CS311 Computational Structures

Computational Complexity

So, it's computable!

- But at what cost?
 - Some things that are computable in principle are in practice *intractable* because of the high "cost"
 - "Cost" can measured in time, or in space, or in other resources ...
- Simple time measure of decision algorithm is number of steps taken by a (one-tape, deterministic) Turing Machine

Counting TM Steps

•L_{ax} = $\{w \in \{a,b\}^*$ next to last symbol of w is a $\}$

 Machine always takes exactly n+3 steps on input of length n

Time complexity class

- STEPS(t(n)) is the class of all languages that are decidable by a (one tape deterministic) Turing machine in at most t(n) steps.
 - Given input of size *n*, machine must halt within *t*(*n*) steps with definite answer *accept* or *reject*.
- So $L_{ax} \in STEPS(n+3)$

A smarter machine for Lax

- Machine takes at most n+1 steps on input of length n
- So Lax \in STEPS(n+1)

A machine for {akbk | k≥ 0}

- Main loop matches a from start and b from end.
- e.g. 0aabb \rightarrow 1abb \rightarrow a1bb \rightarrow ab2b \rightarrow abb2 \rightarrow ab3b \rightarrow a4b \rightarrow 4ab \rightarrow 411ab \rightarrow 0ab

Calculating machine time

- Main loop on a^kb^k takes 4k+1 steps and reduces k by 1
 - e.g. for k = 2: 0aabb → 1abb → a1bb → ab2b → abb2 → ab3b → a4b →4ab →4 $_{\square ab}$ → 0ab
- So overall time for "yes" decision on a^kb^k is
 - (4k+1) + (4(k-1)+1) + ... + (4+1) + 1
 - = 4(k+(k-1)+...+1) + k + 1 = 4k(k+1)/2 + k+1
 - $= (2k+1)(k+1) = 2k^2 + 3k + 1$
- By inspection, reaching "no" can't take longer than "yes", so machine decides in at most (1/2)n²⁺ (3/2)n + 1 steps

Problems vs. Algorithms

- So $\{a^kb^k \mid k \ge 0\} \in STEPS((1/2)n^2 + (3/2)n + 1).$
- Does this mean that deciding $\{a^kb^k \mid k \ge 0\}$ always takes this much time?
- No! There are faster algorithms (machines) for deciding this language.
 - e.g., can be done in time proportional to n log n

Let's approximate

- We'd like to discuss time for algorithms even if they are only described informally
 - And even when we do have a precise TM, counting steps exactly is tedious!
- Also, we often care only about the asymptotic ("big O") behavior of an algorithm or problem.
- From now on, we'll be loose about describing and counting steps
 - e.g. $\{a^kb^k \mid k \ge 0\} \in TIME(n^2)$

RevieWfrom Hein textbook for CS250

The Meaning of Big Oh

(5.42)

The notation f(n) = O(g(n)) means that there are positive numbers c and m such that

$$|f(n)| \le c |g(n)|$$
 for all $n \ge m$.

The Meaning of Big Omega

(5.44)

The notation $f(n) = \Omega(g(n))$ means that there are positive numbers c and m such that

$$|f(n)| \ge c |g(n)|$$
 for all $n \ge m$.

In other words...

- O(g) is the set of functions whose asymptotic behavior is **bounded above** by that of g
- $\Omega(g)$ is the set of functions whose asymptotic behavior is **bounded below** by that of g
- Also, we define $\Theta(g)$ to be the set of functions with the **same** asymptotic behavior as g i.e., both O(g) and $\Omega(g)$

Comparative growth rates of some functions

Avoiding Exponential Time

- Algorithms requiring exponential time are too slow to be practical except for very small input sizes.
- Indeed, problems requiring more than polynomial time are often called intractable.
 - Note: this is just a convenient term. A "tractable" problem that requires O(n¹⁰⁰) time is likely not practically solvable.

Another problem: PATH

- PATH = {(G,s,t) | G is a directed graph that has a directed path from s to t }
 - We assume ⟨G⟩ is encoded as an adjacency matrix of size O(n²). (Any other reasonable encoding will also work.)
- There's an obvious brute force algorithm to decide this language: try each possible sequence of nodes in G of length up to n, and see if it forms a path in G
 - We consider each possible path only once
 - But there are still n! possible paths, so time of this algorithm is $\Omega(2^n)$.

A faster PATH finder

- PATH = {(G,s,t) | G is a directed graph that has a directed path from s to t }
- A faster algorithm operates like this:
 - ▶ 1. Place a mark on node s
 - 2. Repeat until no additional nodes are marked
 - 2.1. Scan all edges of G. If an edge (a,b) is found from a marked node a to an unmarked node b, mark b.
 - 3. If *t* is marked *accept*; otherwise *reject*.
 - Time: step 2 repeats O(n) times; each step takes O(n²) time, so overall time is O(n³). PATH is tractable after all.

Finding a Hamiltonian path

- HAMPATH = {(G,s,t) | G is a directed graph with a path from s to t passing through each node exactly once}
- The brute force algorithm for PATH works here too, so HAMPATH is in TIME(n!) (where n is number of nodes in graph).
- Nobody knows for sure whether there is a polynomial-time algorithm for HAMPATH.

What if we vary the model?

- When we're talking about timing, our precise choice of TM model matters.
 - Unlike for decidability results.
- Example: Given a two-tape TM, we can recognize $\{a^nb^n \mid n \ge 0\}$ in O(n) time. How?
- Example: On a nondeterministic TM, the brute force algorithm for PATH runs in polynomial time. Why?

Time cost of simulation

- We can relate execution times on fancy TM's to those on the standard TM.
- For every multitape TM that runs in time t(n), there is an equivalent single tape TM that runs in time O(t²(n)).
 - ▶ IALC Thm. 8.10
- For every ND TM that decides in time t(n), there is an equivalent single tape TM that decides in time 2^{O(t(n))}.
 - Straightforward from simulation method

Summary

- Sometimes there's an algorithm that is asymptotically faster than the "obvious" one.
- Sometimes there isn't (and we may not know).
- The distinction between polynomial and exponential time algorithms matters
- The underlying computation model matters

The class P: Tractable Problems

 P is the class of languages that are decidable in polynomial time on a deterministic singletape Turing machine. In other words,

- $\bullet P = U_k TIME(n^k)$
- •where the time complexity class TIME(t(n)) is the collection of languages that are decidable by a deterministic single-tape TM in O(t(n))steps

Tractable Problems

- Most of the computer programs in common use solve a problem in P.
 - If it weren't, the program would probably run too slowly to be useful!
 - Exception: some problems can be solved for interesting special cases even if they aren't tractable in general
- But sometimes finding a polynomial time algorithm is challenging
 - And for a large class of problems, we don't know for sure whether such a algorithm exists.

Verifying vs. Solving

- Often, it seems easier to verify an alleged solution to a problem than it is to determine from scratch whether there is a solution.
 - Example: Consider the Hamiltonian Path problem; no polynomial time algorithm for this is known.
 - ▶ But if we have a proposed solution (*i.e.*, a path that visits each node once), it is simple to **verify** whether the path is correct in polynomial time. (How ?)
- The proposed solution is described by a certificate
 - e.g., for Hamiltonian Path, the proposed path
- A verifier is a TM that takes a problem and a certificate and answers "OK" or "fake"

The Class NP

 The class NP contains all the decision problems that can be *verified* in Polynomial time.

Equivalently

- The class NP contains all the decision problems that can be solved in Polynomial time by a nondeterministic algorithm
 - It may make arbitrary (nondeterministic) choices
 - The number of steps must be bounded by some polynomial in *n*, where *n* is the length of the input
 - NTIME(t(n)) = languages decidable in O(t(n)) time by a NDTM

Equivalence of Two Definitions of NP

- Suppose that we have a deterministic verifier ...
- then we build a non-deterministic solver that:
 - non-deterministically generates all putative certificates (effectively in parallel)
 - runs the deterministic verifier to check them (each in polynomial time)
 - if there is a solution, we'll find and approve its certificate

•Conversely:

- Suppose we have a non-deterministic solver, e.g., a non-deterministic TM M
 - At each of its polynomially-many steps, it may branch at most a constant number of ways.
 - We can use the path of choices made as the certificate; valid certificates lead to accept states.
- So: we can build a deterministic verifier that, given the certificate, simulates M on that path, and checks that it is an accept path.
 - This takes polynomially-many steps

Relationship

- Anything in P is also in NP
 - because any deterministic algorithm is also a nondeterministic algorithm
- Does P = NP?
 - currently not known, but widely suspected P ≠ NP

Beyond NP

- Many interesting and natural problems are in NP
 - Typically show membership in NP by exhibiting a polynomial-time verifier.
- But some (natural) problems are not...
- EXPTIME = U_k TIME (2) is believed to be larger than NP (and known to be larger than P)
- 2-EXPTIME = U_k TIME(2^{n^k}) is larger than NP

What about Space?

- We can measure the space use of a TM as the maximum number of tape cells it scans on an input of length n.
- Define SPACE(f(n)) as the class of languages decided by a (deterministic) TM using O(f(n)) space.
- Define NSPACE similarly for non-deterministic TM.

NP ⊆ PSPACE

- By analogy with time classes, we define $PSPACE = U_k$ $SPACE(n^k)$ and $NPSPACE = U_k$ $NSPACE(n^k)$
- Then NP ⊆ PSPACE.
 - Clearly NP ⊆ NPSPACE, because a machine that takes t steps can access at most t tape squares.
 - It turns out that NPSPACE = PSPACE
 - Consequence of Savitch's theorem (IALC 11.5)
 - It also turns out that NPSPACE ⊆ EXPTIME

