Título del folleto

Kenny J. Tinoco

ASJT - Nicaragua

Índice

1.	Introducción	1
2.	Desarrollo	1
3.	Problemas propuestos	4
4.	Extras	4

1. Introducción

2. Desarrollo

Figura 1: Una imagen de Alf

Teorema 2.1 (Ejemplo de teorema). Hola, este un ejemplo de como escribir un teorema matemático en la plantilla.

Demostración. Este es el ejemplo de como escribir la demostración de un teorema matemático en la plantilla.

$$\operatorname{sen}^2(x) + \cos^2(x) = 1.$$

Ejercicio 2.1. Es es un ejemplo de ejercicio.

Solución. Este es un ejemplo de solución.

$$x = x + 1$$
.

Solución del ejercicio o problema.

Problema 1. Nueve celdas de un tablero 10×10 están infectadas. Dos celdas son vecinas si tienen un lado en común. En cada minuto, las celdas que tengan al menos dos vecinos infectados se vuelven infectadas. ¿Puede llegar a suceder que todas las celdas del tablero estén infectadas?

(Soluciones a los problemas de entrenamiento, problema 4. Tzaloa, 2022)

Solución 1. Ejemplo de solución enumerada.

Problema 2. Determina el menor entero positivo n con las siguientes propiedades:

- 1. Su dígito de las unidades es 6.
- 2. Si el último dígito 6 se borra y se coloca al principio del número, el resultado es 4 veces n.

(IMO 2040)

Problema 2.1.

Un agricultor cosechó en el primer día $(x-2)^{2023}$ granos de maíz y el segundo día $(x-1)^{2024}+7$ granos de maíz. Si el agricultor almacena los granos de los dos días en sacos, los cuales tiene una capacidad de x^2-3x+2 granos cada uno. ¿cuál es el polinomio que representa los granos sobrantes?

Ejemplo de cómo escribir los conjuntos de números

 \mathbb{N} signo que representa los números naturales $\{1, 2, \cdots\}$

 $\mathbb Q$ signo que representa los números racionales

 \mathbb{Z} signo que representa los números enteros

 \mathbb{Z}^+ signo que representa los números enteros positivos

 \mathbb{Z}^- signo que representa los números enteros negativos

 $\mathbb{Z}^{\geq 0}$ -signo que representa los números enteros no negativos

 \mathbb{R} signo que representa los números reales

 \mathbb{R}^+ $\,$ signo que representa los números reales positivos

 $\mathbb{R}^- -$ signo que representa los números reales negativos

 \mathbb{C} signo que representa los números complejos

Ejemplos de cómo utilizar módulos

$$x \equiv 1 \pmod{n}$$

 $x \equiv 1 \pmod{n}$

Diferencia entre enfasís y texto modo italico.

$$hola \stackrel{!}{=} hola$$

Teorema 2.1 (Teorema de Ceva sobre la circunferencia).

Sean ABC y DEF dos triángulos sobre la misma circunferencia. Entonces las rectas AD, BE y CF son concurrentes si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1.$$

Teorema 2.2 (Teorema del resto).

Dado un polinomio P, de grado n y $a \in \mathbb{R}$, diremos que el resto de P cuando es dividido por x-a es P(a). Es decir

$$P(a) = r \Leftrightarrow P(x) = (x - a)Q(x) + r$$

para algún polinomio Q(x).

Prueba de algunos comandos matemáticos.

$$\underbrace{a + \dots + a}_{\substack{n \text{ veces} \\ k+n+m \text{ sumandos}}} \underbrace{m \text{ veces}}_{\substack{m \text{ veces} \\ b+\dots + b}}$$

$$f_n(x) = \begin{cases} -x^2 + n, & \text{si } x < 0 \text{ y } n \text{ par,} \\ \alpha + x, & \text{si } x > 0, \\ x^2, & \text{en otros casos.} \end{cases}$$

p-ádico

$$(x_1,x_2,\ldots,x_n) \qquad \text{ejemplo de una tupla}$$

$$(x_{k-10},\ldots,x_k) \qquad \text{ejemplo de una } k\text{-upla}$$

$$(r_i,\ldots,r_m) \qquad \text{ejemplo de una } m\text{-upla}$$

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \qquad \text{ejemplo de polinomio}$$

$$Q(x) = c_m y^m + c_{m-1} y^{m-1} + \cdots + c_1 y + c_0 \qquad \text{otro ejemplo de polinomio}$$

$$x_1 + x_2 + \cdots + x_k \qquad \text{otro ejemplo de suma}$$

$$x_1 \cdot x_2 \cdots x_k \qquad \text{otro ejemplo de producto}$$

$$\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \cdots x_n} \qquad \text{Ejemplo AM-MG}$$

3. Problemas propuestos

Problema 3.1. Hey, esta es una prueba.

Lema 3.1. Otra prueba.

4. Extras

Problema 4.1. {...}

Referencias

[Par18] Amir Parvardi. Functional equations in mathematical olympiad. Problems and solutions Vol. 1 (2017-2018). The University of British Columbia, 2018.

[Rad07] Marko Radovanovic. Functional equations. IMOMath, 2007.