

Today's Lecture

- 1. Probability recap: Chebyshev and Hoeffding inequality.
- 2. Degree distribution in Erdős-Rényi graphs.
- 3. Threshold phenomena and giant component.

Degree distribution: finite *N* concentration bounds

Concentration: Chebyshev (simple but general)

Theorem (Chebyshev inequality)

For any r.v. X with mean μ and variance σ^2 ,

$$\mathbb{P}(|X-\mu|\geq t) \leq \frac{\sigma^2}{t^2}.$$

For degree: $deg(v) \sim Bin(N-1, p)$, so

$$\mathbb{P}\big(|\operatorname{deg}(v)-(N-1)p|\geq t\big)\leq \frac{(N-1)p(1-p)}{t^2}.$$

Chebyshev already gives some concentration guarantees (e.g. take $t_0=\sqrt{\frac{N}{\delta}p(1-p)}$ for small $\delta>0$) but sharper results are possible.

Appendix: Proof of the Chebyshev inequality

Markov's inequality: If $Z \ge 0$ then $\mathbb{P}(Z \ge t) \le \frac{1}{t}\mathbb{E}[Z]$.

Markov's inequality follows immediately from the following calculation,

$$\mathbb{E}[Z] \leq \mathbb{E}[Z\mathbb{1}(Z \geq t)] \leq t\mathbb{E}[\mathbb{1}(Z \geq t)] = t\mathbb{P}(Z \geq t).$$

Now, Chebyshev's inequality follows easily from Markov's. Take $Z = |X - \mu|$ then

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}((X - \mu)^2 \ge t^2) \le \frac{\mathbb{E}(X - \mu)^2}{t^2} = \frac{\sigma^2}{t^2}.$$

Sharper concentration: Hoeffding for Binomial

Theorem (**Hoeffding inequality**)

If $X = \sum_{i=1}^n Z_i$ with independent $Z_i \in [0,1]$ and $\mathbb{E}X = \mu$, then for t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix $v \in V$. Taking $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2}{\delta})}$ for small $\delta > 0$ gives

$$\mathbb{P}\big(|\deg(v)-(N-1)p|\geq t_0\big) \leq \delta.$$

note much better behavior of t_0 as a function of δ

Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality)

If $X = \sum_{i=1}^{n} Z_i$ with independent $Z_i \in [0,1]$ and $\mathbb{E}X = \mu$, then for t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix $v \in V$. Taking $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2}{\delta})}$ for small $\delta > 0$ gives

$$\mathbb{P}\big(|\deg(v)-(N-1)p|\geq t_0\big) \leq \delta.$$

note much better behavior of t_0 as a function of δ

e.g.
$$N=1001$$
, $p=0.1$, $\delta=0.05$. Then with prob. ≥ 0.95 $\deg(v) \in (100-42.95,100+42.95) = (57.05,142.95)$.

Recall:
$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$$
 for all $t > 0$.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take
$$t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2N}{\delta})}$$
 we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \delta.$$

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \deg(v) - (N-1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\deg(v) - (N-1)p| \geq t_0) \leq \delta.$$

e.g. N = 1001, $\delta = 0.05$, p = 0.1. Then with prob. ≥ 0.95 all degrees lie in (100 - 72.8, 100 + 72.8) = (27.2, 172.8).

Asymptotics in networks

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Probabilistic language:

- "With high probability" (w.h.p.) means $\mathbb{P}(\mathsf{event}) o 1$ as $\mathsf{N} o \infty$.
- Example: in G(N, p) with $p = \frac{\log N}{N}$, the graph is connected w.h.p.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/N$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/N$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Language note:

- Saying "real networks are sparse" means that as they grow, the average degree stays bounded, not that p is small for a fixed N.
- The scaling of p_N determines which asymptotic regime we are in.

Maximum degree in G(N, p)

Let $\Delta = \max_{v} \deg(v)$ be the **maximum degree**.

Dense regime: (p_N) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

$$\Delta = (N-1)p + O(\sqrt{N \log N}).$$

(use Slide 6 to argue for this asymptotic formula)

Maximum degree in G(N, p)

Let $\Delta = \max_{\nu} \deg(\nu)$ be the **maximum degree**.

Dense regime: (p_N) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

$$\Delta = (N-1)p + O(\sqrt{N \log N}).$$

(use Slide 6 to argue for this asymptotic formula)

Sparse regime: $p_N = \lambda/N$ (or smaller).

- Each $deg(v) \approx Pois(\lambda)$ mean λ .
- By extreme-value theory for Poisson tails:

$$\Delta \approx \frac{\log N}{\log \log N}.$$

This is very thin tailed: $N=10^3, 10^6, 10^{12}$ gives $\frac{\log N}{\log \log N}=4.3, 6.3, 9.2$. In real networks we observe "hubs".

Threshold phenomena and giant component

Threshold phenomena in ER (concept)

Definition

A **threshold** for a graph property \mathcal{P} is a function $p^*(N)$ such that:

$$p \ll p^*(N) \Rightarrow G(N, p)$$
 has $\neg P$ w.h.p.,
 $p \gg p^*(N) \Rightarrow G(N, p)$ has P w.h.p.

ER graphs display many sharp thresholds:

- Emergence of a giant component.
- Connectivity (no isolated vertices).
- Appearance of fixed subgraphs (e.g., triangles).

Regimes of G(N, p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

$$\mathbb{E}[\deg(v)] = c.$$

- Subcritical regime (c < 1): only small tree-like components; largest size $\sim \log N$.
- Critical point (c=1): largest component has size $\sim N^{2/3}$; no giant yet.
- Supercritical regime (c > 1): a unique giant component emerges, containing a positive fraction of nodes.
- Connected regime ($c \gtrsim \log N$): almost surely the whole graph becomes connected.

Illustration of regimes

Interpretation: As c increases, the largest connected component grows from negligible size, through a sudden phase transition (c=1), and eventually absorbs almost all nodes.

Why the giant component matters (econ/social)

Consider the world's friendship network:

- Clearly disconnected (think small remote communities)
- But "our" component is large, spans most of the world.
- There should be no two big components.

Giant components are important:

- Contagion & diffusion: A giant component enables large cascades (diseases, information, bank runs).
- Market connectivity: Sufficient density is needed for trade/payment networks to connect most participants.
- Infrastructure design: Tuning p (or expected degree c) above 1 ensures large-scale reachability.

Where are real networks?

Most real-world networks live well above the critical point.

They are highly connected (often even "superconnected"), yet they also exhibit additional structure (clustering, hubs, communities).

The ER model a *baseline*: it shows that above c=1, large-scale connectivity is the default, but real networks have richer features.

Connectivity threshold in G(N, p)

Theorem

The threshold for connectivity in G(N, p) is

$$p^*(N) = \frac{\log N}{N}.$$

More precisely:

$$\begin{cases} p = \frac{\log N + \omega(N)}{N}, & G(N, p) \text{ is connected w.h.p.,} \\ p = \frac{\log N - \omega(N)}{N}, & G(N, p) \text{ is disconnected w.h.p..} \end{cases}$$

Here, $\omega(N)$ means any function that grows to infinity (however slowly). Examples: $\log \log N$, $\sqrt{\log N}$, or even $\log \log \log N$.

Idea of proof (intuition)

A vertex is isolated with probability

$$\mathbb{P}(v \text{ isolated}) = (1-p)^{N-1} \approx e^{-pN}.$$

• Expected number of isolated vertices:

$$\mathbb{E}[N_0] \approx Ne^{-pN}$$
.

• If $p = c \frac{\log N}{N}$, then

$$\mathbb{E}[N_0] \approx N^{1-c}$$
.

• For c < 1, $\mathbb{E}[N_0] \to \infty$; many isolated vertices \to disconnected. For c > 1, $\mathbb{E}[N_0] \to 0$; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity. However, one can show that once all isolated vertices disappear, all other components merge into one giant component w.h.p.

Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

```
import networkx as nx
import matplotlib.pyplot as plt
n, p = 200, 0.015 \# trv also p = 0.005, 0.02, 0.05
G = nx.erdos_renyi_graph(n, p)
print("Nodes:", G.number of nodes())
print("Edges:", G.number of edges())
# Empirical vs expected average degree
deg = [d for . d in G.degree()]
print("Empirical mean degree:", sum(deg)/n)
print("Theoretical mean degree:", (N-1)*p)
# Largest component size
components = list(nx.connected_components(G))
largest = max(components, kev=len)
print("Largest component size:", len(largest))
# Draw (small n looks better)
plt.figure(figsize=(5,5))
pos = nx.spring_layout(G, seed=7)
nx.draw(G, pos, node_size=30, edge_color="#cccccc")
plt.show()
```

Simulation in NetworkX — degree histogram

Python (run in Google Colab)

```
import numpy as np
import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])
print("Empirical mean degree:", deg.mean())
print("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))
bins = np.arange(deg.max()+2) - 0.5
plt.hist(deg, bins=bins)
plt.xlabel("Degree k"); plt.ylabel("Count")
plt.title("Degree distribution in G(N,p)")
plt.show()
```

Observation. For p = c/N the histogram should resemble a Poisson(c), with empirical mean degree $\overline{\deg}(G)$ close to theoretical $\mathbb{E}[\deg]$.