Sh

Pseu

BFDOT (vector)

BFloat16 floating-point dot product (vector). This instruction delimits the source vectors into pairs of BFloat16 elements.

If FEAT EBF16 is not implemented or *FPCR*.EBF is 0, this instruction:

- Performs an unfused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The intermediate single-precision products are rounded before they are summed, and the intermediate sum is rounded before accumulation into the single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the source vectors.
- Uses the non-IEEE 754 Round-to-Odd rounding mode, which forces bit 0 of an inexact result to 1, and rounds an overflow to an appropriately signed Infinity.
- Flushes denormalized inputs and results to zero, as if *FPCR*.{FZ, FIZ} is {1, 1}.
- Disables alternative floating point behaviors, as if *FPCR*.AH is 0.

If FEAT EBF16 is implemented and FPCR.EBF is 1, then this instruction:

- Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the source vectors. The intermediate single-precision products are not rounded before they are summed, but the intermediate sum is rounded before accumulation into the single-precision destination element that overlaps with the corresponding pair of BFloat16 elements in the source vectors.
- Follows all other floating-point behaviors that apply to singleprecision arithmetic, as governed by *FPCR*.RMode, *FPCR*.FZ, *FPCR*.AH, and *FPCR*.FIZ.

Irrespective of FEAT EBF16 and *FPCR*.EBF, this instruction:

- Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).
- Disables trapped floating-point exceptions, as if the *FPCR* trap enable bits (IDE, IXE, UFE, OFE, DZE, and IOE) are all zero.
- Generates only the default NaN, as if *FPCR*.DN is 1.

ID AA64ISAR1 EL1.BF16 indicates whether this instruction is supported.

Vector (FEAT_BF16)

31 30 29 2	28 27 26 25	24 23 22	21 2	20 19 18 17 16	15	14 13	12 11	10	9 8	7	6	5	4	3	2	1 0
0 Q 1	0 1 1 1	0 0 1	0	Rm	1	1 1	1 1	1		Rn				F	Rd	

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

```
if !IsFeatureImplemented(FEAT_BF16) then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
constant integer datasize = 64 << UInt(Q);
integer elements = datasize DIV 32;</pre>
```

Assembler Symbols

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>

Is an arrangement specifier, encoded in "Q":

Q	<ta></ta>					
0	2S					
1	4S					

<Vn>

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Th>

Is an arrangement specifier, encoded in "Q":

Q	<tb></tb>					
0	4 H					
1	8H					

<Vm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n, datasize];
bits(datasize) operand2 = V[m, datasize];
bits(datasize) operand3 = V[d, datasize];
bits(datasize) result;

for e = 0 to elements-1
   bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
   bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
   bits(16) elt2_a = Elem[operand2, 2*e+0, 16];
   bits(16) elt2_b = Elem[operand2, 2*e+1, 16];

bits(32) sum = Elem[operand3, e, 32];
   sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
   Elem[result, e, 32] = sum;
V[d, datasize] = result;
```

BaseSIMD&FPSVESMEIndex byInstructionsInstructionsInstructionsInstructions

Internal version only: isa v33.64, AdvSIMD v29.12, pseudocode no_diffs_2023_09_RC2, sve v2023-06_rel ; Build timestamp: 2023-09-18T17:56

Sh Pseu

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.