Project 1 - Part 1

```
In [0]:
```

```
from pyspark import SparkContext
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("my_project_1").getOrCreate()
```

Importing all spark data types and spark functions for your convenience.

```
In [0]:
```

```
from pyspark.sql.types import *
from pyspark.sql.functions import *
```

```
# Read a CSV into a dataframe
# There is a smarter version, that will first check if there is a Parquet file and use it
def load csv file(filename, schema):
  # Reads the relevant file from distributed file system using the given schema
  allowed files = {'Daily program data': ('Daily program data', "|"),
                   'demographic': ('demographic', "|")}
 if filename not in allowed files.keys():
   print(f'You were trying to access unknown file \"{filename}\". Only valid options are
{allowed files.keys()}')
   return None
  filepath = allowed files[filename][0]
  dataPath = f"dbfs:/mnt/coursedata2024/fwm-stb-data/{filepath}"
  delimiter = allowed files[filename][1]
  df = spark.read.format("csv") \
    .option("header", "false") \
    .option("delimiter", delimiter) \
    .schema(schema) \
    .load(dataPath)
  return df
# This dict holds the correct schemata for easily loading the CSVs
schemas dict = {'Daily program data':
                  StructType([
                    StructField('prog code', StringType()),
                    StructField('title', StringType()),
                    StructField('genre', StringType()),
                    StructField('air_date', StringType()),
                    StructField('air time', StringType()),
                    StructField('Duration', FloatType())
                  ]),
                'viewing':
                  StructType([
                    StructField('device_id', StringType()),
                    StructField('event_date', StringType()),
                    StructField('event time', IntegerType()),
                    StructField('mso code', StringType()),
                    StructField('prog_code', StringType()),
                    StructField('station num', StringType())
                  ]),
                'viewing full':
                  StructType([
                    StructField('mso code', StringType()),
                    StructField('device id', StringType()),
                    StructField('event date', IntegerType()),
```

```
StructField('event_time', IntegerType()),
                    StructField('station_num', StringType()),
                    StructField('prog code', StringType())
                  ]),
                'demographic':
                  StructType([StructField('household id', StringType()),
                    StructField('household size', IntegerType()),
                    StructField('num adults', IntegerType()),
                    StructField('num generations', IntegerType()),
                    StructField('adult range', StringType()),
                    StructField('marital status', StringType()),
                    StructField('race code', StringType()),
                    StructField('presence children', StringType()),
                    StructField('num children', IntegerType()),
                    StructField('age_children', StringType()), #format like range - 'bitw
ise!
                    StructField('age range children', StringType()),
                    StructField('dwelling type', StringType()),
                    StructField('home_owner_status', StringType()),
                    StructField('length_residence', IntegerType()),
                    StructField('home market value', StringType()),
                    StructField('num vehicles', IntegerType()),
                    StructField('vehicle_make', StringType()),
                    StructField('vehicle model', StringType()),
                    StructField('vehicle year', IntegerType()),
                    StructField('net worth', IntegerType()),
                    StructField('income', StringType()),
                    StructField('gender individual', StringType()),
                    StructField('age individual', IntegerType()),
                    StructField('education highest', StringType()),
                    StructField('occupation highest', StringType()),
                    StructField('education 1', StringType()),
                    StructField('occupation 1', StringType()),
                    StructField('age 2', IntegerType()),
                    StructField('education 2', StringType()),
                    StructField('occupation_2', StringType()),
                    StructField('age 3', IntegerType()),
                    StructField('education_3', StringType()),
                    StructField('occupation_3', StringType()),
                    StructField('age 4', IntegerType()),
                    StructField('education 4', StringType()),
                    StructField('occupation_4', StringType()),
                    StructField('age 5', IntegerType()),
                    StructField('education 5', StringType()),
                    StructField('occupation 5', StringType()),
                    StructField('polit_party_regist',StringType()),
                    StructField('polit party input', StringType()),
                    StructField('household clusters', StringType()),
                    StructField('insurance groups', StringType()),
                    StructField('financial groups', StringType()),
                    StructField('green living', StringType())
                  ])
```

Read demogrphic data

```
In [0]:
%%time
# demographic data filename is 'demographic'
demo_df = load_csv_file('demographic', schemas_dict['demographic'])
demo_df.count()
demo_df.printSchema()
print(f'demo_df contains {demo_df.count()} records!')
display(demo_df.limit(6))

root
|-- household_id: string (nullable = true)
|-- household_size: integer (nullable = true)
|-- num_adults: integer (nullable = true)
```

```
|-- num generations: integer (nullable = true)
|-- adult_range: string (nullable = true)
|-- marital status: string (nullable = true)
|-- race code: string (nullable = true)
|-- presence children: string (nullable = true)
|-- num children: integer (nullable = true)
|-- age children: string (nullable = true)
|-- age_range_children: string (nullable = true)
|-- dwelling_type: string (nullable = true)
|-- home_owner_status: string (nullable = true)
|-- length residence: integer (nullable = true)
|-- home_market_value: string (nullable = true)
|-- num vehicles: integer (nullable = true)
|-- vehicle make: string (nullable = true)
|-- vehicle model: string (nullable = true)
|-- vehicle year: integer (nullable = true)
|-- net worth: integer (nullable = true)
|-- income: string (nullable = true)
|-- gender individual: string (nullable = true)
|-- age individual: integer (nullable = true)
|-- education highest: string (nullable = true)
|-- occupation highest: string (nullable = true)
|-- education 1: string (nullable = true)
|-- occupation 1: string (nullable = true)
|-- age 2: integer (nullable = true)
|-- education_2: string (nullable = true)
|-- occupation_2: string (nullable = true)
|-- age_3: integer (nullable = true)
|-- education 3: string (nullable = true)
|-- occupation 3: string (nullable = true)
|-- age_4: integer (nullable = true)
|-- education 4: string (nullable = true)
|-- occupation 4: string (nullable = true)
|-- age 5: integer (nullable = true)
|-- education 5: string (nullable = true)
|-- occupation 5: string (nullable = true)
|-- polit party regist: string (nullable = true)
|-- polit party input: string (nullable = true)
|-- household_clusters: string (nullable = true)
|-- insurance groups: string (nullable = true)
|-- financial groups: string (nullable = true)
|-- green living: string (nullable = true)
```

demo_df contains 357721 records!

household_id	household_size	num_adults	num_generations	adult_range	marital_status	race_code	presence_cl
00000015	2	2	1	00000000000100000000	s	В	
00000024	2	2	1	00000000100000000000	null	W	
00000026	null	null	null	000000000000000000000000000000000000000	null	null	
00000028	3	2	2	000000110000000000000	s	W	
00000035	1	1	1	0000000010000000000	null	w	
00000036	null	null	null	000000000000000000000000000000000000000	null	null	
4							Þ

CPU times: user 80.8 ms, sys: 10.1 ms, total: 91 ms Wall time: 22.9 s

Read Daily program data

```
In [0]:
```

```
%%time
# daily_program data filename is 'Daily program data'
daily_prog_df = load_csv_file('Daily program data', schemas_dict['Daily program data'])
daily_prog_df.printSchema()
```

```
display(daily_prog_df.limit(6))
 |-- prog code: string (nullable = true)
 |-- title: string (nullable = true)
 |-- genre: string (nullable = true)
 |-- air date: string (nullable = true)
 |-- air_time: string (nullable = true)
 |-- Duration: float (nullable = true)
daily_prog_df contains 13194849 records!
                         title
     prog_code
                                   genre
                                          air_date air_time Duration
EP000000250035
                21 Jump Street Crime drama 20151219
                                                  050000
                                                             60.0
EP000000250035
                21 Jump Street Crime drama 20151219
                                                  110000
                                                             60.0
EP000000250063
                21 Jump Street Crime drama 20151219
                                                  180000
                                                             60.0
EP00000510007 A Different World
                                  Sitcom 20151219 100000
                                                             30.0
```

Sitcom 20151219 103000

Sitcom 20151219 080300

30.0

29.0

print(f'daily_prog_df contains {daily_prog_df.count()} records!')

CPU times: user 13 ms, sys: 2.99 ms, total: 16 ms Wall time: 9.34 s

Read viewing data

EP000000510008 A Different World

EP000000510159 A Different World

```
In [0]:
```

m	so_code	device_id	event_date	event_time	station_num	prog_code
	01540	000000050f3	20150222	193802	61812	EP009279780033
	01540	000000050f3	20150222	195314	31709	EP021056430002
	01540	000000050f3	20150222	200151	61812	EP009279780033
	01540	00000005518	20150222	111139	46784	EP004891370013
	01540	00000005518	20150222	190000	14771	EP012124070127
	01540	00000005518	20150222	200000	14771	EP010237320166

viewing10m_df contains 9935852 rows!

Read reference data

Note that we removed the 'System Type' column.

```
# Read the new parquet
ref_data_schema = StructType([
    StructField('device_id', StringType()),
    StructField('dma', StringType()),
    StructField('dma_code', StringType()),
```

device_id	dma	dma_code	household_id	zipcode
000000050f3	Toledo	547	1471346	43609
00000006785	Amarillo	634	1924512	79119
00000007320	Lake Charles	643	3154808	70634
00000007df9	Lake Charles	643	1924566	70601
00000009595	Lexington	541	1600886	40601
00000009c6a	Houston	618	1924713	77339

ref data contains 704172 rows!

Part 1.1

Data preprocessing - adding helpful columns for easier implementation later. Filtering out unneeded columns.

```
# Filter records by value - drop duplicates
demo df new = demo df.distinct()
daily prog df new = daily_prog_df.distinct()
viewing10m df new = viewing10m df.distinct()
ref data new = ref data.distinct()
# Filter relevant columns only and cast household id to have a matching type in different
demo df new = demo df new.select(['household id', 'income', 'num adults', 'age individua
l', 'age 2', 'num vehicles', 'vehicle make']).withColumn("household id", col("household id
").cast("int"))
daily prog df new = daily prog df new.select(['prog code', 'title', 'genre', 'air date',
'air_time', 'Duration'])
viewing10m df new = viewing10m df new.select(['prog code','device id', 'event date', 'ev
ent time'])
ref data new = ref data new.select(['device id', 'household id', 'dma', 'dma code'])
# Casting A-D to 10-13
demo df new = demo df new.withColumn(
    "income",
   when (col("income") == "A", 10)
    .when(col("income") == "B", 11)
    .when(col("income") == "C", 12)
    .when(col("income") == "D", 13)
    .when(col("income").cast("int").isNotNull(), col("income").cast("int"))
# Extract averages for checking conditions later
avg prog duration df = daily prog df new.groupBy('prog code').avg('Duration')
overall_avg_duration = avg_prog_duration_df.select(avg("avg(Duration)")).first()[0]
avg household income df = demo df new.groupBy('household id').avg('income')
avg income = avg household income df.select(avg("avg(income)")).first()[0]
# Columns we added:
# 1.daily_prog_df - day_of_week
# 2.demo df - age diff if two
```

```
# 3.ref data - amount of distinct devices per household
#Convert 'air date' from string (YYYYMMDD) to DateType
daily_prog_df_new = daily_prog_df_new.withColumn('air_date', to_date(col('air_date'), 'yy
yyMMdd'))
#Add day of week
daily prog df new = daily prog df new.withColumn('day',dayofweek(col('air date')))
#Add age difference for 2-adult households
demo df new = demo df new.withColumn(
   "age diff if two",
   when (
       col("num adults") == 2,
       abs(col("age individual") - col("age 2"))
   ).otherwise(None)
#Add devices count column
device counts = ref data new.groupBy('household id').agg(countDistinct('device id').alias
('device_count'))
ref_data_new = ref_data_new.join(device_counts, on='household id', how='left')
# Displaying columns we added:
display(demo df new.limit(6))
display(daily prog df new.limit(6))
display(ref data new.limit(6))
```

household_id	income	num_adults	age_ind	dividual	age_2	num_ve	hicles	vehicl	e_make	age_diff_if	_two
36	null	null		null	null		null		null		null
24	7	2		46	null		null		null		null
35	null	1		50	null		null		null		null
15	4	2		60	null		null		null		null
26	null	null		null	null		null		null		null
28	7	2		38	34		null		null		4
prog_cod	le		title			genre	aiı	_date	air_time	Duration	day
EP00000976004	1 1		Coach			Sitcom	2015-	12-19	190000	30.0	7
EP00001257010	05 The	Dick Van Dyk	e Show			Sitcom	2015-	12-19	223000	30.0	7
EP00002454002	29 Keep	ing Up Appea	rances			Sitcom	2015-	12-20	080000	30.0	1
EP00002800020	06	Market to	Market		Newsm	nagazine	2015-	12-20	130000	30.0	1
EP00002960139	99	Moto	orWeek	How-to	,Auto,Co	onsumer	2015-	12-19	223000	30.0	7
EP00003790077	71	Sewing With	Nancy	Edu	ıcationa	,How-to	2015-	12-20	000000	30.0	1
household_id	dev	rice_id		dma	dma_c	ode de	vice_co	unt			
1963765	0000003	c83aa Little	Rock-Pi	ne Bluff		693		2			
1969296	0000004	28da4	Alexan	dria. LA		644		2			

device_count	dma_code	dma	device_id	household_id
2	693	Little Rock-Pine Bluff	0000003c83aa	1963765
2	644	Alexandria, LA	000000428da4	1969296
1	671	Tulsa	00000042d861	1969958
1	725	Sioux Falls(Mitchell)	00000043ab9d	1314105
2	612	Shreveport	00000043bc7d	1971832
4	547	Toledo	0000005d6d7a	1517615

Part 1.2:

An airing is considered malicious if it satisfies at least 4 out of 7 conditions. We observed that 4 conditions are based on the program (prog_code), while the remaining 3 are based on household attributes.

This insight allows us to filter the dataset: any program that does not meet any of the 4 program-dependent conditions can be dropped before evaluating bousehold-related conditions improving performance.

conditions can be dropped before evaluating nodsenour-related conditions, improving performance.

```
In [0]:
```

```
# Checking prog_code dependent conditions
# Condition 1
daily_prog_df_new = daily_prog_df_new.withColumn("cond_1", col("duration") > overall_avg
_duration)
```

For Condition 4 we used the help of ChatGPT to implement a check that verifies if any portion of the program aired during Friday 13th (instead of just checking if it started on one).

```
In [0]:
```

```
# Condition 4
# help from chat GPT - making sure that every program that was aired in friday 13th in *a
ny* part of it will be marked as true
# help with adding helper columns: air datetime, end datetime, end time, end date, day of
week of end date, date range, array of all dates.
# Step 1: Create full datetime from air date (DateType) and air time (HHMMSS string)
# This combines the date and time into a proper timestamp
daily_prog_df_new = daily_prog_df_new.withColumn(
    "air datetime",
    to timestamp(expr(
        "concat(date_format(air_date, 'yyyy-MM-dd'), ' ', " +
        "substr(air time, 1, 2), ':', substr(air time, 3, 2), ':', substr(air time, 5, 2)
) "
   ) )
# Step 2: Add duration (in seconds) to air datetime to compute end datetime
daily prog df new = daily prog df new.withColumn(
    "end datetime",
    expr("from unixtime(unix timestamp(air datetime) + int(Duration * 60))")
# Step 3: Extract end time (as HHMMSS string) and end date (as DateType)
daily prog df new = daily prog df new.withColumn(
    "end time",
   date format(col("end datetime"), "HHmmss")
).withColumn(
    "end date",
   date_format(col("end_datetime"), "yyyy-MM-dd").cast("date")
# Step 4: Compute day of week for the end date
daily prog df new = daily prog df new.withColumn(
    "day of week of end date",
    dayofweek(col("end date"))
# Step 5: Generate a sequence of dates between air date and end date
daily prog df new = daily prog df new.withColumn(
    "date_range",
    sequence(col("air_date"), col("end_date"))
# Step 6: Convert each date in the range to a tuple (day of month, day of week)
daily_prog_df_new = daily_prog df new.withColumn(
    "array_of_all_dates",
    transform(
        col("date_range"),
       lambda d: struct(dayofmonth(d).alias("day"), dayofweek(d).alias("weekday"))
    )
# Step 7: Identify prog codes where day=13, weekday=6 (which means Friday the 13th exists
in the date array)
friday 13 prog codes = daily prog df new.filter(
```

```
expr("exists(array_of_all_dates, x -> x.day = 13 AND x.weekday = 6)")
).select("prog_code").distinct()

# Step 8: Mark those prog_codes with cond_4 = True in the original DataFrame, else False
daily_prog_df_new = daily_prog_df_new.join(
    friday_13_prog_codes.withColumn("cond_4", lit(True)),
    on="prog_code",
    how="left"
).withColumn(
    "cond_4",
    col("cond_4").isNotNull()
)
```

We can see in the table displayed below the columns added for condition 4 and how they have been used.

In [0]:

```
# Printing all relavent and helper columns for condition 4 so we can see how it was done
display(daily prog df new.select(
    "prog code",
    "Duration",
    "air_datetime",
    "end_datetime",
    "end_time",
    "end_date",
    "day_of_week_of_end_date",
    "date_range",
    "array of all dates", "cond 4"
).limit(10))
# Droping helper columns
daily_prog_df_new = daily_prog_df_new.drop(
    "air datetime",
    "end datetime",
    "end time",
    "end date",
    "day_of_week_of_end_date",
    "date_range",
    "array of all dates"
```

prog_code	Duration	air_datetime	end_datetime	end_time	end_date	day_of_week_of_end_date	date_range	array
EP000009760041	30.0	2015-12- 19T19:00:00Z	2015-12-19 19:30:00	193000	2015-12- 19	7	List(2015- 12-19)	Lis
EP000012570105	30.0	2015-12- 19T22:30:00Z	2015-12-19 23:00:00	230000	2015-12- 19	7	List(2015- 12-19)	Lis
EP000024540029	30.0	2015-12- 20T08:00:00Z	2015-12-20 08:30:00	083000	2015-12- 20	1	List(2015- 12-20)	Lis
EP000028000206	30.0	2015-12- 20T13:00:00Z	2015-12-20 13:30:00	133000	2015-12- 20	1	List(2015- 12-20)	Lis
EP000029601399	30.0	2015-12- 19T22:30:00Z	2015-12-19 23:00:00	230000	2015-12- 19	7	List(2015- 12-19)	Lis
EP000037900771	30.0	2015-12- 20T00:00:00Z	2015-12-20 00:30:00	003000	2015-12- 20	1	List(2015- 12-20)	Lis
4) P

moving on to conditons 6+7 and filtering:

```
# Condition 6 - program contains at least one of the genres in list. (case sensitive)
daily_prog_df_new = daily_prog_df_new.withColumn("genre_array", split(col("genre"), ",")
)
daily_prog_df_new = daily_prog_df_new.withColumn(
    "cond_6",
    (array_contains(col("genre_array"), "Collectibles") |
```

```
array_contains(col("genre_array"), "Art") |
    array_contains(col("genre_array"), "Snowmobile") |
   array_contains(col("genre_array"), "Public affairs") |
   array_contains(col("genre_array"), "Animated") |
   array_contains(col("genre_array"), "Music")) &
   col("genre").isNotNull()
# Condition 7 - programs with titles containing at least two of the words in the list (c
ase insensitive)
bad words = ['better', 'girls', 'the', 'call']
daily prog df new = daily prog df new.withColumn("title lower", lower(col("title")))
bw1 = col("title lower").contains("better").cast("int")
bw2 = col("title lower").contains("girls").cast("int")
bw3 = col("title lower").contains("the").cast("int")
bw4 = col("title lower").contains("call").cast("int")
bad words count = bw1 + bw2 + bw3 + bw4
daily_prog_df_new = daily_prog_df_new.withColumn( "cond_7", bad_words_count >= 2).drop('
title lower', 'genre array')
#Filter out programs that fail all program-dependent conditions
daily_prog_df_new = daily_prog_df_new.filter(
    col("cond 1") | col("cond 4") | col("cond 6") | col("cond 7")
```

We can see below that the filtering by the first 4 cconditions reduced significantly the size of the table(6,542,562 instead of 13,194,849 records!). now we can determine the household-dependent conditions more efficiently. we can also see the amount of airings matching each condition.

```
In [0]:
#Printing how many rows are left after filtering
print(f'daily prog now contains {daily prog df new.count()} rows!')
#Displaying the amount of airings matching each condition
daily prog df new.select(
   sum(col("cond 1").cast("int")).alias("sum cond 1"),
   sum(col("cond 4").cast("int")).alias("sum cond 4"),
   sum(col("cond_6").cast("int")).alias("sum_cond_6"),
   sum(col("cond 7").cast("int")).alias("sum cond
).show()
daily prog now contains 6542562 rows!
+----+
|sum cond 1|sum cond 4|sum cond 6|sum cond 7|
+----+
   3718572 | 4150198 | 1325663 | 15088 |
+----+
```

Now with the filtered data we got, we move on to the next 3 conditions:

In condition 5 - help from chatGPT with joining - (broadcasting ,adding column 'match_prog_code')

```
In [0]:
```

```
#Condition 2
# Identify households with a Toyota (vehicle_make == '91')
toyota_households = demo_df_new.filter(col("vehicle_make") == "91").select("household_id
").distinct()

#Map devices to these households
device_household_df = ref_data_new.select("device_id", "household_id")
view_with_household = viewing10m_df_new.join(device_household_df, on="device_id")

#Extract unique program codes watched by those households and set cond2 = True for them
toyota_prog_codes = view_with_household.join(toyota_households, on="household_id").selec
t("prog_code").distinct()
```

```
daily_prog_df_new = daily_prog_df_new.join(
    toyota prog codes.withColumn("cond 2", lit(True)),
    on="prog code",
   how="left"
).withColumn("cond 2", when(col("cond 2").isNull(), False).otherwise(True))
# Condition 3
#Find devices of households matching the condition
cond3 households = demo df new.filter(col("age diff if two").isNotNull() & (col("age dif
f if two") <= 6)).select("household id").distinct()</pre>
cond3 devices = ref data new.join(cond3 households, on="household id", how = "inner").se
lect("device id").distinct()
#Find programs watched by these devices and set cond3 = True for them
cond3 prog codes = viewing10m df new.join(cond3 devices, on="device id", how="inner").se
lect("prog_code").distinct().withColumn("cond_3", lit(True))
daily_prog_df_new = daily_prog_df_new.join(cond3_prog codes, on="prog code", how="left")
.fillna({"cond 3": False}).fillna({"cond 3": False})
# Condition 5
#Join relevant tables and filter according to the condition
joined df = viewing10m df new.join(ref data new, on='device id', how='inner') \
                             .join(demo df new, on='household id', how='inner')
joined df = joined df.filter((col('device count') > 3) & (col('income') < avg income))</pre>
# Find relevant prog codes for cond 5
relevant prog codes cond5 = joined df.select('prog code').distinct()
# Set cond5 = True for them relevant prog codes - help from chatGPT with joining - (broad
casting ,adding column 'match prog code')
daily prog df new = daily prog df new.join(
   broadcast(relevant prog codes cond5.withColumnRenamed('prog code', 'match prog code'
)),
   daily prog df new['prog code'] == col('match prog code'),
   how='left'
daily_prog_df_new = daily_prog_df_new.withColumn(
    'cond_5',
    when(col('match prog code').isNotNull(), True).otherwise(False)
).drop('match prog code')
```

We can see below how the dataframe looks like with a column marking true or false for each condition. We can also see the amount of airings matching each of the last 3 conditions we added.

```
In [0]:
```

2979479| 3484728| 3065708|

```
#Print amounts of rows that matched each condition and display the dataframe with the con
dition columns
daily_prog_df_new.select(
    sum(col("cond_2").cast("int")).alias("sum_cond_2"),
    sum(col("cond_3").cast("int")).alias("sum_cond_3"),
    sum(col("cond_5").cast("int")).alias("sum_cond_5")
).show()
display(daily_prog_df_new.limit(20))
+-----+
|sum_cond_2|sum_cond_3|sum_cond_5|
+------+
```

prog_code	title	genre	air_date	air_time	Duration	day	cond_1	cond_4	co_
EP000029340035	Mod Squad	Crime drama	2015- 08-16	060000	60.0	1	true	false	
EP000174760038	The Golden Girls	Sitcom	2015- 08-17	033000	30.0	2	false	false	

prog_code -EP002954050038	title Crashbox	genre Children,Game show	air ₂ date	air_time	Duration 30.0	day	cond_1	cond_4	co
00_00 .000000	o.ac.aca		08-16			-			- 8
EP003034830150	Futurama	Sitcom, Science fiction, Animated	2015- 08-16	033000	30.0	1	false	false	
EP003077660005	SpongeBob SquarePants	Children,Comedy,Fantasy,Animated	2015- 08-17	050000	30.0	2	false	false	
EP003954600859	Cheaters	Reality	2015- 08-16	230000	60.0	1	true	false	
4									▶

Now we perform the final filtering based on condition counts and passing ratios for each title:

```
In [0]:
```

```
# Final Filtering Based on Condition Count
# Count how many conditions (cond 1 to cond 7) each row satisfies, then keep titles with
> 40% pass rate
# Count how many of the 7 conditions are True for each row
daily prog df new = daily prog df new.withColumn(
   "cond_count",
   col("cond 1").cast("int") +
   col("cond 2").cast("int") +
   col("cond 3").cast("int") +
   col("cond 4").cast("int") +
   col("cond 5").cast("int") +
   col("cond 6").cast("int") +
   col("cond 7").cast("int")
# Mark whether a row passed (4 or more conditions are met)
daily_prog_df_new = daily_prog_df_new.withColumn("cond_pass", col("cond_count") >= 4)
# Calculate the pass ratio per title (what % of its rows passed)
title_pass_ratio = daily_prog_df_new.groupBy("title").agg(
   avg(col("cond pass").cast("double")).alias("pass ratio")
# Keep only titles where more than 40% of rows passed
malicious titles = title pass ratio.filter(col("pass ratio") > 0.4).select("title", "pas
s ratio")
# Final result: 20 titles with top pass ratio
Top 20 titles = malicious titles.orderBy(col("pass ratio").desc()).limit(20)
display(Top 20 titles)
```

title	pass_ratio
On Demand	1.0
Zola Levitt Presents	1.0
The Karate Kid Part III	1.0
Shall We Dance?	1.0
Angels Sing, Libera in America	1.0
21	1.0
February Sharathon	1.0
Young Guns II	1.0
KOMO 4 News 4:30am	1.0
Mindhunters	1.0

As we can see below by filtering the titles with 100% pass ratio, there are 5907 contenders for the top 20 titles. Therefore, the top 20 we displayed above were chosen by spark's default tie-breaking methods.

```
In [0]:
```

```
contenders_count = malicious_titles.filter(col("pass_ratio") == 1.0).count()
print(f"there are {contenders_count} titles with 100% pass rate")
```

there are 5907 titles with 100% pass rate