

CLAIMS

What is claimed is:

1. An electron source comprising:
 - 2 a substrate;
 - 3 a cathode disposed over the substrate, the cathode for providing a source of electrons;
 - 4 an emitter layer disposed over the cathode and formed from a composition of an embedding material and a plurality of nano-structures embedded therein, the emitter layer
 - 5 having a surface at which ends of the nano-structures are truncated and exposed for emitting
 - 6 electrons;
 - 7 an insulator disposed over the emitter layer, the insulator having one or a plurality of apertures for exposing the ends of the nano-structures; and
 - 8 a gate electrode disposed over the insulator and having one or a plurality of apertures
 - 9 that are aligned with the apertures in the insulator, the gate electrode for controlling the
 - 10 emission of electrons through the apertures from the exposed nano-structures.
1. An electron source as recited in claim 1,
 - 2 wherein a vacuum is present in the apertures of the gate electrode and the insulator;
 - 3 and
 - 4 wherein an electric field is present in the vacuum between the exposed ends of the
 - 5 nano-structures in the surface of the emitter layer and the gate electrode, the electric field
 - 6 having an intensity that is increased over its vacuum intensity by the presence of the
 - 7 embedding material in the emitter layer.
1. An electron source as recited in claim 1, wherein the exposed ends of the nano-structures
- 2 are at substantially the same distance from the gate electrode.
1. An electron source as recited in claim 1, wherein the embedding material is composed of a
- 2 single material.
1. An electron source as recited in claim 1, wherein the embedding material is composed of

- 2 multiple different materials.
- 1 6. An electron source as recited in claim 1, wherein the nano-structure has at least one of its
- 2 three dimensions in the nanometer range.
- 1 7. An electron field emission composite as recited in claim 6, wherein the nano-structure
- 2 includes nano-tube, nanowires, nano-cone, nano-fiber, nano-particle, and nano-plane.
- 1 8. An electron source as recited in claim 1, wherein the nano-structure is grown in alignment
- 2 and with controlled spacing between nano-structures.
- 1 9. An electron source as recited in claim 1, wherein the nano-structures are grown randomly.
- 1 10. An electron source as recited in claim 1, wherein the nano-structures are prefabricated.
- 1 11. An electron source as recited in claim 1, wherein the exposed end of the nano-structure is
- 2 slightly recessed from the surface of the emitter layer.
- 1 12. An electron source as recited in claim 1, wherein the exposed end of the nano-structure
- 2 protrudes slightly from the surface of the emitter layer.
- 1 13. An electron source as recited in claim 1, wherein the nano-structures are exposed by a
- 2 chemical mechanical planarization process.
- 1 14. An electron source as recited in claim 1, wherein the nano-structures are exposed by a
- 2 combination of lithography and chemical etch.
- 1 15. An electron source as recited in claim 1, wherein the surface of the emitter layer is treated
- 2 to induce atomic bonding to the ends of the truncated nano-structures.
- 1 16. An electron source as recited in claim 1, wherein the nano-structures are conductive and

- 2 the embedding material is an insulating material.
- 1 17. An electron source as recited in claim 16, wherein the insulating material that is selected
2 from a group of materials consisting of: ferroelectric materials, oxides, nitrides, carbides,
3 diamond-like carbon, un-doped semiconductors, glasses, organically modified glasses,
4 insulating ceramics and composites, and cured organic resins.
- 1 18. An electron source as recited in claim 16, wherein the conductive nano-structures are
2 selected from a group of materials consisting of: carbon, doped-semiconductor, refractory
3 metals and alloys, and conductive ceramics.
- 1 19. An electron source as recited in claim 18, wherein the carbon includes carbon nano-tube,
2 carbon nano-fiber, carbon nano-cone, carbon nano-particle and carbon nano-plane.
- 1 20. An electron source as recited in claim 16, wherein the conductive nano-structures are
2 formed from an insulating core and a conductive shell.
- 1 21. An electron source as recited in claim 20, wherein the insulating core is a wide band gap
2 semiconductor that includes AlN, AlGaN, BN, SiC, diamond, GaN.
- 1 22. An electron source as recited in claim 16, wherein the conductive nano-structures are
2 grown directly on the substrate.
- 1 23. An electron source as recited in claim 22, wherein the conductive nano-structures are
2 grown randomly.
- 1 24. An electron source as recited in claim 22, wherein the conductive nano-structures are
2 grown with alignment and controlled spacing.
- 1 25. An electron source as recited in claim 20, wherein the conductive nano-structures are a
2 composite structure having alternating insulating and conductive layers.

- 1 26. An electron source as recited in claim 1, wherein the embedding material is conductive
2 and nano-structures are insulators.
- 1 27. An electron source as recited in claim 26, wherein the insulator nano-structures are grown
2 on the substrate with alignment and controlled spacing between nano-structures.
- 1 28. An electron source as recited in claim 26, wherein the insulator nano-structures are grown
2 randomly on the substrate.
- 1 29. An electron source as recited in claim 26, wherein the insulator nano-structures are pre-
2 fabricated and deposited on the substrate by printing, spin coating, extrusion coating,
3 dipping, and doctor blade.
- 1 30. An electron source as recited in claim 26, wherein the insulator nano-structures are
2 selected from a group consisting of: wide band gap semiconductors, oxides, carbides, nitrides
3 and semiconductors.
- 1 31. An electron source as recited in claim 30, wherein the wide-band semiconductors include
2 diamond, BN, GaN, AlN, AlGaN, GaAs, SiC, ZnO.
- 1 32. An electron source as recited in claim 26, wherein the conductive embedding material is
2 selected from the group consisting of: conductive ceramics, conductive composites, metals,
3 metal alloys, doped semiconductors, and conductive polymers.
- 1 33. An electron source as recited in claim 32, wherein the conductive composites include
2 carbon dispersed in glasses.
- 1 34. An electron source as recited in claim 1, wherein the nano-structures are conductive and
2 the embedding material is conductive.

- 1 35. An electron source as recited in claim 34, wherein the conductive nano-structures are
- 2 selected from a group of materials consisting of: carbon, refractory metals, refractory alloys,
- 3 conductive ceramics, and doped semiconductors.

- 1 36. An electron source as recited in claim 35, wherein carbon includes carbon nano-tube,
- 2 carbon nano-fiber, carbon nano-cone, carbon nano-particles, and carbon nano-planes.

- 1 37. An electron source as recited in claim 34, wherein the conductive nano-structures are
- 2 grown directly on the substrate.

- 1 38. An electron source as recited in claim 34, wherein the conductive nano-structures are pre-
- 2 fabricated.

- 1 39. An electron source as recited in claim 34, wherein the conductive nano-structures are pre-
- 2 fabricated and deposited on the substrate by printing, spin coating, extrusion coating,
- 3 dipping, and doctor blade.

- 1 40. An electron source as recited in claim 34, wherein the conductive embedding material is
- 2 selected from the group consisting of: refractory metals, refractory alloys, conductive
- 3 ceramics, conductive composites, doped semiconductor thin films, and conductive polymers.

- 1 41. An electron source as recited in claim 40, wherein the conductive composites include
- 2 carbon dispersed in glasses.

- 1 42. An electron source as is recited is claim 1,
- 2 wherein the cathode electron is configured as rows of substantially parallel strips,
- 3 each cathode strip for providing an independent source of electrons;
- 4 wherein the gate electrode is configured as columns of substantially parallel strips,
- 5 each column strip intersecting with the rows of cathode strips at intersection patches and
- 6 having one or a plurality of apertures at each intersection patch, wherein each gate electrode
- 7 is configured to control the emission of electrons through the apertures along the gate

8 electrode; and
9 wherein activation of a selected cathode strip and a selected gate electrode strip
10 determine the intersection patches that emit electrons.

1 43. An electron source comprising:
2 a substrate;
3 a cathode disposed over the substrate and having side walls, the cathode for providing
4 a source of electrons;
5 an emitter layer disposed over a side wall of the cathode and formed from a
6 composition of an embedding material and one or a plurality of nano-structures embedded
7 therein, the emitter layer having a surface at which ends of the nanostructures are truncated
8 and exposed for emitting electrons; and
9 a gate electrode disposed over the substrate and having a side wall spaced apart from
10 and facing the emitter layer, the gate electrode for controlling the emission of electrons from
11 the exposed nano-structures of the facing emitter layer.

1 44. An electron source as recited in claim 43, wherein the nano-structures have ends that are
2 slightly recessed from the surface of the emitter layer.

1 45. A method of fabricating an electron source, the method comprising:
2 providing a substrate;
3 depositing on the substrate a first conductive layer;
4 depositing on the first conductive layer an emitter layer composed of an embedding
5 material and one or plurality of nano-structures embedded therein;
6 truncating and exposing the ends of the nano-structures by polishing the surface of
7 the emitter layer;
8 depositing an insulator over the polished surface of the emitter layer;
9 depositing second conductive layer over the insulator; and
10 removing portions of second conductive layer and insulator to form apertures therein
11 and expose the ends of the nano-structures for emission.

1 46. A method as recited in claim 45, wherein depositing an emitter layer includes:
2 depositing on the first conductive layer a thin catalyst layer of nano-sized dots;
3 growing an array of vertically-aligned nano-structures from the catalyst dots; and
4 depositing a material to embed the nano-structures, the embedding material and nano-
5 structures forming the emitter layer with a surface at which ends of the nano-structures are to
6 be exposed.

1 47. A method as recited in claim 46, wherein the nano-structures include carbon nanotubes,
2 carbon nanofibers and carbon nanocones.

1 48. A method as recited in claim 47, wherein the embedding material is an insulator.

1 49. A method as recited in claim 48, wherein the insulator is SiO₂.

1 50. A method as recited in claim 45, wherein depositing the emitter layer includes:
2 dispersing pre-fabricated nano-structures in a slurry to form an uniform mixture;
3 depositing the uniform mixture on the first conductive layer;
4 drying the uniform mixture; and
5 heating at a high temperature to form the emitter layer with a surface at which ends of
6 the nano-structures are to be exposed.

1 51. A method as recited in claim 45, wherein depositing the emitter layer includes:
2 dispersing pre-fabricated nano-structures in a precursor solution;
3 coating the first conductive layer with the solution; and
4 condensing the precursor solution to form the emitter layer with a surface at which
5 ends of the nano-structures are to be exposed.

1 52. A method as recited in claim 45, wherein the polishing is performed by chemical-
2 mechanical planarization.

1 53. A method as recited in claim 45,
2 wherein the embedding material is comprised of at least two layers; and
3 further comprising:
4 depositing the first layer by vapor deposition; and
5 depositing the second layer by disposing a fluidic precursor onto the substrate
6 and curing or condensing the precursor by heating or illumination.

1 54. A method as recited in claim 45, further comprising the step of depositing and patterning
2 an etch-stopper prior to truncating and exposing the ends of the nano-structures by polishing
3 the surface of the emitter layer.

1 55. An electron source comprising:
2 a substrate;
3 electrode means, disposed over the substrate, for providing a source of electrons;
4 means, disposed over the source means, for emitting electrons provided by the source
5 means into a vacuum, the emitting means including nano-structure emitting means for
6 providing a flow of electrons and field-enhancement means for lowering a threshold field at
7 which the emitting means emits electrons;
8 an insulator disposed over the emitting means; and
9 gating means, disposed over the insulator, for controlling the flow electrons emitted
10 by the emitting means.

1 56. An electron source as recited in claim 55, wherein the gating means and the insulator
2 each include one or more apertures that expose the nano-structure emitting means to the
3 vacuum.

1 57. An electron source as recited in claim 55, wherein the nano-structure emitting means is a
2 conductive material and the field-enhancement means is an insulating material.

1 58. An electron source as recited in claim 55, wherein the nano-structure emitting means is
2 an insulating material and the field-enhancement means is a conductive material.

- 1 59. An electron field emission composite comprising:
 - 2 one or more nano-structures;
 - 3 an embedding material in which the nano-structures are embedded, the embedding
 - 4 material having a surface at which ends of the embedded nano-structures are truncated and
 - 5 exposed, the exposed ends of the nano-structures configured to emit electrons when under the
 - 6 influence of an electric field applied in a vacuum proximate to the exposed ends.
- 1 60. An electron field emission composite as recited in claim 59, wherein the intensity of the
- 2 applied electric field in vacuum is increased at the exposed tip of nano-structures by the
- 3 presence of the embedding material.
- 1 61. An electron field emission composite as recited in claim 59, wherein the nano-structures
- 2 are grown on a substrate.
- 1 62. An electron field emission composite as recited in claim 59,
 - 2 wherein the nano-structures are pre-fabricated; and
 - 3 wherein the embedding material is formed from a slurry.
- 1 63. An electron field emission composite as recited in claim 62,
 - 2 wherein the nano-structures are insulators; and
 - 3 wherein the embedding material is a conducting material.
- 1 64. An electron field emission composite as recited in claim 63, wherein the insulators are
- 2 wide band gap semiconductors.
- 1 65. An electron field emission composite as recited in claim 64, wherein the wide band gap
- 2 semiconductors include diamond, AlN, AlGaN, BN, SiC, GaN.
- 1 66. An electron field emission composite as recited in claim 62, wherein the slurry forms a
- 2 conducting composite with carbon dispersed in glasses.

- 1 67. An electron field emission composite as recited in claim 62, wherein the pre-fabricated
- 2 nano-structure is formed from carbon.

- 1 68. An electron field emission composite as recited in claim 67, wherein the carbon includes
- 2 carbon nanotube, carbon nanofiber, carbon nanocone, carbon nanoplane and carbon
- 3 nanoparticle.