Prof. Dr. Carsten Meyer
Faculty of Engineering
Christian-Albrechts-Universität Kiel

Neural Networks and Deep Learning – Summer Term 2018

Exercise sheet 2

Submission due: Tuesday, May 08, 11:30 sharp

Exercise 1 (Single-layer perceptron and Boolean functions with 2 inputs):

a) Show that the Boolean function XOR cannot be realized by a (single-layer) perceptron (with 2 inputs).

Note: The output y of a single-layer perceptron with 2 inputs x_1 and x_2 , threshold θ and weights w_1 and w_2 is given by

$$y = \Theta[x_1 w_1 + x_2 w_2 - \theta]$$
 (\Theta is the Heaviside function)

Solution:

Boolean function XOR:

x_1	x_2	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Insert all possible input pairs into the equation of a single-layer perceptron and formulate for each input pair a threshold condition so that the target output is realized; then rearrange the equations and formulate a contradiction:

$$\begin{array}{llll} 0 \cdot w_{1} + 0 \cdot w_{2} < \theta & \theta > 0 & (1) \\ 0 \cdot w_{1} + 1 \cdot w_{2} \geq \theta & \Leftrightarrow & w_{2} \geq \theta & (2) \\ 1 \cdot w_{1} + 0 \cdot w_{2} \geq \theta & \Leftrightarrow & w_{1} \geq \theta & (3) & \Leftrightarrow & (2) + (3) \colon w_{1} + w_{2} \geq 2 \cdot \theta \\ 1 \cdot w_{1} + 1 \cdot w_{2} < \theta & w_{1} + w_{2} < \theta & (4) & \end{array}$$

The last two equations cannot hold simultaneously (contradiction) if $\theta > 0$ (first equation) \to XOR cannot be realized by a single-layer perceptron

b) Give all Boolean functions with 2 inputs (i.e. for each Boolean function: the output for each input combination) and indicate whether they can be realized by a (single-layer) perceptron.

Solution:

- Inputs x_1 and x_2 , 16 Boolean functions f_0, \ldots, f_{15}
- 14 linearly separable Boolean functions indicated by "+", 2 not linearly separable Boolean functions indicated by "-"

x_1	x_2	f_0	f_{I}	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	1	0	0	0	1	1	1	0	0	0	0	1	1	1	1
0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	1	1
1	0	0	0	0	1	0	0	1	0	1	0	1	1	1	0	1	1
1	1	0	0	0	0	1	0	0	1	0	1	1	1	1	1	0	1
		F	N			Α	N	N	N	X	<i>x</i> ₂	<i>X</i> 1	OR			N	T
		Α	О			N	O	О	X	О						Α	R
		L	R			D	T	T	О	R						N	U
		S					x_1	x_2	R							D	E
		Е															
Linear		+	+	+	+	+	+	+	_	_	+	+	+	+	+	+	+
separa	able																

 f_2 : not x_1 and x_2

 f_3 : x_1 and not x_2

 $f_{12}: x_1 \text{ or not } x_2$

 f_{13} : not x_1 or x_2

a) Select three Boolean functions with two inputs and give values for the synaptic weights w_1 , w_2 and threshold θ so that the Boolean function is realized by a single-layer perceptron. Show for each of the three Boolean functions and each input pair that the Boolean function is indeed realized by the chosen combination of weights and threshold.

Solution:

i) Boolean function OR (f_{II}) :

x_I	x_2	OR
0	0	0
0	1	1
1	0	1
1	1	1

$$w_{1} = w_{2} = 1.0, \ \theta = 0.5$$

$$y = \Theta[x_{1}w_{1} + x_{2}w_{2} - \theta] = \Theta[x_{1} + x_{2} - 0.5]$$

$$x_{1} = 0, x_{2} = 0 \Rightarrow y = \Theta[0 - 0.5] = \Theta[-0.5] = 0$$

$$x_{1} = 0, x_{2} = 1 \Rightarrow y = \Theta[1 - 0.5] = \Theta[0.5] = 1$$

$$x_{1} = 1, x_{2} = 0 \Rightarrow y = \Theta[1 - 0.5] = \Theta[0.5] = 1$$

$$x_{1} = 1, x_{2} = 1 \Rightarrow y = \Theta[2 - 0.5] = \Theta[1.5] = 1$$
o.k.

ii) Boolean function f_3 :

x_1	x_2	f_3
0	0	0
0	1	0
1	0	1
1	1	0

$$w_{1} = 1.0, w_{2} = -1.0, \theta = 0.5$$

$$y = \Theta[x_{1}w_{1} + x_{2}w_{2} - \theta] = \Theta[x_{1} - x_{2} - 0.5]$$

$$x_{1} = 0, x_{2} = 0 \Rightarrow y = \Theta[0 - 0.5] = \Theta[-0.5] = 0$$

$$x_{1} = 0, x_{2} = 1 \Rightarrow y = \Theta[-1 - 0.5] = \Theta[-1.5] = 0$$

$$x_{1} = 1, x_{2} = 0 \Rightarrow y = \Theta[1 - 0.5] = \Theta[0.5] = 1$$

$$x_{1} = 1, x_{2} = 1 \Rightarrow y = \Theta[0 - 0.5] = \Theta[-0.5] = 0$$
o.k.

iii) Boolean function f_5 :

x_1	x_2	f_3
0	0	1

0	1	1
1	0	0
1	1	0

$$w_1 = -1.0, w_2 = 0.0, \theta = -0.5$$

$$\begin{split} y &= \Theta\big[x_1 w_1 + x_2 w_2 - \theta\big] = \Theta\big[-x_1 + 0.5\big] \\ x_1 &= 0, x_2 = 0 \Rightarrow y = \Theta\big[0 + 0.5\big] = \Theta\big[0.5\big] = 1 \\ x_1 &= 0, x_2 = 1 \Rightarrow y = \Theta\big[0 + 0.5\big] = \Theta\big[0.5\big] = 1 \\ x_1 &= 1, x_2 = 0 \Rightarrow y = \Theta\big[-1 + 0.5\big] = \Theta\big[-0.5\big] = 0 \\ x_1 &= 1, x_2 = 1 \Rightarrow y = \Theta\big[-1 + 0.5\big] = \Theta\big[-0.5\big] = 0 \\ \text{o.k.} \end{split}$$

d) Which of the following partitioning of \Re^2 can be realized by a single-layer perceptron with two inputs? For those that can be realized, give weights and threshold of the perceptron. (Consider abscissa as x_1 and ordinate as x_2).

(From: Riedmiller)

Solution:

i) Boundary straight line \rightarrow partitioning realizable by single-layer perceptron Weights: Boundary defined by equation $x_2 = 2x_1 + 1.0 \Leftrightarrow 2x_1 - x_2 + 1.0 = 0$ Comparison with perceptron equation

$$y = \Theta[x_1 w_1 + x_2 w_2 - \theta]$$

$$\Rightarrow w_1 = 2.0, w_2 = -1.0, \theta = -1.0$$

- ii) Boundary not straight line → partitioning NOT realizable by single-layer perceptron
- iii) Boundary not straight line \rightarrow partitioning NOT realizable by single-layer perceptron
- iv) trivial boundary \rightarrow partitioning realizable by single-layer perceptron all inputs mapped to 1.0 which can be realized e.g. by choosing $w_1 = 0.0, w_2 = 0.0, \theta = 1.0$
- v) Boundary straight line \rightarrow partitioning realizable by single-layer perceptron Weights: Boundary defined by equation $x_I = 1.0 \Leftrightarrow x_I 1.0 = 0$ Comparison with perceptron equation

$$y = \Theta[x_1 w_1 + x_2 w_2 - \theta]$$

 $\Rightarrow w_1 = 1.0, w_2 = 0.0, \theta = 1.0$

vi) Boundary not straight line → partitioning NOT realizable by single-layer perceptron

(From: Riedmiller)

Exercise 2 (Types of neural networks, synaptic weight matrix):

- a) Explain the following terms related to neural networks:
 - Boolean function
 - Boolean function with *n* inputs: function of the form $f: \{0,1\}^n \to \{0,1\}$
 - Feedforward neural network
 - Artificial neural network where
 - the neurons are organized in various layers
 - connections are only from lower to higher layers ("feedforward"), i.e.
 there are no loops / no cycles, no feedback (even no lateral feedback!)
 - mathematically: directed acyclic graph
 - Recurrent neural network
 - Artificial neural network with bidirectional data flow, i.e. including feedback loops
 - Multi-layer perceptron
 - o Special type of feedforward neural network where the neurons are perceptrons
- b) Specify whether the following artificial neural networks are feedforward or recurrent neural networks and explain your selection.

i)

ii)

Solution:

i) Feedforward neural network, because there are no feedback loops and it can be organized into separate layers

3 6 2 ii) Recurrent neural network, because there are feedback loops, e.g.

c) Using the neuron numbers from 1 to 7 given in the circles, fill out the following general weight matrix by marking the corresponding field entries. Example: Mark the field in row i and column j (weight w_{ij}) if there is a connection from neuron j to neuron i.

	1	2	3	4	5	6	7
1							
2 3 4 5 6							
3							
4							
5							
6							
7							

Solution:

(for the numbering of neurons see solution of part b)

i)

ii)

Exercise 3 (Computing the output of a feedforward neural network):

a) Compute the output of the following feedforward neural network for the input $x_1=3$; $x_2=1$. Which neurons can be computed in parallel, which have to wait?

Input values: $x_1=3$; $x_2=1$

Note: The small numbers in each circle correspond to the components of the weight vector; see example below. In this part of the exercise, the threshold is set to $\theta = 0$ for all neurons.

Neuron	Activation function of neuron	Weight vector
1	Linear; c=1	(1)
2		(1)
3	Threshold element; θ	(1,-2)
4] =0	(-1,0)
5		(3,2)
6		(0,2)
7	Linear; c=1	(0,2,-3,1)
8		(1,-2,3,8)
9		(0,2,3,-4)

c is the slope of the linear activation function: $f(h) = c \cdot h$

"Threshold element" means that the activation function is the Heaviside function

Example for weight vector of neuron 8:

1st component of weight vector (1) refers to connection neuron $3 \rightarrow$ neuron 8 2nd component of weight vector (-2) refers to connection neuron $4 \rightarrow$ neuron 8 3rd component of weight vector (3) refers to connection neuron $5 \rightarrow$ neuron 8 4th component of weight vector (8) refers to connection neuron $6 \rightarrow$ neuron 8

(Source: Stefan Hartmann, Cesar Research)

Solution:

Input values: $x_1=3$; $x_2=1$

Since the inputs are denoted by x_i and the outputs by y_i , we denote the states of the other neurons 1 - 9 by s_i .

In general, the output y_i of a neuron i from input x_j and synaptic weight w_{ij} connecting neuron state x_i to the postsynaptic neuron i is given by

$$y_i = f(h_i) = f\left(\sum_{j=1}^m w_{ij} \cdot x_j\right)$$

First step: Inputs to neurons 1 and 2

Neurons 1 and 2 can be computed in parallel, since their inputs are completely specified. Furthermore, these two neurons have a linear activation function with slope c = 1 so that f(h)=h, and each neuron receives only one input. Therefore, the states of neurons 1 and 2 are given by

$$w_{1in} = 1 w_{2in} = 1$$

$$x_1 = 3 x_2 = 1$$

$$s_1 = f(h_1) = h_1 = w_{1in} \cdot x_1 = 1 \cdot 3 = 3$$

$$s_2 = f(h_2) = h_2 = w_{2in} \cdot x_2 = 1 \cdot 1 = 1$$

The states of all other neurons can only be computed afterwards.

Second step: Neurons 3, 4, 5 and 6

Neurons 3,4,5 and 6 and be computed in parallel, since – after calculation of neurons 1 and 2 – their inputs are completely specified. Furthermore, neurons 3, 4, 5 and 6 are threshold elements with threshold $\theta = 0$; and each neuron gets input from the two neurons 1 and 2. Thus, their output s_i for i = 3, 4, 5, 6 can be written as

$$i = 3,4,5,6 \Rightarrow s_i = f(h_i) = \Theta[h_i - \theta] = \Theta[h_i] = \Theta\left[\sum_{j=1}^2 w_{ij} \cdot s_j\right]$$

The synaptic weights and inputs have the following values:

$$w_{31} = 1 w_{32} = -2$$

$$w_{41} = -1 w_{42} = 0$$

$$w_{51} = 3 w_{52} = 2$$

$$w_{61} = 0 w_{62} = 2$$

$$s_1 = 3 s_2 = 1$$

Thus, the states of neurons 3, 4, 5 and 6 can be computed as

$$s_{3} = f(h_{3}) = \Theta \left[\sum_{j=1}^{2} w_{3j} \cdot s_{j} \right] = \Theta \left[w_{31} \cdot s_{1} + w_{32} \cdot s_{2} \right] = \Theta \left[3 - 2 \right] = \Theta \left[1 \right] = 1$$

$$s_{4} = f(h_{4}) = \Theta \left[\sum_{j=1}^{2} w_{4j} \cdot s_{j} \right] = \Theta \left[w_{41} \cdot s_{1} + w_{42} \cdot s_{2} \right] = \Theta \left[-3 + 0 \right] = \Theta \left[-3 \right] = 0$$

$$s_{5} = f(h_{5}) = \Theta \left[\sum_{j=1}^{2} w_{5j} \cdot s_{j} \right] = \Theta \left[w_{51} \cdot s_{1} + w_{52} \cdot s_{2} \right] = \Theta \left[9 + 2 \right] = \Theta \left[11 \right] = 1$$

$$s_{6} = f(h_{6}) = \Theta \left[\sum_{j=1}^{2} w_{6j} \cdot s_{j} \right] = \Theta \left[w_{61} \cdot s_{1} + w_{62} \cdot s_{2} \right] = \Theta \left[0 + 2 \right] = \Theta \left[2 \right] = 1$$

The states of neurons 7, 8 and 9 can only be computed afterwards.

Third step: Neurons 7, 8 and 9

Neurons 7, 8 and 9 and be computed in parallel, since – after calculation of neurons 3, 4, 5 and 6 – their inputs are completely specified. Furthermore, neurons 7, 8 and 9 have a linear activation function with slope c = 1 so that again f(h)=h; each neuron 7, 8 and 9 gets input from the four neurons 3, 4, 5 and 6. Thus, their output can be written as

$$i = 7.8.9 \Rightarrow s_i = f(h_i) = h_i = \sum_{i=3}^{6} w_{ij} \cdot s_j$$

The synaptic weights and inputs have the following values:

$$w_{73} = 0$$
 $w_{74} = 2$ $w_{75} = -3$ $w_{76} = 1$
 $w_{83} = 1$ $w_{84} = -2$ $w_{85} = 3$ $w_{86} = 8$
 $w_{93} = 0$ $w_{94} = 2$ $w_{95} = 3$ $w_{96} = -4$
 $s_3 = 1$ $s_4 = 0$ $s_5 = 1$ $s_6 = 1$

Thus, the states of neurons 7, 8 and 9 can be computed as

$$s_7 = f(h_7) = \sum_{j=3}^{6} w_{7j} \cdot s_j = w_{73} \cdot s_3 + w_{74} \cdot s_4 + w_{75} \cdot s_5 + w_{76} \cdot s_6 = 0 + 0 - 3 + 1 = -2$$

$$s_8 = f(h_8) = \sum_{j=3}^{6} w_{8j} \cdot s_j = w_{83} \cdot s_3 + w_{84} \cdot s_4 + w_{85} \cdot s_5 + w_{86} \cdot s_6 = 1 + 0 + 3 + 8 = 12$$

$$s_9 = f(h_9) = \sum_{j=3}^{6} w_{9j} \cdot s_j = w_{93} \cdot s_3 + w_{94} \cdot s_4 + w_{95} \cdot s_5 + w_{96} \cdot s_6 = 0 + 0 + 3 - 4 = -1$$

Therefore, the output to the inputs $x_1=3$ and $x_2=1$ is given by

$$y_1 = s_7 = -2$$

 $y_2 = s_8 = 12$
 $y_3 = s_9 = -1$

b) Assume the following weight matrix, where an entry w_{ij} (ith row, jth column) corresponds to the synaptic weight from neuron i to neuron i. (No entry means the synaptic weight is 0). Further assume that the activation function of the neurons of hidden layer 2 (neurons 8, 9 and 10) is linear (with slope c=1), whereas the activation function of all other neurons is a Heaviside step function. In this part of the exercise, the threshold θ of each node is indicated in the network graph as number in the corresponding neuron.

Compute the output of the following feedforward neural network for the inputs $x_1=1$, $x_2=0$, $x_3=1$ and $x_1=0$, $x_2=1$, $x_3=1$.

Weight matrix:

	1	2	3	4	5	6	7	8	9	10	11	12
1												
2												
3												
4	-2	5	-4									
5	1	-2										
6	3	-1	6									
7		7	1									
8				-1	4	-2						
9					-3	5	1					
10				8	2		-3					
11							6	1	-2			
12						1			-4	3		

Network:

Solution:

Consider that neurons 8, 9 and 10 have a linear activation, whereas the other neurons have a Heaviside activation function. From the weight matrix and the threshold values, we have the following equations:

$$x_4 = \Theta[-2x_1 + 5x_2 - 4x_3 - 1.5]$$

$$x_5 = \Theta[x_1 - 2x_2 - 0.5]$$

$$x_6 = \Theta[3x_1 - x_2 + 6x_3 + 0.5]$$

$$x_7 = \Theta[7x_2 + x_3 - 0.5]$$

$$x_8 = -x_4 + 4x_5 - 2x_6 + 0.5$$

$$x_9 = -3x_5 + 5x_6 + x_7 - 1.5$$

$$x_{10} = 8x_4 + 2x_5 - 3x_7 + 1$$

$$x_{11} = \Theta[6x_7 + x_8 - 2x_9 + 1.5]$$

$$x_{12} = \Theta[x_6 - 4x_9 + 3x_{10} - 1.5]$$

• Consider the input $x_1=1$, $x_2=0$, $x_3=1$:

$$x_4 = \Theta[-2x_1 + 5x_2 - 4x_3 - 1.5] = \Theta[-7.5] = 0$$

$$x_5 = \Theta[x_1 - 2x_2 - 0.5] = \Theta[0.5] = 1$$

$$x_6 = \Theta[3x_1 - x_2 + 6x_3 + 0.5] = \Theta[9.5] = 1$$

$$x_7 = \Theta[7x_2 + x_3 - 0.5] = \Theta[0.5] = 1$$

$$x_8 = -x_4 + 4x_5 - 2x_6 + 0.5 = 2.5$$

$$x_9 = -3x_5 + 5x_6 + x_7 - 1.5 = 1.5$$

$$x_{10} = 8x_4 + 2x_5 - 3x_7 + 1 = 0$$

$$x_{11} = \Theta[6x_7 + x_8 - 2x_9 + 1.5] = \Theta[7] = 1$$

$$x_{12} = \Theta[x_6 - 4x_9 + 3x_{10} - 1.5] = \Theta[-6.5] = 0$$

- \rightarrow the output for input $(x_1=1, x_2=0, x_3=1)$ is $(x_{11}=1, x_{12}=0)$.
- Now consider the input $x_1=0$, $x_2=1$, $x_3=1$:

$$x_4 = \Theta[-2x_1 + 5x_2 - 4x_3 - 1.5] = \Theta[-0.5] = 0$$

$$x_5 = \Theta[x_1 - 2x_2 - 0.5] = \Theta[-2.5] = 0$$

$$x_6 = \Theta[3x_1 - x_2 + 6x_3 + 0.5] = \Theta[5.5] = 1$$

$$x_7 = \Theta[7x_2 + x_3 - 0.5] = \Theta[7.5] = 1$$

$$x_8 = -x_4 + 4x_5 - 2x_6 + 0.5 = -1.5$$

$$x_9 = -3x_5 + 5x_6 + x_7 - 1.5 = 4.5$$

$$x_{10} = 8x_4 + 2x_5 - 3x_7 + 1 = -2$$

$$x_{11} = \Theta[6x_7 + x_8 - 2x_9 + 1.5] = \Theta[-3] = 0$$

$$x_{12} = \Theta[x_6 - 4x_9 + 3x_{10} - 1.5] = \Theta[-24.5] = 0$$

 \rightarrow the output for input ($x_1=0, x_2=1, x_3=1$) is ($x_{11}=0, x_{12}=0$).

Exercise 4 (Multi-layer perceptron and XOR):

a) Find a multi-layer perceptron which realizes the Boolean function XOR. Demonstrate that the found perceptron indeed performs XOR on all possible input pairs.

Solution:

The function $XOR(x_1, x_2)$ can be separated into $OR(x_1, x_2)$ AND $NOT_AND(x_1, x_2)$

$$x_1 \mid 0 \ 0 \ 1 \ 1$$
 $x_2 \mid 0 \ 1 \ 0 \ 1$

XOR | 0 1 1 1 0

OR | 0 1 1 1 1
AND | 0 0 0 1
NOT_AND | 1 1 1 1 0
OR AND NOT_AND | 0 1 1 0

Therefore, we construct a perceptron realizing OR and another perceptron which realizes NOT_AND on the same inputs; the outputs of both perceptrons are then fed into another perceptron realizing AND.

Thus, the general architecture of the multi-layer perceptron can be described as

 x_3 is supposed to realize NOT_AND on x_1 and x_2 , x_4 is supposed to realize OR on x_1 and x_2 and x_5 is supposed to realize AND on x_3 and x_4

The Boolean functions AND and OR can be realized by (see lecture):

AND-Funktion:

· OR-Funktion:

Input

Hidden layer

NOT_AND is given by multiplying the synaptic weights and the threshold by -1

Thus, the weights and thresholds in the multi-layer perceptron can be immediately assigned:

 x_1 w_{31} w_{31} w_{31} w_{31} w_{31} w_{32} w_{3

Output

Proof:

$$h_3 = w_{31}x_1 + w_{32}x_2 = -x_1 - x_2 \; ; \quad x_3 = \Theta[h_3 + 1.5]$$

$$h_4 = w_{41}x_1 + w_{42}x_2 = x_1 + x_2 \quad ; \quad x_4 = \Theta[h_4 - 0.5]$$

$$h_5 = w_{53}x_3 + w_{54}x_4 = x_3 + x_4 \; ; \quad x_5 = \Theta[h_5 - 1.5]$$

<i>x</i> ₁	X ₂	h ₃	X ₃	h ₄	<i>X</i> ₄	h ₅	X ₅	XOR
0	0	0	1	0	0	1	0	0
1	0	-1	1	1	1	2	1	1
0	1	-1	1	1	1	2	1	1
1	1	-2	0	2	1	1	0	0

Note: There are many other multi-layer perceptrons realizing XOR, e.g.

i)

ii) Input Hidden layer Output

iv) (feedforward neural network of order 2)

x₃ realizes AND, x₄ realizes OR, x₅ realizes NOT, x₆ realizes AND

b) Find a perceptron with two (binary) inputs which realizes the function

$$F(x_1, x_2) = \begin{cases} 1: x_1 + x_2 = 1 \\ 0: else \end{cases}$$

Note: "+" denotes mathematical addition.

Solution:

For the individual inputs x_1 and x_2 the values of the function F are given by

This is, however, the function XOR for which a solution has been given in part a.