Secant

Method

Secant Method

To find a root of an equation using secant method in given number of iterations.

(1) Find a real root of the equation $f(x) = x^3 - 5x + 1 = 0$ using secant method in six iterations.

```
Secant[x0_, x1_, n_, f_]:=
Module [ \{xk, xk1, xk2\}, xk = N[x0]; xk1 = N[x1]; i = 0; 
 Output = { };
 While[i < n,
  xk2 = (xk * f[xk1] - xk1 * f[xk]) / (f[xk1] - f[xk]);
  interval = "[" <> ToString[NumberForm[xk, 12]] <>
   "," <> ToString[NumberForm[xk1, 12]] <> "]";
  xk = xk1; xk1 = xk2; i++;
  Output = Append[Output,
   {i, interval, xk2, f[xk2]}];];
 Print[NumberForm[TableForm[Output, TableHeadings →
    {None, {"i", "interval", "xi", "f[xi]"}}], 8]];
 Print[" Root after ", n, " iterrations ",
  NumberForm[xk2, 8]];
 Print[" Function value at approximated
   root,f[xi] = ", NumberForm[f[xk2], 8]];]
g[x] := x^3 - 5x + 1;
Plot[g[x], \{x, -4, 4\}]
Secant[0, 1, 6, g]
```


(2) Find a real root of the equation $f(x) = Cosx - xe^x$ using secant method in eight iterations

i	interval	xi	f[xi]
1	[0.,1.]	0.31466534	0.51987117
2	[1.,0.314665337801]	0.44672814	0.20354478
3	[0.314665337801,0.446728144591]	0.53170586	-0.042931093
4	[0.446728144591,0.531705860645]	0.51690447	0.0025927631
5	[0.531705860645,0.516904467567]	0.51774747	0.000030111941
6	[0.516904467567,0.517747465271]	0.51775737	$-2.1513164 \times 10^{-8}$
7	[0.517747465271,0.517757370754]	0.51775736	$\textbf{1.7841284} \times \textbf{10}^{-13}$
8	[0.517757370754,0.517757363682]	0.51775736	$-3.3306691 \times 10^{-16}$

Root after 8 iterrations 0.51775736

Function value at approximated root, $f[xi] = -3.3306691 \times 10^{-16}$