Visualization, Lecture

Volume Visualization, Part 1

Overview: Lecture #3

Contents of Volume Visualization, Part 1:

- Introduction
 - **About Volume Data**
 - Overview of Techniques
- The VolVis Conceptual Framework
- Simple Methods
 - slicing, cuberille

Volume Visualization

Introduction:

- VolVis = Visualization of Volume data
 - Picture/image 3D→2D
 - Projection (e.g., Maximum Intensity Projection-MIP), slicing, surface extractiontion, volume rendering, ...
- Volume Data =
 - 3D -> 1D Data
 - scalar data, 3D data space, space filling (dense-as opposed to sparse)
- User goals:
 - to gain insight into 3D Data
 - depends strongly on what user is interested in (focus + context)

Volume Data

Where does the data come from?

- Medical Applications
 - Computer Tomography (CT)
 - Magnet Resonance Imaging (MRI)
- Material testing/control
 - Industry-CT
- Simulation
 - Finite element methods (FEM)
 - Computational fluid dynamics (CFD)
- And other sources

Grid data

Data is often in a 2D/3D grid of values

unstructured

Grid data

Can be adapted to local data

3D Data Space

How is the volume data organized?

- Cartesian, i.e., regular grids:
 - i. CT/MR: often dx=dy<dz, e.g. 135 sclices (z) by 512² values in x& y
 - **ii. Data enhancement**: iso-stack-computation = interpolation of additional slices, so that dx=dy=dz --> 512³ Voxel
 - iii. Data: Cells (Faces), Corners: Voxel
- Curvilinear grid i.e., unstructured:
 - Data organized as Tetrahedra or Hexahedra
 - Often: Conversion to Tetrahedra

Terminology

Tetrahedron. "A 3D primary cell that is a simplex with four triangular faces, six edges, and four vertices." –the Visualization Toolkit (VTK)

Volume Visualization (VolVis) - Challenges

Challenges:

- rendering projection, so much information and so few pixels
- large data sets, e.g., 512x512x1024 voxels at 16 bit/voxel = 512 Mbytes
- Computational Speed, Interaction is very important, >10 frames per second (fps)

Voxels vs. Cells

Two ways to view the volume data:

- Data as a set of voxels
 - voxel = short for volume element (recall: pixel = "picture element")
 - voxel = point sample in 3D
 - not always interpolated
- Data as a set of cells
 - cell = Cubic Primitive (3D)
 - corners: 8 voxel
 - value(s) in cell: are always interpolated

Interpolation

(More) Terminology:

Interpolate: "Estimate a value of a function at a point, p, given known function values and points that bracket p."

Nearest neighbor

Linear

Interpolation – Influence

Isosurfaces

Level set: $\{(x) \mid f(x) = a\}$

 The set of all points where the function equals some value

Isocontour surface made from the level set of a 2D scalar function

Isosurfaces

Isosurface surface made from the level set of a 3D scalar function

Example 1:

- CT measurement
- iso-stack computation
- iso-surface computation (marching cubes)
- Surface rendering (OpenGL)

Example 2:

- MR Measurement
- iso-stack computation
- MIP (maximum intensity projection)
- Image: Vessels in Hand

Example 3:

- potential function ρ(x,y,z)
- iso-surfaceρ(x,y,z)=ρ₀
- surface ray tracing

VolVis-Techniques – Overview

Indirect volume visualization:

- Indirect: Compute isosurfaces, then render
- slicing, MPR (multi-planar reconstruction)
- marching cubes (marching tetrahedra)

Direct volume visualization:

- Direct: project volume onto image plane
- ray casting
- shear-warp factorization
- Splatting
- 3D texture mapping

- Empowers user to select "structures"
- Extract important features of the data set
- Classification is non trivial
- Histogram can be a useful hint
- Often interactive manipulation of transfer functions needed
- Usually needed for volume visualization
- Color table for volume visualization
- Maps raw voxel value into presentable entities

- Assign each scalar value a different color value
- Assignment via transfer function T
 T:: scalarvalue -> colorvalue
- Common choice for color representation: RGBA
- Alpha value is very important, describes opacity
- Code color values into a color lookup table
- On-the-fly update of color LUT

Simple VolVis Methods Slicing

Slicing

Slicing:

- Axis-aligned slices
- regular grids: simple
- no transfer function no color
- windowing: contrast adjustment/enhancement

Slicing

Not so simple:

- slicing through all grids
- interpolation necessary

Slicing:

Combines well with 3D-Vis.

Slicing

Example: Analytical Data set

Summary

- Data is usually given on a grid
- Conceptual volvis framework is a pipeline from data to visualization
- Indirect vs direct visualization
- Transfer function maps data values to color

Further Reading and Acknowledgements

For more information, please see, **Data Visualization: Principles** and **Practice, Chapter 10 Volume Visualization** by A.C. Telea, AK Peters, 2008

We thank the following people for lecture material:

- Robert S. Laramee
- Michael Meißner
- Roger Crawfis (Ohio State Univ.)
- Hanspeter Pfister
- Meister E. Gröller
- Torsten Möller
- Dirk Bartz
- Markus Hadwiger
- Helwig Hauser

