Wenfei Fan, Xin Wang, Yinghui Wu {wenfei@inf, x.wang-36@sms}.ed.ac.uk yinghui@cs.ucsb.edu

OVERVIEW

Motivation

Querying Big graphs

Given query Q, find answers Q(G) for Q from data graph G

Challenae

- Real graphs are Huge.
- Tractable methods could be in feasible!
- Real-world applications require searching with limited resource
- · How to evaluate query using limited resource?

Contributions

Resource-bounded query answering

- · Accessing small amount of data for accurate answers
- A tunable graph querying framework
- · Balance computing resource and answer quality

Efficient resource bounded algorithms for

- · Localized queries: strong simulation & subgraph queries
- Non-localized queries: reachability

<u>Related Work:</u> BlinkDB, budgeted search, graph indexing & compression, MapReduce, GraphLab...

Graph Queries

Localized graph pattern queries

- A match can be determined by exploring its do (diameter of Q) hops
- Simulation queries: strong simulation relation with a personalized node
- Subgraph isomorphism: injective mapping

Matching relation: (Michael, Michael), (hiking group, hg_m), (cycling club, cc_1), (cycling club, cc_3), (cycling lover, cl_{n-1}), (cycling lover, cl_n)

Non-localized queries

We consider reachability queries: visit the entire G in the worst case

Question

How to effectively evaluate graph pattern queries and reachability with lim-

Resource-bounded Graph Querying

Resource-bounded algorithm for query class with resource bound α and accuracy guarantee η

- Access small (bounded) amount of G
- · Guaranteed result quality
- Balance resource and answer quality

Resource-bounded graph query answering Given: a query class L, α in (0,1] and η in (0,1], find algorithm with resource bound α and accuracy guarantee η

NP-hard for simulation and subgraph queries Impossible for reachability queries

Resource-bounded Graph Simulation

Auxiliary Information (Preprocessing)

Local information that benefits dynamic reduction

degree | neighbor| <label, frequency> ...

Dynamically updated during processing

Dynamic Reduction

- 1 Iteratively process each query edge
- Opnamically update cost and probability
- Select promising nodes
- Update Go until resource bound reached/no unvisited nodes

Approximate Querying

apply graph simulation algorithms over Go to compute matches

Resource bounded graph simulation Dynamic Reduction Michael Cycling club Cycling club Cycling lovers Cycling lovers Cycling lovers Cycling lovers Ct. Michael Micha

Resource-bounded Querying: Summary

Other types of resource bounds, accuracy measures, graph query classes, applications...

RESULTS

Dataset

- ♦ Yahoo Web graph (http://webscope.sandbox.yahoo.com/catalog.php?datatype=g)
- Youtube (http://netsg.cs.stu.ca/voutubedata)

Baseline

- Resource bounded reachability RBReach VS LM: applying landmark vectors; BFS and optimized BFS over compressed graphs
- Resource bounded simulation algorithm RBSim VS Optimized strong simulation MatchOpt
- Resource bounded subgraph isomorphism RBSub VS Optimized VF2

Evaluation

Resource-bounded Reachability

Hierarchical Landmark Index

Landmarks are used to encode reachability. Idea: select bounded number of landmarks for approximate reachability.

Guided reachability search

Bi-directed search with guided "roll-up"/"drill-down"

O Terminates if "yes" is determined or no unvisited nodes in the index

Big Picture

