

Low Level Design (LLD)

Facebook Post Status Prediction

Written By	Diana Laveena DSouza
Document Version	0.1
Last Revised Date	9-Sep-2022

Document Control

Change Record:

Version	Date	Author	Author
0.1	09/09/2022	Diana Laveena DSouza	Introduction & Architecture Defined

Reviews:

Version	Date	Reviewer	Comments
0.1	09/09/2022		Document Content, Version Control and
			Unit Test Cases to be added

Approval Status:

Version	Review Date	Reviewed By	Approved By	Comments

Contents

1	Introduction4
	1.1 What is Low-Level design document?4
	1.2 Scope
2	Architecture5
3	Architecture Description6
	3.1 Data Description6
	3.2 Data Collection6
	3.3 Data Insertion into Database
	3.4 Data Preprocessing6
	3.5 EDA Analysis6
	3.6 Data Preprocessing
	3.7 Model Building and Evaluation
	3.8 Data from User
	3.9 Data Validation
	3.10 Prediction
	3.11 Deployment
4	Unit Test Cases

1 Introduction

1.1 Why is Low-Level Design Document?

The goal of LLD or a low-level design document (LLDD) is to give the internal logical design of the actual program code for Facebook Status Prediction. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so the programmer can directly code the program from the document.

1.2 Scope

Low-level design (LLD) is a component-level design process that follows a step-by-step refinement process. This process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work.

2 Architecture

Facebook Post Status Prediction 5

3 Architecture Description

3.1 Data Description

Context: Collection of posts and their emotions helps greatly in NLP Classification tasks

Content: List of posts with emotion flag; Dataset is split into train & validation for building the machine learning model.

3.2 Data Collection

Data Collected from the Kaggle dataset.

3.3 Data Insertion into Databases

- Database creation and connection Create a Cassandra database with a namespace key.
- Table creation in the database.
- Insertion of files in the table.

3.4 Export Data from Database

Data Export from Database – The data in a stored database is exported as a CSV file to be used for Text Pre-processing and Model Training.

3.5 EDA Analysis

Performing Data Visualization of the targeted variable.

3.6 Data Preprocessing

Data Preprocessing steps, we could use stop word removal, punctuation removal, tokenization, lemmatizing, doc2vec, Label Encoder, Oversampling techniques etc.

3.7 Model Building and Evaluation

We will find the best model to identify the emotional quotient of the person. Here algorithms will be passed with the best parameters. We will calculate the Recall, Precision and F1 scores for models and select the model with the best score.

3.8 Data from User

Here we will collect Facebook status data from users.

3.9 Data Validation

Here Data Validation will be done, given by the user.

3.10 Prediction

The model will predict the emotional quotient of the person.

3.11 Deployment

We will be deploying the model to GCP.

This is a workflow diagram for the Facebook Status Prediction.

4 Unit Test Cases

Test Case Description	Pre-Requisite	Expected Result
Verify whether the Application	1. Application URL should be	The application URL should be
URL is accessible to the user	defined	accessible to the user.
Verify whether the Application	1. Application URL is	The Application should load
loads entirely for the user when	accessible	entirely for the user when the
the URL is accessed	2. Application is deployed	URL is accessed.
Verify whether the user can	1. Application is accessible	The user should be able to input
input the text in all input fields		the text in all input fields.
Verify whether the user gets		The user should get Submit
Submit button to submit the inputs.		button to submit the inputs.
Verify whether the user is		The user should be presented
presented with results on clicking submit.		with results on clicking submit