MET CS 555 - Data Analysis and Visualization

Module-1: Introduction, Data Summarization, Normal Distribution Lecture - 1

Mohammad Alaghemandi

Boston University

Table of contents

- 1. Basic R Programming
- 2. Statistics
- 3. Data Summarization

Basic R Programming

Why R?

- ▶ Freely available under the GNU General Public License
- ▶ Pre-compiled binary versions are provided for various operating systems
- ▶ Easy to install. Ready to use in a few minutes, frequent updates
- ▶ A few thousand supplemental packages
- ▶ Open source with a large support community: easy to find help!
- ▶ Many books, blogs, tutorials.
- ▶ More popular than major statistics packages (SAS, Stata, SPSS etc.)
- ▶ Getting more interest "Python" with packages Numpy, SciPy https://www.scipy.org/ Python Visualization package matplotlib https://matplotlib.org/
- ▶ As a data scientists you should learn python and R, and ...

R Package

- Open source programming language for statistical computing and graphical visualizations
- ▶ It is part of GNU project (https://www.gnu.org/gnu/thegnuproject.en.html)
- ▶ Written primarily in C and Fortran
- ▶ Available for various operating systems: Unix/Linux, Windows, Mac
- ▷ Can be downloaded and installed from the Comprehensive R Archive Network http://cran.r-project.org/

Resources to Learn R or ask Questions

- ▶ Textbooks
- ▶ R project website (http://www.r-project.org)
- ▶ R specific search engine (http://rseek.org)
- ▶ Search on the Web
- ▶ Ask questions on our "Class Discussion Board"
 You can ask questions anonymously.
 Useful:

"How To Ask Questions The Smart Way" by Eric Steven Raymond http://www.catb.org/esr/faqs/smart-questions.html

Online Books

- ▶ An introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics, by W. N. Venables, et al.
 - $\verb|http://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp44950||$
- SimpleR Using R for Introductory Statistics, by John Verzani. https://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
- ▶ R for Beginners, by Emmanuel Paradis. https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
- ➤ The R Guide, by W. J. Owen. https://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
- ▶ Institute for Digital Research and Education (UCLA) http://www.ats.ucla.edu/stat/

Installing R Software on Your Laptop

Go to R main website https://cran.r-project.org/ and download R based on your operating system.

▶ Install of R on Windows Operating System.

Step by Step installation Video

https://www.youtube.com/watch?v=mfGFv-iB724

▶ Install R on MacOS.

Step by Step installation Video

https://www.youtube.com/watch?v=uxuuWXU-7UQ

RStudio - IDE Recommended

RStudio https://www.rstudio.com/ is a free and open-source Integrated Development Environment (IDE) for R Programming.

How to install RStudio. Step by step video

https://www.youtube.com/watch?v=cX532N_XLIs

Basic R Data Types

```
# numeric types: interger, double
> 348
# Characters
> "my string"
# logical
> TRUE
> FALSE
# Arithmetic operators as you'd expect
> 42 + 1 * 2^4
# So also logical operators/comparison
TRUE | FALSE
> 1 + 7 != 7
# Other logical operators:
# &, |, !
# <,>,<=,>=, !=
```

Basic R Data Types

```
# Variables assignment is done with the <- operator
> mynumber <- 483

# typeof() tells use type
> typeof(mynumber)
[1] "double"

# we can convert between types
myint <- as.integer(mynumber)

> typeof(myint)
[1] "integer"
```

R Data Types Vector

```
# The vector is the most important data structure
# create it with c()
my.vec \leftarrow c(1, 2, 67, -8)
# get some properties
str(my.vec)
##
num [1:4] 1 2 67 -8
length(my.vec)
## [1] 4
# access elements with []
my.vec[3]
## [1] 67
my.vec[c(3,4)]
# can do assignment too
my.vec[5] <- 41.2
```

Working directory - Setting/Getting

It is the default location of all input and output files

```
# List all the objects in the current workspace
> getwd()

# Set working directory
> setwd("/YOUR-HOME-FOLDER/YOURFOLDER")
```

On Windows:

Remember to use double backslashes or use a single forward slash "/"

```
# List all the objects in the current workspace
> setwd("C:/Users/xyz/Documents/work/R")
```

You can use the RStudio menus to set your working directory.

Reading Data into R

Read a Comma-Separated Values (CSV) data file from a text file

```
> read.csv("filename")
```

First Line is the header, default value for header is True

```
> read.csv("filename", header=True)
```

It reads a **Dataframe** into R. Datatrame is an important data type in R.

It data type similar to an Excel Sheet or a Database Table like:

```
"age","job","marital","education","balance","housing","loan","contact"
30,"unemployed","married","primary",1787,"no","no","cellular"
33,"services","married","secondary",4789,"yes","yes","cellular"
35,"management","single","tertiary",1350,"yes","no","cellular"
30,"management","married","tertiary",1476,"yes","yes","unknown"
```

R Libraries and Packages

```
# Install a package (only need to do it once)
> install.packages("package name")
```

It will recognize dependencies between packages and install required sub packages

```
# Access the package
> library("package name")
# View a list of installed packages
> library()
```

Load Stored Objects

```
> load("abc.Rdata")
# List all the objects in the current workspace
> ls()
OR.
> objects()
# Remove objects from the current workspace
> rm(a, b)
# delete a file
> unlink("myFile.Rdata")
```

Learn R, in R. http://swirlstats.com/

You can learn R in R

Step by step Tutorial http://swirlstats.com/students.html

```
> install.packages("swirl")
> library("swirl")
> swirl()
```

Statistics

Probability and Statistics

▶ Statistics is the mathematical science behind the problem what can I know about a population if I'm unable to reach every member?

Probability and Statistics

- ▷ If we could measure the height of every resident of Australia, then we could make a statement about the average height of Australians at the time we took our measurement.
- ▶ This is where random sampling comes in.

Probability and Statistics

- ▷ If we take a reasonably sized random sample of Australians and measure their heights, we can form a statistical inference about the population of Australia.
- ▶ Probability helps us know how sure we are of our conclusions!

What is Data?

- ▶ **Data** = the collected observations we have about something.
- Data can be **continuous**: "What is the stock price?"
- or categorical: "What car has the best repair history?"

Data

Nominal

- $\,\triangleright\,$ Predetermined categories
- ▷ Can't be sorted
 Animal classification (mammal, fish, reptile)
 Political party (republican, democrat, independent)

Ordinal

- ▶ Can be sorted
- ▶ Lacks scaleSurvey responses

Interval

- ▶ Provides scale
- ▶ Lacks a "zero" point Temperature

Ratio

▶ Values have a true zero point

Age, weight, salary

Why Data Matters?

- Helps us understand things as they are:
 "What relationships if any exist between two events?"
 "Do people who eat an apple a day enjoy fewer doctor's visits than those who don't?"
- ▶ Helps us **predict future behavior** to guide business decisions: "Based on a user's click history which ad is more likely to bring them to our site?"

- ▶ A science that deals with the collection, classification, analysis, and interpretation of data.
- > Deals with data collection, evaluation and interpretation.
- Statisticians use data to find patterns, answer important scientific questions and draw conclusions.

Two main areas of statistics:

- ▶ Describing data (including numerical and graphical summaries)
- ▶ Drawing conclusions about data (making estimates, predictions, and decisions) from data collected via sampling

Fundamental Elements of Statistics

- ▶ Experimental unit (or observational unit) = an object (for example, a person, thing, or event) about which we collect data about.
- ▶ Population = every member of a group
- > Sample = a subset of members that time and resources allow you to measure
- ▶ When studying a population, we focus on one or more characteristics of the units of the population. We call these characteristics variables.

Fundamental Elements of Statistics

Variables can be classified into one of two general types:

- ▶ Quantitative
- **▶** Qualitative

Quantitative Variables

Quantitative

- ▶ Contain numeric data, (how many?; how much?; or how often?)
- Examples: height, weight, number of houses sold
- Numerical or Quantitative variables can further be categorized as continuous (like height) or discrete (number of pets in a household)

Qualitative Variables

Qualitative

- Place experimental units into categories
- ▶ Qualitative data are data about categorical variables (what type?)
- ▶ Examples: hair color, religion, political party
- Categorical variables can be "ordered levels" are called "ordinal". For example quality of a product can be answered with: very unsatisfied, unsatisfied, neutral, satisfied and very satisfied.

Data Summarization

Quantitative data Summaries

Numerical Summaries focus on measures that describe the center and the spread.

- ▶ Mean
- ▶ Median
- ▶ Variance
- ▶ Standard Deviation
- ▶ Quartiles

Graphical Summaries

- ▶ Histograms perhaps the most popular graphical summary of quantitative variables; Data are first categorized into classes of equal width and then frequencies and relative frequencies are calculated.
- \triangleright Box plots the median, minimum, maximum, 1st and 3rd quartiles are used to create box plots

Qualitative Data Summaries

Numerically, we can summarize qualitative data in two ways:

- 1. by computing the class frequency
- 2. by computing the class relative frequency.
- ▶ The **class frequency** is the number of observations in the data set that fall into a particular class.
- ➤ The class relative frequency is the proportion of the number of observations in the data set that fall into a particular class to the total number of observations in the data set.

Graphically, we can often use **Pie Charts and Bar Graphs** to summarize qualitative data

Measures of Central Tendency

Mean, Median, Mode

- ▶ Describe the "location" of the data
- Fail to describe the "shape" of the data
 mean = "calculated average"
 median = "middle value"
 mode = "most occurring value"

Mean:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Measures of Central Tendency

Median – odd number of values

Measures of Central Tendency

Median – even number of values

Measures of Central Tendency

Mean vs. Median

- The mean can be influenced by outliers.

 The mean of {2,3,2,3,2,12} is 4
 - The median is 2.5
- ▶ The median is much closer to most of the values in the series!

Measures of Central Tendency

Mode:

10 10 11 13 15 16 16 16 21 23 28 30 33 34 36 44

= 16

Measurement of Dispersion

Range, Variance, Standard Deviation

- ▶ Range = maximum value minimum value
- ▶ Variance = calculated as the sum of square distances from each point to the mean
- ► Standard Deviation = square root of the variance (same units as the sample)

Measurement of Dispersion

Variance:

▶ POPULATION VARIANCE::

$$\sigma^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

▶ SAMPLE VARIANCE:

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$
$$= \frac{1}{n - 1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- ▶ Another way to describe data is through quartiles and the interquartile range (IQR)
- ▶ Has the advantage that every data point is considered, not aggregated!

Consider the following series of 20 values:

- 1. Divide the series
- 2. Divide each subseries
- 3. These become quartiles

Consider the following series of 20 values:

9 10 10 11 13 15 16 19 19 21 23 28 30 33 34 36 44 45 47 60

1st quartile

2nd quartile

3rd quartile

or median

 $1^s t$ quartile = 14

 $2^n d$ quartile = 22

 $3^n d$ quartile = 35

Quartile ranges are seldom the same size!

Fences & Outliers

- ▶ What is considered an "outlier"?
- \triangleright A common practice is to set a "fence" that is $\bf 1.5$ times the width of the IQR
- ▶ Anything outside the fence is an outlier
- ▶ This is determined by the *data*, not an arbitrary percentage!

In this set, 60 is *not* an outlier, but 70 would be

When drawing box plots, the whiskers are brought inward to the outermost values inside the fence.

Boxplots

Sample Histogram - Age Distribution

Histograms

- A distribution is **skewed to the right** if the right side (containing about half of the observations) of the histogram extends much further out than the left side.
- ▶ It is **skewed to the left** if the left side of the histogram extends much farther to the left than to the right side.

Symmetric, Skewed right, Skewed left

R Functions - Quantitative data summaries commands

```
> mean(data$variable)
> median(data$variable)
> min(data$variable)
> max(data$variable)
> quantile(data$variable)
> var(data$variable)
> sd(data$variable)
> summary(data$variable)
```

R Functions - Graphical data summaries

Histograms

```
> hist(data$variable)
> hist(data$variable, bins) # specify the number of bins
> hist(data$variable, breaks=c(x,y,z..)) # specify cutpoints
> hist(data$variable, breaks=seq(a,b,by=c)) # specify cutpoints
```

Boxplots

```
> boxplot(data$variable)
```

Make Your Graphs Look Better

Labeling

- ▶ Title: main="Histogram of xyz"
- ▶ X-axis label: xlab="Nile flow"
- \triangleright Y-axis lable: ylab = "Frequency"

Colors

▶ color: col="dark red"

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Controlling the window

- ▶ X-axis: xlim=c(min, max)
- \triangleright Y-axis: ylim=c(min, max)

Combine multiple plots into one overall graph

```
> par(mfrow=c(2,2)) # 2 by 2 panels
> par(mfrow=c(1,1)) # Go back to single graph mode
```

R Functions - Qualitative data summaries

Numerical summary

▶ Class Frequencies

```
> table(data$variable)
Or
> summary(data$variable)
```

▶ Relative Class Frequencies Divide class frequencies by number of rows in the dataset using nrow(data)

Graphical summary

```
Pie(table(data$variable))
Barplot(table(data$variable))
```

Qualitative data summary - An example

Read in data

```
> read.csv("ceo.csv")
# Numerical summaries
Frequencies:
> table(data$Education) or
> summary(data$Education)

Relative frequencies:
> table(data$Education)/nrow(data) or
> summary(data$Education)/nrow(data
```

R-Example - Graphical Summary

Graphical Summary