人工智能逻辑 课后练习 3 2025/03/04

专业:人工智能(图灵班)

学号+姓名:

- 1. 将如下句子翻译为命题公式:
 - 今天下雨或天晴, 但不会两者都发生。
 - ► *p* = 今天下雨, *q* = 天晴
 - $p \lor q \land \neg (p \land q)$
 - 如果有一个请求, 那么该请求最终被接受, 或者不会有任何进展。

 - $p \rightarrow q \vee r$
 - 癌症不会被治愈, 除非可以确定其原因, 并且找到了抗癌新药。
 - ▶ p =癌症被治愈, q =可以确定其原因, r =找到了抗癌新药
 - $p \rightarrow q \wedge r$
 - 只有当小明努力学习并且认真考试, 他才能取得好成绩。
 - ▶ p =小明努力学习, q =认真考试, r =取得好成绩
 - $(p \land q) \rightarrow r$
- 2. 用真值表证明 ¬p ∨ q 和 p → q 是等值的。

•	p	q	$ eg p \lor q$	$p \rightarrow q$
	0	0	1	1
	0	1	1	1
	1	0	0	0
	1	1	1	1

- 3. (证明定理 3.3) 设 ϕ 是命题公式。那么, ϕ 是可满足的,当且仅当 $\neg \phi$ 不是有效的; ϕ 是有效的,当且仅当 $\neg \phi$ 不是可满足的。
 - Φ 是可满足的 $\Leftrightarrow \exists v, s.t. \Phi^v = 1 \Leftrightarrow \neg(\forall v, \Phi^v = 0) \Leftrightarrow \neg(\forall v, (\neg \Phi)^v = 1) \Leftrightarrow \neg \models \Phi$
 - Φ 是有效的 $\Leftrightarrow \forall v, \Phi^v = 1 \Leftrightarrow \neg(\exists v, s.t.(\neg \Phi)^v = 1) \Leftrightarrow \neg (\neg \Phi$ 是可满足的) $\Leftrightarrow \neg \Phi$ 不是可满足的。
- 4. 给定 $\phi \equiv \psi$, 且 ϕ 是 φ 的一部分。把 φ 中的 ϕ 换成 ψ 得到 φ , 我们有 $\varphi \equiv \varphi$.
 - 由于 $\phi \equiv \psi$, 即在任何赋值 v 下, $\phi^v \equiv \psi^v$ 。因此在替换后,公式 φ' 的结构仅在 ϕ 的部分进行了替换,而真值不受影响,因此 $\varphi \equiv \varphi'$ 。
- 5. 证明:
 - $p \rightarrow (q \land r) \mid = \mid (p \rightarrow q) \land (p \rightarrow r)$

p	q	r	$q\wedge r$	$p o (q \wedge r)$	p o q	p ightarrow r	$(p o q)\wedge (p o r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	F
Т	F	Т	F	F	F	Т	F
Т	F	F	F	F	F	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т
_							

- ▶ 利用真值表即证。
- $(p \land q) \rightarrow r \mid = \mid (p \rightarrow r) \lor (q \rightarrow r)$

p	q	r	$p \wedge q$	$(p \wedge q) o r$	p ightarrow r	q ightarrow r	(p o r)ee (q o r)
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	1	0	1
0	1	1	0	1	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	1	1	1

利用真值表即证。