## 2章のストーリー

- ・清原は、市の医療費削減のために健診結果から 糖尿病の発病を予測するサービスを立ち上げた いと考える
- さやかは識別問題の解法として、ロジスティック識別と決定木について教える

## 3章のストーリー

- ・清原は、教わった方法で100%の正解率を実現し、同僚の九条の助けを借りて糖尿病診断のwebサイトを立ち上げる
- しかし判定精度が悪く、多くの苦情を受ける
- さやかは機械学習を使ったシステムの正しい性 能予測法を教える

# 基礎的な識別 (2章)

# 識別

- ・識別とは
  - ・教師あり学習問題
  - •特徴から**クラス**を予測する(できれば確率も得たい)



- •2クラス分類でのロジスティック識別の考え方
  - 入力された特徴が正例である確率を得たい
  - ・確率=0.5の点の集合を識別面と考える



・識別面の式

$$\hat{g}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_d x_d + w_0 = \mathbf{w}^T \mathbf{x} = 0$$

- 正例の  $\boldsymbol{x}$  に対しては  $\hat{g}(\boldsymbol{x}) > 0$
- 負例の  $\boldsymbol{x}$  に対しては  $\hat{g}(\boldsymbol{x}) < 0$
- これを確率と対応付けたい ⇒ シグモイド関数



係数 w の求め方



• 尤度(モデルのもっともらしさ)の定義

$$P(D|\boldsymbol{w}) = \prod_{\boldsymbol{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

$$D: \widehat{\boldsymbol{z}} = \emptyset$$

- 尤度の最大化
  - $\Rightarrow$  対数尤度の最小化に読み替え  $E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w})$
  - ⇒ 最急勾配法による最適化
  - 1. wの初期値を適当に設定
  - 以下の式でwの更新を 繰り返す

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \frac{\partial E(\boldsymbol{w})}{\partial \boldsymbol{w}}$$

 $\eta$ :学習係数

 wの変化量が一定以下に なれば終了



#### ロジスティック識別の具体例

- Diabetesデータ
  - •年齢・血圧・BMIなどから糖尿病検査結果を予測

|     |            | _     |              |             |             |                    |                |      |                                 |
|-----|------------|-------|--------------|-------------|-------------|--------------------|----------------|------|---------------------------------|
| No. |            |       |              |             |             | 6: mass<br>Numeric |                | _    | 9: class<br>Nominal             |
| 1   | 6.0        |       | 72.0         | 35.0        | 0.0         |                    | 0.627          |      | tested_positive                 |
| 2   | 1.0        | 85.0  | 66.0         | 29.0        | 0.0         |                    | 0.351          |      | tested_negative                 |
| 3   | 8.0<br>1.0 |       | 64.0<br>66.0 | 0.0<br>23.0 | 0.0<br>94.0 |                    | 0.672<br>0.167 |      | tested_positive tested_negative |
| 5   | 0.0        | 137.0 | 40.0         | 35.0        |             |                    | 2.288          |      | tested_positive                 |
| 6   | 5.0        |       | 74.0         | 0.0         | 0.0         |                    | 0.201          |      | tested_negative                 |
| 7   | 3.0        | 78.0  | 50.0         | 32.0        | 88.0        | 31.0               | 0.248          | 26.0 | tested_positive                 |
|     |            |       |              |             |             |                    |                |      |                                 |
|     |            |       |              |             |             |                    |                |      |                                 |

# カテゴリ特徴に対する識別

#### ゴルフをする日のデータ

|    | 天候 | 気温 | 湿度 | 風  | play |
|----|----|----|----|----|------|
| 1  | 晴  | 高  | 高  | なし | no   |
| 2  | 晴  | 高  | 高  | あり | no   |
| 3  | 曇  | 高  | 高  | なし | yes  |
| 4  | 雨  | 中  | 高  | なし | yes  |
| 5  | 雨  | 低  | 標準 | なし | yes  |
| 6  | 雨  | 低  | 標準 | あり | no   |
| 7  | 曇  | 低  | 標準 | あり | yes  |
| 8  | 晴  | 中  | 高  | なし | no   |
| 9  | 晴  | 低  | 標準 | なし | yes  |
| 10 | R  | 中  | 標準 | なし | yes  |
| 11 | 晴  | 中  | 標準 | あり | yes  |
| 12 | 曇  | 中  | 高  | あり | yes  |
| 13 | 曇  | 高  | 標準 | なし | yes  |
| 14 | 雨  | 中  | 高  | あり | no   |

- ・決定木とは
  - 事例を分類する質問を繰り返す



- ・決定木の作り方
  - ・大きな木を作れば(原理的には)データを100%正 しく識別できる
  - 小さな木で多くのデータが正しく識別できれば、その木は未知のデータに対しても正しい識別を行う可能性が高い

- ・小さな木の作り方
  - •分類能力の高い質問を、木の根に近いところに配置 する

・分類能力の低い質問



・分類能力の高い質問



•得られた決定木



•数値特徴に対する決定木



 $x_2 < \theta_1$ 

# 学習結果の評価 (3章)

p.80 7コマ目

## 分割学習法

- ・全データを学習用と評価用に分ける
  - データが多くあるときに有効



# 分割学習法

- •パラメータチューニングを行うときは3分割
  - 検証用データでパラメータの良さを評価
  - 最終的な性能は評価用データで推測



## 交差確認法

- ・データをm分割して、m回の評価の平均をとる
  - •学習データが少ない場合に有効



# 評価指標

・混同行列から算出

識別器の出力

|         | 予測+                    | 予測一                    |
|---------|------------------------|------------------------|
| 正解+     | true positive<br>(TP)  | false negative<br>(FN) |
| 正解一     | false positive<br>(FP) | true negative<br>(TN)  |
| データに付いた |                        |                        |

•正解率

正解

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

## 評価指標

•目的に応じて適切な評価指標を選ぶ

|     | 予測+ | 予測一 |
|-----|-----|-----|
| 正解+ | TP  | FN  |
| 正解一 | FP  | TN  |

• 正解率 
$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

• 精度 
$$Precision = \frac{TP}{TP + FP}$$

• 再現率 
$$Recall = \frac{TP}{TP + FN}$$

• **F値** 
$$F$$
-measure =  $2 \times \frac{Precision \times Recall}{Precision + Recall}$ 

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

> 精度と再現率の 調和平均

#### 識別の実用化事例

- •オートマギ、NTTドコモ
  - •居眠り運転検知

https://www.nikkei.com/article/DGXMZO38577940V01C18A2XY0000/

- ・国立国際医療研究センター
  - 糖尿病の発症リスク予測

http://www.ncgm.go.jp/riskscore/