SOLUCIÓN El movimiento es vertical y se elige la dirección positiva como la correspondiente hacia arriba. Al tiempo t, la distancia arriba del nivel del suelo s(t) y la velocidad v(t) es decreciente. Por lo que, la aceleración debe ser negativa y se tiene

$$a(t) = \frac{dv}{dt} = -9.8$$

Tomando antiderivadas, se tiene

$$v(t) = -9.8t + C$$

Para determinar C, se usa la información dada v(0) = 15. Esto da 15 = 0 + C, por lo que

$$v(t) = -9.8t + 15$$

La altura máxima se alcanza cuando v(t) = 0, es decir, después de $15/9.8 \approx 1.53$ s. Ya que s'(t) = v(t), la nueva antiderivada da

$$s(t) = -4.9t^2 + 15t + D$$

Se utiliza el hecho de que s(0) = 140, se tiene 140 = 0 + D, y así

$$s(t) = -4.9t^2 + 15t + 140$$

La expresión para s(t) es válida hasta que la pelota pegue en el suelo. Esto sucede cuando s(t) = 0 y por tanto -s(t) = 0; es decir, cuando

$$4.9t^2 - 15t - 140 = 0$$

Usando la fórmula cuadrática para resolver esta ecuación, se obtiene

$$t = \frac{15 \pm \sqrt{2969}}{9.8}$$

Se rechaza la solución con el signo menos ya que da un valor negativo de t. Por tanto, la pelota pega en el suelo después de

$$\frac{15 + \sqrt{2969}}{9.8} \approx 7.1 \, s$$

En la figura 5 se muestra la función posición de la pelota del ejemplo 7. La gráfica corrobora la conclusión obtenida: la pelota alcanza su altura máxima después de 1.5 s y pega contra el suelo después de 7.1 s.

FIGURA 5

4.9 **EJERCICIOS**

1-22 Encuentre la antiderivada más general de la función. (Compruebe su respuesta mediante la derivación.)

1.
$$f(x) = 4x + 7$$

2.
$$f(x) = x^2 - 3x + 2$$

3.
$$f(x) = 2x^3 - \frac{2}{3}x^2 + 5x$$
 4. $f(x) = 6x^5 - 8x^4 - 9x^2$

5.
$$f(x) = x(12x + 8)$$

6.
$$f(x) = (x - 5)^2$$

7.
$$f(x) = 7x^{2/5} + 8x^{-4/5}$$

8.
$$f(x) = x(2-x)^2$$

9.
$$f(x) = \sqrt{2}$$

10.
$$f(x) = e^2$$

11.
$$f(x) = 3\sqrt{x} - 2\sqrt[3]{x}$$

12.
$$f(x) = \sqrt[3]{x^2} + x\sqrt{x}$$

13.
$$f(x) = \frac{1}{5} - \frac{2}{x}$$
 14. $f(t) = \frac{3t^4 - t^3 + 6t^2}{t^4}$

15.
$$g(t) = \frac{1+t+t^2}{\sqrt{t}}$$

16.
$$r(\theta) = \sec \theta \tan \theta - 2e^{\theta}$$

$$17. h(\theta) = 2 \sin \theta - \sec^2 \theta$$

17.
$$h(\theta) = 2 \sin \theta - \sec^2 \theta$$
 18. $g(v) = 2 \cos v - \frac{3}{\sqrt{1 - v^2}}$

19.
$$f(x) = 2^x + 4 \operatorname{senh} x$$

19.
$$f(x) = 2^x + 4 \operatorname{senh} x$$
 20. $f(x) = 1 + 2 \operatorname{sen} x + 3/\sqrt{x}$

21.
$$f(x) = \frac{2x^4 + 4x^3 - x}{x^3}, \quad x > 0$$

22.
$$f(x) = \frac{2x^2 + 5}{x^2 + 1}$$

 \nearrow 23–24 Encuentre la antiderivada F de f que satisfaga la condición dada. Compruebe su respuesta comparando las gráficas de f y F.

23.
$$f(x) = 5x^4 - 2x^5$$
, $F(0) = 4$

24.
$$f(x) = 4 - 3(1 + x^2)^{-1}$$
, $F(1) = 0$

25–48 Encuentre *f*.

25.
$$f''(x) = 20x^3 - 12x^2 + 6x$$

26.
$$f''(x) = x^6 - 4x^4 + x + 1$$

27.
$$f''(x) = 2x + 3e^x$$
 28. $f''(x) = 1/x^2$

28.
$$f''(x) = 1/x^2$$

29.
$$f'''(t) = 12 + \sin t$$

29.
$$f'''(t) = 12 + \sin t$$
 30. $f'''(t) = \sqrt{t} - 2\cos t$

31.
$$f'(x) = 1 + 3\sqrt{x}$$
, $f(4) = 25$

32.
$$f'(x) = 5x^4 - 3x^2 + 4$$
, $f(-1) = 2$

33.
$$f'(t) = 4/(1 + t^2)$$
, $f(1) = 0$

34.
$$f'(t) = t + 1/t^3$$
, $t > 0$, $f(1) = 6$

35.
$$f'(x) = 5x^{2/3}$$
, $f(8) = 21$

36.
$$f'(x) = (x+1)/\sqrt{x}$$
, $f(1) = 5$

37. $f'(t) = \sec t (\sec t + \tan t), -\pi/2 < t < \pi/2,$ $f(\pi/4) = -1$

38.
$$f'(t) = 3^t - 3/t$$
, $f(1) = 2$, $f(-1) = 1$

39.
$$f''(x) = -2 + 12x - 12x^2$$
, $f(0) = 4$, $f'(0) = 12$

40.
$$f''(x) = 8x^3 + 5$$
, $f(1) = 0$, $f'(1) = 8$

41.
$$f''(\theta) = \sin \theta + \cos \theta$$
, $f(0) = 3$, $f'(0) = 4$

42.
$$f''(t) = t^2 + 1/t^2$$
, $t > 0$, $f(2) = 3$, $f'(1) = 2$

43.
$$f''(x) = 4 + 6x + 24x^2$$
, $f(0) = 3$, $f(1) = 10$

44.
$$f''(x) = x^3 + \operatorname{senh} x$$
, $f(0) = 1$, $f(2) = 2.6$

45.
$$f''(x) = e^x - 2 \sin x$$
, $f(0) = 3$, $f(\pi/2) = 0$

46.
$$f''(t) = \sqrt[3]{t} - \cos t$$
, $f(0) = 2$, $f(1) = 2$

47.
$$f''(x) = x^{-2}$$
, $x > 0$, $f(1) = 0$, $f(2) = 0$

48.
$$f'''(x) = \cos x$$
, $f(0) = 1$, $f'(0) = 2$, $f''(0) = 3$

- **49.** Dado que la gráfica de f pasa por el punto (2, 5) y que la pendiente de su recta tangente en (x, f(x)) es 3 - 4x, encuentre f(1).
- **50.** Encuentre una función f tal que $f'(x) = x^3$ y la recta x + y = 0 sea tangente a la gráfica de f.

51–52 Se muestra la gráfica de una función f. ¿Qué gráfica es una antiderivada de f y por qué?

53. Se muestra la gráfica de una función en la figura. Haga un trazo de una antiderivada F, dado que F(0) = 1.

54. En la figura se muestra la gráfica de la función velocidad de una partícula. Trace la gráfica de la función de posición.

55. En la figura se muestra la gráfica de f'. Trace la gráfica de fsi f es continua en [0, 3] y f(0) = -1.

- Fig. (a) Utilice un dispositivo graficador para trazar la gráfica de $f(x) = 2x - 3\sqrt{x}.$
 - (b) A partir de la gráfica del inciso (a), trace una gráfica aproximada de la antiderivada F que satisfaga que F(0) = 1.
 - (c) Utilice las reglas de esta sección para encontrar una expresión para F(x).
 - (d) Trace la gráfica de F usando la expresión del inciso (c). Compare con su trazo del inciso (b).
- \bigcirc 57–58 Trace una gráfica de f y utilícela para trazar la gráfica aproximada de la antiderivada que pasa por el origen.

57.
$$f(x) = \frac{\sin x}{1 + x^2}, -2\pi \le x \le 2\pi$$

58.
$$f(x) = \sqrt{x^4 - 2x^2 + 2} - 2$$
, $-3 \le x \le 3$

357

59.
$$v(t) = \sin t - \cos t$$
, $s(0) = 0$

60.
$$v(t) = t^2 - 3\sqrt{t}$$
, $s(4) = 8$

61.
$$a(t) = 2t + 1$$
, $s(0) = 3$, $v(0) = -2$

62.
$$a(t) = 3 \cos t - 2 \sin t$$
, $s(0) = 0$, $v(0) = 4$

63.
$$a(t) = 10 \operatorname{sen} t + 3 \cos t$$
, $s(0) = 0$, $s(2\pi) = 12$

64.
$$a(t) = t^2 - 4t + 6$$
, $s(0) = 0$, $s(1) = 20$

- **65.** Una piedra se deja caer desde la plataforma superior de observación (la plataforma espacial) de la Torre CN, de 450 m por encima del nivel del suelo.
 - (a) Encuentre la distancia de la piedra arriba del nivel del suelo en el instante *t*.
 - (b) ¿Cuánto tarda la piedra en llegar al nivel del suelo?
 - (c) ¿Con qué velocidad choca contra el nivel del suelo?
 - (d) Si la piedra se lanza hacia arriba a una rapidez de 5 m/s, ¿cuánto tarda en llegar al nivel del suelo?
- **66.** Demuestre que para el movimiento en línea recta con aceleración constante a, velocidad inicial v_0 y desplazamiento inicial s_0 , el desplazamiento después del tiempo t es

$$s = \frac{1}{2}at^2 + v_0t + s_0$$

67. Se lanza un objeto hacia arriba con velocidad inicial v_0 metros por segundo, desde un punto a s_0 metros por encima del nivel del suelo. Demuestre que

$$[v(t)]^2 = v_0^2 - 19.6[s(t) - s_0]$$

- **68.** Se lanzan dos pelotas hacia arriba desde el borde del acantilado del ejemplo 7. La primera se lanza con una rapidez de 15 m/s y la otra se arroja 1 s más tarde con una rapidez de 8 m/s. ¿En algún momento rebasa una a la otra?
- **69.** Se deja caer una piedra desde un desfiladero y choca contra el suelo con una rapidez de 40 m/s. ¿Cuál es la altura del desfiladero?
- **70.** Si un clavadista con masa m está en el borde de una plataforma de clavados con longitud L y densidad lineal ρ , entonces la plataforma adopta la forma de una curva y = f(x), donde

$$EIy'' = mq(L - x) + \frac{1}{2}\rho q(L - x)^2$$

E e I son constantes positivas que dependen del material con que está hecha la plataforma y g (< 0) es la aceleración debida a la gravedad.

- (a) Encuentre una expresión para la forma de la curva.
- (b) Use f(L) para estimar la distancia debajo de la horizontal al borde de la plataforma.

71. Una compañía estima que el costo marginal (en dólares por artículo) de producir *x* artículos es de 1.92 – 0.002*x*. Si el

costo de producción de un artículo es de \$562, encuentre el costo de producir 100 artículos.

- **72.** La densidad lineal de una varilla con una longitud de 1 m se expresa por medio de $\rho(x) = 1/\sqrt{x}$ en gramos por centímetro, donde x se mide en centímetros desde uno de los extremos de la varilla. Encuentre la masa de esta última.
- **73.** Dado que las gotas de lluvia crecen a medida que caen, su área superficial aumenta y, por tanto, se incrementa la resistencia a su caída. Una gota de lluvia tiene una velocidad inicial hacia abajo de 10 m/s, y su aceleración hacia abajo es

$$a = \begin{cases} 9 - 0.9t & \text{si } 0 \le t \le 10\\ 0 & \text{si } t > 10 \end{cases}$$

Si al inicio la gota de lluvia está a 500 m arriba de la superficie de la tierra, ¿cuánto tarda en caer?

- **74.** Un vehículo se desplaza a 80 km/h cuando aplica los frenos, lo que produce una desaceleración constante de 7 m/s². ¿Cuál es la distancia que recorre el automóvil antes de detenerse?
- **75.** ¿Qué aceleración constante se requiere para aumentar la rapidez de un vehículo de 50 km/h a 80 km/h en 5 segundos?
- **76.** Un automóvil frenó con una desaceleración constante de 5 m/s², lo que genera antes de detenerse unas marcas de deslizamiento que miden 60 m. ¿Qué tan rápido se desplazaba el auto cuando se aplicaron los frenos?
- 77. Un automóvil se desplaza a 100 km/h cuando el conductor ve un accidente 80 m más adelante y aplica los frenos apresuradamente. ¿Qué desaceleración constante se requiere para detener el auto a tiempo de evitar chocar con los vehículos accidentados?
- **78.** Un modelo de cohete se dispara verticalmente hacia arriba a partir del reposo. Su aceleración durante los primeros tres segundos es a(t) = 18t, en ese momento se agota el combustible y se convierte en un cuerpo en "caída libre". Después de 14 s, se abre el paracaídas del cohete y la velocidad (hacia abajo) disminuye linealmente hasta -5.5 m/s en 5 s. Entonces el cohete "flota" hasta el piso a esa velocidad.
 - (a) Determine la función posición s y la función velocidad
 v (para todos los tiempos t). Trace las gráficas de s y v.
 - (b) ¿En qué momento el cohete alcanza su altura máxima y cuál es esa altura?
 - (c) ¿En qué momento aterriza?
- **79.** Un tren "bala" de alta velocidad acelera y desacelera a una razón de $1.2~{\rm m/s^2}$. Su rapidez de crucero máxima es de $145~{\rm km/h}$.
 - (a) ¿Cuál es la distancia máxima que puede recorrer el tren si se acelera desde el reposo hasta que alcanza su rapidez de crucero y luego corre a esa rapidez durante 15 minutos?
 - (b) Suponga que el tren parte del reposo y debe detenerse por completo en 15 minutos. ¿Cuál es la distancia máxima que puede recorrer en estas condiciones?
 - (c) Encuentre el tiempo mínimo que tarda el tren en viajar entre dos estaciones consecutivas que se encuentran a 72 km de distancia.
 - (d) El viaje de una estación a la siguiente dura 37.5 minutos. ¿Cuál es la distancia entre las estaciones?