CSE 15 Discrete Mathematics

Lecture 17 – Applications of Congruences & Mathematical Induction

Announcement

- ▶ HW #8
 - Due 5pm 11/21 (Wed) with 1 extra day of re-submission.
- Reading assignment
 - ∘ Ch. 5.1 5.4 of textbook

Applications of Congruences (Ch. 4.5)

- Hashing Functions
- Check Digits

Hashing Functions

- **Definition**: A hashing function h assigns memory location h(k) to the record that has k as its key.
 - A common hashing function is $h(k) = k \mod m$, where m is the number of memory locations.
 - Because this hashing function is onto, all memory locations are possible.

Example: Let $h(k) = k \mod 111$. This hashing function assigns the records of customers with social security numbers as keys to memory locations in the following manner:

```
h(064212848) = 064212848 \mod 111 = 14
```

 $h(037149212) = 037149212 \mod 111 = 65$

h(107405723) = 107405723 **mod** 111 = 14, but since location 14 is already occupied, the record is assigned to the next available position, which is 15. (Linear Probing)

Hashing Functions

- The hashing function is not one-to-one as there are many more possible keys than memory locations.
- When more than one record is assigned to the same location, a collision occurs.
- Here a collision has been resolved by assigning the record to the first free location.
- There are many other methods of handling with collisions.

Check Digits: UPCs

A common method of detecting errors in <u>strings of digits</u> is to add an extra digit at the end, which is evaluated using a function. If the final digit is not correct, then the string is assumed not to be correct.

Example: Retail products are identified by their *Universal Product Codes* (*UPC*s). Usually these have 12 decimal digits, the last one being the check digit.

The check digit is determined by the congruence:

$$3x_1+x_2+3x_3+x_4+3x_5+x_6+3x_7+x_8+3x_9+x_{10}+3x_{11}+x_{12} \equiv 0 \pmod{10}$$
.

Check Digits: UPCs

So, the check digit is 2.

$$3x_1+x_2+3x_3+x_4+3x_5+x_6+3x_7+x_8+3x_9+x_{10}+3x_{11}+x_{12} \equiv 0 \pmod{10}$$
.

Problem:

Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit?

Solution:

$$3\cdot 7 + 9 + 3\cdot 3 + 5 + 3\cdot 7 + 3 + 3\cdot 4 + 3 + 3\cdot 1 + 0 + 3\cdot 4 + x_{12} \equiv 0 \pmod{10}$$

 $21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x_{12} \equiv 0 \pmod{10}$
 $10)$
 $98 + x_{12} \equiv 0 \pmod{10}$

Check Digits: UPCs

$$3x_1+x_2+3x_3+x_4+3x_5+x_6+3x_7+x_8+3x_9+x_{10}+3x_{11}+x_{12} \equiv 0$$
 (mod 10).

Problem:

Is 041331021641 a valid UPC?

Solution:

 $3 \cdot 0 + 4 + 3 \cdot 1 + 3 + 3 \cdot 3 + 1 + 3 \cdot 0 + 2 + 3 \cdot 1 + 6 + 3 \cdot 4 + 1 \equiv 0 \pmod{10}$ $0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 \equiv 4 \not\equiv 0 \pmod{10}$ Hence, 041331021641 is not a valid UPC.

Check Digits: ISBNs

- ▶ Books are identified by an *International Standard Book Number* (ISBN-10), a 10 digit code.
 - The first 9 digits identify the language, the publisher, and the book.
 - The tenth digit is a check digit, which is determined by the following congruence $\frac{9}{}$

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}.$$

- The validity of an ISBN-10 number can be evaluated with the equivalent $\sum_{i=0}^{10} ix_i \equiv 0 \pmod{11}.$
- A single error is an error in one digit of an identification number and a transposition error is the accidental interchanging of two digits. Both of these kinds of errors can be detected by the check digit for ISBN-10.

Check Digits: ISBNs

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}.$$
 $\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}.$

Problem:

Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check digit?

Solution:

$$X_{10} \equiv 1.0+2.0+3.7+4.2+5.8+6.8+7.0+8.0+9.8 \pmod{11}.$$
 $X_{10} \equiv 0+0+21+8+40+48+0+0+72 \pmod{11}.$
 $X_{10} \equiv 189 \equiv 2 \pmod{11}.$
Hence, $X_{10} = 2.$

Check Digits: ISBNs

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}.$$
 $\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}.$

Problem:

Is 084930149X a valid ISBN10?

X is used for the digit 10.

Solution:

$$1 \cdot 0 + 2 \cdot 8 + 3 \cdot 4 + 4 \cdot 9 + 5 \cdot 3 + 6 \cdot 0 + 7 \cdot 1 + 8 \cdot 4 + 9 \cdot 9 + 10 \cdot 10 = 0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 \equiv 2 \not\equiv 0 \pmod{11}$$

Hence, $084930149X$ is not a valid ISBN-10.

Mathematical Induction (Ch. 5.1)

- Mathematical Induction
- Examples of Proof by Mathematical Induction
- Mistaken Proofs by Mathematical Induction
- Guidelines for Proofs by Mathematical Induction

Principle of Mathematical Induction

- Principle of Mathematical Induction: To prove that P(n) is true for all positive integers n, we complete these steps:
 - *Basis Step*: Show that *P*(1) is true.
 - *Inductive Step*: Show that $P(k) \rightarrow P(k+1)$ is true for all positive integers k.
- To complete the inductive step, assuming the *inductive* hypothesis that P(k) holds for an arbitrary integer k, show that P(k+1) must be true.
- Proofs by mathematical induction do not always start at the integer 1. In such a case, the basis step begins at a starting point b where b is an integer.
- Works when you know the result.

Proving a Summation Formula by Mathematical Induction

Example: Show that:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Solution:

- BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.
- INDUCTIVE STEP: Assume true for P(k).

 The inductive hypothesis is

 Under this assumption, $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Conjecturing and Proving Correct a Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first *n* positive odd integers. Then prove your conjecture.

Solution: We have:

$$1=1, 1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25.$$

• We can conjecture that the sum of the first n positive odd integers is n^2 ,

$$1+3+5+\cdots+(2n-1)=n^2$$
.

- We prove the conjecture is proved correct with mathematical induction.
- BASIS STEP: P(1) is true since $1^2 = 1$.
- INDUCTIVE STEP: $P(k) \rightarrow P(k+1)$ for every positive integer k.

Conjecturing and Proving Correct a Summation Formula

Assume the inductive hypothesis holds and then show that P(k+1) holds has well.

Inductive Hypothesis:
$$1 + 3 + 5 + \dots + (2k - 1) = k^2$$

• So, assuming P(k), it follows that:

$$1+3+\dots+(2k-1)+(2k+1)=[1+3+\dots+(2k-1)]+(2k+1)$$

$$= k^2+(2k+1) \text{ (by the inductive hypo.)}$$

$$= k^2+2k+1$$

$$= (k+1)^2$$

- Hence, we have shown that P(k + 1) follows from P(k).
- Therefore the sum of the first n positive odd integers is n^2 .

Proving Inequalities

Example: Use mathematical induction to prove that $n < 2^n$ for all positive integers n.

Solution: Let P(n) be the proposition that $n < 2^n$.

- BASIS STEP: P(1) is true since $1 < 2^1 = 2$.
- INDUCTIVE STEP: Assume P(k) holds, i.e., $k < 2^k$, for an arbitrary positive integer k.
- Must show that P(k + 1) holds.
- Since by the inductive hypothesis, $k < 2^k$, it follows that: $k + 1 < 2^k + 1 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$

Therefore $n < 2^n$ holds for all positive integers n.

Proving Inequalities

Example: Use mathematical induction to prove that $2^n < n!$ for every integer $n \ge 4$. //remember the base not 1//

Solution: Let P(n) be the proposition that $2^n < n!$.

- BASIS STEP: P(4) is true since $2^4 = 16 < 4! = 24$.
- INDUCTIVE STEP: Assume P(k) holds, i.e., $2^k < k!$ for an arbitrary integer $k \ge 4$. To show that P(k + 1) holds:

```
2^{k+1} = 2 \cdot 2^k

< 2 \cdot k! (by the inductive hypothesis)

< (k+1)k!

= (k+1)!
```

Therefore, $2^n < n!$ holds, for every integer $n \ge 4$.

Note here the basis step is P(4), since P(0), P(1), P(2), and P(3) are all false

Proving Divisibility Results

Example: Use mathematical induction to prove that $n^3 - n$ is divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that $n^3 - n$ is divisible by 3.

- BASIS STEP: P(1) is true since $1^3 1 = 0$, which is divisible by 3.
- INDUCTIVE STEP: Assume P(k) holds, i.e., $k^3 k$ is divisible by 3, for an arbitrary positive integer k. To show that P(k + 1) follows:

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

= $(k^3 - k) + 3(k^2 + k)$

By the inductive hypothesis, the first term $(k^3 - k)$ is divisible by 3 and the second term is divisible by 3 since it is an integer multiplied by 3. So $(k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $n^3 - n$ is divisible by 3, for every integer positive integer n.

Number of Subsets of a Finite Set

Example: Use mathematical induction to show that if S is a finite set with n elements, where n is a nonnegative integer, then S has 2^n subsets.

Solution: Let P(n) be the proposition that a set with n elements has 2^n subsets.

- Basis Step: P(0) is true, because the empty set has only itself as a subset and $2^0 = 1$.
- Inductive Step: Assume P(k) is true for an arbitrary nonnegative integer k.

Number of Subsets of a Finite Set

Inductive Hypothesis: For an arbitrary nonnegative integer k, every set with k elements has 2^k subsets.

- Let T be a set with k+1 elements. Then $T=S\cup\{a\}$, where $a\in T$ and $S=T-\{a\}$. Hence |S|=k.
- For each subset X of S, there are exactly two subsets of T, i.e., X and $X \cup \{a\}$.

 $X \cup \{a\}$

- By the inductive hypothesis S has 2^k subsets.
- Since there are two subsets of T for each subset of S, the number of subsets of T is $2 \cdot 2^k = 2^{k+1}$.