ITU-R BS.1770-1 filter specifications

(unofficial)

January 15, 2011

1 Pre-filter

The pre-filter is a second-order IIR high-shelf filter with the transfer function

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

and the filter coefficients in Table 1.

Assuming those filter coefficients were obtained with the design in Table 2, solving for V_h, V_b, V_l, Q, Ω gives

 $V_h = 1.584864701130855 \ (\approx 4 \text{dB}),$

 $V_b = 1.258720930232562 \ (\approx \sqrt{V_h}),$

 $V_l = 1.0,$

Q = 0.7071752369554196,

 $\Omega = 0.1105318322704944$

and with $\Omega = \tan \left(\pi \frac{f_c}{f_s} \right)$ and $f_s = 48000$

 $f_c = 1681.974450955533.$

Table 1: Filter coefficients for the pre-filter ([1]):

i	a_i	b_i
0	1.0	1.53512485958697
1	-1.69065929318241	-2.69169618940638
2	0.73248077421585	1.19839281085285

Table 2: normalized $(a_0 = 1)$ biquad filter ([2])

b_0	b_1	b_2	a_1	a_2
$\frac{V_l\Omega^2 + V_b\frac{\Omega}{Q} + V_h}{\Omega^2 + \frac{\Omega}{Q} + 1}$	$\frac{2(V_l\Omega^2 - V_h)}{\Omega^2 + \frac{\Omega}{Q} + 1}$	$\frac{V_l\Omega^2 - V_b\frac{\Omega}{Q} + V_h}{\Omega^2 + \frac{\Omega}{Q} + 1}$	$\frac{2(\Omega^2-1)}{\Omega^2+\frac{\Omega}{Q}+1}$	$\frac{\Omega^2 - \frac{\Omega}{Q} + 1}{\Omega^2 + \frac{\Omega}{Q} + 1}$

 V_h : high-pass gain factor

 V_B : band-pass gain factor

 V_l : low-pass gain factor

Q: Q factor

 Ω : $\tan\left(\pi \frac{f_c}{f_s}\right)$

2 RLB filter

The RLB filter is a second-order IIR high-pass filter with the normalized transfer function $\,$

$$H(z) = \frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

and the filter coefficients in Table 3.

Assuming those filter coefficients were obtained with the design in Table 4, solving for V_h, V_b, V_l, Q, Ω gives

 $V_h = G$ (optional global gain factor; should be set to 1),

 $V_b = 0.0,$

 $V_l = 0.0,$

Q = 0.5003270373238773,

 $\Omega = 0.002495965915335466$

and with
$$\Omega = \tan \left(\pi \frac{f_c}{f_s} \right)$$
 and $f_s = 48000$

 $f_c = 38.13547087602444.$

Table 3: Filter coefficients for the RLB filter ([1]):

\overline{i}	a_i	b_i
0	1.0	1.0
1	-1.99004745483398	-2.0
2	0.99007225036621	1.0

Table 4: normalized $(a_0 = b_0 = 1)$ biquad filter (modified from [2] to normalize b_0)

b_1	b_2	a_1	a_2
$\frac{2(V_l\Omega^2 - V_h)}{V_l\Omega^2 + V_b\frac{\Omega}{Q} + V_h}$	$\frac{V_l\Omega^2 - V_b\frac{\Omega}{Q} + V_h}{V_l\Omega^2 + V_b\frac{\Omega}{Q} + V_h}$	$\frac{2(\Omega^2-1)}{\Omega^2+\frac{\Omega}{Q}+1}$	$\frac{\Omega^2 - \frac{\Omega}{Q} + 1}{\Omega^2 + \frac{\Omega}{Q} + 1}$

 V_h : high-pass gain factor

 V_b : band-pass gain factor

 V_l : low-pass gain factor

Q: Q factor

 Ω : $\tan\left(\pi \frac{f_c}{f_s}\right)$

References

- [1] Rec. ITU-R BS.1770-1, Algorithms to measure audio programme loudness and true-peak audio level
- [2] Brian Neunaber, Parameter Quantization in Direct-Form Recursive Audio Filters

A Maxima code

A.1 Pre-filter

```
fpprec: 300;
a0 : 1 + K / Q + K^2;
a1 : 2 * (K^2 - 1);
a2 : 1 - K / Q + K^2;
b0 : Vh + Vb * K / Q + V1 * K^2;
b1 : 2 * (V1 * K^2 - Vh);
b2 : Vh - Vb * K / Q + V1 * K^2;
sol : solve([b0 / a0 = 153512485958697 / 10000000000000000,
           b2 / a0 = 119839281085285 / 1000000000000000,
           a2 / a0 = 73248077421585 / 100000000000000],
           [Vh, Vb, Vl, Q, K]);
Vh : rhs(sol[2][1]);
Vb : rhs(sol[2][2]);
V1 : rhs(sol[2][3]);
Q : rhs(sol[2][4]);
K : rhs(sol[2][5]);
sol2 : solve(K = tan(\%pi * fc / 48000), fc);
sol3 : solve(Vh = 10^(G / 20), G);
sol4 : solve(x*log(Vh) = log(Vb), x);
fc : rhs(sol2[1]);
G : rhs(sol3[1]);
x : rhs(sol4[1]);
/* Output floating point numbers
  for use in C code */
float(bfloat(Vh));
float(bfloat(Vb));
float(bfloat(V1));
float(bfloat(Q));
float(bfloat(K));
float(bfloat(fc));
```

A.2 RLB filter

```
fpprec: 300;
a0 : 1 + K / Q + K^2;
a1 : 2 * (K^2 - 1);
a2 : 1 - K / Q + K^2;
b0 : Vh + Vb * K / Q + V1 * K^2;
b1 : 2 * (V1 * K^2 - Vh);
b2 : Vh - Vb * K / Q + V1 * K^2;
sol : solve([b1 / b0 = -2,
           b2 / b0 = 1,
           [Vh, Vb, Vl, Q, K]);
Vh : rhs(sol[3][1]);
Vb : rhs(sol[3][2]);
V1 : rhs(sol[3][3]);
Q : rhs(sol[3][4]);
K : rhs(sol[3][5]);
sol2 : solve(K = tan(\%pi * fc / 48000), fc);
fc : rhs(sol2[1]);
/* Output floating point numbers
  for use in C code */
float(bfloat(Vh));
float(bfloat(Vb));
float(bfloat(V1));
float(bfloat(Q));
float(bfloat(K));
float(bfloat(fc));
```