Drumuri minime de sursă unică în grafuri aciclice (fără circuite)

- Ipoteze:
 - Graful nu conţine circuite
 - Arcele pot avea şi cost negativ

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja d(s,u) pentru orice u cu uv∈E

atunci putem calcula distanțele după relația de recurență $d(s,v) = \min\{d(s,u) + w(u,v) \mid uv \in E \}$

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja d(s,u) pentru orice u cu uv \in E \Rightarrow

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja d(s,u) pentru orice u cu uv \in E \Rightarrow

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare <u>există</u> dacă graful <u>nu</u> conține circuite = sortarea topologică

Pseudocod

- Considerăm vârfurile în ordinea dată de sortarea topologică
 - Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

s - vârful de start

```
//initializam distante - ca la Dijkstra
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
```

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Exemplu

Sortare topologică 1, 3, 6, 5, 4, 2

1, 3, 6, 5, 4, 2

s=3 - vârf de start

Ordine de calcul distanțe:

1, 3, 6, 5, 4, 2

s=3 - vârf de start

d/tata [
$$\infty/0$$
, $\infty/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$, $0/0$]

s=3 - vârf de start

s=3 - vârf de start

² ∞/0,	0/0,	⁴ ∞/0,	$\infty^{5}/0$,	$\infty/6$]
$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/0]
8 /3,	0/0,	$\infty/0$,	4/3,	∞/0]
	$\infty/0$,	$\infty/0, 0/0,$	$\infty/0$, $0/0$, $\infty/0$,	$\infty/0$, $0/0$, $\infty/0$, $\infty/0$,

s=3 - vârf de start

$d/tata$ $\begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0/0,	⁴ ∞/0,	∞^{5} ,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	O /o,	∞/o ,	$\infty/0$,	∞/o]
$u = 3$: $[\infty/0,$	8 /3,	0/0,	∞/o ,	4/3,	∞/o]
u = 6:					

s=3 - vârf de start

<u> </u>			<u> </u>		1
$d/tata \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\infty^2/0$,	0 /o,	$\infty^4/0$,	$\infty^{5}/0$,	$\infty/0$
$u = 1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	$\infty/0$]
$u = 3: [\infty/0,$	8 /3,	0/0,	$\infty/0$,	4/3,	∞/o]
$u=6: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4/3,	∞/o]

s=3 - vârf de start

$d/tata$ $[\infty/0,$	² ∞/0,	0 /o,	⁴ ∞/0,	$\infty^{5}/0$,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/0]
$u = 3$: $[\infty/0,$	8/s,	0/0,	∞/o ,	4 /3,	∞/o]
$u=6: [\infty/0,$	8 /3,	0/0,	∞/o ,	4 /3,	∞/o]
u = 5:					

s=3 - vârf de start

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 /o,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	0/o,	$\infty/0$,	$\infty/0$,	∞/0]
$u=3: [\infty/0,$	8/3,	0/o,	$\infty/0$,	4 /3,	∞/o]
$u = 6: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 5: [\infty/0,$	8/3,	0/0,	6/5,	4 /3,	∞/o]

s=3 - vârf de start

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 /o,	⁴ ∞/0,	$\infty^{5}/0$,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
$u = 3: [\infty/0,$	8/s ,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 6: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 5: [\infty/0,$	8/3,	0/0,	6 /5 ,	4 /3,	∞/o]
u = 4:					

s=3 - vârf de start

$d/tata \begin{bmatrix} \infty/0, \end{bmatrix}$	$\infty^2/0$,	0 /o,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
$u = 1: [\infty/0,$	$\infty/0$,	0/o,	$\infty/0$,	$\infty/0$,	∞/o]
$u = 3: [\infty/0,$	8/3,	0/0,	$\infty/0$,	4 /3,	∞/0]
$u = 6: [\infty/0,$	8/3,	0/o,	$\infty/0$,	4 /3,	∞/0]
$u = 5: [\infty/0,$	8/3,	0/0,	6/5,	4/3,	∞/o]
$u = 4: [\infty/0,$	7/4,	0/0,	6/5,	4/3,	∞/0]

s=3 - vârf de start

d/tata [c	$\infty/0$, 2 $\infty/0$,	0/0,	⁴ ∞/0,	$\infty/0$,	$\infty/0$]
$u = 1$: [\circ	$\infty/0$, $\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
u = 3:	∞/o , 8/3,	0/0,	∞/o ,	4 /3,	∞/o]
u = 6: [o	∞/o , 8/3,	0/0,	∞/o ,	4 /3,	∞/o]
u = 5: [a	∞/o , 8/3,	0/0,	6/5,	4 /3,	∞/o]
u = 4: [a	∞/o , 7/4,	0/0,	6/5,	4 /3,	∞/o]
u = 2:					

Sortare topologică 1, 3, 6, 5, 4, 2

s=3 - vârf de start

Ordine de calcul distanțe:

1, 3, 6, 5, 4, 2

$\infty/0$,	0 /o,	4 ∞/0,	$\infty^{5}/0$,	$\infty/0$]
$\infty/0$,	0/0,	$\infty/0$,	$\infty/0$,	∞/o]
8/3,	0/0,	$\infty/0$,	4/3,	∞/o]
8/3,	0/0,	$\infty/0$,	4/3,	∞/o]
8/3,	0/0,	6/5,	4/3,	∞/o]
7/4,	0/0,	6/5,	4/3,	∞/o]
7/4,	0/0,	6/5,	4/3,	∞/o]
	$\infty/0$, $8/3$, $8/3$, $8/3$, $7/4$,	$\infty/0$, $0/0$, $8/3$, $0/0$, $8/3$, $0/0$, $8/3$, $0/0$, $7/4$, $0/0$,	$\infty/0$, $0/0$, $\infty/0$, $8/3$, $0/0$, $\infty/0$, $8/3$, $0/0$, $\infty/0$, $8/3$, $0/0$, $6/5$, $7/4$, $0/0$, $6/5$,	$\infty/0$, $0/0$, $\infty/0$, $\infty/0$, $0/0$,

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata 1 2 3 4 5 6
Soluție [
$$\infty/0$$
, 7/4, 0/0, 6/5, 4/3, $\infty/0$]

Un drum minim de la 3 la 2?

Corectitudine

 Algoritmul funcționează corect și dacă există arce cu cost negativ

Când algoritmul ajunge la vârful u avem $d[u] = min\{d[x] + w(x,u) \mid xu \in E\}$

Complexitate

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Complexitate

- Iniţializare
- Sortare topologică
- m * relaxare uv

$$-> O(m+n)$$

$$O(m + n)$$

Aplicație – Drumuri critice

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități

0

0

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j

0

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j
 - activitățile se pot desfășura și în paralel

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j
 - activitățile se pot desfășura și în paralel

Se cere: timpul minim de finalizare a proiectului (dacă începe la ora 0) + planificarea activităților

- n = 6
 - Activitatea 1 durata 7
 - Activitatea 2 durata 4
 - Activitatea 3 durata 30
 - Activitatea 4 durata 12
 - Activitatea 5 durata 2
 - Activitatea 6 durata 5
 - · (1, 2)
 - · (2, 3)
 - · (3, 6)
 - · (4, 3)
 - · (2, 6)
 - · (3, 5)

- n = 6
 - Activitatea 1 durata 7
 - Activitatea 2 durata 4
 - Activitatea 3 durata 30
 - Activitatea 4 durata 12
 - Activitatea 5 durata 2
 - Activitatea 6 durata 5
 - · (1, 2)
 - · (2, 3)
 - · (3, 6)
 - · (4, 3)
 - · (2, 6)
 - · (3, 5)

w(i,j) = ?

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

Timpul minim de finalizare a proiectului = ?

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Drum CRITIC

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
 - Drum critic = drum de cost maxim de la S la T
 - Orice întârziere în desfășurarea unei activități de pe acest drum duce la creșterea timpului de terminare al proiectului
 - PERT/CPM Program Evaluation and Review Technique / Critical Path Method

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
 - Drum critic = drum de cost maxim de la S la T
 - Orice întârziere în desfășurarea unei activități de pe acest drum duce la creșterea timpului de terminare al proiectului
- Timpul minim de început al unei activități u = costul maxim al unui drum de la S la u

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri?

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri

- Problema este echivalentă cu a determina drumuri minime din S în graful în care înlocuim fiecare pondere w(e) cu -w(e)
- Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și **inversam condiția de la relaxarea** arcelor pentru a calcula maxim în loc de minim
- Corectitudine rezultă din corectitudinea algoritmului pentru drumul minim

Drumuri maxime de sursă unică în grafuri aciclice

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = -\infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
            daca d[u]+w(u,v) > d[v] atunci //relaxam uv
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```


Ordine de calcul distanțe: S, 1, 4, 2, 3, 5, 6, T

Drum critic ⇒ succesiune de activități care determină durata proiectului

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri?

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri

- Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
- · Corectitudine probabil similar cu Dijkstra
- Complexitate O(mlogn)

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri

- Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
- · Corectitudine probabil similar cu Dijkstra
- Complexitate O(mlogn)

Temă (suplimentar) - Drumuri de capacitate maximă

- Problemă: Într-o rețea orientată de comunicație
 - w(e) = capacitatea legăturii e (exp: lățimea de bandă, diametrul unei conducte etc)
 - Pentru un drum P
 - $w(P) = \min \{w(e) \setminus e \in E(P)\}$
 - = cantitatea de informație care se poate transmite
 de-a lungul drumui P
 - capacitatea minimă a arcelor ce îl compun (pentru ca informația să poată trece prin toate arcele drumului)

Date două vârfuri s și t, să se determine un drum de capacitate maximă de la s la t O(mlog n)

Temă (suplimentar) - Drumuri de capacitate maximă

- Problemă: Într-o rețea orientată de comunicație
 - w(e) = capacitatea legăturii e (exp: lățimea de bandă, diametrul unei conducte etc)
 - Pentru un drum P
 - $w(P) = \min \{w(e) \setminus e \in E(P)\}$
 - cantitatea de informație care se poate transmite
 de-a lungul drumui P (informația trebuie să poată trece prin toate arcele drumului)

Date două vârfuri s și t, să se determine un drum de capacitate maximă de la s la t O(mlog n)

Justificați corectitudinea algoritmului propus.

Dacă rețeaua ar fi neorientată ⇒ alte idei de algoritmi?

