1/15

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

DOGDIOSY OFICEL

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

Table 1

		Lumine	Luminescent Layer		laver between Layers
		Red	Green	Blue	
Example 1	Luminescent Material	CN-PPV Precursor	PPV Precursor	Aluminum Quinolinol Complex	1.
	Forming Method	Ink-Jet System	Ink-Jet System	Vacuum Deposition Method	
Example 2	Luminescent Material	CN-PPV Precursor	PPV Precursor	Pyrazoline Dimer	PVK (Hole Injection Layer)
	Forming Method	Ink-Jet System	Ink-Jet System	Coating Method	Ink-Jet System
	Luminescent Material	2-13',4'-dihydroxyphenyl -3,5,7-trihydroxy-1- benzopyrylium perchlorate	2,3,6,7-tetrahydro-11- oxo-1H,5H,11H-(1) benzopyrano[6,7,8-i,j]- quinolizine-10- carboxylic acid	2.3.6.7-tetralydro-9- methyl-11-oxo-1H.5H.11H- (1)benzopyrano[6.7.8-ij] -quinolizine	
Example 3		1.1-bis-(4-N.N-ditolyl aminophenyl) cyclohexane (Hole Injection Layer Material)	1,1-bis-(4-N.N-ditolyl aminophenyl) cyclohexane (Nole injection layer Material)	Tris(8-tydroxyquinolinol) aluminum (Hole injection layer Material)	
	Forming Method	Ink-Jet System	Ink-Jet System	Ink-Jet System	
Example 4	Luminescent Material	CN-PPV Precursor	PPV Precursor	Distyryl Derivative	PVK (Hole Injection Layer)
• i	Forming Method	Ink-jet System	Ink-Jet System	Coating Method	Vacuum Deposition Method
ļ		PPV Precursor	PPV Precursor	PPV Precursor	
Example 5	Luminescent Material	Rhodamine B (Fluorescent Dye)		Distyrylbiphenyl (Fluorescent Dye)	1
	Forming Method	+	Ink-Jet System	Ink-Jet System	

Table 2

Physical Prop for EL Elemen	Physical Properties of Composition for EL Element	Viscosity [cp]	Surface Tension [dyne/cm]	Contact Angle [*]
	Red	3.77	32.9	54.4
Example 1	uəə.ŋ	3. 72	32.8	59.0
	Blue		ľ	
	Red	3.70	32.6	55.6
Example 2	neen	7. 73	33. 1	59.8
	ВІче	3.88	33. 3	60.0
	Red	4.85	27.8	47.8
Example 3	Green	5.31	25.6	45.6
	Blue	4. 52	28.2	40.3
	Red	3. 78	33.5	60.1
Example 4	Green	3.75	32. 1	59.7
	Blue	1		
	Red	3.80	33. 1	55.0
Example 5	Green	3.75	32.9	59. 1
	Blue	3.91	33. 2	60.2

٠.

Table 3

	Luminescence Voltage [V _{th}]	Luminescence Starting Voltage [V.n]	arting	Lumine	Luminescence Life [hr]	[hr]	Lumin	Luminance [cd/m²]	/m²]	Wavelength at M Absorption [nm]	Wavelength at Maximum Absorption [nm]	ахітит
	œ	5	В	R	ß	В	æ	Ŋ	В	R	Ŋ	В
Example 1 2.0 2.2	2.0	2.2	3. 1	8000	8000	8000 210 230	210	230	200 600 500 400	009	200	400
Example 2 1.7	1.7	1.8	3.2	3. 2 10000 10000	10000	9000 230 230 180 600 500 410	230	230	180	009	500	410
Example 3 4.0 3.5	4.0	3.5	3.8	4000	5000	4000 150 180 100 580	150	180	100	580	510 420	420
Example 4 1. 7 1. 8	1.7	1.8		2. 2 10000 10000 10000 250 250	10000	10000	250	250	200 600 530 480	009	530	480
Example 5 3.0 3.2	3.0	3. 2	5.0	2000	2000	5000 200 200 200 590 530 420	200	200	200	590	530	420

Table 4

	Stability	Stability in Film Formation	ormation
:	R	ย	В
Example 1	0	0	0
Example 2	0	0	0
Example 3	0	0	0
Example 4	0	0	0
Example 5	0	0	0