Stock Price Prediction Using Machine Learning Algorithm.

By: Kelvin Oyanna

Email: dotkelplus@gmail.com

Twitter: @KelvinOyanna

Call: 08036467038

About Me

 I'm a data scientist with core interest in data analytics technology, Machine Learning and Artificial intelligence.

• I love building tech communities. I'm currently the Co-organizer & team lead for Pydata Lagos.

• I love Fried plantain - Dodo

What is a stock?

Stocks also referred to as shares or equity represents a fractional ownership in a company.

What is the stock market?

The stock market refers to public markets that exist for issuing, buying and selling stocks that trade on a stock exchange or over-the-counter.

Simply put, the stock market is a place where investors can sell or buy ownership of companies in the form of stocks or shares.

What's the fuss about the Stock Market?

Global Market Capitalization = \$80 Trillion.

Heading steadily towards \$100 Trillion

SOURCE: Bloomberg BUSINESS INSIDER

Nigeria Stock Exchange (NSE)

The Market Capitalization of NSE as at January 2018 stood at N14.18 Trillion.

Why Stock Price Prediction?

First, let me tell you a story...

Me after Investing in Stock

Grab some popcorn & Watch my money grow

like grass.

Me after seeing my investment yield in 3 months

Me seeing my investment yield after 1 year.

Here is what happened:

Think About this:

Imagine I understand all the underlying factors that influence the prices of stocks so I can purchase stocks that will yield better returns.

Imagine I can build an automated trading system that can understand these factors, accurately predict future prices of stocks and tell me which stock is safe/profitable to buy.

Your guess is as good as mine:

Machine Learning to the rescue!

"Machine Learning at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world."

- Nvidia

Let's dive into implementing a Machine Learning Algorithm to predict stock prices...

The Goal:

Our goal is to build a Machine Learning Model to predict stock prices.

Outcome:

The outcome of our work will be predicted prices & a measure of the percentage of accuracy of our model in predicting the prices.

page 8 Done.

Let's look at the Data

In [172]:

1 data.head(20)

Out[172]:

	Symbol	Low	Open	Price	Volume	High	Change	Date
0	GUARANTY	31.95	34.50	32.50	0	33.35	-2.00	9/11/2018
1	GUARANTY	34.50	35.00	34.50	0	35.00	-0.50	9/10/2018
2	GUARANTY	34.40	34.95	35.00	0	35.30	0.05	9/7/2018
3	GUARANTY	34.95	36.65	34.95	0	36.50	-1.70	9/6/2018
4	GUARANTY	36.65	37.05	36.65	0	36.85	-0.40	9/5/2018
5	GUARANTY	36.50	36.50	37.05	0	37.45	0.55	9/4/2018
6	GUARANTY	36.05	36.00	36.50	0	36.75	0.50	9/3/2018
7	GUARANTY	36.00	38.00	36.00	0	37.85	-2.00	8/31/2018
8	GUARANTY	37.90	39.05	38.00	0	38.00	-1.05	8/30/2018
9	GUARANTY	38.65	39.00	39.05	0	39.05	0.05	8/29/2018
0	GUARANTY	31.95	34.50	32.50	0	33.35	-2.00	9/11/2018
1	GUARANTY	34.50	35.00	34.50	0	35.00	-0.50	9/10/2018
_		~	~	^- ^^	^	^- ^^	^ ^-	0/7/0040

Data transformation

```
In [139]: 1 #Create a column to hold the percentage spread of the closing price
2 data['HL_PCT'] = (data['High']- data['Low'])/data['Price'] *100.0
3
4 #Create a column to hold the Percentage of Price Change
5 data['PCT_change'] = (data['Price'] - data['Open']) / data['Open'] * 100.0
```

Generate a new set of data from the transformation above

Out[174]:

	Price	HL_PCT	PCT_change	Volume	label
0	32.50	4.307692	-5.797101	0	35.00
1	34.50	1.449275	-1.428571	0	34.95
2	35.00	2.571429	0.143062	0	36.65
3	34.95	4.434907	-4.638472	0	37.05
4	36.65	0.545703	-1.079622	0	36.50
5	37.05	2.564103	1.506849	0	36.00
6	36.50	1.917808	1.388889	0	38.00
7	36.00	5.138889	-5.263158	0	39.05
8	38.00	0.263158	-2.688860	0	32.50
9	39.05	1.024328	0.128205	0	34.50

Import the Machine Learning Algorithms from Scikit Learn library

Feature Engineering - Forcasting the stock prices

```
In [144]: 1 forcast_value = int(math.ceil(0.01 * len(new_data))) # Deduce the number of times to forcast
2 # Add a new column that a shifting of the price values based on the size of data
3 new_data['label'] = new_data['Price'].shift(-forcast_value)
```

In [145]: 1 new_data.head()

Out[145]:

	Price	HL_PCT	PCT_change	Volume	label
0	32.50	4.307692	-5.797101	0	35.00
1	34.50	1.449275	-1.428571	0	34.95
2	35.00	2.571429	0.143062	0	36.65
3	34.95	4.434907	-4.638472	0	37.05
4	36.65	0.545703	-1.079622	0	36.50

```
In [146]: 1 new_data.dropna(inplace= True)
```

Creating the features and the label for training the model

```
In [147]: 1 x = np.array(new_data.drop(['Price'], axis = 1))
2 y = np.array(new_data['Price'])
```

Pre-processing: Scaling the data to normalize it's values

```
In [148]: 1 #Pre-processing
2 x = preprocessing.scale(x)

In [149]: 1 # Splitting the data into training and test set
2 x_train, x_test, y_train, y_test = cross_validation.train_test_split(x, y, test_size=0.2)
```

Building the Machine Learning Model

Using Linear Regression Machine Learning Algorithm

Evaluating the Accuracy of the model

```
In [151]: 1 accuracy = linear_model.score(x_test, y_test)
2 accuracy = accuracy * 100
3 print('Percentage Accuracy = ',np.round(accuracy),'%')
Percentage Accuracy = 94.0 %
```

Using Support Vector Regression (SVR) Machine Learning Algorithm

```
In [189]: 1 clf = svm.SVR() #Creating an instance of SVR model
2 clf.fit(x_train, y_train) # Fitting the model on the data
Out[189]: SVR(C=1.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
```

Out[189]: SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)

Evaluating the Accuracy of the model

```
In [190]: 1 accuracy = clf.score(x_test, y_test)
2 accuracy = accuracy * 100
3 print('Percentage Accuracy = ',np.round(accuracy),'%')
```

Percentage Accuracy = 88.0 %

Using multiple kernels for the SVR

Percentage Accuracy = rbf 88.0 %

Percentage Accuracy = sigmoid 88.0 %

Conclusion

This model can be deployed as a web service on an automated trading platform.

Link to Datasets & Code on GitHub:

https://github.com/KelvinOyanna/Pycon-Nigeria-2018-Resource.git

Got Questions?

Thank you!