三角比と三角関数

2023.05.15

三角比から三角関数へ

三角比(復習)

$$\cos A = rac{
m AB}{
m AC} = rac{
m \underline{E}\overline{U}}{
m 斜\overline{U}}$$
 $\sin A = rac{
m CB}{
m AC} = rac{
m 高さ}{
m$ $m AU$ $m Tan } A = rac{
m BC}{
m AD} = rac{
m 高さ}{
m \overline{E}\overline{U}}$ $m AU$

• 辺の比だから、三角形の大きさによらない.

角をθとおく

角をθとおく

 \bullet 左の角が θ の直角三角形がかける

- 角を θ とおく
- \bullet 左の角が θ の直角三角形がかける
- \bullet 斜辺r,底辺x,高さyとすると

- 角をθとおく
- \bullet 左の角が θ の直角三角形がかける
- \bullet 斜辺r,底辺x,高さyとすると

$$\cos \theta = \frac{x}{r}$$
$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x}$$

• 角 θ の直角三角形がかけない

• 角 θ の直角三角形がかけない

• 半径rの円上にx軸との角が θ

である点 P はとれる

• 角 θ の直角三角形がかけない

• 半径rの円上にx軸との角が θ である点Pはとれる

Pのx座標は底辺y座標は高さに対応

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$\cos heta = rac{x}{r} \ \sin heta = rac{y}{r} \ an heta = rac{y}{x}$$

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$\sin heta = rac{x}{r}$$
 $\sin heta = rac{y}{r}$
 $an heta = rac{y}{x}$

- 角 θ の直角三角形がかけない
- 半径rの円上にx軸との角が θ である点Pはとれる
- Pのx座標は底辺y座標は高さに対応

$$\cos heta = rac{x}{r} \ \sin heta = rac{y}{r} \ an heta = rac{y}{x}$$

• 半径rの円上に一般角 θ の点Pをとる

- 半径rの円上に一般角 θ の点Pをとる
- Pの座標を (x, y) とすると

- 半径rの円上に一般角 θ の点Pをとる
- Pの座標を (x, y) とすると $\cos heta = rac{x}{r}$

$$\sin heta = rac{\dot{y}}{r} \ an heta = rac{\dot{y}}{x}$$

- 半径rの円上に一般角 θ の点Pをとる
- ullet Pの座標を $(x,\ y)$ とすると $\cos heta = rac{x}{r}$

$$\sin heta = rac{y}{r} \ an heta = rac{y}{x}$$

課題 0515-1 図の θ について求めよ

[1] $\cos \theta$ [2] $\sin \theta$ [3] $\tan \theta$

 $\cos \theta \sin \theta \tan \theta$

• 第1象限

 $\cos \theta \sin \theta \tan \theta$

第1象限 + + +

- 第1象限 + + +
- 第2象限

- 第1象限 + + +
- 第 2 象 限 + -

- 第1象限 + + +
- 第2象限 + -
- 第3象限

- 第1象限 + + +
- 第 2 象限 — —
- 第3象限 +

- 第1象限 + + +
- 第2象限 + -
- 第3象限 — +
- 第4象限

 $\cos \theta \sin \theta \tan \theta$

- 第2象限 —
- 第3象限 —
- 第4象限

課題 0515-2 第4象限での符号を答えよ

 $[1]\cos\theta$ の符号 $[2]\sin\theta$ の符号 $[3]\tan\theta$ の符号

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

$$(1) \ \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) \tan \theta = \frac{y}{x} = \frac{\frac{y}{r}}{\frac{x}{r}} = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

証)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{r^2} + \frac{y^2}{r^2}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2 \cos^2 \theta$ と書く

III)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{r^2} + \frac{y^2}{r^2} = \frac{x^2 + y^2}{r^2} = 1$$

ullet 弧の長さ ℓ と半径 $oldsymbol{r}$ の比 $heta(ラジアン) = rac{\ell}{r}$

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

• 半径 r の円周は

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

• 半径rの円周は $2\pi r$ だから

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

• 半径rの円周は $2\pi r$ だから

1周の角
$$(360^\circ)=rac{2\pi r}{r}$$

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

半径 r の円周は 2πr だから

1周の角
$$(360^\circ)=rac{2\pi r}{r}=2\pi$$

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$

• 半周の角 (180°)

ullet 弧の長さ ℓ と半径rの比 $heta(ラジアン) = rac{\ell}{r}$

・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$

半周の角 (180°) = π

• 弧の長さ ℓ と半径rの比 θ (ラジアン) = $\frac{\ell}{r}$

1周の角
$$(360^\circ)=rac{2\pi r}{r}=2\pi$$

比なので単位はない(sin などと同じ)

- ullet 弧の長さ ℓ と半径rの比 θ (ラジアン) $=\frac{\ell}{r}$
- ullet 半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$

比なので単位はない(sin などと同じ)度と区別するときは、ラジアン(rad)を付ける

1度は
$$\frac{\pi}{180}$$

1度は
$$\frac{\pi}{180}$$
 x 度は $\frac{\pi}{180} imes x$

1度は
$$\frac{\pi}{180}$$
 x 度は $\frac{\pi}{180} imes x$

$$x$$
度は $\frac{\pi}{180} \times x$

$$1$$
は $\frac{180}{\pi}$ 度

$$1$$
度は $\dfrac{\pi}{180}$

1度は
$$\frac{\pi}{180}$$
 x 度は $\frac{\pi}{180} imes x$

$$1$$
は $\frac{180}{\pi}$ 度

1は
$$\frac{180}{\pi}$$
度 y は $\frac{180}{\pi} imes y$ 度

1つの角について,x 度 =y(ラジアン) とする

1度は
$$\frac{\pi}{180}$$

1度は
$$\frac{\pi}{180}$$
 x 度は $\frac{\pi}{180} imes x$

$$1$$
は $rac{180}{\pi}$ 度

1は
$$\frac{180}{\pi}$$
度 y は $\frac{180}{\pi} imes y$ 度

課題 0515-3 次の角を変換せよ (整数かπを含む分数で)

$$[1] \ 3.1416 \quad [2] \ 10^{\circ} \qquad [3] \ 1$$

$$[3]$$
 1

$$[4]~60\degree$$

一般角をxとおく。

- 一般角をxとおく.
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.

- 一般角をxとおく。
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).

- 一般角を x とおく.
- 任意のxに対して, $y = \sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.

- 一般角を x とおく.
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- x はラジアンとする.

- 一般角を x とおく.
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- x はラジアンとする.

横軸を度とすると下図になってしまう

- 一般角をxとおく.
- ullet 任意のxに対して, $y=\sin x$ の値が定まる.
- これを正弦関数という (三角関数の1つ).
- $y = \sin x$ のグラフを正弦曲線という.
- x はラジアンとする.

横軸を度とすると下図になってしまう

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

$$\sin x = rac{Y}{r}$$

ullet 半径1の円に点 $\mathrm{P}(X,Y)$ をとる

$$\sin x = \frac{Y}{r}$$

半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x=rac{\ell}{r}$$

半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x=\frac{\ell}{v}$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x = \frac{\ell}{r} = \ell$$

● 半径1の円に点P(X,Y)をとる

$$\sin x = \frac{Y}{r} = Y$$

また弧の長さをℓとすると

$$x = \frac{\ell}{v} = \ell$$

課題 0515-4 x, $\sin x$ は

(1)-(4) のどの長さで表されるか.

[1] x

 $[2] \sin x$

正弦曲線を描く

- \bullet アプリ「 $y = \sin x$ のグラフ」を動かしてみよう
- 使い方
 - (1) 学生番号を入れる
 - (2) 赤い点を動かしてxを決め,「点を打つ」 長さがxの弧を表示して $(x,\sin x)$ に点を打つ.
 - (3) いくつかの点を打って「点を結ぶ」 正弦曲線との違いが表示される さらに「点を打つ」,「点を結ぶ」を繰り返す.

課題 0515-5「REC」を押して表示されるデータを提出せよ.

• 振幅は

● 振幅は1(値の範囲は -1 から1)

- 振幅は1 (値の範囲は -1 から1)
- ●周期は

- 振幅は1 (値の範囲は -1 から 1)
- 周期は2π (2π で元に戻る)

- 振幅は1 (値の範囲は -1 から 1)
- 周期は2π(2πで元に戻る)
- 原点対称

正弦曲線 (課題)

「関数のグラフ」でグラフをかいてみよう.

課題 0515-6 次の関数の振幅と周期を答えよ

$$[1] y = 2\sin x$$

[1]
$$y = 2 \sin x$$
 [2] $y = \frac{1}{3} \sin x$

$$[3] \ y = \sin 2x$$

[3]
$$y = \sin 2x$$
 [4] $y = 4\sin \frac{x}{2}$

課題 0515-7 次の関数の振幅と周期を答えよ

$$[1] y = A \sin x \qquad [2] y = \sin bx$$

$$[2] y = \sin bx$$

振幅•周期

• $y = \sin x$ の振幅は1,周期は 2π

振幅•周期

- $y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅は ,周期は

- $y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅はA,周期は

- $y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅はA,周期は 2π

- $y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅はA,周期は 2π
- $ullet y = \sin(bx)$ の周期は

- $y = \sin x$ の振幅は1,周期は 2π
- $ullet y = A \sin x$ の振幅はA,周期は 2π
- $ullet y = \sin(bx)$ の振幅は1,周期は $rac{2\pi}{b}$

• 「関数のグラフ」でグラフをかいてみよう.

課題 0515-8 $y = \sin x$ のグラフとの関係を答えよ.

[1]
$$y = \sin(x-1)$$
 [2] $y = \sin(x-2)$

[3]
$$y = \sin(x+1)$$
 [4] $y = \sin(x+\frac{\pi}{2})$

• 「関数のグラフ」でグラフをかいてみよう.

課題 0515-8 $y = \sin x$ のグラフとの関係を答えよ.

[1]
$$y = \sin(x-1)$$
 [2] $y = \sin(x-2)$

[3]
$$y = \sin(x+1)$$
 [4] $y = \sin(x+\frac{\pi}{2})$

 $ullet y = \sin(x-c)$ は $y = \sin x$ を

• 「関数のグラフ」でグラフをかいてみよう.

課題 0515-8 $y = \sin x$ のグラフとの関係を答えよ.

[1]
$$y = \sin(x-1)$$
 [2] $y = \sin(x-2)$

[3]
$$y = \sin(x+1)$$
 [4] $y = \sin(x+\frac{\pi}{2})$

• $y = \sin(x - c)$ は $y = \sin x$ を 右方向にcだけ平行移動 位相がcだけ遅れる

• 「関数のグラフ」でグラフをかいてみよう.

課題 0515-8 $y = \sin x$ のグラフとの関係を答えよ.

[1]
$$y = \sin(x-1)$$
 [2] $y = \sin(x-2)$

[3]
$$y = \sin(x+1)$$
 [4] $y = \sin(x+\frac{\pi}{2})$

- $y = \sin(x c)$ は $y = \sin x$ を 右方向にcだけ平行移動 位相がcだけ遅れる
- $ullet y = \sin(x+c)$ は $y = \sin x$ を

• 「関数のグラフ」でグラフをかいてみよう.

課題 0515-8 $y = \sin x$ のグラフとの関係を答えよ.

[1]
$$y = \sin(x-1)$$
 [2] $y = \sin(x-2)$
[3] $y = \sin(x+1)$ [4] $y = \sin(x+\frac{\pi}{2})$

- $y = \sin(x c)$ は $y = \sin x$ を 右方向にcだけ平行移動 位相がcだけ遅れる
- $y = \sin(x+c)$ は $y = \sin x$ を 左方向にcだけ平行移動 位相が-cだけ進む

振幅は1(値の範囲は−1から1)

- 振幅は1(値の範囲は -1 から1)
- 周期は2π (2π で元に戻る)

- 振幅は1(値の範囲は −1 から 1)
- 周期は2π (2π で元に戻る)
- cos x は y 軸対称

- 振幅は1(値の範囲は −1 から1)
- 周期は2π(2πで元に戻る)
- cos x は y 軸対称
- ullet $\cos x$ は $\sin x$ を左に $\frac{\pi}{2}$ 平行移動(位相が $\frac{\pi}{2}$ 進む)

角度の和の三角関数

- ullet 2 つの角をA, Bとする(通常はギリシャ文字 lpha, eta)
- $\bullet \sin(A+B) = \sin A + \sin B$ が成り立つかを考えよう
- $\bullet \sin 30^{\circ} + \sin 60^{\circ} = \sin(30^{\circ} + 60^{\circ})$ になるかを調べる
- $\sin 90^{\circ} = 1$, $\sin 30^{\circ} = \frac{1}{2}$, $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$
- 課題 0515-9 $\sqrt{3}=1.732$ を用いて答えよ.
 - $[1] \sin 30^\circ + \sin 60^\circ$ を計算せよ
 - $[2] \sin(A+B) = \sin A + \sin B$ は成り立つと言えるか

加法定理

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

加法定理

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$ullet \sin 30^\circ = lggceleft, \ \sin 45^\circ = lggreeft, \ \sin 60^\circ = lggreeft$$

$$ullet \sin 30^\circ = iggl[rac{1}{2} iggr], \; \sin 45^\circ = iggl[rac{1}{\sqrt{2}} iggr], \; \sin 60^\circ = iggl[rac{\sqrt{3}}{2} iggr]$$

$$ullet \sin 30^\circ = egin{array}{c} rac{1}{2} \ , \ \sin 45^\circ = egin{array}{c} rac{1}{\sqrt{2}} \ , \ \sin 60^\circ = egin{array}{c} rac{\sqrt{3}}{2} \ \end{array} \ \cos 30^\circ = egin{array}{c} \cos 45^\circ = egin{array}{c} \cos 60^\circ = egin{array}{c} \ \end{array} \ .$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

• $\sin 75^{\circ}$ = $\sin (45^{\circ} + 30^{\circ})$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$=\sin(45^{\circ}+30^{\circ})=\sin 45^{\circ}\cos 30^{\circ}+\cos 45^{\circ}\sin 30^{\circ}$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$= \sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} =$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$= \sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}} =$$

$$\bullet \ \sin 30^{\circ} = \boxed{\frac{1}{2}}, \ \sin 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^{\circ} = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^{\circ} = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^{\circ} = \boxed{\frac{1}{2}}$$

$$= \sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$\bullet \ \sin 30^\circ = \boxed{\frac{1}{2}}, \ \sin 45^\circ = \boxed{\frac{1}{\sqrt{2}}}, \ \sin 60^\circ = \boxed{\frac{\sqrt{3}}{2}}$$

$$\cos 30^\circ = \boxed{\frac{\sqrt{3}}{2}}, \ \cos 45^\circ = \boxed{\frac{1}{\sqrt{2}}}, \ \cos 60^\circ = \boxed{\frac{1}{2}}$$

• sin 75°

$$= \sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

課題 0515-10 次を求めよ

$$[1] \sin 15^{\circ}$$

$$[2] \cos 75^{\circ}$$

課題 0515-11 曲線上の点を動かしてみて答えよ

- $[1] \sin(-x) を \sin x$ または $\cos x$ で表せ
- [2] $\cos(-x)$ を $\sin x$ または $\cos x$ で表せ

課題 0515-11 曲線上の点を動かしてみて答えよ

- $[1] \sin(-x) を \sin x$ または $\cos x$ で表せ
- $[2]\cos(-x)$ を $\sin x$ または $\cos x$ で表せ

課題 0515-11 曲線上の点を動かしてみて答えよ

- $[1] \sin(-x) を \sin x$ または $\cos x$ で表せ
- $[2]\cos(-x)$ を $\sin x$ または $\cos x$ で表せ

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\bullet \sin(-x)$

- $\bullet \sin 0 = 0, \cos 0 = 1, \sin \pi = 0, \cos \pi = -1$
- $\bullet \sin(-x) \\
 = \sin(0 x) =$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\sin(-x)$ $= \sin(0-x) = \sin 0 \cos x \cos 0 \sin x = -\sin x$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\sin(-x)$ $= \sin(0-x) = \sin 0 \cos x \cos 0 \sin x = -\sin x$
- $\bullet \cos(-x)$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\sin(-x)$ $= \sin(0-x) = \sin 0 \cos x \cos 0 \sin x = -\sin x$
- $\begin{array}{l} \bullet \cos(-x) \\ = \cos(0-x) = \end{array}$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\sin(-x)$ $= \sin(0-x) = \sin 0 \cos x \cos 0 \sin x = -\sin x$
- $\begin{aligned} \bullet \cos(-x) \\ &= \cos(0 x) = \cos 0 \cos x + \sin 0 \sin x = \end{aligned}$

- \bullet $\sin 0 = 0$, $\cos 0 = 1$, $\sin \pi = 0$, $\cos \pi = -1$
- $\sin(-x)$ $= \sin(0-x) = \sin 0 \cos x \cos 0 \sin x = -\sin x$
- $\cos(-x)$ $= \cos(0-x) = \cos 0 \cos x + \sin 0 \sin x = \cos x$