

Faculty of Computers and Artificial Intelligence
Computer Science Department
2021/2022

CS 395 Selected Topics in CS-1 Research Project

Report Submitted for Fulfillment of the Requirements and ILO's for Selected Topics in CS-1 course for Fall 2021

Team No. 7

	ID	Name	Grade
1.	201900065	أحمد علاء الدين السيد مرتضى	
2.	201900085	احمد محمد احمد عثمان	
3.	201900083	احمد محمد ابراهيم محمد	
4.	201900452	عبدالله احمد حسن سلامه	
5.	201900059	احمد عبد المنجي عبد الموجود ابراهيم	
6.	201900074	احمد عیسی محمود احمد	
7.	201900095	احمد محمد علي	

Delivered to:

Dr. Wessam El-Behaidy

Eng. Islam Gamal

Eng. Muhammed Kamal

I. NUMERICAL DATASET

1. Project Introduction

a. Dataset Name

Mobile App Statistics (Apple iOS app store)

b. Number of classes and their labels

(Specify number of classes and their labels.)

2 classes:{0: "didn't get license",1: "got license"}

c. Dataset Samples Numbers

(The total number of samples in dataset)

7198 record

d. Training, Validation and Testing

(The number of samples used in training, validation and testing.)

5759 record for training, 1439 for validation and testing.

2.Implementation Details

a. Extracted Features

11 features.

b. Cross-validation

(Is cross-validation is used in any of implemented models? If yes, specify the number of fold and ratio of training/validation)

NO.

c. Artificial Neural Network (ANN)

60 Hyper-parameters

(Specify all the hyper-parameters (initial learning rate, optimizer, regularization, batch size, no. of epochs...) with their specified value in implementation)

Before optimization	After optimization				
Initaial learning rate: 0.001	Initaial learning rate: 0.001				
Optimizer:Adam	Optimizer:Adam				
Regularization: 0.0001	Regularization: 0.0001				
batch size: 500	batch size: 32				
no. of epochs:20	no. of epochs:50				
No. of layers:2 without input layer	No. of layers:4 without input layer				
(layers) [units : Activation function] (3: tanh,1: swish)	(layers) [units : Activation function] (8: sigmoid,6: relu,8: relu,1: sigmoid)				

d. Support Vector Machine (SVM)

℘ Hyper-parameters

(Specify all the hyper-parameters (optimizer, regularization, ...) with their specified value in implementation)

Before optimization	After optimization		
kernel=" poly " degree = 40	kernel="sigmoid"		
C=10e+10	coef0=2.5		
Regularization:1.0	Regularization:1.0		

3. Models Results

For each model you should show all these results for your model on testing data (loss curve, accuracy, confusion matrix, ROC curve)

a.ANN Results

b.SVM Results

	before	e opti	imiza	tion	After optimization				
Roc curve	10				1.0 (T) He will be seen to see the seen to see the seen to see the see that see the see that see that see the see that see tha				
Accuracy	0.988194444444445				0.99027777777778				
			Predicted				Predicted		
confusion			0	1			0	1	
matrix		0	2	7		0	0	9	
	Actual	1	10	1421	Actual	1	5	1426	

II. IMAGE DATASET

1. Project Introduction

a. Dataset Name:

Brain Tumor Classification (MRI)

b. Number of classes and their labels:

2 classes:{0: "no_tumor",1: "pituitary_tumor"}

c. Dataset Images Numbers and size

(The total number of images in dataset and the size of each.)

1222 image (200px * 200px)

d. Training, Validation and Testing

(The number of images used in training, validation and testing.)

977 image for training, 245 image for validation and testing.

2. Implementation Details

a. Extracted Features

In preprocessing phase we convert each image into 40000 feature (it's pixels 200*200).

b. Cross-validation

(Is cross-validation is used in any of implemented models? If yes, specify the number of fold and ratio of training/validation)

NO.

c. Artificial Neural Network (ANN)

60 Hyper-parameters

(Specify all the hyper-parameters (initial learning rate, optimizer, regularization, batch size, no. of epochs...) with their specified value in implementation)

Before optimization	After optimization				
Initaial learning rate: 0.001	Initaial learning rate: 0.001				
Optimizer:Adam	Optimizer:Adam				
Regularization: 0.0001	Regularization: 0.0001				
batch size: 20	batch size: 60				
no. of epochs:50	no. of epochs:100				
No. of layers:3 without input layer	No. of layers:3 without input layer				
(layers) [units : Activation function]	(layers) [units : Activation function]				
(6: sigmoid, 6: sigmoid, 1: sigmoid)	(6: sigmoid,6: relu,1: sigmoid)				

d. Support Vector Machine (SVM)

60 Hyper-parameters

(Specify all the hyper-parameters (optimizer, regularization, ...) with their specified value in implementation)

Before optimization	After optimization			
kernel="sigmoid"	kernel="poly" , degree=2			
coef0=0.0	coef0=20			
Regularization:1.0	Regularization:1.0			

3. Models Results

For each model you should show all these results for your model on testing data (loss curve, accuracy, confusion matrix, ROC curve)

a.ANN Results:

b.SVM Results:

	before	imiza	tion	After optimization					
Roc curve	1.0 - (1) 3 3 3 3 3 3 3 3 3 3				1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
Accuracy	0.8816326530612245				0.9836734693877551				
			Predicted				Pred	icted	
confusion			0	1			0	1	
matrix		0	49	14		0	59	4	
71101174	Actual	1	15	167	Actual	1	0	182	