Contents

Contents 1 0.1 random notes 1
0.1 random notes
• As long as every pair of literal is variable disjoint, the quantifier ordering is arbitrary (proof idea: establish that some ordering works, then pull quantifier inwards and back outwards in arbitrary order).
 lifted terms which contain variables are disjoint for different clauses, but ground lifted terms can be the same (which does not appear to be necessarily so!)
 the resolved/factorised literal should be the same (else this kind of proof doesn't go through)
¹⁾ Lemma 1. $\Gamma \models \mathrm{LI}^{\Delta}(C) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}(C)$.
²⁾ Lemma 2. $\Gamma \models \forall \overline{x} \exists \overline{y} (LI(C) \lor LI_{cl}(C)).$
Proof. By 1, $\Gamma \vDash \operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C)$. Hence $\Gamma \vDash \forall \bar{x} \ (\operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C))$. and also $\Gamma \vDash \forall \bar{x} \ \exists \bar{y} \ \ell_{\Gamma}[\operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C)]$. by some lemma then $\Gamma \vDash \forall \bar{x} \ \exists \bar{y} \ (\operatorname{LI}(C) \vee \operatorname{LI}_{\operatorname{cl}}(C))$.
but can't invert this idea: Let $\hat{\Delta} = \Gamma$ and $\hat{\Gamma} = \Delta$. Then with $\hat{\pi}$ and 2: $\hat{\Gamma} \models \forall \bar{x} \exists \bar{y} (\text{LI}(\bar{\pi}))$ Hence (some lemma) $\Delta \models \forall \bar{y} \exists \bar{x} (\neg \text{LI}(\pi))$. Hence $\Delta \models \neg \exists \bar{y} \forall \bar{x} (\text{LI}(\pi))$. need some consistent ordering, so possibly just prove that all work, because we need to shuffle a lot anyway