Niveaux: SM PC SVT | Matière: Physique

PROF: Zakaryae Chriki | Résumé N:9

Modulation d'amplitude

I.Ondes électromagnétiques - Transmission d'information

1. Les caractéristiques des ondes électromagnétiques

Comme les ondes mécaniques progressives sinusoïdales, les ondes électromagnétiques sont caractérisées par :

- * une fréquence f (en Hz) et une période T (en s) liées entre elles par la relation suivante : $f = \frac{1}{T}$
- * Une célérité (vitesse de propagation en m/s): dans le vide et dans lair elle est égale à la célérité de la lumière soit $c = 3.10^8 m/s$
- * La célérité des ondes électromagnétiques dans les milieux transparents (comme les fibres optiques) est également importante (de lordre de $10^8 m/s$
- * Une longueur d'onde dans le vide λ (en m) qui correspond à la distance parcourue par londe se déplaçant à la célérité c durant une période temporelle T. On a aussi la relation suivante : $\lambda = c.T = \frac{c}{f}$

2. La nécessité de la modulation

On veut transporter un signal (musique, son, image, etc...). Ces signaux ont une basse fréquence de l'ordre de 1kHz, en fait ces signaux ne peuvent pas être transmises directement pour plusieurs raisons :

- * Les ondes de basses fréquences sont fortement amorties ;
- * Les dimensions de l'antenne réceptrice pour une onde donnée doivent être de lordre de $\frac{\lambda}{2}$ et $\frac{\lambda}{4}$

Cela conduirait à des antennes irréalisables du fait de leurs dimensions : pour une onde de fréquence 1kHz il faudrait une antenne de dimension $L = \frac{\lambda}{2} = \frac{c}{f} = \frac{3 \times 10^8}{2.10^3} = 150 \text{km}$

* L'intervalle des basses fréquences est très étroites qui a pour effet de rendre l'antenne incapable de sélectionner le signal transmis parmi d'autres. Il y aurait brouillage de l'information.

La solution:

C'est de transporter le signal dans une plage des hautes fréquence, ce qui nécessite l'utilisation d'une onde porteuse de haute fréquence qui porte le signal de BF sous forme d'une onde modulante.

3. Le principe de transmission d'une inforamtion par une onde électromagnétique

L'information à transmettre est contenue dans un signal électrique de basse fréquence.

Pour le transporter, on utilise une " onde porteuse" de haute fréquence.

L'amplitude de l'onde porteuse est modulée par le signal électrique de basse fréquence. Ceci est effectué par un modulateur.

4. les types de modulations

Dans la porteuse $p(t) = P_m \cdot \cos(2.\pi \cdot N \cdot t + \phi)$, trois paramètres peuvent être modifiée :

- L'amplitude U_m : modulation d'amplitude
- La fréquence N : modulation de fréquence
- La phase φ : modulation de phase

II. Modulation d'amplitude

1. Principe:

<u>La modulation d'amplitude</u> d'une tension poteuse p(t) de haute fréquence Fp permet la transmission de signaux de faibles fréquences (une tension s(t) de basse fréquence fs) avec :

 $s(t) = S_m \cos(2.\pi f_s.t)$: signal de faible fréquence: Le signal modulant contenant l'information à diffuser (à envoyer)

 $p(t) = P_m \cos(2\pi F_p t)$: porteuse

2. Expression de la tension modulée en amplitude

À l'entrée E_1 du multiplieur, on a $s(t) + U_0 = S_m cos(2\pi f_s t) + U_0$ avec U_0 une tension continue.

À l'entrée E_2 , on applique la tension porteuse : $p(t) = P_m cos(2\pi F_p t)$.

À la sortie on obtient la tension $u_s(t) = kP_m(S_m cos(2\pi f_s t) + U_0)cos(2\pi F_p t)$

On sait que l'expression générale de la tension modulée en amplitude est : $u_s(t) = U_m(t)cos(2\pi F_p t)$

 $U_m(t)$ est l'amplitude de la tension modulée est une fonction affine de la tension modulante s(t)

Elle en reproduit les variations au cours du temps.

L'amplitude de la tension modulée s'écrit : $U_m(t) = kP_m(S_mcos(2\pi f_s t) + U_0)$ $U_m(t) = kP_mU_0(\frac{S_m}{U_0}cos(2\pi f_s t) + 1)$

On pose : $A = kP_mU_0$ et $m = \frac{S_m}{U_0}$ et la relation prend la forme suivante : $U_m(t) = A(mcos(2\pi f_s t) + 1)$

On appelle *m* le taux de modulation

De la relation ci-dessous , montre que l'amplitude modulée $U_m(t)$ varie entre deux valeurs extrêmes : U_{mmax} et U_{mmin} tel que :

$$U_{mmax} = A(m+1)$$
 $U_{mmin} = A(-m+1)$ c'est à dire que : $U_{mmax} + U_{mmin} = 2Am$ $U_{mmax} - U_{mmin} = 2Am$

d'où le taux de modulation est : $m = \frac{U_{mmax} - U_{mmin}}{U_{mmax} + U_{mmin}}$

3. La qualité d'une modulation d'amplitude

Pour une modulation parfaite il faut que :

- La fréquence F_p de la porteuse soit nettement supérieure à la fréquence de la modulante f_s : $F_p >> f_s$ (Généralement Fp >> 10.fs)
- Le taux de modulation m soit inférieur à 1 : m < 1

4. Spectre des fréquences :

La fonction

Le spectre de fréquences du signal modulé est un graphe présentant l'amplitude de chaque composante sinusoïdale du signal.

On a us(t)= $A.(1 + A.m.cos(2.\pi.fs.t)).cos(2.\pi.Fp.t) = A.cos(2.\pi.Fp.t) + A.m.cos(2.\pi.fs.t).cos(2.\pi.Fp.t)$

On sait que $2.\cos(a).\cos(b) = \cos(a+b) + \cos(a-b)$

$$us(t) = A.\cos(2.\pi.F_p.t) + \frac{A.m}{2}.\cos(2.\pi.(F_p - f_s).t) + \frac{A.m}{2}.\cos(2.\pi.(F_p + f_s).t)$$

 $A.\cos(2.\pi.F_p.t)$

Conclusion : la tension modulée est la somme de trois tensions sinusoïdales avec des fréquences différentes

II. Démodulation d'amplitude

Une antenne réceptrice capte l'onde électromagnétique et restitue le signal électrique modulé. La **démodulation** permet alors d'extraire le signal modulant s(t) d'origine du signal modulé.

Pour restituer l'information de la tension modulante, il suffit ensuite de démoduler le signal reçu Elle s'opère comme suit :

- La réception par une antenne réceptrice
- La suppression des alternances négatives (1)
- La détection d'enveloppe (2)
- L'élimination de la composante continue (3)

a) Première opération : la suppression des alternances négatives (1)

La diode bloque les alternances négatives. La tension recueillie aux bornes du conducteur ohmique est une tension modulée redressée.

b) Deuxième opération : La détection de l'enveloppe et la suppression de la porteuse

Le montage à utiliser comporte un **filtre passe – bas** (Un condensateur en parallèle avec un conducteur ohmique), c'est-à-dire ne laissant passer que les composantes aux fréquences basses et arrêtant celles aux fréquences élevées.

NR:

Pour retrouver une enveloppe de porteuse fidèle au signal modulant originel, il faut donc que :

$$T_p \ll RC \ll T_s$$
 avec

c) Troisième opération : la suppression de la composante continue

Le montage à utiliser comporte un **filtre passe – haut**, c'est-à-dire ne laissant passer que les composantes aux fréquences élevées et arrêtant celles aux basses fréquences et continues.

Le rôle de chaque partie dans la démodulation :

Antenne	Réception des ondes électromagnétique
Partie (1): Circuit LC	Sélectionner la fréquence F_p ; $F_p = \frac{1}{T_p} = \frac{1}{2\pi\sqrt{L.C}}$
	$T_p=2.\pi.\sqrt{L.C}$: période de la porteuse
Amplificateur	Amplifier le signal modulé sélectionné
Ampinicacui	Ampinion it signai module selectionite
Partie (2) : Circuit RC ou filtre passe – bas	Elimine les alternances négatives et détecte l'enveloppe
	$T_p \ll RC \ll T_s$
	T _p : période de la porteuse
	T _S : période de la modulante
Partie (3): Circuit RC ou filtre passe – haut	Suppression de la composante continue U_0
s(t)	La tension modulante