2 Commutant et polynômes d'endomorphisme

Leçons 151, 162

Ref: [Oraux X-ENS Algèbre 2] 2.45

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\mathcal{C}(A) := \{B \in \mathcal{M}_n(\mathbb{K}), AB = BA\}$ le commutant de A, et $\mathbb{K}[A] := \{P(A), P \in \mathbb{K}[X]\}$ l'espace des polynômes en A. On note aussi $T_n(\mathbb{K})$ l'espace des matrices triangulaires supérieures de taille n sur \mathbb{K} .

Théorème 1 Pour toute matrice A dans $\mathcal{M}_n(\mathbb{K})$, $\mathcal{C}(A) = \mathbb{K}[A]$ si et seulement si les polynômes minimaux et caractéristiques de A sont les mêmes.

Démonstration. On se donne une matrice $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$.

Étape 1. Dimension du commutant.

On va montrer que la dimension de $\mathcal{C}(A)$ est de manière générale supérieure à n. Pour cela, on étudie le système d'équations

$$AX - XA = 0 (S)$$

d'inconnue $X = (x_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$. On note S le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ des solutions de ce système, de sorte que l'on a bien sûr $S = \mathcal{C}(A)$.

- On suppose tout d'abord que A est trigonalisable, et, quitte à changer de base, qu'elle est triangulaire supérieure. On cherche les solutions triangulaires supérieures de (S). Les solutions correspondent aux X de $T_n(\mathbb{K})$ (qui est de dimension $\frac{n(n+1)}{2}$) satisfaisant les $\frac{n(n+1)}{2}$ équations de nullité des coefficients de la partie triangulaire supérieure. Mais les équations dûes aux coefficients diagonaux sont toujours vérifiées si $A, X \in T_n(\mathbb{K})$. Il y a donc $\frac{n(n-1)}{2}$ équations pour $\frac{n(n+1)}{2}$ inconnues, donc l'espace $S \cap T_n(\mathbb{K})$ est au moins de dimension n, et S également.
- Le résultat est toujours vrai dans le cas où A n'est pas trigonalisable : en effet, la dimension de l'espace des solutions d'un système linéaire ne dépend pas de l'extension de corps dans laquelle on cherche les solutions. Ainsi, dans la clôture algébrique $\mathbb L$ de $\mathbb K$, A est trigonalisable et le raisonnement précédent permet de conclure.

Ainsi, la dimension de C(A) est au moins n.

Étape 2. Sens direct par égalité de degrés.

Supposons que $\mathbb{K}[A] = \mathcal{C}(A)$. Alors $\mathbb{K}[A]$ est de dimension n. Or la dimension de $\mathbb{K}[A]$ est le degré du polynôme minimal, donc le polynôme minimal est de degré au moins n. Mais comme le polynôme caractéristique de A est de degré au plus n, et qu'il est divisible par le polynôme minimal (par théorème de Cayley-Hamilton), alors ceux-ci sont égaux (car unitaires). Donc $\mu_A = \chi_A$.

Étape 3. Sens réciproque par égalité de dimensions.

On suppose que $\mu_A = \chi_A$. On pose μ_x le polynôme minimal en x de A, c'est-à-dire le polynôme unitaire qui engendre l'idéal $\{P \in \mathbb{K}[X], \ P(A)x = 0\}$. On sait qu'il existe $x \in \mathbb{K}^n$, tel que $\mu_A = \mu_x^{-1}$. Alors μ_x est de degré n (car égal à χ_A), ce qui prouve que la famille $(x, Ax, ..., A^{n-1}x)$ est libre, et forme donc une base de \mathbb{K}^n . On en déduit que A est cyclique. On considère l'application

$$f: \left| \begin{array}{ccc} \mathcal{C}(A) & \longrightarrow & \mathbb{K}^n \\ B & \longmapsto & Bx \end{array} \right.$$

Elle est linéaire. De plus, si Bx = 0, alors $BA^kx = A^kBx = 0$ pour tout k, ce qui signifie que B est nulle, car nulle en tout point d'une base de \mathbb{K}^n . Donc f est injective. Ainsi, la dimension du commutant est inférieure à n. Or $\mathbb{K}[A]$ est un sous-espace vectoriel de $\mathcal{C}(A)$, de dimension $\deg(\mu_A) = \deg(\chi_A) = n$. Donc, par un argument de dimensions, $\mathbb{K}[A] = \mathcal{C}(A)$.

^{1.} Si on a le temps, il peut être bon de démontrer ce résultat. On trouvera par exemple une preuve dans [Gourdon Analyse].