SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-09-10

Contents

1	หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ	į
2	The pool of tears	ģ
3	A caucus-race and a long tale	1:

4 CONTENTS

Chapter 1

หลักการและความสำคัญของแคลคูลัส และระบบสมการเชิงอนุพันธ์สามัญ

แคลคูลัสมีส่วนประกอบหลักที่สำคัญอยู่ 2 องค์ประกอบ คือ

- 1. การหาอนุพันธ์ (differentiation) และ
- 2. การหาปริพันธ์ (Integration)

การ ประยุกต์ เรื่อง การ หา อนุพันธ์ใน การ แก้ ปัญหา เบื้อง ต้น ที่ สำคัญใน ทาง ชีววิทยา หรือ ทางการ แพทย์ ประกอบด้วย การหาอัตราการเปลี่ยนแปลงของปริมาณของตัวแปรที่เราสนใจ และการใช้แคลคูลัสในการ แก้ปัญหาการหาค่าสูงสุดและค่าต่ำสุดของปัญหาหรือฟังก์ชันที่แสดงความสัมพันธ์ของตัวแปรที่เราสนใจ

ตัวอย่างการเปลี่ยนแปลงของปริมาณที่สนใจ เช่น ขนาดของประชากร จำนวนของผู้ติดเชื้อจากโรคทางเดิน หายใจ ระดับน้ำตาลในกระแสเลือด ปริมาณของยาที่มีอยู่ในกระแสเลือกหรือส่วนหนึ่งของร่างกาย โดยที่ การเปลี่ยนแปลงดังกล่าวสามารถเปรียบเทียบได้กับเวลา ดังต่อไปนี้

- ประชากรในประเทศไทยปี พ.ศ. 2566 มีจำนวน 66.05 ล้านคน (ข้อมูลอ้างอิงจาก สำนักงานคณะ กรรมการส่งเสริมการลงทุน)
- ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19 ระหว่างวันที่ 28 กรกฎาคม ถึง วันที่ 3 สิงหาคม พ.ศ. 2567 (ข้อมูลอ้างอิงจาก ศูนย์ข้อมูล Covid-19)
- การเปลี่ยนแปลงของระดับน้ำตาลในเลือดระหว่างมืออาหารสามมือในหนึ่งวัน (รูปภาพอ้างอิงจาก Wikipedia: Blood Sugar Level)
- การเปลี่ยนแปลงของปริมาณยาในกระแสเลือดที่เวลาต่างๆ สำหรับการให้ยาโดยวิธีต่างๆ (รูปภาพ อ้างอิงจาก บทความทางวิชาการในฐานข้อมูล MDPI)

ในการทำความเข้าใจการเปลี่ยนแปลงของปริมาณข้างต้นเทียบกับเวลา เราสามารถประยุกต์ใช้การสร้าง แบบจำลองทางคณิตศาสตร์เพื่อมาใช้อธิบายการเปลี่ยนแปลงของปริมาณต่างๆ ที่เกี่ยวข้อง

Figure 1.1: ข้อมูลจำนวนผู้รักษาตัวในโรงพยาบาลจากศูนย์ข้อมูล COVID-19

Figure 1.2: ความผันผวนของระดับน้ำตาลในเลือด (สีแดง) และฮอร์โมนอินซูลิน (สีน้ำเงิน) ในมนุษย์ ระหว่างมื้ออาหารสามมื้อ

Figure 1.3: ความเข็มข้นของยาในกระแสเลือดที่เวลาต่างๆ