State-Level Heart Disease Mortality in the United States (Based on Data from 2015-2018)

James Henegan

BDS 726 - Generalized Linear Models

Presentation II

Motivation

Motivated by Current Events

- As of 4/27, there had been 239 COVID-19 deaths in Mississippi.
- In 137 (\approx 57%) of those cases, the patient had an underlying cardiovascular disease.

General Information

- Heart disease is the leading cause of death in the United States, causing about 1 in 4 deaths.¹
- Here, we examine data related to cardiovascular disease in the United States from 2015 to 2018.

¹Centers for Disease and Control Prevention

Research Questions

- Is there an association between Heart Disease Mortality and smoking (at the state level)?
- What is the relationship between Heart Disease Mortality, obesity, and median age (at the state level)?
- How do the states "cluster" based on their obesity levels?
- Is there a difference between these two clusters with respect to heart disease mortality?

Example Data - Smoking (2017)

- Let Y_i denote the number of Heart Disease Deaths (as recorded by the Centers for Disease Control and Prevention) for State_i in 2017
- Let Population; denote the population of State; in 2017
- Let Smoke; denote the percentage of adults in State; with obesity in 2017 (as recorded by the Centers for Disease Control and Prevention)

State;	Y_i	Population;	Smoke;
AL	13110	4874486	20.9
AK	814	739700	21
ΑZ	12398	7044008	15.6
AR	8270	3001345	22.3
CA	62797	39358497	11.3
CO	7060	5611885	14.6
CT	7138	3573297	12.7
DE	1990	956823	17

Example. We compute the Heart Disease Mortality Rate (HDMR) for Alabama (AL) as $13110/4874486 \approx 0.0027$.

Rank	State	HDMR	Rank	State	HDMR
1	AR	0.00276	46	WA	0.00156
2	OK	0.00274	47	MN	0.00148
3	AL	0.00269	48	CO	0.00126
4	WV	0.00267	49	UT	0.00121
5	MS	0.00266	50	AK	0.00110

Heart Disease Mortality and Smoking in 2017

Research Questions

- Is there an association between Heart Disease Mortality and smoking (at the state level)?
- What is the relationship between Heart Disease Mortality, obesity, and median age (at the state level)?
- How do the states "cluster" based on their obesity levels?
- Is there a difference between these two clusters with respect to heart disease mortality?

Smoking and Heart Disease Mortality AR OK MS AL wv PA● •MI 0.0025 OH TN Heart Disease Mortality Rate ΚΥ NΥ IN SC Population SD 1e+07 2e+07 3e+07 WY ÇА 0.0015 UT $\mathsf{AK}^{\!\bullet}$ 10 15 25 Percentage of Adults who Smoke

Smoking Model

- Let Y_i denote the number of heart disease deaths for state i
- Let pop; denote the population of state i
- ullet Let smoke; denote the percentage of adults who smoke in state i

Suppose that $Y_i \sim \mathsf{Poisson}(\mu_i)$ so that $\mathsf{Var}(Y_i) = \mu_i$.

Consider the model

$$\ln \mu_i = \underbrace{\ln pop_i}_{\text{offset}} + \alpha + \beta \text{smoke}_i$$

Fit and Interpretation

$$\ln \mu_i = \underbrace{\ln \text{pop}_i}_{\text{offset}} + \alpha + \beta \text{smoke}_i \quad \Leftrightarrow \quad \frac{\text{E}(Y_i)}{\text{pop}_i} = \exp(\alpha + \beta \text{smoke}_i)$$

Coefficients:

Estimate Std. Error z value
$$Pr(>|z|)$$
 (Intercept) -6.8433386 0.0061143 -1119.2 <2e-16 smoke 0.0377018 0.0003562 105.8 <2e-16

$$\frac{\mathsf{E}(Y_i|\mathsf{smoke}_i = x + 1)}{\mathsf{E}(Y_i|\mathsf{smoke}_i = x)} = e^{\hat{\beta}} = e^{0.0377} \approx 1.03842$$

Interpretation: After adjusting for population size, a 1 one unit increase in smoking percentage among adults at the state level is associated with a 4% increase in the number of heart disease deaths

Overdispersion

- ullet For the Poisson Model, we have Var $Y_i=\mu_i$
- \bullet For the so-called "Quasipoisson" Model, we allow Var $Y_i=\phi\mu_i$ for some scaling factor $\phi>0$
- ullet Fitting the quasipoisson model yields $\hat{\phi} pprox 241.5727$
- The Beta Coefficients for the quasipoisson model are the same as the ones we got for the Poisson model
- The Standard Errors for the coefficients of the quasipoisson model are $\sqrt{241.5727}=15.5426$ times the Standard Errors for the Poisson model.

	Beta	Poisson S.E.	Quasipoisson S.E.
(Intercept)	-6.8433	0.0061	0.0950
smoke	0.0377	0.0004	0.0055

Negative Binomial Model vs. Quasi-Poisson Model

Negative Binomial Model

	Beta	S.E.
(Intercept)	-6.809	0.1127
smoke	0.0348	0.0064

Quasi-Poisson Model

	Beta	S.E.
(Intercept)	-6.8433	0.0950
smoke	0.0377	0.0055

Should we include Obesity in our Smoking Model?

Comparison of Models: Collinearity and Ill-conditioning

Beta Estimates for Models with Quasipoisson Fits:

Model	smoke estimate	obesity estimate	
Smoking	0.037702	-	
Obesity	-	0.026964	
Smoking and Obesity	0.044602	-0.00823	

- The p-value for each estimate was < 0.001, except for the Obesity estimate from the "Smoking and Obesity" Model, which had a p-value fo 0.382
- Conclusion: It would be inappropriate to include Obesity in our Smoking model

Heart Disease Mortality, Obesity, and Median Age (2018)

Research Questions

- Is there an association between Heart Disease Mortality and smoking (at the state level)?
- What is the relationship between Heart Disease Mortality, obesity, and median age (at the state level)?
- How do the states "cluster" based on their obesity levels?
- Is there a difference between these two clusters with respect to heart disease mortality?

Obesity and Median Age Model (2018)

- Let Y_i denote the number of heart disease deaths for state i
- Let pop; denote the population of state i
- Let obese; denote the percentage of adults who are obese in state i
- Let medAge; denote the median age of state i

Suppose that $Y_i \sim \text{Poisson}(\mu_i)$ and allow $\text{Var } Y_i = \phi \mu_i$ for some $\phi > 0$.

Consider the model

$$\ln \mu_i = \ln pop_i + \alpha + \beta obese_i + \gamma medAge_i$$

Fit and Interpretation

$$\ln \mu_i = \ln \mathsf{pop}_i + \alpha + \beta \mathsf{obese}_i + \gamma \mathsf{medAge}_i$$

Coefficients:

Dispersion Parameter: $\hat{\phi} \approx 186.0341$

Variable	$e^{Estimate}$
Obesity Percentage	1.02808
Median Age	1.06002

Median Age

Fitted Values vs. Standardized Residuals NY 3 OK 2 .PA NJ NV KY ŪŤ DE AK WV SC NH co -1WA ME OR NC -2 FL*

Standardized Residual

0.0015

Predicted Heart Disease Mortality Rate

0.0025

0.0030

0.0020

Interaction Term

Let Model 1 denote the model we just considered:

$$\ln \mu_i = \ln \mathsf{pop}_i + \alpha + \beta \mathsf{obese}_i + \gamma \mathsf{medAge}_i$$

Let Model 2 extend Model 1 so that there is an interaction term between age and obesity:

$$\ln \mu_i = \ln \mathtt{pop}_i + \alpha + \beta \mathtt{obese}_i + \gamma \mathtt{medAge}_i + \xi \mathtt{obese}_i \times \mathtt{medAge}_i$$

Model	DF	Deviance
1	47	8662.7
2	46	8659.7

- H₀: Model 1 fits well compared to Model 2
- Likelihood Ratio Test Statistic: 3.0534 with 1 DF
- p-value ≈ 0.081

Heart Disease and Obesity, 2015-2018

Research Questions

- Is there an association between Heart Disease Mortality and smoking (at the state level)?
- What is the relationship between Heart Disease Mortality, obesity, and median age (at the state level)?
- How do the states "cluster" based on their obesity levels?
- Is there a difference between these two clusters with respect to heart disease mortality?

State-Level Obesity Data

For each state, we have adult obesity percentages for the years 2015-2018.

```
state '2015' '2016' '2017' '2018'
  <chr>
        <dbl> <dbl> <dbl>
                        <dbl>
1 AL
        35.6 35.7 36.3 36.2
2 AK 29.8 31.4 34.2 29.5
3 AZ 28.4 29 29.5 29.5
4 AR 34.5 35.7 35 37.1
     24.2 25 25.1 25.8
5 CA
6 CO
        20.2 22.3 22.6
                         23
7 CT
        25.3 26 26.9 27.4
8 DE
        29.7 30.7 31.8 33.5
9 FL
        26.8 27.4 28.4 30.7
10 GA
        30.7
              31.4 31.6
                         32.5
# ... with 40 more rows
```

We can use a k-means clustering with k=2 to organize these states into two clusters

State-Level Obesity Data

```
'2015' '2016' '2017' '2018'
  state
  <chr>
        <dbl>
             <dbl>
                   <dbl>
                         <dbl>
1 AL
       35.6 35.7 36.3 36.2
2 AK 29.8 31.4 34.2 29.5
3 AZ
     28.4 29 29.5 29.5
4 AR.
     34.5 35.7 35 37.1
      24.2 25
5 CA
                    25.1
                          25.8
# ... with 45 more rows
```

- For these data, it turns out that there is a simple classification rule that will agree with the results of the k-means clustering:
 - \bullet Compute the mean obesity percentage for the years 2015-2018 and check to see whether it is less than 30. (Yes \to Cluster 1.)
- Example: Arizona (AZ) is in Cluster 1. Alabama (AL) is in Cluster 2.

Obesity Percentages for each State by Cluster, 2015–2018

Research Questions

- Is there an association between Heart Disease Mortality and smoking (at the state level)?
- What is the relationship between Heart Disease Mortality, obesity, and median age (at the state level)?
- How do the states "cluster" based on their obesity levels?
- Is there a difference between these two clusters with respect to heart disease mortality?

Heart Disease Mortality Rates for each State by Cluster, 2015–2018

A Repeated Measurement Model

- Each state has four measurements
 - one measurement per year for the years 2015-2018
- Let Y_{ij} denote the number of heart disease deaths for state i at measurement j
- ullet Let pop_{ii} denote the population of state i at measurement j
- Let obese $_{ij}$ denote the percentage of adults who are obese in state i at measurement j
- ullet Suppose that $Y_{ij}\sim \mathsf{Poisson}(\mu_{ij})$
- $Var(Y_{ij}) = \phi \mu_{ij}$ for some $\phi > 0$
- $Corr(Y_{ij}, Y_{ik}) = \alpha$

Consider the model

$$\ln \mu_{ij} = \ln \mathsf{pop}_{ij} + \alpha + \beta \mathsf{cluster2}_{ij}$$

Results of Fitting the Model (Empirical SE Estimates)

$$\ln \mu_{ij} = \ln \mathsf{pop}_{ij} + \alpha + \beta \mathsf{cluster2}_{ij}$$

	Estimate	SE	95% LB	95% UB	<i>p</i> -value
α	-6.3015	0.0555	-6.4102	-6.1928	< .0001
β	0.1549	0.0732	0.0114	0.2985	0.0344

- $\exp(-6.3015) \approx 0.0018$
- $\exp(-6.3015 + 0.1549) \approx 0.0021$
- $\exp(0.1549) \approx 1.17$

Based on this model, the expected heart disease mortality rate for a state in obesity-cluster 2 is approximately 17% greater than the the expected heart disease mortality rate for a state in obesity-cluster 1.

Closing Comments

- In epidemiology, an ecological fallacy can occur when we make an inference about an individual while using data that has been aggregated at the group level.
- In this presentation, we have examined the relationship between obesity and heart disease mortality at the state level, not the individual level.
- More detailed research is required to understand the relationship between smoking, obesity, and heart disease at the individual level.
- Nevertheless, it is still a good idea to "play it safe" and take care of your heart!

