高念然 Bo8my0005

Subject: Time Series

Date: >0>3 / 4 / 7 ...

G

C

65

CA

I. Find the autocovariance generating function

(a) Zt = M + at - 0.5 At-1 + 2 At-2 + 3 At-3, At ~ WN(0.1)

(b) Zt = 0.5 Zt-1 + at , at ~ WN (0, 52)

(a) MA(3), Y(B) = = 75 BJ

= 1 + 4, B + 42 B2 + 43 B3

r(B) = E rk Bk = E E F Y; Y; + K Ta' BK

= 418) · 418-1) Ta2

> rib) = (1+41B+42B+43B3)(1+41B-1+42B-2+43B-3).1-= $(1-0.5B+2B^2+3B^3)(1-0.5B^{-1}+2(B^{-2}+3B^{-3})\cdot 1$

= 3B3 + 0.5 B2 + 4.5B + 14.55 + 4.5B1 + 0.5B-2 + 3B-3 &

(b) AR(1), π(B) Zt = at = t = π(B) at , M=0

 $\Rightarrow (1-0.5B) = at$ $= \frac{1}{1-0.5B} = at = \sum_{i=0}^{\infty} (0.5B)^{i} \cdot at$

> r(B) = (= (0.5B);)(= (0.5B);). 52 #X

2. AR(2) mode | s : (i) Zt - 0-6 Zt-1 - 0-3 Zt-2 = at

(ii) Zt - 0-8 Zt-1 + 0.5 Zt-2 = at

(a) Find general expression for lk

(b) Plot the Pk, for k= 0.1... 10

(0) Calculate Tz by assuming Ta = 1

(i) $(1-0.68-0.38^2)$ $\Xi_t = a_t$, $\ell_0 = 1$, $\ell_1 = \frac{\phi_1}{1-\phi_2}$, $\phi_1 = 0.6$, $\phi_2 = 0.3$

lk= P1 lk-1 + P2 lk-2 , k 32 characteristic equation

(a) 1-0-6B-0-3B2=0

0-36 + 4.0.3 = 1.56 70

 $(k = \alpha (\frac{\phi_1 + \int \phi_1^2 + \psi_2}{2})^k + b (\frac{\phi_1 - \int \phi_1^2 + \psi_2}{2})^k$

 $= a \left(\frac{3 + \sqrt{39}}{10} \right)^{k} + b \left(\frac{3 - \sqrt{39}}{10} \right)^{k} , \quad l_{1} = \frac{0.6}{0.7} = \frac{6}{7}$

 $\frac{3}{1} = \alpha + b$ $\frac{b}{1} = \alpha \left(\frac{3+\sqrt{59}}{10}\right) + b\left(\frac{3-\sqrt{59}}{10}\right)$ $\frac{b}{14} = \alpha \left(\frac{3+\sqrt{59}}{10}\right) + b\left(\frac{3-\sqrt{59}}{10}\right)$

A A A A A A No.: Subject : \Rightarrow $\binom{1+\sqrt{39}}{14}$ $\binom{3+\sqrt{39}}{19}$ $\binom{3+\sqrt{39}}{19}$ $\binom{3-\sqrt{39}}{19}$ $\binom{k}{19}$ $\binom{k=0,1...}{19}$ # (c) $Var(z_t) = Y_0 = \sigma_z^2$, $\phi_1 = 0.6$, $\phi_2 = 0.3$ $\begin{cases} Y_0 = \phi_1^2 Y_0 + \phi_2^2 Y_0 + \sigma_0^2 + 2 \phi_1 \phi_2 Y_1 \\ Y_1 = \phi_1 Y_0 + \phi_2 Y_1 \end{cases}$ $\begin{cases} Y_0 = 0.36 Y_0 + 0.09 Y_0 + 1 + 0.36 Y_1 \\ Y_1 = 0.6 Y_0 + 0.3 Y_1 \end{cases}$ $\begin{cases}
(1-0.45) \, r_0 = 2 + 0.36 \, r_1, \quad r_1 = \frac{0.55 \, r_0 - 1}{0.36} \\
r_1 = \frac{0.6 \, r_0}{0.7}, \quad r_0 = \frac{1 + 0.36 \, r_1}{0.55}
\end{cases}$ $\frac{0.55 \, \text{re-1}}{0.36} = \frac{0.6 \, \text{re}}{0.7} \qquad \frac{100}{169} = 4.1426$ (1) (1-0.8B +0.5B2) 2t = at , \$1 = 0.8, \$2 = -0.5 20) $l_0: 1, l_1 = \frac{\phi_1}{1-\phi_2} = \frac{8}{15}$ (a) characteristic equation: (1-0.8B+0.5B2) = 0 0.64 - 4.0.5 = -1.36 20 >0)) Pk = C. x k cos (k0) + d x k sin (k0), x = 5-92 = \frac{\sqrt{2}}{2} **>D** $\omega S \theta = \frac{\phi_1}{2\sqrt{-\phi_2}} = \frac{2\sqrt{2}}{5}$ $\sin \theta = \frac{\sqrt{17}}{5}$ $\Rightarrow \theta = (0.5^{-1}(\frac{2\sqrt{2}}{5}) = 0.969532)$ **50** (c) { r. = 0.64 r. + 0.75 r. + 1 + (-0.4) r. .2 50) 52) 52) 52) 52)

	No.:
Subject :	Date :/
Given AR(2): Zt: Zt-1 - 0.25 &t-2 + at	
(a) Calculate P1	
(b) Use Po. P1 as starting values and the difference e	quation to obtain Pk
(c) Calculate the value lk for k: 1.2 10	
$(1-B+0-25B^2)=0$ /, $\ell_0=1$, $\ell_1=\frac{\phi_1}{1-\phi_2}$, 91=1, 92=-0.25
(a) P1: 1:25 = # X	
(b) 1-4.0.25 = 0	
B= 11 = 2 (重根) /	
> Pk = 1/2 (b1 + b2 k)	Was a second second
\$ 1 = b1	
$\frac{4}{5} = \frac{1}{5} (1 + b2) / b2 = \frac{3}{5}$	n
ッ Pk=(立)k(1+をk) , K:0·1·2··· &	
Perive the stationary region of \$1 and \$2 for AR	(2): (1- 9, B- P_B2) = a
{Zt} stationary ⇔ (1-p1B-p2B2)=0 的根落在單位	过3 (1根171)
$\begin{cases} B_1 = -\phi_1 + \int \phi_1^2 + \psi \phi_2 \\ B_1 = -\phi_1 + \int \phi_1^2 + \psi \phi_2 \end{cases}$	- 6 (a.k)
2 /2 2	
$-\phi_1 - \sqrt{\phi_1^2 + \psi_2^2}$ $R^{-1} = \phi_1 - \sqrt{\phi_1^2 + \psi_2^2}$	0. (1. 3 · 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
$B_{2} = \frac{-\phi_{1} - \int \phi_{1}^{2} + \psi \phi_{2}}{2 \phi_{2}} \qquad \left[B_{2}^{-1} = \frac{\phi_{1} - \int \phi_{1}^{2} + \psi \phi_{2}}{2}\right]$	
₹t 有平穩解 ⇔ Bi ⁻¹ < 1 , i=1.2	
考慮、ダンーウメーク2=0的根型係款 {1718	
27 8	$B_1^{-1} + B_2^{-1} = \phi_1 $
故 {-1 < φ2 < 1 為平穩的必要條件 -2 < φ1 < 2	(a) (4) (A) (A) (5) (a) (b)
-2 6 9 6 2	
(I) 夏根時,外2+4丸30,則 -1< Bil < Bil < 1	⇒
	1 %- 91 < 1
$\frac{\phi_{1} - \int \phi_{1}^{2} + 4\phi_{2}}{2} \Rightarrow \frac{\phi_{1} - \int \phi_{1}^{2} + 4\phi_{2}}{2} = \frac{7 - 2}{2}$	
2 3 J9,2+40, < 9,+2	
> pr- pr- 4	Double A

Subject :			No.:	
			Date://	
φ1 + Jq,2+4p2	> \$1 + Jp1 44\$2	42		
2		2-41		
) p2 + p1 ~ 1	#		
[1] 虚根時 ,如		/	φ.	
Thus, stationary			\uparrow	
	(p2 - p1 < 1	平穩,且寬根	干税,且模权抗	
	\ \phi_2 + \phi_1 < 1	-2		
	(-1 < p2 < 1 ×	-1	1 1 9	
	Marine Marine Marine	P2-P1=1	19.+191=1	
		(-2,-1)	7-1 (2,-1) ×	

Time Series HW7

B082040005 高念慈 2023-04-07

2. Consider the following AR(2) models:

$$(i)Z_t - 0.6Z_{t-1} - 0.3Z_{t-2} = a_t$$

b. Plot the ρ_k for k = 0,1,2,...,10

```
rho_k_2i_a <- c()

for (i in 0:10)
    rho_k_2i_a <- c(rho_k_2i_a,(1/2+sqrt(39)/14)*((3+sqrt(39))/10)^i+(1/2-sqrt(39)/14)*((3-sqrt(39))/10)^i)

cbind(k=seq(0,10,1), pk=rho_k_2i_a)</pre>
```

```
## k pk
## [1,] 0 1.0000000
## [2,] 1 0.8571429
## [3,] 2 0.8142857
## [4,] 3 0.7457143
## [5,] 4 0.6917143
## [6,] 5 0.6387429
## [7,] 6 0.5907600
## [8,] 7 0.5460789
## [9,] 8 0.5048753
## [10,] 9 0.4667488
## [11,] 10 0.4315119
```

```
plot(x=seq(0,10,1),
    y=rho_k_2i_a,
    type ="h",
    col="Red",
    xlab="lag",
    ylab=expression(rho[k]))
```



```
plot(x=seq(0,10,1),
    y=(ARMAacf(c(0.6,0.3),lag.max=10)),
    type ="h",
    col="Red",
    xlab="lag",
    ylab=expression(rho[k]))
```


$$(ii)Z_t - 0.8Z_{t-1} + 0.5Z_{t-2} = a_t$$

b. Plot the ρ_k for k = 0,1,2,...,10

```
rho_k_2ii_a <- c()

for (i in 0:10)
    rho_k_2ii_a <- c(rho_k_2ii_a, (sqrt(2)/2)^i*(cos(i*acos(2*sqrt(2)/5)))+(2*sqrt(34)/51)*(sqrt(2)/2)^i*sin(i*acos(2*sqrt(2)/5)))

cbind(k=seq(0,10,1), pk=rho_k_2ii_a)</pre>
```

```
##
         k
                    ρk
##
   [1,] 0 1.00000000
   [2,]
        1 0.53333333
        2 -0.07333333
   [3,]
##
   [4,]
        3 -0.32533333
##
##
   [5,]
        4 -0.22360000
   [6,]
         5 -0.01621333
##
   [7,] 6 0.09882933
##
##
   [8,]
        7 0.08717013
## [9,] 8 0.02032144/
## [10,] 9 -0.02732791
## [11,] 10 -0.03202305
```

```
plot(x=seq(0,10,1),
    y=(ARMAacf(c(0.8,-0.5),lag.max=10)),
    type="h",
    col="Blue",
    xlab="lag",
    ylab=expression(rho[k]))
abline(h=0)
```


3.

Given the AR(2) process:

$$Z_t = Z_{t-1} - 0.25 Z_{t-2} + a_t$$

(c) Calculate the value ρ_k for k = 0,1,2,...,10

```
rho_k_3_c <- c()

for (i in 1:10)
    rho_k_3_c <- c(rho_k_3_c, (1/2)^i*(1+(3/5)*i))

cbind(k=seq(1,10,1), pk=rho_k_3_c)</pre>
```

```
## k pk
## [1,] 1 0.800000000
## [2,] 2 0.550000000
## [3,] 3 0.350000000
## [4,] 4 0.212500000
## [5,] 5 0.125000000
## [6,] 6 0.071875000
## [7,] 7 0.040625000
## [8,] 8 0.022636250
## [9,] 9 0.012500000
## [10,] 10 0.006835938
```