并行计算 HW5

PB18111697 王章瀚

2021年5月25日

9.S1

试将 Cannon 分块乘法算法 9.5 改为共享存储 PRAM-EREW 模型上的算法,并分析其时间复杂度.

修改后如下:

Algorithm 1 CANNON

- 1: for all $P_{i,j}$ par- do
- 2: $C_{i,j} \leftarrow 0$
- 3: **for** k = 0 to $\sqrt{p} 1$ **do**
- 4: $C_{i,j} \leftarrow A_{i,(i+j+k)mod\sqrt{p}} \cdot B_{(i+j+k)mod\sqrt{p},j}$

复杂度包括 \sqrt{p} 次迭代, 每次是一个矩阵乘法 $(\frac{n}{\sqrt{p}})^3$, 因此总的为 $\Theta(\sqrt{p}\cdot(\frac{n}{\sqrt{p}})^3)=\frac{n^3}{p}$

9.9

9.9 算法 9.7 给出了 n^2 个处理器的并行系统上用 PRAM-CREW 模型施行两个 $n \times n$ 矩阵相 乘的算法。假定存储器的读写时间为 t_a ,两个元素的乘-加时间为 t_c 。试分析该算法的并行运行时间。

算法 9.7 PRAM-CREW 上矩阵相乘算法 输入: $A_{n \times n}$, $B_{n \times n}$ 输出: $C_{n \times n}$ Begin (1) 将 n^2 个处理器组织成 $n \times n$ 的网孔 (2) for each $P_{i,j}$ do (2. 1) $c_{i,j} = 0$ (2. 2) for k = 0 to n - 1 do $c_{i,j} = c_{i,j} + a_{i,k} \times b_{k,j}$ endfor End

每个进程在一个 k 的迭代轮次中,需要收集到来自同行第 k 列和同列第 k 行的数据,这个运行时间是 t_a . 而乘加运算是 t_c , 因此一个迭代需要 (t_a+t_c) , 所以该算法的并行运行时间为 $n(t_a+t_c)$.(忽略对 $c_{i,j}$ 赋初值时间)