第十二章 量子力学概述

	姓名:	学号:	_ 序号:	
	学院:	班级:	成绩:	
_	、单项选择题 (本大)	题共6小题, 每题只	有一个正确答	案, 答对一题得
3分,	共 18 分)			
1.	关于热辐射,下列说流	去正确的是 ()		
A.	低温物体只吸收热辐射	射		
В.	只有高温物体才有热	福射		
C.	物体只有吸收热辐射	时才向外辐射热量		
D.	任何物体都有热辐射			
2.	金属材料发生光电效应	应的截止频率依赖于	()	
A.	入射光的光强			
В.	入射光的频率			
C.	金属材料的逸出功			
D.	入射光的频率和金属	材料的逸出功		
3.	已知一单色光照射到-	一金属表面产生了光	电效应, 若此	金属的逸出电势
是 U_0 ,	则此单色光的波长 λ	必须满足 ()		
A.	$\lambda \leqslant \frac{hc}{eU_0}$ B. λ	$\geqslant \frac{hc}{eU_0}$ C. $\lambda \leqslant$	$\frac{eU_0}{hc}$ D.	$\lambda \geqslant \frac{eU_0}{hc}$
4.	关于康普顿效应,下3	列说法正确的是 ()	
A.	出射光的频率比入射	光的频率大		
В.	出射光的波长比入射	光的波长大		
C.	波长改变量Δλ 随散射	f 角 φ 的增加而减小		
D.	波长改变量Δλ 与人射	光的波长有关		

第1页(共4页)

5. 氢原子光谱的巴尔末系中波长最大的谱线用 λ_1 表示,其次用 λ_2 表示,	则
它们的比值为 ()	
A. 27/20 B. 9/8 C. 20/27 D. 16/9	
6. 氢原子中 n=2 状态下的电子脱离原子束缚需要的能量是 ()	
A. 13. 6eV B. 6. 8eV C. 3. 4eV D. 27. 2eV	
二、判断题(本大题共6小题,每题1分,共6分,答√表示说法正	确,
答×表示说法不正确,本题只需指出正确与错误,不需要修改)	
7. 物体辐射总能量及能量按波长分布规律都取决于温度。 ()
8. 物体吸收热辐射的能力越强,发射热辐射的能力就越弱。 ()
9. 爱因斯坦提出光量子假设,成功解释光电效应,因此获得 1921 年诺贝	!尔
奖。 ()
10. 康普顿散射中,除了有波长等于 λ_0 的散射光外,还有波长小于 λ_0 的	J散
射光。 ()
11. 当电子从一个能态向另一个能态跃迁时,要发射或吸收光子的能量为	$h\nu$
()
12. 对于微观粒子,不能同时确定它的位置和动量。 ()
三、填空题 (本大题共8小题,每空2分,共26分)	
13. 当波长为 200 nm 的单色光照射在某金属表面时,光电子的能量范围是	人 0
到 2.0×10 ⁻¹⁹ J,该实验的遏止电压为;此金属的截止频率为	
0	
14. 频率为 50MHz 的一个光子的能量是; 动量的大小是	
0	
15. 某一波长的 X 光经物质散射后,其散射光中包含波长大于 X 光和波长	等
于 X 光的两种成分, 其中	
16. 根据维恩位移定律,测量 λ_{m} 便可求得星球表面温度 T ,现测得太阳	的
$\lambda_{\rm m}$ =550nm,天狼星的 $\lambda_{\rm m}$ =290nm,北极星的 $\lambda_{\rm m}$ =350nm,则 $T_{\rm tm}$ =	,
$T_{ m F, R, R, E} =$	

17. 如果一质子被限制在 x 与 $x+\Delta x$ 之间,且 $\Delta x=0.2$ nm,则该质子动量的
分量 Δp_{x} 近似等于。
18. 一波长为 300nm 的光子, 假定其波长的测量精度为百万分之一, 则该是
子位置的测不准量为。
19. 假设太阳照射到地球上光的强度为 10 J·s ⁻¹ ·m ⁻² , 如果平均波长力
500nm,则每秒钟落到地面上 1m² 的光子数量为; 若人眼瞳孔直径
为 3mm,则每秒钟进入人眼的光子数是。
20. 已知金属钠的逸出功为 2. 29eV, 现用波长为 400nm 的光照射金属钠表
面,则释放出光电子的初速度为。
四、计算题 (本大题共5小题, 每题8分, 共40分)
21. 如果光子和中子的波长都是 0.5nm,则它们的总能量和动量各为多少?
22. 动能为 12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一章级? 当回到基态时能产生哪些谱线?
23. 若一个光子的能量等于一个电子的静止能量,试求该光子的频率、波和动量。

24. 能量为 1MeV 的 γ 光子,由于康普顿散射波长增加了 25%,试求反冲电子的动能。

25. 已知铅的 K、L、M 层电子的结合能分别为 87. 6keV、15. 8keV 和 0. 89keV, 试求当 γ 射线的能量为 0. 25MeV 时, 自各壳层激发出光电子的能量。

五、证明题 (本大题共1小题, 每题10分, 共10分)

26. 对于一个德布罗意波长 λ 、动能为 $E_{\rm k}$ 、静止质量为 m_0 的实物粒子,试证明: $E_{\rm k} \ll m_0 c^2$ 时, $\lambda \approx \frac{h}{\sqrt{2m_0 E_{\rm k}}}$; 当 $E_{\rm k} \gg 2m_0 c^2$ 时, $\lambda \approx \frac{hc}{E_{\rm k}}$ 。