

Physics Formula Sheet 12th STD

ELECTROSTATICS

LEGEND

$\phi \rightarrow$	Electric	flux
Ψ	LICCUITO	1 LUN

 $E \rightarrow Electrical\ field$

 $\varepsilon \to Permittivity$

 $H \rightarrow Magnetic field$

 $\rho \rightarrow electrical\ resistivity$

 $Q \rightarrow electric\ charge$

 $W \rightarrow Work\ done$

 $V \rightarrow Electric potential$

 $C_s \rightarrow Equivalent \ capacity \ in \ series \ combination$

 $C_p \rightarrow Equivalent$ capacity in parallel combination

 $\lambda \rightarrow linear\ charge\ density$

 $C_0 \rightarrow Original \ capacitance$

 $E_0 \rightarrow Original \ electric \ field$

 $E_d \rightarrow Electric\ field\ with\ dilectric$

12th STD

ELECTROSTATICS

1. Charge per unit length (Linear charge density):

$$\lambda = \frac{q}{l}$$

2. Charge per unit surface area (Surface charge density):

$$\sigma = \frac{q}{a}$$

3. Electric flux:

i.
$$\phi = \int \vec{E} \cdot \vec{ds} = Es \cos\theta$$

ii.
$$\phi = \frac{q}{\epsilon_0}$$

iii.
$$\phi = \frac{q}{k\epsilon_0}$$

4. Dielectric constant of a medium:

$$k = \frac{\epsilon}{\epsilon_0}$$

5. Electric intensity:

$$E = \frac{1}{4\pi k \epsilon_0} \frac{q}{r^2}$$

6. Electric intensity at a point outside a charged spherical conductor:

i.
$$E_{medium} = \frac{q}{4\pi k \epsilon_0 r^2} = \frac{\sigma R^2}{k \epsilon_0 r^2} \dots (r > R)$$

ii.
$$E_{vaccum} = \frac{q}{4\pi\epsilon_0 r^2} = \frac{\sigma R^2}{\epsilon_0 r^2} \dots (r > R)$$

where,
$$\sigma = \frac{q}{4\pi R^2}$$

iii.
$$E_{inside} = 0$$
 $(r > R)$

7. Electric intensity at a point outside a charged cylindrical conductor:

i. Cylinder in any medium,

$$E = \frac{\lambda}{2\pi\epsilon r} = \frac{\lambda}{2\pi k \epsilon_0 r} = \frac{\sigma R}{k\epsilon_0 r} \dots (r > R)$$

ii. cylinder in free space or vacuum,

$$E = \frac{\lambda}{2\pi\epsilon_0 r} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda}{r} \dots (r > R)$$

iii. Inside the cylinder.

$$E = 0 (r < R)$$

8. Electric intensity at a short distance from a charged conductor of any shape:

i.
$$E = \frac{\sigma}{k\epsilon_0}$$

ii. conductor in free space or air or vacuum,

$$E_0 = \frac{\sigma}{\epsilon_0} = KE$$

9. Electric intensity at a point outside a uniformly charged infinite plane sheet:

$$E = \frac{\sigma}{2\epsilon}$$

Guassian Surface $\vec{E} \leftarrow \Theta$ \vec{P} $\vec{E} \leftarrow \Theta$ \vec{P} $\vec{E} \leftarrow \Theta$ $\vec{E} \leftarrow \Theta$

10. Work done:

i.
$$W = qV$$

ii. W = q (
$$V_b - V_a$$
)

11. Torque on a dipole:

i.
$$\tau = \vec{p} \times \vec{E}$$

ii.
$$\tau = pE \sin \theta$$

iii. for
$$\theta=90^{\rm o}$$
, $au_{max}=pE$

iv. for
$$\theta=0$$
 , $au_{min}=0$

12. Work done by the external torque on dipole:

$$W = \int_{\theta_0}^{\theta} \tau_{ext}(\theta) d\theta = \int_{\theta_0}^{\theta} pE \sin\theta d\theta$$

13. Potential energy of electric dipole in external electric field:

$$\cup (\theta) - \cup (\theta_0) = pE (\cos \theta_0 - \cos \theta)$$

14. Capacity of condenser:

$$C = \frac{Q}{V}$$

15. Parallel plate condenser:

i. Intensity between the plates,

$$E = \frac{\sigma}{\epsilon} = \frac{Q}{A\epsilon} = \frac{\sigma}{k\epsilon_0} = \frac{Q}{Ak\epsilon_0}$$

ii. Potential difference between,

$$V = Ed$$

iii. Capacity between the plates,

$$C = \frac{A\epsilon}{d} = kC_0$$

iv. Capacity of vacuum,

$$C_0 = \frac{A\epsilon_0}{d}$$

16. Capacitance of capacitor with dielectric:

$$C_d = C_0 \; \frac{E_0}{E_d}$$

Where, C_0 is original capacitance

 E_0 is original electric field

 ${\it E_d}$ is electric field with dielectric

17. Energy stored in a charged capacitor:

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2 = \frac{1}{2} QV$$

18. Series combination of 'n' condenser:

i.
$$V = V_1 + V_2 + V_3 \dots + V_n$$

ii.
$$Q = Q_1 = Q_2 = Q_3 = \dots = Q_n$$

iii.
$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \dots + \frac{1}{c}$$

19. Parallel combination of 'n' condenser:

i.
$$Q = Q_1 + Q_2 + Q_3 \dots + Q_n$$

ii.
$$V = V_1 = V_2 = V_3 = \dots = V_n$$

iii.
$$C = C_1 + C_2 + C_3 + \dots + C_n$$

www.calibrantclasses.in