

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Context Free Grammar

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Context-Free Grammars	5.1	Q7-Q9,Q11,Q15,Q18-25
Parsing and Ambiguity	5.2	Q-6-Q8,Q12-Q19
Context-Free Grammars and programming languages	5.3	Q1,Q2

Extra Questions

- 1. Construct a context free grammar for $a^nb^mc^k$ where 2n = m and $k \ge 2$.
- 2. Describe the language generated by $G=(\{S,A\}, \{a,b\}, P, S)$. The set of productions P is given as:

 $S \square aA|bA$

 $A \square aAa|bAb|aAb|bAa| \lambda$

- 3. Construct the CFG for the language given by $L=\{0^{i}1^{j}2^{k}|i+j=k\}$.
- 4. Construct the CFG for the language given by $L = \{w_1 ca^n b^m a^i b^j w_2 \mid w1, w2 \in \{a, b\}^*, length(w_1) = length(w_2), j = 2i, n \le m \}.$
- 5. Construct the CFG for the language $L = \{a^n b^m c^k \mid n \neq m \text{ or } m \neq k\}$.
- 6. Consider the grammar $S \to 0B \mid 1A, A \to 0 \mid 0S \mid 1AA, B \to 1 \mid 1S \mid 0BB$. Given the string 1100, find a leftmost derivation and/or a rightmost derivation with corresponding parse trees. Repeat for the strings 001110 and 001101.
- 7. Given the CFG $S \rightarrow AB \mid \lambda$, $A \rightarrow aB$, $B \rightarrow Sb$, construct a derivation tree for aaabbbbbb.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

8. For the regular expression $(011+1)*(01)*$ obtain a context free grammar.
9. Give a context-free grammar for the language $L \subseteq \{0,1,]\}*$, where $L = \{x \# y \mid x \neq y^R, x = y \}$. For example, $00\#10,101\#000 \in L$ but $00\#0,11\#11 \notin L$
 10. Consider the language L = {a^mb²ⁿc³ⁿd^p: p > m, and m, n ≥ 1}. (a) What is the shortest string in L? (b) Write a context-free grammar to generate L.
11. Give unambiguous grammar for the following languages.a. {w the number of a's and b's in w are equal}b. (w the number of a's is at least the number of b's).
12. Prove the context free grammar is ambiguous. $S \square aSbT T$ $T \square aT bT \ \lambda$
13. Is the following grammar ambiguous? S□iCtS iCtSeS a C□b
14. Show that $S \rightarrow SaS \mid b$ is ambiguous. Construct an unambiguous equivalent of the grammar.
15. Given the grammar, S□P Q P□AA A□aAb ab

Q□aQb|aRb

and rightmost derivation. $E \rightarrow I \mid E+E \mid E*E \mid (E)$ $I \rightarrow a|b|Ia|Ib|I0|I1$

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

R□bRa ba
a. Give description in English of L(G).
b. Construct the leftmost and rightmost derivation for the string abab.
16. Let G be a grammar $S \square 0B/1A$, $A \square 0/0S/1AA$, $B \square 1/1S/0BB$. For the string 00110101 find its leftmost derivation and rightmost derivation tree.
17. Using the grammar $G=(V,T,P,S)$,with $V=\{S\}$ $P=\{S\square S\ U\ S SS S^* (S) 0 1 \ \lambda$, give the left most derivation and the corresponding parse tree for the strong $(0U(10)^*1)^*$.
18. Construct leftmost and rightmost derivations for the strings, if the language is given
S□AS ε
A□aa ab ba bb
Strings:
a. aabbba
b. baabab
c. aaabbb
19. Construct the parse tree for the string a*(a+b00) for the following CFG using both leftmos:

20. Construct the parse tree for the string $a^*(a+a)$ for the following CFG using both leftmost and rightmost derivation. The CFG is $E \to E + E \mid E * E \mid (E) \mid a$.