# COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

# Announcements/Reminders

PR1 Due TODAY

HW3 due on Oct 20

# Previously on COS 433...

# Message Integrity

# Recall: CPA Security



# Limitations of CPA security

#### attackatdawn



attackatdusk

How?

# Message Authentication



Goal: If Eve changed **m**, Bob should reject

# Message Authentication Codes

#### Syntax:

- Key space  $K_{\lambda}$
- Message space  $M_{\lambda}$
- Tag space  $T_{\lambda}$
- MAC(k,m)  $\rightarrow \sigma$
- $Ver(k,m,\sigma) \rightarrow 0/1$

#### Correctness:

•  $\forall$  m,k, Ver(k,m, MAC(k,m)) = 1

# 1-time Security For MACs



**Definition:** (MAC,Ver) is 1-time statistically secure under a chosen message attack (statistically 1CMAsecure) if, for all  $\mathbb{R}$ ,  $\exists$  negligible  $\varepsilon$  such that:

 $1CMA-Adv( \%, \lambda) \leq \varepsilon(\lambda)$ 

# Today

Message Integrity, continued Authenticated encryption

Question

Is perfect security (ε=0) possible?

# A Simple 1-time MAC

Suppose  $H_{\lambda}$  is a family of pairwise independent functions from  $M_{\lambda}$  to  $T_{\lambda}$ 

For any 
$$\mathbf{m}_0 \neq \mathbf{m}_1 \subseteq \mathbf{M}_{\lambda}$$
,  $\sigma_0, \sigma_1 \subseteq \mathbf{T}_{\lambda}$   
 $\Pr_{\mathbf{h} \leftarrow \mathbf{H}_{\lambda}} [\mathbf{h}(\mathbf{m}_0) = \sigma_0 \land \mathbf{h}(\mathbf{m}_1) = \sigma_1] = 1/|\mathbf{T}_{\lambda}|^2$ 

$$K = H_{\lambda}$$
  
 $MAC(h, m) = h(m)$   
 $Ver(h,m,\sigma) = (h(m) == \sigma)$ 

Theorem: If  $|T_{\lambda}|$  is super-polynomial, then (MAC,Ver) is 1-time secure

Intuition: after seeing one message/tag pair, adversary learns nothing about tag on any other message

So to have security, just need  $|T_{\lambda}|$  to be large Ex:  $T_{\lambda} = \{0,1\}^{128}$ 

# Constructing Pairwise Independent Functions

 $T_{\lambda} = \mathbb{F}$  (finite field of size  $\approx 2^{\lambda}$ )

• Example:  $\mathbb{Z}_p$  for some prime p

Easy case: let  $M_{\lambda}$ = $\mathbb{F}$ 

• 
$$H_{\lambda} = \{h(x) = a \times + b: a,b \in \mathbb{F}\}$$

Slightly harder case: Embed  $M_{\lambda} \subseteq \mathbb{F}^n$ 

• 
$$H_{\lambda} = \{h(x) = \langle a, x \rangle + b : a \in \mathbb{F}^n, b \in \mathbb{F}\}$$

# Multiple Use MACs?

Just like with OTP, if use 1-time MAC twice, security no longer guaranteed

Why?

# **q**-Time MACs



**Definition:** (MAC,Ver) is **q**-time statistically secure under a chosen message attack (statistically qCMA-secure) if, for all making at most **q** queries,  $\exists$  negligible  $\varepsilon$  such that:

CMA-Adv( $^{*}$ ,  $\lambda$ )  $\leq \varepsilon(\lambda)$ 

# Constructing **q**-time MACs

Ideas?

Limitations?

# Impossibility of Large q

Theorem: Any qCMA-secure MAC must have  $q \le log |K_{\lambda}|$ 

### Proof

#### Idea:

- By making  $\mathbf{q} \gg \log |\mathbf{K}_{\lambda}|$  queries, you should be able to uniquely determine key
- Once key is determined, can forge any message

#### Problem:

- What if certain bits of the key are ignored
- Intuition: ignoring bits of key shouldn't help

## Proof

#### Define $\mathbf{r_q}$ as follows:

- Challenger chooses random key k
- Adversary repeatedly choose random (distinct) messages  $\mathbf{m_i}$  in  $\mathbf{M_{\lambda}}$
- Query the CMA challenger on each  $\mathbf{m}_{i}$ , obtaining  $\sigma_{i}$
- Let  $K'_q$  be set of keys k' such that  $MAC(k',m_i)=\sigma_i$  for i=1,...,q
- Let  $\mathbf{r_q}$  be the expected size of  $\mathbf{K'_q}$

Claim: If (MAC, Ver) is qCMA-secure, then  $r_q \le r_{q-1}/2$ 

If not, then with probability at least  $\frac{1}{4}$ ,  $\frac{1}{4}$   $\frac{1}{4}$ 

#### Attack:

- Make q-1 queries on random messages m<sub>i</sub>
- Choose key k from K'<sub>q-1</sub>
- Choose random  $m_q$ , compute  $\sigma_q = MAC(k, m_q)$
- Output  $(m_q, \sigma_q)$

Probability of forgery?

Claim: If (MAC,Ver) is qCMA-secure, then  $r_q \le r_{q-1}/2$ 

Finishing the impossibility proof:

- r<sub>q</sub> is always at least 1 (since there is a consistent key)
- $r_0 = |K_{\lambda}|$
- 1  $\leq$   $r_q \leq$   $r_0/2^q \leq$   $|K_{\lambda}|/2^q$
- Setting  $\mathbf{q} > \log |\mathbf{K}_{\lambda}|$  gives a contradiction

# Computational Security

**Definition:** (MAC,Ver) is computationally secure under a chosen message attack (CMA-secure) if, for all  $\mathbb{R}$  running in polynomial time (and making a polynomial number of queries),  $\exists$  negligible  $\epsilon$  such that

CMA-Adv( $\tilde{\mathbb{R}}$ ,  $\lambda$ )  $\leq \varepsilon(\lambda)$ 

# Constructing MACs

Use a PRF

$$F:K_{\lambda}\times M_{\lambda} \rightarrow T_{\lambda}$$

MAC(k,m) = 
$$F(k,m)$$
  
Ver(k,m, $\sigma$ ) =  $(F(k,m) == \sigma)$ 

Theorem: If **F** is a secure PRF and  $|T_{\lambda}|$  is superpolynomial, then (MAC,Ver) is CMA secure

Assume toward contradiction polynomial time 🦹



Hybrids!

#### Hybrid 0



**CMA Experiment** 

#### Hybrid 1



Claim: in Hybrid 1, output 1 with probability  $1/|T_{\lambda}|$ 

- $\Re$  sees values of  $\mathbf{H}$  on points  $\mathbf{m_i}$
- Value on m\* independent of \*\* 's view
- Therefore, probability  $\sigma^* = H(m^*) = 1/|T_{\lambda}|$

Claim:  $|Pr[1 \leftarrow Hyb1] - Pr[1 \leftarrow Hyb2]| \le \epsilon(\lambda)$ Suppose not, construct PRF adversary



# MACs/PRFs for Larger Domains

We saw that block ciphers are good PRFs

However, the input length is generally fixed

• For example, AES maximum block length is 128 bits

How do we handle larger messages?

### Block-wise Authentication?



Why is this insecure?

## Block-wise Authentication?



Why is this insecure?

## Block-wise Authentication?



Why is this insecure?

#### Block-wise Authentication?

r a random nonce



Secure, but not very useful in practice

#### CBC-MAC



Theorem: CBC-MAC is a secure PRF for fixed-length

messages

### Timing Attacks on MACs

How do you implement check  $F(k,m)==\sigma$ ?

String comparison often optimized for performance

#### Compare(A,B):

- For i = 1,...,A.length
  - If A[i] != B[i], abort and return False;
- Return True;

Time depends on number of initial bytes that match

### Timing Attacks on MACs

To forge a message **m**:

For each candidate first byte  $\sigma_0$ :

- Query server on  $(\mathbf{m}, \sigma)$  where first byte of  $\sigma$  is  $\sigma_0$
- See how long it takes to reject

First byte is  $\sigma_0$  that causes the longest response

- If wrong, server rejects when comparing first byte
- If right, server rejects when comparing second

### Timing Attacks on MACs

To forge a message **m**:

Now we have first byte  $\sigma_0$ 

For each candidate second byte  $\sigma_1$ :

- Query server on  $(m, \sigma)$  where first two bytes of  $\sigma$  are  $\sigma_0, \sigma_1$
- See how long it takes to reject

Second byte is  $\sigma_1$  that causes the longest response



### Holiwudd Criptoe!



Most likely not what was meant by Hollywood, but conceivable

# Thwarting Timing Attacks

#### Possibility:

- Use a string comparison that is guaranteed to take constant time
- Unfortunately, this is hard in practice, as optimized compilers could still try to shortcut the comparison

#### Possibility:

- Choose random block cipher key k'
- Compare by testing F(k',A) == F(k', B)
- Timing of "==" independent of how many bytes A and B share

# Alternate security notions

## Strongly Secure MACs



## Strongly Secure MACs

Useful when you don't want to allow the adversary to change *any* part of the communication

If there is only a single valid tag for each message (such as in the PRF-based MAC), then (weak) security also implies strong security

In general, though, strong security is stronger than weak security

## Adding Verification Queries



**Theorem: (MAC,Ver)** is strongly CMA secure if and only if it is strongly CMA' secure

Improving efficiency

#### Limitations of CBC-MAC

Many block cipher evaluations

Sequential

## Carter Wegman MAC

#### $\mathbf{k'} = (\mathbf{k,h})$ where:

- k is a PRF key for F:K×R→Y
- h is sampled from a pairwise independent function family

#### MAC(k',m):

- Choose a random  $r \leftarrow R$
- Set  $\sigma = (r, F(k,r) \oplus h(m))$

**Theorem:** If **F** is secure and **|T|,|R|** are superpolynomial, then the Carter Wegman MAC is strongly CMA secure

# Efficiency of CW MAC

#### **MAC(k',m)**:

- Choose a random  $r \leftarrow R$
- Set  $\sigma = (r, F(k,r) \oplus h(m))$

h much more efficient that PRFs

PRF applied only to small nonce **r h** applied to large message **m** 

#### PMAC: A Parallel MAC



# Announcements/Reminders

PR1 Due TODAY

HW3 due on Oct 20