

ANTICONGELANTE

¿Porqué se necesita usar anticongelante?

El anticongelante se usa para evitar daños al motor provocados por la congelación del agua en áreas frías. El agua se congela a 0°C, pero, disolviendo en el agua algunos aditivos, el punto de congelación se hace inferior. El agua de mar contiene sal y por eso no se congela hasta cerca de -2.5°C y si la sal es más densa, el agua no se congelaría hasta un punto todavía menor. Sin embargo, no podemos simplemente añadir sal al agua para enfriamiento porque provocaría la corrosión del motor. Por esta razón, añadimos anticongelante para evitar la congelación. La temperatura de congelación difiere según la cantidad de anticongelante mezclado en el refrigerante. Igualmente difiere según el fabricante y el tipo de anticongelante.

Proporción de anticongelante al punto de congelación

tura de congelación simplemente añadiendo más anticongelante, pero si se añade demasiado, se eleva el punto de congelación. Para determinar la proporción de anticongelante, se averigua la temperatura más baja registrada en el pasado y como margen de seguridad se reduce 10°C adicionales. Para detalles sobre la proporción de anticongelante, ver la vasija u hoja explicativa proporcionada por cada fabricante.

¿Por qué revienta el motor si se congela el agua? Cuando el agua se congela, se expande a 1.1 veces su volumen original. La energía producida por esa expansión rompe las camisas de agua dentro del bloque del motor.

CONOCIMIENTOS BASICOS

Comparación de tipos y composición de anticongelante

Tipo	ipo Composición		Caracterís- ticas	Ebullición de la mezcla
Tipo Semi- permanente (SPT)	Mezcla de glycol etileno y alcohol metílico (tipo glycol + tipo alcohol) (agente anticorrosivo, antiespumante)	Si lo ingiere queda ciego	Se evapora fácilmente	Inferior a 100°C
Tipo Permanente (PT)	Glycol etileno (tipo glycol) (agente anticorrosivo, anti- espumante)	ticorrosivo, anti- si se ra fácilmente		Superior a 100°C

Nota: En el caso de anticongelante del tipo permanente, si se mezclan dos marcas distintas, no hay problema; pero, el anticongelante del tipo permanente nunca debe mezclarse con anticongelante del tipo semi-permanente.

SOBRE ANTICONGELANTES

Ventajas/ desventajas	Precauciones para el uso	Motores incapaces de usar anticongelante	Otros
Bajo costo Baja corrosividad Se recalienta más fácil- mente que el agua Fácil hace burbujas	El alcohol se evapora fácil- mente y el nivel de refrige- rante baja. Si sólo se añade agua, hay peligro que suba el punto de congelación.	(reaccionan con el agente anticorrosivo	Komatsu dejó
Bastante costoso Corrosivo No forma burbujas con facilidad	Si el glycol se evapora, añada agua o anticongelante para conservar constante la densidad. Si baja a menos del 30% disminuye la cantidad de aditivos y se produce corrosión.	Nicesus on monticular	de usarlos en 1975

El diagrama muestra un ejemplo de como el punto de ebullición cambia según la proporción de anticongelante añadido al agua de enfriamiento. Como se puede observar, si se aumenta la cantidad de anticongelante, con el tipo permanente, se eleva el punto de ebullición; pero con el tipo semi-permanente, desciende el punto de ebullición.

Si la máquina tiene un radiador presurizado, aunque ascienda la temperatura del refrigerante y trate de hervir, la presión interna sube. Esto hace que también suba el punto de ebullición y se impide que hierva el refrigerante.

Si el radiador se puede presurizar hasta 1.8 atmósferas, ¿Que temperatura alcanzaría el punto de ebullición?

Para su información, hemos añadido esto al diagrama.

CONOCIMIENTOS BASICOS

El anticongelante corroe el motor

Los productos a base de glycol son corrosivos. Por esta razón, al anticongelante se le añaden inhibidores de corrosión. Pero, el efecto de estos agentes disminuye con el tiempo. Por lo tanto, se recomienda que al momento especificado, se drene el refrigerante que contenga anticongelante. Durante todo el año se puede emplear anticongelante sin diluir, pero en lugares fríos sin sol, si la tapa no se conserva firmemente apretada, se perderá el efecto anticorrosivo. Si el refrigerante no se extrae del motor al comienzo de la primavera y las piezas internas del sistema de enfriamiento no se lavan debidamente, el motor se corroerá.

Las fugas de agua se producen con más frecuencia cuando se usa anticongelante (es permeable y daña fácilmente la pintura)

El anticongelante es permeable, penetra a través de las pequeñas cuarteaduras y por ellas se escapa con facilidad. También tiene la característica de remover el herrumbre y se fuga fácilmente por aquellos lugares que anteriormente estaban obstruidos por la corrosión. Debido a esto, es necesario verificar que la empaquetadura de la culata del motor y otras piezas de montaje estén debidamente apretadas.

Calidad del anticongelante

La calidad del anticongelante depende de sus aditivos tales como los agentes inhibidores de corrosión y los antiespumantes. No use anticongelantes de mala calidad. Recomendamos que use la solución del genuino anticongelante de Komatsu.

SOBRE ANTICONGELANTES

Categorías y características de la genuina solución anticongelante de Komatsu

Categoría		Símbolo	Uso	
	Tipo 1	AF-PT	1 temporada fría	
Anticongelante	Tipo 2	AF-PTL	Toda temporada (1 año ó 2000 horas)	
	Tipo 3	AF-ACL	Toda temporada para evitar corrosión (2 años ó 4000 horas)	

	Anticongelante KES			Inhibidor	
	Tipo No. 3 ACL	Tipo No. 2 PTL	Tipo No. 1 PT	corrosión	
Actúa para evitar picaduras en camisas (hierro fundido)	Excelente	Ninguno	Ninguno	Excelente	
Actúa para evitar corrosión de metal (Aluminio, estaño, cobre)	Excelente	Si	Ligero	Si	
Intervalo de sustitución (duración)	4000 horas ó 2 años	2000 horas ó 1 año	1000 horas ó 6 meses		
Hace de anticongelante	Si	Si	Si	No	
Para refrigerante (calor específico, etc.)	Bajo (Igual al Tipo 1)		Bajo	lgual que el agua	
Color	Rojo	Verde o Azul	Verde o Azul	Sin color	
Iguala las normas JIS	Exclusivo de Komatsu	Tipo 2	Tipo 1	Ninguno	

Todo los equipos de construcción Komatsu despachados desde Noviembre de 1989 han cambiado para el anticongelante No. 3 Tipo AF-ACL. El anticongelante AF-ACL dispone de aditivos que actúan para evitar los picados de las camisas.

La proporción de los aditivos integrantes ha sido desarrollada por la tecnología de la compañía que lo fabrica y es secreto de la misma.

CONOCIMIENTOS BASICOS

Sistema de enfriamiento del motor

Tabla 1. Ejemplo de corrosión y daños en el sistema de enfriamiento del motor

Pieza		Material	Ejemplo de corrosión, daños
Camisa del cilindro		Hierro fundido	Daños por cavitación
Culata		Hierro fundido	Daños por cavitación, corrosión
Termostato		Hierro fundido	Cuarteaduras por esfuerzos de corrosión
Radiador	Tubo	Cobre	Agujeros hechos por corrosión
	Soldadura	Soldadura	Corrosión (expansión)
Enfriador de	Тара	Aluminio	Erosión por corrosión, separación por corrosión
aceite	Núcleo	Acero Inoxidable	Escamas agarradas
Bomba de agua	Impelente	Hierro fundido	Daños por cavitación
	Sello	Carbón, aleación sinterizada, etc.	Daños por agua
Sello de la camisa, Manguera, Anillo-0			Daños por erosión

SOBRE ANTICONGELANTES

Daños por corrosión e inhibidor

Tabla 2. Inhibidor usado como agente inhibidor de corrosión en el sistema de enfriamiento del motor.

Categoría Acción principal	Nombre del inhibidor	Fórmula Química	Acción principal	
Inhibidor inorgánico	Acido fosfórico Hidrofosfato de sodio Pirofosfato de sodio Borax Carbonato de sodio Hidrato de sodio	H3PO4 N2H2PO4 Pa4P2O7 Na2B4O4 Na2CO3 N2OH	Amortiguador (man- tiene constante el ph) Evita la corrosión del hierro	
	Nitrito de sodio Molibdato de sodio	NaNO ₂ NaMoO ₄	Evita la corrosión del hierro	
	Silicato de sodio Nitrato de sodio Nitrato de zinc	Na ₂ SiO ₃ NaNO ₃ ZnNO ₃	Evita la corrosión del aluminio	
Inhibidor orgánico	Benzoato de sodio Butil bensoato de sodio Triethanolamina	NaC7H3O2 C10H11NaO2 N(CH2CH2OH)3	Amortiguador Evita la corrosión del hierro	
	Benzotriazol Mercaptobenzothiazol Tolyltriazol	C5H5N3 C7H5NS C7H7N3	Evita la corrosión del cobre y de las aleaciones de cobre	

CONOCIMIENTOS BASICOS SOBRE ANTICONGELANTES

Relación entre la temperatura y la viscosidad y la temperatura y el calor específico del anticongelante

Si al agua se le añade anticongelante, la viscosidad del agua cambiará. En esos casos, cambiará el flujo del agua reduciendo el efecto de enfriamiento y haciendo más lento el flujo del agua y habrá menos corrosión mecánica.

Debido a la cantidad de anticongelante, desciende el calor específico del agua y queda reducido el efecto de enfriamiento. Si hay tendencia al recalentamiento, el anticongelante puede reemplazarse con agua.

Los motores Cummins (reaccionan con el agente anticorrosivo del inhibidor de corrosión y baja el efecto anticorrosivo).

8 Abril, 2000