Assignment #3: Maximum Parsimony

Part I. MSA and Parsimony Reconstruction using paper and pencil @

1a. Use Needleman-Wunsch algorithm and Blosum 62 matrix shown below to align two proteins sequences:

Seq1: ALIGNME Seq2: AILMENT

Partial Blosum 62 matrix.

```
ANEGILMT
A 4 -2 -1 0 -1 -1 -1
       0 0 -3 -3 -2
N -2 6
                   0 - 4
E -1
     0
       5 -2 -3 -3 -2 -1
         6 -4 -4 -3 -2
 0 0 -2
I -1 -3 -3 -4 4 2 1 -1 -4
L -1 -3 -3 -4 2 4 2 -1 -4
M -1 -2 -2 -3 1
               2 5 -1 -4
T 0 0 -1 -2 -1 -1 5 -4
* -4 -4 -4 -4 -4 -4 -4
```

1b. Is this the best alignment for these two sequences? Are the sequences homologous? Explain!

```
2. Consider the following alignment: T1 AG T2 CA T3 CG T4 TA T5 AG
```

- **a.** Using the Fitch-Hartigan algorithm, choose an initial tree by simple step-wise addition (start by scoring the three possible unrooted trees for the first four taxa -> choose the best tree and add the fifth taxon -> choose the best tree).
- **b.** Proceed with the nearest neighbor interchanges for the two internal branches, choosing the best tree for the first of them and then for the second.
- c. Did you find the best tree? Explain!
- **3.** Consider the following alignment with variable sites marked by *:

- **a.** Which of the variable sites are parsimony informative? What does it mean?
- **b.** Use Sankoff's algorithm on parsimony informative sites to find the parsimony score for the following tree: (((Dolphin,Sperm_whale),Blue_whale),((Hippo,Pig),(((Cow,(Sheep,Goat)),Giraffe),Camel))). Weight the cost of transversions 3 times the cost of transitions.
- **c.** .5 extra points for finding the MP score for these data in PAUP.

Part II. Maximum Parsimony Analysis in PAUP.

For this part of assignment use molecular sequences in the accompanying file cob_nt.fasta. You need to align them and convert your file to NEXUS format before conducting the analyses below. **.5 extra points** for aligning them with pal2nal http://www.bork.embl.de/pal2nal/ (hint: these sequences correspond to aa sequences we used in class).

Heuristic searches

4. Perform four heuristic searches with one simple-addition replicate but four different branch-swapping options (NO, NNI, SPR, TBR) and another heuristic search with 100 random-addition replicates and TBR branch-swapping option. How, if at all, did your results (topologies of the trees; lengths of trees found, numbers of trees found) differ among the searches? Discuss.

B. Bootstrap analysis

5. Perform a 200-replicate bootstrap search with 10 random additions TBR replicates per bootstrap rep. Load the bootstrap trees into memory and calculate the strict and the majority rule consensus trees. *Are these two trees identical? Explain. Print out the consensus trees (only) and turn them in along with your answers.*

Part III. Maximum Parsimony Analysis (Optional, +5 points). Do this part after you've completed parts I and II and only if you want an extra challenge!

6. Reproduce the analysis from the Baron et al. (2017) Nature paper. What problems did you encounter? What TNT commands/options did you use? Did you get the same results?

Good luck!