Least Squares

We begin with one of the most fundamental optimization problems: **least squares**. In many scientific and engineering applications, we are given a set of measurements and wish to fit a model to this data. Mathematically, this can often be formulated as follows: we are given a data matrix $A \in \mathbb{R}^{m \times n}$ and a vector of outcomes $\vec{y} \in \mathbb{R}^m$. We seek to find a parameter vector $\vec{x} \in \mathbb{R}^n$ that best explains the data in the sense that it minimizes the discrepancy between our model's predictions, $A\vec{x}$, and the observed outcomes, \vec{y} .

Specifically, we aim to minimize the squared Euclidean distance, which is the sum of the squared differences between the components of the vectors. This leads to the following optimization problem:

$$\min_{\vec{x} \in \mathbb{R}^n} \|\vec{y} - A\vec{x}\|_2^2$$

where $\|\vec{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$ is the standard Euclidean norm. Squaring the norm is convenient as it removes the square root and yields a differentiable objective function without changing the location of the minimum.

Theorem (Least Squares Solution)

Let $A \in \mathbb{R}^{m \times n}$ have full column rank, and let $\vec{y} \in \mathbb{R}^m$. The solution to the least squares problem

$$\min_{\vec{x} \in \mathbb{R}^n} \|\vec{y} - A\vec{x}\|_2^2$$

is given by

$$\vec{x}^* = (A^\top A)^{-1} A^\top \vec{y}.$$

Proof. The core idea behind solving the least squares problem is geometric. The set of all possible model predictions, $\{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$, forms a subspace of \mathbb{R}^m . This subspace is the column space, or **range**, of the matrix A, denoted $\mathcal{R}(A)$. The problem then becomes finding the vector $\vec{z} \in \mathcal{R}(A)$ that is closest to the vector \vec{y} .

In general, there is no guarantee that \vec{y} itself lies in $\mathcal{R}(A)$. If it did, we could find an exact solution \vec{x} to the system $A\vec{x} = \vec{y}$. Since this is not always possible, we seek the best approximation. As illustrated below, this best approximation \vec{z} is the **orthogonal projection** of \vec{y} onto the subspace $\mathcal{R}(A)$. Let us define the error vector as $\vec{e} = \vec{y} - \vec{z}$. The condition that \vec{z} is the orthogonal projection of \vec{y} means that \vec{e} is orthogonal to the subspace $\mathcal{R}(A)$.

We must first prove that this orthogonally projected point \vec{z} is indeed the closest point in $\mathcal{R}(A)$ to \vec{y} . Consider any other arbitrary point $\vec{u} \in \mathcal{R}(A)$. Our goal is to show that the distance from \vec{y} to \vec{u} is greater than the distance from \vec{y} to \vec{z} .

Let's define the vector $\vec{w} = \vec{z} - \vec{u}$. Since both \vec{z} and \vec{u} belong to the subspace $\mathcal{R}(A)$, their difference \vec{w} must also lie in $\mathcal{R}(A)$. We can express the vector from \vec{u} to \vec{y} by decomposing it using \vec{z} :

$$\vec{y} - \vec{u} = (\vec{y} - \vec{z}) + (\vec{z} - \vec{u}) = \vec{e} + \vec{w}$$

By construction, the error vector \vec{e} is orthogonal to every vector in the subspace $\mathcal{R}(A)$. Since $\vec{w} \in \mathcal{R}(A)$, it follows that \vec{e} and \vec{w} are orthogonal vectors. This orthogonality allows us to apply the Pythagorean theorem to the squared norms:

$$\|\vec{y} - \vec{u}\|_2^2 = \|\vec{e} + \vec{w}\|_2^2 = \|\vec{e}\|_2^2 + \|\vec{w}\|_2^2$$

Substituting $\vec{e} = \vec{y} - \vec{z}$ and $\vec{w} = \vec{z} - \vec{u}$, we get:

$$\|\vec{y} - \vec{u}\|_2^2 = \|\vec{y} - \vec{z}\|_2^2 + \|\vec{z} - \vec{u}\|_2^2$$

Since we chose \vec{u} to be distinct from \vec{z} , the vector $\vec{w} = \vec{z} - \vec{u}$ is non-zero, and thus its squared norm $\|\vec{z} - \vec{u}\|_2^2$ is strictly positive. Therefore,

$$\|\vec{y} - \vec{u}\|_2^2 > \|\vec{y} - \vec{z}\|_2^2$$

This confirms that $\vec{z} = A\vec{x}^*$ is the unique point in $\mathcal{R}(A)$ closest to \vec{y} .

Now, we derive the formula for \vec{x}^* . The defining property of our solution is that the residual vector, $\vec{y} - A\vec{x}^*$, is orthogonal to the subspace $\mathcal{R}(A)$. For this to be true, the residual vector must be orthogonal to every vector in a spanning set for $\mathcal{R}(A)$. The columns of A form such a spanning set. The condition that a vector is orthogonal to every column of A can be written compactly using the transpose of A:

$$A^{\top}(\vec{y} - A\vec{x}^*) = \vec{0}$$

Distributing A^{\top} yields what are known as the **normal equations**:

$$A^{\top}A\vec{x}^* = A^{\top}\vec{y}$$

The theorem assumes that A has full column rank. This is a critical condition, as it guarantees that the Gram matrix $A^{T}A$ is invertible. Multiplying by the inverse of $A^{T}A$ on the left, we isolate \vec{x}^* and arrive at the final solution:

$$\vec{x}^* = (A^{\top}A)^{-1}A^{\top}\vec{y}$$

The least squares solution is unique if and only if A has full column rank.

The least squares solution is unique if and only if A has full column rank.