1. Algebraic Groups

Definition 1.0.1. Some terminology.

- (1) k is a field with algebraic closure k^a and separable closure k^s .
- (2) Algebraic scheme means a scheme of finite type over k.
- (3) Algebraic variety means a separated, geometrically reduced algebraic scheme over k.
- (4) Let X be an algebraic scheme. We denote by |X| the set of closed points of X. For $x \in X$, we use the usual notation k(x) and \mathfrak{m}_x for the residue field and the maximal ideal of the local ring $\mathcal{O}_{X,x}$. Note that $k \subset k(x)$.
- (5) We set $* = \operatorname{Spec}(k)$.

Definition 1.0.2. An algebraic group over k is a group object in the category of algebraic schemes over k. In other words, an algebraic group over k is a tuple (G, m, e, inv) where

- (1) G is an algebraic scheme over k.
- (2) $m: G \times G \to G$ is the "multiplication".
- (3) $e: * \to G$ is the "identity".
- (4) inv: $G \to G$ is the "inverse".

These datum are required to make the following diagrams commute.

(1) Associativity.

$$G \times G \times G \longrightarrow G \times G$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \times G \longrightarrow G$$

(2) Identity.

(3) Inverse.

When G is a variety, we say G is a group variety. When G is affine, we say G is an affine algebraic group. A morphism of algebraic groups $\phi:(G,m)\to(G',m')$ is a morphism $\phi:G\to G'$ of k-schemes such that the following diagram

$$\begin{array}{ccc} G\times G & \longrightarrow & G\\ \downarrow & & \downarrow\\ G'\times G' & \longrightarrow & G' \end{array}$$

commutes.

Remark 1.0.3. By removing the inverse morphism and related conditions, we obtain the notion of "algebraic monoid", i.e. an algebraic scheme equipped with a associative multiplication and a unit.

Definition 1.0.4. Let G be an algebraic group over k. Let R be a k-algebra. Set

$$G(R) = \operatorname{Hom}_k(\operatorname{Spec}(k), G).$$

It carries an induced group structure.

Lemma 1.0.5. If $\phi: G \to G'$ is a morphism of algebraic groups, then

commutes.

Definition 1.0.6. We say an algebraic group G is trivial if $e: * \to G$ is an isomorphism. We say a morphism $\phi: G \to G'$ is trivial if it can be factored as

$$G \to * \to G'$$

Definition 1.0.7. Let (G, m_G) be an algebraic group over k. An algebraic subgroup of G over k is an algebraic group (H, m_H) such that H is a k-subscheme of G and the inclusion $H \to G$ is a morphism of algebraic groups. The algebraic subgroup H is called an subgroup variety if the underlying scheme is a variety.

Remark 1.0.8. An algebraic subgroup of a group variety may not be a subgroup variety.

Lemma 1.0.9. Let (G, m, e, inv) be an algebraic group. Let H be a k-subscheme of G. Suppose m and inv both factor through H. Then H is an algebraic subgroup of G.

Lemma 1.0.10. Let k'/k be an extension of fields.

- (1) Let G be an algebraic group over k. Then $G_{k'} = G \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k')$ is an algebraic group over k'. (2) Let $\phi : G \to G'$ be a morphism of algebraic groups over k. Then the base-change $G_{k'} \to G'_{k'}$ is a morphism of algebraic groups over k'.
- (3) Let G be an algebraic group over k. Let H be an algebrai subgroup of G. Then $H_{k'}$ is an algebraic subgroup of $G_{k'}$ over k'.

Definition 1.0.11. Let X be an algebraic scheme over k. It defines a functor

$$\widetilde{X}: \operatorname{Alg}_k^{\operatorname{fg}} \to \operatorname{Set}, \quad R \mapsto X(R) = \operatorname{Hom}_k(\operatorname{Spec}(R), X).$$

Remark 1.0.12. Set theoretic issues. Note that the category Alg_k^{fg} is essentially small.

Lemma 1.0.13. The functor $X \mapsto \widetilde{X}$ is fully faithful.

Definition 1.0.14. We say a functor $F: Alg_k^{fg} \to Set$ is representable if there exists an algebraic k-scheme X such that $F \simeq X$.

Lemma 1.0.15. Let X be an algebraic scheme over k. Suppose the functor $\widetilde{X}: Alg_k^{fg} \to Set$ factors through $\operatorname{Grp} \to \operatorname{Set}$. Then X carries a structure of an algebraic group over k.

Lemma 1.0.16. An algebraic group over k is a functor $Alg_k^{fg} \to Grp$ whose underlying functor to Set is representable by an algebraic scheme over k.

Remark 1.0.17. Let G be an algebraic group over k. Let H be an algebraic subscheme of G over k. Suppose $H(R) \subset G(R)$ is a subgroup for every $R \in Alg_k^{fg}$. Then H has a structure of an algebraic subgroup of G

Example 1.0.18. For every $R \in Alg_k^{fg}$, define

$$SL_n(R) = \{ g \in M_n(R) \mid \det(g) = 1 \}.$$

Then we have a functor $SL_n: Alg_k^{fg} \to Grp$. In order to obtain an algebraic group over k, we need to show

$$\mathrm{SL}_n:\mathrm{Alg}_k^{\mathrm{fg}}\to\mathrm{Set}$$

is representable. Actually, it is represented by the affine scheme

$$\operatorname{Spec}(k[T_{ij} \mid 1 \le i, j \le n]/(\det(T_{ij}) = 1)).$$

Therefore, we obtain an affine algebraic group SL_n over k.

Example 1.0.19. For every $R \in Alg_k^{fg}$, define

$$\operatorname{GL}_n(R) = \{ g \in M_n(R) \mid \det(g) \in R^{\times} \}.$$

Then we have a functor $GL_n : Alg_k^{fg} \to Grp$. It is represented by

$$\operatorname{Spec}\left(k[T_{ij} \mid 1 \le i, j \le n][S]/(\det(T_{ij}) \cdot S - 1)\right).$$

Therefore, we obtain an affine algebraic group GL_n over k.

Example 1.0.20. The functor $R \mapsto (R, +)$ is represented by the affine scheme $\operatorname{Spec}(k[T])$, and hence is an algebraic group, denoted by \mathbb{G}_a .

Example 1.0.21. The functor $R \mapsto (R^{\times}, \times)$ is represented by the affine scheme $\operatorname{Spec}(k[T, S]/(TS - 1))$, and hence is an algebraic group, denoted by \mathbb{G}_m . ((TODO: $k[T, T^{-1}]$))

2. The Koszul Complex

Definition 2.0.1. Let A be a ring. Let f_1, \ldots, f_r be elements of A. The Koszul complex $K_{\bullet}(f_1, \ldots, f_r)$ is defined by

$$K_n(f_1,\ldots,f_r) = \wedge^p A^{\oplus r}$$

for all $p \geq 0$. Let e_1, \ldots, e_r be the standard basis of $A^{\oplus r}$. Then

$$\{e_{i_1} \wedge \cdots \wedge e_{i_p} \mid i_1 < \cdots < i_p\}$$

form a basis for $K_p(f_1,\ldots,f_r)$. The differential

$$\partial_p: K_p(f_1,\ldots,f_r) \to K_{p-1}(f_1,\ldots,f_r)$$

is defined to be the contraction by $f_1e_1^* + \cdots + f_re_r^*$, where $(e_i^*)_i$ is the basis of $\operatorname{Hom}_A(A^{\oplus r}, A)$ dual to $(e_i)_i$. In other words, we have

$$\partial(e_{i_1}\wedge\cdots\wedge e_{i_p})=(f_1e_1^*+\cdots+f_re_r^*)\sqcup(e_{i_1}\wedge\cdots\wedge e_{i_p})=\sum_{k=1}^p(-1)^{k-1}f_{i_k}e_{i_1}\wedge\cdots\wedge\widehat{e}_{i_k}\wedge\cdots\wedge e_{i_p}.$$

Lemma 2.0.2. We have $\partial_p \circ \partial_{p+1} = 0$.

Proof. We have

$$\partial^{2}(e_{i_{1}} \wedge \dots \wedge e_{i_{p+1}}) = \sum_{k=1}^{p+1} (-1)^{k-1} f_{i_{k}} \partial(e_{i_{1}} \wedge \dots \wedge \widehat{e}_{i_{k}} \wedge \dots \wedge e_{i_{p+1}})$$

$$= \sum_{k=1}^{p+1} (-1)^{k-1} f_{i_{k}} \sum_{j=1}^{k-1} (-1)^{j-1} f_{i_{j}} e_{i_{1}} \wedge \dots \wedge \widehat{e}_{i_{j}} \wedge \dots \wedge \widehat{e}_{i_{k}} \wedge \dots \wedge e_{i_{p+1}}$$

$$+ \sum_{k=1}^{p+1} (-1)^{k-1} f_{i_{k}} \sum_{j=k+1}^{p+1} (-1)^{j-2} f_{i_{j}} e_{i_{1}} \wedge \dots \wedge \widehat{e}_{i_{k}} \wedge \dots \wedge \widehat{e}_{i_{j}} \wedge \dots \wedge e_{i_{p+1}}$$

$$= 0.$$

Definition 2.0.3. Let M be an A-module. We define

$$K_{\bullet}(f_1, \dots, f_r; M) = K_{\bullet}(f_1, \dots, f_r) \otimes_A M$$

$$K^{\bullet}(f_1, \dots, f_r; M) = \operatorname{Hom}_A(K_{\bullet}(f_1, \dots, f_r), M)$$

$$H_p(f_1, \dots, f_r; M) = H_p(K_{\bullet}(f_1, \dots, f_r; M))$$

$$H^p(f_1, \dots, f_r; M) = H^p(K_{\bullet}(f_1, \dots, f_r; M))$$

Remark 2.0.4. An element g in $K^p(f_1, \ldots, f_r; M)$ is completely determined by its value on the basis $e_{i_1} \wedge \cdots \wedge e_{i_p}$.

Lemma 2.0.5. Let $g \in K^p(f_1, \ldots, f_r; M)$. We have

$$(dg)(e_{i_1} \wedge \dots \wedge e_{i_{p+1}}) = g(\partial(e_{i_1} \wedge \dots \wedge e_{i_{p+1}}))$$
$$= \sum_{k=1}^{p+1} (-1)^{k-1} f_{i_k} g(e_{i_1} \wedge \dots \wedge \widehat{e}_{i_k} \wedge \dots \wedge e_{i_{p+1}}).$$

Lemma 2.0.6. We have

$$K^p(f_1,\ldots,f_r;M) = \operatorname{Hom}_A(K_p(f_1,\ldots,f_r),M) \simeq \wedge^p(A^{\oplus r})^* \otimes_A M.$$

Hence every $g \in K^p(f_1, \ldots, f_r; M)$ can be written as

$$g = \sum_{i_1 < \dots < i_p} e_{i_1}^* \wedge \dots \wedge e_{i_p}^* \otimes g_{i_1 \dots i_p}$$

where

$$g_{i_1...i_p} = g(e_{i_1} \wedge \cdots \wedge e_{i_p}).$$

Lemma 2.0.7. Let $g \in K^p(f_1, ..., f_r; M)$. Then

$$dg = (f_1 e_1^* + \cdots + f_r e_r^*) \wedge g.$$

Proof. We have

$$(f_1 e_1^* + \dots + f_r e_r^*) \wedge g = (f_1 e_1^* + \dots + f_r e_r^*) \wedge \left(\sum_{i_1 < \dots < i_p} e_{i_1}^* \wedge \dots \wedge e_{i_p}^* \otimes g_{i_1 \dots i_p} \right)$$

$$= \sum_{i_1 < \dots < i_{p+1}} e_{i_1}^* \wedge \dots \wedge e_{i_{p+1}}^* \otimes \sum_{k=1}^{p+1} (-1)^{k-1} f_{i_k} g_{i_1 \dots \widehat{i_k} \dots i_{p+1}}.$$

Definition 2.0.8. Let $\star_p: K_p(f_1,\ldots,f_r;M) \to K^{r-p}(f_1,\ldots,f_r;M)$ be the A-module homomorphism defined by

$$\star_p(e_{i_1}\wedge\cdots\wedge e_{i_p})=\operatorname{sign}(i_1\ldots i_p j_1\ldots j_{r-p})e_{j_1}^*\wedge\cdots\wedge e_{j_{r-p}}^*,$$

where $\{j_1,\ldots,j_{r-p}\}=\{1,\ldots,r\}\setminus\{i_1,\ldots,i_p\}$, and $\operatorname{sign}(\bullet)$ is the sign of permutation. Note that the right hand side is well-defined, i.e. it does not depend on the order of j_1,\ldots,j_{r-p} .

Lemma 2.0.9. We have $\star_{p-1}\partial_p=(-1)^{p-1}d_{r-p}\star_p$

Proof. We have

$$\star_{p-1} \partial_{p}(e_{i_{1}} \wedge \dots \wedge e_{i_{p}}) = \star_{p-1} \left(\sum_{k=1}^{p} (-1)^{k-1} f_{i_{k}} e_{i_{1}} \wedge \dots \wedge \widehat{e}_{i_{k}} \wedge \dots \wedge e_{i_{p}} \right) \\
= \sum_{k=1}^{p} (-1)^{k-1} f_{i_{k}} \star_{p-1} \left(e_{i_{1}} \wedge \dots \wedge \widehat{e}_{i_{k}} \wedge \dots \wedge e_{i_{p}} \right) \\
= \sum_{k=1}^{p} (-1)^{k-1} f_{i_{k}} \operatorname{sign}(i_{1} \dots \widehat{i}_{k} \dots i_{p} i_{k} j_{1} \dots j_{r-p}) e_{i_{k}}^{*} \wedge e_{j_{1}}^{*} \wedge \dots \wedge e_{j_{r-p}}^{*} \\
= (-1)^{p-1} \sum_{k=1}^{p} f_{i_{k}} \operatorname{sign}(i_{1} \dots i_{p} j_{1} \dots j_{r-p}) e_{i_{k}}^{*} \wedge e_{j_{1}}^{*} \wedge \dots \wedge e_{j_{r-p}}^{*} \\
= (-1)^{p-1} d_{r-p} \star_{p} .$$

Note that we used the fact that $i_1 < \cdots < i_p$.

Lemma 2.0.10. We have

$$H_p(f_1,\ldots,f_r;M)\simeq H^{r-p}(f_1,\ldots,f_r;M)$$

for every p.

Proof. We have a chain map

$$\cdots \longrightarrow K_{p+1} \xrightarrow{\partial_{p+1}} K_p \xrightarrow{\partial_p} K_{p-1} \longrightarrow \cdots$$

$$\downarrow^{\star_{p+1}} \qquad \downarrow^{\star_p} \qquad \downarrow^{\star_{p-1}}$$

$$\cdots \longrightarrow K^{r-p-1} \longrightarrow K^{r-p} \xrightarrow{(-1)^{p-1} d_{r-p}} K^{r-p+1} \longrightarrow \cdots$$

It is an isomorphism of complexes as every \star_p is an isomorphism of A-modules. Therefore

$$H_p(f_1,\ldots,f_r;M)\simeq H^{r-p}(f_1,\ldots,f_r;M)$$

for every p.

Lemma 2.0.11. Suppose f_1, \ldots, f_r generate the unit ideal of A. Then

$$H_p(f_1,\ldots,f_r;M) = H^p(f_1,\ldots,f_r;M) = 0$$

for all p and every A-module M.

Proof. It suffices to show $H^p(f_1, \ldots, f_r; M) = 0$. Since f_1, \ldots, f_r generate the unit ideal of A, we can choose elements a_1, \ldots, a_r in A such that

$$a_1f_1+\cdots+a_rf_r=1.$$

For every n, define the A-module homomorphism

$$\phi_n: K^n(f_1, \dots, f_r; M) \to K^{n-1}(f_1, \dots, f_r; M)$$

to be the contraction by $a_1e_1 + \cdots + a_re_r$. In other words,

$$\phi_n(e_{i_1}^* \wedge \dots \wedge e_{i_n}^*) = \sum_{k=1}^n (-1)^{k-1} a_{i_k} e_{i_1}^* \wedge \dots \wedge \widehat{e}_{i_k}^* \wedge \dots \wedge e_{i_n}^*.$$

For every $g \in K^p(f_1, \ldots, f_r; M)$, we have

$$(d \circ \phi + \phi \circ d)(g) = \sum_{k=1}^{r} f_k e_k^* \wedge \phi(g) + \sum_{l=1}^{r} a_l e_l \, \lrcorner \, d(g)$$

$$= \sum_{k,l=1}^{r} f_k a_l e_k^* \wedge (e_l \, \lrcorner \, g) + \sum_{k,l=1}^{r} a_l f_k e_l \, \lrcorner \, (e_k^* \wedge g)$$

$$= \sum_{k,l=1}^{r} f_k a_l \delta_{kl} g$$

$$= g.$$

Hence $(\phi_n)_n$ defines a chain homotopy from identity to zero. Therefore $H^p(f_1,\ldots,f_r;M)=0$ for every p.

Remark 2.0.12. Here we used the identity

$$e_{l}^* \wedge (e_l \sqcup g) + e_l \sqcup (e_{l}^* \wedge g) = \delta_{kl}g.$$

It should be understood rather as

$$e_{i}^{*} \wedge (e_{l} \mathrel{\lrcorner} g) + e_{l} \mathrel{\lrcorner} (e_{i}^{*} \wedge g) = (e_{l} \mathrel{\lrcorner} e_{i}^{*})g.$$

Lemma 2.0.13. We have

$$H_0(f_1,\ldots,f_r;M) \simeq M/(f_1,\ldots,f_r)M.$$

Lemma 2.0.14. Suppose the homomorphism

$$M/(f_1,\ldots,f_{k-1})M \to M/(f_1,\ldots,f_{k-1})M$$

defined by multiplication by f_k is injective for every $1 \le k \le r$. Then

- (1) $H_p(f_1, ..., f_r; M) = 0$ for every $p \neq 0$.
- (2) $H^p(f_1,\ldots,f_r;M)=0$ for every $p\neq r$.

Proof. It suffices to show that $H_p(f_1, \ldots, f_r; M) = 0$ for $p \neq 0$. We shall proceed using induction on $r \geq 1$. Let r = 1. Then $K_{\bullet}(f_1; M)$ is the following complex

$$0 \longrightarrow K_1(f_1; M) \longrightarrow K_0(f_1; M) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel$$

$$0 \longrightarrow M \longrightarrow M \longrightarrow 0$$

where the morphism $M \to M$ is given by multiplication by f_1 , which is injective by our assumption. Hence $H_1(f_1; M) = 0$.

Let $r \geq 2$. We can regard $K_{\bullet}(f_1, \dots, f_{r-1}; M)$ as a sub-complex of $K_{\bullet}(f_1, \dots, f_r; M)$. Moreover, we have isomorphisms

$$K_{p-1}(f_1,\ldots,f_{r-1};M)\to K_p(f_1,\ldots,f_r;M)/K_p(f_1,\ldots,f_{r-1};M)$$

defined by

$$e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \otimes m \mapsto e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \wedge e_r \otimes m$$

for $1 \le i_1 < \cdots < i_{p-1} \le r-1$ (note that this is already an isomorphism taking M = A). Note that these isomorphisms commute with ∂ . Hence we obtain an exact sequence of complexes

$$0 \to K_{\bullet}(f_1, \dots, f_{r-1}; M) \to K_{\bullet}(f_1, \dots, f_r; M) \to K_{\bullet-1}(f_1, \dots, f_{r-1}; M) \to 0.$$

We then obtain a long exact sequence

$$\cdots \to H_p(f_1,\ldots,f_{r-1};M) \to H_p(f_1,\ldots,f_r;M) \to H_{p-1}(f_1,\ldots,f_{r-1};M) \to \cdots$$

By the induction hypothesis, we have

$$H_p(f_1,\ldots,f_{r-1};M)=H_{p-1}(f_1,\ldots,f_{r-1};M)=0$$

for $p \geq 2$. Hence

$$H_n(f_1,\ldots,f_r;M)=0$$

for $p \geq 2$. The last few terms of long exact sequence is

$$0 \to H_1(f_1, \dots, f_r; M) \to H_0(f_1, \dots, f_{r-1}; M) \to H_0(f_1, \dots, f_{r-1}; M).$$

The last morphism can be identified with the multiplication by f_r on $M/(f_1, \ldots, f_{r-1})M$, which is assumed to be injective. Therefore

$$H_1(f_1,\ldots,f_r;M)=0.$$

3. Algebraic Number Theory

Remark 3.0.1. Main references.

gebraic Number Theory ate, Class Field Theory

Rabinoff

Definition 3.0.2. A global field is a finite extension of \mathbb{Q} or $\mathbb{F}_p((t))$.

Definition 3.0.3. Let K be a global field. A place of K is an equivalence class of non-trivial absolute values on K. The set of places of K is denoted by V_K .