1. 日0日 雪台 沿见

- 우리의 뇌는 가위바위보에서 누가 이겼는지 어떻게 판단할까?
- 판단을 어떻게 학습했고, 결정을 내렸는지 설명하기 어려움

- 0:가위, 1:바위, 2:보
- My=1, computer = 2

- If my == 0 and computer == 0 then 비김
- If my == 0 and computer == 1 then 짐
- If my == 0 and computer == 2 then 이김
- If my == 1 and computer == 0 then 이김
- If my == 1 and computer == 1 then 비김
- If my == 1 and computer == 2 then 짐
- If my == 2 and computer == 0 then 짐
- If my == 2 and computer == 1 then 이김
- If my == 2 and computer == 2 then 비김

● 프로그래밍 언어가 지원하는 if 문장을 사용해 구현 가능

- 모든 경우의 수를 기억하고 있으면 상황에 맞는 지식을 쉽게 추론할 수 있음
- 학습은 모든 경우의 수를 머릿속에 저장하는 작업

0: 가위, 1:바위, 2:보

```
computer: 0 \rightarrow 0 - 0 = 0 \rightarrow 비김
my: 0
       computer : 1 → 0 - 1 = -1 → 짐
my: 0
       computer : 2 → 0 - 2 = -2 → 이김
my: 0
        computer : 0 \rightarrow 1 - 0 = 1 \rightarrow 0김
my: 1
       computer : 1 → 1 - 1 = 0 → 비김
my: 1
        computer : 2 \rightarrow 1 - 2 = -1
                                      → 짐
my: 1
        computer : 0 \rightarrow 2 - 0 = 2 \rightarrow 짐
my : 2
      computer : 1 → 2 - 1 = 1 → 이김
my: 2
my: 2 computer: 2 \rightarrow 2 - 2 = 0
                                      → 비김
```

비긴 경우: 0

진 경우 : -1,2

이긴 경우: 2, 1

- 0: 가위, 1:바위, 2:보
- 판단 공식 = (my computer + 3) % 3
- 0: 비김, 1: 이김, 2: 짐

computer

	0:가위	1:바위	2:보
0:가위	비김	짐	이김
	(0-0+3)%3=0	(0-1+3)%3=2	(0-2+3)%3=1
1:바위	이김	비김	짐
	(1-0+3)%3=1	(1-1+3)%3=0	(1-2+3)%3=2
2:보	짐	이김	비김
	(2-0+3)%3=2	(2-1+3)%3=1	(2-2+3)%3=0

my

- 학습은 계산 가능한 수학 공식을 만드는 것
- 공식을 만들 수 있다고 해도 변수들의 범위 등이 조금만 변해도 다른 결과가 나옴

데이터 기반 학습

(my, computer) \rightarrow label (0,0) → 0(비긤) • (0,1) → 1(집) • $(0,2) \rightarrow 2(0|1|)$ 예측값 학습 데이터 0(가위) 2(이김) 1(바위) 1(짐)

판단할 데이터 (0, 2)

● 기계학습 및 딥러닝에서 학습은 학습 데이터를 가장 잘 설명할 수 있는 모델을 만들어가는 과정

Data State #1

- 다음 수자가 90일까요?
- 그럼 다음 숫자는 무엇일까Ω?
- 20번째 숫자는?
- 수학적으로 표현하면?

Data 학습 #2

- 다음 숫자는 무엇일까Ω?
- 8번째 숫자는?
- 수학적으로 표현하면?

Data 학습#3

- 70 89 76 45 83
- 다음 숫자는?
- 다음 수자는 90일까요?
- 수학적으로 표현하면?

명균,표준명하를 이용한 데이터 분석

평균(μ)=78, 표준편차(σ)=3

- 다음 시험에서 87점을 맞을 확률은?
- 시험 구간 95%에서 점수 범위는 어떻게 되는가?
- 확률적으로 0.3%이하면 비정앙 점수로 판단한다면 몇 점이 비정앙 점수인가?

학습모델 검증

- 학습모델은 Data를 얼마나 잘 설명하고 있나?
- 학습모델에 대한 검증이 필요함
- 그래프를 통한 학습 모델 검증
 - 시1가적으로 가설의 적합성을 확인할 수 있음
 - 그러나 고차원 데이터는 시각화하기 어려움

통계 데이터 기반학습

- 학습 데이터
 - $x_1, x_2, x_3, x_4, x_5, \dots x_n$

- 학습
 - 평균과 표준편차 계산

- 학습 후 할 수 있는 것
 - 평균을 중심으로 값 예측
 - 분포 간 비교
 - 표준편차를 가지고 신뢰성 판단
 - 정앙/비정앙 데이터 판단

데이터 기반 지도학습

у
3
5
7
9
11
21
41
61

o x는 40일 때 y는?

x	у
1	3
2	5
3	7
4	9
5	11
10	21
20	41
30	61

가설

Y=2x+1

가설 검증

h	y - h 오차
3	0
5	0
7	0
9	0
11	0
21	0
41	0
61	0

 x = 40 일 때
 y = 81로 예측

 x = 50 일 때
 y = 101로 예측

직선의 방정식을 이용한 데이터 학습

X	У
1	3
2	5
3	7
4	9
5	11
10	21
20	41
30	61

• **1121** w =
$$\frac{3-61}{1-30}$$
 = $\frac{-58}{-29}$ = 2

● y절편 b = y - wx = 3 - w = 3-2 = 1

$$y = 2x + 1$$

열립방정식을 이용한 데이터 학습

X	y
1	3
2	5
3	7
4	9
5	11
10	21
20	41
30	61

•
$$y = 2x + 1$$

• 1 - 2 = -2 = -
$$w$$

 $w = 2$

데이터 기반 학습 최적화

오차가 적은 직언의 방정식 추정

$$y = 2.1x - 3$$

- 임의로 두 개의 데이터 사용
- 가장 작은 데이터와 가장 큰 데이터 사용

어사이 발생

오차에 대한 수학적 정의

● 평균 절대값 오차 MAE(Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - h_i|$$

● 평균 제곱 오차 MSE(Mean Square Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - h_i)^2$$

● 평균 제곱근 오차 RMSE(Root Mean Square Error)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - h_i)^2}$$

가장 보편적으로 사용

절대값 오차와 제골근 오차의 기하락적 해씩

• 1차원 공간에서는 동일하나, 다차원 공간에서 두 방법은 의미가 달라짐

거리 : 1차원 공간의 직선의 길이

$$|x_1 - x_2| = \sqrt{\|x_1 - x_2\|^2}$$

절대값 오차와 제골근 오차의 기하락적 해석

● 평균 제곱 오차가 더 정확하여 일반적으로 사용

1차 연립방정식을 이용한 데이터 학습

h = wx + b

X	у
1	2
2	4.4
3	6.4

$$w \times 1 + b = 2$$

 $w \times 2 + b = 4.4$
 $w \times 3 + b = 6.4$

- o 평균 제곱근 오차 RMSE(Root Mean Square Error)
 - 정확한 해가 존재하지 않으므로 가장 근사한 해를 구해야 함
 - 최소자승법, 고유값 분해, 역행렬

행렬을 이용한 학습해 구하기

$$h = wx + b$$

X	y
1	2
2	4.4

$$w \times 1 + b = 2$$

 $w \times 2 + b = 4.4$

$$w \times 1 + b \times 1 = 2$$

 $w \times 2 + b \times 1 = 4.4$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4.4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4.4 \end{bmatrix}$$

$$\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 4.4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{1-2} \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 4.4 \end{bmatrix} = \begin{bmatrix} 2.4 \\ -0.4 \end{bmatrix}$$

역행렬 공식

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$h = wx + b$$

X	y
1	2
2	4.4

$$h = 2.4x - 0.4$$

● 정방행렬이 아닐 경우 의사역행렬 공식 적용

$$h = wx + b$$

X	у
1	2
2	4.4
3	6.4

$$w \times 1 + b = 2$$

 $w \times 2 + b = 4.4$

$$w \times 3 + b = 6.4$$

$$w\times 1 + b\times 1 = 2$$

$$w \times 2 + b \times 1 = 4.4$$

$$w \times 3 + b \times 1 = 6.4$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix}$$

의사 역행렬

$$A^+ = (A^T A)^{-1} A^T$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix}$$

$$\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}^{\dagger} \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}^{+} = (\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix})^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.5 & -1 \\ -1 & 2.33 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \quad = \begin{bmatrix} -0.5 & 0 & 0.5 \\ 1.33 & 0.33 & -0.66 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix}$$

$$\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}^{\dagger} \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix}$$

$$\begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.5 & 0 & 0.5 \\ 1.33 & 0.33 & -0.86 \end{bmatrix} \begin{bmatrix} 2 \\ 4.4 \\ 6.4 \end{bmatrix} = \begin{bmatrix} 2.2 \\ -0.13 \end{bmatrix}$$

$$h = wx + b$$

X	у	h
1	2	2.07
2	4	4.27
3	6.4	6.47

$$h = 2.2x - 0.1$$

데이터 기반 학습

- 학습 데이터
 - (x, y) (1101E)
- 학습의 정의
 - 가설: h=wx+b
 - 기울기 x와 y절편 b
- 학습 방법
 - 선형 연립방정식과 역행렬을 이용한 미지수 w, b 추정
- 예측
 - w와 b로 이루어진 가설 함수를 사용해 y값 예측

https://datatofish.com/multiple-linear-regression-python/

교육 사망률 연호

https://newonlinecourses.science.psu.edu/stat501/node/251/

베네통 매출/광고 예측

Year	Sales (Million Euro)	Advertising (Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

https://www.displayr.com/what-is-linear-regression/

보시된 집값 예측

CRIM 타운별 1인당 범죄율
ZN 25,000 평방피트를 초과하는 거주지역의 비율
INDUS 비소매상업지역이 점유하고 있는 토지의 비율
CHAS 찰스강에 대한 더미변수
NOX 10ppm 당 농축 일산화질소
RM 주택 1가구당 평균 방의 개수
AGE 1940년 이전에 건축된 소유주택의 비율
DIS 5개의 보스턴 직업센터까지의 접근성 지수
RAD 방사형 도로까지의 접근성 지수
TAX 10,000 달러 당 재산세율
PTRATIO 타운별 학생/교사 비율
B 타운별 흑인 비율
LSTAT 모집단의 하위계층 비율
MEDV 본인 소유의 주택가격(단위: \$1,000)

대이터 경학생 분석

비선형 모델이명?

대부분의 문제는 비선형 분포

1차원 변환을 통해 선형 모델링

Claudin-Layer Perception)

다층 신경망을 통한 비선형 문제 해결

다층 분류기를 이용한 문제 해결

EHL(Deeb rearning)

은닉층이 깊어짐(deep)

Image from: https://cdn.edureka.co/blog/wp-content/uploads/2017/05/Deep-Neural-Network-What-is-Deep-Learning-Edureka.png

Edd (Deeb rearning)

https://medium.com/@Lidinwise/the-revolution-of-depth-facf174924f5