ESCALAMIENTO MULTIDIMENSIONAL

Saraí Campos Varela

2022-06-07

Introducción.

Dentro de las técnicas multivariantes podemos citar al Escalamiento Multidimensional (EMD) (Multidimensional Scaling, MDS por sus siglas en inglés). El MDS es una técnica multivariante de interdependencia que trata de representar en un espacio geométrico de pocas dimensiones las proximidades existentes entre un conjunto de objetos o de estímulos. Esta técnica, aunque tiene sus raíces a principios del siglo XX, hoy día sigue siendo infrautilizada en muchas áreas.

En este trabajo se pretende dar una visión general del funcionamiento del Escalamiento Multidimensional, tomando de la web una base de datos que muestra las distancias entre ciudades de México por carretera. La información con la que contamos son 15 distintas ciudades con su respectiva distancia en kilometros entre una y otra, es así como se obtiene una matriz cuadrada de 15 filas y 15 columnas.

Base de datos.

Lamentablemente se presentaron algunos problemas al momento de cargar el excel que descargamos, se intento de distintas maneras, de primer intento se agregó manualmente en el excel la diagonal de 0 en la base, de segundo intento se modificó la matriz a "double" sin embargo no se nos permitió esa opción. Por último ya encontrandome en estado de desesperación ópte por cargar y armar la matriz manualmente si es que es correcto llamarlo así.

1.- Crear los vectores de la matriz.

En este caso, apoyandonos con el excel descargado se crearon los vectores de cada ciudad tomando las filas y abreviamos el nombre de las ciudades para no tener problemas.

```
CDM<-c(0,531,1790,2743,540,898,1429,1306,402,484,1884,834,2576,1216,378)
GDJR<-c(532,0,1526,2215,10,787,1165,1840,328,220,1356,698,2047,687,859)
CJ<-c(1806,1535,0,1164,1543,1349,355,3100,1384,1312,847,1092,1007,1088,2181)
TJN<-c(2747,2218,1164,0,2214,2506,1354,4055,2383,2311,863,2091,175,1553,3074)
ZPP<-c(540,9,1533,2209,0,795,1173,1848,336,228,1351,706,2042,682,867)
MTR<-c(906,795,1169,2326,804,0,803,1986,512,573,1709,88,2169,1040,1281)
CHUA<-c(1443,1172,353,1353,1180,809,0,2737,1021,949,696,729,1196,736,1818)
MRD<-c(1316,1849,3099,4061,1857,1991,2738,0,1711,1793,3202,2143,3893,2533,1574)
SLP<-c(408,328,1378,2378,336,511,1017,1702,0,165,1602,447,2221,934,783)
AGCL<-c(491,219,1306,2306,228,567,945,1785,166,0,1572,478,2149,904,866)
HMSLL<-c(1885,1356,847,860,1351,1713,697,3193,1681,1572,0,1633,693,691,2212)
STLL<-c(841,705,1085,2085,714,87,724,2135,448,483,1631,0,1929,962,1216)
MXC<-c(2578,2049,1007,169,2044,2349,1198,3885,2227,2155,694,1935,0,1384,2904)
```

```
CUL<-c(1230,701,1086,1550,696,1058,736,2537,1026,917,691,978,1382,0,1557)
ACJ<-c(378,859,2172,3070,867,1280,1812,1566,784,866,2212,1217,2903,1543,0)
```

2.- Crear la matriz a partir de los vectores.

Teniendo listos los vectores creamos la matriz para que vaya teniendo dimensión, en este paso ocupamos función "matrix" en donde agregamos los vectores y el numero de filas y columas que es 15.

3.- Agregar nombre a las columnas.

Por último agregamos el nombre a cada una de las 15 columnas y posteriormente a cada una de las 15 filas.

4.- Visualizamos la base.

Aquí presento estas dos opciones donde "view" nos presetará la tabla en una ventana emergente de R. Y por otro lado, al llamar "datos" nos los presetará en la consola.

```
View (datos)
```

Como observamos nuestra matriz o base de datos esta guardada en el objeto datos.

datos

##		Ciudad	de	México	Guadalajara	Ciudad	Juárez	Tijuana	Zapopan
##	Ciudad de México			0	532		1806	2747	540
##	Guadalajara			531	0		1535	2218	9
##	Ciudad Juárez			1790	1526		0	1164	1533
##	Tijuana			2743	2215		1164	0	2209
##	Zapopan			540	10		1543	2214	0
##	Monterrey			898	787		1349	2506	795
##	Chihuahua			1429	1165		355	1354	1173
##	Mérida			1306	1840		3100	4055	1848
##	San Luis Potosí			402	328		1384	2383	336
##	Aguascalientes			484	220		1312	2311	228
##	Hermosillo			1884	1356		847	863	1351
##	Saltillo			834	698		1092	2091	706

			0570	0045		4007	475	00.40
	Mexicali		2576	2047		1007	175	2042
	Culiacán		1216	687		1088	1553	682
##	Acapulco de Juárez		378	859		2181	3074	867
##		Monterrey			ın Luis Po		Aguascal	
##	Ciudad de México	906	1443	1316		408		491
##	Guadalajara	795	1172	1849		328		219
##	Ciudad Juárez	1169	353	3099		1378		1306
##	Tijuana	2326	1353	4061		2378		2306
##	Zapopan	804	1180	1857		336		228
##	Monterrey	0	809	1991		511		567
##	Chihuahua	803	0	2738		1017		945
##	Mérida	1986	2737	0		1702		1785
##	San Luis Potosí	512	1021	1711		0		166
##	Aguascalientes	573	949	1793		165		0
##	Hermosillo	1709	696	3202		1602		1572
##	Saltillo	88	729	2143		447		478
##	Mexicali	2169	1196	3893		2221		2149
##	Culiacán	1040	736	2533		934		904
##	Acapulco de Juárez	1281	1818	1574		783		866
##	_	Hermosillo	Saltillo	Mexicali	Culiacán	Acapu	ılco de .	Juárez
##	Ciudad de México	1885		2578	1230	_		378
##	Guadalajara	1356	705	2049	701			859
##	Ciudad Juárez	847	1085	1007	1086			2172
##	Tijuana	860	2085	169	1550			3070
##	Zapopan	1351	714	2044	696			867
##	Monterrey	1713	87	2349	1058			1280
##	Chihuahua	697	724	1198	736			1812
##	Mérida	3193	2135	3885	2537			1566
##	San Luis Potosí	1681	448	2227	1026			784
##	Aguascalientes	1572	483	2155	917			866
##	Hermosillo	0	1631	694	691			2212
##	Saltillo	1633	0	1935	978			1217
##	Mexicali	693	1929	0	1382			2903
##	Culiacán	691	962	1384	0			1543
##	Acapulco de Juárez	2212	1216	2904	1557			0
,,,,,								

5.- Transformamos la base de datos.

En este para poder realizar el análisis es necesario transformar nuestra base a una matriz.

datos<-as.matrix(datos)</pre>

Exploración de la matriz.

1.- Dimensión.

Como sabemos nuestra matriz es cuadrada cuenta con el mismo numero de filas y columnas.

dim(datos)

[1] 15 15

2.- Variables.

Muestra la estructura interna de la matriz.

```
str(datos)

## num [1:15, 1:15] 0 531 1790 2743 540 ...

## - attr(*, "dimnames")=List of 2

## ..$: chr [1:15] "Ciudad de México" "Guadalajara" "Ciudad Juárez" "Tijuana" ...
```

..\$: chr [1:15] "Ciudad de México" "Guadalajara" "Ciudad Juárez" "Tijuana" ...

3.- Nombre de columnas.

Arroja el nombre de las 15 ciudades ubicadas en las columnas.

colnames(datos)

```
"Ciudad Juárez"
    [1] "Ciudad de México"
                              "Guadalajara"
   [4] "Tijuana"
                              "Zapopan"
                                                    "Monterrey"
##
   [7] "Chihuahua"
                              "Mérida"
                                                    "San Luis Potosí"
## [10] "Aguascalientes"
                              "Hermosillo"
                                                    "Saltillo"
## [13] "Mexicali"
                              "Culiacán"
                                                    "Acapulco de Juárez"
```

4.- Datos perdidos.

No tenemos datos perdidos en la matriz, por tanto, continuamos con el análisis.

```
anyNA(datos)
```

[1] FALSE

5.- Extracción de las filas de la matriz.

Contamos con 15L, lo cual es el número de ciudades.

```
n<-nrow(datos)
```

Escalado multidimensional clásico.

1.- Cálculo de autovalores.

En este objeto **mds.ciudades** encontramos el cálculo del escalado multidimensional (el cual es calculado con la función **cmdscale**) junto con el cálculo de los valores propios.

```
mds.ciudades <- cmdscale(datos, eig = TRUE)</pre>
```

2.- Generación del gráfico.

Se gráficaran los valores propios del resultado del escalado multidimensional.

Gráfico de valores propios

Interpretacion: Se identifican valores propios negativos y por lo tanto, se considera como solución el seleccionar coordenadas principales (r=2), lo que son las primeras dos ciudades.

3.- Medidas de precision.

```
m<-sum(abs(mds.ciudades$eig[1:2]))/sum(abs(mds.ciudades$eig))</pre>
```

4.- Obtencion de coordenadas principales.

Fijando k=2 que son nuestras coordenadas principales y de igual manera se realiza con los dos primeros autovalores.

```
mds.cities<-cmdscale(datos, eig=TRUE, k=2)</pre>
```

5.- Separación de columnas en X1 y X2.

```
x1<-mds.cities$points[,1]
x2<-mds.cities$points[,2]</pre>
```

6.- Generación del gráfico en dos dimensiones.

Este paso graficará los datos con las coordenadas obtenidas.

Distancia entre ciudades de México por carretera

7.- Rotación del gráfico y visualización.

Distancia entre ciudades de México por carretera

Resultados.

Es fácil notar las distancias gracias al gráfico elaborado. Notamos que la ciudad San Luis Potosí esta muy cerca de Aguascalientes a 165km, así como Zapopan se encuentra muy cerca de Guadalajara, a tan solo 9km de distancia. La Ciudad de México podría considerarse el centro de todas ellas y que Mexicali sería considerada la ciudad más lejana a ella con 2578km. La ciudad más lejana una con otra es Mérida y Tijuana con 4061km de distancia una entre otra. Este método es demasiado sencillo y dinámico, es bastante secillo identificar las distacias entre las ciudades y en caso de tomar decisiones al respecto, también puede facilitarnos demasiado el trabajo.

Referencias

Base de datos tomada en: https://www.mejoresrutas.com/tabla-de-distancias-entre-ciudades/mx/Información y conceptualización en: http://eio.usc.es