Алгебра на типах данных

Множество	Мощность	Тип	Название
Ø	0	void	необитаемый
$\{\varnothing\}$	1	unit	одноэлементный
$\{T,F\}$	2	boolean	булевский, двухэлемен [.]
$A \uplus B$	$ \alpha + \beta $	Either Alpha Beta	тип-сумма
$A \times B$	$ \alpha \cdot \beta $	(Alpha, Beta)	пара, декартово произв
B^A	$ \beta ^{ \alpha }$	$Alpha \to Beta$	функциональный

Пример

(boolean, $A \rightarrow boolean$) cootbetctbyet $2 \cdot (2^A)$

Алгебраический тип данных, тип-сумма

Определение

Отмеченным объединением множеств (дизъюнктным объединением) назовём:

$$A \uplus B := \{\langle \ a, ``L" \ \rangle \ | \ a \in A\} \cup \{\langle \ b, ``R" \ \rangle \ | \ b \in B\} = \{a_L \ | \ a \in A\} \cup \{b_R \ | \ b \in B\} \}$$
 Пример

$$\mathbb{N} \cup \mathbb{N} = \{1, 2, 3, \dots\} \qquad \mathbb{N} \uplus \mathbb{N} = \{1_L, 1_R, 2_L, 2_R, 3_L, 3_R, \dots\}$$
$$\mathbb{N} \uplus \mathbb{Z} = \{\dots - 3_R, -2_R, -1_R, 0_R, 1_L, 1_R, 2_L, 2_R, 3_L, 3_R \dots\}$$

Алгебраический тип данных (тип-сумма) задаётся набором конструкторов, каждому конструктору сопоставляется тип параметра.

Пример

boolean := False | True
$$B = \{\varnothing\} \uplus \{\varnothing\}$$
 $\mathcal{J}: \varnothing_L$ angle := Degrees of int | Radians of real $A := \mathbb{Z} \uplus \mathbb{R}$ 180° : 180

Примеры из языков программирования

```
case radians : boolean of bool radians;
       true: (rads: real); union {
       false: (degs: integer);     float rads;
    end;
                               int degs;
                       };
Типичное применение:
union {
   short ax;
   struct {
      char al;
      char ah;
};
```

Списки

```
    Список (целых чисел) — алгебраический тип:
    type list = Nil | Cons of int * list
```

Как строим значения:

```
Nil => []
Cons (5, Nil) => [5]
Cons (3, Cons (4, Cons (5, Nil))) => [3,4,5]
```

Как используем значения:

```
let rec length l = match l with
  Nil -> 0
  | Cons (_,lt) -> 1 + length lt
```

Взглянем немного глубже

Haдo научиться строить и разбирать тип list = Nil | Cons of int * list:

$$L = \{\varnothing\} \uplus (\mathbb{Z} \times L)$$

▶ Строить. Конструкторы: Nil, Cons — или левая и правая инъекции (In_L, In_R) .

$$Nil := In_L()$$
 Cons a $b := In_R \langle a, b \rangle$

Разбирать.

```
let rec length l = match l with match l with Nil -> 0 |InL p -> 0 | Cons (lh,lt) -> 1 + length lt |InR p -> 1 + length
```

В самом низу — элиминатор Case: length $I := Case\ I\ (\lambda p.0)\ (\lambda p.1 + length\ (\pi_R p))$

Алгебраический тип как дизъюнкция

Общие соображения: ВНК-интерпретация. Интуиционистское исчисление высказываний

$$\frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \alpha \lor \beta \quad \Gamma \vdash \alpha \to \gamma \quad \Gamma \vdash \beta \to \gamma}{\Gamma \vdash \gamma}$$

Просто-типизированное лямбда исчисление — придумаем названия

$$\frac{\Gamma \vdash A : \alpha}{\Gamma \vdash \mathit{In}_L A : \alpha \lor \beta} \qquad \frac{\Gamma \vdash B : \beta}{\Gamma \vdash \mathit{In}_R B : \alpha \lor \beta} \qquad \frac{\Gamma \vdash X : \alpha \lor \beta \quad \Gamma \vdash L : \alpha \to \gamma}{\Gamma \vdash \mathsf{Case} \ X \ \mathsf{L} \ \mathsf{R} : \alpha \lor \beta}$$

Пример

Напомним, если $\tau = \varphi = \text{unit}$, то $\tau \lor \varphi \approx \text{bool}$. Тогда $T^{\tau \lor \varphi} := \text{In}_L(), \quad F^{\tau \lor \varphi} := \text{In}_R()$. И, например, Not $x := \text{Case } x \; (\lambda t. \text{In}_R()) \; (\lambda t. \text{In}_L())$

Реализация алгебраического типа

Просто-типизированное лямбда исчисление:

$$\frac{\Gamma \vdash A : \alpha}{\Gamma \vdash In_L A : \alpha \lor \beta} \qquad \frac{\Gamma \vdash B : \beta}{\Gamma \vdash In_R B : \alpha \lor \beta} \qquad \frac{\Gamma \vdash X : \alpha \lor \beta \quad \Gamma \vdash L : \alpha \to \gamma}{\Gamma \vdash \mathsf{Case} \ \mathsf{X} \ \mathsf{L} \ \mathsf{R}}$$

Предлагаем такую реализацию:

$$In_L := \lambda x. \lambda t. \lambda f.t \ x, \qquad In_R := \lambda x. \lambda t. \lambda f.f \ x \qquad Case := \lambda x. \lambda I. \lambda r. x \ Ir \ Case \left(In_L \ X^ au
ight) \ L^{ au o \gamma} \ R \ woheadrightarrow_{eta} \left(In_L \ X
ight) \ L \ R = \left(\lambda t. \lambda f.t \ X
ight) \ L \ R \ woheadrightarrow_{eta} \left(L \ X
ight)^{\gamma}$$

А где здесь дизъюнкция? Ожидаем, что $(In_L X^{\tau})$: $\tau \lor \varphi$. А что на деле?

$$X: \tau \vdash \lambda t^{\tau \to \gamma} . \lambda f^{\varphi \to \gamma} . t \ X: (\tau \to \gamma) \to (\varphi \to \gamma) \to \gamma$$

«Если некоторое утверждение γ истинно всегда, когда оно следует из истинности τ и φ — то либо τ , либо φ истинно». Рассуждение не совсем формально, потому что не хватает кванторов по утверждениям, использующимся неявно:

$$\forall \gamma. (\tau \to \gamma) \to (\varphi \to \gamma) \to \gamma$$

Примеры алгебраических типов

Булевские значения:

$$T_1 := In_L() = \lambda t.\lambda f.t()$$
 $F_1 := In_R() = \lambda t.\lambda f.f()$ $If_1 := \lambda b.\lambda t.\lambda e$

Ну или когда аргумент опущен за ненадобностью:

$$T := \lambda t.\lambda f.t$$
 $F := \lambda t.\lambda f.f$ $If := \lambda b.\lambda t.\lambda e.b \ t \ e$

Списки:

$$Nil := In_L 0$$
 Cons $p q := In_R \langle p, q \rangle$

Тогда [1,3,5] превращается в Cons 1 (Cons 3 (Cons 5 Nil)). Для простоты раскроем полностью [1] = Cons 1 Nil:

$$\lambda t.\lambda f.f(\lambda p.p(\lambda f.\lambda x.f x)(\lambda t.\lambda f.t(\lambda f.\lambda x.x)))$$

0		необитаемый тип
1	() : unit	одноэлементный тип
$ \alpha + \beta $	Either A^{α} B^{β} : $\alpha \vee \beta$	тип-сумма, дизъюнкция
$ \alpha \cdot \beta $	$({\mathsf A}^lpha,{\mathsf B}^eta)$: $lpha$ & eta	тип-произведение, конъюнкция
$ \beta ^{ \alpha }$	$\lambda x^{\alpha}.B:\alpha \rightarrow \beta$	функциональный, импликация

Высказывание

Мошность

Тип

Мощность множеств

Отношения

Определение

$$A \times B := \{\langle a,b \rangle \mid a \in A, b \in B\}$$
 Бинарное отношение — $R \subseteq A \times B$ Функциональное бинарное отношение (функция) R — такое, что $\forall x.x \in A \to \exists ! y. \langle x,y \rangle \in R$ R — инъективная функция, если $\forall x. \forall y. \langle x,t \rangle \in R \ \& \ \langle y,t \rangle \in R \to x = y.$ R — сюръективная функция, если $\forall y.y \in B \to \exists x. \langle x,y \rangle \in R.$

Равномощные множества

Определение

Множество A равномощно B (|A| = |B|), если существует биекция $f: A \to B$.

Множество A имеет мощность, не превышающую мощности B $(|A| \le |B|)$, если существует инъекция $f: A \to B$.

Теорема Кантора-Бернштейна

Теорема

Если
$$|A| \le |B|$$
 и $|B| \le |A|$, то $|A| = |B|$.

Заметим, $f:A \to B$, $g:B \to A$ — инъекции, но не обязательно g(f(x))=x.

Доказательство.

Избавимся от множества B: пусть $A_0=A$; $A_1=g(B)$; $A_{k+2}=g(f(A_k))$.

Тогда, если существует $h:A_0\to A_1$ — биекция, то тогда $g^{-1}\circ h:A\to B$ — требуемая биекция.

Построение биекции $h:A_0 o A_1$

Пусть
$$C_k = A_k \setminus A_{k+1}$$
. Тогда $g(f(C_k)) = g(f(A_k)) \setminus g(f(A_{k+1})) = A_{k+2} \setminus A_{k+3} = C_{k+2}$.

Тогда определим h(x) следующим образом:

$$h(x) = \begin{cases} x, & x \in C_{2k+1} \lor x \in \cap A_k \\ g(f(x)), & x \in C_{2k} \end{cases}$$

Кардинальные числа

Определение

Кардинальное число— наименьший ординал, не равномощный никакому меньшему:

$$\forall x.x \in c \rightarrow |x| < |c|$$

Теорема

Конечные ординалы — кардинальные числа.

Определение

Мощность множества (|S|) — равномощное ему кардинальное число.

Диагональный метод

Лемма

 $|\mathbb{R}| > |\mathbb{N}|$

Доказательство.

Рассмотрим $a\in(0,1)$ и десятичную запись: $0.a_0a_1a_2\dots$ Пусть существует биективная $f:\mathbb{N}\to(0,1)$. По функции найдём значение σ , не являющееся образом никакого натурального числа.

n	f(n)	$f(n)_0$	$f(n)_1$	$f(n)_2$	$f(n)_3$	$f(n)_4$	$f(n)_5$	
n_0	0.3	3	0	0	0	0	0	
n_1	$\pi/10$	3	1	4	1	5	9	
n_2	1/7	1	4	2	8	5	7	
	σ	8	6	7	$\dots \sigma_k$	$=(f(n_k))$	(k+5)%	610

Теорема Кантора

Теорема

$$|\mathcal{P}(S)| > |S|$$

Доказательство.

Пусть
$$S = \{a, b, c, \dots\}$$

n	$a \in f(n)$	$b \in f(n)$	$c \in f(n)$	
а	N	Л	И	
Ь	Л	Л	И	
С	И	N	N	
	Л	N	Л	$y \notin f(y)$

Пусть $f:S \to \mathcal{P}(S)$ — биекция. Тогда $\sigma = \{y \in S \mid y \notin f(y)\}$. Пусть $f(x) = \sigma$. Но $x \in f(x)$ тогда и только тогда, когда $x \notin \sigma$, то есть $f(x) \neq \sigma$.

О буквах

https://en.wikipedia.org/wiki/Proto-Sinaitic_script

Иерархии \aleph_n и \beth_n

Определение

$$leph_0 := |\omega|$$
; $leph_{k+1} := \min\{a \mid a - opдинал, leph_k < |a|\}$

Определение

$$\beth_0 := |\omega|; \, \beth_{k+1} := |\mathcal{P}(\beth_k)|$$

Континуум-гипотеза (Г.Кантор, 1877): $\aleph_1 = \beth_1$ (не существует мощности, промежуточной между счётной и континуумом). Обобщённая континуум-гипотеза: $\aleph_n = \beth_n$ при всех n.

Определение

Утверждение α противоречит аксиоматике: $\vdash \alpha$ ведёт к противоречию.

Утверждение α не зависит от аксиоматики: $otag \alpha$ и $otag \neg \alpha$.

Теорема (О независимости континуум-гипотезы, Дж.Коэн, 1963)

Утверждение $\aleph_1 = \beth_1$ не зависит от аксиоматики ZFC.

Примеры мощностей множеств

Пример	мощность
ω	ℵ₀
ω^2 , ω^ω	\aleph_0
\mathbb{R}	\beth_1
все непрерывные функции $\mathbb{R} o \mathbb{R}$	\beth_1
все функции $\mathbb{R} o \mathbb{R}$	\beth_2

Как пересчитать вещественные числа (неформально)?

```
1. Номер вещественного числа — первое упоминание в литературе, т.е. \langle j, y, n, p, r, c \rangle: j — гёделев номер названия научного журнала (книги); y — год издания; n — номер; p — страница; r — строка; c — позиция
```

2. Попробуете предъявить число x, не имеющее номера? Это

рассуждение сразу даст номер.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Пример

Формальная арифметика, исчисление предикатов, исчисление высказываний — счётно-аксиоматизируемые.

Элементарная подмодель

Определение

 $\mathcal{M}'=\langle D',F_n',P_n' \rangle$ — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1, ..., x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1, ..., x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} . Но пусть $D' = \{0\}$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

- 1. Построим D_0 множество всех значений, которые упомянуты в языке теории.
- 2. Будем последовательно пополнять D_i : $D_0 \subseteq D_1 \subseteq D_2 \dots$, следя за мощностью. $D' = \cup D_i$.
- 3. Покажем, что $\langle D', F_n, P_n \rangle$ требуемая подмодель.

Начальный D_0

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Очевидно, $|D_0| \le |T|$.

Пополнение D

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- 1. φ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y, x_1, \dots, x_n)$ при $y, x_i \in D_k$ тождественно истинен или ложен, но при $y' \in D \setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\theta(y')]$.

Всего добавили не больше $|T|\cdot |D_k|$.

$$|\cup D_i| \leq |T| \cdot |D_k| \cdot |\aleph_0| = \max(|T|, |\aleph_0|)$$

\mathcal{M}' — элементарная подмодель

Индукцией по структуре формул $au\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.
 - 2.3 $\tau \equiv \exists y. \varphi(y, x_1, \dots, x_n)$ аналогично.

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке.