

Вчитель: Родіна А.О.

<u>12 грудня</u> 20²³

Тема: Третя ознака рівності трикутників

Мета:

- Навчальна: засвоїти поняття жорсткості трикутника, засвоїти та довести третю ознаку рівності трикутників;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: засвоєння нових знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Вивчення нового матеріалу

>> Поняття жорсткості трикутника <<

Що потрібно зробити, щоб хвіртка не перекошувалася?

(Учні висловлюють власну думку)

Якщо додати третю дошку так, щоб утворилося два трикутники – хвіртка перекошуватися не буде.

ightharpoonup Як на вашу думку, що ϵ причиною жорсткості трикутних форм? (Учні висловлюють власну думку)

Чи можемо скласти різні трикутники маючи три його сторони? (Учні висловлюють власну думку)

Спробуємо скласти різні трикутники, маючи три сторони:

Якщо ми сумістимо їх накладанням, то побачимо, що вони всі вони сумістяться:

Причиною *жорсткості трикутника* ϵ те, що трикутник задається своїми сторонами однозначно.

Який можемо зробити висновок? (Учні висловлюють власну думку)

Теорема (третя ознака рівності трикутників)

Якщо три сторони одного трикутника відповідно дорівнюють трьом сторонам іншого трикутника, то такі трикутники рівні.

Що нам дано і що необхідно довести?(Учні висловлюють власну думку)

Прикладемо трикутники один до одного більшою стороною так, щоб вершини B і B_1 опинилися по різні сторони відносно прямої AC

Дано:

$$\Delta ABC \ i \ \Delta A_1 B_1 C_1$$

$$AB = A_1 B_1$$

$$BC = B_1 C_1$$

$$AC = A_1 C_1$$

Довести:

 ΔABC i $\Delta A_1B_1C_1$

Доведення:

Побудуємо відрізок BB_1 і розглянемо трикутники ABB_1 і CBB_1

$$\left. egin{aligned} AB &= A_1B_1 \; (3a \; yмовою) \ BC &= B_1C_1 \; (3a \; yмовою) \end{aligned}
ight|
ightarrow egin{aligned} \Delta ABB_1 \; \mathrm{i} \; \Delta CBB_1 \ -\mathrm{рівнобедрені} \end{aligned}$$

$$\Delta ABB_1$$
 і ΔCBB_1 \rightarrow $\begin{vmatrix} \angle ABB_1 = \angle AB_1B & (Як кути при основі - рівнобедрені - $\angle CBB_1 = \angle CB_1B & рівнобедрених трикутників) \end{vmatrix}$$

$$\begin{array}{l} \angle ABB_1 = \angle AB_1B \\ \angle CBB_1 = \angle CB_1B \end{array} \bigg| \rightarrow \angle ABC = \angle AB_1C$$

$$\angle ABC = \angle AB_1C$$
 $AB = A_1B_1 \ (3a\ умовою)$
 $BC = B_1C_1 \ (3a\ умовою)$
 $ABC = \angle A_1B_1C_1$
 $ABC = \angle A_1B_1C_1$

Доведено

м Математика НОВА

380

 $\sqrt{\mathbf{x}} \not\sim \mathbb{E}$ [EOMETPIA, 7 KJAC

▶ Доведіть усно, що теорема справджується і для прямокутних тупокутних трикутників

У кожному випадку $\angle ABC = \angle AB_1C$:

- Для гострокутних трикутників ми щойно довели, що ці кути рівні як сума рівних кутів;
- У другому випадку *(прямокутні трикутники)* ці кути рівні як кути при основі рівнобедреного трикутника;
- У третьому випадку *(тупокутні трикутники)* ці кути рівні як різниця рівних кутів;

У кожному випадку $\Delta ABC = \Delta A_1 B_1 C_1$ за першою ознакою рівності трикутників.

Як на вашу думку, чи можна трикутник однозначно задати його трьома кутами?

(Учні висловлюють власну думку)

Розглянемо трикутники ABC і $A_1B_1C_1$:

 $∠A = ∠A_1 = 75^\circ$; $∠B = ∠B_1 = 65^\circ$; $∠C = ∠C_1 = 40^\circ$, але $△ABC ≠ △A_1B_1C_1$. Отже трикутники не можна задати однозначно трьома кутами.

> Пригадайте дві інші ознаки рівності трикутників та скажіть, як можна задати однозначно трикутник?

(Учні висловлюють власну думку)

Трикутник однозначно можна задати:

- 1) Двома сторонами і кутом між ними;
- 2) Стороною і двома прилеглими кутами;
- 3) Трьома сторонами;

III. Закріплення нових знань та вмінь учнів

№1

Який кут трикутника MNV дорівнює куту B трикутника ABC? Відповідь поясніть.

Відповідь: $\angle B = \angle M$, так як вони лежать проти рівних сторін рівних трикутників *MNV* і *BAC*

№2

Доведіть рівність трикутників на кожному з рисунків.

Математика НОВА

√x ½ 「EOMETPIA, 7 KЛAC

$$egin{array}{c} AB = AD \\ BC = DC \\ -cniльнa \\ AC - \\ cmopona \end{array} egin{array}{c} \Delta ABC = \Delta ADC \\ -cniльнa \\ -cmopona \end{array} egin{array}{c} -cniль \\ -cmopona \\ -cmopona \end{array} egin{array}{c} -cniль \\ -cmopona \\ -cmopon$$

Так як $\angle A = \angle C$, то $\triangle ABC$ – рівнобедрений. Так як $\triangle ABC$ – рівнобедрений, то AB = BC

$$AB = BC$$
 $AE = CE$
 $cniльна$
 $BE - cmopona$
 $Cmopona$
 $ABE = \Delta CBE$
 $ABE = \Delta CBE$
 $Ciampemьoю ознакою рівності трикутників)$

Математика НОВА

🛨 ГЕОМЕТРІЯ, 7 КЛАС

$$|MV = MB + BV
 |CB = CV + BV
 |MB = CV
 |
 |MV = CB$$

$$MN = CA$$
 $NV = AB$ $NV = CB$ $NV = CAB$ $NV =$

№3

На рисунку MN = NV, ME = EV. Доведіть, що NE — бісектриса кута MNE

Дано:

MN = NV;

ME = EV;

Довести:

NE – бісектриса кута *MNE*

Доведення:

Розглянемо трикутники *MNE* i *VNE*:

$$egin{array}{c} MN = VN \\ ME = VE \\ NE - & cniльнa \\ cmopoha \\ \end{array} \rightarrow egin{array}{c} \Delta MNE = \Delta VNE \\ (за третьою ознакою \\ piвності трикутників) \\ \end{array}$$

$$\Delta MNE = \Delta VNE \,
ightarrow \, \angle MNE = \angle VNE \, egin{pmatrix} (як відповідні елементи \\ рівних трикутників) \end{pmatrix}$$

 $\angle MNE = \angle VNE \rightarrow NE$ — бісектриса кута MNE

Доведено

Про трикутники MNV і ABC відомо, що $MV \neq AC$, $NV \neq BC$. Чи можуть бути рівними такі трикутники?

Відповідь: Такі трикутники не ϵ рівними, так як записуючи рівні трикутники беремо до уваги послідовність запису вершин трикутника. В умові ми бачимо, що відповідні сторони цих трикутників не ϵ рівними, тому такі трикутники не можуть бути рівними.

№5

В чотирикутнику ATHM MA = TH, AT = MH, $\angle AMH + \angle ATH = 128^{\circ}$. Знайдіть кут АТН.

ATHM — чотирикутник;

MA = TH;

AT = MH:

 $\angle AMH + \angle ATH = 128^{\circ};$

Знайти:

 $\angle ATH - ?$

Розв'язок:

Розглянемо трикутники АМН і НТА:

$$egin{array}{c} AM = HT \\ AT = HM \\ cniльна \\ AH - \\ cmopona \end{array}
ightarrow egin{array}{c} \Delta AMH = \Delta HTA \\ (за третьою ознакою \\ piвностi трикутників) \end{array}$$

 $\Delta AMH = \Delta HTA \rightarrow \angle AMH = \angle ATH$

$$\angle AMH + \angle ATH = 128^{\circ}$$
 $\rightarrow \angle ATH = \angle AMH = \frac{\angle AMH + \angle ATH}{2} = \frac{128^{\circ}}{2} = 64^{\circ}$

Відповідь: 64°

IV. Підсумок уроку

- Чому трикутник це жорстка фігура?
- Сформулюйте третю ознаку рівності трикутників
- Які елементи трикутників треба порівнювати, щоб довести рівність цих трикутників за третьою ознакою рівності трикутників?
- Скільки необхідно знати елементів трикутника, щоб задати його однозначно?
- Чи завжди будуть рівними два чотирикутники, якщо нам відомо, що всі їх сторони є рівними? Чому? (Ні. Наприклад, згадаємо випадок з хвірткою всі сторони рівні, але вона перекосилася, так як змінилися кути між сторонами)
- Спробуйте сформулювати власну ознаку рівності двох чотирикутників (Якщо чотири сторони і кут одного чотирикутника дорівнюють чотирьом сторонам і куту іншого чотирикутника, то такі чотирикутники рівні)
- V. Домашнє завдання опрацювати параграф 15, № 542