

Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

Experiment No. 3
Apply Decision Tree Algorithm on Adult Census Income
Dataset and analyze the performance of the model
Date of Performance:
Date of Submission:

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Aim: Apply Decision Tree Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: To perform various feature engineering tasks, apply Decision Tree Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score. Improve the performance by performing different data engineering and feature engineering tasks.

Theory:

Decision Tree is the most powerful and popular tool for classification and prediction. A Decision tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

>50K, <=50K. age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Marriedspouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex:

Female, Male.

capital-gain: continuous. capital-loss:

continuous. hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, OutlyingUS(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines,

Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Conclusion:

1. Dealing with Categorical Attributes during Data Pre-processing:

In the code, categorical attributes are handled as follows:

Label Encoding: Categorical attributes are transformed into numerical format using label encoding. The LabelEncoder from Scikit-Learn is applied to convert categorical values into unique integers.

Dropping Missing Values: Rows containing missing values in categorical columns ('workclass', 'occupation', 'native.country') are dropped from the dataset to maintain data quality.

2. Hyper parameter Tuning:

Hyperparameter tuning is minimal in the code. The Decision Tree classifier is created with a max_depth of 5. However, there's no comprehensive hyperparameter tuning process, such as grid search or random search, to optimize the model's performance. Tuning hyperparameters like max_depth, min_samples_split, and min_samples_leaf could potentially improve the model's accuracy.

3. Accuracy, Confusion Matrix, Precision, Recall, and F1-Score:

Accuracy: Measures overall correctness of predictions.

Confusion Matrix: Summarizes true positives, true negatives, false positives, and false negatives.

Precision: Measures accurate positive classifications.

Recall (Sensitivity): Measures identifying relevant instances.

F1-Score: Balances precision and recall, especially useful for imbalanced classes.

confusion matrix [[764 735] [214 4315]] precision recall f1-score support 0 0.78 0.51 0.62 1499 0.85 0.95 1 0.90 4529 accuracy 0.84 6028 0.73 0.76 6028 macro avg 0.82 weighted avg 0.84 0.84 0.83 6028

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv("adult.csv")
df.head()

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relatio
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-
2	66	?	186061	Some- college	10	Widowed	?	Unn
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unn
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Ow

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)

memory usage: 3.7+ MB

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.ı
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.43
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.34
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000

Info for categorical features
df.describe(include=['0'])

	workclass	education	marital.status	occupation	relationship	race	sex	na
count	32561	32561	32561	32561	32561	32561	32561	
unique	9	16	7	15	6	5	2	
top	Private	HS-grad	Married-civ- spouse	Prof- specialty	Husband	White	Male	
freq	22696	10501	14976	4140	13193	27816	21790	

duplicated_rows = df.duplicated()
any_duplicates = duplicated_rows.any()

print("Duplicated Rows:")
df[duplicated_rows]

Duplicated Rows:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	rel
8453	25	Private	308144	Bachelors	13	Never-married	Craft-repair	N
8645	90	Private	52386	Some- college	10	Never-married	Other- service	Ν
12202	21	Private	250051	Some- college	10	Never-married	Prof- specialty	
14346	20	Private	107658	Some- college	10	Never-married	Tech- support	Ν
15603	25	Private	195994	1st-4th	2	Never-married	Priv-house- serv	Ν
17344	21	Private	243368	Preschool	1	Never-married	Farming- fishing	Ν
19067	46	Private	173243	HS-grad	9	Married-civ- spouse	Craft-repair	
20388	30	Private	144593	HS-grad	9	Never-married	Other- service	٨
20507	19	Private	97261	HS-grad	9	Never-married	Farming- fishing	Ν
22783	19	Private	138153	Some- college	10	Never-married	Adm- clerical	
22934	19	Private	146679	Some- college	10	Never-married	Exec- managerial	
23276	49	Private	31267	7th-8th	4	Married-civ- spouse	Craft-repair	
23660	25	Private	195994	1st-4th	2	Never-married	Priv-house- serv	Ν
23720	44	Private	367749	Bachelors	13	Never-married	Prof- specialty	Ν
23827	49	Self-emp- not-inc	43479	Some- college	10	Married-civ- spouse	Craft-repair	
26738	23	Private	240137	5th-6th	3	Never-married	Handlers- cleaners	Ν
27133	28	Private	274679	Masters	14	Never-married	Prof- specialty	٨
28796	27	Private	255582	HS-grad	9	Never-married	Machine- op-inspct	٨
29051	42	Private	204235	Some- college	10	Married-civ- spouse	Prof- specialty	

```
Married-civ-
      29334
               39
                        Private
                                 30916
                                           HS-grad
                                                                                         Craft-repair
                                                                               spouse
df = df.drop duplicates()
# Correction of target value using a map
income_map = {'<=50K': 1, '>50K': 0}
df['income'] = df['income'].map(income map)
     <ipython-input-47-00c8c2884cd1>:3: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        df['income'] = df['income'].map(income_map)
df['income'] = df['income'].astype('int')
     <ipython-input-48-c88e10f6120e>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user">https://pandas.pydata.org/pandas-docs/stable/user</a>
        df['income'] = df['income'].astype('int')
categorical = [col for col in df.columns if df[col].dtype == 'object' ]
numerical = [col for col in df.columns if df[col].dtype != 'object' ]
df[numerical].hist(bins=25, figsize=(7, 7))
plt.show()
```


sns.histplot(df, x='age', hue='income', bins=32)


```
#describe ages in classes
def age_group(df):
    age_bins = [0, 20, 40, 60, float('inf')]
    age_labels = ['1', '2', '3', '4']
    df_age_range = df.copy()
```

df_age_range['age'] = pd.cut(df_age_range['age'], bins=age_bins, labels=age_lab
return df_age_range

df = age_group(df).copy()

sns.histplot(df, x='age', hue='income', bins= 32)

Caxes: xlabel='age', ylabel='Count'>

Missing Values

df_missing = (df=='?').sum()
print(df_missing)

age	0
workclass	1836
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	1843
relationship	0
race	0
sex	0

df.head()

df = df[df['native.country'] !='?']

```
workclass
                   fnlwgt education education.num marital.status occupation relatio
                                                                                  Exec-
1
     4
            Private
                    132870
                                HS-grad
                                                       9
                                                                 Widowed
                                                                                           Not-in-
                                                                             managerial
                                                                               Machine-
3
     3
                                                       4
            Private
                    140359
                                 7th-8th
                                                                  Divorced
                                                                                             Unn
                                                                               op-inspct
                                 Some-
                                                                                   Prof-
4
     3
            Private 264663
                                                      10
                                                                Separated
                                                                                             Ow
                                 college
                                                                               specialty
                                                                                 Other-
5
     2
            Private
                   216864
                                HS-grad
                                                       9
                                                                  Divorced
                                                                                             Unn
                                                                                 service
                                                                                  Adm-
     2
            Private
                   150601
                                   10th
                                                       6
                                                                Separated
                                                                                             Unn
6
                                                                                 clerical
```

```
df_missing = (df=='?').sum()
print(df_missing)
```

age	0
workclass	0
fnlwgt	0
education	0
education.num	0
marital.status	0
occupation	0
relationship	0
race	0
sex	0
capital.gain	0
capital.loss	0
hours.per.week	0
native.country	0
income	0
dtype: int64	

Data Preparation

```
from sklearn import preprocessing
df_categorical = df.select_dtypes(include=['object'])
df_categorical.head()
```

	workclass	education	marital.status	occupation	relationship	race	sex	native
1	Private	HS-grad	Widowed	Exec- managerial	Not-in-family	White	Female	Unit
3	Private	7th-8th	Divorced	Machine- op-inspct	Unmarried	White	Female	Unit
4	Private	Some- college	Separated	Prof- specialty	Own-child	White	Female	Unit
5	Private	HS-grad	Divorced	Other- service	Unmarried	White	Female	Unit
6	Private	10th	Separated	Adm- clerical	Unmarried	White	Male	Unit
4								•

```
le = preprocessing.LabelEncoder()
df_categorical = df_categorical.apply(le.fit_transform)
df_categorical.head()
```

	workclass	education	marital.status	occupation	relationship	race	sex	native.cou
1	2	11	6	3	1	4	0	
3	2	5	0	6	4	4	0	
4	2	15	5	9	3	4	0	
5	2	11	0	7	4	4	0	
6	2	0	5	0	4	4	1	
4								•

```
df = df.drop(df_categorical.columns, axis=1)
df = pd.concat([df,df_categorical],axis=1)
df['income']=df['income'].astype('category')
df.head()
```

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	income	workc
1	4	132870	9	0	4356	18	1	
3	3	140359	4	0	3900	40	1	
4	3	264663	10	0	3900	40	1	

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30139 entries, 1 to 32560
Data columns (total 15 columns):
```

Data	COTUMNIS (LOCAL .	LO COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	age	30139 non-null	category
1	fnlwgt	30139 non-null	int64
2	education.num	30139 non-null	int64
3	capital.gain	30139 non-null	int64
4	capital.loss	30139 non-null	int64
5	hours.per.week	30139 non-null	int64
6	income	30139 non-null	category
7	workclass	30139 non-null	int64
8	education	30139 non-null	int64
9	marital.status	30139 non-null	int64
10	occupation	30139 non-null	int64
11	relationship	30139 non-null	int64
12	race	30139 non-null	int64
13	sex	30139 non-null	int64
14	native.country	30139 non-null	int64
dtype	es: category(2),	int64(13)	
memor	ry usage: 3.3 MB		

Splitting dataset

```
from sklearn.model_selection import train_test_split
```

```
X = df.drop('income',axis=1)
X = X.drop('sex',axis=1)
y=df['income']
X.head()
```

```
age fnlwgt education.num capital.gain capital.loss hours.per.week workclass ed
            132870
      1
                                  9
                                                0
                                                           4356
                                                                                         2
                                                                             18
y.head()
     1
          1
     3
          1
     4
          1
     5
          1
     6
          1
     Name: income, dtype: category
     Categories (2, int64): [0, 1]
X_train , X_test , y_train , y_test = train_test_split(X,y,test_size=0.20)
```

Applying Decision Tree

confusion matrix

```
from sklearn.tree import DecisionTreeClassifier
dt_default = DecisionTreeClassifier(max_depth=5)
dt_default.fit(X_train,y_train)
```

```
DecisionTreeClassifier
DecisionTreeClassifier(max_depth=5)
```

from sklearn.metrics import classification report, confusion matrix, accuracy score

```
y_pred_default=dt_default.predict(X_test)
print("confusion matrix\n",confusion_matrix(y_test,y_pred_default))
print(classification_report(y_test,y_pred_default))
```

```
[[ 764 735]
 [ 214 4315]]
              precision
                          recall f1-score
                                                support
           0
                   0.78
                              0.51
                                        0.62
                                                  1499
                   0.85
                                        0.90
           1
                              0.95
                                                   4529
                                        0.84
                                                   6028
    accuracy
   macro avg
                   0.82
                              0.73
                                        0.76
                                                  6028
weighted avg
                   0.84
                              0.84
                                        0.83
                                                   6028
```

```
print("accuracy score", accuracy_score(y_test, y_pred_default))
```

accuracy score 0.8425680159256802

✓ 0s completed at 2:45 AM