Machine Learning

INFQ612L, 440113450A Spring Semester Friday 17:00-18:40

IPS WASEDA University

Prof. Shoji Makino

Machine Learning

Friday 17:00-18:40

- 1. 4/18
- 2. 4/25
- $3. \, 5/2$
- 4. 5/9
- 5. 5/16
- $6. \ 5/23$
- 7. 5/30

- 8.6/6
- 9.6/13
- 10. 6/20
- 11. 6/27
- -. 7/4 No Lecture
- -. 7/11 No Lecture
- -. 7/18 No Lecture

At Zoom, set your name as:

Student ID, LAST_NAME, First_name

44251234, MAKINO, Shoji

At my class,

please turn on your camera

Machine Learning (6)(7)

Model complexity and Generalization

Data Nonlinearity

- . If the data distribution is nonlinear?
- We want to make predictions with higher representation ability than the linear model
 (green line: correct model, blue line: learned model)

Polynomial Regression

- Linear regression model
 - 。1D features

$$t = w_0 + w_1 x$$

D-dimensional features

$$t = w_0 + w_1 x_1 + \ldots + w_D x_D = w_0 + \sum_{d=1}^{D} w_d x_d$$

- . M-th order polynomial regression model
 - 。 1D features

$$t = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

D-dimensional features

$$t = w_0 + \sum_{m=1}^{M} \sum_{i=d}^{D} w_{md} x_d^m$$

Regression by One-Dimensional Polynomial Features

- . Feature function
 - Polynomial features

$$oldsymbol{\phi}: \mathbb{R}
ightarrow \mathbb{R}^{M+1}$$

$$\phi(x) = (x^0, x^1, x^2, \dots, x^M)$$

. Linear regression model with polynomial features

$$t = \boldsymbol{w}^T \boldsymbol{\phi}(x)$$

Multidimensional Polynomial Regression

. Feature vector \Rightarrow Feature vector (by ϕ)

$$\mathbf{x}^T = (1, 2, 5) \longrightarrow \boldsymbol{\phi}(\mathbf{x})^T = (1, 2, 5, 1^2, 2^2, 5^2, 1^3, 2^3, 5^3)$$

. Regression with feature vector $oldsymbol{\phi}$ instead of $oldsymbol{x}$

Model Complexity

- Introduction of polynomial features ⇒ Realization of rich representation regression
- . How rich should it be?

- Squared error of 20th order polynomial regression is smaller than that of 4th order polynomial regression
- . But I don't think this is the best
- . What should we do?

Occam's Razor

- You should not assume more than you need to explain something (14th century philosopher Occam)
 - Entities should not be multiplied beyond necessity
 - (In terms of ML ...) Given some data, the more complex the model, the better it can be explained. However, such a model is an unnecessarily complex model that is not only difficult to calculate, but also overfits past data, making it impossible to explain future data.
- . How to choose the right complexity?

Review Statistics

Probability Variables, Probability Distribution

- Probability variable: variable whose value is determined by a certain probability law
- Probability distribution: For each value of a probability variable, the likelihood of that value (probability)
- Examples of discrete probability variable x: coin back (= 0), front (= 1)
 - -P(x=0)=0.5, P(x=1)=0.5
 - probability variable x follows the Bernoulli distribution with p = 0.5

$$f(x;p) = p^{x}(1-p)^{(1-x)}$$

Example of a continuous probability variable: Distance from a fallen leaf x

$$P(1 \le x \le 2) = \int_{1}^{2} N(x; 0, 1)$$

- N(x; 0, 1) is a normal distribution with mean θ and variance 1 (Probability density function)
- Probability variable x follows normal distribution N(x;0,1)

Review Statistics

Expected Value

- Expected value: value of a probability variable weighted and averaged by its probability p(x)
 - discrete probability variable X

continuous probability variable x

$$E[X] = \sum_{i=1}^{\infty} x_i P(X = x_i)$$

$$E[x] = \int_{-\infty}^{\infty} x p(x) dx$$

- · If an infinite number of samples are obtained, the expected value can be calculated
- However, usually only a finite number of samples are available
- Use sample mean from finite samples instead of expected value

$$\bar{X}_N = \frac{1}{N} \sum_{i=1}^N x_i$$

Sample mean of randomly sampled samples from a population approaches the expected value of the population as the number of samples increases (the law of large numbers)

$$\epsilon > 0$$
, $\lim_{N \to \infty} \Pr[|\bar{X}_N - E[X]| > \epsilon] = 0$

What are we trying to know?

- . In the world ...
 - $_{\circ}$ There is a distribution $p(oldsymbol{x},t)$ that produces the data
 - . Distribution of wine ingredients x and quality of the wine t
 - . Model exists $f: \mathbb{R}^D o \mathbb{R}$
 - . Map of wine ingredients x to wine quality t
 - But these are all unknown
- . What we can observe is ...
 - Wine ingredients x_i and quality samples t_i of the wine $(x_1,t_1),(x_2,t_2),\ldots,(x_N,t_N),$
 - $_{\circ}$ Assumption: quality has (unknown) noise $t_i = f(oldsymbol{x}_i) + \epsilon$
- . Under this condition, we want to estimate a model \hat{f} that is close to f

Training Samples and Test Samples

- . N samples on hand $({\bm{x}}_1, t_1), ({\bm{x}}_2, t_2), \dots, ({\bm{x}}_N, t_N),$
- . Very accurate but meaningless learning
 - _o Build a hash function that returns t_i given x_i
 - Square error is always zero
 - However, we cannot respond to inquiries other than the samples we have
- . Divide samples into training samples and test samples

$$(oldsymbol{x}_1,t_1),(oldsymbol{x}_2,t_2),\ldots,(oldsymbol{x}_N,t_N), \ oldsymbol{ au}$$
 Training $X_{ ext{tr}}$ Test $X_{ ext{ts}}$

- Learn with training samples and check performance with test samples
- Training samples = Exercise with answer (100 points can be obtained by memorizing)
- Test samples = Final exam (Check understanding with questions different from exercises)

Training Error

Learned regression curves (visible)

True regression curve (invisible)

- Model: t = f(x) We want to know
- Training examples: $X_{tr} = \{(\boldsymbol{x}_i, t_i)\}$ visible
- . Learned regression models: $\hat{t}_i = \hat{f}(oldsymbol{x}_i)$ visible
- . Training error (= what was previously called squared error)
 - Incorrect answer rate in the <u>training samples</u> of the regression model obtained in the <u>training samples</u> (incorrect answer rate of the Exercise with answer)
 - Note that divide by the number of training samples

TrainingErr =
$$\frac{1}{|X_{\text{tr}}|} \sum_{(\boldsymbol{x}_i, t_i) \in X_{\text{tr}}} (t_i - \hat{f}(\boldsymbol{x}_i))^2$$

Generalization Error

Learned regression curve (visible)

True regression curve (invisible)

- Generalization error:
 - $p(\boldsymbol{x},t)$ data generation distribution, invisible

- True model (target):
$$t=f(oldsymbol{x})$$
 invisible

- Learned regression model: $\hat{t}_i = \hat{f}(\boldsymbol{x}_i)$ visible

$$\hat{t}_i = \hat{f}(oldsymbol{x}_i)$$
 visible

- We really want this expected value
- However, we cannot evaluate it because we cannot get $\,p(m{x},t),f(m{x})\,$

Test Error

- Model: $t = f(\boldsymbol{x})$ We want to know
- Test samples: $X_{ts} = \{(\boldsymbol{x}_i, t_i)\}$ visible
- Learned regression model: $\hat{t}_i = \hat{f}(oldsymbol{x}_i)$ visible
- Test error:
 - Incorrect answer rate in <u>test samples</u> of regression model
 learned in <u>training samples</u> (incorrect answer rate of Final exam)
 - Note that it is divided by the number of test samples

TestErr =
$$\frac{1}{|X_{ts}|} \sum_{(\boldsymbol{x}_i, t_i) \in X_{ts}} (t_i - \hat{f}(\boldsymbol{x}_i))^2$$

Finite sample average Test sample target value Prediction

Evaluating Errors

True regression curve (invisible)

-1.0

₩ 0.0

-0.5

Test error

0.2

Training error

Test error

GeneralizationErr =
$$\iint (t - \hat{f}(\boldsymbol{x}))^2 p(\boldsymbol{x}, t) d\boldsymbol{x} dt$$

Finite sample approximation of generalization error = Test error

TestErr =
$$\frac{1}{|X_{ts}|} \sum_{(\boldsymbol{x}_i, t_i) \in X_{ts}} (t_i - \hat{f}(\boldsymbol{x}_i))^2$$

Training data

(visible) M=3

0.6

0.8

1.0

(visible)

Evaluation based on Test Error

. Training error

- 。 decreases when the polynomial dimension increases
- 。 can be zero when the polynomial dimension steadily increased

. Test error

- 。 is large when the polynomial dimension is low
- odecreases to a certain extent, when increasing the polynomial dimension
- increases when the polynomial dimension is raised more than necessary (overfitting)

We need to properly control the complexity of the model

How to Control Model Complexity

. Model selection

- Prepare models with various complexity
- Train all of those models and select the one that gives the smallest test error
- As a result, a model of moderate complexity is selected

. Regularization

- Have a sufficiently complex model
- Embed a mechanism to reduce model complexity in the error function
- Train while varying the complexity of the model and select the complexity that gives the smallest test error
- As a result, a model of moderate complexity is trained
- . In any case, it is important to evaluate by Test error

Evaluation of Test Error by K-Fold Cross Validation

- Divide the sample into k pieces
- For $i = 1, \dots, k$
 - $_{\circ}$ Evaluate the test error using the i-th division as a test sample and the remaining K-1 as a training sample
- Average the test errors of all folds and output this as an estimate of generalization error
- . Is it not enough to simply divide into two, learn with one (training sample), and evaluate the test error with one (test sample)?
 - Learning results depend on training samples
 - If the samples with a large "accidental" bias are concentrated on the training samples, the learning model will also be biased
 - Training and test error evaluation in various divisions minimizes bias

Model Selection using Cross-Validation

- We have data
- $-M = 1,2,\dots, 9$, Regression with which polynomial?

- 1. For $M = 1, \dots, 9$
- Modeling with M-th order polynomial regression
- Evaluate test error with k-fold cross-validation
- 2. Adopt M which gives the minimum test error
 - Overall MK learning / test error evaluation required

Regularization

- . High complexity model
 - Training error is low Test error is high
- . Training error can be minimized directly, but test error cannot be minimized directly
 - . If we use a test sample during learning, that sample cannot be used for test error evaluation
- . Instead, regularization
 - . Use by blunting a blade that is too sharp
 - Control complexity with knowledge of the model
 - Controlling complexity can control test error (expected)

What kind of model is a complicated model?

Optimization with Penalty

We want to minimize both f(x), g(x)

- Both are contradictory, e.g.
- -f(x) Rent (minimized)
- g(x) Distance from the station (minimized)

Optimization with penalty

minimize
$$h(\boldsymbol{x}) = f(\boldsymbol{x}) + \lambda g(\boldsymbol{x})$$

- . In case of regression ...
 - Minimize training errorMinimize complexity

Trade-off parameter

Expected to reduce generalization error

are moderately small

Norm

. Vector

$$\boldsymbol{x}^T = (x_1, x_2, \dots, x_D)$$

. p-norm

$$\|x\|_p = \left(\sum_{i=1}^D |x_i|^p\right)^{1/p}$$

. Euclidean norm (2-norm, distance)

. Max Norm

$$\|\boldsymbol{x}\|_2 = \left(\sum_{i=1}^D |x_i|^2\right)^{1/2}$$

$$\|\boldsymbol{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_D|)$$

Unit circle defined by each norm

Ridge Regression = Squared Error Term + L2 Regularization Term

. Error function so far

$$E(oldsymbol{w}) = \sum_{i=1}^N (t_i - oldsymbol{w}^T oldsymbol{x}_i)^2$$

. Error function with L2 regularization i=1

$$E(m{w}) = \sum_{i=1}^{N} (t_i - m{w}^T m{x}_i)^2 + \lambda m{w}^T m{w}$$
 Squared error L2 regularization

L2 regularization term Parameter

- $_{\circ}$ Becomes large when each element of w takes a large value
 - Reduce complexity
 - Sum of convex functions is convex function → only one local optimal solution
 - 。 Differentiable → Analytical solution can be found

Effect of L2 Regularization

No regularization $\lambda = 0$

$$\lambda = 0.01$$

Strong regularization $\lambda = 100$

Regularization parameter	Training error	Model complexity	Generalization error
$\lambda = 0$	Small	Easy to get complicated	Large
$\lambda=lpha$ Intermediate	Moderate	Moderate	Moderate (expected)
$\lambda = \infty$	Not minimized	Too simple	After all big

Optimization in Machine Learning

. Analytical solution

- $_{\circ}$ It can be used when "the objective function is differentiable" and "w can be found with a gradient of θ "
- An accurate solution can be found (once the calculation is completed)
- Inverse matrix calculation of D*D matrix is required (D = number of dimension)
- If the data is very large (number of dimension D, number of samples N), it may not be possible to calculate (memory constraints)
- Approximate solution (gradient descent GD, stochastic gradient descent SGD)
 - Repeated descent in the direction of the slope
 - Gradually improve the solution, so a better solution can be obtained according to the time spent
 - No inverse matrix calculation required, light calculation per step
 - Less influenced by memory constraints (especially SGD) even when the data is large

Analytical Solution of Ridge Regression

. In principle, it is same as a regression

$$\frac{\partial E(\boldsymbol{w})}{\partial \boldsymbol{w}} = 0 \quad \Longrightarrow \quad \boldsymbol{w} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^T \boldsymbol{t}$$
 cf. Single regression
$$\boldsymbol{w} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{t}$$

- . Cross-validation is required for tuning regularization parameter λ
- . It also has the effect of stabilizing the inverse matrix calculation

Complexity Control Summary

- Introduction of nonlinearity → Polynomial features (actually, nothing is different from linear regression including calculation method)
- . Models that are too complex have low training error but high generalization error (overfitting) and are meaningless
- . How to choose a model with right complexity?
 - Prepare models with various complexity, estimate each test error by k-fold cross-validation, and select a model with smallest test error
 - Introduce the regularization term into the error function, estimate the test error while changing the regularization parameter, and select the learning result by the regularization parameter λ with smallest test error

Machine Learning (6)(7)

Model complexity and Generalization

Machine Learning

INFQ612L, 440113450A Spring Semester Friday 17:00-18:40

IPS WASEDA University

Prof. Shoji Makino

