Introduction to Statistical Machine Learning

Xiang Zhou

School of Data Science Department of Mathematics City University of Hong Kong

Statistical Learning: Bias-Variance Trade-off

Bias-Variance Decomposition / Trade-off

Let f be a given deterministic function (ground truth) $\mathcal{X} \to \mathcal{Y}$. Assume that the response r.v. Y is defined by the additive error statistical model:

$$Y = f(X) + \varepsilon$$

where the r.v. ε is independent of X and has mean 0 and variance σ_{ε}^2 . Assume this model generates the training dataset

 $\mathtt{D}=\{(x_i,y_i): 1\leq i\leq N\}$, i.e., $y_i=f(x_i)+\varepsilon_i$ and iid $\varepsilon_i\sim\varepsilon$ Assume one learns a function based on D, still denoted by $\hat{f}_{\mathtt{D}}(\cdot)$. ¹

 $^{^1}$ it does not have to be the one in previous regression part associated with square loss. For example, $\hat{f}_{\rm D}$ can be the k-NN model. $_{\rm CityU}$

- The question is the prediction performance of this function $\hat{f}_{\rm D}$ on a new data (x_0, y_0) where $x_0 \in \mathcal{X}$ is arbitrary and $y_0 = f(x_0) + \varepsilon_0$ with the new measurement error ε_0 being independent of D and with distributed the same as ε .
- The subtlety here is that D is random per se. $\mathcal{E}(\hat{f}_D)$ is also uncertain 1 . So, the average w.r.t. to D is more relevant ²

$$\mathbb{E}_{\mathtt{D}}\,\mathcal{E}(\hat{f}_{\mathtt{D}})$$

The population risk for the trained model is

$$\mathcal{E}(\hat{f}_{D}) = \mathbb{E}_{X,Y} \ell(Y, \hat{f}_{D}(X)) = \mathbb{E}_{X} \mathbb{E}_{Y|X} \left[\ell(Y, \hat{f}_{D}(X)) | X \right].$$

It suffices to consider on a generic test point $x_0 \in \mathcal{X}$. ³

$$\mathbb{E}\left[\ell(Y, \hat{f}_{\mathsf{D}}(X = x_0)) | X = x_0\right]$$

CityU

This is the expected predicted error (EPR).

the measurement noise ε

Xiang Zhou

¹different training data give rise to different \hat{f}_{D}

²compare to the upper bound in learning theory before ${}^{3}x_{0}$ is non-random. The expectation is w.r.t. the training data D and $Y|X=x_{0}$, i.e.,

Decomposition of expected prediction error

for mean square loss in regression

The expected prediction error for the means square loss at x_0 is

$$\begin{split} & \mathbb{E}[(Y - \hat{f}_{\mathsf{D}}(X))^{2} | X = x_{0}] = \mathbb{E}_{\varepsilon_{0},\mathsf{D}}(f(x_{0}) + \varepsilon_{0} - \hat{f}_{\mathsf{D}}(x_{0}))^{2} \\ = & \sigma_{\varepsilon}^{2} + \mathbb{E}_{\mathsf{D}} \left(f(x_{0}) - \hat{f}_{\mathsf{D}}(x_{0}) \right)^{2} \quad \because \mathbb{E}(\varepsilon_{0}) = 0, \text{ and } \mathsf{D} \text{ indp.} \varepsilon_{0} \\ = & \sigma_{\varepsilon}^{2} + \mathbb{E}_{\mathsf{D}} \left(f(x_{0}) - \mathbb{E}_{\mathsf{D}} \, \hat{f}_{\mathsf{D}}(x_{0}) + \mathbb{E}_{\mathsf{D}} \, \hat{f}_{\mathsf{D}}(x_{0}) - \hat{f}_{\mathsf{D}}(x_{0}) \right)^{2} \\ = & \underbrace{\sigma_{\varepsilon}^{2} + \left(f(x_{0}) - \mathbb{E}_{\mathsf{D}} \, \hat{f}_{\mathsf{D}}(x_{0}) \right)^{2} + \underbrace{\mathsf{Var}_{\mathsf{D}} \left(\hat{f}_{\mathsf{D}}(x_{0}) \right)}_{\mathsf{Variance}} \end{split}$$

Here the subscripts emphasize the random elements to take expectation. $\sigma_{\varepsilon}^2 = \text{Var}(\varepsilon_0)$ is the irreducible uncertainty of the new measurement error.

Definition

 $\hat{f}_{\mathtt{D}}$ is called **unbiased** if the functions $\mathbb{E}_{\mathtt{D}} \hat{f}_{\mathtt{D}}(x)$ and f(x) are equal.

For linear regression:

$$\operatorname{Var}(\hat{f}_{\mathtt{D}}(x_0)) \sim p\sigma_{\varepsilon}^2/N$$

where $p = \dim(\mathcal{X})$.

- low bias: large model space, low training error, overfitting, bad generalization ability (high variance);
- low variance: rigid model space, insensitive to the perturbation of the dataset used in fitting; good extrapolation on the new data from the same distribution.
- BAD news¹: it is almost impossible to decrease the bias and variance terms simultaneously!
- Criteria for model assessment or variable selection: good trade-off between the bias and variance

¹Good news: it is possible and in fact it might be very common for deep learning Xiang Zhou

scikit-learn: Underfitting vs. Overfitting

Fit a polynomial function by (ordinary) linear regression https://scikit-learn.org/stable/auto_examples/model_ selection/plot_underfitting_overfitting.html

conceptual diagram

Figure: Bias-Variance Tradeoff as a Function of Model Capacity/Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error $\overline{\text{Err}}_{\mathcal{T}}$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error $\overline{\text{Err}}$ and the expected training error $\overline{\text{Err}}$.

capacity/complexity

- capacity is the most important concept in Vapnik's theory , related to VC dimension;
- "complexity" may be used exchangeable with "capacity".
- but they are <u>NOT</u> equal to the number of parameter in the model.
 Sometimes, they are called "effective number of parameters" like in ridge/lasso regression.

Consider the k-nearest-neighbor regression fit to the data $\mathbf{D}=\{(x_i,y_i)\}$ arising from the additive model $Y=f(X)+\varepsilon$:

$$\hat{f}_{\mathtt{D}}^{k}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i = \frac{1}{k} \sum_{x_i \in N_k(x)} (f(x_i) + \varepsilon_i).$$

Assume that the input design points $\{x_i\}$ is deterministic. Then the expectation w.r.t. D is only for the measurement errors ε_i :

- The bias is $f(x_0)-\mathbb{E}_{\mathtt{D}}[\hat{f}_{\mathtt{D}}^k(x_0)]=f(x_0)-rac{1}{k}\sum_{x_i\in N_k(x_0)}f(x_i);$
- The variance is $\mathrm{Var_D}(\hat{f}^k_{\mathtt{D}}(x_0)) = \frac{1}{k}\sigma_{arepsilon}^2$

Model Assessment: practical techniques

Typical objectives:

- ① Choose a set of tuning parameter (hyperparameter) used in the model (such as k in k-NN)
- 2 Estimate the prediction performance (test error) of a given model

Remarks:

- For both objectives, the best approach is to run the procedure on an independent test set, if one is available.
- If possible, one should use different test data for (1) and (2) above: a validation set for objective (1) and a test set for objective (2).
- Often there is insufficient data to create a separate validation or test set. In this case, Cross-Validation is useful.

K-fold cross validation

Denote the hyper-parameter by λ . K-fold cross validation is the most popular method for estimating a tuning parameter λ .

Divide the dataset (of size N) into K subsets: $\mathcal{A}_1,\ldots,\mathcal{A}_K$ (K=2,5,10 or N)

• For each $k=1,\ldots,K$, fit the model with parameter λ to $\{\mathcal{A}_1,\ldots,\mathcal{A}_{k-1},\mathcal{A}_{k+1},\ldots,\mathcal{A}_K\}$ giving $f_{\lambda}^{-k}(\cdot)$, and compute its prediction error on \mathcal{A}_k :

$$E_k(\lambda) = \sum_{x_i \in A_k} \ell(y_i, f_{\lambda}^{-k}(x_i)).$$

• The average of these K values $E_k(\lambda)$ give the cross-validation error (per sample)

$$CV(\lambda) := \frac{1}{K} \sum_{k=1}^{K} E_k(\lambda).$$

• Choose the optimal λ^* yielding the smallest $CV(\lambda)$.

K-fold cross validation

- Cross-validation is often abbreviated as CV.
- ullet In the subset selection procedure, λ is the subset size
- $f^{-k}(\lambda)$ is the best model of size λ , found from the training set that leaves out the k-th part of the data
- $E_k(\lambda)$ is its estimated test error on the k-th part.
- Using K-fold CV, the K test error estimates are averaged to give the final CV estimated test error.
- \bullet The output is the model associated with $\lambda^*,$ typically, computed by using all N data.

scikit-learn: model evaluation

In practice, various "score" are used for evaluation of various models. See details at

https:

//scikit-learn.org/stable/modules/model_evaluation.html
This long list is simply to answer one single question;

'What criterion/score in practice to judge your model is good".

scikit-learn : cross-validation with linear models to select LASSO penalty α

```
https://scikit-learn.org/stable/auto_examples/exercises/plot_cv_diabetes.html
```

Bootstrap

- ullet Bootstrap works by sampling N times with replacement from the training set to form a "bootstrap" data set. Then model is estimated on the bootstrap data set, and predictions are made on the original training set.
- This process is repeated many times and the results are averaged.
- Bootstrap is most useful for estimating standard errors of predictions.
- Can also use modified versions of the bootstrap to estimate prediction error.