

神经网络与深度学习 https://nndl.github.io/

卷积神经网络I

高飞 Fei Gao

gaofei@hdu.edu.cn

让机器更好的理解和服务人类

人获得的输入是什么?

图像信息

任务: 理解图像内容

方法: 卷积神经网络

序列信息

任务:理解语音/文字/视频

方法: 循环神经网络

一个例子

http://novel.ict.ac.cn/aics

) 计算机视觉

- 输入图像大小为 32x32, 输入数据量为 32x32x3 = 3072
- 隐层神经元个数为 100, 第一层权值数量为 3072 x100 = 307200

一个例子

•实际场景中,往往需要更大的输入图像以及更深的网络结构。

- 输入图像大小为 1024x1024, 第一层隐层神经元个数为 1000
- 第一层权重数量级为 10^9, 过多的参数会导致过拟合
- 卷积神经网络可以有效减少权重数量

http://novel.ict.ac.cn/aics

全连接前馈神经网络

> 权重矩阵的参数非常多

) 局部不变性特征

- 自然图像中的物体都具有局部不变性特征,比如尺度缩放、平移、旋转等操作不影响其语义信息。
- 而全连接前馈网络很难提取这些局部不变特征。

卷积神经网络 (CNN)

http://novel.ict.ac.cn/aics

	全连接	卷积
局部连接		
权重共享	所有神经元之间的连接都使用不同权重。	输出层神经元共用同一组权重, 进一步减少权重数量。
权重数量	$w_i \times h_i \times w_o \times h_o$	$f \times f$

CNN组成

▶ VGG16

- ▶ 卷积层 (conv)
- ▶ 池化层 (max pool)
- ▶ 全连接层 (FC)
- Softmax

image 3x3 conv, 64 Output size: 224x224 conv1 3x3 conv, 64 Maxpool, /2 Output size: 112x112 3x3 conv, 128 conv2 3x3 conv, 128 Maxpool, /2 Output size: 56x56 3x3 conv, 256 3x3 conv, 256 conv3 3x3 conv, 256 Maxpool, /2 Output size: 28x28 3x3 conv, 512 3x3 conv. 512 conv4 3x3 conv, 512 Maxpool, /2 Output size: 14x14 3x3 conv, 512 3x3 conv, 512 conv5 3x3 conv, 512 Maxpool, /2 Output size: 7x7 FC, 4096 FC, 4096 FC, 1000 softmax

http://novel.ict.ac.cn/aics

http://novel.ict.ac.cn/aics

卷积层如何检测特征

- ▶ 检测复杂边缘
- 将权重作为参数,在训练中学习。

filter/kernel

▶ 卷积神经网络的两个重要特征: <u>局部连接、权重共享</u>
可有效减少权重参数,避免过拟合,为增加卷积层数提供可能。

8

8

- **> 卷积神经网络**
 - ▶ 生物学上局部感受野 (Receptive Field)
- > 卷积神经网络有两个结构上的特性:
 - ▶ 局部连接
 - 权重共享

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 10 April 17, 2018

Hierarchical organization

Simple cells: Response to light orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells: response to movement with an end point

(end point)

▶数据表示: 矩阵, 张量 (Tensor)

卷积

- > 卷积经常用在信号处理中,用于计算信号的延迟累积。
 - ▶ 假设一个信号发生器每个时刻t产生一个信号xt , 其信息的衰减率为wk , 即在k-1个时间步长后, 信息为原来的wk 倍
 - ▶ 假设w1 = 1,w2 = 1/2,w3 = 1/4

> 时刻t收到的信号yt 为当前时刻产生的信息和以前时刻延迟信息

$$y_{t} = 1 \times x_{t} + 1/2 \times x_{t-1} + 1/4 \times x_{t-2}$$

$$= w_{1} \times x_{t} + w_{2} \times x_{t-1} + w_{3} \times x_{t-2}$$

$$= \sum_{k=1}^{3} w_{k} \cdot x_{t-k+1}.$$

滤波器 (filter) 或卷积核 (convolution kernel)

卷积

- > 卷积经常用在信号处理中,用于计算信号的延迟累积。
 - ▶ 给定一个收入信号序列 x 和滤波器 w 卷积的输出为:

$$y_t = \sum_{k=1}^m w_k x_{t-k+1}$$

卷积扩展

▶ 引入滤波器的滑动步长s和零填充p

两维卷积

在图像处理中,图像是以二维矩阵的形式输入到神经网络中,因此我们需要二维卷积。

$$y = w \otimes x$$
,

$$y_{ij} = \sum_{u=1}^{m} \sum_{v=1}^{n} w_{uv} \cdot x_{i-u+1,j-v+1}.$$

1	1	1 ×-1	$1_{_{ imes 0}}$	$1_{_{ imes 0}}$
-1	0	-3 ×0	0	$1_{{}_{ imes 0}}$
2	1	$1_{_{ imes 0}}$	-1	0
0	-1	1	2	1
1	2	1	1	1

	1	0	0		0	-2	-
8	0	0	0	=	2	2	4
	0	0	-1		-1	0	(

> 数学:

▶ 卷积运算

▶ 神经网络: 实际为计算矩阵内积(相关系数);

2 ¹	3	1 1	5	2	ന
74	4	5	2	ന	1
3 ³	9 ⁰	6 ⁻¹	0	4	2
0	6	4	7	1	2
4	1	0	8	0	6
7	0	2	1	6	3

*

1	0	1	
4	-3	2	
3	0	-1	

32

2	3 ¹	1	5	2	ന
7	44	5 ⁻³	22	3	1
3	9 ³	6°	0 ⁻¹	4	2
0	6	4	7	1	2
4	1	0	8	0	6
7	0	2	1	6	3

	1	0	1
*	4	-3	2
	3	0	-1

32	40	

2	3	1	5	2	3
7 ¹	4	5 ¹	2	3	1
3 ⁴	9-3	62	0	4	2
03	6 ⁰	4 ⁻¹	7	1	2
4	1	0	8	0	6
7	0	2	1	6	3

 *
 1
 0
 1

 4
 -3
 2

 3
 0
 -1

32	40	37	7
5			

> 离散卷积的边缘效应

Parameter compatibility in convolution layer — By noting I the length of the input volume size, F the length of the filter, P the amount of zero padding, S the stride, then the output size O of the feature map along that dimension is given by:

$$O = rac{I - F + P_{ ext{start}} + P_{ ext{end}}}{S} + 1$$

Remark: often times, $P_{\mathrm{start}} = P_{\mathrm{end}} \triangleq P$, in which case we can replace $P_{\mathrm{start}} + P_{\mathrm{end}}$ by 2P in the formula above.

▶ 离散卷积的边缘效应

▶ Zero-Padding, edge-padding, reflect-padding

Mode	Valid	Same	Full
Value	P = 0	$egin{aligned} P_{ ext{start}} &= \left\lfloor rac{S \lceil rac{I}{S} ceil - I + F - S}{2} ight floor \ P_{ ext{end}} &= \left\lceil rac{S \lceil rac{I}{S} ceil - I + F - S}{2} ight ceil \end{aligned}$	$P_{ ext{start}} \in \llbracket 0, F-1 rbracket$ $P_{ ext{end}} = F-1$
Illustration			
Purpose	 No padding Drops last convolution if dimensions do not match 	• Padding such that feature map size has size $\left\lceil \frac{I}{S} \right\rceil$ • Output size is mathematically convenient • Also called 'half' padding	 Maximum padding such that end convolutions are applied on the limits of the input Filter 'sees' the input end-to- end

二维卷积

步长1,零填充0

步长2,零填充0

步长1,零填充1

步长2,零填充1

▶ 用卷积层代替全连接层

(a) 全连接层

(b) 卷积层

卷积作为特征提取器

- ▶特征映射 (Feature Map) : 图像经过卷积后得到的特征。
 - ▶ 卷积核看成一个特征提取器

0	1	0
1	-4	1
0	1	0

原始图像

0	1	1
-1	0	1
-1	-1	0

滤波器

输出特征映射

▶ 卷积层如何检测特征

• 检测垂直边缘

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1 0 -1 1 0 -1 1 0 -1

 0
 30
 30
 0

 0
 30
 30
 0

 0
 30
 30
 0

 0
 30
 30
 0

• 检测对角线边缘

10	10	10	10	10	0
10	10	10	10	0	0
10	10	10	0	0	0
10	10	0	0	0	0
10	0	0	0	0	0
0	0	0	0	0	0

*

 0
 10
 30
 30

 10
 30
 30
 10

 30
 30
 10
 0

 30
 10
 0
 0

▶ 基本操作单元: 卷积层

> 基本操作单元: 卷积层

卷积核 (或称滤波器, filter/kernel)

多输入特征图单输出特征图卷积运算

6x6x3

$$C = 0$$

0	0	0
0	2	2
0	1	2

$$C = 1$$

$$C = 2$$

*

3x3x3

-1	1	1
-1	1	-1
1	-1	1

1	-1	-1
-1	0	-1
-1	0	1

1	-1	-1
-1	-1	0
-1	1	1

4x4

> 基本操作单元: 卷积层

多通道卷积

> 基本操作单元: 卷积层

多卷积核

- size = 3
- $c_{in} = 3$
- $c_out = 2$
- *stride* = 1
- padding = 0

卷积层的映射关系

步长2 filter个数3 3*3 填充

) 典型的卷积层为3维结构

$$Z^p = \mathbf{W}^p \otimes \mathbf{X} + b^p = \sum_{d=1}^D W^{p,d} \otimes X^d + b^p,$$
$$Y^p = f(Z^p).$$

• 总结: 卷积层参数

- stride
- pad
- output = $\left[\frac{w_i + 2p f}{s} + 1\right] \times \left[\frac{h_i + 2p f}{s} + 1\right]$

- filter: 可训练
- bias:可训练,使分类器偏离激活函 数原点,更灵活;
- activation

激活层

激活层

> 基本操作单元: 激活层

A Convolution Layer

激活层

> 基本操作单元: 激活层

图 4.2 Logistic 函数和 Tanh 函数

图 4.4 ReLU、Leaky ReLU、ELU以及 Softplus 函数

激活层

> 基本操作单元: 激活层

▶ 基本操作单元: 池化Pooling / 降采样 层

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. **Left**: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. **Right**: The most common downsampling operation is max, giving rise to **max pooling**, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

▶ 基本操作单元: 池化Pooling / 降采样 层

池化层 (Pooling)

Avg Pooling 3.3 6.0 4.3 5.3

▶ 池化Pooling / 降采样 层

▶ 基本操作单元: 池化Pooling / 降采样 层

CNN结构

卷积网络结构

- 卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
 - ▶ 趋向于小卷积、大深度
 - ▶ 趋向于全卷积

▶典型结构

- ▶ 一个卷积块为连续M 个卷积层和b个汇聚层 (M通常设置为2 ~ 5, b为0或1)。
 - 一个卷积网络中可以堆叠N 个连续的卷积块, 然后在接着K 个全连接层 (N 的取值 区间比较大, 比如1~100或者更大; K一般为0~2)。

卷积网络结构

深度特征学习

图 2.2 机器学习系统示例

$$L = 1$$
, if $y \neq f(x)$
 $L = CE(y, f(x))$ 交叉熵
 $L = ||y - f(x)||_1$

深度学习

深度特征学习

图 1.3 传统机器学习的数据处理流程

图 1.5 深度学习的数据处理流程

表示学习

▶ CNN以图像的原始像素作为输入,基于输出层定义的损失函数使用反向传播算法端到端(End-to-end)学习,从而自动学习得到图像底层到高层的层次化语义表达

表示学习

浅层学习局部特征,深层学习整体特征

• 神经网络可视化:

Springenberg, J. T.; Dosovitskiy, A.; Brox, T. & Riedmiller, M. Striving for simplicity: the all convolutinal net ICML, 2015, 1-12

卷积神经网络结构

- 为何选择 "深" 而非 "广" 的网络结构
- 即使只有一层隐层,只要有足够的神经元,神经网络理论上可以拟合任意连 续函数。为什么还要使用深层网络结构?
- 深度网络可从局部到整体"理解图像"

学习复杂特征时(例如人脸识别),浅层的卷积层感受野小,学习到局部特征,深层 的卷积层感受野大,学习到整体特征。

■ 深度网络可减少权重数量

以宽度换深度,用多个小卷积替代一个大卷积,在获得更多样特征的同时所需权重数 量也更少。

神经网络与深度学习 https://nndl.github.io/

