Химия, 11 класс Анфиногенов Дмитрий Николаевич

Рис. 1: молочная кислота

Рис. 2: глюконовая кислота

Рис. 3: фруктоза. К правому атому снизу прицеплена группа CH_2OH

Углеводы

Общая формула углеводов — $C_n(H_2O)_m$. Работает не для всех углеводов (например, формула дезоксирибозы — $C_5H_{10}O_4$).

Определение 1. Глюкоза — углевод формулы $C_6H_{12}O_6$ со следующей структурой:

Является альдегидоспиртом. Поэтому, в частности, ищется реакцией серебряного зеркала.

Окисление

$$C_6H_{12}O_6+6O_2 \longrightarrow 6CO_2+6H_2O+Q$$
— полное окисление $C_6H_{12}O_6 \longrightarrow 2CH_3 \longrightarrow CH_2O \longrightarrow COOH$ — до молочной кислоты $C_6H_{12}O_6 \longrightarrow 2CH_3 \longrightarrow CH_2OH+2CO_2 \uparrow$ — до этилового спирта

ДРУГИЕ РЕАКЦИИ

$$C_6H_12O_6+Cu(OH)_2$$
 — — — С $_6H_10O_6Cu+2H_2O$ — получение глюконата меди $C_6H_{12}O_6+5CH_3COCl$ — — — [CHOCOCH $_3$] $_5$ — СООН + 5HCl — получение пентаацетилглюкозы

$$C_6H_{12}O_6 + 2Cu(OH)_2 \longrightarrow C_6H_{12}O_7 + 2CuOH + H_2O$$
 — глюконовая кислота

$$C_6H_{12}O_6 + Ag_2O \xrightarrow{NH_4OH} C_6H_{12}O_7 + 2Ag -$$
 серебряное зеркало $C_6H_{12}O_6 + H_2 \xrightarrow{} CH_2OH \xrightarrow{} [CHOH]_4 \xrightarrow{} CH_2OH -$ получение сорбита

Определение 2. Сахароза — углевод формулы $C_{12}H_{22}O_{11}$.

Является многоатомным спиртом, т.к. реакция с $Cu(OH)_2$ окрашивает в васильковый цвет. Не разлагается при нагревании, т.е. нет альдегидной группы. Гидролизуется на глюкозу и фруктозу.

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H_2SO_4} C_6H_{12}O_6 + C_6H_{12}O_6$$

Схема получения сахарозы

- 1. Измельчение сахарной свеклы в стружку и извлечение сахарозы.
- 2. Обработка раствора известковым молоком.
- 3. Обработка раствора оксидом углерода.
- 4. Упаривание раствора в вакуумных аппаратах и его центрифугирование.
- 5. Дополнительная очистка.

Отличительные особенности полисахаридов

Характеристика	Полисахарид	
	Крахмал	Целлюлоза
Молекулярная	$(C_6H_{10}O_5)_n \ (n\approx 10^3)$	$(C_6H_{12}O_6)_n \ (n\approx 10^4)$
формула	амилоза (линейна) и аминопектин	остатки β -глюкозы
	(разветвлён), остатки α -глюкозы	
Особенности	Высокоразветвлённая структура	Линеен
строения		
Нахождение и	Пищевое вещество	Стенки растительных клеток
функции		
Физ. свойства	Растворяется в воде	Высокопрочен
Хим. свойства	Гидролизуются, горят и образуют эфиры	

Амины

Определение 3. Амины — азотосодержащие органические вещества, производные аммиака, в молекуле которого атомы водорода замещены на углеводородные радикалы.

$$NH_3 + H_2O \longrightarrow NH_4OH$$

 $NH_3 + HCl \longrightarrow NH_4Cl$

Изомеры аминов

$$ullet$$
 Первичный: H — \dot{N} — C_4H_9 (4 изомера) \dot{I} Н

• Вторичные:

$$- C_{2}H_{5} - \dot{N} - C_{2}H_{5}$$

$$- CH_{3} - \dot{N} - C_{3}H_{7}, CH_{3} - \dot{N} - CH - CH_{3}$$

$$+ H + CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

Определение 4. Анилин — амин со следующей структурой:

Имеет слабо выраженные основные свойства (например, реагирует с кислотой, но не с водой). Высокую активность проявляет бензольное кольцо.

$$NH_2$$
 $+ Br_2$
 Br
 $+ 3HBr$

Получение анилина

$$2CH_{4} \xrightarrow{t} C_{2}H_{2} + 3H_{2}O$$

$$3C_{2}H_{2} \xrightarrow{C_{6}H_{6}} C_{6}H_{6}$$

$$C_{6}H_{6} + HNO_{3} \xrightarrow{H_{2}SO_{4}} C_{6}H_{5}NO_{2} + H_{2}O$$

$$C_{6}H_{5}NO_{2} + 3H_{2} \xrightarrow{C_{6}H_{5}NH_{2}} + 2H_{2}O$$

Различные реакции

$$\begin{array}{cccc} C_2H_5NH_2 & + & HCl & \longrightarrow C_2H_5 & \longrightarrow NH_3Cl \\ C_2H_5NH_2 & + & H_2O & \longrightarrow C_2H_5NH_3OH \end{array}$$

Аминокислоты

Определение 5. Аминокислоты — органические вещества, в которых углеводородные радикалы связаны с амино- и карбокси-группой. (N и COOH). Являются амфотерными органическими веществами.

Определение 6. Глицин — аминокислота с формулой $\dot{N}\dot{H}_2$ — CH2 — COOH.

Свойства

• Кислотные:
$$\dot{N}\dot{H}_2$$
 — $\dot{C}H_2$ — $\dot{C}OOH$ + $\dot{N}aOH$ — $\dot{N}\dot{H}_2$ — $\dot{C}H_2$ — $\dot{C}OO$ — $\dot{N}a$

• Основные:
$$\dot{N}\dot{H}_2$$
 — CH_2 — $COOH$ + HCl — $\dot{N}\dot{H}_3$ — CH_2 — $COOH$ — Cl

Изомерия

•
$$\alpha$$
-аланин — NH $_2$ — CH — СООН.

- β -аланин NH₂ CH₂ CH₂ COOH.
- ε -аминокапроновая кислота $\mathring{\mathrm{NH}}_2$ $(\mathrm{CH2})_5$ $\mathrm{COOH}.$

Белки

Определение 7. Белки — высокомолекулярные соединения (полипептиды), построенные из остатков α -аминокислот.

Структура белковой молекулы

1. Цепь α -аминокислотных остатков, связанных пептидными связями. Образуется в результате поликонденсации.

- 2. Спираль, связанная водородными связями.
- 3. Глобула.
- 4. Много глобул.

КЛАССИФИКАЦИЯ РЕАКЦИЙ Классификация по числу и составу веществ

- Реакции соединения $(A + B \rightarrow AB)$.
- Реакции разложения $(AB \rightarrow A + B)$.
- Реакции замещения $(A + BC \to AB + C, A$ и C простые вещества).
- Реакции обмена $(AB + CD \rightarrow AC + BD)$.

Классификация по изменению степени окисления

- Окислительно-восстановительные реакции (СО меняются). Можно рассчитывать методом электронного баланса, например:
 - $-2Mg^0 + O_2^0 \rightarrow 2Mg^{+2}O^{-2}$
 - $[Mg^0-2e^- \rightarrow Mg^{+2}] \times 2$ окисление, Mg восстановитель.
 - $[O_2^0 + 4e^- \rightarrow 2O^{-2}] \times 1$ восстановление, O_2 окислитель.
- Без изменения степени окисления.

Классификация по тепловому эффекту

- Экзотермические (тепло выделяется).
- Эндотермические (тепло поглощается).

Классификация по направлению течения процесса

- Необратимые (одно из веществ «улетает» из раствора, напр., газ или осадок).
- Обратимые.

Классификация по использованию катализатора

- Каталитические.
- Некаталитические.

Определение 8. Катализатор — вещество, ускоряющее химический процесс и не расходующееся в реакции.

Определение 9. Ингибитор — вещество, замедляющее химический процесс и не расходующееся в реакции.

Определение 10. Химическая связь — это совокупность сил, удерживающих атомы друг около друга. В её образовании участвуют валентные электроны.

- 1. **Водородная** образуется между атомами водорода и электроотрицательного атома (N, O или F), например, между молекулами воды.
- 2. **Ковалентная** образуется между атомами неметаллов. Бывает полярной и неполярной, образует атомные и молекулярные решётки.
- 3. Ионная образуется между атомом металла и атомом неметалла.
- 4. Металлическая образуется между атомами металлов. Образует металлич. решётки.

Скорость реакции

Определение 11. c — **концентрация** — количество **молей** вещества на **литр** системы. Если вещество твёрдое, то считается единицей.

Определение 12. v — скорость — изменение концентрации за секунду.

Теорема 1 (Закон действующих масс). Если происходит реакция $xA+yB \to z_1X_1+z_2X_2+\ldots$, то $v=k\cdot c_a^x\cdot c_b^y$. Тут под c_a^x имеется в виду не биномиальный коэффициент, а c_a (концентрация a) в степени y. k — константа скорости —зависит от реакции, температуры, катализаторов и т.п. и имеет свою единицу измерения для каждой реакции.

т.п. и имеет свою единицу измерения для каждой реакции. **Теорема 2 (Правило Вант-Гоффа).** $v_{t_2} = v_{t_1} \cdot \gamma^{\frac{t_2-t_1}{10}}$, где γ — температурный коэффициент реакции. Он обычно лежит в пределах от 2 до 4.

Химическое равновесие

Рассмотрим какую-то обратимую реакцию, например:

$$H_2 + I_2 \longleftrightarrow 2HI + Q$$

Как у прямой реакции, так и у обратной есть какие-то скорости:

$$v_1 = k_1 \cdot C_{H_2} \cdot C_{I_2}$$
$$v_2 = k_2 \cdot C_{HI}^2$$

Определение 13. Химическое равновесие — состояние, при котором $v_1 = v_2$.

Определение 14. Константа равновесия k_p — величина, равная $\frac{k_1}{k_2}$. В нашем случае это также $\frac{C_{HI}^2}{C_{H_2}C_{I_2}}$. Если $k_p > 1$, то считается, что равновесие смещено вправо, а если $k_p < 1$, то смещено влево.

Теорема 3 (принцип Ле-Шателье). Если на систему, находящуюся в равновесии, оказать внешнее воздействие, то оно способствует протеканию реакции в сторону, ослабляющую это воздействие.

Пример. Рассмотрим реакцию $2NO + Cl_2 \longleftrightarrow 2NOCl - Q$. Если понизить температуру, то будет протекать экзотермическая реакция, а не эндотермическая. Если повысить концентрацию NOCl, то ускорится реакция влево. Использование катализатора ничего не даст. Если же повысить давление, то ускорится реакция со сжатием, т.е. реакция вправо.

РЕАКЦИИ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Определение 15. Электролит — вещество, обладающее ионной электропроводимостью. Определение 16. Электролитическая диссоциация — процесс распада электролита на ионы.

Определение 17. Слабый электролит — вещество, диссоциирующее на ионы не более чем на 30%.

$$K_p = \frac{C_{H^+} \times C_{OH^-}}{C_{H_2O}} = \frac{[H^+][OH^-]}{[H_2O]}$$

$$10^{-14} = K_p[H_2O] = [H^+][OH^-] = 10^{-14}$$

$$NaOH[0.1\frac{m}{l}] \to Na^+[0.1\frac{m}{l}] + OH^-[0.1\frac{m}{l}]$$

$$[OH^-] = 0.1 \iff [H^+] = 10^{-13} \iff 13pH$$

При произведении концентрации, большем константы, образуется осадок. Например, для $Fe(OH)_3$ эта константа равна 10^{-33} , если $[Fe^{3+}]=10^{-10}, [OH^-]=10^{-7}$, то произведение 10^{-31} — осадок получится.

Определение 18. Гидролиз — реакция обменного разложения веществ водой. Список слабых электролитов:

- Гидроксид аммония.
- Все нерастворимые гидроксиды.
- Плавиковая кислота HF, сероводородная кислота H_2S , сернистая кислота H_2SO_3 , кремниевая кислота H_2SiO_3 .
- Все органические кислоты, кроме уксусной.
- Дигидрофосфат-ион (слабый) и гидрофосфат-ион (очень слабый).

Гидролиз соли, образованной сильным основанием и слабой кислотой **Пример**: $K_2CO_3 \to 2K^\oplus + CO_3^{2\ominus}$.

Реакция: $K_2CO_3+H_2O \leftrightarrow KOH+KHCO_3$

Есть два способа ускорить гидролиз — повышение температуры и понижение концентрации.

Вывод: соли сильного основания и слабой кислоты имеют щелочную реакцию.

Гидролиз соли, образованной сильной кислотой и слабым основанием

Пример: $AlCl_3 \rightarrow Al^{3\oplus} + 3Cl^{\ominus}$

Реакция: $AlCl_3+H_2O \leftrightarrow AlCl(OH)_2 + 2HCl$

При дополнительном нагревании и уменьшении концентрации может пойти и 3-й уровень гидролиза.

Вывод: соли сильной кислоты и слабого основания имеют кислотную реакцию.

Гидролиз слабой соли

Гидролиз слабой соли идёт до конца. Пример:

 $(NH4)_2S + 2H_2O \longrightarrow H_2S + 2NH_4OH$

Гидролиз сильной соли

Ничего не происходит.

Кислоты и основания

Определение 19. Кислота — соединение, которое при диссоциации образует протон.

Определение 20. Основание — соединение, которое при диссоциации образует ион ОН-.

Заметим, что вода в первом процессе является кислотой, а во второй — основанием. Значит, вещества могут иметь разные свойства в разных реакциях.

Определение 21. Амфотерное соединение — соединение, обладающие как кислотными, так и основными свойствами.