

Machine Learning Workflow

Michell S. Handaka

FOUNDER & CEO

michellsh

michell.s.handaka@glair.ai

Kevin Yauris

AI ENGINEER

kevinyauris

kevin.yauris@gdplabs.id

Contact Us

glair

∰ glair.ai

hi@glair.ai

OUTLINE

Introduction to GLAIR

Launching an Al Initiative

Study Case: Propensity Modeling

Machine Learning Workflow

Q&A

Introduction to GLAIR

glair Products and Services

plair Consulting Service

On demand talents capable of crafting customized solutions

nalytics Platform

An easy & intelligent way to turn your data into insights

Fraud Detection System

White Label Chat Platform

Chatbot

Credit Score

Refiller Assignment

PWA Ordering Online System

Propensity Modeling

Recommendation System

OCR

Intelligent Extraction

Planogram Analytics

glair Consulting Service

Sentiment Analysis & Topic Modeling

License Plate Recognition

Face Recognition

Launching an Al initiative

6 Preliminary Steps Before Modeling

01

Define Objectives

02

Set Expectations

03

Understand the Data

04

Translate the Business Problem Into an Al Problem

05

Determine the Development and Deployment Type 06

Set Success Criteria

01 Define Objectives

- Problems vs opportunities
- Increase revenue vs reduce cost
- Improvements vs innovations
- Cost and time vs differentiation

02 Set Expectations

- Do you know the use cases in your industry?
- Have others approached and solved the problem using AI before?
 - What are the state of the art algorithms in the industry?
 - How about in academic setting?
 - What libraries are available?
 - What are the challenges others overcome?

Can you solve the problem using traditional programming?

02 Set Expectations

- Calculate your resources
 - Time
 - Engineers
 - Computing power

Understand the Data

- What data do you need and what data do you have?
- Do you have enough?

03

- For image classification~1000 images for each class
- For structured data classification at least 100 rows, 10 rows for each class
- Where do you store the data and how do they flow?
- What is your data quality?

Understand the Data

What type of data do you have?

- Structured (Tables)
- Unstructured (Image, Text, Speech)

The data type will affect the algorithm and library choices (including data processing)

Data Type	Algorithm	Library	SaaS
Structured	Logistic Regression,	Pandas, Apache Spark,	Google AutoML Table, Microsoft Azure Machine
	Decision Tree Family, GLM	Scikit-learn, XGBoost	Learning Studio
Image	CNN (Inception, ResNet,)	Tensorflow, Keras, OpenCV	Konvergen, Amazon Rekognition, Google Cloud Vision/AutoML, Microsoft Azure Computer Vision
Text	RNN, Transformer	Tensorflow, Keras, Spacy,	Prosa.ai, Amazon Comprehend, Google Cloud
	(BERT, GPT,)	Gensim	Natural Language/AutoML, Microsoft Text Analytics

04 Translate the Business Problem into an Al Problem

Business Problem	Al Problem	
Credit Scoring	Binary Classification	
Propensity Model	Binary Classification	
Fraud Detection	Binary Classification	
Demand Prediction	Regression	
Sentiment Analysis	NLP: Text Classification	
Face Recognition	CompVis: Image/Face Classification	

04 Translate the Business Problem into an Al Problem

Business Problem	Business Metrics	ML Metrics
Credit Scoring	Revenue and NPL Rate	F1 Score
Propensity Model	Lift Metrics PR-AUC	
Fraud Detection	Precision and FP	PR-AUC
Demand Prediction	#Out of stock order	RMSE

Determine the Development and Deployment Type

PoC vs production

05

- On-premise vs cloud
 - Affects library choices
 (e.g. cannot use cloud Saas on-premise!)

Set Success Metrics

06

- Useful for measuring progress
- Go for reasonable metrics (current state of the art)

Study Case: Propensity Modeling

for Bancassurance

Need to understand existing customers segmentation

Need to match right offers with right customers

INPUT

Customer Demographic Data Product Specification Data

Interaction Data: Transaction Data Contexts Data: Promo Events

External Data: Mortality Table

Customer Segmentation

Lead Generation (Classification)

Premium Suggestion (Regression)

Business

Data Information

CUSTOMER & TRANSACTION DATA FOR THE LAST 18 MONTHS

Customer

Interaction

Transaction

External

Product

Demographic data of existing bancassurance customers: Credit card, auto finance, mortgage, a "main" table that shows customers' attributes

SAMPLE CASE

Current month: March 2021

Training data

September 2019 - February 2021

Leads data

April 2021

For example:

If it is March 2021 and we have data for the last 18 months, then September 2019 - February 2021 will be used as our training data, and leads data will be obtained for April 2021.

Business

Business Metrics

Lift Metric

Lift metric is a measure **comparing**the **relative performance** of
a **propensity model** vs. a **random guess**

Business → Business Metrics

Lift Metric for Propensity

Sample data:

Rank	Actual	Approached?
1	1	V
2	0	V
3	1	V
4	1	V
5	0	V
6	0	x
7	1	x
8	0	x
9	0	x
10	0	X

Bucket size is number of customers that will be approached and determined according to the company's capabilities

The lift metric is defined as the ratio of model score to random guess score

- 1. There are 10 customers
- 2. The model will rank these customers based on their probability to convert (higher rank indicates higher chance to convert)
- 3. Say we decide to approach 5 customers (the bucket size is 5)
- 4. After approaching the top 5 customers, only 3 of them convertedIn this case, our model's score is: 3/5 = 0.6
- 5. Assuming that we approach all 10 customers (random guess), we will have 4 converting customers. So the random guess score is: 4/10 = 0.4
- . The model's lift is then :0.4

Business

Benefits

Automated Pipeline

to create propensity models and make predictions anytime

Robust

to changes in data distribution or behavior

Extensible

for new data or custom processes to be added easily

Machine Learning Workflow

Machine Learning Workflow

01 Data Ingestion

- Transportation of data from assorted sources
 to a storage medium where it can be accessed, used, and analyzed
 by an organization.
- The destination is typically a data warehouse, data mart, database,
 or a document store.
- Sources may be almost anything.

01 Data Ingestion Type

Batch processing

the ingestion layer periodically collects and groups source data and sends it to the destination system.

 Groups may be processed based on any logical ordering, the activation of certain conditions, or a simple schedule.

Real-time processing

(stream processing or streaming) involves no grouping at all.

- Data is sourced, manipulated, and loaded as soon as it's created or recognized by the data ingestion layer.
- This kind of ingestion is more expensive, since it requires systems to constantly monitor sources and accept new information.

Machine Learning Workflow

02 Data Preparation

- Step in which the data gets transformed, or Encoded, to bring it to such a state that now the machine can easily parse it.
- Purpose:

The features of the data can now be easily interpreted by the algorithm.

- Data cleansing or data cleaning:
 - detecting and correcting (or removing) corrupt or inaccurate records from a record set, table, or database
 - identifying incomplete, incorrect, inaccurate or irrelevant parts of the
 data and then replacing, modifying, or deleting the dirty data
- ETL (Extract, transform, load)

Data Preparation - Extract, Transform, Load (ETL)

Extract, Transform, Load (ETL)

- Extract: step where sensors wait for upstream data sources to land. Transport the data from their source locations to further transformations.
- Transform: apply business logic and perform actions such as filtering,
 grouping, and aggregation to translate raw data into analysis-ready datasets.
- Load: load the processed data and transport them to a final destination.

Machine Learning Workflow

03 Exploratory Data Analysis (EDA)

- Exploratory Data Analysis
 Approach of analyzing data sets to summarize their main characteristics,
 often using statistical graphics and other data visualization methods.
- The objectives of EDA are to:
 - Suggest hypotheses
 - Assess assumptions
 - Support the selection of appropriate tools and techniques
 - Provide a basis for further data collection

Exploratory Data Analysis (EDA) Technique and Tools

- Graphical / Visualization techniques
- Dimensionality reduction
- Numerical summaries
- Statistical testing

03

Exploratory Data Analysis (EDA) Visualization Techniques

04 Feature Engineering

- Feature engineering is the process of using domain knowledge to extract
 features from raw data
- Feature engineering efforts mainly have two goals:
 - Preparing the proper input dataset
 - Improving the performance of machine learning models.
- There is a lot the of feature engineering, some of them is:
 - Imputation
 - Handling outliers
 - Binning
 - Log transformation
 - Grouping operations

Model Training and Tuning

- Choose which model to try
- Better try a simple model first with minimal feature engineering and see how well it perform
- Iteratively using a more complex model and features if needed
- Having a baseline model to make sure each complexity added into the model is worth to have
- Consider other constraints:
 - cost, explainability, and speed
- Maximize model performance by doing hyperparameter tuning

06 Model Evaluation

- Evaluate the model with the test data
- Pick a suitable metrics for the problem.
 - There must be a ML and business metrics for the problem
- If the data is unbalanced, precision or accuracy is not a suitable metrics
- If the business metrics achieved then continue with model deployment, if not reiterate the model creation with data augmentation (adding more data) or feature augmentation (adding other features)

Model Deployment

- Enable the model to be used for inference
- Considerations:
 - How to wrap the prediction code as a production-ready service?
 - How to ship and load the dumped model file?
 - Which API / Protocol to use?
 - Scalability, Throughput, Latency.
 - Deployments
 - How to deploy new model versions?
 - How to rollback?
 - Can we test it using Canary Deployments or Shadow Deployments?

ML Serving Frameworks

There are some several frameworks that provide solution

TensorFlow Serving

- TensorFlow serving provides an easy integration for developers to incorporate AI in software systems and is already been used in productionizing a lot of google products.
- It can serve multiple models and multiple versions of the same model simultaneously

08 Model Monitoring

- To make sure model still perform well when new data coming.
- Things to be monitored:
 - Service Health
 - Data Quality & Integrity
 - Data & Target Drift
 - Bias/fairness

Thank You! **Any Questions?**

Michell S. Handaka

FOUNDER & CEO

michellsh

michell.s.handaka@glair.ai

Kevin Yauris

AI ENGINEER

kevinyauris

kevin.yauris@gdplabs.id

glair

∰ glair.ai

hi@glair.ai