

Синиқ тўғри чизиқ

Озарбайжон ўзининг гиламлари билан машхур

Сиз гилам дизайни бўйича юқори малакали малакали мутахассис сифатида сломанная прямая - яъни синиқ тўғри чизиқни чизиб янги дизайн яратмоқчиси.

Синиқ тўғри чизиқ бу икки ўлчамли фазодаги t та тўғри чизиқ кесмаси кетмакетлиги бўлиб, t та p_0, \ldots, p_t нуқталар билан қуйидагича аниқланади:

Хар бир $0 \leq i \leq t-1$ учун p_i ва p_{i+1} нуқталарни бирлаштирувчи кесма мавжуд.

Гиламнинг янги дизайнини яратиш учун Сиз икки ўлчамли фазода n та **точка - нуктани** белгиладингиз.

 $i \ (1 \leq i \leq n)$ нуқтанинг координаталари (x[i],y[i]) га тенг бўлиб, **Хеч қандай** иккита нуқта бир хил х ёки бир хил у координатага эга эмас

Сиз қуйидаги шартларга жавоб берувчи:

- (0,0) нуктада бошланади (яъни sx[i] = 0 ва sy[0] = 0\$),
- барча нуқталарни ўз ичига олади (кесманинг охири сифатида бўлиши шарт эмас),
- фақат горизонтал ёки фақат вертикал кесмалардан иборат (синиқ тўғри чизиқни белгиловчи иккита кетма-кет нуқта тенг х ёки у координатага эга) синиқ тўғри чизиқни белгиловчи $(sx[0],sy[0]),(sx[1],sy[1]),\ldots,(sx[k],sy[k])$ нуқталар кетма-кетлигини топмоқчисиз.

Синиқ тўғри чизиқ хохлаган усулда ўз-ўзи билан кесишиши ёки устма-уст тушиши мумкин. Умуман олганда, текисликнинг хар бир нуқтаси синиқ тўғри чизиқнинг ихтиёрий кесмалар сонига тегишли бўлиши мумкин.

Ушбу масала чиқиш файлларини қисман бахолашли масала. Сизга нуқталар жойлашувини белгиловчи 10 та файл кириш маълумотлари билан берилган.

Хар бир кириш маълумотли файлга талаб этилган хусусиятларга эга синиқ тўғри чизиқни характерловчи файлни юборишингиз керак.

Синиқ тўғри чизиқни характерловчи хар бир чиқиш файли учун якуний Сизнинг балингиз синиқ тўғри чизиқдаги (таркибидаги) количество отрезков - яъни кесмалар миқдорига боғлиқ.

Ушбу масала учун Сиз қандайдир бошланғич код юборишингиз керак эмас.

Кириш маълумотлари формати

Хар бир кириш файли қуйидаги форматга эга:

```
• сатр 1: n
• сатр 1+i (1 \le i \le n учун): x[i] y[i]
```

Чиқиш маълумотлари формати

Хар бир чиқиш маълумотлари файли қуйидаги форматга эга бўлиши керак:

```
• сатр 1: k
• сатр 1+i (1\leq i\leq k учун): sx[i] sy[i]
```

Иккинчи сатрда sx[1] ва sy[1] бўлиши кераклигига ахамият беринг (яъни натижада sx[0] ва sy[0] бўлмаслиги лозим. Хар бир sx[i] ва sy[i] бутун сон бўлиши керак.

Мисол

Куйидаги мисол учун:

```
4
2 1
3 3
4 4
5 2
```

тўғри натижа (чиқиш) қуйидагича бўлиши мумкин:

```
6
2 0
2 3
5 3
5 2
4 2
4 4
```


Ушбу мисол масалага бевосита кириш маълумотларида берилмаганлигига эътибор беринг.

Чекловлар

- 1 < n < 100000
- $1 \le x[i], y[i] \le 10^9$
- x[i] ва y[i] ларнинг барча қийматлари бутун сонлардир.
- Хеч қандай иккита нуқта x ёки y бир хил координатага эга эмас, яъни $x[i] \neq x[j]$ ва $y[i] \neq y[j]$, $i \neq j$ учун.
- $-2 \cdot 10^9 \le sx[i], sy[i] \le 2 \cdot 10^9$
- Хар бир юборилган файлнинг (ёки чиқиш файлнинг, ёки архивнинг) ўлчами 15МБ дан ошмаслиги лозим.

Бахолаш тизими

Хар бир тест 10 гача нуқтадан иборат. Агар сизнинг тест учун чиқиш файлингиз хусусиятлари берилган синиқ тўғри чизиқни таърифламаса, унга 0 балл берилади. Акс холда берилган балл тестдан тестга камайиб борувчи кетма-кетлик c_1,\ldots,c_{10} билан белгиланади

Сизнинг ечимингиз k та кесмадан иборат хақиқий синиқ чизиқ деб фараз қилайлик. Бу холда сиз оладиган балл:

- ullet i балл, агар $k=c_i$ ($1\leq i\leq 10$ учун),
- ullet $i + rac{c_i k}{c_i c_{i+1}}$ балл, агар $c_{i+1} < k < c_i$ ($1 \leq i \leq 9$ учун),
- 0 балл, агар $k > c_1$,
- 10 балл, агар $k < c_{10}$.

Қуйида хар бир тест учун c_1, \dots, c_{10} кетма-кетлик берилган

Тестлар	01	02	03	04	05	06	07-10
n	20	600	5 000	50 000	72018	91 891	100 000
c_1	50	1 200	10 000	100 000	144036	183782	200 000
c_2	45	937	7 607	75336	108 430	138292	150475
c_3	40	674	5213	50671	72824	92801	100 949
c_4	37	651	5 125	50 359	72446	92371	100 500
c_5	35	640	5081	50203	72257	92156	100275
c_6	33	628	5037	50047	72067	91 941	100050
c_7	28	616	5020	50025	72044	91 918	100027
c_8	26	610	5012	50014	72033	91 906	100015
c_9	25	607	5 008	50 009	72027	91 900	100 009
c_{10}	23	603	5 003	50003	72021	91 894	100003

Визуализатор

Ушбу масаланинг иловасида кириш ва чиқиш файлларини намойиш қилиш имкониятини берувчи скрипт келтирилган.

Кириш файлини визуализация қилиш учун қуйидагни командани ишлатинг:

```
python vis.py [input file]
```

Шунингдек, қуйидаги командани қуллаган холда хар бир кириш файли учун Сиз ечимингизни визуализация қилишингиз мумкин. Техник чекловлар сабабли ушбу визуализатор чиқиш файлидаги фақат **биринчи** 1000 **кесма**ни курсатади.

```
python vis.py [input file] --solution [output file]
```

Мисол:

python vis.py examples/00.in --solution examples/00.out