编译原理 - 作业(2): 语法分析 LL

20337025 崔璨明

1.

(1) 最左推导:

$$S = > SS = > S * S = > (S) * S = > (S + S) * S = > (a + S) * S = > (a + a) *$$

(2) 最右推导:

$$S => SS => Sa => S*a => (S)*a => (S+S)*a => (S+a)*a => (a+a)*a$$

(3) 该串一棵语法分析树如下:

(4) 该文法是二义性的,考虑字符串 a + a * a , 这个字符串可以有两种不同的解释。一个解释是将它解析为 (a + a) * a , 另一个解释是解析为 a + (a * a) , 即存在两个最左推导:

$$S => SS => S + SS => a + SS => a + S * S => a + a * S => a + a * a$$

$$S => S + S => a + S => a + SS => a + S * S => a + a * S => a + a * a$$

(5) 该文法不是LL文法,因为存在左递归,调整如下:

$$R \to +SR|*R|\varepsilon$$

2,

(1)

文法 G 的 FIRST集:

$$FIRST(B) = \{ \epsilon, +, - \}$$

$$FIRST(C) = \{ \epsilon, *, / \}$$

$$FIRST(T) = \{ (, a \}$$

$$FIRST(F) = \{ (, a \}$$

FIRST(A) = { +, - } FIRST(M) = { *, / }

文法 G 的 FOLLOW集:

FOLLOW(E) = { \$,), +, - } FOLLOW(T) = { +, -,), \$, / }

FOLLOW(B) = { \$,), +, - }

FOLLOW(C) = { +, -,), \$, *, / }

FOLLOW(F) = { +, -,), \$, *, / }

(2) G 是 LL(1) 文法。

构建G的分析表如下:

	a	+	-	*	1	()	\$
А		A→+	A→-					
В		B→ ATB	B→ ATB				B $ ightarrow\epsilon$	$B{\to}\;\epsilon$
С		$C{ o}\;\epsilon$	$ extsf{C}{ ightarrow}$ ϵ	C→ MFC	C→ MFC		$ extsf{C}{ ightarrow}\epsilon$	$ extsf{C}{ ightarrow} \epsilon$
E	E→ TB					E→ TB		
М				M→*	M ->/			
Т	T→ FC					T→FC		
F	F→a					F→(E)		

表项元素唯一,因此G是LL(1)文法。

3、

(1)对文法 G1:

 $FIRST(S) = \{\epsilon, b\}$, $FIRST(A) = \{\epsilon, b\}$

 $FOLLOW(S) = \{\$\}$, $FOLLOW(A) = \{\$, b\}$

LL(1)分析表:

	b	\$
S	S->A	
A	A->bbA	Α->ε

由G1的分析表可知,表项元素唯一,所以G1是 LL(1) 文法。

构建G2的LL(1)分析表,得:

	b	\$
S	S->A	
A	A->Abb, A->ε	Α->ε

表项元素不唯一,因此G2不是 LL(1) 文法。

将其变为LL(1)文法:

S -> A

A -> bbB

A -> ε

B -> bbB

Β -> ε

(3)

串: bbbb, b(i)表示指针指向第i个b

Stack(left is top)	Input	Action	
S\$	b(1)	S->A	
A\$	b(1)	A->bbA	
bbA\$	b(1)	匹配, 指针移动, 出栈	
bA\$	b(2)	匹配, 指针移动, 出栈	
A\$	b(3)	A->bbA	
bbA\$	b(3)	匹配, 指针移动, 出栈	
bA\$	b(4)	匹配, 指针移动, 出栈	
A\$	\$	Α->ε	
\$	\$	Accept	