Atmospheric Composition Variable Standard Name Recommendations

May 9, 2022

1 Overview

In the ICARTT V2.0 file format standard an additional variable definition, called a standard variable name, is now required in an effort to improve usability, standardization, and machine-readability. The standard variable name is designed to be a tag used along with the PI-generated data product variable short name. This document recommends a set of guidelines for creating standard variable names for different types of measurements and provides a list of standard variable names that cover the current list of measurements conducted during the suborbital field studies on atmospheric composition.

The proposed standard names are constructed using controlled vocabulary terms with four parts: measurement category (MeasurementCategory), core name (CoreName), acquisition method (AcquisitionMethod), and descriptive attributes (DescriptiveAttributes), which are separated by an underscore:

Standard Name = MeasurementCategory_CoreName_AcquisitionMethod_DescriptiveAttributes

This structure is similar to that of the Climate and Forecast Metadata Convention (CF) and the Geoscience Standard Names (GSN) ontology. It is designed to support data discovery, distribution, interoperability, and use, by accurately describing all variables from different measurements/instruments while using a consistent format for interoperability. For data discovery, the MeasurementCategory and CoreName can be used to conduct a broad search to identify all measurements of the same physical quantity from different instruments and/or field studies. The DescriptiveAttributes can then be used to narrow down the search for data of interest. As discussed in later sections, the number and nature of DescriptiveAttributes are dependent on the type of measurement. The DescriptiveAttributes can also provide additional description necessary for research use of data. The AcquisitionMethod identifies the sampling technique used for the measurement.

1.1 MeasurementCategory

MeasurementCategory broadly groups all measurement standard names into one of thirteen categories. Additionally, it provides uniqueness when using only CoreNames could be ambiguous (e.g., a particle number concentration could be describing cloud or aerosol particles). Within each MeasurementCategory, the format of each standard name is consistent (i.e. variable standard names within each category have the same number and type of descriptive attributes). The types and/or number of attributes have been tailored to each type of measurement (e.g., aerosol particle optical property vs. aerosol particle composition) or medium (e.g., trace gas vs. aerosol particle); therefore, MeasurementCategory is defined by the measurement medium and type of measurements. See Table 1 for the complete list of MeasurementCategories. The variable standard names for each MeasurementCategory are introduced in Section 2.

Table 1: List of Values for MeasurementCategory

MeasurementCategory	Description	Number of Descriptive Attributes
Gas	Trace gases properties, e.g., abundance and isotope ratios	2
AerComp	Aerosol particle composition	3
AerMP	Aerosol particle microphysical properties	4
AerOpt	Aerosol particle optical properties	4
CldComp	Cloud particle composition	3
CldMicro	Cloud particle microphysical properties	3
CldMacro	Cloud macrophysical properties	0*
CldOpt	Cloud optical properties	1
Met	Meteorology parameters	0*
GasJValue	Gas phase photolytic rate coefficients	3
AquJValue	Aqueous phase photolytic rate coefficients	3
Platform	Measurement platform (e.g., aircraft, ship, motor vehicles) navigation and attitude	0*
Rad	Radiation measurements	1

^{*} While no descriptive attributes exist for these measurement categories, '_None' must be used in place of the DescriptiveAttribute.

1.2 CoreName

The CoreName is the basic identification of the physical quantity being reported. The CoreNames chosen are those that have been commonly used in literature, which are, by definition, "community acceptable".

1.3 AcquisitionMethod

The AcquisitionMethod refers to the sampling technique of the measurement. The modes chosen are similar to the ESA Atmospheric Validation Data Centre (EVDC) acquisition method

metadata attributes, which are InSitu, Numerical Simulation, Remote Sensing, and Sample. The complete list is given in Table 2.

Table 2: List of Values for AcquisitionMethod

AcquisitionMethod	Description
InSitu	Sampling in close proximity of the instrument or the sampling platform
VertCol	Measurement of a remotely sensed vertically integrated column, where the column measured is nominally perpendicular to the earth's surface
SlantCol	Measurement of a remotely sensed vertically integrated column, where the column measured is not nominally perpendicular to the earth's surface (e.g. the instrument is sun-tracking)
Profile	Measurement of vertically resolved profile

1.4 DescriptiveAttributes

The descriptive attributes provide measurement and/or data reporting information relevant for data use and faceted data search, particularly when comparing results obtained with other methods of observations. The number and types of descriptive attributes are measurement-dependent; the attributes required for each MeasurementCategory can be found in their respective sections below. For certain measurements, DescriptiveAttributes may not be necessary. In this case, "None" will be used as the value for this attribute.

The following sections detail the controlled vocabulary for CoreNames and DescriptiveAttributes pertaining to each MeasurementCategory.

2 Standard Variable Names

2.1 Trace Gas Standard Names

The MeasurementCategory for trace gas is "Gas". The associated descriptive attributes are "MeasurementSpecificity" and "Reporting". The "MeasurementSpecificity" attribute specifies whether the CoreName represents a single species (S), combination of multiple species (M), or is not applicable (NA) for a gas phase reaction rate or ratio of species. The "Reporting" attribute describes the way a trace gas is reported, which are defined in Table 3. When reporting in standard temperature and pressure (STP), the temperature and pressure conditions under which the measurement is reported must be noted in the header or metadata of the data file, as "standard temperature" varies across the research community.

Table 3: Trace Gas Measurement Reporting Attributes

Reporting Attributes	Description
DVMR	Volumetric mixing ratio with respect to dry air (i.e., no water vapor)
AVMR	Volumetric mixing ratio with respect to ambient air
DMF	Molar fraction with respect to dry air
AMF	Molar fraction with respect to ambient air
ConcSTP	Number or mass concentration reported at standard temperature and pressure
ConcAMB	Number or mass concentration reported at ambient temperature and pressure
CNDAMB	Column integrated number density reported at ambient temperature and pressure
d13C	Deviations in the ¹³ C/ ¹² C Stable Carbon Isotope Ratio relative to a standard
d14C	Deviations in the ¹⁴ C/ ¹² C Carbon Isotope Ratio relative to a standard
dD	Deviations in the D/H Stable Hydrogen Isotope Ratio relative to a standard
d18O	Deviations in the ¹⁸ O/ ¹⁶ O Stable Oxygen Isotope Ratio relative to a standard

The CoreNames for trace gas measurements are given in Table 4. The names of specific species are a combination of chemical formulas and chemical names. The chemical names used for volatile organic carbon species follow a standard nomenclature, which has been agreed upon by multiple measurement groups. In addition, most of these names are linked to Chemical Abstracts Service (CAS) numbers, which are unique for each chemical compound. Each CoreName has a corresponding MeasurementSpecificity (S, M, or NA).

In certain cases, some instruments do not have sufficient selectivity to measure individual specific trace gas species. These data are reported as the sum of multiple species or a group of species. For these lumped measurements, the core names are either those used in literature (e.g., NOy, PNs) or a combination of names for specific compounds (e.g., iButeneAnd1Butene for the sum of Isobutene and 1-Butene).

The following example provides the controlled vocabulary options for AcquisitionMethod, MeasurementSpecificity, and Reporting attribute that can be used in a trace gas standard name.

Trace Gases

Gas_CoreName_AcquisitionMethod_MeasurementSpecificity_Reporting
AcquisitionMethod = InSitu, VertCol, SlantCol, Profile
MeasurementSpecificity* = S (single species), M (multiple species), NA (not applicable)
Reporting = DVMR, AVMR, DMF, AMF, ConcSTP, ConcAMB, CNDAMB, d13C, d14C, dD, d18O

Example for an in-situ measurement of CO2 gas reported in molar fraction with respect to dry air: Gas_CO2_InSitu_S_DMF

Example for an in-situ measurement of total reactive nitrogen species reported in volumetric mixing ratio with respect to ambient air: Gas_NOy_InSitu_M_AVMR

Example for a remote sensing measurement of slant column NO2 gas reported column number density with respect to ambient air: Gas_NO2_SlantColumn_S_CNDAMB

Table 4 provides a list of trace gas CoreNames, along with definition, chemical formula, CAS number, and MeasurementSpecificity. For convenience, 7 subgroups are used to categorize the variables: Oxygen Species, Hydrogen Species and Radicals; Nitrogen Species; Sulfur Species; Halogens and Halogenates; Hydrocarbons: Alkanes, Alkenes, and Alkynes; Hydrocarbons: Aromatics; and Oxygenated Inorganic and Volatile Organic Carbon Species, similar to the terms used in the Global Change Master Directory (GCMD).

Table 4: List of Trace Gas CoreNames and Definitions

CoreName	Definition	Chemical Formula	CAS Number	Specificity
Oxygen Species, H	lydrogen Species and Radicals			
H2	Hydrogen	H2	1333-74-0	S
O2	Oxygen	O2	7782-44-7	S
O2toN2ratio	Ratio of Oxygen to Nitrogen	N/A	N/A	NA
APO	Atmospheric Potential Oxygen (O2 + 1.1 x (CO2 - 350))	N/A	N/A	NA
НО2	Hydroperoxy radical	HO ₂	3170-83-0	S
CH3O2	Methylperoxy radical	CH3O2	2143-58-0	S
RO2	Sum of Organic Peroxy radicals	N/A	N/A	M
HO2AndRO2	Sum of Hydroperoxy radical and Organic Peroxy radicals	N/A	N/A	M
ОН	Hydroxyl radical	ОН	3352-57-6	S
OHR	OH Reactivity	N/A	N/A	NA

^{*}Measurement Specificity corresponding to each CoreName can be found in Table 4

CoreName	Definition	Chemical Formula	CAS Number	Specificity
H2O2	Hydrogen peroxide	H2O2	7722-84-1	S
O3	Ozone	O3	10028-15-6	S
O1D	O(1D)	О		S
O3P	O(3P)	О		S
Н	Hydrogen atom	Н	12385-13-6	S
НСО	Formyl radical	НСО	2597-44-6	S
СН3	Methyl radical	СН3	2229-07-4	S
СНЗО	Methoxy radical	СНзО	2143-68-2	S
C2H5O	Ethoxy radical	C2H5O	2154-50-9	S
CH3COO2	Peroxyacetyl radical	C2H3O3	36709-10-1	S
СНЗСОО	Acetoxy radical	C2H3O2	N/A	S
СН3СН2	Ethyl radical	C2H5	2025-56-1	S
СН3СО	Acetyl radical	C2H3O	3170-69-2	S
Nitrogen Species				
NH3	Ammonia	NH3	7664-41-7	S
NF3	Nitrogen trifluoride	NF3	7783-54-2	S
N2O	Nitrous oxide	N ₂ O	10024-97-2	S
NO	Nitric oxide	NO	10102-43-9	S
NO2	Nitrogen dioxide	NO ₂	10102-44-0	S
NO3	Nitrate radical	NO ₃	12033-49-7	S
N2O5	Nitrogen pentoxide	N2O5	10102-03-01	S
HNO2	Nitrous acid	HNO ₂	7782-77-6	S
HNO3	Nitric acid	HNO ₃	7697-37-2	S
HNO4	Peroxynitric acid	HNO4	26404-66-0	S
HCN	Hydrogen cyanide	HCN	74-90-8	S
CH3CN	Acetonitrile	C2H3N	75-05-8	S
HNCO	Isocyanic acid	HNCO	75-13-8	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
Acrylonitrile	Acrylonitrile	C3H3N	107-13-1	S
MeAcrylonitrile	Methylacrylonitrile	C4H5N	126-98-7	S
PropNitrile	Propanenitrile	C3H5N	107-12-0	S
BenzNitrile	Benzonitrile	C7H5N	100-47-0	S
Pyrrole	Pyrrole	C4H5N	109-97-7	S
C4H5N	Sum of C4H5N isomers	C4H5N	N/A	M
Pyridine	Pyridine	C5H5N	110-86-1	S
Nitromethane	Nitromethane	CH3NO2	75-52-5	S
CINO2	Nitryl chloride	ClNO ₂	13444-90-1	S
ClONO2	Chlorine nitrate	CINO3	14545-72-3	S
MeONO2	Methyl nitrate	CH3NO3	598-58-3	S
EthONO2	Ethyl nitrate	C2H5NO3	625-58-1	S
nPropONO2	n-Propyl nitrate	C3H7NO3	627-13-4	S
iPropONO2	Isopropyl nitrate	C3H7NO3	1712-64-7	S
nButONO2	n-Butyl nitrate	C4H9NO3	928-45-0	S
x2ButONO2	2-Butyl nitrate	C4H9NO3	924-52-7	S
iButONO2	Isobutyl nitrate	C4H9NO3	543-29-3	S
iButONO2And2ButON O2	Sum of Isobutyl nitrate and 2-Butyl nitrate	C4H9NO3	N/A	M
tButONO2	t-Butyl nitrate	C4H9NO3	0926-05-06	S
nPentONO2	n-Pentyl nitrate	C5H11NO3	1002-16-0	S
x2PentONO2	2-Pentyl nitrate	C5H11NO3	21981-48-6	S
x3PentONO2	3-Pentyl nitrate	C5H11NO3	N/A	S
iPentONO2	Isopentyl nitrate	C5H11NO3	543-87-3	S
x3Me2ButONO2	3-Methyl-2-butyl nitrate	C5H11NO3	N/A	S
x2OxoEthONO2	2-Oxoethyl nitrate	C2H3NO4	72673-15-5	S
AcetylONO2	Acetyl nitrate	C2H3NO4	591-09-3	S
PAN	Peroxyacetyl nitrate	C2H3NO5	2278-22-0	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
APAN	Peroxyacryloyl nitrate	C3H3NO5	N/A	S
PPN	Peroxylpropionyl nitrate	C3H5NO5	5796-89-4	S
PBN	Peroxybutyryl nitrate	C4H7NO5	N/A	S
PiBN	Peroxyisobutyric nitrate	C4H7NO5	N/A	S
PPeN	Peroxypentyryl nitrate	C5H9NO5	N/A	M
PBzN	Peroxybenzoyl nitrate	C7H5NO5	N/A	S
MoPN	Methoxy Peroxyacetyl nitrate	C2H6NO6	N/A	S
MPAN	Peroxymethacryloyl nitrate	C4H5NO5	N/A	S
PNs	Sum of Peroxynitrates	N/A	N/A	M
ANs	Sum of Akylnitrates	N/A	N/A	M
NOx	Nitrogen oxides (NO + NO2)	N/A	N/A	M
NOy	Total Reactive Nitrogen	N/A	N/A	M
NOyasNO2	Total Reactive Nitrogen Converted to NO2	N/A	N/A	M
NOyasNO	Total Reactive Nitrogen Converted to NO	N/A	N/A	M
x2HydEthONO2	2-Hydroxyethyl nitrate	C2H5NO4	16051-48-2	S
C3H7NO4	Sum of C3H7NO4 Hydroxy nitrates	C3H7NO4	N/A	M
C3H5NO4	Sum of C3H5NO4 Carbonyl nitrates	C3H5NO4	N/A	M
C4H7NO4	Sum of C4H7NO4 Isomers	C4H7NO4	N/A	M
C4H7NO5	Sum of Isomers, including C4 Hydroxy Carbonyl Nitrates	C4H7NO5	N/A	M
C4H9NO4	Sum of C4H9NO4 Hydroxy nitrates	C4H9NO4	N/A	M
ISOPN	Sum of Isoprene Hydroxy Nitrate Isomers	C5H9NO4	N/A	M
C5H9NO5	Sum of C5H9NO5 Isomers, including Hydroperoxy Nitrates of Isoprene	C5H9NO5	N/A	M
NitroCatechol	Nitrocatechol, aka 4-nitrocatechol	C6H5NO4	3316-09-04	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
	Nitroguaiacol, including 4-			
NitroGuaiacol	Nitroguaiacol and 5- Nitroguaiacol	C7H7NO4	N/A	M
x4NitroGuaiacol	4-Nitroguaiacol	C7H7NO4	3251-56-7	S
x5NitroGuaiacol	5-Nitroguaiacol	C7H7NO4	636-93-1	S
Silicon Species				
C10H30O5Si5	Decamethylcyclopentasiloxane	C10H30O5Si5	541-02-6	S
Sulfur Species				
CS2	Carbon disulfide	CS2	75-15-0	S
CH3SH	Methanethiol	CH4S	74-93-1	S
DMS	Dimethyl sulfide	C2H6S	75-18-3	S
DMDS	Dimethyl disulfide	C2H6S2	624-92-0	S
DMSO	Dimethyl sulfoxide	C2H6OS	67-68-5	S
DMSO2	Dimethyl sulfone	C2H6O2S	67-71-0	S
H2SO4	Sulfuric acid	H2SO4	7664-93-9	S
MSA	Methanesulfonic acid	CH4O3S	75-75-2	S
OCS	Carbonyl sulfide	OCS	463-58-1	S
SF6	Sulfur hexafluoride	SF6	2551-62-4	S
C2H4O3S	Sum of C2H4O3S isomers	C2H4O3S	N/A	M
SO2F2	Sulfuryl fluoride	SO ₂ F ₂	2699-79-8	S
SO2	Sulfur dioxide	SO ₂	7446-09-05	S
HPMTF	Hydroperoxymethyl thioformate	C2H3O3S	N/A	S
Halogens and Halog	genates			
Cl	Chlorine atom	Cl	22537-15-1	S
HC1	Hydrogen chloride	HCl	7647-01-0	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
C12	Chlorine	Cl2	7782-50-5	S
ClO	Chlorine monoxide	ClO	14989-30-1	S
HOCl	Hypochlorous acid	HOCl	7790-92-3	S
Br	Bromine atom	Br	10097-32-2	S
HBr	Hydrogen bromide	HBr	10035-10-6	S
Br2	Bromine	Br2	7726-95-6	S
BrCl	Bromine chloride	BrCl	13863-41-7	S
BrO	Bromine monoxide	BrO	15656-19-6	S
BrONO	Bromine nitrite	BrNO2	N/A	S
BrONO2	Bromine nitrate	BrNO3	40423-14-1	S
BrNO2	Bromine nitrite	BrNO2	N/A	S
HOBr	Hypobromous acid	HOBr	13517-11-8	S
Br2AndHOBr	Sum of HOBr and Br2	N/A	N/A	M
Br2O	Dibromine monoxide	Br2O	21308-80-5	S
BrCN	Cyanogen Bromide	BrCN	506-68-3	S
I	Iodine atom	I	14362-44-8	S
I2	Iodine	I 2	7553-56-2	S
IO	Iodine monoxide	IO	14696-98-1	S
HOI	Hypoiodous acid	HIO	14332-21-9	S
CH3COOC1	Chloroacetic acid	C2H3ClO2	79-11-8	S
CH3Cl	Chloromethane	CH3Cl	74-87-3	S
CH2Cl2	Dichloromethane	CH2Cl2	75-09-2	S
CHCl3	Chloroform	CHCl3	67-66-3	S
CC14	Tetrachloromethane	CCl4	56-23-5	S
C2H5Cl	Chloroethane	C2H5Cl	75-00-3	S
CH3CHCl2	1,1-Dichloroethane	C2H4Cl2	75-34-3	S
CH2ClCH2Cl	1,2-Dichloroethane	C2H4Cl2	107-06-02	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
	Methyl chloroform; 1,1,1-			
CH3CCl3	Trichloroethane	C2H3Cl3	71-55-6	S
CHCl2CH2Cl	1,1,2-Trichloroethane	C2H3Cl3	79-00-5	S
CHCl2CHCl2	1,1,2,2-Tetrachloroethane	C2H2Cl4	79-34-5	S
C2H3Cl	Chloroethene	C2H3Cl	75-01-4	S
tCHClCHCl	trans-1,2-Dichloroethene	C2H2Cl2	156-60-5	S
cCHClCHCl	cis-1,2-Dichloroethene	C2H2Cl2	156-59-2	S
CCl2CH2	1,1-Dichloroethene	C2H2Cl2	75-35-4	S
C2HCl3	Trichloroethene	C2HCl3	79-01-6	S
C2Cl4	Tetrachloroethene	C2Cl4	127-18-4	S
x12DiClPropane	1,2-Dichloropropane	C3H6Cl2	78-87-5	S
x123TriClPropane	1,2,3-Trichloropropane	C3H5Cl3	96-18-4	S
x13DiClPropene	1,3-Dichloropropene	C3H4Cl2	542-75-6	S
x23DiCl1Propene	2,3-Dichloro-1-propene	C3H4Cl2	78-88-6	S
HexClButadiene	Hexachlorobutadiene	C4Cl6	87-68-3	S
ClBenzene	Chlorobenzene	C6H5Cl	108-90-7	S
pDiClBenzene	1,4-Dichlorobenzene	C6H4Cl2	106-46-7	S
mDiClBenzene	1,3-Dichlorobenzene	C6H4Cl2	541-73-1	S
oDiClBenzene	1,2-Dichlorobenzene-	C6H4Cl2	95-50-1	S
x124TriClBenzene	1,2,4-Trichlorobenzene	C6H3Cl3	120-82-1	S
x123TriClBenzene	1,2,3-Trichlorobenzene	C6H3Cl3	87-61-6	S
x135TriClBenzene	1,3,5-Trichlorobenzene	C6H3Cl3	108-70-3	S
aClToluene	Benzyl chloride	C7H7Cl	100-44-7	S
oClToluene	1-Chloro-2-methylbenzene	C7H7Cl	95-49-8	S
pClToluene	1-Chloro-4-methylbenzene	C7H7Cl	95-49-8	S
mClToluene	1-Chloro-3-methylbenzene	C7H7Cl	108-41-8	S
CH3Br	Bromomethane	CH3Br	74-83-9	S
CH2Br2	Dibromomethane	CH2Br2	74-95-3	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
CHBr3	Bromoform	CHBr3	75-25-2	S
C2H5Br	Bromoethane	C2H5Br	74-96-4	S
CH2BrCH2Br	1,2-Dibromoethane	C2H4Br2	106-93-4	S
nC3H7Br	n-Propyl bromide	C3H7Br	106-94-5	S
BrBenzene	Bromobenzene	C6H5Br	108-86-1	S
СНЗІ	Iodomethane	CH3I	74-88-4	S
CH2I2	Diiodomethane	CH2I2	75-11-6	S
C2H5I	Iodoethane	C2H5I	75-03-6	S
CH2BrCl	Bromochloromethane	CH2BrCl	74-97-5	S
CHBr2Cl	Dibromochloromethane	CHBr2Cl	124-48-1	S
CHBrCl2	Bromodichloromethane	CHBrCl2	75-27-4	S
CH2BrCHBrCH2Cl	1,2-Dibromo-3-chlorobenzene	C3H5Br2Cl	96-12-8	S
CH2CII	Chloroiodomethane	CH2ClI	593-71-5	S
CH2BrI	Bromoiodomethane	CH2BrI	557-68-6	S
CFC11	Trichlorofluoromethane	CCl ₃ F	75-69-4	S
CFC12	Dichlorodifluoromethane	CCl ₂ F ₂	75-71-8	S
CFC13	Chlorotrifluoromethane	CClF3	75-72-9	S
CF4	Tetrafluoromethane	CF4	75-73-0	S
CFC112	Tetrachloro-1,2-difluoroethane	C2Cl4F2	76-12-0	S
CFC113	1,1,2-Trichlorotrifluoroethane	C2Cl3F3	76-13-1	S
CFC114	1,2-Dichlorotetrafluoroethane	C2Cl2F4	76-14-2	S
CFC115	Chloropentafluoroethane	C2ClF5	76-15-3	S
C2F6	Hexafluoroethane	C2F6	76-16-4	S
pClBenzoTriF	1-Chloro-4- (trifluoromethyl)benzene (PCBTF)	C7H4ClF3	98-56-6	S
H1202	Dibromodifluoromethane	CBr ₂ F ₂	75-61-6	S
H1211	Bromochlorodifluoromethane	CBrClF2	353-59-3	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
H1301	Bromotrifluoromethane	CBrF3	75-63-8	S
H2402	1,2-Dibromotetrafluoroethane	C2Br2F4	124-73-2	S
HCFC123	1,1-Dichloro-2,2,2- trifluoroethane	C2HCl2F3	306-83-2	S
HCFC124	1-Chloro-1,2,2,2- tetrafluoroethane	C2HClF4	2837-89-0	S
HCFC141b	1,1-Dichloro-1-fluoroethane	C2H3Cl2F	1717-00-6	S
HCFC142b	1-Chloro-1,1-difluoroethane	C2H3ClF2	75-68-3	S
HCFC133a	1-Chloro-2,2,2-trifluoroethane	C2H2ClF3	75-88-7	S
HCFC21	Dichlorofluoromethane	CHCl ₂ F	75-43-4	S
HCFC22	Chlorodifluoromethane	CHClF2	75-45-6	S
HFC125	Pentafluoroethane	C2HF5	354-33-6	S
HFC134a	1,1,1,2-Tetrafluoroethane	C2H2F4	811-97-2	S
HFC143a	1,1,1-Trifluoroethane	C2H3F3	420-46-2	S
HFC152a	1,1-Difluoroethane	C2H4F2	75-37-6	S
C3F8	Octafluoropropane	C3F8	76-19-7	S
HFC23	Trifluoromethane	CHF3	75-46-7	S
HFC227ea	1,1,1,2,3,3,3- Heptafluoropropane	C3HF7	431-89-0	S
HFC32	Difluoromethane	CH ₂ F ₂	75-10-5	S
HFC365mfc	1,1,1,3,3-Pentafluorobutane	C4H5F5	406-58-6	S
HFC236fa	1,1,1,3,3,3-Hexafluoropropane	C3H2F6	690-39-1	S
Hydrocarbons: Al	kanes, Alkenes, and Alkynes			
CH4	Methane	CH4	74-82-8	S
x13CH4	¹³ CH4-Methane	¹³ CH ₄	14762-74-4	S
x14CH4	¹⁴ CH4-Methane	¹⁴ CH4	2772-68-1	S
CH3D	CH3D-Methane	CH ₃ D	676-49-3	S
Ethane	Ethane	C2H6	74-84-0	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
Ethene	Ethene	C2H4	74-85-1	S
Ethyne	Ethyne	C2H2	74-86-2	S
Propane	Propane	C3H8	74-98-6	S
Propene	Propene	C3H6	0115-07-01	S
Propyne	Propyne	C3H4	74-99-7	S
Propadiene	Propadiene	C3H4	463-49-0	S
nButane	n-Butane	C4H10	106-97-8	S
iButane	Isobutane	C4H10	75-28-5	S
iButene	Isobutene	C4H8	0115-11-7	S
x1Butene	1-Butene	C4H8	106-98-9	S
iButeneAnd1Butene	Sum of Isobutene and 1-Butene	C4H8	N/A	M
c2Butene	cis-2-Butene	C4H8	590-18-1	S
t2Butene	trans-2-Butene	C4H8	624-64-6	S
CycButane	Cyclobutane	C4H8	287-23-0	S
x13Butadiene	1,3-Butadiene	C4H6	106-99-0	S
x12Butadiene	1,2-Butadiene	C4H6	590-19-2	S
x1Butyne	1-Butyne	C4H6	107-00-6	S
x2Butyne	2-Butyne	C4H6	503-17-3	S
x1Buten3yne	1-Buten-3-yne	C4H4	689-97-4	S
x13Butadiyne	1,3-Butadiyne	C4H2	460-12-8	S
nPentane	n-Pentane	C5H12	109-66-0	S
iPentane	Isopentane	C5H12	78-78-4	S
Neopentane	Neopentane	C5H12	463-82-1	S
x1Pentene	1-Pentene	C5H10	109-67-1	S
c2Pentene	cis-2-Pentene	C5H10	627-20-3	S
t2Pentene	trans-2-Pentene	C5H10	0646-04-08	S
x2Me1Butene	2-Methyl-1-butene	C5H10	563-46-2	S
x3Me1Butene	3-Methyl-1-butene	C5H10	563-45-1	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
x2Me2Butene	2-Methyl-2-butene	C5H10	513-35-9	S
CycPentane	Cyclopentane	C5H10	287-92-3	S
CycPentene	Cyclopentene	C5H8	142-29-0	S
Z13Pentadiene	(Z)-1,3-Pentadiene	C5H8	1574-41-0	M
E13Pentadiene	(E)-1,3-Pentadiene	C5H8	2004-70-8	M
x13Pentadienes	Sum of (E)-1,3-Pentadiene and (Z)-1,3-Pentadiene	C5H8	504-60-9	M
Isoprene	Isoprene	C5H8	78-79-5	S
IsopreneAndFuran	Sum of Isoprene and Furan	N/A	N/A	M
nHexane	n-Hexane	C6H14	110-54-3	S
x2MePentane	2-Methylpentane	C6H14	107-83-5	S
x3MePentane	3-Methylpentane	C6H14	96-14-0	S
MePentanes	Sum of 2-Methylpentane and 3-Methylpentane	C6H14	N/A	M
x22DimeButane	2,2-Dimethylbutane	C6H14	75-83-2	S
x23DimeButane	2,3-Dimethylbutane	C6H14	79-29-8	S
x1Hexene	1-Hexene	C6H12	592-41-6	S
x2Me1Pentene	2-Methyl-1-pentene	C6H12	763-29-1	S
x32Me1Pentene	3-Methyl-1-pentene	C6H12	760-20-3	S
x4Me1Pentene	4-Methyl-1-pentene	C6H12	691-37-2	S
x3Me1PenteneAnd4Me1 Pentene	Sum of 3-Methyl-1-pentene and 4-Methyl-1-pentene	C6H12	N/A	M
x2Me2Pentene	2-Methyl-2-pentene	C6H12	625-27-4	S
Z3Me2Pentene	(Z)-3-Methyl-2-pentene	C6H12	922-62-3	S
E3Me2Pentene	(E)-3-Methyl-2-pentene	C6H12	616-12-6	S
x3Me2Pentenes	Sum of (Z)-3-Methyl-2-pentene and (E)-3-Methyl-2-pentene	C6H12	922-61-2	M
Z4Me2Pentene	(Z)-4-Methyl-2-pentene	C6H12	691-38-3	S
E4Me2Pentene	(E)-4-Methyl-2-pentene	C6H12	674-76-0	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
x4Me2Pentenes	Sum of (Z)-4-Methyl-2-pentene and (E)-4-Methyl-2-pentene	C6H12	4461-48-7	M
CycHexane	Cyclohexane	C6H12	110-82-7	S
MeCycPentane	Methylcyclopentane	C6H12	96-37-7	S
nHeptane	n-Heptane	C7H16	142-82-5	S
x2MeHexane	2-Methylhexane	C7H16	591-76-4	S
x3MeHexane	3-Methylhexane	C7H16	589-34-4	S
x22DimePentane	2,2-Dimethylpentane	C7H16	590-35-2	S
x23DimePentane	2,3-Dimethylpentane	C7H16	565-59-3	S
x24DimePentane	2,4-Dimethylpentane	C7H16	108-08-07	S
x33DimePentane	3,3-Dimethylpentane	C7H16	562-49-2	S
x1Heptene	1-Heptene	C7H14	592-76-7	S
MeCycHexane	Methylcyclohexane	C7H14	108-87-2	S
nOctane	n-Octane	C8H18	111-65-9	S
x224TrimePentane	2,2,4-Trimethylpentane	C8H18	540-84-1	S
x234TrimePentane	2,3,4-Trimethylpentane	C8H18	565-75-3	S
x2MeHeptane	2-Methylheptane	C8H18	592-27-8	S
x3MeHeptane	3-Methylheptane	C8H18	589-81-1	S
x1Octene	1-Octene	C8H16	111-66-0	S
nNonane	n-Nonane	C9H20	111-84-2	S
x1Nonene	1-Nonene	C9H18	124-11-8	S
aPinene	alpha-Pinene	C10H16	80-56-8	S
bPinene	beta-Pinene	C10H16	127-91-3	S
Camphene	Camphene	C10H16	79-92-5	S
Tricyclene	Tricyclene	C10H16	508-32-7	S
aTerpinene	alpha-Terpinene	C10H16	99-86-5	S
gTerpinene	gamma-Terpinene	C10H16	99-85-4	S
Myrcene	Myrcene	C10H16	123-35-3	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
Limonene	Limonene	C10H16	138-86-3	S
LimoneneAndD3Carene	Sum of Limonene and Δ3-Carene	C10H16	N/A	M
bPineneAndMyrcene	Sum of beta-Pinene and Myrcene	C10H16	N/A	M
Sabinene	Sabinene	C10H16	3387-41-5	S
dLimonene	D-Limonene	C10H16	5989-27-5	S
Terpinolene	Terpinolene	C10H16	586-62-9	S
Monoterpenes	Sum of Monoterpenes	C10H16	N/A	M
nDecane	n-Decane	C10H22	124-18-5	S
x1Decene	1-Decene	C10H20	872-05-9	S
nUndecane	n-Undecane	C11H24	1120-21-4	S
nDodecane	nDodecane	C12H26	112-40-3	S
Dodecane	Sum of all dodecane isomers	C12H26	N/A	M
aCedrene	alpha-cedrene	C15H24	469-61-4	S
aHumulene	alpha-Humulene	C15H24	6753-98-6	S
Hydrocarbons: Aromat	ics and Oxygenated Aromatics			
Benzene	Benzene	С6Н6	71-43-2	S
Toluene	Toluene	C7H8	108-88-3	S
oXylene	o-Xylene	C8H10	95-47-6	S
mXylene	m-Xylene	C8H10	108-38-3	S
pXylene	p-Xylene	C8H10	106-42-3	S
EthBenzene	Ethylbenzene	C8H10	100-41-4	S
mpXylene	Sum of m-Xylene and p-Xylene	C8H10	N/A	M
EthBenzAndmpXylene	Sum of Ethylbenzene and mp- Xylene	C8H10	N/A	M
C8Aromatics	Sum of C8-Aromatics	C8H10	N/A	M
Styrene	Styrene	C8H8	100-42-5	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
Ethynylbenzene	Ethynylbenzene	C8H6	536-74-3	S
C9Aromatics	Sum of C9-Aromatics	C9H12	N/A	M
nPropBenzene	n-Propylbenzene	C9H12	103-65-1	S
iPropBenzene	Isopropylbenzene	C9H12	98-82-8	S
x123TrimeBenzene	1,2,3-Trimethylbenzene	C9H12	526-73-8	S
x124TrimeBenzene	1,2,4-Trimethylbenzene	C9H12	95-63-6	S
x135TrimeBenzene	1,3,5-Trimethylbenzene	C9H12	108-67-8	S
x2EthToluene	2-Ethyltoluene	C9H12	611-14-3	S
x3EthToluene	3-Ethyltoluene	C9H12	620-14-4	S
x4EthToluene	4-Ethyltoluene	C9H12	622-96-8	S
pCymene	para-Cymene	C10H14	99-87-6	S
C10Aromatics	Sum of C10-Aromatics	C10H14	N/A	M
tButBenzene	tert-Butylbenzene	C10H14	98-06-6	S
nButBenzene	n-Butylbenzene	C10H14	104-51-8	S
mDiethBenzene	1,3-Diethylbenzene	C10H14	141-93-5	S
pDiethBenzene	1,4-Diethylbenzene	C10H14	105-05-05	S
oDiethBenzene	1,2-Diethylbenzene	C10H14	135-01-03	S
C11Aromatics	Sum of C11-Aromatics	C11H16	N/A	M
Naphthalene	Naphthalene	C10H8	91-20-3	S
Benzaldehyde	Benzaldehyde	C7H6O	100-52-7	S
DHT	Sum of Dihydroxytoluene Isomers	C7H8O2	N/A	M
Phenol	Phenol	С6Н5ОН	108-95-2	S
Cresols	Sum of Cresol Isomers (Hydroxytoluenes)	C7H8O	N/A	M
Creosol	Creosol	C8H10O2	93-51-6	S
Oxygenated Inorgani	c and Volatile Organic Carbon	Species		
СО	Carbon monoxide	CO	630-08-0	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
CO2	Carbon dioxide	CO ₂	124-38-9	S
x13CO2	13CO2-Carbon dioxide	¹³ CO ₂	1111-72-4	S
x14CO2	14CO2-Carbon dioxide	¹⁴ CO ₂	51-90-1	S
x18OCO	18OCO-Carbon dioxide	¹⁸ OCO	N/A	S
C3O2	Carbon suboxide	C3O2	504-64-3	S
СНОСНО	Glyoxal	C2H2O2	107-22-2	S
СН3СОСНО	Methyl glyoxal	C3H4O2	78-98-8	S
СНЗОН	Methanol	CH4O	67-56-1	S
CH2O	Formaldehyde	CH ₂ O	50-00-0	S
СНЗООН	Methyl hydroperoxide	CH4O2	3031-73-0	S
НМНР	Hydroxymethyl hydroperoxide	CH4O3	15932-89-5	S
НСООН	Formic acid	CH2O2	64-18-6	S
С2Н5ОН	Ethanol	C2H6O	64-17-5	S
СН3СНО	Acetaldehyde	C2H4O	75-07-0	S
Glycolaldehyde	Glycolaldehyde	C2H4O2	141-46-8	S
СН3СООН	Acetic acid	C2H4O2	64-19-7	S
CH3COOHAndGlycolal dehyde	Sum of Acetic Acid and Glycolaldehyde	C2H4O2	N/A	M
MeFormate	Methyl Formate	C2H4O2	107-31-3	S
НАА	Hydroxyacetic acid; Glycolic acid	C2H4O3	79-14-1	S
PAA	Peracetic Acid	C2H4O3	79-21-0	S
iPropanol	Isopropanol	СзН8О	67-63-0	S
Propanal	Propanal	С3Н6О	123-38-6	S
Acetone	Acetone	СзН6О	67-64-1	S
AcetoneAndPropanal	Sum of Acetone and Propanal	СзН6О	N/A	M
Acrolein	Acrolein	СзН4О	107-02-08	S
С3Н6О2	Sum of C3H6O2 Isomers, including Hydroxyacetone	C3H6O2	N/A	M

CoreName	Definition	Chemical Formula	CAS Number	Specificity
EthFormate	Ethyl Formate	C3H6O2	109-94-4	S
MeAcetate	Methyl acetate	C3H6O2	79-20-9	S
С2Н5СООН	Propanoic acid	C3H6O2	79-09-4	S
С3Н6О3	Sum of C3H6O3 Isomers, including Hydroperoxy Acetone	C3H6O3	N/A	M
Butanal	Butanal	C4H8O	123-72-8	S
iButanal	Isobutanal	C4H8O	78-84-2	S
MEK	Methyl Ethyl Ketone	C4H8O	78-93-3	S
THF	Tetrahydrofuran	C4H8O	109-99-9	S
ButanalAndMEK	Sum of Butanal and MEK	C4H8O	N/A	M
C4Carbonyls	Sum of C4-Carbonyls	C4H8O	N/A	M
EthAcetate	Ethyl acetate	C4H8O2	141-78-6	S
MePropionate	Methyl propionate	C4H8O2	554-12-1	S
x14Dioxane	1,4-Dioxane	C4H8O2	123-91-1	S
С4Н8О3	Sum of C4H8O3 Isomers, including C4 Dihydroxy Carbonyls	C4H8O3	N/A	M
MAC	Methacrolein	C4H6O	78-85-3	S
MVK	Methyl Vinyl Ketone	C4H6O	78-94-4	S
MVKAndMAC	Sum of MVK and Methacrolein	C4H6O	N/A	M
E2Butenal	(E)-2-Butenal, trans- Crotonaldehyde	C4H6O	123-73-9	S
Z2Butenal	(Z)-2-Butenal, cis- Crotonaldehyde	C4H6O	15798-64-8	S
x2Butenals	Sum of (Z)- and (E)-2-Butenal isomers, Crotonaldehyde	C4H6O	4170-30-3	M
x23Butanedione	2,3-Butanedione	C4H6O2	431-03-8	S
C4H6O3	Sum of C4H6O3 Isomers, including C4 Hydroxy Dicarbonyls	C4H6O3	N/A	M
Furan	Furan	C4H4O	110-00-9	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
x2Furanone	2-Furanone, including 2(5H)Furanone and 2(3H)Furanone	C4H4O2	N/A	M
x23HFuranone	2(3H)-Furanone	C4H4O2	20825-71-2	S
x25HFuranone	2(5H)-Furanone	C4H4O2	497-23-4	S
SuccinicAnhyd	Succinic anhydride	C4H4O3	108-30-5	S
C4H4O3	Sum of C4H4O3 Isomers	C4H4O3	N/A	M
MaleicAnhyd	Maleic anhydride	C4H2O3	108-31-6	S
MTBE	Methyl Tert-Butyl Ether	C5H12O	1634-04-04	S
MBO	2-Methyl-3-buten-2-ol	C5H10O	115-18-4	S
Pentanal	Pentanal	C5H10O	110-62-3	S
x2Pentanone	2-Pentanone	C5H10O	107-87-9	S
x3Pentanone	3-Pentanone	C5H10O	96-22-0	S
C5Carbonyls	Sum of C5-Carbonyls	C5H10O	N/A	M
ISOPOOHAndIEPOX	Sum of ISOPOOH and IEPOX	C5H10O3	N/A	M
IEPOX	Sum of Isoprene Epoxy Diol Isomers	C5H10O3	N/A	M
ISOPOOH	Sum of Isoprene Hydroxy Hydroperoxide Isomers	C5H10O3	N/A	M
C5H8O3	Sum of C5O3H8 Compounds, including HPALDs Isomers	C5H8O3	N/A	M
x2MeFuran	2-Methylfuran	C5H6O	534-22-5	S
x3MeFuran	3-Methylfuran	C5H6O	930-27-8	S
x2MeFuranAnd3MeFura	Sum of 2-methylfuran 3-methylfuran and fragments	C5H6O	N/A	M
Furfural	Furfural	C5H4O2	98-01-1	S
x3Furaldehyde	3-Furaldehyde	C5H4O2	498-60-2	S
HPALDs	Sum of HPALDs	C5H8O3	N/A	M
Hexanal	Hexanal	C6H12O	66-25-1	S
x2Hexanone	2-Hexanone	C6H12O	591-78-6	S
x3Hexanone	3-Hexanone	C6H12O	589-38-8	S

CoreName	Definition	Chemical Formula	CAS Number	Specificity
C6Carbonyls	Sum of C6-Carbonyls	C6H12O	N/A	M
CycHexanone	Cyclohexanone	C6H10O	108-94-1	S
С6Н10О5	Sum of Levoglucosan and other C6H10O5 species	C6H10O5	N/A	M
DimeFurans	Sum of Dimethylfurans	С6Н8О	N/A	M
x25DimeFuran	2,5-Dimethylfuran	С6Н8О	625-86-5	S
x24DimeFuran	2,4-Dimethylfuran	C6H8O	3710-43-8	S
x23DimeFuran	2,3-Dimethylfuran	C6H8O	14920-89-9	S
x2EthFuran	2-Ethylfuran	C6H8O	3208-16-0	S
x3EthFuran	3-Ethylfuran	C6H8O	67363-95-5	S
Phenol	Phenol	С6Н6О	108-95-2	S
x2EthenylFuran	2-Ethenylfuran	С6Н6О	1487-18-9	S
x3EthenylFuran	3-Ethenylfuran	С6Н6О	67364-02-7	S
С6Н6О	Sum of Phenol and other C6H6O species	С6Н6О	N/A	M
x5MeFurfural	5-methylfurfural	C6H6O2	620-02-0	S
Catechol	Catechol	C6H6O2	120-80-9	S
С6Н6О2	Sum of Catechol and other C6H6O2 species	C6H6O2	N/A	M
С6Н4О3	Hydroxybenzoquinone – including any compounds that can be viewed as derivatives of a benzoquinone	C6H4O3	N/A	M
Anisole	Anisole	C7H8O	100-66-3	S
C7H8O	Sum of C7H8O Isomers	C7H8O	N/A	M
Guaiacol	Guaiacol	C7H8O2	90-05-1	S
BenzFuran	Benzofuran	C8H6O	271-89-6	S
Syringol	Syringol	C8H10O3	91-10-1	S
С9Н14О4	Sum of Pinic Acid and other C9H14O4 species	C9H14O4	N/A	M

CoreName	Definition	Chemical Formula	CAS Number	Specificity
C10H16O3	Sum of Pinonic Acid and other C10H16O3 species	C10H16O3	N/A	M
Linalool	Linalool	C10H18O	78-70-6	S
Terpineol	Terpineol	C10H18O	8006-39-1	S
aTerpineol	alpha-Terpineol	C10H18O	98-55-5	S
Geraniol	Geraniol	C10H18O	N/A	M
tGeraniol	trans-Geraniol	C10H18O	106-24-1	S
cGeraniol	cis-Geraniol	C10H18O	106-25-2	S
SabineneHydrate	Sabinene hydrate	C10H18O	546-79-2	S
Borneol	Borneol	C10H18O	N/A	M
Pulegone	Pulegone	C10H16O	89-82-7	S
LFenchone	L-Fenchone	C10H16O	7787-20-4	S
Fenchol	Fenchol	C10H16O	2217-02-09	S
Camphor	Camphor	C10H16O	N/A	M
Guaiol	Guaiol	C15H26O	489-86-1	S
tNeroidol	trans-Neroidol	C15H26O	40716-66-3	S

2.2 Aerosol Particle Standard Names

The MeasurementCategory for aerosol particles is either "AerMP", "AerComp", or "AerOpt" for aerosol particle microphysical properties, aerosol particle composition, and aerosol particle optical properties, respectively. AerMP has four DescriptiveAttributes: MeasurementRH, SizingTechnique, SizeRange, and Reporting; AerComp has three DescriptiveAttributes: SizingTechnique, SizeRange, and Reporting; and AerOpt has four DescriptiveAttributes: MeasurementRH, WL, SizeRange, and Reporting. The CoreNames for aerosol variables are listed in Table 10.

For aerosol particle microphysical and optical measurements, relative humidity (RH) conditions are important because water vapor can condense onto the particle and change its size and optical properties. In-situ aerosol particle measurements can be made or calculated at different RH levels. Table 5 defines the three possible modes of aerosol particle measurements related to relative humidity levels (MeasurementRH): RHd, RHa, and RHsp. If "RHsp" is used, the relative humidity at which the measurement is reported must be documented in the variable description.

Table 5: List of Possible Aerosol Particle Measurement RH values

MeasurementRH	Description
RHd	Variable reported at a reduced relative humidity, typically less than 40%
RHa	Variable reported at ambient relative humidity
RHsp	Variable reported at a specified relative humidity
None	Not applicable to variable

SizingTechnique is an important descriptive attribute because the measurement of the size of a single particle can vary when using different techniques (based on the properties of the particle, such as its composition, shape and density). Each technique has inherent assumptions, limitations, and operable ranges that are vital for proper interpretation and comparison of the data. Table 6 defines the values of "SizingTechnique" representing the different measurement techniques for particle size determination. If the SizingTechnique is "None", the SizeRange used must be "Total", which is typically for bulk measurements.

Table 6: List of Aerosol Particle SizingTechniques

SizingTechnique	Description
Mobility	The electrical mobility diameter is the diameter of a sphere with the same migration velocity in a constant electric field as the particle of interest (i.e., migration velocity in a constant electric field; DeCarlo et al., 2004).
Optical	Size measurement made using the intensity of light scattered by a particle, related to particle size using a prescribed refractive index and assumed spherical shape.
Aerodynamic	The aerodynamic diameter is defined as the diameter of a sphere with standard density that settles at the same terminal velocity as the particle of interest (DeCarlo et al., 2004).
VacuumAerodynamic	The vacuum aerodynamic diameter is measured in a free-molecular flow regime (that is, in conditions where the ratio of the mean free path of the gas molecules to the size of the particle >> 1); DeCarlo et al., 2004).
LII	LII (Laser-induced incandescence) size is the refractory black carbon size derived from mass measurement and assumptions of void free density (1.8 g/cc) and spherical shape. Refractory black carbon mass is determined from incandescent light intensity at vaporization temperature.
Imaging	Measurement of a particle's size using an image.

Geometric	Geometric size derived from direct measurement(s)
Kelvin	Kelvin size refers to the smallest size at which condensation occurs at a particular supersaturation, as the saturation vapor pressure is dependent on the particle radius of curvature. Kelvin size is determined by varying the supersaturation of a vapor and counting the number droplets that activate.
None	No specific size determination – Bulk measurement

The "SizeRange" delineates the range of particle sizes being measured. There are seven possible SizeRanges that can be used: Nucl, Accu, Coarse, Bulk, PM1, PMx, and XtoY, where X and Y can be Nucl, Accu, or Coarse, e.g., NucltoAccu (Table 7). When "Bulk" is used, SizingTechnique must be "None".

Table 7: Summary of Aerosol Particle Size Ranges

SizeRange	Description	
Nucl	Nucleation-mode aerosol particles: 0.001-0.1 um diameter	
Accu	Accumulation-mode aerosol particles: 0.1-1 um diameter	
Coarse	Coarse-mode aerosol particles: greater than 1 um diameter	
Bulk	Measurement not size resolved	
PM1	Submicron aerosol particles: less than 1 um diameter	
PMx	Particles with diameter under X um diameter, e.g., PM2.5	
XtoY	Size Range from X to Y, e.g., NucltoAccu	

Aerosol particle optical properties are functions of wavelengths (WL) of light. Therefore, a measurement of aerosol particle optical properties is made at one or more specific wavelength(s). Table 8 lists the values for "WL" attributes, specifying the wavelength ranges within which instruments commonly operate.

Table 8: List of Wavelength Ranges for Aerosol Particle Optical Property Measurements

WL	Description
UV	Ultraviolet: 10- 400 nm
Blue	450 – 495 nm
Green	495 – 570 nm

Red	620 – 700 nm
IR	Infrared: $700 - 10^6$ nm
XtoY	Wavelength range from X to Y E.g., BluetoRed

Lastly, aerosol particle standard names have a DescriptiveAttribute to indicate the reporting method used. Aerosol particle chemical compositions can be reported as mass concentrations at either STP or ambient temperature and pressure, mass fractions, or number fractions. Similarly, aerosol particle microphysical and optical properties can also be reported at either STP or ambient conditions. For variables that are dimensionless (e.g., fRH, SSA) the reporting attribute is "None". See Table 9 for an explanation of each of these options. When reporting in standard temperature and pressure (STP), the temperature and pressure conditions under which the measurement is reported must be noted in the header or metadata of the data file, as "standard temperature" varies across the research community. Similarly, if the reporting attribute is "EnvSp", the specific environment temperature and pressure must be referenced in the header or variable description.

Table 9: Reporting Attribute Values for Aerosol Particle Measurements

Reporting	Description
MassSTP	Mass concentration reported at standard temperature and pressure
MassAMB	Mass concentration reported at ambient temperature and pressure
MassFrac	Mass Fraction - Ratio of a constituent mass to the total aerosol particle mass concentration
NumFrac	Number Fraction - Ratio of a constituent number to the total aerosol particle number concentration
NumConcSTP	Number concentration of particle constituent at standard temperature and pressure
NumConcAMB	Number concentration of particle constituent at ambient temperature and pressure
STP	Aerosol particle properties reported at standard temperature and pressure
AMB	Aerosol particle properties reported at ambient temperature and pressure
None	For dimensionless variables

Reporting	Description	
EnvSp	Aerosol particle properties reported in a specific environment (e.g., mobile vehicle) with specified temperature and pressure	

The following examples provide the controlled vocabulary options for AcquisitionMethod as well as the DescriptiveAttributes that apply to each aerosol particle classification category.

Aerosol Particle Microphysical Properties:

 $Aer MP_Core Name_Acquisition Method_Measurement RH_Sizing Technique_Size Range_Reporting$

AcquisitionMethod = InSitu, VertCol, SlantCol, Profile

MeasurementRH = RHd, RHa, RHsp, None

SizingTechnique = Mobility, Optical, Aerodynamic, VacuumAerodynamic, LII, Imaging,

Geometric, Kelvin, None

SizeRange = Nucl, Accu, Coarse, Bulk, PM1, PMx, XtoY

Reporting = STP, AMB, None, EnvSp

Example of an in-situ measurement of aerosol particle number size distribution reported at reduced relative humidity derived from an aerodynamic sizing technique for coarse-mode aerosols at standard temperature and pressure:

AerMP_NumSizeDist_InSitu_RHd_Aerodynamic_Coarse_STP

Aerosol Particle Chemical Composition:

AerComp_CoreName_AcquisitionMethod_SizingTechnique_SizeRange_Reporting AcquisitionMethod = InSitu, VertCol, SlantCol, Profile

SizingTechnique = Mobility, Optical, Aerodynamic, VacuumAerodynamic, LII, Imaging, Geometric, Kelvin, None

SizeRange = Nucl, Accu, Coarse, Bulk, PM1, PMx, XtoY

Reporting = MassSTP, MassAMB, MassFrac, NumFrac, NumConcSTP, NumConcAMB

Example of an in-situ measurement of organic aerosols particles derived using a vacuum aerodynamic technique for accumulation-mode aerosol particles reported as mass concentration at standard temperature and pressure:

AerComp_OrganicAerosol_InSitu_VacuumAerodynamic_Accu_MassSTP

Example of an in-situ measurement of bulk sea salt particles reported in number fraction: AerComp_Seasalt_InSitu_None_Bulk_NumFrac

Aerosol Particle Optical Properties:

AerOpt_CoreName_AcquisitionMethod_WL_MeasurementRH_SizeRange_Reporting AcquisitionMethod = InSitu, VertCol, SlantCol, Profile

WL = UV, Blue, Green, Red, IR, XtoY

MeasurementRH = RHd, RHa, RHsp, None

SizeRange = Nucl, Accu, Coarse, Bulk, PM1, PMx, XtoY

Reporting = STP, AMB, None, EnvSp

Example of an in-situ measurement of absorption measured at a red wavelength under reduced humidity conditions with a bulk aerosol particle size range reported in ambient conditions:

AerOpt_Absorption_InSitu_red_RHd_Bulk_AMB

Table 10: List of Aerosol Particle Measurement CoreNames

Measurement Category	CoreName	Definition
AerMP	NumConc	Number Concentration of Aerosol Particles
AerMP	NonVolatileNumConc	Non-Volatile Number Concentration of Aerosol Particles
AerMP	SurfAreaConc	Surface Area Concentration of Aerosol Particles
AerMP	NonVolatileSurfAreaConc	Non-Volatile Surface Area Concentration of Aerosol Particles
AerMP	VolConc	Volume Concentration of Aerosol Particles
AerMP	NonVolatileVolConc	Non-Volatile Volume Concentration of Aerosol Particles
AerMP	CCN	Cloud Condensation Nuclei Concentration
AerMP	CCNtoCNRatio	Cloud Condensation Nuclei to Condensation Nuclei Ratio
AerMP	INP	Ice Nucleating Particles
AerMP	gRH	Aerosol Particle Size Growth Factor
AerMP	MassSizeDist	Mass Concentration Size Distribution of Aerosol Particles
AerMP	MassConc	Mass Concentration of Aerosol Particles
AerMP	NonVolatileMassSizeDist	Non-Volatile Mass Concentration Size Distribution of Aerosol Particles
AerMP	NumSizeDist	Number Concentration Size Distribution of Aerosol Particles
AerMP	NonVolatileNumSizeDist	Non-Volatile Number Size Distribution of Aerosol Particles
AerMP	SurfAreaSizeDist	Surface Area Concentration Size Distribution of Aerosol Particles
AerMP	NonVolatileSurfAreaSizeDist	Non-Volatile Surface Area Concentration Size Distribution
AerMP	VolSizeDist	Volume Concentration Size Distribution of Aerosol Particles

Measurement Category	CoreName	Definition
AerMP	NonVolatileVolSizeDist	Non-Volatile Volume Concentration Size Distribution of Aerosol Particles
AerMP	EffSize	Aerosol Particle Effective Size – Surface Area Weighted Average Size
AerMP	EffVar	Aerosol Particle Effective Variance – Width of Aerosol Size Distribution
AerMP	MeanSize	Aerosol Particle Mean Size (Radius or Diameter)
AerMP	MedianSize	Aerosol Particle Median Size (Radius or Diameter)
AerMP	MeanVolumeSize	Aerosol Particle Mean Size (Radius or Diameter) weighted by Volume
AerMP	MedianVolumeSize	Aerosol Particle Median Size (Radius or Diameter) weighted by Volume
AerMP	BCFracIM	Black Carbon Faction of Internally Mixed
AerMP	BCCoatThick	Black Carbon Coating Thickness
AerComp	Acidity	Aerosol Particle Acidity
AerComp	BC	Particulate Black Carbon
AerComp	BCMassSizeDist	Particulate Black Carbon Mass Size Distribution
AerComp	BCNumSizeDist	Particulate Black Carbon Number Size Distribution
AerComp	Bromide	Particulate Bromide Ion
AerComp	Calcium	Particulate Calcium Ion
AerComp	Chloride	Particulate Chloride Ion
AerComp	Potassium	Particulate Potassium Ion
AerComp	Magnesium	Particulate Magnesium Ion
AerComp	Iodide	Particulate Iodide Ion, including iodide, iodate, and organic-bound iodine
AerComp	Sodium	Particulate Sodium Ion
AerComp	Nitrite	Particulate Nitrite Ion
AerComp	Nitrate	Particulate Nitrate Ion
AerComp	OrganicAerosol	Particulate organic matter,

Measurement Category	CoreName	Definition
<u> </u>		including carbon and all other elements (e.g. H, O, N) in organic molecules
AerComp	OrganicCarbon	Carbon contained in particulate organic matter, not including the mass of other elements in the organic molecules (e.g. H, O, N)
AerComp	HtoORatio	Hydrogen to Oxygen Ratio in Organic particulate matter
AerComp	Oxalate	Particulate Oxalate Ion
AerComp	Sulfate	Particulate Sulfate Ion
AerComp	TotalMass	Total Particulate Mass
AerComp	WSOC	Particulate Water Soluble Organic Carbon, a subset of OrganicAerosol and OrganicCarbon, including only the mass of carbon (and not H, O, N) in the water-soluble molecules
AerComp	Ammonium	Particulate Ammonium Ion
AerComp	Acid	Particulate Aerosol Acid
AerComp	NegativeIon	Total Particulate Negative Ions
AerComp	PositiveIon	Total Particulate Positive Ions
AerComp	BBParticles	Biomass Burning Particles
AerComp	Mineral	Mineral Particles
AerComp	Seasalt	Sea Salt Particles
AerComp	Soot	Soot Particles
AerComp	Beryllium7	Particulate Beryllium7
AerComp	Lead210	Particulate Lead210
AerComp	MSA	Particulate Methanesulfonic Acid Mass
AerComp	ClO4	Particulate Perchlorate Mass
AerComp	AmmBalance	Molar ratio of Ammonium to other inorganic ions in Particulate Matter
AerComp	Density	Particulate Matter Density
AerComp	OADensity	Particulate Organic Matter Density

Measurement Category	CoreName	Definition
AerComp	OAtoOC	Ratio of Organic Particulate Matter to Organic Carbon (OC)
AerComp	OSc	Particulate Carbon Oxidation State
AerComp	OrgNitrFraction	Particulate Fraction of nitrate coming from organic nitrates
AerComp	BioAerosol	Particulate Biological Aerosol
AerOpt	Absorption	Aerosol Particle Absorption Coefficient
AerOpt	AbsorptionBrC	Aerosol particle measurement of light absorbance by particulate organic carbon
AerOpt	AbsorptionBrCLiquid	Liquid based measurement of light absorbance by particulate organic carbon
AerOpt	Scattering	Aerosol Particle Scattering Coefficient
AerOpt	BackScattering	Aerosol Particle Backscattering Coefficient
AerOpt	Extinction	Aerosol Particle Extinction Coefficient
AerOpt	KExinction	Aerosol Particle Extinction Cross Section
AerOpt	LidarRatio	Ratio of Aerosol Extinction Coefficient to Backscattering Coefficient of Aerosol Particles
AerOpt	AerosolType	Classification of Aerosol Particles Determined from Optical Properties
AerOpt	AngstromExponentAbs	Aerosol Particle Angstrom Exponent for Absorption Coefficients
AerOpt	AngstromExponentScat	Aerosol Particle Angstrom Exponent for Scattering Coefficients
AerOpt	AngstromExponentBackScat	Aerosol Particle Angstrom Exponent for Backscattering Coefficients
AerOpt	AngstromExponentExt	Aerosol Particle Angstrom Exponent for Extinction Coefficients
AerOpt	AngstromExponentAOD	Aerosol Particle Angstrom Exponent for Aerosol Optical Depth
AerOpt	DepolarizationRatio	Aerosol Particle Depolarization Ratio
AerOpt	TotalDepolarizationRatio	Aerosol Particle and Molecular Depolarization Ratio
AerOpt	SSA	Single Scattering Albedo

Measurement Category	CoreName	Definition
AerOpt	AsymmetryParameterScat	Aerosol Particle Scattering Asymmetry Parameter
AerOpt	fRHScat	Aerosol Particle Scattering Hygroscopicity Factor
AerOpt	fRHBC	Particulate Black Carbon Specific Scattering Hygroscopicity Factor
AerOpt	Gamma	Aerosol Particle Scattering Hygroscopicity Gamma Factor
AerOpt	PhaseFunctionExt	Aerosol Particle Extinction Phase Function
AerOpt	PhaseFunctionScat	Aerosol Particle Scattering Phase Function
AerOpt	PolarPhaseFunctionScat	Aerosol Particle Scattering Polarized Phase Function
AerOpt	m	Real Component of Particulate Refractive Index
AerOpt	k	Imaginary Component of Particulate Refractive Index
AerOpt	n	Particulate Complex Refractive Index
AerOpt	AOD	Column-Integrated Extinction Aerosol Optical Depth
AerOpt	AAOD	Column-Integrated Absorption Aerosol Optical Depth

2.3 Cloud Standard Names

Similar to aerosol particle variables, the MeasurementCategory for measurements of cloud properties are "CldOpt" for optical properties, "CldComp" for chemical composition, "CldMicro" for microphysical properties, and "CldMacro" for macrophysical properties. CoreNames for the variables in each of these categories are given in Table 15. The DescriptiveAttributes for CldMicro and CldComp are SizingTechnique, SizeRange, and Reporting. For CldOpt, the DescriptiveAttribute is WL for wavelength of light. There are no DescriptiveAttributes associated with CldMacro (i.e., DescriptiveAttributes = None).

SizingTechnique is an important property because a single cloud particle can have a different size based on the particle's composition and shape, depending on which technique is used. Each technique has inherent assumptions, limitations, and operable ranges that are vital for proper interpretation and comparison of the data. The cloud particle size can be determined by one of two different techniques: Imaging or Optical. If there is no specific size determination (e.g., bulk measurements), the SizingTechnique is "None". In this case, the SizeRange must be "Bulk". See Table 11 for a description of these techniques.

Table 11: Summary of Cloud Particle Sizing Techniques

SizingTechnique	Description
Imaging	Measurement of a particle's size using an image.
Optical	Size derived from the intensity of light scattered by a particle, related to particle size using a prescribed refractive index of 1.33 (for water).
None	No specific size determination – Bulk measurement

Another DescriptiveAttribute associated with CldMicro and CldComp variables is SizeRange. SizeRange delineates the range of measured particle sizes, which can be categorized as either droplets ("Drop"), precipitation ("Precip"), or "Bulk". When "Bulk" is used, the accompanying SizingTechnique must be "None". Table 12 specifies the SizeRange for each of these ranges.

Table 12: Specification of Cloud Particle Size Ranges

SizeRange	Description
Drop	Droplets: Particle size range: 2-50 um diameter
Precip	Precipitation: Particle size range: greater than 50 um diameter
Bulk	Measurement not size resolved
XtoY	Size Range from X to Y, e.g., DroptoPrecip

Cloud optical properties are functions of wavelengths of light. Therefore, a measurement of cloud optical properties is made at a specific wavelength. Table 13 lists the WL DescriptiveAttributes specifying the wavelength ranges within which instruments commonly operate.

Table 13: List Wavelength Ranges for Cloud Optical Property Measurements

WL Attributes	Description
UV	Ultraviolet: 10- 400 nm
Blue	440 - 490 nm
Green	490 - 570 nm
Red	620 - 700 nm
IR	Infrared: 700 - 10 ⁶ nm

WL Attributes	Description
XtoY	Ratio of a measurement at X wavelength to the same measurement at Y wavelength. E.g., fromBluetoRed

Table 14: Reporting Attribute Values for Cloud Measurements

Reporting	Description
MassSTP	Mass concentration reported at standard temperature and pressure
MassAMB	Mass concentration reported at ambient temperature and pressure
MassFrac	Mass Fraction - Ratio of a constituent mass to the total aerosol cloud mass concentration
NumFrac	Number Fraction - Ratio of a constituent number to the total particle number concentration
NumConc	Number concentration of particle constituent
STP	Cloud properties reported at standard temperature and pressure
AMB	Cloud properties reported at ambient temperature and pressure
None	For dimensionless variables

Cloud Variables for Microphysical Properties:

CldMicro_CoreName_AcquisitionMethod_SizingTechnique_SizeRange_Reporting
AcquisitionMethod = InSitu, VertCol, SlantCol, Profile
SizingTechnique = Imaging, Optical, None
SizeRange = Drop, Precip, Bulk, XtoY
Reporting = STP, AMB, None

Example of an in-situ measurement of cloud particle number size distribution derived from an optical sizing technique measuring droplets being reported at ambient conditions: CldMicro_NumSizeDist_InSitu_Optical_Drop_AMB

Cloud Variables for Chemical Composition:

CldComp_CoreName_AcquisitionMethod_SizingTechnique_SizeRange_Reporting
AcquisitionMethod = InSitu, VertCol, SlantCol, Profile
SizingTechnique = Imaging, Optical, None
SizeRange = Drop, Precip, Bulk, XtoY
Reporting = MassSTP, MassAMB, MassFrac, NumFrac, NumConc

Example of an in-situ measurement of the mass concentration of sodium derived from a chemical technique where the particle measurement is not size resolved reported at ambient conditions: CldComp_Sodium_InSitu_None_Bulk_MassAMB

Cloud Variables for Optical Properties:

CldOpt_CoreName_AcquisitionMethod_WL AcquisitionMethod = InSitu, VertCol, SlantCol, Profile WL = UV, Blue, Green, Red, IR, or XtoY

Example of an in-situ measurement of cloud particle extinction coefficient measured in the blue wavelength: CldOpt_Extinction_InSitu_blue

Cloud Variables for Macrophysical Properties:

CldMacro_CoreName_AcquisitionMethod_None AcquisitionMethod = InSitu, VertCol, SlantCol, Profile

Example of an in-situ measurement of cloud top height: CldMacro_CTH_InSitu_None

Table 15: List of CoreNames for Cloud Property Measurements

Measurement Category	CoreName	Definition
CldMicro	CrossSectionalArea SizeDist	Cloud Particle Cross Section Area Concentration Size Distribution
CldMicro	MassSizeDist	Cloud Particle Mass Concentration Size Distribution
CldMicro	NumSizeDist	Cloud Particle Number Concentration Size Distribution
CldMicro	NumConc	Cloud Particle Number Concentration
CldMicro	SurfAreaConc	Cloud Particle Surface Area Concentration
CldMicro	VolConc	Cloud Particle Volume Concentration
CldMicro	SurfAreaSizeDist	Cloud Particle Surface Area Concentration Size Distribution
CldMicro	VolSizeDist	Cloud Particle Volume Concentration Size Distribution
CldMicro	MeanSize	Cloud Particle Mean Size (Radius or Diameter)
CldMicro	MedianSize	Cloud Particle Median Size (Radius or Diameter)
CldMicro	MeanVolumeSize	Cloud Particle Mean Size (Radius or Diameter) weighted by Volume
CldMicro	MedianVolumeSize	Cloud Particle Median Size (Radius or Diameter) weighted by Volume
CldMicro	EffSize	Cloud Particle Effective Radius or Diameter

Measurement Category	CoreName	Definition
CldMicro	EffVar	Cloud Particle Effective Variance
CldMicro	LWC	Cloud Particle Liquid Water Content
CldMicro	IWC	Cloud Particle Ice Water Content
CldMicro	TWC	Cloud Particle Total Water content
CldMacro	LWP	Liquid Water Path – Column Integrated Liquid Water Content
CldMacro	СТН	Cloud Top Height
CldMacro	СВН	Cloud Bottom Height
CldOpt	Extinction	Cloud Particle Extinction Coefficient
CldOpt	OD	Cloud Optical Depth
CldComp	INP	Ice Nucleating Particles
CldComp	Sodium	Cloud Water Mass Concentration of Sodium
CldComp	Chloride	Cloud Water Mass Concentration of Chloride
CldComp	Calcium	Cloud Water Mass Concentration of Calcium
CldComp	Ammonium	Cloud Water Mass Concentration of Ammonium
CldComp	Potassium	Cloud Water Mass Concentration of Potassium
CldComp	Magnesium	Cloud Water Mass Concentration of Magnesium
CldComp	Sulfate	Cloud Water Mass Concentration of Sulfate
CldComp	Nitrate	Cloud Water Mass Concentration of Nitrate
CldComp	Oxalate	Cloud Water Mass Concentration of Oxalate
CldComp	Lithium	Cloud Water Mass Concentration of Lithium
CldComp	Beryllium	Cloud Water Mass Concentration of Beryllium
CldComp	Boron	Cloud Water Mass Concentration of Boron
CldComp	Aluminium	Cloud Water Mass Concentration of Aluminium
CldComp	Silicon	Cloud Water Mass Concentration of Silicon
CldComp	Phosphorus	Cloud Water Mass Concentration of Phosphorus
CldComp	Sulfur	Cloud Water Mass Concentration of Sulfur
CldComp	Titanium	Cloud Water Mass Concentration of Titanium

Measurement Category	CoreName	Definition
CldComp	Vanadium	Cloud Water Mass Concentration of Vanadium
CldComp	Chromium	Cloud Water Mass Concentration of Chromium
CldComp	Manganese	Cloud Water Mass Concentration of Manganese
CldComp	Iron	Cloud Water Mass Concentration of Iron
CldComp	Cobalt	Cloud Water Mass Concentration of Cobalt
CldComp	Nickel	Cloud Water Mass Concentration of Nickel
CldComp	Copper	Cloud Water Mass Concentration of Copper
CldComp	Zinc	Cloud Water Mass Concentration of Zinc
CldComp	Arsenic	Cloud Water Mass Concentration of Arsenic
CldComp	Selenium	Cloud Water Mass Concentration of Selenium
CldComp	Rubidium	Cloud Water Mass Concentration of Rubidium
CldComp	Strontium	Cloud Water Mass Concentration of Strontium
CldComp	Yttrium	Cloud Water Mass Concentration of Yttrium
CldComp	Zirconium	Cloud Water Mass Concentration of Zirconium
CldComp	Niobium	Cloud Water Mass Concentration of Niobium
CldComp	Molybdenum	Cloud Water Mass Concentration of Molybdenum
CldComp	Ruthenium	Cloud Water Mass Concentration of Ruthenium
CldComp	Palladium	Cloud Water Mass Concentration of Palladium
CldComp	Silver	Cloud Water Mass Concentration of Silver
CldComp	Cadmium	Cloud Water Mass Concentration of Cadmium
CldComp	Tin	Cloud Water Mass Concentration of Tin
CldComp	Tellurium	Cloud Water Mass Concentration of Tellurium
CldComp	Caesium	Cloud Water Mass Concentration of Caesium
CldComp	Barium	Cloud Water Mass Concentration of Barium
CldComp	Hafnium	Cloud Water Mass Concentration of Hafnium
CldComp	Tantalum	Cloud Water Mass Concentration of Tantalum
CldComp	Osmium	Cloud Water Mass Concentration of Osmium
CldComp	Platinum	Cloud Water Mass Concentration of Platinum

Measurement Category	CoreName	Definition
CldComp	Gold	Cloud Water Mass Concentration of Gold
CldComp	Mercury	Cloud Water Mass Concentration of Mercury
CldComp	Thallium	Cloud Water Mass Concentration of Thallium
CldComp	Lead	Cloud Water Mass Concentration of Lead
CldComp	WSOC	Cloud Water Mass Concentration of Water Soluble Organic Carbon

2.4 Meteorology Standard Names

The "MeasurementCategory" for meteorology parameters is Met. CoreNames for meteorology variables are listed in Table 16. There are no DescriptiveAttributes associated with meteorology variables (i.e., DescriptiveAttributes = None).

Meteorology Parameters:

Met_CoreName_AcquisitionMethod_None AcquisitionMethod = InSitu, VertCol, SlantCol, Profile

Example of an in-situ measurement of static temperature: Met_StaticTemperature_InSitu_None

Table 16: List of CoreNames for Meteorological Measurements

CoreName	Definition
StaticPressure	Ambient Atmospheric Pressure
StaticAirTemperature	Ambient air temperature
PotentialTemperature	Potential temperature
DewPoint	Temperature to which air must be cooled to become saturated with respect to liquid water (or frost)
PartialPressureH2O	Partial pressure of water vapor in air
H2OMRV	Volumetric water vapor mixing ratio
H2OMR	Mass mixing ratio of water vapor to dry air mass
H2OdD	Deviations in the D/H Stable Hydrogen Isotope Ratio relative to H ₂ O vapor
H2Od18O	Deviations in the ¹⁸ O/ ¹⁶ O Stable Oxygen Isotope Ratio relative to H ₂ O vapor
H2OTotalDMR	Mass mixing ratio of total water (vapor + liquid + ice) over dry air

CoreName	Definition
VWP	Vapor Water Path – column integrated water vapor content
SpecificHumidity	Ratio of the mass of water vapor to the total mass of air (ambient air)
VaporDensity	Absolute Humidity: Ratio of the mass of water vapor present to the volume occupied by ambient air
RelativeHumidityIce	Relative Humidity over Ice
RelativeHumidityWater	Relative Humidity over Water
SatVaporPressureH2OIce	Saturation Vapor Pressure over Ice – Equilibrium saturation water vapor pressure with respect to water ice
SatVaporPressureH2OWater	Saturation Vapor Pressure over liquid Water – Equilibrium saturation water vapor pressure with respect to liquid water
SurfaceTemperature	Temperature of large-area of subjects, e.g., Sea or other large water surface, cloud, or terrain
UWindSpeed	E-W Horizontal Wind Speed
VWindSpeed	N-S Horizontal Wind Speed
WWindSpeed	Vertical Wind Speed
UstdWindSpeed	Standard deviation of E-W Horizontal Wind Speed
VstdWindSpeed	Standard deviation of N-S Horizontal Wind Speed
WstdWindSpeed	Standard deviation of Vertical Wind Speed
UWindVariance	Variance of the E-W Horizontal Wind Speed
VWindVariance	Variance of the N-S Horizontal Wind Speed
WWindVariance	Variance of the vertical Wind Speed
WindSpeed	Scalar Wind Speed
WindDirection	Wind Direction, positive North
SolarAzimuthAngle	Solar Azimuth Angle
SolarZenithAngle	Solar Zenith Angle
Ustar	Friction Velocity
Wstar	Convective Velocity Scale
TKE	Turbulent Kinetic Energy

CoreName	Definition
TEDR	Turbulent Dissipation Rate
REYN	Reynolds Number
LatentHeatFlux	Latent Heat Flux
SensibleHeatFlux	Sensible Heat Flux
Obukhov	Obukhov length
BoundaryLayerHeight	Height of planetary boundary layer defined by constant potential temperature
BufferLayerHeight	Height of Buffer Layer typically marked by a distinct temperature inversion
MixedLayerHeight	Height of the planetary boundary layer defined by an aerosol particle gradient
Insolation	Amount of solar radiation reaching the Earth's surface
RainAccumulation	The cumulative amount of rain over a defined period of time
RainDuration	The period of time in which continuous rainfall is observed
RainRate	The intensity of rain over a specified interval of time
HailAccumulation	The cumulative amount of hail over a defined period of time
HailDuration	The period of time in which continuous hail is observed
HailRate	The intensity of hail over a specified interval of time

2.5 Platform Navigation and Attitude Standard Names

This group of standard names is for variables describing measurement platform (e.g., aircraft, ship, and motor vehicles) location and attitude (if applicable) as a function of sampling time. The value of MeasurementCategory for this group is "Platform". CoreNames for navigation variables are listed in Table 17. There is no need for further description (i.e., DescriptiveAttributes always has the value of "None"), and the AcquisitionMethod is always "InSitu".

Platform Navigation:

Platform_CoreName_AcquisitionMethod_None AcquisitionMethod = InSitu

Example of an in-situ measurement for aircraft Yaw angle: Platform_YawAngle_InSitu_None

Table 17: List of CoreNames for Measurement Platform Navigation and Attitude

CoreName	Description
Latitude	The angle between the equatorial plane and the straight line that passes through a point of interest and through (or close to) the center of the Earth
Longitude	The angle east or west of a reference meridian to another meridian that passes through a point of interest
AltitudePressure	Elevation above a standard datum air-pressure plane
AltitudeAGL	Height above ground level
AltitudeMSL	Height above mean sea surface level
AltitudeEllipsoid	Height above Ellipsoid**
AltitudeGeoid	Height about Geoid
HeadingTrue	Direction of nose orientation, positive cardinal north
HeadingMagnetic	Direction of nose orientation, positive magnetic north
TrackAngle	Vehicle track over ground reference, positive cardinal north
DriftAngle	Angle difference between HeadingTrue and TrackAngle
PitchAngle	Angle between horizontal axis and the longitudinal axis of the vehicle, positive nose up
RollAngle	Angle between horizontal axis and the lateral axis of the vehicle, positive right wing down
YawAngle	Angle about a vertical axis between vehicle longitudinal axis and the direction of motion of the vehicle, positive right
AngleofAttack	Angle between the chord line of the aircraft and the relative wind
AircraftTrueAirSpeed	Speed of air flow with respect to the aircraft
GroundSpeed	Horizontal speed of vehicle with respect to the earth's surface
AircraftIndicatedAirSpeed	Derived vehicle speed from pitot-static system components (Static and Impact pressure)

** Reference ellipsoid must be defined in variable long name and/or in file header

2.6 Photolysis Rate Standard Names

The MeasurementCategory for photolysis rate variables is either GasJvalue for gas phase photolysis or AquJvalue for aqueous phase photolysis processes. The CoreNames for the photolysis rates (Table 18) consist of "j" plus the CoreName of the gas phase reactants previously given in Table 4. There are no aqueous phase photolysis rate coefficient measurements from current suborbital field studies. The AcquisitionMethod is "InSitu". Three DescriptiveAttributes are associated with the photolysis variables: "MeasurementDirection", "SpectralCoverage", and "Products". MeasurementDirection describes if the photolysis rates are derived from downwelling, upwelling, or total (Downwelling and Upwelling) actinic flux measurements. SpectralCoverage indicates whether the spectral range of the measurement spans the entire range of photolysis or only a partial range (e.g., UV/Visible range only), and Products is used to list the products from photolysis reactions, separated by a hyphen ("-"). If no specific products are identified in the photolysis reaction, "Products" has the value of "NoProductsSpecified".

Photolysis Rates:

 $Measurement Category_CoreName_Acquisition Method_Measurement Direction_Spectral Coverage_Products$

MeasurementCategory = GasJvalue or AquJvalue

AcquisitionMethod = InSitu

MeasurementDirection = Downwelling, Upwelling, or Total

SpectralCoverage = Partial, Full

Example of photolysis rate coefficient for reaction $NO2 + hv \rightarrow NO + O(3P)$ derived from total actinic flux measurement:

GasJvalue_jNO2_InSitu_Total_Full_NO2-O3P

Example of photolysis rate coefficient for reaction CHBr3 + $hv \rightarrow products$ derived from downwelling actinic flux measurement:

GasJvalue_jCHBr3_InSitu_Downwelling_Full_NoProductsSpecified

Example of photolysis rate coefficient for reaction $HNO4 + hv \rightarrow HO2 + NO2$ derived from total actinic flux measurement:

GasJvalue_jHNO4_InSitu_Total_Partial_HO2-NO2

Table 18: List of CoreNames for Gas Phase Photolytic Rate Coefficients

CoreName	Definition
jO3	Rate Coefficient for Photolysis of Ozone
jNO2	Rate Coefficient for Photolysis of Nitrogen Dioxide
јН2О2	Rate Coefficient for Photolysis of Hydrogen Peroxide

CoreName	Definition
jNO3	Rate Coefficient for Photolysis of Nitrate Radical
jN2O5	Rate Coefficient for Photolysis of Nitrogen Pentoxide
jHNO2	Rate Coefficient for Photolysis of Nitrous Acid
jHNO3	Rate Coefficient for Photolysis of Nitric Acid
jHNO4	Rate Coefficient for Photolysis of Peroxynitric acid
јСН2О	Rate Coefficient for Photolysis of Formaldehyde
јСН3СНО	Rate Coefficient for Photolysis of Acetaldehyde
jPropanal	Rate Coefficient for Photolysis of Propanal
јСН3ООН	Rate Coefficient for Photolysis of Methyl Hydroperoxide
jMeONO2	Rate Coefficient for Photolysis of Methyl Nitrate
jEthONO2	Rate Coefficient for Photolysis of Ethyl Nitrate
jPAN	Rate Coefficient for Photolysis of Peroxyacetyl Nitrate
jMAC	Rate Coefficient for Photolysis of Methacrolein
jMVK	Rate Coefficient for Photolysis of Methyl Vinyl Ketone
јМЕК	Rate Coefficient for Photolysis of Methyl Ethyl Ketone
jAcetone	Rate Coefficient for Photolysis of Acetone
jEthAcetate	Rate Coefficient for Photolysis of Ethyl Acetate
jMeAcetate	Rate Coefficient for Photolysis of Methyl Acetate
јСНОСНО	Rate Coefficient for Photolysis of Glyoxal
јСН3СОСНО	Rate Coefficient for Photolysis of Methyl Glyoxal
j23Butanedione	Rate Coefficient for Photolysis of 2,3-Butanedione
jCl2	Rate Coefficient for Photolysis of Chlorine
jClO	Rate Coefficient for Photolysis of Chlorine Oxide
jClNO2	Rate Coefficient for Photolysis of Nitryl Chloride
jClONO	Rate Coefficient for Photolysis of ClONO
jClONO2	Rate Coefficient for Photolysis of Chlorine Nitrate
jBr2	Rate Coefficient for Photolysis of Bromine to Br+Br

CoreName	Definition
jBrO	Rate Coefficient for Photolysis of Bromine Oxide
jHOBr	Rate Coefficient for Photolysis of Hypobromous Acid
jBrNO	Rate Coefficient for Photolysis of BrNO
jBrONO	Rate Coefficient for Photolysis of BrONO
jBrONO2	Rate Coefficient for Photolysis of BrONO2
jBrNO2	Rate Coefficient for Photolysis of BrNO2
jBrCl	Rate Coefficient for Photolysis of Bromine Chloride
jCHBr3	Rate Coefficient for Photolysis of Bromoform
jButanal	Rate Coefficient for Photolysis of Butanal
jBr2O	Rate Coefficient for Photolysis of Dibromine Monoxide
jHydroxyacetone	Rate Coefficient for Photolysis of Hydroxyacetone

2.7 Radiation Standard Names

The "Rad" MeasurementCategory is a group of standard names that describe radiation measurement variables. The AcquisitionMethod for this category is always "InSitu", and possible CoreNames are given in Table 19. There is only one DescriptiveAttribute, "WLMode", which refers to the spectral measurement mode. WLmode may be three options: "BB" for broadband measurements, "SP" for spectral measurements, and "SC" for measurement-specific spectral channels. While measurement spectral range is important, fully describing it requires specific wavelength information, which is beyond the scope of the broad ranges and controlled vocabulary of standard names. Specific spectral range information should be given in the variable description, e.g., in the long variable name in the ICARTT format.

Radiation Measurements:

Standard Name = Rad_CoreName_InSitu_WLMode WLMode = BB (broadband), SP (spectral), or SC (specific channels)

Example of an in-situ measurement of Downwelling Diffuse Broadband Solar Irradiance between 0.2 and 3.6 micron: Rad_IrradianceDownwellingDiffuse_InSitu_BB

Table 19: List of CoreNames for Radiation Measurements

CoreName	Definition
Radiance	Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area

RadianceDownwellingZenith	Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area, for the radiance measured via a narrow field of view pointed directly at zenith, usually under clouds.
RadianceDownwellingSky	Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area, for the radiance measured via a narrow field of view pointed at defined points in the sky, sampling diffuse skylight.
IrradianceDownwellingDirect	Radiant flux received by a surface per unit area, i.e., downwelling direct component of irradiance
IrradianceDownwellingDiffuse	Radiant flux received by a surface per unit area, i.e., downwelling diffuse component of irradiance
IrradianceDownwelling	Radiant flux received by a surface per unit area (downwelling). For solar radiation this is also referred to as global (diffuse and direct) solar irradiance
IrradianceUpwelling	Radiant flux received by a surface per unit area (upwelling)
ActinicFlux	Spherically integrated solar radiation flux in the earth's atmosphere
ActinicFluxDownwelling	Spherically integrated solar radiation flux in the earth's atmosphere, i.e., downwelling component of actinic flux (uncorrected for aircraft attitude)
ActinicFluxUpwelling	Spherically integrated solar radiation flux in the earth's atmosphere, i.e., upwelling component of actinic flux (uncorrected for aircraft attitude)

3 Maintenance and Future

This document is intended to be a living document. To stay relevant to the measurements and user community, CoreNames and Descriptive Attributes will be updated and/or modified after each major field campaign. The process for creating new CoreNames will involve the collection of new measurements from the principle investigator, review through literature search and peer comments, and following a similar structure to current measurements. To date, the current list of atmospheric composition standard names has been successfully implemented in the FIREX-AQ, CAMP²EX, and ACTIVATE field campaigns. With the help of the field campaign PIs over one hundred new measurement core names have been added to this document since prior to these campaign data submissions. This document will be maintained by Morgan Silverman and the Earth Venture-SubOrbital Support Team (EV-SOS) at the NASA Langley Atmospheric Science Data Center.

4 References

Informative References

- [1] Wilkinson, M. D., et al. "The FAIR Guiding Principles for scientific data management and stewardship", Scientific Data, 3, (2016), https://www.go-fair.org/fair-principles/
- [2] B. Eaton et al, NetCDF Climate and Forecast (CF) Metadata Conventions, September 2021, https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#_introduction
- [3] Guidelines for Construction of CF Standard Names, December 2008, http://cfconventions.org/Data/cf-standard-names/docs/guidelines.html
- [4] DeCarlo, Peter F., et al. "Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory." Aerosol Science and Technology 38.12 (2004): 1185-1205.

5 Authors

Lead Authors

Morgan Silverman, SSAI/NASA LARC, MS 401B, Hampton, VA, USA Tel: 757-864-3219 email: morgan.l.silverman@nasa.gov

Michael Shook, NASA LARC, michael.a.shook@nasa.gov

Rebecca Hornbrook, NCAR/UCAR, rsh@ucar.edu

Luke Ziemba, NASA LARC, luke.ziemba@nasa.gov

Sam Hall, NCAR/UCAR, halls@ucar.edu

Kirk Ullmann, NCAR/UCAR, ullmannk@ucar.edu

John Crounse, CalTech, crounjd@caltech.edu

Ryan Bennett, NSRC, r.bennett@baeri.org

Megan Buzanowicz, SSAI/NASA LARC, megan.e.buzanowicz@nasa.gov

Gao Chen, NASA LARC, gao.chen@nasa.gov

Contributing Authors

Barbara Barletta, University of California – Irvine, bbarlett@uci.edu

Helen Conover, UAH ITSC/NASA MSFC/GHRC DAAC, helen.conover@uah.edu

Josh DiGangi, NASA LARC, joshua.p.digangi@nasa.gov

Keith Evans, JCET/UMBC, evans@umbc.edu

Arlene Fiore, Columbia University, af2544@columbia.edu

Melanie Follette-Cook, Morgan State University/NASA GSFC, melanie.cook@nasa.gov

Peter Hall, NASA GSFC, peter.f.hall@nasa.gov

Peter Leonard, ADNET Systems/NASA GSFC, peter.j.leonard@nasa.gov

Qing Liang, NASA GSFC, qing.liang@nasa.gov

John Nowak, NASA LARC, john.b.nowak@nasa.gov

Scott Peckham, University of Colorado - Boulder, scott.peckham@colorado.edu

Hampapuram Ramapriyan, SSAI/NASA GSFC, hampapuram.ramapriya@ssaihq.com

Scott Ritz, NASA GSFC, scott.a.ritz@nasa.gov

Martin Schultz, Forschungszentrum Jülich, m.schultz@fz-juelich.de

Maria Stoica, University of Colorado – Boulder, maria.stoica@colorado.edu Qian Tan, NASA ARC, qian.tan@nasa.gov Andrew Thorpe, JPL, Andrew.K.Thorpe@jpl.nasa.gov Jian Zeng, ADNET Systems/NASA GSFC, jian.zeng@nasa.gov

Working Group Members

Aubrey Beach, NASA LaRC/ASDC currently at Booz Allen Hamilton Stephane Beland, University of Colorado – Boulder, sbeland@colorado.edu Stephen Berrick, NASA ESDIS, Stephen.W.Berrick@nasa.gov Allan Doyle, International Interfaces, Inc., adoyle@intl-interfaces.com Amanda Benson Early, NASA LaRC/ASDC currently at ActiveCampaign Scott Gluck, JPL, Scott.Gluck@jpl.nasa.gov Nathan James, NASA ESDIS, nathan.l.james@nasa.gov James Johnson, NASA GSFC, james.johnson@nasa.gov Jeanne Laurencelle, University of Alaska – Fairbanks, jclaurencelle@alaska.edu Dave Meyer, NASA GSFC, david.i.meyer@nasa.gov George Milly, Columbia University, gpm2109@columbia.edu David Moroni, JPL PO.DAAC, david.f.moroni@jpl.nasa.gov Emily Northup, NASA LaRC/ASDC currently at Trader Interactive Deborah Smith, UAH – ITSC/NASA MSFC/GHRC DAAC, deborah.smith@uah.edu Chris Stoner, University of Alaska Satellite Facility, cstoner5@alaska.edu Richard Strub, SSAI/NASA GSFC, richard.f.strub@nasa.gov Jeff Walter, NASA LaRC, jeff.walter@nasa.gov