Тестовое задание от компании Адвентум

В рамках анализа влияния различных факторов на количество лайков на постах в паблике с рисунками: https://vk.com/iiiniamiii был использован парсер для сбора данных со страницы паблика (main.py, config.json). Результатом работы парсера стала таблица $posts_data.csv$, содержащая информацию о каждом посте, включая идентификатор поста в группе ($id_$), дату и время публикации ($date_$), а также количество лайков на посте (likes).

Затем данные были импортированы из $posts_data.csv$ в предварительно созданную в $pqAdmin\ 4$ таблицу $posts\ data\ c$ помощью специальной команды.

Далее были написаны запросы, позволяющие понять, что больше всего влияет на количество лайков - время суток публикации, день недели или промежуток между постами.

В первом запросе определялось время суток (ночь, утро, день, вечер) для каждой записи в таблице $posts_data$, а после вычислялось среднее количество лайков для каждой группы времени суток.

```
SELECT
CASE

WHEN date_::time >= '00:00:00' AND date_::time < '06:00:00' THEN 'ночь'
WHEN date_::time >= '06:00:00' AND date_::time < '12:00:00' THEN 'утро'
WHEN date_::time >= '12:00:00' AND date_::time < '18:00:00' THEN 'утро'
ELSE 'вечер'
END AS time_of_day,
ROUND(AVG(likes_), 2) AS avg_likes_amount
FROM posts_data
GROUP BY time_of_day;
```

Рис. 1: Выявление зависимости числа лайков от времени суток публикации

	time_of_day text	avg_likes_amount numeric
1	день	46.03
2	вечер	51.31
3	ночь	103.25
4	утро	28.52

Рис. 2: Результаты выполнения 1 запроса

Рис. 3: Pie chart к 1 запросу

Во втором запросе определялся день недели (Mon, Tue, Wed, Thu, Fri, Sat, Sun) для каждой записи в таблице $posts_data$, затем вычислялось среднее количество лайков для каждой группы дней недели.

```
SELECT
    CASE

WHEN date_part('isodow', date_) = 1 THEN 'Mon'
WHEN date_part('isodow', date_) = 2 THEN 'Tue'
WHEN date_part('isodow', date_) = 3 THEN 'Wed'
WHEN date_part('isodow', date_) = 4 THEN 'Thu'
WHEN date_part('isodow', date_) = 5 THEN 'Fri'
WHEN date_part('isodow', date_) = 6 THEN 'Sat'
ELSE 'Sun'
END AS day_of_week,
ROUND(AVG(likes_), 2) AS avg_likes_amount
FROM posts_data
GROUP BY date_part('isodow', date_)
ORDER BY date_part('isodow', date_);
```

Рис. 4: Выявление зависимости числа лайков от дня недели публикации

	day_of_week text	avg_likes_amount numeric	
1	Mon	38.67	
2	Tue	54.19	
3	Wed	40.00	
4	Thu	48.18	
5	Fri	36.69	
6	Sat	44.27	
7	Sun	45.85	

Рис. 5: Результаты выполнения 2 запроса

Рис. 6: Bar chart ко 2 запросу

В третьем запросе создавалась временная таблица (table1) с дополнительными столбцами:

- prev_date дата публикации предыдущего поста;
- date diff разница между предыдущей и текущей датами;
- prev_likes количество лайков на предыдущем посте;
- *likes_avg* среднее количество лайков между текущим и предыдущим значениями.

Затем из этой временной таблицы выбирались данные, исключая запись с $id_{-}=max(id_{-})$, поскольку эта строка была неинформативной (самый крайний пост), после вычислялось среднее количество лайков (avg_likes_amount) для каждой группы разницы дат $(date_diff)$.

```
SELECT
  date_diff,
  ROUND(AVG(likes_avg), 2) AS avg_likes_amount
FROM
  (SELECT
     id_,
     date_::date,
     COALESCE(LAG(date_::date) OVER (ORDER BY date_::date DESC), date_::date) AS prev
     COALESCE(LAG(date_::date) OVER (ORDER BY date_::date DESC), date_::date) - date_
     likes_,
     COALESCE(LAG(likes_) OVER (ORDER BY date_::date DESC), likes_) AS prev_likes,
     ROUND((likes_ + COALESCE(LAG(likes_) OVER (ORDER BY date_::date DESC), likes_)):
   FROM posts_data
   ORDER BY date_ DESC) AS table1
WHERE id_ != (SELECT MAX(id_) FROM posts_data)
GROUP BY date_diff
ORDER BY date_diff;
```

Рис. 7: Выявление зависимости числа лайков от промежутка между постами

	date_diff integer	avg_likes_amount numeric
1	0	74.00
2	1	40.74
3	2	42.42
4	3	30.47
5	4	42.54
6	5	41.22
7	6	97.17
8	7	53.67
9	8	38.00
10	10	75.00
11	11	109.00
12	14	35.00
13	15	82.00
14	18	38.50
15	19	55.50
16	21	22.50
17	26	107.50

Рис. 8: Результаты выполнения 3 запроса

Рис. 9: Bar chart к 3 запросу

Приведенные графики позволяют сделать вывод о том, что наиболее явно прослеживается зависимость среднего числа лайков от времени суток.

Далее был выполнен расчет различных статистических величин (metrics.py). Результаты запросов, представленные на Рис. 2, 5, 8, были загружены в сsv-файлы,

затем три набора данных из файлов data1.csv, data2.csv и data3.csv были открыты с помощью функции $pd.read_csv$. Каждый набор данных хранился в отдельном датафрейме (df time, df day) и df interval.

В каждом датафрейме было две колонки: $time_of_day$ и avg_likes_amount в df_time , day_of_week и avg_likes_amount в df_day , и $date_diff$ и avg_likes_amount в $df_interval$; они содержали категориальные (время суток, день недели) и количественные (число дней между постами, число лайков) данные.

Чтобы работать с категориальными данными, создавались словари $(time_of_day_mapping$ и $day_of_week_mapping$), которые сопоставляют каждое категориальное значение с числом. Затем использовалась функция map для замены категориальных значений на соответствующие числа в датафреймах. После этого рассчитывался коэффициент корреляции Пирсона между количественными данными (avg_likes_amount) и числовыми значениями категориальных данных $(time_of_day_num$ и $day_of_week_num)$.

После этого проводиллся тест Краскела-Уоллиса, который проверяет, есть ли статистически значимая разница в средних значениях количественных данных (avg_likes_amount) для разных категориальных значений $(time_of_day$ и $day_of_week)$. Тест Краскела-Уоллиса возвращал статистику H и p-value.

Были получены следующие результаты:

metric	time_of_day	day_of_week	$time_interval$
correlation coefficient	0.9212	-0.0204	0.2029
p-value	0.3916	0.4232	-

Таблица 1: Основные метрики

Как видно из Таблицы 1, результаты анализа противоречивы. С одной стороны, коэффициент корреляции Пирсона указывает на сильную положительную корреляцию между временем суток и количеством лайков, а с другой стороны, тест Краскела-Уоллиса не находит статистически значимых различий в количестве лайков по разным временам суток и дням недели $(p-value\$ больше 0,05). Можно предположить, что одной из причин такой нестабильности является малый размер выборки.

В целом, данные показали, что время суток оказывает большее влияние на количество лайков по сравнению с другими факторами. Пользователи социальных сетей наиболее активны вечером и ночью, когда у них есть больше свободного времени, отсюда и следует наибольшая степень влияния.