## Qiskit Metal – Quantum Device Design and Analysis (Q-EDA)

Thomas G. McConkey, Zlatko Minev



#### IBM **Quantum**

# A Quantum Computer





IBM Quantum / © 2022 IBM Corporation



Risk, Cost, Time, Resource



flow







Hamiltonian





Layout



**Fabrication** 



Quantum Analysis



Qiskit | quantum device design



Electromagnetic Analysis



|            |                 |             |  | Q | isl | kit | M | eta | al |  |       |         |       |
|------------|-----------------|-------------|--|---|-----|-----|---|-----|----|--|-------|---------|-------|
|            |                 |             |  |   |     |     |   |     |    |  |       |         |       |
|            |                 |             |  |   |     |     |   |     |    |  |       |         |       |
|            |                 |             |  |   |     |     |   |     |    |  |       |         |       |
|            |                 |             |  |   |     |     |   |     |    |  |       |         |       |
| IBM Quantu | ım / © 2022 IBM | Corporation |  |   |     |     |   |     |    |  | qiski | t.org/n | netal |

### What is Qiskit Metal?

- A new open-source quantum-EDA tool from IBM
  - Written in python
  - Apache License 2.0
  - IBM claims no ownership or rights to any device or code
    - If you add code to the Metal database, it is open and free for everyone to use, but are under no obligation to ever contribute code.
    - Major contributions get authorship credit for citations.
- Follows a modular architecture
  - Qdesign is the primary instance for your circuit layout.
  - Qcomponents are the library of circuits, like "super" p-cells.
  - Renderers are the API interfaces between Metal and external software tools.
  - Analysis work with the returned data of renderers to determine quantum parameters.
  - Qgeometry is the internal database which allows your design to be generated natively in any external simulation software.

# QComponents – "Super PCells"



# QComponents – "Super PCells"



self.add pin(name, 2points, width)

- Represent the electrical/physical contact point between two QComponents
- Have position and direction (outwards)
- Routing algorithms use pins as start-end anchors
  - Non-routing component pins must be created before routing components
- Two pins can be "connected" thus establishing a net

## Reuse and Extend the QLibrary



## QGeometry

- The primitives of the Metal layout
  - Path, Poly and Junction
  - Includes additional parameters dependent on the renderers present



| C) Element | type: junction | Filter: Component:                       |       |          |        |      | Layer: |                 |                  |                 |            |
|------------|----------------|------------------------------------------|-------|----------|--------|------|--------|-----------------|------------------|-----------------|------------|
| component  | name           | geometry                                 | layer | subtract | helper | chip | width  | hfss_inductance | hfss_capacitance | hfss_resistance | hfss_mesh_ |
|            |                | LINESTRING (-1.25<br>0.485, -1.25 0.515) |       | False    | False  | main | 0.02   | 14nH            |                  |                 | 7e-06      |
| 2          |                | LINESTRING (1.25<br>0.485, 1.25 0.515)   |       | False    | False  | main | 0.02   | 14nH            |                  |                 | 7e-06      |
| 3          |                | LINESTRING (0 -1.365,<br>0 -1.335)       |       | False    | False  | main | 0.02   | 14nH            |                  |                 | 7e-06      |

### Renderers

- The API translators between Metal layout/analysis and the classical simulation tools
  - To generate the layout natively for optimal simulation results
  - Extract results seamlessly into appropriate quantum analysis in Metal





## Quantum Analysis: LOM

- From classical simulations, via the appropriate renderer, quantum analysis can extract several quantum values of interest, such as your qubit's anharmonicity or readout chi.
  - Lumped Oscillator Model (LOM)

Quasi-static solver



## Quantum Analysis: LOM



{'fQ': 4.787226695506869,
 'EC': 296.92044408559445,
 'EJ': 10.966147659300391,
 'alpha': -351.528599604318,
 'dispersion': 128.8753386135
 'gbus': array([-83.55898953,
 'chi\_in\_MHz': array([-1.0692





## Quantum Analysis: EPR

• From classical simulations, via the appropriate renderer, quantum analysis can extract several quantum values of interest, such as your qubit's anharmonicity or readout chi.

Energy Participation Ratio (EPR)

#### **Eigenmode Simulation**



```
*** Chi matrix O1 PT (MHz)
    Diag is anharmonicity, off
       286
              0.559
                         5.88
     0.559
                         3.67
      5.88
               3.67
                       0.0418
   Chi matrix ND (MHz)
       329
                         2.77
     -8.33
                        1.33
      2.77
                       0.0103
    Frequencies 01 PT
     4784.895093
     4990.716076
     5896.840627
dtvpe: float64
   Frequencies ND (MHz)
     4763.813191
     4972.265666
     5898.088713
dtype: float64
```

## Quantum Analysis: LOM 2.0

• From classical simulations, via the appropriate renderer, quantum analysis can extract several quantum values of interest, such as your qubit's anharmonicity or readout chi.

• LOM 2.0

| Quantum object: dims = [[10, 10, 3, 3], [10, 10, 3, 3]], shape = (900, 900), type = oper, isherm = True |                            |                          |                          |                          |                          |        |                          |                        |  |  |  |
|---------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|--------------------------|------------------------|--|--|--|
| 1                                                                                                       | $(-2.438 \times 10^{+04})$ | 0.108j                   | 0.0                      | 0.127j                   | -0.436                   |        | 0.0                      | 0.0                    |  |  |  |
|                                                                                                         | -0.108 <i>j</i>            | $-1.678 \times 10^{+04}$ | 0.153j                   | 0.436                    | 0.127j                   |        | 0.0                      | 0.0                    |  |  |  |
|                                                                                                         | 0.0                        | -0.153j                  | $-9.184 \times 10^{+03}$ | 0.0                      | 0.617                    | •••    | 0.0                      | 0.0                    |  |  |  |
|                                                                                                         | -0.127 <i>j</i>            | 0.436                    | 0.0                      | $-1.638 \times 10^{+04}$ | 0.108j                   |        | 0.0                      | 0.0                    |  |  |  |
|                                                                                                         | -0.436                     | -0.127j                  | 0.617                    | -0.108j                  | $-8.784 \times 10^{+03}$ |        | $-1.839 \times 10^{-08}$ | 0.0                    |  |  |  |
|                                                                                                         | 1                          |                          |                          |                          |                          | $\sim$ |                          | :                      |  |  |  |
|                                                                                                         | 0.0                        | 0.0                      | 0.0                      | 0.0                      | $-1.839 \times 10^{-08}$ |        | $7.287 \times 10^{+04}$  | 706.553 j              |  |  |  |
| ı                                                                                                       | 0.0                        | 0.0                      | 0.0                      | 0.0                      | 0.0                      |        | -706.553 <i>j</i>        | $8.047 \times 10^{+0}$ |  |  |  |
|                                                                                                         |                            |                          |                          |                          |                          |        |                          |                        |  |  |  |



## Quantum Analysis

- From classical simulations, via the appropriate renderer, quantum analysis can extract several quantum values of interest, such as your qubit's anharmonicity or readout chi.
  - Lumped Oscillator Model (LOM) <a href="https://youtu.be/rY70s7B9sg0">https://youtu.be/rY70s7B9sg0</a>
  - Energy Participation Ratio (EPR) <a href="https://youtu.be/wjryCzaK0wY">https://youtu.be/wjryCzaK0wY</a>
    - https://arxiv.org/abs/2010.00620
  - Quasi-Lumped Model for Composite Systems (LOM 2.0) https://youtu.be/S8Wx2Lo2CxQ
    - https://arxiv.org/abs/2103.10344

# Export to GDS

```
full_chip_gds = design.renderers.gds
...
full_chip_gds.options
full_chip_gds.options['path_filename'] ='../resources/Fake_Junctions.GDS'
full_chip_gds.options['no_cheese']['buffer']='50um'
full_chip_gds.export_to_gds('Full_Chip_01.gds')
```



# Keysight/EMPro Renderer



# Open Source Renderers

• Gmsh Renderer -> Elmer simulation





## Quantum Spice





## NanoAcademics QTCad Renderer





### Research















First design of a superconducting qubit for the QUB-IT experiment

Danilo Labranca<sup>a,b</sup>, Hervè Atsè Corti<sup>c,d</sup>, Leonardo Banchi<sup>c,d</sup>, Alessandro Cidronali<sup>f,d</sup>, Simone Felicetti<sup>g</sup>, Claudio Gatti<sup>h</sup>, Andrea Giachero<sup>a,b</sup>, Angelo Nucciotti<sup>a,b</sup>

### Education

**Events** Universities



#### Qiskit Hackathon KOREA 2022

2022.02.07.(MON)~ 2022.02.10.(THU)

What is a hackathon?

It is a programming marathon challenged by various people! Welcome to the Qiskit hackathons world, an open-source framework that enables developers around the world

to write code for quantum computers!











### **Organizations**





### Commercial Foundries

#### **QuantWare**



### MARKET LEADING TECHNOLOGY

QuantWare makes the best-in-industry fabrication technology available to third parties at affordable pricing.

Turn your design into reality with ease. With full support for <u>Qiskit Metal</u>, making your own QPU becomes as simple as uploading a design.

Our standard fabrication process includes a base superconductor patterning, manhattan AlO<sub>x</sub> Josephson junctions with Ic ranging between InA and 5mA, AirBridges and dicing. Material and design restrictions may apply (see below).





Docs & tutorials qiskit.org/documentation/metal

Tutorial videos YouTube – see docs

Slack #metal (qiskit workspace)

Live tutorials

image: pikpng

## Open Source Collaboration

### qiskit.org/metal





github.com/Qiskit/qiskit-metal