CS 7545: Machine Learning Theory

Fall 2018

Lecture 10: Boosting and Online Convex Optimization

Lecturer: Jacob Abernethy Scribes: Hongyu Ouyang and Kyle Kosic

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

10.1 Boosting

Boosting Setup

- Input space \mathcal{X} , labels $\mathcal{Y} \in \{-1, 1\}$
- Given "weak" hypothesis $\mathcal{H}: |\mathcal{H}| = m$ where $h \in \mathcal{H}$ is a map $\mathcal{X} \to \mathcal{Y}$
- Given data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, \quad i = 1, ..., n$

Weak Learning Assumption (γ)

$$\forall p \in \Delta_n \quad \exists h \in \mathcal{H} : \sum_{i=1}^n p(i)h_p(x_i)y_i \ge \gamma \quad \text{where } \gamma > 0$$

equivalent to:
$$\Pr_{i \sim p}(h(x_i) = y_i) \ge \frac{1}{2} + \frac{\gamma}{2}$$

So h_i is slightly better than random by $\frac{\gamma}{2}$ where γ is usually very small.

Strong Learning Assumption

$$\exists q \in \Delta_m \forall i \in 1, ..., n : \sum_{j=1}^m q(j)h_j(x_i)y_i > 0$$

So the majority-weighted vote on each (x_i, y_i) is always correct.

Boosting as a Game Define a game matrix $M \in \{0,1\}^{n \times m}$ where $M_{ij} = h_j(x_i)y_i$. Then

$$WLA(\gamma) \iff \min_{p \in \Delta_n} \max_{j} p \cdot Me_j \ge \gamma$$
$$\iff \min_{p \in \Delta_n} \max_{q \in \Delta_m} p \cdot Mq \ge \gamma$$

Additionally

$$\begin{aligned} \text{SLA} &\iff \max_{q \in \Delta_m} \min_{i=1,...,n} e_i \cdot Mq > 0 \\ &\iff \max_{q \in \Delta_m} \min_{p \in \Delta_n} p \cdot Mq > 0 \end{aligned}$$

By Von Neumann minimax theorem, WLA(γ) \Longrightarrow SLA, we just need to find q. Consider the iterative process:

Algorithm 1 EWA no-regret

```
for t=1...T do p_t chosen by EWA(\eta) q_t=\arg\max_{q}p_t\cdot Mq (q_t is the best response) p player receives loss vector \ell_t:=Mq_t end for Let (\bar{p}_T,\bar{q}_T)=\frac{1}{T}\sum_{t=1}^T(p_t,q_t)
```

Note: this is almost the optimal solution, will be somewhere between v^* (value of the game) and \bar{R}_T . Let \bar{R}_T be any regret upper bound on

$$\frac{1}{T} \left(\sum_{t=1}^{T} p_t \ell_t - \min_{p \in \Delta_n} \sum_{t=1}^{T} p_t \ell_t \right)$$

Which we previously showed for EWA was

$$\bar{R}_T = \sqrt{\frac{2 \log N}{T}} + \frac{\log N}{T}$$
 where the $\frac{\log N}{T}$ is negligible

We also showed

$$\begin{split} v^* \text{ (value of the game)} &= \min_{p} \max_{q} p \cdot Mq \\ &\leq \max_{q} \frac{1}{T} \sum_{t=1}^{T} p_t \cdot Mq \\ &\leq \frac{1}{T} \sum_{t=1}^{T} \max_{q} p_t \cdot Mq \\ &= \frac{1}{T} \sum_{t=1}^{T} p_t \cdot Mq_t \text{(best response } q_t \text{)} \\ &= \frac{1}{T} \sum_{t=1}^{T} p_t \cdot \ell_t \\ &\leq \min_{p} \frac{1}{T} \sum_{t=1}^{T} p \cdot \ell_t + \bar{R}_t \\ &= \min_{p} p \cdot M\bar{q}_T + \bar{R}_t \\ &\leq \max_{q} \min_{p} p \cdot Mq + \bar{R}_T \end{split}$$
 (regret bound)

Consider the value of the boosting game:

$$\gamma \leq v^* \leq \min_{p} p \cdot M \bar{q}_T + \bar{R}_T$$

$$= \min_{i=1,...,n} e_i \cdot M \bar{q}_T + \bar{R}_T$$

$$\Longrightarrow \forall i \in 1...n : \sum_{j=1}^m \bar{q}_T(j) h_j(x_i) y_i \geq \gamma - \bar{R}_T$$

We need $\gamma - \bar{R}_T > 0$:

$$\bar{R}_T \le \gamma \iff \sqrt{\frac{2\log N}{T}} < \gamma$$
 $\iff T > \frac{2\log N}{\gamma^2}$

If you run this algorithm at least $\frac{2 \log N}{\gamma^2}$ rounds, then your classification will be correct.

Boosting by Majority Brief summary of the Boosting by Majority algorithm:

Algorithm 2 Boosting by Majority

```
Let T > \frac{2\log n}{\gamma^2}

Let w_1 + ... + w_N = 1

for t = 1...T do

p_t := \frac{w_t}{\sum_{i=1}^N w_t(i)}
h_t = \underset{h \in \mathcal{H}}{\arg\max} \sum_{i=1}^N p_t(i)h(x_i)y_i
w_{t+1}(i) = w_t(i) \exp\left(-\eta h_t(x_i)y_i\right)
end for

Output \bar{h}_T = \frac{1}{T} \sum_{t=1}^T h_t
```

In short, we are taking data point i, weighting it more if classified wrong, and weighting it less if classified correctly.

10.2 Online Convex Optimization

Generalized Experts Setting Then consider the following process:

Algorithm 3 Generalized Experts

Let $K \subseteq \mathbb{R}^d$ convex and compact.

for t = 1...T do

Algorithm selects $x_t \in K$

Nature selects loss convex function $f_t: K \to \mathbb{R}$

end for

Regret_T :=
$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in K} \sum_{t=1}^{T} f_t(x)$$

To see that this is the generalization of the experts setting, let $K = \Delta_n$ and $f_t(x) = \ell \cdot x$.

Online Gradient Descent Use the Generalized Experts setting to define a new algorithm. Let:

$$x_0 = \text{arbitrary point in } K$$

$$x_{t+1} = \operatorname{proj}_K(x_t - \eta \nabla f_t(x_t))$$

Where $\operatorname{proj}_K(x) = \underset{y \in K}{\arg\min} \|y - x\|_2$. Note that for any convex set K, for any $z \in K$, and any y, we have the following:

$$\|\operatorname{proj}_K(y) - z\|_2 \le \|y - z\|_2$$

The closest point in K to y is $\operatorname{proj}_K(y)$ when K is convex.

Theorem 10.1 Let $\nabla_t = \nabla f_t(x_t)$. Assume $\|\nabla_t\|_2 \leq G$ where G is some constant, and $\|x_0 - x^*\|_2 \leq D$ for any $x^* \in K$ where D is some constant. Then:

$$R_T(GD) \le GD\sqrt{T}$$

Proof:

$$\frac{1}{2} \|x_{t+1} - x^*\|_2^2 = \frac{1}{2} \|\operatorname{proj}_K(x_t - \eta \nabla_t) - x^*\|_2^2
\leq \frac{1}{2} \|(x_t - x^*) - \eta \nabla_t\|_2^2
= \frac{1}{2} \|x_t - x^*\|_2^2 + \frac{\eta^2}{2} \|\nabla_t\|_2^2 - \eta \nabla_t \cdot (x_t - x^*)
\implies \nabla_t \cdot (x_t - x^*) \leq \frac{1}{2\eta} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} - x^*\|_2^2 \right) + \frac{\eta}{2} \|\nabla_t\|_2^2$$

Then

$$\sum_{t=1}^{T} f_t(x_t) - f_t(x^*) \le \sum_{t=1}^{T} \nabla_t \cdot (x_t - x^*)$$
 (convexity of f)
$$\le \sum_{t=1}^{T} \frac{1}{2\eta} \left(\|x_t - x^*\|_2^2 - \|x_{t+1} + x^*\|_2^2 \right) + \underbrace{\frac{\eta}{2}} \|\nabla_t\|_2^2$$

$$\le \frac{1}{2\eta} \left(\underbrace{\|x_1 - x^*\|_2^2}_{\le D^2} - \underbrace{\|x_{t+1} - x^*\|_2^2}_{0} \right) + \frac{T\eta G^2}{2}$$

$$\le \frac{D^2}{2\eta} + \frac{T\eta G^2}{2}$$

$$= GD\sqrt{T}$$
 when $\eta = \frac{D}{G\sqrt{T}}$