南京航空航天大学 实验报告

课程名称_	机械原理	
实验名称_	动平衡实现	脸 of
班级	姓名	学号
实验组别_]实验者
实验日期_		验地点
评定成绩	#	7阅教师

——**	验	报	告	要	目	**
------	---	---	---	---	---	---------------

- 实验目的要求
- 实验仪器,设备
- 实验线路、原理框图
- 实验方法步骤
 - 实验的原始数据和分析
 - 实验讨论

一. 实验目的	
1. 巩固和验证刚性回转件动平衡理论和方法;	
2. 掌握动平衡机和工作原理和操作方式;	
3. 掌握平衡精度的基本概念;	
4. 了解动平衡测量系统的工作原理。	
二.实验仪器与工具	
动平衡机、试件(在核正平面上具有核正孔的转子)、平衡质	
量、电子秤、外卡尺、钢皮尺。	
三、实验原理	
质量分布在不同回转面内的回转构件,其不平衡度可视作在	两
个任选平面内由矢量半径分别为 n, rs的两个不平衡质量 mi和 mz产	生,
因此只需针对mi和mz进行平衡即可达到目的。本实验使用动平衡,	几
分别测定所选平衡面内相应的不平衡质径积 mirn和 mirn的大小和	相
位并加以较正,最后达到动平衡。	
动平衡机主要由机件、试件架、驱动机构和测量系统四部分组	L.
成。实验时试件的两个轴颈安放在试件架上的两个滚动轴承上,通	过
联轴器、传动带由电机驱动作自由运动,此时试件的不平衡质径积	
所产生的离心惯性力迫使试件架往复摆动,传感器直接安装于试件	
架,输出周期性信号,送入测量系统进行测量。	51
测量系统的原理框图如图1所示。	-

Ri Ţ	►A → ←B-	1-0-	 R:	2			
a: 66	1	: 120		c: 65			
rı: 60			r2: 60				
	试加重(g)	相位(*)		显示克重(g)	相位(*)		
第-次	19	0	左	3.51	`		
第二次	19	0	右	U),	~		
第三次	19	0	左	,	`		
		NI.	右		1		

			加重						
		第一次		第二次		第三次		平衡 结果.	
		试加重	相位	试加重	相位	试加重	相位	重量	相位
实验1	左	1.18	148°	0.53	250°	0.27	34°	0.17	93°
	右	1.40	259°	1.16	49°	0.18	288°	0.12	311°
实验2	左	0.79	233°	0.19	177°	0.34	330°	0.14	167°
	右	0.77	154°	0.88	270°	0,22	45°	0.08	79°
实验3	左	0.70	278°	0.53	118°	0.44	337°	0.07	138°
	右	1.35	169°	0.71	3110	0.43	245°	0.19	107

五、思考题	
1. 哪些类型的机械需要进行动平衡实验?	实验的理论
依据是?试件经过动平衡后是否还需糖平衡?	•••••
(1) 转动角速度较大的部件	
2) 不平衡运动在角速度不是常数时会产生离心	力和由离心
引起的力矩,因此动平衡可以解决平衡问题	***************************************
(3) 无需	9
2. 指出影响动平衡精度的因素	
质量分布不均匀、结构形状不对称、材质不匀、	加工精度
——————————————————————————————————————	

