- Q. What is the time complexity to add node into the singly linear linked list at last position?
- A. O(n)
- B. $O(n^2)$
- C. O(1)
- $D. O(\log n)$

Answer: A.

- Q. Which of the following statement is false about singly linear linked list?
- A. In a SLLL, traversal can be done only in a forward direction.
- B. In a SLLL, add and delete node at last position operations takes O(n) time.
- C. In SLLL, add and delete node at first position operations takes O(1) time.
- D. In SLLL, previous node of any node can be accessed from it.

Answer: D

- Q. Which of the following statement is false in a Linked List
- A. Linked List is a dynamic data structure.
- B. Addition and Deletion operations are efficient and convenient in a Linked List than in an array.
- C. Linked List elements can be accessed efficiently than array elements.
- D. Linked List takes more space to store n elements than array.

Answer: C

- Q. Which of the following operations in a SCLL takes O(1) time?
- A. Add node at last position
- B. Add node at first position
- C. Delete node at last position
- D. Delete node at first position
- E. None of the above

Answer: E

- Q. Which of the following statement is false?
- A. Linked List elements gets stored into the heap section.
- B. Add element into a linked list at specific position takes O(1) time.
- C. Searching operations is efficient on array than linked list.
- D. None of the above

Answer: B

- Q. Which of the following statement is false about DI₁I₁I₂?
- A. This type of linked list can be traverse in forward as well backward direction.
- B. Element can be added into this list at last position in O(1) time.
- C. Element can be deleted from this list which is first position takes O(1) time.
- D. Previous node of any node can be accessed.

Answer: B

- Q. Which of the following is false about DCLL?
- A. Traversal can be start from either first node or last node.
- B. Addition and Deletion operations can be performed in O(1) time.
- C. Searching can be done in O(log n) time.
- D. List can be traverse in both forward and backward direction.

Answer: C

- Q. Which of the following data structure is used to implement depth first traversal algorithm?
- A. Array
- B. Linked List
- C. Stack
- D. Queue

Answer: C

Q. Which of the following is not a valid operation on stack? A. Push B. Peek C. Pop D. Top E. None of the above Answer: D Q. Stack data structure works in manner. A. First In First Out B. First In Last Out C. Last In First Out D. Both A & C E. Both B & C Answer: E Q. Stack can be implemented by using A. Linked List B. Array C. Both A & B D. None of the above Answer: C Q. What is the condition to check stack is full or not in a dynamic stack? A. top == SIZE B. top == SIZE-1 C. top == NULL D. None of the above Answer: D Q. Which of the following functions can be used to implement dynamic stack functionalities push() & pop()? A. add_last() & delete_first() B. delete_first() & add_last() C. add_last() & delete_last() D. None of the above Answer:

Q. Convert given infix expression into its equivalent postfix expression: **Infix expression**

is: (A*B)*(C/D)+E*F-G*H

A. AB*CD/EF**+GH*-

B. AB*CD/*EF*+GH*-

C. ABCD*/*EF*+GH*-

D. AB*CD/*EF*GH+*-

Answer: B

Q. Convert given prefix expression into its equivalent postfix:

- + * / * a b c d / e f * hg

A. ab*c/d*ef/+h*q-

B. ab*c/d*ef/+hq*-

C. abc*/d*ef/+hq*-

D. ab*cd/*ef/+hg*-

Answer: B