Class 5: Data Visualization with GGPlot

Elena

Table of contents

Playing with Plotly	14
Optional Extension Bar Plots	7 12
Differential Gene Expression Dataset	5
Lab 5 Questions	4
Our First Plot	1

Our First Plot

R has base graphics.

Note: cmd+opt+i to create R code

plot(cars)

Plotting with ggplot

Note: before using package, need to load using 'library()'.

Every ggplot needs 3 layers:

- -Data (i.e. the dataframe)
- -Aes (the aesthetic mapping of our data to what we want to plot)
- **-Geoms** (how we want to plot)

```
#install.packages("ggplot2")
library(ggplot2)
ggplot(cars) +
  aes(x=speed,
         y=dist) +
  geom_point()
```



```
ggplot(cars) +
  aes(x=speed,
      y=dist) +
  geom_point() +
  geom_smooth(method=lm,se=F) +
  labs(title="Speed and Stopping Distances of Cars",
      x="speed (mph)",
      y="stopping distance (ft)")
```

`geom_smooth()` using formula 'y ~ x'

Speed and Stopping Distances of Cars

Lab 5 Questions

Q1 For which phases is data visualization important in our scientific workflows? All of the above

Q2 True or False? The ggplot2 package comes already installed with R? False

Q3 Which plot types are typically NOT used to compare distributions of numeric variables? Network graphs

Q4 Which statement about data visualization with ggplot2 is incorrect? ggplot2 is the only way to create plots in R

Q5 Which geometric layer should be used to create scatter plots in ggplot2? geom_point()

Differential Gene Expression Dataset

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
  genes <- read.delim(url)</pre>
  head(genes)
        Gene Condition1 Condition2
                                        State
      A4GNT -3.6808610 -3.4401355 unchanging
1
        AAAS 4.5479580 4.3864126 unchanging
2
3
      AASDH 3.7190695 3.4787276 unchanging
        AATF 5.0784720 5.0151916 unchanging
        AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
  p <- ggplot(genes) +</pre>
    aes(x=Condition1,
        y=Condition2,
        color=State) +
    geom_point()
  p + scale_colour_manual(values=c("blue", "grey", "red")) +
    labs(title="Gene Expression Changes Upon Drug Treatment",
         x="Control (no drug)",
         y="Drug Treatment")
```



```
nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

ncol(genes)

[1] 4

table(genes$State)

down unchanging up
72 4997 127
```

```
round(table(genes$State)/nrow(genes)*100,2)
```

```
down unchanging up
1.39 96.17 2.44
```

Q1 How many genes

There are 5196 genes in this data set.

Q2 Column names & how many columns

Gene, Condition1, Condition2, State

There are 4 columns.

Q3 How many genes are up

127.

Q4 Fraction of total genes that are up

2.44% genes are up.

Optional Extension

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)
head(gapminder)</pre>
```

```
countrycontinentyearlifeExppopgdpPercap1AfghanistanAsia195228.8018425333779.44532AfghanistanAsia195730.3329240934820.85303AfghanistanAsia196231.99710267083853.10074AfghanistanAsia196734.02011537966836.19715AfghanistanAsia197236.08813079460739.98116AfghanistanAsia197738.43814880372786.1134
```



```
ggplot(gapminder_2007) +
aes(x=gdpPercap,
    y=lifeExp,
    colour=pop) +
geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap,
      y=lifeExp,
      size=pop) +
  geom_point(alpha=0.5) +
  scale_size_area(max_size = 10)
```



```
gapminder_1957 <- gapminder %>% filter(year==1957)
head(gapminder_1957)
```

```
country continent year lifeExp
                                          pop gdpPercap
1 Afghanistan
                   Asia 1957
                              30.332
                                                820.853
                                      9240934
2
      Albania
                 Europe 1957
                              59.280
                                      1476505
                                               1942.284
                 Africa 1957
3
      Algeria
                              45.685 10270856
                                               3013.976
       Angola
4
                 Africa 1957
                              31.999
                                      4561361
                                                3827.940
5
    Argentina Americas 1957
                              64.399 19610538
                                               6856.856
6
    Australia
                Oceania 1957
                              70.330
                                      9712569 10949.650
```

```
ggplot(gapminder_1957) +
aes(x=gdpPercap,
    y=lifeExp,
    colour=continent,
    size=pop) +
geom_point(alpha=0.7) +
scale_size_area(max_size = 10)
```



```
gapminder_1957_2007 <- gapminder %>% filter(year==1957 | year==2007)
head(gapminder_1957_2007)
```

```
country continent year lifeExp
                                         pop gdpPercap
1 Afghanistan
                  Asia 1957 30.332 9240934 820.8530
2 Afghanistan
                  Asia 2007
                             43.828 31889923 974.5803
     Albania
                Europe 1957 59.280 1476505 1942.2842
3
     Albania
                Europe 2007 76.423 3600523 5937.0295
4
5
     Algeria
                Africa 1957 45.685 10270856 3013.9760
6
     Algeria
                Africa 2007 72.301 33333216 6223.3675
```

```
ggplot(gapminder_1957_2007) +
aes(x=gdpPercap,
    y=lifeExp,
    colour=continent,
    size=pop) +
geom_point(alpha=0.7) +
scale_size_area(max_size = 10) +
facet_wrap(~year)
```


Bar Plots

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                             pop gdpPercap
1
         China
                    Asia 2007 72.961 1318683096 4959.115
2
         India
                    Asia 2007 64.698 1110396331
                                                  2452.210
3 United States Americas 2007 78.242 301139947 42951.653
4
     Indonesia
                    Asia 2007
                              70.650
                                       223547000
                                                  3540.652
5
        Brazil Americas 2007 72.390 190010647
                                                  9065.801
```

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = lifeExp, fill=continent))
```



```
ggplot(gapminder_top5) +
  aes(x = reorder(country,-pop), y = pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


Playing with Plotly

```
#install.packages("plotly")

#library(plotly)

#example dataset

#set.seed(100)
#d <- diamonds[sample(nrow(diamonds), 1000), ]

#p <- ggplot(data = d, aes(x = carat, y = price)) +
# geom_point(aes(text = paste("Clarity:", clarity)), size = 4) +
# geom_smooth(aes(colour = cut, fill = cut)) + facet_wrap(~ cut)

#ggplotly(p)</pre>
```