MA2287: Complex Analysis Exam Notes

Robert Davidson

Contents

1	Que	estion 1:	:
	1.1	Sketch the region in the complex plane determined by the inequality	:
	1.2	Determine all solutions to roots of unity	:
	1.3	Determine and sketch the image under the mapping	3
	1.4	Find z where the function is 0	:
	1.5	Calculate principal value Log(z)	:
	1.6	Prove the following	5

1 Question 1:

1.1 Sketch the region in the complex plane determined by the inequality

• |z-4| > 3|z+4| 2023 Q1(a)

 $\bullet \ \ \{z \in \mathbb{C}: |2z-1| < 2|2z-i|\} \\ 2022 \ \mathrm{Q1(a)}, \ 2021 \ \mathrm{Q1(d)}, \ 2017 \ \mathrm{Q1(a)}, \ 2016 \ \mathrm{Q1(a)}, \ 2016 \ \mathrm{Q1(a)}, \ 2017 \ \mathrm{Q1(a)}, \ 2016 \ \mathrm{Q1(a)}, \ 2017 \ \mathrm{Q1($

1.2 Determine all solutions to roots of unity

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2023 Q1(b),

• $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$ 2022 Q1(b), 2018 Q1(b)

• $z^6-1=0$ and factorize x^6-1 as a product of linear and quadratic factors 2021 Q1(c)

• $z^3 = 1 + i$, let $n \in \mathbb{N}$ and $w \neq 1$ be an n-th root of unity. Prove $1 + w + w^2 + \ldots + w^{n-1} = 0$ 2017 Q1(b)

1.3 Determine and sketch the image under the mapping

• $w = e^z$, $\{z \in \mathbb{C} : \pi/4 \le \operatorname{Im}(z) \le \pi/2\}$ 2023 Q1(c), 2021 Q1(a), 2017 Q1(d)

• $w = \text{Log}(z), \{z: |z| > 1, 0 \le \text{Arg}(z) \le \pi/2\}$ 2022 Q1(d), 2018 Q1(d)

1.4 Find z where the function is 0

• $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ 2022 Q1(d)

1.5 Calculate principal value Log(z)

• $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z) 2022 Q1(c), 2018 Q1(c), 2017 Q1(c)

1.6 Prove the following

• Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then \overline{w} is also a zero of p(z) 2021 Q1(b), 2018 Q1(a), 2016 Q1(b)

• Define the complex exponential function e^z and prove Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 2017 Q1(b)