Shreeve

Textbook: Elementary Analysis

FRED YUAN

Fall 2023

This is my notes of Shreeve's calculus for finance II

Contents

1	Cha	pter 1	3
2	Information and Conditioning		3
	2.1	Information and Sigma-Algebras	3
	2.2	Independence	4

1 Chapter 1

ooga booga

2 Information and Conditioning

2.1 Information and Sigma-Algebras

We denote a specific outcome as ω out of our sample space of Ω . We might know some information about ω to narrow it down to a few possibilities.

Example 2.1

Here we will do a coin-toss example for a concrete understanding.

If Ω is the result of 3 coin tosses, then given the first result of the coin toss we can resolve

$$A_H = \{HHH, HHT, HTH, HTT\}, A_T = \{THH, THT, TTH, TTT\}$$

We also know about Ω and \emptyset at time 0. Specifically, \emptyset does not contain ω and Ω contains ω .

We denote $\mathcal{F}_1 = \{\emptyset, \Omega, A_H, A_T\}$. If you tell us whether or not ω is in each of these sets, we will know the result of the first coin toss.

We can denote \mathcal{F}_2 and \mathcal{F}_3 indexed by time.

Definition 2.2

Let Ω be a non-empty set. Let T be a fixed positive number. Assume for each $t \in [0, T]$ there is a σ -algebra $\mathcal{F}(t)$. If $s \le t$, then every $\mathcal{F}(s) \subseteq \mathcal{F}(t)$. Then the collection of σ -algebra's $\mathcal{F}(t)$, $0 \le t \le T$ is a filtration.

This filtration tells us information we will have at future times. When we get to t, we will know for each set in $\mathcal{F}(t)$ whether ω is in this set.

Definition 2.3

Let X be a random variable defined on a nonempty sample space Ω . Let \mathcal{G} be a σ -algebra of subsets of Ω . If every set in $\sigma(X)$ is also in \mathcal{G} then we say that X is \mathcal{G} -measurable.

X is \mathcal{G} measurable if and only if the information in \mathcal{G} is sufficient to determine the value of X. Naturally, it will also be enough to measure f(X) where f is a mapping.

Definition 2.4

Let Ω be a nonempty sample space with a filtration $\mathcal{F}(t)$, $0 \le t \le T$. Let X(t) be a collection of random variables indexed with $t \in [0, T]$. We say this collection of random variables is an adapted stochastic process if, for each t, the random variable X(t) is $\mathcal{F}(t)$ measurable.

2.2 Independence

When a random variable is measurable with respect to \mathcal{G} then the information contained in \mathcal{G} is enough to determine the value of the random variable.

The opposite means information about \mathcal{G} gives no information about this random variable. Then they are independent.

If a random variable X is not measurable by G not independent, G is not sufficient to measure X.

Definition 2.5

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let \mathcal{G} and \mathcal{H} be sub σ -algebra's of \mathcal{F} . (Sets of \mathcal{G} and \mathcal{H} are in \mathcal{F}).

These two sigma-algebra's are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for $A \in \mathcal{G}$ and $B \in \mathcal{H}$

Random variables X, Y are defined to be independent if $\sigma(Y)$ and $\sigma(X)$ generate independent sigma-algebras.

Random variable X is independent if $\sigma(X)$ is independent from \mathcal{G}

Example: Let p := H, q := T. Verify that $\mathbb{P}\left\{S_2 = 16 \text{ and } \frac{S_3}{S_2} = 2\right\}$ are independent. Left Hand Side:

$$\mathbb{P}\left\{S_2 = 16 \text{ and } \frac{S_3}{S_2} = 2\right\} = \{HHH\} = p^3$$

Right Hand Side:

$$\mathbb{P}\{S_2 = 16\} \mathbb{P}\{\frac{S_3}{S_2} = 2\} = \{HHT, HHH\} \cdot \{HHH, HTH, THH, TTH\} = p^3$$

Definition 2.6

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G}_1, \mathcal{G}_2, ... \mathcal{G}_n$ be a sequence of sub σ -algebras of \mathcal{F} . For a fixed positive integer n, we say that the n σ -algebras $\mathcal{G}_1, \mathcal{G}_2, ... \mathcal{G}_n$ are independent if

$$\mathbb{P}(A_1\cap A_2...\cap A_N)=\mathbb{P}(A_1)\mathbb{P}(A_2)...\mathbb{P}(A_N) \text{ for all } A_1\in\mathcal{G}_1,...A_N\in\mathcal{G}_n$$

Similarly, random variables are independent if the sigma-algebra's containing them are independent.

[Infinite Coin Toss Space]

Let G_k be the σ -algebra associated with the kth toss.

So \mathcal{G}_k is the sigma-algebra of information associated with the kth toss. This means \mathcal{G}_k contains the sets \emptyset , Ω_∞ and atoms

$$\{\omega \in \Omega_{\infty}; \omega_k = H\}$$
 and $\{\omega \in \Omega_{\infty}; \omega_k = T\}$

In other words, this tells us if ω is a head or tail all the way up until time k. Independence in terms of sigma-algebras is a hard condition to check in practice.

Theorem 2.7

If X and Y are independent r.v.'s, f(X) and g(Y) are independent r.v.'s if f and g are Borel-measurable in $\mathbb R$

Proof. Let $A \in f(X)$. What the fuck just happened. I have no clue. THE EXERCISE IS LEFT TO THE READER SHEESH

If X and Y are r.v.'s we can measure their joint distribution by

$$\mu_{X,Y}(C) = \mathbb{P}\{(X,Y) \in C\}$$
 for all Borel sets $C \in \mathbb{R}^2$

The joint cumulative distribution function of (X, Y) is

$$F_{X,Y}(a,b) = \mu_{X,Y}\left((-\infty,a]x(-\infty,b]\right) = \mathbb{P}\{X \le a, Y \le b\}, a \in \mathbb{R}, b \in \mathbb{R}$$
 (1)

A function $f_{X,Y}(x,y)$ is a joint density for the pair of random variables (X,Y) if

$$\mu_{X,Y}(C) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{I}_{C}(x,y) f_{X,Y}(x,y) dy dx \text{ for all Borel sets } C \in \mathbb{R}^{2}$$
 (2)

2 only holds when

$$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$$
 (3)

Marginal distribution measures: