Assignment-2

Assignment Date	15 October 2022					
Student Name	Jeevanantham V					
Student Roll Number	811519104062					
Maximum Marks	2 Marks					

1. Download the dataset: Dataset

2. Load the dataset.

In [2]:
 import numpy as np
 import pandas as pd
 df = pd.read_csv("Churn_Modelling.csv")

• Multi - Variate Analysis

Perform descriptive statistics on the dataset.

5]:		read_csv("C cribe(inclu	hurn_Modellinde='all')	ng.csv")										
		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estin
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	NaN	NaN	NaN	
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	10
	std	2886.89568	7,193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	5
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	5
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	10
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	14
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	19

In [7]:

from ast import increment_lineno
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(color_codes=True)
df=pd.read_csv("Churn_Modelling.csv")
df.head()

Out[7]:	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0 1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1 2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2 3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3 4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4 5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

6. Find the outliers and replace the outliers

import pandas as pd
import matplotlib
from matplotlib import pyplot as pyplot
%matplotlib inline
matplotlib.rcParams['figure.figsize']=(10,6)
df-pd.read_csv("Churn_Modelling.csv")
df.sample(5)

ut[8]:		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	2289	2290	15789097	Keeley	644	France	Male	48	8	0.00	2	0	1	44965.54	1
	8327	8328	15766787	Piazza	707	France	Female	35	9	0.00	2	1	1	70403.65	0
	6626	6627	15619932	Lombardi	847	France	Male	66	7	123760.68	1	0	1	53157.16	0
	3501	3502	15802060	Ch'ang	646	Germany	Female	30	10	100548.67	2	0	0	136983.77	0
	9467	9468	15734850	Milanesi	676	Spain	Male	36	1	82729.49	1	1	0	113810.12	0

8. Split the data into dependent and independent variables.

```
In [10]: x=df.iloc[:,:-1].values print(x) y=df.iloc[:,:-1]._values print(y)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 11391.57] ...
[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
[10000 15628319 'Walker' ... 1 0 38190.78]]
[1 0 1 ... 1 1 0]
```


10. Split the data into training and testing

```
In [12]:
    from scipy.sparse.construct import random
    x=df.iloc[:,2].values
    y=df.iloc[:,2].values
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=0.2,random_state=0)
    print('Row count of x_train_table'-'-'-'str(f'(len(x_train):,)''))
    print('Row count of y_train_table'-'-'-'str(f'(len(y_train):,)''))
    print('Row count of x_test_table'-'-'-str(f'(len(x_test):,)''))

    Row count of x_train_table-8,000
    Row count of x_test_table-2,000
    Row count of x_test_table-2,000
    Row count of y_test_table-2,000
```