Lecture 8: Functional genomics

- Measuring gene-expression
 - Microarrays & RNA-seq
- Distance measures
- Clustering & Dimension reduction
- Classification

Measuring gene-expression on a large-scale

DNA microarrays

RNA-seq

Measuring gene-expression on a large-scale

Gene-level Qs:

- 1. What's expressed (& by how much) in a given context/condition?
- 2. What's differentially expressed between two (or more) contexts/conditions?

Group-level Qs:

- 1. Are there groups of genes that respond similarly to changing contexts (across samples)?
- 2. Are there groups of samples that have very similar gene expression profiles?

Calculating "distance" between genes or samples

Variak	oles —		Attributes / Features									
x	10	8	13	9	11	14	6	4	12	7	5	
y	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68	

Calculating "distance" between genes or samples

Variat	Attributes / Features										
x	10	8	13	9	11	14	6	4	12	7	5
у	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Distance measures

Pearson Correlation Coefficient

 Measures 'linear' relationship between variables.

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

where:

- n is the sample size
- x_i, y_i are the single samples indexed with i

$$ullet ar x = rac{1}{n} \sum_{i=1}^n x_i$$
 (the sample mean); and analogously for $ar y$

$$r = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight).$$

Distance measures

Pearson Correlation Coefficient

 Measures 'linear' relationship between variables.

$$m{r} = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)$$

$$-1 \le r \le +1$$

-1 is total -ve correlation | 0 is no correlation | +1 is total +ve correlation

Anscombe's quartet: "calculation are exact; graphs are rough!"

11 datapoints

- Mean (x) = 9
- Var(x) = 11
- Mean (y) = 7.50
- Var (y) ~ 4.12
- Cor(x, y) = 0.816
- Linear regression line:

$$\circ$$
 y = 3.00 + 0.500x

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17–21.

What does a correlation coefficient tell you about the data?

Correlation = 0.7

What does a correlation coefficient tell you about the data?

Correlation = -0.06

Spurious correlations

What does Nicholas Cage have to do with people drowning in swimming pools?

Checkout https://www.google.com/trends/correlate

Many distance measures

Pearson Correlation Coefficient

Spearman Rank Correlation

Euclidean Distance

Mutual Information

. . .

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma_x} \right) \left(\frac{y_i - \overline{y}}{\sigma_y} \right)$$

$$\rho = 1 - \frac{6\sum_{i=1}^{n} [rank(x_i) - rank(y_i)]}{n(n^2 - 1)}$$

Clustering

Group-level Qs:

- 1. Are there groups of genes that respond similarly to changing contexts (across samples)?
- 2. Are there groups of samples that have very similar gene expression profiles?

Clustering

K-means clustering

Conceptually similar to Expectation-Maximization, alternating between 2 two steps:

- E step: Creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters.
- M step: Computes parameters maximizing the expected log- likelihood found on the E step.

These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

Checkout http://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means clustering

Stopping condition

- Until the change in centers is less than <constant>.
- Until all genes get assigned to the same partition twice in a row.
- Until some minimal number of genes (e.g. 90%) get assigned to the same partition twice in a row.

Some issues

- Have to set k ahead of time.
- Works well if clusters of approx. similar sizes.
- Each gene only belongs to 1 cluster.
- Genes assigned to clusters on the basis of all experiments.

Hierarchical clustering

- Imposes hierarchical structure on all of the data.
- Easy visualization of similarities and differences between genes (experiments) and clusters of genes (experiments).

Hierarchical clustering

Hierarchical clustering

