Name: <u>Caleb McWhorter — Solutions</u>

MATH 111-I Spring 2025

Quiz 7

Problem 1: Find the domain of the following functions:

(a)
$$f(x) = x^3 - 4x + 8$$

(b)
$$g(x) = \frac{6}{x+9}$$

(c)
$$h(x) = \sqrt{2x - 5}$$

- (a) The domain of any polynomial is all real numbers. Therefore, the domain of f(x) is all real numbers, i.e. \mathbb{R} or $(-\infty, \infty)$.
- (b) We know a 'fraction' is defined so long as the denominator is not 0. We have x+9=0, then x=-9. Therefore, the domain of g(x) is all real numbers except for x=-9, i.e. $(-\infty,-9)\cup(-9,\infty)$ or $\mathbb{R}\setminus\{-9\}$.
- (c) The domain of an even root is all inputs that are nonnegative, i.e. greater than or equal to 0. So, we need $2x-5\geq 0$. This implies that $2x\geq 5$ so that $x\geq \frac{5}{2}$. Therefore, the domain of h(x) is the set of real numbers with $x\geq \frac{5}{2}$, i.e. $[\frac{5}{2},\infty)$.

Problem 2: Find the domain and range of the function $f(x) = 4 - (x+1)^2$.

The function f(x) is a quadratic function. The domain of a quadratic function—indeed, any polynomial—is the set of all real numbers, i.e. \mathbb{R} or $(-\infty, \infty)$.

We can see that a=-1<0. [This is because f(x) is in vertex form. Alternatively, we can expand f(x): $4-(x+1)^2=4-(x+1)(x+1)=4-(x^2+x+x+1)=4-(x^2+2x+1)=-x^2-2x-3$, where we can see that a=-1.] But then f(x) opens downwards, i.e. f(x) has a maximum value but no minimum value. We can see from f(x) that f(x) has vertex (-1,4). The vertex is the maximum y-value. But then the range must be $(-\infty,4]$.