Basic Electrical Technology

[ELE 1051]

CHAPTER 3 - SINGLE PHASE AC CIRCUITS (3.3)

RL circuit analysis

Let \overline{I} be along the reference

$$\overline{V_{R}} = \overline{I}R$$

$$\overline{V_{L}} = j\overline{I}X_{L}$$

$$\overline{V} = \overline{V_{R}} + \overline{V_{L}} = |V| \angle \emptyset$$

Mathematical Representation

$$i(t) = I_m \sin(\omega t)$$

 $v(t) = V_m \sin(\omega t + \emptyset)$
 $\emptyset - Phase\ Angle$

Graphical Representation

Phasor Representation

<u>Impedance</u>

$$\frac{\overline{V}}{\overline{I}} = \frac{\overline{I}(R + jX_L)}{\overline{I}} = R + jX_L = |Z| \angle \emptyset$$

Z – Impedance of the circuit

$$\therefore R = |Z|\cos\emptyset \qquad X_L = |Z|\sin\emptyset$$

$$|Z| = \sqrt{R^2 + X_L^2}$$
 $\emptyset = \tan^{-1} \frac{X_L}{R}$

Power associated - RL circuit

cos Ø is called the **Power Factor**

RC circuit analysis

Let \overline{I} be along the reference

$$\overline{V_R} = \overline{I}R$$

$$\overline{V_{\rm C}} = -j\overline{I}X_{\rm C}$$

$$\overline{V} = \overline{V_R} + \overline{V_C} = |V| \angle - \emptyset$$

Mathematical Representation

$$i(t) = I_m \sin(\omega t)$$

$$v(t) = V_m \sin(\omega t - \emptyset)$$

Ø − Phase Angle

Phasor Representation

<u>Impedance</u>

$$\frac{\overline{V}}{\overline{I}} = \frac{\overline{I}(R - jX_C)}{\overline{I}} = R - jX_C = |Z| \angle - \emptyset$$

Z – *Impedance of the circuit*

$$\therefore R = |Z| \cos \emptyset \qquad X_C = |Z| \sin \emptyset$$

$$X_C = |Z| \sin \emptyset$$

$$|Z| = \sqrt{R^2 + X_C^2}$$
 $\emptyset = \tan^{-1} \frac{X_C}{R}$

Power associated - RC circuit

Instantaneous power,

$$p(t) = v(t).i(t)$$

$$= V_m I_m \sin \omega t.\sin(\omega t - \emptyset)$$

$$= V_{rms} I_{rms} [\cos \emptyset - \cos(2\omega t - \emptyset)]$$

Average Power,
$$P = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{V_{m}I_{m}}{2} \cos \emptyset$$

$$\mathbf{P_{avg}} = \mathbf{V_{rms}} \mathbf{I_{rms}} \cos \emptyset$$

RLC circuit

Let i(t) be the reference

Impedance,
$$Z = R + j(X_L \sim X_c)$$

$if X_L = X_C$	\Rightarrow	Resistive circuit (Resonance condition)
if $X_L > X_C$	\Longrightarrow	RL series circuit
if $X_L < X_C$	\Longrightarrow	RC series circuit

Illustration I

A resistance of 50Ω is connected in series with an inductance of 200mH and capacitance of $101.321\mu\text{F}$ across a 230V, 50 Hz, single phase AC supply. Obtain,

- a) Impedance of the circuit
- b) Current drawn
- c) Power factor
- d) Power consumed
- e) Phasor diagram

- a) $Z = 50 + j31.4156\Omega = 59.050 \angle 32.14^{\circ} \Omega$
- b) $I = 3.898 \angle -32.14^{\circ} A$
- c) PF = 0.846 lag
- d) P = 759.15W

Illustration 2

The circuit shown below has a source of 230V, 50 Hz. If the current through 0.05H inductor is $3.5 \angle -80 \,\text{A}$, find the value of 'R' and 'C'.

 $R = 23.58 \Omega$ C = 0.104 mF

Thank You!