14.6 Directional Derivatives and the Gradient

Vector

Directional Derivatives

Definition

The Directional Derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0,y_0) = \lim_{h o 0}rac{f(x_0+ha,y_0+hb)-f(x_0,y_0)}{h}$$

Theorem

If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$, and

$$D_{f u}f(x_0,y_0)=f_x(x_0,y_0)a+f_y(x_0,y_0)b$$

Proof:

Let $g(h)=f(x_0+ha,y_0+hb)=f(x,y)$ where $x=x_0+ha$ and $y=y_0+hb$ Then

$$egin{aligned} g'(0) &= \lim_{h o 0} rac{g(h) - g(0)}{h} \ &= \lim_{h o 0} rac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} \ &= D_{\mathbf{u}} f(x_0, y_0) \end{aligned}$$

Then we apply the Chain Rule (Case I) to g to obtain

$$g'(h) = rac{\partial g}{\partial x}rac{dx}{dh} + rac{\partial g}{\partial y}rac{dy}{dh} \ = rac{\partial f}{\partial x}rac{dx}{dh} + rac{\partial f}{\partial y}rac{dy}{dh} \ = f_x(x,y)a + f_y(x,y)b$$

Hence

$$g'(0) = f_x(x_0,y_0)a + f_y(x_0,y_0)b$$

Thus

$$D_{\mathbf{u}}f(x_0,y_0) = f_x(x_0,y_0)a + f_y(x_0,y_0)b$$

Others

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$. Then

$$D_{\mathbf{u}}f(x_0,y_0)=f_x(x_0,y_0)\cos heta+f_y(x_0,y_0)\sin heta$$

The Gradient Vector

Definition

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$abla f(x,y) = \langle f_x(x,y), f_y(x,y)
angle = rac{\partial f}{\partial x} \mathbf{i} + rac{\partial f}{\partial y} \mathbf{j}$$

The Gradient Vector and Directional Derivatives

$$D_{\mathbf{u}}f(x_0,y_0) = \nabla f(x_0,y_0) \cdot \mathbf{u}$$

Functions of Three Variables

Directional Derivatives

The Directional Derivative of f at (x_0,y_0,z_0) in the direction of a unit vector $\mathbf{u}=\langle a,b,c\rangle$ is

$$D_{\mathbf{u}}f(x_0,y_0,z_0) = \lim_{h o 0}rac{f(x_0+ha,y_0+hb,z_0+hc)-f(x_0,y_0,z_0)}{h}$$

If we use vector notation, we can write the definition of the directional derivative in the compact form

$$D_{\mathbf{u}}f(\mathbf{x_0}) = \lim_{h o 0} rac{f(\mathbf{x_0} + h\mathbf{u}) - f(\mathbf{x_0})}{h}$$

where $\mathbf{x_0} = \langle x_0, y_0, z_0 \rangle$ and $\mathbf{u} = \langle a, b, c \rangle$.

$$D_{\mathbf{u}}f(\mathbf{x_0}) = \nabla f(\mathbf{x_0}) \cdot \mathbf{u}$$

Maximizing the Directional Derivative

Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x,y,z)=k. Let t be the parameter. Then $\mathbf{r}(t)=\langle x(t),y(t),z(t)\rangle$.

$$F(x(t), y(t), z(t)) = k$$

Hence

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

Since $\nabla F = \langle F_x, F_y, F_z \rangle$ and $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$, we can write this equation in the form

$$abla F \cdot \mathbf{r}'(t) = 0$$

In particular, when $t=t_0$, we have $\mathbf{r}(t_0)=\langle x_0,y_0,z_0
angle$, so

$$abla F(\mathbf{x_0}) \cdot \mathbf{r}'(t_0) = 0$$

That means the gradient vector at P, $\nabla F(\mathbf{x_0})$, is perpendicular to tangent vector $\mathbf{r}'(t_0)$ to any curve C on the

surface S that passes through P. If $\nabla F(\mathbf{x_0}) \neq \mathbf{0}$, it's natural to defind the tanget plane to the level surface F(x,y,z) = k at $P(x_0,y_0,z_0)$ that passes through P and has normal vector $\nabla F(\mathbf{x_0})$. That is

$$F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0$$

And the symmetric equations are

$$rac{x-x_0}{F_x(x_0,y_0,z_0)} = rac{y-y_0}{F_y(x_0,y_0,z_0)} = rac{z-z_0}{F_z(x_0,y_0,z_0)}$$

Properties of the Gradient Vector

Let f be a differentiable function of two or three variables and suppose that $\nabla f(\mathbf{x_0}) \neq \mathbf{0}$.

- The directional derivative of f at \mathbf{x} in the direction of a unit vector \mathbf{u} is given by $D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}$.
- $\nabla f(\mathbf{x})$ points in the direction of maximum rate of increase of f at \mathbf{x} , and that maximum rate of increase is $|\nabla f(\mathbf{x})|$.
- $\nabla f(\mathbf{x})$ is perpendicular to the level curve or level surface of f through \mathbf{x} .