18MAA242 Lecture 18	
Symmetries of Platonic Solids	
Theaetus (Athens, ~400BC) proved there are exactly	1
5 regular polyhedra ("Platonic solids):	· ·
Tetrcheden Cube Octobelion Declectedin les schechen T C O D I	
Let V = # vertices	
E = # edges	
F = # faces	
Then we have "Duality":	
T C O D I vertices ← > fa V 4 8 6 20 12 edges ← > ed E 6 12 12 30 36 F 4 6 8 12 20 T ← > T C ← > O D ← > I	
We went to study rotational symmetries of	7
each of these shapes: rotations mapping the shape to itself.	

(By duality, the same is true for octahedron)

 \Rightarrow |0| = |+9+6+8 = 24

Rotations of type E give (12)(34), (13)(24), (14)(23). So all elements in the image of φ cre even. So φ : $T \longrightarrow A_4$.

Now φ is injective since no symmetry fixes all vertices. So in fact φ is a bijection, because $|T| = |2| = \frac{4!}{2} = |A_4|$.

Since the operation on both T and A4 is composition, property (*) is satisfied, so in fact of is an isomorphism.

(I) 5 cubes hidden in a doclarchedron:

1 cbe 1 them 1, 2, 3, 4, 5

Again, define Q: I-> S5 by

taking a symmetry to the induced permutation

of the cubes. Can check that corresponding

permutations are even:

\$3-cycles, 5-cycles, product of disjoint transpositions.

So we have $\varphi: I \to A_5$, injective, and again since $|II| = 60 = \frac{5!}{2} = |A_5|$ we get that p is a bijection, hence on isomorphism.

Face of Declared edge of cube:

5 possibilities.

