Axioms: Peano Axioms

Infinitely many axioms can be built by replacing φ, ψ, θ with any formulas.

Logical Axiom Schemes

- 1. $\varphi \to (\psi \to \varphi)$
- 2. $[\varphi \to (\psi \to \theta)] \to [(\varphi \to \psi) \to (\varphi \to \theta)]$
- 3. $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \neg \psi)$
- 4. $(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$
- 5. $(\forall x)\varphi(x) \to \varphi(t)$

t is a term that can be substituted for x in $\varphi(x)$ without any of its variables becoming unquantified.

Equality Axioms

- 1. x = x
- $2. \ x = y \rightarrow y = x$
- 3. $x = y \rightarrow (y = z \rightarrow x = z)$
- 4. $x = y \to (x' = y')$

Non-Logical Axioms

- 1. $\neg (0 = x')$
- $2. \ x' = y' \rightarrow x = y$
- 3. x + 0 = x
- 4. x + y' = (x + y)'
- 5. $x \cdot 0 = 0$
- 6. $x \cdot y' = x \cdot y + x$
- 7. $\varphi(0) \to [(\forall x)(\varphi(x) \to \varphi(x')) \to (\forall x)\varphi(x)]$

Induction Scheme

- 1. from φ and $\varphi \to \psi$, infer ψ
- 2. from φ , infer $(\forall x)\varphi$
- 3. from φ , infer $\tilde{\varphi}$

 $\tilde{\varphi}$ can be any formula obtained by renaming variables in φ .