Lucrarea de laborator nr. 4 Bistabilii

Scopul lucrării:

- 1. A obține deprinderi în formarea structurii logice a bistabililor.
- 2. A obține deprinderi în formarea tabelelor de adevăr a bistabililor.
- 3. A studia funcționarea bistabililor în regimurile static și dinamic.
- 4. A analiza procesul de lucru al bistabililor conform diagramelor temporale obținute.

Experimentul nr. 1. Bistabilul RS asincron

A. Regimul static

1.1. Construiți schema prezentată în Fig. 1.

Fig. 1. Schema electrică pentru studierea bistabilului RS asincron în regim static de lucru.

1.2. Aplicați cu ajutorul comutatoarelor [S] și [R] nivele de tensiune de 0 V și 5 V la intrările S și R ale bistabilului în ordinea indicată în Tabelul 1. Introduceți în tabel rezultatele măsurărilor.

Tabelul 1. Regimurile de "Pregătire" și "Executare" pentru bistabilul RS asincron

NI	Regimul	Intrări				Ieşiri			
Nr. d/o		ıl S		R		Q		Q`	
d/O		Us, V	V.L.	U _R , V	V.L.	U _Q , V	V.L.	U _Q , V	V.L.
1	Pregătire	0		0					

_	Г ,	0	0			
2	Executare	0	0			
3	Pregătire	0	0			
4	Executare	0	5			
5	Pregătire	0	0			
6	Executare	5	0			
7	Pregătire	0	0			
8	Executare	5	5			
9	Pregătire	0	5			
10	Executare	0	0			
11	Pregătire	0	5			
12	Executare	0	5			
13	Pregătire	0	5			
14	Executare	5	0			
15	Pregătire	0	5			
16	Executare	5	5			
17	Pregătire	5	0			
18	Executare	0	0			
19	Pregătire	5	0			
20	Executare	0	5			
21	Pregătire	5	0			
22	Executare	5	0			
23	Pregătire	5	0			
24	Executare	5	5			

1.3. Introduceți rezultatele cercetării, pentru regimul "Executare", ale stărilor bistabilului RS asincron în Tabelul 2 (numai valorile logice).

Tabelul 2. Stările bistabilului RS asincron

Nr.	S	R	Q	Q`
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12		_	_	-

1.4. Formulați concluzii referitor la rezultatele obținute.

B. Regimul dinamic

1.5. Construiți schema prezentată în Fig. 2.

Fig. 2. Schema electrică pentru studierea bistabilului RS asincron în regim dinamic de lucru.

- 1.6. Introduceți valorile frecvenței FREQUENCY, DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei alese (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 1.7. Aplicați la intrările circuitului construit semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
 - 1.8. Comparați diagramele temporale cu rezultatele din tabelul de adevăr (Tabelul 2).
 - 1.9. Formulați concluzii referitor la rezultatele obținute.

Experimentul nr. 2. Bistabilul RS sincron

A. Regimul static

2.1. Construiți schema prezentată în Fig. 3.

Fig. 3. Schema electrică pentru studierea bistabilului RS sincron în regim static de lucru.

2.2. Aplicați cu ajutorul comutatoarelor **[C], [S]** și **[R]** nivele de tensiune de 0 V și 5 V la intrările C, S și R ale bistabilului în ordinea indicată în Tabelul 3. Introduceți în tabel rezultatele măsurărilor.

Nr.	(7	5	S	F	₹	(Q	Ç)`
d/o	U _C , V	V.L.	U _S , V	V.L.	U _R , V	V.L.	U _Q , V	V.L.	$U_{Q\hat{\ }},V$	V.L.
1	0		0		0					
2	0		0		5					
3	0		5		0					
4	0		5		5					
5	5		0		0					
6	5		0		5					
7	5		5		0					·
8	5		5		5					

Tabelul 3. Stările pentru bistabilul RS sincron

B. Regimul dinamic

2.3. Construiți schema prezentată în Fig. 4.

Fig. 4. Schema electrică pentru studierea bistabilului RS sincron în regim dinamic de lucru.

- 2.4. Introduceți valorile frecvenței FREQUENCY, DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei alese (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 2.5. Aplicați la intrările circuitului construit semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).

- 2.6. Comparați diagramele temporale cu rezultatele din tabelul de adevăr (Tabelul 3).
- 2.7. Formulați concluzii referitor la rezultatele obținute.

Experimentul nr. 3. Bistabilul D sincron

A. Regimul static

3.1. Construiți schema prezentată în Fig. 5.

Fig. 5. Schema electrică pentru studierea bistabilului D sincron în regim static de lucru.

3.2. Aplicați cu ajutorul comutatoarelor [C] și [D] nivele de tensiune de 0 V și 5 V la intrările C și D ale bistabilului în ordinea indicată în Tabelul 4. Introduceți în tabel rezultatele măsurărilor.

 $\overline{\mathbf{C}}$ D Nr. U_C, V V.L. U_D, V V.L. U_Q, V V.L. U_{Q} , VV.L. d/o 1 0 0 2 0 5 5 3 0 5 4 5 5 0 0 6 0 5 5 7 0 8 5 5

Tabelul 4. Stările pentru bistabilul D sincron

B. Regimul dinamic

3.3. Construiți schema prezentată în Fig. 6.

Fig. 6. Schema electrică pentru studierea bistabilului D sincron în regim dinamic de lucru.

- 3.4. Introduceți valorile frecvenței FREQUENCY, DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei alese (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 3.5. Aplicați la intrările circuitului construit semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
 - 3.6. Comparați diagramele temporale cu rezultatele din tabelul de adevăr (Tabelul 4).
 - 3.7. Formulați concluzii referitor la rezultatele obținute.

Experimentul nr. 4. Divizor de frecvență

Regimul dinamic

4.1. Construiți schema prezentată în Fig. 7 pentru studierea divizorului de frecvență în regim dinamic de lucru, format din bistabili D.

Fig. 7. Schema electrică a divizorului de frecvență în regim dinamic de lucru.

- 4.2. Introduceți valorile frecvenței FREQUENCY, DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei alese (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 4.3. Aplicați la intrările circuitului construit semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic (LOGIC Analyzer) (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
- 4.4. Conform diagramelor temporale obținute, calculați frecvența semnalului la ieșirile bistabililor B1, B0 și coeficienții respectivi de divizare $K_{\text{div}1}$ și $K_{\text{div}0}$.
 - 4.5. Formulați concluzii referitor la rezultatele obținute.

Experimentul nr. 5. Bistabilul JK sincron

A. Regimul static

5.1. Construiți schema prezentată în Fig. 8.

Fig. 8. Schema electrică pentru studierea bistabilului JK în regim static de lucru.

5.2. Aplicați cu ajutorul comutatoarelor **[C]**, **[J]** și **[K]** nivele de tensiune de 0 V și 5 V la intrările C, J și K ale bistabilului în ordinea indicată în Tabelul 5. Introduceți în tabel rezultatele măsurărilor.

Tabelul 5. Stările pentru bistabilul RS sincron

Nr.	(T	ŀ	ζ	(Q	Ç)`
	U _C , V	V.L.	U _S , V	V.L.	U _R , V	V.L.	U _Q , V	V.L.	$U_{Q^{}}, V$	V.L.
1	0		0		0					
2	0		0		5					

3	0	5	0			
4	0	5	5			
5	5	0	0			
6	5	0	5			
7	5	5	0			
8	5	5	5			

B. Regimul dinamic

5.3. Construiți schema prezentată în Fig. 9.

Fig. 9. Schema electrică pentru studierea bistabilului JK în regim dinamic de lucru.

- 5.4. Introduceți valorile frecvenței FREQUENCY, DUTY CYCLE și amplitudinei AMPLITUDE pe panoul generatorului de semnale FUNCTION GENERATOR conform variantei alese (Tabelul 2, lucrarea de laborator nr. 1 numai "Parametrii inițiali" sau numai "Parametrii modificați").
- 5.5. Aplicați la intrările circuitului construit semnale de tip dreptunghiular. Obțineți diagramele temporale cu ajutorul analizatorului logic LOGIC Analyzer (aveți dreptul să modificați valoarea frecvenței fără a modifica alți parametri).
 - 5.6. Comparați diagramele temporale cu rezultatele din tabelul de adevăr (Tabelul 5).
 - 5.7. Formulați concluzii referitor la rezultatele obținute.

Lucrarea de laborator se finalizează cu un raport, ce va conține:

- 1. Numărul și denumirea lucrării de laborator.
- 2. Numele, pronumele studentului, codul grupei academice,
- 3. Denumirea experimentelor.
- 4. Fiecare experiment va conține schemele electrice construite și tabelele de adevăr (diagramele temporale) cu datele primite în urma măsurătorilor.

5. Concluzii referitor la rezultatele obținute.

Întrebări de control

La prezentarea raportului trebuie să fiți capabili să răspundeți la următoarele întrebări de control:

- 1. Prezentați definiția bistabilului.
- 2. Faceți o clasificare generală a bistabililor utilizați în lucrarea de laborator.
- 3. Care sunt funcțiile bistabililor?
- 4. Numiți stările în care pot să se afle bistabilii RS sincron, RS asincron și D.
- 5. Numiți cauza apariției bistabilului D.
- 6. Numiți cauza apariției bistabilului cu două trepte.
- 7. Care sunt neajunsurile bistabililor cu o treaptă?
- 8. Care sunt avantajele bistabililor cu două trepte?
- 9. De ce bistabilul JK se mai numește bistabil universal?
- 10. Ce se va întîmpla cu starile Q și Q` ale bistabilului JK dacă la intrări se va aplica JK=11?
- 11. Ce dispozitive pot fi construite din bistabili?

Bibliografie

- 1. KAF-Internet. Последовательностные системы триггеры // Справочное руководство по Electronics Workbench, 2001// http://workbench.host.net.kg/show.php?chapter=3.3.1.
- 2. Valachi, A. şi al. Analiza, sinteza şi testarea dispozitivelor numerice. Buc.: Ed. Nord Est, 1993, p. 168-213.