

Password Security

Based on: D. Florêncio, C. Herley, and P. C. van Oorschot, "An Administrator's Guide to Internet Password Research", 28th Large Installation System Administration Conference, Nov. 2014.

1

Clarification

As seen in the article:

Keyed hashing. Reversible encryption is one of the worst options for storing passwords if the decryption key leaks, but is among the best if a site can guarantee that it never leaks (even if the password file itself does). Justification for sites to store passwords reversibly encrypted is a need to support legacy protocols (see Section 3.5). Absent such legacy requirements, the best solution is salting and iterated hashing with a message authentication code (MAC) [37, 56] stored instead of a hash; password verification (and testing of guesses) is then impossible

Is any MAC suitable?

A PRF can be MACs, but not all MACs are PRFs

rge Installation System Administration Conference (LISA14) 43

7

7

THE UNIVERSITY
of NORTH CAROLINA

Categorizing Accounts

Why is this important?

- recognition of the distinction raises awareness to highly sensitive accounts
- distribute user's (finite) effort according to priority of account

8

Category 3: High-Consequence Accounts

An overview of the security measures that can be taken

IMPLEMENTATION ASPECT	ATTACKS STOPPED OR SLOWED	USER IMPACT	REMARKS
Password stored non-plaintext	Full compromise on server breakin alone	None	Recommended
Salting (global and per-account)	Pre-computation attacks (table lookup)	None	Recommended
Iterated hashing	Slows offline guessing proportionally	None	Recommended
MAC of iterated, salted hash	Precludes offline guessing (requires key)	None	Best option (key management)
Rate-limiting & lockout policies	Hugely reduces online guessing	Possible user lockout	Recommended
Blacklisting (proactive checking)	Eliminates most-probable passwords	Minor for small lists	Recommended
Length rules	Slows down naive brute force attacks	Cognitive burden	Recommended: length ≥ 8
Password meters	Nudges users to "less guessable" passwords	Depends on user choice	Marginal gain
	Limits ongoing attacker access;	Significant;	
Password aging (expiration)	indirectly ameliorates password re-use	annoying	Possibly more harm than good
		Cognitive burden. Slows	
Character-set rules	May slow down naive brute-force attacks	entry on mobile devices	Often bad return on user effort

13

13

Category 4: Ultra-Sensitive Accounts

Multi-million dollar irreversible banking transactions. Authorization to launch military weapons. Encryption of nation-state secrets.

vault

14

Which Are of Interest Here?

Category 1, 2, 3

Category 0: very low risk

Category 4: likely (hopefully) rely on features that, unlike passwords, aren't dependent upon user effort, but may still be user dependent (e.g., biometrics)

15

15

Attack Types

Offline and Online..... totally distinct and no middle ground

- Require very different resources
- Yield very different number of guesses and are susceptible to different defense strategies

16

THE UNIVERSITY of NORTH CAROLINA of CHAPEL HILL

What Does This Mean?

- Have passwords that can withstand online guessing, but don't worry about exceeding the threshold by much
- Passwords should withstand 10⁶ guesses to be safe from online attacks
- Passwords should withstand 10¹⁴ guesses to be safe from offline attacks

18

Security Techniques (V)

Lockout policies

Challenges:

- Users locking themselves out, routinely
- Attackers locking out users

23

23

Security Techniques (VI)

Include

- Fake accounts ("honey accounts") or
- Fake passwords for real accounts ("honey passwords") in your site's password database

Any access to a honey account or to a real account using a honey password suggests a password database breach

24

Security Techniques (VII)

Password expiration

- Goal: Revoke access to an account by someone who compromised the password
- Reality: A large fraction of people modify their existing passwords in predictable ways

25

25

Security Techniques (VIII)

- Two-factor authentication
- Second factor usually based on "something you have"
 - Email account
 - Phone
 - RSA SecureID key
 - ...

26

References

"Authentication Cheat Sheet." Authentication Cheat Sheet - OWASP, www.owasp.org/index.php/Authentication_Cheat_Sheet#Use_of_authentication_protocols_t hat_require_no_password.

Encrypting Password Using md5() Function, www.phpeasystep.com/phptu/26.html.

"Fast Secure Hashing". BLAKE2. www.blake2.net/.

Florêncio, Dinei, and Cormac Herley. "An Administrator's Guide to Internet Password Research." Usenix, Microsoft Research, Paul C. Van Oorschot, Carleton University, 12 Nov. 2014, www.usenix.org/conference/lisa14/conference-program/presentation/florencio.

"Understanding Password Authentication & Password Cracking." Wordfence, 15 Feb. 2016, www.wordfence.com/learn/how-passwords-work-and-cracking-passwords/.

27