PARA APROBAR 75 % o más

Continúa aprendiendo

calificación 100 %

Practice quiz on the Cartesian Plane

PUNTOS TOTALES DE 5

1. Which of the following points in the Cartesian Plane is on the y-axis?

1/1 punto

- \bigcirc (1,1)
- $\bigcirc (-5,0)$
- \bigcirc (0,-5)
- \bigcirc (5,0)

✓	Correct

The y-axis is defined to be all points in the Cartesian plane with zero as x-coordinate. The point

Prueba de práctica en el plano cartesiano

Cuestionario Práctico • 15 min

2. Find the distance between the points A=(2,2) and C=(3,3):

1/1 punto

- O 2
- \bigcirc $\sqrt{2}$
- 0
- \bigcirc 1

✓ Cor

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):

1/1 punto

$$\bigcirc \ \ y=rac{1}{2}\,x$$

$$lefter y - 1 = rac{1}{2} \left(x - 1
ight)$$

$$\bigcirc y-3=rac{1}{2}(x-1)$$

3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):

1/1 punto

$$\bigcirc \ \ y=rac{1}{2}\,x$$

$$\bigcirc \hspace{-.7cm} \begin{array}{c} y-1=\,\frac{1}{2}\,(x-1) \end{array}$$

$$\bigcirc y-3=rac{1}{2}(x-1)$$

$$\bigcirc y-1=rac{1}{2}(x-5)$$

✓ Correcto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope
$$m=rac{3-1}{5-1}=rac{1}{2}$$

We can choose either ${\cal A}$ or ${\cal B}$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1/1 punto

$$y - 1 = 2(x - 2)$$
?

- \bigcirc (0,0)
- \bigcirc (2,3)
- \bigcirc (3, 2)
- (2,1)

✓ Correcto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, $\,$ 0 = 0, so this point lies on the line.

5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?

1/1 punto

- \bigcirc 0
- \bigcirc 1
- -1

Prueba de práctica en el plano cartesiano

Cuestionario Práctico • 15 min

Correcto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, $\,$ 0 = 0, so this point lies on the line.

5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?

1/1 punto

- \bigcirc 0
- \bigcirc 1
- \bigcirc -1
- 2

✓ Correcto

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0)\in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.

calificación 100 %

Practice quiz on Types of Functions

PUNTOS TOTALES DE 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1/1 punto

- f(1) = 5, f(2) = 8, and <math>f(10) = 40.
- $\bigcirc \ f(a)=4a,$ for each $a\in A$
- f(1) = 4, f(2) = 40, and f(10) = 8.
- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

Prueba de práctica sobre tipos de funciones

Cuestionario Práctico • 20 min

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1/1 punto

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcirc T(a) = \text{ and } D(a) = H$
- $\bigcirc \ T(a) = \text{ and } D(a) = S$
- \bigcirc T(a) = + and D(a) = H
- $\bigcirc \ T(a) = + \text{ and } D(a) = S$

/

✓ Correcto

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

6. Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with f(3)=15 Which of the following is a possible value for f(3.7)?

Since the graph of h is a line with negative slope, this is in fact true!

3

O 14.7

17

		2. Which of the following points is in the first quadrant of the Cartesian Plane?	1/1 punto	
		\bigcirc (7, 11)		
		\bigcirc $(-4,-7)$		
		\bigcirc $(5,-1)$		
		\bigcirc $(-5,1)$		
		Correcto The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.		
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$	1/1 punto	
		Suppose that the distances from A to B,C,D are $5.3,2.1,$ and $11.75,$ respectively.		
		Which of the following points is the nearest neighbor to the point A in the set S ?		
		○ A		
		○ D		
	Cuestionario calificad Cuestionario Calificado • 40 min	do sobre plano cartesiano y tipos de función		Vencimiento 29 de ago. 23:59 PDT
-		do sobre plano cartesiano y tipos de función $ \hbox{3. \ Let } A,B,C,D \hbox{ be points in the Cartesian Plane, and let the set } S=\{B,C,D\} $	1 / 1 punto	Vencimiento 29 de ago. 23:59 PDT
•				Vencimiento 29 de ago. 23:59 PDT
•		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$		Vencimiento 29 de ago. 23:59 PDT
•		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively.		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ?		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ?		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? \bigcirc A \bigcirc D		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? \bigcirc A \bigcirc D \bigcirc C		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? A D Correcto The distance from A to C is C is C is C and that is smaller than the distance from C to any other		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? A D Correcto The distance from A to C is C is C is C and that is smaller than the distance from C to any other		Vencimiento 29 de ago. 23:59 PDT
		3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ? A D Correcto The distance from A to C is C is C and that is smaller than the distance from C to any other element of C .	1/1 punto	Vencimiento 29 de ago. 23:59 PDT

- 4. Find the distance between the points A=(2,2) and B=(-1,-2).
 - \bigcirc -25
 - 5
 - O 25
 - \bigcirc 1

✓ Correcto

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

- 5. Find the slope of the line segment between the points $A=\left(0,1\right)$ and $B=\left(1,0\right)$.
- 1/1 punto

1/1 punto

- \bigcirc 1

Cuestionario calificado sobre plano cartesiano y tipos de función

Vencimiento 29 de ago. 23:59 PDT

- 5. Find the slope of the line segment between the points A=(0,1) and B=(1,0).
 - -1
 - \bigcirc 1
 - $\bigcirc \sqrt{2}$
 - \bigcirc 0

The slope of this line segment is $\ \frac{0-1}{1-0} = -1$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

1/1 punto

1/1 punto

$$y-5=-2(x-4)$$

$$y-4=-2(x-5)$$

 \bigcirc (5,4)

$$y-4=2(x-5)$$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

1/1 punto

- y 5 = -2(x 4)
- y-4=-2(x-5)
- \bigcirc (5,4)
- y 4 = 2(x 5)

✓ Correcto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 punto

- $\bigcirc y = 5x$
- y = -3x 8

← Cue

Cuestionario calificado sobre plano cartesiano y tipos de función

Cuestionario Calificado • 40 min

Vencimiento 29 de ago. 23:59 PDT

- 7. Which of the following equations is for a line with the same slope as y=-3x+2?
- 1/1 punto

- y = 5x
- y = -3x 8
- $\bigcirc \ y = 5x + 2$
- $\bigcirc y = 8x 3$

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

1/1 punto

- $\bigcirc y = -3x 8$
- $\bigcirc y = 5x$

are possible?

4

 \bigcirc 1

O There are none

 $\bigcirc \ \, \text{There are infinitely many}$

Vencimiento 29 de ago. 23:59 PDT

1/1 punto

ario Calificado • 40 min	sobre plano cartesiano y tipos de rancion
8.	Which of the following equations is for a line with the same y -intercept as $y=-3x+2$?
	$\bigcirc y = -3x - 8$
	y = 5x $ y = 8x - 3$
	Correcto The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line has a y -intercept of 2 which is the same as the given line.
9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?
	O None
Cuestionario calific Cuestionario Calificado • 40 mi	ado sobre plano cartesiano y tipos de función
	9. How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?
	○ None
	1
	\bigcirc 2
	O infinitely many
	\checkmark Correcto The line with equation $y=x$ is the one and only line that meets the stated requirements.

10. Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions F:A o Z

10. Suppose that we have two sets,	$A=\{a,b\}$ and $Z=\{x,y\}.$ How many different functions $F:A o$	Z
are possible?		

1/1 punto

- O There are infinitely many
- O There are none
- 4
- O 1

✓ Correcto

A function F:A o Z is a rule which assigns an element $F(a)\in Z$ to each element $a\in A$.

There are two elements in A; namely, a and b. For each of these elements, there are two assignment choices we could make: x and y.

Here are the four possible functions:

$$F(a) = x, F(b) = y$$
, OR

$$F(a)=y, F(b)=x, \operatorname{OR}$$

Cuestionario calificado sobre plano cartesiano y tipos de función Cuestionario Calificado • 40 min

Vencimiento 29 de ago. 23:59 PDT

None

Infinitely many

O 1

O 2

✓ Correcto

The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B

12. Suppose that $g:\mathbb{R}\to\mathbb{R}$ is a continuous function whose graph intersects the x-axis more than once. Which of the following statements is true?

11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$

1/1 punto

1/1 punto

- $\bigcirc g$ is strictly increasing.
- All of the above.
- lacktriangledown g is neither strictly increasing nor strictly decreasing.
- $\bigcirc g$ is strictly decreasing.

ullet g is neither strictly increasing nor strictly decreasing.

 $\bigcirc \ g$ is strictly decreasing.

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1/1 punto

- \odot $\frac{1}{2}$
- \bigcirc 2
- \bigcirc 4
- $\bigcirc \sqrt{20}$

The slope of this line segment is $\, rac{3-1}{5-1} = rac{1}{2}$, where 3-1 is the rise and 5-1 is the run.