

Predicting Housing Prices

Devansh Desai Westen Weiss Lauren Franks

Kevin Zhang John Palmieri

The Ames, IA Dataset

- Collected from 2006 2010 by Dean De Cock of Truman State University
- Describes sale of residential property in the town
- 80 predictors that extensively describe each house
 - Square footage
 - Bathrooms
 - Land slope
 - Masonry veneer type
 - Heating
 - Existence of an elevator
- 1 Response variable: Sale Price

About the Dataset

- Obtained this dataset through a Kaggle data science competition
- 1460 training observations
- 1459 testing observations without a response variable
- To fully use our dataset, we had to use Kaggle's test prediction submission tool
- The returned value was the root mean square logarithmic error (RMSLE)

$$\epsilon = \sqrt{rac{1}{n}\sum_{i=1}^n(\log(p_i+1)-\log(a_i+1))^2}$$

- Makes it hard to work backwards and tune models specifically for the test data
- RMSLE ranges from 0 to ∞
- 15th best: 0.11032 score I 1,000th best: 0.12753 score

About the Dataset

- Clearly, the RMSLE makes it hard to judge how well the models did
- Logarithmic scale is odd but anywhere between 0.11 0.14 is a good score
- Models we tried:
 - Linear regression with forward & backward selection
 - Principal component regression (PCR)
 - Partial least squares regression (PLS)
 - Ridge regression
 - Lasso
 - K-nearest neighbors (KNN)
 - Generalized additive model (GAM)
 - Regression tree with pruning
 - Bagging
 - Boosting
 - Random Forests

Questions of Interest

- What predictors are the most important in predicting the price of a house?
- How do predictors vary across poor and wealthy neighborhoods?
- What month is best to buy a house in terms of \$ / sq. ft?
- Is there any apparent impact of the 2008 economic recession on predictors?

Preprocessing

Preprocessing

- Primary goal: reduce width of dataset and prepare data for modeling
- Data preparations
 - Dummy coding categorical variables
 - Correcting skewness in numeric features
 - Imputed mean for missing numeric features

Reducing width

- Converting scalable categorical variables to numeric type
- Consolidating dummy coded variables
- Removing less descriptive categorical variables

Skewness

- fBasics skewness()
- All numerical variables evaluated
- Log transformation
- Helps model training

Dummy Coding

Neighborhood	
CollgCr	
Veenker	
CollgCr	
Crawfor	
NoRidge	
Mitchel	
Somerst	

CollgCr	Veenker	Crawfor	NoRidge	Mitchel	Somerst
1	0	0	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

Scalable Categorical Features

GarageQual	CollgCr
Ex	5
NA	0
Gd	4
TA	3
FA	2
Gd	4
Ро	1

Ex - excellent - 5

Gd - good - 4

TA - average - 3

FA - fair - 2

Po - poor - 1

NA - non-existent - 0

Creative Consolidation

Ext1 AsbSh ng	Ext1 AsphS hn	Ext1 BrkCo mm	Ext2 AsbSh ng	Ext2 AsphS hn	Ext2 BrkCo mm	Ext AsbSh ng	Ext AsphS hn	Ext BrkCo mm
1	0	0	1	0	0	1	0	0
0	1	0	0	0	1	0	1	1
0	1	0	0	1	0	0	1	0
0	0	1	1	0	0	1	0	1

- 2 ExteriorType variables
 - o 16 dummy coded columns each
- Logical OR operation done between corresponding ExteriorTypes

Removing Predictors

- Removed:
 - Scarcely used levels within categorical features (ex. "Mix" level of plumbing predictor)
 - When a category was almost entirely composed of one level
 - Predictor columns that were almost entirely NA, 0, or missing (ex. Only 20/1460 observations present, like "Alley Access")
- Checked low correlation b/w response before removal

After dummy coding we had 288 predictors

After all preprocessing, we had 212 predictors

Models

Model Results: Forward & Backward Selection

- Leaps package
- Regsubsets function
- Problems:
 - Summaries only gave best 4 variable model
 - Considering 213 variables
- Ran best four variable model using lm() function
- R squared value of 0.8219
- All significant variables

```
Call:
lm(formula = y ~ LotArea + OverallQual + YearBuilt + GrLivArea,
    data = trainy_processed)
Residuals:
    Min
              10 Median
-1.48273 -0.08452 0.00975 0.10324 0.55851
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3643868 0.3829851
                                          0.342
LotArea
           0.1464273 0.0092937 15.756
                                         <2e-16 ***
OverallOual 0.1252794 0.0048829 25.657 <2e-16 ***
YearBuilt
           0.0033905 0.0001815 18.681
                                         <2e-16 ***
GrLivArea
           0.3959281 0.0181941 21.761
                                         <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1688 on 1455 degrees of freedom
Multiple R-squared: 0.8219,
                              Adjusted R-squared: 0.8214
F-statistic: 1679 on 4 and 1455 DF, p-value: < 2.2e-16
```

Forward & Backward Selection: Considering Polynomial & Interaction Terms

- Adding interaction variables and polynomial terms to increase R squared value
- R squared = 0.8534
- All variables significant except 3rd degree Overall Quality

```
Call:
lm(formula = y ~ LotArea + poly(OverallQual, 5) + YearBuilt +
    GrLivArea * LotArea + OverallCond, data = trainy_processed)
Residuals:
     Min
                   Median
-1.31818 -0.07818 0.00816 0.08718 0.47244
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     -6.9772809 1.5309329 -4.558 5.61e-06 ***
LotArea
                      0.6805983 0.1604695
                                            4.241 2.36e-05 ***
poly(OverallOual, 5)1 5.7256682 0.2420238 23.657 < 2e-16 ***
poly(OverallQual, 5)2 1.1137460 0.1642413
                                            6.781 1.73e-11 ***
poly(OverallOual, 5)3 0.2049034 0.1579315
                                           1.297 0.194694
poly(OverallQual, 5)4 -0.5175955 0.1550377 -3.339 0.000864 ***
poly(OverallQual, 5)5 -0.8087564 0.1549219 -5.220 2.04e-07 ***
YearBuilt
                      0.0046544 0.0001837 25.333 < 2e-16 ***
GrLivArea
                      1.1318309 0.2025952
                                            5.587 2.76e-08
OverallCond
                      0.0658551 0.0041655 15.810 < 2e-16 ***
LotArea:GrLivArea
                     -0.0749518 0.0220638 -3.397 0.000700 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1535 on 1449 degrees of freedom
Multiple R-squared: 0.8534,
                               Adjusted R-squared: 0.8524
F-statistic: 843.7 on 10 and 1449 DF, p-value: < 2.2e-16
```

Model Results: PCR & PLS

- PLS Package
- PCR and PLSR functions
- Tuning parameter used: ncomp
 - Number of components to include in model
 - Analyzed 5, 10, 20, 50, and 200 components in model
- PCR Kaggle score = 0.4188
- PLS Kaggle score = 0.3301

PLS Validation Plot

PCR Validation Plot

Model Results: Regression Tree

- Tree package
- Full tree has 10 splits
- More splits improves accuracy on train and test set
- Kaggle score: 0.2248
- Splits occurred on variables:
 - OverallQual
 - GrLivArea
 - TotalBsmtSF
 - CentralAirY
 - YearBuilt
 - GarageCars

Model Results: KNN

- Class package
- Ran models for k = 2 to k = 20 in steps of 2 and k = 20 to k = 50 in steps of 5
- Model fit improved with increase in k parameter until k = 20
- Fit leveled out at around 0.34 for k > 20
- Kaggle Score: 0.3376

Model Results: Lasso

- GLMNET Package
- Function: lasso.pred()
- Tuning Parameter: Lambda (λ) = 0.09326033
 - Value for Lambda that produced best prediction
- Kaggle Score: 0.13053

Model Results: Ridge Regression

- GLMNET Package
- Function: ridge.pred()
- Tuning Parameter: Lambda (λ) = 0.07054802
 - Value for Lambda that produced best prediction
- Kaggle Score: 0.13243

Model Results: Bagging

- Bagging uses bootstrapped data and analyzes all 212 predictors when deciding what predictor to split on in its trees
 - o mtry = 212
 - o trees = 20,000
- It's hard to overfit with a model such as bagging
- Using more trees doesn't really overfit but rather reduces test variance as the prediction gets averages across all of the trees
- Scores did not change at all when using 2000, 5000, or 20,000 trees
- Kaggle score: 0.14546

Model Results: Random Forest

- Tried various mtry parameters ranging from 25 - 200
- Scattered results
 - \circ mtry = 150 was the best
 - o mtry = 75 close second
- Kaggle score: 0.14195

Model Results: Boosting

- In R, we can vary the learning rate (shrinkage parameter), the number of trees use (n.trees), or both
- Both parameters control the amount of learning
- Set shrinkage = 0.1 and varied n.trees parameter
- Possible to overfit with boosting

Model Results: Boosting

- First tried trees from 2000 -20,000 in steps of 2,000
- Then tried trees from 200 to 2000 in steps of 200
- Kaggle score: 0.12717

10000

Trees Used Parameter

15000

20000

5000

Model Results: Variable Importance for Boosting

Predictor	Relative Influence
OverallQual	30.2705
GrLivArea	17.9921
TotalBsmtSF	9.3658
OpenPorchSF	4.2911
BsmtFinSF1	3.8385
YearBuilt	3.6752
GarageArea	2.8878
GarageCars	2.8863
LotArea	2.7715
X1stFloorSF	2.4284

Additional Analysis

Stacked Model

- Three "level 0" models
 - Gradient boosting
 - Extreme gradient boosting
 - Random forests
- Neural network "level 1"
 - Combines output from level 0 models
 - Lowers score to ~0.126

Custom Numeric Feature : Total Square Footage

- Total SF
- Polynomial regression
- Used Tableau
- Kaggle score: .23110
 - Full decision tree: .22482

TotalSF vs. Sale Price. Color shows Overall Qual.

What month is best to buy a house?

- Created a new variable
 - NewVar = Price/total square feet
 - Measures the cost-effectiveness of a purchase
- Aggregated data by month and computed summary statistics
- Plotted to view any trends in data

Price per Square Foot vs. Month Sold

- To rank neighborhoods by wealth, we can average the sale price for each neighborhood and sort by the average
- Wealthiest to poorest neighborhoods by above method
 - 1) Northridge
 - 2) Northridge Heights
 - O ...
 - o 25) Meadow Village
- Using these rankings, we can observe a neighborhood's effects on various other predictors in the model

- Each data point here describes the average sale price group by the neighborhood
- Data is in ascending order

Correlation: 0.6841

Average Fireplaces vs Neighborhood

• Correlation: 0.8567

• Correlation: 0.9283

Neighborhood (Asc by Average Sale Price)

Correlation: 0.7646

Neighborhood (Asc by Average Sale Price)

Correlation: 0.9635

Correlation: 0.6240

Economic Recession Analysis

- Data collected for houses sold between 2006-2010
 - Investigate changes around the 2008: US recession
 - Consider the changes in relationship between year sold and "recession-related" predictors
 - Plot year sold against: sale condition, sale type, sale price

Recession Analysis

Sale Price

Recession Analysis cont.

Sale Condition (color) broken down by Yr Sold.

- Tree Models most effective why?
 - Within-model variable selection highly valuable
 - Trees identified similar sets of important variables
- Fairly successful in competition
 - Our boosting model's score places
 965th in a pool of 2,225 teams

Model	Kaggle Score (RMSLE)
PCR	0.4188
KNN	0.33765
PLS	0.33010
GAM	0.30966
Regression Tree	0.22482
Bagging	0.14512
Ridge Regression	0.13243
Random Forest	0.13200
Lasso	0.13053
Boosting	0.12717
*Stacking	0.12600

- Most important in calculating sale price:
 - Overall home quality
 - Ground floor living area
 - Total basement square footage
- Certain seemingly irrelevant variables still significantly contributed

Predictor	Relative Influence
OverallQual	30.2705
GrLivArea	17.9921
TotalBsmtSF	9.3658
OpenPorchSF	4.2911
BsmtFinSF1	3.8385
YearBuilt	3.6752
GarageArea	2.8878
GarageCars	2.8863
LotArea	2.7715
X1stFloorSF	2.4284

- Representative of the US housing market?
- Safe to say best models would predict sale prices in similar, rural US towns
- Good grasp of important predictors