Binomial Theorem & Binomial Probability

- Pascal's Triangle
- > General Expansion
- > Special Expansion
- > Finding Terms
- > Equidistant Coefficients
- Pascal's Relation
- > Pairing Off Method
- > Sums of Coefficients
- > Greatest Coefficient
- > Extra stuff
- > Success and Failure

Pascal's Triangle

$$2^{n-1}$$
 $n = line/row$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

 ${}^{n}C_{r}$ = $\frac{n!}{r!(n-r)!}$ Where T_{r+1} term is important to identify a particular term $T_{n} = T_{r+1}$

General Expansion $(a + x)^n$

General Expansion
$$(a+x)$$

$$(a+x)^n = {}^nC_0a^nx^0 + {}^nC_1a^{n-1}x^1 + ... + {}^nC_ra^{n-r}x^r + ... + {}^nC_na^0x^n$$
1st Term r + 1 last

Special Expansion
$$(1+x)^n$$

$$(1+x)^n = {}^nC_0x^0 + {}^nC_1x^1 + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$$

Finding Terms

Example 1

Find Term 4

$${}^{7}C_{4} = \frac{7!}{4!(7-4)!}$$

$$= \frac{7!}{4! \cdot 3!}$$

$$= \frac{5040}{144}$$

$$= 35$$

Example 2

Find the term independent of
$$x \ln \left(3x^2 - \frac{1}{2x}\right)^3$$

$$T_{r+1} = {}^nC_r a^{n-r} x^r = {}^3C_r \left(3x^2\right)^{3-r} \left(-\frac{1}{2x}\right)^r$$

$$= x^{6-2r} . x^r = x^0$$

$$6 - 3r = 0$$

$$\therefore r = 2$$

Equidistant Coefficients

Equidistant coefficients are equal

$${}^{n}C_{r}={}^{n}C_{n-r}$$

LHS =
$${}^{n}C_{r}$$
 = $\frac{n!}{r!(n-r)!}$ = $\frac{n!}{r!(n-r)!}$

RHS =
$${}^{n}C_{n-r}$$
 = $\frac{n!}{(n-r)!(n-(n-r))!}$
= $\frac{n!}{(n-r)!(n-n+r)!}$
= $\frac{n!}{r!(n-r)!}$

Pascal's Relation

$${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$$

1

1

1

1

1

2

1

nth row

n+1 row

Example

$${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$$
2 + 1 = 3

LHS =
$${}^{n}C_{r} + {}^{n}C_{r-1}$$
 RHS = ${}^{n+1}C_{r}$
= $\frac{n!}{r!(n-r)!} + \frac{n!}{(r-1)!(n-r+1)!}$ = $\frac{n!(n-r+1)+r.n!}{r!(n-r+1)!}$
>>>> $\frac{(n-r+1)!}{(n-r)!}$
>>>> $\frac{(n-r+1)!}{(n-r)!}$
>>>> $\frac{1.2.3...(n-r)(n-r+1)}{1.2.3...(n-r)}$
>>>> $(n-r+1)$
= $\frac{n!(n-r+1+r)}{r!(n-r+1)!}$
= $\frac{n!(n+1)!}{r!(n-r+1)!}$
= $\frac{(n+1)!}{r!(n-r+1)!}$
= RHS

Proof 2

Expand $(1+x)^{n+1}$ in two ways. Compare the coefficients of x^r .

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

= $(1+x)(^nC_0x^0 + ^nC_1x^1 + ... + ^nC_{r-1}x^{r-1} + ^nC_rx^r + ... + ^nC_nx^n)$

Coefficients of x^r

$$= \left[1 \times^{n} C_{r} + {}^{n} C_{r-1}\right] x^{r}$$
$$= \left[{}^{n} C_{r} + {}^{n} C_{r-1}\right] x^{r}$$

$$2^{nd}$$

$$(1+x)^{n+1} = {}^{n+1}C_0x^0 + {}^{n+1}C_1x^1 + \dots + {}^{n+1}C_rx^r + \dots + {}^{n+1}C_{n+1}x^{n+1}$$

Coefficients of x^r

$$= {}^{n+1}C_{\cdot \cdot}$$

$$\therefore^n C_r + ^n C_{r-1} = ^{n+1} C_r$$

Pairing Off Method

Find the coefficient of x in the expansion of $\left(x + \frac{1}{x}\right)^4 \left(x - \frac{1}{x}\right)^3$

**Do Not Expand

$$= \left[{}^{4}C_{0}x^{4} \left(\frac{1}{x} \right)^{0} + {}^{4}C_{1}x^{3} \left(\frac{1}{x} \right)^{1} + {}^{4}C_{2}x^{2} \left(\frac{1}{x} \right)^{2} + {}^{4}C_{3}x^{1} \left(\frac{1}{x} \right)^{3} + {}^{4}C_{4}x^{0} \left(\frac{1}{x} \right)^{4} \right] \times \left[{}^{3}C_{0}x^{3} \left(-\frac{1}{x} \right)^{0} + {}^{3}C_{1}x^{2} \left(-\frac{1}{x} \right)^{1} + {}^{3}C_{2}x^{1} \left(-\frac{1}{x} \right)^{2} + {}^{3}C_{3}x^{0} \left(-\frac{1}{x} \right)^{3} \right]$$

Coefficients of x are:

$$= {}^{4}C_{0}^{3}C_{3} + {}^{4}C_{1}^{3}C_{2} + {}^{4}C_{2}^{3}C_{1} + {}^{4}C_{3}^{3}C_{0}$$

= -1 + 12 - 18 + 4

Sums of Coefficients

$$\sum_{r=0}^{n} {}^{n}C_{r} = 2^{n}$$
OR
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

Greatest Coefficient

$$(a+b)^n$$

$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_{r}a^{n-r}b^{r}}{{}^{n}C_{r+1}a^{n-r+1}b^{r-1}}$$

$$= \frac{b}{a} \cdot \frac{n!}{r!(n-r)!} \cdot \frac{(r-1)!(n-r+1)!}{n!}$$

$$= \frac{b}{a} \cdot \frac{n-r+1}{r} \ge 1$$

Example 1

Find the greatest coefficient in $(5+2x)^{12}$ when x=3

$$= \frac{2x}{5} \cdot \frac{(12 - r + 1)}{r}$$

$$= \frac{6}{5} \cdot \frac{(13 - r)}{r}$$

$$= \frac{78 - 6r}{5r} \ge 1$$

r is an integer

$$78-6r \ge 5r$$

$$78 \ge 11r$$

$$r \le \frac{78}{11}$$

$$r = 7$$

$$T_{r+1} = T_8 = {}^{12}C_7 a^{12-7} b^7$$

= 6.93 x 10¹¹

Example 2

Find the greatest coefficient in $(7+3x)^{12}$ when x=2

$$= \frac{6}{7} \cdot \frac{(13-r)}{r} \ge 1$$

$$78 - 6r \ge 7r$$

$$78 \ge 13r$$

$$r = 7$$

$$= {}^{12}C_{6}7^{6}6^{6}$$

$$= 5.07 \times 10^{12}$$

Extra Examples

Example 1

Find the middle term of $(a-2b)^8$

 ${}^{8}C_{4}(a)^{4}(-2b)^{4} = 70a^{4}16b^{4}$ = 1120 $a^{4}b^{4}$ There are 9 terms. Middle term is T₅.

Example 2

Fine the middle term of $\left(\frac{1}{x} + x^2\right)^{11}$

$${}^{11}C_5(\frac{1}{x})^6(x^2)^5 = 462x^4$$

There are 12 terms. Middle term is T_6 , T_7 .

$${}^{11}C_6(\frac{1}{x})^5(x^2)^6 = 462x^7$$

Example 3

$$(1+x)^8(1+x)^8 = (1+x)^{16}$$

Prove
$${}^{16}C_3 = 2[{}^8C_0.{}^8C_3 + {}^8C_1.{}^8C_2]$$

RHS = $[{}^8C_0x^0 + {}^8C_1x^1 + ... + {}^8C_8x^8] \times [{}^8C_0x^0 + {}^8C_1x^1 + ... + {}^8C_8x^8]$

Coefficients of
$$x^3$$
 = ${}^8C_0.{}^8C_3 + {}^8C_1.{}^8C_2 + {}^8C_2.{}^8C_1 + {}^8C_3.{}^8C_0$
= $2[{}^8C_0.{}^8C_3 + {}^8C_1.{}^8C_2]$

LHS =
$${}^{16}C_3x^3$$

= ${}^{16}C_3$

Prove
$${}^{16}C_8 = ({}^8C_0)^2 + ... + ({}^8C_8)^2$$

$$= {}^8C_0.{}^8C_8 + {}^8C_1.{}^8C_7 + ... + {}^8C_0.{}^8C_8$$

$$= ({}^8C_0)^2 + ({}^8C_1)^2 + ... + ({}^8C_8)^2$$

= Proven

Success and Failure

 $(q+p)^n = {^nC_r}q^{n-r}p^r$ Let p be the one you want

Let q be the one you don't want There are only 2 options – Binomial "Success" "Failure"

Example 1

A die is tossed 3 times. "6" outcome

Example 2

An archer has a record of hitting the target 3 out of 4 occasions. He tries 5 times. Find the probability a) Exactly 3 hits

- a) Exactly 5 lifts
- b) Exactly 4 hits
- c) Bull's eye only in 2nd round
- d) 1 bull's eye

$A ^{5}C_{3}q^{2}p^{3}$	$B ^{5}C_{4}q^{1}p^{4} + ^{5}C_{5}q^{0}p^{5}$
$=10\times\left(\frac{1}{4}\right)^2\times\left(\frac{3}{4}\right)^3$	$= 5 \times \left(\frac{1}{4}\right)^{1} \times \left(\frac{3}{4}\right)^{4} + 1 \times \left(\frac{3}{4}\right)^{5}$
$=\frac{135}{512}$	$=\frac{405}{1024}+\frac{243}{1024}$
512	
	$=\frac{81}{1}$
	128
$\begin{bmatrix} C & \frac{1}{2} \times \frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \end{bmatrix}$	$D = {}^{5}C_{1}q^{4}p^{1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$=5\times\left(\frac{1}{4}\right)^4\times\left(\frac{3}{4}\right)$
$=\left(\frac{1}{1}\right)^2\left(\frac{3}{1}\right)$	
$= \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)$	$=\frac{15}{1024}$
3	
1024	

Example 3

For a certain species of bird, there is a 3 in 5 chance that a fledgling will survive the 1st month. From a breed of 10 chicks, find the probability that:

- a) P (0 survive)
- b) P (more than 1 survive)
- c) P (3 survive)

$$A {}^{10}C_0(\frac{3}{5})^0(\frac{2}{5})^{10} = 1 \times (\frac{2}{5})^{10}$$

$$= \frac{1024}{9765625}$$

$$B 1 - [P_0 + P_1] = 1 - [{}^{10}C_0(\frac{3}{5})^0(\frac{2}{5})^{10} + {}^{10}C_1(\frac{3}{5})^1(\frac{2}{5})^9]$$

$$= 1 - \frac{16384}{9762625}$$

$$= \frac{9748881}{9765625}$$

$$C {}^{10}C_3q^7p^3 = 120 \times (\frac{2}{5})^7 \times (\frac{3}{5})^3$$

$$= \frac{414720}{9762625}$$

$$= 0.0425$$