Critical Minerals, Geopolitics, and the Green Transition

Tomás Domínguez-lino UChicago

Jonathan Elliott Johns Hopkins Allan Hsiao Stanford

October 3, 2025

Critical minerals will fuel the green transition

- Lithium, nickel, cobalt, and other minerals
 - Critical for producing advanced batteries
 - Geographic concentration, active policy intervention, and global trade
- What are the global impacts of industrial policy for minerals?
 - Highlighting policy spillover effects
 - With implications for geopolitics and green adoption

Data

- Annual, mine-level mineral production (GlobalData, Benchmark Minerals)
 - Capacity, ore grade, ownership structure, mine type, mining method
- Annual, global (or continent-level) battery consumption (Benchmark Minerals)
 - By battery chemistry: lithium-heavy (LFP) vs. nickel-heavy (NCM)
- Annual prices + battery-mineral "recipes"
 - Battery prices (ICCSINO)
 - Mineral prices (Trading Economics)

Critical minerals are geographically concentrated

Critical minerals power advanced batteries

Mines have heterogeneous costs

Theory

- Two minerals m
 - ℓ : lithium produced by country ℓ
 - n: nickel produced by country n
- Three technologies j
 - L: lithium-heavy
 - N: nickel-heavy
 - T: traditional without ℓ or n
- Prices p^m and policy τ^m
 - Mineral supply $s^m(p^m+ au^m)$, mineral demand $d^m(d_L,d_N)$
 - Technology demand $d_j(p_L, p_N, p_T)$ for $p_j(p^\ell, p^n)$

Complementarity and substitution

- Own-price demand elasticity
 - Higher $p^{\ell} \to \text{lower } d^{\ell}$
 - Partly offset by substitution to technology N, which still uses ℓ
- Cross-price demand elasticity
 - Higher $p^n \to \text{lower } d^\ell$ or higher d^ℓ
 - Complements: lower d^ℓ from joint use in technologies L and N
 - **Substitutes**: higher d^{ℓ} from shift to technology L, which uses more ℓ
- On net, lithium and nickel can be gross complements or substitutes

Geopolitics and green adoption

- Countries set mineral policy τ^m , which has spillover effects
 - Consider τ^ℓ that restricts s^ℓ
- Geopolitics
 - Own-policy effect: lower s^{ℓ} , higher p^{ℓ}
 - Cross-policy effect if **complements**: higher p_N , lower d_N , lower p^n
 - Cross-policy effect if **substitutes**: higher p_L , higher d_N , higher p^n
- Green adoption
 - **Complements**: higher or lower $d_L + d_N$ (higher p^{ℓ} but lower p^n)
 - Substitutes: unambiguously lower $d_L + d_N$ (higher p^ℓ and higher p^n)

Empirical model

- **Demand** d_i for technologies
 - Almost ideal demand system
 - Derived demand d^m for minerals
- Supply s^m of minerals
 - Mine-level data and estimation

Demand by technology j, year t

• Expenditure shares w at prices p

$$w_{jt} = \alpha_{jt} + \beta_j \log \frac{x_t}{P_t} + \sum_{\hat{j}} \gamma_{j\hat{j}} \ln p_{\hat{j}t}$$

Translog price index

$$P_t = \sum_{j} \alpha_{jt} \ln p_{jt} + \frac{1}{2} \sum_{j,\hat{j}} \gamma_{j\hat{j}} \ln p_{jt} \ln p_{\hat{j}t}$$

- Estimation: iterative linear least-squares
 - Instrumenting for prices with supply shocks

Supply by mineral m(i), mine i, year t

• Ore extraction s for ore grade γ , crude extraction S

$$s^{it} = \gamma^{it} S^{it}$$

• Linear ore revenues (as price takers), quadratic crude costs

$$r^{it} = p^{mt}\gamma^{it}$$
, $c^{it} = a^i + \frac{b^m}{k^i}S^{it} + \varepsilon^{it}$

• **Estimation:** linear FOC with fixed effects (μ^i, μ^{mt}) , mine-level variation γ^{it}

$$\frac{S^{it}}{k^i} = \frac{p^{mt}\gamma^{it}}{b^m} - \frac{a^i}{b^m} - \frac{\varepsilon^{it}}{b^m}$$

Equilibrium prices

- ullet Technologies derive from minerals according to **recipes** R_j^m
- Mineral prices clear mineral markets

$$d^{mt} = \sum_{j} R_{j}^{m} d_{jt} + o^{mt}, \quad s^{mt} = \sum_{i \in I^{mt}} s^{it}$$

Technology prices follow from mineral prices

$$p_{jt} = \sum_{m} R_j^m p^{mt}$$

Counterfactuals

- Indonesian nickel policy and Australian lithium policy
 - Impose optimal tax policy τ^m , solve for equilibrium (p^m, s^m)
 - Evaluate geopolitics and green adoption
- Decompose policy spillovers
 - With tech switching: complementarity + substitution
 - No tech switching: only complementarity
 - Difference: only substitution

Price effects of Indonesian nickel policy

Geopolitics under Indonesian nickel policy

Green adoption under Indonesian nickel policy

Green adoption under Australian lithium policy

Summary

- Critical minerals will fuel the green transition
- Industrial policy has policy spillovers
 - With implications for geopolitics and green adoption