SPAZI VETTORIALI.

ESERCIZIO 1

- 1. Mostrare che lo spazio dei polinomi è uno spazio vettoriale.
- 2. Mostrare che l'insieme dei polinomi di grado 3 (rispettiv. \leq 3) non è (rispett. è) un sottospazio vettoriale.

ESERCIZIO 2 Mostrare che le matrici triangolari superiori di ordine 3 formano un sottospazio di $\mathbb{R}^{3,3}$.

ESERCIZIO 3 Dimostrare che l'intersezione di due sottospazi è un sottospazio. (Costruire un esempio con l'intersezioni di piani per l'origine e uno con l'intersezione delle matrici triangolari inferiori con quelle superiori (di ordine 3)).

Osservazione. Ripassare la definizione di combinazione lineare di vettori e mostrare che $\mathcal{L}(\underline{v}_1, \dots, \underline{v}_k) = \mathcal{L}(\underline{v}_1) + \dots + \mathcal{L}(\underline{v}_k)$.

Osservazione. Negli esercizi sono utili i seguenti fatti (con la convenzione che, scrivere i vettori all'interno di una matrice, significa mettere per riga le loro componenti rispetto ad una base):

- 1. \overrightarrow{v} è lin. dipendente $\Leftrightarrow \overrightarrow{v} = \overrightarrow{0}$;
- 2. $\overrightarrow{v_1}, \overrightarrow{v_2}$ sono lin. dipendenti $\Leftrightarrow \overrightarrow{v_2} = \alpha \overrightarrow{v_1}$ (o viceversa) $\Leftrightarrow rk \left[\begin{array}{c} \overrightarrow{v_1} \\ \overrightarrow{v_2} \end{array}\right] \leq 1;$
- 3. $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}$ sono lin. dipendenti $\Leftrightarrow \overrightarrow{v_3} = \alpha_1 \overrightarrow{v_1} + \alpha_2 \overrightarrow{v_2} \Leftrightarrow rk \begin{bmatrix} \overrightarrow{v_1} \\ \overrightarrow{v_2} \\ \overrightarrow{v_3} \end{bmatrix} \leq 2;$

ESERCIZIO 4 Sia $V = \mathcal{L}((1, 2, -1), (2, 0, 3)) \subseteq \mathbb{R}^3$.

- 1. Descrivere geometricamente V, usando l'identificazione di \mathbb{R}^3 con i punti dello spazio ordinario (fissato un sistema di riferimento).
- 2. Verificare se i vettori $(1,0,0), (0,4,-5) \in V$. (Con la condizione sui ranghi scritta prima).
- 3. Per quali $h \in \mathbb{R}$ si ha $(h, 1, 0) \in V$?

4. Trovare la scrittura implicita (cioè le equazioni) di V.

ESERCIZIO 5 Ripetere l'esercizio precedente con $V = \mathcal{L}((0, 8, -10)) \subseteq \mathbb{R}^3$ e $W = \mathcal{L}((1, 2, 1, 0), (3, 1, 1, 1)) \subseteq \mathbb{R}^4$.

ESERCIZIO 6 Siano dati in \mathbb{R}^3 i sottospazi

$$W_1 = \begin{cases} x+y-z &= 0 \\ 2x+z &= 0 \end{cases}$$
 $W_2 = \{ 3x-y+z = 0 \}$

- 1. Calcolare i generatori di W_1 e W_2 .
- 2. Calcolare le equazioni e i generatori di $W_1 \cap W_2$.
- 3. Calcolare i generatori e le equazioni di $W_1 + W_2$.

ESERCIZIO 7 Siano dati i vettori $\underline{v}_1 = (2, -1, 1), \underline{v}_2 = (4, -2, 2), \underline{v}_3 = (1, 1, 0), \underline{v}_4 = (0, -3, 1),$ e gli scalari $a_1 = 3, a_2 = -1, a_3 = -2$ e $a_4 = -1$.

- 1. Calcolare $\sum a_i v_i$ e dedurre che sono linearmente dipendenti.
- 2. Scrivere lo spazio V da essi generato con il minimo numero di generatori.
- 3. Verificare se $(4,1,1) \in V$.
- 4. Scrivere implicitamente V.

Osservazione. Ricordarsi la definizione di base, la costruzione della base a partire da un sistema di generatori (sia con il metodo degli scarti successivi sia per riduzione) e la definizione di dimensione. In particolare ricordarsi che:

- 1. $\dim R^n = n$.
- 2. Se $V \subseteq W \Rightarrow \dim V \leq \dim W$ e vale l'uguale se e solo se V = W.

ESERCIZIO 8 In \mathbb{R}^4 siano dati i sottospazi $V = \mathcal{L}((1, 2, 0, -1), (2, 1, 1, 0), (0, -3, 1, 2))$ e $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 3y + z + 2t = 0\}.$

- 1. Determinare la dimensione e una base per V e W.
- 2. Determinare per quali $k \in \mathbb{R}$ il vettore $\underline{v} = (k, 0, 2, 1)$ appartiene a V e per quali k appartiene a W.

3. Per ciascuno di tali k estendere v ad una base di V e W, rispettivamente.

ESERCIZIO 9 In \mathbb{R}^3 si considerino i vettori $\underline{v}_1=(1,0,1), \underline{v}_2=(1,1,2), \underline{v}_1=(1,2,3)$ e $\underline{v}_4=(-1,2,1)$.

- 1. Dire perchè sono linearmente dipendenti e trovare una relazione di dipendenza lineare tra essi.
- 2. Determinare una base dello spazio da essi generato e dire se, in tale sottospazio, c'è un vettore non nullo avente la seconda e la terza componente uguale.

ESERCIZIO 10 Siano dati i sottospazi di \mathbb{R}^4 , $V = \mathcal{L}((1, -2, 0, 0), (2, -2, 1, 0), (-1, 0, -1, 0))$ e $W = \{(x, y, z, t) \in mathbb R^4 \mid x - y + 2z - 2t = x - 2y = 0, \}.$

- 1. Dire per quale $k \in \mathbb{R}$ si ha $(1, -4, k, 0) \in V$ e per quale $h \in \mathbb{R}$ si ha $(4, h, -1, 0) \in W$.
- 2. Calcolare le basi di V e W.
- 3. Calcolare base e dimensione di $V \cap W$.
- 4. Calcolare base e dimensione di V + W.

Osservazione. Per risolvere i prossimi esercizi, ricordarsi la formula di Grassmann

$$\dim V + W = \dim V + \dim W - \dim V \cap W$$
.

ESERCIZIO 11 In \mathbb{R}^5 si considerino i sottospazi $V = \{2x_1 - x_2 - x_3 = x_4 - 3x_5 = 0\}$ e $W = \{x_3 + x_4 = 0\}$, trovare $\underline{v} \neq \underline{0}$ tale che $\underline{v} \in W \cap V$ e un vettore $w \neq V \cup W$.

Come \underline{w} si può scegliere un vettore che sta in V + W ma non nell'unione.

ESERCIZIO 12 Determinare i valori di $a \in \mathbb{R}$ per cui i vettori

$$(1, a, a - 1), (1, 1, a - 1), (0, a - 1, a)$$

risultano indipendenti. Inoltre:

1. posto a = 1 stabilire se (1, -1, 2) appartiene al sottospazio generato dai tre vettori;

2. posto a=2 mostrare che i tre vettori formano una base di \mathbb{R}^3 e trovare le componenti di (1,-1,2) rispetto a questa base.

ESERCIZIO 13 Date le matrici $A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ si considerino i sottosp. $U = \mathcal{L}(A, A^t, A + A^t)$ e $V = \mathcal{L} = (A, B)$. Calcolare le basi per $U, U + V, U \cap V$.

ESERCIZIO 14 Dati i vettori $1 + x, x \in x^2 + 1$ di $\mathbb{R}_2[x]$ mostare che formano un base per $\mathbb{R}_2[x]$. Determinare poi le componenti della base standard $\{1, x, x^2\}$ rispetto a questa base.

ESERCIZIO 15 QUIZ

Q1. In \mathbb{R}^4 siano dati i vettori $a=(1,2,-1,3), b=(3/2,0,-\sqrt{3},4), c=(-1,0,2,0), d_t=(3,0,t+1,0).$

Quali delle seguenti affermazioni è vera?

- 1. Esiste $t \in \mathbb{R}$ tale che $a \in \mathcal{L}(b, c, d_t)$.
- 2. Esiste $t \in \mathbb{R}$ tale che $d_t \in \mathcal{L}(a, b, c)$.
- 3. Per ogni $t \in \mathbb{R}$ i vettori a, b, c, d_t formano una base di \mathbb{R}^4 .
- 4. $\dim(\mathcal{L}(a, b, c, d_t)) = 4, \forall t \in \mathbb{R}$.

Q2. Sia (v_1, v_2, v_3, v_4) una base di \mathbb{R}^4 . Quali delle seguenti affermazioni è vera?

- 1. Se $V = \mathcal{L}(v_1, v_2)$ e $W = \mathcal{L}(v_3, v_4)$, allora $V \cap W$ contiene un unico vettore.
- 2. Si ha sempre $v_1 = (1, 0, 0, 0)$.
- 3. Se $V = \mathcal{L}(v_1, v_2)$ e $W = \mathcal{L}(v_3, v_4)$, allora $V \cap W$ è vuoto.
- 4. Se $V = \mathcal{L}(v_1, v_2)$ e $U = \mathcal{L}(v_2, v_3)$, allora dim(V + W) = 4.
- Q3. Si consideri in \mathbb{R}^3 il sottospazio V generato da

$$u = (3, -1, 2), \quad v = (0, -2, 2), \quad w = (3, 0, 1).$$

Quali delle seguenti affermazioni è vera?

- 1. $\dim(V) = 3$.
- 2. Per ogni sottospazio U di \mathbb{R}^3 di dimensione 2 si ha dim $(U \cap V) \geq 1$.
- 3. $u \notin \mathcal{L}(v, w)$.
- 4. Nessuna delle precedenti.

Q4. In \mathbb{R}^4 siano dati i vettori a=(3,-1,2,0), b=(3,0,1,-1), c=(0,-2,2,2). Quali delle seguenti affermazioni è vera?

- 1. $\dim(\mathcal{L}(a, b, c)) = 3$.
- 2. $\dim(\mathcal{L}(a, b, c)) = 2$.
- 3. $a-b+5c \notin \mathcal{L}(a,b)$.
- 4. Esiste $d \in \mathbb{R}^4$ tale che (a, b, c, d) sia un abase di \mathbb{R}^4 .

Q5. Sia V un sottospazio di \mathbb{R}^3 . Quale delle seguenti affermazioni è vera?

- 1. Esiste un sottospazio $W \subseteq \mathbb{R}^3$ tale che dim $(V + W) = \dim(W)$.
- 2. Se dim(V) = 2, esiste un sottospazio $W\subseteq \mathbb{R}^3$ con dim(W) = 2 tale che $V\cap W$ contenga un solo vettore.
- 3. Esiste un sottospazio $W\subseteq\mathbb{R}^3$ tale che $V\cap W$ sia vuoto.
- 4. Per ogni sottospazio $W \subseteq \mathbb{R}^3$ l'insieme $V \cap W$ contiene infiniti vettori.