MATH 571: MATHEMATICAL LOGIC HOMEWORK SET 9, DUE AT 8:50 ON FRIDAY, NOV. 6

BRING YOUR SOLUTIONS TO CLASS, OR SLIDE THEM UNDER THE DOOR OF VAN VLECK 403

1. Let \mathcal{L} be the language only containing equality. Show that there is no formula φ such that:

 $\mathcal{A} \vDash \varphi$ if and only $|\mathcal{A}|$ is either infinite, or is finite and contains an even number of elements. (Hint: assume such a formula φ exists, consider $\neg \varphi$, and derive a contradiction using one of the theorems discussed on Friday.)

- 2. Problem 2.5.8 from Enderton.
- 3. Let \mathcal{L} be the first-order language containing one binary relation < and equality. A *linear ordering* is a binary relation < satisfying:
 - For every x, not x < x.
 - For no x, we have both x < y and y < x.
 - For every x, y, z, if x < y and y < z, then x < z.
 - If $x \neq y$, then x < y or y < x.

A linear order is a well-ordering if every non-empty subset B has a least element, i.e. there exists an element $b \in B$ such that for no $x \in B$ we have x < b.

- a. Give a formula φ such that $\mathcal{A} \vDash \varphi$ if and only if $<^{\mathcal{A}}$ is a linear ordering.
- b. Show that there is no set Σ such that $\mathcal{A} \models \Sigma$ if and only if $<^{\mathcal{A}}$ is a well-ordering. (Hint: Suppose that such a set Σ exists. Let \mathcal{L}' be the language obtained from \mathcal{L} by adding infinitely many new constants c_1, c_2, \ldots Now let Σ' be the set Σ together with formulas of the form $c_i > c_j$ for j > i, and apply the compactness theorem to get a contradiction.)