T.D. XI - Fonctions de plusieurs variables

I - Extremums libres

Exercice 1. (Extrema libres, dimension 2) Pour chacune des fonctions suivantes, déterminer les points critiques ainsi que leur nature (extremum local, extremum global):

- 1. $(x,y) \mapsto x^2 xy + y^2$.
- **2.** $(x,y) \mapsto 4x^2y + 2x^3 4xy + 2x + 1$.
- 3. $(x,y) \mapsto x^3 y^3 + 3x^2 3y^2$.

Exercice 2. (Extrema libres, dimension 3) Pour chacune des fonctions suivantes, déterminer les points critiques ainsi que leur nature :

- 1. $(x, y, z) \mapsto 1 + 2y 3y^2 + 2xz 3z^2$.
- **2.** $(x, y, z) \mapsto xy + yz + zx xyz$.

Exercice 3. On considère la fonction :

$$f: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}$$
$$(x,y) \quad \mapsto \quad x^2 + y^2 - 6x - 14y + 58$$

- **1. a)** Montrer que f admet un unique point critique M.
 - **b)** Montrer que f admet en M un minimum local.
- **2. a)** La fonction f est-elle convexe?
 - **b)** Que peut-on en déduire?
- **3. a)** Vérifier que, pour tout $(x, y) \in \mathbb{R}^2$, $f(x, y) = ||(x, y) (x_M, y_M)||^2$.
 - b) En déduire une seconde démonstration du résultat établi en 2.

Exercice 4. Soit $f:(x,y)\mapsto x^4+y^2$.

- 1. Déterminer les points critiques de f.
- ${\bf 2.}\,$ Déterminer la matrice hessienne de f. Que nous apporte le théorème de Monge ?
- 3. Montrer que f admet un minimum local en le point critique.
- **4.** Montrer que la fonction f est convexe. Que peut-on en déduire?
- **5.** Montrer directement que l'unique minimum global de f est atteint en (0,0).

II - Extremums sous contraintes

Exercice 5. (Extrema liés simples) Optimiser les fonctions suivantes sous la contrainte indiquée :

- **1.** $(x,y) \mapsto (x+1)\ln(y)$ sous x-y+1=0.
- **2.** $(x, y) \mapsto x e^y + y e^x \text{ sous } x y = 0.$
- 3. $(x,y) \mapsto x^2y \text{ sous } 2x^2 + y^2 = 3.$

Exercice 6. (Extremas liés avec lagrangien) Optimiser les fonctions sous la contrainte indiquée :

1.
$$(x, y, z, t) \mapsto x^2 + y^2 + z^2 + t^2$$
 sous
$$\begin{cases} x + y + z - t &= 3\\ 2x - y + z + t &= -6 \end{cases}$$
.

2. $(x,y) \mapsto \ln(x-y)$ sous $x^2 + y^2 - 2 = 0$.

Exercice 7. (Optimisation de production) Une entreprise de jouets fabrique x voitures et y camions. La voiture est vendue 1 euro alors que le camion est vendu 3 euros. Le coût de fabrication est estimé par $C(x,y) = 5x^2 + 5y^2 - 2xy - 2x - 1000$.

- 1. Établir le profit P(x,y) réalisé par l'entreprise et étudier sa convexité.
- 2. L'entreprise peut fabriquer 20 jouets par jour. Déterminer la répartition optimale de sa production entre les voitures et les camions.

Exercice 8. Trois cabinets d'étude sont chargés d'évaluer, de manière indépendante, le coût moyen c de fabrication de la production d'une entreprise. Chacun propose une estimation sans biais de ce coût moyen à partir d'un estimateur noté U_1 (resp. U_2 , U_3). L'écart-type de U_1 est la moitié de celui de U_2 et un tiers de celui de U_3 .

En fin de contrat, les trois cabinets se réunissent et proposent comme estimateur global l'une des combinaisons suivantes :

$$T_1 = \frac{U_1 + U_2 + U_3}{3}, T_2 = U_1, T_3 = \frac{3U_1 + U_2 + U_3}{5}.$$

- 1. Parmi ces estimateurs, lesquels sont sans biais?
- 2. Calculer la variance de chacun de ces estimateurs.
- **3.** Quel est le meilleur de ces estimateurs?

On impose que l'estimateur global soit être une combinaison linéaire de U_1, U_2 et U_3 i.e. il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $T = \alpha U_1 + \beta U_2 + \gamma U_3$.

4. Déterminer les réels α , β et γ donnant l'estimateur sans biais d'efficacité maximale.

Exercice 9. Soit $n \in \mathbb{N}^*$ et f définie pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$ par $f(x_1, \ldots, x_n) = \sum_{i=1}^n x_i^2$.

1. Déterminer les extremums de f sous la contrainte $\sum_{i=1}^{n} x_i = 1$.

Soit (X_1, \ldots, X_n) un *n*-échantillon d'une loi de Poisson de paramètre λ .

2. Montrer que, parmi les combinaisons linéaires de (X_1, \ldots, X_n) , il existe un unique estimateur sans biais de λ dont la variance est minimale.

Exercice 10. (Importance de la qualification) Soit $f:(x,y)\mapsto x$ sous la contrainte $x^3-y^2=0$.

- 1. Déterminer le minimum de f.
- 2. Écrire les conditions du premier ordre.
- **3.** En déduire que la stratégie utilisant le lagrangien ne fonctionne pas et expliquer pourquoi.