45

Klassierung:

12 p, 10/10

Int. Cl.:

C 07 d

SCHWEIZERISCHE EIDGENOSSENSCHAFT

Gesuchsnummer:

13110/64

EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Anmeldungsdatum:

11. Mai 1960, 174 Uhr

Patent erteilt:

15. August 1965

Patentschrift veröffentlicht: 31. Januar 1966

HAUPTPATENT

CIBA Aktiengesellschaft, Basel

Verfahren zur Herstellung neuer Pyrazolopyrimidine

Dr. Paul Schmidt, Therwil, Dr. Kurt Eichenberger und Dr. Max Wilhelm, Basel, sind als Erfinder genannt worden

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Pyrazolo[3,4-d]pyrimidinen der Formel

$$R_6$$
 N
 R_1
 R_3

10

worin R₆ einen Aralkyl- oder Heterocyclylalkylrest oder einen Alkylrest mit mehr als 2 Kohlenstoffatomen bedeutet, R, für ein Wasserstoffatom oder einen niederen Alkylrest steht und R, ein Wasserstoffatom, einen Alkylrest, einen Hydroxyalkylrest, einen Halogenalkylrest, einen Oxaalkyl-, Cycloalkyloder Cycloalkylalkylrest oder einen Aralkyl- oder Heterocyclylalkylrest oder einen höchstens zweikernigen Aryl- oder heterocyclischen Rest bedeutet, oder ihrer Salze.

In den neuen Verbindungen kommen als Alkylreste insbesondere niedere Alkylreste, wie Methyl-, Äthyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, 25 Pentyl-(1)-, Pentyl-(2)-, Pentyl-(3)-, 2-Methylbutyl-(3)- oder Hexylreste, als Halogenalkylreste oder Hydroxyalkylreste beispielsweise Chloräthyl- oder Hydroxyäthylreste und als Oxa-alkylreste z. B. 3-Oxapentyl-(5)- oder 3-Oxa-heptyl-(6)-reste in Betracht.

Cycloalkyl- oder Cycloalkylalkylreste sind beispielsweise Cyclopentyl- oder Cyclohexylreste, oder Cyclopentyl- oder Cyclohexyl-methyl-, -äthyl- oder -propylreste.

Als Aralkyl- oder Arylreste kommen insbeson-35 dere Phenylalkylreste, wie 1- oder 2-Phenyläthyloder Phenylmethylreste, oder Phenylreste in Frage,

in denen die aromatischen Kerne Substituenten tragen können, wie niedere Alkylreste oder freie oder substituierte Hydroxy-, Amino- oder Mercapto- 50 gruppen, Halogenatome, Trifluormethyl- oder Nitrogruppen. In den genannten substituierten Hydroxy-, Mercapto- oder Aminogruppen sind die Substituenten insbesondere solche der obengenannten Art, vor allem niedere Alkylreste, so daß es sich z. B. um 55 Methoxy-, Athoxy-, Propoxy- oder Butoxygruppen, entsprechende Alkylmercaptogruppen, Alkylendioxygruppen, wie Methylendioxygruppen, Mono- oder Dialkylaminogruppen, wie Mono- oder Dimethyl-, -äthyl-, -propyl-, -butyl- oder -pentylaminogruppen 60 handelt. Als Halogenatome sind vor allem Fluor-, Chlor- oder Bromatome zu nennen. Die Aralkylreste können mehrere Arylreste enthalten, wie z. B. im Diphenylmethylrest.

Als heterocyclische Reste bzw. Heterocyclylalkyl- 65 reste seien beispielsweise Pyridyl-, Thienyl-, Furyl-, Thenyl- oder Furfurylreste, die im heterocyclischen Rest wie oben für die Arylreste angegeben substituiert sein können, genannt.

Die neuen Verbindungen und ihre Salze besitzen 70 wertvolle pharmakologische Eigenschaften. Insbesondere sind sie coronarerweiternd wirksam. Die neuen

2

Verbindungen können somit als Heilmittel, insbesondere bei Durchblutungsstörungen des Herzmuskels, aber auch als Zwischenprodukte zur Herstellung solcher Heilmittel dienen.

Besonders wertvoll als coronarerweiternde Mittel sind Verbindungen der Formel

$$R_6$$
 N
 N
 N
 R_1

15

35

45

und ihre tautomeren Formen und die Salze davon, worin R, ein Wasserstoffatom, einen Niederalkylrest, z. B. Methyl, Athyl, Propyl, Isopropyl, Butyl-(2), 3-Methyl-butyl-(2), Pentyl-(2) Pentyl-(3), einem Cycloalkylrest, z. B. Cyclopentyl oder Cyclohexyl, einen Hydroxyniederalkylrest, wie Hydroxyäthyl einen Halogenniederalkylrest, wie Chloräthyl, einen Oxaniederalkylrest, wie 3-Oxapentyl, oder einen Arylrest, wie Phenylrest, bedeutet, wobei die Arylreste unsubstituiert oder durch Halogenatome, wie Chlor oder Brom, niedere Alkoxygruppen, wie Methoxy oder Athoxy, niedere Alkylreste, wie Methyl, Athyl, Propyl, Isopropyl, Butyl- tert.-Butyl, Methylendioxygruppen oder Trifluormethylgruppen, mono-, di- oder trisubstituiert sein können, oder einen Pyridylrest darstellt, R₃ Wasserstoff oder Niederalkyl ist und R₆ für einen Aralkyl-, wie einen Phenylniederalkyl-, vor allem Phenylmethylrest, steht, wobei die Arylreste, wie eben gezeigt, substituiert sein können.

Ferner sind von Bedeutung die Verbindungen der Formel

und ihre tautomeren Formen und die Salze davon, worin R_1 einen Niederalkylrest, z. B. Methyl, Äthyl, Propyl, Isopropyl, Butyl-(2), 3-Methyl-butyl-(2), Pentyl-(2), Pentyl-(3), einen Cycloalkylrest, z. B. Cyclopentyl oder Cyclohexyl, einen Halogenniederalkylrest, wie Chloräthyl, einen Oxaniederalkylrest, wie 3-Oxapentyl, bedeutet und R_3 für Wasserstoff oder Niederalkyl steht und R_6 einen Alkylrest mit mehr als 2 Kohlenstoffatomen darstellt, z. B. Propyl, Isopropyl, Butyl, Isobutyl, Amyl oder Isoamyl bedeutet.

Besonders wertvoll sind die Verbindungen der Formel

$$\begin{array}{c|c}
OH & & & & & & & & & \\
\hline
N & & & & & & & & \\
R_6 & & & & & & & & \\
\hline
N & & & & & & & \\
N & & & & & & & \\
R_1 & & & & & & \\
\end{array}$$

80

85

und ihre tautomeren Formen und Salze davon, worin R_1 einen niederen Alkylrest darstellt, R_3 einen niederen Alkylrest oder vor allem Wasserstoff und R_6 einen unsubstituierten oder im Phenylrest durch Chloratome, Methoxygruppen, Methylendioxygruppen, Methylgruppen oder Trifluormethylgruppen mono-, di- oder trisubstituierten Benzylrest darstellt.

Zu nennen sind besonders das 1-Isopropyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,

das 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)pyrazolo[3,4-d]pyrimidin,

das 1-Isopropyl-4-hydroxy-6-(m-methoxybenzyl)-pyrazolo[3,4-d]pyrimidin,

das 1-Isopropyl-4-hydroxy-6-(3',4',5'-trimethoxy-phenylmethyl)-pyrazolo[3,4-d]pyrimidin und das 1-Pentyl-(3')-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin und ihre Salze.

Das erfindungsgemäße Verfahren zur Herstellung der neuen Verbindungen besteht darin, daß

man in einem Nitril der Formel

die Nitrilgruppe durch Hydrolyse in die Carbamylgruppe überführt, z. B. durch Behandlung mit Alkalien in Gegenwart von Oxydationsmitteln, wie 100 Wasserstoffsuperoxyd, und das erhaltene Produkt cyclisiert. Dabei kann der Ringschluß gleichzeitig mit der Umwandlung in die Carbamylgruppe erfolgen.

Die erhaltenen 4-Hydroxy-pyrazolopyrimidine 105 können in üblicher Weise in ihre Salze mit Basen, z. B. in ihre Metallsalze, wie Alkalimetallsalze, umgewandelt werden, z. B. durch Lösen in Alkalilaugen. Die Salze ihrerseits lassen sich in die freien Hydroxyverbindungen umwandeln, zweckmäßig durch 110 Behandlung mit Säuren.

Die neuen, pharmakologisch wertvollen Verbindungen, ihre Salze oder entsprechende Gemische können z. B. in Form pharmazeutischer Präparate Verwendung finden. Diese enthalten die genannten 115 Verbindungen in Mischung mit einem für die enterale oder parenterale Applikation geeigneten pharmazeutischen organischen oder anorganischen Trägermaterial.

65

70

80

85

90

100

105

110

115

Die verfahrensgemäß erhaltenen Endstoffe sind aber auch wertvolle Zwischenprodukte, z.B. für die Herstellung der in den Schweizer Patenten Nrn. 390 264 und 390 929 beschriebenen 4-Mers capto- oder 4-Aminoverbindungen.

Sofern die beim erfindungsgemäßen Verfahren verwendeten Ausgangsstoffe neu sind, lassen sie sich nach an sich bekannten Methoden herstellen.

Als Ausgangsstoffe werden gemäß der vorliegenden Erfindung vorzugsweise diejenigen verwendet, die zu den eingangs als besonders wertvoll geschilderten Endstoffen führen.

Im nachfolgenden Beispiel sind die Temperaturen in Celsiusgraden angegeben.

Beispiel

7,95 g 2-Isopropyl-3-(p-chlorphenylacetylamino)-4-pyrazol-carbonsäure-nitril werden mit 27,2 cm³ , 10% iger Kalifauge und 102 cm³ 3% igem Wasserstoffsuperoxyd während 10 Stunden auf 70° erwärmt. Anschließend filtriert man die Reaktionslösung und säuert mit 2n Salzsäure auf pH 5 an, worauf sich das 1-Isopropyl-4-hydroxy-6-(p-chlorbenzyl)-

pyrazolo[3,4-d]pyrimidin der Formel

in farblosen Kristallen vom F. 181-182° ausscheidet.

Das als Ausgangsmaterial verwendete 2-Isopropyl-3- (p-chlorphenylacetylamino)-4-pyrazol-carbonsäure-nitril kann wie folgt hergestellt werden:

Zu 45,5 g 2-Isopropyl-3-amino-4-cyano-pyrazol in 325 cm³ abs. Dioxan und 24 cm³ Pyridin gibt man tropfenweise unter Rühren eine Lösung von 55,8 g p-Chlorphenylessigsäurechlorid in 75 cm³ Dioxan bei einer Temperatur zwischen 10–15°. Nach dem Zutropfen rührt man noch eine Stunde bei 10° und dann noch 2 Stunden bei Raumtemperatur. Nach Zugabe von 100 cm³ Wasser und 200 cm³ 2n Salzsäure kristallisiert das 2-Isopropyl-3-(p-chlorphenylacetylamino)-4-pyrazolcarbonsäurenitril der Formel

$$N \equiv C$$
 $N \equiv C$
 $N \equiv$

In analoger Weise kann man die folgenden Verbindungen erhalten:

- a) 1-Isopropyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. 165-166° (aus Alkohol).
- b) 1-Methyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,F. 236-237° (aus Äthanol).
- c) 1-Methyl-4-hydroxy-6-(3',4',5'-trimethoxy-phenyl-methyl)-pyrazolo[3,4-d]pyrimidin, F. 245° (aus Chloroform-Petroläther).
- d) 1-Isopropyl-4-hydroxy-6-(3',4',5'-trimethoxy-phenyl-methyl)-pyrazolo[3,4-d]pyrimidin,
 F. 195–196° (aus Alkohol).
- e) 1-Isopropyl-4-hydroxy-6-p-äthoxybenzylpyrazolo[3,4-d]pyrimidin,
 F. 175–176° (aus Alkohol).
- f) 1-sek.-Butyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. 154-155° (aus Alkohol).
- g) 1-Cyclohexyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. 207–208° (aus Alkohol).
- h) 1-(3'-Pentyl)-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin, F 144-145° (aus abs. Alkohol).
- i) 1-Cyclopentyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. 189-190° (aus abs. Alkohol).
- k) 1-(β-Hydroxy-äthyl)-4-hydroxy-6-benzylpyrazolo[3,4-d]pyrimidin,
 F. 194–195° (aus Alkohol).
- 1) 1-Isopropyl-4-hydroxy-6-(m-methoxy-benzyl)pyrazolo[3,4-d]pyrimidin,
 F. 155-158° (aus Alkohol).
- m) 1-[1'-Athoxy-butyl-(3')]-4-hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin, F. 111-112° (aus Methanol-Wasser).
- n) 1-Methyl-4-hydroxy-6-p-chlorbenzyl-pyrazolo-[3,4-d]pyrimidin, F. 268–270° (aus Dimethylformamid-Wasser).
- o) 1-Methyl-4-hydroxy-6-(2',3'-dimethoxy-phenyl-methyl)-pyrazolo[3,4-d]pyrimidin, F. 190–191° (aus Alkohol).
- p) 1-Phenyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. 264–265° (aus Chloroform-Petroläther).
- q) 1-Phenyl-4-hydroxy-6-(m-methoxybenzyl)pyrazolo[3,4-d]pyrimidin,
 F. 235° (aus Chloroform-Petroläther).
- r) 1-α-Pyridyl-4-hydroxy-6-benzyl-pyrazolo-[3,4-d]pyrimidin,
 F. > 360° (aus Dimethylformamid).
- s) 4-Hydroxy-6-benzyl-pyrazolo[3,4-d]pyrimidin, F. 290–292° (aus Athanol).
- t) 1-Isopropyl-4-hydroxy-6-(o-methoxy-benzyl)pyrazolo[3,4-d]pyrimidin, F. 157–159° (aus Äthanol).
- u) 1-Isopropyl-4-hydroxy-6-(2'-methyl-3'-methoxy-phenyl-methyl)-pyrazolo[3,4-d]pyrimidin, F. 150-151° (aus Äthanol).

35

55

v) 1-Isopropyl-4-hydroxy-6-diphenylmethylpyrazolo[3,4-d]pyrimidin, F. 226-227° (aus Athanol).

w) 1-[3'-Methyl-butyl-(2')]-4-hydroxy-6-benzylpyrazolo[3,4-d]pyrimidin, F. 157–158° (aus Athanol).

x) 1-Isopropyl-4-hydroxy-6-(a-phenyl-propyl)pyrazolo[3,4-d]pyrimidin, F. 142-143° (aus Alkohol).

y) 1-Isopropyl-4-hydroxy-6-(β-phenyl-äthyl)pyrazolo[3,4-d]pyrimidin, F. 124–125° (aus Alkohol).

z) 1-Isopropyl-4-hydroxy-6-(m-hydroxy-benzyl)pyrazolo[3,4-d]pyrimidin, F. 226-227° (aus Alkohol).

aa) 1-Isopropyl-4-hydroxy-6-isopropyl-pyrazolo-[3,4-d]pyrimidin, F. 175–177° (aus Äthanol).

bb) 1-Isopropyl-4-hydroxy-6-(2'-methyl-propyl)pyrazolo[3,4-d]pyrimidin, F. 114-116° (aus Äthanol).

cc) 1-sek.-Butyl-4-hydroxy-6-isopropyl-pyrazolo-[3,4-d]pyrimidin, F. 146–148° (aus Äther-Petroläther).

dd) 1-sek.-Butyl-4-hydroxy-6-(2'-methyl-propyl)pyrazolo[3,4-d]pyrimidin, F. 115–116° (aus Äther-Petroläther).

PATENTANSPRUCH

Verfahren zur Herstellung von Pyrazolo[3,4-d]-30 pyrimidinen der Formel

$$R_6$$
 N
 N
 N
 R_1

worin R₆ einen Aralkyl- oder Heterocyclylalkylrest oder einen Alkylrest mit mehr als 2 Kohlenstoffatomen bedeutet, R₃ für ein Wasserstoffatom oder einen niederen Alkylrest steht und R, ein Wasserstoffatom, einen Alkylrest, einen Hydroxyalkylrest, einen Halogenalkylrest, einen Oxaalkyl-, Cycloalkyloder Cycloalkylalkylrest oder einen Aralkyl- oder Heterocyclylalkylrest oder einen höchstens zweikernigen Aryl- oder heterocyclischen Rest bedeutet, oder ihrer Salze, dadurch gekennzeichnet, daß man in einem Nitril der Formel

$$\begin{array}{c|c} R_3 & \hline & C \equiv N \\ \hline N & NH - C - R_6 \\ \hline \downarrow & O \\ R_1 & \end{array}$$

die Nitrilgruppe durch Hydrolyse in die Carbamylgruppe überführt, und das erhaltene Produkt cycli- 60 siert.

UNTERANSPRÜCHE

- 1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, daß man die Hydrolyse durch Behandlung mit Alkalien in Gegenwart von Oxydationsmit- 65 teln durchführt.
- 2. Verfahren nach Unteranspruch 1, dadurch gekennzeichnet, daß man als Oxydationsmittel Wasserstoffsuperoxyd verwendet.
- 3. Verfahren nach Patentanspruch oder einem 70 der Unteransprüche 1 und 2, dadurch gekennzeichnet, daß man von Ausgangsstoffen ausgeht, worin R, ein Wasserstoffatom, einen niederen Alkylrest, einen Cycloalkylrest, einen Hydroxyniederalkylrest, einen Halogenniederalkylrest, einen Oxanieder- 75 alkylrest oder einen gegebenenfalls durch Halogenatome, niedere Alkoxygruppen, niedere Alkylreste, Methylendioxygruppen oder Trifluoromethylgruppen mono-, di- oder trisubstituierten Phenylrest oder einen Pyridylrest, R₃ ein Wasserstoffatom oder 80 einen niederen Alkylrest und Re einen gegebenenfalls im Phenylrest durch Halogenatome, niedere Alkoxygruppen, niedere Alkylreste, Methylendioxygruppen oder Trifluoromethylgruppen mono-, dioder trisubstituierten Phenylniederalkylrest bedeutet. 85
- 4. Verfahren nach Patentanspruch oder einem der Unteransprüche 1 und 2, dadurch gekennzeichnet, daß man von Ausgangsstoffen ausgeht, worin R₁ einen niederen Alkylrest, einen Cycloalkylrest, einen Halogenniederalkylrest oder einen Oxanieder- 90 alkylrest bedeutet, R₃ für ein Wasserstoffatom oder einen niederen Alkylrest steht und Ra einen Alkylrest mit mehr als 2 Kohlenstoffatomen bedeutet.
- 5. Verfahren nach Patentanspruch oder einem der Unteransprüche 1 und 2, dadurch gekennzeich- 95 net, daß man von Ausgangsstoffen ausgeht, worin R, einen Cycloalkylrest oder einen Alkylrest, R, ein Wasserstoffatom oder einen niederen Alkylrest und R_e einen niederen Alkylrest mit mindestens 3 Kohlenstoffatomen bedeutet.
- 6. Verfahren nach Patentanspruch oder einem der Unteransprüche 1 und 2, dadurch gekennzeichnet, daß man von Ausgangsstoffen ausgeht, worin R, einen niederen Alkylrest, R, ein Wasserstoffatom und R₃ einen unsubstituierten oder im Phenylrest 105 durch Chloratome, Methoxygruppen, Methylendioxygruppen, Methylgruppen oder Trifluoromethylgruppen mono-, di- oder trisubstituierten Benzylrest bedeutet.
- 7. Verfahren nach Patentanspruch oder einem der Unteransprüche 1 und 2, dadurch gekennzeich- 110 net, daß man von Verbindungen ausgeht, worin R₁ den Isopropylrest, R₃ ein Wasserstoffatom und R₆ den p-Chlorbenzylrest bedeutet.

100