3.

$$(a)a_1 = \beta_0, b_1 = \beta_1, c_1 = \beta_2, d_1 = \beta_3$$

$$(b)a_2 = \beta_0 - \beta_4 \xi^3, b_2 = \beta_1 + \beta_4 \xi^2, c_2 = \beta_2 - \beta_4 \xi, d_2 = \beta_3 + \beta_4$$

$$(c)(d)(e)$$
Notice that $f_1(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$, $f_2(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3$

$$f_2(x) - f_1(x) = \beta_4(x - \xi)^3$$

Apprently $f_1(\xi) = f_2(\xi)$, since the term vanishes.

$$f_2'(x) - f_1'(x) = 3\beta_4(x - \xi)^2$$

$$f_2''(x) - f_1''(x) = 6\beta_4(x - \xi)$$

Similarly, $f_1'(\xi) = f_2'(\xi)$ and $f_1''(\xi) = f_2''(\xi)$ hold since the above terms vanish.

4.

(a)(b)As λ approaches infinity, the second term, the penalty term, of the loss function dominates, and it has to be minimized to achieve the argmin, i.e., the $\hat{g}_{1,2}$. Therefore, the penalty term has to be zero, which means the \hat{g}_1 is a polynomial of order 2 (or less), and \hat{g}_2 order 3 (or less), that minimize the first term.

Therefore, \hat{g}_2 has less training error than \hat{g}_1 .

Generally speaking, \hat{g}_1 should be smoother than \hat{g}_2 , and thus is more likely to prevent overfitting, and thus \hat{g}_1 is likely to have less test RSS.