NZSSN Courses: Introduction to R Session 5 – Graphics

Statistical Consulting Centre

consulting@stat.auckland.ac.nz The Department of Statistics The University of Auckland

2 March, 2017

SCIENCE DEPARTMENT OF STATISTICS

Exploring your data

- Examine for patterns, relationships, structures, and other features.
- Do this using graphs, tables and summary statistics.
- Patterns are more easily seen in graphs.
- Remember:

"R is a free software environment for statistical computing and graphics"

Designing graphs

Two important considerations when designing a graph:

- It should have something to say.
 - Decide what information you want your graph to display.
 - Graphical software is capable of producing any number of different graphs, so generating graphs with meaningless information is quite simple to do!
- It should be easy to interpret.
 - Simplicity is key!
 - Sufficiently large fonts, all axes labelled, clearly defined legends, etc.

Some functions for drawing graphs

- Usually, we use plot() to create a graph and then lines(), points(), text(), and other commands to annotate it.
- plot() does appropriate things for different types of variables (see later examples).
- Variables of type character are not suitable for plotting (and analysis). Convert such variables to type factor.
- There are no "erase" or "undo" functions, so store your commands in an R script.

with(issp.df, plot(age.group, total.lik))


```
with(issp.df, plot(Gender, total.lik))
Warning in xy.coords(x, y, xlabel, ylabel, log): NAs
introduced by coercion
Warning in min(x): no non-missing arguments to min;
returning Inf
Warning in max(x): no non-missing arguments to max;
returning -Inf
Error in plot.window(...): need finite 'xlim' values
```

age.group is a factor but Gender is not.

```
class(issp.df$Gender)
[1] "character"
class(issp.df$age.group)
[1] "factor"
```

with(issp.df, plot(factor(Gender), total.lik))

Axes need labels

```
with(issp.df, plot(age.group, total.lik,
     xlab = "Age Group", ylab = "Total score"))
```


Axis labels are too small!!

Sometimes you need a title

```
with(issp.df, plot(age.group, total.lik, cex.lab = 1.5,
    xlab = "Age Group", ylab = "Total score",
    main = "Total Score versus Age"))
```

Total Score versus Age

boxplot()

More flexible than plot(), **if** drawing boxplots. Check the help documentation for more details.

```
with(issp.df, boxplot(total.lik~age.group,
    xlab = "Age Group", ylab = "Total score"))
```


Importance of childhood obedience by age group

Q5: Is obedience important in terms of preparing children for life? Examine the data via a two-way frequency table.

Importance of childhood obedience by age group

First, convert counts to percentages. Why?

How do we graphically display the information contained in this table?

Absolute disaster!!!

Better

Line along horizontal axis?

Vertical axis higher than bars?

Adding space between bars

Shading with lines?

Can't see the shading?

Shading with lines?

The default colour for shading lines is pale white! Change to black using the col argument.

Shading with lines?

Color-filled bars?

Color-filled bars?

Legend?

Legend?

Further improvements

- Larger title for axes
- Get rid of the box drawn outside the legend
- Larger legend

Further improvements

Histograms

hist(issp.df\$Age)

Fewer bins?

hist(issp.df\$Age, breaks = 10)

More bins?

hist(issp.df\$Age, breaks = 40)

Always use meaningful axis labels

```
hist(issp.df$Age, xlab = "Age", main = NULL)
box(bty="l")
```


Scatter plots

- Not often used in the social sciences??
- Introduced briefly here.
- Used to display paired quantitative (numeric) data, e.g. age and score per respondent.
- Make sure they are numeric.
- Use plot() function, e.g.

```
with(issp.df, plot(Age, total.lik))
```

Scatter plots

Graphical Parameters

```
?par
op \leftarrow par(mfrow = c(2, 2))
  with(issp.df, boxplot(total.lik~age.group,
      xlab = "Age Group", ylab = "Total score"))
  barplot(q5.age, beside = TRUE, ylab = "Percentage",
      xlab = "Age group in years", ylim = c(0, 100),
      space = c(0.2, 1.5), legend.text = TRUE)
      abline(h = 0)
  hist(issp.df$Age)
  with(issp.df, plot(Age, total.lik))
## At end of plotting, reset to previous settings:
par(op)
```

Graphical Parameters

Histogram of issp.df\$Age

Summary

- Boxplots
- Histograms/Barplots
- Scatterplots