

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination March 2019

Max. Marks: 20 Class: S.E COMP/IT

Course Code: CE41/IT41

Duration: 60Mins

Semester: IV Branch: Computer/IT

Name of the Course: Design and Analysis of algorithms

(1) All questions are compulsory.

(2) Draw neat diagrams.

(3) Assume suitable data if necessary.

Q.1	1. Define Asymptotic notation Ω with suitable diagram.	Max. Mark	
	2. If all the classes is	1	CC
	2. If all the elements in an input array are equal for example {5,5,5,5,5,5}, What will be the running time of the Insertion sort algorithm? a. O(2 ⁿ) b. O(n^2) c. O(n) d. None of the above	1	СО
	3. State True or False and justify. Dijkstra's algorithm may not terminate if the graph contains negative-weight edges.	1	CO
	4. What is the time complexity of Huffman Coding? a O(n) b. O(n log n) c.O(n (log n) ²) d.O(n ²)	1	CO4
	5. Strassen's algorithm needs number of multiplications to multiply two 2×2 matrices. a. 8 b.9 c.7 d.3	1	CO2
Q.2	Solve the following require		
	Solve the following recurrence equation using recursion tree method. $T(n) = T(n/3) + T(2n/3) + O(n).$ State all the	5	CO1
	justify. master method and	5	CO1
	i. $T(n) = 2T(n/2) + n2$ ii. $T(n) = T(n/2) + n(2 - \cos n)$		¥.

Q.3	Apply suitable algorithmic strategy to solve given problem. A thief enters a house for robbing it. He can carry a maximal weight of 60 kg into his bag. There are 5 items in the house with the following weights and values. What items should thief take if he can even take the fraction of any item with him, to maximize profit.	m. 5	
	(w1, w2, w3, w4, w5) = (5, 10, 15, 22, 25) (p1, p2, p3, p4, p5) = (30, 40, 45, 77, 90).		
	OR Solve the following problem to obtain minimum spanning tree using Prim's algorithm. Show all intermediate steps. And state the time complexity of prims algorithm. Consider node number 1 as start vertex.	5	CO4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Q.4	Analyze the time complexity of Quicksort for all cases by specifying recurrence equations and justify it.	5	CO2