Grammar in <u>theory of computation</u> is a finite set of formal rules that are generating syntactically correct sentences.

The formal definition of grammar is that it is defined as four tuples -

$$G = (V,T,P,S)$$

- •G is a grammar, which consists of a set of production rules. It is used to generate the strings of a language.
- •V is the final set of non-terminal symbols. It is denoted by capital letters.
- •T is the final set of terminal symbols. It is denoted by lower case letters.
- •P is a set of production rules, which is used for replacing non-terminal symbols (on the left side of production) in a string with other terminals (on the right side of production).
- •S is the start symbol used to derive the string.

Example

Grammar G1:

$$(\{S, A, B\}, \{a, b\}, S, \{S \rightarrow AB, A \rightarrow a, B \rightarrow b\})$$

Here,

S, A, and B are Non-terminal symbols; a

and **b** are Terminal symbols

S is the Start symbol, $S \in N$

Productions, $P : S \rightarrow AB$, $A \rightarrow a$, $B \rightarrow b$

Example:

Grammar G2:

$$(\{S,A\},\{a,b\},S,\{S\rightarrow aAb,\,aA\rightarrow aaAb,\,A\rightarrow\epsilon\;\}\;)$$

Here,

S and A are Non-terminal symbols. a

and b are Terminal symbols.

ε is an empty string.

 $\boldsymbol{\mathsf{S}}$ is the Start symbol, $\mathsf{S} \in \mathsf{N}$

Production $P : S \rightarrow aAb$, $aA \rightarrow aaAb$, $A \rightarrow \epsilon$

Example

Production rules $P = \{ S \rightarrow ABa, A \rightarrow BB, B \rightarrow ab, AA \rightarrow b \}$

$$V = \{ S, A, B \} \Rightarrow Non-Terminal symbols$$

 $T = \{ a, b \} \Rightarrow Terminal symbols$
 $S = \{ S \} \Rightarrow Start symbol$

Example

Production rules $P = \{S \rightarrow A1B, A \rightarrow 0A \mid \epsilon, B \rightarrow 0B \mid 1B \mid \epsilon \}$

 $V= \{S, A, B\} \Rightarrow non terminal symbols$

 $T = \{0,1\} \Rightarrow \text{terminal symbols}$

 $S= \{S\}$ \Rightarrow start symbol.

If $G = (\{S\}, \{s\}, \{S \to SS\}, S)$, find the language generated by G.

 $L(G) = \emptyset$, since the only production $S \to SS$ in G has no terminal on the right-hand side.

Let $G = (\{S, C\}, \{a, b\}, P, S)$, where P consists of $S \rightarrow aCa$, $C \rightarrow aCa \mid b$. Find L(G).

$$A \subset A$$

$$A \subset$$

Let $G = (\{S, A_1, A_2\}, \{a, b\}, P, S)$, where P consists of $S \to aA_1A_2a$, $A_1 \to baA_1A_2b$, $A_2 \to A_1ab$, $aA_1 \to baa$, $bA_2b \to abab$ Test whether w = baabbabaaabbaba is in L(G).

$$S \Rightarrow \underline{aA_1} A_2 a$$

$$\Rightarrow baa \underline{A_2} a$$

$$\Rightarrow$$
 baa A_1 aba

$$\Rightarrow$$
 baab $aA_1 A_2 baba$

$$\Rightarrow$$
 baabbaa $\underline{A_2}$ baba

$$\Rightarrow$$
 baabbabaaabbaba = w

of grammar

ent types of grammar –

ar	Language	Automata	Production rules
8	Recursively enumerable	Turing machine	No restriction
	Context-sensitive	Linear-bounded non- deterministic machine	αΑβ→αγβ
	Context-free	Non-deterministic push down automata	А→γ
	Regular	Finite state automata	A→aB A→a

CHOMSKY CLASSIFICATION OF LANGUAGES

Derivation

• L= a^nb^n Where n>=1.

Derivation

-7995B,8 -> aaarpg G_{3} . $S \rightarrow aSb | a$ $(a^{n+1}b^n) \cdot n > 0$

S-) 18/0A A-) 15/03 [0 B-) 15/03[0

((O+1)* 00)

15 | 101 100 | 101 $L = \{aa,ab,ba,bb\}$

Regular Expression = (a+b)(a+b)

Grammar = S -> aa | ab | ba | bb or

S-> AA

A-> a/b

 $L = \{a^n \mid n > = 0 \}$

 $S \rightarrow aA / \epsilon or$

S -> Aa / ∈

 $L = (a+b)^*$

 $S \rightarrow aS \mid bS \mid \epsilon$

Atleast two -

 $(a+b)(a+b)(a+b)^*$

 $S \rightarrow AAB$

A-> a/b

B-> $aB/bB/\epsilon$

Atmost two -

$$(a + b + \epsilon) (a + b + \epsilon)$$

S -> AA

 $A \rightarrow a/b/\epsilon$

S. No.	Grammar	Rule	
1	Context Free Grammer (CFG)		$A \rightarrow x$ where $A \in V$ and $x \in (V \cup T) *$
2	Linear Grammar	(A linear grammar is a CFG that has at most one non-terminal / variable in the right hand side of each of its productions. (Having ϵ in the RHS also counts). 1. Right Linear 2. Left Linear	
	Right Linear		$\begin{array}{c} A \rightarrow \epsilon \\ A \rightarrow a \\ A \rightarrow aB \end{array}$
	Left Linear		$A \rightarrow \epsilon$ $A \rightarrow a$ $A \rightarrow Ba$
3.	Regular Grammar	A regular grammar is one that is either left-linear or right-linear.	A -> xB A -> x where A, B \in V and x \in T *

- Example
- Now, consider the grammar G = ({S,A}, {a, b}, S, P) with productions:
- S → aA
- $S \rightarrow Sb$
- · s → >> > ₹
- This grammar is Context-free for sure. Since, LHS of the production consists of a variable and the RHS consists of (V U T) *.
- This grammar is linear because it has at most one variable on the right.
- But if you observe closely the productions are the combination of both left-linear and right-linear grammar (1st and 2nd one respectively). So, it is not a regular grammar. It had to be either left-linear or right-linear.

•

S -> a A

A -> B b

it consists of bith

by a

left linear of tight linear productions. Therefore, this

gramman will not have

an equivalent regular grammar.

Regular Grammar

The productions of the form $A \to \chi B \qquad \chi \in \Sigma^*$ will generate a regular language.

Althorophysical Regular Coronact will have productions of

Alternatively, Regular Grammar will have productions of
the form A->NB & A->N / NEEL A,BEVN

Mote: SJE is allowed in RG but in that care S should not appear on the right side of any production.

FA to RG

Equivalence of FSA and regular grammars

To go from regular grammar to FSA, make the following transformations:

Of Find a RG for the language that represents as all the binary strings and ending with 00.

Ans

Initial State
represented by
Start Symbol.

Let S, A, and B correspond to the states 20, 21, and 22.

The Regular Granum is as follows;

ν ,			1	
DEL.	S-> 1S A-> 1S B-> 1S	S→OA A→OB A→O	B→0B B→0	Example 1000

i. The final grammar is

$$S \rightarrow 1S \mid OA$$

$$A \rightarrow 1S \mid OB \mid O$$

$$B \rightarrow 1S \mid OB \mid O$$

 $\begin{array}{ccc}
S \rightarrow 1S & (S \rightarrow 1S) \\
\rightarrow 100A & (S \rightarrow 0A) \\
\rightarrow 100B & (A \rightarrow 0B) \\
\rightarrow 1000 & (B \rightarrow 0)
\end{array}$

 $\mathsf{F}_{\mathsf{L}} = \{ w \in \{ \mathtt{a}, \mathtt{b} \}^* : |w| \text{ is even} \} \quad ((\mathtt{aa}) \cup (\mathtt{ab}) \cup (\mathtt{ba}) \cup (\mathtt{bb}))^*$

$$S \rightarrow \varepsilon$$

 $S \rightarrow aT$
 $S \rightarrow bT$
 $T \rightarrow a$
 $T \rightarrow b$
 $T \rightarrow aS$
 $T \rightarrow bS$

Gr. - FA

$$S \rightarrow \epsilon$$

$$S \rightarrow aB$$

$$S \rightarrow aC$$

$$S \rightarrow bA$$

$$S \rightarrow bC$$

$$S \rightarrow cA$$

$$S \rightarrow cB$$

$$A \rightarrow bA$$

$$A \rightarrow cA$$

$$A \rightarrow \epsilon$$

$$B \rightarrow aB$$

$$B \rightarrow cB$$

$$B \rightarrow \epsilon$$

$$C \rightarrow aC$$

$$C \rightarrow bC$$

$$C \rightarrow \varepsilon$$

Strings that End with aaaa

 $L = \{w \in \{a, b\}^* : w \text{ ends with the pattern } aaaa\}.$

$$S \rightarrow aS$$

 $S \rightarrow bS$
 $S \rightarrow aB$
 $B \rightarrow aC$
 $C \rightarrow aD$
 $D \rightarrow a$

B/ Even length binary strings whole 3(() odd position contains 1 (1 (0t1))* DR. A) 05 115 \$ 0 11 S-> Saa | Sbb |a S-105/113/ E S-> SIO \ SII | E

Response a(aa+bb)* a(aa+bb)* C=(3s3,213,P,S) C=(3s3,213,P,S

Right Linear Granmar	Left Linear Grammar
$A \rightarrow \chi B \qquad \chi \in \Sigma^*$ $A \rightarrow \chi \qquad A, B \in V M$	$A \rightarrow BX$ $A \rightarrow X$ $A,B \in VN$
Syabs a (ab)ta Syabs a Syabs Syabs a Syabs Aybs Aybs Aybs	anso son son son son son son son son son

	Rules	1	
RE		L14	
€ a atb	$S \rightarrow a$ $s \rightarrow a \mid b$	$s \rightarrow a$ $s \rightarrow a/b$	
	S-) aA, A->b S-) aS t	$S \rightarrow Ab$, $A \rightarrow a$ $S \rightarrow Sa \mid E$	
at (atb)*	s→as a S→as bs E	$S \rightarrow Sala$ $S \rightarrow SalSble$	
(a+b)+ (ab)* (ab)+	S-) as bs a b S-) a A E A-) bs S-) a A A-) bs b	S-) a Sal Sbl alb S-) Abla A-) Sala-	

For converting the RLG into LLG for language L, the following procedure needs to be followed:

Step 1: Reverse the FA for language L

Step 2: Write the RLG for it.

Step 3: Reverse the right linear grammar. after this we get the grammar that generates the language that represents the LLG for the same language L.

FA
$$\xrightarrow{\text{Reverse}}$$
 FA $\xrightarrow{\text{Write}}$ RLG $\xrightarrow{\text{Reverse}}$ LLG

(L) (L)^{R} (L)^{R} $\text{(L}^{\text{R}})^{\text{R}}$ = L

The above FA represents language L(i.e. set of all strings over input symbols a and b which start with b). We are converting it into LLG.

Of Find LLA for the following do FA.

A a B a, b

And: find the reverse of the given FA

Then find RLh B-) a A -) A5 A -)b