END-SEMESTER EXAMINATION, JULY-2023 CALCULUS - B (MTH-2101)

Programme: B. Tech

Full Marks: 60

Semester: 2nd
Time: 3 Hours

Subject/Course Learning Outcome	*Taxonomy Level	Ques. Nos.	Marks
Determine the distances, volume, equations of spheres, lines, and planes using vector operations in space.	L3	1. a, b, c, 2. a, b, c, 3. a	2,2,2 2,2,2 2
Compute the length of a curve, curvature, tangent, and normal vectors.	L3	3. b, c, 4. a, b, c	2,2 2,2,2
Determine limit, derivatives, directional derivatives, maxima/minima, and Jacobian of a function of two or several variables.	L3	5. a, b, c.	2,2,2
Apply the computational and conceptual principles of calculus to the solution of double and triple integrals.	L3	5.a,b 6.b,c 7.c	2,2 2,2 2
Use Green's theorem to compute line integrals in terms of double integrals.	L3	5.c 6.a 7.a,b 9.c	2 2 2,2 2
Apply the most important theorems of vector calculus, such as the curl, divergence and Stoke's theorems to simplify integration problems.	2,	8.a,b,c 9.a,b	1

^{*}Bloom's taxonomy levels: Remembering (L1), Understanding (L2), Applying (L3), Analysing (L4), Evaluating (L5), Creating (L6)

Answer all questions. Each question carries equal mark.

Determine an equation of the largest sphere with [2] centre (5,4,9) that is contained in the first octant.

(b) Determine the centre and radius of the sphere [2] $2x^2 + 2y^2 + 2z^2 = 8x - 24z + 1$.

1

(c) For the scalar field $u = \frac{x^3}{4} + \frac{y^3}{5}$, calculate magnitude [2]

of the gradient at the point (1,3).

(a) Calculate the directional derivative of [2] $f(x,y,z) = xy^2 + yz^2 + zx^2 \text{ at the point } P(2,-1,1) \text{ in the direction of the vector } \langle 1,2,2 \rangle$ (b) Determine the area of the triangle with vertices [2] K(1,2,3), L(1,3,6), M(3,8,6)

(c) Compute the distance from the point (-6,3,5) to the [2] plane x - 2y - 4z = 8.

3 (a) Determine the point where the curve [2] $\vec{r}(t) = \langle t, 0, 2t - t^2 \rangle$ intersects the paraboloid $z = x^2 + y^2$.

 $z = x^{2} + y^{2}.$ **(b)** Determine $\vec{r}(t)$ if $\vec{r}'(t) = \langle t, e', te' \rangle$ and $\vec{r}(0) = \langle 1, 1, 1 \rangle$.

(c) A ball is thrown at an angle of 45° to the ground. If the ball lands 90m away, then determine the initial speed of the ball.
(a) Determine the tangential component of the [2] acceleration vector where r(t) = (3t - t³, 3t²).

[2]

acceleration vector where $r(t) = (3t - t^2, 3t^2)$.

(b) Compute $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}}$, if it exists, or show that

the limit does not exist.

(c) Determine $\frac{\partial^3 z}{\partial u \partial v \partial w}$ of the function $z = u \sqrt{v - w}$.

[2]

(a) If $z = x^2 - xy + 3y^2$ and (x, y) changes from (3, -1) to (2.96, -0.95), then compare between Δz and dz.

page 2 of 4

(b) Determine the Curl and divergent of the vector [2] function $\langle -y, x, 0 \rangle$.

Determine $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{V})$, where $\vec{V} = 3yz\hat{i} + 4xz\hat{j} + 2xy\hat{k}$. [2] Determine the equation of the the normal line to the surface $x + y + z = e^{xyz}$ at the point (0.0.1).

(b) Compute the local maximum and minimum values and saddle point of the function $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$.

(c) Compute the three positive numbers whose sum is 100 [2] and whose product is a maximum.

7 (a) Calculate the iterated integral $\int_{-\infty}^{\infty} \frac{x-y}{(x+y)^3} dx dy$. [2]

Calculate the double integral $\iint_R \frac{xy^2}{x^2+1} dA$, where $R = \{(x,y) | 0 \le x \le 1, -3 \le y \le 3\}$.

(c) Compute the volume of the solid enclosed by the [2]

surface $z = 1 + e^x \sin y$ and the planes $x = \pm 1, y = 0, y = \pi$, and z = 0.

(a) Determine the double integral [2]

 $\iint_D x \, dA, \, D = \left\{ (x, y) \mid 0 \le x \le \pi, 0 \le y \le \sin x \right\}.$ (b) Sketch the region whose area is given by the integral $\left[\frac{\pi}{2} \right]_2$

 $\int_{\frac{\pi}{4}}^{\infty} r \, dr \, d\theta \text{ and determine the integral}$ (c) Compute $\int_{D}^{\infty} e^{-x^2 - y^2} dA, \text{ where } D \text{ is the region } [2]$ bounded by the semicircle $x = \sqrt{4 - y^2}$ and the y - ax axis.

9 (a) Use triple integral to determine the volume of the [2] solid enclosed by the paraboloids $y = x^2 + z^2$ and

v	=	8	_	x^2	_	z^2	
y	_	U		$\boldsymbol{\mathcal{A}}$		_	1

- (b) Compute the line integral $\int_C y^3 ds, \quad C: x = t^3, y = t, \quad 0 \le t \le 3.$
- (c) Determine the line integral $\int_{c} \langle xy, 3y^2 \rangle \cdot d\vec{r}$, where. [2] $C: \vec{r}(t) = 10t^4i + 3t^3j$, $0 \le t \le 1$.
- 10 (a) Determine a function f such that $\vec{F} = \nabla f = \langle x^2, y^2 \rangle$ [2] and use it to compute $\int_C (x^2 \hat{i} + y^2 \hat{j}) . d\vec{r}$, where C is the parabola $y = 2x^2$ from (1,2) to (2,8).
 - (b) Use Green's Theorem to determine the line integral [2] $\oint_C xy^2 dx + x^2 y dy$ where C is the closed curve defined by the circle $x^2 + y^2 = 1$ oriented anti-clockwise.
 - (c) Use Stoke's theorem to determine [2] $\iint_{S} curl(2y\cos z\hat{i} + e^{x}\sin z\hat{j} + xe^{y}\hat{k}).\overline{ds}, \text{ where } S$ is the hemisphere $x^{2} + y^{2} + z^{2} = 9$, $z \ge 0$ oriented upward.

* * *