Services des réseaux

Séance 3

L'adressage IPv4 et le sous-réseautage

Partie I/

1-Rôle de l'adresse IP

Une adresse IP identifie une machine (hôte, routeur, imprimante...) dans un réseau

Chaque interface réseau doit posséder une adresse unique dans un sous-réseau

Elle permet don au protocole IP de localiser et acheminer les paquets vers la bonne destination

2-Structure d'une adresse IPv4

Longueur: 32 bits

Forme: Doted digit notation

Composante:

Partie réseau : identifie le réseau auquel appartient la machine (généralement 8)

Partie hôte : identifie la machine dans ce réseau (généralement 24)

3- classes d'adresses IPv4 :

Classe A de 8 bits

Class B 16 bits

Classe C 24 bits

4-Le masque de sous-réseau

Le masque indique combien de bits sont réservés à la partie réseau Exemple:

Adresse IP: 192.168.10.15

Masque: 255.255.255.0 /24

Cela signifie:

24 bits pour le réseau

8 bits pour les hôtes

Le masque sert à déterminer :

L'adresse du réseau (en mettant les bits hôtes à 0)

L'adresse de diffusion (BROADCAST) (en mettant les bits hôtes à 1)

Exemple:

Adresse 192.168.10.15

Masque:/24

Réseau 192.168.10.0

Broadcast: 192.168.10.255

Plages d'hôtes : 192.168.10.1->192.168.10.254

5-sous réseautage (Subnetting) :

But :découper un grand réseau en plusieurs petits sous-réseaux pour mieux gérer les adresses

Exemple:

Un réseau 192.168.1.0/24

On veut 4 sous réseaux 2² alors seulement 2 bits pour les sous réseaux ainsi on aura

Emprunter 2 bits à la partie hôte

Ainsi on peut organiser 4 sous réseau dont le tableau suivant

Sous réseau	Adresse	broadcast	Plage d'hôtes
	réseau		
00	192.168.1.0	192.168.1.63	1-62
01	192.168.1.64	192.168.1.127	65-126
10	192.168.1.128	192.168.1.191	129-190
11	192.168.1.192	192.168.1.255	193-254

6-notation CIDR:

192.168.1.0/24

-> /24 indique 24 bits de masque réseau, soit 255.255.25.0.

Avantage : permet de découper les réseaux avec une **grande flexibilité** selon le nombre d'hôtes nécessaire.

Partie II/

Le processus P1 veut communiquer avec le processus P4 qui n'existe pas dans le même réseau local

Ils sont reliées par un routeur (R) avec deux interfaces :

LAN1: 192.0.0.0/24

LAN2: 192.0.1.0/24

1-Etapes de l'envoie

1. P1 veut envoyer une message à P4(192.0.1.02):

Il verifie dans sa table de routage : il ne connaît que les IP de son propre réseau (192.0.0.x)

Comme la destination n'est pas dans le même réseau, il envoie la trame vers la passerelle (le routeur), à l'adresse MAC du routeur

2. ARP sur LAN1:

P1 fait une requête ARP : « qui a 192.0.0.254 ?» (adresse IP du routeur)

Cette requête est de type BROADCAST(FF:FF:FF:FF:FF)

Le routeur répond avec son adresse MAC1 (interface réseau 1)

3. Le routeur (R) reçoit le paquet IP de P1 :

Source: 192.0.0.2

Destination 192.0.1.2

Il consulte sa table de routage et sait que 192.0.1.0/24 se trouve sur son interface 2

4. ARP sur LAN2:

Le routeur cherche l'adresse MAC de P4 Il envoie une requête ARP sur LAN2 « Qui a 192.0.1.2 ? »

P4 répond avec sa MAC

5. Le routeur transmet la trame vers P4:

Trame:

Adresse mac source: Mac du routeur (if2)

Adresse mac destination : mac de P4

Adresse IP source; 192.0.0.2 (de p1)

Adresse IP destination: 192.0.1.2 (de p4)

- → Le routeur agit comme un intermédiaire entre deux réseaux
- → Les adresses mac changent à chaque saut (car la trame est reconstruite à chaque réseau) par contre l'adresse IP ne change jamais
- → ARP travaille sur chaque réseau locale

Type de route	Mot-clé souvent utilisé	Signification
Route connectée	connecter	Le réseau est
		directement accessible via une
		interface locale
		du routeur.
		Lorsque je sais
		l'adresse IP
Route	configurer	La route est
configurée (ou		ajoutée
statique)		manuellement
		par un
		administrateur
		pour atteindre un
		autre réseau via
		un autre routeur .