since  $det(e_1, \ldots, e_n) = 1$ . Now letting

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = B \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix},$$

we get

$$\det(v_1, \dots, v_n) = \det(B),$$

and since

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = A \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix},$$

we get

$$\det(w_1, \dots, w_n) = \det(A) \det(v_1, \dots, v_n) = \det(A) \det(B).$$

It should be noted that all the results of this section, up to now, also hold when K is a commutative ring and not necessarily a field. We can now characterize when an  $n \times n$ -matrix A is invertible in terms of its determinant  $\det(A)$ .

## 7.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed a field.

**Definition 7.7.** Let K be a commutative ring. Given a matrix  $A \in M_n(K)$ , let  $\widetilde{A} = (b_{ij})$  be the matrix defined such that

$$b_{ij} = (-1)^{i+j} \det(A_{ji}),$$

the cofactor of  $a_{ji}$ . The matrix  $\widetilde{A}$  is called the *adjugate* of A, and each matrix  $A_{ji}$  is called a *minor* of the matrix A.

For example, if

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -2 & -2 \\ 3 & 3 & -3 \end{pmatrix},$$