Производная	Интеграл	Дифференциал
C' = 0	$\int dx = x + C$	$xdx = \frac{1}{2}dx^2$
0 = 0	J	242 - 242
x'=1	$\int x dx = \frac{x^2}{2} + C$	$x^2 dx = \frac{1}{3} dx^3$
$(x^n)' = nx^{n-1}$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C \ (n \neq -1)$	$x^{\mathbf{n}}dx = \tfrac{1}{n+1}d(x^{n+1})$
$(e^x)' = e^x$	$\int e^x dx = e^x + C$	$e^x dx = d(e^x)$
$(a^x)' = a^x \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + C$	$a^x dx = \frac{d(a^x)}{\ln a}$
$(\ln x)' = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C \ (x \neq 0)$	$\frac{1}{x}dx = d(\ln x)$
$(\log_a x)' = \frac{1}{x \ln a}$	$\int \sin x dx = -\cos x + C$	$\cos x dx = d(\sin x)$
$(\sin x)' = \cos x$	$\int \cos x dx = \sin x + C$	$\sin x dx = -d(\cos x)$
$(\cos x)' = -\sin x$	$\int tg x dx = -\ln \cos x + C$	$\frac{1}{\cos^2 x} dx = d(tg \ x)$
$(tg \ x)' = \frac{1}{\cos^2 x}$	$\int ctg x dx = \ln \sin x + C$	$\frac{1}{\sin^2 x} dx = -d(ctg \ x)$
$(ctg \ x)' = -\frac{1}{\sin^2 x}$	$\int \frac{dx}{\cos^2 x} = tg x + C$	$\frac{1}{\sqrt{1-x^2}}dx = d(\arcsin x)$
$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{dx}{\sin^2 x} = -ctg x + C$	$\frac{1}{\sqrt{1-x^2}}dx = -d(\arccos x)$
$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ $(\operatorname{arct} g \ x)' = \frac{1}{1+x^2}$	$\int \frac{dx}{\cos x} = \ln tg(\frac{x}{2} + \frac{\pi}{4}) + C$	$\frac{1}{1+x^2}dx = d(arctg\ x)$
$(arctg\ x)' = \frac{1}{1+x^2}$	$\int \frac{dx}{\sin x} = \ln tg \frac{x}{2} + C$	$\frac{1}{1+x^2}dx = d(arctg \ x)$ $\frac{1}{1+x^2}dx = -d(arcctg \ x)$
$(arcctg\ x)' = -\frac{1}{1+x^2}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	
$(sh\;x)'=ch\;x$	$\int \frac{\sqrt{a^2 - x^2}}{\sqrt{a + x^2}} = \ln x + \sqrt{a + x^2} + C$	
$(ch \ x)' = sh \ x$	$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} arctg \frac{x}{a} + C$	
$(th \ x)' = \frac{1}{ch^2x}$	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C$	
$(cth \ x)' = -\frac{1}{sh^2x}$	$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$	
$(x^x)' = x^x(1 + \ln x)$	$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm$	
	$\pm \frac{a^2}{2} \ln x + \sqrt{x^2 \pm a^2} + C$	
(Cf)' = Cf'	$\int Cf(x) dx = C \int f(x) dx$	d(Cf) = Cdf
(f+g)'=f'+g'	$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$	d(f+g) = df + dg
(fg)' = f'g + fg'	$\int df(x) = f(x) + C$	d(fg) = gdf + fdg
$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ $\left(f(g(x))\right)' = f'(g(x))g'(x)$		$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$
(f(g(x)))' = f'(g(x))g'(x)		

1.
$$(u^n)' = nu^{n-1} \cdot u'$$

2. $(a^u)' = a^u \cdot \ln a \cdot u'$

$$2. \left(a^{u}\right)' = a^{u} \cdot \ln a \cdot u'$$

$$3. \left(e^{u}\right)' = e^{u} \cdot u'$$

$$4. \left(\log_a u\right)' = \frac{u'}{u \ln a}$$

$$5. \left(\ln u \right)' = \frac{u'}{u}$$

6.
$$(\sin u)' = \cos u \cdot u'$$

7.
$$(\cos u)' = -\sin u \cdot u'$$

8.
$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$$

$$9. \left(\operatorname{tg} u \right)' = \frac{u'}{\cos^2 u}$$

10.
$$(\text{ctg u})' = -\frac{u'}{\sin^2 u}$$

11.
$$\left(\arcsin u\right)' = \frac{u'}{\sqrt{1-u^2}}$$

12.
$$(\arccos u)' = -\frac{u'}{\sqrt{1-u^2}}$$

13.
$$\left(\text{arctg } u \right)' = \frac{u'}{1 + u^2}$$

14.
$$\left(\operatorname{arcctg} u\right)' = -\frac{u'}{1+u^2}$$

15.
$$(\operatorname{sh} u)' = \operatorname{ch} u \cdot u'$$

$$16. \left(\operatorname{ch} u \right)' = \operatorname{sh} u \cdot u'$$

17.
$$\left(\operatorname{th} u\right)' = \frac{u'}{\operatorname{ch}^2 u}$$

18.
$$\left(\coth u\right)' = -\frac{u'}{\sinh^2 u}$$

Таблица основных интегралов

1.
$$\int du = u + C$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad (n \neq -1).$$

$$3. \int \frac{du}{u} = \ln|u| + C.$$

$$4. \quad \int e^u du = e^u + C.$$

5.
$$\int a^u du = \frac{a^u}{\ln a} + C.$$

6.
$$\int \sin u du = -\cos u + C.$$

7.
$$\int \cos u du = \sin u + C$$
.

8.
$$\int tgudu = -\ln|\cos u| + C.$$

9.
$$\int ctgudu = \ln|\sin u| + C.$$

$$10. \int \frac{du}{\cos^2 u} = tgu + C.$$

11.
$$\int \frac{du}{\sin^2 u} = -ctgu + C.$$

12.
$$\int \frac{du}{\sin u} = \int \cos e c u du = \ln \left| t g \frac{u}{2} \right| + C.$$

13.
$$\int \frac{du}{\cos u} = \int \sec u du = \ln \left| tg \left(\frac{u}{2} + \frac{\pi}{2} \right) \right| + C.$$

14.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C.$$

15.
$$\int \frac{du}{\sqrt{u^2 + a}} = \ln \left| u + \sqrt{u^2 \pm a} \right| + C$$
.

16.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} arctg \frac{u}{a} + C.$$

17.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C.$$

Интегрирование по частям

Интегрируя обе части равенства $d(u\,v) = u\,dv + v\,du\,$, получим

 $\int d(u\,v) = \int u dv + \int v\,du; \quad u\,v = \int u\,dv + \int v\,du,$ $\int u dv = uv - \int v\,du.$ С помощью этой формулы вычисление интеграла $\int u dv$ сводито

С помощью этой формулы вычисление интеграла $\int u dv$ сводится к вычислению интеграла $\int v du$, если последний окажется проще исходного.

Если под знаком интеграла есть комбинация

Тригонометрическая функция Показательная функция

То многочлен - и

Если

Логарифмическая функция - u Обратная тригонометрическая функция (arc-и) - u

Все остальное у

Nº4

Смотри номера выше а точнее №1, №2, №2

Пример 1:

$$\int \frac{5x-4}{x^2+4x+5} dx = \int \frac{\frac{5}{2}(2x+4-\frac{28}{5})}{x^2+4x+5} dx = \int \frac{\frac{5}{2}(2x+4)-14}{x^2+4x+5} dx =$$

$$= \frac{5}{2} \int \frac{2x+4}{x^2+4x+5} dx - \int \frac{14}{x^2+4x+5} dx = [t=x^2+4x+5]$$

$$\frac{5}{2} \int \frac{2x+4}{x^2+4x+5} \frac{dt}{2x+4} - \int \frac{14}{(x+2)^2+1} dx = \frac{5}{2} \ln|x^2+4x+5| - 14 \arctan(x+2)$$

Пример 2:

$$\int rac{4x-1}{x^2-2x+5} dx = \int rac{2(2x-2+rac{3}{2})}{x^2-2x+5} dx = \int rac{2(2x-2)+3}{x^2-2x+5} dx = \ = [t=x^2-2x+5] = 2\int rac{2x-2}{x^2-2x+5} rac{dx}{2x-2} + \left(\int rac{3}{x^2-2x+5} dx
ight)^* = \ = \left[* = \int rac{3}{(x-1)^2+2^2}
ight] = 2\ln|x^2-2x+5| - rac{3}{2} \mathrm{arctan}(rac{x-1}{2}) + C$$

№5

Ну тут просто у степеней ищем общее кратное всех степеней и после подставляем и проверяем

Nº6

Смотри номера выше а точнее №1, №2, №2

$$x=a\sin\theta, dx=a\cos\theta\,d\theta\,-$$
 для выражений вида $(a^2-x^2).$ $x=a\cos\theta, dx=-a\sin\theta\,d\theta\,-$ для выражений вида $(x^2-a^2).$ $x=a\tan\theta, dx=a\sec^2\theta\,d\theta\,-$ для выражений вида $(x^2+a^2).$

№7

Схема такова, как это работает я хз, по ответам всё сходится

Пример 1:

$$F(x) = \int_2^x t^3 e^{3t-6} dt \; , \; F'(x) = rac{d}{dx} igg(\int_2^x t^3 e^{3t-6} dt igg) \ F'(x) = x^3 e^{3x-6} \; , \; F'(2) = 2^3 e^{3(2)-6} = 8e^0 = 8$$

Пример 2:

$$F(x) = \int_{-1}^x t^3 \arctan(t-1) \, dt \; , \; F'(x) = rac{d}{dx} igg(\int_{-1}^x t^3 \arctan(t-1) \, dt igg) \ F'(x) = x^3 \arctan(x-1) \; , \; F'(1) = 1^3 \arctan(1-1) = 0$$

а	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	2	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$		$\frac{\sqrt{3}}{2}$		1	
arcsin	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$ $-\frac{\pi}{6}$		$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$		$\frac{\pi}{3}$		$\frac{\pi}{2}$	
arccos	π	<u>5π</u> 6	$\frac{3\pi}{4}$		$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$		$\frac{\pi}{6}$		0	
а	-√3	-:	-1		$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$:		1		√3	
arctg	$-\frac{\pi}{3}$		$-\frac{\pi}{4}$		$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$		$\frac{\pi}{4}$		$\frac{\pi}{3}$		
arcctg	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$		$\frac{2\pi}{3}$		$\frac{\pi}{2}$	$\frac{\pi}{3}$		$\frac{\pi}{4}$		$\frac{\pi}{6}$		

Угол	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
 Функ- ция	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	_	0
$\operatorname{ctg} \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	1	0	_

№8

Смотри: №1 №3 №7

Nº9

Четность/нечетность функции

Тут как я понял чаще всего функция нечетная, поэтому вычислять ничего не надо и ответ 0, но стоит проверить.

Четная функция :
$$y(-x)=y(x)$$
 | Heчетная функция : $y(-x)=-y(x)$
$$\sin(-x)=-\sin(x) \ , \ \arcsin(-x)=-\arcsin(x)$$

$$\cos(-x)=\cos(x) \ , \ \arccos(-x)\neq\pm\arccos(x)$$

$$\tan(-x)=-\tan(x) \ , \ \arctan(-x)=-\arctan(x)$$

$$\cot(-x)=-\cot(x) \ , \ \arccos(-x)=-\arccos(x)$$

$$\sec(-x)=\sec(x) \ , \ \arccos(-x)\neq\pm\arccos(x)$$

$$\csc(-x)=-\csc(x) \ , \ \arccos(-x)=-\arccos(x)$$

Найти площадь, ограниченную графиками функций f(x) и g(x)

Смотри: №2

Находим пересечение: $f(x) = g(x), x_1, x_2$

Pешаем ограниченный интеграл $:S=|\int_{x_1}^{x_2}(|f(x)-g(x)|)|$

№11

$$S=\int_{lpha}^{eta}r^{2}\,darphi$$

Пока видел только такие типы: $S=\int_0^{2\pi}(n(1\pm\cosarphi)^2darphi)$

Может пригодиться: $\sin^2 \alpha = \frac{1-\cos 2\alpha}{2} \;,\; \cos^2 \alpha = \frac{1+\cos 2\alpha}{2}$

№12, 13

Если кривая задана одним уравнением: $ds = \sqrt{1 + \left(rac{dy}{dx}
ight)^2} \, dx$

Если кривая задана параметрически: $ds = \sqrt{\left(rac{dx}{dt}
ight)^2 + \left(rac{dy}{dt}
ight)^2}\,dt$

Если кривая задана в полярных координатах

$$L=\sqrt{\left(rac{dr}{darphi}
ight)^2+r^2}darphi$$

В 13 добавляются интегралы

№14

Тут просто дам теорию с GPT

Для определения, является ли интеграл собственным или несобственным, а также сходящимся или расходящимся, важно понимать несколько ключевых понятий и критериев. Давайте разберем эти понятия подробно.

1. Собственные и несобственные интегралы

Собственный интеграл:

- Это интеграл, у которого обе границы конечны, и подынтегральная функция непрерывна на всём промежутке интегрирования.
- Например, $\int_a^b f(x)dx$, где а и b конечные числа, и f(x) непрерывна на [a,b].

Несобственный интеграл:

- Это интеграл, у которого одна или обе границы бесконечны, или подынтегральная функция имеет разрыв в пределах интервала интегрирования.
- Примеры включают $\int_a^\infty f(x)\,dx\ ,\ \int_{-\infty}^b f(x)\,dx\ , \int_a^b f(x)\,dx$ где f(x) имеет разрыв в интервале [a,b]

2. Сходимость и расходимость интегралов

Сходящийся интеграл:

- Интеграл считается сходящимся, если предел интеграла существует и является конечным числом.
- Для собственных интегралов это означает, что стандартные методы интегрирования дают конечный результат.
- Для несобственных интегралов это означает, что соответствующий предел существует и конечен. Например, $\int_a^b f(x) \, dx$ (существует и конечен)

Расходящийся интеграл:

- Интеграл считается расходящимся, если предел интеграла не существует или равен бесконечности.
- Для несобственных интегралов это означает, что соответствующий предел не существует или бесконечен. Например, $\int_a^b f(x) \, dx$ (не существует или бесконечен)

Примеры и тесты на сходимость

Собственные интегралы

Сходящийся собственный интеграл:

$$\int_0^1 x \, dx = \left[rac{x^2}{2}
ight]_0^1 = rac{1}{2} - 0 = rac{1}{2}$$

Расходящийся собственный интеграл: Такие примеры встречаются редко, поскольку для собственных интегралов мы обычно имеем дело с непрерывными функциями на конечных интервалах, что гарантирует сходимость.

$$\int_0^1 x \, dx = \left[rac{x^2}{2}
ight]_0^1 = rac{1}{2} - 0 = rac{1}{2}$$

Несобственные интегралы

Сходящийся несобственный интеграл:

$$\int_1^\infty rac{1}{x^2} \, dx = \left[-rac{1}{x}
ight]_1^\infty = 0 - (-1) = 1$$

Расходящийся несобственный интеграл:

$$\int_1^\infty rac{1}{x}\,dx = [\ln x]_1^\infty = \lim_{b o\infty} (\ln b - \ln 1) = \infty$$

Проверка сходимости и расходимости

Для проверки сходимости или расходимости несобственных интегралов используются несколько методов:

1. Сравнительный тест:

Если $f(x) \leq g(x)$ для всех x и $\int_a^\infty g(x)\,dx$ сходится, то $\int_a^\infty f(x)\,dx$ тоже сходится.

2. Интегральный тест:

Если $\int_1^\infty rac{1}{x^p} \, dx$ сходится при p>1 и расходится при $p\leq 1.$

3. Тест на абсолютную сходимость:

Если $\int_a^b |f(x)| \, dx$ сходится, то $\int_a^b f(x) \, dx$ тоже сходится.

Nº15,16

Я хз, если у вас есть теория, дайте пожалуйста

№17

Для решения задач на определение линий уровня функции двух переменных, нужно понимать, что линии уровня — это множество точек на плоскости ((x,y)), где функция принимает одно и то же значение. Линии уровня функции (z=f(x,y)) задаются уравнением (f(x,y)=c), где (c) — постоянное значение.

Основные типы уравнений линий уровня

- Прямые
 - Уравнения вида (ax+by=c) представляют прямые. Если после подстановки значения (z) уравнение функции можно привести к линейному виду, линии уровня будут прямыми.
- 2. Параболы

• Уравнения вида $(y^2 = 4ax)$ или $(x^2 = 4ay)$ представляют параболы. Если после подстановки значения (z) уравнение функции можно привести к этому виду, линии уровня будут параболами.

3. Гиперболы

• Уравнения вида $(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1)$ или $(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1)$ представляют гиперболы. Если после подстановки значения (z) уравнение функции можно привести к этому виду, линии уровня будут гиперболами.

4. Окружности

• Уравнение вида $(x^2 + y^2 = r^2)$ представляет окружность с центром в начале координат и радиусом (r). Если после подстановки значения (z) уравнение функции можно привести к этому виду, линии уровня будут окружностями.

5. Эллипсы

• Уравнение вида $(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1)$ представляет эллипс. Если после подстановки значения (z) уравнение функции можно привести к этому виду, линии уровня будут эллипсами.

Пример анализа для функции $(z=rac{y^2}{x})$

Рассмотрим функцию $(z=rac{y^2}{x})$. Для определения линий уровня подставим (z=c):

$$[c=rac{y^2}{x}] \ [y^2=cx]$$

В данном случае видно, что уравнение $(y^2=cx)$ является уравнением параболы.

Примеры других функций

- 1. Пример 1: (z = x + y)
 - Линии уровня: (c = x + y)
 - Приведём к линейному виду: (y = c x)
 - Линии уровня: Прямые
- 2. Пример 2: $(z = x^2 + y^2)$
 - Линии уровня: $(c = x^2 + y^2)$
 - Приведём к виду окружности: $(x^2 + y^2 = c)$
 - Линии уровня: Окружности
- 3. Пример 3: $(z = x^2 y^2)$
 - Линии уровня: $(c = x^2 y^2)$
 - Приведём к виду гиперболы: $(\frac{x^2}{c} \frac{y^2}{c} = 1)$
 - Линии уровня: Гиперболы
- 4. Пример 4: $(z=rac{x^2}{a^2}+rac{y^2}{b^2})$
 - Линии уровня: $(c = \frac{x^2}{a^2} + \frac{y^2}{b^2})$
 - Приведём к виду эллипса: $(rac{x^2}{a^2/c} + rac{y^2}{b^2/c} = 1)$
 - Линии уровня: Эллипсы

Общий алгоритм решения задачи

- 1. Записать уравнение функции (z = f(x, y)).
- 2. **Подставить константу** (z=c), получив уравнение вида (f(x,y)=c).
- 3. Привести уравнение к стандартной форме:
 - Линейное уравнение (ax+by=c) указывает на прямые.
 - Уравнение вида $(y^2 = kx)$ или $(x^2 = ky)$ указывает на параболы.
 - Уравнение вида $(x^2 + y^2 = r^2)$ указывает на окружности.
 - ullet Уравнение вида $(rac{x^2}{a^2} rac{y^2}{b^2} = 1)$ указывает на гиперболы.
 - Уравнение вида $(rac{x^2}{a^2} + rac{y^2}{b^2} = 1)$ указывает на эллипсы.
- 4. Определить форму линий уровня на основании полученного уравнения.

Заключение

Линии уровня функции двух переменных могут быть различными кривыми на плоскости ((x,y)), такими как прямые, параболы, гиперболы, окружности и эллипсы. Определение типа линии уровня сводится к подстановке константы в уравнение функции и приведения его к стандартной форме, соответствующей одной из известных кривых.

Алгоритм для решения заданий

1. Определение линии уровня:

- Запишите уравнение функции (z = f(x, y)).
- Замените (z) на константу (c) и выразите уравнение в явной форме: (f(x,y)=c).
- Преобразуйте полученное уравнение в стандартную форму (если возможно), чтобы определить тип кривой (прямая, парабола, гипербола, окружность, эллипс).

2. Вычисление частных производных:

- Запишите функцию (z = f(x, y)).
- Найдите частную производную функции по $(x)((\frac{\partial z}{\partial x}))$.
- Найдите частную производную функции по $(y)((\frac{\partial z}{\partial y})).$
- Подставьте координаты точки $(M(x_0,y_0))$ в найденные производные для получения конкретных значений.

3. Применение к конкретному заданию:

• Выполните подстановку точки (M) в уравнение функции или её частные производные в зависимости от условия задания.

Пример решения

Пример 1:

Дано: $(z=2^{x/y})$, точка $(M(0,\ln 2))$.

1. Определение линии уровня:

- Записываем уравнение: $(z = 2^{x/y})$.
- Линия уровня: $(c = 2^{x/y})$.
- Преобразуем уравнение: $(\ln(c) = \frac{x \ln(2)}{y})$.
- Получаем: $(y \ln(c) = x \ln(2))$.
- Приводим к стандартной форме: $(y=rac{x\ln(2)}{\ln(c)}).$
- Это уравнение прямой.

2. Вычисление частных производных:

- $(z=2^{x/y}).$
- Найдём частную производную по (x):

$$[rac{\partial z}{\partial x} = rac{\partial}{\partial x}ig(2^{x/y}ig) = 2^{x/y}\cdot \ln(2)\cdot rac{1}{y}]$$

• Найдём частную производную по (y):

$$\left[rac{\partial z}{\partial y} = rac{\partial}{\partial y} \left(2^{x/y}
ight) = 2^{x/y} \cdot \ln(2) \cdot \left(-rac{x}{y^2}
ight)
ight]$$

• Подставим $(M(0,\ln 2))$ в частную производную по (x):

$$\left[rac{\partial z}{\partial x}
ight|_M = 2^{0/\ln 2} \cdot \ln(2) \cdot rac{1}{\ln 2} = 1 \cdot \ln(2) \cdot rac{1}{\ln 2} = 1
ight]$$

Ответ:

$$\left[\frac{\partial z}{\partial x}\Big|_{M}=1\right]$$

Пример 2:

Дано: $(z=2^{x^3-xy})$, точка (M(1,1)).

1. Определение линии уровня:

- Записываем уравнение: $(z = 2^{x^3 xy})$.
- Линия уровня: $(c = 2^{x^3 xy})$.
- Преобразуем уравнение: $(\ln(c) = \ln(2) \cdot (x^3 xy))$.
- Получаем: $(x^3-xy=rac{\ln(c)}{\ln(2)})$.
- Это уравнение сложно привести к стандартной форме (необходим дополнительный анализ), но оно представляет собой кривую в общем виде.

2. Вычисление частных производных:

- $(z=2^{x^3-xy}).$
- Найдём частную производную по (x):

$$[rac{\partial z}{\partial x} = 2^{x^3 - xy} \cdot \ln(2) \cdot \left(3x^2 - y
ight)]$$

• Найдём частную производную по (y):

$$[rac{\partial z}{\partial y} = 2^{x^3 - xy} \cdot \ln(2) \cdot (-x)]$$

• Подставим (M(1,1)) в частную производную по (x):

$$\left[rac{\partial z}{\partial x}
ight|_M = 2^{1^3 - 1 \cdot 1} \cdot \ln(2) \cdot (3 \cdot 1^2 - 1) = 2^0 \cdot \ln(2) \cdot (3 - 1) = 1 \cdot \ln(2) \cdot 2 = 2 \ln(2)
ight]$$

Ответ:

$$\left[rac{\partial z}{\partial x}
ight|_{M}=2\ln(2)
ight]$$

№19

Для решения задач по нахождению полного дифференциала функции двух переменных в заданной точке с заданными приращениями аргументов, следуйте следующему алгоритму:

Алгоритм

- 1. Записать функцию (z = f(x, y)).
- 2. Найти частные производные функции (f(x,y)) по переменным (x) и (y).
 - $\left(\frac{\partial z}{\partial x}\right)$ • $\left(\frac{\partial z}{\partial y}\right)$
- 3. Подставить координаты точки $(M(x_0,y_0))$ в частные производные.
- 4. Вычислить полный дифференциал (dz) с использованием формулы:

$$\left[dz=rac{\partial z}{\partial x}igg|_{(x_0,y_0)}\cdot dx+rac{\partial z}{\partial y}igg|_{(x_0,y_0)}\cdot dy
ight]$$

- 5. Подставить значения приращений (dx)и (dy) в формулу для полного дифференциала.
- 6. Вычислить значение полного дифференциала (dz).

Примеры решения

Пример 1:

Функция: $(z = xy^2 + x - y^2 + 5)$

Точка: (M(1,-1])

Приращения: (dx = 1), (dy = -1)

1. Найти частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x} = y^2 + 1
ight] \ \left[rac{\partial z}{\partial y} = 2xy - 2y
ight] \end{aligned}$$

2. Подставить точку (M(1,-1)) в частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x}
ight|_{(1,-1)} &= (-1)^2 + 1 = 1 + 1 = 2 \ \left[rac{\partial z}{\partial y}
ight|_{(1,-1)} &= 2 \cdot 1 \cdot (-1) - 2 \cdot (-1) = -2 + 2 = 0 \ \end{bmatrix}$$

3. Вычислить полный дифференциал:

$$egin{aligned} \left[dz = rac{\partial z}{\partial x}igg|_{(1,-1)} \cdot dx + rac{\partial z}{\partial y}igg|_{(1,-1)} \cdot dy
ight] \ \left[dz = 2 \cdot 1 + 0 \cdot (-1) = 2 + 0 = 2
ight] \end{aligned}$$

Ответ:

$$[dz=2]$$

Пример 2:

Функция: $(z = x^3 + xy^2)$

Точка: (M(1,2))

Приращения: (dx = 0.1), (dy = -0.2)

1. Найти частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x} = 3x^2 + y^2
ight] \ \left[rac{\partial z}{\partial y} = 2xy
ight] \end{aligned}$$

2. Подставить точку (M(1,2)) в частные производные:

$$\left[rac{\partial z}{\partial x}
ight|_{(1,2)} = 3 \cdot 1^2 + 2^2 = 3 + 4 = 7
brace$$
 $\left[rac{\partial z}{\partial y}
ight|_{(1,2)} = 2 \cdot 1 \cdot 2 = 4
brace$

3. Вычислить полный дифференциал:

$$egin{aligned} \left[dz = rac{\partial z}{\partial x}igg|_{(1,2)} \cdot dx + rac{\partial z}{\partial y}igg|_{(1,2)} \cdot dy
ight] \ \left[dz = 7\cdot 0.1 + 4\cdot (-0.2) = 0.7 - 0.8 = -0.1
ight] \end{aligned}$$

Ответ:

[dz = -0.1]

№20

Для решения задач по нахождению координат вектора нормали к поверхности, заданной уравнением (z=f(x,y)), в заданной точке $(M(x_0,y_0,z_0))$ и заданной одной координатой нормали, следуйте следующему алгоритму:

Алгоритм

- 1. Записать уравнение поверхности (z = f(x, y)).
- 2. Найти частные производные функции (f(x,y)):
 - $ullet \ (rac{\partial z}{\partial x} = f_x(x,y))$
 - $ullet \ (rac{\partial z}{\partial y} = f_y(x,y))$
- 3. Подставить координаты точки $(M(x_0,y_0,z_0))$ в частные производные.
- 4. Записать вектор нормали к поверхности в виде ((A, B, C)), где:
 - $\bullet \ \ (A=f_x(x_0,y_0))$
 - $\bullet \ \ (B=f_y(x_0,y_0))$
 - (C = -1)
- 5. Использовать заданное значение одной из координат нормали, чтобы найти остальные координаты. Если нормаль дана как $((n_1,n_2,n_3))$, то нужно найти (n_1) и (n_2) при условии, что (n_3) задан.
- 6. Сравнить выражения для вектора нормали и пропорциональные компоненты для вычисления оставшихся координат.

Пример решения

Пример 1:

Поверхность: $(z=x\sqrt{y})$ Точка: (M(-2,1,-2)) Нормаль: $((\dots, \dots, 2))$

1. Записать уравнение поверхности:

$$[z=x\sqrt{y}]$$

2. Найти частные производные:

$$\left[\frac{\partial z}{\partial x} = \sqrt{y} \right]$$
$$\left[\frac{\partial z}{\partial y} = \frac{x}{2\sqrt{y}} \right]$$

3. Подставить координаты точки (M(-2,1,-2)) в частные производные:

$$\begin{bmatrix} \frac{\partial z}{\partial x} \Big|_{(-2,1)} = \sqrt{1} = 1 \end{bmatrix}$$
 $\begin{bmatrix} \frac{\partial z}{\partial y} \Big|_{(-2,1)} = \frac{-2}{2\sqrt{1}} = -1 \end{bmatrix}$

4. Записать вектор нормали:

$$[\vec{n}=(1,-1,-1)]$$

5. Использовать условие, что $(n_3 = 2)$, для нахождения пропорциональности:

$$[ec{n}=k(1,-1,-1)$$
 и $n_3=-1k=2\implies k=-2]$

6. Вычислить оставшиеся координаты нормали:

$$[n_1 = 1 \cdot (-2) = -2] \ [n_2 = -1 \cdot (-2) = 2]$$

Ответ:

$$[ec{n}=(-2,2,2)]$$

Пример 2:

Поверхность: $(z=xy^2)$ Точка: (M(1,-2,4)) Нормаль: $((\dots,\dots,-1))$

1. Записать уравнение поверхности:

$$[z=xy^2]$$

2. Найти частные производные:

$$egin{array}{l} \left[rac{\partial z}{\partial x}=y^2
ight] \ \left[rac{\partial z}{\partial y}=2xy
ight] \end{array}$$

3. Подставить координаты точки (M(1,-2,4)) в частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x}
ight|_{(1,-2)} &= (-2)^2 = 4 \ \left[rac{\partial z}{\partial y}
ight|_{(1,-2)} &= 2 \cdot 1 \cdot (-2) = -4 \ \end{bmatrix}$$

4. Записать вектор нормали:

$$[\vec{n}=(4,-4,-1)]$$

5. Использовать условие, что $(n_3 = -1)$, для нахождения пропорциональности:

$$[ec{n}=k(4,-4,-1)$$
 и $n_3=-1k=-1\implies k=1]$

6. Вычислить оставшиеся координаты нормали:

$$[n_1 = 4 \cdot 1 = 4]$$

 $[n_2 = -4 \cdot 1 = -4]$

Ответ:

$$[\vec{n}=(4,-4,-1)]$$

№21

Алгоритм

- 1. Записать функцию (z = f(x, y)).
- 2. Найти частные производные функции (f(x,y)):

$$ullet \left(rac{\partial z}{\partial x}=f_x(x,y)
ight)$$

$$ullet \ (rac{\partial z}{\partial y}=f_y(x,y))$$

- 3. Подставить координаты точки $(M(x_0,y_0))$ в частные производные.
- 4. Записать вектор направления $(\vec{l} = (a,b))$.
- 5. Нормализовать вектор направления (\vec{l}) , чтобы его длина равнялась 1 (если это необходимо).

•
$$(\vec{l_{\text{unit}}} = \left(\frac{a}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right))$$

6. Вычислить производную функции по направлению вектора (\vec{l}) с использованием формулы:

$$\left[\left. rac{\partial z}{\partial l} \right|_{M} = \left. rac{\partial z}{\partial x} \right|_{M} \cdot l_{x} + \left. rac{\partial z}{\partial y} \right|_{M} \cdot l_{y}
ight]$$

7. Сделать вывод о возрастании или убывании функции в этом направлении в зависимости от знака производной.

Примеры решения

Пример 1:

Функция: $(z = x^5 y^{10})$

Точка:
$$(M(-1,1))$$

Вектор направления: $(\vec{l} = (3,4))$

1. Записать уравнение функции:

$$[z=x^5y^{10}]$$

2. Найти частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x} = 5x^4y^{10}
ight] \ \left[rac{\partial z}{\partial y} = 10x^5y^9
ight] \end{aligned}$$

3. Подставить координаты точки (M(-1,1)) в частные производные:

$$egin{aligned} \left[\left. rac{\partial z}{\partial x}
ight|_{(-1,1)} &= 5 \cdot (-1)^4 \cdot 1^{10} = 5
ight] \ \left[\left. rac{\partial z}{\partial y}
ight|_{(-1,1)} &= 10 \cdot (-1)^5 \cdot 1^9 = -10
ight] \end{aligned}$$

4. Нормализовать вектор направления $(ec{l}=(3,4))$:

$$||ec{l}|| = \sqrt{3^2 + 4^2} = 5|$$

 $[ec{l_{ ext{unit}}} = \left(rac{3}{5}, rac{4}{5}
ight)]$

5. Вычислить производную функции по направлению вектора $(ec{l})$:

$$\begin{bmatrix} \frac{\partial z}{\partial l} \Big|_{(-1,1)} = \frac{\partial z}{\partial x} \Big|_{(-1,1)} \cdot \frac{3}{5} + \frac{\partial z}{\partial y} \Big|_{(-1,1)} \cdot \frac{4}{5} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial z}{\partial l} \Big|_{(-1,1)} = 5 \cdot \frac{3}{5} + (-10) \cdot \frac{4}{5} = 3 - 8 = -5 \end{bmatrix}$$

Ответ:

$$\left[\frac{\partial z}{\partial l}\right|_{(-1,1)} = -5$$

В этом направлении функция убывает, так как производная отрицательна.

Пример 2:

Функция: $(z=xy^2)$

Точка: (M(1,-2))

Вектор направления: $(ec{l}=(3,4))$

1. Записать уравнение функции:

$$[z=xy^2]$$

2. Найти частные производные:

$$egin{array}{l} \left[rac{\partial z}{\partial x}=y^2
ight] \ \left[rac{\partial z}{\partial y}=2xy
ight] \end{array}$$

3. Подставить координаты точки (M(1,-2)) в частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x}
ight|_{(1,-2)} &= (-2)^2 = 4 \ \\ \left[rac{\partial z}{\partial y}
ight|_{(1,-2)} &= 2 \cdot 1 \cdot (-2) = -4 \ \end{aligned}$$

4. Нормализовать вектор направления $(\vec{l}=(3,4))$:

$$[\|\vec{l}\| = \sqrt{3^2 + 4^2} = 5]$$

 $[\vec{l}_{ ext{unit}}] = (\frac{3}{5}, \frac{4}{5})]$

5. Вычислить производную функции по направлению вектора (\vec{l}) :

$$\begin{bmatrix} \frac{\partial z}{\partial l} \Big|_{(1,-2)} &= \frac{\partial z}{\partial x} \Big|_{(1,-2)} \cdot \frac{3}{5} + \frac{\partial z}{\partial y} \Big|_{(1,-2)} \cdot \frac{4}{5} \end{bmatrix} \\
\begin{bmatrix} \frac{\partial z}{\partial l} \Big|_{(1,-2)} &= 4 \cdot \frac{3}{5} + (-4) \cdot \frac{4}{5} = \frac{12}{5} - \frac{16}{5} = -\frac{4}{5} \end{bmatrix}$$

Ответ:

$$\left[\frac{\partial z}{\partial l}\right|_{(1,-2)} = -\frac{4}{5}$$

В этом направлении функция убывает, так как производная отрицательна.

№22

Алгоритм

- 1. Записать функцию (z = f(x, y)).
- 2. Вычислить первую частную производную функции (f(x,y)) по (x): $[\frac{\partial z}{\partial x}]$
- 3. Вычислить первую частную производную функции (f(x,y)) по (y): $[\frac{\partial z}{\partial y}]$
- 4. Подставить координаты точки $(M(x_0,y_0))$ в каждую из частных производных.
- 5. Собрать вектор градиента:

$$[\operatorname{grad} z(M) = \left(rac{\partial z}{\partial x} igg|_{M}, rac{\partial z}{\partial y} igg|_{M}
ight)]$$

№23

Для нахождения смешанной второй производной функции (z=f(x,y)) в заданной точке $(M(x_0,y_0))$, следуйте следующему алгоритму:

Алгоритм

- 1. Записать функцию (z = f(x, y)).
- 2. Вычислить первую частную производную функции (f(x,y)) по (x): $[\frac{\partial z}{\partial x}]$
- 3. Вычислить первую частную производную функции (f(x,y)) по (y): $[\frac{\partial z}{\partial u}]$
- 4. Вычислить первую частную производную $(\frac{\partial z}{\partial x})$ по (y) (или $(\frac{\partial z}{\partial y})$ по (x)): $[\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)]$ или (x)
- 5. Подставить координаты точки $(M(x_0,y_0))$ в полученное выражение.

Примеры решения

1. Записать уравнение функции:

$$[z=\sqrt{rac{x}{y}}]$$

2. Вычислить первую частную производную по (x):

$$\left[\frac{\partial z}{\partial x} = \frac{1}{2}\left(\frac{x}{y}\right)^{-\frac{1}{2}} \cdot \frac{1}{y} = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{x}{y}}} \cdot \frac{1}{y} = \frac{1}{2} \cdot \frac{\sqrt{y}}{\sqrt{x}} \cdot \frac{1}{y} = \frac{1}{2} \cdot \frac{1}{\sqrt{xy}}\right]$$

3. Вычислить первую частную производную по (y):

$$\left[\frac{\partial z}{\partial y} = \frac{1}{2} \left(\frac{x}{y}\right)^{-\frac{1}{2}} \cdot \left(-\frac{x}{y^2}\right) = -\frac{x}{2y^2} \cdot \frac{1}{\sqrt{\frac{x}{y}}} = -\frac{x}{2y^2} \cdot \frac{\sqrt{y}}{\sqrt{x}} = -\frac{\sqrt{x}}{2y^{3/2}}\right]$$

4. Вычислить смешанную частную производную $(\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right))$:

$$[rac{\partial}{\partial y} \left(rac{1}{2} \cdot rac{1}{\sqrt{xy}}
ight) = rac{1}{2} \cdot rac{\partial}{\partial y} \left(x^{-rac{1}{2}}y^{-rac{1}{2}}
ight) = rac{1}{2} \cdot x^{-rac{1}{2}} \cdot \left(-rac{1}{2}y^{-rac{3}{2}}
ight) = -rac{1}{4} \cdot rac{1}{\sqrt{x}} \cdot rac{1}{y^{3/2}}]$$

5. Подставить координаты точки $(M(1, \frac{1}{4}))$:

$$\left[-\frac{1}{4} \cdot \frac{1}{\sqrt{x}} \cdot \frac{1}{y^{3/2}} \right|_{(1,\frac{1}{4})} = -\frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{(\frac{1}{4})^{3/2}} = -\frac{1}{4} \cdot \frac{1}{(\frac{1}{8})} = -\frac{1}{4} \cdot 8 = -2 \right]$$

Ответ:

$$\left[rac{\partial^2 z}{\partial x \partial y}
ight|_{(1,rac{1}{4})} = -2
brace$$

Пример 2:

Функция: $(z = x^2 e^{-3y})$

Точка: (M(2,0))

1. Записать уравнение функции:

$$[z = x^2 e^{-3y}]$$

2. Вычислить первую частную производную по (x):

$$[rac{\partial z}{\partial x} = 2xe^{-3y}]$$

3. Вычислить первую частную производную по (y):

$$\left[\frac{\partial z}{\partial y} = x^2 \cdot (-3)e^{-3y} = -3x^2e^{-3y}\right]$$

4. Вычислить смешанную частную производную $(\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right))$:

$$\left[rac{\partial}{\partial y}\left(2xe^{-3y}
ight)=2x\cdot(-3)e^{-3y}=-6xe^{-3y}
ight]$$

5. Подставить координаты точки (M(2,0)):

$$\left[-6xe^{-3y}
ight|_{(2,0)} = -6\cdot 2\cdot e^{-3\cdot 0} = -6\cdot 2\cdot 1 = -12
ight]$$

Ответ:

$$\left[rac{\partial^2 z}{\partial x \partial y}
ight|_{(2,0)} = -12
ight]$$

№24

X3

№25

Алгоритм

- 1. Записать функцию (z=f(x,y)).
- 2. Найти частные производные $(rac{\partial z}{\partial x})$ и $(rac{\partial z}{\partial y})$.
- 3. Решить систему уравнений:

- 4. Находить стационарные точки $((x_0, y_0))$.
- 5. Вычислить вторые частные производные:

$$\begin{bmatrix} \frac{\partial^2 z}{\partial x^2}, & \frac{\partial^2 z}{\partial y^2}, & \frac{\partial^2 z}{\partial x \partial y} \end{bmatrix}$$

6. Вычислить определитель матрицы Гессе в точке $((x_0, y_0))$:

$$[H=egin{bmatrix} rac{\partial^2 z}{\partial x^2} & rac{\partial^2 z}{\partial x \partial y} \ rac{\partial^2 z}{\partial x \partial y} & rac{\partial^2 z}{\partial y^2} \ \end{bmatrix}$$

- 7. Определить характер стационарной точки:
 - ullet Если (H>0) и $(rac{\partial^2 z}{\partial x^2}>0)$, то это точка локального минимума.

- ullet Если (H>0) и $(rac{\partial^2 z}{\partial x^2}<0)$, то это точка локального максимума.
- Если (H < 0), то это седловая точка.
- Если (H=0), дополнительные исследования необходимы.

Пример 1: $(z = x^2 + 6xy - 8x + 2y^2 - 10y + 13)$

1. Частные производные:

$$\left[rac{\partial z}{\partial x} = 2x + 6y - 8
ight] \ \left[rac{\partial z}{\partial y} = 6x + 4y - 10
ight]$$

2. Решаем систему уравнений:

$$[2x + 6y - 8 = 0 \quad (1)]$$

 $[6x + 4y - 10 = 0 \quad (2)]$

Умножим (1) на 2:

$$[4x + 12y - 16 = 0 \quad (3)]$$

Вычтем (2) из (3):

$$[4x + 12y - (6x + 4y) = 16 - 10]$$

$$[-2x + 8y = 6]$$

$$[-2x = 6 - 8y]$$

$$[x = -3 + 4y]$$

Подставим (x) в (1):

$$[2(-3+4y)+6y-8=0]$$

$$[-6 + 8y + 6y - 8 = 0]$$

$$[14y - 14 = 0]$$

$$[y = 1]$$

Подставим
$$(y = 1)$$
 в $(x = -3 + 4y)$:

$$[x = -3 + 4(1) = 1]$$

Стационарная точка: (M(1,1)).

3. Вторые частные производные:

$$[rac{\partial^2 z}{\partial x^2}=2]$$

$$[rac{\partial^2 z}{\partial y^2}=4]$$

$$\left[\frac{\partial^2 z}{\partial x \partial y} = 6\right]$$

4. Определитель матрицы Гессе:

$$[H = egin{bmatrix} 2 & 6 \ 6 & 4 \end{bmatrix} = 2 \cdot 4 - 6 \cdot 6 = 8 - 36 = -28]$$

(H < 0), следовательно, точка (M(1,1)) - не имеет экстремума.

Пример 2: $(z = 3x^2 + xy + 2y^2 - 11x + 2y + 13)$

1. Частные производные:

$$egin{aligned} \left[rac{\partial z}{\partial x} = 6x + y - 11
ight] \ \left[rac{\partial z}{\partial y} = x + 4y + 2
ight] \end{aligned}$$

2. Решаем систему уравнений:

$$[6x + y - 11 = 0 \quad (1)]$$

$$[x+4y+2=0 \quad (2)]$$

Умножим (2) на 6:

$$[6x + 24y + 12 = 0 \quad (3)]$$

Вычтем (1) из (3):

$$[(6x + 24y + 12) - (6x + y - 11) = 0]$$

$$[24y + 12 - y + 11 = 0]$$

$$[23y + 23 = 0]$$

$$[y = -1]$$

Подставим
$$(y = -1)$$
 в (1):

$$[6x - 1 - 11 = 0]$$

$$[6x = 12]$$

$$[x=2]$$

Стационарная точка: (M(2,-1)).

3. Вторые частные производные:

$$\left[\frac{\partial^2 z}{\partial x^2} = 6\right]$$

$$egin{array}{l} \left[rac{\partial^2 z}{\partial y^2}=4
ight] \ \left[rac{\partial^2 z}{\partial x \partial y}=1
ight] \end{array}$$

4. Определитель матрицы Гессе:

$$[H = egin{bmatrix} 6 & 1 \ 1 & 4 \end{bmatrix} = 6 \cdot 4 - 1 \cdot 1 = 24 - 1 = 23]$$

(H>0) и $(rac{\partial^2 z}{\partial x^2}=6>0)$, следовательно, точка (M(2,-1)) - точка локального минимума.

№26

Для определения типа стационарной точки функции по второму дифференциалу, необходимо исследовать квадратичную форму, которую он представляет. Квадратичная форма записывается как:

$$[d^2z(M)=A(dx)^2+2Bdxdy+C(dy)^2]$$

где (A), (B) и (C) — коэффициенты, определенные из второго дифференциала.

Алгоритм

- 1. Определите коэффициенты (A), (B) и (C):
 - Для дифференциала вида $(d^2z(M) = A(dx)^2 + 2Bdxdy + C(dy)^2)$, найдите (A), (B) и (C).
 - Если форма представлена как $(d^2z(M)=A(dx)^2+Bdxdy+C(dy)^2)$, умножьте коэффициент (B) на 2, чтобы получить (2B).
- 2. Вычислите дискриминант (D):

$$[D = B^2 - AC]$$

- 3. Анализируйте знак дискриминанта и коэффициента (A):
 - Если (A>0) и (D<0), стационарная точка является точкой **локального минимума**.
 - Если (A < 0) и (D < 0), стационарная точка является точкой **локального максимума**.
 - Если (D>0), стационарная точка не имеет экстремума.
 - Если (D=0), необходимо дополнительное исследование.

Пример 1

$$[d^2z(M) = -7(dx)^2 + 13dxdy - 11(dy)^2]$$

- 1. Определите коэффициенты:
 - (A = -7)
 - $(B = \frac{13}{2})$
 - (C = -11)
- 2. Вычислите дискриминант:

$$[D = \left(\frac{13}{2}\right)^2 - (-7)(-11)]$$
 $[D = \frac{169}{4} - 77]$
 $[D = \frac{169}{4} - \frac{308}{4}]$
 $[D = \frac{169 - 308}{4}]$
 $[D = \frac{-139}{4} < 0]$

$$D = \frac{169}{4} - 77$$

$$D = \frac{169}{4} - \frac{308}{4}$$

$$D = \frac{169 - 308}{4}$$

$$D = \frac{-139}{4} < 0$$

- 3. Анализируйте знак дискриминанта и коэффициента (A):
 - (A = -7 < 0)
 - (D < 0)

Следовательно, в этой точке функция имеет локальный максимум.

Пример 2

$$[d^2z(M) = 2(dx)^2 + 7dxdy + 3(dy)^2]$$

- 1. Определите коэффициенты:
 - (A = 2)
 - $(B = \frac{7}{2})$
 - (C=3)
 - 2. Вычислите дискриминант:

$$[D = \left(\frac{7}{2}\right)^2 - 2 \cdot 3]$$

$$[D = \frac{49}{4} - 6]$$

$$[D = \frac{49}{4} - \frac{24}{4}]$$
$$[D = \frac{25}{4} > 0]$$

3. Анализируйте знак дискриминанта и коэффициента (A):

•
$$(A = 2 > 0)$$

• (D>0)

Следовательно, в этой точке функция не имеет экстремума (седловая точка).

Заключение

- Для первого примера: в этой точке функция имеет локальный максимум.
- Для второго примера: в этой точке функция не имеет экстремума (седловая точка).

№27

Теор вопрос я хз, есть практический

Алгоритм для нахождения производных сложной функции

- 1. Выразите функцию (z) через промежуточные переменные (u) и (v).
- 2. Найдите частные производные (z) по (u) и (v).
- 3. Выразите частные производные (u) и (v) по (x) и (y).
- 4. Используйте правило цепочки для вычисления производных $(\frac{\partial z}{\partial x})$ и $(\frac{\partial z}{\partial x})$.
- 5. **Подставьте значения** (x) и (y) в полученные производные.

Алгоритм

Шаг 1: Выразите функцию (z) через промежуточные переменные (u) и (v)

$$[z=2u^2-v^2]$$
 где $(u=2x-3y)$ и $(v=x+2y).$

Шаг 2: Найдите частные производные (z) по (u) и (v)

$$\left[rac{\partial z}{\partial u}=4u, \quad rac{\partial z}{\partial v}=-2v
ight]$$

Шаг 3: Найдите частные производные (u) и (v) по (x) и (y)

$$egin{aligned} [rac{\partial u}{\partial x} &= 2, & rac{\partial u}{\partial y} &= -3] \ [rac{\partial v}{\partial x} &= 1, & rac{\partial v}{\partial y} &= 2] \end{aligned}$$

Шаг 4: Используйте правило цепочки

Шаг 5: Подставьте значения (u), (v), (x) и (y)

$$[u = 2x - 3y = 2(1) - 3(1) = 2 - 3 = -1]$$

 $[v = x + 2y = 1 + 2(1) = 1 + 2 = 3]$

Теперь найдите производные $(\frac{\partial z}{\partial x})$ и $(\frac{\partial z}{\partial y})$:

$$egin{aligned} \left[rac{\partial z}{\partial x} &= 4u \cdot 2 + (-2v) \cdot 1 = 4(-1) \cdot 2 + (-2 \cdot 3) \cdot 1 = -8 - 6 = -14
ight] \ \left[rac{\partial z}{\partial y} &= 4u \cdot (-3) + (-2v) \cdot 2 = 4(-1) \cdot (-3) + (-2 \cdot 3) \cdot 2 = 12 - 12 = 0
ight] \end{aligned}$$

Итоговые ответы

$$egin{aligned} \left[rac{\partial z}{\partial x} \, \middle|_{(x=1,y=1)} &= -14
ight] \ \left[rac{\partial z}{\partial y} \, \middle|_{(x=1,y=1)} &= 0
ight] \end{aligned}$$

ФНП

Теор справка

Частные производные — это производные функции нескольких переменных по одной из переменных, при фиксированных значениях других переменных. Они являются основными инструментами анализа функции нескольких переменных.

Теория

1. Определение:

Пусть (z=f(x,y)) — функция двух переменных. Частная производная функции (f) по (x) в точке ((x,y))

определяется как предел:

$$[rac{\partial f}{\partial x} = \lim_{\Delta x
ightarrow 0} rac{f(x + \Delta x, y) - f(x, y)}{\Delta x}]$$

Аналогично, частная производная по (y) определяется как:

$$[rac{\partial f}{\partial y} = \lim_{\Delta y o 0} rac{f(x,y+\Delta y) - f(x,y)}{\Delta y}]$$

2. Геометрический смысл:

Частная производная по (x) (или (y)) показывает скорость изменения функции (f) в направлении оси (x) (или (y)) при фиксированном значении другой переменной.

3. Правило цепочки:

Для сложных функций, где переменные зависят от других переменных, используется правило цепочки для вычисления частных производных.

Алгоритм вычисления частных производных

- 1. Прямая частная производная:
 - Для функции (z=f(x,y)), частные производные по (x) и (y) вычисляются стандартными методами дифференцирования.
- 2. Правило цепочки:
 - Для сложных функций (z = f(u(x,y),v(x,y))):

$$\begin{bmatrix} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \end{bmatrix}$$
$$\begin{bmatrix} \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \end{bmatrix}$$

Пример и пошаговый алгоритм

Пример задачи: Найти частные производные функции $(z=2u^2-v^2)$ в точке (M(x,y)), если (u=2x-3y) и (v=x+2y), при (x=1) и (y=1).

Шаг 1: Найдите выражения (u) и (v)

$$[u=2x-3y, \quad v=x+2y]$$

Шаг 2: Найдите частные производные (u) и (v) по (x) и (y)

$$egin{aligned} \left[rac{\partial u}{\partial x} = 2, & rac{\partial u}{\partial y} = -3
ight] \ \left[rac{\partial v}{\partial x} = 1, & rac{\partial v}{\partial y} = 2
ight] \end{aligned}$$

Шаг 3: Выразите (z) через (u) и (v)

$$[z=2u^2-v^2]$$

Шаг 4: Найдите частные производные (z) по (u) и (v)

$$[rac{\partial z}{\partial u}=4u, \quad rac{\partial z}{\partial v}=-2v]$$

Шаг 5: Используйте правило цепочки для вычисления частных производных (z) по (x) и (y)

Шаг 6: Подставьте значения (u), (v), (x) и (y)

$$[u = 2(1) - 3(1) = -1]$$

 $[v = 1 + 2(1) = 3]$

Шаг 7: Вычислите частные производные

$$\begin{bmatrix} \frac{\partial z}{\partial x} = 4(-1) \cdot 2 + (-2 \cdot 3) \cdot 1 = -8 - 6 = -14 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial z}{\partial y} = 4(-1) \cdot (-3) + (-2 \cdot 3) \cdot 2 = 12 - 12 = 0 \end{bmatrix}$$

Итог

$$egin{aligned} \left[rac{\partial z}{\partial x}
ight|_{(x=1,y=1)} &= -14
ight] \ \left[rac{\partial z}{\partial y}
ight|_{(x=1,y=1)} &= 0
ight] \end{aligned}$$

Этот алгоритм может быть применен к любой сложной функции для нахождения частных производных, используя правило цепочки.

Всем удачи!

