

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Dynamische Programmierung

Optimale Unterstrukturen

- Ein Problem hat optimale Unterstrukturen, wenn eine optimale Lösung optimale Lösungen für Unterprobleme enthält
- Dies ist oft ein Indikator, dass dynamische Programmierung eingesetzt werden kann

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Definition

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Beispiel

Folge Y

Definition

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Beispiel

Folge Y

Definition

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Beispiel

Folge Y

Definition

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Beispiel

Folge Y

Definition

- Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ zwei Folgen, wobei $x_i, y_j \in A$ für ein endliches Alphabet A.
- Dann heißt Y Teilfolge von X, wenn es aufsteigend sortierte Indizes $i_1, ..., i_n$ gibt mit $x_{i_j} = y_j$ für j = 1, ..., n.

Beispiel

Folge Y

- Y ist Teilfolge von X
- Wähle $(i_1, i_2, i_3, i_4) = (2,4,5,7)$

- Seien X, Y, Z Folgen über A.
- Dann heißt Z gemeinsame Teilfolge von X und Y, wenn Z Teilfolge sowohl von X als auch von Y ist.

Definition

- Seien X, Y, Z Folgen über A.
- Dann heißt Z gemeinsame Teilfolge von X und Y, wenn Z Teilfolge sowohl von X als auch von Y ist.

Z ist gemeinsame Teilfolge von X und Y

Definition

- Seien X, Y, Z Folgen über A.
- Dann heißt Z gemeinsame Teilfolge von X und Y, wenn Z Teilfolge sowohl von X als auch von Y ist.

Z ist gemeinsame Teilfolge von X und Y

Definition

- Seien X, Y, Z Folgen über A.
- Dann heißt Z gemeinsame Teilfolge von X und Y, wenn Z Teilfolge sowohl von X als auch von Y ist.

Z ist gemeinsame Teilfolge von X und Y

- Seien X, Y, Z Folgen über A.
- Dann heißt Z längste gemeinsame Teilfolge von X und Y, wenn Z gemeinsame Teilfolge von X und Y ist und es keine andere gemeinsame Teilfolge von X und Y gibt, die größere Länge als Z besitzt.

- Seien X, Y, Z Folgen über A.
- Dann heißt Z längste gemeinsame Teilfolge von X und Y, wenn Z gemeinsame Teilfolge von X und Y ist und es keine andere gemeinsame Teilfolge von X und Y gibt, die größere Länge als Z besitzt.

- Seien X, Y, Z Folgen über A.
- Dann heißt Z längste gemeinsame Teilfolge von X und Y, wenn Z gemeinsame Teilfolge von X und Y ist und es keine andere gemeinsame Teilfolge von X und Y gibt, die größere Länge als Z besitzt.

- Seien X, Y, Z Folgen über A.
- Dann heißt Z längste gemeinsame Teilfolge von X und Y, wenn Z gemeinsame Teilfolge von X und Y ist und es keine andere gemeinsame Teilfolge von X und Y gibt, die größere Länge als Z besitzt.

- Seien X, Y, Z Folgen über A.
- Dann heißt Z längste gemeinsame Teilfolge von X und Y, wenn Z gemeinsame Teilfolge von X und Y ist und es keine andere gemeinsame Teilfolge von X und Y gibt, die größere Länge als Z besitzt.

Problem LCS

Eingabe

- Folge $X = (x_1, ..., x_m)$
- Folge $Y = (y_1, ..., y_n)$

Ausgabe

Längste gemeinsame Teilfolge Z
 (Longest Common Subsequence)

Problem LCS

Eingabe

- Folge $X = (x_1, ..., x_m)$
- Folge $Y = (y_1, ..., y_n)$

Ausgabe

Längste gemeinsame Teilfolge Z
 (Longest Common Subsequence)

Beispiel

Folge X

Folge Y

B D C A B A

Einfacher Ansatz

Algorithmus

- Erzeuge alle möglichen Teilfolgen von X
- Teste f
 ür jede Teilfolge von X, ob auch Teilfolge von Y
- Merke zu jedem Zeitpunkt bisher längste gemeinsame Teilfolge

Laufzeit

- 2^m mögliche Teilfolgen
- Exponentielle Laufzeit!

Satz 28

Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ beliebige Folgen und sei $Z = (z_1, ..., z_k)$ eine längste gemeinsame Teilfolge von X und Y. Dann gilt

1. Ist $x_m = y_n$, dann ist $z_k = x_m = y_n$ und $(z_1, ..., z_{k-1})$ ist eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und $(y_1, ..., y_{m-1})$.

Satz 28

Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ beliebige Folgen und sei $Z = (z_1, ..., z_k)$ eine längste gemeinsame Teilfolge von X und Y. Dann gilt

- 1. Ist $x_m = y_n$, dann ist $z_k = x_m = y_n$ und $(z_1, ..., z_{k-1})$ ist eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und $(y_1, ..., y_{n-1})$.
- 2. Ist $x_m \neq y_n$ und $z_k \neq x_m$, dann ist Z eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und Y.

Satz 28

Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ beliebige Folgen und sei $Z = (z_1, ..., z_k)$ eine längste gemeinsame Teilfolge von X und Y. Dann gilt

- 1. Ist $x_m = y_n$, dann ist $z_k = x_m = y_n$ und $(z_1, ..., z_{k-1})$ ist eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und $(y_1, ..., y_{m-1})$.
- 2. Ist $x_m \neq y_n$ und $z_k \neq x_m$, dann ist Z eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und Y.
- 3. Ist $x_m \neq y_n$ und $z_k \neq y_n$, dann ist Z eine längste gemeinsame Teilfolge von X und $(y_1, ..., y_{n-1})$.

Satz 28

Seien $X = (x_1, ..., x_m)$ und $Y = (y_1, ..., y_n)$ beliebige Folgen und sei $Z = (z_1, ..., z_k)$ eine längste gemeinsame Teilfolge von X und Y. Dann gilt

- 1. Ist $x_m = y_n$, dann ist $z_k = x_m = y_n$ und $(z_1, ..., z_{k-1})$ ist eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und $(y_1, ..., y_{m-1})$.
- Ist $x_m \neq y_n$ und $z_k \neq x_m$, dann ist Z eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und Y.
- 3. Ist $x_m \neq y_n$ und $z_k \neq y_n$, dann ist Z eine längste gemeinsame Teilfolge von X und $(y_1, ..., y_{n-1})$.

Optimale
Unterstrukturen

Beweis

(1) <u>Annahme:</u> $Z = (z_1, ..., z_k)$ ist längste gemeinsame Teilfolge, $x_m = y_n$ und $z_k \neq x_m$

Dann können wir $z_{k+1} = x_m$ setzen, um eine gemeinsame Teilfolge von X und Y der Länge k+1 zu erhalten. Widerspruch: Z ist eine *längste* gemeinsame Teilfolge von X und Y.

- $\Rightarrow z_k = x_m = y_n$
- \Rightarrow $(z_1, z_2, \dots z_{k-1})$ ist eine gemeinsame Teilfolge der Länge k-1 von $(x_1, x_2, \dots x_{m-1})$ und $(y_1, y_2, \dots y_{m-1})$.

Noch z.z.: $(z_1, z_2, \dots z_{k-1})$ ist längste gemeinsame Teilfolge von $(x_1, x_2, \dots, x_{m-1})$ und $(y_1, y_2, \dots, y_{m-1})$

Beweis

- (1) Noch z.z.: $(z_1, z_2, ..., z_{k-1})$ ist längste gemeinsame Teilfolge von $(x_1, x_2, ..., x_{m-1})$ und $(y_1, y_2, ..., y_{n-1})$
 - **Annahme:** Es gibt eine gemeinsame Teilfolge W von $(x_1, x_2, ..., x_{m-1})$ und $(y_1, y_2, ..., y_{n-1})$, die mindestens Länge k hat. Dann erzeugt das Anhängen von $z_k = x_m$ an W eine gemeinsame Teilfolge von X und Y, deren Länge mindestens k+1 ist. Widerspruch zur Optimalität von Z.
- (2) Falls $z_k \neq x_m$ dann ist Z eine gemeinsame Teilfolge von $(x_1, x_2, ..., x_{m-1})$ und Y.
 - **Annahme:** Es gibt eine gemeinsame Teilfolge W von $(x_1, x_2, ..., x_{m-1})$ und Y mit einer Länge größer k.
 - Dann ist W auch eine gemeinsame Teilfolge von X und Y. Widerspruch: Z ist längste gemeinsame Teilfolge von X und Y.
- (3) Der Beweis ist analog zu (2)

Aufgabe

Rekursive Formulierung für LCS

Sei C[i][j] die Länge einer längsten gemeinsamen Teilfolge von $(x_1, ..., x_i)$ und $(y_1, ..., y_j)$. Wie sieht eine Rekursion für C[i][j] aus?

Korollar 29

Sei C[i][j] die Länge einer längsten gemeinsamen Teilfolge von $(x_1, ..., x_i)$ und $(y_1, ..., y_i)$. Dann gilt:

$$C[i][j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \end{cases}$$

Korollar 29

Sei C[i][j] die Länge einer längsten gemeinsamen Teilfolge von $(x_1, ..., x_i)$ und $(y_1, ..., y_i)$. Dann gilt:

$$C[i][j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ C[i - 1][j - 1] + 1 & \text{, falls } i, j > 0 \text{ und } x_i = y_j \end{cases}$$

Korollar 29

Sei C[i][j] die Länge einer längsten gemeinsamen Teilfolge von $(x_1, ..., x_i)$ und $(y_1, ..., y_i)$. Dann gilt:

$$C[i][j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ C[i-1][j-1] + 1 & \text{, falls } i, j > 0 \text{ und } x_i = y_j \\ \max\{C[i-1][j], C[i][j-1]\} & \text{, falls } i, j > 0 \text{ und } x_i \neq y_j \end{cases}$$

Korollar 29

Sei C[i][j] die Länge einer längsten gemeinsamen Teilfolge von $(x_1, ..., x_i)$ und $(y_1, ..., y_i)$. Dann gilt:

$$C[i][j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ C[i-1][j-1] + 1 & \text{, falls } i, j > 0 \text{ und } x_i = y_j \\ \max\{C[i-1][j], C[i][j-1]\} & \text{, falls } i, j > 0 \text{ und } x_i \neq y_j \end{cases}$$

Beobachtung

Rekursive Berechnung der C[i][j] würde zu Berechnung immer wieder derselben Werte führen. Dieses ist ineffizient. Berechne daher die Werte C[i][j] iterativ, nämlich zeilenweise.

```
LCS-Länge(X, Y)
     m \leftarrow \operatorname{length}[X]
2. n \leftarrow \text{length}[Y]
        new array C[0..m][0..n]
3.
4. for i \leftarrow 0 to m do C[i][0] \leftarrow 0
        for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
        for i \leftarrow 1 to m do
6
7.
             for j \leftarrow 1 to n do
                  \triangleright Längenberechnung(X, Y, C, i, j)
8.
9.
         return C
```

```
LCS-Länge(X, Y)
         m \leftarrow \operatorname{length}[X]
         n \leftarrow \operatorname{length}[Y]
         new array C[0..m][0..n]
3.
         for i \leftarrow 0 to m do C[i][0] \leftarrow 0
4.
         for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
         for i \leftarrow 1 to m do
6
7.
              for j \leftarrow 1 to n do
                   \triangleright Längenberechnung(X, Y, C, i, j)
8.
9.
         return C
```

```
LCS-Länge(X, Y)
         m \leftarrow \operatorname{length}[X]
         n \leftarrow \operatorname{length}[Y]
          new array C[0..m][0..n]
3.
         for i \leftarrow 0 to m do C[i][0] \leftarrow 0
4.
         for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
6
         for i \leftarrow 1 to m do
7.
              for j \leftarrow 1 to n do
8.
                   \triangleright Längenberechnung(X, Y, C, i, j)
9.
          return C
```

Tabelle für die C[i][j] Werte anlegen.

```
LCS-Länge(X, Y)
        m \leftarrow \operatorname{length}[X]
    n \leftarrow \text{length}[Y]
                                                               Erste Spalte
3.
        new array C[0..m][0..n]
                                                                der Tabelle
        for i \leftarrow 0 to m do C[i][0] \leftarrow 0
4.
                                                               auf 0 setzen.
        for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
6
        for i \leftarrow 1 to m do
7.
            for j \leftarrow 1 to n do
8.
                 \triangleright Längenberechnung(X, Y, C, i, j)
9.
        return C
```

```
LCS-Länge(X, Y)
        m \leftarrow \operatorname{length}[X]
        n \leftarrow \operatorname{length}[Y]
                                                                         Erste Reihe
         new array C[0..m][0..n]
3.
                                                                         der Tabelle
        for i \leftarrow 0 to m do C[i][0] \leftarrow 0
4.
                                                                       auf 0 setzen.
         for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
6
        for i \leftarrow 1 to m do
7.
             for j \leftarrow 1 to n do
8.
                 \triangleright Längenberechnung(X, Y, C, i, j)
9.
         return C
```

```
LCS-Länge(X, Y)
         m \leftarrow \operatorname{length}[X]
2. n \leftarrow \text{length}[Y]
         new array C[0..m][0..n]
3.
         for i \leftarrow 0 to m do C[i][0] \leftarrow 0
4.
         for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
         for i \leftarrow 1 to m do
6.
7.
              for j \leftarrow 1 to n do
                  \triangleright Längenberechnung(X, Y, C, i, j)
8.
9.
         return C
```

Längenberechnung(X, Y, C, i, j)

1. **if**
$$x_i = y_j$$
 then $C[i][j] \leftarrow C[i-1][j-1] + 1$

- 2. else
- 3. **if** $C[i-1][j] \ge C[i][j-1]$ **then** $C[i][j] \leftarrow C[i-1][j]$
- 4. **else** $C[i][j] \leftarrow C[i][j-1]$

$$C[i][j] = \begin{cases} 0 & \text{falls } i = 0 \text{ oder } j = 0 \\ C[i-1][j-1] + 1 & \text{falls } i, j > 0 \text{ und } x_i = y_i \\ \max\{C[i-1][j], C[i][j-1]\} & \text{falls } i, j > 0 \text{ und } x_i \neq y_j \end{cases}$$

Längenberechnung(X, Y, C, i, j)

1. **if**
$$x_i = y_j$$
 then $C[i][j] \leftarrow C[i-1][j-1] + 1$

else

3. **if**
$$C[i-1][j] \ge C[i][j-1]$$
 then $C[i][j] \leftarrow C[i-1][j]$

4. **else**
$$C[i][j] \leftarrow C[i][j-1]$$

$$C[i][j] = \begin{cases} 0 & \text{falls } i = 0 \text{ oder } j = 0 \\ C[i-1][j-1] + 1 & \text{falls } i, j > 0 \text{ und } x_i = y_j \\ \max\{C[i-1][j], C[i][j-1]\} & \text{falls } i, j > 0 \text{ und } x_i \neq y_j \end{cases}$$

```
LCS-Länge(X, Y)
     m \leftarrow \operatorname{length}[X]
2. n \leftarrow \text{length}[Y]
        new array C[0..m][0..n]
3.
4. for i \leftarrow 0 to m do C[i][0] \leftarrow 0
        for j \leftarrow 0 to n do C[0][j] \leftarrow 0
5.
        for i \leftarrow 1 to m do
6
7.
             for j \leftarrow 1 to n do
                  \triangleright Längenberechnung(X, Y, C, i, j)
8.
9.
         return C
```

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i							
1	Α							
2	В							
3	C							
4	В							
5	D							
6	Α							
7	В							

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0						
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	B	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	B	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	B	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0					
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0					
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0					
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0	1 0				
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1		2) -	3	3	4	5	6
i		y_j	В	3)	C		Α	В	Α
0	x_i	0		0		0		0	0	0	0
1	A	0	†	0	1	0	1	0			
2	В	0									
3	С	0									
4	В	0									
5	D	0									
6	Α	0									
7	В	0									

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	A	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0	1 0	1 0			
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	A	В	Α
0	x_i	0	0	0	0	0	0	0
1	A	0	1 0	1 0	1 0			
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	,	l	2	<u> </u>	3	3	4		5	6
i		y_j	E	3)	C		A		В	Α
0	x_i	0		0		0		0		0	0	0
1	A	0	1	0	1	0	1	0	\	1		
2	В	0										
3	С	0										
4	В	0										
5	D	0										
6	Α	0										
7	В	0										

	j	0	1		2)	3	3	4		5	6
i		y_j	E	3)	C		A		B	Α
0	x_i	0	0			0		0		0	0	0
1	A	0	†	0	1	0	†	0	/	1		
2	В	0										
3	С	0										
4	В	0										
5	D	0										
6	Α	0										
7	В	0										

	j	0	,	l	2)	3	3	4		5	6
i		y_j	E	3)	C		A		B	Α
0	x_i	0				0		0		0	0	0
1	A	0	1	0	†	0	1	0	/	1		
2	В	0										
3	С	0										
4	В	0										
5	D	0										
6	Α	0										
7	В	0										

	j	0	1		2)	3	3	4		5		6
i		y_j	E	3)	C		A	·	B		Α
0	x_i	0				0		0		0		0	0
1	A	0	1	0	†	0	1	0	*	1	←	1	
2	В	0											
3	С	0											
4	В	0											
5	D	0											
6	Α	0											
7	В	0											

	j	0	1		2)	3	3	4		5		6
i		y_j	E	3)	C		A		В		A
0	x_i	0		0		0		0		0		0	0
1	A	0	†	0	†	0	†	0	*	1	—	1	
2	В	0											
3	С	0											
4	В	0											
5	D	0											
6	Α	0											
7	В	0											

	j	0	,	1	2	<u> </u>	3	3	4		5		6
i		y_j	E	3)	C		A		В		A
0	x_i	0		0		0		0		0		0	0
1	A	0	†	0	†	0	1	0	/	1	+	1	
2	В	0											
3	С	0											
4	В	0											
5	D	0											
6	Α	0											
7	В	0											

	j	0	1	l	2)	3	3	4		5		6	
i		y_j	E	3)	C		A		В		A	
0	x_i	0		0		0		0		0		0		0
1	A	0	1	0	†	0	1	0	*	1	←	1	1	1
2	В	0												
3	С	0												
4	В	0												
5	D	0												
6	Α	0												
7	В	0												

	j	0	1		2	<u> </u>	3	3	4		5		6	
i		y_j	E	3)	C		A	.	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	1	0	*	1	—	1	*	1
2	B	0	/	1										
3	С	0												
4	В	0												
5	D	0												
6	Α	0												
7	В	0												

	j	0	1	2	3	4	5	6
i		y_j	В	D	С	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	Α	0	† O	1 0	1 0	<u>\</u> 1	← 1	\ 1
2	B	0	1	← 1				
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		y_j	В	D	C	Α	В	Α
0	x_i	0	0	0	0	0	0	0
1	Α	0	1 0	1 0	1 0	\ 1	← 1	<u>\</u> 1
2	B	0	<u>\</u> 1	← 1	← 1			
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1		2		3	3	4		5		6	
i		y_j	В		D		C	,	A	1	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	↑	0	*	1	—	1	*	1
2	В	0	1	1	+	1	+	1	†	1	*	2	+	2
3	С	0												
4	В	0												
5	D	0												
6	Α	0												
7	В	0												

	j	0	1	4	2	3		4		5		6	
i		y_j	В	[)	C	,	A	\	В		A	
0	x_i	0	C		0		0		0		0		0
1	Α	0	† C		0	†	0	*	1	←	1	/	1
2	В	0	<u>\</u> 1	-	1	←	1	1	1	*	2	+	2
3	С	0	1 1	1	1	*	2	←	2	1	2	†	2
4	В	0											
5	D	0											
6	Α	0											
7	В	0											

	j	0	1	2) -	3		4		5		6	
i		y_j	В)	C	;	A	١	В	l	A	
0	x_i	0	0		0		0		0		0		0
1	Α	0	† O	†	0	†	0	*	1	+	1	/	1
2	В	0	1	-	1	←	1	1	1	*	2	+	2
3	С	0	1 1	1	1	*	2	←	2	1	2	1	2
4	В	0	<u>\</u> 1	1	1	1	2	1	2	*	3	←	3
5	D	0											
6	Α	0											
7	В	0											

	j	0	1		2		3		4		5		6	
i		y_j	В	3	D)	C	,	А	١	В		A	L
0	x_i	0		0		0		0		0		0		0
1	Α	0	1	0	†	0	†	0	/	1	ļ	1	/	1
2	В	0	*	1	+	1	\	1	1	1	*	2	\	2
3	С	0	1	1	1	1	*	2	←	2	1	2	†	2
4	В	0	*	1	1	1	1	2	1	2	*	3	—	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	Α	0	1	1	1	2	1	2	*	3	1	3	*	4
7	В	0		1	1	2	1	2	1	3	*	4	1	4

	j	0	1		2		3		4	ı	5		6	
i		y_j	В	ı	D)	C	,	A	1	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	1	0	/	1	ļ	1	*	1
2	В	0	/	1	—	1	+	1	1	1	*	2	+	2
3	С	0	1	1	↑	1	*	2	+	2	1	2	1	2
4	В	0	*	1	1	1	1	2	1	2	*	3	←	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	Α	0	1	1	†	2	1	2	*	3	1	3	*	4
7	В	0	*	1	↑	2	1	2	1	3	*	4	1	4

	j	0	1		2		3	•	4		5		6	
i		y_j	В		D)	C	,	А	\	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	1	0	*	1	+	1	*	1
2	В	0	*	1	—	1	—	1	†	1	*	2	←	2
3	С	0	1	1	†	1	*	2	←	2	1	2	1	2
4	В	0	*	1	†	1	1	2	†	2	*	3	←	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	Α	0	1	1	1	2	1	2	•	3	†	3	*	4
7	В	0		1	†	2	1	2	†	3	*	4	1	4

	j	0	1		2		3	•	4		5		6	
i		y_j	В		D		C	,	А	\	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	↑	0	†	0	1	0	*	1	+	1	*	1
2	В	0	*	1	—	1	—	1	1	1	*	2	—	2
3	С	0	1	1	†	1	*	2	←	2	1	2	†	2
4	В	0	*	1	†	1	1	2	1	2	*	3	←	3
5	D	0	1	1	*	2	†	2	†	2	†	3	1	3
6	A	0	1	1	1	2	1	2	*	3	1	3	*	4
7	В	0		1	1	2	1	2	†	3	*	4	1	4

	j	0	1		2		3	3	4		5		6	
i		y_j	В		D		C	,	Д	\	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	†	0	*	1	↓	1	*	1
2	В	0	*	1	+	1	+	1	1	1	*	2	+	2
3	С	0	1	1	1	1	*	2	←	2	1	2	1	2
4	В	0	*	1	†	1	1	2	1	2	*	3	←	3
5	D	0	1	1	*	2	1	2	†	2	1	3	1	3
6	A	0	1	1	†	2	1	2	*	3	†	3	*	4
7	В	0		1	†	2	1	2	<u> </u>	3	*	4	1	4

	j	0	1		2		3		4	•	5		6	
i		y_j	В		D		C	,	А	\	В		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	†	0	*	1	ļ	1	*	1
2	В	0	*	1	+	1	—	1	1	1	*	2	+	2
3	С	0	1	1	1	1	*	2	←	2	1	2	†	2
4	В	0	*	1	1	1	1	2	†	2	*	3	←	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	A	0	1	1	1	2	1	2	•	3	1	3	*	4
7	В	0	*	1	1	2	1	2	<u> </u>	3	*	4	1	4

	j	0	1		2		3	}	4		5		6	
i		y_j	В		D)	C	;	A	1	B		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	↑	0	†	0	†	0	*	1	↓	1	*	1
2	В	0	X	1	+	1	+	1	†	1	*	2	+	2
3	С	0	1	1	1	1	*	2	←	2	1	2	1	2
4	B	0	*	1	†	1	1	2	†	2	*	3	←	3
5	D	0	1	1	*	2	1	2	†	2	1	3	1	3
6	A	0	1	1	†	2	1	2	•	3	†	3	*	4
7	В	0		1	1	2	1	2	1	3	*	4	1	4

	j	0	1		2		3	3	4		5		6	
i		y_j	В		D		C	,	А	1	B		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	1	0	1	0	*	1	←	1	*	1
2	В	0	•	1	—	1	←	1	1	1	*	2	←	2
3	С	0	1	1	1	1	*	2	←	2	1	2	1	2
4	B	0	*	1	1	1	1	2	1	2	*	3	←	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	A	0	1	1	1	2	1	2	*	3	1	3	*	4
7	В	0	*	1	†	2	1	2	↑	3	*	4	1	4

	j	0	1		2		3	3	4		5		6	
i		y_j	В		D		C	,	А	1	B		A	
0	x_i	0	(C		0		0		0		0		0
1	Α	0	† ()	†	0	†	0	*	1	↓	1	*	1
2	В	0	•	1	—	1	←	1	1	1	*	2	—	2
3	С	0	† ,	1	†	1	*	2	←	2	1	2	1	2
4	B	0	•	1	†	1	1	2	1	2	*	3	←	3
5	D	0	† ′	1	*	2	1	2	1	2	1	3	1	3
6	A	0	†	1	†	2	1	2	*	3	†	3	*	4
7	В	0	*	1	†	2	1	2	†	3	*	4	1	4

	j	0	1		2		3	3	4		5		6	
i		y_j	В		D		C		Д	\	B		A	
0	x_i	0	(0		0		0		0		0		0
1	Α	0	† (0	†	0	1	0	*	1	+	1	*	1
2	В	0	•	1	—	1	←	1	†	1	*	2	←	2
3	C	0	† ,	1	†	1	*	2	←	2	1	2	†	2
4	B	0	•	1	†	1	1	2	1	2	*	3	←	3
5	D	0	<u> </u>	1	*	2	1	2	†	2	1	3	1	3
6	A	0	† -	1	1	2	1	2	•	3	1	3	*	4
7	В	0	*	1	†	2	1	2	†	3	*	4	1	4

	j	0	1	2	3	4	5	6
i		y_j	В	D	C	Α	B	A
0	x_i	0	0	0	0	0	0	0
1	Α	0	1 0	1 0	1 0	<u>\</u> 1	← 1	1
2	В	0	<u>\</u> 1	← 1	← 1	1 1	^ 2	← 2
3	C	0	1 1	1 1	^ 2	← 2	1 2	1 2
4	B	0	<u>\</u> 1	1 1	1 2	1 2	^ 3	← 3
5	D	0	1	\ 2	1 2	1 2	1 3	1 3
6	A	0	1	1 2	1 2	^ 3	1 3	~ 4
7	В	0	1	1 2	1 2	1 3	~ 4	1 4

	j	0	1		2		3		4		5		6	
i		y_j	В		D		C		Α		B		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	†	0	†	0	†	0	/	1	ļ	1	/	1
2	В	0	*	1	+	1	←	1	1	1	*	2	+	2
3	C	0	1	1	1	1	*	2	←	2	1	2	1	2
4	B	0	*	1	1	1	1	2	1	2	*	3	←	3
5	D	0	1	1	*	2	1	2	1	2	1	3	1	3
6	A	0	1	1	1	2	1	2	*	3	1	3	*	4
7	В	0	*	1	†	2	1	2	1	3	*	4	1	4

	j	0	1		2		3		4		5		6	
i		y_j	B		D		C		Α		B		A	
0	x_i	0		0		0		0		0		0		0
1	Α	0	1	0	1	0	1	0	*	1	—	1	*	1
2	B	0	*	1	←	1	←	1	†	1	*	2	←	2
3	C	0	1	1	1	1	*	2	←	2	1	2	1	2
4	B	0	*	1	1	1	1	2	†	2	*	3	—	3
5	D	0	1	1	*	2	1	2	†	2	1	3	1	3
6	A	0	†	1	†	2	†	2	*	3	†	3	/	4
7	В	0	*	1	<u> </u>	2	<u> </u>	2	<u> </u>	3	*	4	†	4

	j	0	1	2	3	4	5	6	
i		y_j	B	D	C	Α	B	A	
0	x_i	0	0	0	0	0	0	0	
1	Α	0	1 0	1 0	1 0	\ 1	← 1	<u>\</u> 1	
2	B	0	\ 1	← 1	← 1	1 1	^ 2	← 2	
3	C	0	1 1	1 1	^ 2	← 2	1 2	1 2	
4	B	0	^ 1	1 1	1 2	1 2	^ 3	← 3	
5	D	0	1	^ 2	1 2	1 2	1 3	1 3	
6	A	0	1	1 2	1 2	^ 3	1 3	^ 4	
7	В	0	^ 1	1 2	1 2	1 3	^ 4	1 4	

Laufzeitanalyse

Lemma 30

Der Algorithmus LCS-Länge hat Laufzeit $\mathbf{O}(nm)$, wenn die Folgen X,Y Länge n und m haben.

Beweis

Die Laufzeit wird durch die Initialisierung des Feldes in Zeile 3 sowie die geschachtelten **for**-Schleifen (Zeile 6 bis 8) dominiert. Daraus ergibt sich sofort eine Laufzeit von $\mathbf{O}(nm)$.

Laufzeitanalyse

Lemma 31

Algorithmus LCS-Länge berechnet die Länge einer längsten gemeinsamen Teilfolge.

Beweisskizze

Die Korrektheit folgt per Induktion über die Rekursion aus Korollar 29.

Laufzeitanalyse

Lemma 32

Die Ausgabe der längsten gemeinsamen Teilfolge anhand der Tabelle hat Laufzeit $\mathbf{O}(n+m)$, wenn die Folgen X,Y Länge n und m haben.

Beweis

In jedem Schritt bewegen wir uns entweder eine Zeile nach oben oder eine Spalte nach links. Daher ist die Laufzeit durch die Anzahl Zeilen plus die Anzahl Spalten begrenzt. Dies ist $\mathbf{0}(n+m)$.

Vorgehensweise bei dynamischer Programmierung

- Bestimme rekursive Struktur einer optimalen Lösung.
- Entwirf rekursive Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 3. Transformiere rekursive Methode in eine iterative (bottom-up) Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 4. Bestimme aus dem Wert einer optimalen Lösung und den in 3. ebenfalls berechneten Zusatzinformationen eine optimale Lösung.