Japanese Laid-Open Patent Publication No. 63-52393

Publication Date: March 5, 1988

Application No.: 61-196121

Filing Date: August 21, 1986

Applicant: Kabushiki Kaisha Toshiba

Inventor: Michio Suzuki

## SPECIFICATION

Title of the Invention:
 Disk Recording and Regenerating Device

## 2. CLAIMS

A disk recording and regenerating device comprising a recording data generating means for appending addresses sequentially in block units to data to be recorded and inserting each address block between synchronizing signals to generate recording data signals in accordance with a predetermined recording format, disk recording and regenerating unit for recording and regenerating recording data signals generated by the recording data generating means on a writable disk using a pickup, end address value detecting means for detecting the end of a previously recorded part on a disk to which the recording data signal is being written and detecting the address value of an address block positioned at this end, subtraction address generating means for generating a subtraction address value obtained by subtracting a predetermined value from the end address value detected by the end address value detecting means, subtraction address value searching means for moving the pickup to the recording position of the subtraction address value, address match detecting means for regenerating the address at the position searched by the searching means and detecting when the address in the

regeneration signal matches the end address value, synchronizing signal detecting means for detecting a synchronizing signal from the regeneration signal during regeneration by the regenerating means, switching means for switching from a regenerating state to a recording state at the synchronizing signal part after the address block regeneration ends when an address match is detected by the address match detecting means, and additional recording preparing means for generating additional recording data via the recording data generating means during the regeneration period of the address match detecting means and sending the additional recording data to the disk record regeneration unit when switching to the recording state by the switching means.

## 3. DETAILED DESCRIPTION OF THE INVENTION

[OBJECT OF THE INVENTION]

[FIELD OF THE INVENTION]

The present invention relates to a disk recording and regenerating device for recording and regenerating information signals on a writable disk, and specifically relates to the capability of additional recording of new information contiguous to previously recorded information.

## [DESCRIPTION OF THE RELATED ART]

Recently, there has been progress, for example, in developing disk recording and regenerating devices for recording information signals on optical disks and regenerating these information signals. Although various recording methods have been considered for such devices, in all cases additional recording must be possible. In this instance, in order to effectively use the recording capacity of the disk, it is desirable to detect the end of a

previously recorded part, so as to record the new information contiguously to the previously recorded information. In previously conceived methods, in order to prevent an additional recording part from being recorded over a previously recorded part, additional recording is accomplished from the end of a previously recorded part separated by a predetermined interval, as shown in part (a) of FIG. 5. When regenerating a disk recorded in this way, a blank part can be provided between data in the regeneration signal. In this case, when each information is regenerated consecutively, there is concern that tracking will dislocate at the blank part during regeneration, causing a breakdown in the synchronizing cycle and regeneration failure. Therefore, although methods which insert null data in the blank part have been considered, as shown in part (b) of the drawing, in all cases the data recording capacity of the disk is diminished.

## [PROBLEM TO BE SOLVED BY THE INVENTION]

An object of the present invention is to improve the points of forming a blank part and inserting null data during additional recording as has been performed up to now by providing a disk recording and regenerating device capable of accurately performing additional recording contiguous to a previously recorded part so as to thereby substantially increase the disk recording capacity.

[CONSTITUENTS OF THE INVENTION]

[MEANS FOR SOLVING THE PROBLEMS]

That is, the disk recording and regenerating device of the present invention is characterized by comprising a recording data generating means for appending addresses sequentially in block units to data to be recorded and inserting each address block between synchronizing signals to generate recording data signals in accordance with a

predetermined recording format, disk recording and regenerating unit for recording and regenerating recording data signals generated by the recording data generating means on a writable disk using a pickup, end address value detecting means for detecting the end of a previously recorded part on a disk to which the recording data signal is being written and detecting the address value of an address block positioned at this end, subtraction address generating means for generating a subtraction address value obtained by subtracting a predetermined value from the end address value detected by the end address value detecting means, subtraction address value searching means for moving the pickup to the recording position of the subtraction address value, address match detecting means for regenerating the address at the position searched by the searching means and detecting when the address in the regeneration signal matches the end address value, synchronizing signal detecting means for detecting a synchronizing signal from the regeneration signal during regeneration by the regenerating means, switching means for switching from a regenerating state to a recording state at the synchronizing signal part after the address block regeneration ends when an address match is detected by the address match detecting means, and additional recording preparing means for generating additional recording data via the record data generating means during the regeneration period of the address match detecting means and sending the additional recording data to the disk record regeneration unit when switching to the recording state by the switching means.

## [OPERATION]

The disk recording and regenerating device of the aforesaid structure detects the end address value among

previously recorded data, searches for the position at which a subtraction address value obtained by subtracting a predetermined value from the end address value is recorded, regenerates the address at the position searched by the searching means and detects when the address in the regeneration signal matches the end address value. Additional recording preparation is performed when a synchronizing signal is detected from the regeneration signal. Then, when an address match is detected, the device is switched from a regenerating state to a recording state at the synchronizing signal part after the regeneration of the address block is completed, and additional recording starts.

## [EMBODIMENT]

An embodiment of the present invention is described below with reference to FIGS. 1 through 4. The following description pertains to an optical-type disk recording and regenerating device; the optical disk has a guide channel for tracking formed in a spiral shape from the inner circumference to the outer circumference, and the disk recording and regenerating device records and regenerates information signals by forming or detecting bits corresponding to information signals (data) by irradiating the guide channel on the disk via a beam of light, and this recording and regenerating is accomplished by the disk recording and regenerating unit.

FIG. 1 shows the structure of the device; reference number 11 in the drawing refers to a system controller for generally controlling the optical-type disk recording and regenerating device. The system controller 11 receives operation signals by the operation of operation switches (record, regenerate, stop, search and the like), and generates control signals suitably corresponding the

operation. Reference number 12 refers to an input pin for inputting the information signals Sin to be recorded, and the information signals Sin supplied to the input pin 12 are sent to a recording data generating circuit 13. recording data generating circuit 13 generates sequential data from the input information signals when a recording preparation signal F1 described later is input, and the generated recording data are sent to a recording format encoder 14 each time a read instruction is supplied from the recording format encoder 14. After the recording format encoder 14 encodes the recording data so as to match a predetermined recording format and divides the data into blocks having constant periods (e.g., in the case of digital audio disk format, the interleave length becomes the block), an address is sequentially appended to each block and converted to an address block, a start signal is inserted at the top and the block-set recording data are output in a form inserted between synchronizing signals. The encoded recording data are sent to a recording data start detection circuit 15. After the recording data start detection circuit 15 detects the start signal at the top of the input data, a write counter 16 is started when a synchronizing signal of the recording format is detected, and the recording data are written to a buffer memory 17.

The buffer memory 17 temporarily stores the recording data, and writes sequential recording data in accordance with the write address from the write counter 16, and reads out sequentially written recording data in accordance with the read address from a read counter 18. The writing of the recording data is performed until a read stop control signal SC1 is supplied from the system controller 11. The recording data read out from the memory 17 is sent through an exclusive OR circuit (EX-OR circuit) 19 to a recording

start timing circuit 20. The recording start timing circuit 20 sequentially delays recording data based on a flag F5 described later, and sends the delayed recording data through an output pin 21 to a disk recording and regenerating unit not shown in the drawing. This disk recording and regenerating unit is set at the disk recording state, disk regenerating state, or regeneration search state in accordance with a pickup control signal SC2 output from the system controller 11, and is set at the recording state when there is recording data Dout input, and the recording data Dout is recorded on the disk.

On the other hand, reference number 22 in the drawing refers to a regeneration signal input pin, and this input pin 22 receives regeneration data Din read out from a disk via the aforesaid disk recording and regenerating unit. The regeneration data Din is sent to an RF signal detection circuit 23 and an address decoder 24. The RF signal detection circuit 23 detects the existence of a signal during regeneration, and when a signal exists, sends the detected data signal to an address counter 25, synchronizing counter 26, synchronizing signal latch circuit 27, and the system controller 11. Furthermore, the address decoder 24 decodes the address in the regeneration data signal, and outputs the address value to the address counter 25.

The address counter 26 sets the end address value of the regeneration signal received from the RF signal detection circuit 23 and a value calculated by subtracting a predetermined value from this end address value, sends the recording preparation signal F1 to the recording data generating circuit 13, recording data start detection circuit 15, write counter 16, and read counter 18 to set the recording preparation state, and sends an address search instruction signal F2 to the system controller 11 to start

an address search. Then, when the subtracted address value and the address value in the regeneration data signal match, the address search instruction signal F2 is replaced by a regeneration instruction signal F3 to accomplish normal regeneration, and at the same time the subtraction address value is reset and a start signal F4 is sent to the synchronizing counter 26.

The synchronizing counter 26 is set at a drive state by the start signal F4 from the address counter 25, an internal synchronizing loop counter is started by a synchronizing signal within the regeneration data signal to synchronize the loop with the synchronizing signal. trigger pulse is generated at the start of the obtained synchronizing signal, and this pulse is counted until a predetermined value set in the address counter 25, and thereafter a flag F5 is set, the read counter 18 and the recording start timing circuit 20 are actuated, and data are read out from the buffer memory 17. At the same time, a generated trigger pulse PO is sent to a synchronizing signal latch circuit 27. The synchronizing signal latch circuit 27 latches the polarity of the start bit of the synchronizing signal via the pulse P0 from the synchronizing counter 26, and suitably reverses the output of the EX-OR circuit 19 in accordance with the latched polarity.

The operation of the previously described structure is described below with reference to FIGS. 2 through 4.

FIG. 2 shows the structure of the recording data (regeneration data) when generated in the format of a digital audio disk, and the recording data generated by the recording data generating circuit 13 are formatted in blocks by the recording format encoder 14, and a synchronizing signal and address are appended to provide address blocks. Formats such as those for video disks and the like may be

similarly considered to insert address signals in data. A half-cycle synchronizing signal is added to the end recording data thus converted.

FIG. 3 is a flow chart showing the flow of the entire operation of the aforesaid device. That is, when additional recording is specified in this device (step a), first, a pickup for recording and regeneration on the disk is set to the regenerating state, track jump and regeneration are repeated, the last recording track of the previous recording is searched, and thereafter the track jumps to the last recording track or several tracks therefrom in the direction of recording (step b), and the end address value of the previous recording is read (step c). The aforesaid operation is accomplished by means of the RF signal detection circuit 23, address decoder 24, address counter 25, and system controller 11.

The end address value of the regeneration data obtained in this way is sent to the address counter 25. this time, the address counter 25 sets the input address value and a subtraction value a predetermined value from this address value, sends an address search instruction signal F2 to the system controller 11, track jumps the pickup, and searches for the set subtraction address value Then, when an address value matching the set subtraction address value is detected by the address search (step e), a recording preparation signal F1 is sent to the recording data generation circuit 13, recording data start detection circuit 15, write counter 16, and read counter 18. In this way, the recording data Sin are rendered as data in a sequential predetermined format and written to the buffer memory 17. At this time, the address counter 25 replaces the address search instruction signal F2 with a regeneration instruction signal F3 sent to the system controller 11.

this way, the pickup is set at the normal regenerating state. When regenerating to the end of previously recorded data (step f), a recording start signal F4 to the synchronizing counter 26 when the address counter 25 detects the same address as the set previously recorded end address value.

When a start signal F4 is input, the synchronizing counter 26 generates a flag F5, which is sent to the read counter 18 when recording starts at the next synchronizing signal position. The read counter 18 starts operation when the flag F5 is input, and sequentially reads the data stored in the buffer memory 17. The read data are sent to the EX-OR circuit 19. The latch circuit 27 latches the polarity of the first bit of the synchronizing signal from the regeneration data Din via the trigger pulse PO output from the synchronizing counter 26. If the latched polarity is high level, the recording data sent from the buffer memory 17 are reverse output, whereas when the polarity is low level, the recording data are output directly. The recording data output from the EX-OR circuit 19 are sent to the recording start timing circuit 20, which aligns the regeneration data Din and synchronizing timing, and the recording data are sent to the disk recording and regenerating unit for recording on the disk.

Thereafter, when the stop switch is operated, the system controller 11 sends a stop control signal SC1 to the memory 17, and readout of the memory 17 is stopped at the half-cycle of the synchronizing signal. In this way, a half-cycle signal can be added to the end of the recording data Dout. The time of the recording data output of the recording start timing circuit 20 may be set as shown in FIG. 4. As shown in part (a) of the drawing, when the half-cycle signal at the end of the regeneration data Din is "0" level (bit is not formed with the recording laser off), recording

data are output from before the half-cycle of the synchronizing signal period. Conversely, when the half-cycle signal at the end of the regeneration data Din is "1" level, the recording data are output after the half-cycle of the synchronizing signal period, as shown in part (b) of the drawing. In this way, the additional recording part and the previous recording part can be joined without destroying the synchronizing signal.

Therefore, according to the above-described structure, when recording additional data on a disk, additional recording data can be recorded contiguous to previously recorded data without forming blank parts between written data and without destroying the synchronizing signal in the written data. In this way, tracking dislocation is eliminated, and regeneration is smoothly accomplished continuously from the inner circumference side to the outer circumference side, thereby effectively increasing the writing capacity of the disk.

## [EFFECT OF THE INVENTION]

As described above, the present invention provides a disk recording and regenerating device capable of accurately recording an additional part contiguous to a previously recorded part, and thereby substantially increases data storage capacity.

#### 4. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block circuit diagram showing an embodiment of the disk recording and regenerating device of the present invention; FIG. 2 illustrates the structure of the recording data in a suitable recording format of the same embodiment; FIG. 3 is a flow chart showing flow of the entire operation of the same embodiment; FIG. 4 illustrates the regeneration and recording switch timing of the same

embodiment; and FIG. 5 illustrates the pattern of the regeneration data of a conventional device.

- 11 System controller
- 13 Recording data generating circuit
- 14 Recording format encoder
- 15 Recording data start detection circuit
- 16 Write counter
- 17 Buffer memory
- 18 Read counter
- 19 EX-OR circuit
- 20 Recording start timing circuit
- 23 RF signal detection circuit
- 24 Address decoder
- 25 Address counter
- 26 Synchronizing counter
- 27 Synchronizing signal latch circuit
- Sin Information signal
- SC Operation signal

Dout Recording data

- Din Regeneration data
- F1 Additional recording preparation signal
- F2 Address search instruction signal
- F3 Regeneration instruction signal
- F4 Recording start signal
- F5 Flag
- PO Trigger pulse

# **转期昭63-52393(5)**

回路19から出力される記録データは記録関始タイミング回路20に送られ、再生データ Disと同期タイミングを合わせてディスク記録再生機能部に送られ、ディスクに記録される。

その後、停止スイッチが操作させると、システムコントローラ11は停止制御信号SC1をメモリ17 に送り、メモリ17の終出しを同期信号の半周期時点で停止させる。これによって、記録データ Dout の末尾に半周期信号を付加することができる。

ここで、上記記録路タイミング回路20の記録 データ出力時点は、第4回に示すように設定すれ ばよい。すなわち、同図(a)に示すように、「下 生データDiaの末尾にある半同期信号が \*0 \* レ ベル(記録レーザオフによりピットが形成されれ いない状態)であるとき、阿別信号期間の半月期 能示すように、 再生データ Diaの末尾にある半同 に示すが \*1 \* レベルであるとき、 同期信号期間 の半月期後から記録データを出力する。 これによ

世の一実施例を示すプロック回路排成図、第2団 は同実施例に適用される紀録フォーマットのによ る記録データの構成を説明するための図、第3団 は同実施例の全体の動作の流れを示すフローチャ ート、第4回は同実施例の再生記録初換タイミン グを製明するための図、第5回は従来装置による 再生データのパターンを説明するための図である。

11ーシステムコントローラ、13ー記録データ生成回路、14ー記録フォーマットエンコーダ、15ー記録データスタート検出回路、18ー音込みカウンタ、17ーパッファメモリ、18ーを出しカケンタ、15ーE X - O R 回路、24ー に経路か クイミング回路、23ーR F 信号検出回路、24ー アドレスデコーダ、25ーアドレスカウンタ、26ー回駅カウンタ、21ー時間信号、アリスカウンタ、21ー時間信号、S C ー 没作信号、D out ー 記録データ、D Imー 再生データ、F I ー 追忆には アータ、F I ー 記忆には アータ、F I ー 記忆には アータ、F I ー 記忆には アータ、F I ー 記しに スタート信号、F S ー フラグ、P G ー トリガバルス。-

って、既紀辞部分と道記紀辞部分を、同期信号も、 くずすことなく繋げることができる。

したがって、上記のように構成すれば、ディスクにデータの道記を行なうな、、書きた書きたったの道記を存なることなく、また書きただデータ中の関類信号を助すことなり、氏記をデータと連続して追記に経データを記録すったというない。ことはなり、また違統のは対したことになり、はないのではなり、特別側まで再生がスムーズにいくようになり、特別にディスクに告き込む容益を増したことになる。

#### 【発明の効果】

以上群途したようにこの発明によれば、既記録等分に続いて正確に選記記録を行なうことができ、これによって実質的にデータ記録客量を増加することのできるディスク記録再生装置を提供することができる。

#### 4. 図面の鈴単な説明

第1関はこの発明に係るディスク記録再生数







第1 図 Fig. 1



## ⑩ 日本国特許庁(JP)

40 特許出顧公開

# <sup>®</sup>公開特許公報(A)

昭63-52393

@Int.Cl.4

識別記号

庁内整理番号

❷公開 昭和63年(1988) 3月5日

G 11 B 27/10 7/00

A-8726-5D A-7520-5D

審査請求 未請求 発明の数 1 (全6頁)

**公**発明の名称 ディスク記録再生装置

❷特 顧 昭61−196121

**公出 顧 昭61(1986)8月21日** 

砂発 明 者 鈴 木 道 夫

神奈川県横浜市磯子区新杉田町8番地 株式会社東芝横浜

. 金属工場内

⑪出 願 人 株 式 会 社 東 芝

神奈川県川崎市幸区堀川町72番地

四代 理 人 弁理士 鈴江 武彦 外2名

#### 明 和 會

1. 発明の名称

ディスク記録再生装置

2. 特許請求の範囲

所定の記録フォーマットに従って、記録すべ きデータにプロック単位で原番にアドレスを付じ、 ドレスプロックを同期信号期に挿入して記録 データ信号を生成する記録データ生成手段と、こ の記録データ生成手段で生成された記録データ信 母をピックアップを用いて事込み可能なディスク に記録し再生するディスク記録再生機構部と、崩 記記録データ信号が書込まれているディスクの既 記録部分の終端を検出し、その終端に位置するア ドレスプロックのアドレス値を検出する最終アド レス値検出手段と、この手段で検出された最終で ドレス値から所定値を減算した減算アドレス値を 生成する減算アドレス生成手段と、前記減算アド レス値の記録位置まで前記ピックアップを移動さ せる減算アドレス値サーチ手段と、この手段でサ ーチした位配から再生させ、再生信号中のアドレ

3. 発列の詳細な説明

[発明の目的]

(産業上の利用分野)

この免明はお込み可能なディスクに対して扮 報信号の記録及び再生を行なうディスク記録再生 袋筐に係り、特に新情報を既記録情報に縫いて違 記記録可能なものに関する。

#### (従来の技術)

近時、例えば光学式ディスクに情報信号を記 はし、これを再生するディスク記録可生数数の関 **宛が進められている。この装置の記録方式として** は種々のものが考えられているが、いずれにして も遊記記録を可能とする必要がある。この場合、 ディスクの配録容益を有効に利用するため、既紀 緑部分の枝端を検出し、展記録情報に続いて新情 報を記録することができるようにすることが望ま しい。ところが、従来より考えられている方式で は、既記録部分に迫記記録部分が重なることを防 止するため、第5図(a)に示すように既記録芯 分の終端から所定間隔離して近紀記録が行われる。 このように記録されだディスクを再生すると、再 生信号にデータ間に空白部分ができてしまう。こ の場合、各情報を連続再生すると、再生途中の空 白部分でトラッキングがはずれたり、同期の周期 がくずれて再生不能になる恐れがある。このため、 同図(b)に示すように空白部分に無効データを **婦人するようにした方式も考えられているが、い** 

クの既記録部分の終端を検出し、その終端に位置 するアドレスプロックのアドレス値を検出する最 終アドレス値検出手段と、この手段で検出された 及終アドレス値から所定値を減算した減算アドレ ス値を生成する減算アドレス生成手段と、前記減 算アドレス値の記録位置まで前記ピックアップを 移動させる減算アドレス値サーチ手段と、この手 段でサーチした位置から再生させ、再生信号中の アドレスが前記最終アドレス航と一致したことを 検出するアドレス一致検出手段と、この手段によ る再生中に再生信号から同期信号を設出する同期 信号検出手段と、前記アドレス一致検出手段でア ドレスの一致を検出したとき、そのアドレスプロ ックの再生終了後の周期信号部分で再生状態から 記録状態に切換える切換手段と、前記アドレスー 政検出手段の再生期間中に前記記録データ生成手 段により追記記録データを生成し、この追記記録 データを前記切換手段によって記録状態に切替わ る時点で南記ディスク記録再生機構館に送出する 迎記記録準備手段とを具備することを特徴とする

ずれにしてもディスクに記録できるデータの容立 が少なくなってしまう。

#### (発明が解決しようとする問題点)

この発明は、従来追記記録時に空白部分を形成したり、無効データを挿入したりしていた点を改善し、既記録部分に続いて正確に追記記録を行なうことができ、これによって実質的にデータ記録容量を増加することのできるディスク記録再生装置を提供することを目的とする。

#### [発明の構成]

#### (問題点を解決するための手段)

すなわち、この免別に係るディスク記録再生 袋置は、所定の記録フォーマットに従って、記録 すべきデータにブロック単位で販番にアドレスを 付し、各アドレスプロックを問別信号間に挿入し で記録データ信号を生成する記録データ生成手段 と、この記録データ生成手段で生成された記録デ ータ信号をピックアップを用いて審込み可能なディスクに記録し再生するディスク記録再生機構部 と、前記記録データ信号が審込まれているディス

#### しのである。

#### (作用)

上記構成によるディスク記録再生装置は、既に記録されたデータ中の最終アドレス値を検出し、その最終アドレス値から所定値を減算した減算アドレス値が記録されている位置をサーチし、その位置から再生して再生は号中のアドレス値の中では発出する。その再生期間中では再生は号から関射は号を検出すると共に立起の準備を行なう。そして、アドレス一致を検出したとき、そのアドレスプロックの再生終了後、同期は号部分で再生状態から記録状態に切換え、追記記録を開始する。

#### (政権例)

以下、第1図乃至第4図を参照してこの発明の一実施例を説明する。尚、ここでは光学式ディスク記録再生装置の場合について述べるが、その光学式ディスクはトラッキング用の案内満が内別から外周へ向けて螺旋状に形成されており、ディスク記録再生装置はディスクの案内満上に光ビー

ムを取射することにより、情報信号(データ)に 対応したピットを形成あるいは検出して情報信号 を記録再生するものとし、この記録再生はディス ク記録再生部によって行われるものとする。

CONTRACTOR OF THE PROPERTY OF THE PARTY.

第1図はその構成を示すもので、図中11はこの 光学式ディスク記録再生装置を秘括的にコントロ ールするシステムコントローラである。このシス テムコントローラ 11は図示しない 操作スイッチ (記録、再生、修止、サーチ等) の操作による操 作信号SCを入力し、適宜その操作に応じた制御 信号を発生するものである。また、12は記録すべ き 价 報 信 号 Siaを入力する人力 増子で、この入力 培子12に供給された情報信号 Sinは記録データ生 成函路18に供給される。この記録データ生成回路 15は後述する記録準備信号F1 を入力したとき入 力情報信号を順次データ化するもので、ここで生 成された記録データは記録フォーマットエンコー ダ14から統出し指令が供給される毎に記録フォー マットエンコーダ14に送られる。この記録フォー マットエンコーダ14は上記記録データを所定の記

一方、図中22は再生信号入力増子で、この入力増子22は上記ディスク記録再生機構部によってディスクから読み出された再生データ D Inが供給される。この再生データ D inは R F 信号検出回路 28 及びアドレスデコーダ 24に供給される。 R F 信号校出回路 23は再生時の信号の有無を検出し、信号

このパッファメモリ17は記録データを一旦保持するためのもので、普込みカウンタ18からの普込みアドレスに従って順次記録データを書込み、袋出しカウンタ18からの読出しアドレスに従って順次者込んだ記録データを終み出すものである。上記録データの番込みはシステムコントローラ11

が入ったときアドレスカウンタ 25、 岡期カウンタ 26、 同期信号ラッチ回路 27及びシステムコントローラ 11に 検出した データ信号を送出するものである。また、アドレスデコーダ 24は 再生 データ信号中のアドレスを デコードし、アドレス カウンタ 25 にそのアドレス 値を出力するものである。

信号FIを送出するものである。

この何切カウンタ28は、アドレスカウンタ25か らのスタート信号F4によって駆動状態となり、 再生データ信号中の周期信号により内部の展測ル ープカウンタに起動をかけてこのループを買期間 号に同期させる。そして、ここで得られた隠期信 号の始めにトリガバルスを発生し、このパルスを アドレスカウンタ25に設定されている所定値まで 係敢した後、フラグP 5 をたてて終出しカウンタ 18及び紀録開始タイミング回路20を駆動し、バッ ファメモリ17からデータを絞み出させる。同時に、 発生したトリガパルスP0を同期は号ラッチ回路 27に送るものである。この同期信号ラッチ回路27 は同期カウンタ26からのパルスP0により、同期 信号のスタートピットの基性を保持し、その保持 した低性に応じて前記EX-OR回路19の出力を 道宜反転させるものである。

上記揚成において、以下第2図乃至第4図を参 感してその動作について説明する。

第 2 図はデジタル・オーディオ・ディスクのフ

上の動作については、RF信号検出回路 21、アドレスデコーダ 24、アドレスカウンタ 25及びシステムコントローラ 11により行われる。

このようにして付られた列生データの最後のア ドレス位はアドレスカウンタ25に送られる。この とき、アドレスカウンク25は入力アドレス値をセ ットすると共にそのアドレス値から所定値を減算 した値もセットし、これと同時にシステムコント ローラ11にアドレスサーチ指令信号下2を送って ピックアップをトラックジャンプさせ、セットし た減算アドレス値をサーチする(ステップは)。 そして、このアドレスサーチによってセットした 減算アドレス値と一致するアドレス値を検出した 時点で、記録データ生成回路13、記録データスタ ート設出回路15、書込みカウンタ18、読出しカウ ンク18に記録単句信号を1 を送る。これによって 記録データSinは順次所定フォーマットに従って データ化され、パッファメモリ17に告込まれる。 また、この時点でアドレスカウンタ25はアドレス サーチ指令信号F2に代わって再生指令信号F8

オーマットにより作成した場合の記録データ(再生データ)の構成を示すもので、記録データ生成回路13で生成された記録データは記録フォーマットエンコーダ14でプロック化され、ちついのに関リカーマットについても、アドレスは分がデータ中に入っているため、同様に考えることができる。このように変換された記録データの末尾には同期は今の半月期分が付加される。

をシステム・コントローラ IIに送る。これによってピックアップを通常再生状態に数定される。前回記録した最後のデータまで再生が行われると、アドレスカウンタ 25はセットされている前回まで記録した最後のアドレス値と聞一のアドレスを検出した時点で、同期カウンタ 26に記録スタートはサチ4 を送る。

この関別カウンタ28はスタートは号F4を表示でするとの関別カウンタ18に変の記録スタート時に変のの関係号位置のようを発生してがからなができた。このようにはカウンタ18に変がする。このででは、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変がして、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、19に変が、1

## 特蘭昭63-52393(5)

回路19から出力される記録データは記録開始タイミング回路20に送られ、再生データDisと同期タイミングを合わせてディスク記録再生機構部に送られ、ディスクに記録される。

その後、停止スイッチが操作させると、システムコントローラ11は停止制御信号 S C1をメモリ17に送り、メモリ17の絞出しを同期信号の半周期時点で停止させる。これによって、記録データ D out の末尾に半周期信号を付加することができる。

ここで、上記経路協会イミング回路 20の記録 データ出力時点は、第4回に示すように設定され ばよい。すなわち、同図(a)に示すように、 生データ D inの 末尾にある半回 期借号が \*0 \* レ ベル (記録レーザオフによりピット が 配回 の 半日 期間の 半日 カ から 記録 データ を 出力 する。 逆に 、 同 図 6 年 期 間 の 半日 期 ほ の 半日 期 ほ の 半日 期 ほ か ら 記録 データ を 出力 する。 これに よ

世の一実施例を示すプロック回路構成図、第2間は同実施例に適用される紀録フォーマットのによる記録データの構成を説明するための図、第3回は同実施例の全体の動作の流れを示すフローチャート、第4回は同実施例の再生記録切換タイミングを説明するための図、第5回は従来装置による。再生データのパターンを説明するための図である。

11…システムコントローラ、18… 記録データ生成回路、14… 記録フォーマットエンコーダ、15… 記録データスタート検出回路、18… 登出しカウンタ、17…バッファメモリ、18… 袋出しカウンクの19… E X - O R 回路、26… 記録開始タイミング回路、25… アドレスカウンタ、25… アドレスカウンタ、26… 同期カウンタ、27… 同期信号ラッチ回路、 S In… 情報信号、 S C … 操作信号、 D out … 記録データ、 P 1 … 追記記録準信信号、 F 2 … アドレスカウンタ、27 … 日期信号、 F 3 … 再生指令信号、 F 1 … 追記記録準信信号、 F 2 … アドレスクーチ指令信号、 F 3 … 可多グ、 P 0 … トリガバルス。

って、既記録部分と道記記録部分を、同期信号を くずすことなく繋げることができる。

したがって、上記のように構成すれば、ディスクにデータの立記に録を行なう際、書き込んだデータ同に空白部を形成することなく、また書き込んだデータ中の同期信号を削すことなく、既紀録データと連続して追記記録データを記録することができる。これによってトラッキングがはずれるようなことはなくなり、また連続的に内関側から外別側まで再生がスムーズにいくようになり、結
処的にディスクに書き込む容量を増したことになる。

## [発明の効果]

以上群途したようにこの免明によれば、既記録部分に続いて正確に選記記録を行なうことができ、これによって実質的にデータ記録客量を増加することのできるディスク記録再生装置を提供することができる。

#### 4. 図面の簡単な説明

第1図はこの発明に係るディスク記録再生数



第 5 図

# 特別昭 63-52393 (6)



第1 図

