Algoritmi avansaţi

Laborator 6 (săpt. 11 și 12)

Problema 1.(1p)

Poziția unui punct față de un poligon.

Descriere

Implementați un algoritm de complexitate de timp liniară care să determine poziția relativă a unui punct Q față de un poligon $arbitrar P_1, \ldots, P_n$.

Date de intrare

Programul va citi de la tastatură un număr natural n și apoi n perechi de numere întregi separate prin spațiu $x_i y_i$, pe linii distincte, reprezentând coordonatele vârfului $P_i(x_i, y_i)$ al poligonului.

După aceea urmează numărul natural m și apoi m perechi de numere întregi separate prin spațiu $x_j y_j$, reprezentând coordonatele punctului $Q_j(x_j, y_j)$.

Date de iesire

Pentru fiecare dintre cele m puncte, programul va afișa pe ecran:

- ullet INSIDE: dacă punctul Q_j se află în interiorul poligonului;
- ullet OUTSIDE: dacă punctul Q_j se află în exteriorul poligonului;
- ullet BOUNDARY: dacă punctul \check{Q}_j se află pe laturile poligonului.

Restricții și precizări

- $3 \le n \le 1000$
- $1 \le m \le 1000$ $-10^9 \le x, y \le 10^9$

Exemplu

Input

- 12
- 0 6
- 0 0
- 6 0
- 6 6
- 2 6
- 2 2
- 4 2
- 4 5
- 5 5
- 5 1
- 1 1
- 1 6 3
- 3 4
- 7 3
- 3 2

Output INSIDE OUTSIDE

BOUNDARY

Explicație

Reprezentarea grafică a situației de mai sus este:

Figura 1: Reprezentare grafică a poligonului și a punctelor care trebuie verificate.

Indicații de rezolvare

Varianta 1 (O soluție incompletă, care permite obținerea unui punctaj parțial) Puteți folosi problema 4 de la L5, care rezolvă cerința în cazul poligoanelor convexe. Combinând cu soluția problemei 3 de la L5, se ajunge la o soluție în cazul poligoanelor stelate.

Varianta 2 (O soluție completă, bazată pe o abordare diferită)

Soluția completă se bazează pe regula "par-impar" ("odd-even rule"), principiu folosit pentru a delimita interiorul unui poligon sau al unei linii poligonale cu autointersecții. Numele de "par-impar" derivă din următorul mecanism (descris pe scurt):

- $\bullet\,$ Se alege un punct M "departe" de poligon (de exemplu coordonatele lui M să fie mai mari / mai mici decât coordonatele corespunzătoare ale tuturor vârfurilor poligonului).
- Se determină numărul de laturi intersectate de **segmentul deschis** (MQ) **în interior**. Dacă acest număr este par, punctul Q este situat în exteriorul poligonului, iar dacă este impar, punctul este situat în interior.
- O implementare completă trebuie să trateze corect cazul în care punctul Q este situat pe una din laturile poligonului. De asemenea, dacă segmentul (MQ) trece printr-un vârf al poligonului, trebuie ales un alt punct "departe" de poligon. Se demonstrează că numărul total de intersecții se poate modifica, dar paritatea rămâne neschimbată.
- În exemplul din figura 2, pentru punctele Q_1 și Q_2 , numărul de intersecții dintre segmentele (MQ_1) , respectiv (MQ_2) este par (4, respectiv 0), punctele fiind situate în exteriorul poligonului. Pentru punctul Q_3 , numărul de intersecții este impar (5), punctul fiind situat în interiorul poligonului.
- Două segmente deschise (AB) și (CD) se intersectează în interior dacă și numai dacă A și B sunt de o parte și de alta a dreptei CD și C și D sunt de o parte și de alta a dreptei AB. Aceste proprietăți se verifică aplicând testul de orientare.

Figura 2: Exemplu pentru regula par-impar.

• În figura 3, segmentele deschise (AB) și (CD) se intersectează, fiind verificată proprietatea de mai sus. Observați că segmentele (AB) și (CE) nu se intersectează. Astfel, C și E sunt de o parte și de alta a dreptei AB, dar A și B nu sunt de o parte și de alta a dreptei CE. De asemenea, segmentele deschise (AB) și (CF) nu se intersectează (A este situat pe dreapta CF, deci A și B nu pot fi de o parte și de alta a dreptei CF).

Figura 3: Interescția unor segmente.

Problema 2. (1p)

Monotonia unui poligon

Descriere

Implementați un algoritm de complexitate de timp liniară care să verifice dacă un poligon $P_1P_2...P_n$ este monoton în raport cu axa Ox, respectiv Oy, folosind metoda dreptei de baleiere, descrisă în cursul 9.

Date de intrare

Programul va citi de la tastatură un număr natural n, reprezentând numărul de vârfuri ale poligonului, și apoi n perechi de numere întregi separate prin spațiu x_i y_i , pe linii distincte, reprezentând coordonatele vârfului $P_i(x_i, y_i)$ al poligonului.

Date de iesire

Programul va afișa exact **două** rânduri, pe fiecare aflându-se unul dintre șirurile de caractere YES sau NO.

Primul rând va indica dacă poligonul dat este x-monoton, iar al doilea rând indică dacă este y-monoton.

Restricții și precizări

- $3 \le n \le 1000000$
- $-10^9 \le x, y \le 10^9$

Exemple

Exemplul 1

Input

8

-3 -1

-1 -4

9 -2

7 1

4 2

2 4

1 8

-2 6

Output

YES

YES

Explicație

Poligonul dat este atât x-monoton, cât și y-monoton.

Explicație pentru x-monotonie: vârful P_1 , situat cel mai la stânga (cu cel mai mic x) este unit cu vârful P_3 , situat cel mai la dreapta (cu cel mai mare x) prin două lanțuri: $P_1P_2P_3$, respectiv $P_1P_8P_7P_6P_5P_4P_3$. În ambele cazuri parcurgerea se efectuează de la stânga la dreapta (coordonata x crește). Se poate observa că intersecția dintre o dreaptă verticală oarecare și poligon este mulțimea vidă sau un punct sau un segment (de fapt, este o mulțime conexă, formată "dintr-o singură bucată").

Explicație pentru y-monotonie: vârful P_7 , situat cel mai sus (cu cel mai mare y) este unit cu vârful P_2 situat cel mai jos (cu cel mai mic y) prin două lanțuri: $P_7P_8P_1P_2$, respectiv $P_7P_6P_5P_4P_3P_2$. În ambele cazuri parcurgerea se efectuează de sus în jos (coordonata y descrește). Se poate observa că intersecția dintre o dreaptă orizontală oarecare și poligon este mulțimea vidă sau un punct sau un segment.

Figura 4: Poligonul este x-monoton și y-monoton.

Exemplul 2

Input

7

0 5

2 3

1 -1

6 -2

3 9

Output

NO

YES

Explicație

Poligonul dat nu este x-monoton, dar este y-monoton.

Poligonul nu este x-monoton. Putem observa că pe lanțul $P_1P_2P_3P_4,...$ co-ordonata x a punctelor crește, apoi scade și crește din nou. Se poate observa că există drepte verticale (de exemplu dreapta de ecuație x=5) pentru care intersecția cu poligonul este reuniunea a două segmente (o astfel de mulțime nu este conexă, ea are două componente conexe).

Poligonul dat este y-monoton. Vârful P_7 , situat cel mai sus (cu cel mai mare y), este unit cu vârful P_4 , situat cel mai jos (cu cel mai mic y), prin două lanțuri: $P_7P_1P_2P_3P_4$, respectiv $P_7P_6P_5P_4$. În ambele cazuri parcurgerea se efectuează de sus în jos (adică y descrește). Se poate observa că intersecția dintre o dreaptă orizontală și poligon este mulțimea vidă sau un punct sau un segment.

Figura 5: Poligonul nu este y-monoton, dar este y-monoton.

Exemplul 3

Input

8

9 9

5 5

6 9

4 4

-1 2

7 1

3 2 10 3

Output

NO

NO

Explicație

Poligonul dat nu este nici x-monoton, nici y-monoton. Pe lanțul $P_5P_6P_7P_8$ coordonata x crește, apoi descrește, apoi crește din nou, deci poligonul nu este x-monoton. Un argument analog poate fi utilizat pentru a arăta că poligonul nu este y-monoton (găsiți un lanț care "obstrucționează" y-monotonia).

Figura 6: Poligonul nu este nici x-monoton, nici y-monoton

Problema 3.(0.5p)

Poziția unui punct față de cercul circumscris unui triunghi

Descriere

Implementați un algoritm care să determine poziția relativă a unui punct P față de cercul circumscris unui triunghi ΔABC . Puteți folosi criteriul numeric descris în cursul 10.

Date de intrare

Programul va citi trei perechi de numere întregi $x_A y_A$, $x_B y_B$ și $x_C y_C$, pe linii distincte, reprezentând coordonatele vârfurilor triunghiului ΔABC , parcurse în sens trigonometric.

Pe următorul rând se află un număr natural m, reprezentând numărul de puncte ale căror poziții relative trebuie de terminate, și apoi m perechi de numere

întregi separate prin spațiu $x_i y_i$, pe linii distincte, reprezentând coordonatele punctului $P_j(x_j, y_j)$.

Date de ieșire

Programul va afisa m rânduri, pe fiecare aflându-se una dintre următoarele valori:

- INSIDE, dacă punctul se află în interiorul cercului circumscris triunghiului ΔABC ;
- BOUNDARY, dacă punctul se află pe cercul circumscris triunghiului ΔABC ;
- OUTSIDE, dacă punctul se află în exteriorul cercului circumscris triunghiului ΔABC .

Restricții și precizări

Exemple

Input

- -2 4
- -3 0
- 0 -2
- 3
- 1 2 3 3
- 6 -1

Output

INSIDE

BOUNDARY

OUTSIDE

Explicație

Exemplul de mai sus corespunde următoarei situații:

Problema 4.(0.5p)

Muchii ilegale

Descriere

Implementați un algoritm care să verifice dacă o muchie a unei triangulări este legală. Puteți folosi folosi problema 3, bazată pe criteriul geometric/numeric descris în cursul 10

Date de intrare

Programul va citi de la tastatură patru perechi de numere întregi separate prin spațiu $x_i y_i$, pe linii distincte, reprezentând coordonatele vârfului $P_i(x_i, y_i)$ al patrulaterului. Vârfurile sunt date în sens trigonometric, iar patrulaterul este convex.

Date de ieșire

Programul va afișa pe ecran două rânduri, pe primul aflându-se șirul de caractere AC:, urmat de un spațiu și apoi cuvântul LEGAL sau ILLEGAL; iar pe al doilea, șirul de caractere BD:, urmat de un spațiu și apoi cuvântul LEGAL sau ILLEGAL. Primul rând indică dacă muchia AC este legală, iar al doilea rând indică dacă muchia BD este legală.

Restricții și precizări

 $-10^6 \le x, y \le 10^6$

Exemplu

Input

-2 4

-3 0

0 -2

1 2

Output

AC: ILLEGAL BD: LEGAL Explicație

Coordonatele de mai sus corespund următorului poligon:

Figura 7: Reprezentarea grafică a datelor din exemplu

Folosind criteriul geometric observăm că:

- \bullet Punctul Deste în interiorul cercului circumscris triunghiului $\Delta ABC,$ deci muchia ACeste ilegală.
- \bullet Punctul Aeste în exteriorul cercului circumscris triunghiului $\Delta BCD,$ deci muchia BDeste legală.