CS 254: Computability and Complexity

Anonymous submission

Problem Set #01

September 18, 2019

6. Claim: #1(vw) = #1(v) + #1(w) proved by structural induction

Base Cases: $v = \epsilon$ and $w = \epsilon$. From identity property of strings we know $\epsilon + \epsilon = \epsilon$ and $\#1(\epsilon) = \#1(\epsilon) + \#1(\epsilon)$ which is the same as 0=0

v has elements and $w = \epsilon$. From the additive property of strings we know $\epsilon + v = v$ which is the same as ϵv and $\#1(\epsilon v)$ is the same as #1(v)

vise versa w has elements and $v = \epsilon$. From the additive property of strings we know $\epsilon + w = w$ which is the same as ϵw which is the same as ϵw and $\#1(\epsilon w)$ is the same as #1(w)

Inductive hypothesis: $v = 1 + \epsilon$

From string additive property we know $w + 1 + \epsilon = 1w\epsilon$

Therefore a recursively defined function counting ones will treat vw and v + w the same.