Projeto 2

TI327 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL Prof. Guilherme Macedo COTUCA - Unicamp

Os problemas de otimização linear têm sido objeto de intensas pesquisas nos últimos anos, devido à sua importância econômica e ao seu interesse teórico. Estes problemas são geralmente declarados na seguinte forma padrão:

minimizar
$$oldsymbol{c}^{ op} oldsymbol{x}$$
sujeito a $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ $oldsymbol{x} \in \mathbb{R}_+$

onde $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$ e $A \in \mathbb{R}^{m \times n}$. Todo problema de otimização linear pode ser escrito na forma padrão. Por exemplo, dado o problema

minimizar
$$oldsymbol{c}^{ op} oldsymbol{x}$$
sujeito a $oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}$
$$oldsymbol{x} \in \mathbb{R}_{+}$$

podemos converter as restrições de desigualdade em igualdade adicionando variáveis de folga para compensar a diferença entre o lado esquerdo e direito. Portanto,

$$Ax \le b \Leftrightarrow Ax + y = b, y \ge 0.$$

Também podemos converter um objetivo de maximização em minimização negando \boldsymbol{c} .

Atividades

- Implementar o método simplex em Python 3.12.3 para resolver problemas de otimização linear. O código-fonte deverá ser claro, eficiente e bem documentado.
- Testar o método simplex implementado anteriormente com os seguintes problemas de otimização linear:

Problema 1

minimizar
$$5x_1+x_2$$
 sujeito a $2x_1+x_2\geq 6$
$$x_1+x_2\geq 4$$

$$x_1+5x_2\geq 10$$

$$x_1,x_2\geq 0$$

A solução ótima deste problema é $x^* = (0,6)$ com $f(x^*) = 6$.

Problema 2

maximizar
$$2x_1-3x_2$$
 sujeito a $x_1+2x_2\leq 6$
$$2x_1-x_2\leq 8$$

$$x_1,x_2\geq 0$$

A solução ótima deste problema é $x^* = (4,0)$ com $f(x^*) = 8$.

Problema 3

maximizar
$$15(x_1+2x_2)+11(x_2-x_3)$$
 sujeito a $3x_1 \geq x_1+x_2+x_3$
$$0 \leq x_j \leq 1 \qquad \qquad j=1,2,3$$

A solução ótima deste problema é $x^* = (1, 1, 0)$ com $f(x^*) = 56$.

Problema 4

minimizar
$$10(x_3+x_4)$$
 sujeito a $\sum_{j=1}^4 x_j=400$
$$x_j-2x_{j+1}\geq 0 \qquad \qquad j=1,2,3$$

$$x_j\geq 0 \qquad \qquad j=1,2,3$$

A solução ótima deste problema é $x^* = (400,0,0,0)$ com $f(x^*) = 0$.

Problema 5

maximizar
$$-5x_1+3(x_1+x_3)$$
 sujeito a $x_j+1\leq x_{j+1}$
$$j=1,2$$

$$\sum_{j=1}^3 x_j=12$$

$$x_j\geq 0 \qquad j=1,2,3$$

A solução ótima deste problema é $x^* = (0, 1, 11)$ com $f(x^*) = 36$.

Problema 7

maximizar
$$9x_1 + 5x_2$$

sujeito a sen $\left(\frac{k}{13}\right)x_1 + \cos\left(\frac{k}{13}\right)x_2 \le 7$ $j = 1, \dots, 13$
 $x_1, x_2 \ge 0$

A solução ótima deste problema é $x^* = (0, 1, 11)$ com $f(x^*) = 36$.

- Escrever um relatório de 5 à 7 páginas com as suas descobertas. O modelo do relatório está disponível em https://bit.ly/43QpBkv.

Prazo de entrega

Quarta-feira, 19 de junho de 2024, até às 23h59. Não é aconselhável que este projeto seja entregue fora do prazo estabelecido. Contudo, no caso de a fazer, a sua nota será penalizada da seguinte maneira:

20/06/2024 23h59	$0,75 \times \text{ nota}$
21/06/2024 23h59	$0,50 \times \text{ nota}$
22/06/2024 23h59	$0,25 \times \text{ nota}$

Submissão

O código-fonte e o relatório deverão ser submetidos pelo GitHub Classroom até os prazos de entrega estabelecidos.

Referência

Dantzig, G. B. 1963. Linear programming and extensions. Princeton, NJ. Princeton University Press.