LOAN DOCUMENT

	PHOTOGRAPH THIS SHEET
BER	
NOW	LEVEL INVENTORY
DTIC ACCESSION NUMBER	DOCUMENT IDENTIFICATION JULY SOLUTION
	Biothia
	DISTRIBUTION STATEMENT A
	Approved for Public Release Distribution Unlimited
ACCESSIONE 10°	DESCRIPTION OF A PROPERTY.
NTIS GRAM DTIC TRAC UNANNOUNCED JUSTIFICATION	
Johnson	
ву	
DISTRIBUTION/ AVAILABILITY CODES	
DISTRIBUTION AVAILABILITY AND/OR SPECIAL	
	DATE ACCESSIONED
	
DISTRIBUTION STAMP	ļ.
	DATE RETURNED
20001214	110
	1 10
DATE RECEIV	/ED IN DTIC REGISTERED OR CERTIFIED NUMBER
PHO	OTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC
DTIC JUN 90 70A	DOCUMENT PROCESSING SHEET PREVIOUS EXPLOYED MAY BE USED UNTIL. LOAN DOCUMENT LOAN DOCUMENT

Informal Technical Information Report

For Analytical Data For

Plant 78

Prepared By: Environmental Science and Engineering, Inc.
Denver, CO
July 1990

AGM01-03-0517

	DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS						
Tit	AFCEE Collection						

1,	Raport Availability (Please check one box)	2s. Number of	2b. Forwarding Data				
区	This report is available. Complete sections 2a - 2f.	Copies Forwarded					
	This report is not available. Complete section 3.	1 each	July/2000				
2c	Distribution Statement (Please check ONE DOX)	•	01				
	Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distrib		n distribution statements, as				
M	DISTRIBUTION STATEMENT A: Approved for public rel	ease. Distribution is u	infimited.				
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Government	Agencies only.				
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Government	Agencies and their				
	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	to U.S. Department c	f Defense (DoD) and U.S				
	DISTRIBUTION STATEMENT E: Distribution authorized components only.	to U.S. Department o	f Defense (DoD)				
	DISTRIBUTION STATEMENT F: Further dissemination of indicated below or by higher authority.	only as directed by the	controlling DoD office				
	DISTRIBUTION STATEMENT X: Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD Directive 5230.25, Withholding of Unclassified Technical Data from Public Disclosure, 6 Nov 84.						
	<i>₹</i>						
2d.	Reason For the Above Distribution Statement (in accord	dance with DoD Directive :	5230.24)				
		,					
2e.	Controlling Office	2f. Date of Distr	ibution Statement				
, ,	HQ AFUE		1 2000				

☐ It was previously forwarded to DTIC on _____ (date) and the AD number is

D In accordance with the provisions of DoD Directive 3200,12, the requested decument is not supplied

Signatura

☐ It will be published at a later date. Enter approximate date if known.

Print or Type Name

7 August 1990 Project No. 89946

Captain I. Atkins, Jr.
OEHL Technical Program Manager
USAF OEHL/TSS
Building 624
Brooks AFB, TX 78235-5501

Dear Captain Atkins:

Enclosed please find four copies of a Draft Information Technical Report (ITIR) for the surface sampling of Blue Creek of earlier this year. This ITIR was prepared using the USAFOEHL-TS Handbook version 2.0. If you have any questions concerning this report, please call.

Sincerely

Robert H. Chesson Project Manager

cc: L. Bilello

Project Files

Informal Technical Information Report

For Analytical Data For

Plant 78

Prepared By: Environmental Science and Engineering, Inc.
Denver, CO
July 1990

TABLE OF CONTENTS

		Page
Section 1 Sa	ample Identification Cross Reference Tables	
Table		
P783-W P783-S	Sample Identification Cross Reference - Plant 78 Water Sample Identification Cross Reference - Plant 78 Soil	1 2
Section 2 A	nalytical Methods and Methods Detection Limits	
Table		
D-2A	Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Aqueous Sample	3
D-2A	Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Soil/Sediment San	7 mple
Section 3 A	nalytical Data	
	Site 1 - Plant 78 Surface Water & Groundwater Soil & Sediment	11 22
Section 4 Sa	ample Date Reports	
	Site 1 - Plant 78 Groundwater Soil & Sediment	34 35
Section 5 C	Chain of Custody Forms	
	Site 1 - Plant 78 Groundwater Soil & Sediment	36 38

TABLE OF CONTENTS

Section 6	Quality Control Summary Reports	
	Site 1 - Plant 78	
	Groundwater	
	Method Blank Summary	45
	Standard Spike	48
	Standard Matrix Spike	49
	Soil & Sediment	
	Method Blank Summary	50
	Standard Spike	53
	Standard Matrix Spike	74
Section 7	Glossary of Terms and Symbols	59

Sample Identification Cross Reference Table

TABLE P783-W SAMPLE IDENTIFICATION CROSS REFERENCE FOR Plant 78 Water Samples

	QC Results	45	45	54	45	45	45	45	45	45	45
4	Chain of Custody	36	36	36	36	36	36	98	36	%	36
	Confirmation Sheets	NA	NA	NA	NA	NA	NA AN	NA	NA	NA	NA
	Analysis Date Report	34	8	¥	æ	8	8	ਝ	¥	*	8
	Analytical Results	11	11	11	11	11	11	11	11	11	11
	Sample Description	GROUND WATER	DUPLICATE	TRIP BLANK							
	Field Number	3 BCSW3-3	BCSW3-4	BCSW3-5	BCSW3-6	BCSW3-7	BCSW3-8	BCSW3-9	BCSW3-10	CSW3-DUPE	TRPBLK
	H	e	4	S	9	7	∞	6	10	113	12
	Lab Number	BCSW3	BCSW3	BCSW3							

TABLE P783-S SAMPLE IDENTIFICATION CROSS REFERENCE FOR Plant 78 Soil Samples

Initial Reference Page

QC Results	58	58	58	58	58	58	58	58	58	28
Chain of Custody	38	38	38	38	38	38	38	38	38	38
Second Column Confirmation Sheets	NA	NA	NA							
Extraction/ Analysis Date Report	35	35	35	35	35	35	35	35	35	35
Analytical Results	23	22	22	22	22	22	22	22	22	23
Sample Description	SOIL	DUPLICATE	TRIPBLANK							
Field Number	BCSW3-3	BCSW3-4	BCSW3-5	BCSW3-6	BCSW3-7	BCSW3-8	BCSW3-9	BCSW3-10	W3-DUPE	RIPBLANK
15	ю	4	'n	9	7	∞	6	10	11BC	13 TI
Lab Number	BCSS3	BCSS3	BCSS3							

Analytical Methods and Method Detection Limits

TABLE D-2A. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Aqueous Samples

Parameter	Method	Detection Limit (mg/L)	Practical Quantitation Limits (mg/L)
COMMON ANIONS			
HYDROCARBONS, PETROL.	E418.1	5.12	25.6
FURNACE AND COLD VAPOR (C.V.)			
MERCURY, TOTAL	E245.1	0.12	. 6
ICAP METAL SCREEN			
ALUMINUM, TOTAL ANTIMONY, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CADMIUM, TOTAL CALCIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL LEAD, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL NICKEL, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL SODIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL	E200.7 E200.7	0.018 0.019 0.028 0.001 0.001 0.002 0.01 0.004 0.003 0.004 0.026 0.03 0.001 0.004 0.008 0.46 0.042 0.003 0.046 0.042 0.003	.09 .095 .14 .005 .005 .01 .05 .02 .035 .015 .02 .13 .15 .005 .02 .04 2.3 .21 .015 .285 .75 .02
PURGEABLE HALOCARBONS			
1-CHLOROHEXANE 1,1-DICHLOROETHANE 1,1,1-TRICHL'ETHANE 1,1,1,2-TETRACH'ETHANE 1,1,2-TRICHL'ETHANE 1,1,2-TETRACHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 2-CHLOROETHYLVINYLETHER BROMOBENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE	SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010 SW8010	0.005 0.0004 0.0002 0.005 0.0001 0.0002 0.0007 0.0002 0.0007 0.005 0.0005 0.001 0.006 0.0006	0.025 0.002 0.001 0.025 0.0005 0.001 0.0035 0.001 0.0035 0.025 0.0025 0.005 0.03

TABLE D-2A. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Aqueous Samples

Parameter	Method	Detection Limit (mg/L)	Practical Quantitation Limits (mg/L)
PURGEABLE HALOCARBONS (Continue	d)		
CHLOROETHANE	SW8010	0.003	0.015
CHLOROFORM	SW8010	0.0002	0.001
CHLOROMETHANE	SW8010	0.0004	0.002
CIS-1,3-DICHLOROPROPENE	SW8010	0.002	0.01
DIBROMOCHLOROMETHANE	SW8010	0.0005	0.0025
DIBROMOMETHANE DICHLORODIFLUOROMETHANE	SW8010	0.005	0.025
METHYLENE CHLORIDE	SW8010 SW8010	0.009 0.002	0.045
TETRACHLOROETHENE	SW8010	0.002	0.01
TRANS-1,3-DICHLOROPROPENE	SW8010	0.002	$\begin{smallmatrix}0.001\\0.01\end{smallmatrix}$
TRANS-1,2-DICHLOROETHENE	SW8010	0.002	0.0025
TRICHL'FLUOROMETHANE	SW8010	0.005	0.025
TRICHLOROETHENE	SW8010	0.0006	0.003
VINYL CHLORIDE	SW8010	0.0002	0.001
PURGEABLE AROMATICS			
BENZENE	SW8020	0.0007	0.0035
CHLOROBENZENE	SW8020	0.001	0.005
DICHLOROBENZENE	SW8020	0.0012	0.006
ETHYLBENZENE	SW8020	0.001	0.005
TOLUENE	SW8020	0.001	0.005
XYLENES, TOTAL	SW8020	0.002	0.01
SEMIVOLATILE ORGANIC COMPOUND			
1-NAPHTHYLAMINE	SW8270	0.00481	0.02405
1-CHLORONAPHTHALENE	SW8270	0.00551	0.02755
1,2-DIPHEN'HYDRAZINE	SW8270	0.00771	0.03855
1,2-DICHLOROBENZENE 1,2,4-TRICH'BENZENE	SW8270	0.0002	0.001
1,2,4-TRICH BENZENE 1,2,4,5-TETRACHLOROBENZENE	SW8270 SW8270	0.00026 0.00856	0.0013
1,3,DICHLOROBENZENE	SW8270	0.00108	0.0428 0.0054
1,4-DICHLOROBENZENE	SW8270	0.00100	0.0006
2-CHLOROPHENOL	SW8270	0.00014	0.0007
2-METHYL PHENOL	SW8270	0.00042	0.0021
2-METHLYNAPHTHALENE	SW8270	0.00043	0.00215
2-NITROPHENOL	SW8270	0.00090	0.0045
2-NITROANILINE	SW8270	0.00114	0.0057
2-PICOLINE	SW8270	0.0162	0.081
2-CHLORONAPHTHALENE 2-NAPHTHYLAMINE	SW8270	0.00023	0.00115
2,3,4,6 TETRACL'PHENOL	SW8270 SW8270	0.00376	0.0188
2,4-DICHLOROPHENOL	SW8270	$0.00896 \\ 0.00018$	0.0448
2,4-DINITROTOLUENE	SW8270	0.0018	0.0009 0.0061
2,4-DINITROPHENOL	SW8270	0.00171	0.00855
2,4-DIMETHYLPHENOL	SW8270	0.00014	0.0007
2,4,5-TRICHL'PHENOL	SW8270	0.00046	0.0023
2,4,6-TRICHL'PHENOL	SW8270	0.00017	0.00085
2,6-DINITROTOLUENE	SW8270	0.00093	0.00465
2,6-DINITROTOLUENE 2,6-DICHLOROPHENOL 3-NITROANILINE		0.00093 0.00915 0.00153	

TABLE D-2A. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Aqueous Samples

Parameter	Method	Detection Limit (mg/L)	Practical Quantitation Limits (mg/L)
SEMIVOLATILE ORGANIC COMPOUND (Co	ontinued)		
3-METHYLCHOLANTHRENE	SW8270	0.00550	0.0275
3,3'-DICHL'BENZIDINE	SW8270	0.00194	0.0097
4-BROMOPHENYLPHENYLETHER	SW8270	0.00029	0.00145
4-METHYL PHENOL	SW8270	0.00040	0.002
4-NITROANILINE	SW8270	0.00192	0.0096
4-CHLOROPHENYLPHENYLETHER	SW8270	0.0004	0.002
4-CHLORO-3-METHYLPHENOL	SW8270	0.00048	0.0024
4-CHLOROANILINE	SW8270	0.00034	0.0017
4-AMINOBIPHENOL	SW8270	0.0325	0.1625
4-NITROPHENOL	SW8270	0.00188	0.0094
4,6-DINITRO-2-METHYLPHENOL	SW8270	0.00151	0.00755
7,12-DIMETHYLBENZ(A)ANTHRANCEN	SW8270	0.00544	0.0272
A-, A-DIMETHYLPHENETHYLAMINE	SW8270	0.00712	0.0356
ACENAPHTHENE	SW8270	0.00018	0.0009
ACENAPHTHYLENE	SW8270	0.00016	0.0008
ACETOPHENONE	SW8270	0.00345	0.01725
ANILINE	SW8270	0.00522	0.0261
ANTHRACENE	SW8270	0.00031	0.00155
BENZIDINE	SW8270	0.0694	0.347
BENZO(A)ANTHRACENE	SW8270	0.00015	0.00075
BENZO(A)PYRENE	SW8270	0.00014	0.0007
BENZO(B)FLUORANTHENE	SW8270	0.0004	0.002
BENZO(GHI)PERYLENE	SW8270	0.0006	0.003
BENZO(K)FLUORANTHENE	SW8270	0.00083	0.00415
BENZOIC ACID	SW8270	0.00159	0.00795
BENZYL ALCOHOL	SW8270	0.00035	0.00175
BIS(2-ETHYLHEXYL)PHTHALATE	SW8270	0.00157	0.00785
BIS(2-CHL'ISOPROPYL)ETHER	SW8270	0.00053	0.00265
BIS(2-CHLOROETHYL)ETHER	SW8270	0.00014	0.0007
BIS(2-CHLOROETHOXY)METHANE	SW8270	0.00024	0.0012
BUTYLBENZYLPHTHALATE	SW8270	0.00106	0.0053
CHRYSENE	SW8270	0.00155	0.00775
DI-N-BUTYLPHTHALATE	SW8270	0.00086	0.0043
DI-N-OCTYLPHTHALATE	SW8270	0.00247	0.01235
DIBEN'(A, H) ANTH'CENE	SW8270	0.00082	0.0041
DIBENZ(A,J)ACRIDINE	SW8270	0.0327	0.1635
DIBENZOFURAN	SW8270	0.00017	0.00085
DIETHYLPHTHALATE	SW8270	0.00085	0.00425
DIMETHYLPTHALATE	SW8270	0.00042	0.0021
DIPHENYLAMINE	SW8270	0.00415	0.02075
ETHYL METHANESULFONATE	SW8270	0.00778	0.0389
FLUORANTHENE	SW8270	0.00069	0.00345
FLUORENE	SW8270	0.00044	0.0022
HEXACHLOROBENZENE	SW8270	0.00034	0.0017
HEXACHLOROBUTADIENE	SW8270	0.00027	0.00135
HEXACHLOROCYCLOPENTADIENE	SW8270	0.00083	0.00415
HEXACHLOROETHANE	SW8270	0.00014	0.0007
INDENO(1,2,3-CD)PYRENE	SW8270	0.00081	0.00405
ISOPHORONE	SW8270	0.00018	0.0009
METHYL METHANESULFONATE	SW8270	0.00677	0.03385
N-NITROSODIPHE'AMINE	SW8270	0.00027	0.00135
N-NITROSO-DI-N-BUTYLAMINE	SW8270	0.00863	0.04315
N-NITROSODI-N-PROPYLAMINE N-NITROSOPIPERIDINE	SW8270	0.00069	0.00345
	SW8270	0.0155	0.0775

TABLE D-2A. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Aqueous Samples

Detection Limit (mg/L)	Practical Quantitation Limits
	(mg/L)
0.00715	0.03575
0.00013	0.00065
0.00055	0.00275
0.00359	0.01795
0.00538	0.0269
0.0198	0.099
0.00091	0.00455
0.0222	0.111
0.00023	0.00115
0.00051	0.00255
0.0105	0.0525
0.00083	0.00415
	0.00715 0.00013 0.00055 0.00359 0.00538 0.0198 0.00091 0.0222 0.00023 0.00051 0.0105

TABLE D-2B. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Soil Samples

Parameter	Method	Detection Limit (mg/kg)	Practical Quantitation Limits (mg/kg)
COMMON ANIONS IN SOIL			
HYDROCARBONS, PETROL	E418.1	1.65	8.25
COLD VAPOR (C.V.)			
MERCURY	SW7471	0.06	.3
ICAP METAL SCREEN			
ALUMINUM, SED ANTIMONY, SED ARSENIC, SED BARIUM, SED BERYLLIUM, SED CADMIUM, SED CHROMIUM, SED COBALT, SED COPPER, SED IRON, SED LEAD, SED MAGNESIUM, SED MAGNESIUM, SED MOLYBDENUM, SED NICKEL, SED POTASSIUM, SED SELENIUM, SED SILVER, SED SODIUM, SED THALLIUM, SED ZINC, SED	\$\text{SW6010}\$\	1.8 1.9 2.8 0.1 0.1 0.2 0.4 0.7 0.3 0.4 2.6 3.0 0.1 0.4 0.8 45.5 4.2 0.3 5.7 14.8 0.4	9 9.5 14 .5 .5 1 2 3.5 1.5 2 13 15 .5 2 4 227.5 21 1.5 28.5 74 2
SEMIVOLATILES 1-NAPHTHYLAMINE 1,2-DIPHENYLHYDRAZIN,S 1,2-DICHLOROBENZENE 1,2,4-TRICHLRBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 2-CHLORONAPHTHALENE 2-PICOLINE 2-METHYLNAPHTHALENE 2-CHLOROPHENOL 2-METHYLPHENOL 2-NITROPHENOL 2-NAPHTHYLAMINE 2-NITROANILINE 2,3,4,6-TETRACHLOROPHENOL 2,4-DINITROTOLUENE	SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270 SW8270	0.32 0.51 0.01 0.02 0.57 0.05 0.08 7.74 1.08 0.03 4.53 0.03 0.06 0.25 0.08	1.6 2.55 .05 .1 2.85 .25 .4 38.7 5.4 .15 22.65 .15 .3 1.25

TABLE D-2B. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Soil Samples

Parameter	Method	Detection Limit (mg/kg)	Practical Quantitation Limits (mg/kg)
SEMIVOLATILES (Continued)			
2,4-DIMETHYPHENOL	SW8270	0.01	. 05
2,4-DINITROPHENOL	SW8270	0.11	.55
2,4-DICHLOROPHENOL	SW8270	5.86	29.3
2,4,5-TRICH'PHENOL	SW8270	0.03	.15
2,4,6-TRICHLRPHENOL	SW8270	0.01	. 05
2,6-DICHLOROPHENOL	SW8270	0.61	3.05
2,6-DINITROTOLUENE	SW8270	0.06	.3
3-METHYLCHOLANTHRENE	SW8270	0.37	1.85
3-NITROANILINE	SW8270	0.10	. 5
3,3-DICHLOROBENZIDINE	SW8270	0.13	.65
4-BROMOPHENYL PHENYL ETHER	SW8270	0.02	.1
4-CHLOROPHENYLPHENYL ETHER	SW8270	0.03	.15
4-CHLOROANILINE, SED 4-CHLORO-3-METHYLPHENOL	SW8270	0.02	.1
4-NITROPHENOL	SW8270	0.03	.15
4-METHYLPHENOL	SW8270 SW8270	0.13	.65
4-NITROANILINE	SW8270	0.03 0.13	.15
4-AMINOBIPHENYL	SW8270	2.16	.65 10.8
4,6-DINITRO-2-METHYLPHENOL	SW8270	0.10	.5
7,12-DIMETHYLBENZ(A)ANTHRANCE	SW8270	0.36	i.8
A-, A-DIMETHYLPHENETHYLAMINE	SW8270	0.47	2.35
ACENAPHTHENE, SOIL	SW8270	0.01	.05
ACENAPHTHYLENE, SOIL	SW8270	0.01	.05
ACETOPHENONE	SW8270	0.23	1.15
ANILINE	SW8270	0.42	2.1
ANTHRACENE, SOIL	SW8270	0.02	.1
BENZIDINE	SW8270	5.52	27.6
BENZO(A)ANTHRACENE	SW8270	0.01	.05
BENZO(A)PYRENE	SW8270	0.01	. 05
BENZO(B)FLUORANTHENE, S	SW8270	0.03	.15
BENZO(G,H,I,)PERYLENE	SW8270	0.04	. 2
BENZO(K)FLUORANTHENE BENZOIC ACID	SW8270	0.06	.3_
BENZYL ALCOHOL	SW8270	0.11	. 55
BIS(2-CHLOROETHOXY)METHANE	SW8270 SW8270	0.02	.1
BIS(2-CHL'ISOPROPYL) ETHER	SW8270	7.93 0.04	39.65
BIS(2-CHLOROETHYL)ETHER	SW8270	0.04	. 2
BIS(2-ETHYLHEXYL)PHTHALATE	SW8270	0.10	. 05 . 5
BUTYL BENZYL PHTHALATE	SW8270	0.07	.35
CHRYSENE	SW8270	0.10	.5
DI-N-OCTYLPHTHALATE	SW8270	0.16	.8
DI-N-BUTYLPHTHALATE	SW8270	0.06	.3
DIBENZ(A,J)ACRIDINE	SW8270	2.60	13
DIBENZO(A,H)ANTHRACENE	SW8270	0.05	.25
DIBENZOFURAN	SW8270	0.01	. 05
DIETHYLPHTHALATE	SW8270	0.06	. 3
DIMETHYLPHTHALATE	SW8270	0.03	.15
DIPHENYLAMINE	SW8270	0.28	1.4
ETHYL METHANESULFONATE	SW8270	0.52	2.6
FLUORANTHENE	SW8270	0.05	.25
FLUORENE HEXACHLOROBENZENE	SW8270	0.03	.15
	SW8270	0.03	.15
HEXACHLOROBUTADIENE	SW8270	0.02	.1

TABLE D-2B. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Soil Samples

		Detection Limit	Practical Quantitation Limits
Parameter	Method	(mg/kg)	(mg/kg)
SEMIVOLATILES (Continued)			
HEXACHLOROCYCLOPENTADIENE	SW8270	0.06	.3
HEXACHLOROETHANE	SW8270	0.01	. 05
INDENO(1,2,3-CD)PYRENE	SW8270	0.05	. 25
ISOPHORONE	SW8270	0.01	. 05
METHYL METHANESULFONATE	SW8270	0.45	2.25
N-NITROSODI-N-PROPYLAMINE	SW8270	0.05	. 25
N-NITROSODIPHE'AMINE N-NITROSODIMETHYLAMINE	SW8270	0.02	.1
N-NITROSODIMETHYLAMINE N-NITROSOPIPERIDINE	SW8270	0.48	2.4
N-NITROSOFIFERIDINE N-NITRSO-DI-N-BUTYLAMINE	SW8270 SW8270	$\substack{1.04\\0.58}$	5.2
NAPHTHALENE	SW8270	0.01	2.9
NITROBENZENE	SW8270	0.04	. 05 . 2
P-DIMETHY LAMINOBENZENE	SW8270	0.24	1.2
PENTACHLOROBENZENE	SW8270	0.36	1.8
PENTACHLORONITROBENZENE	SW8270	1.32	6.6
PENTACHLOROPHENOL	SW8270	0.06	.3
PHENACETIN	SW8270	1.48	7.4
PHENANTHRENE	SW8270	0.02	.1
PHENOL	SW8270	0.03	.15
PRONAMIDE	SW8270	0.7	3.5
PYRENE	SW8270	0.06	.3
PURGEABLE HALOCARBONS			
1,1,1,2-TETRACHLOROETHANE	SW8010	1.0489	5.2445
1,1,1-TRICHLOROETHANE	SW8010	0.042	0.21
1,1,2,2-TETRACHLOROETHANE	SW8010	0.042	0.21
1,1,2- TRICHLOROETHANE	SW8010	0.021	0.105
1,1 DICHLOROETHANE	SW8010	0.0839	0.4195
1,1-DICHLOROETHENE	SW8010	0.1468	0.734
1,2,-DICHLOROPROPANE	SW8010	0.042	0.21
1,2-DICHLOROETHANE	SW8010	0.042	0.21
1-CHLOROHEXANE	SW8010	1.0489	5.2445
2-CHLOROETHYLVINYL ETHER BROMOBENZENE	SW8010	0.1468	0.734
BROMOBENZENE BROMODICHLOROMETHANE	SW8010	1.0489	5.2445
BROMOFORM	SW8010 SW8010	0.1049	0.5245
CARBON TETRACHLORIDE	SW8010	0.2098 0.1259	1.049
CHLOROBENZENE	SW8010	0.1239	0.6295 1.2585
CHLOROETHANE	SW8010	0.6293	3.1465
CHLOROFORM	SW8010	0.042	0.21
CIS-1,3-DICHLOROPROPENE	SW8010	0.4195	2.0975
DIBROMOCHLOROMETHANE	SW8010	0.1049	0.5245
DIBROMOETHANE	SW8010	1.0489	5.2445
DICHLOROBENZENE, TOT.	SW8010	0.944	4.72
DICHLOROBENZENE, TOT.	SW8010	0.4195	2.0975
DICHLORODIFLUOROMETHANE	SW8010	1.888	9.44
METHYL BROMIDE	SW8010	1.2586	6.293
METHYLCHLORIDE METHYLENE CHLORIDE	SW8010	0.0005	0.0025
TETRACHLOROETHYLENE	SW8010	0.4195	2.0975
FRANS-1,2-DICHLOROETHENE	SW8010	0.042	0.21
TYPE DIGHOROBIHENE	SW8010	0.1049	0.5245

TABLE D-2B. Analytical Methodologies, Detection Limits, and Practical Quantitation Limits for Plant 78 - Soil Samples

Parameter	Method	Detection Limit (mg/kg)	Practical Quantitation Limits (mg/kg)
PURGEABLE HALOCARBONS (Contin	nued)		9,000
	-		
TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE	SW8010	0.1259	0.6295
TRICHLOROPROPANE	SW8010	1.0489	5.2445
T-1,3-DICHLOROPROPENE	SW8010 SW8010	1.0489	5.2445
VINYL CHLORIDE	SW8010	0.4195 0.0881	2.0975
VINIE CHEOKIDE	PMOOTO	0.0881	0.4405
PURGEABLE AROMATICS			
BENZENE	SW8020	0.1468	0.734
BROMOBENZENE	SW8020	1.0489	5.2445
CHLOROBENZENE	SW8020	0.2098	1.049
ETHYLBENZENE	SW8020	0.2098	1.049
TOLUENE	SW8020	0.2098	1.049
XYLENES, TOTAL	SW8020	0.4195	2.0975
EPTOX			
2,4,5-TP/SILVEX	SW1310	0.021	0.105
2,4-D	SW1310	0.0819	0.4095
BHC,G(LINDANE)	SW1310	*0.0105	*0.0525
CHLORDANE	SW1310	*0.021	*0.105
ENDRIN	SW1310	*0.021	*0.105
HEPTACHLOR	SW1310	*0.021	*0.105
MERCURY, TOTAL	SW1310	**0.0005	**0.0025
METHOXYCHLOR	SW1310	*0.21	*1.05
TOXAPHENE	SW1310	*2.1005	*10.5025

^{*}These units are in terms of ug/l. **These units are in term of mg/l.

Analytical Data

	75 34311 34668 34423 34488 HA HA HA HA HA HA IVC CLEA FCL2 MTHLENCL FC!!	7/9n 7/9n 7/9n	(3.00 <9.00 <2.00	<pre></pre>	100 <3.00 <9.00 <2.00 <5.00 in <4.00 <2.00 <5.00	<3.00 <9.00 <2.00 <	<3.00 <9.00 <2.00	<3.00 <9.00 <2.00	<3.00 <9.00 <2.00	× <3.00 <9.00 4.09 ×
	34413 39175 HA HA BROMMTH MVC		· `	~ ~	<6.00 <0.300 <6.00 <0.300	~	~	•	~	~
	81524 34418 P1 HA DCBZ CHLORMTH		~ `	~ ~	<4.50 <0.400 <4.50 <0.400	•	~	~	~	~
	4 81551 1 P1 2 XYL				(2.00					
06-	34371 99634 P! P! EBZ BRBZ				<1.00 <5.00 <1.00 <5.00 <5.00	·	Ĭ	Ť	Ť	Ť
PLANT 78 3-5-90 BOB CHESSON	34301 P1 CLBZ				00.15	·	·	·	·	·
PROJECT NAME PROJECT MANAGER	34030 34010 PI PI BZ BZME			•	<0.70 <1.00 <0.70 <1.00 <0.70 <1.00	·	Ť	•	Ť	Ť
PROJECT NUMBER FIELD GROUP BCSM3	STORET CODE: METHOD CODE: PARAMETER:		3 3 BCSW3-3 03/09/90	4 BCSW3-4 03/09/90 5 BCSW3-5 03/09/90	BCSW3 6 BCSW3-6 03/08/90 17:10 RCSW3 7 RCSW3-7 03/08/90 11:30	8 BCSW3-8 03/08/90	9 BCSM3-9 03/08/90	10 BCSW3-10 03/08/90	11BCSW3-DUPE 03/09/90	14 TRPBLK 03/02/90

PROJECT NUMBER FIELD GROUP BCSW3	PROJECT PROJECT	NAME MANAGER	NAME PLANT 78 3-5-90 MANAGER BOB CHESSON	2-90										
STORET CODE:	34501	34496	34546	32106	34531	81522	34506	32102	32101	34541	34699	34511	39180	32105
METHOD CODE:	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA
PARAMETER:	DCE 1 1	DCA11	DCE 12T	TCLME	DCA12	DEMA	TCA 111	CTCL	BDCME	DCP 12	DCP 13T	TCA112	TCE	DBCME
UNITS:	NG/L	7/9n	7/90	7/90	7/90	7/9n	1/9n	1/9n	7/90	UG/L	T/9N	7/9n	7/9n	7/90
FLD.GRP. # SAMPLE ID DATE TIME														
BCSW3 3 BCSW3-3 03/09/90 08:45		<0.400	<0.500	<0.200	<0.200	<6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
BCSW3 4 BCSW3-4 03/09/90 08:25		<0.400	<0.500	<0.200	<0.200	<6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
BCSW3 5 BCSW3-5 03/09/90 07:15		<0.400	<0.500	<0.200	<0.200	00.9>	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
6 BCSW3-6 03/08/90		<0.400	<0.500	<0.200	<0.200	< 6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
BCSW3 7 BCSW3-7 03/08/90 11:30	<0.700	<0.400	<0.500	<0.200	<0.200	<6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
8 BCSW3-8 03/08/90		<0.400	<0.500	<0.200	<0.200	00.9>	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
9 BCSM3-9 03/08/90		<0.400	<0.500	<0.200	<0.200	00.9>	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
BCSW3 10 BCSW3-10 03/08/90 16:15		<0.400	<0.500	<0.200	<0.200	00.9>	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
11BCSW3-DUPE 03/09/90		<0.400	<0.500	<0.200	<0.200	<6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500
BCSW3 14 TRPBLK 03/02/90 17:00	·	<0.400	<0.500	<0.200	<0.200	<6.00	<0.200	<0.600	<0.500	<0.200	<2.00	<0.300	<0.600	<0.500

	0 2	>	۲		4	4	4	4	4	4	4	4	4	0
	34200 ADMS	ACN	UG,		<u></u>	<u></u>	ς.	4.1.	<u>-</u>	∵	ς.	~	~	芝
	34205 ADMS	ACNP	7/9n		<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	NRQ
	99388 DIR	/DROCARB	7/9n		<512	<512	<512	<512	<512	<512	<512	<512	<512	NRQ
	81524 HA	DCBZ H)	1/9n		<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
	99634 HA	BRBZ	7/9n		< 2	< 2	< 2	\$	< 2	< 2	<5	< 2	\$	< 2
	9776 I HA	CLHX1	1/9 0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	34301 HA	CLBZ	7/9n		<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
	34516 HA	PCA	7/9n		<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330
	34475 HA	PCE	7/90		<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330	<0.330
	97758 HA	TCP	7/9N		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
06-9	77562 HA	PCA	ÚG/L		<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
PLANT 78 3-5-90 BOB CHESSON	32104 HA	TBME	UG/L		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
NAME	34576 HA	CEVETH	NG/L		<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700
PROJECT PROJECT	34704 HA	DCP 13C	UG/L		<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
PROJECT NUMBER FIELD GROUP BCSM3	DE: 9E:			# SAMPLE ID DATE TIME	3 BCSW3-3 03/09/90 08:45	4 BCSW3-4 03/09/90 08:25	5 BCSW3-5 03/09/90 07:15	6 BCSW3-6 03/08/90 17:10	7 BCSW3-7 03/08/90 11:30	8 BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	10 BCSW3-10 03/08/90 16:15	11BCSW3-DUPE 03/09/90 07:15	14 TRPBLK 03/02/90 17:00
	STORET CODE:	PARAMETER	UNITS:	FLD.GRP.	BCSM3	BCSM3	BCSM3	BCSW3	BCSM3	BCSM3	BCSM3	BCSW3	BCSW3	BCSW3

PROJECT NUMBER FIELD GROUP BCSW3		PROJECT	PROJECT NAME PLANI /8 3-5-90 PROJECT MANAGER BOB CHESSON	CHESSON	9-4n											
ET CODE:		81553	77089	34220	97693	39120	34526	34230	34242	34247	34521	77147	77247	34292	34273 ADMS	
OD CODE:		ADMS	ADMS AN IL INE	ADMS ANTH AI	ADMS ADMS	ADMS	ADMS	BZBF	BZKF	BZAP	BZGHIP	BZLAL	BENZOA	BZBP	BISZCEE	
ne len: S:		7/90	1/9n	7/9n	1/90	1/90	UG/L	7/90	7/9n	1/9n	7/90	7/90	1/90	7/90	1/9n	
GRP. # SAMPLE ID DATE TIME	E TIME						,	;	•	,		00	(6)	12	0 17	
CSW3 3 BCSW3-3 03/09/9	0 08:45	<3.0	\$	-:->	<5.0	<13	88.0>	6.1.	45.4	47.0	- :	97.17	20.03		0.	
7 BCSW3-4 03/09/9	0.08:25	<3.0	\$	-:->	<5.0	<13	<0.88	6.1>	<2.4	<2.6	-:->	87.15	57.05	75.1	0.17	
0/00/00 1 011000 1 01100	0 07:15	0.60	0	<1.1	<5.0	<13	88.0>	<1.9	<2.4	<2.6	-:-	<1.28	<6.23	<2.1	0.1>	
COM3 3 BCOM3-3 U3/09/3	17.10	0.0	; 5		(5.0	<13	<0.88	<1.9	<2.4	<2.6	>	<1.28	<6.23	<2.1	<1.0	
CSM3 6 BCSM3-6 U3/U8/	01:// 0	0.00	, ć		0.0	7.50	00 0/	0 1	(2) A	4 62	<1.1	<1.28	<6.23	<2.1	0.1>	
CSW3 7 BCSW3-7 03/08/5	0 11:30	<3.0	25		0.0	2.5	00.00		1.27	72.6		71 28	66 23	<22.1	<1.0	
CSM3 8 BCSM3-8 03/08/5	0 13:30	<3.0	< 5	-:->	<2.0	£1>	88.0>	۲۷	4.7.	77.0		2000	65. 77	72.1	0 17	
CSW3 9 BCSW3-9 03/08/5	0 14:50	<3.0	< 5	-:->	<5.0	<13	88.0>	61.9	4.7.4	4.2.5	-:;	97.17	67.07			
CSW3 10 BCSW3-10 03/08/5	0 16:15	<3.0	< 5	<1.1	<5.0	<13	<0.88	<1.9	<2.4	<2.6 .5.6	-:	87.17	60.23	72.1	0.17	
2/60/E0 11BCSW3-DIIPF 03/09/9	0 07:15	<3.0	4 5	-:->	<5.0	<13	<0.88	6.1>	45.4	4.7.		87.17	57.0	1.27	0.14	
CCW3 14 TRPRIK 03/02/9	0 17:00	NRO	NRO	NRO	NRO	NRQ	NRO	NRQ	NRO	NRQ	NRO	NRO	NKO	SKC	שאע	

	81302 ADMS DBF	UG/L	<1.03	<1.03	<1.03	<1.03	<1.03	<1.03	<1.03	<1.03	<1.03	NRQ
	34556 ADMS DBAHA	7/9n	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90	NRQ
	97695 ADMS DBAJA	UG/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	NRQ
	34320 ADMS CHRYSENE	NG/L	4.1.4	<1.4	<1.4	41.4	<1.4	<1.4	41.4	<1.4	41.4	NRQ
	34641 ADMS CPPE4	7/9n	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	NRQ
	34452 ADMS C3NP4	NG/L	<1.6	41.6	41.6	41.6	41.6	<1.6	41.6	41.6	41.6	NRQ
	34586 ADMS CLPH2	UG/L	<1.1	<1.1	-:->		</td <td> · · ·</td> <td>-:-></td> <td><1.1</td> <td><1.1</td> <td>NRQ</td>	· · ·	-:->	<1.1	<1.1	NRQ
	34581 ADMS CLNPH2	7/9n	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	NRO
	97694 ADMS CLNPH1	UG/L	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	NRQ
	99075 ADMS CLANIL4	N6/L	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	NRQ
06-	34636 ADMS BPPE4	1/9n	<0.99	<0.99	<0.99	<0.99	<0.99	<0.99	<0.99	<0.99	<0.99	NRQ
PLANT 78 3-5-90 BOB CHESSON	34283 ADMS B1S2C1E	NG/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	NRQ
NAME	39 100 ADMS BISZEHP	NG/L	2.4	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	NRQ
PROJECT	34278 ADMS B1S2CEM	UG/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	NRQ
PROJECT NUMBER FIELD GROUP BCSW3		# SAMPLE 10 DATE TIME	03/06/60	4 BCSW3-4 03/09/90 08:25	5 BCSW3-5 03/09/90 07:15	6 BCSW3-6 03/08/90 17:10	7 BCSW3-7 03/08/90 11:30	8 BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	10 BCSW3-10 03/08/90 16:15		14 TRPBLK 03/02/90 17:00
	STORET CODE: METHOD CODE: PARAMETER:	UNITS: FLD.GRP.	BCSM3	BCSW3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3

TELD CHOOL BOOMS		MANAGER 34566	BOB CHESSON		34631	34601	77541	98678		7647	86926	34606	97711	1 25 25
	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS	ADMS
	D-N-BUPH	DCBZ13	DCBZ12	DCBZ14	DCBZD33	DCP24	DCP26	DEPH		MBAAN712	MPEA!	DMP24	DN46M	DMPH
	7/90	7/9n	U6/L	UG/L	7/90	N6/L	1/9 0	UG/L		7/90	7/9n	UG/L	7/90	7/90
DATE TIME														
03/09/90 08:45	<1.5	<3.2	<3.9	<3.5	<1.6	<1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
9/90 08:25	<1.5	<3.2	<3.9	<3.5	<1.6	<1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
9/90 07:15	<1.5	<3.2	<3.9	<3.5	<1.6	4.1.	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
01:11 06/80	<1.5	<3.2	<3.9	<3.5	<1.6	4.1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
38/90 11:30	<1.5	<3.2	<3.9	<3.5	41.6	4.1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
08/90 13:30	<1.5	<3.2	<3.9	<3.5	41.6	4.1.4	<1.28	<2.5	<5.00	<2.78	<1,52	<5.0	<2.40	<2.6
03/08/90 14:50	<1.5	<3.2	<3.9	<3.5	41.6	<1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
08/90 16:15	<1.5	<3.2	<3.9	<3.5	<1.6	<1.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
03/09/90 07:15	<1.5	<3.2	<3.9	<3.5	<1.6	41.4	<1.28	<2.5	<5.00	<2.78	<1.52	<5.0	<2.40	<2.6
03/02/90 17:00	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO	NRO

	34403 ADMS NP 123	7/9n	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	41.4	<1.4	<1.4	NRQ
	34396 ADMS HCLEA		<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	NRQ
	34386 ADMS HCCP	7/9n	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	NRQ
	34391 ADMS HCBU	7/9N	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	NRQ
	39700 ADMS HCLBZ	7/90	41.4	41.4	41.4	<1.4	<1.4	41.4	41.4	<1.4	4.1.4	NRQ
	34381 ADMS LUORENE	UG/L	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	NRO
	34376 ADMS FLA FL		<1.6	<1.6	<1.6	41.6	<1.6	<1.6	<1.6	41.6	<1.6	NRQ
	97699 ADMS EMSULFN	UG/L	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	NRQ
	34596 ADMS DNOP	7/90	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NRQ
	34346 ADMS DIP12	7/90	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NRQ
06-	77579 ADMS DPA	ÙG/L	<3.84	<3.84	<3.84	<3.84	<3.84	<3.84	<3.84	<3.84	<3.84	NRQ
PLANT 78 3-5-90 BOB CHESSON	34626 ADMS 26DNT	NG/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	NRQ
VAME	34611 ADMS DNT24	7/90	<1.1	</td <td><1.1</td> <td>- I.I</td> <td>-:-></td> <td></td> <td>-:-></td> <td>-:-></td> <td>-:-></td> <td>NRQ</td>	<1.1	- I.I	-:->		-:->	-:->	-:->	NRQ
PROJECT !	34616 ADMS DNP24	1/9n	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	NRQ
PROJECT NUMBER FIELD GROUP BCSW3	a.a	# SAMPLE ID DATE TIME	03/06/60		5 BCSW3-5 03/09/90 07:15	03/08/30	03/08/30		9 BCSW3-9 03/08/90 14:50	10 BCSW3-10 03/08/90 16:15	IBCSW3-DUPE 03/09/90 07:15	4 TRPBLK 03/02/90 17:00
	STORET CODE: METHOD CODE: PARAMETER:	UNITS: FLD.GRP.	BCSW3	BCSW3	BCSW3	BCSM3	BCSM3	BCSM3	BCSM3	BCSW3	BCSM3	

	7704	\DMS	NNSPPRD	1/91		.2.1	72.1	72.1	.2.1	2.1	2.1	2.1	2.1	2.1	NRQ	
	_		_													
	3444	ADA	N0382	/90		<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	6.0>	0.0	<0.9	NRO	
	99079	ADMS	NOZAN 1L4	1/90		<2.72	<2.72	<2.72	<2.72	<2.72	<2.72	<2.72	<2.72	<2.72	NRO	
	99078	ADMS	NO2AN IL3	1/90		<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	NRQ	
	71066	ADMS	NO2AN IL2	1/9n		<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	NRQ	
	97703	ADMS	NONAPH2	1/90		<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	NRQ	
			NONAPHIAMI			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NRQ	
	34696	ADMS	NAPHAMI	UG/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	NRQ	
	77416	ADMS	MTNPH2	UG/L		<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	NRQ	
	97701	ADMS	MMSULFN	UG/L		<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	NRQ	
2-90	97700	ADMS	MECHLAN3	J/9n		<1.5	<1.5	<1.5	<1,5	<1.5	<1.5	<1.5	<1.5	<1.5	NRQ	
PLANT 78 3-5-90 BOB CHESSON	99074	ADMS				<3.89	<3.89	<3.89	<3.89	<3.89	<3.89	<3.89	<3.89	<3.89	NRQ	
NAME PI MANAGER BO	99073	ADMS	MEPH2	7/90		<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	<1.28	NRQ	
PROJECT PROJECT	34408	ADMS	ISOP	1/9n		<0.91	(0.91	(0.91	<0.91	<0.91	(0.91	<0.91	<0.91	<0.91	NRQ	
PROJECT NUMBER FIELD GROUP BCSW3					LE 1D DATE TIME	03/09/80		BCSW3-5 03/09/90 07:15	03/08/80	BCSW3-7 03/08/90 11:30	BCSW3-8 03/08/90 13:30	BCSW3-9 03/08/90 14:50	BCSW3-10 03/08/90 16:15	03/09/90	TRPBLK 03/02/90 17:00	
PROJECT NUMI FIELD GROUP	.DE:	DE:	**		# SAMPLE 1D	3 BC	4 BC	5 BC	9 BC	7 BC	8 BC	9 BC	10 BCS	11BCSW3-DUPE	14 T	
	STORET CODE:	METHOD CO	PARAMETER:	UNITS:	FLD.GRP.	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	BCSM3	

	SH SH	2	0.	0.	0.	0.	0.	0 '	0.	0.	0	30	
	97709 ADMS	ne,	<5.0	\$	<5	<5°	<5.	<5°	(5,	<5	<5°	Z	
	97708 ADMS	7/9n	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	NRQ	
	34694 ADMS TPHEN	1/9n	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	NRQ	
	34461 ADMS	T/9n	96.0>	<0.96	96.0>	<0.96	<0.96	96.0>	96.0>	<0.96	96.0>	NRQ	
	ADMS ADMS	NG/L	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	NRQ	
	97706 ADMS	1/90	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	NRQ	
	97705 ADMS	1/90	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	NRO	
	39032 ADMS	NG/L	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	NRQ	
	34433 ADMS	7/9n	-:->	·	<1.1>	<1.1	<u></u>	>	<1.1>	<1.1>	<1.1>	NRO	
	34428 ADMS	NG/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	NRQ	
06-	34438 ADMS	7/9n	<2.9	<2.9	<2.9	<2.9	<2.9	<2.9	<2.9	<2.9	<2.9	NRQ	
PLANT 78 3-5-90 BOB CHESSON	97715 ADMS NTSRN	7/90	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	NRQ	
NAME PI MANAGER B(34646 ADMS	7/9n	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	NRQ	
PROJECT	34591 ADMS NTPH2	7/9n	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	<0.72	NRQ	
PROJECT NUMBER FIELD GROUP BCSW3	DE:	**	03/09/60	4 BCSW3-4 03/09/90 08:25	5 BCSW3-5 03/09/90 07:15	6 BCSW3-6 03/08/90 17:10	7 BCSW3-7 03/08/90 11:30	B BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	10 BCSW3-10 03/08/90 16:15	11BCSW3-DUPE 03/09/90 07:15	14 TRPBLK 03/02/90 17:00	
	STORET CODE METHOD CODE PARAMETER.	UNITS: FLD.GRP.	BCSM3	BCSM3	BCSM3	BCSW3	BCSW3	BCSW3	BCSW3	BCSM3	BCSW3	BCSM3	

	34621 ADMS	TCP246	NG/L	;	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	NRQ
	77687 ADMS	TCP245	T/90	;	<u></u>	<u>-</u>	-	<u>.</u>	~	<u>-</u>	~	-	~	NRO
2-90	97209 ADMS	2346CP	UG/L		-:-	-:->	-:->	-:>	>	 	<1.1>	<1.1>	<1.1>	NRQ
PLANT 78 3-5-90 BOB CHESSON	34551 ADMS	TCB124	1/9n		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	NRQ
NAME MANAGER	97710 ADMS	TCB1	N6/L		4.1.4	4.1.4	41.4	41.4	<1.4	41.4	<1.4	<1.4	<1.4	NRQ
PROJECT PROJECT	34469 ADMS	PYR	7/90		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NRQ
				그	08:45	08:25	07:15	17:10	11:30	13:30	14:50	16:15	07:15	17:00
R BCSM3				DATE	03/09/90	03/08/80	03/06/60	03/08/80	08/80/20	03/08/90	03/08/90	03/08/80	03/06/60	03/05/90
PROJECT NUMBE				SAMPLE ID	BCSW3-3	BCSW3-4	BCSW3-5	BCSW3-6	BCSW3-7	BCSW3-8		BCSW3-10	CSW3-DUPE	TRPBLK
PR0 F1E	E:			#	m	4	٠ د	2	1	- α	σ	2	- 2	4
	STORET CODE	PARAMETER	UNITS:	FLD. GRP.	BCSM3	RCSM3	BCCM3	BCSW3	BCSW3	RCSW3	RCSW3	BCSW3	BCSW3	BCSM3

	34491 ADHA ADHA 1CFMETHA 4G/KG-DRY (1340 (1310 (1240 (1230 (1230 (1230 (1230 (1230
	3426 ADHA ADHA ADHA CF35 (522 (476 (497 (485 (497 (497 (492 (492 (492 (492 (492 (492 (492 (492
	34314 ADHA CLETHA M (G/KG-DRY M (7714 (771
	34495 ADHA VC G/KG-DRY M <88.3 <78.6 <86.2 <82.0 <71.7 <96.5 <81.2 <81.2 <81.2 <81.2 <81.2
	34334 ADHA ADHA IG/KG-DRY M (2210) (2240) (2240) (2263) (2220) (2220) (2220) (2220) (2220) (2220) (2220) (2220) (2220)
	34416 ADHA THYL BRODG (G/KG-DRY P (1200 (1
	34421 ADHA MECLRIDEME 16/KG-DRY R <107 <95.3 <104 <99.4 <99.5 <117 <98.5 <98.5 <98.5 <98.5 <98.5
	98578 ADP I DCB, T (1200 (1070 (1180 (1120 (1120 (1120 (1120 (1110 (1100 (
	45510 ADP1 1LENES.TO 1G/KG-DRY P 476 \$525 \$497 \$497 \$492 \$492 \$492 \$492 \$492 \$492 \$492 \$492
	97036 ADP1 BRBZXN 1G/KG-DR7 N (1340 (1190 (1240 (1240 (1240 (1230) (1230 (1230) (1230) (1230) (1230 (1230) (1230
-5-90	34374 ADP1 EBZ 1G/KG-DRY P <238 <267 <246 <292 <292 <292 <296 <296 <296 <296 <29
PROJECT NAME PLANT 78 3~5-90 PROJECT MANAGER BOB CHESSON	34304 ADP 1 CBZ CBZ <267 <238 <261 <246 <292 <292 <296 <296 <296 <296 <296 <29
T NAME	34483 ADP1 TOLUENE MG/KG-DRY 1 <267 <2261 <224 <217 <292 <246 <246 <277 NRQ
PROJECT	34237 34483 34304 3437 ADP1 ADP1 ADP1 ADP BZ TOLUENE CBZ EB MG/KG-DRY MG/KG-DRY MG/KG-DRY MG/KG-DRY C267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <2267 <22
æ	TIME 08:45 08:25 07:15 17:10 11:30 13:30 14:50 16:15
ER BCSS3	MPLE 1D DATE BCSW3-3 03/09/90 BCSW3-4 03/09/90 BCSW3-5 03/09/90 BCSW3-5 03/08/90 BCSW3-7 03/08/90 BCSW3-9 03/08/90 BCSW3-9 03/08/90 CSW3-10 03/08/90 CSW3-10 03/08/90 TRPBLK 03/02/90
PROJECT NUMBER FIELD GROUP	# SAMPLE 1D DATE 3 BCSW3-3 03/09/90 4 BCSW3-4 03/09/90 5 BCSW3-6 03/08/90 6 BCSW3-6 03/08/90 7 BCSW3-7 03/08/90 8 BCSW3-7 03/08/90 10 BCSW3-10 03/08/90 11 BCSW3-10 03/08/90 11 BCSW3-10 03/08/90 11 BCSW3-DDPE 03/09/90
PR(STORET CODE: METHOD CODE: PARAMETER: UNITS: ELD.GRP. # BCSS3 3 BCSS3 4 BCSS3 4 BCSS3 6 BCSS3 6 BCSS3 6 BCSS3 19 BCSS3 118 BCSS3 118

	34702 ADHA 11S13DCPRO MG/KG-DRY <535 <497 <492 <492 <492 <492 <492 <492 <492 <492
	34309 ADHA ADHA ADHA ADHA ADHA AG/KG-DRY MG/ (120 (120 (120 (120 (120 (120 (120 (120
	34487 ADHA TCET D (160 (149 (175 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (148 (175 (175 (175 (175 (175 (175 (175 (175
	34544 34697 ADHA 12DCLPRT-13DCPR0P MG/KG-DRY MG/KG-DRY (53.5 <53.5 47.6 47.6 49.7
	34299 34330 ADHA CTCL IDEBRDCLNETHA MG/KG-DRY MG/KG-DRY <160 <134 <143 <119 <149 <124 <130 <109 <175 <148 <175 <148 <175 <166 <186 <187 NRQ NRG
	34509 ADHA AG/KG-DRY P (53.5 (47.6 (53.5 (49.7 (49.7 (49.2 (49.2 (49.2 (49.2 (49.2 (49.2 (55.4 NRQ
	78756 ADHA 12DCETHA 1 4G/KG-DRY P (1190 (1310 (1310 (1310 (130) (1230 (1230 (1230 (1230 (1230
	34534 ADHA 12DCETHA MG/KG-DRY P (53 (52 (50 (53 (54 (54) (49) (49) (49) (49) (49) (49)
-5-90	
PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	34499 34549 34318 ADHA ADHA ADHA ADHA ADHA IIDCETHA T-I2DCETCHLOROFORM MG/KG-DRY MG/KG-DRY C107 C134 C53 C104 C131 C52 C99.4 C124 C58 C86.9 C109 C48 C117 C146 C58 C98.5 C123 C49 C111 C139 C55 C123 C49 C111 C139 C55 C123 C49 C111 C139 C55
PROJECT NAME PROJECT MANAGER	34499 ADHA 11DCETHA MG/KG-DRY <107 <95.3 <104 <86.9 <117 <98.5 <98.5 <98.5 <98.5 <98.5
PROJEC	34504 ADHA 110CET MG/KG-DRY <187 <167 <167 <174 <152 <205 <172 <172 <172 <172 <172 <172 <172 <172
PROJECT NUMBER FIELD GROUP BCSS3	CODE: CODE: *** SAMPLE 10 DATE TIME *** BCSW3-3 03/09/90 08:45 *** A BCSW3-4 03/09/90 08:25 *** A BCSW3-5 03/09/90 08:25 *** A BCSW3-6 03/08/90 17:10 *** A BCSW3-6 03/08/90 17:10 *** BCSW3-6 03/08/90 17:30 *** BCSW3-8 03/08/90 18:35 *** A BCSW3-9 03/08/90 16:15
	STORET OF THOSE OF TH

	99451	ADMS	ACNPY	/KG-DRY		<130	< 140	<130	<130	<120	<140	<130	<130	<130	NRQ	
			ACNP			<180	<190	<180	< 180	<170	<200	<180	<190	< 180	NRO	
	98233	AD	PHC	KG-DRY MG/		<27.3	<20.9	<28.0	<25.6	<15.7	<24.6	<22.1	<26.0	<13.7	NRQ	
	98578	ADHA	DCB, T	KG-DRY MG/		<535	<476	<522	<497	<435	<585	<492	<492	<554	NRQ	
	_		BRBZ	MG/		<1340	<1190	<1310	<1240	<1090	<1460	<1230	<1230	<1390	NRQ	
	97039			2		<1340	<1190	<1310	<1240	<1090	<1460	<1230	<1230	<1390	NRQ	
	34304	ADHA	CLBZ	KG-DRY MG/		<321	<286	<313	<298	<261	<351	<295	<295	<333	NRQ	
			TCLET			<321	<286	<313	<298	<261	<351	<295	<295	<333	NRQ	
			122TCLETH			<53.5	<47.6	<52.2	<49.7	<43.5	<58.5	<49.2	<49.2	<55.4	NRQ	
			TCLPR112			<1340	<1190	<1310	<1240	<1090	<1460	<1230	<1230	<1390	NRQ	
06-	97042	ADHA	2TCLETH	/KG-DRY MG		<1340	<1190	<1310	<1240	<1090	<1460	<1230	<1230	<1390	NRO	
BOB CHESSON	34290	ADHA	OMOF ORM 111	/KG-DRY MG		<267	<238	<261	<249	<217	<292	<246	<246	<277	NRQ	
PROJECT MANAGER BOB CHESSON	34579	ADHA	2CLVE BR	/KG-DRY MG		<187	<167	<183	<174	<152	<205	<172	<172	<194	NRQ	
PROJECT	34514	ADHA	112TCLETHA	MG/KG-DRY MG/KG-DRY MG/KG-DRY MG/KG-DRY								<36.9	<36.9	<41.6	NRQ	
ę,			_	_	DATE TIME	90 08:45	90 08:25	90 07:15	90 17:10	90 11:30	90 13:30	90 14:50	90 16:15	90 07:15	90 17:00	
NUMBER OUP BCSS3						M3-3 03/09/	W3-4 03/09/	W3-5 03/09/	M3-6 03/08/	W3-7 03/08/	BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	3-10 03/08/	DUPE 03/09/	13 TRPBLK 03/02/90	
PROJECT NUMBER	<u>ښ</u>	<u>ب</u>			# SAMPLE ID	3 BCS	4 BCS	5 BCS	e BCS	7 BCS	8 BCS	9 BCS	10 BCSW	11BCSW3-	13 TR	
	STORET COD	METHOD CODE:	PARAMETER:	UNITS:	FLD.GRP.	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	

	99458 ADMS	BIS2CEE 16/KG-DRY		498	<100	96>	<95	<88>	<110	<93	<98	96>	NRO	
	99463 ADMS	BZBP 3/KG-DRY P		<200	<210	<200	<190	< 180	<220	<190	<200	<200	NRQ	
	97676 ADMS	BENZOA G/KG-DRY M		009>	<630	<590	<580	<540	<650	<570	<610	<590	NRQ	
	97647 ADMS	BZLAL IG/KG-DRY M		<120	<130	<120	<120	<110	<130	<120	<120	<120	NRQ	
	99691 ADMS	BZGHIP G/KG-DRY M		<100	<110	< 100	66>	(9)	<110	96>	<100	<100	NRQ	
	99456 ADMS	BZAP IG/KG-DRY M		<250	<260	<250	<240	<220	<270	<240	<250	<250	NRQ	
	99455 ADMS	BZKF IG/KG-DRY M		<230	<240	<230	<220	<210	<250	<220	<230	<230	NRQ	
	99454 ADMS	BZBF G/KG-DRY M		<180	<190	<180	<180	<160	<200	<170	<180	<180	NRQ	
	99453 ADMS	BZAA G/KG-DRY M		<85	06>	<84	<83	9/>	<92	- 8 (8)	98>	<84	NRQ	
	97646 ADMS	BZD IG/KG-DRY M		<1200	<1300	<1200	<1200	<1100	<1300	<1100	<1200	<1200	NRQ	
-5-90	97645 ADMS	ANTH AMINOBPH4 -DRY MG/KG-DRY M		<480	<510	<480	<470	<430	<520	<460	<490	<480	NRO	
PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	99452 ADMS	ANTH A		<100	<110	<100	<100	46>	<110	66>	<110	<100	NRQ	
PROJECT NAME PROJECT MANAGER	97644 ADMS	ANILINE 16/KG-DRY 1		<150	<160	<150	<150	<140	<170	<150	<160	<150	NRQ	
PROJEC' PROJEC'	97643 ADMS	ACPHN ANILINE ANTH AMINOBPH MG/KG-DRY MG/KG-DRY MG/KG-DF		<290	<310	<290	<280	<260	<320	<280	<290	<290	NRQ	
		_	TIME	8:45	08:25	07:15	17:10	1:30	13:30	4:50	16:15	07:15	17:00	
BCSS3			DATE	0 06/0	0 06/0				1 06/	1/90 1		0 06/		
				03/08	03/00	03/09/80	03/08/30	03/08	03/08	03/08	03/08	03/09	03/05	
PROJECT NUMBER FIELD GROUP			SAMPLE ID	BCSW3-3 03/09/90 08:45	BCSW3-4 03/09/90	BCSM3-5	BCSM3-6	BCSM3-7 03/08/90	BCSM3-8 03/08/90	BCSW3-9 03/08/90 14:50	BCSW3-10 03/08/90	IBCSW3-DUPE 03/09/90	13 TRPBLK 03/02/90	
FI	CODE:	E. S. :	74	3	3 4	3 2	3 6	3 7	3	3	_			
	STORET CODE	PARAMETER: UNITS:	FLD, GRP	BCSS	BCSS3	BCSS3	BCSS3	BCSS.	BCSS3	BCSS	BCSS	BCSS3	BCSS3	

	97651	ADMS	DBF	G/KG-DRY		<130	<130	<120	<120	<110	<140	<120	<130	<120	NRQ	
	99466	ADMS	DBAHA	3/KG-DRY M		487	<92	98>	<85	<78	46	<83	<88>	98>	NRQ	
	97650	ADMS	DBAJA	KG-DRY MC		<480	<510	<480	<470	<430	<520	<460	<490	<480	NRQ	
	06966	ADMS	CHRYSENE	KG-DRY MC		<130	<140	<130	<130	<120	<140	<130	<130	<130	NRQ	
		ADMS		Σ		<120	<120	<110	<110	<100	<130	<110	<120	<110	NRQ	
	89663	ADMS	C3NP4	3/KG-DRY MC		<160	<160	<150	<150	<140	<170	<150	<160	<150	NRQ	
	99497	ADMS	CLPH2	/KG-DRY MG		<110	<110	<110	<110	<97	<120	<100	<110	<110	NRQ	
	99464	ADMS	CLNPH2	KG-DRY MG		<120	<130	<120	<120	<110	<130	<120	<120	<120	NRQ	
	97649	ADMS	ICLNAP	/KG-DRY MG		<130	<140	<130	<130	<120	<140	<130	<130	<130	NRQ	
	97648	ADMS	CLAN IL4	KG-DRY MC		<160	<170	<160	<160	<150	< 180	<150	<160	091>	NRQ	
2-90	99462	ADMS	BPPE4	KG-DRY MG		96>	<100	46>	<93	98>	<100	16>	96>	46>	NRQ	
PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	97547	ADMS	BIS2CIE	G/KG-DRY MC		<160	<170	091>	091>	<140	<170	<150	<160	091>	NRQ	
NAME PI	99460	ADMS	BI SZEHP	MG/KG-DRY MG/KG-DRY		<190	<200	<190	<190	<170	<210	< 180	<190	<190	NRQ	
PROJECT	97493	ADMS	BISSCEM	MG/KG-DRY M		<110	<120	<110	<110	<100	<120	<110	<110	<110	NRQ	
PROJECT NUMBER FIELD GROUP BCSS3	••			E	# SAMPLE ID DATE TIME	3 BCSW3-3 03/09/90 08:45	4 BCSW3-4 03/09/90 08:25	5 BCSW3-5 03/09/90 07:15	6 BCSW3-6 03/08/90 17:10	7 BCSW3-7 03/08/90 11:30	B BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	0 BCSW3-10 03/08/90 16:15	IBCSW3-DUPE 03/09/90 07:15	3 TRPBLK 03/02/90 17:00	
a. 14.	STORET CODE	METHOD CODE:	PARAMETER:	UNITS:	٠.	BCSS3	BCSS3	BCSS3	BCSS3 (BCSS3	BCSS3 (BCSS3	BCSS3 1	_	BCSS3 1.	

	578 MC	W94	1 1	000	230	240	230	230	210	<250	220	230	230	ARQ.	
	976	DN46M	716/NG-1	`	"	~	Ÿ	Ÿ	♡	♡	♡	Ÿ	♡		
	99473	HAMO	16/K6-DK1	0101	0675	<2/0	<250	<250	<230	<270	<240	<250	<250	NRO	
	99499	DMP24	G/KG-DKI	0000	4480	<510	<480	<470	<430	<520	<460	<490	<480	NRO	
	77976	DCP26	S/KG-DKY M		4120	<130	<120	<120	<110	<130	<120	<120	<120	NRO	
	97654	MPEA11	KG-DRY M		(150	<150	<140	<140	<130	<160	<140	<150	<140	NRQ	
	97653	BAAN712	MG/KG-DRY MG		<270	<280	<260	<260	<240	<290	<260	<270	<260	NRO	
	97652	PDMAABZ	/KG-DRY		<48 0	<510	<480	<470	<430	<520	<460	<490	<480	NRO	
	99472	DEPH	3/KG-DRY MC		<240	<260	<240	<240	<220	<260	<230	<250	<240	NRO	
		^ +	KG-DRY MC		<140	<140	<140	<130	<120	<150	<130	<140	<140	NRO	
	99471	DCBZD33	3/KG-DRY MC		<150	<160	<150	<150	<140	<170	<150	<160	<150	NRO	
5-90	99469	AUMS DCBZ14	G/KG-DRY MI		<340	<360	<330	<330	<310	<370	<320	<340	<340	NRO	
PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	99470	ADMS DCBZ12	MG/KG-DRY MG/KG-DRY MG/KG-DRY MG/KG-DRY		<370	<390	<370	<360	<340	<400	<350	<380	<370	NRO	
NAME P	99468	ADMS DCBZ13	G/KG-DRY M		<310	<320	<300	<300	<280	<330	<290	<310	<300	NBO	
PROJECT PROJECT	99467	ADMS	G/KG-DRY M		<150	<150	<140	<140	<130	4160	<140	<150	<140	NRO	
				프	08:45	08:25	07:15	7 . 10	11.30	3.30	4.50	6.15	07.15	17.00	2
BCSS3				DATE	0 06/60	0 06/60	0 06/60	03/08/90 17:10	06/80/60	03/08/90 13:30	1 06/80	18/90	06/60	106/60	06/70
					BCSW3-3 03/09/90	RCSW3-4 03/09/90	RCSW3-5 03/09/90	-6 03/1	7 03/1	-8 03/1	BCSW3-9 03/08/50 14-50	10 03/1	1/60 26	K 03/1	60
PROJECT NUMBER FIELD GROUP				# SAMPLE ID	BCSM3-	BCSM3-	RCSM3-	BCSW3-6	BCSH3-7	BCSW3-8	BCCH3-	BCSM3-10 03/08/90 16:15	TRESULT DIEDE 03/09/90	TRPBIK 03/02/90	=
PR F	CODE:	CODE: TER:			S3 3	23 4	22	23 6	20 00	2000	0 00	01 60			
1	STORET CODE:	METHOD COD PARAMETER:	UNITS:	FLD. GRP	BCSS3	RCSSS	000	200	200	200	200	2 4	200	60000	2

	99482 ADMS	/KG-DRY	<130	<140	<130	<130	<120	<140	<120	<130	<130	NRQ	
	99480 ADMS HCLEA	KG-DRY MG,	<430	<450	<420	<420	<390	<470	<410	<430	<420	NRQ	
	97657 ADMS HCCP	G/KG-DRY MG	<200	<210	<190	<190	<180	<210	<190	<200	<200	NRQ	
	99479 ADMS HCBU	16/KG-DRY M	<340	<360	<340	<330	<310	<370	<330	<340	<340	NRQ	
	99478 ADMS HCL BZ	MG/KG-DRY P	<130	<140	<130	<130	<120	<140	<130	<130	<130	NRQ	
	99692 ADMS FI	MG/KG-DRY	<150	<160	<150	<140	<130	<160	<140	<150	<150	NRQ	
	99689 ADMS FLA	MG/KG-DRY	<160	<170	<160	<150	<140	<170	<150	<160	<160	NRQ	
	99476 ADMS DNOP	MG/KG-DRY	86>	<100	96>	<95	<88	<110	<93	86>	96>	NRQ	
	97656 ADMS EMSULFN	MG/KG-DRY	<240	<250	<240	<230	<220	<260	<230	<240	<240	NRQ	
	99477 ADMS	MG/KG-DRY	<480	<510	<480	<470	<430	<520	<460	<490	<480	NRQ	
-5-90 N	97655 ADMS DPA	MG/KG-DRY	<370	<390	<370	<360	<330	<400	<350	<370	<370	NRQ	
PLANT 78 3-5-90 BOB CHESSON	99475 ADMS DNT26	MG/KG-DRY	<160	<170	091>	<150	<140	<170	<150	<160	<160	NRO	
PROJECT NAME PLANT 78 3-: PROJECT MANAGER BOB CHESSON	99474 ADMS DNT24	MG/KG-DRY MG/KG-DRY MG/KG-DRY	<110	<120	<110	<110	86>	<120	<100	<110	<110	NRQ	
PROJEC PROJEC	99695 ADMS DNP24	MG/KG-DRY	<290	<310	<290	<290	<260	<320	<280	<300	<290	NRQ	
533		DATE TIME	/90 08:45		/90 07:15		/90 11:30	/90 13:30	/90 14:50	790 16:15	/90 07:15	/90 17:00	
PROJECT NUMBER FIELD GROUP BCSS3		# SAMPLE ID D	3 BCSW3-3 03/09	4 BCSW3-4 03/09/90	5 BCSW3-5 03/09/90	6 BCSW3-6 03/08/90	7 BCSW3-7 03/08/90	8 BCSW3-8 03/08/90	9 BCSW3-9 03/08/90 14:50	0 BCSW3-10 03/08/90	IBCSW3-DUPE 03/09/90	3 TRPBLK 03/02/90	
<u>d</u> 4	STORET CODE: METHOD CODE: PARAMETER:	UNITS:	BCSS3	BCSS3 4	BCSS3	BCSS3 (BCSS3	BCSS3 8	BCSS3 5	BCSS3 10	=	_	

		19916	ADMS	NNSPH	G/KG-DRY		<100	<110	<100	<100	<94	<110	66>	<110	<100	NRQ	
		99926	ADMS	NNSM	MG/KG-DRY M		<280	<290	<270	<270	<250	<300	<260	<280	<270	NRQ	
		97665	ADMS	NTSBN			<120	<120	<120	<110	<110	<130	<110	<120	<120	NRQ	
		99485	ADMS	NO3BZ			(91	96>	68>	88>	<82	86>	98>	<91	06>	NRQ	
		97664	ADMS	NO2ANIL4	MG/KG-DRY MG		<260	<280	<260	<260	<240	<280	<250	<260	<260	NRQ	
		89926	ADMS	NO2AN IL3	MG/KG-DRY M		<170	<180	<170	<170	<150	<190	<160	<170	<170	NRQ	
			ADMS	NO2ANIL2	MG/KG-DRY MI		<100	<110	<100	<100	<93	<110	498	<100	<100	NRQ	
		71719	ADMS	INONAPH2	MG/KG-DRY M		<350	<370	<350	<340	<320	<380	<340	<360	<350	NRQ	
		19926	ADMS	INONAPHIAM	3/KG-DRY M		<490	<510	<480	<470	<440	<530	<460	<490	<480	NRQ	
		96966	ADMS	NAPHAM	G/KG-DRY MI		<290	<300	<280	<280	<260	<310	<270	<290	<280	NRQ	
	2-90	09926	ADMS	MTNPH2	Σ.		<310	<320	<300	<300	<270	<330	<290	<310	<300	NRQ	
	PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	97659	ADMS	MMSULFN	MG/KG-DRY MG/KG-DRY		<180	<190	<180	<180	<160	<200	<170	<180	<180	NRQ	
	NAME PANAGER B	97658	ADMS	MECHL AN3	MG/KG-DRY M		<140	<150	<140	<140	<130	<150	<130	<140	<140	NRQ	
	PROJECT PROJECT	99483	ADMS	ISOP	MG/KG-DRY M		88>	<93	<87	<85	61>	<95	<84	68>	<87	NRQ	
					Σ	TIME	08:45	08:25	07:15	:10	11:30	13:30	:50	:15	07:15	17:00	
	33					DATE		80 06,	70 06/	/90 17	/90 11	/90 13	/90 14	91 06,			
	BCSS3					10	13/09/	13/09/	13/09/	3/08/	13/08/	13/08/	13/08/	13/08/	03/09/90	33/02/	
	NUMBE					0 3	BCSW3-3 03/09/90	BCSW3-4 03/09/90	M3-5 (M3-6 (BCSM3-7 03/08/90 1	BCSM3-8 03/08/90	BCSW3-9 03/08/90 14:50	3CSM3-10 03/08/90 16:15	DUPE (TRPBLK 03/02/90	
	PROJECT NUMBER FIELD GROUP					# SAMPLE ID	BCS	BCS	BCS	BCS	BCS	BCS	BCS	BCSM	IBCSW3-DUPE	E.	
	PR(F1E	CODE:	CODE:	FR:				3 4	3	9 8	3 7	3	3	3 10	****	3 13	
		STORET CODE	METHOD CODE	PARAMETER:	UNITS:	FLD.GRP.	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSSS	BCSSS	BCSSE	BCSS3	BCSS:	
_																	

	99685	TPHEN	/KG-DRY	0667	<230	<220 <220	<220	<200	<240	<210	<220	<220	NRQ	
	97674	PRONAMD	G/KG-DRY MG	7490	<510 <510	<480	<470	<430	<520	<460	<490	<480	NRQ	
	97673	PIC2?	G/KG-DRY M	0007	(220 (230	<210	<210	<190	<230	<200	<220	<210	NRQ	
	99489	PHAN	G/KG-DRY M	703	267	9.6	06>	<83	<100	88>	<63	(91	NRQ	
	99682	PCP	IG/KG-DRY M	/210	222U	<210 <210	<210	<190	<230	<200	<210	<210	NRO	
	99487	NTSPRN	IG/KG-DRY P	/130	<120 <120	C 10	<110	<100	<130	<110	<120	<110	NRO	
	99496	ADMS NTPH4	16/KG-DRY P	/250	<230 <270	<250	<250	<230	<270	<240	<250	<250	NRO	
	99495	ADMS NTPH2	16/KG-DRY P	02/	(73	89>	89>	<63	<75	99>	<70	69>	NRQ	
	97680	ADMS MEPH4	16/KG-DRY P	/300	280	<370	<370	<340	<410	<360	<380	<370	NRQ	
	97679	ADMS MEPH2	16/KG-DRY I	/120	V120	<120	<120	<110	<130	<120	<120	<120	NRQ	
-5-90 N	97672	PHNACTN	MG/KG-DRY I	/150	V 150	<140	<140	<130	<160	<140	<150	<140	NRO	
PLANT 78 3-5-90 BOB CHESSON	17926	ADMS ADMS PECLBZ PECLN02BZ	MG/KG-DRY MG/KG-DRY MG/KG-DRY MG/KG-DR	37/	649	464	69	<58	<70	<62	<65	<64	NRQ	
PROJECT NAME PROJECT MANAGER	97670	PECLBZ	MG/KG-DRY	/140	V 140	<140	<140	<130	<150	<140	<140	<140	NRQ	
PROJEC PROJEC	69926	NNSPPRD	MG/KG-DRY	006/	\2200 \2210	<200	<200	<180	<220	<190	<200	<200	NRO	
				TIME	08:25		0 17:10	0 11:30	-	0 14:50		0 07:15	00:71 0	
R BCSS3				DATE	03/00/20	03/09/91	03/08/90	03/08/91	16/80/20	16/80/80	16/80/80	16/60/80	TRPBLK 03/02/90	
PROJECT NUMBER FIELD GROUP				SAMPLE 10 DATE TIME	BCSII3-4 03/09/90	BCSW3-5 03/09/90	BCSW3-6 03/08/90	BCSW3-7 03/08/90	BCSW3-8 03/08/90	BCSW3-9 03/08/90	BCSW3-10 03/08/90	IBCSW3-DUPE 03/09/90		
84 T	STORET CODE:	METHOD CODE: PARAMETER:	UNITS:	FLD.GRP. #	00000	BCSS3 5	BCSS3 6	BCSS3 7	BCSS3 8	BCSS3 9	BCSS3 10	_	BCSS3 13	

	418	HA	MTH	0/F		NRQ	NRQ	NRQ	NRO	NRO	NRQ	NRO	VRO	VRQ	400	
						NRQ										
	81524	<u>a</u> .	DCBZ	7/90		NRO	NRO	NRQ	NRO	NRO	NRO	NRO	NRO	NRQ	<4.50	
	81551	4	XYL	T/9n		NRO	NRO	NRQ	NRO	NRQ	NRQ	NRO	NRQ	NRQ	<2.00	
	99634	<u>a</u> .	BRBZ	UG/L		NRQ	NRO	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	<5.00	
	34371	<u>-</u>	EBZ	1/9n		NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRQ	NRQ	<1.00	
	34301	<u>a</u> .	CLBZ	1/90		NRQ	NRQ	NRQ	NRO	NRQ	NRO	NRQ	NRO	NRO	<1.00	
	34010	۵	BZME	7/90		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRO	<1.00	
	34030	<u>-</u>	BZ	7/90		NRQ	NRO	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	<0.70	
	99684	ADMS	TCP246	/KG-DRY		<140	<150	<140	<140	<130	<150	<130	<140	<140	NRO	
	98587	ADMS	TCP245	/KG-DRY MG		<130	<140	<130	<130	<120	<140	<130	<130	<130	NRQ	
06-9	-	ADMS	2346CP	MG/KG-DRY MG		<110	<120	<110	<110	86>	<120	<100	<110	<110	NRQ	
PLANT 78 3-5-90 BOB CHESSON	99492	ADMS	TCB124	MG/KG-DRY MG		<290	<300	<280	<280	<260	<310	<270	<290	<280	NRQ	
NAME MANAGER	97675	ADMS	TCB 1			<140	<140	<130	<130	<120	<150	<130	<140	<130	NRQ	
PROJECT PROJECT	99490	ADMS	PYR	MG/KG-DRY MG/KG-DRY		66>	<100	46>	96>	68 >	<110	46>	66>	46>	NRQ	
PROJECT NUMBER FIELD GROUP BCSS3	DE:	.30	,.		# SAMPLE ID DATE TIME	3 BCSW3-3 03/09/90 08:45	4 BCSW3-4 03/09/90 08:25	5 BCSW3-5 03/09/90 07:15	6 BCSM3-6 03/08/90 17:10	7 BCSW3-7 03/08/90 11:30	8 BCSW3-8 03/08/90 13:30	9 BCSW3-9 03/08/90 14:50	10 BCSW3-10 03/08/90 16:15	11BCSW3-DUPE 03/09/90 07:15	13 TRPBLK 03/02/90 17:00	
	STORET CODE	METHOD CODE	PARAMETER:	UNITS:	FLD.GRP.	BCSS3	BCSS3	BCSS3								

	96 34546 32106 34531 81522 34506 32102 11 DCE12T TCLME DCA12 DEMA TCA111 CTCL 12 UG/L UG/L UG/L UG/L UG/L UG/L UG/L 14 HA HA HA HA HA HA 14 HA HA HA HA HA HA 14 UG/L UG/L UG/L UG/L UG/L UG/L UG/L 14 UG/L UG/L UG/L UG/L UG/L UG/L UG/L 14 UG/L
	34488 34501 34496 HA HA HA FC11 DCE11 DCA111 UG/L UG/L UG/L NRQ
PLANT 78 3-5-90 BOB CHESSON	34311 34668 34423 HA HA HA CLEA FCL2 MTHLENCL UG/L UG/L UG/L NRQ
PROJECT NAME PI	34413 39175 HA HA MVC UG/L UG/L UG/L UG/L UG/L NRQ
PROJECT NUMBER FIELD GROUP BCSS3	STORET CODE: "FTHOD CODE: "ARAMETER: "AITHOD CODE: "AITHOD

ā. L.	PROJECT NUMBER	BCSS3	PROJECT	NAME PI	PROJECT NAME PLANT 78 3-5-90 PROJECT MANAGER BOB CHESSON	06-											
ORET CODE:			32101	34541	34699	34511	39180	32105	34704	34576	32104	77562	97758	34475	34516	34301	
THOD CODE:			HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	НА	HA	HA	HA	
RAMETER:			BDCME	DCP 12	DCP 13T	TCA112	TCE	DBCME	DCP 13C	CEVETH	TBME	PCA	TCP	PCE	PCA	CLBZ	
			UG/L	1/9 0	7/9n	ÚG/L	7/9n	1/9n	7/90	1/9n	UG/L	UG/L	7/90	UG/L	UG/L	UG/L	
	SAMPLE ID	DATE TIME															
BCSS3 3	3 BCSW3-3 03/09/90 08	19/90 08:45	NRO	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRO	NRO	NRQ	NRQ	
	BCSW3-4 03/C	19/90 08:25	NRQ	NRQ		NRO	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRO	NRQ	NRQ	
	BCSM3-5 03/0	19/90 07:15	NRQ	NRQ		NRQ	NRQ	NRO	NRQ	NRQ	NRQ	NRQ.	NRQ	NRQ	NRQ	NRQ	
	BCSW3-6 03/C	01:71 06/80	NRO	NRO		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRQ	
	BCSM3-7 03/C	18/90 11:30	NRO	NRQ		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	
	BCSM3-8 03/0	18/90 13:30	NRQ	NRQ		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRQ	NRQ	
	BCSM3-9 03/0	18/90 14:50	NRQ	NRQ		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	
	BCSM3-10 03/6	51:91 06/81	NRQ	NRQ		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRQ	
	IBCSW3-DUPE 03/0	03/09/90 07:15	NRQ	NRQ		NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	
BCSS3 13	TRPBLK 03/0		<0.500	<0.200		<0.300	<0.600	<0.500	<2.00	<0.700	<1.00	<5.00	<5.0	<0.330	<0.330	<1.20	

PLANT 78 3-5-90 BOB CHESSON	81524 HA	DCBZ	7 /90		NKO	NRO	NRQ	NRO	NRQ	NRQ	NRQ	NRQ	NRQ	<2.00
NAME	99634 HA	BRBZ	7 /00	1	NRO	NRO	NRQ	NRO	NRQ	NRO	NRO	NRO	NRQ	\$
PROJECT	97761 HA	CLHX I	U6/L		NRO	NRO	NRO	NRO	NRQ	NRQ	NRQ	NRQ	NRO	<5.0
				TIME.	08:45	08:25	07:15	17:10	11:30	13:30	14:50	16:15	07:15	17:00
R BCSS3				DATE	BCSM3-3 03/09/90		03/09/80	03/08/90	03/08/80	03/08/90	03/08/90	03/08/90	03/09/90	03/05/90
PROJECT NUMBER FIELD GROUP				# SAMPLE 1D	BCSW3-3	BCSW3-4			BCSW3-7	BCSM3-8	BCSM3-9	BCSW3-10	BCSW3-DUPE	TRPBLK
PRO FIE	щ. ::	;		#	m	4	· LC	9	7	- α	0	0	Ξ	3
	STORET CODE:	PARAMETER:	UNITS:	FLD.GRP.	BCSS3	RCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	BCSS3	RCSS3	BCSS3

	ESE Batch	D1740 D1740 D1738	D1740 D1740 D1738 D1735	D1740 D1740 D1738 D1735	D1740 D1740 D1738	D1740 D1740 D1738	D1740 D1740 D1738 D1735	D 1740 D 1740 D 1738 D 1735	D1740 D1740 D1738 D1735	D1740 D1740 D1738	D1740 D1740
	COLL. TO ANA. ESE	5 2 2 4	2 2 2 4	5 5 5 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	6 8 4 4 1	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 8 8 7	9 9 8 5 2	9 8 8 5	5 5 5 6	12 2
	EXTR. TO ANA. CO	~ 01	~ o	 ∞	- 00	- 6	- 6	- 6	- 0	- 0	
	COLL. TO EXTR. E	29 02	5 6	vo to	7 9	r 9	r 9	7 9	7 9	νοιο	
78 VERSAMP	ANALYSIS DATE	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/22/90	03/14/90 03/14/90 03/16/90 03/22/90	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/23/90	03/14/90 03/14/90 03/16/90 03/24/90	03/14/90 03/14/90
E RIPER FOR	EXTRACTION DATE	NA NA 03/15/90 03/14/90	NA NA								
SAMPERS	CLASSIFICATION	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBON-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBON-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBON-E418.1 SEM1VOLATILES-SW8270	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBON-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010					
	COLL. DATE	06/60/80	06/60/80	03/09/90	03/08/90	03/08/90	03/08/90	03/08/90	03/08/90	03/09/90	03/02/90 F
	STATION ID	BCSW3-3	BCSH3-4	BCSN3-5	BCSW3-6	BCSN3-7	BCSW3-8	BCSM3-9	BCSM3-10	BCSW3-DUPE	TRPBLK
	SAMPLE 1D	BCSW3*3	BCSW3*4	BCSW3*5	BCSW3*6	BCSM3*7	BCSW3*8	BCSM3*9	BCSW3*10	BCSW3*11	BCSW3*14

ESE Batch	D1749 D1749 D1737 D1759	D1749 D1749 D1737	D1749 D1749 D1737	D1749 D1749 D1737	D1749 D1749 D1737 D1759	D1749 D1749 D1737	D1749 D1749 D1737 D1759	01749 01749 01737 01759	01749 01749 01737 01759	D1740 D1740
COLL. TO ANA.	6 6 7 7 15	6 6 7 15	6 6 7 15	7 7 8 8	7 7 7 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	7 7 8 8 9 1	r r 8 9 1	7 7 8 8 16	6 5 7 5 E	2 2
1. EXTR. TO ANA.	0.4	0/ 4	0 4	0 4	04	2 4	2 4	04	04	
COLL. TO EXTR.		rs rs rs =	- s s s	9992	6 6 6 6 6 7	9992	8 8 8 5	2	សសស <u>-</u>	
TE ANALYSIS DATE	03/15/90 03/15/90 03/16/90 03/24/90	03/14/90								
EXTRACTION DATE	03/14/90 03/14/90 03/14/90 03/20/90	N N N N								
CLASSIFICATION	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SWB020 PURGE. HALOCARBONS-SWB010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SWB020 PURGE. HALOCARBONS-SWB010 HYDROCARBONS-E418.1 SEMIVOLATILES-SWB270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICSS-SW8020 PURGE. HALOCARBONS-SW8010 HYDROCARBONS-E418.1 SEMIVOLATILES-SW8270	PURGE. AROMATICS-SW8020 PURGE. HALOCARBONS-SW8010
COLL. DATE	03/06/80	03/60/80	03/03/30	03/08/90	03/08/30	03/08/90	03/08/90	03/08/30	03/03/30	03/05/90
STATION ID	BCSW3-3	BCSW3-4	BCSW3-5	BCSW3-6	BCSW3-7	BCSW3-8	BCSW3-9	BCSW3-10	BCSW3-DUPE	TRPBLK
SAMPLE 1D	BCSS3*3	BCSS3*4	BCSS3*5	BCSS3*6	BCSS3*7	BCSS3*8	BCSS3*9	BCSS3*10	BCSS3*11	BCSS3*13

Chain of Custody Forms

													•	1000	136
Ex# SITE/STA HAZ? FRACTIONS GO BOLE DATE TIME PARAMETRIIST PARAMETRIIST	*2 P-8-DUP @ @ @ @ @ @ @ IND 7/26/84 1645	*3 P-9 0 (V (O) (O) W NF 7/26/89 1207	*4 P-9-DUP O O O O O W NF 7/26/89 1207 P78	*5 RWB O (() () () W NF 7/26/89 1040	*6 TRPBLK & OOO OO XXG	TE -CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS -CIRCLE FRACTIONS COLLECTED. ENTER DATE, FIELD DATA (IF REQUIRED), -HAZARD CODES: 'A GNTHE C GRACK VE HEACH VET HONC WATE HEATHRACHE HEATHRACHE FORD IDENTIFY SP -PLEASE RETURN COMPLETED LOGSHEETS WITH SAMPLES TO HUNTER / ESE, INC.	NQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) VIA: REC'D BY (NAME/ORGANIZATION/DATE/T	1 X Saus Herter Suring 1227-84/1162 4 4 VIU Howres 128/89 09	AMPLER: MORE SAMPLES TO BE SHIPPED? NO. IF YES, ANTICIPATED # TO SHIP ON/	V= wa vials (44ha) - collect 5 per site HCI TO PHK2	0 = 960 ml glass for - collect I per-site	W-800% Jug-101ket 1 persite	bitamer pr	evoltainer filtered in field	Collect 1 policy 1

LAB COORD. ANGELA BURCH

*** FIELD LOGSHEET ***
PROJECT NAME: PLANT 78 WATERS
LAB COORD

Hunter/ESE, Inc. 05-25-89 PROJECT NUMBER FREE

ANGELA BURCH		*			**							USED CODE AND NOTES IF KNOWN	GANIZATION/DATE/TIME)	ER/6.5.E. 7/15/89 1080					O
FIELD GROUP: P782-S LAB COORD.	PARAMETER LIST P782-5 * ## ## 12. 12	2x. x.	P782-S.	P782-S	P782-S	P782-S	P782-S	P782-S	P782-S	P782-S.	P782-S	IC CHARACTERS MAY BE IF REQUIRED), HAZARD IDENTIFY SPECIFICS ESE, Inc.	REC'D BY (NAME/ORGANI	Kind How		# To SHIP ON Preservations Audited	2 per site	1 persite	
IELD LOGSHEET *** ECT NAME: PLANT 78 SOILS	LE) DATE TIME 7-13-89 1502	68-11-										SSARY; UP TO 9 AL ER DATE, TIME, FIEL REACTIVE T-TOXIC MASTE H-OTHE	ATE/TI	4-8		ct? Samples Iced?	jar, collect	ar collect	
05-25-89 *** FIEI 9003- PROJECT	T SS	2 2 63 63 CV	SS SS SV	S SS S	S SS S	S SS S	SSS	S SS S	SSSS	SSSS	SSSS	ER SITE ID AS NECONS COLLECTED. EN I - IGNITABLE C - CORROSIVE R	ME/ORGANIZATION/	Lavate - Hook - 7		PLES TO BE SHIPPED? Custody Seals Inta	250 PZ 1	= 60 m	
Hunter/ESE, Inc. PROJECT NUMBER 99	E # MOSITE/STA HA	E51981-2	51.9B1	4 E519B1-	5 E519B1-	*6 E	*7	*8 E516B1-3	*9 E51	*10 E516B1-5	11 DU	TE -CHANGE OR E -CIRCLE FRAC -HAZARD CODE -PLEASE RETU	NQUISHED BY: (1 Korp Da	***************************************	E E E	55	5/7	

#~ * 	SITE/STA E519B1-1	HAZ?	FRAC SS	E'S'	ONS(CIRCLE)	DATE	TIME	PARAMETER LIST P782-S	
	19B1-		S	S	. AS			P782-S	
ო *	1987		3		(V)	18/8/	1/05	P782-5*3-55Km 14	
7 *	E519B1-4		(3)	3)	S.V	78/81/		i	
*	519B1-		SSS	S	S V			P782-S	
	516B1-		S	S	SV			P782-S	# # # # # # # # # # # # # # # # # # #
*	51		S I	S				P782-S	
*	51681-		S	ပ				P782-S	
*	51681-		N N	S				P782-S	
-	516B1-		S	လ				P782-S	
1	na		W	2	Λ			P782-S	
변 는	CHANGE OR CIRCLE FR HAZARD CO PLEASE RE	UECE RSTR	SIT S CO S CO MENITA	THE THE	O E CESSA CTED. ENTER CORROSIVE R*REACTI	RY; UP TO DATE, TIME, WITH SAMPL	9 ALPHANUMERIC FIELD DATA (IN H-OTHER ACUTE HAZARD;	MERIC CHARACTERS MAY BE A (IF REQUIRED), HAZARD HAZARD; IDENTIFY SPECIFICS ter/ESE, Inc.	USED CODE AND NOTES IF KNOWN
ONI	SHED, BY:	AM	ORG	H	ATION/DATE/	TIME)	VIA:	REC'D BY (NAME/OR	GANIZATION/DATE/TIME)
1410	when	7		0	89-7-0300		2	K - W. W. Hurrenle	5.4. 7/21/89 10.20
။ က		1 1 1		1	1 : : : : : : : : : : : : : : : : : : :		! ! ! !		: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AMPL	ER: MORE S E CUSTODIA	AMPLES N: Cus	TOB	ខេត្ត	SHIPPED?	IF YES, ANT	ICIPATED Iced?	# TO SHIP ON	;

FIELD GROUP: P782-S
LAB COORD. ANGELA BURCH

*** FIELD LOGSHEET *** FROJECT NAME: PLANT 7/8 SOILS

Hunter/ESE, Inc. 05-25-89 PROJECT NUMBER 99003-

60 ml fair 1 collect I persite 250 nd jor, colket 2 per site 55% 51 -

CISTS TIME PARAMETER LIST	6/2/87 1104 P782-S	1 1		P782-S	P782-S	P782-S	P782-S	P782-S	P782-S	P782-S		ME) VIA: REC'D BY (NAME/ORGANIZATION/DATE/TIME)	16-5-89/1035 K-JU/M HUNTER/ES. E. 6/489 0800	
FRACTIONS (CIRCLE)	SS SS EV	(3(3)	SS SS SV	S	SS	လ		S	SS		SITE ID AS NECESSARY COLLECTED. ENTER DATE C-CORROSIVE R-REACTIVE MPLETED LOGSHEETS WI	ZATI	unter stavices Inc	
SITE/STA HAZ? E519B1-1	E519B1-2	E519B1-3	E51981-4	E519B1-5	E516B1-1		6	E516B1-4		DUP	CHANGE OR ENTER CIRCLE FRACTION HAZARD CODES: I	ISHER BY: (NAME	1. Jans /H	
H # H	*	رب * ا	7*			*	*			-1	FI FI	H	7	1

LAB COORD. ANGELA BURCH

FIELD GROUP: P782-S

PROJECT NAME: PLANT 78 SOILS

*** FIELD LOGSHEET ***

05-25-89

Hunter/ESE, Inc. 05-2 PROJECT NUMBER 99003-

Problems? AMPLER: MORE SAMPLES TO BE SHIPPED? ANTICIPATED # 7 TO SHIP ON 6/2/2/81 55= 250 nd jar, collect 2 per site 5V= 60 ml far, collect 1 per site

#(2)	SITE/STA HAZ? E519B1-1	ERACTIONS (CIRCLE)	DATE TIME PARAMETER LIST
(2)	198	SS	
۳ *	51981	SS	P782-S
* 4	l IU	S	P782-S
ا ا ا	519	S SS	P782-S
9 *	-	SSSS	P782-S
*7	516	S S S S	P782-S
ω *	516	S SS S	P782-S
6 *	5	S S S S	∞ 1
10	1681	S SS S	P782-S
11	DUP	S SS SV	P7
E3	E OR ENTE E FRACTIO D CODES: E RETURN	SITE ID AS NECESSARY; S COLLECTED. ENTER DAT SIGNIABLE C=CORROSIVE R=REACTIVE T OMPLETED LOGSHEETS WIT	UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED, ITME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES OXIC WASTE H*OTHER ACUTE HAZARD; IDENTIFY SPECIFICS IF KNOWN SAMPLES TO Hunter/ESE, Inc.
INQ	UISHED BY: (NAM	DATE/TIM	VIA: REC'D BY (NAME/ORGANIZATION/DATE/
Ka	Minter 14	where services / 623:87	6/26/84
ا ا ا			
MPLE	R: MORE SAMPLE CUSTODIAN: Cu	S TO BE SHIPPED? 145_ stody Seals Intact?	YES, ANTICIPA Samples Iced?

FIELD GROUP: P782-S LAB COORD. ANGELA BURCH

PROJECT NAME: PLANT 78 SOILS

*** FIELD LOGSHEET ***

iunter/ESE, Inc. 05-25-89
?ROJECT NUMBER 99003-

60 ml jan 1 collect I persite 250 nd jar, colket 2 parsite 55 = 51 /2

collect 1 per six

60 m jan

51 7

*	TTF/CT	U > 7 0	6	ŀ	TO C T D / D W		1	
* i	198	7 4 1	<	-i cz	SV	DATE	THME	PARAMETER LIST P782-S
	519B1-2	 	S			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P 7 8 2 - S
*	E519B1-] [I S	S)(S	- (A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	782-
	E519	 	N'S	SS)(SS	(AS			782-S*
*	51981	I I I I	S	55/8	(AS	 		P782-S* 10-5S.
* 1	E516B1-1	1	SS	SO	Λ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P 7 8 2 - S
1*	E516B1		SS		Λ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P782-S
ω ! * I	E516B1-3		SS	1 0		1 ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P782-S
41	E516B1-4		SS	S	>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P782-S
10	E516B1-		SS		Λ:	 	-	P 782 - S
	DUP] 	SS	S	No.			782-
田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	-CHANGE OR -CIRCLE FRA -HAZARD COD -PLEASE RET	ENTER CTION ES: L	SIT	HEQE HEQE	AS NECESSARY; TED. ENTER DATI		9 ALPHANUMERIC FIELD DATA (IF H*OTHER ACUTE HAZARD; ES TO Hunter/E	CHARACTERS REQUIRED), IDENTIFY SP
LINC	ISHED BY:	(NAME	ORG	IH	ATION/DATE/TI		VIA:	REC
	imperan	Lland	47	texi	2 Savias 17-10-8	6	Fellex	
2	1 2 1 1 1 1 1 1 1	i I I I	1 -4 - 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
le	1 1 1 1	1 1 1] 	1	; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	
AMPI	LER: MORE SA LE CUSTODIAN	MPLES Cus	TOB	田 公 の の	HIPPED? ZES IF YE	, ANTI	CIPATED ced?	# $\frac{2}{2}$ To SHIP ON $\frac{7}{2}$ $\frac{189}{3}$ Preservations Audited? Problems?
	Ŋ	55"	7	8	250 mg jor,	so (ket		2 par site

FIELD GROUP: P782-S

LAB COORD. ANGELA BURCH

*** FIELD LOGSHEET ***
PROJECT NAME: PLANT 7

Hunter/ESE, Inc. 05-25-89 PROJECT NUMBER 99003-

I NAME: PLANT 78 SOILS
SITE/STA HAZ? FRACTIONS(CIRCLE) SITE/STA HAZ? FS/SRIATCLP SS
35 SS SS SF 7-10-89 0810 P782-5-4-13-55-K-2-1-1
-CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARAC -CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARAC -CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIR -HAZARD CODES: I = IGNITABLE C = CORROSIVE R = REACTIVE T = TOXIC WASTE H = OTHER ACUTE HAZARD; IDENTIF - PLEASE RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Hunter / ESE, Inc
SHED BY: (NAME/ORGANIZATION/DATE/TIME)
1 30 Norther Huster (7-20-89 (0800 Fed & 14- VIII) Hunter
MORE VSAMPLES TO BE SHIPPED: X IF YES, ANTICIPATED # 10 STODIAN: Custody Seals Intact? Samples Iced? Preserva

FIELD GROUP: P782-S

LAB COORD. ANGELA BURCH

PROJECT NAME: PLANT 78 SOILS

*** FIELD LOGSHEET ***

05-25-89

unter/ESE, Inc.

FIELD GROUP: P782-S
LAB COORD. ANGELA BURCH

*** FIELD LOGSHEET ***
PROJECT NAME: PLANT 78 SOILS

05-25-89

Hunter/ESE, Inc. 05 PROJECT NUMBER FREE Quality Control Summary Sheets

VD FOOTNOTE																																																		
	02/14/90 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.415	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0		03/16/90 156		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T	01/40 MB*D1/40*1	MD*D1/40*1	ED#01/40*1	20 10 10 10 10 10 10 10 10 10 10 10 10 10	MB*D1740*1	*07-10-10-10-10-10-10-10-10-10-10-10-10-10-	MB*D1740*1	MB*D1740*1	M8*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1/40*1	MD*DI /40*	MR*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D /40*	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D174C*1	MB*D1740*1	MB*D1740*1	MB*D1740*1	MB*D1740*1		MR*D1735*1	M8*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*U /35*	MD*D1/30*1	MB*D1735*1	MB*D.1735*.1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MD#D1755#1	MB*D1735*1
E	34030*P1 D1	34010*F1 34301*P1	34371*PI	00624*D	81551*PI	81524*PJ	34418*HA	34413*HA	39175*HA	34311*HA	34668*HA	34423*HA	34488*HA	34501*HA	34476*HA	34546*HA	34531*HA	81522*HA	34506*HA	32102*HA	32101*HA	34541*HA	3469G*HA	3451 1*HA	39180*HA	34704*HA	34576*HA	32104*HA	77562*HA	97758*HA	34475*HA	34516*HA	97761*HA	v		81553*ADMS	77089*ADMS	34220*ADMS	9/693*AUMS	34526*ADMS	34230*ADMS	34242*ADMS	34247*ADMS	34521*ADMS	77147*ADMS	77247*ADMS	34292*ADMS	34273*ADMS	30100*ADMS	34283*ADMS
UNITS	7/90	1/9/1	7/20	1/01	1/90	1/9/1	7/20 NG/L	7/9n	UG/L	1/9n	UG/L	NG/L	7/9n	7/9n	7/9/I	106/1	7/80	ng/L	T/9n	7/9n	7/9n	7/9n	U6/L	7/90	16/L	7,80	7/20 NG/L	UG/L	UG/L	NG/L	NG/L	NG/L	7/90	1/90	1/90	7/9n	7/90	NG/L	7/90	1/90	UG/L	UG/L	UG/L	NG/L	7/90	7/9n	UG/L	UG/L	7/90	7/90 06/L
NAME	TOLIFNE	CHLOROBENZENE	ETHYLBENZENE	RROMORFNZFNF	XYLENES TOTAL	DICHLOROBENZENE TOT	CHLOROMETHANE	BROMOMETHANE	VINYL CHLORIDE	CHLOROETHANE	DICHLORODIFLUOROMETHANE	METHYLENE CHLORIDE	TRICHL 'FLUOROMETHANE	1 - DICHLOROETHYLENE	TRANS - 1 DIOLEME	CHI ORDFORM	1.2-DICHLOROETHANE	DIBROMOMETHANE	1, 1, 1-TRICHL'ETHANE	CARBON TETRACHLORIDE	BROMOD I CHLOROMETHANE	TRANS 1 2 STOTIL OF CREATER	1 1 2_TBICH STRUKENE	TRICH ODOETHENE	D BROMOCHI OROMETHANE	CIS-1 3-DICHLOROPROPENE	2-CHLOROETHYLVINYLETHER	BROMOFORM	1, 1, 1, 2-TETRACH'ETHANE	TRICHLOROPROPANE	TETRACHLOROETHENE	1, 1, 2, 2-TETRACHLORO ETHANE	HYDROCARRONS PETROL TOT	ACENAPHTHENE	ACENAPHTHYLENE	ACETOPHENONE	ANILINE	AN I HRACE NE	BEN7 10 INF	BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	BENZO(K)FLUORANTHENE	BENZO(A)PYRENE	BENZO(GHI)PERYLENE	BENZYL ALCOHOL	BENZOIC ACID	BUTYLBENZYLPHTHALATE	BISCO-CHIOROEIHYL)EIHER	BIS(2-FTHYI HEXYI)PHTHAI ATE	BIS(2-CHL'ISOPROPYL) ETHER

HUNTER/ESE, INC. QUALITY CONTROL SUMMARY FOR PLANT 78 WATER SAMPLES Method Blank Sample Summary

1		
5		
i		
	'n	
)	mar	
:	E S	
	e)	
	du	
	Sa	
	ank	
	<u>m</u>	
	po	
	ethod	
	Σ	
1		

FOOTNOTE																																																				
FOUND	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0) c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0) ·		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥.٠
DATE	03/22/30																																																			
CH SAMPLE		MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1/35*1	MG*D1/30*	MB#D1/33#1	MR*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1/35*1	MR*D1/33*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1/35*1	MD#01/30%	MR*D1735*1	M8*D1.735*1	MB*D1.735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1 MB*D1735*1	1.001.01.01
STOR*METH BATCH		97694*ADMS	34581*ADMS	34586*ADMS	34452*ADMS	34641*ADMS	34320*ADMS	97695*ADMS	34556*ADMS	81302*ADMS	39110*ADMS	34566*ADMS	34536*ADMS	3457 I*ADMS	34631*ADMS	34601*ADMS	77541*ADMS	34336*ADMS	97696*ADMS	9/69/*AUMS	3/698*AUMS	07711*ADMS	3434 1*ADMS	34616*ADMS	34611*ADMS	34626*ADMS	77579*ADMS	34346*ADMS	34596*ADMS	97699*ADMS	34376*ADMS	3438 * ADMS	34 39 1 * 4 DMC	34386*ADMS	34396*ADMS	34403*ADMS	34408*ADMS	99073*ADMS	990/4*ADMS	97701*ADMS	77416*ADMS	34696*ADMS	97702*ADMS	97703*ADMS	99077*ADMS	99078*ADMS	99079*ADMS	34447*ADMS	97704*ADMS	3459 I*ADMS	34646*ADMS	21127-517
UNITS	1/90	UG/L	1/9n	1/9n	N6/L	7/9n	7/90	UG/L	7/9n	UG/L	7/90	7/9n	NG/L	UG/L	NG/L	UG/L	7/90	UG/L	U6/L	ENUG/L	7/90	16/1	7/20	UG/L	1/9n	UG/L	7/9n	7/90	ne/r	NG/L	7°90	7/90	1/90	UG/L	7/9n	UG/L	UG/L	06/L	7/20	116 /1	1167	T/ON	NG/L	UG/L	7/9n	T/9n	UG/L	ne/L	1/9/i	1/9/i	7/90	1 700
NAME 4-RROMOPHENY! PHENY! CTUED	4-CHI OROANII INF	1-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE	2-CHLOROPHENOL	4-CHLORO-3-METHYLPHENOL	4-CHLOROPHENYLPHENYL ETHER	CHRYSENE	DIBENZ(A, J) ACRIDINE	DIBEN'(A, H)ANTH'CENE	DIBENZOFURAN	DI-N-BUTYLPHTHALATE	1, 3, DICHLOROBENZENE	1, 2-DICHLOROBENZENE	1,4-DICHLOROBENZENE	3,3'-DICHL'BENZIDINE	2,4-DICHLOROPHENOL	2,6-DICHLOROPHENOL	DIETHYLPHIHALAIE	2 10 SINCTIN PENSONS ANTHOR	/ IZ-UIMEIHTLBENZ(A)ANIHKANCENUG/L	2 A-DIMETHY DUCKN	4 6-DINITRO-2-METHYL DHENOL	DI METHYI PTHAI ATE	2.4-DINITROPHENOL	2,4-DINITROTOLUENE	2,6-DINITROTOLUENE	DIPHENYLAMINE	1,2-DIPHEN'HYDRAZINE	DI-N-OCTYLPHTHALATE	ETHYL METHANESULFONATE	F LUOKAN HENE	HEVACUL OBOBENZENE	HEXACHI OROBITADI ENE	HEXACHLOROCYCLOPENTADIENE	HEXACHLOROETHANE	INDENO(1,2,3-CD)PYRENE	SOPHORONE	Z-METHYL PHENOL	4-MEINIL PHENOL	METHYL METHANEOUR FONATE	2-METHI YNAPHTHAI ENF	NAPHTHALENE	1-NAPHTHYLAMINE	2-NAPHTHYLAMINE	2-NITROANILINE	3-NI TROANIL I NE	4-NITROANILINE	NITROBENZENE	N-N TROSOP I PERIDINE	Z-NI IROPHENOL	N-NITROPHENOL	12:12:11:00 1 10 00011111111111111111111

	FOOTNOTE																		
	FOUND	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	DATE	03/22/90																	
	BAICH SAMPLE	D1735 MB*D1735*1		MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	MB*D1735*1	
	SIOK*ME IN	34438*ADMS	34428*ADMS	34433*ADMS	39032*ADMS	97705*ADMS	97706*ADMS	97707*ADMS	34461*ADMS	34694*ADMS	97708*ADMS	97709*ADMS	34469*ADMS	97710*ADMS	34551*ADMS	97209*ADMS	77687*ADMS	34621*ADMS	
4	SILVO	7/9n	7/90	7/90	7/9n	T/9n	T/9n	7/9n	1/9n	UG/L	UG/L	7/90	7/9n	UG/L	N6/L	1/9n	7/9n	UG/L	
2	NAFIE	N-NITROSODIMET'AMINE	N-NITROSODI-N-PROPYLAMINE	N-NITROSOD IPHE'AMINE	PENTACHLOROPHENOL	PENTACHLOROBENZENE	PENTACHLORONITROBENZENE	PHENACETIN	PHENANTHRENE	PHENOL	2-PICOLINE	PRONAMIDE	PYRENE	1,2,4,5-TETRACHLOROBENZENE	1,2,4-TRICH'BENZENE	2,3,4,6 TETRACL'PHENOL	2,4,5-TRICHL'PHENOL	2, 4, 6-TRICHL'PHENOL	

QUALITY CONTROL SUMMARY FOR PLANT 78 WATER SAMPLES
Method Blank Sample Summary

FOOTNOTE																			
R.P.D. CRIT.	(1)	30	15	30	30	14	14	31	40	42	28	38	50	38	50	42	31	28	
RECV CRIT R.P.D.							22.3									3,5			
	m			28-167	35-146	64-92	64-92	46-118	27-123	23-97	36-97	24-96	10-80	41-116	9-103	11.5-8	26-127	36-68	
%REC	94.9	89.0		94.1	82.8	84.4	67.5	86	92	92	70	80	49	98	66	53	86	9/	
FOUND	3.87	3.57	*	4.80	4.61	3560	2850	49	92	92	35	40	49	43	66	53	49	38	
TARG	4.08	4.01	0.0	5.10	5.57	4220	4220	50	100	100	50	50	100	50	100	100	50	20	
뫑	0.03	90.0	0.064	0.162	0.128	156	156	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DATE	02/14/90					03/16/90		03/22/90											
SAMPLE	SP1*D1740*1	SP1*D1740*1	SP1*D1740*1	SP1*D1740*1	SP1*D1740*1	SP1*MBLK*1738	SP2*MBLK*1738	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	SP1*D1735*1	
BATCH	D1740					D1738		D1735											
STOR*METH	34030*P	34010*PI	34301*PI	34501*HA	39180*HA	99388*DIR		34205*ADMS	34586*ADMS	34452*ADMS	34571*ADMS	34611*ADMS	34646*ADMS	34428*ADMS	39032*ADMS	34694*ADMS	34469*ADMS	34551*ADMS	
UNITS	7/9n	7/9n	UG/L	UG/L	7/9n	UG/L	7/9n	7/9n	7/9n	UG/L	1/9n	UG/L	UG/L	ne/r	NG/L	NG/L	N6/L	1/9n	
NAME	BENZENE	TOLUENE	CHLOROBENZENE	1, 1-DICHLOROETHYLENE	TRICHLOROETHENE	HYDROCARBONS, PETROL., TOT	HYDROCARBONS, PETROL., TOT	ACENAPHTHENE	2-CHLOROPHENOL	4-CHLORO-3-METHYLPHENOL	1,4-DICHLOROBENZENE	2,4-DINITROTOLUENE	4-NITROPHENOL	N-NI TROSODI -N-PROPYLAMINE	PENTACHLOROPHENOL	PHENOL	PYRENE	1,2,4-TRICH'BENZENE	

Hunter/ESE, INC. QUALITY CONTROL SUMMARY FOR PLANT 78 WATER SAMPLES Standard Matrix Spike Recovery and Replicate Summary

	FOOTNOTE																																		
	R.P.D. CRIT.	0.	0	0	0	5	15	0	0	30	0	4	4	-	31	40	0	2	2	8	8	8	8	0	0	80	80	0	0	2	2	-	_	28	m
y en	R.P.D.		4.29 3	(17)	3.74 3	-	6.60		7.35 3		6.56 3		12.3	m	2.2 3	4	2.0 4		2.1 4	2	1.3 2	e	1.4	S	0.0	m	3.2	in	2.2 5	4	6.4	m	10 3		5.0
	RECV CRIT UNSPIKED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	140	140	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	>		39-150	46-148	46-148	85-115	85-115	28-167	28-167	35-146	35-146	64-92	64-92	46-118	46-118	27-123	27-123	23-97	23-97	36-97	36-97	24-96	24-96	10-80	10-80	41-116	41-116	9-103	9-103	11.5-88.	11.5-88.	26-127	26-127	39-98	39~68
		91.3			95.3	88.2	93.9	81.4	87.5	88.7	94.5	64.6	73.2	93	92	66	26	96	94	73	75	74	73	77	77	95	16	47	46	8	76	95	82	82	78
	3ET	.82 1.66		.82 1.67	-	.82 1.60	.82 1.71	.82 1.48	_	.82 1.61	_	2		47		66 0		96 0		•	38	37	37	77 0		47		0 47	9 4 6		9/ 0	47	43	41	39
	_	-	_	_	0.06 1.	0.064 1.	-	_	*****	0.128 1.	28			0.0 50	0.0 50	0.0 10	0.0	0.0 10	0.0 10	0.0 50	0.0 50	0.0 50	0.0 50	0.0	0.0	0.0 50	0.0 50	0.0	0.0		0.0	0.0 50	0.0 50	0.0 50	0.0 50
	DATE	02/14/90										03/16/90		03/22/90																					
AMPLES	SAMPLE	SPM I*BCSM3*3	SPM2*BCSW3*3	SPM1*BCSW3*3	SPM2*BCSM3*3	SPM 1*BCSM3*3	SPM2*BCSW3*3	SPM1*BCSW3*3	SPM2*BCSW3*3	SPM1*BCSW3*3	SPM2*BCSM3*3	SPM1*BCSW3*3	SPM2*BCSM3*3	SPM1*BCSW3*7	SPM2*BCSM3*7	SPM1*BCSW3*7	SPM2*BCSW3*7	SPM 1*BCSW3*7	SPM2*BCSW3*7	SPM1*BCSM3*7	SPM2*BCSW3*7	SPM1*BCSM3*7	SPM2*BCSM3*7	SPM1*BCSW3*7	SPM2*BCSM3*7	SPM 1*BCSW3*7	SPM2*BCSM3*7	SPM I *BCSM3*7	SPM2*BCSW3*7	SPM1*BCSW3*7	SPM2*BCSM3*7	SPM1*BCSW3*7	SPM2*BCSM3*7	SPM 1*BCSW3*7	SPMZ*BCSW3*7
THC. 78 WATER S Summary		D1740										D1738		D1735																	•				
HUMCET/LSE, TWC. QUALITY CONTROL SUMMARY FOR PLANT 78 WATER SAMPLES Sample Matrix Spike Recovery Summary	STOR*METH	34030*P]		34010*P1		34301*PI		34501*HA		39180*HA		99388*DIR		34205*ADMS		34586*ADMS		34452*ADMS		34571*ADMS		34611*ADMS		34646*ADMS		34428*ADMS		39032*ADMS		34694*ADMS		34469*ADMS		3455 I*ADMS	
TROL SUMMAR' e Matrix Sp	UNITS	1/90	NG/L	7/9n	1/9n	7/9n	7/9n	ng/L	1/90	7/9n	7/9n	7/90	7/90	7/9n	7/9n	N6/L	7/90	UG/L	7/90	7/90	NG/L	7/90	7/90	UG/L	7/9n	7/9n	T/90	NG/L	NG/L	NG/L	7/9n	T/9n	NG/L	790 1167	UG/L
04425790 QUALITY CON	NAME	BENZENE	BENZENE	TOLUENE	TOLUENE	CHLOROBENZENE	CHLOROBENZENE	1, 1-DICHLOROETHYLENE	1, 1-DICHLOROETHYLENE	TR I CHLOROE THENE	TRICHLOROETHENE	HYDROCARBONS, PETROL., TOT	HYDROCARBONS, PETROL., TOT	ACENAPHTHENE	ACENAPHTHENE	2-CHLOROPHENOL	2-CHLOROPHENOL	4-CHLORO-3-METHYLPHENOL	4-CHLORO-3-METHYLPHENOL	1, 4-DICHLOROBENZENE	1,4-DICHLOROBENZENE	2,4-DINITROTOLUENE	2,4-DINITROTOLUENE	4-NI TROPHENOL	4-NI TROPHENOL	N-NITROSODI-N-PROPYLAMINE	N-NITROSODI-N-PROPYLAMINE	PENT ACHLOROPHENOL	PENTACHLOROPHENOL	PHENOL	PHENOL	PYRENE	PYRENE	1, 2, 4-TRICH' BENZENE	I, Z, 4-IRICH' BENZENE

\Box	
90	

NAME	UNITS	STOR*METH	BATCH	SAMPLE	DATE	FOUND	FOOTNOTE
BENZENE	MG/KG-DRY	34237*ADP	01749	MB*D1749*1	03/15/90		
TOLUENE	MG/KG-DRY	34483*ADP1		MB*D1749*1		0.0	
CHLOROBENZENE	MG/KG-DRY	34304*ADP1		MB*D1749*!		0.0	
ETHYLBENZENE	MG/KG-DRY	34374*ADP1		MB*D1749*1		0.0	
BRUMUBENZENE	MG/KG-DRY	97036*ADP1		MB*D1749*1		0.0	
ALCHES, OTHE	MO/NG-DRY	4551U*ADP1		M8*D1/49*1		0.0	
DICHLOROBENZENE, 101. MFTHY1 CHI OR 10F	MG/KG-DRY	34421*ADD		MB*D1749*1		0.0	
METHYL BROMIDE	MG/KG-DRY	34416*ADHA		MB*D1749*1		0.0	
DICHLORODIFLUOROMETHANE	MG/KG-DRY	34334*ADHA		MB*D1749*1		0.0	
VINYL CHLORIDE	MG/KG-DRY	34495*ADHA		MB*D1749*1		0.0	
CHLOROETHANE	MG/KG-DRY	34314*ADHA		MB*D1749*1		0.0	
METHYLENE CHLORIDE	MG/KG-DRY	34426*ADHA		M8*D1749*1		0.0	
TR I CHLOROFI, UOROMETHANE	MG/KG-DRY	34491*ADHA		MB*D1749*1		0.0	
1, 1-DICHLOROETHENE	MG/KG-DRY	34504*ADHA		MB*D1749*1		0.0	
TO AME : O PLOSS CALLED	MG/KG-DRY	34499*ADHA		MB*D1749*1		0.0	
I KANSTI, Z-DI CHLUKUE I HENE	MG/KG-DRY	34549*ADHA		MB*D1749*1		0.0	
1 2-DICHIODOFTHANE	MC/NG-DRI	34318*AUHA		MD*D1740*1		0.0	
O I BROMOFTHANE	MC /KG-DDV	24.254×ADHA		MDKD1749*1		0.0	
1 1 1-TRICHLOROFTHANE	MG/KG-DRY	34509*ADHA		MB*D1749*1		0.0	
CARBON TETRACHLORIDE	MG/KG-DRY	34299*ADHA		MB*D1749*1		0.0	
BROMOD I CHLOROMETHANE	MG/KG-DRY	34330*ADHA		MB*D1749*1		0.0	
1, 2, -DICHLOROPROPANE	MG/KG-DRY	34544*ADHA		MB*D1749*1		0.0	
T-1, 3-DICHLOROPROPENE	MG/KG-DRY	34697*ADHA		MB*D1749*1		0.0	
TRICHLOROETHYLENE	MG/KG-DRY	34487*ADHA		MB*D1749*1		0.0	
DIBRUMOCHLOROME I HANE	MG/KG-DRY	34309*ADHA		MB*D1749*1		0.0	
1 1 2- TRICHLOROFTHANE	MG/KG-DRI	34 /UZ*ADHA		MB*D1/49*1		0.0	
2-CHLOROETHYLVINYL ETHER	MG/KG-DRY	34579*ADHA		MR*D1749*1		0.0	
BROMOFORM	MG/KG-DRY	34290*ADHA		MB*D1749*1		0.0	
1, 1, 1, 2-TETRACHLOROETHANE	MG/KG-DRY	97042*ADHA		MB*D1749*1		0.0	
TR I CHLOROPROPANE	MG/KG-DRY	97043*ADHA		MB*D1749*1		0.0	
I, I, Z, Z-1E IRACHLORUE IHANE TETRACHI OROETUVI ENG	MG /KG-DRY	34519*ADHA		MB*D1749*1		0.0	
1-CHLOROHE XANE		97039*ADHA		MB*D1749*1		0.0	
HYDROCARBONS PETROL		98233*AD	01737	MR*MR K*1727	03/16/90	0,0	
ACENAPHTHENE, SOIL		99450*ADMS	01759	MB*D1759*1	03/24/90	0.0	
ACENAPHTHYLENE, SO!L		99451*ADMS		MB*D1759*1		0.0	
ACETOPHENONE		97643*ADMS		MB*D1759*1		0.0	
ANILINE		97644*ADMS		1*6": 0*8¥		0.0	
AN HRACENE, SOIL		99452*ADMS		1 *6" (1 *0")		0.0	
RENZ ID INF	MC/KG-DRI	9/645*AUMS		1*50 0 3*9E		0.0	
BENZO(A)ANTHRACENE		94453*ADMS		MR*D1759*1		0.0	
BENZO(B) FLUORANTHENE S		99454*ADMS		HB*D*P759*1			
BENZO(K) FLUORANTHENE		99455*ADMS		MB*D1759*1		0.0	
BENZO(A)PYRENE		99456*ADMS		MB*D1759*1		0.0	
BENZO(G, H, I,)PERYLENE		99691*ADMS		MB*D1759*1		0.0	
BENZIL ALCOHOL		97647*ADMS		MB*D1759*1		0.0	
BEITY! RENZY! PHTHA! ATE	MG/KG-DRY	9/6/6*AUMS		MB*D1/59*1		0.0	
BIS(2-CHLOROETHYL)ETHER	_	99458*ADMS		MR*D1759*1		0.0	
BIS(2-CHLOROETHOXY)METHANE		97493*ADMS	_	MB*D1759*1		0.0	
BIS(2-ETHYLHEXYL)PHTHALATE	-	99460*ADMS	_	MB*D1759*1		099	
CONTRACTOR INCOMPANIA	7 77 77 77	0704767100					

FOOTNOTE																																																		
FOUND	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.
DATE	03/24/90																																																	
SAMPLE	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1/39*1	*B*D1759*1	MB*D1759*1	M8*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	184011049H	MB*U /59*	MR*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1/39*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	MB*D1759*;	MB*U1/59*!	MB*D1759*1	KR*D1759*1	MB*D1759*1	MB*D4759*1	MB*D1759*1	MB*D1759*1	MB*D1759*1	16×01/39×1	MB*D1759*1	1B*D1759*1	
BATCH	D1759										_	_				_	- 2.		. at	_	2.	Σ.	Σ.	Σ 3	E 3	EÆ	ΞΞ	E	Σ	Œ	X I	E x	Ξ	Ξ	Ξ	Σ	Σ:	E	E 3	= =	X	Ē	E	Ξ	₹ :	E	E	2	£	
STOR*METH	99462*ADMS	97648*ADMS	9/649*ADMS	99464*ADMS	99497*ADMS	99683*ADMS	99465*ADMS	99690*ADMS	97650*ADMS	99466*ADMS	97651*ADMS	99467*ADMS	99468*ADMS	99470*ADMS	99469*ADES	99498*ADMS	99472*ADMS	97652*ADMS	97653*ADMS	97654*ADMS	97677*ADMS	99499*ADMS	99473*ADMS	97678*ADMS	SHUM TANDES	99475*ADMS	97655*ADMS	99477*ADMS	97656*ADMS	99476*ADMS	99689*ADMS	99478*ADMS	99479*ADMS	97657*ADMS	99480*ADMS	99482*ADMS	99483*ADMS	9/658*ADMS	97660*ADMS	SMU4*4040	97661*ADMS	97717*ADMS	97662*ADMS	97663*ADMS	97664*ADMS	99485*AUMS	97666*ADMS	97667*ADMS	97669*ADMS	OM 04 × 0 7 7 7 0
UNITS	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DKY	MG/KG-DRY	MG/KG-DRY	_		MG/KG-DRY				MG/KG-DRY							MG/KG-DRY							MG/KG-DRY S				MG/KG-DRY 9	-			MG /KG=DRI 9	-			
	4-DROMOPHENTL FIHER	4-CHLOROANIL INE, SED	O ON OBOMEDITAL DIE	2 CHLUKUNAPHIHALENE	A OHI ORO & MITTING SHIPE	4 - CHLORO-3-MEIHYLPHENOL	4-CHLOROPHENYLPHENYL ETHER	CAN DE NE	DIBENZO/A DIACKIDINE	DIDENZO(A, H) AN I HKACENE	DIBENZOFURAN	1 2 DICK ODOCKATE	1, 3-D I CHLUROBE NZENE	1, Z=D I CHLURUBE NZENE	3 3-DICHIORORENZININE	2.4-DICHLOROPHENOL	DIETHYLPHTHALATE	P-DIMETHYLAMINOBENZENE	7,12-DIMETHYLBENZ(A)ANTHRANCE	A-, A-DIMETHYLPHENETHYLAMINE	2,6-DICHLOROPHENOL	2,4-DIMETHYPHENOL	JIME HILPHIHALAIE	4, b-DINIKO-Z-ME HYLPHENOL 2 4-DINITROPHENOL	2 4-DINITROTOLIENE	2, 6-DINITROTOLUENE	DIPHENYLAMINE	1, 2-DIPHENYLHYDRAZIN, S	ETHYL METHANESULFONATE	DI-N-OCTYLPHTHALATE	F LUOKANI HENE	HEXACHLOBOBENZENE	HEXACHLOROBUTADIENE	HEXACHLOROCYCLOPENTAD I ENE	HEXACHLOROETHANE	INDENO(1,2,3-CD)PYRENE	SOF HUNDER	METHY METHANSHIPONATE	2-METHY: NAPHTHAI FNF	NAPHTHALENE	1-NAPHTHYLAM!NE	2-NAPHTHYLAMINE	2-NITROANILINE	3-NI ROANILINE	4-N IROAN L NE	N-NITRO-DI-N-BITY! AMINE	N-NITROSODIMETHYLAMINE	N-NI TROSOD I PHE ' AMI NE	N-NI TROSOP I PERIDINE	PENTACHI OBOBENZENE

QUALITY CONTROL SUMMARY FOR PLANT 78 SOIL SAMPLES Method Biank Sample Summary	SAMPLES	
NTROL SUMMARY Method Blank	FOR PLANT 78 SOIL	Sample Summary
LITY CO	LITY CONTROL SUMMARY	Method Blank

D1759 MB*D 1759*1 MB*D 1760*1 MB*D 1740*1		UNITS		ВАТСН	SAMPLE	DATE	FOUND	FOOTNOTE
MG/KG-DRY 976840NIS		MG/KG-DKY		01759	MB*D1759*1	03/24/90	0.0	
MENOTOSA MENOTOSA		MG/KG-DRY			MB*D1759*;		0.0	
MG/KG-DRY 99495-KADNS		MG/KG-DRY			MB*D1759*1		0.0	
INC. C-DRY 99489-MADMS		MG/KG-DRY			MB*D1759*1		0.0	
MCKG-DRY 99489*ADMS	VI AMINE	MO/NG-DRI			1*0°7' 0°4'		0.0	
MCKG-DRY 9563%ADMS	רטוו	MG /KG-DRY			MD*D1/39*1		0.0	
NG KG-DRY 97673*ADNS		MG/KG-DRY			MB*D1759*1) c	
The color of the		MC /KC-DBY			MDKD17E0K1		0.0	
HG/KG-DRY 99685ADNS		MG/KG-DRY			MB*D1759*1		0.0	
Color Colo		VOC - 0 // 0 // 0 // 0 // 0 // 0 // 0 // 0			1 2 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2		0.0	
VZENE NGKG-DRF 974924ADMS NGPD 17594 NGKG-DRF 974924ADMS NGPD 17594 NGKG-DRF 974924ADMS NGPD 17594 NGKG-DRF 994924ADMS NGPD 17594 NGKG-DRF 996844ADMS NGPD 17594 NGKG-DRF 996844ADMS NGPD 17404 NGCG-DRF 996844ADMS NGCG-DRF 996844ADMS NGCG-DRF 99684APD NGCG-DRF 99684ADMS NGCG-DRF 99694ADMS		MC /KC-DBV			MB*D1/59*1		0.0	
NOL NG/KG-DRY 99492*ADMS NG*P1759*1	111111111111111111111111111111111111111	116/RG DA 201			1 x x x 1 0 x x 1		0.0	
NOL MCKG-DRY 945242A0D3 MCKG-DRY 945244A0M3 MCKG-DRY 945244A0M3 MCKG-DRY 945244A0M3 MCKG-DRY 945344A0M3 MCKG-DRY 945344A0M3 MCKG-DRY 945344A0M3 MCKG-DRY 945344A0M3 MCKG-DRY 945344A0M3 MCKG-DRY 945344A0	YUBENZENE	MG/KG-DRY			MB*D1759*1		0.0	
MCKG-DRY 9568+ADMS	FNE	MG/KG-DRY			W8*D1759*1		0.0	
MG/KG-DRY 9884%ADMS	ROPHENOL.	MG/KG-DRY			MB*D1759*1		0.0	
MG/KG-DRY 99684*ADMS	_ ;	MG/KG-DRY			MB*D1759*1		0.0	
UG/L 34030*P D1740 MP*D1740* D2/14/90 UG/L 34301*P MP*D1740* D2/14/90 UG/L 34301*P MP*D1740* MP*D1740* UG/L 34301*P MP*D1740* UG/L 34301*P MP*D1740* MP*D1740* UG/L 34413*HA MP*D1740* MP*D1740* UG/L 34413*HA MP*D1740* MP*D1740* UG/L 34423*HA MP*D1740* MP*D1740* UG/L 34501*HA MP*D1740* UG/L 3450*HA MP*D1740* UG/L 345	JO.	MG/KG-DRY			MB*D1759*1		0.0	
UG/L 34010*P1 MB*D1740*1 UG/L 34371*P1 MB*D1740*1 UG/L 99634*P1 MB*D1740*1 UG/L 34413*HA MB*D1740*1 UG/L 34413*HA MB*D1740*1 UG/L 3413*HA MB*D1740*1 UG/L 34568*HA MB*D1740*1 UG/L 34568*HA MB*D1740*1 UG/L 34568*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1		7/9n	34030*P	D1740	MB*D1740*1	02/14/90	0.0	
UG/L 3430 *P1 MB*D1740*1 UG/L 8155 *P1 MB*D1740*1 UG/L 81524*P1 MB*D1740*1 UG/L 8413*HA MB*D1740*1 UG/L 34413*HA MB*D1740*1 UG/L 3413*HA MB*D1740*1 UG/L 3413*HA MB*D1740*1 UG/L 3450 *HA MB*D1740*1 UG/L 3470 *HA MB*D1740*1 UG/L 3475 *HA MB*D1740*1 UG/L 3475 *HA MB*D1740*1 UG/L 34475 *HA MB*D1740*1		UG/L	34010*P		MB*D1740*		0.0	
UG/L 34371*P1 MB*D1740*1 UG/L 81524*P1 MB*D1740*1 UG/L 8418*HA MB*D1740*1 UG/L 34418*HA MB*D1740*1 UG/L 3413*HA MB*D1740*1 UG/L 34566*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1 UG/L 3459*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1 UG/L 3456*HA MB*D1740*1 UG/L 34704*HA MB*D1740*1 UG/L 34475*HA MB*D1740*1		7/9n	34301*P]		MB*D1740*1		0.0	
UG/L 81551*P1 M8*D1740*I UG/L 81521*P1 M8*D1740*I UG/L 34413*HA M8*D1740*I UG/L 34413*HA M8*D1740*I UG/L 3458*HA M8*D1740*I UG/L 3468*HA M8*D1740*I UG/L 3453*HA M8*D1740*I UG/L 34501*HA M8*D1740*I UG/L 34504*HA M8*D1740*I UG/L 34504*HA M8*D1740*I UG/L 34504*HA M8*D1740*I UG/L 32102*HA M8*D1740*I UG/L 32104*HA M8*D1740*I UG/L 32104*HA M8*D1740*I UG/L 32104*HA M8*D1740*I UG/L 34504*HA M8*D1740*I		7/90	34371*P		MB*D1740*1		0.0	
UG/L 81551*P1 MB*D1740*I UG/L 34418*HA MB*D1740*I UG/L 34418*HA MB*D1740*I UG/L 34418*HA MB*D1740*I UG/L 3468*HA MB*D1740*I UG/L 3450*HA MB*D1740*I UG/L 3456*HA MB*D1740*I UG/L 3456*HA MB*D1740*I UG/L 3456*HA MB*D1740*I UG/L 3456*HA MB*D1740*I UG/L 3459*HA MB*D1740*I UG/L 32102*HA MB*D1740*I UG/L 32102*HA MB*D1740*I UG/L 3250*HA MB*D1740*I UG/L 3250*HA MB*D1740*I UG/L 3256*HA MB*D1740*I UG/L 3459*HA MB*D1740*I UG/L 3450*HA MB*D1740*I UG/L 3450*HA MB*D1740*I UG/L 3450*HA MB*D1740*I UG/L 3450*HA MB*D1740*I UG/L 3455*HA MB*D1740*I		7/90	39634*PI		MB*D1740*1		0.0	
UG/L 81524*P1 M8*D1740*1 UG/L 34418*HA M8*D1740*1 UG/L 34418*HA M8*D1740*1 UG/L 3458*HA M8*D1740*1 UG/L 3458*HA M8*D1740*1 UG/L 34423*HA M8*D1740*1 UG/L 34496*HA M8*D1740*1 UG/L 3451*HA M8*D1740*1 UG/L 3451*HA M8*D1740*1 UG/L 32105*HA M8*D1740*1 UG/L 32105*HA M8*D1740*1 UG/L 32105*HA M8*D1740*1 UG/L 3451*HA M8*D1740*1 UG/L 3455*HA M8*D1740*1 UG/L 3455*HA M8*D1740*1		N6/L	81551*Pj		MB*D1740*1		0.0	
UG/L 34418*HA M8*D1740*1 UG/L 34418*HA M8*D1740*1 UG/L 3458*HA M8*D1740*1 UG/L 34568*HA M8*D1740*1 UG/L 34568*HA M8*D1740*1 UG/L 34568*HA M8*D1740*1 UG/L 3456*HA M8*D1740*1 UG/L 3456*HA M8*D1740*1 UG/L 32106*HA M8*D1740*1 UG/L 34518*HA M8*D1740*1 UG/L 34508*HA M8*D1740*1 UG/L 34508*HA M8*D1740*1 UG/L 34518*HA M8*D1740*1 UG/L 34514*HA M8*D1740*1 UG/L 34516*HA M8*D1740*1	01.	NG/L	81524*PI		MB*D1740*1		0.0	
UG/L 34413*HA M8*D1740*I UG/L 34413*HA M8*D1740*I UG/L 34568*HA M8*D1740*I UG/L 34423*HA M8*D1740*I UG/L 3448*HA M8*D1740*I UG/L 3456*HA M8*D1740*I UG/L 3456*HA M8*D1740*I UG/L 32106*HA M8*D1740*I UG/L 32106*HA M8*D1740*I UG/L 32106*HA M8*D1740*I UG/L 32106*HA M8*D1740*I UG/L 3459*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 34576*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3451*HA M8*D1740*I UG/L 3455*HA M8*D1740*I UG/L 3455*HA M8*D1740*I		N6/L	34418*HA		MB*D1740*1		0.0	
UG/L 34313+HA M8*D1740*1 UG/L 34423*HA M8*D1740*1 UG/L 34423*HA M8*D1740*1 UG/L 34488+HA M8*D1740*1 UG/L 34496*HA M8*D1740*1 UG/L 34504*HA M8*D1740*1 UG/L 3456*HA M8*D1740*1 UG/L 3456*HA M8*D1740*1 UG/L 3456*HA M8*D1740*1 UG/L 32106*HA M8*D1740*1 UG/L 32106*HA M8*D1740*1 UG/L 32106*HA M8*D1740*1 UG/L 32107*HA M8*D1740*1 UG/L 32107*HA M8*D1740*1 UG/L 32107*HA M8*D1740*1 UG/L 3459*HA M8*D1740*1 UG/L 34504*HA M8*D1740*1		7/90	34413*HA		MB*D1740*1		0.0	
		NG/L	39175*HA		MB*D1740*1		0.0	
E		06/L	34311*HA		MB*D1740*1		0.0	
UG/L 34423*HA M8*D1740*I UG/L 34488*HA M8*D1740*I UG/L 34501*HA M8*D1740*I UG/L 34501*HA M8*D1740*I UG/L 32106*HA M8*D1740*I UG/L 34531*HA M8*D1740*I UG/L 34506*HA M8*D1740*I UG/L 32102*HA M8*D1740*I UG/L 32101*HA M8*D1740*I UG/L 34541*HA M8*D1740*I UG/L 34541*HA M8*D1740*I UG/L 34541*HA M8*D1740*I UG/L 3450*HA M8*D1740*I UG/L 3455*HA M8*D1740*I UG/L 3455*HA M8*D1740*I UG/L 3455*HA M8*D1740*I UG/L 3455*HA M8*D1740*I	1E THANE	7/9n	34668*HA		MB*D1740*1		0.0	
UG/L 34488HA MB401740*I UG/L 34501*HA MB*01740*I UG/L 34504*HA MB*01740*I UG/L 32106*HA MB*01740*I UG/L 34531*HA MB*01740*I UG/L 34531*HA MB*01740*I UG/L 34504*HA MB*01740*I UG/L 34504*HA MB*01740*I UG/L 34694*HA MB*01740*I UG/L 34694*HA MB*01740*I UG/L 34694*HA MB*01740*I UG/L 34511*HA MB*01740*I UG/L 34514*HA MB*01740*I UG/L 34504*HA MB*01740*I		7/9n	34423*HA		MB*D1740*1		0.415	
UG/L 3450**HA MB*D1740*! UG/L 3496**HA MB*D1740*! UG/L 32106**HA MB*D1740*! UG/L 3453**HA MB*D1740*! UG/L 3450**HA MB*D1740*! UG/L 3450**HA MB*D1740*! UG/L 3450**HA MB*D1740*! UG/L 32107**HA MB*D1740*! UG/L 3451**HA MB*D1740*! UG/L 34514**HA MB*D1740*! UG/L 34514**HA MB*D1740*! UG/L 34514**HA MB*D1740*! UG/L 34514**HA MB*D1740*! UG/L 34516**HA MB*D1740*! UG/L 34516**HA MB*D1740*! UG/L 34516**HA MB*D1740*! UG/L 34516**HA MB*D1740*! UG/L 3455**HA MB*D1740*! UG/L 3455**HA MB*D1740*! UG/L 3455**HA MB*D1740*! UG/L 3455**HA MB*D1740*!	ANE	NG/L	34488*HA		MB*D1740*1		0.0	
NE UG/L 34496*HA M8*D1740*1 NE UG/L 34546*HA M8*D1740*1 UG/L 3454*HA M8*D1740*1 UG/L 3450*HA M8*D1740*1 UG/L 3450*HA M8*D1740*1 UG/L 3450*HA M8*D1740*1 UG/L 3451*HA M8*D1740*1 UG/L 34514*HA M8*D1740*1 UG/L 34514*HA M8*D1740*1 UG/L 34516*HA M8*D1740*1 UG/L 34556*HA M8*D1740*1 UG/L 34556*HA M8*D1740*1	ENE	7/9n	34501*HA		MB*D1740*1		0.0	
NE UG/L 34546*HA MB*D 740*1 UG/L 32106*HA MB*D 1740*1 UG/L 81522*HA MB*D 1740*1 UG/L 32102*HA MB*D 1740*1 UG/L 32102*HA MB*D 1740*1 UG/L 32102*HA MB*D 1740*1 UG/L 3459*HA MB*D 1740*1 UG/L 3459*HA MB*D 1740*1 UG/L 3459*HA MB*D 1740*1 UG/L 3450*HA MB*D 1740*1 UG/L 3450*HA MB*D 1740*1 UG/L 3450*HA MB*D 1740*1 UG/L 32104*HA MB*D 1740*1 UG/L 3456*HA MB*D 1740*1	E	N6/L	34496*HA		MB*D1740*1		0.0	
UG/L 3451*HA MB*D1740*1 UG/L 34531*HA MB*D1740*1 UG/L 32102*HA MB*D1740*1 UG/L 32102*HA MB*D1740*1 UG/L 32101*HA MB*D1740*1 UG/L 34541*HA MB*D1740*1 UG/L 3459*HA MB*D1740*1 UG/L 3450*HA MB*D1740*1	OE I HENE	790 110 /1	34546*HA		MB*D1740*1		0.0	
UG/L 34531*HA MB*D1740*1 UG/L 8152*HA MB*D1740*1 UG/L 32102*HA MB*D1740*1 UG/L 32102*HA MB*D1740*1 UG/L 3459*HA MB*D1740*1 UG/L 34699*HA MB*D1740*1 UG/L 34511*HA MB*D1740*1 UG/L 3450*HA MB*D1740*1 UG/L 3450*HA MB*D1740*1 HANE UG/L 3450*HA MB*D1740*1 UG/L 34704*HA MB*D1740*1 UG/L 34704*HA MB*D1740*1 UG/L 3450*HA MB*D1740*1	ı	7/9n	32106*HA		MB*D1740*1		0.0	
UG/L 81522*HA M8*01740*I UG/L 34506*HA M8*01740*I UG/L 32102*HA M8*01740*I UG/L 34541*HA M8*01740*I UG/L 34699*HA M8*01740*I UG/L 34511*HA M8*01740*I UG/L 34511*HA M8*01740*I UG/L 34504*HA M8*01740*I HS*01740*I HS*01740*	11	7/9n	34531*HA		MB*D1740*1		0.0	
UG/L 3450841A M8801740*1 UG/L 32102*HA M8801740*1 UG/L 3454*HA M8801740*1 UG/L 3459*HA M8801740*1 UG/L 3459*HA M8801740*1 UG/L 34519*HA M8801740*1 UG/L 34508*HA M8801740*1 R UG/L 34704*HA M8801740*1 R UG/L 34704*HA M8801740*1 UG/L 37568*HA M8801740*1 UG/L 34758*HA M8801740*1 UG/L 34516*HA M8801740*1 UG/L 3456*HA M8801740*1 UG/L 34516*HA M8801740*1		7/9n	81522*HA		MB*D1740*1		0.0	
UG/L 32102*HA MB*D1740*I UG/L 32101*HA MB*D1740*I UG/L 3451*HA MB*D1740*I UG/L 3451*HA MB*D1740*I UG/L 39180*HA MB*D1740*I UG/L 39180*HA MB*D1740*I UG/L 32105*HA MB*D1740*I R UG/L 32104*HA MB*D1740*I R UG/L 34704*HA MB*D1740*I UG/L 34704*HA MB*D1740*I UG/L 34756*HA MB*D1740*I UG/L 34475*HA MB*D1740*I UG/L 34475*HA MB*D1740*I	AF.	7/9n	34506*HA		MB*D1740*1		0.0	
UG/L 3210 **HA MB*D1740*! UG/L 3459*HA MB*D1740*! UG/L 34699*HA MB*D1740*! UG/L 32105*HA MB*D1740*! UG/L 32105*HA MB*D1740*! R UG/L 34704*HA MB*D1740*! R UG/L 34506*HA MB*D1740*!	I DE	7/90	32102*HA		MB*D1740*1		0.0	
ENE UG/L 34541*HA MB*D1740*1 UG/L 3469*HA MB*D1740*1 UG/L 39180*HA MB*D1740*1 UG/L 32105*HA MB*D1740*1 UG/L 34704*HA MB*D1740*1 R UG/L 34704*HA MB*D1740*1 UG/L 37562*HA MB*D1740*1 UG/L 37562*HA MB*D1740*1 UG/L 37562*HA MB*D1740*1 UG/L 3475*HA MB*D1740*1 UG/L 34516*HA MB*D1740*1	ANE	7/90	32101*HA		MB*D1740*1		0.0	
ENE UG/L 34699*HA MB*D1740*I UG/L 3451*HA MB*D1740*I UG/L 39180*HA MB*D1740*I UG/L 32105*HA MB*D1740*I R UG/L 34704*HA MB*D1740*I R UG/L 32104*HA MB*D1740*I UG/L 77562*HA MB*D1740*I UG/L 34475*HA MB*D1740*I UG/L 34475*HA MB*D1740*I UG/L 34475*HA MB*D1740*I	벌	7/9n	34541*HA		MB*D1740*1		0.0	
UG/L 3451*HA MB*D1740*1 UG/L 39180*HA MB*D1740*1 UG/L 32105*HA MB*D1740*1 R UG/L 34576*HA MB*D1740*1 UG/L 32104*HA MB*D1740*1 UG/L 77562*HA MB*D1740*1 UG/L 97758*HA MB*D1740*1 UG/L 34475*HA MB*D1740*1	OPROPENE	7/9n	34699*HA		MB*D1740*1		0.0	
UG/L 3918*HA MB*D1740*I UG/L 32105*HA MB*D1740*I R UG/L 34576*HA MB*D1740*I R UG/L 32104*HA MB*D1740*I UG/L 77562*HA MB*D1740*I UG/L 97758*HA MB*D1740*I UG/L 34475*HA MB*D1740*I HANE UG/L 34516*HA MB*D1740*I	日本	7/9n	34511*HA		MB*D1740*1		0.0	
UG/L 32105*HA M8*D1740*1 R UG/L 34704*HA M8*D1740*1 R UG/L 34576*HA M8*D1740*1 UG/L 77562*HA M8*D1740*1 UG/L 97758*HA M8*D1740*1 UG/L 97758*HA M8*D1740*1 UG/L 34475*HA M8*D1740*1		7/90	39180*HA		MB*D1740*1		0.0	
E UG/L 34704*HA MB*D1740*I R UG/L 34576*HA MR*D1740*I UG/L 7562*HA MB*D1740*I UG/L 77562*HA MB*D1740*I UG/L 34475*HA MB*D1740*I HANE UG/L 34516*HA MB*D1740*I	ANE	7/9n	32105*HA		MB*D1740*1		0.0	
R UG/L 34576*HA M8*D ₄ 740*1 UG/L 32104*HA M8*D1740*1 UG/L 77562*HA M8*D1740*1 UG/L 97758*HA M8*D1740*1 UG/L 34475*HA M8*D1740*1	OPENE	UG/L	34704*HA		MB*D1740*1		0.0	
UG/L 32104*HA MB*D1740*! UG/L 77562*HA MB*D1740*! UG/L 97758*HA MB*D1740*! UG/L 34475*HA MB*D1740*! AANE UG/L 34516*HA MB*D1740*!	ETHER	UG/L	34576*HA		MB*D*740*1		0.0	
UG/L 77562*HA MB*D1740*I UG/L 97758*HA MB*D1740*I UG/L 34475*HA MB*D1740*I HANE UG/L 34516*HA MB*D1740*I		7/90	32104*HA	_	MB*D1740*1		0.0	
UG/L 97758*HA MB*D1740*! UG/L 34475*HA MB*D1740*! HANE UG/L 34516*HA MB*D1740*!	HANE	UG/L	77562*HA		MB*D1740*1		0.0	
UG/L 34475*HA MB*D1740*! UG/L 34516*HA MB*D1740*!		NG/L	97758*HA		MB*D1740*1		0.0	٠
UG/L 34516*HA M8*D1740*1		7/90	34475*HA		MB*D1740*1		0.0	
	SO ETHANE	7/9n	34516*HA		MB*D1740*1		0.0	

	FOOTNOTE										_			
	R.P.D. CRIT.													
			20	6	50		27	47	50	38	47	32	36	23
	RECV CRIT R.P.D.	70.2-124.8	70.2-124.83.72	31-137	25-102	26-103	28-104	28-89	11-114	41-126	17-109	26-190	35-142	38-107
	%RECV	95.0	98.6					82						
L SAMPLES	FOUND	401	416	6700	13000	13000	5400	5500	15000	0009	14000	11000	6400	0009
VC. VT 78 SO! M Replica	TARGET	422	422	00/9	13000	13000	6700	6700	13000	6700	13000	13000	0029	0029
ESE, II OR PLAN	æ	7.66	7.66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hunter/ESE, INC. QUALITY CONTROL SUMMARY FOR PLANT 78 SOIL SAMPLES andard Matrix Spike Recovery and Replicate Summary	DATE	03/16/90		03/24/90										
Hunter/ESE, INC. QUALITY CONTROL SUMMARY FOR PLANT 78 SOIL SAMPLES Standard Matrix Spike Recovery and Replicate Summary	SAMPLE	SP1*MBLK*1737	SP2*MBLK*1737	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1	SP1*D1759*1
0		D1737		D1759										
04/25/90	STOR*METH	98233*AD		46/KG-DRY 99450*ADMS	MG/KG-DRY 99497*ADMS	MG/KG-DRY 99683*ADMS	MG/KG-DRY 99469*ADMS	16/KG-DRY 99474*ADMS	16/KG-DRY 99496*ADMS	MG/KG-DRY 99487*ADMS	1G/KG-DRY 99682*ADMS	IG/KG-DRY 99685*ADMS	MG/KG-DRY 99490*ADMS	MG/KG-DRY 99492*ADMS
	UNITS	MG/KG-DRY 98233*AD	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY
	NAME	HYDROCARBONS, PETROL	HYDROCARBONS, PETROL	ACENAPHTHENE, SOIL	2-CHLOROPHENOL	4-CHLORO-3-METHYLPHENOL	1,4-DICHLOROBENZENE	2,4~DINITROTOLUENE	4-NITROPHENOL	N-NI TROSOD I - N-PROPYL AM INE	PENTACHLOROPHENOL	PHENOL	PYRENE	1, 2, 4-TRICHLRBENZENE

يني

QUALITY CONTROL SUMMARY FOR PLANT 78 SOIL SAMPLES Sample Matrix Spike Recovery Summary

	FOOTNOTE																																		
	R.P.D. CRIT.	21	21	21	21	21	21	22	22	24	24	50	20	61	61	20	20	33	33	7.2	73	1.7	1,1	50	00	88	88	1.1		5	52	91	9	ę,	ę,
	R.P.D.		0.5		9.1		2.2	1	20.1		24.7		5.67		0.0		4.		5.5		5.2		9.0		1.0		3.0	·	6.9		0.0	••	0	2	0 2
	PIKED		2		2		2	1	0	1	2		9		0		7		9		9		œ		Š		8		9		0		0.		0.0
	RECV CRIT UNSPIKED	0.0	0.0	0.0	0.0	0.0	0.0				0.0																					_	_	0.0	_
		66-142	66-142	59-139	59-139	60-133	60-133	50-172	50-172	62-137	62-137	70.2-12	70.2-12	31-137	31-137	25-102	25-102	26-103	26-103	28-104	28-104	28-89	28-89	11-114	11-114	41-126	41-126	17-109	17-109	26-190	26-190	35-142	35-142	38-107	38-107
	%RECV	120	46	121	97	122	98	109	06	117	6	107	115	103	107	901	112	131	125	92	8	66	104	156	162	4	102	112	125	001	100	101	86	98	98
מ	FOUND	1290	1050	1310	1050	1320	0901	1180	696	1270	993	513	554	3500	3800	17000	0008	1000	00000	300	1254	1200	0091	2000	0009	000	400	8000	0000	0009	0009	300	100	7100	100
Summar	iu																																	3254 7	
מברחגבו ה																						-				-	-					~	~	0.0	w
dumple lied to spine hecovery summary	DATE											03/16/90		03/24/90																					
	SAMPLE	SPM1*BCSS3*3	SPM2*BCSS3*3	SPM1*BCSS3*3	SPM2*BCSS3*3	SPM1*BCSS3*3	SPM2*BCSS3*3	SPM1*BCSS3*3	SPM2*BCSS3*3	SPM 1*BCSS3*3	SPM2*BCSS3*3	SPM1*BCSS3*4	SPM2*BCSS3*4	SPM I*BCSS3*7	SPM2*BCSS3*7	SPM1*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7	SPM I*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7	SPM1*BCSS3*7	SPM2*BCSS3*7	SPM1*BCSS3*7	SPM2*BCSS3*7	SPM 1*BCSS3*7	SPM2*BCSS3*7
		D1749										D1737		01759																					
		34237*ADPI		34483*ADP1		34304*ADP1		34504*ADHA		34487*ADHA		98233*AD		99450*ADMS		99497*ADMS		99683*ADMS		99469*ADMS		99474*ADMS		99496*ADMS		99487*ADMS		99682*ADMS		99685*ADMS		99490*ADMS		99492*ADMS	
	UNITS	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY	MG/KG-DRY
	NAME	SENZENE	BENZENE TO HITHE	TOLUENE	IULUENE	CHLOROBENZENE	CHLOROBENZENE	1. 1-DICHLOROETHENE	1, 1-DICHLOROETHENE	TRICHLOROETHYLENE	TR I CHL OROE THYL ENE	HYDROCARBONS, PETROL	HYDROCARBONS, PETROL	ACENAPHI HENE, SOIL	ACENAPHINE SOIL	2-CHLOROPHENOL	Z-CHLOROPHENOL	4-CHLORO-3-METHYLPHENOL	4-CHLORO-3-ME I HYLPHENOL	1, 4-DICHLOROBENZENE	1, 4-DI CHLOROBE NZENE	2, 4-DINITROTOLUENE	Z, 4-DINITROTOLUENE	4-NI TROPHENOL	4-NI IROPHENOL	N-NI TROSODI -N-PROPILAMINE	N-NI - ROSOU -N-PROPYLAMINE	PEN ACHLOROPHENOL	PEN ACHLOROPHENOL	PHENOL	PHENOL	PYRENE	PYRENE	1, 2, 4-TRICHLRBENZENE	I, Z, 4-IRICHLRBENZENE

-

Table of Definitions for QC Report
Columnar Terms

Item
FOUND
FOUND
FOUND # 1
Concentration of UNSP
FOUND # 2
Concentration of Repi
%REV
RECV CRIT
CONCENT Recovery:
RECV CRIT
NSPIKED
WASELK
R.P.D.
R.P.D.
R.P.D.
R.P.D.
Replicate Percent Diff
NAX % REPL Diff
MAX % REPL Diff
MAX WAN MAX WALLAND
NAA
NOT Analyzed
N/A
NOT Available

Concentration of NuNPIKED Sample
Concentration of Replicate Sample
Concentration of Replicate Sample
Percent Recovery:
Recovery Criteria
Unspiked Sample Concentration
Concentration of Method Blank
Relative Percent Difference (Matrix Spikes)
Replicate Percent Difference (Control Spikes)
Replicate Percent Difference (Control Spikes)
Replicate Percent Difference (Control Spikes)
Naximum value of Replicate Difference
Calibration Curve Detection Limit
Not Analyzed
Not Available

Definition SPIKE SAMPLE CONC - UNSPIKED SAMPLE CONC 100 * (FOUND/ TARGET) displayed in appropriate significant figures Criteria for Percent Recovery set in the parameter record.

Concentration of the DA or UN sample

100 * (ABS (%RECV SPMn - %RECV SPMn-1)/(%RECV SPMn + %RECV SPMn-1)/2)

100 * (ABS (%RECV SPn - %RECV SP)/(%RECV SPn + %RECV SP)/2)

100 * (ABS (Conc Rep #2 - Conc Rep #1)/(Conc Rep #2 + Conc Rep #1)/2)

Environmental scrence and chaineering, INC.
Table of Definitions for QC Report
Special Terms

D*1 U*2 RPD*1

U* i
UNSP IKED = 0
BLANK LINE
NC
NDL
MIN.REC
MAX.REC

Minimum Recovery Limit Maximum Recovery Limit

Definition

No analysis date.R*!

Raw sample or UN sample is null or does not exist.

SP! data is null or does not exist.

SP! data is null or does not exist.

UN or DA parameter status is NR (NOT REQUESTED)

If the parameter is reported as a "LESS THAN" the data is converted to 0 for calculation purpos Sample status is either NA or NR. NA=NOT ANALYZED, NR=NOT REQUESTED

No curve found.

No curve detection limit in the curve record.

Average Recovery - Recovery Limit

FOOTNOTES FOR THE EVALUATION OF THE PLANT 78 QUALITY CONTROL SUMMARIES:

1. This a computer rounding artifact. In fact the target is 13333 mg/kg, the found value is 14194 mg/kg, and the recovery is 106%. This is within acceptance criteria.

Table of Definitions for QC Report

Definition	SPIKE SAMPLE CONC - UNSPIKED SAMPLE CONC.	100 x (FOUND/TARGET) (see note below)		100 x (ABS (%RECV SPMn - %RECV SPMn-1)/(%RECV SPMn + %RECV SPMn-1)/2where n > or = 2	100 x (ABS (%RECV SPn - %RECV SP1)/(%RECV SPn + %RECV SP1)), where n > or = 2	100 x (ABS (%RECV SPn - %RECV SP1)/(%RECV RPn + %RECV RP1)). where n > or = 2	Criteria for RPD set in the parameter record.									
Title	Sample Concentration Concentration of UNSPIKED Sample Concentration of Renificate Sample	Percent Recovery Criteria for Percent Recovery set in the parameter record.		Relative Percent Difference (Matrix Spikes)	Relative Percent Difference (Control Spikes)	Relative Percent Difference (Replicate Spikes)	Maximum value of Replicate Difference	Absolute value of calculation	Relative Percent Difference Criteria	Amount of specific analyte added to the standard or sample matrix	File that contains sample and QC data.	STORET (Storage/Retrieval) system with Method Code. These codes are for internal ESE	use only.	Target value is null or 0 in the data batch.	The parameter is not requested for that sample, so the concentration in the	unspiked sample cannot be calculated.
<u>Item</u>	FOUND #1 FOUND #1 FOUND #2	%RECV RECV CRIT	UNSPIKED M*BLK	R.P.D.	R.P.D.	R.P.D.	MAX % REPL DIFF	ABS	RPD CRIT	TARGET	BATCH	STOR*METH		T*1	U*1	

or the date of preparation if more than one day of extractions are contained in the batch. Method blank n can represent the number of method blanks in the batch Reference material MB*NONE*n RF*REF Id.

Gas chromatography method with an Electron Capture Detector

Gas chromatography method with a Hall Detector

Air Force project, classical inorganic methods

ESE's sample designation lon chromatography

Date of analysis

SAMPLE DATE UNITS Al or 1

MG/L UG/L NAME

NA NA

Method of expressing concentration

Micrograms per liter Milligrams per liter

Not Available Not applicable Parameter

Air Force project, using Inductively Coupled Argon Plasma

Graphite Furnace Atomic Absorption

Cold Vapor Atomic Absorption

Gainesville Lab, using Gas Chromatography/Mass Spec.

CVAA GFAA AICP GMS EC HA

The unspiked sample data is not located in that data batch.

The SP1 data is not located in that data batch.

For metals analysis only, this is an analytical or post digestion Standard matrix spike of QC check sample for metals Replicate analysis; identifying the sample replicated Standard matrix spike of QC check sample SPX*FIELD GROUP*SEQ# RP*FIELD GROUP*SEO #

LCS*NONE*n

SPn*NONE*n

Surrogate spike, identifying the sample or the laboratory sample spiked. Sample matrix spike, identifying the sample spiked SPMn*FIELD GROUP*SEQ# SUR*FIELD GROUP*SEQ#

sample matrix spike.

For values that are less than the detection limit, the detection limit is used for calculation purposes. For multiple spikes, all are compared to the first spike, when calculating the RPD value.

Calculations are performed using the number of significant figures specific to that analysis. Example: If target = 40, and found = 41; calculated % recovery = 102.5 reported % recovery = 100.

Glossary of Terms and Symbols

DEFINITIONS

Trip Blank: A sample bottle is filled with ASTM Type II Reagent Water in the laboratory, transported to the site, handled like a sample, and returned to the laboratory for analysis (trip blanks are not to be opened in the field). The trip blank for soils is Type II Reagent Water just as in the case of water samples.

Ambient Conditions Blank: Type II Reagent Water is poured into a samples container at the site, the is handled like a sample and transported to laboratory for analysis.

Equipment Blank: Type II Reagent Water is poured into the sampling device, or pumped through it (in the case of sampling pumps), transferred to the sample bottle, and then transported to the laboratory for analysis.

Duplicate: Two samples collected independently at a sampling location during a single act of sampling. Field duplicates shall be disguised so that laboratory personnel performing the analyses are not able to determine which samples are duplicates.

Method Blank: Method blanks consist of analyte-free water or soil, processed in the exact manner as the samples within a batch, using identical reagents and solvents.

Sample Matrix Spike: For every 20 samples, a sample is selected that represents the matrix and is spiked in duplicate with analytes specified for each method.

Surrogate Spikes: Surrogate spikes are compounds that are added to every sample analyzed, including the standards, blanks, matrix spikes and QC check samples, to assess the recovery of the method.

Standard Matrix Spikes/QC Check Sample: A QC check sample consists of either an EPA reference, NBS-traceable reference, or an in-laboratory prepared spike into a standard matrix (typically deionized water) using stocks made independently of the calibration standards (i. e. same as a standard matrix spike). The QC check sample or standard matrix spike can serve one or two purposes depending on the method:

- 1) Verify the standard calibration using and independent standard. This occurs when the method involves direct analysis of the sample.
- 2) Differentiate between sample matrix interference and analytical procedural error. Sample matrix spikes that fall outside of precision and/or accuracy acceptance criteria indicate either a matrix interference or a problem with the standard analytical procedure. An acceptable QC check sample provides strong evidence that a matrix interference is present.