Assignment Code: DA-AG-013

SVM & Naive Bayes | Assignment

Question 1: What is a Support Vector Machine (SVM), and how does it work?

Ans:- A Support Vector Machine (SVM) is a powerful supervised machine learning algorithm used for classification and regression tasks, but it's most commonly used for binary classification.

Basic Idea of SVM

SVM aims to find the best boundary (hyperplane) that separates data points of different classes with the **maximum margin** (i.e., the largest distance between the boundary and the nearest points from both classes). These nearest points are called support vectors.

How SVM Works — Step-by-Step

1. Linearly Separable Case

If the data can be separated by a straight line (in 2D) or a plane/hyperplane (in higher dimensions):

- SVM finds the **optimal hyperplane** that separates the two classes.
- The hyperplane is chosen such that it has the **maximum margin**.
- The points that lie **closest** to the hyperplane are the **support vectors**, and they define the margin.

Mathematical objective:

Maximize margin = $2||w|| \frac{2}{||w||} ||w||^2$, where www is the weight vector of the hyperplane.

2. Non-Linearly Separable Case

If the data is not linearly separable:

- SVM uses a technique called the kernel trick to map data to a higher-dimensional space where it becomes linearly separable.
- Common kernel functions:
 - \circ Linear: $K(x,y)=x\cdot yK(x,y)=x\cdot yK(x,y)=x\cdot y$
 - \circ Polynomial: $K(x,y)=(x\cdot y+c)dK(x, y)=(x \cdot cdot y + c)^dK(x,y)=(x\cdot y+c)d$
 - RBF (Gaussian): $K(x,y)=\exp(-\gamma||x-y||2)K(x, y) = \exp(-\gamma||x-y||2)K(x, y) = \exp(-\gamma||x-y||2)$

3. Soft Margin (for noisy data)

- Real-world data often has overlapping classes or noise.
- SVM introduces a **penalty parameter C** to allow some misclassifications while still aiming for a wide margin.
 - High C → less tolerance for misclassification (can overfit).
 - Low C → more tolerance (can underfit).

II Example

Imagine you want to classify emails as "spam" or "not spam". SVM will:

- Convert each email into a vector of features (word counts, etc.).
- Find the optimal boundary that separates spam from not spam emails with the highest margin.
- Use support vectors (critical examples) to define this boundary.

Advantages of SVM

• Works well in high-dimensional spaces.

- Effective when the number of features > number of samples.
- **Robust** to overfitting, especially with the right kernel and regularization.

X Limitations

- Not suitable for large datasets (training time is slow).
- Less effective on overlapping classes.
- Choosing the **right kernel** and tuning hyperparameters can be complex.

Real-World Applications

- **Text classification** (e.g., spam detection, sentiment analysis)
- Image classification
- **Bioinformatics** (e.g., protein classification)
- Face detection in images

Question 2: Explain the difference between Hard Margin and Soft Margin SVM.

Ans:- The difference between Hard Margin and Soft Margin SVM lies in how strictly the algorithm separates the classes and handles misclassification or overlapping data.

1. Hard Margin SVM

Property Definition:

Hard Margin SVM tries to **find a hyperplane that separates the data with **no misclassifications**.

It assumes the data is perfectly linearly separable.

- No data points are allowed inside the margin or on the wrong side of the hyperplane.
- Maximizes the margin while keeping zero training error.
- Works only when the data is clean and noise-free.

Limitations:

- Very sensitive to outliers or noise.
- Fails when even a single point is misclassified or slightly overlaps.

Use Case:

Rarely used in real-world applications because most real datasets are noisy or not perfectly separable.

2. Soft Margin SVM

Definition:

Soft Margin SVM **allows some misclassifications** or violations of the margin to achieve better generalization on noisy or overlapping data.

Characteristics:

- Introduces slack variables (ξ_i) to allow some points to lie inside the margin or be misclassified.
- Controlled by the regularization parameter C:
 - High C → tries to classify all training examples correctly (less tolerance to misclassification, risk of overfitting).
 - Low C → allows more misclassification for better generalization (risk of underfitting).

Benefits:

- Robust to outliers and noisy data.
- Balances the trade-off between margin size and classification error.

Use Case:

Widely used in **real-world problems** like spam detection, image classification, medical diagnosis, etc.

Summary Table:

Feature	Hard Margin SVM	Soft Margin SVM	
Tolerance to error	X No tolerance (strict separation)	✓ Allows some error/misclassification	
Suitable for	Perfectly separable data	Real-world noisy or overlapping data	
Flexibility	Rigid	Flexible	
Use of slack variables	X No	✓ Yes (ξ _i)	
Regularization (C)	Not applicable	Controls trade-off between margin and error	
Sensitive to outliers	✓ Highly sensitive	X Less sensitive	

Question 3: What is the Kernel Trick in SVM? Give one example of a kernel and explain its use case.

Ans:- What is the Kernel Trick in SVM?

The **Kernel Trick** is a technique used in **Support Vector Machines (SVM)** to enable them to perform **non-linear classification**.

Q Problem:

- In many real-world datasets, the data **cannot be separated linearly** (i.e., by a straight line or hyperplane).
- Simply using a linear SVM won't work well in such cases.

Solution: Kernel Trick

The **Kernel Trick** allows SVM to:

- Map the original data into a higher-dimensional feature space, where a linear separation is possible.
- Do this **implicitly**, without actually computing the transformation by using a **kernel function**.
 - So, instead of computing $\varphi(x)$ explicitly, we compute $K(x, x') = \varphi(x) \cdot \varphi(x')$ directly, which is much faster and more efficient.

* How it Works:

- Suppose x and x' are input vectors.
- A kernel function **K**(**x**, **x**') returns the **dot product of the two vectors in a higher-dimensional space**:

$$K(x,x')=\phi(x)\cdot\phi(x')K(x,x')=\phi(x)\cdot\phi(x')$$

Common Kernel Example: Radial Basis Function (RBF) Kernel

Formula:

 $K(x,x')=\exp(-\gamma ||x-x'||2)K(x, x') = \exp\left(-\gamma ||x-x'||^2\right)K(x,x')=\exp(-\gamma ||x-x'||^2)$

- y\gammay controls how far the influence of a single training example reaches.
- A **higher y** means only nearby points affect the decision boundary.

Use Case:

- Used when the decision boundary is very complex and curved.
- Suitable for non-linear problems like:
 - Handwritten digit classification (like MNIST)
 - Face recognition
 - Bioinformatics (e.g., classifying proteins, genes)

Intuition Behind RBF Kernel:

Imagine you're trying to classify points shaped like two circles:

- Inner circle = Class A
- Outer ring = Class B
 - ightarrow These are **not linearly separable in 2D**, but they **are** separable in a higher-dimensional space with the RBF kernel.

Summary of the Kernel Trick

Aspect	Description
Purpose	Enables SVM to handle non-linear data
How it works	Computes dot products in high-dimensional space without actual mapping
Key advantage	Transforms non-linear problems into linear ones in transformed space
Common kernels	Linear, Polynomial, RBF (Gaussian), Sigmoid
Example kernel	RBF kernel — works well on complex, curved decision boundaries

Question 4: What is a Naïve Bayes Classifier, and why is it called "naïve"?

Ans:- What is a Naïve Bayes Classifier?

A Naïve Bayes Classifier is a supervised machine learning algorithm based on Bayes' Theorem, used for classification tasks. It's especially popular for text data (like spam detection or sentiment analysis).

Bayes' Theorem Recap:

 $P(C|X)=P(X|C) \cdot P(C)P(X)P(C|X) = \frac{P(X|C) \cdot C}{C}$ P(C){P(X)} $P(C|X)=P(X)P(X|C) \cdot P(C)$

Where:

- P(C|X)P(C|X)P(C|X) = Probability of class C given features X (posterior)
- P(X|C)P(X|C)P(X|C) = Likelihood of features X given class C
- P(C)P(C)P(C) = Prior probability of class C
- P(X)P(X)P(X) = Probability of features X

The classifier predicts the class **C** that **maximizes** this posterior probability.

Example:

Say you want to classify an email as **spam** or **not spam** based on the words it contains:

- XXX = ['win', 'money', 'now']
- The model calculates the probability of each class given the words, and picks the one with the highest probability.

🧐 Why is it called "Naïve"?

Because it naively assumes that:

All features (words, attributes) are **independent of each other**, given the class.

In reality, this assumption is **almost never true** (e.g., in a sentence, words are related). But this **simplifies the computation** and still works surprisingly well in many applications.

Example of the "Naïve" Assumption:

In text classification:

- Suppose you're classifying messages.
- You have features like:
 - Word 1: "buy"
 - Word 2: "now"

The **naïve assumption** says:

The presence of "buy" is independent of the presence of "now", **given** the class label (e.g., spam).

Even though in real life, these words often appear together in spam messages!

Advantages:

- Simple and fast
- Works well with high-dimensional data (like text)
- Performs surprisingly well even with the naive assumption
- Requires less training data

X Limitations:

- Assumes **feature independence** (which is rarely true)
- Not great when features are highly correlated
- Poor performance on very small datasets

🔧 Real-World Applications:

- **Spam detection**
- Sentiment analysis
- Document categorization
- Medical diagnosis

Feature	Description	
Based on	Bayes' Theorem	
Assumption	Features are conditionally independent given the class	
Why "naïve"?	Assumes independence between features (often unrealistic)	
Best use	Text classification, spam filtering, sentiment	

Question 5: Describe the Gaussian, Multinomial, and Bernoulli Naïve Bayes variants. When would you use each one?

cases

Ans:- 1. Gaussian Naïve Bayes

analysis

P Description:

Assumes that the features follow a Normal (Gaussian) distribution.

Suitable for:

- Continuous (numerical) features
- e.g., age, height, temperature, etc.

Formula:

 $P(xi \mid C)=12\pi\sigma2exp(-(xi-\mu)22\sigma2)P(x_i \mid C) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-(xi-\mu)22\sigma^2\right)P(x_i \mid C) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-(xi-\mu)2\right)P(xi \mid$

Each feature's likelihood is computed assuming it's Gaussian distributed.

💡 Example Use Case:

- Medical diagnosis (e.g., classify if a patient has a disease based on continuous lab results)
- Iris flower classification (based on petal/sepal width/length)

🔽 2. Multinomial Naïve Bayes

Description:

Assumes the features represent **discrete counts** (i.e., number of times a feature appears).

Ⅲ Suitable for:

- Count-based data, especially text data where features are word frequencies or term frequency-inverse document frequency (TF-IDF).
- Doesn't work well with negative or continuous features.

Example Use Case:

- Spam detection (based on word counts in emails)
- News classification

Sentiment analysis

Note:

This is the most common Naïve Bayes variant used in Natural Language Processing (NLP).

🔽 3. Bernoulli Naïve Bayes

P Description:

Assumes that each feature is a binary value (0 or 1), representing the presence or absence of a feature (not frequency).

Suitable for:

- **Binary/Boolean features**
- Works well when you're only interested in whether a word occurs or not (not how often)

💡 Example Use Case:

- Text classification where we only care if a word appears (e.g., spam vs. not spam)
- **Document classification** with binary features (e.g., has the word "money"? yes/no)

Summary Table

Variant	Data Type	Assumption	Example Use Case
Gaussian	Continuous	Features follow Normal distribution	Medical data, Iris dataset
Multinomi al	Count (integers)	Features are counts/frequencies	Spam detection, news classification

- **Use Gaussian** → for numerical features (e.g., heights, test scores)
- Use Multinomial → for word counts or TF-IDF in NLP tasks
- Use Bernoulli → for binary text features or presence/absence scenarios

Question 6: Write a Python program to: • Load the Iris dataset • Train an SVM Classifier with a linear kernel • Print the model's accuracy and support vectors.

Ans:- Here's a complete Python program to:

- Load the Iris dataset
- Train an SVM Classifier with a linear kernel
- Print the model's accuracy and support vectors

from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy score

Load the Iris dataset iris = datasets.load_iris() X = iris.data y = iris.target

Split the dataset into training and testing sets (80% train, 20% test) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the SVM Classifier with a linear kernel svm_model = SVC(kernel='linear') svm_model.fit(X_train, y_train)

Predict on the test set

```
y_pred = svm_model.predict(X_test)

# Calculate and print the accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")

# Print the support vectors
print("\nSupport Vectors:")
print(svm_model.support_vectors_)

✓ Output Example (will vary slightly each run):
Model Accuracy: 1.00

Support Vectors:
[[5.1 3.8 1.5 0.3]
[4.6 3.2 1.4 0.2]
...
]
```

Question 7: Write a Python program to: • Load the Breast Cancer dataset • Train a Gaussian Naïve Bayes model • Print its classification report including precision, recall, and F1-score.

Ans:- Here's a complete Python program to:

- Load the **Breast Cancer** dataset
- Train a Gaussian Naïve Bayes model
- Print the **classification report** (precision, recall, F1-score)

```
Python Code:
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report

# Load the Breast Cancer dataset
data = load_breast_cancer()
X = data.data
y = data.target
```

Split into training and testing sets (80% train, 20% test)

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

# Train the Gaussian Naive Bayes model
gnb = GaussianNB()
gnb.fit(X_train, y_train)

# Predict on the test set
y_pred = gnb.predict(X_test)

# Print the classification report
print("Classification Report:")
print(classification report(y test, y pred, target names=data.target names))
```

III Output Example (may vary slightly):

Classification Report:

precision recall f1-score support malignant 0.96 0.94 0.95 43 benign 0.96 0.98 0.97 71 accuracy 0.96 114 macro avg 0.96 0.96 0.96 114 weighted avg 114 0.96 0.96 0.96

Question 8: Write a Python program to: ● Train an SVM Classifier on the Wine dataset using GridSearchCV to find the best C and gamma. ● Print the best hyperparameters and accuracy.

Ans:- Here's a complete Python program to:

- Load the **Wine** dataset
- Train an SVM Classifier using GridSearchCV
- Find the best C and gamma values
- Print the best hyperparameters and accuracy

V Python Code:

```
from sklearn.datasets import load wine
from sklearn.model selection import train test split, GridSearchCV
from sklearn.svm import SVC
from sklearn.metrics import accuracy score
# Load the Wine dataset
data = load wine()
X = data.data
y = data.target
# Split into train and test sets (80% train, 20% test)
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
# Define the parameter grid
param grid = {
  'C': [0.1, 1, 10, 100],
  'gamma': [0.001, 0.01, 0.1, 1],
  'kernel': ['rbf']
}
# Create and run GridSearchCV
grid = GridSearchCV(SVC(), param grid, cv=5)
grid.fit(X train, y train)
# Best parameters and accuracy
best model = grid.best estimator
y_pred = best_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
# Output results
print("Best Hyperparameters:")
print(grid.best params )
print(f"\nTest Accuracy: {accuracy:.2f}")
Output Example (varies by run):
Best Hyperparameters:
{'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
Test Accuracy: 1.00
```

Question 9: Write a Python program to: • Train a Naïve Bayes Classifier on a synthetic text dataset (e.g. using sklearn.datasets.fetch_20newsgroups). • Print the model's ROC-AUC score for its predictions.

Ans:- Here's a Python program that:

- Loads a synthetic text dataset using fetch_20newsgroups from sklearn.datasets
- Trains a Naïve Bayes Classifier (Multinomial Naive Bayes is best suited for text)
- Computes and prints the ROC-AUC score

We'll use **binary classification** (e.g., 'sci.space' vs. 'rec.autos') for ROC-AUC to make sense.

V Python Code:

from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score

Load a binary subset of the 20 newsgroups dataset categories = ['sci.space', 'rec.autos'] newsgroups = fetch_20newsgroups(subset='all', categories=categories)

Features and labels
X = newsgroups.data
y = newsgroups.target # 0 or 1

Vectorize the text using TF-IDF
vectorizer = TfidfVectorizer()
X_vectorized = vectorizer.fit_transform(X)

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_vectorized, y, test_size=0.2, random_state=42)

Train the Naive Bayes model

```
model = MultinomiaINB()
model.fit(X_train, y_train)

# Predict probabilities
y_probs = model.predict_proba(X_test)[:, 1]

# Compute ROC-AUC score
roc_auc = roc_auc_score(y_test, y_probs)
print(f"ROC-AUC Score: {roc_auc:.2f}")

// Example Output:
ROC-AUC Score: 0.98
```

Question 10: Imagine you're working as a data scientist for a company that handles email communications. Your task is to automatically classify emails as Spam or Not Spam. The emails may contain: • Text with diverse vocabulary • Potential class imbalance (far more legitimate emails than spam) • Some incomplete or missing data Explain the approach you would take to: • Preprocess the data (e.g. text vectorization, handling missing data) • Choose and justify an appropriate model (SVM vs. Naïve Bayes) • Address class imbalance • Evaluate the performance of your solution with suitable metrics And explain the business impact of your solution.

Ans:- Here's a detailed and practical approach to building a **Spam Email Classifier** given the challenges you mentioned (text data, class imbalance, and missing values):

1. Preprocessing the Data

- ✓ Handle Missing Data:
 - Text Columns:
 - If emails are missing (NaN in text), drop or fill with empty string:df['email_text'].fillna('')
 - Other Features (e.g., metadata):
 - For categorical: fill with 'unknown'

 For numerical: fill with mean/median or use KNN imputation if necessary

▼ Text Vectorization:

Since emails are unstructured text:

• Use **TF-IDF Vectorization**: Converts text to numerical values based on term frequency and importance.

from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(stop_words='english', max_features=5000) X = vectorizer.fit_transform(df['email_text'])

from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(stop_words='english', max_features=5000) X = vectorizer.fit_transform(df['email_text'])

from sklearn.metrics import classification report, roc auc score, confusion matrix

Business Impact

Market Benefits of this solution:

- Increased Productivity: Employees won't waste time on spam emails.
- **Security**: Blocks phishing or malicious emails that could harm the organization.
- Customer Trust: Ensures legitimate customer communications aren't lost or mislabeled.
- Automation: Reduces manual effort in monitoring inboxes and spam folders.

Summary

Task Solution

Preprocessin TF-IDF + Fill missing text with ' '

g

Model Multinomial Naïve Bayes or SVM with class

weights

Imbalance SMOTE, class weights, threshold tuning

Metrics Precision, Recall, F1, ROC-AUC

Business

Value

Improves security, efficiency, and automation