MOOC 1: DES

Jean-Luc Falcone

26 novembre 2014

Simulation and modeling of natural processes

Week 7: Introduction to Discrete Events Simulation

Jean-Luc Falcone

Introduction to Discrete Events

Simple physics

► A point particle in an **infinite** 2D space, no forces:

$$x(t) = v_x t + x(0)$$

$$y(t) = v_y t + y(0)$$

- ► The trajectory can be accurately computed at each time in the future (or even in the past).
- For instance if the particle is at t = 0 at position (4, 5) with $\mathbf{v} = (2, 0.9)$. Three minutes later (t = 180) the particle will be located at position (364, 267).

Still simple physics?

- ► Let's now assume that the same particle is in fact in a square 2D box with sides of 16 meters.
- ► Let's also assume perfectly elastic collisions:

$$v'_{x} = \begin{cases} -v_{x} & \text{if } x = 0 \text{ or } x = 16 \\ v_{x} & \text{otherwise.} \end{cases}$$
$$v'_{y} = \begin{cases} -v_{y} & \text{if } y = 0 \text{ or } y = 16 \\ v_{y} & \text{otherwise.} \end{cases}$$

▶ What will be the position of the particle after 3 minutes ?

A naive & brute force approach

- ▶ Move the particle successively by small increments of time Δt .
- ▶ At every time step, check for collisions and update velocities before position:

$$v_x(t + \Delta t) = \begin{cases} -v_x(t) & \text{if } x(t) \le 0 \text{ or } x(t) \ge 16 \\ v_x(t) & \text{otherwise.} \end{cases}$$

$$v_y(t + \Delta t) = \begin{cases} -v_y(t) & \text{if } y(t) \le 0 \text{ or } y(t) \ge 16 \\ v_y(t) & \text{otherwise.} \end{cases}$$

$$x(t + \Delta t) = v_x(t + \Delta t)\Delta t + x(t)$$

$$y(t + \Delta t) = v_y(t + \Delta t)\Delta t + y(t)$$

A smarter approach

▶ When will the particle collide with north boundary, assuming it is an infinite line:

$$v_{y}t_{N} + y(t) = L \quad \Leftrightarrow \quad t_{N} = \frac{L - y(t)}{v_{y}}$$

▶ We can compute next collision time for all boundaries

$$t_{\rm N} = \frac{L - y(t)}{v_{\rm y}} = 12.22$$
 $t_{\rm E} = \frac{L - x(t)}{v_{\rm x}} = 6.00$ $t_{\rm S} = \frac{-y(t)}{v_{\rm y}} = -5.56$ $t_{\rm W} = \frac{-x(t)}{v_{\rm x}} = -2.00$

The first collision

The second collision

And so on

Comparison

► The discrete version is both faster and accurate:

Approach $(t = 180)$	Iterations	Accuracy
Continuous ($\Delta t = 0.01$)	18'000	Error $\leq 4\%$
Discrete	34	Exact

End of module

Introduction to discrete events

Coming next

Definition of discrete events simulations

Definition of Discrete Events Simulations (DES)

Discrete Event Simulations (DES)

- ► Contrasts with *time-driven* simulations
- ► There exists timed **events** causing significant modifications to the system state
- ► The systems is simulated by jumping from one event to the next in time.

Requirements

- ► We can compute **analytically** the state of the system at any time between two events
- ▶ Each event takes place at a given time $t \in \mathbb{R}^+$
- ► Only a single event can occur at a given time

System description

- \blacktriangleright The system is composed of many entities i
- ▶ Each entity is described by its state at time t ($s_i(t)$)
- ▶ We denote S(t) the set $\{s_i(t)\}$ at time t

Events

- \blacktriangleright Each event j is associated with an action a_i
- \blacktriangleright Each action a_i is a function which modifies the state:

$$a_i:S\to S$$

► The event is the **cause**; the action is the **effect**

Events kind

► We will distinguish two kind of events:

Endogeneous Consequences of the system evolution **Exogeneous** Originating from outside the system

- ► Exogeneous events can be seen as the system boundary or inlet conditions.
- ► Exogeneous events are often generated using a pseudo-random generator and an appropriate distribution function.

Terminology

Warning

- ▶ Discrete events systems time is continuous
- ► Continuous time model time is discrete

The DES algorithm (simplified)

Initialisation

```
t_current = t0
s_i = s_i(t_current)
```

Evolution

```
while not end_condition(t_current, s_i):
    events = f(s_i)  #compute all next events
    e_next = g(events) #Choose the closest in time
    t_next = e_next.t
    s_i = e_next.action( s_i ) #Execute the action
    t_current = t_next  #Jump to next time
```


End condition

- ► Depends of the considered problem
- ► For instance, we could stop the system if:
 - ► The system cannot generate more events
 - $ightharpoonup t_{
 m next} >= t_{
 m max}$

End of module

Definition of discrete events system

Coming next
Optimisation problems

Optimisation problems

Description: Windows

- \triangleright Post office with n windows
- \triangleright Each window w_i has a state:
 - ► CLOSED
 - ► OPEN
 - ► BUSY
- ► Each window has a daily schedule, describing when the window *opens* and when the window *closes*. For instance:

	w_1	w_2	<i>w</i> ₃
08:30	OPEN	OPEN	CLOSED
09:30	OPEN	CLOSED	CLOSED
10:30	CLOSED	OPEN	CLOSED
11:30	OPEN	OPEN	OPEN

Description: Customers

- \blacktriangleright Each customer j is associated with the duration needed to process his/her request p_i .
- ► For a given simulation, we know in advance the arrival time and processing duration of each customer. For instance:

Arrival	Duration	
08:30:00	5'	
08:30:10	2'	
08:31:00	10'	
08:31:25	3'	
	•••	

Description: Queue

- \blacktriangleright When a customer *j* arrives, it looks for an OPEN window.
 - ▶ If found: the window is now BUSY for the duration p_i .
 - ▶ If not found, the customer waits in a FIFO queue.
- ► When a window becames OPEN the first consumer in queue goes to the window. The window will become BUSY.

Optimization questions

- ► How to organize windows schedule such as to minimize waiting line length?
- ► How could we reduce the open window before the waiting line length comes above a given threshold?
- ► Is it interesting to have a separate queue for light requests?

State

To describe fully describe a state of this post office model, we need to keep track of:

- ▶ A vector W of length n with elements w_i equal to the state of the corresponding window.
- ▶ A FIFO queue of waiting customers (\mathbb{C}), where each customer is represented by its processing duration p_j .

Events

Windows (endogeneous)

- ► Open(t,i)
- ▶ Process(t,i)
- ► Close(t,i)

Customers (exogeneous)

► Arrival(t,p_j)

Exogeneous events

- ► The exogeneous events are analoguous to *boundary conditions*
- ► Since they don't depend on the system state, they can be generated before the simulations starts.
- ► They are often generated at random using a distribution function obtained empirically.

Optimisation process

- ► The model parameter to be optimised are identified and fixed for each run
- ► The DES allows to compute an objective function
- ► The objective function is measured every time an event occurs.
- ► If the exogeneous event are random, several run will allow to estimate the objective function: **Monte-Carlo** method.

End of module

Definition of discrete events system

Coming next

Implementation matters

Implementation matters

Event queue

- \blacktriangleright All future events are inserted to a **priority queue** (Q), sorted by event time.
- \blacktriangleright Each event action a_i can also read and modify this queue:

$$a_j:(S\times Q)\to(S\times Q)$$

- ► An action could:
 - ► Insert one or several new events
 - ► Remove one or several existing events

Event queue

- ► For good performances choose an adequate datastructure
- ▶ My favorites (fast and fun to implement):
 - ► Calendar queue
 - ► Pairing heap

DES Algorithm

Initialisation

```
t_current = t0
Q = exogeneous() #Add exogeneous events to the queue
S = initialState(t0)
```

Evolution

Parallel discrete events

▶ Because of causality parallelism is hard

- ► Three common strategies:
 - ► Optimistic
 - ► Pessimistic
 - Careless

*End of module*Implementation matters

Coming next

Traffic intersection example

Traffic intersection example

General overview

Model description

State

- ▶ Secondary street traffic light: $f \in \{RED, GREEN\}$
- ▶ Cars waiting in secondary street: $C \in \mathbb{N}$

Event queue

► Priority queue of future events sorted by time of occurence

Events:

- \triangleright t $\in \mathbb{R}^+$
- ▶ action: $(E \times Q) \rightarrow (E \times Q)$

Parameters

Traffic parameters

- ▶ The models needs as an input a list of car arrivals in the secondary street.
- ► This could be given by empirical measurement on an existing intersection.
- ► The car arrival could be drawn at random from an estimated distribution.

Traffic light parameters

- ► Latency to switch the traffic light from green to red or red to green: *a*
- ► Duration of green light per waiting car: *b*

Car arrival event

```
event CAR(t):
    def action():
        if C == 0 and f == "RED":
            Q.insert( R2G(t + a) )
        elif f == "GREEN":
            pass
        else:
            C = C + 1
```


Traffic light events

```
event R2G(t):
    def action():
        f = "GREEN"
        Q.insert( G2R( t + C*b ) )
        C = 0

event G2R(t):
    def action():
        f = "RED"
```


Evolution example

► Model Parameters: a = 30, b = 10

Time	Event	С	f	Queue
0		0	R	CAR(10) CAR(25) CAR(35) CAR(60) CAR(75)
10	CAR	1	R	CAR(25) CAR(35) R2G(40) CAR(60) CAR(75)
25	CAR	2	R	CAR(35) R2G(40)CAR(60) CAR(75)
35	CAR	3	R	R2G(40) CAR(60) CAR(75)
40	R2G	0	G	CAR(60) G2R(70) CAR(75)
60	CAR	0	G	G2R(70) CAR(75)
70	G2R	0	R	CAR (75)
75	CAR	1	R	R2G(105)
105	R2G	0	G	G2R (115)
115	G2R	0	R	ϵ

Complications

- ► Green light duration limit
- ► Taking into account a realistic passing tme for cars
- ► Pedestrian crosswalk
- ► Better traffic light synchronisation

End of module Traffic intersection example

Coming next
Volcano ballistics

Volcano ballistics

Eruption (night)

Volcano bombs (1)

Volcano bombs (2)

Base equations

- \blacktriangleright A bomb is a sphere with position **r**, velocity **v**, radius *R* and mass *m*:
- ▶ It follows an uniform acceleration motion:

$$\mathbf{r}(t) = \frac{1}{2}\mathbf{g}t^2 + \mathbf{v}(0)t + \mathbf{r}(0)$$

► To detect collisions between bombs:

$$d^{2}[B_{1}, B_{2}](t) = (\mathbf{r}_{1}(t) - \mathbf{r}_{2}(t))^{2}$$
$$= (\Delta \mathbf{v}t + \Delta \mathbf{r})^{2} \le (R_{1} + R_{2})^{2}$$

Model simulation

- ► No analytic solution
- ► Continuous time solution is time consuming
- ► DES seems a good candidate

State

- For each bomb: $(\mathbf{v}, \mathbf{r}, R, m)$
- ightharpoonup Airborne bombs are added to the list L_A
- ▶ Deposited bombs are added to the list L_D

Events

- ▶ We need three kind of events:
 - ► ERUPTION(t, distribution)
 - ► COLLISION(t, b1, b2)
 - ► GROUND (t, b1)
- ► Each events is related to zero, one or two bombs.

Event: Eruption

```
event ERUPTION(t, distribution):
  def action():
    for b in LA:
      jumpToTime( b, t )
    bs = distribution.generate()
    for b1 in bs:
      tD = depositionTime(b1)
      Q.insert(GROUND(t, b1))
      for b2 in L A:
 tC = collisionTime(b1,b2)
 Q.insert (COLLISION (tC, b1, b2)
      La.append(b1)
```


Event: Collision

```
event COLLISION(t, b1, b2):
  def action():
    for b in LA:
      jumpToTime( b, t )
    cleanQueue(Q, b1, b2) #remove all events related to b1 or b2
    for b in [b1, b2]:
      tD = depositionTime(b)
      Q.insert(GROUND(t, b))
      for bb in L A:
 tC = collisionTime(b, bb)
 O.insert( COLLISION( tC, b, bb )
```


Event: Ground

```
event GROUND(t, b):
   def action():
    for b in LA:
       jumpToTime(b, t)
    cleanQueue(Q, b)
   La.remove(b)
   Ld.append(b)
```


Example of evolution (1)

Example of evolution (2)

Qualitative results

Quantitative results

Further information

Tsunematsu et al., Computers & Geosciences 63 (2014) 62–69

Image credits

- ► Stromboli 2 by Victor is licensed under CC BY-NC-ND 2.0
- ▶ bombs by GEO M I is licensed under CC BY-ND 2.0

End of module Volcano ballistics

End of Week 7
Discrete Event Simulation

