Text Analysis with Product Reviews

Brightics Ambassador Hasong Cho 2022.01.14

01/ Project Overview

02/ Data Summary & Process

03/ Exploratory Analysis & Modeling

04/ Result & Evaluations

31. Project Overview

Project Background

68% of ML, AI, and DS developers use text data (As of 2021)

Project Topic

Create a Sentiment Classification Model with Text Data

Text Analysis

Analyzing and processing process to obtain meaningful information from text for the purpose

Sentiment Analysis

Analyze elements such as thoughts, attitudes, and emotions that appear in the text

31. Project Overview

Project Purpose

Predict customers' positive/negative reactions to products by using product reviews and rating data from e-commerce website

Analysis method

1) Text Analysis

Improve analysis performance through text pre-processing with product review data

2) Logistic Regression

Using product rating data as a label, predict positive/negative reactions of customers to products.

3 2.1 Data Overview

	Clothing_ID	Product_Type	Product_Size	Age	Review	Rating
1	767	Intimates	Initmates	33	Absolutely wonderful - silky	4
2	1080	Dresses	General	34	Love this dress! it's sooo pr	5
3	1077	Dresses	General	60	Some major design flaws I h	3
4	1049	Pants	General Petite	50	My favorite buy! I love love I	5
5	847	Blouses	General	47	Flattering shirt This shirt is v	5
6	1080	Dresses	General	49	Not for the very petite I love	2
7	858	Knits	General Petite	39	Cagrcoal shimmer fun I ade	5
8	858	Knits	General Petite	39	Shimmer surprisingly goes	4
9	1077	Dresses	General	24	Flattering I love this dress. i	5
10	1077	Dresses	General	34	Such a fun dress! I'm 5"5' a	5
11	1077	Dresses	General	53	Dress looks like it's made of	3
12	1095	Dresses	General Petite	39	This dress is perfection! so	5
13	1095	Dresses	General Petite	53	Perfect!!! More and more i fi	5
14	767	Intimates	Initmates	44	Runs big Bought the black x	5
15	1077	Dresses	General	50	Pretty party dress with som	3
16	1065	Pants	General	47	Nice but not for my body I to	4
17	1065	Pants	General	34	You need to be at least aver	3
18	853	Blouses	General	41	Looks great with white pant	5
19	1120	Outerwear	General	32	Super cute and cozy A flatte	5
20	1077	Dresses	General	47	Stylish and comfortable I lov	5

kaggle

Data contains product information, product reviews, and ratings purchased by customers in their 20s to 80s at an online women's clothing store

3 2.2 Analysis Process

1) Exploratory Analysis

2) Text Analysis

3) Classification Model

4) Evaluation

3.1 Exploratory Analysis

3.2 Text Analysis Process

Convert to unit of analysis

Steps to improve analytical performance

express as a matrix

The task of breaking a document into one unit of analysis (Token)

Find patterns in text and control your document the way you want it

Eliminate unnecessary language for analysis purposes A word representation method based on frequency counts regardless of order

A way to represent words appearing in a document in the form of a matrix

3.3 Text Analysis – Regular Expression

Input Columns

1 columns selected

Special character

Regular Expression:

The task of finding patterns in text and controlling the document in the desired form

Before

This dress caught my eye in the store. it's lovely!

Very cute everyday dress.

I was looking for something different – it's a bit long!!!

Regular Expression

After

This dress caught my eye in the store its lovely

Very cute everyday dress

I was looking for something different its a bit long

3.4 Text Analysis – Tokenization

Tokenization:

The task of breaking a document into one unit of analysis (Token)

Before After Tokenization Adjective This dress caught my eye in dress caught my eye Adjective, Comparative the store its lovely Adjective, Superlative List Marker lovely store Modal Noun, Singular Very cute everyday dress everyday dress very cute Proper Noun, Plural Predeterminer Possessive Ending Personal Pronoun something looking Possessive Pronoun was I was looking for something different its a bit long Adverb. Comparative different bit long Adverb, Superlative

3.5 Text Analysis – Stop Words

Stop Words:

The task of removing language unnecessary for analysis purposes.

3

3.6 Text Analysis – Bag of Words

Bag of Words:

A word representation method based on frequency counts regardless of word order

3.7 Text Analysis – Document-Term Matrix

Document-Term Matrix:

A method of expressing words appearing in a document in the form of a matrix

Before Document-Term Matrix After

Doc#	dress	lovely	cute	
Doc1	1	1	1	0
Doc2	0	0	1	1
Doc3	0	0	0	1

3

3.8 Machine Learning – Logistic Regression

Use logistic regression to predict customer's positive/negative reaction to a product

Document – Term Matrix

Doc#	dress	lovely	cute	Rating
Doc1	1	1	1	0
Doc2	0	0	1	1
Doc3	0	0	0	1

Logistic Regression Train

Feature Columns

Logistic Regression Predict

Rating_Pos_Neg	prediction	probability_0	probability_1
1	0	0.606318457955235	0.3936815420447
1	0	0.507898628533753	0.4921013714662
0	0	0.707873108421831	0.2921268915781
1	1	0.4144519889043	0.5855480110956
0	0	0.670308041344152	0.3296919586558
0	0	0.502287962856025	0.4977120371439
0	1	0.0865165451617	0.9134834548382
1	1	0.2481441137735	0.7518558862264
0	0	0.9685682099067	0.0314317900932
-1	1	0.0420869680352	0.957913031964747
0	0	0.9215722996277	0.0784277003722
1	1	0.2898372975519	0.7101627024480
1	1	0.2121135594973	0.7878864405026
0	0	0.9070732492568	0.0929267507431
0	0	0.9372695015410	0.0627304984589
1	1	0.1680782227182	0.8319217772817
0	1	0.427291703150259	0.572708296849741
1	1	0.2075543664098	0.7924456335901
1	1	0.3523020219035	0.6476979780964
0	0	0.8864160063951	0.1135839936048
0	0	A 054502024044	n n404070070400

3 4.1 Evaluation

Evaluate Classification Result

Accuracy: 0.7874282349477403

4.2 Result Interpretation

Actual Pos → **Correctly Predicted**

My favorite buy!
I love love love this jumpsuit.
It's fun flirty and fabulous!
Every time I wear it I get nothing but great compliments!

Logist Train	ic Regression	7		
			N ₂₀₀	
		-	Get Table	

* By connecting the Get Table function to the Logistic Regression Train function, you can see the coefficients of all features

Word	Coefficient
favorite	1.1
compliments	0.9
love	0.59
fun	0.22

Actual Neg → **Correctly Predicted**

Dress looks like it's made of cheap material.

Dress runs small where the zipper area runs.

I ordered the sp which typically fits me and it was very tight!

The material feels very cheap ...

disappointed.

Word	Coefficient
disappointed	-1.41
cheap	-1.08
tight	-0.17
small	-0.07

4.3 Further Improvements

Actual Neg → **Incorrectly Predicted**

The dress is lovely to look at on the hanger and it was the right length for me.

Gorgeous on the hanger but not for me.

I was so in love with this dress when I saw it in the store but so disappointed when I put it on.

Word	Coefficient
gorgeous	0.66
love	0.59
right	0.15
lovely	0.12
disappointed	-1.41

Analysis Summary and Effects

- Summary: Developed a machine learning model to predict customer ratings from text data
- **Effects:** It is possible to develop a system that can be used for practical purposes through preprocessing, model advancement, etc., and a simple review system can be operated.

Implications

- Customer response after new product launch
- Countermeasures through Negative Feedback Monitoring
- Real-time user sentiment analysis
- Product trend tracking

Various data available

 Data such as movie reviews or hotel reviews can be applied

Ⅲ Dataset

Amazon Fine Food Reviews

n Dataset

Disneyland Reviews

n Dataset

Hotel Reviews

Thank You!

