

Contents

1	Intr	oduction and overview	1
	1.1	Notes	1
		1.1.1 Bloch Spheres	1
		1.1.2 Why must quantum gates be unitary?	3
		1.1.3 Decomposing single qubit operations	3
		1.1.4 What does the matrix representation of a quantum gate mean?	3
		1.1.5 Why must quantum gates be reversible?	3
	1.2	Solutions	3
2	Intr	oduction to quantum mechanics	4
	2.1	Notes	4
		2.1.1 Notation	4
		2.1.2 Matrix - Linear Operator Congruence	4
		2.1.3 What's so special about the Pauli matrices?	4
		2.1.4 What does the Completeness Relation say about matrices?	4
	2.2	Solutions	c

Chapter 2

Introduction to quantum mechanics

Notes

Notation

For distinct vectors in an orthonormal set, we can write $\langle i|j\rangle = \delta_{ij}$, where δ_{ij} is the Kronecker product and is 1 if i = j and 0 if $i \neq j$.

Matrix - Linear Operator Congruence

For a matrix to a be a linear operator,

$$A\left(\sum_{i} a_{i} |v_{I}\rangle\right) = \sum_{i} a_{i} A |v_{i}\rangle$$

must be true. Note the LHS is the sum of vectors to which A is applied which is certainly equal to the RHS.

Now suppose $A: V \to W$ is a linear operator and that V has basis $|v_i\rangle, \cdots, |v_m\rangle$ and W has basis $|w_i\rangle, \cdots, |w_n\rangle$. Since we know the kth column of a A will be its transformation of $|v_k\rangle$,

$$A|v_j\rangle = \sum_i A_{ij} |w_i\rangle$$

Note this is just saying $A|v_j\rangle$ is equal to the jth column of A, and we can think of $|w_i\rangle$ as the coordinates of the transformed vector. Thus, we can find the matrix representation of any linear operator by finding a matrix A with entries specified by the above equation.

What's so special about the Pauli matrices?

Things to look into:

- they pop up in the Pauli equation
- they form a basis for the vector space of 2 × 2 Hermitian matrices. Hermitian matrices represent observables? Look at Wikipedia page

What does the Completeness Relation say about matrices?

I don't understand why

$$\sum_{ij} \langle w_j | A | v_i \rangle | w_j \rangle \langle v_i |$$

implies A has matrix element $\langle w_j | A | v_i \rangle$ in the ith column and jth row, with respect to input basis $|v_i\rangle$ and output basis $|w_j\rangle$. page 68.

Solutions

Exercise 2.1

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0$$

Exercise 2.2

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

because $A|0\rangle$ has coordinate 0 in $|0\rangle$ and coordinate 1 in $|1\rangle$.

If we keep our input bases the same but reorder our output bases as $|1\rangle$ and $|0\rangle$,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Exercise 2.3

We know

$$A|v_i\rangle = \sum_j A_{ji}|w_j\rangle$$

and

$$B|w_j\rangle = \sum_k B_{kj}|x_k\rangle$$

Now we can write

$$\begin{split} BA|v_i\rangle &= B(A|v_i\rangle) = B\sum_j A_{ji}|w_j\rangle = \sum_j A_{ji}(B|w_j\rangle) \\ &= \sum_j A_{ji}\sum_k B_{kj}|x_k\rangle \\ &= \sum_k \sum_j B_{kj}A_{ji}|x_k\rangle \\ &= \sum_k (BA)_{ki}|x_k\rangle \end{split}$$

We know $\sum_k (BA)_{ki}$ is the matrix representation of operator BA, which the preceding step says is equal to $\sum_k \sum_j B_{kj} A_{ji}$, which is the matrix multiplication BA.

Exercise 2.4

For the same input and output basis, we want some I such that

$$I\left|v_{j}\right\rangle = \sum_{i} I_{ij}\left|v_{i}\right\rangle = \left|v_{j}\right\rangle$$

which means $I_{ij} = 0$ for all $i \neq j$ and 1 otherwise.

Exercise 2.5

For $|y\rangle$, $|z_i\rangle \in \mathbb{C}^n$ and $\lambda_i \in C$,

$$(|y\rangle, \sum_{i} \lambda_{i} |z_{i}\rangle) = |y\rangle^{*} \sum_{i} \lambda_{i} |z_{i}\rangle$$
$$= \sum_{i} \lambda_{i} |y\rangle^{*} |z_{i}\rangle$$
$$= \left(\sum_{i} \lambda_{i}^{*} |z_{i}\rangle^{*} |y\rangle\right)^{*}$$

The second and third equalities demonstrate linearity in the second argument and $(|y\rangle, |z\rangle) = (|z\rangle, |w\rangle)^*$. Finally, if $|w\rangle = (w_1, \dots, w_n)$ where $w_i \in \mathbb{C}^n$, then

$$(|w\rangle, |w\rangle) = \sum_{i} w_{i}^{*} w_{i} = \sum_{i} |w_{i}|^{2}$$

which proves the non-degeneracy and non-negativity condition.

Exercise 2.6

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle^{*}, \sum_{i} \lambda_{i}^{*} |w_{i}\rangle^{*}\right)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} \left(|v\rangle^{*}, |w_{i}\rangle^{*}\right)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} \left(|w_{i}\rangle, |v\rangle\right)$$

Exercise 2.7

$$(|w\rangle, |v\rangle) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 - 1 = 0$$

To normalize, divide each vector by $\sqrt{2}$.

Exercise 2.8

Since at each step, we divide by the norm of the vector being added, the set is orthonormal. The set is a basis because at step i, we add the basis vector $|w_i\rangle$ but subtract out the portion that was already in span($|v_1\rangle, \cdots, |v_{i-1}\rangle$), so we still end up spanning the full vector space.

Exercise 2.9

$$\sigma_{x} = |1\rangle \langle 0| + |0\rangle \langle 1|$$

$$\sigma_{y} = i |1\rangle \langle 0| - i |0\rangle \langle 1|$$

$$\sigma_{z} = |0\rangle \langle 0| - |1\rangle \langle 1|$$

Exercise 2.10

$$\begin{split} |v_{j}\rangle \, \langle v_{k}| &= I \, |v_{j}\rangle \, \langle v_{k}| \, I \\ &= \sum_{a} |v_{a}\rangle \, \langle v_{a}|v_{j}\rangle \sum_{b} \, \langle v_{k}|v_{b}\rangle \, \langle v_{b}| \\ &= \sum_{a,b} \delta_{aj} \delta_{kb} \, |v_{a}\rangle \, \langle v_{b}| \end{split}$$

so the element $(|v_j\rangle \langle v_k|)_{ab} = \delta_{aj}\delta_{kb}$.

Exercise 2.11

Each of the Pauli matrices has eigenvalues ± 1 .

For σ_x ,

$$\sigma_{x+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\sigma_{x-} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

For σ_y ,

$$\sigma_{y+} = \begin{bmatrix} 1 \\ i \end{bmatrix}$$
 and $\sigma_{y-} = \begin{bmatrix} i \\ 1 \end{bmatrix}$

For σ_z ,

$$\sigma_{z+} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\sigma_{z-} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The diagonalization easily follows.

Exercise 2.12

The characteristic equation is $(1 - \lambda)^2$, so we have eigenvalue 1. Solving $(A - 1I)|v\rangle = 0$ gives us $|v\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Our diagonal form should be

$$A = |v\rangle\langle v| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Exercise 2.13

$$(|w\rangle\langle v|)^{\dagger} = \langle v|^{\dagger} |w\rangle^{dagger} = |v\rangle\langle w|$$

Exercise 2.14

Since we know $(a+b)^{\dagger} = a^{\dagger} + b^{\dagger}$, so

$$\left(\sum_{i} a_{i} A_{i}\right)^{\dagger} = \sum_{i} \left(a_{i} A_{i}\right)^{\dagger} = \sum_{i} \left(a_{i}^{*} A_{i}^{\dagger}\right)$$

Exercise 2.15

$$(|v\rangle, A|w\rangle) = (A^{\dagger}|v\rangle, |w\rangle) = (|v\rangle, (A^{\dagger})^{\dagger}|w\rangle)$$

since this holds for all $|v\rangle$, $|w\rangle$, $A=(A^{\dagger})^{\dagger}$.

Exercise 2.16

$$P^2 = \sum_{i} |i\rangle \langle i| \sum_{j} |j\rangle \langle j| = \sum_{ij} |i\rangle \langle i|j\rangle \langle j| = \sum_{ij} \delta_{ij} |i\rangle \langle j|$$

Intuitively, projecting some $|v\rangle \in P$ wouldn't change $|v\rangle$ at all.

Exercise 2.17

Since A is normal, we can diagonalize it. If the eigenvalues are all positive, then the adjoint of this diagonal matrix of eigenvalues equals itself. If A is Hermitian, then so is its diagonal form. The adjoint of a diagonal matrix consists of the conjugates of its diagonal entries, so if $A = A^{\dagger}$, then the diagonal entries (eigenvalues) must all be positive.