Importing libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('/content/bank-additional-dataset.csv')
df

₹		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	poutc
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	1	999	0	nonexis
	1	57	services	married	high.school	unknown	no	no	telephone	may	mon	1	999	0	nonexis
	2	37	services	married	high.school	no	yes	no	telephone	may	mon	1	999	0	nonexis
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	1	999	0	nonexis
	4	56	services	married	high.school	no	no	yes	telephone	may	mon	1	999	0	nonexis
	41183	73	retired	married	professional.course	no	yes	no	cellular	nov	fri	1	999	0	nonexis
	41184	46	blue-collar	married	professional.course	no	no	no	cellular	nov	fri	1	999	0	nonexis
	41185	56	retired	married	university.degree	no	yes	no	cellular	nov	fri	2	999	0	nonexis
	41186	44	technician	married	professional.course	no	no	no	cellular	nov	fri	1	999	0	nonexis
	41187	74	retired	married	professional.course	no	yes	no	cellular	nov	fri	3	999	1	fai

41188 rows × 20 columns

Next steps: (Generate code with df)

View recommended plots

New interactive sheet

→ EDA

#steps in EDA
#1.null values
#2.duplicate values
#3.outliers
#4.label encoding

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 41188 entries, 0 to 41187
 Data columns (total 20 columns):

Data	columns (total	20 columns):	
#	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	job	41188 non-null	object
2	marital	41188 non-null	object
3	education	41188 non-null	object
4	default	41188 non-null	object
5	housing	41188 non-null	object
6	loan	41188 non-null	object
7	contact	41188 non-null	object
8	month	41188 non-null	object
9	day_of_week	41188 non-null	object
10	campaign	41188 non-null	int64
11	pdays	41188 non-null	int64
12	previous	41188 non-null	int64
13	poutcome	41188 non-null	object
14	emp.var.rate	41188 non-null	float64
15	<pre>cons.price.idx</pre>	41188 non-null	float64
16	cons.conf.idx	41188 non-null	float64
17	euribor3m	41188 non-null	float64
18	nr.employed	41188 non-null	float64
19	у	41188 non-null	object
dtype	es: float64(5),	int64(4), object	(11)

```
memory usage: 6.3+ MB
```

df.shape

→ (41188, 20)

df['y'].value_counts()

_

count

y no 36548

yes 4640

dtvpe: int64

Handling null values

df.isnull().sum().sum()
#if you need to drop the null values:
#df.dropna(inplace=True)
#if you want to fill the null values:
#use fillna()

→ np.int64(0)

Handling Duplicate values

df.duplicated().sum()

→ np.int64(1784)

#To check the duplicate values
df[df.duplicated()==True]

₹		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	pou
	10	41	blue-collar	married	unknown	unknown	no	no	telephone	may	mon	1	999	0	nonex
	11	25	services	single	high.school	no	yes	no	telephone	may	mon	1	999	0	nonex
	16	35	blue-collar	married	basic.6y	no	yes	no	telephone	may	mon	1	999	0	nonex
	31	59	technician	married	unknown	no	yes	no	telephone	may	mon	1	999	0	nonex
	104	52	admin.	divorced	university.degree	no	no	no	telephone	may	mon	1	999	0	nonex
	39985	27	admin.	single	high.school	no	no	no	cellular	jun	tue	2	999	0	nonex
	40401	31	student	single	unknown	no	yes	no	cellular	aug	thu	2	999	0	nonex
	40404	41	entrepreneur	married	university.degree	no	yes	no	cellular	aug	thu	1	999	0	nonex
	40806	35	technician	married	professional.course	no	yes	no	cellular	sep	thu	1	999	2	1
	40840	32	admin.	single	university.degree	no	yes	no	cellular	sep	mon	4	999	0	nonex

1784 rows × 20 columns

#removing duplicate values from dataset
df.drop_duplicates(inplace=True)
df.duplicated().sum()

→ np.int64(0)

#df after removing duplicates
df

_		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	poutc
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	1	999	0	nonexis
	1	57	services	married	high.school	unknown	no	no	telephone	may	mon	1	999	0	nonexis
	2	37	services	married	high.school	no	yes	no	telephone	may	mon	1	999	0	nonexis
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	1	999	0	nonexis
	4	56	services	married	high.school	no	no	yes	telephone	may	mon	1	999	0	nonexis
	41183	73	retired	married	professional.course	no	yes	no	cellular	nov	fri	1	999	0	nonexis
	41184	46	blue-collar	married	professional.course	no	no	no	cellular	nov	fri	1	999	0	nonexis
	41185	56	retired	married	university.degree	no	yes	no	cellular	nov	fri	2	999	0	nonexis
	41186	44	technician	married	professional.course	no	no	no	cellular	nov	fri	1	999	0	nonexis
	41187	74	retired	married	professional.course	no	ves	no	cellular	nov	fri	3	999	1	fai

39404 rows × 20 columns

Next steps: (Generate code with df) (View recommended plots)

New interactive sheet

Outliers

```
{\sf df.columns}
```

```
#outlier detection for all the columns in the dataset
for x in df.columns:
 if df[x].dtype=='int64' or df[x].dtype=='float64':
  sns.boxplot(df[x])
  plt.xlabel(x)
  plt.show()
```



```
out_list=['age','campaign','cons.conf.idx']
for x in out_list:
  Q1=df[x].quantile(0.25)
  Q3=df[x].quantile(0.75)
  IQR=Q3-Q1
  lower_bound=Q1-1.5*IQR
  upper\_bound = Q3 + 1.5*IQR
  print(f"lower\_bound \ of \ \{x\}:",lower\_bound)
  print(f"upper_bound of {x}:",upper_bound)
  df=df[(df[x]>=lower\_bound) & (df[x]<=upper\_bound)]
lower_bound of age: 9.5 upper_bound of age: 69.5
     lower_bound of campaign: -2.0
     upper_bound of campaign: 6.0
lower_bound of cons.conf.idx: -52.150000000000000
     upper_bound of cons.conf.idx: -26.9499999999999
#vizual representation of the dataset after removing outliers
import matplotlib.pyplot as plt
for x in df.columns:
  if df[x].dtypes=='object' or x=='charges':
    continue
  else:
    sns.boxplot(df[x])
    plt.xlabel(x)
    plt.show()
```


Encoding

#Encoding - the process of converting categorical (non-numerical) data into a numerical format that machine learning algorithms can understa #Common Encoding Techniques

- # 1.One-Hot Encoding
- # 2.Label Encoding
- # 3.Ordinal Encoding
- # 4.Mean Encoding
- # 5.Frequency Encoding

#Label Encoding - Assigns a unique numerical label to each category #We have to import Labelencoding sklearn.preprocessing

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

for x in df.columns:
 if df[x].dtype=='object':
 df[x]=le.fit_transform(df[x])

df

→		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	poutcome	emp.var.ra
	0	56	3	1	0	0	0	0	1	6	1	1	999	0	1	1
	1	57	7	1	3	1	0	0	1	6	1	1	999	0	1	1
	2	37	7	1	3	0	2	0	1	6	1	1	999	0	1	1
	3	40	0	1	1	0	0	0	1	6	1	1	999	0	1	1
	4	56	7	1	3	0	0	2	1	6	1	1	999	0	1	1
	41181	37	0	1	6	0	2	0	0	7	0	1	999	0	1	-1
	41182	29	10	2	0	0	2	0	0	7	0	1	9	1	2	-1
	41184	46	1	1	5	0	0	0	0	7	0	1	999	0	1	-1
	41185	56	5	1	6	0	2	0	0	7	0	2	999	0	1	-1
	41186	44	9	1	5	0	0	0	0	7	0	1	999	0	1	-1

36178 rows × 20 columns

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.info()

<class 'pandas.core.frame.DataFrame'>
 Index: 36178 entries, 0 to 41186
 Data columns (total 20 columns):

Column Non-Null Count Dtype 0 age 36178 non-null int64 1 job 36178 non-null int64 marital 36178 non-null int64 36178 non-null int64 education 4 36178 non-null int64 default 5 housing 36178 non-null int64 6 36178 non-null int64 loan contact 36178 non-null int64 8 month 36178 non-null int64 9 day_of_week 36178 non-null 10 campaign 36178 non-null int64 11 pdays 36178 non-null int64 12 previous 36178 non-null int64 36178 non-null int64 13 poutcome 36178 non-null float64 14 emp.var.rate 15 cons.price.idx 36178 non-null float64 16 cons.conf.idx 36178 non-null float64 36178 non-null float64 17 euribor3m 36178 non-null float64 18 nr.employed 19 y 36178 non-null int64 dtypes: float64(5), int64(15)

< VIF

```
#VIF - Variation Inflation Factor
\hbox{\it \#The Variance Inflation Factor (VIF) is a measure of multicollinearity,}\\
#which is a situation where multiple independent variables are highly correlated(depended) in a regression model
x=df.drop('y',axis=1)
y=df['y']
x.columns
#importing VIF
from statsmodels.stats.outliers_influence import variance_inflation_factor
#creating a datafrmame
vif_df=pd.DataFrame()
{\tt vif\_df['features']=x.columns}
vif_df
<del>_</del>
                        \blacksquare
             features
      0
                  age
      1
                  job
      2
               marital
             education
      3
               default
      4
      5
              housing
      6
                 loan
      7
               contact
      8
               month
      9
          day_of_week
      10
             campaign
      11
                pdays
      12
              previous
      13
             poutcome
          emp.var.rate
      15 cons.price.idx
      16
          cons.conf.idx
      17
             euribor3m
      18
          nr.employed
 Next steps: ( Generate code with vif_df

    View recommended plots

                                                                   New interactive sheet
vif_values=[]
for i in range(len(x.columns)):
 vif=variance_inflation_factor(x.values,i)
 vif_values.append(vif)
```

```
[np.float64(21.966070454402285),
     np.float64(2.1145506549496322),
     np.float64(5.649477190442339),
     np.float64(4.533743331984292),
     np.float64(1.413485603539284),
     np.float64(2.200633644198795),
     np.float64(1.2176088633103108),
     np.float64(2.935269716439509),
     np.float64(6.604836798011397),
     np.float64(3.0848606627114052),
     np.float64(3.665084550934581),
     np.float64(164.62831996241005),
     np.float64(6.028234902206734),
     np.float64(33.49721624624969),
     np.float64(37.49454522440181),
     np.float64(36695.73121886002),
     np.float64(143.30284378596946),
     np.float64(317.7508900878543),
     np.float64(41995.18904624725)]
```

vif_df['Multicollinearity']=vif_values

vif_df

_ →		features	Multicollinearity	
	0	age	21.966070	11.
	1	job	2.114551	+/
:	2	marital	5.649477	
;	3	education	4.533743	
	4	default	1.413486	
	5	housing	2.200634	
(6	loan	1.217609	
,	7	contact	2.935270	
;	8	month	6.604837	
9	9	day_of_week	3.084861	
1	0	campaign	3.665085	
1	11	pdays	164.628320	
1	12	previous	6.028235	
1	13	poutcome	33.497216	
1	4	emp.var.rate	37.494545	
1	15	cons.price.idx	36695.731219	
1	16	cons.conf.idx	143.302844	
1	17	euribor3m	317.750890	
1	8	nr.employed	41995.189046	

Next steps: Generate code with vif_df

• View recommended plots

New interactive sheet

x.drop('nr.employed',axis=1,inplace=True)

Х

$\overline{}$	
•	

a	e job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	poutcome	emp.var.rat
	6 3	1	0	0	0	0	1	6	1	1	999	0	1	1.
	7	1	3	1	0	0	1	6	1	1	999	0	1	1.
;	7	1	3	0	2	0	1	6	1	1	999	0	1	1.
4	0 0	1	1	0	0	0	1	6	1	1	999	0	1	1.
	6 7	1	3	0	0	2	1	6	1	1	999	0	1	1.
;	7 0	1	6	0	2	0	0	7	0	1	999	0	1	-1.
: 2	9 10	2	0	0	2	0	0	7	0	1	9	1	2	-1.
	6 1	1	5	0	0	0	0	7	0	1	999	0	1	-1.
; ;	6 5	1	6	0	2	0	0	7	0	2	999	0	1	-1.
i 4	4 9	1	5	0	0	0	0	7	0	1	999	0	1	-1.

Next steps: Generate code with x View recommended plots New interactive sheet

vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
 vif=variance_inflation_factor(x.values,i)
 vif_values.append(vif)

rows × 18 columns

 $\label{linearity'} \begin{tabular}{ll} vif_df['Multicollinearity']=vif_values \\ vif_df \end{tabular}$

		features	Multicollinearity	
	0	age	21.958629	ılı
	1	job	2.114409	+/
	2	marital	5.648510	
	3	education	4.531664	
	4	default	1.410297	
	5	housing	2.200178	
	6	loan	1.217517	
	7	contact	2.468746	
	8	month	5.711382	
	9	day_of_week	3.084226	
	10	campaign	3.648469	
	11	pdays	164.584086	
	12	previous	5.936672	
	13	poutcome	33.257493	
	14	emp.var.rate	21.649652	
	15	cons.price.idx	699.184907	
	16	cons.conf.idx	123.353574	
	17	euribor3m	124.949516	

Next steps: Generate code with vif_df

• View recommended plots

New interactive sheet

₹		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	pdays	previous	poutcome	emp.var.ra
	0	56	3	1	0	0	0	0	1	6	1	1	999	0	1	1
	1	57	7	1	3	1	0	0	1	6	1	1	999	0	1	1
	2	37	7	1	3	0	2	0	1	6	1	1	999	0	1	1
	3	40	0	1	1	0	0	0	1	6	1	1	999	0	1	1
	4	56	7	1	3	0	0	2	1	6	1	1	999	0	1	1
	41181	37	0	1	6	0	2	0	0	7	0	1	999	0	1	-1
	41182	29	10	2	0	0	2	0	0	7	0	1	9	1	2	-1
	41184	46	1	1	5	0	0	0	0	7	0	1	999	0	1	-1
	41185	56	5	1	6	0	2	0	0	7	0	2	999	0	1	-1
	41186	44	9	1	5	0	0	0	0	7	0	1	999	0	1	-1

36178 rows × 17 columns

Next steps: Generate code with x View recommended plots New interactive sheet

```
vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
    vif=variance_inflation_factor(x.values,i)
    vif_values.append(vif)
```

 $\label{linearity'} \begin{tabular}{ll} vif_df['Multicollinearity']=vif_values \\ vif_df \end{tabular}$

_		features	Multicollinearity	
	0	age	20.768073	ılı
	1	job	2.108771	+//
	2	marital	5.496358	
	3	education	4.476751	
	4	default	1.410286	
	5	housing	2.198755	
	6	loan	1.217080	
	7	contact	2.371250	
	8	month	5.669544	
	9	day_of_week	3.066477	
	10	campaign	3.632626	
	11	pdays	91.086477	
	12	previous	3.056252	
	13	poutcome	16.894910	
	14	emp.var.rate	16.211514	
	15	cons.conf.idx	80.813154	
	16	euribor3m	89.550346	

Next steps: Generate code with vif_df

• View recommended plots

New interactive sheet

₹		age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	previous	poutcome	emp.var.rate	cons
	0	56	3	1	0	0	0	0	1	6	1	1	0	1	1.1	
	1	57	7	1	3	1	0	0	1	6	1	1	0	1	1.1	
	2	37	7	1	3	0	2	0	1	6	1	1	0	1	1.1	
	3	40	0	1	1	0	0	0	1	6	1	1	0	1	1.1	
	4	56	7	1	3	0	0	2	1	6	1	1	0	1	1.1	
	41181	37	0	1	6	0	2	0	0	7	0	1	0	1	-1.1	
	41182	29	10	2	0	0	2	0	0	7	0	1	1	2	-1.1	
	41184	46	1	1	5	0	0	0	0	7	0	1	0	1	-1.1	
	41185	56	5	1	6	0	2	0	0	7	0	2	0	1	-1.1	
	41186	44	9	1	5	0	0	0	0	7	0	1	0	1	-1.1	

36178 rows × 16 columns

Next steps: Generate code with x View recommended plots New interactive sheet

vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
 vif=variance_inflation_factor(x.values,i)
 vif_values.append(vif)

vif_df['Multicollinearity']=vif_values
vif_df

_		features	Multicollinearity	
	0	age	19.894134	ılı
	1	job	2.105691	+/
	2	marital	5.379182	
	3	education	4.426096	
	4	default	1.410241	
	5	housing	2.195607	
	6	loan	1.216909	
	7	contact	2.301345	
	8	month	5.625194	
	9	day_of_week	3.053601	
	10	campaign	3.611721	
	11	previous	1.488630	
	12	poutcome	7.774289	
	13	emp.var.rate	12.646406	
	14	cons.conf.idx	41.645750	
	15	euribor3m	61.866669	

Next steps: Generate code with vif_df View recommended plots New interactive sheet

x.drop('euribor3m',axis=1,inplace=True)

х

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	previous	poutcome	emp.var.rate	•
0	56	3	1	0	0	0	0	1	6	1	1	0	1	1.1	
1	57	7	1	3	1	0	0	1	6	1	1	0	1	1.1	
2	37	7	1	3	0	2	0	1	6	1	1	0	1	1.1	
3	40	0	1	1	0	0	0	1	6	1	1	0	1	1.1	
4	56	7	1	3	0	0	2	1	6	1	1	0	1	1.1	
41181	37	0	1	6	0	2	0	0	7	0	1	0	1	-1.1	
41182	29	10	2	0	0	2	0	0	7	0	1	1	2	-1.1	
41184	46	1	1	5	0	0	0	0	7	0	1	0	1	-1.1	
41185	56	5	1	6	0	2	0	0	7	0	2	0	1	-1.1	
41186	44	9	1	5	0	0	0	0	7	0	1	0	1	-1.1	

Next steps: Generate code with x View recommended plots New interactive sheet

vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
 vif=variance_inflation_factor(x.values,i)
 vif_values.append(vif)

 $\label{linearity'} \begin{tabular}{ll} vif_df['Multicollinearity']=vif_values \\ vif_df \end{tabular}$

₹		features	Multicollinearity					
	0	age	16.983749					
	1	job	2.099141					
	2	marital	5.187809					
	3	education	4.277073					
	4	default	1.409908					
	5	housing	2.187525					
	6	loan	1.216483					
	7	contact	2.289988					
	8	month	5.248013					
	9	day_of_week	3.012393					
	10	campaign	3.604623					
	11	previous	1.470503					
	12	poutcome	7.655584					
	13	emp.var.rate	1.556598					
	14	cons.conf.idx	30.977819					

Next steps: Generate code with vif_df

• View recommended plots

New interactive sheet

x.drop('cons.conf.idx',axis=1,inplace=True)
x

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	previous	poutcome	emp.var.rate
0	56	3	1	0	0	0	0	1	6	1	1	0	1	1.1
1	57	7	1	3	1	0	0	1	6	1	1	0	1	1.1
2	37	7	1	3	0	2	0	1	6	1	1	0	1	1.1
3	40	0	1	1	0	0	0	1	6	1	1	0	1	1.1
4	56	7	1	3	0	0	2	1	6	1	1	0	1	1.1
41181	37	0	1	6	0	2	0	0	7	0	1	0	1	-1.1
41182	29	10	2	0	0	2	0	0	7	0	1	1	2	-1.1
41184	46	1	1	5	0	0	0	0	7	0	1	0	1	-1.1
41185	56	5	1	6	0	2	0	0	7	0	2	0	1	-1.1
41186	44	9	1	5	0	0	0	0	7	0	1	0	1	-1.1

Next steps: Generate code with x View recommended plots New interactive sheet

```
vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
    vif=variance_inflation_factor(x.values,i)
    vif_values.append(vif)
```

 $\label{linearity'} \begin{tabular}{ll} vif_df['Multicollinearity']=vif_values \\ vif_df \end{tabular}$

	features	Multicollinearity	
0	age	10.519901	ıl.
1	job	2.089816	+/
2	marital	4.300933	
3	education	4.177050	
4	default	1.409069	
5	housing	2.152500	
6	loan	1.212707	
7	contact	2.268380	
8	month	4.850603	
9	day_of_week	2.943193	
10	campaign	3.429230	
11	previous	1.467364	
12	poutcome	7.311764	
13	emp.var.rate	1.540276	
	1 2 3 4 5 6 7 8 9 10 11	0 age 1 job 2 marital 3 education 4 default 5 housing 6 loan 7 contact 8 month 9 day_of_week 10 campaign 11 previous 12 poutcome 13 emp.var.rate	1 job 2.089816 2 marital 4.300933 3 education 4.177050 4 default 1.409069 5 housing 2.152500 6 loan 1.212707 7 contact 2.268380 8 month 4.850603 9 day_of_week 2.943193 10 campaign 3.429230 11 previous 1.467364 12 poutcome 7.311764 13 emp.var.rate 1.540276

Next steps: Generate code with vif_df View recommended plots New interactive sheet

x.drop('age',axis=1,inplace=True)

x.drop('age',axis=1,inplace=True)
..

₹		job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	previous	poutcome	emp.var.rate
	0	3	1	0	0	0	0	1	6	1	1	0	1	1.1
	1	7	1	3	1	0	0	1	6	1	1	0	1	1.1
	2	7	1	3	0	2	0	1	6	1	1	0	1	1.1
	3	0	1	1	0	0	0	1	6	1	1	0	1	1.1
	4	7	1	3	0	0	2	1	6	1	1	0	1	1.1
				•••										
	41181	0	1	6	0	2	0	0	7	0	1	0	1	-1.1
	41182	10	2	0	0	2	0	0	7	0	1	1	2	-1.1
	41184	1	1	5	0	0	0	0	7	0	1	0	1	-1.1
	41185	5	1	6	0	2	0	0	7	0	2	0	1	-1.1
	41186	9	1	5	0	0	0	0	7	0	1	0	1	-1.1

36178 rows × 13 columns

vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[]
for i in range(len(x.columns)):
 vif=variance_inflation_factor(x.values,i)
 vif_values.append(vif)

 $\label{linearity'} \begin{tabular}{ll} vif_df['Multicollinearity']=vif_values \\ vif_df \end{tabular}$

	features	Multicollinearity
0	job	2.065035
1	marital	4.291795
2	education	3.979094
3	default	1.322478
4	housing	2.097685
5	loan	1.209040
6	contact	2.266805
7	month	4.548502
8	day_of_week	2.842802
9	campaign	3.217133
10	previous	1.430428
11	poutcome	6.057195
12	emp.var.rate	1.540075
4		

 $\verb|x.drop('poutcome',axis=1,inplace=True')| \\$

Х

∓*

_	_
7	3
_	_

	job	marital	education	default	housing	loan	contact	month	day_of_week	campaign	previous	emp.var.rate
0	3	1	0	0	0	0	1	6	1	1	0	1.1
1	7	1	3	1	0	0	1	6	1	1	0	1.1
2	7	1	3	0	2	0	1	6	1	1	0	1.1
3	0	1	1	0	0	0	1	6	1	1	0	1.1
4	7	1	3	0	0	2	1	6	1	1	0	1.1

vif_df=pd.DataFrame()
vif_df['features']=x.columns
vif_values=[] for i in range(len(x.columns)): $\label{linear_variance_inflation_factor} \textbf{vif=variance_inflation_factor(x.values,i)}$ vif_values.append(vif)

→ *	3617	'8 rows × 12 col features	lumns Multicollinearity					
	0	job	2.042861					
	1	marital	4.034238					
	2	education	3.721585					
	3	default	1.310552					
	4	housing	2.059338					
	5	loan	1.206251					
	6	contact	2.248569					
	7	month	4.390682					
	8	day_of_week	2.732719					
	9	campaign	3.071028					
	10	previous	1.376780					
	11	emp.var.rate	1.534253					

Model Building

```
from sklearn.linear_model import LogisticRegression
from \ sklearn.model\_selection \ import \ train\_test\_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
logistic_model=LogisticRegression()
logistic_model.fit(x_train,y_train)
      ▼ LogisticRegression ① ?
     LogisticRegression()
y_pred=logistic_model.predict(x_test)
\Rightarrow array([0, 0, 0, ..., 0, 0, 0])
y_test
₹
      13733 0
      20862 0
      24835 0
      15899
             0
      18937 0
      38821 1
      18239
            0
      2493 0
      28102 0
      22753 0
     10854 rows × 1 columns
     dtype: int64
Accuracy Score
from sklearn.metrics import accuracy_score
                                         # Total_True_predictions % Total_no_of_predictions
accuracy_score(y_test,y_pred)*100
→ 88.48350838400589
from sklearn.metrics import confusion_matrix,classification_report
confusion_matrix(y_test,y_pred)
→ array([[9558,
                     25],
            [1225,
```