Filling the gap of silicon nitride photonic platform functionalities using micro-transfer printing

JNIL 2023

Maximilien Billet, Tom Vanackere, Tom Vandekerckhove, Margot Niels, Luis Reis, Dennis Maes, Max Kiewiet, Konstantinos Akritidis, Stijn Cuyvers, Stijn Poelman, Tom Reep, Valeria Bonito Oliva, Francois Leo*, Gunther Roelkens and Bart Kuyken

Contents

- Presentation of the silicon nitride platform
- Heterogeneous integration via micro-transfer printing
- Challenges related to the processing
- Results highlighting

Presentation of the silicon nitride platform

Integrated photonics using CMOS technology

Source: Imec

Source: CNST

Source: Imec

Property / functionality	SiN
Transparency window	0.25 to 5 μm
Propagation losses	0.01 to 0.1 dB/cm
Two-photon absorption	Negligible
Industry status	middle-volume production (200 / 300 mm)
Optical gain	Absent
Fast modulation	No Pockels, no carriers
Nonlinear conversion	no intrinsic $\chi^{(2)}$, $\chi^{(3)}$
Detection	No carriers

Presentation of the silicon nitride platform

A robust and reliable platform for passive components

Ligentec website / passive components / process design kit available (MPW)

Presentation of the silicon nitride platform

But lacking several functionalities to push integrated photonics forward complex systems

Generic view of a full system in integrated photonics

Property / functionality	SiN
Transparency window	0.25 to 5 μm
Propagation losses	0.01 to 0.1 dB/cm
Two-photon absorption	Negligible
Industry status	middle-volume (200 mm / 300 mm)
Optical gain	Absent
Fast modulation	No Pockels, no carriers
Nonlinear conversion	no intrinsic $\chi^{(2)}$, $\chi^{(3)}$
Photodetection	No carriers

Contents

- Presentation of the silicon nitride platform
- Heterogeneous integration via micro-transfer printing
- Challenges related to the processing
- Results highlighting

Heterogeneous integration via micro-transfer printing

Using of micro-transfer printing as a versatile solution

Micro-transfer printing:

- High integration density
- o Back-end compatible
- High efficiency of material use
- o Alignment of 500 nm at 3 σ
- High versatility for co-integration
- o Low cost
- o R&D maturity

Heterogeneous integration via micro-transfer printing

- 随間も世

Heterogeneous integration via micro-transfer printing

Possibility to populate the SiN platform with new functionalities

Generic view of a full system in integrated photonics

Property / functionality	SiN	
Transparency window	0.25 to 5 μm	
Propagation losses	0.01 to 0.1 dB/cm	
Two-photon absorption	Negligible	
Industry status	middle-volume (200 / 300 mm)	
Optical gain	Absent	InGaAs / GaAs / GaN based amplifiers
Fast modulation	No Pockels, no carriers	LN electro-optic modulators
Nonlinear conversion	no intrinsic $\chi^{(2)}$, $\chi^{(3)}$	PPLN / GaP ($\chi^{(2)}$ and $\chi^{(3)}$) waveguides
Photodetection	No carriers	pin-Si photodiodes (slow) / InGaAs UTC-photodiodes (fast)

And many more results in the literature

Contents

- Presentation of the silicon nitride platform
- Heterogeneous integration via micro-transfer printing
- Challenges related to the processing
- Results highlighting

Coupling from SiN to devices using <u>adiabatic tapers</u>

Passive SiN circuit

Printing of III-V amplifiers

(a) 3.3 µm TOX 300 nm Si₃N₄ + 100 nm SiO2 370 nm a-Si:H 260 nm n-InP 60 µm 100 µm 500 nm MOW/p-InP $w_{aSi,3}$ $w_{aSi,2}$ WaSi.1 $w_{5i_3N_4}$ 3000 nm 120 nm 340 nm

C. Op de Beck, et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing

Etching of 500 nm wide x 2.5 um thick taper (III-V)

Challenges:

- High aspect ratio etching / optical sidewall quality
- Intermediate aSi layer (custom platform) / aSi recipes depends on the Fab (index, stress...)

Coupling from SiN to devices using grating coupler / butt coupling

Grating coupler assisted coupling

Direct butt coupling from the facet of the waveguide

Challenges:

- Printing alignment (1 um at UGent sample scale)
- Printing in a recess for butt coupling (BCB homogeneity / post processing)

Wavelength compatibility

InP based amplifiers (IR~1550 nm)

GaAs based amplifiers (NIR~800 nm)

GaN based amplifiers (VIS~450 nm)

Typical coupon size 2 mm x 50 um

Challenges:

Full process flow for different III-V systems (Epitaxy / RIE / ICP / wet etching / releasing...)

Releasing / picking / printing of the devices

Challenges:

- Advanced designs of coupon encapsulation (mechanical support)
- Advanced designs of tethers (easily breakable / strong enough / anti-crack barriers)

Scalability

Example of 25 LN coupons printing (single)

Example of a 2 x 3 array printing of InP-SOAs

Example of a 1 cm long LN coupon printing

Challenges:

- Yield of fabrication / picking / printing / wafer scale processing
- Printing of array / wafer scale printer / wafer scale alignment (500 nm)
- Size of the coupons (um to cm scale)

Contents

- Presentation of the silicon nitride platform
- Heterogeneous integration via micro-transfer printing
- Challenges related to the processing
- Results highlighting

o SiN/InP mode-locked lasers for dual-comb applications

Repetition rate = 3 GHz

SiN/LN for high speed modulation

T. Vanackere et al, APL photonics/CLEO 2023

SiN/PPLN for second harmonic generation

T. Vandekerckhove, Optics materials express, CLEO 2023

SiN/InGaAs for fast photomixing

D. Maes et al, APL photonics

Toward system level heterogeneous integrated photonics

Horizon Europe VISSION (Contact M. Billet / UGent-Imec / technical coordinator)

Devices	Technology
Routing / circuit	SiN
Laser visible/NIR	Transfer printing
Fast modulators	Transfer printing / inject printing
Fast detectors	Transfer printing
·	

Horizon Europe PATTERN (Contact A, Ghadimi / CSEM / technical coordinator)

Devices	Technology
Routing / circuit	LN
Laser 1550 nm	Transfer printing / flip chip
Fast modulators	LN circuit
Detectors	Flip-chip
RF building blocks	Transfer printing / flip-chip

- Wafer scale (300 mm) pilot-line at UGent, end of 2023 (Contact Pr. G. Roelkens / UGent -Imec)
 - Transfer-printer (Amicra Nano MTP)
 - UV-litho
 - Metal deposition + working in parallel with R&D
 - Inspection tools... industrial partners

Summary

- Presentation of the silicon nitride platform
 - The SiN platform is very promising for optical circuitry
 - SiN is a dielectric, making difficult direct active functionalities
- Heterogeneous integration via micro-transfer printing
 - Micro-transfer printing offers a versatile solution to integrate functionalities on SiN
- Challenges related to the processing
 - Micro-transfer printing requests dedicated process flows development
- Results highlighting
 - Several convincing results have been already demonstrated
 - Need to push the technology forward scalable system level

Thank you for your attention

Appendix

Fig. 7. 2x2 Array displacement data: i) X displacement; and ii) Y displacement.

Micro Transfer Printing for Micro Assembly of Heterogeneous Integrated Compound Semiconductor Components

David Gomez¹, James Thostenson¹, Tanya Moore¹, Kevin Oswalt¹, Chris Reyes¹, Ron Cok¹, Alin Fecioru²

- 1. X-Celeprint Inc., 3021 Cornwallis Road, Research Triangle Park, NC 27709, USA
- 2. X-Celeprint Ltd., Tyndall National Institute, Lee Maltings Complex Dyke Parade, Cork, Cork, T12 R5CP, Ireland

Fig. 9 . 20x28 Array displacement map data for all four prints within 3 sigma for entire dataset.