DS 5

Les calculatrices sont interdites.

Les caractères d'un groupe

Questions préliminaires

 1°) \mathbb{C}^* est-il un groupe pour l'addition? Justifier.

 \mathbb{C}^* est-il un groupe pour la multiplication? Justifier.

Si G est un groupe, les morphismes de groupes de G dans \mathbb{C}^* s'appellent les caractères de G.

 2°) Soit g un caractère d'un groupe (G, .).

Montrer que, pour tout $x \in G$ et $a \in \mathbb{Z}$, $g(x^a) = g(x)^a$.

Que devient cette propriété lorsque g est un caractère d'un groupe commutatif noté (G,+)?

Partie 1 : Caractères de $\mathbb Z$ et de $\mathbb R$

- 3°) Déterminer les caractères de \mathbb{Z} .
- 4°) Soit g un caractère de \mathbb{R} , que l'on suppose dérivable.

En dérivant la quantité g(r+s), où $r,s \in \mathbb{R}$, montrer qu'il existe $c \in \mathbb{C}$ tel que, pour tout $t \in \mathbb{R}$, g'(t) = cg(t).

En utilisant l'application $t \mapsto g(t)e^{-ct}$, déterminer l'ensemble des caractères dérivables de \mathbb{R} .

5°) En étudiant la quantité $\int_0^{\varepsilon} g(r+t) dt$, lorsque g est un caractère continu de \mathbb{R} et $\varepsilon, r \in \mathbb{R}$, déterminer l'ensemble des caractères continus de \mathbb{R} .

Partie 2 : Liberté de l'ensemble des caractères

Pour toute la suite du problème, G désigne un groupe. On note \mathcal{G} l'ensemble des caractères de G. En considérant que tout caractère de G est une application de G dans \mathbb{C} , \mathcal{G} est une partie de \mathbb{C}^G , lequel est un \mathbb{C} -espace vectoriel (on ne demande pas de le démontrer).

Cas d'un groupe commutatif

Dans cette sous-partie, on suppose que (G, +) est un groupe commutatif.

6°) Soit $g \in \mathcal{G}$.

On suppose que $g = \sum_{i=1}^n \lambda_i g_i$, où $n \in \mathbb{N}^*$, $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ et où (g_1, \ldots, g_n) est un n-uplet de caractères de G, que l'on suppose libre en tant que famille de vecteurs de \mathbb{C}^G . En évaluant g(x+y) de deux manières différentes, montrer qu'il existe $i \in \mathbb{N}_n$ tel que $g = g_i$.

 $\mathbf{7}^{\circ}$) En déduire que \mathcal{G} est une partie libre de \mathbb{C}^{G} .

Cas d'un groupe fini

Dans cette sous-partie, on suppose que (G, .) est un groupe fini d'ordre n, éventuellement non commutatif.

8°) Si g est un caractère de G, montrer que g est à valeurs dans \mathbb{U}_n , où \mathbb{U}_n désigne l'ensemble des racines n-ièmes de l'unité.

9°) Pour tout $g, h \in \mathcal{G}$, on pose $\langle g|h \rangle = \frac{1}{n} \sum_{x \in C} g(x) \overline{h(x)}$.

Soit $g, h \in \mathcal{G}$. Lorsque $g \neq h$, montrer que $\langle g|h \rangle = 0$ et lorsque g = h, montrer que $\langle g|h \rangle = 1$.

10°) Montrer que \mathcal{G} est une partie libre de \mathbb{C}^G .

Partie 3: Le groupe dual

Lorsque (G,.) et (H,.) sont deux groupes, on note Hom(G,H) l'ensemble des morphismes de G dans H.

 11°) On suppose que (H,.) est un groupe abélien.

Si $f, g \in \text{Hom}(G, H)$, on définit l'application fg de G dans H en convenant que, pour tout $x \in G$, (fg)(x) = f(x)g(x).

Montrer que ceci munit Hom(G, H) d'une structure de groupe abélien.

En déduire que \mathcal{G} est un groupe abélien.

On dit que \mathcal{G} est le groupe dual de G.

- 12°) On suppose que m est un entier tel que $m \geq 2$. Déterminer le groupe dual de \mathcal{S}_m , où \mathcal{S}_m désigne l'ensemble des permutations de \mathbb{N}_m : on pourra commencer par établir que pour toute transposition $(a\ b)$ de \mathbb{N}_m , il existe $\sigma \in \mathcal{S}_m$ telle que $(a\ b) = \sigma^{-1}(1\ 2)\sigma$.
- 13°) Soit $n \in \mathbb{N}^*$. Lorsque g est un caractère de $\mathbb{Z}/n\mathbb{Z}$, on pose $\varphi(g) = g(\overline{1})$. Montrer que φ est un isomorphisme du groupe dual de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{U}_n .
- 14°) Soient G_1, \ldots, G_m une famille de m groupes, non nécessairement commutatifs, et soit H un groupe abélien. Montrer que $\operatorname{Hom}(G_1 \times \cdots \times G_m, H)$ est un groupe isomorphe au groupe produit $\operatorname{Hom}(G_1, H) \times \cdots \times \operatorname{Hom}(G_m, H)$.
- 15°) On admet que tout groupe abélien fini est isomorphe à un produit cartésien de la forme $\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_q\mathbb{Z}$, où $q\in\mathbb{N}^*$ et $n_1,\ldots,n_q\in\mathbb{N}^*$. Montrer que si G est un groupe abélien fini, alors G et son dual sont isomorphes.
- 16°) Ce résultat est-il encore vrai si G est fini mais non abélien? Lorsque G est abélien mais infini, existe-t-il toujours un isomorphisme de G dans son groupe dual?
- 17°) Soit G un groupe abélien fini. Notons \mathcal{G} le groupe dual de G. Pour tout $x \in G$, on note $f(x): \mathcal{G} \longrightarrow \mathbb{C}^*$ Montrer que $f(x): \mathcal{G} \longrightarrow \mathcal{G}(x)$. Montrer que $f(x): \mathcal{G} \longrightarrow \mathcal{G}(x)$ du dual de $f(x): \mathcal{G} \longrightarrow \mathcal{G}(x)$ du dual du dua