Cantor Space & Borel Hierarchy 1

 $\textbf{Definition 1.} \ \ \textit{The Cantor space is the pair} \ (\mathbb{B}^{\omega},d) \ \textit{with} \ d(\alpha,\beta) = \begin{cases} 0 & \textit{if} \ \alpha = \beta \\ 2^{-(\min_n \alpha(n) \neq \beta(n))} & \textit{else} \end{cases}.$ Note: The $\frac{1}{2n}$ -neighborhood of α is $\alpha[0,n] \cdot \mathbb{B}^{\omega}$.

Definition 2. From the Cantor space we define the Cantor topology with open sets $\mathcal{O} = \{W \cdot \mathbb{B}^{\omega} \mid$ $W \subseteq \mathbb{B}^*$.

Definition 3. The Borel hierarchy is a collection $\{\Sigma_1, \Pi_1, \Sigma_2, \Pi_2, \dots\}$ defined as

$$\Sigma_1 = \mathcal{O}$$

$$\Pi_1 = \mathbb{B}^{\omega} \setminus \mathcal{O}$$

$$\Sigma_{n+1} = \{ \bigcup_{i \in \mathbb{N}} L_i \mid L_i \in \Pi_n \}$$

$$\Pi_{n+1} = \{ \bigcap_{i \in \mathbb{N}} L_i \mid L_i \in \Sigma_n \}$$

$$\Pi_{n+1} = \{ \bigcap_{i \in \mathbb{N}} L_i \mid L_i \in \Sigma_n \}$$

Theorem 1. 1. Every class Σ_n or Π_n of the Borel hierarchy is closed under finite union and

- 2. For every $L \subseteq \mathbb{B}^{\omega}$, we have $L \in \Sigma_n$ iff $L^{\complement} \in \Pi_n$.
- *Proof.* 1. It suffices to show the closure for Σ_n . Then it follows for Π_n from (2). For example, let $L, K \in \Pi_n$, so $L^{\complement}, K^{\complement} \in \Sigma_n$, so $L^{\complement} \cup K^{\complement} = (L \cap K)^{\complement} \in \Sigma_n$ and therefore $L \cap K \in \Pi_n$.

For n=0, this is clear from the definition of \mathcal{O} . Let $W_1,W_2\subseteq\mathbb{B}^*$. Then $W_1\cdot\mathbb{B}^\omega\cup W_2\cdot\mathbb{B}^\omega=$ $(W_1 \cup W_2) \cdot \mathbb{B}^{\omega}$ and $W_1 \cdot \mathbb{B}^{\omega} \cap W_2 \cdot \mathbb{B}^{\omega} = (W_1 \cdot \mathbb{B}^* \cap W_2 \cdot \mathbb{B}^*) \cdot \mathbb{B}^{\omega}$.

Using an induction argument, consider $L, K \in \Sigma_{n+1}$, so $L = \bigcup_{i \in \mathbb{N}} L_i$ and $K = \bigcup_{i \in \mathbb{N}} K_i$ for $(L_i)_i, (K_i)_i \in \Pi_n$. By induction, $L_i \cup K_i \in \Pi_n$ for all i, and thus $L \cup K = \bigcup_{i \in \mathbb{N}} (L_i \cup K_i) \in \Sigma_{n+1}$.

For intersection we have $L \cap K = \bigcup_{i: i \in \mathbb{N}} L_i \cap K_j \in \Sigma_{n+1}$.

2. De Morgan law

Definition 4. Let $f: \mathbb{B}^{\omega} \to \mathbb{B}^{\omega}$. f is **continuous** if for all open sets $O \in \mathcal{O}$: $f^{-1}(O) \in \mathcal{O}$. For $L, K \subseteq \mathbb{B}^{\omega}$, we write $K \leq L$ if there is a continuous function f with $f^{-1}(L) = K$.

Theorem 2. Let $f: \mathbb{B}^{\omega} \to \mathbb{B}^{\omega}$. The following three statements are equivalent:

- 1. f is continuous.
- 2. $\forall \alpha \in \mathbb{B}^{\omega} . \forall n \in \mathbb{N} . \exists m \in \mathbb{N} . \forall \beta \in \mathbb{B}^{\omega} : d(\alpha, \beta) < \frac{1}{2^m} \Rightarrow d(f(\alpha), f(\beta)) \leq \frac{1}{2^n}$
- 3. $\forall n \in \mathbb{N}. \exists m \in \mathbb{N}. \forall \alpha, \beta \in \mathbb{B}^{\omega} : d(\alpha, \beta) < \frac{1}{2^m} \Rightarrow d(f(\alpha), f(\beta)) \leq \frac{1}{2^n}$

Proof. $(1) \Rightarrow (3)$

- (3) \Rightarrow (2): Trivial, since m does not depend on α in general.
- (2) \Rightarrow (1): Let $L = W \cdot \mathbb{B}^{\omega} \in \mathcal{O}$. Let $U = \{u \in \mathbb{B}^* \mid f(u \cdot \mathbb{B}^{\omega}) \subseteq L\}$. We claim that

Let $\alpha \in U \cdot \mathbb{B}^{\omega}$, so $\alpha = u \cdot \beta$ for some $u \in U$. By definition of U, $f(u \cdot \beta) = f(\alpha) \in L$. Therefore, $\alpha \in f^{-1}(L)$.

Let $\alpha \in f^{-1}(L)$, so $f(\alpha) = w\alpha'$ for some $w \in W$. Using the assumption, there is an $m \in \mathbb{N}$ such that for all $\beta \in \mathbb{B}^{\omega}$ with $d(\alpha, \beta) \leq 2^{-m}$, we have $d(f(\alpha), f(\beta)) \leq 2^{-|w|}$, meaning that $w \sqsubseteq f(\beta)$, so $f(\beta) \in L$.

For all $\beta \in \mathcal{B}^{\omega}$, we have $f(\alpha[0, m] \cdot \beta) \in L$ by the previous result. This means $\alpha[0, m] \in U$ (by definition of U) and therefore $\alpha \in U \cdot \mathcal{B}^{\omega}$.

Theorem 3. If $K \leq L$ and $L \in \Sigma_n$, then $K \in \Sigma_n$. The same is true for Π_n .

Proof. Let f be a continuous function with $f^{-1}(L) = K$. For n = 0, $L \in \mathcal{O}$, so $K \in \mathcal{O}$. Otherwise, assume the claim is ture for n and let $L \in \Sigma_{n+1}$, so $L = \bigcup_{i \in \mathbb{N}} L_i$ for $L_i \in \Pi_n$. Let

 $K_i = f^{-1}(L_i)$, so we have $K_i \leq L_i$. By induction this gives us $K_i \in \Pi_n$ for all i and therefore $\bigcup_{i \in \mathbb{N}} K_i \in \Sigma_{n+1}$. It remains to be shown that $K = \bigcup_{i \in \mathbb{N}} K_i$.

Definition 5. Let $L \subseteq \mathbb{B}^{\omega}$. L is complete for Σ_n if $\forall K \in \Sigma_n : K \leq L$.

1.1 Relation to Automata

- regular $\Sigma_1 = \text{E-recognizable}$
- regular $\Pi_1 = A$ -recognizable
- regular Σ_2 = co-Büchi-recognizable
- regular $\Pi_2 = DBA$ -recognizable
- boolean combination of $\Pi_2 = NBA$ -recognizable

2 Gale-Stewart & Wadge

Definition 6. Let $L \subseteq \mathbb{B}^{\omega}$. The **Gale-Stewart game** $\Gamma(L)$ is defined as follows: Starting with player 0, two players alternatingly pick bits 0 or 1, resulting in a play $\alpha \in \mathbb{B}^{\omega}$. Player 0 wins iff $\alpha \in L$.

Definition 7. Let $K, L \subseteq \mathbb{B}^{\omega}$. The **Wadge game** W(K, L) is defined as follows: Starting with player 0, two players alternatingly pick bits 0 or 1, where player 1 also has the option to skip a turn, resulting in a pair (α, β) with $\alpha \in \mathbb{B}^{\omega}$ and $\beta \in \mathbb{B}^* \cup \mathbb{B}^{\omega}$.

Player 1 wins the play (α, β) iff $\beta \in \mathbb{B}^{\omega}$ and $\alpha \in K \leftrightarrow \beta \in L$.

Theorem 4 (Gale-Stewart). For $L \in \Sigma_1 \cup \Pi_1$, $\Gamma(L)$ is determined.

Proof. If $L \in \Sigma_1$, then $L = W \cdot \mathbb{B}^{\omega}$. A winning strategy for player 0 (if it exists) is the attractor strategy for W.

If $L = (W \cdot \mathbb{B}^{\omega})^{\complement} \in \Pi_1$, then player 1 can play the attractor strategy for W.

Theorem 5 (Martin). For every set L in the Borel hierarchy, $\Gamma(L)$ is determined.

Theorem 6. Let $K, L \subseteq \mathbb{B}^{\omega}$. Player 1 wins W(K, L) iff $K \leq L$.

Proof. \Rightarrow Let $\sigma: (\mathbb{B}^* \times \mathbb{B}^*) \to \{0, 1, \varepsilon\}$ be a winning strategy for player 1 in W(K, L). Let $\tau(\alpha)$ be a strategy for player 0 in which they play $\alpha(i)$ in turn i, and for all $\alpha \in \mathbb{B}^{\omega}$ let $f(\alpha)$ be the play of player 1 if both players play according to $\tau(\alpha)$ and σ respectively. We claim that f is continuous.

 \Leftarrow Let $f: \mathbb{B}^{\omega} \to \mathbb{B}^{\omega}$ be continuous.

Example Let $L = (0^*1)^{\omega}$. We claim that L is Π_2 -complete. Let $K = \bigcap_{i \in \mathbb{N}} K_i \in \Pi_2$ for $K_i \in \mathcal{O}$, so $K_i = W_i \cdot \mathbb{B}^{\omega}$. We define a winning strategy for player 1 in W(K, L) which proves the claim. At the beginning of the game, set a variable i := 0. In each turn, let (u, v) be the play up until this point. If $u \notin W_i$, play 0. Otherwise, play 1 and increment i by 1.

Theorem 7. There is a language $L \subseteq \mathbb{B}^{\omega}$ such that $\Gamma(L)$ is not determined.

Proof. Let On be the set of ordinal numbers. Let S_0 and S_1 be the set of strategies for player 0 and 1 respectively in a Gale-Stewart game. Then we have $|S_0| = |S_1| = |\mathbb{B}^{\omega}| = 2^{\aleph_0} =: \kappa$. Let $(f_{\alpha})_{{\alpha}<\kappa}$ and $(g_{\alpha})_{{\alpha}<\kappa}$ be an enumeration of S_t and S_1 respectively. For $f \in S_0, g \in S_1$, we write $\langle f, g \rangle \in \mathbb{B}^{\omega}$ for the unique play according to f and g.

Our goal is to construct a family of sets $(L_{\alpha}, M_{\alpha})_{\alpha < \kappa} \in \mathbb{B}^{\omega} \times \mathbb{B}^{\omega}$ such that for all $\alpha < \kappa$:

- 1. for all $\beta < \alpha$: $L_{\beta} \subseteq L_{\alpha}$ and $M_{\beta} \subseteq M_{\alpha}$
- 2. $L_{\alpha} \cap M_{\alpha} = \emptyset$
- 3. $|L_{\alpha}| = |M_{\alpha}| = \alpha$
- 4. for all $\beta < \alpha$ there is an $f \in \mathcal{S}_0$ such that $\langle f, g_\beta \rangle \in L_\alpha$
- 5. for all $\beta < \alpha$ there is an $g \in \mathcal{S}_1$ such that $\langle f_\beta, g \rangle \in M_\alpha$

If that is done, set $L := \bigcup_{\alpha < \kappa} L_{\alpha}$. We claim that $\Gamma(L)$ is not determined. Assume player 0 has a winning strategy $f^* \in \mathcal{S}_0$, so $f^* = f_{\alpha}$ for some $\alpha < \kappa$. By (5), there must be a $g \in \mathcal{S}_1$ such that $\langle f^*, g \rangle \in M_{\alpha+1}$. Because of (1) and (2), $\langle f^*, g \rangle \notin L$, so this play is won by player 1. Hence, f^* cannot be a winning strategy.

Claim: Sets L_{α} , M_{α} as described above exist.

For $\alpha = 0$, set $L_{\alpha} = M_{\alpha} = \emptyset$. Otherwise, let $0 < \alpha < \kappa$ be arbitrary. We find plays $\pi_L, \pi_M \in \mathbb{B}^{\omega}$ such that $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta} \cup \{\pi_L\}$ and $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta} \cup \{\pi_M\}$ satisfy the conditions. Let $P = \bigcup_{\alpha \in A} (L_{\beta} \cup M_{\beta})$. Let $g \in \mathcal{S}_1$ such that $\pi_L := \langle f_{\alpha}, g \rangle \notin P$. To see that this is possible,

Let $P = \bigcup_{\beta < \alpha} (L_{\beta} \cup M_{\beta})$. Let $g \in \mathcal{S}_1$ such that $\pi_L := \langle f_{\alpha}, g \rangle \notin P$. To see that this is possible, note that $|P| = 2\alpha < \kappa$ because of (3). Analogously, find an $f \in \mathcal{S}_0$ such that $\pi_M := \langle f, g_{\alpha} \rangle \notin P \cup \{\pi_L\}$.