

### Integrated Complex Advanced Robotic Unmanned System

David Gitz, EE, ICARUS Lead Engineer



# **Topics:**

- ICARUS Team
- System Description
- Capabilities and Technologies
- System Specifications
- Senior Design Proposals

### Core Team

- David Gitz
  - Electrical Engineer
  - •ICARUS Lead Engineer
  - FAST Robotics CEO
- Ben Wasson
  - Masters Student
  - •FAST Robotics Business Manager
- -Amy Welling
  - •FAST Robotics Accounting Director
- Michael Welling
  - PhD Candidate
  - ICARUS Systems Engineer

- Arjun Sadahalli
  - PhD Candidate
  - •ICARUS Vehicle Support Engineer
- Ed Langenderfer
  - Mechanical Engineer
  - ICARUS Vehicle Fabrication Engineer
- James Chaklos
  - Masters Student
  - ICARUS Test-Stand Engineer
- Steve Warren
  - Computer Engineer
  - •ICARUS Communications Engineer

## Satellite Teams

- Washington University UAV Team
- SIU-Carbondale Control Systems Lab
- Boeing Volunteers

# **System Description**



# **Vehicle**



## Vehicle



 Quad-Rotor design – Offers simpler control system with fewer moving parts than a single rotor helicopter and minor reduction in lift capacity

# Vehicle Specifications

- Sensors: 3-Axis Accelerometer, 3-Axis Gyroscope, 3-Axis Magnetometer (INU), Digital Compass, Altimeter, GPS, 7 Ultrasonic Sensors
- Power: 8 Brushless DC 200 Watt Motors, 4 Micro Servo's, 2 Lithium-Poly 11.1V 5 Amp-Hours Batteries, 8 18A Electronic Speed Controllers, 5V and 3.3V Linear Voltage Regulators.
- Control: SoM Controller (Primary), Propeller Controller (Secondary), custom PCB.
- Communications: Xbee Radio for Command/Control, Video Transmitter, Wi-Fi.
- Fabrication: ~50% COTS, ~50% produced by MakerBot/Ponoku.

# Vehicle w/ Prototype Systems



### $\mathsf{RCU}$



#### Features:

- Dual 2-Axis Joysticks and Button Pad, Kill Switch
- Mode and Error Display
- Vehicle Battery Indicator,
- Force-Feedback
- 5 hours of continuous operation.

### <u>GCS</u>



- Includes computer, touch-screen monitor and batteries for field operation.
- Communications Radio and Video Receiver
- Heavy-duty field transportable case

## **GCS** Interface



- Manual Control
  - Vehicle Sensor Display
  - Vehicle Health/Feedback System
- Autonomous Control
  - Set, Transmit Waypoints
- Communications
  - View Network Status
- Configuration/Debugging



- Google Earth Integration
  - Fully controllable Google Earth (location search, zoom, pan, etc).
- View Waypoints and Vehicle Location/Path

### **Test-Stand**

- Used for Vehicle
  Calibration and Capacity
  measurements
- Able to Pivot vertically, rotate continuously and pitch/yaw/roll on Test-Fixture Assembly
- Power applied to Vehicle via Slip-Ring – No tangled wires



# Capabilities

| Capabilities - Planned                 |                                               |  |
|----------------------------------------|-----------------------------------------------|--|
| Manual Control via RCU or GCS          | Simple Calibration and Testing via Test-Stand |  |
| Limited Autonomous Navigation via RCU  | Error Display on RCU and GCS                  |  |
| Extended Autonomous Navigation via GCS | Force-Feedback on RCU                         |  |
| Automatic Takeoff, Hover and Landing   | Vehicle Health Reporting                      |  |

| Capabilities - Future               |                        |  |
|-------------------------------------|------------------------|--|
| Real-Time Video Transmission to GCS | Image Capture          |  |
| Wireless airborne programming       | Advanced Hover modes   |  |
| Vehicle Status Audio via RCU        | Extended Range         |  |
| Configurable Payloads               | Terrain Following      |  |
| Extended Flight Duration            | Obstacle Avoidance     |  |
| Swarm Autonomy                      | Vehicle Status - Audio |  |

# Technologies

| Technologies - Planned             |                                                                                |  |
|------------------------------------|--------------------------------------------------------------------------------|--|
| Command/Control Network Monitoring | Inertial Navigation Unit (INU) w/ Altitude and Heading Reference System (AHRS) |  |
| Power Management                   | Primary/Secondary Controller Implementation                                    |  |
| Waypoint Navigation                | Communications Protocol                                                        |  |

| Technologies - Future    |                                              |
|--------------------------|----------------------------------------------|
| 3d Feedback              | Audio Commands                               |
| Automatic Landing Pad    | Cellular Network                             |
| Cel-Phone Control        | Co-Axial Rotors                              |
| Data Storage             | GCS Interface (MATLAB)                       |
| JAUS Interoperability    | Motor Heat Dissipation                       |
| R/C Control              | RCU Testing Software                         |
| Recovery System          | Tilt Rotors                                  |
| Satellite Communications | Simultaneous Localization and Mapping (SLAM) |
| Target Detection         | Wireless Charging                            |



# System Specifications

- Range: ~1.5 km LOS (~3km with Xbee Mesh Network)
- Duration:
  - Vehicle: ~12 min (100% Throttle), ~20 min (Hover)
  - RCU: ~4-6 hrs
  - GCS: ~4-6 hrs (including field charging Vehicle)
- Speed: ~2 4 kph
- Weight: ~5.5 lbs
- Size: 48" x 48" x 10.5"
- Propeller Rotation: Max: 3,000 RPM
- Vertical Thrust: ~7.8 lbs

# Senior Design Proposals



**Automatic Landing Pad** 



Control System Design



Aerodynamic Analysis



Swarm Autonomy

## Questions?

- Contact:
  - David Gitz: <u>david.gitz@fastrobotics.com</u>
  - Ben Wasson: <a href="mailto:ben.wasson@fastrobotics.com">ben.wasson@fastrobotics.com</a>

