Perceptron prosty oraz Adaline

Piotr Grzybowski 11 październik 2017

1 Opis problemu

Symulowanie działania bramek logicznych realizujących proste funkcje logiczne przy pomocy modeli matematycznych jako problem klasyfikacji binarnej.

Celem klasyfikacji binarnej jest zaklasyfikowanie, czyli przypisanie każdego elementu z danego zbioru do dwóch rozłącznych kategorii.

Rozważmy bramki logiczne, które mają dwa wejścia i jedno wyjście. Taka bramka działa jak klasyfikator binarny. Parze sygnałów wejściowych zostaje przypisana wartość zero lub jeden. (Przypisanie pary wejść do jednej z dwóch możliwych kategorii.)

W klasycznych bramkach logicznych wejścia jak i wartość realizowanej funkcji przyjmuje dyskretne wartości: zero lub jeden. Naszym zadaniem będzie zbudowanie, oraz wyuczenie modelu, który będzie poprawnie odzwierciedlał działanie funkcji także w przypadku gdy na wejściu pojawią się wartości ciągłe z pewnym odchyleniem ϵ . Przykład działania bramki logicznej AND przy $\epsilon=0.05$. $(0.95\ AND\ 0.05)=0$.

Zbiór danych za pomocą którego odbędzie się uczenie sieci neuronowej składać się będzie z uporządkowanych trójek (x_1, x_2, y) , gdzie x_1, x_2 to wartości sygnałów wejściowych do bramek logicznych, oraz y jako wartość konkretnej funkcji logicznej dla podanych wejść. (Klasa do której możemy przypisać daną parę sygnałów wejściowych.)

2 Proponowane rozwiązanie

Powyżej zaprezentowany problem zostanie rozwiązany przy użyciu prostej sieci neuronowej jako klasyfikatora binarnego. A dokładniej tylko pojedynczego neuronu w dwóch wersjach: pojedynczy perceptron prosty, oraz pojedyncza komórka Adaline.

2.1 Sieć neuronowa

Każdy z neuronów składa się z:

- Wektora wag o długości liczbie sygnałów wejściowych. Każdemu sygnałowi wejściowemu x_i , odpowiada dokładnie jedna kolejna waga w_i . Symbolicznie $W = [x_1, ..., x_N]$, gdzie N to liczba sygnałów wejściowych do neuronu.
- Stałej zwanej "biasem". Liczba rzeczywista.
- Funkcji aktywacji, według której obliczana jest wartość wyjścia neuronów w sieci neuronowej.

Wartość wyjścia neuronu jest liczona w sposób następujący (g - funkcja aktywacji)

$$Output = g(x^T w + b) (1)$$

Podczas rozwiązywania zadania zostaną zbadane dwa typy neuronów. Perceptron prosty oraz komórka Adaline. Ich struktura jest taka sama, jednakże różnią się procedurą uczenia. Sposoby te omówione zostaną poniżej.

2.2 Uczenie perceptronu prostego

Uczenie sieci realizowane jest poprzez aktualizację wag perceptronu dla każdego przypadku treningowego w każdej kolejnej iteracji uczenia.

$$w_i^{t+1} = w_i^t + \mu * \delta * x_i \tag{2}$$

gdzie:

- w_i^{t+1} wartość *i-tej* wagi w czasie t+1.
- w_i^t aktualna wartość w_i .
- μ stała uczenia.
- x_i wartość i-teg wygnału wejściowego.

W przypadku perceptronu prostego błąd δ definiuje się jako różnicę między wartością oczekiwaną a wartością funkcji aktywacji perceptronu:

$$\delta = E - P \tag{3}$$

gdzie:

- E wartość oczekiwana,
- P wartość predykowana

Ostatecznie procedura aktualizacji wag w każdym kroku będzie wyglądać następująco:

$$w_i^{t+1} = w_i^t + \mu * (E - P) * x_i \tag{4}$$

2.3 Uczenie komórki Adaline

Uczenie sieci realizowane jest poprzez aktualizację wag perceptronu dla każdego przypadku treningowego w każdej kolejnej iteracji uczenia w podobny sposób jak dla perceptronu prostego. Jednakże zamiast błędu dyskretnego δ będzie brany gradient błędu średniokwadratowego.

$$w_i^{t+1} = w_i^t + \mu * \nabla_{w_i} \delta * x_i \tag{5}$$

gdzie:

- w_i^{t+1} wartość *i-tej* wagi w czasie t+1.
- w_i^t aktualna wartość w_i .
- μ stała uczenia.
- x_i wartość i-teg wygnału wejściowego.

Różnicą będzie w postaci funkcji błędu. Skorzystamy tutaj z błędu średniokwadratowego. Wartością błędu będzie różnica wartości oczekiwanej oraz wartości pobudzenia neuronu. W przypadku perceptronu prostego do wyliczenia błędu aplikowana jeszcze była funkcja aktywacji do pobudzenia.

$$\delta_i = d_i - x^T w \tag{6}$$

$$\delta_i^2 = (E_i - \sum_{i=1}^N x_i * w_i)^2 \tag{7}$$

$$\frac{\partial \delta_i^2}{\partial w_i} = 2 * \delta_i * \frac{\partial \delta_i}{\partial w_i} \tag{8}$$

gdzie:

- E wartość oczekiwana,
- P wartość predykowana

3 Zbiór danych

Do przygotowania zbioru danych został napisany generator, żeby w prosty sposób móc otrzymać zadaną liczbę przykładów w zbiorze. Zbiór generuje się w zależności od liczby przypadków oraz odchylenia epsilon. Odchylenie posłuży nam do zamodelowania logiki rozmytej. Przykładowo dla $\epsilon=0.1$ i dla funkcji logicznej AND, pozytywne sygnały wejściowe przyjmą wartości z zakresu [0.9,1] a negatywne z zakresu [0,0.1].

4 Badania

Wyniki uczenia i jakości predykcji neuronów przy różnych parametrach o różnej wielkości zbioru danych.

4.1 Perceptron prosty