Gaussian posterior conditioning **RNN** assumes estimated posterior likelihood prior $y \sim \mathcal{N}(\mu_y, 1)$ $\mu_y \sim \mathcal{N}(4, 1)$ $p(\mu_y \mid y) = \mathcal{N}(\mu_{\text{post}} = \kappa_r, \sigma_{\text{post}}^2 = \Delta_T)$ mean bias input output exact variance bias κ_r — activity along readout μ_y rank-1 RNN $\sigma_{ m post}^2$ μ_{post} В 1.50 Ø 5 1.25 1.00 2.5 0.75 о **М**_т 0.50 0.25 M_m M_n M_n $\kappa_r(t)$ 6 z_1 $\hat{\xi}^2$ $\mu_{post} = K_r$ t (ms) z_2 \hat{z}^2 $M_m M_n$ t (ms)