8.6.0 End of Chapter Problems

Problem 1

Let X be the weight of a randomly chosen individual from a population of adult men. In order to estimate the mean and variance of X, we observe a random sample X_1, X_2, \cdots , X_{10} . Thus, the X_i 's are i.i.d. and have the same distribution as X. We obtain the following values (in pounds):

Find the values of the sample mean, the sample variance, and the sample standard deviation for the observed sample.

Problem 2

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample with unknown mean $EX_i = \mu$, and unknown variance $Var(X_i) = \sigma^2$. Suppose that we would like to estimate $\theta = \mu^2$. We define the estimator $\hat{\Theta}$ as

$$\hat{\Theta} = \left(\overline{X}
ight)^2 = \left[rac{1}{n}\sum_{k=1}^n X_k
ight]^2$$

to estimate θ . Is $\hat{\Theta}$ an unbiased estimator of θ ? Why?

Problem 3

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from the following distribution

$$f_X(x) = \left\{ egin{aligned} heta\left(x - rac{1}{2}
ight) + 1 & & ext{for } 0 \leq x \leq 1 \ \ 0 & & ext{otherwise} \end{aligned}
ight.$$

where $heta \in [-2,2]$ is an unknown parameter. We define the estimator $\hat{\Theta}_n$ as

$$\hat{\Theta}_n = 12\overline{X} - 6$$

to estimate θ .

- a. Is $\hat{\Theta}_n$ an unbiased estimator of θ ?
- b. Is $\hat{\Theta}_n$ a consistent estimator of θ ?
- c. Find the mean squared error (MSE) of $\hat{\Theta}_n$.

Problem 4

Let X_1, \ldots, X_4 be a random sample from a Geometric(p) distribution. Suppose we observed $(x_1, x_2, x_3, x_4) = (2, 3, 3, 5)$. Find the likelihood function using $P_{X_i}(x_i; p) = p(1-p)^{x_i-1}$ as the PMF.

Problem 5

Let X_1, \ldots, X_4 be a random sample from an $Exponential(\theta)$ distribution. Suppose we observed $(x_1, x_2, x_3, x_4) = (2.35, 1.55, 3.25, 2.65)$. Find the likelihood function using

$$f_{X_i}(x_i; heta) = heta e^{- heta x_i}, \quad ext{ for } x_i \geq 0$$

as the PDF.

Problem 6

Often when working with maximum likelihood functions, out of ease we maximize the log-likelihood rather than the likelihood to find the maximum likelihood estimator. Why is maximizing $L(\mathbf{x}; \theta)$ as a function of θ equivalent to maximizing $\log L(\mathbf{x}; \theta)$?

Problem 7

Let X be one observation from a $N(0, \sigma^2)$ distribution.

- a. Find an unbiased estimator of σ^2 .
- b. Find the log likelihood, $\log(L(x;\sigma^2))$, using

$$f_X(x;\sigma^2) = rac{1}{\sqrt{2\pi}\sigma} exp \left\{ -rac{x^2}{2\sigma^2}
ight\}$$

as the PDF.

c. Find the Maximum Likelihood Estimate (MLE) for the standard deviation σ , $\hat{\sigma}_{ML}$.

Problem 8

Let X_1, \ldots, X_n be a random sample from a $Poisson(\lambda)$ distribution.

a. Find the likelihood equation, $L(x_1, \ldots, x_n; \lambda)$, using

$$P_{X_i}(x_1,\ldots,x_n;\lambda)=rac{e^{-\lambda}\lambda^{x_i}}{x_i!}$$

as the PMF.

b. Find the log likelihood function and use that to obtain the MLE for λ , $\hat{\lambda}_{ML}$.

Problem 9

In this problem, we would like to find the CDFs of the order statistics. Let X_1, \ldots, X_n be a random sample from a continuous distribution with CDF $F_X(x)$ and PDF $f_X(x)$. Define $X_{(1)}, \ldots, X_{(n)}$ as the order statistics and show that

$$F_{X_{(i)}}(x) = \sum_{k=i}^n inom{n}{k}igl[F_X(x)igr]^kigl[1-F_X(x)igr]^{n-k}.$$

Hint: Fix $x\in\mathbb{R}$. Let Y be a random variable that counts the number of X_j 's $\leq x$. Define $\{X_j\leq x\}$ as a "success" and $\{X_j>x\}$ as a "failure," and show that $Y\sim Binomial(n,p=F_X(x))$.

Problem 10

In this problem, we would like to find the PDFs of order statistics. Let X_1, \ldots, X_n be a random sample from a continuous distribution with CDF $F_X(x)$ and PDF $f_X(x)$. Define $X_{(1)}, \ldots, X_{(n)}$ as the order statistics. Our goal here is to show that

$$f_{X_{(i)}}(x) = rac{n!}{(i-1)!(n-i)!} f_X(x) igl[F_X(x) igr]^{i-1} igl[1 - F_X(x) igr]^{n-i}.$$

One way to do this is to differentiate the CDF (found in <u>Problem 9</u>). However, here, we would like to derive the PDF directly. Let $f_{X_{(i)}}(x)$ be the PDF of $X_{(i)}$. By definition of the PDF, for small δ , we can write

$$f_{X_{(i)}}(x)\deltapprox P(x\leq X_{(i)}\leq x+\delta)\delta.$$

Note that the event $\{x \leq X_{(i)} \leq x + \delta\}$ occurs if i-1 of the X_j 's are less than x, one of them is in $[x, x + \delta]$, and n-i of them are larger than $x + \delta$. Using this, find $f_{X_{(i)}}(x)$.

Hint: Remember the multinomial distribution. More specifically, suppose that an experiment has 3 possible outcomes, so the sample space is given by

$$S = \{s_1, s_2, s_3\}.$$

Also, suppose that $P(s_i) = p_i$ for i = 1, 2, 3. Then for $n = n_1 + n_2 + n_3$ independent trials of this experiment, the probability that each s_i appears n_i times is given by

$$inom{n}{n_1,n_2,n_3}p_1^{n_1}p_2^{n_2}p_3^{n_3}=rac{n!}{n_1!n_2!n_3!}p_1^{n_1}p_2^{n_2}p_3^{n_3}.$$

Problem 11

A random sample $X_1, X_2, X_3, \ldots, X_{100}$ is given from a distribution with known variance $\mathrm{Var}(X_i) = 81$. For the observed sample, the sample mean is $\overline{X} = 50.1$. Find an approximate 95% confidence interval for $\theta = EX_i$.

Problem 12

To estimate the portion of voters who plan to vote for Candidate A in an election, a random sample of size n from the voters is chosen. The sampling is done with replacement. Let θ be the portion of voters who plan to vote for Candidate A among all voters.

a. How large does n need to be so that we can obtain a 90% confidence interval with 3% margin of error?

b. How large does n need to be so that we can obtain a 99% confidence interval with 3% margin of error?

Problem 13

Let $X_1, X_2, X_3, \ldots, X_{100}$ be a random sample from a distribution with unknown variance $\mathrm{Var}(X_i) = \sigma^2 < \infty$. For the observed sample, the sample mean is $\overline{X} = 110.5$, and the sample variance is $S^2 = 45.6$. Find a 95% confidence interval for $\theta = EX_i$.

Problem 14

A random sample $X_1, X_2, X_3, ..., X_{36}$ is given from a normal distribution with unknown mean $\mu = EX_i$ and unknown variance $Var(X_i) = \sigma^2$. For the observed sample, the sample mean is $\overline{X} = 35.8$, and the sample variance is $S^2 = 12.5$.

- a. Find and compare 90%, 95%, and 99% confidence interval for μ .
- b. Find and compare 90%, 95%, and 99% confidence interval for σ^2 .

Problem 15

Let X_1 , X_2 , X_3 , X_4 , X_5 be a random sample from a $N(\mu, 1)$ distribution, where μ is unknown. Suppose that we have observed the following values

We would like to decide between

$$H_0$$
: $\mu = \mu_0 = 5$,

$$H_1$$
: $\mu \neq 5$.

- a. Define a test statistic to test the hypotheses and draw a conclusion assuming $\alpha=0.05$.
- b. Find a 95% confidence interval around \overline{X} . Is μ_0 included in the interval? How does the exclusion of μ_0 in the interval relate to the hypotheses we are testing?

Problem 16

Let X_1, \ldots, X_9 be a random sample from a $N(\mu, 1)$ distribution, where μ is unknown. Suppose that we have observed the following values

We would like to decide between

$$H_0$$
: $\mu = \mu_0 = 16$,

$$H_1$$
: $\mu \neq 16$.

- a. Find a 90% confidence interval around \overline{X} . Is μ_0 included in the interval? How does this relate to our hypothesis test?
- b. Define a test statistic to test the hypotheses and draw a conclusion assuming $\alpha=0.1.$

Problem 17

Let X_1 , X_2 ,..., X_{150} be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be

$$\overline{X} = 52.28, \quad S^2 = 30.9$$

Design a level 0.05 test to choose between

$$H_0$$
: $\mu = 50$,

$$H_1$$
: $\mu > 50$.

Do you accept or reject H_0 ?

Let X_1 , X_2 , X_3 , X_4 , X_5 be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ and σ are both unknown. Suppose that we have observed the following values

We would like to decide between

$$H_0$$
: $\mu \ge 30$,

$$H_1$$
: $\mu < 30$.

Assuming $\alpha = 0.05$, what do you conclude?

Problem 19

Let X_1 , X_2 ,..., X_{121} be a random sample from an unknown distribution. After observing this sample, the sample mean and the sample variance are calculated to be

$$\overline{X} = 29.25, \quad S^2 = 20.7$$

Design a test to decide between

$$H_0$$
: $\mu = 30$,

$$H_1$$
: $\mu < 30$,

and calculate the *P*-value for the observed data.

Problem 20

Suppose we would like to test the hypothesis that at least 10% of students suffer from allergies. We collect a random sample of 225 students and 21 of them suffer from allergies.

- a. State the null and alternative hypotheses.
- b. Obtain a test statistic and a *P*-value.
- c. State the conclusion at the $\alpha = 0.05$ level.

Problem 21

Consider the following observed values of (x_i, y_i) :

$$(-5, -2), (-3, 1), (0, 4), (2, 6), (1, 3).$$

a. Find the estimated regression line

$$\hat{y} = \hat{eta_0} + \hat{eta_1} x$$

based on the observed data.

b. For each x_i , compute the fitted value of y_i using

$${\hat y}_i = {\hat eta_0} + {\hat eta_1} x_i.$$

- c. Compute the residuals, $e_i = y_i \hat{y}_i$.
- d. Calculate R-squared.

Problem 22

Consider the following observed values of (x_i, y_i) :

a. Find the estimated regression line

$$\hat{y} = \hat{eta_0} + \hat{eta_1} x$$

based on the observed data.

b. For each x_i , compute the fitted value of y_i using

$$\hat{y}_i = \hat{eta_0} + \hat{eta_1} x_i$$
.

- c. Compute the residuals, $e_i = y_i \hat{y}_i$.
- d. Calculate R-squared.
- e. Explain the above results. In particular, can you conclude that the obtained regression line is a good model here?

Problem 23

Consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where ϵ_i 's are independent $N(0,\sigma^2)$ random variables. Therefore, Y_i is a normal random variable with mean $\beta_0+\beta_1x_i$ and variance σ^2 . Moreover, Y_i 's are independent. As usual, we have the observed data pairs $(x_1,y_1), (x_2,y_2), \cdots, (x_n,y_n)$ from which we would like to estimate β_0 and β_1 . In this chapter, we found the following estimators

$$egin{align} \hat{eta}_1 &= rac{s_{xy}}{s_{xx}}, \ \hat{eta}_0 &= \overline{Y} - \hat{eta}_1 \overline{x}. \ \end{matrix}$$

where

$$egin{aligned} s_{xx} &= \sum_{i=1}^n (x_i - \overline{x})^2, \ s_{xy} &= \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y}). \end{aligned}$$

- a. Show that $\hat{\beta_1}$ is a normal random variable.
- b. Show that $\hat{\beta}_1$ is an unbiased estimator of β_1 , i.e.,

$$E[\hat{eta_1}] = eta_1.$$

c. Show that

$$\mathrm{Var}(\hat{eta_1}) = rac{\sigma^2}{s_{xx}}.$$

Problem 24

Again consider the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where ϵ_i 's are independent $N(0,\sigma^2)$ random variables, and

$$egin{align} \hat{eta_1} &= rac{s_{xy}}{s_{xx}}, \ \hat{eta_0} &= \overline{Y} - \hat{eta_1} \overline{x}. \ \end{aligned}$$

- a. Show that $\hat{\beta_0}$ is a normal random variable.
- b. Show that $\hat{\beta}_0$ is an unbiased estimator of $\beta_0,$ i.e.,

$$E[\hat{eta_0}] = eta_0.$$

c. For any $i=1,2,3,\ldots,n$, show that

$$\mathrm{Cov}(\hat{eta_1},Y_i) = rac{x_i - \overline{x}}{s_{xx}} \sigma^2.$$

d. Show that

$$\operatorname{Cov}(\hat{eta_1},\overline{Y}^{})=0.$$

e. Show that

$$ext{Var}(\hat{eta_0}) = rac{\sum_{i=1}^n x_i^2}{n s_{xx}} \sigma^2.$$