Notes on Introduction to Condensed Matter Physics

Xupeng Yang

Contents

1	Basic Introduction]
2	Conventional Metal Physics: Electrons and Phonons	1
3	Transport	3
4	Metal Insulator Transition (MIT)	5
5	Others	7

1 Basic Introduction

- 1. Condensed Matter: $\sim 10^{23} / cm^3$
- 2. Major Study: Electrons, Phonons, The interactions between
- 3. Drives: New materials & New technologies

2 Conventional Metal Physics: Electrons and Phonons

- Basic Properties of Normal Metals: Ductile Excellent electrical conductor Excellent thermal conductor Most are weak paramagnet, some ferromagnet Opaque
 - At low T: ρ increases with T $\chi \sim Const.$ $c_V \propto T$
- 2. Drude Free Electron Model:
 - Assumptions: Free electrons (Ignore interaction with lattice)
 Independent electrons (Ignore interactions between electrons)
 Electrons were treated as independent classical particles
 - Maxwell-Boltzmann distribution

- Successes: Electrical conductivity and thermal conductivity Wiedemann-Franz law (by luck!) The Hall effect and magnetoresistance AC conductivity and optical properties of metals
- Problems: Heat capacity puzzle: $c_V = \frac{3}{2}nk_B = Const.$ The susceptibility puzzle: χ does not change with temperature, non-Curie like $\chi \sim 1/T$
- 3. The Sommerfeld Model: Free Electron Gas + Schrodinger Equation + Fermi Statistics
 - The Fermi Surface: In 3D $E_F \sim n^{2/3}$ Typical Values: $E_F \sim 7$ eV, $k_F \sim 1 \times 10^8$ cm⁻¹, $T_F \sim 8 \times 10^4$ K, $v_F \sim 2 \times 10^8$ cm/s DOS In 3D: $D(\varepsilon) \sim \varepsilon^{1/2}$ Linear T Heat Capacity at Low T
 - Pauli Paramagnetism (at low T): $\chi = \mu_B^2 D(E_F) = const.$
 - Successes:

 Realized the importance of Fermi distribution
 Established the k-space language for

 electrons
 Introduced Fermiology
 Resolved the Pauli susceptability puzzle
 Resolved the heat
 capacity puzzle
 Resolved the thermopower puzzle
 Explained the Wiedemann-Franz Law
- 4. Landau's Fermi Liquid Theory: •Quasi-particle: Same charge, spin, momentum as non-interacting electron Adiabatic Continuity, Only valid at low T and low energy Qualitatively explain the susceptibility, heat capacity Only require a Fermi sea Entropy, distribution function unchanged Energy modified by the effective mass & the Fermi interaction function Low energy excitation like single particle $\varepsilon = \frac{\hbar^2 k^2}{2m^*}$ $\varepsilon_V = \frac{1}{3} \frac{m^* k_F}{\hbar^2} k_B^2 T$ $\chi = \frac{m^* k_F}{\hbar^2 \pi^2} \frac{1}{1 + F_0^a} \mu_B^2$ Landau parameter: m^* , F_0^a Wilson ration: $R_W = \frac{\pi^2 k_B^2}{3\mu_B^2} \frac{\chi}{\gamma}$ For non-interacting electron gas $R_W = 1$ T^2 Law (Experimental Signature): qp-qp scattering Scattering rate $\frac{1}{\tau} \sim k_B T \cdot k_B T \propto T^2$ But electron seems to be a wrong place to start for many novel phenomena Spinon, holon, fractional charge: Collective mode looks like a fraction of an electron
- 5. Bloch Theory: Bloch Theorem: For periodic potential, $\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{nk}(\mathbf{r})$, where $u_{nk}(\mathbf{r}) = u_{nk}(\mathbf{R} + \mathbf{r})$
 - Momentum is no longer a good quantum number Band index n
 - NFE model: Perturbation to the free electron plane wave states (maximum mixing) (highly delocalized)
 - First order: $\varepsilon_k^1 = \overline{V}$ Second order (non-degenerate): $\varepsilon_k^2 = \sum_{g \neq 0} \frac{|V_g|^2}{\varepsilon_K^0 \varepsilon_{k-g}^0}$ Second order (degenerate): $\varepsilon_k^2 = \pm |V_n|$ Energy gap: Level repulsion, Explains metal or insulator
 - +2 Metals: Band overlap
 - Tight Binding Model: (nearly localized) such as transition metal and rare earth metal with partially filled d and f orbitals. $\psi_k(\mathbf{r}) = \sum_{\mathbf{R}} \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{R}} \psi_a(\mathbf{r}-\mathbf{R})$ Overlap integral: $t_{\mathbf{R}} = \int \psi_a^*(\mathbf{r}+\mathbf{R})(\Delta V)\psi_a(\mathbf{r})\mathrm{d}\mathbf{r} \to$ Nearest neighbor approximation Band width: $W \sim 2zt$, where z is coordination number, t is overlap integral Useful starting point
- 6. Lattice Vibrations: Harmonic Approximation: $V(a + \delta x) = V_0 + \frac{1}{2}\beta(\delta x)^2$ $\varepsilon = \sum_k (n_k + \frac{1}{2})\hbar\omega$ Phonons: The quantum of the lattice vibration, $n_k = \frac{1}{e^{\hbar\omega/kT}-1}$ Mono-atomic 1D Chain: $\omega = 2\sqrt{\frac{\beta}{m}}\left|\sin\left(\frac{aq}{2}\right)\right|$
 - Di-atomic 1D Chain: Acoustic & Optical phonon Phonon specific heat: Debye model: Assume linear

- dispersion Define a cutoff in the integral: Debye frequency
- $T \rightarrow 0$ $c_V \sim T^3$ \Leftarrow Blackbody radiation
- Specific Heat: Directly related to internal energy To extract important microscopic parameters To study phase transition Calorimetry: What, How, Better resolution and accuracy, Flecibility Adiabatic Nernst Calorimeter: Slow, Heat leak problem, Need big sample
 - Relaxation time calorimeter: $\Delta T = \Delta T_0 \mathrm{e}^{-t/\tau}$, where $\tau = c_V l/\kappa S$ (with addenda) Advantage: Accurate, Fast, Microgram crystals, Small, Work in extreme conditions Disadvantage: The addenda
 - Membrane calorimeter: Nano-gram crystals, Measure in-situ evaporated thin films, Extreme conditions
 - Heater: Resistance stable with T Thermometer: Resistance has Linear relationship with T
- 8. Anharmonic Potential: Universal $\Leftarrow V = 0$ when $r \to \infty$ Phonon-phonon interaction: No longer independent excitations \Rightarrow Phonon heat conduction (low T, high T) Thermal Expansion: $\alpha = \frac{1}{l} \frac{\partial^2 l}{\partial T \partial p} = \frac{1}{3V} \frac{\partial^2 V}{\partial T \partial p}$ Provide similar information as specific heat Bad in engineering
 - XRD \rightarrow Measure l or V, High resolution, Hard to use in extreme physical conditions
 - Capacitive dilatometer: High resolution (capacitance bridge) (0.01 Å), ultra low T and large B (compact design)
 - Negative thermal expansion: $ZrW_2O_8 \rightarrow Rigid Unit Modes$
- 9. Main Frame: Landau Fermi Liquid Theory + Band Theory

3 Transport

- 1. Basic Notions: Movement of Particles or Quantities Non-equilibrium steady state $J = L \cdot F$
 - Very informative and instructive, esp. on Novel materials and in Extreme conditions
 - Normally the first to be carried out Close relations to device applications
- 2. Fractional Quantum Hall Effect: Ultra low T, Super strong B, Very clean Strong electron correlations
 - Most precise method to measure h
- 3. Cryogenic Technology: Dilution fridge method: He-3 rich & He-3 poor phase at T < 0.87 K
 - He-3 diffuse, absorb heat Down to $\sim 10 \text{ mK}$
 - Superconducting magnet: up to 20 tesla ← critical field
 - Super high megnetic field: Florida-Bitter resistive magnet, Hybrid magnet

- 4. The Boltzmann Transport Equation: $\bullet \frac{\partial f_k}{\partial t}\Big|_{\text{diffusion}} + \frac{\partial f_k}{\partial t}\Big|_{\text{field}} + \frac{\partial f_k}{\partial t}\Big|_{\text{scattering}} = 0 \quad \bullet \frac{\partial f_k}{\partial t}\Big|_{\text{diffusion}} = -\dot{\boldsymbol{r}} \cdot \nabla_{\boldsymbol{r}} f_k$ $\bullet \frac{\partial f_k}{\partial t}\Big|_{\text{field}} = -\dot{\boldsymbol{k}} \cdot \nabla_{\boldsymbol{k}} f_k \quad \bullet \frac{\partial f_k}{\partial t}\Big|_{\text{scattering}} = -\frac{f_k f_k^0}{\tau}$
- 5. Electrical Transport: $\bullet J_e = \sigma E$ \bullet Measurements: Four-probe, Low frequency ac lock-in method
 - Drude model: $\sigma = \frac{ne^2\tau}{m}$ Semi classical: $\delta k = \frac{e\tau E}{\hbar}$ Only the surface of the FS changed!
 - Ignore the diffusion effect, Complexity of the FS
 - The Boltzmann transport equation: $\overleftrightarrow{\sigma} = \frac{1}{4\pi^3} \frac{e^2 \tau}{\hbar} \int \frac{v_k v_k dS_F}{v_k}$
 - Cubic symmetry: $\sigma_{x,y,z} = \frac{e^2}{3} v_F lD(\varepsilon_F)$
 - Matthiessen's rule: Different scattering mechanisms don't interfere each other $\Rightarrow \frac{1}{\tau} = \frac{1}{\tau_{imp}} + \frac{1}{\tau_{ph}} + \cdots$
 - Electron-electron scattering: $\frac{1}{\tau} \sim T^2$
 - Electron-lattice scattering: $\rho \sim T$, at high T $\rho \sim T^5$, at low T
 - Electron-impurity scattering: Roughly, Temperature-independent Residual resistivity: $\rho(T=0)$ Residual resistivity ratio (RRR): $\frac{\rho_{300K}}{\rho_0}$ Higher the better
- 6. Thermal Transport: $\bullet J_Q = \kappa(-\nabla T)$ \bullet Measurement: One-heater, Two-thermometer
 - Drude: $J_{Qe,x} = \frac{1}{2}nv_x[\varepsilon(T_{x-v\tau} T_{x+v\tau})] = \frac{1}{3}c_Vvl$ $J_Q = 2\int f_k(\varepsilon_k \mu)v_k dk$ $\kappa_e = \frac{\pi^2}{3}\frac{k_B^2}{e^2}T\sigma$
 - Phonon Thermal Conductivity: Good metals ~ 1%
- 7. Thermoelectric Power: Seebeck Coefficient: $S = \frac{E}{\nabla T} = \frac{c_V}{3ne}$ The piece of heat carried by each charge e
 - Inversely proportional to ε_F $S = \frac{\pi^2}{3} \frac{k_B}{e} k_B T \left(\frac{\partial \ln \sigma(\varepsilon)}{\partial \varepsilon} \right) \Big|_{\varepsilon = \mu}$ Reveal abrupt change of electronic stucture
 - Study novel electronic phases and phase transitions, But poorly understood
 - Thermal couple: $V = (S_B S_A)(T_x T_0)$ Thermoelectric power generation: Π -junction consisting of N type & P type material $V = (|S_N| + |S_P|)(T_h T_c)$ No moving part, reliable Environmental friendly Arbitrary Shape & Size Radioisotope thermoelectric generator: For unmanned situations, Low power, Long durations Thermoelectric refrigeration: Π -junction consisting of N type & P type material $J_Q = J_e(|\Pi_N| + |\Pi_P|)$
- 8. Peltier Effect: $\bullet J_Q = \Pi J_e$
- 9. Onsager reciprocal relations: $\bullet \begin{pmatrix} J_e \\ J_Q \end{pmatrix} = \begin{pmatrix} \sigma & \sigma ST \\ \sigma \Pi & -\kappa T \end{pmatrix} \begin{pmatrix} E \\ \frac{\nabla_r T}{T} \end{pmatrix} \bullet \Pi = ST$
- 10. The Thermoelectric Figure of Merit: $\bullet ZT = \frac{\sigma S^2 T}{\kappa} \quad \bullet ZT \sim 3$, for application, Now $ZT \sim 1$
 - Now focusing on heavily doped narrow-band semiconductors, $n \sim 10^{19} 10^{20}/cm^3$, Not promising because of W-F law Minimize phonon thermal conductivity \Rightarrow Low Dimension, Amorphous, Nanomaterials Bi_2Se_3 & Bi_2Te_3 : Quasi-2D system (Quintuple-layer) Future focus: Considering Spin, Strong-correlation system

- 11. Magnetic Field: Free electron gas: No magnetoresistance Hall coefficient: $R_H = \frac{1}{ne}$
 - Hall angle: $\tan \theta = \frac{E_y}{E_x} = \frac{Be\tau}{m} = \omega_c \tau$ Quantum oscillations: $\omega_c \tau \gg 1$, Shubnikov-de Haas oscillations
- 12. Thermo-magnetic Transport: Thermal Hall effect: Heat current (x) produces ∇T (y)
 - Nernst effect: $v = \frac{E_y}{\nabla T_x B_z}$, Powerful technique for novel metals & superconducting vortices in type-II superconductors

4 Metal Insulator Transition (MIT)

- 1. I-M Transition within Band Theory: Doping: Donors & Acceptors ⇒ impurity bands
 - Pressure: Structure change ⇒ Overlap ← Tight binding model Wilson transition
- 2. Mott Insulator: Mott's Gedanken Experiment: Increase the distance between atoms: Smaller hopping integral (t) and carrier density (n)
 - Thomas-Fermi Theory: A negative charge added to the Fermi Sea $\Rightarrow \delta V \Rightarrow \delta n = -D(\varepsilon_F)\delta V \Rightarrow \nabla^2(\delta V) = k^2\delta V$ Yukawa Potential: $\delta V = \frac{e^2}{r} \mathrm{e}^{-kr}$ Screening length: $\lambda = \frac{1}{k}, \ k = \sqrt{\frac{4me^2k_F}{\pi\hbar^2}} \propto n^{1/6}$ for 3D FEG Good metals \Rightarrow Non-interacting FEG
 - Mott Insulator: Coulomb energy cost will exceed the kinetic energy gain Low dimensional materials with large lattice constant IMT: Tune the U/W ratio; Change band filling by doping. Pressure induced IMT: Lattice contraction at IMT ($\sim 0.2\%$) \Leftarrow Metallic bonds Increase of m^* due to strong electron interaction in doped Mott insulator Many transition metal oxides (TMO): Separated by O, small density; Inner d electrons, weak overlap
 - The Hubbard Model: $H = -t \sum_{\langle i,j\rangle,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$, where $t = \int \varphi_{j}^{*} \left[V(r) v_{i}(r) \right] \varphi_{i} dr$ $U = \int \left| \varphi_{i} \left(r_{1} \right) \right|^{2} \frac{e^{2}}{r_{12}} \left| \varphi_{i} \left(r_{2} \right) \right|^{2} dr \quad 1^{st} \text{ tern: Hopping tern, } 2^{nd} \text{ tern: on-site Coulomb repulsion tern}$
 - Band split: U > W (W is the width of the original band) Energy gap: $E_g \sim (U W)$
 - Perovskite Structure: ABO_3 A only donates electronic charge and stabilizes the structure For electronic properties, the BO_6 octahedral is most relevant $RNiO_3$ system: Charge transfer insulators: O's p orbits and Ni's d orbits strongly hybridized. gap $\sim 10\text{-}30~meV$ Bonding angle: W is the largest for straight bond ($Ni^{3+} O^{2-} Ni^{3+} 180^{\circ}$) and smaller in distorted case. Becomes better insulator with increasing R atomic number (smaller radius, more twisted bond of B O B) Different transition metal: Different d-electron configuration, Different p d hybridization, Different d Different carrier density Extra d or d deficiency: Different hole concentration Substitution of d: Different on site configuration Different dimensionality
 - Magnetic Structure: Most have Antiferromagnetically ordered ground state

- Typical Strongly Correlated Materials: Incompletely filled d or f electron shells with narrow bands
- Wigner Crystal: Crystal of electrons Potential $\sim \frac{e^2}{r_0}$ Kinetic $\sim \frac{\hbar^2}{mr_0^2}$ when r_0 is large
- 3. Anderson Localization \bullet Dilute, Nonmagnetic Impurity, T=0, The distribution of the interaction
 - The Spin Diffusion Puzzle: The relaxation time of donor electron spin is way longer at low concentrations
 - Electron Spin Resonance (ESR): Unpaired electrons, Resonance frequency \rightarrow microwave (9GHz for 0.3T), challenging, Study electron spin dynamics. Phase sensitive (lock-in) detector, The first derivative of absorption line.
 - The Anderson Hamiltonian: $H = \sum_{i} \varepsilon_{i} n_{i} + \sum_{i,j} t_{ij} c_{i}^{\dagger} c_{j}$ V = 0, as ε_{i} is const, Tight-binding model t = 0, Atomic orbitals at each site $\frac{V}{W} \ll 1 \Rightarrow$ Impurity scattering of Bloch waves $\frac{V}{W} > 1 \Rightarrow$ Localization
 - Mobility Edge: $\pm \varepsilon_c$: $0 < \frac{V}{W} < 1$, Separating localized and non-localized states Tuned by changing the level of disorder. MIT: ε_F tuned by doping level or pressure Trait: No energy gap in DOS near ε_F (Psesdogap) The electron number need not be integer Coulomb repulsion in unnecessary
 - ► Near the localization transition Still Controversy
 - Mott's Minimum Conductivity: Localization transition is discontinuous. • $lk_F > 1$, $l \ge a$ • $\sigma_{min}^{3D} \approx \frac{1}{3\pi^2} \frac{e^2}{\hbar} \frac{1}{a}$
 - Scaling Theory: $\frac{\hbar}{e^2}G(L) = g(L) \approx \frac{\Delta E}{\Delta V}$ $\beta(g) = \frac{d \ln g}{d \ln L}$ The transition is continuous $\beta(g_c) = 0$, $g_c \Rightarrow$ Unstable fixed point $g_0 > g_c \Rightarrow$ Conductor; $g_0 < g_c \Rightarrow$ Insulator No extended states for any degree of disorder in 1D and 2D. Doesn't consider other effects can destroy the localization (Magnetic field, S-O coupling, E-E interaction ...)
 - Weak Localization: $l \ll l_i < L < \xi$, where l is for elastic scattering, l_i is for inelastic scattering, L is the sample's scale, ξ is the localization length, $k_F l \gg 1$ Self-crossing loops: $P = |A_1 + A_2|^2 = 2 \times 2|A|^2$, decreases the conductivity, Localization Dephasing length: τ_{ϕ} , Loss of phase coherence will destroy weak localization

$$\frac{\delta\sigma}{\sigma} = -\gamma_d \begin{cases} \left(\frac{\tau_\phi}{\tau}\right)^{1/2} &= T^{-\eta/2} &, d = 1\\ \hbar \ln\left(\frac{\tau_\phi}{\tau}\right) &= \frac{\eta\hbar}{2} \ln\frac{\hbar}{k_BT} &, d = 2\\ \hbar^2 \left(\frac{\tau_\phi}{\tau}\right)^{-1/2} &= \hbar^2 T^{\eta/2} &, d = 3 \end{cases}$$

- Wave Property: Reported for light waves, microwaves, sound waves, matter waves (BEC)
- Non-interacting theory, hard to ideally realize in Solid
- 4. Charge Density Wave (CDW):
 - Peierls' Theorem: 1D materials are insulating The distortion of lattice opens an energy gap around the original E_F The lattice distortion induced a CDW with $\lambda = \frac{\pi}{k_F}$, $k = 2k_F$, $\frac{\lambda}{a}$ can be irrational Mechanism: e-ph coupling an electron-hole pair is created by a phonon Kohn Anomaly: Electron-phonon interaction has a strong influence on the phonon spectrum near $q = 2k_F \Rightarrow$ Phonon softening 1D, Phonon Frequency

can drop to 0 • Hamiltonian: $H = \sum_{k,\sigma} \varepsilon_k c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_q \hbar \omega_q b_q^\dagger b_q + \sum_{k,\sigma,q} g(k) c_{k+q,\sigma}^\dagger c_{k,\sigma} \left(b_q + b_{-q}^\dagger \right)$ • CDW gap: $\Delta = 2W \mathrm{e}^{-1/g}$ • CDW transition T: $T_P = \frac{\Delta(0)}{1.76k_B}$, From BCS theory

5 Others

- 1. Topological Insulator: Single electron model Mainly spin-orbit interaction
- 2. Superfluidity: Liquid He-4 & He-3: Low boiling $T \Leftarrow \text{Weak}$ van der Waals force & low atomic mass He-4 (Boson) < $2.17 \ K$ (BEC), He-3 (Fermion) < $2.49 \ mK$ (BCS)
- 3. Diamond: Indirect band gap: $E_g = 5.5 eV$, good insulator

