

<u>Course</u> > <u>Unit 7:</u> ... > <u>Lec. 14:</u>... > 8. Exer...

8. Exercise: Discrete unknowns

Exercises due Apr 8, 2020 05:29 IST Completed

Exercise: Discrete unknowns

5/5 points (graded)

Let Θ_1 and Θ_2 be some unobserved Bernoulli random variables and let X be an observation. Conditional on X=x, the posterior joint PMF of Θ_1 and Θ_2 is given by

$$p_{\Theta_1,\Theta_2|X}\left(heta_1, heta_2\mid x
ight) = egin{cases} 0.26, & ext{if $ heta_1=0, heta_2=0$,} \ 0.26, & ext{if $ heta_1=0, heta_2=1$,} \ 0.21, & ext{if $ heta_1=1, heta_2=0$,} \ 0.27, & ext{if $ heta_1=1, heta_2=1$,} \ 0, & ext{otherwise.} \end{cases}$$

We can view this as a hypothesis testing problem where we choose between four alternative hypotheses: the four possible values of (Θ_1, Θ_2) .

a) What is the estimate of (Θ_1,Θ_2) provided by the MAP rule?

b) Once you calculate the estimate $(\hat{\theta}_1, \hat{\theta}_2)$ of (Θ_1, Θ_2) , you may report the first component, $\hat{\theta}_1$, as your estimate of Θ_1 . With this procedure, your estimate of Θ_1 will be

c) What is the probability that Θ_1 is estimated incorrectly (the probability of error) when you use the procedure in part (b)?

d) What is the MAP estimate of Θ_1 based on X, that is, the one that maximizes $p_{\Theta_1\mid X}(\theta_1\mid x)$?

✓ Answer: 0

e) The moral of this example is that an estimate of Θ_1 obtained by identifying the maximum of the joint PMF of all unknown random variables is

can be different from **∨**

✓ Answer: can be different from

the MAP estimate of Θ_1 .

Solution:

- a) The posterior is largest when $(\theta_1,\theta_2)=(1,1)$.
- b) The corresponding estimate of Θ_1 is the first component of (1,1), which is 1.
- c) The probability of error is the posterior probability that $\Theta_1=0$, which is 0.26+0.26=0.52.
- d) The posterior PMF of Θ_1 is the marginal (posterior) PMF obtained from the joint posterior PMF:

$$p_{\Theta_1 \mid X}(0 \mid x) = 0.26 + 0.26 = 0.52,$$

$$p_{\Theta_1 \mid X} \left(1 \mid x
ight) \; = \; 0.21 + 0.27 = 0.48.$$

Hence, the MAP estimate is $\hat{ heta}_1=0.$

e) These can be different, as illustrated by parts (b) and (d).

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 14: Introduction to Bayesian

inference / 8. Exercise: Discrete unknowns

Sho	w all post	S	∨ by recer	nt activi	ty 🗸
€	Ex. (8 -		an estimate of O1 obtained by identifying the maximum of the joint PMF of all unknown	<u>r</u>	3
Q		_	ed question! is question as it enhances the given concept very nicely.		5
?			estion e? saying: "joint PMF of all unknown random variables IS" which is disqualifying one of t	<u>th</u>	1
Q	_		rs not shown see the progress bars in my computer.		5
2			c question?	new_	4
2			vith the order of summation h the order of summation when calculating the marginal PMF. I only got half the point :(2 new_	5
€			re what question b is actually asking ne please help me?		2

© All Rights Reserved

