

Carvana Image Masking Challenge

4th place solution Team 80TFlops

Agenda

- Team
- Challenge
- Solution
- Results
- Drama
- More solutions

Team 80 TFlops

Competition

- Extract mask of a car from photo
- 16 angles, 316 cars, 5056 train photos
- 100064 test photos (only 5k real, so 1200 in Public, 3600 in Private)
- Metric: Dice coefficient
- 2 month, 877 competitors
- Data is pretty clear (instant 99.6% solution. Top: 99.72)

Challenges

- Pretty high resolution
- Painfully slow on train:
 - Single image per second on 1080ti
 - ~1.5hours per epoch
- Awfully slow on test
 - 5 images per second on three cards (2*1080 + 1080)
 - 6 hours full test
 - Times 5 folds, times two TTA: 180 card*hours per network
 - With ~3 trillion pixels even simple averaging takes hours (no time to optimize anything)
- H/W utilization&teamwork

Our solution

- Baseline: vanilla Unet
- More Unets with pretrained weights (VGG, Resnet-50, etc)
- Inception-Resnet v2, MobileNet
- Tricks:
 - 5 folds
 - TTA: horizontal flips (for best models)
 - Pseudo-labeling: pretrain networks on full test predicted before
- Ensemble everything: the more the better
 - not always, weak networks add only if used in small amount
 - Simple mean between all masks
- Second layer Unet: refine masks with another neural network
- But...

Teamwork

- It is crucial to fully utilize limited resources
 - Teammates time (everyone working full time)
 - CPU and GPU time
 - Shared storage for results
- Usual routine:
 - GitHub repo with ready to run code
 - Trello board with full pipeline:
 - what everybody going/what hardware doing/when results expected/backlog of ideas
 - Google Drive with full results:
 - Trained models, predictions, etc.
 - Slack channel

One crucial trick

- There was single van in train
- Almost every network failed
- Filling hole with the ** trick gave +0.0002

a91049047238 05.png 87,2 kB

a91049047238 05.png 54,0 kB

a91049047238 05.png

Some fun moments

cepera_ang 👂 21:38

uploaded this image: image.png *

cepera_ang 21:38
Гуси формируют тевтонскую свинью, готовится прорыв линии тренда

NULL

Other solutions

7th place: deepsystems.io

- Credit to Renat Bashirov
- Unet-1:
 - Find bbox
 - Pad 150px
 - Goto 2
- Unet-2:
 - unet with resnet head
 - Crops 512x512
 - Full res inference
 - TTA: flips
- No ensembling, no folds

6th place: JbestDeepGooseFlops

- Masters of crazy ensembling and insane architectures
- Like "incnet" —
 inception-v3 + linknet
 decoders and
 "dinknet" —
 densenet + the same
 decoders.

		TTA		OOF	mean	0	1	2	3	4	std
venheads	unet_mix_opt_loss	???	CV		0.99679	0.99680	0.99667	0.99689	0.99683	0.99677	0.00008
	5, 0 8 15, 300		LB	0.9970	0.99656	0.9966	0.9963	0.9966	0.9965	0.9968	0.00018
n01z3	linknet18_mxnet	1crop	CV		0.99667	0.99668	0.99660	0.99677	0.99679	0.99653	0.00011
		(4)	LB								
	linknet34_mxnet	1crop	CV		0.99640	0.99678	0.99633	0.99614	0.99655	0.99622	0.00026
			LB								
	linknet18_pytorch	1crop	CV		0.99681	0.99683	0.99669	0.99691	0.99686	0.99677	0.00008
nizhib	linknet_18_new	1crop	CV	0.99696	0.99687	0.99692	0.99681	0.99691	0.99687	0.99683	0.00005
			LB								
	linknet_34_new	1crop	CV	0.99711	0.99703	0.99705	0.99699	0.99709	0.99704	0.99696	0.00005
	(0m) 1000		LB								
	incnet_full	1crop	CV	0.99711	0.99705	0.99706	0.99703	0.99709	0.99708	0.99697	0.00005
			LB								
	dinknet_full	1crop	CV	0.99713	0.99707	0.99711	0.99705	0.99712	0.99709	0.99699	0.00005
			LB								
roman	pspnet_18_full	1crop	CV			0.99690	0.99663	0.99663	0.99664	0.99663	
			LB								
	pspnet resnet34	1crop	CV			0.99678	0.99660	0.99667	0.99684	0.99670	

RLE/submission

1918x1280

res50

bxent/dice, Fold2

TTAx2

Remove anything far outside main contour

3rd place: lyakaap (simplicity is the king)

- Used 1536x1024 & 1920x1280 resolution.
- Modified U-Net:
 - It has several dilated convolution layers in bottleneck block. (i.e. where the resolution of feature maps are lowest)
- only horizontal flip.
 - Scaling, Shifting, and Shifting HSV were results in overfitting.
- Pseudo Labeling
- Loss function: bce + dice loss
- Ensemble: 5 fold ensemble @1536x1024 + 6 fold ensemble @1920x1280, weighted average by LB ranking

1st place: best[over]fitting

Alexander Buslaev:

- Linknet + resnet34
- ImageNet pretrain
- Adam -> RMSProp
- CLAHE
- Hard negative mining
- HSV augmentation
- TTA: hflips

Artem Sanakoyeu:

- Unet from scratch
- Unet from VGG11
- Unet from VGG11 + transposed conf

Vladimi Iglovikov:

- Unet from VGG
- HUE augmentation + flips
- Cyclic LR

• General:

- Cyclic LR
- Pseudo Labels
- Smart ensembling

~2.5 pixels per image difference with the 2nd place

Honorable mentions

- 10th place:
 - 1st model: Background detection.
 - 2nd model: Classic Unet architecture
 - 3rd model: Same Unet on images in half
 - Post processing: clear antennas
- 11th place:
 - Stage 1: Predict rough outline of mask with 1/4 downscaled image
 - Stage 2: Train/Predict mask only using images around edge areas
- 15th place:
 - Predict a coarse mask (CO). For this we used a regular UNET @ full resolution.
 - Refine the mask using patches around the mask contour
- 23rd place: bestensembling (fell 12 places:()
 - Second layer Unet
 - Unlucky van?

Thanks for watching