

Solution - L-shaped method

24-03-2020

Decomposition for the wind power producer problem

Take the wind power producer example from Lecture 03 (Multi-stage stochastic programming). Assume we only trade in the day-ahead market and balancing market, i.e., we result in a two-stage stochastic program (page 9, lecture 03).

Sets	
$\mathcal S$	Set of scenarios $s \in \mathcal{S}$
Parameters	
λ^D	Electricity price on the day-ahead market
λ^+	Selling electricity price on the balancing market
λ^-	Purchasing electricity price on the day-ahead market
\overline{P}	Capacity of the wind farm
W_s	Wind power production in scenario $s \in \mathcal{S}$
π_s	Probability scenario $s \in \mathcal{S}$
Variables	
p^D	Power sold on the day-ahead market [MWh]
p^+	Excess production sold on the balancing market [MWh]
p^-	Missing production bought on the balancing market [MWh]

$$\operatorname{Max} \ \lambda^D p^D + \sum_{s \in \mathcal{S}} \pi_s (\lambda^+ p_s^+ - \lambda^- p_s^-) \tag{1a}$$

s.t.
$$p^D \leq \overline{P}$$
 (1b)

$$W_s - p^D = p_s^+ - p_s^-$$

$$\forall s \in \mathcal{S}$$
 (1c)
$$p^D \in \mathbb{R}^+$$
 (1d)

$$p^D \in \mathbb{R}^+ \tag{1d}$$

$$p_s^+, p_s^- \in \mathbb{R}^+$$
 $\forall s \in \mathcal{S}$ (1e)

The objective function (1a) maximizes the profit based on the transactions on the day-ahead and balancing market. Constraint (1b) restricts the amount offered in the day-ahead market to the capacity of the wind farm. Constraint (1c) determines the imbalances compared to the day-ahead market offer based on the realization of the scenario. In constraints (1d) and (1e) the non-negativity of the variables is ensured.

Tasks

- 1. Decompose the problem in master problem and subproblems.
- 2. Based on the general formulation of the model, derive the formula for the optimality cut for the L-shaped method (single-cut version). This means define how the coefficients E_i and e_i ($i \in \mathcal{I}$ being the set of cuts) are calculated based on the parameters and variables in the master and subproblems and write down the inequality for the cut based on E_i and e_i .
- 3. Do we need infeasibility cuts for this model? Justify your answer.

Solution

1)

Master problem

$$\mathsf{Max} \ \lambda^D p^D + \theta \tag{2a}$$

s.t.
$$p^D \leq \overline{P}$$
 (2b)

$$E_i p^D + \theta \le e_i \qquad \forall i \in \mathcal{I}$$
 (2c)

$$p^D \in \mathbb{R}^+$$
 (2d)

Set \mathcal{I} is the set of cuts.

ATTENTION! Cut (2c) is now a <-constraint, because we have a maximization problem.

Subproblem

for each scenario $s \in \mathcal{S}$:

$$\operatorname{Max} \left(\lambda^{+} p_{s}^{+} - \lambda^{-} p_{s}^{-}\right) \tag{3a}$$

s.t.
$$p_s^+ - p_s^- = W_s - p_{fix}^D$$
 : σ_s (3b)

$$p_s^+, p_s^- \in \mathbb{R}^+$$
 (3c)

 p_{fix}^{D} is the fixed first-stage solution.

2)

We define the cut coefficients based on the dual subproblem with σ_s being the dual variable based on constraint (3b).

Objective function of the dual problem:

Min
$$[W_s - p_{fix}^D]\sigma_s$$

Take the expected value to approximate the recourse function over all scenarios:

$$\begin{split} & \sum_{s \in S} \pi_s [W_s - p_{fix}^D] \sigma_s \\ & \Leftrightarrow \sum_{s \in S} \pi_s W_s \sigma_s - \sum_{s \in S} \pi_s p_{fix}^D \sigma_s \end{split}$$

New values of the recourse function are bounded from above by this value (maximization). Thus, the cut inequality is given by:

$$\begin{split} \theta & \leq \sum_{s \in S} \pi_s W_s \sigma_s - \sum_{s \in S} \pi_s p^D \sigma_s \\ & \Leftrightarrow \underbrace{\sum_{s \in S} \pi_s p^D \sigma_s}_{E_i} + \theta \leq \underbrace{\sum_{s \in S} \pi_s W_s \sigma_s}_{e_i} \end{split}$$

3)

We do not need infeasibility cuts in this case, because we have a complete recourse, i.e., first-stage decisions never result in infeasible solutions in the subproblems. This is due to the fact that any imbalances between the parameter W_s and first-stage variable p^D can be captured by the variables p_s^+ and p_s^- , which are basically slack variables.