Lösungs*vorschläge* zu den Staatsexamina: Theoretische Informatik und Algorithmik

Herbst 2021

1 Thema

2 Thema

Aufgabe 1

- (a) Ja, jedes Wort aus $L(aa^*)$ lässt sich mit diesem Automaten darstellen, indem man wiederholt zwischen den Zuständen ${\bf 0}$ und ${\bf 1}$ wechselt und am Ende mit dem Übergang zu Zustand ${\bf 3}$ abschließt. Da von Zustand ${\bf 1}$ zu Zustand ${\bf 0}$ ein ε Übergang möglich ist, lassen sich auch gerade Anzahlen an a's darstellen.
- (b) Ja, um ein beliebiges Wort dieser Sprache mit dem Automaten darzustellen, wird zu erst der Teil (aa^*) wie oben beschrieben mit den Zuständen $\mathbf{0}$ und $\mathbf{1}$ abgearbeitet, nur so, dass der Automat am Ende in Zustand $\mathbf{1}$ ist. Dann wird $(bbb)^*$ mit den Zuständen $\mathbf{1}$ und $\mathbf{2}$ abgearbeitet, da beide Zustände einen ε -Übergang zu Zustand $\mathbf{0}$ besitzen, können sie eine beliebige Anzahl an b's verarbeiten, bevor sie wieder in Zustand $\mathbf{0}$ zurückkehren, um die restlichen (aa^*) abzuarbeiten.

(d) Nein, Beweis über reguläre Pumpeigenschaft:

Sei $n \in \mathbb{N}$ beliebig aber fest. Setze $z = a^n x a^n$ (ein Wort aus der Sprache). Seien $u, v, w \in \{a, b, x\}^*$ beliebig aber fest, mit uvw = z (eine beliebige Zerlegung des Wortes).

Es gelte:

- 1. $|uv| \leq n$
- 2. $v \neq \varepsilon$

Aus 1. folgt, dass uv nur a's links des x enthalten kann und w den Rest des Wortes beinhaltet. Aus 2. folgt, dass v mindestens ein a links des x enthält.

Nun gilt es zu zeigen, dass ein i existiert, mit dem gilt $uv^iw \notin L$, wobei L die Sprache ist.

Dazu setzen wir i=0 (jede andere Zahl außer 1 würde auch funktionieren). Da v mindestens ein Zeichen links des x enthält und nur diese Zeichen enthalten

kann, wird die Balance zwischen der Länge des linken und rechten Teils zerstört, welche ein Wort aus der Sprache einhalten muss.

Somit gilt $uv^iw \notin L$ und damit auch, dass die Sprache nicht die reguläre Pumpeigenschaft besitzt und auch nicht regulär ist.

Hinweis:

Um für eine Sprache L über einem Alphabet Σ zu beweisen, dass sie nicht die reguläre Pumpeigenschaft besitzt, zeigt man folgendes:

$$\forall n_L \in \mathbb{N}, \exists z \in L, |z| \geq n_L, \forall u, v, w \in \Sigma^*, uvw = z :$$

 $(|uv| \leq n_L \land v \neq \varepsilon) \Rightarrow \exists i \geq 0 : uv^i w \notin L$

(e) Nein, auch diese Sprache besitzt die reguläre Pumpeigenschaft nicht und ist deswegen nicht regulär. Da in obigem Beweis das Wort $z=a^nxa^n$ verwendet wurde, gilt dieser Beweis auch für diese Sprache.

Aufgabe 2

(a)

а	b	b	а	b	b	а	b
{ C }	{S}	{ S }	{ C }	{ S }	{ S }	{ C }	{ S }
{ B }	{B}	{}	{B}	{B}	{}	{ B }	
{S}	{C}	{}	{S}	{ C }	{}		ı
{ C }	{B}	{B}	{ C }	{ B }			
{S, B}	{S}	{C}	{S}		ı		
{S, B}	{C}	{B}		·			
[{C}]	{S, B}		1				
{S, B}		ļ					

Da an unterster Stelle in der Tabelle ein S vorkommt, ist das Wort in der Sprache enthalten.

Ableitungsbäume:

1.

2.

(b) Die Sprache ist nicht kontextfrei, denn sie besitzt nicht die kontextfreie Pumpeigenschaft. Beweis:

Sei $n\in\mathbb{N}$ beliebig aber fest. Setze $z=mmcm^Rm^R\in L_{eq}$ mit $m=a^n$. Sei $u,v,w,x,y\in\{a,b,c\}^*$ eine beliebige Zerlegung des Wortes, also z=uvwxy. Es gelte:

- 1. $|vwx| \leq n$
- **2.** $vx \neq \varepsilon$

Das Wort z besteht aus vier Blöcken in denen n-mal a vorkommt. Damit das Wort in der Grammatik ist müssen in allen vier Blöcken gleich viele a vorkommen.

Aus 1. lässt sich nun folgern, dass vwx höchstens zwei dieser Blöcke 'berührt'. Aus 2. kann man folgern, dass vx mindestens einen dieser Blöcke enthält.

Wenn wir nun pumpen, also $i \neq 1$ setzen, gilt $uv^iwx^iy \notin L_{eq}$, denn das Pumpen verändert die Anzahl an a in einem oder zwei Blöcken, da aber alle vier Blöcke

die gleiche Anzahl haben müssen liegt das neue Wort nicht mehr in L_{eq} .

(c) Die Sprache ist kontextfrei, denn sie wird durch folgende kontextfreie Grammatik beschrieben:

$$S \to \varepsilon \mid A \mid B$$
$$A \to ad \mid aAd \mid aBd$$
$$B \to bc \mid bBc$$

Aufgabe 3

- (a) Eine Sprache ist entscheidbar, wenn eine deterministische 1-Band Turing Maschine existiert, welche gestartet mit einem Wort w genau dann akzeptierend hält, wenn das Wort in der Sprache liegt und sonst nicht akzeptierend hält.
- (b) Eine Sprache ist rekursiv aufzählbar, wenn eine deterministische 1-Band Turing Maschine M existiert, mit L(M)=M. Die Turing Maschine muss also die Sprache.
- (c) Ja, um zu entscheiden ob ein Wort in der Sprache $L_1\cap L_2$ liegt, kann man die beiden Turing-Maschinen verwenden, welche die jeweiligen Sprachen entscheiden. Starte beide Maschinen mit dem Wort und prüfe ob sie akzeptierend halten, falls ja liegt das Wort in $L_1\cap L_2$, falls nicht beide akzeptierend halten, liegt das Wort nicht $L_1\cap L_2$. Somit lässt sich also eine neue TM konstruieren welche $L_1\cap L_2$ entscheidet, damit ist $L_1\cap L_2$ entscheidbar.
- (d) Ja, per Definition des Komplements gilt: $L \cap \overline{L} = \emptyset$ und die leere Menge ist immer entscheidbar (und somit auch semi-entscheidbar).
- (e) Nein, sei $L_1=\Sigma^*$, also alle möglichen Wörter des Alphabets, diese Sprache ist entscheidbar, denn jedes Wort liegt in der Sprache. Sei ferner L_2 eine beliebige semi-entscheidbare Sprache auf dem gleichen Alphabet Σ .
 - Da L_1 die Grundmenge ist, ist der Schnitt dieser beiden Mengen wieder L_2 , welche laut Annahme semi-entscheidbar ist.
- (f) Ja, denn wenn L entscheidbar ist kann für jedes Wort entschieden werden, ob es in L liegt.
 - Wenn es in L liegt, dann liegt es nicht in \overline{L} . Wenn es nicht in L liegt, dann liegt es in \overline{L} und so kann man \overline{L} entscheiden.
- (g) Kontextfreie Sprachen sind durch den CYK-Algorithmus entscheidbar. Damit sind L_1 und L_2 entscheidbar und laut (c) ist ihr Schnitt es auch.