GATE-2011-AE

AI24BTECH11024-Pappuri Prahladha

14) In an un-powered glide of an aircraft having weight W, lift L and drag D, the

c) $\tan^{-1}\left(\frac{L}{W}\right)$ d) $\tan^{-1}\left(\frac{W}{L}\right)$

equilibrium glide angle is defined as

15) Lift on an aircraft climbing vertically up is

a) $\tan^{-1}\left(\frac{L}{D}\right)$ b) $\tan^{-1}\left(\frac{D}{L}\right)$

	equal to its weight zero		equal to the drag equal to the thrust
16) If	If an aircraft is performing a positive yawing manoeuvre, the side slip angle		
	is always zero is never zero		is always negative could be any value
17) For an airplane to be statically stable, its centre of gravity must always be			
	ahead of wing aerodynamic centre aft of the wing aerodynamic centre		ahead of neutral point aft of neutral point
18) It is seen that the drag polar of a certain aerofoil is symmetric about the C_d axis. This drag polar could refer to			
	NACA 0012 NACA 4415		NACA 23012 None of the above
19) The aerodynamic centre of a supersonic aerofoil, with chord c , is located at			
	the leading edge 0.25c	-	0.5c 0.75c
20) Winglets are used on wings to minimize			
	skin friction drag profile drag		wave drag induced drag
21) Consider a potential flow with free stream velocity V_{∞} , over a spinning circular cylinder of radius R and circulation Γ . The stream function, ψ , where $\psi = 0$ on the cylinder surface, in cylindrical coordinates (r, θ) , is given by			

a)
$$V_{\infty}r\cos\theta\left(1-\frac{R^2}{r^2}\right) + \frac{\Gamma}{2\pi}\ln\frac{r}{R}$$

 b) $V_{\infty}r\cos\theta\left(1+\frac{R^2}{r^2}\right) + \frac{\Gamma}{2\pi}\ln\frac{r}{R}$
 c) $V_{\infty}r\sin\theta\left(1-\frac{R^2}{r^2}\right) + \frac{\Gamma}{2\pi}\ln\frac{r}{R}$
 d) $V_{\infty}r\sin\theta\left(1+\frac{R^2}{r^2}\right) + \frac{\Gamma}{2\pi}\ln\frac{r}{R}$

c)
$$V_{\infty}r\sin\theta\left(1-\frac{R^2}{r^2}\right)+\frac{\Gamma}{2\pi}\ln\frac{R}{R}$$

b)
$$V_{\infty}r\cos\theta\left(1+\frac{R^2}{r^2}\right)+\frac{\Gamma}{2\pi}\ln\frac{R}{R}$$

d)
$$V_{\infty}r\sin\theta\left(1+\frac{R^2}{r^2}\right)+\frac{\Gamma}{2\pi}\ln\frac{R}{R}$$

- 22) A main objective of by-pass in a turbo-fan engine is to increase
 - a) mass flow rate through engine inlet
- c) mass flow rate through exhaust nozzle

b) turbine inlet temperature

- d) compressor pressure ratio
- 23) The pressure ratio in any one stage of a jet engine compressor is limited by
 - a) entry stagnation temperature in that stage
 - b) entry Mach number in that stage
 - c) pressure gradient induced separation in that stage
 - d) mass flow rate in that stage
- 24) Thermodynamic cycle on which the jet engine operates can be
 - a) open Rankine cycle only
- c) open Brayton cycle only
- b) either open or closed Rankine cycle
- d) either open or closed Brayton cycle
- 25) Propulsion efficiency of a jet engine is
 - a) directly proportional to both the thrust power and the air mass flow rate
 - b) inversely proportional to both the thrust power and the air mass flow rate
 - c) directly proportional to thrust power and inversely proportional to the air mass flow rate
 - d) inversely proportional to thrust power and directly proportional to the air mass flow rate
- 26) Consider a cantilever beam having length L = 1m, square cross-section (width = depth = 0.01 m) and Young's modulus 50 GPa. The beam is subjected to a transverse load P = 1N at the mid-span (L/2) at the center of the cross-section. Under the small deformation theory, the transverse deflection of the beam (in mm) at its free-end is _

