

Simulation of Dynamical Scattering Effect in Electron Diffraction Patterns

Tarik Drevon, David Waterman, Eugene Krissinel

X-ray (MX) vs electron diffraction (ED) for biotin

$MX 12keV \cong 1Å$

Form factor

- Electronic density
- Thomson scattering
- Small cross section
- Kinematic scattering

Ewald sphere curvature

- Large curvature
- High order Laue zones
- Thick sample $t=20\mu m$
- Narrow rocking curve

ED 200keV ≅ 0.025Å

Form factor

- Electrostatic potential
- Coulomb scattering
- Large cross section
- Dynamical scattering
- Mott-Bethe formula

$$f^e(q) = rac{1}{2\pi^2 a_0} rac{Z - f^x(q)}{q^2}$$

Ewald Sphere curvature

- Flat Ewald sphere
- First order Laue zone
- Thin sample $t=0.2\mu m$
- Wide rocking curve
- Thickness dependent rocking curve shape

Numerical simulation tools of ED patterns

Kinematic approximation

Schroedinger's fast electron wave equation

$$\left\{\frac{\hbar^2}{2m_0}\nabla^2 + V(\mathbf{r})\right\}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

$$\partial_z^2 \ll 2ik_0\partial_z$$

$$\frac{\partial \Psi(x, y, z)}{\partial_z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z)$$

Kinematic theory of scattering

Kinematic solution

$$\Psi(\mathbf{r}) = e^{ikz} + f(heta) rac{e^{i\mathbf{k}\cdot\mathbf{r}}}{|\mathbf{r}|}$$

Born approximation

$$f(heta) = -rac{2me}{h^2} \int d^3r e^{i{f q}\cdot{f r}} V(r) \;\;,\;\; rac{d\sigma}{d\Omega} = \left|f(heta)
ight|^2$$

$$P_{scattered} = \sigma \phi_{incident}$$

$$q=2k_0\sinrac{ heta}{2}$$

Application to scattering by a sphere

$$f(q)=rac{V_0}{E}rac{a^3k_0^2}{q^2a^2}\Big(-\cos qa+rac{\sin qa}{qa}\Big)$$

Numerical simulation tools of ED patterns

Method	Exact	Speed	Mem (beam per atom)	Periodic structure	Grid based	Parallelization type	Package
Multislice (MS) (physical optics based approach)	no	N _z N _b logN _b	100	yes	yes	FFTw one slice after another	TEMSIM (pyMS) PRISM,
Near bragg (real space path differences)	no	$N_z N_b^{\ 2} N_p$	1	no	no	per pixel	NearBragg (James Holton)

Multislice 2-beam diffraction case

2-beam Rocking Curves

2-beam rocking curve

$$I_{dyn-2}(w_g;t,\xi_g) = \left(rac{\pi t}{\xi_g}
ight)^2 sinc^2 \left(rac{t}{\xi_g}\sqrt{1+w_g^2}
ight)$$

$$I(0;t,\xi_g) = \left(rac{\pi t}{\xi_g}
ight)^2 sinc^2 \left(rac{t}{\xi_g}
ight) \mathop{
ightarrow}_{t \ll \xi_g} \left(rac{\pi t}{\xi_g}
ight)^2$$

Dynamical diffraction extinction distance

Kinematic Ewald sphere curvature effect weakly diffracted beam

Potential dependent extinction distance for strongly diffracting beam

Near Bragg

$$egin{aligned} R_{il} & = \atop Greens & \sqrt{\left(x_i - x_l
ight)^2 + \left(z_i - z_l
ight)^2} \ & pprox \ &$$

Weak potential kinematic approximation

Diffraction patterns of biotin

 $C_{10}H_{16}N_2O_3S$

Structure: P2₁2₁2₁

alpha=90, beta=90, gamma=90 a=5.24A, b=10.35A, c=21.04A

Diffraction pattern

Full rotation simulation

Simulations with small tilts [-5,+5] deg^[1]

[1] J.H. Chen, D. Van Dyck, and M. Op De Beeck, "Multislice Method for Large Beam Tilt with Application to HOLZ Effects in Triclinic and Monoclinic Crystals," Acta Crystallogr. Sect. A Found. Crystallogr., vol. 53, no. 5, pp. 576–589, 1997

Extension to multiple scattering

Multiple Scattering in Electron Diffraction

Atomic interation cross section

X-rays (Thomson scattering)

$$\sigma_{th} = \frac{8\pi}{3}r_e^2 = 66fm^2$$

Electrons (Coulomb scattering)

$$\sigma_{th} \approx 1.87 \times 10^6 Z^{4/3} (c/v)^2 = 5 \times 10^7 fm^2$$

Mean free path, $l_e = 200$ nm

Extension to multiple scattering

Extension to multiple scattering

Dashed: near bragg

solid: Theory

0 no scattering1 single scattering2 multiple scattering

Near Bragg vs multislice

Current challenges

- adapt nearBragg approach to multiple scattering events
- Compare simulation to experimental dataset
- Simulate defects (modelling and computational), Thermal diffuse scattering,

inelastic scattering

- model partially coherent beam as produced by LaB_6 guns