Country -Brazil

- 1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
- 1.1 Data type of all columns in the "customers" table.

Query:

```
SELECT column_name, data_type
FROM sclar_case.INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'customers';
```

JOB IN	JOB INFORMATION RESUL		JSON	EXECUTION DETAILS
Row	column_name ▼		data_type ▼	1
1	customer_id		STRING	
2	customer_unique	_id	STRING	
3	customer_zip_co	de_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

Insights: Most of the columns are of String datatype and only one column is of integer type.

1.2 Get the time range between which the orders were placed.

Query:

```
SELECT
MIN(order_purchase_timestamp) as first_order,
MAX(order_purchase_timestamp) as last_order
FROM `sclar_case.orders`;
```

Result:

Insights: First order came on 4rt of September 2016 and last order was on 17th October 2018 which is approximately 2 years of time period.

1.3 Count the Cities & States of customers who ordered during the given period.

Query:

```
select count(distinct customer_city) as city_count, count(distinct customer_state)
as state_count from `sclar_case.customers` c
join `sclar_case.orders` o on o.customer_id=c.customer_id;
```

Result:

Insights: There are customers from 4119 different cities that are present in 27 different states across Brazil.

2 In-depth Exploration:

2.1 Is there a growing trend in the no. of orders placed over the past years?

```
SELECT t.year, t.count_orders,
IFNULL(ROUND(((count_orders-LAG(count_orders) OVER(ORDER BY
t.year))/LAG(count_orders) OVER(ORDER BY t.year))*100,2),0) AS
percnt_inc_order_yoy
FROM
(SELECT EXTRACT(year FROM order_purchase_timestamp) AS year, COUNT(order_id) AS
count_orders FROM `sclar_case.orders`
WHERE EXTRACT(year FROM order_purchase_timestamp)!=2016
GROUP BY EXTRACT(year FROM order_purchase_timestamp)) t;
```


Insights: Yes, there is a growing trend year on year, number of orders in 2018 is greater than that of 2017 even after we have considered 2018 orders up to mid-October only and completely neglecting 2016 orders since market had just started in 2016 September.

Also we can see that the percentage increase of the orders year on year is about 20%.

2.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
SELECT t.month, t.count_orders FROM
(SELECT EXTRACT(month FROM order_purchase_timestamp) AS month, COUNT(order_id) AS
count_orders FROM `sclar_case.orders`
GROUP BY EXTRACT(month FROM order_purchase_timestamp)) t
order by t.month;
```

Row	month ▼	10	count_orders ▼
1		1	8069
2		2	8508
3		3	9893
4		4	9343
5		5	10573
6		6	9412
7		7	10318
8		8	10843
9		9	4305
10		10	4959
11		11	7544
12		12	5674

Insights: We can see that most of the orders are coming in first 3 quarters of the year and very few orders are placed in last quarter of the year with least orders in the month of September.

2.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn 7-12 hrs: Mornings 13-18 hrs: Afternoon 19-23 hrs: Night

```
select t.time_of_day, count(*) as counter from
(select case
when extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn'
when extract(hour from order_purchase_timestamp) between 6 and 12 then 'Morning'
when extract(hour from order_purchase_timestamp) between 12 and 18 then
'Afternoon'
else 'Night'
end as time_of_day
from `sclar_case.orders`) t
group by t.time_of_day;
```

Row	time_of_day ▼	counter ▼
1	Morning	27733
2	Dawn	5242
3	Afternoon	38135
4	Night	28331

Insights: Most of the orders are placed during afternoon and least orders are coming from dawn period i.e. mostly customers find the leisure/free time to shop online during afternoon or night period.

- 3 Evolution of E-commerce orders in the Brazil region:
- 3.1 Get the month on month no. of orders placed in each state.

Query:

```
select t.month, t.state, t.count_orders from
(select extract(month from order_purchase_timestamp) as month, customer_state as
state ,count(distinct order_id) as count_orders from `sclar_case.orders` o join
`sclar_case.customers` c on c.customer_id=o.customer_id
group by extract(month from order_purchase_timestamp), customer_state) t
order by t.count orders desc;
```

Row	month ▼	state ▼	count_orders 🔻
1	8	SP	4982
2	5	SP	4632
3	7	SP	4381
4	6	SP	4104
5	3	SP	4047
6	4	SP	3967
7	2	SP	3357
8	1	SP	3351
9	11	SP	3012
10	12	SP	2357
11	10	SP	1908
12	9	SP	1648
13	5	RJ	1321
14	8	RJ	1307

Insights: We can see that maximum orders are coming from SP state throughout the year.

3.2 How are the customers distributed across all the states?

```
select customer_state, count(distinct c.customer_id) as No_of_customers from
`sclar_case.customers` c
join `sclar_case.orders` o on o.customer_id=c.customer_id
group by customer_state
order by No_of_customers desc;
```

Row	customer_state ▼	No_of_customers	Row	customer_state ▼	No_of_customers
1	SP	41746	14	MT	907
2	RJ	12852	15	MA	747
3	MG	11635	16	MS	715
4	RS	5466	17	PB	536
5	PR	5045	18	PI	495
6	SC	3637	19	RN	485
7	BA	3380	20	AL	413
8	DF	2140	21	SE	350
9	ES	2033	22	ТО	280
10	GO	2020	23	RO	253
11	PE	1652	24	AM	148
12	CE	1336	25	AC	81
13	PA	975	26	AP	68
14	MT	907	27	RR	46

Insights: Maximum customers are from state SP and least are from RR. About 42% of customers are from a single state SP.

- 4 Impact on Economy: Analyse the money movement by e-commerce by looking at order prices, freight and others.
- 4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
select t.order_year, t.cost_orders,
ifnull(((t.cost_orders-lag(t.cost_orders) over(order by
t.order_year))/(lag(t.cost_orders) over(order by t.order_year)))*100,0) as
percnt_inc_order_cost
from
(select extract(year from order_delivered_carrier_date) as order_year,
round(sum(payment_value),2) as cost_orders
from `sclar_case.orders` o
join `sclar_case.payments` p on o.order_id=p.order_id
where extract(year from o.order_delivered_carrier_date)!=2016 and
(o.order_delivered_carrier_date between '2017-01-01' and '2017-08-31')
or (o.order_delivered_carrier_date between '2018-01-01' and '2018-08-31')
group by extract(year from o.order_delivered_carrier_date)) t
order by t.order_year;
```


Insights: Order cost has increased by whooping 154% from 2017 to 2018 for period between January to August.

4.2 Calculate the Total & Average value of order price for each state.

```
select customer_state as state, round(sum(payment_value),2) as total_odr_price,
round(sum(payment_value)/count(payment_value),2) as avg_odr_price
from `sclar_case.payments` p
join `sclar_case.orders` o on o.order_id=p.order_id join `sclar_case.customers` c
on o.customer_id=c.customer_id
group by customer_state
order by total_odr_price desc;
```

Row	state ▼ //	total_odr_price ▼	avg_odr_price 🔻	Row /	state ▼ //	total_odr_price ▼	avg_odr_price 🔻
1	SP	5998226.96	137.5	14	MT	187029.29	195.23
2	RJ	2144379.69	158.53	15	MA	152523.02	198.86
3	MG	1872257.26	154.71	16	PB	141545.72	248.33
4	RS	890898.54	157.18	17	MS	137534.84	186.87
5	PR	811156.38	154.15	18	PI	108523.97	207.11
6	SC	623086.43	165.98	19	RN	102718.13	196.78
7	BA	616645.82	170.82	20	AL	96962.06	227.08
8	DF	355141.08	161.13	21	SE	75246.25	208.44
9	GO	350092.31	165.76	22	TO	61485.33	204.27
10	ES	325967.55	154.71	23	RO	60866.2	233.2
11	PE	324850.44	187.99	24	AM	27966.93	181.6
12	CE	279464.03	199.9	25	AC	19680.62	234.29
13	PA	218295.85	215.92	26	AP	16262.8	232.33
14	MT	187029.29	195.23	27	RR	10064.62	218.8

Insights: Maximum total order price is from 'SP' state but the highest average order price is of 'PB' state.

4.3 Calculate the Total & Average value of order freight for each state.

```
select customer_state as state, round(sum(freight_value),2) as total_freight,
round(sum(freight_value)/count(freight_value),2) as avg_freight
from `sclar_case.order_items` oi
join `sclar_case.orders` o on o.order_id=oi.order_id join `sclar_case.customers` c
on c.customer_id=o.customer_id
group by customer_state
order by total_freight desc;
```

Row	state ▼	total_freight ▼	avg_freight /	Row	state ▼ //	total_freight ▼/	avg_freight /
1	SP	718723.07	15.15	14	MA	31523.77	38.26
2	RJ	305589.31	20.96	15	MT	29715.43	28.17
3	MG	270853.46	20.63	16	PB	25719.73	42.72
4	RS	135522.74	21.74	17	PI	21218.2	39.15
5	PR	117851.68	20.53	18	MS	19144.03	23.37
6	BA	100156.68	26.36	19	RN	18860.1	35.65
7	SC	89660.26	21.47	20	AL	15914.59	35.84
8	PE	59449.66	32.92	21	SE	14111.47	36.65
9	GO	53114.98	22.77	22	TO	11732.68	37.25
10	DF	50625.5	21.04	23	RO	11417.38	41.07
11	ES	49764.6	22.06	24	AM	5478.89	33.21
12	CE	48351.59	32.71	25	AC	3686.75	40.07
13	PA	38699.3	35.83	26	AP	2788.5	34.01
14	MA	31523.77	38.26	27	RR	2235.19	42.98

Insights: Here we can see that the state with highest total freight is having minimum average freight value which is expected because maximum number of customers are from these states which can be seen from 3.2. So it is good that to have minimum freight charges where it could benefit maximum customers. Company can in turn benefit by more number of orders in this case.

- 5 Analysis based on sales, freight and delivery time.
- 5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

```
SELECT order_id, TIMESTAMP_DIFF(order_delivered_customer_date,
order_purchase_timestamp, DAY) AS time_to_deliver,
TIMESTAMP_DIFF(order_delivered_customer_date,order_estimated_delivery_date, DAY)
AS diff_estimated_delivery
FROM `sclar_case.orders`
```

Row	order_id ▼	time_to_deliver ▼	diff_estimated_delive
1	1950d77798	30	12
2	2c45c33d2f	30	-28
3	65d1e226df	35	-16
4	635c894d06	30	-1
5	3b97562c3a	32	0
6	68f47f50f04	29	-1
7	276e9ec344	43	4
8	54e1a3c2b9	40	4
9	fd04fa4105e	37	1
10	302bb8109d	33	5

Insights: Time to deliver is mostly between 30 days to 50 days which is greater than expected. Difference in estimated and actual delivery time has much greater variance in values, negative values in diff_estimated_delivery indicate that the product was delivered before the expected date which is good. But we can also see many positive values here which can damage the goodwill of the company.

5.2 Find out the top 5 states with the highest & lowest average freight value.

```
select customer_state as state, round(sum(freight_value)/count(freight_value),4)
as avg_freight_val from `sclar_case.order_items` oi
join `sclar_case.orders` o on o.order_id=oi.order_id join `sclar_case.customers` c
on c.customer_id=o.customer_id
group by customer_state
order by avg_freight_val
limit 5;
```

Row	state ▼	avg_freight_val ▼	Row	state ▼	avg_freight_val ▼
1	SP	15.1473	1	RR	42.9844
2	PR	20.5317	2	PB	42.7238
3	MG	20.6302	3	RO	41.0697
4	RJ	20.9609	4	AC	40.0734
5	DF	21.0414	5	PI	39.148

Insights: Top 5 states with maximum average freight value are PB, RR, PI, AC, MA and bottom 5 average freight values are of states SP, PR, MG, RJ, DF with maximum value of 42.8 and minimum value of 15.4 out of total 27 states.

Comparing with 3.2, we can see that the average freight values are less in the states where the no of customers are more which is good.

5.3 Find out the top 5 states with the highest & lowest average delivery time.

```
select t.state, round(sum(t.time_to_deliver)/count(t.time_to_deliver),2) as
avg_delivery_time from
(select customer_state as state, TIMESTAMP_DIFF(order_delivered_customer_date,
order_purchase_timestamp, DAY) AS time_to_deliver,
from `sclar_case.orders` o join `sclar_case.customers` c on
o.customer_id=c.customer_id) t
group by t.state
order by avg_delivery_time desc
limit 5;
```

Row	state ▼	avg_delivery_time	Row	state ▼	avg_delivery_time
1	RR	28.98	1	SP	8.3
2	AP	26.73	2	PR	11.53
3	AM	25.99	3	MG	11.54
4	AL	24.04	4	DF	12.51
5	PA	23.32	5	SC	14.48

Insights: We have SP, PR, MG, DF and SC as top 5 states in terms of average delivery time having least delivery time which is good because most of the customers are from these states. And bottom 5 states are AP, AM, RR, AL and PA having maximum average delivery time

5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Query:

```
select t.state, round(sum(t.time_to_deliver)/count(t.time_to_deliver),2) as
avg_delivery_time,
round(sum(t.diff_estimated_delivery)/count(t.diff_estimated_delivery),2) as
avg_estimated_time
from
(select customer_state as state, TIMESTAMP_DIFF(order_delivered_customer_date,
order_purchase_timestamp, DAY) AS time_to_deliver,
TIMESTAMP_DIFF(order_delivered_customer_date,order_estimated_delivery_date, DAY)
AS diff_estimated_delivery
from `sclar_case.orders` o join `sclar_case.customers` c on
o.customer_id=c.customer_id) t
group by t.state
order by avg_estimated_time
limit 5;
```

Dow	ototo =	ava dalivani tima	ava actimated time
Row	state ▼	avg_delivery_time	avg_estimated_time
1	AC	20.64	-19.76
2	RO	18.91	-19.13
3	AP	26.73	-18.73
4	AM	25.99	-18.61
5	RR	28.98	-16.41

Insights: The top 5 states having delivery time really fast as compared to estimated time are RR, AM, RO, AC and AP. Negative values in average estimated time indicated the order was delivered before estimated date. More is the magnitude of value in negative, quicker is the order delivered.

- 6 Analysis based on the payments:
- 6.1 Find the month on month no. of orders placed using different payment types.

```
select EXTRACT(month FROM o.order_purchase_timestamp) AS month, count(distinct
o.order_id) as count_orders, payment_type
```

```
from `sclar_case.payments` p join `sclar_case.orders` o on o.order_id=p.order_id
where payment type='credit card'
group by EXTRACT(month FROM o.order purchase timestamp), payment type
union all
select EXTRACT(month FROM o.order purchase timestamp) AS month, count(distinct
o.order id) as count orders, payment type
from `sclar_case.payments` p join `sclar_case.orders` o on o.order_id=p.order_id
where payment type='voucher'
group by EXTRACT(month FROM o.order_purchase_timestamp), payment_type
union all
select EXTRACT(month FROM o.order_purchase_timestamp) AS month, count(distinct
o.order_id) as count_orders, payment_type
from `sclar_case.payments` p join `sclar_case.orders` o on o.order_id=p.order_id
where payment_type='not_defined'
group by EXTRACT(month FROM o.order_purchase_timestamp), payment_type
union all
select EXTRACT(month FROM o.order_purchase_timestamp) AS month, count(distinct
o.order_id) as count_orders, payment_type
from `sclar case.payments` p join `sclar case.orders` o on o.order id=p.order id
where payment type='debit card'
group by EXTRACT(month FROM o.order_purchase_timestamp), payment_type
union all
select EXTRACT(month FROM o.order_purchase_timestamp) AS month, count(distinct
o.order_id) as count_orders, payment_type
from `sclar_case.payments` p join `sclar_case.orders` o on o.order_id=p.order_id
where payment type='UPI'
group by EXTRACT(month FROM o.order_purchase_timestamp), payment_type
order by t.count_orders desc;
OR
select t.month, t.count_orders, t.payment_type from
(select EXTRACT(month FROM o.order purchase timestamp) AS month, count(distinct
o.order_id) as count_orders, payment_type
from `sclar_case.payments` p join `sclar_case.orders` o on o.order_id=p.order_id
group by EXTRACT(month FROM o.order purchase timestamp), payment type) t
order by t.count orders desc;
```

Row .	month ▼									
11	11	count_orders ▼	payment_type 🔻	Row	month ▼	count_orders ▼	payment_type ▼			
1	5	8308	credit_card	36	10	223	voucher			
2	8	8235	credit_card	37	12	220	voucher			
3	7	7810	credit_card	38	6	208	debit_card			
4	3	7682	credit_card	39	9	189	voucher			
5	4	7276	credit_card	40	4	124	debit_card			
6	6	7248	credit_card	41	1	118	debit_card			
7	2	6582	credit_card	42	3	109	debit_card			
8	1	6093	credit_card	43	2	82	debit_card			
9	11	5867	credit_card	44	5	81	debit_card			
10	12	4364	credit_card	45	11	70	debit_card			
11	10	3763	credit_card	46	12	64	debit_card			
12	9	3277	credit_card	47	10	54	debit_card			
13	8	2077	UPI	48	9	43	debit_card			
14	7	2074	UPI	49	8	2	not_defined			
15	5	2035	UPI	50	9	1	not_defined			

Insights: Most of the orders were paid via credit card and least with debit card.

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select payment_installments as No_of_installments, count(distinct o.order_id) as
count_orders from `sclar_case.payments` p
join `sclar_case.orders` o on p.order_id=o.order_id
WHERE payment_installments>1
group by payment_installments
order by count_orders desc;
```

Row	No_of_installments	count_orders ▼	Row	No_of_installments	count_orders ▼
1	2	12389	12	18	27
2	3	10443	13	11	23
3	4	7088	14	24	18
4	10	5315	15	20	17
5	5	5234	16	13	16
6	8	4253	17	14	15
7	6	3916	18	17	8
8	7	1623	19	16	5
9	9	644	20	21	3
10	12	133	21	22	1
11	15	74	22	23	1

Insights: Most of the orders are paid in single instalments i.e. most of the customers are comfortable paying right after the purchase which is showing good purchase parity of the consumers.

7 Actionable Insights & Recommendations

- 7.1 Since from 2.2 we can conclude that number of orders are considerably low during the last quarter of the year, so company should consider giving some special offers or discounts during that phase to boost up the sales.
- 7.2 From 2.3 we can conclude that If company wants to promote or advertise about any product or new offer, noon or night time slot would be most effective and cost efficient for the company. Since most of the customer's place orders during this time, so company could reach out to maximum customers with minimum cost of promotion.
- 7.3 From 3.1 and 3.2 we can conclude that most of the customers are concentrated in one state itself i.e. SP which is not recommended for smooth functioning of any multi-national company in long run. Company is very much dependent on a single state. Company needs to expand services in other states as well. And to expand its customer base company needs to come up with some strategic offers suitable for the local customers in that state.
- 7.4 From 4.1 we can conclude that order cost has considerably increased by about 150% in just 1 year which is not recommended because such a rapid order cost increase would affect the profit margins of the company.
- 7.5 From 4.2 and 4.3 we can conclude that the state with maximum orders(SP) is having least average price per order. So company need to focus on boosting the sales of high value products in SP and also expand the customer base in states where company is getting high value orders. Cost of orders and freight charges are high in states where orders placed are less which is obvious but company should focus on expanding the customer base in other states as well by decreasing the freight charges and improving the delivery network of the company which could attract more customers.

- 7.6 From 5.1 we can conclude that delivery time mostly around 30 to 50 days which needs to be reduced i.e. the warehouses of the company should be more evenly distributed and there should be adequate warehouses in the states where the customers are more. Also company should take steps to deliver the products within estimated delivery date.
- 7.7 From 6.1 we can conclude that customers of the company are mostly using credit cards for payment and from 6.2 we can say that customers are mostly paying the order price in a single instalment which indicates customers have good purchasing parity and company can also promote some high ticket/high margin products to the customers and boost its sales and margins.