INF 1010 Estruturas de Dados Avançadas

Tabelas de dispersão

outra implementação de Mapa...

Tabelas de dispersão

motivação:

acesso em O(1)

estratégia:

uso de array

tradeoff: memória X tempo de acesso

acesso direto

acesso direto

- mas e se
 - as chaves não formam um conjunto contínuo de inteiros?
 - se temos muitas chaves
 - se as chaves não sem nem inteiras

tabelas de dispersão

mapeamento de chaves a posições de array

tabelas de dispersão

mapeamento de chaves a posições de array

funções de dispersão

boas funções de dispersão

posições livres e ocupadas

características de uma boa função de dispersão

- cálculo "barato"
- poucas colisões

funções de dispersão comuns

- resto da divisão módulo N (tam. tabela)
 - na prática: N sem fatores primos menores que 20
- mid-square
 - $q = chave^2$
 - toma-se x bits do "meio" de q
- folding
 - chave particionada em blocos de bits
 - blocos "somados"

transformação de chaves não numéricas

- várias formas podem ser usadas:
 - soma de valores ascii
 - soma com shift
 - •

funções de transformação - exemplo

```
#define Multiplier -1664117991L

int Hash (char* s, int size) {
  int i; unsigned long hashCode;

  hashCode = 0;
  for (i=0; s[i]!=0; i++) {
    hashCode = hashCode*Multiplier + s[i];
  }
  return (hashCode%size);
}
```


colisões

- qualidade da função de dispersão
- tamanho de tabela de dispersão

- encadeamento exterior
- encadeamento interior
- uso de segunda função de dispersão

encadeamento exterior

- encadeamento interior
 - busca linear a partir da posição h(x)
 - até encontrar posição vazia!
 - importância da densidade de preenchimento

chave	dados
chave	dados
chave	dados
chave	
chave	dados
chave	

- uso de segunda função de dispersão
 - variante do encadeamento interior
 - tamanho do "passo" determinado por segunda função d'(chave)

ex:
$$h'(x) = (N-1) - x\%(N-2)$$

cuidados com divisores d N!

- encadeamento exterior
- encadeamento interior
- uso de segunda função de dispersão

Referências

Celes, Cerqueira, Rangel. Introdução a Estruturas de Dados (2004). Cap. 18.

Kruse, Tondo, Leung, Mogalla. Data Structures and Program Design in C (2007). 8.6.

