

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
9. September 2005 (09.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/082642 A1

- (51) Internationale Patentklassifikation⁷: **B60C 5/16,**
15/028
- (21) Internationales Aktenzeichen: PCT/EP2005/050107
- (22) Internationales Anmeldedatum:
12. Januar 2005 (12.01.2005)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
10 2004 009 379.2
26. Februar 2004 (26.02.2004) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): Continental Aktiengesellschaft [DE/DE]; Vahrenwalder Strasse 9, 30165 Hannover (DE).
- (72) Erfinder; und
(75) Erfinder/Anmelder (*nur für US*): KIDNEY, Darren [GB/DE]; Koopfore 1, 30900 Wedemark (DE).
- (81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

(54) Title: SEALING RING FOR A VEHICLE WHEEL

(54) Bezeichnung: DICHTRING FÜR EIN FAHRZEUGRAD

(57) Abstract: Disclosed is a sealing ring (8) for a vehicle wheel comprising a tubeless tire (1) with two tire beads that are embodied on the radially inward side thereof. The tubeless tire (1) is mounted on the radially outer side of a multipart rim (2) by means of the tire beads thereof. Said vehicle wheel further comprises a sealing ring (8) which seals the tire (1) radially inward towards the rim (2), is positioned on the radially outer side of the rim (2), extends in a peripheral direction along the circumference of the rim (2), and runs between the two tire (1) beads in an axial direction. The invention is characterized in that the sealing ring (8) is configured with a central ring member which is provided with a cylindrical inner surface that is to rest on the outer surface of rim while being embodied with one respective concentric flexible annular leg which is located on both axial sides of the central ring member and extends diagonally and radially outward in an axial direction from the central ring member. Moreover, deformable sealing elements which extend along the circumference of the annular leg

on the radially inward-facing surface thereof are configured on the end of the leg that faces away from the central ring member.

[Fortsetzung auf der nächsten Seite]

WO 2005/082642 A1

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(57) Zusammenfassung: Dichtring (8) für ein Fahrzeugrad mit einem schlauchlosen Luftreifen (1) mit zwei an dessen radial inneren Seite ausgebildeten Reifenwülsten, wobei der schlauchlose Luftreifen (1) mittels seiner Reifenwülste auf der radialen Aussenseite einer mehrteiligen Felge (2) montiert ist, und mit einem den Luftreifen (1) nach radial innen zur Felge (2) hin abdichtenden auf der radialen Aussenseite der Felge (2) angeordneten, in Umfangsrichtung über den Umfang der Felge (2) erstreckten und in axialer Richtung zwischen den beiden Reifenwülsten des Luftreifens (1) erstreckten Dichtring (8), dadurch gekennzeichnet, dass der Dichtring (8) mit einem zentralen Ringkörper mit zylindrischer Innenfläche zum Sitz auf der Felgenaußenfläche und an beiden axialen Seiten des zentralen Ringkörpers jeweils mit einem konzentrischen flexiblen ringförmigen Schenkel ausgebildet ist, der sich in axialer Richtung vom zentralen Ringkörper nach außen hin schräg nach radial aussen erstreckt, dass an dem vom zentralen Ringkörper wegweisenden Ende des Schenkels an der nach radial innen weisenden Oberfläche des ringförmigen Schenkels über den Umfang des ringförmigen Schenkels erstreckt ausgebildete deformierbare Dichtelemente ausgebildet sind.

Dichtring für ein Fahrzeugrad

Die Erfindung betrifft einen Dichtring für ein Fahrzeugrad mit einem schlauchlosen
10 Luftreifen mit zwei an dessen radial innerer Seite ausgebildeten Reifenwülsten, wobei der
schlauchlose Luftreifen mittels seiner Reifenwülste auf der radialen Außenseite einer
mehrteiligen Felge montiert ist, und mit einem den Luftreifen nach radial innen zur Felge
hin abdichtenden auf der radialen Außenseite der Felge angeordneten, in Umfangsrichtung
über den Umfang der Felge erstreckten und in axialer Richtung zwischen den beiden
15 Reifenwülsten des Luftreifens erstreckten Dichtring.

Aus der DE-AS 1021738 ist ein Fahrzeugrad mit einem schlauchlosen Luftreifen mit zwei
an dessen radial innerer Seite ausgebildeten Reifenwülsten, wobei der schlauchlose
20 Luftreifen mittels seiner Reifenwülste auf der radialen Außenseite einer mehrteiligen Felge
montiert ist, bekannt, bei dem der Luftreifen nach radial innen zur Felge hin mit einem in
Umfangsrichtung über den Umfang der Felge erstreckten und in axialer Richtung zwischen
den beiden Reifenwülsten des Luftreifens erstreckten Einlageband zur radialen Außenseite
der Felge hin abgedichtet wird. Hierzu wird ein im axialen Querschnitt nach radial außen
25 gewölbtes Einlageband bei der Montage radial außerhalb der Felge zwischen die beiden
Reifenwülste eingelegt, so dass es aufgrund des Überdrucks im Reifen im Betriebszustand
mit seinen axialen Stirnseiten unter Öffnung der Wölbung gegen die Reifenwülste presst
und zwischen den Reifenwülsten dichtend verspannt. Die Anlage ist radial und über den
Umfang des Reifens hinweg weitgehend undefiniert und hängt vom zufälligen Kontakt
30 zwischen Einlageband und den einzelnen Reifenwülsten beim Einlegen und Befestigen der
Reifenwülste auf der Felge ab. Bei jedem betriebsbedingten Druckluftverlust und erneutem
Befüllen des Fahrzeugluftrifens mit Druckluft besteht die Gefahr einer zufälligen

undefinedn Positionsveränderung zwischen Einlageband, Felge und Fahrzeugluftreifen. Zur Erzielung einer sicheren Dichtung sowie zur Vermeidung unerwünschter Unwuchten ist es erforderlich, das Einlageband möglichst definiert zur Felge und zum Fahrzeugluftreifen dauerhaft zu positionieren. Eine derart definierte dauerhafte Montage ist 5 bei diesem nach radial außen gewölbten Einlagebandes, das lediglich zwischen den Wülsten ohne Felgenkontakt eingelegt und eingespannt wird - wenn überhaupt – nur mit großem zusätzlichem Aufwand möglich.

Aus der DE-AS 1053334 ist es bekannt, ein im wesentlichen flaches Einlageband, das an 10 beiden axialen Seiten mit zu Lappen verjüngtem Querschnitt ausgebildet ist, bei einem Fahrzeugrad mit einem schlauchlosen Luftreifen mit zwei an dessen radial innerer Seite ausgebildeten Reifenwülsten, wobei der schlauchlose Luftreifen mittels seiner Reifenwülste auf der radialen Außenseite einer mehrteiligen Felge montiert ist, bei der Montage radial außerhalb der Reifenwülste zwischen den Reifenseitenwänden im 15 Fahrzeugluftreifen aufzubauen. Beim Befüllen des montierten Fahrzeugluftreifens mit Druckluft wird das Einlageband aufgrund des Innendrucks nach radial innen gepresst, so dass es sich unter vollständigem axialem Kontakt zu den Reifenwülsten radial zwischen die Reifenwülste presst und vollständig an die Reifenwülste und Felge und mit seinen Lappen an die unteren Reifenseitenwände anschmiegt. Zur Erzielung der vollständigen 20 Anschmiegeung ist das flache Einlageband den Wülsten entsprechend profiliert, so dass beim radialen Einpressen der Anlagekontakt vollständig erzielt wird. Das profilierte Einlageband mit Lappen muss in seiner Kontur ein sehr genaues Negativ der Wulst- und Felgenkontur entsprechen und die Einlage bei der Montage muss ebenfalls sehr exakt der Sollposition entsprechen, damit die Negativkontur des Einlagebandes sich genau an die 25 Positivkontur von Wülsten und Felge anschmiegen kann. Dies bedeutet, dass sowohl Herstellungs- als auch Montageaufwand zur Sicherstellung hinreichender Dichtigkeit sehr groß werden.

Aus der DE 69401237T2 ist ein Fahrzeugrad mit einem schlauchlosen Luftreifen mit zwei 30 an dessen radial innerer Seite ausgebildeten Reifenwülsten, mittels derer der schlauchlose Luftreifen auf der radialen Außenseite einer mehrteiligen Felge montiert ist, mit einem

zwischen den Reifenwülsten montierten konzentrischen Dichtring nach radial innen zur Felge hin abzudichten. Der Dichtring ist sowohl an seiner radialen Außenseite als auch an seiner radialen Innenseite im wesentlichen zylindrisch ausgebildet und erstreckt sich im montierten Zustand des Fahrzeuggrades in Umfangsrichtung über den gesamten Umfang der 5 Felge. In axialer Richtung ist der Dichtring breiter ausgebildet als der Abstand zwischen den beiden Reifenwülsten des montierten Fahrzeuggrades, so dass er im montierten Betriebszustand des Fahrzeuggrades in dichtender axialer Presspassung zu den beiden Reifenwülsten steht. Zur Erzielung einer entlang der radialen Erstreckung des Dichtrings von radial innen nach radial außen veränderten Presspassung zwischen Dichtring und 10 Reifenwülsten ist der Dichtring an seinen axialen Stirnflächen profiliert ausgebildet. Hierzu ist der Dichtring an seiner radialen Innenseite im axialen Stirnflächenbereich mit konischen Ausläufen versehen. Die axiale Presskraftkomponente wird im wesentlichen durch den axial steifen zwischen den Reifenwülsten erstreckten Materialblock des Dichtrings übertragen. Die radiale Presskraftkomponente wird im zu einem wesentlichen 15 Teil durch den Überdruck im Fahrzeuggrad aufgebracht. Auch wenn hierdurch zwar ein für die Dichtwirkung positiver Presspassungsverlauf möglich ist, ist die Montierbarkeit dieses Dichtrings mit im wesentlichen zylindrischen Querschnitt erschwert. Der Dichtring muss zur Montage entgegen dem hohen Widerstand des steifen blockförmigen Querschnitts um seine Umfangsachse gebogen werden, damit der Dichtring in Achsrichtung überhaupt 20 zwischen die Reifenwülste eingesetzt werden kann. Die hierfür erforderlichen hohen Kräfte, die von außen aufgewandt werden müssen, gefährden die Genauigkeit der Einpassung.

Der Erfindung liegt die Aufgabe zugrunde in einfacher Weise bei einem Fahrzeuggrad mit 25 einem schlauchlosen Luftreifen mit zwei an dessen radial innerer Seite ausgebildeten Reifenwülsten, mittels der der schlauchlose Luftreifen auf der radialen Außenseite einer mehrteiligen Felge montiert ist, und mit einem den Luftreifen nach radial innen zur Felge hin abdichtenden auf der radialen Außenseite der Felge angeordneten, in Umfangsrichtung über den Umfang der Felge erstreckten und in axialer Richtung zwischen den beiden 30 Reifenwülsten des Luftreifens erstreckten Dichtring, eine sichere und zuverlässige Dichtung zu ermöglichen.

Die Aufgabe wird erfindungsgemäß durch Ausbildung eines Dichtrings für ein Fahrzeugrad mit einem schlauchlosen Lufstreifen mit zwei an dessen radial innerer Seite ausgebildeten Reifenwülsten, mittels der der schlauchlose Lufstreifen auf der radialen 5 Außenseite einer mehrteiligen Felge montiert ist, und mit einem den Lufstreifen nach radial innen zur Felge hin abdichtenden auf der radialen Außenseite der Felge angeordneten, in Umfangsrichtung über den Umfang der Felge erstreckten und in axialer Richtung zwischen den beiden Reifenwülsten des Lufstreifens erstreckten Dichtring gemäß den Merkmalen von Anspruch 1 gelöst, wobei der Dichtring mit einem zentralen Ringkörper mit zylindrischer 10 Innenfläche zum Sitz auf der Felgenaußenfläche und an beiden axialen Seiten des zentralen Ringkörpers jeweils mit einem konzentrischen flexiblen ringförmigen Schenkel ausgebildet ist, der sich in axialer Richtung vom zentralen Ringkörper nach außen hin schräg nach radial außen erstreckt, und wobei an dem vom zentralen Ringkörper wegweisenden Ende des Schenkels an der nach radial innen weisenden Oberfläche des 15 ringförmigen Schenkels über den Umfang des ringförmigen Schenkels erstreckt ausgebildete deformierbare Dichtelemente ausgebildet sind.

Die flexiblen ringförmigen Schenkel dieses Dichtrings ermöglichen es durch einfaches flexibles Kippen der Schenkel über radial außen nach axial innen den Dichtring in seine 20 Betriebsposition zwischen den Reifenwülsten sicher zu positionieren, in der der steife zentrale Ringkörper im Betriebszustand des Fahrzeuggrades durch den Überdruck im Fahrzeugrad sicher auf der Sitzfläche an der radialen Außenseite der Felge sitzt. Das rückstellende Moment der Schenkel legt die Schenkel mit deformierbaren Dichtelementen unter Ausnutzung des Hebelarms soweit an den jeweils zugeordneten Reifenwulst an, dass 25 eine erste Dichtwirkung erzielt wird, die mit steigendem Innendruck im Fahrzeugrad bis zum Betriebsdruck durch Deformation des Schenkels über den gesamten Schenkel zuverlässig weiter verstärkt wird.

Besonders vorteilhaft ist die Ausbildung gemäß den Merkmalen des Anspruchs 2, bei der 30 an dem vom zentralen Ringkörper wegweisenden Ende des Schenkels radial außerhalb des zentralen Ringkörpers an der nach radial innen weisenden Oberfläche des ringförmigen

Schenkels über den Umfang des ringförmigen Schenkels erstreckt ausgebildete deformierbare Dichtelemente ausgebildet sind. Hierdurch sind die deformierbaren Dichtelemente radial außerhalb des steifen zentralen Ringkörpers, wodurch deren Anlegefläche an den jeweils zugehörigen Reifenwulst zur Montage zunächst sicher nach 5 axial innen über radial außen weggekippt werden können und anschließend durch den langen Hebelarm des Schenkels unter Ausnutzung der Rückstellkraft des flexiblen Hebelarms sicher in ihre Sollposition vor Einleitung des Betriebsdruck gebracht werden können. Unerwünschte Beschädigungen der deformierbaren Dichtelemente aufgrund hoher axialer Presskräfte zwischen Reifenwulst und Dichtring während der Montage können 10 hierdurch vermieden werden. Beim Erhöhen des Innendrucks im Fahrzeuggrad werden die Schenkel weiter an den Reifenwulst gekippt und die Dichtelemente zur Erhöhung der Dichtwirkung deformiert. Durch weiteres Erhöhen des Innendrucks im Fahrzeuggrad bis zum Betriebsdruck werden zusätzlich die flexiblen Schenkel gebogen, so dass sich die Schenkel mit ihrer axialen Außenseite druckabhängig an die Reifenseitenwand pressen, 15 wodurch die Dichtwirkung weiter erhöht wird.

Bevorzugt ist die Ausbildung gemäß den Merkmalen von Anspruch 3, wobei die Dichtelemente in Umfangsrichtung ausgerichtete – insbesondere über den gesamten Umfang des Dichtrings erstreckte - Dichtlippen sind. Hierdurch wird in einfacher Weise 20 eine sehr zuverlässige Dichtwirkung über den gesamten Umfang des Fahrzeuggrades ermöglicht. Besonders vorteilhaft ist die Ausbildung gemäß den Merkmalen des Anspruchs 4, wobei die Dichtelemente mehrere – insbesondere drei bis sechs - in radialer Richtung verteilt in Umfangsrichtung ausgerichtete – insbesondere über den gesamten Umfang des Dichtrings erstreckte - Dichtlippen sind. Hierdurch wird ermöglicht, dass beim 25 Durchbiegen der Schenkel aufgrund der Druckerhöhung im Fahrzeuggrad weitere Dichtlippen in Dichtwirkung geraten, so dass eine druckabhängige Dichtwirkung erzielt wird.

Besonders vorteilhaft ist die Ausbildung gemäß den Merkmalen des Anspruchs 5, wobei 30 sich die Dichtlippen im wesentlichen senkrecht zur Oberfläche des Schenkels vom Schenkel weg erstrecken. Hierdurch ergibt sich eine besonders vorteilhafte, dichtende

Deformation.

Die Ausbildung gemäß den Merkmalen des Anspruch 6, wobei am zentralen Ringkörper zwischen den ringförmigen Schenkeln Mittel zur Versteifung des Ringkörpers ausgebildet
5 sind ermöglicht eine besonders sichere Montage des Dichtrings, der aufgrund seiner hoher Grundsteifigkeit besonders sicher auf der Felge positioniert werden kann.

Bevorzugt, weil sehr einfach herzustellen, ist die Ausbildung gemäß den Merkmalen des Anspruch 7, bei der die Mittel zur Versteifung eine oder mehrere an der radialen
10 Außenseite des Ringkörpers ausgebildete radiale Erhebungen sind.

Besonders vorteilhaft ist die Ausgestaltung gemäß den Merkmalen des Anspruchs 8, wobei wenigstens in einer radialen Erhebung ein Hohlraum ausgebildet ist. Hierdurch ist bei geringem Gewicht eine hohe Grundsteifigkeit des Dichtrings möglich.

15 Besonders vorteilhaft ist die Ausbildung gemäß den Merkmalen des Anspruchs 9, wobei an der radialen Außenseite des zentralen Ringkörpers zwischen den ringförmigen Schenkeln eine in Umfangsrichtung ausgerichtete – insbesondere über den gesamten Umfang des Ringkörpers erstreckte – Versteifungsrippe ausgebildet ist. Hierdurch kann in
20 einfacher Weise ohne Rundlaufprobleme eine zuverlässige Versteifung des Dichtrings ermöglicht werden.

Eine weitere vorteilhafte Ausgestaltung beinhaltet Anspruch 10, wobei der axiale Abstand zwischen den axialen Außenseiten der beiden Schenkel in einer ersten radialen Position,
25 die der radialen Position der radial inneren Ende der Schenkel entspricht, kleiner als der axiale Wulstabstand der Reifenwülste im montierten Betriebszustand auf der Felge in dieser ersten radialen Position ist, wobei der axiale Abstand zwischen den axialen Außenseiten der beiden Schenkel in einer zweiten radialen Position, die der radialen Position der radial äußeren Enden der Schenkel entspricht, größer als der axiale
30 Wulstabstand der Reifenwülste im montierten Betriebszustand auf der Felge in dieser zweiten radialen Position ist und wobei der axiale Abstand zwischen den axialen

Außenseiten der beiden Schenkel im Bereich der Dichtelemente größer als der axiale Wulstabstand der Reifenwülste im montierten Betriebszustand auf der Felge in der ersten radialen Position ist. Durch das axiale Spiel zwischen Dichtring und Reifenwülsten am radial inneren Ende der flexiblen Schenkel kann der Dichtring sehr zuverlässig auf der an der radialen Außenseite der Felge ausgebildeten Sitzfläche positioniert und anschließend über weiter außen liegende Bereiche der Schenkel abgedichtet werden. Dies wird besonders zuverlässig durch die Ausbildung gemäß den Merkmalen des Anspruchs 11 erreicht, wobei der axiale Abstand zwischen den axialen Außenseiten der beiden Schenkel im Bereich zumindest der radial äußeren – insbesondere aller - an den Schenkeln 5 ausgebildeten Dichtelemente größer als der jeweilige axiale Wulstabstand der Reifenwülste im montierten Betriebszustand auf der Felge in dieser radialen Position ist. Durch eine Ausbildung gemäß den Merkmalen des Anspruchs 12, wobei die Differenz des axialen Abstands zwischen den axialen Außenseiten der beiden Schenkel minus dem axialen Wulstabstand der Reifenwülste im montierten Betriebszustand auf der Felge in der 10 jeweils zugeordneten radialen Position in radialer Richtung von einem Dichtelement zum nächsten Dichtelement abnimmt, kann in sehr einfacher Weise eine vom Innendruck 15 abhängige Dichtwirkung erzielt werden.

Die Erfindung wird im Folgenden anhand der in den Figuren 1 bis 19 dargestellten Ausführungsbeispiele eines Fahrzeuggrades mit schlauchlosem Industriereifen mit in axialer Richtung geteilter Felge näher erläutert. Hierin zeigen:

Fig. 1 einen die Fahrzeugradachse beinhaltenden Querschnitt durch ein Fahrzeuggrad im Betriebszustand mit schlauchlosem Industriereifen und axial dreiteilig ausgebildeter Felge, mit Dichtring und mit eingebautem Ventilkörper mit Ventil,

Fig. 2 Querschnittdarstellung des Dichtrings von Fig. 1 vor Einbau ins Fahrzeuggrad in einer Schnittebene, die die Achse des Dichtrings beinhaltet,

Fig. 3a und 3b Schnittdarstellung des Fahrzeuggrades im montierten Zustand jedoch ohne Dichtring und Schnittdarstellung des Dichtring außerhalb des Fahrzeugrads,

Fig. 4 Überlagerte Darstellung der Fig. 3a und 3b,

5

Fig. 5 Darstellung des Fahrzeuggrades mit montiertem Dichtring mit 0 Bar Überdruck im Fahrzeugreifen,

Fig. 6 Darstellung des Fahrzeuggrades mit montiertem Dichtring im Betriebszustand mit
10 10 Bar Überdruck im Fahrzeugreifen,

Fig. 7 Schnittdarstellung des Ventilkörpers von Fig. 1 ohne Ventil,

Fig. 8 Darstellung des Ventilkörpers entsprechend der Ansicht III-III von Fig. 7

15

Fig. 9 Darstellung des Ventilkörpers in Draufsicht gemäß Ansicht IV-IV von Fig. 7

Fig. 10 Alternativausführung des Ventilkörpers von Fig. 7 ,

20

Fig. 11 Ventilkörper von Fig. 5 in Schnittdarstellung VI-VI von Fig. 10,

Fig. 12 Querschnitt eines Fahrzeuggrades von Fig. 1 in einer die Fahrzeugradachse
beinhaltetenden Querschnittsdarstellung mit alternativer Ausführung,

25

Fig. 13 Perspektivische Darstellung des Ventilkörpers von Fig. 12

Fig. 14 Darstellung des Ventilkörpers gemäß Ansicht IX-IX von Fig. 13

Fig. 15 Ventilkörper der Figuren 12 bis 14 in alternativer Ausführung

30

Fig. 16 Ansicht auf Ventilkörper und Felge gemäß Darstellung von Schnitt XI-XI

von Fig. 1 zur Erläuterung der Befestigung des Ventilkörpers,

Fig. 17 Ventilkörper in alternativer Ausbildung,

5 Fig. 18 a und b Erläuterung der Montage des Ventilkörpers von Fig. 17,

Fig.19 Querschnittsdarstellung des Dichtrings von Fig. 1 in altenativer Ausführung zur Ausbildung von Fig. 2 vor Einbau ins Fahrzeugrad in einer Schnittebene, die die Achse des Dichtrings beinhaltet.

10

Fig. 1 zeigt die Querschnittsdarstellung eines Fahrzeugrades mit Industriereifen - wie sie beispielsweise für Gabelstapler, Schwerlasttransporter oder Flugplatzfahrzeuge zum Einsatz kommen - mit einem schlauchlosen Luftreifen 1 bekannter Art, der sich in axialer
15 Richtung ausgehend von einem ersten Reifenwulst 6 über eine in der Darstellung linke Seitenwand, einen Laufflächenbereich, eine in der Darstellung rechte Seitenwand bis zum zweiten Wulstbereich 7 erstreckt. Der Fahrzeugluftreifen ist mit seinen beiden Wülsten 6 und 7 auf einer in axialer Richtung viergeteilten Felge 2 bekannter Art befestigt. Die axial viergeteilte Felge 2 ist aus einer mit Flachbett ausgebildeten Grundfelge 3, deren in Fig. 1
20 dargestellte rechte axiale Seite zu einem Felgenhorn ausgebildet ist, aus einem Hornring 4, der zu dem in Fig. 1 linken Felgenhorn ausgebildet ist, mit einem in Umfangsrichtung geteilten Schrägschulterring 5 und mit einem in Umfangsrichtung geteilten Verschlussring 49 bekannter Art ausgebildet. Im montierten Zustand sitzt der Reifen 1 mit seinem Wulst 6 auf der als Sitzfläche ausgebildeten radial äußeren Oberfläche des geteilten
25 Schrägschulterrings 5 und der Wulst 7 auf der als Sitzfläche ausgebildeten radial äußeren Oberfläche der Felge 3. Zur axialen Außenseite stützt sich der Wulst 6 am als Felgenhorn ausgebildeten Hornring 4 und der Wulst 7 am Felgenhorn der Grundfelge 3 ab. Axial zwischen den beiden Wülsten 6 und 7 und in dichtendem axialen Berührkontakt zu den
30 Wülsten 6 und 7 ist ein Dichtring 8 ausgebildet, der sich in Umfangsrichtung über den gesamten Umfang der Felge erstreckt. Der Dichtring 8 ist einstückig ausgebildet und besteht aus dichtendem Gummimaterial oder gummiähnlichem Kunststoff. Es ist denkbar,

im Gummimaterial des Dichtrings 8 verstrkende Festigkeitstrger bekannter Art einzubetten.

Der Dichtring 8 ist - wie in Fig. 2, die den Dichtring 8 im nicht eingebauten Zustand in das Fahrzeugrad zeigt, dargestellt ist - mit einem zentralen Ringkrper 30 mit im Wesentlichen zylindrischer radial innerer und radial ufer Mantelflche ausgebildet, der sich an seiner radial inneren Mantelflche uber eine axiale Breite c erstreckt. Im axialen Anschluss zu beiden axialen Seiten des zentralen Ringkrpers 30 ist der Dichtring jeweils mit einem konzentrischen ringfrmigen Schenkel 31 bzw. 32 ausgebildet, der sich jeweils 10 ausgehend vom zentralen Ringkrper 30 nach axial auen hin in radialem Richtung nach auen steigend erstreckt. Der Dichtring 8 mit zentralem Ringkrper 30 und den Schenkeln 31 und 32 ist symmetrisch zur axialen Mittelebene ausgebildet. Daher ist in den Fig. 3 bis 5 lediglich die rechte Seite mit dem Schenkel 31 dargestellt und die Ausbildung im Folgenden vorwiegend bezglich des rechten Schenkels 31 beschrieben. Die radiale 15 Innenmantelflche des Schenkels 31 bzw. des Schenkels 32 erstreckt sich ausgehend vom Abstand ($c/2$) von der axialen Mittelebene des Dichtrings 8 nach axial auen unter einem Steigungswinkel δ bis zum Abstand ($e/2$) von der axialen Mittelebene des Dichtrings 8. Die radial ufer Mantelflche des Schenkels 31 bzw. 32 erstreckt sich ausgehend vom Abstand $b/2$ von der axialen Mittelebene des Dichtrings 8 unter Einschluss eines 20 Steigungswinkels γ zur Axialen bis in einen Abstand $d/2$ von der axialen Mittelebene des Dichtrings 8. Ausgehend vom Abstand $d/2$ von der axialen Mittelebene des Dichtrings 8 nach axial auen ist die radial ufer Mantelflche der Schenkel 31 bzw. 32 bis in einen Abstand $g/2$ von der axialen Mittelebene des Dichtrings 8 mit weitgehend achsparalleler Kontur und somit nahezu zylindrisch ausgebildet. Diesen nahezu zylindrischen Endauslauf 25 der radial ufer Mantelflche der Schenkel 31 bzw. 32 schliet sich jeweils eine Stirnflche 40 an, die sich bis zur radial inneren Mantelflche des Schenkels 31 bzw. 32 erstreckt und nahezu senkrecht auf der radial inneren Mantelflche des Schenkels 31 bzw. 32 steht. Die Materialdicke m des Schenkels 31 bzw. 32, die den jeweiligen senkrechten Abstand von radial innerer Mantelflche zu radial ufer Mantelflche darstellt, ist 30 kleiner oder gleichgro gewhlt wie die radiale Dicke s des nahezu zylindrischen zentralen Ringkrpers 30.

Die Abmessungen b,c,d,e,f und g sind so gewählt, dass $b < c < d < g < e < f$.

Die Winkel δ und γ sind jeweils zwischen 20° und 35° gewählt, wobei für den Betrag der Differenz gilt $|(\gamma - \delta)| \leq 5^\circ$. Im gezeigten Ausführungsbeispiel sind die beiden Winkel wie folgt gewählt: $\gamma = \delta = 25^\circ$. In diesem Fall ist die Dicke m über die gesamte Erstreckungslänge k der radial äußeren Mantelfläche zwischen dem axialen Abstand b/2 und d/2 von der axialen Mittelebene des Dichtrings hinweg konstant ausgebildet.

- 10 An der radial inneren Mantelfläche der Schenkel 31 bzw. 32 sind jeweils ausgehend von der Stirnfläche 40 über eine Erstreckungslänge q konzentrisch zum Dichtring 8 in Umfangsrichtung ausgerichtete und über den gesamten Umfang des Dichtrings 8 erstreckte Dichtlippen - im dargestellten Ausführungsbeispiel von Figur 2 vier Dichtlippen 33, 34, 35 und 36 - ausgebildet. Die Dichtlippen 33, 34, 35 und 36 erstrecken sich jeweils senkrecht 15 zur radial inneren Mantelfläche des jeweiligen Schenkels 31 bzw 32 ausgerichtet über eine senkrecht zur inneren Mantelfläche gemessenes Erstreckungslänge p, wobei $0,5\text{mm} \leq p \leq 5$ mm beträgt. Die Erstreckungslänge q ist so gewählt, dass $q \leq (L/2)$, wobei L das in der Schnittebene von Fig. 2 dargestellte Maß der Erstreckung der radial inneren Mantelfläche des Dichtrings 8 zwischen dem axialen Abstand c/2 und e/2 von der axialen Mittelebene 20 des Dichtrings 8 ist.

- Der maximale axiale Abstand von der axialen Mittelebene des Dichtring 8 zur axial äußersten Dichtlippe 33 ist $f/2$ mit $f > e$. Im dargestellten Ausführungsbeispiel bildet die Dichtlippe 33 mit ihrer nach axial außen vom Dichtring 8 weisenden Flanke die 25 Verlängerung der Stirnfläche 40. In diesem Ausführungsbeispiel ist f auch das Mass für die maximale axiale Breite des Dichtrings 8.

- Wie in den Figuren 3a und 3b dargestellt ist, ist die axiale Erstreckung c des zentralen Ringkörpers 30 des unmontierten Dichtrings 8 an dessen radial innerer Oberfläche kleiner 30 als der axiale Abstand t_1 , der den axialen Abstand zwischen den radial innerem Enden der beiden Reifenwülsten 6 und 7 des auf die Felge 2 montierten Reifens 1 darstellt. Der

Abstand e , der den axialen Abstand zwischen den Schnittlinien der Stirnflächen 40 zu den radial inneren Mantelflächen der Schenkel 31 und 32 des unmontierten Dichtrings 8 darstellt, ist größer als der axiale Abstand t_2 zwischen den Wülsten in der den Schnittlinien der Stirnflächen 40 zu den radial inneren Mantelflächen der Schenkel 31 und 32 des 5 Dichtrings 8 entsprechenden radialen Position im montierten Reifen 1.

Dies ist auch in Fig. 4 zu erkennen, in der zur besseren Veranschaulichung die Figuren 3a und 3b überlagert dargestellt sind.

10 Die Differenz des axialen Abstands zwischen den axialen Außenseiten der beiden Schenkel 31 bzw. 32 minus dem axialen Wulstabstand der Reifenwülste 6 bzw. 7 im montierten Betriebszustand des Reifens 1 auf der Felge 2 in der jeweils den axialen Außenseiten der beiden Schenkel 31 bzw. 32 entsprechenden radialen Position nimmt in radialer Richtung von der axial wie radial äußersten Dichtlippe 33 zum axial wie radial 15 nach innen benachbarten Dichtelement 34, von der Dichtlippe 34 zum axial wie radial nach innen benachbarten Dichtelement 35 und von der Dichtlippe 35 zum axial wie radial nach innen benachbarten Dichtelement 36 hin ab.

Zur Montage wird zunächst in herkömmlicher Weise der in den Figuren rechte Reifenwulst 20 in Anlage an das Felgenhorn auf seiner Sitzfläche auf der radial äußeren Mantelfläche der Felge positioniert. Zur Montage des Dichtrings 8 wird dieser nun - wie in Fig. 5 mittels eines Pfeils dargestellt ist - mit seinem rechten Schenkeln 31 entgegen der elastischen Rückstellkraft des elastisch flexiblen ringförmigen Schenkels 31 über radial außen nach axial innen um ihre Anbindungsstelle am zentralen Ringkörper 30 geschwenkt, so dass der 25 Dichtring 8 mit seinem zentralen Ringkörper 30 auf der hierzu ausgebildeten Sitzfläche auf der radialen Außenseite der Felge 2 zwischen den beiden Reifenwülsten 6 und 7 aufgeschoben und dort positioniert werden kann. Danach wird unter Verschwenken des linken Schenkels 32 entgegen der elastischen Rückstellkraft des elastisch flexiblen ringförmigen Schenkels 32 über radial außen nach axial innen um seine Anbindungsstelle 30 am zentralen Ringkörper 30 der linke Reifenwulst in herkömmlicher Weise in seine Betriebsposition in axialer Anlage mit dem als linkes Felgenhorn ausgebildeten Seitenrings

4 auf der Sitzfläche des Schrägschulterrings 5 der Felge 2 montiert und mittels Verschlussring 49 befestigt. Fig. 5 zeigt den montierten Zustand des Dichtrings 8 im Fahrzeugrad ohne Überdruck im Fahrzeugrad. Wie deutlich zu erkennen ist, liegt der Schenkel 31 sowie der Schenkel 32 jeweils lediglich aufgrund der elastischen 5 Rückstellkraft des geschwenkten Schenkels 31 bzw. 32 mit seiner axial äußeren Dichtlippe 33 an dem jeweils zugehörigen Reifenwulst 6 bzw. 7 des montierten Reifens 1 an.

Mit Erhöhung des Innendrucks durch Befüllung des Reifens 1, die weiter unten genauer dargestellt wird, wird der Schenkel 31 bzw. 32 aufgrund des erhöhten Innendrucks über 10 radial außen nach axial außen gegen den Reifenwulst 6 bzw. 7 gepresst, so dass zunächst die axial äußere Dichtlippe 33 unter Erhöhung der Dichtwirkung deformiert wird, bevor die nächstliegende axial innere Dichtlippe 34 in Berührkontakt zum zugehörigen Reifenwulst 6 bzw. 7 gerät. Bei weiterer Erhöhung des Innendrucks wird auch diese 15 Dichtlippe 34 unter Erhöhung der Dichtwirkung deformiert bis die nächstliegende axial innere Dichtlippe 35 in Berührkontakt zum Reifenwulst 6 bzw. 7 gerät. Bei weiterer Erhöhung des Innendrucks wird auch diese Dichtlippe 35 unter Erhöhung der Dichtwirkung deformiert, bis die nächstliegende axial innere Dichtlippe 36 in Berührkontakt zum zugeordneten Reifenwulst 6 bzw 7 gerät.

20 Bei weiterer Erhöhung des Innendrucks wird auch diese Dichtlippe 36 deformiert. Bei zusätzlicher Erhöhung des Innendrucks wird der Schenkel 31 bzw. 32 nach axial außen hin durchgebogen, so dass er sich gegen den zugehörigen Reifenwulst 6 bzw. 7 und die radiale Außenseite der Felge 2 dichtend anlegt. Der Zustand mit dem Betriebsdruck von 10 bar Überdruck im Fahrzeugradinnern ist in Fig. 6 dargestellt.

25 In einer weiteren Ausführungsform ist an der radial äußeren zylindrischen Mantelfläche des Zentraler Ringkörpers 30 eine verstiefende in Umfangsrichtung gerichtete und über den gesamten Umfang des Dichtrings erstreckte Rippe 37 ausgebildet, die sich in axialer Richtung über eine Breite w erstreckt. Dabei ist w so gewählt, dass $w \leq b$. Beispielsweise 30 ist w so gewählt, dass $w = (b/2)$. Im dargestellten Ausführungsbeispiel von Fig. 2 ist die Rippe 37 mittig und symmetrisch zur axialen Mittenebene des Ringkörpers 8 ausgebildet.

In einem weiteren nicht dargestellten Ausführungsbeispiel ist die Rippe 37 axial versetzt ausgebildet, so dass sie nicht mehr symmetrisch zur axialen Mittenebene des Dichtrings 8 angeordnet ist. In einem weiteren in Fig. 12 dargestellten Ausführungsbeispiel ist in der Rippe 37 ein über den gesamten Umfang des Dichtrings erstreckter ringförmiger Hohlraum 5 38 ausgebildet.

Die an den Schenkeln des Dichtrings 8 ausgebildeten Dichtlippen sind in einer Ausführung – wie in Figur 2 an Hand der vier Dichtlippen 33,34,35 und 36 dargestellt – im Querschnitt u-förmig ausgebildet. In einer anderen Ausführung sind die an den Schenkeln des 10 Dichtrings ausgebildeten Dichtlippen – wie in Figur 19 an Hand der dort dargestellten vier Dichtlippen 33,34,35 und 36 zu erkennen ist – mit v-förmigem Querschnitt ausgebildet. In einer ebenfalls in Fig. 19 dargestellten Ausführung schließen die eine Dichtlippe begrenzenden Flanken der jeweiligen Dichtlippe jeweils einen Winkel θ_1 und die zueinander weisenden Flanken zweier benachbarter Dichtlippen jeweils einen Winkel θ_2 15 ein.

In einer Ausführung gilt $\theta_1 + \theta_2 = 180^\circ$.

20 In einer Ausführung gilt: $\theta_1 = \theta_2$. In der in Figur 19 dargestellten Ausführung gilt:
 $\theta_1 = \theta_2 = 90^\circ$.

Figur 19 zeigt eine weitere alternative Ausbildung eines Dichtrings 8 von Figur 2 mit fünf Dichtlippen 39,33,34,35 und 36.

25 In einer ebenfalls in Fig. 19 dargestellten Ausführung bildet die am Schenkel am weitesten außen ausgebildete Dichtlippe 39 nicht mit ihrer nach axial außen vom Dichtring 8 weisenden Flanke die Verlängerung der Stirnfläche 40, sondern die Dichtlippe 39 ist beabstandet zur Stirnfläche 40 ausgebildet.
30 In einer weiteren in Figur 19 dargestellten Ausführung erstreckt sich die äußere Dichtlippe 39 senkrecht zur radial inneren Mantelfläche des jeweiligen Schenkels 31 bzw 32

ausgerichtet über eine senkrecht zur inneren Mantelfläche über eine kürze Erstreckungslänge p als die inneren Dichtlippen 33,34,35 und 36.

Der Dichtring 8 liegt im montierten in Fig. 1 dargestellten Betriebszustand nach radial innen auf der radial äußeren Oberfläche der Grundfelge 3 auf. Im Dichtring 8 ist eine in radialer Richtung erstreckt ausgebildete zylindrische Durchgangsöffnung 9 ausgebildet, die beispielsweise einen Durchmesser von 1 bis 10 mm aufweist. Die Durchgangsöffnung 9 ist beispielsweise mit einem Durchmesser von 1, von 3 oder von 6 mm ausgebildet.

- 10 In der Grundfelge 3 ist, wie in Fig. 16 dargestellt ist, eine schlitzförmige Durchgangsöffnung 10, die sich in radialer Richtung durch die Felge hindurch erstreckt ausgebildet. Die schlitzförmige Durchgangsöffnung 10 ist mit ihrer längeren Haupterstreckung a' in axialer Richtung A des Fahrzeuggrades und mit ihrer kürzeren Haupterstreckung b' in Umfangsrichtung U des Fahrzeuggrades ausgebildet. Wie in den 15 Figuren 1 und 11 dargestellt ist, erstreckt sich durch die schlitzförmige Durchgangsöffnung hindurch ein Ventilrohr 11, das außerhalb des Fahrzeuggrades radial innerhalb der Felge in dem in Fig. 1 dargestellten Betriebszustand nach axial außen gekrümmmt ist und an seinem Ende mit einem Ventil 12 bekannter Art bestückt ist. Am anderen Ende ist am Ventilrohr 11 eine senkrecht zur Achse des Ventilrohrs ausgerichtete Dichtplatte 13 beispielsweise 20 durch Hartlöten, Schweißen oder Kleben befestigt.

Wie in den Figuren 1, 7, 8, 9 und 16 am Beispiel einer Dichtplatte mit Grundfläche mit einer längeren Haupterstreckung a und einer kürzeren Haupterstreckung b dargestellt ist, ist die Platte an ihrer vom Ventilrohr 11 wegweisenden und im Fahrzeuggrad in radialer 25 Richtung des Fahrzeuggrades nach außen weisenden Seite mit einer ebenen Oberfläche ausgebildet, die den Plattengrund 14 bildet. Im Bereich des Plattengrundes 14 ist die Dicke der Platte in radialer Richtung gesehen h_2 . Entlang ihres Randes ist die Platte in radialer Richtung mit einer erhöhten Kante 16 ausgebildet. Im Bereich der erhöhten Kante 16 ist die Dicke der Platte h_1 . An der zum Plattengrund 14 weisenden Innenseite der Kante 16 ist 30 eine in radialer Richtung erstreckte Dichtlippe 15 ausgebildet. Im Bereich der Dichtlippe 15 beträgt die Dicke der Platte 13 mit Dichtlippe 15 h_3 . Für die Maße h_1 , h_2 und h_3 gilt:

$h_3 > h_1 > h_2$.

Die Haupterstreckungsrichtung mit Erstreckung a der Dichtplatte steht unter einem Winkel β zur Haupsterstreckung mit der Erstreckungslänge b. Die erste

- 5 Haupterstreckungsrichtung mit der Erstreckung b' des Schlitzes steht unter einem Winkel β zur zweiten Haupterstreckung mit der Erstreckungslänge a' des Schlitzes. Dabei gilt für β : $10^\circ \leq \beta \leq 90^\circ$. An dem in den Figuren dargestellten Ausführungsbeispielen, bei dem die Platte eine rechteckige Grundfläche aufweist, beträgt $\beta = 90^\circ$.
- 10 Für die Erstreckungslängen der Haupterstreckungen a, b, a' , b' von Dichtplatte 13 und schlitzförmiger Durchgangsöffnung 10 gilt: $a > b$, $a' > b'$, $a' > a > b' > b$.

Die Durchgangsöffnung des Luftkanals 17 des Ventilrohrs 11 erstreckt sich bis in den Plattengrund 14 der Dichtplatte 13. Die Dichtlippe 15 erstreckt sich entlang der den Rand 15 der Dichtplatte 13 bildenden Kante 16 umlaufend um den Boden 14 mit Luftkanal 17.

- Bei dem in Fig. 1 dargestellten Fahrzeugrad im Betriebszustand mit einem Betriebsdruck im Innern der vom Reifen 1 und Dichtring 8 luftdicht eingeschlossenen Luftkammer von 10bar ist die Dichtplatte 13 – wie in Fig. 16 zu erkennen ist - mit ihrer längeren 20 Erstreckung a unter einem Winkel α zur längeren Haupterstreckung a' des Schlitzes 10 ausgerichtet. Dabei beträgt α beispielsweise:
 $60^\circ \leq \alpha \leq 120^\circ$. In der in den Figuren dargestellten Ausführungsformen beträgt $\alpha = 90^\circ$.

- Hierdurch liegt die Platte 13 mit ihrer Unterseite auf der Felgenoberfläche außerhalb der 25 schlitzförmigen Durchgangsöffnung 10 auf und die Dichtlippe 15 steht längs ihrer Erstreckung in dichtendem Berührkontakt zur radialen Innenseite des Dichtrings 8. Die Dichtungsöffnung 9 des Dichtrings 8 mündet an der radial inneren Seite des Dichtrings 8 in dem von der Dichtlippe 15 umgebenen Bereich. Aufgrund des hohen Innendrucks des 30 Fahrzeugreifens sind Dichtring 8, Dichtplatte 13 und Grundfelge 3 so stark radial gegeneinander gepresst, dass eine sichere dichtende Verbindung zwischen Dichtlippe 15 und Dichtring 8 bewirkt wird.

- Zur Montage des Fahrzeuggrades wird zunächst – wie oben dargestellt - in herkömmlicher Weise der Luftreifen 1 und der Dichtring 8 auf die Grundfelge 3 positioniert und in seiner Betriebsposition fixiert. Danach wird das mit dem Ventil 12 bestückte Ventilrohr 11 mit 5 seiner am Ende befestigten Platte 13, wobei die längere Erstreckung a parallel zur längeren Erstreckung a' der schlitzförmigen Durchgangsöffnung 10 ausgerichtet ist, durch die schlitzförmige Durchgangsöffnung 10 zwischen Grundfelge 3 und Dichtring 8 eingeführt, bis die Dichtlippe 15 in Berührkontakt zum Dichtring 8 steht. Danach wird das Ventilrohr 11 mit Dichtplatte 13 um die Achse des Ventilrohrs 11 im Bereich der schlitzförmigen 10 Durchgangsöffnung 10 um den Winkel β verdreht, so dass eine Verschränkung von Dichtplatte 13 und schlitzförmiger Durchgangsöffnung 10 und somit eine Positionssicherung des Ventilrohrs 11 im Fahrzeuggrad gewährleistet ist. Danach wird das Fahrzeuggrad über das Ventil 12 und das Ventilrohr 11, den durch die Dichtlippe 15 umgrenzten Raum zwischen Dichtring 8 und Ventilrohr 11 sowie durch die 15 Durchgangsöffnung 9 mit Druckluft auf Betriebsdruck gebracht. Mit Ansteigen des Druckes wird der Dichtring 8 an seinen axialen Enden dichtend gegen die Wülste 6,7 Luftreifens 1 und an seiner nach radial innen weisenden Seite gegen die Dichtlippe 11 der Platte 13 gepresst. Somit ist das Fahrzeuggrad mit schlauchlosem Luftreifen 1, Dichtring 8 und in axialer Richtung mehrteiliger Felge nach außen vollständig abgedichtet.
- 20 Zur Demontage genügt es über das Ventil 12 des Ventilrohrs 11 den Luftreifen 1 soweit zu entlüften, dass sich das Ventilrohr 11 um seine Achse in der schlitzförmigen Durchgangsöffnung 10 um den Winkel α zurückdrehen lässt, und das Ventilrohr 11 mit Dichtplatte 13 aus der schlitzförmigen Durchgangsöffnung 10 zu entfernen.
- 25 Die Figuren 10 und 11 zeigen eine weitere Ausgestaltungsform der am Ventilrohr 11 befestigten Dichtplatte 13. Dabei ist die Dichtplatte 13 in ihrer Betriebsposition im Betriebszustand des Fahrzeuggrades um die Achse des Fahrzeuggrades der Kontur der Felge entsprechend mit einem Krümmungsradius R_1 um die Fahrzeugradachse gekrümmt, wobei 30 R_1 dem Außenradius der Felge in dieser Position entspricht. Entsprechend dieser Krümmung sind auch die Kanten 16 längs der längeren Erstreckung der Dichtplatte und

diesen Erstreckungsbereichen der Kanten 16 zugeordneten Erstreckungsbereiche der Dichtlippe 15 gekrümmt ausgebildet, wobei der Krümmungsradius der Kanten R_2 dem Innenradius des Dichtrings 8 in dieser Position entspricht.

- 5 Fig. 12 zeigt ein Fahrzeugrad mit alternativer Ausbildung einer Dichtplatte 23 und des Dichtrings 8. Auf der radial inneren Seite des Dichtrings 8 eine Umfangsrille 18 ausgebildet, die sich in Umfangsrichtung des Dichtrings 8 über den gesamten Umfang des Dichtrings 8 erstreckt. Die Umfangsrille 18 hat im Ausführungsbeispiel eine u-förmige Querschnittskontur. Die Durchgangsöffnung 9 des Dichtrings 8 mündet mit ihrem radial inneren Ende im Rillengrund der Rille 18. Der Rillenkontur entsprechend ist die Dichtplatte 23 mit ihrer Kante 16 an ihren in die Haupterstreckungsrichtung mit der längeren Haupterstreckung a gerichteten Längsseiten mit gleicher Dicke H_1 und an ihren mit kürzerer Erstreckungslänge b ausgebildeten Stirnseite mit längs ihrer Stirnseitenerstreckung verändertem Dickenverlauf H_4 ausgebildet, wobei die im 10 eingebauten Betriebszustand in radialer Richtung des Fahrzeugrads nach außen ausgebildete Kontur korrespondierend zur u-förmigen Kontur des Querschnitts der Rille 18 ausgebildet ist. Entsprechend dem Kantenverlauf der Kante 16 ist auch die endlos entlang 15 der Kante 16 ausgebildete Dichtlippe dieser Kontur folgend ausgebildet.“
- 20 Zur Montage wird das Ventilrohr 11 mit seiner Dichtplatte 23 voran mit Ausrichtung der längeren Haupterstreckung a parallel zur längeren Haupterstreckung a' der schlitzförmigen Durchgangsöffnung 10 durch die schlitzförmige Durchgangsöffnung 10 der Grundfelge 3 zwischen Grundfelge 3 und Dichtring 8 eingeschoben und dort um den Winkel α verdreht, so dass die Dichtplatte 23 mit ihrer längeren Längserstreckung a in Betriebsposition 25 ausgerichtet ist und dabei in die Umfangsrille 18 formschlüssig eingreift. Durch Herstellung des Überdrucks im Fahrzeugrad über das Ventil 12, das Ventilrohr 11, den zwischen Dichtring 8 und Plattengrund 14 der Dichtplatte 13 von der Dichtlippe 15 umgebenen Raum und über die Durchgangsöffnung 9 des Dichtrings 8 wird der Dichtring 8 dichtend mit seinen axialen Rändern gegen die Reifenwülste 6 und 7 und nach radial 30 innen in der Umfangsrille 18 gegen die Dichtlippe 15 der Dichtplatte 23 gepresst.

In Fig. 15 ist analog zur Darstellung der Figuren 10 und 11 eine alternative Ausführung der Dichtplatte 23 der Figuren 12 bis 14 dargestellt, bei der die Dichtplatte 23 ihrer Betriebsposition im Fahrzeugrad entsprechend um die Fahrzeugradachse gekrümmmt ausgebildet ist mit einem Innenradius R_1 , der dem Außenradius der Felge in der 5 Betriebsposition der Dichtplatte 23 entspricht und mit einem Außenradius R_2 , der dem Innenradius des Dichtrings 8 im Grund der Umfangsrille 18 entspricht.

In einer weiteren in den Figuren 8, 14 und 15 dargestellten Ausführung ist die Dichtplatte 13 bzw. 23 an ihrer radial inneren Seite zu einem Verschränkungsbereich 28 ausgebildet, 10 in dessen radialer Erstreckung die Platte in Erstreckungsrichtung der längeren Erstreckung a der Platte lediglich über ein Maß a'' erstreckt ist, wobei a'' kleiner ist als die kürzere Erstreckung a' der schlitzförmigen Durchgangsöffnung 10. Hierdurch wird erreicht, dass nach Einschieben der Platte 13 bzw. 23 durch die schlitzförmige Durchgangsöffnung 10 zwischen Felge und Dichtring nach Verdrehen des Ventilrohrs 11 mit Dichtplatte 13 um 15 den Winkel α die Platte mit ihrem Verschränkungsbereich 28 nach radial innen formschlüssig in die schlitzförmige Durchgangsöffnung 10 eingreift.

* Die Dichtplatte 13 bzw. 23 mit Dichtlippe 15 der genannten Ausführungsbeispiele ist einstückig aus Gummi, Messing oder dichtendem Kunststoffmaterial hergestellt. In einer 20 besonderen Ausführung ist die Dichtplatte 13 bzw. 23 mit dem Ventilrohr 11 einstückig ausgebildet.

Die Figuren 17 und 18 zeigen eine alternative Ausführung der Montage und Befestigung eines Ventilrohrs 11 mit einer Dichtplatte 13 am Beispiel einer Dichtplatte 13 der Figuren 25 1, 7, 8 und 9. Die Dichtplatte 13 ist in diesem Ausführungsbeispiel ebenso wie die schlitzförmige Durchgangsöffnung 10 rechteckförmig ausgebildet, mit den Haupterstreckungen a und b der Dichtplatte 13 und den den Haupterstreckungen a' und b' der schlitzförmigen Durchgangsöffnung 10, wobei an beiden Enden der Längserstreckung der Dichtplatte 13 quer zu ihrer längeren Erstreckungsrichtung a an den von der Dichtlippe 30 15 weg weisenden Oberfläche jeweils mit einer Zunge 29 ausgebildet, die in Richtung quer zur Längserstreckung über eine Länge b'' und von der Unterseite der Dichtplatte 13 über

Höhe h_6 erstreckt, wobei $b''' < b' < b < a < a'$.

Zur Montage wird – wie in Fig. 18a dargestellt ist – das Ventilrohr 11 mit der Dichtplatte 13 mit ihrer längeren Haupterstreckung a parallel zur längeren Haupterstreckung a' der schlitzförmigen Durchgangsöffnung 10 ausgerichtet seitlich um die längere
5 Haupterstreckung a gekippt, so dass die senkrechte Projektion der der Dichtplatte 13 auf die schlitzförmigen Durchgangsöffnung 10 auch in ihrer Erstreckung quer zur längeren Haupterstreckung a kleiner ist als die kleinere Haupterstreckung b' der schlitzförmigen Durchgangsöffnung 10. Danach wird die Dichtplatte 13 durch die schlitzförmige
10 Durchgangsöffnung 10 zwischen Grundfelge 3 und Dichtring 8 eingeschoben und danach entgegen der ursprünglichen Kippreibung wieder zurückgekippt, so dass die Dichtplatte 13 mit ihren beidseitig über die kürzere Quererstreckung hinausstehenden Randbereichen parallel zur längeren Haupterstreckung a' der schlitzförmigen Durchgangsöffnung 10 auf der Felge aufliegt und mit ihren Zungen 29 formschlüssig in die schlitzförmigen
15 Durchgangsöffnung 10 eingreift. Hierzu ist b''' gegenüber b' so dimensioniert, dass lediglich eine geringe Spielpassung zwischen montierter Dichtplatte 13 und schlitzförmiger Durchgangsöffnung 10 erfolgt. Dies ist in Fig. 18b dargestellt.

Hierdurch liegt die Platte 13 mit ihrer Unterseite auf der Felgenoberfläche außerhalb der
20 schlitzförmigen Durchgangsöffnung 10 auf und die Dichtlippe 15 steht längs ihrer Erstreckung in dichtendem Berührkontakt zur radialen Innenseite des Dichtrings 8. Die Dichtungsöffnung 9 des Dichtrings 8 mündet an der radial inneren Seite des Dichtrings 8 in dem von der Dichtlippe 15 umgebenen Bereich. Aufgrund des hohen Innendrucks des Fahrzeugreifens sind Dichtring 8, Dichtplatte 13 und Grundfelge 3 so stark radial
25 gegeneinander gepresst, dass eine sichere dichtende Verbindung zwischen Dichtlippe 15 und Dichtring 8 bewirkt wird.

In den Figuren 17 und 18 ist beispielhaft eine weitere Ausführung dargestellt, bei der die schlitzförmigen Durchgangsöffnung 10 mit ihrer längeren Haupterstreckung a' in
30 Umfangsrichtung U des Fahrzeuggrades ausgerichtet ist.

Bezugszeichenliste

- 1 **Luftreifen**
- 5 2 **Mehrteilige Felge**
- 3 **Grundfelge**
- 4 **Hornring**
- 5 **Geteilter Schrägschulterring**
- 6 **Reifenwulst**
- 10 7 **Reifenwulst**
- 8 **Dichtring**
- 9 **Durchgangsöffnung**
- 10 **Schlitzförmige Durchgangsöffnung**
- 11 **Ventilrohr**
- 15 12 **Ventil**
- 13 **Dichtplatte**
- 14 **Plattengrund**
- 15 **Dichtlippe**
- 16 **Kante**
- 20 17 **Luftkanal**
- 18 **Umfangsrlle**
- 23 **Dichtplatte**
- 24 **Längsseite**
- 25 **Längsseite**
- 25 26 **Stirnseite**
- 27 **Stirnseite**
- 28 **Verschränkungsbereich**
- 29 **Zunge**
- 30 **Zentraler Ringkörper**
- 30 31 **Ringförmiger Schenkel**
- 32 **Ringförmiger Schenkel**
- 33 **Dichtlippe**

- 34 Dichtlippe
- 35 Dichtlippe
- 36 Dichtlippe
- 37 Versteifungsrippe
- 5 38 Hohlraum
- 39 Dichtlippe
- 40 Stirnfläche
- 49 Verschlussring

Patentansprüche**Dichtring für ein Fahrzeugrad**

- 5 1. Dichtring (8) für ein Fahrzeugrad mit einem schlauchlosen Luftreifen (1) mit zwei an dessen radial innerer Seite ausgebildeten Reifenwülsten (6,7), mittels der der schlauchlose Luftreifen (1) auf der radialen Außenseite einer mehrteiligen Felge (2) montiert ist, und mit einem den Luftreifen (1) nach radial innen zur Felge (2) hin abdichtenden auf der radialen Außenseite der Felge (2) angeordneten, in
10 Umfangsrichtung über den Umfang der Felge (2) erstreckten und in axialer Richtung zwischen den beiden Reifenwülsten des Luftreifens (1) erstreckten Dichtring,

d a d u r c h g e k e n n z e i c h n e t ,

- 15 dass der Dichtring (8) mit einem zentralen Ringkörper (30) mit zylindrischer Innenfläche zum Sitz auf der Felgenaußenfläche und an beiden axialen Seiten des zentralen Ringkörpers (30) jeweils mit einem konzentrischen flexiblen ringförmigen Schenkel (31,32) ausgebildet ist, der sich in axialer Richtung vom zentralen Ringkörper (30) nach außen hin schräg nach radial außen erstreckt,
20 dass an dem vom zentralen Ringkörper (30) wegweisenden Ende des Schenkels (31,32) an der nach radial innen weisenden Oberfläche des ringförmigen Schenkels (31,32) über den Umfang des ringförmigen Schenkels (31,32) erstreckt ausgebildete deformierbare Dichtelemente ausgebildet sind.

- 25 2. Dichtring gemäß den Merkmalen von Anspruch 1,
wobei an dem vom zentralen Ringkörper (30) wegweisenden Ende des ringförmigen Schenkels (31,32) radial außerhalb des zentralen Ringkörpers (30) an der nach radial innen weisenden Oberfläche des ringförmigen Schenkels (31,32) über den Umfang des ringförmigen Schenkels (31,32) erstreckt ausgebildete deformierbare Dichtelemente
30 ausgebildet sind.

3. Dichtring gemäß den Merkmalen von Anspruch 1 oder 2,
wobei die deformierbaren Dichtelemente in Umfangsrichtung ausgerichtete –
insbesondere über den gesamten Umfang des Dichtrings (8) erstreckte - Dichtlippen
(33,34,35,36) sind.

5

4. Dichtring gemäß den Merkmalen von Anspruch 1,2 oder 3,
wobei die Dichtelemente mehrere – insbesondere drei bis sechs - in radialer Richtung
verteilte in Umfangsrichtung ausgerichtete – insbesondere über den gesamten Umfang
des Dichtrings (8) erstreckte - Dichtlippen (33,34,35,36) sind.

10

5. Dichtring gemäß den Merkmalen von einem oder mehreren der vorangegangenen
Ansprüche,
wobei sich die Dichtlippen (33,34,35,36) im wesentlichen senkrecht zur Oberfläche des
Schenkels (31,32) vom Schenkel (31,32) weg erstrecken.

15

6. Dichtring gemäß den Merkmalen von einem oder mehreren der vorangegangenen
Ansprüche,
wobei am zentralen Ringkörper (30) zwischen den ringförmigen Schenkeln (31,32)
Mittel zur Versteifung des Ringkörpers ausgebildet sind.

20

7. Dichtring gemäß den Merkmalen von Anspruch 6,
wobei die Mittel zur Versteifung eine oder mehrere an der radialen Außenseite des
Ringkörpers ausgebildete radiale Erhebungen sind.

25

8. Dichtring gemäß den Merkmalen von Anspruch 7,
wobei wenigstens in einer radialen Erhebung ein Hohlraum (38) ausgebildet ist.
9. Dichtring gemäß den Merkmalen von Anspruch 6,7 oder 8,
wobei an der radialen Außenseite des zentralen Ringkörpers (30) zwischen den
ringförmigen Schenkeln (31,32) eine in Umfangsrichtung ausgerichtete – insbesondere
über den gesamten Umfang des Ringkörpers (30) erstreckte – Versteifungsrippe (37)

30

ausgebildet ist.

10. Dichtring gemäß den Merkmalen von einem oder mehreren der vorangegangenen Ansprüche,

5 wobei der axiale Abstand c zwischen den axialen Außenseiten der beiden Schenkel (31,32) in einer ersten radialen Position, die der radialen Position der radial inneren Enden der Schenkel (31,32) entspricht, kleiner als der axiale Wulstabstand t_1 der Reifenwülste (6,7) im montierten Betriebszustand auf der Felge (2) in dieser ersten radialen Position ist,

10 wobei der axiale Abstand e zwischen den axialen Außenseiten der beiden Schenkel (31,32) in einer zweiten radialen Position, die der radialen Position der radial äußeren Enden der Schenkel (31,32) entspricht, größer als der axiale Wulstabstand t_2 der Reifenwülste (6,7) im montierten Betriebszustand auf der Felge (2) in dieser zweiten radialen Position ist und

15 wobei der axiale Abstand zwischen den axialen Außenseiten der beiden Schenkel (31,32) im Bereich der Dichtelemente größer als der axiale Wulstabstand t_1 der Reifenwülste (6,7) im montierten Betriebszustand auf der Felge (2) in der ersten radialen Position ist.

20 11. Dichtring gemäß den Merkmalen von Anspruch 10,

wobei der axiale Abstand zwischen den axialen Außenseiten der beiden Schenkel (31,32) im Bereich zumindest der radial äußeren – insbesondere aller - an den Schenkeln (31,32) ausgebildeten Dichtelemente größer als der jeweilige axiale Wulstabstand der Reifenwülste (6,7) im montierten Betriebszustand auf der Felge (2) in dieser radialen Position ist.

25 12. Dichtring gemäß den Merkmalen von Anspruch 9 oder 10,

30 wobei die Differenz des axialen Abstands zwischen den axialen Außenseiten der beiden Schenkel (31,32) minus dem axialen Wulstabstand der Reifenwülste (6,7) im montierten Betriebszustand auf der Felge (2) in der jeweils zugeordneten radialen Position in radialer Richtung von einem Dichtelement zum nächsten Dichtelement

abnimmt.

FIG. 1

FIG. 2

3/12

FIG. 3a

FIG. 3b

4/12

FIG. 6

FIG. 5

FIG. 4

6/12

FIG. 10

FIG. 11

FIG. 16

7/12

FIG. 12

8/12

FIG. 13

FIG. 14

9/12

FIG. 15

10/12

FIG. 17

11/12

FIG. 18a

FIG. 18b

FIG. 19

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/050107

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B60C5/16 B60C15/028

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B60C B60B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 495 881 A (GIRARD ET AL) 5 March 1996 (1996-03-05) cited in the application column 3, line 20 - column 4, line 40; claims; figures	1-12
A	FR 707 078 A (MICHELIN ET COMPAGNIE) 2 July 1931 (1931-07-02) page 1 - page 2; figure 2	1-12
A	LU 33 419 A (GENSON J.P.) 28 April 1955 (1955-04-28) claims; figures	1-12
	----- -----	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

22 April 2005

Date of mailing of the International search report

03/05/2005

Name and mailing address of the ISA

European Patent Office, P.O. Box 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Thanbichler, P

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2005/050107

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 10 21 738 B (METZELER GUMMIWERKE AKTIENGESELLSCHAFT) 27 December 1957 (1957-12-27) cited in the application column 1 - column 2; claims; figure 1 -----	1-12
A	GB 787 784 A (DUNLOP RUBBER COMPANY LIMITED) 18 December 1957 (1957-12-18) cited in the application page 1, lines 9-11; claims; figure 1 page 1, lines 56-69 -----	1-12
A	GB 2 044 189 A (DUNLOP LTD) 15 October 1980 (1980-10-15) page 1, line 104 - page 2, line 114; claims; figures -----	1-12

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP2005/050107

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5495881	A	05-03-1996		FR 2705618 A1 AU 669620 B2 AU 6328894 A BR 9402068 A CA 2124413 A1 DE 69401237 D1 DE 69401237 T2 EP 0626279 A1 FI 942455 A JP 3345170 B2 JP 6328903 A		02-12-1994 13-06-1996 01-12-1994 13-12-1994 27-11-1994 06-02-1997 12-06-1997 30-11-1994 27-11-1994 18-11-2002 29-11-1994
FR 707078	A	02-07-1931		NONE		
LU 33419	A			NONE		
DE 1021738	B	27-12-1957		NONE		
GB 787784	A	18-12-1957		DE 1053334 B FR 69545 E FR 1133275 A		19-03-1959 10-11-1958 25-03-1957
GB 2044189	A	15-10-1980		IT 1150055 B AU 5620980 A DE 3008696 A1 FI 800651 A FR 2450703 A1 JP 1638929 C JP 3000241 B JP 55123506 A SE 8001688 A US 4289186 A ZA 8001223 A		10-12-1986 11-09-1980 11-09-1980 08-09-1980 03-10-1980 31-01-1992 07-01-1991 24-09-1980 08-09-1980 15-09-1981 26-08-1981

INTERNATIONAL RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/050107

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 B60C5/16 B60C15/028

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 B60C B60B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 5 495 881 A (GIRARD ET AL) 5. März 1996 (1996-03-05) in der Anmeldung erwähnt Spalte 3, Zeile 20 – Spalte 4, Zeile 40; Ansprüche; Abbildungen	1-12
A	FR 707 078 A (MICHELIN ET COMPAGNIE) 2. Juli 1931 (1931-07-02) Seite 1 – Seite 2; Abbildung 2	1-12
A	LU 33 419 A (GENSON J.P.) 28. April 1955 (1955-04-28) Ansprüche; Abbildungen	1-12
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelde datum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

22. April 2005

03/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensleiter

Thanbichler, P

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/050107

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 10 21 738 B (METZELER GUMMIWERKE AKTIENGESELLSCHAFT) 27. Dezember 1957 (1957-12-27) in der Anmeldung erwähnt Spalte 1 – Spalte 2; Ansprüche; Abbildung 1 ----- GB 787 784 A (DUNLOP RUBBER COMPANY LIMITED) 18. Dezember 1957 (1957-12-18) in der Anmeldung erwähnt Seite 1, Zeilen 9-11; Ansprüche; Abbildung 1 Seite 1, Zeilen 56-69 ----- GB 2 044 189 A (DUNLOP LTD) 15. Oktober 1980 (1980-10-15) Seite 1, Zeile 104 – Seite 2, Zeile 114; Ansprüche; Abbildungen -----	1-12
A		1-12
A		1-12

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/050107

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5495881	A	05-03-1996		FR 2705618 A1 AU 669620 B2 AU 6328894 A BR 9402068 A CA 2124413 A1 DE 69401237 D1 DE 69401237 T2 EP 0626279 A1 FI 942455 A JP 3345170 B2 JP 6328903 A		02-12-1994 13-06-1996 01-12-1994 13-12-1994 27-11-1994 06-02-1997 12-06-1997 30-11-1994 27-11-1994 18-11-2002 29-11-1994
FR 707078	A	02-07-1931		KEINE		
LU 33419	A			KEINE		
DE 1021738	B	27-12-1957		KEINE		
GB 787784	A	18-12-1957		DE 1053334 B FR 69545 E FR 1133275 A		19-03-1959 10-11-1958 25-03-1957
GB 2044189	A	15-10-1980		IT 1150055 B AU 5620980 A DE 3008696 A1 FI 800651 A FR 2450703 A1 JP 1638929 C JP 3000241 B JP 55123506 A SE 8001688 A US 4289186 A ZA 8001223 A		10-12-1986 11-09-1980 11-09-1980 08-09-1980 03-10-1980 31-01-1992 07-01-1991 24-09-1980 08-09-1980 15-09-1981 26-08-1981