

Taller # 01 | Generador de Números Pseudo Aleatorios y Pruebas de Bondad

Caicedo Hidalgo Geraldine [1527691] [geraldine.caicedo@correounivalle.edu.co]

Abstracto – Este documento presenta el análisis y explicación del taller número 1 de simulación computacional, el cual consiste en una implementación de un generador de números pseudo aleatorios GEM y comparar con el generador propio del lenguaje de programación usado empleando las pruebas de bondad, Chi Cuadrado, Poker 2 y 3.

Índice de Términos — pseudo aleatorios, generador, pruebas de bondad, GEM, chi cuadrado, poker.

GENERACION DE NUMEROS PSEUDO ALEATORIOS

Para implementar el generador de números pseudo aleatorios se utilizó el lenguaje Java, utilizando el generador visto en clase (GEM) y el generador de números de aleatorios provisto por Java.

Se garantiza en el codigo que el generador tenga una semilla diferente de 0.

PRUEBAS DE BONDAD

Se realizarán 3 pruebas diferentes a cada generador, Chi Cuadrado, Poker con dos decimales y con tres decimales.

Las pruebas se harán para dos cantidades de datos, 1.000 y 10.000.

La prueba de **Chi Cuadrado** se utiliza para comparar el comportamiento de los datos generados con la distribución uniforme U[0,1].

En esta prueba se calcula el número de clases, los grados de libertad los cuales para las cantidades de datos es:

Para 1.000:

numero de clases =
$$\sqrt{\text{cantidad de datos}}$$

= $\sqrt{1.000}$ = 31.62 \approx 32

$$grados de libertad = numero de clases - 1$$

= $32 - 1 = 31$

Para 10.000:

numero de clases =
$$\sqrt{\text{cantidad de datos}}$$

= $\sqrt{10.000}$ = 100

$$grados de \ libertad = numero de \ clases - 1$$

= $100 - 1 = 99$

Se clasifican los n datos en \sqrt{n} clases de frecuencia obtenida, se calcula la frecuencia esperada y el chi cuadrado calculado para cada clase, como es uniforme, la frecuencia esperada es igual para todos.

$$FE = numero de datos/numero de clases$$

Que para las dos cantidades de datos seria:

$$n = 1.000$$
; $FE = \frac{1.000}{32} = 31.25$

$$n = 10.000$$
; $FE = \frac{10.000}{100} = 100$

Para calcular chi cuadrado calculado se utiliza la siguiente formula:

$$X_{cal}^2 = \sum_{i} (FE_i - FO_i)^2 / FE_i$$

Teniendo en cuanta que el valor de confianza dado para calcula chi cuadrado es $\propto = 0.1$ se tiene el valor del chi cuadrado critico según el número de datos.

$$n = 1.000; \quad X_{crit}^2 = 41.4217$$

$$n = 10.000; \quad X_{crit}^2 = 118.498$$

Las pruebas de **Poker** se utilizan para analizar si los datos generados se comportan como datos verdaderamente aleatorios.

Para esta prueba se toman k dígitos decimales de un número pseudo aleatorio como una mano de k cartas de un juego de cartas, que están numeradas de 0 a 9.

Si estos números son independientes, deben ocurrir los mismos patrones, y con las mismas probabilidades que en un juego de poker:

- Todas las cartas iguales
- Cartas en orden creciente o decreciente

Se buscan patrones que sucedan en secuencias aleatorias de números del 0 al 9, agrupados en sub secuencias de tamaño k (las manos). Los patrones deben ser mutuamente disjuntos y exhaustivos.

Se calculan las probabilidades p_i teóricas de cada patrón i.

Se aplica la prueba chi cuadrado donde las calases corresponde a los patrones, las frecuencias observadas se determinan con las manos y las frecuencias esperadas de un patrón i corresponde a $p_i \ast n$

Para la prueba de **2** decimales las frecuencias observadas son:

- 2 números iguales
- 2 números diferentes

Para la prueba de **3** decimales las frecuencias observadas son:

- 3 números iguales
- 2 iguales y 1 diferente
- 3 números diferentes

GENERADOR GEM

El generador GEM se implementa con la relación de recurrencia:

$$X_{n+1} = (a * X_n + c) \mod m;$$
 $X_0 = semilla$
$$R_n = \frac{X_n}{m}$$

Donde a es el multiplicador; c es el incremento y m es el modulo.

Se tiene $0 \le X_n < m$, por eso $0 \le R_n < 1$.

Chi cuadrado

En la *Imagen 1* se muestra el resultado del test Chi Cuadrado para 1.000 números pseudo aleatorios con el generador GEM.

	Chi Squ	ared Tes				
Classes Number: 32.0						
Degrees of Freedom: 3	1.0					
Rank		OF		EF		(EF-OF) ^2/EF
[0.0 - 0.03125)	38		31.25		1.458	
[0.03125 - 0.0625)		27		31.25		0.578
[0.0625 - 0.09375)		38		31.25		1.458
[0.09375 - 0.125)		25		31.25		1.25
[0.125 - 0.15625)		29		31.25		0.162
[0.15625 - 0.1875)		28		31.25		0.338
[0.1875 - 0.21875)		29		31.25		0.162
[0.21875 - 0.25)		19		31.25		4.802
[0.25 - 0.28125)		30		31.25		0.05
[0.28125 - 0.3125)		29		31.25		0.162
[0.3125 - 0.34375)		34		31.25		0.242
[0.34375 - 0.375)		20		31.25		4.05
[0.375 - 0.40625)		33		31.25		0.098
[0.40625 - 0.4375)		43		31.25		4.418
[0.4375 - 0.46875)		27		31.25		0.578
[0.46875 - 0.5)	27		31.25		0.578	
[0.5 - 0.53125)	36		31.25		0.722	
[0.53125 - 0.5625)		26		31.25		0.882
[0.5625 - 0.59375)		24		31.25		1.682
[0.59375 - 0.625)		37		31.25		1.058
[0.625 - 0.65625)		33		31.25		0.098
[0.65625 - 0.6875)		31		31.25		0.002
[0.6875 - 0.71875)		36		31.25		0.722
[0.71875 - 0.75)		39		31.25		1.922
[0.75 - 0.78125)		37		31.25		1.058
[0.78125 - 0.8125)		34		31.25		0.242
[0.8125 - 0.84375)		41		31.25		3.042
[0.84375 - 0.875)		28		31.25		0.338
[0.875 - 0.90625)		32		31.25		0.018
[0.90625 - 0.9375)		19		31.25		4.802
[0.9375 - 0.96875)		34		31.25		0.242
[0.96875 - 1.0)	37		31.25		1.058	
Critical Chi Squared	41.4217					
Calculated Chi Square	d: 38.27	2				
Total Obtained Freque	ncy: 100	0				
Past the Test?: true						

Imagen 1. Resultados Chi Cuadrado de 1.000 números con Generador
GFM

En este caso se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

En la *Imagen 2* se muestra el resultado del test Chi Cuadrado para 10.000 números pseudo aleatorios con el generador GEM.

lasses Number: 100 egrees of Freedom:					
ank	OI	ī	EF	(EF-OF) ^2/EF	
0.0 - 0.01) 0.01 - 0.02)	103 96	100.0	0.09 0.16		
0.02 - 0.03)	83	100.0	2.89		
0.03 - 0.04)	114	100.0	1.96		
0.04 - 0.05)	87	100.0	1.69 100.0		
0.05 - 0.060000000		99	100.0	0.01	
0.0600000000000000	05 - 0.07) 90	99 100.0	100.0	0.01	
0.07 - 0.08) 0.08 - 0.09)	88	100.0	1.0		
0.09 - 0.099999999		85	1.44	2.25	
0.09999999999999			113	100.0	1.6
0.109999999999999			83	100.0	2.8
0.1199999999999999			111 112	100.0	1.2
0.129999999999999			112 100 0	100.0	1.4
0.139999999999999 0.15 - 0.16)		117		2.89	
0.16 - 0.16)	100	100.0	0.0		
0.17 - 0.180000000		95	100.0	0.25	
0.1800000000000000		0000003)	100	100.0	0.0
.1900000000000000	3 - 0.2000000000	0000004)	120	100.0	4.0
0.2000000000000000	4 - 0.2100000000	0000005)	92	100.0	0.6
			120	100.0	4.0
.22000000000000000			101 86	100.0	0.0
0.23000000000000000 0.240000000000000000			105	100.0	1.9
.25000000000000000			101	100.0	0.0
.2600000000000000			103	100.0	0.0
0.270000000000000000			98	100.0	0.0
0.28000000000000000	- 0.29000000000	00001)	110	100.0	1.0
0.2900000000000000			94	100.0	0.3
0.3000000000000000			93	100.0	0.4
3.310000000000000000	- 0.32000000000	000001)	85	100.0	2.2
0.32000000000000001 0.330000000000000001	- 0.330000000000	100001)	100 89	100.0 100.0	0.0
).340000000000000001).3400000000000000001			89 91	100.0	0.8
0.350000000000000001	4 - 0.3600000000	00000015)	97	100.0	0.0
0.35000000000000000 0.360000000000000000			94	100.0	0.3
0.37000000000000000			101	100.0	0.0
0.38000000000000001			112	100.0	1.4
0.39000000000000000 0.400000000000000000			103	100.0	0.0
0.40000000000000000 0.41000000000000000			88 99	100.0 100.0	1.4
0.4200000000000000			97	100.0	0.0
.43000000000000000			104	100.0	0.1
0.44000000000000000	- 0.45000000000	0000023)	95	100.0	0.2
0.45000000000000002	3 - 0.4600000000	0000024)	104	100.0	0.1
0.4600000000000000	4 - 0.4700000000	0000025)	111	100.0	1.2
0.4700000000000000			91	100.0	0.8
0.4800000000000000			108	100.0	0.6
0.4900000000000000			102	100.0	0.0
0.50000000000000000 0.510000000000000000			107 108	100.0 100.0	0.4
0.5200000000000000			108	100.0	0.0
0.53000000000000000			108	100.0	0.6
0.5400000000000000			108	100.0	0.6
0.5500000000000000	- 0.56000000000	000003)	104	100.0	0.1
0.5600000000000000			95	100.0	0.2
0.5700000000000000			92	100.0	0.6
0.5800000000000003 0.59000000000000003	- 0.59000000000	(000003)	107 88	100.0 100.0	0.4
0.6000000000000000	- 0.60000000000	100003)	102	100.0	0.0
0.61000000000000000			102	100.0	0.0
0.6200000000000000	- 0.63000000000	000003)	116	100.0	2.5
0.6300000000000000	- 0.64000000000	000003)	107	100.0	0.4
0.6400000000000000			85	100.0	2.2
0.65000000000000004			96	100.0	0.1
0.66000000000000004	- 0.67000000000	00004)	107	100.0	0.4
0.67000000000000004			97	100.0	0.0
0.68000000000000004			109 107	100.0 100.0	0.8
0.69000000000000004 0.700000000000000004	- 0.71000000000	100004)	107	100.0	2.5
0.70000000000000004 0.710000000000000004	- 0.7200000000	000004)	79	100.0	4.4
0.72000000000000004	- 0.73000000000	00004)	97	100.0	0.0
0.73000000000000004	- 0.74000000000	00004)	112	100.0	1.4
0.74000000000000004	- 0.75000000000	00004)	84	100.0	2.5
0.75000000000000004			99	100.0	0.0
0.7600000000000000			112	100.0	1.4 2.8
0.77000000000000005 0.78000000000000005			117 79	100.0 100.0	2.8 4.4
0.7800000000000000 0.79000000000000000	- 0.8000000000	(00005)	83	100.0	2.8
0.80000000000000000			107	100.0	0.4
0.8100000000000000			92	100.0	0.6
0.820000000000000			96	100.0	0.1
0.8300000000000005			103	100.0	0.0
0.84000000000000005			100	100.0	0.0
0.85000000000000005 0.86000000000000005			94 91	100.0	0.3
0.870000000000000000 0.87000000000000000	- 0.8800000000	100006)	102	100.0	0.0
.8800000000000000			94	100.0	0.3
0.8900000000000006	- 0.90000000000	(00006)	118	100.0	3.2
.9000000000000000	- 0.91000000000	100006)	98	100.0	0.0
0.9100000000000000	- 0.92000000000	00006)	107	100.0	0.4
0.9200000000000006			90	100.0	1.0
.9300000000000006			90	100.0	1.0
0.94000000000000006			93	100.0	0.4
0.95000000000000006 0.96000000000000006			106 103	100.0 100.0	0.3
0.97000000000000000	- 0.9800000000	100006)	103	100.0	0.0
	- 0.9800000000	100007	111	100.0	1.2
0.980000000000000					
0.9800000000000006 0.9900000000000000			107	100.0	0.4
	- 1.000000000000000000000000000000000000		107	100.0	0.4

Imagen 2. Resultados Chi Cuadrado de 10.000 números con Generador

Universidad del Valle Escuela de Ingeniería de Sistemas de Computación También aquí se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

Poker 2

En la *Imagen 3* se muestra el resultado del test Poker con 2 decimales para 1.000 números pseudo aleatorios con el generador GEM.

Class	OF	EF	x2
2 Equals	102	100.0	0.04
2 Diferents	898	900.0	0.00444444444444444
7-11	0.044444444		
Calculated Chi Squared:		14444446	
Critical Chi Squared	2.7055		

Imagen 3. Resultados Poker 2 decimales de 1.000 números con Generador GEM

Aqui se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

En la *Imagen 4* se muestra el resultado del test Poker con 2 decimales para 10.000 números pseudo aleatorios con el generador GEM.

Class	OF	EF	x2
2 Equals	864	1000.0	18.496
2 Diferents	9136	9000.0	2.05511111111111
Calculated Chi Squared:	20.551111111	11111	
Critical Chi Squared	2.7055		
Past the Test?: false			

Imagen 4. Resultados Poker 2 decimales de 10.000 números con Generador GEM

En este caso se puede ver que el generador no paso la prueba, ya que el chi cuadrado critico es menor que el chi cuadrado calculado.

Poker 3

En la *Imagen 5* se muestra el resultado del test Poker con 3 decimales para 1.000 números pseudo aleatorios con el generador GEM.

Class		OF		EF	x2
Equals		9		10.0	0.1
2 Equals, 1 Diferent	247		270.0		1.9592592592592593
3 Diferents		744		720.0	0.8
Calculated Chi Squared		2.85925	9259259259)	-
Critical Chi Squared		4.6052			
Past the Test?: true					

Imagen 5. Resultados Poker 3 decimales de 1.000 números con Generador GEM

En esta prueba se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

En la *Imagen 6* se muestra el resultado del test Poker con 3 decimales para 10.000 números pseudo aleatorios con el generador GEM.

Class		OF	EF	x2	
3 Equals		95	100.0	0.25	
2 Equals, 1 Diferent	2700	27	700.0	0.0	
3 Diferents		7205	7200.0		0.0034722222222222
Calculated Chi Squared		0.2534722222	222222		
Critical Chi Squared		4.6052			

Imagen 6. Resultados Poker 3 decimales de 10.000 números con Generador GEM

En este caso también se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

GENERADOR JAVA

Al elegir el lenguaje de programación Java se utilizó como generador de números pseudo aleatorios alternativo Util.Random para la comparación con el generador GEM.

Este generador utiliza un generador lineal congruente y sus parámetros son tomados del generador UNIX rand48 con una ligera variación en la función de la semilla.

El periodo de este generador es 2^{48} , y no puede producir todas las combinaciones de pares de 2 enteros posibles, y sus bits no son equitativamente aleatorios.

Chi Cuadrado

En la *Imagen 7* se muestra el resultado del test Chi Cuadrado para 1.000 números pseudo aleatorios con el generador Java.

Alli se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

En la *Imagen 9* se muestra el resultado del test Chi Cuadrado para 10.000 números pseudo aleatorios con el generador Java.

Classes Number: 32.0 Degrees of Freedom: 3	1.0					
Rank		OF		EF		(EF-OF) ^2/EI
[0.0 - 0.03125)	31		31.25		0.002	
[0.03125 - 0.0625)		33		31.25		0.098
[0.0625 - 0.09375)		34		31.25		0.242
[0.09375 - 0.125)		31		31.25		0.002
[0.125 - 0.15625)		32		31.25		0.018
[0.15625 - 0.1875)		33		31.25		0.098
[0.1875 - 0.21875)		32		31.25		0.018
[0.21875 - 0.25)		28		31.25		0.338
[0.25 - 0.28125)		28		31.25		0.338
[0.28125 - 0.3125)		29		31.25		0.162
[0.3125 - 0.34375)		40		31.25		2.45
[0.34375 - 0.375)		35		31.25		0.45
[0.375 - 0.40625)		32		31.25		0.018
[0.40625 - 0.4375)		42		31.25		3.698
[0.4375 - 0.46875)		33		31.25		0.098
[0.46875 - 0.5)	35		31.25		0.45	
[0.5 - 0.53125)	31		31.25		0.002	
[0.53125 - 0.5625)		14		31.25		9.522
[0.5625 - 0.59375)		24		31.25		1.682
[0.59375 - 0.625)		27		31.25		0.578
[0.625 - 0.65625)		27		31.25		0.578
[0.65625 - 0.6875)		27		31.25		0.578
[0.6875 - 0.71875)		37		31.25		1.058
[0.71875 - 0.75)		31		31.25		0.002
[0.75 - 0.78125)		32		31.25		0.018
[0.78125 - 0.8125)		31		31.25		0.002
[0.8125 - 0.84375)		28		31.25		0.338
[0.84375 - 0.875)		32		31.25		0.018
[0.875 - 0.90625)		32		31.25		0.018
[0.90625 - 0.9375)		27		31.25		0.578
[0.9375 - 0.96875)		38		31.25		1.458
[0.96875 - 1.0)	34		31.25		0.242	
Critical Chi Squared						
Calculated Chi Square	d: 25.151	.9999999	99997			

Imagen 7. Resultados Chi Cuadros de 1.000 números con Generador Java

En la *Imagen 9* se puede ver que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

Poker 2

En la *Imagen 8* se muestra el resultado del test Poker con 2 decimales para 1.000 números pseudo aleatorios con el generador Java.

Class	OF	EF	x2
2 Equals	69	100.0	9.61
2 Diferents	931	900.0	1.0677777777777777
Calculated Chi Squared:	10.67777777	777777	
Critical Chi Squared	2.7055		

Imagen 8. Resultados Poker con 2 Decimales de 1.000 números con Generador Java

Este test muestra que el generador no paso la prueba, ya que el chi cuadrado critico es menor que el chi cuadrado calculado.

En la *Imagen 10* se muestra el resultado del test Poker con 2 decimales para 10.000 números pseudo aleatorios con el generador Java.

egrees of Freedom:						
ank	OF		EF	2.25	(EF-OF) ^2/EF	
0.0 - 0.01) 0.01 - 0.02)	115	100.0		0.04		
0.01 - 0.02)	102 102	100.0		0.04		
0.03 - 0.04)	104	100.0 100.0 100.0		0.16		
0.04 - 0.05)	95	100.0		0.25		
0.05 - 0.060000000		111		100.0	1.21	
0.0600000000000000 0.07 - 0.08)	95	102		100.0	0.04	
0.07 - 0.08) 0.08 - 0.09)	95	100.0		0.25		
0.09 - 0.099999999		92		100.0	0.64	
0.099999999999999	9 - 0.109999999	9999999)		99	100.0	0.01
0.109999999999999				106	100.0	0.36
0.1199999999999999 0.1299999999999999				116	100.0 100.0	2.56
0.1299999999999999 0.1399999999999999		102		112 100.0	0.04	1.44
0.15 - 0.16)	104	100.0		0.16	0.01	
0.16 - 0.17)	102	100.0		0.04		
0.17 - 0.180000000		97		100.0	0.09	
0.1800000000000000				87	100.0	1.69
0.19000000000000000 0.20000000000000000				97 96	100.0	0.09
0.21000000000000000				111	100.0	1.21
0.22000000000000000				79	100.0	4.41
0.23000000000000000				119	100.0	3.61
0.2400000000000000				90	100.0	1.0
0.25000000000000000	6 - 0.2600000000	0000006)		97	100.0	0.09
0.26000000000000000				115	100.0	2.25
0.27000000000000000				110	100.0	1.0
0.28000000000000001 0.290000000000000001				104 75	100.0	0.16 6.25
0.30000000000000000				80	100.0	4.0
0.310000000000000000				85	100.0	2.25
0.32000000000000001				94	100.0	0.36
0.330000000000000001	- 0.34000000000	000014)		88	100.0	1.44
0.3400000000000000				113	100.0	1.69
0.35000000000000000				90	100.0	1.0
0.36000000000000001 0.370000000000000001				104 97	100.0	0.16
0.37000000000000000				83	100.0	2.89
0.39000000000000000				107	100.0	0.49
0.40000000000000000	- 0.41000000000	00002)		121	100.0	4.41
0.4100000000000000				100	100.0	0.0
0.4200000000000000				97	100.0	0.09
0.4300000000000000				93	100.0	0.49
0.44000000000000000				103 107	100.0	0.09
0.4500000000000000 0.46000000000000000				98	100.0 100.0	0.49
0.47000000000000000				111	100.0	1.21
0.4800000000000000				107	100.0	0.49
0.4900000000000000				107	100.0	0.49
0.5000000000000000				95	100.0	0.25
0.5100000000000000				97	100.0	0.09
0.5200000000000000				103	100.0	0.09
0.5300000000000000 0.5400000000000000				118 94	100.0	3.24 0.36
0.5500000000000000				102	100.0	0.04
0.5600000000000000				111	100.0	1.21
0.5700000000000000	- 0.58000000000	00003)		94	100.0	0.36
0.5800000000000000				86	100.0	1.96
0.5900000000000000				89	100.0	1.21
0.6000000000000000 0.6100000000000000				90 99	100.0	1.0
0.6200000000000000				99	100.0	0.01
0.6300000000000000				91	100.0	0.81
0.6400000000000000				108	100.0	0.64
0.65000000000000004				97	100.0	0.09
0.66000000000000004				109	100.0	0.81
0.67000000000000004	- 0.68000000000	00004)		102	100.0	0.04
0.68000000000000004				101	100.0	0.01
0.69000000000000004 0.700000000000000004				99 105	100.0	0.01
0.710000000000000004				104	100.0	0.25
0.720000000000000004				101	100.0	0.01
0.73000000000000004	- 0.74000000000	00004)		105	100.0	0.25
0.74000000000000004	- 0.75000000000	00004)		102	100.0	0.04
0.75000000000000004	- 0.76000000000	00005)		87	100.0	1.69
0.76000000000000005 0.77000000000000005	- 0.77000000000	00005)		84	100.0	2.56
0.77000000000000005 0.78000000000000005				114 110	100.0	1.96
0.7800000000000000 0.79000000000000000				110	100.0	1.44
0.8000000000000000				106	100.0	0.36
0.81000000000000000				86	100.0	1.96
0.8200000000000000				112	100.0	1.44
0.8300000000000005				99	100.0	0.01
0.840000000000000				89	100.0	1.21
0.85000000000000005				89	100.0	1.21
0.86000000000000005 0.87000000000000006				110 114	100.0	1.0
0.87000000000000006 0.88000000000000006				114	100.0	1.96 2.25
0.8900000000000000				114	100.0	1.96
0.9000000000000000				103	100.0	0.09
0.9100000000000006	- 0.92000000000	00006)		108	100.0	0.64
0.9200000000000006				94	100.0	0.36
0.9300000000000006				90	100.0	1.0
	- 0.95000000000			81	100.0	3.61
				95	100.0	0.25
0.9500000000000006		UUUU6)		93	100.0	
0.9500000000000006 0.96000000000000006				97		
0.9500000000000006 0.9600000000000000 0.9700000000000000	- 0.98000000000	00006)		97 89	100.0	0.09
0.9500000000000006 0.96000000000000006 0.97000000000000000	- 0.98000000000	00006) 00007)		97 89 92	100.0 100.0 100.0	1.21
0.9500000000000006 0.9600000000000000 0.9700000000000000	- 0.98000000000 - 0.990000000000	00006) 00007)		89	100.0	1.21

Imagen 9. Resultados Chi Cuadros de 10.000 números con Generador
Java

Poker	2 Test			
Class	OF	EF	x2	
2 Equals	839	1000.0		25.921
2 Diferents	9161	9000.0		2.8801111111111113
Calculated Chi Squared:	28.80111111	111112		
•	2.7055	111112		
Critical Chi Squared	2.7055			
Past the Test?: false				

Imagen 10. Resultados Poker con 2 Decimales de 10.000 números con Generador Java

Aquí se muestra que el generador no paso la prueba, ya que el chi cuadrado critico es menor que el chi cuadrado calculado.

Poker 3

En la *Imagen 11* se muestra el resultado del test Poker con 3 decimales para 1.000 números pseudo aleatorios con el generador Java.

Class		OF		EF	x2
3 Equals		7		10.0	0.9
2 Equals, 1 Diferent	271		270.0		0.003703703703703704
3 Diferents		722		720.0	0.005555555555555
Calculated Chi Squared	:	0.909259	925925925	92	•
Critical Chi Squared		4.6052			
Past the Test?: true					

Imagen 11. Resultados Poker con 3 Decimales de 1.000 números con Generador Java

En esta imagen se muestra que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

En la *Imagen 12* se muestra el resultado del test Poker con 3 decimales para 10.000 números pseudo aleatorios con el generador Java.

Class	OF	EF	ж2
3 Equals	113	100.0	1.69
2 Equals, 1 Diferent 273	32 27	00.0	0.3792592592592592
3 Diferents	7155	7200.0	0.28125
Calculated Chi Squared:	2.3505092592	159259	
Critical Chi Squared	4.6052		

Imagen 12. Resultados Poker con 3 Decimales de 10.000 números con Generador Java

Aquí se muestra que el generador paso la prueba, ya que el chi cuadrado critico es mayor que el chi cuadrado calculado.

ANALISIS DE LOS RESULTADOS

Según los resultados arrojados por las pruebas, el generador GEM implementado solo falla para las pruebas de Poker con dos decimales con una cantidad de números generados de 10.000, y el generador propio del lenguaje de programación Java,

falla en las pruebas de independencia, **Poker con dos decimales** en las dos cantidades de números probadas, 1.000 y 1000.

Es decir que en las pruebas de uniformidad los dos generadores son aceptables, pero en las pruebas de independencia, pasan solo con la prueba de **Poker con tres decimales**.

BIBLIOGRAFIA

- Diapositivas de Clase Simulación Computacional [Marzo 2017]
- Randomness of bits with LCGs Neil Coffey
 UK [2013]
 [http://www.javamex.com/tutorials/random_numbers/lcg_bit_positions.shtml]
- Java.lang.Random falls "mainly in the planes" – Neil Coffey - UK - [2013] [http://www.javamex.com/tutorials/random_numbers/lcg_planes.shtml]
- How does java.util.Random work and how good is it — Neil Coffey - UK -[2013] [http://www.javamex.com/tutorials/random_numbers/java_util_random_algorithm.s html#.WMS6W39yyvB]