

# Swiss Institute of Bioinformatics

# **Dimensionality Reduction**

Luciano Cascione, PhD Bioinformatics Core Unit

LUCIANO CASCIONE, PHD

BELLINZONA, OCT. 30TH 2024



### What for?

Goal: identify shared subpopulations across conditions or datasets





#### What for?

Goal: identify shared subpopulations across conditions or datasets





#### What for?

**Goal:** identify shared subpopulations across conditions or datasets enabling comprehensive analysis







#### Pro and Cons

- Enhanced Resolution: a more comprehensive view of cell populations, e.g. identify rare cell types
- Improved Robustness: findings more robust across different biological conditions and more generalizable
- **Greater Statistical Power**: improving the ability to detect subtle trends that could be missed in smaller datasets.

- Computational Complexity: Integrating large datasets requires sophisticated algorithms
- Potential Loss of Information: Masking biological signals specific to individual datasets
- Batch Effects: Introducing unwanted variability that complicates integration and analysis.



#### **Unwanted Sources of Variation**

Batch Effects: systematic techincal variations due to differences in:

- a) cell isolation and handling protocols,
- b) library preparation technology, and sequencing platforms





Batch effects can obscure true biological signals, making it difficult to compare datasets

#### **Unwanted Sources of Variation**

Confounders: variables (e.g. Gender, Age) that could influce gene expression



If they are not properly accounted for in the analysis they could potentially lead to misleading associations.





We could not differentiate the effect of treatment from the effect of sex





split the animals/samples equally between conditions















### How to integrate

- 1. Find corresponding cells across datasets (by computing a <u>distance</u> <u>between cells</u> in a certain space)
- 2. Compute a data adjustment based on correspondences between cells
- 3. Apply the adjustment



# Step 1





# Example



















## Final Integration





### Canonical Correlation Analysis + anchors

- Find corresponding cells across datasets (anchors) in (canonical-correlation analysis) L2-normalized CCA space and euclidean distance
- Compute a data adjustment based on correspondences between cells
- 3. Apply the adjustment



## Step1

#### Find corresponding cells across datasets







### L2-normalization of CCs





#### **Anchors Identification**







# Good performarce



Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species



#### Label transfer: CCA + anchor







# Thank you





