

Grundlagen der elektrischen Energietechnik

Teil 1: Energienetze

Aufgaben aus den Vorlesungen (Drehstromsysteme II und Drehstromsysteme III):

- I. Welche Bezeichnungen gibt es für die beiden Stromsysteme in einem Drehstromsystem?
- II. Wie groß ist der Bemessungsstrom eines Verbrauchers in Dreieckschaltung bei einem Strangstrom von 520 A?
- III. Was ist die Momentanleistung?
- IV. Wie ist die Wirkleistung definiert?
- V. Welcher Faktor gibt das Verhältnis zwischen Wirk- und Scheinleistung an?
- VI. Welche Leistungsart führt zu einem Pendeln der Austauschleistung im Netz?
- VII. Welche Einheiten haben die unterschiedlichen Leistungsarten?
- VIII. Eine symmetrische 420-kV-Übertragungsstrecke soll als Freileitungsstrecke ausgelegt werden. Die zu übertragende Scheinleistung sei 690 MVA bei einer Leiter-Erd-Betriebsspannung von 220 kV. Der Bündelleiter-Widerstand betrage auf der gesamten Strecke 10 Ohm. Der Erdwiderstand auf der gesamten Strecke betrage 5 Ohm.
 - a. Bestimmen Sie bitte den Außenleiterstrom!
 - b. Wie groß ist die gesamte Verlustleistung der Übertragungsstrecke?
 - c. Diskutieren sie die Effizienz der Leistungsübertragung!

- IX. Industrienetze mit induktiven Lasten (Elektrische Antriebe) haben hohe induktive Blindströme. Diese Blindströme bewirken hohe Leitungsverluste und eine starke Netzauslastung. Kapazitäten $X_{\mathbb{C}}$ am Netz-Einspeisepunkt speichern die Blindleistung zwischen. Die Blindleistung pendelt dann zwischen induktiven Verbrauchern $X_{\mathbb{C}}$ und Kondensatorbatterie $X_{\mathbb{C}}$ und belastet nicht das vorgelagerte Versorgungsnetz.
 - a. Stellen Sie im einphasigen ESB die Gleichung für die Kompensation der Blindleistung auf.
 - b. Bitte bestimmen Sie die Gleichung für die Kapazität der gesamten Kondensatorbank für den Netz-Einspeisepunkt!

Übung 2: Berechnung von Dreieckschaltungen

Ein Drehstromsystem 230/400 V - 50 Hz ist nach gegebener Skizze mit einer Dreieckschaltung belastet.

Die in den Strängen umgesetzten Leistungen betragen in R-S: P = 6 kW, in T-R: P = 3 kW und Q = 5 kvar, in S-T: reine Blindleistung von Q = (-) 2,5 kvar.

Es ist $\underline{U}_{ST} = U_{ST} \cdot e^{j \, 180^{\circ}}$.

- a) Es sind die Beträge der Strangströme \underline{I}_{RS} , \underline{I}_{ST} und \underline{I}_{TR} zu bestimmen sowie deren Phasenwinkel gegen die Strangspannungen. Welche Größe eilt vor?
- b) Die Leiterströme \underline{I}_R , \underline{I}_S und \underline{I}_T sind aus den Strangströmen rechnerisch zu ermitteln. Es ist ein Zeigerdiagramm zu konstruieren. (Maßstab: 40 V/cm, 4 A/cm)