Lista 4 - Curvas e funções vetoriais

- 1. Represente geometricamente as seguintes curvas paramétricas em \mathbb{R}^2 e determine os vetores velocidade e aceleração em cada ponto.
 - (a) $(x,y) = (2t+1,t^2);$
 - (b) $(x, y) = (\sin t, \cos t 3), \quad 0 \le t \le 2\pi.$
- 2. Represente geometricamente as seguintes curvas paramétricas em ${\bf R}^3$ e determine os vetores velocidade e aceleração em cada ponto.
 - (a) $(x, y, z) = (2\sin t, 4\cos t, 1), \quad 0 \le t \le 2\pi;$
 - (b) $(x, y, z) = (\cos t, \sin t, \frac{t}{2}\pi), -2\pi \le t \le 2\pi.$
- 3. Calcule os vetores velocidade e aceleração para todo o t e a equação da reta tangente no valor de t especificado:
 - (a) $(\sin(3t), \cos(3t), 2t^{3/2}), t = 1;$
 - (b) $(t \sin t, t \cos t, \sqrt{3}t), t = 0.$
- 4. Determine a equação vetorial da reta tangente à curva $x = \theta \sin \theta$, $y = 1 \cos \theta$ no ponto correspondente a $\theta_0 = \frac{\pi}{4}$ (em \mathbf{R}^2).
- 5. Determine uma representação paramétrica da curva indicada e a reta tangente à curva referida no ponto P_0 :

(a)
$$\frac{x^2}{4} + 2y^2 = 1$$
 e $z = 2$, $P_0 = (\sqrt{2}, \frac{1}{2}, 2)$;

(b)
$$z = x^2 + \frac{y^2}{4}$$
 e $z = 4x$, $P_0 = (4, 0, 16)$.

6. Para cada uma das seguintes curvas determine a reta tangente no ponto P_0 :

(a)
$$y = 3x - 2 \text{ em } \mathbf{R}^2$$
, $P_0 = (\frac{2}{3}, 0)$;

(b)
$$x = y^3 = z^2 + 1$$
 em \mathbb{R}^3 , $P_0 = (1, 1, 0)$.

7. Seja C a curva em \mathbb{R}^3 definida pelas equações paramétricas

$$x = \cos(2t), \ y = \frac{2}{3}\sqrt{t^3}, \ z = \sin(2t), \quad t \in [0, 4].$$

Suponha que a curva C corresponde à trajetória de uma partícula P.

- (a) Calcule o comprimento do caminho percorrido pela partícula P.
- (b) Determine uma equação da reta tangente à trajetória no ponto $(0,\frac{\sqrt{\pi^3}}{12},1).$
- 8. Considere a função vetorial $\vec{r}:[0,\frac{\pi}{4}]\to\mathbb{R}^2$, $\vec{r}(t)=e^t(\cos(2t),\sin(2t))$.
 - (a) Mostre que $\|\frac{d\vec{r}}{dt}(t)\| = \sqrt{5} e^t$ e calcule o comprimento da curva C definida por \vec{r} .
 - (b) Determine a parametrização de C por comprimento de arco s(t) verificando s(0) = 0.
- 9. (a) Identifique o domínio da função vetorial $\vec{\sigma}(t) = \frac{1}{t}\vec{i} + \frac{1}{\sqrt{t-1}}\vec{j} + \frac{1}{t-2}\vec{k}$.
 - (b) Calcule $\vec{\sigma}'(t)$ e $\vec{\sigma}''(t)$.
- 10. Sejam $\vec{\sigma}_1(t) = e^t \vec{i} + (\sin t) \vec{j} + t^3 \vec{k}$ e $\vec{\sigma}_2(t) = e^{-t} \vec{i} + (\cos t) \vec{j} 2t^3 \vec{k}$. Calcule as seguintes derivadas:
 - (a) $\frac{d}{dt}[\vec{\sigma}_1(t).\vec{\sigma}_2(t)];$
 - (b) $\frac{d}{dt}[\vec{\sigma}_1(t^2)].$
- 11. Seja $\vec{\sigma}$ uma função vetorial diferenciável em \mathbb{R} , tal que $\vec{\sigma}'(t) \neq 0$, $\forall t$. Mostre que se t_0 é ponto de máximo local da função $\tau(t) = ||\vec{\sigma}(t)||$, então $\vec{\sigma}'(t_0)$ e a $\vec{\sigma}(t_0)$ são perpendiculares.
- 12. Suponhamos que uma partícula segue um caminho C, descrito por $(e^t, e^{-t}, \cos t)$ até ao instante t = 0, a partir do qual segue pelo caminho descrito pela reta tangente a C nesse instante. Onde se encontra a partícula em t = 2?
- 13. Considere a função vetorial

$$\vec{\sigma}(t) = \frac{t}{2}\vec{i} + \cos(\sqrt{2}t)\vec{j} + \sin(\sqrt{2}t)\vec{k}, \quad t \in [0, 2\pi],$$

e designe por C a curva paramétrica definida por $\vec{\sigma}$. Suponha que C corresponde à trajetória de uma partícula P.

- (a) Determine o vector tangente unitário em cada ponto da curva C.
- (b) Calcule o comprimento da curva C.
- (c) Determine a função comprimento de arco da curva C.
- (d) Determine a parametrização de C por comprimento de arco s(t) verificando s(0)=0.
- (e) Determine as posições inicial e final da partícula P.
- (f) Determine a distância percorrida pela partícula P para $t = \frac{\pi}{2}$.
- (g) Em que ponto se encontra a partícula P após ter percorrido uma distância de $\frac{\pi}{2\sqrt{2}}$.