Amazon AWS Training

Cloud computing

Cloud

- Provides computing resources on-demand
 - Resources are rapidly provisioned
 - Resources are created with minimal management effort
 - "Unlimited" capacity
- Several cloud types
 - Public cloud
 - Private cloud
 - Hybrid cloud

Cloud types

Public cloud	Private cloud	Hybrid cloud
+ Elasticity and unlimited capacity	+ Better cost control	+ Unlimited capacity and elasticity
+ No up-front investment needed	+ In-house knowledge	+ Balance between up-front investment and on-demand cost
+ Focus on core business	+ Independent on third party	+ Lower overall costs
+ Cloud provider's experience		
+ Economy of scale	- Off the shelf hardware	
+ Custom hardware	- Limited capacity	
	- Worse economy of scale	
- Higher costs	- Up-front investment	

- laaS
 - Infrastructure as a service
 - Basic computing resources
 - Virtual machines
 - Virtual networks
 - Virtual disk
 - In short, whatever you can do with physical hardware, you can usually do with laaS as well

- PaaS
 - Platform as a Service
 - Environment for deploying, orchestrating, managing and monitoring applications
 - Abstracts from used infrastructure
 - Developer doesn't care about the used virtual machines, the platform takes care
 - For example: Kubernetes, Cloud Foundry

SaaS

- Software as a Service
- User doesn't care about how and where the software runs
- Provider is responsible for managing the infrastructure, installing updates etc.
- Example:
 - User requests MySQL database with 100GB capacity and performance of 1000 ops/s
 - User gets username / password and hostname / port
 - Connects to the database and uses it
 - User doesn't care where the database is running, it simply runs for him

Cloud native applications

- Exploit the advantages of running in cloud
 - Scalability
 - Density
 - Agility

Microservices

- Many small services with limited functionality
- Loosely coupled through APIs (HTTP, AMQP)
- Independent on each other (technically but also personally)

Cloud native applications

DevOps

- Operators developing and developers operating
- Tasks being done manually in the past are more automated

Containers

- Build once, run everywhere
- Help to increase the compute density
- Continuous Integration / Continuous Deployment
 - Many releases per day, each automatically tested and deployed

Cloud native applications

- Horizontal vs. vertical scalability
 - Run in more instances instead of run single bigger instance
- Stateless applications
 - State is causing problems
 - State is concentrated in single place (e.g. in database server)
 - Leads to rapid recovery

Cloud providers

- AWS is not the only cloud provider
 - Microsoft Azure and Google Cloud are the main competitors
 - Many smaller providers
- Major providers provide very similar services
 - There are no standards and no cross provider compatibility
 - Moving from one provider to another is possible, but is not effort less
 - Some services are proprietary and can create a lock-in!
 - Choosing an independent PaaS can prevent future problems, because the PaaS makes the applications independent on specific laaS

Pricing

- Cloud is not cheap
 - To leverage the cost advantages, the applications have to be written for cloud
- Different price components
 - Per time unit (e.g. per hour of running virtual machine)
 - Per data transfer (e.g. per GB of transferred data)
 - Per operation (e.g. per million of DNS queries)
 - Careful: Amazon AWS bills per hour!

Amazon AWS

Amazon AWS in DBG

- "Culture eats cloud for breakfast" (Jakub Scholz ©)
 - The fact that cloud allows something, doesn't mean that we will be able to use it
- Amazon AWS is organized into accounts
 - (not user accounts!)
 - Accounts can be interconnected
 - Sandbox account
 - Development account
 - Test account
 - Production account
 - Some additional special purpose accounts
 - Billing is summed up across all accounts and routed through I&O

Amazon AWS in DBG

- Sandbox account
 - Isolated from DBG networks
 - Access over Wi-Fi
 - Wide range of privileges / access rights
- Development accounts
 - Linked with DBG network
 - Access from our office computers
 - Unclear access rights

Tagging

- Most AWS resources can be tagged with one or more tags
- Some tags are considered mandatory by DBG to keep some order within the account
 - Name
 - Creator
 - Owner
 - CostCenter
- Used to split the cost bill
- Resources not matching these tags should be deleted

How to access AWS?

- Web console (login using SAML with DBG credentials and token)
 - Simple to use access to browser
 - Useful to try things for the first time or to setup a single machine
 - Not suitable for any serious deployments and CI/CD integration
- APIs
 - Access using access key, secret key and session token
 - Many different tools for scripting the deployments
 - AWS CLI tool
 - Ansible
 - Terraform
- The login credentials from SAML expire after 60 minutes
- Access to APIs and console is possible from DBG network. SSH access is not always possible.

Amazon AWS

Regions and Availability Zones

Regions and Availability zones

- AWS cloud is split into regions
 - Some regions are special (GovCloud, China)
 - Most regions are available to everyone
 - Prices differ per region
 - Each region has a name (us-east-1, eu-central-1)
- Every region is split into several Availability Zones (AZ)
 - Different regions have different number of Azs
 - Frankfurt has currently only 2
 - Most regions have 3 AZs, some have even more
 - One AZ is usually one or more datacenters
 - Each AZ has name based on its region (eu-west-1a, eu-west-1b, eu-west-1c)

Regions and Availability zones

- Not every service is available in every region
- Only few services are truly global (e.g. S3, Route 53, IAM)
- Most services are enclosed within a single region or even within one AZ
 - E.g. disk volumes or virtual machines are locked into their AZ
- Single AZ has no SLA
 - To build reliable applications, you have to span them across multiple AZs
 - Costs more effort than just starting one machine and having it run
- DBG preferred region is Frankfurt (eu-central-1)
 - Alternative region with 3 AZs is Ireland (eu-west-1)

Lab 1: AWS Web Console

- Login to the AWS Web Console
- Select the correct region
- Get familiar with the basic controls
- http://jsch.cz/awslab1

Amazon AWS

Identity management

Identity management

- Identity Management (IAM)
 - Manages the identity of users and resources
 - Users = People
 - Resources = Roles
 - Different resources can have different roles and make use of them
 - E.g. IAM role can be assigned to EC2 host and used by the software running on this host
 - As a part of software deployment, roles with required permissions should be created and assigned to resources
- IAM supports federated identities using SAML
 - Allows you to login with your DBG credentials

Amazon AWS

Infrastructure as a Service

VPC

- Virtual Private Cloud
- Your private virtual datacenter in AWS
 - Most laaS resources which you create will be within VPC
- Every VPC has a CIDR
 - CIDR defines the range of IP addresses which you can use in your VPC
 - When using multiple VPCs, be careful so that the IP addresses don't collide with each other as that might cause problems
 - a.b.c.d/N
 - a.b.c.0/24 gives you 256 IP addresses (~254 instances)
 - a.b.0.0/16 gives you 65536 IP addresses
- VPC is region wide resource

Subnets

- Subnets are virtual networks in your datacenter
- Most resources you create later are in one or more subnets
- Subnets are linked with a Route Table which defines the routing in such subnet
 - Route Tables can be used to connect subnets to the outside (Internet) as well as to connect to other subnets
- Subnets always belong to single AZ

Internet Gateway / NAT Gateway

- Internet Gateway (IGW) gives your VPC access to internet
 - Without IGW, your VPC can communicate internally, but not externally (well, pretty much ...)
 - Subnet with direct route to IGW is "Public" subnet
 - Subnet without route to IGW is "Private" subnet
- NAT Gateway protects your instances from direct internet access
 - Instances in private networks can get to internet through NAT
 - NAT gateway has to be placed in public subnet to route the trafic to internet
 - Private subnets can have a route to NAT gateway to be able to connect online (e.g. to download updates)

Internet Gateway / NAT Gateway

Other networking resources

- Network ACL
 - Can define access control on network level
- Elastic IPs
 - Reserved public IP addresses
 - For free when they are assigned to a resource
 - Paid when unassigned (the avoid misuse)
- VPC Peering
- VPN Connections and Direct connections

Lab 2: VPC and Networking

- Create a VPC
- Create Internet Gateway and NAT
- Create public and private subnets in at least two AZs and connect them to internet
- http://jsch.cz/awslab2

Storage

- Elastic Block Storage (EBS)
 - Different types of volumes
 - SSD disks
 - IOPS disks
 - Disks are limited to single AZ
 - Disks can be encrypted
 - Some instances are optimized for EBS performance
- Snapshots
 - Snapshot copies of EBS volumes
 - Can be used as backups
 - Can be created from volumes / volumes can be created from snapshots

Storage

- Elastic File System (EFS)
 - Basically NFS based file system
 - Mirrored across AZs within one region
 - Performance is not as good as with SSDs

Compute

- EC2 instances are the main compute resource
- Virtual machines
 - Different types
 - Memory optimizes, CPU optimized, Disk optimized, GPU, FPGA, ...
 - T2 instances
 - Have burstable CPU
 - Each instance has some credits per time unit which it can consume
 - T2.micro is usually good starting point for some playtime
- EC2 instances can be stopped or restarted from the console
- Pricing
 - Per hour
 - On-demand vs. Reserved vs. Spot vs. Dedicated
 - Price is independent on utilization!

Compute

- Amazon Machine Images (AMI)
 - Volume snapshots with operating system
 - Are used to create new machine with specific operating system
 - Images available from Amazon or from Market place
 - Custom images can be created from existing volumes / hosts
 - Some images create more expensive instances (e.g. Red Hat Enterprise Linux)

Security Groups

- Security Groups (SG) are software firewall provided by Amazon
 - Instances are assigned into a security group
 - Security group defines which ports on the machine are opened to access from outside
 - SSH on node 22
 - HTTP(S) on 80 and 443

Security Groups

Lab 3: Create a Webserver

- Create a new EC2 instance in your public subnet
- Install a Nginx webserver on it
- Check that you can access the webserver
- http://jsch.cz/awslab3

Auto-Scaling

- Auto scaling is controlled using Auto Scaling Groups (ASG)
 - Specify desired, maximum and minimum number of running instances
 - Can be used to automatically start new machine when the old one crashed
 - Desired=1, Min=1, Max=1
 - Can be used to scale the resources
 - CPU utilization is the basic factor
 - Other factors can be build in (Memory, custom metrics, etc.)
 - Can scale machines across AZs
 - When one AZ goes down, can be used to automatically start a new machine in other AZ
- Bootstrapping
 - ASGs use Launch Configurations to start new instances
 - Custom AMI images
 - User data code

Load balancing

- Elastic Load Balancing (ELB)
 - Allows to route and balance traffic between multiple instances
 - Can terminate SSL connections
 - Classic load balancers
 - Support TCP/TLS or HTTP(S) routing
 - For HTTP, they support sticky sessions, but cannot route according to URL
 - Application load balancers
 - Support only HTTP(S)
 - Support more advanced routing
 - E.g. myshop.com/orders/* goes to instance A, myshop.com/items/* goes to instance B
 - Always use the DNS name, the IP address of ELB can change

Lab 4: Create an ASG with webservers

- Create an AMI image from your webserver from previous Lab
- Use the AMI image with an ASG which starts your webservers in your private subnet
- Use load balancer to balance the traffic between different webservers
- Check that when you terminate one of the servers, a new one will be spawned by ASG
- http://jsch.cz/awslab4

Amazon AWS

Managed services

Managed services

- Amazon AWS has many different managed services
 - Some of them are just packaged open source tools
 - Other are proprietary solutions
 - Careful with lock in
- Areas
 - Storage
 - Databases
 - PaaS
 - Messaging
 - Connectivity
 - Development

Storage

S3

- Virtually unlimited space for object storage
- Objects (files) are stored in S3 buckets
- Within the buckets, folder structure can be created and files can be uploaded into it
- Objects are accessible through HTTP
- Policies can be associated with buckets
 - Is it free to access by everyone? Or only by authenticated users? Or only internally?
- Can be used to host complete websites
- Considered usually as the cheapest way how to store and distribute files
- Supports versioning of files

Storage

- Glacier
 - Cold data storage
 - Cheaper than S3
 - Slower access / bigger latency
 - Files from S3 which are not being accessed that often can be automatically offloaded into Glacier

Databases

- AWS has several DB offerings
 - RDS
 - Allows to easily start different databases (MySQL, PostgreSQL, Oracle, MSSQL, MariaDB)
 - Aurora
 - Amazon's own SQL engine with MySQL and PostgreSQL interface compatibility
 - Fully managed service
 - Dynamo
 - NoSQL database
 - Document store, Graph database, Key-Value store
 - Redshift
 - Proprietary SQL database based on very old PostgreSQL database
 - ElasticCache
 - Caching engine based on Memcached and/or Redis

PaaS

- Elastic Beanstalk
 - PaaS which allows to run applications in different languages
 - Java, .NET, Python, Node.js, Ruby, PHP, Go, Docker
- EC2 Container Service
 - Allows to run Docker containers on a fleet of EC2 instances
 - Different containers can have different roles etc.

PaaS

- Lambda
 - Serverless programming
 - Small functions which are triggered from outside (cron job, HTTP request, Messaging)
 - Paid per runtime
 - Can be used for automation tasks but also to construct bigger applications
 - Carefull about latency issues before the Lambda function starts

Messaging

- SNS / SQS
 - Amazon's proprietary messaging service
 - SQS = Simple Queue Service
 - SNS = Simple Notification service
 - Compared to something like AMQP very primitive
 - But very well integrated with other Amazon services (e.g. to trigger Lambda function per message etc.)

Connectivity

- Route53
 - DNS service
 - Can host public or private zones and register domains
 - Can be used independent on other Amazon services (a DNS hosting for services running elsewhere)
 - Good integration with other AWS services (e.g. ELB etc.)
- CloudFront CDN
- API Gateway

And lot more

- Development
- Analytics
- Go to "Services" in the web console to see all services

Lab 5: S3 & Lambda

- Create new S3 bucket
- Create new Lambda function which is triggered by changes to files in the S3 bucket
- http://jsch.cz/awslab5

Amazon AWS

Monitoring

Cloudwatch

- Monitoring tool for Cloud resources
 - Create dashboards with charts
 - Create alerts (can be linked with Auto Scaling Groups)
 - By default the metrics are received every 5 minutes (every minute as paid service)
 - The default offering of metrics is limited for EC2 hosts
 - By default, Amazon doesn't have any information about your VM apart from CPU consumption
 - Additional metrics like memory consumption have to be provided by agent running inside of the VM

Other tools

- CloudTrail
 - Audit log for the activates happening in the Amazon account
- CostAdvisor
 - Can help to optimize costs (e.g. recommend better instances to be used etc.)

Lab 6: Delete all resources which you created

- Delete all resources which you created during the labs
- http://jsch.cz/awslab6

https://github.com/scholzj/dbg-aws-training