Cálculo III

Curvas e campos vetoriais

Prof. Adriano Barbosa

Curvas

Uma função vetorial, ou função a valores vetoriais, é uma função cujo domínio é um conjunto de números reais e cuja imagem é um conjunto de vetores.

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t) \,\mathbf{i} + g(t) \,\mathbf{j} + h(t) \,\mathbf{k}$$

Exemplo

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin t \,\mathbf{j}$$

Exemplo

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin t \,\mathbf{j}$$

$$x = \cos t \qquad y = \sin t$$

$$x^2 + y^2 = \cos^2 t + \sin^2 t = 1$$

Exemplo

$$x = \cos t \qquad y = \sin t$$

Exemplo

$$\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$$

$$x = \cos t \qquad y = \sin t \qquad z = t$$

Exemplo

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin t \,\mathbf{j} + t \,\mathbf{k}$$

$$x = \cos t$$
 $y = \sin t$ $z = t$

Exemplo

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

$$L \qquad P_{0}(x_{0}, y_{0}, z_{0})$$

$$a \qquad P(x, y, z)$$

$$x \qquad x \qquad P(x, y, z)$$

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle$$

Exemplo

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$
$$\mathbf{v} = \mathbf{r}_1 - \mathbf{r}_0$$

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1$$

O segmento de reta de \mathbf{r}_0 até \mathbf{r}_1 é dado pela equação vetorial $\mathbf{r}(t) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$

Exemplo

Determine uma equação vetorial e as equações paramétricas para o segmento de reta ligando o ponto P(1,3,-2) ao ponto Q(2,-1,3).

Exemplo

Determine uma equação vetorial e as equações paramétricas para o segmento de reta ligando o ponto P(1,3,-2) ao ponto Q(2,-1,3).

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

$$\mathbf{r}_0 = \langle 1, 3, -2 \rangle$$
 e $\mathbf{r}_1 = \langle 2, -1, 3 \rangle$

Exemplo

$$\mathbf{r}(t) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

Determine uma equação vetorial e as equações paramétricas para o segmento de reta ligando o ponto P(1,3,-2) ao ponto Q(2,-1,3).

$$\mathbf{r}_0 = \langle 1, 3, -2 \rangle \; e \; \mathbf{r}_1 = \langle 2, -1, 3 \rangle$$

$$\mathbf{r}(t) = (1-t)\langle 1, 3, -2 \rangle + t\langle 2, -1, 3 \rangle$$

$$\mathbf{r}(t) = \langle 1 + t, 3 - 4t, -2 + 5t \rangle$$
 $0 \le t \le 1$

 $0 \le t \le 1$

Campos vetoriais Tal voltaria del propositione del propo

Campos vetoriais

Seja D um conjunto em \mathbb{R}^2 (uma região plana). Um **campo vetorial em** \mathbb{R}^2 é uma função \mathbf{F} que associa a cada ponto (x,y) em D um vetor bidimensional $\mathbf{F}(x,y)$.

Campos vetoriais

Seja E um subconjunto de \mathbb{R}^3 . Um **campo vetorial em** \mathbb{R}^3 ϵ uma função \mathbf{F} que associa a cada ponto (x,y,z) em E um vetor tridimensional $\mathbf{F}(x,y,z)$.

Exemplo

Um campo vetorial em \mathbb{R}^2 é definido por $\mathbf{F}(x,y)=-y\,\mathbf{i}+x\,\mathbf{j}$. Descreva \mathbf{F} esboçando alguns dos vetores $\mathbf{F}(x,y)$

Exemplo

Um campo vetorial em \mathbb{R}^2 é definido por $\mathbf{F}(x,y)=-y\,\mathbf{i}+x\,\mathbf{j}$. Descreva \mathbf{F} esboçando alguns dos vetores $\mathbf{F}(x,y)$

(x, y)	$\mathbf{F}(x, y)$	(x, y)	$\mathbf{F}(x, y)$
(1, 0)	(0, 1)	(-1, 0)	$\langle 0, -1 \rangle$
(2, 2)	$\langle -2, 2 \rangle$	(-2, -2)	$\langle 2, -2 \rangle$
(3, 0)	(0, 3)	(-3, 0)	$\langle 0, -3 \rangle$
(0, 1)	⟨−1, 0⟩	(0, -1)	$\langle 1, 0 \rangle$
(-2, 2)	$\langle -2, -2 \rangle$	(2, -2)	(2, 2)
(0.3)	(-3.0)	(0, -3)	(3.0)

Exemplo

Um campo vetorial em \mathbb{R}^2 é definido por $\mathbf{F}(x,y)=-y\,\mathbf{i}+x\,\mathbf{j}.$ Descreva \mathbf{F} esboçando alguns dos vetores $\mathbf{F}(x,y)$

(x, y)	F (x, y)	(x, y)	$\mathbf{F}(x, y)$
(1, 0)	(0, 1)	(-1, 0)	$\langle 0, -1 \rangle$
(2, 2)	⟨−2, 2⟩	(-2, -2)	$\langle 2, -2 \rangle$
(3, 0)	(0, 3)	(-3, 0)	$\langle 0, -3 \rangle$
(0, 1)	$\langle -1, 0 \rangle$	(0, -1)	(1, 0)
(-2, 2)	$\langle -2, -2 \rangle$	(2, -2)	(2, 2)
(0, 3)	⟨−3, 0⟩	(0, -3)	(3, 0)

Exemplo

Um campo vetorial em \mathbb{R}^2 é definido por $\mathbf{F}(x, y) = -y \mathbf{i} + x \mathbf{j}$. Descreva \mathbf{F} esboçando alguns dos vetores $\mathbf{F}(x, y)$

(x, y)	F (<i>x</i> , <i>y</i>)	(x, y)	F (<i>x</i> , <i>y</i>)
(1, 0)	(0, 1)	(-1, 0)	⟨0, −1⟩
(2, 2)	$\langle -2, 2 \rangle$	(-2, -2)	$\langle 2, -2 \rangle$
(3, 0)	(0, 3)	(-3, 0)	$\langle 0, -3 \rangle$
(0, 1)	⟨−1, 0⟩	(0, -1)	(1, 0)
(-2, 2)	$\langle -2, -2 \rangle$	(2, -2)	(2, 2)
(0, 3)	⟨−3, 0⟩	(0, -3)	⟨3, 0⟩

$$\mathbf{x} \cdot \mathbf{F}(\mathbf{x}) = (x \,\mathbf{i} + y \,\mathbf{j}) \cdot (-y \,\mathbf{i} + x \,\mathbf{j}) = -xy + yx = 0$$

$$|\mathbf{F}(x, y)| = \sqrt{(-y)^2 + x^2} = \sqrt{x^2 + y^2} = |\mathbf{x}|$$

Exemplo

A Lei da Gravitação de Newton afirma que a intensidade da força gravitacional entre dois objetos com massas $m \in M$ é

$$|\mathbf{F}| = \frac{mMG}{r^2}$$

onde r é a distância entre os objetos e G é a constante gravitacional.

Exemplo

A Lei da Gravitação de Newton afirma que a intensidade da força gravitacional entre dois objetos com massas m e M é

$$|\mathbf{F}| = \frac{mMG}{r^2}$$

onde r é a distância entre os objetos e G é a constante gravitacional.

Portanto, a força gravitacional agindo no objeto em $\mathbf{x} = \langle x, y, z \rangle$ é

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3} \mathbf{x}$$

$$\mathbf{F}(x, y, z) = \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$

Campo gradiente

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Campo gradiente

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

$$f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$$

$$f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$$

$$\nabla f(x, y, z) = \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$

$$= \mathbf{E}(x, y, z)$$

Campo conservativo

Um campo vetorial ${\bf F}$ é chamado ${\bf campo}$ vetorial ${\bf conservativo}$ se ele for o gradiente de alguma função escalar, ou seja, se existir uma função f tal que $\mathbf{F} = \nabla f$.

Nessa situação, f é denominada função potencial de \mathbf{F} .

Exercícios

Descreva a curva definida pela função vetorial

$$\mathbf{r}(t) = \langle 1+t, 2+5t, -1+6t \rangle$$

Determine o domínio de $\mathbf{r}(t) = \langle t^3, \ln(3-t), \sqrt{t} \rangle$ [0, 3)

Determine o campo vetorial gradiente $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$