1 Preliminaries

1.1 Σ is semi-positive definite

We can tell that the covariance matrix Σ is semi-positive definite since, for every vector $x \in \mathbb{R}^n$:

$$x^{T} \Sigma x = x^{T} \left(\frac{1}{N} \sum_{i=1}^{N} (D_{i} - \overline{D})(D_{i} - \overline{D})^{T} \right) x$$

$$= \frac{1}{N} \sum_{i=1}^{N} x^{T} (D_{i} - \overline{D})(D_{i} - \overline{D})^{T} x$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[x^{T} (D_{i} - \overline{D}) \right]^{2}$$

$$\geq 0$$

$$(1)$$

For the sake of simplicity, we will consider for rest of the assignment that Σ is positive definite (i.e. the matrix is non-singular).

1.2 Convexity and solutions of the problem

Convexity

We know that

$$\begin{bmatrix} \max_{x \in \mathbb{R}^n} c(x) = R^T x \\ \text{s.t.} \quad f(x) = \sum_{i=1}^n x_i - B = 0 \\ g_i(x) = x_i \ge 0 \quad \text{for } i = 1, ..., n \end{bmatrix} = - \begin{bmatrix} \min_{x \in \mathbb{R}^n} \tilde{c}(x) = -c(x) = -R^T x \\ \text{s.t.} \quad f(x) = \sum_{i=1}^n x_i - B = 0 \\ g_i(x) = x_i \ge 0 \quad \text{for } i = 1, ..., n \end{bmatrix}$$
(2)

Since then, we know that the minimization problem in equation (2) is equivalent to the initial maximization problem. This problem is convex since

- It is a minimization problem;
- The objective function \tilde{c} is linear;
- Equality constraint function f is linear;
- Inequality constraint functions $\{g_i\}_{i=1}^n$ are linear.

Solutions

The solutions are easy to find: we look at the set $I=\{i \text{ s.t. } R_i\geq R_j \ \forall j=1,\ldots,n\}$. The set of solutions is thus $S=\{x\in\mathbb{R}^n \text{ s.t. } \sum_{i\in I} x_i=B \text{ and } x_j\geq 0 \ \forall j=1,\ldots,n\}$. In other terms, we look at the assets for which the expected return is the highest, and we invest all the budget B in these assets. Note that if |I|=1, then |S|=1 and, if |I|>1, then $|S|=\infty$.

For any $x^* \in S$, we find the value of $c(x^*)$ on the diagram given in the statement in the following way. First, we compute the risk $r = x^{*T} \Sigma x^*$. Then the solution is the y-axis value of the intersection of the red line with the line where the x-axis is equal to r.

An example is given on Figure 1 for a x^* such that $r = x^{*T} \Sigma x^* = 0.6$.

Figure 1: Application for r = 0.6

2 Risk-variance trade-off

2.1 Convexity and solutions of the problem

Convexity

We write the optimization problem as

$$\min_{x \in \mathbb{R}^n} c(x) = x^T \Sigma x$$
s.t. $f_1(x) = \sum_{i=1}^n x_i - B = 0$

$$f_2(x) = R^T x - T = 0$$

$$g_i(x) = x_i \ge 0 \quad \text{for } i = 1, ..., n$$
(3)

This problem is convex since

- It is a minimization problem;
- The objective function c is quadratic with $\Sigma \succ 0$;
- Equality constraint function f_1 and f_2 are linear;
- Inequality constraint functions $\{g_i\}_{i=1}^n$ are linear.

Solutions

For x^* an optimal solution of the problem (3), we find the value of $c(x^*)$ on the diagram given in the statement by looking at the x-axis value of the intersection of the red line with the line where the y-axis is equal to T.

An example is given on Figure 2 for T = 0.03.

Solution of such an optimization problem is unique since the objective function c is a quadratic form with Σ positive definite, i.e. a **strictly convex** function.

2.2 Parabolic border

The parabolic border represents :

Figure 2: Application for T = 0.03

- For each possible risk : the maximal returns or,
- For each possible returns: the minimal risk.

In order to derive the parabolic border the we can see on Figures 1 and 2, we will relax the inequality constraints and solve the convex optimization problem (3) using the Lagrangian multipliers. We consider the Lagrangian function $\mathcal{L}(x, \lambda_1, \lambda_2) = c(x) + \lambda_1 f_1(x) + \lambda_2 f_2(x)$. The aim is to find $(x^*, \lambda_1^*, \lambda_2^*)$ such that

$$\nabla \mathcal{L}(x^*, \lambda_1^*, \lambda_2^*) = 0 \iff \nabla c(x^*) = -\lambda_1^* f_1(x^*) - \lambda_2^* f_2(x^*)$$
(4)

We redefine $f_1(x) = \sum_{i=1}^n x_i - B = u^T x - B$ with $u = (1 \ 1 \ \dots \ 1)^T$. Since $\nabla c(x) = 2\Sigma x$, $\nabla f_1(x) = u$ and $\nabla f_2(x) = R$, we have

$$2\Sigma x^* = -\lambda_1^* u - \lambda_2^* R \tag{5}$$

and, using the fact that Σ is non-singular

$$x^* = -\Sigma^{-1} \left(\frac{\lambda_1^*}{2} u + \frac{\lambda_2^*}{2} R \right) \tag{6}$$

Now we inject the optimal value of x^* in the constraints. We evaluate $f_1(x^*) = 0$ and $f_2(x^*) = 0$, which gives us the linear system

$$\begin{cases} (R^T \Sigma^{-1} R) \lambda_1^* + (R^T \Sigma^{-1} u) \lambda_2^* = -2T \\ (u^T \Sigma^{-1} R) \lambda_1^* + (u^T \Sigma^{-1} u) \lambda_2^* = -2B \end{cases}$$
 (7)

We define $\alpha_1=(R^T\Sigma^{-1}R),\ \alpha_2=(R^T\Sigma^{-1}u),\ \alpha_3=(u^T\Sigma^{-1}R)=\alpha_2$ (since Σ^{-1} is symmetric) and $\alpha_4=(u^T\Sigma^{-1}u)$. Now equation (8) becomes

$$\begin{cases} \alpha_1 \lambda_1^* + \alpha_2 \lambda_2^* = -2T \\ \alpha_2 \lambda_1^* + \alpha_4 \lambda_2^* = -2B \end{cases}$$
 (8)

The solution of this system is

$$\frac{\lambda_1^*}{2} = -\frac{\alpha_4 T - \alpha_2 B}{\alpha_1 \alpha_4 - \alpha_2^2}
\frac{\lambda_2^*}{2} = -\frac{\alpha_1 B - \alpha_2 T}{\alpha_1 \alpha_4 - \alpha_2^2}$$
(9)

Now that λ_1^* and λ_2^* are computed, we can check at the value of the cost function $c(x^*)$ for the optimal solution (given in equation (6)). Remembering that $f_1(x^*) = 0$ and $f_2(x^*) = 0$, we get

$$c(x^*) = x^{*T} \Sigma x^*$$

$$= -x^{*T} \left(\frac{\lambda_1^*}{2} u + \frac{\lambda_2^*}{2} R \right)$$

$$= -\frac{\lambda_1^*}{2} x^{*T} u - \frac{\lambda_2^*}{2} x^{*T} R$$

$$= -\frac{\lambda_1^*}{2} B - \frac{\lambda_2^*}{2} T$$

$$= \frac{\alpha_4 T^2 - 2\alpha_2 BT + \alpha_1 B^2}{\alpha_1 \alpha_4 - \alpha_2^2}$$
(10)

Now, if we consider T as a variable, we can express the cost function as \tilde{c} , a function of T. \tilde{c} is a parabola since

$$\tilde{c}(T) = \left(\frac{\alpha_4}{\alpha_1 \alpha_4 - \alpha_2^2}\right) T^2 - \left(\frac{2\alpha_2 B}{\alpha_1 \alpha_4 - \alpha_2^2}\right) T + \left(\frac{\alpha_1 B^2}{\alpha_1 \alpha_4 - \alpha_2^2}\right) \tag{11}$$

3 Markowitz model

We will now consider the maximization of a linear combination of the risk and overall return. Given a positive parameter μ , it consists in minimizing the objective $x^{\top}\Sigma x - \mu R^{\top}x$

3.1 Convexity and solutions of the problem

Convexity

The optimization problem is thus:

$$\min_{x} \quad x^{\top} \Sigma x - \mu R^{\top} x$$
s.t.
$$\sum_{i=1}^{n} x_{i} = B$$

$$x_{i} \ge 0 \quad \text{for } i = 1, ..., n$$
(12)

We already proved the feasible region is convex in Question 1.2. Since it is a minimization problem, it remains to be proved that the objective function is convex:

- the quadratic function $x^{\top}\Sigma x$ is convex considering its hessian matrix is Σ and is positive definite.
- $R^{\top}x$ is an linear function, thus $-\mu R^{\top}x$ is also linear and, consequently, convex.
- the sum of two convex functions is also convex.

It leads to the conclusion that the problem is convex.

Solutions

Given the parameter μ , we can find the solutions of the problem on the diagram by finding the line of slope $1/\mu$ that is tangent to the efficient frontier of the diagram.

Indeed, the optimal value is given by $f(x^*) = x^{*\top} \Sigma x^* - \mu(R^\top x^*)$ which leads to a line of equation Y = aX + b where $Y = R^\top x$, $a = \frac{1}{\mu}$, $X = x^\top \Sigma x$ and $b = -\frac{1}{\mu} f(x^*)$.

On Figure 3, for $\mu = 5$, we approximately find the line of equation y = 0.2x - 0.006 and $f(x^*) = 0.03$.

Figure 3: Application for $\mu = 5$

3.2 Lagrangian dual problem

Let be $f_0(x) = x^{\top} \Sigma x - \mu R^{\top} x$, the objective function of the primal function, $f_i(x) = -x_i \le 0$ for i = 1, ..., n, the *n* inequality constraints and $h_1(x) = \sum_{i=1}^n x_i - B = 0$, the equality constraint.

The Lagrangian function is equal to:

$$\mathcal{L}(x,\lambda,\nu) = f_o(x) + \sum_{i=1}^n \lambda_i f_i(x) + \nu_1 h_1(x)$$

$$= x^{\top} \Sigma x - \mu R^{\top} x + \sum_{i=1}^n \lambda_i e_i^{\top} x + \nu_1 (u^{\top} x - B)$$
(13)

where e_i is the i-th unit vector of the standard basis and u is the vector of all entries equals to one.

The dual function $g(\lambda, \nu)$ is equal to $\min_x \mathcal{L}(x, \lambda, \nu)$. We need to compute the partial derivative of the lagrangian function $\mathcal{L}(x, \lambda, \nu)$ with respect to the variable x:

$$\frac{\partial \mathcal{L}}{\partial x}(x,\lambda,\nu) = x^{\top}(\Sigma + \Sigma^{\top}) - \mu R^{\top} + \sum_{i=1}^{n} \lambda_{i} e_{i}^{\top} + \nu_{1} u^{\top}$$

$$= 2x^{\top} \Sigma - \mu R^{\top} + \sum_{i=1}^{n} \lambda_{i} e_{i}^{\top} + \nu_{1} u^{\top}$$
(14)

We have to find x^* such that the partial derivative of the lagrangian function $\mathcal{L}(x,\lambda,\nu)$ with respect to the variable x is equal to zero :

$$\frac{\partial \mathcal{L}}{\partial x}(x^*, \lambda, \nu) = 0 \iff x^* = \frac{1}{2} \Sigma^{-1} \left(\mu R - \sum_{i=1}^n \lambda_i e_i - \nu_1 u \right)$$
 (15)

We obtain thus the following expression for the dual function:

$$g(\lambda, \nu) = \min_{x} \mathcal{L}(x, \lambda, \nu)$$

$$= \mathcal{L}(x^{*}, \lambda, \nu)$$

$$= x^{*T} \Sigma x^{*} - \mu R^{T} x^{*} + \sum_{i=1}^{n} \lambda_{i} e_{i}^{T} x^{*} + \nu_{1} (u^{T} x^{*} - B)$$

$$= \left(x^{*T} \Sigma - \mu R^{T} + \sum_{i=1}^{n} \lambda_{i} e_{i}^{T} + \nu_{1} (u^{T}) \right) x^{*} - \nu_{1} B$$

$$= \left(\frac{1}{2} \left(\mu R^{T} - \sum_{i=1}^{n} \lambda_{i} e_{i}^{T} - \nu_{1} u^{T} \right) - \mu R^{T} + \sum_{i=1}^{n} \lambda_{i} e_{i}^{T} + \nu_{1} u^{T} \right) \frac{1}{2} \Sigma^{-1} \left(\mu R - \sum_{i=1}^{n} \lambda_{i} e_{i} - \nu_{1} u \right) - \nu_{1} B$$

$$= -\frac{1}{4} \left(\mu R^{T} - \sum_{i=1}^{n} \lambda_{i} e_{i}^{T} - \nu_{1} u^{T} \right) \Sigma^{-1} \left(\mu R - \sum_{i=1}^{n} \lambda_{i} e_{i} - \nu_{1} u \right) - \nu_{1} B$$

$$= -\frac{\mu^{2}}{4} R^{T} \Sigma^{-1} R + \frac{\mu}{2} R^{T} \Sigma^{-1} \left(\sum_{i=1}^{n} \lambda_{i} e_{i} + \nu_{1} u \right) - \frac{1}{4} \left(\sum_{i=1}^{n} \lambda_{i} e_{i}^{T} + \nu_{1} u^{T} \right) \Sigma^{-1} \left(\sum_{i=1}^{n} \lambda_{i} e_{i} + \nu_{1} u \right) - \nu_{1} B$$

$$(16)$$

We would like to have a concave function $g(\lambda_1,...,\lambda_n,\nu_1)$ and this can be verified by computing the Hessian matrix of g based on the term $-\frac{1}{4}(\sum_{i=1}^n \lambda_i e_i^\top + \nu_1 u^\top) \Sigma^{-1}(\sum_{i=1}^n \lambda_i e_i + \nu_1 u)$:

$$Hg = -\frac{1}{4} \begin{bmatrix} \Sigma^{-1} & \Sigma^{-1} u \\ u^{\mathsf{T}} \Sigma^{-1} & u^{\mathsf{T}} \Sigma^{-1} u \end{bmatrix}$$
 (17)

We already know that Σ is positive definite and thus Σ^{-1} also. We see that the last row of the matrix is a linear combination of the n other rows thus the eigenvalues of the Hessian matrix are the eigenvalues of Σ^{-1} (all strictly positive by assumption) multiplied by $\frac{1}{4}$ and the value zero.

Thus, the eigenvalues of the Hessian matrix of $g(\lambda_1, ..., \lambda_n, \nu_1)$ are all negative and by definition, the function g is concave. The dual function is useful because it provides a lower bound to our initial problem by solving the following optimization problem:

$$\max_{\lambda,\nu_1} g(\lambda,\nu_1)$$
s.t. $\lambda_i \ge 0$ for $i = 1, ..., n$

$$\iff -\min_{\lambda,\nu_1} -g(\lambda,\nu_1)$$
s.t. $\lambda_i \ge 0$ for $i = 1, ..., n$

4 Sharpe ratio

We will now consider an other way of scalarizing the bi-criteria portfolio optimization problem. Given a independently available risk-free return r > 0, we will now maximize the difference between the overall return and this risk-free return, divided by the standard deviation of the portfolio's return.

This leads to an objective equal to $\frac{R^{\top}x-r}{\sqrt{x^{\top}\Sigma x}}$.

4.1 Convexity of the problem

The optimization problem is thus:

$$-\min_{x} \frac{r - R^{\top} x}{\sqrt{x^{\top} \Sigma x}}$$
s.t.
$$\sum_{i=1}^{n} x_{i} = B$$

$$x_{i} \ge 0 \quad \text{for } i = 1, ..., n$$

$$(19)$$

We already proved the feasible region is convex in Question 1.2. We want now to know if $F(x) = \frac{r - R^{\top} x}{\sqrt{x^{\top} \Sigma x}}$ is convex. We reformulate the function in the following way:

$$F(x) = \frac{f_N(x)}{f_D(x)}$$
with $f_N(x) = r - R^{\top}x$ linear function : $\lambda f_D(x) + (1 - \lambda)f_D(y) = f_D(\lambda x + (1 - \lambda)y)$

$$f_D(x) = \sqrt{x^{\top} \Sigma x} \quad \text{convex function} : \lambda f_D(x) + (1 - \lambda)f_D(y) \ge f_D(\lambda x + (1 - \lambda)y)$$
(20)

By definition, the convexity condition is the following:

$$\lambda F(x) + (1 - \lambda)F(y) \ge F(\lambda x + (1 - \lambda)y)$$

$$\iff \lambda \frac{f_N(x)}{f_D(x)} + (1 - \lambda)\frac{f_N(y)}{f_D(y)} \ge \frac{f_N(\lambda x + (1 - \lambda)y)}{f_D(\lambda x + (1 - \lambda)y)}$$

$$\iff \frac{\lambda f_N(x)f_D(y) + (1 - \lambda)f_N(y)f_D(x)}{f_D(x)f_D(y)} \ge \frac{f_N(\lambda x + (1 - \lambda)y)}{f_D(\lambda x + (1 - \lambda)y)}$$

$$\iff [\lambda f_N(x)f_D(y) + (1 - \lambda)f_N(y)f_D(x)]f_D(\lambda x + (1 - \lambda)y) \ge f_N(\lambda x + (1 - \lambda)y)f_D(x)f_D(y)$$

$$\iff [\lambda f_N(x)f_D(y) + (1 - \lambda)f_N(y)f_D(x)]f_D(\lambda x + (1 - \lambda)y) \ge f_N(\lambda x + (1 - \lambda)y)f_D(x)f_D(y)$$

Using properties that f_D is convex and f_N is linear, we obtain :

$$[\lambda f_N(x) f_D(y) + (1 - \lambda) f_N(y) f_D(x)] [\lambda f_D(x) + (1 - \lambda) f_D(y)] \ge [\lambda f_N(x) + (1 - \lambda) f_N(y)] f_D(x) f_D(y)$$
(22)

By factorization and division by $\lambda(1-\lambda)$, it leads to the convexity condition:

$$-f_N(x)f_D(x)f_D(y) + f_N(y)f_D(x)^2 + f_N(x)f_D(y)^2 - f_N(y)f_D(y)f_D(x) \ge 0$$

$$\iff [f_D(x) - f_D(y)][f_N(y)f_D(x) - f_N(x)f_D(y)] \ge 0$$
(23)

In other words, we have the following conditions:

$$f_D(x) \le f_D(y)$$
 and $f_N(y)f_D(x) \le f_N(x)f_D(y)$
or
$$f_D(y) \le f_D(x)$$
 and $f_N(x)f_D(y) \le f_N(y)f_D(x)$ (24)

For example, we can take $x = [B, 0, 0, ..., 0]^{\mathsf{T}}$ and $y = [0, B, 0, ..., 0]^{\mathsf{T}}$, convexity conditions become :

or
$$\sqrt{B\Sigma_{11}B} \leq \sqrt{B\Sigma_{22}B} \quad \text{and} \quad (r - R_2B)\sqrt{B\Sigma_{11}B} \leq (r - R_1B)\sqrt{B\Sigma_{22}B}$$
or
$$\sqrt{B\Sigma_{22}B} \leq \sqrt{B\Sigma_{11}B} \quad \text{and} \quad (r - R_1B)\sqrt{B\Sigma_{22}B} \leq (r - R_2B)\sqrt{B\Sigma_{11}B}$$

$$\Sigma_{11} \leq \Sigma_{22} \quad \text{and} \quad R_2\Sigma_{11} \geq R_1\Sigma_{22}$$

$$\Longrightarrow \quad \text{or}$$

$$\Sigma_{22} \leq \Sigma_{11} \quad \text{and} \quad R_1\Sigma_{22} \geq \Sigma_{11}R_2$$

$$(25)$$

Thus, there are conditions on vector R and matrix Σ and we can find some R and Σ such that above conditions are not respected and consequently, the function is not convex.

4.2 Convex reformulation of the problem

First, we can reformulate the numerator by using the equivalence $\sum_{i=1}^n x_i = B \iff \frac{1}{B} \sum_{i=1}^n x_i = 1$:

$$-F(x) = \frac{R^{\top}x - r}{\sqrt{x^{\top}\Sigma x}} = \frac{R^{\top}x - \frac{1}{B}u^{\top}x}{\sqrt{x^{\top}\Sigma x}} = \frac{\tilde{R}^{\top}x}{\sqrt{x^{\top}\Sigma x}} \quad \text{with } \tilde{R}_i = R_i - \frac{1}{B} \quad \text{for } i = 1, ..., n$$
 (26)

We can prove that F(x) is 0-homogeneous, i.e. $F(\lambda x) = F(x)$ for $\lambda > 0$ since :

$$F(\lambda x) = \frac{-\lambda \tilde{R}^{\top} x}{\sqrt{\lambda^2 x^{\top} \Sigma x}} = \frac{\lambda}{|\lambda|} \frac{-\tilde{R}^{\top} x}{\sqrt{x^{\top} \Sigma x}} = \frac{-\tilde{R}^{\top} x}{\sqrt{x^{\top} \Sigma x}} \quad \text{for } \lambda > 0$$
 (27)

We can now reformulate our problem in the following way:

$$\max_{y} \frac{1}{\sqrt{y^{\top} \Sigma y}}$$
s.t. $\tilde{R}^{\top} y = 1$

$$y_{i} \geq 0 \quad \text{for } i = 1, ..., n$$

$$(28)$$

Indeed, given an optimal solution x^* of the problem (19), since F(x) is 0-homogeneous, x^* and λx^* ($\forall \lambda > 0$) are solutions of the problem without the condition $\sum_{j=1}^n x_j^* = B$. Thus, given an optimal solution y^* of the problem (28), if we find α such that $x^* = \alpha y^*$ and :

$$\sum_{j=1}^{n} x_j^* = B \quad \text{and} \quad x_j^* \ge 0 \quad \text{for } i = 1, ..., n$$
 (29)

Then, y^* is also solution of the first problem because we have :

$$-F(x^*) = -F(\alpha y^*) = -F(y^*) = \frac{\tilde{R}^\top y^*}{\sqrt{y^{*\top} \Sigma y^*}} = \frac{1}{\sqrt{y^{*\top} \Sigma y^*}}$$
(30)

This can be verified with $x^* = \left(\frac{B}{\sum_{i=1}^n y_i^*}\right) y^*$:

$$\sum_{j=1}^{n} x_{j}^{*} = \sum_{j=1}^{n} \frac{B}{\sum_{i=1}^{n} y_{i}^{*}} y_{j}^{*} = B \frac{\sum_{j=1}^{n} y_{j}^{*}}{\sum_{i=1}^{n} y_{i}^{*}} = B$$
(31)

And

$$y_i \ge 0$$
 for $i = 1, ..., n$ and $B > 0$
 $\Longrightarrow y_i \ge 0$ for $i = 1, ..., n$ and $\frac{B}{\sum_{i=1}^n y_i^*} > 0$
 $\Longrightarrow x_i \ge 0$ for $i = 1, ..., n$ (32)

Finally, the optimization problem from equation (28) is equivalent to:

$$\min_{y} \sqrt{y^{\top} \Sigma y}$$
s.t. $\tilde{R}^{\top} y = 1$

$$y_{i} \geq 0 \quad \text{for } i = 1, ..., n$$
(33)

Find the optimal solution x^* our initial problem from equation (19) is thus equivalent to find the optimal value y^* of problem (33) and compute $x^* = \left(\frac{B}{\sum_{i=1}^n y_i^*}\right) y^*$ with the advantage that our new formulation is a convex optimization problem.

Bonus: solutions

We can find the optimal value of our optimization $-\min_x F(x) = \frac{r - R^\top x}{\sqrt{x^\top \Sigma x}}$ by a similar way as in Question 3.1.

The optimal value is given by $-F(x^*)$ and we have $F(x^*) = \frac{r - R^\top x *}{\sqrt{x^{*\top} \Sigma x^*}} \iff R^\top x * = -F(x^*) \sqrt{x^{*\top} \Sigma x^*} + r$ which leads to a curve of equation $Y = a\sqrt{X} + b$ where $Y = R^\top x$, $a = -F(x^*)$, $X = x^\top \Sigma x$ and b = r.

In order to find the optimal objective, we search the parameter $a = -F(x^*)$ such that the curve $Y = a\sqrt{X} + r$ intersects the parabola (section 2.2) at one point.