

Layout Symmetry Annotation for Analog Circuits with Graph Neural Networks

Xiaohan Gao¹, Chenhui Deng², Mingjie Liu³, Zhiru Zhang², David Z. Pan³, Yibo Lin¹

¹Department of Computer Science, Peking University

²ECE Department, Cornell University

³ECE Department, The University of Texas at Austin

Outline

- Introduction and Problem Formulation
- SymDetect: Our Proposed Framework
- Experimental Results
- Conclusions and Future Work

Analog Layout Automation

Analog/mixed signal IC design still relies heavily on manual design

Automatic constraint annotation is a critical step to existing analog layout automation tools, such as ALIGN [DAC'19, Kunal+], MAGICAL [ICCAD'19, Xu+]

Symmetry Constraint Annotation

- Symmetry Constraint
 - Symmetry constraint is one of the substantial and representative constraints for layout design

Comparator Schematic

Comparator Layout

Prior Works and Challenges

- Categorized into two major types
 - Circuit analysis
 - Graph matching
- Circuit analysis
 - Traditional circuit analysis [ICCAD'93, Charbon+]
- Graph matching
 - Analog constraints extraction based on the signal flow analysis [ASICON'05, Zhou+]
 - S3DET: detecting symmetry constraint by [ASPDAC'11, Liu+]

Prior Works and Challenges

Challenges

- The performance highly-correlated to empirical parameters
- The surrounding structures of symmetry constraints varies considerably
- No incorporation of designer expertise

Graph Neural Networks (GNNs)

- Graph Neural Networks
 - Graph neural networks are powerful in modeling implicit features of graph structure data
 - Analog circuits → hypergraphs
- Transductive and inductive settings
 - Transductive

```
GCN [ICLR'17, Kipf+]
```

Inductive

GraphSage [NeurIPS'17, Hamilton+]

Transductive and inductive

GAT [ICLR'18, Velickovic+]

GNNs: Node Embedding

Node Embedding

- Map each node in a graph into a lowdimensional space
- Capture the insight from local graph structure and node features
- Sample and aggregation scheme
 - Compute node embeddings by sampling neighbor nodes and aggregating their embeddings

Problem Formulation

- Input
 - netlist
 - labeled symmetry pairs
- Output
 - For a new circuitto predict symmetry pairs
- Objective
 - to build a model with:maximum annotation accuracy

SymDetect: Overall Flow

Overall Flow of SymDetect

SymDetect: Graph Representation

- Graph Representation
 - Both device instances and device pins are recognized as graph nodes
 - Edges connecting pin nodes with their corresponding device nodes
 - The pin nodes form a clique if sharing the same net

SymDetect: Feature Extraction

- Feature extraction
 - Type-based feature
 - Path-based feature
- Type-based feature
 - Type information as part of node feature
 - A 2-dimension vector to indicatewhether a node is a device or a pin[0, 1] for a device, [1, 0] for a pin
 - A 13-dimension one-hot vector

device types: capacitor, resistor, diode, NMOS, PMOS, IO

pin types: source, drain, gate, substrate, passive, cathode of a diode, anode of a diode

SymDetect: Feature Extraction

- Feature Extraction
 - Type-based feature
 - Path-based feature
- Path-based feature
 - Characterize the global position of each node by computing the length of VSS/GND-sourced paths

SymDetect: Sample and Aggregate Model

- Sage
 - Sample from neighborhood

SymDetect: Sample and Aggregate Model

Sage

- Aggregate by aggregator function
- $-h_v^k = \sigma(W \cdot \{h_v^{\{k-1\}} \oplus MEAN(h_u^{\{k-1\}}, \forall u \in \mathbf{N}(v))\})$

SymDetect: Sample and Aggregate Model

- Sage
 - Take aggregation depth K=2

SymDetect: Binary Classification

- Binary Classification
 - We designate a **label** y for each node pair (v_1, v_2) 1 for symmetric, 0 for non-symmetric
 - We calculate the probability of label y = 1 by **bilinear scoring function**:

$$prob = \sigma(z_1^T W z_2)$$

where $\sigma(\cdot)$ is an activation function, z_1 and z_2 are node embeddings

— We apply binary cross entropy loss to train our GNN model:

$$loss = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot \log(prob_i) + (1 - y_i) \cdot \log(1 - prob_i)$$

SymDetect: Post Processing

- Post Processing
 - To reduce false alarms
- Rule-based filter
 - The **sizes and types** of two symmetric nodes are supposed to be identical
- Probability-based filter
 - A device node appears in no more than one symmetry pair
 - The filter sorts all candidate pairs by predicted probabilities
 - Pick the pair with higher probability

Experimental Setup

- Baseline methods
 - S³DET [ASPDAC'20, Liu+]
 - signal flow analysis (SFA) [ICCAD'19, Xu+]
- Dataset statistics

Datasets	Circuits	Nodes	Edges	Valid pairs	Pos/Neg
S^3 -leaf	10	1378	9149	1522	89/1433
ALIGN-leaf	5	580	2134	576	48/528
OTA	5	684	3422	750	45/705

Experimental Setup

- Evaluation metric
 - We adopt: true positive rate(TPR), false positive rate(FPR), and F1-score and ROC

$$-TPR = \frac{TP}{P}$$

$$-FPR = \frac{FP}{N}$$

$$-F1 - score = \frac{2TP}{2TP + FN + FP}$$

$$-ROC \text{ plots the } TPR \text{ against the } FPR$$

confusion matrix

Experimental Results

- Experimental Results
 - TPR and FPR:

Experimental Results

Experimental Results

– F1-score:

Experimental Results

Experimental Results

- Runtime:
- The one-shot training time costs less than 2 minutes
- The inference time per circuit (about 0.1s) is comparable to the other two approaches

Conclusions and Future Work

Conclusions

- A graph learning based framework for layout symmetry annotation in analog circuits
- Node feature extraction from both local information (device/pin type) and global graph structure (path length from VSS/GND)
- A training technique to learn the node similarity from the imbalanced data
- The proposed approach outperforms previous symmetry annotation

Future work

- Extend our GNN-based approach to system symmetry constraint
- We can also include **other constraints** such as matching constraint or shielding constraint

Thanks! Questions are welcome

Email: xiaohangao@pku.edu.cn