Models of Computation: DFAs & NFAs

Models of Computation: DFAs & NFAs

Deterministic/Non-deterministic Finite Automata

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 2

Mindmap

Decision problems

Models of Computation

Language recognition Terminology

DFAs

Informal definition Important rules JFLAP

Formal definition Formal description

NFAs

Models of Computation: DFAs & NFAs

Mindmap

Decision

Models of

Language recognition
Terminology

DFAs

Informal definition Important rules JFLAP Formal definition

FAs

- Tedious but doable: **exhaustive search**.
- → decision problem: given data, decide if it has a certain property.
- Can divide all possible instances of the problem into yes instances and no instances.
- Simplify the way we describe the problems that machines will solve.
 - Turn search problems into decision problems

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of

Language recognition
Terminology

DFAs

Example
Informal definition
Important rules
JFLAP
Formal definition

NFAs

- Want to think more precisely about **problems** and **computation**.
- \rightarrow categorise them by the **type of computation** which resolves them.
- \rightarrow idea of **models** of computation
- We introduce simple, theoretical machines and study their limits.
 - Far simpler than Von Neumann Machines, ...
 - ... but some have greater power than Von Neumann machines, ...
 - but cannot be created in reality!

Mindmap

Decision problems

Models of Computation

Language recognition

DFAc

Example
Informal definition
Important rules
JFLAP

JFLAP
Formal definition
Formal description

NFAs

- Alphabet: a, b, c, \dots, x, y, z (plus spaces, punctuation, etc.)
- However, not all strings over this alphabet are members of the language.
- → English is a **subset** of "all possible strings over its alphabet."

In general:

- A problem **instance** can be represented as a **string of symbols**.
- Instances which yield yes are said to belong to the corresponding language for the problem.
- Instances which yield **no** (including invalid strings) do not belong to the language.

wiinamap

Decision problems

Models of Computation

Concept of language Language recognition

DFAs

Example
Informal definition
Important rules

Formal definition
Formal description

NFAs

Concept of "language"

Decision problems can be encoded as problems of language recognition.

Problem: is a given number even?

Instance: An integer *n* (represented in binary).

Question: Is *n* even?

Example

- Given $n = 12_{10} = 1100_2$, the answer is **ves** because $12 = 2 \times 6$.
 - **Given** $n = 13_{10} = 1101_2$, the answer is **no** because $13 = 2 \times 6 + 1$.

Here:

Integers = $\{0, 1, 10, 11, 100, 101, 110, 111, 1000, \ldots\}$

Even = $\{0, 10, 100, 110, 1000, \ldots\}$

and

(i.e. is it divisible by 2?)

Models of

Computation: DFAs & NFAs

Language recognition

Language recognition

Problem: is a given number even?

Instance: an integer *n* (represented in binary).

Question: is *n* even?

- \blacksquare *n* can be represented as a string in binary using only two symbols: 0, 1.
- Can write a decision procedure to decide if this string belongs to the language of yes instances.
 - 1: $b \leftarrow$ least significant bit of n.
 - 2: **if** b = 0 **then**
 - 3: **return** *yes*
 - 4: **else**
 - 5: **return** *no*
 - 6: **end if**

Models of Computation: DFAs & NFAs

Mindmap

(i.e. is it divisible by 2?)

Decision problems

> Models of Computation

Language recognition

)ΕΔe

Example

ermal definition portant rules

FΔe

nformal description

Terminology

- Languages are defined over an alphabet, denoted by ∑.
 - Σ is the set of allowable symbols for the language. ("Sigma")
- Σ*: set of all possible strings over Σ, whose length is finite.
 ("Sigma star")

If $\Sigma = \{0, 1\}$ then

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots\}$$

■ A language can be regarded as "a subset of Σ^* ".

Example

If $\Sigma = \{0,1\}$ then the language of even numbers $\textit{Even} \subset \Sigma^*$ is:

$$\textit{Even} = \{0, 00, 10, 000, 010, 100, \ldots\}$$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Computation

recognition
Terminology

reminolog

DFAs

ormal definition
portant rules
LAP
rmal definition

NFAs

Informal des

Informal description
Formal description
Examples

3/20

The **Deterministic Finite Automaton** (DFA) model

Example (Is a given binary number even?)

Models of Computation: DFAs & NFAs

Example

7/20

The **Deterministic Finite Automaton** (DFA) model

A **directed and labelled graph** which describes how a string of symbols from an alphabet will be processed.

- Each vertex is called a **state**.
- Each directed edge is called a transition.
 - The edges are labelled with symbols from the alphabet.
- Each state must have **exactly one** transition defined for **every** symbol.
- One state is designated as the start state.
- <u>Some</u> states are designated as **accept states**.
- A string is processed symbol by symbol, following the respective transitions:
 - At the end, if we land on an accept state then the string is accepted,
 - otherwise it is rejected.

Mindmap

Decision problems

Models of Computation

Language recognition
Terminology

DFAs

Example Informal definition

mportant rules JFLAP

Formal definition
Formal description

NFAs

Important rules for DFAs

- Each state must have exactly one transition defined for each symbol.
- There must be **exactly one start state**.
- There may be **multiple accept states**.
- There may be more than one symbol defined on a single transition.

Models of Computation: DFAs & NFAs

Important rules

JFLAP simulation time!

Models of

Computation: DFAs & NFAs

JELAP

Example

Let us build DFAs over the alphabet {0, 1} to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

Formal definition of DFAs

Formal definition of a DFA

A Deterministic Finite Automaton (DFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ where:

- Q is a finite set called the set of states.
- \blacksquare Σ is a finite set called the **alphabet**.
- \bullet $\delta: Q \times \Sigma \to Q$ is a total function called the **transition function**.
- **q**_{start} is the unique **start state**.
- **F** is the set of accepting states.

 $(q_{\text{start}} \in Q)$

 $(F \subset Q)$

Formal definition

Models of

Computation: DFAs & NFAs

Recall:

- **Total function** means it is defined for "all its inputs."
- Σ, δ : Sigma, delta. (Greek letters)
- $\blacksquare \in \subseteq$ "element of a set", "subset of a set, or equal". (Set notation)

Example (Formal specification of a DFA)

This DFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{start}, F)$ where

- $\blacksquare Q = \{A, B, C\}$
- \blacksquare $\Sigma = \{a, b\}$
- δ (*state*, *symbol*) is given by the table:

		а	D
\rightarrow	Α	Α	В
*	В	В	C
*	C	C	A

- → indicates the start state
 * the accept state(s).
- \blacksquare $F = \{B, C\}$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition

DFAs

example informal definition important rules IFLAP

Formal definition
Formal description

JEAc

NFAs

Notation: functions/maps

- $\delta \colon \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ means that:
 - the function δ takes a pair (q, s) as input where:
 - q is a state from Q
 - \blacksquare s is an alphabet symbol from Σ ,
 - and returns a state from Q as the result.

This is usually given as a table, e.g.

	а	b
$\rightarrow q_0$	q 0	q 1
* q 1	q_0	q 2
:	:	:

We put \rightarrow next to the start state, and * next to the accept states.

This means that:

$$\delta(q_0, a) = q_0
\delta(q_0, b) = q_1
\vdots = \vdots$$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition

DFAs

ample ormal definition portant rules LAP

Formal description

IEA -

I**⊢AS** nformal des

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition Terminology

DFAs

[break]

cample formal definition

JFLAP Formal definition

Formal description

VFAs

Recall: Power set – set of all subsets

Models of Computation: DFAs & NFAs

2^Q is the set of all subsets of Q

(called: the **power set of** Q)

NFAs

Example

If $Q = \{A, B, C\}$ then

$$\mathbf{2}^Q = \bigg\{ \underbrace{\emptyset}_{\text{Empty set}}, \underbrace{\{A\}, \{B\}, \{C\}}_{\text{One element each}}, \underbrace{\{A, B\}, \{A, C\}, \{B, C\}}_{\text{Two elements each}}, \underbrace{\{A, B, C\}}_{Q} \bigg\}.$$

It has 8 elements = $2^{\text{size of } Q} = 2^{\#Q} = 2^3 = 8$

The **Nondeterministic Finite Automaton (NFA)** model

From the design point of view: NFAs are almost the same as DFAs.

DFA: every state has one and only one outward transition defined for each symbol.

NFA: zero or more transition(s) defined for each symbol.

Formally:

DFA: $\delta: Q \times \Sigma \to Q$ is a **total** function, i.e.

- 1 δ is defined for every pair (a, s) from $Q \times \Sigma$
- δ sends (q, s) to a **state** from Q. (exactly one state, no more, no less)
- NFA: $\delta: Q \times \Sigma \to 2^Q$ is a partial function, i.e.
 - 1 δ is not necessarily defined for every pair (q, s) from $Q \times \Sigma$.
 - δ sends (q, s) to a subset of Q. (many, one, or no states)

Models of

Computation: DFAs & NFAs

Informal description

15/20

Formal description of NFAs

Models of Computation: DFAs & NFAs

Definition of an NFA

A *Nondeterministic Finite Automaton* (NFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ where

- Q is a finite set called the set of states
- $\mathbf{\Sigma}$ is a <u>finite set</u> called the **alphabet**
- $\delta: Q \times \Sigma \to 2^Q$ is a partial function called the **transition function**
- 0. Q × Z → Z is a partial function called the transition function
- g_{start} is the <u>unique</u> start state.

 $(q_0 \in Q)$

F is the **set of accepting states**.

 $(F \subseteq Q)$

NFAs

nformal description

Formal description
Examples

16/20

NFA example

*q2

Models of Computation: DFAs & NFAs

Examples

JFLAP

NFA example

		а	b
	$ ightarrow q_0$	$\{q_1, q_2\}$	Ø
	q_1	{ q ₃ }	Ø
ς.	q ₂	Ø	{ q 5}
	q 3	Ø	$\{q_4\}$
	* q 4	{ q ₄ }	$\{q_4\}$
	9 5	{ q ₆ }	Ø
	* 9 6	{ q ₆ }	{ q ₆ }

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$\Sigma = \{a, b\}$$

$$q_{\text{start}} = q_0$$

$$F = \{q_4, q_6\}$$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

lodels of omputation

Language recognition
Terminology

DFAs

Example
Informal definition
Important rules
IFLAP

-As

Informal description

Formal description Examples

JFLAP

JFLAP simulation time!

Models of Computation: DFAs & NFAs

Example

Let us build DFAs over the alphabet {0, 1} to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

JFLAP

Next week...

Surprise: NFAs recognize exactly the same languages as DFAs!

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition
Terminology

DEAc

DFAs Example

xample formal definition aportant rules FLAP

LAP rmal definition rmal description

FAs