

DUAL MONOSTABLE MULTIVIBRATOR

- RETRIGGERABLE/RESETTABLE CAPABILITY
- TRIGGER AND RESET PROPAGATION DELAYS INDEPENDENT OF R_X, C_X
- TRIGGERING FROM LEADING OR TRAILING EDGE
- Q AND Q BUFFERED OUTPUT AVAILABLE
- SEPARATE RESETS
- WIDE RANGE OF OUTPUT PULSE WIDTHS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- SCHMITT TRIGGER INPUT ALLOWS UNLIMITED RISE AND FALL TIMES ON +TR AND -TR INPUTS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4538B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4538B dual precision monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed voltage

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4538BEY	
SOP	HCF4538BM1	HCF4538M013TR

timing application. An external resistor (R_X) and an external capacitor (C_X) control the timing and accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of R_X and C_X . Precision control of output pulse width is achieved through linear CMOS techniques. Leading edge triggering (+TR) and trailing edge triggering (-TR) inputs are provided for triggering

PIN CONNECTION

September 2001 1/10

from either edge of an input pulse. An unused +TR input should be tied to $V_{SS}.$ An unused -TR input should be tied to V_{DD} . A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to V_{DD} . However, if an entire section of the HCF4538B is not used, its inputs must be tied to either V_{DD} or V_{SS} (see table 1). In normal operation the circuit triggers (extends the output

IINPUT EQUIVALENT CIRCUIT

pulse one period) on the application of each new trigger <u>pulse</u>. For operation in the non-retiggerable mode, \overline{Q} is connected to -TR when leading edge triggering (+TR) is used or Q is connected to +TR when trailing edge triggering (-TR) is used. The time period (T) for this multivibrator can be calculated by : T = R_X C_X. The min. value of external resistance, R_X, is 4K Ω . The max. and min. values of external capacitance, C_X, are 100 μ F and 5nF, respectively.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
4, 12	+TR	Trigger Inputs (Low to High, Edge-Triggered)
5, 11	-TR	Trigger Inputs (High to Low, Edge-Triggered)
3, 13	RESET	Direct Reset Inputs (Active Low)
1, 15	C _X 1, C _X 2	External Capacitor Connections
2, 14	R _X C _X 1 R _X C _X 2	External Resistor/Capacitor Connections
6, 10	Q1, Q2	Pulse Outputs
7, 9	Q1, Q2	Complementary Pulse Outputs
8	V _{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

Terminals 1, 8, 15 are electrically connected internally

FUNCTIONAL DIAGRAM

TABLE 1: Functional Terminal Connections

FUNCTION	V _{DD} to Term. N°		V _{SS} to Term. N°		•	ulse to n. N°	Other Connections		
	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)	
Leading Edge Trigger/ Retriggerable	3, 5	11, 13			4	12			
Leading Edge Trigger/Non Retriggerable	3	13			4	12	5, 7	11, 9	
Trailing Edge Trigger/ Retriggerable	3	13	4	12	5	11			
Trailing Edge Trigger/Non Retriggerable	3	13			5	11	4, 6	12, 10	

A Retriggerable one-shot multivibrator has an output pulse width which is extended on full time period (T) after application of the last trigger pulse.
A Non-Retriggerable one-shot multivibrator has a time period (T) referenced from the application of the firs trigger pulse.

LOGIC DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition			Value								
Symbol	Parameter	Vı	v _o	ΙΙ _Ο Ι	V _{DD}	Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Uı
			(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	1 .
		0/15			15		0.04	20		600		600	þ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95	/	
		0/15		<1	15	14.95			14.95		14.95	16	
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	١
	Voltage	10/0		<1	10		0.05			0.05	10	0.05	
		15/0		<1	15		0.05			0.05	O.	0.05	
V _{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V _{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10		7/6	3		3		3	
			13.5/1.5	<1	15		O),	4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.6	-3.2		-1.3		-1.3		
	Current	0/5	4.6	<1	5	-0.51	-1		-0.42		-0.42		r
		0/10	9.5	<1	10	-1.3	-2.6		-1.1		-1.1		'
		0/15	13.5	<1	15	-3.4	-6.8		-2.8		-2.8		
I _{OL}	Output Sink	0/5	0.4	<1	5	-0.51	1		-0.42		-0.42		
	Current	0/10	0.5	<1	10	-1.3	2.6		-1.1		-1.1		r
		0/15	1.5	<1	15	-3.4	6.8		-2.8		-2.8		
lį	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	ļ
Cı	Input Capacitance		Any In	put			5	7.5					

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25 ^{\circ}\text{C}, \ \ C_{L} = 50 \text{pF}, \ R_{L} = 200 \text{K}\Omega, \ \ t_{f} = t_{f} = 20 \ \text{ns})$

		Test Condition	١	Unit			
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{TLH} t _{THL}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	
t _{PLH} t _{PHL}		5			300	600	
	+TR or -TR to Q or Q	10			150	300	ns
		15			100	200	
t _{PLH} t _{PHL}	Propagation Delay Time	5			250	500	
	Reset to Q or Q	10	$R_L = 1K\Omega$		125	250	ns
		15			95	190	1
t _{WH} t _{WL}	Minimum Input Pulse	5			80	140	
	Width +TR, -TR or Reset	10	$R_L = 1K\Omega$	7.	40	80	ns
		15		\sim	30	60	
t _{WT}	Output Pulse Width - Q or	5		57	60.6	64.5	
	Q ($C_X = 0.005 \mu F, R_X =$	10		55	58.9	63.0	μs
	10KΩ ⁽¹⁾)	15	× (2)	55	59.1	63.5	
t_{WT}	Output Pulse Width - Q or	5	10,10	9.4	9.97	10.5	
	Q ($C_X = 0.1 \mu F, R_X =$	10		9.4	9.95	10.6	ms
	100ΚΩ)	15	100	9.5	10.0	10.6	
t_{WT}	Output Pulse Width - Q or	5	00	0.95	1.0	1.06	
	Q ($C_X = 10\mu F, R_X =$	10		0.95	1.0	1.06	s
	100ΚΩ)	15		0.96	1.0	1.07	
t_W	Pulse Width Match	5			± 1		
	Between Circuits in Same	10			± 1		%
	Package : $(100(T_1 - T_2)/T_1)$ $(C_X = 0.1 \mu F, R_X = 100 K\Omega)$	15			± 1		
t _{rr}	Minimum Retrigger Time	5		0			
	0(0	10		0			ns
		15		0			
C _{IN}	Input Capacitance	Any Input			5	7.5	pF

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C. (1) Minimum R_X value = 4K Ω , minimum C_X value = 5000 pF

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010	19		
D			20		.(0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78		× (2)	0.700			
F			7.1	7/6/		0.280		
1			5.1	0.		0.201		
L		3.3	Oh		0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019	1191		
c1			45° (typ.)	.(-11		
D	9.8		10	0.385	70	0.393		
E	5.8		6.2	0.228	400	0.244		
е		1.27			0.050			
e3		8.89		8	0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S		10	8° (n	nax.)				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com