Exercise sheet 3

Theory of Computation, IDC204

- 1. If L_1 and L_2 are both regular languages over an alphabet Σ . If L_1 can be recognized by a finite state automaton A_1 and L_2 can be recognized by a finite state automaton A_2 , then show that one can use A_1 and A_2 to design a *non-deterministic* finite state automaton that recognizes,
 - (a) $L_1 \cup L_2$
 - (b) $L_1 \circ L_2 = \{s_1 s_2 \mid s_1 \in L_1, s_2 \in L_2\}$, i.e., it is obtained by concatenating each string in L_1 with a string in L_2 .
 - (c) $L_1^* = \{s_1 s_2 \dots s_n \mid s_i \in L_1\}.$
- 2. Design a *non*-deterministic finite state automaton over the alphabet $\Sigma=0,1$ that will accept a string if and only if it
 - (a) is the empty string
 - (b) is not the empty string
 - (c) is precisely the string 111
 - (d) begins with the substring 111
 - (e) is the empty string or begins with the substring 111
 - (f) ends with the substring 111
 - (g) begins with 0 and ends with 1
 - (h) contains the substring 111