CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 35 · Solutions

Posted Friday 21 March 2014. Due 1pm Friday 11 April 2014.

35. [25 points] Let

$$H_D^1(0,1) = \{ w \in H^1(0,1) : w(0) = w(1) = 0 \}$$

and let the inner product $(\cdot,\cdot):L^2(0,1)\times L^2(0,1)\to\mathbb{R}$ be defined by

$$(v,w) = \int_0^1 v(x)w(x) dx$$

and the inner product $a(\cdot,\cdot):H_D^1(0,1)\times H_D^1(0,1)\to\mathbb{R}$ be defined by

$$a(v, w) = \int_0^1 v'(x)w'(x) dx.$$

Let the norm $|||\cdot|||: H_D^1(0,1) \to \mathbb{R}$ be defined by

$$|||v||| = \sqrt{a(v,v)}.$$

Let N be a positive integer, let $h = \frac{1}{N+1}$ and let $x_k = kh$ for k = 0, 1, ..., N+1. Let the continuous piecewise linear hat functions $\hat{\phi}_i \in H_D^1(0,1)$ be defined by

$$\hat{\phi}_{j}(x) = \begin{cases} \frac{(x - x_{j-1})}{h} & \text{if } x \in [x_{j-1}, x_{j}), \\ \frac{(x_{j+1} - x)}{h} & \text{if } x \in [x_{j}, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for $j=1,\ldots,N$. Also, let the continuous piecewise quadratic functions $\phi_j\in H^1_D(0,1)$ be defined by

$$\phi_j(x) = \begin{cases} \frac{(x - x_{j-1})(2x - x_{j-1} - x_j)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ \frac{(x_j + x_{j+1} - 2x)(x_{j+1} - x)}{h^2} & \text{if } x \in [x_j, x_{j+1}), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 1, ..., N and let the continuous piecewise quadratic bubble functions $\psi_j \in H_D^1(0,1)$ be defined by

$$\psi_j(x) = \begin{cases} \frac{4(x - x_{j-1})(x_j - x)}{h^2} & \text{if } x \in [x_{j-1}, x_j), \\ 0 & \text{otherwise,} \end{cases}$$

for j = 1, ..., N + 1. Let $\widehat{V}_N = \text{span}\{\widehat{\phi}_1, ..., \widehat{\phi}_N\}$ and let $V_N = \text{span}\{\phi_1, ..., \phi_N, \psi_1, ..., \psi_{N+1}\}$. Also, let $f \in L^2(0,1)$ be defined by

$$f(x) = \frac{12\sqrt{35}}{\sqrt{17}}x(1-x)$$

and let $u \in H_D^1(0,1)$ be such that

$$a(u, v) = (f, v)$$
 for all $v \in H_D^1(0, 1)$.

Note that a(u, u) = 1 and that

$$(f, \widehat{\phi}_j) = -\frac{2\sqrt{35}}{\sqrt{17}}h(h^2 + 6x_j^2 - 6x_j)$$

for j = 1, ..., N;

$$(f,\phi_j) = \frac{2\sqrt{35}}{5\sqrt{17}}h(h^2 - 10x_j^2 + 10x_j)$$

for $j = 1, \dots, N$; and

$$(f, \psi_j) = -\frac{4\sqrt{35}}{5\sqrt{17}}h(3h^2 - 10hx_j + 5h + 10x_j^2 - 10x_j)$$

for j = 1, ..., N + 1.

We can obtain a finite element approximation to u by finding $\widehat{u}_N \in \widehat{V}_N$ such that

$$a(\widehat{u}_N, v) = (f, v)$$
 for all $v \in \widehat{V}_N$.

However, we can obtain a better finite element approximation to u by finding $u_N \in V_N$ such that

$$a(u_N, v) = (f, v)$$
 for all $v \in V_N$.

The stiffness matrix associated with finding u_N is

$$\mathbf{K} = \left[egin{array}{cc} \mathbf{P} & \mathbf{Q} \\ \mathbf{Q}^T & \mathbf{R} \end{array}
ight]$$

where $\mathbf{P} \in \mathbb{R}^{N \times N}$ is the matrix with entries

$$P_{ik} = a(\phi_i, \phi_k);$$

 $\mathbf{Q} \in \mathbb{R}^{N \times N + 1}$ is the matrix with entries

$$Q_{ik} = a(\phi_i, \psi_k);$$

and $\mathbf{R} \in \mathbbm{R}^{N+1 \times N+1}$ is the matrix with entries

$$R_{ik} = a(\psi_i, \psi_k);$$

and the load vector associated with finding u_N is

$$\mathbf{b} = \left[egin{array}{c} \mathbf{d} \\ \mathbf{g} \end{array}
ight]$$

where $\mathbf{d} \in \mathbb{R}^N$ is the vector with entries

$$d_i = (f, \phi_i);$$

and $\mathbf{g} \in \mathbb{R}^{N+1}$ is the vector with entries

$$g_j = (f, \psi_j).$$

(a) Write a code which can compute the energy norm of the error

$$|||u-u_N|||$$
.

Use your code to produce a loglog plot of the energy norm of the error

$$|||u - u_N|||$$

for N = 1, 3, 7, 15, 31, 63, 127. On the same figure plot

$$|||u-\widehat{u}_N|||;$$

$$|||u-\widetilde{u}_N|||$$
;

and

$$|||u-u_N^*|||;$$

for the same values of N, where $\widetilde{u}_N \in \text{span}\{\phi_1, \dots, \phi_N\}$ is such that

$$a(\widetilde{u}_N, v) = (f, v) \text{ for all } v \in \text{span}\{\phi_1, \dots, \phi_N\}$$

and $u_N^* \in \operatorname{span}\{\psi_1, \dots, \psi_{N+1}\}$ is such that

$$a(u_N^*, v) = (f, v) \text{ for all } v \in \text{span}\{\psi_1, \dots, \psi_{N+1}\}.$$

Note that even though using the Galerkin method means that our approximations will be the best approximations, from the spaces that we are using, with respect to the energy norm |||·|||, this does not mean that approximations obtained in this way will actually be any good.

- (b) Since obtaining u_N involves solving a larger system of equations than that which has to be solved in order to obtain \widehat{u}_N , a fairer comparison of the accuracy of \widehat{u}_N and u_N would be to plot $|||u-\widehat{u}_N|||$ and $|||u-u_N|||$ against the dimension of the spaces \widehat{V}_N and V_N , respectively, instead of N. Produce a loglog plot showing this.
- (c) Fill in the blanks in the below table where we use dim (W) to denote the dimension of a space W. If done correctly the table should show the factor that $|||u \widehat{u}_N|||$ goes down by between each consecutive pair of values of N, and of the dimension of \widehat{V}_N , for which we computed $|||u \widehat{u}_N|||$. If you wish you can reproduce the table yourself and so do not necessarily have to print out this page and fill it in.

N_1	N_2	$\dim\left(\widehat{V}_{N_1}\right)$	$\dim\left(\widehat{V}_{N_2}\right)$	$\frac{ u - \widehat{u}_{N_1} }{ u - \widehat{u}_{N_2} }$
1	3			1.9688
3	7			
7	15			
15	31			
31	63			
63	127			

(d) Fill in the blanks in the below table where we use dim (W) to denote the dimension of a space W. If done correctly the table should show the factor that $|||u - u_N|||$ goes down by between each consecutive pair of values of N, and of the dimension of V_N , for which we computed $|||u - u_N|||$. If you wish you can reproduce the table yourself and so do not necessarily have to print out this page and fill it in.

N_1	N_2	$ \dim (V_{N_1}) $	$\left \dim \left(V_{N_2} \right) \right $	$\frac{ u - u_{N_1} }{ u - u_{N_2} }$
1	3			3.6181
3	7			
7	15			
15	31			
31	63			
63	127			

Solution.

(a) [10 points] The requested plot is below.

The code used to produce the results shown in this part and in parts (b), (c) and (d) is:

```
clear
clc
Nvec=2.^(1:1:7)-1;
energyerrhat=zeros(size(Nvec));
energyerr1=zeros(size(Nvec));
energyerr2=zeros(size(Nvec));
energyerr=zeros(size(Nvec));
for j=1:length(Nvec)
   N=Nvec(j);
   h=1/(N+1);
   Khat=sparse(N,N);
   \texttt{Khat=Khat+sparse(1:N-1,2:N,-1/h,N,N);}
    Khat=Khat+Khat.';
   \texttt{Khat=Khat+sparse(1:N,1:N,2/h,N,N)};
    P=sparse(N,N);
   P=P+sparse(1:N-1,2:N,1/(3*h),N,N);
    P=P+P.';
   P=P+sparse(1:N,1:N,14/(3*h),N,N);
   Q=sparse(N,N+1);
   Q=Q+sparse(1:N,1:N,-8/(3*h),N,N+1);
    Q=Q+sparse(1:N,2:N+1,-8/(3*h),N,N+1);
```

```
R=sparse(N+1,N+1);
         R=R+sparse(1:N+1,1:N+1,16/(3*h),N+1,N+1);
         K=[P Q; Q.' R];
         fhat = (-2*sqrt(35/17)*h*(h^2+6*((1:N)*h).^2-6*(1:N)*h)).';
         d=((2/5)*sqrt(35/17)*h*(h^2-10*((1:N)*h).^2+10*((1:N)*h))).';
         g = (-(4/5) * sqrt(35/17) * h * (3 * h^2 - 10 * h * ((1:N+1) * h) + 5 * h + 10 * ((1:N+1) * h) .^2 - 10 * ((1:N+1) * h)) + ((1:N+1) * h) + (
                   )).';
         f=[d; g];
         chat=Khat\fhat;
         c1=P\d;
         c2=R\g;
         c=K \f;
         energyerrhat(j)=sqrt(1-(chat.')*Khat*chat);
         energyerr1(j)=sqrt(1-(c1.')*P*c1);
         energyerr2(j)=sqrt(1-(c2.')*R*c2);
         energyerr(j)=sqrt(1-(c.')*K*c);
end
figure(1)
clf
loglog(Nvec,energyerrhat,'-ok')
hold on
loglog(Nvec,energyerr1,'-or')
loglog(Nvec,energyerr2,'-og')
loglog(Nvec,energyerr,'-ob')
\label{eq:legendstr} $$ legendstr {1} = |$ | | |u - hat {u}_N | | |$ ; $$ $
\label{legendstr} $$ \underset{s=0}{\text{legendstr} \{2\} = |s| ||u-\text{tilde}\{u\}_N| ||s|; \\ \text{legendstr} \{3\} = |s| ||u-u_N^*| ||s|; \\ $$ $$ $$ $$
legendstr{4}='$|||u-u_N|||$';
legend(legendstr,'interpreter','latex','FontSize',14,'Location','Southwest')
xlabel('$N$','interpreter','latex','FontSize',14)
saveas(figure(1),'hw35a.eps','epsc')
figure(2)
clf
loglog(Nvec,energyerrhat,'-ok')
hold on
loglog(2*Nvec+1,energyerr,'-ob')
legendstr2\{1\}='$|||u-\hat\{u\}_N|||$';
legendstr2{2}='$||u-u_N|||$';
legend(legendstr2,'interpreter','latex','FontSize',14,'Location','Southwest')
interpreter','latex','FontSize',14)
saveas(figure(2),'hw35b.eps','epsc')
reductionhat=zeros(6,1);
reduction=zeros(6,1);
for j=1:length(Nvec)-1
         reductionhat(j)=energyerrhat(j)/energyerrhat(j+1);
         reduction(j)=energyerr(j)/energyerr(j+1);
display(reductionhat)
display(reduction)
```

(b) [5 points] The requested plot is below.

(c) [5 points] The completed table is shown below.

N_1	N_2	$\left \; \dim \left(\widehat{V}_{N_1} \right) \; \right $	$\dim\left(\widehat{V}_{N_{2}}\right)$	$\frac{ u-\widehat{u}_{N_1} }{ u-\widehat{u}_{N_2} }$
1	3	1	3	1.9688
3	7	3	7	1.9863
7	15	7	15	1.9962
15	31	15	31	1.9990
31	63	31	63	1.9998
63	127	63	127	1.9999

(d) [5 points] The completed table is shown below.

N_1	N_2	$\left \dim \left(V_{N_1} \right) \right $	$\dim\left(V_{N_{2}}\right)$	$\frac{ u - u_{N_1} }{ u - u_{N_2} }$
1	3	3	7	3.6181
3	7	7	15	3.9121
7	15	15	31	3.9784
15	31	31	63	3.9946
31	63	63	127	3.9985
63	127	127	255	3.9915