Practica 1

Momentos Muestrales 12 de marzo de 2017

Contents

1	Introducción	1
2	Operaciones Matriciales con EXCEL y Real-Statistic	3
3	Cálculo de estadísticos resumen	4
4	Ejercicio [1]	4
5	${f Ejercicio[2]}$	5
	Ejercicio[3] 6.1 Conclusiones	6 8

1 Introducción

Esta práctica puede descargarse en formato \mathbf{pdf} en este \mathbf{enlace} .

Los resultados de los ejercicios [1] y [2] pueden descargarse en este archivo excel1 en el que sólo figuran los resultados y matrices en valor numérico, o en este otro archivo excel2 que incluye las funciones de Excel y Real-Statistic.

El resultado del ejercicio [3] puede descargarse en este archivo profit1 en el que sólo figuran los resultados y matrices en valor numérico, o en este otro profit2 que incluye las funciones de Excel y Real-Statistic.

La práctica consite en el cálculo de los Estadísticos resumen de una matriz de datos dada, utilizando la herramienta Microsoft EXCEL y Real-Statistic. Se trata de un complemento de EXCEL que extiende sus capacidades de estadísticas estándar, proporcionándole funciones avanzadas y herramientas de análisis de datos, para que pueda realizar más fácilmente una amplia variedad de análisis estadísticos.

Para instalar Real-Statistics hay seguir los siguientes pasos:

- Instalar primero los complementos
 - $\ Analysis \ ToolPak$
 - Analysis ToolPak VBA
 - Solver
- Volver a la plantilla EXCEL e instalar:
 - RealStats.xlam (no instalar desde el escritorio)
- Al operar con EXCEL, no se deben definir rangos cuyo nombre coincida con el de alguna función.

Se recomienda cambiar el idioma por defecto de EXCEL a inglés, ya que las funciones de excel de esta práctica están en este idioma. Si se desea ejecutar las funciones en español, en este enlace se encuentra una Tabla de traducción de fórmulas Excel en español a inglés.

Para cambiar el idioma hay que seguir los siguientes pasos:

• Seleccionar Inglés (Estados Unidos) y establecer por defecto

Figure 1:

- Elegir idiomas de la Ayuda e Interfaz de usuario y establecer como predeterminado Inglés (Estados Unidos)
- Si no se localiza el idioma, usar el botón Agregar

2 Operaciones Matriciales con EXCEL y Real-Statistic

Al realizar operaciones con matrices en EXCEL, es necesario seleccionar el rango de la matriz a calcular, introducir la función matricial en la barra de fórmulas, y ejecutar la función utilizando el operador:

```
CONTROL + MAYÚSCULAS + ENTER
```

A continuación, se detallan algunas operaciones matriciales básicas para EXCEL.

- Lectura directa de datos:
- $= \{1\2\3;4\5\6;7\8\10\}$
 - Asignar un nombre a una matriz o rango:

Selecionar rango A1:C3-> Menú Fórmulas/Asignar nombre:matriz.A)

- Extraer elementos:
- = INDEX(matriz.A;ROW(A1);COLUMN(A1))
 - Extraer bloques:
- = OFFSET(matriz.A; ROWS(A1:A1); COLUMNS(A1:A1); ROWS(B2:C3); COLUMNS(B2:C3))
 - Suma de Matrices:
- = matriz.A + matriz.B
 - Multiplicación de matrices:
- = MMULT(matriz.A; matriz.B)
 - Multiplicacción por un número:
- = 2*matriz.A
 - Multiplicación punto a punto:
- = matriz.A*matriz.B
 - División punto a punto:
- = matriz.B/matriz.A
 - Determinante:
- = MDETERM(matriz.A)
 - Inversa:
- = MINVERSE(matriz.A)
 - Transpuesta:
- = TRANSPOSE(matriz.A)

Operaciones Matriciales con Real-Statistic

• Extraer bloques:

- = SUBRANGE(matriz.A; ROWS(A1:B2); COLUMNS(A1:B2); ROWS(B2:C3); COLUMNS(B2:C3))
 - Combinar bloques:
- = MERGE(A1:A3;B1:C3)
 - Determinante:
- = DET(matriz.A)
 - Traza:
- = TRACE(matriz.A)

3 Cálculo de estadísticos resumen

Dada una matriz de datos $X_{n \times p} = (x_{ij})$, los elementos de los estadísticos resumen pueden obtenerse mediante las siguientes formulas:

• Vector de medias muestrales (\bar{x}) , para cada columna dada,

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, j = 1, ..., p,$$

$$\bar{x} = \begin{bmatrix} \bar{x_1} \\ \bar{x_2} \\ \vdots \\ \bar{x_3} \end{bmatrix}$$

• Matriz de covarianzas muestrales $(S_{p \times p})$, entre pares de columnas c_j y c_k :

$$S_{ij} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x_j})(x_{ik} - \bar{x_k}); \quad j, k = 1, ..., p$$

$$S = \begin{bmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \dots & s_{pp} \end{bmatrix}$$

• Matriz de correlaciones muestrales $(R_{p \times p})$, entre pares de columnas c_j y c_k :

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}s_{kk}}}; \quad j,k=1,...,p$$

$$S = \begin{bmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & 1 \end{bmatrix}$$

4 Ejercicio [1]

La matriz de datos de este apartado es

```
## 7 1.95 1.95 1.95
## 8 2.10 2.15 1.60
## 9 1.85 2.00 3.00
## 10 1.65 1.45 1.75
```

En este cuadro se muestran las funciones necesarias para calcular los estadísticos resumen. Para ello hay que nombrar al rango de datos como: datosn.

- = TRANSPOSE(MEANCOL(datosn)): Vector de medias;
- = COVP(datosn): Matriz de covarianzas (1/n): Transparencias;
- = COV(datosn): Matriz de covarianzas (1/(n-1));
- = CORR(datosn): Matriz de correlaciones;
- = IDENTITY(ROWS(datosn)): Matriz identidad de orden FILAS(datosn)
- = DIAG(matriz): Vector fila o columna de elementos diagonales de una matriz;
- = DIAG(IDENTITY(ROWS(datosn))): vector de unos de orden ROWS(datan);
- = DIAGONAL(vector): matriz diagonal con elementos dados por las coordenadas de un vector.

Los resultados obtenidos son,

vector de medias i	iuestrales (3x1)
2,21	
2,12	
2,99	

Matriz de covarianzas muestrales (3x3)							
0,3636	0,3464						
0,355525	0,247725						
0,247725	1,037025						
	0,3636 0,355525						

Matriz correlaciones muestrales (3x3)						
0,0000	1,0000	1,184				
0,0000	1,1542	1,184 1,000				
0,0000	0,0000	0,000				

Figure 2:

5 Ejercicio[2]

La matriz de datos de este apartado es

##		Country	${\tt RedMeat}$	${\tt WhiteMeat}$	Eggs	Milk	${\tt Fish}$	Cereals	${\tt Starch}$	Nuts
##	1	Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5
##	2	Austria	8.9	14.0	4.3	19.9	2.1	28.0	3.6	1.3
##	3	Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1
##	4	Bulgaria	7.8	6.0	1.6	8.3	1.2	56.7	1.1	3.7
##	5	${\tt Czechoslovakia}$	9.7	11.4	2.8	12.5	2.0	34.3	5.0	1.1
##	6	Denmark	10.6	10.8	3.7	25.0	9.9	21.9	4.8	0.7
##	7	EGermany	8.4	11.6	3.7	11.1	5.4	24.6	6.5	0.8
##	8	Finland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1.0
##	9	France	18.0	9.9	3.3	19.5	5.7	28.1	4.8	2.4
##	10	Greece	10.2	3.0	2.8	17.6	5.9	41.7	2.2	7.8
##	11	Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4.0	5.4
##	12	Ireland	13.9	10.0	4.7	25.8	2.2	24.0	6.2	1.6
##	13	Italy	9.0	5.1	2.9	13.7	3.4	36.8	2.1	4.3

```
## 14
          Netherlands
                           9.5
                                      13.6
                                            3.6 23.4
                                                       2.5
                                                               22.4
                                                                        4.2
                                                                              1.8
## 15
               Norway
                           9.4
                                       4.7
                                            2.7 23.3
                                                       9.7
                                                               23.0
                                                                        4.6
                                                                              1.6
                                            2.7 19.3
##
  16
               Poland
                           6.9
                                      10.2
                                                       3.0
                                                               36.1
                                                                        5.9
                                                                              2.0
                                                               27.0
##
  17
             Portugal
                           6.2
                                       3.7
                                            1.1
                                                  4.9 14.2
                                                                        5.9
                                                                              4.7
##
   18
              Romania
                           6.2
                                       6.3
                                            1.5 11.1
                                                       1.0
                                                               49.6
                                                                        3.1
                                                                              5.3
## 19
                           7.1
                                       3.4
                                            3.1
                                                  8.6
                                                       7.0
                                                               29.2
                Spain
                                                                        5.7
                                                                              5.9
## 20
               Sweden
                           9.9
                                       7.8
                                            3.5 24.7
                                                       7.5
                                                               19.5
                                                                        3.7
                                                                              1.4
                                            3.1 23.8
                                                       2.3
                                                               25.6
## 21
          Switzerland
                          13.1
                                      10.1
                                                                        2.8
                                                                              2.4
##
  22
                    UK
                          17.4
                                       5.7
                                            4.7 20.6
                                                       4.3
                                                               24.3
                                                                        4.7
                                                                              3.4
                 USSR
                                       4.6
                                            2.1 16.6
                                                       3.0
                                                               43.6
##
  23
                           9.3
                                                                        6.4
                                                                              3.4
##
  24
             WGermany
                          11.4
                                      12.5
                                            4.1 18.8
                                                       3.4
                                                               18.6
                                                                        5.2
                                                                             1.5
                                            1.2
                                                 9.5
                                                               55.9
##
   25
           Yugoslavia
                           4.4
                                       5.0
                                                       0.6
                                                                        3.0
                                                                              5.7
##
      Fr.Veg
## 1
          1.7
## 2
          4.3
## 3
          4.0
## 4
          4.2
## 5
          4.0
## 6
          2.4
  7
##
          3.6
## 8
          1.4
## 9
          6.5
## 10
          6.5
## 11
          4.2
## 12
          2.9
## 13
          6.7
##
   14
          3.7
##
   15
          2.7
## 16
          6.6
## 17
          7.9
## 18
          2.8
##
  19
          7.2
   20
##
          2.0
##
  21
          4.9
##
  22
          3.3
## 23
          2.9
## 24
          3.8
## 25
          3.2
```

En este ejercicio las operaciones son idénticas al apartado anterior y los resultados obtenidos son,

Los resultados obtenidos son,

6 Ejercicio[3]

Este ejercicio contine datos relativos a operaciones comerciales de una cadena de comida rápida, en el que se añade una variable dicotómica que informa sobre la aplicación de una promoción. Special.offer.

Los datos se separaran en dos pestañas nuevas pestañas de excel data 0 (rojos) y data 1 (azules) para indicar si aplican o no la oferta.

Vector Medias		
9,828	9,828	
7,896	7,896	
2,336	2,936	
17,112	17,112	
4,284	4,284	
32,248	32,248	
4,278	4,276	
3,072	3,072	
4,136	4,136	

Figure 3:

Matriz cov	Matriz covarianzas										
10,755	1,816	2,103	11,482	0,666	-17,628	0,711	-2,230	-0,430			
1,816	13,100	2,459	7,093	-2,824	-16,105	1,818	-4,471	-0,392			
2,103	2,459	1,199	4,388	0,239	-8,389	0,793	-1,193	-0,088			
11,482	7,093	4,388	48,467	3,200	-44,373	2,479	-8,412	-5,025			
0,666	-2,824	0,239	3,200	11,114	-18,793	2,156	-0,954	1,568			
-17,628	-16,105	-8,389	-44,373	-18,793	115,628	-9,181	13,619	0,885			
0,711	1,818	0,793	2,479	2,156	-9,181	2,563	-1,477	0,239			
-2,230	-4,471	-1,193	-8,412	-0,954	13,619	-1,477	3,785	1,289			
-0,430	-0,392	-0,088	-5,025	1,568	0,885	0,239	1,289	3,124			

Figure 4:

Matriz correlaciones										
1,0000	0,1530	0,5856	0,5029	0,0610	-0,4999	0,1354	-0,3494	-0,0742		
0,1530	1,0000	0,6204	0,2815	-0,2340	-0,4138	0,3138	-0,6350	-0,0613		
0,5856	0,6204	1,0000	0,5755	0,0656	-0,7124	0,4522	-0,5598	-0,0455		
0,5029	0,2815	0,5755	1,0000	0,1379	-0,5927	0,2224	-0,6211	-0,4084		
0,0610	-0,2340	0,0656	0,1379	1,0000	-0,5242	0,4039	-0,1472	0,2661		
-0,4999	-0,4138	-0,7124	-0,5927	-0,5242	1,0000	-0,5333	0,6510	0,0465		
0,1354	0,3138	0,4522	0,2224	0,4039	-0,5333	1,0000	-0,4743	0,0844		
-0,3494	-0,6350	-0,5598	-0,6211	-0,1472	0,6510	-0,4743	1,0000	0,3750		
-0,0742	-0,0613	-0,0455	-0,4084	0,2661	0,0465	0,0844	0,3750	1,0000		

Figure 5:

La pregunta es si se puede confirmar con los numeros lo que parece reflejarse en los gráficos. Los resultados obtenidos son,

• Datos conjuntos

Matriz covarianzas

	Purchases	Hours	Profit	Sales	Market share
Purchases	0,080	0,058	0,045	0,009	0,002
Hours	0,058	0,090	0,037	0,006	0,000
Profit	0,045	0,037	0,048	0,010	0,000
Sales	0,009	0,006	0,010	0,004	0,000
Market share	0,002	0,000	0,000	0,000	0,002

Matriz correlaciones

	Purchases	Hours	Profit	Sales	Market share
Purchases	1,00	0,68	0,73	0,46	0,13
Hours	0,68	1,00	0,57	0,32	-0,01
Profit	0,73	0,57	1,00	0,69	-0,03
Sales	0,46	0,32	0,69	1,00	-0,10
Market share	0,13	-0,01	-0,03	-0,10	1,00

Figure 6:

- Sin oferta
- Con oferta
- Gráfico conjunto

6.1 Conclusiones

- Las matrices de correlaciones son coherentes con el gráfico.
- las variables tienen correlación positiva, excepto Market.Share (incorrelada).
- Tanto si hay oferta especial (azules) como si no (rojos) no parece que el sistema se altere demasiado.

Matriz covarianzas

	Purchases	Hours	Profit	Sales	Market share
Purchases	0,07	0,05	0,04	0,01	0,00
Hours	0,05	0,08	0,03	0,01	0,00
Profit	0,04	0,03	0,05	0,01	0,00
Sales	0,01	0,01	0,01	0,00	0,00
Market share	0,00	0,00	0,00	0,00	0,00

Matriz correlaciones

	Purchases	Hours	Profit	Sales	Market share
Purchases	1,00	0,66	0,76	0,48	0,08
Hours	0,66	1,00	0,57	0,35	-0,06
Profit	0,76	0,57	1,00	0,69	-0,03
Sales	0,48	0,35	0,69	1,00	-0,06
Market share	0,08	-0,06	-0,03	-0,06	1,00

Figure 7:

Matriz covarianzas

	Purchases	Hours	Profit	Sales	Market share
Purchases	0,10	0,08	0,04	0,01	0,00
Hours	0,08	0,12	0,04	0,00	0,00
Profit	0,04	0,04	0,05	0,01	0,00
Sales	0,01	0,00	0,01	0,00	0,00
Market share	0,00	0,00	0,00	0,00	0,00

Matriz correlaciones

	Purchases	Hours	Profit	Sales	Market share
Purchases	1,00	0,71	0,67	0,40	0,21
Hours	0,71	1,00	0,57	0,24	0,05
Profit	0,67	0,57	1,00	0,69	-0,05
Sales	0,40	0,24	0,69	1,00	-0,23
Market share	0,21	0,05	-0,05	-0,23	1,00

Figure 8:

Profits.xlsx by Special.offer = 0,1

Figure 9: