Educational Investment in Spatial Equilibrium: Evidence from Indonesia

Allan Hsiao Princeton University

December 1, 2022

How does migration shape educational investment?

- Governments invest \$3 trillion in education annually (World Bank 2022)
 - In Indonesia, 61,807 new primary schools (INPRES 1973-1978)
- Schools serve students locally, but graduates seek employment nationally
 - Non-local incentives for individual investment
 - Non-local effects of collective investment

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - Rural schooling depends on urban wages (non-local incentives)
 - Rural schools increase urban output (non-local effects)
- **Results:** aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - ① Rural schooling depends on urban wages (non-local incentives)
 - Rural schools increase urban output (non-local effects)
- **Results:** aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial equilibrium model to decompose effects and redesign program
- Complementarity between education and migration
 - ① Rural schooling depends on urban wages (non-local incentives)
 - Rural schools increase urban output (non-local effects)
- **Results:** aggregate output \uparrow (8%), inequality \updownarrow (people \downarrow 5%, places \uparrow 12%)
 - Tension between returns to education and regional convergence

Literature

- Education and migration at scale in general equilibrium
 - Education: Khanna 2021, Dinerstein et al. 2022 (no migration)
 - Migration: Dahl 2002, Bryan et al. 2014, Bryan & Morten 2019 (no education)
 - Both: Eckert & Kleineberg 2021, Agostinelli et al. 2022 (no school construction)
- INPRES program evaluation with aggregate effects and counterfactuals
 - Duflo 2001/2004, Martinez-Bravo 2017, Ashraf et al. 2020, Bazzi et al. 2021
- Place-based policy with portable human capital benefits
 - Glaeser & Gottlieb 2008, Kline & Moretti 2014, Busso et al. 2013, Austin et al. 2018

Data and Stylized Facts

INPRES built 62,000 new primary schools

Data

- Treatment at district level
 - INPRES school construction (1973-1978)
 - Pre-program primary schools, child populations, enrollment rates
- Long-run outcomes at individual level
 - SUSENAS household surveys (2011-2014)
 - Districts of residence and birth, years of schooling, monthly wages

Difference-in-difference variation (Duflo 2001)

$$Y_{ijk} = \delta_j + \delta_k + \beta S_j T_k + C_j T_k \phi + \varepsilon_{ijk}$$

- **1) Young vs. old** students by age cohort k

Long-run education and wage effects

Outcomes	Estimate	SE	Obs
Years of schooling	0.103**	(0.0424)	233,517
 For wage earners 	0.121**	(0.0495)	89,404
Log monthly wages	0.0195**	(0.00916)	89,404

Driven by labor market access (non-local incentives)

$$\mathsf{MA}_d = \sum_{d'} \mathsf{w}_{d'} \mathsf{popden}_{d'} \quad \mathsf{for} \quad \mathsf{w}_{d'} \propto (1 + \mathsf{dist}_{dd'})^{-2}$$

- Captures access to high urban wages
 - ullet Population density in 1971+ Euclidean distances

Driven by labor market access (non-local incentives)

Migration rates are high (non-local effects)

- Average migration rate of 26% and distance of 576 km
 - Increasing in labor market access
- Cross-province 16% vs. cross-state 31% in US (ACS 2013-2014)

Migration rates are high (non-local effects)

But INPRES does not directly increase migration

Outcomes	Estimate	SE	Obs
Migrant	0.0244	(0.0194)	244,793
Distance if migrant (km)	-5.097	(7.706)	62,717
Migrant to urban	0.0284	(0.0307)	242,646
Migrant to rural	0.0259	(0.0236)	244,793

- Non-local incentives and effects still apply
- Consistent with model: INPRES affects costs of education, not migration
- Counterfactuals: INPRES effects under different migration costs

Spatial equilibrium model

- Government constructs schools
 - Build human capital that is portable (aggregate output)
- 2 Individuals invest in education
 - In a district, more schools \rightarrow better access \rightarrow lower costs of education
- Individuals migrate for work
 - Mobility gives rural students access to high urban wages (person-based inequality)
 - But rural students leave after graduation (place-based inequality)

Education and migration frictions

$$U(e,\epsilon) = \alpha_{\ell} \varepsilon_{jk\ell}^{\alpha} [\underbrace{(1-\overbrace{\tau_{j\ell}^{m}}) w_{\ell} e^{\eta} \epsilon}_{\text{net labor income}} - \underbrace{(1+\overbrace{\tau_{jk}^{\ell}}) c \varepsilon_{jk\ell}^{c} e}_{\text{cost of education}}]$$

- Individual i, origin j, age cohort k, destinations ℓ
 - Each destination has $U_\ell(\epsilon_\ell) = \max_e U_\ell(e,\epsilon_\ell)$
- Compare destinations, then pick best to get choice probabilities

$$\pi_{jk\ell} = rac{ ilde{w}_{jk\ell}^{m{\sigma}}}{\sum_{\hat{\ell}} ilde{w}_{jk\hat{\ell}}^{m{ heta}}} \quad ext{for} \quad ilde{w}_{jk\ell} \equiv lpha_{\ell}^{1-\eta} (1 - au_{j\ell}^{m{m}}) w_{\ell} ilde{arepsilon}_{jk\ell}$$

Choice probabilities, education, and wages

- Closed form for $\pi_{jk\ell}$, $\overline{\text{educ}}_{jk\ell}$, and $\overline{\text{wage}}_{jk\ell}$ (data)
 - ullet In equilibrium, endogenous base wages w_ℓ and prices p_ℓ
 - Including agglomeration κ and congestion μ
- Education and wages are increasing in labor market access (endogenous)

$$\overline{\mathsf{educ}}_{jk\ell}$$
, $\overline{\mathsf{wage}}_{jk\ell} \propto \left(\sum_{\hat{\ell}} \tilde{w}_{jk\hat{\ell}}^{\theta}\right)^{\frac{1}{\theta(1-\eta)}} \equiv \mathsf{MA}_{jk}$

Aggregate and distributional effects

CES aggregate output

$$Y(a) = \left\{ \sum_{\ell} \left[A_{\ell} H_{\ell}(a_{\ell}) \right]^{\frac{\sigma-1}{\sigma}} \right\}^{\frac{\nu}{\sigma-1}}$$

Inequality (people vs. places)

$$D(a) = \lim_{\sigma o \infty} \{ Y^U(a) - Y^R(a) \} \quad ext{for} \quad Y^U_\ell(a) = U_\ell Y_\ell(a)$$

1. Human capital function (INPRES as IV)

$$\begin{aligned} \mathsf{wage}_i &= w_{\ell(i)}(\mathsf{educ}_i)^{\pmb{\eta}} \varepsilon_i \\ & \quad \\ \log \mathsf{wage}_i &= \log w_\ell + \eta \log \mathsf{educ}_i + \log \varepsilon_i \\ \log \widehat{\mathsf{educ}}_i &= \delta_j + \delta_k + \delta_\ell + \beta S_j T_k + C_j T_k \pmb{\phi} + \varepsilon_{ijk} \\ & \quad \\ \widehat{\eta} &= 0.688^{**} (0.311) \end{aligned}$$

2. Education and migration costs (INPRES as DD)

$$\begin{split} 1 - \tau_{j\ell}^m &= (1 + d_{j\ell}^P)^{-\varphi_1} (1 + d_{j\ell}^D)^{-\varphi_2} \\ & \qquad \qquad \Downarrow \\ \log \overline{\mathsf{educ}}_{jk\ell} - \log \overline{\mathsf{wage}}_{jk\ell} &= \beta \log (1 + S_j T_k) - \log \delta_j - \log \delta_k - \pmb{\phi} \log (1 + C_j T_k) \\ & - \varphi_1 \log (1 + d_{j\ell}^P) - \varphi_2 \log (1 + d_{j\ell}^D) + \log \frac{\eta}{c} - \log \varepsilon_{jk\ell}^c \\ & \qquad \qquad \Downarrow \\ \widehat{\beta} &= 0.110^{**} (0.047) \,, \quad \widehat{\varphi}_1 = 0.042^{***} (0.004) \,, \quad \widehat{\varphi}_2 = 0.018 \; (0.050) \end{split}$$

 $1 + \tau_{ik}^e = (1 + S_i T_k)^{-\beta} \delta_i \delta_k (1 + C_i T_k)^{\phi}$

3. Other parameters (INPRES as moments)

$$\sum_{i=1}^{n} [y_i - \exp(x_i \hat{\beta})] x_i = 0$$

- Poisson pseudo-maximum likelihood (Santos Silva & Tenreyro 2006)
 - Common in spatial models to accommodate zeros in choice probabilities
 - Calibrated agglomeration κ , congestion μ , substitution σ (Bryan & Morten 2019)

$$\Delta_{\ell} \log \overline{\operatorname{educ}}_{jk\ell}$$
, $\Delta_{\ell} \log \overline{\operatorname{wage}}_{jk\ell}$, $\Delta_{\ell} \log \pi_{jk\ell}$

INPRES treatment effects

Goals

- **Evaluate** relative to zero-construction counterfactual
 - Aggregate and distributional effects
- Decompose effects of mobility by mechanism
 - And separate each from the general equilibrium effects
 - Diff-in-diff avoids model but only captures net effects
- Study program design
 - By simulating alternative allocations of school construction

The program increased aggregate output by 8%

	Aggregate output
Zero construction	1.00
+ Direct effect of construction	1.02
+ Migration	1.03
+ Migration-induced schooling	1.07
+ New equilibrium wages	1.08

- Small gains without migration (direct effect) or without education (sorting)
 - Complementarity between education and migration
 - Gains from sorting are already large (Bryan et al. 2014)

With especially large benefits for rural students

	Inequality (people)
Zero construction + INPRES construction	1.00 0.95

- Expanded opportunity for rural students with high marginal returns
 - Decreased inequality between rural and urban students by 5%

But also increased inequality across places by 12%

	Inequality (places)
Zero construction + INPRES construction	1.00 1.12

- The program explicitly aimed to encourage regional convergence
 - But mobility places convergence in tension with output gains
 - Rural regions still enjoy net gains, but urban regions gain more

Equity-efficiency tradeoff for policymaker

Targeting rural areas: output ↑, but rural-urban gap ↑ (implied 50-50 weight)

Equity-efficiency tradeoff for policymaker

 \bullet Especially with schools + roads, which drain rural areas

Summary

- Evaluating large-scale educational investment in spatial equilibrium
 - Indonesia's INPRES program built 62,000 primary schools in 1970s
 - Aggregate output \uparrow (8%), person-based inequality \downarrow (5%), place-based \uparrow (12%)
- Education and migration are complementary
 - Big gains for rural students who leave rural regions behind