Exponential Family of Distributions

• Parametric density functions

$$P_G(\boldsymbol{x}|\boldsymbol{\theta}) = e^{\boldsymbol{\theta} \cdot \boldsymbol{x} - G(\boldsymbol{\theta})} P_0(\boldsymbol{x})$$

- θ and x vectors in R^d
- Cumulant function $G(\theta)$ assures normalization

$$G(\boldsymbol{\theta}) = \ln \int e^{\boldsymbol{\theta} \cdot \boldsymbol{x}} P_0(\boldsymbol{x}) d\boldsymbol{x}$$

- $G(\boldsymbol{\theta})$ is convex function on convex set $\boldsymbol{\Theta} \subseteq R^d$
- G characterizes members of the family
- θ is *natural* parameter

• Expectation parameter

$$\mu = \int_{\mathbf{x}} \mathbf{x} P_G(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x} = E_{\boldsymbol{\theta}}(\mathbf{x}) = g(\boldsymbol{\theta})$$

where $g(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} G(\boldsymbol{\theta})$

• Second convex function $F(\mu)$ on space $g(\Theta)$

$$F(\boldsymbol{\mu}) = \boldsymbol{\theta} \cdot \boldsymbol{\mu} - G(\boldsymbol{\theta})$$

- $G(\theta)$ and $F(\mu)$ are convex conjugate functions
- Let $f(\boldsymbol{\mu}) = \nabla_{\boldsymbol{\mu}} F(\boldsymbol{\mu})$
- $f(\mu) = g^{-1}(\mu)$

Primal & Dual Parameters

natural paramater expectation parameter

$$egin{array}{ccc} oldsymbol{ heta} & oldsymbol{ heta} & oldsymbol{\mu} \ G(oldsymbol{ heta}) & F(oldsymbol{\mu}) \end{array}$$

- ullet $oldsymbol{ heta}$ and $oldsymbol{\mu}$ are dual parameters
- Parameter transformations $g(\theta) = \mu$ and $f(\mu) = \theta$

[A,BN]

Gaussian (unit variance)

$$P(\boldsymbol{x}|\boldsymbol{\theta}) \sim e^{-\frac{1}{2}(\boldsymbol{\theta}-\boldsymbol{x})^{2}}$$
$$= e^{\boldsymbol{\theta}\cdot\boldsymbol{x}-\frac{1}{2}\boldsymbol{\theta}^{2}}e^{\frac{1}{2}\boldsymbol{x}^{2}}$$

Cumulant function: $G(\theta) = \frac{1}{2}\theta^2$

Parameter transformations:

$$g(\theta) = \theta = \mu$$
 and $f(\mu) = \mu = \theta$

Dual convex function: $F(\mu) = \theta \cdot \mu - G(\theta)$ = $\frac{1}{2}\mu^2$

Square loss: $L_t(\boldsymbol{\theta}) = \frac{1}{2}(\boldsymbol{\theta}_t - \boldsymbol{x}_t)^2$

Bernoulli

Examples x_t are coin flips in $\{0,1\}$

$$P(x|\mu) = \mu^x (1 - \mu)^{1 - x}$$

 μ is the probability (expectation) of 1

Natural parameter: $\theta = \ln \frac{\mu}{1-\mu}$

$$P(x|\theta) = \exp\left(\theta x - \ln(1 + e^{\theta})\right)$$

Cumulant function: $G(\theta) = \ln(1 + e^{\theta})$

Parameter transformations:

$$\mu = g(\theta) = \frac{e^{\theta}}{1 + e^{\theta}}$$
 and $\theta = f(\mu) = \ln \frac{\mu}{1 - \mu}$

Dual function: $F(\mu) = \mu \ln \mu + (1 - \mu) \ln(1 - \mu)$

Log loss:
$$L_t(\theta) = -x_t \theta + \ln(1 + e^{\theta})$$

= $-x_t \ln \mu - (1 - x_t) \ln(1 - \mu)$

Poisson

Examples x_t are natural numbers in $\{0, 1, \dots\}$

$$P(x|\mu) = \frac{e^{-\mu}\mu^x}{x!}$$

 μ is expectation of x

Natural parameter: $\theta = \ln \mu$

$$P(x|\theta) = \exp\left(\theta x - e^{\theta}\right) \frac{1}{x!}$$

Cumulant function: $G(\theta) = e^{\theta}$

Parameter transformations:

$$\mu = g(\theta) = e^{\theta}$$
 and $\theta = f(\mu) = \ln \mu$

Dual function: $F(\mu) = \mu \ln \mu - \mu$

Loss:
$$L_t(\theta) = -x_t \theta + e^{\theta} + \ln x_t!$$

= $-x_t \ln \mu + \mu + \ln x_t!$