Beginning Activities for Section 5.5

Mathematical Reasoning: Writing and Proof, Version 3

 $B \cap C \cap D = \{4, 5, 6\}$

Beginning Activity 1 (The Union and Intersection of a Family of Sets)

1.
$$A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 7\}$$
 $A \cap B \cap C = \{3, 4, 5\}$ $B \cup C \cup D = \{2, 3, 4, 5, 6, 7, 8\}$ $B \cap C \cap D = \{4, 5, 6\}$

2. (a)
$$(A \cup B \cup C) \cup D = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(b)
$$A \cup (B \cup C \cup D) = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(c)
$$A \cup (B \cup C) \cup D = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(d)
$$(A \cup B) \cup (C \cup D) = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

(e)
$$(A \cap B \cap C) \cap D = \{4, 5\}$$

(f)
$$A \cap (B \cap C \cap D) = \{4, 5\}$$

(g)
$$A \cap (B \cap C) \cap D = \{4, 5\}$$

(h)
$$(A \cap B) \cap (C \cap D) = \{4, 5\}$$

- 3. It appears that the placement of the parentheses in the union or intersection of these four sets does not make a difference. This means that we can define $A \cup B \cup C \cup D$ and $A \cap B \cap C \cap D$ as $(A \cup B \cup C) \cup D$ and $(A \cap B \cap C) \cap D$, respectively.
- **4.** Since $A = \{A, B, C, D\},\$
 - $\bigcup_{X \in \mathcal{A}} X$ consists of all the elements that are in one of the four sets A, B, C, and D. This is the same set as $A \cup B \cup C \cup D$.
 - $\bigcap X$ consists of all the elements that are in all of the four sets A, B, C, and D. This is the same set as $A \cap B \cap C \cap D$.

So,

$$\bigcup_{X \in \mathcal{A}} X = \{1, 2, 3, 4, 5, 6, 7, 8\} \quad \text{and} \quad \bigcap_{X \in \mathcal{A}} X = \{4, 5\}.$$

5.
$$\bigcup_{X \in \mathcal{B}} X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 and $\bigcap_{X \in \mathcal{B}} X = \emptyset$

6. Recall the universal set is \mathbb{N} . Therefore,

$$\left(\bigcup_{X \in A} X\right)^c = \{9, 10, 11, 12, 13, \ldots\}.$$

In addition,

$$A^c = \{6, 7, 8, 9, \ldots\}$$
 $C^c = \{8, 9, 10, 11, \ldots\}$ $B^c = \{7, 8, 9, 10, \ldots\}$ $D^c = \{9, 10, 11, 12, \ldots\}.$

Therefore,

$$\bigcap_{X \in A} X^c = \{9, 10, 11, 12, \ldots\}.$$

Beginning Activities for Section 5.5

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (An Indexed Family of Sets)

1.
$$\bigcup_{j=1}^{4} C_j = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 and $\bigcap_{j=1}^{4} C_j = \{4, 5\}$

2. (a)
$$\bigcup_{j=1}^{6} C_j = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 and $\bigcap_{j=1}^{6} C_j = \emptyset$

(b)
$$\bigcup_{j=1}^{8} C_j = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$
 and $\bigcap_{j=1}^{8} C_j = \emptyset$

(c)
$$\bigcup_{j=4}^{8} C_j = \{4, 5, 6, 7, 8, 9, 10, 11, 12\}$$
 and $\bigcap_{j=1}^{8} C_j = \{8\}$

(d)
$$(\bigcap_{j=1}^{4} C_j)^c = \{1, 2, 3, 6, 7, 8, 9, 10, \ldots\}$$
 and
$$\bigcup_{j=1}^{4} C_j^c = \{1, 2, 3, 6, 7, 8, 9, 10, \ldots\}$$

