

Fakultät für Mathematik und Wirtschaftswissenschaften Institut für Numerische Mathematik

Projekt CSE

Radarsignalverarbeitung mit Grafikprozessoren

vorgelegt von

Anton Hügel, Jonas Schwer, Lukas Tatzel, Michael Thoma am 3. Januar 2017

Betreuung

Prof. Dr. Stefan A. Funken, Dr. Markus Bantle

Inhaltsverzeichnis

1.	The	orie		3
	1.1.	Funkti	ionsweise eines Radars	3
		1.1.1.	Aufbau eines Radar	3
		1.1.2.	Puls-Doppler-Radar	3
		1.1.3.	Sende- und Empfangssignale	3
	1.2.	Radars	signalverarbeitung	3
		1.2.1.	Pulskompression	3
		1.2.2.	Dopplerfilterung	3
		1.2.3.	Betrags-Bildung	3
		1.2.4.		3
	1.3.		rtransformation	3
		1.3.1.	Kontinuierliche FT	3
		1.3.2.	Diskrete FT (DFT)	3
		1.3.3.	()	3
	1.4.	OpenC	CL	3
2.	Projekt			
	2.1.	Anford	derungen	4
	2.2.	Impler	nentierung	4
	2.3.	Verifik	ation	4
		2.3.1.	Tests	4
		2.3.2.	Benchmarks	4
	2.4.	Zusam	umenfassung und Fazit	4
Α.	Algorithmen			5
В.	Quellcode			

1. Theorie

In diesem Kapitel soll die Funktionsweise eines Radar-Systems (radio detection and ranging) und dessen Signalverarbeitungsalgorithmen sowie einige mathematische Grundlagen kurz erläutert werden, wie sie ausführlicher auch in [Ric05, RSH10, Lud02] nachzulesen sind. Zudem wird eine grundlegende Einführung in die Programmierschnittstelle OpenCL gegeben, mit welcher eine Programmierung für Grafikprozessoren umgesetzt werden kann.

1.1. Funktionsweise eines Radars

- 1.1.1. Aufbau eines Radar
- 1.1.2. Puls-Doppler-Radar
- 1.1.3. Sende- und Empfangssignale

1.2. Radarsignalverarbeitung

- 1.2.1. Pulskompression
- 1.2.2. Dopplerfilterung
- 1.2.3. Betrags-Bildung
- 1.2.4. CFAR

1.3. Fouriertransformation

- 1.3.1. Kontinuierliche FT
- 1.3.2. Diskrete FT (DFT)
- 1.3.3. Fast-Fourier-Transform (FFT)

1.4. OpenCL

2. Projekt

Eine Abhandlung des bearbeiteten Projekts wird in diesem Kapitel gegeben, wobei zunächst die Aufgagebenstellung dargelegt, dann deren Umsetzung erläutert und zuletzt eine Verifikation und Bewertung der Ergebnise durchgeführt wird.

- 2.1. Anforderungen
- 2.2. Implementierung
- 2.3. Verifikation
- 2.3.1. Tests
- 2.3.2. Benchmarks
- 2.4. Zusammenfassung und Fazit

A. Algorithmen

B. Quellcode

Literaturverzeichnis

- [RSH10] Richards, Mark A.; Scheer, James A. und Holm, William A. *Principles of modern radar:* Basic Principles. Scitech Publishing, Raleigh, 1. Auflage, 2010.
 - [Ric05] Richards, Mark A. Fundamentals of Radar Signal Processing. McGraw-Hill, Raleigh, 1. Auflage, 2005.
- [Lud02] Ludloff, Albrecht. *Praxiswissen Radar und Radarsignalverarbeitung*. Vieweg, Braunschweig/Wiesbaden, 3. überarbeitete Auflage, 2002.
- [AH01] Atkinson, Kendall und Han, Weinmin. Theoretical Numerical Analysis: A Functional Analysis Framework. Springer, NewYork, 1. Auflage, 2001.
- [AHK⁺10] Arens, Tilo; Hettlich, Frank; Karpfinger, Christian; Kockelkorn, Ulrich; Lichtenegger, Klaus und Stachel, Hellmuth. *Mathematik*. Spektrum Akademischer Verlag, Heidelberg, 2., korrigierter Nachdruck, 2010.
 - [AU10] Arendt, Wolfgang und Urban, Karsten. Partielle Differenzialgleichungen: eine Einführung in analytische und numerische Methoden. Spektrum Akademischer Verlag, Heidelberg, 2010.
 - [Ban13] Bantle, Markus. On hp-Boundary ElementMethods for the Laplace Operator in Two Dimensions. Dissertation, Universität Ulm, 2013.
 - [BB85] Bunse, Wolfgang und Bunse-Gerstner, Angelika. Numerische lineare Algebra. Teubner, Stuttgart, 1985.
 - [BBF13] Bantle, Andreas; Bantle, Markus und Funken, Stefan. epsBEM, efficient p-stable Matlab implementation of 2d BEM for Laplace and Lamé problems. Technischer Bericht, Universität Ulm, 2013.
 - [Han09] Hanke-Bourgeois, Martin. Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens. Vieweg + Teubner, Wiesbaden, 3., aktualisierte Auflage, 2009.
 - [MAT14] MATLAB. Version 8.4.0.150421 (R2014b). Software und Dokumentation, The MathWorks Inc., Natick, Massachusetts, 2014.
 - [Mei15] Meister, Andreas. Numerik linearer Gleichungssysteme: Eine Einführung in moderne Verfahren. Springer Spektrum, Wiesbaden, 5., überarbeitete Auflage, 2015.
 - [QSS02a] Quarteroni, Alfio; Sacco, Riccardo und Saleri, Fausto. Numerische Mathematik. 1. Springer, Berlin, Heidelberg, 2002.
 - [QSS02b] Quarteroni, Alfio; Sacco, Riccardo und Saleri, Fausto. Numerische Mathematik. 2. Springer, Berlin, Heidelberg, 2002.
 - [SK06] Schwarz, Hans Rudolf und Köckler, Norbert. *Numerische Mathematik*. Teubner, Wiesbaden, 6., überarbeitete Auflage, 2006.
 - [Ste03] Steinbach, Olaf. Numerische Näherungsverfahren für elliptische Randwertprobleme: finite Elemente und Randelemente. Teubner, Wiesbaden, 1. Auflage, 2003.
 - [Wer92] Werner, Jochen. Lineare und nichtlineare Gleichungssysteme, Interpolation, numerische Integration. Vieweg, Braunschweig, Wiesbaden, 1992.