In [2]: breast_cancer

```
Out[2]: {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
               [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
                8.902e-02],
               [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
                8.758e-021,
               [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
                7.820e-02],
               [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                1.240e-01],
               [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
               7.039e-02]]),
         0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
               1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
               1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
               1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
               0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
               1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
               1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
               0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
               0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
               1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
               1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
               1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
               1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
               1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
        'frame': None,
         'target_names': array(['malignant', 'benign'], dtype='<U9'),</pre>
         'DESCR': '.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n------------
        -----\n\n**Data Set Characteristics:**\n\n:Number of Instances: 569\n\n:Number of Attrib
        utes: 30 numeric, predictive attributes and the class\n\n:Attribute Information:\n - radius (mean of dis
        tances from center to points on the perimeter)\n - texture (standard deviation of gray-scale values)\n
        - perimeter\n - area\n - smoothness (local variation in radius lengths)\n - compactness (perimeter
       ^2 / area - 1.0)\n - concavity (severity of concave portions of the contour)\n - concave points (numb
        er of concave portions of the contour)\n - symmetry\n - fractal dimension ("coastline approximation"
        - 1)\n\n The mean, standard error, and "worst" or largest (mean of the three\n worst/largest values)
        of these features were computed for each image,\n resulting in 30 features. For instance, field 0 is Me
        an Radius, field\n 10 is Radius SE, field 20 is Worst Radius.\n\n - class:\n - WDBC-Malign
        ant\n
                      ==\n
                                                     9.71 39.28\np
        \nradius (mean):
                                           6.981 28.11\ntexture (mean):
                                                                                      143.5 2501.0\nsmo
        erimeter (mean):
                                        43.79 188.5\narea (mean):
                                       0.053 0.163\ncompactness (mean):
                                                                                    0.019 0.345\nconcav
       othness (mean):
                                          0.427\nconcave points (mean):
                                                                                 0.0 0.201\nsymmetry
        ity (mean):
                                    0.0
                                 0.106 0.304\nfractal dimension (mean):
                                                                              0.05 0.097\nradius (stan
        (mean):
                       0.112 2.873\ntexture (standard error):

0.757 21.98\narea (standard error):

0.002 0.031\ncompactness (standard error):

0.002 0.135\nconcavity (standard error):

0.002 0.053\nsymmetry (standard error):
        dard error):
                                                                            0.36 4.885\nperimeter (stan
                                                                         6.802 542.2\nsmoothness (standa
        dard error):
        rd error):
                                                                      0.002 0.135\nconcavity (standard e
        rror):
                      0.0 0.396\nconcave points (standard error):
        r):
                     0.008 0.079\nfractal dimension (standard error): 0.001 0.03\nradius (worst):
        7.93 36.04\ntexture (worst):
                                                      12.02 49.54\nperimeter (worst):
                                                                                                     50.
        41 251.2\narea (worst):
                                                   185.2 4254.0\nsmoothness (worst):
                                                                                                   0.071
        0.223\ncompactness (worst):
                                               0.027 1.058\nconcavity (worst):
                                                                                              0.0
                                                                                                    1.2
        52\nconcave points (worst):
                                            0.0 0.291\nsymmetry (worst):
                                                                                           0.156 0.664
                                          \nfractal dimension (worst):
        \n:Missing Attribute Values: None\n\n:Class Distribution: 212 - Malignant, 357 - Benign\n\n:Creator: Dr. W
        illiam H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n:Donor: Nick Street\n\n:Date: November, 1995\n\nT
```

his is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures a re computed from a digitized image of a fine needle\naspirate (FNA) of a breast mass. They describe\nchara cteristics of the cell nuclei present in the image.\n\nSeparating plane described above was obtained using \nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via Linear Programming." Pr oceedings of the 4th\nMidwest Artificial Intelligence and Cognitive Science Society,\npp. 97-101, 1992], a classification method which uses linear\nprogramming to construct a decision tree. Relevant features\nwere selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating plane\nin the 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Se ts",\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis database is also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. dropdown:: Refere nces\n\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction\n for breast tumo ume 1905, pages 861-870,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Brea st cancer diagnosis and\n prognosis via linear programming. Operations Research, 43(4), pages 570-577,\n July-August 1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)\n 163-171.\n',

In [4]: df_data = np.c_[breast_cancer['data'], breast_cancer['target']] # stack data array next to target array alon
 df_cols = np.append(breast_cancer['feature_names'], ['target']) # concatenate feature names with a column ca
 breast_cancer_df = pd.DataFrame(df_data, columns = df_cols)

In [6]: breast_cancer_df.head()

Out[6]:

:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 wor textui
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 17.3
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 23.4
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 25.5
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 26.5
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.€

5 rows × 31 columns

•

In [7]: breast_cancer_df.shape

Out[7]: (569, 31)

In [8]: breast_cancer_df.columns

In [9]: sns.pairplot(breast_cancer_df, hue = 'target', palette = 'gnuplot2', vars = ['mean radius', 'mean texture',
 # 5x5 grid of plots of the different vars plotted against each other
 # diagonal plots are KDE of each var (kernal density), non-diagonal plots are scatter plots of one var again
 # colors are by target value so red = benign, blue = malignant

Out[9]: <seaborn.axisgrid.PairGrid at 0x22f54bed9d0>

In [10]: breast_cancer_df['target'].value_counts() # number of occurences of each value within targets

Out[10]: target 1.0 357 0.0 212

Name: count, dtype: int64

```
In [11]: sns.countplot(data = breast_cancer_df, x = 'target', hue = 'target') # plot histogram of number of occurence
```

Out[11]: <Axes: xlabel='target', ylabel='count'>

In [12]: train_data = breast_cancer_df.drop(['target'], axis = 1) # training data removes target values
 train_data.head()

Out[12]:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 wors radius
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54

5 rows × 30 columns

```
In [13]: target_data = breast_cancer_df['target'] # target data is only target values
    target_data.head()
```

Out[13]: 0 0.0 1 0.0 2 0.0 3 0.0

4 0.0

Name: target, dtype: float64

In [14]: X_train, X_test, y_train, y_test = train_test_split(train_data, target_data, test_size = 0.2, random_state =
split train and target data into training and test datasets, 80% data for training, 20% data for testing,

```
In [15]: print("X_train:", X_train.shape)
    print("X_test:", X_test.shape)
    print("y_train:", y_train.shape)
    print("y_test:", y_test.shape)
```

X_train: (455, 30) X_test: (114, 30) y_train: (455,) y_test: (114,)

In [16]: sc = StandardScaler()

 $X_{train} = sc.fit_{transform}(X_{train}) \# fit: compute mean and stdev of <math>X_{train}$, tranform: scale with fit data

 $X_{test} = sc.transform(X_{test}) \# transform: scale with fit data of X_{train}$

In [17]: svc_model = SVC()

 $svc_model.fit(X_train, y_train) \# fit the model on training data$

Out[17]:

▼ SVC ① SVC()

In [19]: prediction = svc_model.predict(X_test) # predict test data based on fitted model

confusion_mat = np.array(confusion_matrix(y_test, prediction, labels=[1,0])) # create a confusion matrix wit confusion_mat = pd.DataFrame(confusion_mat, index = ["is_malignant", "is_benign"], columns = ["pred_malignan"]

confusion_mat

Out[19]: pred_malignant pred_benign

is_malignant	66	0
is_benign	1	47

In [20]: print(classification_report(y_test, prediction)) # print classification report of pred vs actual data

	precision	recall	f1-score	support
0.0	1.00	0.98	0.99	48
1.0	0.99	1.00	0.99	66
accuracy			0.99	114
macro avg	0.99	0.99	0.99	114
weighted avg	0.99	0.99	0.99	114