MATH 2242 (Calculus IV) Course Outline — Vector Calculus (Marsden)

1.5 n-Dimensional Euclidean Space

- \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n
- Addition

$$\langle x_1, x_2, \dots, x_n \rangle + \langle y_1, y_2, \dots, y_n \rangle = \langle x_1 + y_1, x_2 + y_2, \dots, x_n + y_n \rangle$$

- Scalar multiplication
- Inner/Dot Product

- Norm/Length/Magnitude
 - $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$
- Standard basis vectors

$$\mathbf{e}_1 = \langle 1, 0, \dots, 0 \rangle, \, \mathbf{e}_2 = \langle 0, 1, \dots, 0 \rangle, \, \dots, \, \mathbf{e}_n = \langle 0, 0, \dots, 1 \rangle$$

- Theorems
 - $(\alpha \mathbf{x} + \beta \mathbf{y}) \cdot \mathbf{z} = \alpha (\mathbf{x} \cdot \mathbf{z}) + \beta (\mathbf{y} \cdot \mathbf{z})$
 - Prove the above theorem.

 - $\mathbf{x} \cdot \mathbf{x} \ge 0$
 - $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$
 - $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$ (the Cauchy-Schwarz inequality)
 - Prove the Cauchy-Schwarz inequality.
 - $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (the triangle inequality)
 - Prove the triangle inequality.
- Matrices

$$\blacksquare A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- Addition A + B
- Scalar Mutiplication αA
- \blacksquare Transposition A^T
- Vectors as Matrices

$$\mathbf{a} = \langle a_1, a_2, \dots, a_n \rangle = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
$$\mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Matrix Multiplication
 - If A has m rows and B has n columns, then M = AB is an $m \times n$ matrix.
 - Coordinate ij of M = AB is given by $m_{ij} = \mathbf{a_i} \cdot \mathbf{b_j}$ where $\mathbf{a_i}^T$ is the ith row of A and $\mathbf{b_j}$ is the jth column of B.
 - \blacksquare (Example 4) Compute AB and BA for

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 \blacksquare (Example 5) Compute AB for

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Matrices as Linear Transformations
 - An $m \times n$ matrix A gives a function from \mathbb{R}^n to \mathbb{R}^m : $\mathbf{x} \mapsto A\mathbf{x}$
 - This linear transformation satsifies $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$
 - (Example 7) Express A**x** where $x = \langle x_1, x_2, x_3 \rangle$ and $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$.

- (Example) Compute where the points (-1, -1, 0), (0, 1, 0), (1, -1, 1), and (2, 1, 1) in \mathbb{R}^3 get mapped to in \mathbb{R}^4 by $A\mathbf{x}$ from the previous example. Then plot the projections of the original points in \mathbb{R}^3 onto their first two coordinates in \mathbb{R}^2 , and compare this with the projection plot of their images in \mathbb{R}^4 onto their first two coordinates in \mathbb{R}^2 .
- Identity and Inverse

$$\blacksquare I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- If $AA^{-1} = A^{-1}A = I_n$, then A is invertable and A^{-1} is its inverse.
- Determinant
 - Let A_i be the submatrix of A with the first column and ith row removed. Then $\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} \det(A_i)$
 - This is equivalent to $\det(A) = \sum_{\sigma \in S^n} \operatorname{sgn}(\sigma) \prod_{1 \leq i \leq n} a_{i,\sigma_i}$ where S^n is the collection of all permutations of elements 1 to n and $\operatorname{sgn}(\sigma)$ is 1 when σ is obtained by an even number of swaps, and -1 when σ is obtained by an odd number of swaps.
- HW: 1-18, 21-24

2.3 Differentiation

- Functions $\mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$
 - $\mathbf{f}(\mathbf{x}) = \langle f_1(\mathbf{x}), \dots, f_m(\mathbf{x}) \rangle$ where $f_i : \mathbb{R}^n \to \mathbb{R}$
- Partial Derivative Matrix

$$\mathbf{Df}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

- We say **f** is differentiable at **x** if $\mathbf{f}(\mathbf{x} + \mathbf{h}) \approx \mathbf{f}(\mathbf{x}) + [\mathbf{D}\mathbf{f}(\mathbf{x})]\mathbf{h}$ for all **h** near **0**.
- (Example) Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x,y) = \langle x^2 + y^2, xy \rangle$, and let $\mathbf{T} = \mathbf{Df}(1,0)$. Compute $\mathbf{f}(1.1,-0.1)$ and $\mathbf{f}(1,0) + \mathbf{T}\langle 0.1, -0.1 \rangle$.
- If each $\frac{\partial f_i}{\partial x_j}$: $\mathbb{R}^n \to \mathbb{R}$ is a continuous function near \mathbf{x} , then we say \mathbf{f} is strongly differentiable at \mathbf{x} .

- Gradient
 - If $f: \mathbb{R}^n \to \mathbb{R}$, then the gradient vector function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $\nabla f(\mathbf{x}) = (\mathbf{D}f(\mathbf{x}))^T = \langle \frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{x}) \rangle$
- HW: 1-21

2.5 Properties of the Derivative

- Sum/Product/Quotient Rules
 - $\mathbf{D}[\alpha \mathbf{f}] = \alpha \mathbf{D} \mathbf{f}$

 - $\mathbf{D}[fg] = g\mathbf{D}f + f\mathbf{D}g$
 - $\mathbf{D}\left[\frac{f}{g}\right] = \frac{g\mathbf{D}f f\mathbf{D}g}{g^2}$
 - Sketch proofs for strongly differentiable f, g.
- Chain Rule
 - $\bullet \ \mathbf{D}[\mathbf{f} \circ \mathbf{g}] = [\mathbf{D}\mathbf{f}](\mathbf{g})\mathbf{D}\mathbf{g}$
 - (Example) Find the rate of change of $f(x,y) = x^2 + y^2$ along the path $\mathbf{c}(t) = \langle t^2, t \rangle$ when t = 1.
 - (Example 2) Verify the Chain Rule for $f(u, v, w) = u^2 + v^2 w$ and $\mathbf{g}(x, y, z) = \langle x^2y, y^2, e^{-xz} \rangle$.
 - (Example 3) Compute $\mathbf{D}[\mathbf{f} \circ \mathbf{g}](1,1)$ where $\mathbf{f}(u,v) = \langle u+v,u,v^2 \rangle$ and $\mathbf{g}(x,y) = \langle x^2+1,y^2 \rangle$.
- HW: 6-13, 15-16

3.2 Taylor's Theorem

- First-Order Taylor Formula
 - $f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + [\mathbf{D}f(\mathbf{x})]\mathbf{h}$
 - Alternate form: $f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) h_i$
- Second-Order Taylor Formula
 - $f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) h_i + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) h_i h_j$

- (Example 3) Find linear and quadratic functions of x, y which approximate $f(x, y) = \sin(xy)$ near the point $(1, \pi/2)$.
- HW: 1-12

Remaining Topics

- 4.1 Acceleration and Newton's Second Law
- 4.2 Arc Length
- 4.3 Vector Fields
- 4.4 Divergence and Curl
- 5.3 The Double Integral Over More General Regions
- 5.4 Changing the Order of Integration
- 5.5 The Triple Integral
- 6.1 The Geometry of Maps from \mathbb{R}^2 to \mathbb{R}^2
- 6.2 The Change of Variables Theorem
- 7.1 The Path Integral
- 7.2 Line Integrals
- 7.3 Parametrized Surfaces
- 7.4 Area of a Surface
- 7.5 Integrals of Scalar Functions Over Surfaces
- 7.6 Surface Integrals of Vector Fields
- 8.1 Green's Theorem
- 8.2 Stokes' Thoerem
- 8.3 Conservative Fields
- 8.4 Gauss' Theorem