

Quantitative Methods and Applications

Econ 5100 – Claus C Pörtner

Introductions-me

Danish (little country north of Germany)

PhD - University of Copenhagen

Research:

Development economics

Household and population economics

Labor economics

Introductions-You

Background (work / study)

Where from

"Getting to know you" form

Purpose

- Set you up for success in the rest of the MSBA
- Basic statistics
- Regression analysis
- Proficient in R

Statistical tools

- Hypothesis testing
- Simple / multiple regression models with continuous dependent variables
- Model diagnostics
- Modeling choices
- Resampling methods / bootstrapping
- A bit of Bayesian if time permits

Software

Canvas

R / RStudio

You can use Mac, Windows, Linux or VLAB

Why R?

Pros	Cons
Easy to correct/modify	Confusing at first
Log	Memory hog
Replication	
Internships/jobs	
OS independent	
Expandable	

Learning R

Class demonstrations / practice

RStudio as GUI

Syllabus

Case study Problem sets Course Midterm

Problem sets

Course

Problem Sets

TK% of grade

Done on Canvas

Mostly using R

Problem sets

Course

Midterm

Midterm

Covers regression analysis:

TK% of grade

Case study Problem sets Course Midterm

Case Study

Your chance to work through a statistical project

Group project

TK% of grade

Best Practices

Style

Code for clarity

- Use clear file and object names that are easy to read
 - snake_case (my preferred)
 - camelCase
 - period.case (easy to confuse with R commands)
- Break up lines–R does not care (much) about line breaks
- Minimize nested commands
- Indent code
- Do this—even if in a hurry!

Naming stuff - I (surprisingly hard)

Descriptive file names-even if long

01_load_sales_data.R

02_eda_sales_data.R

data.R

analysis.R

Naming stuff - II (surprisingly hard)

get_elasticity (function ~ verb)

campaign_exposure (variable ~ noun)

RStudio autosuggests matches, no reason to type the whole thing every time

Syntax

- Spacing makesiteasytoread
- Place spaces around all operators (=, +, -, /, <-, <=)
- Put a space after comma
 - Good: double_mean <- mean(initial_data * 2, na.rm = TRUE)
 - Bad: double_mean<-mean(initial_data*2,na.rm=TRUE)
- Extra spacing is ok to improve alignment

Syntax

- Use <- for assignment (not = because that is used for setting function attributes)
- Indent within curly brackets and have last curly bracket on own line:

```
If (y == 0) {
    log(x)
    } else {
        y ^ x
}
```

Documentation and versioning

Always Write so Others Can Use/Understand Your Code!

- This includes your future self!
- Include lots of comments—even if it is obvious to you now
 - Good: # Reduce all columns to mean to create a bar graph ----
 - Bad: #column means

More on Comments

- But, avoid obvious comments like
 // if country code is US
 if (country_code == 'US') {...
- Group code and use a comment to describe what is going on in the group
- Comments for "why"

Separate into Sections

- Use: # Heading ----
 - Easier to read
 - RStudio makes it easy to jump around
 - Keyboard short-cut if "----" included

Why Versioning?

- Project history
 - You can roll back mistakes easily
 - Commit messages serve as documentation
- Branching: try new stuff without breaking the old
- Sync between your computers
- Sharing / collaboration

How?

- My favorite is Git on GitHub.com
- Free educational account
- RStudio plays nicely with GitHub

Project/File Organization

Be Consistent!

My set-up for **EVERY** research project:

```
wage_elasticity
```

- I code
- |− data
- |- figures
- |- paper
- |- presentations
- |- raw_data
- |- tables
- |- read_me.md
- |- wage_elasticity.Rproj

Split!

- More files, rather than one big
- Option: number the files code
 - |- 01_load_data.R
 - |- 02_regress.R
 - |- 03_elasticities.R
 - |- 04_experience.R
 - |- functions.R

RStudio Project

- Use this for every data analysis project
- Keep everything there
- Always relative paths (project sets home dir)
- Remember: use "/" for separating path components
 - Example ~/projects/socs/wage_elasticity/

Intro R / RStudio

How to start R Studio

Find the R Studio application and double-click

Demonstration using desktop.seattleu.edu

Use "Seattle University Virtual Desktop"

Script editor

- Where you write your program
- Make sure you add comments
- Others should be able to run it and understand what the program does and why

Data frames

- All data frames and variables show up here
- You can see variables within frames here

Rconsole

- Actual R
- Great place to try stuff before adding to script
- File manipulation

Assorted helper

- Packages:
 - A major advantage of R is its extensibility
 - You can install packages here, update them, and make them active
- Figures show here as well
- The place to go for help files

Where is my data?

Create a directory for the class: econ_5100

Download data there and keep R files there

If using desktop.seattleu.edu: save econ_5100 under P drive

How to get data into R

```
Method 1
       Set your working directory. For example,
              setwd("~/econ 5100")
 use file tab in RStudio-look under "More" or use project
       Alumni <- read.csv("Alumni.csv")
                   Method 2 (bad)
    Write full file name (first Mac, second Desktop):
Alumni <- read.csv("~/econ 5100/Alumni.csv")
Alumni <- read.csv("P:/econ 5100/Alumni.csv")
```

Descriptive stats

Basic summary of all variables: summary (Alumni)

```
> summary(Alumni)
                              school classes1t20
Boston College
                                      Min.
                                             :29.00
 Brandeis University
                                      1st Qu.:44.75
                                      Median :59.50
 Brown University
California Institute of Technology:
                                      Mean :55.73
                                 : 1
Carnegie Mellon University
                                       3rd Qu.:66.25
Case Western Reserve Univ.
                                 : 1
                                             :77.00
                                      Max.
                                 :42
 (Other)
   sfratio
                alumnigivingrate
Min. : 3.00
                Min. : 7.00
1st Qu.: 8.00
                1st Qu.:18.75
Median :10.50
               Median :29.00
Mean :11.54
               Mean :29.27
 3rd Qu.:13.50
                3rd Qu.:38.50
Max. :23.00
                Max. :67.00
```

Only some vars?

"subset" is one option

```
> summary(subset(Alumni, select = c(classeslt20,sfratio,alumnigiv)
ingrate)))
 classeslt20
                sfratio
                              alumnigivingrate
Min. :29.00 Min. : 3.00 Min. : 7.00
               1st Qu.: 8.00
1st Qu.:44.75
                              1st Qu.:18.75
Median :59.50
               Median :10.50
                              Median :29.00
Mean :55.73 Mean :11.54 Mean :29.27
3rd Qu.:66.25 3rd Qu.:13.50
                              3rd Qu.:38.50
Max. :77.00
               Max. :23.00
                                    :67.00
                              Max.
```

Can also do conditions

An alternative

Use names (Alumni) or click on the data frame to see variable names

Descriptive analysis

summary(myData)

- Mean: mean(myData\$myVar)
- Standard deviation: sd(myData\$myVar)
- Minimum: min(myData\$myVar)
- Maximum: max(myData\$myVar)
- Median: median(myData\$myVar)

Either write these in console or script

Packages in R

Files	Plots Packag	es Help	Viewer			
OL I	nstall 🕡 Updat	te	Q) (@
	Name	Descript	ion	Version		
Syste	em Library					
	abind	Combin	1.4-5	⊗ -		
	acepack	ACE and Regressi	1.4.1	8		
	AER	Applied	1.2-4	⊗		
	aplpack	faces, sp	Plot PACKage: in3R, plotsumn der functions	1.3.0	8	
	arm	Data Ana Multilev	1.9-3	8		
	assertthat	Easy pre	0.1	0		
	backports		mentations of F ed Since R-3.0.0	1.0.4	0	
П	base64	Base64 E	2.0	(3)		

Stargazer

Once found, click checkbox or add to script as

library(stargazer)

Making things pretty

Many options, but "stargazer" is easy

Simple first step-prints to console

```
stargazer( # in text format and with var labels
   Alumni[ c("classeslt20", "sfratio", "alumnigivingrate")],
   type = "text"
)
```

First try

Statistic	N	Mean	St.	Dev.	Min	мах
classeslt20 sfratio alumnigivingrate	48	55.729 11.542 29.271	4.8	851	3	23

Making it nicer

```
stargazer( # in text format and with var labels
   Alumni[ c("classeslt20", "sfratio", "alumnigivingrate")],
   type = "text",
   title = "Descriptive statistics",
   digits = 1 # number of digits after the point
)
```

Second try

```
Descriptive Statistics

Statistic N Mean St. Dev. Min Max

classeslt20 48 55.7 13.2 29 77

sfratio 48 11.5 4.9 3 23

alumnigivingrate 48 29.3 13.4 7 67
```

Adding labels

```
stargazer( # in text format and with var labels
   Alumni[ c("classeslt20", "sfratio", "alumnigivingrate")],
   type = "text",
   title = "Descriptive statistics",
   digits = 1 # number of digits after the point,
   covariate.labels = c("Classes with <20 students (%)",
        "Student-faculty ratio", "Alumni giving rate (%)")
)</pre>
```

Third try

```
Descriptive Statistics

Statistic N Mean St. Dev. Min Max

Classes with <20 students (%) 48 55.7 13.2 29 77

Student-faculty ratio 48 11.5 4.9 3 23

Alumni giving rate (%) 48 29.3 13.4 7 67
```

HTML to Word

```
stargazer( # in text format and with var labels
   Alumni[ c("classeslt20", "sfratio", "alumnigivingrate")],
   type = "html",
   title = "Descriptive statistics",
   digits = 1 # number of digits after the point,
   covariate.labels = c("Classes with 20 or fewer students (%)",
        "Student-faculty ratio", "Alumni giving rate (%)"),
   out = "desStat.htm" # saved to your working directory
)
```

Use "Open file" in Word and edit as needed Save as Word document

Pretty!!

Descriptive Statistics

Statistic	N Mean St. Dev. Min Max						
Classes with 20 or fewer students (%)	48	55.7	13.2	29	77		
Student-faculty ratio	48	11.5	4.9	3	23		
Alumni giving rate (%)	48	29.3	13.4	7	67		

Then you can copy the table or write around it

For Next Monday

- Read Chapters 8 through 12 in Keller (on Canvas)
- Install R / RStudio on your own computer (instructions on Canvas)
- Work through "R for Data Science", part I (Explore)