# Denoising Diffusion Probabilistic and Implicit Models

Presented by: Itamar Salazar-Reque

#### Outline

- The problem
- The solution
- Summary of DDPM and DDIM
- Mathematical Details
- Results

## The problem

Learning to generate data



Why is this a problem?

Sampling from this is easy because we know the distribution.



Sampling from this is complicated.
What is the data distribution?





#### The solution



### Summary of DDPM and DDIM

Denoising Diffusion Probabilistic Models → Denoising Diffusion Implicit Models



- Difussion Process: (←)
  - From image to noise  $(x_T \leftarrow x_0)$
  - Adds some Gaussian noise to the image
  - Assume Markovian process
- Generative Process: (→)
  - From noise to image  $(x_T \rightarrow x_0)$ , Markovian
  - Recovers original image
  - $p_{\theta}$ : A neural network
- Sampling: How to recoverer an image from noise?
  - Apply  $p_{\theta}$  iteratively  $(x_T \rightarrow x_{T-1} \dots \rightarrow x_1 \rightarrow x_0)$

**DDIM** 



- **Diffusion Process** (Actually this is not a diffusive process but whatever):
  - From image to noise  $(x_0 \rightarrow x_T)$
  - Adds some Gaussian noise to the image
  - Non-markovian process which lead to:
    - The same training objective used in DDPM
    - A generalized sampling process (dependent on  $\sigma$ )
- Generative Process:
  - From noise to image  $(x_T \rightarrow x_0)$ , Non-Markovian
  - Recovers original image
  - $p_{\theta}$ : Neural network
- Sampling:
  - Requires less iterations (when  $\sigma$  is properly chosen)



#### **Generative Process**



#### **Diffusion Process**

$$q_{\sigma}(m{x}_{1:T}|m{x}_0) := q_{\sigma}(m{x}_T|m{x}_0) \prod_{t=2}^T q_{\sigma}(m{x}_{t-1}|m{x}_t,m{x}_0)$$

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t-1} - \sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t} - \sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1 - \alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right)$$

This is the reverse. We want  $p_{\theta}$  to emulate this.

$$p_{\theta}^{(t)}(x_{t-1}|x_t) = q_{\sigma}(x_{t-1}|x_t, x_0)$$

But we do not have  $x_0$  in the generative process!! (i.e. in the sampling)

$$x_0 = (x_t - \sqrt{1 - \alpha_t} \cdot \epsilon_{\theta}^{(t)}(x_t)) / \sqrt{\alpha_t} = f_{\theta}^{(t)}(x_t)$$

$$q_{\sigma}(x_{t-1}|x_t, x_0) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}x_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \frac{x_t - \sqrt{\alpha_t}x_0}{\sqrt{1 - \alpha_t}}, \sigma_t^2 \boldsymbol{I}\right)$$

$$p_{\theta}^{(t)}(x_{t-1}|x_t) = q_{\sigma}(x_{t-1}|x_t, f_{\theta}^{(t)}(x_t))$$

The mean function is chosen to order to ensure that

$$q_{\sigma}(\boldsymbol{x}_t|\boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_t}\boldsymbol{x}_0, (1-\alpha_t)\boldsymbol{I})$$

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon$$
, where  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .





$$J_{\sigma}(\epsilon_{\theta}) := \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})}[\log q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) - \log p_{\theta}(\boldsymbol{x}_{0:T})]$$

$$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} \left[ q_{\sigma}(\boldsymbol{x}_{T} | \boldsymbol{x}_{0}) + \sum_{t=2}^{T} \log q_{\sigma}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}, \boldsymbol{x}_{0}) - \sum_{t=1}^{T} \log p_{\theta}^{(t)}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_{t}) - \log p_{\theta}(\boldsymbol{x}_{T}) \right]$$

$$J_{\sigma} = L_{\gamma} + C.$$

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t-1} - \sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t} - \sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1 - \alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right).$$

$$\boldsymbol{x}_{0} = (\boldsymbol{x}_{t} - \sqrt{1 - \alpha_{t}} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_{t})) / \sqrt{\alpha_{t}}$$

$$\boldsymbol{x}_{t-1} = \text{mean} + \text{std} \times \epsilon$$

$$p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$$
$$\boldsymbol{x}_0 = (\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)) / \sqrt{\alpha_t}$$

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left( \frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}} \right)}_{\text{"predicted } \boldsymbol{x}_0"} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t"} + \underbrace{\sigma_t \boldsymbol{\epsilon}_t}_{\text{random noise}}$$

This a general expresión for sampling. We can obtain  $x_0$  from  $x_t$ applying this iteratively.

How is this better?

$$\sigma_t = \sqrt{(1-\alpha_{t-1})/(1-\alpha_t)}\sqrt{1-\alpha_t/\alpha_{t-1}}$$
 This is Probabilistic

 $\sigma_t = 0$  We "eliminate" the stochasticity of the sampling so We can compute  $x_0$  directly in one step!!!

...but in practice this is not good because we depend on our "predicted  $x_0$ ".

So, we ended up using just fewer iterations, like:  $10 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 2 \rightarrow 0$ 

## Thanks!

Itamar Salazar-Reque