

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

5-1.삼각비

1) 제작연월일: 2020-07-28

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[특수한 각의 삼각비의 값]

A 삼각비	30 °	45 °	60 °
$\sin A$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos A$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan A	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

[임의의 예각의 삼각비의 값]

1. 예각의 삼각비의 값

반지름의 길이가 1인 사분원에서 임의의 예각 x에 대하여

(1)
$$\sin x = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = \overline{AB}$$

(2)
$$\cos x = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{OB}}{1} = \overline{OB}$$

(3)
$$\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \frac{\overline{\text{CD}}}{1} = \overline{\text{CD}}$$

2. 0° , 90° 의 삼각비의 값

오른쪽 그림에서

 $\sin x = \overline{AB}$, $\cos x = \overline{OB}$, $\tan x = \overline{CD}$

(1) $\angle AOB$ 의 크기가 0°에 가까워지면

 $\overline{AB} \rightarrow 0$, $\overline{OB} \rightarrow 1$, $\overline{CD} \rightarrow 0$

 $\Rightarrow \sin 0^{\circ} = 0$, $\cos 0^{\circ} = 1$, $\tan 0^{\circ} = 0$

(2) ∠AOB의 크기가 90°에 가까워지면

 $\overline{AB} \rightarrow 1$, $\overline{OB} \rightarrow 0$, $\overline{CD} \rightarrow \overline{D}$ 한없이 길어진다.

 $\Rightarrow \sin 90^{\circ} = 1$, $\cos 90^{\circ} = 0$,

tan90 °의 값은 정할 수 없다.

[삼각비의 표]

(1) 삼각비의 표: 0 $^\circ$ 에서 90 $^\circ$ 까지의 각을 1 $^\circ$ 간격으로 나누어서 삼각비의 값을 반올림하여 소수점 아래 넷째 자리까지 나타낸 표 (2) 삼각비의 표 읽는 방법: 삼각비의 표에서 각도의 가로줄과 삼각비 의 세로줄이 만나는 칸에 있는 수가 삼각비의 값이다.

각도	사인(sin)	코사인(cos)	탄젠트(tan)
0 °	0.0000	1.0000	0.0000
1°	0.0175	0.9998	0.0175
:	:	:	:
88 °	0.9994	0.0349	28.6363
89 °	0.9998	0.0175	57.2900
90°	1.0000	0.0000	

기본문제

[예제]

1. 다음 계산 결과가 옳은 것은?

①
$$\sin 30^{\circ} + \cos 30^{\circ} = 1$$

②
$$\tan 45^{\circ} - \cos 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$(3) \tan 60^{\circ} \times \cos 30^{\circ} = \frac{3}{2}$$

$$\textcircled{4} \cos 45^{\circ} \div \tan 60^{\circ} = \frac{\sqrt{6}}{2}$$

(5)
$$\sin 60^{\circ} - \cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

[문제]

다음을 계산하면?

 $\tan 45^{\circ} \times \cos 30^{\circ} - \sin 60^{\circ} \times \tan 60^{\circ}$

 $\sqrt[3]{\frac{\sqrt{3}-3}{2}}$

 $4 \frac{\sqrt{3}+1}{2}$

(5) $\sqrt{3}$

[문제]

3. 다음 그림과 같이 반지름의 길이가 1인 사분원에 서 cos47°-sin47°+tan47°의 값을 구하면?

- ① 1.02
- 2 1.04
- ③ 1.06
- (4) 1.08
- **⑤** 1.1

[문제]

4. 다음 계산 결과가 가장 큰 것은?

- ① tan0°+sin90°
- $2 \tan 45^{\circ} \times \cos 90^{\circ}$
- 3 cos0°×sin0°
- 4 tan45° cos90° + sin90°
- $\odot \cos 0^{\circ} \times \sin 90^{\circ} \tan 45^{\circ}$

[문제]

5. 다음 삼각비의 표를 이용하였을 $\sin x^{\circ} = 0.2756$, $\cos y^{\circ} = 0.9703$, $\tan z^{\circ} = 0.2679$ **O** 다. 이때 x-y+z의 값을 구하면?

각	사인(sin)	코사인(cos)	탄젠트(tan)
14°	0.2419	0.9703	0.2493
15 °	0.2588	0.9659	0.2679
16 °	0.2756	0.9613	0.2867

- 14
- 2 15
- 3 16
- **4** 17
- **⑤** 18

[문제]

6. 다음 그림과 같이 $\angle B = 90^{\circ}$, $\angle A = 30^{\circ}$, AC=8cm인 직각삼각형 ABC에서 AB의 길이와 BC의 길이를 순서대로 바르게 나열한 것은?

AB

 \overline{BC}

- ① 4 cm
- $2\sqrt{3}$ cm
- ② 4 cm
- $4\sqrt{3}$ cm
- $3 4\sqrt{3}$ cm
- $2\sqrt{3}$ cm
- $4\sqrt{3}$ cm
- $4\,\mathrm{cm}$
- ⑤ $4\sqrt{3}$ cm
- $4\sqrt{2}$ cm

평가문제

[중단원 학습 점검]

7. 다음 식을 계산하면?

 $\sin 90^{\circ} \times \cos 30^{\circ} + \sin 60^{\circ} \times \cos 0^{\circ}$

 $\textcircled{1} \ \frac{1}{2}$

- ⑤ $\sqrt{3}$

[중단원 학습 점검]

8. 다음 그림과 같은 직각삼각형 ABC에서 x, y의 값을 각각 바르게 구한 것은?

- ① x = 6, $y = 2\sqrt{3}$
- ② x = 6, $y = 2\sqrt{6}$
- ③ $x = 6\sqrt{3}$, $y = 2\sqrt{3}$ ④ $x = 6\sqrt{3}$, y = 4
- ⑤ x = 8, y = 4

[중단원 학습 점검]

다음 그림과 같이 반지름의 길이가 1인 사분원에 서 tan35°-cos35°+sin35°의 값을 구하면?

- ① 0.4
- 2 0.45
- 3 0.5
- **4** 0.55
- (5) 0.6

[단원 마무리]

10. $(1+\tan 30^\circ)(1-\sin 60^\circ)$ 의 값을 계산하면?

- ① $\frac{3-\sqrt{3}}{6}$
- ② $\frac{3-\sqrt{3}}{3}$
- $3\frac{3-\sqrt{3}}{2}$

[단원 마무리]

11. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} \perp \overline{BC}$, $\angle ABD = 45^{\circ}$, $\angle DAC = 60^{\circ}$, $\overline{AB} = 10 \text{ cm}$ **W**, AC의 길이를 구하면?

- ① $10\sqrt{2}$ cm
- ② $10\sqrt{3}$ cm
- ③ 20 cm
- 4) $20\sqrt{2}$ cm
- ⑤ $20\sqrt{3}$ cm

[단원 마무리]

12. 다음 그림과 같이 반지름의 길이가 1인 사분원에 대하여 tany, cos x, sin z를 표현하는 선분을 순서 대로 바르게 나열한 것은?

- ① \overline{DE} , \overline{AB} , \overline{BC}
- \bigcirc \overline{DE} , \overline{BC} , \overline{AB}
- 3 $\overline{\text{DE}}$, $\overline{\text{AB}}$, $\overline{\text{AB}}$ 4 $\frac{1}{\overline{\text{DE}}}$, $\overline{\text{AB}}$, $\overline{\text{BC}}$
- $\bigcirc \frac{1}{\overline{DE}}, \overline{AB}, \overline{AB}$

[단원 마무리]

13. 다음 직각삼각형 ABC에서 $\overline{AD} = \overline{DC} = \overline{BC}$ 이고, $\angle ABD = x$ °라고 할 때, $\cos x$ °의 값을 구하면?

- $3\frac{3\sqrt{10}}{10}$
- $4 \frac{2\sqrt{10}}{5}$

유사문제

14. 계산이 옳은 것을 <u>모두</u> 고르면? (정답 2개)

$$\textcircled{1} \sin 25 \degree = \frac{\cos 65 \degree}{\tan 45 \degree}$$

$$2 \cos 30^{\circ} \times \tan 60^{\circ} = \frac{1}{2}$$

$$(3) \sin 60^\circ \times \cos 30^\circ = \frac{\sqrt{3}}{4}$$

$$(4) \ 2 \tan 60^{\circ} - \sin 60^{\circ} = \frac{3\sqrt{3}}{2}$$

⑤
$$\sqrt{2} \sin 45^{\circ} + \sqrt{3} \tan 30^{\circ} = 5$$

15. 다음 그림에서 x, y의 값은?

- ① $x = 2\sqrt{3}$, $y = \sqrt{6}$
- ② $x = 2\sqrt{3}$, y = 2
- ③ $x = 2, y = \sqrt{6}$
- (4) $x = 2\sqrt{2}$, y = 2
- ⑤ $x = 2\sqrt{6}$, $y = \sqrt{6}$
- **16.** <보기>에서 계산 결과가 서로 같은 것은?

<보기>

- $(\neg) \cos 30^{\circ} + \sin 60^{\circ}$
- (∟) sin30°-tan60°
- (\square) $2\cos 60^{\circ} \times 3\tan 30^{\circ}$ (\supseteq) $\sin 45^{\circ} \div \tan 45^{\circ}$
- ① (¬), (∟)
- ② (¬), (□)
- ③ (∟), (⊏)
- ④ (∟), (≥)
- ⑤ (□), (⊇)
- **17.** 다음 그림의 직각삼각형 ABC에서 $\overline{AB} = 16 \, cm$, \overline{AC} =8cm일 때, $\angle B$ 의 크기는?

- ① 10°
- $\bigcirc 20^{\circ}$
- $30\,^{\circ}$
- 4 45°
- (5) 60°

18. 다음 식의 값을 구하면?

 $\tan\!30\,\degree\,\times\!\cos\!30\,\degree-\sin\!45\,\degree\,\times\cos\!45\,\degree$

- ① $-\frac{\sqrt{3}}{2}$
- ② 0
- (4) 1
- **19.** 반지름의 길이가 1인 사분원에 대하여 옳은 것 은?

- ① $\sin y^{\circ} = \overline{BC}$
- $2 \sin z^{\circ} = \overline{AD}$
- $3 \cos x^{\circ} = \overline{AD}$
- $(4) \cos z^{\circ} = \overline{BC}$
- (5) $\tan x = \overline{BC}$
- **20.** 반지름의 길이가 1 이고 중심각의 크기가 40° 인 부채꼴 OAB 에서 $\overline{AH} \perp \overline{OB}$ 일 때, 옳지 않은 것 은? (정답 2 개)

- ① $\overline{AH} = \sin 40^{\circ}$
- ② $\overline{OH} = \cos 40^{\circ}$
- $3\overline{AH} = \tan 40^{\circ}$
- $\bigcirc \overline{OH} = \sin 50^{\circ}$
- $\bigcirc \overline{BH} = 1 \tan 40^{\circ}$

21. 그림과 같이 반지름의 길이가 1인 사분원에 대하 여 cos40°+tan40°의 값은?

- 1.41
- 2 1.48
- 3 1.61
- 4 1.77
- **⑤** 1.84
- **22.** 내각의 크기의 비가 $\angle A: \angle B: \angle C=1:2:3$ 인 직각삼각형에서 $\sin A + \tan B \times \cos C$ 의 값은?

- **4** 1
- **23.** 직각삼각형 ABC에서 $\angle B$ 의 크기를 다음 삼각 비의 표를 이용하여 구하면?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
70 °	0.9397	0.3420	2.7475
71 °	0.9455	0.3256	2.9042
72 °	0.9511	0.3090	3.0777
73 °	0.9563	0.2924	3.2709
74 °	0.9613	0.2756	3.4874

- ① 19°
- ② 20°
- ③ 70°
- ④ 71°
- \bigcirc 72 $^{\circ}$

24. △ABC 에서 $\overline{AB} = 10$, $\angle BAC = 76^{\circ}$, $\angle ACB = 90$ $^{\circ}$ 일 때, 주어진 삼각비의 표를 이용하 여 $\overline{AC}+\overline{BC}$ 의 값은?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
13°	0.2250	0.9744	0.2309
14 °	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16 °	0.2756	0.9613	0.2867

- ① 12.122
- 2 12.196
- 3 12.369
- **4** 12.459
- (5) 12.48

정답 및 해설

1) [정답] ③

[해설] ①
$$\frac{1+\sqrt{3}}{2}$$

$$2 1 - \frac{1}{2} = \frac{1}{2}$$

$$4 \frac{\sqrt{2}}{2} \div \sqrt{3} = \frac{\sqrt{2}}{2} \times \frac{1}{\sqrt{3}} = \frac{\sqrt{6}}{6}$$

2) [정답] ③

[해설]
$$\tan 45^{\circ} \times \cos 30^{\circ} - \sin 60^{\circ} \times \tan 60^{\circ}$$

$$=1 \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \times \sqrt{3}$$
$$=\frac{\sqrt{3}}{2} - \frac{3}{2}$$
$$=\frac{\sqrt{3}-3}{2}$$

3) [정답] ①

[해설]
$$\cos 47^{\circ} = \overline{OB} = 0.68$$

$$\sin 47^{\circ} = \overline{AB} = 0.73$$

$$\tan 47^{\circ} = \overline{PQ} = 1.07$$

$$\therefore \cos 47^{\circ} - \sin 47^{\circ} + \tan 47^{\circ}$$

$$=0.68-0.73+1.07$$

=1.02

4) [정답] ④

[해설] ① 0+1=1

②
$$1 \times 0 = 0$$

$$3 1 \times 0 = 0$$

$$4 1-0+1=2$$

$$51 \times 1 - 1 = 0$$

5) [정답] ④

[해설]
$$x = 16$$
, $y = 14$, $z = 15$

$$\therefore x - y + z = 16 - 14 + 15 = 17$$

6) [정답] ④

[해설]
$$\overline{AB} = 8 \times \cos 30^{\circ} = 8 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} \text{ cm}$$

$$\overline{BC} = 8 \times \sin 30^{\circ} = 8 \times \frac{1}{2} = 4 \text{ cm}$$

7) [정답] ⑤

[해설]
$$\sin 90\degree \times \cos 30\degree + \sin 60\degree \times \cos 0\degree$$

$$=1 \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \times 1$$
$$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}$$

$$=\sqrt{3}$$

8) [정답] ⑤

[해설]
$$\sin 60^\circ = \frac{4\sqrt{3}}{x}$$
이므로

$$x = 4\sqrt{3} \div \sin 60^{\circ} = 4\sqrt{3} \div \frac{\sqrt{3}}{2} = 8$$

$$\tan 60^\circ = \frac{4\sqrt{3}}{y}$$
이므로

$$y = 4\sqrt{3} \div \tan 60^{\circ} = 4\sqrt{3} \div \sqrt{3} = 4$$

9) [정답] ②

[해설]
$$\sin 35\degree = 0.57$$
, $\cos 35\degree = 0.82$, $\tan 35\degree = 0.70$

$$\therefore \tan 35\degree - \cos 35\degree + \sin 35\degree$$

$$=0.70-0.82+0.57$$

$$=0.45$$

10) [정답] ①

$$= \left(1 + \frac{\sqrt{3}}{3}\right) \left(1 - \frac{\sqrt{3}}{2}\right)$$

$$= 1 - \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{3} - \frac{1}{2}$$

$$= \frac{3 - \sqrt{3}}{6}$$

11) [정답] ①

[해설]
$$\triangle$$
ABD에서 $\overline{\rm AD} = 10 \times \sin 45^{\circ} = 5\sqrt{2} \; \mathrm{cm}$

$$\overline{AC} = \overline{AD} \div \cos 60^{\circ}$$

$$=5\sqrt{2} \div \frac{1}{2}$$

$$=10\sqrt{2} \text{ cm}$$

12) [정답] ⑤

[해설]
$$\angle y = \angle z$$
이므로

$$\tan y = \tan z = \frac{\overline{AD}}{\overline{DE}} = \frac{1}{\overline{\overline{DE}}}$$

$$\cos x = \overline{AB}$$

$$\sin z = \sin y = \overline{AB}$$

13) [정답] ③

점 A에서 BD의 연장선 위에 내린 수선의 발을 H라 하고, $\overline{BC} = \overline{DC} = \overline{AD} = a$ 라 하자.

 $\triangle BCD에서 \overline{BD} = \sqrt{2}a$

이때 △ADH와 △BDC는 AA닮음이므로

△ADH는 직각이등변삼각형이다.

따라서 $\overline{AD} = a$ 일 때,

$$\overline{\text{AH}} = \overline{\text{HD}} = a \times \cos 45^{\circ} = \frac{\sqrt{2}}{2}a$$

따라서
$$\overline{\rm BH}\!=\!\overline{\rm BD}\!+\!\overline{\rm DH}\!=\!(\sqrt{2}\!+\!\frac{\sqrt{2}}{2})a\!=\!\frac{3\sqrt{2}}{2}a$$

또한 \triangle ACB에서 $\overline{AB} = \sqrt{(2a)^2 + a^2} = \sqrt{5}a$ 이제 △ABH에서

$$\therefore \cos x^{\circ} = \frac{\overline{BH}}{\overline{AB}} = \frac{3\sqrt{2}}{2} a \div \sqrt{5} a$$
$$= \frac{3\sqrt{2}}{2} \times \frac{1}{\sqrt{5}}$$
$$= \frac{3\sqrt{10}}{10}$$

14) [정답] ①, ④

[해설] ①
$$\sin 25^{\circ} = \frac{\cos 65^{\circ}}{\tan 45^{\circ}} = \frac{\cos 65^{\circ}}{1} = \cos 65^{\circ}$$

$$3 \sin 60^{\circ} \times \cos 30^{\circ} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = \frac{3}{4}$$

$$4 2 \tan 60^{\circ} - \sin 60^{\circ} = 2 \times \sqrt{3} - \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$$

⑤
$$\sqrt{2} \sin 45^{\circ} + \sqrt{3} \tan 30^{\circ}$$

= $\sqrt{2} \times \frac{\sqrt{2}}{2} + \sqrt{3} \times \frac{\sqrt{3}}{3} = 1 + 1 = 2$

15) [정답] ①

[해설]
$$\triangle ABC$$
에서 $\sin 60^{\circ} = \frac{x}{4} = \frac{\sqrt{3}}{2}$

$$\therefore x = 2\sqrt{3}$$

$$\triangle ACD$$
에서 $\cos 45^{\circ} = \frac{y}{2\sqrt{3}} = \frac{\sqrt{2}}{2}$

$$\therefore y = \sqrt{6}$$

16) [정답] ②

[해설] (7)
$$\cos 30^{\circ} + \sin 60^{\circ} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$$

(L)
$$\sin 30^{\circ} - \tan 60^{\circ} = \frac{1}{2} - \sqrt{3}$$

(c)
$$2\cos 60^{\circ} \times 3\tan 30^{\circ} = 2 \times \frac{1}{2} \times 3 \times \frac{\sqrt{3}}{3} = \sqrt{3}$$

(a)
$$\sin 45^{\circ} \div \tan 45^{\circ} = \frac{\sqrt{2}}{2} \div 1 = \frac{\sqrt{2}}{2}$$

17) [정답] ③

[해설]
$$\triangle ABC$$
에서 $\sin B = \frac{\overline{AC}}{\overline{AB}} = \frac{8}{16} = \frac{1}{2}$
이므로 $\angle B = 30$ $^{\circ}$

18) [정답] ②

[해설]
$$\tan 30\degree \times \cos 30\degree - \sin 45\degree \times \cos 45\degree$$

$$=\frac{\sqrt{3}}{3}\times\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\times\frac{\sqrt{2}}{2}=\frac{1}{2}-\frac{1}{2}=0$$

19) [정답] ④

[해설] ①
$$\sin y^{\circ} = \frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AB}}{1} = \overline{AB}$$

20) [정답] ③, ⑤

[해설] $\triangle AOH$ 에서

$$\angle OAH = 180^{\circ} - (40^{\circ} + 90^{\circ}) = 50^{\circ}$$

①
$$\sin 40^{\circ} = \frac{\overline{AH}}{\overline{OA}} = \frac{\overline{AH}}{1} = \overline{AH}$$

$$3 \tan 40^{\circ} = \frac{\overline{AH}}{\overline{OH}}$$

$$(4) \sin 50^{\circ} = \frac{\overline{OH}}{\overline{OA}} = \frac{\overline{OH}}{1} = \overline{OH}$$

⑤
$$\cos 40^{\circ} = \frac{\overline{OH}}{\overline{OA}} = \frac{\overline{OH}}{1} = \overline{OH}$$
이므로

$$\overline{BH} = 1 - \cos 40^{\circ}$$

21) [정답] ③

[해설]
$$\cos 40^{\circ} = \frac{\overline{OB}}{\overline{AO}} = \frac{\overline{OB}}{1} = \overline{OB} = 0.77$$

$$\tan 40^{\circ} = \frac{\overline{CD}}{\overline{OC}} = \frac{\overline{CD}}{1} = \overline{CD} = 0.84$$

$$\therefore \cos 40^{\circ} + \tan 40^{\circ} = 0.77 + 0.84 = 1.61$$

22) [정답] ①

[해설] 직각삼각형에서 세 내각의 크기의 비가 ∠A:∠B:∠C=1:2:3이므로

$$\angle A = 180^{\circ} \times \frac{1}{6} = 30^{\circ}, \ \angle B = 180^{\circ} \times \frac{2}{6} = 60^{\circ},$$

$$\angle C = 180^{\circ} \times \frac{3}{6} = 90^{\circ}$$

 $\therefore \sin A + \tan B \times \cos C$

$$=\sin 30^{\circ} + \tan 60^{\circ} \times \cos 90^{\circ} = \frac{1}{2} + \sqrt{3} \times 0 = \frac{1}{2}$$

23) [정답] ③

[해설]
$$\cos \angle B = \frac{\overline{BC}}{\overline{AB}} = \frac{34.2}{100} = 0.342$$

$$\therefore \angle B = 70^{\circ}$$

24) [정답] ①

[해설] $\triangle ABC$ 에서

$$\angle\,ABC\!=\!180\,^{\circ}-(76\,^{\circ}+90\,^{\circ}\,)\!=\!14\,^{\circ}$$

$$\sin 14^{\circ} = \frac{\overline{AC}}{10} = 0.2419$$
이므로 $\overline{AC} = 2.419$

$$\cos 14$$
 ° $=$ $\frac{\overline{BC}}{10}$ $=$ 0.9703 이므로 \overline{BC} $=$ 9.703

$$\therefore \overline{AC} + \overline{BC} = 2.419 + 9.703 = 12.122$$