# Projektowanie Efektywnych Algorytmow Projekt 20/10/2020

248820 Przemysław Rychter

# (1) Brute force

| spis treści               | strona |
|---------------------------|--------|
| Sformułowanie zadania     | 2      |
| Metoda                    | 3      |
| Algorytm                  | 4      |
| Dane testowe              | 6      |
| Procedura badawcza        | 7      |
| Wyniki                    | 8      |
| Analiza wyników i wnioski | 9      |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |
|                           |        |

#### 1. Sformułowanie zadania

Zadanie polega na opracowaniu, implementacji i zbadaniu efektywności algorytmu przeglądu zupełnego rozwiązującego problem komiwojażera w wersji optymalizacyjnej. Problem komiwojażera ( eng. Travelling salesman problem, TSP) to zagadnienie polegające (w w. optymalizacyjnej) na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

- **Graf pełny** to zbiór wierzchołków, przy czym między każdymi dwoma wierchołkami istnieje krawędź je łącząca [1]
- **Cykl Hamiltona** to droga wiodąca przez wszystkie wierzchołki dokładnie raz, z wyjątkiem jednego wybranego, w którym cykl Hamiltona zaczyna się oraz kończy [2]

Problem komiwojażera możemy rozumieć jako zadanie polegające na znalezienu najlepszej drogi dla podróżującego, który chce odwiedzić n miast, i skończyć podróż w miejscu jej początku. Połączenie między każdym miastem ma swój "koszt" określający efektywnosć jej przebywania. Najlepsza droga to taka, której całkowity koszt (suma kosztów przebycia wszystkich połączeń między miastami w drodze) jest najmiejszy.

Problem dzieli się na symetryczny i asymetryczny. Pierwszy polega na tym, że dla dowolnych miast A i B z danej instancji, koszt połączenia jest taki sam w przypadku przebywania połączenia z A do B jak z B do A, czyli dane połączenie ma po prostu jeden koszt niezależnie od kierunku ruchu. W asymetrycznym problemie komiwojażera koszty te mogą być różne.

#### 2. Metoda

Metoda przeglądu zupełnego, tzw. przeszukiwanie wyczerpujące ( eng.exhaustive search) bądź metoda siłowa ( eng. brute force), polega na znalezieniu i sprawdzeniu wszystki rozwiązań dopuszczalnych problemu, wyliczeniu dla nich wartości funkcji celu i wyborze rozwiązania o ekstremalnej wartości funkcji celu – najniższej (problem minimalizacyjny) bądź najwyższej ( problem maksymalizacyjny).

Wszystkie możliwe rozwiązania problemu komiwojażera, to wszystkie możliwe cykle Hamiltona dla danej instancji problemu. Algorytm oparty na metodzie przeglądu zupełnego powinien wszystkie takie cykle znależć i wybrać jako optymalny ten o najmiejszym koszcie. Ilość różnych cykli pełnym grafie nieskierowanym wynosi  $\frac{(n-1)!}{2}$  [3] - tyle różnych cykli o możliwych różnych kosztach istnieje dla instancji problemu symetrycznego. W pełnym grafie skierowanym ilość różnych cykli wynosi (n-1)! [3] - tyle różnych cykli o możliwych różnych kosztach istnieje dla instancji problemu asymetrycznego.

Początkowo można pomyśleć że ilość cykli to ilość permutacji (czyli ilość możliwości ustawienia wszystkich miast w kolejności odwiedzin) czyli n!.

Oznaczmy kolejne miasto jako 0,1,2, ... ,n-1. Wypiszmy wszystkie permutacje dla n=4 których jest n!=24

Tabela 1: Permutacje zbioru: {0,1,2,3,4}

| 0123 | 3012 | 2301 | 1230    |
|------|------|------|---------|
| 0132 | 2013 | 3201 | 1320    |
| 0213 | 3021 | 1302 | 2130    |
| 0231 | 1023 | 3102 | 2310    |
| 0312 | 2031 | 1203 | 3 1 2 0 |
| 0321 | 1032 | 2103 | 3 2 1 0 |

W pierwszej kolumnie zostały wypisane wszystkie permutacje zaczynajace się od 0. W następnych kolumnach permutacje zostały utworzone przesuwając miasta w prawo. Przesunięcie **nie zmienia cyklu,** czyli wszystkie permutacje w danym wierszu reprezentują jeden, ten sam cykl. Widzimy, że rzeczywiście ilość cykli dla asymetrycznego problemu komiwojażera wynosi (n-1)! i tworzy się je wypisując wszystkie permutacje (n-1) wierzchołków. Wniosek jest taki, że w algorytmie możemy wybrać dowolny wierchołek zawsze jako początek drogi, znaleźć wszystkie permutację pozostałych wierzchołków - (n-1)! obliczyć koszt każdego cyklu i wybrać ten o najmiejszym koszcie.

### 3. Algorytm

Algorytm jest skonstruowany z dwóch funkcji pierwsza pobiera jako argumenty ilość miast oraz macierz odległości między każdymi dwoma miastami jej celem jest inicjalizacja wspólnych danych dla wszystkich wywołań drugiej funkcji rekurencyjnej – kosztu najlepszej ścieżki oraz macierzy odległości. Pierwsza funkcja inicjalizuje też dane dla pierwszego wywołania drugiej funkcji(rekurencyjnej) czyli tablice aktualnie tworzonej scieżki – {0} oraza tablice wierchołków możliwych do wybrania podczas tworzenia ścieżki.



Rysunek 1: Schemat blokowy algorytmu opartego na metodzie brute force

- 1. Wywołanie pierwszej funkcji z argumentami: vertices ilość wierchołków, dist[][] macierz odległości między miastami. Zmienna best, wspólna dla wszystki wywołań rekurencyjnych jest inicjalizowana wartością 1, będzie ona przechowywać koszt aktualnie najlepszej drogi. Inicjalizacja zmiennej path[] czyli aktualnie tworzona droga, wybieramy wierzchołek 0-owy jako pierwszy. Inicjalizacja zmiennej choose[] jest to tablica z której możemy wybrać następny wierchołek w celu stworzenia drogi.
- 2. Kopie zmiennych path[] oraz choose[] czyli c\_path[] oraz c\_choose[] są przekazywane do drugiej funkcji rekurencyjnej. c path current path, c choose current choose
- 3. Jesli tablica c\_choose[] jest pusta oznacza to że cykl jest kompetny i można przejść do obliczenia kosztu i sprawdzenia czy jest optymalny.
- 4. Jeśli tablica c\_choose[] zawiera wierchołki do stworzenia cyklu, to w pętli dla każdego wierchołka z c\_choose jest tworzona kopia aktualnej trasy (path), dodawany jest do niej koleny wierzchołek z c\_choose, a następnie funkcja wywołuje samą siebie z nową trasą (path) oraz nową tablicą c\_choose (choose) bez wierchołka który został dodany (skoro został dodany już do trasy to nie chcemy żeby się powtarzał)
- 5. Cykl jest kompletny zostały wykorzystane wszystkie wierzchołki, więc liczony jest koszt cyklu, czyli w pętli są sumowane koszty połączeń między kolejnymi wierchołkami w cyklu. Operator % został zastosowany w celu obliczenia kosztu z ostatniego węzła do 0-owego.
- 6. Jeśli aktualnie najlepszy koszt jest < 0 (czyli jest to pierwszy znaleziony cykl) lub wyliczony koszt jest mniejszy od aktualnie najlepszego, to obliczony koszt zapisujemy/nadpisujemy jako najlepszy we wspólnej dla wszystkich wywołań rekurencyjnych zmiennej best, a aktualną scieżkę zapisujemy/nadpisujemy (również we wspólnej dla wszystkich wywołań rekurencyjnych) zmiennej solution&cost.
- 7. Jest to moment w którym druga funkcja rekurencyjna( i wszystkie jej podwywołania) została/zostały zakończone i dalej będzie wykonywana funkcja pierwsza
- 8. Funkcja pierwsza zwraca znalezioną optymalną ścieżkę w postaci 0, a, b, ..., 0 oraz zwraca koszt optymalnej ścieżki na końcu tablicy ze ścieżką.

## 4. Dane testowe

Do sprawdzenia poprawności działania algorytmu i wykonania badań wybrano następujący zestaw instancji:

tsp\_6\_1.txt

tsp\_6\_2.txt

tsp\_10.txt

tsp\_12.txt

tsp\_13.txt

dostępnych na stronie: <a href="http://jaroslaw.mierzwa.staff.iiar.pwr.wroc.pl/pea-stud/tsp/">http://jaroslaw.mierzwa.staff.iiar.pwr.wroc.pl/pea-stud/tsp/</a>

#### 5. Procedura badawcza

Należało zbadać zależność czasu rozwiązania problemu od wielkości instancji. W przypadku algorytmu realizującego przegląd zupełny przestrzeni rozwiązań dopuszczalnych nie występowały parametry programu, które mogły mieć wpływ na czas i jakość uzyskanego wyniku. W związku z tym procedura badawcza polegała na uruchomieniu programu sterowanego plikiem inicjującym .ini (format pliku: nazwa\_instancji liczba\_wykonań rozwiązanie\_optymalne [ścieżka optymalna];nazwa\_pliku\_wyjściowego).

```
tsp_6_1.txt 100 132 0 1 2 3 4 5 0

tsp_6_2.txt 100 80 0 5 1 2 3 4 0

tsp_10.txt 10 212 0 3 4 2 8 7 6 9 1 5 0

tsp_12.txt 10 264 0 1 8 4 6 2 11 9 7 5 3 10 0

tsp_13.txt 2 269 0 10 3 5 7 9 11 2 6 4 8 1 12 0 ,

tsp_6_13bf.csv
```

Każda instancji rozwiązywana była zgodnie z liczbą jej wykonań, np. tsp\_12.txt wykonana została 10 razy. Do pliku wyjściowego tsp\_6\_13bf.csv zapisywane były informacje o instancji: jej nazwa, liczba wykonań algorytmu, koszt ścieżki oraz scieżka optymalna z pliku "conf.ini". Nastepnie zapisywane były czasy wykonań algorytmu dla tej instancji. Plik wyjściowy zapisywany był w formacie csv. Poniżej przedstawiono fragment zawartości pliku wyjściowego.

```
tsp_10.txt 10 212 0 3 4 2 8 7 6 9 1 5 0
962577
957641
957269
964468
989286
980189
963179
961114
958137
958644
tsp 12.txt 10 264 0 1 8 4 6 2 11 9 7 5 3 10 0
142703330
144366287
150783115
131272567
129479924
118588543
128278460
129604332
131362550
124704060
```

Wyniki zostały opracowane w programie LibreOffice Calc

Po każdym powtórzeniu wykoniania algorytmu dla danej instancji, w programie głównym "main.cpp" sprawdzana była zgodność znalezionej ścieżki oraz jej kosztu, ze ścieżką oraz kosztem podanym w pliku konfiguracyjnym "conf.ini" W przypadku znalzienia innej scieżki program informuje o znalezieniu innej ścieżki i/lub kosztu. Sytuacja w której opracowany algorytm znalazłby inna ścieżke i/lub koszt niż w pliku konfiguracyjnym nie miała miejsca.

### 6. Wyniki

Wyniki zgromadzone zostały w pliku:

tsp\_6\_13bf.csv

Plik został dołączony do raportu i znajdują się na dysku Google pod adresem <a href="https://drive.google.com/drive/folders/1yHS-PS9DVc7rIv4o933">https://drive.google.com/drive/folders/1yHS-PS9DVc7rIv4o933</a> UdkAuBjO8zVU. Na dysku zostały także umieszone: folder z programem w którym znajduja się pliki żródłowe, folder z instancjami, plik konfiguracyjny "conf.ini" oraz instrukcja kompilacji w systemie Linux.

Wyniki przedstawione zostały w postaci wykresu zależności czasu uzyskania rozwiązania problemu od wielkości instancji (rysunek 2).



Rysunek 2: Wpływ wielkości instancji n na czas uzyskania rozwiazania problemu komiwojażera metodą brute force

Na wykresie zostały przedstawione uśrednione pomiary czasu dla instancji o danym rozmiarze oraz punkty wykresu O(n!) - został on określony funkcją f(x) = x!\*c, gdzie c oznacza stałą, która została obliczona w celu dopasowania punktów wykresu O(n!) do rzeczywistych pomiarów czasu wykonania algorytmu.

## 7. Analiza wyników i wnioski

Wzrostu czasu względem wielkości instancji ma charakter wykładniczy (rysunek 2). Nałożenie punktów wykresu O(n!) potwierdza, że badany algorytm wyznacza rozwiązania problemu komiwojażera dla badanych instancji w czasie n! zależnym względem wielkości instancji (oba wykresy są zgodne co do kształtu). Złożoność czasowa opracowanego algorytmu wynosi O(n!).

| Źródła |
|--------|
|--------|

| <ul><li>[1] <a href="https://pl.wikipedia.org/wiki/Graf">https://pl.wikipedia.org/wiki/Graf</a> pe%C5%82n</li></ul> |
|---------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------|

- [2] https://pl.wikipedia.org/wiki/Cykl\_Hamiltona
- [3] https://en.wikipedia.org/wiki/Hamiltonian\_path#:~:text=The%20number%20of%20different %20Hamiltonian,point%20are%20not%20counted%20separately.

# Spis rysunków

| Rysunek 1: Schemat blokowo algorytmu opartego na metodzie brute force                                            | 4 |
|------------------------------------------------------------------------------------------------------------------|---|
| Rysunek 2: Wpływ wielkości instancji n na czas uzyskania rozwiazania problemu komiwojażera metodą<br>brute force |   |
| Spis tabel                                                                                                       |   |
| Tabela 1: Permutacje zbioru: {0,1,2,3,4}                                                                         | 3 |