ECE 469/ECE 568 Machine Learning

Textbook:

Machine Learning: a Probabilistic Perspective by Kevin Patrick Murphy

Southern Illinois University

August 30, 2024

• What happens if our model has two parameters, say w_0 and w_1 ?

$$f(x, \mathbf{w}) = w_0 + w_1 x$$
, where $\mathbf{w} = [w_0, w_1]$

• Then, we need to minimize the cost function over two parameters $\mathbf{w} = [w_0, w_1].$

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

- Again, we can choose different values for w_0 and w_1 and evaluate the cost function.
- Then, we can plot the cost function against w_0 and w_1 .
- We are going to see a 3D-plot.

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

- The cost function is now a surface plot.
- Thereby, the optimal values for w_0 and w_1 which minimize the cost function $J(w_0, w_1)$ can be found from this 3D plot.
- Since this is a convex surface, a global minimum can be found for the cost function. -> Convex functions always have a global minima.

- To better understand about a minimization algorithm, we need to dig in deep into the surface plot.
- Any surface (3D) plot has a corresponding contour plot.

Contour plot

A contour line of a function of two variables (say $J(w_0, w_1)$) is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a plane section of the 3D plot of a function $J(w_0, w_1)$ parallel to the (w_0, w_1) -plane.

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

- After an initial choice for (w_0, w_1) , we can compute the value of the cost function.
- Then, we need to move towards the center of the contour plot to minimize the cost function by choosing appropriate values for (w_0, w_1) .

• A summary for minimizing the cost function can be given as

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

- Start with some w_0, w_1
- ② keep changing w_0, w_1 to minimize the cost function $J(w_0, w_1)$
- 3 Continue until we find a minima for $J(w_0, w_1)$

• What happens when the cost function is not convex? -> There can be several local minima/maxima together with a global minima/maxima.

- The gradient of $J(\mathbf{w})$ at a point \mathbf{w} can be thought of as a vector indicating which way is "uphill".
- When it comes to an error/cost function, we always like to minimize it by choosing the optimal values for w_0 and w_1 .
- Thus, we want to move "downhill" on the surface plot, i.e., in the direction opposite to the gradient or slope.
- This leads to an algorithm which utilizes gradient descent.

- For more general hypothesis classes, there may be many local optima.
- In this case, the final solution may depend on the initial parameters.
- \bullet The algorithm may converge into a local minima depending on the initial choices of \mathbf{w} .
- The key idea is to find the steepest gradient descent direction and move towards a local/global minimum.

• To obtain intuitions about the gradient descent algorithm, let us again consider a simple cost function with only one parameter.

$$\min_{w_1} \left(J(w_1) = \frac{1}{2} \sum_{i=0}^{m} (w_1 x_i - y_i)^2 \right)$$

• The corresponding cost function can be plotted against w_1 as follows:

We need to update the value of w_1 as

$$w_1 := w_1 - \alpha \left(\frac{d}{dw_1} J(w_1) \Big|_{w_1 = w_1'} \right)$$

- Here, α is a positive constant.
- The gradient/slope at the point w'_1 is given by $\frac{d}{dw_1}J(w_1)\Big|_{w_1=w'_1}$.

$$w_1 := w_1 - \alpha \left(\underbrace{\frac{d}{dw_1} J(w_1) \Big|_{w_1 = w_1'}}_{>0} \right)$$

- At the point $w_1 = w'_1$, the gradient is positive.
- Hence, the corresponding update will decrease the value of w_1 more towards the minimum of the cost function $J(w_1)$.

• Next, we need to evaluate the gradient at the updated value of w_1 (say w_1'').

• Since the gradient is still positive, this assignment will also move w_1 towards the minimum of the cost function $J(w_1)$.

• At the minimum value of $J(w_1)$, the gradient becomes zero.

- Hence, we can stop the iteration of the algorithm and report the optimal value of w_1 as w_1^* .
- This optimal w_1^* minimizes the cost function $J(w_1)$.

• Now assume that we start at a point that has a negative gradient.

• At $w_1 = w_1^{""}$, the gradient becomes negative.

$$w_1 := w_1 - \alpha \left(\underbrace{\frac{d}{dw_1} J(w_1) \Big|_{w_1 = w_1^{\prime\prime\prime}}}_{<0} \right)$$

• Thus, this update will also increase the value of w_1 towards the minimum value of the cost function $J(w_1)$.

• In gradient descent algorithm, the positive constant α is termed the "learning rate".

$$w_1 := w_1 - \alpha \left(\frac{d}{dw_1} J(w_1) \right)$$

- The learning rate determines how fast your algorithm converges to a minimum.
- However, we need to be careful in choosing a value for the learning rate.

• If the learning rate (α) is too small, then our speed of convergence will be much slower -> learning algorithm is slow.

• If the learning rate (α) is too large, then algorithm will overshoot -> learning algorithm does no converge to a minimum.

• Let us now investigate how to extend the gradient descent for two parameters in the learning model.

$$f(x, \mathbf{w}) = w_0 + w_1 x$$
, where $\mathbf{w} = [w_0, w_1]$

• Then the minimization of the cost function becomes

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

Minimizing the cost function - Gradient descent
$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} \left([w_0 + w_1 x_i] - y_i \right)^2 \right)$$

• A pseudo-code for the gradient descent algorithm can be written as

Gradient Descent Algorithm

Repeat until concergence

$$w_j := w_j - \alpha \frac{\partial}{\partial w_j} J(w_0, w_1)$$
 for $j = 0$ and $j = 1$

- The notation := is an assignment/update operator.
- The values of w_0 and w_1 must be simultaneously updated.

$$temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} J(w_0, w_1)$$

$$temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} J(w_0, w_1)$$

$$w_0 := temp0$$

$$w_1 := temp1$$

$$\min_{w_0, w_1} \left(J(w_0, w_1) = \frac{1}{2} \sum_{i=0}^{m} ([w_0 + w_1 x_i] - y_i)^2 \right)$$

• The partial derivatives of the cost function are

$$\frac{\partial}{\partial w_0} J(w_0, w_1) = \sum_{i=1}^m ([w_0 + w_1 x_i] - y_i)$$

$$\frac{\partial}{\partial w_1} J(w_0, w_1) = \sum_{i=1}^m ([w_0 + w_1 x_i] - y_i) x_i$$

• Thus, the simultaneous update of w_0 and w_1 become

temp0 :=
$$w_0 - \alpha \sum_{i=1}^{m} ([w_0 + w_1 x_i] - y_i)$$

temp1 := $w_1 - \alpha \sum_{i=1}^{m} ([w_0 + w_1 x_i] - y_i) x_i$
 w_0 := temp0
 w_1 := temp1

Linear regression with multiple variables - Gradient descent with multiple variables

• When we have multiple features in our data set, then our model may capture most of these features.

Input variables Features or Attributes				
	Input variables, Features or Attributes			
	House size (x_1)	No. of bedrooms (x_2)	No. of baths (x_3)	Price (y)
	500	1	1	100000
	1000	2	1	150000
	1500	4	2	200000
	2000	4	2	250000

• Then our hypothesis needs to be changed to

$$f(\mathbf{x}, \mathbf{w}) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \sum_{l=1}^n w_l x_l$$

• Here, $x_0 = 1$ and n is the number of features that the data set possesses.

Gradient descent with multiple variables

• The cost function is given by

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=0}^{m} \left(\left[w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \right] - y^{(i)} \right)^2$$

- Here, $x_j^{(i)}$ is the jth feature of the ith data entry and $y^{(i)}$ is the output of the ith data entry.
- The minimization of the cost function over parameters/weights is

$$\min_{w_0, w_1, \dots, w_n} \left(J(\mathbf{w}) = \frac{1}{2} \sum_{i=0}^m \left(\left[w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)} \right] - y^{(i)} \right)^2 \right)$$

Gradient descent with multiple variables

Gradient descent with multiple variables

Repeat until concergence
$$\{w_j:=w_j-lpharac{\partial}{\partial w_j}J(\mathbf{w}) \ \ \text{for} \ j=0,1,2,\cdots,n$$

• Then, the simultaneous update of w_0, w_1, \dots, w_n become

$$temp_j := w_j - \alpha \sum_{i=1}^m \left(\sum_{l=1}^n w_l x_l^{(i)} - y^{(i)} \right) x_j^{(i)}$$
continue for all $j = 0, 1, \dots, n$

$$w_j := temp_j \ \forall j$$

Gradient descent with multiple variables

• For instance, the updates of w_0 , w_1 and w_2 are

$$w_0 := w_0 - \alpha \sum_{i=1}^m \left(\sum_{l=1}^n w_l x_l^{(i)} - y^{(i)} \right)$$

$$w_1 := w_1 - \alpha \sum_{i=1}^m \left(\sum_{l=1}^n w_l x_l^{(i)} - y^{(i)} \right) x_1^{(i)}$$

$$w_2 := w_2 - \alpha \sum_{i=1}^m \left(\sum_{l=1}^n w_l x_l^{(i)} - y^{(i)} \right) x_2^{(i)}$$