

Rate of a reaction

- 1. The rate of a chemical reaction
 - (a) Increases as the reaction proceeds
 - (b) Decreases as the reaction proceeds
 - (c) May increase or decrease during the reaction
 - (d) Remains constant as the reaction proceeds
- 2. The rate of a reaction that not involve gases is not dependent on
 - (a) Pressure
 - (b) Temperature
 - (c) Concentration
 - (d) Catalyst
- **3.** The rate at which a substance reacts depends on its
 - (a) Atomic weight
 - (b) Equivalent weight
 - (c) Molecular weight
 - (d) Active mass
- **4.** The rate law for the reaction $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by Rate = $K_1[RCl]$. The rate of the reaction will be
 - (a) Doubled on doubling the concentration of sodium hydroxide

- (b) Halved on reducing the concentration of alkyl halide to one half
- (c) Decreased on increasing the temperature of the reaction
- (d) Unaffected by increasing the temperature of the reaction
- 5. If doubling the concentration of a reactant `A' increases the rate 4 times and tripling the concentration of `A' increases the rate 9 times, the rate is proportional to
 - (a) Concentration of `A'
 - (b) Square of concentration of `A'
 - (c) Under root of the concentration of `A'
 - (d) Cube of concentration of `A'
- 6. The rate of chemical reaction at constant temperature is proportional to
 - (a) The amount of products formed
 - (b) The product of masses of the reactants
 - (c) The product of the molar concentration of the reactants
 - (d) The mean free path of the reaction
- 7. The concentration of a reactant decreases from 0.2 *M* to 0.1 *M* in 10 minutes. The rate of the reaction is (a) 0.01 *M*

- (b) 10^{-2}
- (c) $0.01 \ mol \ dm^{-3} \ min^{-1}$
- (d) 1 $mol dm^{-3} min^{-1}$
- 8. When a reaction is progressing
 - (a) The rate of the reaction goes on increasing
 - (b) The concentration of the products goes on decreasing
 - (c) The concentration of the reactants goes on decreasing
 - (d) The reaction rate always remains constant
- 9. In a catalytic conversion of N_2 to NH_3 by Haber's process, the rate of reaction was expressed as change in the concentration of ammonia per time is $40 \times 10^{-3} mollitre^{-1} s^{-1}$. If there are no side reaction, the rate of the reaction as expressed in terms of hydrogen is (in $mol \ litre^{-1} s^{-1}$)
 - (a) 60×10^{-3}
- (b) 20×10^{-3}
- (c) 1.200
- (d) 10.3×10^{-3}
- **10.** If the concentration of the reactants is increased, the rate of reaction
 - (a) Remains unaffected
 - (b) Increases
 - (c) Decreases
 - (d) May increase or decrease

- **11.** Time required for completion of ionic reactions in comparison to molecular reactions is
 - (a) Maximum
- (b) Minimum
- (c) Equal
- (d) None
- **12.** For reaction $2A + B \rightarrow$ products, the active mass of *B* is kept constant and that of *A* is doubled. The rate of reaction will then
 - (a) Increase 2 times
 - (b) Increase 4 times
 - (c) Decrease 2 times
 - (d) Decrease 4 times
- **13.** In a reaction $2A + B \rightarrow A_2B$, the reactant *A* will disappear at
 - (a) Half the rate that B will decrease
 - (b) The same rate that B will decrease
 - (c) Twice the rate that B will decrease
 - (d) The same rate that A_2B will form
- **14.** The rate of a gaseous reaction is given by the expression K[A][B]. If the volume of the reaction vessel is suddenly reduced to 1/4th of the initial volume, the reaction rate relating to original rate will be
 - (a) 1/10
- (b) 1/8

(c) 8

- (d) 16
- **15.** A catalyst increases the rate of reaction because it

IIT-JEE CHEMISTRY

- (a) Increases the activation energy
- (b) Decreases the energy barrier for reaction
- (c) Decreases the collision diameter
- (d) Increases the temperature coefficient
- **16.** For the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ under certain conditions of temperature and partial pressure of the reactants, the rate of formation of NH_3 is $0.001kgh^{-1}$. The rate of conversion of H_2 under the same conditions is
 - (a) $1.82 \times 10^{-4} kg/hr$
 - (b) 0.0015kg/hr
 - (c) $1.52 \times 10^4 kg/hr$
 - (d) $1.82 \times 10^{-14} kg/hr$
- **17.** In the reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and of B is halved, then the rate of the reaction will
 - (a) Increase by four times
 - (b) Decrease by two times
 - (c) Increase by two times
 - (d) Remain the same
- **18.** The term $\left(-\frac{dc}{dt}\right)$ in a rate equation refers to the
 - (a) Concentration of the reactant
 - (b) Decrease in concentration of the reactant with time

- (c) Increase in concentration of the reactant with time
- (d) Velocity constant of the reaction
- **19.** The rate of a reaction depends upon the
 - (a) Volume
 - (b) Force
 - (c) Pressure
 - (d) Concentration of reactant
- **20.** For a given reaction $3A + B \rightarrow C + D$ the rate of reaction can be represented by

(a)
$$-\frac{1}{3}\frac{d[A]}{dt} = \frac{-d[B]}{dt} = \frac{+d[C]}{dt} = \frac{+d[D]}{dt}$$

(b)
$$-\frac{1}{3}\frac{d[A]}{dt} = \frac{d[C]}{dt} = K[A]^m[B]^n$$

$$(c) + \frac{1}{3} \frac{d[A]}{dt} = \frac{-d[C]}{dt} = K[A]^n [B]^m$$

- (d) None of these
- **21.** For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$

if
$$\frac{\Delta[NH_3]}{\Delta t} = 2 \times 10^{-4} moll^{-1} s^{-1}$$
, the

value of
$$\frac{-\Delta[H_2]}{\Delta t}$$
 would be

(a)
$$1 \times 10^{-4} moll^{-1} s^{-1}$$

(b)
$$3 \times 10^{-4} moll^{-1} s^{-1}$$

(c)
$$4 \times 10^{-4} moll^{-1} s^{-1}$$

$$(d)6 \times 10^{-4} moll^{-1} s^{-1}$$

- **22.** A gaseous hypothetical chemical equation $2A \rightleftharpoons 4B + C$ is carried out in a closed vessel. The concentration of B is found to increase by $5 \times 10^{-3} moll^{-1}$ in 10 second. The rate of appearance of B is
 - (a) $5 \times 10^{-4} moll^{-1} sec^{-1}$
 - (b) $5 \times 10^{-5} moll^{-1} sec^{-1}$
 - (c) $6 \times 10^{-5} moll^{-1} sec^{-1}$
 - (d) $4 \times 10^{-4} moll^{-1} sec^{-1}$

