FUNKCIJE - GRANIČNA VREDNOST

Tačka $x_0 \in \mathbb{R}$ je tačka nagomilavanja skupa $X \subseteq \mathbb{R}$ akko svaka okolina tačke x_0 sadrži bar jedan elemenat skupa $X \setminus \{x_0\}$, tj. akko za svako $\varepsilon > 0$ važi $(x_0 - \varepsilon, x_0 + \varepsilon) \cap X \setminus \{x_0\} \neq \emptyset$.

Tačka $a \in \mathbb{R}$ je granična vrednost funkcije $f: X \to \mathbb{R}$ u tački $x_0 \in \mathbb{R}$, gde je $X \subseteq \mathbb{R}$ i tačka x_0 tačka nagomilavanja domena X, akko za svaku ϵ -okolinu tačke a postoji δ -okolina tačke x_0 , koja zavisi od ϵ , takva da se sve tačke iz δ -okoline tačke x_0 bez x_0 , preslikavaju u ϵ -okolinu tačke a, tj

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in X \setminus \{x_0\})(|x - x_0| < \delta \Rightarrow |f(x) - a| < \epsilon),$$

što se označava sa

$$\lim_{x \to x_0} f(x) = a.$$

 $\lim_{x\to x_0}f(x)=a.$ Tačka $l\in\mathbb{R}$ je leva granična vrednost funkcije $f:X\to\mathbb{R}$ u tački $x_0\in\mathbb{R}$, gde je $X\subseteq\mathbb{R}$ i tačka x_0 je tačka nagomilavanja skupa $X \cap \{x \in \mathbb{R} | x < x_0\}$, akko

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in X)(x \in (x_0 - \delta(\varepsilon), x_0) \Rightarrow |f(x) - l| < \varepsilon),$$

što se označava sa

$$\lim_{x \to x_0^-} f(x) = l.$$

Tačka $d \in \mathbb{R}$ je desna granična vrednost funkcije $f: X \to \mathbb{R}$ u tački $x_0 \in \mathbb{R}$, gde je $X \subseteq \mathbb{R}$ i tačka x_0 je tačka nagomilavanja skupa $X \cap \{x \in \mathbb{R} | x > x_0\}$, akko

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in X)(x \in (x_0, x_0 + \delta(\varepsilon)) \Rightarrow |f(x) - d| < \varepsilon),$$

što se označava sa

$$\lim_{x \to x_0^+} f(x) = d.$$

Ako postoje leva granična vrednost $l \in \mathbb{R}$ i desna granična vrednost $d \in \mathbb{R}$ funkcije $f: X \to \mathbb{R}$ u tački $x_0 \in \mathbb{R}$, gde je $X \subseteq \mathbb{R}$ i tačka x_0 je tačka nagomilavanja skupa X i ako su one jednake, tj. l=d=a, tada je a granična vrednost funkcije f u tački x_0 , odnosno

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f(x) = a.$$

Prethodne definicije se mogu proširiti i za slučajeve kada x_0 i/ili a teže a $\pm \infty$.

Neka je x_0 tačka nagomilavanja zajedničkog domena $X\subseteq\mathbb{R}$ funkcija $f:X\to\mathbb{R}$ i $g:X\to\mathbb{R}$. Ako je $\lim_{x\to x_0}f(x)=a,$ $\lim_{x\to x_0}g(x)=b,$ gde je x_0 realan broj, ∞ ili $-\infty$ ickonstanta, $a,b,c\in\mathbb{R},$ tada važi:

•
$$\lim_{x \to x_0} \left(cf(x) \right) = c \lim_{x \to x_0} f(x) = ca,$$

•
$$\lim_{x \to x_0} \left(f(x) \pm g(x) \right) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = a \pm b$$
,

$$\bullet \ \lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = a \cdot b,$$

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{a}{b}$$
, gde je $b \neq 0$ i za svako $x \in X$ je $g(x) \neq 0$.

Neka su date funkcije $f: Y \longrightarrow Z$ i $g: X \longrightarrow Y$, gde $X, Y, Z \subseteq \mathbb{R}$. Ako je $\lim_{x \to x_0} g(x) = a \in \mathbb{R}$ i funkcija f je neprekidna u tački a(biće rađeno kasnije), tada je

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right) = f(a),$$

pri čemu x_0 može biti i $\pm \infty$.

Važne granične vrednosti kod funkcija su:

$$\bullet \lim_{x \to \infty} \frac{1}{x^{\alpha}} = \begin{cases} 0, & \alpha > 0 \\ 1, & \alpha = 0 \\ \infty, & \alpha < 0 \end{cases}$$

$$\bullet \lim_{x \to \infty} q^x = \begin{cases} 0, & q \in (-1,1) \\ \infty, & q > 1 \\ 1, & q = 1 \\ \text{ne postoji}, & q \le -1 \end{cases},$$

•
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$
,

•
$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$$
,

•
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$
,

•
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \ a > 0,$$

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1,$$

$$\bullet \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$