针对北京空气质量及天气情况的探索性分析报告 刘东洋 1120212831

1. 业务背景分析

北京作为中国的首都及经济、政治和文化中心,空气质量一直是影响公众健康的重要问题。 为监测和改进北京空气质量,北京环境监测中心从2008年开始在北京多个站点每天持续收集空气中的主要污染物浓度数据,这其中就包括我们分析的这一数据集。

本数据集中收集的指标直接反映空气质量的现状,如PM2.5、PM10和各气体污染物浓度,这些数据长期以来被广泛应用于评估空气质量、警报发布和政策评价等多个领域。同时,这些指标也与公众的生命和健康息息相关。监测数据及时公布,有利于政府采取相应应对措施,也便于公众掌握空气质量信息,在一定程度上保障公共健康。

与此同时,环境部门还通过将不同污染物浓度等级划分,制定了空气质量指数AQI,为大众提供一种更直观简单的判断空气质量优劣的度量值。这对促进空气治理意识的增长也有很重要的作用。

数据集由教师提供,包含了北京 2013.12.02-2020.06.05 间每天的天气情况和空气质量。 以此数据为基础利用numpy,pandas,matplotlib 等工具进行可视化探索分析操作。

数据集共 2376 条记录,包含空气质量和天气情况两部分 12 个属性,如下表 2-所示:表 2-数据属性信息

属性 含义

日期	记录相关日期
AQI	AQI(Air Quality Index),空气质量指数,描述了空气清洁或者污染的程度, 以及 对 健康的影响
质量等级	根据 AQI 将空气质量等级划分为六个等级
PM2.5	直径小于或等于 2.5μm 的尘埃或飘尘在环境空气中的浓度 数值单位: μg/m³
PM10	直径小于或等于 10.0μm 的尘埃或飘尘在环境空气中的浓度,数值单位: μg/m³
SO2	二氧化硫,大气的主要污染物之一,数值单位: μg/m³
СО	一氧化碳,大气的主要污染物之一,数值单位: mg/m³
NO2	二氧化氮,大气的主要污染物之一,数值单位: μg/m³
O3-8h	臭氧的 8 小时滑动平均值,数值单位: μg/m³
天气状 况	根据天气情况分为五种
气温	指在野外空气流通、不受太阳直射下测得的空气温度(一般在百叶箱内测定)
风力风 向	风吹来的大小和方向

数据示例如下图 2-所示:

日期	AQI	质量等级	PM2.5	PM10	S02	CO	N02	03_8h	天气状况	气温	风力风向
2013/12/2	142	轻度污染	109	138	61	2.6	88	11	多云/多云	11°C/-1°C	无持续风向≤3级/无持续风向≤3级
2013/12/3	86	良	64	86	38	1.6	54	45	晴/晴	14℃/-1℃	无持续风向≤3级/无持续风向≤3级
2013/12/4	109	轻度污染	82	101	42	2	62	23	多云/多云	12°C/0°C	无持续风向≤3级/无持续风向≤3级
2013/12/5	56	良	39	56	30	1. 2	38	52	晴/晴	12°C/-3°C	无持续风向≤3级/无持续风向≤3级
2013/12/6	169	中度污染	128	162	48	2. 5	78	15	晴/霾	11℃/-2℃	无持续风向≤3级/无持续风向≤3级
2013/12/7	291	重度污染	241	285	64	4. 2	98	6	霾/霾	9°C/-1°C	无持续风向≤3级/无持续风向≤3级
2013/12/8	223	重度污染	173	189	47	2. 9	60	41	霾/晴	10℃/-1℃	北风4-5级/北风4-5级
2013/12/9	26	优	11	16	10	0.6	22	51	晴/晴	7°C/-5°C	北风3-4级/无持续风向≤3级
	45	优	21	45	14	1	29	52	多云/晴	7°C/-4°C	北风4-5级/北风4-5级
	30	优	19	30	15	0.7	30	45	晴/晴	6°C/-3°C	无持续风向≤3级/北风3-4级
	29	优	16	29	11	0.8	25	56	晴/晴	3°C/-6°C	北风4-5级/无持续风向≤3级
	66	良	48	63	29	1.3	45	29	晴/晴	5°C/-5°C	无持续风向≤3级/无持续风向≤3级
******	56	良	40	48	29	1. 2	41	46	晴/晴	5°C/-6°C	无持续风向≤3级/无持续风向≤3级
	64	良	46	55	31	1.5	49	31	晴/晴	5°C/-5°C	无持续风向≤3级/无持续风向≤3级
	134	轻度污染	102	126	59	2. 5	70	10	多云/小雪	2°C/-4°C	无持续风向≤3级/无持续风向≤3级
	80	良	59	41	35	1.4	39	42	多云/晴	2°C/-7°C	无持续风向≤3级/无持续风向≤3级
	45	优	29	45	22	0.9	32	43	晴/晴	3°C/-8°C	无持续风向≤3级/无持续风向≤3级
	63	良	45	60	30	1.2	50	35	晴/晴	1°C/-7°C	无持续风向≤3级/无持续风向≤3级
	45	优	30	45	28	1.1	46	47	晴/晴	3°C/-8°C	无持续风向≤3级/无持续风向≤3级
	82	良	61	81	43	1.6	69	30	晴/多云	2°C/-6°C	无持续风向≤3级/无持续风向≤3级
	179	中度污染	135	178	67	2.8	95	14	晴/晴	3°C/-6°C	无持续风向≤3级/无持续风向≤3级
	166	中度污染	126	166	62	2. 9	90	30	晴/晴	4°C/-6°C	无持续风向≤3级/无持续风向≤3级

图 2-: 天气数据示例

2. 分析目的

本次对北京空气质量数据进行探索性分析,主要目的是为后续建立预测或分类模型做准备工作。

具体来说,我们期望通过探索性分析可以得到以下效益:

- 1.了解数据集的整体情况,如记录条数、属性类型和数量等基本特征。这有助于选择合适的数据处理方法。
 - 2.检测和分析数据中的缺失情况。找出缺失程度高的属性,针对缺失进行补充或特征选择。
 - 3.探索属性间的相关性。识别出高度相关的属性,为去除冗余特征奠定基础。
- 4.分析单变量和多变量之间的分布规律。 Revel异常值和异常样本,识别易受异常值影响的属性。
 - 5.总结不同空气质量指标与气象因素之间的关联。为构建功能强的预测模型提供依据。

通过对数据集进行全面且系统的统计描述、可视化分析,我们期望找到其内在规律和特征,包括属性类型、缺失程度、分布情况、相关性等。这将为后续对数据的预处理(如插值、标准化等)及模型构建(如选择输入变量和算法)提供重要参考。从而能够建立一个性能更优的空气质量预测模型。

3. 可视化探索分析

(1) 基本统计

导入数据并查看记录数和属性数量:

```
    import pandas as pd
```

- 2. # 导入数据
- 3. df = pd.read_csv('air_quality_data.csv')
- 4. # 记录数和属性数量
- 5. print(df.shape)
- 6. print(df.columns)

输出结果: (2376, 12)

Index(['日期', 'AQI', '质量等级', 'PM2.5', 'PM10', 'S02', 'C0', 'N02', '03_8h', '天气状况', '气温', '风力风向'], dtype='object')

查看各属性的数据类型:

- 1. # 查看属性类型
- 2. print(df.info())

输出结果如下:

```
<cle><class 'pandas.core.frame.DataFrame'>
RangeIndex: 2376 entries, 0 to 2375
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ---- ---- ---- ---- ----- 0 日期 2376 non-null object
```

```
1
    AQI
            2376 non-nu11
                           int64
2
    质量等级 2376 non-null object
3
           2376 non-nu11
    PM2.5
                          int64
4
    PM10
            2376 non-nu11
                          int64
5
    S02
            2376 non-null
                          int64
6
    CO
            2376 non-null
                          float64
7
    NO2
            2376 non-null
                          int64
8
   03 8h 2376 non-null
                         int64
9
    天气状况
               2376 non-null
                              object
10 气温
             2376 non-null object
11 风力风向
               2376 non-null object
dtypes: float64(1), int64(6), object(5)
memory usage: 222.9+ KB
None
```

(2) 缺失值分析

导入需要的库和计算缺失值比例:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# 计算每个属性的缺失值比例
missing_data = df.isnull().sum() / len(df)
```

可视化各属性缺失值比例:

```
# 绘制缺失值比例条形图
sns.barplot(x=missing_data, y=missing_data.index)
plt.xlabel('Missing Rate')
plt.ylabel('Features')
plt.savefig('missing_rate.png')
```

结果:

日期	0.0
AQI	0.0
质量等级	0.0
PM2.5	0.0
PM10	0.0
S02	0.0
CO	0.0
NO2	0.0
03_8h	0.0
天气状况	0.0
气温	0.0
风力风向	0.0
dtype: f	Tloat64
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

并未发现缺失值

(3)相关性分析 数值空气质量属性间相关系数热图

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#加载数据
df = pd.read_csv('air_quality_data.csv', encoding='utf-8')
#查看数据属性
print(df.info())
#选择需要分析的数值型属性
num_cols = ['AQI', 'PM2.5', 'PM10', 'S02', 'C0', 'N02', '03_8h']
#计算数值属性之间的相关系数
corr = df[num_cols].corr()
#绘制热图可视化相关系数
sns. set (font_scale=1)
ax = sns.heatmap(corr, annot=True,
               xticklabels=corr.columns,
               yticklabels=corr.columns)
#设置标题和标签
plt.title('Correlation Heatmap of Numeric Air Quality Attributes')
plt. xticks (rotation=90)
#显示热图
plt.show()
```

可视化效果如图 2-21 所示。

(4) 单变量分布分析

数值空气质量属性:

定义需要分析的数值型属性列表,使用循环绘制每个属性的分布直方图,设置每个图表标题代表对应的属性.使用Seaborn的distplot函数绘制每个属性的分布情况,每次绘制一个属性后展示图表。

结果如下:

其中CO有一部分样本的频率大于1,显然不正确,因此对CO数据进行异常分析。 改进代码为:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# 加载数据

df = pd.read_csv('北京空气质量及天气情况缺失版.csv')
```

9 / 16

```
numeric_cols = ['AQI', 'PM2.5', 'PM10', 'S02', 'N02', '03_8h']
float_col = ['CO']
# 相关系数
corr = df[numeric_cols].corr()
for col in numeric_cols + float_col:
   plt.subplot(1, 2, 1)
      sns.distplot(df[col], bins=20)
      plt.ylim(0, 1)
      sns.distplot(df[col])
   plt.title('Distribution of ' + col)
      plt.subplot(1, 2, 2)
      plt.boxplot(df[col])
      plt.title('Boxplot of CO')
   plt.show()
```


原来之前用的是numeric_cols,因为CO是浮点类型的数据,需要用float_col = ['CO']来定义属性列表。

修改后直方图正确。但是从CO的箱线图中看出有较多超过上限的异常值。

非数值属性分析:

1.质量等级:

获取质量等级列,转换为分类型供计数分析,使用value_counts()函数统计各值出现频次,绘制垂直柱状图展示各级别样本量,xlabel和title添加注释.

```
mport matplotlib.pyplot as plt
 mport pandas as pd
df = pd.read_csv('北京空气质量及天气情况缺失版.csv')
df['质量等级'] = df['质量等级'].astype('category')
level_count = df['质量等级'].value_counts()\
# 设置支持中文的字体
font_chinese = {'family': 'SimSun',
           'size': 12}
plt.rc('font', **font_chinese)
# 绘制频数柱状图
plt.bar(level_count.index, level_count)
plt.title('Number of samples in each quality level')
plt.xlabel('Quality Level')
plt.ylabel('Sample Count')
plt.show()
```


可以看出空气质量等级的分布,良最多,轻度污染和优较多,中度污染及以上较少,整体空气质量较好。

2.天气状况:

天气词云图:

通过join将列表拼成一个字符串输国词云绘制,设置字体、背景等词云参数,展示生成的词云图,title添加标题。

```
import pandas as pd
 rom wordcloud import WordCloud
mport matplotlib.pyplot as plt
df = pd.read_csv('北京空气质量及天气情况缺失版.csv')
weather_list = df['天气状况'].tolist()
wordcloud = WordCloud(
).generate(text)
plt.imshow(wordcloud)
plt.axis('off')
plt.title('Weather Status Word Cloud', fontsize=20)
plt.show()
```

词云图结果:

从词云图中可以看出,最多的天气状况是晴/晴和多云/多云。

3.气温:

将数据集中的"气温属性"拆分为最高气温"temp_max"和最低气温"temp_min",绘制两种气温随着日期的变化图像。

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('北京空气质量及天气情况缺失版.csv')
df['气温'] = df['气温'].str.split('/')
print(df['气温'])
df['temp_max'] = df['气温'].str[0]
df['temp_min'] = df['气温'].str[1]
df['temp_min'] = df['temp_min'].str[:-1]
df['temp_max'] = df['temp_max'].str[:-1]
df['temp_max'] = df['temp_max'].astype(float)
df['temp_min'] = df['temp_min'].astype(float)
# 日期格式转换
df['日期'] = pd.to_datetime(df['日期'])
# 在同一张图中画出最高、最低温度变化曲线
plt.plot(df['日期'], df['temp_max'], '-', label="Highest Temperature")
plt.plot(df]'日期'],df['temp_min'],'-',label="Lowest Temperature")
plt.legend()
plt.yticks(np.arange(-5, 45, 5))
plt.xlabel("Date")
plt.ylabel("Temperature (°C)")
plt.show()
              Highest Temperature
Lowest Temperature
```


从结果可以看出,气温变化在年际度量上具有周期性。

最高气温有几个点明显过高,属于异常点。

为此分析一下最高气温的箱线图。

可以观察到有少数几个异常点。

4. 分析结果总结

- 1. 各属性特征
- 日期:显示检测日期,数据完整无遗漏
- AQI:数值在80左右最集中,集中在20-200之间。与PM2.5,PM10和CO关联性较强。
- 质量等级: 良最多, 轻度污染和优较多, 整体质量等级较好。
- PM2.5: 集中分布在0~100以内
- 天气状况:每个日期记录早晚2种天气类型,共有晴、多云、阴、小雨等情况。由词云图可以看出天气状况的出现情况,多云/多云和晴/晴比较多。
 - 最高气温:度数数据类型,值基本上在0-40°C范围内变化,有少数异常点。
 - 最低气温:度数数据类型,值基本上在-5-25°C范围内变化。
 - 2. 数据质量问题
 - 天气状况中包含的两种类型采用"/"分隔,无法直接使用
 - 气温数据中的最高气温存在少量过高异常值
 - 空气质量数据采集站点信息缺失
 - 3. 特征选择方向
 - 将天气状况、气温处理为两个独立变量提升可解释度

- 剔除异常的气温数据降低噪声
- 综合利用日期、天气和空气质量数据挖掘变化规律

5. 结论

通过对北京地区空气质量数据的探索性分析,我得到以下结论:

我对各属性特征进行统计描述分析,发现日期特征完整且AQI属性与pm2.5等元素关联强,气温数据存在少量异常值。此外,天气状况包含多个子特征需要进一步提取。

其次,我识别到数据质量上的几个问题点,包括天气状况格式不便直接利用,少量气温异常值可能会影响分析。此外,站点位置信息的缺失也需进行补充。

最后,从特征选择角度看,应将天气状况细分为多个独立变量,同时去除气温异常值降低噪音。时间序列模型和树模型价值保有挖掘变化规律的潜力。

总体来说,我对空气质量数据进行了初步探索,并识别出数据质量和特征提取方面的待优化点。这为后续数据预处理及建模工作奠定了基础,也为深入研究提供了线索。

针对后续的一些工作建议:

1.数据预处理阶段:

将天气状况特征拆分为两个独立变量提取阶段和类型

提取气温数据中的数值,剔除异常点

采集站点信息缺失,可尝试用地理位置等额外数据填充

2.模型选择方向:

考虑时间序列模型利用日期特征预测空气质量变化趋势

树模型如随机森林可挖掘日期、天气和空气质量之间的关联规则

深度学习方法如LSTM有望捕捉复杂变化规律

3.后续工作:

构建清洗后的数据集

选择不同模型进行建模和结果对比

分析模型结果,查找影响因素寻找改进空气质量的措施

4.项目延伸:

考虑添加空间位置特征如城市等

通过多源数据融合提升预测能力

建立动态调整预警系统