Regression

Dr Muhammad Atif Tahir Professor NUCES Fast

Regression versus Classification

 Classification: the output variable takes class labels

Regression: the output variable takes continuous values

Examples

- Predicting House Value
 - Actual Price: £100,000
 - Predicted 1: £99,950 (Very Good Prediction)
 - Predicted 1: £50,000 (Very Bad Prediction)
- Predicting Car Premium
 - Using Location, Age, History etc

Regression Techniques

- Linear Regression
- Ridge Regression
- Logistic Regression
- Lasso Regression
- And many more

Linear Regression

- Theoretically well motivated algorithm: developed from Statistical Learning Theory
- Empirically good performance: successful applications in many fields (stock prices, insurance etc)

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

Formula

$$Y = a + bX$$

where

$$b = r \frac{SDy}{SDx}$$

$$a = \overline{Y} - b\overline{X}$$

@easycalculation.com

Another formula for Slope:

Slope =
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$$

Where,

b = The slope of the regression line

a = The intercept point of the regression line and the y axis.

 \overline{X} = Mean of x values

 \overline{Y} = Mean of y values

 SD_x = Standard Deviation of x

 SD_y = Standard Deviation of y

Example

X Values	Y Values
60	3.1
61	3.6
62	3.8
63	4
65	4.1

Find Y if X = 64

To Find,

Least Square Regression Line Equation

Solution:

Step 1:

Count the number of given x values.

N = 5

Step 2:

Find XY, X² for the given values. See the below table

X Value	Y Value	X*Y	X*X
60	3.1	60 * 3.1 =186	60 * 60 = 3600
61	3.6	61 * 3.6 = 219.6	61 * 61 = 3721
62	3.8	62 * 3.8 = 235.6	62 * 62 = 3844
63	4	63 * 4 = 252	63 * 63 = 3969
65	4.1	65 * 4.1 = 266.5	65 * 65 = 4225

Step 3:

Now, Find ΣX , ΣY , ΣXY , ΣX^2 for the values $\Sigma X = 311$ $\Sigma Y = 18.6$ $\Sigma XY = 1159.7$ $\Sigma X^2 = 19359$

Step 4

Substitute the values in the above slope formula given.

Slope(b) =
$$(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$$

- $= ((5)*(1159.7)-(311)*(18.6))/((5)*(19359)-(311)^2)$
- = (5798.5 5784.6)/(96795 96721)
- = 0.18783783783783292

Step 5:

```
Now, again substitute in the above intercept formula given.
```

```
Intercept(a) = (\Sigma Y - b(\Sigma X)) / N
= (18.6 - 0.18783783783783292(311))/5
= -7.964
```

Step 6:

Then substitute these values in regression equation formula

Regression Equation(y) = a + bx

$$= -7.964 + 0.188x$$

Suppose if we want to calculate the approximate y value for the variable x = 64 then, we can substitute the value in the above equation

Regression Equation(y) = a + bx

$$= -7.964 + 0.188(64)$$

= 4.068

Linear regression

We wish to estimate \hat{y} by a linear function of our data x:

$$\hat{y}_{n+1} = w_0 + w_1 x_{n+1,1} + w_2 x_{n+1,2}$$

= $w^\top x_{n+1}$

where w is a parameter to be estimated and we have used the standard convention of letting the first component of x be 1.

Choosing the regressor

Of the many regression fits that approximate the data, which should we choose?

Evaluation Measure

Mean Squared Error

Actual (Y)	Predicted (Y')	Υ'-Υ	Square (Y'-Y)
41	43.6	2.6	6.76
45	44.4	-0.6	0.36
49	45.2	-3.8	14.44
47	46	-1	1
44	46.8	2.8	7.84

Sum of Error = 30.4 / 5 = 6.08

Regression Techniques in Python

- Linear Least Square
- Ridge
- Lasso

http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

References

- https://people.eecs.berkeley.edu/~jordan/courses/2
 94-fall09/lectures/regression/slides.pdf
- https://www.easycalculation.com/analytical/learn-leastsquare-regression.php

Questions!