

212. Word Search II

Given an $\mbox{m} \times \mbox{n}$ board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The

Example 1:

0	а	а	n
е	t	а	е
i	h	k	r
i	f	1	٧

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["
Output: ["eat","oath"]

Example 2:

Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Constraints:

- m == board.length
- n == board[i].length
- 1 <= m, n <= 12
- board[i][j] is a lowercase English letter.
- 1 <= words.length <= 3 * 10⁴
- 1 <= words[i].length <= 10
- words[i] consists of lowercase English letters.
- All the strings of words are unique.

Seen this question in a real interview before? 1/4

Yes No