수업계획서

과목명	소프트웨어개발도구및환경실습	과목번호	CSE3013
구분(학점)	이론(0,0), 실험(2,2), 설계(1,1)	수강대상	2학년
수업시간	월 : 15:00-20:50	강의실	R914

성명: 김승욱	Homepage: http://network.sogang.ac.kr/
E-mail: swkim01@sogang.ac.kr	연락처: 02-705-8932

면담시간/장소: AS903, 상담시간 및 이메일로 시간을 정할것.

I. 교과목 개요(Course Description)

1. 수업개요

- 머신러닝 모델링으로 실제 데이터를 가지고 예측 문제 푸는 것을 배우고, AI 활용 능력을 향상시킴.
- 컴퓨터공학을 처음 시작하는 학생들에게 Unix 및 openFrameworks (open source C++ toolkit) 환경에서 의 프로그래밍에 익숙하도록 함.
- C++ 등과 같은 언어로 다양한 과제를 수행토록 하여 컴퓨터 응용 및 문제풀이 능력을 향상시키는 것을 목적으로 함.
- C언어를 이용하고 자료구조를 연동한 프로그래밍 설계프로젝트를 통하여 설계 능력을 향상시킴.
- 2. 선수학습내용

C프로그래밍, 파이썬 프로그래밍

3. 수업방법

강의	토의/토론	실험/실습	현장학습	개별/팀별발표	기타
20%	%	80%	%	%	%

4. 평가방법

중간고사	기말고사	퀴즈	발표	프로젝트	과제물	참여도	기타
25%	25%	%	%	20%	20%	%	10%

II. 교과목표(Course Purpose)

지식:

- 1) Unix Programming에 대한 이해
- 2) openFrameworks (open source C++ toolkit) 기반 Programming에 대한 이해
- 3) Machine Learning Workflow에 대한 이해

기술:

- 1) C와 C++등과 같은 언어로 다양한 과제 수행을 통한 컴퓨터 응용력 및 문제풀이 능력
- 2) C와 C++ 언어를 이용하고 자료구조를 연동한 프로그래밍 설계프로젝트를 통한 설계 능력
- 3) Python과 scikit-learn을 이용하여 실제 머신러닝을 이용한 예측문제 모델링 능력

태도:

- 1) 수학적 논리적 사고 태도
- 2) 문제 해결을 위한 알고리즘 작성 및 검증 태도

1

3) 창의적인 사고와 아이디어 창출 태도

Ⅲ. 수업운영방식(Course Format)

가. 매주 다음 실험을 위한 전체강의 참석 필수 (FA제도 반영) 나. 매 실험 마다 실험에 필요한 내용을 예습한 후에 예비보고서를 작성하여 실험 전에 제출 다. 실험한 내용을 바탕으로 결과보고서를 작성하여 다음 실험에 제출
V. 학습 및 평가활동(Course Requirements)
○ 과제 - 실험 당일 강사가 지정한 문제를 해결하는 프로그램을 작성하여 지정한 날짜에 제출한다. ○ 평가 - 평가방법의 기타 항목은 COPY 등의 부정행위가 발생했을 시 추가적인 감점을 위한 항목이다 중간고사는 필기시험으로, 기말고사는 실기시험으로 진행된다.
V. 교재 및 참고문헌(Materials and References)
○ 교재 : 컴퓨터공학 설계 및 실험 I 교재, 컴퓨터공학 설계 및 실험 I 프로젝트 교재

VI. 주차별 강의계획(Course schedule)

	학습목표	Concept of Machine Learning
	주요학습내용	머신러닝의 개념과 학습에 필요한 주요 개념에 대해 배웁니다.
1 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서
	참고자료	교재, 강의자료
	학습목표	Machine Learning Workflow
	주요학습내용	머신러닝으로 예측 문제를 풀기 위한 프로세스를 단계별로 이해합니다.
2 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	Kaggle Project
	주요학습내용	ML workflow를 따라서, 실제 community competition을 도전합니다.
3 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	Unix/Linux에서의 컴퓨터 프로그래밍, 강의 / 실험
	주요학습내용	Shell programming을 배워 주소 관리 프로그램을 구현하고, 리눅스 실행 명령 어인 make와 gdb 배우고 익힘
4 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	GitHub의 개념과 기초
	주요학습내용	실습을 통한 GitHub 기본 개념 학습, 사용법 이해 / 숙지
5 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
6 주차	학습목표	설계프로젝트 1-1, 강의 / 실험

	주요학습내용	테트리스 프로젝트 #1: 기본 테트리스 게임
	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	설계프로젝트 1-2, 강의 / 실험
	주요학습내용	테트리스 프로젝트 #2: 랭킹 시스템
7 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	설계프로젝트 1-3, 강의 / 실험
	주요학습내용	테트리스 프로젝트 #3: 추천 시스템
8 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	OpenFrameWork 개요, 강의 / 실험
	주요학습내용	OpenFrameWork 기초와 개념, 실습을 통한 사용법 이해
9 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	설계프로젝트 2-1, 강의 / 실험
	주요학습내용	Waterfall #1
10 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료

	학습목표	설계프로젝트 2-2, 강의 / 실험
	주요학습내용	Waterfall #2
11 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	설계프로젝트 3-1, 강의 / 실험
	주요학습내용	미로 프로젝트 #1: 미로 생성기
12 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	설계프로젝트 3-2, 강의 / 실험
	주요학습내 용	미로 프로젝트 #2: 미로 그리기 및 찾기
13 주차	교수방법 및 매체	강의 및 실험
	학생준비사항	예비보고서, 결과보고서
	참고자료	교재, 강의자료
	학습목표	최종 발표
	주요학습내용	WaterFall or Maze 프로그램을 OpenFramework를 활용하여 제작 발표
14 주차	교수방법 및 매체	발표 및 평가
	학생준비사항	발표자료 및 보고서
	참고자료	교재, 강의자료

Ⅷ. 수업규정(Course Policy)

- 본 과목은 실험과목이기 때문에 수업시수가 일주일에 한 번으로, 한 번의 결석은 일반과목의 두 번의 결 선과 같음
- 전체강의에 참석하지 않으면 해당 실험의 실제 출결 여부에 상관없이 그 실험에 대하여 결석 처리됨.

VII.	참고사항(Special Accommodations)
С	코로나 바이러스의 영향으로 2022년 1학기까지 수업을 온라인으로 진행했으나 이번학기부터는 수업/시 험을 오프라인으로 진행합니다.
1	장애로 인해 수강시 지원이 필요한 학생들은 개별적으로 찾아와 상의하기 바랍니다.
	각 실험 및 강의의 구체적인 일정은 추후 공지됩니다. 휴강일정에 따른 해당 반 실험 수업은 추후 조교와 협의 후 해당 주차 실험 일정을 조정하여 진행합니다.

