Sugestii Rezolvări Exerciții Decidabilitate

October 2018

• Exercitiul 1

- $A \leq_T B$ si B semidecidabilă ⇒ A semidecidabilă.

Explicație:

B semidecidabilă \Rightarrow există procedura P_B , care, pentru o intrare oarecare x, întoarce 1 când $x \in B$ și nu oferă niciun răspuns atunci când $x \notin B$.

 $A \leq_T B \Rightarrow$ orice intrare x pentru predicatul P_A care decide apartenența la mulțimea A poate fi transformat într-o intrare f(x) pentru P_B astfel încât $P_A(x) = 1 \iff P_B(f(x)) = 1$

Cu alte cuvinte, putem folosi P_B pentru a stabili ca un element oarecare x aparține lui $A \Rightarrow$ există o procedură P_A care, pentru o intrare oarecare x, întoarce 1 când $x \in A$ și nu oferă niciun răspuns atunci când $x \notin A \Rightarrow A$ semidecidabilă.

În particular, A ar putea fi chiar decidabilă, însă acest lucru nu rezultă din simpla relație $A \leq_T B$.

-A semidecidabilă și C decidabilă $\Rightarrow A \setminus C$ semidecidabilă.

Explicatie:

Cdecidabilă \Rightarrow există procedura P_C astfel încât $P_C(x)=1,$ pentru $x\in C$ și $P_C(x)=0,$ pentru $x\notin C.$

Pentru a decide ca $x \in A \setminus C$ vom rula $P_A(x)$ și în cazul în care răspunsul este 1, vom cere și ca $P_C(x) = 0$. Dacă $P_A(x)$ nu oferă niciun raspuns, înseamnă că $x \notin A$, deci $x \notin A \setminus C$. Prin urmare, putem construi o procedură care, pentru o intrare oarecare x, întoarce 1 atunci când $x \in A \setminus C$ și nu oferă niciun răspuns în caz contrar $\Rightarrow A \setminus C$ semidecidabila.

• Exercițiul 3

Hint: De ce este varianta PCP cu alfabet unar decidabilă?

• Exercițiul 4

Hint: Mulțimea A este finită.

• Exercitiul 6

Hint: Pentru a demonstra că o mulțime A este recursiv-numărabilă este suficient să arătăm că există un program generator pentru mulțime.

• Exercițiul 10

Din (c) \Rightarrow există P_A, P_B, P_C programele care decid mulțimile respective (întorc 1 dacă elementul aparține mulțimii, altfel nu se termină).

Din B recursiv-numărabilă și C recursiv-numărabilă $\Rightarrow B \cup C$ recursiv-numărabilă (se poate scrie un program $P_{B \cup C}(x)$ care să ruleze în paralel $P_B(x)$ și $P_C(x)$ și care se termină când unul din cele doua programe se termină.

Dar $B \cup C = N \setminus A$ pentru că A, B, C sunt disjuncte între ele (din (a)) și reuniunea lor este mulțimea numerelor naturale (din (b)).

Din A recursiv-numarabilă și $N \setminus A$ recursiv numărabilă $\Rightarrow A$ recursivă (se poate construi programul $P_A'(x)$ care rulează în paralel $P_A(x)$ si $P_{N\setminus A}(x)$; daca $P_A(x)$ se termină primul, atunci $x\in A$, deci P_A' întoarce 1; altfel, dacă $P_{N\setminus A}$ se termină primul, atunci $x\in N\setminus A$ deci P_A' întoarce 0. **QED**

Analog pentru mulțimile B si C bazându-ne pe proprietățile de asociativitate și comutativitate ale operației de reuniune.

• Exercițiul 11

Problema BIN se aseamana cu problema opririi(PO). Prin urmare, dorim sa demonstrăm că BIN este nedecidabila, prin demonstrarea reducerii $PO \leq_T BIN$.

- **Pasul 1:** Pentru o intrare oarecare (P, w) pentru PO, construim o intrare convenabilă (P', w') a lui BIN, astfel încât $PO(P, w) = 1 \iff BIN(P', w') = 1$.

```
function P'(w')
   P(w)
   if w' is in {0, 1}*
      return 1
   else
      infinite-loop
end function
```

- Pasul 2: $PO(P, w) = 1 \Rightarrow BIN(P', w') = 1$. Când P se oprește pe w (adica PO(P, w) = 1), P' se va opri și el, pentru orice intrare w' care are proprietatea din enunț.
- Pasul 3: $BIN(P', w') = 1 \Rightarrow PO(P, w) = 1$. Când există inputuri pe care P' se oprește, înseamnă că acele intrări sunt în format binar și că P(w) s-a oprit.