Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

А. Р. МИРОТИН, Ж. Н. КУЛЬБАКОВА

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

Лабораторный практикум для студентов математического факультета специальности 1-31 03 01 Математика

Гомель 2009

УДК 517 (075.08) ББК 22.11 я 73 М 644

Рецензенты:

Ю. В. Малинковский, профессор, доктор физико-математических наук;

В. Н. Семенчук, профессор, доктор физико-математических наук.

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Миротин, А. Р.

М 644 Функциональный анализ и интегральные уравнения: лабораторный практикум: для студентов математического факультета специальности 1-31 03 01 Математика / А. Р. Миротин, Ж. Н. Кульбакова; М-во образования РБ, Гомельский государственный университет им. Ф. Скорины. – Гомель: ГГУ им. Ф. Скорины, 2009. 60 с.

Практическое пособие подготовлено в соответствии с программой курса «Функциональный анализ и интегральные уравнения» для студентов специальности 1-31 03 01 Математика. Оно содержит решения типовых примеров и задания лабораторных работ.

УДК 517517 (075.08) ББК 22.11 я 73 © А. Р. Миротин, Ж. Н. Кульбакова, 2009 © УО «ГГУ им. Ф. Скорины», 2009

Введение

Учебная программа курса «Функциональный анализ и интегральные уравнения» предполагает в качестве формы контроля знаний выполнение лабораторных работ. Целью этих работ является закрепление теоретического материала путем самостоятельного решения задач. Настоящее пособие призвано оказать помощь студентам в овладении основными приемами и методами решения задач по функциональному анализу. Оно содержит задания лабораторных работ 5 семестра, взятые из пособия [3], а также примеры решения типовых задач. При этом важно отметить следующее:

- каждая лабораторная работа рассчитана на 4-6 часов аудиторных занятий (в зависимости от ее объема). На первом занятии обсуждаются узловые вопросы темы, а второе (и третье) отводятся для завершения работы и защиты отчета;
- задание каждой лабораторной работы, как правило, выполняется группой из 2-3 человек;
- лабораторная работа засчитывается, если должное владение материалом продемонстрировали все члены группы;
- количество защищенных лабораторных работ учитывается на экзамене в рамках рейтинговой накопительной системы оценки знаний студента.

Отчет по лабораторной работе должен быть оформлен в соответствии со следующими требованиями:

- он выполняется письменно каждым членом группы в специальной тетради;
- решение каждой задачи должно быть подробно обосновано и содержать ссылки на все используемые определения и теоремы.

Метрические пространства. Сходящиеся последовательности в метрических пространствах

Примеры решения задач

Задача 1 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a.

Пример 1
$$x_n = \frac{1}{n^2} \sqrt{n^4 t^2 + 1}$$
, $a = |\mathbf{t}|$, $X = C[-4;4]$.

Решение. Рассмотрим расстояние $\rho_{\mathbb{C}}(x_n, a) = \max_{t \in [-4, 4]} |x_n(t) - a(t)|$. Так как при всех $t \in [-4, 4]$

$$|x_n(t) - a(t)| = \left| \frac{1}{n^2} \sqrt{n^4 t^2 + 1} - |t| \right| = \sqrt{t^2 + \frac{1}{n^4}} - |t| = \frac{t^2 + \frac{1}{n^4} - t^2}{\sqrt{t^2 + \frac{1}{n^4}} + |t|} \le \frac{\frac{1}{n^4}}{\sqrt{\frac{1}{n^4}}} = \frac{1}{n^2} \longrightarrow 0$$

при $n \to \infty$, то $\rho_C(x_n, a) \to 0$ $(n \to \infty)$. Значит, x_n сходится к a в C[-4;4].

Пример 2
$$x_n(t) = t^n - t^{n+1} + t$$
, $a(t) = t$, $X = C[0;1]$.

Решение. Рассмотрим $\rho_{\rm C}(x_n\,,\,a)=\max_{0\leq t\leq 1}|{\bf t}^{\rm n}-{\bf t}^{\rm n+1}|$. Обозначим ${\bf t}^{\rm n}-{\bf t}^{\rm n+1}$ через $\Delta_{\rm n}({\bf t})$ и найдем наибольшее значение функции $|\Delta_{\rm n}({\bf t})|=\Delta_{\rm n}({\bf t})={\bf t}^{\rm n}-{\bf t}^{\rm n+1}$ на отрезке [0,1]. Имеем $\Delta_{\rm n}^{\rm n}(t)={\bf n}{\bf t}^{\rm n-1}-({\bf n}+1){\bf t}^{\rm n}$, $\Delta_{\rm n}^{\rm n}(t)=0$, если ${\bf t}=0$ или ${\bf t}=\frac{n}{n+1}$ ∈ [0,1],

$$\Delta_n \left(\frac{n}{n+1} \right) = \left(\frac{n}{n+1} \right)^n - \left(\frac{n}{n+1} \right)^{n+1} = \left(\frac{n}{n+1} \right)^n \left(1 - \frac{n}{n+1} \right) = \frac{1}{\left(1 + \frac{1}{n} \right)^n} \frac{1}{n+1} .$$

 $\Delta_{\rm n}(0)=0,\,\Delta_{\rm n}(1)=0.$

Значит (по правилу нахождения наибольшего значения функции на отрезке),

$$\rho_{\rm C}(x_n,a) = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \frac{1}{n+1} \to \frac{1}{e} \, 0 = 0,$$

а потому x_n сходится к a в C[0;1].

Пример 3
$$x_n = \left(\frac{1}{\sqrt{n}}, ..., \frac{1}{\sqrt{n}}, 0, 0, ...\right), a = (0,0,0,...), X = l_3.$$

Решение.

$$\rho_3(x_n, a) = \left(\sum_{i=1}^{\infty} \left| x_{n_i} - a_i \right| \right)^{\frac{1}{3}} = \left(n^2 \left| \frac{1}{\sqrt{n}} - 0 \right|^3\right)^{\frac{1}{3}} = \left(\frac{n^2}{n^{\frac{3}{2}}}\right)^{\frac{1}{3}} = n^{\frac{1}{6}} \to \infty \text{ при n } \to \infty.$$

Так как $\rho_3(x_n, a)$ не стремится к нулю, то x_n не сходится к a в l_3 .

Пример 4
$$x_n = \left(\underbrace{\frac{\sin n}{n}, ..., \frac{\sin n}{n}}_{n pas}, 0, 0, ...\right), a = (0, 0, 0, ...), X = l_2.$$

Решение.

$$ho_2(x_n, a) = \left(\sum_{i=1}^{\infty} \left| x_{n_i} - a_i \right|^3 \right)^{\frac{1}{2}} = \left(n \frac{\sin^2 n}{n^2}\right)^{\frac{1}{2}} = \left(\frac{\sin^2 n}{n}\right)^{\frac{1}{2}} = \frac{\left|\sin n\right|}{n} \to 0$$
 при $n \to \infty$.

Значит, x_n сходится к a в l_2 .

Пример 5
$$x_n = n \sqrt{t + \frac{1}{n}} - \sqrt{t}$$
, $a = \frac{1}{2\sqrt{t}}$, $X = L_1[0;1]$.

Решение.

$$\rho_{L_1}(x_n, a) = \int_0^1 |x_n(t) - a(t)| dt = \int_0^1 \left| n \sqrt{t + \frac{1}{n}} - \sqrt{t} - \frac{1}{2\sqrt{t}} \right| dt =$$

$$= \int_0^1 \left| \frac{1}{\sqrt{t + \frac{1}{n}} + \sqrt{t}} - \frac{1}{2\sqrt{t}} \right| dt = \int_0^1 \left| \frac{1}{2\sqrt{t}} - \frac{1}{\sqrt{t + \frac{1}{n}} + \sqrt{t}} \right| dt.$$

Применим теорему Беппо Леви о предельном переходе под знаком интеграла. Обозначим $f_n(t) = \frac{1}{2\sqrt{t}} - \frac{1}{\sqrt{t+\frac{1}{n}} + \sqrt{t}} \ .$ Функция $f_n(t)$ является интегрируемой на [0;1] для любого

 $n\in N$, и $0\le f_1(x)\le f_2(x)\le \ldots \le f_n(t)\le \ldots$. Кроме того, $f_n(t)\to 0$ $(n\to\infty)$. Значит, по теореме Б. Леви

$$\lim_{n\to\infty} \rho_{L_1}(x_n, a) = \lim_{n\to\infty} \int_0^1 f_n(t)dt dt = 0.$$

Следовательно, x_n сходится к a в $L_1[0;1]$.

Пример 6 $x_n(t) = n \sin \frac{t}{n}$, a(t) = t, $X = L_1[0;1]$.

Решение.

$$\rho_{L_1}(x_n, a) = \int_0^1 \left| n \sin \frac{t}{n} - t \right| dt = \left[\left| n \sin \frac{t}{n} \right| \le n \frac{t}{n} \le t \right] = \int_0^1 t - n \sin \frac{t}{n} dt =$$

$$= \frac{t^2}{2} + n^2 \cos \frac{t}{n} \Big|_0^1 = \frac{1}{2} + n^2 \cos \frac{1}{n} - n^2 = \frac{1}{2} + n^2 \cos \frac{1}{n} - 1 = \frac{1}{2} - 2n^2 \sin^2 \frac{1}{2n} \to 0$$

при $n \to \infty$ (мы воспользовались тем, что $\sin x \sim x$ при $x \to 0$). Значит, x_n сходится к a в $L_1[0;1]$.

Задача 2 Является ли данное условие: а) необходимым, б) достаточным, в) необходимым и достаточным для сходимости последовательности x_n в метрическом пространстве X?

Пример 1 $X = C_L[a;b]$ – пространство непрерывных функций с метрикой $\rho_L(x,y) = \int\limits_a^b |x|t-y|t| dt$. Условие: последовательность $x_n(t)$ поточечно сходится к непрерывной функции a(t).

Решение. Не нарушая общности, можем считать, что a=0, b=1. Покажем, что условие не является ни необходимым, ни достаточным. Для выяснения достаточности условия рассмотрим следующую последовательность x_n , заданную на [0;1] графически:

Последовательность x_n сходится к $a \equiv 0$ поточечно на [0;1] (почему?), но

следовательность $x_n(t) = t^n$ и функцию $a(t) \equiv 0$. Имеем

$$\rho_{L}(x_{n}, a) = \int_{0}^{1} |x_{n}| t - 0 dt = \int_{0}^{2/n} x_{n} t dt = \frac{1}{2} \cdot \frac{2}{n} \cdot n = 1,$$

то есть $\rho_L(x_n, a)$ не стремится к нулю. Значит, данное условие не является достаточным для сходимости последовательности x_n в метрическом пространстве $C_L[a;b]$.

Теперь допустим, что $x_n \to a$ в $C_L[0;1]$, то есть $\int_0^1 |x_n| t - a t | dt \to 0$ при $n \to \infty$. По-кажем на примере, что отсюда не следует поточечная сходимость x_n к a. Рассмотрим по-

$$\rho_{L}(x_{n}, a) = \int_{0}^{1} t^{n} dt = \left. \frac{t^{n+1}}{n+1} \right|_{0}^{1} = \frac{1}{n+1} \to 0 \text{ при } n \to \infty.$$

Значит, $x_n \to a=0$ в $C_L[0;1]$. Но t^n не сходится к a=0 поточечно, так как $t^n \to 1$ при t=1. Значит, данное условие не является необходимым для сходимости последовательности x_n в метрическом пространстве $C_L[a;b]$.

.

Пример 2
$$X=l_2$$
. Условие: $\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} \left|x_n(k)-a(k)\right|\right) = 0$, где $a=(a_1,a_2,...,a_k,...)$.

Решение. Положим $\alpha_n \coloneqq \sum_{k=1}^\infty \left| x_n(k) - a(k) \right|$. Тогда данное условие означает, что $\alpha_n \to 0$ при $n \to \infty$. Докажем, что это условие является достаточным для сходимости последовательности x_n к a в пространстве l_2 . Поскольку при выполнении этого условия $\alpha_n < 1$ при достаточно больших n, то при этих n и при всех k имеем $\left| x_n(k) - a(k) \right| < 1$. Поэтому $\left| x_n(k) - a(k) \right|^2 \le \left| x_n(k) - a(k) \right|$ при этих n и при всех k. Значит, $\rho_2(x_n, a)^2 \le \alpha_n \to 0$ ($n \to \infty$), а это значит, что $\rho_2(x_n, a) \to 0$. Следовательно, $x_n \to a$ в l_2 . Достаточность доказана.

Теперь покажем, что условие не является необходимым. Рассмотрим последовательность $x_n = \left(1, \frac{1}{2}, ..., \frac{1}{n}, 0, 0, 0, ...\right)$ и точку $a = \left(1, \frac{1}{2}, ..., \frac{1}{n}, \frac{1}{n+1}, ...\right)$ из l_2 . Имеем $\rho_2(x_n, a) = \left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right)^{\frac{1}{2}} \to 0$ ($n \to \infty$) как остаток сходящегося ряда. Значит, $x_n \to a$ в l_2 . Но в этом примере $\alpha_n = \infty$ (сравните с гармоническим рядом), а потому данное условие не выполняется.

Задача 3 Найти предел последовательности x_n в метрическом пространстве X, если он существует.

Пример 1
$$X = l_1, x_n = \left(\frac{1}{2}, \frac{4}{5}, ..., \frac{n^2}{n^2 + 1}, 0, 0, ...\right).$$

Решение. 1 способ. Допустим, x_n сходится к некоторому a в l_1 . Так как для любого k справедливо неравенство $|x_n(k) - a(k)| \le \rho_1(x_n, a) \to 0 \ (n \to \infty)$, то имеем и покоординатную сходимость x_n к a. Но покоординатно x_n сходится к последовательности

$$\left(\frac{1}{2},\frac{4}{5},...,\frac{n^2}{n^2+1},\frac{n+1}{n+1^2+1},...\right)$$
, которая не принадлежит пространству l_1 (ряд $\sum_{n=1}^{\infty}\frac{n^2}{n^2+1}$ рас-

ходится по необходимому признаку). Мы пришли к противоречию. Значит, x_n не сходится в l_1 .

2 способ. Так как $\rho_1(x_n, x_{n+1}) = \frac{n+1^2}{n+1^2+1} \to 1$ при $n \to \infty$, последовательность x_n не является фундаментальной. Следовательно, x_n не сходится в l_1 .

Пример 2 $X = l_{\infty}$, $x_n = 1, \sqrt{2}, \sqrt[3]{3}, ..., \sqrt[n]{n}, 0, 0, ...$

Решение. 1 способ. Допустим, x_n сходится к некоторому a в l_{∞} . Так как $\left|x_n(k)-a(k)\right| \leq \rho_{\infty}(x_n,a) \to 0 \ (n\to\infty)$ для любого k, то имеем покоординатную сходимость x_n к a. Но покоординатно x_n сходится к последовательности

$$a=1,\sqrt{2},\sqrt[3]{3},...,\sqrt[n]{n},\sqrt[n+1]{n+1},...\in l_{\infty}$$
, для которой $\rho_{\infty}(x_{n},a)=\sup_{k\geq n+1}\left|\sqrt[k]{k}\right|=\sqrt[n+1]{n+1}\to 1$ (почему?) при $n\to\infty$. Следовательно, x_{n} не сходится к a в l_{∞} , - противоречие.

2 способ. Заметим, что последовательность x_n не является фундаментальной в l_{∞} . Действительно, $x_{n+1}=1,\sqrt{2},\sqrt[3]{3},...,\sqrt[n]{n},\sqrt[n+1]{n+1},0,0,...$, $\rho(x_n,x_{n+1})=\sqrt[n+1]{n+1}\to 1$ при $n\to\infty$. Так как x_n не фундаментальна в l_{∞} , то она не сходится в l_{∞} .

Задания лабораторной работы

Задача 1 Проверить, сходится ли заданная последовательность x_n точек метрического пространства X к точке a, если выполнены следующие условия.

a) $N_{\underline{0}}$ Xa1.1.1 *C*[0;2] tn^2+1/n^2+t t 1.1.2 *C*[0;5] 1 $nt^2 + n^2t / n^2t + 1$ *C*[-3;3] 1.1.3 |t|1.1.4 *C*[0;8] t 1.1.5 *C*[0;1] t 1.1.6 *C*[1;2] $72\sqrt{t}$

б)				
	№	X	$x_{\rm n}$	а
	1.2.1	l_{∞}	$\left(\underbrace{\left(\frac{4n+1}{4n+3}\right)^{n},,\left(\frac{4n+1}{4n+3}\right)^{n},0,0,}_{n}\right)$	$e^{-\frac{1}{2}}, e^{-\frac{1}{2}}, \dots$

1.2.2	l _{8/5}	$\left(\frac{\frac{\cos\frac{1}{n}}{n}, \dots, \frac{\cos\frac{1}{n}}{n}, 0, 0, \dots}{n}, 0, 0, \dots\right)$	0,0,0,
1.2.3	l_1	$\left(\underbrace{\sin\frac{1}{2^n},,\sin\frac{1}{2^n}}_{n^2},0,0,\right)$	0,0,0,
1.2.4	$l_{\frac{3}{2}}$	$\left(1+\frac{1}{n}^{n}, \sin n^{2}/n, \sin n^{3}/n^{2},, \sin n^{k}/n^{k-1},\right)$	e,0,0,
1.2.5	l_3	$\left(\underbrace{\frac{n^2}{2^n},,\frac{n^2}{2^n}}_{n^2},0,0,\right)$	0,0,0,
1.2.6	l_2	$\left(\underbrace{\frac{1}{n^2},,\frac{1}{n^2}}_{n^2},n,0,0,\right)$	0,0,0,

в)

$N_{\underline{0}}$	X	$x_{\rm n}$	а
1.3.1	$L_2[0;2]$	1/ 1+ nt	0
1.3.2	$L_4[0;3]$	$t/3^n + 2t$	2 <i>t</i>
1.3.3	$L_{\frac{4}{3}}$ [-1;2]	$t/2^{n} + \sin t$	sin t
1.3.4	$L_1[0;1]$	$e^{n t-1}$	0
1.3.5	$L_{\frac{3}{2}}$ [-2;0]	$\sin t/n + 2t^2$	$2t^2$
1.3.6	$L_2[0;3]$	$\sin nt /n^2 + t^3$	t^3

Задача 2 Является ли данное условие: а) необходимым, б) достаточным, в) необходимым и достаточным для сходимости последовательности x_n в метрическом пространстве X?

No	X	Условие
2.1	C[a;b]	$\forall t \in [a;b]$ существует предел числовой последовательности $x_n(t)$
2.2	l_1	\forall k \in N существует предел числовой последовательности $x_n(k)$
2.3	l_4	$\limsup_{n \to \infty} x_n(k) - a(k) = 0$, где $a = a(1), a(2),, a(k), \in l_4$
2.4	l_{∞}	\forall k \in N существует предел числовой последовательности $x_n(k)$
2.5	c_0	$\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} x_n(k) - a(k) \right) = 0, \text{ где } a = a(1), a(2),, a(k),$
2.6	l_1	$\lim_{n\to\infty} \left(\sum_{k=1}^{\infty} x_n(k) - a(k) ^2 \right) = 0, \text{ где } a = a(1), a(2),, a(k),$

Задача 3 Найти предел последовательности x_n в метрическом пространстве X, если он существует.

No	X	\mathcal{X}_{n}
3.1	l_{∞}	$\underbrace{\left(tg\left(1+\frac{1}{n}\right)^{n},,tg\left(1+\frac{1}{n}\right)^{n},0,0,\right)}_{n}$
3.2	l_3	$\left(\underbrace{\frac{1}{\sqrt{n}},,\frac{1}{\sqrt{n}}}_{n},0,0,\right)$
3.3	l_2	$\left(\underbrace{\sin\frac{1}{n},,\sin\frac{1}{n}}_{n^2},0,0,\right)$
3.4	c_0	$\left(\underbrace{\left(\frac{n+2}{n}\right)^2,,\left(\frac{n+2}{n}\right)^2}_{n},0,0,\right)$
3.5	l_{∞}	$tg \frac{1}{n}, tg \frac{1}{n^2},, tg \frac{1}{n^k},$
3.6	l_1	$\left(\underbrace{\frac{\sin 3^n}{n^2},,\frac{\sin 3^n}{n^2}}_{n},0,0,\right)$

Топология метрических пространств

Примеры решения задач

Задача 1 Является ли данное множество M открытым, замкнутым, ограниченным в пространстве C[a;b]. Найти его замыкание, внутренние и граничные точки.

Пример 1
$$M = x | x(a) = 0$$
.

Решение. Множество M не является открытым, и более того, ни одна его точка не является внутренней. Действительно, $\forall x_0 \in M$ и для любого шара $B(x_0, \varepsilon)$ имеем $x = x_0 + \varepsilon/2 \in B(x_0, \varepsilon)$, но $x \notin M$, так как $x(a) = x_0(a) + \frac{\varepsilon}{2} = \frac{\varepsilon}{2} \neq 0$.

Множество M является замкнутым, так как оно содержит в себе пределы всех своих сходящихся последовательностей. Действительно, если $x_n(t) \to x_0(t)$ в C[a;b], $x_n(a) = 0$, то и $x_0(a) = 0$. А это значит, что $x_0 \in M$.

Граница множества ∂M совпадает с самим множеством M , что теперь сразу следует из формулы $\partial M = \overline{M} \setminus IntM$.

Множество M не является ограниченным, так как последовательность $x_n(t)=n\cdot (t-a)\in M$, но $\rho(x_n,0)=n\cdot (b-a)\to \infty$ $(n\to\infty)$.

Пример 2
$$M = \left\{ x \middle| \int_{a}^{b} x(t)dt < 1 \right\}.$$

Peшение. Покажем, что M является открытым. Возьмём $\forall x_0 \in M$, т.е. $\int\limits_a^b x_0(t)dt < 1$.

Тогда $\exists \varepsilon > 0: \int\limits_a^b x_0(t)dt < 1-\varepsilon$. Покажем, что шар $B(x_0,\varepsilon/(b-a)) \subset M$. Возьмём $\forall y \in B(x_0,\varepsilon/(b-a))$.

Это значит, что $\max_{a \le t \le b} \! \left| x_0(t) - y(t) \right| < \frac{\mathcal{E}}{b-a}$. Тогда

$$\int_{a}^{b} y(t)dt = \int_{a}^{b} x_{0}(t)dt + \int_{a}^{b} (y(t) - x_{0}(t))dt \le \int_{a}^{b} x_{0}(t)dt + \int_{a}^{b} |y(t) - x_{0}(t)|dt < 1 - \varepsilon + \frac{\varepsilon}{b - a} \cdot (b - a) = 1.$$

Значит, $y \in M$.

Так как M открыто, то IntM = M.

Множество M не является замкнутым, так как содержит не все свои предельные точки. Действительно, возьмём последовательность $x_n(t) = \frac{n}{n+1} \cdot \frac{1}{b-a}$ из M. Тогда

$$x_n(t) \to \frac{1}{b-a}$$
, Ho $\int_a^b \frac{dt}{b-a} = 1$, T.e. $\frac{1}{b-a} \notin M$.

Замечание. Нормированное пространство X всегда связно, так как любые две его точки x и y можно связать непрерывным путем tx + (1-t)y, $t \in [0,1]$, лежащим в X, а потому в нем нет открытых и одновременно замкнутых собственных подмножеств.

Замыкание $\overline{M} = \left\{ x \middle|_a^b x(t) dt \le 1 \right\}$. Действительно, если x_0 принадлежит \overline{M} , то найдется последовательность $x_n \in M$ равномерно сходящаяся к x_0 на [a,b]. А тогда

$$\int_{a}^{b} x_0(t)dt = \int_{a}^{b} \lim_{n \to \infty} x_n(t)dt = \lim_{n \to \infty} \int_{a}^{b} x_n(t)dt \le 1.$$

Обратно, если $\int_{a}^{b} x_0(t)dt \le 1$, то последовательность $x_n = n/(n+1)x_0$ принадлежит M и сходится к x_0 равномерно (проверьте!), а потому x_0 принадлежит \overline{M} .

Теперь ясно, что граница
$$\partial M = \overline{M} \setminus Int M = \overline{M} \setminus M = \left\{ x \middle|_a^b x(t) dt = 1 \right\}.$$

Наконец, M не является ограниченным, так как $x_n(t)=-n\in M$, но $\rho(x_n,0)=n\to\infty$.

Пример 3
$$M = \frac{1}{2} |\max|x(t)| < 1$$
.

 $\begin{aligned} & \textit{Решение}. \ \text{Покажем, что} \ \textit{M} \ \text{открыто.} \ \text{Возьмём} \ \ \forall x_0 \in \textit{M} \ . \ \text{Тогда} \ \max \left| x_0(t) \right| < 1 \ , \ \text{а} \ \text{потому} \end{aligned}$ $\exists \, \varepsilon > 0 : \max \left| x_0(t) \right| < 1 - \varepsilon \ . \ \ \text{Рассмотрим} \qquad B(x_0, \varepsilon) \ . \ \ \text{Для} \ \ \text{любого} \quad y \in B(x_0, \varepsilon) \quad \text{имеем} \end{aligned}$ $\underset{ast \leq b}{\max} \left| y(t) - x_0(t) \right| < \varepsilon \ , \ \text{а} \ \text{тогда} \ \max \left| y(t) \right| \leq \max \left| y(t) - x_0(t) \right| + \max \left| x_0(t) \right| < \varepsilon + 1 - \varepsilon = 1 \ . \end{aligned}$

Покажем, что замыкание множества M есть $\overline{M}=\sqrt[4]{\max|x(t)|}\leq 1$. Действительно, если x_0 принадлежит \overline{M} , то найдется последовательность $x_n\in M$ равномерно сходящаяся к x_0 на [a,b]. А тогда $|x_0(t)|=\lim|x_n(t)|\leq 1$. Обратно, если $\max|x(t)|\leq 1$, то последовательность $x_n=n/(n+1)x_0$ принадлежит M и сходится к x_0 равномерно на [a,b] (проверьте), а потому x_0 принадлежит \overline{M} .

Теперь ясно, что граница $\partial M = \overline{M} \setminus Int M = \overline{M} \setminus M = \cancel{x} \left| \max |x(t)| = 1 \right|$. Очевидно, что данное множество ограничено.

Задача 2 Для данного множества A выяснить, является ли множество $B = A \cap l_p (p \ge 1)$ открытым, замкнутым, ограниченным в l_p .

Пример 1
$$p = \frac{3}{2}, A = \left\{ x | |x(k)| \le \frac{1}{k} \right\}.$$

Так как B замкнуто, то оно не является открытым, поскольку $\forall p \geq 1$ пространство l_p связно (см. замечание в решении примера 2 к задаче 1), но легко дать и прямое доказательство. Действительно, точка e_1 =(1,0,0,...) принадлежит B, но для любого $\varepsilon > 0$ точка $(1+\varepsilon,0,0,...) \notin B$, хотя и лежит в ε - окрестности точки e_1 .

Наконец, *B* ограничено, так как
$$\forall x \in B \ \rho_{\frac{3}{2}}(x,0) = \left(\sum_{k=1}^{\infty} \left|x(k)\right|^{\frac{3}{2}}\right)^{\frac{2}{3}} \le \left(\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}\right)^{\frac{2}{3}}.$$

Пример 2
$$p = \infty, A = * |0 < x(k) < 1$$

Решение. Множество $B=A\cap l_{\infty}$ не является открытым. Для доказательства покажем, что точка $x_0=(1,\frac{1}{2},\frac{1}{3},...)\in B$ не является для него внутренней. Возьмём $\forall \varepsilon>0$ и найдём такое натуральное N, что $\frac{1}{N}<\frac{\varepsilon}{2}$. Тогда $x_{\varepsilon}=(1,\frac{1}{2},...,\frac{1}{N}-\frac{\varepsilon}{2},\frac{1}{N+1},...)\in B(x_0,\varepsilon)$, но $x_{\varepsilon}\not\in B$, поскольку $x_{\varepsilon}(N)<0$.

Множество B не замкнуто. Действительно, рассмотрим $x_n=(\frac{1}{n+1},\frac{1}{n+2},...)\in B$. Тогда x_n сходится к точке 0=(0,0,...), так как $\rho_\infty(x_n,0)=\frac{1}{n+1}\to 0$ при $n\to\infty$, но $(0,0,...)\not\in B$.

Множество B ограничено, так как $\rho_{\infty}(x,0) \le 1 \ \forall x \in B$.

Пример 3
$$p = 1, A = \left\{ x \left| \sum_{k=1}^{\infty} |x(k)|^2 < 1 \right\}.$$

Решение. Покажем, что множество $B=A\cap l_1$ открыто. Возьмём $\forall x_0\in B$. Найдется такое $0<\varepsilon<1$, что $\sum_{k=1}^{\infty}|x_0(k)|^2<(1-\varepsilon)^2$. Если $x\in B(x_0,\varepsilon^2)$ (шар рассматривается, конечно, в l_1), то $\sum_{k=1}^{\infty}|x(k)-x_0(k)|<\varepsilon^2$. Тогда и $\sum_{k=1}^{\infty}|x(k)-x_0(k)|^2\leq\sum_{k=1}^{\infty}|x(k)-x_0(k)|<\varepsilon^2$. Теперь в силу неравенства Минковского имеем

$$\sqrt{\sum_{k=1}^{\infty}\left|x(k)\right|^{2}}\leq\sqrt{\sum_{k=1}^{\infty}\left|x(k)-x_{0}(k)\right|^{2}}+\sqrt{\sum_{k=1}^{\infty}\left|x_{0}(k)\right|^{2}}<\varepsilon+1-\varepsilon=1.$$

Значит,
$$\sum_{k=1}^{\infty} |x_k|^2 < 1$$
, т.е. $x \in B$. Итак, $B(x_0, \varepsilon^2) \subset B$.

Так как B открыто, то B не замкнуто по замечанию из решения примера 2 к задаче 1. Дадим прямое доказательство этого факта. Точки $x_n = c(1,1/2^2,...,1/n^2,0,0,...)$, где $c = \sum_{n=1}^{\infty} 1/n^4$, очевидно, принадлежат B. B то же время, x_n сходится B $C(1,1/2^2,1/3^2,...) \notin B$.

Покажем, что В не ограничено. Рассмотрим последовательность

$$x_n = \left(\sqrt{\frac{6}{\pi^2}} \cdot 1, \sqrt{\frac{6}{\pi^2}} \cdot \frac{1}{2}, \dots, \sqrt{\frac{6}{\pi^2}} \cdot \frac{1}{n}, 0, 0, \dots\right).$$

Имеем $x_n \in B$, так как

$$\sum_{k=1}^{\infty} |x_n(k)|^2 = \sum_{k=1}^{n} \frac{6}{\pi^2} \cdot \frac{1}{k^2} < \frac{6}{\pi^2} \cdot \sum_{k=1}^{\infty} \frac{1}{k^2} = 1,$$

но в то же время $\rho_1(x_n,0) = \sqrt{\frac{6}{\pi^2}} \cdot \sum_{k=1}^{\infty} \frac{1}{k} \to \infty$ при $n \to \infty$.

Пример 4
$$p = 2, A = \left\{ x \left| \sum_{k=1}^{\infty} |x_k| \cdot k < 1 \right\} \right\}.$$

Pешение. Покажем, что $B=A\cap l_2$ не является открытым. Возьмём $x_0=(0,0,\ldots)\in B$ и $\forall \varepsilon>0$. Найдётся такое натуральное N, что $N\cdot \varepsilon/2>1$. Тогда $x(\varepsilon)=(0,0,\ldots,0,\underbrace{\varepsilon/2}_{N-e},0,0,\ldots)\in B(x_0,\varepsilon)$, но $x(\varepsilon)\not\in B$.

Множество B не является и замкнутым. Для доказательства рассмотрим последовательность $x_n = \frac{6}{\pi^2} \cdot \left(1, \frac{1}{2^3}, ..., \frac{1}{n^3}, 0, 0, ...\right) \in B$. Она сходится к точке $x_0 = \frac{6}{\pi^2} \cdot \left(1, \frac{1}{2^3}, ..., \frac{1}{n^3}, \frac{1}{(n+1)^3}, ...\right)$, которая не принадлежит B, так как $\sum_{k=1}^{\infty} |x_k| \cdot k = \frac{6}{\pi^2} \cdot \sum_{k=1}^{\infty} \frac{1}{k^2} = 1$.

Множество *B* ограничено, поскольку неравенство $|x_k| < \frac{1}{k}$ влечет

$$\rho_2(x,0) = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2} \le \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right)^{1/2} = \frac{\pi}{\sqrt{6}}.$$

Задания лабораторной работы

Задача 1 Является ли данное множество M открытым, замкнутым, ограниченным в пространстве C[a;b]? Найти его замыкание, внутренние и граничные точки.

Nº	M	№	M
1.1	$x \in C^{(1)}[a;b] x(a) = 0$	1.4	$\Re \left x(a) > 0 \right $
1.2		1.5	$\frac{1}{3}\left x(t)=const\right $
1.3	$\left\{x \middle \int_{a}^{b} x(t)dt = 0\right\}$	1.6	$x \in C^{(1)}[a;b] x(a) = x`(a)$

Задача 2 Для данного множества A выяснить, является ли множество $B=A\cap l_p (p\geq 1)$ открытым, замкнутым, ограниченным в l_p .

No	p	A	№	p	A
2.1	1	$ x_k \le \frac{1}{k}$	2.4	8	
2.2	2	$ x_k > 0$	2.5	3/2	$ x \mid x(1) = \dots = x(n) = 0 $
2.3	2	$ x_k < \frac{1}{\sqrt[3]{k^2}}$	2.6	2	$\mathbf{x} \left \sum_{k=1}^{\infty} \left x_k \right < 1 \right\}$

Полнота метрических пространств

Примеры решения задач

Задача 1 Является ли последовательность x_n фундаментальной в данном пространстве X? Найти $\lim_{n\to\infty} x_n$, если он существует.

Пример 1
$$X = L_{3/5}[0;1], \ \rho(x,y) = \int_0^1 \left| x(t) - y(t) \right|^{3/5} dt \ , \ x_n(t) = \begin{cases} (n+t)^{-1}, t \in [0;1] \setminus K \\ \exp(n^2 t), t \in K \cap [0,1] \end{cases}$$
 где K — канторово множество.

Решение. Так как канторово множество имеет лебегову меру нуль, то и $K \cap [0;1]$ - множество меры нуль. Значит, $x_n(t) = (n+t)^{-1}$ п.в.

Покажем, что x_n сходится к 0 в $L_{\frac{3}{5}}[0,1]$. Для этого рассмотрим

$$\rho(x_n, 0) = \int_0^1 \left| \frac{1}{n+t} - 0 \right|^{\frac{3}{5}} dt = \frac{5(n+t)^{\frac{2}{5}}}{2} \Big|_0^1 = \frac{5}{2} ((n+1)^{\frac{5}{2}} - n^{\frac{2}{5}}) = \frac{5}{2} n^{\frac{2}{5}} ((1+\frac{1}{n})^{\frac{2}{5}} - 1)$$

и воспользуемся разложением по формуле Тейлора:

$$(1+x)^{\alpha} - 1 = \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + o(x^2)$$
 при $x \to 0$.

Получаем:

$$\rho(x_n,0) = \frac{5}{2} \cdot n^{2/5} (\frac{2}{5} \cdot \frac{1}{n} - \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{1}{n^2} + o(\frac{1}{n^2})) = \frac{1}{n^{3/5}} - \frac{3}{5 \cdot n^{8/5}} + o(\frac{1}{n^{8/5}}) \to 0 \text{ при } n \to \infty.$$

Тот же результат мы получим, применив теорему Лебега о предельном переходе под знаком интеграла.

Итак, x_n сходится к 0, а потому она фундаментальна.

Пример 2
$$X = L_{5/3}[0,1], x_n(t) = \begin{cases} \cos nt, t \in [0,1] \setminus K \\ \exp(\pi t^n), t \in K \cap [0,1] \end{cases}$$

Решение. Так как $K \cap [0,1]$ - множество меры нуль, то $x_n(t) = \cos nt$ п.в. на [0,1]. По-кажем, что эта последовательность не фундаментальна в нашем пространстве:

$$\rho_{5/3}^{5/3}(x_{n+2}, x_n) = \int_0^1 |x_{n+2}(t) - x_n(t)|^{5/3} dt = 2^{5/3} \int_0^1 |\sin t|^{5/3} |\sin(n+1)t|^{5/3} dt \ge 2^{5/3} \int_0^1 \sin^2 t \sin^2(n+1)t dt = 2^{5/3} \int_0^1 \sin^2 t \frac{1 - \cos 2(n+1)t}{2} dt = 2^{2/3} (\int_0^1 \sin^2 t dt - \int_0^1 \sin^2 t \sin 2(n+1)t dt) \to 2^{2/3} \int_0^1 \sin^2 t dt \ne 0 \ (n \to \infty)$$

(мы воспользовались леммой Римана из теории рядов Фурье, согласно которой $\int_{0}^{1} \sin^{2}t \sin 2(n+1)t dt \to 0$, но можно было бы вычислить интеграл и непосредственно).

Задача 2 Является ли метрическое пространство (X, ρ) полным?

Пример 1 X=B[0,1] пространство вещественнозначных ограниченных функций на [0,1], наделенное метрикой

$$\rho(x, y) = \sup_{t \in [0, 1]} |x(t) - y(t)|.$$

Решение. Покажем, что любая фундаментальная последовательность (x_n) в B[0,1] является сходящейся. Ее фундаментальность значит, что $\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n,m > n_{\varepsilon}$ выполняется неравенство

$$\sup_{t \in [0,1]} \left| x_n(t) - x_m(t) \right| < \varepsilon \tag{1}$$

Зафиксируем произвольное число $t \in [0;1]$. Тогда числовая последовательность ($x_n(t)$) в силу (1) является фундаментальной в R. По причине полноты пространства R последовательность $x_n(t)$ сходится. Положим $x_0(t) = \lim_{n \to \infty} x_n(t)$, $t \in [0,1]$. Тем самым на [0;1] определена функция x_0 , к которой x_n сходится поточечно. Осталось доказать, что

1) $x_0 \in B[0;1]$ и 2) $\rho(x_n, x_0) \to 0$ при $n \to \infty$.

C этой целью перейдем в (1) (а точнее, в неравенстве $\left|x_{n}(t)-x_{m}(t)\right|<\varepsilon$, справедливом при всех t из [0,1]) к пределу при $m \to \infty$. Получим, что $\forall n > n_{\varepsilon} \sup_{t \in [0,1]} \left| x_n(t) - x_0(t) \right| \le \varepsilon$

$$\forall n > n_{\varepsilon} \sup_{t \in [0,1]} \left| x_n(t) - x_0(t) \right| \le \varepsilon \tag{2}$$

В частности, при $N=n_{\varepsilon}$ $\forall t\in[0;1]$ выполняется оценка:

$$-\sup_{t\in[0,1]}\left|x_{N}(t)\right|-\varepsilon\leq x_{0}(t)\leq\sup_{t\in[0,1]}\left|x_{N}(t)\right|+\varepsilon,$$

из которой следует ограниченность x_0 . Следовательно, $x_0 \in B[0;1]$. Наконец, формула (2) означает, что $\forall n > n_{\varepsilon}$ $\rho(x_n, x_0) \le \varepsilon$. Поэтому $\rho(x_n, x_0) \to 0$ при $n \to \infty$.

Пример 2 $X = l_{p,\mu}$ ($p \ge 1$) — пространство числовых последовательностей

x=(x(1),x(2),...,x(n),...), удовлетворяющих условию: $\sum_{i=1}^{\infty}\left|x(n)\right|^{p}\,\mu(n)<\infty$, где

 $\mu = (\mu(1), \mu(2), ..., \mu(n), ...), \mu(n) > 0)$ заданная числовая последовательность;

$$\rho(x,y) = \left(\sum_{n=1}^{\infty} |x(n) - y(n)|^p \ \mu(n)\right)^{1/p}.$$

Решение. Покажем, что данное пространство полно. Пусть (x_n) - фундаментальная последовательность в $l_{p,u}$. Это значит, что

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n, m > n_{\varepsilon} \left(\sum_{i=1}^{\infty} \left| x_{n}(i) - x_{m}(i) \right|^{p} \mu(i) \right)^{\frac{1}{p}} < \varepsilon.$$
 (1)

Тогда для любого фиксированного i имеем $\forall n, m > n_{\varepsilon} |x_n(i) - x_m(i)|^p \mu(i) < \varepsilon^p$, т. е. $\left|x_{_{n}}(i)-x_{_{m}}(i)\right|<arepsilon$ / $\mu(i)^{^{1/p}}$. Следовательно, для любого фиксированного i числовая последовательность $(x_n(i))_{n=1}^{\infty}$ является фундаментальной, а потому сходится. Обозначим $x_0(i) = \lim_{n \to \infty} x_n(i)$ и положим $x_0 = (x_0(1), x_0(2), ..., x_0(n), ...)$. Осталось показать, что

- 1) $x_0 \in l_{p,u}$ и
- 2) $\rho(x_n, x_0) \rightarrow 0$ при $n \rightarrow \infty$.

Из (1) следует, что $\sum_{i=1}^{M} \left| x_n(i) - x_m(i) \right|^p \mu(i) < \varepsilon^p$ любого фиксированного M , что в пределе при $m \to \infty$ дает $\forall M \sum_{i=1}^{M} \left| x_n(i) - x_0(i) \right|^p \mu(i) \le \varepsilon^p$. Переходя теперь к пределу при $M \to \infty$, получим $\sum_{i=1}^{\infty} \left| x_n(i) - x_0(i) \right|^p \mu(i) \le \varepsilon^p$, т.е.

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ \sum_{i=1}^{\infty} \left| x_{n}(i) - x_{0}(i) \right|^{p} \mu(i) \le \varepsilon^{p}$$
 (2)

Возьмем какие-нибудь $\varepsilon > 0$ и $N > n_{\varepsilon}$ и обозначим

$$\rho(x_N,0) = \left(\sum_{i=1}^{\infty} |x_N(i) - x_0(i)|^p \mu(i)\right)^{1/p} = C.$$

Вследствие неравенства Минковского имеем

$$(\sum_{i=1}^{\infty} \left|x_{0}(i)\right|^{p} \mu(i))^{\frac{1}{p}} \leq (\sum_{i=1}^{\infty} \left|x_{0}(i) - x_{N}(i)\right|^{p} \mu(i))^{\frac{1}{p}} + (\sum_{i=1}^{\infty} \left|x_{N}(i)\right|^{p} \mu(i))^{\frac{1}{p}} \leq \varepsilon + C < \infty,$$
 а это значит, что $x_{0} \in l_{p,\mu}$. Теперь (2) показывает, что $\rho(x_{n}, x_{0}) \to 0$ при $n \to \infty$, а потому (x_{n}) сходится в нашем пространстве к x_{0} .

Пример 3 $X = C_{[-1;1]}^{(1)}$ множество непрерывно дифференцируемых на [-1,1] функций с метрикой $\rho(x,y) = \int_{-1}^{1} |x(t)-y(t)| dt$.

Решение. Рассмотрим последовательность $x_n(t) = arctgnt$ и покажем, что она является фундаментальной, но не является сходящейся в нашем пространстве. Заметим, что эта последовательность поточечно сходится к функции $x_0(t) = \pi/2 \operatorname{sgn} t \in L_1[-1,1] \setminus X$., где

$$\operatorname{sgn} t = \begin{cases} 1, t \in (0;1], \\ 0, t = 0, \\ -1, t \in [-1;0) \end{cases}.$$

А так как $\forall t \left| x_n(t) - x_0(t) \right| \leq 1 + \pi/2$, то по теореме Лебега $\rho(x_n, x_0) = \int_{-1}^{1} \left| x_n(t) - x_0(t) \right| dt \to 0$ при $n \to \infty$. Это означает, что в пространстве $L_1[-1,1]$ последовательность x_n сходится к x_0 . Следовательно, она фундаментальна в X. С другой стороны, если предположить, что последовательность x_n сходится в данном пространстве X к некоторой функции $\psi \in C_{[-1;1]}^{(1)}$, то получим, что x_n имеет два предела в $L_1[-1,1]$ x_0 и ψ , противоречие. Итак, данное пространство не является полным.

Задания лабораторной работы

Задача 1 Является ли последовательность x_n фундаментальной в данном пространстве X? Найти $\lim_{n\to\infty} x_n$, если он существует.

No	X	\mathcal{X}_n	№	X	x_n
1.1	L ₁ [-1; 2]	$x_n(t) = \begin{cases} \sin nt, t \in Q \cap [-1; 2], \\ \sqrt{t^2 + \frac{1}{n^3}}, t \in [-1; 2] \setminus Q \end{cases}$	1.4	$L_{2[-1;1]}$	$x_{n}(t) = \begin{cases} \sqrt{t^{2} + \frac{1}{n^{4}}}, t \in [-1; 1] \setminus K, \\ \cos(n+t), t \in K \cap [-1; 1] \end{cases}$
1.2	$L_{3/2^{[0;1]}}$	$x_n(t) = \begin{cases} ne^{nt}, t \in K, \\ \frac{t^3}{n}, t \in [0;1] \setminus K \end{cases}$	1.5	$L_{4[0;3]}$	$x_n(t) = \begin{cases} \sin \pi nt, t \in Q \cap [0;3] \\ \left(\frac{t}{3}\right)^n, t \in [0;3] \setminus Q \end{cases}$
1.3	$L_{4[-2;0]}$	$x_n(t) = \begin{cases} nt, t \in Q \cap [-2, 0], \\ ne^{nt}, t \in [-2, 0] \setminus Q \end{cases}$	1.6	$L_{2}[0;\pi/$	$2]_{X_n}(t) = \begin{cases} \sin(t/n), t \in [0; \pi/] \setminus Q, \\ \exp(n^2 t), t \in Q \cap [0; \pi/2] \end{cases}$

Задача 2 Выяснить, является ли заданное пространство (X, ρ) полным.

- 2.1 А) Пространство $C_{[a;b]}^{(1)}$ непрерывно дифференцируемых на отрезке [a;b] функций с метрикой $\rho(x;y) = \max_{a \le t \le b} \left| x(t) y(t) \right| + \max_{a \le t \le b} \left| x^{'}(t) y^{'}(t) \right|$.
- Б) Пространство всех дважды дифференцируемых на отрезке [a;b] функций с метрикой $\rho(x;y) = \max_{a \le t \le b} \left| x(t) y(t) \right|$.
- 2.2 А) Пространство $l_p(p \ge 1)$ числовых последовательностей x = (x(1), x(2), ..., x(k), ...), удовлетворяющих условию $\sum_{k=1}^{\infty} \left| x(k) \right|^p < \infty$, с метрикой $\rho(x, y) = (\sum_{k=1}^{\infty} \left| x(k) y(k) \right|^p)^{\frac{1}{p}}$.
- Б) Пространство всех непрерывных на отрезке [a;b] функций с метрикой $\rho(x;y) = \int_a^b \left| x(t) y(t) \right|^2 dt^{-\frac{1}{2}}.$
- 2.3 А) Пространство l_{∞} всех ограниченных числовых последовательностей x = (x(1), x(2), ..., x(k), ...) с метрикой $\rho(x; y) = \sup_{k} |x(k) y(k)|$.
- Б) $X = C_{[0;1]}$ с метрикой $\rho(x;y) = \int_0^t |y(t) x(t)| dt$.

2.4 А) Пространство c_0 сходящихся к нулю последовательностей x=(x(1),x(2),...,x(k),...) с метрикой $\rho(x;y)=\sup_k \left|x(k)-y(k)\right|$.

Б)
$$X = x \in C_{[0;1]} \mid \int_0^t \left| x(t) \right| dt < 1$$
 с метрикой $\rho(x;y) = \max_{0 \le t \le 1} \left| x(t) - y(t) \right|$.

2.5 А) Пространство c сходящихся последовательностей x = (x(1), x(2), ..., x(k), ...) с метрикой $\rho(x; y) = \sup_{k} |x(k) - y(k)|$.

Б)
$$X = C_{[0;1]}$$
, с метрикой $\rho(x,y) = \left(\int_{0}^{1} |x(t) - y(t)|^{2} dt\right)^{1/2}$.

- 2.6 А) Пространство $CB_{[a,b]}$ ограниченных и непрерывных на интервале (a;b) функций с метрикой $\rho(x;y) = \sup_{a \le t \le b} \left| x(t) y(t) \right|$.
- Б) $X = l_1$ с метрикой $\rho(x; y) = \sup_{k} |x(k) y(k)|$.

Непрерывные отображения

Примеры решения задач

Задача 1 Является ли заданное отображение $F: X \to Y$ на своей естественной области определения непрерывным в точке x_0 ?

Пример 1
$$F: C[0;2] \to L_1[0;1], (Fx)(t) = x(1) - \int_0^2 tx^2(s)ds, x_0(t) = t.$$

Решение. Очевидно, что заданное отображение определено на всем C[0;2]. Представим его в виде: $Fx = F_1x - F_2x$, где $F_1x = x(1)$, $F_2x(t) = \int\limits_0^2 tx^2(s)ds$, и покажем, что F_1 и F_2 непрерывны в любой точке $x_0 \in C[0;2]$. Пусть последовательность (x_n) сходится к x_0 в C[0;2]. Тогда

$$\rho_{L_{I}}(F_{1}x_{n}, F_{1}x_{0}) = \int_{0}^{1} |x_{n}(1) - x_{0}(1)| dt \leq \max_{t \in [0;1]} |x_{n}(t) - x_{0}(t)| = \rho_{c}(x_{n}, x_{0}) \to 0 \ (n \to \infty).$$

Отсюда следует, что F_1 непрерывно.

Докажем непрерывность F_2 . Так как функция $x_0 \in C[0;2]$, то она ограничена на [0;2], т. е. $\exists M \in \mathbb{R}: |x_0(s)| \leq M \ \forall s \in [0;2]$. А так как $x_n \to x_0$ равномерно на [0;2], то, начиная с некоторого номера $|x_n(s)| \leq 2M$ на [0;2] (почему?). Тогда

$$\rho_{L_{I}}(F_{2}x_{n}, F_{2}x_{0}) = \int_{0}^{1} t \cdot \left| \int_{0}^{2} x_{n}^{2}(s) ds - \int_{0}^{2} x_{0}^{2}(s) ds \right| dt = \int_{0}^{1} t dt \cdot \int_{0}^{2} \left| x_{n}^{2}(s) - x_{0}^{2}(s) \right| ds =$$

$$= \frac{1}{2} \cdot \int_{0}^{2} \left| x_{n}(s) - x_{0}(s) \right| \left| x_{n}(s) + x_{0}(s) \right| ds \le \frac{1}{2} \cdot 3M \cdot \max_{s \in [0;2]} \left| x_{n}(s) - x_{0}(s) \right| \cdot 2 =$$

$$= 3M \cdot \rho_{c}(x_{n}, x_{0}) \to 0 \ (n \to \infty).$$

Отсюда следует, что $F_2x_n \to F_2x_0$ в $L_1[0;1]$. Поэтому в силу произвольности x_0 отображение F непрерывно в любой точке из C[0;2].

Пример 2
$$F: L_2[0;1] \to L_1[0;1], (Fx)(t) = tx(t^3), x_0 = 0.$$

Решение. Пусть последовательность (x_n) сходится к x_0 в $L_2[0;1]$. Заметим, что

$$\boldsymbol{\rho}_{L_2}(x_n, x_0) = \left(\int_0^1 |x_n(t) - x_0(t)|^2 dt\right)^{\frac{1}{2}} = \left(\int_0^1 |x_n(t)|^2 dt\right)^{\frac{1}{2}}.$$

Теперь в силу неравенства Коши-Буняковского

$$\rho_{L_{I}}(Fx_{n}, Fx_{0}) = \int_{0}^{1} |tx_{n}(t^{3})| dt = \begin{bmatrix} t^{3} = s & dt = \frac{1}{3}s^{-2/3}ds \\ t = \sqrt[3]{s} & s \in [0;1] \end{bmatrix} = \frac{1}{3} \int_{0}^{1} \frac{|x_{n}(t)|}{s^{1/3}} dt \le \frac{1}{3} \left(\int_{0}^{1} |x_{n}(s)|^{2} ds \right)^{\frac{1}{2}} \cdot \left(\int_{0}^{1} \frac{ds}{s^{2/3}} \right)^{\frac{1}{2}} = \frac{\sqrt{3}}{3} \rho_{L_{2}}(x_{n}, x_{0}) \to 0 \ (n \to \infty)$$

(аналогичные вычисления показывают, что Fx принадлежит $L_1[0;1]$ при x из $L_2[0;1]$; поэтому отображение F определено на всем $L_1[0;1]$). Значит, F — непрерывное отображение в точке x_0 .

Пример 3
$$F: L_1[0;1] \to L_2[0;1], (Fx)(t) = \int_0^1 t \sqrt{s} x^2(s) ds, x_0 = 0.$$

Решение. Покажем, что отображение не является непрерывным. Возьмём последовательность $x_n = n^{\frac{3}{4}}$. $\chi_{[0;1/n]}$, которая $\to 0$ в $L_1[0;1]$ (действительно,

$$\rho_{L_1}(x_n,0) = \int_{0}^{\frac{1}{n}} n^{\frac{3}{4}} dt = \frac{n^{\frac{3}{4}}}{n} = \frac{1}{n^{\frac{1}{4}}} \to 0 \text{ при } n \to \infty).$$

Рассмотрим теперь выражение

$$\rho_{L_2}^2(Fx_n, Fx_0) = \rho_{L_2}^2(Fx_n, 0) = \int_0^1 |Fx_n(t)|^2 dt = \int_0^1 \left(\int_0^1 t \sqrt{s} x_n^2(s) ds\right)^2 dt =$$

$$= \int_0^1 t^2 dt \cdot \left(\int_0^1 \sqrt{s} x_n^2(s) ds\right)^2 = \frac{1}{3} \left(\int_0^{1/n} \sqrt{s} n^{3/2} ds\right)^2 = \frac{1}{3} \left(n^{3/2} \cdot \frac{2s^{3/2}}{3} \Big|_0^{1/n}\right)^2 = \frac{4}{27}.$$

Следовательно, последовательность $\rho_{L_2}(Fx_n, Fx_0)$ не стремится к нулю при $n \to \infty$, а потому Fx_n не стремится к Fx_0 .

Пример 4
$$F: L_2[0;1] \rightarrow L_1[0;1], (Fx)(t) = \int_0^1 \frac{tx^2(s)}{\sqrt[4]{s}} ds, x_0 = 0.$$

Решение. Покажем, что отображение не является непрерывным. Заметим, что

$$\rho_{L_2}^2(Fx_n, Fx_0) = \rho_{L_2}^2(Fx_n, 0) = \int_0^1 \left| \int_0^1 \frac{tx_n^2(s)}{\sqrt[4]{s}} ds \right| dt = \int_0^1 t dt \cdot \left| \int_0^1 \frac{x_n^2(s)}{\sqrt[4]{s}} ds \right| = \frac{1}{2} \int_0^1 \frac{x_n^2(s)}{\sqrt[4]{s}} ds.$$

Возьмем последовательность $x_n=n^{7/8}$. $\chi_{[0;1/n^{-2}]}$, которая $\to 0\,$ в $L_2[0;1]$, так как

$$\left(\int_{0}^{n^{-2}} n^{7/4} dt\right)^{1/2} = \left(\frac{n^{7/4}}{n^2}\right)^{1/2} = \frac{1}{\sqrt[8]{n}} \to 0 \text{ при } n \to \infty.$$

Тогда

$$\rho_{L_1}(Fx_n,0) = \frac{1}{2} \int_0^{n-2} \frac{n^{7/4}}{\sqrt[4]{s}} ds = \frac{n^{7/4}}{2} \cdot \frac{4s^{3/4}}{3} \bigg|_0^{1/n^2} = \frac{2}{3} \cdot \frac{n^{7/4}}{n^{3/2}} \to \infty \quad \text{при } n \to \infty,$$

а потому Fx_n не стремится к Fx_0 .

Задача 2 Является ли заданное отображение $F: X \to Y$: а) непрерывным; б) равномерно непрерывным; в) удовлетворяющим условию Липшица?

Пример 1 $X = Y = C[-4;2], (Fx)(t) = x(t)\sin x(t).$

Решение. а) Отображение F является непрерывным, так как

$$\rho(Fx,Fx_0) = \max_{t \in [-4,2]} |x(t)\sin x(t) - x_0(t)\sin x_0(t)| \le \max_{t \in [-4,2]} |x(t)\sin x(t) - x_0(t)\sin x(t)| +$$

$$+ |x_0(t)\sin x(t) - x_0(t)\sin x_0(t)| \le \max_{t \in [-4,2]} |x(t) - x_0(t)| +$$

$$+ \max_{t \in [-4;2]} |x_0(t) \cdot 2\sin \frac{x(t) - x(t_0)}{2} \cdot \cos \frac{x(t) + x(t_0)}{2})| \le \max_{t \in [-4;2]} |x(t) - x_0(t)| + M \cdot \max_{t \in [-4;2]} |x(t) - x_0(t)| = 1$$

$$= (M+1)\rho(x,x_0)$$

(здесь $M = \max_{t \in [-4:2]} |x_0(t)|$; мы воспользовались неравенством $|\sin x| \le |x|$).

б) Покажем, что F не является равномерно непрерывным. Возьмём

$$x_{\mathrm{n}}(t)=2\,\pi$$
 $n+\frac{1}{n}$, $y_{\mathrm{n}}(t)=2\pi n$. Тогда $oldsymbol{
ho}(x_{\mathrm{n}},y_{\mathrm{n}})=rac{2\pi}{n} o 0$ при $n o\infty$, но $oldsymbol{
ho}(Fx_{\mathrm{n}},Fy_{\mathrm{n}})=2\pi$ $n+\frac{1}{n}\sin\frac{2\pi}{n}-2\pi n\cdot\sin2\pi n=2\pi n\sin\frac{2\pi}{n}+rac{2\pi}{n}\sin\frac{2\pi}{n}=$ $=4\pi^2\frac{\sin\frac{2\pi}{n}}{rac{2\pi}{n}}+rac{2\pi}{n}\sin\frac{2\pi}{n} o 4\pi^2$,

а значит, $\rho(Fx_n, Fy_n)$ не стремится к нулю при $n \to \infty$. Это противоречит определению равномерной непрерывности (проверьте).

в) Так как F не является равномерно непрерывным, то оно не удовлетворяет условию Липшица (почему?).

Пример 2
$$X=l_2, Y=l_\infty$$
, $Fx=\left(\frac{x_1^2}{1+x_1^2},x_1,x_2,...\right)$.

Pешение. Покажем, что F удовлетворяет условию Липшица с константой L=1. Заметим, что

$$\boldsymbol{\rho}_{l_{\infty}}(Fx, Fy) = \sup_{k} \left\{ \left| \frac{x_{1}^{2}}{1 + x_{1}^{2}} - \frac{y_{1}^{2}}{1 + y_{1}^{2}} \right|; |x_{1} - y_{1}|; |x_{1} - y_{1}|; \ldots \right\}.$$

Обозначим $f(x) = \frac{x^2}{1+x^2}$. Тогда

$$|f'(x)| = \left| \frac{2x \ 1 + x^2 \ -x^2 \cdot 2x}{1 + x^2} \right| = \frac{2|x|}{1 + x^2} \le 1.$$

Следовательно, по теореме Лагранжа $|f(x_1) - f(y_1)| \le |x_1 - y_1|$, а значит,

$$\rho_{l_{\infty}}(Fx, Fy) = \sup \left\{ \left| \frac{x_1^2}{1 + x_1^2} - \frac{y_1^2}{1 + y_1^2} \right|; |x_1 - y_1|; |x_1 - y_1|; \dots \right\} \le \sup_{k} |x_k - y_k| \le \rho_{l_2}(x, y).$$

Так как F удовлетворяет условию Липшица, то оно равномерно непрерывно, а потому и непрерывно.

Пример 3
$$X = L_1[0;1], Y = L_2[-1;1], (Fx)(t) = \int_0^1 e^t \ arctgx(s)ds.$$

Pешение. Покажем, что F удовлетворяет условию Липшица. Действительно,

$$\rho_{L_{2}}(Fx, Fy) = \left(\int_{-1}^{1} \left|Fx(t) - Fy(t)\right|^{2} dt\right)^{\frac{1}{2}} = \left(\int_{-1}^{1} e^{2t} \left|\int_{0}^{1} arctgx(s) ds - \int_{0}^{1} arctgy(s) ds\right|^{2} dt\right)^{\frac{1}{2}} = \left(\int_{-1}^{1} \left|Fx(t) - Fy(t)\right|^{2} dt\right)^{\frac{1}{2}} = \left(\int_{0}^{1} \left|Fx(t) - Fy(t)\right|^{2} dt\right)^{\frac{1}{2}} dt$$

Так как $\left|(arctgx)'\right|=\frac{1}{1+x^2}\leq 1$, то по теореме Лагранжа $\left|arctgx-arctgy\right|\leq \left|x-y\right|$. Поэтому при любых x,y

$$\rho_{L_2}(Fx, Fy) \leq \sqrt{ch2} \ \rho_{L_1}(x, y).$$

Так как F удовлетворяет условию Липшица, то оно является равномерно непрерывным.

Пример 4
$$X=l_2$$
 $Y=l_1$, $Fx=0,0,\sqrt{\left|x_{21}^3\right|},0,0,...$.

Решение. а) Покажем, что F непрерывно. Действительно, если $x_n \to x_0$ в l_2 , то числовая последовательность $x_n(21)$ сходится к $x_0(21)$. Тогда

$$\rho_{l_2}(Fx_n, Fx_0) = \left| \sqrt{|x_n^3(21)|} - \sqrt{|x_0^3(21)|} \right| \to 0$$
 при $n \to \infty$.

б) Покажем, что F не является равномерно непрерывным. Пусть

$$x_n(21) = \left(\sqrt{n} + \frac{1}{n}\right)^2, \ y_n(21) = n, \ x_n(k) = y_n(k) = 0 \ \forall k \neq 21.$$

Тогда

$$ho_{l_2}(x_n,y_n) = \left(\sqrt{n} + \frac{1}{n}\right)^2 - n = \frac{2}{\sqrt{n}} + \frac{1}{n^2} \to 0$$
 при $n \to \infty$,

но

$$\rho_{l_1}(Fx_n, Fy_n) = \left(\sqrt{n} + \frac{1}{n}\right)^3 - \sqrt{n^3} = 3 + \frac{3}{n\sqrt{n}} + \frac{1}{n^3} \to 3$$
 при $n \to \infty$.

в) Так как F не является равномерно непрерывным, то оно не удовлетворяет и условию Липшица.

Задания лабораторной работы

Задача 1 Выяснить, является ли заданное отображение $F: X \to Y$ на своей естественной области определения непрерывным в точке x_0 ?

No॒	X	Y	F	$x_0(t)$
1.1	$L_2[0;1]$	$L_1[0;1]$	$(Fx)(t) = t^{-1/4} \sin x(t)$	t^2
1.2	C[0;1]	$L_1[0;1]$	$(Fx)(t) = \sin x^2(t)$	t
1.3	$L_2[0;1]$	$L_2[0;1]$	$(Fx)(t) = x(\sqrt{t})$	\sqrt{t}
1.4	C[0;1]	C[0;1]	1	t
			$(Fx)(t) = \int_{0}^{\infty} t x(s) /\sqrt{s} ds$	
			Ü	
1.5	C[0;1]	C[0;2]	$(Fx)(t) = 2x^3(t/2)$	1
1.6	$L_1[0;1]$	$L_2[0;1]$	(Fx)(t) = x(t)	0

Задача 2 Является ли заданное отображение $F: X \to Y$: а) непрерывным; б) равномерно непрерывным; в) удовлетворяющим условию Липшица?

No	X	Y	F
2.1	C[0;1]	C[0;1]	$(Fx)(t) = x^2(\sqrt{t})e^t$
2.2	C[-1;1]	C[-1;1]	$(Fx)(t) = x(t)/(1+x^2(t))$
2.3	$L_2[-1;0]$	$L_1[-1;0]$	$(Fx)(t) = \int_{-1}^{0} \frac{tx(s)}{1 + x^{2}(s)} ds$
2.4	C[-1;2]	$L_1[-1;2]$	$(Fx)(t) = \frac{e^{x(t)}}{1 + e^{x(t)}}$
2.5	l_1	l_1	$Fx = (\cos x (1), x (2), x (3),, x(k),)$
2.6	C[-5;2]	L ₁ [-5;2]	$Fx(t) = \int_0^1 t \left x(s) \right ^{2/3} ds$

Компактные множества в метрических пространствах

Примеры решения задач

Задача 1 Выяснить, являются ли данные множества предкомпактными, компактными в C[0;1].

Пример 1 а)
$$M = \{ ae^{-\alpha t + b} \mid a,b,\alpha \in [0;1] \};$$
 б) $M_1 = \{ ae^{-\alpha t + b} \mid a,b \in [0;1], \alpha \in (0;1) \}.$

Решение. Проверим для множества M условия теоремы Арцела-Асколи. Рассмотрим функцию $f(t,a,b,\alpha) = ae^{-\alpha t + b}$. Пусть $K = [0;1]^3$. Тогда f непрерывна на $[0;1] \times K$ и $M = f(\cdot,s) \mid s \in K$. Множество $[0;1] \times K$ является компактом. По теореме Вейерштрасса f ограничена на $[0;1] \times K$, т.е. $\exists c \ \forall t \in [0;1] \ \forall (a,b,\alpha) \in [0;1]^3$ справедливо неравенство $\left|ae^{-\alpha t + b}\right| \leq c$. Значит, M равномерно ограничено (впрочем, легко проверить и непосредственно, что при наших условиях $\left|ae^{-\alpha t + b}\right| \leq 1$).

Проверим равностепенную непрерывность множества M. По теореме Кантора f равномерно непрерывна на $[0;1] \times K$. Если обозначить через $s = (a,b,\alpha)$ произвольную точку из K, то равномерная непрерывность f означает, что $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t_1,t_2$ из [0;1], таких, что $|t_1 - t_2| < \delta$, и $\forall s_1,s_2$ из K, таких, что $\rho(s_1,s_2) < \delta$ (ρ обозначает евклидову метрику в K), справедливо неравенство

$$\left| f \right| t_1, s_1 - f \left| t_2, s_2 \right| < \varepsilon.$$

Отсюда следует равностепенная непрерывность множества M (см. определение). Значит, по теореме Арцела-Асколи M предкомпактно.

Для доказательства компактности множества M теперь достаточно проверить его замкнутость в C[0;1]. Но это тоже следует из непрерывности функции f. В самом деле, если x предельная точка множества M, то найдется последовательность $f(\cdot,s_n)$ функций из M, сходящаяся к x в C[0;1]. По свойству Больцано-Вейерштрасса из последовательности s_n точек множества K можно выбрать подпоследовательность s_{n_l} , сходящуюся к точке $s \in K$. Тогда поточечно $f(t,s_{n_l}) \to f(t,s)$, а потому в силу единственности предела $x = f(\cdot,s) \in M$. Итак, M – компакт.

Далее, так как $M_1 \subset M$, то множество M_1 предкомпактно. Но M_1 не является компактом, так как не замкнуто в C[0;1]. Действительно, функции $x_n(t) = e^{-t/n} \in M_1$, но предел этой последовательности $x_0(t) = 1 \notin M_1$.

Пример 2
$$M = \{t^n \mid n \in \mathbb{N}\}.$$

Решение. Это множество является равномерно ограниченным, но не является равностепенно непрерывным. Действительно, возьмем $\varepsilon = 1/4$. Тогда $\forall \delta > 0$ найдется такое натуральное n, что точки $t_1 = 1$ и $t_2 = 1/\sqrt[n]{2} \in [0;1]$ удовлетворяют неравенству $|t_1 - t_2| = |1 - 1/\sqrt[n]{2}| < \delta$, но в то же время $|t_1^n - t_2^n| = |1 - 1/2| > \varepsilon$. Значит, по теореме Арцела-Асколи M не является предкомпактным, а потому и компактным множеством.

Пример 3 $M = \{ \sin t + a \mid a \in \mathbf{R} \}.$

Pешение. Множество M равномерно ограничено, так как

$$\forall t \ \forall a | \sin t + a | \leq 1.$$

Множество M равностепенно непрерывно, так как $\forall \varepsilon > 0 \ \forall a \in \mathbf{R}$ и $\forall t_1, t_2 \in [0;1]$, таких, что $|t_1 - t_2| < \varepsilon$, имеем

$$|\sin t_1 + a - \sin t_2 + a| = \left| 2\sin\frac{t_1 - t_2}{2}\cos\frac{t_1 + t_2 + 2n}{2} \right| \le |t_1 - t_2| < \varepsilon.$$

Значит, по теореме Арцела-Асколи M предкомпактно.

Покажем, что M содержит все свои предельные точки. Пусть x есть предельная точка множества M, $\sin(t+a_k)\to x(t)$ равномерно на [0;1]. В силу периодичности синуса можно считать, что $a_k\in[0;2\pi)$. При этом промежуток $[0;2\pi)$ удобно отождествлять с факторгруппой $\mathbf{R}/2\pi$ \mathbf{Z} , т. е. с единичной окружностью, наделенной естественной топологией, в которой она компактна. (Отличие здесь в том, что если последовательность $a_k\in[0;2\pi)$ в \mathbf{R} сходится к 2π , то в этой топологии предел считается равным 0). Заметим, что в этой топологии существует $\lim_{k\to\infty}a_k=a\in[0;2\pi)$. Действительно, если допустить противное, то найдутся две подпоследовательности a_k' и a_k'' , имеющие различные пределы a' и $a''\in[0;2\pi)$ соответственно. Но тогда $x(t)=\sin(t+a')=\sin(t+a'')$, откуда a'=a'', противоречие. Следовательно, $x(t)=\sin(t+a)\in M$. Значит, M — замкнутое множество, откуда следует, что M — компакт.

Задача 2 Является ли множество M предкомпактным в l_1 ?

Пример 1
$$M = \{x \in l_1 \mid |x_{2k}| < \frac{1}{2^k}, |x_{2k+1}| < \frac{1}{3^{2k}}, |x_1| = 1\}.$$

Pешение. Проверим критерий предкомпактности в l_1

1). Множество M является ограниченным, поскольку $\forall n \ge 2 |x_n| < \frac{1}{2^{n/2}}$, а потому

$$\forall x \in M \ \sum_{n=1}^{\infty} |x_n| < 1 + \sum_{n=2}^{\infty} \frac{1}{2^{n/2}} = 2 - \frac{\sqrt{2}}{2}.$$

2) Так как ряд $\sum_{n=2}^{\infty} \frac{1}{(\sqrt{2})^n}$ сходится, то его остаток стремится к нулю, т.е.

$$\forall \varepsilon > 0 \exists N : \sum_{n=N+1}^{\infty} \frac{1}{(\sqrt{2})^n} < \varepsilon.$$

Поэтому
$$\forall \varepsilon > 0 \exists N: \forall x \in M \sum_{n=N+1}^{\infty} |x_n| < \sum_{n=N+1}^{\infty} \frac{1}{(\sqrt{2})^n} < \varepsilon$$
.

Значит, множество M предкомпактно.

Задания лабораторной работы

Задача 1 Выяснить, является ли множество M предкомпактным, компактным в C[0;1].

№	M	№	M
1.1	$\{at^{\alpha} 1 \le \alpha \le 10, a \le 10\}$	1.4	$\{ a \sin t + b \} 0 \le a, b \le 1 \}$
1.2	$\{at^{\alpha} \mid 0 \le \alpha \le 1, \ 0 < a < 1\}$	1.5	$\left\{\frac{t+a}{t+b} \mid 1 \le a, b \le 2\right\}$
1.3	$\{\cos at \mid -1 \le a \le 1\}$	1.6	{ $arctg at+b a \le 1, b > 1$ }

Задача 2 Является ли множество M предкомпактным в $l_{\rm p}$?

No॒	p	M
2.1	2	$\{x \mid x_k\mid <\frac{1}{k},k\in\mathbf{N}\}$
2.2	1	$\{x \mid \frac{1}{k^2} < x_k < \frac{2}{k^2}, k \in \mathbb{N} \}$
2.3	2	$\{x \mid x_k \le \frac{1}{2^k}, k \in \mathbf{N} \}$
2.4	2	$\{x \mid \frac{1}{2^k} \le x_k \le \frac{1}{2^{k+1}}, k \in \mathbb{N} \}$
2.5	1	$\{x \mid x_{2k} = 0, 0 < x_{2k+1} \le \frac{1}{2^k}, k \in \mathbb{N} \}$
2.6	1	$\{x \mid x_k < \frac{1}{k^a}, \frac{3}{2} \le \alpha \le \frac{5}{2}\}$

Сжимающие отображения

Примеры решения задач

Задача 1 Является ли отображение F метрического пространства X в себя сжимающим? Найти x_3 , где $x_{\kappa+1} = F(x_\kappa)$, $x_0 = 0$. Оценить расстояние от x_3 до неподвижной точки, если F является сжимающим.

Пример 1 $X = C[-1;1], (Fx)(t) = \frac{1}{3}\sin x(t) + e^{t}$.

Решение. Оценим расстояние в C[-1;1]

$$\rho(Fx, Fy) = \max_{-1 \le t \le 1} \left| \frac{1}{3} \sin x(t) - \frac{1}{3} \sin y(t) \right| = \max_{-1 \le t \le 1} \frac{1}{3} \left| \sin x(t) - \sin y(t) \right| =$$

$$= \max_{-1 \le t \le 1} \frac{1}{3} \left| 2 \sin \frac{x(t) - y(t)}{2} \cdot \cos \frac{x(t) + y(t)}{2} \right| \le \frac{1}{3} \max_{-1 \le t \le 1} \left| x(t) - y(t) \right| = \frac{1}{3} \rho(x, y)$$

(мы воспользовались неравенством $|\sin x| \le |x|$). Значит, F является сжимающим отображением с константой Липшица $\alpha = \frac{1}{3}$. Построим последовательность $x_{k+1} = F(x_k)$. По условию $x_0 = 0$, поэтому

Построим последовательность $x_{k+1} = F(x_k)$. По условию $x_0 = 0$, поэтому $x_1 = F(x_0) = e^t$,

$$(x_0) = c$$
,
$$x_2 = F(x_1) = \frac{1}{3}\sin e^t + e^t, x_3 = F(x_2) = \frac{1}{3}\sin(\frac{1}{3}\sin e^t + e^t) + e^t$$
. А так как
$$\rho(x_n; x^*) \le \frac{\alpha^n}{1 - \alpha} \rho(x_1; x_0),$$

где x^* - неподвижная точка, то

$$\rho(x_3; x^*) \le \frac{(1/3)^3}{1 - 1/3} \cdot \max_{-1 \le t \le 1} \left| e^t \right| = \frac{e \cdot 1/27}{2/3} = \frac{e}{18} < \frac{2,72}{18} \approx 0,1511.$$

Пример 2
$$X = l_4$$
, $f(x) = (1, \frac{x_3}{5}, \frac{x_4}{6}, \frac{x_5}{7}, ...)$

Решение. Оценим расстояние в l_4

$$\rho(f(x), f(y)) = \left(\sum_{k=3}^{\infty} \left| \frac{x_k}{k+2} - \frac{y_k}{k+2} \right|^4 \right)^{\frac{1}{4}} \le \frac{1}{5} \rho(x; y).$$

Значит, f – сжимающее отображение с константой $\alpha = \frac{1}{5}$.

По условию, $x_0=(0,0,0,\ldots)$. Тогда $x_1=(1,0,0,\ldots)$, $x_2=x_3=(1,0,0,\ldots)$, а потому

$$\rho(x_3; x^*) \le \frac{(1/5)^3}{1 - 1/5} \cdot \rho(x_1; x_0) = 0.01$$

(на самом деле, как легко проверить, x_3 является неподвижной точкой).

Пример 3
$$X = L_4[-1;1], (Fx)(t) = \sqrt[3]{t} \cdot x(t) + \ln(t+2)$$
.

Pешение. Допустим, что отображение F является сжимающим, т.е.

$$\exists \alpha \in [0;1) : \forall x, y \in X \rho(Fx, Fy) \leq \alpha \rho(x, y)$$
.

При y=0 из этого неравенства следует, что $\forall x \in X$

$$\int_{-1}^{1} t^{\frac{4}{3}} \cdot |x(t)|^{4} dt \le \alpha^{4} \int_{-1}^{1} |x(t)|^{4} dt . \tag{1}$$

Подставив $x(t) = \sqrt[4]{n} \cdot \chi_{[1-\frac{1}{n};1]}(t)$ в левую часть неравенства (1), получим

$$\int_{1-\frac{1}{n}}^{1} t^{\frac{4}{3}} \cdot n dt = \frac{3nt^{\frac{7}{3}}}{7} \bigg|_{1-\frac{1}{n}}^{1} = \frac{3n}{7} (1 - (1 - \frac{1}{n})^{\frac{7}{3}}) \sim \frac{3n}{7} \cdot \frac{7}{3n} = 1 \text{ при } n \to \infty$$

(мы воспользовались эквивалентностью $(1+x)^{\alpha}-1\sim\alpha x$ при $x\to 0$).

Правая же часть неравенства (1), как легко проверить, при этом значении x равна α^4 . Следовательно, неравенство (1) при указанных x,y и $n\to\infty$ примет вид: $1\le\alpha^4$, противоречие. Значит, F не является сжимающим. (Аналогичное решение получается и при $x=\chi_{[1-\frac{1}{-1}:1]}$).

Задача 2 Применим ли принцип сжимающих отображений к заданному интегральному уравнению в пространстве X при $\lambda_1 = \frac{1}{6}$, $\lambda_2 = -\frac{1}{3}$, $\lambda_3 = 2$? При $\lambda = \lambda_1$ с точно-

стью до

0,01 найти приближенное решение и сравнить его с точным решением.

$$X = C[0;1], x(t) = \lambda \int_{0}^{1} ts \cdot x(s) ds + 1$$
 (1)

Решение. Определим отображение $f: C[0;1] \to C[0;1]$ по формуле

$$(f(x))(t) = \lambda \int_{0}^{1} ts \cdot x(s) ds + 1$$
 (2)

Тогда исходное уравнение запишется в виде x = f(x), и искомое решение есть неподвижная точка отображения f. Метрическое пространство C[0;1] является полным, поэтому если мы покажем, что f — сжимающее отображение C[0;1] в себя, то можно будет применить принцип сжимающих отображений. То, что отображение f непрерывную на [0;1] функцию переводит в непрерывную, в данном случае очевидно (а в общем следует из свойств интеграла, зависящего от параметра). Определим, при каких λ отображение f является сжимающим. Известно, что отображение

$$(Ax)(t) = \lambda \int_{a}^{b} K(s,t)x(s)ds + g(t)$$
(3)

является сжимающим в C[a;b], если $\left|\lambda\right| < \frac{1}{M \ b-a}$, где $M = \max_{s,t \in [0,1]} \left|K(s,t)\right|$. При этом константа Липшица $\alpha = M \cdot \left|\lambda\right| \cdot (b-a)$. (Заметим, что это утверждение дает лишь доста-

точное условие сжимаемости). В данном случае K(s,t) = ts, $M = \max_{s,t \in [0;1]} |ts| = 1$. Следовательно, f является сжимающим при $|\lambda| < 1$, т.е., в частности, при $\lambda = \lambda_1$ и $\lambda = \lambda_2$.

Докажем, что f не является сжимающим при $\lambda_3 = 2$. Если допустить, что f – сжимающее, то для $\forall x,y \in X$ и некоторого $\alpha \in [0;1)$ должно выполняться неравенство

$$\max_{a \le t \le 1} \left| 2 \int_0^1 ts(x(s) - y(s)) ds \right| \le \alpha \max_{a \le t \le 1} \left| x(t) - y(t) \right|.$$

При y(t) = 0, $x(t) = \begin{cases} nt, t \in [0;1/n] \\ 1, t \in [1/n;1] \end{cases}$ последнее неравенство примет вид $2 \left| \int_{0}^{1} sx(s)ds \right| \le \alpha$. А

так как
$$2\left|\int_{0}^{1} sx(s)ds\right| = 2\left|2\int_{0}^{1/n} ns^{2}ds + 2\int_{1/n}^{1} sds\right| = 1 - \frac{1}{6n^{2}}$$
,

То получаем, что $\forall n \in N \ 1 - \frac{1}{6n^2} \le \alpha$, откуда в пределе $1 \le \alpha$. Это противоречие доказывает, что f не является сжимающим при $\lambda_3 = 2$.

Решим уравнение (1) при $\lambda = 1/6$. При этом λ отображение f - сжимающее, а потому для нахождения приближённого решения можно воспользоваться методом итераций (последовательных приближений). Из уравнения (1) следует, что его решение имеет вид

$$x(t) = \lambda \cdot c \cdot t + 1, \text{ где } c = \int_{0}^{1} sx(s)ds. \tag{4}$$

Поскольку x_0 выбирается произвольно, возьмём $x_0(t) = t+1$. Дальнейшие приближения находятся по формулам $x_1 = f(x_0)$, $x_2 = f(x_1), \dots, x_{n+1} = f(x_n), \dots$.

Установим номер k, при котором элемент x_k будет давать точность приближения 0,01. Используем оценку погрешности (x - точное решение)

$$\rho(x_n, x) \leq \frac{\alpha^n}{1 - \alpha} \cdot \rho(x_0, x_1) \leq 0.01.$$

В нашем случае $\alpha = 1 \cdot \frac{1}{6} \cdot (1 - 0) = \frac{1}{6}$. Тогда

$$x_1(t) = f(x_0)(t) = \frac{1}{6}t \int_0^1 s(s+1)ds + 1 = \frac{5}{36}t + 1.$$

$$\rho(x_0; x_1) \le \max_{0 \le t \le 1} \left| t + 1 - \frac{5}{36}t - 1 \right| = \frac{31}{36}.$$

Следовательно,

$$\rho(x_n, x) \le \left(\frac{1}{6}\right)^n \cdot \frac{6}{5} \cdot \frac{31}{36} \le \frac{1}{100},$$

А потому искомое k определяется из неравенства: $\left(\frac{1}{6}\right)^k \leq \frac{3}{310}$. Поскольку k=3 ему удовлетворяет, x_3 будет приближенным решением исходного уравнения с точностью 0,01. Найдём x_3 :

$$x_2(t) = f(x_1)(t) = \frac{1}{6}t \int_0^1 s\left(\frac{5}{36}s + 1\right) ds + 1 = \frac{59}{648}t + 1,$$

$$x_3(t) = f(x_2)(t) = \frac{t}{6} \int_0^1 s \left(\frac{59}{648} s + 1 \right) ds + 1 = \frac{1031}{11664} t + 1.$$

Итак, приближённое решение с нужной точностью есть $x_3(t) = \frac{1031}{11664}t + 1$.

Точное решение имеет вид $x(t) = \frac{c}{6}t + 1$ (см. формулу (4)). Подставив x(t) в (1), получим:

$$\frac{c}{6}t+1=\frac{t}{6}\int_{0}^{1}s\left(\frac{c}{6}s+1\right)ds+1$$
. Отсюда $c=\int_{0}^{1}\left(\frac{c}{6}s^{2}+s\right)ds$, $c=\frac{c}{18}+\frac{1}{2}$, $c=\frac{9}{17}$. Следовательно, точное решение есть

$$x(t) = \frac{9}{102}t + 1.$$

Сравним его с приближённым:

$$\rho(x_3; x) = \max_{0 \le t \le 1} \left| \frac{9}{102} t + 1 - \frac{1031}{11664} t - 1 \right| = \frac{182}{102 \cdot 11664} < \frac{1}{100}.$$

Замечание. Первую часть решения можно сократить, если воспользоваться тем фактом, что норма линейного оператора

$$(A_1 x)(t) = \int_a^b k(s,t) x(s) ds$$

в пространстве С[0;1] дается формулой

$$||A_1|| = \max_{t \in [a;b]} \int_a^b |k(t,s)| ds.$$

Поскольку норма есть *точная* константа в неравенстве ограниченности, отображение A_1 является сжимающим тогда и только тогда, когда $||A_1|| < 1$. То же верно и для отображения $f(x) = A_1 x + g$ (почему?).

Задания лабораторной работы

Задача 1 Является ли отображение F метрического пространства X в себя сжимающим? Найти x_3 , где $x_{\kappa+1} = F(x_\kappa)$, $x_0 = 0$. Оценить расстояние от x_3 до неподвижной точки, если F является сжимающим.

No	X	F		
1.1	l _{8/3}	$F(x) = \left(0, \frac{x_1}{2} + \frac{1}{2}, \frac{x_2}{4} + \frac{1}{3}, \dots, \frac{x_k}{2^k} + \frac{1}{k+1}, \dots\right)$		
1.2	l_{∞}	$F(x) = (\frac{x_2}{2} + \frac{1}{2}, \frac{x_3}{3} + \frac{1}{4}, \dots, \frac{x_k}{k} + \frac{1}{2^{k-1}}, \dots)$		
1.3	C[-1;1]	$(Fx)(t) = tx(t) + \exp(\sin \pi t)$		
1.4	l_{21}	$F(x) = \left(\sin(\frac{\pi}{6})x_1 + 1, \dots, (\sin(\frac{\pi}{6}))^k x(k) + \frac{1}{k}, \dots\right)$		

1.5	C[-1;1]	$(Fx)(t) = \frac{1}{2}x(t^2) + t$
1.6	$L_2[0;1]$	$(Fx)(t) = \frac{1}{8}x(\sqrt{t}) + 1$

Задача 2 Применим ли принцип сжимающих отображений к заданному интегральному уравнению в пространстве X при $\lambda = \lambda_1, \lambda = \lambda_2, \lambda = \lambda_3$? При $\lambda = \lambda_1$ с точностью до 0,01 найти приближённое решение и сравнить его с точным решением.

$N_{\underline{0}}$	X	$\lambda_{_{1}}$	λ_2	λ_3	Уравнение
2.1	C[0;1]	$\frac{1}{2}$	$-\frac{1}{5}$	$\sqrt{\frac{3}{2}}$	$x(t) = \lambda \int_{0}^{1} t^{-\frac{1}{4}} sx(s) ds + t^{2}$
2.2	C[-1;1]	$\frac{1}{3}$	$-\frac{1}{2}$	$\frac{3}{2}$	$x(t) = \lambda \int_{-1}^{1} (t^2 - 1)s^2 x(s) ds + t$
2.3	C[-2;2]	$\frac{1}{36}$	$-\frac{1}{25}$	$\frac{2}{15}$	$x(t) = \lambda \int_{-2}^{2} (1+s)(1-t)x(s)ds + t$
2.4	C[-1;1]	$\frac{1}{10}$	$-\frac{1}{8}$	1	$x(t) = \lambda \int_{-1}^{1} tsx(s)ds + 2$
2.5	C[0;1]	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{2}{3}$	$x(t) = \lambda \int_{0}^{1} t(1+s)x(s)ds - 5$
2.6	C[-1;1]	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{5}{2}$	$x(t) = \lambda \int_{-1}^{1} t^2 s^2 x(s) ds + t^3$

Линейные нормированные пространства

Примеры решения задач

Задача 1 Является ли множество A выпуклым в пространстве X?

Пример 1
$$X = c_0, A = x \in c_0 ||x_1| + |x_2| \le 1$$
.

Решение. Воспользуемся определением выпуклости. Возьмем $\forall x,y \in A, \forall \lambda \in 0;1$ и покажем, что $\lambda x + (1-\lambda)y \in A$. Действительно, так как $|x_1| + |x_2| \le 1$ и $|y_1| + |y_2| \le 1$, то

$$\begin{aligned} \left| \lambda x_1 + (1 - \lambda) y_1 \right| + \left| \lambda x_2 + (1 - \lambda) y_2 \right| &\leq \lambda \left| x_1 \right| + (1 - \lambda) \left| y_1 \right| + \lambda \left| x_2 \right| + (1 - \lambda) \left| y_2 \right| = \\ &= \lambda (\left| x_1 \right| + \left| x_2 \right|) + (1 - \lambda) (\left| y_1 \right| + \left| y_2 \right|) \leq \lambda + 1 - \lambda = 1. \end{aligned}$$

Значит, множество A является выпуклым.

Задача 2 Проверить, является ли заданная система векторов (x_k) в бесконечномерном пространстве X линейно независимой.

Пример 1
$$X = C[a;b], x_k(t) = (t-a)^k, k = 0,1,2,...n.$$

Решение. Покажем по определению, что система $1, t-a, (t-a)^2, ..., (t-a)^n$ является линейно независимой. Пусть

$$\alpha_0 \cdot 1 + \alpha_1 (t - a) + \alpha_2 (t - a)^2 + \dots + \alpha_n (t - a)^n = 0 \ \forall t \in a; b \ . \tag{1}$$

Подставив в это равенство t=a, получим $\alpha_0=0$, а потому

$$\alpha_1(t - a) + \alpha_2(t - a)^2 + ... + \alpha_n(t - a)^n = 0.$$

Сокращая на t-a и снова полагая t=a, получим $\alpha_1=0$. Продолжая этот процесс, окончательно будем иметь $\alpha_0=\alpha_1=...=\alpha_n=0$.

Второе решение: алгебраическое уравнение (1) не может иметь более n корней, если не все его коэффициенты равны нулю (почему?).

Пример 2
$$X = C[0;1], x_1(t) = \left|t - \frac{1}{2}\right| - \left|t - \frac{1}{3}\right|, x_2 t = \left|t - \frac{1}{2}\right| + \left|t - \frac{1}{3}\right|, x_3 t = \left|2t - 1\right| - \left|3t - 1\right|.$$

Решение. Заметим, что $x_1 + x_2 = |2t - 1|$, $3x_2 - x_1 = 2|3t - 1|$.

Тогда $x_3 = x_1 + x_2 - \frac{1}{2} \cdot 3$ $x_2 - x_1 = \frac{5}{2}x_1 - \frac{1}{2}x_2$, а значит, данные функции линейно зависимы.

Задача 3 Привести пример последовательности $x_n \subset X \cap Y$, сходящейся в X, но не сходящейся в Y, если пространства X и Y наделены естественными нормами.

Пример 1
$$X = c_0, Y = l_1$$
.

Решение. Рассмотрим последовательность $x_n=1,1/2,...,1/n,0,0,...\subset X\cap Y$. В пространстве c_0 она сходится к вектору $x_0=1,1/2,...,1/n,1/(n+1),...$, так как

$$\rho_X \ x_n, x_0 := \max_k |x_n(k) - x_0(k)| = 1/(n+1) \to 0$$

при $n \to \infty$. Допустим, что $\exists a \in l_1 : \rho_v \ x_n, a \to 0, n \to \infty$. Так как

$$\rho_X \ x_n, a = \max_k |x_n(k) - a(k)| \le \sum_{k=1}^{\infty} |x_n(k) - a(k)| = \rho_Y \ x_n, a$$

то x_n сходится к a и в пространстве $X=c_0$. В силу единственности предела отсюда следует, что a=1,1/2,...,1/n,.... Но $a\not\in l_1$. Это противоречие доказывает, что в l_1 данная последовательность не сходится.

Пример 2 $X = L_1[0;1], Y = L_2[0;1].$

 $Peшение. \quad \text{Рассмотрим} \quad \text{последовательность} \quad x_n \ t \ = \begin{cases} n, 0 \leq t \leq 1/n^2 \\ 0, 1/n^2 < t \leq 1 \end{cases}, \quad \text{которая}$ $\subset X \cap Y$.

Тогда в
$$L_{\rm I}[0;1]$$
 имеем $\rho_{L_{\rm I}}$ $x_n,0=\int\limits_0^{1/n^2}ndt=1/n\to 0$ при $n\to\infty$, т. е. $x_n\to 0$ в $L_{\rm I}[0;1]$.

Допустим, что x_n сходится в $L_2[0;1]$ к некоторому a . В силу неравенства Коши-Буняковского

$$\rho_{L_1} x_n, a = \int_{0}^{1} |x_n| t - a t | dt \le \left(\int_{0}^{1} |x_n| t - a t \right)^{1/2} = \rho_{L_2} x_n, a.$$

Отсюда следует, что если $x_n \to a$ в $L_2[0;1]$, то $x_n \to a$ и в $L_1[0;1]$. В силу единственности предела, a=0. С другой стороны, легко проверить, что ρ_{L_2} x_n , 0=1, противоречие. Следовательно, в $L_2[0;1]$ данная последовательность не сходится.

Пример 3
$$X = C[0;1], Y = C^{(2)}[0;1].$$

Решение. Рассмотрим последовательность x_n $t = \frac{t^n}{n} \in X \cap Y$. В C[0;1] имеем $x_n \to 0$, но в $C^2[0;1]$ ρ_Y $x_n, 0 = \frac{1}{n} + 1 + n - 1 \to 0$ $(n \to \infty)$. Значит, $x_n \to 0$ в $C^{(2)}[0;1]$. Воспользовавшись неравенством: $\rho_{C[a;b]}$ $x_n, a \le \rho_{C^2[a;b]}$ x_n, a и рассуждая, как в предыдущих примерах, получим, что x_n не сходится в $C^{(2)}[0;1]$.

Задача 4 Выяснить, являются ли нормы p и q эквивалентными в данном пространстве X.

Пример 1
$$X = l_1, p \ x = \sup_{n \in \mathbb{D}} |x_n|, q \ x = \sum_{n=1}^{\infty} |x_n|.$$

Решение. Очевидно, $\forall x \in l_1 \ p \ x \leq q \ x$. Допустим теперь, что

$$\exists a > 0 : \forall x \in l_1 q \ x \le a \cdot p \ x \text{, r.e. } \sum_{n=1}^{\infty} |x_n| \le a \sup_n |x_n|, \forall x \in l_1.$$

При $x = \underbrace{\left(\underbrace{1,1,...,1}_{n\,pas},0,0,...\right)}_{l_1} \in l_1$ последнее неравенство примет вид: $n \leq a \cdot \forall n \in N$. Полученное противоречие доказывает, что p и q не эквивалентны.

Пример 2 $X = C[0;1], p x = \max_{0 \le t \le 1} |x| t |, q| x = \int_{0}^{1} |x| t | dt.$

Пример 3
$$X = R^n$$
, $p(x) = \sum_{k=1}^n |x_k|$, $q(x) = \left(\sum_{k=1}^n x_k^2\right)^{1/2}$.

Решение. Так как $\forall k=1,...,n, \; |x_k| \leq \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}, \; \text{ то } \sum_{k=1}^n |x_k| \leq n \cdot \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}, \; \text{ т.е.}$ $p \; x \leq n \cdot q \; x$. С другой стороны, так как $|x_1|^2 + |x_2|^2 + ... + |x_n|^2 \leq |x_1| + |x_2| + ... + |x_n|^2$, то $\left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}} \leq \sum_{k=1}^n |x_k|, \; \text{т.е.} \; q \; x \leq p \; x \; \forall x \in \mathbb{R}^n$. Итак, мы доказали, что p и q — эквивалентные нормы.

Пример 4
$$X = L_2[0;1], p x = \int_{0;1} |x t| dt, q x = \left(\int_{0;1} |x t|^2 dt\right)^{1/2}$$
.

Pешение. В силу неравенства Коши-Буняковского $\forall x \in X \ p \ x \le q \ x$. Допустим, что $\exists a>0$: $\forall x \in X \ q \ x \le a \cdot p \ x$.

Возьмем x $t=egin{cases} n,t\in 0;1/n\\0,t\in 1/n;1 \end{cases}$. Тогда q $x=\sqrt{n},p$ x =1, и последнее неравенство примет вид: $\forall n$ $\sqrt{n}\leq a$, что невозможно ни при каком a. Значит, нормы p и q не эквивалентны.

Задача 5 Построить изоморфизм между факторпространством L/M и одним из стандартных линейных пространств.

Пример 1
$$L = c$$
, $M = x \in c \mid x_1 = x_2 = 0$.

Решение. Возьмем произвольный элемент $x \in c$. Его класс эквивалентности есть $[x] = y \in c \mid x - y \in M = y \in c \mid x_1 - y_1 = x_2 - y_2 = 0 = y \in c \mid x_1 = y_1, x_2 = y_2$

Это равенство показывает, что отображение $f:L/M\to R^2$, $f[x]=x_{1;}x_2$ инъективно. Очевидно также, что оно линейно и является сюръекцией (проверьте). Значит, f – изоморфизм линейных пространств.

Задания лабораторной работы

Задача 1 Проверить, является ли функция p нормой в пространстве X. Образует ли пара X, ρ , где ρ x, y = p x - y, метрическое пространство?

No	X	p(x)
1.1	$C^{(n)}[0;1]$	$\sum_{k=0}^{n} \max_{0 \le t \le 1} \left x^{k} t \right $
1.2	$l_{\scriptscriptstyle \infty}$	$\sup x(n) n \in N$
1.3	B R	$\sup x \ t t \in R$
1.4	C[0;1]	$\int_0^1 x \ t \ dt$
1.5	l_1	$\sum_{n=1}^{\infty} n^{-1} \left x(n) \right $
1.6	$C^{(1)}[a;b]$	$\begin{vmatrix} x & a \end{vmatrix} + \max \begin{vmatrix} x & t \end{vmatrix} t \in a; b$

Задача 2 Является ли множество A выпуклым в пространстве X?

№	X	A
2.1	<i>C</i> [0;1]	неубывающие функции
2.2	l_2	$x \in l_2 \mid \left x(n) \mid < 2^{-n}, n \in N \right $
2.3	C[a;b]	многочлены степени п
2.4	l_1	$\left\{ x \in l_1 \mid \left x(n) \right \le \frac{1}{n^2}, n \in N \right\}$
2.5	$C^{(1)}[0;1]$	многочлены степени ≤k
2.6	$C^{(1)}[a;b]$	$x \in C^{(1)}[a;b] x(t) + x'(t) \le 1, t \in [a;b]$

Задача 3 Проверить, является ли данная последовательность векторов x_k в бесконечномерном пространстве X линейно независимой.

$N_{\underline{0}}$	X	x_k
3.1	l_3	$x_k = \left(\frac{1}{k+1}, \dots, \frac{1}{k+1}, \dots\right), k = 1, \dots, p$
3.2	l_{∞}	$x_k = \left(\frac{1}{k+1}, \dots, \frac{1}{k+1}, \dots\right), k = 1, \dots, p$
3.3	C[a;b]	$x_k \ t = t^k, k = 0, 1,, p$

3.4	C[a;b]	$x_k \ t = e^{itk}, k = 0, 1,, p$	
3.5	$L_2[a;b]$	$x_k \ t = 1 + D \ t \ t^k, k = 0, 1,, p, D -$ функция Дирихле	
3.6	C[0;1]	функция дирихле	$x_3 t = 4t - 1 +$

Задача 4 Привести пример последовательности $x_n \subset X \cap Y$, которая сходится в X, но не сходится в Y, если пространства X и Y наделены естественными нормами.

$N_{\underline{0}}$	4.1	4.2	4.3	4.4	4.5	4.6
X	l_{∞}	$l_{\scriptscriptstyle \infty}$	c_0	C[0;1]	$L_{1}[0;1]$	l_2
Y	l_1	l_2	l_4	$C^{(1)}[0;1]$	C[0;1]	l_1

Задача 5 Являются ли нормы p и q эквивалентными в пространстве E?

No	E	p	q
5.1	l_2	$\sup_{n\in\square} x_n $	$\sum_{k=1}^{n} \left x_k \right \left(\sum_{n=1}^{\infty} \left x_n \right ^2 \right)^{\frac{1}{2}}$
5.2	C[0;1]	$\max_{t \in 0;1} \left x \ t \right $	$\left(\int_{0}^{1} x \ t ^{2}\right)^{1/2}$
5.3	C ⁽¹⁾ [0;1]	$\max_{t \in 0;1} \left x \ t \right + \max_{t \in 0;1} \left x \ t \right $	$\int_{0}^{1} x t dt$
5.4	c	$\sup_{n\in\square} \left x_n\right $	$\sup_{n\in\square}\frac{n\left x_{n}\right }{n+1}$
5.5		$\sup_{1 \le k \le n} x_k $	$\sum_{k=1}^{n} \left \mathcal{X}_{k} \right $
5.6	C ⁽¹⁾ [0;1]	$\max_{t \in [0,1]} \left x \mid t \right $	$\begin{vmatrix} x & 0 \end{vmatrix} + \max_{t \in [0;1]} \begin{vmatrix} x^t & t \end{vmatrix}$

Задача 6 Построить изоморфизм между факторпространством L/M и одним из стандартных линейных пространств.

№	L	M
6.1	C[-1;1]	$x \in C[-1;1] x(t) = 0, t \in [0;1]$
6.2	C[0;1]	$x \in C[0;1] x(0) = 0$
6.3	$C^{\infty}[0;1]$	$x \in C^{\infty}[0;1] x(0) = x'(0) = 0$

6.4	l_1	$x \in l_1 \mid x_1 + x_2 = 0$
6.5	$C^{(1)}[a;b]$	$x \in C^{(1)}[a;b] x(a) = x(b)$
6.6	l_{∞}	$x \in l_{\infty} \mid x_1 = x_3 = 0$

Лабораторная работа 8

Линейные ограниченные операторы в банаховых пространствах

Примеры решения задач

Задача 1 Пусть X,Y — нормированные пространства. Выяснить, совпадает ли область определения $D(A) = x \in X | Ax \in Y |$ оператора A с нормированным пространством X. Является ли оператор A линейным, непрерывным оператором из D(A) в Y?

Пример 1 $X = L_2[0;1], Y = L_1[0;1], (Ax)(t) = |x(t)|$.

Peшение. Если $x\in L_2[0;1]$, то $\|x\|_2^2:=\int\limits_0^1\!\left|x(t)\right|^2dt<+\infty$. В силу неравенства Коши-Буняковского

$$\left(\int_{0}^{1} |x(t)| dt\right)^{2} \leq \int_{0}^{1} |x(t)|^{2} dt \cdot \int_{0}^{1} dt = ||x||_{2}^{2} < +\infty.$$
 (1)

Отсюда следует, что $Ax \in L_1[0;1]$. Поэтому D(A)=X.

Оператор A не является линейным (рассмотрите, например, $A(\lambda x)$). Исследуем его на непрерывность. Для любой точки $a \in X$ оценим расстояние

$$||Ax - Aa||_{1} = ||x| - |a||_{1} = \int_{0}^{1} ||x(t)| - |a(t)|| dt \le \int_{0}^{1} |x(t) - a(t)|| dt \le ||x - a||_{1}$$

(мы воспользовались числовым неравенством $\|x|-|a\| \le |x-a|$, а затем неравенством (1)). Поэтому $\forall \varepsilon > 0$ получаем при $\delta = \varepsilon$, что $\forall x \in X \ \|x-a\|_2 < \delta \Rightarrow \|Ax-Aa\|_1 < \varepsilon$. Значит, оператор A непрерывен на X.

Пример 2
$$X = l_2, Y = l_1, Ax = (x(1), \frac{x(2)}{\sqrt{2}}, \frac{x(3)}{\sqrt{3}}, ..., \frac{x(k)}{\sqrt{k}}, ...).$$

$$P$$
ешение. В этом примере $D(a) \neq X$, так как $x = \left(\frac{1}{\sqrt{n} \ln n}\right) \in l_2$, но $Ax = \left(\frac{1}{n \ln n}\right) \notin l_1$ (в

обоих случаях сходимость ряда исследуется с помощью интегрального признака; проделайте это). Очевидно, A является линейным оператором, поэтому исследование непрерывности равносильно исследованию ограниченности. Докажем, что A не является ограниченным. Допустим противное, то есть что $\exists c \in R : \forall x \in X \ \|Ax\|_v \le c \cdot \|x\|_x$. При

 $x = (1, \frac{1}{\sqrt{2}}, ..., \frac{1}{\sqrt{n}}, 0, 0, ...) \in l_2$ последнее неравенство примет вид

$$\sum_{k=1}^{n} \frac{1}{k} \le c \cdot \left(\sum_{k=1}^{n} \frac{1}{k}\right)^{1/2}, \text{ r.e. } \forall n \in N \sum_{k=1}^{n} \frac{1}{k} \le c^{2}.$$

Поскольку частичные суммы ряда $\sum_{k=1}^{\infty} \frac{1}{k}$ не являются ограниченными, мы пришли к противоречию. Значит, A не является непрерывным.

Пример 3
$$X = l_{\frac{3}{2}}, Y = C, Ax = \sum_{k=2}^{\infty} k \cdot |x_k|^{\frac{3}{2}}$$
.

Решение. Здесь $D(A) \neq X$, так как последовательность $\P/k \subseteq X$, но $Ax = \infty$. Далее, оператор A не является линейным (как в примере 1). Докажем, что он не является непрерывным. Действительно, возьмём следующую последовательность x_n точек из $l_{3/2}$:

$$x_n(k) = \begin{cases} \frac{1}{n+k}, 1 \le k \le 2n \\ 0, k > 2n \end{cases}.$$

Тогда $x_n \to 0$ в $l_{3/2}$, так как

$$||x_n - 0||_{3/2}^{3/2} = \sum_{k=1}^{2n} \frac{1}{(n+k)^{3/2}} < \frac{2n}{n^{3/2}} = \frac{2}{\sqrt{n}} \to 0 \text{ при } n \to \infty.$$

В то же время

$$\left|Ax_{n}-A0\right| > \sum_{k=n+1}^{2n} \frac{k}{(n+k)^{\frac{3}{2}}} > \sum_{k=n+1}^{2n} \frac{k}{(2k)^{\frac{3}{2}}} = \frac{1}{2^{\frac{3}{2}}} \sum_{k=n+1}^{2n} \frac{1}{k^{\frac{1}{2}}} > \frac{1}{2^{\frac{3}{2}}} n \frac{1}{(2n)^{\frac{1}{2}}} \to \infty.$$

Таким образом, из того, что $x_n \to 0$, не следует, что $Ax_n \to A0$ $(n \to \infty)$. Мы показали, что A не является непрерывным в нуле, значит, A не является непрерывным на D(A).

Пример 4
$$X = C[0;1], Y = R, (Ax)(t) = |x'(0) + x(0)|.$$

Решение. Очевидно, что $D(A) \neq X$ и что A - нелинейный. Покажем, что A не является непрерывным в нуле. Возьмём последовательность $x_n(t) = (1-t)^n/n$ из C[0;1]. Она сходится к 0, так как $\|x_n\|_X = 1/n \to 0$ при $n \to \infty$. Но в то же время

$$|Ax_n - A0| = (-1)^n + \frac{1}{n} \longrightarrow 1$$
 при $n \longrightarrow \infty$.

Т.е. из того, что $x_n \to 0$, не следует, что $Ax_n \to A0$, $n \to \infty$ Значит, A не является непрерывным на D(A).

Задача 2 Доказать, что оператор $A: X \to Y$ является линейным ограниченным, и найти его норму.

а) Оператор умножения, действующий из X в Y.

Пример 1
$$X = Y = C[0;1], (Ax)(t) = \frac{t}{1+t^2}x(t)$$
.

Решение. Ясно, что А линейный.

Так как

$$||Ax|| = \max_{t \in [0;1]} \left| \frac{t}{1+t^2} x(t) \right| \le \max_{t \in [0;1]} \left| \frac{t}{1+t^2} \right| \cdot \max_{t \in [0;1]} |x(t)| = \frac{1}{2} \cdot ||x||, \tag{2}$$

то A ограничен с константой ограниченности 1/2. A так как норма оператора есть наименьшая из констант ограниченности, то $||A|| \le 1/2$.

Докажем теперь противоположное неравенство, т.е. что $\|A\| \ge 1/2$. Для этого постараемся подобрать такой ненулевой вектор x_0 , для которого неравенство (2) превращается в равенство. Возьмём $x_0(t) = 1$. Тогда, как легко подсчитать,

 $\|x_0\| = 1$, $Ax_0(t) = \frac{t}{1+t^2}$, $\|Ax_0\| = 1/2$. А так как $\|A\| = \sup\{\|Ax\| \mid \|x\| \le 1\}$, то $\|A\| \ge 1/2$. Сопоставляя полученные неравенства, заключаем, что $\|A\| = 1/2$.

б) Диагональный оператор, действующий из $l_{\scriptscriptstyle p}$ в $l_{\scriptscriptstyle p}$.

Пример 1
$$A: l_7 \rightarrow l_7, Ax = (0,0,\frac{x(1)}{2},\frac{x(2)}{2^2},...,\frac{x(k)}{2^k},...).$$

Решение. Ясно, что А - линейный оператор. Так как

$$||Ax|| = \left(\sum_{k=1}^{\infty} \left(\frac{|x(k)|}{2^k}\right)^7\right)^{\frac{1}{7}} \le \frac{1}{2} \left(\sum_{k=1}^{\infty} |x(k)|^7\right)^{\frac{1}{7}} = \frac{1}{2} ||x||,$$

то оператор A ограничен, причем $\|A\| \leq \frac{1}{2}$. Возьмём $x_0 = e_3 = (0,0,1,0,0,...)$. Тогда $\|x_0\| = 1, \|Ax_0\| = \frac{1}{2}$. Значит, $\|A\| \geq \frac{1}{2}$ (почему?). Из полученных неравенств следует, что $\|A\| = \frac{1}{2}$.

Пример 2
$$A: l_{\frac{5}{4}} \to l_{\frac{5}{4}}, Ax = (0, \frac{x(2)}{2}, 0, \frac{3x_4}{4}, 0, ..., (1 - \frac{1}{2k})x(2k), 0, ...).$$

Решение. Оператор А - линейный. Докажем неравенство ограниченности:

$$||Ax|| = \left(\sum_{k=1}^{\infty} (1 - \frac{1}{2k})^{\frac{5}{4}} \cdot |x(2k)|^{\frac{5}{4}}\right)^{\frac{4}{5}} \le \left(\sum_{k=1}^{\infty} |x(2k)|^{\frac{5}{4}}\right)^{\frac{4}{5}} \le ||x||. \tag{3}$$

Значит, оператор A ограничен, причем $||A|| \le 1$.

В отличие от предыдущих примеров, здесь не существует ненулевого вектора, при котором неравенство (3) превращается в равенство (подумайте, почему). Поэтому будем подбирать ненулевые векторы x так, чтобы обе части (3) мало отличались друг от друга. Возьмём $x_0 = e_{2k} = (0,...,0,1,0,0,...)$ (единица стоит на 2k-м месте). Тогда имеем $\|x_0\| = 1$, $\|Ax_0\| = (1-\frac{1}{2k})$, откуда $\forall k \in N \|A\| \ge 1 - \frac{1}{2k}$ (см. решение примера 1). Ввиду произвольности k отсюда следует, что $\|A\| \ge 1$. Окончательно получаем, что $\|A\| = 1$.

в) Оператор замены переменной.

Пример 1 $A = C[0;1] \rightarrow C[0;1], (Ax)(t) = (t^4 - t^8)x(t^3)$.

Pешение. Очевидно, что оператор A линеен. Докажем его ограниченность:

$$||Ax|| = \max_{t \in [0,1]} |t^4 - t^8| \cdot |x(t^3)| = ||t^3 - s|| = \max_{s \in [0,1]} |s^{\frac{4}{3}} - s^{\frac{8}{3}}| \cdot |x(s)| \le \frac{1}{4} \cdot ||x||, \tag{4}$$

поскольку, как легко проверить, $\max_{s \in [0;1]} \left| s^{\frac{4}{3}} - s^{\frac{8}{3}} \right| = 1/4$. Следовательно, $\|A\| \le 1/4$. Далее, так как при x(t) = 1 неравенство (4) превращается в равенство, то $\|A\| \ge 1/4$ (см. решения предыдущих примеров). Итак, $\|A\| = 1/4$.

Пример 2 $A: L_2[0;1] \to L_2[0;1], (Ax)(t) = x(\sqrt[8]{t}).$

Решение. Очевидно, что оператор А линеен. Докажем его ограниченность:

$$||Ax|| = \left(\int_{0}^{1} x^{2} (\sqrt[8]{t}) dt\right)^{\frac{1}{2}} =$$

$$= \sqrt[8]{t} = z, t = z^{8}, dt = 8z^{7} dt = \left(\int_{0}^{1} 8z^{7} \cdot x^{2}(z) dz\right)^{\frac{1}{2}} \le 2\sqrt{2} \cdot \left(\int_{0}^{1} x^{2}(z) dz\right)^{\frac{1}{2}} = 2\sqrt{2} \cdot ||x||$$
 (5)

(мы воспользовались тем, что $z \le 1$). Значит, $||A|| \le 2\sqrt{2}$.

Как и в примере 2 пункта б не существует ненулевого вектора, при котором неравенство (5) превращается в равенство (подумайте, почему). Поэтому будем подбирать ненулевые векторы x так, чтобы обе части (5) мало отличались друг от друга. Возьмём последовательность $x_n = \sqrt{n} \cdot \chi_{[1-\frac{1}{2};1]}$, состоящую из функций, сосредоточенных в окрестно-

сти точки z=1 и таких, что $||x_n||=1$. Тогда

$$||Ax_n|| = \left(\int_{1-\frac{1}{n}}^{1} 8z^7 n dz\right)^{\frac{1}{2}} = \left(nz^8 \Big|_{1-\frac{1}{n}}^{1}\right)^{\frac{1}{2}} = \left(n \cdot \left(1 - \left(1 - \frac{1}{n}\right)^8\right)\right)^{\frac{1}{2}}.$$

Значит, $\|A\| \ge \left(n \cdot \left(1 - \left(1 - \frac{1}{n}\right)^8\right)\right)^{\frac{1}{2}}$, $\forall n \in \mathbb{N}$. Перейдем в последнем неравенстве к пределу

при $n \to \infty$. Воспользовавшись тем, что $(1+x)^{\alpha} - 1 \sim \alpha x$ при $x \to 0$, получим:

$$||A|| \ge \lim_{n \to \infty} \left(n \cdot \frac{8}{n} \right)^{\frac{1}{2}} = 2\sqrt{2}.$$

Из полученных неравенств следует, что $||A|| = 2\sqrt{2}$.

г) Интегральный оператор, действующий из Х в У.

Пример 1
$$A: C[-1;3] \to C[-2;0], (Ax)(t) = \int_{-1}^{1} (1-t)s^5x(s)ds$$
.

Pешение. Из свойства линейности интеграла следует, что A — линейный оператор. Далее,

$$||Ax|| = \max_{t \in [-2;0]} \left| \int_{-1}^{1} (1-t)s^5 x(s) ds \right| \le \max_{t \in [-2;0]} |1-t| \cdot \int_{-1}^{1} |s^5| \cdot |x(s)| ds \le 3 \cdot 2 \int_{0}^{1} s^5 ds \cdot ||x|| = ||x||.$$
 (6)

Значит, оператор A ограничен, причем $||A|| \le 1$. Заметим, что неравенство (6) превращается в равенство при x(t) = sgn(t), но эта функция не принадлежит C[-1;3]. Возьмем следующую последовательность функций из C[-1;3], которые «похожи» на sgn(t) при больших n (сделайте чертеж):

$$x_n(t) = \begin{cases} -1, t \in [-1; -\frac{1}{n}] \\ nt, t \in [-\frac{1}{n}; \frac{1}{n}] \\ 1, t \in [\frac{1}{n}; 3] \end{cases}$$

Легко видеть, что $\|x_n\|=1$ в C[-1;3]. Вычислим $\|Ax_n\|$ в C[-2;0]. Так как функция $s^5 \cdot x_n(s)$ - четная на [-1;1], то

$$||Ax_n|| = \max_{t \in [-2;0]} |1-t| \cdot \left| \int_{-1}^{1} s^5 \cdot x_0(s) ds \right| = 3 \cdot 2 \cdot \int_{0}^{1} s^5 \cdot x_0(s) ds = 6 \left(\int_{0}^{1/n} n s^6 ds + \int_{1/n}^{1} s^5 ds \right) = 1 - \frac{1}{7n^6}.$$

Значит, $||A|| \ge 1 - \frac{1}{7n^6}$, $\forall n \in \mathbb{N}$, а потому $||A|| \ge 1$. Окончательно получаем, что ||A|| = 1.

Задача 3 Для последовательности операторов $(A_n) \subset LB(X,Y)$, $X,Y \in Norm$ и $A \in LB(X,Y)$ установить: 1) сходится ли (A_n) поточечно (сильно) к оператору A; 2) сходится ли (A_n) по норме к оператору A.

Пример 1
$$A_n x = (x(1),...,x(n),0,0,...), A = 1_{l_1}, X = Y = l_1$$

Решение. 1) Заметим, что $\forall x \in l_1$.

$$||A_n x - Ax|| = ||(0, ...0, x(n+1), x(n+2), ...)|| = \sum_{k=n+1}^{\infty} |x(k)| \to 0 \text{ при } n \to \infty$$

как остаток сходящегося ряда. Значит, последовательность (A_n) сходится поточечно (т.е. сильно) к оператору A.

2) Воспользуемся тем, что $||A|| \ge ||Ax_0||, \forall x_0 : ||x_0|| \le 1$.

Возьмем
$$x_0=e_{n+1}=(0,...,0,1,0,...)$$
 (единица стоит на $(n+1)$ -м месте). Тогда
$$\|A_n-A\|\geq \|A_nx_0-Ax_0\|=\|(0,...,0,0,0,...)-(0,...,0,1,0,...)\|=\|(0,...,0,1,0,...)\|=1\,.$$

Так как $||A_n - A|| \ge 1$, то (A_n) не сходится по норме к A.

Задания лабораторной работы

Задача 1 Пусть X,Y — нормированные пространства. Выяснить, совпадает ли область определения $D(A) = x \in X | Ax \in Y |$ оператора A с нормированным пространством X. Является ли оператор A линейным, непрерывным оператором из D(A) в Y?

No	X	Y	A
1.1	C[-3;-1]	C[-3;-1]	$(Ax)(t) = \sqrt[3]{x(t)}$
1.2	$L_{2}[0;1]$	$L_2[0;1]$	$(Ax)(t) = \frac{1}{\sqrt{t}}x(t)$
1.3	L_8 [0;1]	R	$Ax = \int_{0}^{1} \left x(t) \right ^{8} dt$
1.4	C[-1;2]	C[-1;2]	$(Ax)(t) = \int_{0}^{1} x^{2}(s)ds$
1.5	l_3	С	$Ax = \sum_{k=1}^{\infty} \left x_k \right ^3$
1.6	l_3	l_3	Ax = (x(1), 2x(2),kx(k),)

Задача 2 Доказать, что оператор $A: X \rightarrow Y$ является линейным ограниченным, и найти его норму.

а) Оператор умножения, действующий из X в Y.

No	X	Y	A
2.1.1	$L_{\frac{3}{2}}[-1;1]$	$L_{\frac{3}{2}}[-1;1]$	$(Ax)(t) = \sqrt[3]{1+t}x(t)$
2.1.2	C[-2;1]	C[-2;1]	$(Ax)(t) = (t^3 - 1)^2 x(t)$
2.1.3	$L_{\frac{5}{4}}[1;2]$	$L_{\frac{5}{4}}[1;2]$	(Ax)(t) = (t2 - t4)x(t)
2.1.4	$L_{3}[0;1]$	L ₃ [0;1]	(Ax)(t) = (t4 - t5)x(t)
2.1.5	$L_{1}[-1;1]$	$L_{_{\mathrm{I}}}[-1;1]$	$(Ax)(t) = \cos \pi t x(t)$
2.1.6	C[-1;1]	C[0;1]	(Ax)(t) = (t4 - t2)x(t)

б) Диагональный оператор, действующий из $l_{\scriptscriptstyle p}$ в $l_{\scriptscriptstyle p}$.

$N_{\overline{0}}$	X	Y	A
2.2.1	$l_{\frac{7}{3}}$	$l_{7/3}$	$Ax = (\sqrt{2}x(1), \sqrt[3]{3}x(2), \dots, \sqrt[k+1]{k+1}x(k), \dots)$
2.2.2	$l_{\frac{5}{4}}$	l _{5/4}	$Ax = (\frac{x(1)}{2}, \frac{x(2)}{\sqrt{2}}, \dots, \frac{x(k)}{\sqrt[k]{k}}, \dots)$
2.2.3	$l_{\frac{3}{2}}$	$l_{3/2}$	$Ax = ((1+1)x(1),,(1+\frac{1}{k})x(k),)$
2.2.4	$l_{\frac{5}{2}}$	$l_{\frac{5}{2}}$	$Ax = (\frac{x(1)}{5}, \frac{x(2)}{5^2}, \dots, \frac{x(k)}{5^k}, \dots)$
2.2.5	l_1	l_1	$Ax = (0,0,\frac{x(3)}{2},\frac{x(4)}{2^2},,\frac{x(k)}{2^{k-2}},)$
2.2.6	l _{5/4}	l _{5/4}	$Ax = (0, x(1), \frac{1}{2}x(2), \dots, (1 - \frac{1}{k})x(k), \dots)$

в) Оператор замены переменной.

No	X	Y	A
2.3.1	C[-1;1]	C[-1;1]	$(Ax)(t) = (\sin^2 \pi t)x(\sqrt[3]{t})$
2.3.2	C[-1;1]	C[-1;1]	$(Ax)(t) = \sin \pi t \cdot x(\sqrt[7]{t})$

2.3.3	C[-1;0]	C[-1;0]	$(Ax)(t) = t^2 \sin t \cdot x(t^3)$
2.3.4	C[0;1]	C[0;1]	$(Ax)(t) = t^2 x(\sqrt{t})$
2.3.5	C[-1;1]	C[0;1]	$(Ax)(t) = (t^2 - t)x(t^2)$
2.3.6	L ₄ [0;1]	$L_{4}[0;1]$	$(Ax)(t) = tx(t^{\frac{3}{2}})$

 Γ) Интегральный оператор, действующий из X в Y

1) YIHI	г) интегральный оператор, действующий из х в У.				
№	X	Y	A		
2.4.1	C[0;1]	C[0;1]	$(Ax)(t) = \int_{0}^{1} \sin \pi (t - s) x(s) ds$		
2.4.2	C[-2;1]	C[1;3]	$(Ax)(t) = \int_{-2}^{1} e^{t+s} sx(s) ds$		
2.4.3	C[-3;2]	C[-3;1]	$(Ax)(t) = \int_{-3}^{2} s^{4} signs \cdot \cos t \cdot x(s) ds$		
2.4.4	C[-1;1]	C[0;2]	$(Ax)(t) = \int_{-1}^{1} s^{3} \ln(1+t)x(s)ds$		
2.4.5	C[0;1]	C[-1;2]	$(Ax)(t) = \int_{0}^{1} (s - \frac{1}{2})\cos t \cdot x(s)ds$		
2.4.6	C[0;1]	C[-1;2]	$(Ax)(t) = \int_{0}^{1/2} (1+t-3s)x(s)ds$		

Задача 3 Для последовательности операторов $(A_n) \subset LB(X,Y)$, $X,Y \in Norm$ и $A \in LB(X,Y)$ установить: 1) сходится ли (A_n) поточечно (сильно) к оператору A; 2) сходится ли (A_n) по норме к оператору A.

№	X	Y	A	A
3.1	l_2	l_2	$A_n x = \left(1 + \frac{1}{n}\right) x(1), \dots, \left(1 + \frac{1}{n}\right) x(n), \dots$	1_{l_2}
3.2	c_0	c_0	$A_n x = (0,0, x(n), 0, 0,)$	0
3.3	l_2	l_2	$A_n x = (0,,0, x(n+1), x(n+2),)$	0
3.4	C[0;1]	C[0;1]	$(A_n x)(t) = (t^n - t^{2n})x(t)$	0
3.5	$C^{(1)}[0;1]$	C[0;1]	$(A_n x)(t) = (t^n - t^{2n})x(t)$	0

3.6	$L_2[0;1]$	$L_{1}[0;1]$	$(A_n x)(t) = (1 - t^n)x(t)$	Ax=x

Лабораторная работа 9

Обратные операторы

Примеры решения задач

Задача 1 Пусть $A: X \to Y$. Доказать, что существует непрерывный обратный оператор A^{-1} , и построить его.

Пример 1
$$A: l_1 \rightarrow l_1$$
, $Ax = ((1 - \frac{1}{2})^2 x_1, (1 - \frac{1}{3})^3 x_2, (1 - \frac{1}{4})^4 x_3, ...)$.

Pешение. Очевидно, что A — линейный оператор. Докажем, что A — биекция. Рассмотрим уравнение Ax = y, которое равносильно системе уравнений

$$(1-1/(k+1))^{k+1}x_k = y_k, k = 1,2,...$$

Отсюда

$$x_{k} = \frac{y_{k}}{(1 - \frac{1}{k+1})^{k+1}}.$$
(1)

А так как

$$\sum_{k=1}^{\infty} \left| x_k \right| \le 4 \sum_{k=1}^{\infty} \left| y_k \right| < +\infty \,, \tag{2}$$

то $x \in l_1$. Мы получили, что $\forall y \in l_1$ уравнение Ax = y имеет единственное решение x из l_1 . Значит, A — биекция. Более того, из (1) следует, что обратный оператор A^{-1} задается формулой

$$A^{-1}y = \left(\frac{y_1}{\sqrt{-\frac{1}{3}}}, \frac{y_2}{\sqrt{-\frac{1}{3}}}, \frac{y_3}{\sqrt{-\frac{1}{4}}}, \dots \right).$$

Ограниченность этого оператора следует из оценки (см (2))

$$||A^{-1}y|| \le 4\sum_{k=1}^{\infty} |y_k| = 4 ||y||.$$

Пример 2 $A: C[0;1] \to C[0;1], (Ax)(t) = x(t) + \int_{0}^{1} e^{t+s} x(s) ds.$

Pешение. Очевидно, что A — линейный оператор. Запишем его в виде

$$(Ax)(t) = x(t) + e^t \int_0^1 e^s x(s) ds$$

и рассмотрим уравнение Ax = y, т. е.

$$x(t) + e^t \cdot \int_0^1 e^s x(s) ds = y(t)$$
 (3)

Пусть

$$\int_{0}^{1} e^{s} x(s) ds = c. (4)$$

Тогда (3) примет вид $x(t) + c \cdot e^t = y(t)$, откуда $x(t) = y(t) - c \cdot e^t$. Мы получили общий вид решения уравнения (3) с неопределенным коэффициентом c. Подставив это в (4), без труда находим, что

$$c = \frac{2}{1 + e^2} \int_{0}^{1} e^s y(s) ds.$$

Таким образом,

$$x(t) = y(t) - \frac{2}{1 + e^2} \int_0^1 e^s y(s) ds = A^{-1} y(t).$$
 (5)

Итак, $\forall y \in C[0;1]$ уравнение (2) имеет единственное решение из C[0;1]. Значит, оператор A обратим, причем обратный оператор вычисляется по формуле (5). Непрерывность обратного оператора вытекает из теоремы об оценке интеграла. Действительно, по этой теореме

$$|A^{-1}y(t)| \le |y(t)| + \frac{2}{1+e^2} \max_{s \in [0,1]} |y(s)| \int_0^1 e^s ds \le C ||y||,$$

а потому выполняется неравенство ограниченности $||A^{-1}y|| \le C||y||$ (другое доказательство непрерывности получается из (5) с помощью теоремы о предельном переходе под знаком интеграла Римана).

Задача 2 Пусть $A: X \rightarrow Y$.

- 1) Что представляет собой область значений R(A) оператора A?
- 2) Существует ли на R(A) левый обратный оператор B?
- 3) Является ли оператор $B: R(A) \to X$ ограниченным, если он существует?
- 4) Существует ли обратный оператор A^{-1} ?

Пример 1 $A: l_2 \to l_2, Ax = (0, x_1, x_2, ..., x_k, ...)$.

Решение. 1) Очевидно, что

$$R(A) = \{(0, x_1, x_2, ..., x_k, ...) \mid (x_k) \in l_2\} = y \in l_2 \mid y_1 = 0$$

—множество последовательностей из l_2 , первая координата которых равна нулю (проверьте). Заметим, что $R(A) \neq l_2$.

2) Так как уравнение Ax = 0 имеет только нулевое решение, то $KerA = \mathbf{q}$. А это, как известно, равносильно тому, что левый обратный оператор B существует. Легко проверить, что

$$Bx = (x_2, x_3, x_4, ...)$$
.

Действительно, при всех x из l_2 имеем $BAx = B(0, x_1, x_2, ...) = (x_1, x_2, x_3, ...)$.

- 3) Оператор *B* ограничен, так как ||Bx|| = ||x||.
- 4) Поскольку уравнение Ax = y не при всех y имеет решение (например, при y = (1,0,0,...)), то A не является сюрьекцией. А это значит, что правого обратного оператора не существует. Следовательно, A необратим.

Пример 2
$$A: C[0;1] \to C[0;1], (Ax)(t) = \int_{0}^{t} x(s)ds$$
.

Pешение. 1) По теореме о дифференцировании интеграла с переменным верхним пределом (теорема Барроу) функция $y(t)=\int_{\mathbb{R}}x(s)ds$ дифференцируема, причем y'(t)=x(t). Значит, $y\in C^{(1)}[0;1]$. Кроме того, очевидно, что y(0)=0. Обратно, если $y\in C^{(1)}[0;1]$ и y(0)=0, то по формуле Ньютона-Лейбница $y(t)=\int_{\mathbb{R}}y'(s)ds$. Поэтому

$$R(A) = \{ \int_{0}^{t} x(s)ds | x \in C[0;1] \} = \{ y \in C^{(1)}[0;1] | y(0) = 0 \}.$$

- 2) Рассмотрим оператор дифференцирования $Bx = \frac{dx}{dt}$. Поскольку (снова по теореме Барроу) $(BAx)(t) = \frac{d}{dt} \int_{\mathbb{R}} x(s) ds = x(t)$ при всех $x \in C[0;1]$, то B левый обратный для оператора A.
- 3) Покажем, что B не является ограниченным оператором. Допустим противное, т.е.

$$\exists c \in R : ||Bx|| = \max_{0 \le t \le 1} |\underline{x}'(t)| \le c \cdot \max_{0 \le t \le 1} |x(t)| = c \cdot ||x||.$$

Возьмём $x(t) = t^n \ (n \in N)$. Тогда последнее неравенство примет вид $\forall n \in N \ n \leq c$. Противоречие.

4) Поскольку $R(A) \neq C[0;1]$, то A не является сюръекцией. Значит, правого обратного оператора не существует. Следовательно, не существует и A^{-1} .

Задача 3 Пусть $A_{\lambda} \in LB(X,Y)$, где λ - числовой параметр, $X\lambda$ - банахово пространство. Выяснить, при каких λ существует обратный оператор к оператору A_{λ} , построить его. При каких λ оператор A_{λ} непрерывно обратим?

Пример 1
$$X_{\lambda} = x \in C^{(1)}[0;1] \mid x'(0) = \lambda x(1)$$
, $Y = C[0;1]$, $A_{\lambda} = \frac{d}{dt} + 2I$.

Peшение. Для нахождения обратного оператора рассмотрим в X_{λ} уравнение A_{λ} x=y, т. е. линейное дифференциальное уравнение

$$x' + 2x = y. ag{6}$$

Нужно выяснить, при каких λ у этого уравнения для любого $y \in C[0;1]$ существует единственное решение $x \in X_{\lambda}$. Другими словами, для любого $y \in C[0;1]$ краевая задача

$$x'(0) = \lambda x(1) \tag{7}$$

для уравнения (6) должна иметь единственное непрерывно дифференцируемое решение. Воспользовавшись формулой для общего решения линейного дифференциального уравнения первого порядка, получим общее решение уравнения (1):

$$x(t) = e^{-2t} \left(\int_{0}^{t} y(s)e^{2s} ds + C \right).$$
 (8)

Требуется узнать, при каких λ для любого $y \in C[0;1]$ найдется такое C, при котором формула (8) дает решение задачи (7). Подставив (8) в (7), получим после упрощений

$$\lambda e^{-2} + 2 C = y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2}ds$$
 (9)

Возможны два случая.

а) $\lambda \neq -2e^2$. Тогда уравнение (9) имеет единственное решение

$$C = \frac{1}{2 + \lambda e^{-2}} \left(y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2} ds \right)$$

для любого $y \in C[0;1]$. Следовательно, при этих λ существует обратный оператор, который мы найдем, подставив это C в равенство (8):

$$A_{\lambda}^{-1}y(t) = e^{-2t} \left(\int_{0}^{t} y(s)e^{2s}ds + \frac{1}{2 + \lambda e^{-2}} \left(y(0) - \lambda \int_{0}^{1} y(s)e^{2s-2}ds \right) \right).$$

В силу теоремы Банаха об обратном операторе непрерывность этого оператора будет следовать из непрерывности оператора $A_{\lambda}x=x'+2x$. Последний же факт легко доказать по Гейне. Действительно, если $x_n\to 0$ в пространстве $C^{(1)}[0;1]$, то это значит, что $x_n\to 0$ и $x_n\to 0$ равномерно на [0;1]. Но тогда и $A_{\lambda}x_n=x_n'+2x_n\to 0$ равномерно на [0;1].

б) $\lambda = -2e^2$. В этом случае уравнение (9) имеет вид

$$0 = 0 \cdot C = y(0) + 2e^{2} \int_{0}^{1} y(s)e^{2s-2} ds.$$

Так как правая часть этого уравнения при некоторых непрерывных y (например, при y(t) = 1) не будет равна 0, то при этих y уравнение (9) не имеет решения (относительно C), а потому оператор A_{λ} не сюръективен.

Итак, обратный оператор к оператору A_{λ} существует тогда и только тогда, когда $\lambda \neq -2e^2$. Причем при таких λ оператор A_{λ} непрерывно обратим.

Задания лабораторной работы

Задача 1 Пусть $A: X \to Y$. Доказать, что существует непрерывный обратный оператор A^{-1} , и построить его.

$N_{\underline{0}}$	X	Y	A
1.1	$C^{(2)}[0;1]$	$C^{(2)}[0;1]$	$(Ax)(t) = x(t) + \int_0^1 e^{t+s} x(s) ds$
1.2	C[0;1]	C[0;1]	$(Ax)(t) = x(t) + \int_{0}^{1} (1 - st)x(s)ds$
1.3	$C^{(1)}[0;1]$	$C^{(1)}[0;1]$	$(Ax)(t) = x(t) + \int_{0}^{1} (t+s)x(s)ds$
1.4	C[0;1]	C[0;1]	$(Ax)(t) = x(t) + \int_0^1 t^2 sx(s) ds$
1.5	l_2	l_2	$Ax = ((1 + \frac{1}{2})x(1), (1 + \frac{1}{3})x(2), (1 + \frac{1}{4})x(3), \dots)$
1.6	l_2	l_2	$Ax = (1(\sin \frac{1}{2})x(1), 2(\sin \frac{1}{2})x(2), 3(\sin \frac{1}{3})x(3),)$

Задача 2 Пусть $A: X \to Y$.

- 1) Что представляет собой область значений R(A) оператора A?
- 2) Существует ли на R(A) левый обратный оператор B?
- 3) Является ли оператор $B: R(A) \to X$ ограниченным, если он существует?
- 4) Существует ли обратный оператор A^{-1} ?

$N_{\underline{o}}$	X	Y	A
2.1	l_5	l_5	$Ax = (\frac{1}{2}x(1), \frac{1}{2^2}x(2),, \frac{1}{2^k}x(k),)$
2.2	l_2	l_2	Ax = (x(2), x(3),, x(k),)
2.3	l_2	l_2	Ax = (x(2), x(1), x(4), x(3),, x(2k), x(2k-1),)
2.4	l_1	l_2	Ax = (x(1), 0, x(2), x(3),, x(k),)
2.5	$C^{(2)}[0;1]$	C[0;1]	(Ax)(t) = x''(t)
2.6	C[0;1]	C[0;1]	$(Ax)(t) = t \int_{0}^{t} x(s)ds$

Задача 3 Пусть $A_{\lambda} \in LB(X,Y)$, где λ - числовой параметр, X_{λ} - банахово пространство. Выяснить, при каких λ существует обратный оператор к оператору A_{λ} , построить его. При каких λ оператор A_{λ} непрерывно обратим?

$N_{\overline{0}}$	X_{λ}	Y	A_{λ}
3.1	$\int x \in C^{(1)}[0;1]:$	C[0;1]	$\frac{d}{dt} + tI$
	$\lambda x(0) = x'(1)$		dt
3.2	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} + 4tI$
	$\int x(0) = 0 \qquad \int$		dt
3.3	$\begin{cases} x \in C^{(1)}[0;1]: \\ \lambda x(0) = x(1) \end{cases}$	C[0;1]	$\frac{d}{dt} - 2tI$
	$\lambda x(0) = x(1) \int$		dt 212
3.4	$\int x \in C^{(1)}[0;1]:$	C[0;1]	$\frac{d}{dt} + \lambda I$
	x(0) = 0		dt
3.5	$\int x \in C^{(1)}[0;1]:$	C[0;1]	$\frac{d}{dt} + \lambda a(t)I, \ a \in C[0;1]$
	x(0) = 0		dt
3.6	$\begin{cases} x \in C^{(1)}[0;1]: \\ x(0) + x(1) = 0 \end{cases}$	C[0;1]	$\frac{d}{dt} - 3\lambda t^2 I$
	$\int x(0) + x(1) = 0$		dt 374 1

ЛИТЕРАТУРА

- 1 Антоневич, А. Б. Функциональный анализ и интегральные уравнения / А. Б. Антоневич, Я. В. Радыно. Мн. : БГУ, 2003. 430 с.
- 2 Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. М. : Наука, 1972. 496 с.

- 3 Антоневич, А. Б. Функциональный анализ и интегральные уравнения: Лабораторный практикум / А.Б. Антоневич [и др.]. Мн. : БГУ, 2003. 179 с.
- 4 Кириллов, А. А. Теоремы и задачи функционального анализа / А. А. Кириллов, А. Д. Гвишиани. М. : Наука, 1979. 381 с.

Учебное издание

Миротин Адольф Рувимович Кульбакова Жанна Николаевна

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Лабораторный практикум для студентов математического факультета специальности 1-31 03 01 Математика

В авторской редакции

Подписано в печать . .09 (141). Формат 60х84 1/16. Бумага писчая № 1. Гарнитура Таймс. Усл. печ. л. Уч.-изд. .л . Тираж 100 экз.

Отпечатано в учреждении образования «Гомельский государственный университет имени Франциска Скорины» 246019, г. Гомель, ул. Советская, 104