

F.E. Semester – II (RC 07-08) Examination, May/June 2018 BASIC ELECTRONICS ENGINEERING

Duration: 3 Hours

Total Marks: 100

Instructions: 1) Attempt any five questions choosing at least one question from each Module.

- 2) Draw neat, labelled diagrams wherever necessary.
- 3) All symbols and abbreviations carry their usual meaning.
- 4) Make suitable assumptions when necessary.

MODULE - I

- 1. a) Draw and explain the V-I characteristics of a silicon diode. Highlight the Forward-bias, Reverse-bias and No-bias regions on the graph.b) Why are silicon diodes preferred over germanium diodes?
 - 2
 - c) Distinguish between avalanche and zener breakdown mechanisms in a semiconductor diode.
- 6

6

- d) With neat diagrams explain the piecewise-linear and simplified equivalent circuits for a diode.
 - ent 6
- 2. a) i) Determine the value of V_0 for the following network (Fig. 1)

Fig. 1

6

8

6

 V_{0}

ii) Determine I_D , V_{D_2} and V_0 for the following circuit (Fig. 2).

Fig. 2

- b) With a neat circuit diagram and waveforms explain the working of a full-wave bridge rectifier. Also draw the output waveform if a C-filter is connected across the load.
- c) For the following networks (Fig. 3) determine V_0 and draw the output waveform.

Fig. 3(a)

Fig. 3(b)

MODULE - II

- 3. a) Why is a transistor called a 'transistor'? With a neat circuit-diagram, explain the amplifying action of a bipolar junction transistor.
- 6
- b) With neat diagrams explain the common-emitter configuration of a bipolar junction transistor. Draw the collector and base characteristics (input and output characteristics). Explain the active, cut-off and saturation regions and highlight them on the graph.
- 8

- c) Determine the following for the network given in Fig. 4
 - a) I_{BQ} and I_{CQ}
 - b) V_{CEQ}
 - c) V_B and V_C
 - d) V_{BC}.

6

Fig. 4 Fixed bias circuit

7

8

5

8

6

6

6

- 4. a) Draw the circuit diagram of an emitter-stabilized biased BJT circuit and hence derive the expressions for I_B, R_i, V_{CE}, V_C and V_B. What is the advantage of this circuit over fixed bias circuit?
 - b) Determine the dc bias voltage V_{CE} and the current I_C for the configuration shown in Fig. 5.

Fig. 5

c) Explain the design and operation of a transistor as a switch.

MODULE - III

- 5. a) Explain in detail the construction and operation of an n-channel JFET. Explain what you mean by pinch-off in a JFET.
 - b) Using the shorthand method, obtain the transfer curve for a JFET and sketch the transfer curve for a p-channel JFET with I_{DSS} = 4 mA and V_p = 3V.
 - c) Explain the construction and basic operation of a n-channel depletion type MOSFET.
- 6. a) With neat circuit diagrams explain the analysis of a FET fixed bias circuit and obtain expressions for various voltages.
 - b) With a neat diagram explain the construction and working of CMOS. What are the advantages of CMOS?

c) Determine I_{DQ} , V_{GSQ} and V_{DS} for the network in Fig. 6.

8

2N4351 (enhancement type)

$$V_{GS}$$
 (Th) = 5V

$$I_D$$
 (on) = 3 mA

at
$$V_{GS}$$
 (on) = 10V

Fig. 6

iii) Silicon Controlled Rectifier (SCR).

MODULE - IV

7. a) Explain the grown-junction and diffusion methods to manufacture discrete transistors, with neat diagrams. 6 b) What is meant by the term monolithic integrated circuit? List the steps in the fabrication of a monolithic IC wafer? 6 c) Explain the op-amp operation in brief with differential input. 4 d) Explain the concept of "feedback" and draw the block diagram of a basic feedback amplifier. 4 8. a) Explain the working of a reflective type field-effect LCD with a diagram. 6 b) Draw the general block diagram of a cathode ray oscilloscope (CRO) and explain the operation of a CRO. 6 c) Write short notes on (any two): 8 i) IR emitters and applications ii) Solar cells