Homework 1

Abigail Wright

STA-4364

Problem 1

$$f(x) = 9x - 4\ln(x - 7)$$
 for $x > 7$

1. Exact Formula for the Newton Iterate

The Newton iterate formula is:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

where:

- x_{n+1} is the next iterate,
- x_n is the current iterate,
- $f'(x_n)$ is the first derivative of the function at x_n ,
- $f''(x_n)$ is the second derivative of the function at x_n .

2. First and Second Derivatives of f

The first derivative of f is:

$$f'(x) = \frac{d}{dx} (9x - 4\ln(x - 7)) = 9 - \frac{4}{x - 7}$$

The second derivative of f is:

$$f''(x) = \frac{d}{dx} \left(9 - \frac{4}{x - 7} \right) = \frac{4}{(x - 7)^2}$$

3. Compute Five Iterations of Newton's Method Starting from $x_0 = 7.80$

Iteration 1:

$$f'(7.8) = 9 - \frac{4}{7.8 - 7} = 9 - \frac{4}{0.8} = 4$$
$$f''(7.8) = \frac{4}{(7.8 - 7)^2} = 6.25$$
$$x_1 = 7.8 - \frac{4}{6.25} = 7.16$$

Iteration 2:

$$f'(7.16) = 9 - \frac{4}{7.16 - 7} = -16$$
$$f''(7.16) = \frac{4}{(7.16 - 7)^2} = 156.25$$
$$x_2 = 7.16 - \frac{-16}{156.25} = 7.2624$$

Iteration 3:

$$f'(7.2624) = 9 - \frac{4}{7.2624 - 7} = -6.2243902439$$

$$f''(7.2624) = \frac{4}{(7.2624 - 7)^2} = 58.09414039$$

$$x_3 = 7.2624 - \frac{-6.2243902439}{58.09414039} = 7.36987904$$

Iteration 4:

$$f'(7.36987904) = 9 - \frac{4}{7.36987904 - 7} = -1.824175215$$

$$f''(7.36987904) = \frac{4}{(7.36987904 - 7)^2} = 29.29069227$$

$$x_4 = 7.36987904 - \frac{-1.824175215}{29.29069227} = 7.4319344$$

Iteration 5:

$$f'(7.4319344) = 9 - \frac{4}{7.4319344 - 7} = -0.2606655085$$

$$f''(7.4319344) = \frac{4}{(7.4319344 - 7)^2} = 21.43998141$$

$$x_5 = 7.4319344 - \frac{-0.2606655085}{21.43998141} = 7.4444444$$

4. Verify Empirically that Newton's Method Will Converge to the Optimal Solution for All Starting Values of x in the Range (7,7.8888).

This code implements and tests Newton's method for finding the optimal solution (root or minimum) of a function. Here's a breakdown of its functionality:

Function Definitions:

First derivative:

$$f'(x) = 9 - \frac{4}{x - 7}$$
 for $x > 7$ (1)

Second derivative:

$$f''(x) = \frac{4}{(x-7)^2} \quad \text{for } x > 7 \tag{2}$$

Newton's Method Implementation:

The iteration formula:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Convergence criterion:

$$|x_{n+1} - x_n| < \text{tolerance}$$

Testing Convergence:

Starting points are generated in the range:

$$x_0 \in [7.01, 7.8888]$$

Choose 10 equally spaced starting values between the given range of (7,7.8888)

$$f'(x) = \frac{d}{dx} (9x - 4\ln(x - 7)) = 9 - \frac{4}{x - 7}$$
$$f''(x) = \frac{d}{dx} \left(9 - \frac{4}{x - 7}\right) = \frac{4}{(x - 7)^2}$$

Example:
$$x_0 = 7.0100$$

$$f'(7.0100) = 9 - \frac{4}{7.0100 - 7} = -391$$

$$f''(7.0100) = \frac{4}{(7.0100 - 7)^2} = 40000$$

$$x_1 = 7.0100 - \frac{-391}{40000} = 7.019775$$

Continue the above process until convergence is reached

 $x_0 = 7.0100$ converges in 11 iterations $x_0 = 7.1076$ converges in 7 iterations $x_0 = 7.2053$ converges in 6 iterations $x_0 = 7.3029$ converges in 5 iterations $x_0 = 7.4006$ converges in 4 iterations $x_0 = 7.4982$ converges in 4 iterations $x_0 = 7.5959$ converges in 5 iterations $x_0 = 7.6935$ converges in 6 iterations $x_0 = 7.7912$ converges in 7 iterations $x_0 = 7.8888$ converges in 17 iterations

- If the point of convergence is the same for each x_0 , then our function has converged to the optimal solution. Here our values of x_0 all converge to the same point of 7.4444.
- If the points of convergence are not the same for each x_0 , then not all of our starting values within the range (7, 7.8888) converge to the same solution.

5. What behavior does Newton's method exhibit outside of this range?

For our given function of f, x > 7 for all values ranged x <= 7 would return an error.

- The domain here is restricted to x > 7.
- Example: $f(x) = 9x 4\ln(x 7) = f(6) = 9(6) 4\ln(6 7) =$ Undefined.
- The Natural Logarithm of 0 or a negative number is undefined, thus cannot be computed.
- For x > 7.8888 The point do not converge to the same solution, meaning it is not an optional solution of $f(x) = 9x 4\ln(x 7)$.

Problem 2

$$f(x_1, x_2) = -\ln(1 - x_1 - x_2) - \ln(x_1) - \ln(x_2)$$

1. Give an exact formula for the Newton iterate for a given value of (x_1, x_2) is computed as:

Newton iterate:
$$(x_1, x_2)_{\text{new}} = (x_1, x_2) - H_f^{-1}(x_1, x_2) \nabla f(x_1, x_2)$$

2. Write a function for the gradient of f, $\nabla f(x_1, x_2)$

The gradient of $f(x_1, x_2)$ is given by:

$$\nabla f(x_1, x_2) = \begin{bmatrix} f_x(x_1, x_2) \\ f_x(x_1, x_2) \end{bmatrix} = \begin{bmatrix} \frac{1}{1 - x_1 - x_2} - \frac{1}{x_1} \\ \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2} \end{bmatrix}$$

3. Write a function for the Hessian of f, $H_f(x_1, x_2)$

The Hessian matrix of $f(x_1, x_2)$ is given by:

$$H_f(x_1, x_2) = \begin{bmatrix} f_{xx}(x_1, x_2) & f_{xy}(x_1, x_2) \\ f_{yx}(x_1, x_2) & f_{yy}(x_1, x_2) \end{bmatrix} = \begin{bmatrix} \frac{1}{(1 - x_1 - x_2)^2} + \frac{1}{x_1^2} & \frac{1}{(1 - x_1 - x_2)^2} \\ \frac{1}{(1 - x_1 - x_2)^2} & \frac{1}{(1 - x_1 - x_2)^2} + \frac{1}{x_2^2} \end{bmatrix}$$

4. Find the minimizer of f with Newton's method using the following starting value (0.85, 0.05). How many iterations are needed to converge?

Newton Iterate The Newton iterate for a given value of $(x_1, x_2) = (0.85, 0.05)$ is computed as:

$$(x_1, x_2)_{\text{new}} = (x_1, x_2) - H_f^{-1}(x_1, x_2) \nabla f(x_1, x_2)$$

$$(x_1, x_2)_{\text{new}} = (0.85, 0.05) - H_f^{-1}(0.85, 0.05) \nabla f(0.85, 0.05)$$

Gradient $\nabla f(x_1, x_2)$ The gradient of f(0.85, 0.05) is given by:

$$\nabla f(0.85, 0.05) = \begin{bmatrix} \frac{1}{1 - 0.85 - 0.05} - \frac{1}{0.85} \\ \frac{1}{1 - 0.85 - 0.05} - \frac{1}{0.05} \end{bmatrix} = \begin{bmatrix} 8.82352941 \\ -10 \end{bmatrix}$$

Hessian $H_f(x_1, x_2)$ The Hessian matrix of f(0.85, 0.05) is given by:

$$H_f(x_1, x_2) = \begin{bmatrix} 101.38408304 & 100 \\ 100 & 500 \end{bmatrix}$$

Inverse of the Hessian Matrix $H_f^{-1}(x_1, x_2)$ The inverse of the Hessian matrix is calculated as:

$$H_f^{-1}(x_1, x_2) = \frac{1}{(ad - bc)} \times \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Substituting the values of $H_f(0.85, 0.05)$:

$$H_f^{-1}(0.85, 0.05) = \frac{1}{(101.384 \times 500) - (100 \times 100)} \times \begin{bmatrix} 500 & -100 \\ -100 & 101.384 \end{bmatrix}$$

$$= \frac{1}{40692} \times \begin{bmatrix} 500 & -100 \\ -100 & 101.384 \end{bmatrix} = \begin{bmatrix} 0.012287 & -0.002457 \\ -0.002457 & 0.002491 \end{bmatrix}$$

Applying Newton's Method Now, we apply the Newton step:

$$(x_1, x_2)_{\text{new}} = (0.85, 0.05) - \begin{bmatrix} 0.012287 & -0.002457 \\ -0.002457 & 0.002491 \end{bmatrix} \begin{bmatrix} 8.82352941 \\ -10 \end{bmatrix}$$

Performing the matrix multiplication:

$$= (0.85, 0.05) - \begin{bmatrix} 0.13299333 \\ -0.04659866 \end{bmatrix}$$

Thus, the new point is:

$$(x_1, x_2)_{\text{new}} = (0.71700667, 0.09659866) \approx (0.717, 0.097)$$

Convergence Utilizing Newton's Method the function will converge to the minimizer of $f(0.85, 0.05) = (0.33333333333333333333272412798) \approx (\frac{1}{3}, \frac{1}{3})$. The given function will converge after 7 iterations.

5. Find the minimizer of f with the method of Steepest Descent using the following starting value (0.85, 0.05). How many iterations are needed to converge?

$$f(x_1, x_2) = -\ln(1 - x_1 - x_2) - \ln(x_1) - \ln(x_2)$$

for $x_1 > 0$, $x_2 > 0$, and $1 - x_1 - x_2 > 0$

Steepest Descent Method The method of Steepest Descent is given by:

$$(x_1, x_2)_{\text{new}} = (x_1, x_2) - \lambda \nabla f(x_1, x_2)$$

Here, the step size is $\lambda = 0.01$, and the tolerance is 1×10^{-6} .

Initial Conditions The starting point is:

$$(x_1, x_2) = (0.85, 0.05)$$

Gradient $\nabla f(x_1, x_2)$ The gradient of f at (0.85, 0.05) is calculated as follows:

$$\nabla f(0.85, 0.05) = \begin{bmatrix} \frac{1}{1 - x_1 - x_2} - \frac{1}{x_1} \\ \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{1 - 0.85 - 0.05} - \frac{1}{0.85} \\ \frac{1}{1 - 0.85 - 0.05} - \frac{1}{0.05} \end{bmatrix} = \begin{bmatrix} 8.82352941 \\ -10 \end{bmatrix}$$

Iteration Process To find the local minimum, we repeat the following steps:

1. Compute the gradient $\nabla f(x_1, x_2)$. 2. Update the point (x_1, x_2) using the steepest descent formula:

$$(x_1, x_2)_{\text{new}} = (x_1, x_2) - \lambda \nabla f(x_1, x_2)$$

3. Continue the iterations until the difference between successive points is less than the tolerance 1×10^{-3} , indicating that the algorithm has converged to a point where the function does not change significantly.

Conclusion The method of Steepest Descent will converge to the minimizer of $f(0.85, 0.05) = (0.333357520.33330812) \approx (\frac{1}{3}, \frac{1}{3})$. The number of iterations required to converge depends on the size of the gradient at each step and the chosen step size $\lambda = 0.01$. Concerning the given function $f(x_1, x_2) = -\ln(1 - x_1 - x_2) - \ln(x_1) - \ln(x_2)$ convergence will occur around 6 iterations.

Problem 3

1. Select a matrix A with n = 5 and p = 3. Then compute AT A and find its determinant.

Let A be a matrix defined as follows:

$$A = \begin{bmatrix} 3 & 7 & 1 \\ 5 & 2 & 8 \\ 4 & 6 & 9 \\ 1 & 3 & 2 \\ 7 & 4 & 5 \end{bmatrix}$$

The transpose of A is:

$$A^T = \begin{bmatrix} 3 & 5 & 4 & 1 & 7 \\ 7 & 2 & 6 & 3 & 4 \\ 1 & 8 & 9 & 2 & 5 \end{bmatrix}$$

Next, we compute A^TA :

$$A^{T}A = \begin{bmatrix} 3 & 5 & 4 & 1 & 7 \\ 7 & 2 & 6 & 3 & 4 \\ 1 & 8 & 9 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & 7 & 1 \\ 5 & 2 & 8 \\ 4 & 6 & 9 \\ 1 & 3 & 2 \\ 7 & 4 & 5 \end{bmatrix}$$

Let $(A^TA)^{-1}$ denote the inverse of A^TA . Then, the matrix $(A^TA)^{-1}A^T$ is computed as follows:

$$(A^TA)^{-1}A^T$$

Finally, we find $(A^TA)^{-1}(A^TA)^{-1}A^T$ and compute the determinant of A^TA :

$$\det(A^T A) = 160871.99999999997$$

2. Select a matrix A with n=3 and p=5. Then compute AT A and find its determinant.

Let A be a matrix defined as follows:

$$A = \begin{bmatrix} 8 & 1 & 15 & 11 & 5 \\ 7 & 13 & 6 & 9 & 3 \\ 10 & 4 & 12 & 1 & 7 \end{bmatrix}$$

The transpose of A is:

$$A^{T} = \begin{bmatrix} 8 & 7 & 10 \\ 1 & 13 & 4 \\ 15 & 6 & 12 \\ 11 & 9 & 1 \\ 5 & 3 & 7 \end{bmatrix}$$

Next, we compute A^TA :

$$A^{T}A = \begin{bmatrix} 8 & 7 & 10 \\ 1 & 13 & 4 \\ 15 & 6 & 12 \\ 11 & 9 & 1 \\ 5 & 3 & 7 \end{bmatrix} \begin{bmatrix} 8 & 1 & 15 & 11 & 5 \\ 7 & 13 & 6 & 9 & 3 \\ 10 & 4 & 12 & 1 & 7 \end{bmatrix}$$

Let $(A^TA)^{-1}$ denote the inverse of A^TA . Then, the matrix $(A^TA)^{-1}A^T$ is computed as follows:

$$(A^TA)^{-1}A^T$$

Finally, we find $(A^TA)^{-1}(A^TA)^{-1}A^T$ and compute the determinant of A^TA :

$$\det(A^T A) = 0$$

3. What conclusion can you reach based on n and p?

Let matrix A be of dimensions $n \times p$, where n represents the number of rows and p represents the number of columns.

Invertibility Requirements

A matrix is invertible if it satisfies the following conditions:

- Square Matrix: The matrix must be $n \times n$.
- **Determinant**: The determinant of the matrix, det(A), cannot be zero.
- **Linearly Independent**: The columns of the matrix must be linearly independent.
- Existence of an Inverse: There must exist a matrix B such that AB = BA = I, where I is the identity matrix.

Analysis of Specific Cases

Concerning 3.1: Let A be a 5×3 matrix. Therefore, A^T is a 3×5 matrix and A^TA is a 3×3 square matrix. When the number of rows n is greater

than or equal to the number of columns p, A^TA becomes a $p \times p$ matrix, which is a 3×3 matrix in this case. Matrix A^TA meets the requirements for invertibility, as follows:

- \bullet The columns of A are linearly independent.
- The determinant of $A^T A$ is non-zero.

Concerning 3.2: Let A be a 3×5 matrix. Therefore, A^T is a 5×3 matrix and A^TA is a 5×5 square matrix. When the number of rows n is less than or equal to the number of columns p, A^TA becomes a $p \times p$ matrix, which is a 5×5 matrix in this case. Matrix A^TA does not meet the requirements for invertibility, as follows:

- The rank of A would have to be p = 5 to meet the invertibility condition.
- However, the maximum rank of A is n = 3, which is less than p. This means that $A^T A$ is not of full rank and is thus not invertible.
- ullet Consequently, matrix A is singular, and the determinant of A^TA is zero.