Stock Price Analysis

Getting the datasets we will use

 2013-02-08 67.7142 68.4014 66.8928 67.8542 158168416 2013-02-11 68.0714 69.2771 67.6071 68.5614 129029425 2013-02-12 68.5014 68.9114 66.8205 66.8428 151829363 AAPL 2013-02-13 66.7442 67.6628 66.1742 66.7156 118721995 2013-02-14 66.3599 67.3771 66.2885 66.6556

Analyizing the closing price of stocks tech_list

200

2013

2014

2016

2017

2018

2015

Analyzing total volume of stock being traded

2016

2017

2018

2015

2014

2013

MSFT

250M

200M

150M

100M

volume

AMZN

Analyzing the daily price changes

Visualising using plotly

<AxesSubplot:xlabel='date'>

1200

-2

800 600

msft goog

<seaborn.axisgrid.PairGrid at 0x1baf1459b08>

0 261.95 67.8542 27.55 558.46

1 257.21 68.5614 27.86 559.99

2 258.70 66.8428 27.88 556.97

3 269.47 66.7156 28.03 567.16

1400

1200

1000

800

600

400

180 -

160

4 269.24 66.6556 28.04 567.00 Ploting a pairwise plot for different companies closing price

Creating a data frame with closing values of different companies

msft amzn From the above plots we can the amazon and microsoft closing prices are highly correalted

Pairwise plot

7.5

5.0

<seaborn.axisgrid.PairGrid at 0x1baf20d4e48>

checking correlations for daily returns

5

msft_change

Correaltion Heatmap plot for daily returns <AxesSubplot:>

0.37

appl_change

appl_change -

goog_change

5 –10

-5

amzn_change

0.4 0.3 Density 0.2

-1.4246644227944307 1.4246644227944307 means that 90% of the times the worst daily Loss will not exceed 1.42