WHAT IS CLAIMED IS:

1	1. A method for converting a signal to differing sample rates,
2	comprising:
3	receiving, at a first sample rate, a plurality of data points, associated
4	with a first signal;
5	operating on said plurality of data points to associate said signal with a
6	predetermined set of parameters, with said set of parameters including a first
7	transition band having an image corresponding thereto; and
8	varying said sample rate associated with said first signal by
9	interpolation with an interpolator having associated therewith a second transition
10	band, with the width associated with said second transition band being a function of
11	a spectral separation of said first transition band and said image, wherein a second
12	signal is produced having a sequence of data samples approximating the first signal.
1	2. The method recited in claim 1 wherein varying said sample rate
2	includes producing each data sample associated with said second signal by
3	convolving a predetermined finite number N of data points with an equal number of
4	coefficients, with N being greater than two.
1	3. The method recited in claim 2 wherein coefficients vary as a
2	function of the temporal spacing between the output point and the corresponding
3	input points.
1	4. The method as recited in claim 1 wherein varying said sample
2	rate increases said sample rate.

5. The method as recited in claim 1 wherein varying said sample 1 rate decreases said sample rate. 2 6. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes up-sampling said plurality of data points by a factor 2 of two. 3 7. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes filtering said plurality of data points with a half-2 band filter. 3 8. The method as recited in claim 1 wherein operating on said 1 plurality of data points includes decimating said plurality of data points with a half-2 band decimator. 3 9. The method as recited in claim 6 further including decimating a 1 plurality of data points output by said interpolator with a half-band decimator, with 2 varying said sample rate occurring after receiving said plurality of data points and 3 before decimating said plurality of data points. 4 10. 1 The method as recited in claim 1 wherein operating on said 2 plurality of data points to associate said signal includes filtering the same with a 3 finite impulse response filter. 11. 1 The method as recited in claim 1 wherein operating on said plurality of data points to associate said signal includes filtering the same with an 2 infinite impulse response filter. 3

1	12. A method for converting a digital audio signal to a different		
2	sample rate, comprising:		
3	receiving a plurality of data points, associated with an audio signal, at		
4	an initial sample rate;		
5	halfband filtering said plurality of data points with a halfband filter;		
6	and		
7	interpolating with an interpolator having independently		
8	programmable parameters.		
1	13. The method as recited in claim 12 wherein:		
2	said halfband filtering is done in conjunction with upsampling said		
3	plurality of data points; and		
4	said interpolating follows said upsampling and halfband filtering.		
1	14. The method as recited in claim 12 wherein:		
2	said halfband filtering is done, without upsampling, on said plurality		
3	of datapoints; and		
4	said interpolating follows said halfband filtering.		
1	15. The method as recited in claim 12 wherein:		
2	said halfband filtering follows said interpolating.		
1	16. The method as recited in claim 12 wherein:		
2	said halfband filtering is done in conjunction with upsampling said		
3	plurality of data points;		

4	said interpolating follows said halfband filtering; and		
5	halfband filtering and decimating following said interpolating.		
6 1	17. A computer program product for converting signals to differing		
2	sample rates comprising:		
3	code for receiving a plurality of data points, associated with a signal, at		
4	a first sample rate;		
5	code for operating on said plurality of data points to associate said		
6	signal with a predetermined set of parameters, with said set of parameters including		
7	a first transition band having a first width;		
8	code for varying said sample rate associated with said first signal by		
9	interpolating a subset of data points of said plurality of data points with an		
10	interpolator having associated therewith a second transition band, with the width		
11	associated with said second transition band being a function of a spectral separation		
12	of said first transition band and said image, wherein a second signal is produced		
13	having a sequence of data samples approximating the first signal; and		
14	a computer-readable storage medium for storing code.		
1	18. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points includes code for up-sampling		
3	said plurality of data points by a factor of two.		
1	19. The computer program product as recited in claim 17 wherein		
2	code for operating on said plurality of data points includes code for filtering said		
3	plurality of data points with a half-band filter.		

20. The computer program product as recited in claim 17 wherein 1 code for operating on said plurality of data points includes code for decimating said 2 plurality of data points with a half-band decimator. 3 21. The computer program product as recited in claim 18 further 1 including code for decimating said plurality of data points with a half-band 2 decimator. 3 22. The computer program product as recited in claim 17 wherein 1 code for operating on said plurality of data points to associate said signal includes 2 code for filtering said data points with a filter selected from the set of filters 3 consisting essentially of a finite impulse response filter and a infinite impulse 4 response filter. 5 23. A computer program product for converting a digital audio 1 signal to a different sample rate, comprising: 2 a computer-readable storage medium for storing code, said code 3 including 4 code for receiving a plurality of data points, associated with an audio 5 signal, at an initial sample rate; 6 code for halfband filtering said plurality of data points with a halfband 7 filter; and 8 9 code for interpolating with an interpolator having independently programmable parameters. 10

1	24. The computer program product as recited in claim 25 wherein:		
2	said code for halfband filtering is executable in conjunction with code		
3	for upsampling said plurality of data points; and		
4	said code for interpolating is executable following said upsampling		
5	and halfband filtering code.		
1	25. The computer program product as recited in claim 23 wherein:		
2	said code for halfband filtering is executable, without upsampling		
3	code, on said plurality of datapoints; and		
4	said code for interpolating is executable following said halfband		
5	filtering code.		
1	26. The computer program product as recited in claim 23 wherein:		
2	said code for halfband filtering is executable following said code for		
3	interpolating.		
1	27. The computer program product as recited in claim 23 wherein:		
2	said code for halfband filtering is executable in conjunction with code		
3	for upsampling said plurality of data points;		
4	said code for interpolating is executable following said code for		
5	halfband filtering; and further comprising:		
6	code for halfband filtering and decimating executable following said		
7	code for interpolating.		
1	28. The method of claims 1 or 12 wherein said interpolator is an FI		
2	Nth order sum of products interpolator with linear interpolation of coefficients.		

1	29.	The computer program product of claims 17 or 23 wherein said	
2	interpolator is an F	FIR Nth order sum of products interpolator with linear	
3	interpolation of co	efficients.	
1	30.	The method of claims 1 or 12 wherein said interpolator has a	
2	transition band beg	ginning adjacent the top of a passband and ending adjacent the	
3	bottom of a passband image.		
1	31.	The computer program product of claims 17 or 23 wherein said	
2	interpolator has a t	transition band beginning adjacent the top of a passband and	
3	ending adjacent th	e bottom of a passband image.	
1	32.	The method of claims 7, 8, 9 or 12 wherein said halfband filter is	
2	an IIR filter compo	sed of first order allpass blocks.	
1	33.	The computer program product of claims 19 or 23 wherein said	
2	halfband filter is a	n IIR filter composed of first order allpass blocks.	
3			
4			