هوش مصنوعی پاییز ۱۳۹۹ استاد: محمدحسین رهبان

تمرین اول، بخش اول مقدمه و جستوجو با هزینهی یکنواخت مهلت ارسال: ۸ مهر

- مهلت ارسال پاسخ تا ساعت ۲۹:۱۳ روز مشخص شده است.
- در طول ترم امکان ارسال با تاخیر پاسخ همهی تمارین (به استثنای هفتهی امتحان میانترم) تا سقف سه روز و در مجموع ۱۰ روز، وجود دارد. پس از گذشت این مدت، پاسخهای ارسالشده پذیرفته نخواهندبود.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت هم فکری و یا استفاده از هر منبع خارج از کتاب و اسلایدهای درس، نام هم فکران و آدرس منابع مورد استفادهبرای حل سوال مورد نظر را ذکرکنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.

سوالات نظری (۴۰ نمره)

- opisodic ،deterministic ،single agent ،fully observable و episodic ،deterministic ،single agent ،fully observable و discrete و discrete بودن محيط را مشخص كنيد.
 - ربات بازی کنندهی پینگ یونگ
 - عامل هوشمند بشت بازی یوکر در کامپیوتر
 - دستگاه تشخیص چهره برای ورود به یک مکان
 - ماشین خودران
- ۲. (۱۰ نمره) در مورد یکی از موضوعات زیر تحقیق کرده و از دیدگاه علمی آنرا در حدود ۱۰ خط بررسی کنید.
 - دغدغهی قیام ماشینها (رباتها) و خارج شدن کنترل از دست انسان
 - به وجود آوردن احساسات در ماشینها
 - موانع پیش روی هوش مصنوعی و کارهایی که امروزه قادر به انجامشان نیست
 - تفاوت هوش مصنوعی و هوشیاری (consciousness)
 - ۳. (۱۲ نمره) صحیح یا غلط بودن هر مورد را مشخص کنید و دلیل آن را به طور کامل شرح دهید.
- الگوریتم BFS نسبت به الگوریتم IDS، در بدترین حالت تعداد رئوس بیشتری را باز میکند و به حافظهی بیشتری هم نیاز دارد بنابراین استفاده از IDS همیشه بهتر است.
- اگر هر مقدار حافظهای که بخواهیم در اختیارمان باشد، همواره استفاده از Graph search بجای Tree بجای search بهتر است.
- برای اینکه الگوریتم BFS کامل (Complete) باشد، لازم است که درجه انشعاب متناهی باشد. در صورتی که برای کامل بودن الگوریتم IDS این شرط لازم نیست.
- در مسائلی که عمق راس هدف (d) به ما داده شده است، همیشه بهتر است از الگوریتم Depth-limited در مسائلی که عمق راس هدف (BFS بجای search

- ۴. (۱۰ نمره) میخواهیم الگوریتمهای BFS و BFS را از لحاظ زمان اجرای میانگین (Expected) روی مسائلی b درجه انشعاب b و حداکثر عمق b دارند و جواب بهینه شان در عمق b قرار گرفته است، بررسی کنیم. در صورتی که زمان اجرا همان میانگین تعداد رئوسی باشد که در طی الگوریتم می بینیم و از راسی در عمق صفر شروع به جست و جو کنیم،
- (آ) (۶ نمره) رابطهای برای زمان اجرای میانگین این دو الگوریتم بر حسب ۳ پارامتر داده شده بدست آورید.
 - (ب) (۲ نمره) در دو حالت زیر زمان اجرای میانگین دو الگوریتم را مقایسه کنید.

$$b = \mathbf{Y}, d = \mathbf{Y}, m = \mathbf{Y}$$

 $b = \mathbf{Y}, d = \mathbf{\Delta}, m = \mathbf{\Delta}$

(ج) (۲ نمره) در نهایت بررسی کنید که به ازای هر حالت مختلف d ،b و m کدام یک از الگوریتمها زمان اجرای بهتری دارد. (برای دستیابی به این زمان اجرا، کافیست ترتیب طی کردن بچههای هر راس را به صورت تصادفی در نظر گیرید)

سوالات عملي (۲۰ نمره)

- ۱. (۲۰ نمره) گرافی n راسی با m یال دو طرفه داریم که وزن یال iام برابر با w_i است. میخواهیم یکی از کوتاه ترین مسیرهای بین دو راس a و b را انتخاب کنیم و وزن تمام یالهای این مسیر را برابر با صفر قرار دهیم به طوری انجام دهیم که بعد صفر کردن وزن این یالها، وزن کوتاه ترین مسیر بین دو راس a و b کمینه شود. این کمینه وزن را بدست آورید.
- ورودی: خط اول ورودی شامل دو عدد n و m است. در خط دوم دو عدد a و b و در خط سوم دو عدد b و رودی: خط اول دو عدد سوم وزن یال و عدد سوم وزن یال و عدد سوم وزن یال است.
 - خروجی: در تنها خط خروجی کمینه وزنی که برای مسیر میتوانیم به دست یابیم را چاپ کنید.

$$Y \le n \le 1 \cdots$$
 $1 \le m \le Y \cdots$
 $a \ne b, c \ne d$
 $1 \le w_i \le 1 \cdot$