

Problem 11 Value of Market Research

E210 – Operations Planning

SCHOOL OF **ENGINEERING**

E210 Operations Planning Topic Tree

Expected Value of Sample Information (EVSI)

- Recall: Expected Value of Perfect Information (EVPI)
 - EVPI is the maximum amount that should be paid to gain information that would result in a better decision than those decisions made without perfect information — P08
 - It is under the ideal case that perfect information is available.
- Most commonly, perfect information is <u>not</u> available.
 However, additional information regarding future events can be gained through <u>tests or experiments</u>, such as market research, medical tests, sampling of physical environments, etc.
- This additional information can help a decision maker more accurately estimate probabilities of possible future events and therefore make better decision. The value of this additional information is often called the <u>Expected Value</u> of <u>Sample Information (EVSI)</u>.

Expected Value of Sample Information (EVSI)

- EVSI is calculated as:
 - EVSI = Expected payoff <u>with</u> sample (additional) information Expected payoff <u>without</u> sample (additional) information
- In general, obtaining sample (additional) information includes an associated cost. Is it worthwhile to pay for the sample (additional) information?
 - When EVSI > cost of obtaining the sample information through test or experiment, it is worthwhile to conduct the test or experiment.
 - When EVSI ≤ cost of obtaining the sample information through test or experiment, it is not worthwhile to conduct the test or experiment.

Efficiency of Sample Information

- One way to judge <u>how much information is generated by a sample</u> (via test or experiment) is to compute the ratio of EVSI to EVPI times 100, expressed as a percentage.
- This is known as the <u>efficiency of sample information</u>.
- For example, with perfect information, the expected payoff is \$100,000; with market research, the expected payoff is \$80,000; without any information regarding future events, the expected monetary value is \$50,000. What are the values for EVPI, EVSI, and efficiency of sample information?
 - \triangleright EVPI = 100,000 50,000 = \$50,000
 - \triangleright EVSI = 80,000 50,000 = \$30,000
 - Efficiency of sample information = (EVSI/EVPI)*100 = (30,000/50.000) *100 = 60%.

Problem 11 Suggested Solution

Today's Problem: No Market Research 🐷

The DPL influence diagram when there is no market research:

Today's Problem: No Market Research 🜠

Today's Problem: Determining the EVPI

The Expected Value of Perfect Information (EVPI):

Demand outcome Low:
best payoff = max (215,000, 375000) = \$375,000
Demond and an extension (Madisonal)

- Demand outcome 'Medium': best payoff = max (415,000, 375,000) = \$415,000
- □ Demand outcome 'High': best payoff = max (515,000, 375,000) = \$515,000
- □ EVwithPI = 375,000*0.35+415,000*0.2+515,000*0.45 = \$446,000
- \square EVPI = 446,000- 390,000 = \$56,000

	Demand Outcome		
Alternatives	Low	Medium	High
	35%	20%	45%
Produce	215,000	415,000	515,000
Sell	375,000	375,000	375,000

Today's Problem: With Market Research

With market research, the DPL influence diagram (excluding cost of marketing research) is shown below:

Today's Problem: With Market Researc

Today's Problem: Determining EVSI

- The Expected Value of Sample Information (EVSI):

EVSI = 428,150 - 390,000 = \$38,150

- Since EVSI (\$38,150) > cost of market research (\$20,000), FlyEagle should conduct market research before making the decision of 'Produce' or 'Sell'.

Today's Problem: The Efficiency of Sample Information

The Efficiency of Sample Information:

Efficiency of Sample Information
= (EVSI/EVPI)*100 = (38,150/56,000)*100 = 68.125%

EVSI
calculated on slide 12

EVPI
calculated on slide 9

- The efficiency of sample information can range from 0 to 1
 - The closer the number is to 1, the closer the sample information is to being perfect.
 - The closer the number is to 0, the less information there is in the sample.
 - Thus a value such as 68.125% is slightly above mid-range, meaning that relative to perfect information, the information that could be gained from the market research is moderate.

Conclusion

- Decision makers can improve decision making by bringing additional information into the process through market survey, forecasting, medical tests, etc.
- Based on the decision tree constructed,
 - FlyEagle should conduct market research to get better estimation of customer demand.
 - If the market research outcome is high, produce the product; otherwise, sell the rights to it to another company.
 - The total expected profit is \$408,150.
- For the market research to be done in FlyEagle,
 - The EVSI is \$38,150 with a cost of \$20,000.
 - As the EVPI is \$56,000, the efficiency of sample information is 68.125%.

Learning Objectives

- At the end of the lesson, students should be able to:
 - Analyze the use of sample (additional) information in decision tree for problems with sequence of dependent decisions.
 - Relate the value of sample (additional) information obtained through market research/test in decision making.
 - Evaluate sequence of dependent decisions when sample (additional) information is available.
 - Calculate Expected Value of Sample Information.
 - Calculate and interpret Efficiency of Sample Information in relation to the use of sample information in decision making.
 - Use of software DPL to perform Decision Analysis.

Overview of E210 Operation Planning Module 2

