

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

Matemáticas Discretas - IIC1253 Guía de cardinalidad

- 1. Demuestre que la relación \approx (ser equinumeroso) es una relación de equivalencia.
- 2. ¿Es \approx una relación antisimétrica? Demuestre o de un contraejemplo.
- 3. Demuestre que, como subconjuntos de \mathbb{R} , se tiene $[0,1] \approx [2,3] \cup [4,5]$.
- 4. Sean A, B, C, D conjuntos infinitos tales que $A \approx C$ y $B \approx D$. Demuestre que $(A \cup B) \approx (C \cup D)$.
- 5. Sean A, B dos conjuntos tal que A es infinito y B es finito. Demuestre que $A \setminus B \approx A$.
- 6. Sean A, B, C conjuntos tales que $A \subseteq B \subseteq C$. Demuestre que si $A \approx C$, entonces $B \approx C$.
- 7. Sean A, B conjuntos infinitos. Demuestre que existen conjuntos C, D tales que $A \approx C, B \approx D$ y $C \cap D = \emptyset$.
- 8. Demuestre que el conjunto de todas las rectas en el plano es equinumeroso al conjunto de todos los puntos del plano. (*Hint: tanto los puntos como las rectas se determinan por pares de números*).
- 9. Un círculo C en el plano real $\mathbb{R} \times \mathbb{R}$ es un conjunto de puntos $\{(x,y) \mid (x-a)^2 + (y-b)^2 = r^2\}$ donde a,b,r son números reales fijos y r > 0. Dados dos círculos C_1 y C_2 , demuestre que C_1 es equinumeroso con C_2 .
- 10. Sea \leq un orden total sobre un conjunto infinito A tal que para todo $a \in A$, el conjunto $\{x \in A \mid x \leq a\}$ es finito. Demuestre que $A \approx \mathbb{N}$. (*Hint: demuestre que*

$$f \colon A \to \mathbb{N}, \qquad f(a) = |\{x \in A \mid x \leq a \text{ y } x \neq a\}|$$

es biyectiva).

- 11. Sean A, B conjuntos enumerables. Demuestre que $A \cup B$ es enumerable.
- 12. Sea $\{A_i \mid i \in \mathbb{N}\}$ una colección de conjuntos tal que A_i es enumerable para cada $i \in \mathbb{N}$. Demuestre que:

$$\bigcup_{i\in\mathbb{N}}A_i \ \approx \ \mathbb{N}$$

13. Sea $\{A_i \mid i \in \mathbb{N}\}$ una colección de conjuntos tal que $A_i \leq \mathbb{N}$ para cada $i \in \mathbb{N}$. Demuestre que:

$$\bigcup_{i \in \mathbb{N}} A_i \quad \preceq \quad \mathbb{N}$$

14. Sea $\{A_i \mid i \in \mathbb{N}\}$ una colección de conjuntos tal que $A_i \prec \mathbb{N}$ para cada $i \in \mathbb{N}$, y sea B el siguiente conjunto:

$$B = \bigcup_{i \in \mathbb{N}} A_i.$$

¿Es cierto que $B \prec \mathbb{N}$? Demuestre o de un contraejemplo.

- 15. Demuestre que $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ es enumerable, vale decir, construya una biyección $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
- 16. Demuestre que $\{A \subseteq \mathbb{N} \mid A \text{ es finito}\}$ es un conjunto enumerable.
- 17. Demuestre que $\{A \subseteq \mathbb{N} \mid A \text{ es finito o } (\mathbb{N} \setminus A) \text{ es finito} \}$ es un conjunto enumerable.
- 18. Considere el conjunto $\mathbb N$ con el orden total usual \leq . Una función $f:\mathbb N\to\mathbb N$ es monótona decreciente si para cada $n,m\in\mathbb N$ tal que $n\leq m$, se tiene que $f(n)\geq f(m)$. Demuestre que $\mathcal F=\{f\mid f:\mathbb N\to\mathbb N\text{ es una función monótona decreciente}\}$ es un conjunto enumerable.
- 19. Considere los conjuntos \mathbb{N} y \mathbb{Z} con sus órdenes totales usuales \leq . Una función $f: \mathbb{N} \to \mathbb{Z}$ es monótona decreciente si para cada $n, m \in \mathbb{N}$ tal que $n \leq m$, se tiene que $f(n) \geq f(m)$. Demuestre que $\mathcal{G} = \{f \mid f: \mathbb{N} \to \mathbb{Z} \text{ es una función monótona decreciente}\}$ no es un conjunto enumerable.
- 20. Sean A, B, C, D conjuntos infinitos tales que $A \approx C$ y $B \approx D$. Demuestre que los siguientes conjuntos son equinumerosos:

$$\{f \mid f: A \to B \text{ es una función}\}\ \ y\ \ \{g \mid g: C \to D \text{ es una función}\}$$

- 21. Sea $\{0,1\}^{\omega}$ el conjunto de los strings infinitos de la forma $a_0a_1a_2a_3\cdots$, donde cada $a_i\ (i\in\mathbb{N})$ es 0 ó 1. Demuestre que $\{0,1\}^{\omega}$ es equinumeroso con $2^{\mathbb{N}}$.
- 22. Sea $\mathcal{I} = \{A \subseteq \mathbb{N} \mid A \text{ es infinito y } (\mathbb{N} \setminus A) \text{ es infinito} \}$. Por ejemplo, el conjunto P de los número pares está en \mathcal{I} , ya que P es infinito y su complemento $(\mathbb{N} \setminus P)$, los números impares, también es infinito. Demuestre que \mathcal{I} y $2^{\mathbb{N}}$ son equinumerosos.
- 23. Sea $\mathcal{T} = \{R \mid R \text{ es un orden total sobre } \mathbb{N}\}$. Demuestre que \mathcal{T} y $2^{\mathbb{N}}$ son equinumerosos.
- 24. Sea $\mathcal{E} = \{ \sim \mid \sim \text{ es una relación de equivalencia sobre } \mathbb{N} \}$. Demuestre que \mathcal{E} y $2^{\mathbb{N}}$ son equinumerosos.
- 25. Demuestre que los siguientes conjuntos de números reales son equinumerosos: [0,1] y $[0,1] \setminus \{\frac{1}{2}\}$.
- 26. Demuestre que los siguientes conjuntos de números reales son equinumerosos: (0,1) y [0,1], (0,1] y [0,1).

- 27. Demuestre que \mathbb{R} es equinumeroso con $(\mathbb{R} \setminus \mathbb{N})$.
- 28. Demuestre que $\mathbb R$ es equinumeroso con $\mathbb R \times \mathbb R$.
- 29. Una recta en el plano real $\mathbb{R} \times \mathbb{R}$ se define como $\{(x,y) \mid y=ax+b\}$, donde a y b son elementos fijos en \mathbb{R} . Demuestre que un número enumerable de rectas no puede cubrir el plano real.