On the Subject of Not Complicated Wires

These wires are just like the others. They have stripes! That makes them exactly the same. The good news is that we've found a stupid set of trickeries on what to do about it! Maybe too stupid...

Look at each wire: there is an LED below the wire and a space for a \star symbol above the wire.

A '★' symbol or lit LED represents a 1; a blank space or unlit LED represents a 0, and each wire represents a logic operation.

For each wire, evaluate the operation, and only cut the wire if it returns a 1.

See Appendix L for logic operation descriptions.

^{*} IMPLIES means TOP implies BOTTOM.

Appendix L: Logic Operations

The table below describes logic operations that are used by various modules, and provides truth tables showing the output for each pair of inputs.

Operation	Description	L	R	Output
. p		0	0	0
OR (v)	Outputs 1 if any input is 1.	0	1	1
		1	0	1
	et e	1	1	1
		0	0	0
AND (∧)	Outputs 1 if all inputs are 1.	0	1	0
		1	0	0
		`1	1	1
XOR (⊻)	Outputs 1 if <u>exactly one</u> input is 1.	- 0	0	0
		0	1	1
		1	0	1
		1	1	0
		0	0	1
NOR (↓)	Outputs 0 if any input is 1.	0	1	0
	Equivalently, outputs 1 if all inputs are 0.	1	0	0
		1	1	0
		0	0	1
NAND (r or	Outputs 0 if <u>all</u> inputs are 1.	0	1	1
1)	Equivalently, outputs 1 if any input is 0.	1	0	1
		1	1	0
XNOR (↔)	Outputs 1 if the inputs are equal.	0	0	1
		0	1	0
		1	0	0
		1	1	1
	Outputs 1 unless the first input is 1 and the	0	0	1
IMPLIES (→)	second input is 0.	0	1	1
-	Equivalently, outputs 1 if the first input is 0	1	0	÷ 0,-
(5)	or the second input is 1.	1	1	1