Canonic Neural Network Models

吴思 心理与认知科学学院 IDG/McGovern 脑科学研究所 北大-清华联合生命科学中心 北京大学

Attractor Neural Networks

- Networks of various types/structures, formed by large numbers of neurons, are the substrate of brain functions.
- The brain carries out computation by updating network states in response to external inputs.
- The stationary states, i.e., attractors, of networks encode the stimulus information.

Part I. Hopfield Model

Persistent Activity in Working Memory

The Hopfield Model

- ➤ An attractor model
- The simplest model captures the computation of a network
- A model for associative memory—content-addressable memory
- > Should be the Amari-Hopfield model

The mathematical formulation

 $S_i = \pm 1$: the neuronal state

 w_{ii} : the neuronal connection

The network dynamics:

$$S_i = \text{sign}\left(\sum_j w_{ij} S_j - \theta\right)$$
, sign $(x) = 1$, for $x > 0$; -1, otherwise

Updating rule: synchronous or asycchronous

The Energy Function

Energy function:
$$E = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j + \theta \sum_i S_i$$

Consider S_i is updated, $S_i(t+1) = sign[\sum_j w_{ij} S_j(t) - \theta]$

$$\Delta E = E(t+1) - E(t)$$

$$= -[S_i(t+1) - S_i(t)] \sum_j w_{ij} S_j(t) + \theta [S_i(t+1) - S_i(t)]$$

$$= -[S_i(t+1) - S_i(t)] [\sum_j w_{ij} S_j(t) - \theta]$$

$$\leq 0$$

The case of one pattern

Consider the network stores only one pattern, ξ_i , for i = 1,...N

Setting $w_{ij} = \frac{1}{N} \xi_i \xi_j$: analogy to the Hebb rule

The memory pattern is always stable:

$$\operatorname{sign}\left(\sum_{j} w_{ij} \xi_{j}\right) = \operatorname{sign}\left(\xi_{i}\right) = \xi_{i}$$

The attracting basin

The case of many patterns

Consider the network stores p pattern, ξ_i^{μ} , for $\mu=1,...p$; i=1,...N

Setting
$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu}$$

The stability condition of a particular memory pattern:

$$sign(h_i^v) = \xi_i^v$$
, for all i ,

$$h_i^{v} = \sum_{j} w_{ij} \xi_j^{v} = \frac{1}{N} \sum_{j} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{v}$$

$$= \xi_i^{v} + \frac{1}{N} \sum_{i} \sum_{\mu \neq v} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{v}$$

The error comes from the cross—talk term,

$$\frac{1}{N} \sum_{i} \sum_{\mu \neq v} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{\nu},$$

which is due to pattern correlation.

The capacity for storing random patterns

Consider the network stores p random pattern, ξ_i^{μ} , for $\mu=1,...p$; i

$$= 1, \dots N$$

The stable condition of a particular memory pattern:

$$sign(h_i^v) = \xi_i^v$$
, for all i ,

$$h_{i}^{v} = \xi_{i}^{v} + \frac{1}{N} \sum_{j} \sum_{\mu \neq v} \xi_{i}^{\mu} \xi_{j}^{\mu} \xi_{j}^{v}$$

$$h_i^{v} \xi_i^{v} = 1 - C_i^{v}$$

$$C_{i}^{v} = -\xi_{i}^{v} \frac{1}{N} \sum_{j} \sum_{\mu \neq v} \xi_{i}^{\mu} \xi_{j}^{\mu} \xi_{j}^{v}$$

The error occurs when $C_i^{\nu} > 1$

$$P_{error} = \text{Prob}(C_i^{v} > 1)$$

In the limit of large N & p, $Prob(C_i^v)$ satisfies a Gassian distribution with zero mean and variance $\sigma^2 = p/N$. Thus,

$$P_{error} = \frac{1}{\sqrt{2\pi}\sigma} \int_{1}^{\infty} e^{-x^{2}/2\sigma^{2}} dx$$

$P_{ m error}$	p_{max}/N
0.001	0.105
0.0036	0.138
0.01	0.185
0.05	0.37
0.1	0.61
	10.00

Neural Encoding of Motion Direction

Activities of macaque Middle Temporal (MT) neurons (TD Albright 1984)

Neural Population Code

Individual neurons:

- Preferred feature value
- Bell-shape tuning function

Firing rate

A neural population:

- Overlapped tuning functions covering the whole space
- Largely independent responses

Neuron Index

Population Code for Moving Direction

- ➤In the experiment, the monkey was guided to move the lever in the center of apparatus to one of eight peripheral locations.
- Neural activities in the motor area were recorded.

Mental rotation in the premotor cortex

A. Georgopoulos et al., science, 1993

Discrete vs. Continuous Attractors

Discrete attractor

1D continuous attractors

For line attractor

- The steady states of the system form the valley, a one-dimensional parameter space.
- The system is neutrally stable along the attractor space, i.e., no resistance when the system moving along the valley.

A little bit of dynamical system

Fixed point and stability

$$\frac{dx}{dt} = f(x)$$

$$x^* : \text{ fixed point, if } f(x^*) = 0$$

A little bit of dynamical system

 $\eta = x - x^*$: a small perturbation away from the fixed point Linearizing the dynamics around the fixed point

$$\frac{d\eta}{dt} = \frac{dx}{dt} = f(x^* + \eta)$$

$$= f(x^*) + \eta \nabla f(x^*) + O(\eta^2)$$

$$\approx \eta \nabla f(x^*)$$

The fixed point is unstable, if $\nabla f(x^*) > 0$ The fixed point is stable, if $\nabla f(x^*) < 0$ Around the fixed point,

$$\eta(t) \approx \eta(t=0)e^{\nabla f(x^*)t} = \eta(t=0) \exp\left[\frac{sign(\nabla f(x^*))t}{|1/\nabla f(x^*)|}\right]$$
 $|1/\nabla f(x^*)| \text{ is the time constant}$

Continuous Attractor Neural Network (CANN)

$$\tau \frac{\partial U(x,t)}{\partial t} = -U(x,t) + \rho \int dx' J(x-x') r(x',t) + I^{ext}(x,t)$$

$$r(x,t) = \frac{U(x,t)^{2}}{1+k\rho \int dx' U(x',t)^{2}}; \quad J(x-x') = \frac{J}{\sqrt{2\pi a}} \exp\left[-\frac{(x-x')^{2}}{2a^{2}}\right]$$

Key Structure:

- Bell-shaped recurrent connection strength
- Translation-invariant connection pattern
- Global divisive normalization

Key Mathematic Properties:

- Recurrent positive-feedback generates attractor, retaining input information
- Divisive normalization avoids exploration
- Translation-invariance ensures many attractors

References: 1. Amari, 1977, 2. Ben-Yishai et al., 1995, 3. Zhang, 1996, 4. Seung, 1996,

5. Deneve et al, 1999, 6. Wu et al, 2002, 2005, 2008, 2010, 2012

1D CANN for Head-direction in Fruit fly

A Continuous Family of Stationary States

$$\overline{U}(x \mid z) = \frac{A\rho J}{\sqrt{2}} \exp\left[-\frac{(x-z)^2}{4a^2}\right]$$

$$\overline{r}(x \mid z) = A \exp\left[-\frac{(x-z)^2}{4a^2}\right]$$

$$0.04$$

$$0.02$$

$$0.02$$

Stability Analysis (1)

Consider small fluctuations around a stationary state at z:

$$\delta U(x \mid z) = U(x \mid z) - \overline{U}(x \mid z)$$

$$\tau \frac{\partial \delta U(x|z)}{\partial t} = -\delta U(x|z) + \rho \int dx' J(x,x') \delta r(x'|z)$$
$$= -\delta U(x|z) + \int dx' F(x,x') \delta U(x')$$

Where

$$F(x,x') = \int dx \, \rho J(x,x') \frac{\partial \overline{r}(x''|z)}{\partial \overline{U}(x'|z)}$$

Stability Analysis (2)

$$\tau \frac{\partial \delta \mathbf{U}}{\partial t} = -(\mathbf{I} - \mathbf{F}) \delta \mathbf{U}, \qquad \delta \mathbf{U} = \{\delta U(x|z)\}, \text{ for all } x$$

Projecting $\delta \mathbf{U}$ on the *i*th right eigenvector of \mathbf{F} $(\delta \mathbf{U})_i(t) = (\delta \mathbf{U})_i(0)e^{-(1-\lambda_i)t/\tau}$

Two cases:

- 1. If λ_i < 1, the projection decays exponentially;
- 2. If $\lambda_i = 1$, the projection is sustained.

Spectra of the Kernel F

$$F(x, x'|z) = \frac{AJ^2\rho^2}{B\sqrt{\pi}a}e^{-(x-x')^2/2a^2} - \frac{kA^3\rho^5J^4}{\sqrt{3}B^2}e^{-(x-z)^2/4a^2}e^{-(x'-z)^2/4a^2}$$

•
$$\lambda_0 = 1 - 2k\rho A\sqrt{2\pi}a < 1$$
, $\mathbf{u}_0(x \mid z) = \overline{\mathbf{U}}(x \mid z)$;

•
$$\lambda_1 = 1$$
,

$$\mathbf{u}_1(x \mid z) = \frac{d\mathbf{U}(x \mid z)}{dz}$$
, the tangent of the valley

$$\bullet \lambda_n = \frac{1}{2^{n-2}},$$

$$\mathbf{u}_n(z) = \text{Combination of } \mathbf{v}_n(z)$$

 $\mathbf{v}_n(z) \sim e^{-(c-z)^2/4a^2} \left(\frac{d}{dc}\right)^n e^{-(c-z)^2/2a^2}$, the wave functions of quntumn harmonic osscilator

Note the decay time constant is : $\frac{\tau}{1-\lambda_n}$

Physical meaning of basis functions

$$\mathbf{v}_n(z) \sim e^{-(c-z)^2/4a^2} \left(\frac{d}{dc}\right)^n e^{-(c-z)^2/2a^2}$$

The landscape of CANN

Contributions of motion modes

Simplifying Network Dynamics: Projection Method

Consider

$$U(x,t) = \overline{U}(x \mid z(t)) + \sum_{n=0}^{\infty} a_n(t) v_n(x \mid z(t))$$

The perturbative equation for $a_n(t)$

$$\left(\frac{d}{dt} + \frac{1 - \lambda_n}{\tau}\right) a_n = \frac{I_n}{\tau} - \left[U_0 \sqrt{(2\pi)^{1/2} a} \delta_{n1} + \sqrt{n} a_{n-1} - \sqrt{n+1} a_{n+1}\right] \frac{1}{2a} \frac{dz}{dt} + \frac{1}{\tau} \sum_{r=1}^{\infty} \sqrt{\frac{(n+2r)!}{n!}} \frac{(-1)^r}{2^{n+3r-1} r!} a_{n+2r} \tag{1}$$

The peak position

$$\frac{dz}{dt} = \frac{2a}{\tau} \frac{I_1 + \sum_{n=3,odd}^{\infty} \sqrt{\frac{n!!}{(n-1)!!}} I_n + a_1}{U_0 \sqrt{(2\pi)^{1/2} a} + \sum_{n=0,even}^{\infty} \sqrt{\frac{(n-1)!!}{n!!}} a_n} \tag{2}$$

1D Projection

Project the network dynamics on $\mathbf{v}_1(t)$

$$\tau \frac{\partial \mathbf{U} * \mathbf{v}_1}{\partial t} = -\mathbf{U} * \mathbf{v}_1 + (\mathbf{J} * \mathbf{r}) * \mathbf{v}_1 + \mathbf{I}^{ext} * \mathbf{v}_1$$

Consider

$$I^{ext}(t) = \alpha \overline{U}(x \mid z_0) + \sigma \xi_c(t)$$

$$\mathbf{U} * \mathbf{v}_1 \equiv \int_{x} dx U(x \mid z) v_1(x \mid z)$$

1D dynamics for position movement

$$\tau \frac{dz}{dt} = -\alpha (z - z_0) e^{-(z - z_0)^2 / 8a^2} + \beta \xi(t)$$

1st term: the force of the signal that pulls the bump back to the stimulus position

2nd term: random shift

Tracking Behaviours (1)

■ Tracking a moving stimulus

Smooth Tracking by a CANN

The tracking property

Define
$$s = z_0 - z$$

$$\frac{ds}{dt} = \frac{dz_0}{dt} - \frac{dz}{dt}$$

$$= v - \frac{\alpha s}{\tau} e^{-s^2/8a^2}$$

$$= v - g(s)$$

Condition for successful tracking:

$$v = g(s)$$

Tracking Behaviours (2)

■ Reaction time:

How long it takes for the network to catch up an abrupt stimulus change.

Logarithm Reaction Time (small rotation angle)

$$\tau \frac{dz}{dt} = -\alpha (z - z_0) e^{-(z - z_0)^2 / 8a^2} + \beta \xi(t)$$

When $|z-z_0| << a$, and noise small

$$\tau \frac{dz}{dt} = -\alpha(z - z_0)$$

$$T = \frac{\tau}{\alpha} \ln|z_0| + const$$

Logarithm reaction time of mental rotation?

Backward Alignment

Figure 1. Response time and percentage of errors as a function of angular deviation from preceding orientation for same number, same-digits, and different-digits sequences (Experiment 1).

- A. Koriat & J. Norman (1989)
- J. Experimental Psychology

Efficient population decoding via a CANN

A CANN achieves template-matching, a statistical efficient decoding strategy

Deneve et al. 1999 Wu at al. 2002

Template Matching

$$\tau_{s} \frac{\partial U(x,t)}{\partial t} = -U(x,t) + \rho \int dx' J(x,x') r(x',t) + \varepsilon I^{ext}(x,t)$$

For small inputs, the final position

$$\hat{z} = \max_{z} \int dx \bar{U}(x \mid z) I^{ext}(x)$$

Performance of template-matching

•MLI for independent Gaussian noise

For independent Gaussian noises,

$$p(\mathbf{r} \mid z) = \prod_{i} p(r_i \mid z) \propto \prod_{i} \exp[-(r_i - f_i(z))^2 / 2\sigma^2]$$

Thus

$$\hat{x} = \max_{z} \log p(\mathbf{r} \mid z)$$

$$= \max_{z} \sum_{i} -[r_{i} - f_{i}(z)]^{2}$$

$$= \max_{z} \sum_{i} r_{i} f_{i}(z)$$
Template-matching

To get the last equality, we have used the condition

 $\sum_{i} f_i(z) \approx \text{constant}$, which is true when the number of neuron is large

Sequential Bayesian Decoding

The Decoding Procedure

Step 1:
$$\hat{x}_t$$
 (When $t = 1$, Maximum Likelihood)

Step 2: Gaussian Prior:
$$P(x) = e^{-(x-\hat{x}_t)^2/2\tau_t^2}/(\sqrt{2\pi} \tau_t)$$

Step 3:
$$\hat{x}_{t+1}$$
 (Maximum a Posterior)

Step 4: Repeat Step 2

The optimal result

$$\Omega_t^2 = \frac{1}{t} \Omega_1^2$$

$$@ \tau_t^2 = \frac{1}{t} \cdot \frac{1}{-\nabla \nabla \ln P(\mathbf{r} \mid x)}$$

Fast Hebbian learning improves decoding

$$\begin{split} J(x,x',t) &= J_0(x,x') + W(x,x',t) \\ \tau \frac{dW(x,x',t)}{dt} &= -W(x,x',t) + \lambda r(x) r(x') \end{split}$$

The asymmetric correlation

The correlation between neural response variability

$$R(x, y) = \langle (r(x) - \langle r(x) \rangle)(r(y) - \langle r(y) \rangle) \rangle$$

$$R(x, y) \propto (x - z)(y - z)e^{-(x - z)^2/2a^2}e^{-(y - z)^2/2a^2}$$

Neural Signature of a CANN

Wu et al, Neural Computation 2008 Ponce-Alvarez et al., PNAS 2013 Wimmer et al., Nature Neuroscience, 2014

Head-direction neurons

Head-direction neurons in the limbic system

A CANN for Head-direction Representation

$$\tau \frac{\partial U(x,t)}{\partial t} = -U(x,t) + \rho \int dx' J(x-x',t) r(x',t)$$

r(x,t) = F[U(x,t)], F: a sigmoid function

$$J(x-x',t) = W(x-x') + v(t)\tau \nabla W(x-x')$$

W(x-x'): symmetric; $\nabla W(x-x')$: asymmetric

v(t): the rotating speed

Suppose $\overline{\mathrm{U}}(x \mid z)$ is the static solution when v(t) = 0,

Then
$$\overline{\mathbf{U}}(x \mid z(t))$$
 with $z(t) = z_0 + \int_0^t v dt$ is the moving solution

2D CANN for Spatial Navigation

Samnovich, CANN, Scholarpedia

CANN for a General Feature

View-based object representation

Logothetis, Pauls & Poggio, 1995

Beyond Simple Features

Hopfield model for correlated patterns

$$W_{ij} = \frac{1}{N} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

Novelty-facilitated Hebb learning

Pattern Demonstration

$$W_{ij} = \frac{1}{N} \sum_{\mu} w_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$W_{\mu} \rightarrow W_{\mu} + \eta H$$

H: the Hamming distance between the input pattern and the memorized one

An orthogonal learning method

Algorithm 1(Orthogonal Learning Method):

- 1, select P patterns ζ^{-1} , ζ^{-2} ,..., ζ^{-P}
- 2, orthogonalize P patterns according to $\eta^{p+1}=\xi^{p+1}-\sum_{\mu=1}^r\hat{\eta}^\mu\hat{\eta}^\mu\xi^{p+1}$
- 3, calculate connection matrix $W_{ij}=\sum_{\mu=1}^P(\hat{\eta}_i^\mu\hat{\eta}_j^\mu-\delta_{ij}\hat{\eta}_i^\mu\hat{\eta}_i^\mu)$
- 4, update neuron state $S_i(t+1) = sign(\sum_i W_{ij}S_j)$

Two key operations: orthogonalizing (pattern segregation, Dental Gyrus) + novel detection (CA1).

Learning a CANN from Continuous Morphed Patterns (discrete dynamics)

Learning a CANN from Continuous Morphed Patterns (continuous dynamics)

$$\tau \frac{dV_i}{dt} = -V_i + \sum_j W_{ij}g(V_i) + I_i$$

Neural correlation in the sematic sense

Learning CANNs from Images Linked by a Continuous Feature

Learning a CANN from continuously rotating chairs (Mental Rotation)

A CANN encodes similarity between objects

- Categorization of objects is based on the similarity between objects in sematic sense.
- The similarity between objects is encoded by the overlap/correlation between neural representations of objects; via synaptic plasticity, correlated neural representations are encoded in CANNs.
- Current AI mainly focuses on classification.
- The implications of the dynamics of CANNs?

References

- 1. **Wu, S.**, Wong, KYM., Fung, CCA., Mi, Y., and Zhang, W. (2016). Continuous attractor neural networks: candidate of a canonical model for neural information representation. **F1000 Invited Review**, 66(16), 209-226.
- 2. C. C.Fung, K.Y.Michael Wong and **S. Wu** (2010). A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks. **Neural Computation**, v.22, p.752-792.
- S. Wu (2007). Behaviour Signatures of Continuous Attractors. International Conference on Cognitive Neurodynamics (ICCN'07).
- 4. **S. Wu** and S. Amari (2005). Computing with Continuous Attractors: Stability and On-Line Aspects. **Neural Computation**, v.17, 2215-2239.
- 5. **S. Wu**, S. Amari and H. Nakahara. (2002). Population Coding and Decoding in a Neural Field: A Computational Study. **Neural Computation**, v14, no.5, p.999-1026.