

图 1: JAM 的 $x(\Delta \bar{u} - \Delta \bar{d})$ 曲线

现在计算极化的海夸克: $\Delta \bar{u} - \Delta \bar{d}$,首先是和 JAM 给出的曲线,图 1,比较

对于这个曲线我们只需要考虑 π^+ 的 kr 图,因此只有 $-x\bar{d}$,计算结果 为图 2,图里的 band 是图 1 中的 JAM 结果,存在的震荡应该是 mma 画图的问题这个之后我调整一下。

可以看到曲线符合的还比较好。但是计算积分的结果差别比较明显,因为我目前计算展开中 kr 图没有 π^0 耦合的顶点也就没有 \bar{u} 夸克,如果计算积分为

$$\int_{0.01}^{1} dx \Delta \bar{u}$$

$$\int_{0.01}^{1} dx \Delta \bar{d}$$

JAM 这篇文章里的结果是:

$$\int_{0.01}^{1} dx \Delta \bar{u} = 0.044$$
$$\int_{0.01}^{1} dx \Delta \bar{d} = -0.056$$

而我目前算的结果中 \bar{u} 夸克的结果是 0, \bar{d} 夸克的结果是-0.115304, 也 就是

图 2: 曲线为不同 Λ 的计算结果, band 为上述 JAM 结果

$$\int_{0.01}^{1} dx \Delta \bar{u} = 0$$

$$\int_{0.01}^{1} dx \Delta \bar{d} = -0.115$$

如果考虑 δ 项也就是

$$\int_0^1 dx \Delta \bar{u}$$
$$\int_0^1 dx \Delta \bar{d}$$

那么需要加上 tadpole 图的贡献,最后结果是

$$\int_0^1 dx \Delta \bar{u} = 0$$

$$\int_0^1 dx \Delta \bar{d} = -0.0126$$