Прикладные модели оптимизации

Практическая работа № 3

Задание

	A1, A2 ⊆ U
13	 $x_1 + 6x_2 \rightarrow \min$

$x_1 + 2x_2 \le 10$ $3x_1 - 3x_2 \ge 6$ $2x_1 + 3x_2 \le 6$ $3x_1 + x_2 \ge 4$ $x_1 \cdot x_2 \ge 0$	No	ФИО	Задание
$2x_1 + 3x_2 \le 6$ $3x_1 + x_2 \ge 4$			$x_1 + 2x_2 \le 10$
$3x_1 + x_2 \ge 4$			$3x_1 - 3x_2 \ge 6$
			$2x_1 + 3x_2 \le 6$
v. v. > 0			$3x_1 + x_2 \ge 4$
X ₁ ,X ₂ ≥ 0			$x_1, x_2 \ge 0$

1. Найти оптимальное решение задачи линейного программирования с использованием симплекс-метода в Excel и на Python. Привести графическую

интерпретацию результатов решения задачи.

2. (Творческое) Придумать ситуацию, для которой подойдет математическая модель (написать содержательную постановку задачи).

Условие:

$$x1 + 6x2 \rightarrow \min$$

$$x1 + 2x2 \le 10$$

$$3x1 - 3x2 \ge 6$$

$$2x1 + 3x2 \le 6$$

$$3x1 + x2 \ge 4$$

$$x1, x2 \ge 0$$

1-я часть задания:

Решение вручную с использованием симплекс-метода в Excel:

	A	В	С	D	Е	F	G	Н	
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio
2	s1	1	2	1	0	0	0	10	
3	s2	3	-3	0	1	0	0	6	
4	s3	2	3	0	0	1	0	6	
5	s4	3	1	0	0	0	1	4	
6	z	-1	-6	0	0	0	0		
7									

Выполнение симплекс-метода:

Определение вводимой переменной: это переменная с наибольшим отрицательным коэффициентом в строке z. В нашем случае это x2. Вычисление отношения для каждой строки: разделим RHS на коэффициент в столбце вводимой переменной (только если коэффициент положительный). Запишем результаты в столбец "Ratio".

Определение исключаемой переменной: это строка с минимальным положительным значением в столбце "Ratio".

Использование метода Гаусса-Жордана для пересчета таблицы так, чтобы ведущая ячейка стала равной 1, а все другие значения в ведущем столбце стали равными 0.

Нужно повторять шаги 1-4 до тех пор, пока все коэффициенты в строке z не станут неотрицательными.

Шаг 1: Определение вводимой переменной.

Ищем наибольший отрицательный коэффициент в строке z. В нашем случае это x2 с коэффициентом -6.

	А	В	С	D	Е	F	G	Н	1
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio
2	s1	1	2	1	0	0	0	10	
3	s2	3	-3	0	1	0	0	6	
4	s3	2	3	0	0	1	0	6	
5	s4	3	1	0	0	0	1	4	
6	z	-1	-6	0	0	0	0		
7									
8									

Шаг 2: Вычисление отношения для каждой строки.

	А	В	С	D	E	F	G	Н	1	
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio	
2	s1	1	2	1	0	0	0	10	=H2/C2]
3	s2	3	-3	0	1	0	0	6		
4	s3	2	3	0	0	1	0	6		
5	s4	3	1	0	0	0	1	4		
6	z	-1	-6	0	0	0	0			
7										
8										

Получаем:

	A	В	С	D	E	F	G	Н	1	J
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio	
2	s1	1	2	1	0	0	0	10	5	
3	s2	3	-3	0	1	0	0	6	N/A	-2
4	s3	2	3	0	0	1	0	6	2	
5	s4	3	1	0	0	0	1	4	4	
6	z	-1	-6	0	0	0	0			
7										

Шаг 3: Определение исключаемой переменной.

Ищем минимальное положительное значение в столбце I (Ratio). Это ячейка I3. Следовательно, строка 3 (s2) будет исключаемой.

	А	В	С	D	Е	F	G	Н	1	J
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio	
2	s1	1	2	1	0	0	0	10	5	
3	s2	3	-3	0	1	0	0	6	N/A	-2
4	s3	2	3	0	0	1	0	6	2	
5	s4	3	1	0	0	0	1	4	4	
6	z	-1	-6	0	0	0	0			
7										
8										

Шаг 4: Применение метода Гаусса-Жордана.

Сначала преобразуем ведущую строку так, чтобы ведущая ячейка (С2) стала равной 1. Для этого разделите всю строку 2 на значение в ячейке С2. Получаем:

	J	К	L	М	N	0	Р	
5	0,5	1	0,5	0	0	0	5	
_	-2							
2								
4								

	^		D			-		-	-				v		0.0	NI.			_
ο.	A	x1	В	c x2	s1	s2	s3	F	G	RHS	Ratio	J	K	L	M	N	0	Р	
	asis 1	XI	1		2	1	0	0	0		10	5 0,5	1	1 0,5		0	0	0	_
2			3		-3	0	1	0	0		6 "N/A"	-2	2	0,5					_
	3		2		3	0	0	1	0		6	2							
1			3		1	0	0	0	1		4	4							
		-	-1		-6	0	0	0	0										
		-						-											
		-					-	-									-	-	
	neu	оси	M	บลน	ения														
	pen	OCH	IVI J																
		Α			В	(D		E		F	G		Н			
	Dania																		
	Basis		X.	L		x2		s1			s2	s3		s4	r	RHS		Ratio	
	s1				0,5		1			0,5		0	0		0		5		
	s2				3		-3			0		1	0		0		6	"N/A"	
	s3				2		3			0		0	1		0		6		
	s4				3		1			0		0	0		1		4		
	z				-1		-6			0		0	0		0				
			_		-1		-0			U		U	U		U				
.]					оста.														
	A		В	С		E			G			J	K	L	М	N	0	P	_
	asis 1	x1	0,5	x2	s1 1	s2 0,5	s3 0	0	0	RHS	Ratio 5	5 0,5		1 0,5		0	0	0	- 5
	2		3		-3	0	1	0	0		6	2 4,5		0,5			0	0	21
3	3		2		3	0	0	1	0		6	2 0,5		-1,5			1	0	-9
,4	4		3		1	0	0	0	1		4	4 2,5		-0,5		0	0	1	-1
			-1		-6	0	0	0	0										
	A	В		С	D	E				Н	1	J	K	L	М	N	0	P	
	sis	B x1		(2	s1	s2	s3	s4	R	H	Ratio								
	sis		0,5	k2	s1 0	s2 1,5	s3 0	s4 0	0 R		Ratio 5	0,5	1	0,5	0	0	0	5	1
	asis			(2	s1 0 1	s2 ,5 ,5	s3	s4	0 0		Ratio 5 21 #DIV/0!	0,5 4,5				0		5 21	1
	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5	0,5	1 0	0,5 1,5	0	0 0 1	0	5 21 -9	
	asis		0,5 4,5 0,5	(2 (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,5 ,5	s3 0 1 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0 0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
2	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	
a: 1 2 3 4	asis		0,5 4,5 0,5 2,5	(2 : (s1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s2 ,,5 ,,5	s3 0 1 0 0	s4 0 0 1	0 0 0		Ratio 5 21 #DIV/0!	0,5 4,5 0,5	1 0 0	0,5 1,5 -1,5	0 1 0	0 0 1	0	5 21 -9	

Шаг 5: Проверка условия оптимальности. Посмотрим на строку z (строка 6). Если все коэффициенты в этой строке неотрицательны, то текущее базисное решение оптимально. В нашем случае нет, нужно вернуться к шагу 1 и продолжить итерации.

D	12 (\$ × ✓	f_X													
И	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio							
2	s1	0,5	1	0,5	0	0	0	5	10	0,5	1	0,5	0	0	0	5
3	s2	4,5	0	1,5	1	0	0	21	4,666667	4,5	0	1,5	1	0	0	21
4	s3	0,5	0	-1,5	0	1	0	-9	-18	0,5	0	-1,5	0	1	0	-9
5	s4	2,5	0	-0,5	0	0	1	4	1,6	2,5	0	-0,5	0	0	1	4
6	z	-1	-6	0	0	0	0									
7																
8																
9																
10																

/	A	В	С	D	Е	F	G	Н	1
1	Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio
2	s1	1	2	1	0	0	0	10	
3	s2	3	-3	0	1	0	0	6	
4	s3	2	3	0	0	1	0	6	
5	s4	3	1	0	0	0	1	4	
6	z	-1	-6	0	0	0	0	0	
7									
_		İ							

Результаты таблиц симплекс-метода после каждой итерации:

_	
1	

Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio		
z	-1	-6	0	0	0	0	0	-		
s1	1	2	1	0	0	0	10	-	3	2
s2	3	-3	0	1	0	0	6	-	6	-6
s3	2	3	0	0	1	0	6	-	4	6
s4	3	1	0	0	0	1	4	-	21	13

2:

Basis	x1	x2	s1	s2	s3	s4	RHS	Ratio		
z	3	0	0	0	2	0	12	-		
s1	-0,333333333	0	1	0	-0,666667	0	6	5	-0,333333	0
s2	5	0	0	1	1	0	12	inf	-10	0
x2	0,66666667	1	0	0	0,333333	0	2	2	-1,333333	-2
s4	2,333333333	0	0	0	-0,333333	1	2	4	2,333333	0
								<u>l</u>		

•	
,	
٦	

Basis	x1	x2		s1	s2		s3	s4	RHS	Ratio							
s1		0	0		0	0	2,4285	71 -1,285	9,42857	L -			#DIV/0!				
s2		0	0		1	0	-0,714	29 0,1428	6,28571	inf	0	0	#DIV/0!	0	-0,71429	0,142857	6,285714
s3		0	0		0	1	1,7142	86 -2,142	36 7,71428	2,4	0	0	#DIV/0!	1	1,714286	-2,14286	7,714286
s4		0	1		0	0	0,4285	71 -0,285	1,42857	. 3	0	1	#DIV/0!	0	0,428571	-0,28571	1,428571
z		2	0		0	0	-0,142	86 0,4285	0,85714	0,857143	2	0					

Теперь у нас в столбце С все значения, кроме ячейки С5 равны нулю. Это значит, что мы успешно преобразовали таблицу с помощью метода Гаусса-Жордана, и теперь у нас есть новое базисное решение! Оптимальное значение функции: 2.0

Оптимальные значения переменных: x1 = 2, x2 = 0

Решение с использованием симплекс-метода на

Python:

Вручную:

```
Код:
```

```
import numpy as np
# Коэффициенты целевой функции
c = np.array([1, 6, 0, 0, 0, 0])
# Матрица ограничений
A = np.array([
    [1, 2, 1, 0, 0, 0],
    [3, -3, 0, -1, 0, 0],
    [2, 3, 0, 0, 1, 0],
    [3, 1, 0, 0, 0, -1]
])
# Правые части ограничений
b = np.array([10, 6, 6, 4])
# Базисные переменные
basis = [2, 3, 4, 5]
while True:
    # Вычисляем потенциалы
    potentials = c[basis] @ np.linalg.inv(A[:, basis])
    # Вычисляем оценки
    deltas = potentials @ A − c
    # Если все оценки неотрицательны, то решение
оптимально
    if all(d >= 0 for d in deltas):
        break
    # Выбираем входящую переменную (с наибольшей
отрицательной оценкой)
    j0 = np.argmin(deltas)
    # Вычисляем минимальное отношение
    z = np.linalg.inv(A[:, basis]) @ b
    q = np.linalg.inv(A[:, basis]) @ A[:, j0]
    theta = [z[i] / q[i] if q[i] > 0 else float('inf')
```

```
for i in range(len(q))]
    i0 = np.argmin(theta)
    # Обновляем базис
    basis[i0] = j0
# Вычисляем оптимальное решение
x = np.zeros_like(c)
x[basis] = np.linalg.inv(A[:, basis]) @ b
print("Оптимальное значение целевой функции:", с @ x)
print("Оптимальные значения переменных: x1 = x_0, x_0, ",
x2 = ", x[1])
Результат работы программы:
/Users/andrey/Documents/PyCharm/pythonProject/bin/
python /Users/andrey/Documents/PyCharm/pythonProject/
main.py
Оптимальное значение целевой функции: 2
0птимальные значения переменных: x1 = 2 , x2 = 0
Process finished with exit code 0
Упрощённый вариант:
Код:
from scipy.optimize import linprog
# Коэффициенты целевой функции
c = [1, 6]
# Матрица коэффициентов ограничений
A = [
             # ДЛЯ x1 + 2x2 ≤ 10
    [1, 2],
               # для -3x1 + 3x2 ≤ -6 (преобразовано из
    [-3, 3],
3x1 - 3x2 \ge 6)
    [2, 3],
                 # ДЛЯ 2x1 + 3x2 \le 6
    [-3, -1] # для -3x1 - x2 \le -4 (преобразовано из
3x1 + x2 \ge 4)
```

Вектор правых частей ограничений

```
b = [10, -6, 6, -4]
# Ограничения на переменные
x0 bounds = (0, None) \# x1 \ge 0
x1 \text{ bounds} = (0, \text{None}) \# x2 \ge 0
# Решение задачи линейного программирования
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds,
x1 bounds], method='highs')
print(f'Оптимальное значение целевой функции: {res.fun}')
print(f'Оптимальные значения переменных: x1 = \{res.x[0]\},
x2 = \{res.x[1]\}')
Результат работы программы:
/Users/andrey/Documents/PyCharm/pythonProject/bin/
python /Users/andrey/Documents/PyCharm/pythonProject/
main.py
Оптимальное значение целевой функции: 2.0
0птимальные значения переменных: x1 = 2.0, x2 = 0.0
```

Графическая интерпретация результатов решения задачи:

Разберемся с каждым ограничением по отдельности и покажем, как каждое из них влияет на допустимую область решений.

Ограничение 1: x1 + 2x2 ≤ 10

Process finished with exit code 0

Это ограничение говорит нам, что комбинация x1 и x2 должна удовлетворять условию, что сумма x1 и удвоенного x2 не превышает 10.

На графике выше светло-синяя область представляет собой допустимую область для этого ограничения. Это область, в которой условие $x1+2x2 \le 10$ выполняется.

Ограничение 2: $3x1 - 3x2 \ge 6$

Это ограничение говорит нам, что разница между утроенным х1 и утроенным х2 должна быть не менее 6.

На графике выше светло-синяя область представляет собой допустимую область для этого ограничения. Это область, в которой условие $3x1-3x2 \ge 6$ выполняется.

Давайте объединим имеющиеся ограничения:

Ограничение 3: $2x1 + 3x2 \le 6$ Это ограничение говорит нам, что комбинация x1 и x2 должна удовлетворять условию, что сумма удвоенного x1 и утроенного x2 не превышает 6.

На графике выше светло-синяя область представляет собой допустимую область для этого ограничения. Это область, в которой условие $2x1 + 3x2 \le 6$ выполняется.

Ограничение 4: $3x1 + x2 \ge 4$ Это ограничение говорит нам, что комбинация x1 и x2 должна удовлетворять условию, что сумма утроенного x1 и x2 не менее 4.

На графике выше светло-синяя область представляет собой допустимую область для этого ограничения. Это область, в которой условие $3x1+x2 \ge 4$ выполняется.

Давайте объединим имеющиеся ограничения:

Объединение всех ограничений

После того как мы рассмотрели каждое ограничение по отдельности, мы можем объединить их все вместе, чтобы увидеть общую допустимую область решений.

На графике выше светло-синяя область представляет собой допустимую область решений, которая удовлетворяет всем четырем ограничениям одновременно. Это область, в которой все ограничения выполняются одновременно.

Рассмотрим графическое представление задачи линейного программирования

Светло-синяя область представляет допустимую область, которая удовлетворяет всем ограничениям. Линии уровня (контурные линии) представляют разные значения целевой функции x1+6x2. Для определения оптимального решения графически, нам нужно найти точку в допустимой области, где значение целевой функции минимально. Поскольку мы стремимся минимизировать x1+6x2, мы ищем точку, где контурная линия целевой функции касается допустимой области и находится как можно ниже на графике.

Исходя из графика, видно, что оптимальное решение достигается в точке, где x1=2.0 и x2=0.0. В этой точке значение целевой функции равно 2.0. Таким образом:

Оптимальное значение целевой функции: 2.0

Оптимальные значения переменных: x1 = 2.0 и x2 = 0.0

2-я часть задания:

Ситуация, для которой подойдет математическая модель.

Оптимизация производства в автомобильной компании.

Автомобильная компания специализируется на производстве двух моделей автомобилей: седанов и внедорожников. Для производства одного седана требуется 1 единица стали и 2 единицы алюминия, а для производства одного внедорожника - 3 единицы стали и 3 единицы алюминия. На складе компании имеется 10 единиц стали и 6 единиц алюминия. Каждый седан приносит компании прибыль в размере 1 доллара, а каждый внедорожник - 6 долларов.

Однако есть дополнительные условия:

- 1. Из-за ограниченного количества рабочих и оборудования компания может производить не более 10 седанов в день.
- 2. Чтобы удовлетворить спрос на внедорожники, компания должна производить как минимум на 6 внедорожников больше, чем седанов.
- 3. Из-за ограниченного количества алюминия компания может производить не более 6 внедорожников в день.
- 4. Компания должна производить как минимум 4 седана в день, чтобы удовлетворить минимальный заказ.

Задача: Какое количество седанов и внедорожников компания должна производить, чтобы минимизировать свои расходы на производство, учитывая имеющиеся ресурсы и ограничения?

х1 - это количество производимых седанов, а х2 - количество производимых внедорожников.