10차 역사인

Computer Vision (CV)

- 컨벌루션 신경망을 이용하여 영상 인식(image recognition)을 수행
- 가중치를 저장하고 복원하는 방법을 학습한다.
- 전이 학습을 이해한다.
- CV 프로젝트를 수행

영상 인식이란?

• 영상 인식(image recognition)란 영상 안의 물체를 인식하거나 분류하는 것이다.

컨벌루션 신경망(CNN)

• 컨벌루션 신경망은 영상 인식에만 사용되는 것이 아니지만 생물체의 영상 처리 구조에서 힌트를 얻었다.

그림 15-2 영상 인식 시스템

Lab: 컨벌루션 네트워크 체험하기

https://transcranial.github.io/keras-js/#/

신경망을 이용한 방법은 전통적인 컴퓨터 시각 방법과 상당히 다르다

그림 10-3 전통적인 영상 인식 시스템

- 특징(features based on domain knowledge)을 사용한다.
- 특징을 수동으로 추출
- 여러 개의 특징을 사용한다.

• 특징을 가지고 물체를 분류한다.

그림 10-6 키와 밝기를 동시에 특징으로 사용한다.

• 과잉 적합

그림 10-7 과잉 적합된 분류기

그림 10-8 적절한 판단 경계선

심층 신경망을 이용한 영상 인식

그림 10-9 전통적인 영상 인식과 심층 신경망을 이용한 영상 인식

영상 인식과 컨벌로션 신경망

- 하지만 영상을 처리할 때는 더 적합한 신경망 구조가 있다. 무엇일까?
- 영상 인식에 많이 사용되는 신경망은, 우리가 앞장에서 학습하였던 컨볼루션 신경망 (CNN)이다.

그림 10-10 컨벌루션 신경망을 이용한 영상 인식

영상 인식 신경망의 구조

• 영상 인식 신경망은 다음과 같이 크게 2부분으로 구성되어 있다.

컴퓨터 시각 분야 응용의 예

^{예제}: CIFAR-10 영상 분류하기

- CIFAR는 "Canadian Institute For Advanced Research"의 약자이다.
 CIFAR-10 데이터 세트는 CIFAR 연구 소에서 CIFAR-100 데이터 세트와 함께 개발되었다.
- 데이터 세트는 (0: airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck)의 10개 부류의 컬러 영상 60,000개로 이루어진다.
- 영상의 크기는 비교적 작아서
 32×32×3 이다.

라이브러리와 데이터 세트 포함

```
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import Sequential from tensorflow.keras.layers import *

# CFAR-10 데이터 세트를 적재한다.
# 훈련 세트와 테스트 세트를 반환받는다.
(X_train, y_train), (X_test, y_test) = keras.datasets.cifar10.load_data()
```

영상 화면 표시

```
# 두 번째 영상(트럭)을 화면에 표시한다.
plt.figure()
plt.imshow(X_train[1])
plt.colorbar()
# 영상의 픽셀 값을 0에서 1 사이로 변환한다.
X_{train} = X_{train}/255.0
                                                                              250
X_{\text{test}} = X_{\text{test}}/255.0
                                      5 -
                                                                              - 200
                                     10
                                                                             - 150
                                     15
                                                                             - 100
                                     20
                                     25
                                                                             - 50
                                     30
```

15

10

20

25

실경

신경망 모델 구축

```
# 순차 모델을 구축한다.
model = Sequential()
# CNN
model.add(Conv2D(64, activation = 'relu', kernel_size = (3,3), input_shape = (32, 32, 3)))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(32, activation = 'relu', kernel_size = (3,3)))
model.add(Flatten())
# model.add(Dropout(0.5))
# FCN
model.add(Dense(80, activation = 'relu'))
model.add(Dense(10, activation = 'softmax'))
```

MaxPooling2D

신경망 모델 구축

Layer (type)	Output Shape	Param #
conv2d_5 (Conv2D)	(None, 30, 30, 64)	1792
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 15, 15, 64)	0
conv2d_6 (Conv2D)	(None, 13, 13, 32)	18464
flatten_2 (Flatten)	(None, 5408)	0
dropout (Dropout)	(None, 5408)	0
dense_4 (Dense)	(None, 80)	432720
dense_5 (Dense)	(None, 10)	810

신경망 모델 갹 — visualkeras

소실값을 그래프로 그린다.

```
# 손실값을 그래프로 그린다.
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['loss', 'val_loss'], loc = 'lower right')
plt.show()
```



```
plt.figure()
plt.imshow(X_test[0])
y_pred = model.predict(X_test)
print("정답=", y_test[0])
print("예측값=", y_pred[0])
```

정답= [3] → cat

예측값= [1.2904912e-12 5.1581086e-13 4.5277499e-14 9.9997449e-01 1.3750282e-09 4.7490963e-07 2.5059153e-05 8.8131386e-12 2.7819570e-11 2.6272799e-08]

데이터 증대 (data augmentation)

• 데이터 증대(data augmentation)는 한정된 데이터에서 여러 가지로 변형된 데 이터를 만들어내는 기법이다.

라이브러리를 포함시킨다.

```
import tensorflow as tf
import matplotlib.pyplot as plt
from numpy import expand_dims
from tensorflow.keras.preprocessing.image import load_img, img_to_array

image = load_img("dog.jpg")
array = img_to_array(image)
sample = expand_dims(array, axis=0) # Batch data structure
```

ImageDataGenerator()을 이용하여 **역상 변화**

from tensorflow.keras.preprocessing.image import ImageDataGenerator

```
datagen = ImageDataGenerator(rescale = 1./255,
  rotation_range=90, brightness_range=[0.8, 1.0],
  width_shift_range=0.2, zoom_range=[0.8, 1.2],
  height_shift_range=0.2)
```

- rotation range=90: 회전 한도
- brightness_range=[0.2, 1.0]: 밝기 변형 비율
- width_shift_range=0.2: 작약 이동 한도
- zoom range=[0.2, 1.2]: 학대 한도

ImageDataGenerator로부터 제너레이터 객체

 ImageDataGenerator 출력은 파이썬의 제너레이터 형식이다. 영상을 생성하는 제너레이터 객체를 생성한다. 제너레이터는 next()가 호출되면 변형된 영상을 하나씩 보내게 된다.

obj = datagen.flow(sample, batch_size=1)

변형된 영상을 표시한다.

```
obj = datagen.flow(sample, batch_size=1)
fig = plt.figure(figsize=(20,5))

for i in range(8):
   plt.subplot(1,8,i+1)
   image = obj.next()
   plt.imshow(image[0])
```


모델 저장

- _ 가중치를 저장하여 재활용
- Transfer learning

가중치 저장과 전이 학습

우리는 이미 학습된 모델의 가중치를 저장할 수 있고, 필요할 때마다 가중치를 불러와서 바로 신경망이 예측을 할 수 있게 할 수 있다.

가중치 저장과 복원

- 저장: model.save('mymodel')
- 저장되는 정보
 - 신경망 모델의 아키텍처 및 구성
 - 훈련 중에 학습된 모델의 가중치 값
 - ▶ 신경망 모델의 컴파일 정보
 - 옵티마이저와 현재 상태(훈련을 중단한 곳에서 다시 시작하기 위해)
- 저장 형식
 - TensorFlow SavedModel 형식
 - 이전 Keras H5 형식.
- 복원: model = load_model('mymodel')

예제 : 가중치 저장과 이용

```
import numpy as np
                                                             save_load.py
import tensorflow as tf
# 난수로 훈련 예제를 만든다.
test_input = np.random.random((128, 32))
test_target = np.random.random((128, 1))
# 입력이 32, 출력이 1 노드인 신경망 모델을 구축한다. 함수형 API를 사용하였다.
inputs = tf.keras.Input(shape=(32,))
outputs = tf.keras.layers.Dense(1)(inputs)
model = tf.keras.Model(inputs, outputs)
model.compile(optimizer="adam", loss="mean_squared_error")
# 신경망을 3번 훈련시킨다.
model.fit(test_input, test_target, epochs=3)
#3의 에포크를 수행한 모델을 저장한다.
model.save("my_model")
# 저장된 모델을 불러온다.
saved_model = tf.keras.models.load_model("my_model")
# 저장된 모델을 다시 학습시킨다.
saved_model.fit(test_input, test_target, epochs=3)
```

실행결과 -> 저장 모델을 다시 훈련시킴: 결과는?

```
Epoch 1/3
Epoch 2/3
Epoch 3/3
INFO:tensorflow:Assets written to: my_model\assets
Epoch 1/3
Epoch 2/3
Epoch 3/3
```


데이터 증대 효가: overfitting or not?

데이터 중대 효가: overfitting or not

cifar10: 데이터증대의 예

데이터 증대 효가: overfitting or not

데이터 증대 효가: overfitting or not

전이 학습 Transfer learning

전이학을 (transfer learning)

 전이 학습(transfer learning)은 하나의 문제에 대해 학습한 신경망의 모델과 가중치를, 새로운 문제에 적용하는 것이다.

전이 학습이란 사전 학습된 신경망 모델을 다른 용도로 사용하는 것입니다.

전이 학습

(a) 처음부터 심층 신경망을 훈련

그림 10-12 (a) 처음부터 개발하는 방법 (b) 사전 훈련된 모델을 받아서 미세 조정하는 방법

사전 훈련된 신경망 모델

 케라스는 사전 훈련된 딥러닝 모델들을 제공한다. 이것을 케라스에서는 "케라스 애플리케이션(keras applications)"이라고 부른다

모델	크기	Top-1 정확도	Top-5 정확도	매개 변수	깊이
Xception	88MB	0.790	0.945	22,910,480	126
VGG16	528MB	0.713	0.901	138,357,544	23
VGG19	549MB	0.713	0.900	143,667,240	26
ResNet50	98MB	0.749	0.921	25,636,712	_
ResNet101	171MB	0.764	0.928	44,707,176	_
ResNet152	232MB	0.766	0.931	60,419,944	_
ResNet50V2	98MB	0.760	0.930	25,613,800	_
ResNet101V2	171MB	0.772	0.938	44,675,560	_
ResNet152V2	232MB	0.780	0.942	60,380,648	_
InceptionV3	92MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215MB	0.803	0.953	55,873,736	572
MobileNet	16MB	0.704	0.895	4,253,864	88
MobileNetV2	14MB	0.713	0.901	3,538,984	88

Transfer Learning: models

ImageNet dataset

- 1.4 million labeled images1,000 different classes

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	
ResNet152	232 MB	0.766	0.931	60,419,944	
ResNet50V2	98 MB	0.760	0.930	25,613,800	85
ResNet101V2	171 MB	0.772	0.938	44,675,560	
ResNet152V2	232 MB	0.780	0.942	60,380,648	
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201

EfficientNet_V1,V2

Transfer Learning: VGG19(2014)

Transfer Learning: ResNet(2015)

전이학습 체험

https://transcranial.github.io/keras-js/#/resnet50

전이(전환) 학습: ConvNet + FCN

ConvNet- Very deep neural network models

전이(전환) 학습 – Using ConvNet & training FCN

My small dataset

전이(전환) 학습 - Fine Tuning of ConvNet & FCN

사전 훈련된 모델을 내 프로젝트에 맞게 재정의하기

그림 10-13 사전 훈련 모델을 사용하는 3가지 방법

첫 번째 예제는 ResNet50을 다운로드받아서 변경하지 않고 그대로 사용해보자. 구체적으로 인터넷에서 강아지 사진을 다운받아서 올바르게 인식하는지를 보자

전이학습: resnet50 이용

transfer1_resnet50_A.py

```
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input,
decode_predictions
import numpy as np
model = ResNet50(weights='imagenet')
img_path = 'dog.jpg'
img = image.load_img(img_path, target_size=(224, 224)) # 영상 크기를 변경하고
적재한다.
x = image.img_to_array(img) # 영상을 넘파이 배열로 변환한다.
x = np.expand_dims(x, axis=0) # 차원을 하나 늘인다. 배치 크기가 필요하다.
x = preprocess_input(x) # ResNet50이 요구하는 전처리를 한다.
preds = model.predict(x)
print('예측:', decode_predictions(preds, top=3)[0])
```

예측: [('n02111889', 'Samoyed', 0.9557966), ('n02114548', 'white_wolf', 0.01857086), ('n02112018', 'Pomeranian', 0.00947881)]

예제 #2:사전 훈련 된 모델을 특징 추출기 전처리기로 사용

- 케라스가 제공하는 사전 훈련된 모델 중에서 MobileNet 또는 EfficientNet 을 다운로드받고 여기에 우리가 만든 분류기 레이어를 붙여서 새로운 신경망을 만든다.
- cifar10 데이터를 이용해서 전이학습.
- 이 신경망을 우리가 가지고 있는 강아지와 고양이 영상으로 학습/분류.
- 전이학습으로 생체 영상(lung X-ray)을 분류.

^{예제}: CIFAR-10 영상 분류하기 - 전이학습

- CIFAR는 "Canadian Institute For Advanced Research"의 약자이다.
 CIFAR-10 데이터 세트는 CIFAR 연구 소에서 CIFAR-100 데이터 세트와 함께 개발되었다.
- 데이터 세트는
- (0: airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck)의 10개 부류의 컬러 영상 60,000개로 이루 어진다.
- 영상의 크기는 비교적 작아서
 32×32×3 이다.

CIFAR-10 영상 분류하기 - 전이학습 (EfficientNet)

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

에제. 강아지와 고양이 구별하기

- 컨벌루션 신경망을 사용하여서 강아지와 고양이를 구별해보자. 강아지와 고양이를 구별하는문제는 2013년도에 Kaggle에서 컨테스트로나온 적이 있다.
- Kaggle 사이트에서 데이터 세트를 받을 수도 있고 마이크로소프트사의 사이트에서 받아도 된다.

https://www.kaggle.com/c/dogs-vs-cats/data 사이트에서 다운로드받을 수 있다. 이미지들 중에서 약 2200장만 추리기로 하자. 2000장은 훈련 데이터로 사용하고 200장은 테스트용으로 사용한다. 다음과 같이 디렉토리를 만들고 여기에 이미지들은 나누어서 저장한다. 각 이미지들은 크기가 다르다.

https://drive.google.com/file/d/1VEs5Hz2iThTqPmRoxQgl8PrZVjwszod/view?usp=sharing

라이브러리 설치 (기 설치 시 불필요)

• 이 예제는 pillow라고 하는 이미지 처리 라이브러리를 사용한다.

```
(base) C:\Users\chun> activate deep
```

(deep) C:\Users\chun> pip install pillow

(deep) C:\Users\chun> pip install matplotlib

이미지 출력

• 1개의 이미지만 화면에 출력해보자.

import matplotlib.pyplot as plt

```
from matplotlib.image import imread

# sample image
image = imread('PetImages/train/dog/1.jpg')
image.shape
```

plt.imshow(image)
plt.show()

CNN + FCN model 구성

```
from tensorflow.keras import models, layers
train_dir = './Petimages/train'
test_dir = './Petimages/test'
model = models.Sequential()
model.add(layers.Conv2D(32,(3,3), activation='relu', input_shape=(128,128,3)))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Conv2D(64,(3,3), activation='relu'))
model.add(layers.MaxPooling2D(2,2))
model.add(layers.Flatten())
model.add(layers.Dense(units=512, activation='relu'))
model.add(layers.Dense(units=1, activation='sigmoid'))
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

이미지 전처리

- ① JPG 이미지 파일을 읽는다
- ② JPG 압축을 풀어서 RGB 형태로 픽셀값을 복원한다.
- ③ 픽셀값들은 실수형식의 넘파이 텐서로 변환한다.
- 4 0~255 사이의 픽셀값들을 0.0~1.0 사이의 실수로 스케일링한다.

이미지 전처리 _ 데이터 증대

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2,
 zoom_range = 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255) # train과의 차이를 주목
train_generator = train_datagen.flow_from_directory(
  train_dir,
  target_size=(128, 128),
  batch_size=20,
  class_mode = 'binary')
test_generator = test_datagen.flow_from_directory(
  test_dir,
  target_size=(128, 128),
  batch_size=20,
  class_mode = 'binary')
```



```
history = model.fit(
    train_generator, steps_per_epoch = 100, epochs=10,
    validation_data=test_generator, validation_steps=5)

# accuracy graph
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.xlabel('Epoch')
plt.xlabel('Accuracy')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
```

학습 결과 그래프

```
# accuracy graph
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.xlabel('Epoch')
plt.xlabel('Accuracy')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
```


cats & dogs : MobileNet

import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.layers import Dense,GlobalAveragePooling2D from tensorflow.keras.applications import MobileNet from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.mobilenet import preprocess_input from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam

cats & dogs : MobileNet

```
base_model=MobileNet(weights='imagenet', include_top=False) #imports the
mobilenet model and discards the last 1000 neuron layer.
x=base_model.output # ConvNet
x=GlobalAveragePooling2D()(x)
# Training FCN
x=Dense(1024,activation='relu')(x)
x=Dense(1024,activation='relu')(x)
x=Dense(512,activation='relu')(x)
preds=Dense(2,activation='softmax')(x)
model=Model(inputs=base_model.input,outputs=preds)
# Fine Tuning
for layer in model.layers[:20]:
  layer.trainable=False
for layer in model.layers[20:]:
  layer.trainable=True
```

```
train_datagen=ImageDataGenerator(preprocessing_function=preprocess_input)
train_generator=train_datagen.flow_from_directory('./Petimages/',
                                target_size=(128,128),
                                color_mode='rgb',
                                batch size=32,
                                class_mode='categorical',
                                shuffle=True)
model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
step size train=train generator.n//train generator.batch size
model.fit_generator(generator=train_generator,
            steps_per_epoch=step_size_train,
            epochs=5)
```

실행 결가: cats & dogs - MobileNet

```
WARNING:tensorflow: input_shape is undefined or non-square, or involve is not in
[128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the
default.
Found 2200 images belonging to 2 classes.
Epoch 1/5
accuracy: 0.8875
Epoch 2/5
accuracy: 0.9096
Epoch 3/5
accuracy: 0.9179
Epoch 4/5
accuracy: 0.9290
Epoch 5/5
accuracy: 0.9470
```


실행 결^과: cats & dogs - MobileNet

Test data에 대한 평가

- Simple CNN: 70 %
- ConvNet[MobileNet]: 90 %

```
In [4]: test_datagen =
ImageDataGenerator(preprocessing function=preprocess input)
In [5]: test generator = test datagen.flow from directory(
  ...: './Petimages/test',
   ...: target size=(128, 128),
   ...: color_mode='rgb',
   ...: batch_size=32,
   ...: class_mode='categorical',
   ...: shuffle=True)
Found 200 images belonging to 2 classes.
In [6]: model.evaluate(test_generator)
7/7 [============= ] - 1s 70ms/step - loss: 0.5604
- accuracy: 0.9000
Out[6]: [0.5603550672531128, 0.8999999761581421]
```

Summary

- 영상 인식(image recognition)란 영상 안의 물체를 인식하거나 분류하는 것이다.
- 영상 인식에 많이 사용되는 신경망은 컨볼루션 인공신경망(CNN)이다. 컨볼루션 신경망(CNN)은 동물의 조직에서 영감을 얻어서 만들어진 신경망이다. CNN에서 뉴런의 수용 공간은 다른 뉴론들과 약간 겹치게 된다. 컨볼루션 신경망은 영상 및 비디오 인식, 추천 시스템 및 자연 언어 처리 분야에서 폭넓게 응용되고 있다.
- 풀링(Pooling)이란 서브 샘플링이라고도 하는 것으로 입력 데이터의 크기를 줄이는 것이다.
- 데이터 증대(data augmentation)는 한정된 데이터에서 여러 가지로 변형된 데이터를 만들어내는 기법이다.
- 케라스에서는 save(), load_model() 메소드를 이용하여 가중치를 저장하거나 불러올
 수 있다.
- 전이 학습(transfer learning)은 하나의 문제에 대해 학습한 신경망의 모델과 가중치를,
 새로운 문제에 적용하는 것이다.

