ИТОГОВЫЙ ПРОЕКТ

Курс: "Профессия Data Scientist PRO" Часть 1 «Введение в Data Science» Специализация: "Machine Learning"

Модель машинного обучения совершения целевого действия сервиса «Сберавтоподписка»

Луцевич Анна

Цель:

Разработка и внедрение модели предсказания целевого действия (конверсии в действие) сервиса «Сберавтоподписка»

Исходные данные:

Две исходных выборки активности клиентов на сайте сервиса за 8 мес. (май—декабрь 2021г.)

ga_sessions.pkl

характеристики визитов посетителей

ga_hits.pkl

— действия, проведенные клиентами в каждый из визитов

Алгоритм выполнения:

По технологии CRISP-DM:

- Анализ, подготовка данных,
- Тренировка модели машинного обучения
- Разработка модели предсказания совершения целевого действия (значение ROC-AUC ~ 0.65)
- Внедрение в реальный процесс модели, оборачивание в промышленный код с обеспечением их стабильности и качества

Data Cleaning

Data Visiualition

Feathure Engeneering

Modelling

Results

ga_sessions.pkl:

строк > 1,86 млн. столбцов 18 основная рабочая база, к которой добавлена конвертация визита в целевое действие из файла ga_hits.pkl (признак CR), а также признаки марок модели авто

ga_hits.pkl:

строк > **15,7 млн**. столбцов **11**

база используется для определения величины CR на визит и для исследования марок автомобилей

Особенности данных в выборках:

Все данные — строковые (кроме даты и времени)

Нет числовых данных

Часть информации зашифрована, без ключей их раскрытия

Много пропущенных данных

Много нулевых данных

Много признаков

Выделение целевой переменной:

□ Конвертация трафика в целевое действие в базе ga_hits (события типа «Оставить заявку» и «Заказать звонок»)

Дубликаты:

Дубликаты в обеих базах не установлены

Выбросы:

Выбросы и аномалии в данных не установлены

Data Preparation (Data Cleaning) Data Visiualition Feathure Engeneering Modelling Results Employment Deployment

- 4 колонки не заполнены полностью от 24 до 100% данных отсутствуют
- колонка 'event_value' не заполнена совсем
- Сделано: удалены 4 столбца незаполненные >24%
 - сформирован столбец CR: целевое действие
 - сформирован столбец с маркой автомобиля (148 значений в 3 508 732 строках, т.е. в 22,3% всей выборки)
- **Особенности:** установлена существенная зависимость конверсии от марки авто, категориальная переменная сгруппирована по сессиям и стандартизована
- **Итоги:** все значения таблицы заполнены на 100%, без потери количества строк

- 7 колонок не заполнены полностью от 0,5 до 99% данных отсутствуют
- 5 колонок имеют нулевые значения от 0,006 до 16%.

Сделано:

- добавлен столбец CR, кол-во строк уменьшилось на 6,7%
- удалены 3 колонки, незаполненные более 58%
- отработаны 4 колонки с отсутствующими данными и 5 колонок с нулевыми значениями (от 0,01% до 16%)

Особенности:

- замены отсутствующих и нулевых значений на моды
- 2 столбца на моды столбцов, 6 столбцов на моды, полученные при группировке

Итоги:

- проведено заполнение 8 столбцов, все значения таблицы заполнены на 100%, без потери количества строк
- дальнейшие "докрутки" таблицы нецелесообразны

Data Preparation Data Cleaning (Data Visiualition) Feathure Engeneering Modelling Results Employment Deployment

Исследование распределения интереса клиентов во времени

Исследование лидеров по маркам автомобилей

- Skoda, Lada, Volkswagen polo авто эконом класса имеют наибольший спрос
- В пятерку лидеров также попал mercedesbenz e-klasse, т.е. авто среднего класса стоимости
- □ Среди лидеров нет ни одной марки авто высокого класса стоимости

Витрина данных (на базе ga_sessions + CR + (модели авто))

✓ Сформированы дополнительные столбцы:

'org_traffic'

- информация по органическому трафику

'advertising_social_NW'

- информация по рекламе в социальных сетях

'city_of_presence'

- информация по городам присутствия

'CR-result'

- бинарный признак конверсии в целевое действие

"month', 'dayofweek

- месяц и день недели из столбца даты

✓ Переформированы категориальные столбцы:

'device_screen_resolution' – 4947 значений

'device screen' -

2 значения по кол-ву символов

малое разрешение большое разрешение 1373517 358749 'device_browser' – 54 значения

'device_browser_' -

4 значения, выделяем основные браузеры и прочие

 Chrome
 951584

 Safari
 436705

 other_browser
 220212

 YaBrowser
 123765

'device_brand' – 199 значений

'device_brand_' -

5 значений, выделяем основные бренды и прочие

Apple 867121 Samsung 311641 Xiaomi 269251 Huawei 173828 other bran 110425 т.к. лидеры конверсии в основном совпадают с лидерами количества, то при формировании новых признаков взяли лидеров количества

'utm_campaign' – 487 значений

'utm_campaign_'-

5 значений, выделяем основные кампании и прочие

LTUZkdKfxRGVceoWkVyg 618120 other_campaign 424512 LEOPHUyFvzoNfnZGgfcd 321404 FTJNLDyTrXaWYgZymFkV 234976 gecBYcKZCPMcVYdSsZKP 133254 'utm_source' – 280 значений

'utm_source_' -

6 значений, выделяем основные каналы привлечения и прочие

 ZPYIODJMcFzVoPFsHGJL
 552631

 other_source
 456078

 fDLlAcSmythWSCVMvqvL
 277060

 kjstglQLzykiRbcDiGcD
 245178

 BHcvLfOacWvWTykYqHVe
 110963

 bByPQxmDaMXgpHeypkSM
 903360

geo_city' – 2365 значений

geo_city_' -

11 значений, выделяем основные города и прочие

817754 Moscow other_city 444710 Saint Petersburg 278402 Yekaterinburg 33555 Krasnodar 30260 Kazan 27689 Samara 23433 Nizhny Novgorod 20782 20283 Novosibirsk 20115 Krasnoyarsk 15283

✓ Сформирован дополнительный кат. признак:

марки и модели авто ----------− 146 значений т.к. конверсия между целевой переменной и марками авто близка к 1, оставляем все марки авто без изменений

✓ Не учитываем при моделировании:

т.к. Russia занимает 95% в выборке

т.к. одно из значений занимает 90% всей выборки

Data Preparation Data Cleaning Data Visiualition (Feathure Engeneering) Modelling Results Employment Deployment

Витрина данных (на базе ga_sessions + CR + (модели авто))

✓ Исследование корреляции признаков:

Корреляция близкая к 1 между 'session_id' и 'user_id', учитывая аналитику от сессии — удаляем user_id

Также близкая к 1 корреляция между 'device_category' и 'device_screen', удалим разрешение экрана

✓ Стандартизация переменных:

Категориальных через OneHotEncoder

'device_browser_', 'device_category', 'device_brand_', 'utm_medium', 'utm_source_', 'utm_campaign_', 'geo_city_', 'city_of_presence', 'advertising_social_NW', 'org_traffic'

Количественных через StandardScaler

'visit_number', 'month', 'dayofweek'

Состав датасета перед моделированием:

- session_id: идентификатор сесии;
- device_browser__*: браузеры;
- □ device_category_*: категории девайсов;
- □ device_brand__*: бренды девайсов;
- □ utm_source__*: каналы привлечения;
- □ utm_medium_*: типы привлечения;
- utm_campaign_*: рекламные кампании;
- geo_city_*: города;
- □ city_of_presence_*: города присутствия;
- □ advertising_social_NW_*: социальная и иная реклама;
- □ org_traffic_*: вид трафика;
- □ visit_number_std: номер визита (после стандартизации);
- □ month_std: месяц (после стандартизации);
- □ dayofweek_std: день недели (после стандартизации);
- □ CR_result: конверсия в действие;
- □ `model_auto_*`: модели авто (добавлены в третью выборку)

Итого в датасете перед моделированием — 1 732 266 строк, 99 столбцов (без моделей авто) / 245 (с моделями авто)

Data Preparation Data Cleaning Data Visiualition Feathure Engeneering (Modelling Results) Employment Deployment

Результаты обучения моделей

Сравнительный анализ методов по выборкам

		Выборка 1	Выборка 2 с сокращением признаков	Выборка 3 с моделями авто и сокращением признаков
		99 столбцов	49 столбцов	121 столбец
Логистическая регрессия	accuracy_test	97,10%	97,10%	97,10%
	AUC	0,59	0,5893	0,6742
	время обучения	1min 39s	28,9 s	24,5 s
Случайный лес	accuracy_test	96,90%	96,70%	96,80%
	AUC	0,5478	0,524	0,6204
	время обучения	10min 19s	7min 23s	9min 40s
Многослойный персептрон	accuracy_test	97,10%	97,10%	97,10%
	AUC	0,5952	0,5965	0,6951
	время обучения	2min 12s	2min 6s	3min 42s

- □ Кросс-валидация ни по одному из методов ни одной из выборок не показала ухудшения характеристик (нет признаков переобучения моделей), поэтому в отчете не указаны ее результаты
- □ Сокращение признаков через их ранжирование методом RFE
- □ Поведения методов примерно идентичны по выборкам, поэтому их характеристики были взяты по умолчанию (усложнение только значительно увеличивало время обучения)

Лучший результат по ROC-AUC, с превышением заданной границы — по методу многослойного персептрона

✓ Итоги обучения модели по всей выборке:

Несмотря на высокие в целом показатели точности модели, предсказанная конверсия ниже реальной почти в 30 раз! Модель требует дальнейшей доработки

Data Preparation Data Cleaning Data Visiualition Feathure Engeneering Modelling Results (Employment Deployment

Применение модели

✓ Модель сериализована в файл: 'ML_proect_auto_pod_MLP.pickle'

✓ Состав датасета для применения модели:

- □ session_id: идентификатор сесии;
- **device_browser__***: браузеры: 'device_browser__Chrome', 'device_browser__Safari', 'device_browser__YaBrowser', 'device_browser__other_browser';
- □ device_category_*: Категории девайсов: 'device_category_desktop', 'device_category_mobile', 'device_category_tablet;
- □ device_brand__*: бренды девайсов: 'device_brand_Apple', 'device_brand_Huawei', 'device_brand_Samsung', 'device_brand_Xiaomi', 'device_brand_other_brand;
- utm_source__*: каналы привлечения: 'utm_source__BHcvLfOaCWvWTykYqHVe', 'utm_source__ZpYloDJMcFzVoPFsHGJL', 'utm_source__bByPQxmDaMXgpHeypKSM', 'utm_source__fDLlAcSmythWSCVMvqvL', 'utm_source__kjsLglQLzykiRbcDiGcD', 'utm_source__other_source';
- utm_medium_*: ТИПЫ ПРИВЛЕЧЕНИЯ: 'utm_medium_app', 'utm_medium_blogger_channel', 'utm_medium_blogger_header', 'utm_medium_blogger_stories', 'utm_medium_clicks', 'utm_medium_cpa', 'utm_medium_email', 'utm_medium_organic', 'utm_medium_other', 'utm_medium_stories', 'utm_medium_tg;
- utm_campaign_*: рекламные кампании: 'utm_campaign_FTjNLDyTrXaWYgZymFkV', 'utm_campaign_LEoPHuyFvzoNfnzGgfcd', 'utm_campaign_LTuZkdKfxRGVceoWkVyg', 'utm_campaign_gecBYcKZCPMcVYdSSzKP', 'utm_campaign_other_campaign';
- **geo_city_*:** города: 'geo_city_Krasnodar', 'geo_city_Krasnoyarsk', 'geo_city_Moscow', 'geo_city_Nizhny Novgorod', 'geo_city_Novosibirsk', 'geo_city_Saint Petersburg', 'geo_city_Samara', 'geo_city_Ufa', 'geo_city_Yekaterinburg', 'geo_city_other_city', ;
- □ city_of_presence_*: города присутствия: 'city_of_presence_Mосква+Санкт-П', 'city_of_presence_другие города';
- advertising_social_NW_*: социальная и иная реклама: 'advertising_social_NW_иная реклама', 'advertising_social_NW_реклама в соц.сетях';
- org_traffic_*: вид трафика: 'org_traffic_органический трафик', 'org_traffic_платный трафик';
- □ visit_number_std: номер визита (после стандартизации);
- month_std: месяц (после стандартизации);
- dayofweek_std: день недели (после стандартизации);
- □ CR_result: конверсия в действие;
- model_auto_*: модели авто: 'x0_acura', 'x0_asia', 'x0_audi q5', 'x0_bmw 3-serii', 'x0_bmw 7-serii', 'x0_bmw x3', 'x0_buick', 'x0_dacia', 'x0_gac', 'x0_great-wall', 'x0_haval', 'x0_haval', 'x0_honda', 'x0_honda civic-type-r', 'x0_hummer', 'x0_hyundai', 'x0_kia k5', 'x0_kia rio', 'x0_kia seltos', 'x0_kia sorento', 'x0_kia sportage', 'x0_lamborghini', 'x0_land-rover range-rover-velar', 'x0_lexus', 'x0_lincoln', 'x0_mazda', 'x0_mercedes-benz', 'x0_mercedes-benz c-klasse', 'x0_mercedes-benz e-klasse', 'x0_mercedes-benz gle', 'x0_mercedes-benz gls-klasse', 'x0_mercedes-benz v-klasse', 'x0_mini', 'x0_mini hatch', 'x0_nissan qashqai', 'x0_porsche macan', 'x0_ravon', 'x0_renault', 'x0_renault', 'x0_rolls-royce', 'x0_skoda', 'x0_skoda', 'x0_skoda octavia', 'x0_skoda rapid', 'x0_suzuki', 'x0_toyota land-cruiser-prado', 'x0_uaz', 'x0_volkswagen passat-cc', 'x0_volkswagen polo', 'x0_volkswagen tiguan', 'x0_volkswagen touareg'

Results

Итоговые выводы проекта

- ✓ лучшие результаты моделирования показала модель по методу многослойного персептрона
 - ✓ для повышения точности предсказания необходимы признаки моделей авто и сокращение числа признаков
 - ✓ характеристики модели асс = 97,1%, ROC-AUC = 0,7074
 - ✓ предсказание конверсии почти в 30 раз меньше реальным показателям
 - модель можно дорабатывать для точности прогноза конверсии

Наибольший спрос у машин:

самого экономного класса — Skoda, Lada, Volkswagen polo,

как в визите, так и в конверсии

Лидеры объема трафика и CR:

- среди источников баннеры, срс
- среди кампаний 'LTuZkdKfxRGVceoWkVyg'
- среди устройств мобильные устройства
- среди локаций города присутствия