Numerical Analysis Assignment 2-1

Homework 2 / 2021/09/14; IFF IL 202161024

Ex. 2.2, 1,5,6, and Ex. 2.3, 1,4,5(a),6(d),

Showing that the junction has a po fixed point at p when p=0

$$\Rightarrow f(2) = x^4 + 2x^2 - x - 3$$
a) $g(2) = (3 + x - 2x^2)^{x_4}$

let $p = g_1(p)$

$$\therefore p = (3 + p - 2p^3)^{x_4}$$

or $p = 3 + p - 2p^3$
or $p = 4 + 2p^2 - p - 3$

$$\therefore f(p) = 0$$

$$\therefore f(p) = 0$$

()
$$g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{x}$$

Let $p = g_3(p)$
 $p = \left(\frac{p+3}{p^2+2}\right)^{2}$
 $p^2 = \frac{p+3}{p^2+2}$
 $p^2(p^2+2) = p+3$
 $p^4+2p^2=p+3$
 $p^4+2p^2-p-3=0$
 $p^4(p)=0$

d)
$$g_{+} = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$$

let $p = g_{+}(p)$

$$P = \frac{3p^4 + 2p^2 + 3}{4p^3 + 4p - 1}$$

$$4p^4 + 4p^2 - p = 3p^4 + 2p^2 + 3$$

$$0 = p^4 + 2p^2 - p - 3$$

$$f(p) = 0$$

Using a gized point iteration method to determine a solution accurate to within 10^{-2} for $2^{4}-32^{2}-3=0$, on [1,2], using $P_0=1$.

... $2^{4}-32^{2}-3=0$ manupulation first $2^{4}-32^{2}-3=0$ $2^{4}=32^{2}+3$ $2^{4}=32^{2}+3$ $2^{4}=32^{2}+3$ $2^{4}=32^{2}+3$ $2^{4}=32^{2}+3$ $2^{4}=32^{2}+3$

Iteration	an	b,	of (an)	J(bn)	Pn = antbn	7 (Pn)
- 1	1	2	1.5650845	1.9679598		
	234634	2	2,099437	1,9679	1.565084500732	2 546552 2
3	2,09955	2	3,01103	1,9679	1.88594374301	1.384321
4	1,3843	2	2,84324	1,949	1.9228478439	
	2,34954	2	2,45236	1,9679	1.937507539	-
6	1,7452	2	2,67734	1,9679	1.9433169899	11 7 10 234
	7					
-						
	A+ 10	-2 th	e solution	is 1.9	433169899	
	14				1 33 16 9 84 9	at 6 iter

6) Using a fixed point iteration method to determine a solution accurate to within 10^2 for $x^2 - x - 1 = 0$ on the given interval, $x \neq 0$ so we can divide by $x = x^2 = 1 + 1/x$ $x = \sqrt{1 + 1/x} = 90$ Satisfying theorm 2.4

1) $g(x) \in [1,2]$ 2) $g(x) = \frac{1}{2\sqrt{1 + 1/x}} = \frac{1}{2$