Parameter Estimation: Maximum-Likelihood and Bayesian

Adway Mitra
MLFA Al42001 Center for Artificial Intelligence
Indian Institute of Technology Kharagpur

October 10, 2019

Common Discrete Distributions

Distribution	Support	PMF	Parameters
Bernoulli	$\{0, 1\}$	$p^{\times}(1-p)^{(1-\times)}$	р
Binomial	$\mathcal Z$	$\binom{N}{x} p^x (1-p)^{N-x}$	N, p
Poisson	$\mathcal Z$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ
Geometric	\mathcal{Z}^+	$(1-p)^{x-1}p$	р
Categorical	$\{V_1,\ldots,V_K\}$	$\prod_{k=1}^{K} p_k^{I(x=k)}$	(p_1,p_2,\ldots,p_k)
${\sf Multinomial}$	\mathcal{Z}^{K}	$\frac{N!}{n_1!n_K!}\prod_{k=1}^K p_k^{n_k}$	$(N_1, p_1, \ldots, N_K, p_K)$

Common Continuous Distributions

Distribution	Support	PDF	Parameters
Beta	(0, 1)	$\frac{1}{B(a,b)} x^{(a-1)} (1-x)^{(b-1)}$	(a, b)
Gamma	$\mathcal{R}+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}exp(-\beta x)$	(α, β)
Gaussian	\mathcal{R}	$\frac{1}{\sqrt{(2\pi)\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$	(μ,σ)
M.V. Gaussian	\mathcal{R}^D	$\frac{1}{2\pi^{\frac{D}{2}} \Sigma ^{\frac{1}{2}}} exp(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)$	(μ, Σ)

Parameter Estimation Problem

- ▶ Given: *N* observations $x_1, x_2, ..., x_N$
- Imagine these observations are observations of IID random variables
- Choose a suitable distribution for them
- Support, histogram important considerations to choose distribution
- Need parameters for the distribution!

Maximum Likelihood Estimation (MLE)

- ▶ Write down joint PMF/PDF of the observations
- $prob(X_1 = x_1, X_2 = x_2, ..., X_N = x_N) = \prod_{n=1}^{N} prob(X_n = x_n)$
- ▶ This is also called **likelihood function** $\mathcal{L}(p)$ of parameters p of the distribution (prob)
- Choose parameters such that this likelihood is maximized!
- ▶ Differentiate w.r.t *p*, equate to 0, solve equations!

MLE of Bernoulli

- ▶ Input: results of *N* tosses, $X_i \in \{0, 1\}$
- Based on support, we choose Bernoulli Distribution
- Need to estimate parameter p

$$\mathcal{L}(p) = \prod_{n=1}^{N} prob(X_n = x_n) = \prod_{n=1}^{N} p^{x_n} (1-p)^{1-x_n}$$
$$= p^{N_1} (1-p)^{N_0}$$
(1)

$$p_{MLE} = argmax_p \mathcal{L}(p) = \frac{N_1}{N_1 + N_0}$$
 (2)

MLE for Poisson

- ▶ Input: *N* integer observations, $X_i \in \mathcal{Z}$
- Based on support and histogram, we may choose Poisson Distribution
- ▶ Need to estimate parameter λ

$$\mathcal{L}(\lambda) = \prod_{n=1}^{N} \operatorname{prob}(X_n = x_n) \propto \prod_{n=1}^{N} e^{-\lambda} \lambda^{x_n}$$

$$= e^{-N\lambda} \lambda^{\sum_{n=1}^{N} x_n}$$
(3)

$$\lambda_{MLE} = \operatorname{argmax}_{\lambda} \mathcal{L}(\lambda) = \frac{\sum_{n=1}^{N} x_n}{N}$$
 (4)

MLE for Gaussian

- ▶ Input: N real observations, $X_i \in \mathcal{R}$
- ► Based on support and histogram, we may choose Gaussian/Normal Distribution
- ▶ Need to estimate parameter (μ, σ)

$$\mathcal{L}(\mu,\sigma) = \prod_{n=1}^{N} \operatorname{prob}(X_n = x_n) \propto \prod_{n=1}^{N} \frac{1}{\sigma} \exp\left(-\frac{(x_n - \mu)^2}{\sigma^2}\right)$$
$$= \frac{1}{\sigma^N} \exp\left(-\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}\right) (5)$$

$$\mu_{MLE}, \sigma_{MLE} = \operatorname{argmax}_{\mu,\sigma} \mathcal{L}(\mu, \sigma)$$

$$\mu_{MLE} = \frac{\sum_{n=1}^{N} x_n}{N}, \sigma_{MLE} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{MLE})^2$$
(6)

MLE for Multivariate Gaussian

- ▶ Input: *N* real vector observations, $X_i \in \mathbb{R}^D$
- Based on support and histogram, we may choose Gaussian/Normal Distribution
- ▶ Need to estimate parameter (μ, Σ)

$$\mathcal{L}(\mu, \Sigma) = \prod_{n=1}^{N} prob(X_n = x_n) \propto \prod_{n=1}^{N} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp(-(x_n - \mu)^T \Sigma^{-1} (x_n - \mu))$$

$$= \frac{1}{|\Sigma|^{\frac{N}{2}}} exp(-\sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu))$$

$$\mu_{MLE}, \Sigma_{MLE} = argmax_{\mu, \Sigma} \mathcal{L}(\mu, \Sigma)$$

$$\mu_{MLE} = \frac{\sum_{n=1}^{N} x_n}{N}, \Sigma_{MLE} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{MLE})(x_n - \mu_{MLE})^T \quad (8)$$

Bayesian Parameter Estimation

- Maximum likelihood estimate entirely based on data
- But if data is not reliable?
- Bayesian approach: we may have some prior beliefs
- Bayesian approach: combine our prior beliefs with evidence, i.e. data
- Bayesian approach: keep updating our beliefs as more and more data comes in!

Bayesian Parameter Estimation

- Consider the parameters as random variables
- Put a prior distribution on the parameters
- ightharpoonup posterior(param|data) \propto prob(data|param) * prior(param)
- ▶ $prob(data|param) = \mathcal{L}(param)$ (likelihood function)
- Difference from MLE we get a distribution of the parameter instead of single value
- Maximum A-Posteriori (MAP) estimate: param_{Bayes} = argmax_{param}posterior(param|data)

Bayesian Parameter Estimation

- How to choose prior distribution?
 - ► Reflect our belief on parameter
 - Mathematical tractability (posterior should be a valid distribution)
- Some likelihood functions have conjugate prior
- Prior and Posterior on parameters should be same distribution with different parameters!
 - Easy to interpret

Bayesian estimate of Bernoulli Distribution

- ▶ Data: $\{x_1, ..., x_N\} \in \{0, 1\}$, Model: $X_i \sim Bernoulli(p)$
- $ightharpoonup p \in (0,1)$, so prior(p) = Beta(a,b)
 - ▶ (a,b) hyperparameters parameters of prior
 - Assume a = b if no information

$$posterior(p|X) \propto \prod_{i=1}^{N} prob(X_{i} = x_{i}|p) * prior(p)$$

$$= p^{N_{1}}(1-p)^{N_{0}} * p^{a-1}(1-p)^{b-1}$$

$$= p^{N_{1}+a-1}(1-p)^{N_{0}+b-1}$$
(9)

- posterior(p) : $Beta(N_1 + a, N_0 + b)$

Bayesian estimate of Bernoulli parameters

- $prior(p) = Beta(5,7), p_{MAP} = 5/12$
- ► $X_1 = TAIL$, posterior(p) = Beta(5,8), $p_{MAP} = 5/13$
- ▶ $X_2 = HEAD$, posterior(p) = Beta(6,8), $p_{MAP} = 6/14$
- ▶ $X_3 = HEAD$, posterior(p) = Beta(7,8), $p_{MAP} = 7/15$
- ▶ $X_4 = TAIL$, posterior(p) = Beta(7,9), $p_{MAP} = 7/16$
- $X_5 = HEAD$, posterior(p) = Beta(8,9), $p_{MAP} = 8/17$
- ▶ $X_6 = HEAD$, posterior(p) = Beta(9,9), $p_{MAP} = 9/18$

Bayesian estimate of Gaussian Distribution - variance known

- ▶ Data: $\{x_1, \ldots, x_N\} \in \mathcal{R}$, Model: $X_i \sim \mathcal{N}(\mu, \sigma)$
- $\mu \in \mathcal{R}$, so $prior(\mu) = \mathcal{N}(\mu_0, \sigma_0)$
- Assume σ is known for simplicity

$$posterior(\mu|X) \propto \prod_{i=1}^{N} prob(X_{i} = x_{i}|\mu) * prior(\mu)$$

$$= \frac{1}{\sigma^{N}} exp(-\frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{2\sigma^{2}}) * \frac{1}{\sigma_{0}} exp(-\frac{(\mu - \mu_{0})^{2}}{2\sigma_{0}^{2}})$$

$$= \mathcal{N}(\frac{\frac{N}{\sigma^{2}} \hat{X} + \frac{\mu_{0}}{\sigma_{0}^{2}}}{\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}}, \frac{1}{\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}})$$
(10)

where $\hat{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$

Bayesian estimate of Gaussian Distribution - Variance Unknown

- ▶ Data: $\{x_1, \ldots, x_N\} \in \mathcal{R}$, Model: $X_i \sim \mathcal{N}(\mu, \tau)$ where $\tau = \frac{1}{\sigma^2}$
- ▶ Define $prior(\mu, \tau) = prior_1(\mu|\tau), prior_2(\tau)$
- ightharpoonup prior₁($\mu| au$) = $\mathcal{N}(\mu_0,\eta au)$, prior₂(au) = Gamma(a, b)
- $posterior(\mu, \tau) = \mathcal{L}(\mu, \tau, X) * prior_1(\mu|\tau) * prior_2(\tau)$
- $posterior(\mu) = \int posterior(\mu, \tau) d\tau$: Gaussian Distribution
- $posterior(au) = \int posterior(\mu, au) d\mu$: GammaDistribution

