${\operatorname{RC}}$ Circuit with Oscilloscope

Lab #5

Name: Aidan Fitzgerald Partners: Jason Shin, Victor Tan, and ???

June 7, 2016

Lab #5

RC Circuit with Oscilloscope

Objective

Use an oscilloscope to observe the time constant of an RC circuit experimentally.

1 Introduction

Recall from Lab #3 that the time constant τ of an RC circuit is the time during which the voltage decays to $1/e \approx 37\%$ of its value. The time constant is equal to RC.

An analog oscilloscope is an electronic device that plots voltage as a function of time by deflecting an electron beam in a cathode ray tube. In our setup it takes the place of a voltmeter.

2 Procedures and Results

We set up the circuit according to Figure 1, using an oscilloscope as a voltmeter and a function generator in place of a battery.

Figure 1: RC circuit

Lab #5

We set the function generator to produce a square wave and observed an output signal that looked like a series of spikes:

We then set the function generator to produce a triangle wave and observed an output signal that looked more like this:

which is more like the waveform we were told would appear. We adjusted the SEC/DIV knob of the oscilloscope until the image was frozen on the screen and adjusted VOLTS/DIV so that the waveform was 8 boxes high. Then, we measured the number of boxes across which the signal rose by 5 boxes.

Table 1: Oscilloscope measurements. Data courtesy of Margaret Burkart

Trial	Resistance	Capacitance	Divisions across	\mid SEC/DIV \mid
1	$10,920\Omega$	900 pF	1.2	$20\mu\mathrm{s}$
2	$5,555\Omega$	900 pF	1.9	$20\mu\mathrm{s}$
3	$1,111\Omega$	900 pF	1.9	$20\mu\mathrm{s}$
4	$5,555\Omega$	100 pF	1.8	$20\mu\mathrm{s}$
5	$5,555\Omega$	500 pF	1.9	$20\mu\mathrm{s}$

Lab #5

3 Discussion

We calculated the observed time constant by multiplying the divisions across by the value of the SEC/DIV knob. A sample calculation is shown for Trial 1:

$$\tau_{observed} = 1.2 \times 20 \,\mu \text{s} = 24 \,\mu \text{s}$$

We calculated an accepted value for τ by multiplying the resistance by the capacitance:

$$\tau_{accepted} = 10,920 \,\Omega \times 900 \,\mathrm{pF} = 9.828 \,\mu\mathrm{s}$$

Then, we calculated the percent error:

$$\% \operatorname{error} = \frac{|\tau_{observed} - \tau_{accepted}|}{\tau_{accepted}} = \frac{|24 \,\mu\text{s} - 9.828 \,\mu\text{s}|}{9.828 \,\mu\text{s}} = 144\%$$

Table 2: Oscilloscope measurements. Data courtesy of Margaret Burkart

Trial	$ au_{observed}$	$ au_{accepted}$	% error
1	$24\mu\mathrm{s}$	$9.828 \mu { m s}$	144 %
2	$38 \mu \mathrm{s}$	$4.9995 \mu { m s}$	660 %
3	$38 \mu \mathrm{s}$	999.9 ns	3700%
4	$36\mu\mathrm{s}$	555.5 ns	6381%
5	$38 \mu\mathrm{s}$	$2.7775 \mu { m s}$	1268%

4 Conclusion

Today