

SUBJECT PROGRAM

I. IDENTIFICATION OF THE SUBJECT.

Subject: Scientific Computing		Acronym: INF- 285	Approval date: 05/04/2021 (CC.DD. Agreement 009/2021)		
UTFSM credits: 3	Prerequisites: MAT-024	Exam: Does not have.	Faculty		
SCT Credits: 5	INF-221		Comp	uter Sc	ience Department
Weekly Lecture Hours:	Assistantship:	Laboratory:	Semester in which it is taught		
2.3	Yes, there is.	None.	Odd	Pair	Both
					X

Formative axis: Engineering Sciences – Computer Science for complex problems in industry

Total time dedicated to the subject: 134.5 chronological hours

Description of the subject.

In this subject the student acquires conceptual and technical knowledge and skills of significant importance such as: analysis, synthesis, computational problem solving and critical evaluation of computational results.

In addition, the student develops systemic thinking and modeling skills for problem solving at a professional level, with a high commitment to quality, based on current technological resources and effectively communicating their ideas.

Entry requirements.

- · Apply elements of linear algebra.
- Apply the C language.
- Apply mathematical concepts such as: algebra, differential equations, among others.
- Mastery of technical English.

Contribution to the graduation profile.

Specific competence:

Apply theoretical and algorithmic foundations to develop efficient ways to solve computational problems.

Transversal skills stamp:

- Social Responsibility and Ethics: acts in accordance with the principles inherent to his profession, keeping
 in mind a supportive conduct, committing to and respecting individuals, the environment and society, in
 coherence with the testamentary legacy of Don Federico Santa María Carrera.
- Commitment to quality: the student executes professional activities with excellence, which allows him or her to face the challenges that arise, guided by continuous learning, systematic self-assessment and a culture of quality.
- **Problem solving:** solves complex problems, analyzing and evaluating effective and efficient solutions, based on their impact on the organization, people and the environment.
- Effective Communication: Effectively communicate their ideas orally and in writing.

Learning outcomes.

- Analyzes engineering problems, selecting the type of mathematical structure that best represents it.
- **It proposes** a resolution algorithm for the problem, **solving it** using the corresponding numerical techniques or methods.
- Analyzes the results of a numerical method, verifying its theoretical and numerical properties.

Thematic contents.

- Linear Algebra Review.
- Floating point standard and loss of importance.
- Finding zeros in 1D nonlinear equations.
- Systems of linear and nonlinear equations, classical and advanced methods.
- 1D interpolation.
- Least squares and GMRes.
- Numerical integration.
 Ordinary differential equations.

Teaching and learning methodology.

- Expository classes by the teacher
- Experience-based learning
- Collaborative learning
- Problem-based learning

Evaluation and grading of the subject (Adjusted to Institutional Regulations-Regulation No. 1)

Approval requirements and qualification	It will be evaluated through 3 exams and at most 5 tasks (NT). The fir grade will be obtained in the following way:			
	NF = 0.75 $NC + 0.25NT$,			
	the grade = $\sqrt[3]{\left(\frac{C_1+C_2}{+}\right)}$ of the competition k for $k=1:3$, $NT=$ * $H(NPT-55)$, $H(x)=\begin{cases} 0, & x<0\\ 1, & x\geq 0 \end{cases}$ * NPT is the function			
	$=\frac{1}{n-1}\left(\sum_{\&\\$			

Virtual Resources for learning. • platform.

Bibliography

Dibliography.					
Guide text	Timothy Sauer. (2017). Numerical Analysis. United States: Pearson. Numerical Analysis, Third Edition, Timothy Sauer, Pearson, 2017, ISBN 10: 9780134696454.				
Complementary or optional	Numerical Linear Algebra, Lloyd N. Trefethen and David Bau, III, SIAM, 1997, ISBN: 0898713617.				
	Numerical Mathematics, Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, Springer, in Applied Mathematics 37, 2000, ISBN: 0387989595.				
	Applied Numerical Linear Algebra, James W. Demmel, SIAM, 1997, SIAM, ISBN: 0898713897.				
	Computing platform of the Department of Informatics.				

CALCULATION OF NUMBER OF HOURS OF DEDICATION - (SCT-Chile) - SUBJECT SUMMARY TABLE.

	Number of hours of dedication				
ACTIVITY	Number of hours per week	Number of weeks	Total number of hours		
	PRESENC	CE			
Lecture or theoretical classes	23	17	39.1		
Assistantship/Exercises	1.1	14	15.4		
Industrial visits (field)					
Laboratories/Workshop					
Exams	3	3	9		
Controls					
	NO PRESE	NCE			
Assistantship					
Mandatory tasks	5	4	twenty		
Personal study (individual or	3	17	51		
group)					
Others (projects)					
Т	135				
7	5				

 $^{^{1}}$ Teaching hours are considered 35 minutes – Rector's Decree 325/2020.

 $^{^2}$ Credit equivalence is considered SCT=27 hours – Rector's Decree 324/2020.