

Natasha A. Neogi, Sarah M. Lehman NASA Langley Research Center (LaRC)

PROBLEMS IN MACHINE LEARNING-BASED SYSTEMS FOR SAFETY-CRITICAL AVIONICS

DARPA PROPOSERS' DAY - THURS. FEB. 17, 2022

Safety-Critical Avionics Systems Branch

Application and advancement of formal methods for specifying and verifying correctness and safety properties

Safety assessment and assurance methods

- SC-186: Automatic Dependent St Broadcast
- SC-205: Software Considerations
 Aeronautical Systems
- CAST –Airplane State Awareness Analysis Team (JSAT)
 SC-228: Minimum Operational Pe
- Standards for Unmanned Aircraft
 SC-203: Unmanned Aircraft System
- Auto
- Streamlining Assurance via Overarching Properties
- Automated Rapid Certification of Software
 - Examination of Time-Triggered Ethernet in the Integrated Artemis Architecture
 - 4D prognostics to forecast GPS quality in urban environments
 - Backup systems for Global

bal	Catastrophic	eliminate or control		eliminate or control	Control hazard or reduce probability
	Hazardous	eliminate or control	aliminate or control		Hazard control desirable
	Major	Action required to eliminate or control hazard			Hazard control not required

Architectural and runtime V&V for assuring system-level integrity

Highly-assured algorithms for aerospace applications

Integrated experimental testing for evaluating blended design and operational assurance constructs

System-Wide Safety Project Objectives

To explore, discover, and understand

the impact on safety of growing complexity introduced by modernization aimed at improving the efficiency of flight, the access to airspace, and/or the expansion of services provided by air vehicles.

To develop and demonstrate

innovative solutions that enable this modernization and the aviation transformation envisioned by ARMD through proactive mitigation of risks in accordance with target levels of safety.

How We Achieve Aviation Safety Tomorrow

Services, Functions, and Capabilities Execute Risk Management and Safety Assurance Actions

Services, Functions, and Capabilities (SFCs)

Monitor

Assess

Mitigate

National Airspace System → Data → NAS System State → Elevated Risk State → Safety Assurance Action

SWS Overview – Safety Demonstrator Series

Operational Safety (Thrust 5)

TC-1: Predictive Terminal Area Risk Assessment TC-2: IASMS SFC
Development for
Emerging
Operations

Current Day

Near Future

TC-3: V&V for Commercial Operations

TC-4: Complex
Autonomous
Systems
Assurance

Design Safety (Thrust 6)

Through a series of operationally challenging demonstrations, develop and demonstrate a system-wide safety framework that enables increasingly complex airspace operations.

TC-5: Safety
Demonstrator
Series for
Operational IASMS

SD-1: Wildfire Fighting (FY25)

SD-2: Post-Hurricane Disaster Relief

SD-3: Medical Courier Delivery (Urban Environment)

SD-4: Un-evacuated Urban Area Disaster Response

Problem #1 – N-fold Testing of ML Models

Scenario: developing new machine learning modules for safety-critical applications

- Must meet some "certainty threshold" for satisfying safety properties
- Must be able to handle edge cases arising from real-world use

<u>Problem</u>: How to develop new time- and resource-efficient testing practices for machine learning models that assure safety properties during real-world use

- True understanding of how ML components make decisions is limited
- Testing approaches for traditional software systems do not extend to ML systems
- Training, validating, testing ML components requires both time and processing power

Potential FastNICs Contributions:

- Speed up model training, testing improve throughput of cross-validation activities, performance comparisons across multiple data sets which requires many model re-trainings
- Enable parallelized data collection gathering, analyzing contextual data in real-time (environmental
 conditions, device resource consumption traces, etc.) can assist in debugging misclassifications from the
 system-under-test
- Enable ML component redundancy, confederation leveraging results from additional models run in real-time can also help highlight errors from the system-under-test

Anticipated Impact:

 Would allow us to develop more comprehensive test suites for new ML components without having to dedicate massive amounts of time and compute resources to their execution

IMAGE SOURCE: https://xkcd.com/303

(a) Classifier error generates wrong warning text

(b) Slow processing, quick user movement

(c) Poor label placement covers pertinent real-world content (car in intersection)

(d) Alert correctly placed but difficult to read due to poor color choice

Problem #2 – Multi-sensor Feeds for UAS Detect-and-Avoid

Scenario: UAS flying autonomously with local detect-and-avoid capabilities

- Equipped with multiple onboard sensors and processors
- Continuously executing data collection, processing activities
- ML components trained offline, updated between missions

<u>Problem</u>: How to improve accuracy, reliability of real-time data aggregation and processing capabilities on resource-constrained devices such as UAS's

- Managing multiple data feeds, performing ML operations in real time
- Maintaining trade-off between accuracy and resource consumption

Potential FastNICs Contributions:

- **Enable ML component redundancy** perform an ML operation with an independent secondary version of the module to verify preliminary results
- Enable ML component confederation perform operations and vote on a result among a group of independent candidate modules

Anticipated Impact:

Improve reliability of autonomous decision-making capabilities of UASs in the field; provide backups to primary ML components to mitigate runtime errors

Problem #3 – Surveillance, Assessment, and Analysis

Scenario: (m) operators managing (N) UAS's to monitor a wildfire situation

- Operators control multiple vehicles each (N >> m) from ground station
- Vehicles provide streaming service only; no on-board processing
- Data aggregated, processed at ground station

<u>Problem</u>: How to improve streaming bandwidth, processing latency in ad hoc networks of station-controlled UAS's

- Balancing network traffic with resource cost for UAS's
- Minimizing processing latency at ground station for real-time situational awareness

Potential FastNICs Contributions:

- Support low-energy, high-bandwidth wireless transmissions allow the UAS to offload data, receive commands without using too much power
- Support high-bandwidth ML operations allow the ground station to perform an open-ended number of ML operations on the collected data and make informed decisions in real-time

Anticipated Impact:

Improve data collection, processing, and assessment capabilities to improve situational awareness, and to identify and respond to issues as they arise

Thank you! Questions?

Natasha A. Neogi natasha.a.neogi@nasa.gov

Sarah M. Lehman sarah.lehman@nasa.gov