Assignment Project Exam Help COMP9318 Tutorial 2: Classification

https://eduassistpro.github.

Add WeChat edu_assist_pr

Q1 I

Consider the following training dataset and the original decision tree induction algorithm (${\sf ID3}$).

Risk is the class label attribute. The Height values have been already discretized into disjoint ranges.

- Assignate the information gain of Height is chosen as the test attribute.
 - 3. Dr
 - https://eduassistpro.github.

High Medium Add We _assist_pr (1.5, 1.6]Low (1.6, 1.7]Low $(2.0, \infty]$ High (2.0, ∞] High (1.7, 1.8]Medium (1.9, 2.0]Medium (1.8, 1.9]Medium

(1.7, 1.8]

(1.7, 1.8]

Medium

Medium

Solution to Q1 I

1. The original entropy is $I_{Risk} = I(Low, Medium, High) = I(4, 8, 3) = 1.4566$. Consider Gender.

Assignment Projecto Exam Help

4 https://eduassistpro.github.

Add We (1.5, 1.6) /(1.5 t/(1.5) t/(1.5 t/(1.5) t/(1.5) t/(1.5 t/(1.5) t/(1.5 t/(1.5) t/(1.5) t/(1.5) t/(1.5 t/(1.5) t/(1.

 $egin{array}{lll} (1.8,1.9] & I(\ (1.9,2.0] & I(0,1,1) \ (2.0,\infty] & I(0,0,2) \end{array}$

The expected entropy is $\frac{2}{15} \cdot I(2,0,0) + \frac{2}{15} \cdot I(2,0,0) + \frac{3}{15} \cdot I(0,3,0) + \frac{4}{15} \cdot I(0,4,0) + \frac{2}{15} \cdot I(0,1,1) + \frac{2}{15} \cdot I(0,0,2) = 0.1333$. The information gain is 1.4566 - 0.1333 = 1.3233

Solution to Q1 II

- 3. ID3 decision tree:
 - ► According to the computation above, we should first choose *Height* to split

Height

After split, the only problematic partition is the (1.9, 2.0] one. However, the only remaining attribute Gender cannot divide them. As there is a fray, we propose the first leaves of the

https://eduassistpro.github.

- 4. TAdd WeChat edu_assist_pr
 - ▶ IF $height \in (1.5, 1.6]$, THEN Rish = Lo
 - ▶ IF $height \in (1.6, 1.7]$, THEN Rish = Low.
 - ▶ **IF** $height \in (1.7, 1.8]$, **THEN** Rish = Medium.
 - ▶ **IF** $height \in (1.8, 1.9]$, **THEN** Rish = Medium.
 - ▶ **IF** $height \in (1.9, 2.0]$, **THEN** Rish = Medium (or High).
 - ▶ IF $height \in (2.0, \infty]$, THEN Rish = High.

Consider applying the SPRINT algorithm on the following training dataset

	Age	CarType	Risk	J			
	23	family	High]			
Assignme	nt³ F	raitec	High.	xam	Help		
	68	family	Low		1		
Answ https://eduassistpro.github.l							

- 1. Wr
- 2. Assume the first split criterion is Age < list for the left in donote (i.e. corresponding to the part of the
- 3. Assume that the two attribute lists for the root node are sto relational tables name AL_Age and AL_CarType, respectively. We can in fact generate the attribute lists for the child nodes using standard SQL statements. Write down the SQL statements which will generate the attribute lists for the left child node for the split criterion Age < 27.5.</p>
- 4. Write down the final decision tree constructed by the SPRINT algorithm.

Solution to Q2 I

► Attribute list of *Age* is:

	0	l	l
	17	High	2
	20	High	6
Assignment	⁻² F ()†e	Cŧ.
1 10018111110111	32	Llow	5
	43	High	3

https://eduassistpro.github.

truck family Low

High

ex

Age

class

Index

Exam Help

► Attribute list of *Age* is:

Age	class	Ind
17	High	2
20	High	6
23	High	1

Solution to Q2 II

7

Attribute list of CarType is:

CarType	class	Index	
family	High	1	
sports	High	2	
family	High	4	6

Assignment Privated Exam Help

FROM AL_Age A, AL_CarType C WHERE A.Age < 27.5 AND And Mary Coildex

https://eduassistpro.github.

each of them have gini index value as:

gini index value as:							
Age	Age above below		gini _{split}				
17 – 20	(1, 0)	(3, 2)	0.40				
20 - 23	(2, 0)	(2, 2)	0.33				
23 – 32	(3, 0)	(1, 2)	0.22				
32 - 43	(3, 1)	(1, 1)	0.42				
43 – 68	(4, 1)	(0, 1)	0.27				

Solution to Q2 III

therefore, the best split should be Age > 27.5.

Consider the attribute list of *CarType*:

High CarType Assignment Project Exam Help

CarType Hig Add WeChat edu_assist_pr Each of them have gini index value as: 0.44, 0.33, 0.27, re

https://eduassistpro.github.

Low

Therefore, the best split is CarType in ('truck'). Obviously, splitting on Age is better. Therefore, we shall split by

Age > 27.5. The attribute lists for each of the child node have already been computed.

Since the tuples in the partition for Age < 27.5 are all "high", we only need to look at the partition for Age > 27.5.

family I ow

https://eduassistpro.github.

The final tree is:

Add WeChat edu_assist_pr

Consider a (simplified) email classification example. Assume the training dataset contains 1000 emails in total, 100 of which are spams.

Assignment Project Exam Help 2. Amend of you suggests that whether the email contains a \$ char is a

good feature to detect spam emails. You look into the training dataset

https://eduassistpro.github.

Described (naive Beechalt assist_process)

"evidence". How would this classifier predict the cla incoming email that contains a \$ character?

3. Another friend of you suggest looking into the feature of whether the email's length is longer than a fixed threshold (e.g., 500 bytes). You obtain the following results (this feature denoted as $L(\bar{L})$).

SPAM

https://eduassistpro.github.

incoming email that contains a \$ character and is shorter than the threshold?

Add WeChat edu_assist_pr

https://eduassistpro.github.

In order to build a (naïve) bayes classifier, we need to calculate (and store) the likelyhood of the feature for each class.

Add West edu_assist_pr

Solution to Q3 II

To classify the new object, we calculate the posterior probability for both classes as:

Assignment Properties Properties

https://eduassistpro.github.

Add WeChatredu_assist_pr

So the prediction will be SPAM.

3. The likelyhood of the new feature for each class is:

$P(L \mid SPAM)$ $P(L \mid NOSPAM)$	$\begin{array}{c} \frac{40}{100} = 0.40 \\ \frac{400}{900} = 0.44 \end{array}$

Solution to Q3 III

(Note: we can easily obtain probabilities, e.g.,

 $P(\bar{L} \mid SPAM) = 1 - P(\bar{L} \mid SPAM) = 0.60)$ To classify the new object, we calculate the posterior probability for both classes as:

Assignment Project Exam Help

https://eduassistpro.github.i $=\frac{1}{P(X)} \cdot 0.60 \cdot 0.91$

$$= \frac{1}{P(X)} \cdot P(\$, \bar{L} \mid \text{NOSPAM}) \cdot P(\text{NOSPAM})$$

$$=rac{1}{P(X)}\cdot P(\$\mid exttt{NOSPAM})\cdot P(ar{L}\mid exttt{NOSPAM})\cdot P(exttt{NOSPAM})
onumber
onumber$$

Solution to Q3 IV

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Based on the data in the following table.

1. estimate a Bernoulli Naive Bayes classifer (using the add-one smoothing) SSignificant Help

3. estimate a multinomial Naive Bayes classifier (using the add-one

smoothing)

You dhttps://eduassistpro.github.

_	Α.	do	ID	words in decument	ina?	n
	training et	IU	. 1 2	Vairei laiwal al EUU c Macao Taiwan Shanghai	4 55151	וץ
			3	Japan Sapporo	No	
_			4	Sapporo Osaka Taiwan	No	
	test set		5	Taiwan Taiwan Taiwan Sapporo Bangkok	?	

We use the following abbreviations to denote the words, i.e., TP = Taipei, TW = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Shanghai, JP = Japan, SP = Sapporo OS = Taiwan, MC = Macao, SH = Sapporo OS = Taiwan, MC = Macao, SH = Sapporo OS = Taiwan, MC = Macao, SH = Sapporo OS = Taiwan, MC = Macao, SH = Sapporo OS = Taiwan, MC = Macao, MC = Taiwan, MC = Macao, MC = Taiwan, MC = Taiwan,

feature/attribute, and hence can obtain the following "rational" training

https://eduassistpro.github.

docID	TP	TW	МС	SH	JP	SP	os	class
5	0	1	0	0	0	1	0	?

Solution to Q3 II

By looking at the test data, we calculate the *necessary* probabilities for the 'Y' class as (note that there are 2 possible values for each variable)

Assignment Project Exam Help

https://eduassistpro.github.

Add WeÇhat edu_assist_pr

$$P(SP = 1|Y) = \frac{0+1}{2+2}$$

$$P(OS = 0|Y) = \frac{2+1}{2+2}$$

```
https://eduassistpro.github.
= \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{4} = \frac{1}{4096} \approx 0.0066
```

Add WeChat edu_assist_pr

Solution to Q3 IV

We calculate the *necessary* probabilities for the 'N' class as

Assignment $\Pr_{P(TP)} = \int_{|N|}^{(N)} e^{\frac{\pi}{2}} \underbrace{Exam}_{2+2}$

https://eduassistpro.github.

$$P(SP = 1|N) = \frac{2+1}{2+2}$$

 $P(OS = 0|N) = \frac{1+1}{2+2}$

Solution to Q3 V

Finally,

$\begin{array}{c} Assignment & P(N) \cdot P(TP = 0|N) \cdot P(TW = 1|N) \cdot P(MC = 0|N) \cdot P(SH = 0|N) \\ = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} = \frac{81}{2} \quad 0.020 \end{array}$

2. (https://eduassistpro.github.

Add Welch assist_pressure of the testing document is (ignoring the out-of-voca

Bangkok):

Doc	class
TW TW TW SP	?

By looking at the test data, we calculate the *necessary* probabilities for the 'Y' class as (note that there are 7 possible values for the variable w_i)

Assignment Project Exam Help

https://eduassistpro.github.

Findly, dd, WeChat edu_assist_pr

$$P(w_i = TW|Y) \cdot P(w_i = SP|Y)$$

$$= \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{12} = \frac{1}{1536} \approx 0.000651$$

We calculate the *necessary* probabilities for the 'Y' class as

Assignment $\Pr_{P(w_i = Tw|N) = \frac{2}{5+7}} \stackrel{?}{E} \times \text{xam Help}$

https://eduassistpro.github.

Finally,

Add W EC edu_assist_predu_assist_predu_assist_preduction =
$$\frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{4} = \frac{1}{1728} \approx 0.000579$$

Therefore, doc 5 should belong to the 'Yes' class.

- 1. Fir
 2
 ahttps://eduassistpro.github.
 to the positive class?
- 2. We then identify a feature x, and rearrange t based on their x vives the result is shown in their assist_pr

https://eduassistpro.github.

Add We Chat edu_assist_preserved for each of the group of training examples with the sam

For each of the group of training examples with tr compute its probability p_i and $logit(p) := log \frac{p}{1-p}$.

- 3. What is your estimate of the probability that a novel test instance belongs to the positive class if its x value is 1?
- 4. We can run a linear regression on the (x, logit) pairs from each group. Will this be the same as what Logistic Regression does?

https://eduassistpro.github.

- 3. Practile We Chat edu assist_production of the same. The main reason is that Logistic regression
- Not the same. The main reason is that Logistic regression the likelihood of the data, and this is in generally different from minimizing the SSE as in Linear Regression.

https://eduassistpro.github.

Can you construct a matrix M such that its in polar coordinates exhibit "linearality"? i.e., Add WeChat edu_assist_pr

https://eduassistpro.github.

Obviously, we still have ${f C} = {f A} + {f B}$.

- ► (Obivously) No.
- Or Company Port edu_assist_pr

 $a_{\pi(o_i)}^{\text{a }m\text{-d}}$ https://eduassistpro.github.

Computer $r := \frac{\|\pi(\mathbf{o}_r)\|^2}{\|\mathbf{o}_r\|^2}$. Can you guess what will b mindmum values WeChat edu_assist_pr

Since

Assignment Project Exam Help

https://eduassistpro.github.

Comment: he at ove is the Rayleigh Quotient (c.f. assisted property is also used in the technical proof of the spectral clustering too

property is also used in the technical proof of the spectral clustering too (not required).