Ideal Nozzle Simulation Inputs:

a: 0.05 meter ** 2 / kilogram

n: 0.65 m: -0.2

Oxidiser:

Initial Volume: 0.41 liter Initial Mass: 0.76 lbs

Injector Mass Flow Rate: 0.042 kilogram / second

Number of Injectors: 1 Ideal O/F Ratio: 4.83 External Temp: 50 degF Time Step: 0.001 second

Simulation Results:

Total Burn Time: 8.256 second

Impulse: 1288.54 newton * second Average Thrust: 156.07 newton

Motor: K156

Nozzle Results:

Suggested Throat Diameter: 0.209 inch Suggested Exit Diameter: 0.475 inch Suggested Diffuser Length: 0.495 inch

Fuel Grain

Port Length: 13.4 inch

Fuel Density: 3.96 kilogram / meter ** 3

Grain Diameter: 1.75 inch Initial Port Diameter: 1.0 inch Final Port Diameter: 1.536 inch average fuel mass flow rate (kilogram / second) vs time (second)

average port diameter (inch) vs time (second)

average regression rate (inch / second) vs time (second)

average total mass flow rate (kilogram / second) vs time (second)

average total mass flux (kilogram / inch ** 2 / second) vs time (second)

inlet mach vs time (second)

inlet velocity (mph) vs time (second)

nozzle diffuser length (inch) vs time (second)

nozzle exit area (inch ** 2) vs time (second)

nozzle exit mach vs time (second)

nozzle exit velocity (mph) vs time (second)

nozzle star mach vs time (second)

nozzle star pressure (pound_force_per_square_inch) vs time (second)

nozzle throat area (inch ** 2) vs time (second)

nozzle throat diameter (inch) vs time (second)

nozzle thrust (newton) vs time (second)

oxi fuel ratio vs time (second)

oxidiser mass (kilogram) vs time (second)

oxidiser mass flow rate (kilogram / second) vs time (second)

