Density Ratio Estimation in Variational Bayesian Machine Learning

Alexander I am

Supervised by Prof. Scott Sisson and Doctor Edwin Bonilla

Statistics Honours, 2018

Outline

- Background Information
 - Neural Networks
 - (Amortized) Variational Inference
 - Density Ratio Estimation
- Undertrained Estimator Experiment
- 3 Autoencoder Experiment

Neural Networks

Overall Structure

- Objective is to approximate a function f^* using mapping with parameters Θ : $\mathbf{f}_{\Theta}(\mathbf{x})$.
- Universal Approximation Theorem states a neural network can approximate (almost) any function if it is complex enough.
- Each node output is a transformed, weighted sum of previous node outputs.

Neural Networks

Training

- Weights trained such that (ideally convex) loss function is minimized e.g. Mean Squared Error: $\min_{\Theta} \frac{1}{2} || \mathbf{y} \mathbf{f}_{\Theta}(\mathbf{x}) ||_2^2$.
- Back-propagation finds partial derivatives of loss function with respect to weights.
- Gradient descent uses these partial derivatives to optimize network.

(Amortized) Variational Inference

Bayesian Inference

• Fundamental problem in Bayesian computation is to **estimate posterior densities** p(z|x):

$$p(z|x) \propto \underbrace{p(z)}_{\text{Prior Likelihood}} \underbrace{p(x|z)}_{\text{Likelihood}}.$$

- Typical MCMC methods are slow with large datasets or high dimensional data.
- Variational Inference is a solution.

(Amortized) Variational Inference

Introduction

- Amortized variational inference approximates p(z|x) with a different density $q_{\phi}(z|x)$.
- $q_{\phi}(z|x)$ is a **neural network** with parameters ϕ .

(Amortized) Variational Inference Network Training

• Train network by minimizing the (expected) reverse KL divergence:

$$\mathbb{E}_{q^*(x)q_\phi(z|x)}\left[\lograc{q_\phi(z|x)}{p(z|x)}
ight].$$

• This is the same as solving:

$$\min_{\phi} \mathbb{E}_{q^*(x)} \underbrace{\left[-\mathbb{E}_{q_{\phi}(z|x)} [\log p(x|z)]}_{\text{Likelihood}} + \underbrace{\mathit{KL}(q_{\phi}(z|x)||p(z))}_{\text{Log Density Ratio}} \right]}_{\text{Log Density Ratio}}.$$

• We call this NELBO(q) as it is the **n**egative of **e**vidence **l**ower **bo**und.

(Amortized) Variational Inference

Problems with Implicit Distributions

Consider our log density ratio term

$$\mathit{KL}(q_\phi(z|x)||p(z)) = \mathbb{E}_{q_\phi(z|x)} \left[\log rac{q_\phi(z|x)}{p(z)}
ight].$$

- $q_{\phi}(z|x)$ is implicit.
- Use density ratio estimation to evaluate $\frac{q_\phi(z|x)}{p(z)}$ in $KL(q_\phi(z|x)||p(z))$.
- Density ratio estimation only requires samples.

Theorem

If f is a convex function with derivative f' and convex conjugate f^* , and $r_{\alpha}(u)$ is a neural network, then we have the lower bound for the f-divergence between densities p(u) and q(u):

$$D_f[p(u)||q(u)] \geq \sup_{\alpha} \{\mathbb{E}_{q(u)}[f'(r_{\alpha}(u))] - \mathbb{E}_{p(u)}[f^*(f'(r_{\alpha}(u)))]\},$$

with equality when $r_{\alpha}(u) = q(u)/p(u)$.

Example

For the reverse KL divergence, we have:

$$\mathit{KL}[q(u)||p(u)] \geq \sup_{\alpha} \{\mathbb{E}_{q(u)}[1 + \log r_{\alpha}(u)] - \mathbb{E}_{p(u)}[r_{\alpha}(u)]\}.$$

Density Ratio Estimation

Algorithm Generalisation

- Apply theorem to generalise density ratio estimator loss functions.
- Choose **f**-divergence bound:
 - Reverse KL Divergence
 - GAN Divergence

and estimator parametrisation:

- Direct Ratio Estimator: $r_{lpha}(u) \simeq rac{q(u)}{p(u)}$
- Class Probability Estimator: $D_{\alpha}(u) = \frac{r_{\alpha}(u)}{r_{\alpha}(u)+1} \iff \frac{q(u)}{p(u)} \simeq \frac{D_{\alpha}(u)}{1-D_{\alpha}(u)}$
- Direct Log Ratio Estimator: $T_{\alpha}(u) = \log r_{\alpha}(u) \iff \frac{q(u)}{p(u)} \simeq e^{T_{\alpha}(u)}$

Recap

To train a variational posterior network:

- 1 Train estimator network until convergence.
- Use estimator network to calculate intractable term in NELBO.
- Take one optimisation step of posterior network.
- Repeat until posterior convergence.

Undertrained Estimator Experiment

Experiment Outline

$$z_1, z_2 \sim \mathcal{N}(0, \sigma^2 I_{2 \times 2})$$
 $x | \mathbf{z} \sim \textit{Exp}(3 + \max(0, z_1)^3 + \max(0, z_2)^3)$

- Posterior is flexible and bimodal.
- Use Gaussian KDE to find 'true' KL divergence for $q_{\phi}(z|x=0,5,8,12,50)$.

Undertrained Estimator Experiment

Experiment Outline

- In a previous experiment we found that all three estimator parametrisations lead to similar results when optimised effectively.
- What if they are poorly optimised?
- Training parameters:
 - High posterior training rate.
 - Low estimator training rate.
 - Low estimator to posterior iteration ratio (11:1).

Undertrained Estimator Experiment

Results

Algorithm		Mean KL Divergence	Standard Deviation
Reverse KL	$D_{\alpha}(z,x)$	1.3786	0.0286
	$r_{\alpha}(z,x)$	1.3934	0.0410
	$T_{\alpha}(z,x)$	1.4133	0.0597
GAN	$D_{\alpha}(z,x)$	1.4017	0.0286
	$r_{\alpha}(z,x)$	1.4086	0.0555
	$T_{\alpha}(z,x)$	1.4214	0.0518

True

Reverse KL

GAN

- Reverse KL divergence better than GAN divergence.
- $D_{\alpha}(z,x) < r_{\alpha}(z,x) < T_{\alpha}(z,x)$

Undertrained Estimator Experiment NELBO Plots

Reverse KL Divergence has initial instability.

Autoencoder Experiment

Autoencoders

- Posterior $q_{\phi}(z|x)$ 'compresses' data x into z.
- Likelihood $p_{\theta}(x|z)$ 'reconstructs' data \tilde{x} from z.

Autoencoder Experiment

Autoencoders

• Generate z from p(z).

Autoencoder Experiment

Experiment Outline

- ullet MNIST dataset 28 imes 28 grey-scale images of handwritten digits
- Again use undertrained estimator.
- Use reconstruction error $||x \tilde{x}||^2$ as metric.

Generation Experiment

Results - 20-dimensional latent space

Algorithm	Mean Reconstruction Error	Standard Deviation
Reverse KL - $D_{\alpha}(z,x)$	0.0647	0.0019
GAN - $D_{\alpha}(z,x)$	0.0444	0.0017

Reverse KL

GAN

- Density ratios too big for direct ratio and log ratio estimators.
- Exponential of $T_{\alpha}(z,x)$ taken in loss function.
- $D_{\alpha}(z,x)$ ranges in (0,1).

Autoencoder Experiment NELBO plot

• Reverse KL divergence fails to stabilise by the end of runtime.

Summary

- The class probability estimator $D_{\alpha}(u) \simeq \frac{q(u)}{q(u)+p(u)}$ is the 'best' parametrisation as it can store the highest density ratios.
- Reverse KL divergence upper bound may be unstable but leads to faster convergence when stable.
- Future Research
 - Still unclear exactly why reverse KL divergence is more unstable but more accurate when stable.
 - Several more f-divergences exist which have unknown stability when undertrained.
 - Alternate density ratio estimation algorithms e.g. denoisers, k-nearest neighbours