Building a Single-Box 100Gbps Software Router

The 17th IEEE Workshop on Local and Metropolitan Area Networks (LANMAN)

May 5th, 2010

Long Branch, New Jersey

Sangjin Han, Keon Jang, KyoungSoo Park, Sue Moon

Software Routers

- Runs on commocity-off-the-shelf (COTS) servers (mostly x86-based)
- Software is usually open-sourced, but there are many commercial ones as well.
- Control plane
 - Many options: Zebra, Quagga, XORP, ...
- Data plane
 - TCP/IP stack of general OS (Linux, FreeBSD) or
 - Dedicated SW (e.g. Click)

Traditional Routers vs. SW Routers

	Traditional routers	Software routers	
Price	\$10 ~ \$1M (CRS-1 40Gbps)	\$500 ~ \$5,000	
Performance	Wide range (100Mbps ~ multi-tera)	1 ~ 5Gbps	
HW	Proprietary	Off-the-shelf	
SW	Proprietary	Third party (many opensource)	
Specialized ASIC	Yes (only for high-end)	No	
Reliability	Proven (?)	Doubtful	
# of developers	Small	Large	
# of engineers	Large	Small	
Upgrade	\$\$\$ or often impossible	Replace with newer parts	
Evolution cycle	Long	Short	
When troubled, any room for excuses? ☺	Yes	No	

Concerns over Software Routers

- Performance
 - High per-packet cost
 - → low throughput for min-sized packets
 - Over 40% of packets are min-sized.
 - TCP ACK and other control packets
 - Severe performance degradation for additional functions
 - E.g. SSL decryption offload is 10+ times more expensive than plain TCP forwarding

2 main problems we want to solve

- High availability
 - Critical for enterprise market
- Others: form factor, port density, ease of deployment, ...

What Makes SW Routers Slow?

- 1. RX: DMA to RAM
- 2. CPU read
- 3. Packet processing
- 4. CPU write-back
- 5. TX: DMA to NIC

Intel Core (old)

Memory is attached to the Northbridge e.g. Intel Core 2 quad

Intel Nehalem (new)

Memory controller is integrated in CPU e.g. Intel Core i7

Distributed PC-based Router

Khan, Birke, Manjunath, Sahoo, Bianco, HPSR 2008

Route BRICKS

8.33 Gbps or 6.35 Gbps w/o Ethernet O/H 8.33 x 4 / 2 = 15.77 Gbps on 4-PC config

PacketShader

- Integrated memory controller and dual IOHs
- Aggregate 80Gbps → the system must be highly efficient
- 8 CPU cores, 8 10G ports, 2 NUMA nodes, 2 GPUs, 2 IOH...
 - Scalability is the key
- 28.8 Gbps for 64B packets

How to Deliver 100 Gbps

- CPU cycles
- I/O Capacity
- Memory Bandwidth

Inefficiencies of Linux Network Stack

_	Functional bins	% of cycles	_
-	skb (de)allocation	8.0%	- R
Compact metadata>	skb initialization	4.9%	
Batch processing>	NIC device driver	13.3%	Huge packet buffer
Software prefetch>	Compulsory cache misses	13.8%	
	Memory subsystem	50.2%	
-	Others	9.8%	_
	Total	100.0%	_

CPU cycle breakdown in packet RX

CPU Cycle Breakdown

RouteBricks

1,229 CPU cycles per NIC-to-NIC packet forwarding 1,850 CPU cycles per NIC-to-NIC packet routing 64B packets at 100 Gbps = 149 Mpps

 \Rightarrow 1,229 x 149 = 183 GHz

 \Rightarrow 1,859 x 149 = 277 GHz

Intel X7560 CPU = 8 x 2.26 GHz on 4 sockets
 8 x 2.26 x 4 = 72.3 GHz

Optimization in PacketShader

- Remove dynamic per-packet buffer allocation and use static buffers
- 2. Perform prefetch over descriptors and packet data to mitigate compulsory cache misses
- 3. Minimize cache bouncing and eliminate false sharing between CPU cores
- ⇒Factor of 6 reduction in CPU cycles
- ⇒200 CPU cycles per packet

Optimization #1

Optimization #2

Without batching: 1.6 Gbps for RX, 2.1 Gbps for TX, 0.8 Gbps for forwarding

→ batching is essential!

I/O Capacity (I)

- PCI Express
 - 10 GbE NIC has PCle x8
 - PCIe 2.0 = 2.5 GHz per lane => 20 Gbps / 8 lanes
 - Effective B/W = 12.3 Gbpzs per NIC
- PCle 2.0 upgrade to 5 GHz
 - Effective B/w up over 20 Gbps
- How many PCle 2.0 x8 slots?

Configuration (i)

Configuration (ii)

Configuration (iii)

→ 10G port

◆ PCIe x8

←-→ QPI

I/O Capacity (II)

- QuickPath Interconnect (QPI)
 - CPU socket-to-socket link for remote memory
 - IOH-to-IOH link for I/O traffic
 - CPU-to-IOH for CPU to peripheral connections
- Today's QPI link
 - 12.8 GB/s or 102.4 Gbps

Memory Bandwidth

- For 100Gbps forwarding we need 400 Gbps in memory bandwidth + bookkeeping
- Current configuration
 - triple-channel DDR3 1,333 MHz
 - 32 GB/s per core (theoretical) and 17.9GB/s (empirical)
- On NUMA system
 - More nodes
 - Careful placement...

Summary

- Two major bottlenecks
 - CPU cycles
 - I/O bandwidth
- Message
 - Find source of extraCPU cycles
 - Expect improvement in IOH chipsets and multi-IOH configuration

