- 1.2 Proof. We will prove by induction. Note that $3=4(1)^2-1$ so formula holds for n=1. Now suppose it holds for some $n \in \mathbb{N}$. Then $3+11+\ldots+(8n-5)+(8(n+1)-5)=4n^2-n+(8(n+1)-5)=4n^2+7n+3$. This is equal to $4(n^2+2n+1)-n-1=4(n+1)^2-(n+1)$ so the formula holds for n+1. Since n was arbitrary, the formula holds for n+1 whenever it holds for n. Therefore, by induction the formula is true for all $n \in \mathbb{N}$.
- 1.6 Proof. We will prove by induction. Note that $11^1 4^1 = 7$ is divisible by 7, so the claim holds for n=1. Now suppose it holds for some $n \in \mathbb{N}$. Then $11^{n+1} 4^{n+1} = (7+4)11^n 4(4)^n = 7(11)^n + 4(11^n 4^n)$. $7(11)^n$ is clearly divisible by 7. Likewise, $11^n 4^n$ is divisible by 7 due to the inductive hypothesis. Thus, $7(11)^n + 4(11^n 4^n)$ is divisible by 7, so the claim holds for n+1. Since n was arbitrary, the claim holds for n+1 whenever it holds for n. Therefore, by induction the claim is true for all $n \in \mathbb{N}$. \square
- 1.8a *Proof.* We will prove by induction. Note that $2^2 = 4 > 3 = 2 + 1$ so the claim holds for n=2. Now suppose it holds for some $n \in \mathbb{Z}_{\geq 2}$. Then $(n+1)^2 = n^2 + 2n + 1 > n + 1 + 2n + 1$ by the inductive hypothesis. Thus, $(n+1)^2$ is greater than 3n+2 > n+2 = (n+1)+1 and so the claim holds for n+1. Since n was arbitrary, the claim holds for n+1 whenever it holds for n. Therefore, by induction the claim is true for all $n \in \mathbb{Z}_{\geq 2}$.
- 1.8b *Proof.* We will prove by induction. Note that $4! = 24 > 16 = 4^2$ so the claim holds for n=5. Now suppose it holds for some $n \in \mathbb{Z}_{\geq 4}$. Then $(n+1)! = (n+1)n! > (n+1)n^2$ by the inductive hypothesis. So, n! is greater than $n^3 + n^2$, which is greater than (n+1)(n+1) by Part (a), which proved that $n^2 > n+1$. Thus, $(n+1)! > (n+1)^2$ so the claim holds for n+1. Since n was arbitrary, the claim holds for n+1 whenever it holds for n. Therefore, by induction the claim is true for all $n \in \mathbb{Z}_{\geq 4}$.
- 1.12a For $\underline{\mathbf{n}} = \underline{1}$, $(a+b)^1 = a+b = \binom{1}{0}a^1 + \binom{1}{1}b^1$ For $\underline{\mathbf{n}} = \underline{2}$, $(a+b)^2 = a^2 + 2ab + b^2 = \binom{2}{0}a^2 + \binom{2}{1}a^1b^1 + \binom{2}{2}b^2$ For $\underline{\mathbf{n}} = \underline{3}$, $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = \binom{3}{0}a^3 + \binom{3}{1}a^2b^1 + \binom{3}{2}a^1b^2 + \binom{3}{3}b^3$

1.12b

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$
 (1)

$$= \frac{n!(n-k+1)}{k!(n-k)!(n-k+1)} + \frac{n!(k)}{(k-1)!(n-k+1)!(k)}$$
(2)

$$=\frac{n!(n-k+1+k)}{k!(n-k+1)!}$$
(3)

$$=\frac{(n+1)!}{k!(n-k+1)!}\tag{4}$$

$$= \binom{n+1}{k} \tag{5}$$

Therefore, $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ for $k = 1, 2, \dots, n$.

- 1.12c Proof. We will prove by induction. Note that the Binomial Theorem holds for n = 1, as demonstrated in Part (a). Now suppose the Binomial Theorem holds for some $n \in \mathbb{N}$. Then, $(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{i=0}^n \binom{n}{i}a^{n-i}b^i$. This is then equal to $\sum_{i=0}^n \binom{n}{i}a^{n-i+1}b^i + \sum_{i=0}^n \binom{n}{i}a^{n-i}b^{i+1}$, which can be simplified to $a^{n+1}+b^{n+1}+\sum_{i=1}^n \binom{n}{i}+\binom{n}{i-1}a^{n-i+1}b^i$. By Part (b), the sum of the binomial coefficients simplifies from $\binom{n}{i}+\binom{n}{i-1}$ to $\binom{n+1}{i}$. Thus, $(a+b)^{n+1}=\sum_{i=0}^{n+1} \binom{n+1}{i}a^{n-i+1}b^i$ and so the Binomial Theorem holds for n+1. Since n was arbitrary, the Binomial Theorem holds for n+1 whenever it holds for n. Therefore, by induction, the Binomial Theorem is true for all $n \in \mathbb{N}$.
 - 2.4 Proof. Let $x = \sqrt[3]{5-\sqrt{3}}$. Then $x^3 = 5-\sqrt{3}$ and $x^3-5 = -\sqrt{3}$ so $x^6-10x^3+16=0$. By the Rational Root Theorem, the only possible rational solutions are $\pm 1, \pm 2, \pm 4, \pm 8$, and ± 16 . By substitution, none of these are roots so $\sqrt[3]{5-\sqrt{3}}$ must be irrational.

18 January 2018 Page 1

2.8 By the Rational Root Theorem, the only possible rational solutions are ± 1 . If x=1, $(1)^8-4(1)^5+13(1)^3-7(1)+1=4\neq 0$. If x=-1, $(-1)^8-4(-1)^5+13(-1)^3-7(-1)+1=0$. Thus, the only rational solution is x=-1.

18 January 2018 Page 2