12.2 集合的等势

定理12.2.1

• 对任意的集合A,有

$$P(A) \approx A_2$$

$$P(A) \approx A_2$$

• 证明*: 这里2 = $\{0,1\}$, 所以 A_2 是所有函数 f{0,1}组成的集合。

A的特征函数 $χ_A$ 定义为:

$$\chi_A : E \to \{0,1\}, \chi_A(a) = \begin{cases} 1 & a \in A \\ 0 & a \notin A \end{cases}$$

- 构造函数 H: P(A) → A₂,
- 对于任意 $B \in P(A)$, $H(B) = \chi_B(x)$: $A \to \{0,1\}$ 。
- 其中 $\chi_B(x)$ 是以A为全集时B的特征函数。
- 1. 证H是单射的;
- $\mathfrak{g}_{B_1}, B_2 \in P(A) \perp B_1 \neq B_2, M$ $H(B_1) = \chi_{B_1} \neq \chi_{B_2} = H(B_2)$, 所以, H是单射的。
- 2. 证*H*是满射的;
- 对任意的 $g \in A_2$, $g: A \to \{0,1\}$, 存在集合 $B = \{x \mid x \in A \land g(x) = 1\}, 则 B \subseteq A, 即存在$ $B \in P(A)$,且H(B) = g(x)。所以,H是满射的。

12.2 集合的等势

以 W W ERSI F -1911-

定理12.2.3 康托定理(1890)

- $(1) \quad \neg N \approx R \quad ,$
- (2) 对任意的集合A, $\neg A \approx P(A)$ 。

有理数就像夜空里的星星, 而无理数则像无边的黑暗

对角线方法(1891年)

- Cantor's Diagonal Method
- 假设你把实数区间(0, 1)里的所有数按照 某种顺序排列起来
- $a_1 = 0. \underline{0}147574628 \cdots$ $a_2 = 0. 3\underline{7}211111111 \cdots$ $a_3 = 0. 23\underline{2}3232323 \cdots$ $a_4 = 0. 000\underline{4}838211 \cdots$ $a_5 = 0. 0516\underline{0}00000 \cdots$

小数点后第一位不等于 a_1 的第一位,小数点后第二位不等于 a_2 的第二位,

.

总之小数点后第 i 位不等于 a_i 的第 i 位。

这个数属于实数区间(0,1),但它显然不在你的列表里,因为它和你列表里的每一个数都有至少一位是不同的。

我们就证明了实数区间是不可数的。

- 证明:
- (1) 只要证明 $\neg N \approx [0,1]$ 即可。

- 为此只要证明对任何函数 $f: N \to [0,1]$, 都存在 $x \in [0,1]$, 使 $x \notin ran(f)$, 即任何函数 $f: N \to [0,1]$ 都不是双射的。
- 反证: 假设存在一个双射函数 $f: N \to [0,1]$ 则[0,1]中的元素必与N中的元素一一对应,那么[0,1]中的元素必可排列成如下的形式: $ranf = [0,1] = \{x_1, x_2, \dots, x_i, \dots\}$
- 设每个 x_i 的小数形式是

$$0. a_{i1}a_{i2} \cdots a_{ij} \cdots$$
, $且 a_{ij} ∈ {0,1, \cdots 9}$

• 对任意一个 $f: N \to [0,1]$, 顺序列出f 值

对任意一个 $f: N \to [0,1]$, 顺序列出f 值

$$f(0) = x_1 = 0.a_{11}a_{12}a_{13}a_{14}...$$

$$f(1) = x_2 = 0.a_{21}a_{22}a_{23}a_{24}...$$

$$f(2) = x_3 = 0.a_{31}a_{32}a_{33}a_{34}...$$

$$f(3) = x_4 = 0.a_{41}a_{42}a_{43}a_{44}...$$

• • •

$$f(n-1) = x_n = 0.a_{n1}a_{n2}a_{n3}a_{n4}...$$

• • •

• 依假设

任一[0,1]中的实数均应出现在上表中的某一行

- 关键:如何找出一个[0,1]区间的小数,并证明该小数不在上表中出现。
- Cantor 提出按对角线构造一个新的小数 x^*

$$x^* = 0.a_{11}^* a_{22}^* a_{33}^* \cdots a_{ii}^* \cdots$$

使得 $a_{ii}^* \neq a_{ii}$ ($i = 1, 2, \dots, n, \dots$)
显然 $x^* \in [0, 1]$, 然而 x^* 又不在上表中。
 $\therefore x^*$ 与上表中的任一 x_i 至少总有一位数字相异。
于是 $x^* \notin ran(f)$,即 f 不可能是满射,故不存在
双射函数 $f: N \to [0, 1]$ 。

对任意的集合A, $\neg A \approx P(A)$

- (2) 对任意的函数 $g: A \rightarrow P(A)$, 构造集合 $B = \{x | x \in A \land x \notin g(x)\}$ 。
- 显然, $B \subseteq A$, $B \in P(A)$ 。对任意的 $x \in A$, $f(x) \in B \Leftrightarrow x \notin g(x)$, 则 $f(x) \notin g(x)$ 。
- 所以 $B \notin ran(g)$, 但 $B \in P(A)$,
- 所以g不是满射的。当然也不是双射的。
- 不存在双射函数 $g: A \rightarrow P(A)$ 。

证明的核心在于**构造一个** $B \subset A$ 使得 $B \notin \text{range}(g)$,其定义即为 $\forall x, x \in A \rightarrow B \neq g(x)$

为此,我们给出B的构造 $B = \{x \mid x \in A \land x \notin g(x)\}$ 。那么对于 $\forall x \in A$,我们都有 $x \in B \Leftrightarrow x \notin g(x)$,这就足以说明 $\forall x \in A, B \neq g(x)$,也就完成了我们的证明。可以看到,该证明**并不关心** $B = \emptyset$ 为例子看看发生了什么:

 $\mathcal{M}B = \emptyset$ 我们得到了 $\forall x \in A, x \in g(x)$, 也就是说g(x) 至少有 x 这个元素,所以 $g(x) \neq \emptyset$, $\forall x \in A$ 进而 $g(x) \neq B$, $\forall x \in A$ 即 $B \notin \text{range}(g)$

例: $A = \{1,2,3\}$, $g(1) = \{1\}$, $g(2) = \{2\}$, $g(3) = \{3\}$, $B = \emptyset$ 但是 $g(x) \neq \emptyset$, 所以 $B \neq g(x)$ 。

• 例:

$$A = \{1, 2, 3\}$$

 $P(A) = \{\Phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$

- 设 $B = \{1, 2\}$, 显然, $B \subseteq A, B \in P(A)$ $g(x) = \{3\} \quad 满足B = \{x | x \in A \land x \notin g(x)\}$ $B \neq g(x)$, $B \notin ran(g)$, $g: A \to P(A)$,
- 总之,不管给出的函数g 为何种情形,均可按此 法构造集合B,B是P(A)中的元素,但不在g的值 域中。
- 所以g不是满射的。

• $R \approx N_2$

证明: 只需证 $R \le N_2$, 且 $N_2 \le R$

(1) 先证 $R \le N_2$. 为此只需证(0, 1) $\le N_2$.

构造函数H: $(0, 1) \rightarrow N_2$,

对 \forall z∈(0, 1), 有H(z)∈ N₂={f | f: N→{0, 1}}

其中z表示二进制无限小数

 $H(z): N \rightarrow \{0, 1\}$

 \forall n ∈ N, 取H(z)(n)为z的小数点后的第n位数显然, $z_1 \neq z_2$ 时, H(z_1) \neq H(z_2)

∴ H为单射, ∴ (0, 1) ≤ N₂.

(2) 证 $N_2 \le R$. 只需证 $N_2 \le [0, 1]$,

设G: $N_2 \rightarrow [0,1]$

 $\forall f \in N_2 = \{f \mid f: N \rightarrow \{0, 1\}\}\$

则f的函数值确定一个[0,1]区间上的实数,例如f(0), f(1), f(2), f(3), ... 依次为1, 0, 1, 1, 1, 0, 0, 0, ... 时,取十进制数

y=0.10111000...,则 $y \in [0, 1]$ 即G(f)=0.101110...

显然G是单射. ∴ N₂ ≤[0, 1]

• 推论: \aleph_1 =card(R)=card(N₂)=2 \aleph_0 .

$|R \times R| = |R|$

$$|R \times R| = |(0, 1] \times (0, 1]| = |(0, 1]| = |R|$$

将 $x \in (0, 1]$ 表示为十进小数,注意有些x 的表示不唯一,如0.35 也可以表示为0.34 $\dot{9}$ 。我们取后一种表达式,这种表达式的特征是不会在某一位后全是0,所以这种表达式称为x 的十进无限小数表达式,它是唯一的。特别地,1 的十进无限小数表达式是0. $\dot{9}$ 。这样,任给 $x \in (0, 1]$,都有 $x = 0.a0a1a2\cdots$ 。

$|(0, 1] \times (0, 1]| = |(0, 1]|$

任给 $\langle x, y \rangle \in (0, 1] \times (0, 1]$, 将x, y 分别表示为

 $x = 0.a0a1a2.....\pi y = 0.b0b1b2.....$

取z = 0. a0b0a1b1a2b2……,

构造(0, 1]×(0, 1]到(0, 1]的映射

 $g: (0, 1] \times (0, 1] \rightarrow (0, 1] \quad g(x, y) = z$

则 g 是单射,所以

 $|(0, 1] \times (0, 1] \leq |(0, 1]|_{\circ}$

又 f: $(0, 1] \rightarrow (0, 1] \times (0, 1]$ $f(x) = \langle x, 1 \rangle$ 是单射,所以 $|(0, 1)| \leq |(0, 1)| \times (0, 1)$ 。