

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

Asignatura Clave Semestre Créditos INGENIERÍA ELÉCTRICA EN TELECOMUNICACIONES División Departamento Licenciatura Asignatura: Horas/semana: Horas/semestre: Teóricas 3.0 Teóricas 48.0 Optativa Prácticas 2.0 Prácticas 32.0 Total 5.0 Total 80.0	SISTEMAS DE COMUNICACIONE	S OPTICAS 1875	<u> </u>	<u> </u>
INGENIERÍA ELÉCTRICA EN TELECOMUNICACIONES EN TELECOMUNICACIONES División Departamento Licenciatura Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 3.0 Optativa Prácticas 2.0 Prácticas 32.0	Asignatura	Clave	Semestre	Créditos
Asignatura: Obligatoria X Horas/semana: Teóricas 3.0 Horas/semestre: Teóricas 48.0 Optativa Prácticas 2.0 Prácticas 32.0	INGENIERÍA ELÉCTRICA	INGENIERÍA EN TELECOMUNICACI	IONES EN TE	NGENIERÍA LECOMUNICACIONES
Obligatoria X Teóricas 3.0 Teóricas 48.0 Optativa Prácticas 2.0 Prácticas 32.0	División	Departamento	L	icenciatura
Total 5.0 Total 80.0	Optativa	Prácticas 2.0	Práctic	as 32.0
		Total 5.0	Total	80.0

Modalidad: Curso teórico-práctico

Seriación obligatoria antecedente: Ninguna

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

El alumno comprenderá los principios de funcionamiento, constitución, características y la metodología de diseño, implementación y evaluación de rendimiento de distintos tipos de sistemas de comunicaciones ópticas. Identificará los tipos de sistemas de comunicaciones ópticas, sus elementos pasivos y activos, así como los tipos de señales, las técnicas de multicanalización y procedimientos y equipos utilizados en la construcción de sistemas y monitoreo de su funcionamiento. Analizará adecuadamente las exigencias técnicas para distintos sistemas de comunicaciones ópticas e identificará las características de su rendimiento.

Temario

NÚM.	NOMBRE	HORAS
1.	Fundamentos de sistemas de comunicaciones ópticas	9.0
2.	Las fibras ópticas y elementos pasivos de línea	12.0
3.	Equipos transmisor y receptor óptico	9.0
4.	Enlaces y redes de fibra óptica	9.0
5.	Sistemas ópticos WDM (Multicanalización en el Dominio de Longitud de Onda)	9.0
	Actividades prácticas	48.0
	Total	80.0

1 Fundamentos de sistemas de comunicaciones ópticas

Objetivo: El alumno discutirá las etapas, condiciones promotoras y tendencias de evolución de los sistemas de comunicaciones ópticas, los comparará por sus características generales y clasificará por áreas de aplicación.

Contenido:

- **1.1** Principio de comunicaciones ópticas.
- 1.2 Comparación entre las características de los sistemas de diferentes generaciones.
- 1.3 Los retos en el mejoramiento de las características de los sistemas de cada generación.
- 1.4 Las categorías de los sistemas de comunicaciones ópticas modernos y sus características generales.

2 Las fibras ópticas y elementos pasivos de línea

Objetivo: El alumno comprenderá y discutirá las características generales de difrentes fibras ópticas e identificará sus elementos pasivos de línea.

Contenido:

- 2.1 Parámetros geométricos y ópticas de una fibra de vidrio de dos capas.
- 2.2 Análisis de propagación en términos de la óptica geométrica y teoría electromagnética.
 - 2.2.1 Modos de propagación.
- 2.3 Dispersión temporal de la energía de señal en las fibras ópticas multimodo y monomodo.
 - **2.3.1** La dispersión cromática y la dispersión de modo de polarización.
- **2.4** Fibras ópticas de tipos especiales.
 - **2.4.1** Fibras de dispersión desplazada DSF (Dispersion Shifted Fibers) y NZDSF (Non Zero Dispersion Shifted Fibers).
- 2.5 Fibras ópticas de alta birrefringencia.
- 2.6 Fibras ópticas microestructuradas y de cristal fotónico.
- 2.7 Fibras ópticas con rejillas de Bragg.
- 2.8 Compensación de la dispersión cromática.
- **2.9** Compensación de la dispersión de modo de polarización.
- 2.10 Empalmes, acopladores direccionales, filtros ópticos y nodos de acceso a línea de fibra óptica.

3 Equipos transmisor y receptor óptico

Objetivo: El alumno comprenderá las características generales de equipos y dispositivos transmisores y receptores ópticos.

Contenido:

- **3.1** Fuentes de la radiación óptica para sistemas de comunicaciones por fibra óptica.
 - **3.1.1** Diodos emisores de luz.
 - **3.1.2** Diodos láser de tipo Fabri-Perot, DBR y DFB.
- 3.2 Modulación interna y externa de las fuentes.
 - 3.2.1 Acoplamiento de las fuentes con fibras ópticas.
- **3.3** Equipos transmisor óptico.
 - **3.3.1** Foto detectores.
 - **3.3.2** Características de foto diodos p-n, p-i-n, y de avalancha.
 - 3.3.3 Preamplificadores de transimpedancia.

3.4 Equipos receptor óptico.

4 Enlaces y redes de fibra óptica

Objetivo: El alumno explicará el funcionamiento y los factores que limitan la capacidad de un enlace con modulación de intensidad y detección directa de una señal óptica. Explicará los fundamentos de multicanalización en el dominio del tiempo y describirá las técnicas que se usan en los sistemas de TDM (Time Division Multiplexing).

Contenido:

- **4.1** Enlace sencillo.
- **4.2** Topologías de redes de fibra óptica.
- **4.3** Enlaces con modulación de intensidad y detección directa de la señal óptica.
 - **4.3.1** Fuentes de ruido y distorsiones en enlaces ópticas.
 - **4.3.2** Limitaciones a la capacidad de un enlace.
 - **4.3.3** Cálculo de la banda de paso.
 - **4.3.4** Presupuesto de potencia de un enlace y una red de fibra óptica.
- 4.4 Técnicas TDM en sistemas de comunicaciones ópticas.
- 4.5 Sistema SONET.

5 Sistemas ópticos WDM (Multicanalización en el Dominio de Longitud de Onda)

Objetivo: El alumno clasificará los sistemas WDM (Wavelength Division Multiplexing) por sus aplicaciones, explicará su funcionamiento, escogerá adecuadamente sus elementos principales y analizará las imperfecciones de funcionamiento de estos sistemas.

Contenido:

- 5.1 Principios de multicanalización en el dominio de longitud de onda.
- **5.2** Estándares para las bandas espectrales y ancho de banda de canales de los sistemas WDM.
- **5.3** Elementos especiales de los sistemas y redes WDM.
 - **5.3.1** Transmisores y receptores.
 - 5.3.2 Filtros ópticos.
 - **5.3.3** Multicanalizadores y demulticanalizadores.
 - **5.3.4** Conmutadores ópticos.
 - **5.3.5** Ruteadores y conmutadores de paquetes fotónicos.
- **5.4** Amplificadores ópticos EDFA.
- 5.5 Monitoreo de funcionamiento y evaluación de rendimiento de los sistemas WDM.

Bibliografía básica

Temas para los que se recomienda:

AGRAWAL, Govind P.

Fiber-optic communication systems

Todos

4th edition

Hoboken

John Wiley& Sons, 2012

DECUSATIS, Casier

Handbook of Fiber-Optic Data Communication: A Practical

Todos

Guide to Optical Networking 3rd edition

San Diego

Elsevier Academic Press, 2008

KEISER, Gerd

Optical Fiber Communications

Todos

2nd edition New York

McGraw-Hill Education, 2010

SENIOR, John

Optical Fiber Communications: Principles and Practice

Todos

3rd edition New Jersey

Prentice Hall -Pearson Education, 2009

Bibliografía complementaria

Temas para los que se recomienda:

BASS, Michael, VAN STRYLAND, Erick W.

Fiber optics handbook: fiber, devices, and systems for Todos

optical communications 2nd edition

New York

McGraw-Hill, 2002

HECHT, Jeff

Understanding fiber optics Todos

5th edition

Prentice Hall, 2009

NÉROU, Jean Pierre

Introducción a las telecomunicaciones por fibras ópticas. Todos

3ra edición

México

Trillas, 2010

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	X
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	
Uso de software especializado	X	Uso de redes sociales con fines académicos	
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

Profesor con doctorado o maestría en Ingeniería Eléctrica, especialización Telecomunicaciones. Experiencia en el área de las comunicaciones y dispositivos ópticos. Con experiencia docente o con preparación en los programas de formación docente en la disciplina y en didáctica.