Riemann-Roch Theorem - from the perspective of plane algeraic curves

David Gu

Computer Science Department Stony Brook University gu@cs.stonybrook.edu

September 24, 2023

Basic Concepts

Rings and Fields

Definition (Rings)

A ring is a set R equipped with two binary operations "+" and "·" satisfying:

- R is an Abelian group under "+";
- ② "·" is associate: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, $\forall a, b, c \in R$, $\exists 1 \in R$, such that $a \cdot 1 = a$, $1 \cdot a = a$, $\forall a \in R$;
- **③** "+" is distributive with "⋅":

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c), \quad \forall a, b, c \in R$$

 $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$

Rings and Fields

Definition (ideals)

A subset I of $(R, +, \cdot)$ is a left idea of R if

- \bullet (I,+) is a subgroup of (R,+)

A subset I of $(R, +, \cdot)$ is a right ideal of R if

- \bullet (I,+) is a subgroup of (R,+)

A two-sided idea is a left ideal that is also a right ideal.

Quotient Ring R/I

We first define \sim on R as follows:

$$a \sim b \text{ iff } a - b \in I \quad \forall a, b \in R$$

Actually, \sim is an equivalence relation, since

$$a \sim a, a \sim b \iff b \sim a, a \sim b \& b \sim c \implies a \sim c.$$

The equivalence class of $a \in R$ is

$$[a] = a + I := \{a + r : r \in I\}$$

Quotient Ring R/I

Definition (Quotient Ring)

R/I is the set of all equivalence classes,

$$R/I = \{[a] : a \in R\}$$

R/I becomes a ring under the addition and multiplication defined below:

addtion:
$$(a + I) + (b + I) = (a + b) + I$$

multiplication:
$$(a+1) \cdot (b+1) = ab+1$$

They are both well defined

$$a \sim a', b \sim b' \implies (a+b)+I = (a'+b')+I, \quad ab+I = a'b'+I$$

- "0" in R/I is $\bar{0} = 0 + I = I$;
- "1" in R/I is $\bar{1}=1+I$

Affine Varieties

Definition (Affine Varieties)

Suppose K is a field, $K[x_1, ..., x_n]$ the polynomial ring in variables $x_1, x_2, ..., x_n$,

- **1** For $n \in \mathbb{N}$, we call $\mathbb{A}^n := \mathbb{A}^n_K := K^n$ the affine *n*-space over K
- ② For a subset $S \subset K[x_1, \dots, x_n]$ of polynomials, we call

$$V(S) := \{ p \in \mathbb{A}^n : f(p) = 0 \ \forall f \in S \} \subset \mathbb{A}^n$$

the the affine zero locus of S. Subsets of \mathbb{A}^n of this form are called Affine varienties.

Affine Curves

Definition (Affine Curves)

1 An affine plane algebraic curve (over K) is a non-constant polynomial $F \in K[x,y]$ modulo units, i.e. modulo the equivalence relation $F \sim G$ if $F = \lambda G$ for some $\lambda \in K^*$. We call

$$V(F) := \{ p \in \mathbb{A}^2 : F(p) = 0 \}$$

the set of points of F.

- The degree of a curve is its degree as a polynomial.
- ① A curve F is called irreducible if it is as a polynomial, and reducible otherwise. If $F = F_1^{a_1} \cdots F_k^{a_k}$ is the irreducible decomposition of F as a polynomial, we will also call this the irreducible decomposition of the curve F. The curves F_1, \ldots, F_k are then called the irreducible components of F and a_1, \ldots, a_k their multiplicities. A curve F is called reduced if all its irreducible components have multiplicity 1.

Plane Projective Curve

Projective Spaces

Field K is algebraically closed. F is a smooth and irreducible curve over K.

Definition (Projective Spaces)

For $n \in \mathbb{N}$, the projective *n*-space over *K*

$$\mathbb{P}^n = \{1\text{-dimensional linear subspaces of } K^{n+1}\}$$

$$\mathbb{P}^n = (K^{n+1} \setminus \{0\})/\sim,$$

$$(x_0,\ldots,x_n)\sim (y_0,\ldots,y_n)\iff x_i=\lambda y_i\quad \text{for some }\lambda\in K^* \text{and all }i$$

We denote the equivalence class of (x_0, \ldots, x_n) by $(x_0 : x_1 \ldots x_n)$. We call x_0, \ldots, x_n the homogenous or projective coordinates of the point $(x_0 : x_1 \ldots x_n)$.

Projective Spaces

 \mathbb{P}^n is the compactification of \mathbb{A}^n ($\mathbb{A}^n := K^n$)

$$\mathbb{P}^{n} = \mathbb{S}^{n} / \sim \quad \mathbb{S}^{n} = \{ (x_{0}, \dots, x_{n}) \in K^{n+1} : |x_{0}|^{2} + \dots + |x_{n}|^{2} = 1 \}$$

$$(x_{0}, \dots, x_{n}) \sim (y_{0}, \dots, y_{n}) \iff x_{i} = -y_{i}$$

Example

$$\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\}$$
$$\mathbb{P}^2 = \mathbb{A}^2 \cup \mathbb{P}^1$$
$$\mathbb{P}^{n+1} = \mathbb{A}^{n+1} \cup \mathbb{P}^n$$

 $[x_0:x_1:x_2] \in \mathbb{P}^2$, if $x_0 = 0$ and $(x_1,x_2) \neq (0,0)$, then $[0:x_1:x_2] \in \mathbb{P}^1$; if $x_0 \neq 0$, $[1:\frac{x_1}{x_0}:\frac{x_2}{x_0}] \in \mathbb{A}^2$. Hence $\mathbb{P}^2 = \mathbb{A}^2 \cup \mathbb{P}^1$.

Projective Varieties

Let $f = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} x_0^{i_0} \dots x_n^{i_n} \in K[x_0, \dots, x_n]$ be homogeneous of degree d.

• f is not a well-defined function on \mathbb{P}^n . For example on \mathbb{P}^1 , $f(x_0, x_1) = x_0 + x_1$, [1:1] = [2:2], but $f(1,1) = 2 \neq f(2,2) = 4$. Its zero locus is well defined on \mathbb{P}^n , since

$$f(\lambda x_0, \dots, \lambda x_n) = 0 \iff f(x_0, \dots, x_n) = 0, \quad \forall \lambda \in K^*$$

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$$

② If g is another homogenous polynomial of degree d

$$\frac{f(\lambda x_0,\ldots,\lambda x_n)}{g(\lambda x_0,\ldots,\lambda x_n)} = \frac{\lambda^d f(x_0,\ldots,x_n)}{\lambda^d g(x_0,\ldots,x_n)} = \frac{f(x_0,\ldots,x_n)}{g(x_0,\ldots,x_n)}$$

so $\frac{f}{g}$ is a well-defined function on the subset of \mathbb{P}^n where g does not vanish.

Projective Varieties

Definition (Projective Varieties)

 $\forall S \subset K[x_0, \dots, x_n]$ of homogeneous polynomials, we call

$$V(S):=\{p\in\mathbb{P}^n: f(p)=0 \text{ for all } f\in S\}\subset\mathbb{P}^n$$

the (projective) zero locus of S. Subsets of \mathbb{P}^n that of this form are called (projective) varieties.

Plane Projective Curve

Definition (Plane Projective Curve)

A (Projective plane algebraic) curve (over K) is a non-constant homogenous polynomial F[x, y, z] modulo units (K^*) . We call

$$V(F) = \{ p \in \mathbb{P}^2 : F(p) = 0 \}$$

its set of points.

Rational Function and Regular Function

Local ring of \mathbb{A}^2

Definition (Local ring of \mathbb{A}^2)

Let $p \in \mathbb{A}^2$ be a point.

1 The local ring of \mathbb{A}^2 at p is defined as

$$\mathcal{O}_p := \mathcal{O}_{\mathbb{A}^2,p} := \left\{ rac{f}{g} : f,g \in K[x,y] \text{ with } g(p)
eq 0
ight\} \subset K(x,y).$$

2 It admits a well-defined ring homomorphism

$$\mathcal{O}_p \to K, \quad \frac{f}{g} \mapsto \frac{f(p)}{g(p)}$$

which we will call the evaluation map. Its kernel will be denoted by

$$I_p:=I_{\mathbb{A}^2,p}:=\left\{rac{f}{g}:f,g\in K[x,y] ext{ with } f(p)=0 ext{ and } g(p)
eq 0
ight\}\subset \mathcal{O}_p.$$

The local ring O., contains exactly one maximal ideal 🔼 💎 🦥 📑

\mathbb{A}^2 Intersection multiplicities

Definition (Intersection multiplicities)

Let $p \in \mathbb{A}^2$ and two curves (or polynomials) F and G we define the intersection multiplicity of F and G at p to be

$$\mu_{p}(F,G) := \dim \mathcal{O}_{p}/\langle F,G \rangle \in \mathbb{N} \cup \{\infty\}.$$

A² Intersection Multiplicity

Lemma

Let $p \in \mathbb{A}^2$, F and G be two curves (or polynomials). We have

- $\mu_p(F,G) \geq 1$ if and only if $p \in F \cap G$;

Proof.

Assume first that $F(p) \neq 0$, then F is a unit in \mathcal{O}_p , and thus $\langle F,G \rangle = \mathcal{O}_p$, i.e. $\mu_p(F,G) = 0$. We then have $p \in F$ and $F \in I_p$. Similarly, $p \in G$. So we may now assume that F(p) = G(p) = 0, i.e. $p \in F \cap G$. Then the evaluation map at p induces a well-defined and surjective map $\mathcal{O}_p/\langle F,G \rangle \to K$. It follows that $\mu_p(F,G) \geq 1$, proving (a) is this case. More over, we have $\mu_p(F,G) = 1$ if and only if this map is an isomorphism i.e. if and only if $\langle F,G \rangle$ is exactly the kernel I_p of the evaluation map. \square

\mathbb{A}^2 Affine coordinate rings

Definition (Affine Coordinate Rings)

Let F be a smooth an irreducible affine curve over algebraically closed field K, we all

$$A(F) := K[x,y]/\langle F \rangle$$

the affine coordinate ring of F.

Algebraic properties of A(F):

- **1** As the curve F is assumed to be irreducible, the coordinate ring A(F) is an integral domain: if $fg = 0 \in A(F)$, this means F|fg, hence F|f or F|g, which means that f = 0 or g = 0 in A(F).
- ② The affine coordinate ring A(F) is in general not a unique factorization domain.

\mathbb{A}^2 Rational functions and local rings

Definition (Rational functions and local rings)

Let F be a smooth an irreducible affine curve over algebraically closed field K,

The quotient field

$$K(F) := \left\{ \frac{f}{g} : f, g, \in A(F) \text{ with } g \neq 0 \right\}$$

of the coordinate ring is called the field of rational functions on F.

② A rational function $\varphi K(F)$ is called regular at a point $p \in F$ if it can be written as $\varphi = \frac{f}{g}$ with $f, g \in A(F)$ and $g(p) \neq 0$. The regular function at p form a subring of K(F) containing A(F) denoted by

$$\mathcal{O}_{F,p} := \left\{ rac{f}{g} : f,g \in A(F) \text{ with } g(p) \neq 0
ight\} \subset K(F)$$

This ring of regular functions at p is called the local ring of F at p.

\mathbb{A}^2 Rational functions and local rings

Definition (Rational functions and local rings)

Let F be a smooth an irreducible affine curve over algebraically closed field K,

There is a well-defined evaluation map

$$\mathcal{O}_{F,p} \to K, \frac{f}{g} \mapsto \frac{f(p)}{g(p)}$$

which we will simply write as $\varphi \to \varphi(p)$ for $\varphi \in \mathcal{O}_{F,p}$, and whose kernel is

$$I_{F,p}:=\left\{rac{f}{g}:f,g\in A(F) ext{ with } f(p)=0 ext{ and } g(p)
eq 0
ight\}.$$

The local ring $\mathcal{O}_{F,p}$ contains exactly one maximal ideal $I_{F,p}$.

\mathbb{A}^2 Multiplicity for polynomial

Let p be a point on an affine curve F.

• For a polynomial function $f \in A(F)$ we define its multiplicity at p to be

$$\mu_{p}(f) := \mu_{p}(F, f) = \dim \mathcal{O}_{\mathbb{A}^{2}, p} / \langle F, f \rangle \quad \in \mathbb{N} \cup \{\infty\}$$

Noe that this is well-defined since $f = g \in A(F)$ implies g = f + hF for some polynomial h, then $\mu_p(F,f) = \mu_p(F,f+hF) = \mu_p(F,g)$. This multiplicity is ∞ if and only if f and F have a common component through p, i.e. (since F is irreducible) if and only if $f = 0 \in A(F)$.

\mathbb{A}^2 Multiplicity for rational

Let p be a point on an affine curve F.

② For a rational function $\varphi = \frac{f}{g} \in K(F)$ we define its multiplicity at p to be

$$\mu_p(\varphi) := \mu_p(f) - \mu_p(g), \in \mathbb{Z} \cup \{\infty\}$$

Again this is well-defined: As $g \neq 0 \in A(F)$ we have $\mu(g) < \infty$ and if $\frac{f}{g} = \frac{f'}{g'} \in A(F)$ then $fg' = gf' \in A(F)$, so that

$$\mu_{p}(f) - \mu_{p}(g) = \mu_{p}(f') = \mu_{p}(g')$$

by the additivity of multiplicities of polynomial functions. Moreover, the multiplicity $\mu_p(\varphi)$ is ∞ if and only if $\mu_p(f)$ is ∞ , i.e. if and only if f=0, and thus $\varphi=0$.

1 The additivity of multiplicities extends to rational functions as well: for $\varphi = \frac{f}{g}$ and $\psi = \frac{f'}{g'}$ in K(F) we have

$$\mu_{p}(\varphi\psi) = \mu_{p}\left(\frac{ff'}{gg'}\right) = \mu_{p}(ff') - \mu_{p}(gg')$$

$$= \mu_{p}(f) + \mu_{p}(f') - \mu_{p}(g) - \mu_{p}(g') = \mu_{p}(\varphi) + \mu_{p}(\psi)$$

\mathbb{A}^2 Zeros and Poles

Definition (Zeros and Poles)

If a polynomial or rational function has multiplicity n > 0 at p we say that it has a zero of order n at p; if n < 0 we say that it has a pole of order of -n at p.

A² Discrete valuation ring

Lemma $(\mathcal{O}_{F,p})$ is a discrete valuation ring I)

Let p be a point on an affine curve F.

• The ideal $I_{F,p}$ is principal, i.e. it can written as $I_{F,p} = \langle t \rangle$ for some $t \in \mathcal{O}_{F,p}$ (which is unique up to units). We call t a local coordinate for F at p.

Proof.

Let t be aline through p which is not the tangent T_pF , so t transversely intersects F at p, $\mu_p(t)=1$. As t vanishes at p, we have $t\in I_{F,p}$, and thus

$$1 = \mu_{p}(t) = \dim \mathcal{O}_{F,p}/\langle t \rangle \ge \dim \mathcal{O}_{F,p}/I_{F,p} \ge 1,$$

where the last inequality holdes as the constant function 1 is a non-zero element of $\mathcal{O}_{F,p}/I_{F,p}$. Thus $I_{F,p}=\langle t\rangle$.

A² Discrete valuation ring

Lemma ($\mathcal{O}_{F,p}$ is a discrete valuation ring II)

Let p be a point on an affine curve F.

② Given a local coordinate t for F at p, every non-zero rational function $\varphi \in K(F)^*$ can be written uniquely as $\varphi = ct^n$ for a unit $c \in \mathcal{O}_{F,p}$ and $n \in \mathbb{Z}$, namely for $n = \mu_p(\varphi)$. In particular, we have $\varphi \in \mathcal{O}_{F,p}$ if and only if $\mu_p(\varphi) \geq 0$, i.e. φ does not have a pole at p.

\mathbb{P}^2 Discrete valuation ring Rational Function

Definition (Homogenous Coordinate Rings)

Let F be a projective curve.

1 The homogenous coordinate ring of *F*:

$$S(F) := K[x, y, z]/\langle F \rangle$$

② A non-zero element $f \in S(F)$ is called homogenous of degree d, if it can be represented by a homogenous polynomial of degree d in K[x,y,z]. The vector space of these elements, together with 0, will be denoted as $S_d(F)$.

\mathbb{P}^2 Rational Function and Local Rings

Definition (Field of Rational Functions)

Let F be a projective curve. The field of rational functions of F

$$K(F) := \left\{ \frac{f}{g} : f, g \in S_d(F) \text{ for some } d \in \mathbb{N}, \ g \neq 0 \right\}$$

 $\varphi \in K(F)$ is regular at a point $p \in F$, if $\varphi = \frac{f}{g}$ with $f, g \in S(F)$ homogeneous of the same degree and $g(p) \neq 0$. The regular functions at p form a subring of K(F):

$$\mathcal{O}_{F,p} := \left\{ \frac{f}{g} \in K(F) : g(p) \neq 0 \right\}$$

called the local ring of F at p, and they admit an evaluation map $\mathcal{O}_{F,P} \to K, \ \varphi \mapsto \varphi(p)$ with kernel

$$I_{F,p} := \{ \varphi \in \mathcal{O}_{F,p} : \varphi((p) = 0) \}$$

Multiplicities of Rational Functions

Let $p \in F$

① For $f \in S(F)$ homogenous, the multiplicity at p is defined as

$$\mu_{p}(f) := \mu_{p}(F, f) := \dim \mathcal{O}_{\mathbb{P}^{2}, p}/\langle F, f \rangle \in \mathbb{N} \cup \{\infty\}$$

② for $\varphi = \frac{f}{g} \in K(F)$, the multiplicity at p is defined as

$$\mu_{p}(\varphi) = \mu_{p}(f) - \mu_{p}(g)$$

\mathbb{P}^2 Intersection Multiplicity

Lemma

For any three projective plane algebraic curves F, G, H, $\mu_p(F,G) = \mu_p(F,G+FH)$.

Proof.

$$\mu_p(F,G) = \dim \mathcal{O}_{\mathbb{P}^2,p}/\langle F,G \rangle$$
 $\mu_p(F,G+FH) = \dim \mathcal{O}_{\mathbb{P}^2,p}/\langle F,G+FH \rangle$
 $\langle F,G \rangle = \langle F,G+FH \rangle$
 $\mu_p(F,G) = \mu_p(F,G+FH)$

\mathbb{P}^2 Intersection Multiplicity

Lemma

For any three projective plane algebraic curves F, G, H, $\mu_p(F, GH) = \mu_p(F, G) + \mu_p(F, H)$.

Lemma

 $\mu_p(F,G) \geq 1 \text{ iff } p \in F \cap G.$

Lemma

$$\mu_{p}(F,G)=1$$
 iff $\langle F,G
angle =I_{p}$, where

$$I_p = \left\{ \frac{f}{g} : f(p) = 0, g(p) \neq 0 \right\}$$

Example: compute $\mu_{(0,0)}(y^2 - x^3, y^3 - x^2)$

\mathbb{P}^2 Additivity of Multiplicities

Additivity of multiplicities:

$$\mu_p(fg) = \mu_p(F, fg)$$

$$= \mu_p(F, f) + \mu_p(F, g)$$

$$= \mu_p(f) + \mu_p(g)$$

② For $\varphi = \frac{f}{g}$, $\psi = \frac{f'}{g'} \in K(F)$: $\mu_p(\varphi\psi) = \mu_p(\varphi) + \mu_p(\psi)$

$$\mu_{p}(\varphi\psi) = \mu_{p}\left(\frac{ff'}{gg'}\right) = \mu_{p}(ff') - \mu_{p}(gg')$$

$$= \mu_{p}(f) + \mu_{p}(f') - \mu_{p}(g) - \mu_{p}(g')$$

$$= \mu_{p}(\varphi) + \mu_{p}(\psi)$$

Bézout's Theorem

Theorem (Bézout's Theorem)

Let F and G be projective curves without common component over an infinite field K. Then

$$\sum_{p \in F \cap G} \mu_p(F, G) \le degF \cdot degG.$$

If K is algebraicly closed, then equality holds.

Divisor

Divisor

Definition (Divisors)

- **1** A divisor on F is a formal finite linear combination $a_1p_1+\cdots+a_np_n$ ($p_1,\ldots,p_n\in F$, $a_1,\ldots,a_n\in \mathbb{Z}$ for some $n\in \mathbb{N}$) under pointwise addition of the coefficients the divisors on F form an Abelian group, we denote it by $\mathrm{Div} F$.
- **3** effective divisor: $D \ge 0$ if $a_i \ge 0$ for all i. Written $D_2 \ge D_1$ or $D_1 \le D_2$ if $D_2 D_1$ is effective. In other words, $D_2 \ge D_1$ iff the coefficient of any point in D_2 is greater than or equal to the coefficient of this point in D_1 .
- **3** the degree of a divisor $D = a_1p_1 + \cdots + a_np_n$:

$$\deg D := a_1 + \cdots + a_n \in \mathbb{Z}$$

 $\mathsf{deg} : \mathsf{Div} F \to \mathbb{Z}$ is a group homomorphism with kernel

$$\mathsf{Div}^0 F := \{ D \in \mathsf{Div} F : \mathsf{deg} D = 0 \}$$

Divisors from polynomials and rational functions

1 For $f \in S(F) \setminus \{0\}$, the divisor of f

$$\operatorname{\mathsf{div}} f := \sum_{p \in F} \mu_p(f) \cdot p \in \operatorname{\mathsf{Div}} F$$

 $\operatorname{div} f$ is effective, it contains the data of zeros of f together with their multiplicities. (It is a well-defined divisor since V(F,f) is finite, $\operatorname{deg} F \cdot \operatorname{deg} f$)

② For $\varphi \in K(F)^*$, the divisor of φ div $\varphi := \sum_{p \in F} \mu_p(\varphi) \cdot p \in \text{Div} F$. div φ is not effective: it encodes the zeros and poles of φ together with their multiplicities. $\varphi = \frac{f}{g} \in K(F)^*$, div $\varphi = \text{div} f - \text{div} g$.

$$\operatorname{div}\varphi = \sum_{p \in F} \mu_p(\varphi)p = \sum_{p \in F} \mu_p\left(\frac{f}{g}\right)p = \sum_{p \in F} (\mu_p(f) - \mu_p(g))p$$
$$= \sum_{p \in F} \mu_p(f)p - \sum_{p \in F} \mu_p(g)p = \operatorname{div}f - \operatorname{div}g$$

Additivity of multiplicities for Divisors

• For $f, g \in S(F) \setminus \{0\}$ homogeneous,

$$\operatorname{div}(fg) := \sum_{p \in F} \mu_p(fg) \cdot p = \sum_{p \in F} \mu_p(f) \cdot p + \sum_{p \in F} \mu_p(g) \cdot p = \operatorname{div} f + \operatorname{div} g$$

② $\forall \varphi, \psi \in K(F)^*$, $\operatorname{div}(\varphi\psi) = \operatorname{div}\varphi + \operatorname{div}\psi$, hence $\operatorname{div}: K(F)^* \to \operatorname{Div}F$ is a group homomorphism.

Bézout's Theorem for Divisors

• For $f \in S(F) \setminus \{0\}$ homogeneous,

$$\deg\operatorname{div}(f) = \sum_{p\in F} \mu_p(f) = \sum_{p\in F} \mu_p(F,f) = \deg F \cdot \deg f$$

② For $\varphi = \frac{f}{g} \in K(F)^*$, f, g nonzero and homogeneous of the same degree

$$\deg\operatorname{div} \varphi=\deg\operatorname{div} f-\deg\operatorname{div} g=\deg F\cdot\deg f-\deg F\cdot\deg g=0$$

the number of zeros of φ equals the number of poles of φ . The image of div : $K(F)^* \to \text{Div}F$ lies in Div^0F .

Noether's Theorem for Divisors

Theorem (Noether)

Let F be a projective curve and let $g, h \in S(F)$ homogenous with $div(g) \le div(f)$ ($\forall p \in F, \mu_p(g) \le \mu_p(h)$), then $\exists b \in S(F)$ homogenous (of degree deg(h) - deg(g)) such that h = bg in S(F), and thus divh = divb + divg.

Noether's Theorem for Divisors

Corollary (Global regular functions on projective curves)

Let F be a projective curve. Then

$$\bigcap_{p\in F}\mathcal{O}_{F,p}=K\subset K(F),$$

i.e. the only rational functions that are everywhere regular on F are constants.

Proof.

Suppose $\varphi \in \bigcap_{p \in F} \mathcal{O}_{F,p}$, $\varphi = \frac{f}{g}$, then for each $p \in F$, $\varphi \in \mathcal{O}_{F,p}$, $\mu_p(\varphi) = \mu_p(f) - \mu_p(g) \ge 0$ so $\operatorname{div} f \ge \operatorname{div} g$. By Noether's theorem, $\exists b$ with degree $\operatorname{deg} f - \operatorname{deg} g = 0$, so b is a constant, such that f = bg. Hence $\varphi = b$, $\bigcap_{p \in F} \mathcal{O}_{F,p} = K \subset K(F)$.

Divisor Classes and Picard Groups

Let F be a projective curve

1 Divisor *D* is called principal if $D = \text{div}\varphi$ for some $\varphi \in K(F)^*$,

$$\mathsf{Prim} F := \{\mathsf{div} \varphi : \varphi \in \mathcal{K}(F)^*\}$$

 $Prim F \subset Div F$ since Prim F is the image of group homomorphism $div : K(F)^* \to Div F$. Also $Prim F \subset Div^0 F$

② $\operatorname{Pic} F := \operatorname{Div} F / \operatorname{Prim} F$ is called the Picard group on F. D_1 and D_2 are said to be linearly equivalent, witten $D_1 \sim D_2$, if D_1 and D_2 defining the same element in $\operatorname{Pic} F$, namely with $D_1 - D_2 = \operatorname{div} \varphi$ for $\varphi \in K(F)^*$. $\operatorname{Pic}^0 F := \operatorname{Div}^0 F / \operatorname{Prim} F$, which is a subgroup of $\operatorname{Pic} F$.

L(D) and I(D)

Let F be a projective curve and D a divisor on F, we set

$$L(D) := \{ \varphi \in K(F)^* : \operatorname{div} \varphi + D \ge 0 \} \cup \{ 0 \}$$

 $D = \sum_{p \in F} a_p \cdot p$, $\operatorname{div} \varphi + D \geq 0$ implies $\mu_p(\varphi) \geq -a_p$. Hence, except for the zero function, L(D) consists by construction of all rational functions $\varphi \in K(F)^*$ that are just regular at all points of F, except that

- **1** φ may have a pole of order at most a_p at p for all $a_p > 0$;
- ② φ must have a zero of order at least $-a_p$ at p for all p with $a_p < 0$.

L(D) and I(D)

Lemma

L(D) is a vector space over K.

Proof.

 $\forall \lambda \in K$, $\varphi, \psi \in L(D)$, i.e. $\mu_p(\varphi) \ge -a_p$, $\mu_p(\psi) \ge -a_p$, $\forall p \in F$, we have

$$\mu_p(\varphi + \psi) \ge \min(\mu_p(\varphi), \mu_p(\psi)) \ge -a_p$$

 $\mu_p(\lambda \varphi) = \mu_p(\varphi) \ge -a_p$

thus $\varphi + \psi \in L(D)$, $\lambda \varphi \in L(D)$.

Define $I(D) := \dim L(D) \in \mathbb{N} \cup \{\infty\}$.

L(D) and I(D)

Example D = 0

$$L(D)=\{\varphi\in K(F)^*: {\rm div}\varphi\geq 0\}=\{{
m global\ regular\ function\ on\ }F\}=K$$
 so $I(D)=1.$

Example deg D < 0

 $L(D)=\{0\},\ I(D)=0.$ If $\exists 0\neq \varphi\in L(D),\ {\rm div}\varphi+D\geq 0,\ {\rm so}$ degdiv $\varphi+{\rm deg}D\geq 0,\ {\rm i.e.}\ 0+{\rm deg}D\geq 0,\ {\rm which\ contradicts\ to\ deg}D<0.$

(a) If $D \leq D'$ then $L(D) \subset L(D')$, hence $I(D) \leq I(D')$. since

$$\forall \varphi \in L(D), \operatorname{div} \varphi + D \geq 0 \implies \operatorname{div} \varphi + D' \geq \operatorname{div} \varphi + D \geq 0.$$

(b) If $D \sim D'$, then $L(D) \cong L(D')$, I(D) = I(D').

Proof.

 $D-D'=\operatorname{div}\psi$ for $\psi\in K(F)^*$. $L(D)\to L(D')$, $\varphi\mapsto \psi\varphi$ is an isomorphism of vector spaces, since

$$\operatorname{div}\varphi + D \ge 0 \iff \operatorname{div}(\psi\varphi) + D' = \operatorname{div}\psi + D' + \operatorname{div}\varphi \ge 0.$$

I(D+p) and I(D)

Lemma

Let D be a divisor on a projective curve F.

- (a). $\forall p \in F$, we have I(D+p) = I(D) or I(D+p) = I(D) + 1.
- (b). For any divisors $D \leq D'$, we have $I(D) \leq I(D') \leq I(D) + deg(D'-D)$

Proof.

a. As $D \le D + p \implies L(D) \subset L(D + p) \implies l(D) \le l(D + p)$. Now let a_p be the coefficient of p in D, so that $a_p + 1$ is the coefficient of p in D + p. Consider the linear map

$$\Phi: L(D+p) \to K, \quad \varphi \mapsto (t^{a_p+1}\varphi)(p),$$

where t is a local coordinate around p. Since $\varphi \in L(D+p) \setminus \{0\}$, we have

$$\mu_p(t^{a_p+1}\varphi) = \mu_p(\varphi) + a_p + 1 \ge 0 \quad (*)$$

I(D+p) and I(D)

continued.

The kernel of Φ consists exactly of the rational functions for which $t^{a_p+1}\varphi$ has a zero at p, i.e. for which we have a strict inequality in (*). As this is equivalent to $\mu_p(\varphi)+a_p\geq 0$, and thus to ${\rm div}\varphi+D\geq 0$, we conclude that ${\rm ker}\Phi=L(D)$. Hence

$$L(D+p)/L(D) \cong Img\Phi \subset K$$
,

if $Img\Phi = \{0\}$, then I(D+p) = I(D); else $Img\Phi = K$, I(D+p) = I(D) + 1.

b. Since D' is obtained from D by adding deg(D'-D) points, (b) follows from (a) by induction on deg(D'-D).

Divisor

Corollary

For any divisor D with deg D > 0 on a projective curve F, we have

$$I(D) \le degD + 1 \tag{1}$$

In particular, the number I(D) is always finite.

Proof.

Let $n = \deg D + 1$, choose $p \in F$, then $\deg(D - np) = \deg D - n = -1 < 0$, so I(D - np) = 0. $D \ge D - np$, so $I(D) \le I(D - np) + \deg(np) = 0 + n = \deg D + 1$.

Definition (Algebraic degree - genus formula)

The algebraic genus of a projective plane curve F of degree d is $g = \binom{d-1}{2}$.

Lemma

Let F be a projective curve of degree d: without loss of generaliztiy we assume $F \neq z$. We denote the vector space of homogenous polynomials in x, y, z of degree n by $K[x, y, z]_n$. Then $\forall n \geq d$, for D := n divz $(D = divz^n)$, we have $I(D) = degD + 1 - {d-1 \choose 2}$.

Proof.

We first show the following is an exact sequence of vector spaces

$$0 \to K[x, y, z]_{n-d} \xrightarrow{\varphi} K[x, y, z]_n \xrightarrow{\psi} L(D) \to 0, \quad (*)$$

where
$$\varphi(f) = fF$$
, $\forall f \in K[x, y, z]_{n-d}$; $\psi(g) = \frac{g}{z^n}$, $\forall g \in K[x, y, z]_n$.

1.
$$Ker\varphi = \{f \in K[x, y, z]_{n-d} | fF = 0 \text{ in } K[x, y, z]_n\} = \{0\}$$

Continued.

2. $\operatorname{Img} \psi = \{\frac{g}{z^n} | g \in K[x, y, z]_n\}$

$$\left(\frac{g}{z^n}\right)+D=(g)-(z^n)+(z^n)=(g)\geq 0 \implies \mathrm{img}\psi\subset L(D).$$

 $\forall \frac{h_1}{h_2} \in L(D)$, h_1, h_2 are homogenous of the same degree

$$\operatorname{div} \frac{h_1}{h_2} + D = \operatorname{div} \frac{h_1}{h_2} + \operatorname{div} z^n = \operatorname{div} \frac{h_1}{h_2} z^n \ge 0,$$

i.e. $\operatorname{div} h_1 z^n - \operatorname{div} h_2 \geq 0$, by Noether's Theorem, $\exists g$ homogenous of degree $\operatorname{deg}(h_1 z^n) - \operatorname{deg} h_2 = n$, s.t. $h_1 z^n = g h_2$, i.e. $\frac{h_1}{h_2} = \frac{g}{z^n}$. Hence $L(D) \subset \operatorname{Img} \psi$, then $L(D) = \operatorname{Img} \psi$.

Continued.

3.
$$\operatorname{Img}\varphi = \{ fF \in K[x, y, z]_n | f \in K[x, y, z]_{n-d} \}$$
$$\operatorname{Ker}\psi = \{ g \in K[x, y, z]_n | \frac{g}{z^n} = 0 \text{ in } L(D) \}$$

 $\forall f \in K[x,y,z]_{n-d} \ fF=0 \ \text{in} \ S(F), \ \text{so} \ \frac{fF}{z^n}=0 \ \text{in} \ K(F)^*, \ \text{hence} \ \frac{fF}{z^n}=0 \ \text{in} \ L(D), \ fF \in \text{Ker}\psi, \ \text{then} \ \text{Img}\varphi \subset \text{Ker}\psi.$ $\forall g \in K[x,y,z]_n \ \text{with} \ \frac{g}{z^n}=0 \ \text{in} \ L(D), \ \frac{g}{z^n}=0 \ \text{in} \ K(F)^*. \ \text{Since} \ F \ \text{is} \ \text{irreducible} \ \text{and} \ F \neq z, \ \text{we must have} \ F|g. \ \text{So} \ g \in \text{Img}\psi, \ \text{Img}\psi \subset \text{Ker}\psi.$ Hence $\text{Img}\varphi = \text{Ker}\psi.$

Continued.

By 1,2,3, (*) is an exact sequence of vector spaces

$$I(D) = \dim K[x, y, z]_n - \dim K[x, y, z]_{n-d}$$

$$= \frac{(n+1)(n+2)}{2} - \frac{(n-d+1)(n-d+2)}{2}$$

$$= \frac{(n+1)(n+2)}{2} - \frac{(n+1)(n+2) - d(2n+3) + d^2}{2}$$

$$= nd + \frac{3d - d^2}{2}$$

$$\deg D = \deg \operatorname{div} z^n = \deg z^n \cdot \deg F = nd.$$

Therefore

$$I(D) = nd + \frac{3d - d^2}{2} = \deg D + 1 - \frac{d^2 - 3d + 2}{2} = \deg D + 1 - g.$$

Theorem (Riemann's Theorem)

There is a unique smallest integer s, depending only on F, such that $I(D) \ge degD + 1 - s$, for any divisor D, $s = {d-1 \choose 2} = g$.

Proof.

Since we have $I(D) = \deg D + 1 - g$ for $D = \operatorname{div} z^n$, we only have to show

$$I(D) \ge \deg D + 1 - g \quad (*)$$

holds $\forall D$.

Proof.

Note first:

- If (*) holds for D and $D' \sim D$, then (*) holds for D'. Since I(D) = I(D'), $\deg D = \deg D'$, $I(D) \ge \deg D + (1-g) \implies I(D') \ge \deg D' + (1-g)$;
- ② If (*) holds for D, then it also holds for any divisor $D' \leq D$:

$$I(D') \ge I(D) - \deg(D - D')$$
 similar as Eqn.(1)
 $\ge \deg D + (1 - g) - \deg(D - D')$
 $= \deg D' + (1 - g)$.

continued.

Now let D be any divisor on F, then we can write

$$D = p_1 + p_2 + \cdots + p_n - E,$$

where E is effective. Since the points are allowed to allowed to appear in E, we may assume $n \ge d$. For every $i = 1, 2, \dots, n$,

$$\operatorname{div}(I_i) = p_i + q_{i_1} + \cdots + q_{i_{d-1}},$$

for some $q_{i_1}, \cdots, q_{i_{d-1}} \in F$.

continued.

Then the divisor $D' := D + \operatorname{div}_{\overline{I_1 \cdots I_n}}^{\underline{z^n}} \sim D$, and

$$D' = p_1 + \dots + p_n - E + \operatorname{div} z^n - \sum_{i=1}^n \operatorname{div} I_i$$

$$= p_1 + \dots + p_n - E + \operatorname{div} z^n - \sum_{i=1}^n (p_i + q_{i_1} + \dots + q_{i_{d-1}})$$

$$\leq p_1 + \dots + p_n - E + \operatorname{div} z^n - p_1 - \dots - p_n$$

$$= \operatorname{div} z^n - E$$

$$\leq \operatorname{div} z^n$$

since (*) holds for $\operatorname{div} z^n$, so it holds for D' by (2), and thus for D by (1).

Divisor

Summarizing,

$$\deg D + 1 - g \le I(D) \le \deg D + 1 \tag{2}$$

for every divisor D with $deg D \ge 0$ on a projective curve F of genus g.

Definition (Canonical Divisor)

Let F be a projective curve of degree d. For any line $I(\neq F)$, we call

$$K_F := (d-3) \text{ div } I \in \text{Pic}F$$

the canonical divisor (class) of F.

Note that K_F is well-defined, since for another line l', $\operatorname{div} l' \sim \operatorname{div} l'$, as $\operatorname{div} \frac{l}{l'} \in \operatorname{Prim} F$.

Lemma (Degree of canonical divisor)

For a projective curve F of genus g, we have $degK_F = 2g - 2$.

Proof.

$$\deg K_F = \deg(d-3)\operatorname{div} I = (d-3)\operatorname{deg} \operatorname{div} I = (d-3)\operatorname{deg} F \cdot \operatorname{deg} I$$
$$= (d-3)d = 2 \cdot \frac{(d-1)(d-2)}{2} - 2 = 2g - 2.$$

Lemma

 $\forall p \in F$, we have $I(K_F + p) = I(K_F)$.

Proof.

If $d = \deg F \le 2$, then g = 0, $\deg K_F = 2g - 2 = -2 < 0$, $\deg(K_F + p) = -1 < 0$, so $I(K_F) = I(K_F + p) = 0$. If d > 3:

Choose any line I through p, that is not the tangent T_pF . The divisor $\operatorname{div}(I) - p$ is then effective and doesn't contain p. $K_F = (d-3)\operatorname{div}(I)$. We want to show $L(K_F + p) = L(K_F)$. Clearly $K_F < K_F + p \Longrightarrow L(K_F) \subset L(K_F + p)$ we only have to show

 $K_F < K_F + p \implies L(K_F) \subset L(K_F + p)$, we only have to show $L(K_F + p) \subset L(K_F)$.

Continued.

Let
$$\varphi = \frac{f}{g} \in L(K_F + p)$$
 and $\varphi \neq 0$, then

$$\operatorname{div}(\varphi) + K_F + p \ge 0$$

$$\operatorname{div}(f) - \operatorname{div}(g) + (d - 3)\operatorname{div}(I) + p \ge 0$$

$$(1) \quad \operatorname{div}(f^{d-2}) \ge \operatorname{div}(g) + \operatorname{div}(I) - p \ge \operatorname{div}(g) \quad (\operatorname{div}(I) \ge p)$$

By Noether's Theorem, there is a homogeneous polynomial h of degree $\deg(fl^{d-2}) - \deg(g) = \deg(I^{d-2}) = d-2$ with $fl^{d-2} = gh$,

$$div(h) = div(fl^{d-2}) - div(g)$$

$$\geq div(g) + div(l) - p - div(g)$$

$$= div(l) - p \quad by (1)$$

hence

(**)
$$\operatorname{div}(h) = \operatorname{div}(fl^{d-2}) - \operatorname{div}(g) \ge \operatorname{div}(I) - p$$

Continued.

Then $\forall Q \neq p$, $\mu_Q(h) \geq \mu_Q(I)$, hence $\langle F, h \rangle \subset \langle F, I \rangle$ in $\mathcal{O}_{P^2,Q}$.

$$\mu_{Q}(h) = \mu_{Q}(F, h) = \dim \mathcal{O}_{P^{2}, Q} / \langle F, h \rangle$$
$$\mu_{Q}(I) = \mu_{Q}(F, I) = \dim \mathcal{O}_{P^{2}, Q} / \langle F, I \rangle$$

hence

$$\langle F, h \rangle \subset \langle F, I \rangle \iff \mu_Q(h) \ge \mu_Q(I) \quad \text{in } \mathcal{O}_{P^2,Q}$$

So $h \in \langle F, I \rangle$ in $\mathcal{O}_{P^2, Q}$, so $\langle I, h \rangle \subset \langle F, I \rangle$, hence $\mu_Q(I, h) \geq \mu_Q(F, I)$, $\forall Q \neq p$. Then

$$\sum_{Q
eq p} \mu_Q(I,h) \geq \sum_{Q
eq p} \mu_Q(F,I) = \deg(\operatorname{div}(I) - p) = d - 1$$
 $\sum_{Q
eq p} \mu_Q(I,h) = \deg(I) \cdot \deg(h) = 1 \cdot (d-2)$

Continued.

By Bézout's Theorem, h must contain l as a factor. Hence $div(h) \ge div(l)$, by (**)

$$\operatorname{div}(fl^{d-2}) - \operatorname{div}(g) = \operatorname{div}(h) \ge \operatorname{div}(I)$$
$$\operatorname{div}(f) - \operatorname{div}(g) + \operatorname{div}(I^{d-3}) = \operatorname{div}(\varphi) + K_F \ge 0$$

so $\varphi \in L(K_F)$.

Lemma

Let F be a projective curve of genus g, then

$$I(D) - I(K_F - D) \ge degD + (1 - g) \tag{3}$$

for all divisors D on F.

Proof.

We prove it by descending induction on deg(D).

1. deg(D) > 2g - 2,

$$deg(K_F - D) = (2g - 2) - deg(D) < 0 \implies I(K_F - D) = 0$$
. Hence by Eqn. (2)

$$I(D) - I(K_F - D) = I(D) \ge \deg(D) + (1 - g)$$

Continued.

2. For the induction step, assume that the statement holds for a divisor D. we want to show it holds for D-p, $\forall p \in F$.

$$I(D-p) - I(K_F - D + p) \ge (I(D) - 1) - (I(K_F - D) + 1)$$
 (*)
= $I(D) - I(K_F - D) - 2$
 $\ge \deg(D) + (1 - g) - 2$ by assumption on D
= $\deg(D) - g - 1$
= $\deg(D - p) - g$

We only have to show (\star) isstrict(thusLHS $\geq \deg(D-p)-g+1$). Namely,

$$I(D-p) = I(D) - 1, \quad I(K_F - D + p) = I(K_F - D) + 1$$

cannot be true simultaneously.

Continued.

Otherwise, assume

$$I(D-p) = I(D) - 1$$
 and $I(K_F - D + p) = I(K_F - D) + 1$

namely

$$L(D-p)\subsetneq L(D)$$
 and $I(K_F-D)\subsetneq L(K_F-D+p)$

∃ rational functions

$$\varphi \in L(D) \setminus L(D-p) \implies \operatorname{div}(\varphi) + D \ge 0$$
 with "=" at p $\psi \in L(K_F - D + p) \setminus L(K_F - D)$ $\implies \operatorname{div}(\psi) + K_F - D + p \ge 0$ with "=" at p

Continued.

$$\operatorname{div}(\varphi\psi) + K_F + p = (\operatorname{div}(\varphi) + D) + (\operatorname{div}(\psi) + K_F - D + p) \ge 0$$
with "=" at p.

therefore

$$\varphi\psi\in L(K_F+p)\setminus L(K_F)$$

contradiction (since $L(K_F + p) = L(K_F)$.

Theorem (Riemann-Roch)

Let F be a projective curve of genus g, then

$$I(D) - I(K_F - D) = degD + (1 - g)$$

for all divisors D on F.

Proof.

By Eqn. (3),

$$I(D) - I(K_F - D) \ge \deg D + (1 - g)$$
 (a)
 $I(K_F - D) - I(K_F - (K_F - D)) \ge \deg(K_F - D) + (1 - g)$
 $I(K_F - D) - I(D) \ge \deg(K_F) - \deg(D) + (1 - g)$
 $= (2g - 2) - \deg(D) + (1 - g)$
 $= (g - 1) - \deg(D)$
 $I(D) - I(K_F - D) \le \deg(D) + (1 - g)$ (b)

By (a),(b),
$$I(D) - I(K_F - D) = \deg(D) + (1 - g)$$
.