北京科技大学 200 ~200 学年度第一学期

Numerical Analysis Examination

	试卷成绩(占课程考核成绩的60%)								课程考核	学院: 班级:
题号	_	_	三	四	五.	六	小计	成绩	成绩	学号:
										姓名:

- -, Answer question (40 points, 4 points each)
- 1. Let $x_1 = 0.5055 \times 10^4$, $x_2 = x_3 = \dots = x_{11} = 0.4500$, using four-digit rounding arithmetic to obtain the most accurate approximation to $S = \sum_{i=1}^{11} x_i$. Give your algorithm.

2. let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
, then $\rho(A) =$ ___, $||A||_1 =$ ___, $||A||_{\infty} =$ ___, $||A||_{F} =$ ___, $||A||_{F} =$ ___.

- 3. Steffensen's method is applied to a function g(x) using $p_0^{(0)} = 1$ and $p_1^{(0)} = \sqrt{2}$ to obtain $p_0^{(1)} = 2.7802$. What is $p_2^{(0)}$?
- 4. A clamped cubic spline S(x) for a function f is defined on [1,3] by

$$S(x) = \begin{cases} S_0(x) = 3(x-1) + 2(x-1)^2 - (x-1)^3, & \text{if } 1 \le x \le 2\\ S_1(x) = a + b(x-2) + c(x-2)^2 + d(x-2)^3, & \text{if } 2 \le x \le 3 \end{cases}$$

Given f'(1) = f'(3), find a,b,c and d.

- 5. Let $f(x) \in C^n[a,b]$, if $f^{(n)}(x) = 0, x \in [a,b]$, then divided difference $f[x_0, x_1, \dots, x_n] =$ ______, for each $x_i \in [a,b], i = 0, \dots, n$. Let $f(x) = x^5 4x^3 8$, then the fifth divided difference f[-3, -2, -1, 0, 1, 2] =_____
- The explicit multistep method is given by

$$w_{i+1} = \frac{4}{5}w_i + \frac{1}{5}w_{i-1} + 3hf(t_i, w_i)$$
, its characteristic equation is ______,

Which has roots ______ Does it satisfies root condition? ______ (Yes/No)

Is it strongly stable or weakly stable or unstable?_____

- 7. Suppose C is positive constant, use Newton's method to equation $x^n C = 0$, to find iteration sequence that approximate $\sqrt[n]{C}$, show that the sequence converge to $\sqrt[n]{C}$ of order 2.
- 8. Give some data of f(x)

X	1.8	1.9	2.0	2.1	2.2
f(x)	10.9	12.7	14.8	17.1	19.8

Use extrapolation formula

$$\begin{cases} N_1(h) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} \\ N_j(h) = N_{j-1}(\frac{h}{2}) + \frac{N_{j-1}(\frac{h}{2}) - N_{j-1}(h)}{4^{j-1} - 1} \end{cases}$$

to approximate f''(2) as accurately as possible.

- 9. Integration $I_n = \int_0^1 x^n e^{x^{-1}} dx$, $n = 0,1,2,\cdots$ satisfies the recursive equation $I_n = 1 nI_{n-1}$. If $I_0 = 1 e^{-1} \approx 0.632$ (3 significant digits), compute the error of I_5 . Is this algorithm: $\begin{cases} I_n = 1 nI_{n-1} \\ I_0 = 1 e^{-1} \approx 0.632 \end{cases}$ stable?
- 10. Let A be a $n \times n$ symmetric matrix, \mathbf{x} be a n-dimensional vector.

 Compute the number of operation for $x^t A x$.
- 11. Complete the following Matlab Progam for Newton's method, which start with

function [x,k]=newton (F1,F2,x0,e) % Newton 法求 f(x)=0 的根

$$% F1=f(x),F2=f(x);$$

% x0:初值, e:误差限;

%x 近似解, k: 迭代步数;

12. According to the following data, Use Romberg integration to approximate $\int_{-2}^{2} f(x)dx$ as accurately as possible.

X	- 2	- 1	0	1	2
f(x)	2	1.5	1	-1	-2

13. let
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
, find the permutation matrix P so that $PA = LU$ (Doolittle form)

$$\mathbf{P}\!\!=\!\!\left[\begin{array}{cc} \\ \\ \\ \end{array} \right]\!,\mathbf{L}\!\!=\!\!\left[\begin{array}{cc} \\ \\ \\ \end{array} \right]\!,\mathbf{U}\!\!=\!\!\left[\begin{array}{cc} \\ \\ \\ \end{array} \right]$$

(12 points) Give some data of F(x) and F'(x):

Xi	-1	0	1
F(xi)	1	2	1
F'(xi)		3	1

Suppose $F(x) \in C^{5}[-2, 2]$, find osculating polynomial $P_{4}(x)$ of degree at most 4 such that

$$P_4(-1) = 1$$
, $P_4(0) = 2$, $P_4(1) = 1$, $P_4'(0) = 3$, $P_4'(1) = 1$.

Find error: $F(x) - P_{\perp}(x)$.

 \equiv (10 points) Give some data of $F(x) = -\int_{-\infty}^{\infty} \frac{\sin t}{t} dt$ at x=0.32, 0.4, 0.55, 0.6, 0.7,

X_i	0.32	0.4	0.55	0.6	0.7
$F(x_i)$	0.2985	0.39646	0.49311	0.58813	0.68122

- 1) Find divided difference table for F(x);
- 2) Find third-order Newton forward divided difference polynomial, and find F(0.36).

(10 points) Determine $A_1, A_2, x_1, and x_2$ so that quadrature formula

$$\int_{-1}^{1} f(x)dx \approx A_1 f(x_1) + A_2 f(x_2)$$

has the highest of precision. Find the highest of precision.

$$\pm$$
. (15 points) Give the Midpoint Method: $y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$

- 1) Find its local truncation error, what is its order?
- 2) Use the Midpoint Method to find the approximating solutions w2,w3 for the initial value

problem
$$\begin{cases} y' = -y, & 0 \le x \le 2.25 \\ y(0) = 1 \end{cases}$$
, with $h = 0.25$;

and find actual errors。(小数点后保留 3 位, w1用 Euler 公式计算)。

 Use the answers generated in part 2) and piecewise linear interpolation to approximate y(0.6). \dot{R} , ((13 points)) The linear system Ax=b is given by

$$\begin{cases} x_1 - 2x_2 + 2x_3 = 1 \\ -x_1 + x_2 - x_3 = 1 \\ -2x_1 - 2x_2 + x_3 = 1 \end{cases}$$

$$-2x_1 - 2x_2 + x_3 = 1$$

- (1) Find its Jacobi iterative method and Gauss-Seidel iterative method;
- Discussing the convergence of both iterations;
- (3) Find the first two iterations of the convergent methods for above linear system, using $x^{(0)} = (0, 0, 0)^T$.