2018 级计算机学院《数值分析》期末试卷 B 卷

座位号 班级 学号 姓名 成绩

注意: ① 答题方式为闭卷。 ② 可以使用计算器。

③ 请将所有答案答在答题纸上,不要在试卷上答题。

一、填空题(每空2分,共40分)

- 1. cosx=0.6..., 要使 cosx 的相对误差不大于 0.01%, 则 cosx 要取【】位有效数字。
- 2. 用最小刻度为米的测量工具测得某长方形场地的长 a=1000 米,宽 b=500 米,则根据测量数据计算出的场地面积有【 】位有效数字,相对误差为【 】%。
- 3. 计算 $y=\frac{1}{1^3}+\frac{1}{2^3}+\cdots+\frac{1}{n^3}+\cdots$,总误差要求为 10^{-5} ,则计算中的最后一项为 $\frac{1}{[1]}$,计算的每一项保留到小数点后【 】位。
- 4. 用迭代法求方程 $x^3+2x^2-4=0$ 的正数解,取初值 $x_0=1.1$,有

迭代公式 A:
$$x=2\sqrt{\frac{1}{x+2}}$$
;

迭代公式 B: $x=x-\frac{x^3+2x^2-4}{3x^2+4x}$

迭代公式 C: $x = x^3 + 2x^2 + x - 4$

其中最好的迭代计算公式是迭代公式【】,要使迭代解有5位有效数字,预计需要迭代【】次。

- 5. 用牛顿迭代法求解方程组 $\begin{cases} 2x^2-4y-2=0\\ 3xy+2x-2=0 \end{cases}$ 的根,选取初值 $(x_0,y_0)=(0,0)$,第一次迭代后的值 $(x_1,y_1)=$ 【 】。
- 6. 选取了初值 $X^{(0)}$ 的线性方程组 F(X)=0,其同伦方程组 $H(X,t)(t\in[0,1])$ 满足的两个条件是:
 - (1) $H(X^{(0)},t)=0$
 - (2) **[**]_°
- 7. 用平方根消元法解线性方程组 $\begin{cases} 4x + 2y + 5z = 12 \\ 2x + 2y + 2z = 10, 则消元后 <math>l_{21} = \mathbb{Z}, u_{23} = \mathbb{Z} \end{cases}$ 。5x + 2y + 10z = 1
- 8. 线性方程组 AX=B 的系数矩阵 $A = \begin{bmatrix} 10 & a & 0 \\ 4 & 10 & 2 \\ 0 & a & 5 \end{bmatrix}$, $|A| \neq 0$,用雅克比迭代法计算该线性方

程组的解,迭代收敛的**充分必要条件**是 $a \in \mathbb{I}$ 。

- 9. 设 10 维向量 X=(-3,-2,...,5,6), Y=(1,2,...,9,10),则 $||X^TY||_1=【】, ||X^TY||_{\infty}=【】。$
- 10. 已知 n=5 时的牛顿-科特斯系数 $c_0^{(5)} = \frac{19}{288}, c_3^{(5)} = \frac{25}{144}$,函数 f(x)在区间[0,1]上的一些数值如下:

x	0	0.2	0.4	0.6	0.8	1
f(x)	0	0.00017	0.00040	0.00260	0.00995	0.01005

则用 n=5 的牛顿-科特斯求积公式计算的 $\int_0^1 f(x) dx \approx \mathbb{I}$.

11. 计算积分 $I = \int_0^1 \frac{1}{1+x} dx$, 要求截断误差不超过 0.5×10^{-5} , 若用复化辛卜生公式, 区间[0,1]

应分【】等分。 注: 辛卜生公式 $R = -\frac{h^5}{90} f^{(4)}(\zeta)$

- 12. 要使求积公式 $\int_{-1}^{1} f(x) dx \approx [4f(-1) 2f(0) + Af(1)] /$ 具有较高的代数精确度,参数 $A = \mathbb{Z}$,此时该求积公式具有 \mathbb{Z} 次代数精确度。
- 13. 下表是每隔5年的美国人口数量统计,

年	1980	1985	1990	1995	2000
人口数量(万)	22723	23792	24962	26623	28216

用等距节点下的牛顿基本差商公式估算 1982 年的人口数量,最好用牛顿【】(填前或后)插公式。

14. 设 $f(x)=6x^5+8x^3-16x+1$,则差商 f[2,4,6,8,10,12,14]=【】。

注: 以下计算题每题 10 分

二、计算题(共60分)

- 1. 用 Newton 法求解方程 x-lnx=2 在实数范围内的所有解。(计算过程和结果均保留到小数点后 4 位)。
- 2. 用全主元素法解方程组 AX=B,其中 $A=\begin{pmatrix} 2 & 4 & 0 \\ 3 & -1 & 1 \\ -2 & -2 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 5 \\ 9 \\ 3 \end{pmatrix}$ 。
- 3. 用带松弛因子 ω =1.05 的逐次松弛法解下面的线性方程组,要求初值取 $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=1$,计算过程中保留到小数点后 4 位,计算到相邻两次迭代值的误差 $||X^{(k+1)}-X^{(k)}||_{\infty}$ < 0.01为止。

$$\begin{bmatrix} 5 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 4 \end{bmatrix}$$

4. 已知函数 f(x)在下列点的函数值,求 f(x) = 0 在区间[100, 500]上的解。(要求用二次拉格朗日插值计算,并估计方法误差,计算结果保留小数点后 2 位)

X	100	150	200	250	300	350	400	450	500
f(x)	-60	-40	-20	-10	20	40	60	120	200

5. 某汽车从甲地行驶到乙地,不同时刻t的总油耗(L)以及瞬时油耗(L/h)如下表:

时刻 t (h)	0	3	5
总油耗(L)	0	18	36
瞬时油耗(L/h)	6.5	7	

根据上表的所有数据信息估算 t=4h 时的总油耗和瞬时油耗(计算过程保留小数点后 3 位)。

6. 用龙贝格求积方法计算积分 $\int_0^1 \frac{2}{x^2+1} dx$, 要求稳定到小数点后 4 位。

2018 级计算机学院《数值分析》期末试卷 B 卷答题纸

座位号	班级	学号		姓名		成绩	
一、填空题							
1. 【].		
2. 【			_];	r]。
3. 【			_];	T]。
4. 【			_];	r]。
5. 【 <u>_</u>].		
6. 【 <u>_</u>].		
7. 【			_];	r]。
8. 【 <u></u>] 。		
9. 【_			_];	r]。
10. 【_]。		
11. 【_]。		
12. 【_			_];	r]。
13. 【_].		
14. 【_]。		
二、计算题:							

3