Sphère radioactive

Densité de charge

 \spadesuit On calcule d'abord le nombre $N_P(t)$ d'atomes de phosphore restant dans la sphère. Entre t et t+dt, il y a $N_P(t)dt/\tau$ qui se sont désintégrés donc :

$$N_P(t+dt) - N_P(t) = -N_P(t)\frac{dt}{\tau}$$

donc on trouve que $N_P(t) = N_0 \exp(-t/\tau)$: c'est la loi classique de désintégration radioactive. Comme pour un atome de phosphore désintégré on a un positron émis, on a nécessairement : $N_P + N_{e+} = N_0$, donc $N_{e+} = N_0 (1 - \exp(-t/\tau))$. Le taux de désintégration est alors simplement la variation au cours du temps de N_{e+} :

$$n(t) = \frac{\mathrm{d}N_{e+}}{\mathrm{d}t} = \frac{N_0}{\tau} \exp\left(-\frac{t}{\tau}\right)$$

 \spadesuit Pour $r > tv_0$, il n'y a pas encore de particules : elles n'ont tout simplement pas eu le temps d'atteindre ce rayon.

Pour un rayon $r < v_0 t$, les particules ont été émises à $t - r/v_0$. Entre les sphères concentriques de rayon r et r + dr, il y a donc à l'instant t une charge $dq = en(t - r/v_0)dt$, avec dt correspondant au temps durant lequel les positrons parcourent dr. Cette charge est aussi égale à $dq = 4\pi r^2 dr \rho(r, t)$. Comme $dr = v_0 dt$, on a :

$$\rho(r,t) = \frac{eN_0}{4\pi r^2 v_0 \tau} \exp\left(-\frac{t - r/v_0}{\tau}\right)$$