

最終確認問題 16-20 的解答

問題 16

將可能的所有模式逐一調查的方法稱為「全搜尋」 (→2.4.5 項)。

在本問題中,對於滿足 $1 \le a < b < c \le N$,且 a + b + c = X 的整數 (a,b,c)的組合,要完全一點不漏地列舉出來絕非易事。然而,將滿足 $1 \le a < b < c \le N$ 的 (a,b,c) 進行列舉是簡單的,將其全體進行測試並計算滿足 a + b + c = X 的個數,這是最簡單的方法。。

將此解法以 C++ 實作如下。 (a,b,c) 的迴圈處理與**程式碼3.3.1**相似

```
#include <iostream>
using namespace std;
int main() {
   // 輸入
   int N, X;
    cin >> N >> X;
    // 嘗試所有 (a, b, c) 的組合
    int answer = 0;
    for (int a = 1; a <= N; a++) {</pre>
        for (int b = a + 1; b <= N; b++) {
            for (int c = b + 1; c <= N; c++) {
                if (a + b + c == X) {
                    answer += 1;
                }
            }
        }
    }
    // 輸出答案
    cout << answer << endl;</pre>
    return 0;
}
```

矩形的面積是以(縱長)×(橫長)計算的。由於這兩者都是整數,所以為了使面積為N. 其縱長和橫長必須是「N 的因數」。

36 的因數 … 1, 2, 3, 4, 6, 9, 12, 18, 36

因此, 若用 **3.1.5 項** 的方法列舉約數, 可以調查所有可能的矩形。從其中找出周長最小的。

另外,也有更簡單的解法。利用假設 (縱長) \leq (橫長) 也不會失去一般性 (\rightarrow **5.10.4 項**) 的性質,則(縱長) \leq \sqrt{N} 。因此,對縱長 x 在 1 以上到 \sqrt{N} 以下的範圍進行全搜尋,找出以下條件:

- 橫長 $N \div x$ 是整數的情況
- 在其中找出周長 $2x + 2(N \div x)$ 為最小的情況

可以用計算複雜度 $O(\sqrt{N})$ 以,C++ 實作如下。

```
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
   // 輸入
   long long N;
    cin >> N;
    // 將垂直長度從 1 到 VN 為止進行全搜尋
   long long answer = (1LL << 60);</pre>
   for (long long x = 1; x * x <= N; x++) {
        if (N % x == 0) {
            answer = min(answer, 2 * x + 2 * (N / x));
        }
    }
    // 輸出答案
    cout << answer << endl;</pre>
    return 0;
}
```

整數 A、 B的最大公因數為 GCD(A,B),最小公倍數為 LCM(A,B)。因此, $A \times B = GCD(A,B) \times LCM(A,B)$ 的關係(\rightarrow **2.5.2 項**)會成立。因此,若可以用輾轉相除法(\rightarrow **3.2 節**)計 GCD(A,B),則最小公倍數可以用下式求出。

$$LCM(A, B) = A \times B \div GCD(A, B)$$

計算複雜度是 $O(\log(A+B))$ 。

然而,直接計算可能會在 C++ 等語言中發生溢出。因為即使使用 long long 型態,也只能處理大約 19 位的數字,而在計算 $A\times B$ 時可能超過這個範圍。這個問題可以透過以下兩種方法來應對:

- $oxed{1}$ 將計算順序從「 $A imes B\div \mathsf{GCD}(A,B)$ 」變為「 $A\div \mathsf{GCD}(A,B) imes B$ 」
- 2 用巧妙的方法判斷最小公倍數是否超過 10¹⁸

關於2.,判斷 $A \times B \div GCD(A,B) > 10^{18}$,即 $A \div GCD(A,B) > 10^{18} \div B$ 即可。因為 左邊必定是整數,所以右邊取整數部分也能順利進行。因此,撰寫如下程式即可得到 正解。

```
#include <iostream>
using namespace std;
long long GCD(long long A, long long B) {
   if (B == 0) return A;
   return GCD(B, A % B);
}
int main() {
   // 輸入
   long long A, B;
   cin >> A >> B;
   // 判斷最小公倍數是否超過 10^18
   cout << "Large" << endl;</pre>
   }
   else {
       cout << A / GCD(A, B) * B << endl;</pre>
   }
   return 0;
}
```

這個問題可以使用考慮上限(→5.8節)的技巧來解決。

考慮一般的情況並不容易,因此首先以具體例 $N=4,B_1=6,B_2=3,B_3=4$ 來思考。此時,可以換句話說如下。

- $\max(A_1, A_2) \le 6 \cdots [A_1 和 A_2 都為 6 以下]$
- max(A₃, A₄) ≤ 4 ··· 「A₃ 和 A₄ 都為 4 以下」

因此,可知 A_1 為 6以下, A_2 為 $\lceil 6$ 以下且 3以下」,所以是 3以下, A_3 為 $\lceil 3$ 以下 且 4以下」,所以是 3以下, A_4 為 4以下。

一般情況也一樣進行,得到 $A_1 \leq B_1$ 、 $A_i \leq \min(B_{i-1}, B_i)$ ($2 \leq i \leq N-1$), $A_N \leq B_{N-1}$ 的上限。實際上,符合這個上限的數列 A 滿足條件,撰寫求其總和的程式即為正解。以下是 C++ 的實作例。

```
#include <iostream>
#include <algorithm>
using namespace std;
int N, B[109];
int main() {
   // 輸入
    cin >> N;
    for (int i = 1; i <= N - 1; i++) {
        cin >> B[i];
    }
    // 求出數列 A 的元素總和 → 輸出答案
   int answer = B[1] + B[N - 1];
    for (int i = 2; i <= N - 1; i++) {
        answer += min(B[i - 1], B[i]);
    cout << answer << endl;</pre>
    return 0;
}
```

※ Python等原始碼請參閱 chap6-16_20.md。

對於各問題,若如以下程式求出總和,則計算複雜度是 O(NQ),會超過執行時間限制(TLE)。

```
int answer1 = 0, answer2 = 0;
for (int i = L; i <= R; i++) {
    if (C[i] == 1) answer1 += P[i];
    if (C[i] == 2) answer2 += P[i];
}</pre>
```

為了高速化,可以使用累積和(\rightarrow **4.2 節**)。首先,只計算一班的總得分。假設學號 i 的學生屬於一班時為 $A_i = P_i$,屬於二班時為 $A_i = 0$,則一班的總得分是 $A_L + A_{L+1} + \cdots + A_R$ 。因此,使用累積和的話可以用 O(1)來回答各問題。

學號、班級	1	2	3	4	5	IIIT
得分 <i>P_i</i>	50	80	100	30	40	班
一班的得分 A_i	50	80	0	30	0	
累積和	50	130	130	160	160	

對二班也可以進行同樣操作。如此,以整體計算複雜度 O(N+Q) 來解決此問題。將此解法以C++實作如下。

```
#include <iostream>
using namespace std;
int N, C[100009], P[100009], L[100009], R[100009], S1[100009], S2[100009];
int main() {
   // 輸入 → 求出累積和
   cin >> N;
   for (int i = 1; i <= N; i++) cin >> C[i] >> P[i];
   for (int i = 1; i \le N; i++) S1[i] = S1[i - 1] + (C[i] == 1 ? P[i] : 0);
   for (int i = 1; i \le N; i++) S2[i] = S2[i - 1] + (C[i] == 2 ? P[i] : 0);
   // 回答問題
   cin >> Q;
   for (int i = 1; i <= Q; i++) {
        cin >> L[i] >> R[i];
        cout << S1[R[i]] - S1[L[i] - 1] << " " <math><< S2[R[i]] - S2[L[i] - 1] << endl;
    }
   return 0;
}
```