Latent class analysis

Daniel Oberski Dept of Methodology & Statistics Tilburg University, The Netherlands

(with material from Margot Sijssens-Bennink & Jeroen Vermunt)

About Tilburg University Methodology & Statistics

About Tilburg University Methodology & Statistics

"Home of the latent variable"

Major contributions to latent class analysis:

Jacques Hagenaars (emeritus)

Jeroen Vermunt

Marcel Croon (emeritus)

More latent class modeling in Tilburg

Guy Moors (extreme respnse)

Klaas Sijtsma (Mokken; IRT)

Wicher Bergsma (marginal models) (@LSE)

Daniel Oberski (local fit of LCM)

Recent PhD's

Zsuzsa Bakk (3step LCM)

Dereje Gudicha (power analysis in LCM)

Margot Sijssens-Bennink (micromacro LCM)

Daniel van der Palm (divisive LCM)

What is a latent class model?

Statistical model in which parameters of interest differ across unobserved subgroups ("latent classes"; "mixtures")

Four main application types:

- Clustering (model based / probabilistic)
- Scaling (discretized IRT/factor analysis)
- Random-effects modelling (mixture regression / NP multilevel)
- Density estimation

The Latent Class Model

- Observed Continuous or Categorical Items
- Categorical Latent Class Variable (X)
- Continuous or Categorical Covariates (Z)

Four main applications of LCM

- Clustering (model based / probabilistic)
- Scaling (discretized IRT/factor analysis)
- Random-effects modelling (mixture regression / nonparametric multilevel)
- Density estimation

Why would survey researchers need latent class models?

For substantive analysis:

- Creating typologies of respondents, e.g.:
 - McCutcheon 1989: tolerance,
 - Rudnev 2015: human values
 - Savage et al. 2013: "A new model of Social Class"
 - ...
- Nonparametric multilevel model (Vermunt 2013)
- Longitudinal data analysis
 - Growth mixture models
 - Latent transition ("Hidden Markov") models

Why would survey researchers need latent class models?

For survey methodology:

- As a method to evaluate questionnaires, e.g.
 - Biemer 2011: Latent Class Analysis of Survey Error
 - Oberski 2015: latent class MTMM
- Modeling extreme response style (and other styles), e.g.
 - Morren, Gelissen & Vermunt 2012: extreme response
- Measurement equivalence for comparing groups/countries
 - Kankaraš & Moors 2014: Equivalence of Solidarity Attitudes
- Identifying groups of respondents to target differently
 - Lugtig 2014: groups of people who drop out panel survey
- Flexible imputation method for multivariate categorical data
 - Van der Palm, Van der Ark & Vermunt

Latent class analysis at ESRA!

Search for session or paper

Search for paper author or session convenor

Paper(s)

- Apathy is the Enemy. A study of UK environmental concern and its complicated relationship with proenvironmental behaviour. (Rebecca Rhead)
- Aspects of Validity: Scenario-Technique, Self-Report & Social Desirability (Lena Verneuer)
- Developing a diagnostic tool for detecting response styles, and a demonstration of its use in comparative research
 of single item measurements (Eva Van vlimmeren)
- · Elimination and Selection by aspects decision rules in discrete choice experiments (Seda Erdem)
- Measurement equivalence in cross-cultural surveys: multigroup latent class analysis and MIMIC-models in prejudice research (Ekaterina Lytkina)
- Policy-Culture Gaps and the Role of Gender Norms (Daniela Grunow)
- · Testing the Invariance of the Value Typology of Europeans Across Time Points (Maksim Rudnev)
- Testing the Theory of Social Integration (Ashley Amaya)
- Validating Schwartz value theory with confirmatory latent class analysis (Marko Sõmer)

Software

Commercial

- Latent GOLD
- Mplus
- gllamm in Stata
- PROC LCA in SAS

Free (as in beer)

• lem

Open source

- R package poLCA
- R package flexmix
- (with some programming) OpenMx, stan

 Specialized models: HiddenMarkov, depmixS4,

A small example

(showing the basic ideas and interpretation)

Small example: data from GSS 1987

Y1: "allow anti-religionists to speak"

Y2: "allow anti-religionists to teach"

Y3: "remove anti-religious books from the library"

			Observed	Observed
Y1	Y2	Y3	frequency (n)	proportion (n/N)
1	1	1	696	0.406
1	1	2	68	0.040
1	2	1	275	0.161
1	2	2	130	0.076
2	1	1	34	0.020
2	1	2	19	0.011
2	2	1	125	0.073
2	2	2	366	0.214

(1 = allowed, 2 = not allowed),

(1 = allowed, 2 = not allowed),

(1 = do not remove, 2 = remove).

2-class model in Latent GOLD

Profile for 2-class model

Profile plot for 2-class model

Estimating the 2-class model in R

```
antireli <- read.csv("antireli_data.csv")
library(poLCA)

M2 <- poLCA(cbind(Y1, Y2, Y3)~1, data=antireli, nclass=2)</pre>
```

Profile for 2-class model

```
$Y1
          Pr(1) Pr(2)
class 1: 0.9601 0.0399
class 2: 0.2284 0.7716
$Y2
          Pr(1) Pr(2)
class 1: 0.7424 0.2576
class 2: 0.0429 0.9571
$Y3
          Pr(1) Pr(2)
class 1: 0.9166 0.0834
class 2: 0.2395 0.7605
```

Estimated class population shares 0.6205 0.3795

Classes; population share

Model equation for 2-class LC model for 3 indicators

Model for

$$P(y_1, y_2, y_3)$$

the probability of a particular response pattern.

For example, how likely is someone to hold the opinion "allow speak, allow teach, but remove books from library: P(Y1=1, Y2=1, Y3=2) = ?

Two key model assumptions

(X is the latent class variable)

1. (MIXTURE ASSUMPTION)

Joint distribution mixture of 2 class-specific distributions:

$$P(y_1, y_2, y_3) = P(X = 1)P(y_1, y_2, y_3 \mid X = 1) + P(X = 2)P(y_1, y_2, y_3 \mid X = 2)$$

2. (LOCAL INDEPENDENCE ASSUMPTION)

Within class X=x, responses are independent:

$$P(y_1, y_2, y_3 | X = 1) = P(y_1 | X = 1)P(y_2 | X = 1)P(y_3 | X = 1)$$

 $P(y_1, y_2, y_3 | X = 2) = P(y_1 | X = 2)P(y_2 | X = 2)P(y_3 | X = 2)$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

$$P(Y1=1, Y2=1, Y3=2) =$$

(Mixture assumption)

$$P(Y1=1, Y2=1, Y3=2 \mid X=1) P(X=1) +$$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

$$P(Y1=1, Y2=1, Y3=2) =$$

(Mixture assumption)

$$P(Y1=1, Y2=1, Y3=2 \mid X=2) 0.380 =$$

(Local independence assumption)

$$P(Y1=1|X=1) P(Y2=1|X=1) P(Y2=2|X=1) 0.620 + P(Y1=1|X=2) P(Y2=1|X=2) P(Y2=2|X=2) 0.380$$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

$$P(Y1=1, Y2=1, Y3=2) =$$

(Mixture assumption)
P(Y1=1, Y2=1, Y3=2 | X=1) 0.620 +
P(Y1=1, Y2=1, Y3=2 | X=2) 0.380 =

```
(Local independence assumption)

(0.960) (0.742) (1-0.917) (0.620) +

(0.229) (0.044) (1-0.240) (0.380) \approx
```

 ≈ 0.0396

Small example: data from GSS 1987

Y1: "allow anti-religionists to speak"

Y2: "allow anti-religionists to teach"

Y3: "remove anti-religious books from the library"

(1 = allowed, 2 = not allowed),
(1 = allowed, 2 = not allowed),
(1 = do not remove, 2 = remove).

	Y1	Y2	Y 3	Observed frequency (n)	Observed proportion (n/ N)
	- 1			000	U. 1 UU
	1	1	2	68	0.040
	1	2	1	2/5	0.161
	1	2	2	130	0.076
	2	1	1	34	0.020
	2	1	2	19	0.011
	2	2	1	125	0.073
	2	2	2	366	0.214

Implied is 0.0396, observed is 0.040.

More general model equation

Mixture of C classes

$$P(\mathbf{y}) = \sum_{x=1}^{C} P(X = x) P(\mathbf{y} \mid X = x)$$

Local independence of K variables

$$P(\mathbf{y} | X = x) = \prod_{k=1}^{K} P(y_k | X = x)$$

Both together gives the likelihood of the observed data:

$$P(\mathbf{y}) = \sum_{k=1}^{C} P(X = x) \prod_{k=1}^{K} P(y_k \mid X = x)$$

"Categorical data" notation

In some literature an alternative notation is used

- Instead of Y1, Y2, Y3, variables are named A, B, C
- We define a model for the joint probability

$$P(A=i,B=j,C=k) := \pi_{ijk}^{ABC}$$

$$\pi_{ijk}^{ABC} = \sum_{t=1}^{I} \pi_{t}^{X} \pi_{ijk\ t}^{ABC|X} \qquad \text{with} \qquad \pi_{ijk\ t}^{ABC|X} = \pi_{i\ t}^{A|X} \pi_{j\ t}^{B|X} \pi_{k\ t}^{C|X}$$

Loglinear parameterization

$$\pi_{ijkt}^{ABC|X} = \pi_{it}^{A|X} \pi_{jt}^{B|X} \pi_{kt}^{C|X}$$

$$\ln(\pi_{ijk\ t}^{ABC|X}) = \ln(\pi_{it}^{A|X}) + \ln(\pi_{jt}^{B|X}) + \ln(\pi_{kt}^{C|X})$$
$$:= \lambda_{it}^{A|X} + \lambda_{jt}^{B|X} + \lambda_{kt}^{C|X}$$

The parameterization actually used in most LCM software

$$P(y_k | X = x) = \frac{\exp(\beta_{0y_k}^k + \beta_{1y_kx}^k)}{\sum_{m=1}^{M_k} \exp(\beta_{0m}^k + \beta_{1mx}^k)}$$

$$\beta_{0_{V_k}}^k$$
 Is a logistic intercept parameter

$$eta_{1y_{
u}x}^{k}$$
 Is a logistic slope parameter (loading)

So just a series of **logistic regressions**, with X as independent and Y dep't! Similar to CFA/EFA (but logistic instead of linear regression)

A more realistic example

(showing how to evaluate the model fit)

One form of political activism

61.31% 38.69%

Another form of political activism

going wrong. During the last 12 months, ha Have you READ OUT	0 1			umige ii
	Υ	es (No	(Don' know

There are different ways of trying to improve things in [country] or help prevent things from

8

8

8

8

8

2

B13 ...contacted a politician, government or local government 1 2 8 official?
B14 ...worked in a political party or action group? 1 2 8

...worked in another organisation or association?

...worn or displayed a campaign badge/sticker?

...taken part in a lawful public demonstration?

...signed a petition?

...boycotted certain products?

B15

B16

B17

B18

B19

Data from the European Social Survey round 4 Greece

contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd	clsprty
2	2	2	2	2	2	1	2
2	2	2	2	2	2	1	1
2	2	2	2	2	1	1	1
2	2	2	2	2	2	2	1
2	2	2	2	2	2	2	1
2	2	2	2	2	2	1	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	1
2	2	2	2	2	2	2	2

```
library(foreign)
ess4gr <- read.spss("ESS4-GR.sav", to.data.frame = TRUE,</pre>
      use.value.labels = FALSE)
```

ess4gr, nclass=K)

badge, sqnptit, pbldmn, bctprd)~1,

K < -4 # Change to 1,2,3,4,...

MK <- poLCA(cbind(contplt, wrkprty, wrkorg,

Evaluating model fit

In the previous small example you calculated the model-implied (expected) probability for response patterns and compared it with the observed probability of the response pattern:

observed - expected

The small example had $2^3 - 1 = 7$ unique patterns and 7 unique parameters, so df = 0 and the model fit perfectly.

observed – expected =
$$0$$
 <=> df = 0

Evaluating model fit

Current model (with 1 class, 2 classes, ...)

Has $2^7 - 1 = 128 - 1 = 127$ unique response patterns But much fewer parameters

So the model can be tested.

Different models can be compared with each other.

Evaluating model fit

Global fit

Local fit

Substantive criteria

Global fit

Goodness-of-fit chi-squared statistics

- H0: model with C classes; H1: saturated model
- $L^2 = \sum 2 n \ln (n / (P(y)*N))$
- $X^2 = \sum (n P(y)^*N)^2/(P(y)^*N)$
- df = number of patterns -1 Npar
- Sparseness: bootstrap *p*-values

Information criteria

- for model comparison
- parsimony versus fit

Common criteria

- BIC(LL) = -2LL + In(N) * Npar
- AIC(LL) = -2LL + 2 * Npar
- AIC3(LL) = -2LL + 3 * Npar
- BIC(L2) = L2 In(N) * df
- AIC(L2) = L2 2 * df
- AIC3(L2) = L2 3 * df

Model fit comparisons

	L²	BIC(L²)	AIC(L²)	df	p-value
1-Cluster	1323.0	-441.0	861.0	120	0.000
2-Cluster	295.8	-1407.1	-150.2	112	0.001
3-Cluster	219.5	-1422.3	-210.5	104	0.400
4-Cluster	148.6	-1432.2	-265.4	96	1.000
5-Cluster	132.0	-1387.6	-266.0	88	1.000
6-Cluster	122.4	-1336.1	-259.6	80	1.000

BIC is lowest at four classes

Number of latent classes

Local fit

Local fit: bivariate residuals (BVR)

Pearson "chi-squared" comparing observed and estimated frequencies in 2-way tables.

Expected frequency in two-way table:

$$N \cdot P(y_k, y_{k'}) = N \cdot \sum_{k=1}^{C} P(X = x) P(y_k \mid X = x) P(y_{k'} \mid X = x)$$

Observed:

Just make the bivariate cross-table from the data!

Example calculating a BVR

Observed

No Yes
No 3250 280
Yes 123 216

Expected

	No	Yes
No	3217	313
Yes	156	183

Bivariate residuals

BVR_{1,3} =
$$r_{11}^2 \sum_{k,l} \hat{\mu}_{kl}^{-1} = (32.6)^2 \sum_{k,l} \hat{\mu}_{kl}^{-1} \approx 1063(0.0154) \approx 16.3$$

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	342.806						
wrkorg	133.128	312.592					
badge	203.135	539.458	396.951				
sgnptit	82.030	152.415	372.817	166.761			
pbldmn	77.461	260.367	155.346	219.380	272.216		
bctprd	37.227	56.281	78.268	65.936	224.035	120.367	

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	15.147						
wrkorg	0.329	2.891					
badge	2.788	12.386	8.852				
sgnptit	2.402	1.889	9.110	0.461			
pbldmn	1.064	1.608	0.108	0.945	3.957		
bctprd	1.122	2.847	0.059	0.717	18.025	4.117	

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	7.685						
wrkorg	0.048	0.370					
badge	0.282	0.054	0.273				
sgnptit	2.389	2.495	8.326	0.711			
pbldmn	2.691	0.002	0.404	0.086	2.842		
bctprd	2.157	2.955	0.022	0.417	13.531	1.588	

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	0.659						
wrkorg	0.083	0.015					
badge	0.375	0.001	1.028	-			
sgnptit	0.328	0.107	0.753	0.019			
pbldmn	0.674	0.939	0.955	0.195	0.004		
bctprd	0.077	0.011	0.830	0.043	0.040	0.068	

Bivariate residuals = 0.000-5.000 = 5.000-10.00

Local fit: beyond BVR

The bivariate residual (BVR) is not actually chi-square distributed!

(Oberski, Van Kollenburg & Vermunt 2013)

Solutions:

- Bootstrap p-values of BVR (LG5)
- "Modification indices" (score test) (LG5)

Example of modification index (score test) for 2-class model

Covarian	ces / Asso	ociations					
term			coef	EPC(self)	Score	df	BVR
contplt	<->	wrkprty	0	1.7329	28.5055	1	15.147
wrkorg	<->	wrkprty	0	0.6927	4.3534	1	2.891
badge	<->	wrkprty	0	1.3727	16.7904	1	12.386
sgnptit	<->	bctprd	0	1.8613	37.0492	1	18.025

wrkorg <-> wrkparty is "not significant" according to BVR but is when looking at score test!

(but not after adjusting for multiple testing)

Interpreting the results and using substantive criteria

EPC-interest for looking at change in substantive parameters

After fitting two-class model, how much would loglinear "loadings" of the items change if local dependence is accounted for?

term			Y1	Y2	Y3	Y4	Y5	Y6	Y7
contplt	<->	wrkprty	-0.44	-0.66	0.05	1.94	0.05	0.02	0.00
wrkorg	<->	wrkprty	0.00	-0.19	-0.19	0.63	0.02	0.01	0.00
badge	<->	wrkprty	0.00	-0.37	0.03	-1.34	0.03	0.01	0.00
sgnptit	<->	bctprd	0.01	0.18	0.05	1.85	-0.58	0.02	-0.48

See Oberski (2013); Oberski & Vermunt (2013); Oberski, Moors & Vermunt (2015)

Model fit evaluation: summary

Different types of criteria to evaluate fit of a latent class model:

Global

BIC, AIC, L2, X2

Local

Bivariate residuals, modification indices (score tests), and expected parameter changes (EPC)

Substantive

Change in the solution when adding another class or parameters

Model fit evaluation: summary

- Compare models with different number of classes using BIC, AIC, bootstrapped L2
- Evaluate overall fit using bootstrapped L2 and bivariate residuals

 Can be useful to look at the profile of the different solutions: if nothing much changes, or very small classes result, fit may not be as useful

Classification

(Putting people into boxes, while admitting uncertainty)

Classification

 After estimating a LC model, we may wish to classify individuals into latent classes

• The latent classification or **posterior** class membership probabilities P(X = x | y) can be obtained from the LC model parameters using Bayes' rule:

$$P(X = x \mid \mathbf{y}) = \frac{P(X = x)P(\mathbf{y} \mid X = x)}{P(\mathbf{y})} = \frac{P(X = x)\prod_{k=1}^{K} P(y_k \mid X = x)}{\sum_{c=1}^{C} P(X = c)\prod_{k=1}^{K} P(y_k \mid X = c)}$$

Small example: posterior classification

Y1	Y2	Y 3	P(X=1 Y)	P(X=2 Y)	Most likely (but not sure!)
1	1	1	0.002	0.998	2
1	1	2	0.071	0.929	2
1	2	1	0.124	0.876	2
1	2	2	0.832	0.169	1
2	1	1	0.152	0.848	2
2	1	2	0.862	0.138	1
2	2	1	0.920	0.080	1
2	2	2	0.998	0.003	1

Classification quality

Classification Statistics

- classification table: true vs. assigned class
- overall proportion of classification errors

Other reduction of "prediction" errors measures

- How much more do we know about latent class membership after seeing the responses?
- Comparison of P(X=x) with P(X=x | Y=y)
- R-squared-like reduction of prediction (of X) error

```
posteriors <- data.frame(M4$posterior, predclass=M4$predclass)

classification_table <-
    ddply(posteriors, .(predclass), function(x) colSums(x[,1:4])))

> round(classification table, 1)
```

predclass post.1 post.2 post.3 post.4

1 1824.0 34.9 0.0 11.1

3 0.0 1.0 19.8 0.2

2 7.5 87.4 1.1 3.0

4 4.0 8.6 1.4 60.1

Classification table for 4-class

	post.1	post.2	post.3	post.4
1	0.99	0.26	0.00	0.15
2	0.00	0.66	0.05	0.04
3	0.00	0.01	0.89	0.00
4	0.00	0.07	0.06	0.81
	1	1	1	1

Total classification errors:

```
> 1 - sum(diag(classification_table)) / sum(classification_table)
[1] 0.0352
```

Entropy R²

```
entropy <- function(p) sum(-p * log(p))
error_prior <- entropy(M4$P) # Class proportions
error_post <- mean(apply(M4$posterior, 1, entropy))

R2_entropy <- (error_prior - error_post) / error_prior
> R2_entropy
[1] 0.741
```

This means that we know a lot more about people's political participation class after they answer the questionnaire.

Compared with if we only knew the overall proportions of people in each class

Classify-analyze does not work!

- You might think that after classification it is easy to model people's latent class membership
- "Just take assigned class and run a multinomial logistic regression"
- Unfortunately, this **does not work** (biased estimates and wrong se's) (Bolck, Croon & Hagenaars 2002)
- (Many authors have fallen into this trap!)
- Solution is to model class membership and LCM simulaneously
- (Alternative is 3-step analysis, not discussed here)

Predicting latent class membership

(using covariates; concomitant variables)

Fitting a LCM in poLCA with gender as a covariate

This gives a **multinomial logistic regression** with X as dependent and gender as independent ("concomitant"; "covariate")

Predicting latent class membership from a covariate

$$P(X = x \mid Z = z) = \frac{\exp(\gamma_{0x} + \gamma_{zx})}{\sum_{c=1}^{C} \exp(\gamma_{0c} + \gamma_{zc})}$$

 γ_{0x} Is the logistic intercept for category x of the latent class variable X

 γ_{zx} Is the logistic slope predicting membership of class x for value z of the covariate Z

```
Fit for 4 latent classes:
2 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) -0.35987
                                      0.335
                       0.37146 -0.969
gndrFemale -0.34060 0.39823 -0.855 0.395
3 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) 2.53665
                       0.21894 11.586
                                      0.000
qndrFemale 0.21731 0.24789 0.877 0.383
4 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) -1.57293
                       0.39237 -4.009
                                      0.000
qndrFemale -0.42065 0.57341 -0.734 0.465
```

Class 1 Modern political participation

Class 2 Traditional political participation

Class 3 No political participation

Class 4 Every kind of political participation

Women more likely than men to be in classes 1 and 3 Less likely to be in classes 2 and 4

Multinomial logistic regression refresher

For example:

- Logistic multinomial regression coefficient equals -0.3406
- Then log odds ratio of being in class 2 (compared with reference class 1) is -0.3406 smaller for women than for men
- So odds ratio is smaller by a factor exp(-0.3406) = 0.71
- So odds are 30% smaller for women

Even more (re)freshing:

AN INTRODUCTION TO CATEGORICAL DATA ANALYSIS

Problems you will encounter when doing latent class analysis (and some solutions)

Some problems

Local maxima

Boundary solutions

Non-identification

Problem: Local maxima

Problem: there may be different sets of "ML" parameter estimates with different L-squared values we want the solution with lowest L-squared (highest log-likelihood)

Solution: multiple sets of starting values

```
poLCA(cbind(Y1, Y2, Y3)~1, antireli, nclass=2, nrep=100)

Model 1: llik = -3199.02 ... best llik = -3199.02

Model 2: llik = -3359.311 ... best llik = -3199.02

Model 3: llik = -2847.671 ... best llik = -2847.671

Model 4: llik = -2775.077 ... best llik = -2775.077

Model 5: llik = -2810.694 ... best llik = -2775.077

....
```


Problem: boundary solutions

Problem: estimated probability becomes zero/one, or logit parameters extremely large negative/positive

```
$badge
```

```
Pr(1) Pr(2)
```

Example: class 1: 0.8640 0.1360

class 2: 0.1021 0.8979

class 3: 0.4204 0.5796

class 4: 0.0000 1.0000

Solutions:

- 1. Not really a problem, just ignore it;
- 2. Use priors to smooth the estimates
- 3. Fix the offending probabilities to zero (classical)

Bayes Constants	
Latent Variables	1
Categorical Variables	1
Dairean County	
Poisson Counts	1
Error Variances	4
LITOI Variances	1

Problem: non-identification

- Different sets of parameter estimates yield the same value of Lsquared and LL value: estimates are not unique
- Necessary condition DF>=0, but not sufficient
- Detection: running the model with different sets of starting values or, formally, checking whether rank of the Jacobian matrix equals the number of free parameters
- "Well-known" example: 3-cluster model for 4 dichotomous indicators

What we did not cover

- 1 step versus 3 step modeling
- Ordinal, continuous, mixed type indicators
- Hidden Markov ("latent transition") models
- Mixture regression

What we did cover

- Latent class "cluster" analysis
- Model formulation, different parameterizations
- Model interpretation, profile
- Model fit evaluation: global, local, and substantive
- Classification
- Common problems with LCM and their solutions

Further study

Journal of Statistical Software

June 2011. Volume 42. Issue 10.

http://www.jstatsoft.org/

poLCA: An R Package for Polytomous Variable Latent Class Analysis

Drew A. Linzer Emory University Jeffrey B. Lewis University of California, Los Angeles

Thank you for your attention!

@DanielOberski

http://daob.nl

doberski@uvt.nl