Ejercicios de la sección 3.4 Factorización L-U

(Clase de prácticas: 1, 8, 15, 16, 19, 20.)

En los ejercicios ejercicios 1 a 6, resuelve la ecuación $A\mathbf{x} = \mathbf{b}$ usando la factorización LU dada para A. En los ejercicios 1 y 2 resuelve $Ax = \mathbf{b}$ también por el método

usual de reducción.

▶1.
$$A = \begin{pmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -7 \\ 5 \\ 2 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{pmatrix} \begin{pmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 2 & -6 & 4 \\ -4 & 8 & 0 \\ 0 & -4 & 6 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -6 & 4 \\ 0 & -4 & 8 \\ 0 & 0 & -2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 2 & -4 & 2 \\ -4 & 5 & 2 \\ 6 & -9 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -4 & 2 \\ 0 & -3 & 6 \\ 0 & 0 & 1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 0 \\ -5 \\ 7 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & -5 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 3 & -9 & 0 & -9 \\ -1 & 2 & 4 & 7 \\ -3 & -6 & 26 & 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 3 \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -3 & 4 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & -2 & -3 \\ 0 & -3 & 6 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

6.
$$A = \begin{pmatrix} 1 & 3 & 2 & 0 \\ -2 & -3 & -4 & 12 \\ 3 & 0 & 4 & -36 \\ -5 & -3 & -8 & 49 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 2 \end{pmatrix}$$
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & -3 & 1 & 0 \\ -5 & 4 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 3 & 0 & 12 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

En los ejercicios 7 a 16 halla un factorización LU de la matriz dada.

7.
$$\begin{pmatrix} 2 & 5 \\ -3 & 4 \end{pmatrix}$$
 \blacktriangleright 8. $\begin{pmatrix} 6 & 4 \\ 12 & 5 \end{pmatrix}$

$$\mathbf{9.} \begin{pmatrix} 3 & 1 & 2 \\ -9 & 0 & -4 \\ 9 & 9 & 14 \end{pmatrix} \qquad \qquad \mathbf{10.} \begin{pmatrix} -5 & 0 & 4 \\ 10 & 2 & -5 \\ 10 & 10 & 16 \end{pmatrix}$$

11.
$$\begin{pmatrix} 3 & 7 & 2 \\ 6 & 19 & 4 \\ -3 & -2 & 3 \end{pmatrix}$$
 12. $\begin{pmatrix} 2 & 3 & 2 \\ 4 & 13 & 9 \\ -6 & 5 & 4 \end{pmatrix}$

13.
$$\begin{pmatrix} 1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ -2 & -4 & 7 & 5 \end{pmatrix}$$
 14.
$$\begin{pmatrix} 1 & 3 & 1 & 5 \\ 5 & 20 & 6 & 31 \\ -2 & -1 & -1 & -4 \\ -1 & 7 & 1 & 7 \end{pmatrix}$$

▶15.
$$\begin{pmatrix} 2 & 0 & 5 & 2 \\ -6 & 3 & -13 & -3 \\ 4 & 9 & 16 & 17 \end{pmatrix}$$
 ▶16. $\begin{pmatrix} 2 & -3 & 4 \\ -4 & 8 & -7 \\ 6 & -5 & 14 \\ -6 & 9 & -12 \\ 8 & -6 & 19 \end{pmatrix}$

- 17. Para calcular la inversa de una matriz inversible A, el programa MATLAB calcula primero una factorización A = LU, luego halla las inversas de L y U y finalmente calcula $U^{-1}L^{-1}$. Usa este método para calcular la inversa de la matriz A del ejercicio 2.
- 18. Usa el método del ejercicio anterior para calcular la inversa de la matriz A del ejercicio 3.
- ▶19. Sea A una matriz $n \times n$ triangular inferior cuyos elementos de la diagonal son todos no nulos. Demuestra que A es inversible y que su inversa también es triangular inferior.

Sugerencia: ¿Por qué A puede reducirse a I_n usando solamente operaciones de de reemplazo progresivas y de reescalado? ¿Cuáles son las posiciones pivote? Deduce que dichas operaciones de filas transforman a I en una matriz triangular inferior.

▶20. Supón que A tiene una factorización LU, A = LU. Explica por qué A puede reducirse a U usando solamente operaciones de reemplazo progresivas.

Soluciones a ejercicios seleccionados de la sección 3.4

- **1.** Primero resolvemos la ecuación $L\mathbf{y} = \mathbf{b}$, es decir, en este caso: $\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -7 \\ 5 \\ 2 \end{pmatrix}$. Para ello podemos hacer dos cosas:
 - (a) Usando $y_1=-7$ despejar y_2 de la segunda ecuación $-y_1+y_2=5$ obteniendo $y_2=-2$ y ahora usamos y_1 e y_2 para despejar y_3 en la tercera ecuación $2y_1-5y_2+y_3=2$ obteniendo $y_3=6$. O bien:
 - (b) Aplicarle al vector \mathbf{b} las operaciones elementales $F_2 + F_1$, $F_3 2F_1$ y $F_3 + 5F_2$ con lo cual el vector \mathbf{b} se convierte en la solución $\mathbf{y} = \begin{pmatrix} -7 \\ -2 \\ 6 \end{pmatrix}$.

Para terminar sólo falta resolver la ecuación Ux = y, es decir: $\begin{pmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -7 \\ -2 \\ 6 \end{pmatrix}$. De nuevo podemos proceder de dos formas. Por el primer método: $x_3 = -6$, $2x_2 = 2 - x_3 = 2 + 6$, $x_2 = 4$ y $3x_1 = 7x_2 + 2x_3 - 7 = 7 \times 4 + 2 \times (-6) - 7 = 28 - 12 - 7$, $x_1 = 3$. O sea, la solución final es: $\mathbf{x} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}$

- 8. Para L sólo hace falta hallar la primera columna reescalando la primera de A: $L=\begin{pmatrix}1&0\\2&1\end{pmatrix}$. Para U basta realizar sobre A la operación elemental F_2-2F_1 , obteniéndose $U=\begin{pmatrix}6&4\\0&-3\end{pmatrix}$
- **15.** Mirando a A, sabemos que, si A admite factorización LU, L es de la forma $L = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & * & 1 \end{pmatrix}$. Realizando sobre A las operaciones $F_2 + 3F_1$, $F_3 2F_1$ se obtiene

$$\left(\begin{array}{ccccc}
2 & 0 & 5 & 2 \\
0 & 3 & 2 & 3 \\
0 & 9 & 6 & 13
\end{array}\right).$$

Llegados aquí ya conocemos $L = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$ y con una operación elemental más ($F_3 - 3F_2$) obtenemos

$$U = \begin{pmatrix} 2 & 0 & 5 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

16. Mirando a A, sabemos que, si A admite factorización L-U, L es de la forma $L = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 & 0 \\ 3 & * & 1 & 0 & 0 \\ -3 & * & * & * & 1 & 0 \\ -3 & * & * & * & * & * & 1 \end{pmatrix}$. Realizando

sobre A las operaciones $F_2 + 3F_1$, $F_3 - 2F_1$ se obtiene

$$\begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \\ 0 & 6 & 3 \end{pmatrix} \text{,}$$

lo que determina la segunda columna de *L*:

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \\ -3 & 0 & * & 1 & 0 \\ 4 & 3 & * & * & 1 \end{pmatrix}.$$

Con dos operaciones más de reemplazo progresivo se llega a una forma escalonada, que es la matriz U:

$$U = \begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{y de ahí:} \quad L = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ 4 & 3 & 0 & 0 & 1 \end{pmatrix}.$$

(Ahora es el momento de comprobar que LU = A.)

- **19.** La traspuesta de *A* es triangular superior con elementos diagonales no nulos, por tanto es una matriz escalonada y sus posiciones pivote son las de la diagonal, lo cual quiere decir que tiene un pivote en cada columna. Como es cuadrada esto implica que A^{T} es inversible y por ello también A es inversible. Otra forma de verlo es que haciendo solamente operaciones de reemplazo progresivas A se puede poner en forma escalonada que es una matriz diagonal cuyos elementos diagonales son los mismos de A. Esto demuestra que A admita una factorización L-U y que la U es una matriz diagonal con todos los elementos diagonales no nulos y por tanto es inversible. Como L también es inversible, A = LU es inversible. Las operaciones de reemplazo progresivas que transforman A en U, transforman I_n en L^{-1} (que es una matriz triangular inferior porque se obtiene de I_n mediante operaciones de reemplazo progresivas). Para llegar a la forma escalonada reducida de A (que es la identidad I_n) solo faltan por realizar a lo sumo n operaciones de reescalado, que realizadas sobre L^{-1} producen ${\cal A}^{-1}$ esto muestra que A^{-1} es triangular como consecuencia de serlo L^{-1} .
- **20.** Porque L se puede reducir a la identidad usando solamente operaciones elementales de filas de reemplazo progresivas y esas operaciones necesariamente reducirán A a U