

Student: Aaron Robinson

Advisor: Dr. Bruce Segee

August 7, 2009

Introduction

- In 2004, 58% of the Top500 fastest supercomputers in the world were commodity clusters (From RocksClusters.org)... Why?
- 1) Cost less than custom architecture
- 2) Allow more organizations to enter HPC
- Growth in HPC increases data set size and quantity = Rise in visualization demand

Solution: Fusion of commodity clusters and high-resolution data visualization

Related Works

- LionEyes Display wall
 - 12 projectors
 - 12 dual Xeons w/ NVIDIA Quadro 900 XGL (render)
 - 2 Xeons w/ NVIDIA Quadro 900 XGL (application)
 - Resolution: 4096x2304
- Hyperwall-2 (NAS Advanced Supercomputing)
 - 128 LCD screens
 - 128 GPUS
 - 1,024 cores
 - 74 teraflops

Two Problems

- Commodity clusters require computer scientists to rethink:
- 1) System Management
- 2) Programming Methodology

- SQL Database & Master Repository
- Back-end nodes connect via PXE or CD
- Red Hat Kickstart
- Package downloading via torrent
- New nodes exchange packages without front-end
- Cluster DB used for propagating configuration changes

DMX & Xinerama

- DMX (Xdmx) = multiple displays from multiple machines
- Xinerama = multiple displays unified as single screen

Chromium

- Manipulates OpenGL for graphics cluster
- Stream Processing Unit (SPU)
- Mothership
- Tilesort SPU
- Render SPU

SAGE

- Stream graphics from rendering cluster
- Collaborative environment
- Components:
- 1) Free Space Manager
- 2) SAGE Application Interface Library (SAIL)
- 3) SAGE Receiver
- 4) User Interface (UI)

Results

- Rocks 4.2.1 issues
- Rocks 5.0
- Dual Pentium 3s w/ 3x Geforce4 MX 4000s 128MB (3 nodes)
- Core 2 Quads w/ nVidia 8600GT Dual-DVI cards 256MB (2 nodes)

Acknowledgment

We would like to thank the National Science Foundation (Grant 0754951) and the Department of Defense for funding the Supercomputing REU program at the University of Maine.

References

- [1] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopoulos, "Rolls: Modifying a Standard System Installer to Support User-Customizable Cluster front-end Appliances," presented at IEEE International Conference on Cluster Computing, San Diego, USA, 2004. Available: http://www.rocksclusters.org/rocks-doc/papers/ieee-cluster-2004/paper.pdf. [Accessed: Jul. 20, 2009].
- [2] "The Rocks Avalanche Installer," Jun. 19, 2008. [Online]. Available: http://www.rocksclusters.org/rocks-doc/papers/two-pager/paper.pdf. [Accessed: Jul. 29, 2009].
- [3] "Distributed Multihead X Project," Jun. 13, 2004. [Online]. Available: http://dmx.sourceforge.net/. [Accessed: Jul. 30, 2009]
- [4] "Using Chromium with DMX," Sep. 1, 2006. [Online]. Available: http://chromium.sourceforge.net/doc/dmx.html. [Accessed: Jul. 31, 2009]
- [5] "Scalable Adaptive Graphics Environment," [Online]. Available: http://www.evl.uic.edu/cavern/sage/index.php. [Accessed: Jul. 31, 2009]
- [6] "SAGE :: DESCRIPTION," [Online]. Available: http://www.evl.uic.edu/cavern/sage/description.php. [Accessed: Jul. 31, 2009]

