计算机学院 计算机网络 课程实验报告

实验题目: NAT 学号: 202200400053

Email: 1941497679@gg.com

实验方法介绍:

本次实验使用了网站提供的数据包,对 NAT 路由器进行了分析,理解了两个位置的数据包的差别和 NAT 的具体过程。

实验过程描述:

我们将捕获在 NAT 路由器的本地区域网络 (LAN) 端收到的数据包。此 LAN 中 的 所 有 设 备 的 地 址 均 为 192.168.10/24. 此文件命名为:

nat-inside-wireshark-trace1-1.pcapng

我们将在路由器的互联网侧收集第二个跟踪文件在这个测量点由 Wireshark 捕获的数据 包,如果是从右侧的主机发送到左侧的服务器,则在到达第二测量点时,数据包将进行转换,命名为:

nat-outside-wireshark-trace1-1.pcapng

一、打开 nat-inside-wireshark-tracel-1.pcapng 跟踪文件

No.	Time	Source	Destination	Protocol I	Length Info
-	4 0.027362245	192.168.10.11	138.76.29.8	HTTP	396 GET / HTTP/1.1
4	6 0.030672101	138.76.29.8	192.168.10.11	HTTP	613 HTTP/1.1 200 OK (text/html)

- 1、在 nat-inside-wireshark-trace1-1.pcapng 跟踪文件中,发送 HTTP GET 请求的客户端的 IP 地址是什么?包含 HTTP GET 请求的 TCP 段的源端口号是多少?此 HTTP GET 请求的目标 IP 地址是什么?包含 HTTP GET 请求的 TCP 段的目标端口号是多少?
- Transmission Control Protocol, Src Port: 53924, Dst Port: 80, Seq: 1, Ack: 1, Len: 330
 Source Port: 53924
 Destination Port: 80
- 答:源 IP 地址为 192.168.10.11, TCP 源端口号为 53924.目的 IP 地址为 138.76.29.8, TCP 目的端口号为 80
- 2、在什么时间, NAT 路由器将来自 Web 服务器的相应的 HTTP 200 OK 消息转发 到路由器 LAN 侧的客户端?

答: 在 0.030672101 时间.

- 3、携带 HTTP 200 OK 消息的数据包的源目的 IP 地址和 TCP 源目的端口是什么?
- ▼ Transmission Control Protocol, Src Port: 80, Dst Port: 53924, Seq: 1, Ack: 331, Len: 547
 Source Port: 80
 Destination Port: 53924
- 答: 源 IP 地址为 138.76.29.8, TCP 源端口号为 80. 目的 IP 地址为 192.168.10.11, TCP 目的端口号为 53924
- 二、打开 nat-outside-wireshark-trace1-1.pcapng 跟踪文件

查看 HTTP GET 消息

4. 此 HTTP GET 消息在 nat-outside-wireshark-trace1-1.pcapng 跟踪文件中出现的时间

是多少?

4 0.027356291 10.0.1.254 138.76.29.8 HTTP 396 GET / HTTP/1.1 6 0.030625966 138.76.29.8 10.0.1.254 HTTP 613 HTTP/1.1 200 OK (text/html)

答: 0.027356291

5、在携带此 HTTP GET 的 IP 数据报上,源和目标 IP 地址以及 TCP 源和目标 端口号是什么?

Transmission Control Protocol, Src Port: 53924, Dst Port: 80, Seq: 1, Ack: 1, Len: 330 Source Port: 53924 Destination Port: 80

- 答: 源 IP 地址为 10.0.1.254, TCP 源端口号为 53924. 目的 IP 地址为 138.76.29.8, TCP 目的端口号为 80
- 6、这四个字段中有哪些与您对问题 1 的答案不同?

Source Address: 192.168.10.11 Destination Address: 138.76.29.8

Source Address: 10.0.1.254
Destination Address: 138.76.29.8

答: 源 IP 地址

7、HTTP GET 消息中是否有任何字段更改?

答: 源 IP 地址被修改为 Internet 端的地址.

8、在携带 HTTP GET 的 IP 数据报中,哪些字段从局域网(内部)接收到相应数据报到 NAT 路由器的互联网侧(外部)转发的相应数据报发生了更改:版本、标头长度、标志、校验和?

Header Checksum: 0x2492 [validation disabled]
[Header checksum status: Unverified]

Header Checksum: 0x64dc [validation disabled]
[Header checksum status: Unverified]

答: 源 IP 地址, 校验和

查看 200 OK 消息

9、此消息在 nat-outside-wireshark-trace1-1.pcapng 跟踪文件中出现的时间 是多少?

答: 0.030625966

10、携带此 HTTP 回复("200 OK")消息的 IP 数据报上,源和目标 IP 地址 以及 TCP 源和目标端口号是什么?

Transmission Control Protocol, Src Port: 80, Dst Port: 53924, Seq: 1, Ack: 331, Len: 547 Source Port: 80 Destination Port: 53924

- 答: 源 IP 地址为 138.76.29.8, TCP 源端口号为 80. 目的 IP 地址为 10.0.1.254, TCP 目的端口号为 53924
- 11、在图 1 右侧的路由器转发到目标主机的 IP 数据报中,HTTP 回复("200 OK")的源和目标 IP 地址以及 TCP 源和目标端口号是什么?

[Header checksum status: Unverified] Source Address: 138.76.29.8 Destination Address: 192.168.10.11

Transmission Control Protocol, Src Port: 80, Dst Port: 53924, Seq: 1, Ack: 331, Len: 547

答 ; 源 IP 地址为 138.76.29.8, TCP 源端口号为 80. 目的 IP 地址为 192.168.10.11, TCP

目的端口号为 53924.					
/±\\ /\ !c					
结论分析:					
NAT 转换分为 LAN 端和 Internet 端:					
在 LAN 端, HTTP GET 请求的源 IP 地址通过 NAT 转换生成了新的 IP 地址(路由器的公共地址), 转化成 Internet 端的包, 源 IP 地址变为新的 IP 地址, 目的 IP 地址不变。					
六地址/, 存的从 intellict 细切色, 你 Ir 地址文/y初时 Ir 地址, 日时 Ir 地址个文。					
在 Internet 端, 200 OK 的源 IP 地址通过 NAT 转换生成了新的 IP 地址(路由器的公共地址),					
转化成 LAN 端的包,源 IP 地址变为新的 IP 地址, 目的 IP 地址不变,为 HTTP GET 请求					

经过这次实验, 我深刻理解了 NAT 转换的过程,分为 LAN 端和 Internet 端,也理解了 NAT 的作用,包括节省公有 IP 地址的应用、处理编址方案重叠、隐藏真实的 IP 地址、保护用

户的隐私以及安全等等, 对该协议有了更为全面深刻的认识。

的源 IP 地址。

结论: