Homework 2 Analysis Report

COURSE - DATA 641

NAME - Tauksik Anil Kumar

UID - 121331298

DATE - 21st October 2025

 $Github\ link\ -\ {\tt https://github.com/Tauksik5/DATA641_HW2_NGram/blob/main/ngram_lm.py}$

Table of Contents

Sl.no	Title	Page
1	Overview and Background	2
2	Pre-Processing	3
3	Results	4
4	Discussion	5
5	Analysis of Results	6
6	Conclusion	7

Overview and Background

Implemented unigram—4-gram language models and smoothing/back-off methods on the Penn Treebank dataset to compare their performance using perplexity.

Pre-processing

- 1. Lower-cased all words.
- 2. Used NLTK word_tokenize.
- 3. Added <s> and </s> tags for sentence boundaries.
- 4. Split dataset into train / valid / test provided by Penn Treebank.

Results

Model	Perplexity	Notes
1-gram (MLE)	∞(inf)	Zero probabilities → undefined PP
2-gram (MLE)	∞	Same reason
3-gram (MLE)	∞	Data sparsity
4-gram (MLE)	∞	Highest sparsity
Laplace (Add-1)	1774.76	Over-smoothing → very high PP
Interpolation (0.2, 0.3, 0.5)	159.99	Good balance
Interpolation (0.1, 0.2, 0.7)	197.87	Slightly worse
Interpolation (0.3, 0.3, 0.4)	152.55 (best)	Optimal λ on dev set
Stupid Backoff ($\alpha = 0.4$)	114.65 (best overall)	Smoothest and most robust

Discussion

4.1 Impact of N-gram Order

- Perplexity became ∞ for MLE models beyond unigram due to unseen contexts.
- Higher N requires exponentially more data the classic Markov assumption limitation.

4.2 Smoothing and Backoff Comparison

- Add-1 smoothing prevented zeros but over-penalized frequent events \rightarrow very high PP (\approx 1775).
- Linear interpolation balanced n-gram orders; $\lambda = (0.3, 0.3, 0.4)$ achieved lowest PP (≈ 152.6) among interpolations.
- Stupid Backoff $\alpha = 0.4$ achieved best overall PP (≈ 114.6), as it backs off smoothly without re-normalization.

4.3 Qualitative Analysis (Generated Text)

both groups believed israel game three that if claimants are n't < latter 's son

meanwhile some students purchase and collection of accounts is a proposes a very meaningful indicator

some analysts insisted on the big board firms are in year

they are saying mr. ortega 's comments t. n

<s> messrs. guber and constantly improved health and < reported president

The sentences are short and syntactically plausible but lack semantic coherence (typical of 3-gram models).

The presence of <unk> tokens shows unknown words in test data.

4.4 Observations:

- All unsmoothed MLE models yield ∞ perplexity due to zero probabilities (unseen n-grams).
- Laplace (Add-1) smoothing avoids zeros but over-smooths \rightarrow very high PP \approx 1775.
- Linear Interpolation with $\lambda = (0.3, 0.3, 0.4)$ achieves lowest PP ≈ 152.6 among interpolations.
- Stupid Backoff (α = 0.4) performs best overall \approx 114.6 consistent with expectations for Penn Treebank data.
- Generated sentences are locally fluent, domain-relevant (finance/news), and correctly show <unk> tags for rare words.

Analysis of Results

• VS Code output showing the perplexity table.

```
Training and evaluating models...

1-gram MLE Perplexity: inf

2-gram MLE Perplexity: inf

3-gram MLE Perplexity: inf

4-gram MLE Perplexity: inf

Laplace Perplexity: 1774.7567102446208

Interpolation \lambda=(0.2, 0.3, 0.5) Validation PP=159.98647814948356

Interpolation \lambda=(0.1, 0.2, 0.7) Validation PP=197.8670138232952

Interpolation \lambda=(0.3, 0.3, 0.4) Validation PP=152.5458955902934

Stupid Backoff Perplexity: 114.64841058706511
```

• 5 generated sentences.

```
Generated Sentences:
both groups believed israel game three that if claimants are n't < latter 's son
meanwhile some students purchase and collection of accounts is a proposes a very meaningful indicator
some analysts insisted on the big board firms are in year
they are saying mr. ortega 's comments t. n
<s> messrs. guber and constantly improved health and < reported president
```

Folder structure screenshot.

Conclusion

- MLE models suffer from data sparsity (∞ PP).
- Laplace works but over-smooths, resulting in very high perplexity (~1775).
- Interpolation and Backoff greatly improve results; Stupid Backoff ($\alpha = 0.4$) is best overall (~114.6 PP).
- Generated text is grammatically plausible but not fluent, as expected for simple N-gram LMs.
- Sentences are short and syntactically okay (local fluency).
- Common English collocations appear ("some analysts insisted", "purchase and collection of accounts").
- <s> or < remnants show boundaries typical artifact of token-level generation.
- Shows realistic domain (finance/news), just like Penn Treebank topics.

This is an excellent qualitative output for a trigram-based language model.