$MTH215 \star \star 2019-20 \star \star ASSIGNMENT - 5$

- 1. Let $\theta = \langle a_0, a_1, \ldots \rangle$ be an irrational number, where a_i s are integers and $a_i \geq 1$ for $i \geq 1$. Show that $|\theta h_n/k_n| < 1/k_n^2$.
- 2. Let θ be as in the previous question. Let $n \geq 0$ be an integer. Show that $|\theta h_i/k_i| < 1/\sqrt{5}k_i^2$ for i = n or i = n + 1 or i = n + 2.
- 3. A positive solution (a, b) of Pell's equation $x^2 dy^2 = 1$, is said to be a fundamental solution if $b \le \beta$ whenever (α, β) is a positive solutions of $x^2 dy^2 = 1$. Find the fundamental solutions of $x^2 dy^2 = 1$ for d = 2, 3, 5, 6, 7, 8.
- 4. Find all positive solutions of $x^2 dy^2 = 1$ for d = 2, 3, 5 such that y < 100.
- 5. Let (a,b) be a solution of $x^2 dy^2 = -1$. Show that $(db^2 + a^2, 2ab)$ is a solution of $x^2 dy^2 = 1$.
- 6. Let (x_1, y_1) be the fundamental solution of $x^2 dy^2 = 1$. Let $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$. Show that $x_{n+1} = x_1 x_n + dy_1 y_n$ and $y_{n+1} = x_1 y_n + x_n y_1$ for $n \ge 1$.
- 7. Let (x_1, y_1) be the fundamental solution of $x^2 dy^2 = 1$. Let $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$. Show that $x_{n+1} = 2x_1x_n - x_{n-1}$ and $y_{n+1} = 2x_1y_n - y_{n-1}$ for $n \ge 2$.
- 8. Show that there are infinitely many primitive Pythagorean triples of the type (a, a + 1, c).
- 9. Show that there are infinitely many positive integers n such that both 2n + 1 and n + 1 are squares.
- 10. Let $m \in \mathbb{Z}$. If $x^2 dy^2 = m$ has a solution then show that it has infinitely many solutions.
- 11. Let $n \ge 2$ be an integer. Show that $x^2 (n^2 1)y^2 = -1$ has no solution such that $x, y \in \mathbb{Z}$.
- 12. Let $d \in \mathbb{Z}$ such that $d \equiv 3 \pmod{4}$. Show that $x^2 dy^2 = -1$ has no solution such that $x, y \in \mathbb{Z}$.
- 13. Let p be a prime such that $p \equiv 1 \pmod{4}$. Show that $x^2 py^2 = -1$ has solutions such that $x, y \in \mathbb{Z}$.
- 14. Let (a, b) be a positive solution of $x^2 dy^2 = -1$. Let $d = \langle a_0, a_1, a_2, \ldots \rangle$. Define h_i and k_i . Show that $(a, b) = (h_i, k_i)$ for some i.
- 15. Let (a, b) and (α, β) be positive solutions of Pell's equation $x^2 dy^2 = -1$. Show that $b < \beta$ iff $a < \alpha$. (A positive solution (a, b) of Pell's equation $x^2 dy^2 = -1$, is said to be a fundamental solution if $b \le \beta$ whenever (α, β) is a positive solutions of $x^2 dy^2 = 1$.)
- 16. Let (a, b) be the fundamental solution of $x^2 dy^2 = -1$. Show that $(db^2 + a^2, 2ab)$ is the fundamental solution of $x^2 dy^2 = 1$.

In the questions below $\{a_n\}$ denotes the Fibonacci sequence. Let $n \in \mathbb{N}$

17. Let $2 \mid a_n$. Show that $4 \mid (a_{n+1}^2 - a_{n-1}^2)$.

- 18. Let $3 \mid a_n$. Show that $9 \mid (a_{n+1}^3 a_{n-1}^3)$.
- 19. $a_{n+3} \equiv a_n \pmod{2}$ and $a_{n+5} \equiv 3a_n \pmod{5}$.
- 20. $\sum_{i=1}^{n} a_i^2 = a_n a_{n+1}$ and $a_{n+1}^2 = a_n^2 + 3a_{n-1}^2 + 2\sum_{i=1}^{n-2} a_i^2$.
- 21. Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Show that $gcd(a_m, a_n) = 1$. Hence show that $a_m a_n \mid a_{mn}$.
- 22. $2^{n-1}a_n \equiv n \pmod{5}$ and $a_{2n} \equiv (-1)^{n+1}n \pmod{5}$.
- 23. Let $a, b \in \mathbb{N}$ such that $a_n < a < a_{n+1} < b < a_{n+2}$. Show that a+b is not a Fibonacci number.
- 24. Prove that there exists no $n \in \mathbb{N}$ such that $\sum_{i=1}^{3n} a_i = 16!$.
- 25. Show that there exists n consecutive Fibonacci numbers.
- 26. Show that $9 | a_{n+24}$ iff $9 | a_n$.
- 27. Show that $\sum_{i=1}^{n} ia_i = (n+1)a_{n+2} a_{n+4} + 2$.
- 28. Show that $\sum_{i=1}^{n} i a_{2i} = n a_{2n+1} a_{2n}$.
- 29. Show that $\sum_{i=1}^{n} (-1)^{i-1} a_i = 1 + (-1)^{n-1} a_{n-1}$, where $n \ge 2$.
- 30. For $n \ge 2$, show that $a_{2n-1} = a_n^2 + a_{n-1}^2$ and $a_{2n} = a_{n+1}^2 a_{n-1}^2$.
- 31. Let p be a prime of the form 4k + 3. Show that there exists no $n \in \mathbb{N}$ such that $p \mid a_{2n-1}$.
- 32. (Binet Formula) $a_{2n+2}a_{2n-1} a_{2n}a_{2n+1}$.
- 33. Show that $a_n = \sum_{i=0}^k {n-1-i \choose i}$ where k = [(n-1)/2].
- 34. Show that $\sum_{i=1}^{n} {n \choose i} a_i = a_{2n}$.
- 35. Show that $\sum_{i=1}^{n} {n \choose i} (-1)^i a_i = -a_n$.