

Advanced Scikit-Learn

Andreas Mueller (NYU Center for Data Science, scikit-learn)

Me

Classification Regression Clustering Semi-Supervised Learning **Feature Selection Feature Extraction** Manifold Learning **Dimensionality Reduction Kernel Approximation** Hyperparameter Optimization **Evaluation Metrics** Out-of-core learning

agramfort

Alexandre Gramfort

Alexander Fabisch
Alexander Fabisch

alextp Alexandre Passos

amueller Andreas Mueller

arjoly Amaud Joly

bdholt1 Brian Holt

Gael Varoquaux Gael Varoquaux

glouppe Gilles Louppe

jakevdp Jake Vanderplas

jaquesgrobler Jaques Grobler

jnothman

kastnerkyle Kyle Kastner

kuantkid Wei Ll

larsmans Lars

lucidfrontier45 Shiqiao Du

mblondel Mathieu Blondel

MechCoder Manoj Kumar

ndawe Noel Dawe

NelleV Varoquaux

ogrisel Olivier Grisel

paolo-losi Paolo Losi

pprett Peter Prettenhofer

robertlayton Robert Layton

ronw Ron Weiss

satra Satrajit Ghosh

sklearn-ci

Vene Vlad Niculae

yarikoptic Yaroslav Halchenko

Overview

- Reminder: Basic sklearn concepts
- Model building and evaluation:
 - Pipelines and Feature Unions
 - Randomized Parameter Search
 - Scoring Interface
- Out of Core learning
 - Feature Hashing
 - Kernel Approximation
- New stuff in 0.16.0
 - Overview
 - Calibration

Supervised Machine Learning

```
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
```


Supervised Machine Learning

```
clf = RandomForestClassifier()
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)
```


Supervised Machine Learning

```
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
clf.score(X_test, y_test)
```


Unsupervised Transformations

```
pca = PCA(n_components=3)
```


Unsupervised Transformations

Basic API

estimator.fit(X, [y])

estimator.predict estimator.transform

Classification Preprocessing

Regression Dimensionality reduction

Clustering Feature selection

Feature extraction

Cross-Validation

Cross-Validation

Cross-Validation

Cross -Validated Grid Search

Cross -Validated Grid Search

Pipelines

```
from sklearn.pipeline import make_pipeline

pipe = make_pipeline(StandardScaler(), SVC())
pipe.fit(X_train, y_train)
pipe.predict(X_test)
```

Combining Pipelines and Grid Search

Proper cross-validation

Combining Pipelines and Grid Search II

Searching over parameters of the preprocessing step

Feature Union

Feature Union

Feature Union

Grid Layout

Important parameter

Random Layout

Important parameter

Grid Layout

Important parameter

Random Layout

Important parameter

Step-size free for continuous parameters Decouples runtime from search-space size Robust against irrelevant parameters

30

```
params = { 'featureunion countvectorizer-1 ngram range':
          [(1, 3), (1, 5), (2, 5)],
          'featureunion__countvectorizer-2__ngram_range':
          [(1, 1), (1, 2), (2, 2)],
          'linearsvc__C': expon()}
       1.0
       0.8
       0.6
       0.2
```

```
rs = RandomizedSearchCV(text_pipe,
    param_distributions=param_distributins, n_iter=50)
```

- Always use distributions for continuous variables.
- Don't use for low dimensional spaces.
- Future: Bayesian optimization based search.

Generalized Cross-Validation and Path Algorithms

rfe = RFE(LogisticRegression())

```
rfe = RFE(LogisticRegression())
param_grid = {'n_features_to_select': range(1, n_features)}
gridsearch = GridSearchCV(rfe, param_grid)
grid.fit(X, y)
```

rfecv = RFECV(LogisticRegression())

```
rfecv = RFECV(LogisticRegression())
rfecv.fit(X, y)
```


Linear Models

LogisticRegressionCV [new]

RidgeCV

 ${\tt RidgeClassifierCV}$

LarsCV

ElasticNetCV

• •

Feature Selection

RFECV

Tree-Based models [possible]

[DecisionTreeCV]

[RandomForestClassifierCV]

[GradientBoostingClassifierCV]

Scoring Functions

GridSeachCV RandomizedSearchCV cross_val_score ...CV

Default: Accuracy (classification) R2 (regression)

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
```

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])

cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])
```

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])

cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])

cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591,  0.99983498,  0.99966247])
```

```
cross_val_score(SVC(), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])

cross_val_score(DummyClassifier("most_frequent"), X_train, y_train)
>>> array([ 0.9,  0.9,  0.9])

cross_val_score(SVC(), X_train, y_train, scoring="roc_auc")
array([ 0.99961591,  0.99983498,  0.99966247])
```


Available metrics

```
print(SCORERS.keys())

>> ['adjusted_rand_score',
  'f1',
  'mean_absolute_error',
  'r2',
  'recall',
  'median_absolute_error',
  'precision',
  'log_loss',
  'mean_squared_error',
  'roc_auc',
  'average_precision',
  'accuracy']
```

Defining your own scoring

```
def my_super_scoring(est, X, y):
    return accuracy_scorer(est, X, y) - np.sum(est.coef_ != 0)
```

Out of Core Learning

Or: save ourself the effort

Think twice!

- Old laptop: 4GB Ram
- 1073741824 float32
- Or 1mio data points with 1000 features
- EC2: 256 GB Ram
- 68719476736 float32
- Or 68mio data points with 1000 features

Supported Algorithms

- All SGDClassifier derivatives
- Naive Bayes
- MinibatchKMeans
- IncrementalPCA
- MiniBatchDictionaryLearning

Out of Core Learning

```
sgd = SGDClassifier()

for i in range(9):
    X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
    sgd.partial_fit(X_batch, y_batch, classes=range(10))
```

Possibly go over the data multiple times.

Stateless Transformers

- Normalizer
- HashingVectorizer
- RBFSampler (and other kernel approx)

Text data and the hashing trick

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

"You better call Kenny Loggins"

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

```
"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']
```

Bag Of Word Representations

CountVectorizer / TfidfVectorizer

"You better call Kenny Loggins"

tokenizer

['you', 'better', 'call', 'kenny', 'loggins']

Sparse matrix encoding

aardvak better call you zyxst

[0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]

Hashing Trick

HashingVectorizer

"You better call Kenny Loggins" tokenizer ['you', 'better', 'call', 'kenny', 'loggins'] hashing [hash('you'), hash('better'), hash('call'), hash('kenny'), hash('loggins')] = [832412, 223788, 366226, 81185, 835749] Sparse matrix encoding

[0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]

Out of Core Text Classification

```
sgd = SGDClassifier()
hashing_vectorizer = HashingVectorizer()

for i in range(9):
    text_batch, y_batch = cPickle.load(open("text_%02d" % I))
    X_batch = hashing_vectorizer.transform(text_batch)
    sgd.partial_fit(X_batch, y_batch, classes=range(10))
```

Kernel Approximations

Classifier linear → need only

$$\langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$

Classifier linear → need only

$$\langle \phi(x_i), \phi(x_j) \rangle = k(x_i, x_j)$$

Linear: $\langle x, x' \rangle$

Polynomial: $(\gamma \langle x, x' \rangle + r)^d$

RBF: $\exp(-\gamma|x-x'|^2)$

Sigmoid: $\tanh(\gamma \langle x, x' \rangle + r)$

Complexity

Solving kernelized SVM:
 ~O(n samples ** 3)

Solving linear (primal) SVM:
 ~O(n_samples * n_features)

n_samples large? Go primal!

Undoing the Kernel Trick

Kernel approximation:

$$\langle \hat{\phi}(x_i), \hat{\phi}(x_j) \rangle \approx k(x_i, x_j)$$

•
$$\mathbf{k} = \exp(-\gamma |x - x'|^2)$$

 $\hat{\phi} = \text{RBFSampler}$

Usage

```
sgd = SGDClassifier()
kernel_approximation = RBFSampler(gamma=.001, n_components=400)

for i in range(9):
    X_batch, y_batch = cPickle.load(open("batch_%02d" % i))
    if i == 0:
        kernel_approximation.fit(X_batch)
    X_transformed = kernel_approximation.transform(X_batch)
    sgd.partial_fit(X_transformed, y_batch, classes=range(10))
```

Highlights from 0.16.0

Highlights from 0.16.0

- Multinomial Logistic Regression, LogisticRegressionCV.
- IncrementalPCA.
- Probability callibration of classifiers.
- Birch clustering.
- LSHForest.
- More robust integration with pandas.

Probability Calibration

```
SVC().decision_function()

→ CalibratedClassifierCV(SVC()).predict_proba()
```

```
RandomForestClassifier().predict_proba()

→ CalibratedClassifierCV(RandomForestClassifier()).predict_proba()
```


Installation

Documentation *

Examples

Documentation of scikit-learn 0.16-git

Quick Start

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

learn

User Guide

The main documentation. This contains an in-depth description of all algorithms and how to apply them.

Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Other Versions

- scikit-learn 0.15 (stable)
- scikit-learn 0.16 (development)
- scikit-learn 0.14
- scikit-learn 0.13
- scikit-learn 0.12
- Older versions

Additional Resources

Talks given, slide-sets and other information relevant to scikit-learn.

Contributing

Information on how to contribute. This also contains useful information for advanced users, for example how to build their own estimators.

Flow Chart

A graphical overview of basic areas of machine learning, and guidance which kind of algorithms to use in a given situation.

FAQ

Frequently asked questions about the project and contributing.

CDS is hiring Research Engineers

Thank you for your attention.

@t3kcit

@amueller

t3kcit@gmail.comx

Bias Variance Tradeoff (why we do cross validation and grid searches)

Overfitting and Underfitting

Model complexity

Overfitting and Underfitting

Model complexity

Overfitting and Underfitting

Model complexity

Linear SVM

$$\hat{y} = \operatorname{sign}(w_0 + \sum_i w_i x_i)$$

Linear SVM

$$\hat{y} = \operatorname{sign}(w_0 + \sum_i w_i x_i)$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(\mathbf{j})}, \mathbf{x}))$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(j)}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(j)}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

$$\hat{y} = \operatorname{sign}(\alpha_0 + \sum_j \alpha_j y_j k(\mathbf{x}^{(\mathbf{j})}, \mathbf{x}))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Random Forests

Random Forests

Random Forests

Validation Curves

train_scores, test_scores = validation_curve(SVC(), X, y,
param_name="gamma", param_range=param_range)

Learning Curves

train_sizes, train_scores, test_scores = learning_curve(
 estimator, X, y, train_sizes=train_sizes)

