Градиентный метод. Семинар 2. 18 февраля 2020 г.

Семинарист: Данилова М.

Градиентный метод

Безусловная минимизация.

Метод градиентного спуска применяется для минимизации дифференцируемых функций f(x) на \mathbb{R}^n .

В качестве направления h_k берется антиградиент функции, то есть $h_k = -\nabla f(x_k)$.

Шаг α_k выбирается по одному из указанных выше способов.

Algorithm 1 Градиентный метод

- 1: Пусть $x_0 \in \mathbb{R}^n$, $h_k = -\nabla f(x_k)$
- 2: Вычислим $x_{k+1} = x_k \alpha_k \nabla f(x_k)$ k = 0, 1, ...

Выбор направления $h_k = -\nabla f(x_k)$

Направление антиградиента - лучшее направление с точки зрения линейной аппроксимации.

Пусть h задает некое направление в пространстве \mathbb{R}^n , $\|h\|=1$. Рассмотрим производную по направлению h:

$$f'(x,h) = \lim_{\alpha \to 0} \frac{f(x+\alpha h) - f(x)}{\alpha}.$$

Рассмотрим линейную аппроксимацию:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha).$$

Используя неравенство Коши-Буняковского

$$-||x|||y|| \le \langle x, y \rangle \le ||x|||y||$$

получаем, что

$$f'(x,h) = \langle \nabla f(x), h \rangle \ge -\|\nabla f(x)\|.$$
$$h = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$$

Таким образом, направление $-\nabla f(x)$ (антиградиент) является направлением наискорейшего локального убывания функции f(x).

Группа 778. Методы оптимизации. 6 семестр.

Сходимость градиентного метода (Поляк)

Теорема 1. Пусть f(x) дифференцируема на \mathbb{R}^n , градиент f(x) удовлетворяет условию Липшица:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|,$$

f(x) ограничена снизу:

$$f(x) \ge f^* > -\infty$$

 $\alpha_k = \alpha$ и удовлетворяет условию

$$0 < \alpha < \frac{2}{L}.$$

Тогда в методе градиентного спуска:

$$\lim_{k \to \infty} \nabla f(x_k) = 0.$$

а функция f(x) монотонно убывает: $f(x_{k+1}) \le f(x_k)$.

Теорема 2. Пусть f(x) дифференцируема на \mathbb{R}^n , градиент f(x) удовлетворяет условию Липшица с константой L и f(x) является сильно выпуклой функцией с константой μ . Тогда при $0 < \alpha < \frac{2}{L}$ метод градиентного спуска сходится к единственной точке глобального минимума x^* со скоростью геометрической прогрессии:

$$||x_k - x^*|| \le Cq^k, \ 0 \le q \le 1.$$

Теорема 3. Пусть f(x) дважды дифференцируема на \mathbb{R}^n и

$$\mu I \le \nabla^2 f(x) \le \text{LI}, \ \mu > 0,$$

для всех x. Тогда при $0<\alpha<\frac{2}{L}$

$$||x_k - x^*|| \le ||x_0 - x^*||q^k|,$$

$$q = \max\{|1 - \alpha \mu|, |1 - \alpha L|\} < 1.$$

Величина q минимальна и равна

$$q^* = rac{\mathrm{L} - \mu}{\mathrm{L} + \mu}$$
 при $\alpha = \alpha^* = rac{2}{\mathrm{L} + \mu}$

Замечания

- 1. Оценка скорости сходимости, даваемая теоремой 3 точная, она достигается для любой квадратичной функции;
- 2.

$$q^* = \frac{L - \mu}{L + \mu} = \frac{\frac{L}{\mu} - 1}{\frac{L}{\mu} + 1} = \frac{\kappa - 1}{\kappa + 1} = 1 - \frac{2}{\kappa + 1},$$

где $\kappa = \frac{L}{\mu}$ - число обусловленности матрицы $\nabla^2 f(x)$.

При $\kappa o \infty \quad q^* o 1$ - медленная скорость сходимости.

Метод наискорейшего спуска

Если в общем градиентном методе на каждом шаге выбирать α_k по следующему правилу:

$$\alpha_k = \arg\min_{\alpha>0} \phi_k(\alpha) \qquad \phi_k(\alpha) = f(x_k - \alpha \nabla f(x_k))$$

При этом мы получаем метод наискорейшего спуска.

Теорема 4. Пусть f(x) - непрерывно дифференцируемая функция и $\{x: f(x) \leq f(x_0)\}$ ограничено. Тогда в методе наискорешего спуска $\nabla f(x_k) \to 0$ и у последовательности x_k существуют предельные точки, каждая из которых стационарна, т.е. найдется подпоследовательность $x_{k_i} \to x^*$ и $\nabla f(x^*) = 0$.

По сравнению с теоремой 1 здесь условие Липшица на градиент удается заменить более слабым требованием непрерывности градиента. Это естесственно, поскольку способ выбора длины шага в наискорейшем спуске является более гибким, чем $\alpha_k = \alpha$.

Упражнения

1. Сделать шаг методом наискорейшего спуска

$$\min_{x \in R^n} \left(-e^{-x^T x} \right)$$

$$x_0 \in \mathbb{R}^n$$

2. Найти $\alpha_k(h_k, x_k) = ?$

$$f(x) = \frac{1}{2}x^T A x + b^T x$$

- 3. Подробно разберите поведение градиентного метода с постоянным шагом для функций на \mathbb{R}^1 :
 - $|x|^{1+\alpha}$, $0 < \alpha < 1$;
 - $|x|^{2+\alpha}, \ \alpha > 0;$
 - \bullet x^2 ;
 - $(1+x^2)^{-1}$.

При каких x_0, γ метод сходится, при каких расходится?

Скорость сходимости градиентного спуска (Семинар)

Липшицевы функции

Введём в рассмотрение следующий класс функций, который достаточно интересен с точки зрения численных методов оптимизации, а именно, функции с Липшицевым градиентом.

Определение 1. Будем говорить, что у дифференцируемой функции $f:Q\to\mathbb{R},\ Q\subseteq\mathbb{R}^n$ градиент Липшицев относительно нормы $\|\cdot\|_2$ (обычной евклидовой нормы) с константой L, если

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2 \quad \forall x, y \in Q.$$

Оказывается, что у класса функций, имеющих Липшицев градиент, есть простая геометрическая интерпретация, о чём нам говорит следующая теорема.

Теорема 5. Пусть функция $f: Q \to \mathbb{R}$ имеет Липшицев градиент с константой L относительно нормы $\|\cdot\|_2$, а множество Q является выпуклым. Тогда

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2 \quad \forall x, y \in Q.$$
 (1)

Доказательство. Рассмотрим две произвольные точки $x,y\in Q$. Так как множество Q является выпкулым, то для любого $\tau\in[0,1]$ точка $x+\tau(y-x)$ принадлежит множеству Q (иными словами, множество Q вместе с любыми двумя точками содержит и отрезок, их соединяющий). Рассмотрим функцию $\varphi(\tau)=f(x+\tau(y-x))$. Функция $\varphi(\tau)$ дифференцируема по τ на [0,1] и $\varphi'(\tau)=\langle \nabla f(x+\tau(y-x)),y-x\rangle$. Следовательно,

$$\begin{split} f(y)-f(x) &= \varphi(1)-\varphi(0) = \int\limits_0^1 \langle \nabla f(x+\tau(y-x)),y-x\rangle d\tau \\ &= \int\limits_0^1 \Big(\langle \nabla f(x+\tau(y-x)),y-x\rangle - \underbrace{\langle \nabla f(x),y-x\rangle + \langle \nabla f(x),y-x\rangle}_{\text{He Зависит от }\tau} \Big) d\tau \\ &= \langle \nabla f(x),y-x\rangle + \int\limits_0^1 \langle \nabla f(x+\tau(y-x)) - \nabla f(x),y-x\rangle d\tau \\ &\overset{\text{K.-B.}}{\leq} \langle \nabla f(x),y-x\rangle + \int\limits_0^1 \|\nabla f(x+\tau(y-x)) - \nabla f(x)\|_2 \|y-x\|_2 d\tau \\ &\overset{\text{J.H.IIII.}}{\leq} \langle \nabla f(x),y-x\rangle + \int\limits_0^1 L \|x+\tau(y-x)-x\|_2 \|y-x\|_2 d\tau \\ &\leq \langle \nabla f(x),y-x\rangle + \int\limits_0^1 L \|y-x\|_2^2 \tau d\tau = \langle \nabla f(x),y-x\rangle + \frac{L}{2} \|y-x\|_2^2, \end{split}$$

где К.-Б. означает, что переход справедлив в силу неравенства Коши-Буняковского: $\forall a,b \in$ $\mathbb{R}^n \to \langle a, b \rangle < \|a\|_2 \|b\|_2$.

Доказанная теорема доказывает следующую геометрическую интерпретацию функций с Липшицевым градиентом: это такие функции, которые в каждой точке можно оценить сверху некоторым парабалоидом (если рассматривать график функции f как множество в \mathbb{R}^{n+1}), причём оценить на всём множестве Q. Другие интересные свойства функций с Липшицевым градиентом (и не только) можно прочитать в книге Ю. Е. Нестерова "Введение в выпуклую оптимизацию" (глава 2, §2.1.1).

Геометрия градиентного спуска

Теперь рассмотрим задачу оптимизации выпуклой на \mathbb{R}^n функции f с Липшицевым градиентом с константой L:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

Рассмотрим градиентный спуск с постоянным шагом равным $\frac{1}{L}$ (здесь x^0 — стартовая точка, N — число итераций).

- 1: procedure GRADIENT_DESCENT (f, x^0, N)
- for k = 0, 1, 2, ..., N 1 do $x^{k+1} := x^k \frac{1}{L} \nabla f(x^k)$ 3:
- 4: end for
- return x^N
- 6: end procedure

Рассмотрим следующую геометрическую интерпретацию градиентного спуска для функций с Липшицевым градиентом. Допустим мы построили k-е приближение точки минимума x^* функции f(x) и хотим построить следующее приближение. Как это сделать? Один из способов следующий. Давайте запишем верхнюю квадратичную аппроксимацию (1) в точке x^k (возьмём в неравенстве (1) $x = x^k$)

$$f(y) \le f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2} ||y - x^k||_2^2$$

и попробуем построить x^{k+1} путём минимизации по y правой части предыдущего неравенства. Иными словами, пусть

$$x^{k+1} = \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2} ||y - x^k||_2^2 \right\}.$$

Преобразуем выражение, стоящее в правой части предыдущего равенства:

$$\underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \underbrace{\frac{f(x^k)}{\text{He зависит от } y}} + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2} \|y - x^k\|_2^2 \right\}$$

$$= \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \underbrace{\frac{1}{2L} \|\nabla f(x^k)\|_2^2}_{\text{He зависит от } y} + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2} \|y - x^k\|_2^2 \right\}$$

$$= \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \left\| \frac{1}{\sqrt{2L}} \nabla f(x^k) + \sqrt{\frac{L}{2}} (y - x^k) \right\|_2^2 \right\}$$

$$= x^k - \frac{1}{L} \nabla f(x^k).$$

Итак, мы получили, что $x^{k+1} = x^k - \frac{1}{L} \nabla f(x^k)$, что сопадает с формулой для шага градиентного спуска с постоянной длиной шага $\frac{1}{L}$, то есть градиентный спуск на каждом шаге минимизирует квадратичную аппроксимацию (1), записанную относительно точки x^k , то есть он переходит в точку, соответствующую вершине параболоида $f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2} \|y - x^k\|_2^2$ (см. рисунок 1).

Рис. 1: Геометрия градиентного спуска (источник). Здесь $\overline{f}_{x^k}(x) = f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2$.

Сходимость градиентного спуска

Теорема 6. Пусть функция f — выпуклая на \mathbb{R}^n с Липшицевым на \mathbb{R}^n градиентом с константой L в евклидовой норме. Тогда процедура $\operatorname{Gradient_Descent}(f, x^0, N)$ вернёт точку x^N , для которой

$$f(x^N) - f(x^*) \le \frac{2LR^2}{N},\tag{2}$$

где x^* — ближайшая точка минимума f к стартовой точке x^0 , а $R = \max_{x:f(x) \le f(x^0)} \|x - x^*\|_2$ (на самом деле, можно показать, что $\|x^k - x^*\|_2 \le \|x^0 - x^*\|_2$ и в качестве R можно просто брать расстояние до решения из стартовой точки: $R = \|x^0 - x^*\|_2^2$; подробности см. в книге A. В. Гасникова, "Современные численные методы оптимизации. Метод универсального градиентного спуска").

Доказательство. Подставим в неравенство (1) точки $y=x^{k+1}=x^k-\frac{1}{L}\nabla f(x), x=x^k$:

$$f(x^{k+1}) - f(x^{k}) \leq \left\langle -\frac{1}{L} \nabla f(x^{k}), \nabla f(x^{k}) \right\rangle + \frac{L}{2} \left\| \frac{1}{L} \nabla f(x^{k}) \right\|_{2}^{2}$$

$$= -\frac{1}{L} \|\nabla f(x^{k})\|_{2}^{2} + \frac{1}{2L} \|\nabla f(x^{k})\|_{2}^{2} = -\frac{1}{2L} \|\nabla f(x^{k})\|_{2}^{2},$$

откуда получаем, что

$$\|\nabla f(x^k)\|_2^2 \le 2L(f(x^k) - f(x^{k+1})). \tag{3}$$

В частности из этого неравенства следует, что $f(x^k) \ge f(x^{k+1})$ для всех k, ибо $\|\nabla f(x^k)\|_2^2 \ge 0$. Следовательно, для всех $k \ge 0$ выполнено неравенство $f(x^k) \le f(x^0)$, а значит, по определению числа R получаем, что $\|x^k - x^*\|_2 \le R$ для всех k. Поэтому из выпуклости функции f и неравенства Коши-Буняковского получаем неравенства:

$$f(x^k) - f(x^*) \le \langle \nabla f(x^k), x^k - x^* \rangle \le \|\nabla f(x^k)\|_2^2 \underbrace{\|x^k - x^*\|_2}_{\le R} \le R \|\nabla f(x^k)\|_2.$$

Возведём предыдущее неравенство в квадрат и введём обозначение $D_k = f(x^k) - f(x^*)$. Отсюда и из доказанного неравенства $\|\nabla f(x^k)\|_2^2 \le 2L(f(x^k) - f(x^{k+1})) \le 2L(D_k - D_{k+1})$ получаем

$$D_k^2 \le 2LR^2(D_k - D_{k+1}) \stackrel{\text{делим на } D_k \cdot D_{k+1}}{\Longrightarrow} \frac{D_k}{D_{k+1}} \le 2LR^2 \left(\frac{1}{D_{k+1}} - \frac{1}{D_k} \right).$$

Отметим, что в силу $f(x^k) \ge f(x^{k+1})$ выполняется неравенство $D_k \ge D_{k+1}$, а значит,

$$2LR^2\left(\frac{1}{D_{k+1}} - \frac{1}{D_k}\right) \ge \frac{D_k}{D_{k+1}} \ge 1,$$

откуда

$$\frac{1}{D_{k+1}} - \frac{1}{D_k} \ge \frac{1}{2LR^2}.$$

Складывая полученные выше неравенства для $k = 0, 1, 2, \dots, N - 1$, получим:

$$\frac{N}{2LR^2} \le \frac{1}{D_1} - \frac{1}{D_0} + \frac{1}{D_2} - \frac{1}{D_1} + \ldots + \frac{1}{D_N} - \frac{1}{D_{N+1}} = \frac{1}{D_N} - \frac{1}{D_0} \le \frac{1}{D_N}.$$

Вспоминаем, что $D_N = f(x^N) - f(x^*)$, и из последнего неравенства получаем, что $f(x^N) - f(x^*) \le \frac{2LR^2}{N}$.

Следствие 1. Для $N \geq \frac{2LR^2}{\varepsilon}, \varepsilon > 0$ процедура Gradient_Descent (f, x^0, N) , где f — выпуклая на \mathbb{R}^n функция с Липшицевым на \mathbb{R}^n градиентом с константой Липшица L в евклидовой норме, $R = \max_{x:f(x) \leq f(x^0)} \|x-x^*\|_2, x^*$ — ближайшая к x^0 точка минимума функции f, вернёт такую точку x^N , что

$$f(x^N) - f(x^*) \le \varepsilon.$$

Иными словами, чтобы получить приближение решения с точностью ε по значению функции для функции f, удовлетворяющей описанным выше свойствам, достаточно сделать $O\left(\frac{LR^2}{\varepsilon}\right)$ шагов градиентного спуска.

Сильно выпуклые функции

На прошлых семинарах мы познакомились с определением сильно выпуклой на \mathbb{R}^n функции с параметром μ :

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{\mu}{2}\alpha(1 - \alpha)\|x - y\|_2^2 \quad \forall x, y \in \mathbb{R}^n, \alpha \in [0, 1].$$
 (4)

Для дифференцируемых функций существует эквивалентное определение, через нижнюю квадратичную границу:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2 \quad \forall x, y \in \mathbb{R}^n.$$
 (5)

Следующая теорема говорит о том, что для дифференцируемых функций из (5) следует (4) (на самом деле верно и обратное, но на доказательстве обратного утверждения мы останавливаться не будем).

Теорема 7. Пусть функция f дифференцируема и для неё выполнено условие (5). Тогда для ней выполняется и условие (4).

Доказательство. Рассмотрим две произвольных точки $x, y \in \mathbb{R}^n$ и произвольное число $\alpha \in [0, 1]$. Покажем, что выполнено неравенство

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{\mu}{2}\alpha(1 - \alpha)\|x - y\|_{2}^{2}.$$

Пусть $x_{\alpha} = \alpha x + (1 - \alpha)y$. Запишем условие (5) сначала для пары точек $y = x, x = x_{\alpha}$, а затем для пары точек $y = y, x = x_{\alpha}$:

$$f(x) \geq f(x_{\alpha}) + \langle \nabla f(x_{\alpha}), (1-\alpha)(x-y) \rangle + \frac{\mu}{2} \|(1-\alpha)(x-y)\|_{2}^{2}$$

$$f(y) \geq f(x_{\alpha}) + \langle \nabla f(x_{\alpha}), \alpha(y-x) \rangle + \frac{\mu}{2} \|\alpha(x-y)\|_{2}^{2}.$$

Домножим первой неравенство на α , второе — на $1-\alpha$ и сложим полученные неравенства. В итоге слагаемые со скалярным произведением сократяться, т.к. они отличаются только знаком, и получим неравенство

$$\alpha f(x) + (1 - \alpha)f(y) \ge \underbrace{(\alpha + 1 - \alpha)}_{=1} f(\alpha x + (1 - \alpha)y) + \frac{\mu}{2} \underbrace{(\alpha (1 - \alpha)^2 + \alpha^2 (1 - \alpha))}_{=\alpha (1 - \alpha)} \|x - y\|_2^2,$$

что и требовалось доказать.

Докажем ещё один весьма простой и полезный факт о сильно выпуклых функциях.

Теорема 8. Если функция $f: \mathbb{R}^n \to \mathbb{R}$ удовлетворяет условию (5) с константой μ (сильно выпукла с константой μ в норме $\|\cdot\|_2$), то

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\mu} \| \nabla f(x) - \nabla f(y) \|_2^2 \quad \forall x, y \in \mathbb{R}^n.$$
 (6)

Доказательство. Рассмотрим произвольные точки $x,y \in \mathbb{R}^n$ и рассмотрим функцию $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$ для заданного фиксированного x. Нетрудно проверить, что данная функция также удовлетворяет условию (5). Кроме того, $\nabla \varphi(x) = \nabla f(x) = \nabla f(x) = 0$, а значит, из неравенства (5) для функции φ получаем, что для всех точек $y \in \mathbb{R}^n$

$$\varphi(y) \ge \varphi(x) + \frac{\mu}{2} ||y - x||_2^2,$$

откуда следует, что x — точка минимума функции $\varphi(y)$ (причём единственная). Тогда, пользуясь (5) для функции φ , получим

$$\varphi(x) = \min_{v \in \mathbb{R}^n} \varphi(v) \ge \min_{v \in \mathbb{R}^n} \left\{ \varphi(y) + \langle \nabla \varphi(y), v - y \rangle + \frac{\mu}{2} \|v - y\|_2^2 \right\}.$$

Теперь распишем правую часть чуть более подробно:

$$\min_{v \in \mathbb{R}^n} \left\{ \varphi(y) + \langle \nabla \varphi(y), v - y \rangle + \frac{\mu}{2} \|v - y\|_2^2 \right\}$$

$$= \varphi(y) + \min_{v \in \mathbb{R}^n} \left\{ \langle \nabla \varphi(y), v - y \rangle + \frac{\mu}{2} \|v - y\|_2^2 \right\} + \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2 - \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2$$

$$= \varphi(y) + \min_{v \in \mathbb{R}^n} \left\{ \underbrace{\frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2 + \langle \nabla \varphi(y), v - y \rangle + \frac{\mu}{2} \|v - y\|_2^2}_{\text{полный квадрат}} \right\} - \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2$$

$$= \varphi(y) + \min_{v \in \mathbb{R}^n} \left\{ \left\| \sqrt{\frac{1}{2\mu}} \nabla \varphi(y) + \sqrt{\frac{\mu}{2}} (v - y) \right\|_2^2 \right\} - \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2$$

$$= 0, \text{ при } v = y - \frac{1}{\mu} \nabla \varphi(y)$$

$$= \varphi(y) - \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2,$$

откуда получаем, что

$$\varphi(x) \ge \varphi(y) - \frac{1}{2\mu} \|\nabla \varphi(y)\|_2^2.$$

Если теперь подставить $\varphi(y)=f(y)-\langle \nabla f(x),y\rangle,$ то получится неравенство (6).

Следствие 2. В условиях Теоремы 8 выполняется следующее утверждение: если x^* — точка минимума функции f, то

$$\|\nabla f(x)\|_2^2 \ge 2\mu(f(x) - f(x^*)) \quad \forall x \in \mathbb{R}^n.$$

Доказательство. Чтобы доказать это неравенство, достаточно подставить в неравенство (6) точки $x = x^*$ и y = x и учесть, что градиент в решении равен нулю.