データマイニング

Data Mining

10: 分類⑤ Classification

土居 裕和 Hirokazu Doi

長岡技術科学大学 Nagaoka University of Technology

決定木 Decision Tree

分割統治法 Divide and Conquer Induction

出来るだけ誤りなくデータを分類できる2 分割基準でデータを分類する

Classify data by dichotomous criteria that minimizes false classification rate

この手続きを繰り返すことで決定木を成長させる

Grow decision tree by repeating this procedure

ノードのクラスの決定 Decision of the Class of a Node

 $\{(x_i,t_i)\}$:学習データ x_i とクラスラベル t_i の集合 C_i : $p \ni z_j$ N_i :クラスjに属するデータの数 N(t):ノードtに属するデータの数 $N_i(t)$:ノードtに属するクラスjのデータの数

ベイズの定理 Bayes Theorem

$$P(H \cap C) = P(H|C)P(C)$$

$$P(H \cap C) = P(C|H)P(H)$$

$$P(C|H)P(H) = P(H|C)P(C)$$

$$P(C|H) = \frac{P(H|C)P(C)}{P(H)}$$

ノードのクラスの決定 Decision of the Class of a Node

ノードtに属するデータが、クラス C_j に属する事後確率を最大化するクラス C_i を、ノードtのクラスとする

Designate class C_j as the class of node t so that posterior probability of data in node t belonging to class C_j is maximized

$$P(C_j|t) = \frac{P(t|C_j)P(C_j)}{P(t)}$$

ノードtのクラス=
$$argmax_j P(C_j|t)$$

Class of node t

ノードのクラスの決定 Decision of the Class of a Node

$$P(t|C_j)P(C_j) = \frac{N_j(t)}{N_j} \times \frac{N_j}{N} = \frac{N_j(t)}{N} \qquad P(t) = \frac{N(t)}{N}$$

$$P(C_j|t) = \frac{P(t|C_j)P(C_j)}{P(t)} = \frac{N_j(t)}{N} \times \frac{N}{N(t)} = \frac{N_j(t)}{N(t)}$$

ノードtのクラス= $argmax_j P(C_j|t) = argmax_j \frac{N_j(t)}{N(t)}$ Class of node t

ノードの不純度 Impurity of a Node

 $\Delta Impurity = Impurity_{before} - Impurity_{after}$

 $Impurity_{before} = Impurity(t)$

 $Impurity_{after} = P(t_L)Impurity(t_L) + P(t_R)Impurity(t_R)$

分割前後の不純度の減少が最大になるようにデータを 2分割する

Divide data so as to maximize the decrease of impurity $\Delta Impurity$ after division

ジニ係数 Gini Index

Gini Index =
$$1 - \sum_{1}^{K} P(C_j|t)^2$$

 $P(C_j|t)$ のクラス間の違いが二乗により強調される Inter-class difference in $P(C_j|t)$ is pronounced when squared

エントロピー Entropy

ノードtに含まれるクラスがばらついている Class of data belonging to node t is not uniform

ノードtの不純度が高いと $P(C_j|t)$ が小さくなる $P(C_j|t)$ gets small when impurity of node t is large

エントロピー Entropy

$$Entropy = -\int plog(p) = E\left[log\frac{1}{p}\right]$$

確率が低い事象が起こると大きくなる Increases when an event with lowprobability occurs

Impurity =
$$-\sum_{1}^{K} P(C_{j}|t) \log P(C_{j}|t)$$

木の剪定 Pruning Decision Tree

ノードtを終端ノードとすべきかどうか =ノードtの分岐 T_t を削除すべきかどうか

The problem of whether node t should be determined as a terminal node equals to whether branch T_t of node t should be removed or not.

ノードtの分岐 Branch of node t

ノードtの分岐 Branch of node t

$$R_{\alpha}(t) = R(t) + \alpha$$

ノードtにおける誤り率 Error rate at node t

$$R_{\alpha}(T) = \sum_{t \in T} R_{\alpha}(t) = R(T) + \alpha |\tilde{T}|$$

 $| ilde{T}|$:終端ノードの数 Number of terminal node

小さい木で高い正答率を達成したい

Aims to achieve high accuracy by decision tree with smaller size

ノードtの分岐 Branch of node t

$$R_{\alpha}(t) = R(t) + \alpha$$

$$R_{\alpha}(T_t) = R(T_t) + \alpha |\widetilde{T_t}|$$

$$T_t$$
 は複数のノードを含むことに注意

Note that T_t includes multiple nodes

 $R_{\alpha}(T_t) \ge R_{\alpha}(t)$ なら T_t を削除する Remove T_t if $R_{\alpha}(T_t) \ge R_{\alpha}(t)$

$$R(T_t) + \alpha |\widetilde{T}_t| \ge R(t) + \alpha$$

$$\frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1} \le \alpha \ \text{to} T_t$$
を削除する

Remove
$$T_t$$
 if $\frac{R(t)-R(T_t)}{|\widetilde{T}_t|-1} \leq \alpha$

ノードtの分岐 Branch of node t

$$\frac{R(t) - R(T_t)}{|\tilde{T}_t| - 1} \le \alpha \text{ なら} T_t \text{を削除する}$$

$$g(t) = \frac{R(t) - R(T_t)}{\left|\widetilde{T}_t\right| - 1}$$

g(t)は剪定するかどうかの判断基準を与えるg(t) gives a criteira to decide whether to prune branch

剪定のアルゴリズム Algorithm of Pruning

- ・全ての内部ノードについてg(t)を計算する Compute g(t) for all the internal nodes
- ・g(t)が最小のノードの分岐を削除する Remove branch of the node with minimum g(t)
- ・この手続きを繰り返す Repeat the procedure above until certain criteria is met

ノードtの分岐 Branch of node t

アンサンブル学習 Ensemble Learning

<u>ノーフリーランチ定理 No Free Lunch Theorem</u>

あらゆる問題に対して最適な分類器は存在しない

There is no classifier that shows best performance for every classification problem

複数の弱識別器を組み合わせることで、精度のよい分類器を作る Create superior classifier by combining multiple weak classifiers

バギングとブースティング Bagging and Boosting

https://pub.towardsai.net/bagging-vs-boosting-the-power-of-ensemble-methods-in-machine-learning-6404e33524e6

アダブースト Ada(ptive)Boost(ing)

- ・ブースティングアルゴリズムの一つOne of boosting algorithms
- ・t個めの弱学習器が誤識別したデータの重みを大きくして、t+1個めの弱学習器をトレーニングする

Train t+1—th weak learner by giving large weight to data points that t—th weak learner misclassified

弱識別器 y_m を逐次的に訓練する

Train weak learners y_m sequentially

データの重み w_i^m と弱学習器の重み α_m が更新される Update weight of data w_i^m and weight of weak learner α_m

 E_m が最小になるよう弱識別器 y_m を訓練する Train weak learners y_m so that E_m is minimized

$$E_{m} = \frac{\sum_{1}^{N} w_{i}^{m} I(y_{m}(x_{i}))}{\sum_{1}^{N} w_{i}^{m}} \qquad I(y_{m}(x_{i})) = \begin{cases} 1 & (y_{m}(x_{i}) \neq t_{i}) \\ 0 & (y_{m}(x_{i}) = t_{i}) \end{cases}$$

データの重み w_i^m と弱学習器の重み α_m が更新される Update weight of data w_i^m and weight of weak learner α_m

$$\alpha_m = \ln\left(\frac{1}{E_m} - 1\right) \ge 0$$

$$w_i^{m+1} = \begin{cases} w_i^m exp(\alpha_m) \ge w_i^m & (y_m(x_i) \ne t_i) \\ w_i^m & (y_m(x_i) = t_i) \end{cases}$$

最終的な出力は、弱学習器の出力の重み付き和によって 決まる

Output of AdaBoost classifier is determined by weighted sum of output of each weak classifier

$$y_{1}(x) \qquad y_{2}(x) \qquad y_{m}(x) \qquad y_{M-1}(x) \qquad y_{M}(x)$$

$$\alpha_{1} \qquad \alpha_{2} \qquad \alpha_{m} \qquad \alpha_{M-1} \qquad \alpha_{M}$$

$$Y(x) = sign(\sum_{1}^{M} \alpha_{m} y_{m}(x))$$

ランダムフォレスト Random Forest

多数決投票 Majority Voting

ランダムフォレスト Random Forest

データからブートストラップサンプル Z_m を抽出する

Extract bootstrapped samples Z_m from dataset

ランダムに選択したd'次元の特徴量を使って決定木 T_m を構成する Grow decision tree T_m based on randomly-selected d'-dimensional features

ランダムフォレスト Random Forest

多数決投票 Majority Voting