

Generative Entity Typing with Curriculum Learning

Siyu Yuan, Deqing Yang*, Jiaqing Liang, Zhixu Li, Jinxi Liu, Jingyue Huang, Yanghua Xiao*

Fudan University

Introduction

> Task: Entity typing

- > Aims to assign types to the entity mentions in given texts.
- > The drawbacks of pervious work
 - Closed Type Set: Cannot assign the entity to the types out of the predefined set.
 - > Few-shot Dilemma for Long-tail Types: Hardly handle few-shot and zero-shot issues.
- > Solution: Generative Entity Typing
 - > Generate types with a pre-trained language model from given a text with an entity mention.

- > Open Type Set: more open types for entity mentions
- > Conceptual Reasoning Capability: handle the few-shot and zero-shot dilemma well

Challenges & Contribution

- > Challenge 1: Fine-grained Types Generation
- > How to guide the PLMs to generate high-quality and fine-grained types for entities is crucial.
- > Challenge 2: Heterogeneous data
 - > How to train the PLMs to generate desirable types on these low-quality heterogeneous.
- > Solution: Curriculum Learning
- > Better learn heterogeneous data by ordering the training samples based on their quality and difficulty.
- > CL can control the order of using training subsets from coarse-grained and lower-quality ones to fine-grained and higher-quality ones.

CL-based GET

> Prompts Construction

> Construct the prompts in cloze format from the Hearst patterns

> Curriculum Instruction

- > It is more difficult for PLMs to fit the samples of fine-grained types.
- > Coarse-grained auto-generated data => type length=1
- ➤ Fine-grained auto-generated data => type length≥2
- \triangleright Human-annotated data => $ultra\ fine-grained\ types$

Whole training data $D = D_A \cup D_B \cup D_C$

Input Text

M is one of

M refers to

M is a member of

such as M

especially M

including M

> CL-based Learning (T5 backbone)

- > A fixed curriculum ignores the feedback from the training process => adopt Self-paced Learning (SPL)
- > Loss function of one sample $D_k^{(i)} = \langle X^{(i)}, M^{(i)}, T_k^{(i)} \rangle = \lambda(D_k^{(i)}) = \lambda_{CE}(T_k^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)}))$
- > The training objective: $\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$

The binary variable
$$v_k^{(i)} \in [0,1]$$
 $\lambda = \mu \lambda, \mu > 1$

$$v_k^{(i)} = \begin{cases} 1, & L(D_k^{(i)}) < \lambda \\ 0, & L(D_k^{(i)}) \ge \lambda \end{cases} \quad g(\mathbf{v}; \lambda) = -\sum_{i=1}^N \sum_{k=1}^{K^{(i)}} v_k^{(i)} \Rightarrow \begin{cases} \text{More samples with larger losses are} \\ \text{gradually incorporated} \end{cases}$$

> Expect the model to be trained according to the predetermined curriculum => adopt prior knowledge

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases} 1, if D_{k}^{(i)} \in D_{A} \\ 2, if D_{k}^{(i)} \in D_{B} \end{cases} + length(T_{k}^{(i)}) \Rightarrow w(D_{k}^{(i)}) = length(T_{k}^{(i)}) \times \gamma(D_{k}^{(i)}) \\ 3, if D_{k}^{(i)} \in D_{C} \end{cases} \qquad L(D_{k}^{(i)}) = L_{CE}(T_{k}^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)})) \times w(D_{k}^{(i)})$$

A sample with a large weight would be incorporated later

Order of subsets Length of types

Experiment

➤ Datasets: 4 dataset

> Metrics:

- ➤ CT # → The number of correct types
- ▶ Len. ⇒ The average length of types
- > Precision, Relative Recall, Relative F1

Dataset	Type	Language	Size of D3	Size of Test set
BNN (Weischedel and Brunstein, 2005)	Coarse-grained	English	10,000	500
FIGER (Shimaoka et al., 2016)	Fine-grained	English	10,000	278
Ultra-Fine (Choi et al., 2018)	Ultra fine-grained	English	5500	500
GT (Lee et al., 2020)	Multilingual	English	4,750	250
G1 (Lee et al., 2020)	Multimiguai	Chinese	4,750	250

> RQ1: Can GET improve the task performance? A1: Yes

Model	BNN					FIGER		
widdel	CT#	Prec.	R-Recall	R-F1	CT#	Prec.	R-Recall	R-F1
Zhang et al. (2018)	555	58.10%	50.49%	54.03%	348	62.00%	49.85%	55.26%
Lin and Ji (2019)	534	55.90%	48.58%	51.98%	353	62.90%	50.57%	56.07%
Xiong et al. (2019)	558	58.40%	50.75%	54.31%	350	62.30%	50.09%	55.53%
Ali et al. (2020)	697	73.00%	63.43%	67.88%	399	71.00%	57.08%	63.29%
Chen et al. (2020)	718	75.20%	65.35%	69.93%	388	69.10%	55.56%	61.59%
Zhang et al. (2021)	732	76.70%	66.65%	71.32%	394	70.10%	56.36%	62.48%
Li et al. (2021)	668	69.90%	60.74%	65.00%	397	70.60%	56.76%	62.93%
Ours	875	82.30%	79.62%	80.94%	444	66.20%	63.52%	64.83%
Ours	875	82.30%	79.62%	80.94%	444	66.20%	63.52%	64.83

Model		Ult	ra-Fine	
Model	CT#	Prec.	R-Recall	R-F1
Xiong et al. (2019)	782	50.30%	24.28%	32.75%
Onoe and Durrett (2019) ELMo	884	51.50%	27.44%	35.81%
Onoe and Durrett (2019) BERT	884	51.60%	27.44%	35.83%
López and Strube (2020)	915	43.40%	28.41%	34.34%
Onoe et al. (2021)	1039	52.80%	32.26%	40.05%
Liu et al. (2021b)	1042	54.50%	32.35%	40.60%
Dai et al. (2021)	1213	53.60%	37.66%	44.24%
Ours	1275	87.10%	39.58%	54.43%

> RQ2: How do CL improve GET performance?

- > Let the model pay more attention to fine-grained types.
- > the former subsets can be regarded as a pre-training process that helps model optimization and regularizes the training on the later subsets.

Model	Dataset -	Chinese			English				
Model	Dataset	CT#	Prec.	R-F1	Len.	CT#	Prec.	R-F1	Len.
FT	Auto	690	84.46%	70.81%	2.80	870	75.85%	52.87%	1.48
PCL	Auto-	646	91.76%	70.37%	2.75	864	85.97%	54.87%	1.32
SPL w/o PK	generated data	672	92.18%	72.22%	2.75	900	87.12%	56.66%	1.54
Ours	data	714	90.04%	74.18%	2.86	928	87.14%	57.84%	1.62
FT	Human-	383	72.54%	53.98%	2.65	352	84.82%	48.82%	1.72
PCL	annotated	370	77.24%	54.01%	2.64	375	88.03%	51.62%	1.69
SPL w/o PK	data	383	78.64%	55.59%	2.61	370	90.46%	51.53%	1.74
Ours	uata 📗	409	83.64%	59.28%	2.63	373	90.75%	51.88%	1.82

- > RQ3: How do we adopt the typing generated from our GET model?
 - ➤ Short Text Classification and Entity linking

Method	Prec.	Recall	F1
No type	72.92%	72.70%	72.47%
types (KG)	73.99%	73.17%	73.30%
types (Gen.)	74.51%	73.41%	73.53%

	F1	Method	Dataset
%	94.58%	triples (KG.)	AIDA
%	94.92%	triples (Gen.)	CoNLL-YAGO
%	89.74%	triples (KG)	ACE 2014
%	90.54%	triples (Gen.)	ACE 2014
	90.54	triples (Gen.)	ACL 2014