Algorytmy i struktury danych

Na podstawie grafu nieskierowanego zadanego jako następująca lista krawędzi:

$$(1,2):8 \ (2,3):1 \ (3,4):15 \ (2,5):7 \ (4,5):3 \ (5,6):12 \ (1,6):2 \ (6,7):4 \ (2,6):20 \ (5,7):5$$

Zadanie 1

Wykonaj rysunek grafu.

Zadanie 2

Znajdź macierz sąsiedztwa.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 8 & 0 & 0 & 0 & 2 & 0 \\ 2 & 8 & 0 & 1 & 0 & 7 & 20 & 0 \\ 3 & 0 & 1 & 0 & 15 & 0 & 0 & 0 \\ 4 & 0 & 0 & 15 & 0 & 3 & 0 & 0 \\ 5 & 0 & 7 & 0 & 3 & 0 & 12 & 5 \\ 6 & 2 & 20 & 0 & 0 & 12 & 0 & 4 \\ 7 & 0 & 0 & 0 & 0 & 5 & 4 & 0 \end{pmatrix}$$

Zadanie 3

Zapisz tablicę list sąsiedztwa. Wierzchołki na listach sąsiedztwa powinny być są ustawione rosnąco wg numeru wierzchołka. Ta kolejność powinna być stosowana w symulacji algorytmów DFS, BFS i Dijkstry.

Wierzchołek	Lista sąsiedztwa
1	2, 6
2	1, 3, 5, 6
3	2, 4
4	3, 5
5	2, 4, 6, 7
6	1, 2, 5, 7
7	5, 6

Zadanie 4

Zapisz kolejność odwiedzania wierzchołków przez algorytm DFS startujący z wierzchołka 5.

Zadanie 5

Zapisz kolejność odwiedzania wierzchołków w algorytmie BFS startującym z tego samego wierzchołka.

Zadanie 6

(2 pkt) Zasymuluj działanie algorytmu Kruskala i zilustruj rysunkiem:

- liniami przerywanymi oznacz krawędzie nie należące do drzewa wynikowego,
- liniami ciągłymi oznacz krawędzie należące do drzewa wynikowego,
- przy każdej krawędzi w nawiasie okrągłym podaj kolejność w jakiej była ona rozpatrywana.

Zadanie 7

(3 pkt) Zasymuluj działanie algorytmu Dijkstry startując z wierchołka 3. Zapisz kroki algorytmu podając w każdym kroku:

- numer odwiedzanego wierzchołka
- wykonane w tym kroku operacje decrease_key i odpowiednie zmiany w tablicy poprzedników (prev)
- wypisując jaka jest zawartość kolejki priorytetowej po wykonaniu kroku

Wierzchołek		Kolejka			
-	decrease_key(3, 0)	prev[3] = 3		3, 1, 2, 4, 5, 6, 7	
3	decrease_key(2, 1)	decrease_key(4, 15)		2, 4, 1, 5, 6, 7	
	prev[2] = 3	prev[4] = 3			
2	decrease_key(1, 9)	decrease_key(5, 8)	decrease_key(6, 21)	5, 1, 4, 6, 7	
	prev[1] = 2	prev[5] = 2	prev[6] = 2		
5	decrease_key(4, 11)	decrease_key(6, 20)	decrease_key(7, 13)	1, 4, 7, 6	
	prev[4] = 5	prev[6] = 5	prev[7] = 5		
1	decrease_key(6, 11)	prev[6] = 1		4, 6, 7	
4				6, 7	
6				7	
7				-	

Na końcu algorytmu dla każdego wierzchołka zapisz:

- odległość od wierzchołka startowego
- numer wierzchołka będącego poprzednikiem

Wierzchołek	1	2	3	4	5	6	7
Odległość	9	1	0	11	8	11	13
Poprzednik	2	3	3	5	2	1	5

Algorytm zilustruj grafem, w którym:

- przy każdym wierzchołku będzie podany w nawiasie okrągłym numer kroku algorytmu, w którym wierzchołek został odwiedzony.
- strzałkami ciągłymi oznaczone będą krawędzie należące do drzewa wynikowego
- strzałkami przerywanymi oznaczone będą krawędzie, które w trakcie algorytmu wskazywały na poprzednika, jednak nie należą do drzewa wynikowego.

