ADF300985
AD

OTIC FILE COPY

TECHNICAL REPORT BRL-TR-2844

TRAVELING CHARGE COMPUTATIONS -EXPERIMENTAL COMPARISONS AND SENSITIVITY STUDIES

WILLIAM F OBERLE III KEVIN J. WHITE ROBERT E. TOMPKINS ARPAD A. JUHASZ

AUGUST 1987

APPROVED FOR PUELIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY	CLAS	SIFICA	TION OF	THIS	PAGE

DE RESTRICTIVE MARKINGS DE RESTRICTIVE MARKINGS	REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188 Exp. Dute: Jun 30, 1986	
28. SECURITY CLASSIFICATION AUTHORITY 29. DECLASSIFICATION/DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 68. NAME OF PERFORMING ORGANIZATION (M' applicable) 69. ADDRESS (City, State, and ZIP Code) 69. OFFICE SYMBOL (M' applicable) 60. ADDRESS (City, State, and ZIP Code) 60. ADDRESS (City, State, and ZIP Code) 60. ORGANIZATION (M' applicable) 60. ADDRESS (City, State, and ZIP Code) 61. TITLE (Include Security Classification) 62. ADDRESS (City, State, and ZIP Code) 63. NAME OF FOLDING INSTRUMENT IDENTIFICATION NUMBER 64. ADDRESS (City, State, and ZIP Code) 65. ADDRESS (City, State, and ZIP Code) 66. ADDRESS (City, State, and ZIP Code) 67. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 67. ADDRESS (City, State, and ZIP Code) 68. NAME OF FOLDING NUMBERS 68. ADDRESS (City, State, and ZIP Code) 69. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 69. ADDRESS (City, State, and ZIP Code) 69. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 60. SUPPLIES OF PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 60. DETECTOR OF PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 61. ADDRESS (City, State, and ZIP Code) 61. ADDRESS (City, State, and ZIP Code) 61. ADDRESS (City, State, and ZIP Code) 62. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 62. ADDRESS (City, State, and ZIP Code) 63. ADDRESS (City, State, and ZIP Code) 64. ADDRESS (City, State, and ZIP Code) 65.			1b. RESTRICTIVE MARKINGS			
A PERFORMING ORGANIZATION REPORT NUMBER(S) BRL—TR-2844 56. NAME OF PERFORMING ORGANIZATION USA Ballietic Research Lab SLOBR-IS 66. ADDRESS (City, State, and ZiP Code) Aberdeen Proving Ground, ND 21005-5066 58. NAME OF FUNDING SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) To. ADDRESS (City, State, and ZiP Code) 76. ADDRESS (City, State, and ZiP Code) 88. NAME OF FUNDING SPONSORING ORGANIZATION Bb. OFFICE SYMBOL (If applicable) 88. NAME OF FUNDING SPONSORING ORGANIZATION 89. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER FROGRAM FROGRAM FROGRAM FROGRAM T. TASK NO. 11. TITLE ORGANG Security Classification) Traveling Charge (Desputations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhass, Arpad A. 132. TYPE OF REPORT TRA 133. TYPE OF REPORT TRA 134. DATE OF MEPORT (Year, Moonth, Day) 155. NAGE COUNT 176. ADTE OF MEPORT (Year, Moonth, Day) 177. COSATI CODES FIELD FREDD			3. DISTRIBUTION/AVAILABILITY OF REPORT			
BRI_TR-2844 6a. NAME OF PERFORMING ORGANIZATION USA Ballietic Research Lab 6b. OFFICE SYMBOL (if applicable) 6c. ADDRESS (City, State, and ZiP Code) Aberdeen Proving Ground, MD 21005-5066 6a. NAME OF FUNDING /SPONSORING ORGANIZATION 6b. OFFICE SYMBOL (if applicable) 7b. ADDRESS (City, State, and ZiP Code) 7c. ADDRESS (City, State, and ZiP Code) 6c. ADDRESS (City, State, and ZiP Code) 8c. ADDRESS (City, S its, and ZiP Code) 8c. ADDRESS (City, S its, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS FROGRAM ELEMENT INSTRUMENT IDENTIFICATION NUMBER FROGRAM TO. 11. TITLE (Include Security Classification) Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHORIS) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhass. Arpad A. 13a. Type of REPCRI 17b. TIME COVERED 17c. COSATI CODES 1	2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	1			
SA. NAME OF PERFORMING ORGANIZATION USA Ballietic Research Lab SLOR-IB 7a. NAME OF MONITORING ORGANIZATION (SLORE-IB 7b. ADDRESS (City, State, and ZiP Code) Aberdeen Proving Ground, MD 21005-5066 8b. OFFICE SYMBOL (If applicable) 7b. ADDRESS (City, State, and ZiP Code) 8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM REMENT NO. 11. TITLE (Include Seturity Classification) Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. FERSONAL AUTHOR(s) Debrie, William F., White, Kevin J., Tompkins, Robert E., and Juhage, Arned A. 13a TYPE OF REPORT 18. SUPPLEMENTARY NOTATION 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. COSTITUTE (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. COSTITUTE (Continu	4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)
Sign Ballistic Research Lab Sign Sign Sign State, and ZiP Code) Aberdeen Proving Ground, MD 21005-5066 8a. NAME OF FUNDING SPONSORING ORGANIZATION 8b. ORGANIZATION 8c. ADDRESS (City, State, and ZiP Code) 8c. ADDRESS (City, 5' ine, and ZiP Code) 10. SOURCE OF PUNDING NUMBERS FROGRAM FRODET FROGRAM FRODET FROGRAM 12. PRESONAL AUTHORIS) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhage, Arped A. 13a. TYPE OF REPCRY 13b. TIME COVERED 14. DATE OF REPORT (Veer, Month, Day) is PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessar						
Aberdeen Proving Ground, MD 21005-5066 8a. NAME OF FUNDING/SPONSORING (If applicable) 8b. OFFICE SYMBOL (If applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If applicable) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ACCESSION NO. 11. TITLE (Include Security Classification) Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHORS) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhags, Arpad A. 13a. Type OF REPORT Sib. Time COVERD TO TREE FROM TO TO THE GROUP SUB-GROUP 16. SUPPLEMENTARY NOTATION 17. COSATI CODES TO THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE COMPANY OF THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE CONTROL TREE TRANS (Continue on reverse if necessary and identify by block number) 19. COSATI CODES TO THE CONTROL TREE TRANS (CONTROL T		7a. NAME OF M	ONITORING ORGAN	liza fion		
88. NAME OF FUNDING/SPONSORING (If applicable) 80. ADDRESS (City, 5 ine, and ZiP Code) 81. ADDRESS (City, 5 ine, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT TASK NO. ACCESSION NO. 11. TITLE (Include Security Classification) Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhage, Arpad A. 13a. TYPE OF REPORT (Year, Month, Day) 15. PAGE COUNT TR 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures.	6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (C)	ty, State, and ZIP C	ode)	
ORGANIZATION 8c. ADDRESS (City, 5 re, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT TASK NO. WORK UNIT ACCESSION NO 11. TITLE (Include Security Classification) Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhags, Arpad A. 13a. TYPE OF REPORT 13b. TIME COVERED TO 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and Identify by Mock number) 19. ABSTRACT (Continue on reverse if necessary and Identify by Mock number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/IAVABLABILITY OF ABSTRACT DUNCLASSIFIEDUNILIMITED SAME AS RPT. DTIC USER.) 10. DISTRIBUTION/IAVABLABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION Unclassified 10. Unclassified 10. MORK UNIT ACCESSION NO.	Aberdeen Proving Ground, MD 210	005-5066	l			٠,
Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhagz, Arpad A. 13a. Type of REPCRT TR FROM TO 14. Date of REPCRT (Year, Month, Day) 15. PAGE COUNT TR TR TO 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FREID GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT CUNCLASSIFICATION ABSTRACT DDTICUSER Unclassification			9. PROCUREMEN	T INSTRUMENT IDE	NTIFICAT	ION NUMBER
Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies	8c. ADDRESS (City, 5° Ite, and ZIP Code)	<u></u>	10. SOURCE OF	FUNDING NUMBERS	S	
Traveling Charge Computations - Experimental Comparisons and Sensitivity Studies 12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhasz, Arpad A. 13a. Type of REPCRT 13b. Time Covered 14. Date of REPORT (Veer, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DICTUST CLASSIFICATION Unclassified.						
12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhage, Arpad A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TR 15b. TIME COVERED 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CUNCLASSIFICOUNLIMMTED SAME AS RPT. DICCUSER.	11. TITLE (Include Security Classification)		,	<u>.l</u>		
12. PERSONAL AUTHOR(S) Oberle, William F., White, Kevin J., Tompkins, Robert E., and Juhage, Arpad A. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TR 15b. TIME COVERED 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CUNCLASSIFICOUNLIMMTED SAME AS RPT. DICCUSER.	Traveling Charge Computations	- Experimental C	Comparisons a	and Sensitivi	ltv St	udies
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT TR 13b. TIME COVERED 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT TO UNCLASSIFICATION Unclassified	12. PERSONAL AUTHOR(5)					
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT CONCLASSIFIEDURLIMITED SAME AS RPT. DICCUSER.	13a. TYPE OF REPORT 13b. TIME CO		14. DATE OF REPO	ORT (Year, Month, I	Arpad Day) 15	A. . PAGE COUNT
17. COSATI CODES FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIEDUINIUMITED SAME AS RPT. DDTIC USER. Unclassified		то	L			
Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT OTHER DITIC USERS	10. SUPPLEMENTARY NOTATION					
Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIEDIUNIMITED SAME AS RPT. DITIC USER.		18. SUBJECT TERMS (Continue on rever	se if necessary and	identify	by block number)
Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DIIC USER: 21 ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified	FIELD GROUP SUB-GROUP	4				
Theoretical performance studies were conducted for a 14 mm gun operated in the conventional and traveling charge (TC) modes using the XKTC interior ballistic code. Conventional charge calculations, done by way of model validation, agreed closely with experimental firings. Traveling charge calculations were done to predict the effects of varying parameters such as TC ignition time and burning behavior on charge performance. For a propelling charge composed of a conventional booster propellant and a TC element, delaying TC ignition past maximum pressure from the booster predicts the greatest improvement in TC performance. TC performance appeared to be less sensitive to the details of burning rate pressure dependence than to overall TC element burn time. Uncontrolled burning characterized by very short burn times leads to excessive gun pressures. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DIIC USER: 21 ABSTRACT SECURITY CLASSIFICATION Unclassified Unclassified						
22a NAME OF RESPONSIBLE INDIVIDUAL William F. Oberle 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL 301-278-6200 SLCBR-IB-B						

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ACKNOWLEDGMENTS

The authors would like to thank F. Robbins, P. Baer, P. Gough, G. Keller, and K. Fickie for their helpful suggestions concerning the use of XKTC and interpretation of its results.

Acces	ion For	1
DTIC	iounced	000
By Distrib	uition [
A	vailability C	odes
Dist	Avail and Special	/ Or
A-1		

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	vii
	LIST OF TABLES	ix
I.	INTRODUCTION	1
II.	XKTC COMPUTER CODE	2
III.	EXPERIMENTAL FIXTURE AND GUN FIRINGS	6
IV.	COMPARISON BETWEEN XKTC AND EXPERIMENTAL RESULTS	9
V.	IGNITION TIME STUDY	13
VI.	BURNING RATE STUDY	18
VII.	COMPARISON WITH OPTIMIZED ALL "BOOSTER" CASES	20
VIII.	CONCLUSIONS AND FUTURE WORK	21
	REFERENCES	23
	APPENDIX A	25
	DISTRIBUTION LIST	29

List of Figures

Figure		Page
1	Idealized Traveling Charge Gun	1
2	Experimental Pressure and Pressure Difference Curves	
	for a Caseless Round Fired in a Conventional 120-ma Gun	4
3	Pressure and Pressure Difference Curves as Calculated	5
	by XKTC for a caseless Round Fired in a Conventional	
	120-mm Gun	
4	Schematic of the Experimental Gun Fixture	6
5	Traveling Charge Projectile	6
6	Experimental Pressure Versus Time for Round 6	8
_	Conventional Firing	
7	Experimental Pressure Versus Time for Round 12	8
_	Traveling Charge Firing	
8	Computed Pressure Vs. Time Profiles From XKTC for	10
	Round 6 Conventional Firing	
9	Computed Pressure Vs. Time Profiles From XKTC for	12
10	Round 12 Traveling Charge Firing	
10	Experimental Pressure Vs. Time Curve, Round 12	12
11	Gage 3 (Tube Origin) Traveling Charge Firing	10
11	Computed XKTC Pressure Vs. Time Curve Round 12	13
12	Gage 3 (Tube Origin) - Traveling Charge Firing	14
12	Ignition Times Chosen for the Traveling Charge in the Ignition Time Study	14
13	Computation of Percent Difference in Maximum Pressure	15
13	Between 42 g All "Booster" Comparison Case and a	1.0
	Traveling Charge Firing Used in the Ignition Time Study	
14	Percent Change in Muzzle Velocity Vs. Traveling	15
~~	Charge Ignition Time	2.5
15	Percent Change in Maximum Pressure Vs. Traveling	16
	Charge Ignition Time	-
16	Base Pressure Vs. Projectile Travel for: * All	18
	"Booster"; o Traveling Charge Ignited at 1.15 ms;	
	A Traveling Charge Ignited at 1.75 ms	
17	Effect of Varying the Burning Rate of the Traveling	19
	Charge on Maximum Gun Pressure	
18	Effect of Varying the Burning Rate of the Traveling	20
	Charge on Muzzle Velocity	

List of Tables

Table		Page
1	Configuration of Firings Used in Study	7
2	Experimental Results of Rounds 6 and 12	7
3	Comparison of Predicted XKTC Results and	10
	Experimental Results for Round 6 Conventional Firing	
4	Comparison of Predicted XKTC Results and Experimental Rosults for Round 12 Traveling Charge Firing	11
5	Results of Optimized Conventional Firings	21
A-1	Ignition Time Study - Constant Burn Rate	27
A-2	Ignition Time Study - Pressure Dependent Burn Rate	27

I. INTRODUCTION

The traveling charge concept or "impulse gun" originally proposed by Langweiler is considered by ballisticians to offer the prospect of obtaining muzzle velocities on the order of 2 to 3 km/s without the large (~4) charge to mass ratio and high breech pressures (700-1000 MPs) required of conventional gun systems. The advantages of such velocities have been discussed by various authors and can be summarized as improved delivery range, increased target penetration due to higher kinetic energy of the projectile, and enhanced hit probability resulting from the decreased time-of-flight.

It is not within the scope or this report to provious experimental analysis of the traveling charge concept or review previous experimental to the works of Langueiler, I Lee It is not within the scope of this report to present a theoretical results. The interested reader is referred to the works of Langweiler, Lee and Laidler, Vinti, Gough, Baer, May et al., and Briand et al. for a discussion of the theoretical analysis and development of computer models for the traveling charge concept. Findings of previous experimental efforts can be found in reports by 0'Donnell et al., Baer, Barbarek and Jeslis, 1 te found in reports by O'Donnell et al., Baer, Baer, Barbarek and Jeslis, Baldini and Audette, 2 and May et al. An idealized description of the traveling charge effect has been presented in an earlier work by Smith and is shown in Figure 1. The ignition process is in two stages. A conventional "booster" charge is used to rapidly pressurize the chamber and accelerate both the projectile and a propellant charge(traveling charge) attached to the base of the projectile. At some point past the peak pressure due to the "booster" charge, the traveling charge is ignited. It burns in such a manner as to generate and eject combustion products at sufficient velocity to maintain constant thrust/pressure on the projectile base and to increase projectile velocity. At very high velocities, the traveling charge is expected to be more efficient than conventional propelling charges. An example of this is included in Table A-2.

TRAVELING CHARGE GUN

Figure 1. Idealized Traveling Charge Gun 13

In summary, the traveling charge effect is characterized by:

- a) The attachment to the projectile of a very high burning rate (VHBR) propellant which travels with the projectile down the tube.
- b) Deviation from the "normal" pressure gradient which would be obtained if all the propellant, "booster" and traveling charge, were placed in the chamber. The deviation should show lower chamber pressures and increased downbore pressures.
- c) An increase in muzzle velocity over the corresponding conventional firing.

At the present time, we are undertaking an experimental effort to demonstrate the traveling charge effect as a practical and useful gun propulsion system. An important component of this effort is the use of a schhisticated computer code, XNCVARTC (XRTC), which can model both traveling charge and conventional gun firings. As stated by May et al., a fluxible computer model

"is necessary as a learning tool to help explore the consequences of the physics that has been incorporated, and to guide the experimental program."

The purpose of this report is to summerize the results of the initial modeling computations which were part of the above effort. These computations include investigations in the following areas:

Applicability of the XKTG computer code to a small caliber (14-mm) Mann Barrel, a regime in which the code had not previously been exercised. In this setting the predictive nature of XKTC for both conventional and traveling charge firings is examined relative to experimental results.

Sensitivity of the traveling charge effect to the ignition time of the traveling charge propellant. This parametric study incorporated two distinct burning rate laws for the traveling charge due to the uncertainty of the burning behavior of the VHBR propellant.

Sensitivity of the traveling charge effect to the burning rate of the traveling charge propellant.

II. XKTC COMPUTER CODE

The computer code selected to model the interior ballistic event was the XNOVAKTC (XKTC) code developed by Paul Gough Associates. This code is a combination of a newer version of the NOVA 14 code together with the BRLYC 6

code. Selection of XKTC was based upon several factors. First, the code has the capability to model conventional, traveling charge, and a combination of "booster" and traveling charge gun firings. Second, the code includes kinetic options which allow flexibility in investigating the traveling charge effect. The details of the kinetic options pertaining to the traveling charge were presented by P. Gough in a separate paper. The final factor in select The final factor in selecting XKTC was its demonstrated accuracy in predicting gun performance, in terms of pressure profiles, pressure oscillations, and velocity, at least for large caliber conventional gun firings. This accuracy is illustrated for a 120-mm tank gun in a paper by Pobbins et al. Figure 2 shows the measured pressures at various positions along the gun tube and pressure difference measured between the ends of the chamber for a 120-mm caseless round. Figure 3 presents the pressures and pressure difference calculated by XKTC for the caseless round. A comparison of the pressure and pressure difference curves for the measured and calculated results shows excellent agreement. The difference in breech pressures is approximately 4 MPa while at the muzzle the difference is about 7 MPs. Also, the curves for the pressure differences. which measure the pressure oscillations in the chamber, have the same general characteristics.

Figure 2. Experimental Pressure and Pressure Difference Curves for a Casaless Round Fired in a Conventional 120-mm Gun

Pressures (MPa)

Pressure Difference (MPa)

Figure 3. Pressures and Pressure Difference Curves as Calculated by XKTC for a Caseless Round Fired in a Conventional 120-mm Gun

Although XKTC showed excellent agreement for large caliber gun systems, its predictive ability for small caliber systems was unknown. Therefore, code validation was extended to small caliber applications and used as a tool to evaluate ballistic improvements due to the traveling charge effect.

I.I. EXPERIMENTAL FIXTURE AND GUN FIRINGS

A schematic of the test gun fixture together with the location of pressure gages is shown in Figure 4. The fixture has a chamber volume of 100 cm³, a bore diameter of 14-mm, a tube length of 2900-mm and an expansion ratio of 5.3. A schematic of the traveling charge projectile to scale is presented in Figure 5.

Figure 4. Schematic of the Experimental Gun Fixture (dimensions in cm)

Figure 5. Traveling Charge Projectile

At the time of this report 12 firings with 6 different configurations of "booster" and traveling charge propellant have been performed. Details on these firings can be found in a separate paper. For this study, two of these firings were selected for detailed analysis. The configurations for these firings are shown in Table 1.

TABLE 1. Configuration of Firings Used in Study

Round #	Booster (g)	T.C. (g)	Projectile (g)
6	34		24.59
12	34	8.53	22.0

For round 6, the cavity of the traveling charge projectile was filled with a nylon insert. The "booster" charge for both rounds was a non-deterred ball propellant manufactured by the Olin Corporation. The traveling charge propellant used in round 12 was a combination of RDX and a boron hydride salt with a KRATON binder pressed to 100% theoretical maximum density. Results are tabulated in Table 2. Pressures are given in MPa and velocity in m/g.

TABLE 2. Experimental Results Of Rounds 6 and 12

Rd #	Gage 1 Pmax	Gage 2 Pmax	Gage 3 Pmax	Gage 5 Pmax	Gage 7	Velocity
	MPa	MPa	MPa	MPa	KPa	m/s
6	339	325	281	71	29	1567
12	555	458	590	98	44	1770

Pressure vs. time curves for the two rounds at the indicated gages are given in Figures 6 and 7.

Figure 6. Experimental Pressure Versus Time for Round 6
Conventional Firing

Figure 7. Experimental Pressure Versus Time for Round 12
Traveling Charge Firing

IV. COMPARISONS BETWEEN XKTC AND EXPERIMENTAL MEASUREMENTS

Although the XKTC code has never been fully exercised for small caliber guns, because of its agreement with experimental results from large caliber firings, it was expected that the code would also be in good agreement with small caliber firings. ¹⁸ Thus, the only parameters adjusted in the code in attempting to match experimental results were bore resistance and shot start pressure.

Thermochemical information for the "booster" propellant was obtained through the use of the BLAKE¹⁹ code. Burning rates for the "booster" were obtained from closed bomb firings and subsequent data reduction using CBRED2. For the purposes of simplification, the thermochemical properties of the traveling charge propellant were assumed to be identical to those of the "booster". However, the burning rate for the traveling charge was adjusted to produce burning times similar to those obtained in the closed bomb diagnostic work. If

Discussion of Round 6: To simulate round 6, the XKTC code was run in a conventional gun firing mode. Table 3 shows the final computed results after a series of parametric runs involving varying the shot start pressure and bore resistance profile. The final values selected were a shot start of 6 MPa and a bore resistance of 19 MPa from 51 cm of travel to muzzle exit. Although the bore resistance profile is unusual in that the resistance increases after a certain amount of travel it was felt that this situation was not physically impossible. This belief was based upon the design of the projectile which had a very thin walled sleeve. It was felt that the pressure exerted on the sleeve was sufficient to distend the sleeve resulting in the higher resistance used in the computer model. Also presented in the table is a comparison with experimental results.

Computed pressure vs. time profiles from XKTC for round 6 are presented in Figure 8. A comparison with the experimental pressure profiles, Figure 6, shows the excellent agreement for breech pressures as indicated in Table 2. Differences in the downbore pressures are also clearly evident. Fortunately, the timing of the events (uncovering of gage locations, etc.) are in close agreement, which agrees with the close match on the velocities.

TABLE 3. Comparison of Predicted XKTC Results and Experimental Results for Round 6 -- Conventional Firing

Gage 1 Pmax MPa	Gage 2 Pmax MPa			Gage 7 Pmax MPa	Velocity Interferometer m/s
XKTC R	ound 6:				
341	338	275	65	2.8	1571
Experi	mental R	ound 6:			
339	325	281	71	29	1567
Differ	ence:				
2	13	-6	-6	-1	4
Percen	t Differ	ence:			
.64	44	-28	-8.5%	-34	. 25%

Figure 8. Computed Pressure Vs. Time Profiles From XKTC for Round 6
Conventional Firing

For both the 120-mm conventional caseless firing presented earlier and this small caliber (14-mm) conventional firing, XKTC appears to accurately predict breach pressure, timing, and velocity. On the other hand, a difference between measured and computed downbore pressures is present in both comparisons. Whether these differences are due to incorrect resistance profiles or other causes needs to be investigated in more depth.

Discussion of Round 12: The traveling charge option of the XKTC code was used to simulate round 12. Given the success in matching experimental results for round 6, all input variables, except those pertaining to the traveling charge and "booster" charge weight, were kept the same. A burning rate law (r-bPⁿ, where b-0.065 and n-1.05) was used to describe the traveling charge burning. Further, the ignition of the the traveling charge was delayed 1.15 ms after the ignition of the "booster" charge. The time delay for the traveling charge was estimated from the pressure vs. time curves from the experimental results. Table 4 summarizes the computed results and comparisons with the experimental data.

TABLE 4. Comparison of Predicted XKTC Results and Experimental Results for Round 12 -- Traveling Charge Firing

Gage 1 Pmax MPa	Gage 2 Pmax MPa	Gage 3 Pmax MPa	Gage 5 Pmax MPa	Gage 7 Pmax MPa	Velocity Breakscreen m/s
XKTC R	ound 12:	•			
554	472	620	89	39	1782
Experi	mental R	ound 12:			
555	458	590	98	44	1770
Differ	ence:				
-1	14	30	-9	-5	12
Percen	t Differ	ence:	•		
2%	34	5%	-98	-114	.7%

The pressure vs. time curves, for round 12, computed by XKTC are shown in Figure 9. As in the two previous comparisons, XKTC results are in close agreement with experimental results for breach pressure, timing, and velocity.

But once again, substantial differences are observed in the downbore pressures especially for gage 5. Fortunately, the pressure vs. time curves computed by XKTC exhibit the same behavior as the experimental pressure vs. time curves for gages not located at the breech. An example of this close agreement is shown for gage 3, (tube origin) in Figures 10 and 11.

Figure 9. Computed Pressure Vs. Time Profiles From XKTG For Round 12 -- Traveling Charge Firing

Figure 10. Experimental Pressure Vs. Time Curve. Round 12
Gage 3 (Tube Origin) -- Traveling Charge Firing

Figure 11. Computed XKTC Pressure Vs. Time Curve Round 12
Gage 3 (Tube Origin) - Traveling Charge Firing

V. IGNITION TIME STUDY

In concept, it is possible to place the entire charge at the projectile base without using any propellant in the chamber. However, from previous computations it appears that there is little gain in efficiency in using a traveling charge for the early portion of the ballistic cycle. On a more practical side, the early portion of the ballistic travel can be greatly affected by combustion variability and at this time there is some uncertainty concerning the predictability of the burn rate of the VHBR formulations. Additionally, the pressure drop at the projectile base is relatively small when the projectile velocity is low. Hence, for these reasons it was decided to use a conventional "booster" propellant for the initial travel and have the traveling charge ignite after the projectile has moved down tube. An important question to address is: "Where is the most advantageous position in the ballistic cycle to ignite the traveling charge?"

The purpose of investigating the ignition time of the traveling charge was to determine its effect on muzzle velocity and maximum pressure within the gun.

For the study, a traveling charge configuration similar to that of round 12 was used; that is, 34 grams of "booster" propellant with 8 grams of traveling charge. Due to the uncertainty of the actual burning behavior of VHBR propellants, two different burning rate laws were utilized. First, was the pressure dependent law used in simulating round 12, $r = 0.065P^{1.05}$. The second was a constant burning rate of 71 meters/second, a rate which would ensure the burn out of the traveling charge prior to muzzle exit. In

addition, no bore resistance was incorporated into the model. It should also be noted that no attempt was made to optimize the system with respect to performance due to the "booster" charge.

As a point of comparison, an all "booster" case with 42 grams of propellant was selected. Results of this all "booster" case showed a maximum gun pressure of 496 MPa and a muzzle velocity of 1897 m/s.

The ignition time of the traveling charge with respect to the "booster" ignition time was made a parameter in the calculations. The actual times used in the study were based upon the assumption that the traveling charge would ignite no later than the time necessary to obtain 25% of travel. From the all "booster" case the time to 25% of travel was 1.75 ms and the time of maximum pressure was 1.15 ms. Figure 12 summarizes the times selected for the study.

Figure 12. <u>Ignition Times Chosen for the Traveling</u>
Charge in the Ignition Time Study

The effect of changing the ignition time of the traveling charge was evaluated in the following manner. Pressure vs. time curves for the all "booster" run were compared with those from the traveling charge cases for the different traveling charge propellant ignition times. Differences in maximum pressure and corresponding percent differences, with respect to the all "booster" case, were determined. Similar comparisons were performed for differences in velocity. An example of this computation is shown in Figure 13 for the 42 gram all "booster" comparison case versus a traveling charge simulation with an ignitions delay of 1.75 ms. The difference between maximum pressures is 147 MPa, which represents a percent decrease of 30% with respect to the comparison case. These percent changes in maximum pressure and velocity, as a function of traveling charge ignition time, are presented graphically in Figures 14 and 15.

Figure 13. Computation of Percent Difference in Maximum Pressure

Between 42 g All "Booster" Comparison Case and a

Traveling Charge Firing Used in the Ignition Time Study

Figure 14. Percent Change in Muzzle Velocity Vs.
Traveling Charge Ignition Time

Figure 15. Percent Change in Maximum Pressure Vs.
Traveling Charge Ignition Time

As can be seen from Figure 14, XKTC prodicts a velocity increase for a configuration of 34 grams of "booster" and 8 grams of traveling charge propellant over the all "booster" case regardless of the ignition time of the traveling charge propellant. The only exception was the simulation using a constant burn rate law with ignition at 1.15 ms which resulted in the same velocity. It appears that the critical factor for the increased velocities is the deviation of the ignition time from 1.15 ms, which is the time of Pmax for the all "booster" case. For the pressure dependent burn rate law the maximum percent increase in velocity of 7.3% occurred at an ignition time of 0.475 ms, a deviation of 0.675 ms from 1.15 ms. Using the constant burn rate law, the maximum percent increase, 6.3%, in velocity occurred for an ignition time of 1.75 ms, a deviation of 0.6 ms from 1.15 ms. This same percent increase, 6.3%, was also computed for the pressure dependent burn rate law with ignition at 1.75 ms. Of interest is the lower percent increase in velocity recorded for an ignition time of 0 ms than for an ignition time of 0.475 ms with the pressure dependent burn rate law. The cause of this drop needs to be invostigated in greater detail.

Although velocity increases are predicted by XKTC for ignition times both before and after 1.15 ms, the same thing is not true for improvements in the pressure profile as far as maximum gun pressure is concerned. As shown in Figure 15, a time of ignition before or at 1.15 ms shows an increase in predicted maximum pressure for the pressure dependent burn rate law. Using a constant burn rate law no increase in pressure is obtained for the same

ignition times. However, both burn rate laws exhibit a 30% maximum pressure decrease if the ignition time is 1.35 ms or later. In all instances, the maximum pressure is observed at the breech.

Thus, for the ignition times selected and the specific gun/propulsion case used in this study, XKTC predicts that the maximum improvement to the traveling charge effect will occur for an ignition time of 1.75 ms for the traveling charge propellant. It is important to emphasize that this conclusion is applicable only to this specific case. Any change in the gun/propulsion configuration, such as changing the ratio of "booster" to traveling charge propellant, may lead to a different predictions.

Two additional observations noted while analyzing the results of the ignition time study are worth mentioning. First is the apparent insensitivity of the results to the burn rate law used to describe the burning of the traveling charge propellant. This facet needs to be investigated in greater depth, especially since combustion diagnostics on the VHBR propellants have indicated that their burning behavior may not be pressure dependent in the normal sense. The second observation concerned downbore pressures. In APPENDIX A, Tables A-1 and A-2 show the maximum pressure predicted by XKTC for the various gages, ignition times, and burn rate laws used in the study. It was observed that for gage 7, located 20-cm before muzzle exit, the pressures for the traveling charge cases were lower than the all "booster" case with one exception. Additionally, the maximum prossure observed at gage 7 in all cases corresponds to the base pressure on the projectile. However, muzzle velocities, which are reflective of base pressure, are higher for the traveling charge cases. An answer to this apparent contradiction may lie in the effect that the burn out of the traveling charge has on the base pressure. In Figure 16, XKTC computed base pressure versus travel profiles are plotted for the all "booster" case and two traveling charge cases. The rapid drop in the base pressure curves for both traveling charge cases occurs at the point in the travel where the traveling charge burned out. This rapid drop in both cases resulted in the base pressure being lower than the base pressure for the all "booster" case. Thus, it appears that the burn out of the traveling charge may have a substantial effect on base pressure. If this effect is present in actual gun firings, then tailoring the burn out of the traveling charge may be as critical to final performance as the ignition time of the traveling charge.

Figure 16. <u>Base Pressure Vs. Projectile Travel for:</u>

All "Booster": o Traveling Charge Ignited at 1.15 ms:

A Traveling Charge Ignited at 1.75 ms.

VI. BURNING RATE STUDY

In the ignition time study two different burn rate laws were utilized to describe the burning behavior of the traveling charge propellant, a) $r=71\,$ m/s, a constant burn rate and b) $r=0.065P^{1.05}$, a pressure dependent exponential law. Comparison of results showed some differences, especially in pressure behavior, between predictions involving the two laws. Thus, it became of interest to examine in greater detail the influence of the burning behavior of the traveling charge on predicted ballistic results. For this study the focus was on the effect of using different burning rates.

Specifically, the purpose of this study was to investigate the effect that different burning rates of the traveling charge have on ballistic performance. Again the parameters of major interest are velocity and maximum gun pressure.

As in the ignition time study, a traveling charge configuration of 34 grams of "booster" and 8 grams of traveling charge was selected. Based upon the result of the ignition time study, the ignition time of the traveling charge was chosen to be 1.75 ms. A bph burn rate law, with b=.065 and n=1.05, was used in the the study; and the variation in the burn rates was obtained by varying the value of the coefficient by +/-30, +/-20,+/-15, +/-10, and +/-

5 percent.

Figures 17 and 18 present the effects of variations in burning rate, as predicted by XKTC, on the maximum pressure recorded in the gun and muzzle velocity in terms of percent changes.

Figure 17. Effect of Varying the Burning Rate of the Traveling Charge on Maximum Gun Pressure

The most striking feature of Figure 17 is the very large change in maximum gun pressure, up to 140%, which is predicted by XKTC for increases in the burning rate of the traveling charge beyond a 10% increase. If this result is valid for actual gun firings, then controlling the burning rate of the VHBR propellant may be of critical importance for improved ballistic behavior. In fact, it may be that there is a narrow range for the burning rate of the VHBR for which the traveling charge effect can be effective. Too low a burning rate producing no appreciable gain and too high a rate resulting in unacceptable pressures. It is worth noting that the elevated pressures for the increased burning rates in Figure 17 occurred at the projectile/traveling charge base not the breech.

Figure 18. Effect of Varying the Burning Rate of the Traveling Charge on Muzzle Velocity

Although increased maximum gun pressures are predicted by XKTC for increased burning rates of the traveling charge, this is not translated into appreciable increases in velocity as seen in Figure 18. For changes in the burning rate up to +/- 20% the velocity changes by less than +/- 0.5%. However, the large drop from -0.25% to -1.9% in going from 20% to 30% decrease in burning rate may indicate that there will be a significant decrease in performance if the burning rate of the traveling charge is too low.

As with the ignition time study, the conclusions reached are based on predicted results for a specific gun/propulsion configuration. Any change, such as altering the ignition time of the traveling charge, could lead to different results.

VII. COMPARISON WITH OPTIMIZED ALL "BOOSTER" CASES

Based upon the results of the Ignition Time Study and Burn Rate Study it appears that for a configuration of 34 g of "booster" and 8 g of traveling charge that the optimum velocity is approximately 2020 m/s if maximum gun pressure is restricted to the maximum pressure due to the "booster". For 34 grams of "booster" in the test fixture being utilized this corresponds to a

pressure of 349 MPa. The obvious question is: "What performance could be expected if the gun system was optimized for a conventional propellant configuration with the maximum pressure restricted to 350 MPa?" To answer this question optimization studies were performed utilizing the XKTC computer code. The results are summarized below.

TABLE 5. Results of Optimized Conventional Firings

OPTIMIZATION Maximum Pressure < 350 MPa

Propellant	Weight	Velocity
Non-deterred Ball	50 g	1780 m/s
Seven Perforations	60 g	1900 m/s
20% Traveling Charge	e 42 g	2020 m/s

As can be seen from the above the traveling charge configuration performs better, in terms of increased velocity, than an optimized conventional propellant charge by approximately 120 m/s. This corresponds to a 6% velocity increase.

VIII. CONCLUSIONS AND FUTURE WORK

The conclusions of this initial modaling effort in support of a U.S. Army undertaking to demonstrate the viability of the traveling charge effect can be summarized as follows:

The XNOVAKTC computer code is applicable to small caliber gun firings. This includes conventional and traveling charge configurations. Predictions in regards to breach pressure, velocity, and timing are excellent. However, downbore pressure results show larger than expected deviations.

The following conclusions are based upon a specific gun/propulsion system and may not be the same for different systems.

The ignition time study indicates that the greatest improvement in the traveling charge effect will occur if the ignition of the traveling charge is delayed past the time of maximum pressure due to the "booster" charge.

The ignition time study indicates that the traveling charge effect may be insensitive to the burning behavior, in terms of the burning rate law utilized, of the traveling charge as long as the total burning time for the traveling charge is within a given range.

M

The burning rate study indicates that relatively large changes in burn rate (+/-30%) do not appreciably change muzzle velocity but can lead to large changes in maximum pressures.

Burn out of the traveling charge results in a large drop in base pressure. See Figure 16.

Areas in which further computations are felt to be needed include:

Investigation into the source of the discrepancy between downbore pressures predicted by XNOVAKTC and those observed in actual gun firings.

Generalization of the effects of traveling charge ignition time and burning behavior on ballistic performance based upon various gun/propulsion systems.

Investigation of the effect the burnout location of the traveling charge has on base pressure and subsequent ballistic performance.

Investigation of the effect of different ratios of "booster" charge to traveling charge on ballistic performance.

Investigation of the effect of using the kinetic options in XKTC to model the traveling charge propellant. The kinetic options allow for a delayed chemical reaction of the traveling charge propellant.

Investigation of the origin of the resistance profile used in modeling the experimental firings. This investigation will be performed in an experimental program.

REFERENCES

- 1. Langweiler, H., "A Proposal For Increasing the Performance of Weapons by the Correct Burning of Propellant", British Intelligence Objective Sub-Committee, Group 2, Ft. Halstead Exploiting Center, 1247
- 2. Briand, R., Dervaux, M., Nicolas, M., "Etude Theorique De La Balistique Interieure De Canons Avec Charge Embarquee", AGARD Conference Proceedings No. 392, Interior Ballistics of Guns, AGARD-CP-392, January 1986.
- 3. I.W. May, I.W., Baron, A.F., Gough, P.S., Baer, P.G., "The Traveling Charge Effect", BRL Memorandum Report ARBRL-MR-03034, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, July 1980.
- 4. Lee, L. and Laidler, K.J., "The Interior Ballistics of the Impulse Propulsion Gun", Nord 10260 Contract Report CU/F/51.2, August 1951.
- 5. Vinti, J.P., "Theory of the Rapid Burning of Propellants", BRL Report No. 841, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, December 1952. (AD#PB137128)
- 6. Gough, P.S., "A Model of the Traveling Charge", Contract Report ARBRL-CR-00432, July 1980.
- 7. Gough, P.S., "Extensions of BRLTC. A Code for the Digital Simulation of the Traveling Charge", Contract Report.
- 8. Baer, P.G., "A Parametric Study Of A 40-MM Air Dofense Gun Using Conventional And Traveling Charge Propellant", Proceedings of DEA-G-1060, Germany-United States Ballistic Research and Development Meeting, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, June 1982.
- 9. O'Donnell, T.J., Holter, W.H., Petkof, R., Rice, M.L., "Investigation of Propellant Systems for High-Performance Guns", Nord 10721, 15336 Contract Report, Atlantic Research Corporation, July 1955.
- 10. Baer, P.G., "Application of Porous Propellant to the Traveling Charge Gun", BRL Technical Note No. 1219, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, October 1958. (AD#304178)
- 11. Barbarek, L.A.C. and Jeslis, J., "Feasibility Study of Traveling-Charge-Type 20-mm Caseless Ammunition", IIT Research Institute, Final Report K6091, Contract DA-36-038-AMC-2907(A), February 1967.
- 12. Baldini, L.F., and Audette, R.G., "Traveling Charge", Proceedings of Aeroballistic Range Association, 1975.
- 13. Smith, H.C., "An Investigation of the Use of Porous Propellants in a Traveling Charge Gun", BRL Memorandum Report No. 1554, Ballistic

- Research Laboratories, Aberdeen Proving Ground, MD, January 1964. (AD#441254)
- 14. Gough, P.S., "The NOVA Code: A User's Manual. Volume 1. Description and Use", IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.
- 15. Gough, P.S., "Effect of Finite Flame Thickness on Traveling Charge Performance", 23rd JANNAF Combustion Meeting, NASA/Langley Research Center, Hampton, VA, October 1986.
- 16. Robbins, F.W., Koszoru, A.A., Minor, T.C., "A Theoretical And Experimental Interior Ballistic Characterization Of Combustible Cases", The Proceedings of the 9th International Symposium on Ballistics, Royal Military College of Science, Shrivenham, England, April May 1986.
- 17. Tompkins, R., White, K., Juhasz, A., Oberle, W., "Traveling Charge Concept Combustion and Interior Ballistic Diagnostics", 23rd JANNAF Combustion Meeting, NASA/Langley Research Center, Hampton, A, October 1986.
- 18. Private communication with F. Robbins, BRL.
- 19. Freedman, E., "BLAKE A Thermodynamics Code Bused on TIGER: User's Guide and Manual", BRL Technical Report ARBRL-TR-02411, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, July 1982.
- 20. Price C. and Juhasz, A., "A Versatile User-Oriented Closed Bomb Data Reduction Program (CBRED)", BRL Report No. 2018, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, September 1977.

APPENDIX A

Tables A-1 and A-2 give the maximum pressures, at the indicated gages, and muzzle velocities for the two different burn rate laws used in the ignition time study.

TABLE A-1. Ignition Time Study - Constant Burn Rate

Ignition Time(ms)	G1 MPa	G2 MPa	G3 MPa	G5 MPa	G7 MPa	Velocity m/s
0	n/a	N/A	N/A	N/A	N/A	N/A
.475	497	494	469	81	30	1998
.95	436	426	365	67	28	1926
1.15	373	364	399	55	28	1895
1.35	349	346	288	52	22	1946
1.55	349	346	288	49	22	1980
1.75	349	346	288	124	21	2017
**	496	492	394	71	33	1897

Note: Results for an ignition delay of 0 ms was not obtained due to difficulties with XKTC

* 42 g All "Booster" Case

TABLE A-2. Ignition Time Study - Pressure Dependent Burn Rate

Ignition Time(ms)	G1 MPa	G2 MPa	G3 MPa	G5 MPa	G7 MPa	Velocity m/s
0	498	498	427	78	29	2011
.475	530	541	457	76	28	2035
.95	573	546	570	84	31	1989
1.15	535	437	626	73	38	1903
1.35	349	346	288	50	20	1917
1.55	349	346	288	47	21	1979
1.75	349	346	288	86	20	2018
*	496	492	394	71	33	1897

No. Of	••••••••••••••••••••••••••••••••••••••	No. Of	Om word not be a
Copies	Organisation	Copies	Organization
12	Commander	1	Commander
_	Defense Technical Info Center		US Army Materiel Command
	ATTN: DTIC-DDA		ATTN: AMCDRA-ST
	Cameron Station		5001 Eisenhower Avenue
	Alexandria, VA 22304-6145		Alexandria, VA 22333-0001
1	Commander	5	Project Hanager
	USA Concepts Analysis Agency	_	Cannon Artillery Weapons
	ATTN: D. Hardison		System, ARDC, AMCCOM
	8120 Woodmont Avenue		ATTN: AMCPM-CW,
	Bethesda, ND 20014		F. Nenke
			ANCPN-CW
1	HQDA/DAMA-ZA		AMCPN-CWS
	Washington, DC 20310		N. Fisette
	•		ANCPN-CWA
1	HQDA, DAMA-CSM, E. Lippi		R. DeKleine
	Washington, DC 20310		H. Hassmann
	•		Picatinny Arsenal, NJ
•	HQDA/DANA-ART-N		07806-5000
	Washington, DC 20310		
	•	2	Project Manager
1	HQDA/SARDA	_	Munitions Production Base
	Washington, DC 20310		Modernisation and Expansion
			ATTN: AMCPH-PBM, A. Siklosi
1 .	Commander		AMCPM-PBM-E, L. Laibson
	US Army War College		Picatinny Arsenal, NJ
	ATTN: Library-FF229		07806-5000
	Carlisle Barracks, PA 17013		
		3	Project Manager
1	Director		Tank Main Armament System
	US Army BND		ATTN: AMCPH-TMA, K. Russell
	Advanced Technology Center		ANCPH-THA-105
	P. O. Box 1500		ANCPH-THA-120
	Huntsville, AL 35807		Picatinny Arsenal, NJ
			07806-5000
1	Chairman		
	DOD Explosives Safety Board	1	Commander
	Room 856-C		US Army Watervliet Arsenal
	Hoffman Bldg. 1		ATTN: SARWV-RD, R. Thierry
	2461 Eisenhower Avenue		Watervliet, NY 12189
	Alexandria, VA 22331		
1	Commander		
	US Army Materiel Command		
	ATTN: ANCPH-GCH-WF		
	FAAA Tirankassaa basaassa		

5001 Eisenhower Avenue Alexandria, VA 22333

No. Of
Copies Organization
1 Director
Benet Weapons Laboratory
Armament R&D Center
US Army ANCCOM
ATTN: SMCAR-LCB-TL
Watervliet, NY 12189
1 Commander
US Army Aviation Research
and Development Command
attn: amsav-b
4300 Goodfellow Blvd.
St. Louis, NO 63120
1 Commander
US Army TSARCON
4300 Goodfellow Blvd.
St. Louis, NO 63120
1 Director
US Army Air Mobility Research
And Development Laboratory
Ames Research Center
Noffett Field, CA 94035
4
1 Commander
US Army Communications Electronics Command
ATTN: AMSEL-ED
Fort Monmouth, NJ 07703
FOLC HOMBOUCH, NO 07703
1 Commander
BRADCON Technical Library
ATTN: STET-L
Fort Monmouth, NJ 07703-5301
1 Commander
US Army Harry Diamond Lab.
ATTN: DELHD-TA-L
2800 Powder Mill Road
Adelphi, ND 20783
•
1 Commander
US Army Missile Command
Rach, Dev, & Engr Ctr
ATTN: AMSMI-RD
Redstone Arsenal, AL 35898

No. Of		No. Of	
Copies	Organisation	Copies	Organisation .
1	Director US Army Missile & Space Intelligence Center	1	Project Manager M-60 Tank Development ATTN: AMCPM-M60TD
	ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500	1	Marren, MI 48090 Director US Army TRADOC Systems
١	Commandant US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360		Analysis Activity ATTN: ATAX-SL White Sands Missile Range, NM 88002
1	Commander US Army Tank Aucumotive Command ATTN: AMSTA-TSL Warren, MI 48397-5000	1	Commander US Army Training & Doctrine Command ATTN: ATCD-NA/ NAJ Williams Fort Menroe, VA 23651
1	Commander US Army Tank Automotive Command ATTN: AMSTA-CG Warren, NI 48090	1	Commander US Army Naterials Technology Laboratory Dyna East Corporation ATTN: Christine P. Brandt, Document Control
1 `	Project Manager Improved TOW Vehicle ATTN: AMCPM-ITV US Army Tank Automotive	1	3132 Market Street Philadelphia, PA 19104-2855 Commander
	Commanii Warren, MI 48090	·	US Army Research Office ATTN: Tech Library P. O. Box 12211
1	Program Manager M1 Abrams Tank System ATTN: AMCPM-GMC-SA,	_	Research Triangle Park, NC 27709-2211
_	T. Dean Warren, MI 48090	1	Commander US Army Belvoir Research & Development Ctr ATTN: STRBE-WC
1	Project Manager Fighting Vehicle Systems ATTN: ANCPH-FVS Warren, NI 48090		ATTN: STRBE-WC Tech Library (Vault) Bldg 315 Fort Belvoir, VA 22060-5606
1	President US Army Armor & Engineer Board ATTN: ATSK-AD-8 Fort Knox, KY 40121	1	Commander US Army Logistics Ctr Defense Logistics Studies Fort Lee, VA 23801

No. Of		No. Of	
Copies	Organization	Copies	Organisation
1	US Army Infantry School	2	Commander
	ATTN: ATSH-CD-CSO-OR		Naval Sea Systems Command
			ATTN: SEA 62R
	Fort Benning, GA 31905		SEA 64
	Sugal SA		Washington, DC 20362-5101
1	President		
	US Army Artillery Board	1	Commander
	Pt. 8111, OK 73503		Naval Air Systems Command
	Common Journ		ATTN: AIR-954-Tech Lib
1	Commandant		Washington, DC 20360
	US Army Command and		
	General Staff College	1	Assistant Secretary of the
	Ft Leavenworth, KS 66027-5080		Navy (R, E, and S)
	O		ATTN: R. Reichenbach
1	Commandant		Room 5E787
	US Army Special Warfare School		Pentagon Bldg.
			Washington, DC 20350
	ATTN: Rev & Tng Lit Div		
	Fort Bragg, NC 28307	1	Naval Research Lab
1	Commander		Tech Library
	Radford Army Ammo Plant		Washington, DC 20375
	ATTN: SNCRA-QA/HI LIB	_	_
	Radford, VA 24141	2	Commander
	wedford) Au #4141		US Naval Surface Weapons
1	Commander		Center
•	US Army Foreign Science &		ATTN: J. P. Consaga
	Technology Center		C. Gotzmer
	ATTN: ANXST-NC-3		Silver Spring, ND 20902-5000
	220 Seventh Street, NE	•	Name 1 Company Name of Company
	Charlottesville, VA 22901	3	Naval Surface Weapons Center ATTN: S. Jacobs/R10
			Code 730
1	Commandant		K. Kim/Code R-13
•	US Army Field Artillery		•
	Center & School		R. Bernecker/Code R-13 Silver Spring, ND 20902-5000
	ATTN: ATSF-CO-NN, B. Willis		811Vet Spring, AD 20902-5000
	Ft. Sill, OK 73503	5	Commander
		3	Naval Surface Weapons Center
1	Commander		ATTN: Code G33, J. L. East
	US Army Development and		W. Burrell
	Employment Agency		J. Johndrow
	ATTN; NODE-TED-SAB		Code G23, D. McClure
	Fort Lewis, WA 98433		Code DX-21 Tech Lib
	•		Dahlgren, VA 22448-5000
1	Office of Naval Research		
	ATTN: Code 473, R. S. Miller		
	800 N. Quincy Street		
	Arlington, VA 22217		

No. Of Copies	Organization	No. Of Copies	Organisation
000000	Of Manager 2011	30/233	
2	Commander	1	AFRPL/MKPB, Stop 24
	Naval Underwater		ATTN: B. Goshgarian
	Systems Center		Edwards AFB, CA 93523-5000
	Energy Conversion Dept.		
	ATTN: CODE 58331, R. S. Lazar	1	AFFTC
	Tech Lib		ATTN: SSD-Tech Lib
	Newport, RI 02840		Edwards AFB, CA 93523
3	Commander	1	AFATL/DLYV
	Naval Weapons Center		ATTN: George C. Crews
	ATTN: Code 388, R. L. Derr C. F. Price		Eglin AFB, FL 32542-5000
	T. Boggs	1	AFATL/DLJE
	Info. Sci. Div.		Eglin AFB, FL 32542-5000
	China Lake, CA 93555-6001		
		1	Air Force Armament Lab.
1	Superintendent		AFATL/DLODL
	Naval Postgraduate School		Eglin AFB, FL 32542-5000
	Dept. of Mechanical		
	Engineering	1	AFWL/SUL
	Code 1424 Library		Kirtland AFB, NM 87117
	Monterey, CA 93943		•••
•	Program Managan	10	Central Intelligence Agency
1 .	Program Manager AFOSR		Office of Central Reference
	Directorate of Aerospace		Dissemination Branch
	Sciences		Room GE-47 HQS Washington, DC 20502
	ATTN: L. H. Caveny		Washington, bc 20302
	Bolling AFB, DC 20332	1	Central Intelligence Agency
		•	ATTN: Joseph E. Backofen
3	Commander		HQ Room 5F22
_	Neval Ordnance Station		Washington, DC 20505
	ATTN: J. Birkett		
	D. Brooks	1	General Applied Sciences Lab
	Tech Library		ATTN: J. Erdos
	Indian Head, ND 20640		Merrick & Stewart Avenues
			Westbury, NY 11590
1	HQ AFSC/SDOA		
	Andrews AFB, MD 20334	1	
			Bedford Research Park
1	AFR9L/DY, Stop 24		ATTN: V. Yousefian
	ATTN: J. N. Levine/DYCR		Bedford, NA 01730
	Edwards AFB, CA 93523-5000		
_		1	
1	AFRPL/TSTL (Tech Library)		ATTN: P. Micheli
	Stop 24		Sacramento, CA 95813
	Edwards AFB, CA 93523-5000		

No. Of		No. Of	
Copies	Organization	Copies	Organization
			
1	Atlantic Research Corporation	1	Lawrence Livermore
	ATTN: M. K. King		National Laboratory
	5390 Cheorokee Avenue		ATTN: N. S. L-355
	Alexandria, VA 22314		M. Finger
•	THE WALL AND THE PARTY		P. O. Box 808
1	AVCO Everett Rach Lab		Livermore, CA 94550
	ATTN: D. Stickler		
	2385 Revere Beach Parkway	1	Olin Corporation
	Everett, NA 02149		Badger Army Ammunition Plant
	Coloner Comments		ATTN: R. J. Thiede
1	Calspan Corporation		Baraboo, WI 53913
	ATTN: Tech Library		
	P. O. Box 400	1	Olin Corp/Smokeless Powder
	Buffalo, NY 14225		Operations
1	Conomal Blockeds Company		RED Library
1	General Electric Company		ATTN: V. McDonald
	Armament Systems Dept. ATTN: M. J. Bulman,		P.O. Box 222
	Room 1311		St. Marks, FL 32355
	Lakeside Avenue		
		1	Paul Gough Associates, Inc.
	Burlington, VT 05401		ATTN: P. S. Gough
1	IITRI		P. O. Box 1614,
•	ATTN: N. J. Klein		1048 South St.
	10 W. 35th Street		Portsmouth, NH 03801
	Chicago, IL 60616	_	
	CHICAGO, ID 00010	1	Physics International Company
1	Hercules Powder Co.		ATTN: Library
•	Allegany Ballistics		H. Wayne Wampler 2700 Merced Street
	Laboratory		San Leandro, CA 94577
	ATTN: R. B. Miller		San Leandro, CA 945//
	P. O. Box 210	2	Rockwell International
	Cumberland, ND 21501	•	Rocketdyne Division
			ATTN: BA08 J. E. Flanagan
1	Hercules, Inc		J. Gray
	Bacchus Works		6633 Canoga Avenue
	ATTN: K. P. McCarty		Canoga Park, CA 91304
	P. O. Box 98		
	Magna, UT 84044	1	Princeton Combustion Research
		•	Lab., Inc.
2	Director		ATTN: M. Summerfield
	Lawrence Livermore		475 US Highway One
	National Laboratory		Monmouth Junction, NJ 08852
	ATTN: N. S. L-355,		
	A. Buckingham		
	P. O. Box 808		

Livermore, CA 94550

No. Of		No. Of	
Copies	Organization	Copies	Organisation
1	Science Applications, Inc.	1	Battelle Nemorial Institute
	ATTN: R. B. Edelman		ATTN: Tech Library
	23146 Cumorah Crest		505 King Avenue
	Woodland Hills, CA 91364		Columbus, OH 43201
3	Thickol Corporation	1	Brigham Young University
	Huntsville Division		Dept. of Chemical Engineering
	ATTN: D. Flanigan		ATTN: N. Beckstead
	R. Glick		Provo, UT 84601
	Tech Library		
	Huntsville, AL 35807	1	California Institute of Tech
			204 Karman Lab
1	Scientific Research		Main Stop 301-46
	Assoc., Inc.		ATTN: F. E. C. Culick
	ATTN: H. McDonald		1201 E. California Street
	P.O. Box 498		Pasadena, CA 91109
	Glastonbury, CT 06033		
		1	California Institute of Tech
1	Thickol Corporation		Jet Propulsion Laboratory
	Wasatch Division		ATTN: L. D. Strand
	ATTN: Tech Library		4800 Oak Grove Drive
	P. O. Box 524		Pasadena, CA 91103
	Brigham City, UT 84302	•	
		1	Professor Herman Krier
2	Thickol Corporation		Dept of Nech/Indust Engr
	Elkton Division		University of Illinois
	ATTN: R. Biddle		144 MEB; 1206 N. Green St.
	Tech Lib.		Urbana, IL 61801
	P. O. Box 241		
	Elkton, ND 21921	1	University of Minnesota
			Dept. of Mechanical
1	Universal Propulsion Company		Engineering
	ATTN: H. J. McSpadden		ATTN: E. Fletcher
	Black Canyon Stage 1		Minneapolis, MN 55455
	Box 1140		
	Phoenix, AZ 85029	1	University of Massachusetts
			Dept. of Mechanical
2	United Technologies		Engineering
	Chemical Systems Division		ATTN: K. Jakus
	ATTN: R. Brown		Amherst, MA 01002
	Tech Library	_	
	P. O. Box 358	1	Case Western Reserve
	Sunnyvale, CA 94086		University
•	Maria Alama Marahara Sama		Division of Aerospace
1	Veritay Technology, Inc.		Sciences
	4845 Millersport Hwy.		ATTN: J. Tien
	P. O. Box 305		Cleveland, OH 44135
	East Amherst, NY 14051-0305		

_			
No. Of		No. Of	
Coples	Organization	Copies	Organization
3	Georgia Institute of Tech	1	SRI International
	School of Aerospace Eng.	•	Propulsion Sciences Division
	ATTN: B. T. Zinn		ATTN: Tech Library
	E. Price		333 Ravenswood Avenue
	W. C. Strahle		Menlo Park, CA 94025
	Atlanta, GA 30332		Mento Park, Ch 34023
		1	Rensselaer Polytechnic Inst.
1	Institute of Gas Technology	,	Department of Mathematics
•	ATTN: D. Gidaspow		-
	3424 S. State Street		Troy, NY 12181
	Chicago, IL 60616		3
	· · · · · · · · · · · · · · · · · · ·	1	Director
1	Johns Hopkins University		Los Alamos National Lab
•	Applied Physics Laboratory		ATTN: M. Division, B. Craig
	Chemical Propulsion		T-3 MS B216
	Information Agency		Los Alamos, NM 87545
	ATTN: T. Christian		
	Johns Hopkins Road	1	Stevens Institute of
	Laurel, MD 20707		Technology
	Laurer, MD 20/0/		Davidson Laboratory
1	Massachusetts Institute of		ATTN: R. McAlevy, III
'			Castle Point Station
	Technology		Hoboken, NJ 07030
	Dept of Mechanical Engineering		
	ATTN: T. Toong	1	Rutgers University
	77 Massachetts Avenue		Dept. of Mechanical and
	Cambridge, MA 02139		Aerospace Engineering
_			ATTN: S. Temkin
1	Pennsylvania State University		University Heights Campus
	Dept. Of Mechanical Engineering		New Brunswick, NJ 08903
	ATTN: K. Kuo	1	University of Southern
	University Park, PA 16802		California
1	University of Michigan		Mechanical Engineering Dept.
,	Gas Dynamics Lab		ATTN: OHE200, M. Gerstein
	Aerospace Engr Bldg		Los Angeles, CA 90007
	ATTN: Dr. G. M. Faeth		
	Ann Harbor, MI 48109-2140	2	University of Utah
	All Natbol, MI 46103-2140		Dept. of Chemical Engineering
1	Purdue University		ATTN: A. Baer
•	School of Mechanical		G. Flandro
			Salt Lake City, UT 84112
	Engineering ATTN: J. R. Osborn	_	
		1	Washington State University
	TSPC Chaffee Hall		Dept. of Mechanical
	West Lafayette, IN 47906		Engineering
			AMMN C. M. CYOMA

ATTN: C. T. Crowe Pullman, WA 99163

No. Of

Copies Organization

No. Of

Copies

Organization

Aberdeen Proving Ground

Dir, USANSAA

ATTN: AMXSY-D

AMXSY-MP, H. Cohen

Cdr, USATECOM

ATTN: AMSTE-TO-F

Cdr, USACSTA

ATTN: S. Walton

G. Rice

D. Lacay

C. Herud

Dir, HEL

ATTN: J. Weisz

Cdr, CRDC, AMCCOM

ATTN: SMCCR-RSP-A

SMCCR-MU

SMCCR-SPS-IL

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Rep	port Number	Date of Report
2. Date Re	eport Received	
3. Does the other area	his report satisfy a need? of interest for which the	(Comment on purpose, related project, or report will be used.)
4. How spedata, proce	ecifically, is the report edure, source of ideas, et	being used? (Information source, design
as man-hour	e information in this reports or dollars saved, operato, please elaborate.	rt led to any quantitative savings as far ting costs avoided or efficiencies achieved,
		hink should be changed to improve future ization, technical content, format, etc.)
	Name	
CURRENT	Organization	,
ADDRESS	Address	
	City, State, Zip	
7. If indi New or Corr	cating a Change of Address ect Address in Block 6 abo	s or Address Correction, please provide the ove and the Old or Incorrect address below.
	Name	
OLD	Organization	
ADDRESS	Address	
	City, State, Zip	

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

- FOLD HERE -

Director

US Army Ballistic Research Laboratory

ATTN: DRXBR-OD-ST

Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director

US Army Ballistic Research Laboratory

ATTN: DRXBR-OD-ST

Aberdeen Proving Ground, AD 21005-9989

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE -