This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-325853 (P2002-325853A)

(43)公開日 平成14年11月12日(2002.11.12)

(51) Int.Cl.'	識別記号	FI	テーマコード(参考)
A61N 5/06		A61N 5/06	Z 4C082
A 6 1 K 31/35	2	A 6 1 K 31/352	4 C 0 8 4
31/40	9	31/409	4 C 0 8 6
45/00		45/00	
A61P 35/00		A 6 1 P 35/00	
	審査請求	未請求 請求項の数7 〇L	(全 6 頁) 最終頁に続く
(21)出願番号	特顧2002-61784(P2002-61784)	(71)出題人 593108772	
		ヘルス リサー	チ インコーポレイテッド
(22)出顧日	平成14年3月7日(2002.3.7)	Health	Research, In
		c.	
(31)優先権主張番号	9 09/801163	アメリカ合衆国	1、ニューヨーク州 14263、
(32)優先日	平成13年3月7日(2001.3.7)	パッファロー、	エルム アンド カールト
(33)優先権主張国	米国 (US)	ン ストリーツ	(番地なし)、ロズウェル
		パーク キャ	ンサー インスティテュー
		ト ディヴィジ	ョン内
		(74)代理人 100059959	
		弁理士 中村	稳 (外9名)

最終頁に続く

(54) 【発明の名称】 哺乳類の過剰増殖組織を処理するための方法

(57)【要約】

【課題】哺乳類の望ましくない過剰増殖組織を処理するための新規方法によって、光力学的化合物又はキサンテノン-4-酢酸のみによって得られうるよりも過剰増殖組織のネクローシスを引き起こし、更に、光力学的化合物及びキサンテノン-4-酢酸が哺乳類にもはや存在しなくなった後でも過剰増殖組織に対する哺乳類の免疫応答を増強すること。

【解決手段】本方法は、過剰増殖組織における選択的取込みを有し、かつ、特定の光周波数で活性化される光力学的化合物を哺乳類に注入する工程:過剰増殖組織において、キサンテノン-4-酢酸又はその第1属金属、第11族金属若しくは四価の塩を、光力学的化合物の最大取込み時間付近で哺乳類に注入する工程:及び過剰増殖組織を特定の光周波数の光に曝露して光力学的化合物を活性化する工程を含む。

【特許請求の範囲】

【請求項1】哺乳類の過剰増殖組織を処理するための方法であって、腫瘍選択的取込みを有し、特定の光周波数で活性化される光力学的化合物を、腫瘍を有する哺乳類に注入する工程、及び腫瘍を特定の光周波数の光に曝露する工程を含み、前記哺乳類に、キサンテノン-4-酢酸又はその第I属金属、第II族金属、アンモニウム若しくは四価の塩を、光力学的化合物の最大取込み時間付近で注入することを特徴とする方法。

【請求項2】過剰増殖組織が腫瘍である、請求項1に記載の方法。

【請求項3】光力学的化合物が、哺乳類の体重に対して 約1~約1 Ong/kgの投与量で注入されるポルフィマー ナトリウムであり、及び光周波数が、約100~約225J/cm ²のエネルギーで約630nmである、請求項2に記載の方 法。

【請求項4】キサンテノン-4-酢酸が、5,6-ジアルキルキサンテノン-4-酢酸である、請求項3に記載の方法。 【請求項5】キサンテノン-4-酢酸が、5,6-ジメチルキサンテノン-4-酢酸である、請求項3に記載の方法。

【請求項6】5,6-ジメチルキサンテノン-4-酢酸が、哺乳類の体重に対して約5~約50mg/kgの投与量で注入される、請求項5に記載の方法。

【請求項7】5.6-ジメチルキサンテノン-4-酢酸が、哺乳類の体重に対して約10~約30mg/kgの投与量で注入される、請求項6に記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】[発明の背景]この発明は、 国立癌研究所からのグラントNo. CA 55791によるサポー トによりなされた。アメリカ政府は、本発明の一定の権 利を有してもよい。本発明は、腫瘍及び過剰増殖血管の ような過剰増殖組織、例えば、加齢関連黄斑部変性(AM D) を有するものを、光力学的方法を利用して処理する ための方法に関する。一定の光力学的化合物、例えばク ロリンの誘導体のようなポルフィリン関連化合物、バク テリオクロリン、及びポルフィマーナトリウム化合物の ようなヘマトポルフィリン類を、安定なときは、その目 的のために使用してもよい。これらの化合物は、生体に 注入されると過剰増殖組織に優先的に集まり、及び、光 を吸収して組織の成長の低下を、例えばその組織の駆除 によって引き起こす能力を有する。光力学的化合物を利 用した過剰増殖組織の成長のこのような低下は、ここで まとめて光力学療法と言う。

[0002]

【従来の技術】光力学療法(PDT)は、様々な形の固体腫瘍の処理のための比較的新しい療法である。多くのボルフィリン及び関連する感光性化合物は、静脈内注射後の腫瘍発育組織に選択的に蓄積して、この組織が光照射に感作する能力を示す。光ファイバを通したレーザーに

よって届けられた可視光によって感光性剤を活性化する と、細胞障害性剤が生成する。分子酸素から形成される 一重項酸素の生産は、活性化光増感剤からの直接的又は 間接的なエネルギーの移送によって分子酸素から形成さ れ、腫瘍ホメオスタシス及び観測された腫瘍駆除の原因 となることが現在認められている。以下の光吸収におい て、光増感剤は、その基底一重項状態 (P) から、電子 的に励起した三重項状態(3P+; て~10-2秒) に、短命な 励起一重項状態(iP*; て~10-6秒)を経て変化する。励 起三重項は、無放射減衰を受けるか、又は生物学的な基 質を有する電子移動プロセスに関与してラジカル及びラ ジカルイオンを形成し得る。そしてこれらは、分子酸素 (02) との相互作用の後に、一重項酸素及びスーパーオ キシド(02-)を生じ得る。一重項酸素は、標的組織 (T)の酸化反応を引き起こすPDTにおいて、細胞及び組 織損傷の原因となるキー剤(key agnet)であり;超酸化 物イオンが含まれてよい証拠もある。

【0003】1978年において、ヘマトポルフィリン誘導 体 (HpD) と光の組み合わせは、25人の患者の113のうち 111の腫瘍において、部分的又は完全な腫瘍ネクローシ スを生ずるのに効果的だったと報告されている。フォト フィリン(Photofrin, 登録商標) (精製されたHpD) でのP DTは、カナダでは膀胱及び食道癌に対して、オランダ及 びフランスでは初期及び進行期の食道癌に対して;日本 では初期の肺、食道、胃、及び子宮頸癌に対して;及 び、米国では、進行期の食道癌及び肺癌に対して承認さ れた。10.000人を超える世界中の患者は、皮膚、肺、膀 胱、頭頸部、胸部及び食道癌を含め、光にアクセスでき る多数の腫瘍に対するPDTによって治療されてきた。PDT は、いくつかのメカニズム、例えば腫瘍細胞に対する直 接の毒性、腫瘍血管構造及び微小血管系の吸蔵及び溶解 によって、その抗癌効果を出す。これらの作動モードに もかかわらず、多くのPDT治療された腫瘍は、治癒され ない。更に、PDTは、光に暴露されない転移性病巣にほ とんど効果を有しない。加えて、公知の光力学的化合物 は、低酸素の腫瘍細胞に対してしばしば効果がなく、及 び望ましくない過剰増殖組織に対する生体の免疫応答を ほとんど増強しない。したがって、光力学療法は、効果 的であるが、望ましいほど効果的ではなく、全有効性を 改善する方法が必要である。

【0004】薬物療法は、a)一次疾患に対する局所療法の前後における補助治療として、潜在的転移を根絶する目的で、及び、b)他の化学療法薬を含む他の物理療法と組み合わせて、それらの治療の効果を改善する試みとして用いられる。効果間の相互作用が腫瘍に特異的でない限り、この相乗作用は、治療の利点とはならない。最近の関心は、生体応答調節剤(BRM)を癌に対する単一又は補助療法として使用することにある。BRMは、免疫応答又は他の防衛メカニズムの種々の成分を制御するために作用する多数の分子から成る。

【0005】悪性に対する宿主の免疫応答を刺激又は増 強し得る薬剤の開発は、癌治療法に魅惑的なアプローチ を表明する。フラボン-8-酢酸(FAA)(図1a)は、1980年 代中期から1990年代において薬剤として固体腫瘍を処理 するために広く研究された合成フラボノイドである。腫 瘍血管供給を中断することによって、FAAは、少なくと も部分的にその抗腫瘍活性を発揮する。例えば、種々の 研究者は、色素灌流、NMR、RbC1-取込み(RbC1-uptake) 及びXe-クリアランス(Xe-clearance)技術を使用して、F AAが腫瘍血流の低下を引き起こすことを示した。正常組 総血流量の変化は、ほとんど若しくはまったく観測され なかった。FAAが多くの腫瘍株に対してインビトロ活性 を示す一方、インビボ効果、主に、出血性腫瘍ネクロー シスは、記載された以下のTNFでの処理と同様である。F AAは、脾臓及び他の組織のナチュラルキラー細胞活性を 誘導する。ルイス肺癌を使用したインビボ及びインビボ 研究の比較は、抗腫瘍作用の間接的な様式を強く示唆し た。Mahadevanらは、TNF-αに対する抗血清でのマウス の前処理は、FAAによって誘導されるコロン26腫瘍血流 の低下をほとんど完全に抑止し得ることを示している。 同じ研究において、FAAは、インビトロにおいて、脾細 胞及び腹腔浸出細胞を誘導して、TNF-α様活性を有する 物質を生産及び誘導することを示した(TNF感受性WEHI 164細胞を使用した機能的分析において測定される)。 これらの観測は、FAAの活性が、TNF-αを腫瘍に誘導す る能力に起因することを示唆する。

【0006】FAAの印象的な症状発現前の活性にもかか わらず、臨床試験は、力価不足及び投与量を制限する毒 性のために期待はずれだった。FAAの類似体の構造-活性 研究は、同様の生物学的なプロフィールを有するが、増 大した臨床的な有効性を有する化合物を見いだすために 行われてきた。最も早期の研究において、位相幾何学的 に関連する単一置換の縮合環類似体キサンテノン(Xanth enone)-4-酢酸 (XAA) は、コロン38腫瘍の除去におい て、FAAより効率的であることがわかった。その後、同 じグループによる研究は、あるXAAの二置換誘導体、特 に5,6-ジメチルキサンテノン-4-酢酸 (DMXAA; 図1b) が、移植されたマウスの腫瘍に対し、FAAよりかなり大 きい投与量力価を有することを示した。FAAと同様に、D $MXAAは、IFN-\gammaに加えてTNF-\alphaを誘導することを示し$ た。TNF-αは、腫瘍細胞と腫瘍-浸潤宿主細胞の双方に よってもっぱら腫瘍内で生じる。循環するTNFは、治療 レベルのTNF-αを注入することによって、或いは、LPS 投与によるTNF-αの内因性誘導によって得られるよりも 著しく低い。これは、適度な全身毒性を有する選択的な 腫瘍反応になる。FAAとは反対に、DMXAAは、インビトロ において、培養されたヒト及びマウス細胞に対して活性 である。これは、外部性rHuTNF-αが、局所又は全身の 毒性のいずれにおいても共に増加せずにPDTを増強する ことを示す。

[0007]

【発明が解決しようとする課題】したがって、本発明の目的は、低酸素の腫瘍細胞を含む過剰増殖組織に対して 光力学的化合物の有効性を改善すること、望ましくない 過剰増殖組織に対する生体の免疫応答を増強すること、 及び光の照射がなくても効果を提供すること、にある。 【0008】

【課題を解決するための手段】[簡単な発明の要約]本 発明によれば、哺乳類の望ましくない過剰増殖組織を処 理するための新規な方法を提供する。方法は、次の工 程:哺乳類に、過剰増殖組織の選択的な取込みを有し且 つ特定の光周波数で活性化される光力学的化合物を注入 する工程、哺乳類に、キサンテノン-4-酢酸又はその第1 属金属、第11族金属又は四価の塩を、過剰増殖組織の光 力学的化合物の最大取込み時間付近で注入する工程;及 び、過剰増殖組織を光力学的化合物を活性化する特定の 周波数の光に暴露する工程、を含む。本発明の方法は、 光力学的化合物又はキサンテノン-4-酢酸のみによって 得られうるよりも過剰増殖組織のネクローシスを引き起す こす。更に及び意外にも、この方法は、光力学的化合物 及びキサンテノン-4-酢酸が哺乳類にもはや存在しなく なった後でさえ、過剰増殖組織に対する哺乳類の免疫応 答を増強する。

[0009]

【発明の実施の形態】 [発明の詳細な説明] 本発明の方法に従う処理を受けた過剰増殖組織は、哺乳類において制御不能的に成長する組織、例えば、AMDで見られるような腫瘍及び過剰増殖血管である。この方法は、転移性であってもよい大きい及び小さい腫瘍に特に好適である。腫瘍は、微小腫瘍であってもよく、又は、低酸素であってもよい。光力学的化合物の実施が哺乳類非依存性であるので、この方法は、本質的にいかなる哺乳類にも適用できる。更に、キサンテノン-4-酢酸(XAA)が同じメカニズムによって含まれる哺乳類に関係なく腫瘍壊死因子(TNF)を誘導するので、XAAの使用はさらに哺乳類に非依存的である。従って、この方法は、全ての哺乳動物、特に齧歯動物及び霊長目動物に適用できる。

【0010】光力学的化合物は、通常、すべてのポルフィリン関連化合物、例えば、商標フォトフィリン(PHOTO FRIN 登録商標)の下に販売されるポルフィマーナトリウム、及びクロリン及びバクテリオクロリンの誘導体であって、例えば、米国特許第4,866,168、5,002,962、5,02 8,621、5,093,349、5,173,504、5,190,966、5,198,46 0、5,225,433、5,314,905、5,459,159、5,498,710、5,5 91.847、5,864,035及び6,103,751号明細書に記載されているようなものである。光力学的化合物は、通常、哺乳類の体重に対して、約1~約10mg/kgの量で使用される。光力学的化合物がポルフィマーナトリウムである場合、使用される光周波数は約100~約225J/cm²のエネルギーで約630nmである。キサンテノン-4-酢酸は、キサンテノ

ン-4-酢酸及びその置換された誘導体、特に、ジアルキルキサンテノン-4-酢酸及び好ましくは5.6-ジアルキルキサンテノン-4-酢酸である。ジアルキルキサンテノン酢酸は、最も一般に、哺乳類の体重に対して約10~約30 mg/kgの濃度で使用されるジメチルキサンテノン酢酸 (D MXAA) である。キサンテノン-4-酢酸の語は、その置換された誘導体、特にそのアルキル置換された誘導体を含むと理解され、及び、その第1属及び第11族金属及びアンモニウム及び4価の塩を含むことを意図する。

【0011】DMXAAは、原則として、以下の理由により、PDTと成功裡に組み合わされ得る:

- a) これらの2つの物理療法の全身毒性が異なるので、完全に許容的な投与量の近傍で、腫瘍に対する添加物効果及び正常組織に対して相加的な毒性を有することなく、これらを組み合わせることができるため、
- b) 発表された結果が、DMXAAが低酸素の腫瘍細胞、正確には、最もPDTに抵抗しそうな細胞に対してより効果的であることを示唆するため、及び
- c) PDTと組み合わせたDMXAAのBRM特性は、腫瘍に対して 免疫性を刺激し得るため。

同系のマウスの線維肉腫RIF-1に関する我々の予備データは、補助剤DMXAAによるPDTは、いずれにしても、同時に生ずる毒性のない抗腫瘍活性と、腫瘍に対する免疫原性との双方を増大することを示唆する。この後者の特性を最適化すると、潜在性の微小癌組織の転移を成功裡に根絶できる。本発明の方法は、光力学療法と生物反応を修正することができる物質との組合せによって、局部的に悪性腫瘍を処理する方法又は工程、及び、光力学療法と生物反応を修正することができる物質との組合せによって、原発腫瘍及び潜在性の転移の制御となる腫瘍免疫性を刺激する方法又は工程である。

【0012】PDT及びDMXAA又は関連する生物反応を修正する化合物は、各療法で適用の投与量及び間隔を使用して適用される結果、強い、即時の抗腫瘍反応が得られる。PDT及びDMXAA又は関連する生物反応を修正する化合物は、各物理療法で適用の投与量及び間隔を使用して適用される結果、遅延した抗腫瘍反応が得られる。遅延反応は、弱い及び効果のない即時抗腫瘍反応を要求してもよい。遅延反応は、予想外にも、続く腫瘍成長に従う免疫性になる。

[0013]

【実施例】図面は、PDT(図2A)又はDMXAA(図2B)に対するRIF-1腫瘍反応を例示する。用量反応データは、Kap lan-Meierの"サバイバル"プロットの形で示され、400 mm3未満の容積を有するRIF-1腫瘍のパーセントを、処理からの時間に対してプロットした。処理の時点で腫瘍量は、50-70mgであった(マウス体重のほぼ3%)。PDT及びDMXAAは、単独で投与されるが、投与量依存方法で腫瘍を制御し得る。しかしながら、大部分の効果量は、このマウスモデルにおける治療事性限界又はその近傍であっ

た。大PDT投与量に続く罹病率及び死亡率が、少なくとも部分的には特異的なモデルであると思われる: すなわち、腫瘍の局所療法は、ヒト患者のような非常に大きい対象と比べて、比較的大きい体積の対象の解明(illumination)になる。

【0014】PDTプラス補助剤DMXAAの試験的研究において、各物理療法の低薬量だけが選ばれた。図3は、以下の条件を用いたRIF-1腫瘍再生を示す:

2mg フォトフィリン/kg、23時間;

20mg DMXAA/kg、2時間;

135J/cm² 630nmレーザ光。

対照腫瘍(薬なし、光なし)は、黒四角で示す; DMXAAは、白丸で示す; PDTのみは、灰色の丸で示す。PDTとDM XAAとを組み合わせると(個々の腫瘍は、点線で示す)、1/5の腫瘍を過去60日制御して、腫瘍再生を10日間遅延した。図4は、わずかに異なる条件を使用した腫瘍反応を示す:

2mg フォトフィリン/kg、23時間:

20mg DMXAA/kg、1時間;

135J/cm² 630nmレーザ光。

グラフの記号は、図3と同じである。組合せ処理グループの全5マウスは、弱い即時の反応(すなわち2日の再生遅延だけ)を有した。しかしながら、5つのうち3つの腫瘍は、遅延反応を有し、腫瘍量は、2日間を通じて~160㎡から0まで減少した;この遅れた反応を受けている3つの腫瘍のうち1つは、4日遅延の後、再び成長した。この遅延反応は、初期の反応が弱い(データには示されていない)と考えられる他の処理条件を使用していると見られる。遅延反応は、複合治療に対し、続く強い即時の腫瘍反応を得られず、遅延反応はいかなる対照グループにも見られなかった。

【0015】1ヵ月処理の後、制御された腫瘍を有する2つのマウスには(図4の下に示す)、3×10⁶のRIF-1細胞のスタンダード腫瘍化(tumoring)投与量を、(最初の処理した腫瘍の肩と反対側の肩に)再注入した。図5に示すように、わずかな成長の後、1つの腫瘍は、ゼロ容積に退行し、>1月間程度残存した:2つめの腫瘍は、いくらか初期成長をし、再成長する数週間前は変化がないままだった。この反応は、この腫瘍系統に対して後天性の免疫応答を表し、及び、これ自体、この治療は、原発腫瘍及び潜在性の微小癌組織の転位的悪性腫瘍の双方を制御するために使用され得る。

【図面の簡単な説明】

【図1A】FAAの化学構造を示す。

【図1B】DMXAAの化学構造を示す。

【図2A】RIF-1腫瘍のPDTに対する用量反応を、ポルフィマーナトリウム(フォトフィリン(登録商標))を使用し、630nmレーザ光線を使用して、投与量及び光エネルギーを変化させて示すグラフである。

【図2B】RIF-1腫瘍のDMXAAに対する用量反応を投与量

を変化させて示すグラフである。

【図3】RIF-1腫瘍のPDT + DMXAAに対する用量反応を示すグラフである。

【図4】RIF-1腫瘍のPDT + DMXAAに対する反応を示し、 弱い即時の反応に続く遅延性の腫瘍反応を示すグラフで

ある。

【図5】遅延性反応になるPDT及びDMNAAの組み合わせで 処理された原始腫瘍の腫瘍退縮に続く、RIF-1腫瘍を有 するC3Hマウスのチャレンジを示すグラフである。

フロントページの続き

(51) Int. Cl. 7 A 6 1 P 37/04 識別記号

(72)発明者 ディヴィッド エイ ベルニアー アメリカ合衆国 ニューヨーク州 14214 バッファロー アレンハースト ロード 62 FI A61P 37/04 テーマコード(参考)

(72)発明者 トマス ジェイ ドハーティ
アメリカ合衆国 ニューヨーク州 14072
グランド アイランド ウェスト オー
クフィールド ロード 2306
Fターム(参考) 4C082 PA02 PC10 PE10 PG13 PJ01
PL05
4C084 AA19 NA05 NA14 ZB09 ZB26
4C086 AA01 AA02 BA08 MA02 MA04
NA05 NA14 ZB09 ZB26