A In practice we do not evaluate single integrals by using the definition - we use fundamental Theorem of Calculus (FTC)

For a fixed x on $R = [a,b] \times [c,d]$ we compute the area under f(x,y) above [c,d]:

Suming up the greas as x vorices over [a, b] is the same as integrating A with respect to x:

Example Evaluate:

(a)
$$\int_0^3 \int_1^2 x^2 y \, dy dx$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2}y \, dx \, dy$$

Fubini's Theorem

If f is continuous on $R = [a,b] \times [c,d]$ then

Counter Example: $f(x,y) = \frac{x^2-y^2}{(x^2+y^2)^2}$ on $R = [0,1] \times [0,1]$

Example Evaluate SSy Sin (xy) dA where R=[1,2] x[0,1]

- · Double Integral as product of 2 single Integrals:
- · Integration Review:

$$\int_{X}^{n} dx =$$

$$\bigoplus \int \frac{1}{1+x^2} dx =$$

- · Integration by Parts: Judy=
- · Change of Coords: $\int_a^b f(x)dx =$ where a = and b =
- Trig Substitution: $\sin^2 x + \cos^2 = 1$ $\tan^2 x + 1 = \sec^2 x$ $\sin^2 x = \frac{1 \cos(2x)}{2}$ $\cos^2 x = \frac{1 + \cos(2x)}{2}$

· Extra Examples:

38. Use Symmetry to compute
$$\iint (1+x^2 \sin y + y^2 \sin x) dA$$
, $R = [-\pi, \pi] \times [-\pi, \pi]$

#39. Use Wolfram Alpha to compute $\int_0^1 \frac{x-y}{(x+y)^3} dy dx$ and $\int_0^1 \frac{x-y}{(x+y)^3} dx dy$.

Do your answers contradict Fabrici's Theorem? Explain.