Objectifs:

- Définition et méthode de construction d'un triangle
- Triangles particuliers
- Définition et méthode de construction des hauteurs d'un triangle

I. Triangle

1. Définition

2. Construction

3. Triangles particuliers

Si un triangle n'est pas particulier, on peut dire qu'il est quelconque.

(a) Triangle rectangle

On dit que le triangle ABC est rectangle en A.

(b) Triangle isocèle

Un triangle isocèle possède deux côtés de même longueur AC=BC et deux angles égaux $\widehat{A}=\widehat{B}$.

Dans l'exemple ci-contre, le côté [AB] est la **base** du triangle et le sommet C le **sommet principal**.

On dit que le triangle ABC est isocèle en C.

(c) Triangle équilatéral

Un triangle équilatéral possède trois côtés de même longueur.

(d) Triangle isocèle rectangle

Le triangle isocèle rectangle est à la

fois isocèle : AB = ACet rectangle : $\hat{C} = 90^{\circ}$.

4. Hauteurs

Dans les figures ci-dessous, on dit que la hauteur **est issue de** A ou qu'elle **est relative à** [BC]. On appelle le point H le **pied** de la hauteur.

II. Quadrilatères

1. Définition

Un quadrilatère est un polygone à quatre côtés. On le nomme d'après ses sommets, dans l'ordre dans lequel on les rencontre.

Dans le quadrilatère ABCD cicontre, les côtés [AB] et [CD] sont **opposés** et les côtés [AB] et

[BC] sont **consécutifs**. Les segments [AC] et [BD] sont les **diagonales** du quadrilatère ABCD.

2. Quadrilatères particuliers

(a) Carré

Définition

Méthode de construction

(b) Rectangle

Méthode de construction

(c) Losange

Définition

Méthode de construction

(d) Parallélogramme

Définition

Méthode de construction

III. Cercles et disques

1. Cercle

Définition

Tracé

Rayon

Diamètre

Corde

2. Disque

Définition

Tracé

On procède comme pour le cercle de centre O et de rayon r, mais il faut bien indiquer que l'intérieur du cercle fait partie du disque (par exemple en hachurant).

3. Propriétés du cercle

Les deux propriétés suivantes sont vraies pour tout cercle.

• Propriété 1 :

Je sais que les points A et B appartiennent à un même cercle de centre O.

J'en conclus que OA = OB.

Propriété 2 :

Deux points situés à la même distance du point O appartiennent à un même cercle de centre O.

Je sais que OA = OB.

J'en conclus que les points A et B appartiennent à un même cercle de centre O.