

# Pimpri Chinchwad Education Trust's Pimpri Chinchwad College of Engineering



Department: Mechanical Engg Academic year -2022-23 Date :- 21/02/2023

### **Course Outline**

Class: SY Mechanical Name of the Course: Kinematics and Theory of Machines

## **Relevance of the course:**

Kinematics and Theory of Machines is a fundamental course in Engineering Design Domain. It builds understanding of students in transforming and transmitting motion, and key elements of a machine. Curriculum indent to address and apply to wide domain of engineering from Machineries in all the fields, Agriculture, builds base for Robotics and Automation Machinery.

## **Pre-requisites:**

Engineering Mathematics, Fundamental of Mechanics, Power Transmission Elements, Type of Motion

| Teaching Scheme |          |        | Evaluation Scheme |    |     |     |       |
|-----------------|----------|--------|-------------------|----|-----|-----|-------|
| Lecture         | Tutorial | Credit | Hours             | IE | MTE | ETE | Total |
| 3               |          | 3      | 3                 | 20 | 30  | 50  | 100   |

### **Internal Assessment Tools and Activities:**

- 1. IE-1 Mode Consist: of based on first two units
  - a. Survey for Identification of Mechanism (PO 3,12)
  - b. Velocity Analysis of the Surveyed Mechanism
- 2. IE-2 Model/Toy Making with cams and Gears Mechanism: will be through assignments based on unit 4 to 5 ( Group of TWO Students) (PO 3, 9,10,11,12)
- 3. Case Study based Assignment on Unit 6:

## **Course Outcomes:**

| СО          | Statement                                                                | No. of<br>Lectures<br>Planned | Content Delivery<br>method                                   | Assessment<br>Tools<br>Planned |
|-------------|--------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|--------------------------------|
| 1 ( ( ( ) 1 | <b>Identify</b> and analyse mechanisms in real life applications.        | 5                             | PPT, Case study,<br>Animation, C & B<br>Demonstration Models | IE 1<br>MTE<br>ETE             |
| ~~          | Analyse velocity & acceleration of mechanism by Graphical and analytical | 7                             | PPT, C & B                                                   | IE 1<br>MTE<br>ETE             |

|     | method                                                                                                         |   |                                             |                   |
|-----|----------------------------------------------------------------------------------------------------------------|---|---------------------------------------------|-------------------|
| CO3 | Synthesize linkage for given application                                                                       | 5 | PPT, Case study, C & B                      | MTE<br>ETE        |
| CO3 | Synthesize Cam for given application                                                                           | 7 | PPT, Case study, C & B, Demonstration       | IE 2<br>ETE       |
| CO4 | <b>Apply</b> Fundamentals of Gear Theory and <b>Analyse</b> Epi-cyclic Gear Train for speed and Torque.        | 6 | PPT, Animation, C & B Demonstration Models  | IE 2<br>ETE       |
| CO5 | <b>Compute</b> Frictional torque and Power in Collar and Pivot bearing, Clutch and Brake for given application | 6 | PPT, Case study, C & B Demonstration Models | Assignment<br>ETE |

## Guest Lecture: Dr Girish S Modak / Mr Pankaj Dolikar A On Mechanisms in Robotics /Surveillance

| Mr Atul Kashid                         | Mr Amit Panchwadkar                   | Mr Masnaji Nakulwar  |
|----------------------------------------|---------------------------------------|----------------------|
| Course Faculty Div A                   | Course Faculty Div B                  | Course Faculty Div C |
| Course Coordinator Mr Amit Panchwadkar | Module Coordinator<br>Mr L V Awadhani |                      |