PROJECT REPORTING

Edoardo Scibona Mat. 836884

February 10, 2015

Contents

1	Intr	roduction	2
2	Pro	ject data	3
	2.1	Size	3
		Time	3
3	Fun	action Points	4
	3.1	Premise	4
	3.2	Internal Logic File	4
	3.3	External Interface File	5
	3.4	External Input	5
	3.5	External Output	5
	3.6	External Inquiry	6
	3.7	Final Result	6
	3.8	Conclusions	7
4	CO	COMO II	8
	4.1	Premise	8
	4.2	Effort	
	4.3	Duration	
	4.4		10
	4.5		10
5	Info	ormations	11
	5.1	Sources used	11
	5.2	Tools used	

1 Introduction

In this document we will analyse the project we developed, first presenting the actual data regarding the project, as its size and the duration, and then comparing our data with the *Function Points* method and the *COCOMO II* method.

2 Project data

2.1 Size

The project's size was calculated on the following folder ignoring eventual XML files.

meteocal-se2/src/main/

Only actual code lines were counted, while comments and blanks were ignored.

Type	Size in SLOC
Java	1260
JSF	322
Total	1582

2.2 Time

We consider in this section only the time spent working on the meteocal-se2 project and not on testing the other project.

The duration in hours was estimated at the end of each phase but it still is an approximation.

Phase	Duration in hours
RASD	20
DD	18
Implementation	75
Total	113

These 113 hours span approximately across 2 months.

3 Function Points

3.1 Premise

In the following FP analysis we will use the table below to evaluate the weights of the function types.

Function Types	Weight				
runction Types	Simple	Medium	Complex		
Inputs	3	4	6		
Outputs	4	5	7		
Inquiry	3	4	6		
ILF	7	10	15		
EIF	5	7	10		

3.2 Internal Logic File

In our application we use three main entities: User, Event and Notification.

Data	Weight Type	Weight	
User	Medium	10	
Event	Medium	10	
Notification	Simple	7	
Total	27 FPs	5	

3.3 External Interface File

The application retrieves externally only the weather forecast through a third party library.

Data	Weight Type	Weight	
Weather	Simple	5	
Total	5 FPs		

3.4 External Input

The application external input comes from its users.

Interaction	Weight Type	Weight
Sign up	Medium	4
Login	Simple	3
Logout	Simple	3
Create event	Complex	6
View event	Simple	3
Update event	Simple	3
Delete event	Simple	3
Accept invitation	Simple	3
Refuse invitation	Simple	3
View notification	Simple 3	
Total	34 FPs	5

3.5 External Output

No data is generated for the external environment. We consider this as ${\bf 0}$ **FPs**.

3.6 External Inquiry

Operation	Weight Type	Weight
Retrieve notifications	Simple	3
Retrieve events	Simple	3
Retrieve event details	Medium	4
Total	10 FPs	5

3.7 Final Result

Category	FPs
ILF	27
EIF	5
External Input	34
External Output	0
External Inquiry	10
Total	76 UFPs

We consider the AVC parameter for Java (and JSF) to be the mean of the 4GL interval, which is 2-40, we obtain thus

$$AVC = 21$$

We can now calculate the LOC estimate given by the FP method.

$$\mathbf{LOC} = AVC \times FPs = 21 \times 76 = 1596$$

We can observe that the estimated FP LOC count is close to the actual SLOC count which is 1582.

3.8 Conclusions

We can see that our project and in particular its functionalities are aligned with the model given by the Function Points method.

The final weight of the project in UFPs and the associated LOC count are quite close to the actual complexity of the project and its size.

We still feel the need to point out that the results of the Function Points method are greatly influenced by the Function Types Weights table chosen for the analysis and the AVC parameter chosen for the language.

4 COCOMO II

4.1 Premise

In the following COCOMO II analysis we will use the following table, derived from the *COCOMO II.2000.0 Model Manual*. The table is table 62 and can be found at page 75.

We will highlight in bold the values chosen for our analysis.

Baseline Effort Constants: $\mathbf{A} = 2.94$; $\mathbf{B} = 0.91$							
Baseline Schedule Constants: $C = 3.67$; $D = 0.28$							
Driver	Symbol	Very Low	Low	Nominal	High	Very High	Extra High
PREC	SF1	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	SF2	5.07	4.05	3.04	2.03	1.01	0.00
RESL	SF3	7.07	5.65	4.24	2.83	1.41	0.00
TEAM	SF4	5.48	4.38	3.29	2.19	1.10	0.00
PMAT	SF5	7.80	6.24	4.68	3.12	1.56	0.00
RELY	EM1	0.82	0.92	1.00	1.10	1.26	
DATA	EM2		0.90	1.00	1.14	1.28	
CPLX	EM3	0.73	0.87	1.00	1.17	1.34	1.74
RUSE	EM4		0.95	1.00	1.07	1.15	1.24
DOCU	EM5	0.81	0.91	1.00	1.11	1.23	
TIME	EM6			1.00	1.11	1.29	1.63
STOR	EM7			1.00	1.05	1.17	1.46
PVOL	EM8		0.87	1.00	1.15	1.30	
ACAP	EM9	1.42	1.19	1.00	0.85	0.71	
PCAP	EM10	1.34	1.15	1.00	0.88	0.76	
PCON	EM11	1.29	1.12	1.00	0.90	0.81	
APEX	EM12	1.22	1.10	1.00	0.88	0.81	
PLEX	EM13	1.19	1.09	1.00	0.91	0.85	
LTEX	EM14	1.20	1.09	1.00	0.91	0.84	
TOOL	EM15	1.17	1.09	1.00	0.90	0.78	
SITE	EM16	1.22	1.09	1.00	0.93	0.86	0.80
SCED	EM17	1.43	1.14	1.00	1.00	1.00	

4.2 Effort

The effort required for the project can be calculated as

Effort =
$$A \times KLOC^E \times EAF$$

With

$$E = B + 0.01 \times \sum_{i=0}^{5} SF_i$$

and

$$EAF = \prod_{i=0}^{17} EM_i$$

The KLOC parameter is simply the SLOC size of the project divided by 1000, so we will use 1.58.

We obtain the following values

$$E = 0.91 + 0.01 \times 17.24 = 1.0824$$

 $EAF \approx 0.34$

The effort is thus

Effort =
$$2.94 \times 1.58^{1.0824} \times 0.34 \approx 1.64$$
 person-months

4.3 Duration

The duration of the project can be calculated as

$$\mathbf{Duration} = C \times Effort^{(D+0.2 \times (E-B))}$$

We have then

Duration =
$$3.67 \times 1.64^{(0.28+0.2\times(1.0824-0.91))}$$

= $3.67 \times 1.64^{0.31447} \approx 4.28$ months

4.4 Staffing

Having calculated the effort required for the project and the duration of the project we can see how many members should be assigned to the project. We simply have to proceed as follows

$$Members = Effort/Duration$$

We obtain thus

Members =
$$1.64/4.28 \approx 0.38$$
 persons

We need to assign one person to this project.

Using the real duration of the project

RealDuration
$$\approx 2$$
 months

and keeping the effort the same the *Members* requirement quickly grows while still being approximated by one person as we can see below

Members =
$$1.64/2 = 0.82$$
 persons

4.5 Conclusions

All the results of this analysis are influenced by the choices made for the drivers parameters and, being this the first cost estimation made by us on a project, some inaccuracies may be present.

Having said this we think that the results of the COCOMO II method reflect the reality in which the project was developed.

We think that the duration of the project, as given by our calculations, is somewhat too high but if it had been adopted it would have led to less day by day weight on the developer as highlighted by the members parameter.

5 Informations

5.1 Sources used

Project Management Criticals: Cost Estimation by

Damian Andrew Tamburri, for the Function Types Weight table. Available on BeeP

COCOMO II Model Definition Manual for the COCOMO drivers ta-

ble and the formulas definitions

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf

5.2 Tools used

Texmaker 4.1 to write this document.

http://www.xm1math.net/texmaker/

LaTeX Table Generator to create some tables.

http://www.tablesgenerator.com/

Cloc 1.60 to count code lines.

http://cloc.sourceforge.net/