TUTORIAL 1: complex numbers and functions

NB. For Questions 1-5 it is advisable if you read Additional material 1

1. Express the following numbers in the form x + iy, where $x, y \in \mathbb{R}$

$$(i) (-1+3i)^{-1}, (ii) (1+i)i(2-i), (iii) (\sqrt{2}i)(\pi+3i),$$

$$(iv) (1+i)(i-2)(i+3), (v) (1+i)^{-1}, (vi) \frac{2i}{3-i}$$

- 2. Let $z \neq 0$ be a complex number. What is the absolute value of z/\overline{z} ?
- 3. If $z_1 = 2 + i$, $z_2 = 3 2i$ and $z_3 = -1/2 + i\sqrt{3}/2$, evaluate each of the following expressions

(i)
$$|3z_1 - 4z_2|$$
 (ii) $z_1^3 - 3z_1^2 + 4z_1 - 8$, (iii) $(\overline{z}_3)^4$, (iv) $\left|\frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i}\right|^2$

- 4. Find the real and imaginary part of $(1+i)^{100}$.
- 5. Use complex numbers to prove the identities (i) $\cos 3\theta = \cos \theta (\cos^2 \theta 3\sin^2 \theta)$ and (ii) $\sin^3 \theta = (3/4) \sin \theta - (1/4) \sin 3\theta$
- 6. Prove that $u = e^{-x}(x \sin y y \cos y)$ is harmonic. Using the Cauchy-Riemann equation, find v such that f(z) = u + iv is analytic.
- 7. Find an analytic function f(z) = u(x,y) + iv(x,y) for $u(x,y) = y^3 3x^2y$.
- 8. Use the chain rule to show that the Cauchy-Riemann equations in polar form can be written as

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$

considering that the transformation from a Cartesian coordinate system to a polar coordinate system is made using the transformations

$$x = r \cos \theta$$
, $y = r \sin \theta \Longrightarrow r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1}(y/x)$

Answers:

(i)
$$(-1-3i)/10$$
; (ii) $3i-1$; (iii) $-3\sqrt{2}+\pi\sqrt{2}i$; (iv) $-8-6i$; (v) $(1-i)/2$; (vi) $(-1+3i)/5$

$$\left|\frac{z}{z}\right| = 1$$

(i)
$$\sqrt{157}$$
; (ii) $-7 + 3i$; (iii) $-(1 + i\sqrt{3})/2$; (iv) 1

7.
$$v(x,y) = -3xy^2 + x^3 + c$$