Department of Mechanical Engineering

ME 781: Engineering Data Mining and Applications

Assignment-2

With reference to the given data set a2-data-set.csv perform the following:

- 1. Read in the data set into a data frame
- 2. From the data frame create a random sample s1 consisting of 40 observations
- 3. Using the **trainControl** function of the **caret** package set up a **train control** object with the following settings:
 - 10-fold cross validation, retain all re-sampling results
- 4. Perform the following regressions on this smaller data set:
 - a) Run Ordinary Least Squares Regression using s1 and capture the results in Im1
 - b) Run the **train** function on s1 using the train control object defined above, and capture the results as indicated below:
 - i. Use the OLS regression method capture the results in tr.lm
 - ii. Use the svm (Radial) regression method capture the results in tr.svmRadial
 - iii. Use the svm (Linear) regression method and capture the results in tr.svmLinear
 - iv. Use the ridge regression method and capture the results in tr.ridge
 - v. Use the lasso regression method and capture the results in tr.lasso
 - vi. Use the elasticnet regression method and capture the results in tr.enet
- 5. Create the following Table to compare and contrast the results of all the above regression methods

Method	RMSE	MAE	Regression Coefficients
			(Where available)
lm1			
tr.lm			
tr.svmRadial			
tr.svmLinear			
tr.ridge			
tr.lasso			
tr.enet			

- 6. In all the above cases where the model has been trained, create a plot of the outcome (eg. tr.svmRadial) and state your observations / learnings from the plot.
- 7. Based on the above, write a short note on each of the following:
 - What does it mean to 'train' the model, and the role played by the train control object?
 - What is cross validation and re-sampling?
- 8. Additionally, in all the above cases, generate the following plots:
 - y-predicted v/s y-given and comment on whether or not the two values are correlated. What is the correlation coefficient?
 - **residuals v/s y-predicted** and comment on whether the residuals are random, or show a pattern? What are your conclusions in each case?
- 9. Repeat steps 2 through 5 for another sample, s2, of 400 observations. Do you see any change?
- 10. Repeat steps 2 through 5 for the entire data set of 1000 observations and compare the results with those obtained from s1 and s2.

Note:

- Submit your answers to the assignment submission point in Moodle.
- This is one of a set of 5 Problems that you will have to solve. Submission of all assignments will fetch you max 5 marks.
- The Test scheduled on Nov-8-2017 will assume you have done this assignment.