NTIN071 A&G: Tutorial 7 - Chomsky normal form, The CYK algorithm

Teaching goals: The student is able to

In-class problems

Problem 1 (Useless symbols). Recall the process of converting a context-free grammar to Chomsky Normal Form. Then answer the following questions. Justify.

- (a) Find an example of a grammar in which there is a generating variable only reachable via nongenerating variables.
- (b) When reducing a grammar, which variables do we need to remove first: nongenerating or unreachable?
- (c) Is it possible for a reachable generating variable to become nongenerating after the removal of unreachable variables?

Problem 2 (Convert to ChNF). Convert the following context-free grammars to Chomsky normal form:

(a) (b)
$$G_{1} = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}) \qquad G_{2} = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P})$$

$$\mathcal{P} = \{S \to 0AB, \qquad \mathcal{P} = \{S \to 0A10B10, A \to 0A0 \mid 11, A \to 1A0 \mid \epsilon, B \to 0\}$$

$$B \to 1B00 \mid \epsilon\}$$

Problem 3 (The CYK algorithm). Using the CYK algorithm determine if $w \in L(G)$. w = 0110, $G = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P})$,

$$\mathcal{P} = \{ S \to 0 \mid AB,$$

$$A \to 1 \mid SA \mid SB,$$

$$B \to AS \mid BA \mid 0 \}$$

EXTRA PRACTICE AND THINKING

Problem 4 (Convert to ChNF). Convert the following context-free grammar to Chomsky normal form:

(a)
$$G = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P})$$

$$\mathcal{P} = \{S \to A \mid 0SA \mid \epsilon,$$

$$A \to 1A \mid 1 \mid B1,$$

$$B \to 0B \mid 0 \mid \epsilon\}$$

•

(b)
$$G = (\{S, E, F\}, \{(,), *, +, , 1\}, S, \mathcal{P})$$

$$\mathcal{P} = \{S \to (E),$$

$$E \to F + F \mid F * F,$$

$$F \to S \mid 1\}$$

Problem 5 (The CYK algorithm). Using the CYK algorithm determine if $w \in L(G)$.

(a)
$$w = abcbb$$
, $G = (\{S, A, B, C\}, \{a, b, c\}, S, \mathcal{P})$,
$$\mathcal{P} = \{S \to CA \mid CB, \\ B \to CBA \mid CB \mid BA \mid BB, \\ C \to ABC \mid BC,$$

$$A \to a, B \to b, C \to c$$

(b)
$$w = abcbb$$
, $G = (\{S, A, B, C\}, \{a, b, c\}, S, \mathcal{P})$,
$$\mathcal{P} = \{S \to CA \mid CB, \\ B \to CBA \mid CB \mid BA \mid BB, \\ C \to ABC \mid BC, \\ A \to a, B \to b, C \to c\}$$