Bias Detection and Explainability in a Job Screening Model

Uncovering Bias and Explaining Decisions in a Hiring Model

1. Dataset and Preprocessing

The dataset contains structured features that simulate job applicant data, including:

- Numerical features: Age, ExperienceYears, SkillScore, PersonalityScore, DistanceFromCompany, etc.
- Categorical feature: RecruitmentStrategy (one-hot encoded)
- Binary sensitive attribute: Gender (0 = Female, 1 = Male)
- Target: HiringDecision (binary: Hire or Not Hire)

Data Processing Steps:

- RecruitmentStrategy was one-hot encoded.
- Numerical features were standardized using StandardScaler.
- All features were converted to numeric.
- Gender was preserved and used for fairness evaluation only (excluded from training).

2. Class Imbalance Handling

The dataset was imbalanced with more negative (Not Hire) cases. To handle this:

Random Forest: Used class_weight='balanced'

• **XGBoost**: Used scale_pos_weight = (# negatives / # positives) based on training data

Train/test split was stratified to maintain class balance during evaluation.

3. Model Architecture and Evaluation

Two classifiers were developed and trained:

- Random Forest Classifier
- XGBoost Classifier

Both models were evaluated on accuracy, F1 score, ROC AUC, and confusion matrix.

Results:

• Random Forest

o Accuracy: 91.3%

o Macro F1 Score: 0.892

o ROC AUC Score: 0.869

XGBoost

o Accuracy: 92.7%

o Macro F1 Score: 0.911

o ROC AUC Score: 0.897

I Evaluation Report: XGBoost

Confusion Matrix:

[[202 5] [17 76]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.922 0.938	0.976 0.817	0.948 0.874	207 93
1	0.758	0.617	0.074	,,,
accuracy			0.927	300
macro avg	0.930	0.897	0.911	300
weighted avg	0.927	0.927	0.925	300

Macro F1 Score: 0.911 ROC AUC Score: 0.897

📊 Evaluation Report: Random Forest

Confusion Matrix:

[[204 3] [23 70]]

Classification Report:

	precision	recall	f1-score	support
0	0.899	0.986	0.940	207
1	0.959	0.753	0.843	93
accuracy			0.913	300
macro avg	0.929	0.869	0.892	300
weighted avg	0.917	0.913	0.910	300

Macro F1 Score: 0.892 ROC AUC Score: 0.869

4. III Fairness Analysis (by Gender)

We evaluated group fairness using Fairlearn's MetricFrame. Metrics analyzed:

- Selection Rate (positive predictions per group)
- True Positive Rate (recall per group)
- False Positive Rate
- Average Odds Difference

Results by Gender:

Metric	Female (0)	Male (1)
Selection Rate	22.2%	31.4%
True Positive Rate	75.0%	86.8%
False Positive Rate	1.9%	2.9%
Average Odds Diff	0.0639	_

Interpretation:

- The model selects males at a higher rate and with better recall.
- Average Odds Difference = 0.0639, indicating moderate bias against females.

5. Q Explainability with SHAP

We used SHAP (SHapley Additive Explanations) to interpret the XGBoost model predictions.

Global Feature Importance:

- Most important features were:
 - o SkillScore

- InterviewScore
- o PersonalityScore
- Gender had low global SHAP impact, but fairness metrics revealed disparate impact
 → suggests potential proxy bias.

Individual Prediction Analysis:

- We visualized SHAP dot plots for **5 individual predictions** (3 hires, 2 not hires).
- Some features (e.g., low personality or interview scores) strongly influenced no-hire decisions.

The model achieved strong accuracy, but fairness analysis showed **gender-based disparities** in prediction outcomes. Even though Gender did not rank high in SHAP importance, **selection and true positive rates** differed by group.

This indicates the importance of combining **explainability** and **fairness auditing**, as individual feature contributions do not always capture outcome bias.

No bias mitigation was applied in this version, allowing a transparent baseline understanding of the model's behavior.