

# **Computer network overview**

Sure! Here's a **cleaned-up and explained version** of the transcript, without timestamps and repetitions, and organized into a clear summary:

# **Computer Network: A Basic Overview**

#### What is a Computer Network?

A **computer network** is a collection of computing devices connected together so they can **share data**. These devices can be **homogeneous** (similar types) or **heterogeneous** (different types).

The **main purpose** of a network is to **enable communication** and **data sharing** between devices (like computers, servers, mobile phones, etc.).

# Sender, Receiver, and Communication

In a computer network:

- There is a **sender** and a **receiver**.
- The sender **sends data** (a message "M") to the receiver.
- This can be done through wired or wireless connections.

However, it's not enough just to transfer data — the **receiver must be able to understand** it. To ensure that, both sides must use a **common protocol**.

#### What is a Protocol?

A **protocol** is a **set of rules or instructions** that both the sender and receiver follow to communicate properly. Without a common protocol, even if data is received, it might not be understood (like speaking different languages without translation).

# **Types of Communication**

#### 1. Inter-process Communication (Same Machine):

- Example: Pressing a keyboard key and seeing it on your monitor.
- Sender: Keyboard; Receiver: Monitor.
- Handled by the **Operating System (Kernel)**.
- Not part of computer networking.

# 2. Client-Server Communication (Different Machines):

- Now we enter the domain of computer networking.
- Example: A client in India accessing a server in the USA (e.g., Facebook).

• Even if physically apart, the goal is to make the connection feel as seamless as if on the same machine.

# **Functionality of a Computer Network**

To enable smooth communication, networks implement various **functionalities**, categorized as:

# 1. Mandatory Functionalities:

These are **essential** for reliable communication.

#### • Error Control

Ensures the data received is the same as the data sent. Detects and possibly corrects errors due to noise or interference.

# Flow Control

Manages the data flow so the receiver isn't overwhelmed. Prevents congestion and ensures smooth data delivery.

# • Multiplexing and Demultiplexing

- Multiplexing: Identifying which process (e.g., web browser, email client) is sending data.
- **Demultiplexing**: Ensuring received data is delivered to the correct process.

# 2. Optional Functionalities:

Used as needed, not always implemented.

# • Encryption & Decryption (Cryptography)

Secures the data so intruders cannot understand it. Used in sensitive applications like banking (HTTPS).

# • Checkpoints (Download Resumption)

Allows downloads to resume from a saved point after failure (e.g., from 300MB instead of starting from 0). Not needed for small data like chat messages.

# **Need for a Standard Model**

With over **70+ functionalities**, it became necessary to organize and **standardize** them. This led to the creation of the **OSI Model (Open Systems Interconnection Model)**.

# **OSI Model: The Standardized Communication Framework**

The **OSI Model** divides network communication into **7 layers**, each handling specific functionalities:

- 1. **Physical Layer** Transmits raw bits over the medium.
- 2. Data Link Layer Error detection/correction and framing.
- 3. Network Layer Routing and addressing (IP).



- 4. Transport Layer Reliable data transfer (TCP/UDP).
- 5. **Session Layer** Manages sessions/connections.
- 6. **Presentation Layer** Data translation, encryption, compression.
- 7. **Application Layer** User-facing apps (HTTP, FTP, etc.).

Each layer **adds its own headers and functionalities** to the data being sent and ensures they are **removed and interpreted** correctly when received.

# Conclusion

- The **OSI model** ensures structured and efficient data communication.
- Other models like **TCP/IP** and **IEEE** also exist, but **OSI** is widely used in academics and for conceptual clarity.
- The network's job is to make **distant machines feel like they're local**, and to do that, a **layered**, **protocol-based system** like OSI is essential.

If you'd like a visual diagram or summarized notes (PDF or image) of this explanation, I can create that too!

99