

<u>Lecture 9: Introduction to</u>

课程 □ Unit 3 Methods of Estimation □ Maximum Likelihood Estimation

2. Review and Likelihood of a

☐ Gaussian Distribution

2. Review and Likelihood of a Gaussian Distribution Concept Check: Likelihoods of a Bernoulli, a Poisson, and a Gaussian Distribution

Start of transcript. Skip to the end.

Last time we introduced a likelihood, and the way we motivated it was by saying, OK,

we're looking for a distance between probability

distributions that we can estimate, and we tried with the total variation, which

the most natural distance between

is perhaps

视频 下载视频文件 字幕 下载 SubRip (.srt) file 下载 Text (.txt) file

Is the Likelihood Discrete or Continuous?

2/2 points (graded)

Setup:

Consider a **discrete** statistical model $M_1=(\mathbb{Z},\{\mathbf{P}_{\theta}\}_{\theta\in\mathbb{R}})$ and a **continuous** statistical model $M_2=(\mathbb{R},\{Q_{\theta}\}_{\theta\in\mathbb{R}})$. Let p_{θ} denote the pmf of \mathbf{P}_{θ} , and let q_{θ} denote the pdf of Q_{θ} . Assume that p_{θ} and q_{θ} both vary continuously with the parameter θ .

Let x_1,\ldots,x_n be fixed natural numbers and y_1,\ldots,y_n be fixed real numbers. Let $(L_1)_n$ denote the likelihood of the discrete model M_1 , and let $(L_2)_n$ denote the likelihood of the continuous model M_2 . Keeping x_1,\ldots,x_n and y_1,\ldots,y_n fixed, let's think of $(L_1)_n$ (x_1,\ldots,x_n,θ) and $(L_2)_n$ (y_1,\ldots,y_n,θ) as functions of θ .

Question

False

Decide whether the following claims about $(L_1)_n$ and $(L_2)_n$ are true or false.

The map $heta \mapsto (L_1)_n \ (x_1, \dots, x_n, heta)$ is a continuous function of heta.

● True □

The map $heta \mapsto (L_2)_n \ (y_1, \dots, y_n, heta)$ is a continuous function of heta.

● True □

Solution:

Observe that

$$\left(L_{1}
ight)_{n}\left(x_{1},\ldots,x_{n}, heta
ight)=\prod_{i=1}^{n}p_{ heta}\left(x_{i}
ight),\quad\left(L_{2}
ight)_{n}\left(y_{1},\ldots,y_{n}, heta
ight)=\prod_{i=1}^{n}q_{ heta}\left(y_{i}
ight).$$

We are given that p_{θ} and q_{θ} are both continuous function of the parameter $\theta \in \mathbb{R}$. Since products of continuous functions are continuous, this implies that the maps $\theta \mapsto (L_1)_n (x_1, \dots, x_n, \theta)$ and $\theta \mapsto (L_2)_n (y_1, \dots, y_n, \theta)$ are continuous functions of the parameter $\theta \in \mathbb{R}$.

Remark: It may be confusing that even the likelihood of a discrete statistical model can be continuous. However, considering the likelihood of a Bernoulli (derived in a previous question),

$$L\left(x_{1},\ldots,x_{n},p
ight)=\prod_{i=1}^{n}p^{x_{i}}\left(1-p
ight)^{1-x_{i}}=p^{\sum_{i=1}^{n}x_{i}}\left(1-p
ight)^{n-\sum_{i=1}^{n}x_{i}}.$$

we can clearly see that the above varies continuously as a function of the *parameter*. This is also true for a host of other discrete models (for example, the Poisson model).

提交

你已经尝试了1次(总共可以尝试1次)

Answers are displayed within the problem

Quiz: Likelihood of a Gaussian Statistical Model

3/3 points (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} N\left(\mu^*,(\sigma^*)^2\right)$ for some unknown $\mu^*\in\mathbb{R},(\sigma^*)^2>0$. You construct the associated statistical model $\left(\mathbb{R},\{N\left(\mu,\sigma^2\right)\}_{(\mu,\sigma^2)\in\mathbb{R}\times(0,\infty)}\right)$.

The likelihood of this model can be written

$$L_n\left(x_1,\ldots,x_n,(\mu,\sigma^2)
ight) = rac{1}{\left(\sigma\sqrt{2\pi}
ight)^C} \mathrm{exp}\left(-rac{1}{A}\sum_{i=1}^C B_i
ight)$$

where A depends on σ , B_i depends on μ and x_i . Find A, B_i and C.

(Choose a B_i that has coefficient 1 for the highest degree term in x_i .)

(Type **sigma** for σ , **mu** for μ , and **x_i** for x_i .)

STANDARD NOTATION

Solution:

The pmf of a Gaussian distribution $N\left(\mu,\sigma^2\right)$ is the function $x\mapsto \frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$. Hence, the likelihood is

$$L_n\left(x_1,\ldots,x_n,(\mu,\sigma^2)
ight) = \prod_{i=1}^n rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left(-rac{1}{2\sigma^2}(x_i-\mu)^2
ight) = rac{1}{\left(\sigma\sqrt{2\pi}
ight)^n} \mathrm{exp}\left(-rac{1}{2\sigma^2}\sum_{i=1}^n\left(x_i-\mu
ight)^2
ight).$$

Hence,

$$A=2\sigma^2,\quad B_i=\left(x_i-\mu
ight)^2,\quad C=n.$$

提交 你已经尝试了1次(总共可以尝试3次)

- ☐ Answers are displayed within the problem
- 讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 9: Introduction to Maximum Likelihood Estimation / 2. Review and Likelihood of a Gaussian Distribution