CSCE 633: Machine Learning

Lecture 16: Tree-Based Methods

Texas A&M University Bobak Mortazavi

Goals

- Review of methods, so far!
- Feature-based challenges of linear methods
- Understand the need for non-linear methods
- Introduction to Decision Trees and models built with decision trees

What kind of Features can Data have? A Review

Challenges of Providing Features to LR

Human Decision Making: Umbrellas!

Human Decision Making: College Football

Decision Tree Data Structure

What is a decision tree

A hierarchical data structure implementing the divide-and-conquer strategy for decision making

Can be used for both classification & regression

Data Partitioning

A decision tree partitions the feature space

Three things to learn

- The tree structure (i.e. attributes and #branches for splitting)
- The threshold values (i.e. θ_i)
- The values of the leaves (i.e. A, B, \ldots)

Models with Trees

Many decisions are tree-like structures

Medical treatment

Salary in a company

How to build trees: Decision Stumps

$$f(x) = v_1 if x \le s$$

 $f(x) = v_2 if x > s$

- Stump formula this is a simple threshold for decision making
- It is easy to interpret!
- It is not very complex
- On its own, is it likely to be accurate?

Adding Depth to Stumps

Regression for player salaries: Hitters Data

```
walks
    AtBat
                    Hits
                                                  Runs
                                                                   RBI
                                                                                                   Years
Min. : 16.0
               Min.
                             Min.
                                   : 0.00
                                             Min.
                                                   : 0.00
                                                              Min.
                                                                    : 0.00
                                                                              Min.
                                                                                    : 0.00
                                                                                               Min.
                                                                                                     : 1.000
1st Qu.:255.2
               1st Qu.: 64
                             1st Qu.: 4.00
                                             1st Qu.: 30.25
                                                             1st Qu.: 28.00
                                                                              1st Qu.: 22.00
                                                                                               1st Qu.: 4.000
Median :379.5
               Median: 96
                             Median : 8.00
                                             Median : 48.00
                                                              Median : 44.00
                                                                              Median : 35.00
                                                                                               Median : 6.000
                     :101
                                    :10.77
                                                  : 50.91
                                                                                    : 38.74
     :380.9
               Mean
                             Mean
                                             Mean
                                                              Mean
                                                                   : 48.03
                                                                              Mean
                                                                                                     : 7.444
                                             3rd Qu.: 69.00
                                                              3rd Qu.: 64.75
                                                                              3rd Qu.: 53.00
                                                                                               3rd Qu.:11.000
3rd Qu.:512.0
               3rd Qu. :137
                             3rd Qu. :16.00
      :687.0
                      :238
                                                    :130.00
                                                                     :121.00
                                                                                                      :24.000
                     CHits
                                                       CRuns
                                                                                         cwalks
    CATBAT
                                      CHMRun
                                                                                                       League
                                         : 0.00
      : 19.0
                            4.0
                                  Min.
                                                   Min.
                                                         : 1.0
                                                                   Min.
                                                                              0.00
                                                                                     Min.
                                                                                                       A:175
                                  1st Qu.: 14.00
1st Qu.: 816.8
                 1st Qu.: 209.0
                                                   1st Qu.: 100.2
                                                                   1st Qu.: 88.75
                                                                                     1st Qu.: 67.25
                                                                                                       N:147
Median: 1928.0
                 Median : 508.0
                                  Median : 37.50
                                                   Median: 247.0
                                                                   Median : 220.50
                                                                                     Median: 170.50
     : 2648.7
                                                         : 358.8
                 Mean
                       : 717.6
                                  Mean
                                       : 69.49
                                                   Mean
                                                                   Mean
                                                                         : 330.12
                                                                                     Mean : 260.24
                 3rd Qu.:1059.2
                                  3rd Qu.: 90.00
                                                   3rd Qu.: 526.2
3rd Qu.: 3924.2
                                                                   3rd Qu.: 426.25
                                                                                     3rd Qu.: 339.25
      :14053.0
                        :4256.0
                                        :548.00
                                                         :2165.0
                                                                          :1659.00
                 Max.
                                  Max.
                                                   Max.
                                                                   Max.
                                                                                     Max.
                                                                                            :1566.00
Division
           Putouts
                             Assists
                                             Errors
                                                             Salary
                                                                          NewLeague
E:157
                  0.0
                               : 0.0
                                         Min. : 0.00
                                                         Min.
                                                              : 67.5
                                                                         A:176
                         Min.
W:165
        1st Qu.: 109.2
                         1st Qu.: 7.0
                                         1st Qu.: 3.00
                                                         1st Qu.: 190.0
                                                                         N:146
        Median : 212.0
                         Median: 39.5
                                         Median: 6.00
                                                         Median : 425.0
                                         Mean : 8.04
                                                         Mean : 535.9
              : 288.9
                         Mean
                                :106.9
         3rd Qu.: 325.0
                         3rd Qu.:166.0
                                                         3rd Qu.: 750.0
                                         3rd Qu.:11.00
               :1378.0
                                :492.0
                                         Max.
                                               :32.00
                                                         мах.
                                                                :2460.0
                                                         NA'S
                                                                :59
```

Salary distribution

Histogram of Hitters\$Salary

Salary distribution

Histogram of log(Hitters\$Salary)

Create a basic tree

Create a basic tree

• How do we make a final prediction using this tree?

Create a basic tree

- How do we make a final prediction using this tree?
- What is the most important variable to make this prediction? Second most important variable? Third?

Partitioning the space

Partitioning hitters data

- Partition the data into J distinct regions
- Each region is a leaf (or terminal) node where decisions are made

Prediction via stratification

- Divide the predictor space $X_1, X_2, ..., X_p$ into J distinct, non-overlapping regions $R_1, R_2, ..., R_J$
- For every observation that falls into the region R_j we make the same prediction, which is simply the mean of the response values for the training observations partitioned into R_j
- Goal: find the partitions that minimize RSS given by:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Recursive Binary Splitting

- Take a top-down, greedy approach
- At each step, make the best possible split decision
- At each cut point s that splits a region into two partitions $R_1(j,s) = \{X \mid X_j < s\}$ and $R_2(j,s) = \{X \mid X_j \geq s\}$ that leads to the greatest minimization in RSS

Recursive Binary Splitting

- Take a top-down, greedy approach
- At each step, make the best possible split decision
- At each cut point s that splits a region into two partitions $R_1(j,s) = \{X \mid X_j < s\}$ and $R_2(j,s) = \{X \mid X_j \geq s\}$ that leads to the greatest minimization in RSS

Minimize:

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

When does splitting stop?

Can tree splitting lead to overfitting?

Avoiding overfitting: Pruning

- A big tree might overfit
- However, limiting the depth of a tree up front might miss key splits!
- ullet So, best is to create the very large tree T_0 and then prune it to find the optimal subtree

Visualization: Pruning

Cost Complexity Pruning: Algorithm to build tree

- 1. Use recursive binary splitting to grow a large tree on your training data
- 2. Stop growing tree when each terminal node has fewer than some minimum number of observations
- 3. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α
- 4. Use K-fold cross-validation to choose optimal α . That is, divide the training observations into K folds, then for each k = 1, 2, ..., K:
 - Repeat steps 1, 2, and 3 but for the kth fold
 - 2. Evaluate the mean squared prediction error on the data in the left-out fold, as a function of α
 - 3. Average the results for each α , over all folds, and pick the α that minimizes the average error
- 5. Return the subtree that corresponds to the optimal α and evaluate it on your held out test set

Cost Complexity Pruning: Algorithm to build tree

For each α , there corresponds a subtree $T \subset T_0$ with cost

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

Revisiting Baseball Salaries

Pruning hitters tree

Switching gears: Classification

- Models are the same but rather than the mean response, we predict the most commonly-occurring class
- Much like linear regression and logistic regression, we run into trouble training with respect to the cost function:

$$E = 1 - \max_{k} (\hat{p}_{mk})$$

Where \hat{p}_{mk} is the proportion of training observations in the mth region from the kth class. Hard to classify specific splits for each node here and grow a tree properly.

Tree-growing measures for classification

Gini Index: measure the total variance across K classes (a measure of node purity)

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

• Entropy: takes a value near 0 if all the \hat{p} are near zero or one (smaller value if the node is pure)

$$H = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Classification: Choosing a Restaurant

Choosing a restaurant

Example		Attributes									Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	55	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Choosing the right split

Example	Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWai
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	5	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	5	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	5	F	F	Burger	30-60	T

If we split the train samples with respect to the attribute "Patron", we will gain more information regarding the outcome.

Information Gain

- Intuitively, information gain tells us how important a given attribute is for predicting the outcome
- We will use it to decide the ordering of attributes in the nodes of a tree
- Main Idea: Gaining information reduces uncertainty
- From Information Theory we learn that a measure of uncertainty is entropy

Entropy

Entropy for discrete distribution

Let X be a discrete random variable with $\{x_1, \ldots, x_N\}$ outcomes, each occurring with probability $p(x_1), \ldots, p(x_N)$.

The information content of outcome x_i is inversely proportional to its probability, $h(x_i) = \log \frac{1}{p(x_i)}$

The entropy of the random variable X is the average information content of the outcomes:

$$H(X) = \sum p(x_i) \log(\frac{1}{p(x_i)}) = -\sum p(x_i) \log(p(x_i))$$

Example

no uncertainty

some uncertainty

high uncertainty

Entropy: Coin Toss

Suppose $X \sim Bernoulli(p)$ with $X \in \{0,1\}$, i.e. coin toss with probability p of getting heads and 1-p of getting tails. What would be a correct plot for the entropy H(X) in relation to the probability of getting heads?

Entropy for continuous distributions

Let X be a continuous random variable with $x \in \Omega$. Its entropy is defined as follows:

$$H(X) = -\int_{x \in \Omega} p(x) \log(p(x)) dx$$

Example

If $X \sim \mathcal{N}(\mu, \sigma^2)$ its entropy is $H(X) = \frac{1}{2}(1 + \log(2\pi\sigma^2))$.

The entropy depends on the variance of the Gaussian.

i.e. higher variance \rightarrow higher uncertainty, and vice-versa.

Gaussians with the same σ , therefore same entropy.

Conditional Entropy

We want to quantify how much uncertainty the realization of a random variable X has if the outcome of another random variable Y is known. The conditional entropy is defined as:

$$H(X|Y) = \sum_{m=1}^{M} p_{Y}(y_{m}) H_{X|Y=y_{m}}(X)$$

$$= \sum_{m=1}^{M} p_{Y}(y_{m}) \left(-\sum_{n=1}^{N} p_{X|Y}(x_{n}|y_{m}) \log(p_{X|Y}(x_{n}|y_{m})) \right)$$

$$= -\sum_{m=1}^{M} \sum_{n=1}^{N} p_{Y}(y_{m}) p_{X|Y}(x_{n}|y_{m}) \log(p_{X|Y}(x_{n}|y_{m}))$$

Entropy: Choosing a restaurant

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	5	F	F	Burger	30-60	T

If we split the train samples with respect to the attribute "Patron", we will gain more information regarding the outcome.

Entropy example: patrons

Measuring the conditional entropy on each of the "Patrons" attributes

For "None" branch

$$-\left(\frac{0}{0+2}\log\frac{0}{0+2} + \frac{2}{0+2}\log\frac{2}{0+2}\right) = 0$$

For "Some" branch

$$-\left(\frac{4}{4+0}\log\frac{4}{4+0} + \frac{0}{4+0}\log\frac{0}{4+0}\right) = 0$$

For "Full" branch

$$-\left(\frac{2}{2+4}\log\frac{2}{2+4} + \frac{4}{2+4}\log\frac{4}{2+4}\right) \approx 0.9$$

Measuring the conditional entropy on Patrons

$$H(Outcome|Patron) = \frac{2}{12} \times 0 + \frac{4}{12} \times 0 + \frac{6}{12} \times 0.9 = 0.45$$

"How uncertain is the Outcome with respect to attribute Patrons"

Patrons?

Entropy example: type

Measuring the conditional entropy on each of the "Type" attributes

For "French" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1} + \frac{1}{1+1}\log\frac{1}{1+1}\right) = 1$$

For "Italian" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1} + \frac{1}{1+1}\log\frac{1}{1+1}\right) = 1$$

For "Thai" and "Burger" branches

$$-\left(\frac{2}{2+2}\log\frac{2}{2+2} + \frac{2}{2+2}\log\frac{2}{2+2}\right) = 1$$

For choosing "Type"

Measuring the conditional entropy on Type

$$H(Outcome | Type) = \frac{2}{12} \times 1 + \frac{2}{12} \times 1 + \frac{4}{12} \times 1 + \frac{4}{12} \times 1 = 1$$

"How uncertain is the Outcome with respect to attribute Type"

Choosing a restaurant: Building the tree

- The entropy, conditioned on outcome, for patron is the smallest
- So the first split, with respect to the tree, is performed on patrons
- We do not split the none node or some node since the decision is deterministic
- Now we need to determine the next split:

Final decision tree

Greedily we build the tree and looks like this

Classification trees

```
GenerateTree(\mathcal{X}) (Input \mathcal{X}: training samples)
   1 i := SplitAttribute(\mathcal{X}) (find attribute with lowest uncertainty)
   2 For each branch of x<sub>i</sub>
         2a Find \mathcal{X}_i falling in branch
         2b GenerateTree(\mathcal{X}_i)
SplitAttribute(\mathcal{X}) (Input \mathcal{X}: training samples)
   1 MinEnt := MAX
   2 For all attributes X_i, i = 1, ..., D
         2a Compute H(Y|\mathcal{X}_i) (entropy of attribute X_i)
         {\sf 2b} \;\; {\sf If} \; {\sf MinEnt} > {\sf H}(Y|\mathcal{X}_i) \; {\sf (current attribute} \; {\sf X}_i \; {\sf has} \; {\sf the lowest entropy so far)}
               2b.i MinEnt := H(Y|\mathcal{X}_i)
              2b.ii SplitAttr := i
    3 Return SplitAttr
```

Pruning classification trees

We should prune some of the leaves of the tree to get a smaller depth

- If we stop here, not all training samples are classified correctly
- How do we classify a new instance?
 - We label the leaves of this smaller tree with the label of the majority of training samples

Two types of pruning

Pre-Pruning

- Stop growing the tree earlier, before it perfectly classifies the training set
- Use a min entropy parameter θ_I

Post-Pruning

- Grow the tree full until no training error
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Pre-pruning algorithm

What if we don't use entropy?

2-class problem

 \hat{p} , $1 - \hat{p}$: frequency of class 0 and 1

• Entropy:

$$\phi(\hat{
ho}) = \ -\hat{
ho} \log \hat{
ho} - (1-\hat{
ho}) \log (1-\hat{
ho})$$

• Gini index:

$$\phi(\hat{p}) = 2\hat{p}(1-\hat{p})$$

• Misclassification error:

$$\phi(\hat{p}) = 1 - \max(\hat{p}, 1 - \hat{p})$$

C-class problem

 $\hat{p}_1,...,\hat{p}_C$: frequency of class

$$1,\ldots,C$$

• Entropy:

$$\phi(\hat{p}_1,\ldots,\hat{p}_C) = -\sum_c \hat{p}_c \log \hat{p}_c$$

Gini index:

$$\phi(\hat{
ho}_1,\ldots,\hat{
ho}_C) = \sum_c \hat{
ho}_c (1-\hat{
ho}_c)$$

Misclassification error:

$$\phi(\hat{p}_1,\ldots,\hat{p}_C)=1-\mathsf{max}_c(\hat{p}_c)$$

Classification and Regression Trees

- Split criterion:
 - Regression tree: mean squared error between predicted and actual value of samples at that note
 - Classification tree: node purity
- Leaf node value:
 - Regression: mean of samples that have reached that node
 - Classification: majority class

Decision trees vs. other models

- Advantages:
 - Models are transparent: easily interpretable!
 - Data can contain combination of feature types: Qualitative predictors without dummy variables
 - Decision trees more closely mirror human decision making
 - Graphical representation
- Disadvantages:
 - Usually not same level of predictive accuracy
 - Not robust (small change in the data can change the tree a lot)

Building to random forests

- What if we grow a large number of trees?
- Bagging (Bootstrap Aggregating)
 - Generate independent bootstrapped datasets from the original data
 - Build decision tree on each of them
 - Predict across all the trees (majority voting)
- Randomize over the set of attributes
 - Before growing each bootstrapped decision tree, limit the features it can use
 - Don't prune trees (keep them small)

Random Forest

- Very good performance in practice
- Runs efficiently on large data sets
- Runs efficiently on large feature sets
- Gives estimates of the most relevant variables for each problem
- NEXT TIME!

Key Takeaways

- Decision Trees
 - Hierarchical structure to perform classification and regression
 - Tree structure determined by splitting criterion
 - Pruning
 - Prevents overfitting by limiting depth of tree
 - Avoids perfect performance on the train set
 - Interpretable
- Random Forests
 - Ensemble model of lots of trees
 - Good performance in practice where individual decision trees fail