

Igo da Costa Andrade

RESOLUÇÃO COMENTADA DOS EXERCÍCIOS DE

NONLINEAR DYNAMICS AND CHAOS

DE

STEVEN H. STROGATZ

Igo da Costa Andrade

Resolução Comentada de Exercícios

NONLINEAR DYNAMICS AND CHAOS WITH STUDENT SOLUTIONS MANUAL

WITH APPLICATIONS TO PHYSICS, BIOLOGY, CHEMISTRY, AND ENGINEERING, SECOND EDITION

Steven H. Strogatz

STROGATZ, S. H. **Nonlinear dynamics and chaos**. Nova York: CRC Press, 2018.

SUMÁRIO

2. FLUXO NA RETA	4
2.1. Um modo geométrico de pensar	4
2.2. Pontos fixos e estabilidade	7
REFERÊNCIAS	8

2. FLUXO NA RETA

2.1. Um modo geométrico de pensar

Nos três próximos exxercícios, interprete $\dot{x} = \sin(x)$ como um fluxo sobre a reta.

2.1.1. Encontre todos os pontos fixos do fluxo.

Solução

Os **pontos fixos** são tais que $\dot{x} = 0$, então:

$$\dot{x} = 0 \Rightarrow \sin(x) = 0 \Rightarrow x = k\pi$$
, para $k = 0, \pm 1, \pm 2, \pm 3, \dots$

2.1.2. Em quais pontos x o fluxo possui maior velocidade para a direita?

Solução

A Figura 1 mostra o retrato de fase da equação $\dot{x}=\sin(x)$. Nela. destacamos os **pontos fixos** determinados no item anterior. Observemos que temos **pontos fixos** *atratores*, ou estáveis, ($x^*=(2k+1)\pi$, para k=...,-2,-1,0,1,2,...) e **pontos fixos** *repulsores*,ou instáveis, ($x^*=2k\pi$, para k=...,-2,-1,0,1,2,...).

Figura 1: Retrato de fase da equação $\dot{x} = \sin(x)$

Observemos que a velocidade \dot{x} é positiva nas regiões $2k\pi < x < (2k+1)\pi$ para $k = \ldots -2, -1, 0, 1, 2, \ldots$ Em cada uma dessas regiões, a velocidade cresce a partir de um ponto repulsor até o valor $\frac{4k+1}{2}\pi$, quanto atinge seu valor máximo, e, então, decresce em direção a um ponto fixo atrator, com velocidade cada vez menor.

2.1.3. a) Encontre a aceleração do fluxo \ddot{x} como função de x.

Solução

$$\ddot{x} = \frac{d(\dot{x})}{dt} = \frac{d}{dt}[\sin(x)] \Rightarrow \ddot{x} = \cos(x)\dot{x}$$
$$\Rightarrow \ddot{x} = \cos(x)\sin(x)$$
$$\Rightarrow \ddot{x} = \frac{1}{2}\sin(2x)$$

b) Encontre os pontos em que o fluxo tem aceleração positiva máxima.

Solução

Para encontrar os pontos de máxima aceleração positiva, precisamos maximizar a função \ddot{x} determinada no item anterior. Observemos que $\sin(2x)$ atinje seu valor máximo de 1 quando:

$$2x^* = \frac{\pi}{2} + 2k\pi, \text{ para } k = 0, \pm 1, \pm 2, \pm 3, \dots$$

$$x^* = \frac{\pi}{4} + k\pi, \text{ para } k = 0, \pm 1, \pm 2, \pm 3, \dots$$

- **2.1.4.** (Solução exata de $\dot{x}=\sin(x)$) Como mostrado no texto, $\dot{x}=\sin(x)$ tem uma solução $t=\ln\left(|\frac{\csc x_0+\cot x_0}{\csc(x)+\cot(x)}|\right)$, onde $x_0=x(0)$ é o valor inicial de x.
 - a) Dado a espcífica condiçõ inicial $x_0=\frac{\pi}{4}$, mostre que a solução acima pode ser invertida para obter

$$x(t) = 2\tan^{-1}\left(\frac{e^t}{1+\sqrt{2}}\right).$$

Conclua que $x(t) \to \pi$ quando $t \to \infty$, como mostrado na Seção 2.1. (Você necessita ser bom com identidades trigonométricas para resolver esse problema).

Solução

Inicialmente, calculemos:

$$\begin{cases} \csc(x_0) = \csc(\frac{\pi}{4}) = \frac{1}{\sin(\frac{\pi}{4})} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \\ \cot(x_0) = \cot(\frac{\pi}{4}) = \frac{1}{\tan(\frac{\pi}{4})} = \frac{1}{1} = 1 \end{cases} \Rightarrow \csc(x_0) + \cot(x_0) = \sqrt{2} + 1$$
$$\Rightarrow \csc(x_0) + \cot(x_0) = 1 + \sqrt{2}$$

Substituindo a condição inicial na solução exata, obtemos:

$$t = \ln\left(\left|\frac{\csc x_0 + \cot x_0}{\csc(x) + \cot(x)}\right|\right) \Rightarrow t = \ln\left(\left|\frac{1 + \sqrt{2}}{\csc(x) + \cot(x)}\right|\right) \Rightarrow e^t = \frac{1 + \sqrt{2}}{\csc(x) + \cot(x)}$$

$$\Rightarrow \frac{1}{\csc(x) + \cot(x)} = \frac{2^t}{1 + \sqrt{2}} \Rightarrow \frac{1}{\frac{1}{\sin(x)} + \frac{\cos(x)}{\sin(x)}} = \frac{e^t}{1 + \sqrt{2}}$$

$$\Rightarrow \frac{\sin(x)}{1 + \cos(x)} = \frac{e^t}{1 + \sqrt{2}}$$

Para resolver a expressão acima, consideremos as seguintes identidades trigonométricas:

$$\sin 2\theta = 2\sin \theta \cos \theta$$
 e $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$

Substituindo $\alpha = 2\theta$ nas identidades acima, obtemos:

$$\sin\alpha = 2\sin\Bigl(\frac{\alpha}{2}\Bigr)\cos\Bigl(\frac{\alpha}{2}\Bigr) \ \ {\rm e} \ \cos^2\Bigl(\frac{\alpha}{2}\Bigr) = \frac{1+\cos\alpha}{2}$$

Portanto, substituindo as expressões acima na solução, temos:

$$\begin{split} \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} &= \frac{e^t}{1+\sqrt{2}} \Rightarrow \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{e^t}{1+\sqrt{2}} \\ &\Rightarrow \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{e^2}{1+\sqrt{2}} \\ &\Rightarrow \tan\left(\frac{x}{2}\right) = \frac{e^t}{1+\sqrt{2}} \\ &\Rightarrow x(t) = 2\tan^{-1}\left(\frac{e^t}{1+\sqrt{2}}\right) \end{split}$$

Para determinarmos o comportamento de x(t) quando $t \to \infty$, seja:

$$u = \frac{e^t}{1 + \sqrt{2}} \Rightarrow \lim_{t \to \infty} u = \lim_{t \to \infty} \frac{e^t}{1 + \sqrt{2}} = +\infty$$

Portanto,

$$\lim_{t\to\infty}x(t)=\lim_{u\to\infty}2\tan^{-1}(u)=\pi$$

b) Tente encontrar a solução analítica para x(t), dado uma condição inicial *arbitrária*.

Solução

No item anterior, obtemos a seguinte identidade trigonométrica:

$$\frac{1}{\csc(x) + \cot(x)} = \tan\left(\frac{x}{2}\right)$$

Assim, para a solução exata de $\dot{x} = \sin(x)$, temos:

$$\begin{split} t &= \ln \left(\left| \frac{\csc(x_0) + \cot(x_0)}{\csc(x) + \cot(x)} \right| \right) \Rightarrow e^t = \frac{\tan\left(\frac{x}{2}\right)}{\tan\left(\frac{x_0}{2}\right)} \Rightarrow \tan\left(\frac{x}{2}\right) = \tan\left(\frac{x_0}{2}\right) e^t \\ &\Rightarrow x(t) = 2 \tan^{-1} \left[\tan\left(\frac{x_0}{2}\right) e^t \right] \end{split}$$

2.1.5. (Um análogo mecânico)

- a) Encontre um sistema mecânico que seja aproximadamente governado por $\dot{x}=\sin(x)$.
- b) Usando soua intuição física, explique por que agora se torna óbvio que $x^*=0$ é um ponto fixo instável e $x^*=\pi$ é estável.

2.2. Pontos fixos e estabilidade

Analise as seguintes equações graficamente. Em cada caso, desenhe o campo verorial sobre a reta real, encontre todos os pontos fixos, classifique quanto à estabilidade, e desenhe o gráfico de x(t) para diferentes condições iniciais. Então tente por alguns minutos obter a solução analítica para x(t); se você tiver dificuldade, não tente por muito tempo pois em vários casos é impossível resolver a equação em uma forma fechada!

2.2.1.
$$\dot{x} = 4x^2 - 16$$

Solução

Pontos Fixos

$$\dot{x} = 0 \Rightarrow 4x^2 - 16 = 0 \Rightarrow x^2 = 4 \Rightarrow x^* = +2$$

Como indica a Figura 2, o ponto fixo $x^*=-2$ é um ponto atrator enquanto o ponto $x^*=2$ é repulsor.

- Campo Vetorial

Figura 2: Campo vetorial unidimensional para $\dot{x} = 4x^2 - 16$

Solução exata

$$\begin{split} \frac{dx}{dt} &= 4x^2 - 16 \Rightarrow \frac{dx}{x^2 - 4} = 4dt \Rightarrow \frac{dx}{x^2 - 4} = 4dt \\ &\Rightarrow \frac{dx}{(x - 2)(x + 2)} = 4dt \Rightarrow \frac{1}{4} \frac{dx}{x - 2} - \frac{1}{4} \frac{dx}{x + 2} = 4dt \\ &\Rightarrow \frac{dx}{x + 2} - \frac{dx}{x - 2} = -16dt \\ &\Rightarrow \int_{x_0}^x \frac{dx}{x + 2} - \int_{x_0}^x \frac{dx}{x - 2} = -16 \int_0^t dt \\ &\Rightarrow \left(\ln|x + 2| \, \left| \frac{x}{x_0} \right) - \left(\ln|x - 2| \, \left| \frac{x}{x_0} \right) \right) = -16t \\ &\Rightarrow \left(\ln|x + 2| - \ln|x_0 + 2| \right) - \left(\ln|x - 2| - \ln|x_0 - 2| \right) = -16t \\ &\Rightarrow \left(\ln|x + 2| - \ln|x - 2| \right) - \left(\ln|x_0 + 2| - \ln|x_0 - 2| \right) = -16t \\ &\Rightarrow \left(\ln|x + 2| - \ln|x - 2| \right) - \left(\ln|x_0 + 2| - \ln|x_0 - 2| \right) = -16t \\ &\Rightarrow \left(\ln|x + 2| - \ln|x - 2| \right) - \left(\ln|x_0 + 2| - \ln|x_0 - 2| \right) = -16t \\ &\Rightarrow \left(\ln|x + 2| - \ln|x - 2| \right) = -16t \\ &\Rightarrow \left(\frac{x + 2}{(x - 2)} \frac{(x_0 - 2)}{(x_0 + 2)} \right) = e^{-16t} \\ &\Rightarrow \frac{x + 2}{x - 2} = \left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t} \\ &\Rightarrow x + 2 = \left[\left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t} \right] (x - 2) \\ &\Rightarrow \left[1 - \left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t} \right] x = -2 \left[1 + \left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t} \right] \\ &\Rightarrow x(t) = -\frac{2\left(1 + \left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t} \right)}{1 - \left(\frac{x_0 + 2}{x_0 - 2} \right) e^{-16t}} \end{split}$$

REFERÊNCIAS

STROGATZ, S. H. Nonlinear dynamics and chaos. Nova York: CRC Press, 2018.

