KHAI PHÁ DỮ LIỆU

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giáo viên: TS.Nguyễn Khắc Cường

CHỦ ĐỀ 2

CHUẨN BỊ DỮ LIỆU (Phần 2)

- Datasets:
 - Là tập hợp các dữ liệu
 - Các thuật toán KPDL thực hiện công việc phân tích và xử lý dữ liệu trong các datasets này
- Missing data:
 - Trong đa số các trường hợp thu thập dữ liệu,
 - có rất ít trường hợp các dữ liệu được thu thập là đầy đủ
 - đa số là thiếu dữ liệu
 - Ånh hưởng của missing data:
 - Có các thuật toán KPDL ít bị ảnh hưởng bởi missing data
 - Và có các thuật toán bị ảnh hưởng rất lớn bởi các missing data

- Một số phương pháp cơ bản xử lý missing data:
 - Giữ nguyên các sample có missing data:
 - Một số phương pháp KPDL chấp nhận missing data và kết quả KPDL không bị ảnh hưởng nhiều bởi missing data
 - Loại bỏ toàn bộ các samples có missing data:
 - Chỉ nên làm điều này nếu số lượng sample có missing data là chiếm tỉ lệ không nhiều trong toàn bộ dataset
 - Tìm cách bổ sung các missing data

 - Thay tất cả các giá trị missing data của các sample bằng một hằng số chung nào đó
 - Thay tất cả các giá trị missing data của các sample trong một cột bằng một giá trị chung là giá trị trung bình của feature (cột) đó

- Một số phương pháp cơ bản xử lý missing data:
 - Tìm cách bổ sung các missing data
 - → Cách này có nhược điểm: có thể gây ra bias
 - Thay sample có missing data bằng một tập hợp các sample. VD:
 - Sample có missing data: X = {1, ?, 3}
 - Thay thế bằng các sample sau:
 - $X1 = \{1,0,3\}$
 - $X2 = \{1,1,3\}$
 - $X3 = \{1,2,3\}$
 - $X4 = \{1,3,3\}$
 - $X5 = \{1,4,3\}$

- Một số phương pháp cơ bản xử lý missing data:
 - Tùy vào đặc điểm riêng của từng loại data rồi áp dụng các phương pháp sau để suy luân các giá trị cho các missing data:
 - Regression
 - Bayesian formalism
 - Clustering
 - Decision-tree induction
- Time-dependent data
 - Các dữ liệu trong thực tế có thể
 - Phụ thuộc chặt chẽ vào yếu tố thời gian
 - Có phụ thuộc nhưng không qua chặt chẽ vào yếu tố thời gian
 - Không phụ thuộc vào yếu tố thời gian

- Time-dependent data
 - Chuẩn bị dữ liệu:
 - Riêng đối với dữ liệu phụ thuộc thời gian, việc chuẩn bị dữ liệu là rất quan trọng → vì ảnh hưởng lớn đến kết quả KPDL
 - Một số kỹ thuật chuẩn bị dữ liệu cơ bản:
 - Với dữ liệu được lấy mẫu với khoảng cách thời gian đều đặn bằng nhau
 - VD: nhiệt độ đo từng giờ, hàng hóa bán hàng ngày, ...
 - Lập luận: giá trị sau có sự liên quan nào đó với dữ liệu trước
 - Ký hiệu: $X = \{t(1), t(2), t(3), ..., t(n)\}$
 - Yêu cầu: chuân bị dữ liệu băng cách nào đó để
 - o Dựa vào n giá trị đã thu được
 - Dự đoán được giá trị thứ n+1 với độ chính xác cao

- Time-dependent data
 - Một số kỹ thuật chuẩn bị dữ liệu cơ bản:
 - Với dữ liệu được lấy mẫu với khoảng cách thời gian đều đặn bằng nhau
 - Kỹ thuật cơ bản: dùng một window để cắt các dãy giá trị liên tiếp thành các samples
 - VD:
 - o Thu thập được chuỗi dữ liệu theo thời gian như sau

$$X = \{t(0), t(1), t(2), t(3), t(4), t(5), t(6), t(7), t(8), t(9), t(10)\}$$

 O Giả sử chọn window có size = 5 → chuỗi dữ liệu trên được biến đổi thành bảng dữ liệu như sau

- Time-dependent data
 - Một số kỹ thuật chuẩn bị dữ liệu cơ bản:
 - Với dữ liệu được lấy mẫu với khoảng cách thời gian đều đặn bằng nhau
 - O Giả sử chọn window có size = 5 → chuỗi dữ liệu trên được biến đổi thành bảng dữ liệu có 6 sample như sau:

Sample	nple Window					Next Value
	M1	M2	M3	M4	M5	
1	t(0)	t(1)	t(2)	t(3)	t(4)	<i>t</i> (5)
2	<i>t</i> (1)	<i>t</i> (2)	<i>t</i> (3)	<i>t</i> (4)	<i>t</i> (5)	<i>t</i> (6)
3	<i>t</i> (2)	<i>t</i> (3)	<i>t</i> (4)	<i>t</i> (5)	<i>t</i> (6)	<i>t</i> (7)
4	<i>t</i> (3)	<i>t</i> (4)	<i>t</i> (5)	<i>t</i> (6)	<i>t</i> (7)	<i>t</i> (8)
5	<i>t</i> (4)	<i>t</i> (5)	<i>t</i> (6)	<i>t</i> (7)	<i>t</i> (8)	<i>t</i> (9)
6	<i>t</i> (5)	<i>t</i> (6)	<i>t</i> (7)	<i>t</i> (8)	<i>t</i> (9)	<i>t</i> (10)

- Time-dependent data
 - Một số kỹ thuật chuẩn bị dữ liệu cơ bản:
 - Với dữ liệu được lấy mẫu với khoảng cách thời gian đều đặn bằng nhau
 - vấn đề: Kích thước của window bao nhiêu là tốt?
 - Giải quyết: tìm ra bằng thực nghiệm đối với từng loại data khác nhau
 - o Kỹ thuật khác:
 - Dùng difference: t(n+1) t(n) thay vì dùng trực tiếp t(n+1)
 - Dùng ratio: t(n+1)/t(n), thay vì dùng trực tiếp t(n+1)

• . . .

- Outlier analysis
 - Outlier:
 - trong một dataset, có một hoặc vài samples có giá trị rất khác biệt so với số đông các giá trị còn lại trong dataset

- Outlier analysis
 - Outlier:
 - Có rất nhiều lý do làm xuất hiện các sample là các outlier trong dataset
 - Các thuật toán KPDL
 - cố gắng giảm sự ảnh hưởng của các outlier đến kết quả KPDK
 - hoặc cố gắng loại bỏ outlier trước khi thực hiện KPDL
 - Một số phương pháp cơ bản dùng phát hiện outlier
 - graphical / visualization techniques
 - statistical-based techniques
 - distance-based techniques
 - model-based techniques

- Outlier analysis
 - VD1: statistical-based techniques cho r

 äng d

 ùng mean value v

 à standard deviation c

 ó thể loại b

 ð d

 vợc outlier

- Outlier analysis
 - VD2:
- Giả sử có dataset chứa dữ liệu 1-D như sau

$$Age = \{3,56,23,39,156,52,41,22,9,28,139,31,55,20,-67,37,11,55,45,37\}$$

- Tính được:
 - Mean = 39.9
 - Standard deviation = 45.65
- Cho rằng các dữ liệu trên tuân theo normal distribution → đề xuất chọn threshold value cho phân bố trên là:

Threshold = Mean $\pm 2 \times$ Standard deviation

- → Threshold_max = 39.9 + 2 x 45.56 = 131.02 Threshold_min = 39.9 - 2 x 45.56 = -51.22
- Kết luận: mọi dữ liệu ngoài khoảng [-51.22, 131.02] là outlier

- Outlier analysis
 - VD3: Với dataset có dữ liệu nhiều chiều, một kỹ thuật cơ bản có thể phát hiện được outlier như sau
 - Tính covariance matrix

$$V_n = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n) (x_i - \bar{x}_n)^T$$

Trong đó

- n : số lượng sample
- X_i : từng sample
- $\bar{\chi}_n$: mean vector

- Outlier analysis
 - VD3: Với dataset có dữ liệu nhiều chiều, một kỹ thuật cơ bản có thể phát hiện được outlier như sau
 - Tính Mahalanobis distance cho từng sample đối với mean vector

$$M_{i} = \left(\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{T} V_{n}^{-1} (x_{i} - \bar{x}_{n})\right)^{1/2}$$

- Kết luận:
 - Các sample nào có giá trị Mahalanobis lớn nhất là các outlier

- Biến đổi dữ liệu
 - Tác dụng:
 - Các phép biến đổi dữ liệu giúp nâng cao hiệu quả, độ chính xác của các giải thuật KPDL
 - Dựa vào kiểu dữ liệu và đặc điểm của từng loại dữ liệu để chọn phương pháp biến đổi phù hợp
 - Normalization
 - Thường dùng cho các phương pháp KPDL distance-based
 - Mục tiêu chung: biến đổi toàn bộ giá trị vào khoảng [0,1] hoặc [-1,1]
 - Một số phương pháp normalization cơ bản:
 - Decimal scaling: $v'(i) = \frac{v(i)}{10^k}$ scaling các giá trị vào [-1,1]
 - o v(i) : giá trị của sample thứ i tại feature v
 - o v'(i): giá trị sau khi đã scaling
 - o Chọn k là nhỏ nhất sao cho sao cho $\max(|v'(i)|) < 1$

- Biến đổi dữ liệu
 - Một số phương pháp normalization cơ bản:
 - Decimal scaling:
 - o VD:
 - Xét tất cả các giá trị của các sample tại tất cả các feature, có:
 - Giá trị lớn nhất là 455
 - Giá trị nhỏ nhất là -834
 - Như vậy, chọn k=3 sẽ đáp ứng được điều kiện $\max (|v'(i)|) < 1$ vì |-834| : 1000 = 0.834 < 1
 - Min-Max normalization:
 - o Công thức:

$$v'(i) = \frac{(v(i) - \min(v(i)))}{(\max(v(i)) - \min(v(i)))}$$

Scaling các giá trị vào [0,1]

- Biến đổi dữ liệu
 - Một số phương pháp normalization cơ bản:
 - Standard deviation normalization:

o Công thức:
$$v*(i) = \frac{(v(i) - \text{mean}(v))}{\text{sd}(v)}$$

- Scaling các giá trị vào [-1,1]
- Làm trơn dữ liệu:
 - Một số giải thuật KPDL rất nhạy với mức độ sai khác giữa các giá trị của dữ liệu
 - Việc giảm bớt sự sai khác này có thể giúp nâng cao hiệu quả và độ chính xác của các giải thuật KPDL

- Làm trơn dữ liệu:
 - Có nhiều kỹ thuật làm trơn dữ liệu
 - Làm tròn số là một trong số các kỹ thuật đơn giản nhất của các kỹ thuật làm trơn dữ liệu
 - VD:
 - Giả sử có các giá trị tại feature F như sau:

$$\{0.93, 1.01, 1.001, 3.02, 2.99, 5.03, 5.01, 4.98\}$$

Làm trơn:

$$F_{\text{smoothed}} = \{1.0, 1.0, 1.0, 3.0, 3.0, 5.0, 5.0, 5.0\}$$

- Nhận xét:
 - Rõ ràng là làm tròn số đã làm giảm mức đô sai khác
 - Và không làm thay đổi quá nhiều chất lượng của dữ liệu

Q/A