

1

Feature Engineering

- As we saw with polynomial regression, we often want to transform our data in order to get better results from a machine learning algorithm
- We often get better results by:
 - Changing how features are represented.
 - Adding new features.
 - Deleting/ignoring some features.

Machine Learning (COMP 135)

Feature Rescaling

- ▶ Input: numeric features, each with a minimum/maximum \blacktriangleright E.g., A in [0, 1], B in [-5, 5], C in [-3333, -2222]
- **Output**: transformed feature vector, all on same scale
- ▶ Each feature f now has values in range [0, 1]

$$\phi(x_n)_f = \frac{x_{nf} - \min_f}{\max_f - \min_f}$$

- \rightarrow min_f = minimum value for f in training data
- \rightarrow max_f = maximum value for f in training data

Machine Learning (COMP 135)

Issue: "Uneven" Features

- We apply some algorithm to data, fitting a linear (or other) function, for regression or classification
- ▶ **Problem**: data-features have radically different ranges
 - ▶ E.g., data-set of health & demographic data
 - age in [0, 95], height in [0,7], weight in [0,300], co-morbidities in [0,2], income in [10K, 250K]
 - Algorithm needs to make coefficient on income very small, while others need to be made relatively large
- This can lead to very poor performance, and even failure of model to converge

Machine Learning (COMP 135)

Feature Standardization

- Input: numeric features, each on any scale
- > Output: transformed feature vector, all evenly distributed
- ▶ Each feature f now has zero mean and unit variance

$$\phi(x_n)_f = \frac{x_{nf} - \mu_f}{\sigma_f}$$

- μ_f = empirical mean for f in training data
- $\sigma_f = \sigma_f = \sigma_f$
- Features treated as if normally distributed
 - If original data is (approximately) normal, typical range is [-3, 3]
 - Also known as a z-score transform

Machine Learning (COMP 135)

7

8

Issue: Too Many Features

- We apply some algorithm to data, fitting a linear (or other) function, for regression or classification
- ▶ **Problem**: many, many data-features
 - ▶ E.g., data-set of high-resolution (megapixel) images
 - Each pixel in an image has 3 numerical values corresponding to color channels
 - ▶ Algorithm needs to find coefficients for each such value
- Again, this can lead to very poor performance, and it may be impractical even to use all the features
 - ▶ We generally **don't know** which are truly important

Machine Learning (COMP 135)

9

Another Approach:

Forward Stepwise Selection

- 1. Start with a **null model** M_0 , predicting empirical mean
- 2. For i = 1, 2, ..., F:
- \blacktriangleright Build a model using only feature f_i
- \blacktriangleright Store the best of these models as M_1
- 3. For each size k = 2, ..., F:
- \blacktriangleright Add each possible feature not already included, to build (F-(k-1)) new models
- \blacktriangleright Store the best of these models as M_k
- 4. Select a final, best-performing model from M_0, \ldots, M_F , using cross-validation, or some other technique
- When the number of features is much smaller than the overall data-set size, this is much more efficient
- In general, for best results, we usually **need** this to be true anyhow...

Machine Learning (COMP 135)

One Solution: Best Subset Selection

- ▶ An algorithm for choosing a subset from *F* total features:
 - 1. Start with a **null model** M_0 , predicting empirical mean
- 2. For k = 1, 2, ..., F:
 - Fit all $\binom{F}{k}$ models, each using k features
 - Let M_k be the model from this selection with lowest error
- Select a final, best-performing model from $M_0, ..., M_F$, using cross-validation, or some other technique
- Main issue: too many subsets
 - ▶ There are $O(2^F)$ such collections of features
 - ▶ For problems with large feature-sets, this proves infeasible

Machine Learning (COMP 135) 10

10

Backwards Stepwise Selection

The basic forward process can also be run backwards:

- I. Start with **all** features
- Gradually test all models with one feature removed from each
- 3. Repeat to remove 2, 3, ..., F features, all the way down to single-feature models
- 4. Select the best-performing model seen overall

Machine Learning (COMP 135)

12

11

Best Subset vs. Stepwise Selection

#Variables	Best Subset	Forward Stepwise
1	Age	Age
2	Age, Weight	Age, Weight
3	Age, Weight, Height	Age, Weight, Height
4	Age, Weight, Income, ZipCode	Age, Weight, Height, Income

- Common cases exist where stepwise selection does not lead to the best possible feature-set
 - Since we add a feature at each step, but never remove any, stepwise process can get "locked in" on subsets of features
 - Best subset process considers all possible combinations, and so can add/remove features at any point

Machine Learning (COMP 135) 13 •