Contentes de Slipo Hesi

Se ha llevado a cabo un estudio sobre la relación entre la actividad cerebral mientras se ven anuncios en televisión y la capacidad de la persona para recordar dichos anuncios. Se han mostrado anuncios de dos marcas para diez productos a las personas en la muestra. Para cada anuncio se ha medido la capacidad de cada persona para recordarlo pasadas 24 horas, y a cada anuncio de un producto se le han asignado las etiquetas "recuerdo fuerte" o "recuerdo débil". La siguiente tabla muestra un índice de la actividad cerebral de las personas que han visto estos anuncios en el estudio.

producto: i	1	2	3	4	5	6	7	8	9	10
recuerdo fuerte: x_i	137	135	83	125	47	46	114	157	57	144
recuerdo débil: yi	53	114	81	86	34	66	89	113	88	111
recuerdo fuerte: x_i recuerdo débil: y_i dif.: $d_i = x_i - y_i$	84	21	2	39	13	-20	25	44	-31	33

¿Se podría aceptar que en promedio la actividad cerebral es mayor para el grupo con recuerdo fuerte que para el grupo con recuerdo débil?

D: Diference.

$$Ai = xi - yi$$
.

 $D = \frac{1}{N} \leq Ai = 21$
 $SA = \sqrt{SA^2} = \sqrt{1088} = 32.98$.

N = 10.

$$5\Delta^2 = \frac{1}{N} = \frac{2(di-\overline{D})^2}{1088}$$

Centruste de Caexparcéai de 2

Media:

$$T = \frac{(\bar{x} - \bar{y}) - (u_x - u_y)}{s_y / \sqrt{n}}$$

Contrite coupens 2 redi $40: M_1 \leq M_2$ $41: M_1 > M_2$ $41: M_1 > M_2$ $41: M_1 - M_2 > 0$ $40: D \leq 0$ $40: D \leq 0$

$$T = \frac{\overline{L} - L}{2} = \frac{21 - 0}{32.98 \text{ M}_{10}} = 2.014 \text{ CR}$$

Tabla t-Student

		t_0					
to 1=ta	Grados de						
1 this ca.	libertad	0.25	0.1	0.05	0.025	0.01	0.005
	1	1.0000	3.0777	6.3137	12.7062	31.8210	63.6559
l DA De	2	0.8165	1.8856	2.920 <mark>0</mark>	4.3027	6.9645	9.9250
	3	0.7649	1.6377	2.353 <mark>4</mark>	3.1824	4.5407	5.8408
, imm	4	0.7407	1.5332	2.131 <mark>8</mark>	2.7765	3.7469	4.6041
2.014.	5	0.7267	1.4759	2.015 <mark>0</mark>	2.5706	3.3649	4.0321
(.833)	6	0.7176	1.4398	1.943 <mark>2</mark>	2.4469	3.1427	3.7074
1.0001	7	0.7111	1.4149	1.894 <mark>6</mark>	2.3646	2.9979	3.4995
11	8	0.7064	1.3968	1.859 <mark>5</mark>	2.3060	2.8965	3.3554
tq; d=0.05.	9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
79; a 30.0	10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
/	11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
· · · · ·	12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
In y regre	13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
Vedragenes &	14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
0 - cectiviation	15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
and a knowledge to	16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
grys el grys	17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
1 x may for	18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
gereland 1 1 100 ll	19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
a a ste que par	20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453
an recurso felle 1							
CM 1 3 C							
Redongues Ho. y oceptars. que en promedio la cectividel que en promedio la cectividel carelrol y neurope por el grupo carelrol y neurope por el grupo con remula ferente que pera el de Gil.							
l deser.							