ที่จอดของผู้มาเยือน

(แปลจาก Task Berilij (Beryllium), Croatian Open Competition in Informatics, Round 1, November 5th, 2022)

มนุษย์ต่างดาวจะมาเยือนโลกเป็นครั้งแรก ต้องการที่จะให้ชาวโลกอำนวยความสะดวกในการจอดจานบิน n ลำ ซึ่งจานบินทั้งหมดเป็นรูปจานวงกลม และเพื่อความปลอดภัย มนุษย์ต่างดาวมีข้อบังคับโดยเลือกจานบินมา m คู่ที่ ขอบภายนอกของจานบินจะต้องสัมผัสกัน และจานบินแต่ละลำจะต้องจอดให้พิกัดที่มนุษย์ต่างดาวได้กำหนดไว้ แล้วเท่านั้น โดยมนุษย์ต่างดาวได้มอบหมายให้ชาวโลกเป็นผู้คำนวณค่ารัศมีของจานบินแต่ละลำที่จะทำให้ สอดคล้องกับข้อบังคับที่กำหนด

จากรูปตัวอย่าง คู่ B ถือว่าขอบภายนอกของจานบินสัมผัสกัน ส่วนคู่ A และ C นั้น **ไม่ถือว่า**ขอบภายนอกของจาน บินสัมผัสกัน

มนุษย์ต่างดาวสามารถสร้างจานบินที่มีรัศมีตั้งแต่ 0 ขึ้นไป และจานบินสามารถทับซ้อนกันในการลงจอดได้ แต่ว่า ค่าใช้จ่ายในการสร้างจานบินเทียบเท่ากับพื้นที่วงกลมของจานบินนั้น ดังนั้นให้เลือกชุดรัศมีที่ให้ค่าใช้จ่ายน้อย ที่สุด

ถ้าหากไม่มีชุดค่ารัศมีที่ทำให้สอดคล้องกับข้อบังคับที่กำหนดทั้งหมดได้ ชาวโลกต้องแจ้งแก่มนุษย์ต่างดาวด้วย

ข้อมูลเข้า

- ullet บรรทัดแรก ประกอบด้วยเลขจำนวนเต็ม 2 จำนวน คือ n (จำนวนจานบิน) และ m (จำนวนข้อบังคับ) $(1 \leq n, m \leq 10^5)$
- ullet อีก n บรรทัดถัดมา แต่ละบรรทัดประกอบด้วยเลขจำนวนจริง 2 จำนวน คือ x_i และ y_i ซึ่งเป็นพิกัด ศูนย์กลางของจานบินลำที่ i
- และอีก m บรรทัดถัดจากนั้น ประกอบด้วยเลขจำนวนเต็ม 2 จำนวน คือ a_j และ b_j ($1 \leq a_i, b_i \leq n, a_i \neq b_i$) แสดงข้อบังคับที่ขอบด้านนอกของจานบินที่ a_j และ b_j จะต้อง สัมผัสกัน ข้อบังคับ (a_j, b_j) จะปรากฏอย่างมากหนึ่งครั้ง และถ้ามีข้อบังคับ (a_j, b_j) แล้ว จะไม่มี ข้อบังคับ (b_j, a_j) อีก

ข้อมูลออก

- ถ้าไม่มีวิธีที่สามารถจะทำให้ข้อบังคับทุกข้อเป็นจริงได้ ให้พิมพ์คำว่า NE ในบรรทัดแรกเท่านั้น
- แต่ถ้าสามารถทำได้ ให้พิมพ์คำว่า **DA** ในบรรทัดแรก (DA แปลว่า Yes ในภาษาโครเอเชีย) และอีก n บรรทัดถัดไป ในแต่ละบรรทัดให้พิมพ์ค่าจำนวนจริงไม่น้อยกว่า 0 เป็นค่ารัศมีของจานบินลำที่ i ตามลำดับ

การให้คะแนน

ปัญหาย่อย	คะแนน	เงื่อนไขเพิ่มเติม
1	15	$m{n}$ เป็นเลขคี่ และจานบินแต่ละลำจะสัมผัสกับจานบินอีก 2 ลำเสมอ
2	25	จะมีวิธีการให้ค่ารัศมีที่สอดคล้องกับข้อบังคับทั้งหมดอย่างน้อย 1 วิธี
3	30	สำหรับทุกคู่จานบิน (a,b) จะมีลำดับจานบินจากจานบินลำที่ a
		ไปจานบินลำที่ b โดยที่จานบินที่ติดกันในลำดับสัมผัสกัน <u>อย่างมาก</u>
		1 ลำดับ
4	40	ไม่มีเงื่อนไขเพิ่มเติม

คำตอบของผู้เข้าแข่งจะถือว่าถูกต้อง เมื่อค่ารัศมีของจานบิน<u>ทุกลำ</u>มีค่าคลาดเคลื่อนทั้งแบบสัมบูรณ์หรือ แบบสัมพัทธ์ไม่เกิน 10^{-4} คือ ถ้าให้ค่ารัศมีคำตอบของผู้เข้าแข่ง สำหรับจานบินลำที่ i เป็น r_{si} และคำตอบที่ ถูกต้องเป็น r_{ci} จะถือว่า r_{si} ถูกต้องก็ต่อเมื่อ $|r_{si}-r_{ci}|\leq 10^{-4}$ หรือ $\left|\frac{r_{si}-r_{ci}}{r_{ci}}\right|\leq 10^{-4}$

ตัวอย่าง

ข้อมูลเข้า	ข้อมูลออก
3 3 0.0000000000 0.000000000 0.000000000 2.000000000 2.000000000 0.000000000 1 2 2 3 3 1	DA 0.585786 1.414214 1.414214
5 4 -0.4585133080 0.2893567973 9.9368007273 7.1806641913 -8.4621834970 -2.8309311865 0.0122121945 -2.8309311865 2.3991780589 -8.8626906628 2 1 3 2 4 3 5 1	DA 0.000000 12.472076 8.474396 0.000000 9.587824
5 5 0.0000000000 0.000000000 1.000000000 2.000000000 2.000000000 4.000000000 3.000000000 6.00000000 4.000000000 8.00000000 1 2 2 3 3 4 4 5 5 1	NE

คำอธิบายเพิ่มเติม

- ในตัวอย่างแรก คำตอบนี้เป็นคำตอบที่ถูกต้องเดียวของปัญหานี้ และถึงแม้ว่า จานบินลำที่ 2 และ 3 จะ ไม่ได้สัมผัสกันจริง ๆ คำตอบนี้ถือว่าถูกต้องเพราะว่าค่าคาดเคลื่อนสัมบูรณ์ที่ได้ไม่เกิน 10⁻⁴
- ในตัวอย่างที่สาม ไม่มีวิธีการให้ค่ารัศมีที่สอดคล้องกับข้อบังคับทั้งหมดได้