Path to Success – Study Pack

පළමු පාසල් වාරය සදහා ඉගෙනුම් අත්වැල විදාහාව - 10 ශේණිය

අධානපන සංවර්ධන අංශය

කලාප අධාාපන කාර්යාලය - කැලණිය

උපදේශනය සහ අධීක්ෂණය

පී.ඩී. ඉරෝෂීනි කේ. පරණගම මිය කලාප අධාාපන අධාාක්ෂ

මෙහයවීම සහ සංවිධානය

ඒ. ඒෆ් . ජේ. පී. සිල්වා මයා නියෝජා කලාප අධාාපන අධාක්ෂ (සංවර්ධන)

විෂය සම්බන්ධීකරණය

එම්.ඒ.පී. චම්පිකා මිය සහකාර අධානපත අධානක්ෂ (විදානව)

සම්පත් දායකත්වය

ඩබ්.පී.එස් විජේතිලක මයා
 වී.එම්.එස්. විජයනායක මයා
 කේ.ඒ පද්මකාන්ති මිය
 ඩී.ජී.එස්.ජේ කුමාරි මිය
 පවිතුා ලියනගේ මිය
 කේ.කේ.ආර් දමයන්ති මිය
 කේ.කේ.අාර් දමයන්ති මිය
 කේ.කේ.අාර් දමයන්ති මිය
 කේ.කේ.අාර් දමයන්ති මිය
 කේ.කේ.අාර් දමයන්ති මිය
 ක්.කේ.අාර් දමයන්ති මිය

<mark>ජීවයේ රසායනික පදනම</mark>

ජීවීන්ගේ දේහ විවිධ මූල දුවා විවිධ ආකාරයෙන් සංයෝජනය වීමෙන් සෑදුනු රසායනික සංයෝග රැසකින් සමන්විත වේ. මෙම මූලධර්ම අතරින් ජීවී දේහ නිර්මාණය වීම සදහා වැඩියෙන්ම ඉවහල් වී ඇත්තේ කාබන්, හයිඩුජන්, ඔක්සිජන් හා නයිටුජන් යන මූල දාවා හතරයි.

මානව දේහයේ අඩංගු මෙම මූල දුවා බර අනුව දැක්වූ විට,

සජීව පදාර්ථයේ අඩංගු මූලික කාබනික සංයෝග වර්ග හතරකි.

- 1. කාබෝහයිඩුෙට
- 2. පෝටීන්
- 3. ලිපිඩ
- 4. නියුක්ලෙයික් අම්ල

<u>කාබෝහයිඩුෙට</u>

කාබෝහයිඩේටවල පුධාන මූලදුවා සංයුතිය වන්නේ කාබන්, හයිඩුජන් සහ ඔක්සිජන්ය.

කාබෝහයිඩේට්වල පොදු අණුක සූතුය

<u>කාබෝහයිඩුේටවල වර්ගීකරණය</u>

- 1. මොනොසැකරයිඩවල ලක්ෂණ දෙකක් සදහන් කරන්න.
- 2. මොනොසැකරයිඩ යක් වන ග්ලුකෝස් පවතින ස්ථාන දෙකක් සඳහන් කරන්න.
- 3. සියලුම පිෂ්ටමය ආහාරවල ජීරණයේ අන්ත ඵලය වන්නේ කුමක්ද?
- 4. පළතුරු සීනි ලෙස හැඳින්වෙන මොනොසැකරයිඩය නම් කරන්න.
- 5. එම මොනොසැකරයිඩය පවතින ස්ථාන තුනක් ලියන්න.
- 6. පැණි රසින් වැඩිම සීනි වර්ගය කුමක්ද?
- 7. කිරි ආහාරවල අඩංගු මොනොසැකරයිඩ කුමක්ද?
- 8. ඩයිසැකරයිඩවල ලක්ෂණ දෙකක් සඳහන් කරන්න.
- 9. ඩයිසැකරයිඩයක් සැදෙන ආකාරය වචන සමීකරණයකින් පැහැදිලි කරන්න.
- 10. පුරෝහණ වන බීජවල අඩංගු ඩයිසැකරයිඩ කුමක්ද?
- 11. සුදු හා රතු සීනි වල අඩංගු ඩයිසැකරයිඩ කුමක්ද?
- 12. ශාකවල නොමැති ඩයිසැකරයිඩ කුමක්ද?
- 13. සෙලියුලෝස් පිෂ්ටය හා ග්ලයිකොජන්වල තැනුම් ඒකකය කුමක්ද?
- 14. ශාකවල සෙලියුලෝස් හමු වන ස්ථාන දෙකක් සඳහන් කරන්න.
- 15. ශාකවල කාබෝහයිඩුට ගබඩා කෙරෙන ආකාරය කුමක්ද?
- 16. සතුන්ගේ සිරුර තුළ කාබෝහයිඩුට ගබඩා කරන ආකාරය කුමක්ද?
- 17. කාබෝහයිඩේටවල වැදගත්කම් තුනක් සඳහන් කරන්න.
- 18. පිෂ්ඨය හඳුනා ගැනීම සඳහා භාවිතා කරන දර්ශක කුමක්ද? පිෂ්ඨය ඇති විට එහි වර්ණ විපර්යාසය සඳහන් කරන්න.
- 19. ග්ලූකෝස් හඳුනා ගැනීම සදහා භාවිතා කරන දර්ශකය කුමක්ද? හිදී ලැබෙන වර්ණ විපර්යාසය ශේණීය සදහන් කරන්න.
- 20. සුකෝස් හදුනා ගැනීමේ පරීක්ෂණයේදී භාවිතා කරන දුවා තුනක් සදහන් කරන්න.

<u>පුෝටීන්</u>

පෝටීන්වල සැමවිටම කාබන්, හයිඩුජන්, ඔක්සිජන් හා නයිටුජන් අඩංගු වේ. ඇතැම්විට සල්ෆර් අඩංගු විය හැක.

පුෝටීන් සෑදී ඇත්තේ ඇමයිනෝ අම්ල නැමැති වඩා සරල අණු රාශියක් බහුඅවයවීකරණය වීමෙනි.

දර්ශීය ඇමයිනෝ අම්ලයක වනුහය පහත දැක්වේ. එහි කාණ්ඩ නම් කරන්න.

- 1. පුෝටීන අඩංගු ආහාර මොනවාද?
- 2. සරලතම ඇමයිනෝ අම්ලය කුමක්ද? එහි වාූහය ඇඳ දක්වන්න.
- 3. අතාාවශා ඇමයිතෝ අම්ල යනු මොනවාද?
- බිත්තර සුදු මදයේ අඩංගු පුෝටීනය කුමක්ද?
- අස්ථිවල අඩංගු පෝටීනය කුමක්ද?
- 6. රතු රුධිරාණු තුළ අඩංගු ප්රෝටීනය කුමක්ද?
- 7. පුෝටීනවල වැදගත්කම් හතරක් සඳහන් කරන්න.
- 8. පෝටීන හඳුනාගැනීමේ පරීක්ෂණයේදී භාවිතා කරන දුවා දෙකක් සදහන් කරන්න.
- 9. මෙහිදී ලැබෙන වර්ණ විපර්යාසය සඳහන් කරන්න.
- 10. එන්සයිම යනු මොනවාද?

ලිපිඩ

තෙල් හා මේද අයත් වේ. කාබෝහයිඩේටවල මෙන්ම ලිපිඩවල ද කාබන් හයිඩුජන් සහ ඔක්සිජන් යන මූල දුවා තුන අඩංගු වේ.

මේද අම්ල සහ ග්ලිසරෝල් එකතු වීමෙන් ලිපිඩ සැදී ඇත.

- 1. ලිපිඩ අඩංගු ආහාර සඳහන් කරන්න.
- 2. ලිපිඩවල වැදගත්කම සඳහන් කරන්න.
- 3. ශක්ති පුභවයක් ලෙස ලිපිඩවල වැදගත්කම කුමක්ද?
- 4. ශාක දේහ වල ජල සංරක්ෂණය සඳහා ලිපිඩ වැදගත් වන්නේ කෙසේද?
- 5. ලිපිඩ හදුනාගැනීමේ පරීක්ෂණය සඳහා යොදා ගන්නා දර්ශකය කුමක්ද? එහිදී ලැබෙන වර්ණ විපර්යාසය සඳහන් කරන්න.

<u>නියුක්ලෙයික් අම්ල</u>

නියුක්ලෙයික් අම්ල පුධාන ආකාර 2 කි.

- 1. ඩිඔක්සි රයිබො නියුක්ලෙයික් අම්ල DNA
- 2. රයිබො නියුක්ලෙයික් අම්ල RNA

නියුක්ලෙයික් අම්ලවල තැනුම් ඒකක වන්නේ නියුක්ලියෝටයිඩයි.

නියුක්ලෙයික් අම්ල වල කාබන්, හයිඩුජන්, ඔක්සිජන්, නයිටුජන් හා පොස්පරස් අඩංගු වේ.

පුවේණිකව ඉතාම වැදගත් කාබනික අණු වර්ගය වන්නේ නියුක්ලෙයික් අම්ලයි.

- 1. නියුක්ලියෝටයිඩයක් සෑදී ඇති සංඝටක වර්ග තුන නම් කරන්න. එය දළ සටහනකින් ඇඳ දක්වන්න.
- 2. නියුක්ලෙයික් අම්ලවල වැදගත්කම් හයක් සඳහන් කරන්න.

අාහාරයේ සංඝටකයක් ලෙස ජලය අඩංගු බව හඳුනාගැනීම

මේ සඳහා මස්, බිත්තර කටු, ශාක පතු සහ වියළි කෝවක් යොදා ගනී. මස්, බිත්තර කටු, ශාක පත් රවියළි තත්ත්වයෙන් ගෙන වෙන වෙනම කුඩු කර ගනී. ඉන්පසු ඒවා වෙන වෙනම කෝවේ දමා ජලය ඉවත් වන තුරු රත් කරයි. රත් කරන අතරතුර ඊට ඉහළින් වීදුරු තහඩුවක් අල්ලයි.

- 1. මෙහිදී වීදුරු තහඩුවේ දක්නට ලැබෙන නිරීක්ෂණයක් සදහන් කරන්න.
- මෙම පරීක්ෂණයේදී ජලය ඇති බව හඳුනා ගැනීමට භාවිතා කළ හැකියි දුවා දෙකක් නම් කරන්න.
- 3. එම දුවාා භාවිතා කිරීමේදී දක්නට ලැබෙන නිරීක්ෂණ සඳහන් කරන්න.

ලෛජව අණු තුළ කාබන් ඇති බව හඳුනා ගැනීම

මෙහිදී කෝව කීපයක්, නිවිති ශාක කද කොටස්, මාළු කැබැල්ල සහ කඩල යොදා ගනී. ආහාර දුවා ස්වල්පය බැගින් කෝවවලට දමා තදින් රත් කර අවසානයේදී ලැබෙන ඵලය සුදු කඩදාසියක් මත අතුලයි.

- 1. මෙහිදී දක්නට ලැබෙන නිරීක්ෂණය සඳහන් කරන්න.
- 2. එමහින් එළඹිය හැකි නිගමනය කුමක්ද?

<u>ජලය</u>

අකාඛනික සංයෝගයකි. බොහෝ ජීවීන්ගේ ශරීර බරින් $rac{2}{3}$ ක් පමණ ජලය වේ.

පහත දක්වා ඇති ජලය ජීවය පවත්වා ගැනීමට දක්වන දායකත්වයන් ජලයේ කුමන ගුණාංගය නිසා ලැබී ඇත්දැයි සඳහන් කරන්න.

උදාහ	O 🚳
1.	ජලය ජීවීන්ගේ සෛල තුළ ජෛව රසායනික පුතිකිුයා සඳහා මාධාායක් සපයයි දාවක ගුණය
2.	උස ශාකවල කන්ද තුළින් ජලය පරිවහනය වීම
3.	අයිස් ජලය අයිස් බවට පත් වීමේදී සැදෙන අයිස් ජලය මතුපිට ස්ථරවලට පැමිණීම -
4. 5. 6.	ජලජ ජීවීත්ගේ ස්වසනයට ඔක්සිජත් ලබාදීම - අවලතාපී සතුන්ගේ මේ උෂ්නත්ව යාමනයට - දේහය තුළ පෝෂාා දුවාා, විටමින, හෝර්මෝන ආදිය පරිවහනය කිරීමට -
7.	සත්වයින්ගේ බහිසුාවිය ඵල සහ මල දුවා පිට කිරීම පහසු කිරීම -

ඛණිජ ලවණ

ජීවීන්ගේ ජීව කුියා පවත්වාගැනීමට වැදගත් වන පෝෂණ සංඝටක වේ.

මාන	ව දේහය තුල පහත සදහන් කාර්යභාරයන් ඉටු කරන මූල දුවා සදහන් කරන්න.
•	ගරණ
1.	ස්නායු ආවේග සම්පේෂණයේදී වැදගත් වේ - පොටෑසියම්
2. 3.	දත් හා අස්ථි වර්ධනයට අතාාවශා වේ හිමොග්ලොබින් සංස්ලේෂණයට අතාාවශා වේ
4.	එන්සයිමවල කුියාකාරීත්වය ඇති කරයි
5. 6.	කාබෝහයිඩේට් සහ නේද පරිවෘත්තියේ දී වැදගත් වේ
7.	රුධිරය කැටි ගැසීමේ දී වැදගත් වේ
8.	තයිරොක්සීන් හෝර්මෝනය නිෂ්පාදනය කිරීමට අතාාවශා වේ
9.	 විටමින් බී අවශෝෂණයට වැදගත් වේ
10.	පේශිවල හා ස්තායුවල ශක්තිය ක්ෂණිකව මුදා හැරීමට උපකාරී වේ
පහත	දැක්වෙන තා ලක්ෂණ සඳහා හේතුවන මූල දුවා සඳහන් කරන්න.
1.	රක්තහීතතාව
2.	දක් හා අස්ථි දුර්වල වීම
3. 4.	ජේශි දුර්වල වීම
5.	අධික ලෙස හෘද ස්පන්දනය සිදු වීම
6.	බුද්ධී සංවර්ධන ් යට බාධා ඇති වීම
7.	වැඩිහිටියන්ගේ අස්ථි බිඳී යාම (ඔස්ටියෝපොරෝසිස්)
8.	ඔක්කාරය හා පාචනය
9. 10.	නිදාශීලීභාවය
10.	ඉගෙනීමට මැලි බවක් දැක්වීම
පහත	දැක්වෙන ශාක ඌනතා ලක්ෂණ වලට හේතු වන මූල දුවාෳයන් සඳහන් කරන්න.
1.	පතු අගුස්ථය මියයාම
2.	මුල්වල වර්ධනය ක්ෂීණ වීම
3.	ළපටි පතුවල හරිතක්ෂය ඇතිවීම
4.	ශාකය පුරා මැරුණු මෙසල පටක ඇතිවීම
5. 6.	පතු මත රතු හා දම් වර්ණ ලප මතුවීම පතු නාරටි හා නාරටි අසල පෙදෙස්වල හරිතක්ෂය ඇතිවීම
0.	<u>් වසු වශයේ හා වශයේ අතල මෙදේකවල හවසාකමක අදපාවම</u>

<u>විටමින්</u>

කාබනික සංයෝග වර්ගයකි. ශරීරයේ නිරෝගී බව පවත්වා ගැනීමට වැදගත් වේ විටමින් B හා C දාවා වන අතර විටමින් A, D, E හා K ජලයේ අදාවා වේ.

විටමින් සම්බන්ධයෙන් පහත වගුව සම්පූර්ණ කරන්න.

ව්ටමිනය	පුයෝජනය	ඌනතා ලසුණ
ව්ටමින් A	 පෙනීමට වැදගත් වන දෘෂ්ටි වර්ණක සෑදීමට අතාවශා වේ. සම පැහැපත් ව හා නිරෝගී ව පවත්වා ගැනීමට වැදගත් වේ. 	
ව්ටමින් B	 ස්නායු පවකවල නිසි පැවැත්මට අවශා වේ. රතු රුධිරාණු සෑදීමට අවශා සංඝටකයකි. සම නිරෝගීව පවත්වා ගැනීමට වැදගත් වේ. මේද පරිවෘත්තිය සඳහා වැදගත් වේ. ඇටම්දුළු නිර්මාණයට අවශා වේ. රක්තාණුවල පරිණතියට වැදගත් වේ. පුතිදේහ සෑදීමට අතාවශා වේ. 	0 g <u>-</u>
ව්ටමින් C		 චිදුරුමස් දුර්වල වීම අභාන්තර රුධිර ගැලීම් ඇති වීම රෝග සුව වීමට කල් ගත වීම ස්කර්ව් රෝගය
විටමින් D	 කැල්සියම් හා පොස්ෆරස් අවශෝෂණය පාලනය කරයි. 	
ව්ටමින් E	• පටක සහ මෙසල වර්ධනය වීම සඳහා අවශා වේ.	
ව්ටමින් K		• රුධිරය කැටි ගැසීම පුමාද වීම

බහුවරණ ගැටළු

l. කාබෝහයිඩ්රේට) බහුලව අඩංගු ආහා	රයකි.	3. 0 0
i. මුකුණුවැන්න	ii. බිත්තර	iii. පාත්	iv. කැකිරි 🔪 🔭 🦠 🦠
2. ජීවී දේහ තුළ අඩ	ංගු කාබනික නොවප	n සංඝටකයකි.	
i. ලිපිඩ	ii. පිෂ්ඨය	iii. ජලය	iv. පුෝටීන්
3. දී ඇති පිළිතුරු අ	තරින් ඩයිසැකරයිඩය	ක් වන්නේ	
i. සුකෝස්	ii. සෙලියුලෝස්	iii. පිෂ්ඨය	iv. ග්ලයිකොජන්
4. ශාකමය ආහාර ව	ාල පමණක් අඩංගු ක	ාබෝහයිඩ්රේට වර්ග	ය වන්නේ
i. ග්ලයිකොජන්	ii. සෙලියුලෝස්	iii. ලැක්ටෝස්	iv. පෘක්ටෝස්
5. මිනිසාගේ ජීරණ	පද්ධතිය තුළ ජීරණය	ාට ලක් නොවන, පෙ	ා්ෂණ වටිනාකමක් නොමැති
නමුත් මලබද්ධය වැ	ලක්වා ගැනීමට උපක	තරී වන පොලිසැකර [©]	යිඩය
i. ග්ලයිකොජන්	ii. සෙලියුලෝස්	iii. පිෂ්ඨය	iv. සුකෝස්
6. රාතුී අන්ධතාව අ	ැති වන්නේ කුමන වි	ටමින් වර්ගයේ ඌන%	තාව නිසා ද?
i. A	ii. B	iii. C	iv. D
7. ජලයේ දුාවා විට	මින පමණක් අඩංගු ව	ටත්තේ,	
i. B හා C	ii. A හා C	iii. A හා K	iv. B හා K
8. මිනිසාගේ ආහාර	ජීරණ පද්ධතිය තුළ	ජීරණය කල නොහැ <u>න</u>	කි කාබෝහයිඩ්රේට වර්ගයකි.
i. ලැක්ටෝස්	ii. සෙලියුලෝස්	iii. පිෂ්ඨය	iv. සුකෝස්
9. සත්ත්ව දේහ තුළ	, කාබෝහයිඩ්රේට ස	ංචිත වන ආකාරය ව	ත්තේ,
i. ලැක්ටෝස්	ii. සෙලියුලෝඩ්	iii. පිෂ්ඨය	iv. ග්ලයිකොජන්
10. රතු රුධිරාණු වැ	ල අඩංගු පුෝටීනය ව	න්නේ	
i. ඇල්බියුමින්	ii. කෙරටීන්	iii. හිමොග්ලොබින්	iv. සෙලියුලෝස්
ම ව්.	සියළුම ජීවීන්ගේ දේ	ිහ විවිධ රසායනික ස බික සංලයා්ග වර්ග 4	∘යෝග රැසකින් සමන්විත මොනවා ද?
ii. කාබෝහයිඩ්රේට	වල අඩංගු පුධාන මූ	ල දුවාා 3 සඳහන් කර	රත්ත.

iii. කාබෝහයිඩ්රේට වර්ග කළ හැකි පුධාන ආකාර 3 සඳහන් කරන්න.									
iv. එම පුහේද හඳුනා ගැනීමට යොදා ගත හැකි කිුයාකාරකම් හා නිරීක්ෂණ පහත වගුවේ සටහන් කරන්න.									
	කාබෝහයිඩ්රේට වර්ගය	හඳුනා ගැනීමේ පරීක්ෂාව	නිරීන්ෂණ						
1									
2									
3									
В. (ලිපිඩ තෙල් හා මේද ලෙස අ	හකාර 2කි.							
i. હ	දිපිඩ අඩ∘ගු ආහාර වර්ග 2ක්	සඳහන් කරන්න.							
ii. (දිපිඩ වලින් ශරීරයට ලැබෙ <u>?</u>	ත පුයෝජන 2ක් ලියන්න.							
iii.	ලිපිඩ හඳුනා ගැනීමට විදාහා	ගාරයේ කල හැකි සරළ කිුයාක	ාරකමක් සදහන් කරන්න.						
iv.	 පහත ඛණිජ ලවණ ඌනතා	ව නිසා හට ගන්නා රෝගයක්	බැගින් සඳහන් කරන්න.						
		යකඩ	•						
	ඩීන්								
C. [DNA අණුවේ තැනුම් ඒකකර	මය් රූප සටහනක් පහත දැක් මෙ	වේ.						
		\							

i. මෙම සටහනේ x, y, z නම් කරන්න.
ii. DNA අණුවේ තැනුම් ඒකකය හඳුන්වන නම කුමක් ද?
iii. DNA අණුව තැනීමට දායක වන මූල දුවා නම් කරන්න.
iv. DNA හැරුණු විට ජීවීන් තුළ වෙනත් නියුක්ලෙයික් අම්ලයක් ඇත. එහි කෙටි නමත් කෙටි නමින් විස්තර කෙරෙන අම්ලයේ නමත් ලියන්න.
v. DNA හි පුයෝජනයක් සඳහන් කරන්න.
vi. පුෝටීන සංස්ලේෂණ කිුයාවේ දී වැදගත් වන කාබනික අණු වර්ගය කුමක් ද?
D. පුෝටීන වල තැනුම් ඒකකය
E. ඩයිසැකරයිඩ සෑදෙන ආකාරය පහත සමීකරණ වලින් දැක් වේ. හිස් තැන් වලට සුදුසු අණු යොදන්න.
i> මෝල්ටෝස් + ජලය
ii +> සුකෝස් + ජලය
iii> ලැක්ටෝස් + ජලය
iv. මෙම ඩයිසැකරයිඩ අතරින් ශාක වල දක්නට නොලැබෙන සීනි වර්ගය කුමක් ද?
v. පුරෝහණය වන බීජ වල, උක් හා බීට් වල අඩංගු වන සීනි වර්ග මොනවාදැයි වෙන වෙනම ලියන්න.

<mark>සරල රේඛීය චලිතය</mark>

- 1. දුර (Distance) යම් කිසි ස්ථාන දෙකක් ගෙවා යන මුළු දිග පුමාණය දුරයි. දුර මනින ඒකකය මීටර් (m) වේ. අදෛශික රාශියකි.
- 2. විස්ථාපනය (Displacement) එක් ස්ථානයක සිට තවත් ස්ථානයක් කරා යම් දිශාවකට සිදු වන සරල රේඛීය ඇත් වීමයි. විස්ථාපනයේ ඒකකය මීටර් (m) වන අතර දෙශික රාශියකි.

නිදසුන්

- i) AD අතර දුර = 200 m + 400 m + 100 m = 700 m
- ii) විස්ථාපනය (AD) = 500 m AD දිශාවට
 - i) AB අතර දුර = 400 mii) විස්ථාපනය = 120 mAB දිශාවට

i) AB අතර දුර = 200 mii) විස්ථාපනය = උතුරින් 70^{0} ක් බටහිරට 160 m

60 m 40 m

සරල රේඛීය මාර්ගයක් ඔස්සේ A සිට B දෙසට 60 m ක් ගමන් කර නැවතත් එම දිශාවටම 40 m ක් C දෙසට ගමන් කල අවස්ථාවක දී,

- i).ĝ $\sigma = 60 \text{ m} + 40 \text{ m} = 100 \text{ m}$
- ii). විස්ථාපනය = බටහිරට 100 m

	160 m			
Α		С	40 m	В

1. වේගය - දූර ගෙවා යාමේ සීඝුතාවයයි. එනම් ඒකක කාලයකදී වස්තුවක් චලනය වන දුර වේගයයි. ඒකකය තත්පරයට මීටර් (ms⁻¹)

සරල රේඛීය මාර්ගයක් ඔස්සේ A සිට B දෙසට 160 m ක් ගමන් කර නැවත ආපසු හැරී $40~\mathrm{m}$ ක් C දෙසට ගමන් කල අවස්ථාවක දී, i).go = 160 m + 40 m = 200 mii). විස්ථාපනය = 160 m - 40 m

බටහිරට 120 m

උදා -

1. එක්තරා වස්තුවක් ආරම්භක ස්ථානයේ සිට ගමන් කල දූර කාලයත් සමහ වෙනස් වූ ආකාරය පහතු වගුවේ දක්වා ඇතු.

කාලය (S)	0	1	2	3	4	5	6
ගමන් කල දුර (m)	0	3	6	9	12	15	18

මුල් තත්පරය තුල වස්තුව ගමන් කල දුර (3 - 0) = 3 mදෙවන තත්පරය තුල වස්තුව ගමන් කල දුර = (6 - 3) = 3 m

වස්තුව සැම තත්පරයකදීම $3~\mathrm{m}$ බැහින් ගමන් කර ඇත. එනම් මෙම වස්තුව ඒකාකාර වේගයෙන් ගමන් කර ඇත. එනම් වස්තුවට නියත වේගයක් ඇත.

2. තවත් වස්තුවක් චලනයවු ආකාරය පහත ඇක්වේ.

_		ا			70.	•		
	කාලය (S)	0	1	2	3	4	5	6
	ගමන් කල දුර (m)	0	3	5	9	12	16	18

මෙම වස්තූව එක් එක් තත්පරයකදී ගමන් කල දුර සමාන නොවේ. එනම් ඒකාකාරී වේගයකින් ගමන් කර නැත. එවැනි අවස්ථා වල සාමානා වේගය ගණනය කරයි.

> ගමන් කල මුළුදුර මධාන වේගය හෙවත් සාමානා වේගය = ගත වූ මුළු කාලය වේගය = 3 ms⁻¹

2. පුවේගය - විස්ථාපනය වෙනස් වීමේ සීඝුතාවය පුවේගයයි. ඒකකය තත්පරයට මීටර් (ms⁻¹) විස්ථාපනය පුවේගය = කාලය

අභාහාසය

- 01). i). මේවායින් දෛශික රාශියක් වන්නේ,
 - 1). క్షర
- 2). වේගය 3). පුවේගය 4). කාලය
- ii). මේවායින් සතා පුකාශ තෝරන්න.
 - A දිශාවක් සහ විශාලත්වයක් ඇති රාශි දෛශික වේ
 - B වේගයේ සහ පුවේගයේ ඒකක සමාන වේ.
 - C වේගය ලෛශික රාශියකි.
 - D විස්ථාපනය වෙනස් වීමේ සීඝුතාව වේගයයි.

02). සරල රේඛීය මාරගයක් දිගේ පාපැදියකින් ගමන් කළ ළමයෙකුගේ එක් එක් තත්පරය තුළ විචලනය වී ඇති ආකාරය පහත වගුවේ දැක්වේ.

			ن	(•							
කාලය (S)	0	1	2	3	4	5	6	7	8	9	10
විස්ථාපනය (m)	0	2	4	6	8	8	8	8	8	4	0

- i) මුල් තත්පර 4 තුළ ළමයාගේ චලිතය කුමන ආකාර චලිතයක්ද?
- ii) මුල් තත්පර 4 තුළ ළමයාගේ විස්ථපන වෙනස් වීමේ සීඝූතාවය කොපමණද?
- iii) "විස්ථාපනය වෙනස් වීමේ සීසුතාව" වෙනුවට තනි වචනයක් ලියන්න
- iv) තත්පර 4 සිට තත්පර 8 දක්වා කාලය කුළ ළමයාගේ චලිතය පිළිබඳ කුමක් කිව හැකිද?
- v) තත්පර 8 සිට 10 දක්වා චලිතය සිදු වී ඇත්තේ කෙසේද?
- vi) අවසාන තත්පර 2 තුළදී ළමයාගේ පුවේගය සොයන්න.
- 03). 15ms^{-1} පුවේගයක් ලබාගෙන ඉන්පසු තවත් තත්පර $5 \text{ක් } 15 \text{ms}^{-1}$ ඒකාකාර පුවේගයෙන් චලනය වී එම වස්තුව අවසානයේ තත්පර 3 ක කාලයක් ඒකාකාරව මන්දනය වී නිශ්චලතාවයට පත්වේ.
 - i) මුල් තත්පර 5 දී ත්වරණය ගණනය කරන්න.
 - ii) අවසාන තත්පර 3 තුළ මන්දනය ගණනය කරන්න.
 - iii) මුල් තත්පර 5 තුළ වස්තුවේ විස්ථාපනය සොයන්න.
 - iv) දෙවන තත්පර 5 තුළ වස්තුවේ විස්ථාපනය සොයන්න.
 - v) අවසාන තත්පර 3 තුළ වස්තුවේ විස්ථාපනය සොයන්න.
 - vi) තත්පර 10 තුළ වස්තුවේ විස්ථාපනය සොයන්න.
- 04). වස්තුවක් තත්පර 2ක් තුළ දී $15 {
 m ms}^{-1}$ සිට $3 {
 m ms}^{-1}$ දක්වා ඒකාකාරව අඩු වූයේ නම් වස්තුවේ මන්දනය සොයන්න.

ත්වරණය (acceleration)

• පුවේගය වෙනස් වීමේ සීඝුතාවය ත්වරණයයි.

$$ullet$$
 ත්වරණගේ ඒකක $=$ $\dfrac{ ullet g ext{ ළවග වෙනස}}{ ext{ කාලය}} = \dfrac{ ext{ms}^{-1}}{ ext{ S}}$

$$= ms^{-1} x s^{-1}$$
 (තත්ත්පරයට තත්පරයට මීටර්) $= ms^{-2}$ (තත්ත්පර වර්ගයට මීටර්)

- පුවේග වෙනස = අවසාන පුවේගය මුල් පුවේගය
- වස්තුවක පුවේගයේ අඩුවීමක් ඇත්නම් එහි ත්වරණය සෘණ අගයක් ගනී. මෙම සෘණ ත්වරණය මන්දනය (deceleration) ලෙස හඳුන්වයි.
- ullet යම් වස්තුවක ත්වරණය -5 ms^{-2} නම් එහි මන්දනය $\mathrm{5\ ms}^{-2}$ වේ.

- වස්තුවක ප්රවේගය සෑම තත්පරයකදීම එකම පුමාණයකින් වැඩි හෝ අඩු වේනම් එය ඒකාකාර ත්වරණය හෝ ඒකාකාර මන්දනයක් ලෙස හඳුන්වයි.
- ullet මධානා පුවේගය = ආම්භක පුවේගය + අවසාන පුවේගය γ
- වස්තුවේ විස්ථාපනය = මධානා පුවේගය x කාලය

අභාගාසය

- - ii. වස්තුවක පුවේගය අඩුවන්නේ එය ත්වරණයක් වන අතර එය මන්දනයක් ලෙස ද හඳුන්වයි.
 - iii. ත්වරණයේ ඒකකවේ.
 - iv. ත්වරණය ms^{-2} වන්නේ නම් මන්දනයවේ.
- 02). නිශ්චලතාවයෙන් චලිතය ආරම්භ කරන වස්තුවක් තත්පර 5ක් ඒකාකාර ත්වරණයකට භාජනය වී $12~{
 m ms}^{-1}$ ක පුවේගයක් ලබා ගනී. එම කාලය තුල එම වස්තුවේ විස්ථාපනය සොයන්න.

විස්ථාපන කාල පුස්තාර හා පුවේග කාල පුස්තාර

විස්ථාපන කාල පුස්තාර	පුවේග කාල පුස්තාර
වස්තුවක විස්ථාපනය විචලනය වන	කාලය සමහ පුවේගය විචලනය වන
ආකාරය නිරූපණය කරන පුස්තාර වේ.	ආකාරය නිරූපණය කරන පුස්තාර වේ
එනම් විස්ථාපනය y අක්ෂයේත් කාලය x	පුවේගය y අක්ෂයේත් කාලය x අක්ෂයේත්
අක්ෂයේත් සළකුණු කරයි.	සළකුණු කරයි.
ඒකාකාර පුවේගයකදී සරල රේඛීය	ඒකාකාර ත්වරණයකදී සරල රේඛීය
පුස්තාරයක් ලැබෙන අතර එහි	පුස්තාරයක් ලැබෙන අතර එහි
අනුකුමණයෙන් පුවේගය ලබාගත	අනුකුමණයෙන් ත්වරණය ලබාගත හැකිය.
හැකිය.	මෙහි විස්ථාපනය, පුවේග- කාල
	පුස්ථාරයෙන් ආවරණය වන පුදේශයේ
	වර්ගඵලයට සමාන වේ.

අභාගාසය

- 01). නිශ්චලතාවයෙන් චලිතය ආරම්භ කරන වස්තුවක් තත්පර 6 ක් ඒකාකාර ත්වරණයකට භාජනය වී $15~{
 m ms}^{-1}$ පුවේගයක් ලබා ගනී. ඉන් පසු එම පුවේගයෙන් ඒකාකාරව තව තත්පර 6 ක් චලිත වන වස්තුව අවසානයේ දී ඒකාකාර මන්දනයකට භාජනය වී තත්පර 3කින් නිශ්චලතාවයට පත් වේ.
- I. මෙම චලිතය පිළිබඳ පුවේග- කාල පුස්තාරය අදින්න.
- II. මූල් තත්පර 6 තුළදී ත්වරණය සොයන්න.
- III. මුල් තත්පර 6 තුළදී විස්ථාපනය කොපමණද?
- IV. ඒකාකාර පුවේගයෙන් ගමන් කළ දුර කොපමණද?
- V. අවසාන තත්පර 3 තුළදී මන්දනය කොපමණද?
- VI. අවසාන තත්පර 3 තුළදී ගමන් කල දුර කොපමණද?

- VII. a) මෙම මුළු කාලය තුළ දී ගමන් කළ මුළු දුර සොයා ගැනීම සඳහා පුවේග කාල පුස්තාරය ඇසුරින් පුකාශයක් ලියන්න.
 - b) එම පුකාශය ඇසුරින් ගමන් කළ මුළු දූර සොයන්න.

<u> ගුරුත්වජ ත්වරණය</u>

• වස්තුවක් ඉහළ සිට පහළට වැටෙන විට එම වස්තුව මත ගුරුත්වාකරෂණ බලය නිසා හට ගන්නා ත්වරණය ''ගුරුත්වජ ත්වරණය'' නම් වේ.

උදා -

නිශ්චලතාවයේ සිට සිරස්ව පහළට වැටෙන වස්තුවක් බිමට වැටීමට තත්පර 4 ක් ගත විය. බිමට වැටෙන තුරු එහි පුවේගය වෙනස් වූ අයුරු ,

■ පහළට වැටීම ආරම්භ වන විට පුවේගය = 0

lacktriangle තත්පරයක් ගත වූ විට පුවේගය $= 9.8~{
m ms}^{-1}$

■ තත්පර දෙකක් ගත වූ විට පුවේගය = $9.8~{
m ms}^{-1}~{
m x}~2~=19.6~{
m ms}^{-1}$

■ තත්පර තූතක් ගත වූ විට පුවේගය = $9.8 \text{ ms}^{-1} \text{ x } 3 = 29.4 \text{ ms}^{-1}$

එය බිම වැටීමට තත්පර 4ක් ගතවූ නිසා එම මොහොතේ පුවේගය

 $= 9.8 \text{ ms}^{-1} \text{ x 4} = 39.2 \text{ ms}^{-1}$

■ තත්පර 4 තුළ වස්තුවේ විස්ථාපනය = $(0+39.2) \, \text{ms}^{-1} \, \text{x} \, 4 \, \text{S}$

= 78.4 m

අභාගාස

- 1. නිශ්චලතාවයෙන් චලිතය ආරම්භ කරන වස්තුවක් සරළ රේඛීය මාර්ගයක් දිගේ තත්පර 8ක් ඒකාකාර ත්වරණයෙන් ගමන් කර $12~\rm gm$ පුවේගයක් ලබා ගනී. ඉන් පසු $12~\rm ms^{-1}$ ඒකාකාර පුවේගයෙන් තවත් තත්පර 4ක් ගමන් කරයි. අවසානයේ දී ඒකාකාර මන්දනයකට භාජනය වී තත්පර 4ක් තුළ දී නිශ්චලතාවයට පත් වේ.
 - a. මෙම චලිතය පිළිබඳ පුවේග කාල පුස්ථාරය අඳින්න.
 - b. මුල් තත්පර 8 තුළ වස්තුවෙහි ත්වරණය කොපමණද?
 - c. මුල් තත්පර 8 තුළ වස්තුව සිදුකළ විස්ථාපනය කොපමණද?
 - d. ඒකාකාර පුවේගයෙන් සිදුකළ විස්ථාපනය කොපමණද?
 - e. 12~S සිට 16~S දක්වා කාලාන්තරයේ දී වස්තුවේ මන්දනය කොපමණද?
 - f. කාලය තත්පර 16 වන විට වස්තුවේ විස්ථාපනය කොපමණද?

පදාර්ථයේ වාූහය

පරමාණු යනු පදාර්ථයේ තැනුම් ඒකක වේ.

පරමාණුව මධාායේ ස්කන්ධය ඒකරාශී වූ නාාෂ්ඨිය නම් ඉතා කුඩා පුදේශයක් පවතී. නාාෂ්ඨියේ පුෝටෝන හා නියුටෝන ඒකරාශී වී පවතී. නාාෂ්ඨිය ධන ආරෝපිතය.

ඉලෙක්ටෝන නාාෂ්ඨීය වටා වූ අවකාශ පුදේශයක පවතී.

අංශුව	පිහිටීම	ආරෝපණය	සාපේක්ෂ ස්කන්ධය
පුෝටෝන	නාාෂ්ඨිය තුළ	ධන +	1
නියුටෝන	නාාෂ්ඨිය තුළ	උදාසීන	1
ඉලෙක්ටුෝන	නාාෂ්ඨීය වටා අවකාශ	ඎණ −	1/1840
	පුදේශයක වේගයෙන් චලනය		
	වෙමින් පවතී		

පරමාණුක කුමාංකය

මූල දුවොය් පරමාණුක කුමාංකය = මූලදුවොය් පරමාණුවක ඇති පුෝටෝන සංඛ්‍යාව මූලදුවායක පරමාණුක කුමාංකය එම මූලදුවායට අනනා ලක්ෂණයකි.

ස්කන්ධ කුමාංකය

ස්කන්ධ කුමාංකය = පුෝටෝන සංඛ්යාව + නියුටුෝන සංඛ්යාව

බහුවරණ ගැටළු

- 1. පදාර්ථයේ තැනුම් ඒකකය වන්නේ,
- i. මූල දුවා
- ii. පරමාණුව
- iii. අණුව
- iv. අ∘ශୂ
- 2. පරමාණුවක මධායේ පවතින නාාෂ්ඨියෙහි අඩංගු උප පරමාණුක අංශු වන්නේ,
- i. ඉලෙක්ටෝන හා පුෝටෝන

ii. නියුටෝන හා ඉලෙක්ටෝන

iii. පුෝටෝන හා නියුටෝන

iv. නියුටෝන පමණයි

- 3. පරමාණුවක අඩංගු උප පරමාණුක අංශුවක් වන ඉලෙක්ටෝනය පිළිබඳ සතා වන්නේ,
- i. ඉලෙක්ටෝනය ධන ආරෝපිත අංශුවක් වන අතර එය නාාෂ්ඨීය තුළ පවතී.
- ii. ඉලෙක්ට්රෝනය ඍණ ආරෝපිත අංශුවක් වන අතර එය නාාෂ්ඨිය තුළ පවතී.
- iii. ඉලෙක්ටෝනය ධන ආරෝපිත අංශුවකි. එය නාාෂ්ඨිය වටා ඇති අවකාශයේ චලනය වේ.
- iv. ඉලෙක්ටෝනය ඍණ ආරෝපිත අංශුවකි. එය නාාෂ්ඨිය වටා ඇති අවකාශයේ චලනය වේ.
- 4. පරමාණුවක නාාෂ්ඨීයේ පවතින ධන ආරෝපිත උප පරමාණුක අංශුව වන්නේ,
- i. පුෝටෝන
- ii. ඉලෙක්ටෝන
- iii. නියුටෝන
- iv. මීසෝන

පහත දැක්වෙන වහුව ඇසුරෙන් 5-8 තෙක් පුශ්න වලට පිළිතුරු සපයන්න.

අංශුව	ෂෝටෝන සංඛා <u>හා</u> ව	නියුටුෝන සංඛ්‍යාව	ඉලෙක්ටුෝන සංඛ්‍යාව
Α	17	20	18
В	18	20	18
С	19	20	18
D	20	20	20
Е	20	22	20

- 5. සමස්ථානික මූලදුවා වන්නේ,
- i. A, E
- ii. A, B, C
- iii. D, E
- iv. A, B, C, D

- 6. A අංශුවේ ස්කන්ධ කුමාංකය විය හැක්කේ,
- i. 17
- ii. 20
- iii. 18
- iv. 37

- 7. C අංශුවේ පරමාණුක කුමාංකය වන්නේ,
- i. 19
- ii. 20
- iii. 18
- iv. 39

- 8. උදාසීන අංශුව/ අංශු වන්නේ,
- i. B පමණයි
- ii. B හා D පමණයි
- iii. D පමණයි
- iv. B, D හා E පමණයි

- 9. X පරමාණුවේ ඉලෙක්ටෝන 18ක් ද, පුෝටෝන 17ක් ද, නියුටෝන 18ක් ද ඇත. X පරමාණුව හැඳින්විය හැක්කේ, i. අණුව ii. සමස්ථානිකය iii. අයනය iv. අංශුව
- 10. ටුාන්සිස්ටර් හා ඩයෝඩ සැදීමට යොදා ගන්නා මූලදුවාය,
- i. C ii. B iii. Si iv. P

ආවර්තිතා වගුවේ දැකිය හැකි රටා

ආවර්තිතා වගුවේ ආවර්තයක් ඔස්සේ වමේ සිට දකුණට යන විට හා කාණ්ඩයක් දිගේ ඉහල සිට පහලට යන විට මූලදුවාාවල භෞතික හා රසායනික ගුණ වෙනස් වන ආකාරය අධාානය කිරීම සදහා මූලදුවාාවල ගුණ දෙකක් තෝරා ගනිමු.

1. පළමුවන අයනීකරණ ශක්තිය (first ionization energy)

වායුමය අවස්ථාවේ ඇති මූලදුවා පරමාණුවකින් ඉලෙක්ටෝනයක් ඉවත් කර වායුමය ඒක ධන අයනයක් සෑදීමට සැපයිය යුතු අවම ශක්තිය එහි පළමුවන අයනීකරණ ශක්තියයි.

එනම් මූලදුවා පරමාණුවක නාෳෂ්ටිය වෙත ආකර්ෂණයකින් යුතුව නාෳෂ්ටිය වටා හුමණය වෙමින් පවතින ඉලෙක්ටුෝනයක් එම ආකර්ෂණ බලය බිදිමින් පරමාණුවෙන් ඉවත් කර ගැනීමට යෙදිය යුතු ශක්තියයි.

මෙසේ පරමාණුවකින් ඉලෙක්ටුෝනයක් ඉවත් කල විට එය ධන අයනයක් බවට පත් වේ.

උදාහරණ :-
$$Na_{(g)}$$
 -----> $Na_{(g)}^+$ + e

පරමාණුවක් සදහා මෙය ඉතා කුඩා අගයක් බැවිත් මෙම අගය පරමාණු මවුලයක් සදහා(පරමණු 6.022×10^{23} ක් සදහා) පුකාශ කරනු ලැබේ. ඒකකය වන්නේ මවුලයට කිලෝ ජූල් ය (KJ mol^{-1}).

ඉහත පුස්තාරය අනුව පෙනී යන්නේ ආවර්තයක් ඔස්සේ වමේ සිට දකුණට යන විට පුථම අයනීකරණ ශක්තිය ක්රමානුකූල රටාවකට වැඩි වන බවයි.

පුථම අයනීකරණ ශක්තිය අඩුම l කාණ්ඩයේ මූලදුවාවලට වන අතර ඉහලම පුථම අයනීකරණ ශක්තියක් පෙන්වන්නේ VIII වන කාණ්ඩයේ මූලදුවාවලය.

කාණ්ඩයක ඉහල සිට පහලට යැමේදී පුථම අයනීකරණ ශක්තිය අඩු වන බව පෙනේ. කාණ්ඩයක පහලට යන විට මූලදුව්ය පරමාණු සතු ශක්ති මට්ටම් ගණන වැඩි වන බැවින් බාහිරතම ශක්ති මට්ටමේ ඇති ඉලෙක්ටුෝනයක් නාෳෂ්ටියට දක්වන ආකර්ෂණය අඩුය. එවිට අඩු ශක්තියක් යොදා ඉලෙක්ටුෝනයක් නිදහස් කර ගත හැක. එමනිසා අයනීකරණ ශක්තිය අඩු වේ.

2. විදාූත් සෘණතාව (electro negativity)

මූලදවා පරමාණුවක් තවත් මූලදවා පරමාණුවක් සමග සහසංයුජ බන්ධනයකින් බැදී ඇති විට එම බන්ධනයේ ඉලෙක්ටුෝන තමා වෙතට ඇදගැනිමේ හැකියාව විදසුත් සෘණතාව නම් වේ.

විදාහුත් සෘණතාව වැඩි පරමාණුවක් ඉලෙක්ටෝත වෙත දක්වත ආකර්ෂණය වැඩි අතර විදාහුත් සෘණතාව අඩු පරමාණුවක එම ආකර්ෂණය අඩුය.

ඉහත පුස්තාරය අනුව පෙනී යන්නේ ආවර්තයක් දිගේ වමේ සිට දකුණට යැමේදී විදායුත් සෘණතාව වැඩි වන බව පෙනේ. ඉහලම විදායුත් සෘණතාවයක් පෙන්වන්නේ VII වන කාණ්ඩයේ මූලදුවායයි.

කාණ්ඩයක් දිගේ ඉහල සිට පහලට යන විට විදාෘුත් ඍණතාව අඩු වේ.

ලෝහ අලෝහ සහ ලෝහාලෝහ

ආවර්තිතා වගුවේ අන්තර්ගත මූලදුවා ලෝහ, අලෝහ සහ ලෝහාලෝහ ලෙස පුධාන වර්ග තූනකට වර්ග කල හැක.

<u>ලෝහ</u>

ආවර්තිතා වගුවේ අඩංගු මූලදුවා අතුරින් 80% ක් පමණ ලෝහ වේ. මින් සමහර ඒවා නිදහස් ලෝහ ලෙස ස්වභාවයේ පවතී (රන්, රිදී). එහෙත් බොහෝ ලෝහ පවතින්නේ ඒවායේ සංයෝග ලෙසිනි.

ලෝහවල භෞතික ගුණ :- ආවේනික ලෝහක දිස්නය

ගැටීමේදී රැව්දෙන හඩක් ඇසීම කාමර උෂ්ණත්වයේදී ඝන අවස්ථාවේ පැවතීම(රසදිය හැර) තනාහතාව(තුනී තහඩුවක් සේ තැලිය හැකි වීම) ආහනාහතාව (කම්බියක් සේ ඇදිය හැකි වීම) හොද තාප හා විදාහුත් සන්නායක වීම ඉහල ඝනත්වයක් තිබීම

ලෝහවල රසායනික ගුණ :- ඉලෙක්ටුෝන පිට කරමින් ධන අයන සාදයි ඔක්සිජන් සමග සංයෝජනය වී භාෂ්මික ඔක්සයිඩ සාදයි එම ඔක්සයිඩ ජලයේ දියවීමෙන් භාෂ්මික දුාවණ සැදේ

ලෝහය	විශේෂ ලක්ෂණ	මභෟතික ගුණ	රසායනික ගුණ	හාවිත අවස්ථා
සෝඩියම් Na	අධික පුතිකියාශීලී ලෝහයකි. වාතය සමග නොගැටෙන සේ පැරෆින් තෙල් වල ගබඩා කර තබයි.	පිහියෙන් කැපිය හැකි තරම් මෘදු ලෝහයකි. කැපූ පෘෂ්ඨයේ රිදී වන් ලෝහමය දිස්නයක් ඇත. ජලයට වඩා සනත්වය අඩු බැවින් ජලයේ පාවේ. විදුයුත් හා තාප සන්නායකයකි.	වාතයේ ඇති ඔක්සිජන් සමග ශීගුයෙන් පුතිකියා කර ඔක්සයිඩය සාදයි. සිසිල් ජලය සමග ශීගුයෙන් පුතිකියා කර සෝඩියම් හයිඩොක්සයිඩ් හා හයිඩුජන් වායුව සාදයි. තනුක අම්ල සමග පුචන්ඩ ලෙස පුතිකියා කර ලෝහයේ ලවණය හා හයිඩුජන් වායුව සාදයි.	සෝඩියම් සයනයිඩ් සාදයි (රත් රිදී නිස්සාරණය සදහා) කාබනික රසායන විදාහවෙදී ඔක්සිහාරකයක් ලෙස ගන්නා සෝඩියම් සංරසය සෑදීම ටයිටේනියම්, සර්කෝනියම් වැනි ලෝහවල සංයෝගවලින් ලෝහය වෙත්කරගැනීම රෙදි වර්ණ ගැන්වීමට ඉන්ඩිගෝ වර්ණය නිපදවීම කහ පැහැති ආලෝකය වීහිදන විදුලි ලාම්පු සදහා
මැග්නීසියම Mg	පුතිකිුයාශීලී ලෝහයකි තිදහස් ලෝහය ලෙස තොපවතී වාතයට විවෘතව තැබූ විට මලින වේ	ජලයට වඩා සතත්වය වැඩිය ඉහල තාප හා විදායුත් සත්තායක වේ	වාතයේ රත් කල විට දීප්තිමත් සුදු දැල්ලකින් දැවී සුදු පැහැති මැග්නීසියම් ඔක්සයිඩ් සැදේ සිසිල් ජලය සමග පුතිකියාවක් නැත උණු ජලය සමග පුතිකියා කර මැග්නීසියම් හයිඩොක්සයිඩ් හා හයිඩුජන් වායුව සාදයි හුමාලය සමග පුතිකියා කර මැග්නීසියම් ඔක්සයිඩ් හා හයිඩුජන් වායුව සාදයි තනුක අමල සමග ශීගුයෙන් පුතිකියා කර ලවණ හා හයිඩුජන් වායුව සාදයි	ඇලුමීනියම් හා මැග්නීසියම් මිශු කර මැග්නේලියම් නම් මිශු ලෝහය සාදයි මැග්නීසියම් ක්ෂීරය (milk of magnesia) සෑදීම ලෝහ විබාදනය වැලැක්වීම සදහා කැපවන ලෝහයක් ලෙස කුියා කරයි

අලෝහ

නිදහස් ලෝහ ලෙස මෙන්ම සංයෝග ලෙසද ස්වභාවයේ පවතී. ඝන අලෝහ මෙන්ම දුව, වායු යන අවස්ථාවල පවතින අලෝහ ද වේ.

සන අලෝහ - කාබන්, සල්ෆර්, පොස්ෆරස්, අයඩීන් දුව අලෝහ - බෝමීන්

වායු අලෝහ - ක්ලෝරීන්, ෆ්ලූවෝරීන්, නයිටුජන්, හයිඩුජන්, ඔක්සිජන්

අලෝහවල භෞතික ගුණ :- දිස්තයක් තැත

බිම වැටුනු විට කැඩෙන සුඑය (හංගුර ය) තනානාව හා ආහනානාව නොමැත දුර්වල තාප හා විදාහුත් සන්නායක වීම(මිනිරන් හැර) පහල ඝනත්වයන් තිබීම

අලෝහවල රසායනික ගුණ :- ඉලෙක්ටුෝන ලබා ගනිමින් ඍණ අයන (කැටායන) සාදයි ඔක්සිජන් සමග සංයෝජනය වී වායුමය ආම්ලික ඔක්සයිඩ සාදයි එම ඔක්සයිඩ ජලයේ දියවීමෙන් අම්ල දුාවණ සැදේ

අලෝහ ය	විශේෂ ලක්ෂණ	හෞතික ගුණ	රසායනික ගුණ	භාවිත අවස්ථා
නයිටුජ න් N	නිදහස් ද්වීපරමාණුක අනු ලෙස පවතී වාතයේ 78.1% පමණ නයිටුජන් වායුව වේ පුෝටීනවල සංඝටක මූලදුවායක් ලෙසද පාංශු වාතයේ සංඝටකයක් ලෙසද පවතී	වර්ණයක් හෝ ගත්ධයක් තැත වාතයට වඩා සැහැල්ලුය. ජලයේ සුළු වශයෙන් දිය වේ	පුතිකියාතාව ඉතා අඩුය ඉතා ඉහල උෂ්ණත්වවලදී O ₂ , H ₂ , C, Si, Mg, Al සමග පුතිකියා කරයි අකුණු ගැසීමේදී වාතයේ ඇති O ₂ සමග පුතිකියා කර ආම්ලික නයිටුජන් ඩයොක්සයිඩ් සැදේ විශේෂිත තත්ව යටතේ හයිඩුජන් වායුව සමග පුතිකියා කර ඇමෝතියා සාදයි Mg සමග රත්කිරීමේදී ලෝහයේ නයිට්රයිඩය සාදයි	කාර්මික වශයෙන් ඇමෝනියා නිපදවීමට, රසායනික පොහොර නිපදවීමට අකීය වායුවක් බැවින් විදුලි ලාම්පු, උෂ්ණත්වමාන පිරවීමට ඉලෙක්ටෝනික උපාංග සෑදීමේදී ඔක්සිජන් සමග ගැටීම වැලැක්වීමට පුතිකුියාශීලී රසායන දවාහ ගබඩා කිරීමේදී ආවරණ වායුවක් ලෙස, කිරිපිටි ඇසිරීමේදී අධි සිසිලන කාරකයක් ලෙස දුව නයිටුජන් භාවිතා කෙරේ වාහනවල ටයර් පිරවීමට
සල්ෆර් S	සාමානා‍‍‍‍‍‍ සාමානා‍‍‍‍ර වා‍‍‍‍‍වවහාරයේදී ගෙන්දගම් ලෙස හැදින්වේ විවිධ ස්වරූපවලින් පවතී(බහුරූපී ආකාර) නිදහස් මූලදුවා‍‍ ලෙස මෙන්ම සල්ගේට, සල්ගයිඩ ලෙසද පවතී	බිදෙනසුළු කහ පැහැති ස්ඵටික ලෙස පවතී ජලයේ අදාවාය කාබනික දාවකවල සුලු වශයෙන් ද කාබන් ඩයිසල්ෆයිඩ් හි ඉතා හොදින් ද දිය	නිල් දැල්ලක් සහිතව දැවී කටුක ගදක් සහිත සල්ෆර් ඩයොක්සයිඩ් වායුව පිටවේ ලෝහ සල්ෆර් සමග රත්කල විට ලෝහයේ සල්ෆයිඩය සාදයි	සල්ෆියුරික් අම්ලය සෑදීමට රබර් වල්කනයිස් කිරීමට ලී පල්ප විරංජනය කිරීම සදහා කැල්සියම් හා මැග්නීසියම් සල්ෆයිට සෑදීමට සල්ෆයිඩ් අඩංගු සායම්, කාබන් ඩයිසල්ෆයිඩ් වැනි දාවක, SO ₂ වායුව, ගිනිකූරු, වෙඩිබෙහෙත් නිපදවීමට වයින් හා බීර නිෂ්පාදනයේදී, දිලීර නාශකයක් ලෙස, ඖෂධ නිපදවීමට
කාබන් C	බහුල වශයෙන් පවතින අලෝහයකි ස්ඵටික ආකාර මෙන්ම අස්ඵටිකරූපී ආකාර ද පවතී. ස්ඵටිකරූපි ආකාරවල පරමාණු නිශ්චිත රටාවකට පවතී(දියමන්ති, මිනිරන්, ෆුලරීන්) අස්ඵටිකරූපී ආකාරවල නිශ්චිත රටාවක් නැත(ගල් අගුරු, ලාම්පු දැලි,	ස්වරූපය අනුව ගුණ වෙනස්වේ කලු පැහැතිය (දියමන්ති හැර) සනත්වය සාමේක්ෂව අඩුය(දියමන්ති ඉහල සනත්වයන සහිතයි) දියමන්ති ඉහල වර්තනාංකයක් දැඩිබවක් ඇති බැවින් වටිනාක් ඉහලය මිනිරත් විදායුත් සන්නායකයකි අගුරුවල්ට වායු වර්ග අධිශෝෂණය ක	ඔක්සිජන් සමග පුති කරයි අගුරු තදින් රත් කල ඔක්සිජන් සමග පුති කර CO2 සාදයි ක් ඉහල උෂ්ණත්වයේදී කාබන් කැල්සියම් ඔක්සයිඩ් සමග පුතිද හා කර කැල්සියම් කාබ සාදයි	විශේදී කිුිිියා වීචිට කිුිිියා බ්ිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි

කාබන් ස්වරූපය	පුයෝජන පුයෝජන
අස්ඵටික කාබන්	කළුපාට තීන්ත වර්ග නිපදවිමරබර්වල පිරවුම්කාරකයක් ලෙස
ගල්අඟුරු	• ඉන්ධනයක් ලෙස
මිනිරන්	පැන්සල් නිෂ්පාදනයවිදුලි කෝෂවල ඉලෙක්ටුෝඩ සෑදිම හා ස්නේහකයක් ලෙස යේදීම
දියමන්ති	 ආහරණ සෑදිමට ද මැණික් කැපීමට හා වීදුරු කැපීමට ද යන්තුසූතුවල හා තරාදි ආදියේ ගෙවි යන තැන්වල විවර්තනි ලෙසද යොදා ගැනේ.
අඟුරු	• වායු අවශෝෂණය හා ජලය පිරිසිදු කිරීමට
නැනෝ, පරිමාණයේ කාබන් තන්තු හා කාබන් නාල	 නැතෝ දුවා යොදා සවිබල ගැන්වූ භාණ්ඩ නිෂ්පාදනය සඳහා යොදා ගැනේ. කාබන් තන්තු ඉතාමත් සැහැල්ලුවන අතර අධික ශක්තියකින් යුක්තය.

ලෝහාලෝහ

සිලිකන් :-

- 🕨 පෘථිවි කබොලේ ඔක්සිජන් හැරුණු විට වැඩි වශයෙන්ම පවතින මූලදුවායයි.
- 🕨 ස්ඵටිකරූපී මෙන්ම අස්ඵටිකරූපී ආකාර ද පවතී.
- 🕨 තිරුවාන, වැලි, එමරල්ඩ් වැනි මැණික් , මැටි සිලිකන් අඩංගු සංයෝග වේ.
- 🕨 දුවාංකය 1410°C පමණ වේ
- ටුාන්සිස්ටර් හා ඩයෝඩ සෑදීමට, සූයී කෝෂ සෑදීමට, පරිගණක උපාංග සෑදීමට යොදා ගනී.

බෝරෝන්

- 🕨 කළු පැහැති ස්ඵටිකරුපී ඝනයකි
- ightarrow ඝනත්වය $3300 ext{kgm}^{-3}$ වන අතර දුවාංකය $2200^{0} extsf{C}$ පමණ වේ
- 🗲 වාතය තුලදී ඉහල උෂ්ණත්වයකට රත් කලද පුතිකිුයා නොකරයි.
- > අස්ඵටිකරූපී බෝරෝන් ඉතා ඉහල උෂ්ණත්වවලදී ඔක්සිජන්, නයිටුජන්, නයිටුක් අම්ලය, සාන්දු සල්ෆියුරික් අම්ලය , කාබන්, සල්ෆර් වැනි දුවා සමග පුතිකුියා කර අනුරූප සංයෝග සාදයි.
- ලෝහ පැස්සීමට, වර්ම ආලේපන සැදීමට, ඉහල උෂ්නත්වවලට රත් කලහැකි වීදුරු නිපදවීමට භාවිතා කෙරේ.

ඔක්සයිඩවල ආම්ලික, භාෂ්මික හා උභයගුණී ස්වභාවය

💠 මූලදුවාා ඔක්සිජන් සමග සම්බන්ධ වී සාදන සංයෝග ඔක්සයිඩ වේ.

ආවර්තිතා වගුවේ වමේ සිට දකුණට යන විට එම මූලදුවා සාදන ඔක්සයිඩවල භාෂ්මික ස්වභාවය අඩු වන අතර ආම්ලික ස්වභාවය වැඩි වේ.

තුන්වන ආවර්තයේ මූලදුවා	Na	Mg	Al	Si	P	S	Cl
මක්සයිඩය	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	SO ₃	Cl ₂ O ₇
ආම්ලික / භාෂ්මික ස්වභාවය	පුබල හාස්මික	දුබල භාස්මික	ගිණු ©නය	දුබල ආම්ලික	දුබල ආම්ලික	පුබල ආම්ලික	පුබල ආමලික

ඔක්සයිඩවල ආම්ලික ගුණ වැඩිවේ.

ඔක්සයිඩවල භාස්මික ගුණ අඩුවේ.

රසායනික සූතු

සංයුජතාව

- ර සංයුජතාව යනු කිසියම් මූලදුවා පරමාණුවක සංයෝජනය වීමේ හැකියාව වන අතර එය මනිනු ලබන්නේ හයිඩුජන්වලට සාපේක්ෂවයි.
- එනම් මූලදුවා පරමාණුවක් සමග සංයෝජනය විය හැකි හෝ ඒ මගින් පුතිස්ථාපනය කළ හැකි හෝ හයිඩුජන් පරමාණු සංඛ්‍යාවයි.
- ල මූලදුවාක සංයුජතාව,රසායනික සංයෝජනයේදී එම මූලදුවායේ පරමාණුවකින් ඉවත්වන ඉලෙක්ටෝන ගණනට හෝ එම මූලදුවා පරමාණුවකින් ලබාගන්නා ඉලෙක්ටෝන ගණනට හෝ මූලදුවා පරමාණු අතර හවුලේ පවතින ඉලෙක්ටෝන යුගල ගණනට හෝ සමාන වේ.
- ලමුලදුවා පරමාණුවක අවසාන ශක්ති මට්ටමේ ඇති ඉලෙක්ටෝන සංයුජතා ඉලෙක්ටෝන ලෙස හදුන්වන අතර මෙම සංයුජතා ඉලෙක්ටෝන ගණන සාමානායෙන් මූලදුවායේ උපරිම සංයුජතාවට සමාන වේ.
- පහත දැක්වෙන්නේ පරමාණුක කුමාංකය 1 සිට 20 දක්වා මූලදුවාවල සංයුජතා අගයන් දැක්වෙන වගුවයි.

බහුවරණ පුශ්න

1)	පහත	දැකවෙන	මූලදුවා අතුරින්	ී විදායුත්	ඍණතාව ඉහලම	මූලදුවා	වන්නේ,
		i. Na	ii. F	iii. C	iv. Al		

- 2) පහත දැක්වෙන අවස්ථා අතුරින් සල්ෆර් හි භාවිත අවස්ථාවක් වන්නේ,
 - i. වාහනවල ටයර්වලට පිරවීම සදහා
 - ii. මැග්තේලියම් මිශු ලෝහය සැදීම සදහා
 - iii. රබර් වල්කනයිස් කිරීම සදහා
 - iv. කළුපාට තීන්ත වර්ග නිපදවීම සදහා
- 3) ජලයට වඩා ඝනත්වයෙන් වැඩි, ඉතා හොද තාප හා විදාහුත් සන්නායකයක් වන මෙම මූලදුවා වාතයේ දහනය කලවිට සුදු පාට දිප්තිමත් දැල්ලක් සහිතව දැවී සුදු පැහැති කුඩක් ඉතිරි වේ. මෙම මූලදුවා විඛාදනය වැලැක්වීමට ද යොදා ගනී. මෙම මූලදුවා විඛාදනය වැලැක්වීමට ද යොදා ගනී. මෙම මූලදුවා
 - i. C ii. F iii. Mg iv. Na

4) ටයිටේනියම්, සර්කෝනියම් වැනි ලෝහවල සංයෝගවලින් ලෝහය වෙන් කර ගැනීමට භාවිතා කරනුයේ, i. K ii. Na iii. Mg iv. S 5) ලෝහයක් වන්නේ, i. B iii. Si iv. P ii. Ca 6) පහත දැක්වෙන්නේ එක ලග පිහිටි මූලදුවා කිහිපයක පුථම අයනීකරණ ශක්තින් වේ. මෙහි D මුලදුවා අයත්වන ආවර්තිතා වගුවේ කාණ්ඩය වන්නේ, i. Ш පුථම අයනීකරණ ශක්තිය ii. IV iii. ٧ iv. VΙ පරමාණුක කුමාංකය 7) ආම්ලික ඔක්සයිඩයක් විය නොහැක්කේ, i. SO₂ ii. MgO iii. P_2O_5 iv. NO₂ 8) A යනු II කාණ්ඩයේ මූලදුවායකි. B යනු VII කාණ්ඩයේ මූලදුවායකි. A හා B අතර ඇතිවන සංයෝගය වන්නේ, i. AB ii. A₂B iii. AB₂ iv. A_2B_3 9) A හි සල්ෆේටය ASO $_4$ වේ. A හි නයිටේටයේ රසායනික සුතුය විය හැක්කේ, i. ANO₃ ii. A_2NO_3 iii. $A(NO_3)_2$ පහත දැක්වෙන රසායනික සුතු අතරින් ඇමෝනියම් පොස්ෆේට් හි සුතුය 10) වන්නේ. i. NH₄PO₄ ii. $(NH_4)_3PO_4$ iii. $NH_4(PO_4)_3$ iv. $(NH_4)(PO_4)_3$ වාූහගත රචනා 1) (අ) එක්තරා මූලදුවාක් පහත පරිදි සංකේත කර ඇත. එහි පරමාණුක කුමාංකය එහි ස්කන්ධ කුමාංකය ii. එහි පුෝටෝන ගණන iii. එහි ඉලෙක්ටුෝන ගණන iv. එහි නියුටෝන ගණන (ආ) පහත දක්වා ඇත්තේ A, B, D, E, F, G හා J යන මුලදුවා ආවර්තිතා වගුවේ පිහිටන ආකාරයයි. එහි දක්වා ඇති සංකේත සතා මූලදවාවල සංකේත නොවේ. A

I.	එකම කාණ්ඩයට අයත් ලෝහ දෙකක් නම් කරන්න.
ii.	සෘණ අයනයක් සාදන මූලදුවා කුමක්ද?
iii.	රසායනික පුතිකිුයා වලට සහභාගී නොවන මූලදුවා
	කුමක්ද?
iv.	B හා G අතර සෑදෙන රසායනික සංයෝගයේ සූතුය ලියන්න.
V	 E, F, G අතරින් වැඩිම පුථම අයනීකරණ ශක්තියක් ඇත්තේ කුමන මූලදුවාෳකටද?
V.	L, F, G අත්වත් වැසම පුටම අයත්කාරණ ශ්කාත්යක් ඇත්තේ කුමත් මූල්දුවාක්ටද්!
vi.	E, F, G අතරින් විදායුත් සෘණතාව වැඩිම කුමන මූලදුවායේද?
vii.	B මූලදුවා සතු වන ලෝහමය ගුණයක් හා අලෝහමය ගුණයක් ලියන්න
2) (
	අ) පහත දැක්වෙන සංයෝගවල රසායනික සූතු ලියන්න.
	. කැල්සියම් කාබනේට්
ii :::	· · ·
iii :	•
iv	
V	
Vi :	
vii	
Viii :	•
ix	
, X	
(අ <u>၁)</u>	පහත දැක්වෙන එක් එක් මූලදුවායේ භාවිත අවස්ථාවක් ලියන්න.
i.	Na -
ii.	Mg -
iii.	C -
iv.	S -
٧.	N -

රචනා පුශ්න

(01). (අ)ආවර්තිතා වගුවේ 2, 3, 4 ආවර්ත වලට අයත් අනුයාත මූලදුවා 10ක පුථම අයනීකරණ ශක්තීන් විචලනය වන ආකාරය පහත පුස්තාරයෙන් දැක්වේ.

- i. මෙහි දැක්වෙන මූලදුවා අතුරින් ආවර්තිතා වගුවේ එකම කාණ්ඩයට අයත් විය හැකි මූලදුවා දෙකක් ලියන්න.
- ii. අවම පුතිකිුයාශීලතාවයක් ඇති මූලදුවා කුමක් ද?
- iii. දී ඇති මූලදුවා අතරින් වැඩිම විදාහුත් සෘණතාවක් සහිත මූලදුවා කුමක්ද?
- iv. D හි සතා මූලදුවා කුමක් ද?
- v. D සතු වන භෞතික ගුණයක් හා රසායනික ගුණයක් ලියන්න.
- vi. D ලෝහයේ භාවිත අවස්ථාවක් ලියන්න.
- vii. මෙහි ඇති එක් මූලදුවාක් රබර් වල්කනයිස් කිරීම සදහා යොදා ගනී. ඊට අදාළ සංකේතය කුමක්ද?
- viii. ඉහත vii හි සදහන් කරන ලද මූලදුවායේ භෞතික ගුණයක් හා රසායනික ගුණයක් ලියන්න.
 - ix. ඉහත vii හි සදහන් කරන ලද මූලදුවායේ වල්කනයිස් කිරීමට අමතරව වෙනත් භාවිත අවස්ථාවක් ලියන්න.
- (ආ) Al_2O_3 , SiO_2 , MgO , P_2O_5 , SO_3 , Na_2O යනු එකම ආවර්තයක ඇති ඔක්සයිඩ කිහිපයකි.
 - i. මේවා අතරින් ආම්ලික ඔක්සයිඩයක් හා භාෂ්මික ඔක්සයිඩයක් ලියන්න.
 - ii. ඉහත සංයෝග ආම්ලිකතාව වැඩිවන පිලිවලට පෙළ ගස්වා ලියන්න.
- (ඉ) i. සමස්ථානික යනු මොනවාද?

- ii. සමස්ථානික සදහා උදාහරණ දෙකක් ලියන්න.
- (02). (අ) X නම් මූලදුවායේ පුෝටෝන 20ක් අඩංගු වේ.
 - i. X මූලදවා උදාසීන අවස්ථාවේ දී එය සතු ඉලෙක්ටෝන සංඛ්යාව කියද?
 - ii. Xහි ඉලෙක්ටුෝන විනාහසය ලියන්න.
- iii. X ආවර්තිතා වගුවේ පිහිටන කාණ්ඩ අංකය හා ආවර්ත අංකය පිලිවෙලින් ලියන්න.
- iv. Y නම් තවත් මූලදුවාක් vii කාණ්ඩයේ පිහිටයි. X හා Y එකතු වී සාදන සංයෝගයේ සුතුය ලියන්න.
- (ආ) පහත දක්වා ඇත්තේ ආවර්තිතා වගුවේ ආවර්ත දෙකකට අයත් මූලදුවා කිහිපයක පුථම අයනීකරණ ශක්තිය විචලනය වන අන්දමයි. මෙම මූලදුවා අයත් වන්නේ 2 වන හා 3 වන

අවර්ත වලට වන අතර මෙහි දක්වා ඇත්තේ ඒවායේ සම්මත සංකේත නොවේ.

- i. E මූලදුවා අයත් වන්නේ ආවර්තිතා වගුවේ කුමන කාණ්ඩයට ද?
- ii. D වල පුථම අයනීකරණ ශක්තිය ඉහල යෑමට හේතුව කුමක් ද?
- iii. මෙහි B හා F අතර ඇතිවන සංයෝගයේ රසායනික සූතුය ලියන්න.
- iv. දෙවන ආවර්තයට අයත් මූලදුවා මොනවාද?
- v. විදායුත් ඍණතාව ඉහල මූලදුවා කුමක්ද?

<mark>චලිතය පිළිබද නිව්ටන් නියම</mark>

ගීමත් අයිසැක් නිව්ටන් (උපත 1642 දෙසැම්බර් 25 වුල්ස්ටෝර්ප්, ලින්කන්ෂයර්, එංගලන්තය - 1727 මාර්තු ලන්ඩන්හි දී මිය ගියේය) ඉංගීසි ජාතික භෞතික විදාහඥයෙක් හා ගණිතඥයෙක් වූ හෙතෙම 17 වන සියවසේ විදාහත්මක විප්ලවයේ කූටපුාප්තිය විය. දෘෂ්ටි විදාහවේදී, සුදු ආලෝකයේ සංයුතිය පිළිබඳ ඔහුගේ සොයාගැනීම වර්ණවල සංසිද්ධීන් ආලෝක විදාහවට ඒකාබද්ධ කොට නවීන භෞතික දෘෂ්ටි විදාහවට අඩිතාලම දැමීය. යාන්තු විදාහවේ දී, ඔහුගේ චලිත නියමයන් තුන, නූතන භෞතික විදාහවේ මූලික මූලධර්ම, විශ්වීය ගුරුත්වාකර්ෂණ නියමය සැකසීමට හේතු විය. ගණිතයේ දී ඔහු අනන්ත ගණනය කිරීමවල මුල් සොයාගත් තැනැත්තා විය.

- චලිතයක් වීමට බලයක් යෙදවිය යුතුයි.
- බලය යනු ඇදීමක් හෝ තල්ලුවකි.
- යම් පෘෂ්ඨයක ගැටී ඇති වස්තුවක් මත චලිත දිශාවට විරුද්ධව ඝර්ෂණ බලය නම් බලයක් පවතී.
- මෙසේ යම් වස්තුවක් චලිතයේ දී බාහිර අසමතුලිත බලයක් යෙදීම හෝ නොයෙදීම මත, එම බලවල විශාලත්වය සලකා සර්. අයිසැක් නිව්ටන් නම් විදාහඥයා විසින් නියම තුනක් ඉදිරිපත් කර ඇත.
- ඒවානම්
 - ර නිව්ටන්ගේ පළමු නියමය
 - නිව්ටන්ගේ දෙවන නියමය
 - ු නිව්ටන්ගේ තෙවන නියමය

💠 නිව්ටන්ගේ පළමු වන නියමය

බාහිර අසමතුලිත බලයක් යෙදෙන තුරු නිශ්චල වස්තූන් ඒකාකාර පුවේගයෙන් චලනය වේ.

යෙදෙන අවස්ථා

- කරම් බෝඩ් එක මත කැරම් ඉත්තාගේ චලිතය
- යමක් බස් රථයක සිටගෙන යන විට තිරිංග යෙදූ විට ඉදිරි අතට විසි වීම
- මෝටර් රථයක ගමන් කරන විට ආසන පටි පැළදීම

💠 නිව්ටන්ගේ දෙවන නියමය

වස්තුවක ඇති වන ත්වරණය, එයට යොදනු ලබන අසමතුලිත බලයට අනුලෝමව සමානුපාතික වන අතර, වස්තුවේ ස්කන්ධයට පුතිලෝමව සමානුපාතික වේ.

$$\begin{array}{c}
a \quad \alpha \quad F \\
a \quad \alpha \quad \frac{1}{m}
\end{array}
\qquad
\begin{array}{c}
a \quad \alpha \quad F \times \frac{1}{m} \\
a \quad \alpha \quad \frac{F}{m}
\end{array}$$

$$a =$$
නියතයක් $\frac{F}{m}$

නියතය = 1 ලෙස ගත් විට $a = \frac{F}{m}$

$$a = \frac{F}{m}$$

$$F = ma$$

මේ අනුව නිව්ටන්ගේ දෙවන නියමය සමීකරණයක් ලෙස ඉදිරිපත් කළ විට

$$F = ma$$

💠 නිව්ටන්ගේ තූන්වන නියමය

සෑම කිුයාවකටම විශාලත්වයෙන් සමාන වූත් දිශාවෙන් පුතිවිරුද්ධ වූත් පුතිකිුයාවක් ඇත.

යෙදෙන අවස්ථා

හබලෙන් ජලය වෙත බලය යෙදීම හා ඊට සමාන බලයක් ජලය මහින් ඔරුව වෙත කිුයා කිරීම

පිහිනීමේ දී දැතින් ජලය මත බලයක් යෙදීම හා සමාන බලයක් ජලයෙන් ශරීරය මත යෙදීම

ගමාතාව ඒකක - $kgms^{-1}$

චලිතය වන වස්තුවක් නැවැත්වීමට ඇති අපහසුතාවය පිළිබඳ මිනුම ගමාාතාවයයි.

$$P = mv$$

බහුවරණ පුශ්න

- 1. බර මනින සම්මත ඒකකය වනුයේ,
- (1) kg (2) N (3) kgS⁻¹ (4) NS⁻¹

2.	දෛශික රාශියක් නොග	වෙනුයේ,		
	(1)ස්කන්ධය	(2) ත්වරණය	(3) ගමානවෙ	(4) බර
3.	එක්තරා 980 g ඇති වස		වරණයකින් ගමන් ක	රයි නම් එම වස්තුව
	මත යෙදෙන බලය වනු (1) 4900 N	•	(3) 490 N	(4) 4.9 N
4.	කැරම් ලෑල්ලක් මත ඩිං මෙය පහදන්නේ නිව්ට	_	විට ටික දුරක් ගමන් :	කර නිශ්චල වෙයි.
	(1) පළමු නියම	•	(3) තෙවන නිශ	s මයෙනි
	(2) දෙවන නියම		` '	තවන නියමයෙනි
5.	3 kg ස්කන්ධයක් ඇත කුියාත්මක වන බලය දි	ටනුයේ,	'	දුට වැටීමේ දී ඒ මත
	(1)3 N (2)) 30 N (3) 300	0 N (4) 0.30 N	
	(2) දෙවන නියම්	pහළ නගී. මෙම අව යයි. (වයයි. (ස්ථාවට හේතුවන්නේ (3) තුන්වන නියමයයි (4) කිසිවක් නොවේ.	ි නිව්ටන්ගේ,
,.	(2)මුල් අවස්ථා (3)මුල් අවස්ථා	F බලයම යොදා වස	ත්තුව වලනය කරන්නෙ එකිකි. බුනෙන් ප∘ගුවකි තතරෙන් ප∘ගුවකි.	
8.	20 g ස්කන්ධය ඇති ගැ			ක වේගය 20 ms ⁻¹
	නම් එය නගින ඉහළම (1)40 kgms ⁻¹		ි කොපමණද? (3) 0 kgms ⁻¹	(4) 0.04 kgms ⁻
9.	60 N බලයක් යොදා 12 ගණනය කරන්න. (1) 720 ms ⁻²	_	ත වස්තුවක් චලනගේ (3) 1/5 ms ⁻² (4	
10	(3) වස්තුව ආරම්	න නතර වේ ගය වැඩි කර ගත හ වීහකවේගයෙන් තෙ	ා ක.	වපූරණ යෙන්ම නැති

සර්ෂණය

💠 සර්ෂණනය

එකිනෙක හා ස්පර්ශවී ඇති වස්තු දෙකකින් එකක් අනෙකට සාපේක්ෂව චලනය වන විට හෝ චලනය වීමට උත්සාහ කරන විට එම චලිතය වලක්වා ලීමේ බලයක් අනෙක් වස්තුවෙන් යෙදෙයි. මෙම සංසිද්ධිය ඝර්ෂණයයි.

💠 ස්ථිතික ඝර්ෂණය

වස්තු දෙක අතර සාපේක්ෂ චලිතය ආරම්භ වීමට පෙර කිුයා කරන ඝර්ෂණය ස්ථිතික ඝර්ෂණය යි.

පෘෂ්ඨ දෙකක් අතර ස්ථිතික ඝර්ෂණ බලය, චලනය ඇති කිරීමට උත්සාහ කරන දිශාවට බාහිරින් යෙදෙන බලය සමහ වෙනස් වේ.

💠 සීමාකාරී සර්ෂණය

වස්තුවක චලිතය ආරම්භ කිරීමට යෙදිය යුතු බලය සීමාකාරී ඝර්ෂණයයි. සීමාකාරී ඝර්ෂණය කෙරෙහි ස්පර්ෂ පෘෂ්ඨ වල ස්වභාවය සහ ඒවා අතර අභිලම්බ පුතිකිුයාව බලපායි.

සීමාකාරී ඝර්ෂණය කෙරෙහි ස්පර්ෂ පෘෂ්ඨවල වර්ගඵලය බලපාන්නේ නැත.

💠 ගතික ඝර්ෂණය

චලනය වන වස්තුවක් මත යෙදෙන සර්ෂණ බලය ගතික සර්ෂණයයි.

අභාගය

- 1. ස්පර්ෂව පවතින රළු පෘෂ්ඨ සහිත වස්තු දෙකක් අතර සීමාකාරී ඝර්ෂණ බලය,
 - (1) ස්පර්ෂ පෘෂ්ඨ වල වර්ගඵලය මත රදා පවතී
 - (2) අභිලම්බ පුතිකියාව හා ස්පර්ෂ පෘෂ්ඨ වල ස්වභාවය මත රදා පවතී
 - (3) ස්පර්ෂ පෘෂ්ඨ වල ස්වභාවය හා ස්පර්ෂ පෘෂ්ඨ වල වර්ගඵලය මත රදා පවතී
 - (4) ස්පර්ෂ පෘෂ්ඨ වල වර්ගඵලය හා අභිලම්බ පුතිකිුයාව මත රදා පවතී
- 2. රූපයේ දැක්වෙන පරිදි තිරස් සුමට පෘෂ්ඨයක් මත තබා ඇති A වස්තුව සළකන්න. A මත 15~N හා X~N තිරස් බල දෙකක් රූපයේ දැක්වෙන පරිදි කිුයා කරයි. වස්තුව X බලයේ දිශාවට 10N ක සම්පුයුක්ත බලයකින් චලිත වේ නම් X හි අගය කුමක් ද?
 - (1) 15
- (2) 25
- (3) 35
- (4)45

- 3. සීමාකාරී ඝර්ෂණය කෙරෙහි බලපාන සාධක කිහිපයක් පහත දක්වා ඇත.
 - A- පෘෂ්ඨ වල ස්වභාවය
 - B- වස්තු අතර අභිලම්බ පුතිකිුයාව
 - C- පෘෂ්ඨ වල වර්ගඵලය

මෙම සාධක අතරින් සීමාකාරී ඝර්ෂණය කෙරෙහි බලපාන සාධක පමණක් දක්වා ඇති පිළිතුර වන්නේ,

- (1) A හා C පමණි.
- (2) B හා C පමණි.
- (3) A හා B පමණි.
- (4) A, B හා C පමණි. පමණි. පමණි.

- 4. ඝර්ෂණය සම්බන්ධයෙන් අසතා පුකාශය වන්නේ,
 - (1) ගතික ඝර්ෂණ බලය සීමාකාරී ඝර්ෂණ බලයට වඩා සුළු වශයෙන් වැඩිය
 - (2) චලිතය ඇරඹීමට පෙර කිුයා කරන ඝර්ෂණය බලය ස්ථිතික ඝර්ෂණයි
 - (3) ස්පර්ශ පෘෂ්ඨ අතර ඇතිවන උපරිම ඝර්ෂණය බලය සීමාකාරී ඝර්ෂණය බලයයි
 - (4) චලනය වන වස්තුවක පවතින ඝර්ෂණ බලය ගතික ඝර්ෂණය බලයයි

වාූහගත හා රචනා පුශ්න

- 5. සීමාකාරී සර්ෂණ බලය කෙරෙහි බලපාන සාධක දෙක කුමක් ද?
- 6. ඝර්ෂණය කෙරෙහි බල නොපාන සාධකයක් සඳහන් කරන්න.
- 7. යන්තුවල කොටස් අතර සර්ෂණ බල ඇති වීම නිසා ඇති වන අවාසි සඳහන් කරන්න.
- 8. චලනය වන පෘෂඨ දෙකක් අතර සර්ෂන බලය අඩු කර ගන්නා කුම නම් කරන්න.
- 9. ඝර්ෂණ බලයේ පුයෝජන සඳහන් කරන්න.
- 10. වර්ෂා දිනවල කට්ටා ගෙවුණු ටයර් සහිත වාහන පැදවීම අනතුරු දායකය. හේතුව පැහැදිළි කරන්න.

ශාක හා සත්ත්ව මෛසලවල වනුහය සහ කෘතාය

රොබට හූක් යනු ඉංගීසි විදාහඥයෙක් සහ ගෘහ නිර්මාණ ශිල්පියෙකි. ඔහු අන්වීක්ෂයක් භාවිතා කරමින් ක්ෂුදු ජීවියෙකු දර්ශනය කළ පුථමයා විය. භූක් රාජකීය සංගමයේ සාමාජිකයෙකු වූ අතර 1662 සිට එහි අත්හදා බැලීම් භාරකරු විය. භූක් ගුෂාම් විදාහලයේ ජාහමිනිය පිළිබඳ මහාචාර්යවරයෙකි.

මෛසල වාදය

1838 දී මතියස් ෂ්ලයිඩන් පුකාශ කර සිටියේ ශාක පටක සෛල වලින් සමන්විත බවයි. ෂ්වාන් සත්ව පටක සඳහා එකම කාරණය පෙන්නුම් කළ අතර 1839 දී නිගමනය කළේ සියලුම පටක සෛල වලින් සෑදී ඇති බවයි. මෙය සෛල වාදයට අඩිතාලම දැමීය.

- 1. මූලින්ම සෛලය නිරීක්ශණය කරන ලද්දේ කවුරුන් විසින්ද?
- 2. මෙසල වාදය ඉදිරිපත් කරන ලද්දේ කවුරුන් විසින්ද?
- මෙසල වාද්යෙන් කියවෙන කරුණු තුන සඳහන් කරන්න.
- 4. ජීවයේ වාූුහමය හා කෘතාාමය ඒකකය කුමක්ද?
- 5. දර්ශීය සෛලය යනු කුමක්ද?
- 6. ශාක හා සත්ත්ව සෛල නිරීක්ෂණය කිරීම සඳහා ලබාගත හැකි නිදර්ශක මොනවාද?

පහත දැක්වෙන රූප සටහන් දෙකෙහි සත්ත්ව සෛලය සහ ශාක සෛලය වෙන වෙනම හඳුනා ගෙන ඒවායේ කොටස් නම් කරන්න.

ශාක සෛලය සහ සත්ව සෛලය අතර පුධාන වෙනස්කම් පහත වගුවේ සඳහන් කරන්න.

සත්ත්ව මෙසලය	ශාක මෙසලය

මෛලයක් තුළ පවතින මෛල ඉන්දිකා නම්කර ඒවායේ කෘතාාන් පහත වගුවේ සඳහන් කරන්න.

ෙසල ඉන්දුකාව	කෘතාෳය
ෙසෙල බිත්තිය	
ප්ලාස්ම පටලය	
මෙසල ප්ලාස්මය	
නා ාෂ්ටිය	
මයිටකොන්ඩුයම	
ගොල්ගි සංකීර්ණය	
රයිබොසෝම	
අන්තඃප්ලාස්මීය ඡාලිකාව	
රික්තකය	

බහුවරණ ගැටළු

1. ⊚⊚	ා සල ප්ලාස්මගේ වැඩි	හිපුරම අඩංගු ක	කාබනික -	සංමය	ග්ගය වන් ෙන	₿,	
	(1) ජලය	(2) කාබොහ	යිඩෙ		(3) ලිපිඩ		(4) පුෝටීන
2. අభ	ාූනන විභාජනය සම <u>්</u>	බන්ධයෙන් ස	තා පුකා	ශනය	වන්නේ,		
	(1) දුහිතෘ සෛල හ (3) පුහේදන හට හෙ	• (` /		1		
3. ©	වරස සම්බන්ධයෙන	් අසතා පුකාං	ශනය ව	ත්තේ,			
	(1) වෛරස තුළ කි (2) වෛරස ජීවී වේ (3) වෛරස ආලෝ (4) වෛරසයකට ජු	ාත්ම අජීවී ල කි අණ්වීක්ෂ	ඛ්ෂණද ම ායන් නිරි	ාපන්වි රීක්ෂණ	යි ණය කල හැස		තුළ පමණි
4. ඉපු	ත්ටීන සංශ්ලේෂණය	සඳහා වැදගත	් වන ඉෙ)සල ඉ	න්දිකාව වන	ත්නේ,	
	(1) ගොල්ගි සංකීර් (3) රයිබොසෝම	ණය			ාස්මීය ජාලි2 කාන්ඩුියම	කා ව	
5. ©©	සල තුළ පවතින ජව	පොළවල් ලෙ	ස හැඳින්	්වෙන්	තේ,		
	(1) මයිටොකොන්දි (3) රයිබොසෝම	ම හදි		_	ාංකීර්ණය ඉස්මීය ජාලි2	කා ව	
6. ©©	සල තුළ පවතින සුාද්	ථීය කෘතාၖයක්	් ඉටු කර	න ඉන	්දිකාව වන්	ත්,	
	(1) මයිටොකොන්දි (3) ගොල්ගි සංකීර්	,	(2) අත් (4) රයි		තස්මීය ජාලි2 සෝම	කා ව	
7. రజ) අන්තඃප්ලාස්මීය ජා	ලිකාවට සම්බ	ාන්ධ වී අ	†ැති ලෙ	මසල ඉන්දික	ාව වන්	ිතේ,
	(1) ලයිසසෝම	(2) ගොල්හි	ඉද්හ ((3) රසි	ශ්බොසෝම -	(4) 💩	යිටකොන්ඩුයම
1. 2. 3. 4. 5.	සෛල වර්ධනය යැ සෛල විභාජනය ය සෛල විභාජනය සි අනූනන විභාජනයෙ ඌනන විභාජනය ව	ු කුමක්ද ? දුවන පුධාන ෂු ් වැදගත්කම 2	තුනක් ස	දහන් 2	කරන්න.		

6. අනූතත විභාජනය සහ ඌනන විභාජනය අතර වෙනස්කම් පහත වගුවේ සඳහන් කරන්න.

ඌනන විභාජනය	අනූනන විභාජනය