日本国特許庁 JAPAN PATENT OFFICE

21.08.03

REC'D 10 OCT 2003

WIPO BOT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月23日

出 願 番 号 Application Number:

特願2002-244381

[ST. 10/C]:

[JP2002-244381]

出願) Applicant(s):

キッセイ薬品工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 9月25日

特許庁長官 Commissioner, Japan Patent Office 今井康

BEST AVAILABLE COFY

【書類名】

特許願

【整理番号】

JP-A0231-0

【あて先】

特許庁長官殿

【国際特許分類】

CO7H 17/02

C07D231/12

【発明者】

【住所又は居所】

長野県松本市岡田下岡田89-6

【氏名】

伏見 信彦

【発明者】

【住所又は居所】

長野県松本市岡田下岡田1350-9ドミール岡田20

1

【氏名】

清水 和夫

【発明者】

【住所又は居所】

長野県南安曇郡三郷村明盛415-1カーサ37A10

2

【氏名】

米窪 滋

【発明者】

【住所又は居所】

長野県松本市野溝木工1-2-34キッセイ第二青友寮

【氏名】

寺西 弘孝

【発明者】

【住所又は居所】

長野県松本市野溝木工1-2-34キッセイ第二青友寮

【氏名】

戸前 昌樹

【発明者】

【住所又は居所】

長野県塩尻市広丘郷原1763-189

【氏名】

伊佐治 正幸

【特許出願人】

【識別番号】

000104560

【氏名又は名称】

キッセイ薬品工業株式会社

【代表者】

神澤 陸雄

【電話番号】

0263-25-9081

【手数料の表示】

【予納台帳番号】

066017

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

要

【プルーフの要否】

明細書

【発明の名称】 ピラゾール誘導体、それを含有する医薬組成物、その医薬用途 及びその製造中間体

【特許請求の範囲】

【請求項1】 一般式

【化1】

$$R^{6}$$
 R^{5}
 $X-Y-N$
 Z
 R^{2}
 R^{1}

〔式中の R^1 は水素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、ヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル基、 C_{3-7} シクロアルキル(C_{1-6} アルキル)基、置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール基、または環置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキル)基であり、QおよびTはどちらか一方が式

【化2】

または式

【化3】

で表される基であり、他方が C_{1-6} アルキル基、ハロ(C_{1-6} アルキル)基、 C_{1-6}

 $_6$ アルコキシ(C_{1-6} アルキル)基または C_{3-7} シクロアルキル基であり、 R^2 は水 素原子、ハロゲン原子、水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、ハロ(C_{1-6} アルキル)基、ハロ(C_{1-6} アルコキシ)基、 C_{1-6} 6アルコキシ(C_{1-6} アルコキシ)基、 C_{3-7} シクロアルキル(C_{2-6} アルコキシ) 基、または-A-R^A [式中のAは単結合、酸素原子、メチレン基、エチレン基 、 $-\text{OCH}_2$ ーまたは $-\text{CH}_2\text{O}$ ーであり、 \mathbb{R}^A は \mathbb{C}_{3-7} シクロアルキル基、 \mathbb{C}_{2-6} ヘテロシクロアルキル基、置換基としてハロゲン原子、水酸基、アミノ基、C₁₋ 6アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、ハロ(C_{1-6} アル キル) 基、ヒドロキシ(C_{1-6} アルキル)基、カルボキシ基、 C_{2-7} アルコキシカ ルボニル基、シアノ基およびニトロ基から選択される同種または異種の基を1~ 3個有していてもよいアリール基、または置換基としてハロゲン原子およびC₁-6アルキル基から選択される基を有していてもよいヘテロアリール基である〕で あり、Xは単結合、酸素原子または硫黄原子であり、Yは水酸基で置換されてい てもよい C_{1-6} アルキレン基、または C_{2-6} アルケニレン基であり、Zは $-R^B$ 、 $-\text{COR}^{\text{C}}$, $-\text{SO}_2\text{R}^{\text{C}}$, -CON (RD) RE, $-\text{SO}_2\text{NHR}^{\text{F}}$ \$\text{\$\text{\$t\$}} \text{\$t\$}-C (= NRG) N(RH) RIであり、RCは置換基としてハロゲン原子、水酸基、アミノ 基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキ シ基から選択される同種または異種の基を1~3個有していてもよいアリール基 、置換基としてハロゲン原子、アミノ基およびC₁₋₆アルキル基から選択される 基を有していてもよいヘテロアリール基または下記の置換基群(i)から選択さ れる同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であり、 R^4 、 R^B 、 R^D 、 R^E および R^F は同一でも異なっていてもよく、それぞれ、水素 原子、置換基としてハロゲン原子、水酸基、アミノ基、C₁₋₆アルキルスルホニ ルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種また は異種の基を1~3個有していてもよいアリール基、置換基としてハロゲン原子 、アミノ基および C_{1-6} アルキル基から選択される基を有していてもよいヘテロ アリール基または下記の置換基群 (i) から選択される同種または異種の基を1 ~ 5 個有していてもよい C_{1-6} アルキル基であるか、 R^4 および R^B は両者が結合 して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} ア

特願2002-244381

ルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} ア ルキル)基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択 される基を有していてもよい C_{2-6} 環状アミノ基を形成するか、或いは R^D および REは両者が結合して隣接する窒素原子と共に、置換基として水酸基、カルバモ イル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒド ロキシ (C_{1-6} アルキル) 基および C_{1-6} アルキルスルホニルアミノ (C_{1-6} アル キル)基から選択される基を有していてもよい C_{2-6} 環状アミノ基を形成し、 R^G 、 R^H および R^I は同一でも異なっていてもよく、それぞれ、水素原子、シアノ基 、カルバモイル基、 C_{2-7} アシル基、 C_{2-7} アルコキシカルボニル基、アリール(C₂₋₇アルコキシカルボニル)基、ニトロ基、C₁₋₆アルキルスルホニル基、スル ファミド基、カルバミミドイル基または下記の置換基群(i)から選択される同 種または異種の基を $1\sim5$ 個有していてもよい $C_{1 ext{-}6}$ アルキル基であるか、 R^G お よび R^H が結合してエチレン基を形成するか、或いは R^H および R^I は両者が結合 して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} ア ルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} ア ルキル)基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択 される基を有していてもよいC2-6環状アミノ基を形成し、

(i) 水酸基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、アミノ基、モノまた はジ(C_{1-6} アルキル)アミノ基、モノまたはジ〔ヒドロキシ(C_{1-6} アルキル) 〕アミノ基、ウレイド基、スルファミド基、モノまたはジ(C₁₋₆アルキル)ウ レイド基、モノまたはジ(C_{1-6} アルキル)スルファミド基、 C_{2-7} アシルアミノ 基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキルスルホニル基、カルボキ シ基、 C_{2-7} アルコキシカルボニル基、 $-CON(R^J)R^K$ [式中の R^J およびRKは同一でも異なっていてもよく、それぞれ、水素原子、または置換基として水 酸基、アミノ基、モノまたはジ(C_{1-6} アルキル)アミノ基、モノまたはジ〔ヒ ドロキシ(C_{1-6} アルキル)] アミノ基、ウレイド基、モノまたはジ(C_{1-6} アル キル) ウレイド基、C₂₋₇アシルアミノ基、C₁₋₆アルキルスルホニルアミノ基お よびカルバモイル基から選択される同種または異種の基を1~3個有していても よい C_{1-6} アルキル基であるか、或いはRJおよびRKは両者が結合して隣接する

窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} アルキル基、オ キソ基、カルバモイル(C₁₋₆アルキル)基、ヒドロキシ(C₁₋₆アルキル)基お よび C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有 していてもよいC₂₋₆環状アミノ基を形成する〕、環置換基としてハロゲン原子 、水酸基、アミノ基、 $C_{1 ext{-}6}$ アルキル基および $C_{1 ext{-}6}$ アルコキシ基から選択される 同種または異種の基を $1 \sim 3$ 個有していてもよいアリール(C_{1-6} アルコキシ) 基、環置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1 \sim 3$ 個有していても よいアリール(C_{1-6} アルキルチオ)基、 C_{3-7} シクロアルキル基、 C_{2-6} ヘテロ シクロアルキル基、置換基としてハロゲン原子、水酸基、アミノ基、C₁₋₆アル キルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択さ れる同種または異種の基を1~3個有していてもよいアリール基、置換基として ハロゲン原子、アミノ基およびC₁₋₆アルキル基から選択される基を有していて もよいヘテロアリール基、置換基として水酸基、カルバモイル基、C₁₋₆アルキ ル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} アルキ ル) 基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択され る基を有していてもよいC₂₋₆環状アミノ基、および置換基としてC₁₋₆アルキル 基を有していてもよいC₁₋₄芳香族環状アミノ基

 R^3 、 R^5 および R^6 は同一でも異なっていてもよく、それぞれ、水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基である〕で表されるピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグ。

【請求項2】 R^3 、 R^5 および R^6 が水素原子である、請求項1記載のピラ ゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグ 。

【請求項3】 Xが単結合または酸素原子であり、Yがエチレン基、トリメチレン基、テトラメチレン基または1ープロペニレン基である、請求項2記載のピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグ。

【請求項4】 請求項1記載のピラゾール誘導体またはその薬理学的に許容

される塩。

【請求項 5 】 R^3 、 R^5 および R^6 が水素原子である、請求項 4 記載のピラ ゾール誘導体またはその薬理学的に許容される塩。

【請求項6】 Xが単結合または酸素原子であり、Yがエチレン基、トリメチレン基、テトラメチレン基または1-プロペニレン基である、請求項5記載のピラゾール誘導体またはその薬理学的に許容される塩。

【請求項7】 QおよびTはどちらか一方が、4位の水酸基がグルコピラノシル基又はガラクトピラノシル基で置換されているか、6位の水酸基がグルコピラノシル基、 C_{2-7} アシル基、 C_{1-6} アルコキシ(C_{2-7} アシル)基、 C_{2-7} アルコキシカルボニル基または C_{1-6} アルコキシ(C_{2-7} アルコキシカルボニル基または C_{1-6} アルコキシ(C_{2-7} アルコキシカルボニル基または C_{1-6} アルコキシ(C_{2-7} アルコキシカルボニル)基で置換されている、式

【化4】

または式

【化5】

で表される基である、請求項1記載のプロドラッグ。

【請求項8】 請求項1乃至7記載のピラゾール誘導体またはその薬理学的 に許容される塩、或いはそれらのプロドラッグを有効成分として含有する医薬組 成物。

【請求項9】 請求項1乃至7記載のピラゾール誘導体またはその薬理学的 に許容される塩、或いはそれらのプロドラッグを有効成分として含有するヒトS GLT1活性阻害剤。

【請求項10】 請求項1乃至7記載のピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグを有効成分として含有する食後

【請求項11】 請求項1乃至7記載のピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグを有効成分として含有する、高血糖症に起因する疾患の予防又は治療剤。

【請求項12】 高血糖症に起因する疾患が、糖尿病、耐糖能異常、糖尿病性合併症、肥満症、高インスリン血症、高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症、高血圧、うっ血性心不全、浮腫、高尿酸血症および痛風からなる群から選択される疾患である、請求項11記載の予防または治療剤。

【請求項13】 請求項1乃至7記載のピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグを有効成分として含有する、耐糖能異常者の糖尿病への移行阻止剤。

【請求項14】 (A)請求項1乃至7記載のピラゾール誘導体またはその 薬理学的に許容される塩、或いはそれらのプロドラッグ、および(B)インスリ ン感受性増強薬、糖吸収阻害薬、ビグアナイド薬、インスリン分泌促進薬、SG LT2活性阻害薬、インスリン又はインスリン類縁体、グルカゴン受容体アンタ ゴニスト、インスリン受容体キナーゼ刺激薬、トリペプチジルペプチダーゼII 阻害薬、ジペプチジルペプチダーゼ I V 阻害薬、プロテインチロシンホスファタ ーゼー1B阻害薬、グリコゲンホスホリラーゼ阻害薬、グルコースー6ーホスフ ァターゼ阻害薬、フルクトースービスホスファターゼ阻害薬、ピルビン酸デヒド ロゲナーゼ阻害薬、肝糖新生阻害薬、D-カイロイノシトール、グリコゲン合成 酵素キナーゼー3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチド1 類縁体、グルカゴン様ペプチドー1アゴニスト、アミリン、アミリン類縁体、 アミリンアゴニスト、アルドース還元酵素阻害薬、終末糖化産物生成阻害薬、プ ロテインキナーゼ C 阻害薬、γ-アミノ酪酸受容体アンタゴニスト、ナトリウム チャンネルアンタゴニスト、転写因子NF-κB阻害薬、脂質過酸化酵素阻害薬 、N-アセチル化ーα-リンクトーアシッド-ジペプチダーゼ阻害薬、インスリ ン様成長因子-I、血小板由来成長因子、血小板由来成長因子類縁体、上皮増殖 因子、神経成長因子、カルニチン誘導体、ウリジン、5ーヒドロキシー1ーメチ ルヒダントイン、EGB-761、ビモクロモル、スロデキシド、Y-128、ヒドロキシメチルグルタリルコエンザイムA還元酵素阻害薬、フィブラート系化合物、β3-アドレナリン受容体アゴニスト、アシルコエンザイムA:コレステロールアシル基転移酵素阻害薬、プロブコール、甲状腺ホルモン受容体アゴニスト、コレステロール吸収阻害薬、リパーゼ阻害薬、ミクロソームトリグリセリドトランスファープロテイン阻害薬、リポキシゲナーゼ阻害薬、カルニチンパルミトイルトランスフェラーゼ阻害薬、スクアレン合成酵素阻害薬、低比重リポ蛋白受容体増強薬、ニコチン酸誘導体、胆汁酸吸着薬、ナトリウム共役胆汁酸トランスポーター阻害薬、コレステロールエステル転送タンパク阻害薬、食欲抑制薬、アンジオテンシン変換酵素阻害薬、中性エンドペプチダーゼ阻害薬、アンジオテンシンII受容体拮抗薬、エンドセリン変換酵素阻害薬、エンドセリン受容体アンタゴニスト、利尿薬、カルシウム拮抗薬、血管拡張性降圧薬、交換神経遮断薬、中枢性降圧薬、α2-アドレナリン受容体アゴニスト、抗血小板薬、尿酸生成

阻害薬、尿酸排泄促進薬および尿アルカリ化薬からなる群より選択される少なく

【請求項15】 一般式

とも1種の薬剤を組合わせてなる医薬。

【化6】

$$R^{6}$$
 R^{5}
 $X-Y^{1}-N$
 Z^{1}
 R^{12}
 R^{11}

〔式中の R^{11} は水素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、保護基を有していてもよいヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル (C_{1-6} アルキル)基、置換基としてハロゲン原子、保護基を有していてもよい水酸基、保護基を有していてもよいアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール基、または環置換基としてハロゲン原子、保護基を有していてもよいアリール基、または環置換基としてハロゲン原子、保護基を有していてもよいアミノ基、 C_{1-6} アルキル基および

 C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していても よいアリール(C_{1-6} アルキル)基であり、 Q^2 および T^2 はどちらか一方が2, 3, 4, 6ーテトラーOーアセチルー β ーDーグルコピラノシルオキシ基または 2, 3, 4, 6ーテトラーOーアセチルーβ-Dーガラクトピラノシルオキシ基 であり、他方が C_{1-6} アルキル基、ハロ(C_{1-6} アルキル)基、 C_{1-6} アルコキシ $(C_{1-6}$ アルキル)基または C_{3-7} シクロアルキル基であり、 R^{12} は水素原子、ハ ロゲン原子、保護基を有していてもよい水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコ キシ基、 C_{1-6} アルキルチオ基、ハロ(C_{1-6} アルキル)基、ハロ(C_{1-6} アルコ キシ)基、 C_{1-6} アルコキシ(C_{1-6} アルコキシ)基、 C_{3-7} シクロアルキル(C_2 -6アルコキシ)基、または $-A-R^{1A}$ [式中のAは単結合、酸素原子、メチレン 基、エチレン基、 $-\text{OCH}_2$ -または $-\text{CH}_2\text{O}$ -であり、 R^{1A} は C_{3-7} シクロア ルキル基、C₂₋₆ヘテロシクロアルキル基、置換基としてハロゲン原子、保護基 を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキ ル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、ハロ(C_{1-6} アルキル) 基、保護基を有していてもよいヒドロキシ(C_{1-6} アルキル)基、保護基を有し ていてもよいカルボキシ基、C₂₋₇アルコキシカルボニル基、シアノ基およびニ トロ基から選択される同種または異種の基を1~3個有していてもよいアリール 基、または置換基としてハロゲン原子および C_{1-6} アルキル基から選択される基 を有していてもよいヘテロアリール基である〕であり、Xは単結合、酸素原子ま たは硫黄原子であり、Y1は保護基を有していてもよい水酸基で置換されていて もよい C_{1-6} アルキレン基、または C_{2-6} アルケニレン基であり、 Z^1 は $-R^{1B}$ 、 $-\text{COR}_{}^{1\text{C}}$ 、 $-\text{SO}_{2}^{}\text{R}^{1\text{C}}$ 、 $-\text{CON}_{}^{}$ (R $^{1\text{D}}$) R $^{1\text{E}}$ 、 $-\text{SO}_{2}^{}$ NHR $^{1\text{F}}$ または-C $(=NR^{1G})$ N (R^{1H}) R 1I であり、R 1C は置換基としてハロゲン原子、保護基 を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキ ルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択され る同種または異種の基を1~3個有していてもよいアリール基、置換基としてハ ロゲン原子、保護基を有していてもよいアミノ基およびC₁₋₆アルキル基から選 択される基を有していてもよいヘテロアリール基または下記の置換基群(ii) から選択される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル

基であり、 R^{14} 、 R^{1B} 、 R^{1D} 、 R^{1E} および R^{1F} は同一でも異なっていてもよく、 それぞれ、水素原子、置換基としてハロゲン原子、保護基を有していてもよい水 酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキルスルホニルアミノ基 、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基 を1~3個有していてもよいアリール基、置換基としてハロゲン原子、保護基を 有していてもよいアミノ基およびC₁₋₆アルキル基から選択される基を有してい てもよいヘテロアリール基または下記の置換基群 (ii) から選択される同種ま たは異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であるか、 R^{14} およ びR1Bは両者が結合して隣接する窒素原子と共に、置換基として保護基を有して いてもよい水酸基、カルバモイル基、C₁₋₆アルキル基、オキソ基、カルバモイ ル $(C_{1-6}$ アルキル)基、保護基を有していてもよいヒドロキシ(C_{1-6} アルキル)基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される 基を有していてもよい C_{2-6} 環状アミノ基を形成するか、或いは R^{1D} および R^{1E} は両者が結合して隣接する窒素原子と共に、置換基として保護基を有していても よい水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_1 -6アルキル) 基、保護基を有していてもよいヒドロキシ (C₁₋₆アルキル) 基お よび C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有 していてもよい C_{2-6} 環状アミノ基を形成し、 R^{1G} 、 R^{1H} および R^{1I} は同一でも 異なっていてもよく、それぞれ、水素原子、シアノ基、カルバモイル基、C₂₋₇ アシル基、 C_{2-7} アルコキシカルボニル基、アリール(C_{2-7} アルコキシカルボニ ル) 基、ニトロ基、C₁₋₆アルキルスルホニル基、スルファミド基、カルバミミ ドイル基または下記の置換基群(i i)から選択される同種または異種の基を1 ~5個有していてもよい C_{1-6} アルキル基であるか、 R^{1G} および R^{1H} が結合して エチレン基を形成するか、或いは $R^{ ext{IH}}$ および $R^{ ext{II}}$ は両者が結合して隣接する窒素 原子と共に、置換基として保護基を有していてもよい水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、保護基を有し ていてもよいヒドロキシ(C_{1-6} アルキル)基および C_{1-6} アルキルスルホニルア ミノ(C_{1-6} アルキル)基から選択される基を有していてもよい C_{2-6} 環状アミノ 基を形成し、

 $(i\ i)$ 保護基を有していてもよい水酸基、 $C_{1 ext{-}6}$ アルコキシ基、 $C_{1 ext{-}6}$ アルキル チオ基、保護基を有していてもよいアミノ基、保護基を有していてもよいモノま たはジ(C_{1-6} アルキル)アミノ基、保護基を有していてもよいモノまたはジ〔 ヒドロキシ (C₁₋₆アルキル)] アミノ基、ウレイド基、スルファミド基、モノ またはジ(C_{1-6} アルキル)ウレイド基、モノまたはジ(C_{1-6} アルキル)スルフ ァミド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} ア ルキルスルホニル基、保護基を有していてもよいカルボキシ基、 C_{2-7} アルコキ シカルボニル基、 $-\text{CON}(\text{R}^{1\text{J}})$ $\text{R}^{1\text{K}}$ [式中の $\text{R}^{1\text{J}}$ および $\text{R}^{1\text{K}}$ は同一でも異な っていてもよく、それぞれ、水素原子、または置換基として保護基を有していて もよい水酸基、保護基を有していてもよいアミノ基、保護基を有していてもよい モノまたはジ(C_{1-6} アルキル)アミノ基、保護基を有していてもよいモノまた はジ〔ヒドロキシ(C_{1-6} アルキル)〕アミノ基、ウレイド基、モノまたはジ(C_{1-6} アルキル) ウレイド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニル アミノ基およびカルバモイル基から選択される同種または異種の基を1~3個有 していてもよい C_{1-6} アルキル基であるか、或いは R^{1J} および R^{1K} は両者が結合 して隣接する窒素原子と共に、置換基として保護基を有していてもよい水酸基、 カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル) 基、保護基を有していてもよいヒドロキシ(C_{1-6} アルキル)基および C_{1-6} アル キルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有していてもよ いC₂₋₆環状アミノ基を形成する〕、環置換基としてハロゲン原子、保護基を有 していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキル基 および C_{1-6} アルコキシ基から選択される同種または異種の基を $1 \sim 3$ 個有して いてもよいアリール(C_{1-6} アルコキシ)基、環置換基としてハロゲン原子、保 護基を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆ア ルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキルチオ)基、 C_{3-7} シクロアルキル基 、 C_{2-6} ヘテロシクロアルキル基、置換基としてハロゲン原子、保護基を有して いてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキルスルホ ニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種ま たは異種の基を $1\sim3$ 個有していてもよいアリール基、置換基としてハロゲン原子、保護基を有していてもよいアミノ基および C_{1-6} アルキル基から選択される基を有していてもよいヘテロアリール基、置換基として保護基を有していてもよい水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、保護基を有していてもよいヒドロキシ(C_{1-6} アルキル)基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有していてもよい C_{2-6} 環状アミノ基、および置換基として C_{1-6} アルキル基を有していてもよい C_{2-6} 環状アミノ基

 R^3 、 R^5 および R^6 は同一でも異なっていてもよく、それぞれ、水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基である〕で表されるピラゾール誘導体またはその塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、医薬品として有用なピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグ、それを含有する医薬組成物、その医薬用途およびその製造中間体に関するものである。

[0002]

さらに詳しく述べれば、本発明は、糖尿病、耐糖能異常、糖尿病性合併症又は肥満症等の高血糖症に起因する疾患の予防又は治療剤として有用な、ヒトSGLT1活性阻害作用を有するピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグ、それを含有する医薬組成物、その医薬用途およびその製造中間体に関するものである。

[0003]

【従来の技術】

糖尿病は食生活の変化や運動不足を背景とした生活習慣病の一つである。それ故、糖尿病患者には食事療法や運動療法が実施されているが、充分なコントロールや継続的実施が困難な場合、薬物療法が併用されている。また、糖尿病の治療により慢性合併症の発症や進展を阻止するためには、長期に亘る厳格な血糖コン

[0004]

現在、近年の糖尿病患者数の急増を背景に糖尿病治療薬として種々の薬剤が開発されており、特に、食後高血糖改善のためには小腸における糖質の消化・吸収を遅延させる α ーグルコシダーゼ阻害薬などが使用されている。また、その一つであるアカルボースは、耐糖能異常者に適応することにより、糖尿病の発症を予防又は遅延させる効果があることが報告されている(Lancet、359巻、2072~2077頁(2002年))。しかしながら、α ーグルコシダーゼ阻害薬は、単糖であるグルコース摂取による血糖上昇には作用しないため(日本栄養・食糧学会誌、45巻、27頁(1992年))、最近における食事中の糖質構成の変化に伴い、更に広範な糖質吸収阻害作用を示す薬剤の開発が嘱望されている。

[0005]

一方、糖質の吸収を司る小腸には、SGLT1(ナトリウム依存性グルコース輸送担体 1)が存在することが知られている。また、ヒトSGLT1の先天的異常による機能不全の患者ではグルコース及びガラクトースの吸収が不良となることが報告されており(別冊日本臨床 領域別症候群 19、555~556 頁;最新医学、51巻、84~90 頁(1996年);日本臨牀、55巻、8号、249~257 頁(1997年))、SGLT1 はグルコースとガラクトースの吸収に関与することが確認されている(腎と透析 臨時増刊号、232~237 頁(1998年);Nature、350号、354~356 頁(1991年))。

[0006]

更に、OLETFラットやストレプトゾトシン誘発糖尿病ラットにおいてSG LT1のmRNAや蛋白が増加し、グルコース等の吸収が亢進していることが確

[0007]

それ故、ヒトSGLT1を阻害することにより小腸でのグルコース等の糖質吸収を阻害して血糖値の上昇を抑制することができ、特には、上記作用機作に基づき糖質吸収を遅延させて食後高血糖の是正が可能であると考えられる。また、糖尿病患者における糖質吸収の亢進は、小腸におけるSGLT1の増加に起因していると予想されることから、糖尿病の予防治療には強力なヒトSGLT1活性阻害作用を有する薬剤の早期開発が待望される。

[0008]

【発明が解決しようとする課題】

本発明は、ヒトSGLT1活性阻害作用を発現し、小腸でのグルコース等の糖質吸収を阻害することにより、優れた血糖値の上昇抑制作用を発現する新規な化合物を提供するものである。

[0009]

【課題を解決するための手段】

本発明者らは、ヒトSGLT1活性阻害作用を発現する化合物を見出すべく鋭意検討した結果、下記一般式(I)で表されるある種のピラゾール誘導体が、下記の如く小腸においてヒトSGLT1阻害活性を示し、優れた血糖値の上昇抑制作用を発揮するという知見を得、本発明を成すに至った。

[0010]

即ち、本発明は、一般式

【化7】

$$R^6$$
 R^5
 $X-Y-N$
 Z
 R^3
 (I)
 R^1

[0011]

〔式中の R^1 は水素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、ヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル基、 C_{3-7} シクロアルキル(C_{1-6} アルキル)基、置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール基、または環置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキル)基であり、QおよびTはどちらか一方が式

[0012]

【化8】

[0013]

または式

【化9】

[0014]

で表される基であり、他方が C_{1-6} アルキル基、ハロ(C_{1-6} アルキル)基、 C_{1-6} アルコキシ(C_{1-6} アルキル)基または C_{3-7} シクロアルキル基であり、 R^2 は水

素原子、ハロゲン原子、水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、ハロ(C_{1-6} アルキル)基、ハロ(C_{1-6} アルコキシ)基、 C_{1-6} 6アルコキシ (C_{1-6} アルコキシ) 基、 C_{3-7} シクロアルキル (C_{2-6} アルコキシ) 基、または $-A-R^A$ [式中のAは単結合、酸素原子、メチレン基、エチレン基 、 $-\mathsf{OCH}_2$ ーまたは $-\mathsf{CH}_2\mathsf{O}$ ーであり、 R^A は C_{3-7} シクロアルキル基、 C_{2-6} ヘテロシクロアルキル基、置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-} 6アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、ハロ(C_{1-6} アル キル)基、ヒドロキシ(C_{1-6} アルキル)基、カルボキシ基、 C_{2-7} アルコキシカ ルボニル基、シアノ基およびニトロ基から選択される同種または異種の基を1~ 3個有していてもよいアリール基、または置換基としてハロゲン原子および C_{1-} 6アルキル基から選択される基を有していてもよいヘテロアリール基である〕で あり、Xは単結合、酸素原子または硫黄原子であり、Yは水酸基で置換されてい てもよい C_{1-6} アルキレン基、または C_{2-6} アルケニレン基であり、Zは $-R^B$ 、 $-\text{COR}^{\text{C}}$, $-\text{SO}_2\text{R}^{\text{C}}$, -CON (RD) RE, $-\text{SO}_2\text{NHR}^{\text{F}}$ #\$ the C (= NR^G) $N(R^H)$ R^I であり、 R^C は置換基としてハロゲン原子、水酸基、アミノ 基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキ シ基から選択される同種または異種の基を1~3個有していてもよいアリール基 、置換基としてハロゲン原子、アミノ基およびC₁₋₆アルキル基から選択される 基を有していてもよいヘテロアリール基または下記の置換基群(i)から選択さ れる同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であり、 R^4 、 R^B 、 R^D 、 R^E および R^F は同一でも異なっていてもよく、それぞれ、水素 原子、置換基としてハロゲン原子、水酸基、アミノ基、C₁₋₆アルキルスルホニ ルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種また は異種の基を1~3個有していてもよいアリール基、置換基としてハロゲン原子 、アミノ基および C_{1-6} アルキル基から選択される基を有していてもよいヘテロ アリール基または下記の置換基群 (i)から選択される同種または異種の基を1 ~ 5 個有していてもよい C_{1-6} アルキル基であるか、 R^4 および R^B は両者が結合 して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} ア ルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} ア ルキル)基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択 される基を有していてもよい C_{2-6} 環状アミノ基を形成するか、或いは R^D および REは両者が結合して隣接する窒素原子と共に、置換基として水酸基、カルバモ イル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒド ロキシ (C_{1-6} アルキル) 基および C_{1-6} アルキルスルホニルアミノ (C_{1-6} アル キル) 基から選択される基を有していてもよい C₂₋₆環状アミノ基を形成し、RG 、 $R^{ ext{H}}$ および $R^{ ext{I}}$ は同一でも異なっていてもよく、それぞれ、水素原子、シアノ基 、カルバモイル基、C₂₋₇アシル基、C₂₋₇アルコキシカルボニル基、アリール(C_{2-7} アルコキシカルボニル)基、ニトロ基、 C_{1-6} アルキルスルホニル基、スル ファミド基、カルバミミドイル基または下記の置換基群(i)から選択される同 種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であるか、 R^G お よび R^H が結合してエチレン基を形成するか、或いは R^H および R^I は両者が結合 して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、C₁₋₆ア ルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} ア ルキル) 基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択 される基を有していてもよいC2-6環状アミノ基を形成し、

(i) 水酸基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、アミノ基、モノまたはジ(C_{1-6} アルキル)アミノ基、モノまたはジ(C_{1-6} アルキル)カンイド基、スルファミド基、モノまたはジ(C_{1-6} アルキル)ウレイド基、スルファミド基、モノまたはジ(C_{1-6} アルキル)ウレイド基、モノまたはジ(C_{1-6} アルキル)スルファミド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキルスルホニル基、カルボキシ基、 C_{2-7} アルコキシカルボニル基、-CON(RJ) R^K (式中のRJおよび RKは同一でも異なっていてもよく、それぞれ、水素原子、または置換基として水酸基、アミノ基、モノまたはジ(C_{1-6} アルキル)アミノ基、モノまたはジ(C_{1-6} アルキル)カレイド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニルアミノ基およびカルバモイル基から選択される同種または異種の基を $1\sim3$ 個有していてもよい C_{1-6} アルキル基であるか、或いはRJおよび RKは両者が結合して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} アルキル基、オ

キソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} アルキル)基お よび C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有 していてもよいC₂₋₆環状アミノ基を形成する〕、環置換基としてハロゲン原子 、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される 同種または異種の基を $1 \sim 3$ 個有していてもよいアリール(C_{1-6} アルコキシ) 基、環置換基としてハロゲン原子、水酸基、アミノ基、C₁₋₆アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1 \sim 3$ 個有していても よいアリール(C_{1-6} アルキルチオ)基、 C_{3-7} シクロアルキル基、 C_{2-6} ヘテロ シクロアルキル基、置換基としてハロゲン原子、水酸基、アミノ基、C₁₋₆アル キルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択さ れる同種または異種の基を1~3個有していてもよいアリール基、置換基として ハロゲン原子、アミノ基およびC₁₋₆アルキル基から選択される基を有していて もよいヘテロアリール基、置換基として水酸基、カルバモイル基、C₁₋₆アルキ ル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} アルキ ル) 基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択され る基を有していてもよい C_{2-6} 環状アミノ基、および置換基として C_{1-6} アルキル 基を有していてもよいC₁₋₄芳香族環状アミノ基

 R^3 、 R^5 および R^6 は同一でも異なっていてもよく、それぞれ、水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基である〕で表されるピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグに関するものである。

[0015]

本発明は、前記一般式(I)で表されるピラゾール誘導体またはその薬理学的 に許容される塩、或いはそれらのプロドラッグを有効成分として含有する医薬組 成物に関するものである。

[0016]

また、本発明は、前記一般式(I)で表されるピラゾール誘導体またはその薬理学的に許容される塩、或いはそれらのプロドラッグを有効成分として含有する、ヒトSGLT1活性阻害剤、食後高血糖抑制剤、高血糖症に起因する疾患の予

防又は治療剤、及び耐糖能異常者の糖尿病への移行阻止剤に関するものである。

[0017]

本発明は、(A)前記一般式(I)で表されるピラゾール誘導体またはその薬 理学的に許容される塩、或いはそれらのプロドラッグ、および (B) インスリン 感受性増強薬、糖吸収阻害薬、ビグアナイド薬、インスリン分泌促進薬、SGL T 2 活性阻害薬、インスリン又はインスリン類縁体、グルカゴン受容体アンタゴ ニスト、インスリン受容体キナーゼ刺激薬、トリペプチジルペプチダーゼII阻 害薬、ジペプチジルペプチダーゼIV阻害薬、プロテインチロシンホスファター ゼー1B阻害薬、グリコゲンホスホリラーゼ阻害薬、グルコースー6ーホスファ ターゼ阻害薬、フルクトースービスホスファターゼ阻害薬、ピルビン酸デヒドロ ゲナーゼ阻害薬、肝糖新生阻害薬、D-カイロイノシトール、グリコゲン合成酵 素キナーゼー3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチド1-類縁体、グルカゴン様ペプチド-1アゴニスト、アミリン、アミリン類縁体、ア ミリンアゴニスト、アルドース還元酵素阻害薬、終末糖化産物生成阻害薬、プロ テインキナーゼC阻害薬、γ-アミノ酪酸受容体アンタゴニスト、ナトリウムチ ャンネルアンタゴニスト、転写因子NF-κB阻害薬、脂質過酸化酵素阻害薬、 N-アセチル化 $-\alpha-$ リンクト-アシッドージペプチダーゼ阻害薬、インスリン 様成長因子-I、血小板由来成長因子、血小板由来成長因子類縁体、上皮増殖因 子、神経成長因子、カルニチン誘導体、ウリジン、5-ヒドロキシー1-メチル ヒダントイン、EGB-761、ビモクロモル、スロデキシド、Y-128、ヒ ドロキシメチルグルタリルコエンザイムA還元酵素阻害薬、フィブラート系化合 物、 eta_3 -アドレナリン受容体アゴニスト、アシルコエンザイムA:コレステロ ールアシル基転移酵素阻害薬、プロブコール、甲状腺ホルモン受容体アゴニスト 、コレステロール吸収阻害薬、リパーゼ阻害薬、ミクロソームトリグリセリドト ランスファープロテイン阻害薬、リポキシゲナーゼ阻害薬、カルニチンパルミト イルトランスフェラーゼ阻害薬、スクアレン合成酵素阻害薬、低比重リポ蛋白受 容体増強薬、ニコチン酸誘導体、胆汁酸吸着薬、ナトリウム共役胆汁酸トランス ポーター阻害薬、コレステロールエステル転送タンパク阻害薬、食欲抑制薬、ア ンジオテンシン変換酵素阻害薬、中性エンドペプチダーゼ阻害薬、アンジオテン シンII受容体拮抗薬、エンドセリン変換酵素阻害薬、エンドセリン受容体アンタゴニスト、利尿薬、カルシウム拮抗薬、血管拡張性降圧薬、交換神経遮断薬、中枢性降圧薬、 α_2 -アドレナリン受容体アゴニスト、抗血小板薬、尿酸生成阻害薬、尿酸排泄促進薬および尿アルカリ化薬からなる群より選択される少なくとも1種の薬剤を組合わせてなる医薬に関するものである。

[0018]

更には、本発明は、一般式

【化10】

$$R^{6}$$
 R^{5}
 $X-Y^{1}-N$
 Z^{1}
 R^{12}
 R^{12}
 R^{11}
 R^{11}

[0019]

キシ) 基、 C_{1-6} アルコキシ (C_{1-6} アルコキシ) 基、 C_{3-7} シクロアルキル (C_2 -6アルコキシ)基、または $-A-R^{1A}$ (式中のAは単結合、酸素原子、メチレン 基、エチレン基、 $-\text{OCH}_2$ ーまたは $-\text{CH}_2\text{O}$ ーであり、 R^{1A} は C_{3-7} シクロア ルキル基、C₂₋₆ヘテロシクロアルキル基、置換基としてハロゲン原子、保護基 を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキ ル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニルオキシ基、ハロ(C_{1-6} アルキル) 基、保護基を有していてもよいヒドロキシ(C₁₋₆アルキル)基、保護基を有し ていてもよいカルボキシ基、C₂₋₇アルコキシカルボニル基、シアノ基およびニ トロ基から選択される同種または異種の基を1~3個有していてもよいアリール 基、または置換基としてハロゲン原子およびC₁₋₆アルキル基から選択される基 を有していてもよいヘテロアリール基である〕であり、Xは単結合、酸素原子ま たは硫黄原子であり、Y1は保護基を有していてもよい水酸基で置換されていて もよい C_{1-6} アルキレン基、または C_{2-6} アルケニレン基であり、 Z^1 は $-R^{1B}$ 、 $-\text{COR}^{1\text{C}}$ 、 $-\text{SO}_2\text{R}^{1\text{C}}$ 、-CON (R^{1D}) R^{1E}、 $-\text{SO}_2\text{NHR}^{1\text{F}}$ または-C $(=NR^{1G})$ N (R^{1H}) R 1I であり、R 1C は置換基としてハロゲン原子、保護基 を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキ ルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択され る同種または異種の基を1~3個有していてもよいアリール基、置換基としてハ ロゲン原子、保護基を有していてもよいアミノ基およびC₁₋₆アルキル基から選 択される基を有していてもよいヘテロアリール基または下記の置換基群 (i i) から選択される同種または異種の基を1~5個有していてもよいC₁₋₆アルキル 基であり、 R^{14} 、 R^{1B} 、 R^{1D} 、 R^{1E} および R^{1F} は同一でも異なっていてもよく、 それぞれ、水素原子、置換基としてハロゲン原子、保護基を有していてもよい水 酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキルスルホニルアミノ基 、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基 を1~3個有していてもよいアリール基、置換基としてハロゲン原子、保護基を 有していてもよいアミノ基およびC₁₋₆アルキル基から選択される基を有してい てもよいヘテロアリール基または下記の置換基群 (i i) から選択される同種ま たは異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であるか、 R^{14} およ

 $m UR^{\, 1B}$ は両者が結合して隣接する窒素原子と共に、置換基として保護基を有して いてもよい水酸基、カルバモイル基、C₁₋₆アルキル基、オキソ基、カルバモイ ル(C_{1-6} アルキル)基、保護基を有していてもよいヒドロキシ(C_{1-6} アルキル) 基および C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される 基を有していてもよい C_{2-6} 環状アミノ基を形成するか、或いは R^{1D} および R^{1E} は両者が結合して隣接する窒素原子と共に、置換基として保護基を有していても よい水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_1 -6アルキル) 基、保護基を有していてもよいヒドロキシ(C₁₋₆アルキル)基お よび C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有 していてもよい C_{2-6} 環状アミノ基を形成し、 R^{1G} 、 R^{1H} および R^{1I} は同一でも 異なっていてもよく、それぞれ、水素原子、シアノ基、カルバモイル基、 C_{2-7} アシル基、 C_{2-7} アルコキシカルボニル基、アリール(C_{2-7} アルコキシカルボニ ル) 基、ニトロ基、C₁₋₆アルキルスルホニル基、スルファミド基、カルバミミ ドイル基または下記の置換基群 (i i) から選択される同種または異種の基を 1 ~5個有していてもよい C_{1-6} アルキル基であるか、 R^{1G} および R^{1H} が結合して エチレン基を形成するか、或いは R^{1H} および R^{1I} は両者が結合して隣接する窒素 原子と共に、置換基として保護基を有していてもよい水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、保護基を有し ていてもよいヒドロキシ(C_{1-6} アルキル)基および C_{1-6} アルキルスルホニルア ミノ(C_{1-6} アルキル)基から選択される基を有していてもよい C_{2-6} 環状アミノ 基を形成し、

(i i) 保護基を有していてもよい水酸基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、保護基を有していてもよいアミノ基、保護基を有していてもよいモノまたはジ(C_{1-6} アルキル)アミノ基、保護基を有していてもよいモノまたはジ〔ヒドロキシ(C_{1-6} アルキル)〕アミノ基、ウレイド基、スルファミド基、モノまたはジ(C_{1-6} アルキル)ウレイド基、モノまたはジ(C_{1-6} アルキル)スルファミド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキルスルホニルを、保護基を有していてもよいカルボキシ基、 C_{2-7} アルコキシカルボニル基、保護基を有していてもよいカルボキシ基、 C_{2-7} アルコキシカルボニル基、 C_{2-7} アルコキシカルボニル基、 C_{2-7} アルコキ

っていてもよく、それぞれ、水素原子、または置換基として保護基を有していて もよい水酸基、保護基を有していてもよいアミノ基、保護基を有していてもよい モノまたはジ(C_{1-6} アルキル)アミノ基、保護基を有していてもよいモノまた はジ〔ヒドロキシ(C_{1-6} アルキル)〕アミノ基、ウレイド基、モノまたはジ(C_{1-6} アルキル) ウレイド基、 C_{2-7} アシルアミノ基、 C_{1-6} アルキルスルホニル アミノ基およびカルバモイル基から選択される同種または異種の基を1~3個有 していてもよい C_{1-6} アルキル基であるか、或いは R^{1J} および R^{1K} は両者が結合 して隣接する窒素原子と共に、置換基として保護基を有していてもよい水酸基、 カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル) 基、保護基を有していてもよいヒドロキシ($C_{1 ext{-}6}$ アルキル)基および $C_{1 ext{-}6}$ アル キルスルホニルアミノ (C₁₋₆アルキル) 基から選択される基を有していてもよ いC₂₋₆環状アミノ基を形成する〕、環置換基としてハロゲン原子、保護基を有 していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキル基 および C_{1-6} アルコキシ基から選択される同種または異種の基を $1 \sim 3$ 個有して いてもよいアリール(C_{1-6} アルコキシ)基、環置換基としてハロゲン原子、保 護基を有していてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆ア ルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキルチオ)基、 C_{3-7} シクロアルキル基 、 C_{2-6} へテロシクロアルキル基、置換基としてハロゲン原子、保護基を有して いてもよい水酸基、保護基を有していてもよいアミノ基、C₁₋₆アルキルスルホ ニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種ま たは異種の基を1~3個有していてもよいアリール基、置換基としてハロゲン原 子、保護基を有していてもよいアミノ基およびC₁₋₆アルキル基から選択される 基を有していてもよいヘテロアリール基、置換基として保護基を有していてもよ い水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル) 基、保護基を有していてもよいヒドロキシ (C₁₋₆アルキル) 基およ び C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基から選択される基を有し ていてもよい C_{2-6} 環状アミノ基、および置換基として C_{1-6} アルキル基を有して いてもよいC₁₋₄芳香族環状アミノ基

 R^3 、 R^5 および R^6 は同一でも異なっていてもよく、それぞれ、水素原子、ハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基である〕で表されるピラゾール誘導体またはその塩に関するものである。

[0020]

本発明において、C₁₋₆アルキル基とは、メチル基、エチル基、プロピル基、 イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチ ル基、ペンチル基、イソペンチル基、ネオペンチル基、 t e r t ーペンチル基、 ヘキシル基等の炭素数1~6の直鎖状または枝分かれ状のアルキル基をいう。C 1-6アルキレン基とは、メチレン基、エチレン基、トリメチレン基、テトラメチ レン基、プロピレン基、1,1-ジメチルエチレン基等の炭素数1~6の直鎖状 または枝分かれ状のアルキレン基をいう。ヒドロキシ (C₁₋₆アルキル) 基とは 、水酸基で置換された上記 C_{1-6} アルキル基をいう。 C_{2-6} アルキル基とは、エチ ル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル 基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、te rt-ペンチル基、ヘキシル基等の炭素数2~6の直鎖状または枝分かれ状のア ルキル基をいい、ヒドロキシ(C_{2-6} アルキル)基とは、2-ヒドロキシエチル 基、3-ヒドロキシプロピル基等の水酸基で置換された上記C2-6アルキル基を いう。C₁₋₆アルコキシ基とは、メトキシ基、エトキシ基、プロポキシ基、イソ プロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基 、tert-ペンチルオキシ基、ヘキシルオキシ基等の炭素数1~6の直鎖状ま たは枝分かれ状のアルコキシ基をいう。 C_{1-6} アルコキシ(C_{1-6} アルキル)基と は、上記 C_{1-6} アルコキシ基で置換された上記 C_{1-6} アルキル基をいう。 C_{1-6} ア ルコキシ $(C_{1-6}$ アルコキシ) 基とは、メトキシメトキシ基等の上記 C_{1-6} アルコ キシ基で置換された上記 C_{1-6} アルコキシ基をいう。 C_{2-6} アルケニル基とは、ビ ニル基、アリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2 ープテニル基、2ーメチルアリル基等の炭素数2~6の直鎖状または枝分かれ状 のアルケニル基をいう。C₂₋₆アルケニレン基とは、ビニレン基、1-プロペニ レン基、2-プロペニレン基等の炭素数2~6の直鎖状または枝分かれ状のアル ケニレン基をいう。 C_{2-6} アルケニルオキシ基とは、アリルオキシ基等の不飽和 結合を有する上記 C_{1-6} アルコキシ基(メトキシ基を除く)をいう。 C_{1-6} アルキ ルチオ基とは、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチ オ基、ブチルチオ基、イソブチルチオ基、secーブチルチオ基、tertーブ チルチオ基、ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、te rt-ペンチルチオ基、ヘキシルチオ基等の炭素数1~6の直鎖状または枝分か れ状のアルキルチオ基をいう。カルバモイル(C_{1-6} アルキル)基とは、カルバ モイル基で置換された上記 C_{1-6} アルキル基をいう。モノまたはジ(C_{1-6} アルキ ル) アミノ基とは、上記C₁₋₆アルキル基でモノ置換されたアミノ基或いは異種 又は同種の上記 C_{1-6} アルキル基でジ置換されたアミノ基をいう。モノまたはジ [ヒドロキシ(C_{1-6} アルキル)] アミノ基とは、上記ヒドロキシ(C_{1-6} アルキ ル) 基でモノ置換されたアミノ基或いは異種又は同種の上記ヒドロキシ (C₁₋₆ アルキル)基でジ置換されたアミノ基をいう。モノまたはジ(C_{1-6} アルキル) ウレイド基とは、上記 C_{1-6} アルキル基でモノ置換されたウレイド基或いは異種 又は同種の上記 C_{1-6} アルキル基でジ置換されたウレイド基をいう。モノまたは ジ(C_{1-6} アルキル)スルファミド基とは、上記 C_{1-6} アルキル基でモノ置換され たスルファミド基或いは異種又は同種の上記C₁₋₆アルキル基でジ置換されたス ルファミド基をいう。 C_{2-7} アシル基とは、アセチル基、プロピオニル基、ブチ リル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基等の炭素 数 $2 \sim 7$ の直鎖状または枝分かれ状のアシル基をいう。 C_{2-7} アシルアミノ基と は、上記 C_{2-7} アシル基で置換されたアミノ基をいう。 C_{1-6} アルキルスルホニル 基とは、メタンスルホニル基、エタンスルホニル基等の炭素数1~6の直鎖状ま たは枝分かれ状のアルキルスルホニル基をいう。 C_{1-6} アルキルスルホニルアミ ノ基とは、上記 C_{1-6} アルキルスルホニル基で置換されたアミノ基をいう。 C_{1-6} アルキルスルホニルアミノ(C_{1-6} アルキル)基とは、上記 C_{1-6} アルキルスルホ ニルアミノ基で置換された上記 C_{1-6} アルキル基をいう。 C_{3-7} シクロアルキル基 とは、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル 基またはシクロヘプチル基をいう。 C_{3-7} シクロアルキル(C_{1-6} アルキル)基と は、上記 C_{3-7} シクロアルキル基で置換された上記 C_{1-6} アルキル基をいう。 C_{3-6} 7シクロアルキル(C_{2-6} アルコキシ)基とは、上記 C_{3-7} シクロアルキル基で置 換された上記 C_{1-6} アルコキシ基(メトキシ基を除く)をいう。 C_{2-6} ヘテロシク ロアルキル基とは、モルホリン、チオモルホリン、テトラヒドロフラン、テトラ ヒドロピラン、アジリジン、アゼチジン、ピロリジン、イミダゾリジン、オキサ ゾリン、ピペリジン、ピペラジン、ピラゾリジン等から派生される、酸素原子、 硫黄原子および窒素原子から選択される同種または異種のヘテロ原子を1~2個 結合部位以外の環内に含む上記C3-7シクロアルキル基をいう。ハロゲン原子と はフッ素原子、塩素原子、臭素原子またはヨウ素原子をいう。ハロ(C_{1-6} アル キル)基とは、トリフルオロメチル基、ペンタフルオロエチル基等の異種または 同種の $1\sim5$ 個の上記ハロゲン原子で置換された上記 C_{1-6} アルキル基をいう。 ハロ(C_{1-6} アルコキシ)基とは、異種または同種の $1\sim5$ 個の上記ハロゲン原 子で置換された上記 C_{1-6} アルコキシ基をいう。 C_{2-7} アルコキシカルボニル基と は、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、 イソプロポキシカルボニル基、ブトキシカルボニル基、イソブチルオキシカルボ ニル基、secーブトキシカルボニル基、tert-ブトキシカルボニル基、ペ ンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオ キシカルボニル基、tertーペンチルオキシカルボニル基、ヘキシルオキシカ ルボニル基等の炭素数2~7の直鎖状または枝分かれ状のアルコキシカルボニル 基をいう。アリール基とは、フェニル基、ナフチル基等の1~3環性の芳香族炭 化水素基をいう。アリール (C₂₋₇アルコキシカルボニル) 基とは、上記アリー ル基で置換された C_{2-7} アルコキシカルボニル基をいう。アリール(C_{1-6} アルキ ル)基とは、上記アリール基で置換された上記 C_{1-6} アルキル基をいう。アリー ル(C_{1-6} アルコキシ)基とは、上記アリール基で置換された上記 C_{1-6} アルコキ シ基をいう。アリール(C_{1-6} アルキルチオ)基とは、上記アリール基で置換さ れた上記 C_{1-6} アルキルチオ基をいう。ヘテロアリール基とは、チアゾール、オ キサゾール、イソチアゾール、イソオキサゾール、ピリジン、ピリミジン、ピラ ジン、ピリダジン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサ ジアゾール、チオジアゾール、テトラゾール、フラザン等から派生される、酸素 原子、硫黄原子および窒素原子から選択される同種または異種のヘテロ原子を1

 ~ 4 個結合部位以外の環内に含む 5 又は 6 員環のヘテロアリール基をいう。 C_{2-} 6環状アミノ基とは、モルホリノ基、チオモルホリノ基、1-アジリジニル基、 1ーアゼチジニル基、1ーピロリジニル基、ピペリジノ基、1ーイミダゾリジニ ル基、1-ピペラジニル基、ピラゾリジニル基等の、結合部位の窒素原子の他に 酸素原子、硫黄原子および窒素原子から選択される1個のヘテロ原子を環内に有 していてもよい、炭素数2~6の5又は6員環の単環性アミノ基をいう。C₁₋₄ 芳香族環状アミノ基とは、1ーイミダゾリル基、1ーピロリル基、ピラゾリル基 、1-テトラゾリル基等の、結合部位の窒素原子の他に窒素原子を1~3個環内 に有していてもよい、炭素数1~4の5員環の芳香族単環性アミノ基をいう。水 酸基の保護基とは、ベンジル基、メトキシメチル基、アセチル基、tert-ブ チルジメチルシリル基、アリル基等の一般的に有機合成反応において用いられる 水酸基の保護基をいう。アミノ基の保護基とは、ベンジルオキシカルボニル基、 tertーブトキシカルボニル基、ベンジル基、トリフルオロアセチル基等の一 般的に有機合成反応において用いられるアミノ基の保護基をいう。カルボキシ基 の保護基とは、ベンジル基、tertーブチルジメチルシリル基、アリル基等の 一般的に有機合成反応において用いられるカルボキシ基の保護基をいう。

[0021]

本発明の前記一般式(I)で表される化合物は、例えば、以下の方法に従い製造することができる。

[0022]

【化11】

[0023]

〔式中の L^1 はハロゲン原子、メシルオキシ基、トシルオキシ基等の脱離基であり、 L^2 はMgBr、MgCl、MgI、ZnI、ZnBr、ZnClまたはリチウム原子であり、Rは C_{1-6} アルキル基、ハロ(C_{1-6} アルキル)基、 C_{1-6} アルキル)基または C_{3-7} シクロアルキル基であり、 R^0 は C_{1-6} アルキル基であり、 Q^3 および T^3 はどちらか一方が水酸基であり、他方が C_{1-6} アルキル基、ハロ(C_{1-6} アルキル基、ハロ(C_{1-6} アルキル)基、 C_{1-6} アルキル)基

[0024]

工程1-1

前記一般式(IV)で表されるベンジル化合物を前記一般式(V)で表されるケト酢酸エステルと、不活性溶媒中、水素化ナトリウム、カリウムtertーブトキシドなどの塩基の存在下に縮合させることにより前記一般式(VI)で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、1,2ージメトキシエタン、テトラヒドロフラン、N,Nージメチルホルムアミド、それらの混合溶媒などを挙げることができる。反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。

[0025]

工程1-2

前記一般式(VI)で表される化合物を前記一般式(VII)で表されるヒドラジン化合物又はその一水和物若しくはその塩と不活性溶媒中、塩基の存在下または非存在下に縮合させた後、必要に応じて常法に従い水酸基に保護基を導入することにより前記一般式(III)で表されるベンジルピラゾール誘導体を製造することができる。縮合反応に用いられる不活性溶媒としては、例えば、トルエン、テトラヒドロフラン、クロロホルム、メタノール、エタノール、それらの混合溶媒などを挙げることができ、塩基としては、例えば、トリエチルアミン、N、Nージイソプロピルエチルアミン、ピリジン、ナトリウムメトキシド、ナトリウムエトキシド等を挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。尚、得られた前記一般式(III)で表されるベンジルピラゾール誘導体は常法に従い適宜その塩に変換した後、次工程において使用することもできる。

[0026]

工程1-3

前記一般式(VIII)で表されるジチオ炭酸エステル化合物を前記一般式(IX)で表されるケトン化合物と、不活性溶媒中、ナトリウムアミドなどの塩基の存在下に縮合させることにより前記一般式(X)で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、トルエンなどを挙げることができる。反応温度は通常-20 \sim \sim \sim 2温であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30 \wedge 7間 \sim 1日間である

[0027]

工程1-4

前記一般式(X)で表される化合物を前記一般式(VII)で表されるヒドラジン化合物又はその一水和物若しくはその塩と、不活性溶媒中、トリエチルアミン、N、N-ジイソプロピルエチルアミンなどの塩基の存在下に縮合させた後、必要に応じて常法に従い水酸基に保護基を導入することにより前記一般式(XI)で表されるベンジルオキシピラゾール誘導体を製造することができる。縮合反応に用いられる不活性溶媒としては、例えば、アセトニトリルなどを挙げることができる。その反応温度は通常 0 \mathbb{C} \sim 還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 1 時間 \sim 1 日間である。

[0028]

工程1-5

[0029]

工程1-6

前記一般式(XII)で表される化合物と前記一般式(XIII)で表されるグリニャール試薬、Reformatsky 以試薬またはリチウム試薬を、不活性溶媒中で付加させることにより前記一般式(XIV)で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、テトラヒドロフラン、ジエチルエーテル、それらの混合溶媒などを挙げることができる。反応温度は通常-78 \mathbb{C} ~室温であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 30 分間 ~ 1 日間である。

[0030]

工程1-7

前記一般式(XIV)で表される化合物を、不活性溶媒中、塩酸等の酸の存在下または非存在下、パラジウム炭素粉末などのパラジウム系触媒を用いて接触還元し、前記一般式(XIV)で表される化合物が硫黄原子を含む場合は、必要に応じて更にトリフルオロ酢酸およびジメチルスルフィドの水溶液中、通常 0 ℃~還流温度にて 3 0 分間~1 日間酸処理することにより前記一般式(III)で表されるベンジルピラゾール誘導体を製造することができる。接触還元反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、酢酸エチル、酢酸、イソプロパノール、それらの混合溶媒などを挙げることができ、その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 0 分間~1 日間である。尚、得られた前記一般式(III)で表されるベンジルピラゾール誘導体は常法に従い適宜その塩に変換した後、次工程において使用することもできる。

[0031]

工程1-8

(1) 前記一般式(III)で表されるベンジルピラゾール誘導体において Q^3 または T^3 の何れかが C_{1-6} アルキル基、 C_{1-6} アルコキシ(C_{1-6} アルキル)基または C_{3-7} シクロアルキル基である場合、相当する前記一般式(III)で表されるベンジルピラゾール誘導体をアセトブロモー α -D-グルコースまたはアセトブロモー α -D-ガラクトースを用いて、不活性溶媒中、炭酸銀、水素化ナトリウムなどの塩基の存在下に配糖化させることにより相当する本発明の前記一般

式 (II) で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、テトラヒドロフラン、ジメトキシエタン、N, Nージメチルホルムアミド、それらの混合溶媒などを挙げることができる。反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。

[0032]

(2) 前記一般式(III)で表されるベンジルピラゾール誘導体において Q^3 または T^3 の何れかがハロ(C_{1-6} アルキル)基である場合、相当する前記一般式(III)で表されるベンジルピラゾール誘導体をアセトブロモー α -D-グルコースまたはアセトブロモー α -D-ガラクトースを用いて、不活性溶媒中、炭酸カリウムなどの塩基の存在下に配糖化させることにより相当する本発明の前記一般式(II)で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、テトラヒドロフラン、アセトニトリル、それらの混合溶媒などを挙げることができる。反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。

[0033]

(3) 前記一般式(III)で表されるベンジルピラゾール誘導体においてQ3 または T^3 の何れかが C_{2-6} アルキル基、 C_{1-6} アルコキシ(C_{1-6} アルキル)基または C_{3-7} シクロアルキル基である場合、相当する前記一般式(III)で表されるベンジルピラゾール誘導体をアセトブロモー α -D-グルコースまたはアセトブロモー α -D-ガラクトースを用いて、水を含む不活性溶媒中、水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどの塩基およびベンジルトリ(n-ブチル)アンモニウムクロリド、ベンジルトリ(n-ブチル)アンモニウムブロミド、テトラ(n-ブチル)アンモニウム硫酸水素塩などの相間移動触媒の存在下に配糖化させることによっても相当する本発明の前記一般式(II)で表される化合物を製造することができる。反応に用いられる不活性溶媒としては、例えば、塩化メチレン、トルエン、ベンゾトリフルオリド、それらの混合溶媒などを挙げることができる。反応温度は通常 0 \mathbb{C} ~還流温度であり、反応時間は使用する

[0034]

尚、得られた前記一般式(II)で表される配糖化されたベンジルピラゾール 誘導体は常法に従い適宜その塩に変換して分離した後、次工程において使用して もよい。

[0035]

工程1-9

前記一般式(II)で表される化合物をアルカリ加水分解させた後、必要に応じて保護基の除去またはニトロ基の還元を行うことにより、本発明の前記一般式(I)で表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 \mathbb{C} \mathbb{C}

[0036]

尚、出発原料である前記一般式(I I I)で表される化合物の内、R 11が水素原子である化合物には、以下に示す3種類の互変異性体が存在し、反応条件の相違により状態が変化するが、前記一般式(I I I)で表される化合物には何れの化合物も含まれる。

[0037]

【化12】

[0038]

(式中のR、R 3 、R 5 、R 6 、R 12 、R 14 、X、Y 1 およびZ 1 は前記と同じ意味をもつ)

[0039]

本発明の前記一般式(I)で表される化合物の内、 R^1 が C_{1-6} アルキル基、 C_{2-6} アルケニル基、ヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル基、 C_{3-7} シクロアルキル(C_{1-6} アルキル)基または環置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキル)基である化合物は、例えば、以下の方法に従い製造することもできる。

[0040]

【化13】

[0041]

〔式中の L^3 はハロゲン原子、メシルオキシ基、トシルオキシ基等の脱離基であり、 R^{21} は C_{1-6} アルキル基、 C_{2-6} アルケニル基、保護基を有していてもよいヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル基、 C_{3-7} シクロアルキル

 $(C_{1-6}$ アルキル)基または環置換基としてハロゲン原子、保護基を有していてもよい水酸基、保護基を有していてもよいアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキル)基であり、 R^{31} は C_{1-6} アルキル基、 C_{2-6} アルケニル基、ヒドロキシ(C_{2-6} アルキル)基、 C_{3-7} シクロアルキル基、 C_{3-7} シクロアルキル (C_{1-6} アルキル)基または環置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール(C_{1-6} アルキル)基であり、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{12} 、 R^{14} 、Q、 Q^2 、T、 T^2 、X、Y 、 Y^1 、Zおよび Z^1 は前記と同じ意味をもつ〕

[0042]

工程2

前記一般式(IIa)で表される化合物を前記工程1-9と同様の方法により加水分解した後、前記一般式(XV)で表されるアルキル化剤を用いて、不活性溶媒中、炭酸セシウム、炭酸カリウムなどの塩基の存在下、必要に応じて触媒量のヨウ化ナトリウムの存在下にN-アルキル化し、保護基を有する化合物の場合は、更に必要に応じて常法に従い適宜処理して保護基を除去することにより、本発明の前記一般式(Ia)で表されるピラゾール誘導体を製造することができる。N-アルキル化反応に用いられる溶媒としては、例えば、アセトニトリル、エタノール、1,2ージメトキシエタン、テトラヒドロフラン、N,Nージメチルホルムアミド、ジメチルスルホキシド、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常10分間~1日間である。

[0043]

本発明の前記一般式(I)で表される化合物の内、 R^1 、 R^4 及びZが水素原子である化合物は、例えば、以下の方法に従い製造することもできる。

[0044]

【化14】

[0045]

(式中の L^4 はメシルオキシ基、トシルオキシ基等の脱離基であり、 R^2 、 R^3 、 R^5 、 R^6 、 R^{12} 、Q、 Q^2 、T、 T^2 、X、Yおよび Y^1 は前記と同じ意味をもつ)

[0046]

工程3-1

前記一般式(XVI)で表される化合物を不活性溶媒中、パラジウム炭素粉末などのパラジウム系触媒を用いて接触還元してベンジル基を除去することにより、前記一般式(XVII)で表される化合物を製造することができる。接触還元反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、酢酸エチル、酢酸、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~2日間である。

[0047]

工程3-2

前記一般式(XVII)で表される化合物を不活性溶媒中、トリエチルアミン、N,N-ジイソプロピルエチルアミン等の塩基の存在下、メシルクロリド、トシルクロリド等の酸クロリドを用いて脱離基を導入することにより、前記一般式(XVIII)で表される化合物を製造することができる。導入反応に用いられる溶媒としては、例えば、塩化メチレン、酢酸エチル、テトラヒドロフラン、ピリジン、それらの混合溶媒などを挙げることができる。その反応温度は通常0℃~室温であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~1日間である。

[0048]

工程3-3

前記一般式(XVIII)で表される化合物を不活性溶媒中、アジ化ナトリウム等のアジド化試薬を用いてアジド化することにより、前記一般式(XIX)で表される化合物を製造することができる。アジド化反応に用いられる溶媒としては、例えば、塩化メチレン、酢酸エチル、N, Nージメチルホルムアミド、ジメチルスルホキシド、Nーメチルピロリドン、N, Nージメチルイミダゾリジノン、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~1日間である。

[0049]

工程3-4

前記一般式(XIX)で表される化合物を不活性溶媒中、パラジウム炭素粉末などのパラジウム系触媒を用いて接触還元することにより、本発明の前記一般式(IIb)で表される化合物を製造することができる。接触還元反応に用いられる溶媒としては、例えば、テトラヒドロフラン、メタノール、エタノール、酢酸エチル、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~1日間である。

[0050]

工程3-5

前記一般式(XIX)で表される化合物をアルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、前記一般式(XX)で表される化合物を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 ℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 0 分間~1 日間である。工程 1 − 9 同様、加水分解後、R 12及び/又は Y1に保護基を有する化合物の場合は、常法に従い適宜処理して保護基を除去することができる。

[0051]

工程3-6

前記一般式(IIb)で表される化合物をアルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(Ib)で表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 $0 C \sim$ 還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 30 分間~1 日間である。工程 1-9 同様、加水分解後、 R^{12} 及び/又は Y^{1} に保護基を有する化合物の場合は、常法に従い適宜処理して保護基を除去することができる。

[0052]

工程3-7

前記一般式(XX)で表される化合物を不活性溶媒中、パラジウム炭素粉末などのパラジウム系触媒を用いて接触還元することにより、本発明の前記一般式(

Ib)で表されるピラゾール誘導体を製造することができる。接触還元反応に用いられる溶媒としては、例えば、テトラヒドロフラン、メタノール、エタノール、酢酸エチル、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~1日間である。

[0053]

本発明の前記一般式(I)で表される化合物の内、 R^1 及び R^4 が水素原子であり、Zが $-COR^C$ 、 $-SO_2R^C$ 、 $-CON(R^D)$ R^E または-C ($=NR^{2G}$) NHR^{2H} である化合物は、例えば、以下の方法に従い製造することもできる。

[0054]

【化15】

[0055]

〔式中の L^5 はピラゾリル基、メチルチオ基、ベンゾトリアゾリル基等の脱離基であり、 R^{2G} および R^{2H} は同一でも異なっていてもよく、それぞれ、水素原子、

[0056]

工程 4-1

以下の方法1乃至4に従い処理した後、必要に応じて常法に従い保護基を除去することにより、前記一般式(IIb)で表される化合物から前記一般式(IIb)で表される化合物を製造することができる。

[0057]

<方法1>

[0058]

<方法2>

前記一般式(IIb)で表される化合物を、塩化メチレン、酢酸エチル、テトラヒドロフラン、ピリジン、アセトニトリル、トルエン、それらの混合溶媒等の不活性溶媒中、トリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデー7-セン等の塩基の存在下又は非存在下、前記一般式(XXIII)で表されるイソシアネート化合物と通常 0 \mathbb{C} \sim 還流温度で通常 3 0 \mathcal{O} \mathbb{I} \mathbb{I}

[0059]

<方法3>

前記一般式(IIb)で表される化合物を、N, N-ジメチルホルムアミド、

[0060]

<方法4>

前記一般式(IIb)で表される化合物を、テトラヒドロフラン、メタノール、エタノール、トルエン、N, Nージメチルホルムアミド、それらの混合溶媒等の不活性溶媒中、Nー(ベンジルオキシカルボニル)-1Hーピラゾールー1ーカルボキサミジン等の前記一般式(XXV)で表されるグアニジン化試薬と通常室温~還流温度で通常1時間~5日間反応を行う。

[0061]

工程 4-2

前記一般式(IIc)で表される化合物をアルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(Ic)で表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 \mathbb{C} \sim 還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 \mathbb{C} \mathbb{C}

[0062]

工程5-1

前記一般式(IIb)で表される化合物を不活性溶媒中、トリエチルアミン、

N、Nージイソプロピルエチルアミン、ピリジン、1、8ージアザビシクロ〔5 . 4.0〕ウンデー7ーセン等の塩基の存在下、前記式(XXVI)で表される活性エステル化試薬と縮合することにより、前記一般式(XXVII)で表される活性エステル化合物を製造することができる。縮合反応に用いられる溶媒としては、例えば、塩化メチレン、テトラヒドロフラン、酢酸エチル、アセトニトリル、ピリジン、それらの混合溶媒などを挙げることができる。その反応温度は通常0 $\mathbb C$ ~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~1日間である。

[0063]

工程5-2

前記一般式(XXVII)で表される化合物を不活性溶媒中、トリエチルアミン、N, Nージイソプロピルエチルアミン、ピリジン、1,8ージアザビシクロ〔5.4.0〕ウンデー7ーセン、水素化ナトリウム、カリウムtertーブトキシド、炭酸カリウム、炭酸セシウム等の塩基の存在下又は非存在下、前記一般式(XXVIII)で表されるアミン化合物又はその塩と縮合した後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(IId)で表されるピラゾール誘導体を製造することができる。縮合反応に用いられる溶媒としては、例えば、塩化メチレン、メタノール、エタノール、テトラヒドロフラン、酢酸エチル、アセトニトリル、ピリジン、N,Nージメチルホルムアミド、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常30分間~2日間である。

[0064]

工程5-3

前記一般式(IId)で表される化合物をアルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(Id)で表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリ

ウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 \mathbb{C} \sim 還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 0 分間 \sim 1 日間である。工程 1 \sim 1 \sim

[0065]

本発明の前記一般式(I)で表される化合物の内、 R^1 が水素原子であり、Zが R^B である化合物は、例えば、以下の方法に従い製造することもできる。

[0066]

【化16】

工程 6
$$R^5$$
 $X-Y^1L^4$ 1) R^{14} 1) R^{14} R^5 R^6 R^5 R^4 R^6 R^5 R^6 R^6 R^7 R^8 R^8

[0067]

(式中の R^{14} 、 R^{1B} 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^{12} 、 R^B 、 L^4 、Q、 Q^2 、T、 T^2 、X、 $Yおよび<math>Y^1$ は前記と同じ意味をもつ)

[0068]

工程6

前記一般式(XVIII)で表される化合物を不活性溶媒中、トリエチルアミン、N, N-ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデー7ーセン、水素化ナトリウム、カリウムtertーブトキシド、炭酸カリウム、炭酸セシウム等の塩基の存在下又は非存在下、必要に応じてヨウ化ナトリウムを添加して、前記一般式(XXIX)で表されるアミン化合物又はその塩と縮合し、アルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(Ie)で表されるピラゾール誘導体を製造することができる。縮合反応に用いられる溶媒としては、例えば、アセトニトリル、N, N-ジメチルホルムアミド、ジメチルスルホキシド、N

ーメチルピロリドン、メタノール、エタノール、テトラヒドロフラン、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 1 時間~2 日間である。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 \mathbb{C} ~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 0 分間~ 1 日間である。工程 1-9 同様、加水分解後、R12、R14、R1B及び/又は Y1 に保護基を有する化合物の場合は、常法に従い適宜処理して保護基を除去することができる。

[0069]

本発明の前記一般式(I)で表される化合物の内、 R^1 が水素原子であり、 R^4 が前記の置換基群(i)から選択される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であり、Zが前記の置換基群(i)から選択される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基、 $-COR^C$ 、 $-SO2R^C$ 、 $-CONHR^D$ または-C($=NR^2$ G) NHR^2 Hである化合物は、例えば、以下の方法に従い製造することもできる。

[0070]

[0071]

〔式中の L^6 はハロゲン原子、メシルオキシ基、トシルオキシ基等の脱離基であり、Wは2-ニトロ基、4-ニトロ基又は2, 4-ジニトロ基であり、 R^{24} は前記の置換基群(i i)から選択される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であり、 R^{34} は隣接する炭素原子と共に還元後に R^{24} を形成し、 R^{4B} および R^{5B} は両者が結合する炭素原子と共に還元後に枝分かれ状の C_{3-6} アルキル基を有する R^{24} を形成し、 R^{4A} は前記の置換基群(i)から選択

される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であり 、 Z^3 は前記の置換基群(i i) から選択される同種または異種の基を $1\sim5$ 個 有していてもよい C_{1-6} アルキル基、 $-COR^{1C}$ 、 $-SO_2R^{1C}$ 、 $-CONHR^{1D}$ または-C ($=NR^{2G}$) NHR^{2H} であり、 Z^{B} は前記の置換基群(i)から選択 される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基、-C OR^{C} 、 $-SO_{2}R^{C}$ 、 $-CONHR^{D}$ または-C (= NR^{2G}) NHR^{2H} であり、L5, R1C, R1D, R2G, R2H, R2, R3, R5, R6, R12, Q, Q2, T, T2, X、YおよびY¹は前記と同じ意味をもつ]

[0072]

工程7-1

以下の方法1乃至3に従い処理することにより、前記一般式(IIb)で表さ れる化合物から本発明の前記一般式 (IIe) で表される化合物を製造すること ができる。

[0073]

< 方法1>

1) 前記一般式 (IIb) で表される化合物を、塩化メチレン、酢酸エチル、テ トラヒドロフラン、ピリジン、アセトニトリル、それらの混合溶媒等の不活性溶 媒中、トリエチルアミン、N, N-ジイソプロピルエチルアミン、ピリジン、1 , 8-ジアザビシクロ〔5. 4. 0〕ウンデー7-セン等の塩基の存在下、前記 一般式 (XXX) で表される酸クロリドと通常 0 ℃~室温で通常 3 0 分間~1日 間反応し、相当するスルホンアミド化合物を得る。

[0074]

2) 得られたスルホンアミド化合物を、N, N-ジメチルホルムアミド、アセト ン、テトラヒドロフラン、アセトニトリル、それらの混合溶媒等の不活性溶媒中 、炭酸カリウム、炭酸セシウム、水素化ナトリウム等の塩基の存在下、必要に応 じてヨウ化ナトリウムを添加して、前記一般式(ХХХІ)で表されるアルキル 化剤と通常室温~還流温度で通常1時間~2日間N-アルキル化を行うか、或い は得られたスルホンアミド化合物を、テトラヒドロフラン、酢酸エチル、アセト ニトリル、それらの混合溶媒等の不活性溶媒中、アゾジカルボン酸ジエチル、ア

[0075]

 $3\sim4$) 得られたN, N-ジ置換スルホンアミド化合物を、N, N-ジメチルホ ルムアミド、アセトニトリル、それらの混合溶媒等の不活性溶媒中、炭酸セシウ ム、炭酸カリウム等の塩基の存在下、メルカプト酢酸、チオフェノール等のチオ ール試薬を用いて通常室温~還流温度で通常1時間~1日間脱保護化を行い、相 当する第二級アミン化合物を得た後、必要に応じて常法に従い保護基を除去する

[0076]

<方法2>

前記一般式(XXXIII)で表されるアルデヒド化合物又は前記一般式(X XXIV) で表されるケトン化合物を、テトラヒドロフラン、1,2ージクロロ エタン、酢酸、それらの混合溶媒等の不活性溶媒中、シアノ化水素化ホウ素ナト リウム、トリアセトキシ水素化ホウ素ナトリウム等の還元剤の存在下、前記一般 式(IIb)で表される化合物を用いて通常室温~還流温度で通常1時間~1日 間還元アミノ化を行う。

[0077]

<方法3>

前記一般式 (IIb) で表される化合物を、アセトニトリル、N, Nージメチ ルホルムアミド、ジメチルスルホキシド、Nーメチルピロリドン、メタノール、 エタノール、それらの混合溶媒等の不活性溶媒中、トリエチルアミン、N, N-ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ〔5.4.0 〕ウンデー7ーセン等の塩基の存在下、必要に応じてヨウ化ナトリウムを添加し て、前記一般式(XXXI)で表されるアルキル化剤と通常室温~還流温度で通 常1時間~2日間N-アルキル化を行う。

[0078]

工程7-2

1) 前記一般式 (XXXV) で表されるスルホンアミド化合物を、テトラヒドロフラン、酢酸エチル、アセトニトリル、それらの混合溶媒等の不活性溶媒中、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等のアゾジカルボン酸ジエステル試薬およびトリフェニルホスフィンの存在下、前記一般式 (XVII) で表される化合物と通常室温~還流温度で通常30分間~1日間Nーアルキル化を行い、相当するN,Nージ置換スルホンアミド化合物を得る。

[0079]

2~3)得られたN,Nージ置換スルホンアミド化合物を、N,Nージメチルホルムアミド、アセトニトリル、それらの混合溶媒等の不活性溶媒中、炭酸セシウム、炭酸カリウム等の塩基の存在下、メルカプト酢酸、チオフェノール等のチオール試薬を用いて通常室温~還流温度で通常1時間~1日間脱保護化を行い、相当する第二級アミン化合物を得た後、必要に応じて常法に従い保護基を除去することにより本発明の前記一般式(IIe)で表されるピラゾール誘導体を製造することができる。

[0080]

工程7-3

前記一般式(IIe)で表される化合物をアルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(If)で表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 \mathbb{C} \sim \mathbb{Z} \mathbb{Z}

[0081]

工程7-4

以下の方法1乃至6に従い処理した後、必要に応じて常法に従い保護基を除去することにより、前記一般式 (IIe)で表される化合物から本発明の前記一般式 (IIf)で表される化合物を製造することができる。

[0082]

<方法1>

前記一般式(IIe)で表される化合物を、塩化メチレン、酢酸エチル、テトラヒドロフラン、ピリジン、アセトニトリル、それらの混合溶媒等の不活性溶媒中、トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、1,8ージアザビシクロ [5.4.0] ウンデー7ーセン等の塩基の存在下、前記一般式(XXI)又は(XXII)で表される酸クロリドと通常0 \mathbb{C} ~還流温度で通常30 \mathbb{C} 1日間反応を行う。

[0083]

<方法2>

前記一般式(IIe)で表される化合物を、塩化メチレン、酢酸エチル、テトラヒドロフラン、ピリジン、アセトニトリル、トルエン、それらの混合溶媒等の不活性溶媒中、トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、1,8ージアザビシクロ $\begin{bmatrix} 5.4.0 \end{bmatrix}$ ウンデー7ーセン等の塩基の存在下又は非存在下、前記一般式(XXIII)で表されるイソシアネート化合物と通常0 \mathbb{C} ~還流温度で通常3 0 \mathbb{O} \mathbb{O}

[0084]

<方法3>

[0085]

<方法4>

前記一般式(IIe)で表される化合物を、テトラヒドロフラン、メタノール、エタノール、トルエン、N, N-ジメチルホルムアミド、それらの混合溶媒等の不活性溶媒中、N-(ベンジルオキシカルボニル)-1H-ピラゾール-1-カルボキサミジン等の前記一般式(XXV)で表されるグアニジン化試薬と通常室温~還流温度で通常 1 時間~ 5 日間反応を行う。

[0086]

<方法5>

前記一般式(XXXIII)で表されるアルデヒド化合物又は前記一般式(XXIV)で表されるケトン化合物を、テトラヒドロフラン、1,2ージクロロエタン、酢酸、それらの混合溶媒等の不活性溶媒中、シアノ化水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム等の還元剤の存在下、前記一般式(IIe)で表される化合物を用いて通常室温~還流温度で通常1時間~1日間還元アミノ化を行う。

[0087]

<方法6>

前記一般式(IIe)で表される化合物を、アセトニトリル、N,Nージメチルホルムアミド、ジメチルスルホキシド、Nーメチルピロリドン、メタノール、エタノール、それらの混合溶媒等の不活性溶媒中、トリエチルアミン、N,Nージイソプロピルエチルアミン、ピリジン、1,8ージアザビシクロ〔5. 4. 0] ウンデー7ーセン等の塩基の存在下、必要に応じてヨウ化ナトリウムを添加して、前記一般式(XXXI)で表されるアルキル化剤と通常室温~還流温度で通常 1 時間~2 日間N-アルキル化を行う。

[0088]

工程7-5

前記一般式(IIf)で表される化合物をアルカリ加水分解させた後、必要に 応じて常法に従い保護基を除去することにより、本発明の前記一般式(Ig)で 表されるピラゾール誘導体を製造することができる。加水分解反応に用いられる 溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反応温度は通常 0 ℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常 3 0 分間~1日間である。工程 1 − 9 同様、加水分解後、R12、R24、Y1及び/又は Z3に保護基を有する化合物の場合は、常法に従い適宜処理して保護基を除去することができる。

[0089]

本発明の前記一般式(I)で表される化合物の内、 R^1 が水素原子であり、Xが酸素原子であり、Yが一 CH_2CH (OH) CH_2 一であり、Zが R^B である化合物は、例えば、以下の方法に従い製造することもできる。

[0090]

【化18】

[0091]

(式中のL 7 はハロゲン原子、メシルオキシ基、トシルオキシ基、ノシルオキシ基等の脱離基であり、R 1B 、R 2 、R 3 、R 4 、R 5 、R 6 、R 12 、R 14 、R B 、Q、Q 2 、TおよびT 2 は前記と同じ意味をもつ)

[0092]

工程8-1

前記一般式(XXXVI)で表される化合物を不活性溶媒中、炭酸セシウム、炭酸カリウム、水素化ナトリウム等の塩基の存在下、前記一般式(XXXVII)で表されるアルキル化試薬で〇ーアルキル化することにより、前記一般式(XXXVIII)で表される化合物を製造することができる。〇一アルキル化反応に用いられる溶媒としては、例えば、N,Nージメチルホルムアミド、アセトン、テトラヒドロフラン、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~3日間である。

[0093]

工程8-2

前記一般式(XXXVIII)で表される化合物に不活性溶媒中、トリエチル アミン、N, Nージイソプロピルエチルアミン、ピリジン、1, 8ージアザビシ クロ〔5.4.0〕ウンデー7ーセン、水素化ナトリウム、カリウムtert-ブトキシド、炭酸カリウム、炭酸セシウム等の塩基の存在下又は非存在下、前記 一般式(XXIX)で表されるアミン化合物又はその塩を付加し、アルカリ加水 分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の 前記一般式(Ih)で表されるピラゾール誘導体を製造することができる。付加 反応に用いられる溶媒としては、例えば、アセトニトリル、N, Nージメチルホ ルムアミド、メタノール、エタノール、テトラヒドロフラン、それらの混合溶媒 などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時 間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日 間である。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタ ノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、 塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウム エトキシド、メチルアミン、ジメチルアミンなどを挙げることができる。その反 応温度は通常0℃~還流温度であり、反応時間は使用する原料物質や溶媒、反応 温度などにより異なるが、通常30分間~1日間である。工程1-9同様、加水 分解後、 R^{12} 、 R^{14} 及び/又は R^{18} に保護基を有する化合物の場合は、常法に従い適宜処理して保護基を除去することができる。

[0094]

本発明の前記一般式(I)で表される化合物の内、 R^1 及び R^4 が水素原子であり、Zが-C(=NCN)N(R^7) R^8 である化合物は、例えば、以下の方法に従い製造することもできる。

[0095]

【化19】

[0096]

〔式中のR 7 およびR 8 は同一でも異なっていてもよく、それぞれ、水素原子、置換基としてハロゲン原子、水酸基、アミノ基、 C_{1-6} アルキルスルホニルアミノ基、 C_{1-6} アルキル基および C_{1-6} アルコキシ基から選択される同種または異種の基を $1\sim3$ 個有していてもよいアリール基、置換基としてハロゲン原子、アミノ基および C_{1-6} アルキル基から選択される基を有していてもよいヘテロアリール基または前記の置換基群(i)から選択される同種または異種の基を $1\sim5$ 個有していてもよい C_{1-6} アルキル基であるか、或いは R^7 および R^8 は両者が結合して隣接する窒素原子と共に、置換基として水酸基、カルバモイル基、 C_{1-6} アルキル基、オキソ基、カルバモイル(C_{1-6} アルキル)基、ヒドロキシ(C_{1-6} アルキル基、

[0097]

工程 9-1

前記一般式(IIb)で表される化合物を不活性溶媒中、前記式(XXXIX)で表されるイソチオ尿素化試薬と縮合させることにより、前記一般式(XXXX)で表される化合物を製造することができる。縮合反応に用いられる溶媒としては、例えば、メタノール、エタノール、2ープロパノール、テトラヒドロフラン、トルエン、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。

[0098]

工程9-2

前記一般式(XXXX)で表される化合物を不活性溶媒中、トリエチルアミン、N, N-ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ〔5.4.0〕ウンデー7ーセン、水素化ナトリウム、カリウムtertープトキシド、炭酸カリウム、炭酸セシウム等の塩基の存在下又は非存在下、前記一般式(XXIX)で表されるアミン化合物又はその塩と縮合し、アルカリ加水分解させた後、必要に応じて常法に従い保護基を除去することにより、本発明の前記一般式(Ii)で表される化合物を製造することができる。縮合反応に用いられる溶媒としては、例えば、メタノール、エタノール、アセトニトリル、2ープロバノール、N, N-ジメチルホルムアミド、テトラヒドロフラン、それらの混合溶媒などを挙げることができる。その反応温度は通常室温~還流温度であり、反応時間は使用する原料物質や溶媒、反応温度などにより異なるが、通常1時間~1日間である。加水分解反応に用いられる溶媒としては、例えば、メタノール、エタノール、テトラヒドロフラン、水、それらの混合溶媒などを挙げることができ、塩基としては、例えば、水酸化ナトリウム、ナトリウムメトキシド、ナトリウ

[0099]

前記製造方法において保護基を除去する場合は、常法に従い上記以外の手順にて適宜実施することもできる。

[0100]

前記製造方法において得られる本発明の前記一般式(I)で表される化合物は、慣用の分離手段である分別再結晶法、クロマトグラフィーを用いた精製法、溶媒抽出法、固相抽出法等により単離精製することができる。

[0101]

本発明の前記一般式 (I)で表されるピラゾール誘導体は、常法により、その薬理学的に許容される塩とすることができる。このような塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸、プロピオン酸、クエン酸、コハク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸等の有機酸との酸付加塩、ナトリウム塩、カリウム塩等の無機塩基との塩、Nーメチルーローグルカミン、N,N'ージベンジルエチレンジアミン、2ーアミノエタノール、トリス (ヒドロキシメチル) アミノメタン、アルギニン、リジン等の有機塩基との付加塩を挙げることができる。

[0102]

本発明の前記一般式(I)で表される化合物には、水やエタノール等の医薬品として許容される溶媒との溶媒和物も含まれる。

[0103]

本発明の前記一般式(I)で表されるピラゾール誘導体およびそのプロドラッグのうち、不飽和結合を有する化合物には、2つの幾何異性体が存在するが、本

[0104]

本発明の前記一般式(I)で表されるピラゾール誘導体およびそのプロドラッグのうち、グルコピラノシルオキシ部分又はガラクトピラノシルオキシ部分を除き不斉炭素原子を有する化合物には、R配置の化合物とS配置の化合物の2種類の光学異性体が存在するが、本発明においてはいずれの光学異性体を使用してもよく、それらの光学異性体の混合物であっても構わない。

[0105]

本発明の前記一般式(I)で表される化合物のプロドラッグは、相当するハロ ゲン化物等のプロドラッグ化試薬を用いて、常法により、前記一般式(I)で表 される化合物における水酸基(グルコピラノシル部分又はガラクトピラノシル部 分の水酸基、場合により R^1 、 R^2 、 R^4 、YやZに存在する水酸基)、環状アミ ノ基(\mathbb{R}^1 が水素原子の場合)およびアミノ基又はモノ(\mathbb{C}_{1-6} アルキル)アミノ 基 $(R^1, R^2, R^4$ やZがアミノ基又はモノ $(C_{1-6}$ アルキル) アミノ基を有する 置換基である場合)から選択される1以上の任意の基に、常法に従い適宜プロド ラッグを構成する基を導入した後、所望に応じ、適宜常法に従い単離精製するこ とにより製造することができる。水酸基やアミノ基において使用されるプロドラ ッグを構成する基としては、例えば、 C_{2-7} アシル基、 C_{1-6} アルコキシ(C_{2-7} アシル)基、 C_{2-7} アルコキシカルボニル(C_{2-7} アシル)基、 C_{2-7} アルコキシ カルボニル基、 C_{1-6} アルコキシ(C_{2-7} アルコキシカルボニル)基等を挙げるこ とができ、環状アミノ基において使用されるプロドラッグを構成する基としては 、例えば、 C_{2-7} アシル基、 C_{1-6} アルコキシ(C_{2-7} アシル)基、 C_{2-7} アルコキ シカルボニル(C_{2-7} アシル)基、 C_{2-7} アルコキシカルボニル基、 C_{1-6} アルコ キシ(C_{2-7} アルコキシカルボニル)基、(C_{2-7} アシルオキシ)メチル基、1- $(C_{2-7}$ アシルオキシ) エチル基、 $(C_{2-7}$ アルコキシカルボニル) オキシメチル 基、 $1-[(C_{2-7}$ アルコキシカルボニル) オキシ] エチル基、 $(C_{3-7}$ シクロア ルキル)オキシカルボニルオキシメチル基、1-〔(C₃₋₇シクロアルキル)オ キシカルボニルオキシ] エチル基等を挙げることができる。 C_{1-6} アルコキシ(

 C_{2-7} アシル)基とは、前記 C_{1-6} アルコキシ基で置換された前記 C_{2-7} アシル基 をいい、 C_{2-7} アルコキシカルボニル(C_{2-7} アシル)基とは、前記 C_{2-7} アルコ キシカルボニル基で置換された前記 C_{2-7} アシル基をいい、 C_{1-6} アルコキシ(C2-7アルコキシカルボニル)基とは、前記 C_{1-6} アルコキシ基で置換された前記C2-7アルコキシカルボニル基をいい、(C_{2-7} アシルオキシ)メチル基とは、前記 C_{2-7} アシル基でO-置換されたヒドロキシメチル基をいい、1-(C_{2-7} アシル オキシ)エチル基とは、前記 C_{2-7} アシル基でO-置換された1-ヒドロキシエ チル基をいい、(C₂₋₇アルコキシカルボニル)オキシメチル基とは、前記C₂₋₇ アルコキシカルボニル基で〇一置換されたヒドロキシメチル基をいい、1-〔(C_{2-7} アルコキシカルボニル)オキシ] エチル基とは、前記 C_{2-7} アルコキシカル ボニル基でO-置換された1-ヒドロキシエチル基をいう。また、(C_{3-7} シク ロアルキル)オキシカルボニル基とは、前記C3-7シクロアルキル基を有する環 状アルコキシカルボニル基をいい、(C3-7シクロアルキル)オキシカルボニル オキシメチル基とは、上記(C3-7シクロアルキル)オキシカルボニル基でO-置換されたヒドロキシメチル基をいい、 $1-\left(\left(C_{3-7}$ シクロアルキル $\right)$ オキシ カルボニルオキシ] エチル基とは、上記(C_{3-7} シクロアルキル)オキシカルボ ニル基で〇ー置換された1-ヒドロキシエチル基をいう。更には、プロドラッグ を構成する基として、グルコピラノシル基又はガラクトピラノシル基を挙げるこ とができ、例えば、グルコピラノシルオキシ基又はガラクトピラノシルオキシ基 の4位又は6位の水酸基に導入するのが好ましく、グルコピラノシルオキシ基の 4位又は6位の水酸基に導入するのが更に好ましい。

[0106]

本発明の前記一般式(I)で表されるピラゾール誘導体は、例えば、下記ヒトSGLT1活性阻害作用確認試験において、強力なヒトSGLT1活性阻害作用を示し、またラットを用いた血糖値上昇抑制作用確認試験において優れた血糖値の上昇抑制作用を発揮した。このように、本発明の前記一般式(I)で表されるピラゾール誘導体は、小腸において優れたSGLT1活性阻害作用を発現し、血糖値の上昇を顕著に抑制することができる。それ故、本発明の前記一般式(I)で表されるピラゾール誘導体、その薬理学的に許容される塩及びそれらのプロド

ラッグは、食後高血糖抑制剤、耐糖能異常者の糖尿病への移行阻止剤、並びに小腸におけるSGLT1活性に関連する、例えば、糖尿病、耐糖能異常、糖尿病性合併症(例えば、網膜症、神経障害、腎症、潰瘍、大血管症)、肥満症、高インスリン血症、高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症、高血圧、うっ血性心不全、浮腫、高尿酸血症、痛風等の高血糖症に起因する疾患の予防または治療剤として極めて有用である。

[0107]

また、本発明の化合物は、SGLT1活性阻害薬以外の少なくとも1種の薬剤 と適宜組み合わせて使用することもできる。本発明の化合物と組み合わせて使用 できる薬剤としては、例えば、インスリン感受性増強薬、糖吸収阻害薬、ビグア ナイド薬、インスリン分泌促進薬、SGLT2活性阻害薬、インスリン又はイン スリン類縁体、グルカゴン受容体アンタゴニスト、インスリン受容体キナーゼ刺 激薬、トリペプチジルペプチダーゼII阻害薬、ジペプチジルペプチダーゼIV 阻害薬、プロテインチロシンホスファターゼー1B阻害薬、グリコゲンホスホリ ラーゼ阻害薬、グルコースー6ーホスファターゼ阻害薬、フルクトースービスホ スファターゼ阻害薬、ピルビン酸デヒドロゲナーゼ阻害薬、肝糖新生阻害薬、D ーカイロイノシトール (D-chiroinositol)、グリコゲン合成酵 素キナーゼー3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチドー1 類縁体、グルカゴン様ペプチド-1アゴニスト、アミリン、アミリン類縁体、ア ミリンアゴニスト、アルドース還元酵素阻害薬、終末糖化産物(advance d glycation endproducts) 生成阻害薬、プロテインキ ナーゼC阻害薬、γーアミノ酪酸受容体アンタゴニスト、ナトリウムチャンネル アンタゴニスト、転写因子NF-κB阻害薬、脂質過酸化酵素阻害薬、N-アセ チル化-α-リンクトーアシッドージペプチダーゼ(N-acetylated -α-linked-acid-dipeptidase) 阻害薬、インスリン 様成長因子-I、血小板由来成長因子(PDGF)、血小板由来成長因子(PD GF) 類縁体(例えば、PDGF-AA、PDGF-BB、PDGF-AB)、 上皮増殖因子(EGF)、神経成長因子、カルニチン誘導体、ウリジン、5-ヒ ドロキシー1ーメチルヒダントイン、EGB-761、ビモクロモル(bimo clomol)、スロデキシド(sulodexide)、Y-128、ヒドロキシメチルグルタリルコエンザイムA還元酵素阻害薬、フィブラート系化合物、β3-アドレナリン受容体アゴニスト、アシルコエンザイムA:コレステロールアシル基転移酵素阻害薬、プロブコール、甲状腺ホルモン受容体アゴニスト、コレステロール吸収阻害薬、リパーゼ阻害薬、ミクロソームトリグリセリドトランスファープロテイン阻害薬、リポキシゲナーゼ阻害薬、カルニチンパルミトイルトランスフェラーゼ阻害薬、スクアレン合成酵素阻害薬、低比重リポ蛋白受容体増強薬、ニコチン酸誘導体、胆汁酸吸着薬、ナトリウム共役胆汁酸トランスポーター阻害薬、コレステロールエステル転送タンパク阻害薬、食欲抑制薬、アンジオテンシン変換酵素阻害薬、中性エンドペプチダーゼ阻害薬、アンジオテンシンII受容体拮抗薬、エンドセリン変換酵素阻害薬、エンドセリン受容体アンタゴニスト、利尿薬、カルシウム拮抗薬、血管拡張性降圧薬、交換神経遮断薬、中枢性降圧薬、α2-アドレナリン受容体アゴニスト、抗血小板薬、尿酸生成阻害薬、尿酸排泄促進薬、尿アルカリ化薬等を挙げることができる。

[0108]

本発明の化合物と上記の薬剤を1種類又はそれ以上組合わせて使用する場合、本発明は、単一の製剤としての同時投与、別個の製剤としての同一又は異なる投与経路による同時投与、及び別個の製剤としての同一又は異なる投与経路による間隔をずらした投与のいずれの投与形態を含み、本発明の化合物と上記の薬剤を組合わせてなる医薬とは、上記の如く単一製剤としての投与形態や別個の製剤を組み合わせた投与形態を含む。

[0109]

本発明の化合物は、1種類又はそれ以上の上記薬剤と適宜組合わせて使用することにより、上記疾患の予防又は治療上相加効果以上の有利な効果を得ることができる。または、同様に、単独に使用する場合に比較してその使用量を減少させたり、或いは併用するSGLT1活性阻害薬以外の薬剤の副作用を回避又は軽減させることができる。

[0110]

組合わせて使用される薬剤の具体的な化合物や処置すべき好適な疾患について下記の通り例示するが、本発明の内容はこれらに限定されるものではなく、具体的な化合物においてはそのフリー体、及びその又は他の薬理学的に許容される塩を含む。

[0111]

インスリン感受性増強薬としては、トログリタゾン、塩酸ピオグリタゾン、マ レイン酸ロシグリタゾン、ダルグリタゾンナトリウム、GI-262570、イ サグリタゾン (i saglitazone)、LG-100641、NC-21 00, T-174, DRF-2189, CLX-0921, CS-011, GW -1929、シグリタゾン、エングリタゾンナトリウム、NIP-221等のペ ルオキシソーム増殖薬活性化受容体γアゴニスト、GW-9578、BM-17 0744等のペルオキシソーム増殖薬活性化受容体 α アゴニスト、GW-409 544, KRP-297, NN-622, CLX-0940, LR-90, SB -219994、DRF-4158、DRF-MDX8等のペルオキシソーム増 殖薬活性化受容体 $lpha/\gamma$ アゴニスト、ALRT-268、AGN-4204、M X-6054、AGN-194204、LG-100754、ベクサロテン(b exarotene)等のレチノイドX受容体アゴニスト、及びレグリキサン、 ONO-5816、MBX-102、CRE-1625、FK-614、CLX -0901, CRE-1633, NN-2344, BM-13125, BM-5 01050, HQL-975, CLX-0900, MBX-668, MBX-6 75, S-15261, GW-544, AZ-242, LY-510929, A R-H049020、GW-501516等のその他のインスリン感受性増強薬 が挙げられる。インスリン感受性増強薬は、特には糖尿病、耐糖能異常、糖尿病 性合併症、肥満症、高インスリン血症、高脂質血症、高コレステロール血症、高 トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症の処置に好ましく 、また抹消におけるインスリン刺激伝達機構の異常を改善することにより、血中 グルコースの組織への取り込みを亢進し血糖値を低下させることから、糖尿病、 耐糖能異常、高インスリン血症の処置に更に好ましい。

[0112]

糖吸収阻害薬としては、アカルボース、ボグリボース、ミグリトール、CKD -711、エミグリテート、MDL-25, 637、カミグリボース、MDL-73, 945等の α -グルコシダーゼ阻害薬、AZM-127等の α -アミラーゼ阻害薬等のSGLT1活性阻害薬以外の化合物が挙げられる。糖吸収阻害剤は、特には糖尿病、耐糖能異常、糖尿病性合併症、肥満症、高インスリン血症の処置に好ましく、また食物中に含まれる炭水化物の消化管における酵素消化を阻害し、体内へのグルコースの吸収を遅延または阻害することから、耐糖能異常の処置に更に好ましい。

[0113]

ビグアナイド薬としては、フェンホルミン、塩酸ブホルミン、塩酸メトホルミン等が挙げられる。ビグアナイド剤は、特には糖尿病、耐糖能異常、糖尿病性合併症、高インスリン血症の処置に好ましく、また肝臓における糖新生抑制作用や組織での嫌気的解糖促進作用あるいは抹消におけるインスリン抵抗性改善作用などにより、血糖値を低下させることから、糖尿病、耐糖能異常、高インスリン血症の処置に更に好ましい。

[0114]

インスリン分泌促進薬としては、トルブタミド、クロルプロパミド、トラザミド、アセトへキサミド、グリクロピラミド、グリブリド(グリベンクラミド)、グリクラジド、1ーブチルー3ーメタニリルウレア、カルブタミド、グリボルヌリド、グリピジド、グリキドン、グリソキセピド、グリブチアゾール、グリブゾール、グリヘキサミド、グリミジンナトリウム、グリピナミド、フェンブタミド、トルシクラミド、グリメピリド、ナテグリニド、ミチグリニドカルシウム水和物、レパグリニド等が挙げられる。インスリン分泌促進薬は、特には糖尿病、耐糖能異常、糖尿病性合併症の処置に好ましく、また膵臓β細胞に作用しインスリン分泌を増加させることにより血糖値を低下させることから、糖尿病、耐糖能異常の処置に更に好ましい。

[0115]

SGLT2活性阻害薬としては、T-1095を始め、特開平10-2370 89号公報、特開2001-288178号公報、WO01/16147公報、 WO01/27128公報、WO01/68660公報、WO01/74834公報、WO01/74835公報、WO02/28872公報、WO02/36602公報、WO02/44192公報、WO02/53573公報等記載の化合物等が挙げられる。SGLT2活性阻害薬は、特には糖尿病、耐糖能異常、糖尿病性合併症、肥満症、高インスリン血症の処置に好ましく、また腎臓の尿細管におけるグルコースの再吸収を抑制することにより血糖値を低下させることから、糖尿病、耐糖能異常、肥満症、高インスリン血症の処置に更に好ましい。

[0116]

インスリン又はインスリン類縁体としては、ヒトインスリン、動物由来のインスリン、ヒト又は動物由来のインスリン類縁体が挙げられる。これらの薬剤は、特には糖尿病、耐糖能異常、糖尿病性合併症の処置に好ましく、糖尿病、耐糖能異常の処置に更に好ましい。

[0117]

グルカゴン受容体アンタゴニストとしては、BAY-27-9955、NNC -92-1687等が挙げられ、インスリン受容体キナーゼ刺激薬としては、T ER-17411、L-783281、KRX-613等が挙げられ、トリペプ チジルペプチダーゼ I I 阻害薬としては、UCL-1397等が挙げられ、ジペ プチジルペプチダーゼIV阻害薬としては、NVP-DPP728A、TSL-225、P-32/98等が挙げられ、プロテインチロシンホスファターゼー1 B阻害薬としては、PTP-112、OC-86839、PNU-177496 等が挙げられ、グリコゲンホスホリラーゼ阻害薬としては、NN-4201、C P-368296等が挙げられ、フルクトースービスホスファターゼ阻害薬とし ては、R-132917等が挙げられ、ピルビン酸デヒドロゲナーゼ阻害薬とし ては、AZD-7545等が挙げられ、肝糖新生阻害薬としては、FR-225 659等が挙げられ、グルカゴン様ペプチド-1類縁体としては、エキセンジン -4 (exendin-4)、CJC-1131等が挙げられ、グルカゴン様ペ プチドー1アゴニストとしては、AΖM-134、LY-315902が挙げら れ、アミリン、アミリン類縁体またはアミリンアゴニストとしては、酢酸プラム リンチド等が挙げられる。これらの薬剤、グルコースー6ーホスファターゼ阻害

[0118]

アルドース還元酵素阻害薬としては、ガモレン酸アスコルビル、トルレスタット、エパルレスタット、ADN-138、BAL-ARI8、ZD-5522、ADN-311、GP-1447、IDD-598、フィダレスタット、ソルビニール、ポナルレスタット(ponalrestat)、リサレスタット(risarestat)、ゼナレスタット(zenarestat)、ミナルレスタット(minalrestat)、メトソルビニール、AL-1567、イミレスタット(imirestat)、M-16209、TAT、AD-5467、ソポルレスタット、AS-3201、NZ-314、SG-210、JTT-81、リンドルレスタット(lindolrestat)が挙げられる。アルドース還元酵素阻害薬は、糖尿病性合併症組織において認められる持続的高血糖状態におけるポリオール代謝経路の亢進により過剰に蓄積される細胞内ソルビトールをアルドース還元酵素を阻害することにより低下させることから、特には糖尿病性合併症の処理に好ましい。

[0119]

終末糖化産物生成阻害薬としては、ピリドキサミン、OPB-9195、ALT-946、ALT-711、塩酸ピマゲジン等が挙げられる。終末糖化産物生成阻害薬は、糖尿病状態における持続的高血糖により亢進される終末糖化産物生成を阻害することにより細胞障害を軽減させるため、特には糖尿病性合併症の処置に好ましい。

[0120]

プロテインキナーゼC阻害薬としては、LY-333531、ミドスタウリン等が挙げられる。プロテインキナーゼC阻害薬は、糖尿病状態における持続的高血糖により認められるプロテインキナーゼC活性の亢進を抑制するため、特には糖尿病性合併症の処置に好ましい。

[0121]

 γ -アミノ酪酸受容体アンタゴニストとしては、トピラマート等が挙げられ、ナトリウムチャンネルアンタゴニストとしては、塩酸メキシレチン、オクスカルバゼピン等が挙げられ、転写因子NF- κ B阻害薬としては、デクスリポタム(dexlipotam)等が挙げられ、脂質過酸化酵素阻害薬としては、メシル酸チリラザド等が挙げられ、N-アセチル化- α -リンクトーアシッドージペプチダーゼ阻害薬としては、GPI-5693等が挙げられ、カルニチン誘導体としては、カルニチン、塩酸レバセカルニン、塩化レボカルニチン、レボカルニチン、ST-261等が挙げられる。これらの薬剤、インスリン様成長因子ーI、血小板由来成長因子、血小板由来成長因子類縁体、上皮増殖因子、神経成長因子、ウリジン、5-ヒドロキシー1-メチルヒダントイン、EGB-761、ビモクロモル、スロデキシド及びY-128は、特には糖尿病性合併症の処置に好ましい。

[0122]

ヒドロキシメチルグルタリルコエンザイムA還元酵素阻害薬としては、セリバ スタチンナトリウム、プラバスタチンナトリウム、ロバスタチン(1ovast atin)、シンバスタチン、フルバスタチンナトリウム、アトルバスタチンカ ルシウム水和物、SC-45355、SQ-33600、CP-83101、B B-476, L-669262, S-2468, DMP-565, U-2068 5、BAY-x-2678、BAY-10-2987、ピタバスタチンカルシウ ム、ロスバスタチンカルシウム、コレストロン(colestolone)、ダ ルバスタチン (dalvastatin)、アシテメート、メバスタチン、クリ ルバスタチン (crilvastatin)、BMS-180431、BMY-21950、グレンバスタチン、カルバスタチン、BMY-22089、ベルバ スタチン(bervastatin)等が挙げられる。ヒドロキシメチルグルタ リルコエンザイムA還元酵素阻害薬は、特には高脂質血症、高コレステロール血 症、高トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症の処置に好 ましく、またヒドロキシメチルグルタリルコエンザイムA還元酵素を阻害するこ とにより血中コレステロールを低下させることから、高脂質血症、高コレステロ ール血症、アテローム性動脈硬化症の処置に更に好ましい。

[0123]

フィブラート系化合物としては、ベザフィブラート、ベクロブラート、ビニフィブラート、シプロフィブラート、クリノフィブラート、クロフィブラート、クロフィブラート、クロフィブラート、フェノフロスブラート、ゲムフィブロジル、ニコフィブラート、ピリフィブラート、ロニフィブラート、シムフィブラート、テオフィブラート、AHL-157等が挙げられる。フィブラート系化合物は、特には高インスリン血症、高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症の処置に好ましく、また肝臓におけるリポ蛋白リパーゼの活性化や脂肪酸酸化亢進により血中トリグリセリドを低下させることから、高脂質血症、高トリグリセリド血症、アテローム性動脈硬化症の処置に更に好ましい。

[0124]

β3-アドレナリン受容体アゴニストとしては、BRL-28410、SR-58611A、ICI-198157、ZD-2079、BMS-194449、BRL-37344、CP-331679、CP-114271、L-750355、BMS-187413、SR-59062A、BMS-210285、LY-377604、SWR-0342SA、AZ-40140、SB-22652、D-7114、BRL-35135、FR-149175、BRL-26830A、CL-316243、AJ-9677、GW-427353、N-5984、GW-2696、YM178等が挙げられる。β3-アドレナリン受容体アゴニストは、特には肥満症、高インスリン血症、高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常の処置に好ましく、また脂肪におけるβ3-アドレナリン受容体を刺激し脂肪酸酸化の亢進によりエネルギーを消費させることから、肥満症、高インスリン血症の処置に更に好ましい。

[0125]

アシルコエンザイムA:コレステロールアシル基転移酵素阻害薬としては、NTE-122、MCC-147、PD-132301-2、DUP-129、U-73482、U-76807、RP-70676、P-06139、CP-113818、RP-73163、FR-129169、FY-038、EAB-

309、KY-455、LS-3115、FR-145237、T-2591、
J-104127、R-755、FCE-28654、YIC-C8-434、
アバシミブ (avasimibe)、CI-976、RP-64477、F-1
394、エルダシミブ (eldacimibe)、CS-505、CL-283
546、YM-17E、レシミビデ (lecimibide)、447C88、
YM-750、E-5324、KW-3033、HL-004、エフルシミブ (eflucimibe)等が挙げられる。アシルコエンザイムA:コレステロールアシル基転移酵素阻害薬は、特には高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常の処置に好ましく、またアシルコエンザイムA:コレステロールアシル基転移酵素を阻害することにより血中コレステロールを低下させることから、高脂質血症、高コレステロール血症の処置に更に好ましい

[0126]

甲状腺ホルモン受容体アゴニストとしては、リオチロニンナトリウム、レボチ ロキシンナトリウム、KB-2611等が挙げられ、コレステロール吸収阻害薬 としては、エゼチミブ、SCH-48461等が挙げられ、リパーゼ阻害薬とし ては、オルリスタット、ATL-962、AZM-131、RED-10300 4 等が挙げられ、カルニチンパルミトイルトランスフェラーゼ阻害薬としては、 エトモキシル等が挙げられ、スクアレン合成酵素阻害薬としては、SDΖ-26 8-198, BMS-188494, A-87049, RPR-101821, ZD-9720、RPR-107393、ER-27856等が挙げられ、ニコ チン酸誘導体としては、ニコチン酸、ニコチン酸アミド、ニコモール、ニセリト ロール、アシピモクス、ニコランジル等が挙げられ、胆汁酸吸着薬としては、コ レスチラミン、コレスチラン、塩酸コレセベラム、GT-102-279等が挙 げられ、ナトリウム共役胆汁酸トランスポーター阻害薬としては、264W94 、S-8921、SD-5613等が挙げられ、コレステロールエステル転送タ ンパク阻害薬としては、PNU-107368E、SC-795、JTT-70 5、CP-529414等が挙げられる。これらの薬剤、プロプコール、ミクロ ソームトリグリセリドトランスファープロテイン阻害薬、リポキシゲナーゼ阻害

[0127]

食欲抑制薬としては、モノアミン再吸収阻害薬、セロトニン再吸収阻害薬、セ ロトニン放出刺激薬、セロトニンアゴニスト (特に5HT_{2C}-アゴニスト)、ノ ルアドレナリン再吸収阻害薬、ノルアドレナリン放出刺激薬、α₁-アドレナリ ン受容体アゴニスト、 $\beta 2$ -アドレナリン受容体アゴニスト、ドーパミンアゴニ スト、カンナビノイド受容体アンタゴニスト、γーアミノ酪酸受容体アンタゴニ スト、 $\mathrm{H_3}$ ーヒスタミンアンタゴニスト、 L ーヒスチジン、レプチン、レプチン 類縁体、レプチン受容体アゴニスト、メラノコルチン受容体アゴニスト(特にM C3-Rアゴニスト、MC4-Rアゴニスト)、α-メラニン細胞刺激ホルモン 、コカインーアンドアンフェタミンーレギュレーテドトランスクリプト、マホガ ニータンパク、エンテロスタチンアゴニスト、カルシトニン、カルシトニン遺伝 子関連ペプチド、ボンベシン、コレシストキニンアゴニスト(特にCCK-Aア ゴニスト)、コルチコトロピン放出ホルモン、コルチコトロピン放出ホルモン類 縁体、コルチコトロピン放出ホルモンアゴニスト、ウロコルチン、ソマトスタチ ン、ソマトスタチン類縁体、ソマトスタチン受容体アゴニスト、下垂体アデニレ ートシクラーゼ活性化ペプチド、脳由来神経成長因子、シリアリーニュートロピ ックファクター、サイロトロピン放出ホルモン、ニューロテンシン、ソーバジン 、ニューロペプチドYアンタゴニスト、オピオイドペプチドアンタゴニスト、ガ ラニンアンタゴニスト、メラニンーコンセントレイティングホルモン受容体アン タゴニスト、アグーチ関連蛋白阻害薬、オレキシン受容体アンタゴニスト等が挙 げられる。具体的には、モノアミン再吸収阻害薬としては、マジンドール等が挙 げられ、セロトニン再吸収阻害薬としては、塩酸デクスフェンフルラミン、フェ ンフルラミン、塩酸シブトラミン、マレイン酸フルボキサミン、塩酸セルトラリ ン等が挙げられ、セロトニンアゴニストとしては、イノトリプタン、 (+) ノル フェンフルラミン等が挙げられ、ノルアドレナリン再吸収阻害薬としては、ブプ ロピオン、GW-320659等が挙げられ、ノルアドレナリン放出刺激薬とし ては、ロリプラム、YM-992等が挙げられ、 β_2 -アドレナリン受容体アゴ

ニストとしては、アンフェタミン、デキストロアンフェタミン、フェンテルミン 、ベンズフェタミン、メタアンフェタミン、フェンジメトラジン、フェンメトラ ジン、ジエチルプロピオン、フェニルプロパノールアミン、クロベンゾレックス 等が挙げられ、ドーパミンアゴニストとしては、ER-230、ドプレキシン、 メシル酸ブロモクリプチンが挙げられ、カンナビノイド受容体アンタゴニストと しては、リモナバント等が挙げられ、γーアミノ酪酸受容体アンタゴニストとし ては、トピラマート等が挙げられ、H3ーヒスタミンアンタゴニストとしてはG T-2394等が挙げられ、レプチン、レプチン類縁体またはレプチン受容体ア ゴニストとしては、LY-355101等が挙げられ、コレシストキニンアゴニ スト (特にCCK-Aアゴニスト) としては、SR-146131、SSR-1 25180, BP-3. 200, A-71623, FPL-15849, GI-248573, GW-7178, GI-181771, GW-7854, A-7 1378等が挙げられ、ニューロペプチドYアンタゴニストとしては、SR-1 20819-A, PD-160170, NGD-95-1, BIBP-3226 、1229-U-91、CGP-71683、BIBO-3304、CP-67 1906-01、J-115814等が挙げられる。食欲抑制薬は、特には糖尿 病、耐糖能異常、糖尿病性合併症、肥満症、高脂血症、高コレステロール血症、 高トリグリセリド血症、脂質代謝異常、アテローム性動脈硬化症、高血圧、うっ 血性心不全、浮腫、高尿酸血症、痛風の処置に好ましく、また中枢の食欲調節系 における脳内モノアミンや生理活性ペプチドの作用を促進あるいは阻害すること によって食欲を抑制し、摂取エネルギーを減少させることから、肥満症の処置に 更に好ましい。

[0128]

アンジオテンシン変換酵素阻害薬としては、カプトプリル、マレイン酸エナラプリル、アラセプリル、塩酸デラプリル、ラミプリル、リシノプリル、塩酸イミダプリル、塩酸ベナゼプリル、セロナプリル一水和物、シラザプリル、フォシノプリルナトリウム、ペリンドプリルエルブミン、モベルチプリルカルシウム、塩酸キナプリル、塩酸スピラプリル、塩酸テモカプリル、トランドラプリル、ゾフェノプリルカルシウム、塩酸モエキシプリル(moexipril)、レンチア

[0129]

中性エンドペプチダーゼ阻害薬としては、オマパトリラート、MDL-100240、ファシドトリル(fasidotril)、サムパトリラート、GW-660511X、ミキサンプリル(mixanpril)、SA-7060、E-4030、SLV-306、エカドトリル等が挙げられる。中性エンドペプチダーゼ阻害薬は、特には糖尿病性合併症、高血圧の処置に好ましい。

[0130]

アンジオテンシン I I 受容体拮抗薬としては、カンデサルタンシレキセチル、カンデサルタンシレキセチル/ヒドロクロロチアジド、ロサルタンカリウム、メシル酸エプロサルタン、バルサルタン、テルミサルタン、イルベサルタン、E X P-3174、L-158809、E X P-3312、オルメサルタン、タソサルタン、KT-3-671、G A-0113、R U-64276、E MD-90423、B R-9701等が挙げられる。アンジオテンシン I I 受容体拮抗薬は、特には糖尿病性合併症、高血圧の処置に好ましい。

[0131]

エンドセリン変換酵素阻害薬としては、CGS-31447、CGS-35066、SM-19712等が挙げられ、エンドセリン受容体アンタゴニストとしては、L-749805、TBC-3214、BMS-182874、BQ-610、TA-0201、SB-215355、PD-180988、シタクセンタンナトリウム(sitaxsentan)、BMS-193884、ダルセンタン(darusentan)、TBC-3711、ボセンタン、テゾセンタンナトリウム(tezosentan)、J-104132、YM-598、S-0139、SB-234551、RPR-118031A、ATZ-1993、RO-61-1790、ABT-546、エンラセンタン、BMS-207940等が挙げられる。これらの薬剤は、特には糖尿病性合併症、高血圧の処置に好ましい。

[0132]

利尿薬としては、クロルタリドン、メトラゾン、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフルメチアジド、ベンチルヒドロクロロチアジド、ペンフルチジド、メチクロチアジド、インダパミド、トリパミド、メフルシド、アゾセミド、エタクリン酸、トラセミド、ピレタニド、フロセミド、ブメタニド、メチクラン、カンレノ酸カリウム、スピロノラクトン、トリアムテレン、アミノフィリン、塩酸シクレタニン、LLUーα、PNU-80873A、イソソルビド、Dーマンニトール、Dーソルビトール、フルクトース、グリセリン、アセトゾラミド、メタゾラミド、FR-179544、OPCー31260、リキシバプタン(lixivaptan)、塩酸コニバブタンが挙げられる。利尿薬は、特には糖尿病性合併症、高血圧、うっ血性心不全、浮腫の処置に好ましく、また尿排泄量を増加させることにより血圧を低下させたり、浮腫を改善するため、高血圧、うっ血性心不全、浮腫の処置に好ましく。

[0133]

カルシウム拮抗薬としては、アラニジピン、塩酸エホニジピン、塩酸ニカルジ ピン、塩酸バルニジピン、塩酸ベニジピン、塩酸マニジピン、シルニジピン、ニ ソルジピン、ニトレンジピン、ニフェジピン、ニルバジピン、フェロジピン、ベ シル酸アムロジピン、プラニジピン、塩酸レルカニジピン、イスラジピン、エル ゴジピン、アゼルニジピン、ラシジピン、塩酸バタニジピン、レミルジピン、塩 酸ジルチアゼム、マレイン酸クレンチアゼム、塩酸ベラパミール、S-ベラパミ ール、塩酸ファスジル、塩酸ベプリジル、塩酸ガロパミル等が挙げられ、血管拡 張性降圧薬としては、インダパミド、塩酸トドララジン、塩酸ヒドララジン、カ ドララジン、ブドララジン等が挙げられ、交換神経遮断薬としては、塩酸アモス ラロール、塩酸テラゾシン、塩酸ブナゾシン、塩酸プラゾシン、メシル酸ドキサ ゾシン、塩酸プロプラノロール、アテノロール、酒石酸メトプロロール、カルベ ジロール、ニプラジロール、塩酸セリプロロール、ネビボロール、塩酸ベタキソ ロール、ピンドロール、塩酸タータトロール、塩酸ベバントロール、マレイン酸 チモロール、塩酸カルテオロール、フマル酸ビソプロロール、マロン酸ボピンド ロール、ニプラジロール、硫酸ペンプトロール、塩酸アセブトロール、塩酸チリ ソロール、ナドロール、ウラピジル、インドラミン等が挙げられ、中枢性降圧薬

としては、レセルピン等が挙げられ、 α_2 -アドレナリン受容体アゴニストとしては、塩酸クロニジン、メチルドパ、CHF-1035、酢酸グアナベンズ、塩酸グアンファシン、モクソニジン(moxonidine)、ロフェキシジン(lofexidine)、塩酸タリペキソール等が挙げられる。これらの薬剤は、特には高血圧の処置に好ましい。

[0134]

抗血小板薬としては、塩酸チクロピジン、ジピリダモール、シロスタゾール、 イコサペント酸エチル、塩酸サルポグレラート、塩酸ジラゼプ、トラピジル、ベ ラプロストナトリウム、アスピリン等が挙げられる。抗血小板薬は、特にはアテ ローム性動脈硬化症、うっ血性心不全の処置に好ましい。

[0135]

尿酸生成阻害薬としては、アロプリノール、オキシプリノール等が挙げられ、 尿酸排泄促進薬としては、ベンズブロマロン、プロベネシド等が挙げられ、尿ア ルカリ化薬としては、炭酸水素ナトリウム、クエン酸カリウム、クエン酸ナトリ ウム等が挙げられる。これらの薬剤は、特には高尿酸血症、痛風の処置に好まし い。

[0136]

例えば、SGLT1活性阻害薬以外の薬剤と組合わせて使用する場合、糖尿病の処置においては、インスリン感受性増強薬、糖吸収阻害薬、ビグアナイド薬、インスリン分泌促進薬、SGLT2活性阻害薬、インスリン又はインスリン類縁体、グルカゴン受容体アンタゴニスト、インスリン受容体キナーゼ刺激薬、トリペプチジルペプチダーゼII阻害薬、ジペプチジルペプチダーゼIV阻害薬、プロテインチロシンホスファターゼー1B阻害薬、グリコゲンホスホリラーゼ阻害薬、グルコースー6ーホスファターゼ阻害薬、フルクトースービスホスファターゼ阻害薬、ピルビン酸デヒドロゲナーゼ阻害薬、肝糖新生阻害薬、Dーカイロイノシトール、グリコゲン合成酵素キナーゼー3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチドー1類縁体、グルカゴン様ペプチドー1アゴニスト、アミリン、アミリン類縁体、アミリンアゴニストおよび食欲抑制薬からなる群より選択される少なくとも1種の薬剤と組合わせるのが好ましく、インスリン感受

性増強薬、ビグアナイド薬、インスリン分泌促進薬、SGLT2活性阻害薬、イ ンスリン又はインスリン類縁体、グルカゴン受容体アンタゴニスト、インスリン 受容体キナーゼ刺激薬、トリペプチジルペプチダーゼII阻害薬、ジペプチジル ペプチダーゼIV阻害薬、プロテインチロシンホスファターゼー1B阻害薬、グ リコゲンホスホリラーゼ阻害薬、グルコースー6ーホスファターゼ阻害薬、フル クトースービスホスファターゼ阻害薬、ピルビン酸デヒドロゲナーゼ阻害薬、肝 糖新生阻害薬、Dーカイロイノシトール、グリコゲン合成酵素キナーゼー3阻害 薬、グルカゴン様ペプチドー1、グルカゴン様ペプチドー1類縁体、グルカゴン 様ペプチドー1アゴニスト、アミリン、アミリン類縁体およびアミリンアゴニス トからなる群より選択される少なくとも1種の薬剤と組合わせるのが更に好まし く、インスリン感受性増強薬、ビグアナイド薬、インスリン分泌促進薬、SGL T2活性阻害薬およびインスリン又はインスリン類縁体からなる群より選択され る少なくとも1種の薬剤と組合わせるのが最も好ましい。同様に、糖尿病性合併 症の処置においては、インスリン感受性増強薬、糖吸収阻害薬、ビグアナイド薬 、インスリン分泌促進薬、SGLT2活性阻害薬、インスリン又はインスリン類 縁体、グルカゴン受容体アンタゴニスト、インスリン受容体キナーゼ刺激薬、ト リペプチジルペプチダーゼII阻害薬、ジペプチジルペプチダーゼIV阻害薬、 プロテインチロシンホスファターゼー1B阻害薬、グリコゲンホスホリラーゼ阻 害薬、グルコースー6ーホスファターゼ阻害薬、フルクトースービスホスファタ ーゼ阻害薬、ピルビン酸デヒドロゲナーゼ阻害薬、肝糖新生阻害薬、Dーカイロ イノシトール、グリコゲン合成酵素キナーゼー3阻害薬、グルカゴン様ペプチド -1、グルカゴン様ペプチド-1類縁体、グルカゴン様ペプチド-1アゴニスト 、アミリン、アミリン類縁体、アミリンアゴニスト、アルドース還元酵素阻害薬 、終末糖化産物生成阻害薬、プロテインキナーゼC阻害薬、γーアミノ酪酸受容 体アンタゴニスト、ナトリウムチャンネルアンタゴニスト、転写因子NFーκB 阻害薬、脂質過酸化酵素阻害薬、N-アセチル化 $-\alpha-$ リンクトーアシッドージ ペプチダーゼ阻害薬、インスリン様成長因子ーI、血小板由来成長因子、血小板 由来成長因子類縁体、上皮増殖因子、神経成長因子、カルニチン誘導体、ウリジ ン、5-ヒドロキシー1-メチルヒダントイン、EGB-761、ビモクロモル 、スロデキシド、Y-128、アンジオテンシン変換酵素阻害薬、中性エンドペ プチダーゼ阻害薬、アンジオテンシンII受容体拮抗薬、エンドセリン変換酵素 阻害薬、エンドセリン受容体アンタゴニストおよび利尿薬からなる群より選択さ れる少なくとも1種の薬剤と組合わせるのが好ましく、アルドース還元酵素阻害 薬、アンジオテンシン変換酵素阻害薬、中性エンドペプチダーゼ阻害薬およびア ンジオテンシンII受容体拮抗薬からなる群より選択される少なくとも1種の薬 剤と組合わせるのが更に好ましい。また、肥満症の処置においては、インスリン 感受性増強薬、糖吸収阻害薬、ビグアナイド薬、インスリン分泌促進薬、SGL T2活性阻害薬、インスリン又はインスリン類縁体、グルカゴン受容体アンタゴ ニスト、インスリン受容体キナーゼ刺激薬、トリペプチジルペプチダーゼII阻 害薬、ジペプチジルペプチダーゼIV阻害薬、プロテインチロシンホスファター ゼー1B阻害薬、グリコゲンホスホリラーゼ阻害薬、グルコースー6ーホスファ ターゼ阻害薬、フルクトースービスホスファターゼ阻害薬、ピルビン酸デヒドロ ゲナーゼ阻害薬、肝糖新生阻害薬、D-カイロイノシトール、グリコゲン合成酵 素キナーゼー3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチドー1 類縁体、グルカゴン様ペプチドー1アゴニスト、アミリン、アミリン類縁体、ア ミリンアゴニスト、 β_3 ーアドレナリン受容体アゴニストおよび食欲抑制薬から なる群より選択される少なくとも1種の薬剤と組み合わせるのが好ましく、SG LT2活性阻害薬、β3-アドレナリン受容体アゴニストおよび食欲抑制薬から なる群より選択される少なくとも1種の薬剤と組合わせるのが更に好ましい。

[0137]

本発明の医薬組成物を実際の治療に用いる場合、用法に応じ種々の剤型のものが使用される。このような剤型としては、例えば、散剤、顆粒剤、細粒剤、ドライシロップ剤、錠剤、カプセル剤、注射剤、液剤などを挙げることができ、経口または非経口的に投与される。

[0138]

これらの医薬組成物は、その剤型に応じ調剤学上使用される手法により適当な 賦形剤、崩壊剤、結合剤、滑沢剤、希釈剤、緩衝剤、等張化剤、防腐剤、湿潤剤 、乳化剤、分散剤、安定化剤、溶解補助剤などの医薬品添加物と適宜混合または

[0139]

本発明の医薬組成物を実際の治療に用いる場合、その有効成分である前記一般式(I)で表される化合物またはその薬理学的に許容される塩、或いはそれらのプロドラッグの投与量は患者の年齢、性別、体重、疾患および治療の程度等により適宜決定されるが、経口投与の場合成人1日当たり概ね0.1~1000mgの範囲で、非経口投与の場合は、成人1日当たり概ね0.01~300mgの範囲で、一回または数回に分けて適宜投与することができる。また、SGLT1活性阻害薬以外の薬剤と組合わせて使用する場合、本発明の化合物の投与量は、SGLT1活性阻害薬以外の薬剤の投与量に応じて減量することができる。

[0140]

【発明の実施の形態】

本発明の内容を以下の参考例、実施例および試験例でさらに詳細に説明するが 、本発明はその内容に限定されるものではない。

[0141]

【実施例】

[0142]

参考例 1

2-アミノー2-メチルプロピオンアミド

2-ベンジルオキシカルボニルアミノー2-メチルプロピオン酸(1 g)のN , N-ジメチルホルムアミド(1 0 m L)溶液に1-ヒドロキシベンゾトリアゾール(0.63 g)、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1.21 g)、トリエチルアミン(1.76 m L)および28 %アンモニア水溶液(2 m L)を加え、室温で一晩撹拌した。反応混合物を水中に注ぎ、酢酸エチルで抽出した。有機層を0.5 m o 1/L 塩酸、水、1 m o 1/L 水酸化ナトリウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸ナト

リウムで乾燥後、溶媒を減圧下留去して2-ベンジルオキシカルボニルアミノー2-メチルプロピオンアミド (0.26g) を得た。これをメタノール (5mL) に溶解し、10%パラジウム炭素粉末 (30mg) を加え、水素雰囲気下室温で3時間撹拌した。不溶物を濾去した後、濾液を減圧下濃縮して標記化合物 (0.11g) を得た。

[0143]

 1_{H-NMR} (DMSO-d₆) δ ppm:

1.15 (6H, s), 1.9 (2H, brs), 6.83 (1H, brs), 7.26 (1H, brs)

[0144]

参考例2

2-(2-ニトロベンゼンスルホニルアミノ)アセトアミド

グリシンアミド塩酸塩(0.11g)およびトリエチルアミン(0.35mL)の塩化メチレン(3mL)懸濁液に2-ニトロベンゼンスルホニルクロリド(0.27g)を加え、室温で1時間撹拌した。反応混合物を0.5mo1/L塩酸中に注ぎ、酢酸エチルで抽出した。有機層を水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=20/1)で精製して標記化合物(72mg)を得た。

[0145]

 1_{H-NMR} (DMSO-d₆) δ ppm:

3.57 (2H, d, J=5.9Hz), 7.1 (1H, brs), 7.33 (1H, brs), 7.8-7.9 (2H, m), 7.95-8.1 (2H, m), 8.16 (1H, t, J=5.9Hz)

[0146]

参考例3

(S) -2-(2-ニトロベンゼンスルホニルアミノ)プロピオンアミド グリシンアミド塩酸塩の代わりにL-アラニンアミド塩酸塩を用いて参考例2 と同様の方法で標記化合物を得た。

[0147]

 1_{H-NMR} (CD₃OD) δ ppm:

1.33 (3H, d, J=7.1Hz), 4.03 (1H, q, J=7.1Hz), 7.75-7.85 (2H, m), 7.85-7. 9 (1H, m), 8.05-8.15 (1H, m)

[0148]

参考例 4

2-メチル-2-(2-ニトロベンゼンスルホニルアミノ)プロピオンアミド グリシンアミド塩酸塩の代わりに2-アミノ-2-メチルプロピオンアミドを 用いて参考例2と同様の方法で標記化合物を得た。

[0149]

 1_{H-NMR} (DMSO-d₆) δ ppm:

1.32 (6H, s), 7.2-7.3 (2H, m), 7.8-7.9 (2H, m), 7.92 (1H, s), 7.95-8.0 (1H, m), 8.05-8.15 (1H, m)

[0150]

参考例 5

3-(2-ニトロベンゼンスルホニルアミノ)プロピオンアミド グリシンアミド塩酸塩の代わりに3-アミノプロピオンアミド塩酸塩を用いて 参考例2と同様の方法で標記化合物を得た。

[0151]

 1_{H-NMR} (DMSO-d₆) δ ppm:

2.27 (2H, t, J=7.3Hz), 3.0-3.15 (2H, m), 6.85 (1H, brs), 7.34 (1H, brs), 7.8-7.9 (2H, m), 7.95-8.05 (3H, m)

[0152]

参考例 6

[4-(3-ベンジルオキシプロポキシ)フェニル]メタノール

4-ビドロキシベンズアルデヒド(2.44g)のN,N-ジメチルホルムアミド(20mL)溶液に炭酸セシウム(7.17g)、ベンジル 3-プロモプロピルエーテル(4.81g)および触媒量のヨウ化ナトリウムを加え室温で4日間撹拌した。反応混合物を水中に注ぎ、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去することにより4-(3-ベンジルオキシプロポキシ)ベンズアルデヒドを得た。これをエタノー

ル (20 mL) に溶解し、水素化ホウ素ナトリウム(757 mg)を加え室温で3時間撹拌した。反応混合物にメタノールを加え減圧下濃縮し、残渣に水を加え、ジエチルエーテルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル= $5/1\sim2$ /1)で精製して標記化合物(5.17g)を得た。

[0153]

 1_{H-NMR} (CDC13) δppm :

1.54 (1H, t, J=5.9Hz), 2.05-2.15 (2H, m), 3.66 (2H, t, J=6.2Hz), 4.09 (2 H, t, J=6.2Hz), 4.52 (2H, s), 4.61 (2H, d, J=5.9Hz), 6.85-6.95 (2H, m), 7.2-7.35 (7H, m)

[0154]

参考例7

[4-(2-ベンジルオキシエトキシ)フェニル]メタノール ベンジル 3-ブロモプロピルエーテルの代わりにベンジル 2-ブロモエチルエーテルを用いて参考例6と同様の方法で標記化合物を得た。

[0155]

1H-NMR (CDCl₃) δppm:

1.53 (1H, t, J=5.8Hz), 3.8-3.85 (2H, m), 4.1-4.2 (2H, m), 4.62 (2H, d, J=5.8Hz), 4.64 (2H, s), 6.85-6.95 (2H, m), 7.25-7.4 (7H, m)

[0156]

参考例8

[4-(4-ベンジルオキシブトキシ)フェニル]メタノール

ベンジル 3ーブロモプロピルエーテルの代わりにベンジル 4ープロモブチルエーテルを用いて参考例6と同様の方法で標記化合物を得た。

[0157]

1H-NMR (CDC13) &ppm:

1.52 (1H, t, J=5.6Hz), 1.75-1.95 (4H, m), 3.54 (2H, t, J=6.1Hz), 3.98 (2 H, t, J=6.3Hz), 4.52 (2H, s), 4.61 (2H, d, J=5.6Hz), 6.8-6.9 (2H, m), 7.

2-7.4 (7H, m)

[0158]

参考例 9

[4-(3-ベンジルオキシプロポキシ)-2-メチルフェニル] メタノール 4-ブロモー3-メチルフェノール (2.5g) のN, N-ジメチルホルムア ミド (10mL) 溶液に炭酸セシウム (4.79g), ベンジル3ーブロモプロ ピルエーテル (2.48mL) および触媒量のヨウ化ナトリウムを加え、室温で 60時間撹拌した。反応混合物を水中に注ぎ、ジエチルエーテルで抽出した。有 機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去することによ り4-(3-ベンジルオキシプロポキシ)-1-ブロモー2-メチルベンゼンを 得た。これをテトラヒドロフラン(100mL)に溶解し、−78℃アルゴン雰 囲気下n-ブチルリチウム (2.46mol/Ln-ヘキサン溶液、6mL)を 加え5分間撹拌した。反応混合物にN, N-ジメチルホルムアミド(2.57 m)L) を加え、0℃に昇温し1時間撹拌した。反応混合物を水中に注ぎ、ジエチル エーテルで抽出した。有機層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシ ウムで乾燥後、溶媒を減圧下留去することにより4-(3-ベンジルオキシプロ ポキシ) -2-メチルベンズアルデヒドを得た。これをエタノール(40 m L) に溶解し、水素化ホウ素ナトリウム (506mg) を加え、室温で一晩撹拌した 。反応混合物にメタノールを加え、減圧下濃縮した後、残渣に水を加え、ジエチ ルエーテルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水 硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムク ロマトグラフィー (溶出溶媒:n-ヘキサン/酢酸エチル=5/1~1.5/1) で精製して標記化合物(3.33g)を得た。

[0159]

 1_{H-NMR} (CDC 13) δ ppm:

1.37 (1H, t, J=5.7Hz), 2.0-2.15 (2H, m), 2.36 (3H, s), 3.66 (2H, t, J=6. 2Hz), 4.08 (2H, t, J=6.3Hz), 4.52 (2H, s), 4.63 (2H, d, J=5.7Hz), 6.65-6 .8 (2H, m), 7.15-7.4 (6H, m)

[0160]

参考例10

[4-(2-ベンジルオキシエトキシ)-2-メチルフェニル] メタノール ベンジル 3-ブロモプロピルエーテルの代わりにベンジル 2-ブロモエチルエーテルを用いて参考例9と同様の方法で標記化合物を得た。

[0161]

1H-NMR (CDCl₃) &ppm:

1.39 (1H, t, J=5.8Hz), 2.35 (3H, s), 3.8-3.85 (2H, m), 4.1-4.2 (2H, m), 4.6-4.65 (4H, m), 6.73 (1H, dd, J=8.2Hz, 2.6Hz), 6.78 (1H, d, J=2.6Hz), 7.22 (1H, d, J=8.2Hz), 7.25-7.4 (5H, m)

[0162]

参考例11

 $4-\{[4-(3-ベンジルオキシプロポキシ) フェニル] メチル<math>\}-1$, 2-ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オン

[4-(3-ベンジルオキシプロポキシ) フェニル] メタノール(5. 17g)のテトラヒドロフラン(25mL)溶液に氷冷下トリエチルアミン(3.04mL)およびメタンスルホニルクロリド(1.62mL)を加え、1時間撹拌後、不溶物を濾去した。得られたメシル酸 [4-(3-ベンジルオキシプロポキシ) フェニル] メチルのテトラヒドロフラン溶液を、水素化ナトリウム(60%、875mg)および4-メチル-3-オキソ吉草酸エチル(<math>3.3g)のテトラヒドロフラン(50mL)懸濁液に加え、8時間加熱還流した。反応混合物に1mol/L塩酸を加え、ジエチルエーテルで抽出した。有機層を水洗し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣のトルエン(10mL)溶液にヒドラジン1水和物(2.76mL)を加え、100で一晩撹拌した。反応混合物をシリカゲルカラムクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=50/1~20/1)で精製して標記化合物(5.22g)を得た

[0163]

 $1_{\text{H}-\text{NMR}}$ (CDC13) δ ppm:

1.14 (6H, d, J=6.8Hz), 2.0-2.1 (2H, m), 2.8-2.95 (1H, m), 3.6-3.7 (4H, m)

), 4.04 (2H, t, J=6.5Hz), 4.51 (2H, s), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m), 7.2-7.35 (5H, m)

[0164]

参考例12

 $4-\{[4-(2-べンジルオキシエトキシ) フェニル] メチル<math>\}-1$, 2-ジ ヒドロ-5-イソプロピル-3 H-ピラゾール-3-オン

[4-(3-ベンジルオキシプロポキシ)フェニル]メタノールの代わりに〔4-(2-ベンジルオキシエトキシ)フェニル]メタノールを用いて参考例11と同様の方法で標記化合物を得た。

[0165]

 1_{H-NMR} (CDCl₃) δ ppm:

1.14 (6H, d, J=7.3Hz), 2.8-2.95 (1H, m), 3.66 (2H, s), 3.75-3.85 (2H, m), 4.05-4.15 (2H, m), 4.62 (2H, s), 6.75-6.85 (2H, m), 7.1-7.15 (2H, m), 7.25-7.4 (5H, m)

[0166]

参考例13

[4-(3-ベンジルオキシプロポキシ)フェニル]メタノールの代わりに〔4-(4-ベンジルオキシブトキシ)フェニル]メタノールを用いて参考例11と同様の方法で標記化合物を得た。

[0167]

l_H-NMR (CDCl₃) δppm:

1.14 (6H, d, J=7.0Hz), 1.7-1.9 (4H, m), 2.8-2.95 (1H, m), 3.53 (2H, t, J=6.1Hz), 3.66 (2H, s), 3.93 (2H, t, J=6.3Hz), 4.51 (2H, s), 6.7-6.8 (2H, m), 7.05-7.15 (2H, m), 7.2-7.35 (5H, m)

[0168]

参考例14

4-{[4-(3-ベンジルオキシプロポキシ)-2-メチルフェニル]メチル

[0169]

 1_{H-NMR} (DMSO-d₆) δ p p m:

1.04 (6H, d, J=7.0Hz), 1.9-2.0 (2H, m), 2.24 (3H, s), 2.65-2.8 (1H, m),

3.44 (2H, s), 3.56 (2H, t, J=6.4Hz), 3.97 (2H, t, J=6.1Hz), 4.47 (2H, s)

, 6.55-6.75 (2H, m), 6.78 (1H, d, J=8.8Hz), 7.2-7.35 (5H, m)

[0170]

参考例15

 $4-\left(\left(4-\text{ベンジルオキシフェニル}\right)$ メチル $\right]-1$, 2-ジヒドロ-5-イソ プロピル-3 H-ピラゾール-3 -オン

[4-(3-ベンジルオキシプロポキシ)フェニル]メタノールの代わりに(4-ベンジルオキシフェニル)メタノールを用いて参考例11と同様の方法で標記化合物を得た。

[0171]

 1_{H-NMR} (DMSO-d₆) δ p pm:

1.06 (6H, d, J=6.8Hz), 2.75-2.9 (1H, m), 3.5 (2H, s), 5.03 (2H, s), 6.85 -6.9 (2H, m), 7.0-7.1 (2H, m), 7.25-7.45 (5H, m)

[0172]

参考例16

4- { [4-(2-ベンジルオキシエトキシ) -2-メチルフェニル] メチル -1, 2-ジヒドロー5-イソプロピルー3H-ピラゾールー3ーオン [4-(3-ベンジルオキシプロポキシ) フェニル] メタノールの代わりに [4-(2-ベンジルオキシエトキシ) -2-メチルフェニル] メタノールを用いて参考例11と同様の方法で標記化合物を得た。

[0173]

 l_{H-NMR} (CDCl₃) δ ppm:

 $1.1 \ (6H, \ d, \ J=6.9Hz), \ 2.3 \ (3H, \ s), \ 2.75-2.9 \ (1H, \ m), \ 3.6 \ (2H, \ s), \ 3.75-3$ $.85 \ (2H, \ m), \ 4.05-4.15 \ (2H, \ m), \ 4.62 \ (2H, \ s), \ 6.64 \ (1H, \ dd, \ J=8.5Hz), \ 2.5$ $Hz), \ 6.74 \ (1H, \ d, \ J=2.5Hz), \ 6.94 \ (1H, \ d, \ J=8.5Hz), \ 7.25-7.4 \ (5H, \ m)$

[0174]

参考例17

3-(2,3,4,6-テトラー0-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(3-$ ベンジルオキシプロポキシ) フェニル] メチル $\}-5$ -イソプロピルー1 H-ピラゾール

[0175]

1H-NMR (CDC13) Sppm:

1.15 (6H, d, J=7.1Hz), 1.87 (3H, s), 1.95-2.1 (11H, m), 2.85-2.95 (1H, m), 3.5-3.7 (4H, m), 3.8-3.9 (1H, m), 4.03 (2H, t, J=6.4Hz), 4.15 (1H, dd, J=12.3Hz, 2.4Hz), 4.31 (1H, dd, J=12.3Hz, 4.1Hz), 4.51 (2H, s), 5.15-5 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 7.0-7.05 (2H, m), 7.2-7. 35 (5H, m)

[0176]

参考例18

3-(2,3,4,6-テトラー0-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{4-(2-$ ベンジルオキシエトキシ) フェニル] メチル $\}-5-$ イソプロピルー1 Hーピラゾール

 $4-\{[4-(3-ベンジルオキシプロポキシ) フェニル] メチル <math>\{-1,2-3$ ビドロー5ーイソプロピルー3 Hーピラゾールー3ーオンの代わりに4ー $\{4-(2-ベンジルオキシエトキシ) フェニル] メチル <math>\{-1,2-3$ ビドロー5ーイソプロピルー3 Hーピラゾールー3ーオンを用いて参考例17と同様の方法で標記化合物を得た。

[0177]

1H-NMR (CDCl₃) δppm:

1.14 (6H, d, J=6.8Hz), 1.88 (3H, s), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3 H, s), 2.8-2.95 (1H, m), 3.57 (1H, d, J=15.8Hz), 3.63 (1H, d, J=15.8Hz), 3.75-3.9 (3H, m), 4.05-4.2 (3H, m), 4.31 (1H, dd, J=12.4Hz, 4.1Hz), 4.6 2 (2H, s), 5.15-5.3 (3H, m), 5.55-5.6 (1H, m), 6.75-6.85 (2H, m), 7.0-7. 05 (2H, m), 7.25-7.4 (5H, m)

[0178]

参考例 19

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(4-$ ベンジルオキシブトキシ) フェニル] メチル $\}-5-$ イソプロピル-1 H-ピラゾール

 $4-\{[4-(3-ベンジルオキシプロポキシ) フェニル] メチル <math>\{-1,2$ -ジヒドロー5ーイソプロピルー3 Hーピラゾールー3ーオンの代わりに $4-\{4-(4-ベンジルオキシブトキシ) フェニル] メチル <math>\{-1,2-ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オンを用いて参考例17と同様の方法で標記化合物を得た。$

[0179]

 1_{H-NMR} (CDCl₃) δ ppm:

1.15 (6H, d, J=6.7Hz), 1.7-1.9 (7H, m), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.85-2.95 (1H, m), 3.5-3.6 (3H, m), 3.62 (1H, d, J=16.3Hz), 3.8-3.9 (1H, m), 3.92 (2H, t, J=6.5Hz), 4.1-4.2 (1H, m), 4.31 (1H, dd, J=12.3Hz, 4.1Hz), 4.51 (2H, s), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 6.95-7.05 (2H, m), 7.2-7.4 (5H, m)

[0180]

参考例 2 0

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) -4- +[4-(3-ベンジルオキシプロポキシ) -2-メチル] -5-イソプロピル-1 H-ピラゾール

 $4-\{[4-(3-ベンジルオキシプロポキシ) フェニル] メチル<math>\}-1$, 2 -ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オンの代わりに $4-\{4-(3-ベンジルオキシプロポキシ) -2-$ メチルフェニル] メチル $\}-1$, 2-ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オンを用いて参考 例 1 7 と同様の方法で標記化合物を得た。

[0181]

 1_{H-NMR} (CDC13) δ ppm:

1.05-1.15 (6H, m), 1.8 (3H, s), 1.9-2.15 (11H, m), 2.25 (3H, s), 2.75-2. 85 (1H, m), 3.49 (1H, d, J=16.4Hz), 3.59 (1H, d, J=16.4Hz), 3.64 (2H, t, J=6.3Hz), 3.8-3.9 (1H, m), 4.0-4.05 (2H, m), 4.1-4.15 (1H, m), 4.3 (1H, dd, J=12.2Hz, 4.1Hz), 4.51 (2H, s), 5.15-5.3 (3H, m), 5.55 (1H, d, J=7.8Hz), 6.57 (1H, dd, J=8.4Hz, 2.6Hz), 6.68 (1H, d, J=2.6Hz), 6.79 (1H, d, J=8.4Hz), 7.2-7.4 (5H, m)

[0182]

参考例 2 1

3-(2, 3, 4, 6- テトラ- O- アセチル $-\beta-$ D- グルコピラノシルオキシ) -4-[(4- ベンジルオキシフェニル) メチル] -5- イソプロピル-1 H- ピラゾール

[0183]

 1_{H-NMR} (CDC13) δ ppm:

1.16 (6H, d, J=7.1Hz), 1.85 (3H, s), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3 H, s), 2.85-2.95 (1H, m), 3.57 (1H, d, J=15.9Hz), 3.63 (1H, d, J=15.9Hz), 3.8-3.9 (1H, m), 4.1-4.2 (1H, m), 4.31 (1H, dd, J=12.6Hz, 3.9Hz), 5.02 (2H, s), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.8-6.9 (2H, m), 7.0-7.1 (2H, m), 7.25-7.45 (5H, m)

[0184]

参考例 2 2

3-(2,3,4,6-テトラー0-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ ベンジルオキシエトキシ) -2-メチルフェニル] メチル $\{-5-$ イソプロピル-1 H-ピラゾール

 $4-\{[4-(3-ベンジルオキシプロポキシ) フェニル] メチル<math>\}-1$, 2 -ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オンの代わりに $4-\{4-(2-ベンジルオキシエトキシ)-2-$ メチルフェニル] メチル $\}-1$, 2 -ジヒドロ-5-イソプロピル-3 H-ピラゾール-3-オンを用いて参考例 1 7 と同様の方法で標記化合物を得た。

[0185]

 1_{H-NMR} (CDCl₃) δ ppm:

1.05-1.15 (6H, m), 1.81 (3H, s), 1.99 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 2.25 (3H, s), 2.7-2.85 (1H, m), 3.5 (1H, d, J=16.6Hz), 3.59 (1H, d, J=16.6Hz), 3.75-3.9 (3H, m), 4.05-4.2 (3H, m), 4.3 (1H, dd, J=12.2Hz, 4.1 Hz), 4.62 (2H, s), 5.1-5.3 (3H, m), 5.55 (1H, d, J=8.0Hz), 6.6 (1H, dd, J=8.5Hz, 2.5Hz), 6.71 (1H, d, J=2.5Hz), 6.8 (1H, d, J=8.5Hz), 7.25-7.4 (5H, m)

[0186]

参考例 2 3

3-(2,3,4,6-テトラーO-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ヒドロキシプロポキシ) フェニル] メチル $\}-5-$ イソプロピル-1 H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー β -D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ベンジルオキシプロポキシ)フェニル]メチル $\}$ -5-イソプロピルー1 H-ピラゾール(2.75g)をメタノール(20mL)ーテトラヒドロフラン(9mL)混合溶媒に溶解し、10%パラジウム炭素粉末(550mg)を加え、水素雰囲気下室温で4 時間撹拌した。不溶物を濾去し、濾液の溶媒を減圧下留去することにより標記化合物(2.47g)を得た。

[0187]

 1_{H-NMR} (CDCl₃) δ ppm:

1.1-1.2 (6H, m), 1.89 (3H, s), 1.95-2.1 (11H, m), 2.85-2.95 (1H, m), 3.5 8 (1H, d, J=16.3Hz), 3.63 (1H, d, J=16.3Hz), 3.8-3.9 (3H, m), 4.05-4.1 (2H, m), 4.13 (1H, dd, J=12.1Hz, 2.1Hz), 4.3 (1H, dd, J=12.1Hz, 4.1Hz), 5 .15-5.3 (3H, m), 5.58 (1H, d, J=7.3Hz), 6.7-6.8 (2H, m), 7.0-7.05 (2H, m)

[0188]

参考例 2 4

3-(2, 3, 4, 6- テトラー0- アセチルー $\beta-$ D- グルコピラノシルオキシ) $-4-\{[4-(2-$ ヒドロキシエトキシ) フェニル] メチル $\}-5-$ イソプロピルー1 H- ピラゾール

 $3-(2,3,4,6-テトラ-O-アセチル-\beta-D-グルコピラノシルオキシ) -4- {[4-(3-ベンジルオキシプロポキシ) フェニル] メチル} -5-イソプロピルー<math>1$ H-ピラゾールの代わりに $3-(2,3,4,6-テトラ-O-アセチル-\beta-D-グルコピラノシルオキシ) -4- {[4-(2-ベンジルオキシエトキシ) フェニル] メチル} -5-イソプロピルー<math>1$ H-ピラゾールを用いて参考例2 3 と同様の方法で標記化合物を得た。

[0189]

1H-NMR (CDCl3) &ppm:

 $1.16\ (6H,\ d,\ J=6.8Hz),\ 1.89\ (3H,\ s),\ 2.01\ (3H,\ s),\ 2.03\ (3H,\ s),\ 2.06\ (3H,\ s),\ 2.85-2.95\ (1H,\ m),\ 3.58\ (1H,\ d,\ J=16.0Hz),\ 3.63\ (1H,\ d,\ J=16.0Hz),\ 3.8-3.9\ (1H,\ m),\ 3.9-4.0\ (2H,\ m),\ 4.0-4.1\ (2H,\ m),\ 4.1-4.2\ (1H,\ m),\ 4.$

25-4.35 (1H, m), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.75-6.85 (2H, m), 7.0-7.1 (2H, m)

[0190]

参考例 2 5

3-(2, 3, 4, 6- テトラー0- アセチルー $\beta-$ D- グルコピラノシルオキシ) $-4-\{4-(4-$ ヒドロキシブトキシ) フェニル] メチル $\{-5-$ イソプロピルー1 H- ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ベンジルオキシプロポキシ) フェニル] メチル $\}-$ 5-イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(4-$ ベンジルオキシブトキシ) フェニル] メチル $\}-$ 5-イソプロピル-1 H-ピラゾールを用いて参考例 23 と同様の方法で標記化合物を得た。

[0191]

 1_{H-NMR} (CDCl₃) δ ppm:

1.1-1.2 (6H, m), 1.65-1.8 (2H, m), 1.8-1.95 (5H, m), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.85-2.95 (1H, m), 3.57 (1H, d, J=16.2Hz), 3.63 (1H, d, J=16.2Hz), 3.71 (2H, t, J=6.3Hz), 3.8-3.9 (1H, m), 3.96 (2H, t, J=6.2Hz), 4.14 (1H, dd, J=12.4Hz, 2.4Hz), 4.31 (1H, dd, J=12.4Hz, 4.1Hz), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 7.0-7.05 (2H, m)

[0192]

参考例 2 6

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ベンジルオキシプロポキシ)フェニル]メチル $\}-$ 5-イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ベン

ジルオキシプロポキシ) -2-メチルフェニル] メチル -5-イソプロピルー1H-ピラゾールを用いて参考例23と同様の方法で標記化合物を得た。

[0193]

 l_{H-NMR} (CDCl₃) δ ppm:

1.1-1.2 (6H, m), 1.83 (3H, s), 1.95-2.05 (8H, m), 2.06 (3H, s), 2.26 (3H, s), 2.75-2.9 (1H, m), 3.5 (1H, d, J=16.5Hz), 3.58 (1H, d, J=16.5Hz), 3 .75-3.9 (3H, m), 4.0-4.15 (3H, m), 4.28 (1H, dd, J=12.3Hz, 4.1Hz), 5.1-5 .3 (3H, m), 5.55 (1H, d, J=7.9Hz), 6.59 (1H, dd, J=8.3Hz, 2.5Hz), 6.69 (1H, d, J=2.5Hz), 6.81 (1H, d, J=8.3Hz)

[0194]

参考例 2 7

3-(2, 3, 4, 6- テトラー0- アセチルー $\beta-$ D- グルコピラノシルオキシ) -4-[(4- ヒドロキシフェニル) メチル] -5- イソプロピルー1 H- ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ)-4- $\{[4-(3-$ ベンジルオキシプロポキシ)フェニル] メチル $\}-$ 5ーイソプロピルー1 H-ピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ)-4-[(4-ベンジルオキシフェニル)メチル] -5-イソプロピルー1 H-ピラゾールを用いて参考例23と同様の方法で標記化合物を得た。

[0195]

 l_{H-NMR} (CDCl₃) δ ppm:

1.1-1.2 (6H, m), 1.89 (3H, s), 2.0 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 2.85-3.0 (1H, m), 3.57 (1H, d, J=16.2Hz), 3.61 (1H, d, J=16.2Hz), 3.8-3. 9 (1H, m), 4.05-4.2 (1H, m), 4.29 (1H, dd, J=12.5Hz, 4.0Hz), 4.91 (1H, b rs), 5.15-5.3 (3H, m), 5.55-5.6 (1H, m), 6.65-6.75 (2H, m), 6.95-7.05 (2H, m)

[0196]

参考例 2 8

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ ヒドロキシエトキシ)-2-メチルフェニル] メチル -5-イソプロピル-1 H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(3-$ ベンジルオキシプロポキシ)フェニル]メチル $\}-$ 5ーイソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(2-$ ベンジルオキシエトキシ)-2-メチルフェニル]メチル $\}-$ 5ーイソプロピルー1 Hーピラゾールを用いて参考例 23 と同様の方法で標記化合物を得た。

[0197]

1H-NMR (CDC13) Sppm:

1.1-1.2 (6H, m), 1.83 (3H, s), 1.99 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 2.26 (3H, s), 2.75-2.9 (1H, m), 3.51 (1H, d, J=16.9Hz), 3.59 (1H, d, J=16.9Hz), 3.8-3.85 (1H, m), 3.9-3.95 (2H, m), 4.0-4.1 (2H, m), 4.11 (1H, dd, J=12.5Hz, 2.5Hz), 4.28 (1H, dd, J=12.5Hz, 4.1Hz), 5.1-5.3 (3H, m), 5.55 (1H, d, J=7.9Hz), 6.6 (1H, dd, J=8.3Hz, 2.7Hz), 6.71 (1H, d, J=2.7Hz), 6.82 (1H, d, J=8.3Hz)

[0198]

参考例 2 9

3-(2,3,4,6-テトラー0-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アジドプロポキシ) フェニル] メチル $\}-5-$ イソプロピル-1 H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾール(2.2 1 g)の塩化メチレン(3 5 m L)溶液に、トリエチルアミン(0.65 m L)およびメタンスルホニルクロリド(0.3 m L)を加え、室温で一晩撹拌した。反応混合物を 0.5 m o 1 / L 塩酸中に注ぎ、酢酸エチルで抽出した。有機層を水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去することにより 3-(2,3,4,6-テトラ-O

-アセチルーβ-D-グルコピラノシルオキシ) -5-イソプロピルー4ー({ $4-[3-(y_0)]$ インスルホニルオキシ)プロポキシ]フェニル} メチル) -1 H ーピラゾールを得た。これを N,N-ジメチルホルムアミド(20 m L)に溶解し、アジ化ナトリウム(0.46g)を加え、100 で1.5時間撹拌した。反応混合物を水中に注ぎ、酢酸エチルで抽出した。有機層を水で3回洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=1/1~1/3)で精製して標記化合物(1.6g)を得た。

[0199]

1_H-NMR (CDCl₃) δppm:

1.1-1.2 (6H, m), 1.89 (3H, s), 1.95-2.1 (11H, m), 2.85-2.95 (1H, m), 3.5 (2H, t, J=6.7Hz), 3.57 (1H, d, J=15.9Hz), 3.63 (1H, d, J=15.9Hz), 3.8-3 .9 (1H, m), 4.0 (2H, t, J=5.9Hz), 4.1-4.2 (1H, m), 4.31 (1H, dd, J=12.2Hz, 4.2Hz), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 7.0-7.1 (2H, m)

[0200]

参考例30

3-(2, 3, 4, 6- テトラー0- アセチルー $\beta-$ D- グルコピラノシルオキシ) $-4-\{[4-(2-$ アジドエトキシ) フェニル] メチル $\}-5-$ イソプロピルー1 H- ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ ビドロキシエトキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールを用いて参考例 2 9 と同様の方法で標記化合物を得た。

[0201]

 1_{H-NMR} (CDC13) δ ppm:

1.1-1.2 (6H, m), 1.89 (3H, s), 2.01, (3H, s), 2.03 (3H, s), 2.06 (3H, s)

, 2.85-2.95 (1H, m), 3.5-3.7 (4H, m), 3.8-3.9 (1H, m), 4.11 (2H, t, J=5.1Hz), 4.14 (1H, dd, J=12.2Hz, 2.2Hz), 4.31 (1H, dd, J=12.2Hz, 4.0Hz), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.75-6.85 (2H, m), 7.0-7.1 (2H, m)

[0202]

参考例 3 1

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(4-$ ビドロキシブトキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールを用いて参考例 2 9 と同様の方法で標記化合物を得た。

[0203]

1H-NMR (CDCl3) δppm:

1.1-1.2 (6H, m), 1.7-1.95 (7H, m), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.85-2.95 (1H, m), 3.35 (2H, t, J=6.8Hz), 3.57 (1H, d, J=16.0Hz), 3.63 (1H, d, J=16.0Hz), 3.8-3.9 (1H, m), 3.94 (2H, t, J=6.0Hz), 4.14 (1H, dd, J=12.6Hz, 2.5Hz), 4.31 (1H, dd, J=12.6Hz, 4.1Hz), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 7.0-7.1 (2H, m)

[0204]

参考例32

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アジドプロポキシ)-2-メチルフェニル] メチル-5-イソプロピル-1 H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO

[0205]

 1_{H-NMR} (CDC13) δ ppm:

1.05-1.15 (6H, m), 1.81 (3H, s), 1.95-2.1 (11H, m), 2.26 (3H, s), 2.75-2 .9 (1H, m), 3.45-3.55 (3H, m), 3.59 (1H, d, J=16.5Hz), 3.8-3.9 (1H, m), 3.95-4.05 (2H, m), 4.05-4.15 (1H, m), 4.29 (1H, dd, J=12.6Hz, 4.1Hz), 5. 1-5.3 (3H, m), 5.55 (1H, d, J=7.9Hz), 6.57 (1H, dd, J=8.7Hz, 2.6Hz), 6.6 8 (1H, d, J=2.6Hz), 6.8 (1H, d, J=8.7Hz)

[0206]

参考例 3 3

3-(2,3,4,6-テトラーO-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ アジドエトキシ)-2-メチルフェニル] メチル $\}-$ 5-イソプロピル-1 H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(3-$ ヒドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(2-$ ヒドロキシエトキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールを用いて参考例 2 9 と同様の方法で標記化合物を得た。

[0207]

1H-NMR (CDCl3) &ppm:

1.05-1.2 (6H, m), 1.82 (3H, s), 2.0 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 2.27 (3H, s), 2.75-2.9 (1H, m), 3.45-3.65 (4H, m), 3.8-3.9 (1H, m), 4.0 5-4.15 (3H, m), 4.29 (1H, dd, J=12.2Hz, 4.2Hz), 5.1-5.3 (3H, m), 5.56 (1H, d, J=7.7Hz), 6.6 (1H, dd, J=8.3Hz, 2.6Hz), 6.71 (1H, d, J=2.6Hz), 6.8 2 (1H, d, J=8.3Hz)

[0208]

実施例1

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アジドプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾール (1.6g)のテトラヒドロフラン (25mL) 溶液に10%パラジウム炭素粉末 (300mg)を加え、水素雰囲気下室温で2時間撹拌した。不溶物を濾去し、濾液の溶媒を減圧下留去することにより標記化合物 (1.5g) を得た。

[0209]

 1_{H-NMR} (CD₃OD) δ p p m:

1.1-1.2 (6H, m), 1.85-2.0 (8H, m), 2.01 (3H, s), 2.02 (3H, s), 2.8-3.0 (3H, m), 3.6 (2H, s), 3.9-4.0 (1H, m), 4.01 (2H, t, J=6.0Hz), 4.11 (1H, d d, J=12.4Hz, 2.5Hz), 4.29 (1H, dd, J=12.4Hz, 3.9Hz), 5.05-5.15 (2H, m), 5.25-5.35 (1H, m), 5.48 (1H, d, J=8.2Hz), 6.75-6.85 (2H, m), 7.0-7.05 (2H, m)

[0210]

実施例2

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ アジドプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(2-$ アジドエトキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールを用いて実施例1と同様の方法で標記化合物を得た。

[0211]

 $l_{H-NMR} \cdot (CDCl_{3}) \delta ppm$:

1.16 (6H, d, J=6.9Hz), 1.89 (3H, s), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3 H, s), 2.85-2.95 (1H, m), 3.05 (2H, t, J=5.0Hz), 3.57 (1H, d, J=16.0Hz), 3.63 (1H, d, J=16.0Hz), 3.8-3.9 (1H, m), 3.94 (2H, t, J=5.0Hz), 4.1-4.2 (1H, m), 4.25-4.35 (1H, m), 5.15-5.3 (3H, m), 5.5-5.65 (1H, m), 6.75-6. 8 (2H, m), 7.0-7.1 (2H, m)

[0212]

実施例3

3-(2,3,4,6-テトラー0-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(4-$ アミノブトキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ アジドプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(4-$ アジドブトキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールを用いて実施例1と同様の方法で標記化合物を得た。

[0213]

1H-NMR (CDC13) Sppm:

1.15 (6H, d, J=6.8Hz), 1.5-1.65 (2H, m), 1.7-1.85 (2H, m), 1.88 (3H, s), 2.01 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.76 (2H, t, J=7.1Hz), 2.85-2 .95 (1H, m), 3.56 (1H, d, J=15.7Hz), 3.62 (1H, d, J=15.7Hz), 3.8-3.9 (1H, m), 3.92 (2H, t, J=6.5Hz), 4.1-4.2 (1H, m), 4.31 (1H, dd, J=12.2Hz, 4.1Hz), 5.15-5.3 (3H, m), 5.55-5.65 (1H, m), 6.7-6.8 (2H, m), 6.95-7.05 (2H, m)

[0214]

実施例4

 $3-(2, 3, 4, 6- テトラーO- アセチルー <math>\beta-D-$ グルコピラノシルオキシ) $-4-\{[4-(3- アミノプロポキシ)-2- メチルフェニル] メチル \}$

-5-イソプロピル-1H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ アジドプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ アジドプロポキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールを用いて実施例1と同様の方法で標記化合物を得た。

[0215]

 l_{H-NMR} (CDCl₃) δ ppm:

1.05-1.15 (6H, m), 1.82 (3H, s), 1.85-1.95 (2H, m), 1.99 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 2.25 (3H, s), 2.75-2.95 (3H, m), 3.5 (1H, d, J=16.5Hz), 3.58 (1H, d, J=16.5Hz), 3.75-3.9 (1H, m), 3.9-4.05 (2H, m), 4.05-4.2 (1H, m), 4.29 (1H, dd, J=12.6Hz, 4.0Hz), 5.1-5.3 (3H, m), 5.5-5.6 (1H, m), 6.58 (1H, dd, J=8.4Hz, 2.7Hz), 6.68 (1H, d, J=2.7Hz), 6.8 (1H, d, J=8.4Hz)

[0216]

実施例5

3-(2,3,4,6-テトラー0-アセチルー $\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ アミノエトキシ)-2-メチルフェニル] メチル $\}-$ 5-イソプロピルー1 H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(3-$ アジドプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(2-$ アジドエトキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールを用いて実施例1と同様の方法で標記化合物を得た。

[0217]

1H-NMR (CDCl₃) δppm:

1.05-1.15 (6H, m), 1.82 (3H, s), 2.0 (3H, s), 2.02 (3H, s), 2.06 (3H, s)

, 2.26 (3H, s), 2.75-2.85 (1H, m), 3.0-3.1 (2H, m), 3.5 (1H, d, J=16.3Hz), 3.59 (1H, d, J=16.3Hz), 3.8-3.9 (1H, m), 3.9-4.0 (2H, m), 4.12 (1H, d d, J=12.4Hz, 2.4Hz), 4.29 (1H, dd, J=12.4Hz, 4.0Hz), 5.15-5.3 (3H, m), 5 .55 (1H, d, J=7.9Hz), 6.59 (1H, dd, J=8.5Hz, 2.6Hz), 6.7 (1H, d, J=2.6Hz), 6.81 (1H, d, J=8.5Hz)

[0218]

実施例 6

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-$ 5-イソプロピル-1H-ピラゾール(0.1g)のメタノール(2mL)溶液にナトリウムメトキシド(28%メタノール溶液、0.062mL)を加え、室温で30分間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製することにより標記化合物(57 mg)を得た。

[0219]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 1.8-1.95 (2H, m), 2.8 (2H, t, J=7.0Hz), 2.85-2.95 (1H, m), 3.25-3.45 (4H, m), 3.6-3.8 (3H, m), 3.8-3.9 (1H, m), 3.99 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.7-6.85 (2H, m), 7.05-7.15 (2H, m)

[0220]

実施例7

 $4-\{[4-(2-r \le J \pm h + i)]$ フェニル] メチル $\}-3-(\beta-D-f)$ ルコピラノシルオキシ)-5-4ソプロピルー1 H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ アミノエトキ

[0221]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 2.8-2.95 (1H, m), 2.96 (2H, t, J=5.4Hz), 3.25-3.45 (4 H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=15.9Hz), 3.8-3.9 (1H, m), 3.95 (2 H, t, J=5.4Hz), 5.05-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0222]

実施例8

 $4-\{[4-(4-r)] / (1-r) / (1-r$

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}$ -5-イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(4-$ アミノブトキシ)フェニル]メチル $\}$ -5-イソプロピル-1 H-ピラゾールを用いて実施例6と同様の方法で標記化合物を得た。

[0223]

 1_{H-NMR} (CD₃OD) δ ppm:

 $1.05-1.2 \ (6H, m), \ 1.55-1.7 \ (2H, m), \ 1.7-1.85 \ (2H, m), \ 2.67 \ (2H, t, J=7.1 Hz), \ 2.8-2.95 \ (1H, m), \ 3.25-3.45 \ (4H, m), \ 3.6-3.7 \ (2H, m), \ 3.73 \ (1H, d, J=15.7Hz), \ 3.8-3.9 \ (1H, m), \ 3.93 \ (2H, t, J=6.3Hz), \ 5.0-5.15 \ (1H, m), \ 6.7 -6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

[0224]

実施例9

 $4-\{[4-(3-r)] -2-x+\nu]$ メチル $\{-3-(\beta-D-f) -2-f) -3-(\beta-D-f) -3-(\beta-D$

[0225]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.2 (6H, m), 1.85-2.0 (2H, m), 2.29 (3H, s), 2.7-2.9 (3H, m), 3.25-3.45 (4H, m), 3.55-3.75 (3H, m), 3.75-3.85 (1H, m), 3.95-4.05 (2H, m), 4 .95-5.1 (1H, m), 6.55-6.75 (2H, m), 6.85 (1H, d, J=8.5Hz)

[0226]

実施例10

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-5-\mathcal{I}$ プロピルー $4-(4-[3-(y\beta-D-\mathcal{I})]$ プロポキシ]フェニル \mathbf{I} メチル)-1 Hーピラゾール

[0227]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.9-2.05 (2H, m), 2.8-2.95 (4H, m), 3.24 (2H, t, J=7.0Hz), 3.3-3.45 (4H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.0Hz), 3.8-3.9 (1H, m), 4.01 (2H, t, J=6.1Hz), 5.0-5.15 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0228]

実施例11

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-5-\mathcal{I}$ プロピルー $4-(\mathcal{I})$ $2-(\mathcal{I})$ ストキシ] フェニル メチル) -1 \mathbf{H} ーピラゾール

3-(2,3,4,6-r) -O-r -V-r -D-f -D-

[0229]

 1_{H-NMR} (CD₃OD) δ p p m:

 $1.05-1.15 \ (6H, m), \ 2.8-2.95 \ (1H, m), \ 2.97 \ (3H, s), \ 3.25-3.45 \ (6H, m), \ 3.\\ 6-3.7 \ (2H, m), \ 3.74 \ (1H, d, J=15.9Hz), \ 3.8-3.9 \ (1H, m), \ 4.03 \ (2H, t, J=5.4Hz), \ 5.0-5.15 \ (1H, m), \ 6.8-6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

[0230]

実施例12

 $4-\left[\left(4-\left\{3-\left[N-\left(カルバモイルメチル\right)-N-\left(メタンスルホニル\right)\right.\right.\right]$ アミノ] プロポキシ $\left\{-2-メチルフェニル\right]$ メチル $\left[-3-\left(\beta-D-グルコピラノシルオキシ\right)-5-イソプロピル-1$ Hーピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-5-$ イソ

プロピルー1 H - ピラゾールの代わりに3 - (2, 3, 4, 6 - テトラー0 - ヤチル- β - D - グルコピラノシルオキシ)- 4 - ($\{4$ - $\{3$ - ($\}$ カルバモイルメチルアミノ)プロポキシ $\}$ - 2 - メチルフェニル $\}$ メチル)- 5 - イソプロピル- 1 H - ピラゾールを用いて実施例 1 0 と同様の方法で標記化合物を得た。

[0231]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.95-2.1 (2H, m), 2.29 (3H, s), 2.75-2.85 (1H, m), 3. 0 (3H, s), 3.25-3.4 (4H, m), 3.46 (2H, t, J=7.1Hz), 3.6-3.75 (3H, m), 3. 75-3.85 (1H, m), 3.95-4.05 (4H, m), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.3Hz, 2.7Hz), 6.72 (1H, d, J=2.7Hz), 6.85 (1H, d, J=8.3Hz)

[0232]

実施例13

 $4-\left(\left\{4-\left[3-\left(2-r\right]/r$ セチルアミノ)プロポキシ]フェニル $\right\}$ メチル) $-3-\left(\beta-D-グルコピラノシルオキシ\right)-5-イソプロピルー<math>1\,\mathrm{H}-\mathcal{C}$ ラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) -4- $\{[4-(3-$ アミノプロポキシ) フェニル] メチル $\}$ -5-イソプロピル-1 + -1 -1 + -1 -1 + -1 -1 + -1

ウム炭素粉末(20mg)を加え、水素雰囲気下室温で1.5時間撹拌した。不溶物を濾去し、濾液の溶媒を減圧下留去することにより3-(2,3,4,6-テトラー〇ーアセチルー β -Dーグルコピラノシルオキシ)-4-($\{4-\{3-(2-r)\}\}$) プロポキシ】フェニル $\{x+y\}$) ー5ーイソプロピルー1Hーピラゾール(34mg)を得た。これをメタノール(3mL)に溶解し、ナトリウムメトキシド(28%メタノール溶液、0.01mL)を加え、室温で30分間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製することにより標記化合物(23mg)を得た。

[0233]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.15 (6H, m), 1.9-2.0 (2H, m), 2.85-2.95 (1H, m), 3.23 (2H, s), 3.25 -3.45 (6H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.0Hz), 3.8-3.9 (1H, m), 3.98 (2H, t, J=6.1Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0234]

実施例14

 $4-\left[\left(4-\left\{3-\left[\left(S\right)-2-r\right\}\right] プロポキシ\right]$ フェニル) メチル] $-3-\left(\beta-D-グルコピラノシルオキシ\right)-5-イソプロピル-1 H-ピラゾール$

2 ーベンジルオキシカルボニルアミノ酢酸の代わりに(S) - 2 - (ベンジルオキシカルボニルアミノ)プロピオン酸を用いて実施例13と同様の方法で標記化合物を得た。

[0235]

 1_{H-NMR} (CD₃OD) δ ppm:

 $1.05-1.2 \ (6H, m), \ 1.24 \ (3H, d, J=6.9Hz), \ 1.9-2.0 \ (2H, m), \ 2.8-2.95 \ (1H, m), \ 3.25-3.45 \ (7H, m), \ 3.6-3.8 \ (3H, m), \ 3.8-3.9 \ (1H, m), \ 3.98 \ (2H, t, J=6.0Hz), \ 5.0-5.15 \ (1H, m), \ 6.75-6.85 \ (2H, m), \ 7.0-7.15 \ (2H, m)$

[0236]

実施例15

2-ベンジルオキシカルボニルアミノ酢酸の代わりに3-(ベンジルオキシカルボニルアミノ)プロピオン酸を用いて実施例13と同様の方法で標記化合物を得た。

[0237]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.2 (6H, m), 1.85-2.0 (2H, m), 2.33 (2H, t, J=6.6Hz), 2.75-2.95 (3H, m), 3.25-3.45 (6H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.0Hz), 3.8-3. 9 (1H, m), 3.97 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.7-6.85 (2H, m), 7.0 5-7.15 (2H, m)

[0238]

実施例 1 6

2ーベンジルオキシカルボニルアミノ酢酸の代わりに(S)-2ーベンジルオキシカルボニルアミノ-3-ヒドロキシプロピオン酸を用いて実施例13と同様の方法で標記化合物を得た。

[0239]

1H-NMR (CD₃OD) δ p p m:

[0240]

実施例 1 7

4-[(4-{3-[(S)-2-アミノ-3-(1H-イミダゾール-4-イ

2-ベンジルオキシカルボニルアミノ酢酸の代わりに(S)-2-ベンジルオキシカルボニルアミノ-3-(1H-イミダゾール-4-イル)プロピオン酸を用いて実施例 13 と同様の方法で標記化合物を得た。

[0241]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.2 (6H, m), 1.8-1.95 (2H, m), 2.7-3.0 (3H, m), 3.25-3.45 (6H, m), 3 .5-3.55 (1H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=15.7Hz), 3.8-3.95 (3H, m), 5.0-5.15 (1H, m), 6.75-6.85 (3H, m), 7.05-7.15 (2H, m), 7.54 (1H, s)

[0242]

実施例18

 $4-\left[\left(4-\left\{3-\left[2-r\right]/-2-\left(\right\}/+\nu\right)\right]$ プロピオニルアミノ] プロポキシ $\left\{3-\left(\beta-D-f\right)/-2\right\}$ フェニル) メチル $\left\{3-\left(\beta-D-f\right)/-2\right\}$ フェニル) メチル $\left\{3-\left(\beta-D-f\right)/-2\right\}$ フェニル ファール ファール コピラゾール

2-ベンジルオキシカルボニルアミノ酢酸の代わりに2-ベンジルオキシカルボニルアミノ-2-メチルプロピオン酸を用いて実施例13と同様の方法で標記化合物を得た。

[0243]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.2 (6H, m), 1.29 (6H, s), 1.9-2.0 (2H, m), 2.8-2.95 (1H, m), 3.25-

3.45 (6H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.1Hz), 3.8-3.9 (1H, m),

3.98 (2H, t, J=6.1Hz), 5.0-5.15 (1H, m), 6.75-6.85 (2H, m), 7.05-7.2 (2H, m)

[0244]

実施例19

 $3-(2, 3, 4, 6-テトラーO-アセチルー<math>\beta-D-$ グルコピラノシルオ キシ) -4- {[4-(3-アミノプロポキシ) フェニル] メチル -5-イソ プロピル-1H-ピラゾール (97mg) の塩化メチレン (3mL) 溶液にトリ エチルアミン (0.035mL) およびクロロぎ酸4-ニトロフェニル (35m g) を加え、室温で 1 時間撹拌した。反応混合物に 4-(2-r ミノエチル)モ ルホリン (41mg) を加え、室温で一晩撹拌した。反応混合物を水中に注ぎ、 酢酸エチルで抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液、水および 飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残 渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル~塩化メチレ ン/メタノール= $10/1\sim5/1$) で精製して3-(2,3,4,6-テトラ -O-アセチル $-\beta-$ D-グルコピラノシルオキシ)-5-イソプロピル-4-{[4-(3-{3-[2-(モルホリン-4-イル)エチル]ウレイド]プロ ポキシ)フェニル]メチル - 1 H - ピラゾール (58 mg) を得た。これをメ タノール (3 m L) に溶解し、ナトリウムメトキシド (2 8 % メタノール溶液、 0.03mL)を加え、室温で30分間撹拌した。反応混合物を減圧下濃縮し、 残渣をODS固相抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製す ることにより標記化合物(39mg)を得た。

[0245]

 1_{H-NMR} (CD₃OD) δ p p m:

1.10-1.15 (6H, m), 1.85-1.95 (2H, m), 2.35-2.5 (6H, m), 2.85-2.95 (1H, m), 3.2-3.45 (8H, m), 3.6-3.7 (6H, m), 3.73 (1H, d, J=15.9Hz), 3.8-3.9 (1H, m), 3.97 (2H, t, J=6.2Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7 (1H, m)

[0246]

実施例20

4- (2-アミノエチル) モルホリンの代わりにN, N-ジメチルエチレンジ

アミンを用いて実施例19と同様の方法で標記化合物を得た。

[0247]

1H-NMR (CD3OD) δppm:

1.1-1.15 (6H, m), 1.85-1.95 (2H, m), 2.26 (6H, s), 2.43 (2H, t, J=6.7Hz), 2.85-2.95 (1H, m), 3.2-3.4 (8H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=15.9Hz), 3.8-3.9 (1H, m), 3.97 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.75-6.8 5 (2H, m), 7.05-7.15 (2H, m)

[0248]

実施例21

 $3-(\beta-D-\mathcal{I})$ $\beta-D-\mathcal{I}$ $\beta-D-$

4-(2-アミノエチル)モルホリンの代わりに2-アミノ-2-メチル-1 、3-プロパンジオールを用いて実施例19と同様の方法で標記化合物を得た。

[0249]

 1_{H-NMR} (CD₃OD) δ p p m:

 $1.05-1.2 \ (9H, m), \ 1.8-1.95 \ (2H, m), \ 2.8-2.95 \ (1H, m), \ 3.2-3.45 \ (6H, m), \\ 3.5-3.8 \ (7H, m), \ 3.8-3.9 \ (1H, m), \ 3.97 \ (2H, t, J=6.1Hz), \ 5.0-5.15 \ (1H, m), \\ 6.75-6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

[0250]

実施例 2 2

4-(2-アミノエチル)モルホリンの代わりに2-アミノ-1,3-プロパンジオールを用いて実施例19と同様の方法で標記化合物を得た。

[0251]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.85-1.95 (2H, m), 2.8-2.95 (1H, m), 3.25-3.45 (6H, m

), 3.5-3.75 (8H, m), 3.8-3.9 (1H, m), 3.97 (2H, t, J=6.2Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0252]

実施例 2 3

4-(2-アミノエチル)モルホリンの代わりに2-アミノエタノールを用いて実施例19と同様の方法で標記化合物を得た。

[0253]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.2 (6H, m), 1.85-1.95 (2H, m), 2.85-2.95 (1H, m), 3.21 (2H, t, J=5 .5Hz), 3.25-3.45 (6H, m), 3.55 (2H, t, J=5.7Hz), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.1Hz), 3.8-3.9 (1H, m), 3.97 (2H, t, J=6.2Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0254]

実施例 2 4

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-\{4-(3-\{3-\{2-\mathcal{I}\})\}$ ドロキシー1, $1-(\mathcal{I})$ メチル) エチル] ウレイド プロポキシ) フェニル メチル $\{-5-\mathcal{I}\}$ プロピルー $\{-5-\mathcal{I}\}$ アロピルー $\{-5-\mathcal{I}\}$ アカリー $\{-$

4-(2-アミノエチル)モルホリンの代わりに2-アミノー2-メチルー1-プロパノールを用いて実施例19と同様の方法で標記化合物を得た。

[0255]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.5 (6H, m), 1.22 (6H, s), 1.85-1.95 (2H, m), 2.8-2.95 (1H, m), 3.24 (2H, t, J=6.6Hz), 3.25-3.45 (4H, m), 3.5 (2H, s), 3.6-3.7 (2H, m), 3.73 (1H, d, J=15.8Hz), 3.8-3.9 (1H, m), 3.96 (2H, t, J=6.2Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0256]

実施例 2 5

 $3-(\beta-D-\mathcal{O}_{N})$ コピラノシルオキシ) $-5-\mathcal{O}_{N}$ コー $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}$ コー $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ コープン・エニル $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ オー $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ カレイド $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ カレイド $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ カレイド $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$ カレイド $\{3-\{3-\{2-(\mathcal{O}_{N})\}\}\}\}$

4-(2-アミノエチル)モルホリンの代わりに1-(2-アミノエチル)ピロリジンを用いて実施例19と同様の方法で標記化合物を得た。

[0257]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.2 (6H, m), 1.75-1.85 (4H, m), 1.85-1.95 (2H, m), 2.5-2.65 (6H, m), 2.85-2.95 (1H, m), 3.2-3.45 (8H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=1 5.8Hz), 3.8-3.9 (1H, m), 3.97 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.75-6. 85 (2H, m), 7.05-7.15 (2H, m)

[0258]

実施例 2 6

 $3-(\beta-D-\mathcal{O})$ ルコピラノシルオキシ) $-4-\{[4-(3-\{3-\{2-E\})]$ ドロキシー1, 1-Eス (E) ドロキシメチル) エチル] ウレイド $\{\mathcal{O}\}$ プロポキシ) フェニル $\{\mathcal{O}\}$ メチル $\{\mathcal{O}\}$ $\{\mathcal{O}\}$

4-(2-アミノエチル)モルホリンの代わりにトリス(ヒドロキシメチル)アミノメタンを用いて実施例19と同様の方法で標記化合物を得た。

[0259]

 $^{1}H-NMR$ (CD₃OD) δ p p m:

 $1.05-1.2 \ (6H, m), \ 1.85-1.95 \ (2H, m), \ 2.8-2.95 \ (1H, m), \ 3.2-3.45 \ (6H, m), \\ 3.55-3.7 \ (8H, m), \ 3.73 \ (1H, d, J=16.0Hz), \ 3.8-3.9 \ (1H, m), \ 3.97 \ (2H, t, J=6.1Hz), \ 5.0-5.1 \ (1H, m), \ 6.75-6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

[0260]

実施例27

 $3-(\beta-D-\mathcal{O})$ ルコピラノシルオキシ) $-4-\{[4-(3-\{4-(2-2-2)\}]$ ピペラジン $-1-\mathcal{O}$ カルボニルアミノ $\{2-2-2\}$ プロポキシ) -2-2

3-(2,3,4,6-r) -(2-r) -

[0261]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.85-2.0 (2H, m), 2.29 (3H, s), 2.4-2.55 (6H, m), 2.7 5-2.85 (1H, m), 3.25-3.45 (10H, m), 3.55-3.75 (5H, m), 3.75-3.85 (1H, m), 3.96 (2H, t, J=6.1Hz), 4.95-5.05 (1H, m), 6.61 (1H, dd, J=8.5Hz, 2.6Hz), 6.7 (1H, d, J=2.6Hz), 6.85 (1H, d, J=8.5Hz)

[0262]

実施例28

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-\{[4-(3-\{3-\{2-\mathcal{I})\}]$ ドロキシー $1-(\mathcal{I})$ (ヒドロキシメチル) $-1-(\mathcal{I})$ エチル] ウレイド プロポキシ) $-2-\mathcal{I}$ プロール メチル $-5-\mathcal{I}$ プロピルー1 Hーピラゾール

3-(2,3,4,6-r)-O-rセチルー $\beta-D-f$ ルコピラノシルオキシ) $-4-\{[4-(3-r)-f]-f]$ フェニル] メチル $\{-5-f$ ソプロピルー1H-ピラゾールの代わりに $\{-5-f\}-f$ (2,3,4,6-r)-O-r セチルー $\beta-D-f$ ルコピラノシルオキシ) $-4-\{[4-(3-r)-f]-f]$ ドシ) -2-メチルフェニル] メチル $\{-5-f$ ソプロピルー1H-ピラゾールを用い、 $\{-5-f\}-f$ リンの代わりに $\{-7-f\}-f$ ルー1,3-プロパンジオールを用いて実施例19と同様の方法で標記化合物を得た。

[0263]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.19 (3H, s), 1.85-1.95 (2H, m), 2.29 (3H, s), 2.75-2 .85 (1H, m), 3.2-3.4 (6H, m), 3.5-3.75 (7H, m), 3.75-3.85 (1H, m), 3.96 (2H, t, J=6.2Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.6Hz, 2.5Hz), 6.71 (1H, d, J=2.5Hz), 6.85 (1H, d, J=8.6Hz)

[0264]

実施例 2 9

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-\{[4-(3-\{3-\{2-\mathcal{I})\}]\}$ ドロキシ-1, $1-(\mathcal{I})$ メチル-1 ナー -1 カー -1 カー

3-(2,3,4,6-r) -O-r -V-r -D-r -D-

[0265]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.23 (6H, s), 1.8-1.95 (2H, m), 2.29 (3H, s), 2.75-2. 85 (1H, m), 3.24 (2H, t, J=6.8Hz), 3.25-3.4 (4H, m), 3.5 (2H, s), 3.55-3 .75 (3H, m), 3.75-3.85 (1H, m), 3.96 (2H, t, J=6.2Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.5Hz, 2.6Hz), 6.71 (1H, d, J=2.6Hz), 6.85 (1H, d, J=8.5Hz)

[0266]

実施例30

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-[(4-\{3-[3-(2-\mathcal{I})])]$ ドロキシエチル)ウレイド] プロポキシ $\{-2-\mathcal{I}\}$ $\{-2-\mathcal$

 $3-(2,3,4,6-テトラーO-アセチルー<math>\beta-D-$ グルコピラノシルオ

[0267]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.85-1.95 (2H, m), 2.29 (3H, s), 2.75-2.85 (1H, m), 3 .22 (2H, t, J=5.8Hz), 3.25-3.4 (6H, m), 3.55 (2H, t, J=5.6Hz), 3.6-3.75 (3H, m), 3.75-3.85 (1H, m), 3.96 (2H, t, J=6.2Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.2Hz, 2.4Hz), 6.71 (1H, d, J=2.4Hz), 6.85 (1H, d, J=8.2Hz)

[0268]

実施例31

 $4-\{[4-(2-\{3-[1-カルバモイル-1-(メチル) エチル] ウレイド エトキシ) <math>-2-$ メチルフェニル] メチル $\}$ $-3-(\beta-D-$ グルコピラノシルオキシ) -5-イソプロピルー1 H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-$ 5-イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(2-$ アミノエトキシ)-2-メチルフェニル]メチル $\}-$ 5-イソプロピル-1 H-ピラゾールを用い、4-(2-アミノエチル)モルホリンの代わりに2-アミノ-2-メチルプロピオンアミドを用いて実施例19と同様の方法で標記化合物を得た。

[0269]

1H-NMR (CD3OD) δppm:

 $1.05-1.15 \ (6H, m), \ 1.44 \ (6H, s), \ 2.29 \ (3H, s), \ 2.75-2.85 \ (1H, m), \ 3.25-3$ $.4 \ (4H, m), \ 3.44 \ (2H, t, J=5.3Hz), \ 3.55-3.75 \ (3H, m), \ 3.75-3.85 \ (1H, m),$

3.95 (2H, t, J=5.3Hz), 4.95-5.05 (1H, m), 6.63 (1H, dd, J=8.5Hz, 2.6Hz), 6.72 (1H, d, J=2.6Hz), 6.86 (1H, d, J=8.5Hz)

[0270]

実施例32

 $3-(\beta-D-\mathcal{I})$ $\beta-D-\mathcal{I}$ $\beta-D-$

 $3-(2,3,4,6-r+b-O-rセチル-β-D-グルコピラノシルオキシ)-4-\{[4-(3-rミノプロポキシ)フェニル]メチル<math>\}-5-イソプロピル-1H-ピラゾールの代わりに3-(2,3,4,6-r+b-O-rセチル-β-D-グルコピラノシルオキシ)-4-\{[4-(2-rミノエトキシ)-2-メチルフェニル]メチル<math>\}-5-イソプロピル-1H-ピラゾールを用い、4-(2-rミノエチル)モルホリンの代わりに2-rミノー2-メチルー1,3-プロパンジオールを用いて実施例19と同様の方法で標記化合物を得た。$

[0271]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 1.2 (3H, s), 2.29 (3H, s), 2.75-2.85 (1H, m), 3.25-3. 4 (4H, m), 3.43 (2H, t, J=5.3Hz), 3.5-3.75 (7H, m), 3.75-3.85 (1H, m), 3 .94 (2H, t, J=5.3Hz), 4.95-5.05 (1H, m), 6.63 (1H, dd, J=8.3Hz, 2.7Hz), 6.73 (1H, d, J=2.7Hz), 6.86 (1H, d, J=8.3Hz)

[0272]

実施例33

 $3-(\beta-D-J)$ ルコピラノシルオキシ) $-4-\{4-(2-\{3-[2-1])\}$ ヒドロキシー1、1-(J) エチル) エチル] ウレイド エトキシ) -2-J エルフェニル] メチル $\{-5-1\}$ プロピルー1 Hーピラゾール

 $3-(2, 3, 4, 6-テトラ-O-アセチル-\beta-D-グルコピラノシルオキシ) <math>-4-\{[4-(3-アミノプロポキシ) フェニル] メチル \}-5-イソ$

プロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーOーアセチルー β -Dーグルコピラノシルオキシ)-4- $\{[4$ -(2-アミノエトキシ)-2-メチルフェニル] メチル $\}$ -5-イソプロピルー1 Hーピラゾールを用い、4-(2-アミノエチル) モルホリンの代わりに2-アミノー2-メチル-1-プロパノールを用いて実施例19と同様の方法で標記化合物を得た。

[0273]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.23 (6H, s), 2.29 (3H, s), 2.75-2.85 (1H, m), 3.25-3 .4 (4H, m), 3.42 (2H, t, J=5.3Hz), 3.52 (2H, s), 3.55-3.75 (3H, m), 3.75 -3.85 (1H, m), 3.94 (2H, t, J=5.3Hz), 4.95-5.05 (1H, m), 6.63 (1H, dd, J=8.3Hz, 2.5Hz), 6.72 (1H, d, J=2.5Hz), 6.86 (1H, d, J=8.3Hz)

[0274]

実施例34

3-(2,3,4,6-テトラーO-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-[(4-{3-[4-(2-$ ヒドロキシエチル) ピペラジン-1-イル] プロポキシ-2-メチルフェニル) メチル] -5-イソプロピル-1 H-ピラゾール

 抽出した。有機層を水で2回洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル〜塩化メチレン/メタノール= $10/1\sim5/1$)で精製して標記化合物(91mg)を得た。

[0275]

1H-NMR (CDC13) &ppm:

1.05-1.2 (6H, m), 1.81 (3H, s), 1.9-2.0 (5H, m), 2.02 (3H, s), 2.07 (3H, s), 2.26 (3H, s), 2.3-2.75 (12H, m), 2.75-2.9 (1H, m), 3.49 (1H, d, J=1 6.4Hz), 3.55-3.7 (3H, m), 3.8-3.9 (1H, m), 3.9-4.0 (2H, m), 4.1-4.2 (1H, m), 4.3 (1H, dd, J=12.3Hz, 3.8Hz), 5.15-5.3 (3H, m), 5.55 (1H, d, J=8.3 Hz), 6.57 (1H, dd, J=8.6Hz, 2.7Hz), 6.68 (1H, d, J=2.7Hz), 6.79 (1H, d, J=8.6Hz)

[0276]

実施例35

 $3-(\beta-D-\mathcal{I})$ カー $3-(4-(2-\mathcal{I}))$ カー 3-(4-

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-$ 5ーイソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-[(4-\{3-[4-(2-2-$ ヒドロキシエチル)ピペラジンー1-イル]プロポキシ $\}-2-$ メチルフェニル)メチル]-5-イソプロピルー1 Hーピラゾールを用いて実施例6と同様の方法で標記化合物を得た。

[0277]

1H-NMR (CD3OD) &ppm:

1.05-1.15 (6H, m), 1.85-2.0 (2H, m), 2.28 (3H, s), 2.3-2.85 (13H, m), 3. 25-3.4 (4H, m), 3.6-3.75 (5H, m), 3.75-3.85 (1H, m), 3.96 (2H, t, J=6.2H z), 4.95-5.1 (1H, m), 6.6 (1H, dd, J=8.5Hz, 2.4Hz), 6.69 (1H, d, J=2.4Hz)

), 6.84 (1H, d, J=8.5Hz)

[0278]

参考例34

[0279]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.2 (6H, m), 1.91 (3H, s), 1.97 (3H, s), 2.0-2.1 (8H, m), 2.56 (3H, s), 2.85-3.0 (1H, m), 3.5-3.65 (4H, m), 3.9-4.05 (3H, m), 4.11 (1H, dd, J=12.4Hz, 2.3Hz), 4.29 (1H, dd, J=12.4Hz, 4.0Hz), 5.05-5.15 (2H, m), 5.2 5-5.35 (1H, m), 5.48 (1H, d, J=8.0Hz), 6.75-6.85 (2H, m), 7.0-7.1 (2H, m)

[0280]

実施例36

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-[(4-\{3-[N'-(シアノ)-S-(メチル) イソチオウレイド] プロポキシ<math>\}$ フェニル) メチル]-5-イソプロピル-1 H-ピラゾール(40 m g) にメチルアミン(40%メタノール溶液、2 m L) を加え、室温で

一晩撹拌した。反応混合物を減圧下濃縮し、残渣をメタノール (2 m L) に溶解し、ナトリウムメトキシド (28%メタノール溶液、0.02 m L) を加え、室温で1時間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製することにより標記化合物 (18 m g) を得た。

[0281]

1H-NMR (CD3OD) δppm:

1.1-1.15 (6H, m), 1.95-2.05 (2H, m) 2.76 (3H, s), 2.85-2.95 (1H, m), 3.2 5-3.45 (6H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.2Hz), 3.8-3.9 (1H, m), 4.0 (2H, t, J=5.9Hz), 5.05-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0282]

実施例37

 $4-\left[\left(4-\left\{3-\left[2-\nu r J-3-\left(2-\nu r J-3-v J-3-\left(2-\nu r J-3-v J$

 $3-(2,3,4,6-r+b-O-rセチル-β-D-グルコピラノシルオキシ)-4-[(4-{3-[N'-(シアノ)-S-(メチル) イソチオウレイド] プロポキシ} フェニル)メチル]-5-イソプロピルー1 Hーピラゾール(30 mg)のメタノール(1 mL)溶液に<math>2-r$ ミノエタノール(0.5 mL)を加え、50で一晩撹拌した。室温に冷却後、反応混合物にナトリウムメトキシド(28%メタノール溶液、0.02 mL)を加え、1時間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製することにより標記化合物(15 mg)を得た。

[0283]

1H-NMR (CD3OD) &ppm:

 $1.05-1.2 \ (6H, m), \ 1.95-2.05 \ (2H, m), \ 2.8-2.95 \ (1H, m), \ 3.25-3.45 \ (6H, m), \ 3.5-3.7 \ (6H, m), \ 3.73 \ (1H, d, J=15.8Hz), \ 3.8-3.9 \ (1H, m), \ 4.0 \ (2H, t, J=5.9Hz), \ 5.0-5.1 \ (1H, m), \ 6.75-6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

実施例38

イソシアン酸クロロスルホニル (0.022mL) のアセトニトリル (1mL) 溶液に水(0.005mL)を加え、室温で10分間撹拌した。この反応混合 物を3-(2,3,4,6-テトラー0-アセチルー $\beta-$ Dーグルコピラノシル オキシ) -4- {[4-(3-アミノプロポキシ) フェニル] メチル -5-イ ソプロピルー1 Hーピラゾール (5 1 m g) およびトリエチルアミン (0.05 2mL) の塩化メチレン (2mL) 溶液に加え、室温で一晩撹拌した。反応混合 物を水中に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマ トグラフィー(溶出溶媒:塩化メチレン/メタノール=30/1)で精製して3 - (2, 3, 4, 6ーテトラー〇ーアセチルー β ーDーグルコピラノシルオキシ) -5-イソプロピル-4- ({4- [3- (スルファモイルアミノ) プロポキ シ] フェニル メチル) -1 H-ピラゾール (18 mg) を得た。これをメタノ ール (2 m L) に溶解し、ナトリウムメトキシド (2 8 % メタノール溶液、0. 01mL)を加え、室温で1時間撹拌した。反応混合物を減圧下濃縮し、残渣を ODS固相抽出法 (洗浄溶媒:蒸留水、溶出溶媒:メタノール) で精製すること により標記化合物 (3 mg)を得た。

[0285]

 1_{H-NMR} (CD₃OD) δ p p m:

 $1.05-1.2 \ (6H, m), \ 1.95-2.05 \ (2H, m), \ 2.8-2.95 \ (1H, m), \ 3.21 \ (2H, t, J=6.8Hz), \ 3.25-3.45 \ (4H, m), \ 3.6-3.8 \ (3H, m), \ 3.84 \ (1H, d, J=11.6Hz), \ 4.02 \ (2H, t, J=6.0Hz), \ 5.0-5.15 \ (1H, m), \ 6.75-6.85 \ (2H, m), \ 7.05-7.15 \ (2H, m)$

[0286]

実施例39

 $3-(2,3,4,6-テトラーO-アセチルー<math>\beta-D-$ グルコピラノシルオキ

 $3-(2,3,4,6-テトラーO-アセチルー<math>\beta-D-$ グルコピラノシルオ キシ) -4- {[4-(3-ヒドロキシプロポキシ) -2-メチルフェニル] メ チル -5-イソプロピル-1H-ピラゾール (98mg) のテトラヒドロフラ ン (2 m L) 溶液に、2 - (2 - ニトロベンゼンスルホニルアミノ) アセトアミ ド (40mg)、トリフェニルホスフィン (45mg) およびアゾジカルボン酸 ジエチル (40%トルエン溶液、0.1mL) を加え、室温で一晩撹拌した。反 応混合物をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル~塩化 メチレン/メタノール=10/1) で精製して3-(2, 3, 4, 6- テトラーO-アセチル- β-D-グルコピラノシルオキシ)-5-イソプロピル-4-〔 $(4- {3- [N- (2-ニトロベンゼンスルホニル) - N- (カルバモイルメ$ チル) アミノ] プロポキシ ー2ーメチルフェニル) メチル] ー1 Hーピラゾー ル (92mg) を得た。これをアセトニトリル (1mL) に溶解し、炭酸セシウ ム (0.14g) およびチオフェノール (0.012mL) を加え、室温で1時 間撹拌した。反応混合物を水中に注ぎ、酢酸エチルで抽出した。有機層を飽和食 塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。残渣をシ リカゲルカラムクロマトグラフィー(溶出溶媒:塩化メチレン/メタノール=1 $0/1\sim5/1$)で精製して標記化合物(57mg)を得た。

[0287]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.15 (6H, m), 1.83 (3H, s), 1.9-2.05 (11H, m), 2.26 (3H, s), 2.75-2. 9 (3H, m), 3.28 (2H, s), 3.53 (1H, d, J=16.1Hz), 3.58 (1H, d, J=16.1Hz), 3.85-3.95 (1H, m), 4.01 (2H, t, J=6.3Hz), 4.06 (1H, dd, J=12.4Hz, 2.3Hz), 4.27 (1H, dd, J=12.4Hz, 4.2Hz), 5.0-5.15 (2H, m), 5.2-5.3 (1H, m), 5.43 (1H, d, J=8.0Hz), 6.61 (1H, dd, J=8.5Hz, 2.6Hz), 6.71 (1H, d, J=2.6Hz), 6.77 (1H, d, J=8.5Hz)

[0288]

実施例40

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(3-$ ビドロキシプロポキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールを用いて実施例39と同様の方法で標記化合物を得た。

[0289]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.2 (6H, m), 1.85-2.0 (8H, m), 2.01 (3H, s), 2.02 (3H, s), 2.78 (2H, t, J=6.9Hz), 2.85-3.0 (1H, m), 3.27 (2H, s), 3.59 (2H, s), 3.9-4.0 (1H, m), 4.01 (2H, t, J=6.2Hz), 4.11 (1H, dd, J=12.5Hz, 2.3Hz), 4.3 (1H, dd, J=12.5Hz, 4.0Hz), 5.05-5.15 (2H, m), 5.25-5.35 (1H, m), 5.47 (1H, d, J=8.4Hz), 6.75-6.85 (2H, m), 7.0-7.05 (2H, m)

[0290]

実施例41

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-[(4-{3-[(S)-1-(カルバモイル) エチルアミノ] プロポキシ} フェニル)メチル]<math>-5-$ イソプロピル-1H-ピラゾール

[0291]

 1_{H-NMR} (CD₃OD) δ ppm:

1.1-1.2 (6H, m), 1.27 (3H, d, J=6.9Hz), 1.85-2.0 (8H, m), 2.01 (3H, s), 2.02 (3H, s), 2.65-2.8 (2H, m), 2.85-3.0 (1H, m), 3.59 (2H, s), 3.9-4.05 (3H, m), 4.11 (1H, dd, J=12.5Hz, 2.2Hz), 4.3 (1H, dd, J=12.5Hz, 3.9Hz), 5.05-5.15 (2H, m), 5.25-5.35 (1H, m), 5.48 (1H, d, J=7.8Hz), 6.75-6.85 (2H, m), 7.0-7.05 (2H, m)

[0292]

実施例 4 2

3-(2,3,4,6-r) -O-r -V-r -B-D-r -D-r -

[0293]

l_H-NMR (CD₃OD) δppm:

1.1-1.2 (6H, m), 1.31 (6H, s), 1.85-2.0 (8H, m), 2.01 (3H, s), 2.02 (3H, s), 2.6-2.8 (2H, m), 2.85-3.0 (1H, m), 3.59 (2H, s), 3.9-4.0 (1H, m), 4.02 (2H, t, J=6.1Hz), 4.11 (1H, dd, J=12.5Hz, 2.6Hz), 4.3 (1H, dd, J=12.5Hz, 4.1Hz), 5.05-5.15 (2H, m), 5.25-5.35 (1H, m), 5.48 (1H, d, J=8.2Hz), 6.75-6.85 (2H, m), 7.0-7.05 (2H, m)

[0294]

実施例43

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-(\{4-[2-(カルバモイルメチルアミノ) エトキシ]-2-$ メチルフェニル $\}$ メチル)-5-イソプロピル-1H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ ビドロキシプロポキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-ーテトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(2-$ ビドロキシエトキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールを用いて実施例39と同様の方法で標記化合物を得た。

[0295]

 1_{H-NMR} (CD₃OD) $\delta p p m$:

1.05-1.15 (6H, m), 1.83 (3H, s), 1.96 (3H, s), 2.0 (3H, s), 2.02 (3H, s), 2.26 (3H, s), 2.75-2.9 (1H, m), 2.96 (2H, t, J=5.2Hz), 3.32 (2H, s), 3.53 (1H, d, J=16.6Hz), 3.59 (1H, d, J=16.6Hz), 3.85-3.95 (1H, m), 4.03 (2H, t, J=5.2Hz), 4.06 (1H, dd, J=12.3Hz, 2.0Hz), 4.27 (1H, dd, J=12.3Hz, 4.2Hz), 5.0-5.15 (2H, m), 5.2-5.35 (1H, m), 5.43 (1H, d, J=8.0Hz), 6.64 (1H, dd, J=8.5Hz, 2.3Hz), 6.74 (1H, d, J=2.3Hz), 6.78 (1H, d, J=8.5Hz)

[0296]

実施例44

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-[(4-\{2-[2-(カルバモイル) エチルアミノ] エトキシ<math>\}-$ 2-メチルフェニル) メチル]-5-イソプロピルー1 H-ピラゾール

3-(2,3,4,6-r)-O-rセチル $-\beta-D-$ グルコピラノシルオキシ) $-4-\{[4-(3-t)+2]-2]-2$ ロポキシ)-2-xチルフェニル]xチル $\{-5-4$ ソプロピル-1 $\{-2-2$ -2) $\{-2-3$ -3,4,6 $\{-2-2\}-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -4) $\{-2-2$ -6) $\{-2-2$ -6) $\{-2-2$ -6) $\{-2-2$ -6) $\{-2-2$ -6) $\{-2-2$ -7) $\{-2-2$ -7) $\{-2-2$ -8

ミドを用いて実施例39と同様の方法で標記化合物を得た。

[0297]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.83 (3H, s), 1.96 (3H, s), 2.0 (3H, s), 2.02 (3H, s), 2.26 (3H, s), 2.47 (2H, t, J=6.7Hz), 2.75-2.9 (1H, m), 2.9-3.05 (4H, m), 3.53 (1H, d, J=16.4Hz), 3.59 (1H, d, J=16.4Hz), 3.85-3.95 (1H, m), 4.0-4.1 (3H, m), 4.27 (1H, dd, J=12.5Hz, 4.1Hz), 5.0-5.15 (2H, m), 5.25-5. 35 (1H, m), 5.43 (1H, d, J=8.2Hz), 6.64 (1H, dd, J=8.3Hz, 2.6Hz), 6.75 (1H, d, J=2.6Hz), 6.79 (1H, d, J=8.3Hz)

[0298]

実施例 4 5

 $4-(\{4-[3-()\pi\nu/(\pi^2+1)\pi^2+1)\pi^2+1\}-2-3\pi^2+1)\pi^2+1$ π^2+1 π^2+1

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ $)-4-(\{4-[3-(カルバモイルメチルアミノ<math>)$ プロポキシ]-2-メチルフェニル $\}$ メチル)-5-イソプロピル-1 H-ピラゾールを用いて実施例6と同様の方法で標記化合物を得た。

[0299]

 1_{H-NMR} (CD₃OD) δ p p m:

 $1.05-1.15 \ (6H, m), \ 1.85-2.0 \ (2H, m), \ 2.28 \ (3H, s), \ 2.7-2.85 \ (3H, m), \ 3.2$ $4 \ (2H, s), \ 3.25-3.4 \ (4H, m), \ 3.6-3.75 \ (3H, m), \ 3.75-3.85 \ (1H, m), \ 4.01 \ (2H, t, J=6.1Hz), \ 4.95-5.05 \ (1H, m), \ 6.62 \ (1H, dd, J=8.4Hz), \ 6.71 \ (1H, d, J=2.4Hz), \ 6.85 \ (1H, d, J=8.4Hz)$

[0300]

実施例 4 6

4-({4-[3-(カルバモイルメチルアミノ)プロポキシ]フェニル メチ

ν) -3-(β-D-グルコピラノシルオキシ) <math>-5-7プロピルー1H-ピラゾール

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}$ -5-イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-(\{4-[3-(カルバモイルメチルアミノ)プロポキシ]フェニル<math>\}$ メチル)-5-イソプロピル-1 H-ピラゾールを用いて実施例6と同様の方法で標記化合物を得た。

[0301]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.2 (6H, m), 1.85-2.0 (2H, m), 2.75 (2H, t, J=6.9Hz), 2.8-2.95 (1H, m), 3.25 (2H, s), 3.3-3.45 (4H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.3Hz), 3.8-3.9 (1H, m), 4.02 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0302]

実施例 4 7

0

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-5-$ イソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-[(4-\{3-[(S)-1-(3-\sqrt{2})])]$ フロポキシ $\}$ フェニル)メチル]-5-イソプロピルー1 Hーピラゾールを用いて実施例 $\{1,2,3,4\}$ と同様の方法で標記化合物を得た

[0303]

 1_{H-NMR} (CD₃OD) δ p pm:

1.05-1.2 (6H, m), 1.26 (3H, d, J=7.0Hz), 1.85-2.0 (2H, m), 2.6-2.75 (2H,

m), 2.8-2.95 (1H, m), 3.19 (1H, q, J=7.0Hz), 3.25-3.45 (4H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.0Hz), 3.8-3.9 (1H, m), 4.0 (2H, t, J=6.2Hz), 5.0-5.15 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0304]

実施例 4 8

 $4-\left[\left(4-\left\{3-\left[1-\pi \nu \right]\right)\right]$ プロポ キシ フェニル メチル $\left[-3-\left(\beta-D-\sigma \nu\right)\right]$ プロポ ソプロピル $\left[-1\right]$ $\left[-3-\left(\beta-D-\sigma \nu\right)\right]$ フェニル $\left[-3-\left(\beta-D-\sigma \nu\right)\right]$

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-$ 5ーイソプロピルー1 Hーピラゾールの代わりに3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ) $-4-[(4-\{3-[1-$ カルバモイル-1-(メチル) エチルアミノ] プロポキシ $\}$ フェニル)メチル]-5ーイソプロピルー1 Hーピラゾールを用いて実施例6 と同様の方法で標記化合物を得た。

[0305]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.2 (6H, m), 1.29 (6H, s), 1.85-1.95 (2H, m), 2.65 (2H, t, J=7.1Hz), 2.8-2.95 (1H, m), 3.25-3.45 (4H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=15.9Hz), 3.8-3.9 (1H, m), 4.02 (2H, t, J=5.9Hz), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0306]

実施例 4 9

 $4-\left(\{4-\{2-()\pi\nu/(\pi T)\pi T) + (1+1)\} - (1+1)\} - (1+1)\} - (1+1)$ - (1+1)

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ アミノプロポキシ)フェニル]メチル $\}-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6-テトラ-O-ア

[0307]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 2.29 (3H, s), 2.75-2.85 (1H, m), 2.94 (2H, t, J=5.2Hz), 3.25-3.4 (6H, m), 3.6-3.75 (3H, m), 3.75-3.85 (1H, m), 4.02 (2H, t, J=5.2Hz), 4.95-5.1 (1H, m), 6.64 (1H, dd, J=8.4Hz, 2.5Hz), 6.74 (1H, d, J=2.5Hz), 6.86 (1H, d, J=8.4Hz)

[0308]

実施例50

 $4-\left[\left(4-\left\{2-\left[2-\left(カルバモイル\right)\right. エチルアミノ\right]\right. エトキシ <math>\left[-2-y\right]$ チルフェニル) メチル $\left[-3-\left(\beta-D-f\right)$ ルコピラノシルオキシ $\left[-5-f\right]$ プロピル-1 H-ピラゾール

3-(2,3,4,6-r) -O-r -V-r -D-f ルコピラノシルオキシ) $-4-\{[4-(3-r)]$ -D-f -D-

[0309]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 2.29 (3H, s), 2.44 (2H, t, J=6.8Hz), 2.7-2.85 (1H, m), 2.9 (2H, t, J=6.8Hz), 2.95 (2H, t, J=5.1Hz), 3.25-3.4 (4H, m), 3.6-3.7 5 (3H, m), 3.75-3.85 (1H, m), 4.03 (2H, t, J=5.1Hz), 4.95-5.05 (1H, m), 6.64 (1H, dd, J=8.5Hz, 2.4Hz), 6.74 (1H, d, J=2.4Hz), 6.86 (1H, d, J=8.5 Hz)

[0310]

実施例 5 1

 $4-\left[\left(4-\left\{3-\left[1-\pi \nu \right] \right) + 1-\left(3+\nu \right) +$

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ D-グルコピラノシルオ キシ) -4- | [4-(3-ヒドロキシプロポキシ) -2-メチルフェニル] メ $\mathcal{F}_{\mathcal{N}}$ -5-7 $\mathcal{F}_{\mathcal{N}}$ $\mathcal{F}_{$ ラン (2 m L) 溶液に、2 - メチル-2- (2 - ニトロベンゼンスルホニルアミ ノ) プロピオンアミド(0.14g)、トリフェニルホスフィン(0.12g) およびアゾジカルボン酸ジエチル(40%トルエン溶液、0.26mL)を加え 、室温で一晩撹拌した。反応混合物をシリカゲルカラムクロマトグラフィー(溶 出溶媒:n-ヘキサン/酢酸エチル=1/4~塩化メチレン/メタノール=20 /1)で精製して3-(2, 3, 4, 6-テトラー0-アセチルー $\beta-$ D-グル トロベンゼンスルホニル) -N-[1-カルバモイル<math>-1-(メチル) エチル] |r| プロポキシ) |-2| メチルフェニル] メチル |-1| H |-1| H |-1|32g)を得た。これをアセトニトリル(3mL)に溶解し、炭酸セシウム(0. 46g) およびチオフェノール (0. 038mL) を加え、室温で1時間撹 拌した。反応混合物を水中に注ぎ、酢酸エチルで抽出した。有機層を水および飽 和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。 残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エ チル=1/5~塩化メチレン/メタノール=15/1~10/1)で精製して3 -(2, 3, 4, 6- テトラーO- アセチルーβ- D- グルコピラノシルオキシ) -4- [(4- |3- [1-カルバモイル-1- (メチル) エチルアミノ] プ ロポキシ -2-メチルフェニル)メチル]-5-イソプロピルー1H-ピラゾ ール (20mg) を得た。これをメタノール (1mL) に溶解し、ナトリウムメ トキシド (28%メタノール溶液、0.01mL) を加え、室温で1時間撹拌し た。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶媒:蒸留水、 溶出溶媒:メタノール)で精製することにより標記化合物(11mg)を得た。

[0311]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.29 (6H, s), 1.85-1.95 (2H, m), 2.29 (3H, s), 2.65 (2H, t, J=6.9Hz), 2.75-2.85 (1H, m), 3.25-3.4 (4H, m), 3.55-3.75 (3H, m), 3.75-3.85 (1H, m), 4.01 (2H, t, J=6.1Hz), 4.95-5.05 (1H, m), 6.61 (1H, dd, J=8.5Hz, 2.6Hz), 6.7 (1H, d, J=2.6Hz), 6.85 (1H, d, J=8.5Hz)

[0312]

実施例 5 2

 $4-[(4-\{3-[2-(カルバモイル) エチルアミノ] プロポキシ\} -2- メチルフェニル) メチル] <math>-3-(\beta-D-グルコピラノシルオキシ) -5-イソプロピル-1 H-ピラゾール$

2-メチル-2-(2-ニトロベンゼンスルホニルアミノ)プロピオンアミドの代わりに3-(2-ニトロベンゼンスルホニルアミノ)プロピオンアミドを用いて実施例51と同様の方法で標記化合物を得た。

[0313]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 1.85-2.0 (2H, m), 2.29 (3H, s), 2.42 (2H, t, J=6.9Hz), 2.7-2.9 (5H, m), 3.25-3.4 (4H, m), 3.6-3.75 (3H, m), 3.75-3.85 (1H, m), 3.99 (2H, t, J=6.2Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.4Hz, 2.4Hz), 6.71 (1H, d, J=2.4Hz), 6.85 (1H, d, J=8.4Hz)

[0314]

実施例 5 3

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-\left[(4-\{(R)-2-\mathsf{LFD}+2-3-\{(2-\mathsf{LFD}+2-1-(\mathsf{LFD}+2)+2)\}-1-(\mathcal{I})\right]$ エチルアミノ] プロポキシ $\{(2-\mathsf{LFD}+2-1-(\mathsf{LFD}+2)+2)\}$ フェニル)メチル $\{(3-\mathsf{LFD}+2)\}$ フェニル)メチル $\{(3-\mathsf{LFD}+2)\}$ フェニル)

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ)-4-[(4-ビドロキシフェニル)メチル]-5-イソプロピルー1 H -ピラゾール(0.55g)、1-(3-ニトロベンゼンスルホニルオキシ)-

[0315]

 1_{H-NMR} (CD₃OD) δ ppm:

1.0 (3H, s), 1.05-1.15 (6H, m), 2.68 (1H, dd, J=11.6Hz, 8.1Hz), 2.78 (1H, dd, J=11.6Hz, 3.8Hz), 2.8-2.95 (1H, m), 3.25-3.55 (8H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.1Hz), 3.8-4.0 (4H, m), 5.0-5.1 (1H, m), 6.75-6.8 5 (2H, m), 7.05-7.15 (2H, m)

[0316]

実施例 5 4

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-(\{4-[(R)-2-\mathcal{I})\}$ キシ $-3-(2-\mathcal{I})$ アロポキシ] フェニル メチル) $-5-\mathcal{I}$ ファール -1 Hーピラゾール

2-アミノー2-メチルー1,3-プロパンジオールの代わりに2-アミノエタノールを用いて実施例53と同様の方法で標記化合物を得た。

[0317]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.2 (6H, m), 2.65-2.95 (5H, m), 3.25-3.45 (4H, m), 3.6-3.8 (5H, m), 3.8-3.9 (1H, m), 3.91 (2H, d, J=5.4Hz), 4.0-4.1 (1H, m), 5.0-5.1 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0318]

実施例 5 5

 $3-(\beta-D-\mathcal{I})$ カー $3-\mathcal{I}$ カ

 $3-(2, 3, 4, 6-テトラーO-アセチルー<math>\beta-D-グルコピラノシルオ$ キシ) -4- {[4-(3-アミノプロポキシ) -2-メチルフェニル] メチル $\{ -5 - 4 \, \text{Y} \, \text{T} \, \text{T} \, \text{H} - \text{L} \, \text{F} \, \text{J} \, \text{H} - \text{L} \, \text{F} \, \text{J} \, \text{H} \, \text{H} \, \text{H} \, \text{L} \, \text{H} \, \text{$ 3 m L) 溶液にN-(ベンジルオキシカルボニル)-1 H-ピラゾール-1-カ ルボキサミジン (0. 27g) を加え、60℃で20時間撹拌した。反応混合物 を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:n-ヘキサン/酢酸エチル=1/1~酢酸エチル~酢酸エチル/エタノール=10/ 1) で精製して3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコ ピラノシルオキシ) -4-(4-[3-(N'-ベンジルオキシカルボニルグアニジノ)プロポキシ] -2-メチルフェニル メチル) -5-イソプロピルー 1H-ピラゾール (50mg) を得た。これをメタノール (1mL) に溶解し、 ナトリウムメトキシド(28%メタノール溶液、0.01mL)を加え、室温で 1時間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相抽出法(洗浄溶 媒:蒸留水、溶出溶媒:メタノール)で精製することにより4-({4-[3-(N' - ベンジルオキシカルボニルグアニジノ) プロポキシ<math>] - 2 - メチルフェニル \mid メチル) -3-(eta-D-グルコピラノシルオキシ<math>) -5-イソプロピル-1H-ピラゾール(35mg)を得た。これをメタノール(2mL)に溶解し 、10%パラジウム炭素粉末(15mg)を加え、水素雰囲気下室温で2時間撹 拌した。不溶物を濾去し、濾液の溶媒を減圧下留去することにより標記化合物(27mg) を得た。

[0319]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.2 (6H, m), 1.95-2.05 (2H, m), 2.29 (3H, s), 2.75-2.9 (1H, m), 3.2 5-3.45 (6H, m), 3.55-3.75 (3H, m), 3.75-3.85 (1H, m), 4.01 (2H, t, J=5.7 Hz), 4.95-5.05 (1H, m), 6.64 (1H, dd, J=8.6Hz, 2.5Hz), 6.73 (1H, d, J=2.5Hz), 6.87 (1H, d, J=8.6Hz)

[0320]

実施例 5 6

 $3-(\beta-D-f)$ ルコピラノシルオキシ) $-4-\{[4-(2-f)]$ エトキシ)-2-xチルフェニル] メチル $\{-5-f\}$ つこっぱ カー $\{-1,3,4,6-f\}$ トラー〇-f ヤン) $-4-\{[4-(3-f)]$ カーカー $\{-1,3-f\}$ カーカー

[0321]

 1_{H-NMR} (CD₃OD) δ ppm:

 $1.05-1.15 \ (6H, m), \ 2.3 \ (3H, s), \ 2.75-2.9 \ (1H, m), \ 3.25-3.4 \ (4H, m), \ 3.55$ $(2H, t, J=5.0Hz), \ 3.6-3.75 \ (3H, m), \ 3.75-3.85 \ (1H, m), \ 4.06 \ (2H, t, J=5.0Hz), \ 5.02 \ (1H, d, J=7.0Hz), \ 6.65 \ (1H, dd, J=8.5Hz, \ 2.6Hz), \ 6.75 \ (1H, dd, J=2.6Hz), \ 6.88 \ (1H, d, J=8.5Hz)$

[0322]

実施例 5 7

チル - 5-イソプロピル-1H-ピラゾール(1g)の塩化メチレン(16m L) 溶液に、トリエチルアミン (0.29mL) およびメタンスルホニルクロリ ド (0. 15mL) を加え、室温で3時間撹拌した。反応混合物を0.5mol /L塩酸中に注ぎ、酢酸エチルで抽出した。有機層を水で洗浄し、無水硫酸マグ ネシウムで乾燥後、溶媒を減圧下留去することにより3-(2,3,4,6-テ トラーΟーアセチルーβ-Dーグルコピラノシルオキシ) -5-イソプロピルー 4-(4-[3-(メタンスルホニルオキシ)プロポキシ] <math>-2-メチルフェ 3, 4, 6ーテトラーOーアセチルー β ーDーグルコピラノシルオキシ)-5ー イソプロピルー4ー(|4- [3- (メタンスルホニルオキシ) プロポキシ] ー 2-メチルフェニル $\}$ メチル)-1 H-ピラゾール(0.2g) をアセトニトリ ル (2 m L) -エタノール (2 m L) 混合溶媒に溶解し、2 -アミノー2 -メチ ルー1-プロパノール(0.25g)および触媒量のヨウ化ナトリウムを加え、 60℃で二日間撹拌した。反応混合物を減圧下濃縮後、残渣をメタノール (3 m L) に溶解し、ナトリウムメトキシド (28%メタノール溶液、0.16mL) を加え、室温で1時間撹拌した。反応混合物を減圧下濃縮し、残渣をODS固相 抽出法(洗浄溶媒:蒸留水、溶出溶媒:メタノール)で精製することにより標記 化合物 (0.13g) を得た。

[0323]

 1_{H-NMR} (CD₃OD) δ p p m:

1.0-1.15 (12H, m), 1.85-2.0 (2H, m), 2.29 (3H, s), 2.65-2.85 (3H, m), 3. 25-3.4 (6H, m), 3.6-3.75 (3H, m), 3.75-3.85 (1H, m), 4.0 (2H, t, J=5.6Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.5Hz, 2.6Hz), 6.71 (1H, d, J=2.6Hz), 6.85 (1H, d, J=8.5Hz)

[0324]

実施例 5 8

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-(\{4-[3-(2-\mathcal{I})]$ シエチルアミノ) プロポキシ] $-2-\mathcal{I}$ ルフェニル $\{\mathcal{I}\}$ メチル) $-5-\mathcal{I}$ プロピルー 1 \mathbf{H} ーピラゾール

2-アミノー2-メチル-1-プロパノールの代わりに2-アミノエタノールを用いて実施例57と同様の方法で標記化合物を得た。

[0325]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 1.9-2.0 (2H, m), 2.29 (3H, s), 2.7-2.85 (5H, m), 3.25 -3.4 (4H, m), 3.55-3.75 (5H, m), 3.75-3.85 (1H, m), 4.0 (2H, t, J=5.9Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.5Hz, 2.5Hz), 6.71 (1H, d, J=2.5Hz), 6.85 (1H, d, J=8.5Hz)

[0326]

実施例 5 9

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-[(4-\{3-[2-ヒドロキシ-1-(ヒドロキシメチル) エチルアミノ] プロポキシ\ <math>-2-$ メチルフェニル) メチル] -5-イソプロピル-1 H-ピラゾール

2-アミノー2-メチルー1-プロパノールの代わりに2-アミノー1,3-プロパンジオールを用いて実施例57と同様の方法で標記化合物を得た。

[0327]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 1.9-2.0 (2H, m), 2.29 (3H, s), 2.65-2.9 (4H, m), 3.25 -3.4 (4H, m), 3.54 (2H, dd, J=11.1Hz, 5.8Hz), 3.55-3.75 (5H, m), 3.75-3. 85 (1H, m), 4.01 (2H, t, J=6.0Hz), 4.95-5.05 (1H, m), 6.62 (1H, dd, J=8.6Hz), 2.5Hz), 6.72 (1H, d, J=2.5Hz), 6.85 (1H, d, J=8.6Hz)

[0328]

実施例60

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-[(4-\{3-[2-ヒドロキシ-1-(ヒドロキシメチル) エチルアミノ] プロポキシ フェニル) メチル] <math>-5-4$ ソプロピルー1H-ピラゾール

3-(2,3,4,6-テトラーO-アセチルー $\beta-$ Dーグルコピラノシルオキシ $)-4-\{(4-(3-$ ヒドロキシプロポキシ)-2-メチルフェニル]メチル $\}-5-$ イソプロピルー1 H-ピラゾールの代わりに3-(2,3,4,6)

[0329]

1H-NMR (CD3OD) δppm:

1.05-1.2 (6H, m), 1.9-2.0 (2H, m), 2.65-2.75 (1H, m), 2.8-2.95 (3H, m), 3.25-3.45 (4H, m), 3.54 (2H, dd, J=11.2Hz, 5.9Hz), 3.55-3.7 (4H, m), 3.7 3 (1H, d, J=15.8Hz), 3.8-3.9 (1H, m), 4.02 (2H, t, J=6.1Hz), 5.0-5.15 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0330]

実施例61

 $3-(\beta-D-\mathcal{I})$ カー $3-(2-\mathcal{I})$ カー $3-(2-\mathcal{I})$ カー $3-(3-\mathcal{I})$ カー $3-(3-\mathcal{I}$

3-(2,3,4,6-テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ビドロキシプロポキシ)-2-メチルフェニル]メチル $\{-5-$ イソプロピル-1 H-ピラゾールの代わりに3-(2,3,4,6--テトラ-O-アセチル $-\beta-$ D-グルコピラノシルオキシ) $-4-\{[4-(3-$ ビドロキシプロポキシ)フェニル]メチル $\{-5-$ イソプロピル-1 H-ピラゾールを用いて実施例 57 と同様の方法で標記化合物を得た。

[0331]

 1_{H-NMR} (CD₃OD) δ ppm:

1.0-1.15 (12H, m), 1.85-2.0 (2H, m), 2.65-2.8 (2H, m), 2.8-2.95 (1H, m), 3.25-3.45 (6H, m), 3.6-3.8 (3H, m), 3.8-3.9 (1H, m), 3.95-4.05 (2H, m), 5.0-5.15 (1H, m), 6.75-6.85 (2H, m), 7.05-7.15 (2H, m)

[0332]

実施例 6 2

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-4-[(4-\{2-[2-\mathcal{I})\}]$ ン $-1-(\mathcal{I})$ エチルアミノ] エトキシ $-2-\mathcal{I}$ エチルフェニル) メチル] $-5-\mathcal{I}$ プロピル-1 H-ピラゾール

 $3-(2,3,4,6-r+b-O-rセチル-β-D-グルコピラノシルオキシ)-4-{[4-(3-ヒドロキシプロポキシ)-2-メチルフェニル]メチル}-5-イソプロピルー1H-ピラゾールの代わりに<math>3-(2,3,4,6-r+b-O-rセチル-β-D-グルコピラノシルオキシ)-4-{[4-(2-ヒドロキシエトキシ)-2-メチルフェニル]メチル}-5-イソプロピルー1H-ピラゾールを用い、<math>2-r$ ミノー2-メチルー1-プロパノールの代わりに2-アミノー1,3-プロパンジオールを用いて実施例57と同様の方法で標記化合物を得た。

[0333]

 1_{H-NMR} (CD₃OD) δ p p m:

 $1.05-1.15 \ (6H, m), \ 2.29 \ (3H, s), \ 2.7-2.85 \ (2H, m), \ 3.04 \ (2H, t, J=5.2Hz), \\ 3.25-3.4 \ (4H, m), \ 3.55 \ (2H, dd, J=11.2Hz, 5.8Hz), \ 3.6-3.75 \ (5H, m), \ 3.75-3.85 \ (1H, m), \ 4.06 \ (2H, t, J=5.2Hz), \ 4.95-5.1 \ (1H, m), \ 6.65 \ (1H, dd, J=8.5Hz), \ 2.7Hz), \ 6.75 \ (1H, d, J=2.7Hz), \ 6.87 \ (1H, d, J=8.5Hz)$

[0334]

実施例63

 $3-(\beta-D-\mathcal{I})$ カー ($14-[2-(2-\mathcal{I})]$ カー ($14-[2-(2-\mathcal{I})]$ カー ($14-[2-(2-\mathcal{I})]$ カー ($14-\mathcal{I}$ カー

3-(2,3,4,6-r) -O-r -V-r -D-r -D-

[0335]

1H-NMR (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 2.29 (3H, s), 2.75-2.85 (3H, m), 2.99 (2H, t, J=5.2Hz), 3.25-3.4 (4H, m), 3.6-3.75 (5H, m), 3.75-3.85 (1H, m), 4.05 (2H, t, J=5.2Hz), 4.95-5.1 (1H, m), 6.65 (1H, dd, J=8.4Hz), 6.74 (1H, d, J=2.4Hz), 6.87 (1H, d, J=8.4Hz)

[0336]

実施例64

 $3-(\beta-D-\mathcal{I})$ ルコピラノシルオキシ) $-5-\mathcal{I}$ ソプロピル $-4-(4-(3-\mathcal{I}))$ フェニル メチル)-1 H - ピラゾール

3-(2,3,4,6-r) -O-r -V-r -B-D-f ルコピラノシルオキシ) $-4-\{[4-(3-v)] + 2-v + 2$

[0337]

 1_{H-NMR} (CD₃OD) δ ppm:

1.05-1.15 (6H, m), 1.9-2.0 (2H, m), 2.77 (2H, t, J=7.2Hz), 2.8-2.95 (1H, m), 3.25-3.45 (4H, m), 3.6-3.7 (2H, m), 3.73 (1H, d, J=16.3Hz), 3.75-3. 9 (3H, m), 4.0 (2H, t, J=6.0Hz), 5.0-5.1 (1H, m), 6.7-6.8 (2H, m), 7.05-7.15 (2H, m), 7.35-7.45 (1H, m), 7.8-7.85 (1H, m), 8.4-8.45 (1H, m), 8.5 -8.55 (1H, m)

[0338]

実施例 6 5

 $4-\{[4-(2-r ミノエトキシ)-2-メチルフェニル] メチル <math>\{-3-(2-r)\}$

 β -D-グルコピラノシルオキシ) -5-イソプロピルー1 H-ピラゾール 3-(2, 3, 4, 6-テトラー0-アセチルー β -D-グルコピラノシルオキシ) -4- $\{[4$ -(3-アミノプロポキシ) フェニル] メチル $\}$ -5-イソプロピルー1 H-ピラゾールの代わりに3-(2, 3, 4, 6-テトラー0-アセチルー β -D-グルコピラノシルオキシ) -4- $\{[4$ -(2-アミノエトキシ) -2-メチルフェニル] メチル $\}$ -5-イソプロピルー1 H-ピラゾールを用いて実施例6と同様の方法で標記化合物を得た。

[0339]

 1_{H-NMR} (CD₃OD) δ p p m:

1.05-1.15 (6H, m), 2.29 (3H, s), 2.7-2.85 (1H, m), 2.99 (2H, t, J=5.2Hz), 3.25-3.4 (4H, m), 3.55-3.75 (3H, m), 3.75-3.85 (1H, m), 3.97 (2H, t, J=5.2Hz), 4.95-5.05 (1H, m), 6.64 (1H, dd, J=8.6Hz, 2.7Hz), 6.86 (1H, d, J=8.6Hz)

[0340]

試験例1

ヒトSGLT1活性阻害作用確認試験

1) ヒトSGLT1のクローニングおよび発現ベクターへの組み換え

ヒト小腸由来の総RNA(Ori gene)を、オリゴdTをプライマーとして逆転写し、PCR増幅用cDNAライブラリーを作成した。このcDNAライブラリーを鋳型として、Hedigerらにより報告されたヒトSGLT1(ACCESSION:M24847)の1番から2005番までの塩基配列をPCR法により増幅し、pcDNA3.1(一)(Invitrogen)のマルチクローニング部位に挿入した。挿入したDNAの塩基配列は、報告されていた塩基配列と完全に一致していた。

[0341]

2) ヒトSGLT1安定発現株の樹立

ヒトSGLT1発現ベクターをScaIで消化して直鎖状DNAとした後、CHO-K1細胞にリポフェクション法 (Effectene Transfection Reagent:QIAGEN) にて導入した。1mg/mL G4

[0342]

3) メチル $-\alpha$ - D - グルコピラノシド $(\alpha - MG)$ 取り込み阻害活性の測定 96 穴プレートにCS1-5-11Dを 3×10 4個/穴で播種し、2日間培 養した後に取り込み実験に供した。取り込み用緩衝液(140mM塩化ナトリウ ム、2mM塩化カリウム、1mM塩化カルシウム、1mM塩化マグネシウム、1 $0 \, \text{mM} \, 2 - \left[4 - \left(2 - \text{ヒドロキシエチル} \right) - 1 - \text{ピペラジニル} \right] エタンスルホ$ ン酸、5mMトリス(ヒドロキシメチル)アミノメタンを含む緩衝液 р Н 7. 4) には、非放射ラベル体(Sigma)と 14 Cラベル体(Amersham P harmacia Biotech) のα-MG混合物を最終濃度が1mMとな るように混和して添加した。試験化合物はジメチルスルホキシドに溶解した後、 蒸留水にて適宜希釈して1mMα-MGを含む取り込み用緩衝液に添加し、測定 用緩衝液とした。対照群用には試験化合物を含まない測定用緩衝液を、基礎取り 込み測定用には塩化ナトリウムに替えて140mMの塩化コリンを含む基礎取り 込み測定用緩衝液を調製した。培養したCS1の培地を除去し、前処置用緩衝液 $(\alpha-MG$ を含まない基礎取り込み用緩衝液)を1穴あたり180 μ L加え、37℃で10分間静置した。同一操作をもう1度繰り返した後、前処置用緩衝液を 除去し、測定用緩衝液および基礎取り込み用緩衝液を1穴当たり75 µ L ずつ加 え37℃で静置した。1時間後に測定用緩衝液を除去し、1穴当たり180μL の洗浄用緩衝液(10mM非ラベル体α-MGを含む基礎取り込み用緩衝液)で 2回洗浄した。1穴当たり75μLの0.2mol/L水酸化ナトリウムで細胞 を溶解し、その液をピコプレート (Packard) に移した。150μLのマ イクロシンチ40 (Packard) を加えて混和し、マイクロシンチレーショ ンカウンター トップカウント (Packard) にて放射活性を計測した。対 照群の取り込みから基礎取り込み量を差し引いた値を100%として、試験化合 物の各濃度におけるメチルー α - D - グルコピラノシドの取り込み量を算出した [0343]

試験化合物	IC ₅₀ 値(nM)	
実施例6	3 0 4	
実施例 9	4 2	
実施例10	1 6 9	
実施例13	267	
実施例21	1 2 7	
実施例22	2 3 3	
実施例24	6 1	
実施例28	9 0	
実施例29	1 9	
実施例30	2 5 7	
実施例31	166	
実施例32	1 1 3	
実施例33	6 5	
実施例35	1 6 0	
実施例36	3 8 3	
実施例37	1 5 8	
実施例38	2 4 6	
実施例45	6 8	
実施例48	5 4	
実施例49	1 4 8	
実施例50	1 5 9	
実施例51	2 2	
実施例52	131	
実施例55	9 8	
実施例56	3 8	
実施例57	4 3	
実施例58	100	
実施例59	7 1	
実施例61	199	
実施例62	1 3 8	
実施例63	3 2 2	
実施例64	178	

[0344]

ラットにおける血糖値上昇抑制作用確認試験

1)糖尿病モデルラットの作製

8週齢のラットにニコチンアミド(230mg/kg)を腹腔内投与し、15 分後にエーテル麻酔下でストレプトゾトシン(85mg/kg)を尾静脈注射した。投与約1週間後にラットを終夜絶食し、グルコース負荷(2g/kg)試験を行った。1時間後の血漿中グルコース濃度が300mg/dL以上を示した動物を選択し、液体飼料負荷試験に用いた。

[0345]

2)液体飼料負荷試験

糖尿病モデルラットを終夜絶食後、薬物投与群では蒸留水または0.5%カルボキシメチルセルロース水溶液に溶解した薬物(1 mg/kg)を、対照群には蒸留水または0.5%カルボキシメチルセルロース水溶液のみを経口投与した。薬物投与直後に、17.25kcal/kgの液体飼料(オリエンタル酵母工業:No.038 コントロール区 デキストリン・マルトース配合)を経口投与した。採血は、薬物投与直前および薬物投与後経時的に尾動脈より行い、直ちにヘパリン処理した。血液は遠心分離後、血漿を分取してグルコース濃度をグルコースBテストワコー(和光純薬)にて定量した。薬物投与直前(0時間)および薬物投与後0.5時間、1時間における血漿中グルコース濃度は、表2の通りである。尚、表中の数値は、平均値±標準誤差で表す。

[0346]

	血漿中グルコース濃度 (mg/dL)		
試験化合物	O時間	0. 5時間	1時間
対照群	95 ± 5	219 ± 12	246 ± 17
実施例6	97 ± 10	126 ± 12	140 ± 13
対照群	122 ± 6	258 ± 32	260 ± 35
実施例10	120 ± 10	145 ± 5	164 ± 6
対照群	106 ± 4	199 ± 8	196 ± 15
実施例13	108 ± 8	127 ± 7	135 ± 7
対照群	115 ± 3	276 ± 25	261 ± 32
実施例21	122 ± 11	211 ± 22	242 ± 35
実施例35	113 ± 4	188 ± 16	229 ± 25
対照群	140 ± 13	313 ± 48	283 ± 52
実施例24	146 ± 7	210 ± 33	228 ± 50
対照群	131 ± 7	330 ± 37	306 ± 45
実施例37	132 ± 5	231 ± 21	286 ± 31
対照群	123 ± 10	305 ± 18	304 ± 23
実施例45	129 ± 11	169 ± 18	182 ± 27
対照群	123 ± 8	292 ± 28	294 ± 29
実施例55	122 ± 5	200 ± 16	211 ± 18
実施例59	115 ± 7	143 ± 4	154 ± 13
対照群	121 ± 7	313 ± 33	303 ± 63
実施例56	109 ± 10	146 ± 7	165 ± 17
対照群	91 ± 12	238 ± 4	213 ± 22
実施例64	116 ± 2	141 ± 12	148 ± 22

[0347]

【発明の効果】

本発明の前記一般式(I)で表されるピラゾール誘導体、その薬理学的に許容される塩およびそれらのプロドラッグは、ヒトSGLT1活性阻害作用を発現し、小腸でのグルコース等の糖質吸収を阻害して血糖値の上昇を抑制することができ、特に、この作用機作に基づき糖質吸収を遅延させることにより食後高血糖を是正することができる。それ故、本発明により、優れた糖尿病、耐糖能異常、糖尿病性合併症、肥満症などの高血糖症が起因する疾患の予防または治療剤を提供することができる。また、本発明の前記一般式(II)で表されるピラゾール誘導体およびその塩は、前記一般式(I)で表されるピラゾール誘導体を製造する際の中間体として重要であり、当該化合物を経由することにより本発明の前記一

ページ: 140/E

般式(I)で表される化合物を容易に製造することができる。

【書類名】 要約書

【要約】

【課題】優れたヒトSGLT1活性阻害作用を発現し、糖尿病、耐糖能異常、糖 尿病性合併症、肥満症等の高血糖症に起因する疾患の予防又は治療剤として有用 なピラゾール誘導体及びその製造中間体を提供する。

【解決手段】

【化1】

(式中の R^1 はH、置換可アルキル基等であり、Q及びTはどちらか一方が式 【化2】

又は式

【化3】

で表される基であり、他方が置換可アルキル基又はシクロアルキル基であり、R 2 はH、ハロゲン原子、OH、置換可アルキル基、置換可アルコキシ基等であり、Xは単結合、O等であり、Yは置換可アルキレン基等であり、ZはH、置換可アルキル基等であり、 R^3 、 R^5 及び R^6 は H、ハロゲン原子、アルキル基等である)で表される化合物、その薬理学的に許容される塩及びそれらのプロドラッグ。当該化合物を有効成分として含有することにより、優れた食後高血糖抑制剤等を製造することができる。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2002-244381

受付番号

50201254618

書類名

特許願

担当官

第五担当上席 0094

作成日

平成14年 8月26日

<認定情報・付加情報>

【提出日】

平成14年 8月23日

特願2002-244381

出願人履歴情報

識別番号

[000104560]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月31日 新規登録 長野県松本市芳野19番48号 キッセイ薬品工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
TREFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.