PHY1013S ELECTRICITY GAUSS'S LAW

GAUSS'S LAW

Learning outcomes:

At the end of this chapter you should be able to...

- Calculate the electric flux through a surface.
- Use Gauss's Law to calculate the electric field due to symmetric charge distributions.
- Use Gauss's Law to determine the charge distribution on hollow conductors in electric fields.

ELECTRICITY PHY1013S GAUSS'S LAW **FLUX** \hat{n} is the unit vector normal to the surface. $\vec{A} = A\hat{n}$ is the surface's area vector. The amount of flow, Φ , through the surface depends on: the area of the surface, A; lacktriangle the angle between \vec{v} and \vec{A} . (Φ is a maximum when $\theta = 0^{\circ}$; a minimum for $\theta = 90^{\circ}$.) $\Phi = \vec{v} \cdot \vec{A}$ Hence: $\Phi = vA\cos\theta$ or just: Replacing the velocity vector with $\Phi_e = \vec{E} \cdot \vec{A}$ the electric field vector \vec{E} , we get:

Gauss's law

GAUSS' LAW

The net electric flux through a Gaussian surface is proportional to the net charge enclosed: $\varepsilon_0 \Phi = Q_{\rm in}$ Substituting for Φ , $\boxed{\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = Q_{\rm in}}$ Notes: $\clubsuit Q_{\rm in}$ is the *net*, *enclosed* charge. $\clubsuit \vec{E}$ is the *total* field through the surface. \clubsuit These equations are valid only in vacuum (or air). \clubsuit Gauss's Law is both easier to use and more universal/fundamental than Coulomb's Law.

USING GAUSS'S LAW TO DETERMINE ELECTRIC FIELDS
 Draw the situation.
 Choose a Gaussian surface appropriate to the symmetry.
 Apply Gauss's law: ε₀ Φ Ē · dĀ = Q in

ELECTRICITY

PHY1013S

ELECTRICITY

GAUSS'S LAW

GAUSS ⇔ COULOMB

- Draw the situation...
- Choose a Gaussian surface appropriate to the symmetry... (For a point charge, choose a concentric sphere as a Gaussian surface.)

The electric field is constant over the surface and directed radially outwards, so $\vec{E} \cdot d\vec{A} = E dA$

Apply Gauss's law...

$$Q_{\rm in} = \varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 \oint E \, dA$$

$$\therefore Q_{\rm in} = \varepsilon_0 E \oint dA$$

$$\therefore Q_{\rm in} = \varepsilon_0 E 4\pi r^2$$

PHY1010%/ ELECTRICITY GAUSS'S LAW ZERO FIELD

If there is no electric field at all, quite obviously the net flux through any Gaussian surface is also zero.

CHARGE ON AN ISOLATED CONDUCTOR

Any excess charge added to an isolated conductor moves entirely to the external surface of that conductor.

- The field inside the conductor must be zero (otherwise there would be currents inside the conductor)...
- Therefore there is no flux through the Gaussian surfaces...
- .. there can be no charge within the Gaussian surfaces...
- : all the charge must lie outside the Gaussian surfaces...

i.e. ...

All the charge lies on the external surface of the conductor.

PHY1013S

EXTERNAL FIELD DUE TO A CHARGED CONDUCTOR

For a non-spherical conductor, the surface charge density, η , varies over the surface, and the field established around the conductor is very complex.

However, for a point just outside the surface, the adjacent section of surface is small enough to be considered as flat, and the charge density as uniform...

PHY1013S

ELECTRICITY

GAUSS'S LAW

EXTERNAL FIELD DUE TO A CHARGED CONDUCTOR

A cylindrical Gaussian surface with an end cap area of A is embedded in the surface of the conductor as shown.

The flux through the outer cap is EA.

The total charge enclosed by the cylinder is given by ηA .

Therefore, according to Gauss's law: $\varepsilon_0 EA = \eta A$

and hence:

PHY1013S

ELECTRICITY

GAUSS'S LAW

EXTERNAL FIELD DUE TO A CHARGED CONDUCTOR

Summary:

 The electric field is zero everywhere inside the conductor.

- Any excess charge is all on the surface.
- The external field lies perpendicular to the surface and is given by $E = \frac{\eta}{\varepsilon_0}$.
- On an irregularly shaped conductor the charge collects around sharp points, but $E = \frac{\eta}{c}$ still holds true.

PHY1013S ELECTRICITY GAUSS'S LAW

CYLINDRICAL SYMMETRY

For a long, thin, cylindrical insulator with a uniform linear charge density of $\lambda \dots$ we choose a cylindrical Gaussian surface with radius r and height L:

The area of the curved surface is $2\pi r L$.

By symmetry, the total flux through the surface is $E 2\pi r L$.

The total charge enclosed by the cylinder is λL .

Therefore, according to Gauss's law: $\varepsilon_0 E 2\pi r L = \lambda L$

and hence: $E = \frac{\lambda}{2\pi\varepsilon_0 r}$

PHY1013S ELECTRICITY GAUSS'S LAW PLANAR SYMMETRY

For a large, flat, thin insulating sheet with a uniform surface charge density of $\eta \dots$ we choose a cylindrical Gaussian surface with end cap area A, which pierces the sheet perpendicularly.

According to Gauss's law: $\varepsilon_0(EA + EA) = \eta A$

and hence: $E = \frac{\eta}{2\varepsilon_0}$

PHY1013S

PLANAR SYMMETRY

For a charged large, flat, thin conducting plate:

When two oppositely charged plates are brought close together, all the charge moves to the inner faces:

surface charge density $\eta = 2\eta_1$

$$E = \frac{2\eta_1}{\varepsilon_0} = \frac{\eta}{\varepsilon_0}$$

HRW₇ 547 SP23-6 Two large, parallel, non-conducting sheets

each carry a fixed uniform charge on one side: $\eta_{(+)} = 6.8 \ \mu\text{C/m}^2$ and $\eta_{(-)} = 4.3 \ \mu\text{C/m}^2$.

ELECTRICITY

SPHERICAL SYMMETRY

PHY1013S ELECTRICITY GAUSS'S LAW

SPHERICAL SYMMETRY

A spherical shell of radius R and charge q is surrounded by a concentric spherical Gaussian surface (S_1) with radius r (where $r \ge R$).

According to Gauss's law: $\varepsilon_0 E 4\pi r^2 = q$

and hence, for S_1 : $E = \frac{q}{4\pi\epsilon_0 r^2}$

I.e. A uniform spherical shell of charge acts, on all charges outside it, as if all its charge were concentrated at its centre. [Shell theorem 1]

PHY1013S

S₂ is a concentric spherical Gaussian

surface with radius r lying within the

spherical shell of charge q (i.e. $r \le R$).

According to Gauss, for S_2 : E = 0

GAUSS'S LAW

I.e. A uniform spherical shell of charge exerts no electrostatic force on a charged particle located inside it. [Shell theorem 2]