# The Cancer Genome Atlas Kidney Clear Cell Carcinoma

ECE 4783 - Final Project Presentation

Alexander Faché - afache3@gatech.edu



#### Content

- Clinical Problem Statement
- Module 1 Recap
- Module 2 Recap
- Module 3
  - Literature Review
  - Supervised Learning Models
  - Cross-Validation Schemes
  - Results
- Demo
- Conclusion and Future Work
- References
- Appendix
  - Additional Visualizations

#### Clinical Problem Statement

- to develop a decision support model for diagnosis and prognosis of cancer
- follow image processing pipeline for clinical decision making
- application needs
  - early detection
  - accuracy of cancer subtypes
- technical challenges in medical image processing
  - not enough patient data
  - difficult to maintain consistent collection process
    - lighting conditions, stain color
    - high variation across datasets/hospitals

# Module 1 - Recap

#### **Initial Dataset**

- Necrosis, Stroma, Tumor classes
- 1,000 original whole slide images
  - 20,000 x 40,000 pixels
- "quality control"
  - removal of tissue folding, invalid stains, empty regions of interest
- 512 x 512 pixel sub-section

#### Undergraduate Dataset

- 100 samples of each class
  - 512 x 512 pixels



Sampled images that have undergone "quality control".

#### **Flowchart**

#### Normalization via Reinhard's Method **Data Augmentation** CIELAB color space crop L\* - lightness from black to white 224 x 224 pixels a\* - lightness from green to red rotation (CCW) b\* - lightness from blue to yellow flip Normalized Source vertical, horizontal Necrosis target 90°, 180°,

270°

# Module 2 - Recap

feature selection and extraction

| Color Based Features                                                                                                     | Texture Based Features                                                                                                                                                                                                                                                       | Morphological Based Features                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>RGB</li> <li>LAB</li> <li>HSV</li> <li>min, max, mean, variance, skewness, kurtosis for each channel</li> </ul> | <ul> <li>GLCM</li> <li>contrast, dissimilarity, homogeneity, ASM, energy, correlation, maxprop</li> <li>Shannon entropy</li> <li>Signal-to-Noise ratio</li> <li>histogram</li> <li>min, max, mean, variance, skewness, kurtosis for GLCM and histogram properties</li> </ul> | <ul> <li>vertical and horizontal symmetry</li> <li>center of mass</li> <li>percent white and dark pixels</li> <li>number of cells</li> <li>number of corners</li> <li>proportion of edge pixels</li> <li>Matlab regionprops</li> <li>circle radii</li> <li>mean, var, median, mode</li> </ul> |

#### Flowchart\*

#### **Feature Selection**

- literature review
  - o color
  - texture
  - morphological



#### **Feature Extraction**

 function calls to individually implemented feature extractors



#### **Dimensionality Reduction**

- Principal Component Analysis (PCA)
- 97% recovered variance → 43 out of 169 principle components







#### Module 3 - Overview

- literature review of supervised learning methods
- develop classification models
- incorporate cross-validation schemes
- analyze using performance metrics

### Literature Review

|             | Image Classification using<br>Random Forests and Ferns <sup>1</sup>                             | Efficient kNN Classification<br>With Different<br>Numbers of Nearest<br>Neighbors <sup>2</sup> | Speech Emotion Recognition using Support Vector Machine <sup>3</sup> | Multiple Sclerosis Detection<br>Based on Biorthogonal<br>Wavelet Transform, RBF<br>Kernel Principal Component<br>Analysis, and Logistic<br>Regression <sup>4</sup> |
|-------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| authors     | A. Bosch et al.                                                                                 | S. Zhang et al.                                                                                | M. Jain et al.                                                       | S. Wang et al.                                                                                                                                                     |
| model       | random forest, random fern                                                                      | • kNN, kTree, k*Tree                                                                           | support vector machine                                               | logistic regression                                                                                                                                                |
| approach    | <ul><li>ROI for object detection</li><li>compare to baseline M-SVM</li></ul>                    | optimal k for every test<br>sample using decision tree                                         | one-against-all (OAA),<br>gender dependent<br>classification         | distinguish between MS or<br>healthy                                                                                                                               |
| strengths   | <ul> <li>faster to train compared to SVM</li> <li>far less computationally expensive</li> </ul> | outperformed competing<br>methods in classification<br>accuracy and running cost               | uses MFCC and LPCC<br>speech feature extractors                      | <ul> <li>combines biorthogonal<br/>wavelet transform, RBF<br/>kernel PCA, and logistic<br/>regression</li> <li>greater sensitivity, accuracy</li> </ul>            |
| limitations | performance is slightly lower<br>than benchmark M-SVM                                           | •                                                                                              | high variance in speech<br>recording quality                         | •                                                                                                                                                                  |

9

#### Flowchart\*



# K-Nearest Neighbors

- K = number of neighbors
- distance
  - o p = 2 (euclidean distance)
- get distance from every datapoint to current sample
- sort in descending order
- take the top K nearest labels
- class label for new data points is the mode of this subset

Two classes: red, blue

K = 4

New sample: green



## Support Vector Machine

- maximize the margin of the decision boundary
- only works for linearly separable data
  - else use Soft SVM, Kernel
- support vectors define the boundary
- correct classification when

$$\circ y_i^* (x_i^* \Theta + b) \ge 0$$

given constrained optimization → lagrangian multiplier

$$y_i * (x_i^* \Theta + b) \ge 1$$

$$|y_i| = 1$$

$$|x_i^* \Theta + b| \ge 1$$

- optimization makes use of Karush-Kuhn-Tucker (KKT) condition for an inequality constraint
- solve constraint with quadratic programming → margin





Soft SVM

Kernel



# Random Forest = Bagged Random Decision Trees\*

- Entropy
  - M classes
  - $\circ \qquad H = -\Sigma \{P_i * \log_2 P_i\}|_{i=1:M}$
- Information Gain
  - $\circ$  IG = H (H<sub>1</sub> \* P<sub>1</sub> + H<sub>R</sub> \* P<sub>R</sub>)
- Decision Tree
  - split dataset recursively based on feature and feature value with highest information gain
    - create subsets until leaf nodes represent prediction of class label
- Bagging Bootstrap Aggregating
  - train classifier on subset of training set
  - o final classifier uses all sub classifiers to make final prediction
    - B classifiers
    - $f(x) = majority\{f_i(x)\}|_{i=1:B}$

#### Cross-Validation Schemes - K-Fold\*

- test the effectiveness of a ML model before hyperparameter optimization and training
  - split dataset into K subsets
  - each subset is iteratively used as test set
  - estimator is trained on other K-1 subsections
  - estimator is tested on kth subset
  - accuracy score is recorded

```
from sklearn.model_selection import KFold

def cross_validation_KFold(clf, X_train, y_train, title, number_splits=10, plot=True):
    kf = KFold(n_splits=number_splits, shuffle=False)

accuracy = []
    for train_index, test_index in kf.split(X_train):
        clf = clf.fit(X_train[train_index, :], y_train[train_index])
        y_train_prediction = clf.predict(X_train[train_index, :])
```



Sample indices. Train, Test.

## Cross-Validation Schemes - Shuffle Split\*

select random indices of training set

```
from sklearn.model_selection import ShuffleSplit

def cross_validation_ShuffleSplit(clf, X_train, y_train, title, number_splits=10, plot=True):
    ss = ShuffleSplit(n_splits=number_splits, test_size=0.25)

accuracy = []
for train_index, test_index in ss.split(X_train):
    clf = clf.fit(X_train[train_index, :], y_train[train_index])
    y_train_prediction = clf.predict(X_train[train_index, :])
```



Sample indices. Train, Test.

# Hyperparameter Tuning

- Exhaustive Grid Search
  - generates estimators from given hyperparameter list
  - returns estimator with highest score

```
from sklearn.model_selection import GridSearchCV

hyperparameters = {...}

clf = GridSearchCV(estimator=..., param_grid=hyperparameters, cv=10, verbose=2, refit=True)

clf = clf.fit(X_train, y_train)
best_estimator = clf.best_estimator_
```

| KNN                                                 | SVM                                             | Random Forest                                                                  |
|-----------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|
| <i>n_neighbors</i> : number of neighbors to use     | C: regularization parameter                     | max_depth: maximum depth of the tree                                           |
| <i>p</i> : power parameter for the Minkowski metric | γ: kernel coefficient for radial basis function | min_samples_leaf: minimum number of samples required to split an internal node |

# Results - K-Nearest Neighbor

```
from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors=26, p=1)

clf = clf.fit(X_train, y_train)

y_train_prediction = clf.predict(X_train)
y_test_prediction = clf.predict(X_test)
```







**Training Set** 

Accuracy Score: 0.9887

F1-Score: 0.9887

Matthews Correlation Coefficient (MCC): 0.9830 Area Under the Curve (AUC): 0.9830



**Testing Set** 

Accuracy Score: 0.9226

F1-Score: 0.9226

Matthews Correlation Coefficient (MCC): 0.8857

Area Under the Curve (AUC): 0.8857

## Results - Support Vector Machine

```
from sklearn.svm import SVC

clf = SVC(kernel='rbf', C=10, gamma=0.1)
 clf = clf.fit(X_train, y_train)

y_train_prediction = clf.predict(X_train)
y_test_prediction = clf.predict(X_test)
```







Training Set

Accuracy Score: 0.9997

F1-Score: 0.9997

Matthews Correlation Coefficient (MCC): 0.9995 Area Under the Curve (AUC): 0.9995



**Testing Set** 

Accuracy Score: 0.9652

F1-Score: 0.9653

Matthews Correlation Coefficient (MCC): 0.9480

Area Under the Curve (AUC): 0.9480

#### Results - Random Forest\*

```
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100, max_depth=18, min_samples_leaf=14)
clf = clf.fit(X_train, y_train)

y_train_prediction = clf.predict(X_train)
y_test_prediction = clf.predict(X_test)
```







**Training Set** 

Accuracy Score: 0.9996

F1-Score: 0.9996

Matthews Correlation Coefficient (MCC): 0.9994

Area Under the Curve (AUC): 0.9994



**Testing Set** 

Accuracy Score: 0.9275

F1-Score: 0.9277

Matthews Correlation Coefficient (MCC): 0.8917

Area Under the Curve (AUC): 0.8917



#### Conclusion and Future Work

- Hyperparameter Tuning
  - KNN was the simplest with only 1 true parameter
- Training time
  - KNN and Random Forest were more efficient
- Accuracy
  - SVM was slightly more accurate than KNN and Random Forest

- Ensemble learning
  - o combine KNN, SVM, Random Forest, etc.
- CNN
  - feature extraction
  - prediction

| Metric (test set) | KNN    | SVM    | Random Forest |
|-------------------|--------|--------|---------------|
| Accuracy          | 0.9226 | 0.9652 | 0.9220        |
| F1-Score          | 0.9226 | 0.9653 | 0.9222        |
| MCC               | 0.8857 | 0.9480 | 0.8838        |
| AUC               | 0.8857 | 0.9480 | 0.8838        |

#### References

- 1. A. Bosch, A. Zisserman and X. Munoz, "Image Classification using Random Forests and Ferns," 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, 2007, pp. 1-8.
- S. Zhang, X. Li, M. Zong, X. Zhu and R. Wang, "Efficient kNN Classification With Different Numbers of Nearest Neighbors," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1774-1785, May 2018.
- 3. Manas Jain, Shruthi Narayan, Pratibha Balaji, Bharath K P, Abhijit Bhowmick, Karthik R, "Speech Emotion Recognition using Support Vector Machine," 2020, [http://arxiv.org/abs/2002.07590 arXiv:2002.07590].
- 4. S. Wang et al., "Multiple Sclerosis Detection Based on Biorthogonal Wavelet Transform, RBF Kernel Principal Component Analysis, and Logistic Regression," in IEEE Access, vol. 4, pp. 7567-7576, 2016.

# Appendix - PCA Visualization



# Appendix - K-Fold







# Appendix - Shuffle Split







# **Appendix - Performance Metrics**

| Confusion Matrix                                                                     | Accuracy Score                                  | F1-Score                                                                     | Matthews<br>Correlation<br>Coefficient                                      | Area Under the<br>Curve                                        |
|--------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|
| Summary of prediction results among each class for a classification problem.         | Fraction of correctly classified labels.        | F1 = 2*(precision*recall) / (precision + recall)                             | Balanced measure taking into account TP, TN, FP, FN.                        | Trapezoidal rule.<br>TPR vs FPR                                |
|                                                                                      |                                                 | Return Values                                                                |                                                                             |                                                                |
| Confusion matrix  C <sub>ij.</sub> Observations in group i and predicted in group j. | [0, 1]<br>0: worst accuracy<br>1: best accuracy | [0, 1] 0: worst precision and worst recall 1: best precision and best recall | [-1, +1] -1: inverse prediction 0: random prediction +1: perfect prediction | [0, 1]<br>0: worst<br>performance<br>1: perfect<br>performance |

# Appendix - Random Forest Example



Select right path  $(IG_2 > IG_1)$  with feature  $x_i$  and the value of the vertical line to use for current split.

## Appendix - Decision Boundary Visualization







t-SNE is used to visualize high dimensional data and decision boundaries. Voronoi decision boundaries for KNN, SVM, and Random Forest are shown. Due to computation constraints, a subset of the training set was used for this visualization.