Lobbying and Legislative Uncertainty

Kristy Buzard¹ Sebastian Saiegh²

¹Syracuse University and The Wallis Institute kbuzard@syr.edu

²UC San Diego

May 10, 2016

The Questions

1. How does uncertainty about legislators' preferences impact

The Questions

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')

Overview

The Questions

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')
 - ► probability a bill passes

The Questions

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')

Two Vote Buyers

- ► probability a bill passes
- 2. Can we distentangle fundamental uncertainty about preferences from equilibrium and modeling uncertainty?

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')

Two Vote Buyers

- probability a bill passes
- 2. Can we distentangle fundamental uncertainty about preferences from equilibrium and modeling uncertainty?
 - ⇒ build a structural model to take to U.S. House data

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')

Two Vote Buyers

- ▶ probability a bill passes
- 2. Can we distentangle fundamental uncertainty about preferences from equilibrium and modeling uncertainty?
 - ⇒ build a structural model to take to U.S. House data
- 3. Ultimately, want to identify cross-industry measures of legislative uncertainty

- 1. How does uncertainty about legislators' preferences impact
 - ▶ lobbying strategies (e.g. who to lobby, how much to 'pay')
 - ▶ probability a bill passes
- 2. Can we distentangle fundamental uncertainty about preferences from equilibrium and modeling uncertainty?
 - ⇒ build a structural model to take to U.S. House data
- 3. Ultimately, want to identify cross-industry measures of legislative uncertainty
 - ▶ but for today, unidimensional model

Overview

Literature

► Probabilistic Voting with Policy Motivation: Roemer 1994, 1997, Duggan & Fey 2011

- ► Probabilistic Voting with Policy Motivation: Roemer 1994, 1997, Duggan & Fey 2011
- ► Lobbying with Uncertainty: Coates & Ludema 2001, Le Breton & Salanie 2003, Le Breton & Zaphorozhets 2007

- ► Probabilistic Voting with Policy Motivation: Roemer 1994, 1997, Duggan & Fey 2011
- ► Lobbying with Uncertainty: Coates & Ludema 2001, Le Breton & Salanie 2003, Le Breton & Zaphorozhets 2007
- ► Vote Buying in Legislatures: Groseclose & Snyder 1996, Banks 2000, Dal Bo 2007

- ► Probabilistic Voting with Policy Motivation: Roemer 1994, 1997, Duggan & Fey 2011
- ► Lobbying with Uncertainty: Coates & Ludema 2001, Le Breton & Salanie 2003, Le Breton & Zaphorozhets 2007
- ► Vote Buying in Legislatures: Groseclose & Snyder 1996, Banks 2000, Dal Bo 2007
- ▶ Influence w/out Vote Buying: Fox & Rothenberg 2011

Overview

Some Stylized Facts

1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions

Overview

- 1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions
- 2. There is usually lobbying on both sides of a given issue

- 1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions
- 2. There is usually lobbying on both sides of a given issue
- 3. Moderate legislators receive more contributions than those that are ideologically extreme

- 1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions
- 2. There is usually lobbying on both sides of a given issue
- 3. Moderate legislators receive more contributions than those that are ideologically extreme
- 4. Legislators about whom there is a moderate level of uncertainty are lobbied the most

- 1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions
- 2. There is usually lobbying on both sides of a given issue
- 3. Moderate legislators receive more contributions than those that are ideologically extreme
- 4. Legislators about whom there is a moderate level of uncertainty are lobbied the most

Some Stylized Facts

- 1. In the U.S., about \$4 billion / yr spent on lobbying and campaign contributions
- 2. There is usually lobbying on both sides of a given issue
- 3. Moderate legislators receive more contributions than those that are ideologically extreme
- 4. Legislators about whom there is a moderate level of uncertainty are lobbied the most

Adding uncertainty to standard model captures (2) — (4)

Overview 000000 Overview

Context

Overview

Context

U.S. House of Representative

Overview

Context

U.S. House of Representative

► All roll call votes, 2005 through present

Context

- U.S. House of Representative
 - ► All roll call votes, 2005 through present
 - ► Interest group lobbying on each vote

Context

U.S. House of Representative

- ► All roll call votes, 2005 through present
- ► Interest group lobbying on each vote
- ▶ PAC contributions, LDA lobbying data

Context

U.S. House of Representative

- ► All roll call votes, 2005 through present
- ► Interest group lobbying on each vote
- ▶ PAC contributions, LDA lobbying data

Context

U.S. House of Representative

- ► All roll call votes, 2005 through present
- ► Interest group lobbying on each vote
- ▶ PAC contributions, LDA lobbying data

Goal: use multi-dimensional ideal-point estimation to identify measures of uncertainty

Overview

Political Structure

Policy and Politics

Political Structure

Policy and Politics

Two vote buyers, A and B

Political Structure

Policy and Politics

Two vote buyers, A and B

ightharpoonup A prefers x, B prefers s

Policy and Politics

Two vote buyers, A and B

Model

 \blacktriangleright A prefers x, B prefers s

Three legislators

Policy and Politics

Two vote buyers, A and B

Model

 \blacktriangleright A prefers x, B prefers s

Three legislators

 \blacktriangleright Each will vote for status quo s or new proposal x

Policy and Politics

Two vote buyers, A and B

 \blacktriangleright A prefers x, B prefers s

Three legislators

- ightharpoonup Each will vote for status quo s or new proposal x
- ▶ Decision made by majority vote

Two Vote Buyers

Policy and Politics

Two vote buyers, A and B

 \blacktriangleright A prefers x, B prefers s

Three legislators

- ightharpoonup Each will vote for status quo s or new proposal x
- ► Decision made by majority vote
- ▶ Identified by location in linear preference space: $i \in \{-0.5, 0, 0.5\}$

Two Vote Buyers

Policy and Politics

Two vote buyers, A and B

 \blacktriangleright A prefers x, B prefers s

Three legislators

- ightharpoonup Each will vote for status quo s or new proposal x
- ▶ Decision made by majority vote
- ▶ Identified by location in linear preference space: $i \in \{-0.5, 0, 0.5\}$
 - ▶ Take ideal point to be linear: $\alpha \beta i$

Model 00

1. Vote Buyer A

- 1. Vote Buyer A
 - i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$

1. Vote Buyer A

Model

- i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B

- 1. Vote Buyer A
 - i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B
 - i. Observes <u>a</u> (in sequential model)

Political Structure

- 1. Vote Buyer A
 - i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B
 - i. Observes a (in sequential model)
 - ii. Chooses bribes $\underline{b} = (b_{-.5}, b_0, b_{.5})$

- 1. Vote Buyer A
 - i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B
 - i. Observes a (in sequential model)
 - ii. Chooses bribes $\underline{b} = (b_{-.5}, b_0, b_{.5})$
- 3. Legislature

- 1. Vote Buyer A
 - i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B
 - i. Observes a (in sequential model)
 - ii. Chooses bribes $\underline{b} = (b_{-.5}, b_0, b_{.5})$
- 3. Legislature
 - i. All legislators observe <u>a</u>, <u>b</u>

1. Vote Buyer A

Model

- i. Chooses bribes $\underline{a} = (a_{-.5}, a_0, a_{.5})$
- 2. Vote Buyer B
 - i. Observes a (in sequential model)
 - ii. Chooses bribes $\underline{b} = (b_{-.5}, b_0, b_{.5})$
- 3. Legislature
 - i. All legislators observe a, b
 - ii. Uncertainty about preferences realized: $\underline{\theta} = (\theta_{-.5}, \theta_0, \theta_{.5})$

1. Vote Buyer A

Model

- i. Chooses bribes $a = (a_{-5}, a_0, a_5)$
- 2. Vote Buyer B
 - i. Observes a (in sequential model)
 - ii. Chooses bribes $b = (b_{-5}, b_0, b_5)$
- 3. Legislature
 - i. All legislators observe a, b
 - ii. Uncertainty about preferences realized: $\theta = (\theta_{-.5}, \theta_0, \theta_5)$
 - iii. Each legislator votes for her preferred policy

Legislators

The Players

Legislators

Leg *i* votes for *s* if
$$v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$$

Legislators

Leg *i* votes for *s* if
$$v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$$

Legislators

Leg *i* votes for *s* if
$$v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$$

The Players

Legislators

Leg *i* votes for *s* if $v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$

$$\Pr\left[\alpha - \beta i + \theta_i + a_i - b_i \leqslant 0\right]$$

Legislators

Leg *i* votes for *s* if $v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$

$$\Pr\left[\alpha - \beta i + \theta_i + a_i - b_i \leqslant 0\right]$$

$$= \Pr\left[\theta_i \leqslant \beta i - \alpha - a_i + b_i\right]$$

Legislators

Leg *i* votes for *s* if $v(i) = \alpha - \beta i + \theta_i + a_i - b_i \leq 0$

ightharpoonup Probability i votes for s is

$$\Pr\left[\alpha - \beta i + \theta_i + a_i - b_i \leqslant 0\right]$$

$$= \Pr\left[\theta_i \leqslant \beta i - \alpha - a_i + b_i\right]$$

▶ Assuming θ_i i.i.d. ~ Logistic $(0,1) := \frac{1}{1+e^{-(\beta_i - \alpha - a_i + b_i)}}$

Model

00 00000

Vote Buyer B

Assume vote buyers maximize expected value of winning net of bribes paid

Model

00000

Assume vote buyers maximize expected value of winning net of bribes paid

► Assume bribes must be non-negative

Model

00000

Assume vote buyers maximize expected value of winning net of bribes paid

- ► Assume bribes must be non-negative
- Vote buyer won't spend more than his willingness to pay, W_B

Model

00000

Assume vote buyers maximize expected value of winning net of bribes paid

- ► Assume bribes must be non-negative
- Vote buyer won't spend more than his willingness to pay, W_B
- ▶ In three-seat legislature, maximize [probability ≥ 2 legislators vote for s] $\times W_B$ bribes

Vote Buyer B's Objective Function

Vote Buyer B's Objective Function

Let S(i) = 1 denote legislator i votes for the status quo

Vote Buyer B's Objective Function

Model

00000

Let S(i) = 1 denote legislator i votes for the status quo

$$\max_{b_{-.5}, b_0, b_{.5}} W_B \left[\Pr\left(S\left(-.5\right) = 1\right) \Pr\left(S\left(0\right) = 1\right) \left(S\left(.5\right) = 0\right) + \\ \Pr\left(S\left(-.5\right) = 1\right) \Pr\left(S\left(0\right) = 0\right) \Pr\left(S\left(.5\right) = 1\right) + \\ \Pr\left(S\left(-.5\right) = 0\right) \Pr\left(S\left(0\right) = 1\right) \Pr\left(S\left(.5\right) = 1\right) + \\ \Pr\left(S\left(-.5\right) = 1\right) \Pr\left(S\left(0\right) = 1\right) \Pr\left(S\left(.5\right) = 1\right) \right] - \sum_{i \in \{-.5,0..5\}} b_i$$

Two Vote Buyers

Vote Buyer B's Full Program

Two Vote Buyers

The Players

Vote Buyer B's Full Program

Let X, Y, Z be the gross positions of the legislators

Vote Buyer B's Full Program

Let X, Y, Z be the gross positions of the legislators

$$\left[\frac{e^{-Z} + e^{-Y}}{(1 + e^{-Z})(1 + e^{-Y})}\right] \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1 - \lambda_X}{W_B}$$
(1)

$$\left[\frac{e^{-X} + e^{-Z}}{(1 + e^{-X})(1 + e^{-Z})}\right] \frac{e^{-Y}}{(1 + e^{-Y})^2} = \frac{1 - \lambda_Y}{W_B}$$
(2)

$$\left[\frac{e^{-X} + e^{-Y}}{(1 + e^{-X})(1 + e^{-Y})}\right] \frac{e^{-Z}}{(1 + e^{-Z})^2} = \frac{1 - \lambda_Z}{W_B}$$
(3)

$$b\left(0\right)\geqslant0$$
 $b\left(-.5\right)\geqslant0$ $b\left(.5\right)\geqslant0$

$$\lambda_X\geqslant 0 \quad \lambda_Y\geqslant 0 \quad \lambda_Z\geqslant 0$$

$$\lambda_X \cdot b \ (0) = 0$$
 $\lambda_Y \cdot b \ (-.5) = 0$ $\lambda_Z \cdot b \ (.5) = 0$

The Players

Vote Buyer A

The Players

Vote Buyer A

Vote Buyer A is just like Vote Buyer B except

► She gets to move first (in sequential model)

- ► She gets to move first (in sequential model)
- ightharpoonup Willingness-to-pay parameter W_A

- ► She gets to move first (in sequential model)
- ightharpoonup Willingness-to-pay parameter W_A
- \triangleright She wants x to win instead of s

- ► She gets to move first (in sequential model)
- \blacktriangleright Willingness-to-pay parameter W_A
- \triangleright She wants x to win instead of s
 - ► Leg i votes for x w/probability

$$1 - \frac{1}{1 + e^{-(\beta i - \alpha - a_i + b_i)}} = \frac{e^{-(\beta i - \alpha - a_i + b_i)}}{1 + e^{-(\beta i - \alpha - a_i + b_i)}}$$

Two Non-Negative Bribes

The FOCs are

The FOCs are

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$
(4)

$$\frac{e^{-X} + e^{-Z}}{(1 + e^{-X})(1 + e^{-Z})} \frac{e^{-Y}}{(1 + e^{-Y})^2} = \frac{1}{W_B}$$
 (5)

Two Non-Negative Bribes

The FOCs are

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$
 (4)

$$\frac{e^{-X} + e^{-Z}}{(1 + e^{-X})(1 + e^{-Z})} \frac{e^{-Y}}{(1 + e^{-Y})^2} = \frac{1}{W_B}$$
 (5)

Two non-negative bribes

When Vote Buyer B pays bribes to exactly two legislators, the bribes are such that the two bribed legislators' ideal points gross of bribes are equalized. Which two legislators are bribed depends on the bias parameter α .

Three Non-Negative Bribes

Similar intuition for the case where all three legislators are bribed:

Three Non-Negative Bribes

Similar intuition for the case where all three legislators are bribed:

Three Non-Negative Bribes

When Vote Buyer B pays bribes to all three legislators, the bribes are such that the legislators' ideal points gross of bribes are equalized.

The Rest of the Story...

One Non-Negative Bribe

When Vote Buyer B pays bribes to exactly one legislator, it may be any one of the three legislators depending on the bias parameter α .

The Rest of the Story...

One Non-Negative Bribe

When Vote Buyer B pays bribes to exactly one legislator, it may be any one of the three legislators depending on the bias parameter α .

No Non-Negative Bribes

When Vote Buyer B has a low willingness to pay, he does not bribe any legislator.

Varying Uncertainty Across Legislators

Now let the scale of uncertainty differ across legislators

Now let the scale of uncertainty differ across legislators

► To be precise: the scale parameters in the three logit distributions are not equal

Now let the scale of uncertainty differ across legislators

► To be precise: the scale parameters in the three logit distributions are not equal

Varying Uncertainty Across Legislators

Now let the scale of uncertainty differ across legislators

▶ To be precise: the scale parameters in the three logit distributions are not equal

Conjecture

When there is no bias in the positions of the legislators ($\alpha = 0$), the bribes of legislators whose ideal points are at the median in terms of uncertainty receive the highest relative bribes.

Some Possibilities...

No Bribes

It is possible that neither vote buyer bribes any legislator on a given vote. This occurs when both vote buyers' willingness-to-pay parameters are small.

Some Possibilities...

No Bribes

It is possible that neither vote buyer bribes any legislator on a given vote. This occurs when both vote buyers' willingness-to-pay parameters are small.

Both Vote Buyers Bribe

It is possible for both vote buyers to bribe legislators on the same vote.

0

What I know...

ŏ

What I know...

FOCs look the same for Vote Buyer B, e.g.

•

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

•

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

► Either one root at zero, or

Simultaneous Model

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

- ► Either one root at zero, or
- ▶ Two roots and only larger one (at $X_B > 0$?) satisfies SOC

Simultaneous Model

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

- ► Either one root at zero, or
- ▶ Two roots and only larger one (at $X_B > 0$?) satisfies SOC

For Vote Buyer A,

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

- ► Either one root at zero, or
- ▶ Two roots and only larger one (at $X_B > 0$?) satisfies SOC

For Vote Buyer A,

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{1}{(1 + e^{-X})^2} = \frac{1}{W_A}$$

What I know...

FOCs look the same for Vote Buyer B, e.g.

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{e^{-X}}{(1 + e^{-X})^2} = \frac{1}{W_B}$$

- ► Either one root at zero, or
- ▶ Two roots and only larger one (at $X_B > 0$?) satisfies SOC

For Vote Buyer A,

$$\frac{e^{-Y} + e^{-Z}}{(1 + e^{-Y})(1 + e^{-Z})} \frac{1}{(1 + e^{-X})^2} = \frac{1}{W_A}$$

▶ One root: zero or $X_B < 0$

Next Steps

▶ Modify model so that both legislators can lobby the same legislator in equilibrium

Next Steps

- ► Modify model so that both legislators can lobby the *same* legislator in equilibrium
- ► Derive tight identification of empirical estimates from structural model

Next Steps

- ► Modify model so that both legislators can lobby the *same* legislator in equilibrium
- ► Derive tight identification of empirical estimates from structural model
- ► Provide micro-founded explanations for the variation in uncertainty that lobbies face

Conclusion

Taking into account uncertainty about the preferences of legislators brings vote buying models closer to capturing important stylized facts

Conclusion

Taking into account uncertainty about the preferences of legislators brings vote buying models closer to capturing important stylized facts

▶ helps in understanding lobbying strategies

Conclusion

Taking into account uncertainty about the preferences of legislators brings vote buying models closer to capturing important stylized facts

- helps in understanding lobbying strategies
- ▶ may shed light on why some lobbies are more successful than others

Conclusion

Taking into account uncertainty about the preferences of legislators brings vote buying models closer to capturing important stylized facts

- ▶ helps in understanding lobbying strategies
- ▶ may shed light on why some lobbies are more successful than others
- ▶ will help in the identification of measures of uncertainty that can be used in many applications

