CONTROLE CONTINU 3 -2018-19- Analyse 2. Eléments de correction.

Exercice 1. Soit la suite définie par $u_0 > 0$ et la relation de récurrence $u_{n+1} = \frac{2}{u_n}$.

- 1) Calculer u_1 à l'aide de u_0 , ainsi que u_{n+2} à l'aide de u_n pour $n \in \mathbb{N}$.
- 2) En déduire les suites extraites des termes de rang pair et impair à l'aide de u_0 .
- 3) u_0 étant strictement positif, pour quelle(s) valeur(s) de u_0 , (u_n) converge? Justifier.

Exercice 2. On considère la suite de terme général $u_n = \cos\left(\frac{n\pi}{2}\right) + \frac{2}{n}$.

- 1) Construire trois suites extraites de (u_n) : une qui converge vers 0, une qui converge vers 1 et une qui converge vers -1.
- 2) La suite (u_n) est-elle convergente? Justifier.

- Eléments de correction : 1) $u_1 = \frac{2}{u_0}$, $u_{n+2} = u_n$.
- 2) On en déduit $u_{2(n+1)} = u_{2n} = u_0$ et $u_{2(n+1)+1} = u_{2n+1} = u_1$.
- 3) Si $u_0 > 0$, $u_0 \neq u_1$ alors (u_n) admet 2 valeurs d'adhérence distinctes donc diverge.

Si $u_0 = u_1 \iff u_0^2 = 2$ alors la suite (u_n) est constante (égale à u_0) donc converge. u_0 étant strictement positif on en déduit que (u_n) converge vers $\sqrt{2}$ pour $u_0 = \sqrt{2}$.

Remarque Pour $u_0 = -\sqrt{2} (u_n)$ est constante, égale à $-\sqrt{2}$, et converge donc vers $-\sqrt{2}$.

- Eléments de correction : 1) $u_{2n+1} = \frac{2}{2n+1}$ donc la suite extraite des termes de rang impair tend vers 0.
- $u_{2n} = (-1)^n + \frac{1}{n}$, on en conclut que la suite extraite (u_{4n}) converge vers 1 et la suite extraite (u_{4n+2}) converge vers -1.
- 2) On en déduit que la suite (u_n) diverge car si elle convergeait toute suite extraite convergerait vers la limite de la suite (u_n) .

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} o 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

- 1) On rappelle que si $u_n o 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} o 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire $\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$.

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} o 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire
$$\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$$
.

Pour le dénominateur on connaît l'équivalent usuel :

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $rac{2}{n} o 0$ donc $e^{rac{2}{n}} 1 \sim rac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire $\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$.

Pour le dénominateur on connaît l'équivalent usuel $:1+\mathit{n}^2\sim\mathit{n}^2$

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} \to 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire
$$\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$$
.

Pour le dénominateur on connaît l'équivalent usuel $:1+n^2\sim n^2$. Comme pour $n\geq 1,\ n^2$ ne s'annule pas, on en déduit, par

propriété de l'inverse d'équivalents :

- 1) On rappelle que si $u_n o 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} o 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire $\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$.

Pour le dénominateur on connaît l'équivalent usuel $:1+n^2\sim n^2$. Comme pour $n\geq 1,\; n^2$ ne s'annule pas, on en déduit, par

propriété de l'inverse d'équivalents : $\frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}\sim \frac{2n^2}{n^2}\sim 2.$

- 1) On rappelle que si $u_n \to 0$ alors $e^{u_n} 1 \sim u_n$.
- 1-1) Donner un équivalent de $n^3(e^{\frac{2}{n}}-1)$.
- $\frac{2}{n} o 0$ donc $e^{\frac{2}{n}} 1 \sim \frac{2}{n}$. On en déduit par la propriété de la multiplication d' équivalents :

$$n^3(e^{\frac{2}{n}}-1)\sim n^3\frac{2}{n}\sim 2n^2$$
.

1-2) En déduire $\lim_{n\to+\infty} \frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}$.

Pour le dénominateur on connaît l'équivalent usuel $:1+n^2\sim n^2$. Comme pour $n\geq 1,\; n^2$ ne s'annule pas, on en déduit, par

propriété de l'inverse d'équivalents : $\frac{n^3(e^{\frac{c}{n}}-1)}{1+n^2}\sim \frac{2n^2}{n^2}\sim 2.$

On en déduit que $\lim_{n\to+\infty}\frac{n^3(e^{\frac{2}{n}}-1)}{1+n^2}=2$, par propriété des équivalents.

$$\forall n \in \mathbb{N}^*, \left(1 + \frac{\ln n}{n^2}\right) n^3 \le u_n \le \frac{3}{1 + e^{-n}} n^3.$$

2-1) Vérifier que $\forall n \in \mathbb{N}^*, 1 \leq 1 + \frac{\ln n}{n^2}$ et $\frac{3}{1 + e^{-n}} \leq 3$.

$$\forall n \in \mathbb{N}^*, \left(1 + \frac{\ln n}{n^2}\right) n^3 \le u_n \le \frac{3}{1 + e^{-n}} n^3.$$

2-1) Vérifier que $\forall n \in \mathbb{N}^*, 1 \leq 1 + \frac{\ln n}{n^2}$ et $\frac{3}{1 + e^{-n}} \leq 3$.

$$n \ge 1$$
 donc $\frac{\ln n}{n^2} \ge 0$.

$$\forall n \in \mathbb{N}^*, \left(1 + \frac{\ln n}{n^2}\right) n^3 \le u_n \le \frac{3}{1 + e^{-n}} n^3.$$

2-1) Vérifier que $\forall n \in \mathbb{N}^*, 1 \leq 1 + \frac{\ln n}{n^2}$ et $\frac{3}{1 + e^{-n}} \leq 3$.

$$n \ge 1$$
 donc $\frac{\ln n}{n^2} \ge 0$.

De plus
$$e^{-n} > 0$$
 donc $1 + e^{-n} > 1$ et $\frac{1}{1 + e^{-n}} \le 1$.

$$\forall n \in \mathbb{N}^*, \left(1 + \frac{\ln n}{n^2}\right) n^3 \leq u_n \leq \frac{3}{1 + e^{-n}} n^3.$$

2-1) Vérifier que $\forall n \in \mathbb{N}^*, 1 \leq 1 + \frac{\ln n}{n^2}$ et $\frac{3}{1 + e^{-n}} \leq 3$.

$$n \ge 1$$
 donc $\frac{\ln n}{n^2} \ge 0$.

De plus $e^{-n} > 0$ donc $1 + e^{-n} > 1$ et $\frac{1}{1 + e^{-n}} \le 1$.

En déduire que $u_n = \mathcal{O}(n^3)$.

$$\forall n \in \mathbb{N}^*, \left(1 + \frac{\ln n}{n^2}\right) n^3 \le u_n \le \frac{3}{1 + e^{-n}} n^3.$$

2-1) Vérifier que
$$\forall n \in \mathbb{N}^*, 1 \leq 1 + \frac{\ln n}{n^2}$$
 et $\frac{3}{1 + e^{-n}} \leq 3$.

$$n \ge 1$$
 donc $\frac{\ln n}{n^2} \ge 0$.

De plus $e^{-n} > 0$ donc $1 + e^{-n} > 1$ et $\frac{1}{1 + e^{-n}} \le 1$.

En déduire que $u_n = \mathcal{O}(n^3)$.

On a ainsi pour $n \ge 1$,

$$1\leq \frac{u_n}{n^3}\leq 3\,,$$

cela signifie que la suite de terme général $\frac{u_n}{n^3}$, est bornée. D'où le résultat.

2-2) Soit (v_n) la suite définie par $v_n = \frac{3}{1 + e^{-n}} n^3$. Montrer que $v_n \sim 3n^3$.

2-2) Soit (v_n) la suite définie par $v_n=\frac{3}{1+e^{-n}}n^3$. Montrer que $v_n\sim 3n^3$. lim $e^{-n}=0$ donc lim $\frac{3}{1+e^{-n}}=3$, ainsi par multiplication $v_n \sim 3n^3$.

2-2) Soit (v_n) la suite définie par $v_n = \frac{3}{1 + e^{-n}} n^3$.

Montrer que $v_n \sim 3n^3$. $\lim e^{-n} = 0$ donc $\lim \frac{3}{1+e^{-n}} = 3$, ainsi par multiplication $v_n \sim 3n^3$.

2-3) Montrer que $\frac{\ln n}{n^2} = o\left(\frac{1}{n}\right)$.

2-2) Soit (v_n) la suite définie par $v_n = \frac{3}{1 + e^{-n}} n^3$.

Montrer que $v_n \sim 3n^3$. $\lim e^{-n} = 0$ donc $\lim \frac{3}{1+e^{-n}} = 3$, ainsi par multiplication $v_n \sim 3n^3$.

2-3) Montrer que $\frac{\ln n}{n^2} = o\left(\frac{1}{n}\right)$.

On sait, par croissance comparée, que $\lim \frac{\ln n}{n} = 0$. Donc

$$\lim \frac{\frac{\ln n}{n^2}}{\frac{1}{n}} = 0, \text{ c'est-à-dire } \frac{\ln n}{n^2} = o\left(\frac{1}{n}\right).$$