# 5. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 28.11.2017, 23:59 Uhr

| Zeit      | Raum      | Abgabe im Moodle; Mails mit Betreff: [SMD1718]                |
|-----------|-----------|---------------------------------------------------------------|
| Di. 10-12 | CP-03-150 | philipp2.hoffmann@udo.edu <b>und</b> jan.soedingrekso@udo.edu |
| Di. 16-18 | P1-02-110 | felix.neubuerger@udo.edu und tobias.hoinka@udo.edu            |
| Di. 16-18 | CP-03-150 | simone.mender@udo.edu und maximilian.meier@udo.edu            |

### **Aufgabe 16:** Fisher-Diskriminante: Implementierung

10 P.

WS 2017/2018

Prof. W. Rhode

Gegeben seien die Populationen P\_0\_10000 und P\_1 aus der Aufgabe "Zwei Populationen". Nutzen Sie das dort erstellt HDF5-File für diese Aufgabe. (Sie finden die Datei ebenfalls im Moodle.)

*Hinweis:* Es sei Ihnen erlaubt Pakete z.B. für lineare Algebra zu benutzen, jedoch nicht Pakete, die die Diskriminanzanalyse durchführen.

- a) Berechnen Sie die Mittelwerte  $\mu_{P0}$  und  $\mu_{P1}$  der beiden Populationen.
- b) Berechnen Sie die Kovarianzmatrizen  $V_{P0}$  und  $V_{P1}$  der beiden Populationen, sowie die kombinierte Kovarianzmatrix  $V_{P0,P1}$ .
- c) Konstruieren Sie eine lineare Fisher-Diskriminante  $\vec{\lambda} = \lambda \cdot \vec{e}_{\vec{\lambda}}$ . Geben Sie diese Geradengleichung an.
- d) Stellen Sie die Populationen als Projektion auf die Gerade aus c) in einem eindimensionalen Histogramm dar.
- e) Betrachten Sie P0 als Signal und P1 als Untergrund. Berechnen Sie die Effizienz und die Reinheit des Signals als Funktion eines Schnittes  $\lambda_{\rm cut}$  in  $\lambda$  und stellen Sie die Ergebnisse in einem Plot dar.
- f) Bei welchem Wert von  $\lambda_{\rm cut}$  wird nach der Trennung das Signal-zu-Untergrundverhältnis S/B maximal? Erstellen Sie auch hierzu einen Plot.
- g) Bei welchem Wert von  $\lambda_{\text{cut}}$  wird nach der Trennung die Signifikanz  $S/\sqrt{S+B}$  maximal? Erstellen Sie auch hierzu einen Plot.
- h) Wiederholen Sie die Schritte a) bis g) für den Fall, dass P0 nun die Population P\_0\_1000 bezeichnet.

## 5. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 28.11.2017, 23:59 Uhr

5 P.

WS 2017/2018

Prof. W. Rhode

### Aufgabe 17: kMeans per Hand

Population: (1;4) (1;5) (1;6) (3;3) (3;2) (4;1) (5;1) (6;2) (6;3) (8;4) (8;5) (8;6)

- a) Führen Sie den kMeans-Algorithmus (euklidisches Abstandsmaß) per Hand durch, um die Punkte der Population in Cluster zu gruppieren. Verwenden Sie als Startwerte die zufällig gewählten Clusterzentren (3;4), (7;4) und (3;7). Berechnen Sie die Abstände nur, wenn die Zugehörigkeit zum Clusterzentrum nicht offensichtlich ist. Skizzieren Sie die neuen Clusterzentren sowie die Grenzen zwischen den Clustern in der vorgefertigten Abbildung 1.
- b) Führen Sie 4 weitere Iterationen von kMeans durch. Fertigen Sie bei jeder Iteration wieder eine Skizze an.
- c) Nach wie vielen Iterationen konvergiert der Algorithmus? Entspricht das Ergebnis Ihren Erwartungen?

### **Aufgabe 18:** Hauptkomponentenanalyse (PCA)

5 P.

- a) Erzeugen Sie mit der Funktion sklearn.datasets.make\_blobs einen Datensatz. Nutzen sie dabei folgende Einstellungen: n\_samples=1000, centers=2, n\_features=4, random\_state=0. Stellen Sie nun zwei beliebige Dimensonen des Datensatzes in einem Scatterplot dar.
- b) Beschreiben Sie kurz die Funktionsweise der Hauptkomponentenanalyse. Geben Sie in Worten und in der richtigen Reihenfolge die notwendigen Berechnungen zur Durchführung der Hauptkomponentenanalyse an.
- c) Wenden Sie nun die Hauptkomponentenanalyse auf den in a) erzeugten Datensatz an. Nutzen Sie dazu das Paket sklearn.decomposition.PCA. Wie lauten die Eigenwerte der Kovarianzmatrix? Wie interpretieren Sie die Eigenwerte?
- d) Histrogrammieren Sie nun x' in jeder Dimension und stellen sie  $x'_1$  und  $x'_2$  in einem Scatterplot dar.

