Задача на Коши за уравнението на струната. Формула на Даламбер. Метод на отраженията.

11.1. Движение на неограничена струна. Формула на Даламбер.

Разглеждаме идеално гъвкава, неразтеглива струна, разположена по оста Ох. Нека с u(x,t) означим отклонението в точката x на струната от равновесното й положение. Ако струната е пусната да се движи в някакъв момент t=0 чрез придръпване до положение $\phi(x)$, с начална скорост $\psi(x)$ и след това е оставена без външно въздействие. Тя ще се движи във вертикална равнина, при условие че съпротивлението на средата е пренебрегнато. Така достигаме до следната задача на Коши:

$$u_{tt}(x,t) - a^2 u_{xx} = 0, \quad x \in R, t > 0,$$

 $u(x,0) = \varphi(x), u_t(x,0) = \psi(x), \quad x \in R,$

където a = const. > 0 е скоростта, с която малки смущения се придвижват по струната, $\phi(x) \in C^2(R), \ \psi(x) \in C^1(R).$

При направените предположения задачата има единствено решение

 $u \in C^2(R \times [0, +\infty))$, което се дава с формулата на Даламбер

$$u(x,t) = \frac{1}{2} [\varphi(x - at) + \varphi(x + at)] + \frac{1}{2a} \int_{x - at}^{x + at} \psi(s) ds.$$

- интегриране
- символно: int(sym('string')) и int(sym('string'),a,b)

Да се пресметне символно $\int_0^1 x^2 dx$

syms x

 $int(x.^2,0,1)$

а неопределният интеграл се смята с int (x.^2)

- числено quad и trapz, с дефинирана функция f(x)

Да се пресметне числено $\int_0^1 x^2 dx$

function integration

```
I=quad(@ff,0,1)
x=0:1/100:1;
T=trapz(x,ff(x))
function z=ff(x)
z=x.^2;
end
или направо x=0:0.01:1; trapz(x,x.^2)
```

Зад 1. Да се направи анимация на движението на частта $C \coloneqq \{-1 \le x \le 4\}$ от неограничена струна за време $t \in [0,6]$, ако

```
a) a = 1/2, \varphi(x) = \begin{cases} \sin^4 x, & x \in [1,2] \\ 0, & x \in R \setminus [1,2] \end{cases}, \psi(x)=0.
```

- b) a = 1/10 и същите начални условия,
- c) a=1/2, $\phi(x)$ от подточка (a) и $\psi(x)=\frac{1}{2}\sin(3\pi x)$
- d) Да се начертаят графиките от направената анимация в три различни момента от движението на струната

```
function stringdalambert1
clf
tmax=6;
t=linspace(0,tmax);
xmin=-1; xmax=4;
x=linspace(xmin,xmax);
  function y=phi(x)
    for i=1:length(x)
         if x(i) >= 1 && x(i) <= 2
            y(i) = \sin(pi * x(i))^4;
        else
            y(i) = 0;
        end
    end
  end
       function y=psi(x)
       y=0*x;
       y=\sin(3*pi*x)/2;
   function y=dalambert(x,t)
       a=1/2; %1/10;
        for j=1:length(x)
```

```
if t==0
          integral=0;
          else
          s=linspace(x(j)-a*t,x(j)+a*t);
          integral=trapz(s,psi(s));
        y(j) = (phi(x(j) - a*t) + phi(x(j) + a*t))/2 + integral/(2*a);
        end
   end
    for k=1:length(t)
    plot(x,dalambert(x,t(k)),'r','Linewidth',2)
    axis ([xmin, xmax, -1.05, 1.05])
    daspect([1,1,1])
    grid on
    xlabel('x')
    ylabel('u(x,t)')
    M=getframe;
    End
subplot(3,1,1)
plot(x,dalambert(x,t(1)),'r','Linewidth',2)
hold on
subplot(3,1,2)
plot(x,dalambert(x,3),'r','Linewidth',2)
hold on
subplot(3,1,3)
plot(x,dalambert(x,5),'r','Linewidth',2)
hold on
%movie (M, 2)
    end
```

11.2. Движение на полуограничена струна. Метод на отраженията.

Ще разглеадаме движението на полуограничена струна със закрепен или свободен ляв край - точката с абсциса x=0.

• Нека левият край е фиксиран. Движението на такава струна се описва със следната смесена задача.

$$u_{tt}(x,t) - a^2 u_{xx} = 0, x > 0, t > 0,$$

 $u(x,0) = \varphi(x), u_t(x,0) = \psi(x), x > 0,$
 $u(0,t) = 0, t > 0,$

където a = const. > 0, $\phi(x) \in C^2([0, \infty), \ \psi(x) \in C^1([0, \infty))$ и са изпълнени условията за съгласуване $\phi(0) = \phi''(0) = \psi(0) = 0$.

Продължаваме нечетно функциите ϕ и ψ до функции ϕ _odd и ψ _odd и получаваме задача на Коши за неограничена стурна с начални данни ϕ _odd и ψ _odd, която решихме в 10.1.

Ако u_odd е решението на получената задача на Коши, то неговата рестрикция в $\{x>0, t>0\}$ е решение на задачата за полуограничената струна с фиксиран ляв край. Ще припомним, че нечетно продължение на функция f(x) е

$$f_odd(x) = \begin{cases} f(x), & x \ge 0 \\ -f(-x), & x < 0 \end{cases}$$

• По аналогичен начин се разсъждава, ако левия край на струната е свободен. Движението на такава струна се моделира със следната смесена задача.

$$u_{tt}(x,t) - a^2 u_{xx} = 0, x > 0, t > 0,$$

 $u(x,0) = \varphi(x), u_t(x,0) = \psi(x), x > 0,$
 $u_x(0,t) = 0, t > 0,$

където $a=\text{const.} >0, \ \phi(x) \in \mathcal{C}^2([0,\infty), \ \psi(x) \in \mathcal{C}^1([0,\infty))$ и са изпълнени условията за съгласуване $\phi'(0)=\psi'(0)=0$.

Продължаваме четно функциите φ и ψ до функции φ _even и ψ _even и получаваме задача на Коши за неограничена стурна с начални данни φ _even и ψ _even, която решихме в 10.1. Ако u_even е решението на получената задача на Коши, то неговата рестрикция в $\{x>0, t>0\}$ е решение на задачата за полуограничената струна със свободенляв край. Ще припомним, че четно продължение на функция f(x) е

$$f_even(x) = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$$

Зад. 2. Да се моделира трептенето на частта $C := \{0 \le x \le 6\}$ от полуограничена струна с фиксиран или свободен ляв край за време $t \in [0,8]$, ако

a)
$$a = 1/2$$
, $\varphi(x) = \begin{cases} \sin^4 x, & x \in [1,2] \\ 0, & x \in [0,1] \cup [2,+\infty) \end{cases}$, $\psi(x)=0$.

- b) a = 1/10 и същите начални условия
- c) a=1/2, $\phi(x)$ от подточка (a) и $\psi(x)=\frac{1}{2}\sin(3\pi x)$ ($\psi(x)=\cos(5\pi x/12)/2$ в случая на свободен ляв край)

Може да се редактира кода от зад 1. До следния

```
else
                       y(i) = 0;
                    end
             end
        end
         function y=psi(x)
         y=0.*x;
         %y=sin(3*pi*x)/2; y=cos(5*pix/12)/5 при свободен край
         end
   function y=phi odd(x)%phi even(x)
       if x>0 % (phi се извиква със скалар и тук може да се
провери х>0)
          y=phi(x);
       else
          y=-phi(-x);
         %y=phi(-x);
       end
   end
       function y=psi_odd(x)%psi_even(x)
     for n=1:length(x) %psi се извиква с вектор в trapz и
%затова проверяваме за всеки елемнет на вектора дали е
%положителен или не
           if x(n) > 0
              y(n) = psi(x(n));
              y(n) = -psi(-x(n));
           end
     end
       end
       function y=dalambert(x,t)
          a=1/2; %1/10;
             for j=1:length(x)
                if t==0
                    integral=0;
                else
                    s=linspace(x(j)-a*t,x(j)+a*t);
                    integral=trapz(s,psi odd(s));
                end
  y(j) = (phi odd(x(j)-a*t)+phi odd(x(j)+a*t))/2+integral/(2*a);
             end
         end
    for k=1:length(t)
    clf
    hold on
    plot(x,dalambert(x,t(k)),'r','Linewidth',2)
    plot(0,0,'ko','MarkerFaceColor',[0,0,0])
```

```
axis ([0,xmax,-1.05,1.05])
  grid on
  daspect([1,1,1])
  xlabel('x')
  ylabel('u(x,t)')
  M=getframe;
end
%movie(M,3)
  end
```

11.3 Движение на ограничена струна със свободни краища

Движението на такава струна се моделира със следната смесена задача

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, \ 0 < x < L, \ t > 0, \\ u_{t=0} = \varphi(x), \ u_t|_{t=0} = \psi(x), \ 0 \le x \le L, \\ u_x|_{x=0} = 0, \ u_x|_{x=L} = 0, \ t \ge 0, \end{cases}$$
 (21)

където $\varphi(x) \in C^2[0,L], \ \psi(x) \in C^1[0,L]$ и са изпълнени условията за съгласуване $\varphi'(0) = \psi'(0) = 0, \ \varphi'(L) = \psi'(L) = 0.$

Продължаваме четно функциите ϕ и ψ до функции ϕ _even и ψ _even в интервала [-L,L] по формулата

$$f_even(x) = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$$

Продължаваме функциите ϕ _even и ψ _even 2L периодично върху цялата реална права до функции ϕ _prod и ψ _prod по правилото:

$$f_{prod}(x) = \begin{cases} f_{prod}(x - 2L), & x > L \\ f_{prod}(x + 2L), & x < -L \\ f(x), & -L \le x \le L. \end{cases}$$

Решаваме задача на Коши за неограничена стурна с начални данни ϕ _prod и ψ _prod, която решихме в 10.1. Ако u_prod е решението на получената задача на Коши, то неговата рестрикция в {-L<x<L, t>0} е решение на задачата за ограничената струна със свободни краища.

Следният примерен код визуализира движението на такава струна с начални данни phi(x) и psi(x) от зад. 1 а. и L=4.

function Dalamber2free

```
clf
tmax=20;
t=linspace(0,tmax);
xmin=0;L=4;
x=linspace(xmin,L);
 function y=phi(x)
                 for i=1:length(x)
                         if x(i) >= 1 && x(i) <= 2
                             y(i) = \sin(pi * x(i))^4;
                         else
                             y(i) = 0;
                         end
                 end
          end
   function y=psi(x)
   y=0*x;
   end
 function y=phi_even(x)
   if x>0
     y=phi(x);
   else
     y=phi(-x);
   end
 end
      function y=psi_even(x)
        for n=1:length(x)
           if x(n) > 0
           y(n)=psi(x(n));
```

```
else
          y(n)=psi(-x(n));
          end
       end
     end
function y=phi_prod(x)
   if x > L
     y=phi_prod(x-2*L);
   elseif x < -L
     y=phi_prod(x+2*L);
   else y= phi_even(x);
   end
end
function y=psi_prod(x)
   for m=1:length(x)
   if x(m) > L
     y(m)=psi_prod(x(m)-2*L);
   elseif x(m) < -L
     y(m)=psi_prod(x(m)+2*L);
   else y(m)= psi_even(x(m));
   end
   end
end
function y=dalambert(x,t)
```

```
a=1/2;
     for j=1:length(x)
      if t==0
      integral=0;
      else
      s=linspace(x(j)-a*t,x(j)+a*t);
      integral=trapz(s,psi_prod(s));
      end
     y(j) = (phi\_prod(x(j)-a*t) + phi\_prod(x(j)+a*t))/2 + integral/(2*a);
     end
 end
  for k=1:length(t)
  plot(x,dalambert(x,t(k)),'r','Linewidth',2)
  axis ([xmin,L,-0.2,0.2])
    grid on
  xlabel('x')
  ylabel('u(x,t)')
  M=getframe;
  end
subplot(3,1,1)
plot(x,dalambert(x,t(1)),'r','Linewidth',2)
xlabel('x')
  ylabel('u(x,0)')
subplot(3,1,2)
plot(x,dalambert(x,2),'r','Linewidth',2)
```

```
xlabel('x') \\ ylabel('u(x,2)') \\ subplot(3,1,3) \\ plot(x,dalambert(x,5),'r','Linewidth',2) \\ xlabel('x') \\ ylabel('u(x,5)') \\ end
```