Learning Objective: MOSFET Concepts

Problem 1. Consider an p-channel MOSFET with a gate oxide thickness of 10 nm, threshold voltage $V_{\rm TH} = -0.6$ V, gate width of 25 μ m and gate length of 1 μ m. Assume the hole channel mobility is $\mu_p = 100 \text{ cm}^2/\text{V/s}$ at T = 300 K. Use $\epsilon_{ox} = 3.9\epsilon_0$, $n_i = 1.5 \times 10^{10}$ cm⁻³ if needed.

- (a) Suppose $V_{\rm GS}=-0.1$ V, $V_{\rm DS}=-3$ V, determine the **operating region** and **drain-to-source** current ${\bf I_{DS}}$.
- (b) Suppose $V_{\text{GS}} = -3 \text{ V}$, $V_{\text{DS}} = -5 \text{ V}$, determine the **operating region** and **ddrain-to-source** current \mathbf{I}_{DS} .
- (c) Suppose $V_{\rm GS}=-5$ V, $V_{\rm DS}=-0.1$ V, determine the **operating region** and **drain-to-source** current ${\bf I_{DS}}$.

Problem 2. An <u>n-channel</u> MOSFET has parameters: $W=15~\mu\text{m}$, $L=2~\mu\text{m}$, $C_{ox}=6.9\times10^{-8}~\text{F/cm}^2$. Use $\epsilon_{ox}=3.9\epsilon_0,~n_i=1.5\times10^{10}~\text{cm}^{-3}$ if needed at 300 K.

- (a) Calculate the **oxide thickness** of the MOSFET.
- (b) Assume the drain current in the saturation region for high $V_{\rm DS}$ is $I_{\rm DS}=35~\mu{\rm A}$ at $V_{\rm GS}=2.3~{\rm V}$ and $I_{\rm DS}=75~\mu{\rm A}$ at $V_{\rm GS}=2.5~{\rm V}$. Calculate the electron channel mobility and threshold voltage.
- (c) Assume the drain current in the linear region for low $V_{\rm DS} = 0.10$ V is $I_{\rm DS} = 35~\mu{\rm A}$ at $V_{\rm GS} = 1.5$ V and $I_{\rm DS} = 75~\mu{\rm A}$ at $V_{\rm GS} = 2.\overline{5}$ V. Calculate the electron channel mobility and threshold voltage.

Learning Objective: MOSFET DC Biasing

Problem 3. Consider the circuit shown below. The transistor parameters are $V_{\rm TH}=-0.8~{\rm V}$ and $K_p=0.5~{\rm mA/V}^2$. The component values are $V_{\rm DD}=3~{\rm V}$, $V_{\rm SS}=-3~{\rm V}$, $R_1=8~{\rm k}\Omega$, $R_2=22~{\rm k}\Omega$, and $R_D=5~{\rm k}\Omega$.

- (a) Calculate V_{SG} , I_{SD} , and V_{SD} for $R_S = 0 \Omega$.
- (b) Calculate V_{SG} , I_{SD} , and V_{SD} for $R_S = 0.5 \text{ k}\Omega$.

Problem 4. Consider the circuit shown below. The transistor parameters are $V_{\rm TH}=0.4~{\rm V}$ and $K_n=0.5~{\rm mA/V^2}$. The component values are $V_{\rm DD}=5~{\rm V},~R_1=20~{\rm k}\Omega,~R_2=5~{\rm k}\Omega,~R_D=2~{\rm k}\Omega.$

- (a) Calculate $V_{\rm GS},\,I_{\rm DS},$ and $V_{\rm DS}$ for $R_S=0\,\Omega.$
- (b) Calculate $V_{\rm GS},\,I_{\rm DS},$ and $V_{\rm DS}$ for $R_S=1\,{\rm k}\Omega.$

