Flow-up базис на сферических многообразиях

Сонина Александра Константиновна ПОМИ РАН

sasha-sonina@mail.ru Соавторы: Виктор Петров

Секция: Алгебраическая геометрия

По многообразию с действием редуктивной группы можно построить GKM-граф: вершины будут неподвижными точками под действием максимального тора редуктивной группы G, ребра будут получатся из инвариантных кривых (на самом деле все эти кривые будут изоморфны \mathbb{P}^1). Вместе с каждой инвариантной кривой у нас также будет появляться характер — его будем записывать как метку на ребре. Также на каждом ребре будет задаваться ориентация, вместе с которой появится частичный порядок на вершинах графа.

В вершинах графа будем записывать многочлены от характеров тора. Такая расстановка правильная если разность двух многочленов в вершинах делится на характер на ребре, а также выполняются некоторые квадратичные соотношения.

Будем называть систему правильных расстановок многочленов flow-up базисом, если

- 1 Эта система расстановок базис (т.е. эта система линейно независима и любая правильная расстановка является линейной комбинацией данных с коэффициентами полиномами от корней системы Ф)
- 2 Для всех вершин w существует элемент системы расстановок такой, что в этой расстановке в вершине w стоит произведение меток ребер, выходящих из этой вершины, а ненулевые элементы могут стоять только в вершинах v с $v \ge w$.

Благодаря локализации Ботта можно построить инъективное отображение из $CH_T^*(X)$ в множество всех правильных расстановок.

Пусть G — редуктивная группа и $B \subset G$ — Борелевская подгруппа. G —многообразие X будем называть $c\phi$ ерическим, если в X есть плотная B —орбита.

В нашей работе мы показали, что у любого сферического многообразия существует flow-up базис, в частности отображение из $CH_T^*(X)\otimes \mathbb{Q}$ в правильные расстановки над \mathbb{Q} это изоморфизм.

- [1] Henry July Algebraic cobodism of spherical varieties Thèse de doctorat
- [2] V.Guillemin and C.Zara One-skeleta betti numbers and equivarient cohomology arXiv:math/9903051v2 [math.DG] 26 Jul 2000
- [3] M. Brion. *Equivariant Chow groups for torus actions*. Transformation Groups, Vol. 2, No. 3, 1997, pp. 225-267.