Potência em circuitos eléctricos

Sistemas Electrónicos - 2020/2021

Potência

• A potência (em Watt) define-se como o trabalho (energia), W, por unidade de tempo;

$$P = \frac{dw}{dt} \qquad 1 Watt = 1 Joule / seg$$

• A potência é, então, a taxa à qual a energia é fornecida (por um elemento de circuito activo) ou dissipada (por um elemento passivo).

Uma lampada de
10W
absorve (dissipa, consome, ...)
10J
por cada segundo em que está
ligada

Potência

Podemos exprimir a potência como:

$$P = \frac{dw}{dt} = \frac{dw}{dq} x \frac{dq}{dt} = V.I \qquad 1 \text{ Watt} = 1J/C \quad x \quad 1C/s$$

- Ou seja, para um dado elemento de circuito, a potência é proporcional:
 - À Energia necessária para transferir 1 Coulomb através do elemento, ou seja, à tensão (V);
 - Ao número de Coulombs transferidos durante 1 Segundo através do elemento, ou seja, a corrente (I).

E. Martins, DETI Universidade de Aveiro

1.1-40

Sistemas Electrónicos - 2020/2021

Potência

- Num circuito eléctrico há elementos que fornecem potência e outros que absorvem potência;
- A Lei da Conservação da Energia garante que o total da potência fornecida iguala a totalidade da potência absorvida:

$$\sum_{i} P_{i}^{fornecida} = \sum_{j} P_{j}^{absorvida}$$

1.1-41

Potência: absorvida ou fornecida?

- Na análise de um circuito, por vezes precisamos de saber se um dado elemento fornece ou absorve potência;
- Uma maneira de determinar isso, passa pela adopção da Convenção de Sinal de Elemento Passivo (CSEP):

C S E A polaridade de referência da tensão e o sentido de referência da corrente são escolhidos de forma a que a corrente entre pelo terminal positivo.

E. Martins, DETI Universidade de Aveiro

1.1-42

Sistemas Electrónicos - 2020/2021

Potência: absorvida ou fornecida?

- Adoptada a CSEP, assim que determinarmos os valores da tensão, V, e da corrente, I, é fácil saber se o elemento fornece ou absorve potência:
 - > se $P = V \times I > 0 \implies$ a potência é absorvida, sendo dada por $P_{absorvida} = V \times I$;
 - > se $P = V \times I < 0 \Rightarrow$ a potência é fornecida, sendo dada por $P_{fornecida} = |V \times I|$

Potência: absorvida/fornecida, exemplos

• Polaridades e sentidos das correntes já são dados de acordo com a CSEP

$$P = 2x3 = 6W$$

P é absorvida

$$P = 4x (-5) = -20W$$

P é fornecida

E. Martins, DETI Universidade de Aveiro

1.1-44

Sistemas Electrónicos - 2020/2021

Potência: absorvida/fornecida, exemplos

• A polaridade da tensão e o sentido da corrente podem ter de ser alterados de forma a satisfazer a CSEP:

$$P = (-3.8) \times (-2) = 7.6W$$

P é absorvida

Potência: absorvida/fornecida

• Para qualquer elemento de circuito:

$$P_{\text{absorvida}} = -P_{\text{fornecida}}$$

Elemento absorve 6W, o que é o mesmo que dizer que fornece -6W

E. Martins, DETI Universidade de Aveiro

1.1-46

Sistemas Electrónicos - 2020/2021

Potência: absorvida/fornecida

Elemento absorve -20W, o que é o mesmo que dizer que fornece 20W

Mas, na realidade, absorve ou fornece?

Resposta: a resposta é ditada pelo valor da potência, absorvida ou fornecida, que for positivo.

Potência: Exemplo de cálculo

Calcular a potência absorvida/fornecida por cada elemento de circuito.

Sistemas Electrónicos - 2020/2021

Unidades, multiplos e submultiplos

grandeza	simbolo	unidade	simbolo
Carga	Q	Coulomb	<i>C</i>
Corrente	I	Ampére	A
Tensão	V	Volt	V
Resistência	R	Ohm	Ω
Potência	P	Watt	W

prefixo	simbolo	pot. de 10
tera	T	1012
giga	G	109
mega	M	106
kilo	K	10 ³
mili	m	10-3
micro	μ	10-6
nano	n	10-9
pico	p	10-12
fento	f	10-15