Informe de la Pràctica 3: WiFi i Bluetooth

1. Introducció

L'objectiu principal d'aquesta pràctica és comprendre el funcionament de les comunicacions sense fils mitjançant els protocols WiFi i Bluetooth en un microcontrolador ESP32. Aquesta pràctica es divideix en dues parts:

- **Generació d'un servidor web:** Configuració d'una ESP32 per actuar com un servidor web i mostrar una pàgina HTML a qualsevol dispositiu connectat a la xarxa.
- Comunicació sèrie mitjançant Bluetooth: Configuració d'una comunicació sèrie bidireccional entre l'ESP32 i un dispositiu mòbil mitjançant Bluetooth.

Aquestes funcionalitats permeten ampliar les capacitats del microcontrolador i integrar-lo en sistemes de comunicació IoT.

2. Fonaments Teòrics

2.1 WiFi

WiFi ("Wireless Fidelity") és una tecnologia de xarxa inalàmbrica basada en els protocols IEEE 802.11. Per al desenvolupament d'aquesta pràctica, és important comprendre els conceptes bàsics dels protocols:

- TCP/IP i UDP: Protocols de comunicació bàsics per a la transmissió de dades en xarxes.
- API REST: Un patró d'arquitectura per a la comunicació entre dispositius a través de peticions HTTP.
- MQTT: Protocol de missatgeria lleuger utilitzat en aplicacions loT per a la comunicació entre dispositius.

2.2 Bluetooth

Bluetooth és un protocol de comunicació sense fils d'abast curt que permet la interconnexió entre dispositius. L'ESP32 suporta:

- Bluetooth Classic: Utilitzat per a la transmissió de dades en streaming.
- Bluetooth Low Energy (BLE): Optimitzat per al consum energètic reduït.

3. Desenvolupament de la Pràctica

3.1 Generació d'un Servidor Web

Per implementar un servidor web amb ESP32, s'ha configurat el microcontrolador per connectar-se a una xarxa WiFi i gestionar peticions HTTP. En aquesta part de la pràctica, s'ha dissenyat una interfície web accessible des de qualsevol dispositiu connectat a la xarxa.

Resultats

Sortida per el terminal: WiFi connected successfully

Got IP: 172.20.10.4 HTTP server started Per tant, al buscar la IP que ens proporciona el monitor sèrie, podem accedir al servidor web que hem creat

- L'ESP32 es connecta correctament a la xarxa i mostra la seva adreça IP al monitor sèrie.
- En accedir a l'IP des del navegador, es visualitza la pàgina web generada.

3.2 Comunicació Bluetooth

S'ha configurat l'ESP32 per establir una comunicació sèrie bidireccional mitjançant Bluetooth. Això permet enviar i rebre dades entre el microcontrolador i un dispositiu mòbil.

Per fer-ho, es crea un servidor BLE amb un identificador UUID específic. Quan un dispositiu mòbil s'hi connecta, pot llegir i escriure informació mitjançant les característiques definides en el servidor BLE. El dispositiu mòbil envia dades a l'ESP32, que respon amb valors simulats de temperatura.

3.3 Resultats Obtinguts

Al dispositiu mòbil, es localitza la direcció associada a la temperatura, i es pot escriure el missatge que es vol enviar.

També es veuen els missatges rebuts per la sortida del terminal:

Text:

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

[7455A][V][FreeRIOS.cpp:143] give(): Semaphore giving: name: SetValue (0x3fca9f9c), owner: <unknown>
[74563][V][BLECharacteristic.cpp:669] setValue(): < setValue
[74568][0][BLECharacteristic.cpp:689] setValue(): < setValue
[74568][0][BLECharacteristic.cpp:399] handleGATTServerEvent(): - Response to write event: New value: handle: 2a, uuid: beb5483e-36e1-4688-b7f5-ea07361b26a8
[74582][0][BLECharacteristic.cpp:309] handleGATTServerEvent(): - Data: length: 6, data: b1e710032025
[74592][V][BLECharacteristic.cpp:309] handleGATTServerEvent(): < handleGATTServerEvent
[74599][V][BLEServer.cpp:281] handleGATTServerEvent(): < knadleGATTServerEvent
[74618][V][BLEUTIS.cpp:1530] dumpGattServerEventHandler(): gattServerEventHandler [esp gatt if: 3] ... ESP_GATTS_RESPONSE_EVT
[746318][V][BLEUTIS.cpp:1560] dumpGattServerEvent(): Status: ESP_GATT_OK, handle: 0x2a]
[74632][V][BLEUTIS.cpp:1666] dumpGattServerEvent(): Status: ESP_GATT_OK, handle: 0x2a]
[74633][V][BLEVENT-Cpp:144] handleGATTServerEvent(): > handleGATTServerEvent: ESP_GATTS_RESPONSE_EVT
[74637][V][BLEVENT-Cpp:1509] dumpGattServerEvent(): > handleGATTServerEvent: ESP_GATTS_RESPONSE_EVT
[74637][V][BLEVENT-Cpp:1509][V][DumpGattServerEvent(): > handleGATTServerEvent: ESP_GATTS_RESPONSE_EVT
[74637][V][BLEVENT-Cpp:1509][V][DumpGattServerEvent(): > handleGATTServerEvent: ESP_GATTS_RESPONSE_EVT
[74637][V][BLEVENT-Cpp:1509][V][DumpGattServerEvent(): > handleGATTServerEvent: ESP_GATTS_RESPONSE_EVT
[74637][V][DumpGattServerEvent(): > handleG
```

Temperatura(21.35):

4. Anàlisi de Resultats

Les dues aplicacions desenvolupades en aquesta pràctica permeten comprovar la capacitat de l'ESP32 per gestionar comunicacions sense fils:

- **Servidor Web:** Permet interactuar amb el microcontrolador a distància mitjançant una interfície web.
- **Bluetooth:** Facilita la transmissió de dades en temps real entre l'ESP32 i altres dispositius.

Aquesta funcionalitat és essencial en aplicacions IoT, on la connectivitat sense fils és un requisit fonamental.

5. Exercici adicional

L'ESP32 s'ha configurat com un servidor BLE que permet la connexió amb un dispositiu extern per enviar dades simulades de temperatura i humitat, així com rebre ordres per controlar un LED mitjançant autenticació.

Un cop iniciat el servei, el sistema ha generat valors aleatoris de temperatura i humitat, enviant-los periòdicament. Per activar el LED, ha estat necessari enviar la clau "1234" per autenticar-se. Després de l'autenticació, els comandaments "ON" i "OFF" han funcionat correctament, engegant i apagant el LED.

Els resultats han mostrat que la comunicació BLE entre el dispositiu i l'ESP32 s'ha establert amb èxit, permetent la transmissió de dades i el control remot del LED.

Resultats obtinguts

Les imatges mostren els resultats obtinguts que he explicat anteriorment:

6. Conclusions

Aquesta pràctica ha permès comprendre el funcionament bàsic de les comunicacions sense fils mitjançant WiFi i Bluetooth en un ESP32. S'ha demostrat la seva utilitat per a aplicacions IoT, permetent la interacció remota amb el dispositiu mitjançant un navegador web i la transmissió de dades a través de Bluetooth. Aquestes tecnologies obren la porta a aplicacions en domòtica, monitoratge de sensors i control remot d'equips.