# DoSA-3D User Manual

#### **Voice Coil Motor Example**

(Speaker, Auto-Focus, Linear Vibrator)



2022-05-28 zgitae@gmail.com

# **DoSA Structure**

## **PC** Requirement

> CPU: 4 Core and above

> RAM: 16GB and above



## **Program Structure**



### **Toolbar**

#### 1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape



#### 2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications



#### 3. Virtual Test

✓ Force : Magnetic force estimation



### Work process

#### **Product Design**

#### **Virtual Test**



# Analysis Model

## **Analysis Model**

#### 1. Shape Model





#### 2. Product Specifications

#### A. Coil

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

#### B. Magnet

• Material : NdFeB 40

• Magnetization Direction: 90 (UP)

#### C. Power

• Voltage: 2.5V

(Example Files: DoSA-3D Install Directory > Samples > VCM)



### New design

1. Toolbar > Click New button

2. Design Name: "VCM"

3. Shape File (STEP): Select VCM.step (provided with this tutorial document)



#### [ Cautions for the Shape Model ]

DoSA-3D still has the following functional limitations.

- A. Shape constraint
  - Coil central axis must coincide with Y axis.
  - The current is always applied in cylindrical form. ( Polygon coils can cause some differences )
- B. Limited number of parts
  - Actions only support one part.
  - Only one coil is supported.
- C. Drawing Guide
  - https://solenoid.or.kr/data/Drawing Guide ENG.pdf





### New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.





## New design

8. Check the design creation.



# Parts Design

### Add a coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.







## Coil design

#### Select the magnetic force calculation part

1. Input the coil instrumental specifications

✓ Moving Parts : MOVING

✓ Coil Wire Grade : Bonded\_IEC\_Grade\_1B

✓ Inner Diameter: 3

✓ Outer Diameter: 3.73

✓ Coil Height: 1.18

✓ Copper Diameter: 0.045

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

- 2. Calculate the coil specification
  - ✓ Click the "Coil Design" button
- 3. Check the coil specification









3

### Add a magnet

- 1. Toolbar > Click Magnet button
- 2. Select "Magnet" in the list box.
- 3. Click the OK button.







### Magnet setting

- 1. Magnet Settings
  - ✓ Use default values



### [Ref.] Magnet magnetization

#### 1. Understanding magnet magnetization direction

Magnet magnetization direction: X axis direction

• Rotation Axis: The axis of rotation of the X axis

• Rotation Angle : the angle the X axis rotates

| ~ | Magnetization Fields |        |
|---|----------------------|--------|
|   | Rotation Axis        | Z_AXIS |
|   | Rotation Angle       | 90     |
|   |                      |        |

#### 2. Magnetization direction setting

Rotation Axis : Z\_Axis











Rotation Axis : Y\_Axis













### [Ref.] Magnetization Setting of Magnet

✓ Rotation Axis: Z\_Axis

✓ Rotation Angle: 90



**Rotation Axis: Z\_Axis** 

✓ Rotation Axis : Y\_Axis

✓ Rotation Angle: 45°, 135°, 225°, 315°



**Rotation Axis: Y\_Axis** 

### Add a plate

- 1. Toolbar > Click Steel button
- 2. Select "Plate" in the list box.
- 3. Click the OK button.







### **Plate setting**

1. Plate settings

✓ Part Material : SUS\_430

#### [ BH Curve ]



1



### Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.







### Case setting

1. Case Setting

✓ Part Material : SUS\_430

#### [ BH Curve ]



1



# Virtual Test

## Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK button

4. Setting of magnetic force test

✓ Voltage: 2.5

✓ B Rotation Angle: 45

✓ B Vector Resolution: 80

✓ Mesh Size Percent : 5

✓ Actuator Type : VCM

6. Click "Force Test" Button





| Node Name               | Force                                                                                                                                                                                             |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                   |
| Input Fields            |                                                                                                                                                                                                   |
| Voltage [V]             | 2.5                                                                                                                                                                                               |
| Max, Current [A]        | 0, 15875                                                                                                                                                                                          |
| Initial Position Fields |                                                                                                                                                                                                   |
| Y Movement [mm]         | 0                                                                                                                                                                                                 |
| X Movement [mm]         | 0                                                                                                                                                                                                 |
| Z Movement [mm]         | 0                                                                                                                                                                                                 |
| Post-Processing Fields  |                                                                                                                                                                                                   |
| B Rotation Angle [°]    | 45                                                                                                                                                                                                |
| B Vector Resolution     | 80                                                                                                                                                                                                |
| ∨ Condition Fields      |                                                                                                                                                                                                   |
| Mesh Size [%]           | 5                                                                                                                                                                                                 |
| Actuator Type           | VCM                                                                                                                                                                                               |
|                         | Voltage [V] Max, Current [A] Initial Position Field Y Movement [mm] X Movement [mm] Z Movement [mm] Post-Processing Field B Rotation Angle [°] B Vector Resolution Condition Fields Mesh Size [%] |





### **Run the virtual Test**

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.







### **Run the virtual Test**

- 9. Check the magnetic density after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh. (When finished, Gmsh is automatically restarted)
- 11. Click the run button again. ( VCM type actuators require twice analysis for accuracy )







### **Results of the virtual Test**

- 12. Quit the re-run Gmsh.
- 13. Check the magnetic force of the VCM in DoSA-3D.





# Tips

### Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.









## Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org