Wstęp do uczenia maszynowego Projekt

Zbadanie ważności cech za pomocą XGBoosta

WAŻNOŚCI SUMUJĄ SIĘ DO JEDYNKI

MAPA CIEPŁA

Kolumny od 0 do 21 nie są ze sobą wzajemnie skorelowane

DOBÓR NAJLEPSZEGO MODELU

 Testowane modele:DecisionTreeClassifier, LogisticRegression, SVC, KNearestNeighbors,RandomForestCLassifier, VotingClassifier, XGBoost, BaggingClassifier

Decision Tree Clasiifier	Logistic Regression	Kneighbors Classifier	XGBoost	Bagging Classifier	Random Forest Classifier	Voting Classifier	SVC
0.78	0.6275	0.845	0.875	0.855	0.845	0.9025	0.83

WYBRANY MODEL

- VotingClassifier
- RandomForestClassifier(max_depth=28, min_samples_leaf=1, min_samples_split=5, n_estimators=150), XGBClassifier(max_depth=20, learning_rate=0.05, n_estimators=200, min_child_weight=1, subsample=1, colsample_bytree= 0.8)
- BaggingClassifier(n_estimators = 200,random_state = 0,max_features = 0.5)
- SVC(proability = True, C = 1.25)
- Weights = [3,2,3,1]

Receiver Operating Characteristic (ROC) 1.0 0.8 True Positive Rate 7.0 9.0 0.2 0.0 ROC curve (area = 0.95) 0.2 0.8 0.0 0.4 0.6 1.0 False Positive Rate

Krzywa ROC

WNIOSKI

- PREPROCESSING
- Z PRZETESTOWANYCH MODELI NAJGORSZA OKAZAŁA SIĘ REGRESJA LOGISTYCZNA, NATOMIAST NAJLEPSZY VOTINGCLASSIFIER
- DOSTOSOWANIE
 HIPERPARAMETRÓW
- DLA NASZEGO PROBLEMU MAŁO SKUTECZNYM OKAZAŁ SIĘ DOBÓR PARAMETRU VOTING = 'HARD'.