CNN Architectures

PHYS591000 2022.04.20

Warming up

- As usual, take 3 mins to introduce yourself to your teammate for this week!
 - "It's midterm period! How are you doing?"
 - "Gee you've got 3 midterm exams this week? Let's work together to make life easier!"

Outline

- CNN is one of the most widely used NN in real applications nowadays. Hence there are many popular models of CNN.
- Today we're going to give a brief introduction on
 - AlexNet
 - VGG
 - GoogLeNet
 - ResNet

Ref: Lecture 9 of CS231(2017) at Stanford (<u>link to youtube</u>).

LeNet-5 (Yann LeCun et al. 1989)

- First 'real' implementation of CNN for MNIST classification
 - 5x5 filter; Sigmoid (activation); Average Pooling; 7 layers

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Evolution of ILSVRC Winners

ImageNet Large Scale Visual Recognition Challenge

One of the most important AI visual recognition competitions

AlexNet (2012)

- First CNN-based ILSVRC winner
 - Input: 227x227x3 images

AlexNet (2012)

- First CNN-based ILSVRC winner (trained w/ 2 GPU's)
 - 8 Layers (5 Conv and 3 Fully-connected (FC)).
 - First use of ReLU (to overcome the 'vanishing gradient' problem of sigmoid).
 - Max pooling
 - Dropout (between the FC layers)

VGG (2014, 2nd place)

- Deeper networks with smaller filters
 - Only use 3x3 filters
 - 2x2 max. pooling
 - Use padding to preserve sizes of feature maps (the same as input)

VGG19

VGG (2014, 2nd place)

- Stacking smaller filters can have the same effect as a larger filter.
 - Applying two 3x3 filters twice is equivalent to one convolution with a 5x5
 - But with fewer parameters:3x3x2 < 5x5

- Deeper (22 layers) with computational efficiency
 - Inception module: an example of 'Network-in-Network'
 - Dimension reduction with 1x1 conv 'bottleneck' layer
 - No FC layer replaced by Global Average Pooling

• Inception module: parallel filter operations

- Problem: Very expensive in computing
 - Contain a lot of parameters
 - Depth grows up after each layer

Solution: 1x1 conv 'bottleneck' layer for dimension reduction

 Inception module with bottleneck layers

Inception module with dimension reduction

 FC layers are expensive in computing → replace FC layers by Global Average Pooling

 Global Average Pooling: Average over the whole feature map – reduce parameters/dimension, less prone to overfitting

- Revolution of Depth: 152 layers!
 (Other versions nowadays: ResNet-50, ResNet-101, etc.)
- Error rate ~3.6% (Human: ~5.1%)
- Overcome the vanishing gradient problem of deep(er) NN using Residual blocks

- Deeper NN are more difficult to optimize
 - More parameters to be optimized
 - Vanishing gradient problem
 - → Result in poorer performances than shallow networks.

Courtesy of Prof. Kai-Feng Chen (NTU)

Let's consider a chain of neurons and calculate the gradient according to back propagation: $\frac{\partial L}{\partial b_4} = \sigma'(z_4) \cdot \frac{\partial L}{\partial u}$

$$\frac{\partial L}{\partial b_1} = \sigma'(z_1) \cdot w_2 \cdot \sigma'(z_2) \cdot w_3 \cdot \sigma'(z_3) \cdot w_4 \cdot \sigma'(z_4) \cdot \frac{\partial L}{\partial y}$$
 output

Generally the weights are small (<1) after training, and $\sigma'(z)$ is less then 0.25 by definition, if the sigmoid function is used. This will

enforce
$$\frac{\partial L}{\partial b_1} < 0.0156 \frac{\partial L}{\partial b_4}$$

The updating on b₁ will be much slower than b₄.

 Idea: Copying what was learned in previous layers (shallower models).

Only need to learn (fit) the difference (*residual*) between the input (from previous layer) and the output.

→ Residual block

- Residual block: Fit F(x) = H(x) x
 (Output Input)
 - When gradient is vanishing
 F(x) will be fit to 0
 - The output will thus be the same as previous layer (restore gradients to the values in previous layers).

- ResNet: Stack of residual blocks
 - Also employ 1x1 conv bottleneck layers in residual blocks
 - Global Avg pooling before the output
 - No FC except the output
 - No dropout

Lab for this week

- No in-class exercise this week
- For the Lab session, you'll going to implement AlexNet, VGG, GoogLeNet, and ResNet for a classification task with OxFlower17, a dataset with images of 17 different categories of flowers.
- Furthermore, you'll learn how to increase the amount of training data 'by hand' (data augmentation).

Backup

CNN Strides

(b) Stride = 2

Created by [brilliantcode.net

CNN Padding

 We can apply padding to allow more space for the filter to cover the image and preserve the size of feature maps.

0	0	0	0	0	0	0	0
0	1	2	3	1	3	5	0
0	2	2	5	4	2	5	0
0	0	6	9	6	2	2	0
0	2	0	1	9	4	0	0
0	5	5	4	6	7	6	0
0	6	1	3	7	1	5	0
0	0	0	0	0	0	0	0

-4	-5	-1	3	-5	5
-10	-14	-1	10	-1	7
-8	-11	-11	7	12	8
11	-7	-10	1	13	13
-6	5	-16	-4	10	12
-6	4	-7	-1	2	8

CNN image channel

 A color image has three channels (R/G/B) and thus needs three layers of kernels.

CNN hyperparameters

- Filter/Kernel size (height and width of the kernel)
- Strides and padding
- Data format/channel numbers
- Ways of pooling
- Other hyperparameter for the (fully-connected) NN, e.g. activation functions.