UNIVERSIDADE FEDERAL DA BAHIA – UFBA ESCOLA POLITÉCNICA / DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO ENGG52 – LABORATÓRIO INTEGRADO I-A – ATIVIDADE #2 – 2024.1 TIAGO TRINDADE RIBEIRO / WAGNER LUIZ ALVES DE OLIVEIRA

Especificação do Problema

Deseja-se construir o controlador de um robô capaz de remover detritos não metálicos de uma tubulação metálica. A fig. 1 ilustra o problema (obs.: trata-se apenas de um exemplo – não se atenha à esta tubulação exclusiva, mas sim às possibilidades inerentes a diferentes configurações de tubulação).

Figura 1: Tubulação a ser percorrida e limpa pelo robô.

A tubulação a ser percorrida corresponde aos componentes de uma matriz de células, indicados pela cor cinza. O robô, mostrado como uma seta, é colocado em uma célula da cor preta, a qual representa um ponto de acesso do sistema de tubulação, com sua frente voltada para qualquer um dos 4 sentidos possíveis (Norte, Sul, Leste ou Oeste).

O robô possui 4 sensores binários:

- head (H): detector de metal de curto alcance, situado na frente do robô (ponta da seta), que retorna 0 quando a célula situada à frente do robô está livre para prosseguir (célula cinza ou preta) – caso contrário, retorna 1;
- left (L): detector de metal de curto alcance, situado na lateral esquerda do robô, que retorna 0 quando a célula do lado esquerdo do robô está livre (ou seja, há uma abertura à esquerda na tubulação) – caso contrário, retorna 1;
- under (U): sensor situado na parte inferior do robô, que retorna 1 quando a célula na qual o robô está situado é preta caso contrário, retorna 0; e
- barrier (B): sensor situado na frente do robô, que retorna 1 quando a célula situada à frente do robô está bloqueada por algum entulho que o robô é capaz de remover (células com losango) – caso contrário, retorna 0.

Em relação à movimentação, o robô é capaz de fazer apenas 2 tipos de movimento: avançar para uma célula livre à sua frente (saída **F**) ou rotacionar 90º para a esquerda, mantendo-se na mesma célula em que se encontra (saída **T**). Cada movimento consome 1 pulso de clock. Ao passar de uma célula livre para uma célula preta ou, ainda, em casos anômalos, o robô deverá ficar suspenso (em stand-by), até que um novo reset seja dado. Ao deparar-se com algum entulho à sua frente, o robô consumirá ao menos 3 pulsos de clock para removê-lo (saída **R**), após o que poderão ocorrer duas situações: i) caso reste algum entulho, o robô fará novo ciclo de remoção (3 pulsos) e testará a condição de caminho livre novamente; ii) caso o caminho esteja livre (não há mais entulho na célula considerada), o robô entrará em movimento novamente, avançando sobre o setor antes ocupado

pelo entulho. O robô deverá ser capaz de percorrer toda a tubulação de forma otimizada, adotando sempre o mesmo critério em todas as bifurcações, qual seja, adotar o lado esquerdo como preferencial.

- 1. Façam o diagrama de estados da FSM que atenda ao solicitado, utilizando uma máquina de Mealy. Atentem para o processo de remoção de entulhos e às situações em que o robô deve fazer 3 giros consecutivos, 2 giros consecutivos e 1 giro somente. Associem um número a cada estado, iniciando com 0 (zero) para o estado inicial.
- 2. Seguindo o diagrama de estados construído na questão anterior, deem um *Reset* e realizem 22 pulsos de clock, completando a tabela seguinte (usem os números associados a cada estado, conforme solicitado na questão anterior):

Pulso	Estado Atual	Célula	Orientação	н	L	U	В
0	0	A9	N	0	1	1	0
1	1	A8	N	0	1	0	0
2	1	A7	N	0	1	0	0
3	1	A6	N	1	1	0	0
4	2	A6	0	1	0	0	0
5	2	A6	S	0	0	0	0
6	2	A6	E	0	1	0	0
7	1	В6	E	0	1	0	0
8	1	C6	E	0	1	0	0
9	1	D6	Е	0	1	0	0
10	1	E6	E	0	1	0	0
11	1	F6	E	1	0	0	0
12	2	F6	N	0	0	0	1
13	3	F6	N	0	0	0	1
14	3	F6	N	0	0	0	1
15	3	F6	N	0	0	0	0
16	1	F5	N	0	1	0	0
17	1	F4	N	0	1	0	0
18	1	F3	N	0	1	0	0
19	1	F2	N	1	1	0	0
20	2	F2	0	1	0	0	0
21	2	F2	S	0	1	0	0
22	1	F3	S	0	0	0	0