Analisis dan Implementation Algoritma *Fuzzy Logic* Menggunakan Metode Takagi Sugeno untuk *Classification*

Fikhri Masri (1301164662)

Program Study S1 Teknik Informatika Fakultas Informatika, Telkom University

I. Analisis Masalah

Fuzzy Logic metodologi sistem kontrol pemecahan masalah, yang cocok untuk diimplementasikan pada sistem yang sederhana hingga sistem yang kompleks. Dalam logika klasik dinyatakan bahwa segala sesuatu bersifat biner, yang artinya adalah hanya mempunyai dua kemungkinan, "Ya atau Tidak". Oleh karena itu, semua ini dapat mempunyai nilai keanggotaan 0 atau 1. Akan tetapi, dalam logika fuzzy memungkinkan nilai keanggotaan berada diantara 0 dan 1. Artinya, bisa saja suatu keadaan mempunyai dua nilai "Ya dan Tidak" secara bersamaan, namun besar nilainya tergantung pada bobot keanggotaan yang dimilikinya. Pada tugas kali ini fuzzy logic digunakan untuk classification.

Himpunan Fuzzy

Ada beberapa hal yang perlu diketahui dalam memahami system fuzzy yaitu :

- 1. Variable *Fuzzy* merupakan variabel yang hendak dibahas dalam suatu system fuzzy. Pada tugas ini contohnya : tes kompetensi dan kepribadian
- 2. Himpunan *Fuzzy* yaitu suatu kelompok yang mewakili suatu keadaan tertentu dalam suatu variable *fuzzy*. Contoh: variable tes kompetensi terbagi jadi 2 himpunan fuzzy yaitu *low*, *mid*, *and high*.

Rule Fuzzy

Kepribadian Kompetensi	Low	Mid	High
Low	Tidak	Tidak	Ya
Mid	Tidak	Tidak	Ya
High	Tidak	Ya	Ya

Diatas adalah rules yang saya gunakan, dan saya anggap paling optimum untuk classification pada kasus ini.

Penentuan Parameter

Dari Analisa kasus yang dilakukan, saya menentukan variable yang akan digunakan sebagai basis *Fuzzy Logic* sebagai berikut :

Variable	Value			
Tes Kompetensi	Low	Mid	High	
Kepribadian	Low	Mid	High	

Dan melakukan pembagian fungsi keanggotaan terhadap data sebagai berikut :

Tes Kompetensi

$$\circ \text{ Low} = \begin{cases}
1, & x < 50 \\
0, & 50 \le x \le 60 \\
\frac{(60-x)}{(60-50)}, & 50 < x \le 60
\end{cases}$$

$$\circ \text{ Mid} = \begin{cases}
0, & x < 50, & x > 70 \\
\frac{(x-50)}{(60-50)}, & 50 < x \le 60 \\
-\left(\frac{(x-70)}{(70-60)}\right), & 60 < x \le 70
\end{cases}$$

$$\circ \text{ High} = \begin{cases}
0, & x < 60 \\
0, & x < 60 \\
1, & x \ge 70
\end{cases}$$

Gambar 1 Membership Kompetensi

Kepribadian

$$\begin{array}{ll}
 & \text{O. Low} = \begin{cases}
 1, & x < 50 \\
 0, & 50 \le x \le 60 \\
 \frac{(60-x)}{(60-50)}, & 50 < x \le 60
\end{array}$$

$$\begin{array}{ll}
 0, & x < 50, & x > 70 \\
 \frac{(x-50)}{(60-50)}, & 50 < x \le 60 \\
 -\left(\frac{(x-70)}{(70-60)}\right), & 60 < x \le 70
\end{array}$$

$$\begin{array}{ll}
 0, & x < 60 \\
 0, & x < 60 \\
 1, & x \ge 70
\end{cases}$$

Gambar 2 Membership Kepribadian

Takagi Sugeno

$$\circ$$
 No = 50

$$\circ$$
 Yes = 100

II. Hasil

21	61.5	52.5	58.33333	Tidak
22	66.5	58.3	82.50000	Ya
23	71.0	45.8	50.00000	Tidak
24	64.5	55.0	73.68421	Ya
25	57.5	79.2	100.00000	Ya
26	80.0	45.8	50.00000	Tidak
27	81.5	53.3	66.50000	Ya
28	61.0	64.2	71.00000	Ya
29	46.0	65.8	79.00000	Ya
30	78.0	49.2	50.00000	Tidak

Setelah melalui proses Fuzzification, Inference, dan Defuzzification dengan metode Takagi Sugeno didapatkan hasil seperti gambar disamping.

Gambar 3 Hasil Program