## SEQUENCE LISTING

<110> Heintz, Nicholas Houchens, Christopher

<120> RIP60 Nucleic Acid and Polypeptide Sequences and Uses Therefor

<130> V0139/7038 (HCL/MAT)

<150> US 60/114,745

<151> 1999-01-04

<150> US 60/114,743

<151> 1999-01-04

<160> 68

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2954

<212> DNA

<213> Homo Sapiens

<220>
<221> CDS
<222> (130)...(1831)

<400> 1

| gacacaggga gag<br>gaagaaccg atg | ggcagca taaggcac<br>ctg gaa cgt cgt | tg tagggagcag tg<br>tgc agg ggc ccc | tgtggcata ggaaacagca<br>ggccacatt ttctgcagag<br>ctg gcc atg ggc ctg<br>Leu Ala Met Gly Leu<br>10 | 60<br>120<br>171 |
|---------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|------------------|
|                                 |                                     |                                     | ag tca ccc cag acc<br>lu Ser Pro Gln Thr<br>30                                                   | 219              |
|                                 |                                     |                                     | gc acg tca gtg gcc<br>ly Thr Ser Val Ala<br>45                                                   | 267              |
|                                 | a Gln Ala Pro Gl                    |                                     | gc tgt gcc cac tgt<br>rg Cys Ala His Cys<br>60                                                   | 315              |
|                                 |                                     | l Ala Leu Trp Le                    | et cac acc cgc cgg<br>eu His Thr Arg Arg<br>75                                                   | 363              |
|                                 |                                     | o Cys Pro Glu Cy                    | gt ggc cgt cgc ttt<br>ys Gly Arg Arg Phe<br>90                                                   | 411              |

cgc cat gcc ccc ttc tta gca ctg cac cgc cag gtc cat gct gcc 459



|                                   |   |            |   | g gcg gta cct<br>Ala Val Pro          |      | 1179 |
|-----------------------------------|---|------------|---|---------------------------------------|------|------|
|                                   |   |            |   | gag cac ccg<br>Glu His Pro            |      | 1227 |
|                                   | _ | Ser Leu Ty |   | gac gac tgc<br>Asp Asp Cys<br>380     |      | 1275 |
|                                   |   |            |   | cag cgg cac<br>Gln Arg His<br>395     |      | 1323 |
|                                   |   |            |   | aag aac ttc<br>Lys Asn Phe<br>410     |      | 1371 |
|                                   |   | _          |   | tcc ggc gag<br>Ser Gly Glu            |      | 1419 |
| _                                 |   |            |   | : cag ggc agc<br>: Gln Gly Ser        | _    | 1467 |
|                                   |   | His Ala P  |   | ccc ttc gtg<br>Pro Phe Val<br>460     | _    | 1515 |
|                                   |   |            |   | ctg gcg cgg<br>Leu Ala Arg<br>475     |      | 1563 |
| -                                 |   | -          |   | ccc gac tgc<br>Pro Asp Cys<br>490     |      | 1611 |
| _                                 |   |            |   | cgg cgc atc<br>Arg Arg Ile            | _    | 1659 |
|                                   | _ | -          |   | cgc agc ttc<br>Arg Ser Phe            | •    | 1707 |
| •                                 |   | His Arg Ly |   | e atc cgg gac<br>s Ile Arg Asp<br>540 |      | 1755 |
|                                   | - |            | _ | gac gag gag<br>Asp Glu Glu<br>555     | _    | 1803 |
| ctg gcc cac<br>Leu Ala His<br>560 |   |            |   | ggtgg gcgggg                          | ccgt | 1851 |

gttggctgag agagggctgg ggtccttcgt ggtgggagtc gcagtgggct gggggtgcct 1911 gcctagtgct ggagtagggg acaatgggaa tcctagaggg gatggaagat gcggggagtg 1971 agetgggtgg gecetgetag egagagaggt caaceceggt ggecagggaa cecaetteca 2031 agegeaggga egeeggeete eagetggtgt gtgetaagge teegteetga etgeeetgtg 2091 ccctggaaaa gcagcaatac atccgcccct tacagccctc tggctagagg agccaccagt 2151 ggaaaggaag ccctccatcc tctggtatta acgccttaat gcccctgtct tttactgtaa 2211 gttacttaga tcatttttgg aagcaggcgt ggtagagtcc tgtaaatgaa tgctctgqqc 2271 tagatacage ttggagaace tgetggeett gttagacaga acttgggeet ttgccagcag 2331 caagaggtga agcgaagcca ctcttacctc tcccttcccc tcccacctgc cccctqcqta 2391 ggcacccaga cttggagaga cccgtctgct gttaatactt ccatcctctt ccttcccaaa 2451 gagcagatec caaggcattt acteettggt etgteteget ttatetgteg ecceteceag 2511 cgctgagagc ctcccctggc tgtcagcagc actgtgtcca ggctcttgtc tgaacaccgc 2571 agecectect tegeteette cacageteag catgteaegg caaggaetge egeattggtg 2631 atggagggcc agctgagggg aagttgctgg tgagtttcct ttctccattt ctagcatatg 2691 acacctggcc tetgettgag cacttaggtg acaggaactt cegcacetec tgaggecetg 2751 gatgatteta attgttagaa attetaattg ttagaaatee tteettataa tgaatqaatt 2811 ctgctttcct ataatttcta cctattgggc cttgttctgt tctctggaac taaacagaac 2871 2931 aaaaaaaaa aaaaaaaaa aaa 2954

<210> 2

<211> 567

<212> PRT

<213> Homo Sapiens

<400> 2

Met Leu Glu Arg Arg Cys Arg Gly Pro Leu Ala Met Gly Leu Ala Gln Pro Arg Leu Leu Ser Gly Pro Ser Gln Glu Ser Pro Gln Thr Leu Gly 25 Lys Glu Ser Arg Gly Leu Arg Gln Gln Gly Thr Ser Val Ala Gln Ser 40 Gly Ala Gln Ala Pro Gly Arg Ala His Arg Cys Ala His Cys Arg Arg His Phe Pro Gly Trp Val Ala Leu Trp Leu His Thr Arg Arg Cys Gln 70 75 Ala Arg Leu Pro Leu Pro Cys Pro Glu Cys Gly Arg Arg Phe Arg His 90 Ala Pro Phe Leu Ala Leu His Arg Gln Val His Ala Ala Ala Thr Pro Asp Leu Gly Phe Ala Cys His Leu Cys Gly Gln Ser Phe Arg Gly Trp 120 Val Ala Leu Val Leu His Leu Leu Ala His Ser Ala Ala Lys Gln Pro 135 140 Ile Ala Cys Pro Lys Cys Glu Arg Arg Phe Trp Arg Arg Lys Gln Leu 155 Arg Ala His Leu Arg Arg Cys His Pro Pro Ala Pro Glu Ala Arg Pro 165 170 Phe Ile Cys Gly Asn Cys Gly Arg Ser Phe Ala Gln Trp Asp Gln Leu 185 190 Val Ala His Lys Arg Val His Val Ala Glu Ala Leu Glu Glu Ala Ala 200 Ala Lys Ala Leu Gly Pro Arg Pro Arg Gly Arg Pro Ala Val Thr Ala 215 220 Pro Arg Pro Gly Gly Asp Ala Val Asp Arg Pro Phe Gln Cys Ala Cys 230 235 Cys Gly Lys Arg Phe Arg His Lys Pro Asn Leu Ile Ala His Arg Arg 250 245 255

Val His Thr Gly Glu Arg Pro His Gln Cys Pro Glu Cys Gly Lys Arg 265 Phe Thr Asn Lys Pro Tyr Leu Thr Ser His Arg Arg Ile His Thr Gly 280 285 Glu Lys Pro Tyr Pro Cys Lys Glu Cys Gly Arg Arg Phe Arg His Lys 295 300 Pro Asn Leu Leu Ser His Ser Lys Ile His Lys Arg Ser Glu Gly Ser 310 315 Ala Gln Ala Ala Pro Gly Pro Gly Ser Pro Gln Leu Pro Ala Gly Pro 330 Gln Glu Ser Ala Ala Glu Pro Thr Pro Ala Val Pro Leu Lys Pro Ala 345 Gln Glu Pro Pro Pro Gly Ala Pro Pro Glu His Pro Gln Asp Pro Ile 360 Glu Ala Pro Pro Ser Leu Tyr Ser Cys Asp Asp Cys Gly Arg Ser Phe 375 380 Arg Leu Glu Arg Phe Leu Arg Ala His Gln Arg His Asp Thr Gly Glu 390 395 Arg Pro Phe Thr Cys Ala Glu Cys Gly Lys Asn Phe Gly Lys Lys Thr 405 410 His Leu Val Ala His Ser Pro Val His Ser Gly Glu Arg Pro Phe Ala 425 Cys Glu Glu Cys Gly Arg Arg Phe Ser Gln Gly Ser His Leu Ala Ala 440 His Arg Pro Asp His Ala Pro Asp Arg Pro Phe Val Cys Pro Asp Cys 455 460 Gly Lys Ala Phe Arg His Lys Pro Tyr Leu Ala Arg His Arg Arg Ile 470 475 His Thr Gly Glu Lys Pro Tyr Val Cys Pro Asp Cys Gly Lys Ala Phe 490 Ser Gln Lys Ser Asn Leu Val Ser His Arg Arg Ile His Thr Gly Glu 505 Arg Pro Tyr Ala Cys Pro Asp Cys Asp Arg Ser Phe Ser Gln Lys Ser 520 Asn Leu Ile Thr His Arg Lys Ser His Ile Arg Asp Gly Ala Phe Cys 535 540 Cys Ala Ile Cys Gly Gln Thr Phe Asp Asp Glu Glu Arg Leu Leu Ala 550 555 His Gln Lys Lys His Asp Val 565 <210> 3 <211> 378 <212> DNA <213> Homo Sapiens <220> <221> CDS <222> (1)...(378) <400> 3 ggt gga gat gcc gtc gac cgc ccc ttc cag tgt gcc tgt tgt ggc aag 48 Gly Gly Asp Ala Val Asp Arg Pro Phe Gln Cys Ala Cys Cys Gly Lys ege tte egg cae aag eee aae ttg ate get eae ege ege gtg eae aeg 96 Arg Phe Arg His Lys Pro Asn Leu Ile Ala His Arg Arg Val His Thr

25

20

<400> 5

|                                                   |                                    |                                           | ccc<br>Pro                                              |                                                                 |                                                     |                                       |                                              |                                                     |                               |                                       |                                |                                       |                                                     |                                             |                        | 14 | 4 |
|---------------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------|---------------------------------------|-----------------------------------------------------|---------------------------------------------|------------------------|----|---|
|                                                   |                                    |                                           | ctg<br>Leu                                              |                                                                 |                                                     |                                       |                                              | _                                                   |                               |                                       |                                |                                       |                                                     | _                                           |                        | 19 | 2 |
|                                                   |                                    |                                           | aaa<br>Lys                                              |                                                                 |                                                     |                                       | -                                            | _                                                   |                               |                                       |                                |                                       |                                                     |                                             | _                      | 24 | 0 |
|                                                   |                                    |                                           | agc<br>Ser                                              |                                                                 |                                                     |                                       |                                              |                                                     |                               |                                       |                                |                                       |                                                     |                                             |                        | 28 | 8 |
|                                                   |                                    |                                           | ccg<br>Pro<br>100                                       |                                                                 |                                                     |                                       |                                              |                                                     |                               |                                       |                                |                                       | _                                                   |                                             |                        | 33 | 6 |
|                                                   | _                                  | -                                         | ccc<br>Pro                                              |                                                                 | _                                                   |                                       | _                                            |                                                     | _                             |                                       | _                              | _                                     | _                                                   |                                             |                        | 37 | 8 |
|                                                   | <2<br><2                           | 210><br>211><br>212>                      | 126<br>PRT                                              |                                                                 |                                                     |                                       |                                              |                                                     |                               |                                       |                                |                                       |                                                     |                                             |                        |    |   |
|                                                   | < 2                                | 113>                                      | Homo                                                    | Sar                                                             | piens                                               | 3                                     |                                              |                                                     |                               |                                       |                                |                                       |                                                     |                                             |                        |    |   |
|                                                   |                                    | 100>                                      |                                                         | Sa <u>r</u>                                                     | piens                                               | 3                                     |                                              |                                                     |                               |                                       |                                |                                       |                                                     |                                             |                        |    |   |
| Gly<br>1                                          | <4                                 | 100>                                      |                                                         |                                                                 |                                                     |                                       | Pro                                          | Phe                                                 | Gln<br>10                     | Cys                                   | Ala                            | Cys                                   | Cys                                                 | Gly<br>15                                   | Lys                    |    |   |
| 1                                                 | <4<br>Gly                          | 400><br>Asp                               | 4                                                       | Val<br>5                                                        | Asp                                                 | Arg                                   |                                              |                                                     | 10                            | _                                     |                                | _                                     | _                                                   | 15                                          | _                      |    |   |
| 1<br>Arg                                          | <4<br>Gly<br>Phe                   | Asp<br>Arg                                | 4<br>Ala<br>His                                         | Val<br>5<br>Lys                                                 | Asp<br>Pro                                          | Arg<br>Asn                            | Leu<br>Pro                                   | Ile<br>25                                           | 10<br>Ala                     | His                                   | Arg                            | Arg<br>Arg                            | Val                                                 | 15<br>His                                   | Thr                    |    |   |
| 1<br>Arg<br>Gly                                   | Gly<br>Phe<br>Glu<br>Pro           | Arg Arg 35                                | 4<br>Ala<br>His<br>20                                   | Val<br>5<br>Lys<br>His                                          | Asp<br>Pro<br>Gln                                   | Arg<br>Asn<br>Cys<br>His              | Leu<br>Pro<br>40                             | Ile<br>25<br>Glu                                    | 10<br>Ala<br>Cys              | His<br>Gly                            | Arg<br>Lys<br>Thr              | Arg<br>Arg<br>45                      | Val<br>30<br>Phe                                    | 15<br>His                                   | Thr<br>Asn             |    |   |
| 1<br>Arg<br>Gly<br>Lys<br>Tyr                     | Gly<br>Phe<br>Glu<br>Pro<br>50     | Arg<br>Arg<br>Arg<br>35                   | 4<br>Ala<br>His<br>20<br>Pro                            | Val<br>5<br>Lys<br>His                                          | Asp<br>Pro<br>Gln<br>Ser<br>Cys                     | Arg<br>Asn<br>Cys<br>His              | Leu<br>Pro<br>40<br>Arg                      | Ile<br>25<br>Glu<br>Arg                             | 10<br>Ala<br>Cys<br>Ile       | His<br>Gly<br>His<br>Arg              | Arg<br>Lys<br>Thr<br>60        | Arg<br>Arg<br>45<br>Gly               | Val<br>30<br>Phe<br>Glu                             | 15<br>His<br>Thr<br>Lys                     | Thr Asn Pro Leu        |    |   |
| 1<br>Arg<br>Gly<br>Lys<br>Tyr<br>65               | Gly Phe Glu Pro 50 Pro             | Arg Arg Arg Tyr Cys                       | 4<br>Ala<br>His<br>20<br>Pro                            | Val<br>5<br>Lys<br>His<br>Thr<br>Glu                            | Asp<br>Pro<br>Gln<br>Ser<br>Cys<br>70               | Arg<br>Asn<br>Cys<br>His<br>55<br>Gly | Leu<br>Pro<br>40<br>Arg                      | Ile<br>25<br>Glu<br>Arg                             | 10 Ala Cys Ile Phe Ser        | His<br>Gly<br>His<br>Arg<br>75        | Arg<br>Lys<br>Thr<br>60<br>His | Arg Arg 45 Gly Lys                    | Val<br>30<br>Phe<br>Glu<br>Pro                      | 15<br>His<br>Thr<br>Lys<br>Asn<br>Gln       | Thr Asn Pro Leu 80     |    |   |
| 1<br>Arg<br>Gly<br>Lys<br>Tyr<br>65<br>Leu        | Gly Phe Glu Pro 50 Pro Ser         | Arg Arg Arg Tyr Cys                       | 4 Ala His 20 Pro Leu Lys Ser Pro                        | Val<br>5<br>Lys<br>His<br>Thr<br>Glu<br>Lys<br>85               | Asp<br>Pro<br>Gln<br>Ser<br>Cys<br>70<br>Ile        | Arg Asn Cys His 55 Gly His            | Leu<br>Pro<br>40<br>Arg<br>Arg               | Ile<br>25<br>Glu<br>Arg<br>Arg<br>Arg               | 10 Ala Cys Ile Phe Ser 90     | His<br>Gly<br>His<br>Arg<br>75<br>Glu | Arg Lys Thr 60 His             | Arg<br>Arg<br>45<br>Gly<br>Lys<br>Ser | Val<br>30<br>Phe<br>Glu<br>Pro<br>Ala<br>Gln        | 15<br>His<br>Thr<br>Lys<br>Asn<br>Gln<br>95 | Thr Asn Pro Leu 80 Ala |    |   |
| 1<br>Arg<br>Gly<br>Lys<br>Tyr<br>65<br>Leu<br>Ala | Gly Phe Glu Pro 50 Pro Ser         | Arg Arg 35 Tyr Cys His Gly                | 4 Ala His 20 Pro Leu Lys Ser                            | Val<br>5<br>Lys<br>His<br>Thr<br>Glu<br>Lys<br>85<br>Gly        | Asp<br>Pro<br>Gln<br>Ser<br>Cys<br>70<br>Ile<br>Ser | Arg Asn Cys His 55 Gly His            | Leu Pro 40 Arg Arg Lys Gln Val               | Ile<br>25<br>Glu<br>Arg<br>Arg<br>Arg<br>Leu<br>105 | 10 Ala Cys Ile Phe Ser 90 Pro | His<br>Gly<br>His<br>Arg<br>75<br>Glu | Arg Lys Thr 60 His Gly         | Arg Arg 45 Gly Lys Ser Pro Ala        | Val<br>30<br>Phe<br>Glu<br>Pro<br>Ala<br>Gln<br>110 | 15<br>His<br>Thr<br>Lys<br>Asn<br>Gln<br>95 | Thr Asn Pro Leu 80 Ala |    |   |
| 1<br>Arg<br>Gly<br>Lys<br>Tyr<br>65<br>Leu<br>Ala | Gly Phe Glu Pro 50 Pro Ser Pro Ala | Arg Arg 35 Tyr Cys His Gly 311> 210> 213> | 4 Ala His 20 Pro Leu Lys Ser Pro 100 Pro 5 177 DNA Homo | Val<br>5<br>Lys<br>His<br>Thr<br>Glu<br>Lys<br>85<br>Gly<br>Thr | Asp Pro Gln Ser Cys 70 Ile Ser Pro                  | Arg Asn Cys His 55 Gly His Pro        | Leu<br>Pro<br>40<br>Arg<br>Arg<br>Lys<br>Gln | Ile<br>25<br>Glu<br>Arg<br>Arg<br>Arg<br>Leu<br>105 | 10 Ala Cys Ile Phe Ser 90 Pro | His<br>Gly<br>His<br>Arg<br>75<br>Glu | Arg Lys Thr 60 His Gly         | Arg Arg 45 Gly Lys Ser                | Val<br>30<br>Phe<br>Glu<br>Pro<br>Ala<br>Gln<br>110 | 15<br>His<br>Thr<br>Lys<br>Asn<br>Gln<br>95 | Thr Asn Pro Leu 80 Ala |    |   |

<220>

```
Arg Ser Glu Gly Ser Ala Gln Ala Pro Gly Pro Gly Ser Pro Gln
ctg cca gcc ggc ccc cag gag tcc gcg gcc gag ccc acc ccg gcg gta
                                                                       96
Leu Pro Ala Gly Pro Gln Glu Ser Ala Ala Glu Pro Thr Pro Ala Val
             20
cet etg aaa eeg gee eag gag eeg eeg eea ggg gee eeg eea gag eac
                                                                      144
Pro Leu Lys Pro Ala Gln Glu Pro Pro Pro Gly Ala Pro Pro Glu His
ccg cag gac ccg atc gaa gcc ccc ccc tcc ctc
                                                                      177
Pro Gln Asp Pro Ile Glu Ala Pro Pro Ser Leu
      <210> 6
      <211> 59
      <212> PRT
      <213> Homo Sapiens
      <400> 6
Arg Ser Glu Gly Ser Ala Gln Ala Ala Pro Gly Pro Gly Ser Pro Gln
                                    10
Leu Pro Ala Gly Pro Gln Glu Ser Ala Ala Glu Pro Thr Pro Ala Val
                                25
Pro Leu Lys Pro Ala Gln Glu Pro Pro Gly Ala Pro Pro Glu His
                            40
Pro Gln Asp Pro Ile Glu Ala Pro Pro Ser Leu
      <210> 7
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 7
                                                                        24
ggcagatctg gcctgtctgt gaat
      <210> 8
      <211> 27
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 8
cctctagatc tgttctatat cagattg
                                                                        27
      <210> 9
      <211> 27
      <212> DNA
      <213> Artificial Sequence
```

i i

| <223> Synthetic                                                |     |
|----------------------------------------------------------------|-----|
| <400> 9                                                        |     |
| ggtccggatc cctagttttg atgaggg                                  | 27  |
| 3333                                                           | 2,  |
| <210> 10                                                       |     |
| <211> 26                                                       |     |
| <212> DNA                                                      |     |
| <213> Artificial Sequence                                      |     |
| <220>                                                          |     |
| <223> Synthetic                                                |     |
| •                                                              |     |
| <400> 10                                                       |     |
| gatcttttat tattattatt agttcg                                   | 26  |
| <210> 11                                                       |     |
| <211> 26                                                       |     |
| <212> DNA                                                      |     |
| <213> Artificial Sequence                                      |     |
|                                                                |     |
| <220>                                                          |     |
| <223> Synthetic                                                |     |
| <400> 11                                                       |     |
| gatccgaact aataataata ataaaa                                   | 26  |
| JJ                                                             | 20  |
| <210> 12                                                       |     |
| <211> 48                                                       |     |
| <212> DNA                                                      |     |
| <213> Artificial Sequence                                      |     |
| <220>                                                          |     |
| <223> Synthetic                                                |     |
|                                                                |     |
| <400> 12                                                       |     |
| gatccgggaa ggcggcgct gggggcgctg cggcgctgcg ctccacct            | 48  |
|                                                                |     |
| <210> 13<br><211> 49                                           |     |
| <211> 45<br><212> DNA                                          |     |
| <213> Artificial Sequence                                      |     |
| -                                                              |     |
| <220>                                                          |     |
| <223> Synthetic                                                |     |
| 4400, 12                                                       |     |
| <400> 13 gatctaggtg gagcgcagcg ccgcagcgcc cccagcgccc gccttcccg | 49  |
| gacetaggig gagegeageg tegeagegee tecagegeet geetteeeg          | 4.5 |
| <210> 14                                                       |     |
| <211> 20                                                       |     |
| <212> DNA                                                      |     |
| <213> Artificial Sequence                                      |     |
| <220>                                                          |     |
| <220> <223> Synthetic                                          |     |
| -made of monocati                                              |     |
| <400> 14                                                       |     |
| gcataataaa aaaaattagt                                          | 20  |

| <210       | > 15                  |    |
|------------|-----------------------|----|
| <211       | > 21                  |    |
| <212       | > DNA                 |    |
| <213       | > Artificial Sequence |    |
|            |                       |    |
| <220       | >                     |    |
| <223       | > Synthetic           |    |
|            | 1                     |    |
| <400       | > 15                  |    |
|            | tttatttatg c          | 21 |
|            |                       |    |
| <210       | > 16                  |    |
| <211       |                       |    |
|            | > DNA                 |    |
|            |                       |    |
| <413       | > Artificial Sequence |    |
| -220       |                       |    |
| <220       |                       |    |
| <223       | > Synthetic           |    |
| 400        |                       |    |
| <400       |                       |    |
| ctgtttttt  | tagtattaag c          | 21 |
|            |                       |    |
| <210       |                       |    |
| <211       |                       |    |
|            | > DNA                 |    |
| <213       | > C                   |    |
|            |                       |    |
| <220       |                       |    |
| <223       | > Synthetic           |    |
|            |                       |    |
| <400       |                       |    |
| gcttaatact | aaaaaaaaca g          | 21 |
|            |                       |    |
| <210       |                       |    |
| <211       |                       |    |
|            | > DNA                 |    |
| <213       | > Artificial Sequence |    |
|            |                       |    |
| <220       | >                     |    |
| <223       | > Synthetic           |    |
|            |                       |    |
| <400       | > 18                  |    |
| gatcttaaca | gtaataataa atatct     | 26 |
|            |                       |    |
| <210       | > 19                  |    |
| <211       | > 26                  |    |
| <212       | > DNA                 |    |
| <213       | > Artificial Sequence |    |
|            |                       |    |
| <220       | >                     |    |
| <223       | > Synthetic           |    |
|            |                       |    |
| <400       | > 19                  |    |
| gatcagatat | ttattattac tgttaa     | 26 |
|            |                       |    |
| <210       | > 20                  |    |
| <211       | > 33                  |    |
| -212       | > DNA                 |    |

| <213> Artificial Sequence                        |      |
|--------------------------------------------------|------|
| <220>                                            |      |
| <223> Synthetic                                  |      |
| 400 00                                           |      |
| <400> 20 gacccgggat ccatgctgga acgtcgttgc agg    | 2.2  |
| gaccegggat ceaegeegga acgregeege agg             | 33   |
| <210> 21                                         |      |
| <211> 31                                         |      |
| <212> DNA                                        |      |
| <213> Artificial Sequence                        |      |
| <220>                                            | -    |
| <223> Synthetic                                  |      |
|                                                  |      |
| <400> 21                                         | 31   |
| gacccgggat ccgggagatg ccgtcgaccg c               | 31   |
| <210> 22                                         |      |
| <211> 33                                         |      |
| <212> DNA                                        |      |
| <213> Artificial Sequence                        |      |
| <220>                                            |      |
| <223> Synthetic                                  |      |
| 400 00                                           |      |
| <400> 22<br>gacccgggat ccgtacctct gaaaccggcc cag | . 33 |
| gaccegggat cegtacetee gaaaceggee cag             | . 33 |
| <210> 23                                         |      |
| <211> 33                                         |      |
| <212> DNA                                        |      |
| <213> Artificial Sequence                        |      |
| <220>                                            |      |
| <223> Synthetic                                  |      |
| <400> 23                                         |      |
| gacccgggat cctcagacat cgtgcttctt ctg             | 33   |
|                                                  |      |
| <210> 24                                         |      |
| <211> 33                                         |      |
| <212> DNA                                        |      |
| <213> Artificial Sequence                        |      |
| <220>                                            |      |
| <223> Synthetic                                  |      |
| <400> 24                                         |      |
| gacccgggat cctgggccgg ttccagaggt acc             | 33   |
|                                                  |      |
| <210> 25                                         |      |
| <211> 33                                         |      |
| <212> DNA<br><213> Artificial Sequence           |      |
| and the sequence                                 |      |
| <220>                                            |      |
| <223> Synthetic                                  |      |

```
<400> 25
gacccgggat ccgcggtcga cggcatctcc acc
                                                                         33
      <210> 26
      <211> 46
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 26
gaccegggat cegaattete gettgtgaat ettgetgtga gacage
                                                                         46
      <210> 27
      <211> 33
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 27
gacccgggat cctccgaggg gtcggcccag gcg
                                                                         33
      <210> 28
      <211> 36
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 28
gaccegggat ecgagggagg ggggggette gategg
                                                                         36
      <210> 29
      <211> 45
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 29
gaccegggat cegaatteta cagetgegac gactgeggea ggage
                                                                         45
      <210> 30
      <211> 11
      <212> PRT
      <213> Homo Sapiens
      <400> 30
Val Ala Glu Ala Leu Glu Glu Ala Ala Lys
      <210> 31
      <211> 16
```

```
<212> PRT
      <213> Homo Sapiens
      <400> 31
Asn Leu Val Ser His Arg Arg Ile His Thr Gly Glu Arg Pro Tyr Ala
                                    10
      <210> 32
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 32
His Arg Cys Ala His Cys Arg Arg His Phe Pro Gly Trp Val Ala Leu
Trp Leu His Thr Arg Arg Cys Gln
            20
      <210> 33
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 33
Leu Pro Cys Pro Glu Cys Gly Arg Arg Phe Arg His Ala Pro Phe Leu
                                    10
Ala Leu His Arg Gln Val His Ala
            20
      <210> 34
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 34
Phe Ala Cys His Leu Cys Gly Gln Ser Phe Arg Gly Trp Val Ala Leu
                                    10
Val Leu His Leu Leu Ala His Ser
            20
      <210> 35
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 35
Ile Ala Cys Pro Lys Cys Glu Arg Arg Phe Trp Arg Arg Lys Gln Leu
                                    10
Arg Ala His Leu Arg Arg Cys His
            20
      <210> 36
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 36
Phe Ile Cys Gly Asn Cys Gly Arg Ser Phe Ala Gln Trp Asp Gln Leu
                                     10
                                                         15
```

```
Val Ala His Lys Arg Val His Val
            20
      <210> 37
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 37
Phe Gln Cys Ala Cys Cys Gly Lys Arg Phe Arg His Lys Pro Asn Leu
Ile Ala His Arg Arg Val His Thr
            20
      <210> 38
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 38
His Gln Cys Pro Glu Cys Gly Lys Arg Phe Thr Asn Lys Pro Tyr Leu
                                     10
Thr Ser His Arg Arg Ile His Thr
            20
      <210> 39
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 39
Tyr Pro Cys Lys Glu Cys Gly Arg Arg Phe Arg His Lys Pro Asn Leu
Leu Ser His Ser Lys Ile His Lys
            20
      <210> 40
      <211> 23
      <212> PRT
      <213> Homo Sapiens
      <400> 40
Tyr Ser Cys Asp Asp Cys Gly Arg Ser Phe Arg Leu Glu Arg Phe Leu
                                     10
Arg Ala His Gln Arg His Asp
            20
      <210> 41
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 41
Phe Thr Cys Ala Glu Cys Gly Lys Asn Phe Gly Lys Lys Thr His Leu
Val Ala His Ser Pro Val His Ser
            20
```

<210> 42

```
<211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 42
Phe Ala Cys Glu Glu Cys Gly Arg Arg Phe Ser Gln Gly Ser His Leu
                                     10
Ala Ala His Arg Pro Asp His Ala
            20
      <210> 43
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 43
Phe Val Cys Pro Asp Cys Gly Lys Ala Phe Arg His Lys Pro Tyr Leu
Ala Arg His Arg Arg Ile His Thr
            20
      <210> 44
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 44
Tyr Val Cys Pro Asp Cys Gly Lys Ala Phe Ser Gln Lys Ser Asn Leu
                                     10
Val Ser His Arg Arg Ile His Thr
            20
      <210> 45
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 45
Tyr Ala Cys Pro Asp Cys Asp Arg Ser Phe Ser Gln Lys Ser Asn Leu
                                     10
Ile Thr His Arg Lys Ser His Ile
      <210> 46
      <211> 24
      <212> PRT
      <213> Homo Sapiens
      <400> 46
Phe Cys Cys Ala Ile Cys Gly Gln Thr Phe Asp Asp Glu Glu Arg Leu
                                     10
Leu Ala His Gln Lys Lys His Asp
            20
      <210> 47
      <211> 24
      <212> PRT
      <213> Homo Sapiens
```

```
<220>
      <221> VARIANT
      <222> (1)...(2)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (4)...(5)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (7)...(9)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (11)...(15)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (17) ... (18)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (20)...(22)
      <223> Xaa is any amino acid.
      <221> VARIANT
      <222> (24)...(24)
      <223> Xaa is any amino acid.
      <400> 47
Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa Leu
Xaa Xaa His Xaa Xaa Xaa His Xaa
            20
      <210> 48
      <211> 702
      <212> DNA
      <213> Homo Sapiens
      <220>
      <221> CDS
      <222> (1) ... (702)
      <400> 48
atg ctg gaa cgt cgt tgc agg ggc ccc ctg gcc atg ggc ctg gcc cag
                                                                       48
Met Leu Glu Arg Arg Cys Arg Gly Pro Leu Ala Met Gly Leu Ala Gln
ccc cga ctc ctt tct ggg ccc tcc cag gag tca ccc cag acc ctg ggg
Pro Arg Leu Ser Gly Pro Ser Gln Glu Ser Pro Gln Thr Leu Gly
             20
aag gag too ogo ggg otg agg caa caa ggo acg toa gtg goo cag tot
                                                                      144
Lys Glu Ser Arg Gly Leu Arg Gln Gln Gly Thr Ser Val Ala Gln Ser
ggt gcc caa gcc cca ggc agg gcc cat cgc tgt gcc cac tgt cga agg
                                                                      192
Gly Ala Gln Ala Pro Gly Arg Ala His Arg Cys Ala His Cys Arg Arg
```

50 55 60 cac ttc cct ggc tgg gtg gct ctg tgg ctt cac acc cgc cgg tgc cag 240 His Phe Pro Gly Trp Val Ala Leu Trp Leu His Thr Arg Arg Cys Gln 65 70 gcc egg etg eec ttg eec tgc eet gag tgt ggc egt ege ttt ege eat 288 Ala Arg Leu Pro Leu Pro Cys Pro Glu Cys Gly Arg Arg Phe Arg His gee eee tte tta gea etg eac ege eag gte eat get get gee acc eea 336 Ala Pro Phe Leu Ala Leu His Arg Gln Val His Ala Ala Ala Thr Pro 100 105 gac ctg ggc ttt gcc tgc cac ctc tgt ggg cag agc ttc cga ggc tgg 384 Asp Leu Gly Phe Ala Cys His Leu Cys Gly Gln Ser Phe Arg Gly Trp 115 120 125 gtg gcc ctg gtt ctg cat ctg gcc cat tca gct gca aag caa ccc 432 Val Ala Leu Val Leu His Leu Leu Ala His Ser Ala Ala Lys Gln Pro 130 135 atc gct tgt ccc aaa tgc gag aga cgc ttc tgg cga cga aag cag ctt 480 Ile Ala Cys Pro Lys Cys Glu Arg Arg Phe Trp Arg Arg Lys Gln Leu 145 150 cga get cat etg egg egg tge cac eet eee gee eeg gag gee egg eee 528 Arg Ala His Leu Arg Arg Cys His Pro Pro Ala Pro Glu Ala Arg Pro 170 ttc ata tgc ggc aac tgt ggc cgg agc ttt gcc caq tgg gac caq cta 576 Phe Ile Cys Gly Asn Cys Gly Arg Ser Phe Ala Gln Trp Asp Gln Leu 180 185 gtt gcc cac aag cgg gtg cac gta gct gag gcc ctg gag gag gcc gca 624 Val Ala His Lys Arg Val His Val Ala Glu Ala Leu Glu Glu Ala Ala 200 195 205 gee aag get etg ggg eee egg eee agg gge ege eee geg gtg ace gee 672 Ala Lys Ala Leu Gly Pro Arg Pro Arg Gly Arg Pro Ala Val Thr Ala 210 215 ccc cgg ccc ggt gga gat gcc gtc gac cgc 702 Pro Arg Pro Gly Gly Asp Ala Val Asp Arg 225 <210> 49 <211> 234 <212> PRT <213> Homo Sapiens <400> 49

 Met
 Leu
 Glu
 Arg
 Cys
 Arg
 Gly
 Pro
 Leu
 Ala
 Met
 Gly
 Leu
 Ala
 Gln

 Pro
 Arg
 Leu
 Ser
 Gly
 Pro
 Ser
 Gln
 Glu
 Ser
 Pro
 Gln
 Thr
 Leu
 Gly
 Gly

 Lys
 Glu
 Ser
 Arg
 Gly
 Leu
 Arg
 Gln
 Gln
 Gly
 Thr
 Ser
 Val
 Ala
 Gln
 Ser

 35
 Image: Arg
 Image:

| Gry                                                | A1a<br>50                                                                         | GIn                                                                  | Ala                                                       | Pro                                                       | Gly                                                                      | Arg<br>55                                                  | Ala                                          | His                                          | Arg                                                 | Cys                                                  | Ala<br>60                              | His                                                        | Cys                                    | Arg                                                               | Arg                                        |                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------|-----------------------------|
| His                                                | Phe                                                                               | Pro                                                                  | Gly                                                       | Trp                                                       | Val                                                                      | Ala                                                        | Leu                                          | Trp                                          | Leu                                                 | His                                                  | Thr                                    | Arg                                                        | Arq                                    | Cys                                                               | Gln                                        |                             |
| 65                                                 |                                                                                   |                                                                      | -                                                         | -                                                         | 70                                                                       |                                                            |                                              | -                                            |                                                     | 75                                                   |                                        |                                                            |                                        | -1                                                                | 80                                         |                             |
| Ala                                                | Arg                                                                               | Leu                                                                  | Pro                                                       | Leu<br>85                                                 | Pro                                                                      | Сув                                                        | Pro                                          | Glu                                          | Cys<br>90                                           | Gly                                                  | Arg                                    | Arg                                                        | Phe                                    | Arg<br>95                                                         |                                            |                             |
| Ala                                                | Pro                                                                               | Phe                                                                  | Leu<br>100                                                |                                                           | Leu                                                                      | His                                                        | Arg                                          | Gln<br>105                                   |                                                     | His                                                  | Ala                                    | Ala                                                        | Ala<br>110                             |                                                                   | Pro                                        |                             |
| Asp                                                | Leu                                                                               | Gly<br>115                                                           |                                                           | Ala                                                       | Cys                                                                      | His                                                        | Leu<br>120                                   |                                              | Gly                                                 | Gln                                                  | Ser                                    | Phe<br>125                                                 |                                        | Gly                                                               | Trp                                        |                             |
| Val                                                | Ala<br>130                                                                        | Leu                                                                  | Val                                                       | Leu                                                       | His                                                                      | Leu<br>135                                                 |                                              | Ala                                          | His                                                 | Ser                                                  | Ala<br>140                             |                                                            | Lys                                    | Gln                                                               | Pro                                        |                             |
| Ile<br>145                                         |                                                                                   | Cys                                                                  | Pro                                                       | Lys                                                       | Cys<br>150                                                               |                                                            | Arg                                          | Arg                                          | Phe                                                 | Trp<br>155                                           |                                        | Arg                                                        | Lys                                    | Gln                                                               |                                            |                             |
|                                                    | Ala                                                                               | His                                                                  | Leu                                                       | Arg<br>165                                                |                                                                          | Cys                                                        | His                                          | Pro                                          | Pro                                                 |                                                      | Pro                                    | Glu                                                        | Ala                                    | _                                                                 | 160<br>Pro                                 |                             |
| Phe                                                | Ile                                                                               | Cys                                                                  | Gly<br>180                                                |                                                           | Cys                                                                      | Gly                                                        | Arg                                          |                                              |                                                     | Ala                                                  | Gln                                    | Trp                                                        | _                                      | 175<br>Gln                                                        | Leu                                        |                             |
| Val                                                | Ala                                                                               | His                                                                  |                                                           | Arg                                                       | Val                                                                      | His                                                        |                                              | 185<br>Ala                                   | Glu                                                 | Ala                                                  | Leu                                    |                                                            | 190<br>Glu                             | Ala                                                               | Ala                                        |                             |
| Ala                                                |                                                                                   | 195<br>Ala                                                           | Leu                                                       | Gly                                                       | Pro                                                                      |                                                            | 200<br>Pro                                   | Arg                                          | Gly                                                 | Arg                                                  |                                        | 205<br>Ala                                                 | Val                                    | Thr                                                               | Ala                                        |                             |
| Pro                                                | 210<br>Arg                                                                        | Pro                                                                  | Gly                                                       | Gly                                                       | Asp<br>230                                                               | 215<br>Ala                                                 | Val                                          | Asp                                          | Arg                                                 |                                                      | 220                                    |                                                            |                                        |                                                                   |                                            |                             |
| 223                                                |                                                                                   | 210>                                                                 | 5.0                                                       |                                                           | 230                                                                      |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    |                                                                                   | 211>                                                                 |                                                           |                                                           |                                                                          |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    |                                                                                   | 212>                                                                 |                                                           |                                                           |                                                                          |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    |                                                                                   | 213>                                                                 |                                                           | Sar                                                       | piens                                                                    | 3                                                          |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    |                                                                                   |                                                                      |                                                           |                                                           |                                                                          |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    | <2                                                                                | 220>                                                                 |                                                           |                                                           |                                                                          |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    |                                                                                   | 220><br>221>                                                         | CDS                                                       |                                                           |                                                                          |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    | <2                                                                                |                                                                      |                                                           | (4                                                        | 141)                                                                     |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
|                                                    | <2<br><2                                                                          | 221>                                                                 | (1)                                                       | (4                                                        | 141)                                                                     |                                                            |                                              |                                              |                                                     |                                                      |                                        |                                                            |                                        |                                                                   |                                            |                             |
| ggt                                                | <2<br><2<br><4                                                                    | 221><br>222>                                                         | (1) .<br>50                                               |                                                           |                                                                          | cgc                                                        | ccc                                          | ttc                                          | cag                                                 | tgt                                                  | gcc                                    | tgt                                                        | tgt                                    | ggc                                                               | aag                                        | 48                          |
|                                                    | <2<br><2<br><4<br>gga                                                             | 221><br>222><br>400>                                                 | (1)<br>50<br>gcc                                          | gtc                                                       | gac                                                                      |                                                            |                                              |                                              | _                                                   | -                                                    | _                                      | _                                                          | _                                      |                                                                   | -                                          | 48                          |
| Gly<br>1                                           | <2<br><2<br><4<br>gga<br>Gly                                                      | 221><br>222><br>400><br>gat                                          | (1)<br>50<br>gcc<br>Ala                                   | gtc<br>Val<br>5                                           | gac<br>Asp                                                               | Arg                                                        | Pro                                          | Phe                                          | Gln<br>10                                           | Cys                                                  | Ala                                    | Cys                                                        | Cys                                    | Gly<br>15                                                         | Lys                                        | 48                          |
| Gly<br>1<br>cgc                                    | <2<br><2<br>gga<br>Gly                                                            | 221><br>222><br>400><br>gat<br>Asp                                   | (1)<br>50<br>gcc<br>Ala                                   | gtc<br>Val<br>5<br>aag                                    | gac<br>Asp                                                               | Arg<br>aac                                                 | Pro<br>ttg                                   | Phe<br>atc                                   | Gln<br>10<br>gct                                    | Cys                                                  | Ala                                    | Cys                                                        | Cys                                    | Gly<br>15<br>cac                                                  | Lys                                        |                             |
| Gly<br>1<br>cgc<br>Arg                             | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe                                              | 221><br>222><br>400><br>gat<br>Asp<br>cgg                            | (1)<br>50<br>gcc<br>Ala<br>cac<br>His<br>20               | gtc<br>Val<br>5<br>aag<br>Lys                             | gac<br>Asp<br>ccc<br>Pro                                                 | Arg<br>aac<br>Asn                                          | Pro<br>ttg<br>Leu                            | Phe<br>atc<br>Ile<br>25                      | Gln<br>10<br>gct<br>Ala                             | Cys<br>cac<br>His                                    | Ala<br>cgc<br>Arg                      | Cys<br>cgc<br>Arg                                          | Cys<br>gtg<br>Val<br>30                | Gly<br>15<br>cac<br>His                                           | Lys<br>acg<br>Thr                          | 96                          |
| Gly<br>1<br>cgc<br>Arg                             | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe                                              | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg                     | (1)<br>50<br>gcc<br>Ala<br>cac<br>His<br>20               | gtc<br>Val<br>5<br>aag<br>Lys                             | gac<br>Asp<br>ccc<br>Pro                                                 | Arg<br>aac<br>Asn                                          | ttg<br>Leu<br>ccc<br>Pro                     | Phe<br>atc<br>Ile<br>25<br>gag               | Gln<br>10<br>gct<br>Ala<br>tgc                      | Cys<br>cac<br>His                                    | Ala<br>cgc<br>Arg                      | cgc<br>Arg                                                 | Cys<br>gtg<br>Val<br>30                | Gly<br>15<br>cac<br>His                                           | Lys<br>acg<br>Thr                          |                             |
| Gly<br>1<br>cgc<br>Arg                             | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe                                              | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg                     | (1)<br>50<br>gcc<br>Ala<br>cac<br>His<br>20               | gtc<br>Val<br>5<br>aag<br>Lys                             | gac<br>Asp<br>ccc<br>Pro                                                 | Arg<br>aac<br>Asn                                          | Pro<br>ttg<br>Leu                            | Phe<br>atc<br>Ile<br>25<br>gag               | Gln<br>10<br>gct<br>Ala<br>tgc                      | Cys<br>cac<br>His                                    | Ala<br>cgc<br>Arg                      | Cys<br>cgc<br>Arg                                          | Cys<br>gtg<br>Val<br>30                | Gly<br>15<br>cac<br>His                                           | Lys<br>acg<br>Thr                          | 96                          |
| Gly<br>1<br>cgc<br>Arg<br>ggc<br>Gly               | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe<br>gag<br>Glu                                | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg                     | (1)<br>50<br>gcc<br>Ala<br>cac<br>His<br>20<br>ccc<br>Pro | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His               | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln                                   | aac<br>Asn<br>tgc<br>Cys                                   | ttg<br>Leu<br>ccc<br>Pro<br>40               | atc<br>Ile<br>25<br>gag<br>Glu               | Gln<br>10<br>gct<br>Ala<br>tgc<br>Cys               | cac<br>His<br>999<br>Gly                             | Ala<br>cgc<br>Arg<br>aag<br>Lys        | cgc<br>Arg<br>cgc<br>Arg<br>45                             | Cys gtg Val 30 ttt Phe                 | Gly<br>15<br>cac<br>His<br>acc<br>Thr                             | Lys acg Thr aat Asn                        | 96                          |
| Gly<br>1<br>cgc<br>Arg<br>ggc<br>Gly               | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe<br>gag<br>Glu                                | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg                     | (1)<br>50<br>gcc<br>Ala<br>cac<br>His<br>20<br>ccc<br>Pro | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His               | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln                                   | aac<br>Asn<br>tgc<br>Cys                                   | ttg<br>Leu<br>ccc<br>Pro<br>40               | atc<br>Ile<br>25<br>gag<br>Glu               | Gln<br>10<br>gct<br>Ala<br>tgc<br>Cys               | cac<br>His<br>999<br>Gly                             | Ala<br>cgc<br>Arg<br>aag<br>Lys        | cgc<br>Arg<br>cgc<br>Arg<br>45                             | Cys gtg Val 30 ttt Phe                 | Gly<br>15<br>cac<br>His<br>acc<br>Thr                             | Lys acg Thr aat Asn                        | 96<br>144                   |
| Gly<br>1<br>cgc<br>Arg<br>ggc<br>Gly<br>aag<br>Lys | <2<br><2<br>gga<br>Gly<br>ttc<br>Phe<br>gag<br>Glu<br>ccc<br>Pro                  | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg                     | (1). 50 gcc Ala cac His 20 ccc Pro                        | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His               | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln<br>tcg<br>ser                     | aac<br>Asn<br>tgc<br>Cys<br>cac<br>His                     | ttg<br>Leu<br>ccc<br>Pro<br>40<br>cgg<br>Arg | atc<br>Ile<br>25<br>gag<br>Glu<br>cgc<br>Arg | Gln<br>10<br>gct<br>Ala<br>tgc<br>Cys<br>atc<br>Ile | cac<br>His<br>999<br>Gly<br>cac                      | Ala cgc Arg aag Lys acc Thr 60         | cgc<br>Arg<br>cgc<br>Arg<br>45<br>ggc<br>Gly               | Cys gtg Val 30 ttt Phe gag Glu         | Gly<br>15<br>cac<br>His<br>acc<br>Thr                             | Lys acg Thr aat Asn ccc Pro                | 96<br>144                   |
| Gly 1 cgc Arg ggc Gly aag Lys tac Tyr              | <pre> &lt;2  &lt;2  gga Gly  ttc Phe  gag Glu  ccc Pro 50 ccg</pre>               | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg<br>35<br>tat<br>Tyr | (1). 50 gcc Ala cac His 20 ccc Pro ctg Leu aaa            | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His<br>act<br>Thr | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln<br>tcg<br>ser                     | aac<br>Asn<br>tgc<br>Cys<br>cac<br>His<br>55               | ttg<br>Leu<br>ccc<br>Pro<br>40<br>cgg<br>Arg | Phe atc Ile 25 gag Glu cgc Arg               | Gln 10 gct Ala tgc Cys atc Ile                      | cac<br>His<br>ggg<br>Gly<br>cac<br>His               | Ala cgc Arg aag Lys acc Thr 60 cac     | cgc<br>Arg<br>cgc<br>Arg<br>45<br>ggc<br>Gly               | Cys gtg Val 30 ttt Phe gag Glu ccc     | Gly<br>15<br>cac<br>His<br>acc<br>Thr<br>aag<br>Lys               | Lys acg Thr aat Asn ccc Pro ctg Leu        | 96<br>144<br>. 192          |
| Gly<br>1<br>cgc<br>Arg<br>ggc<br>Gly<br>aag<br>Lys | <pre> &lt;2 &lt;2 &lt;3 gga Gly  ttc Phe  gag Glu  ccc Pro 50 ccg</pre>           | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg<br>35<br>tat<br>Tyr | (1). 50 gcc Ala cac His 20 ccc Pro ctg Leu aaa            | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His<br>act<br>Thr | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln<br>tcg<br>ser                     | aac<br>Asn<br>tgc<br>Cys<br>cac<br>His<br>55               | ttg<br>Leu<br>ccc<br>Pro<br>40<br>cgg<br>Arg | Phe atc Ile 25 gag Glu cgc Arg               | Gln 10 gct Ala tgc Cys atc Ile                      | cac<br>His<br>999<br>Gly<br>cac<br>His               | Ala cgc Arg aag Lys acc Thr 60 cac     | cgc<br>Arg<br>cgc<br>Arg<br>45<br>ggc<br>Gly               | Cys gtg Val 30 ttt Phe gag Glu ccc     | Gly<br>15<br>cac<br>His<br>acc<br>Thr<br>aag<br>Lys               | Lys acg Thr aat Asn ccc Pro                | 96<br>144<br>. 192          |
| Gly 1 cgc Arg ggc Gly aag Lys tac Tyr 65           | gga<br>Gly<br>ttc<br>Phe<br>gag<br>Glu<br>ccc<br>Pro<br>ccg<br>Pro                | 221><br>222><br>100><br>gat<br>Asp<br>cgg<br>Arg<br>35<br>tat<br>Tyr | (1). 50 gcc Ala cac His 20 ccc Pro ctg Leu aaa Lys        | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His<br>act<br>Thr | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln<br>tcg<br>Ser<br>tgc<br>Cys       | aac<br>Asn<br>tgc<br>Cys<br>cac<br>His<br>55               | ttg<br>Leu<br>ccc<br>Pro<br>40<br>cgg<br>Arg | Phe atc Ile 25 gag Glu cgc Arg               | Gln 10 gct Ala tgc Cys atc Ile ttc Phe              | cac<br>His<br>ggg<br>Gly<br>cac<br>His<br>cgg<br>Arg | Ala cgc Arg aag Lys acc Thr 60 cac     | cgc<br>Arg<br>cgc<br>Arg<br>45<br>ggc<br>Gly<br>aaa<br>Lys | Cys gtg Val 30 ttt Phe gag Glu ccc Pro | Gly<br>15<br>cac<br>His<br>acc<br>Thr<br>aag<br>Lys<br>aac        | Lys acg Thr aat Asn ccc Pro ctg Leu 80     | 96<br>144<br>. 192          |
| Gly 1 cgc Arg ggc Gly aag Lys tac Tyr 65 ctg       | <pre> &lt;2 &lt;2 &lt;3 gga Gly  ttc Phe  gag Glu  ccc Pro 50  ccg Pro  tct</pre> | 221> 222> 400> gat Asp cgg Arg 35 tat Tyr tgc Cys                    | (1). 50 gcc Ala cac His 20 ccc Pro ctg Leu aaa Lys        | gtc<br>Val<br>5<br>aag<br>Lys<br>cac<br>His<br>act<br>Thr | gac<br>Asp<br>ccc<br>Pro<br>cag<br>Gln<br>tcg<br>Ser<br>tgc<br>Cys<br>70 | aac<br>Asn<br>tgc<br>Cys<br>cac<br>His<br>55<br>ggc<br>Gly | ttg<br>Leu<br>ccc<br>Pro<br>40<br>cgg<br>Arg | Phe atc Ile 25 gag Glu cgc Arg cgc Arg       | Gln 10 gct Ala tgc Cys atc Ile ttc Phe              | Cys cac His ggg Gly cac His cgg Arg 75               | Ala cgc Arg aag Lys acc Thr 60 cac His | cgc<br>Arg<br>cgc<br>Arg<br>45<br>ggc<br>Gly<br>aaa<br>Lys | Cys gtg Val 30 ttt Phe gag Glu ccc Pro | Gly<br>15<br>cac<br>His<br>acc<br>Thr<br>aag<br>Lys<br>aac<br>Asn | Lys acg Thr aat Asn ccc Pro ctg Leu 80 gcc | 96<br>144<br>. 192<br>. 240 |

|            | ggc<br>Gly        |  |  |  |  |  |  |  | 336 |
|------------|-------------------|--|--|--|--|--|--|--|-----|
|            | gag<br>Glu<br>115 |  |  |  |  |  |  |  | 384 |
|            | Gly<br>999        |  |  |  |  |  |  |  | 432 |
| tcc<br>Ser |                   |  |  |  |  |  |  |  | 441 |

<210> 51

<211> 147

<212> PRT

<213> Homo Sapiens

<400> 51

Gly Gly Asp Ala Val Asp Arg Pro Phe Gln Cys Ala Cys Cys Gly Lys 10 Arg Phe Arg His Lys Pro Asn Leu Ile Ala His Arg Arg Val His Thr 25 Gly Glu Arg Pro His Gln Cys Pro Glu Cys Gly Lys Arg Phe Thr Asn Lys Pro Tyr Leu Thr Ser His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Pro Cys Lys Glu Cys Gly Arg Arg Phe Arg His Lys Pro Asn Leu 70 75 Leu Ser His Ser Lys Ile His Lys Arg Ser Glu Gly Ser Ala Gln Ala 90 Ala Pro Gly Pro Gly Ser Pro Gln Leu Pro Ala Gly Pro Gln Glu Ser 105 Ala Ala Glu Pro Thr Pro Ala Val Pro Leu Lys Pro Ala Glu Pro 120 125 Pro Pro Gly Ala Pro Pro Glu His Pro Gln Asp Pro Ile Glu Ala Pro 135 Pro Ser Leu

<210> 52

145

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 52 aatttaccgt ttctat

<210> 53

<211> 16

<212> DNA

<213> Artificial Sequence

16





|           | <400> 58              |          |    |
|-----------|-----------------------|----------|----|
| tatttt    | tattt attaat          |          | 16 |
|           |                       |          |    |
|           | <210> 59              |          |    |
|           | <211> 16              |          |    |
|           | <211> 10<br><212> DNA |          |    |
|           |                       |          |    |
|           | <213> Artificial      | Sequence |    |
|           |                       |          |    |
|           | <220>                 |          |    |
|           | <223> Synthetic       |          |    |
|           |                       |          |    |
|           | <400> 59              |          |    |
| ttcttt    | tttc ataaat           |          | 16 |
|           |                       |          |    |
|           | <210> 60              |          |    |
|           | <211> 16              |          |    |
|           |                       |          |    |
|           | <212> DNA             |          |    |
|           | <213> Artificial      | Sequence |    |
|           |                       |          |    |
|           | <220>                 |          |    |
|           | <223> Synthetic       |          |    |
|           |                       |          |    |
|           | <400> 60              |          |    |
| tattat    | ttta tgttga           |          | 16 |
| ou o ou . | Joeca ogooga          |          | 10 |
|           | <210> 61              |          |    |
|           |                       |          |    |
|           | <211> 16              |          |    |
|           | <212> DNA             |          |    |
|           | <213> Artificial      | Sequence |    |
|           |                       |          |    |
|           | <220>                 |          |    |
|           | <223> Synthetic       |          |    |
|           |                       |          |    |
|           | <400> 61              |          |    |
| ttttta    | aatt ttttta           |          | 16 |
|           |                       |          |    |
|           | <210> 62              |          |    |
|           | <211> 16              |          |    |
|           |                       |          |    |
|           | <212> DNA             |          |    |
|           | <213> Artificial      | sequence |    |
|           |                       |          |    |
|           | <220>                 |          |    |
|           | <223> Synthetic       |          |    |
|           |                       |          |    |
|           | <400> 62              |          |    |
| gatgaa    | atttt ttttta          |          | 16 |
| J J.      |                       |          |    |
|           | <210> 63              |          |    |
|           | <211> 16              |          |    |
|           | <211> 16<br><212> DNA |          |    |
|           |                       | Comuna   |    |
|           | <213> Artificial      | sequence |    |
|           |                       |          |    |
|           | <220>                 |          |    |
|           | <223> Synthetic       |          |    |
|           |                       |          |    |
|           | <400> 63              |          |    |
| tacttt    | atgg ttaagc           |          | 16 |
|           |                       |          |    |
|           | <210> 64              |          |    |
|           |                       |          |    |





```
<211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 64
ctattactgt tttctg
                                                                        16
      <210> 65
      <211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 65
tttttttagt ttctta
                                                                        16
      <210> 66
      <211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic
      <400> 66
tactttatgg ttaacg
                                                                        16
      <210> 67
      <211> 22
      <212> DNA
      <213> Cricetulus sp.
      <400> 67
tttttttatt attattatta gt
                                                                        22
      <210> 68
      <211> 72
      <212> PRT
      <213> Homo Sapiens
      <400> 68
His Ser Lys Ile His Lys Arg Ser Glu Gly Ser Ala Gln Ala Pro
                 5
                                    10
Gly Pro Gly Ser Pro Gln Leu Pro Ala Gly Pro Gln Glu Ser Ala Ala
Glu Pro Thr Pro Ala Val Pro Leu Lys Pro Ala Glu Pro Pro Pro
                            40
```

Gly Ala Pro Pro Glu His Pro Gln Asp Pro Ile Glu Ala Pro Pro Ser

Leu Tyr Ser Cys Asp Asp Cys Gly

70