Mini project on Rainfall Data

Problem Statement: To predict which model best fits for the given dataset

Linear Regression

```
In [2]: #importing the required Libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
%matplotlib inline
```

Data Collection

In [3]: df=pd.read_csv(r"C:\Users\rubin\Documents\district wise rainfall normal.csv")
df

Out[3]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5

641 rows × 19 columns

Description about data

- -The data is all about statewise and district wise rainfall occured during all the months.
- -Number of columns are 19 and rows are 641
- -The Annual Rainfall is recorded.
- -And different months are taken rainfall is compared between those months.
- -The rainfall is increasing monthly wise and decreasing vice versa.

Data Cleaning

In [4]: df.head()

Out[4]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	32(
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	30 ⁻
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	27(
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	20(

In [5]: df.tail()

Out[5]:

		STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
•	636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	-;
6	37	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	:
6	638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	:
6	639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	:
6	640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	

In [6]: df.shape

Out[6]: (641, 19)

```
In [7]: df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 641 entries, 0 to 640
        Data columns (total 19 columns):
          #
              Column
                             Non-Null Count Dtype
          0
              STATE UT NAME
                             641 non-null
                                              object
          1
              DISTRICT
                              641 non-null
                                              object
          2
              JAN
                              641 non-null
                                              float64
          3
              FEB
                              641 non-null
                                              float64
          4
              MAR
                              641 non-null
                                              float64
          5
                                              float64
              APR
                              641 non-null
          6
                              641 non-null
                                              float64
              MAY
          7
              JUN
                              641 non-null
                                              float64
          8
              JUL
                              641 non-null
                                              float64
          9
                                              float64
              AUG
                              641 non-null
          10
             SEP
                              641 non-null
                                              float64
              0CT
                                              float64
          11
                              641 non-null
                                              float64
          12
             NOV
                              641 non-null
          13
              DEC
                              641 non-null
                                              float64
          14 ANNUAL
                              641 non-null
                                              float64
             Jan-Feb
                              641 non-null
                                              float64
          15
          16
             Mar-May
                              641 non-null
                                              float64
                              641 non-null
          17
              Jun-Sep
                                              float64
          18 Oct-Dec
                              641 non-null
                                              float64
        dtypes: float64(17), object(2)
        memory usage: 95.3+ KB
```

Data Preprocessing

```
In [8]: df.isnull().sum()
Out[8]: STATE UT NAME
                            0
         DISTRICT
                            0
         JAN
                            0
         FEB
                            0
         MAR
                            0
         APR
                            0
         MAY
                            0
         JUN
                            0
         JUL
                            0
         AUG
                            0
         SEP
                            0
         OCT
         NOV
                            0
         DEC
                            0
         ANNUAL
                            0
         Jan-Feb
                            0
         Mar-May
                            0
         Jun-Sep
                            0
         Oct-Dec
         dtype: int64
```

In [11]: df.describe

Out[11]:				ame.desc				S.	TATE_UT_	_NAME	DIS
	0 1KTC			ICOBAR I			NICOBA	R 107.	3 57.9	65.2	117.0
	\										
	1	ANDAMA	N And N	ICOBAR I	SLANDS	SOUTH	ANDAMA	N 43.	7 26.0	18.6	90.5
	2	ANDAMA	N And N	ICOBAR I	SLANDS	N & M	ANDAMA	N 32.	7 15.9	8.6	53.4
	3			NACHAL P					2 80.8		358.5
	4		ARU	NACHAL P					3 79.5		
	• •				• • •		• •		• •••	43.6	• • •
	636				KERALA		IDUKK	I 13.	4 22.1	43.6	150.4
	637									8.4	
	638									73.9	
	639				KERALA					17.5	
	640			LAKSH	IADWEEP	LAK	SHADWEE	P 20.	8 14.7	11.8	48.9
		MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL	Jan-Feb
	0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2
	\										
				421.3							69.7
				465.4							48.6
				660.1						3043.8	
	4			990.9							112.8
	• •	•••	• • •		•••	•••			• • •	•••	• • •
	636			788.9					48.1	3302.5	35.5
	637			1108.5					18.4	3621.6	3.3
	638			539.9						2958.4	
	639			1110.4							
	640	1/1./	330.2	287.7	217.5	163.1	15/.1	11/./	58.8	1600.0	35.5
		Mar-Ma	y Jun-	Sep Oct	-Dec						
	0			7.2 8							
	1	483.	5 175	7.2 7	05.3						
	2	405.	6 188	4.4 5	74.7						
	3	841.	3 184	8.5 2	31.0						
	4	645.	4 300	8.4 2	68.1						
	• •			• • •	64.2						
	636		6 227	6.2 5							
	637	272.			37.9						
	638			5.7 6							
	639	275.	4 263	2.1 3	32.5						

[641 rows x 19 columns]>

998.5

333.6

232.4

640

```
In [12]: #To check data types
         df.dtypes
Out[12]: STATE UT NAME
                             object
         DISTRICT
                             object
          JAN
                            float64
          FEB
                            float64
                            float64
         MAR
         APR
                            float64
         MAY
                            float64
         JUN
                            float64
          JUL
                            float64
         AUG
                            float64
          SEP
                            float64
         OCT
                            float64
         NOV
                            float64
         DEC
                            float64
         ANNUAL
                            float64
          Jan-Feb
                            float64
                            float64
         Mar-May
          Jun-Sep
                            float64
         Oct-Dec
                            float64
          dtype: object
In [13]: #To check unique values
         df.nunique()
Out[13]: STATE_UT_NAME
                             35
         DISTRICT
                            637
         JAN
                            301
         FEB
                            309
         MAR
                            349
          APR
                            372
         MAY
                            457
         JUN
                            547
         JUL
                            570
         AUG
                            569
          SEP
                            543
         0CT
                            507
         NOV
                            349
         DEC
                            263
         ANNUAL
                            591
         Jan-Feb
                            399
         Mar-May
                            511
          Jun-Sep
                            592
         Oct-Dec
                            524
          dtype: int64
In [14]: df.duplicated().sum()
Out[14]: 0
```

```
In [15]: x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,1)

In [16]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.6375024350110565

For Linear Regression Model The accuracy is 63 percentage

```
In [17]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='gold')
    plt.plot(x_test,y_pred,color='black')
    plt.show()
```


Data Visualization

In [18]: sns.lmplot(x="NOV",y="DEC",data=df,order=2,ci=None)

Out[18]: <seaborn.axisgrid.FacetGrid at 0x1995bc45ff0>

In [19]: sns.pairplot(df)

Out[19]: <seaborn.axisgrid.PairGrid at 0x19921f7ae00>

-From the graphs we can say that the dataset is not normally distributed.

In [20]: sns.heatmap(df.isnull())

Out[20]: <Axes: >

In [21]: convert={"STATE_UT_NAME":{"ANDAMAN And NICOBAR ISLANDS":1,"ARUNACHAL PRADESH":
 df=df.replace(convert)
 df

Out[21]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
0	1	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9
1	1	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1
2	1	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9
3	2	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8
4	2	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2
636	34	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3
637	34	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3
638	34	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7
639	34	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9
640	35	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5

641 rows × 19 columns

```
In [22]: df=df[['Jan-Feb','Mar-May','Jun-Sep','Oct-Dec']]
sns.heatmap(df.corr(),annot=True)
```

Out[22]: <Axes: >


```
In [23]: df['Jan-Feb'].value_counts()
Out[23]: Jan-Feb
          32.7
                   9
                   5
         18.2
          21.4
                   5
                   5
         0.8
                   5
         17.5
         107.7
                   1
         87.0
                   1
         101.0
                   1
         135.2
                   1
         65.0
          Name: count, Length: 399, dtype: int64
```

ELASTIC NET

In [24]: convert={"STATE_UT_NAME":{"ANDAMAN And NICOBAR ISLANDS":1,"ARUNACHAL PRADESH":
 df=df.replace(convert)
 df

Out[24]:

	Jan-Feb	Mar-May	Jun-Sep	Oct-Dec
0	165.2	540.7	1207.2	892.1
1	69.7	483.5	1757.2	705.3
2	48.6	405.6	1884.4	574.7
3	123.0	841.3	1848.5	231.0
4	112.8	645.4	3008.4	268.1
636	35.5	426.6	2276.2	564.2
637	3.3	272.9	3007.5	337.9
638	65.0	553.5	1715.7	624.2
639	13.1	275.4	2632.1	332.5
640	35.5	232.4	998.5	333.6

641 rows × 4 columns

```
In [25]: from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(x,y)
    #print(regr.coef_)
    #print(regr.intercept_)
    regr.score(x,y)
```

Out[25]: 0.7545114155274075

To the given data set for the Elastic Net Regression Model the accuracy is 75 percent.

Conclusion: For the given Rainfall data set we have performed different models and have got different accuracies.

Among all those the highest accuracy we got in Elastic Net Regression model.

So, Elastic net regression model best fits for the given dataframe

Implementing KMeans Clustering

In [45]: import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [46]: df=pd.read_csv(r"C:\Users\rubin\Documents\district wise rainfall normal.csv")
df.head()

Out[46]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	32(
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	30 [.]
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	27(
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206

```
In [47]: plt.scatter(df["JAN"],df["FEB"])
    plt.xlabel("JAN")
    plt.ylabel("FEB")
```

Out[47]: Text(0, 0.5, 'FEB')


```
In [48]: from sklearn.cluster import KMeans
```

```
In [49]: km=KMeans()
km
```

Out[49]: KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [86]: y_predicted=km.fit_predict(df[["JAN","FEB"]])
y_predicted
```

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

```
Out[86]: array([1, 4, 8, 1, 1, 4, 1, 1, 7, 7, 4, 6, 7, 4, 7, 4, 1, 4, 1, 0, 0, 8,
               0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 8, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0,
               8, 8, 0, 4, 2, 2, 2, 0, 2, 0, 0, 7, 0, 0, 0, 4, 0, 0, 0,
               0, 0, 0, 0, 0, 0, 8, 0, 2, 0, 0, 8, 0, 8, 8, 0, 0, 0,
               2, 2, 2, 2, 1, 4, 1, 4, 2, 2, 0, 0, 0, 8, 2, 2, 8, 0, 8,
                            2, 0, 2, 0, 0, 2,
                                             8,
                                               0, 0, 0, 2, 2,
               8, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 8, 2, 0, 2, 2, 2, 8, 8, 8, 8,
               2, 8, 2, 8, 8, 8, 8, 8, 2, 2, 2,
                                             2, 2, 2, 2, 2, 2,
                                                             2, 2,
                                                                   2,
                         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 2,
                 2, 2, 5,
                                                                2,
                                                                   2,
               2, 2, 8, 2, 2, 2, 2,
                                             2,
                                                2, 2, 8, 2, 2, 2,
               2, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8,
               2, 2, 2,
                       2, 8, 8, 2, 2, 4, 1, 4, 4, 4, 4, 4, 1, 4, 4, 1,
               2, 2, 8, 8, 2, 8, 2, 2, 8, 2, 8, 4, 8, 8, 2, 2, 2, 4, 2,
               8, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 4, 4, 8, 8, 8, 8, 4, 8,
                         8, 8, 1, 6, 1, 6, 6, 3,
                                               1,
                                                  1, 1, 4, 1, 4,
               1, 2, 6, 1, 6, 4, 1, 8, 3, 1, 1, 1, 1, 1, 1, 3, 6, 3, 5,
                            2, 5, 2, 5, 2,
                                                5,
                                                  5, 5, 5,
                       5,
                          5,
                                          5,
                                             5,
                                                           2,
                         5, 2, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 5, 5, 5, 5, 5, 5,
                                             5, 5, 5, 5, 8, 2, 8, 2,
                         5, 2, 5, 2, 2, 5,
                                          5,
                         8, 8, 2, 8, 8, 8, 8, 8,
                                               2, 5, 5, 5, 5,
                                                             5, 5,
                                       5,
                                             5, 5, 5, 5, 5, 5, 5, 5,
                         5, 5, 5, 5, 5,
                                          5,
                            5, 5, 5, 5, 5, 5,
                                             5, 5, 5, 5, 5, 5, 5, 5,
                    5,
                       5,
                         5,
               5, 5, 5, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 8, 5, 2, 5, 8, 2, 5, 2,
               2, 8, 8, 5, 5, 2, 2, 2, 5, 2, 2,
                                             5, 5, 2, 2, 2, 2, 5,
               5, 5, 5, 5,
                         2, 5, 5, 2, 5, 5, 2, 2, 2, 8, 8, 2, 8, 8, 2, 8, 2, 4,
               2, 8, 2, 8, 2, 8, 2, 4, 2, 8, 2, 2, 8, 5, 2, 2, 8, 5, 8, 5, 8, 4,
               5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 5, 2, 0, 5, 5, 5, 0, 5, 8, 0, 5,
               0, 5, 8])
```

In [51]: df["Cluster"]=y_predicted
 df.head()

Out[51]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OC
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206
4												

```
In [87]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["JAN"],df1["FEB"],color="green")
    plt.scatter(df2["JAN"],df2["FEB"],color="skyblue")
    plt.scatter(df3["JAN"],df3["FEB"],color="violet")
    plt.xlabel("JAN")
    plt.ylabel("FEB")
```

Out[87]: Text(0, 0.5, 'FEB')


```
In [70]: from sklearn.preprocessing import MinMaxScaler
```

In [71]: Scaler=MinMaxScaler()

```
In [88]: Scaler.fit(df[["JAN"]])
    df["JAN"]=Scaler.transform(df[["JAN"]])
    df.head()
```

Out[88]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
0	1	NICOBAR	0.742561	57.9	65.2	117.0	358.5	295.5	0.151108	271.9	
1	1	SOUTH ANDAMAN	0.302422	26.0	18.6	90.5	374.4	457.2	0.226441	423.1	
2	1	N & M ANDAMAN	0.226298	15.9	8.6	53.4	343.6	503.3	0.250815	460.9	
3	2	LOHIT	0.292042	80.8	176.4	358.5	306.4	447.0	0.358426	427.8	
4	2	EAST SIANG	0.230450	79.5	105.9	216.5	323.0	738.3	0.541259	711.2	

5 rows × 21 columns

In [89]: Scaler.fit(df[["FEB"]])
 df["FEB"]=Scaler.transform(df[["FEB"]])
 df.head()

Out[89]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
0	1	NICOBAR	0.742561	0.252178	65.2	117.0	358.5	295.5	0.151108	271.9
1	1	SOUTH ANDAMAN	0.302422	0.113240	18.6	90.5	374.4	457.2	0.226441	423.1
2	1	N & M ANDAMAN	0.226298	0.069251	8.6	53.4	343.6	503.3	0.250815	460.9
3	2	LOHIT	0.292042	0.351916	176.4	358.5	306.4	447.0	0.358426	427.8
4	2	EAST SIANG	0.230450	0.346254	105.9	216.5	323.0	738.3	0.541259	711.2

5 rows × 21 columns

In [74]: km=KMeans()
km

Out[74]: KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

```
Out[90]: array([1, 3, 2, 3, 3, 3, 3, 4, 4, 3, 1, 4, 3, 4, 3, 5, 3, 5, 6, 6, 6,
             6, 3, 6, 6, 6, 6, 8, 3, 2, 6, 6, 2, 6, 3, 6, 3, 6, 6, 6, 6, 6, 6,
             2, 8, 6, 3, 0, 8, 0, 6, 0, 6, 6, 4, 6, 6, 6, 3, 2, 6, 6, 6, 6, 6,
             6, 6, 6, 6, 6, 6, 2, 2, 8, 6, 6, 2, 6, 2, 2, 6, 6, 6, 6, 6, 8, 3,
             8, 8, 8, 8, 5, 3, 5, 3, 8, 8, 6, 6, 6, 6, 8, 8, 8, 6, 8, 6, 6, 6,
             8, 6, 6, 6, 6, 0, 6, 0, 6, 6, 6, 2, 6, 6, 6, 6, 8, 0, 0,
             6, 6, 6, 6, 6, 6, 0, 8, 8, 8, 8, 8, 2, 8, 6, 8, 8, 8, 2, 6, 2, 2,
             8, 8, 8, 2, 6, 8, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
             8, 8, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 2, 8, 8, 8,
             8, 8, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 8, 2,
             8, 8, 8, 8, 8, 2, 8, 8, 3, 5, 3,
                                         3, 3, 3, 5, 3,
                                                        3, 5,
             8, 8, 8, 2, 8, 2, 8, 8, 2, 8, 2, 3, 8, 2, 8, 8, 8, 3, 8, 8, 3, 8,
             8, 8, 8, 8, 8, 8, 8, 8, 2, 8, 8,
                                         5, 3, 2, 2, 2, 2, 3, 2, 8, 2, 3,
                       2, 2, 5, 1, 5, 1, 1, 7, 5, 5, 5, 5, 5, 3, 1,
             5, 0, 1, 5, 1, 3, 5, 2, 7, 5, 5, 5, 5, 5, 5, 7, 1, 7, 0, 0,
                     0, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0,
             0, 8, 0, 0, 0, 8, 0, 0, 8, 8, 8, 0, 0, 8, 8, 8, 0, 0, 0, 8, 0, 0,
             8, 8, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 2, 8, 8, 8,
                       2, 2, 8, 2, 2, 2, 2, 8, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 8, 8, 0, 8, 8, 0, 8, 8, 0, 8, 0, 8, 0, 8, 0, 8, 8, 0, 8,
             8, 8, 2, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 0, 8, 8, 8, 0, 0, 8, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 8, 2, 2, 0, 2, 8, 3,
             0, 2, 8, 2, 8, 2, 8, 3, 8, 2, 8, 8, 8, 0, 8, 8, 2, 0, 2, 0, 2, 3,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 8, 6, 0, 0, 0, 6, 0, 2, 6, 0,
             6, 0, 2])
```

In [91]: df["New cluster"]=y_predicted
 df.head()

Out[91]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
0	1	NICOBAR	0.742561	0.252178	65.2	117.0	358.5	295.5	0.151108	271.9
1	1	SOUTH ANDAMAN	0.302422	0.113240	18.6	90.5	374.4	457.2	0.226441	423.1
2	1	N & M ANDAMAN	0.226298	0.069251	8.6	53.4	343.6	503.3	0.250815	460.9
3	2	LOHIT	0.292042	0.351916	176.4	358.5	306.4	447.0	0.358426	427.8
4	2	EAST SIANG	0.230450	0.346254	105.9	216.5	323.0	738.3	0.541259	711.2

5 rows × 21 columns

```
In [92]: df1=df[df["New cluster"]==0]
    df2=df[df["New cluster"]==1]
    df3=df[df["New cluster"]==2]
    plt.scatter(df1["JAN"],df1["FEB"],color="green")
    plt.scatter(df2["JAN"],df2["FEB"],color="SpringGreen")
    plt.scatter(df3["JAN"],df3["FEB"],color="plum")
    plt.xlabel("JAN")
    plt.ylabel("FEB")
```

Out[92]: Text(0, 0.5, 'FEB')

In [94]: convert={"STATE_UT_NAME":{"ANDAMAN And NICOBAR ISLANDS":1,"ARUNACHAL PRADESH":
 df=df.replace(convert)
 df

Out[94]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JI
0	1	NICOBAR	0.742561	0.252178	65.2	117.0	358.5	295.5	0.1511
1	1	SOUTH ANDAMAN	0.302422	0.113240	18.6	90.5	374.4	457.2	0.2264
2	1	N & M ANDAMAN	0.226298	0.069251	8.6	53.4	343.6	503.3	0.2508
3	2	LOHIT	0.292042	0.351916	176.4	358.5	306.4	447.0	0.3584
4	2	EAST SIANG	0.230450	0.346254	105.9	216.5	323.0	738.3	0.5412
636	34	IDUKKI	0.092734	0.096254	43.6	150.4	232.6	651.6	0.4296
637	34	KASARGOD	0.015917	0.004355	8.4	46.9	217.6	999.6	0.6062
638	34	PATHANAMTHITTA	0.137024	0.196864	73.9	184.9	294.7	556.9	0.2919
639	34	WAYANAD	0.033218	0.036150	17.5	83.3	174.6	698.1	0.6073
640	35	LAKSHADWEEP	0.143945	0.064024	11.8	48.9	171.7	330.2	0.1526

641 rows × 21 columns

Out[95]: Text(0, 0.5, 'FEB')


```
In [96]: k_rng=range(1,10)
    sse=[]
    for k in k_rng:
        km=KMeans(n_clusters=k)
        km.fit(df[["JAN","FEB"]])
        sse.append(km.inertia_)
    sse
```

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

C:\Users\rubin\AppData\Local\Programs\Python\Python310\lib\site-packages\skle arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp ress the warning

warnings.warn(

```
Out[96]: [22.959082397157193,
          7.673772524692251,
          4.561202317275745,
          3.2008115349007453,
          2.4995513590096348,
          2.040669019576882,
          1.7526832226825582,
          1.4704410371248227,
          1.2717837227975586]
In [97]: plt.plot(k_rng,sse)
         plt.xlabel("k")
         plt.ylabel("sum of squared Error")
Out[97]: Text(0, 0.5, 'sum of squared Error')
```


For the given dataset we have performed KMeans cluster model.Based on the given data set we have grouped into different clusters.

```
In [ ]:
```