Adaptivno i robusno upravljanje

http://www.fer.hr/predmet/aru_a

Prof. dr. sc. Željko Ban

e-mail: zeljko.ban@fer.hr

Izvođači nastave

- Nositelji predmeta
 - prof. dr. sc. Zoran Vukić
 - prof. dr. sc. Željko Ban
 - C-09-08
 - e-mail: <u>zeljko.ban@fer.hr</u>
 - konzultacije: iza predavanja
- Stranica predmeta
 - http://www.fer.hr/predmet/aru_a

Osnovni podaci o predmetu

- ☐ ECTS bodovi: 4
- Oblici izvođenja nastave
 - Predavanja:
 - 2 školska sata tjedno tijekom 13 tjedana
 - Domaće zadaće (seminarski zadaci)
 - 3 domaće zadaće
 - (u svakom nastavnom ciklusu po jedan)

Provjera znanja

kontinuirano praćenje nastave

Aktivnost	Najveći broj bodova	
Domaće zadaće (DZ)	30 bodova	
Međuispit (MI)	25 bodova	
Završni ispit – pismeni (ZIP)	25 bodova	
Završni ispit – usmeni (ZIU)	20 bodova	

- ☐ Uvjeti izlaska na završni ispit
 - Odrađene sve DZ
 - □ skupljeno najmanje 15 bodova
 - Na MI skupljeno najmanje 50% bodova
- ☐ Uvjeti za prolaz na ispitu
 - Ukupno skupljeno najmanje 50 bodova
 - Na MI ostvariti 50% bodova
 - Na ZIP ostvariti 50% bodova
 - Pozitivno ocijenjen završni usmeni ispit

Oc	ienjiv	anie	– fil	ksni	prac	OV
		ulije	, — 111	13111	piuy	

Dovoljan (2)	50
Dobar (3)	62,5
Vrlo dobar (4)	75
Izvrstan (5)	87 5

Provjera znanja

ispitni rok

Aktivnost	Najveći broj bodova
Domaće zadaće (DZi)	10%
Pismeni ispit	40%
Usmeni ispit	50%

DZi = DZ/3 – (DZ bodovi ostvareni tijekom semestra od domaćih zadaća)

- ☐ Uvjeti izlaska na završni ispit
 - Odrađene sve DZ i skupljeno 50% bodova
- Uvjeti za prolaz na ispitu
 - Skupljeno barem 50% bodova iz DZ
 - Na pismenom ispitu ostvareno 50% bodova
 - Pozitivno ocijenjen usmeni ispit

- □ Ocjenjivanje fiksni pragovi
 - Dovoljan (2)
 - Dobar (3) 62,5
 - Vrlo dobar (4) 75
 - Izvrstan (5) 87,5

50

Provođenje provjere znanja

- Domaće zadaće
 - Zadaju se
 - u terminima predavanja (materijali za DZ bit će prisutni na web stranici predmeta)
 - Predaju se
 - do termina definiranog kod zadavanja zadatka
 - format DZ bit će definiran uputama
 - Blic provjera znanja iz područja domaće zadaće
- ☐ Međuispiti i završni ispiti
 - Međuispit se organizira kao pismeni ispiti
 - Za studente koji iz medicinski opravdanih razloga nisu mogli pristupiti međuispitu (odlukom nositelja predmeta) može se organizirati dodatni ispit koji će biti u usmenom obliku
 - Završni ispit organizira se kao pismeni i usmeni
 - Za studente koji iz medicinski opravdanih razloga nisu mogli pristupiti završnom ispitu (odlukom nositelja predmeta) može se organizirati dodatni ispit
 - Molba za nadoknadu predaje se tajnici zajedno s ispričnicom liječnika

Svrha predmeta

- Definiranje adaptivnog upravljanja
- Definiranje potrebe za adaptivnim ili robusnim upravljanjem
- Određivanje sustava pogodnih za adaptivno i robusno upravljanje
- Prikaz metoda adaptivnog i robusnog upravljanja

Cilj predmeta

- Pregled metoda adaptivnog upravljanja
 - Upravljanje s promjenjivim pojačanjem
 - Adaptivno upravljanje s referentnim modelom
 - ☐ Signalna adaptacija
 - Parametarska adaptacija
 - Adaptivno upraljanje zasnovano na kliznim režimima
 - Adaptivno upravljanje zasnovano na samopodesivim regulatorima
- Određivanje strukture i parametara adaptivnog upravljanja
 - Određivanje referentnog modela
 - Identifikacija sustava
- Robusno upravljanje
 - Pregled sustava pogodnih za robusno upravljanje
 - Izvedba robusnog upraljanja

Potrebna znanja

- Automatika
 - Automatsko upravljanje
 - Signali i sustavi
 - Modeliranje i simuliranje sustava
- Matematika
 - linearna algebra
 - numerička matematika
 - vjerojatnost i statistika
- Računalna tehnologija
 - Matlab

Sadržaj predmeta

Tj.	Predavanja		Seminar	
.,.	Datum	Cjelina	Datum	Domaća zadaća
1.	08.03.2018 11h-13h A-202	Uvodna razmatranja o predmetu: pregled nastavnih cjelina, organizacija provedbe nastave i ispita		
2.	15.03.2018 11h-13h A-202	Pregled metoda adaptivnog upravljanja Gain scheduling		
3.	22.03.2018 11h-13h A-202	Adaptivno upravljanje s referentnim modelom - parametarskom adaptacijom - signalnom adaptacijom		DZ1
4.	29.03.2018 11h-13h A-202	Klizni režimi		
5.	05.04.2018 11-13h A-202	Metode sa samopodesivim regulatorom - identifikacija modela		
6.	12.04.2018 11h-13h A-202	Identifikacija parametara (dinamika, perzistencija, izvod min square, bias)		
7.	19.04.2018 11h-13h A-202	Upravljanje po minimumu varijance		
08. 09.		Međuispit		
10.	09.05.2018 11h-13h A-201	LQG		DZ2
11.	16.05.2018 11h-13h A-201	Upravljanje na bazi postavljanja polova Kad upotrijebiti adaptivno, a kad robusno upravljanje		

Sadržaj predmeta

Tj.	Predavanja			Lab. vježbe	
	Datum	Cjelina	Datum	Domaća zadaća	
14.	23.05.2018 12h-14h A-201	Robusno upravljanje			
15.	30.06.2018 11h-13h A-201	Strukturirane i nestrukturirane neizvjesnosti			
16.	06.06.2018 11h-13h A-201	Problem malog pojačanja		DZ3	
17.	13.06.2018 11h-13h A-201	Caritonov teorem			
18. 19.		Završni ispit i Ponovljene provjere			

Literatura

- □ Vukić Z., Kuljača Lj.: *Automatsko upravljanje Analiza linearnih sustava,* Kigen, Zagreb, 2005.
- Butler H.: *Model reference adaptive control from theory to practice*, Prentice Hall, New York, 1992.
- □ Chalam V. V.: Adaptive Control Systems Techniques and Applications, Marcel Dekker, Inc., New York and Basel, 1987.
- □ Levine W.S.: *The Control Handbook,* IEEE Press, CRC Press, 1996.
- □ Netushil A.: *Theory of automatic control (English translation),* MIR Publishers, Moscow, 1978.
- Utkin V. I.: Sliding Modes and their Application in Variable Structure Systems (English translation), MIR Moscow, 1978.
- Astrom K., Wittenmark B.: *Adaptive Control*, Reading, MA: Addison Wesley, 1989.
- □ Ioannou P. A., Sun J.: *Robust Adaptive Control*, Prentice-Hall, Inc. Upper Saddle River, New Jersey, 1996.
- □ Narendra K. S., Annaswamy A. M.: A new adaptive law for robust adaptation without persistent excitation, IEEE Trans. Automat. Contr., Vol. AC-32, pp. 134-145, February 1987.
- ☐ Matlab, manual (i help u pdf. obliku)

Adaptivno upravljanje

(definicija)

- Sustav adaptivnog upravljanja
 - Regulacijski sustav koji se može prilagođavati promjenama unutar upravljanog sustava
 - Regulirani sustav koji se sastoji od
 - osnovne regulacijske petlje povratne veze
 - reguliranje procesa na temelju promjena procesnih signala
 - □ dodatne regulacijske petlje
 - kompenziranje promjene parametara reguliranog procesa
- Karakteristika adaptivnog upravljanja
 - Upravljanje u zatvorenoj petlji
 - Informacije o karakteristikama sustava se određuju za vrijeme rada sustava (online)
 - Osnovne funkcije u adaptivnom upravljanju
 - ☐ identifikacija nepoznatih parametara ili mjerenje i računanje kriterija kvalitete (performance index)
 - Odabir upravljačke strategije
 - ☐ Djelovanje na sustav modifikacijom
 - signala
 - parametra
 - strukture

Upotreba adaptivnog upravljanja

- Razlozi za upotrebu adaptivnog upravljanja
 - promjene u dinamici procesa
 - promjena reda sustava tijekom rada
 - promjene parametara procesa
 - djelomično nepoznata dinamika ili parametri procesa
 - promjena radne točke nelinearnog sustava
 - promjene karakteristika upravljačkog signala ili smetnji
 - pojava stohastičkih smetnji
 - povećanje efikasnosti sustava
- Rješenje
 - Adaptivno upravljanje
 - Robusno upravljanje

Upotreba adaptivnog i robusnog upravljanja

- Adaptivno upravljanje
 - upotreba kad su unaprijed nepoznate promjene u procesu
 - on-line estimacija parametara regulatora i određivanje oblika regulatora
- □ Robusno upravljanje
 - poznata struktura procesa
 - poznate granice promjene parametara

Adaptivno upravljanje

poveznica s drugim granama automatike

Složenost upravljanja

Podjela sustava

Hijerarhijsko distribuirano upravljanje

Problem osjetljivosti i stabilnosti

- ☐ Većina klasičnih regulatora
 - regulatori s negativnom povratnom vezom i fiksnim parametrima
 - Smanjenje osjetljivosti na promjene parametara povećanjem pojačanja petlje povratne veze

Osjetljivost =
$$\frac{1}{1 + GH}$$

- ☐ Regulatori s visokim pojačanjem
 - velik iznos upravljačkog signala
 - smanjenje stabilnosti sustava
- Ograničena nesigurnost parametara procesa
 - Robusni regulatori (regulatori s povećanom kompleksnošću)
 - Potrebno je precizno poznavati
 - strukturu procesa
 - granice promjene parametara procesa

Prim. 1. Nelinearni ventil

- Ventil s nelienearnom statičkom karakteristikom kao dio procesa
- Linearizacija sustava oko radne točke
 - pojačanje petlje povratne veze proporcionalno f'(u)
- Sustav radi dobro u jednoj radnoj točci

$$v = f(u) = u^4;$$
 $u \ge 0$

Prim. 1. Nelinearni ventil

- Odzivi sustava u raznim radnim točkama
 - Različito pojačanje regulacijske petlje
 - Različita oscilatornost i brzina odziva
- □ Parametri PI regulatora
 - Kr=0.15
 - Ti=1

$$v = f(u) = u^4;$$
 $u \ge 0$

Prim. 2. Upravljanje koncentracijom

- Regulacija koncentracije fluida regulacijom protoka kroz cijev
 - Prvi rezervoar nema miješanja
 - Drugi rezervoar ima idelano miješanje
 - varijable
 - □ c_{in} koncentracija u ulaznom rezervoaru
 V_d volumen cijevi
 - □ V_m volumen rezervoara
 - □ c koncentracija u izlaznom rezervoaru
 - □ q protok

Balans masa

$$\begin{aligned} V_{m} \frac{dc(t)}{dt} &= q(t) \big[c_{in}(t-\tau) - c(t) \big] \\ \tau &= \frac{V_{d}}{q(t)}; \quad T = \frac{V_{m}}{q(t)} \end{aligned}$$

Prijenosna funkcija uz konstantan protok

$$G_0(s) = \frac{e^{-\tau s}}{1 + Ts}$$

Prim. 2. Upravljanje koncentracijom

Prim. 3. Sustav sušenja materijala

- □ Rotacijski sušač
 - Kaskadna regulacija
 - Petlja po temperaturi
 - Petlja po vlažnosti
 - Predupravljanje po vlažnosti
- ☐ Teško odrediti potpuni model procesa
- Problem upravljanja konvencionalnim regulatorima
- □ Dinamika se mijenja sa
 - brzinom materijala kroz sušač
 - vlažnošću ulaznog materijala
 - brzinom proizvodnje (promjena mrtvog vremena)
- ☐ Konvencionalni regulator s konstantnim pojačanjem
 - konzervativno podešenje prema najvećem mrtvom vremenu
- ☐ Kombinacija unaprijednog upravljanja (feedforward) i upravljanja u povratnoj vezi uz primjenu adaptivnog upravljanja

