FCC TEST REPORT

for

85M HomePlug Wireless Ethernet MFP Server Router

Model No.: PR126g

of

Applicant: E-Top Network Technology Inc.

Address: No.82, Gongye 2nd Rd., Tainan City 70095, Taiwan, R.O.C.

Tested and Prepared by

ETS Product Service (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679

A2LA Accredited No.: 2300.01

PTCRB Accredited Type Certification Test House

FCC ID: U6APR126G

Report No.: W6M20709-8523-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: ets@ets-bzt.com.tw

FCC ID: U6APR126G

TABLE OF CONTENTS

1	GE	ENERAL INFORMATION	2
	1.1	Notes	2
	1.2	TESTING LABORATORY	
	1.2.	.1 Location	3
	1.2.	.2 Details of accreditation status	3
	1.3	DETAILS OF APPROVAL HOLDER	3
	1.4	APPLICATION DETAILS	4
	1.5	GENERAL INFORMATION OF TEST ITEM	4
	1.6	TEST STANDARDS	5
2	TE	CHNICAL TEST	6
	2.1	SUMMARY OF TEST RESULTS	6
	2.2	TEST ENVIRONMENT	
	2.3	TEST EQUIPMENT LIST	
	2.4	GENERAL TEST PROCEDURE	
3	TE	ST RESULTS (ENCLOSURE)	11
	3.1	PEAK OUTPUT POWER (TRANSMITTER)	12
	3.2	EQUIVALENT ISOTROPIC RADIATED POWER	
	3.3	RF Exposure Compliance Requirements	14
	3.4	TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS	15
	3.5	Spurious Emissions (TX)	16
	3.6	RADIATED EMISSION ON THE BAND EDGE	
	3.7	MINIMUM 6 DB BANDWIDTH	
	3.8	PEAK POWER SPECTRAL DENSITY	
	3.9	RADIATED EMISSION FROM DIGITAL PART	
	3.10	Power Line Conducted Emission	
	APPEN	NDIX	30

FCC ID: U6APR126G

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has Passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the ETS Product Service (Taiwan) Co., Ltd.

Specific Conditions:

Usage of the hereunder tested device in combination with other integrated or external antennas requires at least additional output power measurements, spurious emission measurements, conducted emission measurements (AC supply lines) and radio frequency exposure evaluations for each individual configuration performed, for certification by FCC.

The test sample is able to work according IEEE 802.11 b/g.

This report is related to FCC Part 15 C (DSSS and OFDM device).

Tester:

October 17, 2007 Jay Chaing

Date ETS-Lab. Name Signature

Technical responsibility for area of testing:

October 17, 2007 Steven Chuang

Date ETS Name Signature

FCC ID: U6APR126G

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

ETS Product Service (Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2300.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679

PTCRB Accredited Type Certification Test House

1.3 Details of approval holder

Name : E-Top Network Technology Inc.

Street : No.82, Gongye 2nd Rd., City : Tainan City 70095,

Country : Taiwan, R.O.C.

Telephone : ./.
Fax : ./.
Teletex : ./.

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

1.4 Application details

Date of receipt of test item : September 17, 2007

Date of test : from September 18, 2007 to October 17, 2007

1.5 General information of Test item

Type of test item : 85M HomePlug Wireless Ethernet MFP Server Router

Model Number : PR126g

Brand Name : ETOP, Amigo

Hardware : V40 Software : QA2561

Multi-listing model number : CHR-854U(A) (Brand name: CNet),

PR-1108 (Brand name: Sapido)

Photos : See Appendix

Technical data

Frequency band : 2.4 GHz - 2.4835 GHz

Frequency (ch 1 or A) : 2.412 GHz Frequency (ch 6 or B) : 2.437 GHZ Frequency (ch 11 or C) : 2.462 GHz

Number of Channels : 11 Operation modes : duplex

Modulation Type : DSSS / OFDM

Fixed point-to-point operation: \square Yes $/ \square$ No Type of Antenna : PCB Antenna

Antenna gain : 2 dBi

Power supply : AC 120 V / 60 Hz

Emission designator : DSSS: 16M1G1D

OFDM: 16M3W7D

FCC ID: U6APR126G

Host device: none Classification :

Fixed Device	
Mobile Device (Human Body distance > 20cm)	
Portable Device (Human Body distance < 20cm)	

<u>Transmitter</u> <u>Unom</u>

Mode A (DSSS)

Power (ch 1 or A) : Conducted: 15.07 dBm Power (ch 6 or B) : Conducted: 15.08 dBm Power (ch 11 or C) : Conducted: 14.71 dBm

Mode B (OFDM)

Power (ch 1 or A) : Conducted: 11.57 dBm Power (ch 6 or B) : Conducted: 11.50 dBm Power (ch 11 or C) : Conducted: 11.13 dBm

Manufacturer:

(if applicable)

Name : ./.
Street : ./.
Town : ./.
Country : ./.

Additional information: The sample is using WLAN technology according IEEE 802.11 b/g.

There are two testing modes in the test report.

Mode A: IEEE 802.11b Mode B: IEEE 802.11g

The scheme for frequency generation, spectrum spreading,

receiver parameters, synchronization procedure, and other parameters

are determined by the mentioned standard above.

1.6 Test standards

Technical standard: FCC RULES PART 15 SUBPART B / SUBPART C § 15.247 (2007-09)

FCC ID: U6APR126G

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course	×
of the tests performed.	

or

The deviations as specified in 2.5 were ascertained in the course of the tests \Box performed.

2.2 Test environment

Temperature :23 °C

Relative humidity content : 20 ... 75 %

Air pressure :86 ... 103 kPa

Power supply : AC 120 V / 60Hz

Extreme conditions parameters : --

FCC ID: U6APR126G

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2007/10/15	2008/10/14
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None		Function Test	
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Functi	on Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2007/10/15	2008/10/14
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2007/10/15	2008/10/14
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	In House	Certificate
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2005/10/24	2007/10/23
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2007/8/2	2008/8/1
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2005/12/8	2007/12/7
ETSTW-CE 014	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T2-02	20241	FCC	2005/12/7	2007/12/6
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2006/11/7	2008/11/6
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2006/11/21	2007/11/20
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2007/10/13	2009/10/12
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2006/10/20	2007/10/19
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2006/10/30	2007/10/29
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2007/10/11	2008/10/12
ETSTW-RE 010	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070181	МОТЕСН	Functi	on Test
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Functi	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2006/5/4	2008/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2004/11/8	2007/11/7
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2007/10/9	2008/10/8
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	In House	Certificate
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2006/5/26	2008/5/25
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2006/5/26	2008/5/25
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2006/5/3	2008/5/2
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2007/10/9	2008/10/8
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2007/7/9	2008/7/8
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2007/10/16	2008/10/15
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2007/1/11	2009/1/10
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2006/5/8	2008/5/7
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2006/5/29	2008/5/28

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1 FCC ID: U6APR126G

ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2005/3/22	2008/3/21
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2007/5/2	2009/5/1
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2007/7/16	2008/7/15
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Functi	on Test
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2007/7/2	2009/7/1

FCC ID: U6APR126G

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS(to the receiver) = FS

33 $20 dB\mu V + 10.36 dB + 6 dB = 36.36 dB\mu V/m @3m$

The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2000 Section 13.1.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by ETS Product Service (Taiwan) Co., Ltd. at the registered open field test site located at No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.) The Registration Number: 930600.

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows: Average = Peak + Duty Factor Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

FCC ID: U6APR126G

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)(3)	×	×	
Equivalent radiated Power	15.247(b)(3)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Band Edge Measurement	15.247(c)	×	×	
Minimum 6 dB Bandwidth	15.247(a)(2)	×	×	
Peak Power Spectral Density	15.247(d)	×	×	
Radiated Emission from Digital Part	15.109	×	×	
Power Line Conducted Emission	15.207	×	×	

The follows is intended to leave blank.

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247(b)(3)

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

Mode A

Test condition		Conducted Power		
		Channel A	Channel B	Channel C
T - 22°C	V - 120 V	[dBm]	[dBm]	[dBm]
$T_{nom}=23^{\circ}C$	$V_{nom} = 120 \text{ V}$	15.07	15.08	14.71

Mode B

Test condition		Conducted Power		
		Channel A	Channel B	Channel C
T 220C	V 120 V	[dBm]	[dBm]	[dBm]
$T_{nom}=23^{\circ}C$	$V_{nom} = 120 \text{ V}$	11.57	11.50	11.13

Mode A

$ \begin{array}{c} \text{Test condition} \\ T_{\text{nom}} = 23 ^{\circ}\text{C}, \ V_{\text{nom}} = \ 120 \ V \end{array} $	Signal Field strength TX highest power mode dB μ V/m
Frequency [MHz]	

Mode B

Test condition $T_{nom}=23^{\circ}C, \ V_{nom}=120 \ V$	Signal Field strength TX highest power mode dB μ V/m
Frequency [MHz]	

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

Limits:

Frequency	Power
MHz	dBm
902 - 928	30
2400 – 2483.5	30
5725 – 5850	30

In case of employing transmitter antennas having antenna gain > 6 dBi and using fixed point-to point operation consider \$15.247 (b)(4)

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

Explanation: The diagrams for the peak output power measurements are included in Appendix.

FCC ID: U6APR126G

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)

EIRP = max. conducted output power + antenna gain

EIRP = 15.08 dBm + 2dBi

 $= 17.08 \, dBm$

Limit: EIRP = +36 dBm for Antenna gain < 6dBi

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 021

ETSTW-RE 028 ETSTW-RE 030 ETSTW-RE 043 ETSTW-RE 044

3.3 RF Exposure Compliance Requirements

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a "worst case" or conservative prediction.

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain G = AG-D

Item	Unit	Value	Remarks
P	mW	32.21	Peak value
D	dB		
AG	dBi	2	
G		1.6	Calculated Value
R	cm	20	Assumed value
S	mW/cm ²	0.01025	Calculated value

Limits:

Limit for General Population	n / Uncontrolled Exposure
Frequency (MHz)	Power Density (mW/cm ²)
1500 – 100.000	1,0

FCC ID: U6APR126G

3.4 Transmitter Radiated Emissions in Restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26500 MHz.

For radiated emission tests, the analyzer setting was as followings:

Frequency \leq 1 GHz, RBW:100 kHz, VBW: 100 kHz (Peak measurements) Frequency > 1 GHz, RBW: 1 MHz, VBW: 1 MHz (Peak measurements) Frequency > 1 GHz, RBW:1 MHz, VBW: 10 Hz (Average measurements)

Limits.

For frequencies below 1GHz:

Frequency of Emission	Field strength	Field Strength
(MHz)	(microvolts/meter)	(dB microvolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the setting shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction = 20 log (dwell time/ 100ms)

Note: No duty cycle correction was added to the reading of this EUT.

Explanation: See attached diagrams in Appendix.

FCC ID: U6APR126G

3.5 Spurious Emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement. Limits:

Max. reading – 20 dB

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty Cycle correction = 20 log (dwell time/100ms)

For frequencies above 1GHz (Peak measurements).

Modified Limit for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

For frequencies above 1GHz (Average measurements). Max. reading – 20dB

Note: No duty cycle correction was added to the reading of EUT.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028

ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043

ETSTW-RE 044

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance with point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits. In the Table being listed the critical peak and average value and exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Duty-Cycle Correction Factor".

Summary table with radiated data of the test plots

Model: PR126G 2007/10/12 Date: Mode: 11B TX LOW CHANNEL Temperature: 26 °C **Engineer: Catey** Polarization: Horizontal Humidity: 60 % Table Ant. Frequency Reading Factor Result Limit Margin Detector Degree High (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) (Deg.) (cm) 134.429 14.41 43.5 -10.55 221 305 18.54 peak 32.95

11B TX LOW

Mode: CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

Frequency	Read (dBu	0	Factor (dB)			Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4824	41.59		-2.41	39.18		74	54	-34.82	213	115
7236	37.92		2.07	39.99		74	54	-34.01	114	130
9648	33.95		4.96	32.91		74	54	-41.09	164	140
12060	33.33		11.60	32.93		74	54	-41.07	113	115
14472	32.27		13.11	33.38		74	54	-40.62	265	135
16884	32.11		16.64	36.75		74	54	-37.25	195	120

Model: PR126G Date: 2007/10/12

Mode: 11B TX LOW CHANNEL Temperature: 26 °C Engineer: Catey

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	23.44	peak	14.41	37.85	43.5	-5.65	301	140

FCC ID: U6APR126G
Polarization: Vertical

Frequency	Read (dBu	0	Factor (dB)	Result (Limit (dBu	@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Áve.	Corr.	Peak	Äve.	Peak	Ave.	(dB)	(Deg.)	(cm)
4824	41.01		-2.41	38.60		74	54	-35.4	206	135
7236	38.82		2.07	40.89		74	54	-33.11	307	150
9648	33.27		4.96	32.23		74	54	-41.77	320	150
12060	32.71		11.60	32.31		74	54	-41.69	248	145
14472	32.26		13.11	33.37		74	54	-40.63	214	125
16884	32.93		16.64	37.57		74	54	-36.43	302	135

Model: PR126G Date: 2007/10/12

Mode: 11B TX MIDDLE CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	18.65	peak	14.41	33.06	43.5	-10.44	211	315

11B TX MIDDLE

Mode: CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

						Limit	@3m			
Frequency	Read	ding	Factor	Result @3m		(dBuV/m)		Margin	Table	Ant.
	(dBu	ıV)	(dB)	(dBuV	//m)				Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4874	40.64		-2.18	38.46		74	54	-35.54	241	150
7311	38.79		2.25	41.04		74	54	-32.96	186	135
9748	35.64		5.34	34.98		74	54	-39.02	302	125
12185	31.13		11.60	30.73		74	54	-43.27	176	145
14622	33.12		13.17	34.29		74	54	-39.71	225	110
17059	32.22		16.55	36.77		74	54	-37.23	306	140

Model: PR126G Date: 2007/10/12

Mode: 11B TX MIDDLE CHANNEL Temperature: 26 °C Engineer: Catey

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	24.21	peak	14.41	38.62	43.5	-4.88	116	130

FCC ID: U6APR126G
Polarization: Vertical

		•			•	Limit	@3m				
Frequency	Read	ding	Factor	tor Result @3m		(dBuV/m)		Margin	Table	Ant.	
	(dBı	ıV)	(dB)	(dBuV	//m)				Degree	High	
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)	
4874	41.26		-2.18	39.08		74	54	-34.92	222	115	
7311	39.21		2.25	41.46		74	54	-32.54	116	125	
9748	34.09		5.34	33.43		74	54	-40.57	342	135	
12185	31.17		11.60	30.77		74	54	-43.23	174	125	
14622	32.87		13.17	34.04		74	54	-39.96	261	145	
17059	33.13		16.55	37.68		74	54	-36.32	305	110	

Model: PR126G Date: 2007/10/12

Mode: 11B TX HIGH CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	21.27	peak	14.41	35.68	43.5	-7.82	262	315

11B TX HIGH

Mode: CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

						Limit	@3m			
Frequency	Read	Reading Fa		Result @3m		(dBuV/m)		Margin	Table	Ant.
	(dBı	ıV)	(dB)	(dBuV	//m)				Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4927	41.07		-1.94	39.13		74	54	-34.87	222	145
7386	38.65		2.43	41.08		74	54	-32.92	76	130
9848	33.76		5.72	33.48		74	54	-40.52	320	135
12310	33.46		11.60	33.06		74	54	-40.94	289	150
14772	32.83		13.26	34.09		74	54	-39.91	212	135
17234	32.96		17.60	38.56		74	54	-35.44	303	150

Model: PR126G Date: 2007/10/12

Mode: 11B TX HIGH CHANNEL Temperature: 26 °C Engineer: Catey

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	23.54	peak	14.41	37.95	43.5	-5.55	236	205

FCC ID: U6APR126G

Polarization: Vertical

Frequency	Read (dBu	0	Factor (dB)	Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4924	41.21		-1.95	39.26		74	54	-34.74	223	130
7386	39.08		2.43	41.51		74	54	-32.49	196	145
9848	34.89		5.72	34.61		74	54	-39.39	206	140
12310	32.73		11.60	32.33		74	54	-41.67	331	125
14772	32.69		13.26	33.95		74	54	-40.05	271	135
17234	33.28		17.60	38.88		74	54	-35.12	98	150

Model: PR126G Date: 2007/10/12

Mode: 11G TX LOW CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	21.52	peak	14.41	35.93	43.5	-7.57	268	305

11G TX LOW

Mode: CHANNEL Temperature: 26 °C Engineer: Catey Polarization: Horizontal Humidity: 60 %

Limit @3m Factor Frequency Reading Result @3m (dBuV/m) Margin Table Ant. (dB) (dBuV/m) Degree (dBuV) High Peak Ave. (dB) (Deg.) (MHz) Peak Ave. Corr. Peak Ave. (cm) 4824 39.23 74 320 145 41.64 -2.41 54 -34.77 39.92 41.99 74 149 7236 2.07 54 -32.01 165 ------9648 35.13 74 4.96 34.09 54 -39.91 247 115 12060 32.09 74 -42.31 150 11.60 31.69 ---54 311 ---33.71 14472 32.6 13.11 74 54 -40.29 330 165 ---

Model: PR126G Date: 2007/10/12

16.64

Mode: 11G TX LOW CHANNEL Temperature: 26 °C Engineer: Catey

37.17

74

54

-36.83

328

120

Polarization: Vertical Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	23.90	peak	14.41	38.31	43.5	-5.19	162	200

16884

32.53

FCC ID: U6APR126G

Polarization: Vertical

Frequency	Read (dBu	0	Factor (dB)	Result (Limit (dBu	@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4824	41.05		-2.41	38.64		74	54	-35.36	248	170
7236	39.08		2.07	41.15		74	54	-32.85	156	160
9648	33.53		4.96	32.49		74	54	-41.51	226	140
12060	32.43		11.60	32.03		74	54	-41.97	136	165
14472	33.65		13.11	34.76		74	54	-39.24	206	165
16884	32.82		16.64	37.46		74	54	-36.54	328	155

Model: PR126G Date: 2007/10/12

Mode: 11G TX MIDDLE CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	21.13	peak	14.41	35.54	43.5	-7.96	116	325

11G TX MIDDLE

Mode: CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

						Limit	@3m			
Frequency	Read	ding	Factor	Result	@3m	(dBu	V/m)	Margin	Table	Ant.
	(dBu	ıV)	(dB)	(dBuV	(dBuV/m)				Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4874	40.46		-2.18	38.28		74	54	-35.72	311	120
7311	39.06		2.25	41.31		74	54	-32.69	222	140
9748	34.68		5.34	34.02		74	54	-39.98	306	145
12185	33		11.60	32.6		74	54	-41.4	206	140
14622	33.24		13.17	34.41		74	54	-39.59	221	150
17059	32.81		16.55	37.36		74	54	-36.64	110	135

Model: PR126G Date: 2007/10/12

Mode: 11G TX MIDDLE CHANNEL Temperature: 26 °C Engineer: Catey

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	23.72	peak	14.41	38.13	43.5	-5.37	213	155

FCC ID: U6APR126G

Polarization: Vertical

Frequency	Read (dBu	0	Factor (dB)	Result (@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4874	41.10		-2.18	38.92		74	54	-35.08	284	155
7311	38.86		2.25	41.11		74	54	-32.89	119	125
9748	34.06		5.34	33.40		74	54	-40.6	211	115
12185	31.97		11.60	31.57		74	54	-42.43	106	150
14622	33.98		13.17	35.15		74	54	-38.85	261	120
17059	33.29		16.55	37.84		74	54	-36.16	130	135

Model: PR126G Date: 2007/10/12

Mode: 11G TX HIGH CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity 60 %

i olarization.	Horizontal			Hairmanty.	00	70		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	21.21	peak	14.41	35.62	43.5	-7.88	241	310

11G TX HIGH

Mode: CHANNEL Temperature: 26 °C Engineer: Catey

Polarization: Horizontal Humidity: 60 %

					•	Limit	@3m			
Frequency	Read	ding	Factor	Result	Result @3m		(dBuV/m)		Table	Ant.
	(dBu	ıV)	(dB)	(dBuV	(dBuV/m)				Degree	High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4924	40.78		-1.95	38.83		74	54	-35.17	234	150
7386	38.60		2.43	41.03		74	54	-32.97	153	125
9848	33.89		5.72	33.61		74	54	-40.39	127	170
12310	32.11		11.60	31.71		74	54	-42.29	206	155
14772	32.71		13.26	33.97		74	54	-40.03	260	150
17234	33.29		17.60	38.89		74	54	-35.11	110	140

Model: PR126G Date: 2007/10/12

Mode: 11G TX HIGH CHANNEL Temperature: 26 °C Engineer: Catey

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
134.429	24.13	peak	14.41	38.54	43.5	-4.96	238	225

FCC ID: U6APR126G

Polarization: Vertical

Frequency	Read (dBu	0	Factor (dB)	Result (Limit (dBu	@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4924	40.88		-1.95	38.93		74	54	-35.07	231	150
7386	39.29		2.43	41.72		74	54	-32.28	146	115
9848	34.06		5.72	33.78		74	54	-40.22	220	140
12310	32.06		11.60	31.66		74	54	-42.34	114	135
14772	34.45		13.26	35.71		74	54	-38.29	302	125
17234	33.37		17.60	38.97		74	54	-35.03	117	150

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. All not in the table noted test results are more than 20 dB below the relevant limits.

4. See attached diagrams as appendix.

TEST RESULT (**Transmitter**): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028

ETSTW-RE029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043

ETSTW-RE 044

FCC ID: U6APR126G

3.6 Radiated Emission on the band edge

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

Mode A

Test conditions		Attenuation at or outside band-edges			
		Lower Band-edge	Upper Band-edge		
T _{nom} = 23°C	$V_{nom} = 120 \text{ V}$	41.55 dB	50.68 dB		

Mode B

Test conditions		Attenuation at or outside band-edges				
		Lower Band-edge	Upper Band-edge			
T _{nom} = 23°C	$V_{nom} = 120 \text{ V}$	39.14 dB	46.75 dB			

Limit:

Frequency Range / MHz	Limit
902 –928	
2400 – 2483.5	- 20 dB
5725 - 5850	

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028 ETSTW-RE 030 ETSTW-RE 043 ETSTW-RE 044

Explanation: Please see attached diagram as appendix.

FCC ID: U6APR126G

3.7 Minimum 6 dB Bandwidth

The analyzer ResBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK reading was taken, two markers were set 6 dB below the maximum level on the right and the left side of the emission. The 6 dB bandwidth is the frequency difference between the two markers.

Mode A

Test conditions		6 dB Bandwidth				
		Channel 1	Channel 6	Channel 11		
T _{nom} = 23°C	$V_{nom} = 120 \text{ V}$	11.794871795 MHz	12.403846154 MHz	12.403846154 MHz		

Mode B

	Test conditions		6 dB Bandwidth				
			Channel 1	Channel 6	Channel 11		
	$T_{nom} = 23^{\circ}C$	$V_{nom} = 120 \text{ V}$	16.602564103 MHz	16.602564103 MHz	16.602564103 MHz		

Limits:

Frequency Range MHz	Limits
902-928	min 500 kHz
2400-2483.5	min 500 kHz
5725-5850	min 500 kHz

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

Explanation: See attached diagrams in Appendix.

FCC ID: U6APR126G

3.8 Peak Power Spectral Density

Peak Power Spectral density is a measured at low, middle and high channel.

The peak output power is measured with a measurement bandwidth of 10 MHz and displayed on diagram together with Peak Power Spectral Density result which was measured with a bandwidth of 3 kHz, appreciate frequency span and sweep time.

Mode A

		Peak Power Spectral Density (3 kHz)				
Test co	Test conditions		Channel 1 Channel 6 Char			
		[dBm]	[dBm]	[dBm]		
T _{nom} = 23°C	T_{nom} = 23°C V_{nom} = 120 V		-11.46 -11.57			

Mode B

		Peak Power Spectral Density (3 kHz)				
Test co	Test conditions		Channel 6	Channel 11		
		[dBm] [dE		[dBm]		
T_{nom} = 23°C V_{nom} = 120 V		-17.18	-18.47	-19.27		

Limits:

Frequency Range MHz	dBm
902-928	8
2400-2483,5	8
5725-5850	8

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

Explanation: See attached diagrams in Appendix.

FCC ID: U6APR126G

3.9 Radiated Emission from Digital Part

According to FCC part 15.109 (g), digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement".

Model: PR126G Date: 2007/9/28

Mode: Temperature: 26 °C Engineer: Derek

Polarization: Horizontal Humidity: 60 %

_	Olarization.	Horizontai			Hulfilaity.	00	70		
	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
	165.271	13.23	QP	15.20	28.43	30	-1.57	180	310
	198.034	16.09	QP	12.26	28.35	30	-1.65	0	305
	211.077	16.11	QP	12.36	28.47	30	-1.53	0	297
	499.198	9.73	peak	19.80	29.53	37	-7.47	100	220
	600.200	5.63	peak	22.18	27.81	37	-9.19	255	206
	699.800	6.18	peak	23.43	29.61	37	-7.39	300	188

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
98.717	15.92	peak	11.36	27.28	30	-2.72	180	121
165.033	13.24	QP	15.21	28.45	30	-1.55	230	130
198.277	14.28	peak	12.25	26.53	30	-3.47	315	155
499.198	10.75	peak	19.80	30.55	37	-6.45	90	267
699.800	8.10	peak	23.43	31.53	37	-5.47	180	280
913.026	4.35	peak	26.54	30.89	37	-6.11	250	310

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. See attached diagrams as appendix.

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 028

ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042 ETSTW-RE 043

ETSTW-RE 044

FCC ID: U6APR126G

3.10 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Eng guarant av	Level (dBμV)				
Frequency	quasi-peak	average			
150 kHz	lower limit line	Lower limit line			

Model:	PR126G	Date:	2007/9/28	
Mode:		Temperature:	26 °C	Engineer: Catey
Polarization: N		Humidity:	60 %	

Frequency		ding uV)	Factor (dB)		sult 8uV)		mit uV)	Margin
(MHz)	OP	Ave.	Corr.	OP	Ave.	OP	Ave.	(dB)
_ ` /		1						` /
0.2006	31.40	24.00	10.10	41.50	34.10	63.59	53.59	-19.49
0.4689	35.20	24.30	10.10	45.30	34.40	56.53	46.53	-11.23
0.5235	38.51	23.38	10.10	48.61	33.48	56	46	-7.39
0.6000	32.89	12.60	10.10	42.99	22.70	56	46	-13.01
4.0850	20.66	11.89	10.10	30.76	21.99	56	46	-24.01
9.7026	17.85	12.66	10.10	27.95	22.76	60	50	-27.24

Polarization: L1

Frequency		ding uV)	Factor (dB)		sult BuV)		nit uV)	Margin
(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)
0.1972	29.33	24.38	10.10	39.43	34.48	63.73	53.73	-19.25
0.4675	34.06	23.16	10.10	44.16	33.26	56.56	46.56	-12.40
0.5367	36.04	19.90	10.10	46.14	30.00	56	46	-9.86
0.5804	30.51	12.19	10.10	40.61	22.29	56	46	-15.39
4.2893	20.78	10.36	10.10	30.88	20.46	56	46	-25.12
9.5641	17.01	10.99	10.10	27.11	21.09	60	50	-28.91

ETS Product Service (Taiwan) Co., Ltd.

Registration number: W6M20709-8523-C-1

FCC ID: U6APR126G

Note: 1. The formula of measured value as: Test Result = Reading + Correction Factor

- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AVG = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Test equipment used: ETSTW-CE 001 ETSTW-CE 003 ETSTW-CE 004 ETSTW-CE 006

ETSTW-CE 011

FCC ID: U6APR126G

Appendix

A Measurement diagrams

1. Peak Output Power

2. Spurious Emissions

(The measurement diagrams plots attached below are preliminary wideband scan with a peak detector for reference only. The final test results are listed on section 3.5)

- 3. Band Edge Measurement
- 4. Minimum 6dB Bandwidth
- 5. Peak Power Spectral Density

6. Radiated Emission from Digital Part

(The measurement diagrams plots attached below are preliminary wideband scan with a peak detector for reference only. The final test results are listed on section 3.9)

7. Power Line Conducted Emission

(The measurement diagrams plots attached below are preliminary wideband scan with a peak and average detector for reference only. The final test results are listed on section 3.10)

B Photos

- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photo of Radiated Emission
- 4. Set Up Photo of Conducted Emission

FCC ID: U6APR126G

Peak Output Power

MAX OUTPUT POWER 802.11B CH1
Date: 1.Oct.2007 13:20:25

FCC ID: U6APR126G

MAX OUTPUT POWER 802.11B CH6
Date: 1.Oct.2007 13:21:13

FCC ID: U6APR126G

MAX OUTPUT POWER 802.11B CH11 Date: 1.Oct.2007 13:21:39

FCC ID: U6APR126G

MAX OUTPUT POWER 802.11G CH1
Date: 1.Oct.2007 13:16:34

FCC ID: U6APR126G

MAX OUTPUT POWER 802.11G CH6
Date: 1.Oct.2007 13:23:14

FCC ID: U6APR126G

MAX OUTPUT POWER 802.11G CH11

Date: 1.Oct.2007 13:22:37

FCC ID: U6APR126G

Spurious Emissions radiated

11B_Ch1

Antenna Polarization H

FCC ID: U6APR126G

Antenna Polarization V

FCC ID: U6APR126G

11B_Ch6

Antenna Polarization H

FCC ID: U6APR126G

Antenna Polarization V

