Optimization Basic concepts

Instructor: Jin Zhang

Department of Mathematics
Southern University of Science and Technology
Spring 2023

Goals of this lecture

The general form of optimization:

$$\min \quad f(x),$$
 subject to $x \in \Omega$.

We study the following topics:

- terminology
- types of minimizers
- lacktriangledown optimality conditions $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,$

Unconstrained vs constrained optimization

$$\min \quad f(x),$$
 subject to $x \in \Omega$.

Suppose $x \in \mathbb{R}^n$, Ω is called the feasible set.

- if $\Omega = \mathbb{R}^n$, then the problem is called unconstrained.
- otherwise, the problem is called constrained.

In general, more sophisticated techniques are needed to solve constrained problems.

(off the topic)

Later, we will study some nonsmooth analysis and algorithms that allow f to have the extended value, ∞ . Then, we can write any constrained problem in the unconstrained form

$$\min f(x) + \iota_{\Omega}(x),$$

where the indicator function states And Andrews ST. Local - Square Control of the states of the stat

$$\iota_{\Omega}(x) = \left\{ \begin{array}{ll} 0, & x \in \Omega, \\ \infty, & x \notin \Omega. \end{array} \right.$$

The objective function $f(x) + \iota_{\Omega}(x)$ is nonsmooth.

Types of solutions

- x^* is a local minimizer if there is $\epsilon>0$ such that $f(x)\geq f(x^*)$ for all $x\in\Omega\setminus\{x^*\}$ and $\|x-x^*\|<\epsilon$.
- x^* is a global minimizer if $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$
- If "≥" is replaced with ">", then they are strict local minimizer and strict global minimizer, respectively.

Figure: x_1 : strict global minimizer; x_2 : strict local minimizer; x_3 : local minimizer

Convexity and global minimizers

五. 平太是凸的

- $\blacksquare \text{ A set } \Omega \text{ is convex if } \lambda x + (1-\lambda)y \in \Omega \text{ for any } x, \ y \in \Omega \text{ and } \lambda \in [0,1].$

A function is convex if and only if its epigraph is convex.

- 下は、一方は、一方の十万分のは一方
 - An optimization problem is convex if both the objective function and feasible set are convex. Could the constraint condition is convex)
 - Theorem: Any local minimizer of a convex optimization problem is a global minimizer.

```
=> F(y) = > F(n) = 0. 11
```


Derivatives

■ First-order derivative: row vector

$$Df \triangleq \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n} \right].$$

- **Gradient** of $\nabla f = (Df)^T$, which is a column vector.
- A gradient represents the slope of the tangent of the graph of function. It gives the linear approximation of *f* at a point. It points toward the greatest rate of increase.

■ **Hessian** (i.e., second-derivative) of *f*:

$$F(x) \triangleq D^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$

which is a symmetric matrix.

- For one-dimensional function f(x) where $x \in \mathbb{R}$, it reduces to f''(x).
- F(x) is the Jacobian of $\nabla f(x)$, that is, $F(x) = J(\nabla f(x))$.
- Alternative notation: $\underline{H(x)}$ and $\nabla^2 f(x)$ are also used for Hessian.
- A Hessian gives a quadratic approximation of f at a point.
- Gradient and Hessian are local properties that help us recognize local solutions and determine a direction to move at toward the next point.

convex differentiable of: $R^{x} \rightarrow R$ $f(\frac{x+y}{z}) \leq \frac{1}{z} f(x) + \frac{1}{z} f(y)$ h = y - x $f(y) \geq f(x) + of(x) (y-x)$ $f(x+\frac{2}{7}) \leq \frac{5}{17} f(x) + \frac{5}{17} f(x+7) - f(x)$ $\int (x+k) - f(x) \ge \frac{f(x+\frac{\lambda}{2}) - f(x)}{1}$ f(x+th)-f(x) f(x+h)-f(x) = f(x; h) = of(x) h f(y) > f(x) + f(x+113x1)-f(x) $f(x+t(y-x)) \leq (1-t)f(x)+tf(x)$ octel

Example

Consider

$$f(x_1, x_2) = x_1^3 + x_1^2 - x_1 x_2 + x_2^2 + 5x_1 + 8x_2 + 4$$

Then,

$$\nabla f(x) = \begin{bmatrix} 3x_1^2 + 2x_1 - x_2 + 5 \\ -x_1 + 2x_2 + 8 \end{bmatrix} \in \mathbb{R}^2$$

and

$$F(x) = \begin{bmatrix} 6x_1 + 2 & -1 \\ -1 & 2 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

Observation: if f is a quadratic function (remove x_1^3 in the above example), $\nabla f(x)$ is a linear vector and F(x) is a symmetric constant matrix for any x.

Taylor expansion

Suppose $\phi \in \mathcal{C}^m$ (m times continuously differentiable). The Taylor expansion of ϕ at a point a is

$$\phi(a+h) = \phi(a) + \phi'(a)h + \frac{\phi''(a)}{2!}h^2 + \dots + \frac{\phi^m(a)}{m!}h^m + o(h^m).$$

There are other ways to write the last two terms.

Example: Consider
$$x, d \in \mathbb{R}^n$$
 and $f \in \mathcal{C}^2$. Define $\phi(\alpha) = f(x + \alpha d)$. Then,
$$\phi'(\alpha) = \nabla f(x + \alpha d)^T d$$

$$\phi''(\alpha) = dF(x + \alpha d)^T d$$

Hence,

$$f(x + \alpha d) = f(x) + (\nabla f(x)^T d)\alpha + o(\alpha)$$
$$= f(x) + (\nabla f(x)^T d)\alpha + \frac{dF(x)^T d}{2}\alpha^2 + o(\alpha^2).$$

Feasible direction

■ A vector $d \in \mathbb{R}^n$ is a feasible direction at $x \in \Omega$ if $d \neq 0$ and $x + \alpha d \in \Omega$ for some small $\alpha > 0$. (It is possible that d is an infeasible step, that is, $x + d \notin \Omega$. But if there is some room in Ω to move from x toward d, then d is a feasible direction.)

Figure: d_1 is feasible, d_2 is infeasible

- If $\Omega=\mathbb{R}^n$ or x lies in the interior of Ω , then any $d\in\mathbb{R}^n\setminus\{0\}$ is a feasible direction
- Feasible directions are introduced to establish optimality conditions, especially for points on the boundary of a constrained problem

First-order necessary condition

Let C^1 be the set of continuously differentiable functions.

Theorem

First-Order Necessary Condition (FONC). Let Ω be a subset of \mathbb{R}^n and $f \in \mathcal{C}^1$ a real-value function on Ω . If x^* is a local minimizer of f over Ω , then for any feasible direction d at x^* , we have

$$d^T \nabla f(x^*) \ge 0.$$

Proof: Let d by any feasible direction. First-order Taylor expansion:

$$f(x^* + \alpha d) = f(x^*) + \alpha d^T \nabla f(x^*) + o(\alpha).$$

If $d^T \nabla f(x^*) < 0$, which does not depend on α , then $f(x^* + \alpha d) < f(x^*)$ for all sufficiently small $\alpha > 0$ (that is, all $\alpha \in (0, \bar{\alpha})$ for some $\bar{\alpha} > 0$). This is a contradiction since x^* is a local minimizer.

Corollary

Interior Case. Let Ω be a subset of \mathbb{R}^n and $f \in \mathcal{C}^1$ a real-value function on Ω . If x^* is a local minimizer of f over Ω and if x^* is an interior point, then

$$\nabla f(x^*) = 0.$$

Proof: Since any $d \in \mathbb{R}^n \setminus \{0\}$ is a feasible direction, we can set $d = -\nabla f(x^*)$. We have $d^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 \geq 0$. Since $\|\nabla f(x^*)\|^2 \geq 0$, we have $\|\nabla f(x^*)\|^2 = 0$ and thus $\nabla f(x^*) = 0$.

Comment: This condition also reduces the problem

$$\min f(x)$$

to solving the equation

$$\nabla f(x^*) = 0.$$

Figure: x_1 fails to satisfy the FONC; x_2 satisfies the FONC

Second-order necessary condition

In FONC, there are two possibilities

- $d^T \nabla f(x^*) > 0;$
- $d^T \nabla f(x^*) = 0.$

In the first case, $f(x^* + \alpha d) > f(x^*)$ for all sufficiently small $\alpha > 0$. In the second case, the vanishing $d^T \nabla f(x^*)$ allows us to check higher-order derivatives.

Let C^2 be the set of twice continuously differentiable functions.

Theorem

Second-Order Necessary Condition (SONC). Let $\Omega \subset \mathbb{R}^n$, $f \in \mathcal{C}^2$ a function on Ω , x^* a local minimizer of f over Ω , and d a feasible direction at x^* . If $d^T \nabla f(x^*) = 0$, then

$$d^T F(x^*) d \ge 0,$$

where F is the Hessian of f.

Proof: Assume that \exists a feasible direction d with $d^T \nabla f(x^*) = 0$ and $d^T F(x^*) d < 0$. By 2nd-order Taylor expansion (with a vanishing 1st order term), we have

$$f(x^* + \alpha d) = f(x^*) + \frac{d^T F(x^*) d}{2} \alpha^2 + o(\alpha^2),$$

where by our assumption $d^T F(x^*) d < 0$. Hence, for all sufficiently small $\alpha > 0$, we have $f(x^* + \alpha d) < f(x^*)$, which contradicts that x^* is a local minimizer.

Corollary

Interior Case Let x^* be a interior point of $\Omega \subset \mathbb{R}^n$. If x^* is a local minimizer of $f: \Omega \to \mathbb{R}^n$, $f \in \mathcal{C}^2$, then

$$\nabla f(x^*) d = 0,$$

and $F(x^*)$ is positive semidefinite ($F(x^*) \ge 0$); that is, for all $d \in \mathbb{R}^n$,

$$d^T F(x^*) d \ge 0.$$

The necessary conditions are not sufficient

Counter examples

$$f(x) = x^3$$
, $f'(x) = 3x^2$, $f''(x) = 6x$

$$f(x) = x_1^2 - x_2^2$$

0 is a saddle point: $\nabla f(0) = 0$ but neither a local minimizer nor maximizer By SONC, 0 is not a local minimizer!

Second-order sufficient condition

Let \mathcal{C}^2 be the set of twice continuously differentiable functions.

Theorem

Second-Order Sufficient Condition (SOSC), Interior point. Let $f \in \mathcal{C}^2$ be defined on a region in which x^* is an interior point. Suppose that

- 1. $\nabla f(x^*) = 0;$
- 2. $F(x^*) > 0$.

Then, x^* is a strict local minimizer of f.

Comments:

- part 2 states $F(x^*)$ is positive definite: $x^T F(x^*) x > 0$ for $x \neq 0$.
- the condition is not necessary for strict local minimizer.

Proof: For any $d \neq 0$ and $\|d\| = 1$, we have $d^T F(x^*) d \geq \underbrace{\lambda_{\min}(F(x^*))} > 0$. Use the 2nd order Taylor expansion

$$f(x^* + \alpha d) = f(x^*) + \frac{\alpha^2}{2} d^T F(x^*) d + o(\alpha^2) \ge f(x^*) + \frac{\alpha^2}{2} \lambda_{\min}(F(x^*)) + o(\alpha^2).$$

Then, $\exists \bar{\alpha} > 0$, regardless of d, such that $f(x^* + \alpha d) > f(x^*), \quad \alpha \in (0, \bar{\alpha})$

 $\label{eq:Graph of f} \mbox{Graph of } f(x) = x_1^2 + x_2^2$ The point 0 satisfies the SOSC.

Roles of optimality conditions

- Recognize a solution: given a candidate solution, check optimality conditions to verify it is a solution.
- Measure the quality of an approximate solution: measure how j°closej± a point is to being a solution
- Develop algorithms: reduce an optimization problem to solving a (nonlinear) equation (finding a root of the gradient).

Later, we will see other forms of optimality conditions and how they lead to equivalent subproblems, as well as algorithms

Quiz questions

$$(1,2)\begin{pmatrix} x \\ y \end{pmatrix} = 3 \qquad \text{2x-2x+2} \qquad \qquad y = -\frac{1}{2}x + \frac{1}{2}$$

- V. Show that for $\Omega = \{x \in \mathbb{R}^n : Ax = b\}, d \neq 0$ is a feasible direction at $x \in \Omega$ if and only if Ad = 0. And by Angle Angle
- 2. Show that for any unconstrained quadratic program, which has the form

$$\nabla f(x^{n}) = 0$$

$$\text{on } F(x) = \frac{1}{2}x^{T}Qx - b^{T}x.$$

if x^* satisfies the second-order necessary condition, then x^* is a global minimizer.

- 3. Show that for any unconstrained quadratic program with $Q \geq 0$ (Q is symmetric and positive semi-definite), x^* is a global minimizer if and only if x^* satisfies the first-order necessary condition. That is, the problem is equivalent to solving Qx = b.
- 4. Consider $\min \ c^T x$, subject to $x \in \Omega$. Suppose that $c \neq 0$ and the problem has a global minimizer. Can the minimizer lie in the interior of Ω ?

Quiz (Lecture 2)

1. Proof.

$$d$$
 is a feasible direction at $\overline{x} \in \Omega$

$$\Longleftrightarrow \overline{x} + \alpha d \in \Omega$$
 dose hold for some small $\alpha > 0$

$$\iff A(\overline{x} + \alpha d) = b \text{ holds for some small } \alpha > 0$$

$$\iff$$
 $Ad = 0.(\text{since } \overline{x} \in \Omega \text{ implies } A\overline{x} = b).$

2. Proof. Obviously, $\nabla f(x) = Qx - b$ and $\nabla^2 f(x) = Q$ hold for any $x \in \mathbb{R}^n$.

Notice another trivial fact that the feasible set Ω of the program is \mathbb{R}^n , hence any point $x \in \mathbb{R}^n$ is a interior point of \mathbb{R}^n .

Based on the above and SONC, $Qx^* - b = 0$ and $Q \succeq 0$ hold since x^* satisfies the SONC [Interior Case].

Now back to objective function, for any $x \in \mathbb{R}^n$

$$\begin{split} f(x) &= f(x^* + (x - x^*)) \\ &= \frac{1}{2}(x^* + (x - x^*))^T Q(x^* + (x - x^*)) - b^T (x^* + (x - x^*)) \\ &= \frac{1}{2}x^T Qx - b^T x + (x - x^*)^T Q(x - x^*) + (x - x^*)^T (Qx^* - b) \\ &= f(x^*) + (x - x^*)^T Q(x - x^*) + (x - x^*)^T (Qx^* - b) \\ &\geq f(x^*). \end{split}$$

The last inequality holds since $Qx^* - b = 0$ and $Q \succeq 0$.

Hence, x^* is a global minimizer.

3. Proof. On the one hand, if $Qx^* = b$, by Q2, we know x^* is a global minimizer since $Q \succeq 0$ has been mentioned in the statement of this question.

On the other hand, if x^* is a global minimizer, then x^* is a local minimizer, hence x^* satisfies the FONC by Theorem [FONC].

4. *Proof.* According to Theorem [FONC], "the minimizer lies in the interior of Ω " implies c=0. It's a contradiction.