What is the mating for this circuit?

Ans: First H&I is operated on loo) and then CNOT is operated.

Now,
$$H \otimes I$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M_{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

"." The modrix =
$$M_{CNOT} \cdot (H \otimes I)$$

$$= \sqrt{12} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{12}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{12}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(2) Generate the qubit
$$\sqrt{2}$$
 (101)+(10)

Ans $|0\rangle$ (H) $\sqrt{2}$ (101)+(10)

H $|0\rangle = \sqrt{2}$ (10)+(11) $\sqrt{2}$ (101)+(10)

H $|0\rangle = \sqrt{2}$ (10)+(11) $\sqrt{2}$ (10)+(11) $\sqrt{2}$ (10)

 $= \sqrt{2}$ (101)+(11)

 $|0\rangle$ (NOT) $|0\rangle$ (NOT) $|1\rangle$ (NOT) $|1\rangle$ (NOT)

 $|0\rangle$ (NOT) $|0\rangle$ (NOT) $|1\rangle$ (NOT)

So $|1\rangle$ (101)+(10) can be generated when we apply the above circuit on the state $|0\rangle$.

(3) Find M' such that
$$|00\rangle - (M') - \sqrt{2}(|00\rangle + |11\rangle)$$
where $M \neq M$ \Rightarrow M' is unitary
$$M' = \begin{pmatrix} \sqrt{12} & 0 & 0 & \sqrt{12} \\ 0 & 1 & 0 & 0 \\ \sqrt{12} & 0 & 0 & \sqrt{12} \end{pmatrix}$$

$$M' |00\rangle = \begin{pmatrix} \sqrt{12} & 0 & 0 & \sqrt{12} \\ 0 & 1 & 0 & 0 \\ \sqrt{12} & 0 & 0 & \sqrt{12} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \sqrt{12} \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{12} \\ \sqrt$$

Now,
$$(M')^* = \begin{pmatrix} \sqrt{2} & 0 & 0 & -\sqrt{2} \\ \sqrt{2} & 0 & -\sqrt{2} \\$$