Systems of Linear Equations

Definition

A *linear equation* in n variables $\{x_1, x_2, \dots, x_n\}$ is an equation of the form:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = \sum_{k=1}^n a_kx_k = b$$

where the a_k and $b \in \mathbb{R}$ or \mathbb{C} and are called *coefficients*.

A *system* of linear equations (SOLE) is a set of m equations in the same n variables.

Definition

A solution of a SOLE in n variables is a tuple (s_1, s_2, \ldots, s_n) that makes each equation in the system a true statement when x_k is replaced by s_k .

The solution set of a SOLE is the set of all possible solutions of the SOLE.

To say that two SOLEs are *equivalent* means that they have the same solution set.

Example

Two coinciding lines

(1,2) is a unique solution

x = 2(2) - 3 = 1

Two lines that intersect at a single point

Theorem

A SOLE has exactly one of the following possible solution sets:

- 1). No solution
- 2). Exactly one solution
- 3). Infinitely many solutions

Definition

To say that a SOLE is *consistent* means that it has at least one solution. Otherwise, the system is *inconsistent*.