Comonadic Semantics for Hybrid Logic

Samson Abramsky and Dan Marsden

21st September 2022

Outline

- Background on hybrid logic.
- ► The hybrid game comonad.
- ▶ Local character and semantic characterisation.

$$\varphi ::= \underbrace{p \mid \neg \varphi \mid \varphi \wedge \varphi' \mid \varphi \vee \varphi'}_{\text{propositional}} \mid \underbrace{\Box \varphi \mid \Diamond \varphi \mid \Box^{-} \varphi \mid \Diamond^{-} \varphi}_{\text{2-way modal}} \mid \underbrace{x \mid \downarrow x. \varphi \mid @_{x} \varphi}_{\text{hybrid}}$$

$$\varphi ::= \underbrace{\frac{\textbf{p} \mid \neg \varphi \mid \varphi \wedge \varphi' \mid \varphi \vee \varphi'}_{\textbf{propositional}} \mid \underbrace{\Box \varphi \mid \Diamond \varphi \mid \Box^{-}\varphi \mid \Diamond^{-}\varphi}_{\textbf{2}} \mid \underbrace{x \mid \downarrow x. \varphi \mid \mathbb{Q}_{x}\varphi}_{\textbf{hybrid}}$$

Syntax of HTL

$$\varphi ::= \underbrace{p \mid \neg \varphi \mid \varphi \wedge \varphi' \mid \varphi \vee \varphi'}_{\text{propositional}} \mid \underbrace{\Box \varphi \mid \Diamond \varphi \mid \Box^{-} \varphi \mid \Diamond^{-} \varphi}_{\text{2-way modal}} \mid \underbrace{x \mid \downarrow x. \varphi \mid @_{x} \varphi}_{\text{hybrid}}$$

The *positive fragment* excludes \square , \square ⁻ and \neg .

Semantics

Models are relational structures over a signature with unary relation symbols and a single binary relation symbol E.

Semantics

Models are relational structures over a signature with unary relation symbols and a single binary relation symbol E.

Propositions and Boolean connectives:

$$ST_{x}(p) = P(x)$$

$$ST_{x}(\neg \varphi) = \neg ST_{x}(\varphi)$$

$$ST_{x}(\varphi \wedge \varphi') = ST_{x}(\varphi) \wedge ST_{x}(\varphi')$$

$$ST_{x}(\varphi \vee \varphi') = ST_{x}(\varphi) \vee ST_{x}(\varphi')$$

Semantics

Models are relational structures over a signature with unary relation symbols and a single binary relation symbol E.

Modalities:

$$ST_{x}(\Box\varphi) = \forall y.[E(x,y) \to ST_{y}(\varphi)]$$

$$ST_{x}(\Diamond\varphi) = \exists y.[E(x,y) \land ST_{y}(\varphi)]$$

$$ST_{x}(\Box^{-}\varphi) = \forall y.[E(y,x) \to ST_{y}(\varphi)]$$

$$ST_{x}(\Diamond^{-}\varphi) = \exists y.[E(y,x) \land ST_{y}(\varphi)]$$

Semantics

Models are relational structures over a signature with unary relation symbols and a single binary relation symbol E. **Hybrid connectives**:

$$ST_x(\downarrow x'.\varphi) = ST_x(\varphi)[x/x']$$

 $ST_x(@_{x'}\varphi) = ST_x(\varphi)[x'/x]$
 $ST_x(x') = x = x'$

Example

1. $ST_x(\downarrow x'.\Diamond x')$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

$$\exists y. E(x, y) \land x = y$$

Example

1.
$$ST_x(\downarrow x'. \Diamond x')$$

E(x,x)

Example

1. $ST_x(\downarrow x'. \Diamond x')$

E(x,x)

2. $ST_x(@_{x'}p)$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(@_{x'}p)$$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(\mathbb{Q}_{x'}p)$$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(\mathbb{Q}_{x'}p)$$

3.
$$ST_x(@_{x'} \lozenge y')$$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(@_{x'}p)$$

3.
$$ST_x(\mathbb{Q}_{x'} \Diamond y')$$

$$\exists x_1. E(x', x_1) \land x_1 = y'$$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(@_{x'}p)$$

3.
$$ST_x(\mathbb{Q}_{x'} \lozenge y')$$

1.
$$ST_x(\downarrow x'. \Diamond x')$$

2.
$$ST_x(@_{x'}p)$$

3.
$$ST_x(@_{x'} \lozenge y')$$

4.
$$ST_x(Q_{x'}y')$$

Example

1. $ST_x(\downarrow x'. \Diamond x')$

E(x,x)

2. $ST_x(@_{x'}p)$

P(x')

3. $ST_x(\mathbb{Q}_{x'} \lozenge y')$

E(x',y')

4. $ST_x(@_{x'}y')$

x' = y'

The Hybrid Game

The **Hybrid game** between pointed structure (\mathfrak{A}, a) and (\mathfrak{B}, b) has initial position is $a_0 = a$, $b_0 = b$. In each round i, Spoiler moves by either

- choosing an $a_j \in A$ such that for some i < j, $E^{\mathfrak{A}}(a_i, a_j)$ or $E^{\mathfrak{A}}(a_j, a_i)$, to which Duplicator responds by choosing a $b_j \in B$; or
- ▶ choosing a $b_j \in B$ such that for some i < j, $E^{\mathfrak{B}}(b_i, b_j)$ or $E^{\mathfrak{B}}(b_j, b_i)$, to which Duplicator responds by choosing an $a_j \in A$.

The winning condition for Duplicator is that the correspondence $a_i \mapsto b_i$ is a partial isomorphism from $\mathfrak A$ to $\mathfrak B$.

The Game / Logic Correspondence

Duplicator has a winning strategy for the one-sided k-round game iff every positive Hybrid formula φ of depth $\leq k$:

$$(\mathfrak{A},a)\models\varphi\quad\Rightarrow\quad (\mathfrak{B},b)\models\varphi$$

Duplicator has a winning strategy for the two-sided k-round game iff for every Hybrid formula φ of depth $\leq k$:

$$(\mathfrak{A},a)\models\varphi\quad\Leftrightarrow\quad (\mathfrak{B},b)\models\varphi$$

Game Comonads

Game comonads give a semantic characterisation of model equivalence games¹². For a given logic \mathcal{L} , a game comonad is typically an indexed comonad \mathbb{C}_k on relational structures such that:

- Morphisms $\mathbb{C}_k(\mathfrak{A}) \to \mathfrak{B}$ correspond to winning strategies for Duplicator in the one sided model comparison game, up to resource depth k.
- ▶ The existence of a span of open pathwise embeddings $F_k(\mathfrak{A}) \leftarrow R \rightarrow F_k(\mathfrak{B})$ in the Eilenberg-Moore category corresponds to a winning strategy for Duplicator in the full model comparison game.

²S. Abramsky and N. Shah. "Relating structure and power: Comonadic semantics for computational resources". In: *Journal of Logic and Computation* 31.6 (2021), pp. 1390–1428.

¹S. Abramsky, A. Dawar, and P. Wang. "The pebbling comonad in finite model theory". In: *2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)*. IEEE. IEEE, 2017, pp. 1–12.

A Hybrid Comonad

To capture Hybrid logic, we work with pointed structures. For structure (\mathfrak{A}, a) , we define a structure $\mathbb{H}_k(\mathfrak{A}, a)$ with:

Universe: Non-empty sequences
$$\langle a_0, a_1, \ldots, a_l \rangle$$
 such that $a_0 = a$, and for all j with $0 < j \le l$, for some i , $0 \le i < j$, $E^{\mathfrak{A}}(a_i, a_j)$ or $E^{\mathfrak{A}}(a_j, a_i)$.

Counit: $\varepsilon_{\mathfrak{A}}(\langle a_0, \ldots a_l \rangle) = a_l$.

Relations: $R^{\mathbb{E}_k \mathfrak{A}}(s_1, \ldots, s_n)$ holds iff the s_i are pairwise

comparable and $R^{\mathfrak{A}}(\varepsilon_{\mathfrak{A}}(s_1),\ldots,\varepsilon_{\mathfrak{A}}(s_n))$.

Point: $\langle a \rangle$.

Coextension: Given a morphism $h: \mathbb{H}_k(\mathfrak{A}, a) \to (\mathfrak{B}, b)$, we define $h^*: \mathbb{H}_k(\mathfrak{A}, a) \to \mathbb{H}_k(\mathfrak{B}, b)$ by

$$h^*(\langle a, a_1, \ldots, a_i \rangle) = \langle h(\langle a \rangle), \ldots, h(\langle a, a_1, \ldots, a_i \rangle) \rangle$$

Equality and I-relations

Given a vocabulary σ , define:

$$\sigma^+ = \sigma \cup \{I\}$$

There is a full and faithful embedding $J: Struct_{\star}(\sigma) \to Struct_{\star}(\sigma^{+})$ such that $I^{J(\mathfrak{A},a)}$ is the identity on A.

7 / 11

Game Comonad Results

- ▶ The triple $(\mathbb{H}_k, \varepsilon, (-)^*)$ is a comonad in Kleisli form.
- ▶ The composite $\mathbb{H}_k^+ = \mathbb{H}_k^I \circ J$ is a relative comonad.
- ▶ Kleisli morphisms have the form $\mathbb{H}_k^I J(\mathfrak{A}, a) \to J(\mathfrak{B}, b)$, and bijectively correspond to winning strategies for Duplicator in the one-sided game from (\mathfrak{A}, a) to (\mathfrak{B}, b) .
- ▶ There is a span of open pathwise embeddings $F_k(\mathfrak{A},a) \leftarrow R \rightarrow F_k(\mathfrak{B},b)$ iff Duplicator has a winning strategy in the two-sided hybrid game between those structures.

Semantic Characterisation

Gaifman Graph Distance

Recall the *Gaifman graph* of a σ -structure $\mathfrak A$ has:

Vertices: The universe of \mathfrak{A} .

Edges: Pairs of distinct a, a' appearing in some \overline{a} such that there exists $R \in \sigma$ with $R^{\mathfrak{A}}(\overline{a})$.

Yields a metric on $\mathfrak A$ via minimum path length.

Semantic Characterisation

Definitions

- ▶ Define $S_k(\mathfrak{A}, a)$ to be $(\mathfrak{A}[a; k], a)$, where $\mathfrak{A}[a; k]$ is the substructure of \mathfrak{A} induced by the closed ball A[a; k] induced by the Gaifman graph distance in \mathfrak{A} .
- ▶ Define $\mathbb{S}(\mathfrak{A}, a) := \bigcup_{k \in \mathbb{N}} \mathbb{S}_k(\mathfrak{A}, a)$.
- Say that a first-order formula $\varphi(x)$ is invariant under generated substructures if for all (\mathfrak{A}, a) in $\mathsf{Struct}_{\star}(\sigma)$: $(\mathfrak{A}, a) \models \varphi \iff \mathbb{S}(\mathfrak{A}, a) \models \varphi$.
- Say that a first-order formula $\varphi(x)$ is invariant under k-generated substructures if for all (\mathfrak{A}, a) in $\mathsf{Struct}_{\star}(\sigma)$: $(\mathfrak{A}, a) \models \varphi \iff \mathbb{S}_k(\mathfrak{A}, a) \models \varphi$.
- We say that a sentence φ is invariant under disjoint extensions if for all (\mathfrak{A}, a) , \mathfrak{B} :

$$(\mathfrak{A}, a) \models \varphi \iff (\mathfrak{A} + \mathfrak{B}, a) \models \varphi$$

Semantic Characterisation

Theorem (Characterisation Theorem)

For any first-order formula $\varphi(x)$ with quantifier rank q, the following are equivalent:

- 1. φ is invariant under generated substructures.
- 2. φ is invariant under q2^q-generated substructures.
- 3. φ is invariant under disjoint extensions.
- 4. φ is equivalent to a sentence ψ of hybrid temporal logic with modal depth $\leq q2^q$.

Hybrid to FO Strategies via Resources

Lemma

For all
$$k, q > 0$$
,

if
$$\mathbb{S}_k(\mathfrak{A},a) \equiv_{kq}^{\mathsf{HTL}} \mathbb{S}_k(\mathfrak{B},b)$$
 then $\mathbb{S}_k(\mathfrak{A},a) \equiv_q \mathbb{S}_k(\mathfrak{B},b)$

Hybrid to FO Strategies via Resources

Lemma

if
$$\mathbb{S}_k(\mathfrak{A}, a) \equiv_{kq}^{\mathsf{HTL}} \mathbb{S}_k(\mathfrak{B}, b)$$
 then $\mathbb{S}_k(\mathfrak{A}, a) \equiv_q \mathbb{S}_k(\mathfrak{B}, b)$

Hybrid to FO Strategies via Resources

Lemma

if
$$\mathbb{S}_k(\mathfrak{A}, a) \equiv_{kq}^{\mathsf{HTL}} \mathbb{S}_k(\mathfrak{B}, b)$$
 then $\mathbb{S}_k(\mathfrak{A}, a) \equiv_q \mathbb{S}_k(\mathfrak{B}, b)$

Hybrid to FO Strategies via Resources

Lemma

if
$$\mathbb{S}_k(\mathfrak{A},a) \equiv_{kq}^{\mathsf{HTL}} \mathbb{S}_k(\mathfrak{B},b)$$
 then $\mathbb{S}_k(\mathfrak{A},a) \equiv_q \mathbb{S}_k(\mathfrak{B},b)$

Hybrid to FO Strategies via Resources

Lemma

if
$$\mathbb{S}_k(\mathfrak{A},a) \equiv_{kq}^{\mathsf{HTL}} \mathbb{S}_k(\mathfrak{B},b)$$
 then $\mathbb{S}_k(\mathfrak{A},a) \equiv_q \mathbb{S}_k(\mathfrak{B},b)$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

The Workspace Lemma

Lemma (Workspace Lemma)

Given (\mathfrak{A}, a) and q > 0, there is a structure \mathfrak{B} such that

$$(\mathfrak{A} + \mathfrak{B}, a) \equiv_q (\mathfrak{A}[a; k] + \mathfrak{B}, a),$$

$$\mathfrak{B} = \underbrace{\mathfrak{A} + \ldots + \mathfrak{A}}_{q \text{ copies}}$$

+
$$\mathfrak{U}[a; k] + \ldots + \mathfrak{U}[a; k]$$
 $q \text{ copies}$

Final Remarks

- Everything in the paper can be extended to the general bounded fragment of first-order logic.
- The semantic characterisation theorem makes essential use of bidirectional modal logic.
- ▶ The bounded $q2^q$ in the semantic characterisation theorem is not known to be sharp.