Learning-based multi-modal indoor localization

Final Presentation

Pedro Torres Da Cunha

Master Semester Project

Supervised by

- Frederike Dümbgen
- Sepand Kashani

Indoor localization

Goal: predict user's indoor position using commonly available signals: WiFi, Bluetooth

Challenges:

Handle noisy and non-linear signals

Capture complex dependencies

How: neural networks

Candidate architecture: Autoencoder

Recovered anchor features

$$\hat{X} \in \mathbb{R}^d$$

minimize $w_r \frac{1}{d} \left\| X - \hat{X} \right\|_2^2$

- Keep best components
- Suppress noise
- Unsupervised

2D embeddings

- Misalignment
- Noisy embeddings

The Autoencoder is free to choose its 2D representation

Adding constraints: Align the prediction shape

Correct the simulation shape with some known positions

minimize
$$w_{\mathrm{fp}} \frac{1}{2} \left\| y - \hat{y} \right\|_2^2$$

The general shape matches but it is still as noisy

Adding constraints: Smoothing the prediction (1)

Add a smoothing regularizer: first order finite differences

$$D\mathbf{y} = \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & 1 & \\ & & & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} y_2 - y_1 \\ y_3 - y_2 \\ \vdots \\ y_n - y_{n-1} \end{bmatrix} \quad \begin{array}{c} \text{minimize} \\ w_{\text{fofd}} \frac{1}{2(n-1)} \|D\mathbf{y} - D\hat{\mathbf{y}}\|_2^2 \\ \vdots \\ y_n - y_{n-1} \end{bmatrix}$$

Corresponds to the direction that the path following

Autoencoder with convolution

Uses the neighbouring values to produce a new feature

Autoencoder with convolution (results)

Convolution autoencoder with shape alignment

Autoencoder with convolution (results)

Convolution autoencoder with shape alignment

... and with the smoothing constraint

Conclusion

Indoor localization with autoencoder and constraints

- Path alignment with some known points
- Smooth predictions with the smoothing constraint and the convolution layer

Future directions

Experiment on real data

Further feature disentanglement using calibration data

- Explore other neural network architectures
 - Deeper architectures
 - Use other neural network primitives