Matrix Chain Multiplication (MCM)

Problem:

Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 0, 1, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1 A_2 ... A_n$ in a way that minimizes the number of scalar multiplications.

Matrix Chain Multiplication

- Suppose we have a sequence or chain A₁, A₂, ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product A₁A₂...A_n
- There are many possible ways (parenthesizations) to compute the product

Matrix Chain Multiplication ...contd

- Example: consider the chain A₁, A₂, A₃, A₄
 of 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

Background: Matrix Multiplication

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

• Let A be a $P \times q$ matrix B be a $q \times r$ matrix.

Then the complexity is

$$p \times q \times r$$

Algorithm: Multiply 2 Matrices

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p \times q}, B_{q \times r})
```

```
1. for i \leftarrow 1 to p
```

2. **for**
$$j \leftarrow 1$$
 to r

$$C[i,j] \leftarrow 0$$

4. **for**
$$k \leftarrow 1$$
 to q

5.
$$C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$$

6. return C

Scalar multiplication in line 5 dominates time to compute *C* Number of scalar multiplications = *pqr*

Example: Complexity to Multiply

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize

```
- ((AB)C) = D_{10\times5} \cdot C_{5\times50}
```

- AB ⇒ 10·100·5=5,000 scalar multiplications

 Total:
- DC \Rightarrow 10·5·50 =2,500 scalar multiplications \int 7,500

-
$$(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$$

- BC \Rightarrow 100·5·50=25,000 scalar multiplications
- AE ⇒ 10·100·50 =50,000 scalar multiplications

Total: **75**,000

Recall: MCM Problem

• Given a chain of matrices $\langle A_1, A_2, ..., A_n \rangle$, where for i = 1, 2, ..., n matrix A_i has dimensions $p_{i-1}x p_i$, fully parenthesize the product $A_1 \cdot A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot A_i \cdot A_{i+1} \cdot A_n$$

 $p_0 \times p_1 \cdot p_1 \times p_2 \cdot p_{i-1} \times p_i \cdot p_i \times p_{i+1} \cdot p_{n-1} \times p_n$

Dynamic Programming Approach

- Step 1: The structure of an optimal solution
 - Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
 - An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
 - First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$

- Step 2: Recursive definition of the value of an optimal solution
 - Define m[i, j] = Minimum number of scalar multiplications necessary to compute $A_{i...j}$ = $A_i A_{i+1} ... A_j$

Goal m[1, n] = Minimum cost to compute A_{1..n}

- Assume that the optimal parenthesization splits the product A_i A_{i+1} ··· A_j at k (i ≤ k < j)
- $A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j)$

- Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$

```
m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j
min \# of min \# of \# of multiplications
multiplications to compute
to compute A_{i...k} to compute A_{k+1...j}
```

- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- -m[i, i] = 0 for i=1,2,...,n

- But... optimal parenthesization occurs at one value of k among all possible i ≤ k < j
- Check all these and select the best one

```
m[i, j] = \begin{cases} 0 & \text{if } i=j \\ \min\{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j & \text{otherwise} \end{cases}
```

To keep track of how to construct an optimal solution, we use a table s

• s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization

Step 3: Computing the Optimal Costs

> Algorithm:

- First computes costs for chains of length l=1
- Then for chains of length l=2,3, ... and so on
- Computes the optimal cost bottom-up

• n = 5, p = (10, 5, 1, 10, 2, 10) $-[10\times5]\times[5\times1]\times[1\times10]\times[10\times2]\times[2\times10]$

16

$$-p = [10 \times 5] \times [5 \times 1] \times [1 \times 10] \times [10 \times 2] \times [2 \times 10]$$

- m(i,i) = 0

$$-p = [10 \times 5] \times [5 \times 1] \times [1 \times 10] \times [10 \times 2] \times [2 \times 10]$$

$$-m(i,i+1) = p_{i-1}p_ip_{i+1}$$

$$-s(i,i+1) = i$$

$$-p = [10 \times 5] \times [5 \times 1] \times [1 \times 10] \times [10 \times 2] \times [2 \times 10]$$

$$-m(i,i+2) = min\{ m(i,i) + m(i+1,i+2) + p_{i-1}p_{i}p_{i+2},$$

$$m(i,i+1) + m(i+2,i+2) + p_{i}p_{i+1}p_{i+2} \}$$


```
-p = [10 \times 5] \times [5 \times 1] \times [1 \times 10] \times [10 \times 2] \times [2 \times 10]
-m(i,i+3) = min\{m(i,i) + m(i+1,i+3) + p_{i-1}p_ip_{i+3},
                         m(i,i+1) + m(i+2,i+3) + p_{i-1}p_{i+1}p_{i+3}
                         m(i,i+2) + m(i+3,i+3) + p_{i-1}p_{i+2}p_{i+3}
               3 4 5
                                                       3
                                                            4
                                                                  5
          50
              150
                                                        2
                    90
                                                  1
                                        1
                                                             2
               50
                    30
                         90
3
                         40
                                                             3
                                                                  4
                0
                    20
                         200
4
                                        4
                                                                  4
5
                                        5
                          0
```

$$\begin{array}{l} -\ p = [10 \times 5] \times [5 \times 1] \times [1 \times 10] \times [10 \times 2] \times [2 \times 10] \\ -\ m(i,i+4) = \min \; \{ \; m(i,i) + \; m(i+1,i+4) + \; p_{i-1}p_{i}p_{i+4}, \\ \qquad m(i,i+1) + \; m(i+2,i+4) + \; p_{i-1}p_{i+1}p_{i+4}, \\ \qquad m(i,i+2) + \; m(i+3,i+4) + \; p_{i-1}p_{i+2}p_{i+4}, \\ \qquad m(i,i+3) + \; m(i+4,i+4) + \; p_{i-1}p_{i+3}p_{i+4} \} \\ \qquad 1 \quad 2 \quad 3 \quad 4 \quad 5 \qquad \qquad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\ \qquad 1 \quad 0 \quad 50 \quad 150 \quad 90 \quad 190 \qquad \qquad 1 \quad \qquad 1 \quad 2 \quad 2 \quad 2 \\ \qquad 2 \quad \qquad 0 \quad 50 \quad 30 \quad 90 \qquad \qquad 2 \qquad \qquad 2 \quad 2 \quad 2 \quad 2 \\ \qquad 3 \quad \qquad 0 \quad 20 \quad 40 \qquad \qquad 3 \qquad \qquad 4 \quad 4 \\ \qquad 5 \quad \qquad 0 \quad 200 \qquad \qquad 4 \qquad \qquad 4 \quad 4 \\ \qquad 5 \quad \qquad \qquad 0 \quad 200 \qquad \qquad 4 \qquad \qquad 4 \quad 5 \\ \qquad \qquad m(i,j), \; i \leq j \qquad \qquad \qquad p_{Paris} \end{array}$$

Algorithm: Compute the Optimal Cost

Input: Array *p* containing matrix dimensions **Output**: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p)

```
n \leftarrow length[p] -1
     for i \leftarrow 1 to n
3
            m[i, i] \leftarrow 0
     for l \leftarrow 2 to n
5
            for i \leftarrow 1 to n - l + 1
6
                          j \leftarrow i + l - 1
                           m[i, j] \leftarrow \infty
8
                           for k \leftarrow i to j-1
9
                                       q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
                                        if q < m[i, j]
10
11
                                                    m[i, j] \leftarrow q
12
                                                     s[i, j] \leftarrow k
13
      return m and s
```

Step 4: Constructing an Optimal Solution

- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} \dots A_j$ for the minimum cost

Optimal multiplication sequence

$$-s(1,5) = 2$$

$$A_{15} = A_{12} \times A_{35}$$

	1	2	3	4	5			1	2	3	4	5
1	0	50	150	90	190		1		1	2	2	2
2		0	50	30	90		2			2	2	2
3			0	20	40		3				3	4
4				0	200		4					4
5					0		5					
m(i,j), i ≤ j				Paris		S	s(i,j)	, i ≤	j			

25

$$-A_{15} = A_{12} \times A_{35}$$

$$-s(1,2) = 1 A_{12} = A_{11} \times A_{22}$$

$$\rightarrow A_{15} = (A_{11} \times A_{22}) \times A_{35}$$

	1	2	3	4	5
1	0	50	150	90	190
2		0	50	30	90
3			0	20	40
4				0	200
5					0

$$-A_{15} = (A_{11} \times A_{22}) \times A_{35}$$

$$-s(3,5) = 4 A_{35} = A_{34} \times A_{55}$$

$$\rightarrow A_{15} = (A_{11} \times A_{22}) \times (A_{34} \times A_{55})$$

	1	2	3	4	5
1	0	50	150	90	190
2		0	50	30	90
3			0	20	40
4				0	200
5					0

28

Algorithm: Constructing an Optimal Solution

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Practice Example (Book: Cormen; Page-376)

 Show how to multiply this matrix chain optimally

- Minimum cost 15,125
- Optimal parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$

$$A_1 \quad 30 \times 35 = p_0 \times p_1$$

$$A_2 \quad 35 \times 15 \quad = p_1 \times p_2$$

$$A_3$$
 15×5 = $p_2 \times p_3$

$$A_4$$
 $5 \times 10 = p_3 \times p_4$

$$A_5 \quad 10 \times 20 = p_4 \times p_5$$

$$A_6 \quad 20 \times 25 = p_5 \times p_6$$

The m and s table computed by MATRIX-CHAIN-ORDER

Practice Example: Solution Sample

```
m[2,5] = \min \{ \\ m[2,2] + m[3,5] + p_1 p_2 p_5 = 0 + 2500 + 35 \times 15 \times 20 = 13000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \times 5 \times 20 = 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \times 10 \times 20 = 11374 \\ \} = 7125
```

Thank You

Stay Safe