

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος , 📞 : 26610 20144 , 🖫 : 6932327283 - 6955058444

5 Απριλίου 2025

Μαθηματικά Γ΄ Λυκείου

ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΒΑΣΙΚΩΝ ΑΣΚΗΣΕΩΝ

Τυπολόγιο

1ο Κεφάλαιο ΄Ορια - Συνέχεια

Μεθοδολογία

1ο Κεφάλαιο ΄Ορια - Συνέχεια

1.1 Σύνθεση συναρτήσεων

🗾 ΄Ασκηση 1.1 : Εύρεση σύνθεσης

Για να οριστεί η συνάρτηση $f \circ g$ πρέπει να βρούμε το πεδίο ορισμού της και τον τύπο της.

1° Βήμα: Για το πεδίο ορισμού ισχύουν οι σχέσεις

$$x \in D_g$$
 kai $g(x) \in D_f$

Οι περιορισμοί αυτοί μας οδηγούν σε εξισώσεις και ανισώσεις. Οι κοινές λύσεις σχηματίζουν το πεδίο ορισμού.

 2^{o} Bήμα: Ο τύπος της $f \circ g$ θα ισούται με

$$(f \circ g)(x) = f(g(x))$$

που σημαίνει ότι στον τύπο της f αντικαθιστούμε το x με g(x).

Εντελώς ανάλογα εργαζόμαστε για τις συναρτήσεις $g \circ f, f \circ f \dots$

Παράδειγμα 1 : Σύνθεση συναρτήσεων

Δίνονται οι συναρτήσεις $f(x) = \frac{1}{x-1}$ και $g(x) = \sqrt{x-2}$. Να ορίσετε τις συναρτήσεις

$$\alpha$$
. $f \circ g$

$$\beta$$
. $g \circ f$

$$y. f \circ f$$

✓ AVTH

H συνάρτηση f ορίζεται όταν $x-1 \neq 0 \Rightarrow x \neq 1$ άρα $D_f = \mathbb{R} - \{1\}$, ενώ η g ορίζεται όταν $x-2 \geq 0 \Rightarrow x \geq 2$ οπότε $D_g = [2, +\infty)$.

α. Η συνάρτηση $f \circ g$ έχει τύπο

$$(f \circ g)(x) = f(g(x)) = \frac{1}{g(x) - 1} = \frac{1}{\sqrt{x - 2} - 1}$$

και πεδίο ορισμού

$$D_{f \circ g} = \{ x \in D_g \text{ kai } g(x) \in D_f \}$$

- $x \in D_g \Rightarrow x \in [2, +\infty)$
- $g(x) \in D_f \Rightarrow \sqrt{x-2} \in \mathbb{R} \{1\} \Rightarrow \sqrt{x-2} \neq 1 \Rightarrow x-2 \neq 1 \Rightarrow x \neq 3$

Επομένως $D_{f \circ g} = [2, 3) \cup (3, +\infty).$

β. Η συνάρτηση $g \circ f$ έχει τύπο

$$(g \circ f)(x) = g(f(x)) = \sqrt{f(x) - 2} = \sqrt{\frac{1}{x - 1} - 2}$$

και πεδίο ορισμού

$$D_{g \circ f} = \{ x \in D_f \text{ kai } f(x) \in D_g \}$$

•
$$x \in D_f \Rightarrow x \in \mathbb{R} - \{1\}$$

•
$$f(x) \in D_g \Rightarrow \frac{1}{x-2} \in [2, +\infty) \Rightarrow \frac{1}{x-1} \ge 2 \Rightarrow$$

$$\Rightarrow \frac{1}{x-1} - 2 \ge 0 \Rightarrow \frac{3-x}{x-1} \ge 0 \Rightarrow$$

$$\Rightarrow (3-x)(x-1) \ge 0 \text{ kai } x - 1 \ne 0 \Rightarrow$$

$$\Rightarrow x \in (1,3]$$

x	$-\infty$	1	3	$+\infty$
3-x	+	1 .	+ 0	
x-1	_	o	+ ¦	+
Γινόμενο	_		+ 0	_

Επομένως $D_{g \circ f} = (1, 3]$.

1.2 Συνάρτηση 1 – 1 - Αντίστροφη

✓ 'Ασκηση 1.2 : Συνάρτηση 1 − 1

Υπάρχουν οι εξής τρόποι για να αποδείξουμε ότι μια συνάρτηση $f:D_f\to\mathbb{R}$ είναι 1-1.

 $I^{o\varsigma}$ Tρόπος: Αποδεικνύοντας ότι η f είναι γνησίως μονότονη στο D_f . (Ο τρόπος αυτός ενδείκνυται όταν το πεδίο ορισμού της f είναι ένα διάστημα.)

 $2^{o \zeta}$ Τρόπος: Με τη βοήθεια του ορισμού της 1-1 συνάρτησης

Για κάθε
$$x_1, x_2 \in D_f$$
: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

(Ο τρόπος αυτός ενδείκνυται για συναρτήσεις με πεδίο ορισμού ένωση διαστημάτων, αρκεί ο τύπος να επιτρέπει την επίλυση της εξίσωσης.)

 ${\it 3}^{\rm oc}$ ${\it Tρόπος}$: Με τη βοήθεια της γραφικής παράστασης της f. Κάθε οριζόντια ευθεία πρέπει να τέμνει τη C_f σε ένα το πολύ σημείο.

 $\mathbf{4}^{o\varsigma}$ $\mathbf{\mathit{Tρόπος}}$: Αν η εξίσωση y=f(x) έχει μοναδική λύση ως προς x για κάθε $y\in f(D_f)$ και η λύση ανήκει στο D_f τότε η f είναι 1-1.

 $5^{o\varsigma}$ Τρόπος: Με απαγωγή σε άτοπο. Υποθέτουμε δηλαδή ότι η f δεν είναι 1-1.

🔼 Άσκηση 1.3 : Εύρεση αντίστροφης συνάρτησης

 I^{o} Bήμα: Εύρεση συνόλου τιμών της f με τη βοήθεια μονοτονίας.

 2^{o} Βήμα: Επίλυση της εξίσωσης y = f(x) ως προς x με $x \in D_f$.

1.3 'Opia

Οι απροσδιόριστες μορφές που μπορεί να έχει ένα όριο είναι οι ακόλουθες :

- α. Μορφή κλάσματος : $\frac{0}{0}$ και $\frac{\pm \infty}{\pm \infty}$
- β. Μορφή γινομένου : $0 \cdot (\pm \infty)$
- γ. Μορφή δύναμης: 0^0 , $1^{\pm\infty}$, $(\pm\infty)^0$
- δ. Μορφή αθροίσματος : $\infty \infty$

 Θ α μελετήσουμε επίσης τη μορφή $\frac{a}{\Omega}$.

ightharpoonup 'Ασκηση 1.4 : 'Ορια με απροσδιοριστία $\frac{0}{0}$

α. Με ρητή συνάρτηση

β. Με ρίζες :

Πολλαπλασιασμός με συζυγείς παραστάσεις.

- a. The pipil octupation
- 2^{ος} Τρόπος: Κανόνας De L'Hospital

1^{ος} Τρόπος: Παραγοντοποίηση

γ. Με απόλυτες τιμές

1° Βήμα: Υπολογίζω τα όρια των παραστάσεων μέσα στις απόλυτες τιμές.

2° Βήμα: Διώχνω τις απόλυτες τιμές με τον παρακάτω κανόνα

$$\lim_{x \to x_0} f(x) > 0 \Rightarrow f(x) > 0$$
 κοντά στο x_0

$$\lim_{x \to x_0} f(x) < 0 \Rightarrow f(x) < 0$$
 κοντά στο x_0

Αν κάποια απόλυτη τιμή μηδενίζεται στο x_0 τότε υπολογίζω πλευρικά όρια.

 3^{o} Bήμα: Υπολογίζω όριο ρητής $\frac{0}{0}$

- δ. Με τριγωνομετρικές παραστάσεις
 - 10ς Τρόπος: Κατασκευάζω και χρησιμοποιώ τριγωνομετρικές ταυτότητες.
 - $2^{o\varsigma}$ Τρόπος : Κατασκευάζω με πράξεις κάποιο βασικό τριγωνομετρικό όριο, αρκεί όταν $x \to x_0$ να μηδενίζεται η γωνία του τριγωνομετρικού αριθμού.
 - 3^{ος} Τρόπος: Κανόνας De L' Hospital. (Χρειάζεται προσοχή εδώ γιατί μπορεί η εφαρμογή του κανόνα να με οδηγήσει σε δυσκολότερο όριο.)
- ε. Με εκθετικές, λογαριθμικές και συνδυασμό αυτών : Κανόνας De L' Hospital

lacksquare Άσκηση 1.5 : Όρια με απροσδιοριστία $\frac{\infty}{\infty}$

- α. Με ρητή συνάρτηση όταν $x \to \infty$ υπολογίζουμε το όριο του κλάσματος μόνο με τους μεγιστοβάθμιους όρους.
- β. Με ρίζες : Μέθοδος κοινού παράγοντα.
- γ. Διάφορες συναρτήσεις: Κανόνας De L' Hospital

A ΄Ασκηση 1.6 : ΄Ορια με απροσδιοριστία $0 \cdot (\pm \infty)$

1° Βήμα: Γράφουμε το γινόμενο με μορφή σύνθετου κλάσματος ως εξής

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} \ \ \dot{\eta} \ \ \lim_{x \to x_0} \frac{g(x)}{\frac{1}{f(x)}}$$

- 2^o Βήμα : Το όριο παίρνει τη μορφή $\frac{0}{0}$ ή $\frac{\infty}{\infty}$ οπότε εφαρμόζουμε κανόνα De L' Hospital
- ightharpoonup ΄Ασκηση 1.7 : ΄Ορια με απροσδιοριστία $0^0, 1^{\pm \infty}, (\pm \infty)^0$

1° Βήμα: Χρησιμοποιούμε τον παρακάτω κανόνα

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{\ln f(x)^{g(x)}} = \lim_{x \to x_0} e^{g(x) \cdot \ln f(x)}$$

 2^o $Βήμα: Υπολογίζουμε το όριο του εκθέτη το οποίο έχει απροσδιοριστία <math>0 \cdot (\pm \infty)$. Στη συνέχεια με αντικατάσταση υπολογίζουμε το αρχικό όριο.

$^{\prime}$ Ασκηση 1.8 : 'Ορια με απροσδιοριστία $\infty - \infty$

Για τον υπολογισμό ορίου $\lim_{x\to x_0} (f(x)-g(x))$ με απροσδιοριστία $\infty-\infty$ ακολουθούμε έναν από τους παρακάτω τρόπους:

10ς Τρόπος: Βγάζουμε κοινό παράγοντα μια από τις δύο συναρτήσεις.

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) \left[1 - \frac{g(x)}{f(x)} \right]$$

Στη συνέχεια υπολογίζουμε το όριο του κλάσματος $\frac{g(x)}{f(x)}$ με μορφή $\infty-\infty$.

 $2^{o\varsigma}$ Τρόπος: Αν οι f(x), g(x) είναι κλάσματα, τα κάνουμε ομώνυμα.

3^{ος} Τρόπος: Σχηματίζουμε διαφορά λογαρίθμων και χρησιμοποιούμε την ιδιότητα

$$\ln a - \ln \beta = \ln \frac{a}{\beta}$$

Στη συνέχεια υπολογίζουμε το όριο του κλάσματος.

Arr 'Ασκηση 1.9 : Όρια της μορφής $\frac{a}{0}$

1° Βήμα: Παραγοντοποιούμε τον παρονομαστή.

2° Βήμα: Γράφουμε σε ξεχωριστό κλάσμα τον παράγοντα που μηδενίζεται.

3° Βήμα: Αν αυτός ο παράγοντας έχει σταθερό πρόσημο τότε προχωράμε στον υπολογισμό. Αν όχι υπολογίζουμε πλευρικά όρια.

Δ 'Ασκηση 1.10 : 'Ορια με τριγωνομετρικές συναρτήσεις ημf(x), συν f(x) - Μηδενική επί φραγμένη

Αν το όριο περιέχει σύνθετες τριγωνομετρικές συναρτήσεις με γωνία f(x) και $\lim_{x\to x_0} f(x)=\pm\infty$ τότε

1° Βήμα: Γράφουμε τη συνάρτηση μέσα στο όριο ως γινόμενο συναρτήσεων.

2° Βήμα: Κλείνουμε τη συνάρτηση του ορίου σε απόλυτη τιμή και σχηματίζουμε διπλή ανισότητα ώστε να εφαρμοστεί κριτήριο παρεμβολής.

Δ Άσκηση 1.11 : Γνωστό όριο που περιέχει την f(x) - Βοηθητική συνάρτηση

 ${\it I}^{\it o}$ ${\it Bήμα}$: Θέτουμε g(x) τη συνάρτηση του ορίου και λύνουμε ως προς f(x).

 2^{o} Βήμα: Υπολογίζουμε το όριο της f στο x_0 .

🔼 ΄Ασκηση 1.12 : Κριτήριο παρεμβολής

Το κριτήριο παρεμβολής για τον υπολογισμό ορίων εφαρμόζεται σε ανισότητες της μορφής

$$g(x) < f(x) < h(x) \ \ \dot{\eta} \ |f(x)| < g(x) \Rightarrow -g(x) < f(x) < g(x)$$

2ο Κεφάλαιο Διαφορικός λογισμός

2.1 Εφαπτομένη

🔼 ΄Ασκηση 2.1 : Εύρεση εφαπτομένης με γνωστό σημείο επαφής

 I^{o} Bήμα: Πεδίο ορισμού, παράγωγος f' και θέτουμε όπου $x=x_{0}$ ώστε να βρεθούν οι αριθμοί x_{0} , $f(x_{0})$ και $f'(x_{0})$.

2° Βήμα: Γράφουμε την εξίσωση της ευθείας

$$y - f(x_0) = f'(x_0)(x - x_0)$$

και αντικαθιστώντας λύνουμε ως προς y.

΄Ασκηση 2.2 : Εύρεση εφαπτομένης με γνωστή κλίση λ

1 Βήμα: Πεδίο ορισμού και f'.

 2^{o} Βήμα: Θεωρούμε σημείο επαφής $M(x_{0}, f(x_{0}))$ και θέτουμε το σ.δ. της εφαπτομένης να ισούται με τη δοσμένη κλίση λ .

$$f(x_0) = \lambda$$

Αν δεν μας δίνεται ο συντελεστής λ της εφαπτομένης ε τότε τον βρίσκουμε έχοντας τις εξής περιπτώσεις.

Συνθήκη	Εξίσωση
Ευθείες παράλληλες $\varepsilon \parallel \zeta$	$\lambda_{\varepsilon} = \lambda_{\zeta} \Rightarrow f'(x_0) = \lambda$
Ευθείες κάθετες $\varepsilon \perp \zeta$	$\lambda_{\varepsilon} \cdot \lambda_{\zeta} = -1 \Rightarrow \ldots \Rightarrow f'(x_0) = \lambda$
Οριζόντια ευθεία $\varepsilon \parallel x'x$	$\lambda_{\varepsilon} = 0 \Rightarrow f'(x_0) = 0$
Η ε σχηματίζει γωνία ω	$\lambda_{\varepsilon} = \varepsilon \varphi \omega \Rightarrow f'(x_0) = \varepsilon \varphi \omega.$

 3^{o} Βήμα: Λύνουμε την εξίσωση, βρίσκουμε το x_{0} και στη συνέχεια το $f(x_{0})$.

 4^{o} Βήμα: Εξίσωση ευθείας $y - f(x_0) = f'(x_0)(x - x_0)$.

Δ Άσκηση 2.3 : Εφαπτομένη που διέρχεται από εξωτερικό σημείο $P(a, \beta)$

 I^{o} Bήμα: Πεδίο ορισμού και f'.

 2^{o} Βήμα: Θεωρούμε σημείο επαφής $M(x_0, f(x_0))$ και γράφουμε τον τύπο της ευθείας.

 3^o Βήμα : Αντικαθιστούμε $f(x_0)$ και $f'(x_0)$ στην εξίσωση.

 $\mathbf{4}^{o}$ \mathbf{B} ήμα: Αφού $P \in \varepsilon$ τότε θέτουμε x = a και $y = \beta$ και λύνουμε την εξίσωση ως προς x_0 .

 5^{o} Βήμα: Για κάθε x_{0} υπολογίζουμε $f(x_{0})$ και $f'(x_{0})$ και βρίσκουμε την ευθεία.

ightharpoonup ΄Ασκηση 2.4 : Ευθεία εφάπτεται στη C_f στο $M(x_0f(x_0))$

Η ευθεία
$$y = ax + \beta$$
 εφάπτεται στη $C_f \Leftrightarrow \begin{cases} f(x_0) = ax_0 + \beta \\ f'(x_0) = a \end{cases}$

ightharpoonup Άσκηση 2.5 : Κοινή εφαπτομένη C_f , C_g σε κοινό σημείο $M(x_0,f(x_0))$

Οι
$$C_f$$
 και C_g έχουν κοινή εφαπτομένη στο $M\Leftrightarrow \begin{cases} f(x_0)=g(x_0)\\ f'(x_0)=g'(x_0) \end{cases}$

2.2 Μονοτονία - Ακρότατα

🛮 ΄Ασκηση 2.6 : Εύρεση μονοτονίας

- I^{o} Bήμα: Πεδίο ορισμού της f και έλεγχος συνέχειας
- 2^{o} **Βήμα**: Παράγωγος f'.
- 3^{o} Βήμα: Υπολογίζουμε τις ρίζες και τα πρόσημα της f' με έναν από τους παρακάτω τρόπους:
 - Λύνοντας την εξίσωση f(x) = 0 και τις ανισώσεις f(x) > 0 και f(x) < 0.
 - Με επιλογή τιμής σε κάθε διάστημα που χωρίζουν οι ρίζες το πεδίο ορισμού. Οι ρίζες βρίσκονται και εδώ λύνοντας την εξίσωση f(x) = 0.
 - Παραγωγίζοντας δεύτερη ή ακόμα και τρίτη φορά. Με τη μονοτονία κάθε παραγώγου βρίσκουμε τα πρόσημά της ώσπου να φτάσουμε στη μονοτονία της f. Οι ρίζες βρίσκονται με δοκιμές.
- 4^{o} Bήμα: Σχεδιάζουμε πίνακα με τα πρόσημα της παραγώγου και τη μονοτονία της f. (Συμπληρώνουμε αν χρειαστεί και επιπλέον γραμμές για τις ανώτερης τάξης παραγώγους που βρήκαμε.)

5^{o} $B\eta\mu\alpha$:

Για εύρεση μονοτονίας	Για εύρεση ακροτάτων	Για εύρεση συνόλου τιμών
Αναφέρουμε το είδος της μονοτονίας σε κάθε διάστημα ξεχωριστά.	Ελέγχουμε για ακρότατα στα κρίσιμα σημεία και στα κλειστά άκρα του πεδίου ορισμού	Βρίσκουμε τις εικόνες των δια- στημάτων μονοτονίας και τις ε- νώνουμε

6° Βήμα : Για την εύρεση του πλήθους ριζών της συνάρτησης, ελέγχουμε αν το 0 ανήκει στην εικόνα κάθε διαστήματος. Αναλυτικά

$$0 \in f(\Delta_1) \Rightarrow Υπάρχει x_0 : f(x_0) = 0$$

Η ρίζα αυτή είναι μοναδική μέσα στο κάθε διάστημα γιατί η f είναι γνησίως μονότονη.

2.3 Κυρτότητα και σημεία καμπής

🔼 'Ασκηση 2.7 : Εύρεση κυρτότητας - σημείων καμπής

- 1º Βήμα: Πεδίο ορισμού και έλεγχος συνέχειας.
- 2° Βήμα: Υπολογίζουμε την δεύτερη παράγωγο f".
- 3^{o} Bήμα: Βρίσκουμε ρίζες και πρόσημα της f'' με τους τρόπους που περιγράψαμε στη μονοτονία.
- 4^{o} Bήμα: Σχηματίζουμε πίνακα με τα πρόσημα της <math>f'' και την κυρτότητα της f.
- 5° Βήμα:

Για εύρεση κυρτότητας	Για εύρεση σημείων καμπής
Αναφέρουμε το είδος της κυρτότητας σε κάθε διάστημα ξεχωριστά.	Ελέγχουμε για σημεία καμπής στα σημεία που αλλάζει η κυρτότητα αρκεί η f να είναι μια φορά παραγωγίσιμη στα σημεία αυτά.

Παράδειγμα 1 :

🔼 ΄Ασκηση 2.8 : Κυρτότητα και εφαπτομένες - Απόδειξη ανισότητας

- 1º Βήμα: Μελετάμε τη συνάρτηση ως προς την κυρτότητα.
- 2^{o} Bήμα: Βρίσκουμε την εξίσωση της εφαπτομένης στο σημείο που ζητάει ή σε κάποιο σημαντικό σημείο. Αυτή θα έχει τη μορφή $y=ax+\beta$
- 3° Βήμα: Χρησιμοποιούμε μια από τις παρακάτω σχέσεις

$$f \circlearrowleft \Delta \Rightarrow f(x) \ge ax + \beta$$
, $f \circlearrowleft \Delta \Rightarrow f(x) \le ax + \beta$

και με πράξεις φέρνουμε την ανισότητα στη μορφή που τη ζητάει η άσκηση.

2.4 Ασύμπτωτες

🔼 Άσκηση 2.9 : Κατακόρυφες ασύμπτωτες

- I^{o} Bήμα: Πεδίο ορισμού της f.
- 2^{o} Bήμα: Υπολογισμός κάποιου πλευρικού ορίου στα σημεία x_{0} που είναι ανοικτά άκρα του πεδίου ορισμού της f ή στα σημεία που δεν είναι συνεχής η συνάρτηση.
- ${\it 3^o}$ ${\it Bήμα}$: Αν κάποιο πλευρικό όριο ισούται με $\pm\infty$ τότε η ευθεία $x=x_0$ είναι κατακόρυφη ασύμπτωτη της C_f .

🔼 Άσκηση 2.10 : Οριζόντια ασύμπτωτη

 I^{o} Βήμα: Όριο της f στο $+\infty$ ή $-\infty$ εφόσον ορίζεται η f σε διάστημα που περιέχει $\pm\infty$.

 $\mathbf{2}^o$ $\mathbf{\mathit{B}}$ ήμα : Αν $\lim_{x \to \pm \infty} f(x) = l$ τότε η ευθεία y = l είναι οριζόντια ασύμπτωτη της C_f στο $\pm \infty$.

🔼 Άσκηση 2.11 : Πλάγια ασύμπτωτη

 I^{o} Bήμα: Εφόσον ορίζεται η f σε διάστημα που περιέχει $\pm \infty$ υπολογίζουμε τα παρακάτω όρια.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lambda , \lim_{x \to +\infty} (f(x) - \lambda x) = \beta$$

και αντίστοιχα στο $-\infty$.

 2^{o} Bήμα: Αν $\lambda \in \mathbb{R}$ και $\beta \in \mathbb{R}$ τότε η ευθεία $y = \lambda x + \beta$ είναι πλάγια ασύμπτωτη της C_f στο $\pm \infty$.

🗾 Άσκηση 2.12 : Ασύμπτωτες γενικά

1º Βήμα: Αναζητούμε για κατακόρυφες ασύμπτωτες στα σημεία που αναφέραμε.

2° Βήμα : Ανάμεσα σε πλάγιες και οριζόντιες ασύμπτωτες, ξεκινάμε με τις πλάγιες και από το συντελεστή διεύθυνσης λ θα εξαρτηθεί αν η ευθεία είναι πλάγια ή οριζόντια. Ακολουθούμε το παρακάτω διάγραμμα:

2.5 Εύρεση παραμέτρων

Η γενική μέθοδος για την εύρεση μιας παραμέτρου είναι να κατασκευάσουμε μια εξίσωση ή ανίσωση που να την περιέχει, ώστε λύνοντάς την να την προσδιορίσουμε. Κάποια συνθήκη της υπόθεσης είναι αυτή που θα μας οδηγήσει σ΄ αυτή την εξίσωση-ανίσωση.

Συνθήκη	Εξίσωση - Ανίσωση
Το σημείο $A(a,\beta)$ ανήκει στη C_f	$f(a) = \beta$
Γνωστό όριο που περιέχει παραμέτρους $a,\beta\dots$	Βοηθητική συνάρτηση
Η f είναι συνεχής σε σημείο $x_0 \in D_f$	$\lim_{x \to x_0} f(x) = f(x_0)$
Η f είναι παραγωγίσιμη σε σημείο $x_0 \in D_f$	$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$
Η ευθεία $y=ax+\beta$ εφάπτεται στη C_f	$\begin{cases} f(x_0) = ax_0 + \beta \\ f'(x_0) = a \end{cases}$
Οι C_f , C_g έχουν κοινή εφαπτομένη σε κοινό σημείο $M(x_0, y_0)$	$\begin{cases} f(x_0) = g(x_0) \\ f'(x_0) = g'(x_0) \end{cases}$
Η f είναι γνησίως αύξουσα (ή φθίνουσα) στο Δ	$f'(x) \ge 0 \ (\acute{\eta} \ f'(x) \le 0)$
Η f παρουσιάζει ακρότατο στο εσωτερικό σημείο $x_0 \in \Delta$ και είναι παραγωγίσιμη σ΄ αυτό. (Αν επιπλέον το ακρότατο είναι β)	$f'(x_0) = 0$ (τότε $f(x_0) = \beta$) - Μόλις βρεθούν οι παράμετροι χρειάζεται επαλήθευση.
Η f είναι κυρτή (ή κοίλη) στο Δ	$f''(x) \ge 0 \ (\acute{\eta} \ f''(x) \le 0)$
Η C_f έχει σημείο καμπής $M(x_0, y_0)$ στο εσωτερικό σημείο $x_0 \in \Delta$ στο οποίο είναι δύο φορές παραγωγίσιμη και ορίζεται εφαπτομένη στο σημείο αυτό.	$f''(x_0) = 0$ και $f(x_0) = y_0$ - Μόλις βρεθούν οι παράμετροι χρειάζεται επαλήθευση.
Η C_f έχει κατακόρυφη ασύμπτωτη την ευθεία $x=x_0$	$x_0 =$ ανοιχτό άκρο διαστήματος ή σημείο ασυνέχειας.
Η C_f έχει οριζόντια ασύμπτωτη την ευθεία $y=l$ στο $\pm\infty$	$\lim_{x \to \pm \infty} f(x) = l$
Η C_f έχει πλάγια ασύμπτωτη την ευθεία $y=\lambda x+eta$ στο $\pm\infty$	$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lambda \text{ kai } \lim_{x \to \pm \infty} (f(x) - \lambda x) = \beta$

2.6 Λύση εξισώσεων - ανισώσεων + Ύπαρξη λύσης

🔼 'Ασκηση 2.13 : 'Υπαρξη ρίζας εξίσωσης

Μπορούμε να δείξουμε ότι μια εξίσωση της μορφής f(x) = a έχει μια τουλάχιστον ρίζα με έναν από τους παρακάτω τρόπους:

1^{ος} Τρόπος: Με θεώρημα Bolzano

2^{ος} Τρόπος: Με θεώρημα ενδιάμεσων τιμών.

 $3^{o\varsigma}$ Τρόπος: Με σύνολο τιμών: Αν $a \in f(D_f)$ τότε υπάρχει $x_0 \in D_f$ ώστε $f(x_0) = a$.

 $\mathbf{4}^{o\varsigma}$ $\mathbf{7}$ \mathbf{p} δ πος : Με θεώρημα Rolle : Βρίσκουμε την αρχική \mathbf{F} της \mathbf{f} οπότε η εξίσωση παίρνει τη μορφή $\mathbf{F}'(\mathbf{x}) = \mathbf{a}$.

5ος Τρόπος: Με Θεώρημα Μέσης Τιμής.

6^{ος} **Τρόπος** : Αλγεβρικά

7^{ος} Τρόπος: Βρίσκουμε μια προφανή ρίζα.

8^{ος} Τρόπος: Με απαγωγή σε άτοπο. Υποθέτουμε δηλαδή ότι η εξίσωση δεν έχει ρίζες.

🔼 'Ασκηση 2.14 : Εξίσωση που έχει το πολύ μια ρίζα

Για να δείξουμε ότι μια εξίσωση έχει το πολύ μια ρίζα έχουμε τους τρόπους

 $I^{o\varsigma}$ Tρόπος : Αποδεικνύουμε ότι η συνάρτηση είναι γνησίως μονότονη άρα και 1-1.

 $2^{o\varsigma}$ Τρόπος: Υποθέτουμε ότι υπάρχουν τουλάχιστον 2 ρίζες x_1, x_2 και εφαρμόζοντας θεώρημα Rolle στο διάστημα $[x_1, x_2]$ καταλήγουμε σε άτοπο.

'Ασκηση 2.15 : Μοναδική ρίζα εξίσωσης

Χρησιμοποιούμε έναν τρόπο για να δείξουμε ότι υπάρχει τουλάχιστον μια ρίζα και έναν τρόπος για να δείξουμε ότι υπάρχει το πολύ μια ρίζα. Άρα η ρίζα αυτή θα είναι μοναδική.

🔼 Άσκηση 2.16 : Επίλυση εξίσωσης

Για την επίλυση μιας εξίσωσης ακολουθούμε έναν από τους παρακάτω τρόπους:

$1^{o \zeta}$ Περίπτωση: Συνάρτηση 1-1

Φέρνουμε με πράξεις την εξίσωση στη μορφή f(x) = f(a) και δείχνουμε ότι η συνάρτηση f είναι 1-1. Συνεπώς θα ισχύει

$$f(x) = f(a) \stackrel{f:1-1}{\Longleftrightarrow} x = a$$

Η μέθοδος αυτή ακολουθείται και για εξισώσεις της μορφής f(g(x)) = f(h(x)).

20ς Περίπτωση: Με ολικό ακρότατο

Φέρνουμε με πράξεις την εξίσωση στη μορφή f(x) = a και αποδεικνύουμε ότι ο αριθμός a είναι ολικό ακρότατο της f. Οι θέσεις των ακρότατων είναι οι λύσεις της εξίσωσης.

Πηγή: Μαθηματικά Γ΄ Λυκείου, Η επανάληψη. Ανδρέας Πάτσης - Παύλος Τρύφων, Εκδόσεις Ελληνοεκδοτική