Natural Language Processing

Paper Code: CS-821/6

Dr. Samit Biswas, Assistant Professor

Department of Computer Sc. and Technology

Indian Institute of Engineering Science and Technology, Shibpur

Email: samit@cs.iiests.ac.in

Plan for Today

- Some Grammar Rules for English
- Features and Unification

Aspects of Phrase Structure of English

- Sentences with *declarative* Structure:
 - o a subject noun phrase followed by a verb phrase
 - I prefer a morning flight.
 - I want a flight from Ontario to Chicago.
 - The flight should be eleven a.m. tomorrow.
 - The return flight should leave at around seven p.m.
- Sentences with *imperative* structure
 - o often begin with a verb phrase and have no subject
 - Show the lowest fare.
 - Give me Sunday's flights arriving in Las Vegas from New York City.
 - List all flights between five and seven p.m.

 $S \rightarrow VP$

- Sentences with **yes-no question** structure
 - often (though not always) used to ask questions; they begin with an auxiliary verb, followed by a subject NP, followed by a VP.
 - Do any of these flights have stops?
 - Does American's flight eighteen twenty five serve dinner?
 - Can you give me the same information for United?

 $S \rightarrow Aux NP VP$

- various wh-structures
 - o wh-word (who, whose, when, where, what, which, how, why)
 - What airlines fly from Burbank to Denver?
 - Which flights depart Burbank after noon and arrive in Denver by six p.m?
 - Whose flights serve breakfast?

S → Wh-NP VP

Features

Constraints & Compactness

- Constraints in grammar
 - \circ S \rightarrow NP VP
 - o But *They runs, *He run, *He disappeared the flight
 - o Violate agreement (number), sub categorization
- Enforcing constraints
 - o Add categories, rules

Why features?

- Need compact, general constraints
 - $\circ \quad S \to NP \ VP$

Only if NP and VP agree

- How can we describe agreement, subcat?
 - o Decompose into elementary features that must be consistent
 - E.g. Agreement
 - Number, person, gender, etc

Feature Structure

Feature Structures

- Fundamentally, Attribute-Value pairs
 - Values may be symbols or feature structures
 - Feature path: list of features in structure to value
 - "Reentrant feature structures": share same struct
- Represented as
 - o Attribute-value matrix (AVM), or
 - Directed acyclic graph (DAG)

- Feature structures are sets of feature-value pairs where:
 - o The features are atomic symbols and
 - o The values are either atomic symbols or feature structures

Example of Feature Structures, AVM:

- Number Feature [Number sg]
- Number-person features

$$\begin{bmatrix} Number & sg \\ Person & 3rd \end{bmatrix}$$

Number-person-category features

$$egin{bmatrix} CAT & NP \ Number & sg \ Person & 3rd \ \end{bmatrix}$$

Bundles of Features

- Feature Values can be feature structures themselves.
- This is useful when certain features commonly co-occur, as number and person.

$$egin{bmatrix} CAT & NP & \ AGREEMENT & egin{bmatrix} NUMBER & sg \ PERSON & 3rd \end{bmatrix} \end{bmatrix}$$

Feature Structure as DAG Feature Structure as DAG [CAT NP AGREEMENT [NUMBER sg PERSON 3rd]] NUMBER sg PERSON 3rd]

Reentrant Structure

- We'll allow multiple features in a feature structure to share the same values. By this we mean that they share the same structure, not just that they have the same value.
- Numerical indices indicate the shared value.

Reentrant Structure

Reentrant Structure

- It will also be useful to talk about paths through feature structures. As in the paths:
 - O <HEAD AGREEMENT NUMBER >
 - O < HEAD SUBJECT AGREEMENT NUMBER >

Unification

Unification

- So what do we want to do with these things...
 - o check the compatibility of two structures
 - o merge the information in two structures
- We can do both with an operation called Unification.
 - Merging two feature structures produces a new feature structure that is more specific (has more information) than, or is identical to, each of the input feature structures.

Unification Operation

 We say two feature structures can be unified if the component features that make them up are compatible.

- Unification is a binary operation (represented as ∪)
- Unification returns the union of all feature/value pairs.

Unification Operation

$$[NUMBER \ sg] \cup [NUMBER \ []] = [NUMBER \ sg]$$

$$egin{bmatrix} [\mathit{NUMBER} & \mathit{sg} \end{bmatrix} \cup egin{bmatrix} \mathit{PERSON} & \mathit{3rd} \end{bmatrix} = egin{bmatrix} \mathit{NUMBER} & \mathit{sg} \\ \mathit{PERSON} & \mathit{3rd} \end{bmatrix}$$

Unification Operation

Examples of Unification for more complex reentrant structure

• Equality check complicated by the presence of a reentrant structure in the first argument.

AGREEMENT SUBJECT		sg 3rd] □	SUBJECT	AGREEMENT	PERSON NUMBER	$\begin{bmatrix} 3rd \\ sg \end{bmatrix} \end{bmatrix} =$
	AGREE SUBJ		1 NUMBE PERSO AGREEMEN	N 3rd		

. Copying capabilities of unification

$$\begin{bmatrix} AGREEMENT & 1 & \\ SUBJECT & [AGREEMENT & 1] \end{bmatrix} \cup \\ \begin{bmatrix} SUBJECT & [AGREEMENT & 1] \\ PERSON & 3rd \\ sg \end{bmatrix} \end{bmatrix} = \\ \begin{bmatrix} AGREEMENT & 1 \\ SUBJECT & [AGREEMENT & 1] \\ PERSON & 3rd \\ NUMBER & sg \end{bmatrix} \end{bmatrix}$$

Features, Unification and Grammar

How do we incorporate feature structures into our grammars?

- Assume that constituents are objects which have feature-structures associated with them.
- Associate sets of unification constraints with grammar rules.
- Constraints must be satisfied for rule to be satisfied.
- For a grammar rule: $\beta \rightarrow \beta_1 \dots \beta_n$ $< \beta_i$ feature path > = Atomic value $< \beta_i$ feature path $> = < \beta_j$ feature path >

- To enforce subject/verb number agreement
 - \circ S \rightarrow NP VP

< NP NUMBER >= < VP NUMBER >

if the number of the NP is equal to the number of the VP

- Agreement
 - This flight serves breakfast.

 $S \rightarrow NP VP$

< NP AGREEMENT > = < VP AGREEMENT >

• Does this flight serve breakfast?

 $S \rightarrow Aux NP VP$

< Aux AGREEMENT > = < NP AGREEMENT >

- Det/Nom agreement can be handled similarly
 - This flight, Those flights

NP → Det Nominal

< Det AGREEMENT > = < Nominal AGREEMENT >

< NP AGREEMENT > = < Nominal AGREEMENT >

And so on for other constituents and rules.

Head Features

- Features of most grammatical categories are copied from head child to parent (e.g. from Verb to VP, Nominal to NP, N to Nominal, . . .)
- These normally written as head features, e.g.

VP → Verb NP

< VP HEAD > = < Verb Head >

NP → Det Nominal

< NP HEAD > = < Nominal Head >

O < Det HEAD AGREEMENT> = < Nominal Head AGREEMENT>

Nominal → Noun

< Nominal HEAD > = < Noun Head >

- Lexical entries that introduce this feature now reflect this HEAD notion.
 - \circ Noun \rightarrow flights
 - < Noun HEAD AGREEMENT NUMBER> = pl
 - Verb → serves
 - < Verb HEAD AGREEMENT NUMBER> = sg
 - < Verb HEAD AGREEMENT PERSON> = 3rd

How can we parse with feature structures?

- Unification operator: takes 2 features structures and returns either a merged feature structure or fail
 - Input structures represented as DAGs
 - Features are labels on edges
 - Values are atomic symbols or DAGs
 - Unification algorithm goes through features in one input
 - DAG1 trying to find corresponding features in DAG2 if all match, success, else fail

Summing Up

- Feature structures encoded rich information about components of grammar rules.
- Unification provides a mechanism for merging structures and for comparing them.
- Unification parsing:
 - Merge or fail.

References

References

- Daniel Jurafsky & James H. Martin, "Speech and Language Processing", Prentice Hall
- Feature Structures & Unification, http://www.nltk.org/howto/featstruct.html
- Diana Maynard, Kalina Bontcheva, Isabelle Augenstein, "Natural Language Processing for the Semantic Web", A Publication in the Morgan & Claypool Publishers series.
- Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", By O'Reilly.
- Christopher Manning and Hinrich Schtze, "Foundations of Statistical Natural Language Processing", The MIT Press.

Thank You

Contacts:

Dr. Samit Biswas Department of CST, IIEST, Shibpur

<u>Samit(@CS.IIeStS.aC.IN</u> https://www.iiests.ac.in/IIFST/Faculty/cs-