		$F_X(x)$	$F_X^{-1}(u)$	E[X]	Var[X]	$M_X(t)$
Loi uniforme continue $X \sim U(a, b)$	Lorsque $f_X(x) = \frac{1}{b-a} x \mathbb{1}_{\{a < x < b\}}$	$\frac{x-a}{b-a}x1_{\{a < x < b\}} + 1_{\{b \le x\}}$	u(b-a)+a	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
Loi bêta $X \sim B$ ê $ta(\alpha, \beta)$	Lorsque $f_X(x) = \frac{x^{(\alpha-1)}(1-x)^{\beta-1}}{B(\alpha,\beta)} x 1_{\{0 < x < 1\}}$	$\frac{B(x;\alpha,\beta)}{B(\alpha,\beta)}x1_{\{0< x< 1\}}+1_{\{1\leq x\}}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\frac{t^k}{k!} x \prod_{j=0}^{k-1} \left(\frac{\alpha+j}{\alpha+\beta+j} \right) \right)$
Loi normale $X \sim N(\mu, \alpha)$ *Savoir que $\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$	Lorsque $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\phi\left(\frac{x-\mu}{\sigma}\right)$	$\mu + \sigma \phi^{-1}(u)$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$
Loi log-normale $X \sim LN(\mu, \sigma)$	Soit $Y \sim N(\mu, \sigma)$, alors la v.a. $X = e^Y$ obéit à une loi log-normale $(X \sim LN(\mu, \sigma))$. $f_X(x) = \begin{cases} 0, x \leq 0 \\ \frac{1}{x\sigma\sqrt{2\pi}}exp\left(-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right), x > 0 \end{cases}$	$\begin{cases} 0, & x \le 0 \\ \phi\left(\frac{\ln(x) - \mu}{\sigma}\right), x > 0 \end{cases}$	$e^{\mu+\sigma\phi^{-1}(u)}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$	Forme non analytique
Loi gamma $X \sim Gamma(\alpha, \lambda)$	Lorsque $f_X(x) = \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} x 1_{\{x>0\}}$	$\begin{cases} 0, x \leq 0 \\ \frac{\Gamma(\lambda x; \ \alpha)}{\Gamma(\alpha)}, x > 0 \end{cases}$ *Peut être réécrit sous forme analytique		$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}$
Loi exponentielle $X \sim Exp(\lambda)$ *Cas spécifique de la loi gamma où $(\alpha,\lambda) = (1,\lambda)$	Lorsque $f_X(x) = \lambda e^{-\lambda x} x 1_{\{x>0\}}$	$(1-e^{-\lambda x})x1_{\{x>0\}}$	$-\frac{\ln(1-u)}{\lambda},$ $0 < u \le 1$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
Loi du khi carré $X \sim \chi^2(n)$ *Cas spécifique de la loi gamma où $(\alpha, \lambda) = \left(\frac{n}{2}, \frac{1}{2}\right)$	Lorsque $f_X(x) = \frac{\left(\frac{1}{2}\right)^{\frac{n}{2}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{\Gamma\left(\frac{n}{2}\right)} x 1_{\{x > 0\}}$	$\frac{\Gamma\left(\frac{x}{2};\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$		n	2n	$\left(\frac{1}{1-2t}\right)^{\frac{n}{2}}$

Forme analytique de $F_X(x)$ de la loi gamma. Si $\alpha \in N^$, alors

$$F_X(x) = \left(1 - \sum_{k=0}^{\alpha - 1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}\right) x 1_{\{x > 0\}}$$