

Legado académico y cultural de los santandereanos

PLCEXPAND

Escuela de Ingenierías

Eléctrica Electrónica y de Telecomunicaciones

AUTORES

Andrés Fuquen

Trabajo de Grado para optar al título de Ingeniero Electrónico

ORDEN DEL DÍA

- > INTRODUCCÓN
- > OBJETIVO GENERAL
- > OBJETIVOS ESPECÍFICOS
- > METOLOGÍA
- > EJECUCIÓN Y RESULTADOS
 - ✓ DISEÑO DE LA TARJETA ELECTÓNICA
 - ✓ SELECCIÓN DE COMPONENTES
 - ✓ IMPLEMENTACIÓN Y VALIDACIÓN
- > CARACTERÍSTICAS DEL COMPONENTE
- > PRESUPUESTO
- > CONCLUSIONES
- > REFERENCIAS BIBLIOGRÁFICAS

INTRODUCCIÓN

OBJETIVO GENERAL

Diseñar e Implementar un prototipo para la expansión de entradas digitales y analógicas para un Controlador Lógico Programable (PLC) con comunicación Modbus.

OBJETIVOS ESPECÍFICOS

- Diseñar un circuito electrónico basado en microcontrolador que permita manejar entradas y salidas analógicas y digitales.
- Seleccionar los componentes electrónicos adecuados para la implementación de la tarjeta electrónica, basado en criterios económicos, de disponibilidad y compatibilidad.
- Implementar, mediante MODBUS, la comunicación entre una tarjeta electrónica y un Controlador Lógico Programable (PLC) mediante el uso del software TIA Portal.
- Validar la lectura digital/analógica con el Controlador Lógico Programable (PLC) del módulo expansor mediante comunicación Modbus.

METODOLOGÍA

Diseño conceptual

La tarjeta electrónica, con microcontrolador ESP32, se conecta a dispositivos externos y al PLC mediante Modbus TCP/IP. Se simula previamente con EasyEDA y Proteus para garantizar su funcionamiento antes de la implementación.

Selección de componentes

Estudio de elementos electrónicos para la tarjeta basado en criterios económicos, de disponibilidad y compatibilidad, utilizando el sitio web JLCPCB.

Diseño de circuito y tarjeta electrónica con microcontrolador ESP32, utilizando EasyEDA. Se simula con Proteus, facilitado por la E3T de la UIS, para estimar su funcionamiento real.

Implementación y pruebas de la tarjeta

Fabricación y conexión de componentes, la programación del PLC y la tarjeta electrónica con ESP32, también pruebas y validación de prototipo. Se utiliza JLCPCB para la fabricación y las pruebas se realizan en el Laboratorio de Automatización de la UIS.

EJECUCIÓN Y RESULTADOS

SELECCIÓN DE COMPONENTES

FASE 2

La selección de componentes considera criterios económicos y de disponibilidad.

Name	Designator	Footprint	Qty	Manufacturer	Price
220uF	Cl	CAP-SMD_BD6.3-L6.6-W6.6-FD	1	KNSCHA	0.03
470uF	C2	CAP-TH_BD10.0-P5.00-D1.0-FD	1	CX	0.073
10uF	C3, C4, C5, C8, C11, C12	C0603	6	SAMSUNG	0.005
100nF	C6, C7, C9, C10	C0603	4	SAMSUNG	0.003
SS34	D1, D4, D5, D6, D7	SMA_L4.2-W2.7-LS5.0-RD	5	YONGYUTAI	0.031
1N4004	D2, D3	SMA_L4.4-W2.8-LS5.4-RD	2	TWGMC	0.009
47uH	L1	IND-SMD_L12.0-W12.0_CDRH127XX	1	PROD	0.223
ORH-B36G	L3.3V, L5V	LED0603-RD	2	Orient	0.006
ORH-G36G	LED3, LED4	LED0603-R-RD	2	Orient	0.01
TLMS1000	LED5, LED6	LED0603-R-RD	2	VISHAY	0.106
MMBT2222A	Q1, Q2	SOT-23-3_L2.9-W1.3-P1.90-LS2.4-BR	2	UMW	0.018
1kΩ	R1, R2, R7, R8, R9, R10, R25, R32	R0805	8	UNI-ROYAL	0.002
2kΩ	R3, R3R, R5, R5R, R26, R31	R0805	6	UNI-ROYAL	0.002
10kΩ	R4, R6, R12, R13, R14, R15, R16, R19, R20, R21, R22, R23	R0805	12	UNI-ROYAL	0.001
100	R11, R24	R_AXIAL-0.4	2	CCO	0.01
15K	R17, R18	R0805	2	UNI-ROYAL	0.002
250Ω	R27, R28, R29, R30	RES-TH_BD2.4-L6.3-P10.30-D0.6	4	台湾双羽	0.009
SRD-05VDC	RLY1, RLY2	RELAY-TH_SRD-XXVDC-XL-C	2	松乐	0.333
LM2596SX-5.0	U2	TO-263-5_L10.2-W8.9-P1.70-TL	1	TI	1.551
AMS1117-3.3	U3	SOT-223-4_L6.5-W3.5-P2.30-LS7.0-BR	1	UMW	0.035
PC817B	U4, U5, U6, U7	OPTO-SMD-4_L4.6-W6.5-P2.54-LS10.3-TL	4	GOODWORK	0.048
TP5552-SR	U8, U9	SO-8_L4.9-W3.9-P1.27-LS5.9-BL	2	3PEAK	2.079
LM358AD	U10, U11	SOP-8_L4.9-W3.9-P1.27-LS6.0-BL	2	ST	0.379

Enrutamiento de PCB y visualización digital

FASE 3

Fabricación y soldadura de componentes

Conexión en red local TCP/IP

Ajuste de dirección IP del PLC en TIA Portal

FASE 3

Configuración de IP de ESP32 en IDE Arduino

J

```
#ifdef ESP8266
 #include <ESP8266WiFi.h>
#else //ESP32
 #include <WiFi.h>
#endif
#include "ModbusIP ESP8266.h"
void setup() {
    pinMode(18,INPUT);
    pinMode(19,INPUT);
    Serial.begin(115200);
    //Conectar con SSID de red local
    WiFi.begin("PLC AP");
    while (WiFi.status() != WL CONNECTED) {
        delay(500);
        Serial.print(".");
    Serial.println("");
    Serial.println("WiFi connected");
    Serial.println("IP address: ");
    Serial.println(WiFi.localIP()); //Mostrar IP asignada
```


Ajuste de dirección IP del PLC en TIA Portal

FASE 3

Visualización de red local

mb.client(); //Inicio en modo cliente de ESM

FASE 3

Desarrollo de código de ESP32 como cliente

ESP32Cliente.ino

#ifdef ESP8266

#include <ESP8266WiFi.h> uint16 t res0 = 0;#else $uint16_t res1 = 0;$ #include <WiFi.h> uint16 t res2 = 0;#endif $uint16_t res3 = 0;$ #include "ModbusIP ESP8266.h" uint8 t show = LOOP COUNT; const int REG0 = 0; const int REG1 = 1; void loop() { const int REG2 = 2; if (mb.isConnected(remote)) { //Chequear const int REG3 = 3; mb.readHreg(remote, REG0, &res0); //Leer IPAddress remote(192, 168, 1, 10); mb.readHreg(remote, REG1, &res1); //Leer mb.readHreg(remote, REG2, &res2); //Leer const int LOOP COUNT = 2; mb.readHreg(remote, REG3, &res3); //Leer ModbusIP mb; //Objeto MODBUS } else { mb.connect(remote); void setup() { mb.task(); pinMode(2,OUTPUT); delay(100); pinMode(4,0UTPUT); if (!show--) { // Se mues Serial.begin(115200); digitalWrite(4,res0);

WiFi.begin("PLC_AP"); //Este es el 64

digitalWrite(2,res1);
dacWrite(26,res2);

dacWrite(25,res3);

FASE 3

Bloque de sistema

MB SERVER en TIA Portal

Bloque de datos DATA_MB

	DA	TA	_N	/B					
		No	mb	re			Tipo de datos	Offset	Valor de arranq
1	1	•	St	atic					
2	1		•	OL	JT_	HREG	Array[03] o		
3	1				0	JT_HREG[0]	Word		16#0
4	1				0	JT_HREG[1]	Word		16#0
5	1				0	JT_HREG[2]	Word	***	16#0
5	1				0	JT_HREG[3]	Word	***	16#0
7	1		•	TC	P_S	ERVER	TCON_IP_v4		
3	1				In	terfaceId	HW_ANY		64
9	1				ID		CONN_OUC		16#1
10	1				Co	onnectionType	Byte		16#0B
11	1				Ac	tiveEstablished	Bool		false
12	1			-	Re	moteAddress	IP_V4		
13	1				•	ADDR	Array[14] of Byte		
14	1					ADDR[1]	Byte		16#0
15	1					ADDR[2]	Byte		16#0
16	1					ADDR[3]	Byte		16#0
17	1					ADDR[4]	Byte		16#0
18	1				Re	motePort	UInt	***	0
19	1				Lo	calPort	UInt	***	502

FASE 3

Desarrollo de código de ESP32 como servidor


```
void loop() {
void setup() {
                                                 //Llamar a librerias y funciones
   pinMode(18,INPUT);
                                                 mb.task();
   pinMode(19,INPUT);
                                                 //Leer temperatura e incrementar
   Serial.begin(115200);
                                                 if (millis() > ts + 500) {
   WiFi.begin("PLC_AP");
                                                      ts = millis();
   while (WiFi.status() != WL_CONNECTED) {
      delay(500);
                                                      int DIG0 = digitalRead(18);
       Serial.print(".");
                                                      int DIG1 = digitalRead(19);
                                                      int ANGO = analogRead(35); /
                                                      int ANG1 = analogRead(34);
   Serial.println("");
   Serial.println("WiFi connected");
   Serial.println("IP address: ");
                                                      mb.Hreg(HREG0, DIG0); //Escri
   Serial.println(WiFi.localIP()); //Mostra
                                                      mb.Hreg(HREG1, DIG1);
                                                      mb.Hreg(HREG2, ANG0); //Escri
   mb.server();
                                                      mb.Hreg(HREG3, ANG1);
   mb.addHreg(HREG0);//Crear Holding regist 65
   mb.addHreg(HREG1);
   mb.addHreg(HREG2);
                                                 delay(10);
   mb.addHreg(HREG3);
```


Bloque de sistema MB CLIENT en TIA Portal

Bloque de datos DATA_MB

DATA	_N	MB				
No	mb	re		Tipo de datos	Offset	Valor de arrang
	St	atic				
€ .	•	TCP_CL	IENT	TCON_IP_v4]	
€		Inte	rfaceId	HW_ANY		64
1		ID		CONN_OUC	111	16#1
1		Cor	nectionType	Byte	***	16#0B
1		Acti	iveEstablished	Bool	***	1
1		▼ Ren	noteAddress	IP_V4	***	
€			ADDR	Array[14] of Byte		
4		-	ADDR[1]	Byte	***	192
•			ADDR[2]	Byte	***	168
1			ADDR[3]	Byte	***	1
€0		-	ADDR[4]	Byte	***	101
€		Ren	notePort	UInt	***	502
4		Loc	alPort	UInt	***	0
40 •	•	IN_HRE	G	Array[03] of Word	***	
40		IN_I	HREG[0]	Word	***	16#0
•		IN_	HREG[1]	Word	***	16#0
40		IN_	HREG[2]	Word	***	16#0
€		IN_	HREG[3]	Word	***	16#0

FASE 3

Validación de circuito de alimentación

FASE 3

Validación de salidas digitales

•	DIGDATA	Array[01] of Word		
	DIGDATA[0]	Word	16#0	16#0001
-	DIGDATA[1] TCP_CONFIG	Word TCON_IP_v4	16#0	16#0001
	InterfaceId	HW_ANY	64	64
	ID	CONN_OUC	16#1	16#0001
	ConnectionType	Byte	16#0B	16#0B
	ActiveEstablished	Bool	false	FALSE
	▶ RemoteAddress	IP_V4		
	RemotePort	UInt	0	0
	LocalPort	UInt	502	502

FASE 3

Validación de salidas analógicas

Validación de entradas analógicas

FASE 3

Validación de entradas digitales

•	TCP_CL	IENT	TCON_IP_v4		22.0	-		2010g	
	InterfaceId		HW_ANY		22.0	64		I But S	
	ID		CONN_OUC		24.0	16#1		# 37. ()	A CONTRACTOR
	ConnectionType		Byte		26.0	16#0B			
	Acti	veEstablished	Bool		27.0	1			
• •	Ren	noteAddress	IP_V4		28.0		4221 BR69, Y	5. 248118 2m - 815 RT 8th	
	- ,	ADDR	Array[14] of	Byte	28.0		9		
		ADDR[1]	Byte		28.0	192			422.0807U7S.248118
	ADDR[2]		Byte		29.0	168			
		ADDR[3]	Byte		30.0	1			
		ADDR[4]	Byte		31.0	101	The same of		
	Ren	notePort	UInt		32.0	502			
•	Loc	alPort	UInt		34.0	0		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
=	-	IN_HREG		Arra	y[03]	of Word	36.0		
		IN_HREG[0]		Word		36.0	16#0	16#0001	
		IN_HREG	[1]	Word	d		38.0	16#0	16#0000
	- 1	N_HREG		Arra	y[03]	of Word	36.0		
		IN_HREG	[0]	Word	d		36.0	16#0	16#0000
		IN_HREG	[1]	Word	4		38.0	16#0	16#0001

CARACTERÍSTICAS DEL COMPONENTE

Característica	Descripción	Max/Min/Typ
Voltaje de alimentación	12 - 24 [_{VDC}]	Min - Max
Corriente de alimentación	1 [A]	Min
Potencia consumida	10 [W]	Тур
Entradas digitales	2	
Rango de tensión	12 - 24 [V _{DC}]	Min - Max
V_{IH}	10 [V _{DC}]	Min
V_{LH}	1 [V _{DC}]	Max
R_{in}	1000 [Ω]	Тур
Entradas analógicas	2	Max
Corriente	0 – 20 m[A]	Max
Tensión	0 - 2 [V _{DC}]	Max
R_{in}	100 [Ω]	Тур
Salidas digitales (Relé)	2	
DC	28 [V _{DC}] / 10 [A]	Max
AC	250 [V _{AC}] / 10 [A]	Max
Salidas analógicas	2	
Corriente	0 – 20 m[A]	Max
Tensión	$0-10[V_{DC}]$	Max
R_{LOAD}	500 [Ω]	-
Conectividad	Wi-Fi 802.11b/g/n/e/i @ 2.4 GHz	-

PRESUPUESTO

Descripcion	Cantidad	Subtotal [\$]
Tarjeta Electrónica y Componentes	5(2)*	279 000
Envío Internacional	1	190 000
Router y Cables RJ-45	1	75 000
IVA 19%	1	68 000
Aduana Manejos Especiales	1	53 000
ESP32 DOIT	2	40 000
Adaptador AC/DC 12V 1.5A	2	40 000
Total	**	745 000

CONCLUSIONES

REFERENCIAS BIBLIOGRÁFICAS

Acosta, J. (5 de Noviembre de 2023). La resistencia a la reindustrialización para el desarrollo. Obtenido de Razón Pública: https://razonpublica.com/la-resistencia-la-reindustrializacion-desarrollo/

Arduino. (2024). Software / Arduino. Obtenido de https://www.arduino.cc/en/software

Bolton, W. (2015). *Programmable Logic Controllers* (Sixth Edition ed.). Oxford: Elsevier. Obtenido de https://www.academia.edu/94987128/William_Bolton_Programmable_Logic_Controllers_Sixth_Edition_Newnes_2015_

Borja Calvo, L. (2019). Adquisición de datos desde plataforma 10T2040. Protocolos Modbus/TCP y OPC UA. Universidad del País Vasco: Tesis de grado. Obtenido de https://addi.ehu.es/bitstream/handle/10810/36491/TFG-%20Borja%20Calvo.pdf?sequence=2&isAllowed=y

Cajamarca, I. (13 de Noviembre de 2021). Industrias estarán frenadas hasta 2023 ante la crisis generada por la escasez de chips. Obtenido de Diario la República: https://www.larepublica.co/internet-economy/industrias-estaran-frenadas-hasta-2023-ante-la-crisis-generada-por-la-escasez-de-chips-3261411

Creus, A. (2010). Instrumentación Industrial (octava edición ed.). Alfaomega Grupo Editor S.A.

EasyEDA. (2024). Simulador de circuitos y diseño de circuitos impresos online. Obtenido de https://easyeda.com/es

Electrónico, T. (15 de Marzo de 2022). Comunicación MODBUS TCP (Servidor-Cliente) entre PLC Siemens S7-1200 y ESP32. Obtenido de YouTube: https://youtu.be/CzEdDJVsmAM

Emelianov. (2024). Most complete Modbus library for Arduino. Obtenido de GitHub: https://github.com/emelianov/modbus-esp8266

Espressif Systems. (2024). ESP32 Wi-Fi & Bluetooth SOC. Obtenido de https://www.espressif.com/en/products/socs/esp32

IPSON.nl. (s.f.). Opamp basics - Technology for Art and Education. Obtenido de https://www.ipson.nl/opamp-circuit-examples/

JLCPCB. (2024). PCB Prototype & PCB Fabrication Manufacturer - JLCPCB. Obtenido de https://jlcpcb.com/

Joan. (2024). Tutorial del optoacoplador con circuito de E/S. Obtenido de Electrónica Joan: https://electrojoan.com/tutorial-del-optoacoplador-con-circuito-de-e-s/

Labcenter Electronics. (2024). PCB Design and Circuit Simulator Software - Proteus. Obtenido de https://www.labcenter.com/

Lesmes, L. (31 de Enero de 2022). El impacto de la crisis de contenedores podría ir hasta 2023. Obtenido de Revista Portafolio: https://www.portafolio.co/revista-portafolio/el-

impacto-de-la-crisis-de-contenedores-podria-ir-hasta-2023-561156

Mandado, E., Acevedo, J. M., Fernandez, C., & Armesto, J. (2009). Autómatas programables y sistemas de automatización. MARCOMBO, S.A. Obtenido de

https://www.academia.edu/43582464/Automatas_Programables_y_Sistemas_de_Automatizacion_Parte

MERCUSYS Technologies Co. (2024). Welcome to MERCUSYS. Obtenido de https://www.mercusys.com/co/

Mordor Intelligence. (2024). *Mercado PLC*. Obtenido de Mordor Intelligence: https://www.mordorintelligence.com/es/industry-reports/programmable-logic-controller-plc-market

Sanchis, R., Romero, J., & Ariño, C. (2010). Automatización Industrial. España: Publicaciones de la Universitat Jaume I.

Schneider Electric. (2020). *Funciones TCP/IP Modbus*. Obtenido de Schneider Electric: https://product-help.schneider-electric.com/ED/PowerTag/Smartlink_SIB/EDMS/DOCA0123ES/DOCA0123xx/Details_of_Modbus_Functions/Details_of_Modbus_Functions-2.htm#XREF_D_SE_0060560_I

Siemens. (2024). TIA Portal - Siemens Global. Obtenido de https://www.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html

WiAutomation. (2024). WiAutomation / Proveedor de repuestos de automatización. Obtenido de https://co.wiautomation.com/

https://www.freepik.com/

Aniversario UIS

 $https://slidesgo.com/?utm_source = Slidesgo_template \& utm_medium = referral-link \& utm_campaign = SG_Credits \& utm_content = slidesgo$

Universidad Industrial de Santander

Legado académico y cultural de los santandereanos

