Central Limit Theorem

Interviews X = Gaussian Distribution (11,02) Y & Gaussian Distribution (11, 52) $\langle \chi_1, \chi_2, - \chi_{100} \rangle \in \chi, \chi$ $\frac{m \approx 50}{}$ $\chi_1 = \langle \chi_1 \rangle \chi_2 \rangle \chi_7 \rangle - - - \rangle \chi_50 \rangle \overline{\chi_1} \vee$ $X_{2} = \langle x_{2} \rangle x_{1}, x_{10}, - - - \rangle x_{47}$ $X_{2} \sim$ M > 30 X100 = daz, 24, 27 ---) 2100} X100 CIT (Central Limit Theorem) Histogram χ_{l} $j \approx 50$ $N\left(\frac{u}{5}\right)^{\frac{1}{2}}$

Economics

L. Average income of

'Rohtak'

L. CLT Theorem

Random Sample data

(Result)

Population data