Linear Regression

Further to More Understanding of ML

Jin Hyun Kim

In this Lecture

- Regression
- Linear Regression
 - Gradient descendent algorithm

Review

- Perceptron
 - Classification 0 / 1
 - e.g.
 - Spam Detection: Spam (1) or Ham(0)
 - Facebook feed: show(1) or hide(0)
 - Credit Card Fraudulent Transaction detection: legitimate(0) or fraud (1)

Review - Perceptron Lab

Problem

X	Y
1	1
2	2
3	3

키(단위: cm)	몸무게(단위: kg)
174	71
152	55
138	46
128	38
186	88

Regression

(Linear) Hypothesis

X	Y
1	1
2	2
3	3

$$H(x) = Wx + b$$

Linear Regression Problems

- Given data $\{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - *N* is the size of data
 - $x^{(i)}$ is a real number and the D-dimensional vectors of examples i=1,...,N
 - $y^{(i)}$ is a real-valued target
- Find a solution that can predict a target value of y for a given x

Height (cm)	Weight (kg)
175	71
152	46
138	46
128	38
186	88
190	?

Cost function

$$H(x) = Wx + b$$

$$H(x) - y$$

$$(H(x) - y)^2$$

Cost function

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{N} \sum_{i=1}^{N} (H(x^{(i)}) - y^{(i)})^{2}$$

Cost function

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{N} \sum_{i=1}^{N} ((Wx^{(i)} + b) - y^{(i)})^2$$

Linear Regression

Linear Regression Solution

• Find a model minimizing the cost function

$$cost(W, b) = \frac{1}{N} \sum_{i=1}^{N} ((Wx^{(i)} + b) - y^{(i)})^2$$

Linear Regression Objective

Goal: Find a solution that minimizes the cost function

$$\min_{w,b} cost(W,b)$$

Find W and b where the derivative of the cost function is 0

- Start with initial guesses
 - Start with random value
 - Keeping changing W and b a little bit to try and reduce cost(W, b)
- Each time you change the parameters, select the gradient which reduces cost(W, b) the most possible
- Repeat until it converges to a local minimum

$$cost(W, b) = \frac{1}{N} \sum_{i=1}^{N} ((Wx^{(i)} + b) - y^{(i)})^2$$

$$\frac{\partial}{\partial W}cost(W,b) = \frac{2}{N} \sum_{i=1}^{N} x^{(i)} ((Wx^{(i)} + b) - y^{(i)})$$

$$\frac{\partial}{\partial b}cost(W,b) = \frac{2}{N} \sum_{i=1}^{N} \left((Wx^{(i)} + b) - y^{(i)} \right)$$

$$W = W - \alpha \frac{\partial}{\partial W} cost(W, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} cost(W, b)$$

Linear Regression

Next

• Linear Regression Lab