Projet P3 LFSAB1503: Rapport de la première tâche

Groupe 1246

 $23\ {\rm septembre}\ 2014$

Equation de la réaction et bilan de matière

Il nous est demandé de rechercher la quantité des différents composés nécessaire à la synthèse de l'ammoniac. Il nous était dit que l'ammoniac pouvait être obtenu à partir de dihydrogène (H_2) et de diazote (N_2) . Nous sommes donc arrivés à l'équation de synthèse de l'ammoniac suivante :

$$N_{2(g)} + 3\,H_{2(g)} \longrightarrow 2\,NH_{3(g)}$$

La masse molaire de l'ammoniac étant de 17 g/mol, nous en avons déduit que une masse de 1000 t correspondait à $\frac{10^9}{17}$ mol. Nous avons ensuite fait un tableau d'avancement (figure 1) de la réaction, où les données sont exprimées en moles.

	$N_{2(g)}$	$3H_{2(g)}$	$2NH_{3(g)}$
Initial	$\frac{10^9}{17} \cdot \frac{1}{2}$	$\frac{10^9}{17} \cdot \frac{3}{2}$	0
Réaction	$-\frac{10^9}{17} \cdot \frac{1}{2}$	$-\frac{10^9}{17} \cdot \frac{3}{2}$	$+rac{10^9}{17}$
Final	0	0	$\frac{10^9}{17}$

Figure 1 – Tableau d'avancement de la réaction

La réaction se produisant en continu, on peut calculer des flux de quantité pour une période de 24 heures. On obtient selon nos calculs :

- une consommation de N_2 égale à : $\frac{10^9}{17} \cdot \frac{1}{2} \cdot \frac{1}{3600 \cdot 24} \cong 340.41 \text{ mol/s.}$ une consommation de H_2 égale à : $\frac{10^9}{17} \cdot \frac{3}{2} \cdot \frac{1}{3600 \cdot 24} \cong 1021.241 \text{ mol/s.}$ une production de N_3 égale à : $\frac{10^9}{17} \cdot \frac{3}{2} \cdot \frac{1}{3600 \cdot 24} \cong 680.827 \text{ mol/s.}$

Aspect thermique

Selon nos recherches, nous avons trouvé que la réaction était exothermique ($\Delta H_{react} = -92.2kJ$). Il nous était indiqué que la température du réacteur devait être maintenue à 500 °C et que celui-ci, vu le caractère exothermique de la réaction, pouvait être refroidi par un débit continu d'eau, dont la température variait entre 25 °C et 90 °C.

Calcul de volume d'eau nécessaire (pour une mole produite)

Nous savons donc que:

$$\Delta H_{react} = -92.2 \text{ kJ}$$

Nous savons aussi que:

$$q = m \cdot C \cdot dT$$

où C est la constante calorifique massique de l'eau valant $4.18~\mathrm{J}\cdot{}^{\circ}\mathrm{C}^{-1}\cdot\mathrm{g}^{-1}$ et m est la masse totale du volume d'eau.

Vu les indications données, on peut facilement trouver que $dT=65~\mathrm{K}$. En supposant que la température initiale de réacteur est de 500 °C, il vient : $92200=4.18\cdot65\cdot m\Rightarrow \frac{92200}{4.18\cdot65}=m=339.344~\mathrm{g},$ qui correspond à 0.339344 L d'eau.

Calcul du débit d'eau nécessaire

Nous avions calculé plus haut que le rythme de production de NH_3 était de environ 680.827 mol/s, il vient donc : $680.827 \cdot 0.339344 = 231.03$. le débit d'eau nécessaire serait donc de 231.03 L/s.

Bilan de matière

Figure 2 – Flowsheet production ammoniac