宁波公共交通一体化出行综合服务 系统概述

2016年十月

城市公共交通出行综合服务.架构图-Ver 1.0.0

服务	描述	备注	
抽象通讯层	负责从第三方接口获取对应交通数据并且保存到持久层并进行换	本期各第三方接口	
	乘维护,这些数据包括公交、自行车、轨道、出租车、网约车	数据均用模拟器实	
		现,但接口服务为正	
		式产品	
数据服务	对各类公共交通数据一方面进行实时处理分析,一方面对外提供专	● 不与通讯层直接	
	项 (垂直) 的数据服务。这些接口通常包括:	耦合 ,而是通过消	
	1. 各公共交通方式的实时数据访问(基于地点,基于范围等)	息队列获取实时	
	2. 各公共交通方式的历史数据访问(基于时间、地点、范围等)	的交通信息	
	3. 各公共交通方式的统计分析数据	● 服务接口包括 cxf	
		和 swagger	
交通专题服务	根据业务需求,对各交通专题进行专门的建模和对外服务,目前包	● 服务接口包括 cxf	
	括:路况服务和线路规划服务	和 swagger	
出行综合服务	这是整个城市公共出行服务的门户入口,以地图+数据的形式对外	使用高德的企业级	
	展示应用结果。各主要功能需求也都是通过这个服务入口完成	API	
数据库	● Mysql 保存基础数据,包括各交通方式所涉及的静态数据,如		

	车辆、线路、站点等	
	● Mongo 数据库保存各公共交通方式的动态数据,包括轨迹、	
	市民卡刷卡、到站、交通路况等	
缓存	对常用的数据进行缓存,一般是各交通方式的静态数据(基础数据)	使用 Redis , 支持集
		群
消息队列	以消息队列的形式,将大量的实时数据在各应用服务间传递,一方	使用 Rabbit MQ
	面可以保证足够的优质性能和稳定性,一方面也可以降低系统模块	1.8 以上版本,支持
	之间的耦合	 集群

主要数据项

类型	项目	说明	备注
公交	线路	包括各线路所属公司名称、所含站点名称、位置经纬度、首末班车时间、间隔时间、价格	
	车辆位置	车辆实时 GPS 位置信息、所属线路、速度、方向	模拟
地铁	线路	包括各线路所属公司名称、所含站点名称、位置经纬度、首末班车时间、间隔时间	
	线路出口	各出口名称、关联主要地物名称	
	车辆位置	车辆实时 GPS 位置信息、所属线路、速度、方向	模拟
	定价规则	地铁定价规则	
自行车	网点	包括名称、经纬度位置、最大容量	
	空/满桩	各网点的实时空/满桩信息	模拟
出租/网	出租车	车牌、当前司机、经纬度位置、速度、方向、状态	模拟
约车	网约车	车牌、所属公司、当前司机、经纬度位置、速度、方向、状态	模拟
其他	路况	各主要道路的实时交通拥堵指数	模拟

主要功能

基于公交的综合查询

基于地标的综合查询

编号	SRS-ITRAFFIC-QRY_POI
输入	地物名称
输出	● 符合该地物名称的地物列表,并根据匹配度排序
	● 根据地物列表所选中对象,地图显示该地物周边的公共交通情况(包括自行车、公交、
	轨道、出租/网约车等)

城市交通线路规划

编号	SRS-ITRAFFIC-ROUTE
输入	出行线路的出发地和目的地
输出	输出若干匹配的一体化出行线路规划,具体如下:
	● 出行规划线路,可根据喜好偏向规划不同结果,如时间最短、少换乘、少步行、少费用 等
	● 各规划线路都应包含相应的出行成本,包括时间、距离、费用、积分等
	● 各规划线路应包含具体的换乘信息,如方式、距离、预计耗时、预计等待时间、费用等
	● 可基于出发地,显示周边出租车/网约车信息,并可根据目的地预估费用
	● 可将所选择的出行路线规划发送到用户手机
前置	可获取城区道路拥堵指数和公交/轨道的 GPS 轨迹信息,以及公共自行车相关数据
示意图	参考 需求【SRS-ITRAFFIC-QRY-POI】图示

出租车/网约车召车

公交车到站提醒

设备及环境

设备	描述	备注
数据库服务器	【推荐配置】	1台
	1-2 颗 Intel Xeon 六核 E5-2620 v3 系列处理器,内存不小于 64GB, 3 块	
	300G 硬盘, 2 端口干兆网卡	
	【用途】	
	部署 MySQL 存储基础数据,mongo 存储各类业务动态数据、分析数据等	
	【系统】	
	centOS 7.x+mysql 5.7+mongo 1.9	
应用服务器	【推荐配置】	2台
	1-2 颗 Intel Xeon 六核 E5-2620 v3 系列处理器,内存不小于 32GB, 3 块	
	300G 硬盘,2 端口千兆网卡	
	【用途】	
	1. 其中一台部署 5 个主要的数据服务、综合交通服务、交通专题服务、缓	
	存、消息队列	
	2. 一台部署 5 个通讯接口服务、模拟器服务等	
	【系统】	
	centOS 7.x+tomcat 7.5x+apache+nginx	