ABSTRACT OF THE DISCLOSURE

1	An objective is configured with a first partial
2 ,	objective and a second partial objective. The first partial
3	objective, which projects a first field plane onto an
4	intermediate image, has a first, convex mirror and a second,
5	concave mirror. The second partial objective, which projects
6	the intermediate image onto a second field plane, has a third
7	and a fourth mirror, both concave. All of the four mirrors
8	have central mirror apertures. The axial distance between the
9	first and second mirrors is in a ratio between 0.95 and 1.05
10	relative to the distance between the second mirror and the
11	intermediate image. The axial distance $Z_{ exttt{M3-IM}}$ between the third
12	mirror and the second field plane conforms to the relationship
13	$0.03 \cdot \text{Du}_{\text{M3}} + 5.0 \text{ mm} < Z_{\text{M3-IM}} < \frac{0.25 \cdot \text{Du}_{\text{M3}}}{\text{tan(arcsin(NA))}}.$
14	NA represents the numerical aperture NA in the second field
15	plane, and Du_{M3} represents the diameter of the third mirror.
16	The objective furthermore has a Petzval radius with an absolute
17	value larger than the distance between the first and second
18	field planes.