

The University of Manchester

Learning as a Logic formulation

Viktor Schlegel

Inductive Reasoning

Thus, the goal is to find a function h that is **consistent** with the observations and approximates the true f.

Applicable to new examples generated by the same function

Hypothesis

We assume h belongs to some **hypothesis space** $\mathcal{H}, h \in \mathcal{H}$. \mathcal{H} describes some class of functions (e.g. all linear functions, all prolog programs, etc)

- h is **consistent** with a set of observations, if it applies to them all
- The problem is **realisable**, if $f \in \mathcal{H}$.

Example: Walk in the park

Example: Walk in the park

True function
$$Walk(x) \Leftrightarrow \neg Lazy(x) \wedge Temperature(x, High)$$

$$\vee \neg Lazy(x) \wedge Temperature(x, Med) \wedge \neg Windy(x)$$

$$\vee \neg Lazy(x) \wedge Temperature(x, Low) \wedge Sunny(x) \wedge \neg Windy(x)$$

Consistent

Class

\ Hypothesis

Attributes

pothesis $Walk(x) \Leftrightarrow
eg Lazy(x) \land
eg Temperature(x, Low) \land Sunny(x)$

Sunny?	Lazy?	Rainy?	Windy?	Temperature?	Walk?
Yes	No	Yes	No	Med	Yes
No	No	No	Yes	Med	No
Yes	Yes	No	No	High	No
Yes	No	Yes	Yes	Low	No

No	No	No	No	High	Yes
Yes	No	Yes	Yes	Med 5	No

"False Negative": Hypothesis says No, but is actually Yes

"False Positive": Hypothesis says Yes, but is actually No

Classification

A **false negative** is an observation classified as negative under the hypothesis but in fact positive.

A **false positive** is an observation classified as positive under the hypothesis but in fact negative.

Logical Formulation of Learning

We will focus on problems and hypotheses that can be represented in logical form.

In fact, mostly DNF and
Horn clauses

• The hypothesis space is represented as a disjunction of all possible hypotheses

$$\mathcal{H} = h_1 \vee h_2 \vee \ldots \vee h_n$$

Goal of learning: rule out hypotheses $h_{j,j} \in 1...n$ are **inconsistent** with the observations

$$Hypothesis \land \overline{Descriptions} \models Classifications$$

Example: decision trees

$$Walk(x) \Leftrightarrow \neg Lazy(x) \land Temperature(x, High)$$

 $\lor \neg Lazy(x) \land Temperature(x, Med) \land \neg Windy(x)$
 $\lor \neg Lazy(x) \land Temperature(x, Low) \land Sunny(x) \land \neg Windy(x)$

The "walk in the park" example can be represented as a decision tree.

A binary decision tree has an **equivalent** logic representation.

$$Classification \Leftrightarrow igvee_{p \in paths} igwedge_{step \in p} step$$

Learning decision trees

The goal is to obtain a concise, interpretable decision tree consistent with the provided examples.

Exhaustive search for the "best" decision tree has prohibitive cost, the size of the search space is $\mathcal{O}(2^{2^n})$

Instead: Greedy, recursive algorithm to approximate the "best" solution

Some more observations...

Sunny	Lazy	Rainy	Windy	Temperature	Walk
False	True	True	False	Low	False
False	False	False	True	High	True
True	True	False	True	Med	False
False	False	False	False	Med	True
True	True	True	True	High	False
False	True	False	True	High	False
True	False	True	False	Low	True
True	False	True	True	Low	False
True	False	False	True	Low	False
True	False	False	False	Low	True
True	False	True	False	Med	True
False	False	False	False	Low	False
False	True	True	False	Med	False
True	True	True	True	Low	False
True	False	False	True	Med	False

def decision_tree_learning(examples, attributes, parent_examples):
 if examples is empty: return plurality_value(parent_examples)
 elif all examples have same classification: return classification
 elif attributes is empty: return plurality_value(examples)
 else:

```
attr := get_most_important_attribute(attributes, examples)

tree := new decision tree with root attr

new_attrs = attributes - {attr}

for each possible value v of attr:

    new_ex := {e for e in examples and e[attr] = v}

    subtree := decision_tree_learning(new_ex, new_attrs, examples)
    add branch to tree with label v and subtree subtree

return tree
```


Sunny	Lazy	Rainy	Windy	Temperature	Walk
False	True	True	False	Low	False
True	True	False	True	Med	False
True	True	True	True	High	False
False	True	False	True	High	False
False	True	True	False	Med	False
True	True	True	True	Low	False


```
def decision_tree_learning(examples, attributes, parent_examples):
   if examples is empty: return plurality_value(parent_examples)
   elif all examples have same classification: return classification
   elif attributes is empty: return plurality_value(examples)
   else:
        attr := get_most_important_attribute(attributes, examples)
        tree := new decision tree with root attr
        new_attrs = attributes - {attr}
        for each possible value v of attr:
            new_ex := {e for e in examples and e[attr] = v}
            subtree := decision_tree_learning(new_ex, new_attrs, examples)
            add branch to tree with label v and subtree subtree
    return tree
```



```
def decision_tree_learning(examples, attributes, parent_examples):
   if examples is empty: return plurality_value(parent_examples)
   elif all examples have same classification: return classification
   elif attributes is empty: return plurality_value(examples)
   else:
        attr := get_most_important_attribute(attributes, examples)
        tree := new decision tree with root attr
        new_attrs = attributes - {attr}
        for each possible value v of attr:
            new_ex := {e for e in examples and e[attr] = v}
            subtree := decision_tree_learning(new_ex, new_attrs, examples)
            add branch to tree with label v and subtree subtree
    return tree
```


Attribute importance

attr := get_most_important_attribute(attributes, examples)

Recall: objective is to learn an "optimal" tree.

We want to test attributes that contribute most to the classification as early as

possible.

How do we decide that?

Entropy describes the **uncertainty** of a random variable.

With every attribute test we want to **reduce** the entropy of the classification as much as possible.

Information gain

That is, we want to answer the question "assuming we knew the value of the attribute, how much less uncertain is the classification now?"

$$IG(Examples, Attr) = H(Examples) - H(Examples|Attr)$$

$$H(Examples|Attr) = \sum_{v \in vals(Attr)} Pr(v) \cdot H(\{e|e \in Examples \wedge e[Attr] = v\})$$

Entropy

	700E 1700E					
	False	False	False	False	Med	True
	True	True	True	True	High	False
	False	True	False	True	High	False
	True	False	True	False	Low	True
	True	False	True	True	Low	False
	True	False	False	True	Low	False
	True	False	False	False	Low	True
	True	False	True	False	Med	True
	False	False	False	False	Low	False
	False	True	True	False	Med	False
	True	True	True	True	Low	False
$H(V) = - \sum_{} Pr(k)log_2(Pr(k))$	True	False	False	True	Med	False
$k{\in}vals(V) \ 1 \ 1 \ 1 \ 1$						
$H(Coin) = -(rac{1}{2}log_2rac{1}{2} + rac{1}{2}log_2rac{1}{2}) = 1$						

Sunny

False

False

True

Lazy

True

False

True

Rainy

True

False

False

Windy

False

True

True

Walk

False

False

True

Temperature

Low

High

Med

 $H(DoubleHeadsCoin) = -(1log_21 + 0log_20) = 0$

 $H(Walk) = -(rac{1}{3}log_2rac{1}{3} + rac{2}{3}log_2rac{2}{3}) = 0.918$

Entropy

	False	True	True	False	Low	False
	False	False	False	True	High	True
	True	True	False	True	Med	False
	False	False	False	False	Med	True
	True	True	True	True	High	False
	False	True	False	True	High	False
	True	False	True	False	Low	True
	True	False	True	True	Low	False
	True	False	False	True	Low	False
	True	False	False	False	Low	True
	True	False	True	False	Med	True
1 1 2 2	False	False	False	False	Low	False
$H(Walk) = -(rac{1}{3}log_2rac{1}{3} + rac{2}{3}log_2rac{2}{3}) = 0.918$	False	True	True	False	Med	False
$(3 \circ 3 \circ 3 \circ 3) \circ 3 \circ 3$	True	True	True	True	Low	False
0 0 0	True	False	False	True	Med	False
$H(Examples Attr) = \sum_{v \in \mathcal{V}} Pr(v) \cdot H(\{e e \in Exav\})$	mples	$\wedge e[Att$	[tr] = v	})		

Sunny

Lazy

Rainy

Windy

$$H(Examples|Attr) = \sum Pr(v) \cdot H(\{e|e \in Examples \wedge e[Attr] = v\})$$

$$H(Walk|Lazy) = rac{2}{5} rac{V \in vals(Attr)}{H(Walk|Lazy = Yes)} + rac{3}{5} H(Walk|Lazy = No) = 0.59 \ -(1log_2 1 + 0log_2 0) = 0 - (rac{5}{9}log_2rac{5}{9} + rac{4}{9}log_2rac{4}{9}) = 0.99$$

$$IG(Walk, Lazy) = 0.324$$

$$IG(Walk, Temperature) = 0.008 \hspace{0.5cm} IG(Walk, Rainy) = 0.006$$

$$IG(Walk, Sunny) = 0 \hspace{1.5cm} IG(Walk, Windy) = 0.16$$

Sunny	Lazy	Rainy	Windy	Temperature	Walk						
						W					
False	False	False	True	High	True	Sunny	Lazy	Rainy	Windy	Temperature	Walk
False	False	False	False	Med	True						
True	False	True	False	Low	True	False	True	True	False	Low	False
True	False	True	True	Low	False	True	True	False	True	Med	False
True	False	False	True	Low	False	True	True	True	True	High	False
True	False	False	False	Low	True	False	True	False	True	High	False
True	False	True	False	Med	True	False	True	True	False	Med	False
False	False	False	False	Low	False	1 J rue	True	True	True	Low	False
True	False	False	True	Med	False						

Walk

Temperature

- Greedy: First attribute to split on might be not the best one, but we cannot "undo" the decision
- · Extensions:
 - Deal with regression problems by applying linear regression deeper in the tree
 - · Continuous inputs: Learn to split continuous attributes into buckets
 - · Pruning: Remove branches that only give insignificant information gain

How do we know we found the best hypothesis?

- To investigate how well we learned the function, we typically measure the classification performance of the hypothesis on a held-out "evaluation set"
- · We won't focus too much evaluation here, but it is a vital and necessary step to assess the learned hypothesis where the true function is unknown

The University of Manchester

Learning without knowledge

Viktor Schlegel

Hypothesis Space

Recall:

$$\mathcal{H} = h_1 \vee h_2 \vee \ldots \vee h_n$$

In this video:

- · Investigate the structure of the hypothesis space
- · Exploit this structure when learning

Extension

Hypothesis

$$Walk(x) \Leftrightarrow \neg Lazy(x) \wedge Temperature(x, High)$$

We call the set of all **possible** observations that are consistent with a hypothesis its **extension**. $\mathcal{E}(h)$

Hypotheses that have equivalent extensions, are logically equivalent.

Extension

Sunny	Lazy	Rainy	Windy	Temperature	Walk
True	False	True	False	High	True
True	False	False	False	High	True
True	False	True	True	High	True
False	False	True	False	High	True
False	False	True	True	High	True
False	False	False	True	High	True
False	False	False	False	High	True
True	False	False	True	High	True

unny	Lazy	Rainy	Windy	Temperature	Walk
rue	True	True	True	Low	False
alse	True	False	True	Low	False
rue	True	True	False	Low	False
rue	True	False	True	High	False
rue	False	True	True	Low	False
rue	True	True	False	Med	False
rue	True	False	True	Med	False
rue	False	False	False	Low	False
rue	False	True	True	Med	False
alse	True	True	True	Med	False
alse	True	False	True	Med	False
alse	True	True	False	High	False
alse	False	False	True	Med	False
alse	True	False	False	High	False
alse	True	True	False	Low	False
alse	True	False	True	High	False
rue	True	False	False	Low	False
alse	True	True	False	Med	False
rue	False	False	True	Low	False
alse	True	True	True	Low	False
alse	False	True	True	Low	False
rue	False	True	False	Med	False
rue	True	False	False	High	False
rue	True	True	True	High	False
rue	False	True	False	Low	False
alse	True	False	False	Low	False
rue	True	False	False	Med	False
rue	False	False	False	Med	False
rue	False	False	True	Med	False
alse	True	True	True	High	False
rue	True	False	True	Low	False
alse	False	True	True	Med	False
alse	False	True	False	Low	False
alse	True	False	False	Med	False
rue	True	True	True	Med	False
alse	False	False	False	Med	False
rue	True	True	False	High	False
alse	False	False	False	Low	False
alse	False	False	True	Low	False
alse	False	True	False	Med	False

There must be order!

We can compare hypotheses by their extensions.

If the extension of h_n is a subset of the extension of h_k , h_k is a **generalisation** of h_n . $\mathcal{E}(h_k) \supset \mathcal{E}(h_n)$

If the extension of h_k is a superset of the extension of h_n , h_n is a **specialisation** of h_k . $\mathcal{E}(h_n) \subset \mathcal{E}(h_k)$

 $h_k: Walk(x) \Leftrightarrow
eg Lazy(x) \wedge Temperature(x, High) \ \mathcal{E}(h_k)$

Sunny	Lazy	Rainy	Windy	Temperature	Walk
True	False	True	False	High	True
True	False	False	False	High	True
True	False	True	True	High	True
False	False	True	False	High	True
False	False	True	True	High	True
False	False	False	True	High	True
False	False	False	False	High	True
True	False	False	True	High	True

 $h_n: Walk(x) \Leftrightarrow \neg Lazy(x) \wedge Temperature(x, High) \wedge Rainy(x) \ \mathcal{E}(h_n)$

Sunny	Lazy	Rainy	Windy	Temperature	Walk
True	False	True	False	High	True
True	False	True	True	High	True
False	False	True	False	High	True
False	False	True	True	High	True

$$\mathcal{E}(h_n)\subset \mathcal{E}(h_k)$$

 h_n is a **specialisation** of h_k

A simple learning algorithm

Sketch:

- · pick a hypothesis, test it against all examples
- · As long as the hypothesis is consistent, do nothing
- · If an example is a false positive: specialise the hypothesis
 - → Hypothesis says yes, but actually no
- · If an example is a false negative: generalise the hypothesis
 - → Hypothesis says no, but actually yes

How to generalise and specialise?

Generalisation and specialisation describe a logical relationship between hypotheses. Let

 $h_n: \forall x C_n(x)$

 $h_k: \forall x C_k(x)$

Iff:
$$h_n$$
 is specialisation of h_k : $orall x C_n(x) \Rightarrow C_k(x)$ Iff: h_k is generalisation of h_n :

Iff: h_k is generalisation of h_n :

Sunny?	Lazy?	Rainy?	Windy?	Temperature?	Walk?
Yes	No	Yes	Yes	Med	No

Need to specialise!

$$Walk(x) \Leftrightarrow \neg Lazy(x) \land \neg Temperature(x, Low) \land Sunny(x)$$

No No No High Yes

Need to generalise!

 $Walk(x) \Leftrightarrow \neg Lazy(x) \land \neg Temperature(x, Low)$


```
def cbl(all_examples, h, seen_examples):
  if all_examples is empty: return hypothesis
                                                         As long as the hypothesis is
  example := all_examples.pop()
                                                          consistent, do nothing
                                                          When no more examples, done
  seen_examples.push(example)
  if h |= e:
    return <u>cbl</u>(all_examples, hypothesis, seen_examples)
  elif e is false positive for h:
    for h' in specialisations of h if h' |= seen_examples:
        h'' := \underline{cbl}(all\_examples, h', seen\_examples)
        if h": return h"
  elif e is false negative for h:
    for h' in generalisations of h if h' |= seen_examples:
        h'' := \underline{cbl}(all\_examples, h', seen\_examples)
        if h": return h"
  return None
```

```
def cbl(all_examples, h, seen_examples):
  if all_examples is empty: return hypothesis
                                                       • If an example is a false positive:
  example := all_examples.pop()
                                                          specialise the hypothesis
                                                          But: consistent with all previous
  seen_examples.push(example)
                                                          examples
  if h |= e:
    return <u>cbl</u>(all_examples, hypothesis, seen_examples)
  elif e is false positive for h:
    for h' in specialisations of h if h' |= seen_examples|:
         h'' := \underline{cbl}(all\_examples, h', seen\_examples)
         if h": return h"
  elif e is false negative for h:
    for h' in generalisations of h if h' |= seen_examples:
         h'' := \underline{cbl}(all\_examples, h', seen\_examples)
         if h": return h"
  return None
```

```
def cbl(all_examples, h, seen_examples):
  if all_examples is empty: return hypothesis
                                                      • If an example is a false negative:
  example := all_examples.pop()
                                                         generalise the hypothesis
                                                         But: consistent with all previous
  seen_examples.push(example)
                                                         examples
  if h |= e:
    return cbl(all_examples, hypothesis, seen_examples)
  elif e is false positive for h:
    for h' in specialisations of h if h' |= seen_examples:
        h'' := \underline{cbl}(all\_examples, h', seen\_examples)
         if h": return h"
  elif e is false negative for h:
    for h' in generalisations of h if h' |= seen_examples:
        h'' := \underline{cbl}(all\_examples, h', seen\_examples)
        if h": return h"
  return None
```

```
def cbl(all_examples, h, seen_examples):
                                                       • If no consistent specifications or
  if all_examples is empty: return hypothesis
                                                          generalisations:
                                                          return None
  example := all_examples.pop()
                                                       • Recursion: check if recursive call
  seen_examples.<u>push</u>(example)
                                                          returns consistent hypothesis
  if h |= e:
    return cbl(all_examples, hypothesis, seen_examples)
  elif e is false positive for h:
    for h' in specialisations of h if h' |= seen_examples:
         h'' := \underline{cbl}(all\_examples, h', seen\_examples)
         if h": return h"
  elif e is false negative for h:
    for h' in generalisations of h if h' |= seen_examples:
         h'' := \underline{cbl}(all\_examples, h', seen\_examples)
         if h": return h"
  return None
```


Avoiding Backtracking

In the previous example we had to backtrack a lot, because we committed to a hypothesis, which (much later) turned out to be inconsistent with the examples.

We cannot decide in advance, whether the refinement we choose will lead to an unrecoverable situation.

Why commit to a single hypothesis?

Least commitment search

Instead of keeping track of a single hypothesis, keep track of **all hypotheses** consistent with examples seen so far (**version space**).

As new examples arrive, we refine the version space.

How do we represent the version space?

Version space boundaries

Analogy: How do we represent all (i.e. an infinite amount of) real numbers between 3 and 5? With the interval [3,5]

We represent the version space by its boundaries.

G-set: set of most general consistent hypotheses.

S-set: set of most specific consistent hypotheses.

... with all observations so far

Every hypothesis in between is consistent, every hypothesis outside isn't!

More general than some member of S-set but more specific than some member of G-set.

For all h not in G-set or S-set: h consistent $\Leftrightarrow h$ more specific than some g_k and more general than some s_k

Proof

h consistent => h more specific than some g_k and more general than some $oldsymbol{s}_k$

Proof

 $m{h}$ more specific than some $m{g}_k$ and more general than some $m{s}_k$ => $m{h}$ consistent

Assume h more specific than some g_k

Then h must reject all negative examples rejected by all members of the G-set.

Assume h more general than some s_k

Then h must accept all positive examples accepted by all members of the S-set.

Therefore, h is consistent with all examples so far

Too general

As general as possible

More general

More specific

As specific as possible

Too specific


```
def vsl(examples):
  s_set, g_set := initialise()
  For e in examples:
    if not s_set or not g_set: return None
    for s in s set:
      if e is false positive for s:
        s_set.pop(s)
      elif e is false negative for s:
        s_set.\underline{pop}(s)
        s_set.<u>update</u>(ss for ss in <u>generalisations</u>(s, g_set))
    for g in g_set:
      if e is false positive for g:
        g_{set.pop}(g)
        g_set.update(gs for gs in specifications(g, s_set))
      elif e is false negative for s:
        g_{set.pop}(g)
  return compute_version_space(s_set, g_set)
```



```
def <u>vsl</u>(examples):
  s_set, g_set := <u>initialise(</u>)
  For e in examples:
    if not s_set or not g_set: return None
    for s in s_set:
       if e is false positive for s:
                                                 All immediate generalisations of s that are
         s_set.\underline{pop}(s)
                                                 not too general, i.e. more specific than some
       elif e is false negative for s:
                                                 member of g_set
         s_set.\underline{pop}(s)
         s_set.\underline{update}(ss for ss in \underline{generalisations}(s, g_set))
    for g in g_set:
       if e is false positive for g:
         g_{set.pop}(g)
         g_set.update(gs for gs in specifications(g, s_set))
       elif e is false negative for s:
         g_{set.pop}(g)
  return compute_version_space(s_set, g_set)
```

```
def <u>vsl</u>(examples):
  s_set, g_set := <u>initialise(</u>)
  For e in examples:
    if not s_set or not g_set: return None
    for s in s set:
       if e is false positive for s:
         s_set.\underline{pop}(s)
       elif e is false negative for s:
         s_set.\underline{pop}(s)
         s_set.update(ss for ss in generalisations(s, g_set))
    for g in g_set:
                                                  All immediate specifications of g that are not
       if e is false positive for g:
                                                  too specific, i.e. more general than some
         g_{set.pop}(g)
                                                  member of g_set
         g_set.update(gs for gs in specifications(g, s_set))
       elif e is false negative for s:
         g_{set.pop}(g)
  return compute_version_space(s_set, g_set)
```

```
def <u>vsl</u>(examples):
  s_set, g_set := <u>initialise(</u>)
  For e in examples:
    if not s_set or not g_set: return None
    for s in s set:
       if e is false positive for s:
         s_set.pop(s)
      elif e is false negative for s:
         s_set.\underline{pop}(s)
         s_set.<u>update</u>(ss for ss in <u>generalisations</u>(s, g_set))
    for g in g_set:
       if e is false positive for g:
         g_{set.pop}(g)
         g_set.update(gs for gs in specifications(g, s_set))
      elif e is false negative for s:
                                               Everything "in between" the S-Set and G-Set
         g_{set.pop}(g)
  return compute_version_space(s_set, g_set)
```

Takeaways

- The hypothesis space has an **innate structure** and hypotheses can be ordered with regard to the generalisation/specialisation relation
- This order can be used to speed up the search for a hypothesis over brute-force search
- The algorithms are prone to noise, i.e. examples with erroneous classifications
- We didn't make any use of existing knowledge so far!

