# Optimisation

#### 2024-10-09

## The r-Pareto process

Our rainfall process is  $X = \{X_{s,t}, (s,t) \in S \times T\}$ , where S is the spatial domain and T the temporal domain.

We have  $X_{s,t} \mid r(X_{s,t}) > u \xrightarrow{d} Z_{s,t}$  with a risk function  $r(X_{s,t}) = X_{s_0,t_0}$ , a threshold u > 1 and  $Z = \{Z_{s,t}, (s,t) \in S \times T\}$  a r-Pareto process.

With  $W = \{W_{s,t}, (s,t) \in S \times T\}$  the Gaussian process of the Brown-Resnick process and its variogram  $\gamma$ , we can define the r-Pareto process as

$$Z_{s,t} = R_{s,t}e^{W_{s,t} - W_{s_0,t_0} - \gamma(s - s_0, t - t_0)}$$

where  $R_{s,t}$  is a random variable following a simple Pareto distribution.

The variogram  $\gamma$  is defined as

$$\gamma(ds, dt) = \beta_1 |ds|^{\alpha_1} + \beta_2 dt^{\alpha_2}$$

with ds = s - s', dt = t - t',  $\beta_1, \beta_2 > 0$  and  $\alpha_1, \alpha_2 \in (0, 1)$ .

If we add an advection vector  $V = (v_x, v_y)$ , the variogram becomes

$$\gamma(ds, dt) = \beta_1 |ds - Vdt|^{\alpha_1} + \beta_2 dt^{\alpha_2}.$$

# The r-Pareto process without advection

#### Simulation

We simulate the r-Pareto process with the parameters  $\beta_1 = 0.4$ ,  $\beta_2 = 0.2$ ,  $\alpha_1 = 1.5$ ,  $\alpha_2 = 1$  and without advection. We simulate the process on a  $5 \times 5$  grid with 30 time steps and m = 100 realizations. We use a conditional point  $s_0 = (1, 1)$  at time  $t_0 = 1$ .



Figure 1: Time series for 4 sites of the first realization



Figure 2: Time series for 4 sites of the all replicates together

# Probability of exceedances for the r-Pareto process without advection

For  $(s_0, t_0)$ 

Verification that  $P(X_{s_0,t_0} > u) = 1$  because of the r-Pareto process construction.

## [1] "
$$X_s0_t0 = 1.518 > u = 1$$
"

## [1] "
$$P(X_s0,t > u) = 0.16$$
"

For all replicates we can see that the value of the process at the conditional point:

## [1] "Minimum value of the process at the conditional point: 1.014 > u = 1"

## [1] "Maximum value of the process at the conditional point: 96.75"



Figure 3: Value and probability at conditional point for all replicates

### Marginal exceedance probability

We have different probability of exceedances for each site as we can see in the following plot.



Figure 4: Marginal probability of exceedances for each site for one simulation



Figure 5: Marginal probability of exceedances for each site for one simulation



Figure 6: Marginal probability of exceedances for each site for one simulation

### Multiple replicates



Figure 7: Marginal probability of exceedances for m replicates in a single dataframe

## The r-Pareto process with advection

#### Simulation

We simulate the r-Pareto process with the parameters  $\beta_1 = 0.4$ ,  $\beta_2 = 0.2$ ,  $\alpha_1 = 1.5$ ,  $\alpha_2 = 1$  and the advection vector V = (0.5, 0.3). We simulate the process on a  $5 \times 5$  grid with 30 time steps and 100 realizations. We use a conditional point  $s_0 = (1, 1)$  at time  $t_0 = 1$ .



Figure 8: Time series for 4 sites of the first realization in the advection direction

# r-Pareto process with advection

### Probability of exceedances for the r-Pareto process

For  $(s_0, t_0)$ 

Verification that  $P(X_{s_0,t_0} > u) = 1$  because of the r-Pareto process construction.

## [1] "
$$X_s0_t0 = 2.188 > u = 1$$
"

## [1] "
$$P(X_s0,t > u) = 0.04$$
"

For all replicates we can see that the value of the process at the conditional point:

- ## [1] "Minimum value of the process at the conditional point: 1.011 > u = 1"
- ## [1] "Maximum value of the process at the conditional point: 660.524"



Figure 9: Value and probability at conditional point for all replicates

### Marginal exceedance probability

We have different probability of exceedances for each site as we can see in the following plot.



Figure 10: Marginal probability of exceedances for each site for one simulation



Figure 11: Marginal probability of exceedances for each site for one simulation



Figure 12: Marginal probability of exceedances for each site for one simulation

TODO : verifier la forme de ma grille dans mes gifs, j'ai un doute

#### For multiple replicates of the r-Pareto process

We concate the data of m = 30 replicates to have a single simulation of the r-Pareto process.



Figure 13: Time series for 4 sites of the replicates together

The probability of exceedances for each site is computed for all replicates.



Figure 14: Marginal probability of exceedances for m replicates in a single dataframe

## Optimisation

We want to estimate the parameters  $\beta_1$ ,  $\beta_2$ ,  $\alpha_1$  and  $\alpha_2$  of the r-Pareto process. We use the maximum likelihood estimation with the composite likelihood method.

We compute the number of joint excesses for each replicate  $i, k_{s,t}^{(i)} = \sum_{t=1}^{T} \mathbb{1}_{\{X_{s,t} > u, X_{s_0,t_0} > u\}} \text{ and } k_{s-s_0,t-t_0}^{(i)} \sim Bin(T-t-t_0,\chi(s-s_0,t-t_0))$  with T the number of observations within a replicate (same for all replicates).

Si je bouge pas c'est bon, si je bouge un peu trouve tout sauf l'advection estimée à 21, 21 (bcp trop)

Avec les vrais parametres en valeurs initiales c(0.4, 0.2, 1.5, 1, 0.5, 0.3) et 30 simus on a comme estimation:  $0.4 \ 0.2 \ 1.5 \ 1 \ 0.5 \ 0.3$ 

Avec les vrais parametres en valeurs initiales  $c(0.4,\,0.2,\,1.5,\,1,\,0.5,\,0.3)$  et 20 simus on a comme estimation:  $0.3999390\,0.1999695\,1.4997711\,0.9998579\,0.4922282\,0.2880588$ 

Pour valeurs initiales  $c(0.45,\,0.2,\,1.55,\,1,\,0.5,\,0.3)$  et 20 simus on a comme estimation:  $0.3540622\,0.4971539\,1.4470578\,1.1838994\,0.5037758\,47.9497756$ 

### Plot by fixing params