

Report No.: ATA140815001F Page: 1 of 19

FCC Test Report (FM TX)

FCC ID **2ACYW-MT-096**

Applicant SHENZHEN UNICHAIN TECHNOLOGY CO.,LTD

5/F, Block 17, Lishan Industrial Park, Nanshan District, Shenzhen,

Guangdong, China

Sample Description

Product Name **FM TRANSMITTER**

Model No. MT-096

Serial No. N/A

Trademark N/A

Receipt Date 2014-08-11

Test Date 2014-08-11 to 2014-08-15

Issue Date 2014-08-16

Test Standard(s) FCC CFR Title 47 Part 15 Subpart C Section 15.239

Conclusions PASSED*

*In the configuration tested, the EUT complied with the standards specified above.

Test/Witness Engineer

Approved & Authorized

: Joson Deng : Frank zhang

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Report No.: ATA140815001F Page: 2 of 19

Contents

CON	ITENTS	5	2
1.	GEN	ERAL INFORMATION	3
	1.1.	Client Information	3
	1.2.	General Description of EUT (Equipment Under Test)	3
	1.3.	Block Diagram Showing The Configuration of System Tested	4
	1.4.	Description of Support Units	4
	1.5.	External I/O Cable	4
	1.6.	Description of Test Mode	5
	1.7.	Test Instruments List	5
	1.8.	Laboratory Location	6
2.	TEST	Г SUMMARY	7
3.	ANTI	ENNA REQUIREMENT	8
	3.1.	Standard Requirement	8
	3.2.	Antenna Connected Construction	
4.	CON	DUCTED EMISSION TEST	9
	4.1.	Test Standard and Limit	
	4.2.	Test Setup	
	4.3.	Test Procedure	
	4.4.	Test Data	10
5.	20DE	OCCUPY BANDWIDTH TEST	11
	5.1.	Test Standard and Limit	11
	5.2.	Test Setup	11
	5.3.	Test Procedure	
	5.4.	Test Data	11
6.	SPUI	RIOUS EMISSION	14
	6.1.	Test Standard and Limit	
	6.2.	Test Setup	
	6.3.	Test Procedure	
	6.4.	Test Data	

Report No.: ATA140815001F Page: 3 of 19

1. General Information

1.1. Client Information

Applicant	:	SHENZHEN UNICHAIN TECHNOLOGY CO.,LTD
Address	:	5/F, Block17, Lishan Industrial Park, Nanshan District, Shenzhen, China.
Manufacturer	:	SHENZHEN UNICHAIN TECHNOLOGY CO.,LTD
Address	:	5/F, Block17, Lishan Industrial Park, Nanshan District, Shenzhen, China.

1.2. General Description of EUT (Equipment Under Test)

Product Name	:	FM TRANSMITTER			
Models No.	:	MT-096			
Serial No.	:	N/A			
Trademark	:	N/A			
		Operation Frequency:	88.1MHz~107.9MHz		
	:	Channel Separation:	100kHz		
Product		Number of Channel:	199 Channels		
Description		Modulation Type:	FM		
		Antenna Type:	Integral PCB Antenna		
		Antenna Gain:	0 dBi		
Power Supply	:	Input DC 5V from DC power system of car.			

Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) The device doesn't any tune outside of the 88.1MHz~107.9MHz band and the tuning controls were manually adjusted to verify maximum tuning range.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	88.1	48	92.8	98	97.8	148	102.8
02	88.2	49	92.9	99	97.9	149	102.9
03	88.3	50	93.0	100	98.0	150	103.0
04	88.4	51	93.1	101	98.1	151	103.1
05	88.5	52	93.2	102	98.2	152	103.2

t No.: ATA	A140815001F	Page	e: 4 of 19				
06	88.6	53	93.3	103	98.3	153	103.3
07	88.7	54	93.4	104	98.4	154	103.4
08	88.8	55	93.5	105	98.5	155	103.5
09	88.9	56	93.6	106	98.6	156	103.6
10	89.0	57	93.7	107	98.7	157	103.7
11	89.1	58	93.8	108	98.8	158	103.8
12	89.2	59	93.9	119	98.9	159	103.9
46	92.6	96	97.6	146	102.6	199	107.9

1.3. Block Diagram Showing The Configuration of System Tested

1.4. Description of Support Units

Name	Model	Serial Number	Manufacturer
Printer	HP1020	CNCJ410726	HP
LCD Monitor	G205HV	10306738385	ACER
PC	ASPIREM1830	PTSF90C00305005CAC3000	ACER
Keyboard	SK-9625	KBUSB1580500037E0100	ACER
Mouse	MS.11200.014	M-UAY-ACR2	ACER
Smart Phone	iPhone 5		APPLE

1.5. External I/O Cable

N/A

Report No.: ATA140815001F Page: 5 of 19

1.6. Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Mode	Description
Transmitting mode	Keep the EUT in Transmitting mode with worst case data rate
Audio Input Signal	A typical audio with maximum audio input

In section 15.31(m), regards to the operating frequency range over 10MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel as below:

Lowest Channel	CH01:88.1MHz	
Middle Channel	CH101:98.1MHz	
Highest Channel	CH199:107.9MHz	

Remark: The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

1.7. Test Instruments List

Item	Test Equipment	Manufacturer	Model No.	Cal. Date	Cal. Due date
1	Bilog Antenna	SCHWARZBECK	VULB9163	Mar. 28, 2014	Mar. 27, 2015
·	2eg /e.	MESS-ELEKTRONIK			
2	Double -ridged	SCHWARZBECK	BBHA9120D	Mar. 28, 2014	Mar. 27, 2015
2	waveguide horn	MESS-ELEKTRONIK	BBITA9120D	Mai. 20, 2014	Mar. 27, 2015
3	Coaxial Cable	N/A	N/A	Mar. 28, 2014	Mar. 27, 2015
4	Coaxial Cable	N/A	N/A	Mar. 28, 2014	Mar. 27, 2015
5	Coaxial cable	N/A	N/A	Mar. 28, 2014	Mar. 27, 2015
6	Coaxial Cable	N/A	N/A	Mar. 28, 2014	Mar. 27, 2015
7	Coaxial Cable	N/A	N/A	Mar. 28, 2014	Mar. 27, 2015
8	Amplifier	HP	9447D	Mar 29 2014	Mor 27 2015
0	(10kHz-1.3GHz)	ПР	8447D	Mar. 28, 2014	Mar. 27, 2015
9	Amplifier	Compliance Direction	PAP-1G18	Mar. 28, 2014	Mar 27 2015
Э	(1GHz-18GHz)	Systems Inc.	PAP-IGI8		Mar. 27, 2015

Report No.: ATA140815001F Page: 6 of 19

10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	Mar. 28, 2014	Mar. 27, 2015	
11	Horn Antenna	ETS-LINDGREN	3160	Mar. 28, 2014	Mar. 27, 2015	
12	Positioning	UC	UC3000	N/A	N/A	
12	Controller	00	003000	IN/A	IN/A	
	Spectrum					
13	analyzer	Rohde & Schwarz	FSP	Mar. 28, 2014	Mar. 27, 2015	
	9kHz-30GHz					
14	EMI Test Receiver	Rohde & Schwarz	ESPI	Mar. 28, 2014	Mar. 27, 2015	
15	Loop antenna	Laplace instrument	RF300	Mar. 28, 2014	Mar. 27, 2015	
	Universal radio					
16	communication	Rhode & Schwarz	CMU200	Mar. 28, 2014	Mar. 27, 2015	
	tester					
17	Signal Analyzer	Rohde & Schwarz	FSIQ3	Mar. 28, 2014	Mar. 27, 2015	
18	EMI Test Receiver	Rohde & Schwarz ESCI	ESCI	Mar. 28, 2014	Mar. 27, 2015	
19	LISN	CHASE	MN2050D	Mar. 28, 2014	Mar. 27, 2015	

1.8. Laboratory Location

Shenzhen Certification Technology Service Co., Ltd.

Address: 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

At the time of testing, the Laboratory is accredited. It is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 197647.

Tel:86-755-86375552 Fax: 86-755-26736857

Report No.: ATA140815001F Page: 7 of 19

2. Test Summary

Standard Section	Test Item	Judgment	
15.203	Antenna Requirement	PASSED	
15.207	Conducted Emission	N/A	
15.239(a)	20dB Occupied Bandwidth	PASSED	
15.239(b)	Radiated Emission of the Fundamental Signal	PASSED	
15.239(c)/15.209	Spurious Emission	PASSED	
Remark: "N/A" is an abbreviation for Not Applicable.			

Report No.: ATA140815001F Page: 8 of 19

3. Antenna Requirement

3.1. Standard Requirement

3.1.1 Test standard

FCC Part15 Section 15.203

3.1.2 Requirement

1) 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

3.2. Antenna Connected Construction

The FM antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

Report No.: ATA140815001F Page: 9 of 19

4. Conducted Emission Test

4.1. Test Standard and Limit

4.1.1 Test Standard

FCC Part15 Section 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Maximum RF Line Voltage (dBμV)		
Quasi-peak Level	Average Level	
66 ~ 56 *	56 ~ 46 *	
56	46	
60	50	
	Quasi-peak Level 66 ~ 56 * 56	

Remark: (1) *Decreasing linearly with logarithm of the frequency.

4.2. Test Setup

4.3. Test Procedure

- 1) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50 /50µH + 5 linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 2) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.

The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal

⁽²⁾ The lower limit shall apply at the transition frequencies.

Report No.: ATA140815001F Page: 10 of 19

ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

The Test Receiver setup: RBW=9kHz, VBW=30kHz, Sweep time= auto

4.4. Test Data

N/A.

Remark: The EUT's power supply is DC 5V, from a car battery.

Report No.: ATA140815001F Page: 11 of 19

5. 20dB Occupy Bandwidth Test

5.1. Test Standard and Limit

5.1.1 Test Standard

FCC Part15 C Section 15.239 (a)

5.1.2 Test Limit

	FCC Part 15 Subpart C(15.239)	
Test Item	Limit	Frequency Range (MHz)
Bandwidth	200KHz	88~108

5.2. Test Setup

5.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=3 kHz, VBW=10 kHz, detector= Peak

5.4. Test Data

Channel Number	Channel Frequency	20dB Bandwidth (kHz)	Limit(kHz)	Result			
CH 01	88.1(MHz)	146.00	200	PASSED			
CH 101	98.1(MHz)	144.00	200	PASSED			
CH 199 107.9(MHz)		146.00	200	PASSED			
Remark: Test plot as follows							

Report No.: ATA140815001F Page: 12 of 19

Report No.: ATA140815001F Page: 13 of 19

Report No.: ATA140815001F Page: 14 of 19

6. Spurious Emission

6.1. Test Standard and Limit

6.1.1 Test Standard

FCC Part15 C Section 15.239(b), 15.239(c), 15.209

6.1.2 Test Limit

Frequency	Limit (dBμV/m)				
(MHz)	At 3m Distance				
30MHz~88MHz	40	Quasi-peak			
88MHz~216MHz	43.5	Quasi-peak			
216MHz~960MHz	46	Quasi-peak			
960MHz~1000MHz	54	Quasi-peak			
Ab ave 4000MLI-	54	Average			
Above 1000MHz	74	Peak			
Remark: 1. The lower limit shall apply at the transition	frequency.	<u>'</u>			

Radiated Emission of the Fundamental Signal Limit

Frequency	Limit (dBμV/m)				
(MHz)	At 3m Distance				
001411 4001411	48.0	Average			
88MHz~108MHz	68.0	Peak			

6.2. Test Setup

Below 1GHz

Antenna Tower Areana Antenna Tower Areana Antenna Tower Ground Relevore Plane Ground Relevore Plane Ground Relevore Plane

Above 1GHz

Report No.: ATA140815001F Page: 15 of 19

6.3. Test Procedure

- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Peak value: RBW=1MHz, VBW=3MHz; Average value: RBW=1MHz, VBW=10Hz; QP Value: RBW=100kHz, VBW=300kHz

6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

6.4. Test Data

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 2. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Report No.: ATA140815001F Page: 16 of 19

Radiated Emission Test Data of Fundamental Signal

EUT: FM TRANSMITTER M/N: MT-096

Operating Condition: FM TX mode
Test Site: 3m chamber

Operator: Jason
Test Specification: DC 5V

Polarization: Horizontal & Vertical

Note Tem:23 Hum:50%

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Level
88.10	71.22	14.60	1.09	30.73	59.16	68.00	-8.84	V	PEAK
88.10	68.27	14.60	1.09	30.73	53.23	68.00	-14.77	Н	PEAK
98.10	73.42	16.10	1.18	30.75	59.95	68.00	-8.05	V	PEAK
98.10	67.25	16.10	1.18	30.75	53.78	68.00	-14.22	Н	PEAK
107.90	78.45	14.95	1.26	30.80	63.86	68.00	-4.14	V	PEAK
107.90	66.90	14.95	1.26	30.80	52.31	68.00	-15.69	Н	PEAK
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Level
88.10	59.54	14.60	1.09	30.73	44.50	48.00	-3.50	V	AVG.
88.10	57.27	14.60	1.09	30.73	42.23	48.00	-5.77	Н	AVG.
98.10	59.26	16.10	1.18	30.75	45.79	48.00	-2.21	V	AVG.
98.10	51.25	16.10	1.18	30.75	37.78	48.00	-10.22	Н	AVG.
107.90	60.45	14.95	1.26	30.80	45.86	48.00	-2.14	V	AVG.
107.90	50.90	14.95	1.26	30.80	36.31	48.00	-11.69	Н	AVG.

Remark:

1. Final Level = Read Level + Antenna Factor + Cable Loss - Preamplifier Factor

Report No.: ATA140815001F Page: 17 of 19

Radiated Emission Test Data (Below 1GHz)

EUT: FM TRANSMITTER M/N: MT-096

Operating Condition: FM TX mode 88.1MHz

Test Site: 3m chamber

Operator: Jason
Test Specification: DC 5V

Polarization: Horizontal & Vertical
Note Tem:23 Hum:50%

Test mode: 88.1MHz				Test chann	el: Lowest				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Level
65.32	47.36	12.04	0.87	30.82	29.45	40.00	-10.55	V	QP
170.41	46.67	12.55	1.69	31.07	29.84	43.50	-13.66	V	QP
260.72	44.89	15.26	2.15	31.17	31.13	46.00	-14.87	V	QP
394.68	42.57	16.97	2.84	30.91	31.47	46.00	-14.53	V	QP
62.77	39.77	12.04	0.87	30.93	21.75	40.00	-18.25	Н	QP
170.56	41.89	12.55	1.69	31.07	25.06	43.50	-18.44	Н	QP
284.53	42.15	15.75	2.31	31.17	29.04	46.00	-16.96	Н	QP
582.74	39.76	20.14	3.66	30.12	33.44	46.00	-12.56	Н	QP

- 1. Final Level = Read Level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: ATA140815001F Page: 18 of 19

Radiated Emission Test Data (Below 1GHz)

EUT: FM TRANSMITTER M/N: MT-096

Operating Condition: FM TX mode 98.1MHz

Test Site: 3m chamber

Operator: Jason
Test Specification: DC 5V

Polarization: Horizontal & Vertical

Note Tem:23 Hum:50%

Test mode: 98.1MHz				Test channel: Lowest					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Level
65.33	39.59	12.04	0.87	30.82	21.68	40	-18.32	V	QP
170.41	45.67	12.55	1.69	31.07	28.84	43.5	-14.66	V	QP
260.75	43.29	15.26	2.15	31.17	29.53	46	-16.47	V	QP
394.68	42.58	16.97	2.84	30.91	31.48	46	-14.52	V	QP
62.76	39.45	12.04	0.87	30.93	21.43	40	-18.57	Н	QP
170.51	40.82	12.55	1.69	31.07	23.99	43.5	-19.51	Н	QP
284.52	43.29	15.75	2.31	31.17	30.18	46	-15.82	Н	QP
582.74	40.75	20.14	3.66	30.12	34.43	46	-11.57	Н	QP

- 1. Final Level = Read Level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: ATA140815001F Page: 19 of 19

Radiated Emission Test Data (Below 1GHz)

EUT: FM TRANSMITTER M/N: MT-096

Operating Condition: FM TX mode 107.9MHz

Test Site: 3m chamber

Operator: Jason
Test Specification: DC 5V

Polarization: Horizontal & Vertical

Note Tem:23 Hum:50%

Test mode: 107.9MHz				Test channel: Lowest					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Level
65.32	38.25	12.04	0.87	30.82	20.34	40	-19.66	V	QP
170.41	42.14	12.55	1.69	31.07	25.31	43.5	-18.19	V	QP
260.72	38.9	15.26	2.15	31.17	25.14	46	-20.86	V	QP
394.68	41.54	16.97	2.84	30.91	30.44	46	-15.56	V	QP
62.77	44.23	12.04	0.87	30.93	26.21	40	-13.79	Н	QP
170.56	44.26	12.55	1.69	31.07	27.43	43.5	-16.07	Н	QP
284.53	44.72	15.75	2.31	31.17	31.61	46	-14.39	Н	QP
582.74	38.69	20.14	3.66	30.12	32.37	46	-13.63	Н	QP

- 1. Final Level = Read Level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.