CSE 1003 Digital Logic and Design Module 4 Combinational Circuits II L2

Dr. S.Hemamalini
Professor
School of Electrical Engineering
VIT Chennai

Contents

6 hrs

- Binary Parallel Adder Look ahead carry
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Demultiplexers

• CO4: Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder, multiplexer, demultiplexer.

011

● O₁

O_{M−1}

input code

Only *one* output is HIGH for each

M

outputs

- A decoder is a logic circuit that accepts a set of inputs that represents a binary number and activates only the output that corresponds to that input number.
- *N* inputs and *M* outputs
- 2^N possible input combinations or codes 1

Ν Decoder inputs A_{N-1} codes

BASIC BINARY DECODER

• Develop the logic required to detect the binary code 10010 and produce an active LOW output.

> ipputs 2 outputs

2-to-4 Line Decoder

Block Diagram

Truth Table

A B	$\mathbf{Y_3}$	\mathbf{Y}_{2}	\mathbf{Y}_1	$\mathbf{Y_0}$	
0 0	0	0	0	1	Mο
0 1	0	0	1	0	m,
1 0	0	1	0	0	M\ ?
1 1	1	0	0	0	Y () 5

Decoders

1-10-4 demoker

Logical expressions

$$Y_0 = \overline{A} \, \overline{B} \quad \text{and} \quad Y_1 = \overline{A}B$$
 $Y_2 = A\overline{B} \quad \text{and} \quad Y_3 = AB$

Logic Diagram

Active-High

A B	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

Active-Low

A B	Y_3	Y_2	<i>Y</i> ₁	Y_0
0 0	1	1	1	0
0 1	1	1	0	1
1 0	1	0	1	1
1 1	0	1	1	1

sinput 2 = 8 0/1'S

3-to-8 Line Decoder

Block Diagram

1 to 8 down der derover Binary to derover

Decoders

Truth Table

	Inputs	;		Outputs							
A	В	C	Y_0	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	Y_7	
0	0	0	1	0	0	0	0	0	0	0	ma
0	0	1	0	1	0	0	0	0	0	0	m
0	1	0	0	0	1	0	0	0	0	0	m
0	1	1	0	0	0	1	0	0	0	0	mg
1	0	0	0	0	0	0	1	0	0	0	mq
1	0	1	0	0	0	0	0	1	0	0	Mg
1	1	0	0	0	0	0	0	0	1	0	Mi
1	1	1	0	0	0	0	0	0	0	1	m1

Logical expressions

$$Y_0 = \overline{A} \ \overline{B} \ \overline{C}$$
; $Y_1 = \overline{A} \ \overline{B}C$; $Y_2 = \overline{A}B\overline{C}$; $Y_3 = \overline{A}BC$
 $Y_4 = A\overline{B} \ \overline{C}$; $Y_5 = A\overline{B}C$; $Y_6 = AB\overline{C}$; $Y_7 = ABC$

"Enable" Control

E	A B	Y_3	Y_2	Y_1	Y_0
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

Decoder with ENABLE Input

> used to control the operation of the decoder

Active High En=1 Active Low E=2

3-to-8 decoder using 2-to-4 decoder

7465139

Expansion

4-to-16 Decoder using 3-to-8 Decoder

		Binar	y Inputs		Decimal Output	
	Α	В	С	D	Active Low	B —
(0	0	0	0	YO	C •
	0	0	0	1	Y1	
	0	0	1	0	Y2	$D \longrightarrow $
	0	0	1	1	Y3	$A \longrightarrow$
	0	1	0	0	Y4	
	0	1	0	1	Y5	
	0	1	1	0	Y6	
	0	1	1	1	Y7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	1	0	0	0	Y8	
	1	0	0	1	Y9	Enable
	1	0	1	0	Y10	n Deloder 1 Devoder 2 Minterns
	1	0	1	1	Y11	\mathcal{A}
	1	1	0	0	Y12	O Enabled Disabled 0000 to 1011)
	1	1	0	1	Y13	A Deloder 1 Deloder 2 Minterns O Enabled Disabled 2000 to 011) I Disabled Enabled 2000 to 1111
	1	1	1	0	Y14	1)1 sableg 21000 ag 1000 10 1111
	1	1	1	1	Y15	

IMPLEMENTATION OF LOGIC EXPRESSIONS USING DECODERS

• Any combinational circuit with n-inputs and m outputs can be implemented with an n-to- 2^n decoder and OR gates.

Procedure:

- 1. Express the given Boolean function in sum of minterms.
- 2. A decoder that generates all the minterms of the input variables is then chosen.
- 3. The inputs to each OR gate are selected from the decoder outputs according to the list of minterms of each function.

Implement a full adder circuit using a 3-to-8 line decoder.

Each output is a minterm All minterms are produced Sum the required minterms

	Inputs	C_{i}	Sum	Carry
A	В	C C	S	C_0
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum output, Carry output,

$$S = \Sigma 1, 2, 4, 7$$

 $C_0 = \Sigma 3, 5, 6, 7$