Bounded Approximate Symbolic Dynamic Programming for Hybrid MDPs

Luis G. R. Vianna¹ Scott Sanner² Leliane N. de Barros¹

¹University of São Paulo São Paulo, Brazil ²Australian National University & NICTA Canberra, Australia

Hybrid Probabilistic Planning

Linear eXtended Algebraic Decision Diagram (XADD)

Symbolic Dynamic Programming (SDP)

XADD Compression

BASDP

Hybrid Probabilistic Planning

Linear eXtended Algebraic Decision Diagram (XADD)

Symbolic Dynamic Programming (SDP)

XADD Compression

BASDF

MDP

 Markov Decision Process (MDP) is an expressive model for sequential optimization.

• Hybrid State: $\vec{s} = (\vec{b}, \vec{x})$ e.g. $b_1 = AtGoal \in \{0, 1\}, \ \vec{x} = (x_1, x_2) \in \mathbb{R}^2$

- Hybrid State: $\vec{s} = (\vec{b}, \vec{x})$ e.g. $b_1 = AtGoal \in \{0, 1\}, \ \vec{x} = (x_1, x_2) \in \mathbb{R}^2$
- Parameterized Actions: $a(\vec{y})$, with $\vec{y} \in \mathbb{R}^k$ e.g. $a = move(y_1, y_2)$, with $\vec{y} \in \mathbb{R}^2$

- Hybrid State: $\vec{s} = (\vec{b}, \vec{x})$ e.g. $b_1 = AtGoal \in \{0, 1\}, \vec{x} = (x_1, x_2) \in \mathbb{R}^2$
- Parameterized Actions: $a(\vec{y})$, with $\vec{y} \in \mathbb{R}^k$ e.g. $a = move(y_1, y_2)$, with $\vec{y} \in \mathbb{R}^2$
- Transition Function: $T((\vec{b}, \vec{x}), a(\vec{y})) = (\vec{b}', \vec{x}')$ e.g. $T((\neg AtGoal, x_1, x_2), move(y_1, y_2)) =$ $x'_1 = x_1 + y_1,$ $x'_2 = x_2 + y_2,$ $AtGoal' = I[4 \le x'_1 \le 7 \land 2 \le x'_2 \le 4].$

- Hybrid State: $\vec{s} = (\vec{b}, \vec{x})$ e.g. $b_1 = AtGoal \in \{0, 1\}, \vec{x} = (x_1, x_2) \in \mathbb{R}^2$
- Parameterized Actions: $a(\vec{y})$, with $\vec{y} \in \mathbb{R}^k$ e.g. $a = move(y_1, y_2)$, with $\vec{y} \in \mathbb{R}^2$
- Transition Function: $T((\vec{b}, \vec{x}), a(\vec{y})) = (\vec{b}', \vec{x}')$ e.g. $T((\neg AtGoal, x_1, x_2), move(y_1, y_2)) =$ $x'_1 = x_1 + y_1,$ $x'_2 = x_2 + y_2,$ $AtGoal' = I[4 \le x'_1 \le 7 \land 2 \le x'_2 \le 4].$
- Reward Function: $R((\vec{b}, \vec{x}), a(\vec{y}), (\vec{b}', \vec{x}')) = r \in \mathbb{R}$ e.g. $R((\neg AtGoal, \vec{x}), a(\vec{y}), (AtGoal, \vec{x}')) = 1$, else $R(\cdot) = 0$

HMDP Solution

Optimal policy maximizes expected total reward:

$$\pi^* = \operatorname*{arg\,max}_{a_t(\vec{y_t})} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^t \underbrace{\mathcal{R}(\vec{s_{t-1}}, a_t(\vec{y_t}), \vec{s_t})}_{r_t}\right].$$

HMDP Solution

Optimal policy maximizes expected total reward:

$$\pi^* = \operatorname*{arg\,max}_{a_t(\vec{y_t})} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^t \underbrace{\mathcal{R}(\vec{s_{t-1}}, a_t(\vec{y_t}), \vec{s_t})}_{r_t}\right].$$

The maximal reward obtained from a state is its value function:

$$V^*(\vec{s},h) = \mathbb{E}\left[\sum_{t=0}^h \gamma^t r_t \mid s_0 = \vec{s}, a_t(\vec{y_t}) = \pi^*(\vec{s_t})\right].$$

Hybrid Probabilistic Planning

Linear eXtended Algebraic Decision Diagram (XADD)

Symbolic Dynamic Programming (SDP)

XADD Compression

BASDF

Linear XADD

XADDs are directed acyclic graphs with two kind of nodes:

- *Terminal (leaf) node*: A linear function, Ex: $0, 1.7, 7x_1 8x_2$
- Internal node: A linear inequality or boolean variable.

 XADD use independencies and compute operations in piecewise functions efficiently.

XADD represent piecewise linear functions

XADD represent piecewise linear functions

XADD represent piecewise linear functions

Example of piecewise linear function in case and XADD form

Hybrid Probabilistic Planning

Linear eXtended Algebraic Decision Diagram (XADD)

Symbolic Dynamic Programming (SDP)

XADD Compression

BASDF

SDP

The back propagation is performed using Bellman's Equation [Sanner11, Zamani12]:

$$\underbrace{Q_{a}^{h}(\vec{b}, \vec{x}, \vec{y})}_{XADD} = \sum_{\vec{b}'} \int_{\vec{x}'} \left[\prod_{k=1}^{n+m} \underbrace{P}_{XADD}(v'_{k}|\vec{b}, \vec{x}, \underline{a}, \vec{y}) \otimes \left(\underbrace{R}_{XADD}(\vec{b}, \vec{x}, \underline{a}, \vec{y}, \vec{b}', \vec{x}') \oplus \gamma \underbrace{V^{h-1}(\vec{b}', \vec{x}') d\vec{x}'}_{XADD} \right) \right]$$

$$\underbrace{V^h}_{XADD}(\vec{b}, \vec{x}) = \max_{a \in A} \max_{\vec{y} \in \mathbb{R}^{|\vec{y}|}} \left\{ Q^h_a(\vec{b}, \vec{x}, \vec{y}) \right\}$$

XADD Compression

(b) Value at 6th iteration for 5% approximate SDP.

XADD Compression

Size reduction by linear approximation and region merging

DD Leaf-based Compression

Based on ADD approximation [APRICODD], XADDs are approximated by successive leaf merging which removes internal nodes upon minimization.

ADD approximation by leaf merging

Successive Approximation

Successive Approximation

First Merge

Successive Approximation

XADD Compression

Size reduction by linear approximation and region merging

XADE

Pairwise Leaf Merging

$$\min_{\vec{c}^*} \max_{i \in \{1,2\}} \max_{\vec{x} \in S_{\phi_i}} \left| \underbrace{\vec{c_i}^T \begin{bmatrix} \vec{X} \\ 1 \end{bmatrix}}_{f_i} - \underbrace{\vec{c^*}^T \begin{bmatrix} \vec{X} \\ 1 \end{bmatrix}}_{f^*} \right| \tag{1}$$

$$\min_{\vec{c}^*, \epsilon} \epsilon
s.t. \epsilon \ge \left| \vec{c_i}^T \begin{bmatrix} \vec{x_{ij}^k} \\ 1 \end{bmatrix} - \vec{c^*}^T \begin{bmatrix} \vec{x_{ij}^k} \\ 1 \end{bmatrix} \right|; \quad \forall i \in \{1, 2\}, \forall \theta_{ij}, \\ \forall k \in \{1 \dots N_{ij}\}$$

Constraint Generation Solution

- 1 Start with $C_S = \emptyset$ and a arbitrary solution $\vec{c^*}$
- 2 For each polytope find optimal vertex $\vec{x_{ij}}$:

$$\vec{x_{ij}^{k}} := arg \max_{\vec{x}} \left(\vec{c_{i}}^{T} \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix} - \vec{c^{*}}^{T} \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix} \right)$$

s.t. $\vec{x} \in Polytope(\theta_{ij})$

- 3 Add constraints for these $\vec{x_{ii}}$ to constraint set
- 4 Solve the minimization step and find a new solution \vec{c} and error ϵ
- 5 If \vec{c} or ϵ is unchanged in the minimization, we are at an optimal solution, return it.
- 6 Otherwise return to the maximization step

BASDP

- Return to SDP and Value Iteration setting.
- Add the following step between iterations.

$$\underbrace{V^h}_{XADD}(ec{b},ec{x}) = exttt{XADDCOMPRESS}\,V^h(ec{b},ec{x})$$

Rover Linear 1D

Value function at iteration 6 for MARS ROVER1D, showing how different levels of approximation error (eps) lead to different compressions.

Performance: Nodes

Figure: Performance plots for MARS ROVER2D: Space.

Performance: Time

Figure: Performance plots for MARS ROVER2D: Time.

Performance: Error

Figure: Performance plots for MARS ROVER2D: Maximum Error.

Rover 2D

(b) Value at 6th iteration for 5% approximate SDP.

Value function at iteration 6 for the MARS ROVER2Ddomain:

Conclusions

- Introduced a compression method for XADDs;
- Solved a bilinear saddle point optimization by reduction to bi-level linear programming and constraint generation.
- Great time and space savings in exchange for small errors.
- Improved SDP scalability with bounded approximation.

Thanks for your attention!

Questions?