# Сейсмическая задача

## Подготовка

GeologyIO` и GPNTools` разработаны специально для компании Газпром Нефть НТЦ

### Обращаться к Екименко Антону

## Импорт данных

#### Сам импорт

```
trainTable =
In[ • ]:=
       Normal[Import["Heff+NTG_train.xlsx", "Dataset", "HeaderLines" -> 1][[1]]];
       testTable =
In[ • ]:=
       Normal[Import["Heff+NTG_train.xlsx", "Dataset", "HeaderLines" -> 1][[2]]];
       horiz = Function[arr, <|</pre>
In[ • ]:=
           "toCoord" -> Dispatch[Round[#[[{1, 2}]]] ->
                \#[[{3, 4, 5}]]\& /@ arr[[All, {3, 6, 7, 8, 9}]]],
            "toIndex" -> Dispatch[Round[#[[{3, 4}]]] ->
                #[[{1, 2}]]& /@ arr[[All, {3, 6, 7, 8, 9}]]]
       Import["seismic_interpretation_new.charisma"];
       cube =
In[ • ]:=
       SEGYImport["3D_cube_new.sgy", "Loading" -> "Delayed"];
```

### Таблицы

#### Dataset[trainTable] In[ • ]:=

| X         | У                      | Heff1a | Heff1b | Heff2 | NTG1a | NTG1b |
|-----------|------------------------|--------|--------|-------|-------|-------|
| -1539284. | 7357878.               | 0.18   | 0.99   | 4.12  | 0.47  | 0.46  |
| -1529063. | 7363225.               | 2.51   | 0.04   | 0.07  | 1.0   | 0.03  |
| -1533351. | 7368928.               | 2.74   | 4.4    | 5.6   | 0.76  | 0.32  |
| -1536884. | 7365563.               | 14.57  | 5.8    | 8.38  | 0.88  | 0.71  |
| -1536957. | 7 366 245.             | 10.78  | 0.02   | 5.61  | 0.84  | 0.06  |
| -1536413. | 7364685.               | 7.4    | 0.0    | 2.09  | 0.82  | 0.73  |
| -1536579. | 7366732.               | 9.39   | 5.6    | 0.01  | 0.64  | 0.6   |
| -1537977. | 7361696.               | 2.81   | 0.0    | 3.41  | 1.0   | 0.0   |
| -1536185. | 7361024.               | 8.42   | 2.16   | 3.33  | 0.89  | 1.0   |
| -1535879. | 7361532.               | 3.57   | 1.19   | 0.72  | 0.58  | 1.0   |
| -1536511. | 7361478.               | 7.43   | 0.05   | 0.12  | 0.75  | 1.0   |
| -1537103. | 7360694.               | 16.71  | 0.01   | 0.06  | 0.85  | 1.0   |
| -1540580. | 7370157.               | 1.09   | 0.0    | 0.08  | 0.67  | 0.0   |
| -1537313. | 7365044.               | 7.76   | 4.52   | 7.97  | 0.82  | 0.72  |
| -1540809. | 7363851.               | 1.49   | 0.0    | 0.57  | 1.0   | 0.0   |
| -1539963. | 7362406.               | 3.2    | 0.0    | 0.53  | 0.84  | 0.0   |
| -1540446. | 7 359 539.             | 8.45   | 0.0    | 0.0   | 0.82  | 0.0   |
| -1537229. | 7364760.               | 7.19   | 2.01   | 7.73  | 0.8   | 0.71  |
| -1529908. | 7358195.               | 0.77   | 3.6    | 4.14  | 0.71  | 1.0   |
| -1528459. | 7362109.               | 1.7    | 9.2    | 5.82  | 0.43  | 0.7   |
| K < sho   | wing 1-20 of <b>30</b> | k <    |        |       |       |       |

Dataset[testTable] In[ • ]:=

| x         | У        | Heff1a | Heff1b | Heff2 | NTG1a | NTG1b |
|-----------|----------|--------|--------|-------|-------|-------|
| -1539284. | 7357878. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1535537. | 7362509. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1542815. | 7358588. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1539369. | 7365372. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1532044. | 7360515. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1537476. | 7367782. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1526450. | 7364392. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |
| -1539191. | 7371095. | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |

Out[ • ]=

Out[ • ]=

#### 3D-карта глубин

```
ListContourPlot[Values[Normal[horiz["toCoord"]][[1 ;; -1 ;; 100]]],
In[ • ]:=
           ImageSize -> Medium,
           GridLines -> Automatic,
           PlotLegends -> Automatic
       ]
```



### Срез куба

```
ArrayPlot[
In[ • ]:=
           Transpose[SEGYLoad[cube["TracesUnloaded", 1 ;;
               cube["BinaryHeader", "NumberOfSamplesForReel"]]]],
           ColorFunction -> "TemperatureMap",
           ImageSize -> Medium, PlotLegends -> Automatic
```



## Приведение данных

У нас есть координаты из тестовых данных.

По этим координатам необходимо взять трассы.

К сожалению координаты трасс и скважин не совпадают точно.

Придется ради экономии написать "неадекватный" код:

```
Options[WellTraces] = {"count" -> 1};
In[ • ]:=
       WellTraces[cube_SEGYData, horiz_Association, table_List, OptionsPattern[]] :=
In[ • ]:=
       Block[{$indexes, $traceIndex,
           $ilineMin, $ilineMax, $xlineMin, $xlineMax, $ilineLen, $xlineLen,
           $count = OptionValue["count"],
           $delrt = ("delrt" /. SEGYLoad[cube["traceheadersunloaded", 1]]) / 1000.0,
           $dt = ("dt" /. SEGYLoad[cube["traceheadersunloaded", 1]]) / 1000000.0,
           $ns = "ns" /. SEGYLoad[cube["traceheadersunloaded", 1]]
       },
           $indexes = Flatten[Table[
               Select [ (g + \#\& /@ SortBy[Tuples[Range[-100, 100], 2], Abs /* Total]) /.
               horiz["toIndex"], Total[Abs[#]] < 10000&][[1 ;; $count]],
                {g, Round[Normal[Query[All, {"x", "y"} /* Values] @ table]]}
           ], 1];
           {$ilineMin, $ilineMax} = "iline" /.
               SEGYLoad[cube["TraceHeadersUnloaded", {1, -1}]];
            {$xlineMin, $xlineMax} = "xline" /.
               SEGYLoad[cube["TraceHeadersUnloaded", {1, -1}]];
           $ilineLen = $ilineMax - $ilineMin + 1;
           $xlineLen = $xlineMax - $xlineMin + 1;
           $traceIndex[{iline_Integer, xline_Integer}] :=
                (iline - $ilineMin) * $xlineLen + xline - $xlineMin + 1;
           MapThread [
               Association [Append[
                    Thread[{"x", "y", "t"} -> #1 / {1, 1, 1000.0}],
                    "trace" -> TimeSeries[#2,
                        {Range[$delrt, $delrt + $ns * $dt - $dt, $dt]}]
               ]]&,
                    $indexes /. horiz["toCoord"],
                    SEGYLoad[cube["tracesunloaded", $traceIndex /@ $indexes]]
           ]
       ]
```

### Выберем по одной ближайшей трассе около точек из тестовой таблицы:

### ${\tt Dataset}\big[{\tt WellTraces}\big[{\tt cube, horiz, testTable, "count" -> 1}\big]\big]$

In[ • ]:=

|           | Х         | У        | t       | trace       |                                     |
|-----------|-----------|----------|---------|-------------|-------------------------------------|
|           | -1539289. | 7357875. | 1.96537 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1535541. | 7362506. | 1.95689 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1542818. | 7358575. | 1.98516 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
| Out[ • ]= | -1539377. | 7365369. | 1.93811 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1532053. | 7360508. | 1.97382 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1537471. | 7367766. | 1.96148 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1526459. | 7364394. | 1.97138 | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |
|           | -1539189. | 7371089. | 1.9338  | TimeSeries[ | Time: 1.65 to 2.25 Data points: 301 |

## Интерполяция таблицы

Трассы находятся не точно в скважинах. Если у нас 4 близкие трассы то есть проблема выбора значений для них.

Попробуем просто использовать IDW на таблице:

```
Table[
In[ • ]:=
               trainValues[column] =
               IDWInterpolation[Values[trainTable[[All, {"x", "y", column}]]]],
               \left\{ \texttt{column, } \left\{ \texttt{"Heff1a", "Heff1b", "Heff2", "NTG1a", "NTG1b", "NTG2"} \right\} \right\}
```

Out[\*]= { IDWInterpolatedFunction [



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
Radius: 1.13 × 10<sup>4</sup>
                             Delta: 0.0167
                                                      Beta: 2
```

#### IDWInterpolatedFunction [



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
Radius: 1.13 × 10<sup>4</sup>
                              Delta: 0.0092
```

#### IDWInterpolatedFunction [



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
Radius: 1.13 × 10<sup>4</sup>
                             Delta: 0.00838
                                                        Beta: 2
```

#### IDWInterpolatedFunction [



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
                             Delta: 0.00099
Radius: 1.13 × 10<sup>4</sup>
                                                        Beta: 2
```

#### IDWInterpolatedFunction [



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
Radius: 1.13 × 10<sup>4</sup>
                              Delta: 0.001
                                                     Beta: 2
```

#### IDWInterpolatedFunction[



```
Range: x: \{-1.54081 \times 10^6, -1.52773 \times 10^6\} y: \{7.35788 \times 10^6, 7.37016 \times 10^6\}
Radius: 1.13 × 10<sup>4</sup>
                              Delta: 0.001
                                                     Beta: 2
```

Теперь даже если координата трассы не совпадает точно с координатой известного значения из таблицы, то все равно можно вычислить приближенно значения толщин. Однако стоит помнить, что для малого числа точек это работает только вбизи известных значений

```
trainTable[[1, "Heff1a"]]
In[ • ]:=
       trainValues["Heff1a"][Values[trainTable[[1, {"x", "y"}]]] + {100, 100}]
```

Out[\*]= **0.18** 

Out[\*]= **0.180286** 

## Функции

Здесь стоит определять все вспомогательные функции

Получение куска временного ряда

```
traceWindow[{t1_?NumericQ, t2_?NumericQ}] :=
In[ • ]:=
           Function[a, TimeSeriesWindow[a["trace"], a["t"] + {t1, t2}]]
           \label{eq:traceWindow} \left[ \text{dt}\_?\text{NumericQ} \right] := \text{traceWindow} \left[ \left\{ -\text{dt, dt} \right\} \ / \ 2 \right]
In[ • ]:=
```

Разложение трассы на компоненты

```
waveleComponent[n_Integer][ts_] :=
In[ • ]:=
       TimeSeries [Re[ContinuousWaveletTransform[ts["Values"], MexicanHatWavelet[]][[1, n]]], {ts["Ti
```

Это специальное определение для вырезки окна

```
waveleComponent[n_Integer][a_Association] :=
In[ • ]:=
       <|"t" -> a["t"], "trace" -> waveleComponent[n][a["trace"]]|>
```

Поиск ближайшего минимума слева/справа

```
nearMin["left"][a_Association] :=
In[ • ]:=
       Block[{
           w = traceWindow[{a["trace"]["FirstTime"]-a["t"], 0}][a]["Path"],
           tmin = 0
       },
           Print[$w];
           Table[
               If[$tmin === 0 && $w[[-i, 2]] <=
               w[[-i + 1, 2]] \& w[[-i, 2]] < w[[-i - 1, 2]],
                   $tmin = $w[[i, 1]]
               \{i, 2, Length[$w] - 1\}
           ]; $tmin
       ]
```

```
nearMin["right"][a_Association] :=
In[ • ]:=
       Block[{
           $w = traceWindow[{0, a["trace"]["LastTime"]-a["t"]}][a]["Path"],
           $tmin = 0
       },
           Print[$w];
           Table[
               If[$tmin === 0 && $w[[i, 2]] <=
               w[[i + 1, 2]] \& w[[i, 2]] < w[[i - 1, 2]],
                   $tmin = $w[[i, 1]]
               \{i, 2, Length[$w] - 1\}
           ]; $tmin
      ]
```

## Создание таблицы с атрибутами

```
DataQuery = Query[All, <|
        "x" -> "x",
        "y" -> "y",
        "t" -> "t",
        "trace" -> "trace",
        "window" -> {"t", "trace"} /*
               traceWindow[{0, 0.03}],
        "windowImg" -> {"t", "trace"} /*
               traceWindow[{0, 0.03}] /* DateListPlot,
        "RMS(0ms)" -> {"t", "trace"} /*
                traceWindow[{0.00,0.01}] /* RootMeanSquare,
        "RMS(10ms)" -> {"t", "trace"} /*
               traceWindow[{0.01,0.02}] /* RootMeanSquare,
        "RMS(20ms)" -> {"t", "trace"} /*
               traceWindow[{0.020,0.03}] /* RootMeanSquare,
        "RMS (0mscwt8)" -> {"t", "trace"} /*
               waveleComponent[8] /* traceWindow[{0.00,0.01}] /* RootMeanSquare,
        "RMS(0mscwt16)" -> {"t", "trace"} /*
               waveleComponent[16] /* traceWindow[{0.00,0.01}] /* RootMeanSquare,
        "RMS(0mscwt20)" -> {"t", "trace"} /*
               wavele Component \cite{Mainequation} \cite{M
        "RMS(10mscwt8)" -> {"t", "trace"} /*
               waveleComponent[8] /* traceWindow[{0.01,0.02}] /* RootMeanSquare,
        "RMS(10mscwt16)" -> {"t", "trace"} /*
                waveleComponent[16] /* traceWindow[{0.01,0.02}] /* RootMeanSquare,
        "RMS(10mscwt20)" -> {"t", "trace"} /*
               waveleComponent[20] /* traceWindow[{0.01,0.02}] /* RootMeanSquare,
        "RMS(20mscwt8)" -> {"t", "trace"} /*
                waveleComponent[8] /* traceWindow[{0.02,0.03}] /* RootMeanSquare,
        "RMS(20mscwt16)" -> {"t", "trace"} /*
               waveleComponent[16] /* traceWindow[{0.02,0.03}] /* RootMeanSquare,
        "RMS(20mscwt20)" -> {"t", "trace"} /*
               waveleComponent[20] /* traceWindow[{0.02,0.03}] /* RootMeanSquare,
        "Heff1a" -> {"x", "y"} /* Values /*
               trainValues["Heff1a"] /* (# * (1 + RandomReal[{-0.025, 0.025}])&),
        "Heff1b" -> {"x", "y"} /* Values /*
               \label{trainValues} \mbox{ ["Heff1b"] /* (# * (1 + RandomReal[{-0.025, 0.025}])\&),}
        "Heff2" -> {"x", "y"} /* Values /*
               trainValues["Heff2"] /* (# * (1 + RandomReal[{-0.025, 0.025}])&),
        "NTG1a" -> {"x", "y"} /* Values /* trainValues["NTG1a"] /*
                (# * (1 + RandomReal[{-0.025, 0.025}])&),
        "NTG1b" -> {"x", "y"} /* Values /*
               trainValues["NTG1b"] /* (# * (1 + RandomReal[{-0.025, 0.025}])&),
        "NTG2" -> {"x", "y"} /* Values /* trainValues["NTG2"] /*
                (# * (1 + RandomReal[{-0.025, 0.025}])&)
|>];
```

#### Выбор по 6 трасс около каждой скважины для тренировки

trainTraces = WellTraces[cube, horiz, trainTable, "count" -> 6];

Таблица с данным для тренировки

In[ • ]:=

#### Dataset[trainDataset = DataQuery @ trainTraces] In[ • ]:=

| <           | У          | t       | trace                                          | window   |
|-------------|------------|---------|------------------------------------------------|----------|
| -1 539 289. | 7357875.   | 1.96537 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |
| -1539280.   | 7357898.   | 1.96452 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |
| -1 539 266. | 7357866.   | 1.96496 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |
| -1539312.   | 7357884.   | 1.9656  | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeS  |
| -1 539 257. | 7357889.   | 1.96411 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |
| -1 539 298. | 7357852.   | 1.96575 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeS  |
| 1 529 078.  | 7363224.   | 1.97355 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeS  |
| 1 529 055.  | 7363215.   | 1.97298 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeS  |
| -1529069.   | 7363247.   | 1.97354 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |
| -1 529 046. | 7363238.   | 1.97311 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSo |
| -1 529 064. | 7363192.   | 1.97305 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeS  |
| -1 529 022. | 7 363 228. | 1.97264 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | ] TimeSe |

Out[ • ]=

| -1533354. | 7 368 921.              | 1.96055 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ]      |
|-----------|-------------------------|---------|---------------------------------------------------------|
| -1533345. | 7368944.                | 1.96153 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ] Time |
| -1533377. | 7368930.                | 1.96    | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ] Time |
| -1533331. | 7368912.                | 1.96116 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ]      |
| -1533322. | 7368935.                | 1.96211 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ] Time |
| -1533368. | 7368953.                | 1.96095 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ]      |
| -1536881. | 7365569.                | 1.94215 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ]      |
| -1536890. | 7 365 546.              | 1.94165 | TimeSeries [ Time: 1.65 to 2.25 Data points: 301 ] Time |
| K < show  | ving 1–20 of <b>180</b> | k <     |                                                         |

### Тренировка

Специальная функция для тестирование обчения

```
checkPredictor[data_List, attrs: {__String}, key_String, {n_Integer, m_Integer}, method_Strin
In[ • ]:=
       Block[{\$trainDataTest, \$trainSample, \$trainCheck, \$predictorTest,
           $data = Query[All, Append[attrs, key]] @ data},
           Table[
               $trainSample = RandomSample[$data, n];
               $trainCheck = Complement[$data, $trainSample];
               Clear[$predictorTest];
               $predictorTest = Predict[$trainSample -> key, Method -> method];
               Transpose[{$trainCheck[[All, key]], $predictorTest[$trainCheck]}],
                {m}
           ]
       1
```

Список атрибутов на котором будет производиться обучение

```
In[ • ]:=
        trainAttrs = {"t",
            "RMS (0ms)", "RMS (10ms)", "RMS (20ms)",
            "RMS (0mscwt8)", "RMS (0mscwt16)", "RMS (0mscwt20)",
            "RMS (10mscwt8)", "RMS (10mscwt16)", "RMS (10mscwt20)",
            "RMS(20mscwt8)", "RMS(20mscwt16)", "RMS(20mscwt20)"
        };
```

Тренировка на случайной выборке 25/30 трасс

Нейросеть восстанавливает данные 5 раз на разных выборках

```
checkRes = Association[Table[
In[ • ]:=
           key ->
           checkPredictor[trainDataset[[1;; -1;; 6]], trainAttrs, key, {25, 5},
                "NeuralNetwork"],
            {key, {"Heff1a", "Heff1b", "Heff2", "NTG1a", "NTG1b", "NTG2"}}
       ]];
```

Out[ • ]=

#### Построим результат

```
Grid[ArrayReshape[Table[ListPlot[checkRes[key],
In[ • ]:=
           ImageSize -> Small,
           Frame -> True,
           PlotRange -> {{0, 1.2Max[Flatten[checkRes[key]]]},
                {0, 1.2Max[MinMax[Flatten[checkRes[key]]]]}},
           GridLines -> Automatic,
           AspectRatio -> 1,
           PlotStyle -> PointSize[Large],
           PlotLabel -> key
       ], {key, Keys[checkRes]}], {2, 3}]]
```



Посмотрим на корреляцию каждой выборки

```
Dataset [Map [Association,
In[ • ]:=
            Transpose [Map [Thread, Normal [Map [Transpose /*
            Apply[Correlation]] /@ checkRes]]]
        ]]
```

| Heff1a    | Heff1b    | Heff2     | NTG1a      | NTG1b     | NTG2      |
|-----------|-----------|-----------|------------|-----------|-----------|
| 0.987855  | -0.525686 | 0.730428  | 0.0707037  | -0.433943 | 0.890087  |
| 0.871857  | 0.550772  | 0.735079  | 0.00826604 | 0.016425  | -0.468106 |
| -0.206603 | -0.201788 | -0.210088 | -0.921674  | 0.91201   | 0.339783  |
| 0.043051  | 0.19063   | -0.333551 | -0.157041  | 0.261543  | 0.186578  |
| 0.933074  | 0.295049  | -0.639318 | 0.530521   | 0.24421   | -0.528443 |

Теперь все тоже самое, но выберем побольше трасс

```
checkRes2 = Association[Table[
In[ • ]:=
           key ->
           checkPredictor[trainDataset[[1 ;; -1 ;; 2]], trainAttrs, key,
                {60, 5}, "NeuralNetwork"],
            {key, {"Heff1a", "Heff1b", "Heff2", "NTG1a", "NTG1b", "NTG2"}}
       ]];
```

#### Картинки

```
Grid[ArrayReshape[Table[ListPlot[checkRes2[key],
In[ • ]:=
           ImageSize -> Small,
           Frame -> True,
           PlotRange -> {{0, 1.2Max[Flatten[checkRes2[key]]]},
                {0, 1.2Max[MinMax[Flatten[checkRes2[key]]]]}},
           GridLines -> Automatic,
           AspectRatio -> 1,
           PlotStyle -> PointSize[Large],
           PlotLabel -> key
       ], {key, Keys[checkRes2]}], {2, 3}]]
```



Out[ •

#### Местами невероятная корреляция

Dataset [Map [Association, Transpose [Map [Thread, In[ • ]:= Normal[Map[Transpose /\* Apply[Correlation]] /@ checkRes2]]]]]

|      | Heff1a   | Heff1b   | Heff2    | NTG1a    | NTG1b    | NTG2     |
|------|----------|----------|----------|----------|----------|----------|
|      | 0.956702 | 0.737285 | 0.760024 | 0.918898 | 0.313861 | 0.810774 |
|      | 0.923712 | 0.4664   | 0.955107 | 0.824804 | 0.915616 | 0.848662 |
| • ]= | 0.940584 | 0.505324 | 0.684241 | 0.68604  | 0.729    | 0.898872 |
|      | 0.829969 | 0.582599 | 0.883156 | 0.730327 | 0.433423 | 0.613969 |
|      | 0.783515 | 0.796504 | 0.73994  | 0.828887 | 0.880263 | 0.682619 |

Что ж...

Попробуем натренировать сеть...

```
ClearAll[predictors];
In[ • ]:=
         predictors = Association[Table[key ->
             Predict[trainDataset[[All, Append[trainAttrs, key]]] -> key,
                  Method -> "NeuralNetwork"],
         {key, {"Heff1a", "Heff1b", "Heff2", "NTG1a", "NTG1b", "NTG2"}}]]
                                              Input type: Mixed (number: 13)
Out[\ \ \ \ ]=\ \ \langle \ \ | \ \ Heff1a \rightarrow PredictorFunction [\ \ \ ]
                                                        Method: NeuralNetwork
                                                       Input type: Mixed (number: 13)
        \textbf{Heff1b} \rightarrow \textbf{PredictorFunction}
                                                       Method: NeuralNetwork
                                                     Input type: Mixed (number: 13)
        Heff2 \rightarrow PredictorFunction
                                                      Method: NeuralNetwork
                                                      Input type: Mixed (number: 13)
        \textbf{NTG1a} \rightarrow \textbf{PredictorFunction}
                                                      Method: NeuralNetwork
                                                      Input type: Mixed (number: 13)
        NTG1b → PredictorFunction
                                                      Method: NeuralNetwork
                                                    Input type: Mixed (number: 13)
        NTG2 → PredictorFunction
                                                    Method: NeuralNetwork
```

### ... и применить к тестовым данным:

In[ • ]:=

Dataset[testDataset = Query[All, 1 ;; -7] @ DataQuery @ WellTraces[cube, horiz, testTable]]

|                  | х           | У        | t       | trace                                          | window    |
|------------------|-------------|----------|---------|------------------------------------------------|-----------|
|                  | -1539289.   | 7357875. | 1.96537 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1535541.   | 7362506. | 1.95689 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1542818.   | 7358575. | 1.98516 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
| <i>Out[ ∅ ]=</i> | -1539377.   | 7365369. | 1.93811 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1532053.   | 7360508. | 1.97382 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1537471.   | 7367766. | 1.96148 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1 526 459. | 7364394. | 1.97138 | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |
|                  | -1539189.   | 7371089. | 1.9338  | TimeSeries Time: 1.65 to 2.25 Data points: 301 | TimeSerie |

#### Результат

```
Dataset[result = MapThread[
In[ • ]:=
              Association[Join[#1, #2]]&, {
                   Normal[testTable[[All, {"x", "y"}]]],
                   Transpose[Table[Thread[key ->
                        predictors[key][testDataset] \big], \ \big\{ key, \ Keys \big[ predictors \big] \big\} \big] \big]
              }
         ]]
```

|           | X         | У        | Heff1a    | Heff1b   | Heff2     | NTG1a    | NTG1b     |
|-----------|-----------|----------|-----------|----------|-----------|----------|-----------|
|           | -1539284. | 7357878. | -0.187327 | 1.04766  | 4.37168   | 0.460234 | 0.482812  |
|           | -1535537. | 7362509. | 1.2479    | 1.24062  | 4.18475   | 0.482495 | 0.988867  |
|           | -1542815. | 7358588. | 1.84826   | 3.60372  | 1.23574   | 1.04567  | 0.0847745 |
| Out[ • ]= | -1539369. | 7365372. | 1.15101   | 0.214173 | 0.498101  | 0.856533 | 0.0336066 |
|           | -1532044. | 7360515. | 0.171697  | 1.66847  | 1.90643   | 0.639741 | 0.779828  |
|           | -1537476. | 7367782. | 4.52852   | 2.70697  | 1.93935   | 0.830215 | 0.659242  |
|           | -1526450. | 7364392. | 0.787204  | 2.43255  | 3.03887   | 0.875112 | 0.322729  |
|           | -1539191. | 7371095. | 4.30582   | 5.25369  | -0.315776 | 0.745791 | 0.407852  |

#### Ответ

In[ • ]:= Dataset answer = Normal[First[Import["Heff+NTG\_test\_answer.xlsx", "Dataset", "HeaderLines" -> 1]]]]

|           | X         | У        | Heff1a | Heff1b | Heff2 | NTG1a | NTG1b |
|-----------|-----------|----------|--------|--------|-------|-------|-------|
|           | -1539284. | 7357878. | 0.18   | 0.99   | 4.12  | 0.47  | 0.46  |
|           | -1535537. | 7362509. | 1.42   | 0.01   | 3.29  | 1.0   | 1.0   |
|           | -1542815. | 7358588. | 0.01   | 0.0    | 2.9   | 0.06  | 0.0   |
| Out[ • ]= | -1539369. | 7365372. | 0.2    | 0.0    | 0.09  | 0.5   | 0.0   |
|           | -1532044. | 7360515. | 0.01   | 2.4    | 9.99  | 0.07  | 1.0   |
|           | -1537476. | 7367782. | 4.05   | 4.36   | 4.19  | 0.8   | 0.57  |
|           | -1526450. | 7364392. | 1.1    | 0.01   | 4.09  | 1.0   | 0.0   |
|           | -1539191. | 7371095. | 0.15   | 3.37   | 0.98  | 0.27  | 0.51  |

#### Ошибка

```
Total[MapThread[Total[((#1 - #2))^2] / Length[#1]&,
{Values[answer[[All, 3 ;; 5]]], Values[result[[All, 3 ;; 5]]]}]] / Length[answer]
```

Out[\*]= **5.26253** 

И сохраним результат

Export["Heff+NTG\_test\_result.xlsx", Dataset[result]]

Out[\*]= Heff+NTG\_test\_result.xlsx