Trigonometry

• Units of Angles (Degree and Radian)

• Degree:
$$1^{\circ} = \frac{\pi}{180}$$
 \rightarrow for e.g. $135^{\circ} = 135 \times \frac{\pi}{180} = \frac{3\pi}{4}$

• Radian:
$$1^R = \frac{180^{\circ}}{\pi} \rightarrow \text{for e.g. } \frac{11\pi}{3} = \frac{11\pi}{3} \times \frac{180^{\circ}}{\pi} = 660^{\circ}$$

Degree (Multiply by $\frac{\pi}{180}$)	Radian $\left(\text{Multiply by} \frac{180^{\circ}}{\pi} \right)$
360°	2π
180°	π
90°	$\frac{\pi}{2}$
45°	$rac{\pi}{4}$
60°	$\frac{\pi}{3}$
30°	$\frac{\pi}{6}$

• Compound Angles (Formulas):

1.
$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$

2.
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

3.
$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$$

4.
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

5.
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

6.
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

- Allied Angles:
- For X-axis $((\pi \pm \theta) \text{ or } (2\pi \pm \theta))$, function does not change

i.e.
$$Sin \rightarrow Sin$$

$$Cos \rightarrow Cos$$

 $Tan \rightarrow Tan \dots$

- For Y-axis $\left(\left(\frac{\pi}{2} \pm \theta\right) \text{ or } \left(\frac{3\pi}{2} \pm \theta\right)\right)$, function changes
- i.e. $Sin \leftrightarrow Cos$

 $Tan \leftrightarrow Cot$

 $Cosec \leftrightarrow Sec$

- For e.g.: For $\csc\left(\frac{3\pi}{2} + \theta\right)$
- $\left(\frac{3\pi}{2} + \theta\right)$ lies in IV quadrant
- In IV quadrant cosec is − ve
- As $\frac{3\pi}{2}$ is on Y axis, so function changes, i.e. $\csc \rightarrow \sec$
- $\therefore \csc\left(\frac{3\pi}{2} + \theta\right) = -\sec\theta$

• Allied Angles:

Angle in Degree	-θ	90° - θ	$90^{0} + \theta$	180° - θ	$180^0 + \theta$
Angle in radian	- θ	$\frac{\pi}{2}$ - θ	$\frac{\pi}{2} + \theta$	π - θ	$\pi + \theta$
Sinθ	-Sinθ	Cosθ	Cosθ	Sinθ	-Sinθ
Cosθ	Cosθ	Sinθ	-Sinθ	-Cosθ	-Cosθ
Tanθ	-Tanθ	Cotθ	-Cotθ	-Tanθ	Tanθ
Cosecθ	-Cosecθ	Secθ	Secθ	Cosecθ	-Cosecθ
Secθ	Secθ	Cosec0	-Cosecθ	-Secθ	-Secθ
Cotθ	-Cotθ	Tanθ	-Tanθ	-Cotθ	Cotθ

Principal Periods of Trigonometric Functions:

•
$$\sin(ax+b)$$
: $\frac{2\pi}{|a|}$

•
$$\cos(ax+b)$$
: $\frac{2\pi}{|a|}$

•
$$\operatorname{cosec}(ax + b)$$
: $\frac{2\pi}{|a|}$

•
$$\sec(ax+b)$$
: $\frac{2\pi}{|a|}$

•
$$\tan(ax+b)$$
: $\frac{\pi}{|a|}$

•
$$\cot(ax+b)$$
: $\frac{\pi}{|a|}$

• Examples:

1. Principal Period of
$$\sin\left(\frac{7x}{3}\right) = \frac{2\pi}{\left|\frac{7}{3}\right|} = \frac{3\times 2\pi}{7} = \frac{6\pi}{7}$$

2. Principal Period of
$$\cos(-6x + 2) = \frac{2\pi}{|-6|} = \frac{2\pi}{6} = \frac{\pi}{3}$$

3. Principal Period of
$$tan(5x + 4) = \frac{\pi}{|5|} = \frac{\pi}{5}$$

4. Principal Period of
$$\sin\left(\frac{x}{3}\right) + \tan\left(\frac{x}{7}\right)$$

$$= LCM \left(PP \ of \ \sin\left(\frac{x}{3}\right), PP \ of \ \tan\left(\frac{x}{7}\right) \right)$$

$$= LCM\left(\frac{2\pi}{\left|\frac{1}{3}\right|}, \frac{\pi}{\left|\frac{1}{7}\right|}\right)$$

$$= LCM\left(\frac{3\times 2\pi}{1}, \frac{7\times \pi}{1}\right) = LCM\left(6\pi, 7\pi\right) = 42\pi$$

• Multiple and Submultiple Angles:

1.
$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$2. \quad \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

3.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

4.
$$\cos 2\theta = 2\cos^2\theta - 1$$

5.
$$\cos 2\theta = 1 - 2\sin^2\theta$$

6.
$$\cos 2\theta = \frac{1 - tan^2\theta}{1 + tan^2\theta}$$

7.
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

8.
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

9.
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

10.
$$\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

• Sums into Product (Factor Form)

1.
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right) \rightarrow S + S = 2SC$$

2.
$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right) \to S - S = 2CS$$

3.
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right) \to C + C = 2CC$$

4.
$$-\cos C + \cos D = 2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right) \rightarrow -C + C = 2SS$$

Or

$$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right) \rightarrow C - C = -2SS$$