A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	. 1
1.1	Differentiation	1

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Differentiation

Definition 1.1 [Forward and Backforward Difference Formula]

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Consider the Taylor expansion, we have

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi)$$

Definition 1.2 [General Derivative Approximation] The interpolation formula gives

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x)$$

Differentiating both sides gives (x_j) is one of the node points

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{1}{(n+1)!} f^{(n+1)}(\xi_{x_j}) \prod_{k=0, k \neq j}^{n} (x_j - x_k)$$

R Three-point formula:

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$
$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi_j) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

Substituting $x_i = x_0, x_1, x_2$, we obtain:

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3} f^{(3)}(\xi_0)$$
$$f'(x_0) = \frac{1}{2h} [-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

Definition 1.3 [Richardson Extrapolation] For the approximation with the form

$$M = N_1(h) + K_1 h^2 + K_2 h^4 + \cdots$$

we have the approximation

$$N_j(h) = N_{j-1}(\frac{h}{2}) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1}$$

where $N_i(h)$ has order $O(h^{2j})$

round-off error in $N_1(h/2^k)$; we recommend comparing the final diagonal entries to ensure accuracy.

Definition 1.4 [Quadrature formula]

$$\int_a^b f(x) \, \mathrm{d}x \approx \sum_{i=0}^n a_i f(x_i)$$

where

$$a_i = \int_a^b L_i(x) dx$$

$$E(f) = \frac{1}{(n+1)!} \int_a^b \prod_{i=0}^n (x - x_i) f^{(n+1)}(\xi_x) dx$$

1. Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f'(\xi)$$

Separating into subintervals $[x_{k-1}, x_k]$, we have, with h = (b - a)/n,

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{b-a}{12} h^2 f''(\mu)$$

2. Simpson's rule: for $h = (x_2 - x_0)/2$,

$$\int_{x_0}^{x_2} f(x) \, \mathrm{d}x = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90} f^{(4)}(\xi)$$

Error Bound: Taylor expansion of f(x), and bound the integrand

$$\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi_x) (x - x_1)^4 = \frac{f^{(4)}(\xi_1)}{120} (x - x_1)^5 \bigg|_{x_0}^{x_2} = \frac{f^{(4)}(\xi_1)}{60} h^5$$

Separating into subintervals $[x_0, x_2], [x_2, x_4], \dots, [x_{n-2}, x_n]$, we have, with h = (b - a)/n,

$$\int_{a}^{b} f(x) dx = \sum_{j=1}^{n/2} \left\{ \frac{h}{3} [f(x_{2j-2} + 4f(x_{2j-1}) + f(x_{2j}))] \right\}$$

$$Error = -\frac{h^{5}}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_{j}) = -\frac{h^{5}}{90} \frac{n}{2} f^{(4)} \mu = -\frac{b-a}{180} h^{4} f^{(4)}(\mu)$$

3. Composite Mid-point rule: for subintervals $[x_{-1}, x_1], \dots, [x_{n-1}, x_{n+1}]$ with centers

$$x_0, x_2, ..., x_n$$
, and $h = (b - a)/(n + 2)$

$$\int_{a}^{b} f(x) dx = 2h \sum_{j=0}^{n/2} f(x_{2j}) + \frac{b-a}{6} h^{2} f''(\mu)$$

[Degree of Precision] The degree of precision of a quadrature formula is n if and only if the error is zero for all polynomials of degree $k=0,1,\cdots,n$, but is not zero for some polynomial of degree n+1.

[Romberg Method] First column: for $k=2,\ldots,n$, $h_k=(b-a)/(2^{k-1})$

$$R_{k,1}=\frac{1}{2}\left[R_{k-1,1}+h_{k-1}\sum_{i=1}^{2^{k-2}}f(a+(2i-1)h_k)\right]$$
 For $k=j,j+1,\ldots$,
$$R_{k,j}=R_{k,j-1}+\frac{1}{4^{j-1}-1}(R_{k,j-1}-R_{k-1,j-1})$$

$$R_{k,j} = R_{k,j-1} + \frac{1}{4^{j-1} - 1} (R_{k,j-1} - R_{k-1,j-1})$$

Stopping Criteria: $|R_{n-1,n-1} - R_{n,n}| < \text{tol}$ and $|R_{n-2,n-2} - R_{n-1,n-1}| < \text{tol}$. Ensure two differently generated sets of approximations agree within the specified tolerance.

Definition 1.7 [Gauss-Quadrature Rule] Generate Legendre poylnomial $P_0(x) = 1$, $P_1(x) = 1$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

$$x$$
,
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
 Let $\{x_0,\ldots,x_n\}$ be rooots of $P_{n+1}(x)$, and
$$w_i = \int_{-1}^1 l_i(x) \,\mathrm{d}x = \int_{-1}^1 \prod_{j=0, j \neq i}^n \frac{x-x_j}{x_i-x_j} \,\mathrm{d}x, \quad i=0,1,\ldots,n$$

which implies

$$\int_{-1}^{1} f(x) dx = \sum_{j=0}^{n} w_{i} f(x_{i}) + \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{-1}^{1} \prod_{i=0}^{n} (x - x_{i})^{2} dx$$

Definition 1.8 [Pivoting] Why: small $a_{kk}^{(k)}$ leads big error.

- Partial: select an element in the same column that is below the diagonal and has the largest absolute value.
- ullet Scaled partial: first compute scale s_i for each row; then do the same as partial

Proposition 1.1 • $\|\mathbf{A}\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$

- $\|\boldsymbol{A}\|_2 = \sqrt{\lambda_{\max}(\boldsymbol{A}^T\boldsymbol{A})}$. If \boldsymbol{A} symmetric, then $\|\boldsymbol{A}\|_2 = \rho(\boldsymbol{A}) = \max |\lambda(\boldsymbol{A})|$
- $\|\mathbf{A}\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$
- $\rho(\mathbf{A}) \leq \|\mathbf{A}\|$ for any natural norm.
- \boldsymbol{A} is convergent iff $\rho(\boldsymbol{A}) < 1$.

Proof. For eigen-pair (λ, \mathbf{x}) with $\|\mathbf{x}\| = 1$,

$$|\lambda| = ||\lambda \boldsymbol{x}|| \le ||\boldsymbol{A}|| ||\boldsymbol{x}|| = ||\boldsymbol{A}||$$

Definition 1.9 [Jacobi's Method]

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{j=1, j \neq i}^{n} (-a_{ij} x_j^{(k-1)}) + b_i \right]$$

Or for the matrix form $\boldsymbol{x}^{(k)} = \boldsymbol{T}_{j} \boldsymbol{x}^{(k-1)} + \boldsymbol{c}$:

$$\mathbf{x}^{(k)} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(k-1)} + \mathbf{D}^{-1}\mathbf{b}$$

where D are the diagonal of A; -L, -U are the strictly lower and upper part of A.

[Gauss-Seidel Method]

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{k-1}) + b_i \right]$$

Or for the matrix form
$$\mathbf{x}^{(k)} = \mathbf{T}_{\mathcal{S}} \mathbf{x}^{(k-1)} + \mathbf{c}_{\mathcal{S}}$$
:
$$(\mathbf{D} - \mathbf{L}) \mathbf{x}^{(k)} = \mathbf{U} \mathbf{x}^{(k-1)} + \mathbf{b} \implies \mathbf{x}^{(k)} = (\mathbf{D} - \mathbf{L})^{-1} \mathbf{U} \mathbf{x}^{(k-1)} + (\mathbf{D} - \mathbf{L})^{-1} \mathbf{b}$$

Proposition 1.2 If $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(\mathbf{I} - \mathbf{T})^{-1} = \mathbf{I} + \mathbf{T} + \mathbf{T}^2 + \cdots$$

Proposition 1.3 The iteration $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ converges to the unique solution to

$$x = Tx + c$$

iff $\rho(\mathbf{T})$ < 1. The error bound holds:

- $\|\mathbf{x} \mathbf{x}^{(k)}\| \le \|\mathbf{T}\|^k \|\mathbf{x}^{(0)} \mathbf{x}\|$
- $\| \boldsymbol{x} \boldsymbol{x}^{(k)} \| \le \frac{\| \boldsymbol{T} \|^k}{1 \| \boldsymbol{T} \|} \| \boldsymbol{x}^{(1)} \boldsymbol{x}^{(0)} \|$
- $\|x x^{(k)}\| \approx [\rho(T)]^k \|x^{(0)} x\|$

Proof. Converse: Express $\mathbf{x}^{(k)}$ as

$$\boldsymbol{x}^{(k)} = \boldsymbol{T}^k \boldsymbol{x}^{(0)} + (\boldsymbol{T}^{k-1} + \cdots + \boldsymbol{T} + \boldsymbol{I})\boldsymbol{c}$$

Forward: Assume converge to \boldsymbol{x} , and therefore

$$x - x^{(k)} = T(x - x^{(k-1)}) = \cdots = T^k(x - x^{(0)})$$

for arbitrary $\mathbf{x}^{(0)}$. Taking limit implies $\lim_{k\to\infty} \mathbf{T}^k \mathbf{z} = \mathbf{0}$ for any \mathbf{z} .

Sufficient condition for convergence of Jacobi and Gauss-Seidel method: **A** is strictly diagonally dominant, i.e., $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$

Proposition 1.5 For $a_{ij} \le 0, i \ne j$ and $a_{ii} > 0$, one and only one conditon holds:

- $0 \le \rho(T_g) < \rho(T_i) < 1$
- $1 < \rho(\mathbf{T}_i) < \rho(\mathbf{T}_g)$
- $\bullet \ \rho(\mathbf{T}_i) = \rho(\mathbf{T}_g) = 0$
- $\rho(\mathbf{T}_i) = \rho(\mathbf{T}_g) = 1$

[Gauss-Seidel Method and Relaxation]

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$

Relaxation:

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

Or equivalently, ($\omega < 1$ is under-relaxation methods, $\omega > 1$ is over-relaxation methods.)

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij}x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij}x_j^{k-1}) + b_i \right]$$
$$\mathbf{x}^{(k)} = (\mathbf{D} - \omega \mathbf{L})^{-1} [(1 - \omega)\mathbf{D} + \omega \mathbf{U}] \mathbf{x}^{(k-1)} + \omega (\mathbf{D} - \omega \mathbf{L})^{-1} \mathbf{b}$$

$$\boldsymbol{x}^{(k)} = (\boldsymbol{D} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{D} + \omega \boldsymbol{U}] \boldsymbol{x}^{(k-1)} + \omega (\boldsymbol{D} - \omega \boldsymbol{L})^{-1} \boldsymbol{b}$$

Proposition 1.6 If $a_{ii} \neq 0$, then $\rho(T_{\omega}) \geq |\omega - 1|$, o.e., the SOR method converges only when $0 < \omega < 2$; sufficient condition for convergence: **A** is PD and $0 < \omega < 2$.

Proposition 1.7 If **A** is PD and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, the optimal choice is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

under this choice, we have $ho(T_\omega) = \omega - 1$

1. Direct method: Gaussian Eliminiation;

Advantage: Exact method, no truncation error;

Disadvantage: Computationally expansive, large round off error

Suitable: linear systems of small dimension

2. Iterative method:

Advantage: efficient in terms of both computer storage and computation

Disadvantage: not so efficient for small dimension

Suitable for: large linear sparse systems

Definition 1.12 The condition number of nonsingular matrix \mathbf{A} is $K(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$. If close to 1, then \mathbf{A} is well-conditioned, otherwise ill-conditioned.

Theorem 1.1 For natural norm,

$$\|\tilde{\mathbf{x}} - \mathbf{x}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{r}\| = K(\mathbf{A}) \frac{\|\mathbf{r}\|}{\|\mathbf{A}\|}$$

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|r\|}{\|b\|} = K(A) \frac{\|r\|}{\|b\|}, \quad x \ne 0, b \ne 0$$

Proof. Consider the first equality and $\|\boldsymbol{b}\| \leq \|\boldsymbol{A}\| \|\boldsymbol{x}\|$

Theorem 1.2 Suppose \pmb{A} is nonsingular and $\|\delta \pmb{A}\| \leq \frac{1}{\|\pmb{A}\|}$, the solution $\tilde{\pmb{x}}$ to $(\pmb{A} + \delta \pmb{A})\pmb{x} = \pmb{b} + \delta \pmb{b}$ has the bound

$$\frac{\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le \frac{K(\boldsymbol{A})\|\boldsymbol{A}\|}{\|\boldsymbol{A}\| - K(\boldsymbol{A})\|\delta\boldsymbol{A}\|} \left(\frac{\|\delta\boldsymbol{b}\|}{\|\boldsymbol{b}\|} + \frac{\delta\boldsymbol{A}}{\|\boldsymbol{A}\|}\right)$$

Proposition 1.8 For $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\operatorname{cond}(\mathbf{A}^{T}\mathbf{A}) = [\operatorname{cond}(\mathbf{A})]^{2}$

Theorem 1.3 For column full rank $A \in \mathbb{R}^{m \times n}$, we have A = QR, for $Q \in \mathbb{R}^{m \times n}$ with orthogonal columns, $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix.

As a result, the least square solution becomes

$$\boldsymbol{x}^* = \boldsymbol{R}^{-1} \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{b}$$

Gram-Schmidt Process: numerically unstable; ease of implementation

Theorem 1.4 — Householder matrix. For given vector \mathbf{x} and unit vector \mathbf{g} , define $\mathbf{z}H := \mathbf{I} - 2\mathbf{u}\mathbf{u}^{\mathrm{T}}$,

$$Hx = ||x||g, \quad u = \frac{x - ||x||g}{||x - ||x||g||}$$

$$\boldsymbol{H}_2 = \begin{pmatrix} 1 & 0 \\ 0 & \tilde{\boldsymbol{H}}_2 \end{pmatrix}$$

Define $Q = H_n \cdots H_1$, and $QA = R = [R_1; 0]$, which implies

$$A = [Q_1, Q_2] \begin{pmatrix} R_1 \\ 0 \end{pmatrix} = Q_1 R_1$$