Applied Data Science Capstone

Armando Morgado de Oliveira Neto

11/08/2022

70 2579

21.1026

99.2471 98.1905

9.7273

39.2027 28.0582

3.62

42.546B34485062

22.5687

52474777 0.7602381

3.0255 3.0254 SMEDROL

IBM **D**evclopei

SKILLS NETWORK

SKILLS NETWORK

IBM Devcloper

EXECUTIVE SUMMARY

Used Methodology:

- Collecting the data
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Analysis with Pandas and Matplotlib
- Interactive Visual Analytics with Folium
- Interactive Dashboard with Ploty Dash
- Machine Learning Prediction

Results

- Data Analysis Results
- Interactive Analytics Results
- Machine Learning Results

INTRODUCTION

Project Context

The objective of this project is simulate how a company, named SpaceY, will compete against the giant SpaceX. Using data to comprehend how SpaceX can launch a rocket costing just 62 millions of dollars while all others do it for around 165 millions.

- Problems you want to find answers
 - What factors determine if the rocket will land successfully?
 - The interaction amongst various features that determine the success rate of a successful landing.
 - External factors influence the success rate?
 - We can do regression logistic with the information collected?

METHODOLOGY

- Start collecting the data
 - Extract relevant information from Wikipedia page about Space X as you can see below:

df.	head()	IN HIS BANK IN NO.							
	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing
0	1	CCSFS	Transporter-1	~5,000 kg	SSO	SpaceX	Success\n	F9 B5B1058.5	Success
1	2	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure
2	3	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.0B0004.1	Failure
3	4	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.0B0005.1	No attempt\n
4	5	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.0B0006.1	No attempt

METHODOLOGY

On this paper the following tools were used to scrap and model the data:

- Pandas
- BeaultifulSoup
- Numpy
- Folium
- SQL
- Matplotlib
- Seaborn
- Sklearn
- Requests
- Plotdash

METHODOLOGY

 At Data Wrangling stage, the data was modeled to calculate the launch for each launching site, calculate the number and occurrence of each orbit, calculate the number and occurence of mission outcome per orbit type and create a landing outcome label from Outcome column.

RESULTS - Data Wrangling

Fli	ghtNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Cla
0	1	2010-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	
1	2	2012-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	
2	3	2013-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	
3	4	2013-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	
4	5	2013-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	
5	6	2014-01-06	Falcon 9	3325.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1005	-80.577366	28.561857	
6	7	2014-04-18	Falcon 9	2296.000000	ISS	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1006	-80.577366	28.561857	
7	8	2014-07-14	Falcon 9	1316.000000	LEO	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1007	-80.577366	28.561857	
8	9	2014-08-05	Falcon 9	4535.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1008	-80.577366	28.561857	
9	10	2014-09-07	Falcon 9	4428.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1011	-80.577366	28.561857	
10	11	2014-09-21	Falcon 9	2216.000000	ISS	CCAFS SLC 40	False Ocean	1	False	False	False	NaN	1.0	0	B1010	-80.577366	28.561857	
11	12	2015-01-10	Falcon 9	2395.000000	ISS	CCAFS SLC 40	False ASDS	1	True	False	True	5e9e3032383ecb761634e7cb	1.0	0	B1012	-80.577366	28.561857	
12	13	2015-02-11	Falcon 9	570.000000	ES-L1	CCAFS SLC 40	True Ocean	1	True	False	True	NaN	1.0	0	B1013	-80.577366	28.561857	
13	14	2015-04-14	Falcon 9	1898.000000	ISS	CCAFS SLC 40	False ASDS	1	True	False	True	5e9e3032383ecb761634e7cb	1.0	0	B1015	-80.577366	28.561857	
14	15	2015-04-27	Falcon 9	4707.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1016	-80.577366	28.561857	

METHODOLOGY - SQL

- Perform exploratory data analysis using visualization and SQL
 - We first stablish a conexion with the dataset and load SQL extension;
 - With SQL we can browse the dataset for useful information like names
 of unique launch sites, total payload mass carried by boosters launched
 by NASA (CRS), average payload mass carried by booster version F9
 v1.1, first successful landing outcome in ground pad was achieved, total
 number of successful and failure mission outcomes.

Task 1

Display the names of the unique launch sites in the space mission

Task 2

Display 5 records where launch sites begin with the string 'CCA'

In [85]:

**SELECT * FROM SPACEXTBL
WHERE Launch_Site LIKE 'CCA%'
LIMIT 5;

* sqlite:///my_data1.db

Landing	Mission_Outcome	Customer	Orbit	PAYLOAD_MASSKG_	Payload	Launch_Site	Booster_Version	Time	Date
Failure (parachute)	Success	SpaceX	LEO	0	Dragon Spacecraft Qualification Unit	CCAFS LC- 40	F9 v1.0 B0003	18:45:00	04- 06- 2010
Failure (parachute)	Success	NASA (COTS) NRO	LEO (ISS)	0	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	CCAFS LC- 40	F9 v1.0 B0004	15:43:00	08- 12- 2010
No attempt	Success	NASA (COTS)	LEO (ISS)	525	Dragon demo flight C2	CCAFS LC- 40	F9 v1.0 B0005	07:44:00	22- 05- 2012
No attempt	Success	NASA (CRS)	LEO (ISS)	500	SpaceX CRS-1	CCAFS LC- 40	F9 v1.0 B0006	00:35:00	08- 10- 2012
No attempt	Success	NASA (CRS)	LEO (ISS)	677	SpaceX CRS-2	CCAFS LC- 40	F9 v1.0 B0007	15:10:00	01- 03- 2013

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS)

Task 4

Display average payload mass carried by booster version F9 v1.1

Task 8

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

```
In [141...
            SELECT distinct(Booster_Version) FROM SPACEXTBL
            where PAYLOAD_MASS_KG_ = (Select MAX(PAYLOAD_MASS_KG_) FROM SPACEXTBL)
            * sqlite:///my_data1.db
           Booster_Version
              F9 B5 B1048.4
              F9 B5 B1049.4
              F9 B5 B1051.3
              F9 B5 B1056.4
              F9 B5 B1048.5
              F9 B5 B1051.4
              F9 B5 B1049.5
              F9 B5 B1060.2
              F9 B5 B1058.3
              F9 B5 B1051.6
              F9 B5 B1060.3
              F9 B5 B1049.7
```

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7, 4) = '2015' for year.

Task 10

Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

```
In [167-

%%sql
SELECT landing, count(landing) FROM SPACEXTBL
WHERE SPACEXTBL.Date between '04-06-2010' and '20-03-2017'
AND landing LIKE '%Success%'
GROUP BY landing
Order by count(landing) desc

* sqlite:///my_data1.db
Done.
```


METHODOLOGY - Data Visualization

Data Analysis Exploratory with Visualization

We now look for results using data visualization tools, we are now looking for a link between flight number and launch site using scatter chart. Another good point to look is launch sites and their payload mass, success rate of each orbit type, flight number and orbit type, etc. We basicaly use the vast amount of information we have and cross them together to get useful information for the stakeholders.

RESULTS - Data Visualization

TASK 1: Visualize the relationship between Flight Number and Launch Site

Use the function catplot to plot FlightNumber vs LaunchSite , set the parameter x parameter to FlightNumber ,set the y to Launch Site and set the parameter hue to 'class'

TASK 2: Visualize the relationship between Payload and Launch Site

We also want to observe if there is any relationship between launch sites and their payload mass.

RESULTS - Data Visualization

TASK 3: Visualize the relationship between success rate of each orbit type

Next, we want to visually check if there are any relationship between success rate and orbit type.

Let's create a ban chant for the sucess rate of each orbit

Analyze the ploted bar chart try to find which orbits have high sucess rate.

TASK 4: Visualize the relationship between FlightNumber and Orbit type

For each orbit, we want to see if there is any relationship between FlightNumber and Orbit type.

```
In [7]: # PLot a scatter point chart with x axis to be FlightNumber and y axis to be the Orbit, and hue to be the class
sns.scatterplot(y="Orbit", x="FlightNumber", hue="Class", data=df)
plt.xlabel("FlightNumber",fontsize=20)
plt.ylabel("Orbit",fontsize=20)
plt.show()
```


You should see that in the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

IBM Devcloper

RESULTS - Data Visualization

TASK 5: Visualize the relationship between Payload and Orbit type

Similarly, we can plot the Payload vs. Orbit scatter point charts to reveal the relationship between Payload and Orbit type

```
In [8]: # Plot a scatter point chart with x axis to be Payload and y axis to be the Orbit, and hue to be the class value
sns.scatterplot(y="Orbit", x="PayloadMass", hue="Class", data=df)
plt.xlabel("PayloadMass",fontsize=20)
plt.ylabel("Orbit" ,fontsize=20)
plt.show()
```


With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

However for GTO we cannot distinguish this well as both positive landing rate and negative landing(unsuccessful mission) are both there here.

```
In [14]: # Plot a line chart with x axis to be the extracted year and y axis to be the success rate
sns.lineplot(y="Class", x="year", data=df)
plt.xlabel("Year",fontsize=20)
plt.ylabel("Success Rate" ,fontsize=20)
plt.show()
```


you can observe that the sucess rate since 2013 kept increasing till 2020

METHODOLOGY - Folium

- Utilizing Folium to collect launch location data (lat and lng) and correctly marking on the map. We can now see useful information about the location of the launches utilizing the interactive map. Now we can transform all data and analyze it on the map.
- We already know the success rate depends on multiple factor and now we can assume location is also a valid indicator.

RESULTS - Folium

RESULTS - Folium

IBM Devcloper

SKILLS NETWORK

RESULTS - Plot Dash

RESULTS - Plot Dash

METHODOLOGY - Machine Learning

- Machine Learning Prediction
- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.

RESULTS - Machine Learning

TASK 5

Calculate the accuracy on the test data using the method score :

In [14]: logreg_cv.best_score_
Out[14]: 0.8196428571428571

Lets look at the confusion matrix:

In [15]: yhat=logreg_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

TASK 9

Calculate the accuracy of tree_cv on the test data using the method score

IBM Devcloper

RESULTS - Machine Learning

TASK 9

Calculate the accuracy of tree cv on the test data using the method score

TASK 11

Calculate the accuracy of tree_cv on the test data using the method score

```
In [32]: knn_cv.best_score_
Out[32]: 0.6642857142857143
```

We can plot the confusion matrix

```
In [25]: yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```


IBM Devcloper

RESULTS - Machine Learning

TASK 12

Find the method performs best:

```
In [36]:

print('Accuracy for Logistics Regression method:', logreg_cv.best_score_)

#print( 'Accuracy for Support Vector Machine method:', svm_cv.score(X_test, Y_test))

print('Accuracy for Decision tree method:', tree_cv.best_score_)

print('Accuracy for K nearsdt neighbors method:', knn_cv.best_score_)

Accuracy for Logistics Regression method: 0.8196428571428571

Accuracy for Decision tree method: 0.875

Accuracy for K nearsdt neighbors method: 0.6642857142857143

In []:
```


CONCLUSION

Exploring the data through all the visualization presented we can conclude there was a positive evolution in the success rate on the landing of the SpaceX rockets. We can assume the most importants variables behind those success was rocket weight and orbit.

We could see KSC LC 39A was the most successful lauch site when compared with his competitors. We could also see the best model of machine learning to use to determine the success rate is the Decision Tree with an accuracy of 87%.

Link GitHub

https://github.com/ArmandoOliveira/Applied-Data-Science-Capstone