Analiza 2b

 $26.~{\rm februar}~2025$

Kazalo

1	Hilk	pertovi prostori	3
	1.1	Vektorski prostori s skalarnim produktom	3
	1.2	Hilbertovi prostori	3
	1.3	Prostor $L^2([a,b])$	4

1 Hilbertovi prostori

1.1 Vektorski prostori s skalarnim produktom

Naj bo X vektorski prostor nad \mathbb{R} (ali nad \mathbb{C}).

Definicija. Skalarni produkt \langle , \rangle je preslikava $\langle , \rangle : X \times X \to \mathbb{R}$ (oz. \mathbb{C}) za katero velja:

- 1. $\forall x \in X . \langle x, x \rangle \ge 0;$
- 2. $\forall x \in X . \langle x, x \rangle = 0 \Leftrightarrow x = 0;$
- 3. $\forall x, y \in X : \langle x, y \rangle = \langle y, x \rangle;$
- 4. $\forall x, y, z \in X . \forall \lambda, \mu \in \mathbb{R} \text{ (oz. } \mathbb{C}) . \langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle.$

Opomba. 1. – 2. je pozitivna definitnost skalarnega produkta, 3. je poševna simetričnost (simetričnost nad \mathbb{R}), 4. je linearnost v prvem faktorju.

Trditev (Cauchy-Schwartzova neenakost). Naj bo \langle , \rangle skalarni produkt na X. Velja:

$$\forall x, y \in X . |\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} = ||x|| \cdot ||y||.$$

Dokaz. Nad \mathbb{R} : Definiramo $t \to \langle x + ty, x + ty \rangle = f(t) \geq 0$.

Nad \mathbb{C} : Naj bo $x, y \in X$. Obstaja $\alpha \in \mathbb{C}$, $|\alpha| = 1$, da $\langle x, y \rangle = \alpha \cdot |\langle x, y \rangle|$.

Definicija. Norma na vektorskem prostoru X je preslikava $|| || : X \to \mathbb{R}$ za katero velja:

- 1. $\forall x \in X . ||x|| \ge 0;$
- 2. $\forall x \in X . ||x|| = 0 \Leftrightarrow x = 0;$
- 3. $\forall \lambda \in \mathbb{R} \text{ (oz. } \mathbb{C}) . ||\lambda x|| = |\lambda| \cdot ||x||;$
- 4. Trikotniška neenakost: $\forall x, y \in X . ||x + y|| \le ||x|| + ||y||$.

Trditev. Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom. Potem je (X, || ||), kjer je $\forall x \in X . ||x|| = \sqrt{\langle x, x \rangle}$, vektorski prostor z normo.

Dokaz. Preverimo lastnosti. Za trikotniško neenakost uporabimo CS neenakost.

Trditev. Naj bo $(X, ||\ ||)$ vektorski prostor s normo. Potem je (X, d), kjer je $\forall x, y \in X . d(x, y) = ||x - y||$, metrični prostor.

Dokaz. Preverimo lastnosti.

1.2 Hilbertovi prostori

Definicija. Hilbertov prostor je vektorski prostor X s skalarnim produktom \langle , \rangle , ki je v metriki, porojeni iz skalarnega produkta, poln metrični prostor.

Opomba. $(X, \langle , \rangle) \rightsquigarrow (X, || ||) \rightsquigarrow (X, d)$, kjer je $\forall x, y \in X . d(x, y) = ||x - y||$.

Opomba. Banachov prostor je vektorski prostor X z normo $||\ ||$, ki je v metriki, porojeni iz norme, poln metrični prostor.

Zgled.

1. Naj bo $X = \mathbb{R}^n$. Definiramo skalarni produkt. Naj bo $x, y \in \mathbb{R}^n$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$. Standardni skalarni produkt je

$$x \cdot y = \sum_{k=1}^{n} x_k y_k.$$

Ta skalarni produkt nam da normo

$$||x|| = \sqrt{\sum_{k=1}^{n} x_k^2},$$

ki porodi metriko

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}.$$

Vemo, da je (\mathbb{R}^n, d_2) poln metrični prostor. Torej (\mathbb{R}^n, \cdot) Hilbertov prostor.

- 2. Na \mathbb{R}^n lahko definiramo tudi druge norme, npr.
 - $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\};$
 - $||x||_1 = |x_1| + \ldots + |x_n|$.

Te dve normi ne prideta iz skalarnega produkta, ker za njih ne velja paralelogramsko pravilo. $(\mathbb{R}^n, ||x||_{\infty})$ in $(\mathbb{R}^n, ||x||_1)$ sta Banachova prostora.

3. Naj bo $X = \mathbb{C}^n$. Definiramo skalarni produkt. Naj bo $z, w \in \mathbb{C}^n$, $z = (z_1, \ldots, z_n)$, $w = (w_1, \ldots, w_n)$. Standardni skalarni produkt je

$$z \cdot w = \sum_{k=1}^{n} z_k \overline{w_k}.$$

Ta skalarni produkt nam da normo

$$||z|| = \sqrt{\sum_{k=1}^{n} |z_k|^2},$$

ki porodi metriko

$$d_2(z, w) = \sqrt{\sum_{k=1}^{n} |z_k - w_k|^2}.$$

Vemo, da je (\mathbb{C}^n, d_2) poln metrični prostor. Torej (\mathbb{C}^n, \cdot) Hilbertov prostor.

1.3 Prostor $L^2([a,b])$

Trditev. Naj bo C([a,b]) vektorski prostor nad \mathbb{R} . Potem je s predpisom

$$\forall f, g \in C([a, b]) . \langle f, g \rangle = \int_a^b f(x)g(x) dx$$

definiran skalarni produkt na C([a, b]).

Dokaz. Preverimo lastnosti.

Trditev. $(C([a,b]), \langle , \rangle)$ ni Hilbertov prostor.

 $Dokaz. \ \ Definiramo \ f_n(x) = \begin{cases} 1; & \frac{1}{n} \leq x \leq 1 \\ nx; & -\frac{1}{n} < x < \frac{1}{n} \end{cases}. \ \ Pokažemo, \ da je \ (f_n)_n \ \ Cauchyjevo \ zaporedje v \ C([a,b]), \ ki \ nima \\ -1; & -1 \leq x \leq -\frac{1}{n} \end{cases}$ limite.

Definicija. Naj bo (M,d) metrični prostor. Pravimo, da lahko **napolnimo** prostor M, če obstaja prostor $(\overline{M},\overline{d})$, za kateri velja:

- 1. $(\overline{M}, \overline{d})$ je poln metrični prostor;
- 2. $M \subseteq \overline{M}$;
- 3. $\overline{d}|_{M\times M}=d;$
- 4. M je gost v \overline{M} , tj. $\operatorname{Cl} M = \overline{M}$.

Prostoru \overline{M} rečemo napolnitev prostora M.

Opomba. Ideja: \overline{M} je prostor vseh limit Cauchyjevih zaporedij v M (+ kvocient).