

Krótko o niesporczakach

- Wodne zwierzęta bezkręgowe
- Pierwouste
- •Długość 0.01 cm do 1.2 cm
- Cztery pary ostro zakończonych odnóży
- •Roślinożerne lub mięsożerne
- •Odporne na:
 - ✓ Wysokie temperatury
 - ✓ Niskie temperatury
 - ✓ Wysokie ciśnienie
 - ✓ Niskie ciśnienie
 - ✓ Skrajne wysuszenie środowiska
 - ✓ Długotrwały brak pożywienia
 - ✓ Promieniowanie kosmiczne
 - ✓ Promieniowanie jonizujące
 - \checkmark .
 - **√** ..
 - **√** ...
 - ✓ Cyjanek???

www.dinoanimals.pl

Zdolność do anydrobiozy jest ich największym atutem

 Specyficzny rodzaj anabiozy wywołany odwodnieniem środowiska

- •Umożliwia przetrwanie w ekstremalnych warunkach
- Może trwać rekordowo długo, dziesiątki lat
- •Możliwe, że fizjologiczne uwarunkowania wynikają z obecności odpornych na szok termiczny białek cytoprotekcyjnych CAHS i SAHS i alternatywnej oksydazy

www.dinoanimals.pl

Czym jest AOX?

- •Białko wewnętrznej błony mitochondrialnej
- •Zapewnia elektronom w mitochondriach transport alternatywną ścieżką podczas łańcucha oddechowego, poprzez przeprowadzenie utleniania ubichinolu i redukcję O₂ do H₂O
- Przenosi elektron na tlen, pomijając kompleks III i kompleks IV

Rola AOX u różnych organizmów

- •Umożliwia podnoszenie temperatury tkanek u roślin, co zwiększa intensywność wabienia i w konsekwencji również zapyleń
- •Reguluje intensywność siły redukcyjnej (nadmiar NADPH) w tzw. drodze cytochromowej w komórkach roślinnych
- Optymalizuje fotosyntezę
- •U niektórych owadów, wydzielana dokrewnie, 'symuluje ich śmierć' w warunkach stresowych
- •Jest przystosowaniem do prawie beztlenowego środowiska u bakterii

http://www.rcsb.org/structure/3VVA (struktura białka AOX dla *Trypanosoma brucei* uzyskana krystalograficznie)

Przesłanki na istnienie AOX u niektórych *Tardigrada*

blast.tardigrades.org

sekwencji gatunków H. dujardini i R. varieornatus)

Dotychczasowe wyniki eksperymentów

	Kontrola w wodzie	Kontrola w wodzie + MetOH	1 mM BHAM	3 mM BHAM
Obserwacja	10 w stanie	8 w stanie	8 w stanie	9 martwych,
zawartości szalek	baryłki	baryłki, 2	baryłki, 2	1 zaginiony
przed zalaniem		martwe	martwe	
Obserwacja	Pierwszy ruch	Pierwszy ruch	Pierwszy ruch	Brak
pierwszego	po 7 minutach	po 13 minutach	po 50 minutach	jakichkolwiek
ruchu po zalaniu szalek				ruchów
Obserwacja po	8 osobników	7 osobników	2 osobniki w	Brak
dwóch godzinach	aktywnych	aktywnych	rozruchu	jakichkolwiek ruchów

Tabela 1. Obserwacje kultury niesporczaków M. tardigradum po pierwszej anhydrobiozie z odczynnikiem BHAM działającym bezpośrednio

Dotychczasowe wyniki eksperymentów

	Kontrola w wodzie	Kontrola w wodzie + MetOH	0.1 mM BHAM	1 mM BHAM
Obserwacja	10 osobników	10 osobników	5 w stanie	8 martwych,
zawartości szalek	w stanie	w stanie baryłki	baryłki, 5 w	2 w stanie
przed zalaniem	baryłki		stanie przejściowym	przejściowym
Obserwacja po	8 osobników	7 osobników	5 osobników	1 osobnik w
godziniea	aktywnych,	aktywnych,	aktywnych,	rozruchu,
	1 osobnik w	3 osobniki w	3 osobniki w	3 osobniki w
	stanie baryłki,	rozruchu	rozruchu,	stanie baryłki,
	1 osobnik		2 osobniki	6 osobników
	martwy		martwe	martwych
Obserwacja po	9 osobników	10 osobników	8 osobników	1 osobnik
dobie	aktywnych,	aktywnych	aktywnych,	aktywny,
	1 osobnik		2 osobniki	3 osobniki w
	martwy		martwe	stanie baryłki,
				6 osobników
				martwych

Tabela 3. Obserwacje kultury niesporczaków M. tardigradum po drugiej anhydrobiozie z odczynnikiem BHAM działającym bezpośrednio

Jakie to może mieć znaczenie dla niesporczaków?

Co zostało do zrobienia?

- Przeprowadzenie eksperymentu polegającego na inkubacji w środowisku z BHAM
- •Utworzenie drzewa filogenetycznego w oparciu o ClustalOmega
- Porównanie niesporczakowego AOX
 z sekwencjami białkowymi AOX u innych
 zwierząt
- Predykcja struktury przestrzennej AOX u niesporczaków i dopasowanie jej do istniejącej w bazie PDB

