EXAMEN CALCUL DIFERENTIAL SI INTEGRAL SERIA 13

OFICIU: 1 punct

SUBIECTUL 1. (2 puncte)

Sa se studieze natura seriei $\sum_{n=1}^{\infty} \frac{a^n \cdot n!}{n^n}$, unde a > 0. SUBIECTUL 2. (2 puncte)

Sa se determine punctele de extrem local ale functiei $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) =$ $xye^{x-y} \ \forall (x,y) \in \mathbb{R}^2.$

SUBIECTUL 3. (2 puncte)

Sa se studieze convergenta simpla si uniforma a sirului de functii $f_n:(2,5]\to$

 $\mathbb{R}, f_n(x) = \frac{nx^3}{n+x^2} \ \forall x \in (2,5], \forall n \in \mathbb{N}.$ SUBIECTUL 4. (3 puncte)

a) Sa se calculeze $\iint\limits_D (x+2y)\,dxdy$, unde $D=\Big\{(x,y)\in\mathbb{R}^2\mid x^2+\frac{y^2}{4}\leq 1, x\geq 0\Big\}$. b) Fig $f:\mathbb{R}\to\mathbb{R}$ o functie continua care verifica inegalitatea $|f(x)-f(y)|\geq$

 $\left|x^{3}-y^{3}\right| \ \forall x,y \in \mathbb{R}.$ Sa se arate ca functia f -este bijectiva.