FORMELSAMMLUNG Sommersemester 2024 STATISTIK B Kneip / Scheer / Bada / Poß/ Becker

Version vom Mai 2024

Inhaltsverzeichnis

1	Wahrscheinlichkeitsrechnung	2
2	Diskrete Zufallsvariablen	5
3	Stetige Zufallsvariablen	10
4	Mehrdimensionale Zufallsvariablen	15
5	Parameterschätzung	19
6	Konfidenzintervalle	21
7	Testen von Hypothesen	23

Die geometrische Reihe und Summenformel:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \quad \text{(falls } q \neq 1) \qquad \text{und für } |q| < 1; \quad \sum_{k=0}^{\infty} q^k = \frac{1}{1 - q}$$

1 Wahrscheinlichkeitsrechnung

Kombinatorik

Anzahl der möglichen Ziehungen von n Kugeln aus einer Urne mit N Kugeln:

		Reihenfolge wichtig	Reihenfolge nicht wichtig				
		"Sortieren nicht erlaubt"	"Sortieren erlaubt"				
	ohne Zurücklegen	$N \cdot (N-1) \cdots (N-(n-1))$	$\binom{N}{n}$				
	mit Zurücklegen	N^n	$\binom{n+N-1}{n} = \binom{n+N-1}{N-1}$				

Binomialkoeffizienten

• Definition:

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-(k-1))}{k \cdot (k-1) \cdots 1} = \frac{n!}{k!(n-k)!}$$

• Rechenregeln:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Rechenregeln für Mengen

• Kommutativgesetz:

$$A \cap B = B \cap A$$
$$A \cup B = B \cup A$$

• Distributivgesetz: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

• Aus $A \subset B$ folgt $\bar{B} \subset \bar{A}$

• Assoziativgesetz:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
$$(A \cup B) \cup C = A \cup (B \cup C)$$

• <u>De Morgansche Regeln:</u>

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}
\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Wahrscheinlichkeiten und Axiome von Kolmogoroff

• Endlicher Wahrscheinlichkeitsraum $(S, \mathcal{P}(S), P)$

- Grundraum $S = \{\omega_1, \omega_2, \dots \omega_N\}.$

- **Ereignisse** $\mathcal{P}(S) = \text{Menge aller Teilmengen } A \subset S$

- Wahrscheinlichkeit P P(A) = Wahrscheinlichkeit für das Eintreten von A

Die Wahrscheinlichkeitsverteilung P erfüllt die **Axiome von Kolmogoroff**:

(A1) (Nichtnegativität) $P(A) \ge 0$

(A2) (Normiertheit) P(S) = 1

(A3) (Additivität) $P(A \cup B) = P(A) + P(B)$ für $A \cap B = \emptyset$

• Für <u>nicht endliche Wahrscheinlichkeitsräume</u> wird das Axiom (A3) ersetzt durch das Axiom

(A3')
$$(\sigma - \text{Additivität})$$
 $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$ für $A_i \cap A_j = \emptyset, i \neq j$

Rechenregeln für Wahrscheinlichkeiten

1.
$$P(\emptyset) = 0, \ P(S) = 1, \ 0 \le P(A) \le 1$$

$$2. \ A \subseteq B \quad \Rightarrow \quad P(A) \le P(B)$$

3.
$$P(\bar{A}) = 1 - P(A) \text{ mit } \bar{A} = S \backslash A$$

4. Additionssatz:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5.
$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$
, falls A_1, A_2, \ldots, A_n paarweise disjunkt, d.h. $A_i \cap A_j = \emptyset$

6.
$$P(A_1 \cup A_2 \cup \dots A_n) \le P(A_1) + P(A_2) + \dots + P(A_n)$$

7. Wenn die Elementarwahrscheinlichkeiten $p_i = P(\{\omega_i\}), i = 1, 2, ...$ bekannt sind, dann gilt für die Wahrscheinlichkeit eines Ereignisses A:

$$P(A) = \sum_{i:\omega_i \in A} P(\{\omega_i\}) = \sum_{i:\omega_i \in A} p_i$$

Laplace-Modell

- **1. Annahme:** Endlicher Grundraum $S = \{\omega_1, \dots, \omega_N\}$
- **2. Annahme:** $P(\{\omega_1\}) = P(\{\omega_2\}) = \cdots = P(\{\omega_N\})$

Wahrscheinlichkeiten: $P(A) = \frac{\text{Anzahl } \omega_i \text{ in } A}{\text{Anzahl } \omega_i \text{ in } S} = \frac{\#A}{\#S} = \frac{\#A}{N}$

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit von A gegeben B

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad \text{für } A, B \subset S \text{ mit } P(B) > 0$$

Unabhängigkeit von Ereignissen

- **Zwei** Ereignisse A und B heißen stochastisch unabhängig, wenn $P(A \cap B) = P(A) \cdot P(B)$
- Ereignisse A_1, \ldots, A_n heißen stochastisch unabhängig, wenn für jede Auswahl A_{i_1}, \ldots, A_{i_k} mit $k \leq n$ gilt: $P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k})$

Multiplikationssatz

- Für Ereignisse A_1, \ldots, A_n gilt: $P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdots P(A_n | A_1 \cap \ldots \cap A_{n-1})$
- Falls die Ereignisse A_1, \ldots, A_n unabhängig sind, gilt: $P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) \cdot P(A_2) \cdots P(A_n)$

Totale Wahrscheinlichkeit und Satz von Bayes

Seien A_1, \ldots, A_k Ereignisse, die eine Zerlegung von S bilden (d.h. S ist disjunkte Vereinigung der A_i ; es gilt: $A_i \neq \emptyset$, $A_i \cap A_j = \emptyset$, $i \neq j$, und $A_1 \cup A_2 \cup \ldots \cup A_k = S$). B sei ein Ereignis mit P(B) > 0.

$$P(B|A_j) \cdot P(A_j) = P(B \cap A_j) = P(A_j|B) \cdot P(B)$$

$$P(B) = \sum_{i=1}^k P(B|A_i) \cdot P(A_i) = \sum_{i=1}^k P(B \cap A_i) \quad \text{(totale Wahrscheinlichkeit)}$$

$$P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{P(B)} = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i=1}^k P(B|A_i) \cdot P(A_i)}$$
(Satz von Bayes)

2 Diskrete Zufallsvariablen

Es sei X eine diskrete Zufallsvariable mit Werten $x_1, x_2, \ldots, x_k, \ldots$

• Wahrscheinlichkeitsverteilung von X:

$$P[X = x_i] = p_i, \quad i = 1, 2, \dots, k, \dots$$

• Wahrscheinlichkeitsfunktion von X:

$$f(x) = \begin{cases} P[X = x] & \text{für } x \in \{x_1, x_2, \dots, x_k, \dots\} \\ 0 & \text{sonst} \end{cases}$$

• Verteilungsfunktion von X:

$$F(x) = P[X \le x] = \sum_{x_i \le x} f(x_i)$$

• Erwartungswert von X:

$$E(X) = \mu_X = \sum_{i \ge 1} x_i p_i = \sum_{i \ge 1} x_i f(x_i)$$

• Varianz von X:

$$Var(X) = \sigma_X^2 = E(X - \mu_X)^2 = E(X^2) - \mu_X^2 = \sum_{i \ge 1} (x_i - \mu_X)^2 p_i = \sum_{i \ge 1} x_i^2 p_i - \mu_X^2$$

- Standardabweichung: $\sigma_X = \sqrt{\operatorname{Var}(X)}$
- Transformationsregel für Erwartungswerte: Sei g(x) eine reelle Funktion. Dann gilt für Y = g(X)

$$E(Y) = E(g(X)) = \sum_{i \ge 1} g(x_i) p_i = \sum_{i \ge 1} g(x_i) f(x_i)$$

Diskrete Gleichverteilung

- X diskret gleichverteilt (auf $a_1 < \ldots < a_k$)
- Verteilung von X

$$X = a_1, a_2, \dots, a_k$$
 mit $P(\{X = a_i\}) = \frac{1}{k}$

• Werte der Verteilungsfunktion

$$P(X \le a_i) = \frac{i}{k}$$

• Erwartungswert und Varianz

$$E(X) = \frac{1}{k} \sum_{i=1}^{k} a_i$$
 $Var(X) = \frac{1}{k} \sum_{i=1}^{k} (a_i - E(X))^2$

Bernoulli-Verteilung

- Notation: $X \sim \text{Bernoulli}(p)$ mit $0 \le p \le 1$
- Verteilung von X

$$X = \begin{cases} 1 & \text{mit } P(X=1) = p \\ 0 & \text{mit } P(X=0) = 1 - p \end{cases}$$

• Erwartungswert und Varianz

$$E(X) = p$$
 $Var(X) = p \cdot (1 - p)$

Geometrische Verteilung

- Notation: $X \sim G(p)$ mit 0
- Verteilung von X

$$X = 1, 2, 3, \dots$$
 mit $P(X = k) = (1 - p)^{k-1}p$

• Werte der Verteilungsfunktion für x = 1, 2, 3, ...

$$F_G(x) = P(X \le x) = \sum_{k=1}^{x} P(X = k) = 1 - (1 - p)^x$$

• Erwartungswert und Varianz

$$E(X) = \frac{1}{p} \qquad \operatorname{Var}(X) = \frac{1-p}{p^2}$$

Binomialverteilung

- Notation: $X \sim B(n, p)$ mit $0 \le p \le 1$
- Verteilung von X

$$X = 0, 1, \dots, n$$
 mit $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

• Werte der Verteilungsfunktion für $x=0,1,\dots,n$

$$F_B(x) = P(X \le x) = \sum_{k=0}^{x} P(X = k)$$

• Erwartungswert und Varianz

$$E(X) = np$$
 $Var(X) = np(1-p)$

Hypergeometrische Verteilung

- Notation: $X \sim H(n, M, N)$ mit $M \leq N, n \leq N$
- Verteilung von X $X=0,1,\ldots,n \quad \text{mit} \quad P(X=k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{k}}$
- Werte der Verteilungsfunktion für x = 0, 1, ..., n

$$F_H(x) = P(X \le x) = \sum_{k=0}^{x} P(X = k)$$

• Erwartungswert und Varianz

$$E(X) = n\frac{M}{N}$$
 $Var(X) = n\frac{M}{N}\left(1 - \frac{M}{N}\right)\frac{N-n}{N-1}$

Approximation der Hypergeometrischen Verteilung durch eine Binomialverteilung

Für $X \sim H(n, M, N)$ und n klein gegenüber N, M und N-M gilt approximativ:

$$X \sim B(n, p), \quad p = \frac{M}{N}$$
 d.h. $P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} \approx \binom{n}{k} p^k (1-p)^{n-k}$

Poisson-Verteilung

- Notation: $X \sim Po(\lambda)$ mit $\lambda > 0$
- Verteilung von X $X = 0, 1, 2, 3 \dots \quad \text{mit} \quad P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
- Werte der Verteilungsfunktion für x = 0, 1, 2, 3, ...

$$F_{\text{Po}}(x) = P(X \le x) = \sum_{k=0}^{x} P(X = k)$$

• Erwartungswert und Varianz

$$E(X) = \lambda$$
 $Var(X) = \lambda$

Approximation der Binomialverteilung durch eine Poisson-Verteilung

Für $X \sim B(n,p)$ und großes n bei gleichzeitig kleiner "Erfolgswahrscheinlichkeit" p (Faustregel: np < 5 oder n(1-p) < 5) gilt approximativ:

$$X \sim Po(\lambda), \quad \lambda = n \cdot p$$
 d.h. $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \approx \frac{(np)^k}{k!} e^{-np}$

3 Stetige Zufallsvariablen

Es sei X stetige Zufallsvariable (mit Werten $x \in \mathbf{R}$)

• (Wahrscheinlichkeits-) Dichte von XFunktion $f(x) \ge 0$, so dass für jedes Intervall [a, b]:

$$P[a \le X \le b] = \int_{a}^{b} f(x)dx;$$
 es gilt: $\int_{-\infty}^{\infty} f(x)dx = 1$

• Verteilungsfunktion von X

$$F(x) = P[X \le x] = \int_{-\infty}^{x} f(x)dx$$

• Erwartungswert von X

$$E(X) = \mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

• Varianz von X

$$Var(X) = \sigma_X^2 = E(X - \mu_X)^2 = E(X^2) - \mu_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$$

• Standardabweichung von X

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

• Quantile Für $0 ist das p-Quantil <math>x_p$ der Wert, für den gilt:

$$F(x_p) = P[X \le x_p] = p$$
 und $1 - F(x_p) = P[X \ge x_p] = 1 - p$

Exponential verteilung, $X \sim Ex(\lambda)$, mit $\lambda > 0$

• Dichte- und Verteilungsfunktion

$$f_{Ex}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x \ge 0\\ 0 & \text{sonst} \end{cases}$$

$$F_{Ex}(x) = \begin{cases} 0 & \text{für } x < 0\\ 1 - e^{-\lambda x} & \text{für } x \ge 0 \end{cases}$$

• Erwartungswert und Varianz

$$E(X) = \frac{1}{\lambda}$$
 $Var(X) = \frac{1}{\lambda^2}$

Stetige Gleichverteilung, $X \sim U(a, b)$, mit a < b

• Dichte- und Verteilungsfunktion

$$f_U(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b \\ 0 & \text{sonst} \end{cases}$$

$$F_U(x) = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } x > b \end{cases}$$

• Erwartungswert und Varianz

$$E(X) = \frac{a+b}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$

Standardnormalverteilung, $X \sim N(0, 1)$

• Dichte- und Verteilungsfunktion

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \quad \text{für } x \in \mathbb{R} \qquad \qquad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} \exp\left(-\frac{t^2}{2}\right) dt$$

• Erwartungswert und Varianz

$$E(X) = 0$$
 $Var(X) = 1$

Normalverteilung (Gauß-Verteilung), $X \sim N(\mu, \sigma^2)$

• Dichte- und Verteilungsfunktion (für $x \in \mathbb{R}$)

$$f_N(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad F_N(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$$

• Erwartungswert und Varianz

$$E(X) = \mu$$
 $Var(X) = \sigma^2$

• Lineare Transformation: (a, b beliebige Zahlen)

$$X \sim N(\mu, \sigma^2)$$
 und $Y = a \cdot X + b \Rightarrow Y \sim N(a \cdot \mu + b, a^2 \cdot \sigma^2)$

• Linearkombination: $X_i \sim N(\mu_i, \sigma_i^2)$ und unabhängig, a_1, \ldots, a_n beliebige Zahlen

$$\Rightarrow Y = a_1 \cdot X_1 + \dots + a_n \cdot X_n \sim N(a_1 \cdot \mu_1 + \dots + a_n \cdot \mu_n, a_1^2 \cdot \sigma_1^2 + \dots + a_n^2 \cdot \sigma_n^2)$$

- Rückführung auf die Standardnormalverteilung
 - Standardisierung

$$X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- Verteilungsfunktion

$$X \sim N(\mu, \sigma^2) \quad \Rightarrow \quad P[X \le x] = F_N(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

- Quantile (Für 0)

$$x_p$$
 p-Quantil von $N(\mu, \sigma^2)$ $\Rightarrow x_p = \mu + \sigma z_p$ wobei z_p p-Quantil von $N(0, 1)$

χ^2 -Verteilung

• Definition und Bezeichnung

 X_1,\ldots,X_n unabhängige und N(0,1)-verteilte Zufallsvariablen. Die Verteilung von $\chi^2=X_1^2+\cdots+X_n^2$ heißt "Chi-Quadrat-Verteilung" mit n Freiheitsgraden, kurz $\chi^2\sim\chi^2(n)$.

• Erwartungswert und Varianz

$$E(\chi^2) = n$$
 $Var(\chi^2) = 2n$

• Approximation durch die Normalverteilung

für
$$n > 30$$
: $\chi^2(n) \approx N(n, 2n)$ für Quantile $\chi^2_{p;n} \approx \frac{1}{2}(z_p + \sqrt{2n-1})^2$

t-Verteilung, Student-Verteilung

• Definition und Bezeichnung

 $X \sim N(0,1)$ und $Y \sim \chi^2(n)$ unabhängig. Die Verteilung von $T = \frac{X}{\sqrt{Y/n}}$ heißt "t-Verteilung" mit n Freiheitsgraden, kurz $T \sim t(n)$.

• Erwartungswert und Varianz

$$E(T) = 0$$
 $Var(T) = \frac{n}{n-2}$ $(n > 2)$

Approximation durch die Normalverteilung

für
$$n > 100$$
: $t(n) \approx N(0,1)$ für Quantile $t_{p,n} \approx z_p$

Fisher-Verteilung, F-Verteilung

• Definition und Bezeichnung

Seien $X \sim \chi^2(m)$ und $Y \sim \chi^2(n)$ unabhängig. Dann heißt die Verteilung von

$$F = \frac{X/m}{Y/n}$$

Fisher- oder F-Verteilung mit den Freiheitsgraden m und n, kurz $F \sim F(m, n)$.

Erwartungswert

$$E(F) = \frac{n}{n-2} \quad (n > 2)$$

Ungleichung von Tschebyscheff

- Zufallsvariable X mit $E(X) = \mu$ und $Var(X) = \sigma^2$.
- Ungleichung von Tschebyscheff

Für
$$k > 0$$
 gilt: $P[|X - \mu| > k\sigma] \le \frac{1}{k^2}$

• Approximation von zentralen Schwankungsintervallen

Für
$$k > 0$$
 gilt: $P[\mu - k\sigma \le X \le \mu + k\sigma] \ge 1 - \frac{1}{k^2}$

Zentraler Grenzwertsatz

Seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen mit Mittelwert μ und Varianz σ^2 . Dann gilt für großes n approximativ:

$$P\left[\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z\right] \approx \Phi(z)$$
 d.h. $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ bzw. $\sum_{i=1}^n X_i \sim N(n\mu, n\sigma^2)$

Approximation der Binomialverteilung durch eine Normalverteilung

Sei $X \sim B(n, p)$. Für großes n (mit np > 5 und n(1 - p) > 5) gilt approximativ

$$\frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

Anwendung mit Stetigkeitskorrektur:

$$P[x_1 \le X \le x_2] \approx \Phi\left(\frac{x_2 + 0, 5 - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{x_1 - 0, 5 - np}{\sqrt{np(1-p)}}\right)$$

4 Mehrdimensionale Zufallsvariablen

Zweidimensionale diskrete Zufallsvariablen

(X,Y) sei eine bivariate diskrete Zufallsvariable mit k bzw. m Ausprägungen

• Gemeinsame Wahrscheinlichkeitsfunktion (gemeinsame Verteilung)

$$f(x,y) = \begin{cases} P[X = x, Y = y] & \text{für } (x,y) = (x_1, y_1), \dots \\ 0 & \text{sonst} \end{cases}$$

• Gemeinsame Verteilungsfunktion

$$F(x,y) = P[X \le x, Y \le y] = \sum_{x_i \le x} \sum_{y_i \le y} f(x_i, y_j)$$

 \bullet Randverteilung von X

$$f_X(x) = P[X = x] = \sum_{j=1}^{m} f(x, y_j)$$

 \bullet Randverteilung von Y

$$f_Y(y) = P[Y = y] = \sum_{i=1}^{k} f(x_i, y)$$

- Bedingte Wahrscheinlichkeitsfunktion (bedingte Verteilung)
 - Bedingte Wahrscheinlichkeitsfunktion von X gegeben Y = y

$$f_X(x|y) = P[X = x|Y = y] = \frac{f(x,y)}{f_Y(y)}$$
 $(f_X(x|y) = 0, \text{ falls } f_Y(y) = 0.)$

- Bedingte Wahrscheinlichkeitsfunktion von Y gegeben X = x

$$f_Y(y|x) = P[Y = y|X = x] = \frac{f(x,y)}{f_X(x)}$$
 $(f_Y(y|x) = 0, \text{ falls } f_X(x) = 0.)$

• Bedingter Erwartungswert von Y gegeben X = x

$$\mu_{Y|X=x} = E(Y|X=x) = \sum_{j=1}^{m} y_j f_Y(y_j|x)$$

• Bedingter Erwartungswert von X gegeben Y = y

$$\mu_{X|Y=y} = E(X|Y=y) = \sum_{i=1}^{k} x_i f_X(x_i|y)$$

Zweidimensionale stetige Zufallsvariablen

(X,Y) sei eine bivariate stetige Zufallsvariable (mit Werten $(x,y) \in \mathbb{R}^2$)

• (Wahrscheinlichkeits-) Dichte von (X, Y)2-dimensionale Funktion $f(x, y) \ge 0$, so dass für jedes Rechteck $[a, b] \times [c, d]$:

$$P[a \le X \le b, c \le Y \le d] = \int_a^b \int_c^d f(x, y) \, dx \, dy; \quad \text{es gilt:} \quad \int_{-\infty}^\infty \int_{-\infty}^\infty f(x, y) \, dx \, dy = 1$$

Das Doppelintegral entspricht dem von der Funktion f(x, y) eingeschlossenen Volumen über der Grundfläche $[a, b] \times [c, d]$.

• Gemeinsame Verteilungsfunktion

$$F(x,y) = P[X \le x, Y \le y] = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) \, ds \, dt$$

 \bullet Randdichten von X bzw. Y

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 bzw. $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

• Bedingte Dichte von X gegeben Y=y bzw. von Y gegeben X=x

$$f_X(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 bzw. $f_Y(y|x) = \frac{f(x,y)}{f_X(x)}$

• Bedingter Erwartungswert von Y gegeben X = x

$$\mu_{Y|X=x} = E(Y|X=x) = \int_{-\infty}^{\infty} y f_Y(y|x) \, dy$$

• Bedingter Erwartungswert von X gegeben Y = y

$$\mu_{X|Y=y} = E(X|Y=y) = \int_{-\infty}^{\infty} x f_X(x|y) dx$$

Kovarianz und Korrelation

Zufallsvariablen X und Y, mit $\mu_X = E(X)$, $\mu_Y = E(Y)$, $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$

 \bullet Kovarianz von X und Y

$$\sigma_{XY} = \text{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(X \cdot Y) - E(X) \cdot E(Y)$$

• Erwartungswert $E(X \cdot Y)$

$$E(X \cdot Y) = \begin{cases} \sum_{i} \sum_{j} x_{i}y_{j} f(x_{i}, y_{j}) & X, Y \text{ diskret} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy & X, Y \text{ stetig} \end{cases}$$

• Symmetrie

$$Cov(X, Y) = Cov(Y, X)$$

• Lineare Transformationen

Für
$$X^* = aX + b$$
 und $Y^* = cY + d$ gilt $Cov(X^*, Y^*) = a \cdot c \cdot Cov(X, Y)$

 \bullet Korrelation zwischen X und Y

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y}$$

• Varianz der Summe zweier Zufallsvariablen

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$$

Falls X, Y unkorrelier $\Rightarrow Var(X + Y) = Var(X) + Var(Y)$

• Gewichtete Summe von Zufallsvariablen Zufallsvariablen X_1, \ldots, X_k , Zahlen a_1, \ldots, a_k ; für $X = a_1 \cdot X_1 + \cdots + a_k \cdot X_k$ gilt:

$$E(X) = a_1 \cdot E(X_1) + \dots + a_k \cdot E(X_k)$$

$$Var(X) = \sum_{i=1}^k a_i^2 \cdot Var(X_i) + 2\sum_{i < j} a_i \cdot a_j \cdot Cov(X_i, X_j)$$

Unabhängigkeit von zwei Zufallsvariablen

• **Definition:** X und Y heißen unabhängig, falls

$$f(x,y) = f_X(x) \cdot f_Y(y) \qquad \qquad \text{für alle } x,y$$
bzw.
$$P[X \le x, Y \le y] = P[X \le x] \cdot P[Y \le y] \qquad \qquad \text{für alle } x,y$$

• Zusätzliche Rechenregeln: Falls X und Y unabhängig sind, gilt:

$$\begin{split} E(X \cdot Y) &= E(X) \cdot E(Y) \\ \operatorname{Var}(X + Y) &= \operatorname{Var}(X) + \operatorname{Var}(Y) \\ f_Y(y|X = x) &= f_Y(y) \quad \text{für alle } x \\ E(Y|X = x) &= E(Y) \quad \text{für alle } x \\ \end{split} \qquad \begin{aligned} f_X(x|Y = y) &= f_X(x) \quad \text{für alle } y \\ E(X|Y = y) &= E(X) \quad \text{für alle } y \end{aligned}$$

• Zwei diskrete Zufallsvariablen sind unabhängig, falls

$$P[X=x,Y=y] = P[X=x] \cdot P[Y=y] \qquad \text{für alle } x,y$$

Unabhängigkeit mehrerer Zufallsvariablen

• Defintion: Zufallsvariablen X_1, \ldots, X_n heißen unabhängig, falls

$$P[X_1 \le x_1, \dots, X_n \le x_n] = P[X_1 \le x_1] \cdots P[X_n \le x_n]$$
 für alle x_1, \dots, x_n
bzw. $f(x_1, \dots, x_k) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$ für alle x_1, \dots, x_n

 $f(x_1, ..., x_n)$ bezeichnet die gemeinsame Dichte von $X_1, ..., X_n$. $f_{X_i}(x_i)$ bezeichnet die Randdichte von X_i , $1 \le i \le n$.

• Diskrete Zufallsvariablen X_1, \ldots, X_n sind unabhängig, falls

$$P[X_1 = x_1, \dots, X_n = x_n] = P[X_1 = x_1] \cdots P[X_n = x_n]$$
 für alle x_1, \dots, x_n

5 Parameterschätzung

• Statistisches Modell

- X_1, \ldots, X_n Zufallsstichprobe
- Verteilung von X hängt von einem Parameter θ ab
- Beobachtete (realisierte) Werte: x_1, \ldots, x_n
- Schätzer für θ : $\hat{\boldsymbol{\theta}}_{\boldsymbol{n}} = g(X_1, \dots, X_n)$ (Zufallsvariable)
- Schätzwert für θ : $\hat{\theta}_n = g(x_1, \dots, x_n)$ (reelle Zahl)
- Bias (Verzerrung, systematischer Schätzfehler von $\hat{\theta}_n$):

$$\operatorname{Bias}(\hat{\boldsymbol{\theta}}_n) = E(\hat{\boldsymbol{\theta}}_n) - \theta$$

• Varianz (zufallsbedingter Schätzfehler):

$$\operatorname{Var}(\hat{\boldsymbol{\theta}}_{n}) = E(\hat{\boldsymbol{\theta}}_{n} - E(\hat{\boldsymbol{\theta}}_{n}))^{2}$$

• Mittlerer quadratischer Schätzfehler (MSE, Mean Squared Error):

$$MSE(\hat{\boldsymbol{\theta}}_n) = E\left((\hat{\boldsymbol{\theta}}_n - \theta)^2\right) = Var(\hat{\boldsymbol{\theta}}_n) + Bias(\hat{\boldsymbol{\theta}}_n)^2$$

• Schwache Konsistenz:

 $\hat{\boldsymbol{\theta}}_{\boldsymbol{n}}$ ist schwach konsistent für $\boldsymbol{\theta}$, falls

für jedes
$$c > 0$$
:

$$P(|\hat{\boldsymbol{\theta}}_{\boldsymbol{n}} - \boldsymbol{\theta}| \ge c) \to 0 \text{ für } n \to \infty \text{ gilt.}$$

• MSE-Konsistenz:

 $\hat{\boldsymbol{\theta}}_n$ ist MSE-konsistent für θ , falls

$$\mathrm{MSE}(\hat{\boldsymbol{\theta}}_n) \to 0$$
 für $n \to \infty$ gilt.

MSE-Konsistenz \Rightarrow schwache Konsistenz

Maximum Likelihood-Schätzung

- Statistisches Modell
 - $-X_1,\ldots,X_n$ einfache Zufallsstichprobe, d.h. unabhängige Wiederholungen von X
 - Verteilung von X hängt von einem Parameter θ ab
 - Beobachtete (realisierte) Werte: x_1, \ldots, x_n
- Likelihood–Funktion $L(\theta)$

$$L(\theta) \equiv L(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta) = f(x_1 | \theta) \cdots f(x_n | \theta)$$

 $f(x) \equiv f(x|\theta)$ bezeichnet für **diskretes** X die Wahrscheinlichkeitsfunktion und für **stetiges** X die Dichtefunktion.

- ullet Maximum Likelihood–Schätzung von heta
 - Schätzfunktion: $\hat{\boldsymbol{\theta}} \Leftrightarrow \arg \max_{\theta} L(X_1, \dots, X_n | \theta)$
 - Schätzwert: $\hat{\theta} \Leftrightarrow \arg \max_{\theta} L(x_1, \dots, x_n | \theta)$
- Log-Likelihood-Funktion $\ln L(\theta)$ (rechentechnisch oft günstiger)

$$\ln L(\theta) = \ln L(x_1, \dots, x_n | \theta) = \sum_{i=1}^n \ln f(x_i | \theta)$$

6 Konfidenzintervalle

• $(1-\alpha)$ -Konfidenzintervall für θ Stichprobenfunktionen $G_u = g_u(X_1, \ldots, X_n)$ und $G_o = g_o(X_1, \ldots, X_n)$, so dass (zu vorgegebener Irrtumswahrscheinlichkeit α)

$$P[G_u \le G_o] = 1$$
 und $P[\theta \in [G_u, G_o]] = P[G_u \le \theta \le G_o] = 1 - \alpha$
 $\Rightarrow [G_u, G_o] = [g_u(X_1, \dots, X_n), g_o(X_1, \dots, X_n)]$ ist ein $(1 - \alpha)$ -Konfidenzintervall für θ .

- Konfidenzniveau (Überdeckungs- , Vertrauenswahrscheinlichkeit): $1-\alpha$
- Realisiertes (1α) -Konfidenzintervall

Beobachtete Werte
$$x_1, \ldots, x_2 \Rightarrow [g_u, g_o] = [g_u(x_1, \ldots, x_n), g_o(x_1, \ldots, x_n)]$$

• Symmetrisches $(1 - \alpha)$ -Konfidenzintervall

erfüllt zusätzlich:
$$P[\theta < G_u] = P[\theta > G_o] = \frac{\alpha}{2}$$

• Einseitiges $(1 - \alpha)$ -Konfidenzintervall (mit unterer Schranke)

$$[G_u, \infty[$$
 mit $P[G_u \le \theta] = 1 - \alpha$

• Einseitiges $(1 - \alpha)$ -Konfidenzintervall (mit oberer Schranke)

$$]-\infty, G_o]$$
 mit $P[\theta \le G_o] = 1-\alpha$

Konfidenzintervall für einen Erwartungswert, bekannte Varianz

- Annahmen:
 - X_1, \ldots, X_n unabhängig und identisch verteilt
 - $-X_i \sim N(\mu, \sigma^2)$
 - Bekannte Varianz σ^2
- (1α) -Konfidenzintervall für μ und bekannter Varianz σ^2 :

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

• Anmerkung:

Falls die Annahme der Normalverteilung zutrifft, handelt es sich um ein **exaktes** $(1-\alpha)$ -Konfidenzintervall andernfalls (d.h. für nicht normalverteilte Zufallsvariablen aber großem Stichprobenumfang) um ein **approximatives**.

Konfidenzintervall für einen Erwartungswert, unbekannte Varianz

• Annahmen:

- X_1, \ldots, X_n unabhängig und identisch verteilt
- $-X_i \sim N(\mu, \sigma^2)$
- Unbekannte Varianz σ^2
- $(1-\alpha)$ -Konfidenzintervall für μ :

$$\left[\overline{X} - t_{1-\alpha/2; n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2; n-1} \frac{S}{\sqrt{n}} \right] \quad \text{mit} \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

• Anmerkung:

Falls die Annahme der Normalverteilung zutrifft, handelt es sich um ein **exaktes** $(1-\alpha)$ -Konfidenzintervall andernfalls (d.h. für nicht normalverteilte Zufallsvariablen aber großem Stichprobenumfang) um ein **approximatives**.

Konfidenzintervall für eine Varianz

• Annahmen:

- $-X_1,\ldots,X_n$ unabhängig und identisch verteilt
- $-X_i \sim N(\mu, \sigma^2)$
- (1α) -Konfidenzintervall für σ^2 :

$$\left[\frac{(n-1)S^2}{\chi^2_{1-\alpha/2;n-1}}, \frac{(n-1)S^2}{\chi^2_{\alpha/2;n-1}}\right] \quad \text{mit} \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Approximatives Konfidenzintervall für einen Anteilswert

• Annahmen:

- $-X_1,\ldots,X_n$ unabhängig und identisch verteilt
- $X_i \sim \text{Bernoulli(p)}$
- Großer Stichprobenumfang; Faustregel: n > 30, np > 5
- Approximatives (1α) -Konfidenzintervall für p:

$$\left[\hat{\boldsymbol{p}} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\boldsymbol{p}}(1-\hat{\boldsymbol{p}})}{n}}, \hat{\boldsymbol{p}} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{\boldsymbol{p}}(1-\hat{\boldsymbol{p}})}{n}}\right] \quad \text{mit} \quad \hat{\boldsymbol{p}} = \overline{X}$$

7 Testen von Hypothesen

Allgemein gelten folgende Annahmen und Hypothesen:

• Annahmen:

- X_1, \ldots, X_n unabhängig und identisch verteilt
- $-X_i \sim N(\mu, \sigma^2)$
- Bekannte Varianz σ^2

• Hypothesen:

- (1) $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$
- (2) $H_0: \mu = \mu_0$ gegen $H_1: \mu > \mu_0$
- (3) $H_0: \mu = \mu_0$ gegen $H_1: \mu < \mu_0$

		$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
		$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Gauß	AB	$ z_{beob} > z_{1-\alpha/2}$	$z_{beob} > z_{1-\alpha}$	$z_{beob} < -z_{1-\alpha}$
	p-Wert	$2 \cdot P[Z \ge z_{beob}]$	$P[Z \ge z_{beob}]$	$P[Z \le z_{beob}]$
t-test	AB	$ t_{beob} > t_{1-\alpha/2;n-1}$	$t_{beob} > t_{1-\alpha;n-1}$	$t_{beob} < -t_{1-\alpha;n-1}$
	p-Wert	$2 \cdot P[T \ge t_{beob}]$	$P[T \ge t_{beob}]$	$P[T \le t_{beob}]$
approx.	AB	$ z_{beob} > z_{1-\alpha/2}$	$z_{beob} > z_{1-\alpha}$	$z_{beob} < -z_{1-\alpha}$
Binomi	p-Wert	$2 \cdot P[Z \ge z_{beob}]$	$P[Z \ge z_{beob}]$	$P[Z \le z_{beob}]$

Gauß-Test

• Teststatistik:

$$Z = \frac{\sqrt{n}(\bar{X} - \mu_0)}{\sigma}$$

• Verteilung von Z unter H_0 :

$$Z \sim N(0,1)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|z_{beob}| > z_{1-\alpha/2}$
 - $(2) z_{beob} > z_{1-\alpha}$
 - $(3) z_{beob} < -z_{1-\alpha}$
- Überschreitungswahrscheinlichkeit: Für $Z \sim N(0,1)$
 - (1) p-Wert = $P[|Z| \ge |z_{beob}|] = 2 \cdot P[Z \ge |z_{beob}|]$
 - (2) p-Wert = $P[Z \ge z_{beob}]$
 - (3) p-Wert = $P[Z \le z_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von Z für großen Stichprobenumfang i.Allg. approximativ gültig.

t-Test (Ein-Stichproben-Fall, σ^2 unbekannt)

• Teststatistik:

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S}$$
 mit $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

• Verteilung von T unter H_0 :

$$T \sim t(n-1)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|t_{beob}| > t_{1-\alpha/2;n-1}$
 - (2) $t_{beob} > t_{1-\alpha;n-1}$
 - (3) $t_{beob} < -t_{1-\alpha;n-1}$
- Überschreitungswahrscheinlichkeit: Für $T \sim t(n-1)$
 - (1) p-Wert = $P[|T| \ge |t_{beob}|] = 2 \cdot P[T \ge |t_{beob}|]$
 - (2) p-Wert = $P[T \ge t_{beob}]$
 - (3) p-Wert = $P[T \le t_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von T für großen Stichprobenumfang i.Allg. approximativ gültig.

Approximativer Binomialtest

• Teststatistik:

$$Z = \frac{\hat{\boldsymbol{p}} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$
 mit $\hat{\boldsymbol{p}} = \overline{X}$

• Aproximative Verteilung von Z unter H_0 :

$$Z \sim N(0,1)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|z_{beob}| > z_{1-\alpha/2}$
 - $(2) z_{beob} > z_{1-\alpha}$
 - (3) $z_{beob} < -z_{1-\alpha}$
- Überschreitungswahrscheinlichkeit: Für $Z \sim N(0,1)$

(1) p-Wert =
$$P[|Z| \ge |z_{beob}|] = 2 \cdot P[Z \ge |z_{beob}|]$$

- (2) p-Wert = $P[Z \ge z_{beob}]$
- (3) p-Wert = $P[Z \le z_{beob}]$
- Anmerkung:

Unter H_0 gilt (exakt): $n\hat{\boldsymbol{p}} \sim B(n, p_0)$. Mit den entsprechenden Quantilen der Binomialverteilung erhält man den sogenannten exakten Binomialtest.

Vergleich der Erwartungswerte, σ_x^2 , σ_y^2 bekannt

• Teststatistik:

$$Z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

• Verteilung von Z unter H_0 :

$$Z \sim N(0,1)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|z_{beob}| > z_{1-\alpha/2}$
 - $(2) z_{beob} > z_{1-\alpha}$
 - $(3) z_{beob} < -z_{1-\alpha}$
- Überschreitungswahrscheinlichkeit: Für $Z \sim N(0,1)$
 - (1) p-Wert = $P[|Z| \ge |z_{beob}|] = 2 \cdot P[Z \ge |z_{beob}|]$
 - (2) p-Wert = $P[Z \ge z_{beob}]$
 - (3) p-Wert = $P[Z \le z_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von Z für große Stichprobenumfänge m, n i.Allg. approximativ gültig.

t-Test (Zwei-Stichproben-Fall), σ_i unbekannt, aber $\sigma_x^2 = \sigma_y^2$

• Teststatistik:

$$T = \frac{\overline{X} - \overline{Y}}{S\sqrt{1/n + 1/m}}$$
 mit $S^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n + m - 2}$

• Verteilung von T unter H_0 :

$$T \sim t(n+m-2)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|t_{beob}| > t_{1-\alpha/2;n+m-2}$
 - (2) $t_{beob} > t_{1-\alpha;n+m-2}$
 - (3) $t_{beob} < -t_{1-\alpha:n+m-2}$
- Überschreitungswahrscheinlichkeit: Für $T \sim t(n+m-2)$
 - (1) p-Wert = $P[|T| \ge |t_{beob}|] = 2 \cdot P[T \ge |t_{beob}|]$
 - (2) p-Wert = $P[T \ge t_{beob}]$
 - (3) p-Wert = $P[T \le t_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von T für große Stichprobenumfänge m, n i.Allg. approximativ gültig.

t-Test (Zwei-Stichproben-Fall), σ_i unbekannt, $\sigma_x^2 \neq \sigma_y^2$

• Teststatistik:

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

• Verteilung von T unter H_0 :

$$T \sim t(k) \qquad \text{wobei k größte ganze Zahl mit} \quad k \leq \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{1}{n-1}\left(\frac{S_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_Y^2}{m}\right)^2}$$

• Ablehnungsbereich (Test zum Niveau α):

- (1) $|t_{beob}| > t_{1-\alpha/2;k}$
- (2) $t_{beob} > t_{1-\alpha;k}$
- $(3) t_{beob} < -t_{1-\alpha;k}$

• Überschreitungswahrscheinlichkeit: Für $T \sim t(k)$

- (1) p-Wert = $P[|T| \ge |t_{beob}|] = 2 \cdot P[T \ge |t_{beob}|]$
- (2) p-Wert = $P[T \ge t_{beob}]$
- (3) p-Wert = $P[T \le t_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von T für große Stichprobenumfänge m, n i.Allg. approximativ gültig.

t-Test (verbundene Stichproben)

• Teststatistik:

$$T = \frac{\sqrt{n}\overline{D}}{S_D}$$
 mit $S_D^2 = \frac{1}{n-1}\sum_{i=1}^n (D_i - \overline{D})^2$ $D_i = X_i - Y_i$

• Verteilung von T unter H_0 :

$$T \sim t(n-1)$$

- Ablehnungsbereich (Test zum Niveau α):
 - (1) $|t_{beob}| > t_{1-\alpha/2:n-1}$
 - (2) $t_{beob} > t_{1-\alpha;n-1}$
 - (3) $t_{beob} < -t_{1-\alpha;n-1}$
- Überschreitungswahrscheinlichkeit: Für $T \sim t(n-1)$
 - (1) p-Wert = $P[|T| \ge |t_{beob}|] = 2 \cdot P[T \ge |t_{beob}|]$
 - (2) p-Wert = $P[T \ge t_{beob}]$
 - (3) p-Wert = $P[T \le t_{beob}]$
- Anmerkung: Ohne Normalverteilungsannahme ist die Verteilung von T für großen Stichprobenumfang i.Allg. approximativ gültig.

χ^2 -Unabhängigkeitstest

• Teststatistik:

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{m} \frac{\left(h_{ij} - \frac{h_{i} \cdot h_{.j}}{n}\right)^{2}}{\frac{h_{i} \cdot h_{.j}}{n}}$$

• Approximative Verteilung von χ^2 unter H_0 :

$$\chi^2 \sim \chi^2((k-1)(m-1))$$
 falls $\frac{h_i \cdot h_{\cdot j}}{n} \ge 5$ für alle i, j

• Ablehnungsbereich (Test zum Niveau α):

$$\chi^2_{beob} > \chi^2_{1-\alpha;(k-1)(m-1)}$$

• Überschreitungswahrscheinlichkeit: Für $\chi^2 \sim \chi^2((k-1)(m-1))$

$$p\text{-Wert} = P[\chi^2 \ge \chi^2_{beob}]$$