MATH 416H HW 7

James Liu

Due: Oct 23 Edit: October 20, 2024

1. First, as U is a vector space, a set of basis can be write out. $\{u_1, \cdots, u_n\}$, also, since U is also a subset of V. We can extend the basis into a basis of $V: \{u_1, \cdots, u_n, z_1, \cdots, z_m\}$. Now consider the dual space V^* by theromes profed in class, a basis of V^* is $\{u_1^*, \cdots, u_n^*, z_1^*, \cdots, z_m^*\}$ and, by definition, $\{z_1^*, \cdots, z_m^*\} \subseteq U^0$ as $\forall u \in U, u = \sum_{i=1}^n \lambda_i u_i + \sum_{j=1}^m 0 \times z_i$. Thus, $\forall u \in U, z_j^*(u) = 0$. Since U^0 us a subset of V, then a basis of U^0 must also be a subset of V's.

Suppose $\{z_1, \dots, z_m\}$ is not a basis for U^0 , then $\exists k$ that for some $u^{*0} \in U^0$, $u^*0 = \lambda u_k^* + \mu_1 z_1^* + \dots + \mu_m z_m^*$ However, consider $u_k \in U$ (the one in basis). $u^{*0}(u_k) = \lambda u_k^*(u_k) + \mu_1 z_1^*(u_k) + \dots + \mu_m z_m^*(u_k) = \lambda + 0 + \dots + 0 \neq 0$. Thus, there is a contradiction, therefore, $\{z_1^*, \dots, z_m^*\}$ is a basis of U^0 .

$$\dim(V) = m + n$$
 $\dim(U) = n$ $\dim(U^0) = m$

Thus, $\dim(U^0) + \dim(U) = \dim(V)$.

 $\begin{array}{ll} 2. & \text{a)} \ \, \forall w^* \in W, \ \, T^*(w^*) = w^* \circ T(v). \ \, \forall w^* \in N(T^*), \, T^*(w^*) = \overrightarrow{0} = v^{*0}, \\ v^{*0} \in V^0, \, \text{Thus,} \, N(T^*) = \{w^* | \forall v \in V, w^*(T(v)) = 0\} \\ & \text{or} \, \, \{w^* | w^* \in W^*, \, \forall w \in R(T), w^*(w) = 0\}. \end{array}$

$$(R(T))^0 = \{w^* | w^*(w) = 0, \ w^* \in W^*, \ \forall w \in R(T)\}.$$
 Therefore, $N(T^*) = (R(T))^0$

b)

$$N(T^*) = (R(T))^0 \qquad \text{(by part a)}$$

$$\dim(N(T^*)) = \dim(W) - \dim(R(T)) \qquad \text{(by problem 1)}$$

$$\dim(W^*) - \dim(R(T^*)) = \dim(W) - \dim(R(T)) \qquad \text{(by rank nullity)}$$

$$\because \dim(W) = \dim(W^*)$$

$$\therefore \dim(R(T^*)) = \dim(R(T))$$

c) Any $m \times n$ matrix A would be equavelent to $T: V \to W$ where $\dim(V) = n$, $\dim(W) = m$, and A^T would be equavelent with $T^*: W^* \to V^*$. As profed by b), $R(T^*) = R(T)$. Thus, they do have same rank.

3. By 2.a) if T^* is injective then $N(T^*) = \overrightarrow{0} = (R(T))^0$. Then by 1., we have $\dim(R(T)) = \dim(W^*) - \dim((R(T))^0) = \dim(W^*) = \dim(W)$. as $R(T) \subseteq W$, therefore, R(T) = W Thus, the transformation is surjective.

4.

$$(\lambda b)(v_1 + v_2, \gamma w) = \lambda b(v_1 + v_2, \gamma w)$$

$$= \lambda \gamma b(v_1, w) + \lambda \gamma b(v_2, w)$$

$$= (\lambda \gamma b)(v_1, w) + (\lambda \gamma b)(v_2, w)$$
(Close under scaler multi.)
$$(b_1 + b_2)(v_1 + v_2, \gamma w) = b_1(v_1 + v_2, \gamma w) + b_2(v_1 + v_2, \gamma w)$$

$$= b_1(v_1, w) + b_1(v_2, w) + b_2(v_1, w) + b_2(v_2, w)$$

$$= b_1(v_1, w) + b_2(v_1, w) + b_1(v_2, w) + b_2(v_2, w)$$

$$= (b_1 + b_2)(v_1, w) + (b_1 + b_2)(v_2, w)$$
(Close under vector add)

a)

$$(b_1 + b_2)(v, w) = b_1(v, w) + b_2(v + w)$$

= $b_2(v, w) + b_1(v + w)$
= $(b_2 + b_1)(v, w)$ (vector ddition is communitive)

b)

$$((b_1 + b_2) + b_3)(v, w) = (b_1 + b_2)(v, w) + b_3(v, w)$$

$$= b_1(v, w) + b_2(v + w) + b_3(v, w)$$

$$= b_1(v, w) + (b_2 + b_3)(v, w)$$

$$= (b_1 + (b_2 + b_3))(v, w)$$
 (vector addition is associative)

c) Consider the bilinear map $b_0(v, w) = 0$

$$(b+b_0)(v,w) = b(v,w) + b_0(v,w)$$

$$= b(v,w) + 0$$

$$= b(v,w) \qquad (\exists \overrightarrow{0} \text{ such that } b + \overrightarrow{0} = b)$$

d)

$$(b + (-1 \cdot b))(v, w) = b(v, w) + (-1) \times b(v, w)$$

$$= 0$$

$$= b_0 \qquad (\forall b, \exists -b, b + (-b) = 0)$$

e)

$$(1 \cdot b)(v, w) = 1 \times b(v, w)$$
$$= b(v, w)$$

$$\lambda((\mu \cdot b)(v, w)) = \lambda(\mu b(v, w))$$

$$= \lambda \mu b(v, w)$$

$$= \mu \lambda b(v, w)$$

$$= \mu((\lambda \cdot b)(v, w))$$

g)

$$\lambda(b_1 + b_2)(v, w) = \lambda(b_1(v, w) + b_2(v, w))$$

= $\lambda b_1(v, w) + \lambda b_2(v, w)$
= $(\lambda b_1)(v, w) + (\lambda b_2)(v, w)$

$$\begin{split} ((\lambda + \mu)b)(v, w) &= (\lambda + \mu)b(v, w) \\ &= \lambda b(v, w) + \mu b(v, w) \\ &= (\lambda b)(v, w) + (\mu b)(v, w) \end{split}$$

5. a)

$$w_0^{\#}(v_1 + v_2) = b(v_1 + v_2, w_0)$$

$$= b(v_1, w_0) + b(v_2, w_0)$$

$$= w_0^{\#}(v_1) + w_0^{\#}(v_2)$$

$$w_0^{\#}(\lambda v) = b(\lambda v, w_0)$$

$$= \lambda b(v, w_0)$$

$$= \lambda w_0^{\#}(v)$$

Thus it is linear.

b) Mark the transformation by T instead of #.

$$T(\lambda w_0) = b(v, \lambda w_0)$$

$$= \lambda b(v, w_0)$$

$$= \lambda T(w_0)$$

$$T(w_1 + w_2) = b(v, w_1 + w_2)$$

$$= b(v, w_1) + b(v, w_2)$$

$$= T(w_1) + T(w_2)$$

Thus, it is linear.

c) $\forall w \in N(\#), \#(w) = 0$ which is $\forall v \in V, w^{\#}(v) = 0$ which is $\forall v \in V, b(v, w) = 0$. Therefore, it is correct.

d) As proved in c) $N(\#) = \{w_0 \in W | b(w^*, w_0) = 0 \text{ for all } w^* \in W^* \}$. For any w_0 we can write a bsis of W containing w_0 . Thus, the dual vector space would also have a basis containing w_0^* . Suppose it exists some $w_0 \neq 0$ that $\forall w^* \in W^*$, $b(w^*, w_0) = 0$, consider $w_0^* \in W^*$, $b(w_0^*, w_0) = w_0^*(w_0) = 1 \neq 0$. Thus there is a contradiction. Therefore, $N(\#) = \{0\}$. Thus, the map is injective.