

ulm university universität

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24 Punkte

Analysis 1 für Informatiker und Ingenieure - Übungsblatt 2 -

Abgabe: Freitag, den 5.5.2017 um 08:10 im Hörsaal 3

Aufgabe 1: (6 Punkte)

In der Vorlesung wurde gezeigt, dass $\sqrt{2}$ irrational ist.

- (a) Zeige, dass $\sqrt{3}$ irrational ist.
- (b) Warum funktioniert der Beweis nicht, wenn man zeigen wöllte, dass $\sqrt{4}$ irrational ist?

Aufgabe 2: (6 Punkte)

Zeige folgende Identitäten:

(a) $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ für $n \in \mathbb{N}$ Gib hierzu zusätzlich eine kombinatorische Begründung mithilfe der Interpretation des Binomialkoeffizienten.

(b)
$$\sum_{k=0}^{n} \frac{k}{n} \binom{n}{k} z^{k} (1-z)^{n-k} = z \text{ für } n \in \mathbb{N}, z \in \mathbb{R}$$

(c) $\sum_{j=0}^{k} (-1)^{j} \binom{n}{j} = (-1)^{k} \binom{n-1}{k}$ für $n \in \mathbb{N}$ und $k = 0, \dots, n-1$. Beachte, dass die obere Summationsgrenze k (und nicht n) ist. Empfehlenswert ist hier eine

Induktion nach k.

Aufgabe 3: (2 Punkte)

Wo liegt der Fehler in folgendem "Induktionsbeweis"?

Behauptung: In einem Stall mit n Pferden haben alle die gleiche Farbe.

Induktions an fang: In einem Stall mit n=1 Pferden hat hat dieses die gleiche Farbe, wie es selbst. Induktionsschluss: Betrachte einen Stall mit n+1 Pferden. Wir nummerieren die n+1 Pferde. Nach Induktionsyhopthese haben die Pferde mit den Nummern 1 bis n die gleiche Farbe, aber auch die Pferde mit den Nummern 2 bis n+1. Also haben alle Pferde die gleiche Farbe wie Pferd Nummer 2. Insgesamt haben also auch alle Pferde in einem Stall mit n+1 Pferden die gleiche Farbe. Damit gilt die Behauptung für alle $n \in \mathbb{N}$. (Insbesondere haben alle Pferde die gleiche Farbe).

Aufgabe 4: (4 Punkte)

- (a) Laut Moodle sind 516 Studierende zu dieser Veranstaltung angemeldet. Angenommen, jede/r Studierende schüttelt jedem/r anderen Studierenden die Hand. Wieviele Handschläge sind dafür notwendig?
- (b) 40 Studierende schreiben eine Klausur. Der Dozent möchte die 40 Studierenden gleichmäßig auf zwei unterschiedliche Räume aufteilen. Wieviele Möglichkeiten hat er hierfür?

ulm university universität

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24 Punkte

(c) Wir betrachten nun das Lotto 6 aus 49, bei welchem man darauf setzt, dass 6 bestimmte Zahlen zwischen 1 und 49 gezogen werden. Laut Vorlesung gibt es $\binom{49}{6}$ Möglichkeiten, dies zu tun. Wieviele Möglichkeiten gibt es, auf genau 3 Richtige gesetzt zu haben? Wie würde man die Wahrscheinlichkeit beziffern, genau 3 Richtige im Lotto zu haben?

Aufgabe 5: (6 Punkte)

Löse folgende Gleichungen:

(a)
$$2x^2 + 4x = -2$$

(b)
$$x^3 + 2x^2 - x - 2 = 0$$

(c)
$$\frac{1}{10}x^4 - \frac{9}{5}x^2 + \frac{81}{10} = 0$$

(d)
$$x^4 + x^3 - 2x^2 - x + 1 = 0$$

(e)
$$\frac{1}{x} + \frac{1}{x-1} = 1$$