The KT phase transition and the XY model

physics760 - Computation physics

Lennart Voorgang

20. März 2025

Inhaltsverzeichnis

1	Intr	oduction	3
2	Numerical Methods		4
	2.1	Monte Carlo Metropolis-Hastings Algorithm	4
	2.2	Bootstrap Analysis	
	2.3	Implementation	4
3	Results		
	3.1	Energy per Spin	5
	3.2	Magnetization per Spin	5
	3.3	Specific Heat per Spin	6
	3.4	Magnetic Susceptibility per Spin	6
	3.5	Critical Temperature T_C	6
	3.6	Vortices	6
4	Con	clusion	7

1 Introduction

The perhaps most well known model for the magnetization of lattice structures is the Ising spin model. It describes the total magnetization of a lattice as the superposition of all the spins $\sigma_i = \pm 1$ on the lattice.

One can now go and generalize the problem not only to a \mathbb{Z}_2 symmetry but to a continuous U(2) symmetry. This model is called the XY model and describes the spins as two dimensional vectors on the unit circle

$$\sigma_i = \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix} \tag{1}$$

parametrized by the angle $\theta_i \in [0, 2\pi)$. The Hamiltonian for this system is thus given as

$$H = -\sum_{\langle i,j\rangle} s_i \cdot s_j = -\sum_{\langle i,j\rangle} \cos(\Delta\theta)$$
 (2)

where $\Delta \theta = \theta_i - \theta_j$ is the angle between two spins. The partition sum for such a system is given by

$$Z = \sum \exp\left(-\beta H\right) \tag{3}$$

where $\beta = \frac{1}{k_B T}$.

2 Numerical Methods

2.1 Monte Carlo Metropolis-Hastings Algorithm

- 1. Calculate E and M for the initial lattice configuration where $\theta_i = 0$ at every site.
- 2. Perform a lattice sweep by iterating over all lattice sites. For every site i do:
 - a) Propose a new angle $\theta_i \in [0, 2\pi)$ from a uniform distribution.
 - b) Calculate $\Delta H = \Delta E$ and ΔM for the proposed new state.
 - c) Accept or reject state with propability $P = \min(1, \exp(-J\Delta H))$
- 3. Update the observables $E += \Delta E$ and $M += \Delta M$ and add them to the result set.
- 4. Repeat from 2. for a total of N sweeps.

2.2 Bootstrap Analysis

Since the Metropolis-Hastings algorithm scales with the number of lattices sites, it is computationally impractical to run the Metropolis-Hastings algorithm for very long times. To resolve this, one might use bootstrap sampling to obtain more measurements than were simulated.

2.3 Implementation

3 Results

3.1 Energy per Spin

3.2 Magnetization per Spin

3.3 Specific Heat per Spin

3.4 Magnetic Susceptibility per Spin

3.5 Critical Temperature T_C

3.6 Vortices

4 Conclusion