Elias Gestrich Regular languages, context-free grammars

Exercise 1: Type-3 Grammars

Exercise 2: Type-3 Grammars

Exercise 3: Pumping Lemma

Assume there is a number $n \in \mathbb{N}$ so that for all words $x \in L_3$, $|x| \ge n$ the word can be written as uvw so that $|v| \ge 1$, $|uv| \le n$, $\forall i \in N_0 : uv^iw \in L_3$. Take the word $x := e^n d^{2n}$, so that $|x| \ge n$, so that $x = uv^iw$. Since $|uv| \le n$ has to contain only e's because the first n symbols are e's. And because $|v| \ge 1$ it means v contains at least one e. That means one could loop v once more, so $e^{n+|v|}d^{2n}$ would be also in L_3 , but that is in contradiction to the definition, that means L_3 is not regular.

Exercise 4: Context-free Grammars

a) S-B-cBb-ccAab-ccBaab-ccbaab

b)	$Z = \frac{1}{2}$	$\{z_0\}$,	$\Gamma =$	$\{S,\}$	A, B	, a, b	$,c\}$,#	$\equiv S$
----	-------------------	-------------	------------	----------	------	--------	--------	----	------------

Input	stack	transition				
ε	S	pop; push B				
ε	B	pop; push b				
ε	A	pop; push B; push a				
ε	B	pop; push b; push B; push c				
ε	B	pop; push a; push A; push c				
ε	a	pop				
ε	b	pop				