Hash Function

 $H: \{0,1\}^* \rightarrow \{0,1\}^{l(n)}$ (fixed output length)

I(n) = poly(n), with n the security parameter {0,1}*: sequence on bits, regardless its size

s.t.: such that A: adversary

Security (3)

Collision resistance

Hash^{coll}_{A,H}(n)=1 if:

A outputs

 $x,y \in \{0,1\}^* \text{ s.t.}$

 $x \neq y$ and H(x) = H(y)

 $\operatorname{Hash}^{\operatorname{coll}}_{\mathcal{A} H}(n)=0$, otherwise

H is *collision resistant* if $\forall A$ PPT,

 $\exists \varepsilon(n)$ negligible s.t.:

 $Pr[Hash^{coll}_{\mathcal{A},H}(n)=1] \leq \varepsilon(n)$

Second pre-image resistance

Hash^{2nd-pre-img}_{A,H}(n)=1 if:

given $x \in \{0,1\}^*$, \mathcal{A} outputs $y \in \{0,1\}^* \text{ s.t.}$

 $x \neq y$ and H(x) = H(y)

 $\operatorname{Hash}^{\operatorname{2nd-pre-img}}_{\operatorname{A},H}(n)=0$, otherwise

H is second pre-image resistant if $\forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible s.t.}$:

 $Pr[Hash^{2nd-pre-img}_{A,H}(n)=1] \le \varepsilon(n)$

First pre-image resistance

Hash^{1st-pre-img}_{A.H}(n)=1 if:

given X, A outputs

 $x \in \{0,1\}^* \text{ s.t.}$

H(x) = X

 $\mathsf{Hash}^{\mathsf{1st\text{-}pre\text{-}img}}_{\mathcal{A},H}(n)=0$, otherwise

H is first pre-image resistant if $\forall A$

PPT, $\exists \varepsilon(n)$ negligible s.t.:

 $Pr[Hash^{1st-pre-img}_{A,H}(n)=1] \le \varepsilon(n)$

one-way function

Pages on SecuRity by Ruxandra F. Olimid

higher security

lower security