Synthetic Studies on (+)-Lysergic Acid

Isolation

L. Craig et al., J. Biol. Chem., 104, 547 (1934)

Structure Determination

A. Stoll et al., Helv. Chim. Acta, 37, 2039 (1954)

Total Syntheses (Racemic Form)

- R. B. Woodward *et al.*, *J. Am. Chem. Soc.*, <u>76</u>, 5256 (1954); <u>78</u>, 3087 (1956)
- M. Julia et al., Tetrahedron Lett., 1569 (1969)
- V. W. Armstrong et al., ibid., 4311 (1976)
- W. Oppolzer et al., Helv. Chim. Acta, 64, 478 (1981)
- R. Ramage et al., Tetrahedron, <u>37</u>, Suppl. 9, 157 (1981)
- J. Rebek, Jr. et al., J. Am. Chem. Soc., 106, 1813 (1984)
- I. Ninomiya et al., J. Chem. Soc., Perkin Trans. 1, 941 (1985)
- T. Kurihara et al., Chem. Pharm. Bull., 34, 442 (1986)

2 Lysergic Acid is Easily Epimerized

I. Ninomiya et al., J. Chem. Soc., Perkin Trans. 1, 941 (1985)

R. Ramage et al., Tetrahedron, <u>37</u>, Suppl. 9, 157 (1981)

Key Disconnection

Novel Method of the Connection

4

Retrosynthetic Analysis

Model Study

OH

CO₂Et

Synthesis of α-Nitroalkene

Preparation of Cyclization Precursors

Double Cyclization Succeeded!

(+)-Lysergic Acid

Modified Retrosynthetic Analysis

Synthesis of D Ring Unit

12

Conversion to Cyclization Precursor

1) Mel, NaH DMF/THF 2) cat. CSA THF, reflux

1) MeNO₂, KF *i*-PrOH 2) MsCl, Et₃N

CH₂Cl₂

84% (3 steps)

n-BuLi 1) 2) Fe, FeCl₂ HCl, EtOH 3) Boc_2O CH₂Cl₂

OMe O_2N CO₂Me

62% (4 steps)

Construction of the Tetracyclic Skeleton

Latest Results

Summary

