Detecting Indirect Racism and Sexism through Speech and Text Analysis

Machine Learning Project

Agori Fotini - Tolia Anna

12 February, 2024

Introduction

Problem: Identifying implicit racism/sexism through linguistic and vocal features.

Data Sources: Greek TV programs, news, debates with multiple speakers.

Analysis: Combination of transcription, NLP, and speech analysis.

Steps

Gathered Data

Youtube videos from TV Shows, Livestreams, news broadcasts. Multiple speakers, diverse topics.

Transcribed videos

WhisperX for ASR (Automatic Speech Recognition).

Manual Corrections due to errors in Greek transcription.

Data annotation

Single-label classification (each utterance tagged as hatespeech, racism, sexism, irony, or no).

Manual annotation

Undersampling

After we started training without undersampling of the data we decided to undersample major class

Data Load & Exploratory Analysis

We did exploratory data analysis and founf the class distribution, number of words per text and frequent words

Data Cleaning & Stopwords

Tokenization and Feature extraction

TF-IDF Feature Matrix: (190, 920) iltering out common words and giving more weight to important terms

Training Method

Leave-One-Out

Why?

Small dataset required maximizing evaluation efficiency.

Mechanism

One sample is left out each time while training on the rest.

>> Benefits

Improved generalization and performance assessment.

Principal Component Analysis

> There was no significant elbow

We did manually runs with 50 - 200 components

Model Training with PCA before TFIDF

Logistic Regression

- 60 Components
- Did not predict 2 of the classes
- Macro f1: 0.21

Naive Bayes

- Did not work well with PCA and we used Gausian NAive Bayes
- Macro-f1: 0,05

SVM

- 150 Components
- Macro-f1: 0.28
- Smote macro-f1: 0,73

Model Training without PCA

Logistic Regression

• without smote:

Macro f1 -> 21%

• smote:

Macro f1 -> **76%**

261.90% increase

Naive Base

• without smote:

Macro f1 -> 22%

• smote:

Macro f1 -> 68%

209.09%

increase

SVM

• without smote:

Macro f1 -> 32%

• smote:

Macro f1 -> **78%**

143.75% increase

SVM BEST

Without PCA

With PCA

SVM BEST

Without PCA

	precision	recall	f1-score	support
racism	0.98	0.97	0.97	60
sexism	0.67	0.60	0.63	60
irony hate_speech	0.56 0.72	0.65 0.70	0.60 0.71	60 60
no no	1.00	0.98	0.99	60
accuracy			0.78	300
macro avg	0.79	0.78	0.78	300
weighted avg	0.79	0.78	0.78	300

With PCA

Classification report:						
р	recision	recall	f1-score	support		
hate speech	0.98	0.92	0.95	60		
irony	0.61	0.52	0.56	60		
no	0.51	0.72	0.59	60		
racism	0.63	0.55	0.59	60		
sexism	1.00	0.93	0.97	60		
accuracy			0.73	300		
macro avg	0.75	0.73	0.73	300		
weighted avg	0.75	0.73	0.73	300		

Fusion Between the Best Classifiers (SVM & LR)

Experiment: Combining SVM + LR for fusion voting.

- Average accuracy: 77.00%, identical to SVM.
- Fusion Voting did not improve performance, confirming that SVM dominates predictions.
- "Racism" & "No" classes had extremely high precision & recall (~98-100%).
- "Irony" remained the most challenging class (~62% recall), with no significant improvement.
- Slight improvement in overall prediction stability, but not enough to justify using Fusion Voting over SVM.

Conclusion: SVM is the best-performing model.

Binary

Without PCA

• macro - f1: 0.66

With PCA

- Scree Plot was not show helpfull
- We chose 250 Components
- macro f1: 0.65

Conclusion

SVM -> Best model for text classification.

Fusion -> No significant improvement over SVM alone.

Speech Analysis -> Challenging due to technical limitations.

Thank you