2 STL for Hybrid Systems

2.1 Hybrid Systems Preliminaries

Definition 2.1 (Hybrid System). A hybrid system $\mathcal{H} = (C, F, D, G)$ is defined by a flow set C, flow map F, jump set D, and jump map G, following [?]. $x \in \mathcal{X}$ is the system's state where $\mathcal{X} \subset \mathbb{R}^n$ is the state space. Continuous dynamics are defined on flow set C and are captured by the set valued map $F : \mathcal{X} \rightrightarrows \mathcal{X}$. Discrete dynamics are defined on jump set D and are captured by the set-valued map $G : \mathcal{X} \rightrightarrows \mathcal{X}$. Taken together, \mathcal{H} can be written as:

$$\dot{x} \in F(x) \qquad x \in C$$

$$x^+ \in F(x) \qquad x \in D$$
(6)

Solutions to a hybrid system \mathcal{H} are defined on ordinary and discrete time:

- 1. Ordinary Time: $t \in \mathbb{R}_{>0} := [0, \infty)$
- 2. Discrete Time: $j \in \mathbb{N} := \{0, 1, 2, ...\}$

Definition 2.2 (Hybrid Time Instance). A hybrid time instance is given by

$$(t,j) \in \mathbb{R}_{\geq 0} \times \mathbb{N}$$

Definition 2.3 (Compact Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a compact hybrid domain if it can be written as

$$E := \bigcup_{j=0}^{J} ([t_j, t_{j+1}] \times \{j\})$$
 (7)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$.

Definition 2.4 (Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a hybrid domain if for each $(T,J) \in E$

$$E \cap ([0,T] \times \{0,1,...,J\})$$

is a compact hybrid time domain.

Definition 2.5 (Compact Hybrid Shift). Given a compact hybrid domain E and (t^*, j^*) , the forward compact hybrid shift of E by (t^*, j^*) is

$$(t^*, j^*) + E = \bigcup_{j=0}^{J} ([t_j + t^*, t_{j+1} + t^*] \times \{j + j^*\}$$
(8)

and the backward hybrid shift of E by (t^*, j^*) is

$$E - (t^*, j^*) = \bigcup_{j=0}^{J} ([t_j - t^*, t_{j+1} - t^*] \times \{j - j^*\}$$
(9)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$ and E satisfying (7).

Definition 2.6 (Compact Hybrid Interval). A compact hybrid interval is defined by two hybrid time instances (t_A^*, j_A^*) and (t_B^*, j_B^*) , where $t_A^* + j_A^* \le t_B^* + j_B^*$, and an hybrid domain E, over the range $[t_A^*, t_B^*] \times \{j_A^*, ..., j_B^*\}$, by

$$\mathcal{I}_{t_A^*, j_A^*}^{t_B^*, j_B^*} := (t_A^*, j_A^*) + E = \bigcup_{j=0}^{J} ([t_j + t_A^*, t_{j+1} + t_A^*] \times \{j + j_A^*\}$$
(10)

- where $J = j_B^* - j_A^*$ and $t_0 = 0 \le t_1 \le t_2 \le ... \le t_{J+1} = t_B^* - t_A^*$.

Definition 2.7 (Open Hybrid Interval). An open hybrid interval is defined by two hybrid time instances, (t_A^*, j_A^*) and (t_B^*, j_B^*) , on hybrid domain E, over the range $[t_A^*, t_B^*] \times \{j_A^*, ..., j_B^*\}$, by the following cases:

1. Left open interval

$$\mathcal{I}_{t_{A}^{*},j_{A}^{*}}^{t_{B}^{*},j_{B}^{*}} := \left((t_{A}^{*}, t_{1} + t_{A}^{*}] \times \{j_{A}^{*}\} \right) \cup \left\{ (t_{A}^{*} + t_{1}, j_{A}^{*} + 1) + E \right\} \\
= \left((t_{A}^{*}, t_{1} + t_{A}^{*}] \times \{j_{A}^{*}\} \right) \cup \left\{ \bigcup_{j=0}^{J} ([t_{j} + t_{A}^{*} + t_{1}, t_{j+1} + t_{A}^{*} + t_{1}] \times \{j + j_{A}^{*} + 1\} \right\}$$
(11)

- where $J = j_B^* - j_A^* - 1$ and $t_0 = 0 \le t_1 \le t_2 \le ... \le t_{J+1} = t_B^* - t_A^* - t_1$;

2. Right open interval

$$\mathcal{I}_{t_{A}^{*},j_{A}^{*}}^{t_{B}^{*},j_{B}^{*}} := \left\{ (t_{A}^{*},j_{A}^{*}) + E \right\} \cup \left([t_{j_{B}^{*}},t_{B}^{*}) \times \{j_{B}^{*}\} \right) \\
= \left\{ \bigcup_{j=0}^{J} ([t_{j} + t_{A}^{*},t_{j+1} + t_{A}^{*}] \times \{j + j_{A}^{*}\} \right\} \cup \left([t_{j_{B}^{*}},t_{B}^{*}) \times \{j_{B}^{*}\} \right)$$
(12)

- where $J=j_B^*-j_A^*-1$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_{j_B^*}-t_A^*$;

3. Open interval

$$\mathcal{I}_{t_{A}^{*},j_{A}^{*}}^{t_{B}^{*},j_{B}^{*}} := \left((t_{A}^{*}, t_{1} + t_{A}^{*}) \times \{j_{A}^{*}\} \right) \cup \left\{ (t_{A}^{*} + t_{1}, j_{A}^{*} + 1) + E \right\} \cup \left([t_{j_{B}^{*}}, t_{B}^{*}) \times \{j_{B}^{*}\} \right) \\
= \left((t_{A}^{*}, t_{1} + t_{A}^{*}) \times \{j_{A}^{*}\} \right) \cup \left\{ \bigcup_{j=0}^{J} ([t_{j} + t_{A}^{*} + t_{1}, t_{j+1} + t_{A}^{*}] \times \{j + j_{A}^{*} + 1\} \right\} \cup \left([t_{j_{B}^{*}}, t_{B}^{*}) \times \{j_{B}^{*}\} \right)$$
(13)

- where $J = j_B^* - j_A^* - 2$ and $t_0 = 0 \le t_1 \le t_2 \le \dots \le t_{J+1} = t_{j_B^*} - t_A^*$.

Definition 2.8 (Hybrid Arc). A function $\phi: E \mapsto \mathcal{X}$ is a hybrid arc if E is a hybrid time domain and for each $j \in \mathbb{N}$, the function $t \mapsto \phi(t,j)$ is absolutely continuous on the interval $I_j := \{t : (t,j) \in E\}$. The interior of I_j is denoted int I_j .

Definition 2.9 (Solution of a Hybrid System). A hybrid arc ϕ is a solution to hybrid system $\mathcal{H} = (C, F, D, G)$ if

- 1. $\phi(0,0) \in C \cup D$
- 2. for all $j \in \mathbb{N}$ such that I^j has a nonempty interior
 - $\phi(t,j) \in C$ for all $t \in \text{int } I^j$
 - $\dot{\phi}(t,j) \in F(\phi(t,j))$ for almost all $t \in I^k$
- 3. for all $(t, j) \in E$ such that $(t, j + 1) \in E$
 - $\phi(t,j) \in D$
 - $\phi(t, j+1) \in G(\phi(t, j))$

2.2 STL Definitions

Definition 2.10. (Atomic Proposition)

An atomic proposition $p^{\mu}: \mathcal{X} \mapsto \mathbb{B}$ is a function that maps the state space of the system to a boolean value. The set of all atomic propositions is denoted by \mathcal{P} .

The function $\mu: \mathcal{X} \to \mathbb{R}$ represents a robustness measure of the proposition and has following relation to an atomic proposition.

$$\mu > 0 \implies p^{\mu} = 1$$

 $\mu \le 0 \implies p^{\mu} = 0$

Definition 2.11 (STL Grammar). STL formulas are defined recursively by the following grammar:

$$\varphi ::= p^{\mu} \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \Diamond_{\mathcal{T}} \varphi \mid \varphi_1 \mathcal{U}_{\mathcal{T}} \varphi_2$$

Where \mathcal{I} is a open or closed hybrid interval and φ , φ_1,φ_2 are STL formula.

The fact that a hybrid arc satisfies STL formula φ at hybrid time instance (t,j) is given by $\varphi(\phi(t,j)) = 1$. When a hybrid arc does not satisfy a proposition then $\varphi(\phi(t,j)) = 0$.

The validity of a formula φ with respect to hybrid arc ϕ at at time (t,j) is defined inductively as

$$\begin{split} (\phi,(t,j)) &\models p^{\mu} &\iff \mu(\phi(t,j)) > 0 \\ (\phi,(t,j)) &\models \varphi &\iff \varphi(\phi(t,j)) = 1 \\ (\phi,(t,j)) &\models \neg \varphi &\iff \neg((\phi,(t,j)) \models \varphi) \\ (\phi,(t,j)) &\models \varphi \land \psi &\iff (\phi,(t,j)) \models \varphi \land (\phi,(t,j)) \models \psi \\ (\phi,(t,j)) &\models \Diamond_{\mathcal{I}^{t_b,j_b}_{t_a,j_a}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I}^{t_b,j_b}_{t_a,j_a} \text{ s.t. } (\phi,(t',j')) \models \varphi \\ (\phi,(t,j)) &\models \psi \ \mathcal{U}_{\mathcal{I}^{t_b,j_b}_{t_a,j_a}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I}^{t_b,j_b}_{t_a,j_a} \text{ s.t. } (\phi,(t',j')) \models \varphi \\ \land \forall (t'',j'') \in \mathcal{I}^{t',j'}_{t,j}, \ (\phi,(t'',j'')) \models \psi \end{split}$$