including sils. excelerassils.

Linear Classifiers

_Marco Loog

Past, Present, ...

- _Yesterday, covered regression with linear model
- _Today we get back to classifiers

Notably, linear classifiers...

Which ones did we see already?

_Meanwhile work towards framework that captures setup of many classifiers

More Specifically

_Covering

Gaussian-based linear classifiers [recap, 2-class case] Logistic regression / classifier Linear regression classifier The perceptron

Encore: that general framework...

Reminder: Losses of Interest

Classification aims to minimize expected error rate

$$\sum_{y} \int [f(x) \neq y] p(x, y) dx$$

Regression aims to minimize expected squared loss

Other losses possible [any ideas?]

$$\int (f(x) - y)^2 p(x, y) dx dy$$

_We do not know p

_We need to assume a model for f

The General Linear Classifier

$$_f(x) = w^T x + w_0$$

_Question : how to set the normal w and offset w_0

LDA & NMC

Gaussian-based Classifiers

_Assumed model : Gaussian class conditionals With equal covariance matrices

Define
$$f(x) = \log p(y_1|x) - \log p(y_2|x)$$

If > 0 assign to class 1

Then $f(x) = w^T x - w_0$ with $w = \hat{\Sigma}^{-1}(\hat{\mu}_2 - \hat{\mu}_1)$ and some unwieldy expression for w_0

Further Simplifying Assumptions...

We have $f(x) = w^T x - w_0$ with $w = \hat{\Sigma}^{-1}(\hat{\mu}_2 - \hat{\mu}_1)$ and some unwieldy expression for w_0

_Assuming covariance I and prior equal, we find $w = (\hat{\mu}_2 - \hat{\mu}_1)$, $w_0 = \|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2$, and can take $f(x) = \|\hat{\mu}_2 - x\|^2 - \|\hat{\mu}_1 - x\|^2$

Logistic Regression

Let's Assume Linear "Logit"

Take $f(x) = \log p(y_1|x) - \log p(y_2|x)$ and assumed class-conditionals Gaussian

Result: a linear classifier if covariances are equal

_An alternative : immediately assume $\log p(y_1|x) - \log p(y_2|x) = w^T x + w_0 = f(x)$

No class conditionals; just restricts posteriors

$$\log \frac{p(y_1|x)}{p(y_2|x)} = f(x)$$

_Derive $p(y_1|x)...$

$$\log \frac{P_1}{P_2} = f \Rightarrow \frac{P_1}{P_2} = \exp f \Rightarrow P_1 = (1-P_1) \exp f$$

$$P_1 = \frac{\exp f}{1 + \exp f} = \frac{1}{\exp f + 1}$$

Logistic Regression

_Classifier that takes
$$p(y_1|x) = \frac{1}{\exp(-f(x)) + 1}$$

What shape does this have as a function of x? How do we now find the actual parameters?

[Conditional] Likelihood!

_Maximize [its logarithm]

$$\sum_{\text{all } x \text{ in class } y_1} \log_2 \left(\frac{1}{\exp(-f(x)) + 1} \right)$$

$$+ \sum_{\text{all } x \text{ in class } y_2} \log_2 \left(\frac{1}{\exp(f(x)) + 1} \right)$$

Rewrite into Minimization...

_Identify $y_1 = +1$ and $y_2 = -1$ _Then minimize

$$\sum_{i=1}^{N} \log_2(\exp(-y_i f(x)) + 1)$$

Fisher & Linear Regression

Linear Classifier by Least Squares?

```
_Also referred to as Fisher classifier, FLD,...
How to?
```

Linear Classifier by Least Squares?

```
_How to?
```

_Again identify $y_1 = +1$ and $y_2 = -1$?

We Get...

$$(x_i, y_i)$$
 $y_i \in \{-1, +1\}$

$$\sum_{i=1}^{N} ?(w^{\top} \times_{i} - \psi^{2})^{2}$$

General Setup of Fitting a Learner

General Setup of Fitting a Learner

- _1) Choose a class of models
 Linear functions, Gaussian classes, sigmoidal posteriors, ...
- _2) Choose a fitting function / loss Log-likelihood, squared loss, MAP, ...
- _Sum over individual training elements
- _Works for regression and classification

Formulations are Not Unique!

_NMC : spherical Gaussian model + LL means as model + squared deviation

_Logistic regression : sigmoidal posterior + LL linear model + logistic loss

$$\sum_{i=1}^{N} \log_2(\exp(-y(w^T x + w_0)) + 1)$$

Somewhat Special Losses

$$[yf(x) < 0]$$

$$(f(x) - y)^{2} = (yf(x) - 1)^{2}$$

$$\log_{2}(\exp(-yf(x)) + 1)$$

Hinge and Perceptron

Define
$$|x|_+ = \frac{|x|+x}{2}$$

_Final loss this lecture :

"perceptron" loss $|-yf(x)|_+$

Week 4: hinge loss $|1 - yf(x)|_+$

The Perceptron

The Perceptron

_Minimizes $\sum |-y_i w^T x_i|_+$ Yes, left out bias for simplicity...

_Way of optimizing = integral part of this learner

Cycle through all training points randomly Check if random point is correctly classified If not update $w \leftarrow w + \eta yx$ [$\eta =$ learning rate] Repeat

Classical result: converges in finite steps if data separable

Two Example Iterations

Discussion & Conclusion

Various Linear Classifiers

_LDA, NMC, logistic regression, Fisher linear discriminant, perceptron, hinting at SVMs...

_More importantly?

Many classification and regression functions can be specified by defining 1) a hypothesis class H and 2) a loss or fit function ℓ to check which hypothesis fits best on which data

Strictly speaking, there are two more ingredients... Anybody?

_Note: most classifiers don't minimize error rate!

Hypothesis-Loss Framework

_Good to realize that many learners have a similar structure [at some level]

Look out for [apparent?] exceptions to the rule...

_Can be handy to compare classifiers

Same hypothesis space, but different loss used to pick best Same loss but different hypothesis spaces...

Some More Examples

```
_Linear regression : H = \{w^T x + w_0 | w \in \mathbb{R}^d, w_0 \in \mathbb{R}^d \} and \ell(h, x, y) = (h(x) - y)^2

Or H = \mathbb{R}^{d+1} and \ell(h, x, y) = (h^T {x \choose 1} - y)^2

_Nearest mean : H = \mathbb{R}^d \times \mathbb{R}^d and \ell(h, x, y) = \|x - h_y\|^2

_QDA in 1D : H = \{\pi_y N(x | \mu_y, \sigma_y) | \mu_y \in \mathbb{R}, \sigma_y > 0\} and \ell(h, x, y) = -\log h(x, y)
```

Lots of Linear Stuff

$$\phi(x) \qquad \phi: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$$

$$w^{T}\phi(x) + w_{0}$$

$$C_{d}(x) = C_{p}(\phi(x))$$

_How to construct nonlinear classifiers from linear ones?