Association Analysis (2) Generating Rules

Rule Generation

• An association rule can be extracted by partitioning a frequent itemset Y into two nonempty subsets, X and Y-X, such that

$$X \rightarrow Y - X$$

satisfies the confidence threshold.

- Each frequent *k*-itemset, *Y*, can produce up to 2^k -2 association rules
 - ignoring rules that have empty antecedents or consequents.

Example

Let $Y = \{1, 2, 3\}$ be a frequent itemset.

Six candidate association rules can be generated from *Y*:

```
\{1, 2\} \rightarrow \{3\},\

\{1, 3\} \rightarrow \{2\},\

\{2, 3\} \rightarrow \{1\},\

\{1\} \rightarrow \{2, 3\},\

\{2\} \rightarrow \{1, 3\},\

\{3\} \rightarrow \{1, 2\}.
```

Computing the confidence of an association rule does not require additional scans of the transactions.

Consider $\{1, 2\} \rightarrow \{3\}$. The confidence is $\sigma(\{1, 2, 3\}) / \sigma(\{1, 2\})$

Because {1, 2, 3} is frequent, the antimonotone property of support ensures that {1, 2} must be frequent, too, and we know the supports of frequent itemsets.

Confidence-Based Prunning I

Theorem.

If a rule $X \rightarrow Y - X$ does not satisfy the confidence threshold, then any rule $X' \rightarrow Y - X'$, where X' is a subset of X, cannot satisfy the confidence threshold as well.

Proof.

Consider the following two rules: $X' \rightarrow Y - X'$ and $X \rightarrow Y - X$, where $X' \subseteq X$.

The confidence of the rules are $\sigma(Y) / \sigma(X')$ and $\sigma(Y) / \sigma(X)$, respectively.

Since X ' is a subset of X, $\sigma(X') \ge \sigma(X)$.

Therefore, the former rule cannot have a higher confidence than the latter rule.

Confidence-Based Prunning II

• Observe that:

$$X \subseteq X$$
 implies that $Y - X \supseteq Y - X$

Confidence-Based Prunning III

- Initially, all the highconfidence rules that have only one item in the rule consequent are extracted.
- These rules are then used to generate new candidate rules.
- For example, if
 - $\{acd\} \rightarrow \{b\}$ and $\{abd\} \rightarrow \{c\}$ are highconfidence rules, then the candidate rule $\{ad\} \rightarrow \{bc\}$ is generated by merging the consequents of both rules.

Confidence-Based Prunning IV

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

```
{Bread,Milk} \rightarrow {Diaper} (confidence = 3/3) threshold=50% {Bread,Diaper} \rightarrow {Milk} (confidence = 3/3) {Diaper,Milk} \rightarrow {Bread} (confidence = 3/3)
```

Confidence-Based Prunning V

Merge:

```
{Bread,Milk}→{Diaper}
{Bread,Diaper}→{Milk}

{Bread}→{Diaper,Milk} (confidence = 3/4)
...
```