Cálculo Numérico / Métodos Numéricos

Sistemas lineares Método dos Gradientes Conjugados

Relembrando: método dos gradientes

Idéia básica. Para A simétrica > 0:

O vetor x que resolve Ax=b é o mesmo vetor x que minimiza:

$$F(x) = \frac{1}{2}x^{\dagger}Ax - b^{\dagger}x$$

Por que?

Isso ocorre pois grad(F(x)) = 0, condição necessária para mínimo implica Ax=b.

Além disso, Hessiana = A > 0

chutamos um valor inicial: x_0

andamos na direção de menor decrescimento naquele ponto: $-grad(F(x_0))$, ou seja:

$$x_1 = x_0 - s \times grad(F(x_0))$$

onde s é o valor do passo! (o quanto andamos nesta direção)

Interpretação do algoritmo

Como achamos o passo?

Buscamos o s que minimiza F(x + sr)

r é a direção oposta ao gradiente: r = -grad(F) = b-Axs é o passo

Min F(x + sr).

Isso ocorre quando dF/ds = 0.

Fazendo as contas:

$$s = \frac{r^T r}{r^T A r}$$

- Dados A, b, max e Erro
- 1) x⁽⁰⁾=0
- = 2) k = 0
- \blacksquare 3) r = b $Ax^{(k)}$
- \bullet 4) $s = r^T r/r^T A r$
- 5) $x^{(k+1)} = x^{(k)} + s r$
- 6) Se $||x_{k+1}-x_k||_{\infty}/||x_{k+1}||_{\infty}$ < Erro então faça solução = $x^{(k+1)}$ e PARE
- 7) k = k+1
- 8) Se (k<max) então volte ao Passo 3.</p>
- 9) Senão escreva que a solução $x^{(k+1)}$ e o erro. PARE.

Método dos Gradientes Conjugados

- Definição 5.3 (Franco, 2007)
- Dada a aplicação linear A, positiva definida, x e y são direções conjugadas (A-ortogonais) se

$$(Ax,y) = (x,Ay) = 0.$$

i.e.

$$x^{\dagger}Ay = y^{\dagger}Ax = 0$$

- Seja a matriz A simétrica $(A^{T=}A)$ e definida positiva $(x^{T}Ax>0)$, para $x \neq 0$). A base do método dos Gradientes Conjugados (CG) é a seguinte propriedade:
- Propriedade (Cunha, 2000): É possível escolher n direções linearmente independentes, p_1 , p_2 ,... p_n , e por meio da minimização da função $F(x^{(k)} + s_k p^{(k)})$, em cada uma das direções separadamente, construir uma seqüência de aproximações que forneça o mínimo da função $F(x) = \frac{1}{2} x^T A x b^T x$ após n passos (n é o número de equações do sistema).

Se A é definida positiva e p_1 , p_2 ... p_n são n direções A-ortogonais, então essas direções são LI.

A solução ótima pode ser escrita como combinação linear dessas n (dimensão de A) direções mais a direção b.

No algoritmo anterior, se a cada passos usarmos uma direção A-ortogonal, conseguiremos a solução em *n* passos.

- Dada uma aproximação inicial $x^{(0)}$, escolhemos a primeira direção $p_0 = r_0 = -grad(F(x^{(0)}))$.
- As demais direções serão escolhidas de maneira que cada direção seja perpendicular à direção anterior.
- Além disso, fazemos com que cada direção seja uma combinação do resíduo anterior e da direção anterior:

$$p^{(k)} = r^{(k-1)} + \alpha_{k-1} p^{(k-1)}, k = 2, 3, \dots$$

coeficiente que será determinado de modo que p_k seja conjugada a p_{k-1}

Método dos Gradientes Conjugados

fazendo as direções conjugadas (obtendo α):

$$(p^{(k)}, Ap^{(k-1)}) = 0$$

$$\Rightarrow (r^{(k-1)} + \alpha_{k-1}p^{(k-1)}, Ap^{(k-1)}) = 0$$

$$\Rightarrow (r^{(k-1)}, Ap^{(k-1)}) + \alpha_{k-1}(p^{(k-1)}, Ap^{(k-1)}) = 0.$$

$$\alpha_{k-1} = -\frac{(r^{(k-1)}, Ap^{(k-1)})}{(p^{(k-1)}, Ap^{(k-1)})}, k = 2, 3, \dots$$

Método dos Gradientes Conjugados

Passo:

$$x_k = x_{k-1} + q_k p^k$$

 $\frac{1}{2}(q_k p_k)^t A(q_k p_k) - b^t x_{k-1} - b^t q_k p_k$

Obtemos como anteriormente: queremos o q_k que minimiza F.

$$Min_{q_k} F(x_{k-1} + q_k p_k)$$

$$Min_{q_k} \frac{1}{2} (x_{k-1} + q_k p_k)^t A(x_{k-1} + q_k p_k) - b^t (x_{k-1} + q_k p_k)$$

$$Min_{q_k} \frac{1}{2} x_{k-1}^t A x_{k-1} + \frac{1}{2} x_{k-1}^t A(q_k p_k) + \frac{1}{2} (q_k p_k)^t A x_{k-1} +$$

$$Min_{q_k} \frac{1}{2}x_{k-1}^t A x_{k-1} + \frac{1}{2}x_{k-1}^t A (q_k p_k) + \frac{1}{2}(q_k p_k)^t A x_{k-1} + \frac{1}{2}(q_k p_k)^t A (q_k p_k) - b^t x_{k-1} - b^t q_k p_k)$$

derivando em relação a q_k e igualando a zero:

$$\underbrace{\frac{1}{2} x_{k-1}^t A p_k} + \underbrace{\frac{1}{2} (p_k)^t A x_{k-1}} + \underbrace{\frac{1}{2} (p_k)^t A (q_k p_k)} + \underbrace{\frac{1}{2} (q_k p_k)^t A (p_k)} - b^t p_k = 0$$

$$(p_k)^t A x_{k-1} + q_k p_k^t A p_k - b^t p_k = 0$$

$$(p_k)^t A x_{k-1} + q_k p_k^t A p_k - b^t p_k = 0$$

$$(p_k)^t (Ax_{k-1} - b) + q_k p_k^t A p_k = 0$$

$$-p_k^t r_{k-1} + q_k p_k^t A p_k = 0$$

$$q_k = \frac{(r^{(k-1)}, p^{(k)})}{(Ap^{(k)}, p^{(k)})}$$

- iii) O resíduo em cada passo possui as seguintes propriedades:
 - 1) é ortogonal ao resíduo do passo anterior, isto é:

$$(r^{(k)}, r^{(k-1)}) = 0$$
,

2) é ortogonal à direção de relaxação do passo, isto é:

$$(r^{(k)}, p^{(k)}) = 0$$
,

3) é ortogonal à direção de relaxação do passo anterior, isto é:

$$(r^{(k)}, p^{(k-1)}) = 0$$
.

Simplificações

Com isso, é possível simplificar as expressões de

 q_k (o passo) α_{k-1} (o multiplicador na expressão de $p^{(k)}$)

$$q_k = \frac{(r^{(k-1)}, r^{(k-1)})}{(Ap^{(k)}, p^{(k)})}$$

$$\alpha_{k-1} = \frac{(r^{(k-1)}, r^{(k-1)})}{(r^{(k-2)}, r^{(k-2)})}$$

Algoritmo

O primeiro passo é como no caso dos gradientes

a)
$$r(0) = b - Ax(0)$$

$$p^{(1)} = r^{(0)}$$

$$q_1 = \frac{(r^{(0)}, r^{(0)})}{(Ar^{(0)}, r^{(0)})}$$

$$x^{(1)} = x^{(0)} + q_1 p^{(1)}$$

b) para $k \geq 2$

b.1)
$$\alpha_{k-1} = \frac{(r^{(k-1)}, r^{(k-1)})}{(r^{(k-2)}, r^{(k-2)})}$$

b.2)
$$p^{(k)} = r^{(k-1)} + \alpha_{k-1} p^{(k-1)}$$

$$\mathbf{b.3}) \quad \ q_k \ = \ \frac{(r^{(k-1)}, r^{(k-1)})}{(Ap^{(k)}, p^{(k)})}$$

b.4)
$$x^{(k)} = x^{(k-1)} + q_k p^{(k)}$$

critério de parada:

c) Se
$$\frac{||x^{(k+1)}-x^{(k)}||_{\infty}}{||x^{(k+1)}||_{\infty}} < \epsilon$$
, Fim

caso contrário \mathbf{b}).

Método dos GC - Exemplo

Usando o método dos GC resolva o sistema dado por:

$$\begin{pmatrix} 10 & 1 & 0 \\ 1 & 10 & 1 \\ 0 & 1 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 11 \\ 11 \\ 1 \end{pmatrix}$$

E faça duas iterações do método dos gradientes conjugados.

Use as propriedades:

$$(r^{(k)}, r^{(k-1)}) = 0$$

$$(r^{(k)}, p^{(k)}) = 0 ,$$

$$(r^{(k)}, p^{(k-1)}) = 0$$
.

Para simplificar:

$$q_k = -\frac{(r^{(k-1)}, p^{(k)})}{(Ap^{(k)}, p^{(k)})} \longrightarrow$$

$$q_k = \frac{(r^{(k-1)}, r^{(k-1)})}{(Ap^{(k)}, p^{(k)})}$$

$$\alpha_{k-1} = \frac{(r^{(k-1)}, Ap^{(k-1)})}{(p^{(k-1)}, Ap^{(k-1)})}$$

$$\alpha_{k-1} = \frac{(r^{(k-1)}, r^{(k-1)})}{(r^{(k-2)}, r^{(k-2)})}$$

Dado os sistemas lineares:

$$(I) \begin{cases} 9x_1 - x_2 = 7 \\ -x_1 + 9x_2 = 17 \end{cases}; \quad (II) \begin{cases} 31x_1 + 29x_2 = 33 \\ 29x_1 + 31x_2 = 27 \end{cases}$$

- a) construa funções quadráticas cujos mínimos sejam soluções dos sistemas.
- b) resolva o sistema II pelo método dos gradientes
- c) resolva o sistema II pelo método dos gradientes conjugados.