

Putting It All Together

Emily Riederer Instructor

A Quick Recap

- Business Models
- Cashflow Calculations
- Profitability Metrics

A Caffeinated Case Study

Project Valuations

- Treat project as a mini-business
- Think about *incremental* cashflows
- Ignore sunk costs
- Remember to value the side effects

Coffee-nomics

Investment: Nitro kegerator (dispenser)

Incremental Revenue:

- Nitro coffee sales
- Sales of additional items by

incremental customers

Coffee-nomics

Investment: Nitro kegerator (dispenser)

Incremental Expenses:

- Coffee kegs
- Additional labor
- Machine maintenance
- Cannibalization

The balancing act

- Equal parts art and science
- Many possible levels of detail

Let's practice!

Asking What If?

Emily Riederer Instructor

But what if...?

...we have other project ideas?

- Expand to offer brunch menu
- Open a new location
- Build better loyalty program

...things happen that are out of our control?

- Cost of coffee goes up
- Competition drives down prices
- Only sales are from cannibalization

Scenario (What-If) Analysis

- Alter model assumptions to compare different outcomes
 - Alternative projects
 - Exogenous circumstances (optimistic, realistic, pessimistic)

etc...

The mechanical route

```
scenario1 <- mutate(assumptions, var1 = 1.2 * var1)
cashflow1 <- calc_model(scenario1)
calc_npv(cashflow1)

scenario2 <- mutate(assumptions, var1 = 1.5 * var1, var2 = 0.8 * var2)
cashflow2 <- calc_model(scenario2)
calc_npv(cashflow2)</pre>
```



```
library(purrr)
library(tidyr)
```

all_scenarios

scenario	var1	var2	var3
'scenario1'	1	5	7
'scenario1'	2	4	8
'scenario1'	3	10	12
'scenario2'	1	15	14
'scenario2'	2	14	16
'scenario2'	3	20	24


```
library(purrr)
library(tidyr)

all_scenarios %>%
   nest(-scenario)
```

scenario	data
'scenario1'	<tibble [3x3]=""></tibble>
'scenario2'	<tibble [3x3]=""></tibble>

```
library(purrr)
library(tidyr)

all_scenarios %>%
   nest(-scenario) %>%
   mutate( cashflow = map_df( data, calc_model) )
```

scenario	data	cashflow
'scenario1'	<tibble [3x3]=""></tibble>	calc_model(scenario1 data)
'scenario2'	<tibble [3x3]=""></tibble>	calc_model(scenario2 data)

```
library(purrr)
library(tidyr)

all_scenarios %>%
   nest(-scenario) %>%
   mutate( cashflow = map_df( data, calc_model) ) %>%
   mutate( npv = map_dbl( cashflow, calc_npv) )
```

scenario	data	cashflow	npv
'scenario1'	<tibble [3x3]=""></tibble>	<tibble [3x3]=""></tibble>	calc_npv(scenario1 cashflow)
'scenario2'	<tibble [3x3]=""></tibble>	<tibble [3x3]=""></tibble>	calc_npv(scenario2 cashflow)

Your Turn!

Sensitivity Analysis

Emily Riederer Instructor

Sensitivity analysis in R

```
sensitivity <-
    expand.grid(
    factor = c(0.5, 1, 1.5),
    metric = c("vbl1", "vbl2")
)</pre>
```

factor	metric
0.5	'vbl1'
1	'vbl1'
1.5	'vbl1'
0.5	'vbl2'
1	'vbl2'
1.5	'vbl2'

Sensitivity analysis in R

```
sensitivity <-
    expand.grid(
    factor = c(0.5, 1, 1.5),
    metric = c("vbl1", "vbl2")
)</pre>
```

factor	metric	<what is="" want="" we=""></what>
0.5	'vbl1'	valuation after assumption 'vbl1' is multiplied by 0.5
1	'vbl1'	valuation after assumption 'vbl1' is multiplied by 1
1.5	'vbl1'	valuation after assumption 'vbl1' is multiplied by 1.5
0.5	'vbl2'	valuation after assumption 'vbl2' is multiplied by 0.5
1	'vbl2'	valuation after assumption 'vbl2' is multiplied by 1
1.5	'vbl2'	valuation after assumption 'vbl2' is multiplied by 1.5

Sensitivity analysis in R

```
sensitivity <-
   expand.grid(
   factor = c(0.5, 1, 1.5),
   metric = c("vbl1", "vbl2")
) %>%
  mutate(scenario = map2(metric, factor, ~factor_data(assumptions, .x, .y)))
```

factor	metric	scenario
0.5	'vbl1'	factor_data(assumptions, metric, factor)
1	'vbl1'	factor_data(assumptions, metric, factor)
1.5	'vbl1'	factor_data(assumptions, metric, factor)
0.5	'vbl2'	factor_data(assumptions, metric, factor)
1	'vbl2'	factor_data(assumptions, metric, factor)
1.5	'vbl2'	factor_data(assumptions, metric, factor)

Visualizing sensitivity

Sensitivity Plots

- summarize "information overload"
- highlight relative magnitudes
- reveal non-linearities
- emphasize univariate nature of analysis

Cautions with sensitivity analysis

- Only looking at univariate changes, but errors are often correlated
- Not considering variance of estimates or different likelihoods of being off by a certain percent

Let's practice!

Cashflow Visualization & Communication

Emily Riederer Instructor

Long versus wide cashflows

Long data is tidy data

- 1 column per metric
- 1 row per observation

Month	Received	Spent	Net
1	100	150	-50
2	200	175	25
3	300	200	100
4	400	225	175
5	500	250	250
6	500	250	250

Cashflows are wide data

- 1 column per unit of time
- 1 row per metric

Month	1	2	3	4	5	6
Cash Received	100.00	200.00	300.00	400.00	500.00	500.00
Cash Spent	150.00	175.00	200.00	225.00	250.00	250.00
Net Cash	(50.00)	25.00	100.00	175.00	250.00	250.00

Tidying a cashflow (wide to long)

```
library(tidyr)
long_cashflow <- gather(cashflow, key = Month, value = Value, -Metric)</pre>
```

Metric	1	2	3	4	5	6
Received	100.00	200.00	300.00	400.00	500.00	500.00
Spent	150.00	175.00	200.00	225.00	250.00	250.00

Metric	Month	Value
Received	1	100
Received	2	200
Received	3	300
Received	4	400
Received	5	500
Received	6	500
Spent	1	150
Spent	2	175
Spent	3	200
Spent	4	225
Spent	5	250
Spent	6	250

Tidying a cashflow (wide to long)

tidy_cashflow <- spread(long_cashflow, key = Metric, value = Value, -Metric)</pre>

Metric	Month	Value
Received	1	100
Received	2	200
Received	3	300
Received	4	400
Received	5	500
Received	6	500
Spent	1	150
Spent	2	175
Spent	3	200
Spent	4	225
Spent	5	250
Spent	6	250

Month	Received	Spent
1	100	150
2	200	175
3	300	200
4	400	225
5	500	250
6	500	250

Waterfall diagrams

Source Data: Congressional Budget Office

Source: US Congressional Budget Office. https://www.cbo.gov/publication/53348

Waterfall diagrams in ggplot2

ggplot2's geom_rect lets us control bar
height and orientation:

```
library(ggplot2)

ggplot(data) +
geom_rect(
   aes( xmin = , xmax = ,
       ymin = , ymax =
   )
)
```


Waterfall diagrams in ggplot2

waterfall_data

rn	category	amount	start	end
1	2018	14656	0	14656
2	Baseline	10112	14656	24768
3	Other	757	24768	25525
4	TCJA	1455	25525	26980
5	2027	26980	0	26980

Waterfall diagrams in ggplot2

```
ggplot(waterfall_data,
   aes(
     xmin = rn - 0.25,
     xmax = rn + 0.25,
     ymin = start, ymax = end)
) +
geom_rect() +

scale_x_continuous(
   breaks = waterfall_data$rn,
   labels = waterfall_data$category
)
```


Wrangling data for waterfall diagrams

Need to derive ymin and ymax from cashflow output

One last time...

Wrapping Up

Emily Riederer Instructor

Capital Structure

- How you fund your investment
- Many nuanced options all based on some combination of:
 - Debt: loan requiring repayment
 - Equity: firm "stock" or ownership

Valuing Future Options/Decisions

One project opens the door to others


```
total_npv <-
   init_npv +
        0.3 * npv1 +
        0.5 * npv2 +
        0.2 * npv3</pre>
```


Probabilistic Simulation

Where's the (admission of) uncertainty?

Deterministic:

assumptions\$sales <- 5000

Stochastic:

assumptions\$sales <- rnorm(n = 10, mean = 5000, sd = 200)

Congratulations!