Last name					
First name		$\overline{\text{Grade}}$			
Group					
Algorith			1		
	2				
Final Exam	$\#3~(\mathrm{P3})$		3		
14 Decembe	` '		4		

Algorithmics	1
Undergraduate 2^{nd} year - $S3\#$	2
Final Exam $\#3$ (P3)	3
$14\ December\ 2019$	4
Answer Sheets	5
$swers \ 1 \ ({ m Spanning \ Forest-2} \ points)$	
Spanning forest and extra-edges for the depth-first search of the graph G	Y ₁ :
swers 2 (Union-Find -3 points)	
. Number of vertices of each connected component:	
$C_1: \hspace{1cm} C_2: \hspace{1cm} C_3: \hspace{1cm} \ldots$	
2. Edges to add:	
2. Eages to add:	

$Answers \ 3$ (Bipartite graph (Graphes bipartis) – 5 points)

${\bf Specifications:}$

The function bipartite(G) tests whether the graph G is bipartite.

Answers 4 (Eat Crepes -8 points)

1. Graph that represents the recipe:

2. (a) Topological sort to complete:

(b) Specifications:

The function topologicalSort(G) returns a topological sort for the acyclic digraph G, where all the vertices are reachable from the vertex 0.

Еріта

(c) Specifications:

The function is_tri_topo (G, L)tests if L can be a topological sort for the acyclic digraph G. The list L can de "destroyed".

Answers 5 (What does it do? - 4 points)

1. Result returned by $build(G_3)$:

	0	1	2	3	4	5	6	7	8
V									

- 2. The function what
 - (a) what (G_3) returns:
 - (b) what(G) represents:
 - (c) Property of the digraph G so that what(G) does not "crash"?