1 The Vanilla System

First, we present the top-level system, which is easy to understand.

1.1 Grammar

$$P, \ Q \qquad ::= \qquad \qquad \text{positive types}$$

$$\mid \quad \alpha^+ \\ \mid \quad \downarrow N \\ \mid \quad \exists \alpha^-.P$$

$$N, \ M \qquad ::= \qquad \qquad \text{negative types}$$

$$\mid \quad \alpha^- \\ \mid \quad \uparrow P \\ \mid \quad \forall \alpha^+.N \\ \mid \quad P \rightarrow N$$

1.2 Declarative Subtyping

 $\Gamma \vdash N \simeq_0^{\leq} M$ Negative equivalence

$$\frac{\Gamma \vdash N \leqslant_0 M \quad \Gamma \vdash M \leqslant_0 N}{\Gamma \vdash N \simeq_0^{\leqslant} M} \quad \text{D0NDEF}$$

 $\Gamma \vdash P \simeq_0^{\leqslant} Q$ Positive equivalence

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash Q \geqslant_0 P}{\Gamma \vdash P \simeq_0^{\varsigma} Q} \quad \text{D0PDEF}$$

 $\Gamma \vdash N \leqslant_0 M$ Negative subtyping

$$\frac{\Gamma \vdash \alpha^- \leqslant_0 \alpha^-}{\Gamma \vdash P \approx_0^{\leqslant} Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P \approx_0^{\leqslant} Q}{\Gamma \vdash \uparrow P \leqslant_0 \uparrow Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P \quad \Gamma \vdash [P/\alpha^+] N \leqslant_0 M \quad M \neq \forall \beta^+.M'}{\Gamma \vdash \forall \alpha^+.N \leqslant_0 M} \quad \text{D0ForallL}$$

$$\frac{\Gamma, \alpha^+ \vdash N \leqslant_0 M}{\Gamma \vdash N \leqslant_0 \forall \alpha^+.M} \quad \text{D0ForallR}$$

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash N \leqslant_0 M}{\Gamma \vdash P \to N \leqslant_0 Q \to M} \quad \text{D0Arrow}$$

 $\overline{|\Gamma \vdash P \geqslant_0 Q|}$ Positive supertyping

$$\frac{\Gamma \vdash \alpha^{+} \geqslant_{0} \alpha^{+}}{\Gamma \vdash N \simeq_{0}^{\leq} M} \quad D0PVAR$$

$$\frac{\Gamma \vdash N \simeq_{0}^{\leq} M}{\Gamma \vdash \downarrow N \geqslant_{0} \downarrow M} \quad D0SHIFTD$$

$$\frac{\Gamma \vdash N \quad \Gamma \vdash [N/\alpha^{-}]P \geqslant_{0} Q \quad Q \neq \exists \alpha^{-}.Q'}{\Gamma \vdash \exists \alpha^{-}.P \geqslant_{0} Q} \quad D0EXISTSL$$

$$\frac{\Gamma, \alpha^{-} \vdash P \geqslant_{0} Q}{\Gamma \vdash P \geqslant_{0} \exists \alpha^{-}.Q} \quad D0EXISTSR$$

2 Multi-Quantified System

2.1 Grammar

2.2 Declarative Subtyping

 $\Gamma \vdash N \simeq M$ Negative equivalence on MQ types

$$\frac{\Gamma \vdash N \leqslant_1 M \quad \Gamma \vdash M \leqslant_1 N}{\Gamma \vdash N \simeq_1^* M} \quad \text{D1NDEF}$$

 $\Gamma \vdash P \simeq Q$ Positive equivalence on MQ types

$$\frac{\Gamma \vdash P \geqslant_1 Q \quad \Gamma \vdash Q \geqslant_1 P}{\Gamma \vdash P \simeq_1^{\leqslant} Q} \quad \text{D1PDEF}$$

 $\overline{|\Gamma \vdash N \leq_1 M|}$ Negative subtyping

$$\frac{\Gamma \vdash \alpha^{-} \leqslant_{1} \alpha^{-}}{\Gamma \vdash P \approx_{1}^{\epsilon} Q} \quad (\text{Var}^{-\leqslant_{1}})$$

$$\frac{\Gamma \vdash P \approx_{1}^{\epsilon} Q}{\Gamma \vdash P \leqslant_{1} \uparrow Q} \quad (\uparrow^{\leqslant_{1}})$$

$$\frac{\Gamma \vdash P \geqslant_{1} Q \quad \Gamma \vdash N \leqslant_{1} M}{\Gamma \vdash P \to N \leqslant_{1} Q \to M} \quad (\to^{\leqslant_{1}})$$

$$\frac{\text{fv } N \cap \{\overrightarrow{\beta^{+}}\} = \emptyset \quad \Gamma, \overrightarrow{\beta^{+}} \vdash P_{i} \quad \Gamma, \overrightarrow{\beta^{+}} \vdash [\overrightarrow{P}/\alpha^{+}]N \leqslant_{1} M}{\Gamma \vdash \forall \alpha^{+}, N \leqslant_{1} \forall \beta^{+}, M} \quad (\forall^{\leqslant_{1}})$$

 $\Gamma \vdash P \geqslant_1 Q$ Positive supertyping

$$\frac{\Gamma \vdash \alpha^{+} \geqslant_{1} \alpha^{+}}{\Gamma \vdash \lambda^{-} \geqslant_{1} M} (VAR^{+})^{-} \\
\frac{\Gamma \vdash N \simeq_{1}^{\leq} M}{\Gamma \vdash \lambda^{-} \geqslant_{1} \lambda^{-}} (\downarrow^{\geqslant_{1}})$$

$$\frac{\text{fv } P \cap \{\overrightarrow{\beta^{-}}\} = \varnothing \quad \Gamma, \overrightarrow{\beta^{-}} \vdash N_{i} \quad \Gamma, \overrightarrow{\beta^{-}} \vdash [\overrightarrow{N}/\overrightarrow{\alpha^{-}}]P \geqslant_{1} Q}{\Gamma \vdash \exists \overrightarrow{\alpha^{-}}.P \geqslant_{1} \exists \overrightarrow{\beta^{-}}.Q} (\exists^{\geqslant_{1}})$$

2.3 Declarative Equivalence

 $|N \simeq_1^D M|$ Negative multi-quantified type equivalence

$$\frac{\alpha^{-} \simeq_{1}^{D} \alpha^{-}}{\alpha^{-} \simeq_{1}^{D} Q} \quad (VAR^{-\simeq_{1}^{D}})$$

$$\frac{P \simeq_{1}^{D} Q}{\uparrow P \simeq_{1}^{D} \uparrow Q} \quad (\uparrow^{\simeq_{1}^{D}})$$

$$\frac{P \simeq_{1}^{D} Q \quad N \simeq_{1}^{D} M}{P \to N \simeq_{1}^{D} Q \to M} \quad (\to^{\simeq_{1}^{D}})$$

$$\frac{\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv}\, M = \varnothing \quad \mu : (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv}\, M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv}\, N) \quad N \overset{\mathbf{n}}{\simeq_1^D} [\mu] M}{\forall \overrightarrow{\alpha^+}. N \overset{\mathbf{n}}{\simeq_1^D} \forall \overrightarrow{\beta^+}. M} \quad (\forall^{\overset{D}{\simeq_1^D}})$$

 $P \simeq^{D}_{1} Q$

Positive multi-quantified type equivalence

$$\frac{\overline{\alpha^{+} \simeq_{1}^{D} \alpha^{+}}}{\sqrt[]{N} \simeq_{1}^{D} M} (\sqrt{\alpha^{+}})$$

$$\frac{N \simeq_{1}^{D} M}{\sqrt[]{N} \simeq_{1}^{D} \sqrt[]{M}} (\sqrt{\alpha^{-}})$$

$$\frac{\{\overrightarrow{\alpha^{-}}\} \cap \mathbf{fv} Q = \varnothing \quad \mu : (\{\overrightarrow{\beta^{-}}\} \cap \mathbf{fv} Q) \leftrightarrow (\{\overrightarrow{\alpha^{-}}\} \cap \mathbf{fv} P) \quad P \simeq_{1}^{D} [\mu]Q}{\exists \overrightarrow{\alpha^{-}} . P \simeq_{1}^{D} \exists \overrightarrow{\beta^{-}} . Q} (\exists^{\simeq_{1}^{D}})$$

 $P \simeq Q$

3 Algorithm

3.1 Normalization

3.1.1 Ordering

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{\alpha^{-} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \alpha^{-}} \quad (\operatorname{VaR}_{\in}^{-})$$

$$\frac{\alpha^{-} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \cdot} \quad (\operatorname{VaR}_{\notin}^{-})$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \uparrow P = \overrightarrow{\alpha}} \quad (\uparrow)$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}_{1} \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}_{2}}{\operatorname{ord} vars \operatorname{in} P \to N = \overrightarrow{\alpha}_{1}, (\overrightarrow{\alpha}_{2} \setminus \{\overrightarrow{\alpha}_{1}\})} \quad (\to)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{+}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} V \Rightarrow \overrightarrow{\alpha}^{+}, N = \overrightarrow{\alpha}} \quad (\forall)$$

 $\mathbf{ord}\, vars \mathbf{in}\, P = \overrightarrow{\alpha}$

$$\frac{\alpha^{+} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \alpha^{+}} \quad (\operatorname{Var}_{\in}^{+})$$

$$\frac{\alpha^{+} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \cdot} \quad (\operatorname{Var}_{\notin}^{+})$$

$$\frac{\operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \downarrow N = \overrightarrow{\alpha}} \quad (\downarrow)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{-}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \overrightarrow{\beta \alpha^{-}} \cdot P = \overrightarrow{\alpha}} \quad (\exists)$$

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{}{\text{ord } vars \text{ in } \hat{\alpha}^- = \cdot} \quad \text{(UVAR}^-)$$

 $\operatorname{\mathbf{ord}} vars \operatorname{\mathbf{in}} P = \overrightarrow{\alpha}$

$$\frac{}{\operatorname{ord} \operatorname{varsin} \widehat{\alpha}^{+} = \cdot} \quad (UVAR^{+})$$

3.1.2 Quantifier Normalization

$$\mathbf{nf}\left(N\right) = M$$

$$\frac{\mathbf{nf}(\alpha^{-}) = \alpha^{-}}{\mathbf{nf}(P) = Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q}{\mathbf{nf}(\uparrow P) = \uparrow Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q \quad \mathbf{nf}(N) = M}{\mathbf{nf}(P \to N) = Q \to M} \quad (\to)$$

$$\frac{\mathbf{nf}(N) = N' \quad \mathbf{ord}\{\overrightarrow{\alpha^{+}}\} \mathbf{in} N' = \overrightarrow{\alpha^{+'}}}{\mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.N) = \forall \overrightarrow{\alpha^{+'}}.N'} \quad (\forall)$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{\mathbf{nf}(\alpha^{+}) = \alpha^{+}}{\mathbf{nf}(N) = M} \qquad (\downarrow)$$

$$\frac{\mathbf{nf}(N) = M}{\mathbf{nf}(\downarrow N) = \downarrow M} \qquad (\downarrow)$$

$$\underline{\mathbf{nf}(P) = P' \quad \mathbf{ord} \{\overrightarrow{\alpha^{-}}\} \mathbf{in} P' = \overrightarrow{\alpha^{-'}}}$$

$$\underline{\mathbf{nf}(\exists \overrightarrow{\alpha^{-}}.P) = \exists \overrightarrow{\alpha^{-'}}.P'} \qquad (\exists)$$

 $\mathbf{nf}\left(N\right) = M$

$$\underline{\mathbf{nf}(\widehat{\alpha}^{-}) = \widehat{\alpha}^{-}} \quad (UVAR^{-})$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{\mathbf{nf}(\widehat{\alpha}^{+}) = \widehat{\alpha}^{+}}{\mathbf{nf}(\widehat{\alpha}^{+})} = \widehat{\alpha}^{+}$$

3.2 Unification

 $|\Theta \models N| \stackrel{u}{\simeq} M = \widehat{\sigma}$ Negative unification

$$\frac{\Theta \vDash \alpha^{-\frac{u}{\simeq}} \alpha^{-} \dashv \cdot}{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}} \quad \text{UNVAR}$$

$$\frac{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}}{\Theta \vDash \uparrow P \stackrel{u}{\simeq} \uparrow Q \dashv \widehat{\sigma}} \quad \text{USHIFTU}$$

$$\frac{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}_{1} \quad \Theta \vDash N \stackrel{u}{\simeq} M \dashv \widehat{\sigma}_{2}}{\Theta \vDash P \rightarrow N \stackrel{u}{\simeq} Q \rightarrow M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{UARROW}$$

$$\frac{\Theta \vDash N \stackrel{u}{\simeq} M \dashv \widehat{\sigma}}{\Theta \vDash \forall \alpha^{+}. N \stackrel{u}{\simeq} \forall \alpha^{+}. M \dashv \widehat{\sigma}} \quad \text{UFORALL}$$

$$\frac{\widehat{\alpha}^{-}\{\Delta\} \in \Theta \quad \Delta \vdash N}{\Theta \vDash \widehat{\alpha}^{-} \stackrel{u}{\simeq} N \dashv (\Delta \vdash \widehat{\alpha}^{-} : \approx N)} \quad \text{UNUVAR}$$

 $\Theta \models P \stackrel{u}{\simeq} Q \rightrightarrows \widehat{\sigma}$ Positive unification

$$\begin{array}{c} \overline{\Theta \vDash \alpha^{+} \overset{u}{\simeq} \alpha^{+} \dashv \cdot} & \text{UPVAR} \\ \\ \underline{\Theta \vDash N \overset{u}{\simeq} M \dashv \hat{\sigma}} \\ \overline{\Theta \vDash \downarrow N \overset{u}{\simeq} \downarrow M \dashv \hat{\sigma}} & \text{USHIFTD} \\ \\ \overline{\Theta \vDash \exists \alpha^{-}.P \overset{u}{\simeq} \exists \alpha^{-}.Q \dashv \hat{\sigma}} \\ \\ \overline{\Theta \vDash \widehat{\alpha}^{+} \{\Delta\} \in \Theta \quad \Delta \vdash P} \\ \\ \overline{\Theta \vDash \widehat{\alpha}^{+} \overset{u}{\simeq} P \dashv (\Delta \vdash \widehat{\alpha}^{+} : \approx P)} & \text{UPUVAR} \end{array}$$

3.3 Algorithmic Subtyping

 $\Gamma; \Theta \models N \leqslant M \dashv \widehat{\sigma}$ Negative subtyping

$$\frac{\Gamma; \Theta \vDash \alpha^{-} \leqslant \alpha^{-} \dashv \cdot}{\Gamma; \Theta \vDash \mathsf{nf} (P) \stackrel{u}{\simeq} \mathsf{nf} (Q) \dashv \widehat{\sigma}} \quad \text{ASHIFTU}$$

$$\frac{\Theta \vDash \mathsf{nf} (P) \stackrel{u}{\simeq} \mathsf{nf} (Q) \dashv \widehat{\sigma}}{\Gamma; \Theta \vDash P \leqslant \uparrow Q \dashv \widehat{\sigma}} \quad \text{ASHIFTU}$$

$$\frac{\Gamma; \Theta \vDash P \geqslant Q \dashv \widehat{\sigma}_{1} \quad \Gamma; \Theta \vDash N \leqslant M \dashv \widehat{\sigma}_{2}}{\Gamma; \Theta \vDash P \to N \leqslant Q \to M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{AARROW}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}}; \Theta, \widehat{\alpha}^{+} \{\Gamma, \overrightarrow{\beta^{+}}\} \vDash [\widehat{\alpha}^{+} / \alpha^{+}] N \leqslant M \dashv \widehat{\sigma}}{\Gamma; \Theta \vDash \forall \overrightarrow{\alpha^{+}}. N \leqslant \forall \overrightarrow{\beta^{+}}. M \dashv \widehat{\sigma} \setminus \widehat{\alpha^{+}}} \quad \text{AFORALL}$$

 $\Gamma; \Theta \models P \geqslant Q \dashv \hat{\sigma}$ Positive supertyping

$$\frac{\Gamma; \Theta \vDash \alpha^{+} \geqslant \alpha^{+} \Rightarrow }{\Gamma; \Theta \vDash \mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \Rightarrow \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Theta \vDash \mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \Rightarrow \widehat{\sigma}}{\Gamma; \Theta \vDash \downarrow N \geqslant \downarrow M \Rightarrow \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Gamma, \overrightarrow{\beta^{-}}; \Theta, \widehat{\alpha}^{-} \{\Gamma, \overrightarrow{\beta^{-}}\} \vDash [\widehat{\alpha^{-}}/\widehat{\alpha^{-}}]P \geqslant Q \Rightarrow \widehat{\sigma}}{\Gamma; \Theta \vDash \widehat{\sigma}^{-}.P \geqslant \exists \overrightarrow{\beta^{-}}.Q \Rightarrow \widehat{\sigma}} \quad \text{AEXISTS}$$

$$\frac{\mathbf{upgrade} \Gamma \vdash \mathbf{nf}(P) \mathbf{to} \Delta = Q}{\Gamma; \Theta \vDash \widehat{\alpha}^{+} \{\Delta\} \geqslant P \Rightarrow (\Delta \vdash \widehat{\alpha}^{+} : \geqslant Q)} \quad \text{APUVAR}$$

3.4 Unification Solution Merge

Unification solution is represented by a list of unification solution entries. Each entry restrict an unification variable in two possible ways: either stating that it must be equivalent to a certain type $(\Delta \vdash \hat{\alpha}^+ :\approx P \text{ or } \Delta \vdash \hat{\alpha}^- :\approx N)$ or that it must be a (positive) supertype of a certain type $(\Delta \vdash \hat{\alpha}^+ :\geqslant P)$.

Definition 1 (Matching Entries). We call two entries matching if they are restricting the same unification variable.

Two matching entries can be merged in the following way:

Definition 2.

 $e_1 \& e_2 = e_3$ Unification Solution Entry Merge

$$\begin{split} & \Gamma \vDash P_1 \vee P_2 = Q \\ \hline & (\Gamma \vdash \widehat{\alpha}^+ : \geqslant P_1) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant P_2) = (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q) \end{split} \quad (\geqslant \& \geqslant) \\ & \frac{\Gamma; \ \vdash P \geqslant Q \dashv \widehat{\sigma}'}{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)} \quad (\simeq \& \geqslant) \\ & \frac{\Gamma; \ \vdash P \geqslant Q \dashv \widehat{\sigma}'}{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)} \quad (\simeq \& \cong) \\ \hline & \frac{\Gamma; \ \vdash P \geqslant P \dashv \widehat{\sigma}'}{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \approx Q) = (\Gamma \vdash \widehat{\alpha}^+ : \approx Q)} \quad (\Rightarrow \& \cong) \\ \hline & \frac{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \approx P) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)}{(\Gamma \vdash \widehat{\alpha}^- : \approx N) \ \& \ (\Gamma \vdash \widehat{\alpha}^- : \approx N)} \quad (\simeq \& \cong^-) \end{split}$$

To merge two unification solution, we merge each pair of matching entries, and unite the results.

Definition 3.
$$\hat{\sigma}_1$$
 & $\hat{\sigma}_2 = \{e_1 \& e_2 \mid e_1 \in \hat{\sigma}_1, e_2 \in \hat{\sigma}_2, s.t. \ e_1 \ matches \ with \ e_2\}$

$$\cup \{e_1 \mid e_1 \in \hat{\sigma}_1, \ s.t. \ \forall e_2 \in \hat{\sigma}_2, e_1 \ does \ not \ match \ with \ e_2\}$$

$$\cup \{e_2 \mid e_2 \in \hat{\sigma}_2, \ s.t. \ \forall e_1 \in \hat{\sigma}_1, e_1 \ does \ not \ match \ with \ e_2\}$$

3.5 Least Upper Bound

 $\overline{\Gamma \models P_1 \lor P_2 = Q}$ Least Upper Bound (Least Common Supertype)

$$\overline{\Gamma \vDash \alpha^{+} \lor \alpha^{+} = \alpha^{+}} \quad \text{LUBVAR}$$

$$\overline{\Gamma, \cdot \vDash \downarrow N} \stackrel{a}{\simeq} \downarrow M = (\Xi, P, \hat{\tau}_{1}, \hat{\tau}_{2})$$

$$\overline{\Gamma \vDash \downarrow N \lor \downarrow M} = \overline{\exists \alpha^{-}}. [\overline{\alpha^{-}}/\Xi]P \quad \text{LUBSHIFT}$$

$$\overline{\Gamma, \alpha^{-}, \beta^{-}} \vDash P_{1} \lor P_{2} = Q$$

$$\overline{\Gamma \vDash \exists \alpha^{-}}. P_{1} \lor \exists \beta^{-}. P_{2} = Q \quad \text{LUBEXISTS}$$

 $\mathbf{upgrade}\,\Gamma \vdash P\,\mathbf{to}\,\Delta = Q$

3.6 Antiunification

$$\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 = (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)$$

$$\frac{\Gamma \vDash \alpha^{+} \stackrel{a}{\simeq} \alpha^{+} \dashv (\cdot, \alpha^{+}, \cdot, \cdot)}{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (\Xi, M, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPShift}$$

$$\frac{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (\Xi, M, \widehat{\tau}_{1}, \widehat{\tau}_{2})}{\Gamma \vDash \downarrow N_{1} \stackrel{a}{\simeq} \downarrow N_{2} \dashv (\Xi, \downarrow M, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPShift}$$

$$\frac{\{\overrightarrow{\alpha^{-}}\} \cap \{\Gamma\} = \varnothing \quad \Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (\Xi, Q, \widehat{\tau}_{1}, \widehat{\tau}_{2})}{\Gamma \vDash \exists \overrightarrow{\alpha^{-}} . P_{1} \stackrel{a}{\simeq} \exists \overrightarrow{\alpha^{-}} . P_{2} \dashv (\Xi, \exists \overrightarrow{\alpha^{-}} . Q, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPEXISTS}$$

 $\Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 = (\Xi, M, \hat{\tau}_1, \hat{\tau}_2)$

$$\frac{\Gamma \vDash \alpha^- \stackrel{a}{\simeq} \alpha^- \dashv (\Xi, \alpha^-, \cdot, \cdot)}{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)}{\Gamma \vDash \uparrow P_1 \stackrel{a}{\simeq} \uparrow P_2 \dashv (\Xi, \uparrow Q, \widehat{\tau}_1, \widehat{\tau}_2)} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi_1, Q, \widehat{\tau}_1, \widehat{\tau}_2) \quad \Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 \dashv (\Xi_2, M, \widehat{\tau}_1', \widehat{\tau}_2')}{\Gamma \vDash P_1 \to N_1 \stackrel{a}{\simeq} P_2 \to N_2 \dashv (\Xi_1 \cup \Xi_2, Q \to M, \widehat{\tau}_1 \cup \widehat{\tau}_1', \widehat{\tau}_2 \cup \widehat{\tau}_2')} \quad \text{AUNARROW}$$

$$\frac{\text{if any other rule is not applicable} \quad \Gamma \vDash N \quad \Gamma \vDash M}{\Gamma \vDash N \stackrel{a}{\simeq} M \dashv (\widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_{\{N,M\}}^-, (\widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_$$

4 Proofs

4.1 Declarative Subtyping

Lemma 1 (Free Variable Propagation). In the judgments of negative subtyping or positive supertyping, free variables propagate left-to-right. For a context Γ ,

- $-if \Gamma \vdash N \leq_1 M \ then \ \mathbf{fv}(N) \subseteq \mathbf{fv}(M)$
- $+ if \Gamma \vdash P \geqslant_{1} Q \ then \ \mathbf{fv}(P) \subseteq \mathbf{fv}(Q)$

Proof. Mutual induction on $\Gamma \vdash N \leq_1 M$ and $\Gamma \vdash P \geq_1 Q$.

Case 1. $\Gamma \vdash \alpha^- \leq_1 \alpha^-$ It is self-evident that aa.

Case 2. $\Gamma \vdash \uparrow P \leq_1 \uparrow Q$ From the inversion (and unfolding $\Gamma \vdash P \simeq_1^{\leq} Q$), we have $\Gamma \vdash P \geqslant_1 Q$. Then by the induction hypothesis, $\mathbf{fv}(P) \subseteq \mathbf{fv}(Q)$. The desired inclusion inclusion holds, since $\mathbf{fv}(\uparrow P) = \mathbf{fv}(P)$ and $\mathbf{fv}(\uparrow Q) = \mathbf{fv}(Q)$.

Case 3. $\Gamma \vdash P \to N \leq_1 Q \to M$ The induction hypothesis applied to the premises gives: $\mathbf{fv}(P) \subseteq \mathbf{fv}(Q)$ and $\mathbf{fv}(N) \subseteq \mathbf{fv}(M)$. Then $\mathbf{fv}(P \to N) = \mathbf{fv}(P) \cup \mathbf{fv}(N) \subseteq \mathbf{fv}(Q) \cup \mathbf{fv}(M) = \mathbf{fv}(Q \to M)$.

Case 4.
$$\Gamma \vdash \forall \overrightarrow{\alpha^{+}}. N \leq_{1} \forall \overrightarrow{\beta^{+}}. M$$

 $\mathbf{fv} \forall \overrightarrow{\alpha^{+}}. N \subseteq \mathbf{fv} ([\overrightarrow{P}/\overrightarrow{\alpha^{+}}]N) \setminus \{\overrightarrow{\beta^{+}}\}$ here $\{\overrightarrow{\beta^{+}}\}$ is excluded by the premise $\mathbf{fv} N \cap \{\overrightarrow{\beta^{+}}\} = \emptyset$
 $\subseteq \mathbf{fv} M \setminus \{\overrightarrow{\beta^{+}}\}$ by the induction hypothesis, $\mathbf{fv} ([\overrightarrow{P}/\overrightarrow{\alpha^{+}}]N) \subseteq \mathbf{fv} M$
 $\subseteq \mathbf{fv} \forall \overrightarrow{\beta^{+}}. M$

Case 5. The positive cases are symmetric.

4.2 Substitution

Lemma 2 (Substitution strengthening). Restricting the substitution to the free variables of the substitution subject does not affect the result. Suppose that $\Gamma_2 \vdash \sigma : \Gamma_1$. Then

- + if $\Gamma_1 \vdash P$ then $[\sigma]P = [\sigma|_{\mathbf{fv}P}]P$,
- if $\Gamma_1 \vdash N$ then $[\sigma]N = [\sigma|_{\mathbf{fv}\,N}]N$

Proof. Ilya: todo

4.3 Type well-formedness

Lemma 3 (Well-formedness agrees with substitution). Suppose that $\Gamma_1 \vdash \sigma : \Gamma_2$. Then

- $+ \Gamma_1, \Gamma_2 \vdash P \Leftrightarrow \Gamma_1 \vdash [\sigma]P$
- $-\Gamma_1, \Gamma_2 \vdash N \Leftrightarrow \Gamma_1 \vdash [\sigma]N$

Lemma 4 (Equivalent Contexts). In the well-formedness judgment, only used variables matter:

- $+ if \{\Gamma_1\} \cap \mathbf{fv} P = \{\Gamma_2\} \cap \mathbf{fv} P \text{ then } \Gamma_1 \vdash P \iff \Gamma_2 \vdash P,$
- $-if\{\Gamma_1\} \cap \mathbf{fv} N = \{\Gamma_2\} \cap \mathbf{fv} N \text{ then } \Gamma_1 \vdash N \iff \Gamma_2 \vdash N.$

Proof. By simple mutual induction on P and Q.

4.4 Overview

Algorithm	Soundness	Completeness	Initiality
Ordering	$\overline{\{\mathbf{ord}vars\mathbf{in}N\}}\equiv vars\cap\mathbf{fv}N$	$\frac{N \simeq_1^D M}{\operatorname{ord} \operatorname{varsin} N = \operatorname{ord} \operatorname{varsin} M}$	_
Normalization	$\overline{N \simeq_{1}^{D} \mathbf{nf}(N)}$	$\frac{N \simeq_{1}^{D} M}{\mathbf{nf}(N) = \mathbf{nf}(M)}$	_
Equivalence	$\frac{\Gamma \vdash P \Gamma \vdash Q P \simeq_1^D Q}{\Gamma \vdash P \simeq_1^{\leqslant} Q}$	$\frac{\Gamma \vdash P \simeq_1^{\leqslant} Q}{P \simeq_1^D Q}$	_
Uppgrade	$\frac{\operatorname{\mathbf{upgrade}}\Gamma \vdash P\operatorname{\mathbf{to}}\Delta = Q}{Q \text{ is sound} \begin{cases} \Delta \vdash Q \\ \Gamma \vdash Q \geqslant_1 P \end{cases}}$	$\frac{\exists \text{ sound } Q'}{\exists Q \text{ s.t. } \mathbf{upgrade} \Gamma \vdash P \mathbf{to} \Delta = Q}$	$\frac{Q' \text{ is sound}}{\operatorname{\mathbf{upgrade}} \Gamma \vdash P \operatorname{\mathbf{to}} \Delta = Q}$ $\Delta \vdash Q' \geqslant_1 Q$
LUB	$\frac{\Gamma \vDash P_1 \lor P_2 = Q}{Q \text{ is sound} \begin{cases} \Gamma \vdash Q \\ \Gamma \vdash Q \geqslant_1 P_1 \\ \Gamma \vdash Q \geqslant_1 P_2 \end{cases}}$	$\frac{\exists \text{ sound } Q'}{\exists Q \text{ s.t. } \Gamma \vDash P_1 \lor P_2 = Q}$	$\frac{Q' \text{ is sound}}{\Gamma \models P_1 \lor P_2 = Q}$ $\frac{\Delta \vdash Q' \geqslant_1 Q}$
Anti-unification	$ \frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \rightrightarrows (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)}{(\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)} \begin{cases} \Xi \text{ is negative} \\ \Gamma; \Xi \vdash Q \\ \Gamma; \cdot \vdash \hat{\tau}_i : \Xi \\ [\hat{\tau}_i] Q = P_i \end{cases} $	$\frac{\exists \text{ sound } (\Xi', Q', \widehat{\tau}_1', \widehat{\tau}_2')}{\exists (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2) \text{ s.t.}}$ $\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 = (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)$	$(\Xi', Q', \widehat{\tau}'_1, \widehat{\tau}'_2) \text{ is sound}$ $\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \Rightarrow (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)}{\exists \Gamma; \Xi \vdash \widehat{\tau} : \Xi' \text{ s.t. } [\widehat{\tau}] Q' = Q}$
Unification (matching)	$\frac{\Theta \vDash P \stackrel{u}{\simeq} Q \rightrightarrows \widehat{\sigma}}{\widehat{\sigma} \text{ is sound } \begin{cases} \Theta \vdash \widehat{\sigma} \\ [\widehat{\sigma}] P = Q \end{cases}}$	$\frac{\exists \text{ sound } \widehat{\sigma}'}{\exists \widehat{\sigma} \text{ s.t. } \Theta \vDash P \overset{u}{\simeq} Q \rightrightarrows \widehat{\sigma}}$	_
Subtyping	$\frac{\Gamma; \Theta \vDash N \leqslant M \rightrightarrows \widehat{\sigma}}{\widehat{\sigma} \text{ is sound } \begin{cases} \Theta \vdash \widehat{\sigma} \\ \Gamma \vdash [\widehat{\sigma}] N \leqslant_{1} M \end{cases}}$	$\frac{\exists \text{ sound } \widehat{\sigma}'}{\exists \widehat{\sigma} \text{ s.t. } \Gamma; \ \Theta \vDash N \leqslant M \dashv \widehat{\sigma}}$	_

4.5 Variable Ordering

Definition 4 (Collision free bijection). We say that a bijection $\mu: A \leftrightarrow B$ between sets of variables is collision free on sets P and Q if and only if

- 1. $\mu(P \cap A) \cap Q = \emptyset$
- 2. $\mu(Q \cap A) \cap P = \emptyset$

Lemma 5 (Soundness of variable ordering). Variable ordering extracts precisely used free variables.

- $\{ \mathbf{ord} \ vars \mathbf{in} \ N \} \equiv vars \cap \mathbf{fv} \ N \ (as \ sets)$
- $+ \{ ord \ vars \ in \ P \} \equiv vars \cap fv \ P \ (as \ sets)$

Proof. Straightforward mutual induction on **ord** vars **in** $N = \vec{\alpha}$ and **ord** vars **in** $P = \vec{\alpha}$

Corollary 1 (Additivity of ordering). Variable ordering is additive (in terms of set union) with respect to its first argument.

- $\{ \mathbf{ord} (vars_1 \cup vars_2) \mathbf{in} N \} \equiv \{ \mathbf{ord} vars_1 \mathbf{in} N \} \cup \{ \mathbf{ord} vars_2 \mathbf{in} N \}$ (as sets)
- $+ \{\mathbf{ord}(\mathit{vars}_1 \cup \mathit{vars}_2) \, \mathbf{in} \, P\} \equiv \{\mathbf{ord} \, \mathit{vars}_1 \, \mathbf{in} \, P\} \cup \{\mathbf{ord} \, \mathit{vars}_2 \, \mathbf{in} \, P\} \, (\mathit{as} \, \mathit{sets})$

Corollary 2 (Weakening of ordering). Extending the first argument of the ordering with unused variables does not change the result.

- ord $(vars \cap \mathbf{fv} N)$ in N =ord vars in N

+ $\operatorname{ord}(vars \cap \operatorname{fv} P) \operatorname{in} P = \operatorname{ord} vars \operatorname{in} P$

Lemma 6 (Distributivity of renaming over variable ordering). Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$.

- If μ is collision free on vars and $\mathbf{fv} N$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} \ N) = \mathbf{ord} \ ([\mu] \ vars) \mathbf{in} \ [\mu] N$
- + If μ is collision free on vars and $\mathbf{fv} P$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} P) = \mathbf{ord} ([\mu] \ vars) \mathbf{in} [\mu] P$

Proof. Mutual induction on N and P.

Case 1. $N = \alpha^-$

let us consider four cases:

 $a. \alpha^- \in A \text{ and } \alpha^- \in vars$

Then
$$[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-)$$

$$= [\mu]\alpha^- \qquad \text{by Rule } (\operatorname{Var}_{\in}^+)$$

$$= \beta^- \qquad \text{for some } \beta^- \in B \text{ (notice that } \beta^- \in [\mu] \operatorname{\mathit{vars}})$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \beta^- \qquad \text{by Rule } (\operatorname{Var}_{\in}^+), \text{ because } \beta^- \in [\mu] \operatorname{\mathit{vars}}$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^-$$

b. $\alpha^- \notin A$ and $\alpha^- \notin vars$

Notice that $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot \text{ by Rule } (\operatorname{Var}_{\notin}^+)$. On the other hand, $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^- = \cdot \text{ The latter equality is from Rule } (\operatorname{Var}_{\notin}^+)$, because μ is collision free on $\operatorname{\mathit{vars}}$ and $\operatorname{\mathbf{fv}} N$, so $\operatorname{\mathbf{fv}} N \ni \alpha^- \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}} \supseteq [\mu] \operatorname{\mathit{vars}}$.

c. $\alpha^- \in A$ but $\alpha^- \notin vars$

Then $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot$ by Rule $(\operatorname{Var}_{\notin}^+)$. To prove that $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \cdot$, we apply Rule $(\operatorname{Var}_{\notin}^+)$. Let us show that $[\mu]\alpha^- \notin [\mu]\operatorname{\mathit{vars}}$. Since $[\mu]\alpha^- = \mu(\alpha^-)$ and $[\mu]\operatorname{\mathit{vars}} \subseteq \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$, it suffices to prove $\mu(\alpha^-) \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$.

- (i) If there is an element $x \in A \cap vars$ such that $\mu x = \mu \alpha^-$, then $x = \alpha^-$ by bijectivity of μ , which contradicts with $\alpha^- \notin vars$. This way, $\mu(\alpha^-) \notin \mu(A \cap vars)$.
- (ii) Since μ is collision free on vars and $\mathbf{fv} N$, $\mu(A \cap \mathbf{fv} N) \ni \mu(\alpha^-) \notin vars$.
- $d. \ \alpha^- \notin A \text{ but } \alpha^- \in vars$

 $\operatorname{\mathbf{ord}}[\mu] \operatorname{vars} \operatorname{\mathbf{in}}[\mu] \alpha^- = \operatorname{\mathbf{ord}}[\mu] \operatorname{vars} \operatorname{\mathbf{in}} \alpha^- = \alpha^-$. The latter is by Rule $(\operatorname{Var}_{\notin}^+)$, because $\alpha^- = [\mu] \alpha^- \in [\mu] \operatorname{vars} \operatorname{\mathbf{since}} \alpha^- \in \operatorname{vars}$. On the other hand, $[\mu] (\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} N) = [\mu] (\operatorname{\mathbf{ord}} \operatorname{vars} \operatorname{\mathbf{in}} \alpha^-) = [\mu] \alpha^- = \alpha^-$.

```
Case 2. N = \uparrow P
```

$$[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P)$$

$$= [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P) \qquad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]P \qquad \text{by the induction hypothesis}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ \uparrow [\mu]P \quad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]\uparrow P \quad \text{by the definition of substitution}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]N$$

Case 3.
$$N = P \rightarrow M$$

$$[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P \to M)$$

$$= [\mu](\vec{\alpha}_1, (\vec{\alpha}_2 \setminus \{\vec{\alpha}_1\})) \qquad \text{where}\ \mathbf{ord}\ vars\ \mathbf{in}\ P = \vec{\alpha}_1\ \text{and}\ \mathbf{ord}\ vars\ \mathbf{in}\ M = \vec{\alpha}_2$$

$$= [\mu]\vec{\alpha}_1, [\mu](\vec{\alpha}_2 \setminus \{\vec{\alpha}_1\})$$

$$= [\mu]\vec{\alpha}_1, ([\mu]\vec{\alpha}_2 \setminus \{\mu\}\{\vec{\alpha}_1\}) \qquad \text{by induction on } \vec{\alpha}_2; \text{ the inductive step is similar to case 1. Notice that } \mu \text{ is collision free on } \{\vec{\alpha}_1\} \text{ and } \{\vec{\alpha}_2\} \text{ since } \{\vec{\alpha}_1\} \subseteq vars \text{ and } \{\vec{\alpha}_2\} \subseteq \mathbf{fv}\ N$$

$$= [\mu]\vec{\alpha}_1, ([\mu]\vec{\alpha}_2 \setminus \{[\mu]\vec{\alpha}_1\})$$

$$= [\mu] \vec{\alpha}_{1}, ([\mu] \vec{\alpha}_{2} \setminus \{[\mu] \vec{\alpha}_{1}\})$$

$$(\mathbf{ord} [\mu] vars \mathbf{in} [\mu] N) = (\mathbf{ord} [\mu] vars \mathbf{in} [\mu] P \to [\mu] M)$$

$$= (\vec{\beta}_{1}, (\vec{\beta}_{2} \setminus \{\vec{\beta}_{1}\})) \qquad \text{where } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] P = \vec{\beta}_{1} \text{ and } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] M = \vec{\beta}_{2}$$
then by the induction hypothesis, $\vec{\beta}_{1} = [\mu] \vec{\alpha}_{1}, \vec{\beta}_{2} = [\mu] \vec{\alpha}_{2},$

$$= [\mu] \vec{\alpha}_{1}, ([\mu] \vec{\alpha}_{2} \setminus \{[\mu] \vec{\alpha}_{1}\})$$

Case 4.
$$N = \forall \overrightarrow{\alpha^+}.M$$

 $[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu]\mathbf{ord}\ vars\ \mathbf{in}\ \forall \overrightarrow{\alpha^+}.M$
 $= [\mu]\mathbf{ord}\ vars\ \mathbf{in}\ M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]M$ by the induction hypothesis
 $(\mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]N) = \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]\forall \overrightarrow{\alpha^+}.M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ \forall \overrightarrow{\alpha^+}.[\mu]M$
 $= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]M$

Lemma 7 (Ordering is not affected by independent substitutions). Suppose that $\Gamma_2 \vdash \sigma : \Gamma_1$, i.e. σ maps variables from Γ_1 into types taking free variables from Γ_2 , and vars is a set of variables disjoint with both Γ_1 and Γ_2 . Then

- $-\operatorname{\mathbf{ord}}\operatorname{\mathbf{vars}}\operatorname{\mathbf{in}}[\sigma]N=\operatorname{\mathbf{ord}}\operatorname{\mathbf{vars}}\operatorname{\mathbf{in}}N$
- + ord $varsin[\sigma]P = ord varsin P$

Proof. Ilya: Should be easy

Lemma 8 (Completeness of variable ordering). Variable ordering is invariant under equivalence. For arbitrary vars,

- If $N \simeq_1^D M$ then $\operatorname{ord} vars \operatorname{in} N = \operatorname{ord} vars \operatorname{in} M$ (as lists)
- + If $P \simeq_1^D Q$ then ord vars in P = ord vars in Q (as lists)

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

4.6 Normaliztaion

Lemma 9. Set of free variables is invariant under equivalence.

- If $N \simeq_1^D M$ then $\mathbf{fv} N \equiv \mathbf{fv} M$ (as sets)
- + If $P \simeq_1^D Q$ then $\mathbf{fv} P \equiv \mathbf{fv} Q$ (as sets)

Proof. Straightforward mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$

Lemma 10. Free variables are not changed by the normalization

- $-\mathbf{fv} N \equiv \mathbf{fv} \, \mathbf{nf} \, (N)$
- $+ \mathbf{fv} P \equiv \mathbf{fv} \, \mathbf{nf} (P)$

Proof. By straightforward induction on $\mathbf{nf}(N) = M$.

Lemma 11 (Soundness of quantifier normalization).

- $-N \simeq_{1}^{D} \mathbf{nf}(N)$
- + $P \simeq_1^D \mathbf{nf}(P)$

Proof. Mutual induction on $\mathbf{nf}(N) = M$ and $\mathbf{nf}(P) = Q$. Let us consider how this judgment is formed:

Case 1. (Var^-) and (Var^+)

By the corresponding equivalence rules.

Case 2. (\uparrow) , (\downarrow) , and (\rightarrow)

By the induction hypothesis and the corresponding congruent equivalence rules.

Case 3. (\forall) , i.e. $\mathbf{nf}(\forall \overrightarrow{\alpha^+}.N) = \forall \overrightarrow{\alpha^{+\prime}}.N'$

From the induction hypothesis, we know that $N \simeq_{1}^{D} N'$. In particular, by lemma 9, $\mathbf{fv} N \equiv \mathbf{fv} N'$. Then by lemma 5, $\{\overrightarrow{\alpha^{+'}}\} \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$, and thus, $\{\overrightarrow{\alpha^{+'}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$.

To prove $\forall \overrightarrow{\alpha^+}. N \simeq_1^D \forall \overrightarrow{\alpha^+}'. N'$, it suffices to provide a bijection $\mu : \{\overrightarrow{\alpha^+}'\} \cap \mathbf{fv} N' \leftrightarrow \{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} N$ such that $N \simeq_1^D [\mu] N'$. Since these sets are equal, we take $\mu = id$.

Case 4. (\exists) Same as for case 3.

Corollary 3 (Normalization preserves ordering). For any vars,

- $-\operatorname{ord} vars \operatorname{in} \operatorname{nf}(N) = \operatorname{ord} vars \operatorname{in} M$
- $+ \operatorname{ord} vars \operatorname{in} \operatorname{nf}(P) = \operatorname{ord} vars \operatorname{in} Q$

Proof. Immediately from lemmas 8 and 11.

Lemma 12 (Distributivity of normalization over substitution). Normalization of a term distributes over substitution. Suppose that $\Gamma_2 \vdash \sigma : \Gamma_1$, i.e. σ maps variables from Γ_1 into types taking free variables from Γ_2 . Then

$$- \mathbf{nf} (\lceil \sigma \rceil N) = \lceil \mathbf{nf} (\sigma) \rceil \mathbf{nf} (N)$$

+
$$\mathbf{nf}([\sigma]P) = [\mathbf{nf}(\sigma)]\mathbf{nf}(P)$$

where $\mathbf{nf}(\sigma)$ means pointwise normalization: $[\mathbf{nf}(\sigma)]\alpha^- = \mathbf{nf}([\sigma]\alpha^-)$.

Proof. Mutual induction on N and P.

Case 1.
$$N = \alpha^-$$

 $\mathbf{nf}([\sigma]N) = \mathbf{nf}([\sigma]\alpha^-) = [\mathbf{nf}(\sigma)]\alpha^-.$
 $[\mathbf{nf}(\sigma)]\mathbf{nf}(N) = [\mathbf{nf}(\sigma)]\mathbf{nf}(\alpha^-) = [\mathbf{nf}(\sigma)]\alpha^-.$

Case 2. $P = \alpha^+$

Similar to case 1.

Case 3. If the type is formed by \rightarrow , \uparrow , or \downarrow , the required equality follows from the congruence of the normalization and substitution, and the induction hypothesis. For example, if $N = P \rightarrow M$ then

$$\mathbf{nf} ([\sigma]N) = \mathbf{nf} ([\sigma](P \to M))$$

$$= \mathbf{nf} ([\sigma]P \to [\sigma]M) \qquad \text{By the congruence of substitution}$$

$$= \mathbf{nf} ([\sigma]P) \to \mathbf{nf} ([\sigma]M) \qquad \text{By the congruence of normalization, i.e. Rule } (\to)$$

$$= [\mathbf{nf} (\sigma)]\mathbf{nf} (P) \to [\mathbf{nf} (\sigma)]\mathbf{nf} (M) \qquad \text{By the induction hypothesis}$$

$$= [\mathbf{nf} (\sigma)](\mathbf{nf} (P) \to \mathbf{nf} (M)) \qquad \text{By the congruence of substitution}$$

$$= [\mathbf{nf} (\sigma)]\mathbf{nf} (P \to M) \qquad \text{By the congruence of normalization}$$

$$= [\mathbf{nf} (\sigma)]\mathbf{nf} (N)$$

Case 4.
$$N = \forall \overrightarrow{\alpha^{+}}.M$$

 $[\mathbf{nf}(\sigma)]\mathbf{nf}(N) = [\mathbf{nf}(\sigma)]\mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.M)$
 $= [\mathbf{nf}(\sigma)]\forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}(M)$ Where $\overrightarrow{\alpha^{+'}} = \mathbf{ord}\{\overrightarrow{\alpha^{+}}\}\mathbf{in}\mathbf{nf}(M) = \mathbf{ord}\{\overrightarrow{\alpha^{+}}\}\mathbf{in}M$ (the latter is by corollary 3)

$$\mathbf{nf}([\sigma]N) = \mathbf{nf}([\sigma]\forall \overrightarrow{\alpha^{+}}.M)$$

$$= \mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.[\sigma]M) \qquad \text{Assuming } \{\overrightarrow{\alpha^{+}}\} \cap \{\Gamma_{1}\} = \varnothing \text{ and } \{\overrightarrow{\alpha^{+}}\} \cap \{\Gamma_{2}\} = \varnothing$$

$$= \forall \overrightarrow{\beta^{+}}.\mathbf{nf}([\sigma]M) \qquad \text{Where } \overrightarrow{\beta^{+}} = \mathbf{ord}(\{\overrightarrow{\alpha^{+}}\}) = \mathbf{nf}([\sigma]M) = \mathbf{ord}(\{\overrightarrow{\alpha^{+}}\}) = \mathbf{nf}([\sigma]M) \text{ (the latter is by corollary 3)}$$

$$= \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}([\sigma]M) \qquad \text{By lemma } 7, \overrightarrow{\beta^{+}} = \overrightarrow{\alpha^{+'}} \text{ since } \{\overrightarrow{\alpha^{+}}\} \text{ is disjoint with } \Gamma_{1} \text{ and } \Gamma_{2}$$

$$= \forall \overrightarrow{\alpha^{+'}}.[\mathbf{nf}(\sigma)]\mathbf{nf}(M) \qquad \text{By the induction hypothesis}$$

To show alpha-equivalence of $[\mathbf{nf}(\sigma)] \forall \overrightarrow{\alpha^{+\prime}} \cdot \mathbf{nf}(M)$ and $\forall \overrightarrow{\alpha^{+\prime}} \cdot [\mathbf{nf}(\sigma)] \mathbf{nf}(M)$, we can assume that $\{\overrightarrow{\alpha^{+\prime}}\} \cap \{\Gamma_1\} = \emptyset$, and $\{\overrightarrow{\alpha^{+\prime}}\} \cap \{\Gamma_2\} = \emptyset$.

Case 5.
$$P = \exists \overrightarrow{\alpha}$$
. Q

Same as for case 4.

Corollary 4 (Commutativity of normalization and renaming). Normalization of a term commutes with renaming. Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$. Then

$$- \mathbf{nf} ([\mu]N) = [\mu]\mathbf{nf} (N)$$

+
$$\mathbf{nf}([\mu]P) = [\mu]\mathbf{nf}(P)$$

Proof. Immediately from lemma 12, after noticing that $\mathbf{nf}(\mu) = \mu$.

Lemma 13 (Completeness of quantified normalization). Normalization returns the same representative for equivalent types.

- If
$$N \simeq_1^D M$$
 then $\mathbf{nf}(N) = \mathbf{nf}(M)$

+ If
$$P \simeq_1^D Q$$
 then $\mathbf{nf}(P) = \mathbf{nf}(Q)$

(Here equality means alpha-equivalence)

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

Case 1.
$$(\forall^{\simeq_1^D})$$

From the definition of the normalization,

- $\mathbf{nf}(\forall \overrightarrow{\alpha^+}.N) = \forall \overrightarrow{\alpha^+}'.\mathbf{nf}(N) \text{ where } \overrightarrow{\alpha^+}' \text{ is } \mathbf{ord}\{\overrightarrow{\alpha^+}\}\mathbf{in}\,\mathbf{nf}(N)$
- $\mathbf{nf}(\forall \overrightarrow{\beta^+}.M) = \forall \overrightarrow{\beta^+}'.\mathbf{nf}(M)$ where $\overrightarrow{\beta^+}'$ is $\mathbf{ord}\{\overrightarrow{\beta^+}\}\mathbf{in}\mathbf{nf}(M)$

Let us take $\mu: (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv} M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} N)$ from the inversion of the equivalence judgment. Notice that from lemmas 5 and 10, the domain and the codomain of μ can be written as $\mu: \{\overrightarrow{\beta^{+\prime}}\} \leftrightarrow \{\overrightarrow{\alpha^{+\prime}}\}$.

To show the alpha-equivalence of $\forall \overrightarrow{\alpha^{+\prime}}$.**nf** (N) and $\forall \overrightarrow{\beta^{+\prime}}$.**nf** (M), it suffices to prove that (i) $[\mu]$ **nf** $(M) = \mathbf{nf}(N)$ and (ii) $[\mu]\overrightarrow{\beta^{+\prime}} = \overrightarrow{\alpha^{+\prime}}$.

- (i) $[\mu]$ **nf** (M) =**nf** $([\mu]M) =$ **nf** (N). The first equality holds by corollary 4, the second—by the induction hypothesis.
- (ii) $[\mu]\overrightarrow{\beta^{+\prime}} = [\mu]\operatorname{ord}\{\overrightarrow{\beta^{+}}\}\operatorname{in}\operatorname{nf}(M)$ by the definition of $\overrightarrow{\beta^{+\prime}}$ $= [\mu]\operatorname{ord}(\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(M)$ from lemma 10 and corollary 2 $= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}[\mu]\operatorname{nf}(M)$ by lemma 6, because $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \cap \operatorname{fv}\operatorname{nf}(M) \subseteq \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} M = \emptyset$ and $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \cap (\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M) \subseteq \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} M = \emptyset$ $= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(N)$ since $[\mu]\operatorname{nf}(M) = \operatorname{nf}(N)$ is proved $= \operatorname{ord}(\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N)\operatorname{in}\operatorname{nf}(N)$ because μ is a bijection between $\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N$ and $\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M = \emptyset$ by the definition of $\overrightarrow{\alpha^{+\prime}}$

Case 2. $(\exists^{\succeq_1^D})$ Same as for case 1.

Case 3. Other rules are congruent, and thus, proved by the corresponding congruent alpha-equivalence rule, which is applicable by the induction hypothesis.

Lemma 14 (Idempotence of normalization). Normalization is idempotent

$$- \mathbf{nf} \left(\mathbf{nf} \left(N \right) \right) = \mathbf{nf} \left(N \right)$$

+
$$\mathbf{nf}(\mathbf{nf}(P)) = \mathbf{nf}(P)$$

Proof. By applying lemma 13 to lemma 11.

Lemma 15. The result of a substitution is normalized if and only if the initial type and the substitution are normalized. Suppose that σ is a substitution $\Gamma_2 \vdash \sigma : \Gamma_1$, P is a positive type $(\Gamma_1 \vdash P)$, N is a negative type $(\Gamma_1 \vdash N)$. Then

$$+ [\sigma]P \text{ is normal} \iff \begin{cases} \sigma|_{\mathbf{fv}(P)} & \text{is normal} \\ P & \text{is normal} \end{cases}$$

$$- [\sigma] Nis \ normal \iff \begin{cases} \sigma|_{\mathbf{fv}(N)} & is \ normal \\ N & is \ normal \end{cases}$$

Proof. Mutual induction on $\Gamma_1 \vdash P$ and $\Gamma_1 \vdash N$.

Case 1. $N = \alpha^-$

Then N is always normal, and the normality of $\sigma|_{\{\alpha^-\}}$ by the definition means $[\sigma]\alpha^-$ is normal.

Case 2. $N = P \rightarrow M$

$$[\sigma](P \to M) \text{ is normal} \iff [\sigma]P \to [\sigma]M \text{ is normal} \qquad \text{by the substitution congruence}$$

$$\iff \begin{cases} [\sigma]P & \text{is normal} \\ [\sigma]M & \text{is normal} \end{cases} \qquad \text{by congruence of normality Ilya: lemma?}$$

$$\iff \begin{cases} P & \text{is normal} \\ \sigma|_{\mathbf{fv}(P)} & \text{is normal} \\ M & \text{is normal} \end{cases}$$

$$\iff \begin{cases} P \to M & \text{is normal} \\ \sigma|_{\mathbf{fv}(M)} & \text{is normal} \end{cases} \iff \begin{cases} P \to M & \text{is normal} \\ \sigma|_{\mathbf{fv}(P) \cup \mathbf{fv}(M)} & \text{is normal} \end{cases}$$

$$\iff \begin{cases} P \to M & \text{is normal} \\ \sigma|_{\mathbf{fv}(P) \cup \mathbf{fv}(M)} & \text{is normal} \end{cases} \iff \begin{cases} P \to M & \text{is normal} \\ \sigma|_{\mathbf{fv}(P) \to M} & \text{is normal} \end{cases}$$

Case 3. $N = \uparrow P$

By congruence and the inductive hypothesis, similar to case 2

Case 4.
$$N = \forall \overrightarrow{\alpha^{+}}. M$$

 $[\sigma](\forall \alpha^{+}. M)$ is normal \iff $(\forall \overrightarrow{\alpha^{+}}. [\sigma]M)$ is normal assuming $\overrightarrow{\alpha^{+}} \cap \Gamma_{1} = \varnothing$ and $\overrightarrow{\alpha^{+}} \cap \Gamma_{2} = \varnothing$
 \iff $\begin{cases} [\sigma]M \text{ is normal} \\ \mathbf{ord} \{\overrightarrow{\alpha^{+}}\} \mathbf{in} [\sigma]M = \overrightarrow{\alpha^{+}} \end{cases}$ by the definition of normalization \Leftrightarrow $\begin{cases} [\sigma]M \text{ is normal} \\ \mathbf{ord} \{\overrightarrow{\alpha^{+}}\} \mathbf{in} M = \overrightarrow{\alpha^{+}} \end{cases}$ by lemma 7
 \iff $\begin{cases} \sigma|_{\mathbf{fv}(M)} \text{ is normal} \\ M \text{ is normal} \\ \mathbf{ord} \{\overrightarrow{\alpha^{+}}\} \mathbf{in} M = \overrightarrow{\alpha^{+}} \end{cases}$ by the induction hypothesis ord $\{\overrightarrow{\alpha^{+}}\} \mathbf{in} M = \overrightarrow{\alpha^{+}} \}$ \Leftrightarrow $\begin{cases} \sigma|_{\mathbf{fv}(\forall \overrightarrow{\alpha^{+}}.M)} \text{ is normal} \\ \forall \overrightarrow{\alpha^{+}}.M \text{ is normal} \end{cases}$ by the definition of normalization \Leftrightarrow $\begin{cases} \sigma|_{\mathbf{fv}(\forall \overrightarrow{\alpha^{+}}.M)} \text{ is normal} \\ \forall \overrightarrow{\alpha^{+}}.M \text{ is normal} \end{cases}$ by the definition of normalization

Case 5. $P = \dots$

The positive cases are done in the same way as the negative ones.

4.7 Equivalence

Lemma 16 (Type well-formedness is invariant under equivalence). Mutual subtyping implies declarative equivalence.

- $+ if P \simeq_1^D Q then \Gamma \vdash P \iff \Gamma \vdash Q,$
- $if N \simeq_1^D M then \Gamma \vdash N \iff \Gamma \vdash M$

Proof. Ilya: todo

Corollary 5 (Normalization preserves well-formedness).

- $+ \Gamma \vdash P \iff \Gamma \vdash \mathbf{nf}(P),$
- $-\Gamma \vdash N \iff \Gamma \vdash \mathbf{nf}(N)$

Proof. Immediately from lemmas 11 and 16.

Corollary 6 (Normalization preserves well-formedness of substitution).

$$\Gamma_2 \vdash \sigma : \Gamma_1 \iff \Gamma_2 \vdash \mathbf{nf}(\sigma) : \Gamma_1$$

Lemma 17 (Soundness of equivalence). Declarative equivalence implies mutual subtyping.

$$+ if \Gamma \vdash P, \Gamma \vdash Q, and P \simeq_1^D Q then \Gamma \vdash P \simeq_1^{\leq} Q,$$

 $-if \Gamma \vdash N, \Gamma \vdash M, \text{ and } N \simeq_1^D M \text{ then } \Gamma \vdash N \simeq_1^{\leqslant} M.$

Lemma 18 (Completeness of equivalence). Mutual subtyping implies declarative equivalence.

+ if
$$\Gamma \vdash P \simeq_1^{\leqslant} Q$$
 then $P \simeq_1^D Q$,

$$- if \Gamma \vdash N \simeq_1^{\leq} M then N \simeq_1^{D} M.$$

4.8 Upper Bounds

Lemma 19 (Decomposition of the quantifier rule). *Ilya:* move somewhere Whenever the quantifier rule (Rule $(\exists^{\geq 1})$) or Rule $(\forall^{\leq 1})$) is applied, one can assume that the rule adding quantifiers on the right-hand side was applied the last.

$$- If \Gamma \vdash N \leqslant_1 \forall \overrightarrow{\beta^+}.M then \Gamma, \overrightarrow{\beta^+} \vdash N \leqslant_1 M.$$

+ If
$$\Gamma \vdash P \geqslant_1 \exists \overrightarrow{\beta}^-.Q \ then \ \Gamma, \overrightarrow{\beta}^- \vdash P \geqslant_1 Q.$$

Lemma 20 (Shape of the Supertypes). Let us define the set of upper bounds of a positive type UB(P) in the following way:

Proof. By induction on $\Gamma \vdash P$.

Case 1. $P = \beta^+$

Then the last rule that is applied to infer $\Gamma \vdash Q \geqslant_1 \beta^+$ must be either Rule $(\operatorname{Var}^{+\geqslant_1})$ or Rule (\exists^{\geqslant_1}) . The former case means that $Q = \beta^+$. In the latter case, $Q = \exists \overrightarrow{\alpha^-}. Q'$, where Q' has no outer existential quantifiers. Then by inversion of Rule (\exists^{\geqslant_1}) , $\Gamma \vdash [\overrightarrow{N}/\alpha^-]Q' \geqslant_1 \beta^+$ for some \overrightarrow{N} . This time, to infer this judgment, only Rule $(\operatorname{Var}^{+\geqslant_1})$ is applicable, which means that $Q' = \beta^+$, and then $Q = \exists \overrightarrow{\alpha^-}. \beta^+$.

Case 2. $P = \exists \overrightarrow{\beta}^-.P'$

Then if $\Gamma \vdash Q \geqslant_1 \exists \overrightarrow{\beta^-}.P'$, then by lemma 19, $\Gamma, \overrightarrow{\beta^-} \vdash Q \geqslant_1 P'$, and $\mathbf{fv} Q \cap \{\overrightarrow{\beta^-}\} = \emptyset$ by the the Barendregt's convention. The other direction holds by Rule (\exists^{\geqslant_1}) . This way, $\{Q \mid \Gamma \vdash Q \geqslant_1 \exists \overrightarrow{\beta^-}.P'\} = \{Q \mid \Gamma, \overrightarrow{\beta^-} \vdash Q \geqslant_1 P' \text{ s.t. } \mathbf{fv}(Q) \cap \{\overrightarrow{\beta^-}\} = \emptyset\}$. From the induction hypothesis, the latter is equal to $\mathsf{UB}(\Gamma, \overrightarrow{\beta^-} \vdash P')$ not using $\overrightarrow{\beta^-}$, i.e. $\mathsf{UB}(\Gamma \vdash \exists \overrightarrow{\beta^-}.P')$.

Case 3. $P = \downarrow M$

Then let us consider two subcases upper bounds without outer quantifiers (we denote the corresponding set restriction as $|_{\sharp}$) and upper bounds with outer quantifiers ($|_{\exists}$). We prove that for both of these groups, the restricted sets are equal.

$$a. \ Q \neq \exists \overrightarrow{\beta}^{-}.Q'$$

Then the last applied rule to infer $\Gamma \vdash Q \geqslant_1 \downarrow M$ must be Rule $(\downarrow^{\geqslant_1})$, which means $Q = \downarrow M'$, and by inversion, $\Gamma \vdash M' \simeq_1^e M$, then by lemma 18 and Rule $(\downarrow^{\simeq_1^D})$, $\downarrow M' \simeq_1^D \downarrow M$. This way, $Q = \downarrow M' \in \{\downarrow M' \mid \downarrow M' \simeq_1^D \downarrow M\} = \mathsf{UB}(\Gamma \vdash \downarrow M)|_{\frac{1}{2}}$. In the other direction, $\downarrow M' \simeq_1^D \downarrow M \Rightarrow \Gamma \vdash \downarrow M' \simeq_1^e \downarrow M$ by lemma 17, since $\Gamma \vdash \downarrow M'$ by lemma 16

$$\Rightarrow \Gamma \vdash \downarrow M' \geqslant_1 \downarrow M$$
 by inversion

b. $Q = \exists \overrightarrow{\beta}^-.Q'$ (for non-empty $\overrightarrow{\beta}^-$)

Then the last rule applied to infer $\Gamma \vdash \exists \overrightarrow{\beta}^{-}.Q' \geqslant_{1} \downarrow M$ must be Rule $(\exists^{\geqslant_{1}})$. Inversion of this rule gives us $\Gamma \vdash [\overrightarrow{N}/\overrightarrow{\beta}^{-}]Q' \geqslant_{1} \downarrow M$ for some $\Gamma \vdash N_{i}$. Notice that $[\overrightarrow{N}/\overrightarrow{\beta}^{-}]Q'$ has no outer quantifiers. Thus from case 3.a, $[\overrightarrow{N}/\overrightarrow{\beta}^{-}]Q' \simeq_{1}^{D} \downarrow M$, which is only possible if $Q' = \downarrow M'$. This way, $Q = \exists \overrightarrow{\beta}^{-}.\downarrow M' \in \mathsf{UB}(\Gamma \vdash \downarrow M)|_{\exists}$ (notice that $\overrightarrow{\beta}^{-}$ is not empty).

In the other direction, $[\overrightarrow{N}/\overrightarrow{\beta^-}] \downarrow M' \simeq_1^D \downarrow M \Rightarrow \Gamma \vdash [\overrightarrow{N}/\overrightarrow{\beta^-}] \downarrow M' \simeq_1^{\leqslant} \downarrow M$ by lemma 17, since $\Gamma \vdash [\overrightarrow{N}/\overrightarrow{\beta^-}] \downarrow M'$ by lemma 16

$$\Rightarrow \Gamma \vdash [\overrightarrow{N}/\overrightarrow{\beta}^{-}] \downarrow M' \geqslant_{1} \downarrow M$$
 by inversion

$$\Rightarrow \Gamma \vdash \exists \overrightarrow{\beta^{-}}. \downarrow M' \geqslant_{1} \downarrow M \qquad \text{by Rule } (\exists^{\geqslant_{1}})$$

Lemma 21 (Normalized Shape of the Supertypes). For a normalized positive type $P = \mathbf{nf}(P)$, let us define the set of normalized upper bounds in the following way:

Proof. By induction on $\Gamma \vdash P$.

Case 1.
$$P = \beta^+$$

Then from lemma 20, $\{\mathbf{nf}(Q) \mid \Gamma \vdash Q \geqslant_1 \beta^+\} = \{\mathbf{nf}(\overrightarrow{\exists \alpha} . \beta^+) \mid \text{ for some } \overrightarrow{\alpha^-}\} = \{\beta^+\}$

Case 2.
$$P = \exists \overrightarrow{\beta^-}.P'$$

 $\mathsf{NFUB}(\Gamma \vdash \exists \overrightarrow{\beta^-}.P') = \mathsf{NFUB}(\Gamma, \overrightarrow{\beta^-} \vdash P')$ not using $\overrightarrow{\beta^-}$
 $= \{\mathbf{nf}(Q) \mid \Gamma, \overrightarrow{\beta^-} \vdash Q \geqslant_1 P'\}$ not using $\overrightarrow{\beta^-}$ by the induction hypothesis
 $= \{\mathbf{nf}(Q) \mid \Gamma, \overrightarrow{\beta^-} \vdash Q \geqslant_1 P' \text{ s.t. } \mathbf{fv} \ Q \cap \overrightarrow{\beta^-} = \varnothing\}$ because $\mathbf{fv} \ \mathbf{nf}(Q) = \mathbf{fv} \ Q$ by lemma 10
 $= \{\mathbf{nf}(Q) \mid Q \in \mathsf{UB}(\Gamma, \overrightarrow{\beta^-} \vdash P') \text{ s.t. } \mathbf{fv} \ Q \cap \overrightarrow{\beta^-} = \varnothing\}$ by lemma 20
 $= \{\mathbf{nf}(Q) \mid Q \in \mathsf{UB}(\Gamma \vdash \exists \overrightarrow{\beta^-}.P')\}$ by the definition of UB
 $= \{\mathbf{nf}(Q) \mid \Gamma \vdash Q \geqslant_1 \exists \overrightarrow{\beta^-}.P'\}$ by lemma 20

Case 3. $P = \downarrow M$

In the following reasoning, we will use the following principle of variable replacement.

Observation 1. Suppose that $\nu: A \to A$ is an idempotent function, P is a predicate on A, $F: A \to B$ is a function. Then

$${F(\nu x) \mid x \in A \text{ s.t. } P(\nu x)} =$$

= ${F(x) \mid x \in A \text{ s.t. } \nu x = x \text{ and } P(x)}.$

In our case, the idempotent ν will be normalization, variable ordering, or domain restriction.

Another observation we will use is the following.

Observation 2. For functions F and ν , and predicates P and Q,

$$\{F(\nu x) \mid x \in A \text{ s.t. } Q(\nu x) \text{ and } P(x)\} = \{F(\nu x) \mid x \in A \text{ s.t. } Q(\nu x) \text{ and } (\exists x' \in A \text{ s.t. } P(x') \text{ and } \nu x' = \nu x)\}.$$

$$\begin{cases} & \{\operatorname{nf}(Q) \mid \Gamma \in Q \ge 1_i M\} \\ & = \{\operatorname{nf}(Q) \mid Q \in \operatorname{UB}(\Gamma + 1_i M)\} \\ & = \{\operatorname{nf}(\overline{\alpha}^{-1}, M') \mid \text{for } \overrightarrow{\alpha}^{-1}, M', \text{ and } \overrightarrow{N} \text{ s.t. } \Gamma, \overrightarrow{\alpha}^{-1} \vdash M', \\ & \Gamma \in N_i, \text{ and } [\overrightarrow{N}/\alpha^{-1}] M' \rightarrow P \mid M \end{cases}$$
 by the definition of UB b

Lemma 22 (Soundness of the Least Upper Bound). For types $\Gamma \vdash P_1$, and $\Gamma \vdash P_2$, if $\Gamma \vDash P_1 \lor P_2 = Q$ then

(i)
$$\Gamma \vdash Q$$

(ii)
$$\Gamma \vdash Q \geqslant_1 P_1 \text{ and } \Gamma \vdash Q \geqslant_1 P_2$$

Proof. Induction on $\Gamma \models P_1 \lor P_2 = Q$.

Case 1.
$$\Gamma \models \alpha^+ \lor \alpha^+ = \alpha^+$$

Then $\Gamma \vdash \alpha^+$ by assumption, and $\Gamma \vdash \alpha^+ \geqslant_1 \alpha^+$ by Rule (Var^{+ \geqslant_1}).

Case 2. $\Gamma \models \exists \overrightarrow{\alpha}^-.P_1 \lor \exists \overrightarrow{\beta}^-.P_2 = Q$

Then by inversion of $\Gamma \vdash \exists \alpha : P_i$ and weakening, $\Gamma, \overrightarrow{\alpha}, \overrightarrow{\beta} \vdash P_i$, hence, the induction hypothesis applied to $\Gamma, \overrightarrow{\alpha}, \overrightarrow{\beta} \vdash P_i$ and $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ and $\Gamma \vdash P_i$ and $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ and $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ and $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ and $\Gamma \vdash P_i$ are $\Gamma \vdash P_i$ a

- (i) $\Gamma, \overrightarrow{\alpha}^{-}, \overrightarrow{\beta}^{-} \vdash Q$,
- (ii) $\Gamma, \overrightarrow{\alpha}^-, \overrightarrow{\beta}^- \vdash Q \geqslant_1 P_1$,
- (iii) $\Gamma, \overrightarrow{\alpha}^{-}, \overrightarrow{\beta}^{-} \vdash Q \geqslant_1 P_2$.

To prove $\Gamma \vdash Q$, it suffices to show that $\mathbf{fv}(Q) \cap \{\Gamma, \overrightarrow{\alpha^-}, \overrightarrow{\beta^-}\} = \mathbf{fv}(Q) \cap \{\Gamma\}$ (and then apply lemma 4). The inclusion right-to-left is self-evident. To show $\mathbf{fv}(Q) \cap \{\Gamma, \overrightarrow{\alpha^-}, \overrightarrow{\beta^-}\} \subseteq \mathbf{fv}(Q) \cap \{\Gamma\}$, we prove that $\mathbf{fv}(Q) \subseteq \{\Gamma\}$

 $\mathbf{fv}(Q) \subseteq \mathbf{fv} P_1 \cap \mathbf{fv} P_2$

by lemma 1

To show $\Gamma \vdash Q \geqslant_1 \exists \overrightarrow{\alpha^-}.P_1$, we apply Rule (\exists^{\geqslant_1}) . Then $\Gamma, \overrightarrow{\alpha^-} \vdash Q \geqslant_1 P_1$ holds since $\Gamma, \overrightarrow{\alpha^-}, \overrightarrow{\beta^-} \vdash Q \geqslant_1 P_1$ (by the induction hypothesis), $\Gamma, \overrightarrow{\alpha^-} \vdash Q$ (by weakening), and $\Gamma, \overrightarrow{\alpha^-} \vdash P_1$.

Judgment $\Gamma \vdash Q \geqslant_1 \exists \overrightarrow{\beta}^-.P_2$ is proved symmetrically.

Case 3. $\Gamma \models \downarrow N \lor \downarrow M = \exists \overrightarrow{\alpha}^{-}. [\overrightarrow{\alpha}^{-}/\Xi]P$ By the inversion, $\Gamma, \cdot \models \downarrow N \stackrel{a}{\simeq} \downarrow M = (\Xi, P, \widehat{\tau}_1, \widehat{\tau}_2)$. Then by ??,

(i) $\Gamma;\Xi \vdash P$

To show $\Gamma \vdash \exists \overrightarrow{\alpha}. [\overrightarrow{\alpha}/\Xi] P$, notice that $\Gamma, \overrightarrow{\alpha} \vdash [\overrightarrow{\alpha}/\Xi] P$, which follows from $\Gamma; \Xi \vdash P$ by ??.

To show $\Gamma \vdash \exists \overrightarrow{\alpha}^-. [\overrightarrow{\alpha}^-/\Xi] P \geqslant_1 \downarrow N$, we apply Rule ??. Notice that $\widehat{\tau}_i$ corresponds to $\overrightarrow{N}/\overrightarrow{\alpha}^-$

Lemma 23 (Completeness of the Least Upper Bound). For types $\Gamma \vdash P_1$, $\Gamma \vdash P_2$, and $\Gamma \vdash Q'$ such that $\Gamma \vdash Q' \geqslant_1 P_1$ and $\Gamma \vdash Q' \geqslant_1 P_2$, there exists Q s.t. $\Gamma \models P_1 \lor P_2 = Q$, and $\Gamma \vdash Q' \geqslant_1 Q$

Lemma 24 (Soundness of Upgrade). For $\Delta \subseteq \Gamma$, suppose that $\operatorname{\mathbf{upgrade}} \Gamma \vdash P \operatorname{\mathbf{to}} \Delta = Q$.

- (i) $\Delta \vdash Q$
- (ii) $\Gamma \vdash Q \geqslant_1 P$

Lemma 25 (Completeness of Upgrade). For $\Delta \subseteq \Gamma$, $\Gamma \vdash P$ and $\Delta \vdash Q'$, such that $\Gamma \vdash Q' \geqslant_1 P$, there exists Q s.t. $\mathbf{upgrade} \Gamma \vdash P \mathbf{to} \Delta = Q$, and $\Delta \vdash Q' \geqslant_1 Q$.