Armazéns de Dados

Departamento de Engenharia Informática (DEI/ISEP) Paulo Oliveira pjo@isep.ipp.pt

Adaptado do Original de: Fátima Rodrigues (DEI/ISEP)

1

Bibliography

OLAP Solutions
 Building Multidimensional Information Systems (2nd Ed.)
 Erik Thomsen
 John Wiley and Sons, 2002

2

On-Line Analytical Processing (OLAP)

3

On-Line Analytical Processing

- Defined by E.F. Codd
 - White paper "Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate", 1993
 - OLAP is "the dynamic synthesis, analysis, and consolidation of large volumes of multidimensional data."
 - Codd proposed an arrangement of data in arrays to allow fast analysis – cubes
 - → **OLAP cubes** can produce an answer in around 0.1% of the time for the same query on a OLTP relational database
- Complements OLTP and DW systems

OLAP Analytical Goals

- Before developing OLAP applications it is crucial to identify the business analytical goals – Key Performance Indicators (KPIs)
- KPIs are financial and non-financial metrics used to provide business users with an indication of the current and historical performance of different aspects of the business
- KPIs examples:
 - Profit
 - Loss
 - Gross margin
 - Customer attrition/churn

- ...

-5

5

KPI Dashboard Example Sales KPI Dashboard NUMBER OF SALES \$150,009 \$39,709 \$110,300 115 **♦ ▼4% ***5% ♦ ▼9% 🛗 ▼4% ♦ ▼1% 🛗 ▼ 11% ♦ ▼12% 🛗 ▼1% SALES REVENUE COST BREAKDOWN Marketing \$73,450 Sales \$36,850 INCREMENTAL SALES UP/CROSS SELL ACCUMULATED REVENUE Revenue \$16,501 % of Revenue CHURN 26 2% \$43.812 6

7

On-Line Analytical Processing

- Approach to quickly provide the answer to analytical queries that are multidimensional in nature
 - Usually the data comes from the DW
- Analytical queries involve inter-row calculations, time series analysis, and access to aggregated historical and atomic/ aggregated current data
- Databases configured for OLAP employ a multidimensional data model, allowing analytical ad-hoc queries with fast execution time
- Output of an OLAP query is typically displayed in a matrix (or pivot) format:
 - Dimensions rows and columns of the matrix
 - Measures (facts) values of each cell

OLAP Functionality

 In the core of any OLAP system is the concept of an OLAP cube also called a multidimensional cube or a hypercube

- Hypercube consists of numeric facts called measures which are categorized by dimensions
- Cube is typically created from a star schema of tables in a relational database
 - Measures are derived from the records in the fact table
 - Dimensions are derived from the records in the dimension tables

9

OLAP Applications

- Multidimensional data structure
- Automatic roll-ups and drill-downs
 - -No programming required
- Support complex calculations
 - -Sales forecasting, moving averages, growth percentage, etc.
- Time intelligence
 - -Comparison of performance between different time periods

LO

Kinds of On-Line Analytical Processing

MOLAP (Multidimensional OLAP)

- "Classic" form of OLAP, sometimes referred to as just OLAP
- Data is stored in a special, usually proprietary, data structure

ROLAP (Relational OLAP)

- Works directly with relational databases
- Tools access the DW directly

HOLAP (Hybrid OLAP)

- Takes synergies from ROLAP and MOLAP
- Divides data between relational and specialized storage
 - Uses relational tables to hold larger quantities of detailed data
 - Uses specialized storage for smaller quantities of more-aggregate or lessdetailed data

11

11

Multidimensional OLAP

- Stores data into an optimized multidimensional array storage, usually a three or higher dimensional array (hipercube)
- Requires the pre-computation and storage of data in the hipercube for fast end-user response
 - Operation known as processing
 - Expensive
 - Makes loading slower
- Examples: Cognos Powerplay; Hyperion ESSbase;SQL Server Analysis Services

MOLAP Advantages

- Delivers better performance due to specialized indexing and storage optimizations
 - Array model provides natural indexing easy and quick to access an array's position
- Automated computation of higher-level aggregates of data
- Does not need to have a permanent connection to the underlying DW

13

13

MOLAP Disadvantages

- Data loading into these structures can be lengthy, especially of large data volumes
 - Must be **periodically updated** to remain current
 - → **Solution**: **incremental processing** only the data which is new or has been updated, instead of reprocessing the entire hypercube
- Stores a copy of the data at OLAP server and so requires additional storage

Relational OLAP

- Does not require the pre-computation of data (as in MOLAP)
 - Creates multidimensional views from a relational database
- ROLAP tools access the data in a relational database and generate SQL queries to retrieve data when an end-user requests it
- Relational database must be carefully designed for ROLAP use – a database which was designed for OLTP will not function well as a ROLAP database
 - Data must be stored in a multidimensional data model
 - It is possible to create additional database tables (aggregations) which summarize the data at any desired combination of dimensions
- Examples: SAP BW; MicroStrategy; SQL Server Analysis Services

15

15

ROLAP Advantages

- Uses an underlying RDBMS, rather than a specialized multidimensional data structure
 - Better scalability since is able to handle very high volumes of data
 - Maturity of the RDBMS technology
- Frequent updates are not a problem
- It has less storage requirements, since it does not make a copy of the data (as in MOLAP)

ROLAP Disadvantages

- As the data structure is relational, SQL must
 be used to access the detailed records
 - ROLAP engine must perform additional work
 - SQL generation may be costly
- Slower data retrieval than with MOLAP tools

17

17

Hybrid OLAP

- Combination of MOLAP and ROLAP that mixes the best of both
 - -Can pre-process quickly and scale well
- Combines the performance and functionality of the multidimensional database with the ability to access directly detailed data on relational databases
 - Stores the aggregations that exist within a multidimensional schema, leaving the most detailed data in relational form
- Most commercial OLAP tools now support a hybrid OLAP approach
- Examples: Holos; Oracle Advanced Analytic Services; SQL Server Analysis Services

Drill-Down & Roll-Up Drill-down means to move from summary information to more detailed data by focusing on something Roll-up means to move from more detailed data to summary information by abstracting of something Mar 20 Quarter 1 of Feb 20 20 Jan 20 335€ 340€ 310€ 290€ Product A Product A 100€ 110€ 105€ 305€ 355€ 300€ 280€ Product B Product B 90€ 100€ 105€ 95€ Product C 370€ 395€ 425€ 350€ Product C 130€ 115€ Store A Store BStore C Store D Store A Store B Store C Store D

Pivot Tables

Data Table					
Model	Color	Sales			
Van	Blue	6			
Van	Red	5			
Van	White	4			
Coupe	Blue	3			
Coupe	Red	5			
Coupe	White	5			
Sedan	Blue	4			
Sedan	Red	3			
Sedan	White	2			

Pivot Tables are especially wellsuited for taking enormous amounts of data and summarizing that data into useful reports

Pivot Table 3×3

Color Model

Pivot Table					
Model/Color	Blue	Red	White	Total	
Van	6	5	4	15	
Coupe	3	5	5	13	
Sedan	4	3	2	9	
Total	13	13	11	37	

23

23

Data Table					
Market	Market Model Color		Sales		
Europe	Van	Blue	6		
America	Van	Red	5		
Europe	Van	White	4		
Europe	Coupe	Blue	3		
America	Coupe	Red	5		
Asia	Van	Red	3		
America	Coupe	White	5		
America	Van	Blue	3		
Europe	Coupe	Red	5		
Asia	Coupe	White	5		
Asia	Sedan	Blue	4		
America	Sedan	Red	3		
Europe	Sedan	White	2		

Market Model

Color

Market	Model	Blue	Red	white	Total
America	Coupe	0	5	5	10
	Sedan	0	3	0	3
	Van	3	5	0	8
	Total	3	13	5	21
Europe	Coupe	3	5	0	8
	Sedan	0	0	2	2
	Van	6	0	4	10
	Total	9	5	6	20
Asia	Coupe	0	0	5	5
	Sedan	4	0	0	4
	Van	0	3	0	3
	Total	4	3	5	12
Total		16	21	16	53

Pivot Table 3×3×3

Rotate Data Cube

 Allow the user to view the same data from a different perspective

		N			
Model	Color	America	Europe	Asia	Total
Coupe	Blue	0	3	0	3
	Red	5	5	0	10
	White	5	0	5	10
	Total	10	8	5	23
Sedan	Blue	0	0	4	4
	Red	3	0	0	3
	White	0	2	0	2
	Total	3	2	4	9
Van	Blue	3	6	0	9
	Red	5	0	3	8
	White	0	4	0	4
	Total	8	10	3	21
Total		21	20	12	53

Pivot Table 3×3×3

25