Chapter 3: Arithmetic for Computers

Ngo Lam Trung

[with materials from Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2008, MK and M.J. Irwin's presentation, PSU 2008]

Chapter 3.1 NLT, SoICT, 2013

Content

- Integer representation and arithmetic
- Floating point number representation and arithmetic

Chapter 3.2 NLT, SoICT, 2013

Overview

- Computers store data as sequences of 1s and 0s
- How these sequences can be converted/displayed as audio, image, photo,...?

In this chapter: How to represent complicated data types in binary

Chapter 3.3 NLT, SoICT, 2013

Sign and unsigned integer

Unsigned integer

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

32-bit unsigned numbers

Chapter 3.4 NLT, SoICT, 2013

Sign and unsigned integer

Signed integer

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= -x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

32-bit signed numbers (2's complement):

Chapter 3.5 NLT, SoICT, 2013

Addition and subtraction

- Addition
 - Similar to what you do to add two numbers by hand
 - Digits are added bit by bit from right to left
 - Carries passed to the next digit to the left
- Subtraction
 - Negate the second operand then add to the first operand

Chapter 3.6 NLT, SoICT, 2013

□ All numbers are 8-bit signed integer

$$122 + 8 =$$

$$122 + 80 =$$

Chapter 3.7 NLT, SoICT, 2013

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 32-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Chapter 3.8 NLT, SoICT, 2013

Multiply

 Binary multiplication is just a bunch of right shifts and adds

n-bit multiplicand and multiplier → 2*n-bit product*

Chapter 3.10 NLT, SoICT, 2013

Multiplicand		1000_{ten}
Multiplier	Χ	1001_{ten}
		1000
		0000
		0000
		1000
Product		1001000 _{ten}

Chapter 3.11 NLT, SoICT, 2013

Add and Right Shift Multiplier Hardware

Chapter 3.13

MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product (2 x 32 bit)

- Two additional registers: hi and lo
- Low-order word of the product is left in processor register 10
 and the high-order word is left in register hi
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are usually done by fast, dedicated hardware and are much more complex (and slower) than adders

Chapter 3.14 NLT, SoICT, 2013

Division

 Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend = quotient x divisor + remainder

Chapter 3.15 NLT, SoICT, 2013

Left Shift and Subtract Division Hardware

Chapter 3.17 NLT, SoICT, 2013

MIPS Divide Instruction

□ Divide (div and divu) generates the reminder in hi and the quotient in lo

- Instructions mfhi rd and mflo rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- □ As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0.

Chapter 3.18 NLT, SoICT, 2013

Representing Big (and Small) Numbers

■ What if we want to encode the approx. age of the earth? 4,600,000,000 or 4.6 x 109

or a famous number

There is no way we can encode either of the above in a 32-bit integer.

- → We need reals or floating point numbers!
- → Floating point numbers in decimal:
 - **→** 1000
 - $\rightarrow 1 \times 10^3$
 - $\rightarrow 0.1 \times 10^4$

Chapter 3.19 NLT, SoICT, 2013

Floating point number

■ In decimal system

$$2013.1228 = 201.31228 * 10$$

$$= 20.131228 * 10^{2}$$

$$= 2.0131228 * 10^{3}$$

$$= 20131228 * 10^{-4}$$

What is the "standard" form?

$$2.0131228 * 10^3 = 2.0131228E + 03$$

mantissa

exponent

- □ In binary $X = \pm 1.xxxxx * 2^{yyyy}$
- Sign, mantissa, and exponent need to be represented

Chapter 3.20 NLT, SoICT, 2013

Floating point number

Floating point representation in binary

$$(-1)^{sign} \times 1.F \times 2^{E-bias}$$

- Still have to fit everything in 32 bits (single precision)
- Bias = 127 with single precision floating point number

S	E (exponent)	F (fraction)
1 sign bi	it 8 bits	23 bits

- Defined by the IEEE 754-1985 standard
 - Single precision: 32 bit
 - Double precision: 64 bit
 - Correspond to float and double in C

Chapter 3.21 NLT, SoICT, 2013

Ex1: convert X into decimal value

 $X = 1100\ 0001\ 0101\ 0110\ 0000\ 0000\ 0000\ 0000$

```
sign = 1 \rightarrow X is negative

E = 1000 0010 = 130

F = 10101100...00

\rightarrow X = (-1)<sup>1</sup> x 1.101011000..00 x 2<sup>130-127</sup>

= -1.101011 x 2<sup>3</sup> = -1101.011

= -13.375
```

Chapter 3.23 NLT, SoICT, 2013

Ex2: find decimal value of X

 $X = 0011 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

sign = 0
e = 0111 1111 = 127
m = 000...0000 (23 bit 0)
$$X = (-1)^0 \times 1.00...000 \times 2^{127-127} = 1.0$$

Chapter 3.24 NLT, SoICT, 2013

Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

Converting X to plain binary

$$9_{10} = 1001_2$$

$$\rightarrow$$
 9.6875₁₀ = 1001.1011₂

Chapter 3.25 NLT, SoICT, 2013

□ Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

$$X = 9.6875_{(10)} = 1001.1011_{(2)} = 1.0011011 \times 2^{3}$$

Then
$$S = 0$$

$$e = 127 + 3 = 130_{(10)} = 1000 \ 0010_{(2)}$$

$$m = 001101100...00 \ (23 \ bit)$$

Finally

 $X = 0100\ 0001\ 0001\ 1011\ 0000\ 0000\ 0000\ 0000$

Chapter 3.26 NLT, SoICT, 2013

- \square 1.0₂ x 2⁻¹ =
- □ 100.75₁₀ =

Chapter 3.28 NLT, SoICT, 2013

Some special values

- □ Largest+: 0 11111110 1.1111111111111111111111 = $(2-2^{-23}) \times 2^{254-127}$

Chapter 3.29 NLT, SoICT, 2013

Too large or too small values

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

- One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two MIPS words

s E (exponent)	F (fraction)	
1 bit	11 bits	20 bits	
F (fraction continued)			

Chapter 3.30 NLT, SoICT, 2013

32 bits

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for the results of invalid operations such as 0/0
 - True zero is the bit string all zero

Single Precision		Double Precision		Object
E (8)	F (23)	E (11)	F (52)	Represented
0000 0000	0	0000 0000	0	true zero (0)
0000 0000	nonzero	0000 0000	nonzero	± denormalized number
0111 1111 to +127,-126	anything	01111111 to +1023,-1022	anything	± floating point number
1111 1111	+ 0	1111 1111	- 0	± infinity
1111 1111	nonzero	1111 1111	nonzero	not a number (NaN)

Chapter 3.31 NLT, SoICT, 2013

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Chapter 3.32 NLT, SoICT, 2013

Floating Point Addition Example

- □ Add: 0.5 + (-0.4375) = ? $(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$
 - Step 0: Hidden bits restored in the representation above
 - Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
 - Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
 - Step 3: Normalize the sum, checking for exponent over/underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
 - Step 4: The sum is already rounded, so we're done
 - Step 5: Rehide the hidden bit before storing

Chapter 3.34 NLT, SoICT, 2013

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 – 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift
 F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Chapter 3.35 NLT, SoICT, 2013

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1 -2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Chapter 3.37 NLT, SoICT, 2013

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operations of the ISA

```
add, addi, addiu, addu sub, subu mult, multu, div, divu B 32 and, andi, nor, or, ori, xor, xori beq, bne, slt, sltiu, sltiu
```


- With special handling for
 - sign extend addi, addiu, slti, sltiu
 - zero extend andi, ori, xori
 - overflow detection add, addi, sub

Chapter 3.42 NLT, SoICT, 2013