(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-26849 (P2003-26849A)

(43)公開日 平成15年1月29日(2003.1.29)

(51) Int.Cl.7	識別記号	F I	テーマュード(参考)
C 0 8 J 9/28	101	C08J 9/28	101 4F074
•	CFG		CFG
// CO8L 79:04		C 0 8 L 79: 04	7.

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出願番号	特顏2001-221268(P2001-221268)	(71) 出願人 000000206
(22)出顧日	平成13年7月23日(2001.7.23)	宇部興産株式会社 山口県宇部市大字小串1978番地の96
		(72)発明者 中山 喜美男 千葉県市原市五井南海岸8番の1 宇部 産株式会社高分子研究所内
		(72)発明者 浅野 之彦 千葉県市原市五井南海岸8番の1 宇部 産株式会社高分子研究所内
	•	(72)発明者 八尾 滋 千葉県市原市五井南海岸8番の1 宇部 産株式会社高分子研究所内
		最終頁に続

(54) 【発明の名称】 ポリイミド多孔質膜

(57)【要約】

【課題】 均一な空孔径かつ空孔間距離を有する多孔質 ポリイミドフィルムを提供する。

【解決手段】 両面に空孔を有し、各々の空孔が下記の

- 1)~4)の条件:
- 1)両面における平均孔径の差が、平均孔径の平均値の 小さい方の値を基準として200%より小さい。
- 2) それぞれ面での、空孔径の変動係数が70%より小
- 3) それぞれ面での、空孔間距離の変動係数が50%よ り小さい。
- 4) それぞれ面での、平均孔径が $0.05\sim5\mu$ mであ

を満足するポリイミド多孔質膜に関する。

【特許請求の範囲】

【請求項1】両面に空孔を有し、各々の空孔が下記の 1)~4)の条件:

- 1) 両面における平均孔径の差が、平均孔径の平均値の小さい方の値を基準として200%より小さい。
- 2) それぞれ面での、空孔径の変動係数が70%より小さい。
- 3) それぞれ面での、空孔間距離の変動係数が50%より小さい。
- 4) それぞれ面での、平均孔径が0. 05~5μmである。

を満足するポリイミド多孔質膜。

【請求項2】厚みが5~100μmである請求項1に記載のポリイミド多孔質膜。

【祭明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、空孔径および空孔 間距離が均一なポリイミド多孔質膜に関するものであ る。

[0002]

【従来の技術】多孔ポリイミド膜の製造方法としては、 T. Takeichi et. al. High Per formance Polymers 11巻、1p (1999)に、ポリイミド多孔膜は、ポリウレタンー イミドを合成して、その後ウレタンセグメントを300 ~400℃で熱処理により分解して、ポリイミド多孔膜 を得ることが開示されている。

【0003】また、Polymer36,1325,1995,及び Polymer 37,5229,1996には、分解しやすいαーメチルスチレンセグメントをポリイミドからなるブロック共里合体やグラフト共里合体とし、ポリイミド以外のセグメントを熱処理することにより分解する多孔性ポリイミドを得る方法が開示されている。

【0004】また、本発明者らは、特開平11-310658号公報としてフィルム断面に、貫通孔を有し且つ表面に緻密層の存在しない多孔質膜を発明した。この製造方法は、ポリイミド前駆体溶液を基板上に流延し、溶媒置換速度調整材を介して凝固溶媒に接触させることによって、上記貫通孔を有したポリイミド前駆体の多孔質膜を析出させている。

【0005】また、本発明者らによる特開2001-145826号公報には、ポリイミド前駆体に良溶媒と非溶媒の混合液をドープとして用いることを特徴とするポリイミド多孔質膜の製造方法が開示されている。

【0006】さらに、ポリイミド多孔質膜を、より簡単で、溶媒置換速度調節材などを用いず、経済的にも安価で製造可能なポリイミド膜を得ることを望まれている。また品質的に、均質なポリイミド多孔質膜を製造する方法が望まれている。しかし、均一なポリイミド多孔質膜を得ることは困難であった。

[0007]

【発明が解決しようとする課題】本発明の目的は、均一な空孔径かつ空孔間距離を有する多孔質ポリイミドフィルムを提供することにある。

【0008】本発明は、ポリイミド前駆体の液膜を流延し、固体膜を得る際、ポリイミド前駆体のドープ溶液と 凝固浴の組成勾配をできるだけ緩慢にすることによっ て、生成する空孔が品質的にはより均一な多孔膜が得ら れるという知見に基づいて、発明を完成したものであ 10 る。

[0009]

【課題を解決するための手段】本発明は、両面に空孔を 有し、各々の空孔が下記の1)~4)の条件:

- 1)両面における平均孔径の差が、平均孔径の平均値の小さい方の値を基準として200%より小さい。
- 2) それぞれ面での、空孔径の変動係数が70%より小さい。
- 3) それぞれ面での、空孔間距離の変動係数が50%より小さい。
- 20 4) それぞれ面での、平均孔径がO. O5~5μmである。

を満足するポリイミド多孔質膜に関する。

【0010】本発明のポリイミド多孔質膜は、ポリイミド前駆体ドープ溶液を流延し、凝固液に浸漬してポリイミド前駆体多孔質膜を製造するにおいて、下配のようなドープ溶液と凝固液を組成を条件を満足させるポリイミド多孔質膜の製造法によって得ることができる。

- (1) ポリイミド前駆体ドープ溶液が、ポリイミド前駆 体が 0.2~30里量%とその溶媒と非溶媒を混合した 30 混合溶媒 99.8~70里量%である。
 - (2) ドープ溶液の混合溶媒が100重量%のうち、溶 媒が50~90重量%とその非溶媒が50~10重量% である。
 - (3) 凝固液がポリイミド前駆体の非溶媒50~90里量%と溶媒50~10里量%、合計100里量%である
 - (4) ただし、ドープ溶液の溶媒の組成が、凝固液の溶 媒の組成よりも大きいこと。

【0011】前記のポリイミド多孔質膜の製造法におい 40 て、ポリイミド前駆体の溶媒が極性有機溶媒であり、非 溶媒が炭素数3~5の脂肪族アルコールであることが好 ましい。

【0012】前配のポリイミド多孔質膜の製造法において、ポリイミド前駆体多孔膜の厚みは、5~100μmであることが好ましい。

【0013】前紀のポリイミド多孔質膜の製造法において、ポリイミド前駆体多孔質膜を、加熱または化学イミド化によりポリイミド多孔質膜とすることが好ましい。

【 O O 1 4】本発明のポリイミド多孔質膜は、空孔を両の 面に有し、製造時の大気側面と基板側面と呼ぶことがあ

る。つまり、液膜を基板側面に流延する際、基板側面と 接する側の面を基板側面、基板面の反対側、つまり流延 した時、液膜が大気に接する面を大気側面と呼ぶ。この 両面の一方が固体、他方が凝固液に直接、接するという 環境条件の差によって、凝固液に浸漬されて、多孔膜が 形成されるとき、往々にしてこの両面の空孔径や空孔の 位置が一様でないことが多い。これらは電池セパレータ や精密フィルターに用いるとき透液あるいは透気性能に 不具合を生じることがある。

【0015】本発明は、該両面に空孔径の差がなくなる ことが均一な多孔質膜といえる。すなわち、1) 大気側 面と基板側面について、それぞれ面での平均孔径の差 が、平均孔径の平均値の小さい値を基準として200% より小さいものである。ここでは、平均孔径とは、大気 側面と基板側面それぞれの表面から見て、空孔の直径の 数平均値を指す。大気側面と基板側面のそれぞれの空孔 径の差が、空孔径の小さい方の面の値を基準にして、両 平均空孔値の差の割合が200%より小さいことであ る。さらに好ましくは150%より小さいことである。 200%より大きいと、両面の空孔径が異なっていて、 電池用セパレータやフィルターなどに用いた場合両側面 の空孔径の差が著しくて透液性能または透気性能が異な るから不都合である。

【0016】さらに、それぞれの面につき、空孔径が一 様なことが均一な多孔質膜である。すなわち、2)大気 側面と基板側面について、それぞれ面での、空孔径の変 動係数が70%より小さいことである。空孔径の分布の 変動係数(CV)とは、前項と同じようにして測定した 個々の空孔径値(X₁)から数平均値(X₂)に対す る、その標準偏差 (σ) の割合で表すものである (数 1)。空孔径の均一性の尺度とすることができる。さら に好ましくは空孔径の変動係数が60%である。空孔径 の変動係数が70%より大きいと空孔径のバラツキが大 きくなるからフィルターなどに用いた場合、瀘過性能に 均一性が劣るから好ましくない。

[0017]

【0018】さらに、本発明は、それぞれの面におい

 $CV (\%) = (\sigma/X_n) \times 100$ (数1) て、空孔間の距離が一様なことが均一な多孔質膜でもあ

* る。3) 大気側面と基板側面それぞれについて、空孔の 里心間距離の変動係数が50%より小さいことである。 空孔重心間距離(1,)とは、1つの空孔の重心に注目 し、その空孔から近接している空孔の重心までの距離で ある。これは空孔の位置が均一である尺度とすることが できる。空孔里心間距離の変動係数が50%より大きい と空孔位置がばらついているからフィルターやセパレー タに用いる場合、圧力の不均一の部分が起こり、場合に よっては、多孔膜がは破損することがあるから好ましく 10 ない。さらに好ましくは、空孔重心間距離の変動係数が 45%より小さいことである。この値は、前記の数1に おいて、空孔径値を重心間距離値と置き換えることによ

【0019】さらに、本発明は、それぞれの面におい て、微細な範囲の空孔径であることが重要である。すな わち、3) 大気側面と基板側面について、平均孔径が O. 05~5μmである。さらに好ましくは、O. 08 ~3 µmである。平均孔径が0.3 µより小さいと、例 えば、フィルターに用いられた場合濾過速度が劣る。ま 20 た5μmより大きいと捕集性能が劣るから上記の範囲が 好ましい。

って同様に求めることができる。

【〇〇2〇】前記ポリイミド多孔質膜の製造法を説明す る。前記のポリイミド前駆体とは、テトラカルボン酸成 分とジアミン成分の好ましくは芳香族化合物に属するモ ノマーを重合して得られたポリアミック酸或いはその部 分的にイミド化したものであり、熱処理や化学イミド化 することで閉環してポリイミド樹脂とすることができ る。ポリイミド樹脂とは、後述のイミド化率が約50% 以上の耐熱性ポリマーである。

30 【0021】テトラカルボン酸成分とジアミン成分は、 上記の有機溶媒中に大略等モル溶解、重合して、対数粘 度(30℃、濃度;0.5g/100mL NMP)が O. 3以上、特にO. 5~7であるポリイミド前駆体が 製造される。また、重合を約80℃以上の温度で行った 場合に、部分的に閉環してイミド化したポリイミド前駆 体が製造される。

【0022】ジアミンとしては、例えば、一般式(1) 又は(2)

 $H_2N-Ar(R_1)-A-Ar(R_1)-NH_2$ (1) または

$$H_2 N-Ar(R_2)-Ar(R_2)-NH_2$$
 (2)

(ただし、前配一般式において、 R_1 または R_2 は、水 素、低級アルキル、低級アルコキシなどの置換基であ y, At. O. S. CO. SO. SO. CH., C (CHa) っなどの二価の基である)で示される芳香族 ジアミン化合物が好ましい。

【0023】具体的な化合物としては、4、4'ージア ミノジフェニルエーテル(以下、DADEと略記するこ ともある)、1,4-フェニレンジアミン、(以下、P PDAと略記することもある)、3、3'ージメチルー 4, 4'ージアミノジフェニルエーテル、3, 3'ージ エトキシー4, 4'ージアミノジフェニルエーテルなど が挙げられる。

【0024】前配の一般式H2N-R-NH2で示され るジアミン成分としては、一般式 (3)

 $H_2N-(Py)-NH_2$ (3)

50 で示されるジアミノピリジンであってもよく、具体的に

は、2、6-ジアミノピリジン、3、6-ジアミノピリ ジン、2,5-ジアミノピリジン、3,4-ジアミノピ リジンなどが挙げられる。

【0025】ビフェニルテトラカルポン酸成分として は、3, 3', 4, 4' - ビフェニルテトラカルボン 酸二無水物(以下、s-BPDAと略配することもあ る)、2,3,3',4'- ピフェニルテトラカルボ ン酸二無水物(以下、a-BPDAと略配することもあ る) が好ましいが、2,3,3',4'-又は3, 3', 4, 4'-ビフェニルテトラカルボン酸、あるい は2, 3, 3', 4'-又は3, 3', 4, 4'-ピ フェニルテトラカルボン酸の塩またはそれらのエステル 化誘導体であってもよい。ビフェニルテトラカルボン酸 成分は、上記の各ビフェニルテトラカルボン酸類の混合 物であってもよい。

【0026】また、上記のビフェニルテトラカルボン酸 成分は、前述のビフェニルテトラカルボン酸類のほか に、テトラカルボン酸として、ピロメリット酸、3, 3', 4, 4'ーペンゾフェノンテトラカルボン酸、 2, 2-ビス(3, 4-ジカルボキシフェニル)プロパ ン、ビス(3,4ージカルボキシフェニル)スルホン、 ビス (3, 4ージカルボキシフェニル) エーテル、ビス (3, 4ージカルボキシフェニル) チオエーテル、ブタ ンテトラカルボン酸、あるいはそれらの酸無水物、塩ま たはエステル化誘導体などのテトラカルボン酸類を、全 テトラカルボン酸成分に対して10モル%以下、特に5 モル%以下の割合で含有してもよい。

【0027】本発明のポリイミド前駆体の溶液として は、極性有機溶媒であり、たとえば、Nーメチルピロリ ドン(NMP)、pークロロフェノール(PCP)、ピ リジン、N, Nージメチルアセトアミド(DMAc)、 N, N-ジメチルフォルムアミド (DMF)、ジメチル スルホキシド (DMSO)、テトラメチル尿素、フェノ ール、クレゾールなどが挙げられる。そのうち、NM P、DMAc、DMSOが特に好ましい。

【〇〇28】また、本発明のポリイミド前駆体の非溶媒 としては、脂肪族アルコール、ケトン、エーテル、エス テル、水等が挙げられるが、特に脂肪族アルコールが好 ましい。さらに特に好ましくは、炭素数3~8の脂肪族 アルコールである。これらはポリイミド前駆体の極性有 機溶媒と相溶性が優れているから好ましい。具体的に は、1ープロパノール、2ープロパノール、1ーブタノ ール、2ーブタノール、2ーメチルー1ープロパノー ル、tert―ブタノールなどが好ましい。炭素数2以 下のアルコール、例えばメタノール、エタノールの非溶 媒を用いると、ポリイミド前駆体溶液は直ちにポリマー を析出してしまい、均一な膜はできないことがあるから 不都合である。

【0029】本発明は、ポリイミド前駆体ドープ溶液を 流延し、凝固液に浸漬してポリイミド前駆体多孔質膜を

製造するにおいて、下記のようなドープ溶液と凝固液を 組成を条件を満足することを特徴とするポリイミド多孔 質膜の製造方法が好ましい。

【0030】本発明のポリイミド前駆体ドープ溶液が、 ポリイミド前駆体が0.2~30重量%とその溶媒と非 溶媒を混合した混合溶媒99.8~70重量%であるこ とが好ましい。さらに好ましくは1~20重量%であ る。ポリイミド前駆体の濃度がO.2重量%より小さく なると、膜強度が低下するので好ましくない。30重量 10 %より大きくなると均一なポリマー溶液になりにくいの で適当ではない。

【0031】本発明のドープ溶液は、ポリイミド前駆体 の溶媒と非溶媒からなる混合溶媒からなるものであっ て、混合溶媒が100重量%のうち、溶媒が50~70 重量%とその非溶媒が50~30重量%である。好まし くは溶媒が50~65重量%である。混合溶媒のうち溶 媒が50重量%より少なくなると、ポリイミド前駆体が 析出傾向となるし、溶媒が70重量%より多くなると均 ーな多孔膜ができにくい。

【0032】溶媒に溶解したポリイミド前駆体に、ポリ イミド前駆体の非溶媒を加えて、ポリイミド前駆体が析 出しないで、溶液状態を保っている組成とする。溶液は 肉眼で透明または半透明になることを判別の基準とする ものである。ドープの組成は、溶媒と非溶媒の割合は、 上配のような組成で、長時間保存安定な溶液となる。 【0033】ポリイミド前駆体溶液を流延して流延膜を 得る方法としては特に制限はないが、該ポリイミド前駆 体溶液を基材となるガラス板、金属板などの基板上ある いは可動式のベルト上にスプレー法あるいはドクターブ 30 レード法により流延する方法、該ポリイミド前駆体溶液 をT型ダイスから押し出す方法などの手法を用いること ができる。あるいは塗布、スピンキャスト法でもよい。 【0034】また前配流延用のドープ溶液には、界面活 性剤、難燃剤、着色剤、あるいはガラス繊維、ケイ素繊 椎、炭素繊維などの補強材が含まれてもよい。これらの 添加剤および補強材は上記ポリイミド前駆体重合溶液に 添加してもよく、あるいは流延用のドープ溶液に添加し てもよい。

【0035】その後、ドープ溶液を凝固液に浸漬する。 40 本発明の凝固液がポリイミド前駆体の非溶媒50~90 重量%と溶媒50~10重量%、合計100重量%であ ることが好ましい。さらに好ましくは非溶媒が55~9 ○里量%、溶媒が45~10重量%である。非溶媒が5 0里量%より少ないと、固体膜が生成するのに長時間を 有する。また、寸法安定性の低い膜しかできない。非溶 媒の割合が70重量%より大きいと、膜形成が急激すぎ て、均一な多孔質膜の形成ができないから上記のような 組成が好ましい。上配の組成の凝固液は、ポリイミド前 駆体のドープと組成が近いため、凝固反応は緩慢で、非

50 常に遅い速度で相分離がおこなわれるから、多孔質膜が

7

表面だけでなく、表面から深い部分にまで、ついには基 板の表面まで多孔質な膜が形成する。

【0036】ただし、ドープ溶液の溶媒の組成が、凝固液の溶媒の組成よりも大きいこと。すなわちドープ溶液と凝固液の溶媒の組成が共に50里量%になると、この組成では、それぞれの機能を果たさないことになる。凝固液の溶媒の組成が、ドープ溶液の溶媒の組成を超えるとポリイミド前駆体の液膜は、凝固液に浸漬しても固体膜として析出しないことになる。ドープ溶液と凝固液の溶媒の組成の差が少なくても10里量%以上あるのが好ましい。

【0037】得られたポリイミド前駆体多孔質膜は、構造を固定する目的で、非溶媒で洗浄する。膜に付着あるいは膨潤している部分をポリイミド前駆体の非溶媒で洗浄し、形成された構造を固定する。用いる非溶媒は、凝固液成分と同種の脂肪族アルコール、炭素数3以下の脂肪族アルコール、脂肪族ケトンまたは水などが挙げられる。

【0038】本発明のポリイミド前駆体多孔膜の厚みは、 $5\sim100\mu$ mである。好ましくは、 $5\sim90\mu$ mである。厚み 5μ mより薄いと、機械的強度が劣るから、後の工程で取り扱いが困難になる。厚みが 100μ mより厚いと、溶媒と非溶媒の浸透が十分では十分ではないうちに固体膜となってしまうから、孔は小さくなったり、孔は開かなかったりして、均一な孔径とならないことがある。

【0039】洗浄されたポリイミド前駆体膜は、ピンテンターなどに張り付ける。ポリイミド前駆体膜は、昇温されると、熱収縮により破断しないように、貼り具合を調節する。直ちに乾燥、イミド化を行う。温度50~100℃で熱風乾燥機、熱風炉などで連続又は非連続で乾燥し、その後さらに昇温して、熱イミド化を行うことができる。また化学イミド化でもいい。熱イミド化は脂肪酸無水物、芳香族酸無水物を脱水剤として用い、トリエチルアミンなどの第三級アミンを触媒としてイミド化することによる。特開平4−339835号公報のよう

空孔率(%)=100-100×(W/D)/(S×d) (2)

【0045】平均空孔径および変動係数

膜表面の孔径を走査型電子顕微鏡で観測した。孔の長径と短径を測定し、その面積を算出し、円の相当径を算出した。100個以上の孔について数平均孔径を求めた。 変動係数は(数1)のようにして求めた。大気側面と基 板側面の各々の面で測定した。

【0046】平均重心間距離および変動係数

膜表面の空孔の最近接の空孔との重心間距離を走査型電子顕微鏡写真から任意の100個を読みとった。平均重心間距離とその変動係数を算出した。大気側面と基板側面の各々の面で測定した。

【0047】突刺強度

試料を直径11.28mm、面積1cm2の円孔ホルダ

* に、イミダゾール、ベンズイミダゾールもしくはそれら の置換誘導体を用いてもよい。熱イミド化を例にとって 説明する。

【0040】乾燥されたポリイミド前駆体は、温度28 0~500℃に昇温して熱イミド化を行う。昇温は、段 階的に昇温してもよいし、一段で所定の温度に昇温され てもいい。大気中、好ましくは、不活性雰囲気中で、温 度280~500℃で時間5~240分保持すればよ い。その後、室温にまで降温して、ポリイミド多孔質膜 10 を得る。

【0041】このようにして得られるポリイミド多孔質 膜は、前記製造条件により異なるが、空孔率20~70 %、平均空孔径0.2~5μmである。さらに、大気面 と基板面の平均空孔径の差が小さい方を基準として20 0%より小さい。またそれぞれの面において空孔径の変 動係数が70%より小さいこと、また空孔里心間の距離 の変動係数が50%より小さいといった均一な多孔質膜 を得ることができる。

【0042】該ポリイミド多孔質膜は、1層または2層 20 以上組み合わせて用いてもよい。2層以上組み合わせる ことにより、用途によっては補強用として、あるいは、 厚物に用いることができる。また、他の材料、他のポリ マーフィルム、繊維、無機物と組み合わせて用いてもよい。

[0043]

【実施例】以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例における試験・評価方法は次に示す、とおりである。

30 【0044】空孔率

所定の大きさに切取った多孔質フィルムの膜厚及び重量を測定し、目付重量から空孔率を次の式(2)によって求めた。式(1)のSは多孔質フィルムの面積、dは膜厚、Wは測定した重量、Dはポリイミドの密度を意味し、ポリイミドの密度は1.34g/cm³とした。

ーに固定し、先端形状が0.5R、直径1mmφのニードルを2mm/secの速度で下降させ突刺し、貫通荷40 重を測定した。

【0048】平滑性

多孔膜の平滑性を目視で定性的に評価した。

○;表面が平滑であった。 △;表面が少し凹凸があった。

×;かなり凸凹が見られた。

【0049】実施例1

10

O℃、6時間重合を行ってポリイミド前駆体溶液を得た。ポリイミド前駆体溶液に1ーブタノールを添加し、前記ポリイミド前駆体が14里量%、混合溶媒が86里量%、混合溶液のうちNPが66.3里量%(ドープ溶液中57里量%)、1ーブタノールが33.7里量%(ドープ溶液中29里量%)であるドープ溶液を調製し、ドープ液をガラス板に厚みが約150μmとなるように流延し、引き続いて室温に保った1ーブタノール6.7里量%とNMP33.3里量%の凝固液に15分浸漬してポリイミド前駆体膜を得た。メタノールで、次いで水で洗浄し、温度100℃で乾燥して、ポリイミド前駆体膜を得た。ポリイミド前駆体膜を張り、温度400℃の熱風乾燥機に入れ、40分間熱イミド化をおこなった。かくしてポリイミド多孔質膜を得た。

【0050】得られたポリイミド多孔質膜は膜厚は50 μm、空孔率は65%であった。走査型顕微鏡で観察すると、大気面側は平均孔径0.09μm、変動係数は38.6%、基板側面は平均孔径0.18μm、変動係数は52.1%であった。大気側面の空孔の平均里心間距離0.33μm、変動係数36.9%、基板側面の空孔の平均里心間距離0.36μm、変動係数は25.0%であった。大気側面と基板側面の平均孔径の差の割合は大気側面の値を基準として100%であった。両側面とも平滑で、均一な多孔膜を呈していた。膜の大気側面および基板側面の走査型電子顕微鏡の写真を図1、2に示す。結果をまとめて表1、表2に示す。

【0051】比較例1

凝固液を1ープタノール1・00重量%としたほかは、実施例1と同様にしてポリイミド多孔質膜を得た。膜厚は51μm、空孔率71%、大気面側平均空孔径は0.06μm、基板側平均空孔径0.53μmであった。大気面側と基板側の空孔径が、大気側空孔径を基準として798%と両面の差が大きかった。膜の大気側面および基板側面の走査型電子顕微鏡の写真を図3、4に示す。結果をまとめて表1、表2に示す。

【0052】実施例2

テトラカルボン酸成分としてs-BPDAを、ジアミン成分としてPPDAを用い、s-BPDAに対するPPDAのモル比が0.994で且つ該モノマー成分の合計 里量が8里量%になるようにNMPに溶解し、温度40℃、6時間里合を行ってポリイミド前駆体溶液を得た。【0053】前記ポリイミド前駆体溶液の溶媒NAPが61.7里量%に対して、非溶媒1ープロパノール38.3里量%になるように徐々に撹拌しながら添加し、ドープ溶液とした。ドープ溶液組成はポリイミド前駆体4.9重量%、混合溶媒95.1里量%であった。

【0054】前記ポリイミド前駆体ドープ溶液をガラス 板上に厚みが30μmになるようにドクターブレードで ガラス板に流延した。その後、ポリイミド前駆体の非溶 媒である1ープロパノール80重量%、溶媒であるNMP20重量%に調製した凝固液に浸漬した。浸漬すると液膜は1~2秒で白濁し、固体膜がが形成された。そのほかは実施例1と同様にしてポリイミド膜を得た。

【0055】得られたポリイミド多孔質膜は膜厚は13μm、空孔率は51%であった。走査型顕微鏡で観察すると、大気面側は平均孔径0.48μm、変動係数は32.7%、基板側面は平均孔径0.76μm、変動係数は58.3%であった。大気側面の空孔の平均重心間距10 離0.53μm、変動係数24.6%、基板側面の空孔の平均重心間距離0.90μm、変動係数は39.8%であった。大気側面と基板側面の平均孔径の差の割合は大気側面の値を基準として58%であった。両側面とも平滑で、均一な多孔膜を呈していた。結果をまとめて表1、表2に示す。

【0056】実施例3

(6)

ジアミン成分をDADE、非溶媒を2ープロパノールにし、ドープ溶液のポリイミド前駆体の濃度を6.3里量%、混合溶媒93.7里量%、ドープ混合溶媒の組成を20 溶媒62.5里量%、非溶媒37.5里量%、また凝固液の非溶媒を66.7里量%、溶媒を33.3里量%にしたほかは実施例2と同様にしてポリイミド多孔質膜を得た。

【0057】得られたポリイミド多孔質膜は、膜厚15 μ、空孔率は41%、大気側面の平均空孔径は0.73 μm、変動係数は35.3%、基板側面は平均孔径1. 33μm、変動係数は47.8%であった。大気側面の 空孔の平均重心間距離1.94μm、変動係数38.6 %、基板側面の空孔の平均重心間距離2.71μm、変 動係数は38.1%であった。大気面と基板側面の平均 孔径の差は、大気側面の値を基準として82%であった。両側面とも平滑で、均一な多孔質膜を呈していた。 結果をまとめて表1、表2に示す。

【0058】実施例4

ジアミン成分をDADE、溶媒をDMAC、非溶媒を2 ープロパノールにし、ドープ溶液のポリイミド前駆体の 濃度を5.9重量%、混合溶媒94.1重量%、ドープ 混合溶媒の組成を溶媒58.8重量%、非溶媒41.2 重量%、また凝固液の非溶媒を83.3重量%、溶媒を 40 16.7重量%にしたほかは実施例2と同様にしてポリ イミド多孔質膜を得た。

【0059】得られたポリイミド多孔質膜は、膜厚14 μ、空孔率は47%、大気側面の平均空孔径は0.67 μm、変動係数は46.4%、基板側面は平均孔径1. 41μm、変動係数は30.4%であった。大気側面の 空孔の平均重心間距離1.13μm、変動係数35.3 %、基板側面の空孔の平均重心間距離3.83μm、変 動係数は31.0%であった。大気側面と基板側面の平 均孔径の差は、大気側面の値を基準として110%であ った。両側面とも平滑で、均一な多孔膜を呈していた。

12

11

結果をまとめて表1、表2に示あう。

【0060】比較例2

ドープ溶液の組成をポリイミド前駆体が6.4里量%、ドープ混合溶媒が93.6里量%、混合溶媒の溶媒が80里量%、非溶媒が20.0里量%、それから凝固液の非溶媒95里量%、溶媒5里量%としたほかは、実施例2と同様にしてポリイミド多孔質膜を得た。

【0061】得られたポリイミド多孔質膜は、膜厚24 μ 、空孔率は53%、大気側面の平均空孔径は0.54 μ m、変動係数は36.0%、基板側面は平均孔径0.47 μ m、変動係数は98.2%であった。基板側面の平均空孔径にバラツキが大きかった。また、基板側面の重心間距離の変動係数が51.2%とバラツキが大きかった。結果をまとめて表 1、表 2 に示す。

【0062】比較例3

凝固液の組成を非溶媒45重量%、溶媒55重量%としたほかは、実施例2と同様にポリイミド膜を製造した。

* ポリイミド前駆体を流延後、凝固液に浸漬してから、1 5分後経ってようやくゲル状の固体膜が析出してきた。 ゲル状の膜をメタノールを洗浄した。生成した膜は凸凹 で平滑性がなかった。基板側面の平均空孔径、両側面の 空孔重心間距離のバラツキが大きかった。他の特性の結 果を表2に示す。

【0063】比較例4

ドープ溶液の混合溶媒組成を溶媒45里量%、非溶媒55里量%として実施例1と同じようにポリイミド前駆体 7額液を調製した。けれどドープ溶液からポリマーが析出してきたので、膜製造は中止した。

【0064】比較例5

非溶媒をメタノールとしたほかは、実施例 1 と同様にポリイミド膜を得た。得られたポリイミド膜は、両側面とも緻密膜であって、空孔は見られなかった。

[0065]

* 【表 1 】

		ピープ溶液組成								
	PAA種	溶媒/非剂 PAA		混合溶丝	混合溶媒體 成	96	歩 溶 臓	路越		
			96	%	溶媒	非溶媒				
赛 施 例 1	BPDA/DAD E	NMP/18	14	86.0	66.3	33.7	86.7	33.		
美施例2	BPDA/PDD A	NMP/IP	4.9	95.1	61.7	38.3	80.0	20.0		
実施例3	BPDA/DAD E	NMP/2P	6.3	93.8	62.5	37.5	66.7	33.2		
海施例4	8PDA/DAD	DMAc/2P	5.9	94.1	58.8	41.2	83.3	16.		
比較例1	BPDA/DAD E	NMP/IB	14	0.88	66.3	83.7	100	-		
比較例2	BPDA/PDD A	NMP/IP	0.4	93.6	80.0	20.0	95.0	5.0		
比較例3	BPDA/PDD A	NMP/IP	4.9	95.1	61.7	38.3	45.0	55.0		
比較例4	8PDA/PDD A	NMP/IP	4.9	95.1	45.0	55.0	_	_		
比較例5	BPDA/PDD	NMP/M	4.9	95.1	63.7	38.7	80.0	20.0		

NMP; N-4 $\ne N$ \vdash P \vdash

ール

[0066]

【表2】

				•			請排造				重心問題註(μm)		平均
	摩	空平	Æ	実 刺 強	平性	滑			平均	實 勤 係 数	平均	麦勒保 数	空界便
	μm	96		g			大	70. BO	大気面	大気菌	大気面	大気面	(%)
		L			L_		3	医酶	基核质	基板西	基板間	基板图]
実 悠 例 1	50		65	65		0	L	凡質		38.6	0.33	38.9	100
					L			fl 🍂		52.1	0.36	25.0	
実施例2	13		51	53		0		R K		32.7	0.63	24.8	68
			_		_			R. 🗮	0.76			39.8	Ì
実施例8	15		41	70		0		A. M	0.73	35.3	1.94	38.6	82
			_		L			儿女	1.35			38.1	<u> </u>
实 核 例 4	14		47	64		0		r. M	0.67	46.4	1.19	35.3	110
					Щ			LH		30.4	3.83	\$1.0	1
比較例(51		71	49		0		凡致			0.32		798
								R. N	0.53		0.87	35.8	
比較例2	24		53	44	l	×		LY	0.54	36.0			15
					_			A. X	0.47	98.2	0.63	51.2	
比较例3	17		45	63		×		L質	1.25	45.8	2.15	87.9	20
			_		<u> </u>			LM	1.50	88.5	4.08	64.1	
比較例4	-	_			L		烕	4					
							3")	ŧ	-		•		
比较例5	12		1	230				PA	0	_	00	-	
1							1 1	7 11	0		×	_	

(8)

[0067]

【発明の効果】本発明は、大気面と基板面が空孔径の差が小さく、空孔径および空孔重心間距離が均一なポリイミド多孔膜の製造に関するものである。本発明は、ポリイミド前駆体溶液に、ポリイミド前駆体の溶媒と非溶媒からなる特定の組成のドープ溶液を、流延し、非溶媒と溶媒からなる特定の組成からなる凝固液に浸漬することを特徴としたポリイミド多孔膜の製造方法を提供するものである。該ポリイミド多孔質膜は、両面が透液性が均一であり、電池用セパレータおよび燃料電池用用部品などに提供することができる。

【図面の簡単な説明】

20 【図1】図1は、本発明の実施例1で得られたポリイミ ド多孔質膜の大気側面の表面を示す電子顕微鏡写真である。

【図2】図2は、本発明の実施例1で得られたポリイミ ド多孔質膜の基板側面の表面を示す電子顕微鏡写真であ ス

【図3】図3は、本発明の比較例1で得られたポリイミド多孔質膜の大気側面の表面を示す電子顕微鏡写真であっ

【図4】図4は、本発明の比較例1で得られたポリイミ 30 ド多孔質膜の基板側面の表面を示す電子顕微鏡写真であ る。

【図1】

【図3】

【図4】

フロントページの続き

(72)発明者 福永 謙二 千葉県市原市五井南海岸8番の1 宇部興 産株式会社高分子研究所内

F ターム(参考) 4F074 AA74 AD04 AD13 AD14 CB34 CB37 CB43 DA03 DA23