

Graph Laplacians

Definition:

Let G be a graph. Let i be a vertex of G, the degree of i is the number of edges incident to vertex i, it is denoted d_i

Graph Laplacians

Definition:

Let $D_G \in \mathbb{R}^{n \times n}$ be the diagonal matrix whose i^{th} diagonal entry is d_i .

Recall the adjacency matrix $A_G = (a_{ij}) \in \mathbb{R}^{n \times n}$ is defined by:

$$a_{ij} = \begin{cases} 1, & \text{if } [i,j] \text{ is an edge in G} \\ 0, & \text{if not} \end{cases}$$

Definition:

The Laplacian of G is:

$$L_G = D_G - A_G = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix}$$

Graph Laplacians

Facts:

- L_G is PSD (Positive Semi-Definite).
- $\lambda = 0$ is always an eigenvalue of L_G with eigenvector $\vec{1}$.

$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Every row of \bar{L}_G sums to 0 by construction.

$$L_{G}\vec{1} = \begin{pmatrix} \text{sum of row 1} \\ \dots \\ \dots \\ \text{sum of row n} \end{pmatrix} = \vec{0}$$

Why is L_G PSD?

We will show that $L_G = B^T B$ for some matrix B.

Positive Semi-Definite Characterization

Definition:

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite, denoted $A \ge 0$, if any of the following equivalent conditions hold:

- ① $\vec{x}^T A \vec{x} \ge 0$, $\forall \vec{x} \in \mathbb{R}^n$. (the graph of $g_A(\vec{x}) = \vec{x}^T A \vec{x}$ is on or above the domain, \mathbb{R}^n).
- All eigenvalues of A are non-negative.
- **3** There exists some amtrix B s.t. A = BTB.
- 4 All principal minors of A are non-negative.

Define BG

Define the matrix B_G , the "directed" node-edge incidence matrix of G.

pick a direction for each edge rows indexed by nodes columns indexed by edges of G

$$B_G = \begin{bmatrix} 12 & 14 & 23 & 24 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 0 & 1 & 1 \\ 3 & 0 & 0 & -1 & 0 \\ 4 & 0 & -1 & 0 & -1 \end{bmatrix}$$

In the column indexed by the directed edge ij, we put 1 in row i and -1 in row j.

$$L_G = B^T B$$

Define BG

$$L_G = B_G \cdot B_G^T$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix}$$

If you get i^{th} row and i^{th} column, 1^2 or $(-1)^2$ for every edge incident to i. So the sum d_i .

 i^{th} row and j^{th} column (if $i \neq j$) if ij is on edge, you will get 1(-1) = -1 Therefore, L_G is PSD.

Lemma

Lemma:

If G is a graph, the Laplacian L_G is PSD and its eigenvalues are:

$$0 = \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots \le \lambda_n$$

and $\vec{1}$ is an eigenvector of L_G with eigenvalue 0. Since L_G is PSD, the $\vec{x}^T L_G \vec{x} \geq 0$, $\forall \vec{x} \in \mathbb{R}^n$

Lemma

PwP:

Let G = ([n], E) be the graph with vertices [n] and edge set E. If $\vec{x} = (x_1, \dots, x_n)^T$.

$$\vec{x}^T L_G \vec{x} = \sum_{\{i,j\} \in E} (x_i - x_j)^2$$

Proof

We know that $L_G = B_G B_G^T$. So $\vec{x}^T L_G \vec{x} = \vec{x}^T B_G B_G^T \vec{x}$.

Lets understand $\vec{x}^T B_G$.

So the entries of $\vec{x}^T B_G$ are all $x_i - x_j$ when ij is an edge of G.

Lemma

PwP:

So
$$\vec{x}^T L_G \vec{x} = (\vec{x}^T B_G) \cdot (B_G^T \vec{x}) = \sum_{\{i,j\} \in E} (x_i - x_j)^2$$
.

Do this for the example:

Connectivity

Definition:

A Graph is conencted if there is a way to walk from any vertex to any other vertex along the edges of G.

Theorem:

G is connected if and only if $\lambda_2 > 0$.

Proof:

If G is not connected the Graph Laplacian will look like this:

Connectivity

We sort of proved if G is not connected, then $\lambda_2=0$. (if G has k components, $\lambda_1=\lambda_2=\cdots\lambda_4=0$)

We still need t show that if G is connected, $\lambda_2 > 0$.

For a symmetric matrix, $AM(\lambda) = GM(\lambda)$ for an eigenvalues.

So we need to show GM(0)=1. Let \vec{u} be an eigenvector with eigenvalue of 0. Then $L_G\vec{u}=\vec{0}$.

$$0 = \vec{u}^T L_G \vec{u} = \sum_{\{i,j\} \in E} (u_i - u_j)^2$$

If $u_1=C$ and 1,k is an edge, the $u_k=c$. for all edge $ij\in E$. Similarly if kj is an edge $u_j=c$. Since G is connected $\vec{u}=c\vec{1}$. AM, algebraic multiplicity.

GM, geometric multiplicity.

Conclusion

Slight Generalization:

The number of times 0 is on eigenvalue of L_G counts the number of conencted components of G.

Fact:

The second eigenvalue λ_2 is called the spectra gap or the Fiedler value of G.

Testing Latex stuff

$$\alpha = \begin{pmatrix} \bar{f}_1 & \bar{f}_2 & \bar{f}_3 \\ k_1 & 0 & 0 & 1 \\ k_2 & 1 & 0 & 0 \\ k_3 & 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix}$$

Testing Latex stuff

$$\beta = \begin{cases} f_1 & \bar{f_2} & \bar{f_3} \\ f_1 & 3 & 2 & 0 \\ 2 & 4 & 2 \\ 5 & 3 & 1 \end{cases}$$

$$C_1 \quad C_2 \quad \dots \quad C_n$$

$$N_1 \quad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\bar{f_1} \quad \bar{f_2} \quad \dots \quad \bar{f_n}$$

$$k_1 \quad \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = 1$$