PMAP 8131 Applied Research Methods II

Matteo Zullo

Georgia State University & Georgia Institute of Technology

June 6, 2022

Outline

- Instrumental variables
- 2 Latent variables
- Reliability & validity

Introduction

- Instrumental variable
 - Proxy for unobserved feature at <u>same</u> semantic level of observed feature
- Latent variable
 - Proxy for unobserved feature at <u>deeper</u> semantic level of observed feature(s)

Table of Contents

- Instrumental variables
- 2 Latent variables
- Reliability & validity

Instrumental variables: Examples

- Social capital
 - Blood donations (Guiso et al., 2004)
- Intrinsic motivation
 - CEO time in insider meetings (Bandiera et al., 2020)
- Athletic participation
 - Height (Eide & Ronan, 2001)

Instrumental variables: Why?

- Feature is omitted or unmeasured
 - E.g., Census surveys do not "measure" social capital
- Self-declared measure is biased
 - E.g., CEOs surveys overstate intrinsic motivation
- Feature affects outcome through spurious pathways
 - E.g., Sports participation "badly" predicts test scores

Instrumental variables: How does it look like?

Figure: Effect of athletic participation on SAT test scores

Two-Stage Least Squares (2SLS)

- 1st stage: Model confounded regressor using instrument
- 2nd stage: Re-model outcome using first-stage proxy

Two-Stage Least Squares (2SLS)

Latent model

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \lambda_i + \epsilon_i$$

Empirical model

$$Y_i = \beta_0 + \beta_{1LS} X_i + \epsilon_i$$

Two-Stage Least Squares (2SLS)

Latent model

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \lambda_i + \epsilon_i$$

Empirical model

$$Y_i = \beta_0 + \beta_{1LS} X_i + \epsilon_i$$

- Omitted variable bias: λ_i unobserved and not included
 - Because $\rho(X_i, \lambda_i) \neq 0$, β_{1LS} is biased and inconsistent
 - To prevent, instrument X_i with Z_i , where $\rho(Z_i, \lambda_i) = 0$

Two-Stage Least Squares (2SLS)

• 1S: Model "true values" of X_i as function of instrument

$$\mathbf{X_i} = \delta_0 + \delta_1 Z_i + \nu_i$$

• Note: Z_i must be independent of λ_i and ν_i !

Two-Stage Least Squares (2SLS)

• 1S: Model "true values" of X_i as function of instrument

$$\mathbf{X_i} = \delta_0 + \delta_1 Z_i + \nu_i$$

- Note: Z_i must be independent of λ_i and ν_i !
- 2S: Substitute $X_i = \hat{X}_i + \nu_i$ and rewrite

$$Y_{i} = \beta_{0} + \beta_{2SLS}(\hat{\mathbf{X}}_{i} + \nu_{i}) + \epsilon_{i}$$

$$Y_{i} = \beta_{0} + \beta_{2SLS}\hat{\mathbf{X}}_{i} + (\beta_{2SLS}\nu_{i} + \epsilon_{i})$$

$$Y_{i} = \beta_{0} + \beta_{2SLS}\hat{\mathbf{X}}_{i} + \epsilon_{i}^{*}$$

2SLS example: Grades and athletics (Eide & Ronan, 2001)

Latent model

$$Grade_i = \beta_0 + \beta_1 \mathbf{Sports_i} + \beta_2 Motivation_i + \epsilon_i$$

2SLS model

$$Sports_{i} = \delta_{0} + \delta_{1} Height_{i} + \nu_{i}$$
 (1)

$$Grade_{i} = \beta_{0} + \beta_{2SLS}(\mathbf{Sports_{i}} + \nu_{i}) + \epsilon_{i}$$

$$= \beta_{0} + \beta_{2SLS}\mathbf{Sports_{i}} + (\beta_{2SLS}\nu_{i} + \epsilon_{i})$$

$$= \beta_{0} + \beta_{2SLS}\mathbf{Sports_{i}} + \epsilon_{i}^{*}$$
(2)

Table of Contents

- 1 Instrumental variables
- 2 Latent variables
- Reliability & validity

Latent variables: Examples

- Intelligence
- Motivation
- Agreeableness

Latent variables: Algorithms

- Principal Component Analysis (PCA)
- Factor analysis (FA)
- Item-Response Theory (IRT)

Principal Component Analysis (PCA)

- Algorithm
 - Find **M linear combinations** of features X(1, ..., K)
 - Decorrelate any adjacent dimensions (Y_m, Y_{m+1})
 - Maximize variance of each dimension $Var(Y_m)$

$$Y_{1} = \sum_{k=1}^{K} W_{1k} X_{k}$$

$$Y_{m} = \dots$$

$$Y_{M} = \sum_{k=1}^{K} W_{Mk} X_{k}$$

Principal Component Analysis (PCA)

- Selecting PCs: Eigenvalue rule
 - ullet Retain all principal components having eigenvalue >1
- Performing PCA
 - Standardize input features before performing PCA
 - Assume linear relationship between input features
 - Remove outliers in the input data

Factor Analysis (FA)

FA of O*NET skill codes (Zullo et al., 2022)

code	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10
10	72.5	75.1	78.5	53.8	54.7	78.2	74.5	19.8	79.3	70.6
20	58.7	68.5	66.7	48.8	34.9	68.5	66.7	19.8	68.5	56.0
100	51.4	68.5	64.0	48.8	30.9	56.8	68.5	0.0	66.0	63.3
110	58.1	68.5	70.3	54.1	50.0	68.7	68.5	19.1	66.0	64.6

Figure: Skills codes for Census occupations

Figure: Factor loadings on "manual" factor

Item Response Theory (IRT)

- Used to score examinees on a test
- Items are dichotomous (0,1) or polytomous (0,1,2,...)
- Widely used in psychometrics (SAT, Minnesota, etc.)

ST012	How many of these are there at your home?										
	(Please select one response in each row.)										
		None	One	Two	Three or more						
ST012Q01TA	Televisions		\square_2	□3	□4						
ST012Q02TA	Cars	\square_1	\square_2	\square_3	\square_4						
ST012Q03TA	Rooms with a bath or shower		\square_2	\square_3	□4						
ST012Q05NA	<cell phones=""> with Internet access (e.g. smartphones)</cell>		\square_2	□3	□4						

Figure: PISA 2018 questionnaire (Avvisati, 2020)

Item Response Theory (IRT)

• 3PL (Three parameter Logistic) model

$$P(Y_{ik} = 1 | \theta_i, a_k, b_k) = c(1 - c) \frac{e^{Da_k(\theta_i - b_k)}}{1 + e^{Da_k(\theta_i - b_k)}}$$

- where:
 - $\theta_s = \text{ability parameter of individual } i$
 - $a_k = \underline{\text{discrimination}}$ parameter of item k
 - $b_k = \text{difficulty parameter of item } k$
 - $D = \overline{\text{scaling factor}}$

- IRT vs Classical Test Theory: No "ground truth" score
 - Item-dependent scores, sample-dependent item statistics

Figure: IR-curves with different discrimination (L) and ability (R) (Osterlind, 1983)

Putting it all together: PISA's ESCS index

- ESCS: Index of Economic, Social and Cultural Status
 - Weighted average of latent dimensions

$$ESCS = \lambda_1 HISEI + \lambda_2 PARED + \lambda_3 HOMEPOS$$

ST012	How many of these are there at ye	our home?	One Two Three or $more$ \square_2 \square_3 \square_4						
	(Please select one response in each row	r.)							
		None	One	Two	2				
ST012Q01TA	Televisions		\square_2	\square_3	\square_4				
ST012Q02TA	Cars	\square_1	\square_2	\square_3	\square_4				
ST012Q03TA	Rooms with a bath or shower		\square_2	\square_3	□4				
ST012Q05NA	<cell phones=""> with Internet access (e.g. smartphones)</cell>		\square_2	□3	\Box_4				

Figure: PISA 2018 questionnaire (Avvisati, 2020)

- ESCS index: Latent dimensions scores (IRT)
 - Highest Parents' Occupation (HISEI): Continuous
 - Numeric codes proxying for occupational status
 - Highest Parental Education (PARED): Categorical
 - None, primary, lower secondary, upper secondary, non-tertiary post-secondary, vocational tertiary, tertiary
 - Home Possessions (HOMEPOS): Numeric
 - Summary index from background items
- ESCS index: Weights (PCA)
 - $(\lambda_1, \lambda_2, \lambda_3)$ are loadings on the first principal component from PCA of input features *HISEI*, *PARED*, *HOMEPOS*

Table of Contents

- 1 Instrumental variables
- 2 Latent variables
- Reliability & validity

Reliability

- Test-retest reliability: Correlation across time
 - Pearson's correlation (ρ)
- Internal consistency: Correlation across items
 - Cronbach's alpha (α)

Validity

- Face validity
 - Items are valid at face value
- Content validity
 - Items comprehensively cover latent construct
- Convergent validity
 - Instrument positive correlation with similar instruments
- Discriminant validity
 - Negative correlation with dissimilar instruments

Validity

- Face validity
 - Self-reports
- Content validity
 - Items comprehensively cover latent construct
- Convergent validity
 - Instrument positive correlation with similar instruments
- Discriminant validity
 - Negative correlation with dissimilar instruments

Face validity

- Beware self-reports: Eliciting biased responses!
 - E.g., "Are you satisfied with your relationships?" worse proxy than "How many closed friends do you have?"

Reliability

Cronbach's alpha

$$\alpha = \frac{N}{N-1} \left(1 - \frac{\sum_{i=1}^{N} \sigma_i^2}{\sigma^2} \right)$$

- where:
 - N = number of items
 - σ_i^2 = variance of scores on item i
 - σ^2 = variance of scores on all times

Cronbach's example: Rosenberg's Self-Esteem Scale (SES)

- Measuring positive and negative self-beliefs
- Using Likert scale (0-3)
 - Strongly disagree (SD), Disagree (D), Agree (A),
 Strongly Agree (SA)
- Achieving often very high Cronbach's alpha (0.75+)

#	R*	Question	SD	D	Α	SA
11	0	On the whole, I am satisfied with myself	0	1	2	3
12	1	At times, I think I am no good at all	3	2	1	0
13	0	I feel that I have a number of good qualities	0	1	2	3
14	0	I am able to do things as well as most other people	0	1	2	3
15	1	I feel I do not have much to be proud of	3	2	1	0
16	1	I certainly feel useless at times	3	2	1	0
17	0	I feel I'm a person of worth, at least equally to others	0	1	2	3
18	1	I wish I could have more respect for myself	3	2	1	0
19	1	All in all, I am inclined to think that I am a failure	3	2	1	0
110	0	I take a positive attitude towards myself	0	1	2	3

Table: Scoring system for Rosenberg's SES; *(R = 1 if reverse-coded item)

Sample responses

Subject	I1	12	13	14	15	16	17	18	19	I10	Score
1	1	1	2	2	1	1	1	2	1	1	13
2	2	2	3	2	2	1	2	2	2	2	20
3	0	0	1	0	1	1	0	1	0	0	4
4	0	0	1	1	0	0	1	1	0	0	4
5	2	3	2	3	3	2	3	2	2	1	23
Var _i	1	1.7	0.7	1.3	1.3	0.5	1.3	0.3	1	0.7	77.7

Sample responses

Subject	I1	12	13	14	15	16	17	18	19	I10	Score
1	1	1	2	2	1	1	1	2	1	1	13
2	2	2	3	2	2	1	2	2	2	2	20
3	0	0	1	0	1	1	0	1	0	0	4
4	0	0	1	1	0	0	1	1	0	0	4
5	2	3	2	3	3	2	3	2	2	1	23
Var _i	1	1.7	0.7	1.3	1.3	0.5	1.3	0.3	1	0.7	77.7

Cronbach's alpha calculations

•
$$N = 10$$
, $\sum_{i=1}^{N} \sigma_i^2 = 1 + \ldots + 0.7 = 9.8$, $\sigma^2 = 77.7$

• Hence, Cronbach's alpha:
$$\alpha = \frac{10}{10-1}(1 - \frac{9.8}{77.7}) = 0.971$$

