Отчет о выполне	нии индивидуального задания по теме
«Повышение контраст	а и отбор признаков в машинном обучении»
Студента(-ки) группы	<u>09-813</u>
	Махмутов Ринат

Исходные изображения (каталог DATA) преобразовать с помощью какоголибо алгоритма повышения контраста. Для вновь полученного набора изображений провести исследование качества классификации в соответствии с работой «Работа 1 Классификация». Сделать выводы об улучшении (или ухудшении) результатов классификации.

Текст программы по улучшению контраста в соответствии с алгоритмом CLAHE.

```
%Преобразование изображений в выбранном
%каталоге для повышения контраста
% получаем директорию
myDir1 = uigetdir;
% только изображения .bmp
myFiles1 = dir(fullfile(myDir1, '*.bmp'));
% Пробегаемся по всем изображениям и повышаем контраст в
соответствии с
% выбранным алгоритмом
for k = 1:length(myFiles1)
baseFileName1 = myFiles1(k).name; % имена файлов
% добавляем полный путь к имени файла
fullFileName1 = fullfile(myDir1, baseFileName1);
L1=imread(fullFileName1);
L0 = L1 (:, :, 1);
%Преобразование изображения в соответствии с алгоритмом СLAHE
L2 = adapthisteg(L0, 'clipLimit', 0.1, 'Distribution',
'rayleigh', 'Alpha', 0.2);
% Запись преобразованного изображения в каталоге программы
imwrite(L2,string(k)+'NEW.bmp');
end
```

Строим таблицу для моделей (как в задании «Классификация») Делаем вывод, удалось ли улучшить результаты классификации.

При выполнении задания «Классификация» была получена матрица признаков, записанная в файл 'маhmutov all.xlsx' (размер 142 113)

Для извлечения наиболее значимых признаков используем программу probe otbor all.

Программа формирует набор признаков в соответствии с алгоритмами relieff, fscnca, fscmrmr, Lasso.

Программа формирует новую матрицу признаков, которую записывается в файл 'Mahmutov all NEW.xlsx'.

Текст программы

```
A = xlsread('Mahmutov_all.xlsx');
[rows_A , cols_A] = size(A);
for i = 1:rows A
   Y(i) = A (i,cols_A);
    for j = 1:cols_A-1
    X(i,j)=A(i,j);
    end
end
Y = Y';
% х матрица признаков
% У ВЕКТОР ОТКЛИКОВ
X = normalize(X);
% отбор признаков алгоритмом relieff
[idxr,weights] = relieff(X,Y,5);
c = cvpartition(Y,'k',4);
opts = statset('Display','iter');
fun = @(XT,YT,Xt,Yt)loss(fitcecoc(XT,YT),Xt,Yt);
[fs,history] = sequentialfs(fun,X,Y,'cv',c,'options',opts);
R_fs = size(fs, 2);
kr = 1;
for i = 1:R fs
    if fs (1,i) == 1
    I fs(kr) = i;
    kr = kr+1;
    end
%Вектор отобранных признаков
I_fs
% отбор признаков алгоритмом fscnca
mdl = fscnca(X,Y);
kf = 1;
I md = mdl.FeatureWeights;
for i = 1:R fs
    if I md (i,1) > 0.5
```

```
I_mdl(kf) = i;
    kf = kf+1;
    end
end
%Вектор отобранных признаков
% отбор признаков алгоритмом fscmrmr
[idx,scores] = fscmrmr(X,Y);
ks = 1;
for i = 1:R_fs
    if scores (1,i) > 0.25
    I_sc(ks) = i;
    ks = ks+1;
    end
end
%Вектор отобранных признаков
I_sc
% отбор признаков алгоритмом Lasso
[B Stats] = lasso(X,Y, CV', 5);
NS = Stats.Index1SE;
kL = 1;
for i = 1:R_fs
    if abs(B (i,NS)) > 0
    I_L(kL) = i;
    kL = kL+1;
    end
end
%Вектор отобранных признаков
I_all = horzcat(I_fs,I_mdl,I_sc,I_L);
B = I_all;
C = unique(B); % записываем отличающиеся числа из В
X = normalize(X);
[rows_C , cols_C] = size(C);
[rows_X , cols_X] = size(X);
for i = 1:rows_X
    for j = 1:cols_C
    Xnew(i,j)=X(i,C(j));
    Xnew(i,cols_C+1) = Y (i);
    end
end
filename = 'Mahmutov_all_NEW.xlsx';
xlswrite(filename, Xnew);
```


Повышение контрастности

Результаты классификации для К = 3.

K=4

▼ Models	C
Sort by: Accuracy (Validation) ▼ ↓ ↑	a
1.22 Ensemble	Accuracy (Validation): 89.4%
Last change: Bagged Trees	112/112 features
1.29 Neural Network	Accuracy (Validation): 86.5%
Last change: Bilayered Neural Network	112/112 features
☆ 1.11 SVM	Accuracy (Validation): 85.8%
Last change: Cubic SVM	112/112 features
☆ 1.9 SVM	Accuracy (Validation): 85.1%
Last change: Linear SVM	112/112 features
1.30 Neural Network	Accuracy (Validation): 84.4%
Last change: Trilayered Neural Network	112/112 features
(A) 1.12 SVM	Accuracy (Validation): 83.7%
Last change: Fine Gaussian SVM	112/112 features
↑ 1.20 KNN	Accuracy (Validation): 83.7%
Last change: Weighted KNN	112/112 features
△ 1.10 SVM	Accuracy (Validation): 83.0%
Last change: Quadratic SVM	112/112 features
↑ 1.13 SVM	Accuracy (Validation): 83.0%
Last change: Medium Gaussian SVM	112/112 features
1.27 Neural Network	Accuracy (Validation): 80.9%
Last change: Medium Neural Network	112/112 features
1.28 Neural Network	Accuracy (Validation): 80.9%
Last change: Wide Neural Network	112/112 features
1.26 Neural Network	Accuracy (Validation): 80.1%
Last change: Narrow Neural Network	112/112 features
↑ 1.1 Tree	Accuracy (Validation): 79.4%
Last change: Fine Tree	112/112 features
↑ 1.2 Tree	Accuracy (Validation): 79.4%
Last change: Medium Tree	112/112 features
1.8 Naive Bayes	Accuracy (Validation): 78.0%
Last change: Kernel Naive Bayes	112/112 features
↑ 1.15 KNN	Accuracy (Validation): 78.0%
Last change: Fine KNN	112/112 features
Current Model Summary	0

▼ Models	0
Sort by: Accuracy (Validation) ▼ ↓ ↑	
	Accuracy (Validation): 90.1% 112/112 features
1.22 Ensemble Last change: Bagged Trees	Accuracy (Validation): 86.6% 112/112 features
1.9 SVM Last change: Linear SVM	Accuracy (Validation): 85.2% 112/112 features
1.29 Neural Network Last change: Bilayered Neural Network	Accuracy (Validation): 85.2% 112/112 features
1.27 Neural Network Last change: Medium Neural Network	Accuracy (Validation): 83.8% 112/112 features
1.26 Neural Network Last change: Narrow Neural Network	Accuracy (Validation): 83.1% 112/112 features
1.30 Neural Network Last change: Trilayered Neural Network	Accuracy (Validation): 83.1% 112/112 features
1.10 SVM Last change: Quadratic SVM	Accuracy (Validation): 81.7% 112/112 features
1.12 SVM Last change: Fine Gaussian SVM	Accuracy (Validation): 81.7% 112/112 features
1.23 Ensemble Last change: Subspace Discriminant	Accuracy (Validation): 81.0% 112/112 features
1.20 KNN Last change: Weighted KNN	Accuracy (Validation): 80.3% 112/112 features
1.28 Neural Network Last change: Wide Neural Network	Accuracy (Validation): 79.6% 112/112 features
1.15 KNN Last change: Fine KNN	Accuracy (Validation): 78.9% 112/112 features
1.25 Ensemble Last change: RUSBoosted Trees	Accuracy (Validation): 78.9% 112/112 features
1.13 SVM Last change: Medium Gaussian SVM	Accuracy (Validation): 78.2% 112/112 features
1.1 Tree Last change: Fine Tree	Accuracy (Validation): 77.5% 112/112 features
► Current Model Summary	0

Отбор признаков

K=3

▼ Models	0
Sort by: Accuracy (Validation) ▼ ↓ ↑	
1.24 Ensemble	Accuracy (Validation): 93.7%
Last change: Subspace KNN	17/17 features
1.5 Quadratic Discriminant	Accuracy (Validation): 93.0%
Last change: Quadratic Discriminant	17/17 features
	Accuracy (Validation): 93.0%
Last change: Fine KNN	17/17 features
1.31 Kernel	Accuracy (Validation): 93.0%
Last change: SVM Kernel	17/17 features
☆ 1.11 SVM	Accuracy (Validation): 91.5%
Last change: Cubic SVM	17/17 features
☆ 1.9 SVM	Accuracy (Validation): 90.8%
Last change: Linear SVM	17/17 features
	Accuracy (Validation): 90.8%
Last change: Weighted KNN	17/17 features
1.32 Kernel	Accuracy (Validation): 90.8%
Last change: Logistic Regression Kernel	17/17 features
☆ 1.10 SVM	Accuracy (Validation): 90.1%
Last change: Quadratic SVM	17/17 features
1.22 Ensemble	Accuracy (Validation): 89.4%
Last change: Bagged Trees	17/17 features
☆ 1.13 SVM	Accuracy (Validation): 88.7%
Last change: Medium Gaussian SVM	17/17 features
1.26 Neural Network	Accuracy (Validation): 88.7%
Last change: Narrow Neural Network	17/17 features
1.23 Ensemble	Accuracy (Validation): 88.0%
Last change: Subspace Discriminant	17/17 features
1.28 Neural Network	Accuracy (Validation): 88.0%
Last change: Wide Neural Network	17/17 features
1.12 SVM	Accuracy (Validation): 87.3%
Last change: Fine Gaussian SVM	17/17 features
1.27 Neural Network	Accuracy (Validation): 87.3%
Last change: Medium Neural Network	17/17 features
Current Model Summary	0

▼ Models	0
Sort by: Accuracy (Validation) ▼ ↓ ↑	
1.24 Ensemble	Accuracy (Validation): 92.3%
ast change: Subspace KNN	17/17 features
	Accuracy (Validation): 91.5%
ast change: Fine KNN	17/17 features
1.29 Neural Network	Accuracy (Validation): 91.5%
ast change: Bilayered Neural Network	17/17 features
1.31 Kernel	Accuracy (Validation): 91.5%
ast change: SVM Kernel	17/17 features
1.5 Quadratic Discriminant	Accuracy (Validation): 90.8%
Last change: Quadratic Discriminant	17/17 features
☆ 1.12 SVM	Accuracy (Validation): 90.8%
ast change: Fine Gaussian SVM	17/17 features
☆ 1.13 SVM	Accuracy (Validation): 89.4%
ast change: Medium Gaussian SVM	17/17 features
☆ 1.20 KNN	Accuracy (Validation): 89.4%
.ast change: Weighted KNN	17/17 features
1.32 Kernel	Accuracy (Validation): 89.4%
ast change: Logistic Regression Kernel	17/17 features
☆ 1.9 SVM	Accuracy (Validation): 88.7%
Last change: Linear SVM	17/17 features
↑ 1.11 SVM	Accuracy (Validation): 88.7%
Last change: Cubic SVM	17/17 features
1.23 Ensemble	Accuracy (Validation): 88.7%
ast change: Subspace Discriminant	17/17 features
1.3 Tree	Accuracy (Validation): 88.0%
ast change: Coarse Tree	17/17 features
1.22 Ensemble	Accuracy (Validation): 88.0%
ast change: Bagged Trees	17/17 features
1.26 Neural Network	Accuracy (Validation): 86.6%
ast change: Narrow Neural Network	17/17 features
1.27 Neural Network	Accuracy (Validation): 86.6%
ast change: Medium Neural Network	17/17 features

▼ Models	
Sort by: (Accuracy (Validation) ▼ (1) ↑	
☆ 1.15 KNN	Accuracy (Validation): 91.5%
ast change: Fine KNN	17/17 features
1.24 Ensemble	Accuracy (Validation): 90.8%
Last change: Subspace KNN	17/17 features
↑ 1.9 SVM	Accuracy (Validation): 90.1%
Last change: Linear SVM	17/17 features
1.11 SVM	Accuracy (Validation): 90.1%
Last change: Cubic SVM	17/17 features
1.31 Kernel	Accuracy (Validation): 89.4%
Last change: SVM Kernel	17/17 features
1.5 Quadratic Discriminant	Accuracy (Validation): 88.7%
Last change: Quadratic Discriminant	17/17 features
1.27 Neural Network	Accuracy (Validation): 88.7%
Last change: Medium Neural Network	17/17 features
1.29 Neural Network	Accuracy (Validation): 88.7%
Last change: Bilayered Neural Network	17/17 features
↑ 1.10 SVM	Accuracy (Validation): 87.9%
Last change: Quadratic SVM	17/17 features
↑ 1.13 SVM	Accuracy (Validation): 87.9%
Last change: Medium Gaussian SVM	17/17 features
↑ 1.20 KNN	Accuracy (Validation): 87.9%
Last change: Weighted KNN	17/17 features
1.23 Ensemble	Accuracy (Validation): 87.9%
Last change: Subspace Discriminant	17/17 features
1.28 Neural Network	Accuracy (Validation): 87.9%
Last change: Wide Neural Network	17/17 features
1.30 Neural Network	Accuracy (Validation): 87.9%
Last change: Trilayered Neural Network	17/17 features
1.4 Linear Discriminant	Accuracy (Validation): 87.2%
Last change: Linear Discriminant	17/17 features
1.6 Logistic Regression	Accuracy (Validation): 87.2%
Last change: Logistic Regression	17/17 features
Current Model Summary	(
i	

Повышение контрастности									
	9			22			27		
	Accure cy	Specifici ty TNR	Specifici ty TPR	Accurecy	Specifici ty, TNR	Specifici ty, TPR	Accurecy	Specific ity, TNR	Specifici ty, TPR
K=3	83,1	87,9	78,9	79,6	83,3	76,3	81,0	81,8	80,3
K=4	85,1	89,4	81,3	89,4	90,9	88,0	80,9	78,8	82,7
K=5	85,2	90,9	80,3	86,2	87,9	85,5	83,8	80,3	86,8
Среднее	84,46666	89,4	80,166666	85,066666	87,36666	83,26666	81,9	80,3	83,26666

Отбор признаков									
	15			24			31		
	Accure cy	Specifici ty TNR	Sensitivit TPR	Accure cy	Specifici ty, TNR	Sensitivit TPR	Accure cy	Specifici ty, TNR	Sensitivit TPR
K=3	93,0	93,9	92,1	93,7	95,5	92,1	93,0	93,9	92,1
K=4	91,5	97,0	86,8	92,3	97,0	88,2	91,5	90,9	92,1
K=5	91,5	93,9	89,3	90,8	95,5	86,7	89,4	92,4	86,7
Среднее	92	94,933333	89,4	92,26666	96	89	91,3	92,4	90,3

Повышение контрастности ухудшило показатель средней точности.

(сравнение с показателями из первой работы)

Было: 91,1; 89,4; 88,9

Стало: 84,5; 85,1; 81,9

Отбор признаков дал небольшой прирост в средней точности (сравнение с показателями из первой работы)

Было: 91,1; 89,4; 88,9

Стало: 92,0; 92,3; 91,3