First derivative using the backwards differentiation method

Calculates the first derivative of *f* using the backwards differentiation numerical method.

By using $f'(x) \approx \frac{f(x) - f(x - h)}{h}$, we calculate an approximation to the first derivative of f, where the error of said method is O(h).

Parameters

- 1. $f \rightarrow The$ symbolical function to calculate its derivative.
- 2. h \rightarrow The absolute value of the difference between f(x) and f(x-h).
- 3. $x \rightarrow$ The point where the derivative will be calculated.
- 4. fp \rightarrow The symbolical derivative to calculate the error of the method.

Returns

- 1. dfa \rightarrow The value of the derivative calculated using the numerical method in p.
- 2. h \rightarrow The absolute value of the difference between f(x) and f(x-h).
- 3. error \rightarrow The absolute error between the numerical method and the actual derivative.

```
function [dfa, h, error] = backwardsFirstDerivative(f, df, x, h)
  format longE
  dfa = (f(x) - f(x-h))/(h);
  error = abs(df - dfa);
end
```