

Lecture 21: Introduction to Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

> 3. Review

3. Review

2/3 points (graded)

Consider the model $Y|\mathbf{X} \sim \mathcal{N}(\mathbf{X}^T \boldsymbol{\beta}, \mathbf{1})$, where \mathbf{X} is a p-dimensional random variable. Here, $\boldsymbol{\beta}$ is a fixed constant. Indicate whether the following statements are true, or false.

 $\mathbb{E}\left[Y|\mathbf{X}
ight]$ is a constant random variable.

True True			
○ False ✔			

If X_i 's are iid Gaussian, then the conditional mean, $\mathbb{E}\left[Y|X
ight]$ is Gaussian random variable. (Assume $oldsymbol{eta}$ is a real-valued vector).

● True ✓○ False

The expected value of Y, $\mathbb{E}\left[Y
ight]$ is a non-constant random variable, if we assume that each X_i has mean μ .

- O True
- False

Solution:

- False. Note that the conditional mean is equal to $\mathbf{X}^T \boldsymbol{\beta}$, which indeed is a random variable.
- True. Note that $\mathbf{X}^T eta = \sum_{i=1}^p X_i eta_i$ is a sum of iid Gaussian random variables, and is itself a Gaussian random variable.
- False. Note that $\mathbb{E}\left[Y\right] = \mathbb{E}\left[\mathbb{E}\left[\backslash Y|X\right]\right] = \mathbb{E}\left[X^T\beta\right] = \sum_{i=1}^p \beta_i \mu$, which is constant, using the law of iterated expectations.

Submit

You have used 1 of 1 attempt

Answers are displayed within the problem

Generalizing Two Components of Linear Models

in two different directions.

So the first component was this random component.

So the response variable was assumed to be continuous.

And y given x was assumed to be Gaussian, with mean mu of x.

And the second component was that the

regression function
mu of x was x transpose beta.
So that was a linear.

End of transcript. Skip to the start.

Video

<u>Download video file</u>

Transcripts
<u>Download SubRip (.srt) file</u>
<u>Download Text (.txt) file</u>

Previously, we encountered the idea of a **regression function** . More precisely, given a pair of random variables X,Y, we can write down the function $\mu\left(x\right)$ defined to be

$$\mu\left(x
ight):=\mathbb{E}\left[Y\mid X=x
ight].$$

In the Linear Regression unit, the assumption was that $\mu(x)$ was a linear function of x. For example, in the one-variable case, we assumed $\mu(x) = a + bx$; and for higher dimensions, $\mu(\mathbf{x}) = \mathbf{x}^T \beta$.

Discussion

Show Discussion

Topic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; Exponential Families / 3. Review

© All Rights Reserved