Finite Automata

LECTURE 5

Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

Deterministic Finite Automata

Definition: A deterministic finite automaton (DFA) consists of

- 1. a finite set of states (often denoted Q)
- 2. a finite set Σ of symbols (alphabet)
- 3. a transition function that takes as argument a state and a symbol and returns a state (often denoted δ)
- 4. a start state often denoted q_0
- 5. a set of final or accepting states (often denoted F)

We have $q_0 \in Q$ and $F \subseteq Q$

Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
 - Q ==> a finite set of states
 - \circ $\Sigma ==>$ a finite set of input symbols (alphabet)
 - \circ q₀ ==> a start state
 - F ==> set of accepting states
 - \circ δ ==> a transition function, which is a mapping between Q x Σ ==> Q
- A DFA is defined by the 5-tuple:
 - \circ {Q, Σ , q₀,F, δ }

What does a DFA do on reading an input string?

- Input: a word w in Σ^*
- Question: Is w acceptable by the DFA?
- Steps:
 - Start at the "start state" q_o
 - For every input symbol in the sequence w do
 - ➤ Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the accepting states (F) then *accept* w;
 - o Otherwise, reject w.

Deterministic Finite Automata

How to present a DFA? With a transition table

	0	1
$ ightarrow q_0$	q_2	q_0
$*q_1$	q_1	q_1
q_2	q_2	q_1

The \rightarrow indicates the *start* state: here q_0

The * indicates the final state(s) (here only one final state q_1)

This defines the following transition diagram

Example #1

- $\left(7\right)$
- Build a DFA for the following language:
 - \circ L = {w | w is a binary string that contains 01 as a substring}
- Steps for building a DFA to recognize L:

 - o Decide on the states: Q
 - Designate start state and final state(s)
 - \circ **\delta**: Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

Regular expression: (0+1)*01(0+1)*

DFA for strings containing 01

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• start state =
$$q_0$$

•
$$F = \{q_2\}$$

Transition table

symbols

	δ	0	1
ates	•q _o	q_1	q_{o}
	$\mathbf{q_i}$	q_1	q_2
	$*q_2$	q_2	q_2

 δ is a function from $Q\times \Sigma$ to Q

$$\delta:Q\times\Sigma\to Q$$

$$\delta(q_0, 1) = q_0$$

$$\delta(q_0, 0) = q_2$$

Input Alphabet Σ

 $\lambda \not\in \Sigma$: the input alphabet never contains λ

Example
$$\Sigma = \{a,b\}$$

$$a,b$$

$$a,c$$

$$a,$$

Initial State q_0

Example

Set of Accepting States

Example

Transition Function

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q,x)=q'$$

Describes the result of a transition from state *q* with symbol *x*

Transition function Example: 2

$$\delta(q_0, a) = q_1$$

Costas Busch - RPI

- Complete All tuples states
- Transition table
- Transition function

Build an automaton that accepts all and only those strings that contain 001

Automata

- Deterministic automata each move is uniquely determined by the current configuration
 - Single path
- Nondeterministic automata multiple moves possible
 - o Can't determine next move accurately
 - May have multiple next moves or paths

Finite Automata

Automata

- An automaton whose output response is limited to yes or no is an acceptor
 - Accepts input string and either accepts or rejects it
- Measures of complexity
 - Running time
 - Amount of memory used

Finite Automata

Automata

Finite automaton

- Uses a limited, constant amount of memory
- Easy to model
- Limited application

Finite Automata

Finite Automata

Given an automaton $A = (Q, \Sigma, \delta, q_o, F)$, and a string $w \in \Sigma^*$:

- w is **accepted** by A if the configuration (q_0,w) yields the configuration (F, \in) , where F is an accepting state
- the **language accepted by** A, written L(A), is defined by:

 $L(A) = \{w \in \Sigma^* : w \text{ is accepted by } A\}$