Euclidiens

Exercise 1 Soit $\varphi: ((x,y),(x',y')) \mapsto 2xx' + xy' + x'y + yy'$

- $^{\blacksquare \blacksquare}$ Montrer que φ est un PS sur \mathbb{R}^2
- Déterminer les vecteurs orthogonaux à (1,1) pour ce PS

Exercice 2 Soit $\varphi:(P,Q)\mapsto \int_0^1 tP(t)Q(t)dt$

- Montrer que φ est un PS sur $\mathbb{R}[X]$
- Déterminer tous les polynômes de $\mathbb{R}_2[X]$ orthogonaux à X^2

Exercice 3 Montrer que $\varphi: ((x,y),(x',y')) \mapsto xx' + 2xy' + 2x'y + 5yy'$ est un PS sur \mathbb{R}^2

 \blacksquare Construire une BON pour φ

Exercice 4 Montrer que $\varphi: ((x,y,z),(x',y',z')) \mapsto xx' + xy' + yx' + 2yy' + xz' + zx' + 2yz' + 2y'z + 3zz'$ est un PS sur \mathbb{R}^3

 \square Construire une BON pour φ

Exercice 5 Montrer que $\varphi:(P,Q)\mapsto \int_{-1}^1 t^2 P(t)Q(t)dt$ est un PS sur $\mathbb{R}[X]$

- On note
 - \Leftrightarrow $\langle .|. \rangle$ ce produit scalaire
 - $\, \rightleftharpoons \, \|.\|$ la norme euclidienne associée
 - Arr la famille de polynômes de coefficients dominant 1 obtenus par la méthode d'orthogonalisation de Gram-Schmidt à partir de la base canonique de $\mathbb{R}[X]$
- \square Calculer P_0, P_1, P_2 et P_3
- \blacksquare Montrer que P_n a la même parité que n
- Montrer que pour tout entier naturel n on a $P_{n+1} = XP_n \frac{\|P_n\|^2}{\|P_{n-1}\|^2} \cdot P_{n-1}$
- Montrer que P_n a n racines simples comprises strictement entre -1 et 1

Exercice 6 Soient a, b, c, d des réels

On suppose que $a^2 + b^2 + c^2 + d^2 = ab + bc + cd + da$ Montrer que a = b = c = d

Exercise 7 Soit $N:(x,y) \mapsto \sqrt{x^2 + xy + y^2}$

 ${}^{\blacksquare \!\!\!\!\square}$ Montrer que N est une norme sur \mathbb{R}^2

Exercice 8 Soient

- \mathbb{R} E un \mathbb{R} -ev
- $u \in L(E)$

 $\|\cdot\|$ une norme sur E

$$\mathbb{R} \ N: x \mapsto \|u(x)\|$$

Donner une CNS pour que N soit une norme sur E

Exercice 9 Soient

 \mathbb{R} E un \mathbb{R} -espace vectoriel

$$\mathbb{F}\ N:E\to\mathbb{R}$$

On suppose:

$$\forall x \in E \quad \forall \lambda \in \mathbb{R}, N(\lambda . x) = |\lambda| . N(x)$$

$$\forall x,y \in E \quad N(x+y) \leqslant N(x) + N(y)$$

Montrer que :

$$N(0) = 0$$

$$\forall x \in E \quad N(x) \geqslant 0$$

Exercice 10 L'application $N:(x,y,z)\mapsto \sqrt{x^2+2y^2+4z^2}$ est-elle une norme sur \mathbb{R}^3 ?

Exercice 11 La norme $\|.\|_1$ dans \mathbb{R}^2 est-elle une norme euclidienne ?