Análisis Exploratorio de los Datos ACTIVIDADES

Alicia Perdices Guerra

19 de mayo, 2021

Contents

- 1.ANÁLISIS EXPLORATORIO POR PAISES.
 - 1.1 EN RELACIÓN CON LAS ACTIVIDADES SANITARIAS
 - * 1.1.1 Análisis Descriptivo
 - * 1.1.2 Visualización y Distribución de la variable "Value"
 - · OCUPACIÓN DE CAMA HOSPITALARIA.
 - · DIALISIS Y TRASPLANTE.
 - * 1.1.3 Normalidad de la variable "Value"
 - · OCUPACIÓN DE CAMA HOSPITALARIA.
 - · DIALISIS Y TRASPLANTE.
- **1.ANÁLISIS EXPLORATORIO POR PAISES** Se procede en primer lugar a cargar todos los archivos para poder realizar el análisis.

```
ocupacion_cama<-read.csv("C:/temp/OcupacionCamaHospitalaria_clean.csv",sep= ",")
dia_tras<-read.csv("C:/temp/Pacientes_Dialisis_Trasplantes_clean.csv",sep= ",")</pre>
```

1.1.- EN RELACIÓN CON LAS ACTIVIDADES SANITARIAS

• 1.1.1 Análisis Descriptivo

Se procede a realizar el análisis descriptivo:

summary(ocupacion_cama)

```
GE0
##
        TIME
                                       ICHA_HC
                                                            UNIT
   Min.
          :2010
                  Length:310
                                     Length:310
                                                        Length:310
   1st Qu.:2012
                  Class : character
                                     Class :character
                                                        Class : character
##
##
  Median:2014
                  Mode :character
                                     Mode :character
                                                        Mode :character
##
  Mean
          :2014
##
  3rd Qu.:2017
##
  Max.
          :2019
       Value
##
                   Value_imp
          :45.60
                   Mode :logical
  1st Qu.:70.22
                   FALSE:229
##
                   TRUE :81
## Median :74.72
## Mean :74.60
## 3rd Qu.:79.80
## Max.
          :93.80
```

summary(dia_tras)

```
GEO
##
        TIME
                                         UNIT
                                                           ICD9CM
##
   Min.
          :2005
                 Length: 1740
                                     Length: 1740
                                                        Length: 1740
   1st Qu.:2007
                  Class : character
                                     Class : character
                                                        Class : character
##
  Median:2010
                  Mode :character
                                     Mode :character
                                                        Mode :character
          :2010
## Mean
##
   3rd Qu.:2012
          :2014
##
  {\tt Max.}
##
       Value
                      Value_imp
## Min.
               0.00 Mode :logical
##
  1st Qu.:
              52.23
                     FALSE:981
                      TRUE: 759
## Median: 107.24
## Mean
         : 6166.82
## 3rd Qu.: 4705.00
## Max.
          :91718.00
```

Se filta el dataframe para que obtener el ratio de pacientes en Diálisis y Trasplantados por Paises (N^{o} por cada 100000 habitantes). En el archivo de ocupación de cama obtendremos el porcentaje de ocupación de camas por Paises.

Se reescalan los datos:

• 1.1.2 Visualización y Distribución de la variable "Value"

Se visualiza la variable "Value" en función de TIME, y los distintos tipos de Actividades Sanitarias.

```
#Actividades Sanitarias
#_____
#GRÁFICAS DE BARRAS
#========
#Gráfica de barras del ratio de pacientes en Diálisis."
plot1=ggplot(data=dia_tras_ratio_dia)+
 geom_col(aes(x=TIME,y=Value))+
 theme(axis.text.x = element text(angle = 45))+
 scale_y_continuous(limit=c(0,3000))+
 ggtitle("Pacientes Diálisis /100.000hab")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
#Gráfica de barras del ratio de pacientes Trasplantados."
plot2=ggplot(data=dia_tras_ratio_tras)+
 geom_col(aes(x=TIME,y=Value))+
 theme(axis.text.x = element_text(angle = 45))+
 scale y continuous(limit=c(0,3000))+
 ggtitle("Pacientes Trasplantados /100.000hab")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
#Gráfica de barras del porcentaje de Ocupación de Cama."
plot3=ggplot(data=ocupacion_cama)+
 geom_col(aes(x=TIME,y=Value))+
 theme(axis.text.x = element_text(angle = 45))+
 scale y continuous(limit=c(0,3000))+
 ggtitle("Ocupación de Cama (%)")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
```

```
#GRÁFICAS DE PUNTOS
#=========
##Gráfica de puntos del ratio de pacientes en Diálisis por Países.""
plot4=ggplot(data=dia_tras_ratio_dia)+
  geom_point(aes(x=GEO,y=Value))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,200))+
  ggtitle("Pacientes en Diálisis /100.000 hab")+
  theme (plot.title = element_text(size=rel(0.5),hjust=0.5))
##Gráfica de puntos del ratio de pacientes Trasplantados por Países.""
plot5=ggplot(data=dia_tras_ratio_tras)+
  geom_point(aes(x=GEO,y=Value))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,200))+
  ggtitle("Pacientes Trasplantados /100.000 hab")+
  theme (plot.title = element_text(size=rel(0.5),hjust=0.5))
##Gráfica de puntos del porcentaje de Ocupación de Cama.""
plot6=ggplot(data=ocupacion_cama)+
  geom_point(aes(x=GEO,y=Value))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,200))+
  ggtitle("Ocupación de Cama %")+
```

```
theme (plot.title = element_text(size=rel(0.5),hjust=0.5))
grid.arrange(plot1,plot4,widths=c(1,3), ncol=2)
```


grid.arrange(plot2,plot5,widths=c(1,3), ncol=2)

grid.arrange(plot3,plot6,widths=c(1,3), ncol=2)

Se obtienen los 5 países con mayor número de Pacientes en Diálisis, Trasplantados (/100000 hb), y mayor ratio de ocupación de camas por años y en cómputo global.

• Pacientes en Diálisis

```
#Para "Pacientes en Diálisis"
#Se filtra por Año
y_2005<-filter(dia_tras_ratio_dia, TIME==2005)</pre>
y_2006<-filter(dia_tras_ratio_dia, TIME==2006)</pre>
y_2007<-filter(dia_tras_ratio_dia, TIME==2007)</pre>
y_2008<-filter(dia_tras_ratio_dia, TIME==2008)
y_2009<-filter(dia_tras_ratio_dia, TIME==2009)
y_2010<-filter(dia_tras_ratio_dia, TIME==2010)
y_2011<-filter(dia_tras_ratio_dia, TIME==2011)</pre>
y_2012<-filter(dia_tras_ratio_dia, TIME==2012)</pre>
y_2013<-filter(dia_tras_ratio_dia, TIME==2013)
y_2014<-filter(dia_tras_ratio_dia, TIME==2014)
#Se ordena por "Value"
actividad_5paises_2005<-y_2005[with(y_2005, order(-y_2005$Value)),]
actividad_5paises_2006<-y_2006[with(y_2006, order(-y_2006$Value)),]
actividad_5paises_2007<-y_2007[with(y_2007, order(-y_2007$Value)),]
```

Table 1: Países con mayor Número de Pacientes en Diálisis en 2005

	País	P.Diálisis/100000 habitantes
20	Portugal	83.69
8	Greece	77.76
5	Germany (until 1990 former territory of the FRG)	76.91
12	Italy	70.77
11	Croatia	66.84

Table 2: Países con mayor Número de Pacientes en Diálisis en 2006

	País	P.Diálisis/100000 habitantes
20	Portugal	86.82
5	Germany (until 1990 former territory of the FRG)	80.74
8	Greece	79.33
12	Italy	73.98
11	Croatia	66.70

Table 3: Países con mayor Número de Pacientes en Diálisis en 2007

	País	P.Diálisis/100000 habitantes
20	Portugal	90.06
8	Greece	81.15
5	Germany (until 1990 former territory of the FRG)	76.91

	País	P.Diálisis/100000 habitantes
12	Italy	73.70
11	Croatia	68.10

Table 4: Países con mayor Número de Pacientes en Diálisis en 2008

	País	P.Diálisis/100000 habitantes
20	Portugal	92.39
8	Greece	82.10
19	Poland	77.10
5	Germany (until 1990 former territory of the FRG)	76.91
12	Italy	75.25

Table 5: Países con mayor Número de Pacientes en Diálisis en 2009

	País	${\bf P.Di\'alisis/100000~habitantes}$
20	Portugal	96.09
8	Greece	84.99
5	Germany (until 1990 former territory of the FRG)	76.91
12	Italy	76.24
29	Turkey	75.15

Table 6: Países con mayor Número de Pacientes en Diálisis en 2010

	País	${\bf P.Di\'alisis/100000~habitantes}$
20	Portugal	101.95
8	Greece	86.69
19	Poland	79.35
5	Germany (until 1990 former territory of the FRG)	76.91
29	Turkey	76.00

Table 7: Países con mayor Número de Pacientes en Diálisis en 2011

	País	P.Diálisis
20	Portugal	105.27
8	Greece	84.99
19	Poland	83.59
5	Germany (until 1990 former territory of the FRG)	76.91
29	Turkey	75.27

Table 8: Países con mayor Número de Pacientes en Diálisis en 2012

	País	P.Diálisis/100000 habitantes
20	Portugal	107.30
8	Greece	84.99
5	Germany (until 1990 former territory of the FRG)	76.91
19	Poland	76.23
12	Italy	75.25

Table 9: Países con mayor Número de Pacientes en Diálisis en 2013

	País	P.Diálisis/100000 habitantes
2	Bulgaria	112.36
20	Portugal	111.97
16	Malta	107.23
8	Greece	84.99
5	Germany (until 1990 former territory of the FRG)	80.74

Table 10: Países con mayor Número de Pacientes en Diálisis en $2014\,$

-	País	P.Diálisis/100000 habitantes
2	Bulgaria	113.25
16	Malta	112.36
20	Portugal	107.30
8	Greece	84.99

	País	P.Diálisis/100000 habitantes
5	Germany (until 1990 former territory of the FRG)	80.74

A continuación, se aprupa toda la información (P. Diálisis) por paises en una tabla:

```
a1<-group_by(dia_tras_ratio_dia,GEO) #Se agrupa por paises

#Se selecciona las variables Pais y Value (P.Diálisis/100000 hab)

a2<-select(a1,GEO:Value)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Value)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "P.Diálisis/100000 habitantes"),

caption = "Países con la mayor media de Pacientes en Diálisis en 2005-2014")
```

Table 11: Países con la mayor media de Pacientes en Diálisis en 2005--2014

	País	P.Diálisis/100000 habitantes
22	Portugal	98.284
11	Greece	83.198
10	Germany (until 1990 former territory of the FRG)	78.059
15	Italy	74.619
21	Poland	74.506

• Pacientes Trasplantados

Table 12: Países con mayor Número de Pacientes trasplantados en $2005\,$

	País	P.Trasplantados/100000 habitantes
18	Austria	42.54
9	Spain	41.82
23	Finland	41.82
20	Portugal	41.78
1	Belgium	39.88

Table 13: Países con mayor Número de Pacientes trasplantados en $2006\,$

	País	P.Trasplantados/100000 habitantes
18	Austria	44.30
23	Finland	43.43
20	Portugal	42.87
9	Spain	42.74
1	Belgium	42.41

Table 14: Países con mayor Número de Pacientes trasplantados en $2007\,$

	País	P.Trasplantados/100000 habitantes
20	Portugal	47.26
18	Austria	45.67
23	Finland	44.53
1	Belgium	44.23
9	Spain	43.61

Table 15: Países con mayor Número de Pacientes trasplantados en $2008\,$

	País	P.Trasplantados/100000 habitantes
9	Spain	48.88
20	Portugal	48.49
18	Austria	46.48
23	Finland	44.94
1	Belgium	42.41

Table 16: Países con mayor Número de Pacientes trasplantados en $2009\,$

	País	P.Trasplantados/100000 habitantes
20	Portugal	54.48
9	Spain	49.45
18	Austria	47.55
23	Finland	45.98
10	France	45.24

Table 17: Países con mayor Número de Pacientes trasplantados en $2010\,$

	País	P.Trasplantados/100000 habitantes
20	Portugal	56.35
9	Spain	49.28

	País	P.Trasplantados/100000 habitantes
18	Austria	48.90
23	Finland	46.87
17	Netherlands	46.44

Table 18: Países con mayor Número de Pacientes trasplantados en $2011\,$

	País	P.Trasplantados/100000 habitantes
20	Portugal	54.48
9	Spain	52.25
18	Austria	50.10
17	Netherlands	48.74
10	France	47.79

Table 19: Países con mayor Número de Pacientes trasplantados en $2012\,$

	País	P.Trasplantados/100000 habitantes
20	Portugal	54.48
9	Spain	54.39
18	Austria	51.78
17	Netherlands	50.89
10	France	49.69

Table 20: Países con mayor Número de Pacientes trasplantados en $2013\,$

	País	P.Trasplantados/100000 habitantes
9	Spain	55.46
20	Portugal	54.48
17	Netherlands	53.43
18	Austria	53.19
23	Finland	49.09

Table 21: Países con mayor Número de Pacientes trasplantados en $2014\,$

	País	P.Trasplantados/100000 habitantes
2	Bulgaria	65.00
20	Portugal	54.48
9	Spain	54.39
18	Austria	51.78
17	Netherlands	50.89

A continuación, se aprupa toda la información (P. Trasplantados) por paises en una tabla:

```
a1<-group_by(dia_tras_ratio_tras,GEO) #Se agrupa por paises

#Se selecciona las variables Pais y Value (P.Trasplantados/100000 hab)

a2<-select(a1,GEO:Value)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Value)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "P.Trasplantados/100000 habitantes"),

caption = "Países con la mayor media de Pacientes Trasplantados en 2005-2014")
```

Table 22: Países con la mayor media de Pacientes Trasplantados en 2005-2014

	País	P.Trasplantados/100000 habitantes
22	Portugal	50.915
26	Spain	49.227
1	Austria	48.229
8	Finland	46.087
20	Netherlands	45.197

• Ocupación de Cama Hospitalaria

```
y_2011<-filter(ocupacion_cama, TIME==2011)
y_2012<-filter(ocupacion_cama, TIME==2012)
y_2013<-filter(ocupacion_cama, TIME==2013)
y_2014<-filter(ocupacion_cama, TIME==2014)
y_2015<-filter(ocupacion_cama, TIME==2015)
y_2016<-filter(ocupacion_cama, TIME==2016)</pre>
y_2017<-filter(ocupacion_cama, TIME==2017)</pre>
y 2018<-filter(ocupacion cama, TIME==2018)
y_2019<-filter(ocupacion_cama, TIME==2019)</pre>
#Se ordena por "Value"
actividad_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Value)),]
actividad_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Value)),]
actividad_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Value)),]
actividad_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Value)),]
actividad_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Value)),]
actividad_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Value)),]
actividad_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Value)),]
actividad_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Value)),]
actividad_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Value)),]
actividad_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Value)),]
#Se crea una tabla para cada año sobre la Ocupación de Cama Hospitalaria de los 5 Paises con un mayor p
kable(actividad_5paises_2010[0:5,c(2,5)], col.names = c("Pais", "O.Cama %"),
      caption = "Países con mayor % de Ocupación de Cama en 2010")
```

Table 23: Países con mayor % de Ocupación de Cama en 2010

	País	O.Cama %
6	Ireland	91.40
26	Norway	85.60
28	United Kingdom	84.35
12	Cyprus	84.17
27	Switzerland	82.83

Table 24: Países con mayor % de Ocupación de Camas en 2011

	País	O.Cama %
6	Ireland	91.9
12	Cyprus	90.9
27	Switzerland	84.2
26	Norway	83.7
17	Malta	83.2

Table 25: Países con mayor % de Ocupación de Cama en 2012

6 Ireland 92.60 26 Norway 84.80 17 Malta 83.20 27 Switzerland 81.52			
26 Norway 84.80 17 Malta 83.20 27 Switzerland 81.52		País	O.Cama %
17 Malta 83.20 27 Switzerland 81.52	6	Ireland	92.60
27 Switzerland 81.52	26	Norway	84.80
	17	Malta	83.20
1 Belgium 81.11	27	Switzerland	81.52
=	1	Belgium	81.11

Table 26: Países con mayor % de Ocupación de Cama en 2013

	País	O.Cama %
6	Ireland	93.80
26	Norway	83.80
27	Switzerland	82.81
17	Malta	80.66
1	Belgium	80.44

Table 27: Países con mayor % de Ocupación de Cama en 2014

	País	O.Cama %
6	Ireland	93.30
27	Switzerland	83.18
26	Norway	82.80
17	Malta	81.79
1	Belgium	80.40

Table 28: Países con mayor % de Ocupación de Cama en 2015

	País	O.Cama %
6	Ireland	89.90
27	Switzerland	83.59
17	Malta	81.73
20	Portugal	80.87

	País	O.Cama %
26	Norway	80.40

Table 29: Países con mayor % de Ocupación de Cama en 2016

	País	O.Cama %
6	Ireland	89.60
27	Switzerland	83.91
20	Portugal	81.73
1	Belgium	81.43
28	United Kingdom	81.43

Table 30: Países con mayor % de Ocupación de Cama en 2017

	País	O.Cama %
6	Ireland	89.80
20	Portugal	82.62
27	Switzerland	82.12
1	Belgium	81.84
28	United Kingdom	81.84

Table 31: Países con mayor % de Ocupación de Cama en 2018

	País	O.Cama %
6	Ireland	90.70
20	Portugal	82.06
1	Belgium	81.99
28	United Kingdom	81.99
27	Switzerland	81.65

Table 32: Países con mayor % de Ocupación de Cama en 2019

_		
	País	O.Cama %
6	Ireland	89.80
27	Switzerland	82.12
20	Portugal	82.06
28	United Kingdom	81.99
1	Belgium	81.84

A continuación, se aprupa toda la información (% Ocupación de Cama) por paises en una tabla:

Table 33: Países con la mayor media en porcentaje de Ocupación de cama en 2010-2019

	País	O. Cama %
13	Ireland	91.280
29	Switzerland	82.793
22	Norway	82.390
19	Malta	81.735
31	United Kingdom	81.419

• 1.1.3 Normalidad de la variable "Value"

Se comprueba con métodos visuales si la variable tiene una distribución normal.

PACIENTES EN DIÁLISIS

```
par(mfrow=c(1,2))
plot(density(dia_tras_ratio_dia$Value_norm) ,main="Density")
qqnorm(dia_tras_ratio_dia$Value_norm)
qqline(dia_tras_ratio_dia$Value_norm)
```


Para estudiar si una muestra proviene de una población con distribución normal, se disponen de tres herramientas:

- Histograma o Densidad
- Gráficos cuantil cuantil (QQplot)
- Pruebas de hipótesis.

Si en la prueba de Densidad se observa sesgo hacia uno de los lados de la gráfica, sería indicio de que la muestra no proviene de una población normal. Si por otra parte, sí se observa simetría, **NO** se garantiza que la muestra provenga de una población normal. En estos casos sería necesario utilizar otras herramientas como **QQplot y pruebas de hipótesis**.

En la gráfica Densidad de la variable "Value", no se observa claramente sesgo hacia ningún lado, por lo que no se pyede descartar normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico. Si se tuviese una muestra distribuída normalmente, se esperaría que los puntos del gráfico quantil quantil estuviesen perfectamente alineados con la línea de referencia, y observamos que para este caso, "Value" no se alinea, tan solo un poco en el centro.

Por otro lado, se realizan las pruebas de hipótesis:

- \$h 0: La muestra proviene de una población normal.
- \$h 1: La muestra NO proviene de una población normal.

Se aplica la prueba Shapiro-Wilk:

shapiro.test(dia_tras_ratio_dia\$Value_norm)

```
##
## Shapiro-Wilk normality test
##
## data: dia_tras_ratio_dia$Value_norm
## W = 0.9648, p-value = 1.648e-06
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

PACIENTES TRASPLANTADOS

```
par(mfrow=c(1,2))
plot(density(dia_tras_ratio_tras$Value_norm) ,main="Density")
qqnorm(dia_tras_ratio_tras$Value_norm)
qqline(dia_tras_ratio_tras$Value_norm)
```


En la gráfica Densidad de la variable "Value", se observa un cierto grado de sesgo hacia la derecha, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Value", tan solo un poco en la parte central.

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(dia_tras_ratio_tras\$Value_norm)

```
##
## Shapiro-Wilk normality test
##
## data: dia_tras_ratio_tras$Value_norm
## W = 0.9554, p-value = 9.659e-08
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

OCUPACIÓN DE CAMA %

```
par(mfrow=c(1,2))
plot(density(ocupacion_cama$Value_norm) ,main="Density")
qqnorm(ocupacion_cama$Value_norm)
qqline(ocupacion_cama$Value_norm)
```


En la gráfica Densidad de la variable "Value" , no se observa sesgo hacia ningún lado , pero la forma de la gráfica no se acerca a lo que se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Value", tan solo un poco en la parte central.

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(ocupacion_cama\$Value_norm)

```
##
## Shapiro-Wilk normality test
##
## data: ocupacion_cama$Value_norm
## W = 0.96308, p-value = 4.391e-07
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.