Data Science Theory and Practices

Generalization and Regularization

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

7th June 2021

Outline

- Formalization of learning
- Overfitting and uniform convergence
- Occam's razor
- Regularization

Formalization

- Instance space $\mathcal{X} = \mathbb{R}^d$
 - Data described by *d* features.
 - Email messages with presence or absence of various types of words.
 - Patient records with the results of various medical tests.
- Learning task:
 - Given $S \subset \mathcal{X}$: training examples
 - Could be labeled.
 - Email messages: each is labeled 'spam' nor 'not spam'.
 - Patient records: each is labeled whether or not they respond well to the treatment.

- Goal: An algorithm using the training examples to produce a classification rule (or regression) that will perform well over new data.
 - The key feature of machine learning: **generalization**.
- How?

- Goal: An algorithm using the training examples to produce a classification rule (or regression) that will perform well over new data.
 - The key feature of machine learning: **generalization**.

How?

- In general, find a "simple" rule with good performance on the training data.
 - e.g., find highly **indicative words** or **weighting of words** such that weighted sum can be used to classify spam and non-spam emails.
- Argue that the training data is representative of the future data.

Assume that

 $\mathcal{X} \sim D$, for some probability distribution D

• Training set *S*:

drawn uniformly at random from *D*.

• c^* : target concept

denote the subset of \mathcal{X} corresponding to the positive class

- E.g, all spam emails, all patients who respond well to the treatment.
- Hence, each training data point is labeled according to whether it belongs to c^* or not.

• Our goal: produce

$$h \subseteq \mathcal{X}$$
: hypothesis.

True error of h:

$$\operatorname{err}_D(h) = \operatorname{Pr}(h\Delta c^*)$$

 Δ : symmetric difference;

Pr: according to D

- The probability that *h* incorrectly classifies a data point drawn randomly from *D*.
- Training error of *h*:

$$\operatorname{err}_S(h) = |S \cap (h\Delta c^*)|/|S|$$

the fraction of points in S where h and c^* disagree

• What if we obtain an h for which $err_S(h)$ is pretty low while $err_D(h)$ is high?

- What if we obtain an h for which $err_S(h)$ is pretty low while $err_D(h)$ is high?
 - For example, memorizing all the training examples and predicting positive for each example if and only if it already appeared positively in the training set.

- What if we obtain an h for which $err_S(h)$ is pretty low while $err_D(h)$ is high?
 - For example, memorizing all the training examples and predicting positive for each example if and only if it already appeared positively in the training set.
 - We call it overfitting.

- What if we obtain an h for which $err_S(h)$ is pretty low while $err_D(h)$ is high?
 - For example, memorizing all the training examples and predicting positive for each example if and only if it already appeared positively in the training set.
 - We call it overfitting.

Algorithms will typically optimize over the data (training data).

- **Hypothesis class** \mathcal{H} over \mathcal{X} : a collection of subsets of \mathcal{X} . (assume it finite)
 - Example: the class of linear separators over $\mathcal{X}=R^d$.

$$\{\{\mathbf{x} \in R^d \mid \mathbf{w} \cdot \mathbf{x} \ge w_0\} : \mathbf{w} \in R^d, w_0 \in R\}$$

- **Hypothesis class** \mathcal{H} over \mathcal{X} : a collection of subsets of \mathcal{X} (assume it finite)
 - Example: the class of linear separators over $\mathcal{X} = \mathbb{R}^d$.

$$\{\{\mathbf{x} \in R^d \mid \mathbf{w} \cdot \mathbf{x} \ge w_0\} : \mathbf{w} \in R^d, w_0 \in R\}$$

- **Hypothesis class** \mathcal{H} over \mathcal{X} : a collection of subsets of \mathcal{X} . (assume it finite)
 - Example: the class of linear separators over $\mathcal{X} = \mathbb{R}^d$.

$$\{\{\mathbf{x} \in R^d \mid \mathbf{w} \cdot \mathbf{x} \ge w_0\} : \mathbf{w} \in R^d, w_0 \in R\}$$

• To facilitate our discussion, let

$$h(x) = \begin{cases} 1 & x \in h \\ -1 & x \notin h \end{cases}$$

true error:
$$\operatorname{err}_D(h) = \Pr_{x \sim D}[h(x) \neq c^*(x)]$$

training error:
$$\operatorname{err}_S(h) = \Pr_{x \sim S}[h(x) \neq c^*(x)]$$

Overfitting and uniform convergence

• **Theorem [PAC**-learning guarantee (**P**robably **A**pproximately **C**orrect)]. Let \mathcal{H} be a hypothesis class and let ε , $\delta > 0$. If a training set S of size

$$n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta)),$$

is drawn from distribution D, then with probability $\geq 1-\delta$, every $h \in \mathcal{H}$ with true error $err_D(h) \geq \varepsilon$ has training error $err_S(h) > 0$.

Overfitting and uniform convergence

• **Theorem [PAC**-learning guarantee (**P**robably **A**pproximately **C**orrect)]. Let \mathcal{H} be a hypothesis class and let ε , $\delta > 0$. If a training set S of size

$$n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta)),$$

is drawn from distribution D, then with probability $\geq 1-\delta$, every $h \in \mathcal{H}$ with training error $\text{err}_{S}(h) = 0$ has true error $\text{err}_{D}(h) < \varepsilon$.

Let h_1, h_2, \ldots be the hypotheses in \mathcal{H} with $\operatorname{err}_D(h_i) \geq \epsilon$ for each i.

- The hypotheses that we don't want to output.

Consider drawing the sample S of size n.

 A_i : the event that $\operatorname{err}_S(h_i) = 0$.

Let h_1, h_2, \ldots be the hypotheses in \mathcal{H} with $\operatorname{err}_D(h_i) \geq \epsilon$ for each i.

- The hypotheses that we don't want to output.

Consider drawing the sample S of size n.

 A_i : the event that $\operatorname{err}_S(h_i) = 0$.

Since $\operatorname{err}_D(h_i) \geq \epsilon$, we have

$$\Pr[A_i] \le (1 - \epsilon)^n.$$

Thus,

$$\Pr\left[\bigcup_{i} A_{i}\right] \leq |\mathcal{H}|(1-\epsilon)^{n} \leq |\mathcal{H}|e^{-\epsilon n}.$$

Let h_1, h_2, \ldots be the hypotheses in \mathcal{H} with $\operatorname{err}_D(h_i) \geq \epsilon$ for each i.

- The hypotheses that we don't want to output.

Consider drawing the sample S of size n.

 A_i : the event that $\operatorname{err}_S(h_i) = 0$.

Since $\operatorname{err}_D(h_i) \geq \epsilon$, we have

$$\Pr[A_i] \le (1 - \epsilon)^n.$$
 Using $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$

Thus,

$$\Pr\left[\bigcup_{i} A_{i}\right] \leq |\mathcal{H}|(1-\epsilon)^{n} \leq |\mathcal{H}|e^{-\epsilon n}.$$

Remark on PAC Theorem

- What if the best h_i in \mathcal{H} has > 0% error (say 5%) on S?
 - Can we still be confident that its true error is low? (say 10%?)

Theorem (Hoeffding bounds; reformulate)

Let x_1, x_2, \ldots, x_n be independent $\{0, 1\}$ random variables with $\Pr[x_i = 1] = p$. Let $s = \sum_i x_i$. Then, for any $0 < \alpha \le 1$,

$$\Pr\left[\frac{s}{n} > p + \alpha\right] \le e^{-2n\alpha^2},$$

$$\Pr\left[\frac{s}{n}$$

Theorem (Uniform convergence)

Let \mathcal{H} be a hypothesis class and let $\epsilon, \delta > 0$. If a training set S of size

$$n \ge \frac{1}{2\epsilon^2} (\ln |\mathcal{H}| + \ln(2/\delta)),$$

is drawn from distribution D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

Fix some $h \in \mathcal{H}$, let x_j be the indicator random variable for $\{h \text{ makes a mistake on the } j \text{th sample in } S\}$.

- $-\Pr[x_i=1] = \text{the true error of } h.$
- The fraction of the x_j 's equal to 1: the training error $\operatorname{err}_S(h)$ of h.

Fix some $h \in \mathcal{H}$, let x_j be the indicator random variable for $\{h \text{ makes a mistake on the } j \text{th sample in } S\}$.

- $-\Pr[x_i=1]$ = the true error of h.
- The fraction of the x_i 's equal to 1: the training error $\operatorname{err}_S(h)$ of h.

Let A_h : $|\operatorname{err}_D(h) - \operatorname{err}_S(h)| > \epsilon$.

By Hoeffding bounds,

 $-\Pr[A_h] \le 2e^{-2n\epsilon^2}.$

Fix some $h \in \mathcal{H}$, let x_j be the indicator random variable for $\{h \text{ makes a mistake on the } j \text{th sample in } S\}$.

- $-\Pr[x_i=1]$ = the true error of h.
- The fraction of the x_i 's equal to 1: the training error $\operatorname{err}_S(h)$ of h.

Let A_h : $|\operatorname{err}_D(h) - \operatorname{err}_S(h)| > \epsilon$.

By Hoeffding bounds,

- $-\Pr[A_h] \le 2e^{-2n\epsilon^2}.$
 - Union bound: $\Pr[\exists h \in \mathcal{H} \text{ such that } | \operatorname{err}_D(h) \operatorname{err}_S(h) | > \epsilon] \leq 2|\mathcal{H}|e^{-2n\epsilon^2}.$

Fix some $h \in \mathcal{H}$, let x_i be the indicator random variable for $\{h \text{ makes a mistake}\}$

- $-\Pr[x_i=1] = \text{the true error of } h.$
- The fraction of the x_i 's equal to 1: the training error $\operatorname{err}_S(h)$ of h.

Let
$$A_h$$
: $|\operatorname{err}_D(h) - \operatorname{err}_S(h)| > \epsilon$.

$$-\Pr[A_h] \le 2e^{-2n\epsilon^2}.$$

- Union bound:
$$\Pr[\exists h \in \mathcal{H} \text{ such that } | \operatorname{err}_D(h) - \operatorname{err}_S(h) | > \epsilon] \leq 2|\mathcal{H}|e^{-2n\epsilon^2}.$$

 $n \ge \frac{1}{2\epsilon^2} (\ln |\mathcal{H}| + \ln(2/\delta)),$

on the jth sample in S}.

$$|\mathcal{H}| = 2^d$$
; $\ln(|\mathcal{H}|) = d$

Occam's razor

- William of Occam (1287–1347)
- a.k.a. Law of Parsimony.
- In general, one should prefer simpler explanations over more complicated ones.
- Use < *b* bits for the description language.

$$-1+2+4+\cdots+2^{b-1}<2^{b}$$
.

Mathematical statement of Occam's razor

Theorem (Occam's razor)

Fix any description language.

Consider a training sample S drawn from distribution D with $|S| = \frac{1}{\epsilon} (b \ln 2 + \ln(1/\delta))$.

For any rule h

- $-\operatorname{err}_S(h)=0$
- -h can be described using < b bits,

$$\Pr[\operatorname{err}_D(h) \le \epsilon] \ge 1 - \delta.$$

Mathematical statement of Occam's razor

Theorem (Occam's razor)

Fix any description language.

Consider a training sample S drawn from distribution D.

For any rule h

- $-\operatorname{err}_S(h) = 0$
- -h can be described using < b bits,

$$\Pr\left[\operatorname{err}_D(h) \le \frac{b\ln(2) + \ln(1/\delta)}{|S|}\right] \ge 1 - \delta.$$

Application: Learning decision trees

- Find the smallest decision tree to fit the training sample *S*: **NP**-hard.
- Suppose we run a heuristic *h* on *S* and it outputs a tree with *k* nodes.

 $\bar{x_1}\bar{x_2} \vee x_1x_2x_3 \vee x_2\bar{x_3}$

Application: Learning decision trees

- Find the smallest decision tree to fit the training sample *S*: **NP**-hard.
- Suppose we run a heuristic *h* on *S* and it outputs a tree with *k* nodes.
- Such a tree can be described using $O(k \log d)$ bits.

 $\log_2(d)$ bits for the index of the feature in the root.

O(1) bits: indicate if it's a leaf and what label it should have.

 $O(k_L \log d)$ bits for left subtree + $O(k_R \log d)$ bits for right subtree.

$$\bar{x_1}\bar{x_2} \vee x_1x_2x_3 \vee x_2\bar{x_3}$$

Application: Learning decision trees

- Find the smallest decision tree to fit the training sample *S*: **NP**-hard.
- Suppose we run a heuristic *h* on *S* and it outputs a tree with *k* nodes.
- Such a tree can be described using $O(k \log d)$ bits.

By the theorem of Occam's razor, we can be confident that $err_D(h)$ is low if we can produce a consistent tree with

$$<\epsilon|S|/\log(d)$$
 nodes

 $\log_2(d)$ bits for the index of the feature in the root

 $\bar{x_1}\bar{x_2} \vee x_1x_2x_3 \vee x_2\bar{x_3}$

 Suppose that there is NO simple rule that is perfectly consistent with the training data.

- Suppose that there is NO simple rule that is perfectly consistent with the training data.
- But,
 - We have a VERY simple rule with training error 20%.
 - We have also a complex rule with training error 10%.
 - ...

- Suppose that there is NO simple rule that is perfectly consistent with the training data.
- But,
 - We have a VERY simple rule with training error 20%.
 - We have also a complex rule with training error 10%.
 - ...
- Optimize some combination of training error and simplicity?

- Suppose that there is NO simple rule that is perfectly consistent with the training data.
- But,
 - We have a VERY simple rule with training error 20%.
 - We have also a complex rule with training error 10%.
 - ...
- Optimize some combination of training error and simplicity?
 - The notion of **regularization** (**complexity penalization**).

Regularization (penalizing complexity)

Corollary.

Fix any description language, and consider a training set S drawn from distribution D. With probability $\geq 1 - \delta$, every hypothesis h satisfies

$$\operatorname{err}_{D}(h) \le \operatorname{err}_{S}(h) + \sqrt{\frac{\operatorname{size}(h)\ln 4 + \ln(2/\delta)}{2|S|}}$$

where size(h) denotes the number of bits needed to describe h in the given language.

Consider fixing some description language.

Let \mathcal{H}_i be the hypotheses that can be described in i bits $(|\mathcal{H}_i| \leq 2^i)$.

Let
$$\delta_i = \delta/2^i$$
. $\delta_1 + \delta_2 + \cdots = \delta$

Consider fixing some description language.

Theorem (Occam's razor)

Fix any description language.

Consider a training sample S drawn from distribution D with $|S| = \frac{1}{\epsilon} (b \ln 2 + \ln(1/\delta))$.

For any rule h

$$-\operatorname{err}_S(h) = 0$$

-h can be described using < b bits,

$$\Pr\left[\operatorname{err}_D(h) \le \frac{b\ln(2) + \ln(1/\delta)}{|S|}\right] \ge 1 - \delta.$$

Let \mathcal{H}_i be the hypotheses that can be described in i bits $(|\mathcal{H}_i| \leq 2^i)$.

Let
$$\delta_i = \delta/2^i$$
. $\delta_1 + \delta_2 + \cdots = \delta$

With probability $\geq 1 - \delta_i$, all $h \in \mathcal{H}_i$ satisfy

$$\operatorname{err}_{D}(h) \le \operatorname{err}_{S}(h) + \sqrt{\frac{\ln(|\mathcal{H}_{i}|) + \ln(2/\delta_{i})}{2|S|}}$$

Consider fixing some description language.

Theorem (Occam's razor)

Fix any description language.

Consider a training sample S drawn from distribution D with $|S| = \frac{1}{\epsilon} (b \ln 2 + \ln(1/\delta))$.

For any rule h

$$-\operatorname{err}_S(h) = 0$$

-h can be described using < b bits,

$$\Pr\left[\operatorname{err}_D(h) \le \frac{b\ln(2) + \ln(1/\delta)}{|S|}\right] \ge 1 - \delta.$$

Let \mathcal{H}_i be the hypotheses that can be described in i bits $(|\mathcal{H}_i| \leq 2^i)$.

Let
$$\delta_i = \delta/2^i$$
. $\delta_1 + \delta_2 + \cdots = \delta$

With probability $\geq 1 - \delta$, all hypothesis h satisfy

$$\operatorname{err}_D(h) \le \operatorname{err}_S(h) + \sqrt{\frac{\operatorname{size}(h) + \ln(2/\delta)}{2|S|}}$$

•

Theorem (Uniform convergence)

Let \mathcal{H} be a hypothesis class and let $\epsilon, \delta > 0$. If a training set S of size

$$n \ge \frac{1}{2\epsilon^2} (\ln |\mathcal{H}| + \ln(2/\delta)),$$

is drawn from distribution D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

With probability $\geq 1 - \delta$, all hypothesis h satisfy

Don't want the model to be too complex

Try to minimize the training error

Minimize the right-hand size hopefully