Práctico 3

- 1. Sean $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:
 - a) Si ab = 1, entonces $a = b = 1 \lor a = b = -1$.
 - b) Si a|b y b|a, entonces $a = b \lor a = -b$.
 - c) Si a|1, entonces a=1 o a=-1.
 - d) Si a|b y a|c, entonces a|(b+c) y a|(b-c).
 - e) Si a|b y a|(b+c), entonces a|c.
 - f) Si a|b, entonces $a|b \cdot c$.
- 2. Dados b, c enteros, probar las siguientes propiedades:
 - a) 0 es par y 1 es impar.
 - b) Si b es par y $b \mid c$, entonces c es par.
 - c) Si b y c son pares, entonces b+c también lo es.
 - d) Si un número par divide a 2, entonces ese número es 2 o -2.
 - e) La suma de un número par y uno impar es impar.
 - f) b+c es par si y sólo si b y c son ambos pares o ambos impares.
- 3. Sean $a, b, c \in \mathbb{Z}$. ¿Cuáles de las siguientes afirmaciones son verdaderas? En caso de ser ciertas demostrarlas y en caso contrario dar un contraejemplo.
 - $a) \ a \mid b \cdot c \Rightarrow a \mid b \lor a \mid c.$
 - b) Si $a \in \mathbb{Z}$ entonces $a \mid 0$.
 - $c) \ a \mid (b+c) \Rightarrow a \mid b \lor a \mid c.$
 - $d) \ a \mid c \ y \ b \mid c \Rightarrow a \cdot b \mid c.$
 - $e) \ a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c.$
 - $f)\ a,\,b,\,c>0\ \ {\rm y}\ \ a=b\cdot c,\,{\rm entonces}\ \ a\geq b\ {\rm y}\ \ a\geq c.$
 - g) Sean $a, b, c \in \mathbb{Z}$ tales que $a \mid b \ y \ a \mid c$. Si $m, n \in \mathbb{Z}$ entonces $a \mid m \cdot b + n \cdot c$.
- 4. Probar por inducción que para todo $n \in \mathbb{N}_0$:
 - a) $8^n 1$ es múltiplo de 7.
 - $b)\ 3^{2n+2}+2^{6n+1}$ es múltiplo de 11.
 - c) $3^{2n+2} 8n 9$ es divisible por 64.
- 5. Decir si es verdadero o falso justificando:
 - a) $3^n + 1$ es múltiplo de $n, \forall n \in \mathbb{N}$.
 - b) $3n^2 + 1$ es múltiplo de 2, $\forall n \in \mathbb{N}$.

c) (n+1)(5n+2) es múltiplo de 2, $\forall n \in \mathbb{N}$.

6. Hallar el cociente y el resto de la división de:

a) 135 por 23,

c) 135 por -23,

e) 127 por 99,

b) -135 por 23,

d) -135 por -23, f) -98 por -73.

7. a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división de a por b.

b) Repetir el ejercicio anterior, suponiendo ahora que $-b \le r < 0$.

8. Probar que n(n+1) es par para todo n entero.

9. Determinar los enteros positivos n tales que $(n-2)(n^2-n-2)$ es divisible por 2n - 1.

10. Sea $n \in \mathbb{Z}$. Probar que n es par si y sólo si n^2 es par.

11. Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.

12. Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.

13. Expresar en base 10 los siguientes enteros:

a) $(1503)_6$

c) $(1111)_{12}$

 $e) (12121)_3$

 $b) (1111)_2$

 $d) (123)_4$

 $f) (1111)_5$

14. Convertir

a) $(133)_4$ a base 8,

c) $(3506)_7$ a base 2,

b) $(B38)_{16}$ a base 8,

d) $(1541)_6$ a base 4.

15. Calcular las siguientes sumas y expresarlas en las bases originales:

a) $(2234)_5 + (2310)_5$,

b) $(10101101)_2 + (10011)_2$.

16. Calcular los siguientes productos y expresarlos en las bases originales:

a) $(223)_5 \times (31)_5$,

b) $(10101)_2 \times (10011)_2$.

17. Encontrar (7469, 2464), (2689, 4001), (2447, -3997), (-1109, -4999).

18. Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:

a) 14 y 35,

c) 12 y 52,

e) 12 y 532.

b) 11 y 15,

- d) 12 y -52
- 19. Mostrar que 725 y 441 son coprimos y encontrar enteros m, n tales que $m \cdot 725 +$ $n \cdot 441 = 1.$
- 20. Dado un entero $a, a \neq 0$, hallar (0, a).
- 21. Calcular el máximo común divisor entre 606 y 108 y expresarlo como combinación lineal de esos números.
- 22. Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.
- 23. a) Sean a y b coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - b) Sean $a \ y \ b$ coprimes. Probar que si $a \mid c \ y \ b \mid c$, entonces $a \cdot b \mid c$.
- 24. Determinar todos los valores de n tales que $n^4 n$ es un múltiplo de 4.
- 25. a) Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24.
- 26. Probar que 3 y 5 son números primos.
- 27. Determinar cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- 28. Dar todos los números primos positivos menores que 100.
- 29. Probar que si $n \in \mathbb{Z}$, entonces los números 2n+1 y $\frac{n(n+1)}{2}$ son coprimos.
- 30. Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que \bar{a} y b son cuadrados.
- 31. Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?
- 32. Calcular el mínimo común múltiplo de los siguientes pares de números

- a) a = 12 y b = 15. b) a = 11 y b = 13. c) a = 140 y b = 150. d) $a = 3^2 \cdot 5^2$ y $b = 2^2 \cdot 11$.
- 33. Encontrar todos los enteros positivos a y b tales que (a,b) = 10 y [a,b] = 100.
- 34. a) Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - b) Probar que si $a, b \in \mathbb{Z} \setminus \{0\}$, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- 35. Determinar, cuando existan, todos los $x, y \in \mathbb{Z}$ que satisfacen:

a) 5x + 8y = 3,

c) 24x + 14y = 7,

e) 39x - 24y = 6,

b) 7x + 11y = 10,

 $d) \ 20x + 16y = 36,$

 $f) \ 1555x - 300y = 11.$

36. Probar que si para cada $j\in\mathbb{N},\,p_j$ es el j-ésimo primo positivo, entonces

$$p_{k+1} \le p_1 \cdot p_2 \cdot \dots \cdot p_k + 1.$$