CONCEVEZ UNE APPLICATION AU SERVICE DE LA SANTÉ PUBLIQUE PROJET 2

Idée d'application Nettoyage des données Analyse des données Conclusions

Idée d'application

Nettoyage des données Analyse des données Conclusions

Problème:

L'obésité en France, tout comme le surpoids, augmente régulièrement depuis 1997.

L'obésité concerne (13% dans le monde)

De nombreuses complications

✓ Diabète de type 2. ✓ maladies ✓ respiratoires, ✓ articulaires, ✓ dermatologiques...

- des causes multiples
- des mécanismes biologiques variés pas encore tous

entièrement élucidés

Source: lien Inserm

Démarche de résolution:

S'attaquer à la nutrition, c'est-à-dire en favorisant le choix de produits plus sains par les consommateurs.

Objectif à atteindre:

Le consommateurs doit obtenir le nutriscore de n'importe quel aliment lors de son choix en magasin.

Calcule du Nutriscore suivant les catégories

Divers produits

transformés

Matières grasses ajoutés

Boissons

Cas 1: Utilisation de barre code Consommateur Serveur Service intelligent API App Mobile Cas 2: Utilisation des nutriments Base de donnée Une idée d'application au service de la santé publique Idée d'application

Nettoyage des données

Analyse des données

Conclusions

Le jeu de données:

320772 produits et 162 variables.

Nb variable numérique: 106 variables

Nb variable qualitative: 56 variables

Fiche produit

- * Code
- * url
- Creator
- Created t

Ingrédients et additif

- ingredients_text
- allergens
- additives

Tags

- » packaging_tags
- brand_tags
- categories_tags
- origin_tags

Informations nutritionnelles

- sugars 100g
- fat_100g
- sodium_100g

Original Taste-Coca-

All E 4

Cola-500 ml

Californian Almond

A DE 1 Deco

Alesto - 200g

Alvalle Gazpacho

A PCO

l'original - 1L

Nutella-Ferrero-350 g

A G eco

70% Cacao noir intense

eco

-Lindt-100 g

Nutella-Ferrero-200 g

All E 4 D eco

ETAPES:

- * Choix de la variable cible
- * Filtrage des variables sur les colonnes + Suppression des colonnes redondantes
- * Filtrage des variables sur les lignes + Suppression des lignes en doublons
- * Identifier et traiter les valeurs aberrantes
- Identification de la méthode interquartile pour les valeurs extrêmes
- * Traitement des valeurs manquantes

Variables cibles candidats: 'nutrition_grade_fr', 'nutrition-score-fr_100g' et 'nutrition-score-uk_100g'

Choix de la variable cible: nutrition_grade_fr, nb de variables restantes: 160

Filtrage sur les colonnes:

Approche technique:

320772 produits et 160 variables

320772 produits et 40 variables

Approche métier:

Variables numériques:

- energy_100g
- fat_100g
- saturated-fat_100g
- sugars_100g
- fiber_100g
- proteins_100g
- salt_100g
- sodium_100g

Variables qualitatives:

- Code
- product_name
- Brands
- countries_fr
- created t
- last_modified_t
- created_datetime
- last_modified_datetime
- nutrition_grade_fr

320772 produits et 17 variables

Suppression des colonnes redondantes:

- sodium_100g (corrélation 100% à salt_100g)
- created_t, last_modified_t (format UNIX timestamp, redondantes aux colonnes created_datetime et last_modified_datetime

Nb de variables restants: 14

Filtrages sur les lignes:

- > Filtrage sur les données Française ('countries_fr' == 'France') + Suppression de la colonne 'countries_fr'
 - Nb de lignes et colonnes restantes: 97448 lignes et 13 colonnes.
- > Suppression des lignes avec des valeurs manquantes pour les variables: 'code', 'product_name', 'brands'
 - * Nb de lignes restantes: 84433.
- Suppression des lignes ne présentant pas de valeurs cible 'nutrition_grade_fr'
 - * Nb de lignes restantes: 60156.
- > Suppression des doublons par rapport au primary_key = ['code', 'product_name', 'brands'] : 0 lignes dupliquées
 - ♦ Nb de lignes restantes: 60156.
- > Faire une jointure à gauche entre la df catégorie 'pnns_groups_1' avec la df initiale
 - ♦ Nb de lignes et colonnes restantes: 60156 lignes et 14 colonnes.
- Suppression des valeurs manquantes de la variable 'pnns_groups_1'
 - Nb de lignes et colonnes restantes: 46032 lignes et 14 colonnes.

Identifier et traiter les valeurs aberrantes:

- Variables numérique:

 - 0 < [fat_100g, saturated-fat_100g, sugars_100g, fiber_100g, proteins_100g, salt_100g] < 100g
 - Somme [fat_100g, saturated-fat_100g, sugars_100g, fiber_100g, proteins_100g, salt_100g] < 100g
- Nb de lignes et colonnes restantes: 44459 lignes et 14 colonnes.

Identification de la méthode interquartile pour les valeurs extrêmes.

Calcule des quartiles:

	energy_100g	fat_100g	saturated-fat_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
count	44383.000000	41120.000000	44383.000000	44383.000000	28378.000000	44383.000000	44383.000000
mean	1047.217682	12.008131	4.701192	12.154168	2.547956	7.615982	1.029807
std	727.078491	14.902918	7.161231	17.970258	3.872329	7.461263	3.335433
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	402.500000	1.200000	0.300000	1.000000	0.300000	1.700000	0.080010
50%	970.000000	6.200000	1.700000	3.700000	1.600000	6.000000	0.600000
75%	1587.000000	19.000000	6.200000	14.500000	3.300000	11.000000	1.270000
max	3700.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
Q1	402.500000	1.200000	0.300000	1.000000	0.300000	1.700000	0.080010
Q3	1587.000000	19.000000	6.200000	14.500000	3.300000	11.000000	1.270000
Borne_superieure	3363.750000	45.700000	15.050000	34.750000	7.800000	24.950000	3.054985
Nb_produits_sup_Borne_superieure	180.000000	1439.000000	3976.000000	5003.000000	1569.000000	1540.000000	1896.000000

Décision: Garder les valeurs extrêmes.

Traitement des valeurs manquantes:

Idée d'application
Nettoyage des données
Analyse des données
Conclusions

ETAPES:

- * Analyse uni-variée
 - Variables numériques
 - Variables catégorielles
- * Analyse bivariée
 - Variables numériques entre elles:
 - Variables numériques / Variables catégorielles: ANOVA (Eta_square)
 - Variables catégorielles entre elles: Le test du khi-deux
- Analyse multivariée
 - · Réalisation d'un éboulis
 - · Trouver le nombre de composantes principales à utiliser
 - Cercle de corrélation

Analyse uni-variée: variables numériques

Affichages des statistiques:

	energy_100g	fat_100g	saturated-fat_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
count	44458.000000	44458.000000	44458.000000	44458.000000	44458.000000	44458.000000	44458.000000
mean	1046.796539	11.811550	4.697265	12.147767	1.856926	7.611332	1.029166
std	726.629675	14.981254	7.156183	17.956272	3.313629	7.458158	3.332732
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	403.223922	1.000000	0.300000	1.000000	0.000000	1.700000	0.080010
50%	967.000000	6.000000	1.700000	3.700000	0.900000	6.000000	0.600000
75%	1586.000000	18.600000	6.200000	14.500000	2.500000	11.000000	1.270000
max	3700.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
skewness	0.527000	2.204000	3.232000	2.149000	7.615000	1.788000	21.505000
kurtosis	-0.439000	6.727000	18.696000	4.608000	125.618000	7.010000	573.898000

Exemples

- > energy_100g:
 - distribution légèrement asymétrique à droite
 - ❖ aplatissement inferieur à celui d'une distribution normale
- sugars_100g:
 - distribution fortement asymétrique à droite
 - ❖ aplatissement supérieur à celui d'une distribution normale
- fiber_100g:
 - distribution extrêmes asymétrique à droite
 - ❖ aplatissement très supérieur à celui d'une distribution normale

Graphique de distribution

Analyse uni-variée: variables catégorielles

Graphiques datetime:

La majorité des produits ont été introduites en 2015, et modifiés en 2017

Graphique de distribution barre-plot

Les 3 premières catégories:

- 1. Unknown: 6690 produits
- 2. sugary snacks: 6524 produits
- 3. milk and dairy products

La distribution des produits dans le diagramme circulaire des catégories est généralement déséquilibrée

Analyse bivariée: variables numériques entre elles

Graphique Matrice de corrélation:

Corrélation Forte:

- entre 'energy_100g' et 'fat_100g'
- entre 'saturated-fat_100g' et 'fat_100g'

Corrélation modéré:

- entre 'energy 100g' et 'saturated-fat 100g'
- entre 'energy_100g' et 'sugars_100g'

Corrélation faible:

◆ entre 'energy_100g' et 'fiber_100g'

Graphique nuages de points

Les produits avec nutrition _grade 'e' (nuages de points rouges et oranges) ont une tendance plus élevée en énergie

Analyse bivariée: variables numérique / Variables catégorielle

Graphique ANOVA:

variables	ETA_Square / pnns_groups_1	Observations
energy_100g	0,452	une proportion importante de la variance peut être expliquée par les catégories du 'pnns_groups_1'
fat_100g	0,286	une proportion modérée de la variance peut être expliquée par les catégories du 'pnns_groups_1'
saturated-fat_100g	0,19	une proportion modérée de la variance peut être expliquée par les catégories du 'pnns_groups_1
sugars_100g	0,423	une proportion importante de la variance peut être expliquée par les catégories du 'pnns_groups_1'
fiber_100g	0,202	une proportion modérée de la variance peut être expliquée par les catégories du 'pnns_groups_1
proteins_100g	0,422	une proportion importante de la variance peut être expliquée par les catégories du 'pnns_groups_1'
salt_100g	0,043	une très faible proportion de la variance peut être expliquée par les catégories du 'pnns_groups_1'

Analyse bivariée: variables catégorielle/ Variables catégorielle

Test de Khi-deux:

La table de contingen	ce ent	re pnn	s_grou	ps_1 et	nutri	tion_gr
nutrition_grade_fr	a	ь	c	d	e	Total
pnns_groups_1						
beverages	149	536	1239	698	1679	4301
cereals and potatoes	2542	805	1008	583	59	4997
composite foods	1175	1593	1368	803	65	5004
fat and sauces	74	188	685	1072	445	2464
fish meat eggs	428	590	1300	1347	925	4590
fruits and vegetables	2225	550	303	27	1	3106
milk and dairy products	372	914	1316	2232	212	5046
salty snacks	39	62	459	893	283	1736
sugary snacks	50	256	668	2681	2869	6524
unknown	1009	1095	1577	1906	1103	6690
Total	8063	6589	9923	12242	7641	44458
Résultats:						
La valeur du chi square: 23113.449888501083						
La valeur du P value: 0.0						

Hypothèses	khi-deux de Pearson
НО	indépendance
H1	dépendante
	p-valeur < 0,05 ⇒ rejet de H0
Résultat	il n'y a pas suffisamment de données pour accepter H0 et dire qu'il y a une notion d'indépendance.

Analyse multivariée: la méthode ACP

éboulis: conserver uniquement 4 composantes qui expliquent 90% de la variance

Heatmap: coefficient de corrélation entre les variables vs composantes principales

Idée d'application
Nettoyage des données
Analyse des données
Conclusions

Conclusions

La base de donnée nettoyée

- 44458 produits différents.
- 4 variables quantitatives principales.

Cahier des charges

Une base de donnée propre

sans valeurs aberrantes

sans doublons sans valeurs manguantes Un contenu adapté

des produits identifiables

des catégories pertinentes

des données chiffrées utiles

Lien entre les variables:

- Le nutrition grade dépend principalement de l'énergie et de la teneur en graisses.
- La catégorie est un bon guide pour améliorer sa nutrition.
- Certaines marques proposent des produits plus sains, Example: cristallines, Alvalle Gazpacho l'original,...

Faisabilité de l'application:

Nombre de variables suffisant avec liaisons qui ont un taux de complétion à 100%.

Points de vigilance:

- Appui expert métier
- Biais possible lié au données et au mode de collecte.