

사물인터넷 3주차

❖ InfluxDB란?

 시계열(Time-Series) 데이터베이스(TSDB, Time-Series Database), 시간에 따라 변화하는 데이터를 효과적으로 저장하고 관리하는 데 최적화된 데이터베이스

☐ include secondary database models 44 sy		44 systems in ra	stems in ranking, March 2025				
Rank			22142	D	Score		
Mar 2025	Feb 2025	Mar 2024	DBMS	Database Model	Mar 2025	Feb 2025	Mar 2024
1.	1.	1.	InfluxDB	Time Series, Multi-model 👔	21.50	-0.27	-5.39
2.	2.	1 3.	Kdb	Multi-model 👔	7.10	+0.31	-0.59
3.	3.	4 2.	Prometheus	Time Series	6.38	-0.31	-1.62
4.	4.	↑ 5.	Graphite	Time Series	4.57	+0.20	-0.27
5.	5.	4 .	TimescaleDB	Time Series, Multi-model 👔	3.48	-0.14	-1.84
6.	6.	1 8.	QuestDB	Time Series, Multi-model 👔	3.10	+0.00	+0.41
7.	7.	7.	Apache Druid	Multi-model 👔	2.79	-0.07	-0.54
8.	8.	4 6.	DolphinDB	Multi-model 👔	2.29	-0.09	-1.85
9.	9.	1 11.	GridDB 🚹	Time Series, Multi-model 👔	1.98	+0.04	-0.02
10.	10.	4 9.	TDengine 🚹	Time Series, Multi-model 👔	1.76	-0.06	-0.88
11.	11.	4 10.	RRDtool	Time Series	1.54	-0.05	-0.93
12.	12.	1 3.	Fauna	Multi-model 👔	1.51	+0.02	-0.12
13.	1 4.	1 5.	Apache IoTDB	Time Series	1.44	+0.02	+0.25

출처 – https://db-engines.com/en/ranking/time+series+dbms

❖ InfluxDB 주요 특징

1 시계열 데이터 저장

- 센서 데이터, 주식 가격, 서버 로그, 네트워크 모니터링 데이터 등 시간과 함께 변화하는 데이터를 저장하는 데 특화됨.
- timestamp (시간 정보)가 자동으로 추가됨.

고속 데이터 삽입 및 검색

- INSERT 속도가 빠르며, SELECT 시 시간 범위를 지정하여 빠르게 데이터를 검색할 수 있음.
- "5분 동안의 평균 온도" 같은 집계 연산 가능.

3 SQL과 비슷한 질의(Query) 언어 지원

- InfluxQL, Flux 같은 언어를 제공하여 SQL과 유사한 방식으로 데이터를 조회할 수 있음.
- 예제:

→ 지난 1시간 동안의 온도 데이터 조회

◀ 태그(Tag) 기반 데이터 저장

- 센서나 기기의 데이터를 저장할 때 태그(Tag)를 사용하면 검색 속도가 빨라짐.
- 예제 데이터 구조:

```
reasurement: "sensor_data"
tags: { "device": "arduino", "location": "room1" }
fields: { "temperature": 25.3 }
timestamp: 2025-03-17T12:00:00Z
```

❖ InfluxDB 주요 개념

개념	설명
Measurement	테이블과 유사한 개념 (예: "sensor_data")
Tag	빠른 검색을 위한 메타데이터 (예: "device=arduino")
Field	저장할 데이터 값 (예: "temperature=25.3")
Timestamp	데이터가 기록된 시간

💋 InfluxDB vs 다른 데이터베이스 비교

특징	InfluxDB	MySQL	MongoDB
주요 목적	시계열 데이터	일반 데이터	문서 기반 데이터
속도	빠름 (최적화됨)	보통	보통
저장 구조	시간 기반 (Timestamp 필수)	테이블 기반	JSON 문서 기반
적합한 용도	센서 데이터, 로그 분석	일반 데이터 저장	NoSQL 문서 저장

❖ InfluxDB 설치 (windows)

https://docs.influxdata.com/influxdb/v2/install/?t=Windows

❖ Windows PowerShell -> 관리자로 실행

- 명령어 해석

Expand-Archive .\influxdb2-2.7.11-windows.zip -DestinationPath 'C:\Program Files\InfluxData\' mv 'C:\Program Files\InfluxData\influxdb'

사물인터넷 – 시계열데이터베이스(InfluxDB)

❖ Start InfluxDB

cd -Path 'C:\Program Files\InfluxData\influxdb'
./influxd

- 파일 경로 주의

사물인터넷 - 시계열데이터베이스(InfluxDB)

❖ 실행 화면

```
PS C:#Users#SUPER#Downloads> cd -Path 'C:#Program Files#InfluxData#
PS C:\Program Files\InfluxData> ./influxd
2025-03-17T10:17:37.175226Z
                                info
                                       Welcome to InfluxDB
                                                                {"log_id": "0vKua6a1000", "version": "v2.7.11", "commit
  "fbf5d4ab5e", "build_date":
                              "2024-12-02T17:48:13Z", "log_level": "info"}
2025-03-17T10:17:37.18T228Z
                                info
                                        <u>Reso</u>urces opened,
                                                               {"log_id": "DvKua6a1000", "service": "bolt", "path": "C
|\\Users\\SUPER\\.influxdbv2\\influxd.bolt"}
2025-03-17T10:17:37.182216Z
                                                               {"log_id": "OvKua6a1000", "service": "sqlite", "path":
                                       Resources opened
C:₩₩Users₩₩SUPER₩₩.influxdbv2₩₩influxd.salite"}
2025-03-17T10:17:37.184222Z
                                info
                                       Bringing up metadata migrations {"log_id": "OvKua6a1000", "service": "KV migrat
lons", "migration count": 20}
2025-03-17110:17:37.2596347
                                       Bringing up metadata migrations {"log_id": "OvKua6a1000", "service": "SQL migra
                                info
ions", "migration_count": 8}
2025-03-17T10:17:37.302144Z
                                       Using data dir {"log_id": "OvKua6a1000", "service": "storage-engine", "service
                                info
  "store", "path": "C:\\Users\\SUPER\\,influxdbv2\\engine\\data"]
                                                                {"log_id": "OvKua6a1000", "service": "storage-engine",
2025-03-17T10:17:37.303176Z
                                       Compaction settings
service": "store", "max_concurrent_compactions": 8, "throughput_bytes_per_second": 50331648, "throughput_bytes_per_seco
d_burst": 50331648}
|2025-03-17T10:17:37.304210Z
                                                               {"log_id": "OvKua6a1000", "service": "storage-engine",
                                info
                                        Open store (start)
service": "store", "op_name":
                              "tsdb_open", "op_event": "start"}
2025-03-17T10:17:37.305834Z
                                        <u>Open</u> store (end)
                                                               {"log_id": "OvKua6a1000", "service": "storage-engine",
                              "tsdb_open", "op_event": "end", "op_elapsed": "1.624ms"}
service": "store", "op_name":
2025-03-17T10:17:37.306355Z
                                info
                                      Starting retention policy enforcement service {"log_id": "0vKua6a1000", "serv
ce": "retention", "check_interval":
2025-03-17T10:17:37.307390Z
                                info
                                       Starting precreation service.
                                                                       {"log_id": "OvKua6a1000", "service": "shard-pre
                           "10m", "advance_period": "30m"}
reation", "check_interval":
2025-03-17T10:17:37.311092Z
                                info
                                       Starting query controller
                                                                       -{"log_id": "OvKua6a1000", "service": "storage-ri
ads", "concurrency_quota": 1024, "initial_memory_bytes_quota_per_query": 9223372036854775807, "memory_bytes_quota_per_q
ery": 9223372036854775807, "max_memory_bytes": 0, "queue_size": 1024}
2025-03-17T10:17:37.317330Z
                                       Configuring InfluxQL statement executor (zeros indicate unlimited).
                                                                                                               {"log_i
                                info
  2025-03-17T10:17:37.324091Z
                                                       {"log_id": "OvKua6al000", "service": "telemetry", "interval": '
2025-03-17T10:17:37.327611Z
                                info
                                       Listening
                                                       {"log_id": "OvKua6a1000", "service": "tcp-listener", "transport
```

사물인터넷 – 시계열데이터베이스(InfluxDB)

❖ 웹 GUI 실행 화면

√ http://localhost:8086/

사물인터넷 - 시계열데이터베이스(InfluxDB)

❖ 웹 GUI 실행 화면

- ✓ http://localhost:8086/
- ✓ Buckets -> 데이터베이스 만들기(dust)

사물인터넷 - 시계열데이터베이스(InfluxDB)

❖ 웹 GUI 실행 화면

✓ Buckets -> 데이터베이스 만들기(dust)

❖ 미세먼지센서(GP2Y1010AU0F)

❖ 미세먼지센서

- DataSheet (GP2Y1010AU0F)

- 센서 중앙 홀을 통해 공기중에 먼지 량을 측정
- 원형 구멍 양옆으로 두개의 소자가 부착됨(적외선LED, 적외선 수신소자),

- ❖ 미세먼지센서 1
 - DataSheet (GP2Y1010AU0F)

Pulse-driven wave form

- 적외선 LED 작동방법
- LED On/Off 총 10ms, (0.32ms LED ON, 9.68ms LED OFF), 반복

- 데이터 수신
- 적외선 LED 켠 후 0..28ms 흐르고 적외선 수신기를 작동시켜 값을 Read)

- ❖ 미세먼지센서 2
 - 아두이노 프로그램 코드

```
dust §
int Vo = A0;
int V LED = 2;
float Vo value=0;
                                    70.00
                                    107.00
void setup(){
                                    107.00
  Serial.begin(9600);
                                    127.00
  pinMode(V LED, OUTPUT);
                                    109.00
  pinMode(Vo, INPUT);
                                    125.00
                                    118.00
                                    133.00
void loop()
                                    123.00
                                    105.00
  digitalWrite(V LED, LOW);
                                    112.00
  delayMicroseconds(280);
  Vo value = analogRead(Vo);
  delayMicroseconds(40);
  digitalWrite(V LED, HIGH);
  delayMicroseconds(9680);
  Serial.println(Vo value);
                                     ✓ Autoscroll
  delay(1000);
```

- ❖ 미세먼지센서 3
 - 아날로그 데이터 : 전압을 0~1023로 표현
 - 예) 5V 센서 사용시, 0~5V 값을 0 ~ 1023값으로 표현
 - 전압 V: 아날로그 핀 값 x 5.0 / 1023.0 (원래전압)

❖ 출력 해보기

❖ 미세먼지센서 – 4- 전압 값을 이용,미세먼지 양 측정

3-3 Electro-optical Characteristics

1476.5	(Ta=25°C, Vcc=5V)
	The state of the s

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sensitivity	K	(*1)(*2)(*3)(*4)	0.425	0.5	0.575	V/ (100 μ g/m³)
Output voltage at no dust	Voc	(*2)(*3)(*4)	0.1	0.6	1.1	v
Output voltage range	VOH	RL=4./kΩ (*2)(*3)(*4)	3.4	-		V
LED terminal current	ILED	LED terminal=0V (*2)(*3)	-	10	20	mA
Supply current	ICC	RL=∞ (*2)(*3)	*	11	20	mA

Fig. 3 Output Voltage vs.

- ❖ 미세먼지센서 5
 - 아두이노 프로그램 코드

```
LED_test.ino
       int Vo = A0;
       int V led = 12;
       float Vo value=0;
       float Voltage = 0;
       float dustDensity = 0;
       void setup(){
         Serial.begin(9600);
         pinMode(V_led, OUTPUT);
  10
         pinMode(Vo, INPUT);
  11
  12
       void loop(){
  13
         digitalWrite(V_led, LOW);
  14
         delayMicroseconds(280);
  15
  16
         Vo value = analogRead(Vo);
         delayMicroseconds(40);
  17
         digitalWrite(V led,HIGH);
  18
  19
         delayMicroseconds(9680);
  20
  21
         Voltage = Vo value*5.0 / 1023.0;
  22
         dustDensity = (Voltage - 0.5)/0.005;
  23
         Serial.print("dust=" );
  24
  25
         Serial.println(dustDensity);
  26
  27
         delay(1000);
  28
```

❖ Serial && influxdb 저장 미들웨어 예제 코드 (Python 사용)

```
import serial
from influxdb client import InfluxDBClient
import time
serial port = 'COM4'
baud rate = 9600
timeout = 2
# InfluxDB v2 설정
                                                                               TODO
influxdb url = "http://localhost:8086"
influxdb_token = "ybl3lc8j_H7ANo9dv68YNVZdi3Yu3pZ7vwgVdWPxK1o0CtbznFZIWwzqRmRLZ9"
influxdb_org = "test" # influxDB organization
influxdb bucket = "dust" # 데이터가 저장될 bucket 이름
# InfluxDB 클라이언트 초기화
client = InfluxDBClient(url=influxdb_url, token=influxdb_token, org=influxdb_org
write api = client.write api()
# 시리얼 포트 열기
try:
   ser = serial.Serial(serial_port, baud_rate, timeout = timeout)
    print(f"Connected to {serial_port} at {baud_rate} baud")
except:
   print("Failed to connect to serial port")
   exit()
```

❖ Serial && influxdb 저장 미들웨어 예제 코드 (Python 사용) - 1

```
try:
   while True:
       if ser.in_waiting > 0:
           # 아두이노로부터 시리얼 데이터를 읽음
           line = ser.readline().decode('utf-8').strip()
           # 데이터가 유효한 경우 InfluxDB에 기록
           if "=" in line:
               key, value = line.split("=")
               trv:
                  value = float(value)
                  data=f"sensor_data,device=arduino {key}={value}"
                  write_api.write(bucket=influxdb_bucket, record=data)
                  print(f"Data written to influxDB: {key}={value}")
               except ValueError:
                   print("Invalid data format")
       time.sleep(1)
except KeyboardInterrupt:
   print("프로그램이 종료되었습니다.")
finally:
   ser.close()
```

❖ Python module 설치 - 1

```
C:\Users\SUPER\AppData\Loca|\Programs\Python\Python37>python dust.py
Traceback (most recent call last):
File "dust.py", line 6, in <module>
import serial
ModuleNotFoundError: No module named 'serial'

C:\Users\SUPER\AppData\Loca|\Programs\Python\Python37>pip3 install serial
```



```
C:\Users\SUPER\AppData\Local\Programs\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python\Python
```

❖ Python module 설치 - 2

```
===== RESTART: C:/Users/PC/AppData/Local/Programs/Python/Python313/dust.py ====== Traceback (most recent call last):
    File "C:/Users/PC/AppData/Local/Programs/Python/Python313/dust.py", line 2, in <module>
    from influxdb_client import InfluxDBClient
ModuleNotFoundError: No module named 'influxdb_client'
```


❖ Influxdb token 생성

- ❖ Influxdb 데이터 조회
 - ✓ Dashboard -> bucket -> measurement -> field -> tag

3주차 강의가 끝났습니다, 모두 고생하셨습니다.

