Proof of the TLA Reduction Theorem

Leslie Lamport

Tue 20 Jan 1998 [16:50]

Theorem 3 Define:
$$R \triangleq M \land \mathcal{R}'$$
 $L \triangleq \mathcal{L} \land M$
 $X \triangleq (\neg \mathcal{L}) \land M \land (\neg R')$
 $M^R \triangleq \neg (\mathcal{R} \lor \mathcal{L}) \land M^+ \land \neg (\mathcal{R} \lor \mathcal{L})'$
 $N \triangleq M \lor E$
 $N^R \triangleq M^R \lor E$
 $S \triangleq Init \land \square[N]_v$
 $S^R \triangleq Init \land \square[N^R]_v$
 $I \triangleq \land \mathcal{R} \Rightarrow R^+(\widehat{v}/v, v/v')$
 $\land \mathcal{L} \Rightarrow L^+(\widehat{v}/v')$
 $\land \neg (\mathcal{R} \lor \mathcal{L}) \Rightarrow (\widehat{v} = v)$
 $\land \neg (\mathcal{R} \lor \mathcal{L})(\widehat{v}/v)$
 $Q \triangleq \lor \square \diamondsuit \neg \mathcal{L}$
 $\lor \diamondsuit \square[\text{FALSE}]_v \land \diamondsuit \square \text{ENABLED}(L^+ \land \neg \mathcal{L}')$
 $A_i \triangleq B_i \lor (\Delta_i \land M)$
 $A_i^R \triangleq B_i \lor (\Delta_i \land M^R)$
 $O \triangleq (\exists i \in \mathcal{I} : \Delta_i) \land \square \diamondsuit \langle R \rangle_v \Rightarrow \square \diamondsuit \neg \mathcal{R}$

Assume:

1. (a)
$$Init \Rightarrow \neg(\mathcal{R} \vee \mathcal{L})$$

(b) $E \Rightarrow (\mathcal{R}' \equiv \mathcal{R}) \wedge (\mathcal{L}' \equiv \mathcal{L})$
(c) $\neg(\mathcal{L} \wedge M \wedge \mathcal{R}')$
(d) $\neg(\mathcal{R} \wedge \mathcal{L})$
2. (a) $R \cdot E \Rightarrow E \cdot R$
(b) $E \cdot L \Rightarrow L \cdot E$
(c) $\forall i \in \mathcal{I} : R \cdot \langle E \wedge B_i \rangle_v \Rightarrow \langle E \wedge B_i \rangle_v \cdot R$
(d) $\forall i \in \mathcal{I} : \langle E \wedge B_i \rangle_v \cdot L \Rightarrow L \cdot \langle E \wedge B_i \rangle_v$

 $Prove: \ S \wedge Q \wedge O \ \Rightarrow \ \exists \, \widehat{v} \, : \, \Box I \wedge \widehat{S^R} \wedge (\forall \, i \in \mathcal{I} \, : \, \Box \diamondsuit \langle \, A_i \rangle_v \, \Rightarrow \, \Box \diamondsuit \langle \, \widehat{A_i^R} \rangle_{\widehat{v}}).$

Proof of the Theorem

Let $m, r_1, \ldots, r_k, p, n$ and l_1, \ldots, l_k be variables distinct from the variables of v and \hat{v} , let r equal $\langle r_1, \ldots, r_k \rangle$, and l equal $\langle l_1, \ldots, l_k \rangle$. We also let u denote a k-tuple of bound variables, distinct from all the other variables.

We first define a temporal formula H^c which asserts that b and c are history variables chosen as follows. The initial condition I^c asserts, and it will remain true forever, that c is an infinite sequence of elements of \mathcal{I} in which each element appears infinitely many times. (Such a sequence exists because \mathcal{I} is at most countably infinite.) The inital value of b doesn't matter; we take it to be an arbitrary element of \mathcal{I} . We choose b' to be the first element i in the sequence c such that the current step is a $E \wedge B_i$ step. We define c' to be the sequence obtained from c by deleting the element b'. (If there is no such i, we let c' = c and let b' be an arbitrary element T not in \mathcal{I} .)

```
 \begin{array}{ll} \top & \triangleq & \operatorname{CHOOSE} \ i : i \notin \mathcal{I} \\ I^c & \triangleq & \land \ c \in [\operatorname{Nat} \to \mathcal{I}] \\ & \land \ \forall \ n \in \operatorname{Nat}, \ i \in \mathcal{I} : \ \exists \ m \in \operatorname{Nat} : \ (m > n) \land (c[m] = i) \\ & \land \ b \in \mathcal{I} \cup \{\top\} \\ Pos(i) & \triangleq & \min \{n \in \operatorname{Nat} : \ c[n] = i\} \\ N^c & \triangleq & \text{if} \ E \land (\exists \ i \in \mathcal{I} : \ \langle B_i \rangle_v) \\ & & \quad \text{then} \ \land \ b' = \text{CHOOSE} \ i : \land (i \in \mathcal{I}) \land \langle B_i \rangle_v \\ & & \quad \land \forall \ j \in \mathcal{I} : \ \langle B_j \rangle_v \Rightarrow (\operatorname{Pos}(i) \leq \operatorname{Pos}(j)) \\ & \land \ c' = [n \in \operatorname{Nat} \mapsto \text{if} \ n < \operatorname{Pos}(b') \ \text{then} \ c[n] \\ & \quad \text{else} \ \land \ b' = \text{if} \ v' = v \ \text{then} \ b \ \text{else} \ \top \\ & \land \ c' = c \\ H^c & \triangleq & I^c \land \Box[N^c]_{\langle v,b,c\rangle} \\ \end{array}
```

Note that the initial predicate I^c is actually an invariant of H^c .

For convenience, we define the action D by

$$D \ \stackrel{\triangle}{=} \ \mathbf{if} \ b \ ' = \top \, \mathbf{then} \ E \ \mathbf{else} \ E \wedge \langle \, B_{\,b'} \, \rangle_v$$

We next define a temporal formula H^r , which asserts that r is a history variable, and a predicate I^r that we will prove is an invariant of H^r . Note

that $\rho(u)$ is a state predicate, if u is a k-tuple of state functions.

```
\begin{array}{lll} \rho(u) & \triangleq & (\neg \mathcal{R} \wedge R^+)(u/v,v/v') \\ N^r & \triangleq & \\ r' = \mathbf{if} \ \neg \mathcal{R}' & \mathbf{then} \ v' \\ & & \mathbf{else} & \mathbf{if} \ R & \mathbf{then} \ r \\ & & & \mathbf{else} & \mathbf{if} \ \langle E \rangle_v & \mathbf{then} \ \mathrm{CHOOSE} \ u : \\ & & & & (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v,u/v') \\ & & & \mathbf{else} \ \ r \\ H^r & \triangleq & (r=v) \wedge \square[N^r \wedge (v' \neq v)]_{\langle v,r \rangle} \\ I^r & \triangleq & \wedge \neg \mathcal{R} \Rightarrow (r=v) \\ & & \wedge \mathcal{R} \Rightarrow \rho(r) \end{array}
```

Next, we define \mathbb{R}^p and \mathbb{R}^l , which assert that p, n, and l are prophecy variables. The prophecy variable p is an "infinite prophecy" of the form $\Box(p=F)$ for a temporal formula F. For a prophecy variable like l, the invariant I^l is part of the formula that describes the variable.

```
P^p \stackrel{\triangle}{=} \Box (p = \wedge \Box \text{Enabled} (L^+ \wedge \neg \mathcal{L}')
                                  \wedge \Box [FALSE]_n)
\lambda(u) \stackrel{\triangle}{=} (L^+ \wedge \neg \mathcal{L}')(u/v')
l_{final} \stackrel{\triangle}{=} \text{ CHOOSE } u : \lambda(u)
I^{l} \stackrel{\triangle}{=} \wedge \neg \mathcal{L} \Rightarrow (l = v)
                \wedge \mathcal{L} \Rightarrow \lambda(l)
                \land p \Rightarrow (l = l_{final})
N^l \stackrel{\triangle}{=}
    l = \mathbf{if} \ p \ \mathbf{then} \ l_{final}
                         else if \neg \mathcal{L} then v
                                                      else if L then l'
                                                                               else if \langle E \rangle_v
                                                                                                 then CHOOSE u:
                                                                                                                 \wedge \lambda(u)
                                                                                                                \wedge D(u/v, l'/v')
                                                                                                 else l'
P^l \;\; \triangleq \;\; \Box I^l \wedge \Box [N^l \wedge (\langle \, p,v \, \rangle' \neq \langle \, p,v \, \rangle)]_{\langle \, v,b,c,p,l \, \rangle}
```

Note that the symmetric relation between the history variable r and the prophecy variable p becomes more apparent if, in the definition of N^r , we replace the expression $R^+(u/v)$ with the equivalent expression $\rho(u)'$. (The

expressions are equivalent because the bound variable u in the expression CHOOSE $u:\ldots$ is by definition a constant, so u'=u.)

We also define the action N^p and predicate I^p , which play the role of next-state relation and invariant for P^p .

$$N^{p} \stackrel{\triangle}{=} \wedge p \Rightarrow (v' = v)$$

$$\wedge (v' = v) \Rightarrow (p' = p)$$

$$I^{p} \stackrel{\triangle}{=} p \Rightarrow (\exists u : \lambda(u))$$

For convenience, we combine all these next-state relations and invariants with the following definitions

$$\begin{array}{ll} all & \triangleq \langle v, b, c, r, p, l \rangle \\ N^{all} & \triangleq (v' \neq v) \wedge N \wedge N^c \wedge N^r \wedge N^p \wedge N^l \\ I^{all} & \triangleq I^c \wedge I^r \wedge I^l \end{array}$$

We also define X by

$$X \triangleq \neg \mathcal{L} \wedge M \wedge \neg \mathcal{R}'$$

Finally, we define our refinement mapping \overline{v} by

$$\overline{v} \stackrel{\triangle}{=} \text{ if } \mathcal{R} \text{ then } r$$
else if $\mathcal{L} \text{ then } l \text{ else } v$

We use the following simple observations. If v is the tuple of all variables that appear in the actions A and B, then for any u_1 and u_2 ,

$$(A \cdot B)(u_1/v, u_2/v') \equiv \exists w : A(u_1/v, w/v') \land B(w/v, u_2/v')$$
 (1)

The proof of the theorem follows.

$$(1)1. \ 1. \ (I^c)' \wedge N^c \wedge E \wedge \rho(r) \Rightarrow \exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$$

$$2. \ (I^c)' \wedge N^c \wedge E \wedge \lambda(l)' \Rightarrow \exists u : \lambda(u) \wedge D(u/v, l'/v')$$

3.
$$\forall u : (R^+(u/v, v/v') \Rightarrow \neg \mathcal{L})$$

4.
$$M \equiv R \vee X \vee L$$

 $\langle 2 \rangle$ 1. Assume: $(I^c)' \wedge N^c \wedge E \wedge \rho(r)$ PROVE: $\exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$

$$\langle 3 \rangle 1. \ R \cdot D \Rightarrow D \cdot R$$

PROOF: Assumption $\langle 2 \rangle$ (which implies $b' \in \mathcal{I} \cup \{\top\}$), the definition of D, and hypotheses 2(a) (if $b' = \top$) and 2(c) (if $b' \in \mathcal{I}$).

$$\langle 3 \rangle 2. \ R^+ \cdot D \Rightarrow D \cdot R^+$$

PROOF: By induction from $\langle 3 \rangle 1$ and the associativity of ".".

$$\langle 3 \rangle 3. \ (\neg \mathcal{R} \wedge R^+) \cdot D \Rightarrow D \cdot (\neg \mathcal{R} \wedge R^+)$$

```
Proof:
         (\neg \mathcal{R} \wedge R^+) \cdot D \equiv \neg \mathcal{R} \wedge (R^+ \cdot D)
                                                                              By (1).
                                     \Rightarrow \neg \mathcal{R} \wedge (D \cdot R^+)
                                                                              By \langle 3 \rangle 2.
                                      \equiv (\neg \mathcal{R} \wedge D) \cdot R^+
                                                                              By (1).
                                      \Rightarrow (D \land \neg \mathcal{R}') \cdot R^+
                                                                              By hypothesis 1(b), since D \Rightarrow E.
                                     \equiv D \cdot (\neg \mathcal{R} \wedge R^+)
                                                                              By (1).
   \langle 3 \rangle 4. Q.E.D.
        PROOF: By assumption \langle 2 \rangle, since
            \rho(r) \wedge E
                \Rightarrow \rho(r) \wedge D
                                                                                                 Assumption \langle 2 \rangle and def of N^c.
                \equiv (\neg \mathcal{R} \wedge R^+)(r/v, v/v') \wedge D
                                                                                                 Definition of \rho.
                \Rightarrow ((\neg \mathcal{R} \wedge R^+) \cdot D)(r/v)
                                                                                                 By (1).
                \Rightarrow (D \cdot (\neg \mathcal{R} \wedge R^+))(r/v)
                                                                                                 By \langle 3 \rangle 3.
                \equiv \exists u : D(r/v, u/v') \wedge (\neg \mathcal{R} \wedge R^+)(u/v)
                                                                                                 By (1).
\langle 2 \rangle 2. Assume: (I^c)' \wedge N^c \wedge E \wedge \lambda(l)'
          PROVE: \exists u : (\lambda(u) \land D)(u/v, l'/v')
   \langle 3 \rangle 1. \ D \cdot L \Rightarrow L \cdot D
        PROOF: Assumption \langle 2 \rangle (which implies b' \in \mathcal{I} \cup \{\top\}), the definition
        of D, and Hypotheses 2(b) (if b' = \top) and 2(d) (if b' \in \mathcal{I}).
   \langle 3 \rangle 2. \ D \cdot L^+ \Rightarrow L^+ \cdot D
        PROOF: By induction from \langle 3 \rangle 1 and the associativity of ".".
    \langle 3 \rangle 3. \ \forall u, w : D(u/v, w/v') \land \neg \mathcal{L}(w/v) \Rightarrow \neg \mathcal{L}(u/v)
       PROOF: Hypothesis 1(b) (which implies E \wedge \mathcal{L} \Rightarrow \mathcal{L}'), since assump-
        tion \langle 2 \rangle and the definition of D imply D \Rightarrow E.
   \langle 3 \rangle 4. Q.E.D.
        PROOF: By assumption \langle 2 \rangle, since
        (\lambda(l))' \wedge E
            \Rightarrow (\lambda(l))' \wedge D
                                                                                                    Assumption \langle 2 \rangle and def of N^c.
            \equiv L^+(v'/v, l'/v') \wedge \neg \mathcal{L}(l'/v) \wedge D
                                                                                                    By definition of \lambda.
            \Rightarrow (D \cdot L^+)(l'/v') \land \neg \mathcal{L}(l'/v)
                                                                                                    By (1).
            \Rightarrow (L^+ \cdot D)(l'/v') \land \neg \mathcal{L}(l'/v)
                                                                                                    By \langle 3 \rangle 2.
            \Rightarrow \exists u : L^+(u/v') \wedge D(u/v, l'/v') \wedge \neg \mathcal{L}(l'/v)
                                                                                                    By (1).
            \Rightarrow \exists u : L^+(u/v') \land D(u/v, l'/v') \land \neg \mathcal{L}(u/v)
                                                                                                    By \langle 3 \rangle 3
            \equiv \exists u : \lambda(u) \wedge D(u/v, l'/v')
                                                                                                    By definition of \lambda.
\langle 2 \rangle 3. Assume: u a k-tuple of constants
```

PROVE: $R^+(u/v, v/v') \Rightarrow \neg \mathcal{L}$

 $\langle 3 \rangle 1. R(u/v, v/v') \Rightarrow \neg \mathcal{L}$

PROOF: By definition, R implies \mathcal{R}' , so R(u/v, v/v') implies \mathcal{R} , which by hypothesis 1(d) implies $\neg \mathcal{L}$.

 $\langle 3 \rangle 2$. Q.E.D.

PROOF: $\langle 3 \rangle 1$, by induction on k.

 $\langle 2 \rangle 4. \ M \equiv R \vee X \vee L$

PROOF:
$$M \equiv (\neg \mathcal{L} \land M \land \mathcal{R}') \lor (\neg \mathcal{L} \land M \land \neg \mathcal{R}') \lor (\mathcal{L} \land M)$$
Propositional logic.
$$\equiv (M \land \mathcal{R}') \lor (\neg \mathcal{L} \land M \land \neg \mathcal{R}') \lor (\mathcal{L} \land M)$$
Hypothesis 1(c).
$$\equiv R \lor X \lor L$$

Definitions of R, X, and L.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, $\langle 2 \rangle 3$, and $\langle 2 \rangle 4$.

 $\langle 1 \rangle 2. \ P^p \Rightarrow \Box [N^p]_{\langle v,p \rangle} \wedge \Box I^p$

$$\langle 2 \rangle 1. \ P^p \Rightarrow \Box [N^p]_{\langle v,p \rangle}$$

PROOF: This is semantically obvious, since v = v' implies Enabled $(L^+ \wedge \neg \mathcal{L}') \equiv (\text{Enabled } (L^+ \wedge \neg \mathcal{L}'))'$

but I don't know how to derive it from more primitive proof rules.

 $\langle 2 \rangle 2. P^p \Rightarrow \Box I^p$

PROOF: Follows from the definitions of P^p and I^p by simple temporal reasoning, since ENABLED $(L^+ \wedge \neg \mathcal{L}')$ is equivalent to $\exists u : \lambda(u)$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$.

- $\langle 1 \rangle 3$. **3** b, c: $H^c \wedge \Box I^c$
 - $\langle 2 \rangle 1$. $\exists b, c : H^c$

PROOF: By the standard rule for adding history variables.

- $\langle 2 \rangle 2$. $H^c \Rightarrow \Box I^c$
 - $\langle 3 \rangle 1. \ I^c \wedge [N^c]_{\langle v,c \rangle} \Rightarrow (I^c)'$

PROOF: Immediate from the definitions.

 $\langle 3 \rangle 2$. Q.E.D.

PROOF: $\langle 3 \rangle 1$ and the TLA invariance rule.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and predicate logic.

- $\langle 1 \rangle 4. \ \Box I^c \wedge H^c \wedge S \Rightarrow \exists r : H^r \wedge \Box I^r$
 - $\langle 2 \rangle 1. \; \exists \; r \; : \; H^r$

PROOF: By the rules for history variables.

- $\langle 2 \rangle 2$. $\Box I^c \wedge H^c \wedge S \wedge H^r \Rightarrow \Box I^r$
 - $\langle 3 \rangle 1$. Assume: $(I^c)' \wedge N^c \wedge N \wedge N^r \wedge (v' \neq v) \wedge I^r$

Prove: $(I^r)'$

- $\langle 4 \rangle 1$. Case: $E \wedge \neg R$
 - $\langle 5 \rangle$ 1. Case: \mathcal{R}

 $\langle 6 \rangle 1. \mathcal{R}'$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which

implies $E \wedge \mathcal{R} \Rightarrow \mathcal{R}'$).

 $\langle 6 \rangle 2$. $r' = \text{choose } u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$

PROOF: $\langle 6 \rangle 1$, assumption $\langle 4 \rangle$ ($\neg R$), assumption $\langle 3 \rangle$ (which asserts $(v' \neq v) \wedge N^r$), and the definition of N^r .

 $\langle 6 \rangle 3. \ \rho(r)$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r), and the definition of I^r .

 $\langle 6 \rangle 4. \ (\neg \mathcal{R} \wedge R^+)(r'/v)$

PROOF: $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, assumptions $\langle 3 \rangle$ (which asserts $(I^c)' \wedge N^c$) and $\langle 4 \rangle$, and $\langle 1 \rangle 1.1$.

 $\langle 6 \rangle 5$. Q.E.D.

PROOF: $\langle 6 \rangle 4$ implies $\rho(r)'$, since $(\neg \mathcal{R} \wedge R^+)(r'/v) = (\neg \mathcal{R} \wedge R^+)(r'/v, v'/v') = (\neg \mathcal{R} \wedge R^+)(r/v, v/v')' = \rho(r)'$. The level- $\langle 3 \rangle$ goal then follows from $\langle 6 \rangle 1$ and the definition of I^r .

- $\langle 5 \rangle 2$. Case: $\neg \mathcal{R}$
 - $\langle 6 \rangle 1. \neg \mathcal{R}'$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{R}' \Rightarrow \mathcal{R}$).

 $\langle 6 \rangle 2. \quad r' = v'$

PROOF: $\langle 6 \rangle 1$, assumption $\langle 3 \rangle$ (which asserts N^r), and the definition of N^r .

 $\langle 6 \rangle 3$. Q.E.D.

PROOF: $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, and the definition of I^r imply the level- $\langle 3 \rangle$ goal.

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

- $\langle 4 \rangle 2$. Case: R
 - $\langle 5 \rangle 1. \ r' = r$

PROOF: Assumption $\langle 3 \rangle$ (which asserts N^r), assumption $\langle 4 \rangle$, which by definition of R implies \mathcal{R}' , and the definition of N^r .

- $\langle 5 \rangle 2$. Case: \mathcal{R}
 - $\langle 6 \rangle 1. \ \rho(r) \wedge R \Rightarrow \rho(r)'$

Proof:

$$\rho(r) \wedge R \equiv (\neg \mathcal{R} \wedge R^+)(r/v, v/v') \wedge R \qquad \text{By definition of } \rho.$$

$$\Rightarrow ((\neg \mathcal{R} \wedge R^+) \cdot R)(r/v) \qquad \text{By (1)}.$$

$$\equiv (\neg \mathcal{R} \wedge (R^+ \cdot R))(r/v) \qquad \text{By (1)}.$$

$$\Rightarrow (\neg \mathcal{R} \wedge R^+)(r/v) \qquad \text{By definition of } ^+.$$

$$\equiv (\neg \mathcal{R} \wedge R^+)(r'/v, v'/v') \qquad \text{By } 5 \rangle 1.$$

$$\equiv (\rho(r))' \qquad \text{By definition of } \rho.$$

 $\langle 6 \rangle 2$. Q.E.D.

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r) imply $\rho(r)$. The level- $\langle 3 \rangle$ goal then follows from assumption $\langle 4 \rangle$ (which, by definition of R, implies \mathcal{R}'), step $\langle 6 \rangle 1$, and the definition of I^r .

 $\langle 5 \rangle 3$. Case: $\neg \mathcal{R}$

 $\langle 6 \rangle 1. \ r = v$

PROOF: Assumptions $\langle 5 \rangle$ and $\langle 3 \rangle$ (which asserts I^r) and the definition of I^r .

 $\langle 6 \rangle 2$. R(r'/v, v'/v')

PROOF: By assumption $\langle 4 \rangle$, since $\langle 6 \rangle 1$ and $\langle 5 \rangle 1$ imply r' = v.

 $\langle 6 \rangle 3. \ \rho(r)'$

PROOF: By assumption $\langle 5 \rangle$ and $\langle 6 \rangle 2$, since R implies R^+ and $(\neg \mathcal{R} \wedge R^+)(r'/v, v'/v') = (\neg \mathcal{R} \wedge R^+)(r/v, v/v')' = \rho(r)'$.

 $\langle 6 \rangle 4$. Q.E.D.

PROOF: $\langle 6 \rangle 3$, assumption $\langle 4 \rangle$ (which implies \mathcal{R}'), and the definition of I^r imply the level- $\langle 3 \rangle$ goal.

 $\langle 5 \rangle 4$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 4 \rangle 3$. Case: $\neg \mathcal{R}'$

 $\langle 5 \rangle 1. \ r' = v'$

PROOF: Assumption $\langle 3 \rangle$ (which asserts N^r), assumption $\langle 4 \rangle$, and the definition of N^r .

 $\langle 5 \rangle 2$. Q.E.D.

PROOF: $\langle 5 \rangle 1$, assumption $\langle 4 \rangle$, and the definition of I^r imply our level- $\langle 3 \rangle$ goal.

 $\langle 4 \rangle 4$. Q.E.D.

 $\langle 5 \rangle 1. \ N \equiv (E \wedge \neg R) \vee R \vee (M \wedge \neg R')$

PROOF:
$$N \equiv E \vee M$$
 By definition of N .

$$\equiv E \vee (M \wedge \mathcal{R}') \vee (M \wedge \neg \mathcal{R}')$$
 By predicate logic.

$$\equiv E \vee R \vee (M \wedge \neg \mathcal{R}')$$
 By definition of R .

$$\equiv (E \wedge \neg R) \vee R \vee (M \wedge \neg \mathcal{R}')$$
 By propositional logic.

 $\langle 5 \rangle 2$. Q.E.D.

PROOF: By $\langle 5 \rangle 1$ and assumption $\langle 3 \rangle$ (which asserts N), cases $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 3$ are exhaustive.

 $\langle 3 \rangle 2$. $I^r \wedge \text{UNCHANGED } \langle v, r \rangle \Rightarrow (I^r)'$

PROOF: Immediate, since v and r are the only free variables of I^r .

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: By $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, the definition of H^r , and the usual TLA invariance rule.

 $\langle 2 \rangle 3$. Q.E.D.

```
PROOF: \langle 2 \rangle 1 and \langle 2 \rangle 2 and predicate logic.
\langle 1 \rangle 5. \ \Box I^c \wedge H^c \wedge S \wedge Q \Rightarrow \exists p, l : P^p \wedge P^l
    \langle 2 \rangle 1. \; \exists p : P^p
        PROOF: By the following rule for adding "infinite prophecy" variables:
                 If p does not occur free in the temporal formula F, then \exists p:
                 \Box(p=F).
    \langle 2 \rangle 2. \Box I^c \wedge H^c \wedge Q \wedge S \wedge P^p \Rightarrow \exists l : P^l
        \langle 3 \rangle 1. \ I^p \wedge p \Rightarrow I^l
             \langle 4 \rangle 1. \ I^p \wedge p \Rightarrow \lambda(l_{final})
                 PROOF: By definition of I^p and l_{final}.
             \langle 4 \rangle 2. \lambda(l_{final}) \Rightarrow \mathcal{L}
                 PROOF: By definition of \lambda, since L^+ equals (\mathcal{L} \wedge M)^+ (by definition
                 of L), which implies \mathcal{L}.
             \langle 4 \rangle 3. Q.E.D.
                 PROOF: \langle 4 \rangle 1, \langle 4 \rangle 2, and the definition of I^l
        \langle 3 \rangle 2. \ Q \wedge P^p \Rightarrow \Box \Diamond (\exists ! u : I^l(u/l))
             \langle 4 \rangle 1. \quad \Box I^p \wedge \Box \Diamond \neg \mathcal{L} \Rightarrow \Box \Diamond (\exists ! u : I^l(u/l))
                 \langle 5 \rangle 1. I^p \wedge \neg \mathcal{L} \Rightarrow \neg p
                      PROOF: I^p \wedge p \Rightarrow (\exists u : \lambda(u)) \Rightarrow L^+ \Rightarrow \mathcal{L}.
                 \langle 5 \rangle 2. I^p \wedge \neg \mathcal{L} \Rightarrow (\exists ! u : I^l(u/l))
                      PROOF: \langle 5 \rangle 1 and the definition of I^l imply I^l(u/l) \equiv (u=v).
                 \langle 5 \rangle 3. Q.E.D.
                     PROOF: \langle 5 \rangle 2 and temporal reasoning.
             \langle 4 \rangle 2. \ \Box I^p \land \Box p \Rightarrow \Box (\exists ! u : I^l(u/l))
                 \langle 5 \rangle 1. \ I^l \wedge p \Rightarrow (l = l_{final})
                      Proof: Definition of I^l
                 \langle 5 \rangle 2. \ I^p \wedge p \Rightarrow (\exists ! u : I^l(u/l))
                      PROOF: Immediate from \langle 5 \rangle 1 and \langle 3 \rangle 1.
                 \langle 5 \rangle 3. Q.E.D.
                     PROOF: \langle 5 \rangle 2 and simple temporal reasoning.
             \langle 4 \rangle 3. \ Q \wedge P^p \Rightarrow (\Box \Diamond \neg \mathcal{L}) \vee \Diamond \Box p
                 PROOF: By definition of Q and P^p.
             \langle 4 \rangle 4. Q.E.D.
                 PROOF: By \langle 4 \rangle 1, \langle 4 \rangle 2, \langle 4 \rangle 3, \langle 1 \rangle 2 (which implies P^p \Rightarrow \Box I^p), and
                 simple temporal reasoning.
        \langle 3 \rangle 3. \quad \Box I^c \wedge H^c \wedge S \wedge P^p \Rightarrow \Box [(I^l)' \wedge (v' \neq v) \Rightarrow \exists u : N^l(u/l) \wedge I(u/l)]_v
             \langle 4 \rangle 1. Assume: (I^c)' \wedge N^c \wedge N \wedge I^p \wedge N^p \wedge (I^l)' \wedge (v' \neq v)
```

PROVE: $\exists u : N^l(u/l) \wedge I^l(u/l)$

 $\langle 5 \rangle 1. \neg p$

```
PROOF: Assumption \langle 4 \rangle, since N^p \wedge (v' \neq v) implies \neg p.
```

- $\langle 5 \rangle 2$. Case: $\neg \mathcal{L}$
 - $\langle 6 \rangle 1. \ I^l(v/l) \wedge N^l(v/l)$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 5 \rangle$, and the definitions of I^l and N^l .

 $\langle 6 \rangle 2$. Q.E.D.

PROOF: Immediate from $\langle 6 \rangle 1$.

- $\langle 5 \rangle 3$. Case: \mathcal{L}
 - $\langle 6 \rangle 1$. Case: $E \wedge \neg L$
 - $\langle 7 \rangle 1. \mathcal{L}'$

PROOF: Assumptions $\langle 6 \rangle$ and $\langle 5 \rangle$ and hypothesis 1(b) (which implies $E \wedge \mathcal{L} \Rightarrow \mathcal{L}'$).

 $\langle 7 \rangle 2$. $\exists u : \lambda(u) \wedge D(u/v, l'/v')$

PROOF: $\langle 7 \rangle 1$ and assumption $\langle 4 \rangle$ (which asserts $(I^l)'$) imply $\lambda(l)'$. The result follows from $\lambda(l)'$, assumptions $\langle 6 \rangle$ and $\langle 4 \rangle$ (which implies $(I^c)' \wedge N^c$), and $\langle 1 \rangle 1.2$.

 $\langle 7 \rangle$ 3. Q.E.D.

Let: $u \triangleq \text{choose } u : \lambda(u) \wedge D(u/v, l'/v')$

 $\langle 8 \rangle 1. \ N^l \equiv (l = u)$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 5 \rangle$, assumption $\langle 6 \rangle$, assumption $\langle 4 \rangle$ (which implies $v' \neq v$), and the definition of N^l .

 $\langle 8 \rangle 2$. $N^l(u/l)$

Proof: By $\langle 8 \rangle 1$.

 $\langle 8 \rangle 3. \ \lambda(u)$

PROOF: $\langle 7 \rangle 2$ and the definition of u.

 $\langle 8 \rangle 4$. $I^l(u/l)$

PROOF: $\langle 8 \rangle 3$, assumption $\langle 5 \rangle$, $\langle 5 \rangle 1$, and the definition of I^l .

 $\langle 8 \rangle 5$. Q.E.D.

PROOF: $\langle 8 \rangle 2$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

- $\langle 6 \rangle 2$. Case: L
 - $\langle 7 \rangle$ 1. Case: \mathcal{L}'
 - $\langle 8 \rangle 1. \ (\lambda(l))' \wedge L \Rightarrow \lambda(l')$

PROOF:
$$(\lambda(l))' \wedge L$$

$$\equiv L^{+}(v'/v, l'/v') \wedge \neg \mathcal{L}(l'/v) \wedge L$$

By definition of λ

$$\Rightarrow (L \cdot L^{+})(l'/v') \wedge \neg \mathcal{L}(l'/v)$$

By (1).

$$\Rightarrow (L^{+})(l'/v') \wedge \neg \mathcal{L}(l'/v)$$

By definition of A^{+} for an action A .

$$\equiv \lambda(l')$$

By definition of λ

 $\langle 8 \rangle 2$. $\lambda(l')$

PROOF: Assumption $\langle 4 \rangle$ implies $(I^l)'$, which by assumption $\langle 7 \rangle$ implies $(\lambda(l))'$. By $\langle 8 \rangle 1$, $(\lambda(l))'$ and assumption $\langle 6 \rangle$ imply $\lambda(l')$.

 $\langle 8 \rangle 3. I^l(l'/l)$

PROOF: $\langle 5 \rangle 1$ and assumption $\langle 5 \rangle$ imply $I^l \equiv \lambda(l)$, so $\langle 8 \rangle 2$ implies $I^l(l'/l)$.

 $\langle 8 \rangle 4$. $N^l(l'/l)$

PROOF: $\langle 5 \rangle 1$, assumptions $\langle 5 \rangle$ and $\langle 6 \rangle$ imply $N^l \equiv (l = l')$, so $N^l(l'/l) \equiv (l' = l')$.

 $\langle 8 \rangle 5$. Q.E.D.

PROOF: $\langle 8 \rangle 3$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

 $\langle 7 \rangle 2$. Case: $\neg \mathcal{L}'$

 $\langle 8 \rangle 1.$ l' = v'

PROOF: Assumption $\langle 4 \rangle$ (which implies $(I^l)'$), assumption $\langle 7 \rangle$, and the definition of I^l .

 $\langle 8 \rangle 2$. $\lambda(v')$

PROOF: Assumption $\langle 6 \rangle$ implies L^+ , which with assumption $\langle 7 \rangle$ implies $(L^+ \wedge \neg \mathcal{L}')(v'/v')$, which equals $\lambda(v')$.

 $\langle 8 \rangle 3. I^l(v'/l)$

PROOF: $\langle 5 \rangle 1$ and assumption $\langle 5 \rangle$ imply $I^l \equiv \lambda(l)$, so $\langle 8 \rangle 2$ implies $I^l(v'/l)$.

 $\langle 8 \rangle 4. \ N^l(v'/l)$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 5 \rangle$, and assumption $\langle 6 \rangle$ imply $N^l \equiv (l = l')$. By $\langle 8 \rangle 1$, this implies $N^l \equiv (l = v')$, so $N^l(v'/l) \equiv (v' = v')$.

 $\langle 8 \rangle 5$. Q.E.D.

PROOF: $\langle 8 \rangle 3$ and $\langle 8 \rangle 4$ imply the level- $\langle 4 \rangle$ goal.

 $\langle 7 \rangle$ 3. Q.E.D.

PROOF: Immediate from $\langle 7 \rangle 1$ and $\langle 7 \rangle 2$.

 $\langle 6 \rangle 3$. Q.E.D.

PROOF:
$$N \equiv E \vee M$$
 By definition of N .
 $\equiv E \vee (\mathcal{L} \wedge M)$ By assumption $\langle 5 \rangle$.
 $\equiv E \vee L$ By definition of L .
 $\equiv (E \wedge \neg L) \vee L$ By propositional logic.

Therefore, cases $\langle 6 \rangle 1$ and $\langle 6 \rangle 2$ are exhaustive.

 $\langle 5 \rangle 4$. Q.E.D.

PROOF: $\langle 5 \rangle 3$ and $\langle 5 \rangle 2$.

$$\langle 4 \rangle 2. \quad (I^c)' \wedge [N^c]_{\langle v,b,c \rangle} \wedge [N]_v \wedge I^p \wedge [N^p]_{\langle v,p \rangle} \Rightarrow \\ [(I^l)' \wedge (v' \neq v) \Rightarrow \exists u : N^l(u/l) \wedge I^l(u/l)]_v$$

PROOF: $\langle 4 \rangle 1$, since v' = v implies $[\ldots]_v$.

$$\begin{array}{ccc} \langle 4 \rangle 3. & \Box I^c \wedge \Box [N^c]_{\langle v,b,c \rangle} \wedge \Box [N]_v \wedge \Box I^p \wedge \Box [N^p]_{\langle v,p \rangle} \Rightarrow \\ & \Box [(I^l)' \wedge (v' \neq v) \Rightarrow \exists \ u \ : \ N^l(u/l) \wedge I^l(u/l)]_v \end{array}$$

PROOF: $\langle 4 \rangle 2$ and simple TLA reasoning.

 $\langle 4 \rangle 4$. Q.E.D.

PROOF: $\langle 4 \rangle 3$ and $\langle 1 \rangle 2$.

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: By $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and the following rule for adding prophecy variables.

Let w be an m-tuple of variables, let x be an n-tuple of variables distinct from the variables of w, let I be a predicate and N an action, where all the free variables of I and N are included in w and x. Then

where $\exists ! a$ means there exists a unique a:

$$\exists ! a : F(a) \stackrel{\triangle}{=} \exists a : F(a) \land (\forall b : F(b) \Rightarrow (b = a))$$

 $\langle 2 \rangle 3$. Q.E.D.

 $\langle 3 \rangle 1. \ \Box I^c \wedge H^c \wedge Q \wedge S \wedge P^p \Rightarrow \exists l : (P^p \wedge P^l)$

PROOF: By $\langle 2 \rangle 2$ and temporal predicate logic, since l does not occur free in P^p .

$$\langle 3 \rangle 2. \ (\exists p : \Box I^c \wedge H^c \wedge Q \wedge S \wedge P^p) \Rightarrow \exists p, l : (P^p \wedge P^l)$$

PROOF: By $\langle 3 \rangle 1$ and temporal predicate logic.

$$\langle 3 \rangle 3. \ (\exists p : \Box I^c \land H^c \land Q \land S \land P^p) \equiv \Box I^c \land H^c \land Q \land S$$

PROOF: By $\langle 2 \rangle$ 2 and temporal predicate logic, since p does not occur free in $\Box I^c \wedge H^c \wedge Q \wedge S$.

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: By $\langle 3 \rangle 2$ and $\langle 3 \rangle 3$.

 $\langle 1 \rangle 6$. Assume: $N^{all} \wedge I^{all} \wedge (I^{all})' \wedge X$

PROVE: $\overline{M^R}$

 $\langle 2 \rangle 1. \ (\neg \mathcal{R} \wedge (r = v)) \vee (\neg \mathcal{R} \wedge R^+) (r/v, v/v')$

PROOF: Assumption $\langle 1 \rangle$ implies I^r , and the conclusion follows from I^r and the definition of $\rho(r)$.

 $\langle 2 \rangle 2. \ (\neg \mathcal{L}' \wedge (l' = v')) \vee (L^+ \wedge \neg \mathcal{L}')(v'/v, l'/v')$

PROOF: Assumption $\langle 1 \rangle$ implies $(I^l)'$, and the conclusion follows from $(I^l)'$ and the definition of $\lambda(l)$.

 $\langle 2 \rangle 3.$ $M^R(r/v, l'/v')$

 $\langle 3 \rangle 1. \ (\neg (\mathcal{R} \vee \mathcal{L}) \wedge M^+)(r/v)$

 $\langle 4 \rangle 1$. Case: $\neg \mathcal{R} \wedge (r = v)$

PROOF: Assumption $\langle 1 \rangle$ implies $\neg \mathcal{L} \wedge M$, from which we deduce $\neg (\mathcal{R} \vee \mathcal{L}) \wedge M \wedge (r = v)$, which implies the level- $\langle 3 \rangle$ goal because M implies M^+ .

 $\langle 4 \rangle 2$. Case: $(\neg \mathcal{R} \wedge R^+)(r/v, v/v')$

 $\langle 5 \rangle 1. \neg \mathcal{L}(r/v)$

PROOF: Since R equals $M \wedge \mathcal{R}'$, this follows from assumption $\langle 4 \rangle$ and hypothesis 1(c).

 $\langle 5 \rangle 2. \ (\neg \mathcal{R} \wedge M^+)(r/v)$

PROOF: Assumption $\langle 1 \rangle$ implies M. Since R^+ implies M^+ , assumption $\langle 4 \rangle$ implies $(\neg \mathcal{R} \wedge M^+)(r/v, v/v')$. From (1), we then deduce $(\neg \mathcal{R} \wedge (M^+ \cdot M))(r/v)$, which implies the desired result since $M^+ \cdot M$ implies M^+ .

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: The result follows immediately from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

 $\langle 4 \rangle 3$. Q.E.D.

PROOF: $\langle 2 \rangle 1$ implies that cases $\langle 4 \rangle 1$ and $\langle 4 \rangle 2$ are exhaustive.

 $\langle 3 \rangle 2$. Q.E.D.

 $\langle 4 \rangle 1$. Case: $\neg \mathcal{L}' \wedge (l' = v')$

PROOF: By $\langle 3 \rangle$ 1 and assumption $\langle 1 \rangle$, which implies $\neg \mathcal{R}'$, we have $(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^+)(r/v) \wedge \neg(\mathcal{R} \vee \mathcal{L})' \wedge (l' = v')$, which implies $(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^+ \wedge \neg(\mathcal{R} \vee \mathcal{L})')(r/v, l'/v')$, and the level- $\langle 2 \rangle$ goal follows from the definition of M^R .

 $\langle 4 \rangle 2$. Case: $(L^+ \wedge \neg \mathcal{L}')(v'/v, l'/v')$

 $\langle 5 \rangle 1. \neg \mathcal{R}'(l'/v')$

PROOF: Since L equals $\mathcal{L} \wedge M$, this follows from assumption $\langle 4 \rangle$ and hypothesis 1(c).

 $\langle 5 \rangle 2. \ (\neg (\mathcal{R} \vee \mathcal{L}) \wedge M^+ \wedge \neg \mathcal{L}') (r/v, l'/v')$

PROOF: By (1), $\langle 3 \rangle$ 1 and assumption $\langle 4 \rangle$ imply $((\neg (\mathcal{R} \vee \mathcal{L}) \wedge M^+) \cdot (L^+ \wedge \neg \mathcal{L}'))(r/v, l'/v')$

which by (1) equals

$$(\neg(\mathcal{R}\vee\mathcal{L})\wedge(M^+\cdot L^+)\wedge\neg\mathcal{L}')(r/v,l'/v')$$

The result then follows because $M^+ \cdot L^+$ implies $M^+ \cdot M^+$, which implies M^+ .

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: The level- $\langle 2 \rangle$ goal follows immediately from $\langle 5 \rangle 1$, $\langle 5 \rangle 2$, and the definition of M^R .

 $\langle 4 \rangle 3$. Q.E.D.

PROOF: $\langle 2 \rangle 2$ implies that cases $\langle 4 \rangle 1$ and $\langle 4 \rangle 2$ are exhaustive.

- $\langle 2 \rangle 4$. $\overline{v} = r$
 - $\langle 3 \rangle 1$. Case: \mathcal{R}

PROOF: Immediate from the definition of \overline{v} .

 $\langle 3 \rangle 2$. Case: $\neg \mathcal{R}$

PROOF: Assumption $\langle 1 \rangle$ implies $\neg \mathcal{L}$ and I^r . From $\neg \mathcal{R}$, $\neg \mathcal{L}$, and the definition of \overline{v} we deduce $\overline{v} = v$. From $\neg \mathcal{R} \wedge I^r$ we deduce r = v.

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: Immediate from $\langle 3 \rangle 1$ and $\langle 3 \rangle 2$.

- $\langle 2 \rangle 5. \ \overline{v}' = l'$
 - $\langle 3 \rangle 1$. Case: \mathcal{L}'

PROOF: Assumption $\langle 1 \rangle$ implies $\mathcal{L} \wedge M$, which by hypothesis 1(c)implies $\neg \mathcal{R}'$. From $\neg \mathcal{R}'$, \mathcal{L}' , and definition of \overline{v} , we deduce $\overline{v}' = l'$.

 $\langle 3 \rangle 2$. Case: $\neg \mathcal{L}'$

PROOF: Assumption $\langle 1 \rangle$ implies $\neg \mathcal{R}'$ and $(I^r)'$. From $\neg \mathcal{R}'$ and $\neg \mathcal{L}'$ we deduce $\overline{v}' = v'$, and from $\neg \mathcal{L}' \wedge (I^r)'$ we deduce l' = v'.

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: $\langle 2 \rangle 3$, $\langle 2 \rangle 4$, and $\langle 2 \rangle 5$.

- $\begin{array}{c} \langle 1 \rangle 7. \ Init \wedge \square[N^{all}]_{all} \wedge \square I^{all} \Rightarrow \overline{Init} \wedge \square[\overline{N^R}]_{\overline{v}} \\ \langle 2 \rangle 1. \ Init \wedge I^{all} \Rightarrow \overline{Init} \end{array}$

PROOF: Assumption (1) implies $I^r \wedge I^l$. By hypothesis 1(a), *Init* implies $\neg (\mathcal{R} \vee \mathcal{L})$, which by $I^r \wedge I^l$ implies $(l = v) \wedge (r = v)$, which by definition of \overline{v} implies $\overline{v} = v$, so $\overline{Init} = Init$.

 $\langle 2 \rangle 2$. Assume: $N^{all} \wedge I^{all} \wedge (I^{all})'$

PROVE: $[\overline{N^R}]_{\overline{v}}$

 $\langle 3 \rangle 1. \neg p$

PROOF: Assumption $\langle 2 \rangle$ implies N^{all} , which implies $(v' \neq v) \wedge N^p$, which implies $\neg p$.

- $\langle 3 \rangle 2$. Case: $E \wedge \neg R \wedge \neg L$
 - $\langle 4 \rangle 1$. Case: $\neg \mathcal{R} \wedge \neg \mathcal{L}$
 - $\langle 5 \rangle 1. \ \neg \mathcal{R}' \wedge \neg \mathcal{L}'$

PROOF: Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b) (which

implies $E \wedge \mathcal{L}' \Rightarrow \mathcal{L}$ and $E \wedge \mathcal{R}' \Rightarrow \mathcal{R}$).

 $\langle 5 \rangle 2$. $(\overline{v} = v) \wedge (\overline{v}' = v')$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 4 \rangle$, and the definition of \overline{v} .

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: $\langle 5 \rangle 2$ and case assumption $\langle 3 \rangle$ imply \overline{E} , which in turn implies $\overline{N^R}$.

 $\langle 4 \rangle 2$. Case: \mathcal{R}

 $\langle 5 \rangle 1. \exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$

PROOF: Assumption $\langle 2 \rangle$ implies $I^r \wedge (I^c)' \wedge N^c$. Assumption $\langle 4 \rangle$ and I^r implies $\rho(r)$. The result follows from assumption $\langle 3 \rangle$, $\langle I^c \rangle' \wedge N^c$, $\rho(r)$, and $\langle 1 \rangle 1.1$.

 $\langle 5 \rangle 2$. \mathcal{R}'

PROOF: Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b).

 $\langle 5 \rangle 3$. $r' = \text{CHOOSE } u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$ PROOF: Assumption $\langle 2 \rangle$ (which implies N^r and $v' \neq v$), $\langle 5 \rangle 2$, assumption $\langle 3 \rangle$, and the definition of N^r .

 $\langle 5 \rangle 4$. D(r/v, r'/v')

PROOF: $\langle 5 \rangle 1$ and $\langle 5 \rangle 3$.

 $\langle 5 \rangle 5$. $(\overline{v} = r) \wedge (\overline{v}' = r')$

PROOF: $\langle 5 \rangle 2$, assumption $\langle 4 \rangle$, and the definition of \overline{v} .

 $\langle 5 \rangle 6$. Q.E.D.

PROOF: $\langle 5 \rangle 4$ and $\langle 5 \rangle 5$ imply \overline{D} , which implies \overline{E} (since D implies E), which in turn implies \overline{N}^R .

 $\langle 4 \rangle 3$. Case: \mathcal{L}

 $\langle 5 \rangle 1. \mathcal{L}'$

PROOF: Assumptions $\langle 3 \rangle$ and $\langle 4 \rangle$ and hypothesis 1(b).

 $\langle 5 \rangle 2$. $\lambda(l)'$

PROOF: $\langle 5 \rangle 1$, assumption $\langle 2 \rangle$ (which implies $(I^l)'$), and the definition of I^l .

 $\langle 5 \rangle 3$. $\exists u : \lambda(u) \wedge D(u/v, l'/v')$

PROOF: Assumption $\langle 2 \rangle$ (which implies $(I^c)' \wedge N^c$), $\langle 5 \rangle 2$, assumption $\langle 3 \rangle$, and $\langle 1 \rangle 1.2$.

 $\langle 5 \rangle 4$. $l = \text{CHOOSE } u : \lambda(u) \wedge D(u/v, l'/v')$

PROOF: $\langle 3 \rangle 1$, assumption $\langle 4 \rangle$, assumption $\langle 3 \rangle$, assumption $\langle 2 \rangle$ (which implies $v \neq v'$ and N^l), and the definition of N^l .

 $\langle 5 \rangle 5$. D(l/v, l'/v')

PROOF: $\langle 5 \rangle 3$ and $\langle 5 \rangle 4$.

 $\langle 5 \rangle 6. \ \neg \mathcal{R} \wedge \neg \mathcal{R}'$

PROOF: Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and hypothesis 1(d).

 $\langle 5 \rangle 7$. $(\overline{v} = l) \wedge (\overline{v}' = l')$

PROOF: Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, $\langle 5 \rangle 6$, and the definition of \overline{v} .

 $\langle 5 \rangle 8$. Q.E.D.

PROOF: $\langle 5 \rangle 5$ and $\langle 5 \rangle 7$ imply \overline{D} , which implies \overline{E} (since D implies E), which in turn implies \overline{N}^R .

 $\langle 4 \rangle 4$. Q.E.D.

PROOF: Immediate from $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 3$.

 $\langle 3 \rangle 3$. Case: R

 $\langle 4 \rangle 1. \quad r' = r$

PROOF: Assumption $\langle 2 \rangle$ implies N^r , which by assumption $\langle 3 \rangle$ (which implies \mathcal{R}') implies r' = r.

 $\langle 4 \rangle 2. \ \overline{v}' = r'$

PROOF: Assumption $\langle 3 \rangle$ (which implies \mathcal{R}') and the definition of \overline{v} .

 $\langle 4 \rangle 3. \neg \mathcal{L}$

PROOF: Assumption $\langle 3 \rangle$ (which implies \mathcal{R}') and hypothesis 1(c).

 $\langle 4 \rangle 4$. $\overline{v} = r$

 $\langle 5 \rangle 1$. Case: \mathcal{R}

PROOF: The definition of \overline{v} implies $\overline{v} = r$.

 $\langle 5 \rangle 2$. Case: $\neg \mathcal{R}$

PROOF: By $\langle 4 \rangle 3$, the definition of \overline{v} implies $\overline{v} = v$. Assumption $\langle 2 \rangle$ implies I^r , which implies v = r.

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

 $\langle 4 \rangle 5$. Q.E.D.

PROOF: $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 4 \rangle 4$ imply $\overline{v}' = \overline{v}$, which implies the level- $\langle 2 \rangle$ goal.

 $\langle 3 \rangle 4$. Case: L

 $\langle 4 \rangle 1. \neg \mathcal{R}$

PROOF: Assumption $\langle 3 \rangle$ (which implies \mathcal{L}) and hypothesis 1(d).

 $\langle 4 \rangle 2. \quad l' = l$

PROOF: Assumption $\langle 2 \rangle$ implies N^l , which by $\langle 3 \rangle 1$ and assumption $\langle 3 \rangle$ (which implies \mathcal{L}) implies l = l'.

 $\langle 4 \rangle 3. \ \overline{v} = l$

PROOF: $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$ (which implies \mathcal{L}), and the definition of \overline{v} .

 $\langle 4 \rangle 4. \ \overline{v}' = l'$

 $\langle 5 \rangle 1. \neg \mathcal{R}'$

PROOF: Assumption $\langle 3 \rangle$ (which implies \mathcal{L}) and hypothesis 1(c).

 $\langle 5 \rangle 2$. Case: \mathcal{L}'

PROOF: $\langle 5 \rangle 1$ and the definition of \overline{v} imply $\overline{v}' = l'$.

 $\langle 5 \rangle 3$. Case: $\neg \mathcal{L}'$

PROOF: $\langle 5 \rangle 1$ and the definition of \overline{v} imply $\overline{v}' = v'$. Assumption $\langle 2 \rangle$ implies $(I^l)'$, which implies l' = v', proving $\overline{v}' = l'$.

 $\langle 5 \rangle 4$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 4 \rangle$ 5. Q.E.D.

PROOF: $\langle 4 \rangle 2$, $\langle 4 \rangle 3$, and $\langle 4 \rangle 4$ imply $\overline{v}' = \overline{v}$, which implies the level- $\langle 2 \rangle$ goal.

 $\langle 3 \rangle 5$. Case: X

PROOF: Assumption $\langle 2 \rangle$ and $\langle 1 \rangle 6$ imply $\overline{M^R}$, which implies the level- $\langle 2 \rangle$ goal.

 $\langle 3 \rangle 6$. Q.E.D.

PROOF: Assumption $\langle 2 \rangle$ implies N, which equals $E \vee M$, so $\langle 1 \rangle 1.4$ implies that cases $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, $\langle 3 \rangle 4$, and $\langle 3 \rangle 5$ are exhuastive.

 $\langle 2 \rangle 3. \ [N^{all} \wedge I^{all} \wedge (I^{all})']_{all} \Rightarrow [\overline{N^R}]_{\overline{v}}$

PROOF: $\langle 2 \rangle 2$, since the definition of \overline{v} implies $(\overline{all}' = \overline{all}) \Rightarrow (\overline{v}' = \overline{v})$. $\langle 2 \rangle 4$. Q.E.D.

PROOF: $\langle 2 \rangle 1$, $\langle 2 \rangle 3$, and the usual TLA step-simulation rule.

 $\langle 1 \rangle 8. \ \Box I^{all} \Rightarrow \Box I(\overline{v}/\widehat{v})$

 $\langle 2 \rangle 1. \ I^r \wedge I^l \Rightarrow I(\overline{v}/\widehat{v})$

$$\langle 3 \rangle 1. \quad I^r \wedge \mathcal{R} \Rightarrow R^+(\overline{v}/v, v/v') \wedge \neg (\mathcal{R} \vee \mathcal{L})(\overline{v}/v)$$

PROOF: $I^r \wedge \mathcal{R} \Rightarrow \rho(r) \wedge \mathcal{R}$

By definition of I^r .

$$= R^+(r/v, v/v') \wedge \mathcal{R} \wedge \neg \mathcal{R}(r/v)$$

By definition of ρ .

$$\Rightarrow R^+(r/v, v/v') \wedge \neg \mathcal{L}(r/v) \wedge \neg \mathcal{R}(r/v)$$

Since $R = M \wedge \mathcal{R}'$, hypothesis 1(c) implies $\neg (\mathcal{L} \wedge R^+)$.

$$= R^+(r/v, v/v') \wedge \neg (\mathcal{R} \vee \mathcal{L})(r/v)$$

By propositional logic.

and \mathcal{R} implies $\overline{v} = r$ by definition of \overline{v} .

$$\langle 3 \rangle 2. \quad I^l \wedge \mathcal{L} \Rightarrow L^+(\overline{v}/v') \wedge \neg (\mathcal{R} \vee \mathcal{L})(\overline{v}/v)$$

PROOF: $I^l \wedge \mathcal{L} \Rightarrow \lambda(l)$

By definition of I^l .

$$= L^+(l/v') \wedge \neg \mathcal{L}'(l/v')$$

By definition of λ .

$$\Rightarrow L^+(l/v') \wedge \neg \mathcal{R}'(l/v') \wedge \neg \mathcal{L}'(l/v')$$

Since $L = \mathcal{L} \wedge M$, hypothesis 1(c) implies $\neg (L^+ \wedge \mathcal{R}')$.

$$\Rightarrow L^+(l/v') \land \neg (\mathcal{R}' \lor \mathcal{L}')(l/v')$$

By propositional logic.

$$= L^+(l/v') \wedge \neg (\mathcal{R} \vee \mathcal{L})(l/v)$$

and, by hypothesis 1(d), \mathcal{L} implies $\neg \mathcal{R}$, so \mathcal{L} implies $\overline{v} = l$ by definition of \overline{v} .

 $\langle 3 \rangle 3. \ \neg (\mathcal{R} \vee \mathcal{L}) \Rightarrow (\overline{v} = v)$

PROOF: By definition of \overline{v} .

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: Immediate from $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and the definition of I.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By simple temporal reasoning from $\langle 2 \rangle 1$.

 $\langle 1 \rangle 9. \ \forall \, i \in \mathcal{I} \, : \, Q \, \wedge \, O \, \wedge \, \Box [N^{all}]_{all} \, \wedge \, \Box I^{all} \, \wedge \, \Box \diamondsuit \langle \, A_i \, \rangle_v \, \Rightarrow \, \Box \diamondsuit \langle \, \overline{A_i^R} \, \rangle_{\overline{v}}$

Let: $T \triangleq Q \wedge O \wedge \square [N^{all}]_{all} \wedge \square I^{all}$

 $\begin{array}{l} \langle 2 \rangle 1. \ \forall i \in \mathcal{I} : \ T \wedge \Box \Diamond \langle B_i \rangle_v \Rightarrow \Box \Diamond \langle \overline{B_i} \rangle_{\overline{v}} \\ \langle 3 \rangle 1. \ \text{Assume:} \ (\underline{b'} \in \mathcal{I}) \wedge \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge B_{b'} \rangle_v \end{array}$ PROVE: $\langle \overline{B_{b'}} \rangle_{\overline{v}}$

 $\langle 4 \rangle 1. \neg M$

PROOF: Assumption $\langle 3 \rangle$ and hypothesis 1(e).

 $\langle 4 \rangle 2$. $\neg p$

PROOF: Assumption (3), since N^{all} implies $(v' \neq v) \wedge N^p$ which implies $\neg p$.

- $\langle 4 \rangle 3.$ D
 - $\langle 5 \rangle 1$. E

PROOF: $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$ (which implies N), and the definition of N.

 $\langle 5 \rangle 2$. Q.E.D.

PROOF: $\langle 5 \rangle 1$, assumption $\langle 3 \rangle$ (which implies $B_{b'}$), and the definition of D.

- $\langle 4 \rangle 4$. Case: \mathcal{R}
 - $\langle 5 \rangle 1. \mathcal{R}'$

PROOF: $\langle 4 \rangle 3$, assumption $\langle 4 \rangle$ and hypothesis 1(b) (since $D \Rightarrow$

 $\langle 5 \rangle 2$. $r' = \text{CHOOSE } u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$

PROOF: $\langle 4 \rangle 1$ (which implies $\neg R$), $\langle 5 \rangle 1$, $\langle 4 \rangle 3$ (which with assumption $\langle 3 \rangle$ implies $\langle E \rangle_v$, assumption $\langle 3 \rangle$ (which implies N^r), and the definition of N^r .

 $\langle 5 \rangle 3. \exists u : (\neg \mathcal{R} \wedge R^+)(u/v) \wedge D(r/v, u/v')$

PROOF: Assumption (3) (which implies $(I^c)' \wedge N^c \wedge I^r$), (4)3 (which implies E), assumption $\langle 4 \rangle$ (which with I^r implies $\rho(r)$), and $\langle 1 \rangle 1.1$.

 $\langle 5 \rangle 4$. D(r/v, r'/v')

PROOF: $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 5 \rangle 5$. $\langle B_{b'}(r/v, r'/v') \rangle_r$ By assumption $\langle 3 \rangle$ $(b' \in \mathcal{I})$ and the definition of D, $\langle 5 \rangle 4$ implies $(\langle B_{b'} \rangle_v)(r/v, r'/v')$.

 $\langle 5 \rangle 6. \ (\overline{v} = r) \wedge (\overline{v}' = r')$

PROOF: Assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and the definition of \overline{v} .

 $\langle 5 \rangle 7$. Q.E.D.

PROOF: The level- $\langle 3 \rangle$ goal follows immediately from $\langle 5 \rangle 5$ and $\langle 5 \rangle 6$.

 $\langle 4 \rangle 5$. Case: \mathcal{L}

 $\langle 5 \rangle 1. \mathcal{L}'$

PROOF: Assumption $\langle 4 \rangle$, $\langle 4 \rangle 3$ (which implies E), and hypothesis 1(b).

 $\langle 5 \rangle 2$. $l = \text{CHOOSE } u : \lambda(u) \wedge D(u/v, l'/v')$ PROOF: Assumption $\langle 3 \rangle$ implies N^l . The result then follows from $\langle 4 \rangle 2$, $\langle 4 \rangle 5$, $\langle 4 \rangle 1$ (which implies $\neg L$), $\langle 4 \rangle 3$ (which by assumption $\langle 3 \rangle$ implies $\langle E \rangle_v$), and the definition of N^l .

 $\langle 5 \rangle 3$. $\exists u : \lambda(u) \wedge D(u/v, l'/v')$ PROOF: Assumption $\langle 3 \rangle$ implies $(I^c)' \wedge (I^l)'$. By $\langle 5 \rangle 1$, $(I^l)'$ implies $\lambda(l)'$. The result then follows from $\langle 4 \rangle 3$ and $\langle 1 \rangle 1.2$.

 $\langle 5 \rangle 4$. D(l/v, l'/v')

PROOF: $\langle 5 \rangle 2$ and $\langle 5 \rangle 3$.

 $\langle 5 \rangle 5$. $\langle B_{b'}(l/v, l'/v') \rangle_l$

PROOF: $\langle 5 \rangle 4$, assumption $\langle 3 \rangle$ (which asserts $b' \in \mathcal{I}$), and the definition of D imply $(\langle B_{b'} \rangle_v)(l/v, l'/v')$.

 $\langle 5 \rangle 6. \ (\overline{v} = l) \land (\overline{v}' = l')$

PROOF: Case assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, hypothesis 1(d), and the definition of \overline{v} .

 $\langle 5 \rangle 7$. Q.E.D.

PROOF: The level- $\langle 3 \rangle$ goal follows immediately from $\langle 5 \rangle 5$ and $\langle 5 \rangle 6$.

 $\langle 4 \rangle 6$. Case: $\neg (\mathcal{R} \vee \mathcal{L})$

 $\langle 5 \rangle 1. \neg (\mathcal{R}' \vee \mathcal{L}')$

PROOF: Assumption $\langle 4 \rangle$, $\langle 4 \rangle 3$ (which implies E), and hypothesis 1(b).

 $\langle 5 \rangle 2$. $(\overline{v} = v) \wedge (\overline{v}' = v')$

PROOF: Case assumption $\langle 4 \rangle$, $\langle 5 \rangle 1$, and the definition of \overline{v} .

 $\langle 5 \rangle 3$. Q.E.D

PROOF: Assumption $\langle 3 \rangle$, which implies $\langle B_{b'} \rangle_v$, and $\langle 5 \rangle_v$ imply the level- $\langle 3 \rangle$ goal.

 $\langle 4 \rangle$ 7. Q.E.D.

PROOF: Immediate from $\langle 4 \rangle 4$, $\langle 4 \rangle 5$, and $\langle 4 \rangle 6$.

 $\langle 3 \rangle 2$. Assume: $i \in \mathcal{I}$

PROVE:
$$T \wedge \Box \Diamond \langle (i = b') \wedge B_{b'} \rangle_v \Rightarrow \Box \Diamond \langle \overline{B_i} \rangle_{\overline{v}} \langle 4 \rangle 1$$
. $\Box [N^{all}]_{all} \wedge \Box I^{all} \wedge \Box \Diamond \langle (i = b') \wedge B_{b'} \rangle_v \Rightarrow \Box \Diamond \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge (i = b') \wedge B_{b'} \rangle_v$

$$.. \ \Box[N^{atl}]_{all} \wedge \Box I^{att} \wedge \Box \diamondsuit \langle (i=b') \wedge B_{b'} \rangle_v$$

$$\Rightarrow \Box \diamondsuit \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge (i=b') \wedge i$$

PROOF: Since (all' = all) implies (v' = v), this follows easily from the following three TLA proof rules:

1.
$$\frac{[A]_f \Rightarrow [B]_g}{\Box [A]_f \Rightarrow \Box [B]_g}$$

- 2. $\Box[A]_f \land \Box \mathcal{R} \Rightarrow \Box[A \land \mathcal{R} \land \mathcal{R}']_f$
- 3. $\Box [A]_f \land \Box \Diamond \langle B \rangle_f \Rightarrow \Box \Diamond \langle A \land B \rangle_f$
- $\langle 4 \rangle 2$. Q.E.D.

PROOF: By $\langle 4 \rangle 1$, assumption $\langle 3 \rangle$, and $\langle 3 \rangle 1$, using the TLA rule

$$\frac{A \Rightarrow B}{\Box \Diamond \langle A \rangle_f \Rightarrow \Box \Diamond \langle B \rangle_f}$$

 $\langle 3 \rangle 3$. Assume: $i \in \mathcal{I}$

Prove:
$$T \wedge \Box \Diamond \langle B_i \rangle_v \Rightarrow \Box \Diamond \langle (i = b') \wedge B_{b'} \rangle_v$$

$$\langle 4 \rangle 1$$
. $T \wedge \Box \Diamond \langle B_i \rangle_v \Rightarrow \Box \Diamond \langle E \wedge B_i \rangle_v$

Proof:

$$T \wedge \Box \Diamond \langle B_i \rangle_v$$

$$\Rightarrow \Box [N]_v \wedge \Box \Diamond \langle B_i \rangle_v \qquad \text{Definition of } T$$

$$\Rightarrow \Box \Diamond \langle N \wedge B_i \rangle_v \qquad \text{TLA reasoning.}$$

$$\Rightarrow \Box \Diamond \langle E \wedge B_i \rangle_v$$

the last step following from hypothesis 1(e) and assumption $\langle 3 \rangle$, which imply $N \wedge B_i \equiv E \wedge B_i$.

$$\langle 4 \rangle 2$$
. $T \wedge \Box \Diamond \langle E \wedge B_i \rangle_v \Rightarrow \lor \Box \Diamond \langle (i=b') \wedge E \wedge B_{b'} \rangle_v$

$$\lor \land \Box \diamondsuit \langle E \land B_i \land (i \neq b') \rangle_{\langle v, b, c \rangle}$$

$$\land \diamondsuit \Box [E \land B_i \Rightarrow (i \neq b')]_{\langle v, b, c \rangle}$$

$$\langle 5 \rangle 1. \quad \Box \Diamond \langle E \wedge B_i \rangle_v \Rightarrow \vee \Box \Diamond \langle (i = b') \wedge E \wedge B_{b'} \rangle_v \\ \vee \wedge \Box \Diamond \langle E \wedge B_i \wedge (i \neq b') \rangle_v$$

$$\wedge \Diamond \Box [E \wedge B_i \Rightarrow (i \neq b')]_v$$

PROOF: For any action A and predicate q, we have $\Box \Diamond \langle A \rangle_v$

$$\equiv \wedge \Box \Diamond \langle A \rangle_v \qquad \Box \Diamond F \vee \Diamond \Box \neg F, \text{ for any } F \\ \wedge \Box \Diamond \langle A \wedge q \rangle_v \vee \Diamond \Box [\neg A \vee \neg q]_v$$

$$\Rightarrow \lor \Box \Diamond \langle A \land q \rangle_v$$
 Propositional logic.

$$\vee \Diamond \Box [\neg A \vee \neg q]_v \wedge \Box \Diamond \langle A \rangle_v$$

$$\Rightarrow \vee \Box \Diamond \langle A \wedge q \rangle_v \qquad \Diamond \Box [B]_v \wedge \Box \Diamond \langle C \rangle_v \Rightarrow \\ \vee \Diamond \Box [\neg A \vee \neg q]_v \wedge \Box \Diamond \langle A \wedge \neg q \rangle_v \qquad \Box \Diamond \langle B \wedge C \rangle_v \text{ for any } B, C.$$

$$\langle 5 \rangle 2. \quad T \Rightarrow \\ \wedge \Box \Diamond \langle (i = b') \wedge E \wedge B_{b'} \rangle_v \equiv \Box \Diamond \langle (i = b') \wedge E \wedge B_{b'} \rangle_{\langle v, b, c \rangle} \\ \wedge \Diamond \Box [E \wedge B_i \Rightarrow (i \neq b')]_v \equiv \Diamond \Box [E \wedge B_i \Rightarrow (i \neq b')]_{\langle v, b, c \rangle} \\ \langle 6 \rangle 1. \quad N^c \wedge (v' = v) \Rightarrow (\langle v, b, c \rangle' = \langle v, b, c \rangle) \\ \text{PROOF: By definition of } N^c. \\ \langle 6 \rangle 2. \text{ For any action } A,$$

$$\Box [N^c]_{\langle v, b, c \rangle} \Rightarrow \wedge \Diamond \Box [A]_v = \Diamond \Box [A]_{\langle v, b, c \rangle}$$

$$\Box[N^c]_{\langle v,b,c\rangle} \Rightarrow \wedge \Diamond \Box[A]_v \equiv \Diamond \Box[A]_{\langle v,b,c\rangle} \\ \wedge \Box \Diamond[A]_v \equiv \Box \Diamond[A]_{\langle v,b,c\rangle}$$

PROOF: By $\langle 6 \rangle 1$, using the follow rules, among others

$$\frac{[A]_f \wedge [B]_g \Rightarrow [C]_h}{\square [A]_f \wedge \square [B]_g \Rightarrow \square [C]_h} \quad \frac{[A]_f \wedge \langle B \rangle_g \Rightarrow \langle C \rangle_h}{\square [A]_f \wedge \Diamond [B]_g \Rightarrow \Diamond \langle C \rangle_h)}$$

 $\langle 6 \rangle 3$. Q.E.D.

Proof: By $\langle 6 \rangle 2$, since T implies $\Box [N^c]_{\langle v,b,c \rangle}$

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: Immediate from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$

$$\langle 4 \rangle 3. \quad T \Rightarrow \neg (\land \Box \Diamond \langle E \land B_i \land (i \neq b') \rangle_{\langle v,b,c \rangle} \\ \land \Diamond \Box [(E \land B_i) \Rightarrow (i \neq b')]_{\langle v,b,c \rangle})$$

 $\langle 5 \rangle 1$. $I^c \wedge N^c \wedge E \wedge B_i \wedge (i \neq b') \Rightarrow Pos(i)' < Pos(i)$ PROOF: $I^c \wedge N^c \wedge E \wedge B_i$ imply $b' \in \mathcal{I}$. From $b' \in \mathcal{I}$, $i \in \mathcal{I}$ (assumption $\langle 3 \rangle$), $E \wedge B_i$, and N^c , we deduce Pos(b') < Pos(i), which by N^c implies c'[Pos(i) - 1] = i. By definition of Pos, this implies Pos(i)' < Pos(i).

$$\begin{array}{ll} \langle 5 \rangle 2. & \Box I^{c} \wedge \Box [N^{c}]_{\langle v,b,c \rangle} \wedge \Box [(E \wedge B_{i}) \Rightarrow (i \neq b')]_{\langle v,b,c \rangle} \\ & \Rightarrow \Box [Pos(i)' \leq Pos(i)]_{\langle v,b,c \rangle} \end{array}$$

$$\langle 6 \rangle 1. \ I^c \wedge N^c \wedge \neg (E \wedge B_i) \Rightarrow Pos(i)' \leq Pos(i)$$

 $\langle 7 \rangle 1$. Case: $E \wedge \exists j \in \mathcal{I} : B_j$

PROOF: In this case, I^c and N^c imply c'[Pos(i)] = i or c'[Pos(i) - 1] = i, either case implying $Pos(i)' \leq Pos(i)$.

 $\langle 7 \rangle 2$. Case: $\neg (E \land \exists j \in \mathcal{I} : B_j)$

PROOF: In this case, c' = c, so Pos(i)' = Pos(i).

 $\langle 7 \rangle$ 3. Q.E.D.

PROOF: Immediate from $\langle 7 \rangle 1$ and $\langle 7 \rangle 2$.

$$\langle 6 \rangle 2. \quad I^c \wedge [N^c]_{\langle v,b,c \rangle} \wedge [(E \wedge B_i) \Rightarrow (i \neq b')]_{\langle v,b,c \rangle} \Rightarrow [Pos(i)' \leq Pos(i)]_{\langle v,b,c \rangle}$$

PROOF: $\langle 5 \rangle 1$, $\langle 6 \rangle 1$, and propositional logic.

 $\langle 6 \rangle 3$. Q.E.D.

PROOF: By $\langle 6 \rangle$ 2 and the TLA rules

$$\frac{I \wedge I' \wedge [A]_f \Rightarrow [B]_g}{\Box I \wedge \Box [A]_f \Rightarrow \Box [B]_g} \quad \frac{[A]_f \wedge [B]_g \equiv [C]_h}{\Box [A]_f \wedge \Box [B]_g \equiv \Box [C]_h}$$

$$\langle 5 \rangle 3. \quad \Box^{c} \wedge \Box[N^{c}]_{\langle v,b,c\rangle} \wedge \Box \Diamond \langle E \wedge B_{i} \wedge (i \neq b') \rangle_{\langle v,b,c\rangle} \\ \Rightarrow \Box \Diamond \langle Pos(i)' < Pos(i) \rangle_{\langle v,b,c\rangle} \\ \text{PROOF: By } \langle 5 \rangle 1, \text{ the TLA rules} \\ \underline{I \wedge [A]_{f} \wedge \langle B \rangle_{g} \Rightarrow \langle C \rangle_{h}} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Box I \wedge \Box[A]_{f} \wedge \Diamond \langle B \rangle_{g} \Rightarrow \Diamond \langle C \rangle_{h} \\ \Diamond I \wedge I \rangle \\ \langle 5 \rangle 4. \text{ Q.E.D.} \\ \langle 6 \rangle 1. \wedge I \\ \wedge \Box \langle C \wedge B_{i} \rangle \wedge \langle i \neq b' \rangle \rangle_{\langle v,b,c\rangle} \\ \wedge \Diamond \Box[C \wedge B_{i} \rangle \otimes \langle i \neq b' \rangle \rangle_{\langle v,b,c\rangle} \\ \wedge \Diamond \Box[C \wedge B_{i} \rangle \otimes \langle i \neq b' \rangle \rangle_{\langle v,b,c\rangle} \\ \Rightarrow \wedge \Box[Pos(i)' \leq Pos(i)]_{\langle v,b,c\rangle} \\ \wedge \Box \langle Pos(i)' \leq Pos(i) \rangle_{\langle v,b,c\rangle} \\ \wedge \Box \langle Pos(i)' \leq Pos(i) \rangle_{\langle v,b,c\rangle} \\ \text{asserts that } Pos(i) \text{ is decremented infinitely many times and remains a natural number, which is impossible. Since T implies I^{c}, which implies $\Box(Pos(i) \in Nat)$, $(6)1$ implies the level-(4) goal.} \\ \langle 4 \rangle 4 \wedge Q.E.D. \\ \text{PROOF: By propositional logic from } \langle 4 \rangle 1, \langle 4 \rangle 2, \text{ and } \langle 4 \rangle 3. \\ \langle 3 \rangle 4. \text{ Q.E.D.} \\ \text{PROOF: By } \langle 3 \rangle 2 \text{ and } \langle 3 \rangle 3. \\ \langle 2 \rangle 2. (\exists i \in \mathcal{I} : \Delta_{i}) \wedge T \wedge \Box \langle M \rangle_{v} \Rightarrow \Box \Diamond \langle \overline{M^{R}} \rangle_{\overline{v}} \\ \partial \langle 3 \rangle 1. T \wedge \Box \langle X \rangle_{v} \Rightarrow \Box \langle \overline{M^{R}} \rangle_{\overline{v}} \\ \text{PROOF: From the general rule} \\ \Box I \wedge \Box [A]_{v} \wedge \Box \Diamond \langle B \rangle_{v} \Rightarrow \Box \Diamond \langle I \wedge I' \wedge A \wedge B \rangle_{v} \\ \text{and } \Box [N^{all}]_{all} \Rightarrow \Box [N^{all}]_{v} \text{ (which follows from } [N^{all}]_{all} \Rightarrow [N^{all}]_{v}), \\ \text{we deduce that } T \wedge \Box \Diamond \langle X \rangle_{v} \text{ implies } \Box \Diamond \langle N^{all} \wedge I^{all} \wedge (I^{all})' \wedge X \rangle_{v}. \\ \text{The result then follows from } \langle 1 \rangle 6. \\ \langle 3 \rangle 2. (\exists i \in \mathcal{I} : \Delta_{i}) \wedge T \wedge \Box \Diamond \langle R \rangle_{v} \Rightarrow \Box \Diamond \langle \overline{M^{R}} \rangle_{\overline{v}} \\ \langle 4 \rangle 1. (\exists i \in \mathcal{I} : \Delta_{i}) \wedge T \wedge \Box \Diamond \langle R \rangle_{v} \Rightarrow \Box \Diamond \langle \overline{M^{R}} \rangle_{v} \\ \langle 4 \rangle 2. \Box [N_{v} \wedge \Box \Diamond \langle R \rangle_{v} \wedge \Box \Diamond \neg \mathcal{R} \Rightarrow \Box \Diamond \langle X \rangle_{v}$$

PROOF: Since R implies \mathcal{R}' , we infer that $\Box \Diamond \langle R \rangle_v$ implies $\Box \Diamond \mathcal{R}$,

 $\langle 5 \rangle 1. \quad \Box \Diamond \langle R \rangle_v \wedge \Box \Diamond \neg \mathcal{R} \Rightarrow \Box \Diamond \langle \mathcal{R} \wedge \neg \mathcal{R}' \rangle_v$

and the result follows from the general rule

$$\Box \Diamond P \land \Box \Diamond \neg P \Rightarrow \Box \Diamond \langle P \land \neg P' \rangle_{P}$$

plus the observation that $\Box \Diamond \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_{\mathcal{R}}$ implies $\Box \Diamond \langle \mathcal{R} \land \neg \mathcal{R}' \rangle_{v}$ because $\mathcal{R}' \neq \mathcal{R}$ implies $v' \neq v$ (because v contains all the variables that occur free in \mathcal{R}).

$$\langle 5 \rangle 2$$
. $\Box [N]_v \wedge \Box \Diamond \langle \mathcal{R} \wedge \neg \mathcal{R}' \rangle_v \Rightarrow \Box \Diamond \langle X \rangle_v$

$$\langle 6 \rangle 1. \ N \wedge \mathcal{R} \wedge \neg \mathcal{R}' \Rightarrow X$$

PROOF: $N \wedge \mathcal{R} \wedge \neg \mathcal{R}' \equiv (M \vee E) \wedge \mathcal{R} \wedge \neg \mathcal{R}'$ Definition of N. $\equiv M \wedge \mathcal{R} \wedge \neg \mathcal{R}' \qquad \text{Hypothesis 1(b)}.$ $\Rightarrow M \wedge \neg \mathcal{L} \wedge \neg \mathcal{R}' \qquad \text{Hypothesis 1(d)}.$ $= X \qquad \qquad \text{Definition of } X$

 $\langle 6 \rangle 2$. Q.E.D.

PROOF: From $\langle 6 \rangle 1$ by the general rule

$$\frac{[N]_v \wedge \langle A \rangle_v \Rightarrow \langle B \rangle_v}{\square[N]_v \wedge \square \Diamond \langle A \rangle_v \Rightarrow \square \Diamond \langle B \rangle_v}$$

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: By propositional logic from $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

 $\langle 4 \rangle 3$. Q.E.D.

PROOF: By propositional logic from $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and $\langle 3 \rangle 1$, since T implies $\Box [N^{all}]_{all}$ which implies $\Box [N]_v$.

$$\langle 3 \rangle 3. \quad T \wedge \Box \Diamond \langle L \rangle_v \Rightarrow \Box \Diamond \langle \overline{M^R} \rangle_{\overline{v}}$$

$$\langle 4 \rangle 1. \quad T \wedge \Box \Diamond \langle L \rangle_v \Rightarrow \Box \Diamond (\neg \mathcal{L})$$

PROOF: By definition of Q (which is implied by T), since $\Box \Diamond \langle L \rangle_v \Rightarrow \Box \Diamond \langle \text{TRUE} \rangle_v = \Box \neg \Box [\text{FALSE}]_v = \neg \Diamond \Box [\text{FALSE}]_v$.

$$\langle 4 \rangle 2. \ (\neg \mathcal{L}) \wedge \Box [N \wedge \neg X]_v \Rightarrow \Box (\neg \mathcal{L})$$

$$\langle 5 \rangle 1. \ \neg \mathcal{L} \wedge [N \wedge \neg X]_v \Rightarrow \neg \mathcal{L}'$$

$$\langle 6 \rangle 1. \ \neg \mathcal{L} \wedge E \Rightarrow \neg \mathcal{L}'$$

PROOF: Hypothesis 1(b).

$$\langle 6 \rangle 2. \ \neg \mathcal{L} \wedge R \Rightarrow \neg \mathcal{L}'$$

PROOF: By definition of R (which implies \mathcal{R}') and hypothesis 1(d).

$$\langle 6 \rangle 3. \ \neg \mathcal{L} \wedge L \Rightarrow \neg \mathcal{L}'$$

PROOF: By definition of L (which implies \mathcal{L}).

$$\langle 6 \rangle 4. \ \neg \mathcal{L} \land (v' = v) \Rightarrow \neg \mathcal{L}'$$

PROOF: By the hypothesis that the tuple v contains all the free variables of \mathcal{L} .

 $\langle 6 \rangle 5$. Q.E.D.

PROOF: By $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, $\langle 6 \rangle 4$, since $\langle 1 \rangle 1.4$ and the definition of N imply that $N \wedge \neg X$ equals $E \vee R \vee L$.

 $\langle 5 \rangle 2$. Q.E.D.

PROOF: By $\langle 5 \rangle 1$ and the standard TLA invariance rule.

- $\langle 4 \rangle 3. \quad \Box \Diamond \langle L \rangle_v \wedge \Box \Diamond \neg \mathcal{L} \Rightarrow \Box \Diamond \langle \neg N \vee X \rangle_v$
 - $\langle 5 \rangle 1. \ \diamondsuit \mathcal{L} \Rightarrow \diamondsuit \langle \neg N \vee X \rangle_v \vee \mathcal{L}$

PROOF: By $\langle 4 \rangle 2$, since $\neg \Box [N \land \neg X]_v$ is equivalent to $\Diamond \langle \neg N \lor X \rangle_v$.

 $\langle 5 \rangle 2. \quad \Box \diamondsuit \mathcal{L} \Rightarrow \Box \diamondsuit \langle \neg N \lor X \rangle_v \lor \diamondsuit \Box \mathcal{L}$

PROOF: By $\langle 5 \rangle 1$ and the proof rules

$$F \Rightarrow G \qquad \Box(\Diamond F \lor G) \Rightarrow \Box \Diamond F \lor \Diamond \Box G$$

$$\Box F \Rightarrow \Box G$$

 $\langle 5 \rangle 3$. Q.E.D.

Proof:

$$\Box \Diamond \langle L \rangle_v \wedge \Box \Diamond \neg \mathcal{L}$$

$$\Rightarrow \Box \Diamond \mathcal{L} \wedge \Box \Diamond \neg \mathcal{L}$$

Since $L \Rightarrow \mathcal{L}$.

$$\Rightarrow (\Box \diamondsuit \langle \neg N \lor X \rangle_v \lor \diamondsuit \Box \mathcal{L}) \land \Box \diamondsuit \neg \mathcal{L} \text{ By } \langle 5 \rangle 2.$$

$$\Rightarrow \Box \Diamond \langle \neg N \vee X \rangle_v$$

Since $\Box \Diamond \neg \mathcal{L} \equiv \neg \Diamond \Box \mathcal{L}$.

 $\langle 4 \rangle 4$. $T \wedge \Box \Diamond \langle L \rangle_v \Rightarrow \Box \Diamond \langle X \rangle_v$

 $\langle 5 \rangle 1. \quad T \wedge \Box \Diamond \langle L \rangle_v \Rightarrow \Box \Diamond \langle \neg N \vee X \rangle_v$

PROOF: $\langle 4 \rangle 1$ and $\langle 4 \rangle 3$.

 $\langle 5 \rangle 2$. $\square[N]_v \wedge \square \diamondsuit \langle \neg N \vee X \rangle_v \Rightarrow \square \diamondsuit \langle X \rangle_v$

PROOF: By the TLA rule $\Box [A]_v \land \Diamond \langle B \rangle_v \Rightarrow \Diamond \langle A \land B \rangle_v$.

 $\langle 5 \rangle 3$. Q.E.D.

PROOF: $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$, since T implies $\square[N]_v$.

 $\langle 4 \rangle$ 5. Q.E.D.

PROOF: $\langle 4 \rangle 4$ and $\langle 3 \rangle 1$.

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, $\langle 3 \rangle 3$, and $\langle 1 \rangle 1.4$, since $\Box \diamondsuit$ distributes over disjunction.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ and definition of A_i , since $\Delta_i \wedge \Box \Diamond \langle M \rangle_v$ equals $\Box \Diamond \langle \Delta_i \wedge M \rangle_v$ (because Δ_i is a constant), and $\Box \Diamond (F \vee G)$ is equivalent to $(\Box \Diamond F) \vee (\Box \Diamond G)$ for any temporal formulas F and G.

 $\langle 1 \rangle 10$. Q.E.D.

 $\langle 2 \rangle 1. \ S \wedge H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l \Rightarrow \Box I^{all} \wedge \Box [N^{all}]_{all}$

$$\langle 3 \rangle 1. \ (v'=v) \wedge I^r \wedge I^l \wedge (I^l)' \wedge N^c \wedge N^r \wedge N^p \wedge N^l \Rightarrow (all'=all)$$

$$\langle 4 \rangle 1. \ (v' = v) \wedge N^c \Rightarrow \langle b, c \rangle' = \langle b, c \rangle$$

PROOF: By definition of N^c .

$$\langle 4 \rangle 2$$
. $I^r \wedge (v' = v) \wedge N^r \Rightarrow (r' = r)$

PROOF: Follows from the definitions of I^r and N^r , and the hypothesis that the free variables of \mathcal{R} are included in the tuple of

variables v, which implies $(v' = v) \Rightarrow (\mathcal{R}' = \mathcal{R})$.

$$\langle 4 \rangle 3. \ (v' = v) \wedge N^p \Rightarrow (p' = p)$$

PROOF: Immedate from the definition of N^p .

$$\langle 4 \rangle 4. \ (v' = v) \wedge N^p \wedge I^l \wedge (I^l)' \wedge N^l \Rightarrow (l' = l)$$

 $\langle 5 \rangle 1$. Case: p

$$\langle 6 \rangle 1. \ I^l \Rightarrow (l = l_{final})$$

PROOF: Assumption $\langle 5 \rangle$ and definition of I^l .

$$\langle 6 \rangle 2$$
. $(v' = v) \wedge N^p \Rightarrow p'$

PROOF: Assumption $\langle 5 \rangle$ and definition of N^p .

$$\langle 6 \rangle 3. \ (I^l)' \wedge p' \Rightarrow (l' = l'_{final})$$

PROOF: By definition of I^l .

$$\langle 6 \rangle 4. \ (v = v') \Rightarrow (l'_{final} = l_{final})$$

PROOF: By definition of l_{final} , since, for any constant tuple u, v are the only free variables of $\lambda(u)$.

 $\langle 6 \rangle 5$. Q.E.D.

PROOF: The level- $\langle 4 \rangle$ goal follows from $\langle 6 \rangle 1$, $\langle 6 \rangle 2$, $\langle 6 \rangle 3$, and $\langle 6 \rangle 4$.

 $\langle 5 \rangle 2$. Case: $\neg p$

$$\langle 6 \rangle 1. \ N^p \Rightarrow \neg p'$$

PROOF: Assumption $\langle 5 \rangle$ and the definition of N^p .

 $\langle 6 \rangle 2$. Case: $\neg \mathcal{L}$

PROOF: In this case, (v' = v) implies $\neg \mathcal{L}'$, so by $\langle 6 \rangle 1$, $I^l \wedge (I^l)' \wedge N^p \wedge (v' = v)$ implies l = v = v' = l'.

 $\langle 6 \rangle 3$. Case: \mathcal{L}

PROOF: In this case, assumption $\langle 5 \rangle$ implies $(v' = v) \wedge N^l \Rightarrow (l = l')$.

 $\langle 6 \rangle 4$. Q.E.D.

PROOF: Cases $\langle 6 \rangle 2$ and $\langle 6 \rangle 3$ are exhaustive.

 $\langle 5 \rangle$ 3. Q.E.D.

PROOF: By $\langle 5 \rangle 1$ and $\langle 5 \rangle 2$.

 $\langle 4 \rangle$ 5. Q.E.D.

PROOF: By $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, $\langle 4 \rangle 3$, $\langle 4 \rangle 4$, and the definition of all.

$$\begin{array}{c} \langle 3 \rangle 2. \ \Box [N]_v \wedge \Box I^r \wedge \Box I^l \wedge \Box [N^c]_{\langle v,b,c\rangle} \wedge \Box [N^r \wedge (v' \neq v)]_{\langle v,r\rangle} \\ \wedge \Box [N^p]_{\langle v,p\rangle} \wedge \Box [N^l \wedge (\langle p,v\rangle' \neq \langle p,v\rangle]_{\langle v,b,c,p,l\rangle} \Rightarrow \Box [N^{all}]_{all} \end{array}$$

PROOF: By the definition of N^{all} , $\langle 3 \rangle 1$, repeated application of the rule

and the usual TLA rules

te distai l'LA rules
$$\Box I \wedge \Box [A]_f \Rightarrow \Box [I \wedge I' \wedge A]_f \qquad \frac{[A]_f \wedge [B]_g \Rightarrow [C]_h}{\Box [A]_f \wedge \Box [B]_g \Rightarrow \Box [C]_h}$$

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: Follows easily from $\langle 3 \rangle 2$, $\langle 1 \rangle 2$, the definitions, and the rule that \Box distributes over \wedge .

PROOF: $\langle 2 \rangle 1$, $\langle 1 \rangle 7$, $\langle 1 \rangle 8$, $\langle 1 \rangle 9$, and the definition of S^R .

$$\langle 2 \rangle 3. \ S \wedge Q \wedge O \wedge H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l$$

$$\Rightarrow \exists \widehat{v} : \widehat{S^R} \land \Box I \land (\forall i \in \mathcal{I} : \Box \Diamond \langle A_i \rangle_v \Rightarrow \Box \Diamond \langle \widehat{A_i^R} \rangle_{\widehat{v}})$$

PROOF: $\langle 2 \rangle 2$ and (temporal) predicate logic.

$$\langle 2 \rangle 4. \ S \wedge Q \wedge O \wedge (\exists b, c, r, p, l : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l)$$

$$\Rightarrow (\exists \widehat{x} : \widehat{S^R} \land \Box I \land (\forall i \in \mathcal{I} : \Box \Diamond \langle A_i \rangle_v \Rightarrow \Box \Diamond \langle \widehat{A_i^R} \rangle_{\widehat{v}}))$$

PROOF: $\langle 2 \rangle 3$ and (temporal) predicate logic, since b, c, r, p, and l do not occur free in S, Q, O, or

$$\exists \widehat{v} : \widehat{S^R} \wedge \Box I \wedge (\forall i \in \mathcal{I} : \Box \Diamond \langle A_i \rangle_v \Rightarrow \Box \Diamond \langle \widehat{A_i^R} \rangle_{\widehat{v}})$$

$$\langle 2 \rangle 5. \ S \wedge Q \ \Rightarrow \ (\exists \ b, c, r, p, l \ : \ H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l)$$

$$\langle 3 \rangle 1. \ H^c \wedge \Box I^c \wedge S \Rightarrow \exists \ r : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r$$

PROOF: By $\langle 1 \rangle 4$, since r does not occur free in H^c and I^c .

$$\langle 3 \rangle 2. \ H^c \wedge \Box I^c \wedge S \wedge Q \Rightarrow \exists p, l : P^p \wedge P^l$$

PROOF: $\langle 1 \rangle 5.$

 $\langle 3 \rangle 3$. $H^c \wedge \Box I^c \wedge S \wedge Q \Rightarrow \exists r, p, l : H^c \wedge \Box I^c \wedge H^r \wedge \Box I^r \wedge P^p \wedge P^l$ PROOF: $\langle 3 \rangle 1$ and $\langle 3 \rangle 2$, since r does not occur free in P^p or P^l , and p and l do not occur free in H^c , $\Box I^c$, H^r , or $\Box I^r$. (We are using the rule that if x does not occur free in F, then $(\exists x : F \wedge G) \equiv F \wedge (\exists x : G)$.)

$$\begin{array}{c} \langle 3 \rangle 4. \;\; S \wedge Q \wedge (\blacksquare b, c \; : \; H^c \wedge \square I^c) \Rightarrow \blacksquare b, c, r, p, l \; : \; H^c \wedge \square I^c \wedge H^r \wedge \square I^r \wedge P^p \wedge P^l \end{array}$$

PROOF: By $\langle 3 \rangle 3$, since b and c do not occur free in S or Q. (We are using the rule that if x does not occur free in F, then $(\exists x : F \wedge G) \equiv F \wedge (\exists x : G)$.)

 $\langle 3 \rangle 5$. Q.E.D.

PROOF: By $\langle 3 \rangle 4$ and $\langle 1 \rangle 5$.

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$.