Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{\sqrt{3}-1} = \sqrt{3}+1$ $\sqrt{3}+1-\sqrt{3}=1$	3 p
	$\sqrt{3}+1-\sqrt{3}=1$	2p
	f(0) = 2015	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 2015$	2 p
3.	x+2=4	2p
	x = 2, care verifică ecuația	3 p
4.	$p-10\% \cdot p = 99$, unde p este prețul obiectului înainte de reducere	3 p
	p = 110 lei	2p
5.	$MN = \sqrt{(4-2)^2 + (1-1)^2} =$	3 p
	= 2	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{4}{5}$	2p

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} =$	2p
		2p
	$= 2 \cdot 1 - 2 \cdot 1 = 0$	3 p
b)	$A \cdot A = \begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix}, \ xA = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix}$	3 p
	$\begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix} = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix} \Leftrightarrow x = 3$	2 p
c)	$\det(A+I_2) = \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = 4$, $\det(A-I_2) = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2$	3 p
	$\det(A + I_2) + \det(A - I_2) = 4 + (-2) = 2$	2p
2.a)	$f(1) = 1^3 - 2 \cdot 1^2 - 2 \cdot 1 + 1 =$	3p
	=1-2-2+1=-2	2 p
b)	$f(-1) = (-1)^3 - 2 \cdot (-1)^2 - 2 \cdot (-1) + 1 =$	3 p
	=-1-2+2+1=0, deci polinomul f este divizibil cu polinomul $X+1$	2p

c)
$$x_1 + x_2 + x_3 = 2$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -2$, $x_1x_2x_3 = -1$
 $\frac{x_1 + x_2 + x_3}{x_1x_2x_3} = a(x_1x_2 + x_2x_3 + x_3x_1) \Leftrightarrow \frac{2}{-1} = a \cdot (-2) \Leftrightarrow a = 1$
2p

	· · · · · · · · · · · · · · · · · · ·	
1.a)	$f'(x) = x' - \left(\frac{1}{x}\right)' =$	2p
	$=1-\left(-\frac{1}{x^2}\right)=1+\frac{1}{x^2}, \ x\in(0,+\infty)$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 1}{x^2} = 1$	2 p
	$\lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
c)	$f''(x) = -\frac{2}{x^3}, x \in (0, +\infty)$	2p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este concavă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} (f(x) - 2) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + 2x + c$, unde $c \in \mathbb{R}$	2 p
	$F(3) = 5 \Rightarrow c = -10$, deci $F(x) = \frac{x^3}{3} + 2x - 10$	3 p
c)	$\mathcal{A} = \int_{0}^{1} e^{x} \left(x^{2} + 2 \right) dx = e^{x} \left(x^{2} + 2 \right) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx = 3e - 2 - \left(2x e^{x} \Big _{0}^{1} - \int_{0}^{1} 2e^{x} dx \right) =$	3 p
	$=3e-2-2e+2e^{x}\begin{vmatrix}1\\0\\=3e-4\end{vmatrix}$	2 p

Proba E. c) Matematică *M_tehnologic*

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\frac{2}{\sqrt{3}-1} \sqrt{3} = 1$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficului funcției f cu axa Oy, unde $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2x^2 + x + 2015$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+2} = 2$.
- **5p** | **4.** După o reducere cu 10% un obiect costă 99 de lei. Calculați prețul obiectului înainte de reducere.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,1) și N(4,1). Determinați lungimea segmentului MN.
- **5p 6.** Arătați că $\sin x = \frac{4}{5}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{3}{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 0.
- **5p b**) Determinați numărul real x pentru care $A \cdot A = xA$.
- **5p** c) Arătați că $\det(A+I_2)+\det(A-I_2)=2$, unde $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 2X + 1$.
- **5p a**) Arătați că f(1) = -2.
- **5p b**) Arătați că polinomul f este divizibil cu polinomul X + 1.
- **5p** c) Determinați numărul real a pentru care $\frac{1}{x_1x_2} + \frac{1}{x_2x_3} + \frac{1}{x_3x_1} = a(x_1x_2 + x_2x_3 + x_3x_1)$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \frac{1}{x}$.
- **5p** a) Arătați că $f'(x) = 1 + \frac{1}{x^2}, x \in (0, +\infty).$
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că funcția f este concavă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x)-2)dx = \frac{1}{3}$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(3) = 5.
- **5p** c) Arătați că suprafața delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^x \cdot f(x)$, axa Ox și dreptele de ecuații x = 0 și x = 1, are aria egală cu 3e 4.

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} + \frac{1}{5} = \frac{7}{10}$	3р
	$\frac{7}{10} \cdot \frac{20}{7} = 2$	2 p
2.	$f(a) = 0 \Leftrightarrow a - 2 = 0$	3 p
	a = 2	2 p
3.	x+3=16	3p
	x = 13, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea <i>M</i> sunt 3 multipli de 15, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	2 p
5.	$x_M = 4$	2p
	$y_M = 4$, unde punctul M este mijlocul segmentului AB	3 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{12}{13}$	2 p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2 p
b)	$A+B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix} =$	3 p
	$=5\begin{pmatrix}1&1\\1&1\end{pmatrix}=5C$	2 p
c)	$AB = \begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}, BA = \begin{pmatrix} 13 & 20 \\ 5 & 8 \end{pmatrix}, 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$AB + BA + 4I_2 = \begin{pmatrix} 25 & 25 \\ 25 & 25 \end{pmatrix} = 25 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 25C$	2 p
2.a)	$5 \circ (-4) = 5 \cdot (-4) + 4 \cdot 5 + 4 \cdot (-4) + 12 =$	3p
	=-20+20-16+12=-4	2p

b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4, pentru orice numere reale x şi y	3 p
c)	$x \circ x = \left(x+4\right)^2 - 4$	2 p
	$(x+4)^2 - 4 = x \Leftrightarrow (x+4)(x+3) = 0 \Leftrightarrow x_1 = -4 \text{ și } x_2 = -3$	3 p

1.a)	$f'(x) = (2x^3)' + (3x^2)' + 5' =$	2p
	$=6x^2 + 6x = 6x(x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f'(x)}{f(x) - 2x^3} = \lim_{x \to +\infty} \frac{6x(x+1)}{3x^2 + 5} =$	2p
	= 2	3 p
c)	$f'(x) = 0 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 0$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1]$, deci f este crescătoare pe $(-\infty, -1]$	1p
	$f'(x) \le 0$, pentru orice $x \in [-1,0]$, deci f este descrescătoare pe $[-1,0]$	1p
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	1p
2.a)	$\int_{1}^{2} (f(x) - 3x^{2}) dx = \int_{1}^{2} 4x^{3} dx = x^{4} \Big _{1}^{2} =$	3р
	=16-1=15	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^4 + x^3 + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = 2015 \Rightarrow c = 2013$, deci $F(x) = x^4 + x^3 + 2013$	3р
c)	$\int_{1}^{n} \frac{f(x)}{x^{2}} dx = \int_{1}^{n} (4x+3) dx = 2x^{2} \left \frac{1}{1} + 3x \right _{1}^{n} = 2n^{2} + 3n - 5$	3p
	$2n^2 + 3n - 5 = 9$ şi cum n este număr natural, $n > 1$, obținem $n = 2$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{1}{2} + \frac{1}{5}\right) \cdot \frac{20}{7} = 2$.
- **5p** 2. Determinați numărul real a, știind că punctul A(a, 0) aparține graficului funcției $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 2.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$, acesta să fie multiplu de 15.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,2) și B(4,6). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Arătați că $\sin x = \frac{12}{13}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{5}{13}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$ și $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -2.
- **5p b**) Arătați că A + B = 5C.
- **5p** c) Demonstrați că $AB + BA + 4I_2 = 25C$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 4x + 4y + 12$.
- **5p** | **a**) Arătați că $5 \circ (-4) = -4$.
- **5p b)** Arătați că $x \circ y = (x+4)(y+4)-4$, pentru orice numere reale $x \neq y$.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $x \circ x = x$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 + 3x^2 + 5$.
- **5p** a) Arătați că $f'(x) = 6x(x+1), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f'(x)}{f(x) 2x^3}$.
- **5p** $| \mathbf{c} |$ Determinați intervalele de monotonie a funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 3x^2$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) 3x^{2}) dx = 15$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 2015.
- **5p** c) Determinați numărul natural n, n > 1, știind că $\int_{1}^{n} \frac{f(x)}{x^2} dx = 9$.

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_g = \sqrt{16 \cdot 9} =$	3 p
	$= 4 \cdot 3 = 12$	2 p
2.	f(2) = 2 + m	2p
	$2+m=0 \Leftrightarrow m=-2$	3 p
3.	2x+1=5	3 p
	x = 2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea A sunt 4 multipli de 2, deci sunt 4 cazuri favorabile	2p
	n_ nr. cazuri favorabile _ 4	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{9}$	2 p
5.	$x_M = 2$	3 p
	$y_M = 3$, unde punctul M este mijlocul segmentului AB	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 3 =$	3p
	=1-6=-5	2 p
b)	$C(-1) = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}, A + C(-1) = \begin{pmatrix} 0 & 4 \\ 4 & 4 \end{pmatrix} \Rightarrow \det(A + C(-1)) = -16$	3p
	$\det B = \begin{vmatrix} -4 & 0 \\ 0 & 4 \end{vmatrix} = -16, \det \left(A + C(-1) \right) = \det B$	2p
c)	$C(x) \cdot A = \begin{pmatrix} x+2 & 3x+1 \\ 8 & 9 \end{pmatrix}, \ A \cdot C(x) = \begin{pmatrix} x+6 & 10 \\ 2x+2 & 5 \end{pmatrix}, \ C(x) \cdot A - A \cdot C(x) = \begin{pmatrix} -4 & 3x-9 \\ 6-2x & 4 \end{pmatrix}$	3р
	$\begin{pmatrix} -4 & 3x - 9 \\ 6 - 2x & 4 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix} \Leftrightarrow x = 3$	2p
2.a)	$f(1) = 1^3 + 2 \cdot 1^2 - 6 \cdot 1 + 3 =$	3 p
	=1+2-6+3=0	2 p
b)	Câtul este $X-1$	3p
	Restul este 0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)
$$x_1 + x_2 + x_3 = -2$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -6$, $x_1x_2x_3 = -3$
 $x_1 + x_2 + x_3 + \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = (x_1 + x_2 + x_3) + \frac{x_2x_3 + x_1x_3 + x_1x_2}{x_1x_2x_3} = -2 + \frac{-6}{-3} = 0$
2p

1.a)	$f'(x) = 3x^2 - 3 =$	3p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) - x^3}{x} = \lim_{x \to +\infty} \frac{-3x + 1}{x} =$	2p
	=-3	3р
c)	$f'(x) \le 0$, pentru orice $x \in [-1,1]$	2p
	$f(1) \le f(x) \le f(-1)$, deci $-1 \le f(x) \le 3$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{2}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{2}^{3} 2x dx = x^{2} \Big _{2}^{3} =$	3p
	=9-4=5	2p
b)	$F'(x) = (x^2 + \ln x + 2015)' =$	2p
	$=2x+\frac{1}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	3p
c)	$V = \pi \int_{1}^{2} (f(x) - 2x)^{2} dx = \pi \int_{1}^{2} \frac{1}{x^{2}} dx =$	3 p
	$=\pi\left(-\frac{1}{x}\right)\Big _{1}^{2}=\frac{\pi}{2}$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că media geometrică a numerelor a = 16 și b = 9 este egală cu 12.
- **5p** 2. Determinați numărul real m pentru care f(2) = 0, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + m.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x+1} = 3^5$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să fie multiplu de 2.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,3) și B(5,3). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Arătați că $\sin x = \frac{1}{2}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{\sqrt{3}}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix}$ și $C(x) = \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -5.
- **5p b)** Arătați că $\det(A+C(-1)) = \det B$.
- **5p** c) Determinați numărul real x pentru care $C(x) \cdot A A \cdot C(x) = B$.
 - **2.** Se consideră polinomul $f = X^3 + 2X^2 6X + 3$.
- **5p a)** Arătați că f(1) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul $X^2 + 3X 3$.
- $\mathbf{5p} \quad \mathbf{c}) \text{ Demonstrați că } x_1 + x_2 + x_3 + \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = 0 \text{, unde } x_1, x_2 \text{ și } x_3 \text{ sunt rădăcinile polinomului } f \text{ .}$

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 1$.
- **5p** a) Arătați că $f'(x) = 3(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x) x^3}{x}$.
- **5p** c) Arătați că $-1 \le f(x) \le 3$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 2x + \frac{1}{x}$.
- **5p** a) Arătați că $\int_{2}^{3} \left(f(x) \frac{1}{x} \right) dx = 5$.
- **5p b**) Demonstrați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = x^2 + \ln x + 2015$ este o primitivă a funcției f.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, g(x) = f(x) 2x.

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$0,5 = \frac{1}{2}$	2p
	$\frac{1}{2}:\frac{1}{2}-1=0$	3p
2.	f(-1) = 0, $f(0) = 0$ și $f(1) = 2f(-1) + f(0) + f(1) = 2$	3 p
	f(-1) + f(0) + f(1) = 2	2 p
3.	3x + 1 = 25	3p
	x = 8, care verifică ecuația	2p
4.	30% din 150 este $\frac{30}{100} \cdot 150 = 45$	3p
	Prețul după scumpire este 150+45=195 de lei	2p
5.	$AB = \sqrt{(3-1)^2 + (5-5)^2} =$	3 p
	= 2	2p
6.	ΔABC este isoscel	3p
	AB = 5	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det M = \begin{vmatrix} -2 & 2 \\ -1 & -1 \end{vmatrix} = (-2) \cdot (-1) - 2 \cdot (-1) =$	3p
	=2-(-2)=4	2p
b)	$M \cdot M = \begin{pmatrix} 2 & -6 \\ 3 & -1 \end{pmatrix}, \ 3M = \begin{pmatrix} -6 & 6 \\ -3 & -3 \end{pmatrix}, \ 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$M \cdot M + 3M + 4I_2 = \begin{pmatrix} 2 - 6 + 4 & -6 + 6 + 0 \\ 3 - 3 + 0 & -1 - 3 + 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$M \cdot M \cdot M = \begin{pmatrix} 2 & 10 \\ -5 & 7 \end{pmatrix}, aM + bI_2 = \begin{pmatrix} -2a+b & 2a \\ -a & -a+b \end{pmatrix}$	3 p
	$\begin{pmatrix} 2 & 10 \\ -5 & 7 \end{pmatrix} = \begin{pmatrix} -2a+b & 2a \\ -a & -a+b \end{pmatrix} \Leftrightarrow a=5, b=12$	2 p
2.a)	$f(1) = 1^3 - 5 \cdot 1^2 + 5 \cdot 1 - 1 =$	3p
	=1-5+5-1=0	2 p
b)	$f(a) = a^3 - 5a^2 + 5a - 1$, $f(-a) = -a^3 - 5a^2 - 5a - 1$	2p
	$f(a) + f(-a) + 2 = -10a^2 \le 0$, pentru orice număr real a	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)	$x_1 + x_2 + x_3 = 5$, $x_1x_2 + x_1x_3 + x_2x_3 = 5$, $x_1x_2x_3 = 1$	3p
	$x_1^2 + x_2^2 + x_3^2 = 5^2 - 2 \cdot 5 = 15 \cdot 1 = 15x_1x_2x_3$	2p

1.a)	$f'(x) = 6x^2 - 6 =$	3p
	$=6(x^2-1)=6(x-1)(x+1), x \in \mathbb{R}$	2p
b)	f(1) = -3, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = -3$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in [1, +\infty)$, deci f este crescătoare pe intervalul $[1, +\infty)$	3p
	$f(2012) \le f(2013)$ și $f(2014) \le f(2015)$, deci $f(2012) + f(2014) \le f(2013) + f(2015)$	2 p
2.a)	$\int_{0}^{1} (f(x) + 4) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3 p
b)	$\mathcal{A} = \int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{1}{x^{2} + 1} dx = \arctan x \Big _{0}^{1} =$	3 p
	$= \arctan 0 = \frac{\pi}{4}$	2p
c)	$\int_{1}^{a} \frac{f(x) + 4}{x} dx = \int_{1}^{a} x dx = \frac{x^{2}}{2} \Big _{1}^{a} = \frac{a^{2}}{2} - \frac{1}{2}$	3 p
	$\frac{a^2}{2} - \frac{1}{2} = 12 \Leftrightarrow a^2 - 25 = 0 \text{ si, cum } a > 1, \text{ obținem } a = 5$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\frac{1}{2}$: 0,5-1=0.
- **5p** 2. Calculați f(-1)+f(0)+f(1), unde $f:\mathbb{R}\to\mathbb{R}$, $f(x)=x^2+x$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x+1} = 5$.
- **5p 4.** Un obiect costă 150 lei. Calculați prețul obiectului după o scumpire cu 30%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,5) și B(3,5). Determinați distanța de la punctul A la punctul B.
- **5p** 6. Calculați lungimea laturii *AB* a triunghiului *ABC* dreptunghic în *A*, știind că AC = 5 și $m(< B) = 45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $M = \begin{pmatrix} -2 & 2 \\ -1 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că $\det M = 4$.
- **5p b)** Arătați că $M \cdot M + 3M + 4I_2 = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Determinați numerele reale a și b astfel încât $M \cdot M \cdot M = aM + bI_2$.
 - **2.** Se consideră polinomul $f = X^3 5X^2 + 5X 1$.
- **5p a)** Arătați că f(1) = 0
- **5p b**) Arătați că $f(a)+f(-a)+2 \le 0$, pentru orice număr real a.
- **5p** c) Demonstrați că $x_1^2 + x_2^2 + x_3^2 = 15x_1x_2x_3$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 6x + 1$.
- **5p** a) Arătați că $f'(x) = 6(x-1)(x+1), x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(2012) + f(2014) \le f(2013) + f(2015)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x)+4) dx = \frac{1}{3}$.
- **5p b**) Determinați aria suprafeței plane delimitate de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \frac{1}{f(x) + 5}$, axa Ox și dreptele de ecuații x = 0 și x = 1.
- **5p** c) Determinați numărul real a, a > 1, pentru care $\int_{1}^{a} \frac{f(x) + 4}{x} dx = 12$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_a = \frac{10 - 2\sqrt{5} + 2\sqrt{5}}{2} =$	3p
	$=\frac{10}{2}=5$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 4x + 3 = 0$	3 p
	$x_1 = 1$ și $x_2 = 3$	2p
3.	$\log_5 \frac{2x-1}{3} = 0 \Leftrightarrow \frac{2x-1}{3} = 1$	3 p
	x=2 care verifică ecuația	2p
4.	Sunt 10 numere de o cifră, deci sunt 10 cazuri posibile	2p 1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	2p
5.	M mijlocul segmentului $AB \Rightarrow x_M = \frac{2+6}{2} = 4$	3p
	$y_M = 4$	2p
6.	$\cos a = \frac{4}{5}, \ \cos b = \frac{5}{13}$	2p
	$\sin(a+b) = \frac{3}{5} \cdot \frac{5}{13} + \frac{12}{13} \cdot \frac{4}{5} = \frac{63}{65}$	3p

1.a)	$\det A = \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} = -2 + 2 =$	3p
	=0	2p
b)	$A \cdot A = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$	3p
	p = 1	2p
c)	$A + B = \begin{pmatrix} 2 & b - 2 \\ b + 1 & -1 \end{pmatrix} \Rightarrow \det(A + B) = -b^2 + b$	2p
	$\det(A+B) = 0 \Leftrightarrow b = 0 \text{ sau } b = 1 \Leftrightarrow B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ sau } B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	3 p
2.a)	$1 \circ 2015 = -1 \cdot 2015 + 1 + 2015 =$	3p
	=1	2p

b)	$x \circ y = -x(y-1) + (y-1) + 1 =$	3 p
	=-(x-1)(y-1)+1, pentru orice numere reale x și y	2p
c)	$(3^x-1)(5^x-1)=0$	2p
	x = 0	3р

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{3x}{x^2 + 1} =$	2p
	$=\frac{3\cdot 1}{1^2+1}=\frac{3}{2}$	3 p
b)	$f'(x) = \frac{3(x^2+1)-3x\cdot 2x}{(x^2+1)^2} =$	2p
	$= \frac{3-3x^2}{\left(x^2+1\right)^2} = -\frac{3(x-1)(x+1)}{\left(x^2+1\right)^2}, \ x \in \mathbb{R}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x_1 = -1 \text{ și } x_2 = 1$	2p
	$f'(x) \le 0$ pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$	1p
	$f'(x) \ge 0$ pentru orice $x \in [-1,1] \Rightarrow f$ este crescătoare pe $[-1,1]$	1p
	$f'(x) \le 0$ pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	1p
2.a)	$\int_{-1}^{1} x^5 dx = \frac{x^6}{6} \left \frac{1}{-1} \right =$	3p
	$=\frac{1}{6}-\frac{1}{6}=0$	2p
b)	$\int_{0}^{1} x e^{x} dx = x e^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x} dx =$	3p
	=e-0-e+1=1	2p
c)	$g(x) = \frac{(x^5 + x) - x}{x^3} = x^2 \Rightarrow V = \pi \int_{1}^{2} x^4 dx = \pi \frac{x^5}{5} \Big _{1}^{2} =$	3 p
	$=\frac{31}{5}\pi$	2p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M tehnologic*

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBJECTUL I (30 de puncte)

- **5p** 1. Calculați media aritmetică a numerelor $a = 2(5 \sqrt{5})$ și $b = 2\sqrt{5}$.
- **5p** 2. Determinați abscisele punctelor de intersecție a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 3$ cu axa Ox.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(2x-1) \log_5 3 = 0$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie multiplu de 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,4) și B(6,4). Determinați coordonatele mijlocului segmentului AB.
- **5p** 6. Arătați că $\sin(a+b) = \frac{63}{65}$, știind că $a, b \in (0, \frac{\pi}{2})$, $\sin a = \frac{3}{5}$ și $\sin b = \frac{12}{13}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$.
- **5p** a) Calculați $\det A$.
- **5p b)** Determinați numerele reale p pentru care $A \cdot A = pA$.
- **5p** c) Determinați matricele $B = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}$, știind că $\det(A+B) = 0$, unde b este un număr real.
 - **2.** Pe multimea numerelor reale se definește legea de compoziție dată de $x \circ y = -xy + x + y$.
- **5p** | **a**) Calculați 1 ∘ 2015.
- **5p b)** Arătați că $x \circ y = -(x-1)(y-1)+1$, pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $3^x \circ 5^x = 1$.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3x}{x^2 + 1}$.
- **5p a)** Calculați $\lim_{x \to 1} f(x)$.
- **5p b)** Arătați că $f'(x) = -\frac{3(x-1)(x+1)}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p** c) Determinați intervalele de monotonie ale funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^5 + x$.
- **5p a)** Calculați $\int_{-1}^{1} x^5 dx$.
- **5p b)** Arătați că $\int_{0}^{1} (f(x) x^{5})e^{x} dx = 1$.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}$, definită prin $g(x) = \frac{f(x) x}{x^3}$.

(30 de puncte)

Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = 3$	3p
	$a_1 + a_2 + a_3 = 1 + 3 + 5 = 9$	2p
2.	$x^2 - x = 2x - 2 \Leftrightarrow x^2 - 3x + 2 = 0$	3p
	$x_1 = 1$ și $x_2 = 2$	2p
3.	$3^{2-x} = 3^{-2} \Leftrightarrow 2 - x = -2$	3p
	x = 4	2 p
4.	$p-15\% \cdot p=34$, unde p este prețul obiectului înainte de ieftinire	2p
	p = 40 de lei	3p
5.	$x_M = 1$, $y_M = 2$, unde punctul M este mijlocul laturii BC	2p
	AM = 2	3 p
6.	$tg 30^{\circ} ctg 60^{\circ} + tg 60^{\circ} ctg 30^{\circ} = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + \sqrt{3} \cdot \sqrt{3} =$	3р
	$=\frac{1}{3}+3=\frac{10}{3}$	2p

1.a)	$\det A = \begin{vmatrix} 3 & 6 \\ 1 & 2 \end{vmatrix} = 3 \cdot 2 - 6 \cdot 1 =$	3p
	= 0	2p
b)	$A \cdot A = \begin{pmatrix} 15 & 30 \\ 5 & 10 \end{pmatrix} =$	3р
	$=5\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} = 5A$, de unde obținem $x = 5$	2p
c)	$\det(A+aI_2) = \begin{vmatrix} 3+a & 6\\ 1 & 2+a \end{vmatrix} = (3+a)(2+a)-6 = a^2+5a$	3p
	$a^2 + 5a = 0 \Leftrightarrow a_1 = -5 \text{ si } a_2 = 0$	2p
2.a)	x * y = xy + 2x + 2y + 4 - 2 =	2p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
b)	x*(-2) = -2 şi $(-2)*y = -2$, pentru x şi y numere reale	3 p
	(-2015)*(-2)*0*2*2015 = ((-2015)*(-2))*0*2*2015 = (-2)*(0*2*2015) = -2	2p
c)	$n*(-n)=(n+2)(-n+2)-2=2-n^2$	2p
	$2 - n^2 \in \mathbb{N} \Rightarrow n_1 = 0 \text{ si } n_2 = 1$	3 p

1.a)	$f'(x) = \frac{1 \cdot (x+2) - (x-2) \cdot 1}{(x+2)^2} =$	3 p
	$=\frac{4}{\left(x+2\right)^2}, \ x \in \left(-2,+\infty\right)$	2 p
b)	f(0) = -1, f'(0) = 1	3p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0) \Rightarrow y = x-1$	2p
c)	$\lim_{x \to +\infty} \frac{x-2}{x+2} = 1$	3 p
	Dreapta $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
2.a)	$\int_{0}^{1} (f(x)+1) dx = \int_{0}^{1} 2x dx = x^{2} \Big _{0}^{1} =$	2 p
	=1-0=1	3 p
b)	$F'(x) = (x^2 - x + 1)' = 2x - 1 =$	3 p
	= f(x), pentru orice număr real x , deci F este o primitivă a funcției f	2 p
c)	$\int_{0}^{n} F(x) dx = \int_{0}^{n} (x^{2} - x + 1) dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} + x\right) \Big _{0}^{n} = \frac{n^{3}}{3} - \frac{n^{2}}{2} + n$	2 p
	$\frac{n^3}{3} - \frac{n^2}{2} + n = \frac{n^3}{3} \Leftrightarrow n^2 - 2n = 0 \text{ si cum } n \text{ este număr natural nenul, obținem } n = 2$	3 p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_tehnologic* Clasa a XII-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați suma primilor trei termeni ai unei progresii aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=1$ și $a_3=5$.
- **5p** 2. Determinați abscisele punctelor de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2x 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{2-x} = \frac{1}{9}$.
- **5p 4.** După o ieftinire cu 15%, prețul unui obiect este 34 de lei. Calculați prețul obiectului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,4), B(-3,2) și C(5,2). Calculați lungimea medianei din vârful A al triunghiului ABC.
- **5p 6.** Arătați că $tg 30^{\circ} ctg 60^{\circ} + tg 60^{\circ} ctg 30^{\circ} = \frac{10}{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** \mid **a**) Calculați det A.
- **5p b**) Determinați numărul real x, știind că $A \cdot A = xA$.
- **5p** c) Determinați numerele reale a pentru care $\det(A + aI_2) = 0$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy + 2x + 2y + 2.
- **5p** a) Arătați că x * y = (x+2)(y+2)-2, pentru orice numere reale x și y.
- **5p b**) Calculați (-2015)*(-2)*0*2*2015.
- **5p** c) Determinați numerele naturale n, știind că numărul n*(-n) este natural.

- **1.** Se consideră funcția $f:(-2,+\infty)\to\mathbb{R}$, $f(x)=\frac{x-2}{x+2}$.
- **5p** a) Calculați f'(x), $x \in (-2, +\infty)$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^2 x + 1$.
- **5p** a) Calculați $\int_{0}^{1} (f(x)+1) dx$.
- **5p b**) Arătați că funcția F este o primitivă a funcției f.
- **5p** c) Determinați numărul natural nenul n, știind că $\int_{0}^{n} F(x) dx = \frac{n^3}{3}$.

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_tehnologic* Clasa a XI-a

BAREM DE EVALUARE SI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{25} = 5$	2p
	$m_a = \frac{3+5}{2} = 4$	3 p
2.	g(-2)=1	2p
	g(-2)=1 $(f \circ g)(-2) = f(1) = -1$	3 p
3.	$2x^2 + 4 = 12$	2p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	3 p
4.	Numerele cerute sunt 5, 15, 25, 35 și 45	3 p
	Sunt 5 numere care sunt divizibile cu 5 și nu sunt divizibile cu 10	2p
5.	3+(m-1)-3=0	3 p
	m=1	2p
6.	$\cos B = \frac{5^2 + 6^2 - 5^2}{2 \cdot 5 \cdot 6} =$	3p
	$=\frac{3}{5}$	2 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\begin{vmatrix} 2 & -1 & 1 \end{vmatrix}$	
	$D(0) = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & 0 \end{vmatrix} =$	2p
	=0+0+2-2+6-0=6	3 p
b)	2 -1 1	
	$D(m) = \begin{vmatrix} 2 & -1 & 1 \\ m & 1 & -1 \\ 2 & 3 & m \end{vmatrix} = m^2 + 2m + 3m + 6 =$	3p
	$\begin{vmatrix} 2 & 3 & m \end{vmatrix}$	
	= m(m+2) + 3(m+2) = (m+2)(m+3), pentru orice număr real m	2p
c)	$(n^2 - 3n + 2)(n^2 - 3n + 3) = 0$	3 p
	$n_1 = 1$ și $n_2 = 2$	2 p
2.a)	$A(-1) = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}, \ A(1) = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$	3p
	$A(-1) + A(1) = \begin{pmatrix} 2 & -2 \\ 0 & 6 \end{pmatrix} = 2 \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix} = 2A(0)$	2p

b)	$A(a) \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 3a - 6 & a + 3 \end{pmatrix}$	3p
	$ \begin{pmatrix} 5 & 0 \\ 3a - 6 & a + 3 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \Leftrightarrow a = 2 $	2p
c)	$\det(A(1)) = 4 \neq 0 \Rightarrow (A(1))^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$	3p
	$X = 4 \cdot \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix}$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 3} \left(x + \frac{4}{x - 2} \right) = 3 + 4 =$	3 p
	= 7	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{4}{x(x-2)} \right) = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{4}{x - 2} = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
<u></u>	1 Iu giunoui iunoșioi j	
c)	$\lim_{x \to 2} \left((x-2) \left(x + \frac{4}{x-2} \right) \right) = \lim_{x \to 2} \frac{(x-2) \left(x(x-2) + 4 \right)}{x-2} =$	3 p
	= 4	2p
2.a)	f(0)+f(2)=-1+3=	3p
	= 2	2 p
b)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \left(2x^2 + x - 1\right) = 2$	2p
	$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} (x+1) = 2$	2p
	Cum $f(1) = 2$, obținem $\lim_{x \to 1} f(x) = f(1)$, deci funcția f este continuă în punctul $x = 1$	1p
c)	Dacă $x \in (1, +\infty)$, atunci $f(x) = x + 1$ și $x + 1 \le 0$ nu are soluții în intervalul $(1, +\infty)$	2p
	Dacă $x \in (-\infty, 1]$, atunci $f(x) = 2x^2 + x - 1$ și $2x^2 + x - 1 \le 0 \Leftrightarrow x \in \left[-1, \frac{1}{2}\right]$	3 p

Proba E. c)

Matematică *M_tehnologic*

Clasa a XI-a

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Calculați media aritmetică a numerelor a = 3 și $b = \sqrt{25}$
- **5p** 2. Calculați $(f \circ g)(-2)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = 3x 4 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 2x + 5.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x^2 + 4} = 2\sqrt{3}$.
- **5p 4.** Determinați numărul elementelor care sunt divizibile cu 5 și nu sunt divizibile cu 10, din mulțimea $M = \{1, 2, 3, ..., 50\}$.
- **5p 5.** Determinați numărul real m, știind că punctul A(3, m-1) este situat pe dreapta de ecuație x+y-3=0.
- **5p** | **6.** Se consideră triunghiul *ABC* cu *AB* = 5, *AC* = 5 și *BC* = 6. Calculați $\cos B$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinantul $D(m) = \begin{vmatrix} 2 & -1 & 1 \\ m & 1 & -1 \\ 2 & 3 & m \end{vmatrix}$, unde m este număr real.
- **5p** a) Calculați D(0).
- **5p** | **b**) Arătați că D(m) = (m+2)(m+3), pentru orice număr real m.
- **5p** c) Determinați numerele naturale *n* pentru care $D(n^2 3n) = 0$.
 - **2.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & -1 \\ a & 3 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că A(-1) + A(1) = 2A(0).
- **5p b**) Determinați numărul real a pentru care $A(a) \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} = 5I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, știind că $A(1) \cdot X = 4A(2)$.

- **1.** Se consideră funcția $f:(2,+\infty) \to \mathbb{R}$, $f(x) = x + \frac{4}{x-2}$.
- **5p** a) Calculați $\lim_{x \to 3} f(x)$.
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Calculați $\lim_{x\to 2} ((x-2)f(x))$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x^2 + x 1, & x \le 1 \\ x + 1, & x > 1 \end{cases}$.
- **5p** a) Calculați f(0) + f(2).
- **5p b**) Arătați că funcția f este continuă în x = 1.
- **5p** c) Rezolvați în mulțimea numerelor reale inecuația $f(x) \le 0$.

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	3p
	$\frac{3}{2} \cdot \frac{10}{3} = 5$	2 p
2.	f(-2)=0, f(2)=0	2p
	f(-2) + f(2) = 0	3 p
3.	2x-1=9	3p
	x = 5, care verifică ecuația	2 p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	1p
	În mulțimea A sunt 2 multipli de 5, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	2p
5.	MO = 4	2p
	$ON = 4 \Rightarrow \Delta MON$ este isoscel	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{10 \cdot 12}{2} =$	3p
	=60	2p

1.a)	$\det A = \begin{vmatrix} 3 & -2 \\ 5 & -3 \end{vmatrix} = 3 \cdot (-3) - (-2) \cdot 5 =$	3p
	=-9+10=1	2 p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	3 p
	$A \cdot A + I_2 = \begin{pmatrix} -1+1 & 0 \\ 0 & -1+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A - aI_2 = \begin{pmatrix} 3 - a & -2 \\ 5 & -3 - a \end{pmatrix} \Rightarrow \det(A - aI_2) = \begin{vmatrix} 3 - a & -2 \\ 5 & -3 - a \end{vmatrix} = -9 + a^2 + 10 =$	3 p
	$=a^2+1\geq 1$, pentru orice număr real a	2p
2.a)	$f(-5) = (-5)^3 + 5 \cdot (-5)^2 + (-5) + 5 =$	3p
	=-125+125-5+5=0	2 p
b)	Câtul este $X-1$	3 p
	Restul este $2X + 10$	2p

c)
$$x_1 + x_2 + x_3 = -5$$
, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = -5$
 $\frac{x_3}{x_1x_2} + \frac{x_2}{x_1x_3} + \frac{x_1}{x_2x_3} = \frac{(x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)}{x_1x_2x_3} = \frac{(-5)^2 - 2 \cdot 1}{-5} = -\frac{23}{5}$
2p

1.a)	$f'(x) = 4x^3 - 4x =$	3p
	$=4x(x^{2}-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	f(1) = 0, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = 0$	3 p
c)	$f'(-1) = f'(0) = f'(1) = 0$, $f'(x) \ge 0$, pentru $x \in [-1,0]$ şi $f'(x) \le 0$, pentru $x \in [0,1]$	2p
	$f(-1) = f(1) = 0$ și $f(0) = 1 \Rightarrow 0 \le f(x) \le 1$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{1}^{3} \left(f(x) - \sqrt{x} \right) dx = \int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{3} =$	3p
	$=\frac{3^3}{3}-\frac{1^3}{3}=\frac{26}{3}$	2p
b)	$F'(x) = \frac{3x^2}{3} + \frac{2}{3} \left(\sqrt{x} + x \cdot \frac{1}{2\sqrt{x}} \right) =$	3 p
	$= x^2 + \sqrt{x} = f(x)$, pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{2} x^{2} e^{x} dx = x^{2} e^{x} \Big _{1}^{2} - \int_{1}^{2} 2x e^{x} dx = 4e^{2} - e - 2\left(xe^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx\right) =$	3p
	$=4e^{2}-e-2(2e^{2}-e)+2e^{x}\Big _{1}^{2}=2e^{2}-e=e(2e-1)$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 \frac{1}{2}\right)$: $\frac{3}{10} = 5$.
- **5p** 2. Calculați f(-2) + f(2), unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x-1} = 3$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, acesta să fie multiplu de 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), M(0,4) și N(4,0). Arătați că triunghiul MON este isoscel.
- **5p 6.** Calculați aria triunghiului *ABC* dreptunghic în *A*, știind că AB = 10 și AC = 12.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 1.
- **5p b)** Arătați că $A \cdot A + I_2 = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Demonstrați că $\det(A aI_2) \ge 1$, pentru orice număr real a.
 - **2.** Se consideră polinomul $f = X^3 + 5X^2 + X + 5$.
- **5p a**) Arătați că f(-5) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul $X^2 + 6X + 5$.
- **5p** c) Demonstrați că $\frac{x_3}{x_1x_2} + \frac{x_2}{x_1x_3} + \frac{x_1}{x_2x_3} = -\frac{23}{5}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 2x^2 + 1$.
- **5p** a) Arătați că $f'(x) = 4x(x-1)(x+1), x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $0 \le f(x) \le 1$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 + \sqrt{x}$.
- **5p** a) Arătați că $\int_{1}^{3} (f(x) \sqrt{x}) dx = \frac{26}{3}$.
- **5p b**) Demonstrați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + \frac{2x\sqrt{x}}{3} + 2015$ este o primitivă a funcției f.
- **5p** c) Arătați că suprafața delimitată de graficul funcției $g:(0,+\infty)\to\mathbb{R}$, $g(x)=(f(x)-\sqrt{x})e^x$, axa Ox și dreptele de ecuații x=1 și x=2, are aria egală cu e(2e-1).