Local Search in Histogram Construction

Felix Halim, Panagiotis Karras, Roland Yap

Problem Statement (1/2)

- Given a finite data sequence $X = x_1, ..., x_n$
- Create and store a compact representation H_B of X
 using at most B storage space
- Minimize the total error of $E_X(H_B)$

Problem Statement (2/2)

- Minimize the total error, Ex
- Min $E_X(H_B) = \sum_r \operatorname{SQERROR}(b_r)$ for a for r = 1 ... B

$$SQERROR(b_r) = \sum_{i=s_r}^{e_r} (x_i - h_r)^2$$

Applications

- Database Systems
- Decision Support Systems
- Bio-Informatics
- Information Retrieval

Results on Histogram Construction

Category	Name	Complexity
Optimal	V-Optimal	n ² B
Heuristics	MHIST	B * (n + log B)
	MaxDiff	n * log B
Approxi- mations	AHistL-Δ	$n + B^3(\log n + e^{-2}) \log n$
	DnS	n ^{4/3} B ^{5/3}
Hybrid (CIKM 09)	GDY-DP	n B (for B less than √n)
	GDY-BDP	n B

Effective B range = [128 .. 512] for large n

Effectiveness - Tradeoff

Hybrid

- Local Search
 - Moves from solution to solution
 - Used for collecting a good-diversified samples
 - AHistL and DnS fails to provide good sampling
- Optimal Algorithm
 - Dynamic Programming
 - Used to take the best out of the samples
 - Served as a catalyst for the Local Search

Optimal Algorithm as a Catalyst

Optimal Algorithm as a Catalyst

Visualization of the Search

- AHistL
 - **> 0.06%** quality
 - >32 misplaced
- DnS
 - > **0.17**% quality
 - **≻ 58** misplaced
- GDY-DP
 - **> 0.03%** quality
 - **▶ 10 misplaced**

Conclusion

- We advanced state of the art
 - Despite of long history of Histogram Construction
- Stand-alone algorithms
 - Heuristics
 - Good performance but poor quality
 - Approximation algorithms
 - Sacrificing performance for error guarantees
 - They are not effective / efficient enough

Conclusion

- Hybrid
 - Local Search (LS)
 - Used for collecting diversified samples
 - The better the LS, the better the samples
 - —Optimal / Better algorithms
 - Used to select best of the samples
 - Served as a catalyst for the Local Search

Thank You

Questions and Answers

LS Sampling Effectiveness

http://felix-halim.net/histogram

Sampling Quantity

