# Communication Systems EE-351

Lecture 19

#### BW of FM signals:

#### Carson's Rule for BW of FM signal:

- For large values of  $\beta$ , BW approaches  $\Delta F$
- For small values of  $\beta$ , BW  $\approx 2F_m$

Combining these two principles, Carson's rule for BW of FM signals is given as:

$$BW \approx 2(1+\frac{1}{\beta}) \Delta F$$

- $BW \approx 2(1 + \frac{1}{\beta}) \Delta F$  For large  $\beta$ ,  $\frac{1}{\beta} \approx 0 \Rightarrow BW \approx 2 \Delta F$  For small  $\beta$ ,  $\frac{1}{\beta} \gg 1 \Rightarrow BW \approx 2 \frac{1}{\beta} \Delta F \approx 2 \frac{1}{\frac{\Delta F}{F_m}} \Delta F \approx 2 F_m$   $BW \approx 2(1 + \frac{1}{\beta}) \Delta F \Rightarrow BW \approx 2 \Delta F + \frac{2}{\beta} \Delta F \Rightarrow BW = 2 \Delta F + 2 F_m$

$$BW \approx 2(1 + \frac{1}{\beta}) \Delta F \Rightarrow BW \approx 2 \Delta F + \frac{2}{\beta} \Delta F \Rightarrow BW = 2 \Delta F + 2 F_m$$

TABLE A3.1 Table of Bessel Functions<sup>a</sup>

| $J_a(x)$        |        |         |        |         |         |         |         |         |         |
|-----------------|--------|---------|--------|---------|---------|---------|---------|---------|---------|
| $n \setminus x$ | 0.5    | 1       | 2      | 3       | 4       | 6       | 8       | 10      | 12      |
| 0               | 0.9385 | 0.7652  | 0.2239 | -0.2601 | -0.3971 | 0.1506  | 0.1717  | -0.2459 | 0.0477  |
| 1               | 0.2423 | 0.4401  | 0.5767 | 0.3391  | -0.0660 | -0.2767 | 0.2346  | 0.0435  | -0.2234 |
| 2               | 0.0306 | 0.1149  | 0.3528 | 0.4861  | 0.3641  | -0.2429 | -0.1130 | 0.2546  | -0.0849 |
| 3               | 0.0026 | 0.0196  | 0.1289 | 0.3091  | 0.4302  | 0.1148  | -0.2911 | 0.0584  | 0.1951  |
| 4               | 0.0002 | 0.002.5 | 0.0340 | 0.1320  | 0.2811  | 0.3576  | -0.1054 | -0.2196 | 0.1825  |
| 5               |        | 0.0002  | 0.0070 | 0.0430  | 0.1321  | 0.3621  | 0.1858  | -0.2341 | -0.0735 |
| 6               |        |         | 0.0012 | 0.0114  | 0.0491  | 0.2458  | 0.3376  | -0.0145 | -0.2437 |
| 7               |        |         | 0.0002 | 0.0025  | 0.0152  | 0.1296  | 0.3206  | 0.2167  | -0.1703 |
| 8               |        |         | _      | 0.0005  | 0.0040  | 0.0565  | 0.2235  | 0.3179  | 0.0451  |
| 9               |        |         |        | 0.0001  | 0.0009  | 0.0212  | 0.1263  | 0.2919  | 0.2304  |
| 10              |        |         |        | _       | 0.0002  | 0.0070  | 0.0608  | 0.2075  | 0.3005  |
| 11              |        |         |        |         | _       | 0.0020  | 0.0256  | 0.1231  | 0.2704  |
| 12              |        |         |        |         |         | 0.0005  | 0.0096  | 0.0634  | 0.1953  |
| 13              |        |         |        |         |         | 0.0001  | 0.0033  | 0.0290  | 0.1201  |
| 14              |        |         |        |         |         | _       | 0.0010  | 0.0120  | 0.0650  |

<sup>&</sup>lt;sup>a</sup>For more extensive tables of Bessel functions, see Abramowitz and Stegun (1965, pp. 358-406).



**FIGURE 4.6** Plots of the Bessel function of the first kind,  $J_n(\beta)$ , for varying order n.

#### Power of FM signal:

$$s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos 2\pi (f_c + nf_m)t$$

$$s(t)$$

$$= \dots + A_c J_{-2}(\beta) \cos 2\pi (f_c - 2f_m)t - A_c J_{-1}(\beta) \cos 2\pi (f_c - f_m)t$$

$$+ A_c J_0(\beta) \cos 2\pi f_c t + A_c J_1(\beta) \cos 2\pi (f_c + f_m)t + A_c J_2(\beta) \cos 2\pi (f_c + 2f_m)t$$

$$+ \dots$$

$$P_{total}$$

$$= \dots + \frac{A_c^2 J_{-2}^2(\beta)}{2} + \frac{A_c^2 J_{-1}^2(\beta)}{2} + \frac{A_c^2 J_0^2(\beta)}{2} + \frac{A_c^2 J_1^2(\beta)}{2} + \frac{A_c^2 J_2^2(\beta)}{2} + \dots$$

$$= \frac{A_c^2}{2} \left[ \dots + J_{-2}^2(\beta) + J_{-1}^2(\beta) + J_0^2(\beta) + J_1^2(\beta) + J_2^2(\beta) + \dots \right]$$

### Power of FM signal:

$$=\frac{A_c^2}{2}$$

Property:

$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

Power of FM signal after modulation = Power of carrier before modulation

$$s(t) = \frac{{A_c}^2}{2}$$

$$c(t) = A_c \cos(2\pi f_c t + \varphi)$$
$$P_T = \frac{A_c^2}{2}$$

## Power of FM signal:

$$P_{c(after\ modulation)} = \frac{{A_c}^2 J_0^2(\beta)}{2}$$
 due to  $A_c J_0(\beta) \cos 2\pi f_c t$ 

If we reduce  $\frac{A_c^2 J_0^2(\beta)}{2}$  to 0, we'll get 100% efficiency:

$$\eta = \frac{P_{SB}}{P_c + P_{SB}}$$

Eigen value of  $\beta$  when  $\eta$  = 100%,

$$J_0(\beta) = 0$$
  
 $\beta = 2.4, 5.5, 8.6, 11.8, ...$