Capítulo 1 Matrices

Uso de las matrices:

- Realizar cálculos de manera eficiente
- Resolver sistemas de ecuaciones lineales (sels)
- Representar objetos abstractos como "transformaciones lineales", "cambios de bases", "formas cuadráticas", etc.

1.1. Definiciones

• Matriz A es un arreglo rectangular de escalares

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$

Elemento a_{ij} , ij-ésimo elemento m renglones, n columnas tamaño $m \times n$

•Matrices A y B son iguales (A=B) si son del mismo tamaño y los elementos correspondientes son iguales

1.2. Adición de matrices y multiplicación con escalares

Sean
$$A = [a_{ij}]$$
, $B = [b_{ij}]$ matrices del mismo tamaño

•Suma A + B

$$\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

•Multiplicación por escalar
$$kA = k \lceil a_{ij} \rceil$$

•Negativa de
$$A$$
, $-A = (-1)A$

•Resta
$$A - B = A + (-B)$$

1.3. Multiplicación de Matrices

- •Sean $A = [a_{ij}], B = [b_{ij}]$
- •Número de columnas de A igual al número de renglones de B (e.g. A es m $p \times y$ B es $p \times n$)
- •AB es una matriz $m \times n \operatorname{con} c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$

•AB no está definido si A es $m \times p$ y B es $q \times n$ y $p \neq q$

1.3. Multiplicación de Matrices

- •Multiplicación no es conmutativa, i.e. en general, $AB \neq BA$
- •Asociativa, (AB)C = A(BC)
- •Distributiva por la derecha, A(B+C)=AB+AC
- •Distributiva por la izquierda, (B+C)A=BA+CA
- •Multiplicación por escalar conmuta, k(AB)=(kA)B=AkB

1.4. Matriz Transpuesta

- La transpuesta de A, A^T , se obtiene escribiendo las columnas de A como renglones.
- Si $A = [a_{ij}]$, tamaño $m \times n$, entonces $A^T = [b_{ij}]$, tamaño $n \times m$, donde $b_{ij} = a_{ji}$
 - •Algunas propiedades

•
$$(A+B)^T = A^T + B^T$$

•
$$(A^T)^T = A$$

•
$$(kA)^T = kA^T$$

•
$$(AB)^T = B^T A^T$$

1.5. Matriz Cuadrada

- Mismo número de renglones y columnas, n x n (orden n)
- Diagonal (o diagonal principal), conjunto de elementos con mismos índices, i.e. a_{11} , a_{22} , ..., a_{nn}
- Traza de A, tr(A) es la suma de los elementos diagonales

Algunas propiedades:

Sean A, B matrices cuadradas

- tr(A+B) = tr(A) + tr(B)
- tr(kA) = k tr(A)
- $tr(A^T) = tr(A)$
- tr(AB) = tr(BA)

1.6. Matriz Identidad (Unitaria)

- $I \circ I_n$: matriz cuadrada con unos en la diagonal
- \bullet AI = IA = A
- Si B es $m \times n$, entonces $BI_n = I_m B = B$
- Función delta de Kronecker

$$\delta_{ij} = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$$

$$\therefore$$
 Matriz Identidad $I = \left[\delta_{ij} \right]$

1.7. Matriz Invertible

- Definición
 - Matriz cuadrada A es invertible (no singular), si existe matriz B (la inversa de A, A^{-1}) tal que AB=BA=I
 - •Teorema

Si *B* existe, entonces es única

Demostración

Sean B1, B2 matrices cuadradas que son inversas de A

Entonces
$$AB_1 = B_1A = I$$
 y $AB_2 = B_2A = I$

Entonces
$$B_1 = B_1 I = B_1 (AB_2) = (B_1 A)B_2 = IB_2 = B_2$$

$$\therefore B_1 = B_2$$

1.7. Matriz Invertible

• Algunas propiedades. A y B invertibles

$$AB$$
 es invertible y $(AB)^{-1} = B^{-1}A^{-1}$

En general
$$(A_1 A_2 \cdots A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \cdots A_2^{-1} A_1^{-1}$$

Fórmula para obtener la Inversa de una Matriz de Orden 2

Sea
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Buscar 4 escalares x_1, x_2, y_1, y_2 tal que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Haciendo operaciones

$$\begin{pmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$ax_1 + by_1 = 1$$
 Sistema de ecuaciones $ax_2 + by_2 = 0$ lineales $cx_1 + dy_1 = 0$ (capítulo 2) $cx_2 + dy_2 = 1$

Resolviendo para x_1, x_2, x_3 y x_4

$$x_1 = \frac{d}{ad - bc}; \quad x_2 = \frac{-b}{ad - bc}$$
$$y_1 = \frac{-c}{ad - bc}; \quad y_2 = \frac{a}{ad - bc}$$

ad - bc determinante de A

- Teorema
 - det(A)=0 si y solo si A no tiene inversa
- Encontrar la inversa de una matriz de orden *n* es equivalente a encontrar la solución de un SEL de orden *n*
- Como encontrar estas soluciones de manera eficiente?
 - Respuesta: parte del material del capítulo 2

1.8. Algunas Matrices Especiales

Matriz cuadrada diagonal $D = (d_{ij})$. Elementos no diagonales son cero

$$D = diag(d_{11}, d_{22}, \cdots, d_{nn})$$

Matriz cuadrada triangular (superior) $A = (a_{ij})$

Elementos por debajo de la diagonal son cero.

Esto es, $a_{ii} = 0$ para i > j

Algunas propiedades para $A = (a_{ij}), B = (b_{ij})$, triangulares de orden n

1. A+b, kA, AB son triangulares con diagonales

$$(a_{11} + b_{11}, \dots, a_{nn} + b_{nn}), (ka_{11}, \dots, ka_{nn}), (a_{11}b_{11}, \dots, a_{nn}b_{nn})$$
 respectivemente

- 2. A es invertible si y solo si cada elemento diagonal $a_{ii}\neq 0$. Si A^{-1} existe, entonces es triangular
- •Idem para matrices triangulares inferiores

1.8. Algunas Matrices Especiales

- Matriz Simétrica. $A=A^T$. Elementos simétricos con respecto a la diagonal son iguales $(a_{ii}=a_{ii})$
 - •Matriz antisimétrica. $-A=A^T$. Elementos simétricos con respecto a la diagonal son los complementos (negativos) $(a_{ij}=-a_{ji})$. Como $a_{ii}=-a_{ii}$, entonces $a_{ii}=0$

1.8. Algunas Matrices Especiales Matrices Ortogonales

- •Matriz cuadrada A es ortogonal si y solo si $A^T = A^{-1}$ Esto es, $AA^T = A^TA = I$
- •Porqué ortogonal?

Sean
$$u_1 = (a_1, a_2, a_3), u_2 = (b_1, b_2, b_3),$$

 $u_3 = (c_1, c_2, c_3)$ vectores que forman
los renglones de A

Entonces $AA^T = I$

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Haciendo operaciones

$$a_1^2 + a_2^2 + a_3^2 = 1$$
 $\rightarrow u_1 \bullet u_1 = 1$, paralelos $a_1b_1 + a_2b_2 + a_3b_3 = 0$ $\rightarrow u_1 \bullet u_2 = 0$, ortogonales $a_1c_1 + a_2c_2 + a_3c_3 = 0$

$$b_1^2 + b_2^2 + b_3^2 = 1$$

$$c_1^2 + c_2^2 + c_3^2 = 1$$

$$a_1b_1 + a_2b_2 + a_3b_3 = 0$$

$$a_1c_1 + a_2c_2 + a_3c_3 = 0$$

$$b_1c_1 + b_2c_2 + b_3c_3 = 0$$

$$b_1c_1 + b_2c_2 + b_3c_3 = 0$$

i.e.

$$u_i \bullet u_j = 1 = \delta_{ij} \text{ si } i = j$$

 $u_i \bullet u_j = 0 \quad \text{si } i \neq j$

∴ u1, u2, u3 son vectores unitarios y ortogonales entre si

(conjunto ortonormal de vectores)

1)
$$AA^T = I = A^T A$$

- 2) $AA^{T} \rightarrow$ renglones de A es conjunto ortonormal de vectores
- 3) $A^T A \rightarrow$ columnas de A es conjunto ortonormal de vectores

Entonces, las siguientes afirmaciones son equivalentes

- 1. A es ortogonal
- 2. Renglones de *A* son un conjunto ortonormal
- 3. Columnas de *A* son un conjunto ortonormal

Definición. Matriz Normal

A es normal si conmuta con su transpuesta. Esto es $AA^T = A^TA$

Teorema

Si A es simétrica y ortogonal, entonces A es normal

Ejemplo matriz normal

$$A = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Simétrica? no (por inspección)

Ortogonal? no $A^T \neq A^{-1}$

$$|A| = ad - bc = 45$$

$$A^{-1} = \frac{1}{45} \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix}$$

$$AA^{T} = \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix}$$

$$A^{T}A = \begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 45 & 0 \\ 0 & 45 \end{pmatrix}$$