23. Резонанс

April 5, 2023

1 Комплексные числа

Формула Эйлера

$$e^{ix} = \cos x + i \sin x$$

Функцию $F = F_0 \cos(\omega t - \Delta)$ будет рассматривать как действительную часть комплексного числа $F_0 e^{-i\Delta} e^{i\omega t}$. В физике не бывает комплексных сил, однако мы будет пользоваться данной записью для удобства

$$F = F_0 e^{-i\Delta} e^{i\omega t} = \hat{F} e^{i\omega t}$$

Шляпка над буквой будет указывать что мы имеем дело с комплексным числом, в таком виде можно сразу описать амплитуду и сдвиг по фазе колебаний

$$\hat{F} = F_0 e^{-i\Delta}$$

Будем решать уравнение, где на наш осциллятор действует внешняя сила ${\cal F}$

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx + F$$

Будем предпологать что внешняя сила также осциллирует

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{kx}{m} = \frac{F_0}{m} \cos \omega t$$

Перепишем уравнение сделав подстановку с комплексными числами, такую подстановку можно сделать не всегда, а только для *линейных* уравнений содержащих *x* в первой или нулевой степени. В таком случае можно выделить в исходном уравнении действительную и мнимую часть, при этом действительная часть будет в точности совпадать с исходным уравнением.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{kx}{m} = \frac{\hat{F}e^{i\omega t}}{m}$$

в этом уравнении x также комплексное число $x=\hat{x}e^{i\omega t}$, а каждое дифференцирование по времени равно умножению на $(i\omega)$. Мы применяем тут форму решения x в виде $x=x_0\cos(\omega t+\Delta)$ или в комплексной форме $x=e^{i\Delta}e^{i\omega t}=\hat{x}e^{i\omega t}$ - грузик начинает колебаться с частотой действующей силы.

После дифференцирования и сокращения $e^{i\omega t}$ получаем

$$(i\omega)^2 \hat{x} + \frac{k\hat{x}}{m} = \frac{\hat{F}}{m}$$

Откуда легко получить

$$\hat{x} = \frac{\hat{F}}{m(\omega_0^2 - \omega^2)}$$

Какого вида числа \hat{F} и \hat{x} ? $\hat{F} = F_0 e^{i\Delta_1}$ и $\hat{x} = x_0 e^{i\Delta_2}$ или это просто комплексные числа так как нет смысла говорить о фазе в данном случае?

Этот же результат мы получали и раньше в главе 21.

$$x_0 = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

Грузик колеблется с частотой действующей силы, а амплитуда колебаний зависит от соотношения ω и ω_0 . Когда ω очень мала, грузик движется вслед за силой, если слишком быстро менять направление толчков, то грузик начинает двигаться в противоположном по отношению к силе направлению. При очень высокой частоте внешней силы грузик практически не двигается.

Так как $m(\omega_0^2 - \omega^2)$ действительное число, фазовые углы F и x совпадают(или отличаются на 180 градусов если $\omega^2 > \omega_0^2$).

Что имеется в виде под термином ϕ азовый угол, величина $\omega t + \Delta$ или просто Δ ?

Имеет ли тут вообще смысл говорить о сдвиге фазы Δ так как данные уравнения описывают уже устроявшийся процесс и нам не важно какая фаза была в начале? В начале не важно, но Δ может описывать устоявшуюся разницу в фазах между двумя уравнениями колебаний.

2 Вынужденные колебания с торможением