Lab Report No 9

Digital Logic Design

Submitted By:

Abdul Ahad

22-CS-071

Muhammad Afzal

22-CS-035

Muhammad Zain Ali

22-CS-015

Faisal Khan

22-CS-039

Bilal Asghar

22-CS-107

Submitted to:

Engr. Bushra Fiaz

Dated:

Week 09

Department of Computer Science,
HITEC University, Taxila

Solution:

Question

Implement and verify the 1-Bit Magnitude Comparator Boolean expressions by using basic logic gates on trainer board

Brief Description

The 1-bit magnitude comparator compares two binary numbers, A and B, and determines if A is greater than B, equal to B, or less than B. The output of the comparator is a set of three control signals: A>B (A is greater than B), A=B (A is equal to B), and A<B (A is less than B).

The results (Screenshot)

Ai	Bi	Ai_less_than_Bi	Ai_equal_to_Bi	Ai_greater_than_Bi
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0
		,		

Solution:

Question

Implement and verify the 2-Bit Magnitude Comparator Boolean expressions by using basic logic gates and simulate the circuit with Logisim.

Brief Description

A 2-bit magnitude comparator is a digital circuit that compares two 2-bit binary numbers and determines their relative magnitudes. It determines whether one number is greater than, equal to, or less than the other number. The comparator has two 2-bit inputs, A [1:0] and B [1:0], representing the two binary numbers to be compared. It produces three output signals: A>B, A=B, and A<B, indicating the results of the comparison.

The results (Screenshot) A_is_greater_than_B A_is_equal_to_B A_is_less_than_B R1 A_is_greater_than_B A_is_equal_to_B A_is_less_than_B A1 ΑN RΠ 0 0 0 0 0 0 0 0 0 0 0 Π Π 0 0 0