Fourierrelihjur

Seinast knýttu vit eina Fourierreldýn til 28-periodishor furbliónir fel'(-17,87).

Red FR.

$$f \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx),$$
her
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \qquad n = 0, 1, 2, ...$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, \qquad n = 1, 2, ...$$

Ynser reglur eru, so at vit kunn sleppa avstað við at rokna minni. Sjálv Fourierrehlojum er uppbygt av líka og clíka partum.

Hovuðsúrslitið seinest var Fouriers' setningur (6.12): f^{2n} -per. og stylkivís diff., so (i) Um f er hantimært i z, so honvergerer FR. iméti f(z).

(ii) Um f er dishantimært i z, so konvergerer FR iméti $\frac{f(z^i) + f(z^i)}{2}$.

Domi

Lat $f(x) = x^2$, $x \in [-\pi, \pi[.]]$. Her have vit $x_1 = -\pi$ og $x_2 = \pi$ vid $f_1(x) = x^2$ fyri $x \in [x_1, x_2]$. Furthismin $f_1(x)$ or differentiabel vid kontinuerta avleidda furthism $f_1(x) = 2x$ fyri $x \in [x_1, x_2]$. Uniformit test or $f(x) = f_1(x)$, $x \in [x_1, x_2[.]]$. So $f(x) = x^2$ or stylkivis differentiabel.

Lat
$$f(\infty) = \begin{cases} 0, & \kappa \in]-\pi, 0], \\ \ln(\infty), & \kappa \in]0, \pi]. \end{cases}$$

Set $x_1 = -\pi$, $x_2 = 0$ og $x_3 = \pi$, og let $\int_{\Gamma} : [x_1, x_2] \rightarrow 0$ og $\int_{Z} : [x_2, x_3] \rightarrow 0$ Vera $\int_{\Gamma} \cos x = 0$ og $\int_{Z} (x_1 = \ln x_1)$.

Nú er $\int_{\lambda}^{1}(x) = \frac{1}{x}$ ei definerad i $x_{i}=0$, so f er ihhi stykkivis different i abul.

Dømi b.8 $f(x) = x^2$, $z \in [-\pi,\pi[$, $\lambda\pi$ -periodish.

Fultionin er like, so bn=0 VnEN.

$$a_{\delta} = \frac{2}{\pi} \int_{0}^{\pi} f(\omega) d\omega = \frac{2}{\pi} \left[\frac{1}{3} z^{3} \right]_{0}^{\pi} = \frac{2}{3\pi} \pi^{3} = \frac{2\pi^{2}}{3}.$$

$$Q_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x_{1} \cos (nx)) dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (nx) dx$$

$$= \frac{2}{\pi} \left(\left[x^{2} \frac{1}{n} \sin (nx) \right]_{0}^{\pi} - \int_{0}^{\pi} 2x \frac{1}{n} \sin (nx) dx \right)$$

$$= \frac{2}{\pi} \left(\left[2x \frac{1}{n^{2}} \cos (nx) \right]_{0}^{\pi} - \int_{0}^{\pi} 2 \frac{1}{n^{2}} \cos (nx) dx \right)$$

$$= \frac{2}{\pi} \left(2\pi \frac{1}{n^{2}} \cos (n\pi) - 0 \right)$$

$$= \frac{4 \cos (n\pi)}{n^{2}} , \cos (n\pi) = (-1)^{n} , n \in \mathbb{N}.$$

$$= 4 \frac{(-1)^{n}}{n^{2}}$$

$$= \frac{(-1)^{n}}{n^{2}} \cos (nx) .$$

Domi

Lat
$$f(t) = \frac{\pi}{8} (\pi t - t^2)$$
, $t \in [0, \pi]$

$$f \sim \sum_{n=1}^{\infty} \frac{\sin(2n-1)t}{(2n-1)^3}$$

$$|f(n) - S_N(n)| \leq \varepsilon$$

b. 16 $\int_{-\pi}^{\pi} |f'(t)|^{2} dt = 2 \int_{0}^{\pi} \left(-\frac{\pi}{4}t + \frac{\pi^{2}}{8}\right)^{2} dt = 2 \int_{0}^{\pi} \left(\frac{\pi^{2}}{16}t^{2} - \frac{\pi^{3}}{16}t + \frac{\pi^{4}}{64}\right) dt$ $= 2 \left[\frac{\pi^{2}}{48}t^{3} - \frac{\pi^{3}}{32}t^{2} + \frac{\pi^{4}}{64}t\right]_{0}^{\pi} = 2 \left(\frac{\pi^{5}}{48} - \frac{\pi^{5}}{32} + \frac{\pi^{5}}{64}\right)$ $= \frac{\pi^{5}}{24} - \frac{\pi^{5}}{16} + \frac{\pi^{5}}{32} = \frac{\pi^{5}}{96}.$ $N \ge \frac{\frac{\pi^{5}}{96}}{\pi \cdot \epsilon^{2}} = \frac{\pi^{4}}{96\epsilon^{2}} \approx 1,015 \cdot \frac{1}{\epsilon^{2}}$

$$\xi = 0, 1$$
: $N \ge 102$
 $\xi = 0, 01$: $N \ge 10150$

Men relutjam er ólíha, so N refererar til allar liðirnar, men vit rokna bert ólíha liðir Saman. Tað merkir 5000+ liðir skulu roknest.

6.17
$$|f(x) - S_N \alpha_1| \leq \sum_{h=N_{4r}}^{\infty} (|a_h| + |b_h|) \leq \sum_{h=N_{4r}}^{\infty} \frac{1}{(a_{n-1})^5}.$$

Ngt
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
, hen henvergerar og er majorat.
 $\sum_{n=N+1}^{\infty} \frac{1}{(2n-1)^3} \stackrel{d}{=} \int \frac{1}{(2n-1)^3} dx + \frac{1}{(2N+1)^3} = \frac{1}{4(2N-1)^2} + \frac{1}{(2N+1)^3}$

Kompleks FR. Vit have
$$e^{i\theta} = \cos \theta + i \sin \theta$$
 og $e^{-i\theta} = \cos \theta - i \sin \theta$.
Leysa vit eftir $\cos \theta$ og $\sin \theta$, so howe vit $\cos \theta = \frac{1}{2} \left(e^{i\theta} + \bar{e}^{i\theta} \right)$
 $\sin \theta = \frac{1}{4i} \left(e^{i\theta} - e^{-i\theta} \right)$

Lenna b.20 Fourierrehlijan hever arsnitssum
$$S_{N}(z) = \frac{1}{2} a_{0} + \sum_{n=1}^{N} a_{n} \cos(nz) + b_{n} \sin(nz) = \sum_{n=-N}^{N} c_{n} e^{inz},$$
 hav
$$c_{n} = \frac{1}{2\pi} \int_{-\infty}^{\pi} f(z) e^{-inz} dz, \quad n \in \mathbb{Z}.$$

Pf. Vit faq, at
$$a_{n} \cos(nx) + b_{n} \sin(nx) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad \frac{e^{inx} + e^{-inx}}{2}$$

$$+ \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \quad \frac{e^{inx} - e^{-inx}}{2i}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos(nx) - i \sin(nx) \right) dx \quad e^{inx}$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos(nx) + i \sin(nx) \right) dx \quad e^{-inx}$$

$$= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \right) e^{inx} + \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \right) e^{-inx}$$

Nú stendur
$$a_n \cos(nx) + b_n \sin(nx) = c_n e^{inx} + c_{-n} e^{-inx}$$
, og vit féa eini, at
$$\frac{1}{2} a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = c_0.$$

Tishil er
$$S_{N}(z) = \frac{1}{2} a_{o} + \sum_{n=1}^{N} a_{n} \cos(nz) + b_{n} \sin(nz)$$

$$= C_{o} + \sum_{n=1}^{N} C_{n} e^{inx} + C_{-n} e^{-inz}$$

$$= \sum_{n=1}^{N} C_{n} e^{inx}.$$

Def. 621 Fourierreldjan hjá f a kempleksum formi skrivast
$$f \sim \sum_{n=1}^{\infty} c_n \, e^{inx} \; .$$

Lemona 6.22 Umestar av hoefficiertum:

(i)
$$C_0 = \frac{1}{2} a_0$$
, $C_m = \frac{1}{2} (a_m - ib_m)$, $C_{-m} = \frac{1}{2} (a_m + ib_m)$.

(iii)
$$a_0 = 2c_0$$
, $a_n = c_n + c_n$, $b_n = i(c_n - c_n)$.

Fylgir nextan beinleidis:
$$c_0 = \frac{1}{2\pi} \int_0^{\pi} f \alpha_1 e^{\alpha} dx = \frac{1}{2} a_0$$

$$n > 0: \qquad C_n = \frac{1}{2\pi} \int_{\pi}^{\pi} f(x_1) e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x_2) \left(\cos(nx_2) - i\sin(nx_2)\right) dx$$

$$= \frac{1}{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x_2) \cos(nx_1) dx - i\frac{1}{\pi} \int_{-\pi}^{\pi} f(x_2) \sin(nx_1) dx\right)$$

$$= \frac{1}{2} \left(a_n - ib_n\right).$$

$$C_{-n} = \frac{1}{2\pi} \int_{\pi}^{\pi} f(x_1) e^{inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x_2) \left(\cos(nx_2 + i\sin(nx_1)) dx\right)$$

$$= \frac{1}{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x_2) \cos(nx_1) dx + i\frac{1}{\pi} \int_{-\pi}^{\pi} f(x_2) \sin(nx_1) dx\right)$$

$$= \frac{1}{2} \left(a_n + i \int_{\pi}^{\pi} dx_2 \cos(nx_1) dx + i\frac{1}{\pi} \int_{-\pi}^{\pi} f(x_2) \sin(nx_1) dx\right)$$

$$D_{\varphi m_{1}} \quad b.24 \qquad f_{(x)} = \begin{cases} -(\ , \ x \in] - \pi, o \\ o \ , \ x = 0 \end{cases} \qquad a_{n} = 0 \quad \forall n \in \mathbb{N}_{0} \quad c_{g} \quad b_{n} = \begin{cases} 0 \ , \ n \quad lik_{n}, \\ \frac{4}{n\pi} \ , \quad n \quad \delta lik_{n}. \end{cases}$$

No er
$$C_{n} = 0$$
 fyri all like n . Fyri clike n er
$$C_{n} = \frac{1}{2} \left(a_{n} - i b_{n} \right) = \frac{1}{2} \left(0 - i \frac{4}{n \pi} \right) = -\frac{2i}{n \pi}$$

$$C_{-n} = \frac{1}{2} \left(a_{n} + i b_{n} \right) = \frac{1}{2} \left(0 + i \frac{4}{(n)^{TT}} \right) = -\frac{2i}{n \pi}$$

$$f \sim -\frac{2i}{\pi} \sum_{n \in \mathbb{Z}, n \in \mathbb{Z}_{n}} \frac{1}{n} e^{in x}.$$