Data pipeline:

- Cleaning & Processing
 - Removed StateCode X3, X5, US, DC, which conveniently removed all NA values
 - Changed MSN Codes and Amount columns into 29 new columns with each MSN and its corresponding amount value
 - Deleted MSN Code columns "BDFDB", "BFPRP", "CLPRP", "COPRK", "NGMPK", "NGMPP", "PAPRP", "TEPRB", "TETCB", "WDEXB", "WDPRB", "WDTCB", "WSTCB" because we saw that these columns were repeats (or similars) of other columns but with different units
 - Found external data sources and used merges, left joins, etc. to combine them to the original dataset
- Adding External Sources
 - After some initial analysis, we saw that our initial models were weak. We wanted to add more relevant parameters to make our model strong and more accurate.
 - We believe there are economic factors that play into the investments, so we searched for additional sources with economic data per state.
 - Additional sources used
 - Disbursement data:
 https://revenuedata.doi.gov/downloads/disbursements/
 - Energy prices data: https://www.eia.gov/electricitv/state/archive/2016/
 - Population and GDP data: https://www.eia.gov/state/seds/seds-data-complete.php?sid=US#Statistic sIndicators
- Principal component analysis
 - Since we do have many features and want to avoid the curse of dimensionality, we decided to use PCA to reduce dimensionality.
 - We used feature extraction to shrink all features into one using the first principal component vector
 - Can see that PC1 accounts for lots of the variance
 - We continued to use PC1 in our regressions
- Clustering by K-Means to increase independent samples from per state to per cluster
 - Having only 5 observations for each state was not enough to perform many models
 - Decided to cluster states into "regions" to give us more observations to work with per cluster in order to have better regression results
 - Using silhouette score to determine optimal K value
 - Silhouette score denotes how much cluster regions overlap with another, the lower the score the more distinct and useful the clusters are for classification
- Models
 - Simple Linear Regression with one predictor PC1 predicting Assistance
 - P-values mostly small (< .05), statistically significant
 - Random Forest Clustering

- Using multiple decision trees, we can use an unsupervised machine learning algorithm to create a model for predicting future values of investment
- Partial Least Squares
 - Used for few observations but many variables
 - Limitations include assuming independence within each cluster; cannot be used for single-state clusters (two of them) due to lack of observations; included negative values

Prediction

- Cluster test data by the cluster model
- o Make predictions according to cluster
- Scoring and Assessment
 - RMSE: all relatively small, showing our models were accurate in predicting the renewable energy investment for 2020

Cluster	Model	RSME
Cluster 1	SLR; full model	0.3972441
Cluster 2	SLR; full model	3.297159
Cluster 3	SLR; full model	3.699248
Cluster 4	SLR; full model	Inf
Cluster 5	SLR; full model	0.2403496
Cluster 1	SLR; no GDP, Population	0.3960565
Cluster 2	SLR; no GDP, Population	3.273118
Cluster 3	SLR; no GDP, Population	3.665525
Cluster 4	SLR; no GDP, Population	Inf
Cluster 5	SLR; no GDP, Population	0.2400619
Cluster 1	SLR; no Net, GDP, Pop	0.3511143
Cluster 2	SLR; no Net, GDP, Pop	10.68734
Cluster 3	SLR; no Net, GDP, Pop	2.191303
Cluster 4	SLR; no Net, GDP, Pop	Inf
Cluster 5	SLR; no Net, GDP, Pop	0.2296184
Cluster 1	SLR; no Retail, Net, GDP,	0.3040538

	Рор	
Cluster 2	SLR; no Retail, Net, GDP, Pop	0.4187101
Cluster 3	SLR; no Retail, Net, GDP, Pop	0.4938834
Cluster 4	SLR; no Retail, Net, GDP, Pop	Inf
Cluster 5	SLR; no Retail, Net, GDP, Pop	0.2868967
Cluster 1	SLR; no Disburse, Retail, Net, GDP, Pop	0.3155448
Cluster 2	SLR; no Disburse, Retail, Net, GDP, Pop	0.3879026
Cluster 3	SLR; no Disburse, Retail, Net, GDP, Pop	1.29119
Cluster 4	SLR; no Disburse, Retail, Net, GDP, Pop	Inf
Cluster 5	SLR; no Disburse, Retail, Net, GDP, Pop	0.2312127
Cluster 1	SLR; no Net, Disburse, GDP, Pop	19.07823
Cluster 2	SLR; no Net, Disburse, GDP, Pop	379.8185
Cluster 3	SLR; no Net, Disburse, GDP, Pop	3070.547
Cluster 4	SLR; no Net, Disburse, GDP, Pop	Inf
Cluster 5	SLR; no Net, Disburse, GDP, Pop	3.074248
Cluster 1	SLR; no Net, Retail	0.3080473
Cluster 2	SLR; no Net, Retail	0.4464448
Cluster 3	SLR; no Net, Retail	0.560616
Cluster 4	SLR; no Net, Retail	Inf

Cluster 5	SLR; no Net, Retail	0.2869295
Cluster 1	RandomForestClassifier	35096318
Cluster 2	RandomForestClassifier	14986823
Cluster 3	RandomForestClassifier	697648
Cluster 4	RandomForestClassifier	23145967
Cluster 5	RandomForestClassifier	679829