CALCULANDO PROBABILIDADES DO PROBLEMA "MONTY-HALL" ATRAVÉS DE SIMULAÇÕES

Francisco Maradona de Freitas Morais

Introdução

O problema de Monty-Hall considera um game show em um programa de televisão no qual um participante deve escolher às cegas entre três portas. Em uma das portas existe um carro novo que o participante levará como prêmio, nas outras duas existem uma cabra em cada, representando a falha na escolha do participante. O apresentador, que sabe qual a porta que contém o carro, depois que o participante escolher a porta, irá abrir uma das duas portas restantes mostrando que possui uma cabra nela.

Esse problema é um clássico da probabilidade e seus resultados dos calculos são contra-intuitivos; uma convenção geral é: depois de escolhida uma porta manter a escolha até o final do game. Veremos que, no entanto, probabilisticamente falando, a melhor opção neste cenário de game show é optar por trocar de porta escolhida.

Cenários possíveis

Os cenários possíveis que afetam diretamente na probabilidade de o participante ganhar, ou não, um carro são somente dois:

a) Manter a porta escolhida quando for proposto trocar

Neste cenário o participante escolherá uma porta aleatória (1, por exemplo) e então o apresentadorabrirá uma das portas restantes que ele sabe que não tem um carro (3, por exemplo). Ao ser perguntado sobre trocar a porta 1 pela 2, o participante responde negativamente e mantém a porta inicialmente escolhida. O apresentador abre a porta escolhida e vê o resultado (ganhou ou não o carro). Deste cenário podese inferir:

- A probabilidade de ganhar o carro mantendo-se a porta (MANTER GANHAR)
- A probabilidade de não ganhar mantendo-se a porta (MANTER_PERDER)

b) Trocar a porta escolhida quando for proposto

Este cenário assemelha-se ao cenário anterior excetuando o fato de que no momento em que o apresentador propõe a troca de portas o participante responde positivamente. Deste cenário pode-se inferir:

- A probabilidade de ganhar o carro trocando a porta (TROCAR_GANHAR)
- A probabilidade de não ganhar trocando a porta (**TROCAR_PERDER**)

Estas probabilidades, nomeadas em MANTER_GANHAR, MANTER_PERDER, TROCAR_GANHAR, TROCAR_PERDER, podem ser calculadas utilizando teoremas da probabilidade mas o objetivo deste trabalho é inferir este resultado a partir de simulações sucessivas. O ideal adotado é o de que, quanto maior a

amostragem de simulações feitas maior é a corretude da análise efetuada, ou seja, mais próximo o resultado obtido é do resultado real.

Metodologia

Para inferir estas probabilidades, foi desenvolvido um programa na linguagem de programação **Python** que simula o ambiente do game show para os casos em que o participante mantém ou muda a porta escolhida.

O resultado das probabilidades calculadas têm suas precisões determinadas pela quantidade de amostragens, ou seja, testes.

São executados 100.000 rodadas de testes, em cada rodada um teste é feito para o caso em que o participante mantém a porta e outro para o caso em que ele escolhe trocar de porta. Em cada teste, se o participante ganhou o carro um contador que está tratando da probabilidade em questão é incrementado em uma unidade.

Depois dos testes a quantidade de ocorrências dos diferentes casos é dividido pelo numero total de execuções. O código da aplicação desenvolvida pode ser encontrado no repositório online do autor, no endereço https://github.com/mrmorais/monty-hall/.

Resultados

NUM TESTES	MANTER		TROCAR	
	GANHAR	PERDER	GANHAR	PERDER
100	0.38	0.62	0.57	0.43
1.000	0.336	0.664	0.654	0.346
10.000	0.3327	0.6673	0.6758	0.3242
100.000	0.33115	0.66885	0.66552	0.3348

A tabela acima mostra os resultados das probabilidades calculadas com o número de testes aumentando em 10 vezes. Como pode-se observar, conforme aumenta-se a amostragem de testes o valor das probabilidades se aproximam de 0.33 e 0.66.

Podemos concluir, com base nas simulações realizadas, que a probabilidade de ganhar o carro é maior se o participante escolher mudar a porta escolhida.