1. Herramientas

Introducción a Python para Deep Learning

Contenidos

- 1. Consola
- 2. Google Colab
- 3. JupyterLab
- 4. Visual Studio Code
- 5. Entornos virtuales
- 6. ¡Ayuda!
- 7. Docker

- Abrid un terminal
 - En Windows puede ser 🔡 + r
 - cmd, powershell o terminal
 - En Linux y macOS tenéis el terminal
- Escribid python
- Escribid el código a ejecutar: print ("Hola, mundo")
- También podemos usar archivos
- Guardad en un archivo de texto el código anterior
- Escribid python hola.py

¿Ventajas?

¿Inconvenientes?

- Ventajas
 - rápido para probar
 - simple
 - uso mínimo de recursos
 - siempre disponible: si tienes Python, está
 - accesible desde conexiones remotas
 - fácil de usar para tareas básicas

- Inconvenientes
 - árido, rústico, rudimentario
 - sin persistencia
 - complicado de modularizar
 - falta de herramientas avanzadas (que aún no conocéis)
 - salida limitada (sólo texto)

¡Seguro que hay mejores alternativas!

- Para programar con Python sólo necesitamos acceso a Internet y un cliente web
- Visitad: https://colab.research.google.com
- Usad el mismo código que desde la consola
- Ejecución desde la web
- Estamos utilizando notebooks
- Combinan código y texto
- Resultados persistentes
- Se pueden compartir programas con una URL
- Uso de GPU y TPU


```
from PIL import Image
image = Image.open("usc.png")
image
```

- Probadlo desde Google Colab
- Probadlo desde la consola
- ¿Ventajas?
- ¿Inconvenientes?

¿Ventajas?

¿Inconvenientes?

- Ventajas
 - Facilidad de acceso
 - Configuración nula
 - Bueno, casi nula
 - Entorno compartido y colaborativo

- Desventajas
 - Necesitas conexión a Internet
 - Recursos limitados
 - Menor control

Esto está mejor...
¡Pero espero que haya mejores alternativas!

- VSC de ahora en adelante
- Herramienta gratuita, multiplaforma y de código abierto
- Desarrollada por Microsoft
- Editor de texto extensible
- Con extensiones se puede transformar en un IDE: Integrated Development Environment (entorno integrado de desarrollo)
- Nos proporciona todas las herramientas que necesitamos en un único lugar
- Es lo que vamos a usar en clase
- Debería estar instalado en el laboratorio
- Instaladlo en vuestros equipos personales para seguir el trabajo en casa
- https://code.visualstudio.com/

- Nos ayuda en todo lo que puede
- Resalte de sintaxis (colores por tipo de palabra)
- Autocompletar: tanto funciones como variables
- Rodear cadenas es fácil (dobles comillas, paréntesis...)
- Nos avisa de los errores
- Nos muestra el tipo de las variables
- Nos muestra su contenido
- ¡Esto es una maravilla!

- Cread un nuevo archivo hola.py (o abrid el que ya teníamos)
- VSC ofrecerá instalar las extensiones necesarias si no lo están ya
- A partir de ese momento, podremos ejecutar el script
- ¿Y qué se usa para la ejecución...?
- ¡La consola!

- ¡Pero podemos hacer mucho más!
- Depuración, por ejemplo
- Probemos a guardar el mensaje en una variable (ya explicaremos en más detalle qué son):

```
mensaje = "Hola, mundo"
print(mensaje)
```

- En lugar de ejecutar, depurar
- Añadir un punto de interrupción antes de print()
- Panel de inspección a la izquierda
- Vemos las variables
- Podemos ver sus tipos

¿Ventajas?

¿Inconvenientes?

- Ventajas
 - Todo lo que hemos comentado anteriormente como sus características

Desventajas

- No disponible en situaciones en las que no puedas acceder a una interfaz gráfica (conexiones remotas)
- Existen herramientas más potentes (PyCharm)
- Una vez te acostumbras a lo bueno...

4. JupyterLab

- https://jupyter.org/
- Como Google Colab, ¡pero en nuestro ordenador!
- Bueno, realmente es al revés: Colab es como JupyterLab
- El concepto es tan potente que hasta Apple lo ha copiado:
- https://developer.apple.com/swift-playground/

```
pip install jupyterlab
jupyter lab
```

- ¿Qué versión de Python tenéis?
 - Podría ser la 3.12 o superior
- ¿Qué versión de Python tengo yo?
 - Podría ser la 2.7
- ¿Qué puede pasar?
 - Que un programa que a mí me funcione, a vosotros y vosotras no
 - Que no seamos capaces de trabajar en equipo

- Es **FUNDAMENTAL** que usemos las mismas versiones
- Cuando trabajamos en equipo
- Cuando trabajamos solos, pero el proyecto se prolonga en el tiempo
- Cuando intentamos usar programas desarrollados por otras personas

- Problema: dependencias
- Un programa usa una serie de bibliotecas
- Una biblioteca tiene una vida y una serie de versiones
- Un programa es una combinación de código y bibliotecas
- Resultado:
 - cada programa pertenece a un momento en el tiempo
 - puede que el programa funcione perfectamente con la versión X de una biblioteca, pero con la versión Y no

La solución: los entornos virtuales

- Permiten trabajar con diferentes versiones de Python
- Guardan en una carpeta diferente cada entorno
- Contienen todo lo necesario (paquetes estándar y de terceros)
- Se puede activar, desactivar, borrar
- ¿Ventajas y desventajas?

- Versionado semántico: significado
- https://semver.org/
- Instalar miniconda: https://docs.anaconda.com/miniconda/ (debería estar ya instalado)
- Existen muchas otras alternativas, no es necesario limitarse a Miniconda
 - venv: https://docs.python.org/3/library/venv.html (nativo de Python)
 - Conda: https://anaconda.org/anaconda/conda
 - pyenv: https://github.com/pyenv/pyenv
- Pero miniconda es la que más nos gusta

- Creación de entornos
 - conda create --name prueba python=3.12 --yes
- Activación de entornos
 - conda activate prueba
- Desactivación de entornos
 - conda deactivate
- Eliminación de entornos
 - conda remove --name prueba --all

- Uso del entorno virtual desde VSC
- Search (arriba, en el centro) >python:s
- Seleccionar el entorno virtual que necesitemos en cada momento
- Exportar los entornos a un archivo para compartirlos
- Guardarlos junto con el código fuente del proyecto:

```
conda env export > project_environment.yml
conda env create --file project_environment.yml
```

6. Ayuda

- Documentación de Python
 - Desde la web: https://docs.python.org/
 - Desde el entorno de desarrollo: poner el puntero encima
- Google: búsquedas
- Stack Overflow: resolución de problemas
- ChatGPT: 😂

6. Ayuda

- ¿Cómo usar ChatGPT? Con cabeza
- Pedirle la solución a un problema:
 - corto plazo
- Pedirle que analice nuestra solución:
 - largo plazo
- "Dale un pez a un hombre y comerá hoy. Enséñale a pescar y comerá el resto de su vida"

6. Ayuda

- ¿Cómo usar ChatGPT? Con cabeza
- Pedirle la solución a un problema:
 - corto plazo
- Pedirle que analice nuestra solución:
 - largo plazo
- "Dale un pez a un hombre y comerá hoy. Enséñale a pescar y comerá el resto de su vida"

7. Docker

- Le dedicaremos más tiempo
- Plataforma que permite ejecutar aplicaciones en entornos aislados llamados contenedores
- Permite instalar y ejecutar aplicaciones complejas, como gestores de bases de datos o servidores web, sin preocuparte por las configuraciones en tu sistema operativo
- Fácil de usar
- Multiplataforma

7. Docker

- Docker Desktop
- Debería estar instalado en vuestros equipos
- No lo usaremos en este curso más allá de para explicar su funcionamiento y hacer pruebas, pero sí se usará en otros cursos del programa
- Descargar: https://www.docker.com/products/docker-desktop/
- Aplicación de escritorio con interfaz gráfica
- Una vez instalado, lanzar como una aplicación más

7. Docker

Gestión de imágenes:

- 1. Haz clic **Images**, en el lateral
- 2. Utiliza el cuadro de texto de búsqueda para encontrar una imagen (por ejemplo, busca **mysql**)
- 3. Haz clic en **Pull** para descargar la imagen
- 4. Haz clic en **Run** para ejecutar la imagen

También puedes detener o desinstalar las imágenes

Conclusiones

- Existen múltiples formas de usar Python: consola, notebooks en Colab o en JupyterLab, IDEs...
- Cada una con sus ventajas e inconvenientes
- Usar un IDE es lo ideal
- Combinarlo con entornos virtuales
- Utilizar sabiamente la ayuda a vuestra disposición

Recursos y referencias

- Google Colab
- Visual Studio Code
- JupyterLab
- Versionando semántico
- Miniconda
- Ayuda de Python
- Stack Overflow
- ChatGPT

- Docker
- Docker Desktop

1. Herramientas

Introducción a Python para Deep Learning

