ļ.	
	Tragen? Algebraische Strakturen: Restklassenringe
	Machinische Charlet un Dockflaccon und
	Augustusine Strakturen: restaustannige
	(Min-Tot-Autgabersammlung) 5.2.4 Berechnen Sie:
	• [7] ₅ + [4] ₅ =
	• $[-3]_8 + [10]_8 \cdot [9]_8 =$
	$\bullet \ ([2]_{11}^{-1} + [5]_{11}) \cdot [3]_{11} =$
	$\bullet \ [5]_{17}^{-1} \cdot [5]_{17} - [9]_{17} \cdot [9]_{17}^{-1} =$
	Aufenta (6 x) Doubleur Citato Felanda
	Aufgabe 48 a) Berechnen Sie das Folgende: $ ([3]_{11}^{-1})^{-1} \cdot ([9]_{11} + [-1]_{11}) $
	$[3]_7^{-1} + [1]_7 + [5]_7$
	$ [3]_7 \cdot [6]_7^{-1} \cdot [-1]_7 $
	Geben Sie dabei das Ergebnis in Standardrepräsentanten an. b) Geben Sie zu jedem Element in $\mathbb{Z}_{11} \setminus \{[0]_{11}\}$ das inverse Element bezüglich der
	Multiplikation (in Standardrepräsentanten) an. Weso Value (Jun) ?
	Aufgabe 49 Berechnen Sie das Folgende:
	$[7]_4 + [2]_4 + [-3]_4$ $[4]_{11} + [5]_{11} + [2]_{11}$
	$[52]_5 \cdot [101]_5 \cdot [-1]_5$ $([5]_{17} \cdot [4]_{17}) + [-3]_{17}$
	$ (10)17 \cdot (11)17 + (10)17 $ $ [-1]_{-2} \cdot ([6]_{-2} \cdot [8]_{-2}). $
	Geben Sie dabei das Ergebnis mittels des kleinsten nicht-negativen Repräsentanten der Äquivalenzklasse an (Standardrepräsentanten).
	Aufgabe 50 a) Berechnen Sie das Folgende:
	$([3]_{-1}^{-1})^{-1} \cdot ([-5]_{17} + [7]_{17})$
	$[3]_{11}^{-1} + [3]_{11} + [5]_{11}$ $[3]_{5} \cdot [6]_{5}^{-1} \cdot [-1]_{5}$
	Geben Sie dabei das Ergebnis in Standardrepräsentanten an.
	b) Geben Sie zu jedem Element in $\mathbb{Z}_{13}\setminus\{[0]_{13}\}$ das inverse Element bezüglich der
	Multiplikation (in Standardrepräsentanten) an.
	5.2.3 Betrachten Sie den endlichen Restklassenkörper über Z ₁₃ mit entsprechender Addition und Multiplikation. (a) Geben Sie alle Elemente der Grundmenge an. (b) Geben Sie weiter
	und Multiplikation. (a) Geben Ste alle Elemente der Grundmenge an. (b) Geben Ste werter zu allen Elementen, zu welchen es existiert, jeweils das inwerse Element bezüglich der
	An initial assessment, as weather to constitute, person une increase assessment of the Multiplication and
	Multiplikation an.
	Multiplikation an. Multiplikation an.
	Multiplikation an. Multiplikation an.
	Multiplikation an. Control Cont
	Multiplikation an. Multiplikation an.

Aufgabe 55 Betrachten Sie den kommutativen Ring $(\mathbb{Z}_4,+,\cdot)$ über der endlichen Menge $\mathbb{Z}_4.$

- a) Zählen Sie die Elemente von Z₄ auf.
- b) Zählen Sie konkret alle "atomaren" Eigenschaften auf, die nachzuweisen sind um zu zeigen, dass $(\mathbb{Z}_4,+,\cdot)$ ein kommutativer Ring ist. (konkret: also nicht mur die Namen der Eigenschaften, sondern wie diese explizit für $(\mathbb{Z}_4,+,\cdot)$ aussehen.)
- c) Wenn Sie die Ringeigenschaften nachweisen wollten (← Konjunktiv, Sie müssen das hier nicht tun) indem Sie Für jede Eigenschaft alle möglichen Kombinationen an Elementen einsetzen.
 - $\mathbf{c})\mathbf{1}.$ wie viele verschiedene Kombinationen an Elementen gibt es, die Sie probieren müssten,
 - c)2. und wie viele Einzelbeweise ergeben sich damit insgesamt?

("atomare" Eigenschaften: Eine Eigenschaft ist dann atomar, wenn Sie nicht aus "kleineren" Eigenschaften zusammengesetzt ist. Falls in einer Definition eine zusammengesetzte Eigenschaft steht, sollen Sie also die Bausteine dieser Eigenschaft einzeln betrachten.)

Aufgabe 56 Betrachten Sie die Restklassenringe \mathbb{Z}_m für m>2und sei meine gerade Zahl (also $m\mod 2=0).$

- a) Versuchen Sie für m ∈ {4,6,8} jeweils die inversen Elemente bezüglich der Multiplikation aller Elemente des jeweiligen Restklassenrings zu bestimmen (Erwartungsgemäß wird dies nicht für alle Elemente gelingen!).
- b) Zeigen Sie allgemein, dass es in den Restklassenringen mit geradem Modul m stets Elemente gibt, zu denen keine Inversen bezüglich Multiplikation gefunden werden können.

(Hinweis: Rufen Sie sich ins Gedächtnis wie inverse Elemente definiert sind. Weiter haben Sie vielleicht feststellen können, dass es eine Zahl gibt deren Restklassen in keinem der ausprobierten Ringe ein Inverses besitzen; Beschreiben Sie das gesuchte Inverse zu dieser Zahl allgemein und zeigen Sie, dass es hier nicht existieren kann.)

· Beweis 4.16.

Satz 4.16 Für $m \in \mathbb{N}$ ist der Restklassenring \mathbb{Z}_m (Definition 3.11) ein Körper, genau dann, wenn m eine Primzahl ist.

Gilt $m \notin \mathbb{P},$ so gibt es natürliche Zahlen m > p,q > 1mit pq = m. Damit folgt

$$[p]_m \cdot [q]_m = [m]_m = [0]_m.$$

Wäre nun \mathbb{Z}_m ein Körper, so würde nach Satz $\boxed{4.13\ 2.}$ gelten, dass $[p]_m=0$ oder $[q]_m = 0$. Dies kann aber wegen m > p, q > 0 nicht sein.

Satz 4.13 Es sei (K, \oplus, \odot) ein Körper. Dann gelten:

- 1. Für alle $x \in K$ ist $x \odot 0 = 0$
- 2. Für alle $x, y \in K$ mit $x \odot y = 0$ folgt x = 0 oder y = 0
- 3. Für alle $x, y \in K$ gilt $-(x \odot y) = -x \odot y = x \odot (-y)$

dem Rooklassenring 7m (m & IN) zum Körper ? · Was fellt

Bemerkung und Definition 4.8 Es sei $m \in \mathbb{Z} \setminus \{0\}$ und R_m die Kongruen Relation modulo m (vgl. 3.11). Dann heißt

 $\mathbb{Z}_m := \{[x]_m : x \in \mathbb{Z}\}$

die Menge der Restklassen modulo m. Nach (3.4) ist

 $[x]_m:=\{y\in\mathbb{Z}:y=x+k\,m,\,k\in\mathbb{Z}\}.$

Auf \mathbb{Z}_{∞} definieren wir zwei Verknüpfungen wie folgt. Für $x,y\in\mathbb{Z}$ sei die Addition der zugehörigen Äquivalenzklassen definiert durch

 $[x]_m + [y]_m = [x + y]_m$

und die Multiplikation sei definiert durch

 $[x]_m\cdot [y]_m=[x\cdot y]_m$

Damit ist $(\mathbb{Z}_m, +, \cdot)$ ein Ring und \mathbb{Z}_m und wird als **Restklassenring** modulo m

Definition 4.7 Es sei R eine Menge und $\oplus: R \times R \to R$ und $\odot: R \times R \to R$ zwei Verknüpfungen. Dann ist (R, \oplus, \odot) ein **Ring**, wenn gilt:

- 2. Für alle $x,y,z\in R$ gilt $x\odot (y\odot z)=(x\odot y)\odot z$ (Assoz
- 3. Für alle $x,y,z\in R$ gelten $x\odot(y\oplus z)=(x\odot y)\oplus(x\odot z)$ und $(x\oplus y)\odot z$ $(x\odot z)\oplus(y\odot z)$ (Distributivgesetze).

Weiter heißt (R, \oplus, \odot) kommutativer Ring, wenn zusätzlich gilt

 $4.\ \, x\odot y=y\odot x \text{ für alle } x,y\in R.$

 $\begin{array}{ll} \textbf{Definition 4.9} \text{ Es sei } K \text{ eine Menge mit mindestens zwei Elementen und} \oplus \colon \\ K \times K \to K \text{ und } \ominus \colon K \times K \to K \text{ zwei Verknüpfungen (genannt Addition und Multiplikation). Dann ist } (K, \oplus, \ominus) \text{ ein } \textbf{K\"orper}, \text{ wenn gilt:} \end{array}$

- 2. Es gelten

 - es gibt ein neutrales Element 1 ∈ K \ {0} bezüglich ⊙⁴,
 zu jedem x ∈ K \ {0} existiert ein x⁻¹ ∈ K so, dass x⁻¹ ⊙ x = 1 ^b,
 - für alle $x,y\in K$ ist $x\odot y=y\odot x$
- 3. Für alle $x,y,z\in K$ gelten $x\odot(y\oplus z)=(x\odot y)\oplus(x\odot z)$ und $(x\oplus y)\odot z=(x\odot z)\oplus(y\odot z)$ (Distributivgeetze).
- $^{\rm o}1$ ist hier ein Symbol (und nicht notwendigerweise die numerische Eins). $^{\rm o}_{\rm o}$ hoch $-1^{\rm o}$ ist eine symbolische Schreibweise

Gilt $m \in \mathbb{P}$, so gilt für jedes $k \in \{1, ..., m-1\}$

$$ggT(k, m) = 1$$

(ggT meint größter gemeinsamer Teiler). Mit dem erweiterten euklidischen Algorithmus (vgl. Anhang) folgt die Existenz von $l_1,l_2\in\mathbb{Z}$ mit

 $l_1 m + l_2 k = 1.$

Also gilt

$$[1]_m = [l_1 m]_m + [l_2 k]_m = [0]_m + [l_2]_m [k]_m = [l_2]_m [k]_m,$$

sodass $[l_2]_m$ multiplikative Inverses zu , $[k]_m$ ist.

z.z.: Die Gleichung $l_1 \cdot m + l_2 \cdot k = 1$ ist genau dann lösbar, wenn $\operatorname{ggT}(m,k) = 1$ gilt

Aufgabenblatt: Summen und Produkte

1. Aufgabe: Summen: Zuordnen

a)	$\sum_{i=0}^{5} i =$	i)

 ${\rm i)} \hspace{0.5cm} 1+2+3+4+5+6 =$ b) $\sum_{i=1}^{6} i =$ $ii) \hspace{1.5cm} 2\,+\,4\,+\,6\,+\,8 \;=\;$

c) $\sum_{i=1}^{4} 2i =$

iii) $0 \cdot 1 \cdot 4 \cdot 9 =$ iv) 0+1+2+3+4+5 =d) $\prod_{i=0}^{3} i^2 =$

$$\sum_{i=a}^{b} (x_i)$$

a) $\sum_{i=1}^3 i =$ e) $\sum_{\lambda=3}^3 \lambda^{\lambda} =$

b) $\sum_{k=-1}^{3}(k+1) =$ f) $\sum_{m=4}^{2}\frac{m^{7}}{m!} =$ c) $\sum_{n=3}^{10}(\frac{n}{2}) =$ g) $\sum_{\phi=1}^{50}\psi =$ d) $\sum_{j=1}^{3}j^{2} =$ h) $\sum_{i=1}^{7}x_{i} =$

4. Aufgabe: rechnen mit Summen

a)
$$(\sum_{i=1}^4 i) + (\sum_{i=1}^4 i) =$$

b)
$$\sum_{k=1}^3 k + \sum_{j=1}^3 j =$$

c)
$$\sum_{n=1}^{3} n + \sum_{n=4}^{6} n =$$

d)
$$\sum_{\psi=1}^{3} \psi + \sum_{\lambda=4}^{6} \lambda =$$

5. Aufgabe: Indexverschiebung: Zuordnen

a)
$$\sum_{i=0}^{5} i + \sum_{i=2}^{7} (i-2)$$
 i) $\sum_{m=3}^{6} 2(m-1)$

6. Aufgabe: Schreibe als Summe

a) 1+2+3+4+5+6+7+8+9+10=b) 2+4+6+8=c) 6+9+12+15=d) -1-2-3-4=e) 4+2+8+10+6=f) 3+4+5+7+8+9=

7. Aufgabe: Benennen: Produkt

$$\prod_{i=a}^{b}(x_{i})$$

b ist ...
 (x_i) ist ...

8. Aufgabe: Produkte: Zuordnen

9. Aufgabe: Schreibe als Produkt

c) 2 · 4 · 6 · 8 = d) 4 · 9 · 16 · 25 =

10. Aufgabe: geschachtelte Summen und Produkte

a)
$$\sum_{i=1}^3 \sum_{j=1}^3 i \cdot j =$$

b) $\prod_{n=1}^{2} \prod_{m=2}^{3} n^{m} =$

c) $\sum_{i=1}^{3} \prod_{m=2}^{4} (i + m) =$

d) $\prod_{n=1}^{3} \sum_{i=0}^{2} n \cdot i =$

Johannes Bröhl & Paul Meier

Seite 5

Winter-Semester 2024/2025

Übungsaufgaben

Cheat-Sheet: Summen und Produkte

Formel: Triviale Summen

$$\sum_{i=a}^{a} (x_i) = x_a$$

$$\sum_{i=a}^{b} (x_i) = 0 \text{ falls } b < a$$

Formel: Distributivgesetz bei Summen

Ein konstanter Faktor kann aus einer Summe ausgeklammert werden:

$$\sum_{i=a}^{b} c \cdot (x_i) = c \cdot \sum_{i=a}^{b} (x_i)$$

Die "Pünktchenschreibweise" motiviert dies aus dem bekannten Distributivgesetz heraus sehr anschaulich:

$$\sum_{i=1}^{n} (c \cdot x_i) = (c \cdot x_1) + (c \cdot x_2) + (c \cdot x_3) + \dots + (c \cdot x_n) = c \cdot (x_1 + x_2 + x_3 + \dots + x_n) = c \cdot \sum_{i=1}^{n} (x_i)$$

Formel: Summen aufspalten & zusammenfassen

$$\sum_{i=a}^{b}(x_i) + \sum_{j=b+1}^{c}(x_j) = \sum_{k=a}^{c}(x_k) = \sum_{j=a}^{b'-1}(x_j) + \sum_{i=b'}^{c}(x_i) = x_a + \sum_{i=a+1}^{c}(x_i) = \sum_{i=a}^{c-1}(x_i) + x_c$$

$$\sum_{i=a}^{b} (x_i) + \sum_{j=a}^{b} (y_j) = \sum_{k=a}^{b} (x_k + y_k)$$

Summen mit unterschiedlichen "Körpern" können zusammengefasst werden sofern sie identische Grenzen haben. Auch das lässt sich gut mittels der Pünktchen-Schreibweise nachvolziehen.

Formel: Summen Indexverschiebung

$$\sum_{i=a}^b (x_i) = \sum_{i=a+c}^{b+c} (x_{i-c}) = \sum_{i=a-d}^{b-d} (x_{i+d})$$

Johannes Bröhl & Paul Meier Winter-Semester 2024/2025

Übungsaufgaben

Horizontal hierbei das Geschehen der inneren Summe, Vertikal das der äußeren.

$$\begin{split} \sum_{i=1}^2 \prod_{j=2}^4 (ji) &= \sum_{i=1}^2 (2i)(3i)(4i) = (2\cdot 1)(3\cdot 1)(4\cdot 1) + (2\cdot 2)(3\cdot 2)(4\cdot 2) = 2\cdot 3\cdot 4 + 4\cdot 6\cdot 8 = 24 + 192 = 216 \\ &= \left(\prod_{i=2}^4 j\cdot 1\right) + \left(\prod_{i=2}^4 j\cdot 2\right) = ((2\cdot 1)\cdot (3\cdot 1)\cdot (4\cdot 1)) + ((2\cdot 2)\cdot (3\cdot 2)\cdot (4\cdot 2)) = \dots = 216 \end{split}$$

$\label{eq:Aufgabenblatt: Potenzen, Wurzeln und Logarithmen} Aufgabenblatt: Potenzen, Wurzeln und Logarithmen$

1. Aufgabe: Potenzen

b)
$$(5^2)^3 =$$

c) $\frac{3^4}{57} =$

e)
$$7^{-2} =$$

f) $2^3 \cdot 3^3 =$
g) $3 \cdot 7^2 + 2 \cdot 7^2$

c)
$$\frac{3^4}{2^4} =$$

d) $3^3 \div 3 =$

$$\begin{vmatrix} \mathbf{a}) & \sqrt[3]{8} \\ \mathbf{b}) & \sqrt[3]{3} \cdot \sqrt[3]{27} \\ \mathbf{c}) & \sqrt[3]{27} + 2 \cdot \sqrt[3]{27} \\ \mathbf{d}) & \left(\sqrt{\frac{9}{2}} - \sqrt{2}\right)^2 \\ \end{vmatrix} = \begin{vmatrix} \mathbf{a} & \mathbf{b} & \left(\sqrt{\frac{9}{2}} \cdot \sqrt{2}\right)^2 \\ \mathbf{g} & \sqrt[3]{2^{21}} \\ \mathbf{g} & \mathbf{g} \end{vmatrix}$$

3. Aufgabe: Logarithmen

4. Aufgabe: Regeln vervollständigen: Potenzen

f)
$$a^n \div b^n =$$

g) $= \frac{1}{a^n}$
h) $a^{\frac{n}{m}} =$

5. Aufgabe: Regeln vervollständigen: Wurzeln

6. Aufgabe: Regeln vervollständigen: Logarithmen

Winter-Semester 2024/2025

$$\begin{array}{lll} \textbf{9.} & \text{Aligane: Regent vervolistandigen: Logarithm} \\ \textbf{a)} & \log_{n}(1) = & \textbf{g}) & \log_{n}(u \cdot v) = \\ \textbf{b} & \log_{n}(a) = & \textbf{h}) & = \log_{n}(u) - \log_{n}(v) \\ \textbf{c)} & \log_{n}(a^{2}) = & \textbf{i}) & \log_{n}(e) = \\ \textbf{d} & = u^{*}\log_{n}(u) & \textbf{j}) & \ln(x) = \\ \textbf{e} & \log(x^{2}) = & \textbf{k}) & = \frac{\log_{n}(e)}{\log_{n}(e)} \\ \textbf{j} & & \text{d}(x) = & \textbf{k} & = \frac{\log_{n}(e)}{\log_{n}(e)} \\ \end{array}$$

7. Aufgabe: Vereinfachen

8. Aufgabe: Gleichungen lösen

8. Aurgabe: Gleichungen loser

a)
$$2^{x} = 16$$

b) $\left(\frac{2}{3}\right)^{x} = 3\frac{3}{8}$

c) $\log_{3}\left(\frac{9x}{4x-3}\right) = 2$

d) $\log_{3}\left(3x-5\right) = \log_{3}\left(2x+3\right)$

Übungsaufgaben

Formel: Summe mit Sprungweite

Betrachte folgende Summendefinition:

$$\sum_{\substack{i=a\\i=s}}^{b} (x_i) = x_a + x_{a+s} + x_{a+(2s)} + \dots + x_{b-s} + x_b$$

Um die hier im "Kopf" der Summe definierte Sprungweite aus dem Kopf heraus zu bekommen, ist eine Indexverschiebung und das Anwenden des Distributivgesetzes notwendig:

Mit s der Sprungweite zum nächsten vorkommenden Index und a als Startindex sowie $b = a + n \cdot s$ als Endindex, ergibt sich dann:

$$\sum_{i=a}^{b} (x_i) = x_{a+0 \cdot s} + x_{a+1 \cdot s} + x_{a+2 \cdot s} + \dots + x_{a+n \cdot s} = \sum_{i=0}^{n} (x_{a+i \cdot s})$$

bzw. falls über Zahlen x_1 also $x_1, x_2, x_3, \cdots, x_n$ summiert wird und diese einen gemeinsamen Teiler besitzen also $\operatorname{\mathsf{ggT}}((x_t)_t) = \operatorname{\mathsf{ggT}}(x_1, x_2, x_3, \cdots, x_n) = t > 1$, ist folgendes Möglich:

$$\sum_i (x_i) = \sum_{i=1}^n (x_i) = \sum_{i=\frac{x_i}{\gcd \Gamma((x_i)_i)}}^{\frac{x_n}{\gcd \Gamma((x_i)_i)}} (i \cdot \gcd \Gamma((x_i)_i)) = \sum_{i=x_1 \dotplus i}^{x_n + t} (i \cdot t)$$

Betrachte zum besseren Verständnis folgende alternative Vorgehensweise: ammere den gemeinsamen Faktor aus bevor zur Summe zusammengefasst wird:

$$\begin{array}{lll} x_1 + x_2 + x_3 + \dots + x_n & = & (x_1' \cdot t) + (x_2' \cdot t) + (x_3' \cdot t) + \dots + (x_n' \cdot t) \\ & = & t \cdot (x_1' + x_2' + x_3' + \dots + x_n') = t \cdot \sum_{i = x_1'}^{x_i} i = \cdot \sum_{i = x_1' + t}^{x_n \cdot t} (i \cdot t) = \sum_{i = x_1 + t}^{x_n \cdot t} (i \cdot t) \end{array}$$

Formel: Produkte Sonderregeln

Triviales Produkt:

$$\prod_{i=a}^{b} (x_i) = 1 \text{ falls } b < a$$

Fakultät:

$$n! = \prod_{i=1}^{n} (i) = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

Faktor ausklammern:

$$\prod_{i=1}^b (c\cdot (x_i)) = c^{b-a+1} \cdot \prod_{i=1}^b (x_i)$$

rt werden um folgendes Missverständnis zu

$$\prod_{i=a}^b(x_i)\cdot c \stackrel{?}{=} \left\{ \begin{array}{l} \prod_{i=a}^b(x_i\cdot c) = c^{b-a+1}\cdot \prod_{i=a}^b(x_i) \\ \left(\prod_{i=a}^b(x_i)\right)\cdot c = c\cdot \prod_{i=a}^b(x_i) \end{array} \right.$$

Beispiel: Geschachtelte Summen und Produkte

Johannes Bröhl & Paul Meier

Winter-Semester 2024/2025

· valständige Induktion

https://commons.wikimedia.org/wiki/File:Domino - 2.png

