Part III. 계량 시계열 모형 (Econometric Time Series Model) - 예측

- I. 경제적 예측에 대한 접근 방법
 - A. Exponential Smoothing Methods
 - i. 본질적으로 적절한 곡선으로 주어진 시계열을 적합하도록 하는 방법
 - ii. 예) Single Exponential Smoothing Methods 추세나 계절적변동이 존재하기 않는 경우
 - 1. $F_t = \alpha Y_{t-1} + (1-\alpha)F_{t-1}$
 - a. 현 시점에서의 예측치(F_{t-1})는 가장 최근의 실제값(Y_{t-1})과 가장 최근의 예측치(F_{t-1})의 가중합
 - b. $\Rightarrow F_t == F_{t-1} + \alpha (Y_{t-1} F_{t-1})$
 - i. 현 시점에서의 예측치는 과거의 예측치에다 과거의 예측치의
 오차의 일부를 더한 것임
 - 2. α 값은 적절한 값을 지정하여 줄 수 도 있고, 예측오차를 최소화하는 α 값으로 추정할 수도 있음
 - 3. Eviews Tip
 - a. 각 시계열에 대해 Procs/exponential smoothing
 - b. 예측을 원하는 경우
 - i. range 를 예측기간을 포함하여 넓혀 줌
 - 1. expand 1950 2005
 - ii. sample 범위도 넓혀 줌
 - 1. smpl 1950 2005
 - iii. smoothing 기간에 예측기간을 포함하여 주면 됨
 - iii. 여러 가지 variation 들이 있음(경제학에서 그리 널리 사용되는 방법은 아님) (아래의 내용은 참고만 할 것)
 - 1. Double Exponential Smoothing 선형 추세가 존재할 경우 유용
 - a. Single Exponential Smoothing 을 두 번 적용

$$\begin{split} \boldsymbol{S}_t &= \alpha \boldsymbol{y}_t + (1 - \alpha) \boldsymbol{S}_{t-1} \\ \boldsymbol{D}_t &= \alpha \boldsymbol{S}_t + (1 - \alpha) \boldsymbol{D}_{t-1} \end{split}$$

$$\begin{split} \hat{y_{_{T+k}}} &= \left(2 + \frac{\alpha k}{1 - \alpha}\right) \!\! S_T - \! \left(1 + \frac{\alpha k}{1 - \alpha}\right) \!\! D_T \\ &= 2 \!\! S_T - D_T + \frac{\alpha}{1 - \alpha} (S_T - D_T) \!\! k \end{split}$$

- 2. Holt-Winters Method 선형 추세와 계절적 변동이 존재하는 경우
 - a. 계절적 추세가 없는 경우 (두 개의 파라메터)

i.
$$\hat{y}_{t+k} = a + bk \quad a \quad \text{permanent component (intercept)}$$

$$a(t) = \alpha y_t + (1-\alpha) \big(a(t-1) + b(t-1) \big)$$

$$b(t) = \beta \big(a(t) - a(t-1) \big) + (1-\beta) b(t-1)$$

$$\hat{y}_{T+k} = a(T) + b(T)k$$
 iii.

b. 가산적(additive) 계절적 추세항 (세 개의 파라메터)

 $\hat{y_{t+k}} = a + bk + c_{t+k}$

i.
$$a \qquad \text{permanent component (intercept)}$$

$$b\colon \qquad \text{trend}$$

$$c_t\colon \qquad \text{additive seasonal factor}$$

$$a(t)=\alpha\big(y_t-c_t(t-s)\big)+(1-\alpha)\big(a(t-1)+b(t-1)\big)$$

$$b(t)=\beta\big(a(t)-a(t-1)\big)+(1-\beta)b(t-1)$$

$$\vdots \qquad c_t(t)=\gamma\big(y_t-a(t)\big)+(1-\gamma)c_t(t-s)$$

$$\vdots \qquad \hat{y}_{T+k}=a(T)+b(T)k+c_{T+k-s}$$

c. 승법적(multiplicative) 계절적 추세항 (세 개의 파라메터)

i.
$$\hat{y}_{t+k} = (a+bk)c_{t+k}$$
 a permanent component (intercept) b: trend
$$c_t \colon \text{ multiplica tive seaso nal factor}$$

$$a(t) = \alpha \frac{y_t}{c_t(t-s)} + (1-\alpha)\big(a(t-1) + b(t-1)\big)$$

$$b(t) = \beta\big(a(t) - a(t-1)\big) + (1-\beta)b(t-1)$$

$$c_t(t) = \gamma \frac{y_t}{a(t)} + (1-\gamma)c_t(t-s)$$
 ii.
$$\hat{y}_{T+k} = \big(a(T) + b(T)k\big)c_{T+k-s}$$
 iii.

d. 가산적 계절적 변동과 승법적 계절적 변동

iii.

Multiplicative seasonality

- B. 단일 방정식 회귀모형
 - i. 지금까지 해왔던 회귀모형들 예측에 이용될 수 있음
- C. 연립 방정식 회귀모형
 - i. 60-70 년대에 경제적 예측에 있어서 많이 이용됨 (거시 경제 모형은 기본적으로 연립방정식 모형)
 - ii. 그리 성공적이지 못함
 - 1. 특히 stagflation 시기에 있어서, 그리고 정부의 정책적 패러다임의 변화가 있을 때(Lucas Critique: 추정된 모수들은 정책의변화에 대해 불변이 아님: 계량경제학적 모형으로부터 추정된 모수들은 그 모형이 추정되던 시기에 적용되던 정책에 의존하며, 그러한 정책이 변화할 경우 추정된 모수 역시 변화함)

D. ARIMA 모형

- i. Box-Jenkins 방법 (Box and Jenkins: Time Series Analysis: Forecasting and Control)
- ii. 단일이든 연립이든 변수들간의 구조적 관계를 나타내는 방정식에 관심을 두기보다는 경제적 시계열 그 자체의 통계적 성질을 분석하는 데 초점을 둠 Let the data speak for themselves
- iii. y_t 를 k 개의 설명변수 $x_1, x_2, ...$ x_k 에 의해 설명하지 않고, y_t 의 과거 시차 변수들과 확률적 오차항들로 설명함
- iv. 그러한 이유로 ARIMA 모형은 무이론적(atheoretic) 모형이라 불리움
- v. ARIMA 모형은 단변량 시계열 ARIMA 모형에서 출발하지만, 다변량 시계열 ARIMA 모형으로 확장될 수 있음

E. VAR 모형

i. VAR 모형은 다수의 내생변수를 고려한다는 점에서 연립방정식 모형과 피상적으로 볼 때 유사하나, 각 내생변수들이 그 자신의 시차 변수들과 다른 내생변수들의 시차변수들에 의해 설명된다는 점에서 차이가 있으며, 보통 별도의 외생변수가 존재하지 않기도 한다.

II. ARIMA 모형

A. AR, MA, ARMA, ARIMA

- i. 자기회귀(Autoregressive, AR) 과정
 - 1. p 차 AR 과정: AR(p): $y_t = \alpha_1 y_{t-1} + ... + \alpha_p y_{t-p} + \varepsilon_t$, ε_t 는 WNP
- ii. 이동평균(Moving Average, MA) 과정
 - 1. q차 AR 과정: MA(q): $y_t = \mu + \beta_0 \varepsilon_t + \beta_1 \varepsilon_{t-1} + ... + \beta_a \varepsilon_{t-a}$, ε_t 는 WNP
 - a. μ는 상수항

iii. ARMA 과정

1. ARMA(p,q):

$$y_t = \mu + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots + \alpha_p y_{t-p} + \beta_0 \varepsilon_t + \beta_1 \varepsilon_{t-1} + \dots + \beta_a \varepsilon_{t-a}$$

- iv. ARIMA (Autoregressive Integrated Moving Average) 과정
 - 1. 이상의 모형들은 관련 시계열 변수가 (약)정상적이라는 전제하에 사용될 수 있음
 - 2. 대부분의 경제 시계열 변수는 비정상적이며, d 차 누적되어 있는 I(d) 시계열을 d 차 차분하여 정상 시계열로 만들어 ARMA(p,q)에 적용하는 경우, 이를 ARIMA(p,d,q)라 함

$$\text{a.} \quad \Delta^d \, y_t = \mu + \alpha_1 \Delta^d \, y_{t-1} + \alpha_2 \Delta^d \, y_{t-2} + \ldots + \alpha_p \Delta^d \, y_{t-p} + \beta_0 \varepsilon_t + \beta_1 \varepsilon_{t-1} + \ldots + \beta_q \varepsilon_{t-q}$$

- 3. ARIMA 모형의 목적은 관측된 시계열을 발생시킨 것으로 해석될 수 있는 통계적 모형을 확인하고 추정하는 데 있음
 - a. 이를 예측의 목적으로 사용하기 위해서는 이 모형의 통계적 특성(특히 평균, 분산)이 시간이 흐름에도 불구하고 일정해야 함 (정상시계열의 사용이 필요함)
- v. ARIMA 모형을 통한 예측(Box-Jenkins 방법)

- 1. 식별(identification): p,d,q 의 적절한 값을 찾아냄
 - a. 상관도표 혹은 부분상관도표(Partial Correlogram)가 활용될 수 있음
- 2. 추정(Estimation): AR 항과 MA 항의 모수들을 추정함

- a. 단순 최소제곱추정으로 가능한 경우도 있으나 비선형 추정을 사용해야 되는 경우도 있음
- 3. 진단(Diagnostic Checking) : 특정한 ARIMA 모형을 선택하여 그 모수들을 추정하고 나서는 그 추정된 모형이 자료를 잘 설명하는가를 살핌
 - a. 단순한 방법 중에 하나는 추정된 모형으로부터의 잔차가 백색잡음인지를 보는 것임
 - b. 결과가 만족스럽지 않은 경우 반복적으로 위 과정을 시행

4. 예측(Forecasting):

a. ARIMA 모형이 명성을 얻은 이유는 그 예측 능력(특히 단기적 예측 능력)에 있어서 전통적 계량경제학적 모형들보다 신뢰성이 높았기 때문임

B. 식별(Identification)

- i. 식별에 있어서의 주요 수단은 자기상관함수(ACF), 부분자기상관함수(PACF, Patial ACF) 및 그로부터의 상관도표임
- ii. 부분자기상관함수
 - 1. ρ_{kk} : $y_{t-1},...y_{t-k+1}$ 의 영향을 뺀 y_t 와 y_{t-k} 간의 상관
 - 2. y_t 와 y_{t-k} 간의 상관의 상당부분은 그 사이의 $y_{t-1},...y_{t-k+1}$ 와의 상관으로 인한 것인데, 부분자기상관함수는 그러한 영향을 제거한 것임
 - 3. 구체적으로 이러한 부분자기상관을 어떻게 구하는가 하는 것은: beyond the scope of this course!
- iii. 몇 번 차분할 경우 해당 시계열이 정상 시계열이 되는 가를 상관도표나 단위근 검정등을 통해 파악
 - 1. d 번 차분후 정상 시계열이 되는 경우 ARIMA(?,d,?)
- iv. 이처럼 d 번 차분후 얻어진 정상시계열에 대해 표본 ACF 와 PACF 의 모습을 이론적 ACF 및 PACF 의 모습과 매칭을 시킴으로써 관측된 정상 시계열을 발생시키는 ARMA(p,q)모형을 찾아냄 → ARIMA(p,d,q)
 - 1. 많은 경험으로부터 오는 고도의 숙련이 필요함
 - 2. ACF 와 PACF 의 이론적 패턴은 다음과 같음

모형	ACF	PACF
AR(p)	지수함수적으로 감소하거나 점차 진폭이 축소되는 사인 곡선의 파동을 나타내거나 또는 양쪽 모두 나타남 (시차가 증가함에 따라 0으로 급속히 접근)	1 *
MA(q)	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
	나타내고 이후 소멸함	진폭이 축소되는 사인 곡선의 파동을

		나타내거나 또는 양쪽 모두 나타남 (시차가 증가함에 따라 0 으로 급속히 접근)
ARMA(p,q)	지수함수적으로 감소하거나 점차	지수함수적으로 감소하거나 점차
		진폭이 축소되는 사인 곡선의 파동을
	파동을 나타내거나 또는 양쪽 모두	나타내거나 또는 양쪽 모두 나타남
	나타남 (시차가 증가함에 따라	(시차가 증가함에 따라 0 으로 급속히
	0으로 급속히 접근)	접근)

3. 표본 ACF 와 PACF 가 이론적인 패턴과 깔끔하게 매치되지는 않음

Process	ACFs	PACFs
(Model)		
ARIMA (0,0,0)	No significant lags	No significant lags
ARIMA (0,1,0)	Linear decline at lag 1, with many lags	Single significant peak at lag 1
	significant	
ARIMA $(1,0,0)$ 1 >	Exponential decline, with first two or	Single significant positive peak at lag 1
$\Phi > 0$	many lags significant	
ARIMA (1,0,0)	Alternative exponential decline with a	Single significant negative peak at lag 1
−1 < Φ < 0	negative peak ACF(1)	
ARIMA (0,0,1)	Single significant negative peak at lag	Exponential decline of negative value,
$1 > \theta > 0$	1	with first two or many lags significant
ARIMA (0,0,1)	Single significant positive peak at lag 1	Alternative exponential decline with a
$1 < \theta < 0$		positive peak PACF(1)

C. 추정(Estimation)

- i. 적절한 모형이 선택되면, 모수(parameters)를 추정하여야 함
 - 1. Eviews Tip ARMA 모형 추정
 - a. Quick/Estimation Equation
 - i. 1 차 AR 항은 AR(1) 2 차 AR 항은 AR(2), 1 차 MA 은 MA(1),2 차 MA 은 MA(2) 등으로
 - ii. equation test.ls d(CPE) c AR(1) MA(1) (ARMA(1,1,1)에 대한 추정)
- D. 진단(Dignostic) 및 예측(Forecasting)
 - i. 추정 모형의 잔차에 대한 표본 ACF, PACF 를 통해 백색잡음 여부를 판단
 - 1. 개별 ACF 와 PACF 에 대해 판단하거나, Q-stat 또는 LB-stat 을 통해 결합적으로 판단
 - ii. 둘 이상이 적합할 경우 가장 단순한 모형을 선택 (principle of parsimony)
 - iii. 추정된 모형을 이용하여 예측할 수 있음
 - 1. Eviews Tip 추정된 ARMA 를 이용하여 예측
 - i. expand 1950 2005 (workfile range 를 2005 년까지로 늘림)
 - ii. smpl 2001 2005

- iii. test.forecast nseries (nseries 라는 2001 에서 2005 예측치를 포함하는 시리즈를 발생시킴 – 동태적 예측)
 - 1. CPE 에 대한 예측치가 발생됨
 - 2. 동태적 예측은...예측된 값을 계속적으로 이용하여 예측해내가는 것을 말함
- iv. test.fit nsereis2 (nseries 라는 2001 년 예측치를 포함하는 시리즈를 발생시킴 – 정태적 예측)
- iv. 예측에 대한 평가

- 1. MSE, MAE: 해당 시리즈의 단위에 의존 따라서 같은 시리즈에 대한 여러 모형의 예측력에 대한 평가를 비교할 때 사용
- MAPE, TIC: 단위와 무관한 값을 제시, 0 일 때 완벽한 예측을 의미함.
 TIC 는 0 과 1 사이의 값을 가짐
- 3. Eviews Tip 예측력에 대한 평가
 - i. smpl 1950 1990
 - ii. equation test2.ls d(CPE) c AR(1) MA(1)
 - iii. equation test3.ls d(CPE) c AR(1) AR(2)
 - iv. smpl 1991 2000
 - v. test2.forecast(e,g) nseries3
 - vi. test3.forecast(e,g) nseries4

III. Vector Autoregression Model (VAR 모형)

A. 개요

- i. VAR 모형의 대두
 - 1. 구조방정식 접근의 한계
 - a. 경제 이론에 의한 변수들간의 행태적 관계를 모형화한 구조방정식에 의한 접근 방법은 경제 이론 자체가 이들간의 모든 동태적 관계들을 제공해주기에 불충분함
 - b. 통계적 추정과 검정은 특히 내생변수들이 모형의 방정식들의 양쪽에 모두 나타남으로 인해 복잡해짐
 - 2. VAR 모형에 의한 접근
 - a. 몇 몇 변수들간의 관계를 모형화함에 있어 대안으로 사용되는 비구조적인 접근
 - b. 서로 연관되어 있는 시계열 변수들의 예측 모형으로 사용되거나, 확률적 충격이 모형내 변수에 미치는 동태적 영향을 분석하는 데 많이 사용됨

ii. VAR 모형

- 1. VAR 모형에 의한 접근방법은 모든 변수들을 모형내에서 모든 변수들의 시차변수들의 함수로서 내생적인 것으로 취급함
 - a. 수학적으로는 다음과 같이 표현될 수 있음

$$[Y]_t = [A][Y]_{t-1} + ... + [A'][Y]_{t-k} + [e]_t$$
 또는

$$\begin{bmatrix} Y_t^1 \\ Y_t^2 \\ Y_t^3 \\ \dots \\ Y_t^P \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1p} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2p} \\ A_{31} & A_{32} & A_{33} & \dots & A_{3p} \\ \dots & \dots & \dots & \dots & \dots \\ A_{p1} & A_{p2} & A_{p3} & \dots & A_{pp} \end{bmatrix} \begin{bmatrix} Y_{t-1}^1 \\ Y_{t-1}^2 \\ Y_{t-1}^2 \\ \dots \\ Y_{t-1}^P \end{bmatrix} + \dots + \begin{bmatrix} A'_{11} & A'_{12} & A'_{13} & \dots & A'_{1p} \\ A'_{21} & A'_{22} & A'_{23} & \dots & A'_{2p} \\ A'_{31} & A'_{32} & A'_{33} & \dots & A'_{3p} \\ \dots & \dots & \dots & \dots \\ A'_{p1} & A'_{p2} & A'_{p3} & \dots & A'_{pp} \end{bmatrix} \begin{bmatrix} Y_{t-k}^1 \\ Y_{t-k}^2 \\ Y_{t-k}^2 \\ \dots \\ P_{t-k}^T \end{bmatrix} + \begin{bmatrix} e_{1t} \\ e_{2t} \\ e_{3t} \\ \dots \\ e_{pt} \end{bmatrix}$$

i. p: 모형내 고려되는 변수들의 수

ii. k: 모형내 고려되는 시차들의 수

iii. [Y]t, [Y]t-1, ...[Y]t-k: 1 x p 변수 벡터,

iv. [A],...[A']:pxp 계수 매트릭스

v. [e]_t:1xp 혁신 벡터

 may be contemporaneously correlated but are uncorrelated with their own lagged values and uncorrelated with all of the righthand side variables.

- 2. 계열상관이 없다는 것은 계열상관이 없어질 때 까지 시차를 추가할 수 있으므로 충분히 정당성을 가짐
- 2. 오른편에 오직 내생변수의 시차변수만 나타나므로 오차항과 설명변수간의 상관의 문제는 이슈가 되지 않으며, OLS 는 일치추정을 낳음
 - a. 또한, 오차항이 contemporaneously correlated 되어 있을 수 있으나, 모든 방정식이 동일한 설명변수를 포함하고 있기 때문에 이 경우, OLS 는 유효한 추정량이면 GLS 와 동일한 결과를 낳는다는 것이 알려져 있음
- 3. VAR 모형의 예
 - a. 산업생산 (IP)과 통화공급 (M1)
 - i. 2개의 시차까지 고려

$$\begin{bmatrix} IP_{t} \\ M\mathbf{1}_{t} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} IP_{t-1} \\ M\mathbf{1}_{t-1} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} IP_{t-2} \\ M\mathbf{1}_{t-2} \end{bmatrix} + \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} + \begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix}$$

$$\downarrow \downarrow$$

$$IP_{t} = C_{1} + \sum_{i=1}^{k} a_{1i} IP_{t-i} + \sum_{i=1}^{k} b_{1i} M\mathbf{1}_{t-1} + e_{1t}$$

$$M\mathbf{1}_{t} = C_{2} + \sum_{i=1}^{k} a_{2i} IP_{t-i} + \sum_{i=1}^{k} b_{2i} M\mathbf{1}_{t-1} + e_{2t}$$

- 1. $a_{ij}, b_{ij}, \text{ and } C_i$ 추정되어야 하는 모수들임
- 2. e,'s 확률적 오차항 (혁신 또는 충격이라고도 함)
- 4. 시차의 결정
 - a. VAR 를 추정하기전에 백색잡음인 오차항들을 발생하기 위해 필요한 시차 k를 결정해야 함
 - i. VAR 의 Akaike (AIC) 또는 Schwarz (BIC) 정보기준을 통해 적절한 시차를 결정할 수 있음
- 5. VAR 의 잇점
 - a. 모형의 단순성
 - i. 어떤 변수가 내생변수고 어떤 변수가 외생변수인지를 고민할 필요가 없음
 - b. 추정의 단순성
 - i. 각 방정식에 대한 통상적 OLS 방법이 적용될 수 있음
 - c. 예측력
 - i. 복잡한 연립방정식 모형으로부터의 예측에 비해 많은 경우에 있어서 더 낳은 예측을 할 수 있음

- 6. VAR 의 문제점
 - a. VAR 모형은 무이론적(a-theoretic)임
 - i. 사전적(prior) 정보를 별로 사용하지 않음 (cf. Structured VAR)
 - 1. 연립방정식에서는 각 방정식에서 특정한 변수들의 포함 여부가 모형의 식별에 있어서 중요한 역할을 하게됨
 - b. VAR 모형은 정책적 분석에 다소 부적합함
 - i. 예측모형으로서의 기능에 초점을 두고 있음
 - c. 많은 자유도의 손실
 - i. 모든 고려되는 내생변수의 시차변수가 방정식의 오른쪽에 나타남으로 인해 표본의 크기가 충분하지 못할 경우 자유도의 손실로 인한 문제가 심각할 수 있음
 - 1. 예컨대 3 개의 내생변수에 대해 8 개의 시차를 고려할 경우 24 개의 모수와 상수항을 추정하게 됨
 - d. 비정상시계열의 경우 변화의 어려움
 - i. 엄격히 말해, m 개의 변수를 가진 VAR 모형의 경우 m 개의 변수 모두 (결합적으로) 정상시계열이어야 함
 - ii. 비정상 시계열이 있을 경우 이를 차분을 통해 정상시계열로 변환해야 하지만, 원래 고려하는 모형이 정상 시계열과 비정상 시계열을 혼재해서 포함하고 있을 경우 이러한 자료의 변환이 용이하지 않음
 - e. 개별 모수들의 추정치에 대한 해석의 어려움
 - i. 구조적 방정식이 아니므로 개별 모수들의 추정값에 적절한 의미를 부여하기 힘듦
 - ii. 이 때문에 분석가들은 소위 충겨반응함수(Impulse Response Function)을 추정함
 - 1. IRF 는 VAR 모형내에서 오차항에서의 충격에 대한 종속변수의 반응을 추적하고 그러한 충격의 미래 몇 시기동안의 영향을 추적하는 함수임
- IV. 변동성 모형(The ARCH and GARCH models)
 - A. 금융 시계열 자료에서 변동성 추정
 - i. 대부분의 금융시계열(주식가격, 환율, 인플레율 등)은 변동성 군집(volatility clustering)이라고 하는 현상을 나타냄
 - 1. 어떤 기간 동안 상당한 폭의 변동성을 보이다가 상대적으로 평온한 기간이 이어지는 현상
 - 2. 주가, 환율, 인플레율 등은 주식투자자, 수출입업자, 거시경제당국 등의 입장에서 볼 때, 그 평균적 수준 보다는 변동성에 더 큰 관심을

가지게 될 수 있음

- ii. 대부분의 통계적 모형은 해당 확률변수의 (조건부) 평균값을 모형화 한 것임
 - 1. 자산을 보유하는 데 따른 위험의 분석 또는 파생상품의 가치의 분석 등에 있어서는 변동성이 중요
 - 2. 추정이나 신뢰구간 구축에 있어서도 분산의 변동성 (즉 이분산성)을 고려함으로써 보다 정확한 추정이나 신뢰구간의 구축이 가능해짐
- iii. 이 절에서 제시하는 모형은 해당 확률변수의 조건부 분산 혹은 변동성을 모형화 하는 것임
 - 1. ARCH(Autoregressive Conditional Heteroskedasticity) 모형은 조건부 분산을 모형화하고 예측하기 위해 고안된 모형임
 - 2. 종속변수의 분산이 그 과거값과 독립 변수들의 함수로 모형화됨
 - 3. ARCH 는 Engle(1982)에 의해 제시되었고, Bollerslev (1986)에 의해 GARCH (Generalized ARCH)로 일반화 됨

B. (G)ARCH 모형

- i. ARCH 모형을 설정함에 있어서 조건부 평균과 조건부 분산에 대해 두 개의 구별되는 모형설정을 제시해야 함
 - 1. GARCH(1,1) 모형
 - a. 표준적인 GARCH(1,1) 설정:

i.
$$Y_t = \gamma_0 + \gamma_1 X_{1t} + ... + \gamma_k X_{kt} + e_t$$
, (1)

ii.
$$\sigma_t^2 = \omega + \alpha e_{t-1}^2 + \beta \sigma_{t-1}^2$$
 (2)

- b. 조건부 평균에 대한 식 (1) 은 외생 변수 및 오차항의 함수로 표현됨
- c. t-1 기까지의 정보에 기반한 조건부 분산의 예측치는 세 가지 항의 함수로 표현되고 있음
 - i. 상수항: ω
 - ii. 이전 기의 변동성에 대한 새로운 정보: 조건부 평균에 대한 식으로부터의 잔차의 제곱으로 측정됨 : e_{t-1}^2 (the ARCH term)
 - iii. 이전기의 조건부 분산: σ_{t-1}^2 (the GARCH term)
- d. GARCH(1,1)의 (1,1)은 1 차 GARCH 항과 1 차 ARCH 항의 존재를 가르키는 것임
 - i. 통상의 ARCH 모형은 GARCH 모형의 특별한 경우로 조건부 분산 방정식에 시차 조건부 분산이 존재하지 않는 경우임

- e. ARCH 모형들은 오차항이 조건부 정규분포를 한다는 가정하에 최우추정법에 의해 추정함
 - i. $Y_{t} = \gamma_{0} + \gamma_{1}X_{1t} + ... + \gamma_{k}X_{kt} + e_{t}$

$$e_{t} | I_{t-1} \sim N(0, \omega + \alpha e_{t-1}^{2} + \beta \sigma_{t-1}^{2})$$

이 경우 로그 우도 함수는 다음과 같이 주어짐

$$l_{t} = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log(\sigma_{t}^{2}) - \frac{(Y_{t} - \gamma_{0} - \gamma_{1}X_{1t} - \dots - \gamma_{k}X_{kt})^{2}}{2\sigma_{t}^{2}}$$

단,
$$\sigma_t^2 = \omega + \alpha (Y_t - \gamma_0 - \gamma_1 X_{1t} - \dots - \gamma_k X_{kt})^2 + \beta \sigma_{t-1}^2$$

- ii. 금융분야에 있어서 이러한 모형 설정은 다음과 같이 해석됨
 - 1. 금융거래자가 금융자산 수익에 대한 이번 기의 분산을 예측함에 있어 과거 시기로부터 예측된 분산(GARCH 항) 그리고 이전기에 관측된 변동성에 대한 정보의 가중합으로 예측함
 - 2. 자산의 수익이 상방 혹은 하방으로 예기치 않게 컸을 경우, 금융거래자는 다음 기의 분산에 대한 예측치를 증가시킴
 - 3. 이 모형은 금융자산의 수익 자료에서 종종 관찰되는 변동성 군집(clustering)과 부합됨.(즉 수익의 큰 변동은 미래의 추가적인 큰 변동으로 이어짐)
- f. 모형의 해석에 도움이 되는 분산 방정식에 대한 다른 표현들이있음
 - i. 분산 방정식의 오른쪽에 대해 시차 분산들을 순차적으로 대체해 나갈 경우,

$$\sigma_t^2 = \frac{\omega}{(1-\beta)} + \alpha \sum_{j=1}^{\infty} \beta^{j-1} e_{t-j}^2$$

- 여기서 볼 때 GARCH(1,1) 모형은 표본 분산과 유사하나 현 시점에서 멀리 떨어진 오차항 제곱에 대해 점점 더 작은 가중치를 줌
- 2. GARCH(1,1)은 ARCH(∞)으로 표현될 수 있음을 의미

ii.
$$v_t = e_t^2 - \sigma_t^2$$
 $\Rightarrow e_t^2 = \omega + (\alpha + \beta)e_{t-1}^2 + v_t - \beta v_{t-1}$

- 1. 오차항의 제곱은 이분산 ARMA(1,1) 과정을 따름
 - A. $\alpha + \beta$ 의 크기가 충격의 지속성을 결정하게 되는 데 많은 실제 경우에 있어서 이는 1 에 가까운 값을

가지면, 따라서 충격은 상당히 완만하게 감쇄해 나가게 됨

- g. 분산 방정식의 추가적 설명변수
 - i. 기타 다른 변수들을 분산 방정식에 포함시킬 수 있음

$$\sigma_t^2 = \omega + \alpha e_t^2 + \beta \sigma_{t-1}^2 + \pi Z_t$$

- ii. 문제는 이 모형의 분산의 예측치가 양(+)이라는 보장이 없음
 - 1. 따라서 포함되는 설명변수를 항상 +값을 갖거나 음의 분산 예측치를 낳게 될 가능성을 최소화 하는 형태로 포함시키는 것이 바람직함. 예컨대 $Z_t = abs(X_{i_t})$

2. The (G)ARCH-M Model

a. 조건부 분산을 조건부 평균 방정식에 포함시키는 경우: ARCH-in-Mean (ARCH-M) model (Engle, Lilien and Robins, 1987)

$$Y_t = \gamma_0 + \gamma_1 X_{1t} + \dots + \gamma_k X_{kt} + \lambda \sigma_t^2 + \varepsilon_t$$

- b. ARCH-M 모형은 자산의 기대 수익이 자산의 기대 위험과 연관되는 경우에 종종 사용됨
- c. 기대 위험에 대한 추정계수는 위험-수익 tradeoff의 척도임
- d. ARCH-M 모형의 변형은 조건부 분산 대신에 조건부 표준편차를 사용하는 것임

3. GARCH(p, q) Model

a. GARCH(p, q):

$$[Y_t] = [X_t] \gamma + [e_t]$$

$$\sigma_{t}^{2} = \omega + \sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2} + \sum_{i=1}^{q} \alpha_{i} e_{t-i}^{2}$$

p: 는 GARCH 항의 차수, q: ARCH 항의 차수