HEINRICH HEINE UNIVERSITÄT DÜSSELDORF Institut für Informatik PD Dr. Frank Gurski

Nachklausur zur Vorlesung Informatik IV - Sommersemester 2008

Name, Vorname:										
Studienfach, Semester:										
Matrikelnummer:										
	Aufgabe	1	2	3	4	5	Gesamt	Note]	
	erreichbare Punktzahl	30	15	25	15	15	100			
	erreichte Punktzahl]	
Erlaubte Hilfsmittel: keine Aufgabe 1 (30 Punkte) Kreuzen Sie für jede der folgenden 30 Fragen in jeder Zeile entweder "Ja" ode										
"Nein" an. (Jede f	alsche Antwort wird mit 1/	/2 Pu	nktab	zug g	ewert	et.)				
(a) Welche der folgenden Aussagen ist/sind wahr? Ja Nein \square $L = \{0^n 1^n \mid 1 \le n \le 1000\}$ ist eine reguläre Sprache. \square $L = \{0^n 1^n \mid 1001 \le n\}$ ist eine reguläre Sprache. \square $L = \{0^n 1^n \mid n \ge 1\} \cap \{(01)^n \mid n \ge 1\}$ ist eine reguläre Sprache. \square $L = \{0^n 1^m \mid n \ne m\}$ ist eine reguläre Sprache. \square $L = \{0^n 1^n \mid n \ge 1\}$ ist eine deterministisch kontextfreie Sprache. \square $L = \{0^n 1^n \mid n \ge 1\}$ ist eine LR(0)-Sprache. \square \square $L = \{0^n 0^m \mid n = m\}$ ist eine reguläre Sprache. \square \square \square \square \square \square \square \square ist eine reguläre Sprache.										
(b) Es sei Σ ein einelementiges Alphabet, $L_1, L_2 \subseteq \Sigma^*$ und $L_1 \subseteq L_2$. Welche der folgenden Aussage ist/sind wahr? Ja Nein \square L_1 ist kontextfrei. $\Rightarrow L_1$ ist regulär. \square L_2 ist nicht regulär. $\Rightarrow L_2$ ist nicht kontextfrei. \square L_1 ist regulär. $\Rightarrow L_2$ ist regulär. \square L_2 ist regulär. $\Rightarrow L_2$ ist regulär. \square L_2 ist regulär. $\Rightarrow L_2$ ist regulär.								Aussager		
(c) Welche der folgenden Aussagen ist/sind wahr?										
Ja Nein □ □ □ □ □ □ □ □ □ □	Jede Turing-berechenbard Es gibt WHILE-berechen $f: \mathbb{N}^3 \to \mathbb{N}, f(n_1, n_2, n_1)$ Die Ackermann Funktion	$_3) =$	Funk $n_1 +$	tione $4n_2$ -	n, we + 8n ₃	Iche ist μ	nicht GOT	O-bered	chenbar sir	ıd.

(d) Welche der folgenden Aussagen über das allgemeine Halteproblem H ist/sind wahr?					
	Ja	Nein			
			H ist entscheidbar.		
			H ist semi-entscheidbar.		
			H ist in NP.		
			H ist NP-vollständig.		
			H ist eine Typ-0 Sprache.		
(e) Welche der folgenden Aussagen ist/sind wahr?					
	Ja	Nein			
			4-SAT ist eine NP-vollständige Sprache.		
			5-SAT ist nicht entscheidbar.		
			$5\text{-SAT} \subseteq 3\text{-SAT}$		
			SAT ist eine Typ-0 Sprache.		
			3-SAT ist in NP.		
(f)			Satz von Cook aus?		
	Ja	Nein			
			SAT ist in P.		
			SAT ist in NP und SAT ist NP-hart.		
			$SAT \in NP \land (\forall A \in P) [A \leq_{p} SAT]$		

3

Aufgabe 2 (4+5+6=15 Punkte) Gegeben sei das Alphabet $\Sigma=\{0,1\}$. Geben Sie für die folgenden drei Sprachen jeweils einen regulären Ausdruck über Σ an, welcher diese Sprache beschreibt.

- (a) $L_1 = \{w \in \Sigma^* \mid w \text{ enthält das Teilwort } 01\}$
- (b) $L_2 = \{w \in \Sigma^* \mid |w| \text{ ist gerade oder Null}\}$
- (c) $L_3 = \{ w \in \Sigma^* \mid w \text{ enthalt höchstens drei Einsen} \}$

Name: Matrikelnummer: 4

Aufgabe 3 (7+3+2+3+3+7=25 Punkte) Gegeben sei das Alphabet $\Sigma = \{a, b, \$\}$ und die Sprache

$$L = \{w\$sp(w) \mid w \in \{a, b\}^*\}.$$

Hierbei ist $sp:\{a,b\}^* \to \{a,b\}^*$ die in der Vorlesung definierte Spiegelbildoperation für Wörter.

- (a) Beweisen Sie, dass L nicht regulär ist.
- (b) Zeigen Sie, dass die Sprache L kontextfrei ist, indem Sie eine ϵ -freie kontextfreie Grammatik G ohne einfache Regeln für L angeben.
- (c) Bestimmen Sie das Parikh-Bild $\Psi(L)$.
- (d) Zeigen Sie, dass $\Psi(L)$ semilinear ist, indem Sie geeignete Vektoren $x,y,z\in\mathbb{N}^3$ angeben, so dass

$$\Psi(L) = \{x + n \cdot y + m \cdot z \mid n, m \in \mathbb{N}\}\$$

gilt.

- (e) Geben Sie mit Hilfe der drei Vektoren x,y,z nach dem Schema der Vorlesung einen regulären Ausdruck α über Σ an, so dass $\Psi(L)=\Psi(L(\alpha))$. Vereinfachen Sie α möglichst weit.
- (f) Geben Sie den Zustandsgraphen eines NEA an, welcher die Sprache $L(\alpha)$ akzeptiert.

Name: Matrikelnummer: 5

Aufgabe 4 (12 + 3 Punkte)

(a) Zeigen Sie, durch Angabe eines LOOP-Programms, dass die Funktion $F:\mathbb{N}\to\mathbb{N}$

$$F(n) = \begin{cases} 1 & \text{falls } n \in \{0, 1, 2\} \\ F(n-1) + F(n-2) + F(n-3) & \text{falls } n \ge 3 \end{cases}$$

LOOP-berechenbar ist.

Hinweis: Wie in der Vorlesung definiert, steht das zu betrachtende Argument bei LOOP-Programmen für F in Variable x_1 und das Ergebnis $F(n_1)$ soll am Ende in Variable x_0 stehen.

Zusätzlich zu den LOOP-Operationen aus der Vorlesung, darf hier innerhalb von Zuweisungen auch die Addition zweier Variablen (z.B. $x_2 := x_1 + x_4$) verwendet werden.

(b) Erläutern Sie kurz die Arbeitsweise Ihres Programms bei Eingabe $n_1 = 5$. Welchen Wert berechnet Ihr Programm für F(5)?

Aufgabe 5 (5 + 5 + 5 = 15 Punkte)

- (a) Definieren Sie, wann eine Sprache NP-hart ist.
- (b) Wie kann man von einer Sprache zeigen, dass sie NP-hart ist, ohne die Definition zu verwenden? Begründen Sie kurz, warum diese Vorgehensweise korrekt ist.
- (c) Beschreiben und begründen Sie kurz die bekannten (Inklusions-)Beziehungen zwischen NP, der Klasse der NP-harten Sprachen und der Klasse der NP-vollständigen Sprachen.