Chapter 4
Basic SQL

Addison-Wesley is an imprint of

Chapter 4 Outline

2

SQL Data Definition and Data Types
Specifying Constraints in SQL
Basic Retrieval Queries in SQL

INSERT, DELETE, and UPDATE

Statements in SQL

Additional Features of SQL

Basic SQL

SQL language

Considered one of the major reasons for the commercial success of relational databases

SQL

Structured Query Language

Statements for data definitions, queries, and updates (both DDL and DML)

Core specification

Plus specialized extensions

SQL Data Definition and Data Types

Terminology:

Table, row, and column used for relational model terms relation, tuple, and attribute

CREATE statement

Main SQL command for data definition

Schema and Catalog Concepts in SQL

SQL schema

Identified by a schema name

Includes an authorization identifier and descriptors for each element

Schema elements include

Tables, constraints, views, domains, and other constructs

Each statement in SQL ends with a semicolon

Schema and Catalog Concepts in SQL (cont'd.)

CREATE SCHEMA statement

```
CREATE SCHEMA COMPANY
AUTHORIZATION 'Jsmith';
```

Catalog

Named collection of schemas in an SQL environment

SQL environment

Installation of an SQL-compliant RDBMS on a computer system

The CREATE TABLE Command in SQL

Specify a new relation

Provide name

Specify attributes and initial constraints

Can optionally specify schema:

```
CREATE TABLE COMPANY. EMPLOYEE ...
```

or

CREATE TABLE EMPLOYEE ...

The CREATE TABLE Command in SQL (cont'd.)

Base tables (base relations)

Relation and its tuples are actually created and stored as a file by the DBMS

Virtual relations

Created through the CREATE VIEW statement

CREATE TABLE EMPLOYEE		
(Fname	VARCHAR(15)	NOT NULL,
Minit	CHAR,	
Lname	VARCHAR(15)	NOT NULL,
Ssn	CHAR(9)	NOT NULL,
Bdate	DATE,	
Address	VARCHAR(30),	
Sex	CHAR,	
Salary	DECIMAL(10,2),	
Super_ssn	CHAR(9),	
Dno	INT	NOT NULL,
PRIMARY KEY (Ssn)	,	
FOREIGN KEY (Supe	er_ssn) REFERENCES EMP	LOYEE(Ssn),
FOREIGN KEY (Dno	REFERENCES DEPARTM	ENT(Dnumber));
CREATE TABLE DEPARTMEN	Т	
(Dname	VARCHAR(15)	NOT NULL,
Dnumber	INT	NOT NULL,
Mgr_ssn	CHAR(9)	NOT NULL,
Mgr_start_date	DATE,	
PRIMARY KEY (Dnur	mber),	
UNIQUE (Dname),		
FOREIGN KEY (Mgr	ssn) REFERENCES EMPLO	OYEE(Ssn));

Figure 4.1

from Figure 3.7.

SQL CREATE TABLE data definition statements for defining the COMPANY schema

CDEATE TABLE DEDT LOCATIONS					
CREATE TABLE DEPT_LOCATIO		NOT NULL			
(Dnumber	INT	NOT NULL,			
Dlocation	VARCHAR(15)	NOT NULL,			
PRIMARY KEY (Dnumb		DTMENTO			
	er) REFERENCES DEPA	RIMENI(Dnumber));			
CREATE TABLE PROJECT					
(Pname	VARCHAR(15)	NOT NULL,			
Pnumber	INT	NOT NULL,			
Plocation	VARCHAR(15),				
Dnum	INT	NOT NULL,			
PRIMARY KEY (Pnumbe	er),				
UNIQUE (Pname),					
FOREIGN KEY (Dnum)	REFERENCES DEPARTM	MENT(Dnumber));			
CREATE TABLE WORKS_ON					
(Essn	CHAR(9)	NOT NULL,			
Pno	INT	NOT NULL,			
Hours	DECIMAL(3,1)	NOT NULL,			
PRIMARY KEY (Essn, F	Pno),				
	REFERENCES EMPLOYE	E(Ssn),			
· · · · · · · · · · · · · · · · · · ·	FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber));				
CREATE TABLE DEPENDENT	,				
(Essn	CHAR(9)	NOT NULL,			
Dependent_name	VARCHAR(15)	NOT NULL,			
Sex	CHAR,	,			
Bdate	DATE,				
Relationship	VARCHAR(8),				
PRIMARY KEY (Essn, D	3 7 7				
FOREIGN KEY (Essn) F		T(0)			
	JEEEBENCES EMPLOYE	-(Sen) '			

Figure 4.1

from Figure 3.7.

SQL CREATE TABLE data definition statements for defining the COMPANY schema

The CREATE TABLE Command in SQL (cont'd.)

Some foreign keys may cause errors Specified either via:

- Circular references
- Or because they refer to a table that has not yet been created

Attribute Data Types and Domains in SQL

Basic data types

Numeric data types

- Integer numbers: INTEGER, INT, and SMALLINT
- Floating-point (real) numbers: FLOAT or REAL, and DOUBLE PRECISION

Character-string data types

- Fixed length: CHAR(n), CHARACTER(n)
- Varying length: VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n)

Attribute Data Types and Domains in SQL (cont'd.)

Bit-string data types

- Fixed length: BIT (n)
- Varying length: BIT VARYING (n)

Boolean data type

Values of TRUE or FALSE or NULL

DATE data type

- Ten positions
- Components are YEAR, MONTH, and DAY in the form YYYY-MM-DD

Attribute Data Types and Domains in SQL (cont'd.)

Additional data types

Timestamp data type (TIMESTAMP)

- Includes the DATE and TIME fields
- Plus a minimum of six positions for decimal fractions of seconds
- Optional WITH TIME ZONE qualifier

INTERVAL data type

 Specifies a relative value that can be used to increment or decrement an absolute value of a date, time, or timestamp

Attribute Data Types and Domains in SQL (cont'd.)

Domain

Name used with the attribute specification
Makes it easier to change the data type for a
domain that is used by numerous attributes
Improves schema readability
Example:

• CREATE DOMAIN SSN_TYPE AS CHAR(9);

Specifying Constraints in SQL

Basic constraints:

Key and referential integrity constraints

Restrictions on attribute domains and NULLs

Constraints on individual tuples within a relation

Specifying Attribute Constraints and Attribute Defaults

NOT NULL

NULL is not permitted for a particular attribute

Default value

DEFAULT <value>

CHECK clause

```
Dnumber INT NOT NULL CHECK
(Dnumber > 0 AND Dnumber < 21);</pre>
```



```
CREATE TABLE EMPLOYEE
   ( ...,
                           NOT NULL
      Dno
               INT
                                         DEFAULT 1,
   CONSTRAINT EMPPK
      PRIMARY KEY (Ssn),
   CONSTRAINT EMPSUPERFK
      FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn)
                   ON DELETE SET NULL
                                            ON UPDATE CASCADE.
   CONSTRAINT EMPDEPTEK
      FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber)
                                            ON UPDATE CASCADE);
                  ON DELETE SET DEFAULT
CREATE TABLE DEPARTMENT
   ( ...,
      Mgr_ssn CHAR(9)
                           NOT NULL
                                            DEFAULT '888665555'.
   CONSTRAINT DEPTPK
      PRIMARY KEY(Dnumber),
   CONSTRAINT DEPTSK
      UNIQUE (Dname),
   CONSTRAINT DEPTMGRFK
                                                                       Figure 4.2
      FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)
                                                                       Example illustrating
                   ON DELETE SET DEFAULT ON UPDATE CASCADE):
                                                                       how default attribute
CREATE TABLE DEPT LOCATIONS
                                                                       values and referential
   ( ...,
   PRIMARY KEY (Dnumber, Dlocation),
                                                                       integrity triggered
   FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)
                                                                       actions are specified
                ON DELETE CASCADE
                                            ON UPDATE CASCADE);
                                                                       in SQL.
```

Specifying Key and Referential Integrity Constraints

PRIMARY KEY clause

Specifies one or more attributes that make up the primary key of a relation

Dnumber INT PRIMARY KEY;

UNIQUE clause

Specifies alternate (secondary) keys

Dname VARCHAR (15) UNIQUE;

Specifying Key and Referential Integrity Constraints (cont'd.)

FOREIGN KEY clause

Default operation: reject update on violation

Attach referential triggered action clause

- Options include SET NULL, CASCADE, and SET DEFAULT
- Action taken by the DBMS for SET NULL or SET DEFAULT is the same for both ON DELETE and ON UPDATE
- CASCADE option suitable for "relationship" relations

Giving Names to Constraints¹

Keyword CONSTRAINT

Name a constraint

Useful for later altering

Specifying Constraints on Tuples Using CHECK

CHECK clauses at the end of a CREATE TABLE statement

Apply to each tuple individually

```
CHECK (Dept_create_date <=
Mgr start date);</pre>
```


Basic Retrieval Queries in SQŁ

SELECT statement

One basic statement for retrieving information from a database

SQL allows a table to have two or more tuples that are identical in all their attribute values

Unlike relational model

Multiset or bag behavior

The SELECT-FROM-WHERE Structure of Basic SQL Queries

Basic form of the SELECT statement:

```
SELECT <attribute list>
FROM 
WHERE <condition>;
```

where

- <attribute list> is a list of attribute names whose values are to be retrieved by the query.
- is a list of the relation names required to process the query.
- <condition> is a conditional (Boolean) expression that identifies the tuples to be retrieved by the query.

The SELECT-FROM-WHERE Structure of Basic SQL Queries (cont'd.)

Logical comparison operators

Projection attributes

Attributes whose values are to be retrieved

Selection condition

Boolean condition that must be true for any retrieved tuple

Figure 4.3

Results of SQL queries when applied to the COMPANY database state shown in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

(a)	<u>Bdate</u>	<u>Address</u>
	1965-01-09	731Fondren, Houston, TX

(b) Fname		<u>Lname</u>	Address
	John	Smith	731 Fondren, Houston, TX
	Franklin	Wong	638 Voss, Houston, TX
	Ramesh	Narayan	975 Fire Oak, Humble, TX
	Joyce	English	5631 Rice, Houston, TX

Query 0. Retrieve the birth date and address of the employee(s) whose name is 'John B. Smith'.

Q0: SELECT Bdate, Address

FROM EMPLOYEE

WHERE Fname='John' AND Minit='B' AND Lname='Smith';

Query 1. Retrieve the name and address of all employees who work for the 'Research' department.

Q1: SELECT Fname, Lname, Address

FROM EMPLOYEE, DEPARTMENT

WHERE Dname='Research' AND Dnumber=Dno;

Figure 4.3
Results of SQL queries when applied to the COMPANY database state shown in Figure 3.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

(c)	<u>Pnumber</u>	Dnum	Lname	<u>Address</u>	<u>Bdate</u>
	10	4	Wallace	291Berry, Bellaire, TX	1941-06-20
	30	4	Wallace	291Berry, Bellaire, TX	1941-06-20

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

Q2:	SELECT	Pnumber, Dnum, Lname, Address, Bdate
	FROM	PROJECT, DEPARTMENT, EMPLOYEE
	WHERE	Dnum=Dnumber AND Mgr_ssn=Ssn AND Plocation='Stafford';

Ambiguous Attribute Names²⁸

Same name can be used for two (or more) attributes

As long as the attributes are in different relations

Must qualify the attribute name with the relation name to prevent ambiguity

Q1A: SELECT Fname, EMPLOYEE.Name, Address

FROM EMPLOYEE, DEPARTMENT

WHERE DEPARTMENT.Name='Research' AND

DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

Aliasing, Renaming, and Tuple Variables

Aliases or tuple variables

Declare alternative relation names E and S

```
EMPLOYEE AS E (Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)
```

Query 8. For each employee, retrieve the employee's first and last name and the first and last name of his or her immediate supervisor.

O8: SELECT E.Fname, E.Lname, S.Fname, S.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

Aliasing, Renaming, and Tuple Variables

Query 8. For each employee, retrieve the employee's first and last name and the first and last name of his or her immediate supervisor.

Q8: SELECT E.Fname, E.Lname, S.Fname, S.Lname

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

E.Fname	E.Lname	S.Fname	S.Lname
John	Smith	Franklin	Wong
Franklin	Wong	James	Borg
Alicia	Zelaya	Jennifer	Wallace
Jennifer	Wallace	James	Borg
Ramesh	Narayan	Franklin	Wong
Joyce	English	Franklin	Wong
Ahmad	Jabbar	Jennifer	Wallace

Unspecified WHERE Clause and Use of the Asterisk

Missing WHERE clause
Indicates no condition on tuple selection

CROSS PRODUCT

All possible tuple combinations

Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn

FROM EMPLOYEE;

Q10: SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

Unspecified WHERE Clause and Use of the Asterisk

Q9

Q10

E.Fname
123456789
333445555
999887777
987654321
666884444
453453453
987987987
888665555

Ssn	<u>Dname</u>
123456789	Research
333445555	Research
999887777	Research
987654321	Research
666884444	Research
453453453	Research
987987987	Research
888665555	Research
123456789	Administration
333445555	Administration
999887777	Administration
987654321	Administration
666884444	Administration
453453453	Administration
987987987	Administration
888665555	Administration
123456789	Headquarters
333445555	Headquarters
999887777	Headquarters
987654321	Headquarters
666884444	Headquarters
453453453	Headquarters
987987987	Headquarters
888665555	Headquarters

Addison-Wesley is an imprint of

Unspecified WHERE Clause and Use of the Asterisk (cont'd.)

Specify an asterisk (*)

Retrieve all the attribute values of the selected tuples

Q1C: SELECT *

FROM EMPLOYEE

WHERE Dno=5;

Q1D: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE Dname='Research' AND Dno=Dnumber;

Q10A: SELECT

FROM EMPLOYEE, DEPARTMENT;

SQL does not automatically eliminate duplicate tuples in query results

Use the keyword DISTINCT in the SELECT clause

Only distinct tuples should remain in the result

Query 11. Retrieve the salary of every employee (Q11) and all distinct salary values (Q11A).

Q11: SELECT ALL Salary

FROM EMPLOYEE;

Q11A: SELECT DISTINCT Salary

FROM EMPLOYEE;

Addison-Wesley is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Tables as Sets in SQL

Figure 4.4

Results of additional SQL queries when applied to the COM-PANY database state shown in Figure 3.6. (a) Q11. (b) Q11A.

Tables as Sets in SQL (cont'de)

Set operations

UNION, EXCEPT (difference), INTERSECT

Corresponding multiset operations: UNION

ALL, EXCEPT ALL, INTERSECT ALL)

Query 4. Make a list of all project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project.

Q4A: (SELECT DISTINCT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn

AND Lname='Smith')

UNION

(SELECT DISTINCT Pnumber

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Essn=Ssn

AND Lname='Smith');

Substring Pattern Matching and Arithmetic Operators

LIKE comparison operator

Used for string pattern matching

% replaces an arbitrary number of zero or more characters

underscore (_) replaces a single character

Standard arithmetic operators:

Addition (+), subtraction (–), multiplication (*), and division (/)

BETWEEN comparison operator

Substring Pattern Matching and Arithmetic Operators

Query 12. Retrieve all employees whose address is in Houston, Texas.

Q12: SELECT Fname, Lname FROM FMPLOYFF

WHERE Address LIKE '%Houston,TX%';

Query 12A. Find all employees who were born during the 1950s.

Q12: SELECT Fname, Lname

FROM EMPLOYEE

WHERE Bdate LIKE '__5___';

Query 13. Show the resulting salaries if every employee working on the 'ProductX' project is given a 10 percent raise.

Q13: SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased sal

FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND

P.Pname='ProductX';

Query 14. Retrieve all employees in department 5 whose salary is between \$30,000 and \$40,000.

Q14: SELECT *

FROM EMPLOYEE

WHERE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;

Ordering of Query Results 39

Use ORDER BY clause

Keyword DESC to see result in a descending order of values

Keyword ASC to specify ascending order explicitly

ORDER BY D. Dname DESC, E. Lname ASC,

E.Fname ASC

Query 15. Retrieve a list of employees and the projects they are working on ordered by department and, within each department, ordered alphabetically by last name, then first name.

Q15: SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W,

PROJECT P

WHERE D.Dnumber= E.Dno AND E.Ssn= W.Essn AND

W.Pno= P.Pnumber

ORDER BY D.Dname, E.Lname, E.Fname;

Discussion and Summary of Basic SQL Retrieval Queries

```
SELECT <attribute list>
FROM 
[ WHERE <condition> ]
[ ORDER BY <attribute list> ];
```


INSERT, DELETE, and UPDATE Statements in SQL

Three commands used to modify the database:

INSERT, DELETE, and UPDATE

The INSERT Command

Specify the relation name and a list of values for the tuple

U1: INSERT INTO EMPLOYEE

VALUES ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98

Oak Forest, Katy, TX', 'M', 37000, '653298653', 4);

U1A: INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

VALUES ('Richard', 'Marini', 4, '653298653');

U3A: CREATE TABLE WORKS_ON_INFO

(Emp_name VARCHAR(15),

Proj_name VARCHAR(15),

Hours_per_week DECIMAL(3,1));

U3B: INSERT INTO WORKS_ON_INFO (Emp_name, Proj_name,

Hours_per_week)

SELECT E.Lname, P.Pname, W.Hours

FROM PROJECT P, WORKS_ON W, EMPLOYEE E

WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

The DELETE Command 4

Removes tuples from a relation

Includes a WHERE clause to select the tuples to be deleted

U4A: DELETE FROM EMPLOYEE

WHERE Lname='Brown';

U4B: DELETE FROM EMPLOYEE

WHERE Ssn='123456789';

U4C: DELETE FROM EMPLOYEE

WHERE Dno=5;

U4D: DELETE FROM EMPLOYEE;

The UPDATE Command

Modify attribute values of one or more selected tuples

Additional SET clause in the UPDATE command

Specifies attributes to be modified and new

Val us: UPDATE PROJECT

SET Plocation = 'Bellaire', Dnum = 5

WHERE Pnumber=10;

U6: UPDATE EMPLOYEE

SET Salary = Salary * 1.1

WHERE Dno = 5;

Additional Features of SQL⁴⁶

Techniques for specifying complex retrieval queries

Writing programs in various programming languages that include SQL statements

Set of commands for specifying physical database design parameters, file structures for relations, and access paths

Transaction control commands

Additional Features of SQL₄₇ (cont'd.)

Specifying the granting and revoking of privileges to users

Constructs for creating triggers

Enhanced relational systems known as object-relational

New technologies such as XML and OLAP

Summary

SQL

Comprehensive language

Data definition, queries, updates, constraint specification, and view definition

Covered in Chapter 4:

Data definition commands for creating tables

Commands for constraint specification

Simple retrieval queries

Database update commands

