南京市 2024 届高三年级学情调研

高三数学

注意事项:

- 1. 本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第 13 题~第 16 题)、解答题(第 17 题~第 22 题)四部分、本试卷满分为 150 分,考试时间为 120 分钟.
- 2. 答卷前, 考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.
- 3. 回答选择题时, 选出每小题答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑, 如需改动, 用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上指定位置,在其他位 置作答一律无效.
- 一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是 符合颗月要求的。
- 1. 已知集合 $A = \{x \mid x^2 4x + 3 \le 0\}$, $B = \{x \mid 2 < x < 4\}$, 则 $A \cap B =$
- $\text{A. } \left\{ x \mid 3 \leq x < 4 \right\} \quad \text{B. } \left\{ x \mid 1 \leq x \leq 3 \right\} \quad \text{C. } \left\{ x \mid 2 < x \leq 3 \right\} \quad \text{D. } \left\{ x \mid 1 \leq x < 4 \right\}$

【答案】C

【解析】 $A = \{x \mid 1 \le x \le 3\}$, $B = \{x \mid 2 < x < 4\}$, $A \cap B = \{x \mid 2 < x \le 3\}$, 选 C.

- 2. 若 $z = \frac{3-i}{1-i}$,则z的虚部为
- A. 2
- в. -2 с. 2і
- D. -2i

【答案】B

【解析】
$$z = \frac{3-i}{1+i} = \frac{(3-i)(1-i)}{2} = \frac{3-3i-i-1}{2} = 1-2i$$
,虚部为 -2 ,选B.

- 3. $\left(x-\frac{2}{x}\right)^4$ 的展开式中常数项为
- A. -24
- B. **–4** C. **4**
- D. **24**

【答案】D

【解析】
$$\left(x - \frac{2}{x}\right)^4$$
展开式第 $r + 1$ 项 $T_{r+1} = C_4^r x^{4-r} \left(-\frac{2}{x}\right)^r = C_4^r (-2)^r x^{4-2r}$,

$$r=2$$
 , $T_3=C_4^2(-2)^2=6\times 4=24$, 选D.

4. 在 $\triangle ABC$ 中,点D 为边AB的中点. 记 $\overrightarrow{CA} = m$, $\overrightarrow{CD} = n$,则 $\overrightarrow{CB} =$

A. 2m+n

B. m+2n C. 2m-n D. -m+2n

【答案】D

【解析】 D为 AB中点, $\therefore \overrightarrow{CD} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$, $\therefore 2\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{CB}$,

 $\vec{CB} = 2\overrightarrow{CD} - \overrightarrow{CA} = 2\overrightarrow{n} - \overrightarrow{m}$, \ddot{B} D

5. 设O为坐标原点,A为圆 $C: x^2 + y^2 - 4x + 2 = 0$ 上一个动点,则 $\angle AOC$ 的最大值为

A. $\frac{\pi}{12}$

B. $\frac{\pi}{6}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{3}$

【答案】C

【解析】圆 $C:(x-2)^2+y^2=2$,圆心(2,0),半径 $r=\sqrt{2}$,O为圆C外一点, $\angle AOC$ 最大时,OA与圆C相切,Rt $\triangle ACO$ 中, $AC = \sqrt{2}$,OC = 2, $OA = \sqrt{2}$, $\therefore \angle AOC = 45^{\circ}$,选 C.

6. 在正方体 $ABCD - A_1B_1C_1D_1$ 中,过点B的平面 α 与直线 A_1C 垂直,则 α 截该正方体所得截面的 形状为

A. 三角形

【答案】A

【解析】 $A_1C \perp \text{面} BC_1D$,截面为 $\triangle BC_1D$,选 A.

7. 新风机的工作原理是,从室外吸入空气,净化后输入室内,同时将等体积的室内空气排向室外. 假设某房间的体积为 v_0 ,初始时刻室内空气中含有颗粒物的质量为m.已知某款新风机工作时,单位 时间内从室外吸入的空气体积为v(v>1),室内空气中颗粒物的浓度与时刻t的函数关系为 $\rho(t) = (1-\lambda)\frac{m}{v_0} + \lambda \frac{m}{v_0} e^{-vt}$,其中常数 λ 为过滤效率. 若该款新风机的过滤效率为 $\frac{4}{5}$,且 t=1 时室内

空气中颗粒物的浓度是t=2 时的 $\frac{3}{2}$ 倍,则 ν 的值约为

(参考数据: ln 2 ≈ 0.6931, ln 3 ≈ 1.0986)

A. 1.3862

R. 1.7917

c. 2.1972 D. 3.5834

【答案】B

【解析】
$$\lambda = \frac{4}{5}$$
 , $\rho(t) = \frac{1}{5} \frac{m}{v_0} + \frac{4}{5} \frac{m}{v_0} e^{-vt}$, $\rho(1) = \frac{3}{2} \rho(2)$,

$$\therefore \frac{1}{5} \frac{m}{v_0} + \frac{4}{5} \frac{m}{v_0} e^{-v} = \frac{3}{2} \left(\frac{1}{5} \frac{m}{v_0} + \frac{4}{5} \frac{m}{v_0} e^{-2v} \right), \quad e^v = 6 \text{ id} 2 \quad (\$),$$

- $\therefore v = \ln 6 = \ln 2 + \ln 3 = 0.6931 + 1.0986 = 1.7917$, 选B.
- 8. 若函数 $f(x) = \sin(\omega \cos x) 1(\omega > 0)$ 在区间 $(0,2\pi)$ 恰有2 个零点,则 ω 的取值范围是

- A. $\left(0, \frac{\pi}{2}\right)$ B. $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ C. $\left(\frac{\pi}{2}, \frac{5\pi}{2}\right)$ D. $\left(\frac{\pi}{2}, +\infty\right)$

【答案】B

【解析】 $\diamondsuit \omega \cos x = t \in [-\omega, \omega)$, $f(x) = 0 \Leftrightarrow \sin t = 1$, $\sin t = 1$ 有且仅有一个根,

则
$$\frac{\pi}{2} < \omega < \frac{3}{2}\pi$$
, $\omega \cos x = \frac{\pi}{2}$,则 $\cos x = \frac{\pi}{2\omega} \in \left(\frac{1}{3},1\right)$ 有两个根,选 B.

- 二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目 要求. 全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.
- 9. 若a < 0 < b, 且a + b > 0, 则

- A. $\frac{a}{b} > -1$ B. |a| < |b| C. $\frac{1}{a} + \frac{1}{b} > 0$ D. (a-1)(b-1) < 1

【答案】ABD

【解析】 a+b>0,则 a>-b,则 $\frac{a}{b}>-1$,A 对.

a+b>0, $\bigcup b>-a$, $\bigcup |b|>|a|$, B 对.

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} < 0$$
, C \forall.

$$(a-1)(b-1)-1=ab-(a+b)<0$$
, ∴ $(a-1)(b-1)<1$, D对, 选 ABD.

- 10. 有一组样本数据 x_1, x_2, x_3, x_4, x_5 ,已知 $\sum_{i=1}^{5} x_i = 10$, $\sum_{i=1}^{5} x_i^2 = 30$,则该组数据的

- A. 平均数为2 B. 中位数为2 C. 方差为2 D. 标准差为2

【答案】AC

【解析】
$$\overline{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = 2$$
, A 对, B 不对。 $s^2 = \frac{1}{5} \sum_{i=1}^{5} (x_i - \overline{x})^2 = \frac{1}{5} (\sum_{i=1}^{5} x_i^2 - 2 \times 10\overline{x} + 5\overline{x}^2) = 2$, C 对,

D不对,选AC.

11. 在 $\triangle ABC$ 中, $\angle ACB$ = 90°,AC = BC = $2\sqrt{2}$,D 是 AB 的中点. 将 $\triangle ACD$ 沿 CD 翻折,得到三棱锥 A' – BCD,则

- A. $CD \perp A'B$
- B. 当 $A'D \perp BD$ 时,三棱锥A' BCD 的体积为 $\frac{8}{3}$
- c. 当 $A'B = 2\sqrt{3}$ 时,二面角A' CD B的大小为 $\frac{2\pi}{3}$
- D. 当 $\angle A'DB = \frac{2\pi}{3}$ 时,三棱锥A' BCD的外接球的表面积为 20π

【答案】ACD

【解析】 $CD \perp A'D$, $CD \perp BD$, $A'D \cap BD = D$,A'D, $BD \subset$ 平面A'BD, $\therefore CD \perp$ 面A'BD, $\therefore CD \perp A'B$,A对.

 $A'D \perp BD$, $A'D \perp CD$, $BD \cap CD = D$, $BD,CD \subset \overline{\Upsilon} \cap BCD$, $A'D \perp \overline{\cap} BCD$,

$$S_{\triangle BCD} = \frac{1}{2} \times 2 \times 2 = 2$$
, $A'D = 2$, $S = \frac{1}{3} \times 2 \times 2 = \frac{4}{3}$, B $\stackrel{\text{diff}}{=}$.

$$A'D = BD = 2$$
, $A'B = 2\sqrt{3}$, $\cos \angle A'DB = -\frac{1}{2}$, $\therefore \angle A'DB = \frac{2}{3}\pi$,

二面角
$$A'-CD-B$$
 为 $\frac{2}{3}\pi$, C 对.

$$A'B=2\sqrt{3}$$
 ,设 $\triangle A'BD$ 的外接圆 M 半径为 r ,则 $2r=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}=4$, $\therefore r=2$

$$\begin{cases} OM^2 + 4 = R^2 \\ (2 - OM)^2 + 4 = R^2 \end{cases} , :: R^2 = 5 , 4\pi R^2 = 20\pi , D 对, 选 ACD.$$

12. 函数 f(x) 及其导函数 f'(x) 的定义域均为 \mathbf{R} ,若 f(x) - f(-x) = 2x,

$$f'(1+x) + f'(1-x) = 0$$
, \square

A.
$$y = f(x) + x$$
 为偶函数

B.
$$f(x)$$
 的图象关于直线 $x=1$ 对称

C.
$$f'(0) = 1$$

D.
$$f'(x+2) = f'(x) + 2$$

【答案】BC

【解析】方法一: f(x) - x = f(-x) - (-x), g(x) = f(x) - x为偶函数, A 错.

f(x) - f(-x) = 2x, $\bigcup f'(x) + f'(-x) = 2$, $\bigcup f'(0) + f'(0) = 2$, $\bigcup f'(0) = 1$, $C \not \supset 1$.

$$f(x)$$
 关于 $x = 1$ 对称 $\Leftrightarrow f(1+x) = f(1-x) \Leftrightarrow f'(1+x) = -f'(1-x)$

 $\Leftrightarrow f'(1+x)+f'(1-x)=0$, B 对.

f(2+x) = f(-x) = f(x) - 2x, f'(2+x) = f'(x) - 2, D \(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}{2}\).

方法二: f(x) - f(-x) = 2x, f(-x) + x = f(x) - x, y = f(x) - x 为偶函数, A 错.

$$f'(1+x) + f'(1-x) = 0 \Rightarrow f(1+x) = f(1-x) + C, \quad \Leftrightarrow x = 0 \Rightarrow C = 0,$$

 $\therefore f(1+x) = f(1-x)$, $\therefore f(x)$ 的图象关于直线 x = 1 对称, B 正确.

对于 C, 由 $f(x) - f(-x) = 2x \Rightarrow f'(x) + f'(-x) = 2 \Rightarrow 2f'(0) = 2$, f'(0) = 1, C 正确.

对于 D, 由 $f(x+1) = f(1-x) \Rightarrow f(-x) = f(x+2)$, $\therefore f(x) - f(x+2) = 2x$

- $\Rightarrow f(x+2) = f(x) 2x$, ∴ f(x+2) = f'(x) 2, D 错. 选: BC.
- 三、填空题: 本题共4小题,每小题5分,共20分.
- 13. 已知角 α 的顶点为坐标原点,始边与x轴的非负半轴重合,终边经过点P(3,4),则

$$\sin(\pi + \alpha) = \underline{\hspace{1cm}}.$$

【答案】 $-\frac{4}{5}$

【解析】
$$\sin \alpha = \frac{4}{5}$$
, $\sin(\pi + \alpha) = -\sin \alpha = -\frac{4}{5}$.

14. 某批麦种中,一等麦种占90%,二等麦种占10%,一、二等麦种种植后所结麦穗含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为______.

【答案】0.56

【解析】 $P = 0.9 \times 0.6 + 0.1 \times 0.2 = 0.56$.

15. 记
$$S_n$$
为数列 $\left\{a_n\right\}$ 的前 n 项和,已知 $a_n = \begin{cases} \dfrac{2}{n(n+2)}, n$ 为奇数,则 $S_8 = ____$ 。 a_{n-1}, n 为偶数,

【答案】 $\frac{16}{9}$

【解析】
$$n$$
 为奇数, $\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}$, $a_1 + a_3 + a_5 + a_7 = 1 - \frac{1}{9} = \frac{8}{9}$,

$$n$$
 为偶数, $a_2 + a_4 + a_6 + a_8 = a_1 + a_3 + a_5 + a_7 = \frac{8}{9}$, $\therefore S_8 = \frac{16}{9}$.

16. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = \mathbf{1}(a > 0, b > 0)$ 的左、右焦点分别为 F_1, F_2, P 是C右支上一点,线段 PF_1

与 C 的左支交于点 M . 若 $\angle F_1PF_2=rac{\pi}{3}$,且 $\left|PM\right|=\left|PF_2\right|$,则 C 的离心率为______.

【答案】√7

【解析】方法一:
$$PM = PF_2$$
, $\angle F_2 PM = \frac{\pi}{3}$, $\triangle PMF_2$ 为正三角形,

$$PF_1 - PF_2 = (PM + MF_1) - PF_2 = MF_1 = 2a$$
, $\therefore MF_2 = 4a$, $\angle F_1 MF_2 = \frac{2}{3}\pi$,

$$\triangle MF_1F_2 \; \oplus \; , \; \; 4c^2 = 4a^2 + 16a^2 - 2 \cdot 2a \cdot 4a \cdot \left(-\frac{1}{2}\right) = 28a^2 \; , \; \; \therefore c = \sqrt{7}a \; , \; \; \therefore e = \sqrt{7} \; .$$

方法二: 连接
$$MF_2$$
, $PF_1 - PF_2 = MF_1 = 2a$, $MF_2 = 4a$,

 \therefore $\angle F_1 P F_2 = \frac{\pi}{3}$, $PM = P F_2$, $\therefore \triangle PM F_2$ 为等边三角形, $\therefore PM = P F_2 = 4a$,

在
$$\triangle PF_1F_2$$
 中, $2c = \sqrt{36a^2 + 16a^2 - 2 \cdot 6a \cdot 4a \cdot \frac{1}{2}} = 2\sqrt{7}a$, $\therefore e = \frac{c}{a} = \sqrt{7}$.

四、解答题: 本题共6小题, 共70分. 解答应写出文字说明、证明过程或演算步骤.

- 17. (10 分)已知公比大于1的等比数列 $\left\{a_n\right\}$ 满足: $a_1+a_4=18$, $a_2a_3=32$.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 记数列 $\{b_n\}$ 的前n项和为 S_n ,若 $S_n=2b_n-a_n,n\in \mathbf{N}^*$,证明: $\left\{\frac{b_n}{a_n}\right\}$ 是等差数列.

【解析】

(1) $:: \{a_n\}$ 为等比数列, $:: a_2a_3 = a_1a_4 = 32 且 \{a_n\}$ 公比q > 1,

$$\therefore \begin{cases} a_1 = 2 \\ a_4 = 16 \end{cases} \Rightarrow q^3 = 8 , \quad q = 2 , \quad \therefore a_n = 2^n.$$

(2)
$$S_n = 2b_n - 2^n \oplus S_{n+1} = 2b_{n+1} - 2^{n+1} \oplus S_n$$

$$\textcircled{2} - \textcircled{1}, \implies b_{n+1} = 2b_{n+1} - 2b_n - 2^n, \quad \therefore b_{n+1} - 2b_n = 2^n \Rightarrow \frac{b_{n+1}}{2^{n+1}} - \frac{b_n}{2^n} = \frac{1}{2},$$

$$\therefore \frac{b_{n+1}}{a_{n+1}} - \frac{b_n}{a_n} = \frac{1}{2}, n \in \mathbf{N}^*$$
为常数,
$$\therefore \left\{ \frac{b_n}{a_n} \right\}$$
是等差数列.

- 18.(12 分)记 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c. 已知 $a\sin B + \sqrt{3}b\cos A = 0$.
- (1) 求A;
- (2) 若a=3, $\sin B \sin C = \frac{1}{4}$, 求 $\triangle ABC$ 的面积.

【解析】

(1)
$$\sin A \sin B + \sqrt{3} \sin B \cos A = 0 \Rightarrow \tan A = -\sqrt{3}$$
, $A = \frac{2\pi}{3}$.

(2) 在
$$\triangle ABC$$
中,由正弦定理 $\Rightarrow \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{3}{\frac{\sqrt{3}}{2}} = 2\sqrt{3} \Rightarrow \begin{cases} b = 2\sqrt{3} \sin B \\ c = 2\sqrt{3} \sin C \end{cases}$

$$\therefore S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \cdot 2\sqrt{3}\sin B \cdot 2\sqrt{3}\sin C \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}.$$

19.(12分)某地区对某次考试成绩进行分析,随机抽取100名学生的A,B两门学科成绩作为样本.将他们的A学科成绩整理得到如下频率分布直方图,且规定成绩达到70分为良好.已知他们中B学科良好的有50人,两门学科均良好的有40人.

(1)根据所给数据,完成下面的 2×2 列联表,并根据列联表,判断是否有95% 的把握认为这次考试上。的A学科良好与B学科良好有关,

	<i>B</i> 学科良好	B 学科不够良好	合计	
A 学科良好				+
△ 学科不够良好				
合计				

(2) 用样本频率估计总体概率,从该地区参加<u>十</u>」全体学生中随机抽取3人,记这3人中4

科均良好的人数为随机变量X,求X的分布列与数学期望.

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, 其中 $n = a+b+c+d$.

$P(K^2 \geqslant k_0)$	0.15	0.10	0.05	0. 025	0.010	0.005	0.001
				T-12-31-1	1		

ŀ	2.072	2.706	2 9 4 1	5.024	6 62 5	7.870	10.929
κ ₀	2.072	2.700	3.841	5.024	0.033	7.879	10.828

【解析】

(1) A学科良好的有 $(0.4 + 0.25 + 0.05) \times 100 = 70$, 补充 2×2 列联表如下:

	B 学科良好	B 学科不够良好	合计
A 学科良好	40	30	70
A 学科不够良好	1 0 20		30
合计	50	50	100

$$\therefore K^2 = \frac{100 \times (40 \times 20 - 30 \times 10)^2}{70 \times 30 \times 50 \times 50} \approx 4.76 > 3.841.$$

- :有95%的把握认为这次考试学生的A学科良好与B学科良好有关。
- (2) 随机抽取一人,A, B均良好的频率为 $\frac{40}{100} = \frac{2}{5}$.
- $\therefore X$ 的所有可能取值为0,1,2,3.

$$P(X=0) = \left(\frac{3}{5}\right)^3 = \frac{27}{125}, \quad P(X=1) = C_3^1 \times \frac{2}{5} \times \left(\frac{3}{5}\right)^2 = \frac{54}{125},$$

$$P(X=2) = C_3^2 \left(\frac{2}{5}\right)^2 \times \frac{3}{5} = \frac{36}{125}, \quad P(X=3) = \left(\frac{2}{5}\right)^3 = \frac{8}{125}.$$

 $\therefore X$ 的分布列如下:

X	0	1	2	3
P	$\frac{27}{125}$	54 125	$\frac{36}{125}$	$\frac{8}{125}$

$$E(X) = \frac{54}{125} + \frac{72}{125} + \frac{24}{125} = \frac{6}{5}, \quad \text{wh} X \sim B\left(3, \frac{2}{5}\right), \quad E(X) = np = 3 \times \frac{2}{5} = \frac{6}{5}.$$

20. (12分)如图, 四边形 ABCD 是圆柱 OE 轴截面, 点 F 在底面圆 O 上, $OA = BF = \sqrt{3}$, AD = 3,

点G是线段BF的中点.

- (1) 证明: EG // 平面 DAF;
- (2) 求直线EF与平面DAF所成角的正弦值.

【解析】

(1) 证明: 取 AF 中点H,连接GH, DH, $\therefore GH = \frac{1}{2}AB$,

又: $DE = \frac{1}{2}AB$,:GH = DE,:四边形GHDE 为平行四边形,

 $\therefore EG \parallel DH$, $\because EG \varpropto$ 平面 DAF , $DH \subset$ 平面 DAF , $\therefore EG \parallel$ 平面 DAF .

(2) 如图分别以FB,FA,过F 且与底面 $\bigcirc O$ 垂直的直线为x,y,z 轴建立空间直角坐标系

$$\therefore E\left(\frac{\sqrt{3}}{2}, \frac{3}{2}, 3\right), F(0,0,0), D(0,3,3), A(0,3,0)$$

$$\therefore \overrightarrow{FE} = \left(\frac{\sqrt{3}}{2}, \frac{3}{2}, 3\right), \ \ \text{平面 DAF in} - \uparrow \ \text{法向量} \ \vec{n} = (1,0,0) \,.$$

设直线
$$EF$$
 与平面 DAF 所成角为 θ , $\therefore \sin \theta = \frac{\left|\overrightarrow{FE} \cdot \overrightarrow{n}\right|}{\left|\overrightarrow{FE}\right|\left|\overrightarrow{n}\right|} = \frac{\frac{\sqrt{3}}{2}}{\sqrt{\frac{3}{4} + \frac{9}{4} + 9}} = \frac{1}{4}$.

21.(12分)已知O为坐标原点,F(1,0)是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右焦点,过F且不与

坐标轴垂直的直线l 交椭圆C 于 A,B 两点. 当 A 为短轴顶点时, $\triangle O\!AF$ 的周长为 $3+\sqrt{3}$

(1) 求**C**的方程;

(2)若线段 AB 的垂直平分线分别交 x 轴、y 轴于点 P,Q,M 为线段 AB 的中点,求 $|PM|\cdot|PQ|$ 的取值范围。

【解析】

(1)
$$OF = c = 1$$
, $OA = b$, $AF = a$, $\therefore a + b + 1 = 3 + \sqrt{3} \, \Box a^2 - b^2 = 1$,

(2) 设直线 AB 的方程为: x=my+1, $m\neq 0$, $A(x_1,y_1)$, $B(x_2,y_2)$, $M(x_0,y_0)$

$$\begin{cases} x = my + 1 \\ 3x^2 + 4y^2 = 12 \end{cases} \Rightarrow (3m^2 + 4)y^2 + 6my - 9 = 0 ,$$

$$\therefore y_0 = \frac{y_1 + y_2}{2} = \frac{-3m}{3m^2 + 4}, \quad \therefore x_0 = \frac{-3m^2}{3m^2 + 4} + 1 = \frac{4}{3m^2 + 4}, \quad \therefore M\left(\frac{4}{3m^2 + 4}, \frac{-3m}{3m^2 + 4}\right),$$

$$\therefore AB$$
 的垂直平分线为: $y = -m\left(x - \frac{4}{3m^2 + 4}\right) - \frac{3m}{3m^2 + 4}$,

$$\Rightarrow x = 0 \Rightarrow y_Q = \frac{m}{3m^2 + 4}$$

$$|PM| \cdot |PQ| = \sqrt{1 + \frac{1}{m^2}} \cdot \left| \frac{3m}{3m^2 + 4} \right| \cdot \sqrt{1 + \frac{1}{m^2}} \cdot \left| \frac{m}{3m^2 + 4} \right| = \frac{3(m^2 + 1)}{(3m^2 + 4)^2}$$

$$\therefore |PM| \cdot |PQ|$$
的取值范围为 $\left(0, \frac{3}{16}\right)$.

- 22. (12分) 已知函数 $f(x) = ae^x x a$, 其中a > 0.
- (1) 若a=1, 证明: f(x) ≥ 0;
- (2) 设函数g(x) = xf(x), 若x = 0为g(x)的极大值点,求a的取值范围.

【解析】

(1)
$$a = 1$$
 By, $f(x) = e^x - x - 1$, $f'(x) = e^x - 1 = 0 \Rightarrow x = 0$,

当
$$x < 0$$
时, $f'(x) < 0$, $f(x) \swarrow$;当 $x > 0$ 时, $f'(x) > 0$, $f(x) \nearrow$,

$$\therefore f(x) \ge f(0) = 0.$$

(2)
$$g(x) = x(ae^x - x - a)$$
, $g'(x) = ae^x - x - a + (ae^x - 1)x = ae^x(1 + x) - 2x - a$

$$g'(0) = 0$$
, $g''(x) = ae^{x}(x+2) - 2$, $g''(0) = 2a - 2$.

①若
$$a \ge 1$$
, 则当 $x > 0$ 时, $g''(x) > 0$, $g'(x) \nearrow$, 此时 $g'(x) > g'(0) = 0$,

$$\therefore g(x)$$
 在 $x \in (0,+\infty)$ 上 \nearrow ,这与 $x = 0$ 为 $g(x)$ 的极大值点矛盾,舍去.

②若
$$0 < a < 1$$
 时, $g'''(x) = ae^{x}(x+3)$, $g''(x)$ 在 $(-3,+\infty)$ 上 \nearrow ,

注意到
$$g''(0) = 2a - 2 < 0$$
, $g''\left(\frac{2}{a} - 2\right) = 2\left(e^{\frac{2}{a} - 2} - 1\right) > 0$,

$$\therefore 在 x \in (-3,+\infty) \bot 存在唯一的 x_0 \in \left(0,\frac{2}{a}-2\right) 使 g''(x_0) = 0,$$

且当
$$-3 < x < x_0$$
时, $g''(x) < 0$, $g'(x) \swarrow$,注意到 $g'(0) = 0$,

$$\therefore$$
 当 $-3 < x < 0$ 时, $g'(x) > 0$, $g(x)$ \nearrow ; 当 $0 < x < x_0$ 时, $g'(x) < 0$, $g(x)$ \checkmark 满足 $x = 0$ 为 $g(x)$ 的极大值点,

综上:实数a的取值范围为(0,1).