## 10 Distrib. limite del RW di Wiestrass

## 10.1 Random Walk di Weierstrass nel dettaglio

Abbiamo visto che per un camminatore di Weierstrass la forma della distribuzione poteva non essere Gaussiana al variare del parametro  $N^2/b$  (Vedi sezione 6.2). Rispetto alla lezione 6 adesso si cambia la notazione:

$$b\to M \qquad N\to b.$$

Quindi adesso b è il parametro dell'ampiezza di salto mentre M è il fattore che smorza il rate. La condizione di rottura del teorema del limite centrale diventa:

$$\frac{b^2}{M} > 1.$$

Cerchiamo la distribuzione invariante per il camminatore di Weierstrass proprio in questo caso.

La probabilità di fare un salto l può essere scritta come:

$$P(l) = \frac{M-1}{2M} \sum_{J=0}^{\infty} \frac{1}{M^J} \left[ \delta(l-b^J a) + \delta(l+b^J a) \right].$$

Per capire se è invariante è necessario considerare n salti, farlo nello spazio reale può essere complicato. Ricordiamo le proprietà generali di questo moto random:

- Occorrono  $\sim M$  salti di  $\pm a$  prima di saltare ba.
- Occorrono  $\sim M$  salti di  $\pm ba$  ( $M^2$  salti lunghi a) prima di saltare  $b^2a$ .
- etc ...

Queste caratteristiche fanno si che il sistema esibisca dei cluster di camminatori attorno alle posizioni dei salti più lunghi (sulla scala temporale di osservazione).



Figura 1.10: Random Walk di Weierstrass (b = 3, M = 4): formazione dei Cluster (Paul and Baschangel: Stochastic Process, Springer).

Proprio per la formazione di questi cluster su scale spaziali diverse il sistema può presentare un comportamento auto-similare.

Possiamo notare anche come cambiano i risultati al variare dei parametri M e b:



Figura 1.11: Rapporto  $b^2/M = 4/3$  (Link al codice).



Figura 1.12: Rapporto  $b^2/M=4/30$ , notiamo come i cluster che si formano siano diversi nei due casi: in questo caso il moto diventa quasi irriconoscibile rispetto ad un RW "normale". (Link al codice) .

Mettiamoci nel caso in cui la distribuzione non può essere una Gaussiana e risolviamo per  $\langle l^2 \rangle \to \infty$ :

$$\left\langle l^2\right\rangle = \frac{\left(M-1\right)a^2}{M}\sum \left(\frac{b^2}{M}\right)^J \to \infty \quad \text{se } \frac{b^2}{M} > 1.$$

Per capire se P(l) può essere stabile andiamo in trasformata:

## 10.2 Serie di Weierstrass e distribuzione stabile per il RW

Ricordando che:

$$P(k) = \langle e^{ikl} \rangle$$
.

Si ottiene:

$$P(k) = \int dl P(l) e^{ikl} = \frac{M-1}{M} \sum_J \frac{\cos(kb^J a)}{M^J}. \label{eq:power_power}$$

Questa serie è continua ovunque ma non differenziabile rispetto a k se b > M.

Per dimostrare che P(l) è stabile dobbiamo dimostrare che P(k) è invariante sotto convoluzione. Partiamo osservando come scala P(k) se mandiamo  $k \to bk$ , questo cambio di scala è interessante perché b è l'unica grandezza fisica che descrive la scala sulla quale avviene il moto del camminatore.

$$P(bk) = \frac{M-1}{M} \sum_{J=0}^{\infty} \frac{1}{M^J} \cos(kb^{J+1}a) = \dots =$$

$$= MP(k) - \frac{M-1}{M} \cos(ka).$$

Per arrivare a questa conclusione si è esplicitata la sommatoria di P(bk), moltiplicato e diviso per M e isolato il primo termine della sommatoria.

## Equazione per la P(k)

$$P(k) = \frac{1}{M}P(bk) + \frac{M-1}{M}\cos(ka).$$

Per soddisfare l'invarianza di scala la P(k) deve soddisfare questa equazione. Dividiamo la soluzione in una parte omogenea ed una particolare.

$$P(k) = \frac{1}{M}P_0(k) + P_p(k).$$

Possiamo sviluppare in serie il coseno per trovare la forma della soluzione particolare:

$$P_p(k) = \frac{M-1}{M} \sum_{I=1} \frac{(-1)^J}{(2J)!} \frac{(ka)^{2J}}{1 - b^{2J}/M} + 1.$$

Notiamo subito che la soluzione particolare non è responsabile della divergenza di  $\langle l^2 \rangle$ , infatti possiamo calcolare il momento secondo come:

$$\left\langle l^2 \right\rangle = - \left. \frac{\mathrm{d}^2}{\mathrm{d}k^2} P_0(k) \right|_0 - \left. \frac{\mathrm{d}^2}{\mathrm{d}k^2} P_p(k) \right|_0.$$

La derivata seconda di  $P_p$  non diverge:

$$\left\langle l^2\right\rangle_p = \frac{M-1}{M}\frac{a^2}{b^2/M-1} < \infty \qquad \text{con } b^2/M > 1.$$

Quindi è il termine omogeneo di pura scala ad essere responsabile della divergenza.

Scaling discreto della soluzione omogenea

$$P_0(k) = \frac{1}{M} P_0(bk).$$

Possiamo esprimere la soluzione di questa equazione in funzione di una qualunque Q(k) tale che:

- Q(k) = Q(kb)
- Q(k) periodica in  $\ln(k)$  con periodo  $T = \ln(b)$ .

Senza riportare i passaggi la soluzione della omogenea è:

$$P_0(k) = |ka|^{\alpha} Q(k).$$

con:

$$\alpha = \frac{\ln(M)}{\ln(b)} \qquad 0 < \alpha < 2.$$

Che deve essere rispettata per imporre la self-similarità.

Valutando i termini della soluzione,  $P_p$  e  $P_0$ , quando  $k \to 0$  si nota che sopravvivono solo:

- Il termine unitario nella  $P_p$  (il termine più rilevante nella sommatoria va a zero come  $k^2$ ).
- L'intera soluzione omogenea ( $\alpha < 2$ )

Per  $k \to 0$  si ha quindi che:

$$P(k) \sim 1 - c(\alpha) |ka|^{\alpha}$$
.

Per ricondurci ad una forma del tipo Levy dobbiamo trovare il modo di esprimere il  $\log P(k)$ , approssimiamo allora la P(k) ottenuta per  $k \to 0$  come esponenziale (visto che corrisponde ai primi due termini dello sviluppo di quest'ultimo).

$$P(k) \sim \exp\left(-c(\alpha) |ka|^{\alpha}\right)$$
.

Quindi:

$$\ln(P(k)) = -c(\alpha) |ka|^{\alpha}.$$

Che è effettivamente una distribuzione di Levy con  $\alpha = \ln M / \ln b$ . Quindi la distribuzione P(l) è stabile per tutti i valori di  $b^2/M$ .