Graf Sebagai Pemodelan

Eko Budi Santoso, SJ.

Universitas Sanata Dharma Yogyakarta

26 Okt 2020

Schedule

Our Topics

Date	Topic	Resource
19 Oct	Pengantar Teori Graf	
26 Oct	Graf Sebagai Pemodelan	
02 Nov	Representasi graf dan konektiv-	
	itas	
09 Nov	USIP2	

Bahan USIP2 adalah tiga pertemuan setelah USIP1

6. Beberapa Jenis Graf

Graf Ekuivalen

Graf Ekuivalen

Dua graf G_1 dan G_2 dikatakan sama jika kedua graf tersebut memiliki himpunan simpul dan sisi yang sama.

Graf Ekuivalen

Keempat graf berikut adalah sama.

The diagrams show four connected planar graphs.

Graf Isomorfisma

Graf Isomorfisma

Dua graf G_1 dan G_2 dikatakan isomorfis (isomorphic) jika terdapat fungsi bijektif $f:V(G_1)\to V(G_2)$, sedemikian sehingga a dan b bertetangga di G_1 jika dan hanya jika f(a) dan f(b) bertetangga di G_2 .

Graf Isomorfisma

Graf Isomorfisma

Isomorfisma

Semua graf tidak isomorfis order 4

Beberapa Jenis Graf

Beberapa Jenis Graf

- Path (lintasan) P_n
- 2 Cycle (Siklus) C_n
- lacksquare Graf Lengkap K_n
- $oldsymbol{0}$ Graf Roda W_n
- lacksquare Bintang S_n
- Graf Bipartite
- $oldsymbol{O}$ Graf Bipartit Lengkap $K_{m,n}$
- Graf Petersen
- $oldsymbol{0}$ Graf Pohon T

Graf Lintasan (Path)

Graf Lintasan (Path) P_n

Graf Lintasan $P_n, n \geq 1$ adalah graf sederhana n simpul v_1, v_2, \ldots, v_n dengan sisi-sisi $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}$.

Graf Siklus (Cycle)

Graf Siklus (*Cycle*) C_n

Graf siklus $C_n, n \geq 3$ adalah graf sederhana n simpul v_1, v_2, \ldots, v_n dan sisi-sisi $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}$, dan $\{v_n, v_1\}$.

Graf Lengkap

Graf Lengkap K_n

Graf lengkap K_n adalah graf sederhana n simpul dan setiap simpul bertetangga.

Graf Roda (Wheel)

Graf Siklus (Wheel W_n

Graf roda $W_n, n \geq 3$ adalah graf sederhana $C_n + K_1$.

Graf Bipartit

Graf Bipartit

Graf sederhana G disebut graf bipartit jika himpunan vertex dapat dipartisi menjadi dua himpunan disjoin V_1 dan V_2 sedemikian sehingga setiap simpul di himpunan V_1 bertetangga dengan simpul di V_2 (tidak ada sepasang simpul dalam V_1 atau V_2 yang bertetangga).

- $oldsymbol{0}$ C_6 adalah bipartit
- $oldsymbol{0}$ K_3 bukan bipartit

Graf Bipartit Lengkap

Graf Bipartit Lengkap

Graf sederhana G disebut graf bipartit jika himpunan vertex dapat dipartisi menjadi dua himpunan disjoin V_1 dan V_2 sedemikian sehingga setiap simpul di himpunan V_1 bertetangga dengan semua simpul di V_2 (tidak ada sepasang simpul dalam V_1 atau V_2 yang bertetangga).

Graf Petersen

Kesepuluh graf berikut adalah graf yang sama yang dikenal dengan graf Petersen.

Perjalanan (Walk)

Walk

Diberikan sebuah graf, perjalanan (walk) dari simpul v_0 ke simpul v_n adalah barisan selang-seling simpul dan sisi

$$W = \langle v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n \rangle.$$

Jejak (*Trail*)

Trail

Sebuah jejak adalah perjalanan (walk) tanpa mengulang sisi.

Lintasan (Path)

Path

Sebuah lintasan adalah jejak (trail) tanpa mengulang simpul.

Siklus (Cycle)

Cycle

Sebuah siklus adalah lintasan tertutup.

Keterhubungan

Keterhubungan

Sebuah graf disebut terhubung (connected) jika untuk setiap pasang simpul u dan v, dengan $u \neq v$, terdapat lintasan yang menghubungkan keduanya.

Pohon

Pohon

Graf T=(V,E) disebut pohon, jika T adalah graf terhubung dan tidak memuat siklus.

7. Graf Sebagai Pemodelan

Pewarnaan Simpul

Pewarnaan Simpul

Salah satu topik penelitian dalam teori graf adalah pewarnaan simpul. Aturan pewarnaan simpul adalah simpul yang bertetangga harus memiliki warna berbeda.

Pewarnaan Simpul

Pewarnaan Simpul

Salah satu topik penelitian dalam teori graf adalah pewarnaan simpul. Aturan pewarnaan simpul adalah simpul yang bertetangga harus memiliki warna berbeda.

Pewarnaan Simpul

Pewarnaan Simpul

Semua pewarnaan simpul di atas adalah benar. Yang selanjutnya menjadi pertanyaan adalah berapa minimal banyak warna yang diperlukan untuk pewarnaan simpul sebuah graf.

	L	A	R	K	S	D	G	T	В
Logika		X		X	X				
Aljabar	X		X	X	X	X			X
Real		X				X			
Kalkulus	X	X			X		X		X
Statistika	X	X		X		X		X	
Diskrit		X	X		X				X
Graf				X				X	
Topologi					X		X		Х
Bilangan		X		X		X		X	

Penjadwalan

Perhatikan tabel data di atas. Kotak yang bertanda "X" berarti ada mahasiswa yang mengambil kedua mata kuliah tersebut.

	L	A	R	K	S	D	G	T	В
Logika		X		X	X				
Aljabar	X		X	X	X	X			X
Real		X				X			
Kalkulus	X	X			X		X		X
Statistika	X	X		X		X		X	
Diskrit		X	X		X				X
Graf				X				X	
Topologi					X		X		Х
Bilangan		X		X		X		X	

Penjadwalan

Berdasarkan data tersebut, akan dibuat jadwal kuliah sehingga tidak ada tabrakan antar mata kuliah.

	L	A	R	K	s	D	G	T	В
Logika		х		х	х				
Aljabar	Х		х	х	х	х			х
Real		Х				х			
Kalkulus	Х	х			х		х		х
Statistika	х	х		х		x		x	
Diskrit		х	х		х				X
Graf				Х				х	
Topologi					х		х		х
Bilangan		х		х		х		X	

07.00-09.45			
10.00-12.45			
13.00-15.45			
16.00-18.45			

Penjadwalan

Artinya, tidak ada mahasiswa yang dijadwalkan mengikuti dua kuliah pada saat yang sama.

Graf sembilan simpul yang mewakili ke-9 mata kuliah. Dua mata kuliah terhubung jika ada mahasiswa yang mengikuti keduanya.

Graf sembilan simpul yang mewakili ke-9 mata kuliah. Dua mata kuliah terhubung jika ada mahasiswa yang mengikuti keduanya.

Penjadwalan

Berdasarkan pewarnaan graf, berikut adalah salah satu jadwal untuk sembilan mata kuliah sehingga tidak ada mahasiswa yang dijadwalkan di dua mata kuliah pada saat yang bersamaan.

07.00-09.45	27		
10.00-12.45			
13.00-15.45			
16.00-18.45			
	93		

Masalah Pembagian Kelompok

Pembagian Kelompok

Delapan orang akan melakukan rekreasi ke pantai. Berapa banyak mobil yang dibutuhkan dengan catatan pasangan-pasangan berikut tidak berada dalam satu mobil.

- Alan dan Clara
- Budi dan David
- Clara dan Edgar
- Budi dan Fredi
- Edgar dan Anna
- David dan Greg

- Alan dan Fredi
- Clara dan Greg
- Alan dan Anna
- David dan Anna
- Edgar dan Fredi
- Greg dan Anna.

Masalah Pembagian Kelompok

Graf delapan simpul yang mewakili delapan orang. Dua simpul terhubung jika kedua orang yang diwakilinya tidak bisa bersama.

Masalah Pembagian Kelompok

Graf delapan simpul yang mewakili delapan orang. Dua simpul terhubung jika kedua orang yang diwakilinya tidak bisa bersama.

Sudoku dan Graf

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

Sudoku dan Graf

Sudoku dan Graf

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

4 X 4 Sudoku 16 nodes

All constraints 56 edges

Aljabar	08.00-09.20	Selasa
2		Rabu
Teori Himpunan	08.00-10.50	Senin
Logika	08.00-09.50	Senin
	08.00-08.50	Selasa
Analisis Real	09:00-10:20	Selasa
		Kamis
Analisis	08:30-09:50	Senin
Kompleks		Rabu
Matematika	08:30-09:50	Senin
Diskrit		Kamis
Kalkulus	09.00-09.50	Rabu
	08.00-09.50	Jumat
Statistika	09.00-11.50	Selasa

Penjadwalan

Jadwal mata kuliah di program studi Matematika.

Aljabar	08.00-09.20	Selasa
2		Rabu
Teori Himpunan	08.00-10.50	Senin
Logika	08.00-09.50	Senin
	08.00-08.50	Selasa
Analisis Real	09:00-10:20	Selasa
		Kamis
Analisis	08:30-09:50	Senin
Kompleks		Rabu
Matematika	08:30-09:50	Senin
Diskrit		Kamis
Kalkulus	09.00-09.50	Rabu
	08.00-09.50	Jumat
Statistika	09.00-11.50	Selasa

Penjadwalan

Tentukan jumlah minimal ruang kelas yang diperlukan.

8. Graf dan Programming

Sage Reference Manual » Sage 9.1 Reference Manual: Graph Theory »

Table of Contents

Graph Theory

- Graph objects and methods
- Constructors and databases
 Low-level implementation
- Hypergraphs
- Libraries of algorithms
 Indices and Tables

Next topic

Generic graphs (common to directed/undirected)

This Page

Show Source

Quick search

Graph Theory

Graph objects and methods

- · Generic graphs (common to directed/undirected)
- · Undirected graphs
- Directed graphsBipartite graphs
- View classes

Constructors and databases

- · Common Graphs
- · Common Digraphs
- Common graphs and digraphs generators (Cython)
- · Graph database
- Database of strongly regular graphs
- ISGCI: Information System on Graph Classes and their Inclusions

Low-level implementation

- Overview of (di)graph data structures
 - Fast compiled graphs
 Fast sparse graphs
 - Fast sparse graphs
 Fast dense graphs
- Eko Budi Santoso, SJ.

degree_sequence()

Return the degree sequence of this (di)graph.

EXAMPLES:

The degree sequence of an undirected graph:

```
sage: g = Graph({1: [2, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], 5: [2, 3]})
sage: g.degree_sequence()
[4, 3, 3, 2, 2]
```

The degree sequence of a digraph:

```
sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.degree_sequence()
[5, 3, 3, 3, 3, 3]
```

Degree sequences of some common graphs:

```
sage: g = graphs.PetersenGraph()
sage: g.longest_path(algorithm="backtrack").edges(labels=False)
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 9), (5, 7), (5, 8), (6, 8), (6, 9)]
```


Basic structures

AztecDiamondGraph	CompleteMultipartiteGraph	LadderGraph
BullGraph	DiamondGraph	LollipopGraph
ButterflyGraph	DipoleGraph	PathGraph
CircularLadderGraph	EmptyGraph	StarGraph
ClawGraph	Grid2dGraph	TadpoleGraph
CycleGraph	GridGraph	ToroidalGrid2dGraph
CompleteBipartiteGraph	HouseGraph	Toroidal6RegularGrid2dGraph
CompleteGraph	HouseXGraph	

Small Graphs

A small graph is just a single graph and has no parameter influencing the number of edges or vertices.

Balaban10Cage	GolombGraph	MeredithGraph
Balaban11Cage	GossetGraph	MoebiusKantorGraph
BidiakisCube	GrayGraph	MoserSpindle
BiggsSmithGraph	GrotzschGraph	NauruGraph
BlanusaFirstSnarkGraph	HallJankoGraph	PappusGraph
BlanusaSecondSnarkGraph	HarborthGraph	PoussinGraph
BrinkmannGraph	HarriesGraph	PerkelGraph
BrouwerHaemersGraph	HarriesWongGraph	PetersenGraph
BuckyBall	HeawoodGraph	RobertsonGraph
CameronGraph	HerschelGraph	SchlaefliGraph
Cel1600	HigmanSimsGraph	ShrikhandeGraph
Cell120	HoffmanGraph	SimsGewirtzGraph
ChvatalGraph	HoffmanSingletonGraph	SousselierGraph
ClebschGraph	HoltGraph	SylvesterGraph
CoxeterGraph	HortonGraph	SzekeresSnarkGraph
DesarguesGraph	IoninKharaghani765Graph	ThomsenGraph
DejterGraph	JankoKharaghaniGraph	TietzeGraph

See also: There is another familly of graphs called Sierpinski graphs, where all vertices but 3 have valence 3. They are available using graphs. Hanoi Tower Graph (3, n).

EXAMPLES:

```
sage: s4 = graphs.SierpinskiGasketGraph(4); s4
Graph on 42 vertices
sage: s4.size()
810     sage: s4.size()
150     sage:
```

