Reg. No.	

B.Tech. DEGREE EXAMINATION, MAY 2017

Third / Fourth Semester

15CS204J - ALGORITHM DESIGN AND ANALYSIS

(For the candidates admitted during the academic year 2015 – 2016 onwards)

Note: (i)

Part - A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.

Part - B and Part - C should be answered in answer booklet. (ii)

Time:

Three Hours	Max. Marks: 100			
PART – A $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions				
 The asymptotic notation for the polynomial (A) 0(n³) (C) 0(n²) 	$T(n) = n^4 + 3n^3 + 2n + 1$ is (B) $\Omega(n^3)$ (D) $\Omega(n^5)$			
 What is the recurrent equation for the seque (A) t_n = 3ⁱ (C) t_n = t_{n-1} + 3 	nce 3,9,27,81, (B) $t_n = t_{n-1}^{3}$ (D) $t_n = 3t_{n-1}$			
3. The worst case complexity of an algorithm(A) An upper bound(C) A tight bound	gives us on the algorithm (B) A lower bound (D) A middle bound			
4. Performance analysis of an algorithm can b(A) Profiling(C) Priori estimate	e referred as (B) Program proving (D) Posteriori testing			
 5. The time complexity of strassen's matrix m (A) T = θ (N^{log 2}) (C) T = θ (7^{log n}) 	fultiplication is (B) $T = \theta (7^{\log 2})$ (D) $T = \theta (N^{\log 7})$			
6. Divide and conquer algorithms are not very(A) Divisions are unbalanced(C) The depth of the recursion is high	(B) The size of problem is big			
 7. Find the Euclidean distance between the period (A) √3 (C) √13 	points (4,3) and (7,5) (B) $\sqrt{5}$ (D) $\sqrt{19}$			
 8. A polygon is defined to be convex if for directed line segment from p₁ and p₂ is (A) Fully contained in the polygon (C) Fully outside the polygon 	 any two points p₁ and p₂ inside the polygon, the (B) Partially contained in the polygon (D) Partially outside the polygon 			

9. Suppose the letters a,b,c,d,e,f have p	probabilities, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$ respectively. Which of
the following is the Huffman code for	
10. Which of the following standard algo(A) Dijkstra's shortest path algorith(C) Huffman coding algorithm	
substructure	otimal (B) It provides optimal solution
 (C) The given problem can be reduce the 3-sat problem 12. The time complexity of travelling sale (A) θ(n!) (C) θ(n²ⁿ) 	
cross each other	be drawn in a plane in such a way that no two edges
(A) Clique(C) Planar	(B) Complete(D) Isomorphic
14. A cycle that starts from a vertex visit starting vertex(A) Chordless cycle(C) Hamilton cycle	s all other vertices only once, and returns back to the (B) Peripheral cycle (D) Girth
15. How many solutions are possible for a 4(A) 4(C) 4⁴	4-queen problem? (B) 4! (D) 2
16. A node in a state space tree that is a generated is called(A) Live node	under consideration and is in the process of being
(C) E node	(B) Dead node(D) Answer node
17. A search technique where we keep exp.	anding nodes with least accumulated cost so far is
(A) Hill climbing(C) Backtracking	(B) Branch and bound(D) Depth first search
(C) Backtracking	ch methods in which all the children of the e-node an become the e-node (B) Branch and bound (D) Lower bound theory
9. Assuming P! = NP, which of the following(A) NP hard = NP	is true?
(C) $np = \phi$	(B) NP complete = P(D) NP complete U P = A

19.