Math 416: Abstract Linear Algebra

Date: Oct. 8, 2025

Lecture: 16

Announcements

□ HW5 is due Fri, Oct. 10 @ 2pm

a office hours:

- Tuesdays 5-5:50 Daveport 336
 Wednesdays 2-2:50 Daveport 132

Last time

I Invertibility & isomorphic vector spaces

This time

□ Linear maps as matrix mult. is basis change

§ 3D of Axier

Isomorphic vector spaces

- · An isomorphism is an invertible linear map
- Two vec. spaces VIW are isomorphic if I an isomorphism between them. We denote this VZW

Prop. 3.70 (dim. shows whether vector)
spaces are isomorphic

V & W are isomorphic \iff dim V=dimW

proof. (=>) If V=W, I an isomorphism T: V>W. Invertibility implies null = 203 & range T=W.

FTLM implies

dimV = O + dimW V

(←) Suppose dim V = dim W.

Let VI,..., Vn & WI,..., Wn be bases of V & W, resp. Define

T (C, U, + ... + Cnun) = C, W, + ... + C, Wn

- · T is well defined blc VIII....Vn
- · T is surjective ble W1,..., Wn Spans W
- · T is inj. (null = 203) blc W1,..., Wn

Remarks

• These results imply every finite-dim vec. space V is isomorphic to Fⁿ w/ n=dimV.

· $L(v_iw) \cong F^{m_in}$ (prop. 371)

Linear maps thought of as matrix mult.

Let $V_{1},...,V_{n}$ be a basis for V. We define the matrix of V wiret this basis as $M(V) = \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}$

V = bivi + ... + bnun

Ex. What is the matrix of

 $2 - 7x + 5x^3 + x^4$

w.r.t the Standard basis of Py(IR)?

Soin. Standard basis is { 1, x', x², x³, x4}

With this def, we can think of linear maps as matrix mult. : M(TV)=M(T)M(V).

Investible Matrices

Note that we will denote the identity motsix

We will use I to represent both the operator and the matrix.

· We say A cirm's is invertible if

J B St. AB = BA = I.

> B is unique, so we denote it A'

· Snow
$$(A^{-1})^{-1} = A$$
 \forall invertible A .

$$AA^{-1} = A^{-1}A = I$$
, thus by uniqueness of the inverse, A must be the inverse of A^{-1} .

· Suppose A & C are invertible. Show

AC is invertible & (AC) - C-'A-!

$$(AC)(C^{-1}A^{-1}) = A(CC^{-1})A^{-1}$$
 $= AIA^{-1}$
 $= C^{-1}(A^{-1}A)C$
 $= AA^{-1}$
 $= I$
 $= I$

Thus by uniqueness of inverses, $(AC)^{-1} = C^{-1}A^{-1}$

Charge of basis

Consider choosing two different buses for the input & output Spaces.

Ex.
$$B_1 = \{(4,2), (5,3)\}$$
 $\in B_2 = \{(1,0), (0,1)\}$ are bases of \mathbb{F}^2 .

$$I(4|2) = (4|2) = 4(1|0) + 2(0|1)$$

$$I(5,3) = (5,3) = 5(1,0) + 3(0,1)$$

Thus
$$M_{B_1,B_2}(I) = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix}$$

what about the other way? $B_1 \leftrightarrow B_2$

$$I(1,0) = (1,0) = \frac{3}{2}(4,2) + (-1)(5,3)$$

$$T(0,1) = (0,1) = -\frac{5}{2}(4,2) + 2(5,3)$$

So,
$$M_{\mathcal{B}_2,\mathcal{B}_1}(\mathbf{I}) = \begin{pmatrix} 3_{12} & -5_{12} \\ -1 & 2 \end{pmatrix}$$

Now, now do these relate?

$$M_{B_1,B_2}(I) M_{B_2,B_1}(I) = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3/2 & -5/2 \\ -1 & 2 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & \circ \\ \circ & 1 \end{pmatrix}$$

By (Axier 3.82) this is aways
the case! Using these ideas,
one can prove the following
charge of basis formula (from B₁ > B₂)

$$M_{B_1}[T] = M_{B_2, B_1}[I]M_{B_2}[T]M_{B_1, B_2}[T]$$

$$A = C^{-1}BC$$