"Janus

PROTOCOLO MODBUS-RTU APLICADO AL ADQUISIDOR JAKO UX8

©2009 JANUS®

JANUS® - Buenos Aires - Argentina

http://www.ejanus.com.ar

Información: info@ejanus.com.ar

Soporte Técnico: support@ejanus.com.ar

Ventas: sales@ejanus.com.ar

TABLA DE CONTENIDOS

INTRODUCCION	2
Configuracion serie de la linea JAKO	
Direcciones esclavos	
Códigos de Excepción	2
Función no implementada [0x01]	3
Direccion no implementada [0x02]	<u>3</u>
Valor fuera de rango [0x03]	3
Valor fuera de rango [0x03] Error de Lectura/Escritura [0x04]	3
Ocupado en proceso [0x06]	3
Formato del mensaje en Excepciones	3
COMANDOS	
COMANDOS	4
READ COIL STATUS [0x01]	4
READ INPUT STATUS [0x02]	5
READ HOLDING REGISTERS [0x03]	
READ INPUT REGISTERS [0x04]	
FORCE SINGLE COIL [0x05]	10
PRESET SINGLE REGISTER [0x06]	
DIAGNOSTICS [0x08]	12
REPORT ID [0x11]	13
EL CRC	
REGISTROS	<u>15</u>
ENTRADAS ANALOGICAS (SOLO LECTURA)	15
PARAMETROS (LECTURA/ESCRITURA)	
PARAIVIE I RUS (LEC I URA/ESCRI I URA)	

INTRODUCCION

El presente manual no pretende ser una descripción del protocolo MODBUS, es la implementación especifica del mismo al controlador citado, le recomendamos tener conocimientos previos de los fundamentos del protocolo para la plena interpretación del presente.

Configuracion seri<u>e de la linea <mark>JAKO</mark></u>

Capa Física	RS485
Velocidad	19200 bps
Longitud de datos	8 bit
Paridad	Ninguna
Bit de Parada	1
Inicio/Fin	Intervalo de silencio de 3 caracteres
Tiempo minimo entre reintentos	500 ms

Direcciones esclavos

El rango de direcciones comprende 1 a 247. La dirección 0 esta reservada como dirección para difusión masiva (broadcast), en este caso todos los esclavos ejecutan el comando pero no devuelven ninguna respuesta.

Códigos de Excepción

Cuando el JAKO UX8 no puede ejecutar el comando enviado, responde con un codigo de excepción:

Función no implementada [0x01]

La función solicitada no es soportada por el esclavo.

Direccion no implementada [0x02]

Cada vez que se solicita acceder a una dirección inexistente.

Valor fuera de rango [0x03]

Cada vez que el valor del registro este fuera del rango establecido.

Error de Lectura/Escritura [0x04]

El dispositivo fallo al intentar leer o escribir la operación solicitada (no termina correctamente la operación interna sobre RAM, E2, RTC, etc).

Ocupado en proceso [0x06]

El dispositivo no puede ejecutar la operación requerida porque se encuentra ocupado en otra operación. El maestro deberá reenviar el mismo requerimiento en otro momento.

Formato del mensaje en Excepciones

Nombre del Campo	Ejemplo (Hex)
Dirección Esclavo	01
Comando OR [0x80]	82
Código Excepción	06
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El esclavo 1 responde que se encuentra ocupado cuando el Maestro solicita leer las entradas digitales (Read Input Status).

COMANDOS

READ COIL STATUS [0x01]

Lee el estado de las salidas discretas O1 a O8. No esta soportado el Broadcast.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	01
Direccion Inicio (Hi)	00
Direccion Inicio (Lo)	01
Numero de Puntos (Hi)	00
Numero de Puntos (Lo)	01
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 leer las salidas discretas, comenzando por la dirección 1 y leyendo 1 punto (recuerde que dispone de 8 salidas en este modelo; la dirección va de 0 a 7 y los puntos de 1 a 8, es decir para leer todos se indicará la dirección 0 y en numero de puntos 8).

Dirección Esclavo: Dirección del dispositivo desde donde se quiere leer.

Comando: función requerida = 0x01

Dirección: dirección de la salida discreta a partir de donde comienza la lectura.

Número de Puntos: Numero de elementos a leer, máximo permitido 0x08.

CRC: Calculado obtenido de la trama a utilizarse para verificar la integridad de la comunicación. Se calcula automáticamente ver "FLCRC".

Formato del mensaje en la respuesta:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	01
Longitud Datos	01
Datos	01
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El esclavo responde al requerimiento enviando 1 byte de datos el cual contiene el estado de la salida discreta, la posición menos significativa del byte corresponde a la salida O1, en este caso se nos informa que la salida O1 se encuentra activada.

Longitud de Datos: especifica la cantidad de bytes que siguen sin incluir el CRC. El JAKO-UX8 siempre envia 1.

READ INPUT STATUS [0x02]

Lee el estado de las entradas digitales 10 a 13. No esta soportado el Broadcast.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	02
Direccion Inicio (Hi)	00
Direccion Inicio (Lo)	01
Numero de Puntos (Hi)	00
Numero de Puntos (Lo)	01
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 leer las entradas digitales, comenzando por la dirección 1 y leyendo 1 punto (parámetros por defecto ya

que solo existe 1 dirección posible y retorna 1 byte informando los estados de las 4 entradas dentro del byte.

Dirección Esclavo: Dirección del dispositivo desde donde se quiere leer.

Comando: función requerida = 0x02

Dirección: dirección del registro a partir de donde comienza la lectura. Solo permitido el

valor 0x01.

Número de Puntos: Numero de elementos a leer, máximo permitido 0x01.

CRC: Calculado obtenido de la trama a utilizarse para verificar la integridad de la comunicación. Se calcula automáticamente ver "El CRC".

Formato del mensaie en la respuesta:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	02
Longitud Datos	01
Datos	0F
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El esclavo responde al requerimiento enviando 1 byte de datos el cual contiene el estado de las entradas digitales, la posición menos significativa del byte corresponde a la entrada IO, en este caso se nos informa que todas las entradas están activadas.

Longitud de Datos: especifica la cantidad de bytes que siguen sin incluir el CRC. El JAKO-UX8 siempre envia 1.

READ HOLDING REGISTERS [0x03]

Lee el estado de los registros en memoria desde el dispositivo. No esta soportado el Broadcast.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	'03
Direccion Inicio (Hi)	00
Direccion Inicio (Lo)	68
Numero de Puntos (Hi)	00
Numero de Puntos (Lo)	01
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 leer el registro de configuracion de la entrada analogica A0, dirección 104, longitud 1 registro.

Dirección Esclavo: Dirección del dispositivo desde donde se quiere leer.

Comando: función requerida = 0x03

Dirección: dirección del registro a partir de donde comienza la lectura.

Número de Puntos: Numero de elementos a leer, máximo permitido 0x04 registros por petición (cada punto o registro en este caso se compone de 2 bytes).

Calculado obtenido de la trama a utilizarse para verificar la integridad de la comunicación. Se calcula automáticamente ver "El CRC".

Formato del mensaje en la respuesta:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	'03
Longitud Datos	02

Dato Hi [0x68]	'05
Dato Lo [0x68]	64
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El esclavo responde al requerimiento enviando 2 bytes de datos el cual contiene el valor del registro: 0x0564, indicando 05 = Modo Promedio, 64 = 100 muestras/adq.

Longitud de Datos: especifica la cantidad de bytes que siguen sin incluir el CRC.

READ INPUT REGISTERS [0x04]

Lee el estado de los registros de entrada. No esta soportado el Broadcast.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	04
Direccion Inicio (Hi)	00
Direccion Inicio (Lo)	64
Numero de Puntos (Hi)	00
Numero de Puntos (Lo)	01
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 leer los registros de las entradas analógicas, comenzando por la dirección 100 y leyendo 1 registro.

Dirección Esclavo: Dirección del dispositivo desde donde se quiere leer.

Comando: función requerida = 0x04

Dirección: dirección del registro a partir de donde comienza la lectura.

Número de Puntos: Numero de elementos a leer, máximo permitido 0x04 registros por petición (cada punto o registro en este caso se compone de 2 bytes).

CRC: Calculado obtenido de la trama a utilizarse para verificar la integridad de la comunicación. Se calcula automáticamente ver "El CRC".

Formato del mensaje en la respuesta:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	04
Longitud Datos	02
Dato Hi [0x64]	01
Dato Lo [0x64]	F0
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El esclavo responde al requerimiento enviando 2 bytes de datos el cual contiene el valor del registro 0x64 o 100, el valor leido es 0x01F0.

Longitud de Datos: especifica la cantidad de bytes que siguen sin incluir el CRC.

FORCE SINGLE COIL [0x05]

Fuerza una salida discreta al estado activado o desactivado. Cuando se usa con la diección de Brodcast todos los esclavos fijan el valor del registro indicado.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	05
Salida Direccion (Hi)	00
Salida Direccion (Lo)	02
Fuerza Dato (Hi)	FF
Fuerza Dato (Lo)	00
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 escribir la salida discreta 2 (O3) con el valor 0xFF00 es decir fuerza el estado a activado, por otro lado si se desea forzar al estado desactivado, se deberá enviar 0x0000.

Dirección Esclavo: Dirección del dispositivo donde se guiere escribir.

Comando: función requerida = 0x05

Dirección: dirección de la salida a modificar.

Dato Hi: Byte más significativo indicando el cambio de estado: ON=FF, OFF=00.

Dato Lo: Byte menos significativo, siempre en 0x00.

CRC: Calculado obtenido de la trama a utilizarse para verificar la integridad de la

comunicación. Se calcula automáticamente ver "El CRC".

El mensaje de respuesta es un eco del mensaje enviado, por lo que es igual.

PRESET SINGLE REGISTER [0x06]

Escribe un valor al registro indicado en la petición. Cuando se usa con la diección de Brodcast todos los esclavos fijan el valor del registro indicado.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	06
Direccion (Hi)	00
Direccion (Lo)	68
Dato (Hi)	05
Dato (Lo)	04
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Ejemplo: El Maestro solicita al esclavo 1 escribir el registro 0x68 con el valor 0x0504.

Dirección Esclavo: Dirección del dispositivo donde se quiere escribir.

Comando: función requerida = 0x06

Dirección: dirección del registro a escribir.Dato Hi: Byte más significativo del registro.Dato Lo: Byte menos significativo del registro.

CRC: Calculado obtenido de la trama a utilizarse para verificar la integridad de la

comunicación. Se calcula automáticamente ver "El CRC".

El mensaje de respuesta es un eco del mensaje enviado, por lo que es igual.

DIAGNOSTICS [0x08]

Esta función nos permite verificar el estado de la comunicación y la integridad de los datos. No esta soportado el Broadcast.

Sub-función soportada: [0x0000] LoopBack (eco)

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	08
Sub-función (Hi)	00
Sub-función (Lo)	00
Dato (Hi)	AA
Dato (Lo)	BB
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

La sub-función 0x0000 nos devuelve el mismo mensaje enviado en el requerimiento, por lo tanto el mensaje devuelto por el esclavo para el formato anterior es igual.

REPORT ID [0x11]

Devuelve una descripción del controlador presente en la dirección esclava. Es utilizado junto con la dirección broadcast para descubrir la dirección e información de un único equipo conectado o encendido al host.

El formato del mensaje es:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	11
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

Formato del mensaje en la respuesta:

Nombre del Campo	Ejemplo (Hex)
Direccion Esclavo	01
Comando	11
Longitud Datos	08
Dispositivo	06
On/Off state	00
Versión	01
Serial N (Hi)	20
Serial N (Lo)	33
Digital Inputs	04
Analog Inputs	04
Reles/Salidas	00
Verificador de Error (Lo)	CRC-Lo
Verificador de Error (Hi)	CRC-Hi

EL CRC

El valor del CRC para todo el mensaje es calculado por el transmisor. El cual agrega este valor al final del mensaje. El receptor del mensaje recalcula el valor del CRC durante la recepción y lo compara con el valor recibido. Si no son iguales, resulta en un error. A continuación un ejemplo de calculo del CRC en Lenguaje C:

```
#define MODBUS GENERATOR 0xA001
unsigned int CRC16(unsigned char* Frame, unsigned char LenFrame)
unsigned char CntByte;
unsigned char j:
unsigned char bitVal;
unsigned int CRC:
 CRC = 0xFFFF;
 for(CntByte=0;CntByte<LenFrame;CntByte++)
 {
  CRC ^= Frame[CntByte];
  for(j=0;j<8;j++)
  bitVal = CRC & 0x0001;
  CRC = CRC >> 1:
  if(bitVal == 1)
      CRC ^= MODBUS GENERATOR;
  }
 }
return CRC;
} // CRC16
```

REGISTROS

ENTRADAS ANALOGICAS (SOLO LECTURA)

Registro	Descripción	Tamaño	Notas
100	Entrada A0	1	Valor en la entrada analógica A0
101	Entrada A1	1	Valor en la entrada analógica A1
102	Entrada A2	1	Valor en la entrada analógica A2
103	Entrada A3	1	Valor en la entrada analógica A3

Recuerde: cada registro se compone de 2 bytes. Se acceden mediante el comando READ INPUT REGISTERS [0x04].

Cada entrada Analógica del JAKO UX8 puede ser configurada como entrada por Tensión 0-10VCC o corriente 0-20mA, mediante jumpers por hardware (ver manual del dispositivo), el conversor interno A/D de 10bits refleja el valor con las siguientes equivalencias:

Corriente de Entrada	Valor del Registro MODBUS
4 mA	146
20 mA	730
Tensión de Entrada	
1 V	91
10V	910

Note que los valores se encuentran debajo del límite superior de la capacidad del conversor A/D (1024), ya que nos permite realizar indicaciones de sobrerango si la lectura es superior a 10V ó 20mA.

PARAMETROS (LECTURA/ESCRITURA)

Se acceden mediante el comando READ HOLDING REGISTER [0x03] y se modifican con el comando PRESET SINGLE REGISTER [0x06].

Registro	Descripción	Tamaño	Notas
104	Config. A0	1	Configuración Ent. A0. ver Tabla 1
105	Config. A1	1	Configuración Ent. A1. ver Tabla 1
106	Config. A2	1	Configuración Ent. A2. ver Tabla 1
107	Config. A3	1	Configuración Ent. A3. ver Tabla 1
108	Muestras A0	1	Cant. de muestras a tomar. Max 100
109	Muestras A1	1	Cant. de muestras a tomar. Max 100
110	Muestras A2	1	Cant. de muestras a tomar. Max 100
111	Muestras A3	1	Cant. de muestras a tomar. Max 100
112	Dirección escalvo	1	Ver Notas (1) .
114	Actualización de Firmware remota	1	Ver Notas(2)

Notas (1): Dirección del dispositivo, se utiliza solo el byte menos significativo.

Notas (2): Al escribir 0xAA02 el dispositivo entra en modo actualización remota, esperando por el puerto de comunicaciones el envio mediante el JFLASHUT del nuevo firmware, para sacarlo de este modo se escribe 0xAA01. No se recomienda que existan sobre el bus más de un dispositivo esclavo en modo actualización. Se sugiere que los demás esclavos en el bus permanezcan apagados. Al leer este registro devuelve 0x00A2 para el modo actualización y 0x00A1 para el modo de funcionamiento normal.

Byte	Descripción
Modo de cálculo para	0x00=Centro Intervalo
el canal.	0x01=Valor Instantaneo
Byte Hi 0-7	0x03=Minimo muestras
	0x04=Máx. muestras
	0x05=Promedio
Histeresis al cambio	El nuevo valor leido se ajusta, si este queda fuera del
Byte Lo 0-7	intervalo establecido por el valor anterior ± Histeresis.

