

Inquiniamo davvero così tanto?

Annual CO2 emissions, 2020

Carbon dioxide (CO₂) emissions from the burning of fossil fuels for energy and cement production. Land use change is not included.

0 t 50 million t 200 million t 1 billion t 5 billion t 20 billion t
No data 20 million t 100 million t 500 million t 2 billion t 10 billion t

Emissioni di CO2 nel mondo

E in Italia?

Emissioni di CO2 in Italia

Esposizione al particolato PM2.5 nel mondo

Facendo un confronto

Esposizione al particolato PM2.5 in Italia

Consumo in barili di petrolio annui

#2024246

Siamo a temperatura?

Scostamento temperatura annuale dalla media 20esimo secolo

Anzitutto, quanta energia producono?

Quanto siamo disposti ad investire per il futuro?

Investimenti in miliardi di dollari per settore

Come ho strutturato il grafico:

```
anno8 = [2013 2014 2015 2016 2017 2018];
onshorewind = [7.97349 19.18155 30.05657 28.50084
24.55427 27.99614];
HG = bar(anno8,onshorewind,'facecolor','k');
hold on
```

```
ylim([0 500])
xlabel('Anni')
ylabel('Miliardi ($)')
legend('marina','geotermale','altro','solare/termale','solare','idro','biomasse/carburanti','onshorewind')
```

Creiamo nuovi posti di lavoro

Costo installazione negli anni Onshore in \$/KWh

Confronto costi KWh Onshore & OFFshore

Costruzione del grafico:

```
year = [2010 2011 2012 2013 2014 2015 2016 2017 2018
2019 2020]:
OFFshore = [4706 5390 4770 5041 5308 5323 4191 4735
4631 3723 3185];
ONshore = [1971 1939 1995 1851 1797 1659 1652 1647 1566
1491 13491:
scatter
(vear, OFFshore, 'filled', 'MarkerFaceAlpha', 0.5, 'MarkerEdgeAlp
ha',0.5);
hold on:
scatter
(year, ONshore, 'filled', 'MarkerFaceAlpha', 0.5, 'MarkerEdgeAlph
a'.0.5):
hold on:
xx = linspace(min(year), max(year), 100);
trend1 = polyfit (year, OFFshore,3);
trend2 = polyfit (year, ONshore, 1);
line1=
trend1(1)*xx.^3+trend1(2)*xx.^2+trend1(3)*xx+trend1(4);
line2= trend2(1)*xx+trend2(2);
plot (xx,line1);
hold on:
plot(xx,line2);
xlim([2009 2021])
xlabel('Anni')
vlabel('$/KWh')
legend('OFFshore', 'ONshore', 'OFF shore trend', 'ONshore
```

Alcuni confronti

Consumo energie 2020

Rapporto energie rinnovabili e non

I Progetti per il Futuro

Obiettivi per il 2030 Obiettivi per il 2050

Energie NON rinnovabili
Energie rinnovabili

Come ho costruito il grafico:

```
y2030 = [2872];
y2050 = [5 95];
labels = {'Energie NON
rinnovabili', 'Energie
rinnovabili'};
  tiledlayout(1,2,'TileSpacing
% Create pie charts
ax1 = nexttile;
pie(ax1,y2030)
ax2 = nexttile;
pie(ax2,y2050);
% Create legend
```

Principali dataset ricavati da:

https://www.irena.org/

GRAZIE

PER L'ASCOLTO! Disponibili su Microsoft Teams e

GitHub tutti i dataset e fonti da cui abbiamo ricavato i grafici