PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-105574

(43)Date of publication of application: 11.04.2000

(51)Int.Cl.

G09G 3/30

G09G 3/20 H04N 5/70

(21)Application number: 10-275434

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

29.09.1998

(72)Inventor: YAMASHITA MASAAKI

(54) CURRENT CONTROL TYPE LIGHT EMISSION DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a current control type light emission device which can favorably control the brightness of a display using current control type light emission elements without dispersion of brightness.

SOLUTION: This current control type light emission device controls the light emission brightness of a display 2 composed of picture elements constituted of the current control type light emission elements 1 by varying the current value of a voltage/current exchange circuit 4 during the selection period of the picture elements.

One picture element is constituted of one light emission element 1, the voltage/current exchange circuit 4 is provided by one as for all the picture elements on the display 2, and by changing output of the voltage/ current exchange circuit 4 to the light emission element of each picture element, the picture element is selected, and when it is not selected, it is applied on offset voltage (Vs) lower than light emission beginning voltage.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-105574 (P2000-105574A)

(43)公開日 平成12年4月11日(2000.4.11)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコート*(参考)
G 0 9 G	3/30		G 0 9 G	3/30	J	5 C 0 5 8
	3/20	641		3/20	641D	5 C 0 8 0
H 0 4 N	5/70		H 0 4 N	5/70	Α	

審査請求 未請求 請求項の数2 OL (全8頁)

(21)出顯番号	特顯平10-275434	(71) 出願人	000005821				
			松下電器産業株式会社				

(22)出願日 平成10年9月29日(1998.9.29) 大阪府門真市大字門真1006番地

(72)発明者 山下 正明

香川県髙松市古新町8番地の1 松下寿電 子工業株式会社内

(74)代理人 100081813

弁理士 早瀬 憲一

Fターム(参考) 50058 AA12 BA01 BA06 BB04 BB06

50080 AA06 AA07 BB05 CC03 DD05

EE29 EE30 FF12 GG09 JJ02

JJ03 JJ04 JJ05

(54) 【発明の名称】 電流制御型発光装置

(57)【要約】

【課題】 電流制御型発光素子を用いたディスプレイの 輝度制御を、輝度バラツキなく良好に行うことができる 電流制御型発光装置を提供する。

【解決手段】 電流制御型発光素子1で構成される画素からなるディスプレイ2の発光輝度を、該画素の選択期間内に電圧電流交換回路4の電流値を変化することによって制御する電流制御型発光装置において、1画素を1つの発光素子1で構成し、電圧電流交換回路4は、ディスプレイ2上のすべての画素について1つ備え、電圧電流交換回路4の出力を各画素の発光素子1に切り替えることによって、当該画素を選択し、選択されていないときに発光開始電圧より低いオフセット電圧(Vs)に印加しておくものとした。

1

【特許請求の範囲】

【請求項1】 電流制御型発光素子で構成される画素か らなるディスプレイの発光輝度を、該画素の選択期間内 に定電流源の電流値を変化することによって制御する電 流制御型発光装置において、

1 画素を1つの発光素子で構成し、

上記定電流源は、ディスプレイ上のすべての画素につい て1つ備え、

該定電流源の出力を各画素の発光素子に切り替えること によって、当該画素を選択し、選択されていないときに 10 発光開始電圧より低いオフセット電圧に印加しておくこ とを特徴とする電流制御型発光装置。

【請求項2】 請求項1に記載の電流制御型発光装置に おいて、

1 画素を赤緑青の3種類の発光素子で構成し、

上記定電流源は、赤緑青の3種類の発光素子について、 それぞれ1つづつ備えたことを特徴とする電流制御型発 光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電流制御型発光素 子を用いたディスプレイの輝度制御を行う電流制御型発 光装置に関する。

[0002]

【従来の技術】図6は、従来の有機電界発光素子(以 下、有機EL素子と称す) を用いたディスプレイの構成 の一例を示す図である。図において、101は有機EL 素子、102はディスプレイ・パネルであり、画素数m ×nの有機EL素子101で構成される。103はライ ン制御回路であり、x1~xmまでの各ラインを順次選 択して、選択したラインにハイレベル電圧を印加する。 104は電圧電流変換回路であり、各画素の輝度信号を サンプルホールドした後、該輝度信号を電圧電流変換し て各有機 E L 素子 1 0 1 へ出力する。 1 0 5 は電圧電流 変換回路集合体であり、縦のm画素に1つの電圧電流変 換回路104が対応し、該電圧電流変換回路104が横 のn画素方向にn個並んでいる。

【0003】図7は、図6に示した電圧電流変換回路集 合体において左端に配置されている電圧電流変換回路の 詳細な構成を示す図である。図において、111はサン プルホールド回路であり、アナログ電圧として入力され る輝度信号を所定のタイミングでサンプルホールドす る。112はオペアンプ、113はトランジスタ、11 4は抵抗であり、サンプルホールドされた輝度信号を電 流に変換して出力する。

【0004】次に、従来の有機EL素子を用いたディス プレイにおける輝度制御の動作について、図6および図 7により説明する。ここで、図7の電圧電流変換回路 は、図6に示した電圧電流変換回路集合体105におい て y 1 に接続されたものについて示したが、 y 2 ~ y n 50

に接続された電圧電流変換回路104についても同様の 構成からなる。すなわち、図7に示した電圧電流変換回 路と同じ電圧電流変換回路104が横方向に囲素数分 (n個)、電圧電流変換回路集合体105に配置されて いる。

【0005】まず、アナログ電圧として電圧電流変換回 路104に入力された輝度信号は、サンプルホールド回 路111で所定のタイミングでサンプルホールドされ、 オペアンプ112, トランジスタ113, 及び抵抗11 4で電流に変換され、それぞれ輝度信号に応じた電流が y 1~ynより出力される。

【0006】次いで、ライン制御回路103によりパネ ル最上(x1)の第1ラインが選択されてx1にハイレ ベル電圧が与えられる。該xlにハイレベル電圧が与え られている間、x1より出力された電流は、第1ライン の各画素の有機EL素子を通り、yl~ynを経て電圧 電流変換回路104に流れ込む。こうして、第1ライン の有機EL素子が輝度信号に応じた輝度で発光する。

【0007】次いで、ライン制御回路103により第1 ラインは非選択となり第2ラインが選択されてx2にハ イレベル電圧が印加される。そして、上記第1ラインと 同様の輝度制御を行う。さらに、同様の輝度制御を第m ラインまで繰り返すことによって、1枚の画像を作り出 す。

[0008]

20

【発明が解決しようとする課題】しかしながら、上述の ような従来の輝度制御においては、各電圧電流変換回路 ごとに異なる基準抵抗(Rref)を持ち、個々の抵抗 値がばらつくことにより、各有機EL素子の電流がばら ついて発光輝度にバラツキが生じてしまう。すなわち、 全ての基準抵抗(Rref)を全く均一に作ることは不 可能であるので、そのバラツキが輝度ムラという形で現 れるという問題があった。

【0009】そこで、定電流源トランジスタを画素数分 持つのではなく、唯一の電圧電流変換回路を用い、この 出力をライン内のそれぞれの有機EL素子に切り替えな がら画素の選択を行う構成とすることが考えられる。と ころが、これによれば1画素の割り当て時間は、1ライ ン内の画素数が n 個の場合、従来の駆動方式における 1 画素の割り当て時間と比較して1/nになってしまう。 その期間内にデューティー制御による輝度制御を行うこ とはきわめて高速なスイッチングを強いられるため、実 現は厳しくなる。

【0010】本発明は、かかる問題点を解消するために なされたもので、電流制御型発光素子を用いたディスプ レイの輝度制御を、輝度バラツキなく良好に行うことが できる電流制御型発光装置を提供することを目的とす る。

[0011]

【課題を解決するための手段】上記課題を解決するため

10

に、本発明(請求項1)にかかる電流制御型発光装置 は、電流制御型発光素子で構成される画素からなるディ スプレイの発光輝度を、該画素の選択期間内に定電流源 の電流値を変化することによって制御する電流制御型発 光装置において、1画素を1つの発光素子で構成し、上 記定電流源は、ディスプレイ上のすべての画素について 1つ備え、該定電流源の出力を各画素の発光素子に切り 替えることによって、当該画素を選択し、選択されてい ないときに発光開始電圧より低いオフセット電圧に印加 しておくものとした。

【0012】また、本発明(請求項2)にかかる電流制 御型発光装置は、請求項1に記載の電流制御型発光装置 において、1 画素を赤緑青の3 種類の発光素子で構成 し、上記定電流源は、赤緑青の3種類の発光素子につい て、それぞれ1つづつ備えた構成とした。

[0013]

【発明の実施の形態】以下、本発明の実施の形態につい て、図面を参照して詳細に説明する。

実施の形態1. 図1は、本発明の実施の形態1によるモ ノクロ・ディスプレイ用電流制御型発光装置の構成例を 示すブロック図である。図において、1は発光素子であ り、各発光素子は一端が x 1~x mのいずれかに、他端 が y 1 ~ y n のいずれかに接続されている。2 はディス プレイ・パネルであり、画素数m×nの発光素子1で構 成される。3はライン制御回路であり、x1~xmまで の各ラインを順次選択して、選択したラインにハイレベ ル電圧を印加する。4は電圧電流変換回路であり、各画 素の輝度信号を各発光素子1へ出力する。5は v 方向ア ドレス制御回路であり、ライン制御回路3によって選択 されたラインに印加されているとき、該選択されたライ ン内の各画素を選択する。より具体的には、y方向アド レス制御回路5は、選択されたラインが印加されている とき、スイッチswy1~swynまでの各スイッチを 順次選択し、選択しているスイッチを電圧電流変換回路 4と接続し、そのとき選択されていないスイッチを電圧 源Vsと接続して、該選択されたライン内の各画素を順 次選択する。

【0014】したがって、ディスプレイ・パネル内の各 発光素子1は、y方向アドレス制御回路5で制御された スイッチswy1~swynの対応するスイッチを通っ て、電圧電流変換回路 4 および電圧源 V s のいずれかに 接続されることになる。なお、スイッチ s w y 1 ~ s w y n が電圧電流変換回路 4 側に接続されている状態をオ ン状態、電圧源Vs側に接続されている状態をオフ状態 と呼ぶものとする。

【0015】図2は、図1に示した電圧電流変換回路の 詳細な構成を示す図である。ここで、入力される輝度信 号は予め A Dコンバータでディジタル化されているもの とする。図における電圧電流変換回路は、汎用の6ビッ ト電流加算型DAコンバータの構成と同様であり、輝度 50 信号は1ビットのD1 (Least Significant Bit , LS B) から6ビットのD6 (Most Significant Bit, MS

B) までの6ビット階調で、各ビットに対応して重み付 けされた定電流源の出力電流が入力信号に応じてスイッ チされて出力端子Vyから出力される。

【0016】図3は、図1のモノクロ・ディスプレイ用 電流制御型発光装置において第1ラインx1がアクティ ブでSwy1がオン状態の電圧と素子電流との概略関係 を示す図である。

【0017】図において、Vgはライン制御回路により x 1 にアクティブ時に与えられる電圧である。 V s およ びVdは、swylがそれぞれオン状態およびオフ状態 での y 1 の電位である。したがって、選択された発光素 子に印加される電圧はVgーVdであり、選択されてい ない発光素子にはVgーVsが印加される。なお、Vs はVgーVdが発光素子に印加されても発光しないレベ ルの電圧に設定しておく必要がある。また、11は発光 素子特性曲線であり、発光素子に印加される電圧と発光 素子を流れる電流(素子電流)との関係を示している。 12は定電流源特性曲線であり、電圧電流変換回路4の 電圧と電流の関係を示している。13は動作点であり、 発光素子特性曲線11および定電流源特性曲線12の交 点で発光素子の動作点である。なお、動作点13は、電 圧電流変換回路 4 が複数の定電流源の集合体であるの で、輝度信号の大きさに応じて図に示したように変化す る。

【0018】図4は、図1のモノクロ・ディスプレイ用 電流制御型発光装置において非選択期間にオフ状態およ びオープン状態とした場合の y 1 の電位変化の概略を比 較して示す図である。ここで、選択期間は、従来の電圧 電流変換回路104(図6参照)を用いた駆動方式にお ける1画素の選択期間の1/n (nは1ライン内の画素 数)に設定してある。例えば、現在汎用のディスプレイ における水平方向画素数320であれば、従来の選択期 間の1/320に設定されている。

【0019】図において、14は非選択期間にオフ状態 の電位変化であり、スイッチ s w y 1 を, 選択期間にオ ン状態とし、非選択期間にはオフ状態とした場合の y 1 の電位変化の概略を示している。すなわち、本実施の形 態1によるモノクロ・ディスプレイにおける輝度制御の 動作をした場合である。15は非選択期間にスイッチオ ープン状態の電位変化であり、スイッチ s w y 1 を, 選 択期間には、非選択期間にオフ状態の電位変化14と同 様オン状態とし、非選択期間にはオン状態にもオフ状態 にもすることなく、すなわち電圧電流変換回路 4 側にも 電圧源Vs側にも接続せずオープン状態とした場合のv 1の電位変化の概略を示している。

【0020】次に、非選択期間にスイッチオープン状態 の電位変化15のy1の電位変化について説明する。非 選択期間にはオープン状態のため、発光素子への印加電

20

30

5

圧はゼロVとなり発光せず、選択期間に入るとオン状態となり、電圧電流変換回路4に電流が引き込まれy1の電位は降下していく。しかしながら、配線y1には寄生容量が付くため、寄生容量が大きいほどy1の電位降下速度は遅くなり、場合によっては図に示すように選択期間内に輝度信号に対応する動作点電圧Vdに到達しないまま選択期間が終了し、再度非選択期間に入るとy1の電位は上昇する。

【0021】ここで、非選択期間にスイッチオープン状態の電位変化15において、非選択期間の電圧ゼロVか 10 ら、選択期間に電位が降下していく変化は、従来の電圧電流変換回路104(図6参照)を用いたモノクロ・ディスプレイ用電流制御型発光装置における電位変化に相当する。したがって、従来の選択期間、すなわち図4に示した選択期間のn倍であれば、Vgから電位降下して該従来の選択期間内に充分Vdに到達するものである。

【0022】これに対し、スイッチオフ状態の電位変化 14, すなわち本実施の形態 1 における輝度制御の動作をした場合には、非選択期間にオフ状態で y 1 の電位は V s であり、発光素子への印加電圧は V g -V s であるため発光せず、選択期間に入ると非選択期間にスイッチオープン状態の電位変化 15 と同様オン状態となり、電圧電流変換回路 4 に電流が引き込まれ y 1 の電位は、非選択期間にスイッチオープン状態の電位変化 15 と同様の速度で降下していく。ただし、降下開始電圧が低いので選択期間内に輝度信号に対応する動作点電圧(V d)に到達することができる。

【0023】次に、実施の形態1によるモノクロ・ディスプレイ用電流制御型発光装置における輝度制御の動作について、図1~4により説明する。まず、ライン制御回路3により、第1ライン×1にアクティブ電圧が印加される。次いで、y方向アドレス制御回路5は、swy1をオンし、swy2~swynをオフ状態のままとして、第1ライン×1の1つ目の画素が選択される。すなわち、図1に示したように、スイッチswy1がオンしており、x1がアクティブであるので、x1とy1の交点上の発光素子が発光することになる。

【0024】このとき、上記1つ目の画素が選択されている間、すなわち図4に示した選択期間(従来の選択期間の1/n)に、電圧電流変換回路4はswy1から輝度信号に対応する電流を引き込む。これにより発光素子を流れる電流が変化し、該選択期間内にy1の電位は充分動作点電圧(Vd)に到達して、上記1つ目の画素の発光輝度が制御される。

【0025】次いで、上記1つ目の画素の選択時間が終わると、y方向アドレス制御回路5はswy1をオフし、swy2をオンして、swy3~swynをオフ状態のままとして、第1ラインx1の2つ目の画素が選択される。

【0026】次いで、電圧電流変換回路4は8wy2か 50

ら輝度信号に対応する電流を引き込み、該選択期間内に y 2の電位は充分動作点電圧に到達して、該2つ目の画素の発光輝度が制御される。同様にして、第1ラインx 1の3つ目以降の各画素が順次選択される。

6

【0027】また、該第1ライン x 1の各画素の選択が終了すると、ライン制御回路3は順次第2~第mの全てのライン (x2 \sim xm)を順次選択し、y方向アドレス制御回路5は各ライン上の各画素を順次選択する。以上のようにして、ディスプレイ・パネル1画面全体の各画素の選択が行われ、パネル全体の各画素の発光輝度が制御される。

【0028】このように、本発明の実施の形態1によるモノクロ・ディスプレイ用電流制御型発光装置は、1つの電圧電流変換回路をスイッチして、非選択期間には発光素子にオフセット電圧を印加し、各画素を選択していくことによって、全画素の発光輝度を制御するものとしたから、1画素の選択期間を短くして充分動作電圧に到達し、良好に輝度制御できるとともに、電流値バラツキによる輝度ムラを発生することを回避することもできる。

【0029】実施の形態2.図5は、本発明の実施の形態2によるカラー・ディスプレイ用電流制御型発光装置の構成例を示すブロック図である。ここで、カラー・ディスプレイは、上記実施の形態1によるモノクロ・ディスプレイにおける1 画素を赤緑青(RGB)の3色の発光素子から構成されるものである。

【0030】図において、21はR用発光素子であり、各R用発光素子は一端がxA1 \sim xAmのいずれかに、他端がyA1 \sim yAnのいずれかに接続されている。同様に、31および41はそれぞれG用発光素子およびB用発光素子であり、各G用発光素子は一端がxB1 \sim xBmのいずれかに、他端がyB1 \sim yBnのいずれかに接続され、各B用発光素子は一端がxC1 \sim xCmのいずれかに、他端がyC1 \sim yCnのいずれかに接続されている。22はディスプレイ・パネルであり、画素数m×nのR用発光素子21、G用発光素子31およびB用発光素子41で構成される。

【0031】なお、図にはxA1およびyA1に接続されたR用発光素子,xB1およびyB1に接続されたG用発光素子,並びにxC1およびyC1に接続されたB用発光素子からなる1画素についてのみ示し、その他の発光素子については省略した。

【0032】 23はR用ライン制御回路であり、xA1~xAmまでの各ラインを順次選択して、選択したラインにハイレベル電圧を印加する。同様に、33および 43はそれぞれ G 用ライン制御回路および B 用ライン制御回路であり、それぞれ x B 1 \sim x B m および x C 1 \sim x C m までの各ラインを順次選択して、選択したラインにハイレベル電圧を印加する。

【0033】24はR用電圧電流変換回路であり、各画

素における赤(R)の輝度信号を各R用発光素子21へ 出力する。同様に、34および44はそれぞれG用電圧 電流変換回路およびB用電圧電流変換回路であり、それ ぞれ各画素における緑(G)および青(B)の輝度信号 をそれぞれ各G用発光素子31およびB用発光素子41 へ出力する。なお、該R用電圧電流変換回路24,G用 電圧電流変換回路34およびB用電圧電流変換回路44 の詳細な構成については、図2に示したものと同様であ

【0034】25はR用y方向アドレス制御回路であ り、R用ライン制御回路23によって選択されたライン に印加されているとき、該選択されたライン内の各画素 のR用発光素子21を選択する。同様に、35および4 5はそれぞれG用y方向アドレス制御回路およびB用y 方向アドレス制御回路であり、それぞれG用ライン制御 回路33およびB用ライン制御回路43によって選択さ れたラインに印加されているとき、該選択されたライン 内の各画素のG用発光素子31およびB用発光素子41 を選択する。

【0035】より具体的には、R用、G用およびB用の 20 各ッ方向アドレス制御回路25,35および45は、そ れぞれ選択されたラインが印加されているとき、スイッ チswyA1~swyAn, swyB1~swyBnお よび s w y C 1 ~ s w y C n までの各スイッチを順次選 択し、選択しているスイッチをそれぞれR用、G用およ びB用の電圧電流変換回路24、34および44と接続 し、そのとき選択されていないスイッチを電圧源と接続 して、該選択されたライン内の各両素のR用、G用およ びB用の発光素子21,31および41を順次選択す

【0036】なお、スイッチswyA1~swyAn, swyB1~swyBnおよびswyC1~swyCn が、それぞれR用、G用およびB用の電圧電流変換回路 24,34および44側に接続されている状態をオン状 態、電圧源側に接続されている状態をオフ状態と呼ぶも のとする。

【0037】ここで、図5に示したカラー・ディスプレ イ用電流制御型発光装置において、R用第1ラインxA 1がアクティブで s w y A 1 がオン状態の電圧とR用素 子電流との概略関係についても、上記図3と同様であ る。また、G用およびB用の第1ラインxB1及びxC 1がアクティブで s w y B 1 および s w y C 1 がオン状 態の電圧とG用およびB用の素子電流との概略関係につ いても、上記図3と同様である。

【0038】また、図5に示したカラー・ディスプレイ 用電流制御型発光装置において、非選択期間にオフ状態 およびオープン状態とした場合の y A 1, y B 1 あるい は y C 1 における電位変化の概略を比較して示す図につ いても、上記図4と同様である。

【0039】次に、実施の形態2によるカラー・ディス 50

プレイ用電流制御型発光装置における輝度制御の動作に ついて、図2~4および図5により説明する。まず、R 用ライン制御回路23により、R用第1ラインxA1に アクティブ電圧が印加される。同時に、G用ライン制御 回路33およびB用ライン制御回路43により、それぞ れG用第1ライン x B 1 およびB用第1ライン x C 1 に アクティブ電圧が印加される。

【0040】次いで、R用y方向アドレス制御回路25 は、swyA1をオンし、swyA2~swyAnをオ フ状態のままとして、R用第1ラインxA1の1つ目の R用発光素子21が選択される。同時に、G用y方向ア ドレス制御回路35およびB用y方向アドレス制御回路 45は、それぞれswyB1およびswyC1をオン し、swyB2~swyBnおよびswyC2~swy Cnをオフ状態のままとして、G用第1ラインxB1の 1つ目のG用発光素子21およびB用第1ラインxC1 の1つ目のB用発光素子21が選択される。

【0041】このとき、上記1つ目のR用発光素子21 が選択されている間、すなわち図4に示した選択期間 (従来の選択期間の1/n) に、R用電圧電流変換回路 24はswyA1から輝度信号に対応する電流を引き込 む。これにより R 用発光素子 2 1 を流れる電流が変化 し、該選択期間内に y A 1 の電位は充分動作点電圧に到 達して、上記1つ目のR用発光素子21の発光輝度が制 御される。同時に、全く同様にして、上記1つ目のG用 発光素子31およびB用発光素子41の発光輝度も制御 される。

【0042】次いで、上記1つ目のR用発光素子21の 選択時間が終わると、R用ッ方向アドレス制御回路25 はswyA1をオフし、swyA2をオンして、swy A3~swyAnをオフ状態のままとして、R用第1ラ インxA1の2つ目のR用発光素子21が選択される。 同時に、全く同様にして、G用第1ラインxB1の2つ 目のG用発光素子31およびB用第1ラインxC1の2 つ目の B 用発光素子 4 1 が選択される。

【0043】次いで、R用電圧電流変換回路24はsw y A 2 から輝度信号に対応する電流を引き込み、該選択 期間内にyA2の電位は充分動作点電圧に到達して、該 2つ目のR用発光素子21の発光輝度が制御される。同 40 時に、全く同様にして、該2つ目のG用発光素子31お よびB用発光素子41の発光輝度が制御される。同様に して、R用第1ラインxA1, G用第1ラインxB1お よびB用第1ラインxC1のそれぞれ3つ目以降の各発 光素子が順次選択される。

【0044】また、該R用第1ラインxA1の各R用発 光素子21の選択が終了すると、R用ライン制御回路2 3は順次R用第2~R用第mの全てのライン(xA2~ xAm)を順次選択し、R用y方向アドレス制御回路2 5は各R用ライン上の各R用発光素子21を順次選択す る。G用およびB用のライン制御回路33および43,

q

並びにG用およびB用のy方向アドレス制御回路35 および45についても、全く同様に動作する。

【0045】以上のようにして、カラー・ディスプレイ・パネル1画面全体の各画素におけるR用、G用およびB用の発光素子21、31および41の選択が行われ、パネル全体の各画素における3色の発光素子の発光輝度が制御される。

【0046】このように、本発明の実施の形態2によるカラー・ディスプレイ用電流制御型発光装置は、R用、G用およびB用の各発光素子にそれぞれ1つづつの電圧 10電流変換回路をスイッチして、非選択期間には発光素子にオフセット電圧を印加し、各画素におけるR用、G用およびB用の各発光素子を選択していくことによって、全画素の発光輝度を制御するものとしたから、1画素の選択期間を短くして充分動作電圧に到達し、良好に輝度制御できるとともに、電流値バラツキによる輝度ムラを発生することを回避することもできる。

[0047]

【発明の効果】以上のように、本発明(請求項1)にかかる電流制御型発光装置によれば、1つの電圧電流変換 20回路をスイッチして、非選択期間には発光素子にオフセット電圧を印加し、各画素を選択していくことによって、全画素の発光輝度を制御するものとしたから、1画素の選択期間を短くして選択期間内に発光素子の電流値を応答させ、良好に輝度制御できるとともに、電流値バラツキによる輝度ムラを発生することを回避して、画面全体に渡り均一な発光輝度を持つモノクロ・ディスプレイを提供できる効果がある。

【0048】また、本発明(請求項2)にかかる電流制御型発光装置によれば、R用、G用およびB用の各発光 30素子にそれぞれ1つづつの電圧電流変換回路をスイッチして、非選択期間には発光素子にオフセット電圧を印加し、各画素におけるR用、G用およびB用の各発光素子を選択していくことによって、全画素の発光輝度を制御するものとしたから、1画素の選択期間を短くして選択期間内に発光素子の電流値を応答させ、良好に輝度制御できるとともに、電流値バラツキによる輝度ムラを発生することを回避して、画面全体に渡り均一な発光輝度を持つカラー・ディスプレイを提供することができる効果がある。 40

【図面の簡単な説明】

【図1】実施の形態1によるモノクロ・ディスプレイ用 電流制御型発光装置の構成例を示すブロック図である。

10

【図2】図1に示した電圧電流変換回路の詳細な構成を示す図である。

【図3】図1のモノクロ・ディスプレイ用電流制御型発 光装置における電圧と素子電流との概略関係を示す図で ある。

【図4】図1のモノクロ・ディスプレイ用電流制御型発 光装置における y 1 の電位変化の概略を比較して示す図 である。

【図5】実施の形態2によるカラー・ディスプレイ用電流制御型発光装置の構成例を示すブロック図である。

【図6】従来の有機EL素子を用いたディスプレイの構成の一例を示す図である。

【図7】図6に示した電圧電流変換回路集合体における電圧電流変換回路の詳細な構成を示す図である。

【符号の説明】

1,101 発光素子

2, 22, 102 ディスプレイ・パネル

3,103 ライン制御回路

4 電圧電流変換回路

5 y方向アドレス制御回路

11 発光素子特性曲線

12 定電流源特性曲線

13 動作点

14 非選択期間にオフ状態の電位変化

15 非選択期間にスイッチオープン状態の電位変化

21 R用発光素子

23 R用ライン制御回路

30 24 R用電圧電流変換回路

25 R用 y 方向アドレス制御回路

31 G用発光素子

33 G用ライン制御回路

3 4 G用電圧電流変換回路

35 G用 y 方向アドレス制御回路

41 B用発光素子

43 B用ライン制御回路

4 4 B用電圧電流変換回路

45 B用 y 方向アドレス制御回路

40 104 従来の電圧電流変換回路

105 電圧電流変換回路集合体

【図5】

【図7】

