Exercise 1: SVD and its properties

Data:

- Step 1: Generate two random matrices: A = randn(1000,2); B = randn(200,2); Step 2: Construct matrix X = A*B' + noise, i.e., where noise is =0.1*randn(1000,200)
 - What is the rank of X?
 - Plot the singular values of X
 - Is X low-rank?
 - What is the best rank-2 approximation of X?
 - Compute what percent of the "energy" is explained using the best rank-2 approx.
 - Plot the significant left and right singular vectors.

Exercise 2: Recommender Systems

Given the following user-movie rating matrix, can you group users based on their interests in movies? Which groups of users are interested in what type of movies?

	Aloha	Star Wars	American Pie	Hunger Games	Silver Linings	Maze Runner
User 1	5	2	4	1	3	2
User 2	1	4	1	4	1	4
User 3	3	1	5	2	5	2
User 4	1	4	1	5	3	4
User 5	3	1	4	2	3	2
User 6	2	4	2	4	2	4

load exercise2_usermovie.mat Compute its SVD

Exercise 3: Text Mining

Given the following document-term matrix, find the related documents and what they are about.

```
Document 1: Tiger stopped playing golf

Document 2: News about Tiger and his golf career

Document 3: Golf career of Tiger in jeopardy

Document 4: Tiger and his wife in the news

Document 5: The new zoo featuring the big cat family: tigers and lions

Document 6: Tigers – the big cats – in the new zoo

Document 7: Tigers and lions, which are the biggest cats?
```

	tiger	stop	play	golf	news	career	jeopardy	wife	00Z	featuring	new	big	cat	family	lions	which	
Doc1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0]	
Doc2	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	
Doc3	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	
Doc4	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	
Doc5	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	
Doc6	1	0	0	0	0	0	0	0	1	0	1	1	1	0	0	0	
Doc7	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	

load exercise3_docterm.mat Compute its SVD

Which group does this document belong to?

Document 8: Tiger back to **golf**

Exercise 4: Metabolomics

Some are fed with 10g apple while some are controls (no apple)

Liquid ChromatographyMass Spectrometry (LC-MS)

features

X

load exercise4_metabolomics.mat

- Preprocess the data
- Plot singular values
- Compute the best rank-r approximation that represents the 80% of the "energy"
- Can you group the samples based on apple consumption (Class1:10g apple, Class2: no apple)?

Exercise 5: Link Prediction using the DBLP data

This exercise is about using the Singular Value Decomposition for the temporal link prediction problem. When you load $hw1_data.mat$, you will see two data sets, i.e., \mathcal{X} and \mathbf{Y} . \mathcal{X} shows the number of papers published by authors at various conferences between 1991 and 2004. It is of size 471 (authors) \times 366 (conferences) \times 14 (years). Given \mathcal{X} , we want to predict who is going to publish at which conference in 2005. Matrix \mathbf{Y} shows the ground truth, i.e., publications in 2005.

Execute the following steps and return the outputs in the deliverables:

- Change each nonzero entry of \mathfrak{X} as $x_{ijk} = log(x_{ijk}) + 1$, where $x_{ijk} \neq 0$.
- Collapse the three-way array \mathfrak{X} by summing up over the years mode and form an authors by conferences matrix of size 471×366 . Let this matrix be \mathbf{Z} .
- Compute the SVD of **Z**.
- Construct the best rank-K approximation of \mathbf{Z} denoted as $\hat{\mathbf{Z}}_K$ for different K values, i.e., $K = \{2, 10, 20, 50, 100, 300\}$. Entries of $\hat{\mathbf{Z}}_K$, i.e., $\hat{\mathbf{Z}}_K(i,j)$ can be used as scores to predict if there is a link between the i^{th} author and j^{th} conference in 2005. A link means an author publishes at a conference.
- Replace every nonzero entry of \mathbf{Y} with 1. Vectorize \mathbf{Y} , i.e., $\mathbf{Y}(:)$ in MATLAB notation, which will correspond to the true labels (0's and 1's).
- For each value of K, vectorize $\hat{\mathbf{Z}}_K$, which will correspond to the scores/predictions.
- For each value of K, plot the Receiver Operating Characteristics (ROC) Curve and calculate the area under the curve (AUC) (Note: You can use the perfcurve function in MATLAB).

Exercise 6: Solving Least Squares using SVD

