Biogeography

April 20, 2009

Biogeography

- Goals of biogeographic studies
- Classic approaches
- Newer model-fitting methods for biogeography

Biogeography

- Goals of biogeographic studies
- Classic approaches
- Newer model-fitting methods for biogeography

Goals of Biogeographic Studies

- The study of the distribution of biodiversity over space and time
- Use historical factors to explain species distributions
- Speciation, extinction, vicariance, dispersal, etc.

Father of Biogeography

- Alfred Russel Wallace
- Extensive field work in the Malay Archipelago
- Identified Wallace's line, a major biogeographic break between Asiatic and Australian species

Radical Biogeography

- Theory explaining the distribution of species on islands
- Used immigration and extinction to explain species counts on isolated islands

Biogeography

- Goals of biogeographic studies
- Classic approaches
- Newer model-fitting methods for biogeography

Classic Approaches

- Area cladograms
- Event-based parsimony
- Topological tests of trees

Area Cladograms

- Assume speciation events are caused by vicariance (separation by a geographic barrier)
- Use phylogeny of species to infer the history of areas
- Goal: reconstruct an area cladogram

Constructing Area Cladograms

- Use areas as taxonomic units, construct a set of "characters" representing clades
- Convert each tree into a set of 0-1 characters
- Reconstruct the area cladogram using parsimony

Event-based parsimony

- Model the events needed to make a particular tree match the known history of an area
- Possible events: vicariance, extinction, speciation within area, dispersal
- Find the area cladogram that minimizes the total number of events across a set of trees

DIVA (Ronquist)

- Dispersal-Vicariance Analysis
- method in which ancestral distributions are inferred based on a three-dimensional cost matrix derived from a simple biogeographic model
- Allows different events, weighted with cost matrix, to model geographic ranges in a phylogenetic context

DIVA (Ronquist)

- 1. Speciation is assumed to be by vicariance separating a wide distribution into two mutually exclusive sets of areas. This event costs nothing.
- **2.** A species occurring in a single area may speciate within the area by allopatric (or possibly sympatric) speciation giving rise to two descendants occurring in the same area. The cost is zero.
- 3. Dispersal costs one per unit area added to a distribution.
- **4**. Extinction costs one per unit area deleted from a distribution.

Topology-based tests

- Are all of the lineages within a region monophyletic?
- Can I statistically reject trees that are not compatable with a particular biogeographic story?
- KH test, SH test, etc.

Biogeography

- Goals of biogeographic studies
- Classic approaches
- Newer model-fitting methods for biogeography

Models and Biogeography

- Exciting recent developments: application of models (and model selection) to biogeography
- DEC model (Ree et al. 2005; Ree and Smith 2008)

Why not just use standard character models?

Why not just use standard character models?

- Characters change along branches, not at speciation events
- Daughter species always inherit parental phenotype
- Species can only have one character state at a time

A Different Model

from Ree et al. 2005

3

Where could a species be?

0, 1, 2, 3, 12, 13, 23, 123

$$Q = \begin{bmatrix} & \emptyset & 1 & 2 & 3 & 12 & 13 & 23 & 123 \\ \hline \emptyset & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & E_1 & - & 0 & 0 & D_{12} & D_{13} & 0 & 0 \\ 2 & E_2 & 0 & - & 0 & D_{21} & 0 & D_{23} & 0 \\ 3 & E_3 & 0 & 0 & - & 0 & D_{31} & D_{32} & 0 \\ 12 & 0 & E_2 & E_1 & 0 & - & 0 & 0 & D_{13} + D_{23} \\ 13 & 0 & E_3 & 0 & E_1 & 0 & - & 0 & D_{12} + D_{32} \\ 23 & 0 & 0 & E_3 & E_2 & 0 & 0 & - & D_{21} + D_{31} \\ 123 & 0 & 0 & 0 & 0 & E_3 & E_2 & E_1 & - \end{bmatrix}$$

Ancestral range	Subdivided range after speciation	Inheritance scenarios for subdivided range	
	Scenario 1		
	[60]		
Consid	er all equa	lly likely	a-pri
	Scenario 3		

Tallel . Infrarences shout the ancested area and range evolution parameters of Issuraina Pepideris under DEC models. The unconstruction metal (Mill and Personal Pers

Model	Area	$-\ln(L)$	Dispersal	Extinction
М0	Kaua'i	35.758	0.040	0.0358
	O'ahu	40.700	0.041	0.024
	Maui Nui	44.378	0.054	0.076
	Hawai'i	45.323	0.058	0.085
M1	Kaua'i	34.636	0.093	0.017
	O'ahu	38,877	0.112	0.052
	Maui Nui	48.683	0.207	0.164
	Hawai'i	55.396	0.377	0.280
M2	Kaua'i	32.434	0.132	0.009
	O'ahu	106.018	0.174	0.103
	Maui Nui	107,701	0.216	0.101
	Hawai'i	118,930	0.173	0.066
Stratified	Kaua'i	40,777	0.075	0.082

DEC Model

- Promising, especially when areas can be broken into a few discrete units
- Parameter estimates can be pretty far off (see Ree and Smith 2008)

Biogeography

- Goals of biogeographic studies
- Classic approaches
- Newer model-fitting methods for biogeography