1

2

3

1

2

What is claimed is:

- 1. A method for adaptation of a computer system, network or 2 subsystem comprising developing a design for the system and 3 performing an automated loop comprising implementing the design; 4 analyzing operation of the design after said implementing; and 5 modifying the design based on results of said analyzing.
- 2. The method according to claim 1, further comprising forming models of components of the system and applying results of said analyzing to the models.
 - 3. The method according to claim 2, wherein said applying results of said analyzing to the models indicates utilization of a component of the system.
 - 4. The method according to claim 3, wherein said modifying the design is performed in response to the utilization.
- 5. The method according to claim 4, wherein said modifying is also performed in response to a desired headroom level.
- 6. The method according to claim 5, wherein said desired headroom level provides that components of the system operate at less than 100% utilization.
- 7. The method according to claim 7, wherein said desired headroom level provides that components of the system operate at more than 100% utilization.

1

2

3

4

5

- 1 8. The method according to claim 1, wherein said implementing the design comprises forming a plan and then implementing the plan.
- 9. The method according to claim 1, wherein said system comprises a CPU farm.
- 1 10. The method according to claim 1, wherein said system comprises 2 a data caching system.
- 1 11. The method according to claim 1, wherein said system comprises a database system.
- 1 12. The method according to claim 11, wherein said modifying comprises modifying indices of the database system.
 - 13. A method for adaptation of a data storage system, comprising developing a design for the data storage system and performing an automated loop comprising implementing the design; analyzing operation of the design after said implementing; and modifying the design based on results of said analyzing.
- 1 14. The method according to claim 13, further comprising forming
 2 models of components of the data storage system and applying results of
 3 said analyzing to the models.
- 1 15. The method according to claim 14, wherein said applying results of said analyzing to the models indicates utilization of a component of the data storage system.
- 1 16. The method according to claim 15, wherein said modifying the design is performed in response to the utilization.

1

2

3

1

2

3

1

2

3

- 1 17. The method according to claim 16, wherein said modifying is also performed in response to a desired headroom level.
- 1 18. The method according to claim 17, wherein said desired 2 headroom level provides that components of the data storage system 3 operate at less than 100% utilization.
- 1 19. The method according to claim 17, wherein said desired 2 headroom level provides that components of the data storage system 3 operate at more than 100% utilization.
- 1 20. The method according to claim 13, wherein said implementing 2 the design comprises forming a plan for migrating data and then 3 implementing the plan.
 - 21. The method according to claim 20, wherein said forming a plan comprises forming a directed multigraph and computing a maximum general matching.
 - 22. The method according to claim 13, wherein said analyzing comprises forming a trace of storage system events and forming a workload characterization based on the trace.
 - 23. The method according to claim 22, wherein said workload characterization comprises a number of parameter values that summarize the trace.
- The method according to claim 23, further comprising forming models of components of the data storage system and applying said workload characterization to the models.

1	25. A method for adaptation of a data storage system, comprising:		
2	developing a design for the data storage system;		
3	implementing the design;		
4	forming a trace of storage system events;		
5	forming workload characterization from the trace;		
6	applying the workload characterization to models of components		
7	of the data storage system, wherein said applying indicates utilization of		
8	a component of the data storage system; and		
9	modifying the design in response to the utilization indicated by		
10	said analyzing.		
1 .	26. The method according to claim 25, wherein said modifying		
2	results in a modified design and further comprising implementing the		
3	modified design.		
1	27. The method according to claim 26, wherein said modifying		
2	comprises forming a device tree data structure that is representative of		
3	the storage system.		
1	28. The method according to claim 27, wherein said modifying		
2	comprises reassigning data stores to components of the data storage		
3	system.		
1 .	29. The method according to claim 28, wherein said implementing		
2	the modified design comprises forming a plan for migrating data and		
3	then implementing the plan.		
1			
1	30. The method according to claim 29, wherein said forming a plan		
2	comprises forming a directed multigraph and computing a maximum		
4	general matching		

1	31. The method according to claim 25, where	in said modifying is
2	also performed in response to a desired headroon	n level.

- 1 32. The method according to claim 31, wherein said desired 2 headroom level provides that components of the data storage system 3 operate at less than 100% utilization.
- 1 33. The method according to claim 31, wherein said desired 2 headroom level provides that components of the data storage system 3 operate at more than 100% utilization.