UTS FISIKA IIB

13:38

09 March 2022

4 buah muatan Q1, Q2, Q3 dan Q4 diletakan pada sebuah koordinat X-Y seperti ditunjukan pada gambar. Masingmasing muatan terletak seperti di gambar dengan d = 2 m. Titik P terletak di pusat bujur sangkar. Jika diketahui Q1 = (-5q), Q2 = (-3q), Q3 = (+3q), Q4 = (+7q) dengan q adalah 4 μ C. Pergunakanlah k = 9×10^9 Nm²/C²

- a. Berapakah potensial listrik total di titik P? 50.9 kV
- b. Berapakah besar medan listrik total di titik P? 20.12 kN/C
- c. Jika di titik P tersebut diletakkan sebuah muatan 4q, tentukan energi potensial listrik di titik P: 203.1 mJ

Sebuah plat tipis luas memiliki rapat muatan $\sigma=3\times10^{-10}$ C/m², terletak di x=0 cm, dengan sumbu X tegak lurus bidang plat. Plat memiliki tegangan 20V. Diketahui permitivitas listrik vakum adalah $\varepsilon_0=8.85\times10^{-12}$ C²/Nm².

- a. Berapakah medan listrik pada posisi koordinat A(10,10,0) cm ? $i + j + k \ V/m$.
- b. Berapakah potensial listrik pada posisi A tersebut ?
- c. Berapakah usaha yang dilakukan oleh medan listrik ketika muatan titik -3 mikroC bergerak dari A ke posisi B(15,5,0) cm ? mikro joule
- d. Misal massa muatan titik tersebut di (c) adalah 2×10⁻⁶ kg dan di B muatan titik tersebut dilepaskan dari keadaan diam, berapakah besar kecepatannya sesaat sebelum mengenai plat ? m/s

Sistem spektrometer massa terdiri dari selektor kecepatan dan spektrograf. Pada selektor kecepatan terdapat medan listrik $\mathbf{E} = (-300 \text{ V/m}) \mathbf{j}$, dan medan magnetik $\mathbf{B_1}$, sedangkan pada bagian spektrograf terdapat medan magnetik $\mathbf{B_2} = (-10 \text{ mT}) \mathbf{k}$. Sebuah partikel dengan massa $m = 1.6 \times 10^{-27} \text{ kg}$ dan bermuatan listrik $q = -1.6 \times 10^{-19} \text{C}$ yang bergerak dengan laju $\mathbf{v} = (2 \times 10^6 \text{ m/s}) \mathbf{i}$ akan memasuki sistem spektrometer tersebut. (i,j,k adalah vektor satuan pada koordinat Cartesian).

- a. Jika pada bagian selektor kecepatan partikel tetap bergerak lurus, maka besar **B**₁ adalah mikro tesla
- b. Bila ternyata medan magnet B_1 yang diterapkan bernilai 1.2 kali lebih besar dari nilai yang diperoleh pada jawab a, maka besar percepatan partikel adalah $\times 10^9$ m/s²
- c. Jari-jari lintasan gerak partikel ketika bergerak di bagian spektrograf adalah 🔃 m

Sebuah kapasitor plat sejajar memiliki luas 8 cm², ruang diantaranya diisi penuh oleh sebuah kertas dengan tebal 1.6 mm. Diketahui konstanta dielektrik kertas adalah 3.7 dan medan listrik maksimal yang dapat muncul pada dielektrik adalah 16 x 10 ⁶ N/C. Diketahui ε ₀ = 8.85×10 ⁻¹² F/m.
a. Kapasitansi dari kapasitor dengan konfigurasi tersebut adalah pF
b. Muatan maksimum pada kapasitor tersebut adalah 0.415 µC
c. Dalam kondisi dielektrik terpasang, berapakah kerja oleh baterai agar menghasilkan medan listrik maksimal datas? 5.36 x 10 ⁻³ J.
Jika jarak antar plat diperlebar menjadi 1.6 + 1.5 mm, lalu ruang tambahan tersebut diisi bahan porcelain dengan konstanta dielektrik 6 dan ketebalan 1.5 mm pada sistem kapasitor di atas, maka
d. Kapasitansi sistem kapasitor adalah 10.37 pF.
Sebuah kulit bola konduktor tebal memiliki jari-jari dalam 5 cm dan jari-jari luar 10 cm. Pusat bola terletak di pusat koordinat O. Di O terdapat muatan titik sebesar 2.3×10 ⁻⁹ C, sedangkan bola konduktor membawa total muatan – 5×10 ⁻⁹ C. Pergunakanlah k = 9×10 ⁹ Nm ² /C ² dan π=3.14.
a. Berapakah besar medan listrik pada jarak 2 cm dari 0? 5.175×10 ⁴ N/C
b. Berapakah besar medan listrik pada jarak 8 cm dari 0? N/C
c. Jika potensial listrik pada jarak 15 cm = 1000 volt, berapakah potensial listrik pada jarak 2 cm dari 0?
d. Sebuah permukaan kubus dengan panjang sisi 40 cm melingkupi bola. Pusat kubus di O. Berapakah flux medan listrik yang menembus, salah satu sisi kubus ? Nm²/C