$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \star & \star \\ 0 & 1 & \star & \star \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \star & \star \\ 0 & 1 & \star & \star \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A\mathbf{X} = \mathbf{A}\mathbf{X}$$

$$A = [a_{ij}]$$

$$A : \mathbb{R}^n \to \mathbb{R}^n$$

$$A(a\mathbf{u} + b\mathbf{v}) = aA\mathbf{u} + bA\mathbf{v}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

MAT A22: Linear Algebra 1 for Mathematical Sciences (Winter 2022)

Welcome to Week 9 of the course.

Questions? Thoughts? Comments?

Readings:

- ▶ 6.1 Examples and Basic Properties
- ▶ 6.2 Subspaces and Spanning Sets
- ► 6.3 Linear Independence and Dimension

News and Reminders:

▶ Midterm #2 is moved to March 26th at 13-15:00.

What is a vector space?

Definition

Let V be a nonempty set of objects (elements) with two operations.

- ▶ Vector Addition: for any $v, w \in V$, the sum $u + v \in V$. (V is closed under vector addition.)
- Scalar Multiplication: for any $v \in V$ and $k \in \mathbb{R}$, the product $kv \in V$. (V is closed under scalar multiplication.)

Then V is a vector space if it satisfies the Axioms of Addition and the Axioms of Scalar Multiplication that follow. In this case, the elements of V are called vectors.

Axioms of Addition

Axioms of Addition

- A1. Addition is commutative. u + v = v + u for all $u, v \in V$.
- A2. Addition is associative. (u + v) + w = u + (v + w) for all $u, v, w \in V$.
- A3. Existence of an additive identity. There exists an element 0 in V so that u + 0 = u for all $u \in V$.
- A4. Existence of an additive inverse. For each $u \in V$ there exists an element $-u \in V$ so that u + (-u) = 0.

Axioms of Scalar Multiplication

Axioms of Scalar Multiplication

- **S1**. Scalar multiplication distributes over vector addition.
 - a(u + v) = au + av for all $a \in \mathbb{R}$ and $u, v \in V$.
- S2. Scalar multiplication distributes over scalar addition.

$$(a+b)u = au + bu$$
 for all $a,b \in \mathbb{R}$ and $u \in V$.

- S3. Scalar multiplication is associative.
 - $a(b\mathsf{u})=(ab)\mathsf{u}$ for all $a,b\in\mathbb{R}$ and $\mathsf{u}\in V$.
- S4. Existence of a multiplicative identity for scalar multiplication.
 - 1u = u for all $u \in V$.

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example

 M_{mn} , the set of all $m \times n$ matrices with matrix addition and scalar multiplication is a vector space.

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example

 M_{mn} , the set of all $m \times n$ matrices with matrix addition and scalar multiplication is a vector space.

Notes.

- ▶ Notation: the $m \times n$ matrix of all zeros is written 0 or 0_{mn} .
- ▶ The vector space M_{mn} "is the same as" the vector space \mathbb{R}^{mn} . We will make this notion more precise later on. For now, notice that an $m \times n$ matrix has mn entries arranged in m rows and n columns, while a vector in \mathbb{R}^{mn} has mn entries arranged in mn rows and 1 column.

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathsf{M}_{22} \ \middle| \ a+b+c+d = 0 \right\}.$$

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[egin{array}{cc} a & b \ c & d \end{array}
ight] \in \mathsf{M}_{22} \ \left| \ a+b+c+d=0
ight\}.$$

Since we are using the matrix addition and scalar multiplication of M_{22} , it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[egin{array}{cc} a & b \ c & d \end{array}
ight] \in \mathsf{M}_{22} \ \left| \ a+b+c+d=0
ight\}.$$

Since we are using the matrix addition and scalar multiplication of M_{22} , it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

What needs to be shown is closure under addition (for all $v, w \in V$, $v + w \in V$), and closure under scalar multiplication (for all $v \in V$ and $k \in \mathbb{R}$, $kv \in V$), as well as showing the existence of an additive identity and additive inverses in the set V.

► Closure under addition

Suppose

$$A = \left[\begin{array}{cc} w_1 & x_1 \\ y_1 & z_1 \end{array} \right] \text{ and } B = \left[\begin{array}{cc} w_2 & x_2 \\ y_2 & x_2 \end{array} \right]$$

are in V. Then $w_1 + x_1 + y_1 + z_1 = 0$, $w_2 + x_2 + y_2 + z_2 = 0$, and

$$A + B = \begin{bmatrix} w_1 & x_1 \\ y_1 & z_1 \end{bmatrix} + \begin{bmatrix} w_2 & x_2 \\ y_2 & z_2 \end{bmatrix} = \begin{bmatrix} w_1 + w_2 & x_1 + x_2 \\ y_1 + y_2 & z_1 + z_2 \end{bmatrix}.$$

Since

$$(w_1 + w_2) + (x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2)$$

$$= (w_1 + x_1 + y_1 + z_1) + (w_2 + x_2 + y_2 + z_2)$$

$$= 0 + 0 = 0$$

A + B is in V, so V is closed under addition.

Closure under scalar multiplication

Suppose
$$A = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 is in V and $k \in \mathbb{R}$.

Then w + x + y + z = 0, and

$$kA = k \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} kw & kx \\ ky & kz \end{bmatrix}.$$

Since

$$kw + kx + ky + kz = k(w + x + y + z) = k(0) = 0,$$

kA is in V, so V is closed under scalar multiplication.

Existence of an additive identity

The additive identity of M_{22} is the 2 \times 2 matrix of zeros,

$$0 = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right];$$

Since 0 + 0 + 0 + 0 = 0, 0 is in V, and has the required property (as it does in M_{22}).

► Existence of an additive inverse

Let
$$A = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 be in V .

Then w + x + y + z = 0, and its additive inverse in M₂₂ is

$$-A = \left[\begin{array}{cc} -w & -x \\ -y & -z \end{array} \right].$$

Since

$$(-w) + (-x) + (-y) + (-z) = -(w + x + y + x) = -0 = 0,$$

-A is in V and has the required property (as it does in M_{22}).

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows.

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

Addition. $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ► Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

Then V, with addition and scalar multiplication as defined, is a vector space.

1. What is the additive identity?

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

- 1. What is the additive identity?
- 2. What is the additive inverse of $(x, y) \in V$?

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

- 1. What is the additive identity?
- 2. What is the additive inverse of $(x, y) \in V$?
- 3. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.

Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1,y_1),(x_2,y_2) \in V$, and $a,b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

- 1. What is the additive identity?
- 2. What is the additive inverse of $(x, y) \in V$?
- 3. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
- 4. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

- 1. What is the additive identity?
- 2. What is the additive inverse of $(x, y) \in V$?
- 3. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
- 4. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
- 5. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition (\oplus) and scalar multiplication (\odot) defined as follows. For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- **Addition.** $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- ▶ Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1)$.

- 1. What is the additive identity?
- 2. What is the additive inverse of $(x, y) \in V$?
- 3. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
- 4. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
- 5. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
- 6. Verify that $1 \odot (x, y) = (x, y)$.

Definition

A vector space V is finite dimensional if it is spanned by a finite set of vectors. Otherwise it is called infinite dimensional.

Definition

A vector space V is finite dimensional if it is spanned by a finite set of vectors. Otherwise it is called infinite dimensional.

Example

 \mathbb{R}^n and M_{mn} are examples of finite dimensional vector spaces.

 $F(\mathbb{N}) = \{f : \mathbb{N} \to \mathbb{R}\}$ is an infinite dimensional vector space.

Question

Prove that $F(\mathbb{N})$ is infinite dimensional.

That is, show that $F(\mathbb{N})$ cannot be spanned by finitely many vectors.

Extra Questions

Question

$$\vec{v}_1 = (2,3,0,0)$$
 $\vec{v}_2 = (0,0,1,-1)$ $\vec{v}_3 = (1,0,0,4)$ $\vec{v}_4 = (0,0,0,2)$

Show that $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ form a basis for \mathbb{R}^4 . Find the coordinates of each of the standard basis vectors of \mathbb{R}^4 in the basis $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$.

Extra Questions

Question

Let $\mathcal{P}_n(\mathbb{R})$ be the vector space of polynomials of degree n.

Let $f^{(k)}$ denote the k^{th} derivative of f.

Prove that $\{f, f', f'', \dots, f^{(n)}\}\$ is a basis for $\mathcal{P}_n(\mathbb{R})$.