1 Неопределенный интеграл

1.1 Понятие первообразной, неопределённого интеграла и вопросы их существования

Ранее была изучена операция дифференцирования, сопоставляющая функции ее производную. В этом разделе будет изучаться обратная задача, в которой производная известна, а функцию нужно найти.

Замечание 1.1.1 Ниже под обозначением $\langle a, b \rangle$ будет пониматься произвольный промежуток: отрезок, интервал или полуинтервал.

Определение 1.1.1 Первообразной функции f(x) на промежутке $\langle a, b \rangle$ называется функция F(x) такая, что для всех $x \in \langle a, b \rangle$ выполняется равенство F'(x) = f(x).

Пример 1.1.1 Функция $F_1(x) = \frac{x^3}{3}$ будет первообразной для функции $f(x) = x^2$ при $x \in (-\infty, +\infty)$, но эта первообразная не единственна. Так, функции $F_2(x) = \frac{x^3}{3} + 5$ или $F_3(x) = \frac{x^3}{3} - \pi^e$ также будут ее первообразными.

Пример 1.1.2 Функция $F(x) = \arctan x$ является первообразной для функции $\frac{1}{1+x^2}$ при всех $x \in \mathbb{R}$, так как $(\arctan x)' = \frac{1}{1+x^2}$.

Пример 1.1.3 Функция $F(x) = \text{arcctg } \frac{1}{x}$ является первообразной для функции $\frac{1}{1+x^2}$ как при x > 0, так и при x < 0.

Вопрос об описании всех первообразных данной функции решается с помощью следующей теоремы.

Теорема 1.1.1 Пусть F(x) – первообразная для f(x) на $\langle a,b \rangle$. Для того, чтобы $\Phi(x)$ также была первообразной для f(x) на $\langle a,b \rangle$, необходимо и достаточно, чтобы

$$F(x) - \Phi(x) \equiv C, \quad x \in \langle a, b \rangle.$$

Доказательство. Необходимость. Пусть $\Psi(x) = F(x) - \Phi(x)$, где F(x) и $\Phi(x)$ – первообразные для f(x) на $\langle a,b \rangle$. Тогда $\forall x \in \langle a,b \rangle$

$$\Psi'(x) = (F(x) - \Phi(x))' = F'(x) - \Phi'(x) = f(x) - f(x) = 0.$$

Согласно теореме Лагранжа, для любых $x_1, x_2 \in \langle a, b \rangle$ таких, что $x_1 < x_2$,

$$\Psi(x_2) - \Psi(x_1) = \Psi'(\xi)(x_2 - x_1) = 0, \ \xi \in (x_1, x_2).$$

Значит, $\Psi(x) \equiv C$.

Достаточность. Пусть на $\langle a,b \rangle$ выполнено условие $F(x)-\Phi(x)=C$. Тогда на этом промежутке $\Phi(x)=F(x)+C$, а следовательно

$$\Phi'(x) = F'(x) + C' = F'(x) + 0 = F'(x) = f(x).$$

То есть $\Phi(x)$ является первообразной для функции f(x) на $\langle a,b\rangle$.

Определение 1.1.2 Неопределённым интегралом функции f(x) на промежутке $\langle a,b \rangle$ называется множество всех её первообразных на этом промежутке. Неопределенный интеграл обозначается следующим образом:

$$\int f(x)dx,$$

где

- ullet знак неопределенного интеграла;
- f(x) подынтегральная функция;
- f(x)dx nodынтегральное выражение;
- х переменная интегрирования.

Следствие 1.1.2 Если F(x) – какая-либо первообразная функции f(x) на $\langle a,b \rangle$, то неопределенный интеграл функции f(x) на промежутке $\langle a,b \rangle$ равен

$$\int f(x)dx = F(x) + C, \ C \in \mathbb{R}.$$

Заметим, что для краткости информацию о том, что рассматривается промежуток $\langle a,b \rangle$, часто опускают. Например, вместо

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} c_1, & x < 0 \\ c_2, & x > 0 \end{cases}$$

пишут

$$\int \frac{dx}{x} = \ln|x| + C,$$

подразумевая, что C – кусочно-постоянная.

Замечание 1.1.2 Если dx трактовать, как дифференциал, то ниже приведенные формулы интегрирования по частям и замены переменной становятся совершенно «механическими».

Замечание 1.1.3 Полезно отметить, что не каждая функция имеет первообразную. Так как производная дифференцируемой функции не может иметь разрывов первого рода, то любая функция, имеющая на $\langle a,b \rangle$ разрыв первого рода, не имеет на $\langle a,b \rangle$ первообразной.

Позже, при изучении определенного интеграла Римана будет показано, что каждая непрерывная на $\langle a,b \rangle$ функция имеет на этом множестве первообразную.

Замечание 1.1.4 Первообразные существуют не только у непрерывных функций. Производная дифференцируемой функции может иметь разрывы второго рода. Например,

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

$$f'(x) = \begin{cases} 2x \cos \frac{1}{x} + \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

Детали остаются читателю.

Для практических целей часто полезно следующее определение.

Определение 1.1.3 Функция F(x) называется обобщенной первообразной функции f(x) на $\langle a,b \rangle$, если $F(x) \in C\langle a,b \rangle$ и F'(x) = f(x) всюду на $\langle a,b \rangle$, кроме не более чем конечного числа точек.

Пример 1.1.4 Легко проверить, что обобщенной первообразной функции $y = \operatorname{sign} x \ \text{на} \ \mathbb{R}$ является функция y = |x|.

1.2 Таблица неопределённых интегралов

Ниже приведена таблица интегралов, часто используемых на практике.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \frac{dx}{\sin^{2} x} = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{a^{2} - x^{2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0 \text{ («длинный логарифм»)}$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C \text{ («высокий логарифм»)}$$

Доказательство. В качестве примера приведено доказательство для формулы

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0.$$

Для доказательства достаточно показать, что производная правой части равна подынтегральной функции.

$$\left(\ln|x+\sqrt{x^2\pm a^2}|+C\right)' = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(1+\frac{2x}{2\sqrt{x^2\pm a^2}}\right) = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(\frac{x+\sqrt{x^2\pm a^2}}{\sqrt{x^2\pm a^2}}\right) = \frac{1}{\sqrt{x^2\pm a^2}}.$$

Важно отметить, что каждая из формул, написанных выше, рассматривается на тех промежутках вещественной оси, на которых определена соответствующая подынтегральная функция. Если таких промежутков несколько, то произвольные постоянные в правой части, вообще говоря, различны.

1.3 Свойства неопределенного интеграла

Теорема 1.3.1 (Интеграл и производная) Пусть существует $\int f(x)dx$ на $\langle a,b \rangle$, тогда на $\langle a,b \rangle$:

1.
$$\left(\int f(x)dx\right)' = f(x)$$
.

2.
$$d\left(\int f(x)dx\right) = f(x)dx$$
.

Доказательство. 1. Так как $\int f(x)dx = F(x) + C$, то

$$\left(\int f(x)dx\right)' = (F(x) + C)' = f(x).$$

2. Доказывается аналогично и предлагается в качестве упражнения.
Прямо из определения легко получается и следующая важная лемма:

Лемма 1.3.1 Если F(x) дифференцируема на $\langle a,b \rangle$, то $\int dF(x) = F(x) + C$.

Следующая теорема широко применяется на практике.

Теорема 1.3.2 (Линейность неопределенного интеграла) Пусть на $\langle a,b \rangle$ существуют неопределенные интегралы $\int f(x)dx$ и $\int g(x)dx$, $\alpha^2 + \beta^2 \neq 0$. Тогда

$$\int (\alpha f + \beta g) dx = \alpha \int f dx + \beta \int g dx.$$

Доказательство. По предыдущему свойству,

$$\left(\alpha \int f dx + \beta \int g dx\right)' = \alpha f(x) + \beta g(x),$$

то есть $\alpha \int f dx + \beta \int g dx$ — первообразная для $\alpha f + \beta g$ на $\langle a,b \rangle$, а значит равенство установлено.

Пример 1.3.1 Вычислить интеграл

$$\int \frac{x^2 + \sqrt[3]{x^2} + 5}{x} dx.$$

По свойству линейности,

$$\int \frac{x^2 + \sqrt[3]{x^2 + 5}}{x} dx = \int x dx + \int x^{-1/3} dx + 5 \int \frac{dx}{x} = \frac{x^2}{2} + \frac{3}{2} x^{2/3} + 5 \ln|x| + C.$$

Пример 1.3.2 Вычислить интеграл

$$\int \frac{dx}{\sin^2 x \cos^2 x}.$$

 $Ta\kappa \kappa a\kappa 1 = \sin^2 x + \cos^2 x$, mo

$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \operatorname{tg} x - \operatorname{ctg} x + C.$$

Теорема 1.3.3 (Формула замены переменной) Пусть на $\langle a,b \rangle$ существует неопределенный интеграл $\int f(x)dx, \ \varphi(t): \langle \alpha,\beta \rangle \to \langle a,b \rangle, \ \partial u \phi \phi e$ -ренцируема на $\langle \alpha,\beta \rangle$, тогда

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Доказательство. Пусть F(x) – первообразная для функции f(x) на $\langle a,b\rangle$, тогда, согласно теореме о производной сложной функции, $F(\varphi(t))$ – первообразная для функции $f(\varphi(t))\varphi'(t)$ на $\langle \alpha,\beta\rangle$, откуда и следует равенство.

Пример 1.3.3 Вычислить интеграл

$$\int xe^{x^2}dx.$$

Пусть $x^2 = t$, тогда $d(x^2) = dt$ или 2xdx = dt, а значит

$$\int xe^{x^2}dx = \frac{1}{2}\int e^t dt = \frac{1}{2}e^t + C = \frac{1}{2}e^{x^2} + C$$

Пример 1.3.4 Вычисление предыдущего интеграла можно оформить и иначе, если dx трактовать, как дифференциал.

$$\int xe^{x^2}dx = \int e^{x^2}d\left(\frac{x^2}{2}\right) = \frac{1}{2}\int e^{x^2}dx^2 = \frac{1}{2}e^{x^2} + C.$$

Данный способ оформления называется занесением под знак дифференциала.

Теорема 1.3.4 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на $\langle a, b \rangle$ u на $\langle a, b \rangle$ существует неопределенный интеграл $\int v du$, тогда на $\langle a, b \rangle$

$$\int udv = uv - \int vdu.$$

Доказательство. Действительно, если рассмотреть дифференциал от правой части равенства, то получим

$$d\left(uv - \int vdu\right) = d(uv) - d\left(\int vdu\right) = d(uv) - vdu = udv,$$

 \Box

так как d(uv) = udv + vdu. Отсюда следует требуемое.

Пример 1.3.5 Вычислить интеграл

$$\int x \sin x dx.$$

Пусть u = x, тогда du = dx, $dv = \sin x dx$ u $v = -\cos x$. Значит,

$$\int x \sin x dx = \begin{vmatrix} u = x \\ du = dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C.$$

6

Пример 1.3.6 Вычислить интеграл

$$\int (x^2 + 2x)e^x dx.$$

Проинтегрируем по частям, получим

$$\int (x^2 + 2x)e^x dx = \begin{vmatrix} u = x^2 + 2x \\ du = (2x + 2)dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (x^2 + 2x)e^x - \int (2x + 2)e^x dx.$$

В результате степень многочлена перед экспонентой уменьшилась. Проинтегрируем по частям снова,

$$\int (2x+2)e^x = \begin{vmatrix} u = 2x + 2 \\ du = 2dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (2x+2)e^x - 2\int e^x dx = (2x+2)e^x - e^x + C.$$

Окончательно,

$$\int (x^2 + 2x)e^x dx = (x^2 + 2x)e^x - (2x + 2)e^x + e^x + C.$$

Замечание 1.3.1 Формулу интегрирования по частям удобно применять для интегралов вида

$$\int P_n(x)a^{\alpha x}dx, \ \int P_n(x)\sin(\alpha x)dx, \ \int P_n(x)\cos(\alpha x)dx,$$

 $ede\ P_n(x)$ – многочлен степени n.

Пример 1.3.7 Вычислить интеграл

$$\int e^x \sin x dx.$$

Проинтегрируем по частям, получим

$$\int e^x \sin x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -e^x \cos x + \int e^x \cos x dx.$$

еще раз проинтегрируем по частям, получим

$$\int e^x \cos x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \cos x dx \\ v = \sin x \end{vmatrix} = e^x \sin x - \int e^x \sin x dx.$$

B umore,

$$\int e^x \sin x dx = -e^x \cos x + e^x \sin x - \int e^x \sin x dx,$$

откуда

$$\int e^x \sin x dx = \frac{-e^x \cos x + e^x \sin x}{2} + C.$$

Интегралы такого типа, как рассмотрен выше, называются самосводящимися.

1.4 Интегрирование рациональных дробей

1.5 Некоторые сведения из теории многочленов

В дальнейшем, под многочленом (полиномом) $P_n(x)$ степени $n \ge 1$ будет подразумеваться функция

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

где $a_i \in \mathbb{R}, a_n \neq 0$. Под многочленом нулевой степени будет подразумеваться константа.

Определение 1.5.1 Рациональной дробью называется дробь $\frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$ – многочлен степени $n, Q_m(x)$ – многочлен степени m.

Определение 1.5.2 Рациональная дробь называется правильной, если n < m, иначе она называется неправильной.

Лемма 1.5.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ — неправильная дробь. Тогда существует единственное представление

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{T_k(x)}{Q_m(x)},$$

где $R_{n-m}(x)$ – многочлен степени $(n-m), T_k(x)$ – многочлен степени k, причем k < m.

В теории многочленов доказывается следующая теорема.

Теорема 1.5.1 Пусть $P_n(x)$ – многочлен n-й степени, у которого коэффициент при старшей степени равен единице. Тогда он может быть разложен на множители следующим образом

$$P_n(x) = (x - a_1)^{k_1} \cdot (x - a_2)^{k_2} \cdot \dots \cdot (x - a_p)^{k_p} \cdot (x^2 + b_1 x + c_1)^{l_1} \cdot \dots \cdot (x^2 + b_m x + c_m)^{l_m},$$

$$e \partial e$$

$$k_p, l_m \in \mathbb{N}, D = b_m^2 - 4c_m < 0, k_1 + k_2 + \ldots + k_p + 2 \cdot (l_1 + \ldots + l_m) = n.$$

Замечание 1.5.1 Условия $b_i^2 - 4c_i < 0$ означают, что квадратные трехчлены $x^2 + b_i x + c_i$ не имеют вещественных корней. В этом случае они имеют два комплексно-сопряженных корня $\alpha \pm \beta i$.

1.6 Разложение рациональной дроби на простейшие

Определение 1.6.1 Простейшими дробями называют дроби вида

$$\frac{A}{(x-a)^k}, \frac{Ax+B}{(x^2+px+q)^k},$$

 $r\partial e \ k \in \mathbb{N}.$

Оказывается, любая правильная рациональная дробь может быть разложена в сумму простейших. Этой теореме предпошлем две леммы.

Лемма 1.6.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x) = (x-a)^k \cdot \widetilde{Q}(x)$, где $\widetilde{Q}(a) \neq 0$. Существует число $A \in \mathbb{R}$ и многочлен $\widetilde{P}(x)$, такие что

$$\frac{P_n(x)}{Q_m(x)} = \frac{A}{(x-a)^k} + \frac{\widetilde{P}(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x)}{(x-a)^k \cdot \widetilde{Q}(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x-a)^k \cdot \widetilde{Q}(x)}$$

и выберем число A так, чтобы число a было корнем числителя.

$$P_n(a) - A \cdot \widetilde{Q}(a) = 0 \Rightarrow A = \frac{P_n(a)}{\widetilde{Q}(a)},$$

где последнее равенство корректно, так как по условию $\widetilde{Q}(a) \neq 0$. При данном A в числителе стоит многочлен $P_n(x) - A \cdot \widetilde{Q}(x)$ с корнем a, значит его можно разложить на множители $(x-a) \cdot \widetilde{P}(x)$, а тогда

$$\frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x - a)^k \cdot \widetilde{Q}(x)} = \frac{(x - a) \cdot \widetilde{P}(x)}{(x - a)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x - a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Существование разложения доказано.

Докажем единственность такого разложения. От противного, пусть существует два разложения

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_1}{(x-a)^k} + \frac{\widetilde{P}_1(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)} = \frac{A_2}{(x-a)^k} + \frac{\widetilde{P}_2(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Домножив на $(x-a)^k \cdot \widetilde{Q}(x)$, имеем

$$A_1 \cdot \widetilde{Q}(x) + \widetilde{P}_1(x) \cdot (x - a) = A_2 \cdot \widetilde{Q}(x) + \widetilde{P}_2(x) \cdot (x - a),$$

причем это равенство верно при всех $x \in \mathbb{R}$. Пусть x = a, тогда равенство превращается в

$$A_1 \cdot \widetilde{Q}(a) = A_2 \cdot \widetilde{Q}(a),$$

и так как $\widetilde{Q}(a) \neq 0$ то $A_1 = A_2$. Но тогда коэффициенты многочлена $\widetilde{P} = P_n(x) - A \cdot \widetilde{Q}(x)$ тоже вычисляются однозначно. Противоречие.

Лемма 1.6.2 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x) = (x^2 + px + q)^k \cdot \widetilde{Q}(x), \ p^2 - 4q < 0, \ \alpha \pm \beta i$ – комплексно-сопряженные корни квадратного трехчлена $x^2 + px + q$, причем $\widetilde{Q}(\alpha \pm \beta i) \neq 0$. Существуют единственные числа $A, B \in \mathbb{R}$ и многочлен $\widetilde{P}(x)$ такие, что

$$\frac{P_n(x)}{Q_m(x)} = \frac{Ax + B}{(x^2 + px + q)^k} + \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)}$$

Выберем числа A,B так, чтобы число $\alpha+\beta i$ было корнем числителя, то есть чтобы

$$P_n(\alpha + \beta i) - (A(\alpha + \beta i) + B) \cdot \widetilde{Q}(\alpha + \beta i) = 0.$$

Так как значение многочлена в комплексной точке дает комплексное число, то

$$P_n(\alpha + \beta i) = P_1 + iP_2,$$

$$\widetilde{Q}(\alpha + \beta i) = \widetilde{Q}_1 + i\widetilde{Q}_2,$$

где $P_1, P_2, \widetilde{Q}_1, \widetilde{Q}_2 \in \mathbb{R}$ и $\widetilde{Q}_1^2 + \widetilde{Q}_2^2 \neq 0$, так как по условию $\widetilde{Q}(\alpha + \beta i) \neq 0$. Тогда последнее уравнение примет вид

$$P_1 + iP_2 - (A\alpha + iA\beta + B) \cdot (\widetilde{Q}_1 + i\widetilde{Q}_2) = 0.$$

Отделив вещественную и мнимую части, получим

$$(P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1) + i(P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2) = 0 + 0 \cdot i$$

Таким образом,

$$\begin{cases} P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1 = 0 \\ P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) + B\widetilde{Q}_1 = P_1 \\ A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) + B\widetilde{Q}_2 = P_2 \end{cases}$$

Вычислим определитель данной системы:

$$\Delta = (\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2)\widetilde{Q}_2 - \widetilde{Q}_1(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) = -\beta(\widetilde{Q}_1^2 + \widetilde{Q}_2^2) \neq 0.$$

Значит из системы единственным образом могут быть найдены числа A и B такие, что $\alpha + \beta i$ - корень числителя. Если $\alpha + \beta i$ корень многочлена с вещественными коэффициентами, то $\alpha - \beta i$ - тоже его корень, значит при найденных A и B числитель $P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)$ может быть разложен на множители

$$P_n(x) - (Ax + B) \cdot \widetilde{Q}(x) = (x^2 + px + q) \cdot \widetilde{P}(x),$$

причем

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{(x^2 + px + q) \cdot \widetilde{P}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)}.$$

Тем самым, существование разложения доказано.

Единственность доказывается аналогично доказательству предыдущей леммы и остается в качестве упражнения. \Box

Две данные леммы позволяют доказать теорему, которая и является основной целью данного параграфа.

Теорема 1.6.1 Любая рациональная дробь может быть представлена единственным образом в виде

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \dots + \frac{A_{s1}}{(x-a_s)^{k_s}} + \dots + \frac{A_{sk_s}}{(x-a_s)} + \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{x^2 + p_1x + q_1} + \dots + \frac{B_{tl_t}X + C_{tl_t}}{(x^2 + p_tx + q_t)^{l_t}} + \dots + \frac{B_{tl_t}X + C_{tl_t}}{x^2 + p_tx + q_t},$$

где $A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}, R_{n-m}(x)$ – многочлен степени (n-m) и знаменатель исходной дроби имеет разложение

$$Q_m(x) = (x - a_1)^{k_1} \cdot \ldots \cdot (x - a_s)^{k_s} \cdot (x^2 + p_1 x + q_1)^{l_1} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}.$$

Доказательство. Пусть в рациональной дроби $\frac{P_n(x)}{Q_m(x)}$ степень n > m, тогда по лемме 1.5.1 ее можно представить в виде суммы многочлена $R_{n-m}(x)$ и правильной дроби $\frac{T_k(x)}{Q_m(x)}$, где k < m. Таким образом достаточно рассмотреть случай правильной и несократимой дроби $\frac{T_k(x)}{Q_m(x)}$. По лемме 1.6.1 дробь можно представить в виде

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1} \cdot \widetilde{Q}^{(1)}(x)},$$

где $\widetilde{Q}^{(1)}(x)=(x-a_2)^{k_2}\cdot\ldots\cdot(x-a_s)^{k_s}\cdot(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$. Далее по лемме 1.6.1 также можно найти число A_{12} и многочлен $\widetilde{P}^{(12)}(x)$ такие, что

$$\frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1}\cdot\widetilde{Q}^{(1)}(x)} = \frac{A_{12}}{(x-a_1)^{k_1-1}} + \frac{\widetilde{P}^{(12)}(x)}{(x-a_1)^{k_1-2}\cdot\widetilde{Q}^{(1)}(x)}.$$

Продолжая аналогичные рассуждения получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{A_{12}}{(x-a_1)^{k_1-1}} + \ldots + \frac{A_{1k_1}}{(x-a_1)} + \frac{\widetilde{P}^{(1k_1)}(x)}{\widetilde{Q}^{(1)}(x)}.$$

Аналогично, для всех вещественных корней знаменателя a_i кратности k_i , i=1...s, получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots$$

где $\widetilde{Q}^{(s)}(x)=(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$, при этом дробь $\frac{\widetilde{P}^{(sk_s)}(x)}{\widetilde{Q}^{(s)}(x)}$ правильная. Далее используем лемму 1.6.2, получим

$$\frac{\widetilde{P}^{(sk_s)}(x)}{\widetilde{Q}^{(s)}(x)} = \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \frac{\widehat{P}^{(11)}(x)}{(x^2 + p_1x + q_1)^{l_1 - 1} \cdot \widehat{Q}^{(1)}(x)},$$

где $\hat{Q}^{(1)}(x) = (x^2 + p_2 x + q_2)^{l_2} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}$. Продолжая рассуждения таким же образом получим, что каждой t паре комплексно-сопряженных корней знаменателя кратности l_t , будут соответствовать l_t простейших дробей третьего и четвертого типа, и окончательно:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_1}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots + \frac{B_{2l_2}x + C_$$

1.7 Интегрирование простейших дробей

В данном пункте в общем виде показывается, как можно вычислить интеграл от простейших рациональных дробей. Для начала рассмотрим интеграл

$$\int \frac{A}{(x-a)^k} dx, \ k \ge 1.$$

1. При k = 1 имеем

$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + C.$$

2. При k > 1

$$\int \frac{A}{(x-a)^k} dx = A \int \frac{d(x-a)}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{1-k}}{1-k} + C.$$

Теперь покажем, как вычисляются интегралы

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx, \ k \ge 1, \ p^2 - 4q < 0.$$

3. Пусть k=1. Дополним знаменатель до полного квадрата,

$$x^{2} + px + q = x^{2} + 2x\frac{p}{2} + \frac{p^{2}}{4} + q - \frac{p^{2}}{4} = \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4}.$$

Так как выражение

$$\frac{4q - p^2}{4} > 0,$$

то его можно обозначить, как a^2 . Кроме того, положим $t=x+\frac{p}{2}$, тогда dt=dx и

$$\int \frac{Ax+B}{x^2+px+q} dx = \int \frac{A(t-\frac{p}{2})+B}{t^2+a^2} dt = \int \frac{At+(B-\frac{Ap}{2})}{t^2+a^2} dt =$$

$$A\int \frac{tdt}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \int \frac{dt}{t^2+a^2} = \frac{A}{2} \int \frac{d(t^2+a^2)}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} =$$

$$= \frac{A}{2} \ln|t^2+a^2| + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} + C =$$

$$= \frac{A}{2} \ln(x^2+px+q) + \frac{B-\frac{Ap}{2}}{\sqrt{\frac{4q-p^2}{4}}} \arctan \frac{x+\frac{p}{2}}{\sqrt{\frac{4q-p^2}{4}}} + C.$$

4. Пусть k>1. Используя обозначения, введенные в пункте 3, получим

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx = A \int \frac{tdt}{(t^2+a^2)^k} + \left(B - \frac{Ap}{2}\right) \int \frac{dt}{(t^2+a^2)^k}.$$

Сначала рассмотрим первый интеграл:

$$\int \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \int \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} = \frac{1}{2} \frac{(t^2 + a^2)^{1-k}}{1 - k} + C.$$

Теперь рассмотрим второй интеграл, обозначив его I_k :

$$I_k = \int \frac{dt}{(t^2 + a^2)^k} = \frac{1}{a^2} \int \frac{a^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{t^2 + a^2 - t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{dt}{(t^2 + a^2)^{k-1}} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} I_{k-1} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt.$$

Последний интеграл вычислим по частям

$$\int \frac{t^2}{(t^2 + a^2)^k} dt = \begin{vmatrix} u = t \\ du = dt \\ dv = \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} \\ v = \frac{1}{2(1 - k)(t^2 + a^2)^{k - 1}} \end{vmatrix} = \frac{t}{2(1 - k)(t^2 + a^2)^{k - 1}} - \frac{1}{4(1 - k)} \int \frac{dt}{(t^2 + a^2)^{k - 1}}.$$

Тем самым,

$$I_k = \frac{1}{a^2} \left(I_{k-1} \left(1 + \frac{1}{4(1-k)} \right) - \frac{t}{2(1-k)(t^2 + a^2)^{k-1}} \right).$$

Таким образом, получена рекуррентная формула, выражающая I_k через I_{k-1} . Так как

$$I_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{t}{a} + C,$$

то схема вычисления интеграла полностью изложена.

Следствие 1.7.1 Интеграл от рациональной дроби может быть выражен через элементарные функции.

1.8 Метод Остроградского

Вычисление интеграла от последнего типа дроби – задача трудоемкая. Полезно пользоваться следующей формулой (в случае, когда дробь под интегралом – правильная):

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$$

В этой формуле $Q_2(x)$ – многочлен, имеющий те же корни, что и Q(x), но первой кратности. Многочлен $Q_1(x)$ – это частое от деления Q(x) на $Q_2(x)$. Все написанные дроби являются правильными.

Доказательство. Остается в качестве упражнения

1.9 Интегрирование иррациональностей

Пусть $R(x_1, x_2, ..., x_n)$ – рациональная функция относительно каждой из переменных $x_1, x_2, ..., x_n$.

1. Интегралы вида

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1}, \left(\frac{ax+b}{cx+d}\right)^{p_2}, ..., \left(\frac{ax+b}{cx+d}\right)^{p_n}\right) dx,$$

 $a,b,c,d\in\mathbb{R},\ ad-bc\neq0,\ n\in\mathbb{N},\ p_i\in\mathbb{Q}.$ Подстановка

$$\frac{ax+b}{cx+d} = t^m,$$

m – общий знаменатель $p_1, p_2, ..., p_n$.

2. Интегралы вида

$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx, \ a \neq 0.$$

Функция под интегралом с помощью алгебраических преобразований приводится к виду:

$$R\left(x, \sqrt{ax^2 + bx + c}\right) = \frac{R_1(x)}{\sqrt{ax^2 + bx + c}} + R_2(x),$$

где $R_1(x)$, $R_2(x)$ – рациональные дроби. С интегралом от рациональной дроби все ясно. Как вычислить интеграл от первой дроби?

Разложив дробь на простейшие, придем к дробям (и интегралам) трех типов. Первый тип:

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx.$$

Этот интеграл может быть вычислен, как

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{m-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

где коэффициенты ищутся после дифференцирования методом неопределенных коэффициентов.

Второй тип:

$$\int \frac{dx}{(x-a)^k \sqrt{ax^2 + bx + c}}.$$

Этот интеграл сводится к интегралу предыдущего типа подстановкой $t=(x-a)^{-1}.$

Третий тип:

$$\int \frac{Ax+B}{(x^2+px+q)^k \sqrt{ax^2+bx+c}} dx.$$

Если $ax^2 + bx + c = \alpha(x^2 + px + q)$, то приходим к интегралу

$$\int \frac{Ax+B}{(x^2+px+q)^{k+1/2}} dx = E \int \frac{2x+p}{(x^2+px+q)^{k+1/2}} dx + F \int \frac{dx}{(x^2+px+q)^{k+1/2}}.$$

Второй интеграл вычисляется, используя подстановку Абеля:

$$t = \left(\sqrt{x^2 + px + q}\right)'.$$

Иначе

$$x = \frac{\alpha t + \beta}{t + 1}$$

и коэффициенты подбираются так, чтобы в квадратных трехчленах исчезли члены, содержащие t. Приходим к интегралу

$$\int \frac{P_{k-1}(x)}{(x^2+a)^k \sqrt{sx^2+r}} dx.$$

Раскладывая дробь на простейшие, имеем либо

$$\int \frac{x}{(x^2+a)^k \sqrt{sx^2+r}} dx,$$

либо

$$\int \frac{dx}{(x^2+a)^k \sqrt{sx^2+r}}.$$

Последний интеграл снова вычисляется подстановкой Абеля

$$t = \left(\sqrt{sx^2 + r}\right)'.$$

3. Дифференциальный бином

$$\int x^m (ax^n + b)^p dx,$$

 $a, b \in \mathbb{R}, m, n, p \in \mathbb{Q}.$

Если $p \in \mathbb{Z}$, то $x = t^N$, N – общий знаменатель m, n.

Если $(m+1)/n \in \mathbb{Z}$, то $ax^n + b = t^s$, s – знаменатель p.

Если $(m+1)/n+p\in\mathbb{Z}$, то $a+bx^{-n}=t^s$, s – знаменатель p.

В других случаях интеграл в элементарных функциях не выражается.

1.10 Интегралы от тригонометрических функций

В этом разделе будут рассмотрены интегралы от некоторых классов тригонометрических функций.

Покажем, что интегралы вида

$$\int R(\sin x, \cos x) dx$$

всегда сводятся к интегралам от рациональных функций подстановкой $\operatorname{tg} \frac{x}{2} = t$. Для этого обратимся к формулам выражение синуса и косинуса через тангенс половинного угла, а тем самым представим их через t:

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

А также

$$\operatorname{tg} \frac{x}{2} = t \Rightarrow x = 2 \operatorname{arctg} t, dx = \frac{2dt}{1 + t^2}.$$

Таким образом исходный интеграл будет выражен через рациональные функции:

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$