PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: WO 98/58953 C07K 14/00 **A2** (43) International Publication Date: 30 December 1998 (30.12.98) (21) International Application Number: PCT/DK98/00266 (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility (22) International Filing Date: 19 June 1998 (19.06.98) model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, (30) Priority Data: LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, 0744/97 23 June 1997 (23.06.97) MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK DK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, (71)(72) Applicants and Inventors: SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, BIRKELUND, Svend [DK/DK]; Søtoften 26, DK-8250 Egå (DK). CHRIS-RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, TIANSEN, Gunna [DK/DK]; Søtoften 26, DK-8250 Egå ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI (DK). patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). (72) Inventors; and (75) Inventors/Applicants (for US only): KNUDSEN, Katrine [DK/DK]; Lundingsgade 33, Lejlighed 407, DK-8000 **Published** Århus C (DK). MADSEN, Anna-Sofie [DK/DK]; Ramsh-Without international search report and to be republished erred 51 b, 1.tv., DK-6200 Aabenraa (DK). MYGIND, Per upon receipt of that report. [DK/DK]; Falstersgade 5, 3.tv., DK-8000 Århus C (DK). (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).

(54) Title: NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

(57) Abstract

The invention relates to the identification of members of a gene family from the human respiratory pathogen Chlamydia pneumoniae, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by C. pneumoniae, in pathology, in epidemiology, and as vaccine components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A 11 t-	ES	Spain	LS	Lesotho	SI	Slovenia
AL	Albania	FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziłand
ΑU	Australia	GB	United Kingdom	MC	Моласо	TD	Chad
AZ	Azerbaijan	GE	Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Barbados		Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN GR	Greece	1,114	Republic of Macedonia	TR	Turkey
BF	Burkina Faso			ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	MN	Mongolia	UA	Ukraine
ВJ	Benin	IE	Ireland	MR	Mauritania	UG	Uganda
BR	Brazil	11.	Israel			US	United States of America
BY	Belarus	IS	Iceland	MW	Malawi	UZ	Uzbekistan
CA	Canada	IT	Italy	MX	Mexico		
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbahwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
E.E.	Latoma	2.1			- -		

NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

The present invention relates to the identification of members of a gene family from the human respiratory pathogen Chlamydia pneumoniae, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by C. pneumoniae, in pathology, in epidemiology, and as vaccine components.

GENERAL BACKGROUND

C. pneumoniae is an obligate intracellular bacteria (Christiansen and Birkelund (1992); Grayston et al. (1986)). 15 It has a cell wall structure as Gram negative bacteria with an outer membrane, a periplasmic space, and a cytoplasmic membrane. It is possible to purify the outer membrane from Gram negative bacteria with the detergent sarkosyl. This fraction is named the 'outer membrane complex (OMC)' (Caldwell 20 et al. (1981)). The COMC (Chlamydia outer membrane complex) of C. pneumoniae contains four groups of proteins: A high molecular weight protein 98 kDa as determined by SDS-PAGE, a double band of the cysteine rich outer membrane protein 2 (Omp2) protein of 62/60 kDa, the major outer membrane protein (MOMP) of 38 kDa, and the low-molecular weight lipo-protein 25 Omp3 of 12 kDa. The Omp2/Omp3 and MOMP proteins are present in COMC from all Chlamydia species, and these genes have been cloned from both C. trachomatis, C. psittaci and C. pneumoniae. However, the gene encoding 98 kDa protein from C. pneumoniae COMC have not been characterized or cloned.

The current state of C. pneumoniae serology and detection

C. pneumoniae is an obligate intra-cellular bacteria belonging to the genus Chlamydia which can be divided into

four species: C. trachomatis, C. pneumoniae, C. psittaci and C.pecorum. Common for the four species is their obligate intra cellular growth, and that they have a biphasic life cycle, with an extracellular infectious particle (the elementary body, EB), and an intercellular replicating form (the reticulate body, RB). In addition the Chlamydia species are characterized by a common lipopolysaccharide (LPS) epitope that is highly immunogenic in human infection. C. trachomatis is causing the human ocular infection (trachoma) and genital infections. C. psittaci is a variable group of 10 animal pathogens where the avian strains can occasionally infect humans and give rise to a severe pneumonia (ornithosis). The first C. pneumoniae isolate was obtained from an eye infection, but it was classified as a non-typable Chlamydia. Under an epidemic outbreak of pneumonia in Finland it was realized that the patients had a positive reaction in the Chlamydia genus specific test, (the lygranum test), and the patients showed a titre increase to the untyped Chlamydia isolates. Similar isolates were obtained in an outbreak of upper respiratory tract infections in Seattle, and the 20 Chlamydia isolates were classified as a new species, Chlamydia pneumoniae (Grayston et al. (1989)). In addition, C. pneumoniae is suggested to be involved in the development of atherosclerotic lesions and for initiating bronchial asthma (Kuo et al. (1995)). These two conditions are thought 25 to be caused by either chronic infections, by a hypersensitivity reaction, or both.

Diagnosis of Chlamydia pneumoniae infections

---- ----

Diagnosis of acute respiratory tract infection with *C. pneumoniae* is difficult. Cultivation of *C. pneumoniae* from patient samples is insensitive, even when proper tissue culture cells are selected for the isolation. A *C. pneumoniae* specific polymerase chain reaction (PCR) has been developed by Campbell et al.(1992).

Even though Chlamydia pneumoniae has in several studies been detected by this PCR it is debated whether this method is suitable for detection under all clinical situations. The reason for this is, that the cells carrying Chlamydia pneumoniae in acute respiratory infections have not been determined, and that a chronic carrier state is expected but it is unknown in which organs and cells they are present. Furthermore, the PCR test is difficult to perform due to the low yield of these bacteria and due to the presence of inhibitory substances in the patient samples. Therefore, it 10 will be of great value to develop sensitive and specific sero-diagnostics for detecting both acute and chronic infections. Sero-diagnosis of Chlamydia infections is currently based on either genus specific tests as the Lygranum test and ELISA, measuring the antibodies to LPS, or the more species specific tests where antibodies to purified EBs are measured by microimmuno fluorescence (Micro-IF) (Wang et al. (1970)). However, the micro-IF method is read by microscopy, and in order to ensure correct readings the result must be compared to the results with C. trachomatis 20 used as antigen due to the cross-reacting antibodies to the common LPS epitope. Thus, there exists in the art an urgent need for development of reliable methods for species specific diagnosis of Chlamydia pneumoniae, as has been expressed in 25 Kuo et al. (1995); "..a rapid reliable laboratory test of infection for the clinical laboratory is a major need in the field". Furthermore, the possible involvement of C. pneumoniae in atherosclerosis and bronchial asthma clearly warrants the development of an effective vaccine.

30 DETAILED DISCLOSURE OF THE INVENTION

The present invention aims at providing means for efficient diagnosis of infections with Chlamydia pneumoniae as well as the development of effective vaccines against infection with this microorganism. The invention thus relates to species specific diagnostic tests for infection in a mammal, such as

a human, with Chlamydia pneumoniae, said tests being based on

WO 98/58953 PCT/DK98/00266

4

the detection of antibodies against surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably of about 89.6-100.3 kDa and about 56.1 kDa (the range in size of the deduced amino acid sequences was from 100.3 to 89.6 except for Omp13 with the size of 56.1 kDa), or the detection of nucleic acid fragments encoding such proteins or variants or subsequences thereof. The invention further relates to the amino acid sequences of proteins according to the invention, to variants and subsequences thereof, and to nucleic acid fragments encoding these proteins or variants or subsequences thereof. The present invention further relates to antibodies against proteins according to the invention. The invention also relates to the use of nucleic acid fragments and proteins according to the invention in diagnosis of Chlamydia pneumoniae and vaccines against Chlamydia pneumoniae.

10

15

Prior to the disclosure of the present invention only a very limited number of genes from C. pneumoniae had been sequenced. These were primarily the genes encoding known C. trachomatis homologues: MOMP, Omp2, Omp3, Kdo-transferase, 20 the heat shock protein genes GroEl/Es and DnaK, a ribonuclease P homologue and a gene encoding a 76 kDa protein of unknown function. The reason why so few genes have been cloned to date is the very low yield of C. pneumoniae which can be obtained after purification from the host cells. After 25 such purification the DNA must be purified from the EBs, and at this step the C. pneumoniae DNA can easily be contaminated with host cell DNA. In addition to these inherent difficulties, it is exceedingly difficult to cultivate C. pneumoniae and use DNA technology to produce expression 30 libraries with very low amounts (few μg) of DNA. It has been known since 1993 (Melgosa et al., 1993) that a 98 kDa protein is present in OMC from $C.\ pneumoniae$. Even though the protein bands of 98 kDa was mentioned to be part of the OMC of \mathcal{C} . pneumoniae by Melgosa, the gene sequences and thus the deduced amino acid sequences have not been determined. Only

CHDCT+++== 0+1==+ /5111 = 00/

bands originating from Chlamydia pneumoniae proteins in general separated by SDS-PAGE are describe therein.

However, the gene encoding this protein has not been determined before the present invention. Only a very weak or no reaction with patient sera can be observed to the 98 kDa protein (Campbell et al. 1990) and prior to the work of the present inventors it has not been recognized that the 89-101 kDa proteins are surface exposed or that they in fact is immunogenic. In this report it is described that a number of human serum samples reacts with a C. pneumoniae protein that in SDS-PAGE migrate as 98 kDa. The protein was not further characterized and it is therefore not in conflict with the present application.

Halme et al. (1997) described the presence of human T-cell epitopes in *C. pneumoniae* proteins of 92-98 kDa. The proteins were eluted from SDS-PAGE of total chlamydia proteins but the identity of the proteins were not determined.

Use of antibodies to screen expression libraries is a well known method to clone fragments of genes encoding antigenic parts of proteins. However, since patient sera do not show a significant reaction with the 98 kDa protein it has not been possible to use patient serum to clone the proteins.

20

It was known that monoclonal antibodies generated by the
inventors reacted with conformational epitopes on the surface
of *C. pneumoniae* and that they also reacted with *C.*pneumoniae OMC by immuno-electron microscopy (Christiansen et
al. 1994). Furthermore, the 98 kDa protein is the only
unknown protein from the *C. pneumoniae* OMC (Melgosa et al.

- 30 1993). The present inventors chose to take an unconventional step in order to clone the gene encoding the hitherto unknown 98 kDa protein: *C. pneumoniae* OMC was purified and the highly immunogenic conformational epitopes were destroyed by SDS-treatment of the antigen before immunization. Thereby an
- 35 antibody (PAB 150) to less immunogenic linear epitopes was obtained. This provided the possibility to obtain an

WO 98/58953 PCT/DK98/00266 6

antiserum which could detect the protein, and it was shown that a gene family encoding the 89-101 kDa and 56 proteins according to the invention could be detected in colony blotting of recombinant E. coli.

Mice infected with C. pneumoniae generate antibodies to the 5 proteins identified by the inventors and named Omp4-15, but do not recognize the SDS treated heat denatured antigens normally used for SDS-PAGE and immunoblotting. However, a strong reaction was seen if the antigen was not heat denatured. It is therefore highly likely that if a similar 10 reaction is seen in connection with human infections the antigens of the present invention will be of invaluable use in sero-diagnostic tests and may very likely be used as a vaccine for the prevention of infections.

15

By generating antibodies against COMC from C. pneumoniae a polyclonal antibody (PAB 150) was obtained which reacted with all the proteins. This antibody was used to identify the genes encoding the 89.6-101.3 kDa and 56.1 kDa proteins in an expression library of C. pneumoniae DNA. A problem in 20 connection with the present invention was that a family comprising a number of similar genes were found in C. pneumoniae. Therefore, a large number of different clones were required to identify clusters of fragments. Only because the rabbit antibody generated by the use of SDS-denatured 25 antigens contained antibodies to a high number of different epitopes positioned on different members of the protein family did the inventors succeed in cloning and sequencing four of the genes. One gene was fully sequenced, a second was sequenced except for the distal part and shorter fragments of 30 two additional genes were obtained by this procedure. To obtain the DNA sequence of the additional genes and to search for more members of the gene family long range PCR with primers derived from the sequenced genes, and primers from the genes already published in the database were used. This 35 approach gave rise to the detection of additional eight genes belonging to this family. The genes were situated in two gene

CHRC++--- ----- /--- ----

10

clusters: Omp12,11,10,5,4,13 and 14 in one cluster and Omp6,7,8,9 and 15 in the second. Full sequence was obtained from Omp4,5,6,7,8,9,10,11 and 13, and partial sequence of Omp12,14. Omp13 was a truncated gene of 1545 nucleotides. The rest of the full length genes were from 2526 (Omp7) to 2838 (Omp15) nucleotides. The deduced amino acid sequences revealed putative polypeptides of 89.6 to 100.3 kDa, except for Omp13 of 56.1 kDa. Alignment of the deduced amino acid sequences showed a maximum identity of 49% (Omp5/Omp9) when all the sequences were compared. Except for Omp13, the lowest homology was to Omp7 with no more than 34% identity to any of the other amino acid sequences. The scores for Omp13 was from 29-32% to all the other sequences.

In the present context SEQ ID Nos. 1 and 2 correspond to

Omp4, SEQ ID Nos 3 and 4 correspond to Omp5, SEQ ID Nos 5 and
6 correspond to Omp6, SEQ ID Nos 7 and 8 correspond to Omp7,

SEQ ID Nos 9 and 10 correspond to Omp8, SEQ ID Nos 11 and 12

correspond to Omp9, SEQ ID Nos 13 and 14 corresponds to

Omp10, SEQ ID Nos 15 and 16 corresponds to Omp11, SEQ ID Nos

17 and 18 corresponds to Omp12, SEQ ID Nos 19 and 20

corresponds to Omp13, SEQ ID Nos 21 and 22 corresponds to

Omp14, and SEQ ID Nos 23 and 24 corresponds to Omp15.

The estimated size of the Omp proteins of the of the present invention are listed in the following. Omp 4 has a size of 98.9 kDa, Omp5 has an estimated size of 97.2 kDa, Omp6 has an estimated size of 100.3 kDa, Omp7 has an estimated size of 89.7 kDa, Omp8 has an estimated size of 90.0 kDa, Omp9 has an estimated size of 96.7 kDa, Omp10 has an estimated size of 98.4 kDa, Omp11 has an estimated size of 97.6 kDa, Omp13 has an estimated size of 56.1 kDa, Omp 12 and 14 being partial.

Furthermore, SEQ ID No 25 is a subsequence of SEQ ID No 3, SEQ ID No 26 is a subsequence of SEQ ID No 4, SEQ ID No 27 is a subsequence of SEQ ID No 5, SEQ ID No 28 is a subsequence of SEQ ID No 6, SEQ ID No 29 is a subsequence of SEQ ID No 7,

³⁵ and SEQ ID No 30 is a subsequence of SEQ ID No 8.

WO 98/58953 PCT/DK98/00266

8

Part of the omp proteins were expressed as fusion proteins, and mice polyclonal monospecific antibodies against the proteins were produced. The antibodies reacted with the surface of C. pneumoniae in both immunofluorescence and immunoelectron microscopy. This shows for the first time that the 89-101 kDa and 56-57 kDa protein family in C. pneumoniae comprises surface exposed outer membrane proteins. This important finding leads to the realization that members of the 89-101 kDa and 56-57 kDa C. pneumoniae protein family are good candidates for the development of a sero diagnostic test 10 for C. pneumoniae, as well as the development of a vaccine against infections with C. pneumoniae based on using these proteins. Furthermore, the proteins may be used as epidemiological markers, and polyclonal monospecific sera against the proteins can be used to detect C. pneumoniae in 15 human tissue or detect C. pneumoniae isolates in tissue culture. Also, the genes encoding the 89-101 kDa and 56-57 kDa such as the 89.6-100.3 kDa and 56.1 protein family may be used for the development of a species specific diagnostic test based on nucleic acid detection/amplification. 20

The full length Omp4 was cloned into an expression vector system that allowed expression of the Omp4 polypeptide. This polypeptide was used as antigen for immunization of a rabbit. Since the protein was purified under denaturing condition the antibody did not react with the native surface of C. pneumoniae, but it reacted with a 98 kDa protein in immunoblotting where purified C. pneumoniae EB was used as antigen. Furthermore, the antibody reacted in paraffin embedded sections of lung tissue from experimentally infected mice.

A broad aspect of the present invention relates to a species specific diagnostic test for infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said test comprising detecting in a patient or preferable in a patient sample the presence of antibodies against proteins from the outer membrane of *Chlamydia pneumoniae*, said proteins being of a

molecular weight of 89-101 kDa or 56-57 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins or fragments thereof.

In the context of the present application, the term "patient sample" should be taken to mean an amount of serum from a patient, such as a human patient, or an amount of plasma from said patient, or an amount of mucosa from said patient, or an amount of tissue from said patient, or an amount of expectorate, forced sputum or a bronchial aspirate, an amount 10 of urine from said patient, or an amount of cerebrospinal fluid from said patient, or an amount of atherosclerotic lesion from said patient, or an amount of mucosal swaps from said patient, or an amount of cells from a tissue culture originating from said patient, or an amount of material which 15 in any way originates from said patient. The in vivo test in a human according to the present invention includes a skin test known in the art such as an intradermal test, e.g similar to a Mantaux test. In certain patients being very sensitive to the test, such as is often the case with 20 children, he test could be non-invasive, such as a superficial test on the skin, e.g. by use of a plaster

In the present context, the term 89-101 kDa protein means proteins normally present in the outer membrane of *Chlamydia* pneumoniae, which in SDS-PAGE can be observed as one or more bands with an apparent molecular weight substantially in the range of 89-101 kDa. From the deduced amino acid sequences the molecular size varies from 89.6 to 100.3 kDa.

25

Within the scope of the present invention are species

specific sero-diagnostic tests based on the usage of the
genes belonging to the gene family disclosed in the present
application.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention,

³⁵ wherein the outer membrane proteins have sequences selected

from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

When used in connection with proteins according to the present invention the term "variant" should be understood as a sequence of amino acids which shows a sequence similarity of less than 100% to one of the proteins of the invention. A variant sequence can be of the same size or it can be of a different size as the sequence it is compared to. A variant will typically show a sequence similarity of preferably at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

The term "sequence similarity" in connection with sequences
of proteins of the invention means the percentage of
identical and conservatively changed amino acid residues
(with respect to both position and type) in the proteins of
the invention and an aligned protein of equal of different
length. The term "sequence identity" in connection with
sequences of proteins of the invention means the percentage
of identical amino acid with respect to both position and type in the proteins of the invention and an aligned protein
of equal of different length.

Within the scope of the present invention are subsequences of one of the proteins of the invention, meaning a consecutive stretch of amino acid residues taken from SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24. A subsequence will typically comprise at least 100 amino acids, preferably at least 80 amino acids, more preferably at least 70 amino acids, such as 50 amino acids. It might even be as small as 10-50 amino acids, such as 20-40 amino acids, e.g. about 30 amino acids. A subsequence will typically show a sequence homology of at least 50%, preferably at least 60%, more

preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

Diagnostic tests according to the invention include immunoassays selected from the group consisting of a direct or indirect EIA such as an ELISA, an immunoblot technique such as a Western blot, a radio immuno assay, and any other non-enzyme linked antibody binding assay or procedure such as a fluorescence, agglutination or precipitation reaction, and nephelometry.

- A preferred embodiment of the present invention relates to species specific diagnostic tests according to the invention, said test comprising an ELISA, wherein antibodies against the proteins of the invention or fragments thereof are detected in samples.
- A preferred embodiment of the invention, is an ELISA based on detection in samples of antibodies against proteins of the invention. The ELISA may use proteins of the invention, or variants thereof, i.e. the antigen, as coating agent. An ELISA will typically be developed according to standard methods well known in the art, such as methods described in "Antibodies; a laboratory manual", Ed. David Lane Harlow, Cold Spring Habor laboratories (1988), which is hereby incorporated by reference.

Recombinant proteins will be produced using DNA sequences

obtained essentially using methods described in the examples below. Such DNA sequences, comprising the entire coding region of each gene in the gene family of the invention, will be cloned into an expression vector from which the deduced protein sequence can be purified. The purified proteins will be analyzed for reactivity in ELISA using both monoclonal and polyclonal antibodies as well as sera from experimentally infected mice and human patient sera.

WO 98/58953 PCT/DK98/00266

12

From the experimentally infected mice sera it is known that non-linear epitopes are recognized predominantly. Thus, it is contemplated that different forms of purification schemes known in the art will be used to analyze for the presence of discontinuous epitopes, and to analyze whether the human immune response is also directed against such epitopes.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention, wherein the nucleic acid fragments have sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

In connection with nucleic acid fragments according to the
present invention the term "variant" should be understood as
a sequence of nucleic acids which shows a sequence homology
of less than 100%. A variant sequence can be of the same size
or it can be of a different size as the sequence it is
compared to. A variant will typically show a sequence
homology of at least 50%, preferably at least 60%, more
preferably at least 70%, such as at least 80%, e.g. at least
90%, 95% or 98%.

The term "sequence homology" in connection with nucleic acid fragments of the invention means the percentage of matching nucleic acids (with respect to both position and type) in the nucleic acid fragments of the invention and an aligned nucleic acid fragment of equal or different length.

In order to obtain information concerning the general distribution of each of the genes according to the present invention, PCR will be performed for each gene on all available *C. pneumoniae* isolates. This will provide information on the general variability of the genes or nucleic acid fragments of the invention. Variable regions will be sequenced. From patient samples PCR will be used to

amplify variable parts of the genes for epidemiology. Non-variable parts will be used for amplification by PCR and analyzed for possible use as a diagnostic test. It is contemplated that if variability is discovered, PCR of variable regions can be used for epidemiology. PCR of non-variable regions can be used as a species specific diagnostic test. Using genes encoding proteins known to be invariable in all known isolates prepared as targets for PCR to genes encoding proteins with unknown function.

- Particularly preferred embodiments of the present invention, relate to diagnostic tests according to the invention, wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification, preferably polymerase chain reaction (PCR).
- Within the scope of the present invention is a PCR based test directed at detecting nucleic acid fragments of the invention or variants thereof. A PCR test will typically be developed according to methods well known in the art and will typically comprise a PCR test capable of detecting and differentiating between nucleic acid fragments of the invention. Preferred are quantitative competitive PCR tests or nested PCR tests. The PCR test according to the invention will typically be developed according to methods described in detail in EP B 540 588, EP A 586 112, EP A 643 140 OR EP A 669 401, which are hereby incorporated by reference.

Within the scope of the present invention are variants and subsequences of one of the nucleic acid fragments of the invention, meaning a consecutive stretch of nucleic acids taken from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23. A variant or subsequence will preferably comprise at least 100 nucleic acids, preferably at least 80 nucleic acids, more preferably at least 70 nucleic acids.

³⁵ It might even be as small as 10-50 nucleic acids, such as

14

20-40 nucleic acids, e.g. about 30 nucleic acids. A subsequence will typically show a sequence homology of at least 30%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%. The shorter the subsequence, the higher the required homology. Accordingly, a subsequence of 100 nucleic acids or lower must show a homology of at least 80%.

A very important aspect of the present invention relates to proteins of the invention derived from Chlamydia pneumoniae having amino acid sequences selected from the group 10 consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 having a sequence similarity of at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98% and a similar biological function.

By the term "similar biological function" is meant that the protein shows characteristics similar with the proteins derivable from the membrane proteins of Chlamydia pneumoniae. 20 Such proteins comprise repeated motifs of GGAI (at least 2, preferable at least 3 repeats) and/or conserved positions of tryptophan, (w).

Comparison of the DNA sequences from genes encoding Omp4-15 shows that the overall similarity between the individual 25 genes ranges between 43-55%. Comparison of the amino acid sequences of Omp4-15 shows 34-49% identity and 53-64% similarity. The homology is generally scattered along the entire length of the deduced amino acids. However, as seen from figure 8 \mbox{A} - \mbox{J} there are some regions in which the 30 homology is more pronounced. This is seen in the repeated sequence where the sequence GGAI is repeated 4-7 times in the genes. It is interesting that the DNA homology is not conserved for the sequences encoding the four amino acids GGAI. This may indicate a functional role of this part of the 35

WO 98/58953 PCT/DK98/00266

15

protein and indicates that the repeated structure did not occur by a duplication of the gene. In addition to the four amino acid repeats GGAI a region from amino acid 400 to 490 has a higher degree of homology than the rest of the protein, with the conserved sequence FYDPI occurring in all sequences. As further indication of similarity in function the amino acid tryptophan (W) is perfectly conserved at 4-6 localizations in the C-terminal part of the protein.

Since none of the genes and deduced amino acid sequences of 10 the invention are identical the following is within the scope of the present invention; production of monospecific antibodies, the use of said antibodies for characterizing which C. pneumoniae proteins are expressed, the use of said antibodies for characterizing at which time during 15 developmental life cycle said C. pneumoniae proteins are expressed, and the use of said antibodies for characterizing the precise cellular localization of said C. pneumoniae proteins. Also within the scope of the present invention is the use of monospecific antibodies against proteins of the 20 invention for determining which part of said proteins is surface exposed and how proteins in the C. pneumoniae COMC interact with each other.

Preferred embodiments of the present invention relate to polypeptides which comprise subsequences of the proteins of the invention, said subsequences comprising the sequence GGAI. Further preferred embodiments of the present invention relate to polypeptides which comprise subsequences of the proteins of the invention, said subsequences comprising the sequence FSGE.

25

30

35

Polypeptides according to the invention will typically be of a length of at least 6 amino acids, preferably at least 15 amino acids, preferably at least 20 amino acids, preferably at least 25 amino acids, preferably at least 30 amino acids, preferably at least 35 amino acids, preferably at least 40 amino acids, preferably at least 45 amino acids, preferably

at least 50 amino acids, preferably at least 55 amino acids, preferably at least 100 amino acids.

A very important aspect of the present invention relates to nucleic acid fragments of the invention derived from Chlamydia pneumoniae, variants and subsequences thereof.

5

10

hereof.

Another important aspect of the present invention relates to antibodies against the proteins according to the invention, such antibodies including polyclonal monospecific antibodies and monoclonal antibodies against proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

A very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kits comprising one or more proteins with amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

Another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kits comprising antibodies against a protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

30 Antibodies included in a diagnostic kit according to the invention can be polyclonal or monoclonal or a mixture

Still another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kits comprising one or more nucleic acid fragments with sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

An aspect of the present invention relates to a composition

10 for immunizing a mammal, such as a human, against Chlamydia

pneumoniae, said composition comprising one or more proteins

with amino acid sequences selected from the group consisting

of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8,

SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16,

SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO:

24.

An important role for the proteins of the invention in prevention of infection of a mammal, such as a human, with C. pneumoniae is expected. Thus proteins of the invention, including variants and subsequences will be produced, typically by using recombinant techniques, and will then be used as an antigen in immunization of mammals, such as rabbits. Subsequently, the hyper immune sera obtained by the immunization will be analyzed for protection against C.

25 pneumoniae infection using a tissue culture assay. In addition it is contemplated that monoclonal antibodies will be produced, typically using standard hybridoma techniques, and analyzed for protection against infection with C. pneumoniae.

It is envisioned that particularly interesting and immunogenic epitopes will be found in connection with the proteins of the invention, which will comprise subsequences of said proteins. It is preferred to use polypeptides comprising such subsequences of the proteins of the invention

in immunizing a mammal, such as a human, against Chlamydia pneumoniae.

An important aspect of the present invention relates to the use of proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.

A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, in diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*.

A very important aspect of the present invention relates to
the use of proteins with sequences selected from the group
consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ
ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID
NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ
ID NO: 24, for immunizing a mammal, such as a human, against
Chlamydia pneumoniae.

A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

A very important aspect of the present invention relates to the use of nucleic acid fragments with nucleotide sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO:

30 19, SEQ ID NO: 21, and SEQ ID NO: 23 for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

It is envisioned that one type of vaccine against *C*.

pneumoniae will be developed by using gene-gun vaccination of mice. Typically, different genetic constructs containing nucleic acid fragments, combinations of nucleic acid fragments according to the invention will be used in the gene-gun approach. The mice will then subsequently be analyzed for production of both humoral and cellular immune response and for protection against infection with *C*.

pneumoniae after challenge herewith.

In line with this, the invention also relates to the uses of the proteins of the invention as a pharmaceutical (a vaccine) as well as to the uses thereof for the preparation of a vaccine against infections with Chlamydia pneumoniae.

Preparation of vaccines which contain protein sequences as active ingredients is generally well understood in the art, as exemplified by U.S. Patents 4,608,251; 4,601,903; 15 4,599,231; 4,599,230; 4,596,792; and 4,578,770, all incorporated herein by reference. Typically, such vaccines are prepared as injectables either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The 20 preparation may also be emulsified. The active immunogenic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations 25 thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the vaccines. 30

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. These compositions take the form of

solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of active ingredient, preferably 25-70%, and optionally a suitable

- The protein sequences may be formulated into the vaccine as neutral or salt forms known in the art. The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered
- depends on the subject to be treated. Suitable dosage ranges 10 are of the order of several hundred micrograms active ingredient per vaccination with a preferred range from about 0.1 μg to 1000 μg . The immune response may be enhanced if the vaccine further comprises an adjuvant substance as known in
- the art. Other possibilities involve the use of 15 immunomodulating substances such as lymphokines (e.g. IFN- γ , IL-2 and IL-12) or synthetic IFN- γ inducers such as poly I:C in combination with the above-mentioned adjuvants.

It is also possible to produce a living vaccine by introducing, into a non-pathogenic microorganism, at least one 20 nucleic acid fragment encoding a protein fragment or protein of the invention, and effecting expression of the protein fragment or the protein on the surface of the microorganism (e.g. in the form of a fusion protein including a membrane anchoring part or in the form of a slightly modified protein 25 or protein fragment carrying a lipidation signal which allows anchoring in the membrane). The skilled person will know how to adapt relevant expression systems for this purpose.

Another part of the invention is based on the fact that recent research have revealed that a DNA fragment cloned in a 30 vector which is non-replicative in eukaryotic cells may be introduced into an animal (including a human being) by e.g. intramuscular injection or percutaneous administration (the so-called "gene gun" approach). The DNA is taken up by e.g. muscle cells and the gene of interest is expressed by a 35

promoter which is functioning in eukaryotes, e.g. a viral promoter, and the gene product thereafter stimulates the immune system. These newly discovered methods are reviewed in Ulmer et al., 1993, which hereby is included by reference.

- 5 Thus, a nucleic acid fragment encoding a protein or protein of the invention may be used for effecting in vivo expression of antigens, i.e. the nucleic acid fragments may be used in so-called DNA vaccines. Hence, the invention also relates to a vaccine comprising a nucleic acid fragment encoding a protein fragment or a protein of the invention, the vaccine effecting in vivo expression of antigen by an mammal, such as a human, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to infections with 15 Chlamydia pneumoniae in an mammal, such as a human.
- The efficacy of such a "DNA vaccine" can possibly be enhanced by administering the gene encoding the expression product together with a DNA fragment encoding a protein which has the capability of modulating an immune response. For instance, a gene encoding lymphokine precursors or lymphokines (e.g. IFN-20 γ , IL-2, or IL-12) could be administered together with the gene encoding the immunogenic protein fragment or protein, either by administering two separate DNA fragments or by administering both DNA fragments included in the same vector. It is also a possibility to administer DNA fragments compri-25 sing a multitude of nucleotide sequences which each encode relevant epitopes of the protein fragments and proteins disclosed herein so as to effect a continuous sensitization of the immune system with a broad spectrum of these epitopes.
- The following experimental non-limiting examples are intended to illustrate certain features and embodiments of the invention.

•

LEGENDS TO FIGURES

Figure 1. The figure shows electron microscopy of negative stained purified C. pneumoniae EB (A) and purified OMC (B).

Figure 2. The figure shows silver stained 15% SDS-PAGE of purified EB and OMC. Lane 1, purified C. pneumoniae EB; lane 2, C. pneumoniae OMC; lane 3, purified C. trachomatis EB; and lane 4 C. trachomatis OMC.

Figure 3. The figure shows immunoblotting of *C. pneumoniae* EB separated by 10% SDS-PAGE, transferred to nitrocellulose and reacted with rabbit anti *C. pneumoniae* OMC.

Figure 4. The figure shows coomassie blue stained 7.5% SDS-PAGE of recombinant pEX that were detected by the rabbit anti *C. pneumoniae* serum. Arrow indicated the localization of the 117 kDa b-galactosidase protein.

15 Figure 5. The figure shows immunoblotting of recombinant pEX colones detected by colony blotting separated by 7.5% SDS-PAGE and transferred to nitrocellulose and reacted with rabbit anti *C. pneumoniae* OMC. Lane 1, seablue molecular weight standard. Lane 2-6 pEX clones cultivated at 42°C to induce the production of the b-galactosidase fusion proteins.

Figure 6. The figure shows sequence strategy for Omp4 and Omp5. Arrows indicates primers used for sequencing.

Figure 7. *C pneumoniae* omp genes. The genes are arranged in two clusters. In cluster 1 Omp12, 11, 10, 5, 4, 13, and 14 are found. In cluster 2 are found Omp6, 7, 8, 9, and 15.

Figure 8 A - J. The figure shows alignment of $\it C.\ pneumoniae$ Omp4-15, using the program pileup in the GCG package.

Figure 9. The figure shows immunofluorescence of \mathcal{C} . pneumoniae infected HeLa, 72 hrs. after infection, reacted

OHROTIC. -- -- -- -- -- -- -- --

with mouse monospecific anti-serum against pEX3-36 fusion protein. pEX3-36 is a part of the Omp5 gene.

Figure 10. The figure shows immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

Figure 11. The figure shows immunoblotting of *C. pneumoniae*EB, lane 1-4 heated to 100oC in SDS-sample buffer, lane 5-6
unheated. Reacted with serum from C57-black mice 14 days
after infection with 10⁷ CFU of *C. pneumoniae*. Lane 1 and 5
mouse 1; lane 2 and 6 mouse 2; lane 3 and 5 mouse 3; and lane
4 and 8 mouse 4.

Figure 12. The figure shows immunohistochemistry analysis of mouse lung tissue with *C. pneumoniae* inclusions present both in the bronchial epithelium and in the lung parenchyma (arrows).

EXAMPLE 1

35

Cloning of the genes encoding the 98/95 kDa C. pneumoniae COMC proteins

Purification of C. pneumonia EBs and COMC

C. pneumoniae was cultivated in HeLa cells. Cultivation was done according to the specifications of Miyashita and Matsumoto (1992), with the modification that centrifugation of supernatant and of the later precipitate and turbid bottom layer was carried out at 100,000 X g. The microorganism attached to the HeLa cells by 30 minutes of centrifugation at 10 1000 \times g, after which the cells were incubated in RPMI 1640 medium (Gibco BRL, Germany cat No. 51800-27), containing 5% foetal calf serum (FCS, Gibco BRL, Germany Cat No. 10106.169) gentamicin for two hours at 37°C in 5% CO2 atmosphere. The medium was changed to medium that in addition contained 1 mg 15 per ml of cycloheximide. After 48 hours of incubation a coverslip was removed from the cultures and the inclusion was tested with an antibody specific for C. pneumoniae (MAb 26.1) (Christiansen et al. 1994) and a monoclonal antibody specific for the species C. trachomatis (MAb 32.3, Loke diagnostics; 20 Århus Denmark) to ensure that no contamination with C. trachomatis had occurred. The HeLa cells were tested by Hoechst stain for Mycoplasma contamination as well as by culture in BEa and BEg medium (Freund et al., 1979). Also the C. pneumoniae stocks were also tested for Mycoplasma 25 contamination by cultivation in BEa and BEg medium. No contamination with C. trachomatis, Mycoplasmas or bacteria were detected in cultures or cells. 72 hours post-infection the monolayer was washed in PBS, the cells were loosened in PBS with a rubber policeman, and the Chlamydia were liberated 30 from the host cell by sonication. The C. pneumoniae EBs and RBs were purified on discontinuous density gradients (Miyashita et al. (1992)). The purity of the Chlamydia EBs were verified by negative staining and electronmicroscopy

(Figure 1), only particles of a size of 0.3 to 0.5 mm were

detected in agreement with the structure of *C. pneumonia* EBs. The purified Chlamydia EBs were subjected to sarkosyl extraction as described by Caldwell et al (1981) with the modification that a brief sonication was used to suspend the COMC. The purified COMC was tested by electronmicroscopy and negative staining (Figure 1), where a folded outer membrane complex was seen.

25

SDS-PAGE analysis of purified EBs and COMC

The proteins from purified EBs and C. pneumoniae OMC were separated on 15% SDS-polyacrylamide gel, and the gel was silver stained (Figure 2), in lane 1 it is seen that the purified EBs contain major proteins of 100/95 kDa and a protein of 38 kDa, in the purified COMC (lane 2) these two protein groups are also dominant. In addition, proteins with a molecular weight of 62/60 kDa, 55 kDa, and 12 kDa have been 15 enriched in the COMC preparation. When the purified C. pneumoniae EBs are compared to purified C. trachomatis EB (lane 3) it is seen that predominant protein in the C. trachomatis EB is the major outer membrane protein (MOMP), and it is also the dominant band in the COMC preparation of 20 C. trachomatis (lane 4), and Omp2 of 60/62 kDa as well as Omp3 at 12 kDa are seen in the preparation. However, no major bands with a size of 100/95 kDa are detected as in the C. pneumoniae COMC preparation.

25 Production of rabbit polyclonal antibodies against C. pneumoniae COMC

30

To ensure production of rabbit antibodies that would recognize all the C. pneumoniae proteins in immuno-blotting and colony-blotting 10 μg of COMC antigen was dissolved in 20 μl of SDS sample buffer and thereafter divided into 5 vials. The dissolved antigen was further diluted in one ml of PBS and one ml of Freund incomplete adjuvant (Difco laboratories, USA cat. No. 0639-60 6) and injected into the quadriceps muscle of a New Zealand white rabbit. The rabbit was given

three times intramuscular injections at an interval of one week, and after further three weeks the dissolved COMC protein, diluted in one ml PBS was injected intravenously, and the procedure was repeated two weeks later. Eleven weeks after the beginning of the immunization, the serum was obtained from the rabbit. Purified C. pneumoniae EBs were separated by SDS-PAGE, and the proteins were electrotransferred to nitrocellulose membrane. The membrane was blocked and immunostained with the polyclonal COMC antibody (Figure 3). The serum recognized proteins with a size of 100/95, 60 and 38 kDa in the EB preparation. This is in agreement with the sizes of the outer membrane proteins.

Cloning of the COMC proteins

Due to the cultivation of C. pneumoniae in HeLa cells, contaminating host cell DNA could be present in the EB 15 preparations. Therefore, the purified EB preparations were treated with DNAse to remove contaminating DNA. The $\mathcal{C}.$ pneumoniae DNA was then purified by CsCl gradient centrifugation. The C. pneumoniae DNA was partially digested with Sau3A and the fractions containing DNA fragments with a 20 size of approx. 0.5 to 4.0 kb were cloned into the expression vector system pEX (Boehringer, Germany cat. No. 1034 766, 1034 774, 1034 782). The pEX vector system has a eta-galactosidase gene with multiple cloning sites in the 3'end of the eta-galactosidase gene. Expression of the gene is 25 regulated by the PR promoter, so the protein expression can be induced by elevating the temperature from 32 to $42^{\rm o}{\rm C}$. The colonies of recombinant bacteria were transferred to nitrocellulose membranes, and the temperature was increased to $42\,^{\circ}\text{C}$ for two hours. The bacteria were lysed by placing the 30 nitrocellulose membranes on filters soaked in 5% SDS. The colonies expressing outer membrane proteins were detected with the polyclonal antibody raised against C. pneumoniae COMC. The positive clones were cultivated in suspension and induced at 42°C for two hours. The protein profile of the 35 clones were analysed by SDS-PAGE, and increases in the size

CI 150-----

of the induced b-galactosidase were observed (Figure 4). In addition, the proteins were electrotransferred to nitrocellulose membranes, and the reaction with the polyclonal serum against COMC was confirmed (Figure 5).

Sequencing of positive COMC clones

To characterize the pEX clones, the inserted C. pneumoniae DNA was sequenced. The resulting DNA sequences were searched against the prokaryotic sequences in the GenEmbl database. The search identified 6 clones as part of the Omp2 gene, and 2 clones as part of the Omp3 gene, and 2 clones as part of 10 the MOMP gene, indicating that COMC proteins had been successfully cloned. Furthermore, 32 clones were obtained, containing DNA sequences not found in the GenEmbl database. These sequences could, however, be clustered in two contics of 6 and 4 clones, and three clones were identical. In 15 addition 19 clones were found with no overlap to the contics (Figure 7). To obtain more sequence data for the genes, C. pneumoniae DNA was totally digested with BamHI restriction enzyme, and the fragments were cloned into the vector pBluescript. The ligated DNA was electrotransformed into E. 20 coli XL1-Blue and selected on plates containing Ampicillin. The recombinant bacterial colonies were transferred to a nitrocellulose membrane, and colony hybridisation was performed using the inserts of pEX 1-1 clone as a probe. A clone containing a single BamHI fragment of 4.5 kb was found, 25 and the hybridisation to the probe was confirmed by Southern blotting. The insert of the clone was sequenced bi-directionally using synthetic primers for approx. each 300 bp. The sequence of the BamHI fragment made it possible to join the two contics of pEX clones. Totally, together with 30 the pEX clones it was possible to assemble 6.5 kb DNA sequence, encoding two new COMC proteins. (Figure 6)

Additional sequences were obtained by PCR performed on purified C. pneumoniae DNA with primers both from the known

Omp genes and from other known genes. The obtained PCR 35

products were sequenced, The sequence organisation is shown in Fig. 7. Additional 8 Omp genes were detected. The alignment of the deduced amino acid sequences are shown in Fig. 8 A and B.

5 Analysis of DNA sequence

The DNA sequence encoding the Omp4-15 proteins with a size of 89.6-100.3 kDa (and for Omp13: 56.1 kDa). Omp4 and Omp5 were transcribed in opposite directions. Downstream Omp4 a possible termination structure was located. The 3'end of the Omp5 gene was not cloned due to the presence of the BamHI 10 restriction enzyme site positioned within the gene. The translated DNA sequence of Omp4 and Omp5 was compared by use of the gap programme in the GCG package (Wisconsin package, version 8.1-UNIX, August 1995, sequence analysis software package). The two genes had an amino acid identity of 41% 15 (similarity 61%), and a possible cleavage site for signal peptidase 1 was present at amino acid 17 in Omp4 and amino acid 25 in Omp5. When the amino acid sequence encoded by two other pEX clones were compared to the sequence of Omp4 and Omp5 they also had amino acid homology to the genes. It is 20 seen that the two clones have homology to the same area in^2 the Omp4 and Omp5 proteins. Consequently, the pEX clones must have originated from two additional genes. Therefore these genes were named Omp6 and Omp7. Similar analyses were performed with the other genes. In contrast to what was seen 25 for Omp4 and 5 none of the other putative omp proteins had a cleavage site for signal peptides.

EXAMPLE 2

Polyclonal monospecific antibodies against pEX fusion 30 proteins and full length recombination + Omp4

To investigate the topology of the Omp4-7 proteins, representative pEX clones, were selected from each gene. The fusion proteins of β -galactosidase/omp were induced, and the

proteins were partially purified as inclusion bodies. Balb/c mice were immunized three times intramuscular with the antigens at an interval of one week, and after six weeks the serum was obtained from the mice. HeLa cells were infected with the C. pneumoniae. 72 hours after the infection the mono-layers were fixed with 3.7% formaldehyde. This treatment makes the outer membrane of the Chlamydia impermeable for antibodies due to the extensive cross-linking of the outer membrane proteins by the formaldehyde. The HeLa cells were permeabilized with 0.2% Triton X100, the monolayers were 10 washed in PBS, then incubated with 20% (v/v) FCS to inactivate free radicals of the formaldehyde. The mice sera were diluted 1:100 PBS with 20% (v/v) FCS and incubated with the monolayers for half an hour. The monolayers were washed in PBS and secondary FITCH conjugated rabbit anti mouse serum was added for half an hour, and the monolayers were washed and mounted. Several of the antibodies reacted strongly with the EBs in the inclusions (Figure 9). In spite of the formaldehyde fixation it could not be excluded that the surface of the EB was changed by the treatments, so that the 20 antibodies could get access to the Omp4-7. Therefore, the reaction was confirmed by immuno-electron microscopy with the antibody raised against clone pEX3-36. Purified EB of C. pneumoniae were absorbed to carbon coated nickel grids. After the absorption the grids were washed with PBS and blocked in 0.5% Ovalbumin dissolved in PBS. The antibodies were diluted 1:100 in the same buffer and incubated for 30 minutes. The grids were washed in PBS. Rabbit anti mouse Ig conjugated with 10nm colloidal gold diluted in PBS containing 1% gelatin was added to the grids for half an hour. The grids were 30 washed in 3 x PBS with 1% gelatin and 3 times in PBS, the grids were contrastained with 0.7% phospho tungstic acid. The grids were analysed in a Jeol 1010 electron microscope at 40 $kV\,.$ It was seen that the gold particles were covering the surface of the purified EB. Because the C. pneumoniae EBs were not exposed to any detergent or fixation under either the purification or the reaction with antibodies, these

results show that the cloned proteins have surface exposed epitopes.

Polyclonal monospecific antibodies against Omp4

The Omp4 gene was amplified by PCR with primers that contained LIC-sites, and the PCR product was cloned into the pET-30 LIC vector (Novagen). The histidine tagged fusion protein was expressed by induction of the synthesis by IPTG and purified over a nickel column. The purified Omp4 protein was used for immunization of a rabbit (six times, 8 μ g each time).

Use of rabbit polyclonal antibodies to recombinant Omp4 for detection of Chlamydia pneumoniae in paraffin embedded

The lungs of *C. pneumoniae* infected mice were obtained three days after intranasal infection. The tissue samples were fixed in 4% formaldehyde, paraffin embedded, sectioned and deparaffinized prior to staining. The sections were incubated with the rabbit serum diluted 1:200 in TBS (150 mM NaCl, 20mM Tris pH 7.5) for 30 min at room temperature. After wash two times in TBS the sections were incubated with the secondary antibody (biotinylated goat anti-rabbit antibodies) diluted 1:300 in TBS, followed by two times wash in TBS. The sections were stained with streptavidin-biotin complex (streptABComplex/AP, Dako) for 30 min washed and developed under microscopic inspection with chromagen + new fuchsin (Vector laboratories). The sections were counter stained with Hematoxylin and analyzed ny microscopy.

Immuno blotting analysis with hyperimmune monospecific rabbit

The insert of pEX1-1 clone was amplified by PCR using primers containing LIC sites. The PCR product could therefore be inserted in the pET-32 LIC vector (Novagen, UK cat No. 69076-

CHECTIFICE OFFET OFFE

1). Thereby the insert sequence of the pEX1-1 clone was expressed in the new vector as a fusion protein, the part of the fusion protein encoded by the pET-32 LIC vector had 6 histidine residues in a row. The expression of the fusion protein was induced in this vector, and the fusion protein could be purified under denaturing condition on a Ni2+ column due to the high affinity of the histidine residues to divalent cations. The purified protein was used for immunization of a New Zealand white rabbit. After 6 times intramuscular and 2 times intravenous immunization the serum was obtained from the rabbit. Purified C. pneumoniae EB was 10 dissolved in SDS-sample buffer. Half of the sample was heated to 100°C in the sample buffer, whereas the other half of the sample was not heated. The samples were separated by SDS-PAGE, and the proteins were transferred to 15 nitrocellulose, the serum was reacted with the strips. With the samples heated to 100°C the serum recognized a high molecular weight band of approximately 98 kDa. This is in agreement with the predicted size of Omp5, of which the pEX1-1 clone is a part, however, when the antibody was 20 reacted to the strip with unheated EB, the pattern was different. Now a band was seen with a size of 75 kDa, in addition weaker bands were observed above the band (Figure 10). These data demonstrate that Omp5 needs boiling in SDS-sample buffer to be fully denatured and migrate with a 25 size as predicted from the gene product. When the samples were not boiled, the protein was not fully denatured and less SDS binds to the protein and it has a more globular structure that will migrate faster in the acrylamide gel. The band pattern looked identical to what was obtained with a 30 monoclonal antibody (MAb 26.1)(lane 6), we earlier have described (Christiansen et al., 1994), reacting with the surface of C. pneumoniae EB, but the antibody do not react with the fully SDS denatured C. pneumoniae EB in

immunoblotting.

Experimental infection of C57 black mice

Due to the realization of the altered migration of the Omp4-7 proteins without boiling, we chose to analyse antibodies against C. pneumoniae EBs after an experimental infection of mice. To obtain antibodies from an infection caused by C. pneumoniae, C57 black mice were inoculated intranasally with 10^7 CFI of C. pneumoniae under a light ether anaesthesia. After 14 days of infection the serum samples were obtained and the lungs were analysed for pathological changes. In two 10 of the mice a severe pneumonia was observed in the lung sections, and in the third mouse only minor changes were observed. The serum from the mice was diluted 1:100 and reacted with purified EBs dissolved in sample buffer with and without boiling. In the preparations that had been heated to 100°C the sera from two of the mice reacted strongly with 15 bands of 60/62 kDa and weaker bands of 55 kDa, but no reaction was observed with proteins of the size of Omp4-7 (Figure 11). However, when the sera were reacted with the preparation that had not been heated they all had a strong reaction with a broad band of an approximate size of 75 kDa. 20 This is in agreement with the size of the Omp4-7 proteins in the unheated preparation. Therefore, it could be concluded that the epitopes of the Omp4-7 proteins recognized by the antibodies after a C. pneumoniae infection were discontinuous epitopes because the full denaturation of the antigen 25 completely destroyed the epitopes. The 75 kDa protein observed in unheated samples is not Omp2 (Shown in immunoblotting with an Omp2 specific antibody)

EXAMPLE 3

30 Comparison of Omp4-7 of *C. pneumoniae* with putative outer membrane proteins (POMP) of *C. psittaci*

Longbottom et al. (1996) have published partial sequence from 98 to 90 kDa proteins from $C.\ psittaci$. They have entered the full sequence of 5 genes in this family in the EMBL database.

They have named the genes "putative outer membrane proteins" (POMP) since their precise location was not determined. The family is composed of two genes that are completely identical, and two genes with high homology to these genes. They calculated a molecular size of 90 and 91 $k\mbox{\rm Da}\,.$ The 5th encode a protein of 98 kDa. The sequence of the Omp4-7 proteins of C. pneumoniae were compared to the sequences of the C. Psittaci POMP proteins with the programme pileup in the GCG package. The amino acid homologies were in the range of 51-63%. It is seen that the C. pneumoniae Omp4-5 proteins 10 are most related to the 98 kDa POMP protein of C. psittaci. Interestingly, the 98 kDa C. psittaci POMP protein is more related to the C. pneumoniae genes than to the other C. psittaci genes. The repeated sequences of GGAI were conserved in the 98 kDa POMP protein, but only three GGAI repeats were present in the 90 and 91 kDa C. psittaci POMP proteins. For 15 C.psittaci it has been shown that antibodies to these proteins seem to be protective for the infection.

REFERENCES

20

25

- 1. Caldwell, H.D., J. Kromhout and J. Schachter, Infect.
 Immun. 31, 1161-1176 (1981).
- Campbell, L.A., M.P. Melgosa, D.J. Hamilton, C.-C. Kuo and J.T. Grayston, J. Clinical Microbiol., 30, 434-439 (1992).
- 3. Christiansen, G., and S. Birkelund. Eur. Microbiol. 1:24-29 (1992).
- 4. Christiansen, G., L. Østergaard, and S. Birkelund.
 Proceedings of the eight International symposium on
 Human Infections, Eds. Orfila et al., pp 173-176,
 (1994).
 - 5. Grayston, J.T., Kuo, C.-C., Campbell, L.A., and Vang, S.-P. Int. J. Syst. Bacteriol. 39, 88-90 (1989).
- 6. Grayston, J.T., C.-C. Kuo, S.-P. Wang and J. Altman. 1986. N. Engl. J. Med. 315, 161-168 (1986).
 - 7. Kuo, C.C., L.A. Jackson, L.A. Campbell and J.T.
 Graystone. Clin. Microbiol. Rev. 8, 451-461 (1995).

- Longbottom, D., M. Russell, G.E Jones, A. Lainson, and A.J. Herring. FEMS Microbiol. Lett. 142, 277-281
 Melgosa, M.D., A.
- 9. Melgosa, M.P., C.-C. Kuo and L.A. Campbell, FEMS

 Microbiol. Lett. 112, 199-204 (1993).
 - 10. Campbell, L.A., C.-C kuo, S.P. Wang amd J.T. Grayston. J. Clin. Microbiol. 28, 1261-1264 (1990).
 - 11. Halme, S., P. Saikku and H.-M. Surcel. Scand. J. Immunol. 45, 378-384 (1997).
- 10 12. Miyashita, N. and A. Matsumoto. J. Clin. Microbiol. 30, 2911-2916 (1992).
 - 13. Wang, S.P., and J.T. Grayston, Am. J. Ophtalmol. 70, 367-374 (1970).
- 14. Freund, E.A., H. Ernø and R.M. Lemcke. Identification of mycoplasma, P377-443 in I. Norris and J.R. Bergen; Methods in Microbiology vol 13, A.P. Inc. London

SEQUENCE LISTING

(1)	GENERAL	INFORMATION
-----	---------	-------------

- (A) NAME: Svend Birkelund
- (B) STREET: Dept. of Medical Microbiology and Immunology. University of Arhus
- (C) CITY: Århus C
- (D) STATE OR PROVINCE:
- (E) COUNTRY: Denmark
- (F) POSTAL CODE: 8000
- (ii) TITLE OF THE INVENTION: Chlamydia pneumoniae anti
- (iii) NUMBER OF SEQUENCES: 30
- (iv) COMPUTER-READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (v) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 205...2987
 - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAATGTCGAA GAGAGCACTA ACCAGGAAAA TTGCGATTTC ATAAACCCAC TTTATTATTA AATTCTTACT TGCGTCATAT AAAATAGAAA ACTCAGAGAG TCAAGATAAA AATTCTTGAC 120 AGCTGTTTTG TCATCTTTAA CTTGATTTAC TTATTTTGTT TCTATATTGA TGCGAATAGT 180 TCTCTAAAAA ACAAAAGCAT TACC ATG AAG ACT TCG ATT CCT TGG GTT TTA 231 Met Lys Thr Ser Ile Pro Trp Val Leu 1 279

GTT TCC TCC GTG TTA GCT TTC TCA TGT CAC CTA CAG TCA CTA GCT AAC Val Ser Ser Val Leu Ala Phe Ser Cys His Leu Gln Ser Leu Ala Asn

GAG Glu	GAA Glu	CTT Leu	TTA Leu	TCA Ser 30	CCT Pro	GAT Asp	GAT Asp	AGC Ser	TTT Phe 35	AAT Asn	GGA Gly	AAT Asn	ATC Ile	GAT Asp 40	T CA Ser	327
GGA Gly	ACG Thr	TTT Phe	ACT Thr 45	CCA Pro	AAA Lys	ACT Thr	TCA Ser	GCC Ala 50	ACA Thr	ACA Thr	TAT Tyr	TC T Ser	CTA Leu 55	ACA Thr	GGA Gly	375
GAT Asp	GTC Val	TTC Phe 60	TTT Phe	TAC Tyr	GAG Glu	CCT Pro	GGA Gly 65	AAA Lys	GGC Gly	ACT Thr	CCC Pro	TTA Leu 70	TCT Ser	GAC Asp	AGT Ser	423
TGT Cys	TTT Phe 75	AAG Lys	CAA Gln	ACC Thr	ACG Thr	GAC Asp 80	AAT Asn	CTT Leu	ACC Thr	TTC Phe	TTG Leu 85	GGG Gly	AAC Asn	GGT Gly	CAT His	471
AGC Ser 90	TTA Leu	ACG Thr	TTT Phe	GGC Gly	TTT Phe 95	ATA Ile	GAT Asp	GCT Ala	GGC Gly	ACT Thr 100	CAT His	GCA Ala	GGT Gly	GCT Ala	GCT Ala 105	519
GCA Ala	TCT Ser	ACA Thr	ACA Thr	GCA Ala 110	AAT Asn	AAG Lys	AAT Asn	CTT Leu	ACC Thr 115	TTC Phe	TCA Ser	GGG Gly	TTT Phe	TCC Ser 120	TTA Leu	567
CTG Leu	AGT Ser	TTT Phe	GAT Asp 125	TCC Ser	TCT Ser	CCT Pro	AGC Ser	ACA Thr 130	ACG Thr	GTT Val	ACT Thr	ACA Thr	GGT Gly 135	CAG Gln	GGA Gly	615
ACG Thr	CTT Leu	TCC Ser 140	TCA Ser	GCA Ala	GGA Gly	GGC Gly	GTA Val 145	AAT Asn	TTA Leu	GAA Glu	AAT Asn	ATT Ile 150	CGT Arg	AAA Lys	CTT Leu	663
GTA Val	GTT Val 155	GCT Ala	GGG Gly	AAT Asn	TTT Phe	TCT Ser 160	ACT Thr	GCA Ala	GAT Asp	GGT Gly	GGA Gly 165	GCT Ala	ATC Ile	AAA Lys	GGA Gly	711
GCG Ala 170	TCT Ser	TTC Phe	CTT Leu	TTA Leu	ACT Thr 175	GGC Gly	ACT Thr	TCT Ser	GGA Gly	GAT Asp 180	GCT Ala	CTT Leu	TTT Phe	AGT Ser	AAC Asn 185	759
AAC Asn	TCT Ser	TCA Ser	TCA Ser	ACA Thr 190	AAG Lys	GGA Gly	GGA Gly	GCA Ala	ATT Ile 195	GCT Ala	ACT Thr	ACA Thr	GCA Ala	GGC Gly 200	GCT Ala	807
CGC Arg	ATA Ile	GCA Ala	AAT Asn 205	AAC Asn	ACA Thr	GGT Gly	TAT Tyr	GTT Val 210	AGA Arg	TTC Phe	CTA Leu	TCT Ser	AAC Asn 215	ATA Ile	GCG Ala	855
TCT Ser	ACG Thr	TCA Ser 220	GGA Gly	GGC Gly	GCT Ala	ATC Ile	GAT Asp 225	GAT Asp	GAA Glu	GGC Gly	ACG Thr	TCG Ser 230	ATA Ile	CTA Leu	TCG Ser	903
AAC Asn	AAC Asn 235	AAA Lys	TTT Phe	CTA Leu	TAT Tyr	TTT Phe 240	GAA Glu	GGG Gly	AAT Asn	Ala	GCG Ala 245	AAA Lys	ACT Thr	ACT Thr	GGC Gly	951
GGT	GCG	ATC	TGC	AAC	ACC	AAG	GCG	AGT	GGA	TCT	CCT	GAA	CTG	ATA	ATC	999

211DCTITUTE OLDER (011 F --

WO 98/58953 PCT/DK98/00266

Gly A	la	Ile	Cys	Asn	Thr	Lvc	ר ו ת	Sar	Clv	Sar	Dro	Glu	Low	T 1 0	T10	
250			·		255	БуЗ	Ала	361		260		Olu	Leu		265	
TCT A Ser A																1047
GGT G																1095
ACA G														_	_	1143
GCT A												Ser				1191
GGA A Gly A 330																1239
GAT A																1287
				Ala					Thr			TTC Phe		Asp		1335
			Glu					Asp				G ATA S Ile 390	Asn			1383
		Gly					тут					e Leu			GGA Gly	1431
						Glu					a Ası				TCT S Ser 425	1479
					o Va					y Gly					A CAA 1 Gln)	1527
				r Le					r Ph					a Gl	r TCT y Ser	1575
			у Ме					r Th					r Al		G AGT y Ser	1623
															T AAG	1671

Ile Thr Ile Thr Asn Leu Gly Ile Asn Val Asp Ser Leu Gly Leu Lys

	475					480					485					
CAG Gln 490	CCC Pro	GTC Val	AGC Ser	CTA Leu	ACA Thr 495	GCA Ala	AAA Lys	GGT Gly	GCT Ala	TCA Ser 500	AAT Asn	AAA Lys	GTG Val	ATC Ile	GTA Val 505	1719
TCT Ser	GGG Gly	AAG Lys	CTC Leu	AAC Asn 510	CTG Leu	ATT Ile	GAT Asp	ATT Ile	GAA Glu 515	GGG Gly	AAC Asn	ATT Ile	TAT Tyr	GAA Glu 520	AGT Ser	1767
CAT His	ATG Met	TTC Phe	AGC Ser 525	CAT His	GAC Asp	CAG Gln	CTC Leu	TTC Phe 530	TCT Ser	CTA Leu	TTA Leu	AAA Lys	ATC Ile 535	ACG Thr	GTT Val	1815
GAT Asp	GCT Ala	GAT Asp 540	GTT Val	GAT Asp	ACT Thr	AAC Asn	GTT Val 545	GAC Asp	ATC Ile	AGC Ser	AGC Ser	CTT Leu 550	ATC Ile	CCT Pro	GTT Val	1863
CCT Pro	GCT Ala 555	GAG Glu	GAT Asp	CCT Pro	AAT Asn	TCA Ser 560	GAA Glu	TAC Tyr	GGA Gly	TTC Phe	CAA Gln 565	GGA Gly	CAA Gln	TGG Trp	AAT Asn	1911
GTT Val 570	AAT Asn	TGG Trp	ACT Thr	ACG Thr	GAT Asp 575	ACA Thr	GCT Ala	ACA Thr	AAT Asn	ACA Thr 580	AAA Lys	GAG Glu	GCC Ala	ACG Thr	GCA Ala 585	1959
ACT Thr	TGG Trp	ACC Thr	AAA Lys	ACA Thr 590	GGA Gly	TTT Phe	GTT Val	CCC Pro	AGC Ser 595	CCC Pro	GAA Glu	AGA Arg	AAA Lys	TCT Ser 600	GCG Ala	2007
TTA Leu	GTA Val	TGC Cys	AAT Asn 605	ACC Thr	CTA Leu	TGG Trp	GGA Gly	GTC Val 610	TTT Phe	ACT Thr	GAC Asp	ATT Ile	CGC Arg 615	TCT Ser	CTG Leu	2055
CAA Gln	CAG Gln	CTT Leu 620	GTA Val	GAG Glu	ATC Ile	GGC Gly	GCA Ala 625	ACT Thr	GGT Gly	ATG Met	GAA Glu	CAC His 630	AAA Lys	CAA Gln	GGT Gly	2103
TTC Phe	TGG Trp 635	GTT Val	TCC Ser	TCC Ser	ATG Met	ACG Thr 640	AAC Asn	TTC Phe	CTG Leu	CAT His	AAG Lys 645	ACT Thr	GGA Gly	GAT Asp	GAA Glu	2151
AAT Asn 650	CGC Arg	AAA Lys	GGC Gly	TTC Phe	CGT Arg 655	CAT His	ACC Thr	TCT Ser	GGA Gly	GGC Gly 660	TAC Tyr	GTC Val	ATC Ile	GGT Gly	GGA Gly 665	2199
AGT Ser	GCT Ala	CAC His	ACT Thr	CCT Pro 670	AAA Lys	GAC Asp	GAC Asp	CTA Leu	TTT Phe 675	ACC Thr	TTT Phe	GCG Ala	TTC Phe	TGC Cys 680	CAT His	2247
CTC Leu	TTT Phe	GCT Ala	AGA Arg 685	GAC Asp	AAA Lys	GAT Asp	TGT Cys	TTT Phe 690	ATC Ile	GCT Ala	CAC His	AAC Asn	AAC Asn 695	TCT Ser	AGA Arg	2295
ACC Thr	TAC Tyr	GGT Gly 700	GGA Gly	ACT Thr	TTA Leu	TTC Phe	TTC Phe 705	AAG Lys	CAC His	TCT Ser	CAT His	ACC Thr 710	CTA Leu	CAA Gln	CCC Pro	2343

39	
CAA AAC TAT TTG AGA TTA GGA AGA GCA AAG TTT TCT GAA TCA GCT ATA 2391 Gln Asn Tyr Leu Arg Leu Gly Arg Ala Lys Phe Ser Glu Ser Ala Ile 725	
GAA AAA TTC CCT AGG GAA ATT CCC CTA GCC TTG GAT GTC CAA GTT TCG 2439 Glu Lys Phe Pro Arg Glu Ile Pro Leu Ala Leu Asp Val Gln Val Ser- 730 745	
TTC AGC CAT TCA GAC AAC CGT ATG GAA ACG CAC TAT ACC TCA TTG CCA 2487 Phe Ser His Ser Asp Asn Arg Met Glu Thr His Tyr Thr Ser Leu Pro 750 755 760	
GAA TCC GAA GGT TCT TGG AGC AAC GAG TGT ATA GCT GGT GGT ATC GGC 2535 Glu Ser Glu Gly Ser Trp Ser Asn Glu Cys Ile Ala Gly Gly Ile Gly 765 770 775	
CTA GAC CTT CCT TTT GTT CTT TCC AAC CCA CAT CCT CTT TTC AAG ACC 2583 Leu Asp Leu Pro Phe Val Leu Ser Asn Pro His Pro Leu Phe Lys Thr 780 785 790	
TTC ATT CCA CAG ATG AAA GTC GAA ATG GTT TAT GTA TCA CAA AAT AGC 2631 Phe Ile Pro Gln Met Lys Val Glu Met Val Tyr Val Ser Gln Asn Ser 795 800 805	
TTC TTC GAA AGC TCT AGT GAT GGC CGT GGT TTT AGT ATT GGA AGG CTG Phe Phe Glu Ser Ser Ser Asp Gly Arg Gly Phe Ser Ile Gly Arg Leu 825	
CTT AAC CTC TCG ATT CCT GTG GGT GCG AAA TTC GTG CAG GGG GAT ATC 2727 Leu Asn Leu Ser Ile Pro Val Gly Ala Lys Phe Val Gln Gly Asp Ile 830 835 840	
GGA GAT TCC TAC ACC TAT GAT CTC TCA GGA TTC TTT GTT TCC GAT GTC Gly Asp Ser Tyr Thr Tyr Asp Leu Ser Gly Phe Phe Val Ser Asp Val 845 850 855	
TAT CGT AAC AAT CCC CAA TCT ACA GCG ACT CTT GTG ATG AGC CCA GAC Tyr Arg Asn Asn Pro Gln Ser Thr Ala Thr Leu Val Met Ser Pro Asp 860 865 870	
TCT TGG AAA ATT CGC GGT GGC AAT CTT TCA AGA CAG GCA TTT TTA CTG 2871 Ser Trp Lys Ile Arg Gly Gly Asn Leu Ser Arg Gln Ala Phe Leu Leu 875 880 885	Ĺ
AGG GGT AGC AAC TAC GTC TAC AAC TCC AAT TGT GAG CTC TTC GGA 2919 Arg Gly Ser Asn Asn Tyr Val Tyr Asn Ser Asn Cys Glu Leu Phe Gly 900 905	9
CAT TAC GCT ATG GAA CTC CGT GGA TCT TCA AGG AAC TAC AAT GTA GAT 296 His Tyr Ala Met Glu Leu Arg Gly Ser Ser Arg Asn Tyr Asn Val Asp 910 915 920	7
GTT GGT ACC AAA CTC CGA TT CTAGATTGCT AAAACTCCCT AGTTCTTCTA GGGAG 302 Val Gly Thr Lys Leu Arg Phe	22

AAATAACATT TGTCCCTCTT CAAAAAAGAT TTCTTTTAAT AATTTCTAGT TATAATTTTA TTTTAAAAAC AGTTAAATAA TTAATAGACA ATAATCTATT CTTATTGACT TCTTTTTT 3200

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Thr Ser Ile Pro Trp Val Leu Val Ser Ser Val Leu Ala Phe Ser Cys His Leu Gln Ser Leu Ala Asn Glu Glu Leu Leu Ser Pro Asp Asp Ser Phe Asn Gly Asn Ile Asp Ser Gly Thr Phe Thr Pro Lys Thr Ser Ala Thr Thr Tyr Ser Leu Thr Gly Asp Val Phe Phe Tyr Glu Pro Gly Lys Gly Thr Pro Leu Ser Asp Ser Cys Phe Lys Gln Thr Thr Asp Asn Leu Thr Phe Leu Gly Asn Gly His Ser Leu Thr Phe Gly Phe Ile Asp Ala Gly Thr His Ala Gly Ala Ala Ala Ser Thr Thr Ala Asn Lys Asn Leu Thr Phe Ser Gly Phe Ser Leu Leu Ser Phe Asp Ser Ser Pro 105 120 Ser Thr Thr Val Thr Gly Gln Gly Thr Leu Ser Ser Ala Gly Gly Val Asn Leu Glu Asn Ile Arg Lys Leu Val Val Ala Gly Asn Phe Ser Thr Ala Asp Gly Gly Ala Ile Lys Gly Ala Ser Phe Leu Leu Thr Gly Thr Ser Gly Asp Ala Leu Phe Ser Asn Asn Ser Ser Ser Thr Lys Gly Gly Ala Ile Ala Thr Thr Ala Gly Ala Arg Ile Ala Asn Asn Thr Gly Tyr Val Arg Phe Leu Ser Asn Ile Ala Ser Thr Ser Gly Gly Ala Ile Asp Asp Glu Gly Thr Ser Ile Leu Ser Asn Asn Lys Phe Leu Tyr Phe Glu Gly Asn Ala Ala Lys Thr Thr Gly Gly Ala Ile Cys Asn Thr Lys Ala Ser Gly Ser Pro Glu Leu Ile Ile Ser Asn Asn Lys Thr Leu Ile Phe Ala Ser Asn Val Ala Glu Thr Ser Gly Gly Ala Ile His Ala Lys Lys Leu Ala Leu Ser Ser Gly Gly Phe Thr Glu Phe Leu Arg Asn Asn Val Ser Ser Ala Thr Pro Lys Gly Gly Ala Ile Ser Ile Asp Ala Ser

										3.Т					
305					310					315				•	320
Gly	Glu	Leu	Ser	Leu 325	Ser	Ala	Glu	Thr	Gly 330	Asn	Ile	Thr	Phe	Val 335	Arg
Asn	Thr	Leu	Thr 340	Thr	Thr	Gly	Ser	Thr		Thr	Pro	Lys	Arg 350	Asn	Ala
Ile	Asn	Ile 355	Gly	Ser	Asn	Gly	Lys 360		Thr	Glu	Leu	Arg 365	Ala	Ala	Lys.
Asn	His 370	Thr	Ile	Phe	Phe	Tyr 375		Pro	Ile	Thr	Ser 380		Gly	Thr	Ser
Ser 385	Asp	Val	Leu	Lys	Ile 390	Asn	Asn	Gly	Ser	Ala 395	Gly	Ala	Leu	Asn	Pro 400
Tyr	Gln	Gly	Thr	Ile 405	Leu	Phe	Ser	Gly	Glu 410	Thr	Leu	Thr	Ala	Asp 415	Glu
			420					425		Phe			430	Val	
		435					440			Gly		445	Leu		
	450					455				Leu	460				
465					470					Thr 475					480
				485					490	Pro				495	
			500					505		Gly			510		
		212					520			Met		525			
	530					535				Ala	540				
545					550					Ala 555					560
				565					570	Asn				575	
			580					585		Trp			590		
		595					600			Val		605			
	610					615				Gln	620				_
625					630					Trp 635					640
				645					650	Arg				655	
			660					665		Ala			670		
		675					680			Phe		685			
	690					695				Tyr	700				
105					710					Asn 715					720
				725					730	Lys				735	
			740					745		Ser Ser			750		
-		755		- <u>r</u> -			760	£10	GIU	ser.	GIU	765	ser	irp	ser

Asn Glu Cys Ile Ala Gly Gly Ile Gly Leu Asp Leu Pro Phe Val Leu 775 Ser Asn Pro His Pro Leu Phe Lys Thr Phe Ile Pro Gln Met Lys Val 790 Glu Met Val Tyr Val Ser Gln Asn Ser Phe Phe Glu Ser Ser Asp 805 810 Gly Arg Gly Phe Ser Ile Gly Arg Leu Leu Asn Leu Ser Ile Pro Val 825 Gly Ala Lys Phe Val Gln Gly Asp Ile Gly Asp Ser Tyr Thr Tyr Asp 840 Leu Ser Gly Phe Phe Val Ser Asp Val Tyr Arg Asn Asn Pro Gln Ser 855 Thr Ala Thr Leu Val Met Ser Pro Asp Ser Trp Lys Ile Arg Gly Gly 870 875 Asn Leu Ser Arg Gln Ala Phe Leu Leu Arg Gly Ser Asn Asn Tyr Val 885 890 Tyr Asn Ser Asn Cys Glu Leu Phe Gly His Tyr Ala Met Glu Leu Arg 905 Gly Ser Ser Arg Asn Tyr Asn Val Asp Val Gly Thr Lys Leu Arg Phe 915 920

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGAAATCGC	AATTTTCCTG	GTTAGTGCTC	TCTTCGACAT	TGGCATGTTT	TACTAGTTGT	60
TCCACTGTTT	TTGCTGCAAC		ATAGGCCCCT	CTGATAGCTT	TGACGGAAGT	120
ACTAACACAG	GCACCTATAC	TCCTAAAAAT	ACGACTACTG	GAATAGACTA	TACTCTGACA	180
GGAGATATAA	CTCTGCAAAA	CCTTGGGGAT	TCGGCAGCTT	TAACGAAGGG	TTGTTTTTCT	240
GACACTACGG	AATCTTTAAG	CTTTGCCGGT	AAGGGGTACT	CACTTTCTTT	TTTAAATATT	300
AAGTCTAGTG	CTGAAGGCGC	AGCACTTTCT	GTTACAACTG	ATAAAAATCT	GTCGCTAACA	360
GGATTTTCGA	GTCTTACTTT	CTTAGCGGCC	CCATCATCGG	TAATCACAAC	CCCCTCAGGA	420
AAAGGTGCAG	TTAAATGTGG	AGGGGATCTT	ACATTTGATA	ACAATGGAAC	TATTTTATTT	480
AAACAAGATT	ACTGTGAGGA				TTCTTTGAAA	540
AACAGCACGG	GATCGATTTC	TTTTGAAGGG	AATAAATCGA	GCGCAACAGG	GAAAAAAGGT	600
GGGGCTATTT	GTGCTACTGG		ATTACAAATA		TACCCTCTTC	660
TCGAACAATA	TTGCTGAAGC		GCTATAAATA			720
ACAGGGAATA	CGTCTCTTGT	ATTTTCTGAA	AATAGTGTGA	CAGCGACCGC		780
GGAGCTCTTT	CTGGAGATGC	CGATGTTACC	ATATCTGGGA			840
GGAAACCAAG	CTGTAGCTAA	TGGCGGAGCC	ATTTATGCTA	AGAAGCTTAC	ACTGGCTTCC	900
GGGGGGGGG	GGGGTATCTC		AATATAGTCC			960
GGTGGAGCCA	TTTCTATACT	GGCAGCTGGA	GAGTGTAGTC	TTTCAGCAGA	AGCAGGGGAC	1020
ATTACCTTCA			ACTACACCAC			1080
ATTGACATAG	GATCTACTGC	AAAGATCACG	AATTTACGTG			1140
TTTTTCTACG	ATCCGATTAC	TGCTAATACG	GCTGCGGATT	CTACAGATAC	TTTAAATCTC	1200
AATAAGGCTG	ATGCAGGTAA	TAGTACAGAT	TATAGTGGGT	CGATTGTTTT	TTCTGGTGAA	1260
						1200

AAGCTCTCTG	AAGATGAAGC	AAAAGTTGCA	GACAACCTCA	CTTCTACGCT	GAAGCAGCCT	1320
GTAACTCTAA	CTGCAGGAAA	TTTAGTACTT	AAACGTGGTG	TCACTCTCGA	TACGAAAGGC	1380
TTTACTCAGA	CCGCGGGTTC	CTCTGTTATT	ATGGATGCGG	GCACAACGTT	AAAAGCAAGT	1440
ACAGAGGAGG		AGGTCTTTCC	ATTCCTGTAG	ACTCTTTAGG	CGAGGGTAAG	1500
AAAGTTGTAA	TTGCTGCTTC	TGCAGCAAGT	AAAAATGTAG	CCCTTAGTGG	TCCGATTCTT	1560
	ACCAAGGGAA	TGCTTATGAA	AATCACGACT	TAGGAAAAAC	TCAAGACTTT	1620
	AGCTCTCTGC	TCTGGGTACT	GCAACAACTA	CAGATGTTCC	AGCGGTTCCT	1680
ACAGTAGCAA	CTCCTACGCA	CTATGGGTAT	CAAGGTACTT	GGGGAATGAC	TTGGGTTGAT	1740
GATACCGCAA	GCACTCCAAA	GACTAAGACA	GCGACATTAG	CTTGGACCAA	TACAGGCTAC	1800
CTTCCGAATC	CTGAGCGTCA	AGGACCTTTA	GTTCCTAATA	GCCTTTGGGG	ATCTTTTTCA	1860
GACATCCAAG	CGATTCAAGG	TGTCATAGAG	AGAAGTGCTT	TGACTCTTTG	TTCAGATCGA	1920
GGCTTCTGGG	CTGCGGGAGT	CGCCAATTTC	TTAGATAAAG	ATAAGAAAGG	GGAAAAACGC	1980
	ATAAATCTGG	TGGATATGCT	ATCGGAGGTG	CAGCGCAAAC	TTGTTCTGAA	2040
AACTTAATTA	GCTTTGCCTT	TTGCCAACTC	TTTGGTAGCG	ATAAAGATTT	CTTAGTCGCT	2100
		TGCAGGAGCC	TTCTATATCC	AACACATTAC	AGAATGTAGT	2160
		AGATAAACTT		GGAGTCATAA		2220
	AGCTCGCTTA	TAGCCACGTC	AGTAATGATC	TGAAGACAAA	GTATACTGCG	2280
	TGAAAGGTTC	TTGGGGGAAT	AATGCTTTTA	ACATGATGTT	GGGAGCTTCT	2340
			TTTGATACCT	ATGCTCCATA	CATCAAACTG	2400
		GGACAGCTTC	TCGGAGAAAG	GTACAGAAGG	AAGATCTTTT	2460
		TTTATCTTTG	CCTATAGGGG	TGAAGTTTGA	GAAGTTCTCT	2520
GATTGTAATG	ACTTTTCTTA	TGATCTGACT	TTATCCTATG	TTCCTGATCT	TATCCGCAAT	2580
		ACTTGTAATC	AGCGGAGCCT	CTTGGGAAAC	TTATGCCAAT	2640
	GACAGGCCTT	GCAAGTGCGT		ACTACGCCTT	CTCTCCTATG	2700
	TCGGCCAGTT		${\tt GTTCGTGGAT}$	CCTCACGGAT	TTATAATGTA	2760
GATCTTGGGG	GTAAGTTCCA	ATTCTAGGAG	CGTCTCTCAT	GTCTCAGAAA	TTCTG	2815

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Ser Gln Phe Ser Trp Leu Val Leu Ser Ser Thr Leu Ala Cys 1 10 Phe Thr Ser Cys Ser Thr Val Phe Ala Ala Thr Ala Glu Asn Ile Gly 25 Pro Ser Asp Ser Phe Asp Gly Ser Thr Asn Thr Gly Thr Tyr Thr Pro 40 Lys Asn Thr Thr Thr Gly Ile Asp Tyr Thr Leu Thr Gly Asp Ile Thr 55 Leu Gln Asn Leu Gly Asp Ser Ala Ala Leu Thr Lys Gly Cys Phe Ser 70 75 Asp Thr Thr Glu Ser Leu Ser Phe Ala Gly Lys Gly Tyr Ser Leu Ser 85 90 Phe Leu Asn Ile Lys Ser Ser Ala Glu Gly Ala Ala Leu Ser Val Thr 105 Thr Asp Lys Asn Leu Ser Leu Thr Gly Phe Ser Ser Leu Thr Phe Leu 120 Ala Ala Pro Ser Ser Val lie Thr Thr Pro Ser Gly Lys Gly Ala Val

Lys 145	Cys	Gly	Gly	Asp	Leu 150	Thr	Phe	Asp	Asn	Asn 155	Gly	Thr	Ile	Leu	
Lys	Gln	Asp	Tyr	Cys 165	Glu	Glu	Asn	Gly	Gly 170	Ala	Ile	Ser	Thr		160 Asn
Leu	Ser	Leu	Lys 180		Ser	Thr	Gly		Ile	Ser	Phe	Glu		175 Asn	Lys
Ser	Ser	Ala 195		Gly	Lys	Lys	Gly	185 Gly	Ala	Ile	Cys		190 Thr	Gly	Thr
Val	Asp 210	Ile	Thr	Asn	Asn		200 Ala	Pro	Thr	Leu		205 Ser	Asn	Asn	Ile
Ala		Ala	Ala	Gly	Gly	215 Ala	Ile	Asn	Ser		220 Gly	Asn	Cys	Thr	Ile
225 Thr	Gly	Asn	Thr	Ser	230 Leu	Val	Phe	Ser	Glu	235 Asn	Ser	Val	Thr	Ala	240 Thr
		Asn		245					250					255	
		Gln	260					265					270		
		275 Ile					280					285			
	290	Ser				295					300				_
305		Ala			310					315					320
		Gly		325					330					335	
			340					345					350		
		Thr 355					360					365			
	370	Asn				375					380				
200		Thr			390					395					400
		Ala		405					410					415	
			420					425					430		
		Ser 435					440					445			
	450	Lys				455					460				
403		Ser			470					475					480
		Glu		485					490					495	Leu
Gly	Glu	Gly	Lys 500	Lys	Val	Va1	Ile	Ala 505	Ala	Ser	Ala	Ala	Ser 510	Lys	Asn
Val	Ala	Leu 515	Ser	Gly	Pro	Ile	Leu 520	Leu	Leu	Asp	Asn	Gln 525	Gly	Asn	Ala
Tyr	Glu 530	Asn	His	Asp	Leu	Gly 535	Lys	Thr	Gln	Asp	Phe 540	Ser	Phe	Val	Gln
Leu 545	Ser	Ala	Leu	Gly	Thr 550		Thr	Thr	Thr		Val	Pro	Ala	Val	
	Val	Ala	Thr	Pro 565		His	Tyr	Gly		555 Gln	Gly	Thr	Trp		560 Met
Thr	Trp	Val	Asp 580		Thr	Ala	Ser		570 Pro	Lys	Thr	Lys		575 Ala	Thr
Leu	Ala	Trp		Asn	Thr	Gly	Tyr	585 Leu	Pro	Asn	Pro	Glu	590 Arg	Gln	Gly

605
595 600 505 Pro Leu Val Pro Asn Ser Leu Trp Gly Ser Phe Ser Asp Ile Gln Ala 615 620
Pro Leu Val Pro Asn Ser Leu Trp Gly Scr The 620
615 610 Car Ala Leu Thr Leu Cys Ser Asp Arg
615 610 610 615 610 Glu Arg Ser Ala Leu Thr Leu Cys Ser Asp Arg 640 630 635
630 625 Gly Phe Trp Ala Ala Gly Val Ala Asn Phe Leu Asp Lys Asp Lys 655 650 655
Gly Phe Trp Ala Ala Gly Val Ala Ash File Bed 112 655
Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly Gly Tyr Ala Ile Gly 665 670
Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly 670
665 660 The New Tile Ser Phe Ala Phe Cys
Gly Ala Ala Gln Thr Cys Ser Glu Asn Leu Ile Ser Phe Ala Phe Cys
675 Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu Val Ala Lys Asn His Thr 695 700
Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu var Ma
695 Clarkis The Charkis The Thr Glu Cys Ser
690 Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gln His Ile Thr Glu Cys Ser 720
705 710 Pro Gly Ser Trp Ser His
710 705 Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro Gly Ser Trp Ser His 735 736 737
725 Tyr Ser His Val Ser Asn
725 Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Tyr Ser His Val Ser Asn 745 750
745 740 740 745 Pro Glu Val Lys Gly Ser Trp
740 745 Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Glu Val Lys Gly Ser Trp 760 765
755 Gly Asn Asn Ala Phe Asn Met Met Leu Gly Ala Ser Ser His Ser Tyr 775 780
Gly Asn Asn Ala Phe Asn Met Met Leu Gly 1320
775 770 775 Thr Tyr Ala Pro Tyr Ile Lys Leu
770 Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Ala Pro Tyr Ile Lys Leu 770 770 775 800
790 785 780 Ser Phe Ser Glu Lys Gly Thr Glu
790 785 Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Ser Glu Lys Gly Thr Glu 815
605 Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn Leu Ser Leu Pro Ile 825 830
Gly Arg Ser Phe Asp Asp Ser Ash Bed 111 830
820 825 Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn Asp Phe Ser Tyr Asp 840 845
Gly Val Lys Phe Glu Lys Phe Sel App 57 845
835 Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg Asn Asp Pro Lys Cys 860
Leu Thr Leu Ser Tyr val P10 ASP 250 860
850 Sor Cly Ala Ser Trp Glu Thr Tyr Ala Asn
Thr Thr Ala Leu Val Tie Ser Gly Ald 300 880
870 865 Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala Gly Ser His Tyr Ala 890 895
Asn Leu Ala Arg GII Ala Beu GII 890
885 Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe Val Phe Glu Val Arg 905 910
Phe Ser Pro Met Phe Glu Val 254 910
900 905 Gly Ser Ser Arg Ile Tyr Asn Val Asp Leu Gly Gly Lys Phe Gln Phe 920 925
Gly Ser Ser Arg 11e 1yr Abn 925
915

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3052 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	DECOSIO					60
<u>አ</u> ምር ሮር እጥጥጥ	CGCTCTGCGG	ATTTCCTCTA	GTTTTTTCTT	TAACATTGCT	CTCAGTCTTC TCATGGAGAT	120
GACACTTCTT AGTCAGAATG	TGAGTGCTAC CAGAACGTTC	TACGATTTCT TTATAATGTT	CAAGCTGGGG	ATGTCTATAG	TCATGGAGAT CCTTACTGGT	180

~						
GATGTCTCAA	TATCTAACGT	CGATAACTCT	GCATTAAATA	AAGCCTGCTT	CAATGTGACC	240
1 CAGGAAG1G	TGACGTTCGC	AGGAAATCAT	CATGGGTTAT	ΔΥΥΥΥΝΑΝΥΝΑ	ጥን መመመር ለመረ አ	300
GGAACTACAA	AGGAAGGGGC	TGTACTTTGT	TGCCAAGATC	CTCAAGCAAC	CCCACCTTTTT	360
1710001171	CCACGCTCTC	TTTTATTCAG	AGCCCCGGAG	Δ ΥΔΥΥΝΝΝΟΝ	ACACCCAMOR	420
CICIAIICAA	AAAATGCACT	TATGCTCTTA	AACAATTATG	TAGTGCCTTT	TCAACAAAAC	480
CAAAGTAAGA	CTAAAGGCGG	AGCTATTAGT	GGGGCGAATG	TTACTATACT	ACCCA ACEAC	540
GATTCCGTCT	CTTTCTATCA	GAATGCAGCC	ACTTTTGGAG	GTGCTATCCA	ጥጥርጥጥር አርርጥ	600
CCCCTACAGA	TIGCAGTAAA	TCAGGCAGAG	ATAAGATTTG	CACAAAATAC	TCCCAACAAT	660
GGIICIGGAG	GGGCTTTTGTA	CTCCGATGGT	GATATTGATA	TTGATCAGAA	ፐርርርጥጥ አጥርጥጥ	720
CIATTICGAG	AAAATGAGGC	ATTGACTACT	GCTATAGGTA	AGGGAGGGCC	TCTCTCTTCTTCT	780
CITCCCACTT	CAGGAAGTAG	TACTCCAGTT	CCTATTGTGA	CTTTCTCTCT	CAATAAACAC	840
TIAGICTTIG	AAAGAAACCA	TTCCATAATG	GGTGGCGGAG	CCATTTATCC	TACCAAACCO	900
AGCATCTCTT	CAGGAGGTCC	TACTCTATTT	ATCAATAATA	TATCATATCC	እ እ አጥጥሮሮ	960
AATTTAGGTG	GAGCTATTGC	CATTGATACT	GGAGGGGAGA	TCACTTTATC	700707077	
GGAACAATTA	CATTCCAAGG	AAACCGGACG	AGCTTACCGT	TTTTCAATCC	CATCCATCET	1020
TTACAAAATG	CTAAATTCCT	GAAATTACAG	GCGAGAAATG	GATGCTCTAT	$\Lambda \subset \Lambda \Lambda$ TOTOTO Λ CO	1080
GAICCIATTA	CTTCTGAAGC	AGATGGGTCT	ACCCAATTGA	ATATCAACCC	ስርስጥርርጥ <u>ስ ከ</u> ከ	1140
AATAAAGAGT	ACACAGGGAC	CATACTCTTT	TCTGGAGAAA	AGAGTCTAGC	$\lambda \lambda \lambda CC \lambda TCCT$	1200
AGGGATTTA	AATCTACAAT	CCCTCAGAAC	GTCAACCTGT	CTGCAGGATA	CTT A CTT A CT	1260
AAAGAGGGGG	CCGAAGTCAC	AGTTTCAAAA	TTCACGCAGT	CTCCAGGATC	CCATTTACTT	1320
TIAGATTIAG	GAACCAAACT	GATAGCCTCT	AAGGAAGACA	TTGCCATCAC	ACCCCTCCCC	1380
AIAGAIAIAG	ATAGCTTAAG	CTCATCCTCA	ACAGCAGCTG	TTATTAAACC	A A A CA COCCA	1440
MIMMCAGA	TATCCGTGAC	GGACTCTATA	GAACTTATCT	CGCCTACTCC	ር እ አጥሮ ሮ ሮ ሞ አጥ	1500
GAAGAICICA	GAATGAGAAA	TTCACAGACG	TTCCCTCTGC	ፐርፐርጥጥጥአርአ	CCCTCCNGGG	1560
GGGGTAGTG	TGACTGTAAC	TGCTGGAGAT	TTCCTACCGG	TAACTCCCCA	T	1620
CAAGGCAATT	GGAAATTAGC	TTGGACAGGA	ACTGGAAACA	AAGTTGGAGA	A TTTCTTTCTTCC	1680
GATAAAATAA	ATTATAAGCC	TAGACCTGAA	AAAGAAGGAA	ATTTACTTCC	שמים אינו אינו	1740
1 GGGGGAA1 G	CIGIAAAIGI	CAGATCCTTA	ATGCAGGTTC	AAGAGACCCA	TOCATIONAG	1800
TIACAGACAG	ATCGAGGGCT	GTGGATCGAT	GGAATTGGGA	ATTTCTTCCN	TCTATOTOCC	1860
TCCGAAGACA	ATATAAGGTA	CCGTCATAAC	AGCGGTGGAT	ATGTTCTATC	TCTAAATAAT	1920
GAGATCACAC	CTAAGCACTA	TACTTCGATG	GCATTTTCCC	AACTCTTTAC	TACACACAAC	1980
GACTATGCGG	TTTCCAACAA	CGAATACAGA	ATGTATTTAG	GATCGTATCT	CTATCAADAG	2040
ACAACCTCCC	TAGGGAATAT	TTTCCGTTAT	GCTTCGCGTA	ACCCTAATCT	A A A C C T C C C C C	2100
ATTUTUTUAA	GAAGGTTTCT	TCAAAATCCT	CTTATGATTT	ብብር ለ ብብብብብብ	CTCTCCTTAT	2160
GGICAIGCCA	CCAATGATAT	GAAAACAGAC	TACGCAAATT	TCCCTATCCT	CANANACACC	2220
TGGAGAAACA	ATTGTTGGGC	TATAGAGTGC	GGAGGGAGCA	TGCCTCTATT	CCTATTTCAC	2280
HACGGAAGAC	TTTTCCAAGG	TGCCATCCCA	TTTATGAAAC	TACAATTACT	ምም እጥር ርጥሞ እጥ	2340
CAGGGAGATT.	TCAAAGAGAC	GACTGCAGAT	GGCCGTAGAT	TTAGTAATGG	CACTTAACA	2400
ICGALLICIG	TACCTCTAGG	CATACGCTTT	GAGAAGCTGG	$C\Delta CTTTCTCT$	CCATCTACTA	2460
TATGACTTTA	GTTTCTCCTA	TATTCCTGAT	ATTTTCCGTA	ACCATCCCTC	እጥሮምር እ እ ር ርሙ	2520
GCICIGGIGA	TTAGCGGAGA	CTCCTGGCTT	GTTCCGGCAG	CACACGTATC	አአርአርአጥርር ም	2580
TITGIAGGGA	GIGGAACGGG	TCGGTATCAC	TTTAACGACT	ATACTCACCT	COUNTROPORTOR	2640
OWINIDWED	AAIGUUGUU	CCATGCTAGG	AATTATAATA	TAAACTCTCC	3 3 C C 3 3 3 D D D	2700
CGITITIAGA	AGGTTTCCAT	TGCCTGTGTG	GTTCCGGATC	ፐ ጥል አርጥ አጥል አ	ATCCTCCA CT	2760
MIGGRICHIA	GGCHIIGGGI	TTCTCGAACT	TGTGTGGAGA	ATAACGACAT	ምምም እ ም እ ም ረር ረ እ	2820
INVCOONVIN	CICGIATCAC	CTCAGCCCCT	AGAGACATTC	ቸዋዋል ሮርርርዊም	COTO TO	2880
CIMMCIICG	TATTITATCG	AGAATCCTTT	ACGTTCTTCC	THE PROPERTY OF THE PROPERTY O	TOCOLOGRAM	2940
TCTCTAACGA	ATCATAGGGA	TTCCAGGGTT	CTGTTCCTTC	ACTCCTTGIC	CA	3000
					CM	3052

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 922 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	Met 1	Arg	Phe	Ser	Leu 5	Cys	Gly	Phe	Pro	Leu 10	Val	Phe	Ser	Leu	Thr	Leu
	Leu	Ser	Val	Phe 20	Asp	Thr	Ser	Leu	Ser 25		Thr	Thr	Ile	Ser 30	Leu	Thr
	Pro	Glu	Asp 35	Ser	Phe	His	Gly	Asp		Gln	Asn	Ala	Glu 45	Arg	Ser	Tyr
	Asn	Val 50	Gln	Ala	Gly	Asp	Val 55		Ser	Leu	Thr	Gly 60	Asp	Val	Ser	Ile
	Ser 65	Asn	Val	Asp	Asn	Ser 70	Ala	Leu	Asn	Lys	Ala 75	Cys	Phe	Asn	Val	
	Ser	Gly	Ser	Val	Thr 85	Phe	Ala	Gly	Asn	His 90	His	Gly	Leu	Tyr		80 Asn
	Asn	Ile	Ser	Ser 100	Gly	Thr	Thr	Lys	Glu 105		Ala	Val	Leu	Cys	95 Cys	Gln
	Asp	Pro	Gln 115	Ala	Thr	Ala	Arg	Phe 120		Gly	Phe	Ser	Thr	Leu	Ser	Phe
	Ile	Gln 130	Ser	Pro	Gly	Asp	Ile 135		Glu	Gln	Gly	Cys 140	Leu	Tyr	Ser	Lys
	Asn 145	Ala	Leu	Met	Leu	Leu 150	Asn	Asn	Tyr	Val	Val 155	Arg	Phe	Glu	Gln	
	Gln	Ser	Lys	Thr	Lys 165	Gly	Gly	Ala	Ile	Ser 170	Gly	Ala	Asn	Val	Thr	
				180			Val		185	Tyr				190	Thr	Phe
	Gly	Gly	Ala 195	Ile	His	Ser	Ser	Gly 200	Pro	Leu	Gln	Ile	Ala 205	Val	Asn	Gln
	Ala	Glu 210	Ile	Arg	Phe	Ala	Gln 215		Thr	Ala	Lys	Asn 220	Gly	Ser	Gly	Gly
	Ala 225	Leu	Tyr	Ser	Asp	Gly 230	Asp	Ile	Asp	Ile	Asp 235	Gln	Asn	Ala	туr	Val 240
					245		Ala			250	Ala				255	Gly
				260			Thr		265	Ser				270	Pro	
			275				Lys	280					285	Asn		
	Ile	Met 290	Gly	Gly	Gly	Ala	Ile 295	Tyr	Ala	Arg	Lys	Leu 300	Ser	Ile	Ser	Ser
	305					310	Ile				315	Tyr				320
	Asn	Leu	Gly	Gly	Ala 325	Ile	Ala	Ile	Asp	Thr 330	Gly	Gly	Glu	Ile	Ser	Leu
				340			Ile		345	Gln				350	Ser	
	Pro	Phe	Leu 355	Asn	Gly	Ile	His	Leu 360	Leu	Gln	Asn	Ala	Lys 365	Phe	Leu	Lys
	Leu	Gln 370	Ala	Arg	Asn	Gly	Cys 375		Ile	Glu	Phe	Tyr 380	Asp	Pro	Ile	Thr
	Ser 385	Glu	Ala	Asp	Gly	Ser 390	Thr	Gln	Leu	Asn	Ile 395	Asn	Gly	Asp	Pro	Lys 400
	Asn	Lys	Glu	Tyr	Thr 405	Gly	Thr	Ile	Leu	Phe 410	Ser	Gly	Glu	Lys	Ser 415	Leu
•	2 3															

Ala Asn Asp Pro Arg Asp Phe Lys Ser Thr Ile Pro Gln Asn Val Asn

			420					425					430	-	
		435			Leu		440					445			
Ser	Lys 450	Phe	Thr	Gln	Ser	Pro 455	Gly	Ser	His	Leu	Val 460	Leu	Asp	Leu	Gly
Thr 465	Lys	Leu	Ile	Ala	Ser 470	Lys	Glu	Asp	Ile	Ala 475	Ile	Thr	Gly	Leu	Ala 480
Ile	Asp	Ile	Asp	Ser 485	Leu	Ser	Ser	Ser	Ser 490	Thr	Ala	Ala	Val	Ile 495	Lys
			500		Lys			505			_		510		
		515			Asn		520		_			525	_		
	530				Leu	535					540	_	_		
545					Asp 550					555			_	•	560
				565	Leu				570		-		_	575	•
			580		Lys			585					590		
		595			Asn		600					605			_
	610				Gln	615					620				_
625					Asp 630 Arg					635					640
				645					650					655	
			660		Ile			665		_			670		
		675	•		Arg		680		_			685			
	690				Gly	695					700				
705					710					715					Gly 720 Phe
				725	,				730	;				735	
			740)				745					750		Ile
		759	5				760)				765		-	Leu
	770).				775	5				780				Tyr
785	5				790)				795	•				800 Asn
				809	5				810)				815	
			820)				825	5				830		Ile
		839	5				840)				845	•		lle
	850)				855	5				860)			. Ala
865		,,		- I	870					875			5	,	880

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2526 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGAAGATTC	CACTCCGCTT	TTTATTGATA	TCATTAGTAC	CTACGCTTTC	TATGTCGAAT	60	
TTATTAGGAG	CTGCTACTAC	CGAAGAGCTA	TCGGCTAGCA	ATAGCTTCGA	TGGAACTACA	120	
TCAACAACAA	GCTTTTCTAG	TAAAACATCA	TCGGCTACAG	ATGGCACCAA	TTATGTTTTT	180	
AAAGATTCTG	TAGTTATAGA	AAATGTACCC	AAAACAGGGG	AAACTCAGTC	TACTAGTTGT	240	
TTTAAAAATG	ACGCTGCAGC	TGGAGATCTA	AATTTCTTAG	GAGGGGGATT	TTCTTTCACA	300	
TTTAGCAATA	TCGATGCAAC	CACGGCTTCT	GGAGCTGCTA	TTGGAAGTGA	AGCAGCTAAT	360	
AAGACAGTCA	CGTTATCAGG	ATTTTCGGCA	CTTTCTTTTC	TTAAATCCCC	AGCAAGTACA	420	
GTGACTAATG	GATTGGGAGC	TATCAATGTT	AAAGGGAATT	TAAGCCTATT	GGATAATGAT	480	
AAGGTATTGA	TTCAGGACAA	TTTCTCAACA	GGAGATGGCG	GAGCAATTAA	TTGTGCAGGC	540	
TCCTTGAAGA	TCGCAAACAA	TAAGTCCCTT	TCTTTTATTG	GAAATAGTTC	TTCAACACGT	600	
GGCGGAGCGA	TTCATACCAA	AAACCTCACA	CTATCTTCTG	GTGGGGAAAC	TCTATTTCAG	660	
GGGAATACAG	CGCCTACGGC	TGCTGGTAAA	GGAGGTGCTA	TCGCGATTGC	AGACTCTGGC	720	
ACCCTATCCA	TTTCTGGAGA	CAGTGGCGAC	ATTATCTTTG	AAGGCAATAC	GATAGGAGCT	780	
ACAGGAACCG	TCTCTCATAG	TGCTATTGAT	TTAGGAACTA	GCGCTAAGAT	AACTGCGTTA	840	
CGTGCTGCGC	AAGGACATAC	GATATACTTT	TATGATCĊGA	TTACTGTAAC	AGGATCGACA	900 -	
TCTGTTGCTG	ATGCTCTCAA	TATTAATAGC	CCTGATACTG	GAGATAACAA	AGAGTATACG	960	
GGAACCATAG	TCTTTTCTGG	AGAGAAGCTC	ACGGAGGCAG	AAGCTAAAGA	TGAGAAGAAC	1020	
CGCACTTCTA	AATTACTTCA	AAATGTTGCT	TTTAAAAATG	GGACTGTAGT	TTTAAAAGGT	1080	
GATGTCGTTT	TAAGTGCGAA	CGGTTTCTCT	CAGGATGCAA	ACTCTAAGTT	GATTATGGAT	1140	
TTAGGGACGT	CGTTGGTTGC	AAACACCGAA	AGTATCGAGT	TAACGAATTT	GGAAATTAAT	1200	
ATAGACTCTC	TCAGGAACGG	GAAAAAGATA	AAACTCAGTG	CTGCCACAGC	TCAGAAAGAT	1260	
ATTCGTATAG	ATCGTCCTGT	TGTACTGGCA	ATTAGCGATG	AGAGTTTTTA	TCAAAATGGC	1320	
TTTTTGAATG	AGGACCATTC	CTATGATGGG	ATTCTTGAGT	TAGATGCTGG	GAAAGACATC	1380	
GTGATTTCTG	CAGATTCTCG	CAGTATAAAT	GCTGTACAAT	CTCCGTATGG	CTATCAGGGA	1440	
AAGTGGACAA	TCAATTGGTC	TACTGATGAT	AAGAAAGCTA	CGGTTTCTTG	GGCAAAGCAA	1500	
AGTTTTAATC	CCACTGCTGA	GCAGGAGGCT	CCGTTAGTTC	CTAATCTTCT	TTGGGGTTCT	1560	
TTTATAGATG	TTCGTCCCTT	CCAAAATTTT	ATAGAGCTAG	GTACTGAAGG	TGCTCCTTAC	1620	
GAAAAGAGAT	TTTGGGTTGC	AGGCATTTCC	AATGTTTTGC	ATAGGAGCGG	TCGTGAAAAT	1680	
CAAAGGAAAT	TCCGTCATGT	GAGTGGAGGT	GCTGTAGTAG	GTGCTAGCAC	GAGGATGCCG	1740	
GGTGGTGATA	CCTTGTCTCT	GGGTTTTGCT	CAGCTCTTTG	CGCGTGACAA	AGACTACTTT	1800	
ATGAATACCA	ATTTCGCAAA	GACCTACGCA	GGATCTTTAC	GTTTGCAGCA	CGATGCTTCC	1860	
CTATACTCTG	TGGTGAGTAT	CCTTTTAGGA	GAGGGAGGAC	TCCGCGAGAT	CCTGTTGCCT	1920	
TATGTTTCCA	AGACTCTGCC	GTGCTCTTTC	TATGGGCAGC	TTAGCTACGG	CCATACGGAT	1980	
CATCGCATGA	AGACCGAGTC	TCTACCCCCC	CCCCCCCGA	CGCTCTCGAC	GGATCATACT	2040	
TCTTGGGGAG	GATATGTCTG	GGCTGGAGAG	CTGGGAACTC	GAGTTGCTGT	TGAAAATACC	2100	
AGCGGCAGAG	GATTTTTCCG	AGAGTACACT	CCATTTGTAA	AAGTCCAAGC	TGTTTACTCG	2160	
CGCCAAGATA	GCITTGTTGA	ACTAGGAGCT	ATCACTCCTC	ATTTTAGTGA	TTCGCATCTT	2220	
TATAACCTTG	CGATTCCTCT	TGGAATCAAG	TTAGAGAAAC	GGTTTGCAGA	GCAATATTAT	2280	_

CATGTTGTAG CGATGTATT CTACTTTCCA ACCAAGGGA ATTGTTCAGG CCTCAGGTT GGCTTTGAAT GGCGGGGAT TTTTAG	T TCGATCTTTC	AAAGGTTCGA	ACTTAGCAAG	ACAGGCTGGT	2400
--	--------------	------------	------------	------------	------

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 841 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

								••• 01	SQ II	2 140	:8:				
Met	t Ly	s Ile	e Pro	Let 5	ı Arç	y Phe	e Lei	ı Leı	11e	e Se	r Lei	ı Va	l Pro	Thi	Leu
Sei	r Me	t Sei	Asr 20	ı Leı	ı Leı	ı Gly	/ Ala	a Ala 25	a Thi	Th	r Glu	ı Glı	ı Leu	ı Ser	Ala
Sei	r Ası	1 Sei 35	? Phe	e Asp	Gly	Thi	Thr	Ser	Thr	Th	r Sei	Phe	30 Ser	Ser	Lys
Thi	50 Sea	r Ser	Ala	Thr	Asp	Gl _y 55	/ Thr	Asn	туг	. Va	l Phe	45 Lys	Asp	Ser	Val
Va] 65	l Il€	e Glu	ı Asr	Val	Pro	Lys	5 Thr	Gly	/ Glu	Th:	60 Glr	Ser	Thr	Ser	Cys
Ph∈	≥ Lys	Asn	Asp	Ala 85	Ala	Ala	Gly	Asp	Leu 90	Asr	n Phe	Leu	Gly	Gly	80 Gly
Ph∈	e Ser	Phe	Thr 100	Phe	Ser	Asn	Ile	Asp	Ala	Thr	Thr	Ala	Ser	95 Gly	Ala
Ala	. Il∈	Gly 115	Ser	Glu	Ala	Ala	Asn 120	Lys	Thr	Val	Thr	Leu	110 Ser	Gly	Phe
Ser	Ala 130	Leu	Ser	Phe	Leu	Lys 135	Ser	Pro	Ala	Ser	Thr	125 Val	Thr	Asn	Gly
Leu 145	Gly	Ala	Ile	Asn	Val 150	Lys	Gly	Asn	Leu	Ser	140 Leu	Leu	Asp	Asn	Asp
Lys	Val	Leu	Ile	Gln	Asp	Asn	Phe	Ser	Thr	Gly	Asp	Gly	Gly	Ala	160 Ile
Asn	Cys	Ala	Gly 180	Ser	Leu	Lys	Ile	Ala	170 Asn	Asn	Lys	Ser	Leu	175 Ser	Phe
Ile	Gly	Asn	Ser	Ser	Ser	Thr	Arg	Gly	Gly	Ala	Ile	His	190 Thr	Lys	Asn
Leu	Thr 210	Leu	Ser	Ser	Gly	Gly	Glu	Thr	Leu	Phe	Gln	205 Gly	Asn	Thr	Ala
Pro 225	Thr	Ala	Ala	Gly	Lys	Gly	Gly	Ala	Ile	Ala	Ile	Ala	Asp	Ser	Gly
Thr	Leu	Ser	Ile	Ser	Gly	Asp	Ser	Gly	Asp	Ile	Ile	Phe	Glu	Gly	240 Asn
Thr	Ile	Gly	Ala 260	Thr	Gly	Thr	Val	Ser	His	Ser	Ala	Ile	Asp	255 Leu	Gly
Thr	Ser	Ala 275	Lys	Ile	Thr	Ala	Leu	Arg	Ala	Ala	Gln	Gly	270 His	Thr	Ile
Tyr	Phe 290	Tyr	Asp	Pro	Ile	Thr	280 Val	Thr	Gly	Ser	Thr	285 Ser	Val	Ala	Asp
Ala	Leu	Asn	Ile	Asn	Ser	295 Pro	Asp	Thr	Gly	Asp	300 Asn	Lys	Glu	Tyr	Thr

PCT/DK98/00266 WO 98/58953

51
320
305 310 310 Gly Thr Ile Val Phe Ser Gly Glu Lys Leu Thr Glu Ala Glu Ala Lys 330 335
325 325 Asp Val Ala Phe Lys
Asp Glu Lys Asn Arg Thr Ser Lys Leu Leu Gln Asn Val Ala Phe Lys 350 340 340 340 340 340 350 340
340 Asn Gly Thr Val Val Leu Lys Gly Asp Val Val Leu Ser Ala Asn Gly. 365 360 365
355 Phe Ser Gln Asp Ala Asn Ser Lys Leu Ile Met Asp Leu Gly Thr Ser 375 380
375 Leu Val Ala Asn Thr Glu Ser Ile Glu Leu Thr Asn Leu Glu Ile Asn 400
Leu Val Ala Ash ini ola 395
390 385 390 390 Ile Asp Ser Leu Arg Asn Gly Lys Lys Ile Lys Leu Ser Ala Ala Thr 410 415
410 405 410 Ala Ile Ser
Ala Gln Lys Asp Ile Arg Ile Asp Arg Pro Val Val Leu Ala Ile Ser 430 420 425 420 420 420 420 420 420 420 420 420
420 425 Asp Glu Ser Phe Tyr Gln Asn Gly Phe Leu Asn Glu Asp His Ser Tyr 440 445
435 440 App the Val Tie Ser Ala
435 Asp Gly Ile Leu Glu Leu Asp Ala Gly Lys Asp Ile Val Ile Ser Ala 460
455 450 Asp Ser Arg Ser Ile Asn Ala Val Gln Ser Pro Tyr Gly Tyr Gln Gly 480
Asp Ser Arg Ser IIe Ash Ala val Gli 351 475 475 476
465 470 470 Lys Lys Ala Thr Val Ser Lys Trp Thr Ile Asn Trp Ser Thr Asp Asp Lys Lys Ala Thr Val Ser
Lys Trp Int Tie Ash 490 490 495
485 Trp Ala Lys Gln Ser Phe Asn Pro Thr Ala Glu Gln Glu Ala Pro Leu 500 505 500 500 500 500 500
Val Pro Asn Leu Leu Trp Gly Ser Phe Ile Asp Val Arg Pro Phe Gln 525
515 Asn Phe Ile Glu Leu Gly Thr Glu Gly Ala Pro Tyr Glu Lys Arg Phe 540
Asn pne lie Giu bew 507 530 530 530 530
530 535 Trp Val Ala Gly Ile Ser Asn Val Leu His Arg Ser Gly Arg Glu Asn 560
555 550 550 550 South Na Val Gly Ala Ser
545 Gln Arg Lys Phe Arg His Val Ser Gly Gly Ala Val Val Gly Ala Ser 575 565 580 570 580 570 580 580 580 58
Thr Arg Met Pro Gly Gly Asp Thr Leu Ser Leu Gly Phe Ala Gln Leu 590 580 580
580 580 580 Thr Asn Phe Ala Lys Thr Phe Ala Arg Asp Lys Asp Tyr Phe Met Asn Thr Asn Phe Ala Lys Thr 600 605
595 Tyr Ala Gly Ser Leu Arg Leu Gln His Asp Ala Ser Leu Tyr Ser Val 620
610 615 Gly Ley Arg Gly Ile Ley Ley Pro
610 615 Val Ser Ile Leu Leu Gly Glu Gly Gly Leu Arg Glu Ile Leu Leu Pro 635 640
625 630 637 Gly Gln Leu Ser Tyr Tyr Val Ser Lys Thr Leu Pro Cys Ser Phe Tyr Gly Gln Leu Ser Tyr 650 655
Tyr Val Ser Lys Thr Led F10 675 650 655 645 650 Fine Pro
Gly His Thr Asp His Arg Met Lys Thr Glu Ser Leu Pro Pro Pro 670 660 665 670 680 680 680 680 680 680 680 680 680 68
660 Pro Thr Leu Ser Thr Asp His Thr Ser Trp Gly Gly Tyr Val Trp Ala 680 685 680 687 688 688
Gly Glu Leu Gly Thr Arg Val Ala Val Glu Asn Thr Ser Gly Arg Gly 695 700
690 695 Phe Phe Arg Glu Tyr Thr Pro Phe Val Lys Val Gln Ala Val Tyr Ser 720
Phe Phe Arg Glu Tyl Till 125 720 715 720
705 710 Arg Gln Asp Ser Phe Val Glu Leu Gly Ala Ile Ser Arg Asp Phe Ser 735 730 735
725 Asp Ser His Leu Tyr Asn Leu Ala Ile Pro Leu Gly Ile Lys Leu Glu 745 750
T40 T45 Lys Arg Phe Ala Glu Gln Tyr Tyr His Val Val Ala Met Tyr Ser Pro 760 765
Lys Arg Phe Ala Glu Gli 192 765
755

```
Asp Val Cys Arg Ser Asn Pro Lys Cys Thr Thr Thr Leu Leu Ser Asn
                       775
                                          780
Gln Gly Ser Trp Lys Thr Lys Gly Ser Asn Leu Ala Arg Gln Ala Gly
                   790
                                      795
Ile Val Gln Ala Ser Gly Phe Arg Ser Leu Gly Ala Ala Glu Leu
               805
                                  810
Phe Gly Asn Phe Gly Phe Glu Trp Arg Gly Ser Ser Arg Ser Tyr Asn
           820
                              825
                                                  830
Val Asp Ala Gly Ser Lys Ile Lys Phe
       835
                           840
```

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGAAGTCTT	СТТТССССАА	CTTTCTATTT	TCTACATTTG	OTTA TOTOTO TO TO		
ATTGCTACCG	AGACAGTTTT	CCATTCAACT	GCGAGTTTCG	CTATTTCCC	TTTGTCTATG	60
TTTTCACTTC	GTGAGAGTCA	CCAACATCCT	GCGAGITICG	ATGGGAATAA	AAATGGTAAT	120
ACTCTAGAAA	ATATTCCTCC	AACACCCACA	GGAACTACCT	ACCTATTTAA	GGGAAATGTC	180
AAGGGCGATT	TCACTTTCAC	AACAGGCACA	GCAATCACAA	AAAGCTGTTT	TAACAACACT	240
GGGACTGTAG	CAGGGGGGGTGG	AGGTAACGGG	AACTCTCTAT	TGTTCCAAAC	GGTGGATGCA	30 0
GGGTTTTCTT	CCCTATCTT	TGTTAACAGC	AGCGTGGTAG	ATAAATCTAC	CACGTTTATA	360
GCCCTTACCT	CCTCTACCCC	TATIGCGTCT	CCTGGAAGTT	CGATAACTAC	CGGCAAAGGA	420
A A A A COUNTY	CAACCCATTA	TAGCTTGAAG	TTTGACAAAA	ATGTCAGTTT	GCTCTTCAGC	480
AMAMACITII	CAACGGATAA	TGGCGGTGCT	ATCACCGCAA	AAACTCTTTC	ATTAACAGGG	540
ACTACAATGT	CAGCICIGIT	TTCTGAAAAT	ACCTCCTCAA	AGAAAGGCGG	AGCCATTCAG	600
ACTICCGATG	CCCTTACCAT	TACTGGAAAC	CAAGGGGAAG	TCTCTTTTTC	TGACAATACT	660
ICITCGGATT	CTGGAGCTGC	AATTTTTACA	${\tt GAAGCCTCGG}$	TGACTATTTC	TAATAATGCT	720
AAAGTTTCCT	TTATTGACAA	TAAGGTCACA	GGAGCGAGCT	CCTCAACAAC	GGGGGATATG	780
TCAGGAGGTG	CTATCTGTGC	TTATAAAACT	AGTACAGATA	CTAAGGTCAC	CCTCACTGGA	840
AATCAGATGT	TACTCTTCAG	CAACAATACA	TCGACAACAG	CGGGAGGAGC	TATCTATGTG	900
AAAAAGCTCG	AACTGGCTTC	CGGAGGACTT	ACCCTATTCA	GTAGAAATAG	TGTCAATGGA	960
GGTACAGCTC	CTAAAGGTGG	AGCCATAGCT	ATCGAAGATA	GTGGGGAATT	GAGTTTATCC	1020
GCCGATAGTG	GTGACATTGT	CTTTTTAGGG	AATACAGTCA	CTTCTACTAC	TCCTGGGACG	1080
AATAGAAGTA	GTATCGACTT	AGGAACGAGT	GCAAAGATGA	CAGCTTTGCG	TTCTGCTGCT	1140
GGTAGAGCCA	TCTACTTCTA	TGATCCCATA	ACTACAGGAT	CTTCCACAAC	AGTTACAGAT	1200
GTCTTAAAAG	TTAATGAGAC	TCCGGCAGAT	TCTGCACTAC	AATATACAGG	GAACATCATC	1260
TTCACAGGAG	AAAAGTTATC	AGAGACAGAG	GCCGCAGATT	CTAAAAATCT	TACTTCGAAG	1320
CTACTACAGC	CTGTAACTCT	TTCAGGAGGT	ACTCTATCTT	TAAAACATGG	AGTGACTCTG	1380
CAGACTCAGG	CATTCACTCA	ACAGGCAGAT	TCTCGTCTCG	AAATGGACGT	AGGAACTACT	1440
CTAGAACCTG	CTGATACTAG	CACCATAAAC	AATTTGGTCA	TTAACATCAG	TTCTATAGAC	1500
GGTGCAAAGA	AGGCAAAAAT	AGAAACCAAA	GCTACGTCAA	AAAATCTGAC	TTTATCTGGA	1560
ACCATCACTT	TATTGGACCC	GACGGGCACG	TTTTATGAAA	ATCATAGTTT	AAGAAATCCT	1620
CAGTCCTACG	ACATCTTAGA	GCTCAAAGCT	TCTGGAACTG	TAACAAGCAC	CGCAGTGACT	1680
CCAGATCCTA	TAATGGGTGA	GAAATTCCAT	TACGGCTATC	AGGGAACTTG	GGGCCCAATT	1740
GTTTGGGGGA	CAGGGGCTTC	TACGACTGCA	ACCTTCAACT	GGACTAAAAC	TGGCTATATT	1800
CCTAATCCCG	AGCGTATCGG	CTCTTTAGTC	CCTAATAGCT	TATGGAATGC	ATTTATAGAT	1860
ATTAGCTCTC	TCCATTATCT	TATGGAGACT	GCAAACGAAG	GGTTGCAGGG	AGACCGTGCT	1920
TTTTGGTGTG	CTGGATTATC	TAACTTCTTC	CATAAGGATA	GTACAAAAAC	ACGACGCGCC	1920
TTTCGCCATT	TGAGTGGCGG	TTATGTCATA	GGAGGAAACC	TACATACTTC	TTCACATAAC	2040
			0. 2 2 3 0 0	caracilg	TICHOMIAAG	2040

ATTCTTAGTG	CTGCATTTTG	TCAGCTCTTT	GGAAGAGATA	GAGACTACTT	TGTAGCTAAG	2100
AATCAAGGTA	CAGTCTACGG	AGGAACTCTC	TATTACCAGC	ACAACGAAAC	СТАТАТСТСТ	2160
CTTCCTTGCA	AACTACGGCC	TTGTTCGTTG	TCTTATGTTC	CTACAGAGAT	TCCTGTTCTC	2220
TTTTCAGGAA	ACCTTAGCTA	CACCCATACG	GATAACGATC	TGAAAACCAA	GTATACAACA	2280
TATCCTACTG	TTAAAGGAAG	CTGGGGGAAT	GATAGTTTCG	CTTTAGAATT	CGGTGGAAGA	2340
GCTCCGATTT	GCTTAGATGA	AAGTGCTCTA	TTTGAGCAGT	ACATGCCCTT	CATGAAATTG	2400
CAGTTTGTCT	ATGCACATCA	${\tt GGAAGGTTTT}$	AAAGAACAGG	GAACAGAAGC	TCGTGAATTT	2460
GGAAGTAGCC	GTCTTGTGAA	TCTTGCCTTA	CCTATCGGGA	TCCGATTTGA	TARCCARTCA	2520
GACTGCCAAG	ATGCAACGTA	CAATCTAACT	CTTGGTTATA	CTGTGGATCT	TCTTCCTACT	-020
AACCCCGACT	GTACGACAAC	ACTGCGAATT	ACCCCTCATT	CTTCCAAAAC	CTTCCCTAGI	2580
AATTTGGCAA	GACAAGCTTT	AGTCCTTCGT	CCACCCAACC	ATTTTTTTTCCTT	CIICGGIACG	2640
TTTGAAGCCT	TTAGCCAATT	TTCTTTTGAA	TTCCCCCCCCCC	ATTITIGCT	TAACTCAAAT	2700
GACTTAGGAG	CANAMATACCA	TICILLIGAA	TIGCGTGGGT	CATCTCGCAA	TTACAATGTA	2760
CACTIAGGAG	CHAMATACCA	ATTCTAA				2787

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met 1	Lys	Ser	Ser	Phe 5	Pro	Lys	Phe	Val	Phe	Ser	Thr	Phe	Ala	Ile 15	Phe
		Ser	20					25					3.0	Ala	
		Gly 35					40					45			
	50	Gly				55					60				
65		Gly			70					75					80
		Asp		85					90					95	
		Asp	100					105					110		
		Lys 115					120					125			
	130	Pro				135					140				
145		Gly			150					155					160
		Phe		165					170					175	Leu
		Thr	180					185					190		
		Lys 195					200					205			
	210	Gln				215					220				
-Gly 225	Ala	Ala	Ile	Phe	Thr 230	Glu	Ala	Ser	Val	Thr 235	Ile	Ser	Asn	Asn	Ala 240
Lys	Val	Ser	Phe	Ile	Asp	Asn	Lys	Val	Thr	Gly	Ala	Ser	Ser	Ser	Thr

245 Thr Gly Asp Met Ser Gly Gly Ala Ile Cys Ala Tyr Lys Thr Ser Thr Asp Thr Lys Val Thr Leu Thr Gly Asn Gln Met Leu Leu Phe Ser Asn Asn Thr Ser Thr Thr Ala Gly Gly Ala Ile Tyr Val Lys Lys Leu Glu Leu Ala Ser Gly Gly Leu Thr Leu Phe Ser Arg Asn Ser Val Asn Gly Gly Thr Ala Pro Lys Gly Gly Ala Ile Ala Ile Glu Asp Ser Gly Glu Leu Ser Leu Ser Ala Asp Ser Gly Asp Ile Val Phe Leu Gly Asn Thr Val Thr Ser Thr Thr Pro Gly Thr Asn Arg Ser Ser Ile Asp Leu Gly Thr Ser Ala Lys Met Thr Ala Leu Arg Ser Ala Ala Gly Arg Ala Ile Tyr Phe Tyr Asp Pro Ile Thr Thr Gly Ser Ser Thr Thr Val Thr Asp Val Leu Lys Val Asn Glu Thr Pro Ala Asp Ser Ala Leu Gln Tyr Thr Gly Asn Ile Ile Phe Thr Gly Glu Lys Leu Ser Glu Thr Glu Ala Ala Asp Ser Lys Asn Leu Thr Ser Lys Leu Leu Gln Pro Val Thr Leu Ser Gly Gly Thr Leu Ser Leu Lys His Gly Val Thr Leu Gln Thr Gln Ala Phe Thr Gln Gln Ala Asp Ser Arg Leu Glu Met Asp Val Gly Thr Thr Leu Glu Pro Ala Asp Thr Ser Thr Ile Asn Asn Leu Val Ile Asn Ile Ser Ser Ile Asp Gly Ala Lys Lys Ala Lys Ile Glu Thr Lys Ala Thr Ser Lys Asn Leu Thr Leu Ser Gly Thr Ile Thr Leu Leu Asp Pro Thr Gly Thr Phe Tyr Glu Asn His Ser Leu Arg Asn Pro Gln Ser Tyr Asp Ile Leu Glu Leu Lys Ala Ser Gly Thr Val Thr Ser Thr Ala Val Thr Pro Asp Pro Ile Met Gly Glu Lys Phe His Tyr Gly Tyr Gln Gly Thr Trp Gly Pro Ile Val Trp Gly Thr Gly Ala Ser Thr Thr Ala Thr Phe Asn Trp Thr Lys Thr Gly Tyr Ile Pro Asn Pro Glu Arg Ile Gly Ser Leu Val Pro Asn Ser Leu Trp Asn Ala Phe Ile Asp Ile Ser Ser Leu His Tyr Leu Met Glu Thr Ala Asn Glu Gly Leu Gln Gly Asp Arg Ala Phe Trp Cys Ala Gly Leu Ser Asn Phe Phe His Lys Asp Ser Thr Lys Thr Arg Arg Gly Phe Arg His Leu Ser Gly Gly Tyr Val Ile Gly Gly Asn Leu His Thr Cys Ser Asp Lys Ile Leu Ser Ala Ala Phe Cys Gln Leu Phe Gly Arg Asp Arg Asp Tyr Phe Val Ala Lys Asn Gln Gly Thr

705					710					715			Tyr		720
Leu	Pro	Cys	Lys	Leu 725	Arg	Pro	Cys	Ser	Leu 730	Ser	Tyr	Val	Pro	Thr 735	Glu
Ile	Pro	Val	Leu 740	Phe	Ser	Gly	Asn	Leu 745	Ser	Tyr	Thr	His	Thr 750	Asp	Asn
Asp	Leu	Lys 755	Thr	Lys	Tyr	Thr	Thr 760	Tyr	Pro	Thr	Val	Lys 765	Gly	Ser	Trp
Gly	Asn 770	Asp	Ser	Phe	Ala	Leu 775	Glu	Phe	Gly	Gly	Arg 780	Ala	Pro	Ile	Cys
Leu 785	Asp	Glu	Ser	Ala	Leu 790	Phe	Glu	Gln	Tyr	Met 795	Pro	Phe	Met	Lys	Leu 800
Gln	Phe	Val	Tyr	Ala 805	His	Gln	Glu	Gly	Phe 810	Lys	Glu	Gln	Gly	Thr 815	Glu
Ala	Arg	Glu	Phe 820	Gly	Ser	Ser	Arg	Leu 825	Val	Asn	Leu	Ala	Leu 830	Pro	Ile
		835					840					845	Thr		
	850					855					860		Pro		
865					870					875			Phe		880
				885					890				His	895	Cys
			900					905					Glu 910	Leu	_
Gly	Ser	Ser 915	Arg	Asn	Tyr	Asn	Val 920	Asp	Leu	Gly	Ala	Lys 925	Tyr	Gln	Phe

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2757 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGAGATCGT	CTTTTTCCTT	${\tt GTTATTAATA}$	TCTTCATCTC	TAGCCTTTCC	TCTCTTAATG	60
AGTGTTTCTG	CAGATGCTGC	CGATCTCACA	TTAGGGAGTC	GTGACAGTTA	TAATGGTGAT	120
ACAAGCACCA	CAGAATTTAC	TCCTAAAGCG	GCAACTTCTG	ATGCTAGTGG	CACGACCTAT	180
ATTCTCGATG	GGGATGTCTC	GATAAGCCAA	GCAGGGAAAC	AAACGAGCTT	AACCACAAGT	240
TGTTTTTCTA	ACACTGCAGG	AAATCTTACC	TTCTTAGGGA	ACGGATTTTC	TCTTCATTTT	300
GACAATATTA	TTTCGTCTAC	TGTTGCAGGT	GTTGTTGTTA	GCAATACAGC	AGCTTCTGGG	360
ATTACGAAAT	TCTCAGGATT	TTCAACTCTT	CGGATGCTTG	CAGCTCCTAG	GACCACAGGT	420
				GTATAGGGAA	TCTTGACCAA	480
AATGAAAATG	CCTCTAGTGA	AAATGGGGGA	GCCATCAATA	CGAAGACTTT	GTCTTTGACT	540
		${\tt GTTCCTTGGC}$			GGGAGCGATC	600
		GATTTCTGAG			CGGAAACAAC	6 60
		CGCGATCTCT			CTCCAATAAC	720
CAAAATATCT	TTTTCGATGG	CTGCAAAGCA	ACTACAAATG	GCGGAGCTAT	TGATTGTAAC	780
AAAGCAGGGG	CGAACCCAGA	CCCTATCTTG	ACTCTTTCAG	GAAATGAGAG	CCTGCATTTT	840
CIGAATAACA			GCGATTTATA	CCAAAAAATT	GGTGTTATCC	900
TCAGGACGAG	GAGGAGTGTT	ATTTTCTAAC	AACAAAGCTG	CGAATGCTAC	TCCTAAAGGA	960

GGGGCAATTG	CGATTCTAGA	TTCTGGAGAG	ATTAGCΔτττ	CTCCACAMOM	CGGCAATATC	
	2 CHILLY CINC	CIMUL MEDICAL	CONNORMO			1020
ATAGATCTTG	CATCGAATGC	AAAATTTTTA	A A TOTTOGRA	CGAGTGTGAC	CAGAAATGCT AAATAAAGTT	1080
ATTTTCTATG	ATCCTATCAC	GAGCTCACCA	CCTA CTCA	CGACTCGGGG	AAATAAAGTT GAATAAAGCT	1140
GACGCAGGAT	CTGGAAATAC	CTATCAACCC	GCTACTGATA	AGCTCTCTT	GAATAAAGCT GAAACTCTCA	1200
GAAGAGGAAC	TTAAGAAACC	TGACAATCTC	1 ACATCGTTT	TCTCTGGAGA	GAAACTCTCA	1260
GCTGCAGGTG	CCTTAGTATT	CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAGTCTACAT	TTACACAGGC	TGTAGAGCTT	1320
GTCGAGGGAT	CGAAAGTCGT	TATCCATCCA	GIGACIGTAG	TTACACAGGC TTGCAAATAC TTGAGGCAAG	TATAACGCAG	1380
GTCACTCTCA	ATGGCCTAGC	CATTAATA	GGGACTACTT	TTGAGGCAAG	CGCTGAGGGG	1440
ATTAAGGCGA	CGCCACCAAC	CALLAATATA	GATTCCTTAG	TTGAGGCAAG ATGGGACAAA	TAAAGCTATC	1500
GCTCAGGGGA	ACTATTATCA	TAAGGATGTT	GCCTTATCAG	GGCCTATCAT	GCTTGTAGAT	1560
GAGCTTTCTG	CACAACCAAC	GCATCATAAT	CTCAGTCAAC	AGCAGGTCTT	TCCTTTAATA	1620
ACTACGAATC	ACTATOCOTA	GATGACTACT	ACAGATATCC	CCGATACCCC	AATTCTAAAT	1680
	WIDDDIWIDG	I CAAGGAACT	ርር እስጥ አጥጥ ለ	TTTTCCCCCC		1740
	TATAGETHE	CITAAUTTGG	ስርጥ <u>አአአአ</u> ርአር	03m3 03		1800
	CTTTGGTTCC	TAATAGCCTG	TCCCCTTCTT	TOTOTOTOTOTO		1860
	DADDJJADD	CACAAGTTTT	תיייט עיניידי	C		1920
	TOTITION	IGAAGATCAG	ΔΛΛ CCλλλCC	7 7 7 7 7 7 7 7 7 7 7	TCGTCATTCT	1980
	DOMITMOOT	AUGAGGATTC	TTCXCCCCC	OMO		2040
CCTTTTGTC	AGCITITINGG	CTACGACAAG	CACCATCTTC	maa	_	2100
	ONO CARLUAG	I I AL LIGATIAN		Oma		2160
	*** TOTOMCIC	CCIACCITITI	ርጥሮጥጥሮክ አጥሮ	CTCCCCCCCCC		2220
	C. II ON CCAC	AAAGTALALT		OMORPE		
	TOOTHINGM	ATUTUTACION	CCTATCCCC	(T) 3 (T) (T) 3 (T)		2280
	· · · · · · · · · · · · · · · · · · ·	GCCALITIA	$\Lambda \Lambda \Gamma \Gamma \Gamma \Gamma \Lambda \Gamma \Lambda \Gamma \Lambda \Gamma \Lambda$	max =		2340
	THIS COUCHE	AGAAGGGTT	א א א ייי יייייייייייייייייייייייייייי	OMORA A CAR		2400
	TUCCCUTTWW	ΑΙΙΙΙΙΑΙΙΑΔΔ	איזיי איזיי איזיי דיידי	7 CM CM	TCATCTCTCC	2460
	* * CCCOMIGI	GALICGTAAT	CATCCACCC	0010010		2520
I CI OGGGAII	CIIGGICGAC	ATGTGGTACA	ACCTTCTCTA	G3 G3 3 G	TCTTGTACGT	2580
OCIOCHAMIC .	ATCATGCCTT	TGCTTCAAAC	ተተመተመ ላ ለመጥጥ	TO CHOOL OF		2640
TTGCGAGGTT	CTTCTCGTAG	CTATGCTATC	GATCTTGGAG	GAAGATTCCC	ATTTTT A	2700
					TITIMA	2757

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 918 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

 Met
 Arg
 Ser
 Ser
 Phe
 Ser
 Leu
 Leu
 Leu
 Ile
 Ser
 Ser
 Ser
 Leu
 Ala
 Phe

 Pro
 Leu
 Leu
 Met
 Ser
 Val
 Ser
 Ala
 Asp
 Ala
 Ala
 Asp
 Ala
 Asp
 Leu
 Thr
 Leu
 Thr
 Leu
 Gly
 Asp
 Ala
 Asp
 Ala
 Asp
 Ile
 Thr
 Leu
 Asp
 Thr
 Pro
 Asp
 Ala
 Asp
 Thr
 Thr
 Thr
 Thr
 Dro
 Thr
 Pro
 Asp
 Asp
 Asp
 Ala
 Asp
 Thr
 Thr
 Thr
 Thr
 Thr
 Thr
 Asp
 Asp
 Ala
 Asp
 A

														_		
		115		Ala			120						125			
	130			Leu		135						140				
145				Gly	150					1	55					160
				Ser 165					1	70					175	
			180	Gly				18	5					190		
		195	5	Gly			200						205			
	210)		Gly		215						220				
225				Ile	230					- 2	235					240
				245	,				2	50					255	
			260)				2€	55					270	•	Leu
		27	5				280)					285	,		Ser
_	29	0				299	5					300				g Gly
309	5				31	O					315					320
•				32	5					330					33!	
			34	0				3	45					35	0	y Ser
		35	55				36	0					36	5		a Lys r Asp
	37	70				37	5					38)			s Ala
38	5				39	0					395	5				400
	_			40	5					410					41	
			4:	20				4	125					43	0	s Ser
		4	35				4	10					44	5		eu Lys
	- 4	50				4	55					46	0			ly Ser
•	ys V 65	al V	al M	et As		19 G. 70	ry T	nr	rnr	Pne	47		.a. 56	EL A	La G	lu Gly 480
V	al T			4	85					490)				4 9	ly Thr 95
			5	00					505					5	10	la Leu
		- 0	15				, 5	20					5	25		lu His
	9	30				5	35					5	40			er Ala
	ln (Sly T	Chr N	1et T	hr T	hr T	hr P	sp	Ile	Pro			hr P			eu Asn 560
T	hr T	Thr I	Asn H	is T	yr C	ly T	yr C	ln	Gly	Th	r Gl	уІ	le I	le V	al T	rp Val

				565					570					E 7 E	
	Asp							~ ~ ~ ~	Ala	Thr				Thr	Lys
Thr	Gly	Tyr 595	Lys	Pro	Asn	Pro	Glu	Arg	Gln	Gly	Pro	Leu	590 Val	Pro	Asn
							51111					C O E			
	Leu 610					013					() (
					000					6 J E					
	Ile			0 4 7					650						Ser
Tyr	Arg	His	Ser 660	Ser	Ala	Gly	Tyr	Ala 665	Leu	Gly	Gly	Gly		655 Phe	Thr
Ala	Ser	Glu	Asn	Phe	Phe	Asn	Dho	712	Dh a	C	61	_	670		
							000					C O E			
	Lys 690					0 7 3					700				
					110					715					
Leu	Ser	Gly	Asn	Ser 725	Asp	Ser	Leu	Pro	Phe	Val	Phe	Asn	Ala	Arg	720 Phe
Ala	Tyr	Glv	His		Asn	Λen	Лсп	Mat	730	m)				735	
			, 10					/45					750		
	Pro						/ 10 11					766			
	_					113					700				Asp
Thr	His	Thr	Pro	Phe	Leu	Asn	Leu	Glu	Met	Ile	Tyr	Ala	His	Gln	Δen
					,,,,					7705					
	Phe								\mathbf{u}						
	Phe		O L O					× / 5					~ ~ ~	Phe	
Asp	Lys	Ser 835	Thr	Tyr	Asp	Leu	Ser 840	Ile	Ala	Tyr	Val	Pro	Asp	Val	Ile
Arg	Asn 850	Asp	Pro	Gly	Cys	Thr 855	Thr	Thr	Leu	Met	Val	845 Ser	Gly	Asp	Ser
Trp		Thr	Cvs	Glv	Thr	000	Low	C	3 .	~ 1	860				
	Ser				0/0					275					
	Gly								u an						Gln
Phe	Glu	Val	Glu 900	Leu	Arg	Gly	Ser	Ser 905	Arg	Ser	Tyr	Ala	Ile	Asp	Leu
Gly	Gly	Arg 915		Gly	Phe			703					910		

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGAAATCCT CTCTTCATTC	GTTTGTAATC	TCGTCATCTT	TAGCACTTCC	CTTGTCACTA	60
AATTTCTCTG CGTTTGCTG	TGTTGTTGAA	ATCAATCTAG	GACCTACCAA	$T\Delta GCTTCTCT$	120
GGACCAGGAA CCTACACTC	: TCCAGCCCAA	ACAACAAATG	CAGATGGAAC	ТАТСТАТААТ	180
CTAACAGGGG ATGTCTCAAT	CACCAATGCA	GGATCTCCGA	CAGCTCTAAC	CGCTTCCTGC	240
TTTAAAGAAA CTACTGGGAA	TCTTTCTTTC	CAAGGCCACG	GCTACCAATT	ТСТССТАСА	300
AATATCGATG CGGGAGCGA	CTGTACCTTT	ACCAATACAG	CTGCAAATAA	GCTTCTCTCC	360
TTTTCAGGAT TCTCCTATT	GTCACTAATA	CAAACCACGA	ATGCTACCAC	AGGAACAGGA	420
GCCATCAAGT CCACAGGAG(TTGTTCTATT	CAGTCGAACT	ATAGTTGCTA	CTTTCCCCAA	480
AACTTTTCTA ATGACAATGO	AGGCGCCCTC	CAAGGCAGCT	CTATCAGTCT	ATCCCTAAAC	540
CCCAACCTAA CGTTTGCCA	AAACAAAGCA	ACGCAAAAAG	GGGGTGCCCT	CTATTCCACC	600
GGAGGGATTA CAATTAACA	TACGTTAAAC	TCAGCATCAT	TTTCTGAAAA	TACCGCGGCG	660
AACAATGGCG GAGCCATTT	CACGGAAGCT	AGCAGTTTTA	TTAGCAGCAA	CAAAGCAATT	720
AGCTTTATAA ACAATAGTGT	GACCGCAACC	TCAGCTACAG	GGGGAGCCAT	TTACTGTAGT	780
AGTACATCAG CCCCAAAC	CAGTCTTAACT	CTATCAGACA	ACGGGGAACT	GAACTTTATA	840
GGAAATACAG CAATTACTAG	TGGTGGGGCG	ATTTATACTG	ACAATCTAGT	ጥርጥጥጥርጥጥርጥ	900
GGAGGACCTA CGCTTTTTA	AAACAACTCT	GCTATAGATA	CTGCAGCTCC	CTTAGGAGGA	960
GCAATTGCGA TTGCTGACTC	TGGATCTTTG	AGTCTTTCGG	CTCTTGGTGG	AGACATCACT	
TTTGAAGGAA ACACAGTAG	CAAAGGAGCT	TCTTCGAGTC	AGACCACTAC	CACAAATTCT	1020
ATTAACATCG GAAACACCAA	TGCTAAGATT	GTACAGCTGC	GAGCCTCTCA	AGGCAATACT	1080 1140
ATCTACTTCT ATGATCCTAT	AACAACTAAC	CATACTGCAG	CTCTCTCAGA	TCCTCTAAAC	
TTAAATGGTC CTGACCTTG	AGGGAATCCT	GCATATCAAG	GAACCATCCT	ATTTTTCTCCA	1200
GAGAAGCTCT CGGAAGCAGA	AGCTGCAGAA	GCTGATAATC	TCADATCTAC	ATTICIGGA	1260
CCTCTAACTC TTGCGGGAGG	GCAACTCTCT	CTTAAATCAG	GAGTCACTCT	AGTTCAGCAA	1320
TCCTTTTCGC AATCTCCGGC	CTCTACCCTC	CTCATGGATG	CAGGGACGAC	AGIIGCIAAG	1380
GCTGATGGGA TCACTATCA	TAATCTTGTT	CTCAATGTAG	ATTCCTTANA	ATTAGAAACC	1440
AAGGCTACGC TAAAAGCAAG	ACAAGCAAGT	CAGACAGTCA	CTTTATCTCC	AGAGACCAAG	1500
CTTGTAGATC CTTCTGGAA	TGTCTACGAA	GATGTCTCTT	GGAATAACCC	TCAACTCTCT	1560
TCTTGTCTCA CTCTTACTG	TGACGACCCC	GCGAATATTC	ACATCACACA	CTTACCTCCT	1620
GATCCCCTAG AAAAAAATC	TATCCATTGG	GGATACCAAG	CCAATTCCCCC	ATTATIONNO	1680
CAAGAGGATA CTGCGACTA	ATCCAAAGCA	GCGACTCTTA	CCTCCACAAA	ATTATCTTGG	1740
AATCCGAATC CTGAGCGTCC	TGGAACCTTA	GTTGCTAACA	CCIGGACAAA	AACAGGATAC	1800
GATGTGCGCT CCATACAAC	GCTTGTAGCC	ACTANACTAC	CCCAATCTCA	ATCCTTTGTT	1860
GGCATCTGGT GTGAAGGGA	CTCGAACTTC	TTCCATAAAG	ATACCACCAA	AGAAACTCGC	1920
GGTTTTCGCC ACATAAGTG	AGGTTATGTT	GTACCACACCA	CTACAACAAA	GATAAATAAA	1980
AATCTTATCA CTGCAGCCT	CTGCCAATTA	TTCCCCAAAC	ATACACATT	AGCTTCTGAT	2040
AAAAATAGAG CTTCTGCCTA	TGCAGCTTCT	CTCCATCTCC	ATAGAGATCA	CITTATAAAT	2100
TCTCCAAGCT TGTTACGCT	CCTTCCTGGA	TCTCAAACTC	AGCATCTAGC	GACCTTGTCT	2160
GCTCAGATCA GCTATATCTA	TAGTAAAAAT	TCTGAAAGIG	AGCAGCCIGI	CCTCTTTGAT	2220
AAGGGAGAGA GCTCGTGGT	TAATGACGGT	TECCCTCTCC	AACTTACAC	CCAAGCACCA	2280
CACACTGCTT TAAGCCATG	CCCTCTCTTC	CACCCCCTATT	AAC1 IGCGAG	CTCCCTACCA	2340
GCTTCGTACA TACACCAAGA	TAGCTTCAAA	CACGCGIAII	CTACCTTTCAT	CAAAGTAGAA	2400
GATAGCGGTG ATTTAATTA	CGTCTCAAA	CCTATTCCA	TELLOCATEGET	ACGATCTTTC	2460
AGAAACGAGC GTGCGTCTTA	· CGYCICIGIG	CTCATTGGAA	TTACCTTCGA	GAGATTCTCG	2520
AATCCTGACT GCACGACAGG	TOMMGUIACI	DACATUTACG	TIGCCGATGT	CTATCGTAAG	2580
AATCTCTCAA GACAACCTCC	TOTCCIAAIC	AACAATACCT	CGTGGAAAAC	TACAGGAACG	2640
AATCTCTCAA GACAAGCTGG	TAICGGAAGA	ACAGGGATCT	TTATGCCTT	CTCTCCAAAT	2700
CTTGAGGTCA CAAGTAACCT GATCTTGGAG GTAAGTTCCA	CTTCTAIGGAA	ATTCGTGGAT	CTTCACGCAG.	CTACAATGCA	2760
	GIICIAA				2787

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

												NO:14					
Me:	t Ly	s S	Ser	Sei	Le 5	u Hi	s Tı	îp Pl	he V	al I	le s	Ser S	Ger S	Ser :	Leu	Al	a Le
Pro	o Le	u S	Ger	Let 20	ı As	n Ph	e S∈	r A	la P	he A	la A	la v	al v	al (Glu	15 11	e Ası
Lei	ı Gl	y F	ro	Thr	Ası	n Se	r Ph	e Se	2. er G	5 ly P	ro G	ју т	hr T	vr 1	30 Chr	Dre	Dr
Ala	a Gl	n T	hr	Thr	Ası	n Al	a As	4 (P G l) .y T]	nr I	le T	yr A	4 sn L	5 eu 1	b~	Cl	
Val	l Se	r I	le	Thr	Ası	n Al	55 a Gl	y Se	er Pi	^О Т)	מיר א	6 la L	0		. 111	GI	ASI
65 Phe	Ly	s G	lu	Thr	Thi	70 c G1	ν Δς	n Io		DI	7	ia L 5 ln G	eu T	hr Þ	lla	Ser	Суз 80
Phe	Le	u T.	en	Gln	85		,	r.e	u se	90 90	ne G O	In G	lун	is G	ly	Tyr	Glr
Th.	. 7.7	- 5		100	ASI	1 116	ê Ası	p Al	a Gl	y Al	a A	sn C	ys T	hr P	he	Thr	Asn
1111	AL	a A.	1a 15	Asn	Lys	Le	ı Lei	1 Se	r Ph	e Se	er G	ly Pl	he Se	er T	yr	Leu	Ser
Leu	11e	∋ G.)	ln '	Thr	Thr	Asr	ı Ala	Th	r Th	r Gl	y Tl	nr G]	ly Al	25 la I	le	Lvs	Ser
Thr	Gly	/ A.	la	Cys	Ser	Ile	135 Glr	o 1 Se	r As	п Ту	r Se	14 er Cy	10 /s Ti	ır D	he		G1
Asn	Ph€	≥ Se	er A	Asn	Asp	150 Asn	ı Gly	∕ Gl∙	y Al	a Le	15 u Gl	55 In Gl	14 Ca	- 0		GIY	160
Leu	Ser	. Le	eu A	Asn	165 Pro	Asn	Lev	Th:	r Dh	17	0	s As	y se	er S	er	11e 175	Ser
Lys	Gly	. G1	У <i>Р</i>	180 Ala	Leu	Tur	Cox	mb.	18	5 AI	а гу	'S As	n Ly	rs A. 19	la 90	Thr	Gln
Leu	Asn	19	5 	\	C	- y L	ser	200) C G1	y Gl	y Il	e Th	r Il	e As	sn.	Asn	Thr
Δla	210	m-		 a	ser	Pue	Ser 215	Glı	ı Ası	1 Th:	r Al	a Al	a As	n As	sn (Gly	Gly
225	116	ту	r 1	hr	Glu	Ala	Ser	Ser	Phe	2 Ile	∋ Se	22 r Se	o r Δe	n I.		n 1 -	- 1
Ser	Phe	Il	e A	sn	Asn	230 Ser	Val	Thr	- Al=	Th	23	5 r Al	- 115	ער די	'S 1	- 414	240
Ile	Tyr	Су	s S	er	245 Ser	Thr	Ser	Ala	Pro	250	. 5e	o Vai	a Th	r Gl	y (31y 255	Ala
Asp	Asn	Gl·	2 y G	60 lu	Leu	Δen	Dho	T1 -	265	ь цуз	Pr	o va.	I Lei	u Th 27	r I O	Leu	Ser
Gly	Ala	27! Il	- 5 э т	ur '	The	N	1116	280	GIY	Asn	Th:	r Ala	a Ile 289	P Th	r S	Ser	Gly
Len	290 Pho	T		у <u>г</u> .	1111	Asp	295	Leu	Val	Leu	Sei	r Sei	Gly	/ Gl	y F	ro	Thr
305	- 1	гу	5 A:	sn A	Asn	Ser 310	Ala	Ile	Asp	Thr	Ala	300 a Ala	Pro	Le	u G	ly	Gly
Ala .	11e	Ala	1 I.	le A	Ala 325	Asp	Ser	Gly	Ser	Leu	Ser	Leu	Ser	Ala	a L	eu (320 Gly
Gly A	Asp	Il∈	Th	nr E	he	Glu	Gly	Asn	Thr	330 Val	Val	Lys	Gly	Ala	3 a S	35 er 9	Ser
Ser (Gln	Thr	Th	ır T	hr /	Arg	Asn	Ser	345 Ile	Asn	Ile	Glv	Asn	35() 7	en '	
ys I	lle	Val	G1	n L	eu A	Arg .	Ala	360 Ser	Gln	Glv	Asn	Thr	365	TT:	- A	911 <i>}</i>	11a
sp P	ro	Ile	Th	ır T	hr A	Asn 1	375 His	Thr	Δla	-j	T -	380 Ser	116	ryr	: P)	ne]	yr
0.0		Gly	Pr	O A	sp I	390 .eu 3	 \l	~1		AIA	395	Ser	Asp	Ala	ı Le	eu A 4	sn 00
eu A	sn (- 41	~ P L	-cu A	ла (эr Х	Asn	Pro	Ala	Tyr	Gln	Gly	Tł	ır T	le
eu A	sn (Sor	C1.	4	05					410					41		
eu A al P	he s	Ser	G1:	у G: 0	lu L	ys I	Leu S	Ser	Glu	Ala	Glu	Ala	Ala	Glu	41 Al	L5 .a. A	Sn

		426												-	
	0	435			<i>α</i> 3		440					445			
	450					455					460			Ser	
Ser 465	Pro	Gly	Ser	Thr	Leu 470	Leu	Met	Asp	Ala	Gly 475	Thr	Thr	Leu	Glu	Thr 480
Ala	Asp	Gly	Ile	Thr 485	Ile	Asn	Asn	Leu	Val 490		Asn	Val	Asp	Ser	Leu
Lys	Glu	Thr			Ala	Thr	Leu			Thr	Gln	Ala		495 Gln	Thr
Val	Thr		500 Ser	Gly	Ser	Leu		505 Leu	Val	Asp	Pro	Ser	510 Gly	Asn	Val
Tyr	Glu	515 Asp	Val	Ser	Trp	Asn	520 Asn	Pro	Gln	Val	Phe	525 Ser	Cvs	Leu	Thr
	530					535					540			Ala	
545					550					555				Asn	560
				565					570					575	-
			580					585					590	Ala	
		595					600					605		Arg	
Thr	Leu 610	Val	Ala	Asn	Thr	Leu 615	Trp	Gly	Ser	Phe	Val 620	Asp	Val	Arg	Ser
Ile 625	Gln	Gln	Leu	Val	Ala 630	Thr	Lys	Val	Arg	Gln 635		Gln	Glu	Thr	-
Gly	Ile	Trp	Суз	Glu 645		Ile	Ser	Asn			His	Lys	Asp	Ser	640 Thr
Lys	Ile	Asn	Lys 660	Gly	Phe	Arg	His		650 Ser	Ala	Gly	Tyr		655 Val	Gly
Ala	Thr	Thr			Ala	Ser		665 Asn	Leu	Ile	Thr	Ala	670 Ala	Phe	Cys
Gln	Leu	675 Phe	Gly	Lys	Asp		680 Asp	His	Phe	Ile	Asn	685 Lys	Asn	Arg	Ala
Ser	690 Ala	Tyr	Ala	Ala	Ser	695 Leu	His	Leu	Gln	His	700 Leu	Ala	Thr	Leu	Ser
705					710					715				Gln	720
				725					730					735 Thr	
			740					745					750	Tyr	
		755					760					765			
	770					775					780			Ala	
785					790					795			•	Val	800
Ala	Ser	Tyr	Ile	His 805	Gln	Asp	Ser	Phe	Lys 810	Glu	Arg	Asn	Thr	Thr 815	Leu
Val	Arg	Ser	Phe 820	Asp	Ser	Gly	Asp	Leu 825	Ile	Asn	Val	Ser	Val 830	Pro	Ile
Gly	Ile	Thr 835	Phe	Glu	Arg	Phe	Ser 840	Arg	Asn	Glu	Arg	Ala 845	Ser	Tyr	Glu
Ala	Thr 850		Ile	Tyr	Val	Ala 855		Val	Tyr	Arg	Lys 860	Asn	Pro	Asp	Cys
Thr 865		Ala	Leu	Leu	Ile 870		Asn	Thr	Ser			Thr	Thr	Gly	
	Leu	Ser	Ara	Gln		GIV	l l e	- 131 to	<u> </u>	875		_11~	Dha	Tyr	880
			3	885		~ - y	***	СТУ	890	AT.	Ozy.	****	-505	895	ATS
														درن	

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2793 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ATGAAAATAC	CCTTGCACAA	ACTCCTGATC	TCTTCGACTC	TTGTCACTCC	CATTCTATTG	60
AGCATTGCAA	CTTACGGAGC	AGATGCTTCT	TTATCCCCTA	CAGATAGCTT	TGATGGAGCG	120
GGCGGCTCTA	CATTTACTCC	AAAATCTACA	GCAGATGCCA	ATGGAACGAA	CTATGTCTTA	180
TCAGGAAATG	TCTATATAAA	CGATGCTGGG	AAAGGCACAG	CATTAACAGG	CTGCTGCTTT	240
ACAGAAACTA	CGGGTGATCT	GACATTTACT	GGAAAGGGAT	ACTCATTTTC	ATTCAACACG	300
GTAGATGCGG	GTTCGAATGC	AGGAGCTGCG	GCAAGCACAA	CTGCTGATAA	AGCCCTAACA	360
TTCACAGGAT	TTTCTAACCT	TTCCTTCATT	GCAGCTCCTG	GAACTACAGT	TGCTTCAGGA	420
AAAAGTACTT	TAAGTTCTGC	AGGAGCCTTA	AATCTTACCG	ATAATGGAAC	GATTCTCTTT	480
AGCCAAAACG	TCTCCAATGA	AGCTAATAAC	AATGGCGGAG	CGATCACCAC	ΑΔΔΔΔΟΤΌΤΤ	540
TCTATTTCTG	GGAATACCTC	TTCTATAACC	TTCACTAGTA	ATAGCGCAAA	AAAATTAGGT	600
GGAGCGATCT	ATAGCTCTGC	GGCTGCAAGT	ATTTCAGGAA	ACACCGGCCA	GTTAGTCTTT	660
ATGAATAATA	AAGGAGAAAC	TGGGGGCGGG	GCTCTGGGCT	TTGAAGCCAG	CTCCTCGATT	720
ACTCAAAATA	GCTCCCTTTT	CTTCTCTGGA	AACACTGCAA	CAGATGCTGC	AGGCAAGGGC	780
GGGGCCATTT	ATTGTGAAAA	AACAGGAGAG	ACTCCTACTC	TTACTATCTC	TGGAAATAAA	840
AGTCTGACCT	TCGCCGAGAA	CTCTTCAGTA	ACTCAAGGCG	GAGCAATCTG	TGCCCATGGT	900
CTAGATCTTT	CCGCTGCTGG	CCCTACCCTA	TTTTCAAATA	ATAGATGCGG	GAACACAGCT	960
GCAGGCAAGG	GCGGCGCTAT	TGCAATTGCC	GACTCTGGAT	CTTTAAGTCT	CTCTGCAAAT	1020
CAAGGAGACA	TCACGTTCCT	TGGCAACACT	CTAACCTCAA	CCTCCGCGCC	AACATCGACA	1080
CGGAATGCTA	TCTACCTGGG	ATCGTCAGCA	AAAATTACGA	ACTTAAGGGC	AGCCCAAGGC	1140
CAATCTATCT	ATTTCTATGA	TCCGATTGCA	TCTAACACCA	CAGGAGCTTC	AGACGTTCTG	1200
ACCATCAACC	AACCGGATAG	CAACTCGCCT	TTAGATTATT	CAGGAACGAT	TGTATTTTCT	1260
GGGGAAAAGC	TCTCTGCAGA	TGAAGCGAAA	GCTGCTGATA	ACTTCACATC	TATATTAAAG	1320
CAACCATTGG	CTCTAGCCTC	TGGAACCTTA	GCACTCAAAG	GAAATGTCGA	GTTAGATGTC	1380
AATGGTTTCA	CACAGACTGA	AGGCTCTACA	CTCCTCATGC	AACCAGGAAC	AAAGCTCAAA	1440
GCAGATACTG	AAGCTATCAG	TCTTACCAAA	CTTGTCGTTG	ATCTTTCTGC	CTTAGAGGGA	1500
AATAAGAGTG	TGTCCATTGA	AACAGCAGGA	GCCAACAAAA	CTATAACTCT	AACCTCTCCT	1560
CTTGTTTTCC	AAGATAGTAG	CGGCAATTTT	TATGAAAGCC	ATACGATAAA	CCAAGCCTTC	1620
ACGCAGCCTT	TGGTGGTATT	CACTGCTGCT	ACTGCTGCTA	GCGATATTTA	TATCGATGCG	1680
CTTCTCACTT	CTCCAGTACA	AACTCCAGAA	CCTCATTACG	GGTATCAGGG	ACATTGGGAA	1740
GCCACTTGGG	CAGACACATC	AACTGCAAAA	TCAGGAACTA	TGACTTGGGT	AACTACGGGC	1800
TACAACCCTA	ATCCTGAGCG	TAGAGCTTCC	GTAGTTCCCG	ATTCATTATG	GGCATCCTTT	1860
ACTGACATTC	GCACTCTACA	GCAGATCATG	ACATCTCAAG	CGAATAGTAT	CTATCAGCAA	1920
CGAGGACTCT	GGGCATCAGG	AACTGCGAAT	TTCTTCCATA	AGGATAAATC	AGGAACTAAC	1980
CAAGCATTCC	GACATAAAAG	CTACGGCTAT	ATTGTTGGAG	GAAGTGCTGA	AGATTTTTCT	2040
GAAAATATCT	TCAGTGTAGC	TTTCTGCCAG	CTCTTCGGTA	AAGATAAAGA	CCTGTTTATA	2100
GTTGAAAATA	CCTCTCATAA	CTATTTAGCG	TCGCTATACC	TGCAACATCG	AGCATTCCTA	2160
GGAGGACTTC	CCATGCCCTC	ATTTGGAAGT	ATCACCGACA	TGCTGAAAGA	TATTCCTCTC	2220
ATTTTGAATG	CCCAGCTAAG	CTACAGCTAC	ACTAAAAATG	ATATGGATAC	TCGCTATACT	2280
TCCTATCCTG	AAGCTCAAGG	TTCTTGGACC	AATAATTCTG	GGGCTCTAGA	GCTCGGAGGA	2340
TCTCTGGCTC	TATATCTCCC	TAAAGAAGCA	CCGTTCTTCC	AGGGATATTT	CCCCTTCTTA	2400
					CCCCIICIIM	2400

^//^~~~~ -..... - -...

AAGTTCCAGG CAGTCTACAG	CCCCCAACAA	AACTTTAAAG	AGAGTGGCGC	TGAAGCCCGT	2460
AAGTTCCAGG CAGTCTACAC	r AGTGAACTGC	TCTATCCCTG	TCGGCATTCG	GTTAGAAAAA	2520
ATCTCCGAAG ATGAAAAAA	TAATTTCGAG	ATTTCTCTAG	CCAACATTGG	TGATGTGTAT	2580
CGTAAAAATC CCCGTTCGC	TACTTCTCTA	ATGGTCAGTG	GAGCCTCTTG	GACTTCGCTA	2640
TOTAL AND CO TOGOLOGAC	A AGCCTTCTTA	GCAAGTGCTG	GAAGCCATCT	GACTUTULE	2700
CCTCATGTAG AACTCTCTG	G GGAAGCTGCT	TATGAGCTTC	GTGGCTCAGC	ACACATCTAC	2760
AATGTAGATT GTGGGCTAA	G ATACTCATTC	TAG			2793

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 930 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

	(20	 , ~	x												
	Lys	lle	Pro		His	Lys	Leu	Leu	Ile 10	Ser	Ser	Thr	Leu	Val 15	Thr
1		_	Leu	5	т1а	בות	Thr	Tyr	Glv	Ala	Asp	Ala	Ser	Leu	Ser
Pro	Ile	Leu		ser	116	Ala	1111	25	O ± y		P		30		
			20 Ser	Dha	7 cn	Gly	Δla	Glv	Glv	Ser	Thr	Phe	Thr	Pro	Lys
Pro	Thr		Ser	PHE	АЗР	Ory	40	O-1	- -1			45			
0	m\	35	Asp	λla	Δsn	Glv	Thr	Asn	Tyr	Val	Leu	Ser	Gly	Asn	Val
						55					60				
TD- 420	50	λcn	Asp	Δla	Glv	Lvs	Glv	Thr	Ala	Leu	Thr	Gly	Cys	Cys	Phe
c 5					70					75					0.0
65	Clu	Thr	Thr	Glv	Asp	Leu	Thr	Phe	Thr	Gly	Lys	Gly	Tyr	Ser	Phe
				85					90					33	
Ser	Phe	Asn	Thr	Val	Asp	Ala	Gly	, Ser	Asn	Ala	Gly	Ala	Ala	Ala	Ser
			100					105	5				TTC	F	
Thr	Thr	Ala	Asp	Lys	Ala	Leu	Thi	: Phe	e Thr	Gly	r Phe	Ser	Asr	ı Leu	Ser
		775	-				120	}				123)		
Phe	Ile	Ala	a Ala	Pro	Gly	Thi	Th	r Val	l Ala	ı Ser	Gly	Lys	s Sei	r Thr	Leu
	220					135	5				14(,			
Ser	Sei	Ala	a Gly	/ Ala	Lev	ı Ası	ı Le	u Th	r Ası	Ası	n Gly	Thi	c IIe	e re	Phe
					150)				15:	5				100
Ser	Gli	a Ası	n Val	l Sei	c Ası	n Gl	u Al	a As	n Ası	n Ası	n Giy	A GT	Y AL	a 119	e Thr
				169	5				17	U				1/.	,
Thi	c Ly	s Th	r Lei	u Sei	r Il	e Se	r Gl	y As	n Th	r Se	r se	r II	19	U T 1111	e Thr
			180	0				18	.5		- Tr	~ 60			a Ala
Set	r As	n Se	r Al	a Ly	s Ly	s Le	u GI	y GI	y Aı	аш	e ry	20	r 20	L 71	a Ala
		19	5		_	m1	20	01	~ T 0	1/2	1 Dh			n As	n Lvs
Al.			e Se	r Gl	y As	n Th	r Gl	y Gi	n Le	u va	22	Λ Λ	C AS		n Lys
	21	0	_		~1	21	.5	01	u Dh	o 61			r Se	r Se	r Ile
		u Th	ır Gl	y Gl			a Le	eu Gl	LY PI	23	5				r Ile 240
22	5		_	_	23	U DE	n ni	30 51	or Gl			ır Al	a Th	ır As	
Th	r Gl	n As	n Se			u Pr	ie bi	16 26	25	.y A.s	,,,			25	p Ala 55
	_	_		24	.5 	э т	رم م	ur C	-2 20 ما	in Is	/S Th	ır Gl	Lv G		nr Pro
Al	a Gl	y Ly			.y Al	la 1	re 1)	y	ys G. 65)			2	70	
	_		26)()	.~ C1	1 7 .	en L	75 S	os er 1.e	eu Th	ar Pl	ne Al			sn Ser
Th	ır Le			Le Se	r G.	LYAS	211 17	95 3 80				21	85		
_		2	75 C1	15 C	lv G	lv A	la T	Je C	vs A	la H	is G	ly L	eu A	sp Le	eu Ser
Se	er Va	11 T	nr G	III G	Ly G.	-у А.	1		,	,-	_	•		-	

	290					295					200				
Ala		Gly	Pro	Thr	Leu		Ser	λεη	Λcn	7 ~~	300	C1	Asn	mı	- 1
305		•			310		001	11311	non	315	Cys	GIÀ	ASII	ınr	320
Ala	Gly	Lys	Gly	Gly	Ala	Ile	Ala	Ile	Ala	Asp	Ser	Glv	Ser	Len	Ser
				325					330					335	
Leu	Ser	Ala	Asn	Gln	Gly	Asp	Ile	Thr	Phe	Leu	Gly	Asn	Thr	Leu	Thr
			340					345					350		-
Ser	Inr	Ser	Ala	Pro	Thr	Ser	Thr	Arg	Asn	Ala	Ile	Tyr	Leu	Gly	Ser
Sar	בומ	355	710	The	۸	<i>t</i>	360				=	365			
oci	370	шуэ	116	1111	ASII	375	Arg	Ата	Ala	GIn		Gln	Ser	Ile	Tyr
Phe	-	Asp	Pro	Ile	Ala		Asn	Thr	Thr	C1.	380	Cox	Asp	77 - 7	.
385	•	•		_	390			1 111	1111	395	via	261	ASP	Val	400
Thr	Ile	Asn	Gln	Pro	Asp	Ser	Asn	Ser	Pro		Asp	Tvr	Ser	Glv	Thr
				405					410					415	
Ile	Val	Phe	Ser	Gly	Glu	Lys	Leu	Ser	Ala	Asp	${\tt Glu}$	Ala	Lys	Ala	Ala
			420					425					430		
Asp	Aşn	435	Thr	Ser	He	Leu	Lys	Gln	Pro	Leu	Ala		Ala	Ser	Gly
Thr	Len		I.en	Lare	Glv	Nan	440	C1	T	n		445			
	450		cu	шуз	Oly	455	val	Giu	Leu	ASD	va1 460	Asn	Gly	Phe	Thr
Gln	Thr	Glu	Gly	Ser	Thr		Leu	Met	Gln	Pro	Glv	Thr	Lys	Lau	Lvo
465					470					475					480
Ala	Asp	Thr	Glu	Ala	Ile	Ser	Leu	Thr	Lys	Leu	Val	Val	Asp	Leu	Ser
				485					490					495	
Ala	Leu	GIu	Gly	Asn	Lys	Ser	Val	Ser	Ile	Glu	Thr	Ala	Gly	Ala	Asn
Lvs	Thr	Tle	500	Lou	Th-	Com	D	505	**- 7	5)	~ 3		510		
-75	* * * * *	515	1111	Бец	1111	ser	520	Leu	vaı	Pne	Gln		Ser	Ser	Gly
Asn	Phe		Glu	Ser	His	Thr		Asn	Gln	Ala	Phe	525 Thr	Gln	Dro	T ou
	530					535					540				
Val	Val	Phe	Thr	Ala	Ala	Thr	Ala	Ala	Ser	Asp	Ile	Tyr	Ile	Asp	Ala
343					550					555					560
neu	Leu	Inc	ser	565	Val	GIn	Thr	Pro		Pro	His	Tyr	Gly		Gln
Gly	His	Trp	Glu		Thr	Trn	Δ1 a	Acn	570	S0~	Th.	N 1 -	Lys	575	~ 3
-		٠	580				711.0	585	1111	361	TIII	Ald	590	ser	GIY
Thr	Met	Thr	Trp	Val	Thr	Thr	Gly	Tyr	Asn	Pro	Asn	Pro	Glu	Ara	Ara
		595					600					605			
Ala	Ser	Val	Val	Pro	Asp	Ser	Leu	Trp	Ala	Ser	Phe	Thr	Asp	Ile	Arg
Thr	610 Lev	Gln	Cln	T 1 -	M	615		~ ~			620				
625	Deu	GIII	GIII	116	630	inr	ser	GIn	Ala		Ser	Ile	Tyr	Gln	
	Gly	Leu	Trp	Ala		Glv	Thr	Δla	Aen	635	Dha	uio	Lys	7	640
	-		•	645		07		2114	650	1116	rne	urs	гìя	655	Lys
Ser	Gly	Thr	Asn	Gln	Ala	Phe	Arg	His	Lys	Ser	Tyr	Gly	Tyr	Ile	Val
			660					665					670		
GLY	GLY	Ser	Ala	Glu	Asp	Phe	Ser	Glu	Asn	Ile	Phe	Ser	Val	Ala	Phe
Cvs	Gln	675 Lev	Dho	C1	7	3	680	_	_		_	685			
Cyb	690	Deu	PHE	GIĄ	гÀг	695	rys	Asp	Leu	Phe		Val	Glu	Asn	Thr
Ser		Asn	Tyr	Leu	Ala		Len	Tyr	Leu	Gla	700 His	λνα	Ala	Dh =	T
705			4 -	-	710		_~ u	~ y L	u	715	1112	urg	wrg	1116	Leu 720
Gly	Gly	Leu	Pro	Met	Pro	Ser	Phe	Gly	Ser	Ile	Thr	Asp	Met	Leu	Lys
				725					730					735	
Asp	lle	Pro	Leu	Ile	Leu	Asn	Ala		Leu	Ser	Tyr	Ser	Tyr	Thr	Lys
			740					745					750		

Asn Asp Met Asp Thr Arg Tyr Thr Ser Tyr Pro Glu Ala Gln Gly Ser 755 760 Trp Thr Asn Asn Ser Gly Ala Leu Glu Leu Gly Gly Ser Leu Ala Leu 770 775 Tyr Leu Pro Lys Glu Ala Pro Phe Phe Gln Gly Tyr Phe Pro Phe Leu 790 795 Lys Phe Gln Ala Val Tyr Ser Arg Gln Gln Asn Phe Lys Glu Ser Gly 805 810 Ala Glu Ala Arg Ala Phe Asp Asp Gly Asp Leu Val Asn Cys Ser Ile 820 825 Pro Val Gly Ile Arg Leu Glu Lys Ile Ser Glu Asp Glu Lys Asn Asn 840 Phe Glu Ile Ser Leu Ala Asn Ile Gly Asp Val Tyr Arg Lys Asn Pro 850 855 860 Arg Ser Arg Thr Ser Leu Met Val Ser Gly Ala Ser Trp Thr Ser Leu 865 870 875 Cys Lys Asn Leu Ala Arg Gln Ala Phe Leu Ala Ser Ala Gly Ser His 885 890 Leu Thr Leu Ser Pro His Val Glu Leu Ser Gly Glu Ala Ala Tyr Glu 905 Leu Arg Gly Ser Ala His Ile Tyr Asn Val Asp Cys Gly Leu Arg Tyr 920 Ser Phe 930

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAAGACAATA TAAGGTAC	CG TCATAACAGC	GGGGGTTATG	CACTAGGGAT	CACAGCAACA	60
ACTCCTGCCG AGGATCAG	CT TACTTTTGCC	TTCTGCCAGC	TCTTTGCTAG	AGATCGCAAT	120
CATATTACAG GTAAGAAC	CA CGGAGATACT	TACGGTGCCT	CTTTGTATTT	CCACCATACA	180
GAAGGGCTCT TCGACATC	GC CAATTTCCTC	TGGGGAAAAG	CAACCCGAGC	TCCCTGGGTG	240
CTCTCTGAGA TCTCCCAG	AT CATTCCTTTA	TCGTTCGATG	CTAAATTCAG	TTATCTCCAT	300
ACAGACAACC ACATGAAG	AC ATATTATACC	GATAACTCTA	TCATCAAGGG	TTCTTGGAGA	360
AACGATGCCT TCTGTGCA	GA TCTTGGAGCT	AGCCTGCCTT	TTGTTATTTC	CGTTCCGTAT	420
CTTCTGAAAG AAGTCGAA	CC TTTTGTCAAA	GTACAGTATA	TCTATGCGCA	TCACCAAGAC	480
TTCTACGAGC GTCATGCT	GA AGGACGCGCT	ΤΤΓΑΑΤΑΑΑ	CCCACCTTAT	CAACCTAGAC	540
ATTCCTATAG GCGTCACC	TT CGAAAGAGAC	TCAAAATCAC	AAAACCCAAC	TTTA COATTOTT	
ACTOTE A DOOR ADADA CHO		1 CAMMAI CAU	AAAAGGGAAC	TIACGATCII	600
ACTCTTATGT ATATACTC	JA TGCTTACCGA	CGCAATCCTA	AATGTCAAAC	TTCCCTAATA	660
GCTAGCGATG CTAACTGG	AT GGCCTATGGT	ACCAACCTCG	CACGACAAGG	TTTTTCTGTT	720
CGTGCTGCGA ACCATTTC	CA AGTGAACCCC	CACATGGAAA	TCTTCGGTCA	ATTCGCTTTT	780
GAAGTACGAA GTTCTTCA	CG AAATTATAAT	ACAAACCTAG	GCTCTAAGTT	TTGTTTCTAG	840

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 279 amino acids
- (B) TYPE: amino acid

66

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly Tyr Ala Leu Gly Ile Thr Ala Thr Thr Pro Ala Glu Asp Gln Leu Thr Phe Ala Phe Cys Gln Leu Phe Ala Arg Asp Arg Asn His Ile Thr Gly Lys Asn His Gly Asp Thr Tyr Gly Ala Ser Leu Tyr Phe His His Thr Glu Gly Leu Phe Asp Ile Ala Asn Phe Leu Trp Gly Lys Ala Thr Arg Ala Pro Trp Val Leu Ser Glu Ile Ser Gln Ile Ile Pro Leu Ser Phe Asp Ala Lys Phe Ser Tyr Leu His Thr Asp Asn His Met Lys Thr Tyr Tyr Thr Asp Asn Ser Ile Ile Lys Gly Ser Trp Arg Asn Asp Ala Phe Cys Ala Asp Leu Gly Ala Ser Leu Pro Phe Val Ile Ser Val Pro Tyr Leu Leu Lys Glu Val Glu Pro Phe Val Lys Val Gln Tyr Ile Tyr Ala His Gln Gln Asp Phe Tyr Glu Arg His Ala Glu Gly Arg Ala Phe Asn Lys Ser Glu Leu Ile Asn Val Glu Ile Pro Ile Gly Val Thr Phe Glu Arg Asp Ser Lys 185 Ser Glu Lys Gly Thr Tyr Asp Leu Thr Leu Met Tyr Ile Leu Asp Ala Tyr Arg Arg Asn Pro Lys Cys Gln Thr Ser Leu Ile Ala Ser Asp Ala Asn Trp Met Ala Tyr Gly Thr Asn Leu Ala Arg Gln Gly Phe Ser Val Arg Ala Ala Asn His Phe Gln Val Asn Pro His Met Glu Ile Phe Gly Gln Phe Ala Phe Glu Val Arg Ser Ser Ser Arg Asn Tyr Asn Thr Asn 265 Leu Gly Ser Lys Phe Cys Phe 270 275

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1545 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCACAAGTTG	TATATCTTCA	TGAAAGTGAT	${\tt GGTTATAACG}$	GTGCTATCAA	TAATAAAAGC	120
TTAGAACCTA	AAATTACCTG	TTATCCAGAA	GGAACTTCTT		AGATGACGTG	180
AGGATTTCCA	ACGTTAAGCA	TGATCAAGAA	GATGCTGGGG	TTTTTTAAA	TCGATCTGGG	240
AATCTTTTTT	TCATGGGCAA	CCGTTGCAAC	TTCACTTTTC	ACAACCTTAT	GACCGAGGGT	300
TTTGGCGCTG	CCATTTCGAA	CCGCGTTGGA	GACACCACTC	TCACTCTCTC	TAATTTTTCT	360
TACTTAACGT	TCACCTCAGC	ACCTCTACTA	CCTCAAGGAC	AAGGAGCGAT	TTATAGTCTT	420
GGTTCCGTGA			GTGACTTTCT			480
AGTGGAGCTG	CGATTTATAC	TCCCTACCTT	TTAGGTTCTA	AGGCGAGTCG	TCCTTCAGTA	540
AATCTCAGCG	GGAACCGCTA	CCTGGTGTTT	AGAGACTATG		TTATGGCGGC	600
GCCGTATCTA	CCCACAATCT	CACACTCACG	ACTCGAGGAC	CTTCGTGTTT	TGAAAATAAT	660
CATGCTTATC	ATGACGTGAA	TAGTAATGGA	GGAGCCATTG	CCATTGCTCC		720
ATCTCTATAT	CCGTGAAAAG	CGGAGATCTC	ATCTTCAAAG	GAAATACAGC		780
GGAAATACAA	TACACAACTC	CATCCATCTG	CAATCTGGAG	CACAGTTTAA		840
GCTGTTTCAG	AATCCGGAGT	TTATTTCTAT	GATCCTATAA			900
ATTACAGATC	TTGTAATCAA	TGCTCCTGAA	GGAAAGGAAA	CTTATGAAGG		960
TTCTCAGGAC	TATGCCTGGA	TGATCATGAA	GTTTGTGCGG		TTCCACAATC	1020
		AGGAGGAACT		CGGATGGGGT	TACCTTGCAA	1080
CTGCATTCTT	TTAAGCAGGA	AGCAAGCTCT	ACGCTTACTA	TGTCTCCAGG	AACCACTCTG	1140
CTCTGCTCAG			CTGCACATCC			1200
TTTGTTCCTG	TAAGGATTCG		AAGGATGCTC			1260
AAAGTTGCCT	TTGAGGCTTA	TTGGTCCGTC		CTCAATTTAA	GGAAGCCTTT	1320
ACGATTCCTC	${\tt TTCTTGAACT}$	TCTAGGGCCT	TCTTTTGACA	GTCTTCTCCT	AGGGGAGACC	1380
ACTTTGGAGA	GAACCCAAGT	CACAACAGAG	AATGACGCCG	TTCGAGGTTT	CTGGTCCCTA	1440
			AAAGACAGAA	GGATCACACC		1500
			ACTTCTACGC			1545
						1010

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 514 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	Met 1	Thr	Ile	Leu	Arg 5	Asn	Phe	Leu	Thr	Cys 10	Ser	Ala	Leu	Phe	Leu 15	Ala
	Leu	Pro	Ala	Ala 20	Ala	Gln	Val	Val	Tyr 25	Leu	His	Glu	Ser	Asp	Gly	Tyr
			35					40					Ile 45	Thr	-	_
		50					55					60	Arg			
	Val 65	Lys	His	Asp	Gln	Glu 70	Asp	Ala	Gly	Val	Phe 75	Ile	Asn	Arg	Ser	Gly 80
	Asn	Leu	Phe	Phe	Met 85	Gly	Asn	Arg	Cys	Asn 90	Phe	Thr	Phe	His	Asn 95	Leu
	Met	Thr	Glu	Gly 100	Phe	Gly	Ala	Ala	Ile 105	Ser	Asn	Arg	Val	Gly 110	Asp	Thr
			115					120					Thr 125	Ser		
_	Leu	Leu 130	Pro	Gln	Gly	Gln	Gly 135	Ala	Ile	Tyr	Ser	Leu 140	Gly	Ser	Val	Met
	Tla	C1	7	0 -	~ 3	~ 1										

Ile Glu Asn Ser Glu Glu Val Thr Phe Cys Gly Asn Tyr Ser Ser Trp

145					150)				155					
Ser	Gly	/ Ala	Ala	ı Ile	· Tvr	Thr	- Dro	. Tr		155)				- 16 0
	•			165		1111	PIC	ryr	Let	Leu	Gly	' Sei	Lys	Ala	-16 0 Ser
Arg	Pro	Ser	Val	Asn	1 [.e.:	Car	· (1).		170					175	5
_			180)		. Jei	Gry	ASD	Arg	Tyr	Leu	Va]	Phe	Arg	Asp
Tyr	Val	Ser	Glr	Glv	Tur	C1.		185	'				190		
•		195	Q1 1	. O1 y	1 7 1	GIA	GTA	Ala	Val	Ser	Thr	His	Asn	Leu	Thr
	210			, GI y	rio	215	Cys	Phe	Glu	Asn	Asn	His	Ala	Tyr	His
225					230	Gry	Ala	116	Ala	Ile	Ala	Pro	Gly	Gly	Ser
				245	nys	361	GIY	Asp	Leu	Ile	Phe	Lys	Gly	Asn	240 Thr
			260	O1 y	N311	1111	rre	HIS	Asn	Ser	Ile	His	Leu	Gln	Ser
•		275		Lys	N.SII	Leu	Arg	Ala	Val	Ser	Glu	Ser	Gly	Val	Tyr
	290	L-			OCI	295	ser	GIU	Ser	His	Lys	Ile	Thr	Asp	Leu
Val	Ile	Asn	Ala	Pro	Glu	Gly	1	a 1	mı	_	300				
305					310	Gry	Lys	GIU	Thr	Tyr	Glu	Gly	Thr	Ile	Ser
Phe	Ser	Gly	Leu	Cvs	Leu	Asn	Asp	uio	01 .	315	_				320
Thr	Ser	Thr	Ile	Leu	Gln	Asp	Val	Thr	330	N 1 -	~ 1			335	
Leu	Ser	Asp	Gly	Val	Thr	Leu	Gln	Len	Hic	Sor.	Dh-	.	350		
Ser	Ser	Thr	Leu	Thr	Met	Ser	Pro	Glv	Thr	Thr	T ou	365	~	_	
Asp	Ala	Arg	Val	Gln	Asn	Leu	His	Ile	Leu	Tla	200	700	m\		_
385					390				200	395	GIU	ASD	inr	Asp	Asn
Phe	Val	Pro	Val	Arg	Ile	Arg	Ala	Glu	Asp	Lvs	Asp	בו מ	t ou	Val.	400
Leu	Glu	Lys	Leu	Lys	Val	Ala	Phe	Glu	Ala	Tvr	Trn	Ser	V = 1	413	N
Pne	Pro	Gln	Phe	Lys	Glu	Ala	Phe	Thr	Ile	Pro	Leu	Len	Glu	Lou	T 011
GIA	Pro	Ser	Phe	Asp	Ser	Leu	Leu	Leu	Gly	Glu	Thr	Thr	Len	Glu	λ~~
1111	GIn	Val	Thr	Thr	Glu	Asn	Asp	Ala	Val	Arg	Glv	Phe	Trn	Ser	Ī ou
Ser	TLD	GIU	Glu	Tyr	Pro	Pro	Ser	Leu	Asp	Lys	Asp	Ara	Ara	Tle	Thr
FIO	111I	гÀг	ьуs	Thr	Val	Phe	Leu	Thr	Trp	Asn	Pro	Glu	Ile	Thr	Ser
Thr			500					505					510		~~1
1111	FIO												Ŧ		

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

PCT/DK98/00266

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

	ርመ እ መመ ርርጥ እ እ	ርተምርጥጥል ልጥጥ	TCTACCACAC	TGGCGCCATG	TTTTGCTTCA	60
ATGAAAACGT	CTATICGIAA	TATCATCCCT	TCCGAGAACT	TTGATGGATC	GAGTGGGAAG	120
ACAGCGTTTA	CTGTAGAAGT	TATCATGCCT	ACACCCACAC	TCTGTATTTT	TTCAGGGGAT	180
ATTTTTCCTT	ACACAACACT	TICIGATECT	TCCACAACCT	CTTCCAGTTG	CTTTAGCAAT	240
CTCTACATTG	CGAATCTTGA	TAATGCCATA	CCTCCCCCTTT	TCTCCTTCTT	AAATATCCGT	300
AGGGCGGGAG	CACTACAAAT	CTTAGGAAAA	GGIGGGIII	TCTCCTTCTT	ACTATGTCCC	360
TCTTCAGCTG	ACGGAGCCGC	GATTAGTAGT	GTAATCACCC	AAAATCCTGA	GACTTCAGAT	420
TTGAGTTTTT	CAGGATTTAG	TCAGATGATC	TTCGATAACT	GTGAATCTTT	CCCCATGCTC	480
ACCTCAGCGA	GTAATGTCAT	ACCTCACGCA	TCGGCGATTT	ACGCTACAAC	GCCCATGCTC	540
	አመርካ ርጥርርስጥ	አርፕልፕፕሮር ል	TACAACCGIT	CIGCAGGALI	IGGAGCIGCC	600
ATTCGAGGCA	CNNCCNTCNC	ΔΑΤΑΓΑΑΑΑΑΤ	' ACGAAAAAGA	GCCTTCTCTT	IMMIGGIAMI	660
CCATCCATCT	CTAATGGAGG	GGCCCTCACG	GGATCTGCAG	CGATCAACCI	CATCARCIBIT	720
ACCCCTCCTG	TCATTTTCTC	AACGAATGCT	: ACAGGGATCT	ATGGTGGGGC	TATTTACCTT	, 2 0
ACCGGAGGAT		CTCTGGGAAC	CTCTCAGGAG	TCTTGTTCGT	TTATAATAGC	780
	CIAIGCIGA	· ·				787
TCGCGCT						

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 262 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

210

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

	Lys	Thr	Ser		Arg	Lys	Phe	Leu	Ile 10	Ser	Thr	Thr	Leu	Ala 15	Pro
			20					25	Glu	Val			50		
		2 -	Gly				40	Ile		Pro		4)			
		Arg				55				Gly	00				
	Leu				70					Ser 75					
Arg				0 5					90	Gly					
			100	Ser				105)					•	Ile
			n Pro	Glu			120)				122			Gln
		Phe	e Asp			17,	5				140	,			ser
	-	l Il			150	i Sei	c Ala			10.)				Leu 160
	e Th			76	o Sei	c Il			1.7	v					_
Ph	e Gl	y Al		a Il	e Ar	g Gl	y Th	r Se 18	r Il	e Th	r Ile	e Gl	u As 19	n Th 0	r Lys
			-	u Ph			20	n Gl	y Se			20	_		y Ala
		19	15	n 1		<u> </u>	<u>~ Aq</u>	n I. e	I	e As	n As	n Se	r Al	a Pr	o Val
Гe	u Tr 21		.у ѕе	ı Aı	a Ai	21	.5				22	0			

```
      11e
      Phe
      Ser
      Thr
      Asn
      Ala
      Thr
      Gly
      Ile
      Tyr
      Gly
      Ala
      Ile
      Tyr
      Leu

      225
      230
      230
      235
      235
      240
      240

      Thr
      Gly
      Gly
      Asn
      Leu
      Ser
      Gly
      Val
      Leu
      Phe

      240
      250
      250
      250
      255
      255
      255
      255

      Val
      Tyr
      Asn
      Ser
      Ser
      Arg
      260
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      250
      2
```

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2838 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGAAGACTT	CAGTTTCTAT	GTTGTTGGCC	CTGCTTTGCT	CGGGGGCTAG	CTCTATTCTA	60
CTCCATGCCG	CAACCACTCC	ACTAAATCCT	GAAGATGGGT	TTATTGGGGA	GGGCAATACA	60 120
AATACTTTTT	CTCCGAAATC	TACAACGGAT	GCTGCAGGAA	CTACCTACTC	TCTCACAGCA	180
GAGGTTCTGT	TTATAGATCC	GGGGAAAGGT	GGTTCAATTA	CAGGAACTTG	CTTTGTAGAA	240
ACTGCTGGCG	ATCTTACATT	TTTAGGTAAT	GGAAATACCC	TAAAGTTCCT	GTCGGTAGAT	300
GCAGGTGCTA	ATATCGCGGT	TGCTCATGTA	CAAGGAAGTA	AGAATTTAAG	CTTCACAGAT	360
TTCCTTTCTC	TGGTGATCAC	AGAATCTCCA	AAATCCGCTG	TTAGTACAGG	AAAAGGTAGC	420
CTAGTCAGTT	CAGGTGCAGT	CCAACTGCAA	GATATAAACA	CTCTAGTTCT	ТАСААССААТ	480
GCCTCTGTCG	AAGATGGTGG	CGTGATTAAA	GGAAACTCCT	GCTTGATTCA	GGGAATCAAA	540
AATAGTGCGA	TTTTTGGACA	AAATACATCT	TCGAAAAAAG	GAGGGGCGAT	CTCCACGACT	600
CAAGGACTCA	CCATAGAGAA	TAACTTAGGG	ACGCTAAAGT	TCAATGAAAA	CAAAGCAGTG	660
ACCTCAGGAG	GCGCCTTAGA	TTTAGGAGCC	GCGTCTACAT	TCACTGCGAA	CCATGAGTTG	720
ATATTTTCAC	AAAATAAGAC	TTCTGGGAAT	GCTGCAAATG	GCGGAGCCAT	ΑΑΑΤΤΟΟΤΟΛ	780
GGCGACCTAA	CATTTACTGA	TAACACTTCT	TTGTTACTTC	AAGAAAATAG	CACAATGCAG	840
GATGGTGGAG	CTTTGTGTAG	CACAGGAACC	ATAAGCATTA	CCGGTAGTGA	ТТСТАТСААТ	900
GTGATAGGAA	ATACTTCAGG	ACAAAAAGGA	GGAGCGATTT	CTGCAGCTTC	TCTCAAGATT	960
TTGGGAGGGC	AGGGAGGCGC	TCTCTTTTCT	AATAACGTAG	TGACTCATGC	CACCCCTCTA	1020
GGAGGTGCCA	TTTTTATCAA	CACAGGAGGA	TCCTTGCAGC	TCTTCACTCA	AGGAGGGGAT	1080
ATCGTATTCG	AGGGGAATCA	GGTCACTACA	ACAGCTCCAA	ATGCTACCAC	ТААСАСАААТ	1140
GTAATTCACC	TCGAGAGCAC	CGCGAAGTGG	ACGGGACTTG	CTGCAAGTCA	AGGTAACGCT	1200
ATCTATTTCT	ATGATCCCAT	TACCACCAAC	GATACGGGAG	CAAGCGATAA	CTTACGTATC	1260
AATGAGGTCA	GTGCAAATCA	AAAGCTCTCG	GGATCTATAG	TATTTTCTGG	AGAGAGATTG	1320
TCGACAGCAG	AAGCTATAGC	TGAAAATCTT	ACTTCGAGGA	TCAACCAGCC	ፐርፐር ውምምም አ	1380
GTAGAGGGGA	GCTTAGAACT	TAAACAGGGA	GTGACCTTGA	TCACACAAGG	ATTCTCCCAC	1440
GAGCCAGAAT	CCACGCTTCT	TTTGGATTTG	GGGACCTCAT	TACAAGCTTC	TACAGAAGAT	1500
ATCGTCATCA	CAAATTCATC	TATAAATGCC	GATACCATTT	ACGGAAAGAA	ТССААТСААТ	1560
ATTGTAGCTT	CAGCAGCGAA	TAAGAACATT	ACCCTAACAG	GAACCTTAGC	ልር ተ ፕርተል አለተ	1620
GCAGATGGAG	CTTTGTATGA	GAACCATACC	TTGCAAGACT	CTCAAGATTA	TAGCTTTGTA	1680
AAGTTATCTC	CAGGAGCGGG	AGGGACTATA	ATTACTCAAG	ATGCTTCTCA	G	1740
GAAGTAGCTC	CTTCTAGACC	ACATTATGGC	TATCAAGGAC	ATTGGAATGT	GCAAGTCATC	1800
CCAGGAACGG	GAACTCAACC	GAGCCAGGCA	AATTTAGAAT	GGGTGCGGAC	ል ርርልጥል උረጥጥ	1860
CCGAATCCCG	AACGGCAAGG	ATTTTTAGTT	CCCAATAGCC	TGTGGGGTTC	ТТТТСТТСАТ	1920
CAGCGTGCTA	TCCAAGAAAT	CATGGTAAAT	AGTAGCCAAA	TCTTATGTCA	GGAACGGGGA	1980
GTCTGGGGAG	CTGGAATTGC	TAATTTCCTA	CATAGAGATA	AAATTAATGA	GCACGGCTAT	2040
CGCCATAGCG	GTGTCGGTTA	TCTTGTGGGA	GTTGGCACTC	ATGCTTTTTC	TGATGCTACG	2100
ATAAATGCGG	CTTTTTGCCA	GCTCTTCAGT	AGAGATAAAG	ACTACGTAGT	ATCCAAAAAT	2160
CATGGAACTA	GCTACTCAGG	GGTCGTATTT	CTTGAGGATA	CCCTAGAGTT	TAGAAGTCCA	2220
CAGGGATTCT	ATACTGATAG	CTCCTCAGAA	GCTTGCTGTA	ACCAAGTCGT	CACTATAGAT	2280
					· -	

WO 98/58953 PCT/DK98/00266

71

ATGCAGTTGT	CTTACAGCCA	TAGAAATAAT	GATATGAAAA	CCAAATACAC	GACATATCCA	2340
GAAGCTCAGG	GATCTTGGGC	AAATGATGTT	TTTGGTCTTG	AGTTTGGAGC	GACATATOCA	2400
TACTACCCTA	ACAGTACTTT	TTTATTTGAT	TACTACTCTC	CGTTTCTCAG	GCTGCAGTGC	2460
ACCTATGCTC	ACCAGGAAGA	CTTCAAAGAG	ACAGGAGGTG	AGGTTCGTCA	CTTTACTAGC	2520
GGAGATCTTT	TCAATTTAGC	AGTTCCTATT	GGCGTGAAGT	TTGAGAGATT	TTCAGACTGT	2580
AAAAGGGGAT	CTTATGAACT	TACCCTTGCT	TATGTTCCTG	ATGTGATTCG	CAAAGATCCC	2640
AAGAGCACGG	CAACATTGGC	TAGTGGAGCT	ACGTGGAGCA	CCCACGGAAA	CAATCTCTCC	2700
AGACAAGGAT	TACAACTGCG	TTTAGGGAAC	CACTGTCTCA	TAAATCCTGG	AATTGAGGTG	2760
TTCAGTCACG	GAGCTATTGA	ATTGCGGGGA	TCCTCTCGTA	ATTATAACAT	CAATCTCGGG	2820
GGTAAATACC	GATTTTAA					2838

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 946 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met 1	Lys	Thr	Ser	Val 5	Ser	Met	Leu	Leu	Ala 10	Leu	Leu	Cys	Ser	Gly 15	Ala
			20			Ala		25				-	30	Glu	
		35				Asn	40					45			
	50					Thr 55					60				
65					70	Gly				75					80
				85		Phe			90					95	
			100			Ala		105					110		
		115				Thr	120					125			
	130					Ser 135					140				
145					150	Asp				155					160
				165		Gly			170					175	
			180			Ala		185					190		
		195				Thr	200					205			
	210					Asn 215					220				
Ala 225	Leu	Asp	Leu	Gly	Ala 230	Ala	Ser	Thr	Phe	Thr 235	Ala	Asn	His	Glu	Leu 240
Ile	Phe	Ser	Gln	Asn 245	Lys	Thr	Ser	Gly	Asn 250		Ala	Asn	Gly	Gly 255	Ala
He	Asn	Cys	Ser	Gly	Asp	Leu	Thr	Phe	Thr	Asp	Acn	Thr	Ser	Len	Leu
			260					265		-			270		

WO 98/58953 PCT/DK98/00266 72

										-					
				n Sei											
				r Ile			/ Sei	r Ası					1 11		
				n Lys		/ Gly	/ Ala					a Ser			
Let	ı Gly	/ Gly	y Gli	n Gly 325	/ Gly	Ala	Let	ı Phe	Sei	31! r Ası	o n Ası	ı Val	l Val	l Th:	320 His
Ala	Thi	Pro	2 Lei 34(ı Gly	, Gly	Ala	Ile	Phe	330 : Ile	e Ası	ı Thi	Gly	/ Gly	33! Sei	5 r Lei
Glr	Let	2 Phe 355	e Thi	Gln	Gly	Gly	Asp	345 11e	v val	l Phe	e Glu	ı Gly	350 Asr) 1 Glr	ı Val
Thr	Thr 370			a Pro) Asn	Ala 375	Thr	Thr	Lys	s Arg	J Asr	365 1 Val	. Ile	≥ His	Lei
Glu 385	Ser	Thi	Ala	Lys	Trp	Thr	Gly	Leu	Ala	a Ala	380 Ser) Glr	Gly	/ Asr	ı Ala
Ile	туг	Phe	туг	Asp	Pro	Ile	Thr	Thr	Asr	395 1 Asp	Thr	Gly	' Ala	Sei	400 Asp
				Asn				Ala	Asr.						
Ile	Val	Phe 435	Ser	Gly	Glu	Arg	Leu	425 Ser	Thr	: Ala	Glu	Ala	430 Ile	Ala	ı Glı
Asn	Leu 450	Thr		Arg	Ile	Asn 455	440 Gln	Pro	Val	. Thr	Leu	445 Val	Glu	Gly	Ser
Leu 465	Glu	Leu	Lys	Gln	Gly 470	Val	Thr	Leu	Ile	Thr	460 Gln	Gly	Phe	Ser	Gln
				Thr					Leu	475 Gly					
Ser	Thr	Glu	'Asp	Ile	Val	Ile	Thr	Asn	490 Ser	Ser	Ile	Asn	Ala	495 Asp	Thr
Ile	Tyr	Gly 515	Lys	Asn	Pro	Ile	Asn 520	505 Ile	Val	Ala	Ser	Ala	510 Ala	Asn	Lys
				Thr			Leu	Ala							
				His		Leu									
				Gly 565							Thr				
				Glu					Arg	Pro					
				Val				Pro							
				Glu			Arg								
				Leu							Gly				
				Gln 645						Ser					
				Val					Ile						
				Glu				Arg							
				Thr		Ala 695	Phe								
				Phe	Ser .	Arg					Val				
His	Gly	Thr	Ser	Tyr	Ser	Gly	Val	Val	Phe	Leu	Glu	Asp	Thr	Leu	720 Glu

PCT/DK98/00266

				725					730					735	
he A	Arg	Ser	Pro	Gln	Gly	Phe	Tyr	Thr	Asp	Ser	Ser	Ser	Glu 750	Ala	Cys
7170	Λen	Gln	740 Val	Val	Thr	Ile		745 Met	Gln	Leu	Ser	Tyr	_	His	Arg
_		755					760					/65			
		Asp	Met	Lys	Thr	Lys 775	Tyr	Thr	Thr	Tyr	Pro 780	Glu	Ala	Gln	GIY.
Ser	770 Tro	Ala	Asn	Asp	Val	Phe	Gly	Leu	Glu	Phe	Gly	Ala	Thr	Thr	Tyr
705					790					795					800
Tyr	Tyr	Pro	Asn	Ser 805	Thr	Phe	Leu	Phe	Asp 810	Tyr	Tyr	Ser	Pro	815	ьeu
λra	Len	Gln	Cvs	Thr	Tyr	Ala	His	Gln		Asp	Phe	Lys	Glu	Thr	Gly
_			820					825					830		
Gly	Glu			His	Phe	Thr			Asp	Leu	Phe	Asn 845	Leu	Ala	Val
		835			51	a 1	840		Cor	. Nen	Cvs			Glv	Ser
	250					855					860				Ser
Tyr	Glu	Leu	Thr	Leu	Ala	Tyr	Val	Pro	Asp	val	Ile	Arg	Lys	Asp	Pro 880
865					870			_		875			- The	- Uic	
				885	.				890)				05-	
Asn	Asr	ı Lei	ı Sei	r Arg	g Glr	Gly	, Lei	ı Glr	ı Lev	ı Arç	g Lev	ı Gly	/ Asr	ı His	s Cys
			901	n				909	5				910	,	
		9.1	ς.				921	0				92)		ı Leu
Arg	Gl	y Se	r Se	r Ar	g Ası	туз	r Ası	n Il	e Ası	n Le	u Gl	y Gl	y Ly:	з Ту	r Arg
	93	0				93	5				94	U			
Phe															
945)														

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3000 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 259...3000
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

THE SECOND AND COURTED COTTACCTA	G TGACTGTAGG TGACATGAGA AAGCTAACAC	60
ATCAGGTGAT AAAAGTTCCT CGTTAGCTA	T CTTCATGGTA ATGCTTTTGT TTTTTAGAGA	120
GGAGGAAACT AAAACCCAAG GAAICGAAG	A GTAAATCAAG TTAAAGATGA CAAAACAGCT	180
ACTATTCGCA TCAATATAGA AACAAAATA	A GTAAATCAAG TTAAAGATGA CCCA ACTAAGAATT	240
GTCAAGAATT TTTATCTTGA CTCTCTGAG	TTTCTATTTT ATATGACGCA AGTAAGAATT	291
TAATAATAAA GTGGGTTT ATG AAA TCG	CAA TTT TCC TGG IIA GIG CIC ICI	271
Met Lvs Ser	Gln Phe Ser Trp Leu Val Leu Ser	

WO 98/58953 PCT/DK98/00266

											74	Į.							
				15	,			. 36	20	'S SE	er T	hr V	al	Phe	A1 25	a A	la		33
		3	0			,	CC TC	35	р зе	I Pr	ie As	sp G	ly :	Ser 40	Th	r As	sn	Thr	387
GG G1	C AC y Th 45	CC T	'AT 'yr	AC.	r cc	T AA O Ly	A AA s As 50	T AC	G AC r Th	T AC	T GO	GA A' Ly I	le A	GAC Asp	TA Ty	T A(CT nr	CTG Leu	435
AC. Th: 60	A GG r Gl	A G y A	AT sp	ATA Ile	A AC	r Cr r Le 65	G CA. u Gli	A AA(n Ası	C CT	T GG u Gl	G GA y As	p Se	CG (er A	GCA Ala	GC'	T TI a Le	ra eu	ACG Thr 75	483
					80		C AC	- 1111	. GI	85	r Le	u Se	er F	he	Ala	G1 90	У	Lys	531
				95			T TT? e Lei	A ASI	100) Frys	s Se	r S∈	er A	la	Glι 105	ı Gl	У	Ala	579
		13	L O				T GAT	115	ASI	r re	ı Se	r Le	u T	hr 20.	Gly	Ph	e	Ser	627
	125	5					G GCC A Ala 130		361	361	va.	13	ет. 5	hr	Thr	Pro	0	Ser	675
140						145		Gly	GIĀ	Asp	150	ı Th	r Pl	he .	Asp	Ası	n 2	Asn 155	723
					160	-70	CAA Gln	ASD	ıyr	165	GIu	ı Glı	u As	sn (Gly	Gl _y 170	/ <i>I</i>	Ala	771
			1	75			TCT Ser	beu	180	Asn	Ser	Thi	r Gl	y S	Ser 185	Ile	S	Ser	819
		19	0		•		AGC Ser	195	1111	GIY	Lys	Lys	G1 20	0 A G	ly	Ala	Ι	le	867
	205						GAT Asp 210	110	1111	ASII	Asn	7hr 215	Al	a P	ro	Thr	L	eu	915
220						225	GAA Glu	AIG .	Ald	GIY	230	Ala	Il	e A	sn	Ser	T)	hr 35	963
∃GA .	AAC	TGT	' A(CA A	ATT .	ACA	GGG	AAT /	ACG '	TCT	CTT	GTA	TT	ГТ	СТ	GAA	ΑJ	ΤA	1011

WO 98/58953 PCT/DK98/00266

75	
Gly Asn Cys Thr Ile Thr Gly Asn Thr Ser Leu Val Phe Ser Glu Asn 240 245 250	
AGT GTG ACA GCG ACC GCA GGA AAT GGA GGA GCT CTT TCT GGA GAT GCC Ser Val Thr Ala Thr Ala Gly Asn Gly Gly Ala Leu Ser Gly Asp Ala 255	1059
GAT GTT ACC ATA TCT GGG AAT CAG AGT GTA ACT TTC TCA GGA AAC CAA Asp Val Thr Ile Ser Gly Asn Gln Ser Val Thr Phe Ser Gly Asn Gln 270 275 280	1107
GCT GTA GCT AAT GGC GGA GCC ATT TAT GCT AAG AAG CTT ACA CTG GCT Ala Val Ala Asn Gly Gly Ala Ile Tyr Ala Lys Lys Leu Thr Leu Ala 285 290 295	1155
TCC GGG GGG GGG GGT ATC TCC TTT TCT AAC AAT ATA GTC CAA GGT Ser Gly Gly Gly Gly Ile Ser Phe Ser Asn Asn Ile Val Gln Gly 300 305 310	1203
ACC ACT GCA GGT AAT GGT GGA GCC ATT TCT ATA CTG GCA GCT GGA GAG Thr Thr Ala Gly Asn Gly Gly Ala Ile Ser Ile Leu Ala Ala Gly Glu 320 325 330	1251
TGT AGT CTT TCA GCA GAA GCA GGG GAC ATT ACC TTC AAT GGG AAT GCC Cys Ser Leu Ser Ala Glu Ala Gly Asp Ile Thr Phe Asn Gly Asn Ala 335	1299
ATT GTT GCA ACT ACA CCA CAA ACT ACA AAA AGA AAT TCT ATT GAC ATA Ile Val Ala Thr Thr Pro Gln Thr Thr Lys Arg Asn Ser Ile Asp Ile 350 355 360	1347
GGA TCT ACT GCA AAG ATC ACG AAT TTA CGT GCA ATA TCT GGG CAT AGC Gly Ser Thr Ala Lys Ile Thr Asn Leu Arg Ala Ile Ser Gly His Ser 365	1395
ATC TTT TTC TAC GAT CCG ATT ACT GCT AAT ACG GCT GCG GAT TCT ACA Ile Phe Phe Tyr Asp Pro Ile Thr Ala Asn Thr Ala Ala Asp Ser Thr 380	1443
GAT ACT TTA AAT CTC AAT AAG GCT GAT GCA GGT AAT AGT ACA GAT TAT Asp Thr Leu Asn Leu Asn Lys Ala Asp Ala Gly Asn Ser Thr Asp Tyr 400 405 410	1491
AGT GGG TCG ATT GTT TTT TCT GGT GAA AAG CTC TCT GAA GAT GAA GCA Ser Gly Ser Ile Val Phe Ser Gly Glu Lys Leu Ser Glu Asp Glu Ala 415 420 425	1539
AAA GTT GCA GAC AAC CTC ACT TCT ACG CTG AAG CAG CCT GTA ACT CTA Lys Val Ala Asp Asn Leu Thr Ser Thr Leu Lys Gln Pro Val Thr Leu 430 435 440	1587
ACT GCA GGA AAT TTA GTA CTT AAA CGT GGT GTC ACT CTC GAT ACG AAA Thr Ala Gly Asn Leu Val Leu Lys Arg Gly Val Thr Leu Asp Thr Lys 445 450 455	1635
GGC TTT ACT CAG ACC GCG GGT TCC TCT GTT ATT ATG GAT GCG GGC ACA	1683
Gly Phe Thr Gln Thr Ala Gly Ser Ser Val Ile Met Asp Ala Gly Thr	

										, 0						
46	0				469	5				47	0				4 75	
AC	G TT	A AA	A GC	ል አርና	ר אכי	\ C.T.(7 02	~	_							
Th	r Lei	ı Ly	s Ala	a AG. a Sei	r ACA	A GAC	GA(G GT	CAC	r TT.	A AC	A GG	r ct	r TC	C ATT	1731
		•		480)	. 010	1 (31)	ı va.	1 Th:	r Le	u Th	r Gl	y Lei		C ATT r Ile	
										-				49		
CCT	T GT	A GA	C TC	TT7	A GGC	GAC	GGT	AA 1	G AA	A GT	T GT	а атг	ר הכי	ר פכי	r TCT	
PIC	o va.	l As		- 200	ı Gly	/ Glu	ı Gly	/ Lys	s Lys	s Va	l Va	1 116	≥ Ala	a Ala	T TCT	1779
			495	>				500	0				509			
GC2	A GC	A AG	T AAA	CAA A	GTA	A GCC	יירט :	ר אמי	ד כריי	r cc/	n ner			_	G GAT	
Ala	a Ala	a Sei	r Lys	s Asr	ı Val	Ala	Lei	ı Sei	r Glv	z Pro	J Al".	r CTT	CTI	TTC	G GAT	1827
		510)				515	5	,	,	J 110	520	ı re(ı reı	1 Asp	
ΔΔα	י ראז	CCC	יי א איי													
Asr	a Glr	i GGC	J AAI	GCI Ala	TAT	GAA	LAA	CAC	GAC	TTI	A GGA	AAA A	ACT	CAA	A GAC	1875
	525	;	y ASI	, WIG	ııyı	530	ASI	1 His	Asp) Lei	ı Gl	/ Lys	Thr	Glr	A GAC A Asp	_
											535					
TTT	TCA	TTT	r GTG	CAG	CTC	TCT	GCT	CTO	GGT	` ACI	r GCZ	א ארא	אכיז	י אריז	AGAT	
Phe 540	e Ser	Phe	e Val	Gln	, DCu	Ser	Ala	Lev	Gly	Thr	Ala	Thr	Thr	Thr	A GAT Asp	1923
2740	,				545					550)				555	
GTT	CCA	GCC	GTT	· CCT	' ACA	GTA	CCA	א כית	COM						' CAA	
Val	. Pro	Ala	val	Pro	Thr	Val	Ala	Thr	Pro	ACC Thr	CAC	TAT	, GGG	TAT	CAA Gln	1971
				560					565	, 1111	. nrs	ıyr	GIY	Tyr 570		
GGT	י ארייד	TOO	1 002	200												
Gly	Thr	Trr	GLV	ATG Mot	ACT	TGG	GTT	GAT	GAT	ACC	GCA	AGC	- ACT	CCA	AAG	2019
•			Gly 575	1100	1111	rrp	vai	Asp 580	Asp	Thr	Ala	Ser	Thr	Pro	Lys	
													585			
ACT	' AAG	ACA	GCG	ACA	TTA	GCT	TGG	ACC	AAT	ACA	GGC	TAC	CTT	CCG	ייית ת	2067
inr	Lys	Thr 590		Thr	Leu	Ala	rrp	Thr	Asn	Thr	Gly	Tyr	Leu	Pro	Asn	2067
		390					595					600				
CCT	' GAG	CGT	CAA	GGA	CCT	TTA	GTT	CCT	דע ע	NCC	്യന	maa	~~-			
Pro	Glu	Arg	Gln	Gly	Pro	Leu	Val	Pro	Asn	Ser	Len	TGG	GGA	TCT	TTT	2115
	605					610					615	пр	GIY	ser	Phe	
TCA	GAC	ΔΤΟ	CDD	CCC	7 (TIC)	~~~										
Ser	Asp	Ile	CAA Gln	Δla	ATT	CAA	GGT	GTC	ATA	GAG	AGA	AGT	GCT	TTG	ACT	2163
620	•		Gln		625	GIII	GIY	vaı	116	Glu 630	Arg	Ser	Ala	Leu	Thr	
	_														635	
CTT	TGT	TCA	GAT Asp	CGA	GGC	TTC	TGG	GCT	GCG	GGA	GTC	GCC	AAT	ттс	מידים	2211
ъеп	Cys	Ser	Asp	3	Gly	Phe	Trp	Ala	Ala	Gly	Val	Ala	Asn	Phe	Leu	2211
				640					645					650		
GAT	AAA	GAT	AAG Lvs	AAA	GGG	GAA	AAA	CGC	ת ת מ	ፐ አ 🔿	CCT	O				
Asp	Lys	Asp	Lys 655	Lys	Gly	Glu	Lys	Ara	Lvs	Tvr	Ara	CAT Hia	AAA	TCT	GGT	2259
			655					660	•	-1-	9	1115	665	ser	GIY	
GGA	ТАТ	GCT	ልጥር	CCA	COM	005	a = -	_								
Gly	Tyr	Ala	ATC Ile	Glv	GUT	GCA Ala	GCG אור	CAA	ACT	TGT	TCT	GAA	AAC	TTA	ATT	2307
_	•	670	Ile	OI y	Gry	мта	675	GIn	Thr	Cys	Ser		Asn	Leu	Ile	
												680				
AGC	TTT	GCC	TTT Phe	TGC	CAA	CTC	TTT	GGT	AGC	GAT	AAA	GAT	TTC	ፐፐ አ	GTC	2255
ser	Phe 685	Ala	Phe	Cys.	GIII	ren	Phe	Gly	Ser	Asp	Lys	Asp	Phe	Leu	Val	2355
	~03					690					695	•				

GCT AAA AAT CAT ACT GAT ACC TAT GCA GGA GCC TTC TAT ATC CAA CAC Ala Lys Asn His Thr Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gln His 700 715	3
ATT ACA GAA TGT AGT GGG TTC ATA GGT TGT CTC TTA GAT AAA CTT CCT Ile Thr Glu Cys Ser Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro 720 725 730	r 2451 o-
GGC TCT TGG AGT CAT AAA CCC CTC GTT TTA GAA GGG CAG CTC GCT TA'Gly Ser Trp Ser His Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Ty 735	T 2499 r
AGC CAC GTC AGT AAT GAT CTG AAG ACA AAG TAT ACT GCG TAT CCT GA Ser His Val Ser Asn Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Gl 750 755 760	G 2547 u
GTG AAA GGT TCT TGG GGG AAT AAT GCT TTT AAC ATG ATG TTG GGA GC Val Lys Gly Ser Trp Gly Asn Asn Ala Phe Asn Met Met Leu Gly Al 765 770 775	TT 2595 .a
TCT TCT CAT TCT TAT CCT GAA TAC CTG CAT TGT TTT GAT ACC TAT GC Ser Ser His Ser Tyr Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Al 780 785 790 79	CT 2643 La 95
CCA TAC ATC AAA CTG AAT CTG ACC TAT ATA CGT CAG GAC AGC TTC TG Pro Tyr Ile Lys Leu Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Se 800 805 810	CG 2691 er
GAG AAA GGT ACA GAA GGA AGA TCT TTT GAT GAC AGC AAC CTC TTC A Glu Lys Gly Thr Glu Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe A 815 820 825	AT 2739 sn
TTA TCT TTG CCT ATA GGG GTG AAG TTT GAG AAG TTC TCT GAT TGT A Leu Ser Leu Pro Ile Gly Val Lys Phe Glu Lys Phe Ser Asp Cys A 830 835 840	AT 2787 ssn
GAC TTT TCT TAT GAT CTG ACT TTA TCC TAT GTT CCT GAT CTT ATC C Asp Phe Ser Tyr Asp Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile A 850 855	CGC 2835 Arg
AAT GAT CCC AAA TGC ACT ACA GCA CTT GTA ATC AGC GGA GCC TCT TAS AS AS Pro Lys Cys Thr Thr Ala Leu Val Ile Ser Gly Ala Ser 860 865 870	rGG 2883 Frp 875
GAA ACT TAT GCC AAT AAC TTA GCA CGA CAG GCC TTG CAA GTG CGT GGU Thr Tyr Ala Asn Asn Leu Ala Arg Gln Ala Leu Gln Val Arg 880 885 890	GCA 2931 Ala
GGC AGT CAC TAC GCC TTC TCT CCT ATG TTT GAA GTG CTC GGC CAG Gly Ser His Tyr Ala Phe Ser Pro Met Phe Glu Val Leu Gly Gln 895 900 905	TTT 2979 Phe
GTC TTT GAA GTT CGT GGA TCC Val Phe Glu Val Arg Gly Ser 910	3000

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 914 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Lys Ser Gln Phe Ser Trp Leu Val Leu Ser Ser Thr Leu Ala Cys Phe Thr Ser Cys Ser Thr Val Phe Ala Ala Thr Ala Glu Asn Ile Gly 25 Pro Ser Asp Ser Phe Asp Gly Ser Thr Asn Thr Gly Thr Tyr Thr Pro Lys Asn Thr Thr Gly Ile Asp Tyr Thr Leu Thr Gly Asp Ile Thr Leu Gln Asn Leu Gly Asp Ser Ala Ala Leu Thr Lys Gly Cys Phe Ser 75 Asp Thr Thr Glu Ser Leu Ser Phe Ala Gly Lys Gly Tyr Ser Leu Ser Phe Leu Asn Ile Lys Ser Ser Ala Glu Gly Ala Ala Leu Ser Val Thr 105 . 110 Thr Asp Lys Asn Leu Ser Leu Thr Gly Phe Ser Ser Leu Thr Phe Leu 120 Ala Ala Pro Ser Ser Val Ile Thr Thr Pro Ser Gly Lys Gly Ala Val 135 Lys Cys Gly Gly Asp Leu Thr Phe Asp Asn Asn Gly Thr Ile Leu Phe 150 155 Lys Gln Asp Tyr Cys Glu Glu Asn Gly Gly Ala Ile Ser Thr Lys Asn 170 Leu Ser Leu Lys Asn Ser Thr Gly Ser Ile Ser Phe Glu Gly Asn Lys 185 Ser Ser Ala Thr Gly Lys Lys Gly Gly Ala Ile Cys Ala Thr Gly Thr 200 Val Asp Ile Thr Asn Asn Thr Ala Pro Thr Leu Phe Ser Asn Asn Ile 215 220 Ala Glu Ala Ala Gly Gly Ala Ile Asn Ser Thr Gly Asn Cys Thr Ile 230 235 Thr Gly Asn Thr Ser Leu Val Phe Ser Glu Asn Ser Val Thr Ala Thr 245 250 Ala Gly Asn Gly Gly Ala Leu Ser Gly Asp Ala Asp Val Thr Ile Ser 265 Gly Asn Gln Ser Val Thr Phe Ser Gly Asn Gln Ala Val Ala Asn Gly 280 Gly Ala Ile Tyr Ala Lys Lys Leu Thr Leu Ala Ser Gly Gly Gly 295 300 Gly Ile Ser Phe Ser Asn Asn Ile Val Gln Gly Thr Thr Ala Gly Asn 310 315 Gly Gly Ala Ile Ser Ile Leu Ala Ala Gly Glu Cys Ser Leu Ser Ala 325 330 Glu Ala Gly Asp Ile Thr Phe Asn Gly Asn Ala Ile Val Ala Thr Thr 345

Pro Gln Thr Thr Lys Arg Asn Ser Ile Asp Ile Gly Ser Thr Ala Lys
360
The Thr Asn Leu Arg Ala Ile Ser Gly His Ser Ile Phe Phe Tyl Asp
375 300
Pro Ile Thr Ala Asn Thr Ala Ala Asp Ser Thr Asp Thr Leu Asn Leu 395 400.
385 390 395 Asn Lys Ala Asp Ala Gly Asn Ser Thr Asp Tyr Ser Gly Ser Ile Val
4111
405 Phe Ser Gly Glu Lys Leu Ser Glu Asp Glu Ala Lys Val Ala Asp Asn 430
Leu Thr Ser Thr Leu Lys Gln Pro Val Thr Leu Thr Ala Gly Asn Leu
Val Leu Lys Arg Gly Val Thr Leu Asp Thr Lys Gly Phe Thr Gln Thr 455 460
450 Ala Gly Ser Ser Val Ile Met Asp Ala Gly Thr Thr Leu Lys Ala Ser 480
The Clu Clu Val Thr Leu Thr Gly Leu Ser Ile Pro Val Asp Ser Leu
Gly Glu Gly Lys Lys Val Val Ile Ala Ala Ser Ala Ala Ser Lys Asn
500 505 510 Val Ala Leu Ser Gly Pro Ile Leu Leu Asp Asn Gln Gly Asn Ala
570
515 Tyr Glu Asn His Asp Leu Gly Lys Thr Gln Asp Phe Ser Phe Val Gln 540
Leu Ser Ala Leu Gly Thr Ala Thr Thr Asp Val Pro Ala Val Fig.
Thr Val Ala Thr Pro Thr His Tyr Gly Tyr Gln Gly Thr Trp Gly Met 570 575
Thr Trp Val Asp Asp Thr Ala Ser Thr Pro Lys Thr Lys Thr Ala Thr
500 585
Leu Ala Tro Thr Asn Thr Gly Tyr Leu Pro Asn Pro Giu Arg Gin Giy
500
Pro Leu Val Pro Asn Ser Leu Trp Gly Ser Phe Ser Asp Ile Gln Ala 610 610
610 615 Ile Gln Gly Val Ile Glu Arg Ser Ala Leu Thr Leu Cys Ser Asp Arg 640
רכט רכט
Gly Phe Trp Ala Ala Gly Val Ala Asn Phe Leu Asp Lys Asp Lys Lys
CAE 500
Gly Glu Lys Arg Lys Tyr Arg His Lys Ser Gly Gly Tyr Ala Ile Gly
660 665 Gly Ala Ala Gln Thr Cys Ser Glu Asn Leu Ile Ser Phe Ala Phe Cys
Gln Leu Phe Gly Ser Asp Lys Asp Phe Leu Val Ala Lys Asn His Thr
£ U.S. 700
Asp Thr Tyr Ala Gly Ala Phe Tyr Ile Gin His He Hir Gid Cys Ser
710
705 Gly Phe Ile Gly Cys Leu Leu Asp Lys Leu Pro Gly Ser Trp Ser His 735 736 737
725 Lys Pro Leu Val Leu Glu Gly Gln Leu Ala Tyr Ser His Val Ser Asn 750
745
Asp Leu Lys Thr Lys Tyr Thr Ala Tyr Pro Glu Val Lys Gly Ser Irp
760
Gly Asn Asn Ala Phe Asn Met Met Leu Gly Ala Ser Ser His Ser Tyr 780
770 775 780 Pro Glu Tyr Leu His Cys Phe Asp Thr Tyr Ala Pro Tyr Ile Lys Leu 800
700
785 790 Asn Leu Thr Tyr Ile Arg Gln Asp Ser Phe Ser Glu Lys Gly Thr Glu
*** 1

80 805 810 Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn Leu Ser Leu Pro Ile 825 Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn Asp Phe Ser Tyr Asp 840 Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg Asn Asp Pro Lys Cys 855 Thr Thr Ala Leu Val Ile Ser Gly Ala Ser Trp Glu Thr Tyr Ala Asn 875 Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala Gly Ser His Tyr Ala 890 Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe Val Phe Glu Val Arg

905

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

Gly Ser

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 1...1200
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

1				5		- 1 - 1	1111	GIY	10	lle	: Leu	Phe	Ser	Gly 15	GAA Glu	48
			20		r		9	25	Pne	rys	Ser	Thr	Ile 30	Pro	CAG Gln	96
		35				-1	40	ысц	vai	тте	Lys	Glu 45	Gly	Ala	GAA Glu	144
GTC Val	ACA Thr 50	GTT Val	TCA Ser	AAA Lys	TTC Phe	ACG Thr 55	CAG Gln	TCT Ser	CCA Pro	GGA Gly	TCG Ser 60	CAT His	TTA Leu	GTT Val	TTA Leu	192
GAT Asp 65					70			501	гуѕ	75	Asp	Ile	Ala	Ile	Thr 80	240
GGC Gly	CTC Leu	GCG Ala	ATA Ile	GAT Asp 85	ATA Ile	GAT Asp	AGC Ser	ьец	AGC Ser 90	TCA Ser	TCC Ser	TCA Ser	ACA Thr	GCA Ala 95	GCT Ala	288

											01							
	GTT Val	ATT Ile	AAA Lys	GCA Ala 100	AAC Asn	ACC Thr	GCA Ala	AAT Asn	AAA Lys 105	CAG Gln	ATA Ile	TCC Ser	GTG Val	ACG Thr 110	GAC Asp	TCT Ser	336	
	ATA Ile	GAA Glu	CTT Leu 115	ATC Ile	TCG Ser	CCT Pro	ACT Thr	GGC Gly 120	AAT Asn	GCC Ala	TAT Tyr	GAA Glu	GAT Asp 125	CTC Leu	AGA Arg	ATG Met	384	
	AGA Arg	AAT Asn 130	TCA Ser	CAG Gln	ACG Thr	TTC Phe	CCT Pro 135	CTG Leu	CTC Leu	TCT Ser	TTA Leu	GAG Glu 140	CCT Pro	GGA Gly	GCC Ala	GGG Gly	432	
	GGT Gly 145	AGT Ser	GTG Val	ACT Thr	GTA Val	ACT Thr 150	GCT Ala	GGA Gly	GAT Asp	TTC Phe	CTA Leu 155	CCG Pro	GTA Val	AGT Ser	CCC Pro	CAT His 160	480	
	TAT Tyr	GGT Gly	TTT Phe	CAA Gln	GGC Gly 165	AAT Asn	TGG Trp	AAA Lys	TTA Leu	GCT Ala 170	TGG Trp	ACA Thr	GGA Gly	ACT Thr	GGA Gly 175	AAC Asn	528	
	AAA Lys	GTT Val	GGA Gly	GAA Glu 180	TTC Phe	TTC Phe	TGG Trp	GAT Asp	AAA Lys 185	ATA Ile	AAT Asn	TAT Tyr	AAG Lys	CCT Pro 190	AGA Arg	CCT Pro	576	
	GAA Glu	AAA Lys	GAA Glu 195	GGA Gly	AAT Asn	TTA Leu	GTT Val	CCT Pro 200	AAT Asn	ATC Ile	TTG Leu	TGG Trp	GGG Gly 205	AAT Asn	GCT Ala	GTA Val	624	
	AAT Asn	GTC Val 210	AGA Arg	TCC Ser	TTA Leu	ATG Met	CAG Gln 215	GTT Val	CAA Gln	GAG Glu	ACC Thr	CAT His 220	GCA Ala	TCG Ser	AGC Ser	TTA Leu	672	
,	CAG Gln 225	ACA Thr	GAT Asp	CGA Arg	GGG Gly	CTG Leu 230	TGG Trp	ATC Ile	GAT Asp	GGA Gly	ATT Ile 235	GGG Gly	AAT Asn	TTC Phe	TTC Phe	CAT His 240	720	
	GTA Val	TCT Ser	GCC Ala	TCC Ser	GAA Glu 245	GAC Asp	AAT Asn	ATA Ile	AGG Arg	TAC Tyr 250	CGT Arg	CAT His	AAC Asn	AGC Ser	GGT Gly 255	GGA Gly	768	
	TAT Tyr	GTT Val	CTA Leu	TCT Ser 260	GTA Val	AAT Asn	AAT Asn	GAG Glu	ATC Ile 265	ACA Thr	CCT Pro	AAG Lys	CAC His	TAT Tyr 270	ACT Thr	TCG Ser	816	
	ATG Met	GCA Ala	TTT Phe 275	TCC Ser	CAA Gln	CTC Leu	TTT Phe	AGT Ser 280	AGA Arg	GAC Asp	AAA Lys	GAC Asp	TAT Tyr 285	GCG Ala	GTT Val	TCC Ser	864	
	AAC Asn	AAC Asn 290	GAA Glu	TAC Tyr	AGA Arg	ATG Met	TAT Tyr 295	TTA Leu	GGA Gly	TCG Ser	TAT Tyr	CTC Leu 300	TAT Tyr	CAA Gln	TAT Tyr	ACA Thr	912	
	ACC Thr 305	TCC Ser	CTA Leu	GGG Gly	AAT Asn	ATT Ile 310	TTC Phe	CGT Arg	TAT Tyr	GCT Ala	TCG Ser 315	CGT Arg	AAC Asn	CCT Pro	AAT Asn	GTA Val 320	960	
	AAC	GTC	GGG	ATT	CTC	TCA	AGA	AGG	TTT	CTT	CAA	AAT	CCT	CTT	ATG	ATT	1008	_

Asn Val Gly Ile Leu Ser Arg Arg Phe Leu Gln Asn Pro Leu Met ITe 330 TTT CAT TTT TTG TGT GCT TAT GGT CAT GCC ACC AAT GAT ATG AAA ACA Phe His Phe Leu Cys Ala Tyr Gly His Ala Thr Asn Asp Met Lys Thr 1056 345 GAC TAC GCA AAT TTC CCT ATG GTG AAA AAC AGC TGG AGA AAC AAT TGT Asp Tyr Ala Asn Phe Pro Met Val Lys Asn Ser Trp Arg Asn Asn Cys 1104 360 TGG GCT ATA AAA TGC GGA GGG AGC ATG CCT CTA TTG GTA TTT GAA AAC Trp Ala Ile Lys Cys Gly Gly Ser Met Pro Leu Leu Val Phe Glu Asn 1152 375 GGA AAA CTT TTC CAA GGT GCC ATC CCA TTT ATG AAA CTA CAA TTA GTT Gly Lys Leu Phe Gln Gly Ala Ile Pro Phe Met Lys Leu Gln Leu Val 1200 395

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Asp Pro Lys Asn Lys Glu Tyr Thr Gly Thr Ile Leu Phe Ser Gly Glu Lys Ser Leu Ala Asn Asp Pro Arg Asp Phe Lys Ser Thr Ile Pro Gln 10 Asn Val Asn Leu Ser Ala Gly Tyr Leu Val Ile Lys Glu Gly Ala Glu 25 Val Thr Val Ser Lys Phe Thr Gln Ser Pro Gly Ser His Leu Val Leu Asp Leu Gly Thr Lys Leu Ile Ala Ser Lys Glu Asp Ile Ala Ile Thr Gly Leu Ala Ile Asp Ile Asp Ser Leu Ser Ser Ser Thr Ala Ala Val Ile Lys Ala Asn Thr Ala Asn Lys Gln Ile Ser Val Thr Asp Ser Ile Glu Leu Ile Ser Pro Thr Gly Asn Ala Tyr Glu Asp Leu Arg Met 105 Arg Asn Ser Gln Thr Phe Pro Leu Leu Ser Leu Glu Pro Gly Ala Gly Gly Ser Val Thr Val Thr Ala Gly Asp Phe Leu Pro Val Ser Pro His Tyr Gly Phe Gln Gly Asn Trp Lys Leu Ala Trp Thr Gly Thr Gly Asn 155 Lys Val Gly Glu Phe Phe Trp Asp Lys Ile Asn Tyr Lys Pro Arg Pro 170 185

WO 98/58953 PCT/DK98/00266

83

Glu Lys Glu Gly Asn Leu Val Pro Asn Ile Leu Trp Gly Asn Ala Val 200 Asn Val Arg Ser Leu Met Gln Val Gln Glu Thr His Ala Ser Ser Leu 215 220 Gln Thr Asp Arg Gly Leu Trp Ile Asp Gly Ile Gly Asn Phe Phe His 235 230 Val Ser Ala Ser Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly 250 Tyr Val Leu Ser Val Asn Asn Glu Ile Thr Pro Lys His Tyr Thr Ser 260 265 270 Met Ala Phe Ser Gln Leu Phe Ser Arg Asp Lys Asp Tyr Ala Val Ser 280 Asn Asn Glu Tyr Arg Met Tyr Leu Gly Ser Tyr Leu Tyr Gln Tyr Thr 295 300 Thr Ser Leu Gly Asn Ile Phe Arg Tyr Ala Ser Arg Asn Pro Asn Val 310 315 Asn Val Gly Ile Leu Ser Arg Arg Phe Leu Gln Asn Pro Leu Met Ile 325 330 Phe His Phe Leu Cys Ala Tyr Gly His Ala Thr Asn Asp Met Lys Thr 340 345 350 Asp Tyr Ala Asn Phe Pro Met Val Lys Asn Ser Trp Arg Asn Asn Cys 360 365 Trp Ala Ile Lys Cys Gly Gly Ser Met Pro Leu Leu Val Phe Glu Asn 375 380 Gly Lys Leu Phe Gln Gly Ala Ile Pro Phe Met Lys Leu Gln Leu Val 385 390 395

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1830 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 1...1830
 - (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAT	CTC	ACA	TTA	GGG	AGT	CGT	GAC	AGT	TAT	AAT	GGT	GAT	ACA	AGC	ACC	48	
Asp	Leu	Thr	Leu	Gly	Ser	Arg	Asp	Ser	Tyr	Asn	Gly	Asp	Thr	Ser	Thr		
1				5					10					15			
ACA	GAA	TTT	ACT	CCT	AAA	GCG	GCA	ACT	TCT	GAT	GCT	AGT	GGC	ACG	ACC	96	
Thr	${\tt Glu}$	Phe	Thr	Pro	Lys	Ala	Ala	Thr	Ser	Asp	Ala	Ser	Gly	Thr	Thr		
			20					25					30				

TAT ATT CTC GAT GGG GAT GTC TCG ATA AGC CAA GCA GGG AAA CAA ACG
Tyr Ile Leu Asp Gly Asp Val Ser Ile Ser Gln Ala Gly Lys Gln Thr

AGC Ser	TTA Leu 50	ACC Thr	ACA Thr	AGT Ser	TGT Cys	TTT Phe 55	TCT Ser	AAC Asn	ACT Thr	GCA Ala	GGA Gly 60	AAT Asn	CTT Leu	ACC Thr	TTC Phe	192
TTA Leu 65	GGG Gly	AAC Asn	GGA Gly	TTT Phe	TCT Ser 70	CTT Leu	CAT His	TTT Phe	GAC Asp	AAT Asn 75	ATT Ile	ATT	TCG Ser	TCT Ser	ACT Thr 80	240
GTT Val	GCA Ala	GGT Gly	GTT Val	GTT Val 85	GTT Val	AGC Ser	AAT Asn	ACA Thr	GCA Ala 90	GCT Ala	TCT Ser	GGG Gly	ATT Ile	ACG Thr 95	AAA Lys	288
rnc	361	GIY	100	ser	inr	CTT Leu	Arg	Met 105	Leu	Ala	Ala	Pro	Arg 110	Thr	Thr	336
GIY	БуБ	115	міа	iie	гÀг	ATT Ile	Thr 120	Asp	Gly	Leu	Val	Phe 125	Glu	Ser	Ile	384
GGG Gly	AAT Asn 130	CTT Leu	GAT Asp	CCG Pro	ATT Ile	ACT Thr 135	GTA Val	ACA Thr	GGA Gly	TCG Ser	ACA Thr 140	TCT Ser	GTT Val	GCT Ala	GAT Asp	432
GCT Ala 145	CTC Leu	AAT Asn	ATT	AAT Asn	AGC Ser 150	CCT Pro	GAT Asp	ACT Thr	GGA Gly	GAT Asp 155	AAC Asn	AAA Lys	GAG Glu	TAT Tyr	ACG Thr 160	480
GGA Gly	ACC Thr	ATA Ile	GTC Val	TTT Phe 165	TCT Ser	GGA Gly	GAG Glu	AAG Lys	CTC Leu 170	ACG Thr	GAG Glu	GCA Ala	GAA Glu	GCT Ala 175	AAA Lys	528
GAT Asp	GAG Glu	AAG Lys	AAC Asn 180	CGC Arg	ACT Thr	TCT Ser	AAA Lys	TTA Leu 185	CTT Leu	CAA Gln	AAT Asn	GTT Val	GCT Ala 190	TTT Phe	AAA Lys	576
AAT Asn	GGG Gly	ACT Thr 195	GTA Val	GTT Val	TTA Leu	AAA Lys	GGT Gly 200	GAT Asp	GTC Val	GTT Val	TTA Leu	AGT Ser 205	GCG Ala	AAC Asn	GG T Gly	624
TTC Phe	TCT Ser 210	CAG Gln	GAT Asp	GCA Ala	AAC Asn	TCT Ser 215	AAG Lys	TTG Leu	ATT Ile	ATG Met	GAT Asp 220	TTA Leu	GGG Gly	ACG Thr	TCG Ser	672
TTG Leu 225	GTT Val	GCA Ala	AAC Asn	ACC Thr	GAA Glu 230	AGT Ser	ATC Ile	GAG Glu	TTA Leu	ACG Thr 235	AAT Asn	TTG Leu	GAA Glu	ATT Ile	AAT Asn 240	720
ATA Ile	GAC Asp	TCT Ser	CTC Leu	AGG Arg 245	AAC Asn	GGG Gly	AAA Lys	AAG Lys	ATA Ile 250	AAA Lys	CTC Leu	AGT Ser	GCT Ala	GCC Ala 255	ACA Thr	768
GCT Ala	CAG Gln	AAA Lys	GAT Asp 260	ATT Ile	CGT Arg	ATA Ile	GAT Asp	CGT Arg 265	CCT Pro	GTT Val	GTA Val	CTG Leu	GCA Ala 270	ATT Ile	AGC Ser	816
GAT	GAG	AGT	TTT	TAT	CAA	ААТ	GGC	TTT	TTG	AAT	GAG	GAC	CAT	TCC	TAT	864

85	
Asp Glu Ser Phe Tyr Gln Asn Gly Phe Leu Asn Glu Asp His Ser Tyr 275 280 285	
GAT GGG ATT CTT GAG TTA GAT GCT GGG AAA GAC ATC GIG ATT TOT GOT ASP Gly Ile Leu Glu Leu Asp Ala Gly Lys Asp Ile Val Ile Ser Ala 290 295 300	912
GAT TCT CGC AGT ATA GAT GCT GTA CAA TCT CCG TAT GGC TAT CAG GGA Asp Ser Arg Ser Ile Asp Ala Val Gln Ser Pro Tyr Gly Tyr Gln Gly 305 310 320	960
	800
TGG GCG AAG CAG AGT TTT AAT CCC ACT GCT GAG CAG GAG GCT CCG TTA 1 Trp Ala Lys Gln Ser Phe Asn Pro Thr Ala Glu Gln Glu Ala Pro Leu 340 345	1056
GTT CCT AAT CTT CTT TGG GGT TCT TTT ATA GAT GTT CGT TCC TTC CAG Val Pro Asn Leu Leu Trp Gly Ser Phe Ile Asp Val Arg Ser Phe Gln 355 360 365	1104
AAT TTT ATA GAG CTA GGT ACT GAA GGT GCT CCT TAC GAA AAG AGA TTT Asn Phe Ile Glu Leu Gly Thr Glu Gly Ala Pro Tyr Glu Lys Arg Phe 370 375 380	1152
TGG GTT GCA GGC ATT TCC AAT GTT TTG CAT AGG AGC GGT CGT GAA AAT Trp Val Ala Gly Ile Ser Asn Val Leu His Arg Ser Gly Arg Glu Asn 395 400	1200
CAA AGG AAA TTC CGT CAT GTG AGT GGA GGT GCT GTA GTA GGT GCT AGC Gln Arg Lys Phe Arg His Val Ser Gly Gly Ala Val Val Gly Ala Ser 405 410 415	1248
ACG AGG ATG CCG GGT GGT GAT ACC TTG TCT CTG GGT TTT GCT CAG CTC Thr Arg Met Pro Gly Gly Asp Thr Leu Ser Leu Gly Phe Ala Gln Leu 420 420 430	1296
TTT GCG CGT GAC AAA GAC TAC TTT ATG AAT ACC AAT TTC GCA AAG ACC Phe Ala Arg Asp Lys Asp Tyr Phe Met Asn Thr Asn Phe Ala Lys Thr 435 440 445	1344
TAC GCA GGA TCT TTA CGT TTG CAG CAC GAT GCT TCC CTA TAC TCT GTG Tyr Ala Gly Ser Leu Arg Leu Gln His Asp Ala Ser Leu Tyr Ser Val 450 450	1392
GTG AGT ATC CTT TTA GGA GAG GGA GGA CTC CGC GAG ATC CTG TTG CCT Val Ser Ile Leu Leu Gly Glu Gly Gly Leu Arg Glu Ile Leu Leu Pro 475 480	1440
TAT GTT TCC AAT ACT CTG CCG TGC TCT TTC TAT GGG CAG CTT AGC TAC Tyr Val Ser Asn Thr Leu Pro Cys Ser Phe Tyr Gly Gln Leu Ser Tyr 485	1488
GGC CAT ACG GAT CAT CGC ATG AAG ACC GAG TCT CTA CGC CCC CCC CCC	1536
GGC CAT ACG GAT CAI CGC AIG AAG AAG SET Leu Pro Pro Pro Pro	

	506					505					510	1		
CCG ACG Pro Thr	515				520		111	GIY	GIY	Tyr 525	GTC Val	TGG Trp	Ala	1584
GGA GAG Gly Glu 530				535			Olu	ASII	540	Ser	Gly	Arg	Gly	1632
TTT TTC Phe Phe 545		!	550				nys	555	GIn	Ala	Val	Tyr	Ser	1680
CGC CAA (Arg Gln)		565				-	570	116	ser	Arg	Asp	Phe	AGT Ser	1728
GAT TCG (Asp Ser F	580					585	110	Leu	GIY	He	Lys 590	TTA Leu	Glu	1776
AAA CGG T Lys Arg F	PHE Ala	GAG C	CAA 7	ΓΑΤ ' Γyr '	TAT Tyr 500	CAT His	GTT Val	GTT Val	Ala	ATG Met '	TAT Tyr	TCT Ser	CCA Pro	1824
GAT GTT Asp Val 610								_						1830

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 610 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Asp Leu Thr Leu Gly Ser Arg Asp Ser Tyr Asn Gly Asp Thr Ser Thr Thr Glu Phe Thr Pro Lys Ala Ala Thr Ser Asp Ala Ser Gly Thr Thr Tyr Ile Leu Asp Gly Asp Val Ser Ile Ser Gln Ala Gly Lys Gln Thr Ser Leu Thr Thr Ser Cys Phe Ser Asn Thr Ala Gly Asn Leu Thr Phe Leu Gly Asn Gly Phe Ser Leu His Phe Asp Asn Ile Ile Ser Ser Thr Val Ala Gly Val Val Val Ser Asn Thr Ala Ala Ser Gly Ile Thr Lys Phe Ser Gly Phe Ser Thr Leu Arg Met Leu Ala Ala Pro Arg Thr Thr

				100					105					110		
	Gly	Lys	Gly 115	Ala	Ile	Lys	Ile	Thr 120	Asp	Gly	Leu	Val	Phe 125	Glu	Ser	Ile
	Gly	Asn 130	Leu	Asp	Pro	Ile	Thr 135	Val	Thr	Gly	Ser	Thr	Ser	Val	Ala	Asp
	Ala 145	Leu	Asn	Ile	Asn	Ser 150	Pro	Asp	Thr	Gly	Asp 155	Asn	Lys	Glu	Tyr	Thr.
	Gly	Thr	Ile	Val	Phe 165	Ser	Gly	Glu	Lys	Leu 170		Glu	Ala	Glu	Ala 175	Lys
	Asp	Glu	Lys	Asn 180	Arg	Thr	Ser	Lys	Leu 185		Gln	Asn	Val	Ala 190	Phe	Lys
	Asn	Gly	Thr 195	Va1	Val	Leu	Lys	Gly 200		Val	Val	Leu	Ser 205	Ala	Asn	Gly
	Phe	Ser 210	Gln	Asp	Ala	Asn	Ser 215	Lys	Leu	Ile	Met	Asp 220	Leu	Gly	Thr	Ser
	Leu 225	Val	Ala	Asn	Thr	Glu 230	Ser	Ile	Glu	Leu	Thr 235		Leu	Glu	Ile	Asn 240
	Ile	Asp	Ser	Leu	Arg 245	Asn	Gly	Lys	Lys	Ile 250	Lys	Leu	Ser	Ala	Ala 255	Thr
				260		Arg			265					270	Ile	
			275			Gln		280					285			
		290				Leu	295					300				
,	305					Asp 310					315					320
					325	Trp				330					335	
				340		Phe			345					350		
			355			Trp		360					365			
		370				Gly	375					380				
	385					Ser 390					395					400
					405	His				410					415	
				420					425					430		
			435			Asp		440					445		_	
		450				Arg	455					460				
	465					Gly 470					475					480
					485	Leu Arg				490					495	
				500		Asp			505					510		
			515			Arg		520					525			
		530					535					540				GIY Ser
	545		J		•	550				_,5	555	0411		, u T.	* } *	560

Claims

- 1. Species specific diagnostic test for identifying infection of a mammal, such as a human, with Chlamydia pneumoniae, said test comprising detecting in a patient or in a patient sample the presence of antibodies against one or more proteins from the outer membrane of Clamydia pneumoniae, said proteins being of a molecular weight of 100.3-89.6 kDa or of 56.1 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins.
- Diagnostic test according to claim 1, wherein the outer membrane protein has the sequence as shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or in SEQ ID NO: 24, or a variant or subsequence thereof.
 - 3. Diagnostic test according to claim 1, wherein the nucleic acid fragment has the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 23, or 3 variant or
- 20 19, SEQ ID NO: 21, or in SEQ ID NO: 23, or a variant or subsequence thereof.
 - 4. Diagnostic test according to claim 3 wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification.
- 5. Diagnostic test according to claim 4, wherein detection of nucleic acid fragments is obtained by using polymerase chain reaction.
 - 6. A nucleic acid fragment derived from Chlamydia pneumoniae comprising the nucleotide sequence SEQ ID NO: 1, SEQ ID NO:
- 30 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19,

SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence

of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned.

- 7. A protein derived from *Chlamydia pneumoniae* having the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof having a sequence similarity of at least 50% and a similar biological function.
- 10 8. Polyclonal monospecific antibody against the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 9. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant

or subsequence thereof.

- 10. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kit comprising antibodies against a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 11. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising a nucleic acid fragment with the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO:

- 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence thereof.
- 12. A composition for immunizing a mammal, such as a human, against Chlamydia pneumoniae, said composition comprising a protein with the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEO ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 10 Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae. 15
- Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24 or a 20 variant or subsequence thereof in an undenatured form, in diagnosis of infection of a mammal, such as a human, with
 - Chlamydia pneumoniae.

15.

- Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 25 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof, for immunizing a mammal, such
- 16. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 30 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a

as a human, against Chlamydia pneumoniae.

variant or subsequence thereof in an undenatured form, for

immunizing a mammal, such as a human, against Chlamydia pneumoniae.

17. Use of a nucleic acid fragment with the nucleotide sequence shown in SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5,

5 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

Fig. 2

Fig. 4

Fig. 6

C. pneumoniae omp4-15 gene clusters

1 > <u>0</u> 0 0 0 0 0 0 0 1 0 0 | O O O O O O O E & O 1 公 F F F F F S S I 图 F ZXZXXZZZZZX 1 [日 7 日 日 日 日 日 日 日 10000000000000 1 NHEHHHOESK T K P L L L D J L A M J I O O H A B O O D Z H A K O 1 1 E E D G O E E Z Z O LESEESEES 1 2 2 3 3 1 1 2 2 3 3 2 3 3 · META · HOHOH · DOZDZZDOVZA I ZOOIIZHEOKI · 🛈 🖽 🖸 O O O O O O O O 1000000000000 IXEAHHHAASSA IDOZOUZHOHZO 1 N N N N N N N N N N N N N N N ADD NO DE DE DE I Z O Z O O O O O Z I A Z - SSRTEPESSESS I Z O O T X X X X X X X X । २० ० ० ० ० ४० व । मिमिमससस्य स्वस्य स्व I D O O O O O Z O F H Z · [] H []]]]]] H $1 \otimes O \otimes O \otimes O \otimes O \otimes A > O$ > Z H W Z J Q H W > > ことれてらみひらまえらら 一中国工众工团中国工》目 ・日丸口口耳は中ですり> HEHEROHOZAH IIIDZKEIOE I HUUUUUU AU A 1112444144 I KKSKKPSFKES PARTIBARA I A A D A O L D A A H 1 0 0 0 0 0 0 0 0 0 0 0 0 0 これロンエのV」の日の I H D X X O X X H Z H Z лепенерналая 1 10000000×0×0 · F > S A S H S Z S A F これでておしなってっと I H Z O O D Z D O D Z Z Z PSOSTHXHZSON 一团辽王王王甲国田王王 1 1 4 S S 1 S T T C S S 1 こしてらなる声してらまな こしなりっしてりょう 1 H H > > > > > > D D H 1 X 0 0 0 0 0 0 0 0 0 0 HARDARAHHA · 4[171717] 0[177 · XITTTTTXTEF I FF H S H S D I D S A F I HEHDZOOHOHH 一下の公公公の・山下の中 コススのススススススコー | W W W W W W | W > O W I Y O E Z H E E Y > O I нагн : < н н н н THEFFFEZOFF 1 HO000040H0000 ロではは、これのでになるこ I O H O Z O I A O A E K IXSUXESEFOXX I A I A A A I A D O D A I PR O S R H H P S R C R R I II I NATI LEAZON NONTO NO NEW HO L O H H H H H H H H H H SSSHSEFFF INFANONNANIE XXXXXXXXXXX HEALTARIER EZZZZZZZ I - 民 X X X P X X X | X X omp12
omp8
omp9
omp11
omp10
omp10
omp15
omp15
omp15 omp12 omp8 omp9 omp11 omp10 omp15 omp15 omp15

Fig. 8A

Fig. 8B

```
132
132
132
132
134
129
138
133
141
- コンコーコンコーエーエ
「コココココロロン」
INAKAHNHNNAN
              I E Z E E O O O O I Z I O
- 444400HX00H
IXXXXXXXIAIH
              14660001010
              IESZEOKKISIK
              HHHHHH-H-H
               A A A A A A A A
  1111112
               তি ০০০০০০ বা ৷ বি
              100000001010
日古出江江江江江江江
               ZZZZZOOIX
 SERSSSSSSEH
               これなり、これのよりの
               1112111111
1 1 1 4 1 1 1 1 1 1 1 1
              . D蛋医医DA医GT . G
 「中国のNNTVTK」A
 HEINERNNENNNN
              T T Y K D H H A H O Y K
ZOZZZZZZZ
| E | X | O | O E R E O
              これの日のひららりひらび
これなかけいかいりょうし
              I SKZSSGA FOECO
 11111111111
              日日日の日日の日日日
               THMTC<<br/>CKTOLL
· 24442424644
              ・コエロエロコロVVVエ
IMANAMARA
              ころすれすられすれび目ら
IOXXXXXXXQQQ
              ロ目よロNYよりもの
NO A D A Z D A A D Z
              IZZHZZHHZZVZ
MZWQWZQQZZZ
ころままよより日QRT
              1日ロエクヨクエロロー
OPZEZEKOUZH
              LKENNONNERI
こりにりょうましょうこ
A A > A H A A A > A S
               DOPKRDANA
 A A DAUAHA A AH
               . O O O O O O O E O E
A MA A A A N M I A
               HOHAHANXXIE
               - KKOKONKO
 1 D 1 D Z 1 E 1 A F E O
               こりひょりょうじょうまん
 POHHIHINAPHI
               . W & & F & F & A O & &
 · > @ @ w @ @ @ @ @ w
 I AUNAAAAAUHU
               POOLXOHXXX
  KHDDDDDDXXK
               РИНИСИНСИН
                KUHUHHZKOD
 HZZHZEWZZZZ
 OUDZOUJUZEJ
               DUFARENCEIUH
               まむ・マ・マママ・ユマ
 ソフィンマン・コーコー
 SHAHKHXHO
               IIIMIHIA
  SOSOSOSESOS
               INNIHAFFNDIN
 OOHJUHKKJKKI
 omp12
omp8
omp5
omp10
omp10
omp15
omp15
omp13
```

22228858840	
22 22 22 22 22 22 17 16 16 16 16 16 16 16 16 16 16 16 16 16	266 261 262 263 263 272 181 168 260
T G T T M S A L F S E N T S S K K G G A I Q T S D A L T I T G N Q G E V S F S D N T S - S D S T G S T R F V A F L G N S S A T G K K G G A I C A T G T V D I T N N T A P T L F S N N I A - E A A S G N T S S I T F T S N S A K 2 Q Q G G A I Y A S G D S V I S E N A G I L S F G N N S A - T T S S L N P N - L T F A K N K A T 0 K G G A I Y S S A A S I S G N T G Q L V F M N N K G - E T G T G T S G D A L F S N N S S S T K G G A I A T T A G A R I A N N T L N S A S F S E N T A - A N N T G T S G D A L F S N N S S S T K G G A I A T T A G A R I A N N T G Y V R F L S N I A - S T S C I K N S A I F G Q N T S S T K G G A I A T T A G A R I A N N T G Y V R F L S N I A - S T S C I K N S A I F G Q N T S S T K G G A I A T T A G A R I A N N L G T L K F N E N K A - V T S C I K N S A I F G Q N T A K N G S C C C C C C C C C C C C C C C C C C	
omplomplomplomplomplomplomplomplomplompl	omp12 omp8 omp5 omp1 omp11 omp10 omp4 omp15 omp7 omp7 omp6 omp7
100 S L N S 100 S L N S 100 S L N S 110 S	28888888888888888888888888888888888888

Fig. 8C

300 300 300 300 300 300 300 501 501 700 700 700 700 700 700 700 700 700 7	<pre></pre>
9101700000	04404400400
X O H F > B F H O > > Y J J J J H J > >	I A A A A A I H A O Z I
DDDEXSE	
F G T H T G Q V I T Q V I	I TP 4 4 4 0 0 Z Z O C Z L A 4 H I
	- KKAKAKKK - KKAKKK - KKAKAKKKKKKKKKKKK
1 2 4 0 0 0 2 4 1 0 0 1	OHXXXXXXHHI
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ZZZZZZZZ
I L L L L L L L L L L L L L L L L L L L	· SSSSSSS ·
1111101041	· [L, [L, [L, [L, [L, L] -] -] [L, [L,]
:	
	1 H H J H H H I H H I I I
	- 10000000001 - 100000000001
111110111	1 1 0 % 1 1 1 0 1 1 1 1
	(D (D (D ~ .

Fig. 8D

omp12 omp8 omp5 omp11 omp11 omp15 omp7 omp7

omp12 omp8 omp5 omp11 omp11 omp15 omp7 omp7

4001 3994 3994 3998 3917 391 262	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
TNRS IDLG TS - A K M T A L R S A A G R A I Y F Y D P I T T G S S T T V T D V T R N A I D L A - S N A K F L N L R A I S G H S I F F Y D P I T A N T A A D S T D T 39 V T R N A I D L A - S N A K F L N L R A T R G N K V I F Y D P I T S S G A T D K 39 V T R N A I Y L G - S S A K I T N L R A A Q G Q S I Y F Y D P I T S S G A T D K 39 V T R N S I N I G S N G K F T E L R A S Q G N T I Y F Y D P I T N H T A A L S D A S D V 38 F R N A I N I G - S T A K W T G L A A S Q G N A I Y F Y D P I T T N D T G A S - D N 41 N S H L L L Q N A K F L K L Q A R A G G H T I Y F Y D P I T T N D T G A S - D N 41 N S H L L L Q N A K F L K L Q A R N G C S I E F Y D P I T S E A D G S T 39 T I H N S I H L Q - S G A Q F K N L R A V S E S G V Y F Y D P I S E S H K I T D L 30 C S C C C C C C C C C C C C C C C C C	A D S A L Q Y T G N I I F T G E K L S E T E A A D S K N L T S K L L Q P V T L S G G T A G S G N T Y E G Y I V F S G E K L S E D E A K V A D N L T S T L K Q P V T L T A G N 44 A G S G N T Y E G Y I V F S G E K L S E B E L K K P D N L K S T F T Q A V E L A A G A A G S N S P L D Y S G T I V F S G E K L S A D E A K A A D N F T S I L K Q P V T L A S G T A G A G A G A L A G A L N P Y Q G T I V F S G E K L S A D E A K A A D N L K S T I Q Q P L T L A S G T A G A L N P Y Q G T I L F S G E T L T A D E L K V A D N L K S F T Q P V S L S G G K A 3 A D N K E Y T G T I L F S G E K L T E A E A K D E K N R T S K L L Q N V A F K N G T S F G C C L D D H E V - C A E N L T S T I L Q D V T L A G G T A S C C C C C C C C C C C C C C C C C C
2	L L L L L L L L L L L L L L L L L L L
omplomplomplomplomplomplomplomplomplompl	omp12 omp8 omp5 omp11 omp11 omp16 omp7 omp7 omp13

Fig. 8E

5000 4444 46000 51404 5140 5140 5140 500 500 このは日日以口とよるここ 1 디디디디디디디디디디디 こせてこくでにくこくにっ 一工で工ゴロコロロにはまし HPHDVCHHH 口のよりののなります。 IZAZAZZZZZAI НННЫМИННН! 1 YEROPENSI IDUADDUMAHI 1 NODPHOUGH I · OOOFOODEOK · LOOXZZZZOZI ITEOMPTONDATI IZEZEZEEEOI INKOOKHUHKOI ・エロュエエコロエン・ IMUNZZNOZKAI 一本中でのままり至れまっ · UUUHSEUUSE! 1 N D D H H H H H H I I NONFORFERO I H H D A D O D O D A I - KEREVHHHH-1 口巴巴巴口巴巴巴巴巴 IZZEWDWZZDDI | **4** H **4** H **4** H **4** H **9** H ı <u>ក្រាក្រាក្រក្</u>រាក្យក្រាល រ 1 1 2 2 2 1 1 1 2 2 2 3 3 1 1 DAKAHHAAAU 1 I KAHILHCHKAII こ正れ区と区とひりましょ PZZZZZZGGI । ଦେ ଦ ଦ ଦ ଦ ଦ ତାଳା ତାଳ । I HEHXEBOOXE I 1000000000000 I COHZODODO I | PULLINDAGOD | こなてなりまりなますこ 10000000000 REERERETE HUEDWNADEN 1 НОНГОГГСНЫ 1 こままよけけけはりますこ I KOXEPUEXED I 1 DOBBOOOBEON 1 I ONED E ON E E ON E I E ON E I E ON E E · I D D D D D D D I I 1 00000000000 IZZDEEXZDODI 1 E E E E O O O O O E X 1 · KXXXQZXXXXI ONONNONNONI 1 4 C H C N N C C X N 1 I HARARARAHI · OXZZXHOZNE · これのかなのなるない」こ IXSTATXSAZKI I QU > U > E A H O F O I HAAHAAAAHI 1 너 그 > 너 그 그 그 그 > 그 1 IBAXEXEDSXX 1 日日 1 日日日日日 1 12222222 TOTALANTANI 1 0 0 0 2 0 0 0 0 0 0 0 ·

<br/ I HECONXOUND I 1111111144; IXXXXXOXXXX · X X X S S S D D X F Z I Пананаланы · KKZKKQZKGO i SSAGIMS CH Z H X X C O H I 1 D W Z O L E O O E O O I

Fig. 8F

00468480868	001971808947
0.00000004040	6644 6634 6634 6634 6634 6634 6634 6634
- AAAOAAAAOH I	1 4 0 2 0 0 0 0 0 0 1 1
HEZNAHOXDKI	一段我事我我父弟犹豫一一
IEXXXXXXXXX	こりひらなすれ思思りここ
INTERNETUZUI	このそろの田田OVT・こ
	1 Q Q Q X Q H Q H Q I I
	I H D D D D D D D D D D D D D D D D D D
	1. O E O O O O O O O O O O O O O O O O O
IBALIAALIAI	NAHADANHA
DELIBERTIAL	14000000000
IKIIBDIDDIIXI	1 HARREHZDE I I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
このママムの中エニ中国・	I EHEEDDEHOLL
33333>333	ここのぎまででまけんでこ
HEDENZOZANI	ことの対策のなりのの方に
こっててくんでなまりこ	
I I OHEAZZEKO I	
1 1303333331	INARENNATUII
	1 NOKKKKKKK
10000000000	
	1 H R S H S H S H S H S H S H S H S H S H
POOOOOOOO	
I DKKKK KKKKI	400000000
HHHHHHHA	ZOO40000
THEND TO THE	INSSESSE
1 X D F B D Z K O S F I	
	INNNARENTHII
	ZZZQZZZZ
HEHDIADHEL	
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
I ELI LECONII OL	1 N D D N F A F D N F I
1111111111111111	100040004001
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 HOOKKKOBBE 1
ことできてはなるこうでし	IRKKKKKKKOKHI
44 C 44 C 0 0 0 0 0 C E	<u> </u>
I HAAAH WAKUU I	
- EPSDHHHHGG- - EHGODEKGDP-	ZZZZZZZZZ
LOBEDZZHOEO	*
	TO O O O O O O N N H I
1111106>061	I E E E E E E O H > 1
· S G H G C P P R P C ·	IXXXXXXXXX
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	IHHHOHHOADXI
OPARADHOOD	XEEEEEE
POGGOOPAOL	ZAFFFFBOFFI
LUDAUCABABA	· PHSTRUS
X 公 公 下 下 下 公 口 耳 耳 一	(EEEEEZEEE)
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1	omp12 omp8 omp5 omp11 omp10 omp16 omp15 omp15
omplomplomplomplomplomplomplomplomplompl	omplomplomplomplomplomplomplomplomplompl
0 0 0 0 0 0	

Fig. 8G

15/21

6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	738 734 732 7433 7433 752 752 752 752 753 753 753 753 753 753 753 753 753 753
	H > W Z Z W F 4 > W
	о м а м в м в м в м в м в м в м в м в м в
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	THE BROHES
E A A Z A E E Z A A I I	жоттти нот;
1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	&
OXZZZZOAOHII	HILLMIOZII
400000000000011 ВОВБЕНОООООКТ	4
	0 1 0 x 0 x 0 0 0 x 1 1
· · · · · · · · · · · · · · · · · · ·	
4144444441	E MO I E O DE E DE LE
I CACOPODOCH	**************************************
	O S O H O S O A C A C A C A C A C A C A C A C A C A
ADAKHDDDDII	F H O X D O O C X O I I
\(\oldo\)	- 1 H D H D A C B B B B B B B B B B B B B B B B B B
ZJKWKHEWDZII	ннннноп>
从民民民民民民民民 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
T T T T T T T T T T T T T T T T T T T	M M M M M M M M M M M M M M M M M M M
H R R R O R R I R H I I	NEARNNE>NN I I
OTENTH NE NO 1 1	8000440000 : :
T	こってススススススススス
1 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	DF D H H M M H M M H I I I I I I I I I I I I
I DDDDDDEDSSII	НОННЕКИНЬЦ І І НОННЕКИНЬЦ І І
	ZZZZZZZZII
	Q A A A D A A B A B A B A B A B A B A B A
NAAANHANDII	HEALIHA COL
4400804401	KEKKKEKKKKII KECCCCCCCIII
104040000H11	
	AGGGGANANII
omp12 omp8 omp5 omp10 omp11 omp15 omp7 omp7 omp7	omp12 omp8 omp5 omp11 omp10 omp15 omp15 omp15 omp14
EO CHO CHO CHO CHO CHO CHO CHO CHO CHO CH	duo duo duo duo duo duo

Fig. 8H

16/21

Fig. 81

17/21

25 88 88 88 87 87 88 87 87 87 87 87 87 87	227 926 926 926 926 939 262 262	25 2 4 4 5 5 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
12 N V E I P I G V T F E R D S K S E K G T Y D L T L M Y I L D A Y R R N P K C Q T T T L R I S G D S W K p S N L A L P I G I R F D K E S D C Q D A T Y N L T L G Y T V D L V R S N P D C T T T L R I S G D S W K p D N L A V P V G I K F E K F S D C N D F S Y D L T L S Y V P D V I R N D P K C T T T L M V S G D S W S N L A V P D V I R N D P G C T T T L M V S G D S W S N T N C S I P V G I R L E K I S E D E K N N F E I S L A N I G D V Y R K N P R S R T S L M V S G A S W T N L S I P V G A K F F F S D C K R G S Y T Y D L S G F F V S D V Y R K N P D C T T A L L I N N T S W K N C S I P V G A K F F F F S D C K R G S Y T Y D L S G F F V S D V Y R N N P Q S T A T L V M S P D S W K D I G U K F E R F S D C K R G S Y T Y D L S G F F V S D V C R S N P K C T T T L L S N Q G S W K D C S I S V P L G I R F E K L A L S Q D V L Y D F S F S Y I P D I F R K D P S C E A A L V I S G D S W L D S C S I S V P D I F R K D P S C E A A L V I S G D S W L D S C S I S V I P D I F R K D P S C E A A L V I S G D S W L D S C S I S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E A A L V I S G D S W L D S C E C E A A L V I S G D S W L D S C E C E A A L V I S G D S C E C E C E A A L V I S C E C E C E C E C E C E C E C E C E C	12 A Y G T N L A R Q G F S V R A A N H F Q V N P H M E I F G Q F A F E V R S S R N Y N T N L G S K F F G T N L A R Q A L V L R A G N H F C F N S N F E V L G Q F V F E V R G S S R N Y N V D L G A K Y A C T S L S R Q A L L V R A G S H Y A F S P M F E V L G Q F V F E V R G S S R I Y N V D L G G R F F G T S L S R Q A L L V R A G N H H A F A S N F E V E S Q F E V E L R G S S R I Y N V D L G G R F I S L C K N L A R Q A F L L R G S H L T L S P H V E L S G E A A Y E L R G S S R S Y N A D L G G R F I R G S R Q A F L L R G S N N Y V Y N S N C E L F G H Y A M E L R G S S R N Y N V D V G T K L S T K G S N L A R Q A G I V Q A S G F R S L G A A B E L F G N F G F E W R G S S R N Y N V D A G S K I A K G S N L A R Q S G T G R R Y H F N D Y T E L L C R G S I E C R P H A R N Y N I N C G S K F I I C R A A R E L C R G S I E C R P H A R N Y N I N C G S K F I I C R G S R F I C C R G S I E C R P H A R N Y N I N C G S K F I I C C R G S I E C R P H A R N Y N I N C G S K F I C C C C C C C C C C C C C C C C C C	12 C F
omp12 omp8 omp5 omp1 omp11 omp10 omp15 omp15 omp13	omp12 omp8 omp5 omp1 omp11 omp16 omp15 omp7 omp7	omp12 omp8 omp5 omp1 omp10 omp10 omp15 omp7 omp6

Fig. 9

Immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

Fig. 11

				,
				• .
		·		
	·			
				1

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

TO THE PRINCIPLE OF THE	IED U	INDER THE PATENT COOPERATION TREATY (PCT)
[51] International Patent Classification 6: C12N 15/31, G01N 33/569, 33/68, C12Q 1/68, C07K 14/295, 16/12, A61K 39/118, 31/70	A3	(11) International Publication Number: WO 98/58953 (43) International Publication Date: 30 December 1998 (30.12.98)
(21) International Application Number: PCT/DK (22) International Filing Date: 19 June 1998 ((30) Priority Data: 0744/97 23 June 1997 (23.06.97) (71)(72) Applicants and Inventors: BIRKELUND [DK/DK]; Søtoften 26, DK-8250 Egå (DK) TIANSEN, Gunna [DK/DK]; Søtoften 26, DK-	(19.06.9 , Sve , CHR	BA, BB, BG, BR, BT, CA, CH, CH, CA, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH
(72) Inventors; and (75) Inventors/Applicants (for US only): KNUDSEI [DK/DK]; Lundingsgade 33, Lejlighed 407, Århus C (DK). MADSEN, Anna-Sofie [DK/DK] erred 51 b, 1.tv., DK-6200 Aabenraa (DK). MY [DK/DK]; Falstersgade 5, 3.tv., DK-8000 Århus (74) Agent: PLOUGMANN, VINGTOFT & PARTN Sankt Annæ Plads 11, P.O. Box 3007, DK-10 hagen K (DK).	(); Ran (GIND, s C (DI	With international search report. (88) Date of publication of the international search report: 18 March 1999 (18.03.9)

(54) Title: SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

(57) Abstract

The invention relates to the identification of members of a gene family from the human respiratory pathogen Chlamydia pneumoniae, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by C. pneumoniae, in pathology, in epidemiology, and as vaccine components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CN CU CZ DE DK EE	Albania Armenia Austria Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP KZ LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Republic of Korea Republic of Korea Razakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PI PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
---	--	---	---	---	---	--	--

Inte onal Application No PCT/DK 98/00266

				!	PC1/UK 90/0	0200
CLASSIFIC	CATION OF SUBJECT C12N15/31 C07K16/12	MATTER G01N33/569 A61K39/118	G01N33/68 A61K31/70	C1201/68	C07K14	/295
				and IPC		
		ssification (IPC) or to both	national classification	and IFO		
. FIELDS SE	EARCHED	classification system follo	wed by classification sy	mbols)		
Inimum doci PC 6	C07K	idssification by ordinary	•			
			to at that cush of	tocuments are inclu	ided in the fields sear	rched
Documentatio	on searched other than	minimum documentation	to the extent that such	opedine no are man		1
			of data base a	nd where practical	, search terms used)	
Electronic dal	ta base consulted durin	g the international searc	n (name of data base a	na, who pre-		
C. DOCUME	NTS CONSIDERED TO	BE RELEVANT	in at the releva	nt nassages		Relevant to claim No.
Category *	Citation of document,	with indication, where a	opropriate, of the releva	passages		
		MELGOSA ET AL	. "Outer m	embrane		1
X	M. PEREZ	roteins of Ch	lamydia pneu	moniae."		
	I CENC MICD	<u> </u>	FK).			
	vol. 112.	no. 2, 1 Sep	tember 1993,	pages		
	199-204,	XP002057607			-	
	AMSTERDAM	the applicati	on			
	see the w	hole document	;			
				/		
			,			
						-
						-
	<u> </u>					od in annex
X Fu	urther documents are lis	sted in the continuation of	of box C.		mily members are liste	
° Special	categories of cited doc	uments :	- —	"T" later document	published after the in e and not in conflict w	ntemational filing date with the application but
"A" docu	ument defining the gene	ral state of the art which	is not	cited to under	rstand the principle of	theory andonymy
con	reidered to be of barticu	lar relevance ned on or after the interr		"X" document of p	articular relevance; the naidered novel or can	
filin	ng date	doubte on priority claim	(s) or	involve an in	ventive step when the	ne claimed invention
whi	ich is cited to establish	ason (as specified)		cannot be co		more other such docu-
"O" doc	ument referring to an or	ral disclosure, use, exhib	oition or	ments, such	combination being of	ovious to a person skilled
oth	ner means 	o the international filing		in the art. "&" document me	mber of the same pat	ent family
l lat	er than the priority date	Claimed			ing of the internationa	
Date of	the actual completion o	f the international search		1		
+	30 December	1998			1/1999	
Name		he ISA		Authorized o	officer	
ivame a	European Pate	ent Office, P.D. 3010 Fai Dijewijk				
1	NL - 2280 AV Tel. (+31-70) (Fax: (+31-70)	340-2040, IX. 31 55 I ep	o nl,	Nooi	ij, F 	
ì	, w. (***********************************			1		

Inte .onal Application No PCT/DK 98/00266

		PCT/DK 98/	00200
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		·
Category 3	Citation of document, with indication, where appropriate, of the relevant passages	\F	lelevant to claim No.
X	L. CAMPBELL ET AL.: "Serological response to Chlamydia pneumoniae infection." JOURNAL OF CLINICAL MICROBIOLOGY, vol. 28, no. 6, June 1990, pages 1261-1264, XP002057608 WASHINGTON, DC, USA see abstract see table 1 see page 1263, right-hand column, line 63 - page 1264, left-hand column, line 5	,	1
X	L. CAMPBELL ET AL.: "Structural and antigenic analysis of Chlamydia pneumoniae." INFECTION AND IMMUNITY, vol. 58, no. 1, January 1990, pages 93-97, XP000083693 Washington, DC, USA see abstract		1
X	Y. KANAMOTO ET AL.: "Antigenic characterization of Chlamydia pneumoniae isolated in Hiroshima, Japan." MICROBIOLOGY AND IMMUNOLOGY, vol. 37, no. 6, 1993, pages 495-498, XP002088968 Tokyo, Japan see abstract		1
x	G. CHRISTIANSEN ET AL.: "Molecular biology of the Chlamydiae pneumoniae surface." SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES, vol. Supplementum 104, 1997, pages 5-10, XP002088986 Stockholm, Sweden see page 8, right-hand column, line 36 - page 9, left-hand column, line 8		1
A	S. HALME ET AL.: "Characterization of Chlamydia pneumoniae antigens using human T cell clones." SCANDINAVIAN JOURNAL OF IMMUNOLOGY, vol. 45, no. 4, April 1997, pages 378-384, XP002057609 OXFORD, GB see abstract see page 381, right-hand column, line 3 - line 11		1
A	EP 0 699 688 A (HITACHI CHEMICAL CO., LTD.) 6 March 1996 see examples see claims		10

Ir Irnational application No.

PCT/DK 98/00266

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet .
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention tirst mentioned in the claims: it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International Application No. PCT/ DK 98/00266

FURTHER IN	FORMATION	CONTINUED FROM	DCT/ISA/	210

Although claims 1-3 and 13 and 14 (all partially, as far as an in vivo method is concerned) are directed to a diagnostic method practised on the human/animal body, and although claims 15-17 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

ş{(* * 1

...formation on patent family members

Inter onal Application No PCT/DK 98/00266

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 699688 A	06-03-1996	JP 8041099 A JP 8038192 A JP 8127599 A JP 8333397 A AU 692889 B AU 2831395 A CN 1133192 A	13-02-1996 13-02-1996 21-05-1996 17-12-1996 18-06-1998 04-04-1996 16-10-1996

- 1