

物理化学实验报告

题目: 铂电极表面的电化学反应

姓	名:	王宇哲			
学	号:	1800011828			
组	别:	11组			
实验	日期:	2020.11.18			
室	温:	291.35 K			
大气压强:		100.72 kPa			

摘 要 本实验使用三电极电解池研究铂电极表面的电化学反应,用 N_2 饱和的 0.05 M 硫酸对电极系统进行活化,测定了扫描速度为 0.5、0.2 和 0.1 V·s⁻¹ 时的 CV 曲线,对 CV 曲线进行积分,得到铂电极电化学活性面积 S=0.016 cm²。测定了不同搅拌速度下铂电极表面氧还原反应的 CV 曲线,读出氧气的起始还原电位 0.57 V。测定铂电极表面甲醇氧化反应的 CV 曲线,读出甲醇的起始氧化电位 0.06 V。绘制了直接甲醇燃料电池的 U-P 曲线,工作电压为 0.2 V 时达到最大输出功率 3.5×10^{-7} W。

关键词 循环伏安法;直接甲醇燃料电池;电化学活性面积;电极极化

1 引言

略

2 实验部分

2.1 仪器和药品

2.1.1 仪器

三电极电解池,工作电极 (W.E.) 为铂圆盘电极,辅助电极 (C.E.) 采用铂片电极,参比电极 (R.E.) 使用双盐桥饱和甘汞电极。

CHI 电化学工作站,磁力搅拌恒温槽,温度计,氧气钢瓶,氮气钢瓶。

2.1.2 试剂

电解质: 0.05 M 硫酸水溶液, 0.1 M 硫酸水溶液, 0.1 M 甲醇水溶液。去离子水。

2.2 实验内容1

2.2.1 电极的清洗及组装

用去离子水清洗电极系统和电解池,向参比电极的二次盐桥与电解池中加入适量 0.05 M 硫酸溶液。

将三电极电解池与 CHI 电化学工作站相连:工作电极铂圆盘电极与绿线相连,辅助电极铂片电极与红线相连,参比电极双盐桥饱和甘汞电极与白线相连。通入 N_2 赶走电解质溶液中的残余 O_2 直至饱和。

2.2.2 0.05 M 硫酸溶液中的测试

调整电位窗口,使得在电位窗口内水不发生电解,同时包含所要研究的电化学信息,确定电位窗口为 $-0.28 \sim 1.15$ V。在确定的电位窗口内用 CV 法活化电极,以 0.5 V·s⁻¹ 的扫速扫描 500 个周期,观察 CV 曲线形状基本保持不变后停止活化。

在 N_2 饱和下测量 CV,测定不同扫描速度 $0.5~\rm V\cdot s^{-1}$ 、 $0.2~\rm V\cdot s^{-1}$ 、 $0.1~\rm V\cdot s^{-1}$ 下的 CV 曲线。

2.2.3 铂电极表面的氧还原反应

向电解池内通入 O_2 至饱和,设定扫描速度为 $0.1~V\cdot s^{-1}$,考察不同搅拌速度对氧还原反应的影响,分别测定快速搅拌(通气并开搅拌)、低速搅拌(停搅拌仅通气)、电解质静止(停搅拌不通气)条件下的 CV 曲线。

2.2.4 铂电极表面的甲醇电化学氧化反应

将 $0.1\,$ M 硫酸水溶液与 $0.1\,$ M 甲醇水溶液等体积混合加入电解池,通入 N_2 排除溶液中残余的空气,设定扫描速度为 $0.1\,$ V·s⁻¹,测定 CV 曲线。

2.2.5 清洁电解池和电极

用去离子水清洗电解池和电极,测量 N_2 氛围下 $0.05\,$ M 硫酸溶液中的 CV 曲线,与实验开始时相同条件测量的曲线一致后,将实验仪器复原到初始状态。

3 数据与结果

3.1 实验数据记录及处理

3.1.1 0.05 M 硫酸溶液中的测试

测定不同扫描速度下的 CV 曲线,为便于观察仅示出第 $9 \sim 10$ 个 segment,结果如图 **1** 所示,图中 Empty05(红色曲线)、Empty02(蓝色曲线)、Empty01(棕色曲线)分别为 $0.5~\rm V\cdot s^{-1}$ 、 $0.2~\rm V\cdot s^{-1}$ 、 $0.1~\rm V\cdot s^{-1}$ 下的 CV 曲线。

Fig. 1 CV curve under different scanning speed

从图 1 可以看出,不同扫描速度下,峰电位位置基本不变,但扫描速度越大峰电流越大,这与循环伏安法的原理是相符的。根据 Randles-Ševčík 方程,峰电流 i_p 满足

$$i_p = 0.4463nFAC\sqrt{\frac{nFvD}{RT}} \propto \sqrt{v}$$

v 为扫描速度。因此,峰电流 i_p 随扫描速度 v 的增大而增大,这与观察到的实验现象一致。

3.1.2 铂电极表面的氧还原反应

测定不同搅拌速度下氧还原反应的 CV 曲线,为便于观察仅示出 1 个 segment (即为线性扫描曲线 LSV),结果如图 2 所示,图中 O2a (棕色曲线)、O2b (红色曲线)、O2c (蓝色曲线)分别为快速搅拌、低速搅拌、电解质静止下的 LSV 曲线。

Fig. 2 LSV curve of oxygen reduction reaction under different stirring speed

从图 2 可以看出,不同搅拌速度下氧还原反应的 LSV 曲线走势大致相同,对于不涉及氧还原反应的部分 (电势高于 ~ 0.4 V),不同搅拌速度下的 LSV 曲线基本重合;而对于电势较低的氧还原电势区 (电势低于 ~ 0.4 V),搅拌越剧烈,氧还原的峰电流 i_p 越大,并且 LSV 曲线的波动越显著;这是由于在搅拌速度较快时,物质传输速度快,铂电极附近消耗的 O_2 和 O_3 H+ 能得到及时补充,浓度更大,因此氧还原的峰电流 O_3 和 O_4 和 O_5 和

对比扫描速度为 $0.1~\rm V\cdot s^{-1}$ 、 N_2 饱和的硫酸溶液中铂电极的 CV 曲线和扫描速度为 $0.1~\rm V\cdot s^{-1}$ 、电解质静止、 O_2 饱和的硫酸溶液中氧还原反应的 CV 曲线,为便于观察仅示出 第 $9\sim 10$ 个 segment,如图 3 所示,图中 Empty01(红色曲线)、O2 full(蓝色曲线)分别为 氮气饱和与氧气饱和的硫酸溶液中的 CV 曲线。

根据图 3,读出电势升高过程中含氧物种吸附氧化的起始氧化电位为 0.66 V,电势降低过程中氧气的起始还原电位为 0.57 V。故若以起始还原电位为基准,氧化过程中氧的过电势

$$\eta_{\rm O} = (0.66 - 0.57) \text{ V} = 0.11 \text{ V}$$

Fig. 3 CV curve in sulfuric acid solution saturated with nitrogen and oxygen

推测该过电势 η_0 的形成是由于含氧物种吸附氧化过程中,氧气在铂电极表面析出的电化学 反应迟缓,造成了电化学极化,从而导致电势升高和电势降低过程中氧气的起始氧化电位 和起始还原电位不相等。

3.1.3 铂电极表面的甲醇电化学氧化反应

测定铂电极表面甲醇电化学氧化反应的 CV 曲线,为便于观察仅示出第 $9\sim10$ 个 segment,结果如图 **4** 所示,图中 MeOH(红色曲线)、Empty01(蓝色曲线)分别为硫酸溶液中铂电极表面甲醇电化学氧化与氮气饱和的 CV 曲线。

Fig. 4 CV curve of methanol oxidation and nitrogen saturation in sulfuric acid solution

根据图 4,读出甲醇的起始氧化电位为 0.06 V。

3.2 数据处理结果与分析

3.2.1 铂电极的电化学活性面积

利用氮气饱和的硫酸溶液中铂电极的 CV 曲线中氢原子脱附峰的电量求算铂电极的电化学活性面积。取扫描速度为 $0.1~V\cdot s^{-1}$ 下的 CV 曲线第 9~0 segment 的实验数据,根据扫描速度,将原始数据的横坐标电势 φ 换算成时间 t,以双电层电位作为基线,使用 Origin 对氢原子脱附峰峰面积进行积分,得到氢原子脱附峰的电量,结果如图 5~6 所示,图中红色直线即为双电层电位基线,Area 为积分面积,FWHM 为半峰宽。

Fig. 5 H desorption peak electricity calculation by integrating the CV curve of Pt electrode

根据图 5,读出铂电极表面单层氢原子脱附的电量

$$q = 3.42 \times 10^{-6} \text{ C}$$

查阅资料¹ 知多晶 Pt 表面满单层氢脱附的电量为 $0.21~\text{mC}\cdot\text{m}^{-2}$,采用该数据进行计算,则实验使用的铂电极电化学活性面积

$$S = \frac{3.42 \times 10^{-6} \text{ C}}{0.21 \text{ mC} \cdot \text{cm}^{-2}} = 1.6 \times 10^{-2} \text{ cm}^2 = 0.016 \text{ cm}^2$$

3.2.2 直接甲醇燃料电池输出电压-输出功率曲线

设定扫描速度为 $0.1~\rm V\cdot s^{-1}$,以 N_2 饱和的硫酸溶液中铂电极的 CV 曲线第 $10~\rm CV$ 的实验数据为背景,取电解质静止、 O_2 饱和的硫酸溶液中铂电极的 CV 曲线第 $10~\rm CV$ 的实验数据,扣除背景后,作为直接甲醇燃料电池 Pt 电极阴极 O_2 还原的 $\varphi-i$ 工作曲线;以 N_2 饱和的硫酸溶液中铂电极的 CV 曲线第 $9~\rm CV$ 由线第 $9~\rm CV$ 的实验数据为背景,取硫酸溶液中铂电极表面 MeOH 电化学氧化反应的 CV 曲线第 $9~\rm CV$ 的实验数据,扣除背景后,作为直接甲醇燃料电池 Pt 电极阳极 MeOH 氧化的 $\varphi-i$ 工作曲线。两条 $\varphi-i$ 曲线如图 $6~\rm CV$ 所示。

Fig. 6 $\varphi-i$ working curve of anode and cathode of direct methanol fuel cell

在直接甲醇燃料电池中,在一定的工作电流 i 下,阳极(负极,甲醇氧化)电势 φ_a 低于阴极(正极,氧气还原)电势 φ_c 。在图 $\mathbf{6}$ 中选取 i 相同时 $\varphi_a < \varphi_c$ 的部分,作一组平行于 φ 轴的直线与两条曲线相交,读取交点坐标对应的电势 φ_a 、 φ_c ,计算两极电势差

$$U = \varphi_c - \varphi_a$$

即为直接甲醇燃料电池的输出电压, 根据

$$P = Ui$$

计算直接甲醇燃料电池的输出功率 P。以上各项数据示于表 1。

表 1 直接甲醇燃料电池的两极电势、输出电压和输出功率

Table 1 Polar potential, output voltage and output power of direct methanol fuel cell

$i/10^{-6}$ A	$\varphi_a/{ m V}$	$\varphi_c/{ m V}$	U/V	$P/10^{-6} \ { m W}$
0.01	0.064	0.682	0.618	0.006
0.50	0.156	0.501	0.345	0.173
1.00	0.212	0.481	0.269	0.269
1.50	0.253	0.471	0.218	0.327
2.00	0.288	0.461	0.173	0.346
2.50	0.320	0.454	0.134	0.335
3.00	0.344	0.449	0.105	0.315
3.50	0.366	0.442	0.076	0.266
4.00	0.381	0.438	0.057	0.228
4.50	0.396	0.432	0.036	0.162
5.00	0.407	0.427	0.020	0.100
5.30	0.414	0.424	0.010	0.053
5.50	0.418	0.422	0.004	0.022
5.58	0.419	0.421	0.002	0.011

根据表 1 数据,作出直接甲醇燃料电池的输出电压 U-输出功率 P 曲线,如图 7 所示。

图 7 直接甲醇燃料电池 U-P 曲线

Fig. 7 U-P curve of direct methanol fuel cell

根据图 7 可以看出,直接甲醇燃料电池的输出功率 P 随输出电压 U 的增大而先增大后减小, $U\approx 0.2~\rm V$ 时输出功率达最大值, $P_{max}\approx 3.5\times 10^{-7}~\rm W$ 。

4 讨论与结论

4.1 实验讨论

4.1.1 测定铂电极电化学活性面积的误差分析

利用氮气饱和的硫酸溶液中铂电极的 CV 曲线求算铂电极电化学活性面积时,可能的误差来源分析如下。

第一,在实际选择的电位窗口内,在进行循环扫描的过程中,氢的吸附和脱附过程可能进行不完全,由于选择的最低电位仍然太高,氢尚未充分吸附到铂电极表面时,扫描已经反向,开始脱附过程,导致氢原子未能充分占据铂电极表面的全部活性位点,测算的铂电极电化学活性面积偏小。

第二,由于电极极化,氢原子脱附的实际电量与根据 CV 曲线测算的电量并不严格相等,有一部分电子转移过程中的电量损耗, CV 曲线积分得到的电量大于实际氢原子脱附的电量,导致测算的铂电极电化学活性面积偏大。

以上两个原因可能导致铂电极电化学活性面积的测定不够准确。

4.1.2 直接甲醇燃料电池 U-P 曲线的误差分析

根据铂电极表面氧还原反应和甲醇电化学氧化反应的 CV 曲线绘制直接甲醇燃料电池的 U-P 工作曲线时,可能的误差来源分析如下。

甲醇电化学氧化的 CV 曲线测定不够准确,根据图 4 可以看出,甲醇氧化的双电层区有一定程度的上抬,在氢区与 N_2 的曲线不重合,导致在扣除背景时出现一定的偏差,从而导致甲醇氧化的 CV 曲线不够准确。

4.1.3 实验改进

在实际实验中,需要仔细调节所选择的电位窗口,可以在不出现水的还原峰的情况下尽可能取较低的最低电位,从而能够减小测定铂电极电化学活性面积的实验误差。

4.2 实验结论

本实验使用三电极电解池研究铂圆盘电极表面的电化学反应,调整合适的电位窗口,用 N₂ 饱和的 0.05 M 硫酸对电极系统进行活化,测定了扫描速度为 0.5、0.2 和 0.1 V·s⁻¹ 时的 CV 曲线,对比三条曲线,得到了峰电流随扫描速度变大而变大的结论。对 CV 曲线进行积分,得到铂电极表面单层氢原子吸附的电量 $q=3.42\times10^{-6}$ C,铂电极电化学活性面积 S=0.016 cm²。测定了不同搅拌速度下铂电极表面氧还原反应的 CV 曲线,分析了造成曲线形态不同的原因,读出氧气的起始还原电位 0.57 V。测定铂电极表面甲醇氧化反应的 CV 曲线,读出甲醇的起始氧化电位 0.06 V。根据铂电极表面氧还原反应和甲醇电化学氧化反应的 CV 曲线,绘制了直接甲醇燃料电池的 U-P 工作曲线,从曲线中读出工作电压

为 $0.2~\mathrm{V}$ 时,达到最大输出功率 $3.5\times10^{-7}~\mathrm{W}$ 。

参考文献

[1] 北京大学化学与分子工程学院物理化学实验教学组,物理化学实验;2020.