Putnam practice – Sept 27 2012

By popular request, we will spend a little time today on Number Theory.

- 1. How many positive integers n are there such that n is an exact divisor of at least one of the numbers 10^{40} and 20^{30} ?
- 2. Do there exist one million consecutive integers, each of which is divisible by a perfect square (larger than 1)?
- 3. Show that if p is an odd prime, and x = ((p-1)/2)!, then $x^2 \equiv \pm 1 \mod p$.
- 4. For each integer ≥ 0 , let $S(n) = n m^2$, where m is the greatest integer with $m^2 \leq n$. Define a sequence $(a_k)_{k=0}^{\infty}$ by $a_0 = A$ and $a_{k+1} = a_k + S(a_k)$ for $k \geq 0$. For what positive integers A is this sequence eventually constant?
- 5. Suppose n is a positive integer. How many ordered pairs (x, y) of positive integers are there with

$$\frac{xy}{x+y} = n$$