Wireless Chord Creator for Guitars with Pick-ups

By

Edward Michael L. Abad Karen B. Cornejo Rachelle G. Santos

A Design Report Submitted to the School of Electrical Engineering, Electronics and Communications Engineering, and Computer Engineering in Partial Fulfilment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapúa Institute of Technology November 2008

Approval Sheet

Mapúa Institute of Technology School of EE-ECE-CoE

This is to certify that we have supervised the preparation of and read the design report prepared by **Edward Michael L. Abad, Karen B. Cornejo** and **Rachelle G. Santos** entitled **Wireless Chord Creator for Guitars with Pick-Ups** and that the said report has been submitted for final examination by the Oral Examination Committee.

Prof. Susana T. Alabastro

Reader

Engr. Cyrel C. Ontimare

Design Adviser

As members of the Oral Examination Committee, we certify that we have examined this design report, presented before the committee on **November 24**, **2008**, and hereby recommended that it be accepted as fulfilment of the design requirement for the degree in **Bachelor of Science in Computer Engineering**.

Engr. Mary Ann Latina

Panel Member

Engr. Vic Dennis Chua Panel Member

Engr. Mary Jane Quinit

Chairman

This design report is hereby approved and accepted by the School of Electrical Engineering, Electronics and Communications Engineering, and Computer Engineering as fulfilment of the design requirement for the degree in **Bachelor of Science in Computer Engineering.**

Dr. Felicito S. Caluyo

Dean, School of EE-ECE-CoE

ACKNOWLEDGEMENT

We, the designers, would like to thank our parents for the support that they

have given us in building the design that we have made; all our friends who

willingly participated in testing our design effectively; Engr. Cyrel C. Ontimare

who has been patient in giving us lectures and recommendations in the making

of the design; Prof. Benigno Agapito Jr. who help us in fixing the format for our

documentation; Prof. Susana T. Alabastro who patiently guided us in

constructing our paragraphs and checking the grammar of our documents; and

most especially God, who gave us the strength and patience in constructing our

design and our documentation.

Edward Michael L. Abad

Karen B. Cornejo

Rachelle G. Santos

iii

TABLE OF CONTENTS

TITLE PAGE		i
APPROVAL S	HEET	ii
ACKNOWLED	OGEMENT	iii
TABLE OF CO	ONTENTS	iv
LIST OF TAB	LES	vi
LIST OF FIG	JRES	vii
ABSTRACT		vii
Chapter 1: D	ESIGN BACKGROUND AND INTRODUCTION	1
b. c. d. e. f.	The Design setting or context or frame of reference Statement of the Problem The Objective of the Design The Significance of the Design The Conceptual Framework The Scope and Delimitation Definition of Terms	1 2 2 2 3 5 7
Chapter 2: R	EVIEW OF RELATED LITERATURE AND RELATED STUDIES	11
Chapter 3: D	ESIGN METHODOLOGY AND PROCEDURES	17
	Design Methodology Design Procedures a. Hardware Design 1. Block Diagram 2. Schematic Diagram 3. List of Materials Hardware Components b. Software Design Software Components System Flowchart C. Prototyne Development	17 17 20 20 21 25 28 28 29

Chapter 4: TESTING, PRESENTATION, AND INTERPRETATION OF DATA	32
Testing the Pre-Set Frequency and LED Testing the Pre-Set Frequency and Guitar with pick-up Testing the Expected Result to Actual Result in the	32 34
LCD screen	36
Testing the range covered between the Receiver and Transmitter	40
Chapter 5: CONCLUSION AND RECOMMENDATIONS	42
Conclusion Recommendation	42 43
BIBLIOGRAPHY	44
Appendix A Material Listings and Price Lists Appendix B Chord Reference Appendix C Chords and its corresponding Notes Appendix D Data Sheet for LM 567 IC Tone Decoder Appendix E Data Sheet for PIC16F877 Microcontroller IC Appendix F Data Sheet for Phase—Locked Loop Appendix G Data Sheet for LCD Module Appendix H User's Manual Appendix I Source Code	46 49 58 67 69 71 73 75

LIST OF TABLES

Table 3.1 Musical Note Frequency Table	18
Table 3.2 List of Materials	25
Table 4.1 Function Generator to PLL Calibration	33
Table 4.2 Guitar with pick-up to PLL Calibration	35
Table 4.3 Guitar with pick-up to LCD displaying the Expected Chord	38
Table 4.4 Range of Receiver and Transmitter	41

LIST OF FIGURES

Figure 1.1	Conceptual Framework	4
Figure 2.1	XDS95	13
Figure 2.2	Screenshot of "Chord Play"	14
Figure 2.3	S440 Tuner	15
Figure 3.1	System Block Diagram	20
Figure 3.2	Schematic Diagram	21
Figure 3.2.1	Schematic Diagram for Octave 1	22
Figure 3.2.2	Schematic Diagram for Octave 2	23
Figure 3.2.3	Schematic Diagram for Octave 3	24
Figure 3.3	PCB Layout for Microcontroller	26
Figure 3.4	PCB Layout for PLL Circuit	26
Figure 3.5	System Flowchart	29

ABSTRACT

Wireless Chord Creator using Pick-ups is a portable device that is used to convert notes into chords and display them afterwards. This design is used by guitarists to easily recognize the chords that they have performed. In order for the gadget to work a phase lock loop (PLL) and a PIC microcontroller to display the notes and its equivalent chord are used. The system uses RF through Wireless FM Transmitter and Receiver since it is designed to be wireless for the convenience of the user.

Keywords: PIC, notes, chord, cord, octave, guitar, pick-up, tune, strum, pluck, resonance, fret

Chapter 1

DESIGN BACKGROUND AND INTRODUCTION

a. The Design setting or context or frame of reference

Chords are the combination of notes that make up a distinguishing sound or tune. In most cases, guitarists whether beginners or professionals make up chords that are hard to explain. There are circumstances when they may have forgotten or cannot explain what they are called because they have just made up these chords accidentally. In order for others to understand what chord is, the guitarist who only made up that chord tries to identify it note by note, but by doing so, consumes much time.

Guitar chords are usually published in magazines, songbooks, and even the internet. Other formation of chords is not included in these resources; thus giving the guitarist the freedom to express each chord in his/her own way or technique.

When playing the guitar with friends or band-mates, the guitarist might be asked about the chord play. Since the guitarist cannot explain his/her own shape of chords, he/she must go into details for others to understand the chord. There is a need for a device or gadget that will help solve this problem.

b. Statement of the Problem

Since chords are essential to musicians, it is important to understand easily how chords are made. Guitarists have a tendency to make up chords that sounds like the chord they want to produce but with a different "feel" into it, thus making it hard for them to tell what chord that is. With this gadget, the combination of notes pressed on the guitar fretboard that is plucked or even strummed will be given a clear definition of a chord.

c. The Objective of the Design

The group aims to create a device that will help guitar players remember the chord they are playing as well as help boost their creativity in making chords. They also considered the following to be able to implement the specified gadget:

- 1. To be able to interface an RF to the Wireless Chord Creator for it to work at a distance.
- 2. To be able to convert each combination of notes that is plucked or strummed on the guitar and output it as a chord on a display.
- 3. To be able to make the design easy to use.

d. The Significance of the Design

The importance of this study is to provide guitarists or guitar players a guide to the chords they are playing, giving them the idea that the notes they chose is referenced in a real chord. This will benefit guitar players when they are teaching others or even practicing by themselves or with their band due to the ease of knowing the chords they play. It will also lessen the amount of time

spent in going into details when explaining a simple chord. This can improve the creativity of a person by enabling him/her to practice each combination of notes that leads into playing a chord.

It will help band-mates as well as friends by giving them the idea what chords are used in the song being played. Instead of asking what chords are being played, they will just follow the output sent by the guitar. They may even use a different chord shape that they like. This will be a necessity for guitar players who forget chords. They will just follow the lead of the guitarist and refer to the output the gadget will produce. They can try to make-up their own chord.

e. The Conceptual Framework

In order to construct the design, the group talked about certain ideas related to this study. After the brainstorming session, each member agreed on one thought which resulted in one concept. Figure 1.1 illustrates the flow on which the device will work. It covers the three major parts such as the Input, Process and Output. It is a brief overview of the features of the device.

Figure 1.1: Conceptual Framework

Concept Model

Using the concept model found on Figure 1.1, the design shows that when a note or a combination of notes is strummed or plucked, it will be received by the guitar pick-up. Before plucking or strumming the strings, the switch should be set first to have ample time to capture the notes. The signal then travels to the device PLL (Phase Locked-Loop) which process the audible signal in an absent or present state like a digital signal either as 0 or 1. The process of deciphering the chord by means of the combination of signals (notes) will take place in the microcontroller and will output a signal that is sent to the LCD display, which is not attached to the gadget. It can also be placed at a distance estimated to be within a typical room size for the user to see it from afar. The LCD with the main board can be attached to the guitar itself or placed at a certain distance not greater than 10m for other users to see the chords being

played. The LCD then shows the output of the notes with the chords the user has just played.

f. The Scope and Delimitation

The device covers and delimits to the following:

Scope

- 1. The device will use RF technology.
- 2. It can be easily attached or un-attached to a guitar.
- 3. The output will be displayed on a LCD screen.
- 4. The gadget will have two separate parts; one part is for the display (LCD) as well as the main board for the processing of signals, the other part is for the output of the guitar that will send the signal to the main circuit.
- 5. The amplifier connected to the transmitter has an added slot wherein you can connect a microphone cable on one end and the other end to an amplifier system if the user wishes to.
- 6. A push-button switch is used to trigger the start of processing of the system design.
- 7. It will use the PLL (Phase Locked-Loop) principle.

Delimitation

- 1. It can only be used for a guitar with a guitar pick-up.
- 2. The design cannot show the positioning of notes to be pressed as a chord is played.

- 3. It cannot be submerged in water or any form of liquid.
- 4. It is more accurate if the guitar and strings are in good working condition.
- 5. The guitar should be in standard tuning to have better results.
- 6. The circuit only covers 3 octaves from 110 Hz (A Note) to 830.6094 Hz (G# Note).
- Chords created are only the common chords used; Major, Minor,
 Suspended, Seventh, Major Seventh, Minor Seventh, Diminished,
 and Augmented.
- 8. It is battery operated.
- 9. Its wireless capability is up to a maximum of 10 meters.
- 10. The main board is connected to the LCD screen by means of a cable of 2 meters.
- 11. The transmitter must be set to 107.1 MHz since it is the pre-set default frequency; thus, it can be varied if the receiver is calibrated again in synchronization with the transmitter.
- 12. The main board only uses 1 rocker switch for the On/Off of the power supply.
- 13. It cannot output multiple chords at a time.
- 14. It only has a capture time of 8 seconds.

g. Definition of Terms

- Amplifier sound-increasing apparatus: a device that makes sounds louder, especially one increasing the sound level of musical instruments (Encarta® World English Dictionary).
- 2. **Chords** notes struck together: two or more musical notes played or sung simultaneously (*Encarta® World English Dictionary*).
- 3. **Circuit** route for electricity: a route around which an electrical current can flow, beginning and ending at the same point (*Encarta® World English Dictionary*).
- 4. **Cord** electrical cable: flexible insulated electric cable (*Encarta® World English Dictionary*).
- 5. **Frequency** rate of recurrence: the number of times that something such as an oscillation, a waveform, or a cycle is repeated within a specific length of time, usually one second (*Encarta® World English Dictionary*).
- 6. Fret (Fretboard) any of the ridges of wood, metal, or string, set across the fingerboard of a guitar, lute, or similar instrument, which help the fingers to stop the strings at the correct points (Chicago Manual Style).
- 7. **Gadget** ingenious device: a small device that performs or aids a simple task (Encarta® World English Dictionary).
- 8. **Guitar** stringed musical instrument: a musical instrument with a long neck, a flat body shaped like a figure eight, and usually six strings that are plucked or strummed (Encarta® World English Dictionary).

- Guitar Pick-up A guitar pickup, also called transducer that converts the vibrations of guitar strings or the guitar body to an electrical signal (Musician News).
- 10.LCD Liquid Crystal Display, an electronic display (as of the time in a digital watch) that consists of segments of a liquid crystal whose reflectivity varies according to the voltage applied to them (Merriam-Webster).
- 11. Microcontroller a microprocessor that controls some or all of the functions of an electronic device (as a home appliance) or system (Merriam-Webster).
- 12. **Music** sounds that produce effect: sounds usually produced by instruments or voices that are arranged or played in order to create an effect (*Encarta®* World English Dictionary).
- 13. **Note** musical or vocal sound: a sound of a distinct pitch, quality, or duration produced by a musical instrument or by the voice (*Encarta® World English Dictionary*).
- 14. Octave note at each end of octave: the note at each end of an octave, especially the higher one, considered in relation to the note at the other end (Encarta® World English Dictionary).
- 15. **Phase** part of repeating cycle: a part of a repeated uniform pattern of occurrence of a phenomenon or process, relative to a fixed starting point or time (Encarta® World English Dictionary).

- 16. **Pluck** pull and release strings: to play a stringed musical instrument by quickly pulling and releasing strings with a finger or plectrum (*Encarta®* World English Dictionary).
- 17. **Resonance** large oscillation at natural frequency: increased amplitude of oscillation of a mechanical system when it is subjected to vibration from another source at or near its own natural frequency (*Encarta® World English Dictionary*).
- 18.Signal transmitted information: information transmitted by means of a modulated current or an electromagnetic wave and received by telephone, telegraph, radio, television, or radar (Encarta® World English Dictionary).
- 19.**Sound** reproduced music or speech: the music, speech, or other sounds heard through an electronic device such as a television, radio, or loudspeaker, especially with regard to volume or quality (Encarta® World English Dictionary).
- 20.**String** cord stretched across musical instrument: a cord made of nylon, wire, or gut that is stretched across a musical instrument and plucked, bowed, or otherwise vibrated to produce sound (Encarta® World English Dictionary).
- 21.**Strum** play instrument by brushing strings: to play a guitar or other stringed instrument by brushing the strings with the fingers or a pick (Encarta® World English Dictionary).

- 22.Technology application of tools and methods: the study, development, and application of devices, machines, and techniques for manufacturing and productive processes (Encarta® World English Dictionary)
- 23.**Tune** adjust instrument for pitch: to adjust a musical instrument so that it plays at the correct pitch (Encarta® World English Dictionary).
- 24. Wireless using radio signals: using radio signals rather than wires (Encarta® World English Dictionary).

Chapter 2

REVIEW OF RELATED LITERATURE AND RELATED STUDIES

The concept of making this type of system design was brought up when the designers came across certain studies while conducting the research. They worked together on the ideas of existing studies and utilize them in their design.

An article by Peter Gitundu in Music, Recreation and Leisure, Art and Culture magazine entitled, "Why You Should Be Using An Electronic Tuner Today" stated that when a guitar is tuned up, the stress tension is changed on one string at a time. This tuning applies to all strings whether one is using an electronic guitar or not. Nylon strings may just take a little more effort to settle into tune. This is a significant information because it means that a certain string corresponds to a certain tension. A tension will lead to how much the string or group of strings oscillate that will produce a unique frequency that can be based on a reference.

It is necessary to know the key in which the guitar needs to be tuned. Normally for a 6-string guitar basic keys of EADGBE are used. Hence if you need to tune the guitar in standard form, it is not necessary to change tuning keys because it sounds in EADGBE. These notes or keys can be adjusted by tightening or loosening each string.

An electronic tuner makes tuning very much easier. This principle can be applied to the design since chords are a combination of notes, and in order for one to determine a note a tuner is needed. If a string is strummed or plucked,

guitar's knobs can be turned on until the guitar strings match with the corresponding pitches of the instrument.

The article helped the designers to conceptualize that tuning instruments have a reference which can be called a "standard". This means that one note must be in the same frequency caused by the tension of the string of the same note but with a different instrument. It also emphasizes that electronic tuners are much easier to use thus giving the designers a push to pursue the creation of an electronic device.

Wireless technology is the approach used in the design. Making the device use this type of technology broadens the scope of the design. In an article published in the Modern Guitars Magazine (January 9, 2007), X2 Digital Wireless, Inc. announced that the XDS95 is the first and only digital multi-channel digital UHF wireless system designed specifically for performing or recording musicians and is now shipping through authorized dealers. This gadget uses digital RF modulation, hence the idea of using RF technology is one of the options. Since the XDS95 is advertised as the first and only wireless system for musical applications, no other device in the music industry have the same approach; thus giving the proposed design a slight edge. Figure 2.1 shows the XDS95 which comprises of two parts: the receiver and the transmitter. Since it uses RF technology, it is a given that these two parts are needed to make gadget work.

Figure 2.1: XDS95

The chord plays a vital role in making the device. It is necessary that the said tool can output an expected chord. The article by Jody Mitoma of Touch Podium entitled, "Chord Play' Lets You Play up to 12 Guitar Chords at Any Given Time" (August 20, 2008) is about computer software, which lets you play guitar chords on your iPhone and iPod Touch. It is done by simply tapping on the chords you want to play and then use the six strings to play the notes of the chord as you would on a guitar. The chord creator lets you define and save even more chords. This kind of software lets you define the chord you want to produce. This information helped the designers figure out the main features of the device. The chords the user defines in the guitar will be displayed on a screen. This will give the user the freedom to create new chord positions he/she want to use. Figure 2.2 shows the software display in use. It features defining a chord by means of showing the notes on the top center of the screenshot which gives the designers an idea on how to present the output of the device. The

group figured out that the output should display the notes of the chord as well as the main part which is a chord.

Figure 2.2: Screenshot of 'Chord Play'

Mounting the device is one of the group's discussions wherein different ideas came into play. An article by Conner Flynn on Peak (January 11, 2008), entitled "eNote Clip-On Digital Chromatic Tuner" discussed the use of a clipping device. It's as simple as to just attach the little device to the guitar or other instrument and the display will show up green once the note is correct. Clipping the mechanism to the instrument made it easy to use.

The idea of using an LCD screen for the device was inspired by the article by Lou Reade of Innovative Engineering Device (October 21, 2007). The article is

about a product launched at the Frankfurt Music Show that helped guitarists to solve one of their greatest headaches, tuning.

The device, the S440 tuner, was developed by Somerset-based ATD. It displays the output on a LED screen. Since Maxon Motor UK developed the product based on LED, an LCD screen was used in the proposed design for a clear and elegant display. Figure 2.3 shows the S440 Tuner that is attached to the guitar. Its display can be seen on a LED screen, while its output will be incorporated on a LCD screen. However, a larger screen will be used so that other essential information could be squeezed in.

Figure 2.3: S440 Tuner

Microcontrollers are very popular in implementing electronic devices. This concept was applied to the design since it is widely used in most parts of the country. An article by Ariz Chandler of CPU Technologies (March 3, 2003), entitled "New Microchip PIC16 New Low-Power Microcontrollers with nanoWatt Technology" described the great features of the new microchip PIC16 that will boost the performance of such a device. It offers the flexibility of reprogrammable Flash memory coupled with new power management features, and are designed to reduce the overall power consumption in embedded

systems. This feature of the PIC gives a solid foundation of components to make the design possible.

The IC is affordable and easily available here in the Philippines. This information is important as it makes the design possible.

Chapter 3

DESIGN METHODOLOGY AND PROCEDURES

Design Methodology

Wireless Chord Creator for Guitars with Pick-Ups is a system design that provides guitarists or guitar players ease of determining the chords they are playing. This design is the first of its kind since other guitar related devices which are guitar tuners name only one note to be played.

Applied research was used to solve practical problems that relate to this kind of study. This form of research is necessary to improve on this field of technology. Inquiries from other people as well as using books as references are key methods of understanding the problem itself. With this, one's knowledge about this area of study can broaden and open to new ideas to enhance the gadget. Rigorous reading from different sources such as books, magazines and other materials contribute to a better understanding of the subject at hand. Having all the information formulates in the development of the actual device. Data attained by the group is utilized to create such a device.

Design Procedure for Actual Design

The designers have taken a step by step procedure in making the whole hardware design. These steps are as follows;

 The first step was to gather information from related studies to have adequate background of the area of the study. It is vital to know other information related to the study because it will help in the understanding of the concept of the design. Conceptualization was also done in this part by brainstorming among the members of the group. One of the key data gathered was the Musical Note Frequency Table shown in Table 3.1 below.

Key	OCTAVE										
Notes	1	2	3	4	5	6	7	8	9	10	11
A		27.5	55	110	220	440	880	1760	3520	7040	14080
Bb		29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	7458.62	14917.24
В		30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	7902.13	15804.27
C		32.7	65.41	130.81	261.63	523.25	1046.5	2093.01	4186.01	8372.02	16744.04
C#		34.65	69.3	138.59	277.18	554.37	1108.73	2217.46	4434.92	8869.84	17739.69
D		36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	4698.64	9397.27	18794.55
D#		38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	4978.03	9956.06	19912.13
Е	20.6	41.2	82.41	164.81	329.63	659.26	1318.51	2637.02	5274.04	10548.08	
F	21.83	43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	5587.65	11175.3	
F#	23.12	46.25	92.5	185	369.99	739.99	1479.98	2959.96	5919.91	11839.82	
G	24.5	49	98	196	392	783.99	1567.98	3135.96	6271.93	12543.85	
G#	25.96	51.91	103.83	207.65	415.3	830.61	1661.22	3322.44	6644.88	13289.75	

Table 3.1 Musical Note Frequency Table

A particular key or note corresponds to a specific value. Each value in the table is in Hertz (Hz). This is essential because it will distinguish one note from another wherein a chord is a combination of specific notes.

- 2. Second, the group researched on the ideal or suggested components or parts they can use in doing the design. The group also considered the availability and cost of the components they will use.
- 3. After canvassing the components to be used, the third step is to design the flowchart was designed to have an overview of how the device will work.
- 4. Designing the schematic and circuit diagram was conducted. This was based on the information about the availability of the needed components.

- 5. PCB designing was made. The components were then integrated to the PCB following their connections from the schematic and circuit diagram.
- 6. Testing was then conducted after making sure each connection was properly placed. The testing procedure verified if the expected results would occur.
- 7. If there were still problems, troubleshooting of the design or making other adjustments until the projected results would appear.
- 8. After this process was made construction took place.
- 9. Once everything has been completed, a final test with the gadget was made just to make sure everything goes out according to plan.

Hardware Design

1. Block Diagram

Figure 3.1: System Block Diagram

Figure 3.1 shows an illustration of the System Block Diagram for the system design.

Octave 1

Figure 3.2.1: Schematic Diagram for Octave 1

Octave 2

Figure 3.2.2: Schematic Diagram for Octave 2

Octave 3

Figure 3.2.3: Schematic Diagram for Octave 3

3. List of Materials

Description	Quantity	Description	Quantity
LCD module 16 character x 2 Line	1	LED	37
Mini Push Button	1	LM567 IC	36
8 pin connector	2	LM358 IC	3
Heatsink	1	Alexan Case Black	1
1200uF/16V electrolytic capacitor	1	Alexan Case White	2
100uF/25V electrolytic capacitor	1	Battery Holder	1
105 multilayer ceramic capacitor	1	Battery AA	8
22pf ceramic capacitor	2	Phone Jack	1
W10G Bridge Diode	1	Rocker Switch	1
1/4Watt resistor	94	IN4148 Diode	36
2 pin terminal block	2	Trimmer resistor 100K	36
4Mhz Crystal	1	8 pin IC Socket	39
10K array resistor	2	FM Receiver	1
40 pins IC Socket	1	Phone Jack Y-adaptor	1
PIC16F877 microcontroller IC	1	Phone Jack converter	1
104 Multilayer ceramic capacitor	48	Microphone Amplifier	1
10uF/16V electrolytic Capacitor	36	Microphone Cable	1
47uF/16V electrolytic Capacitor	36	9V Battery	1
Wireless FM Transmitter	1	bag	1

Table 3.2: List of Materials

Hardware Components

Research was conducted on for the most effective electronic parts for this system design. Some important components of the design are listed below.

PCB Layout

Figure 3.3: PCB Layout for Microcontroller

Figure 3.4: PCB Layout for PLL Circuit

Micropower Phase-Locked Loop

Since the design system relies on frequency as an input, the Micropower PLL is the best device for the system design. Micropower Phase-Locked Loop is a device that compares the frequencies of two signals and produces an error signal which is proportional to the difference between the input frequencies. This device will be responsible for receiving and converting the frequency inputted through strumming of the guitar strings. It will output either absent or present which will be passed to the microcontroller as 1 or 0. Each note from three different octaves is embedded with one PLL.

LCD Module

The LCD was used for displaying the output of the system design. The data to be displayed will come from the microcontroller. The LCD will only display the type of chord played by the guitar player. If the input signal is invalid the LCD will display a "Try Again" message. The LCD will also display the countdown of 8 sec. time limit for capturing the frequency of the notes played by the user of the guitar.

Radio Frequency using Wireless FM Transmitter and Receiver

A Wireless FM Transmitter and Receiver were used in order to transmit the input signals created by the guitar to the system design. This device was used to create a wireless connection from the guitar to the system design. This was implemented to provide convenience and allowed the guitarist to move at a maximum distance of 10 meters. It is also possible for other users to utilize a guitar at a certain area in the room and be able to supply an output for the other player to show the chord that user has created.

Software Design

The system designers needed a device for the capturing process and producing the chord created from the strumming of the guitar. A push button was implemented to initiate the capturing process. As a solution, a microcontroller was used to control the capturing process and to produce the chord created.

The microcontroller was used to compare and interpret the converted signals passed by the PLL. The main routine of the program is to capture and produce the chord created by the guitar player. The output is then sent to the LCD to display the created chord.

Software Components

The main software component of the design is the PIC16F877A microcontroller. It is the one responsible for operating the whole system. The converted input from the PLL is passed to the microcontroller to produce chords created. For the program language, the PIC Assembly was used to program the microcontroller. PIC Assembly is much similar to Assembly Language especially in some of its instructions. This language is one of the simplest way to program a microcontroller device.

System Flowchart

Figure 3.5: System Flowchart

Prototype Development

The following statements summarize the development of the Wireless Chord Creator for Guitars with Pick-Ups.

- During the first part of the term, the group proposed a project about a
 device to display the chords created in a guitar. This idea was made
 possible through research from books, magazines and other materials.
- 2. Data gathering of related literature and related studies was needed after proposing the project to collect more information to the developers.
- Research was conducted on how the major components of the device work. The availability and cost of each component were also considered.
 These components are as follows;
 - a) Phase-Locked Loop
 - b) Software programs
 - c) LCD Module
 - d) Radio Frequency Principles
 - e) Microcontroller
- A flowchart was planned and designed to have an overview of how the device will work.
- 5. The schematic diagram was then created in reference with the flowchart.

 This is necessary since the flowchart gives a graphical representation of the functions of the device. If the functions are enumerated, the components can then be set depending on which is needed.

- 6. Using all the information in the schematic diagram, a PCB layout was created. Then the components were then interfaced with each part.
- 7. The device was tested using a function generator to know if the expected outputs were achieved. The circuit was also calibrated to be set to its purpose.
- 8. When the setting was completed, the circuit was tested by means of a guitar with pick-ups. This determined if the expected output was correct.
- 9. When testing was successful, construction of the casing was started.
- 10. After the completion of the casing, it was again tested if the output or the display was correct with the expected results.
- 11. Lastly, the maximum distance of the transmitter to the receiver was tested.

Chapter 4

TESTING, PRESENTATION, AND INTERPRETATION OF DATA

Testing the Pre-set Frequency and LED

Testing the circuit if the pre-set frequency is in line with the expected output is crucial. These series of tests shall determine if the signal (note) corresponds to the equivalent value found in Table 3.1 in chapter 3 showing the Musical Note Frequency Table. This is the core reference wherein each signal shall be unique from one another. Since a chord is a combination of notes, these notes have different frequencies which differentiate one from another.

In order to do such test, a function generator is used as a source with the frequency adjusted to a specific value. From the function generator, it is tapped to the PLL circuit with LED present on the output of the circuit. If a signal is set from the function generator and passes through the PLL circuit the LED while light up if the PLL's screw is correctly adjusted. This means that as the group calibrates the value of frequency in the function generator based on the musical note frequency table which assigns one particular frequency to a specific note, each PLL should also be calibrated in line with the signal to have a correct match. There is a total of 12 notes including the sharps and flats in one octave, thus in one octave there is a total of 12 PLL which is assigned to a specific frequency. A total of 3 octaves were used, so 36 PLLs were utilized in the circuit and included in testing.

For every octave, a series of tests were conducted. Shown in Table 4.1 are the results of the initial testing up to the last testing of one octave.

Function Generator (Frequency Set to Corresponding Note)													
			A#			C#		D#			F#		G#
C		A	or	В	С	or	D	or	E	F	or	G	or
			Bb			Db		Eb			Gb		Ab
	Trial 1	√	√	X	√	√	√	✓	√	√	√	√	√
LED	Trial 2	√	X	X	√	✓	√	X	X	√	√	√	√
_	Trial 3	√	√	√	√	√	√	✓	√	√	√	√	√

Table 4.1 Function Generator to PLL Calibration

Based on trial 1 of the Table above, the results show that 8 out of 12 notes have a correct match. This means that 8 PLLs are correctly set to allow signals to pass through it at the expected frequency. Trial 2 shows the result of the next series of tests for every note. In that trial, 11 out of 12 notes have a correct match. The third set of trials illustrates that all notes have a correct match with the setting of each PLL. It confirms that the PLL is already set at its target adjustments. These testing procedures for one octave are also done with the two other remaining octaves. The check (\checkmark) mark represents a correct match from the function generator to the PLL making the LED light up. The (\mathbf{X}) mark indicates that the LED did not light up, meaning the PLL is not matched to the setting of the functions generator. Its results explain that in the first set of trials, 66.67% (8/12) notes are correct. In the second set, 91.67% (11/12) notes

are correct set to the PLL. Lastly, in the third set, all notes are 100% (12/12) correct in reference to the functions generator to the PLL's setting.

Testing the Pre-set Frequency and Guitar with pick-up

Using the guitar as replacement of the function generator is the next step in testing if the correct range of frequency covers the pre-set PLL. By using the guitar, the strings are plucked or strummed to produce a signal that will determine if the octave used in the Musical Note Frequency Table (Table 3.1 Chapter 3) is sufficient. Since the actual application of the design is using a guitar, it is best suited to test the circuit with it.

A guitar with pick-up has a slot which is connected from the guitar pick-up and attached to the body of the guitar. The slot is used for guitar cables to which the cable can be connected to an amplifier system. In this scenario, the cable is plugged into the circuit so that each note in the guitar can be tested if it matches the PLL setting to light up the LED. Each note is plucked one at a time to verify if it lights up the LED corresponding to its own PLL. If the LED that corresponds to the note lights up it means that the PLL was set correctly, but if it doesn't more tweaking is necessary. If the frequency is not covered in the chosen octave, the octave used is adjusted up to which the notes in the guitar are satisfied.

Table 4.2 presents the results of tests conducted that verifies if the guitar notes matches the notes (pre-set Frequencies) of each PLL. A check (\checkmark) shows that a LED lit up meaning the expected output is correct; an (\mathbf{X}) mark indicates the LED didn't light up due to incorrect PLL setting.

	Guitar												
			A #			C#		D#			F#		G#
	NOTE	A	or	В	С	or	D	or	E	F	or	G	or
			Bb			Db		Eb			Gb		Ab
	Trial 1	X	X	X	X	X	X	X	X	X	X	X	X
	Trial 2	X	X	X	X	Х	X	Х	√	√	√	√	√
۵	Trial 3	X	X	X	X	Х	X	√	√	√	√	√	√
LED	Trial 4	X	X	X	X	√	√	√	√	√	√	√	√
	Trial 5	X	X	X	√	√	√	√	√	√	√	√	√
	Trial 6	√	√	√	√	√	√	√	√	√	√	√	√

Table 4.2 Guitar with pick-up to PLL Calibration

In these series of tests, each note included in the table corresponds to all octaves in the guitar. This means that a certain note in the table can represent 3 octaves of the guitar's notes. In short, each column of notes is the average of all octaves that a particular note touches. Since the guitar's first 12 frets, counting from the end of the guitar's neck away from the body is the same as the 13th fret onwards the testing covered is only the first 12 frets considering it as a reference. To make it clear, the 13th fret is the same as the 1st fret. The table above was used as a summary of tests considering all octaves. In trial 1, all LEDs did not light up because most of the notes considering the octaves did not match. It means that the chosen octaves (basing from the Musical Note Frequency Table) are not the suggested octaves a guitar covers. It shows that 0 out of 12 (0/12) 0% LEDs did not light up. The octaves were adjusted by choosing one octave higher which results in trial 2. Again, it did not match up perfectly showing 5 out of 12 (5/12) 41.67% success rate. In trial 3 one

increment of octave is needed to best suit the range. Seeing that trial 3 has 6 out of 12 (6/12) 50% success rate the group verified that the octaves they needed was Octave 4, 5, and 6 from the Music Note Frequency Table. It corresponds to a frequency range of 110Hz to 830.61Hz. After choosing the right range, trial 4 and trial 5 had discrepancies only due to the PLL settings which needed a little tweaking. The table illustrated a 66.67% 8 out of 12 (8/12) and 75% 9 out of 12 (9/12) accordingly. In the 6th trial, the target result which is 100% correct match was attained showing 12 out of 12 (12/12) correct notes.

Testing the Expected Result to Actual Result in the LCD screen

The main feature of the design is to display a chord produced by strumming or plucking certain combinations of notes. This test verifies that feature, where it is the main function of the device. Having these series of tests will show how accurate and reliable the outcome of the design. The results will cater to a credible data since checking is done in numerous ways to accomplish the expected results.

In this case, the kind of test is almost the same with testing the frequency and guitar with pick-up. The difference is that a LCD screen is attached to the output of the microcontroller which is attached to the output of each PLL circuit. The microcontroller is programmed using assembly language. The said program is about the notes to be strummed or plucked processing it to find a match and output a chord to that specific combination. As the strings are struck, signals are then sent to the PLL to filter it according to its corresponding signal. After it is

filtered, the signal then goes to the PIC microcontroller having a present or absent state denoting as logic 1 or 0 accordingly. In the microcontroller, the signal is then processed to which chord it complements. The LCD shall then display the chord if it's a match and then informs the user if it's not correct to try again. This is how the testing is tallied in this part. Each trial shall consume 8 seconds as soon as the capture time is started by pressing the button of the LCD screen.

Trial		Time Span	Strum / Pluck	Expec	Expected Chord		
		(seconds)	(number of times)	Correct	Not Correct		
	1	8	1	X	√		
-	2	8	2	X	√		
SET	3	8	3	Х	√		
	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	Х	√		
7	2	8	2	√	X		
	3	8	3	√	X		
SET	4	8	4	X	√		
	5	8	5	√	X		
	1	8	1	Х	√		
m	2	8	2	X	√		
	3	8	3	√	X		
SET	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	√	Х		
4	2	8	2	X	√		
È	3	8	3	√	X		
SET 4	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	Х	√		
L)	2	8	2	√	X		
SET	3	8	3	√	X		
S	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	√	Х		
9	2	8	2	X	√		
6	3	8	3	√	X		
SE	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	√	Х		
7	2	8	2	X	√		
SET	3	8	3	√	X		
S	4	8	4	√	X		
	5	8	5	√	X		
	1	8	1	Х	√		
œ	2	8	2	√	X		
SET	3	8	3	√	X		
S	4	8	4	√	X		
	5	8	5	√	X		

Table 4.3 Guitar with pick-up to LCD displaying the Expected Chord

Each set contains five trials found on Table 4.3 to determine the number of times a chord is strummed or plucked to produce the expected output. A certain trial has a time span of 8 seconds since it is the default capture time of the device. In each set the initial trial will undergo single strumming or plucking of strings and as for the succeeding trials the number of strumming or plucking of strings increments by one. A set is the average result of testing all the chords covered in this study. This means that each chord was checked 8 times (8 sets) to verify its accuracy. From the sets, it was concluded that 28 out of 40 (28/40) giving a 70% rating for expected chord attained. It also gives 12 out of 40 (12/40) giving a 30% rating for expected chord not attained. Some of the factors that may affect these tests results are based on the sensitivity of the guitar pickup when sound cannot be captured clearly. Another factor is that the notes of the chord played is not tightly pressed down to its fret making the oscillation of the string stop at the instant it is plucked or strummed. Interfering with the oscillation of the string by other means can also affect the performance of the design for it to capture the notes needed. The more the strings are plucked or strummed the more there is a chance to generate the expected output. It is shown in Table 4.3 that 5 out of 8 (5/8) 62.5% sets has a higher success rate of being able to reach the expected chord having three or more strums and plucks, while 3 out of 8 (3/8) or 37.5% will most likely fail if the number of times it is strummed or plucked is 1 or 2 times. The table shows the chord and its

corresponding notes as reference in testing the expected results. The reference can be found in Appendix C of this study.

Testing the range covered between the Receiver and Transmitter

A receiver and transmitter may vary its range depending on its type. In this study, an FM receiver and transmitter were used in conducting tests to validate the distance it can cover from one device to another. It is significant to know the maximum range the device can achieve in order for the user to estimate how far he or she may be away from the gadget and still make it work. This kind of test will also determine if other factors may affect the outcome of the output itself. Furthermore, this test showed the limitation of the device so that improvements can be made in the future.

This test was conducted by putting the main board where the receiver was connected to a stable flat surface. This was used as a reference point where the transmitter was connected to the amplifier that was connected to the guitar. The guitar with the transmitter was tested to produce an output at the same point where the receiver was. After one test was conducted, the guitar with the transmitter was taken away from the receiver by 1 meter and was tested again to produce a correct output. This was repeated a number of times until the output on the LCD screen was incorrect or cannot detect any signal from the transmitter. Every checking of the distance is incremented by 1 meter.

Distance	Receiver and Transmitter	Receiver and Transmitter
(Meter)	(detection of signal)	(no detection of signal)
1	√	X
2	√	Х
3	√	X
4	√	X
5	√	X
6	√	X
7	√	X
8	√	X
9	√	X
10	√	X
11	X	√
12	X	√

Table 4.4 Range of Receiver and Transmitter

This table shows the test conducted in determining the maximum distance of detecting a signal. It can be seen that in Table 4.4 a check (\checkmark) mark can be seen in the column of "detection of signal" from the distance of 1 meter up to the distance of 10 meters indicating that the transmitter and receiver can send and receive signals within the specified range. On the other hand, the column "no detection of signal" has a check (\checkmark) mark in the distance from 11 to 12 meters indicating that the signal transmitted by the transmitter cannot be detected by the receiver. Through this test, it can be summarized that it can only cover 10m of distance from the transmitter to the receiver. There are also factors that may affect this calculated distance. Some are caused by the thickness of the wall between the two devices; it can also be through other radio signals interference because of such devices.

Chapter 5

CONCLUSION AND RECOMMENDATIONS

Conclusion

A gadget that displayed on a screen the chords made by the user was created. This feat shall help guitar players improve their chord vocabulary as well as remember the chord they are attempting to make. It will also give the user a sense of freedom in doing the desired chord by doing so he can add a certain "feel" to that chord.

The device was made possible by brainstorming as well as conducting rigorous research related to the topic at hand. Its wireless capability is a feature that was attained by using RF (Radio Frequency) Technology. With it, the device can be operational within a certain distance. A series of tests was made to know its limits giving a satisfactory result of a maximum of 10 meters.

It is possible to convert each combination of notes when plucked or strummed from a guitar to a specific chord. These notes can be set as a particular signal which signifies a certain frequency. These signals can be filtered by using the tone decoding principles. PLL (Phase Locked-Loop) technology was also utilized to be able to manifest the signal into its absent or present state to be understood by the microcontroller. Having these ideas put into one, the group was able to produce an expected output which is a chord from the input which are the notes. Again, all of these underwent a series of tests to prove its reliability and accuracy.

Its ease of use is due to its simplicity. A single push button switch was used to start the processing of a guitar chord. The mounting of the display can also be easily understood by the user. Moreover, the steps in using the device are easy to comprehend. A user's manual is also provided to better understand each step.

Recommendations

The designers suggest that not only common chords be deciphered by the device but as well as complicated chords which are seldom used but still are important. It will also be a good idea if the design can be able to display multiple chords at a time so that the previous chords can be stored temporarily for further reference. A water-proof casing can help to protect the circuitry if ever accident spills of liquid happen. For its power supply, an expansion slot wherein a transformer can be used as its source can contribute to saving the battery's lifespan. The display can also be altered to a different output depending on future designing of circuitry so that positions of notes can also be displayed wherein it is called a tablature. It will be more likely practical to improve on the components used, like for example, to use alternative components to improve performance in terms of accuracy of data needed, as well as to minimize the size of parts so that they will be more portable.

BIBLIOGRAPHY

Benson, David J. (2006). Music: A Mathematical Offering, 1st Edition. Cambridge University Press.

Floyd, Thomas L. (2006). Electronic Devices, 6th Edition. Prentice Hall, Colorado.

Julio Sanchez, Maria P. Cantor (2007). Microcontroller Programming: The Microchip PIC

Loy, Gareth. (2006) Musimathics, Volume 1: The Mathematical Foundations of Music. The MIT Press.

APPENDICES

APPENDIX A

Material Listings and Price Lists

Description	Quantity	Unit Price	Sub-Total
LCD module 16 character x 2 Line	1	1,200.00	1,200.00
Mini Push Button	1	10.00	10.00
8 pin connector	2	37.00	74.00
Heatsink	1	20.00	20.00
1200uF/16V electrolytic capacitor	1	6.00	6.00
100uF/25V electrolytic capacitor	1	3.00	3.00
105 multilayer ceramic capacitor	1	2.00	2.00
22pf ceramic capacitor	2	1.00	2.00
W10G Bridge Diode	1	10.00	10.00
1/4Watt resistor	94	0.25	23.50
2 pin terminal block	2	12.00	24.00
4Mhz Crystal	1	50.00	50.00
10K array resistor	2	12.00	24.00
40 pins IC Socket	1	8.00	8.00
PIC16F877 microcontroller IC	1	530.00	530.00
Phone Jack	1	28.00	28.00
Rocker Switch	1	25.00	25.00
LED	37	2.00	74.00
IN4148 Diode	36	2.00	72.00
Trimmer resistor 100K	36	65.00	2,340.00

8 pin IC Socket	39	3.00	117.00
104 Multilayer ceramic capacitor	48	2.00	96.00
LM567 IC	36	34.00	1,224.00
LM358 IC	3	34.00	102.00
Alexan Case Black	1	150.00	150.00
Alexan Case White	2	30.00	60.00
Battery Holder	1	45.00	45.00
Battery AA	8	30.00	240.00
10uF/16V electrolytic Capacitor	36	1.00	36.00
47uF/16V electrolytic Capacitor	36	2.00	72.00
Wireless FM Transmitter	1	380.00	380.00
FM Receiver	1	250.00	250.00
Phone Jack Y-adaptor	1	70.00	70.00
Phone Jack converter	1	45.00	45.00
Microphone Amplifier	1	222.00	220.00
9V Battery	1	54.00	54.00
Microphone Cable	1	35.00	35.00
Bag	1	120.00	120.00
TOTAL		1	7,841.50

APPENDIX B

Chord Reference

MAJOR:

MINOR:

SUSPENDED:

SEVENTH:

MAJOR(seventh):

MINOR (seventh):

DIMINISHED (dim):

AUGMENTED (aug):

APPENDIX C Chords and its corresponding Notes

Combination of Notes

Legend: # -sharp, b - flat

(MAJOR)

C	С	Е	G
C# / Db	C# / Db	F	G# / Ab
D	D	F# / Gb	Α
D# / Eb	D# / Eb	G	A# / Bb
E	E	G# / Ab	В
F	F	Α	С
F# / Gb	F# / Gb	A# / Bb	C# / Db
G	G	В	D
G# / Ab	G# / Ab	С	D# / Eb
A	А	C# / Db	E
A# / Bb	A# / Bb	D	F
В	В	D# / Eb	F# / Gb

Combination of Notes

Legend: # -sharp, b - flat

(MINOR)

Ст	С	D# / Eb	G
C#m / Dbm	C# / Db	Е	G# / Ab
Dm	D	F	Α
D#m / Ebm	D# / Eb	F# / Gb	A# / Bb
Em	Е	G	В
<u>Fm</u>	F	G# / Ab	С
F#m / Gbm	F# / Gb	Α	C# / Db
Gm	G	A# / Bb	D
G#m / Abm	G# / Ab	В	D# / Eb
Am	Α	С	Е
A#m / Bbm	A# / Bb	C# / Db	F
Bm	В	D	F# / Gb

Combination of Notes

Legend: # -sharp, b - flat

(SUSTAINED / SUSPENDED [sus])

Csus	С	F	G
C#sus / Dbsus	C# / Db	F# / Gb	G# / Ab
Dsus	D	G	Α
D#sus / Ebsus	D# / Eb	G# / Ab	A# / Bb
Esus	Е	Α	В
Fsus	F	A# / Bb	С
F#sus / Gbsus	F# / Gb	В	C# / Db
Gsus	G	С	D
G#sus / Absus	G# / Ab	C# / Db	D# / Eb
Asus	Α	D	Е
A#sus / Bbsus	A# / Bb	D# / Eb	F
Bsus	В	Е	F# / Gb

Combination of Notes

Legend: # -sharp, b - flat

(SEVENTH [7th])

C7	С	Е	G	A# / Bb
C#7 / Db7	C# / Db	F	G# / Ab	В
D7	D	F# / Gb	Α	С
D#7 / Eb7	D# / Eb	G	A# / Bb	C# / Db
E7	Е	G# / Ab	В	D
F7	F	A	С	D# / Eb
F#7 / Gb7	F# / Gb	A# / Bb	C# / Db	Е
G7	G	В	D	F
G#7 / Ab7	G# / Ab	С	D# / Eb	F# / Gb
G#7 / Ab7	G# / Ab	C C# / Db	D# / Eb	F# / Gb

Combination of Notes

Legend: # -sharp, b - flat

(MAJOR [7th])

CM7	С	E	G	В
C#M7 / DbM7	C# / Db	F	G# / Ab	С
DM7	D	F# / Gb	Α	C# / Db
D#M7 / EbM7	D# / Eb	G	A# / Bb	D
EM7	Е	G# / Ab	В	D# / Eb
FM7	F	A	С	Е
F#M7 / GbM7	F# / Gb	A# / Bb	C# / Db	F
GM7	G	В	D	F# / Gb
G#M7 / AbM7	G# / Ab	С	D# / Eb	G
AM7	Α	C# / Db	Е	G# / Ab
A#M7 / BbM7	A# / Bb	D	F	Α
ВМ7	В	D# / Eb	F# / Gb	A# / Bb

Combination of Notes

Legend: # -sharp, b - flat

(MINOR [7th])

Cm7	С	D# / Eb	G	A# / Bb
C#m7 / Dbm7	C# / Db	Е	G# / Ab	В
Dm7	D	F	Α	С
D#m7 / Ebm7	D# / Eb	F# / Gb	A# / Bb	C# / Db
Em7	Е	G	В	D
Fm7	F	G# / Ab	С	D# / Eb
F#m7 / Gbm7	F# / Gb	Α	C# / Db	Е
Gm7	G	A# / Bb	D	F
G#m7 / Abm7	G# / Ab	В	D# / Eb	F# / Gb
Am7	Α	С	E	G
A#m7 / Bbm7	A# / Bb	C# / Db	F	G# / Ab
Bm7	В	D	F# / Gb	Α

Name of Chords

Combination of Notes

Legend: # -sharp, b - flat

(DIMINISHED [dim])

Cdim	С	D# / Eb	F# / Gb	Α
C#dim / Dbdim	C# / Db	Е	G	A# / Bb
Ddim	D	F	G# / Ab	В
D#dim / Ebdim	D# / Eb	F# / Gb	Α	С
Edim	Е	G	A# / Bb	C# / Db
<u>Fdim</u>	F	G# / Ab	В	D
F#dim / Gbdim	F# / Gb	A	С	D# / Eb
Gdim	G	A# / Bb	C# / Db	Е
G#dim / Abdim	G# / Ab	В	D	F
Adim	А	С	D# / Eb	F# / Gb
A#dim / Bbdim	A# / Bb	C# / Db	E	G
Bdim	В	D	F	G# / Ab

Name of Chords

Combination of Notes

Legend: # -sharp, b - flat

(AUGMENTED [aug])

Caug	С	Е	G# / Ab
C#aug / Dbaug	C# / Db	F	A
Daug	D	F# / Gb	A# / Bb
D#aug / Ebaug	D# / Eb	G	В
Eaug	E	G# / Ab	С
Faug	F	Α	C# / Db
F#aug / Gbaug	F# / Gb	A# / Bb	D
Gaug	G	В	D# / Eb
G#aug / Abaug	G# / Ab	С	E
Aaug	Α	C# / Db	F
A#aug / Bbaug	A# / Bb	D	F# / Gb
Baug	В	D# / Eb	G

APPENDIX D

LM 567 IC Tone Decoder

February 1995

LM567/LM567C Tone Decoder

General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and O detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability

- Bandwidth adjustable from 0 to 14%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

Connection Diagrams

Metal Can Package

Top View

Order Number LM567H or LM567CH See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View

Order Number LM567 CM See NS Package Number M08A Order Number LM567 CN See NS Package Number N08E

APPENDIX E

PIC16F877 Microcontroller IC

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

- PIC16F873
- PIC16F876
- PIC16F874
- PIC16F877

Microcontroller Core Features:

- · High performance RISC CPU
- · Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
 Up to 256 x 8 bytes of EEPROM Data Memory
- Pinout compatible to the PIC16C73B/74B/76/77
- · Interrupt capability (up to 14 sources)
- Eight level deep hardware stack
- · Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- · Power saving SLEEP mode
- Selectable oscillator options
- Low power, high speed CMOS FLASH/EEPROM technology
- Fully static design
- In-Circuit Serial Programming™ (ICSP) via two nine
- Single 5V In-Circuit Serial Programming capability
- · In-Circuit Debugging via two pins
- · Processor read/write access to program memory
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Commercial, Industrial and Extended temperature ranges
- · Low-power consumption:
 - < 0.6 mA typical @ 3√, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

Pin Diagram

Peripheral Features:

- · Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- · 10-bit multi-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI[™] (Master mode) and I²C[™] (Master/Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

APPENDIX F

Phase-Locked Loop

November 1995

CD4046BM/CD4046BC Micropower Phase-Locked Loop

General Description

The CD4046B micropower phase-locked loop (PLL) consists of a low power, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two phase comparators. The two phase comparators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

Phase comparator I, an exclusive OR gate, provides a digital error signal (phase comp. I Out) and maintains 90" phase shifts at the VCO center frequency. Between signal input and comparator input (both at 50% duty cycle), it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency.

Phase comparator II is an edge-controlled digital memory network. It provides a digital error signal (phase comp. II Out) and lock-in signal (phase pulses) to indicate a locked condition and maintains a 0° phase shift between signal input and comparator input.

The linear voltage-controlled oscillator (VCO) produces an output signal (VCO Out) whose frequency is determined by the voltage at the VCO_{IN} input, and the capacitor and resistors connected to pin C1_A, C1_B, R1 and R2.

The source follower output of the VCO_{IN} (demodulator Out) is used with an external resistor of 10 k Ω or more.

The INHIBIT input, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode is provided for power supply regulation, if necessary.

Features

■ Wide supply voltage range 3.0V to 18V ■ Low dynamic 70 µW (typ.) at

bow dynamic 70 μ W (typ.) at power consumption f₀ = 10 kHz, V_{DD} = 5V

■ VCO frequency

■ Low frequency drift
with temperature

1.3 MHz (typ.) at V_{DD} = 10V
0.06%/°C at V_{DD} = 10V

■ High VCO linearity 1% (typ.)

Applications

- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discrimination
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Tone decoding
- FSK modulation
- Motor speed control

Block & Connection Diagrams Dual-In-Line Package COMPARATOR PHASE PULSES 15 ZENER PHASE COMPIOUT -PHASE COMP II OUT COMPARATOR IN SIGNALIN VCO OUT PHASE COMP II OUT INHIBIT Cla B1 DEMODULATOR OUT C1_B VCD IN VICE IN Ves DEMODULATOR SOURCE TL/F/5968-2 **Top View** Order Number CD4046B TL/F/5968-1 FIGURE 1

©1995 National Semiconductor Corporation TL/F/5988

R RD-830M115/Printed in U.S.A.

APPENDIX G

SC1602D (16 CHARACTERS x 2 LINES)

■ FEATURES

- ◆ 5 x 7 DOTS WITH CURSOR
- ◆ BUILT-IN CONTROLLER (KS0066 OR EQUIVALENT)
- ♦ 5 V POWER SUPPLY
- ♦ 1/16 DUTY CYCLE
- ◆ 4.2 V LED FORWARD VOLTAGE

■ MECHANICAL DATA

ITEM	DIMENSIONS	UNIT
Module Size (W x H x T)	85.0 x 36.0 x 8.8 (12.7 LED)	mm
Viewing Area (WxH)	65.0 x 16.0	mm
Character Size (WxH)	2.96 x 5.56	mm
Character Pitch (W x H)	3.55 x 5.94	mm
Dot Size (WxH)	0.56 x 0.66	mm
Dot Pitch (WxH)	0.60 x 0.70	mm

■ INTERFACE PIN CONNECTIONS

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION
1	Vss	Supply Ground	9	DB2	Data Bit 2
2	Voo	Supply Voltage	10	DB3	Data Bit 3
3	Vo	Contrast Adj.	11	DB4	Data Bit 4
4	RS	Register Select	12	DB5	Data Bit 5
5	R/W	Read/Write	13	DB6	Data Bit 6
6	E	Enable Signal	14	DB7	Data Bit 7
7	DB0	Data Bit 0	15	Α	LED Power
8	DB1	Data Bit 1	16	К	LED Power

■ ELECTRICAL CHARACTERISTICS

- 1	TEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
LCD Operating Voltage			T=0 °C	- N	4.8	241	V
		Voo-Vo	T=25°C	89	4.5		٧
		3	T=50°C	e -	4.2	33.73	٧
Supply Vo	oltage	Voo-Vss	58	4.7	5	5.3	٧
Supply Co	urrent	loo	27		2	4	mA
Input	"HIGH" Level	ViH		2.2	-	Voo	٧
Voltage	"LOW" Level	VIL	3.	0	348	0.6	٧
Output	"HIGH" Level	Vон		2.4	-	(#)	٧
Voltage	"LOW" Level	Vol		-	3.43	0.4	V

■ BLOCK DIAGRAM

■ EXTERNAL DIMENSIONS

APPENDIX H

User's Manual

How to use the Wireless Chord Creator for Guitars with Pick-Ups:

Set-Up:

1. Put batteries on the following; 8pcs. AA Batteries [1.5V] in main unit [Black Box], 1pc. 9V Battery in amplifier [White Box], and 2pcs. AAA Batteries [1.5V] FM transmitter [White Case].

Main unit [Black Box]

Amplifier [White Box]

FM Transmitter [White Case]

2. Loosen the clip on the LCD display to be able to clamp it on the preferred part of the guitar or place it at a convenient area that the user will be able to see the output clearly.

3. Place the main unit [Black Box] on the floor or any area that you may prefer close enough to your guitar not to pull the cable attached to it too much. Switch the power 'On'.

4. Place the Amplifier [White Box] and FM Transmitter [White Case] to its proper casing [Small Bag(black and red) with clip]. It is highly suggested to clip the bag on your pants.

5. Plug the cable from the transmitter to the guitar to be used.

6. Switch-On the power for the FM transmitter unit by holding down the power button for 3 sec. and set the default frequency to 107.1MHz by pressing the '+' or '-' sign. Also switch-on the amplifier.

Usage:

1. Push the Red Button of the LCD display to start the capture time (8 seconds capture time) and then do a chord on the frets (guitar neck / fretboard) or vice-versa.

2. Strum or pluck the guitar strings while timer is still counting until it reaches 1 millisecond.

3. During the capture time the notes that are plucked or strung will be displayed. After the capture time if the combination of notes corresponds to the correct combination, the Chord will be displayed, if not or there are no strings strung or plucked the display is "Try Again".

- 4. Repeat from step 1 in Usage if you want to try other chords.
- 5. If done using, shut-off the units to preserve the battery lifespan.

Optional:

• If there is a need to plug-in the guitar to an Amplifier System, simply plug a cable on the extra slot for the output of the Transmitter package to the Amplifier. Plug the other end of the cable to the Amplifier System.

• If you want to directly plug into the main unit [Black Box] from the guitar, you can do so. Just plug-in one end of the cable to the guitar and the other end to the main unit. (If this is the approach, the small bag (black and red) consisting of the amplifier and transmitter is not used.)

APPENDIX I Source Code

;Variable Declaration	movwf TRISD
PortA_New equ H'20'	manulus PI000001111
PortC_New equ H'21'	movlw B'00000111'
PortE_New equ H'22'	movwf TRISE
PortE_Prev equ H'23'	
	bcf STATUS,RP0
Note_Lo equ H'28'	
Note_Hi equ H'29'	call Init_Var
_ '	call Init_LCD
Tmr1_Sec equ H'30'	call Disp_LCD
Tmr1_Pres equ H'31'	can biop_ceb
11111_1165	bsf INTCON,T0IE
Wei+1 Val. 2011 11711	
Wait1_Val equ H'71'	bsf INTCON,GIE
Wait2_Val equ H'72'	
Msg_Num equ H'73'	;Main Program Starts Here.
	Main: nop
Temp1 equ H'79'	goto Main
Temp2 equ H'7A' Temp3 equ H'7B'	-
Temn3 equ H'7B'	;The Interrupt Service Routine.
Temp4 equ H'7C'	ISR_routine:
W_TEMP equ H'7D'	movwf W_TEMP
STAT_TEMP equ H'7E'	movf STATUS,W
PCLATH_TEMP equ H'7F'	movwf STAT_TEMP
	bcf STATUS,RP0
LCD_RAM_Buf equ H'20'	
	btfsc INTCON,T0IF
;Reset Vector Starts at Address 0x0000.	goto TMR0int
org 0x0000	g
goto Initialize	RestoreReg:
goto midalize	movf_STAT_TEMP,W
0.0004	movwf STAT_TEMP,W
org 0x0004	
goto ISR_routine	movf W_TEMP,W
;Initialization Routine.	retfie
Initialize:clrf TMR0	
clrf INTCON	;TIMER 0 (TMR0)Interrupt Service Routine.
bcf STATUS,RP1	TMR0int: bcf INTCON,T0IF
bsf STATUS,RP0	movlw D'06'
movlw B'11000011'	addwf TMR0,F
movwf OPTION REG	addwi ii iitoji
MOVWI OI 110N_NEG	call Read_Input
movlw B'00000110'	call Do_Tmr1
movwf ADCON1	call Disp_Data
movlw B'11111111'	call Disp_Chord
movwf TRISA	call Disp_LCD
movlw B'00000000'	TMR0intX: goto RestoreReg
movwf TRISB	3
	Msg0: addwf PCL,F
movlw B'11111111'	
movwf TRISC	dt "NOTE: "
IIIUVWI IKISC	
	dt " "
movlw B'00000000'	

Init_Var:clrf Msg_Num call Ld_Msg2RAM movf PORTA,W	Read_I			PortA_New,4 Note_Lo,4
movwf PortA_New movf PORTE,W movwf PortE New	Read_I			PortA_New,5 Note_Lo,5
movwf PortE_Prev movf PORTC,W movwf PortC_New	Read_I			PortC_New,0 Note_Hi,0
clrf PORTD clrf Tmr1_Sec clrf Tmr1_Pres	Read_l			PortC_New,1 Note_Hi,1
clrf Note_Lo clrf Note_Hi return	Read_l			PortC_New,2 Note_Hi,2
Read_Input:movf PORTA,W movwf PortA_New	Read_l			PortC_New,3 Note_Hi,3
movf PORTC,W movwf PortC_New movf PORTE,W	Read_l			PortC_New,4 Note_Hi,4
movwf PortE_New	Read_l			PortC_New,5 Note_Hi,5
Read_RE2:btfsc PortE_New,2 goto Read_RE2X btfss PortE_Prev,2	Chk_Tı	mr1>	(:nop	
goto Read_RE2X movf Tmr1_Sec,W btfss STATUS,Z	Read_1	1		PortE_New,W vf PortE_Prev n
goto Read_RE2X movlw H'80' movwf Tmr1_Sec movlw D'0' call Ld_Msg2RAM	Disp_D		btfsc	Tmr1_Sec,W STATUS,Z Disp_DataX
clrf Note_Lo clrf Note_Hi Read_RE2X:nop			addl\ mov\	w LCD_RAM_Buf N D'6' Nf FSR FSR,7
Chk_Tmr1:movf Tmr1_Sec,W btfsc STATUS,Z goto Chk_Tmr1X	DispA:	ļ	btfss goto	Note_Lo,0 DispAX v "A"
Read_RA0:btfss PortA_New,0 bsf Note_Lo,0		l i	movw ncf	rf INDF FSR,F v " "
Read_RA1:btfss PortA_New,1 bsf Note_Lo,1	DispAX	l i	movw	r INDF FSR,F
Read_RA2:btfss PortA_New,2 bsf Note_Lo,2	DispBb): b	tfss	Note_Lo,1 DispBbX
Read_RA3:btfss PortA_New,3 bsf Note_Lo,3		n	novlw	

	incf FSR,F movlw "b" movwf INDF	DispDbX:	incf FSR,F nop
DispBbX:	incf FSR,F	DispE:	btfss Note_Hi,1 goto DispEX movlw "E"
DispB:	btfss Note_Lo,2 goto DispBX movlw "B" movwf INDF incf FSR,F	Diag EV.	movwf INDF incf FSR,F movlw " " movwf INDF incf FSR,F
	movlw " " movwf_INDF	DispEX:	nop
DispBX:	incf FSR,F nop	DispF:	btfss Note_Hi,2 goto DispFX movlw "F"
DispC:	btfss Note_Lo,3 goto DispCX movlw "C" movwf INDF incf FSR,F		movwf INDF incf FSR,F movlw "" movwf INDF incf FSR,F
	movlw " " movwf INDF	DispFX:	nop
DispCX:	incf FSR,F	DispFb:	btfss Note_Hi,3 goto DispFbX movlw "F"
DispCb:	btfss Note_Lo,4 goto DispCbX movlw "C" movwf INDF incf FSR,F		movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F
	movlw "#" movwf INDF	DispFbX:	•
DispCbX:	incf FSR,F nop	DispG:	btfss Note_Hi,4 goto DispGX movlw "G"
DispD:	btfss Note_Lo,5 goto DispDX movlw "D" movwf INDF incf FSR,F		movwf INDF incf FSR,F movlw " " movwf INDF incf FSR,F
	movlw " " movwf INDF	DispGX:	nop
DispDX:	incf FSR,F nop	DispGb:	btfss Note_Hi,5 goto DispGbX movlw "G"
DispDb:	btfss Note_Hi,0 goto DispDbX movlw "D" movwf INDF incf FSR,F		movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F
	movlw "#" movwf INDF	DispGbX:	•

movlw LCD_RAM_Buf addlw D'30' movwf FSR	bsf LCD_CPort,LCD_RS endm
bsf FSR,7	Pulse_EN:bsf LCD_CPort,LCD_EN nop
swapf Tmr1_Sec,W andlw H'0F'	nop nop
addlw H'30'	nop
movwf INDF incf FSR,F	bcf LCD_CPort,LCD_EN call Wait1
movf Tmr1_Sec,W	return
andlw H'0F'	
addlw H'30'	Init_LCD: Set_RS0
movwf INDF	movlw D'200'
Disp_DataX:return	call Wait2 movlw D'200'
DISP_Datax.return	call Wait2
Do_Tmr1:movf Tmr1_Sec,W	
btfsc STATUS,Z	movlw H'38'
goto Do_Tmr1X	movwf LCD_DPort
incf Tmr1_Pres,F movlw D'25'	call Pulse_EN movlw D'100'
subwf Tmr1_Pres,W	call Wait2
btfss STATUS,C	
goto Do_Tmr1X	call Pulse_EN
clrf Tmr1_Pres	movlw D'100'
decf Tmr1_Sec,F movf Tmr1_Sec,W	call Wait2
andlw H'0F'	call Pulse_EN
sublw H'F'	movlw D'100'
btfss STATUS,Z	call Wait2
goto Do_Tmr1X movlw D'6'	movilus HIOCI
subwf Tmr1_Sec,F	movlw H'06' movwf LCD_DPort
Do_Tmr1X:return	call Pulse_EN
;LCD Subroutine	movlw H'0F'
LCD_DPort equ PORTB	movlw H'0C' movwf LCD_DPort
LCD_CPort equ PORTD	call Pulse_EN
LCD_EN equ 7	33 3.33 <u>_</u>
LCD_RS equ 6	movlw H'14'
LCD Line May any DIN	movwf LCD_DPort
LCD_Line_Max equ D'2' LCD Char Max equ D'16'	call Pulse_EN
LCD_L1_Addr equ D'00' +H'80'	movlw H'01'
LCD_L2_Addr equ LCD_L1_Addr +D'40'	movwf LCD_DPort
	call Pulse_EN
Set_RS0:macro	marker DI4001
bcf LCD_CPort,LCD_RS endm	movlw D'100' call Wait2
Chum	Cail Waitz
Set_RS1: macro	return

Wait1: movlw H'10' movwf Wait1_Val Wait1_loop:decf Wait1_Val,F btfss STATUS,Z goto Wait1_loop return	movf INDF,W movwf LCD_DPort call Pulse_EN incf Temp1,F goto RAM2LCD2 RAM2LCD2X:nop return
Wait2: movwf Wait2_Val Wait2_loop call Wait1 decf Wait2_Val,F btfss STATUS,Z goto Wait2_loop return	Ld_Msg2RAM:clrf Temp1 clrf Temp3 movf Msg_Num,W movwf Temp1 Ld_Msg_Adr:movf Temp1,W
Disp_LCD: Disp_LCD1:Set_RS0 movlw LCD_L1_Addr movwf LCD_DPort	btfsc STATUS,Z goto Ld_MsgLoop movlw D'32' addwf Temp3,F decf Temp1,F goto Ld_Msg_Adr
call Pulse_EN Set_RS1 clrf Temp1 RAM2LCD1:movlw LCD_Char_Max subwf Temp1,W btfsc STATUS,Z goto RAM2LCD1X movlw LCD_RAM_Buf addwf Temp1,W movwf FSR bsf FSR,7 movf INDF,W movwf LCD_DPort call Pulse_EN incf Temp1,F goto RAM2LCD1	Ld_MsgLoop:movlw D'32' subwf Temp1,W btfsc STATUS,Z goto Ld_MsgDone movf PCLATH,W movwf Temp4 movlw HIGH Msg0 movwf PCLATH movf Temp1,W addwf Temp3,W call Msg0 movwf Temp2 movf Temp4,W movwf PCLATH
RAM2LCD1X:nop Disp_LCD2:Set_RS0	goto Ld_Msg_Char Ld_Msg_Char:movlw LCD_RAM_Buf
movlw LCD_L2_Addr movwf LCD_DPort call Pulse_EN Set_RS1 clrf Temp1 RAM2LCD2:movlw LCD_Char_Max subwf Temp1,W btfsc STATUS,Z goto RAM2LCD2X movlw LCD_RAM_Buf	addwf Temp1,W movwf FSR bsf FSR,7 movf Temp2,W movwf INDF incf Temp1,F goto Ld_MsgLoop Ld_MsgDone:return include <chord.inc></chord.inc>
addlw LCD_Char_Max addwf Temp1,W movwf FSR	end
bsf FSR,7	Disp_Chord:movf Tmr1_Sec,W

	btfss STATUS,Z					
	goto Disp_ChordX			call	Disp_Cdim	;dim (7/8)
	3 1-			call	Disp_Dbdim	, (, ,
	clrf Temp1			call	Disp_Ddim	
	movlw LCD_RAM_Bu	uf				
	addlw D'16'				Disp_Caug	;aug (8/8)
	movwf FSR				Disp_Dbaug	
	bsf FSR,7				Disp_Daug	
	call Disp_C7	;7th (4/8)		call	Disp_Ebaug	
	call Disp_Db7	,701 (470)		mov	f PCLATH_TEN	ИР W
	call Disp_D7				wf PCLATH	, , ,
	call Disp_Eb7					
	call Disp_E7			call	Disp_C	;Major (1/8)
	call Disp_F7			call	Disp_Db	
	call Disp_Gb7			call	Disp_D	
	call Disp_G7			call	Disp_Eb	
	call Disp_Ab7			call	Disp_E	
	call Disp_A7			call	Disp_F	
	call Disp_Bb7 call Disp_B7			call call	Disp_Gb Disp_G	
	call Disp_D/			call	Disp_G Disp_Ab	
	call Disp_CM7	;M7th (5/8)		call	Disp_A	
	call Disp_DbM7	/· · · · · · (5/ 5)		call	Disp_Bb	
	call Disp_DM7			call	Disp_B	
	call Disp_EbM7					
	call Disp_EM7				Disp_Cm	;minor (2/8)
	call Disp_FM7				Disp_Dbm	
	call Disp_GbM7			call	Disp_Dm	
	call Disp_GM7			call	Disp_Ebm	
	call Disp_AbM7 call Disp_AM7			call call	Disp_Em Disp_Fm	
	call Disp_BbM7			call	Disp_rm Disp_Gbm	
	call Disp_BM7			call	Disp_Gm	
	ou 2.0p_2			call	Disp_Abm	
	movf PCLATH,W			call	Disp_Am	
	movwf PCLATH_TEN	MP		call	Disp_Bbm	
	bcf PCLATH,4			call	Disp_Bm	
	bsf PCLATH,3					
	!! Di C7	741-	(2.(0)	call	Disp_Cs	;suspended
(6/0)	call Disp_Cm7	;m7th	(3/8)	call	Dien Dhe	
(6/8)	call Disp_Dbm7				Disp_Dbs Disp_Ds	
	call Disp_Dm7				Disp_Ebs	
	call Disp_Ebm7				Disp_Es	
	call Disp_Em7				Disp_Fs	
	call Disp_Fm7				Disp_Gbs	
	call Disp_Gbm7			call	Disp_Gs	
	call Disp_Gm7				Disp_Abs	
	call Disp_Abm7				. —	
	call Disp_Am7				Disp_Bbs	
	call Disp_Bbm7 call Disp_Bm7			CdII	Disp_Bs	
	сап Бізр_Біті/					

Disp_Cho	call Disp_None ordX: return		goto Disp_DX btfss Note_Lo,0 goto Disp_DX
;'Major N			bsf Temp1,0 movlw "D"
Disp_C:	btfsc Temp1,0 goto Disp_CX btfss Note_Lo,3 goto Disp_CX	Disp_DX:	movwf INDF incf FSR,F call Disp_Major return
Dian CV	btfss Note_Hi,1 goto Disp_CX btfss Note_Hi,4 goto Disp_CX bsf Temp1,0 movlw "C" movwf INDF incf FSR,F call Disp_Major	Disp_Eb:	btfsc Temp1,0 goto Disp_EbX btfss Note_Hi,0 goto Disp_EbX btfss Note_Hi,4 goto Disp_EbX btfss Note_Lo,1 goto Disp_EbX bsf Temp1,0
Disp_CX:	return		movlw "D" movwf INDF
Disp_Db:	btfsc Temp1,0 goto Disp_DbX btfss Note_Lo,4 goto Disp_DbX btfss Note_Hi,2 goto Disp_DbX btfss Note_Hi,5 goto Disp_DbX btfss Note_Hi,5 goto Disp_DbX bsf Temp1,0 movlw "C" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "/"	Disp_EbX	incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "/" movwf INDF incf FSR,F movlw "E" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_Major
Disp_Db>	movwf INDF incf FSR,F movlw "D" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_Major K:return	Disp_E:	btfsc Temp1,0 goto Disp_EX btfss Note_Hi,1 goto Disp_EX btfss Note_Hi,5 goto Disp_EX btfss Note_Lo,2 goto Disp_EX bsf Temp1,0 movlw "E" movwf INDF incf FSR,F
Disp_D:	btfsc Temp1,0 goto Disp_DX btfss Note_Lo,5 goto Disp_DY	Disp_EX:	call Disp_Major
	goto Disp_DX btfss Note Hi,3	Disp F:	btfsc Temp1,0

	goto Disp_FX btfss Note_Hi,2 goto Disp_FX btfss Note_Lo,0 goto Disp_FX btfss Note_Lo,3 goto Disp_FX btfss Temp1,0 movlw "F" movwf INDF incf FSR,F call Disp_Major return	Disp_GX: Disp_Ab:	btfsc Temp1,0 goto Disp_AbX btfss Note_Hi,5 goto Disp_AbX btfss Note_Lo,3 goto Disp_AbX btfss Note_Hi,0 goto Disp_AbX bsf Temp1,0 movlw "G" movwf INDF
Disp_Gb:	btfsc Temp1,0 goto Disp_GbX btfss Note_Hi,3 goto Disp_GbX btfss Note_Lo,1 goto Disp_GbX btfss Note_Lo,4 goto Disp_GbX btfss Note_Lo,4 goto Disp_GbX bsf Temp1,0 movlw "F" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "/"	Disp_AbX Disp_A:	incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "/" movwf INDF incf FSR,F movlw "A" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_Major c: return
	movwf INDF incf FSR,F movlw "G" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_Major		goto Disp_AX btfss Note_Lo,0 goto Disp_AX btfss Note_Lo,4 goto Disp_AX btfss Note_Hi,1 goto Disp_AX bsf Temp1,0 movlw "A" movwf INDF incf FSR,F
	btfsc Temp1,0 goto Disp_GX btfss Note_Hi,4 goto Disp_GX btfss Note_Lo,2 goto Disp_GX btfss Note_Lo,5 goto Disp_GX bsf Temp1,0 movlw "G" movwf INDF incf FSR,F	Disp_AX: Disp_Bb:	call Disp_Major

	movlw "A"	goto Disp_DbmX
	movwf INDF	btfss Note_Lo,4
	incf FSR,F	goto Disp_DbmX
	movlw "#"	btfss Note_Hi,1
	movwf INDF	goto Disp_DbmX
	incf FSR,F	btfss Note_Hi,5
	movlw "/"	goto Disp_DbmX
	movwf INDF	bsf Temp1,0
	incf FSR,F	movlw "C"
	movlw "B"	movwf INDF
	movwf INDF	
		incf FSR,F
	incf FSR,F	movlw "#"
	movlw "b"	movwf INDF
	movwf INDF	incf FSR,F
	incf FSR,F	movlw "m"
	call Disp_Major	movwf INDF
Disp_Bb	X:return	incf FSR,F
		movlw "/"
Disp_B:	btfsc Temp1,0	movwf INDF
	goto Disp_BX	incf FSR,F
	btfss Note_Lo,2	movlw "D"
	goto Disp_BX	movwf INDF
	btfss Note_Hi,0	incf FSR,F
	goto Disp_BX	movlw "b"
	btfss Note_Hi,3	movwf INDF
	goto Disp_BX	incf FSR,F
	bsf Temp1,0	movlw "m"
	movlw "B"	movwf INDF
	movwf INDF	
		incf FSR,F
	incf FSR,F	call Disp_Minor
D: D)/	call Disp_Major	Disp_DbmX:return
Disp_BX	: return	
		Disp_Dm:btfsc Temp1,0
;'minor r		goto Disp_DmX
Disp_Cm	n: btfsc Temp1,0	btfss Note_Lo,5
	goto Disp_CmX	goto Disp_DmX
	btfss Note_Lo,3	btfss Note_Hi,2
	goto Disp_CmX	goto Disp_DmX
	btfss Note_Hi,0	btfss Note_Lo,0
	goto Disp_CmX	goto Disp_DmX
	btfss Note_Hi,4	bsf Temp1,0
	goto Disp_CmX	movlw "D"
	bsf Temp1,0	movwf INDF
	movlw "C"	incf FSR,F
	movwf INDF	movlw "m"
	incf FSR,F	movwf INDF
	movlw "m"	
		incf FSR,F
	movwf INDF	call Disp_Minor
	incf FSR,F	Disp_DmX: return
D: 0	call Disp_Minor	B. E. I.S. E
Disp_Cm	nX: return	Disp_Ebm: btfsc Temp1,0
		goto Disp_EbmX
Disp Db	m:btfsc Temp1,0	btfss Note Hi,0

goto Disp_EbmX btfss Note_Hi,3 goto Disp_EbmX btfss Note_Lo,1 goto Disp_EbmX bsf Temp1,0 movlw "D" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F	goto Disp_FmX btfss Note_Lo,3 goto Disp_FmX bsf Temp1,0 movlw "F" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F call Disp_Minor Disp_FmX:return
movlw "m"	Disp_Finx.return
movwf INDF	Disp_Gbm:btfsc Temp1,0
incf FSR,F	goto Disp_GbmX
movlw "/"	btfss Note_Hi,3
movwf INDF	goto Disp_GbmX
incf FSR,F	btfss Note_Lo,0
movlw "E"	goto Disp_GbmX
movwf INDF	btfss Note_Lo,4
incf FSR,F	goto Disp_GbmX
movlw "b"	bsf Temp1,0
movwf INDF	movlw "F"
incf FSR,F	movwf INDF
movlw "m"	incf FSR,F
movwf INDF	movlw "#"
incf FSR,F	movwf INDF
call Disp_Minor	incf FSR,F
Disp_EbmX:return	movlw "m"
	movwf INDF
Disp_Em: btfsc Temp1,0	incf FSR,F
goto Disp_EmX	movlw "/"
btfss Note_Hi,1	movwf INDF
goto Disp_EmX	incf FSR,F movlw "G"
btfss Note_Hi,4 goto Disp_EmX	movwf INDF
btfss Note_Lo,2	incf FSR,F
goto Disp_EmX	movlw "b"
bsf Temp1,0	movwf INDF
movlw "E"	incf FSR,F
movwf INDF	movlw "m"
incf FSR,F	movwf INDF
movlw "m"	incf FSR,F
movwf INDF	call Disp_Minor
incf FSR,F	Disp_GbmX:return
call Disp_Minor	'-
Disp_EmX:return	Disp_Gm:btfsc Temp1,0
	goto Disp_GmX
Disp_Fm:btfsc Temp1,0	btfss Note_Hi,4
goto Disp_FmX	goto Disp_GmX
btfss Note_Hi,2	btfss Note_Lo,1
goto Disp_FmX	goto Disp_GmX
btfss Note_Hi,5	btfss Note_Lo,5

goto Disp_GmX bsf Temp1,0 movlw "G" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F call Disp_Minor	movlw "A" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F call Disp_Minor Disp_AmX: return
Disp_GmX:return	Disp_Bbm:btfsc Temp1,0
Disp_Abm:btfsc Temp1,0 goto Disp_AbmX btfss Note_Hi,5 goto Disp_AbmX btfss Note_Lo,2 goto Disp_AbmX btfss Note_Hi,0 goto Disp_AbmX btfss Note_Hi,0 goto Disp_AbmX bsf Temp1,0 movlw "G" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F movlw "/" movwf INDF incf FSR,F movlw "/" movwf INDF incf FSR,F movlw "A" movwf INDF incf FSR,F movlw "B" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F	goto Disp_BbmX btfss Note_Lo,1 goto Disp_BbmX btfss Note_Lo,4 goto Disp_BbmX btfss Note_Hi,2 goto Disp_BbmX btfss Note_Hi,2 goto Disp_BbmX bsf Temp1,0 movlw "A" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F movlw "/" movwf INDF incf FSR,F movlw "B" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F movlw "m" movwf INDF incf FSR,F call Disp_Minor Disp_BbmX:return
call Disp_Minor Disp AbmX:return	Dica Rmilhtfcc Tomal 0
Disp_Am: btfsc Temp1,0 goto Disp_AmX btfss Note_Lo,0 goto Disp_AmX btfss Note_Lo,3 goto Disp_AmX btfss Note_Lio,3 goto Disp_AmX btfss Note_Hi,1 goto Disp_AmX bsf Temp1,0	Disp_Bm:btfsc Temp1,0 goto Disp_BmX btfss Note_Lo,2 goto Disp_BmX btfss Note_Lo,5 goto Disp_BmX btfss Note_Hi,3 goto Disp_BmX bsf Temp1,0 movlw "B" movwf INDF

	incf FSR,F movlw "m" movwf INDF incf FSR,F	movwf INDF incf FSR,F movlw "y" movwf INDF
	call Disp_Minor	incf FSR,F
Disp_B	mX:return	movlw " "
Dien M	lajor:movlw ""	movwf INDF incf FSR,F
ייו_קפוט	movwf INDF	movlw "A"
	incf FSR,F	movwf INDF
	movlw "M"	incf FSR,F
	movwf INDF	movlw "g"
	incf FSR,F	movwf INDF
	movlw "a"	incf FSR,F
	movwf INDF	movlw "a"
	incf FSR,F	movwf INDF
	movlw "j ["]	incf FSR,F
	movwf INDF	movlw "i ["]
	incf FSR,F	movwf INDF
	movlw "o"	incf FSR,F
	movwf INDF	movlw "n"
	incf FSR,F	movwf INDF
	movlw "r"	incf FSR,F
	movwf INDF	Disp_NoneX:return
	incf FSR,F	
Disp_M	lajorX:return	include <chord2.inc></chord2.inc>
D: 14		include <chord3.inc></chord3.inc>
Disp_M	linor:movlw " "	; 'suspended Note'
	movwf INDF	Disp_Cs: btfsc Temp1,0
	incf FSR,F movlw "M"	goto Disp_CsX
	movwf INDF	btfss Note_Lo,3
	incf FSR,F	goto Disp_CsX btfss Note_Hi,2
	movlw "i"	goto Disp_CsX
	movwf INDF	btfss Note_Hi,4
	incf FSR,F	goto Disp_CsX
	movlw "n"	bsf Temp1,0
	movwf INDF	movlw "C"
	incf FSR,F	movwf INDF
	movlw "o"	incf FSR,F
	movwf INDF	call Disp_sus
	incf FSR,F	Disp_CsX:return
	movlw "r"	
	movwf INDF	Disp_Dbs:btfsc Temp1,0
	incf FSR,F	goto Disp_DbsX
Disp_M	linorX:return	btfss Note_Lo,4
		goto Disp_DbsX
Disp_N	one:btfsc_Temp1,0	btfss Note_Hi,3
	goto Disp_NoneX	goto Disp_DbsX
	movlw "T"	btfss Note_Hi,5
	movwf INDF	goto Disp_DbsX
	incf FSR,F	bsf Temp1,0
	movlw "r"	movlw "C"

movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F call Disp_sus movlw "/"	movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_sus Disp_EbsX: return
movwf INDF incf FSR,F movlw "D" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_sus Disp_DbsX:return	Disp_Es: btfsc Temp1,0 goto Disp_EsX btfss Note_Hi,1 goto Disp_EsX btfss Note_Lo,0 goto Disp_EsX btfss Note_Lo,2 goto Disp_EsX bsf Temp1,0 movlw "E"
Disp_Ds: btfsc Temp1,0 goto Disp_DsX btfss Note_Lo,5 goto Disp_DsX	movwf INDF incf FSR,F call Disp_sus Disp_EsX:return
btfss Note_Hi,4 goto Disp_DsX btfss Note_Lo,0 goto Disp_DsX bsf Temp1,0 movlw "D" movwf INDF incf FSR,F call Disp_sus Disp_DsX:return Disp_Ebs:btfsc Temp1,0 goto Disp_EbsX btfss Note Hi 0	Disp_Fs: btfsc Temp1,0 goto Disp_FsX btfss Note_Hi,2 goto Disp_FsX btfss Note_Lo,1 goto Disp_FsX btfss Note_Lo,3 goto Disp_FsX btfss Note_Lo,3 goto Disp_FsX bsf Temp1,0 movlw "F" movwf INDF incf FSR,F
btfss Note_Hi,0 goto Disp_EbsX btfss Note_Hi,5 goto Disp_EbsX btfss Note_Lo,1 goto Disp_EbsX bsf Temp1,0 movlw "D" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F call Disp_sus movlw "/" movwf INDF incf FSR,F call Disp_sus movlw "/" movwf INDF incf FSR,F call Disp_sus movlw "J" movwf INDF incf FSR,F call Disp_sus movlw "F"	call Disp_sus Disp_FsX:return Disp_Gbs:btfsc Temp1,0 goto Disp_GbsX btfss Note_Hi,3 goto Disp_GbsX btfss Note_Lo,2 goto Disp_GbsX btfss Note_Lo,4 goto Disp_GbsX btfss Note_Lo,4 goto Disp_GbsX bsf Temp1,0 movlw "F" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F

call Disp_sus movlw "/" movwf INDF	call Disp_sus Disp_AbsX:return
incf FSR,F movlw "G" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_sus	Disp_As: btfsc Temp1,0 goto Disp_AsX btfss Note_Lo,0 goto Disp_AsX btfss Note_Lo,5 goto Disp_AsX btfss Note_Hi,1 goto Disp_AsX
Disp_GbsX:return Disp_Gs: btfsc Temp1,0	bsf Temp1,0 movlw "A" movwf INDF
goto Disp_GsX btfss Note_Hi,4 goto Disp_GsX btfss Note_Lo,3	incf FSR,F call Disp_sus Disp_AsX:return
goto Disp_GsX btfss Note_Lo,5 goto Disp_GsX bsf Temp1,0 movlw "G" movwf INDF incf FSR,F call Disp_sus Disp_GsX:return	Disp_Bbs: btfsc Temp1,0 goto Disp_BbsX btfss Note_Lo,1 goto Disp_BbsX btfss Note_Hi,0 goto Disp_BbsX btfss Note_Hi,2 goto Disp_BbsX bsf Temp1,0 movlw "A"
Disp_Abs:btfsc Temp1,0 goto Disp_AbsX btfss Note_Hi,5 goto Disp_AbsX	movwf INDF incf FSR,F movlw "#" movwf INDF
btfss Note_Lo,4 goto Disp_AbsX btfss Note_Hi,0 goto Disp_AbsX	incf FSR,F call Disp_sus movlw "/" movwf INDF
bsf Temp1,0 movlw "G" movwf INDF incf FSR,F	incf FSR,F movlw "B" movwf INDF incf FSR,F
movlw "#" movwf INDF incf FSR,F call Disp_sus	movlw "b" movwf INDF incf FSR,F call Disp_sus
movlw "/" movwf INDF incf FSR,F	Disp_BbsX:return Disp_Bs: btfsc Temp1,0
movlw "A" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F	goto Disp_BsX btfss Note_Lo,2 goto Disp_BsX btfss Note_Hi,1 goto Disp_BsX btfss Note_Hi,3

goto Disp_BsX bsf Temp1,0 movlw "B" movwf INDF incf FSR,F call Disp_sus Disp_BsX:return	incf FSR,F call Disp_7 movlw "/" movwf INDF incf FSR,F movlw "D" movwf INDF
Dian avarandor llall	incf FSR,F
Disp_sus:movlw "s" movwf INDF	movlw "b" movwf INDF
incf FSR,F	incf FSR,F
movlw "u"	call Disp_7
movwf_INDF	Disp_Db7X:return
incf FSR,F	Diam D7. htfss. Tanan 1.0
movlw "s" movwf INDF	Disp_D7: btfsc Temp1,0
incf FSR,F	goto Disp_D7X btfss Note_Lo,5
return	goto Disp_D7X
recum	btfss Note_Hi,3
;'7th Note'	goto Disp_D7X
Disp_C7: btfsc Temp1,0	btfss Note_Lo,0
goto Disp_C7X	goto Disp_D7X
btfss Note_Lo,3	btfss Note_Lo,3
goto Disp_C7X	goto Disp_D7X
btfss Note_Hi,1 goto Disp_C7X	bsf Temp1,0 movlw "D"
btfss Note_Hi,4	movwf INDF
goto Disp_C7X	incf FSR,F
btfss Note_Lo,1	call Disp_7
goto Disp_C7X	Disp_D7X:return
bsf Temp1,0	
movlw "C"	Disp_Eb7:btfsc Temp1,0
movwf INDF	goto Disp_Eb7>
incf FSR,F	btfss Note_Hi,0
call Disp_7 Disp_C7X:return	goto Disp_Eb7> btfss Note_Hi,4
Disp_C/A.return	goto Disp_Eb7>
Disp_Db7:btfsc Temp1,0	btfss Note_Lo,1
goto Disp_Db7X	goto Disp_Eb7>
btfss Note_Lo,4	btfss Note_Lo,4
goto Disp_Db7X	goto Disp_Eb7>
btfss Note_Hi,2	bsf Temp1,0
goto Disp_Db7X	movlw "D"
btfss Note_Hi,5	movwf INDF
goto Disp_Db7X btfss Note_Lo,2	incf FSR,F movlw "#"
goto Disp_Db7X	movwf INDF
bsf Temp1,0	incf FSR,F
movlw "C"	call Disp_7
movwf INDF	movlw "/"
incf FSR,F	movwf INDF
movlw "#"	incf FSR,F
movwf INDF	movlw "E"

movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_7 Disp_Eb7X:return	movlw "F" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F call Disp_7
Disp_E7: btfsc Temp1,0 goto Disp_E7X btfss Note_Hi,1 goto Disp_E7X btfss Note_Hi,5 goto Disp_E7X btfss Note_Lo,2 goto Disp_E7X btfss Note_Lo,5 goto Disp_E7X btfss Note_Lo,5 goto Disp_E7X bsf Temp1,0 movlw "E" movwf INDF incf FSR,F	movlw "/" movwf INDF incf FSR,F movlw "G" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_7 Disp_Gb7X:return Disp_G7: btfsc Temp1,0 goto Disp_G7X btfss Note_Hi,4
call Disp_7 Disp_E7X:return	goto Disp_G7X btfss Note_Lo,2
Disp_F7: btfsc Temp1,0 goto Disp_F7X btfss Note_Hi,2 goto Disp_F7X btfss Note_Lo,0 goto Disp_F7X btfss Note_Lo,3 goto Disp_F7X btfss Note_Hi,0 goto Disp_F7X btfss Note_Hi,0 goto Disp_F7X bsf Temp1,0 movlw "F" movwf INDF incf FSR,F	goto Disp_G7X btfss Note_Lo,5 goto Disp_G7X btfss Note_Hi,2 goto Disp_G7X btfss Note_Hi,2 goto Disp_G7X bsf Temp1,0 movlw "G" movwf INDF incf FSR,F call Disp_7 Disp_G7X:return Disp_Ab7:btfsc Temp1,0 goto Disp_Ab7X btfss Note_Hi,5
call Disp_7 Disp_F7X:return	goto Disp_Ab7X btfss Note_Lo,3 goto Disp_Ab7X
Disp_Gb7:btfsc Temp1,0 goto Disp_Gb7X btfss Note_Hi,3 goto Disp_Gb7X btfss Note_Lo,1 goto Disp_Gb7X btfss Note_Lo,4 goto Disp_Gb7X btfss Note_Hi,1 goto Disp_Gb7X btfss Note_Hi,1 goto Disp_Gb7X bsf Temp1,0	btfss Note_Hi,0 goto Disp_Ab7X btfss Note_Hi,3 goto Disp_Ab7X bsf Temp1,0 movlw "G" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F

call Disp_7 movlw "/" movwf INDF incf FSR,F movlw "A" movwf INDF incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_7	incf FSR,F movlw "b" movwf INDF incf FSR,F call Disp_7 Disp_Bb7X:return Disp_B7: btfsc Temp1,0 goto Disp_B7X btfss Note_Lo,2 goto Disp_B7X
Disp_Ab7X:return	btfss Note_Hi,0
Disp_A7: btfsc Temp1,0 goto Disp_A7X btfss Note_Lo,0 goto Disp_A7X btfss Note_Lo,4 goto Disp_A7X btfss Note_Hi,1 goto Disp_A7X btfss Note_Hi,4 goto Disp_A7X btfss Note_Hi,4 goto Disp_A7X btfss Note_Hi,4 goto Disp_A7X btfs Temp1,0	goto Disp_B7X btfss Note_Hi,3 goto Disp_B7X btfss Note_Lo,0 goto Disp_B7X bsf Temp1,0 movlw "B" movwf INDF incf FSR,F call Disp_7 Disp_B7X:return
movlw "A"	Disp_7: movlw "7"
movwf INDF incf FSR,F	movwf INDF incf FSR,F
call Disp_7	return
Disp_A7X: return	;'M7 Note'
Disp_Bb7:btfsc Temp1,0	·
goto Disp_Bb7X btfss Note_Lo,1 goto Disp_Bb7X btfss Note_Lo,5 goto Disp_Bb7X btfss Note_Hi,2 goto Disp_Bb7X btfss Note_Hi,5 goto Disp_Bb7X btfss Note_Hi,5 goto Disp_Bb7X bsf Temp1,0 movlw "A" movwf INDF incf FSR,F movlw "#" movwf INDF incf FSR,F call Disp_7 movlw "/" movwf INDF incf FSR,F call Disp_7 movlw "/" movwf INDF incf FSR,F call Disp_7 movlw "MDF incf FSR,F call Disp_7 movlw "B"	Disp_CM7:btfsc Temp1,0 goto Disp_CM7X btfss Note_Lo,3 goto Disp_CM7X btfss Note_Hi,1 goto Disp_CM7X btfss Note_Hi,4 goto Disp_CM7X btfss Note_Lo,2 goto Disp_CM7X btfss Note_Lo,2 goto Disp_CM7X bsf Temp1,0 movlw "C" movwf INDF incf FSR,F call Disp_M7 Disp_CM7X: return Disp_DbM7:btfsc Temp1,0 goto Disp_DbM7X btfss Note_Lo,4 goto Disp_DbM7X
movwf INDF incf FSR,F	goto Disp_DbM7 btfss Note_Lo,4

goto Disp_DbM7X	movlw "D"
btfss Note_Hi,5	movwf INDF
goto Disp_DbM7X	incf FSR,F
btfss Note_Lo,3	movlw "#"
goto Disp_DbM7X	movwf INDF
bsf Temp1,0	incf FSR,F
movlw "C"	call Disp_M7
movwf INDF	movlw "/"
incf FSR,F	movwf INDF
movlw "#"	incf FSR,F
movwf INDF	movlw "É"
incf FSR,F	movwf INDF
call Disp_M7	incf FSR,F
movlw "/"	movlw "b"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "D"	call Disp_M7
movwf INDF	Disp_EbM7X:return
incf FSR,F	Disp_Est i/Air etairi
movlw "b"	Disp_EM7:btfsc Temp1,0
movwf INDF	goto Disp_EM7X
incf FSR,F	btfss Note_Hi,1
call Disp_M7	goto Disp_EM7X
Disp_DbM7X:return	btfss Note_Hi,5
515P_551	goto Disp_EM7X
Disp_DM7:btfsc Temp1,0	btfss Note_Lo,2
goto Disp_DM7X	goto Disp_EM7X
btfss Note_Lo,5	btfss Note_Hi,0
goto Disp_DM7X	goto Disp_EM7X
btfss Note_Hi,3	bsf Temp1,0
goto Disp_DM7X	movlw "E"
btfss Note_Lo,0	movwf INDF
goto Disp_DM7X	incf FSR,F
btfss Note_Lo,4	call Disp_M7
goto Disp_DM7X	Disp_EM7X:return
bsf Temp1,0	210p_21.17.411 Gtd111
movlw "D"	Disp_FM7:btfsc Temp1,0
movwf INDF	goto Disp_FM7X
incf FSR,F	btfss Note_Hi,2
call Disp_M7	goto Disp_FM7X
Disp_DM7X:return	btfss Note Lo,0
1 –	goto Disp_FM7X
Disp_EbM7:btfsc Temp1,0	btfss Note_Lo,3
goto Disp_EbM7X	goto Disp_FM7X
btfss Note_Hi,0	btfss Note_Hi,1
goto Disp_EbM7X	goto Disp_FM7X
btfss Note_Hi,4	bsf Temp1,0
goto Disp_EbM7X	movlw "F"
btfss Note_Lo,1	movwf INDF
goto Disp_EbM7X	incf FSR,F
btfss Note_Lo,5	call Disp_M7
goto Disp_EbM7X	Disp_FM7X:return
bsf Temp1,0	- L

Disp_GbM7:btfsc Temp1,0	btfss Note_Hi,0
goto Disp_GbM7X	goto Disp_AbM7X
btfss Note_Hi,3	btfss Note_Hi,4
goto Disp_GbM7X	goto Disp_AbM7X
btfss Note_Lo,1	bsf Temp1,0
goto Disp_GbM7X	movlw "G"
btfss Note_Lo,4	movwf INDF
goto Disp_GbM7X	incf FSR,F
btfss Note_Hi,2	movlw "#"
goto Disp_GbM7X	movwf INDF
bsf Temp1,0	incf FSR,F
movlw "F"	call Disp_M7
movwf INDF	movlw "/"
incf FSR,F	movwf INDF
movlw "#"	incf FSR,F
movwf INDF	movlw "Á"
incf FSR,F	movwf INDF
call Disp_M7	incf FSR,F
movlw "/"	movlw "b"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "G"	call Disp_M7
movwf INDF	Disp_AbM7X:return
incf FSR,F	
movlw "b"	Disp_AM7:btfsc Temp1,0
movwf INDF	goto Disp_AM7X
incf FSR,F	btfss Note_Lo,0
call Disp_M7	goto Disp_AM7X
Disp_GbM7X:return	btfss Note_Lo,4
516P_651	goto Disp_AM7X
Disp_GM7:btfsc Temp1,0	btfss Note_Hi,1
goto Disp_GM7X	goto Disp_AM7X
btfss Note_Hi,4	btfss Note_Hi,5
goto Disp_GM7X	goto Disp_AM7X
btfss Note_Lo,2	bsf Temp1,0
goto Disp_GM7X	movlw "A"
btfss Note Lo,5	movwf INDF
goto Disp_GM7X	incf FSR,F
btfss Note_Hi,3	call Disp_M7
goto Disp_GM7X	Disp_AM7X:return
bsf Temp1,0	Disp_AM7X.Teturn
movlw "G"	Disp_BbM7:btfsc Temp1,0
movwf INDF	goto Disp_BbM7X
incf FSR,F	btfss Note_Lo,1
•	
call Disp_M7 Disp_GM7X:return	goto Disp_BbM7X
Disp_di47x.return	btfss Note_Lo,5
Dien AhM7-htfcc Tomn1 0	goto Disp_BbM7X
Disp_AbM7:btfsc Temp1,0	btfss Note_Hi,2
goto Disp_AbM7X	goto Disp_BbM7X
btfss Note_Hi,5	btfss Note_Lo,0
goto Disp_AbM7X	goto Disp_BbM7X
btfss Note_Lo,3	bsf Temp1,0
goto Disp_AbM7X	movlw "A"

	movwf INDF		btfss Note_Lo,1
	incf FSR,F		goto Disp_Cm7X
	movlw "#"		bsf Temp1,0
	movwf INDF		movlw "C"
	incf FSR,F		movwf INDF
	call Disp_M7		incf FSR,F
	movlw "/"		call Disp_m7
	movwf INDF	Disp_Cm7	-
	incf FSR,F	. –	
	movlw "B"	Disp_Dbm	7:btfsc Temp1,0
	movwf INDF		goto Disp_Dbm7X
	incf FSR,F		btfss Note_Lo,4
	movlw "b"		goto Disp_Dbm7X
	movwf INDF		btfss Note_Hi,1
	incf FSR,F		goto Disp_Dbm7X
	call Disp_M7		btfss Note_Hi,5
Disp_BbM	7X:return		goto Disp_Dbm7X
•			btfss Note_Lo,2
Disp_BM7	:btfsc Temp1,0		goto Disp_Dbm7X
. –	goto Disp_BM7X		bsf Temp1,0
	btfss Note_Lo,2		movlw "C"
	goto Disp_BM7X		movwf INDF
	btfss Note_Hi,0		incf FSR,F
	goto Disp_BM7X		movlw "#"
	btfss Note_Hi,3		movwf INDF
	goto Disp_BM7X		incf FSR,F
	btfss Note_Lo,1		call Disp_m7
	goto Disp_BM7X		movlw "/"
	bsf Temp1,0		movwf INDF
	movlw "B"		incf FSR,F
	movwf INDF		movlw "D"
	incf FSR,F		movwf INDF
	call Disp_M7		incf FSR,F
Disp_BM7	• =		movlw "b"
-1-			movwf INDF
Disp M7:	movlw "M"		incf FSR,F
	movwf INDF		call Disp_m7
	incf FSR,F	Disp Dbm	n7X:return
	movlw "7"	. –	
	movwf INDF	Disp Dm7	:btfsc Temp1,0
	incf FSR,F		goto Disp_Dm7X
	return		btfss Note_Lo,5
			goto Disp_Dm7X
	org 0x0800		btfss Note_Hi,2
	_		goto Disp_Dm7X
Disp_Cm7	': btfsc Temp1,0		btfss Note_Lo,0
•	goto Disp_Cm7X		goto Disp_Dm7X
	btfss Note_Lo,3		btfss Note_Lo,3
	goto Disp_Cm7X		goto Disp_Dm7X
	btfss Note_Hi,0		bsf Temp1,0
	goto Disp_Cm7X		movlw "D"
	btfss Note_Hi,4		movwf INDF
	goto Disp_Cm7X		incf FSR,F

call Disp_m7 Disp_Dm7X:return	goto Disp_Fm7X btfss Note_Hi,5
	goto Disp_Fm7X
Disp_Ebm7:btfsc Temp1,0	btfss Note_Lo,3
goto Disp_Ebm7X	goto Disp_Fm7X
btfss Note_Hi,0	btfss Note_Hi,0
goto Disp_Ebm7X	goto Disp_Fm7X
btfss Note_Hi,3	bsf Temp1,0
goto Disp_Ebm7X	movlw "F"
btfss Note_Lo,1	movwf INDF
goto Disp_Ebm7X	incf FSR,F
btfss Note_Lo,4	call Disp_m7
goto Disp_Ebm7X	Disp_Fm7X:return
bsf Temp1,0	
movlw "D"	Disp_Gbm7:btfsc Temp1,0
movwf INDF	goto Disp_Gbm7X
incf_FSR,F	btfss Note_Hi,3
movlw "#"	goto Disp_Gbm7X
movwf INDF	btfss Note_Lo,0
incf FSR,F	goto Disp_Gbm7X
call Disp_m7	btfss Note_Lo,4
movlw "/" movwf INDF	goto Disp_Gbm7X
incf FSR,F	btfss Note_Hi,1
movlw "E"	goto Disp_Gbm7X bsf Temp1,0
movwf INDF	movlw "F"
incf FSR,F	movwf INDF
movlw "b"	incf FSR,F
movwf INDF	movlw "#"
incf FSR,F	movwf INDF
call Disp_m7	incf FSR,F
Disp_Ebm7X:return	call Disp_m7
4-	movlw "/"
Disp_Em7:btfsc Temp1,0	movwf INDF
goto Disp_Em7X	incf FSR,F
btfss Note_Hi,1	movlw "G"
goto Disp_Em7X	movwf INDF
btfss Note_Hi,4	incf FSR,F
goto Disp_Em7X	movlw "b"
btfss Note_Lo,2	movwf INDF
goto Disp_Em7X	incf FSR,F
btfss Note_Lo,5	call Disp_m7
goto Disp_Em7X	Disp_Gbm7X:return
bsf Temp1,0	D: 0 7115 T 10
movlw "E"	Disp_Gm7:btfsc Temp1,0
movwf INDF	goto Disp_Gm7X
incf FSR,F	btfss Note_Hi,4
call Disp_m7	goto Disp_Gm7X
Disp_Em7X:return	btfss Note_Lo,1
Disp Em7:htfsc Temp1 0	goto Disp_Gm7X btfss Note_Lo,5
Disp_Fm7:btfsc Temp1,0 goto Disp_Fm7X	goto Disp_Gm7X
htfss Note Hi 2	htfss Note Hi 2

goto Disp_Gm7X bsf Temp1,0	Disp_Am7X:return	
movlw "G"	Disp_Bbm7:btfsc Temp1,0	
movwf INDF	goto Disp_Bbm7X	
incf FSR,F	btfss Note_Lo,1	
call Disp_m7	goto Disp_Bbm7X	
Disp_Gm7X:return	btfss Note_Lo,4	
	goto Disp_Bbm7X	
Disp_Abm7: btfsc Temp1,0	btfss Note_Hi,2	
goto Disp_Abm7X	goto Disp_Bbm7X	
btfss Note_Hi,5	btfss Note_Hi,5	
goto Disp_Abm7X	goto Disp_Bbm7X	
btfss Note_Lo,2	bsf Temp1,0	
goto Disp_Abm7X	movlw "A"	
btfss Note_Hi,0	movwf INDF	
goto Disp_Abm7X	incf FSR,F movlw "#"	
btfss Note_Hi,3 goto Disp_Abm7X	movwf INDF	
bsf Temp1,0	incf FSR,F	
movlw "G"	call Disp_m7	
movwf INDF	movlw "/"	
incf FSR,F	movwf INDF	
movlw "#"	incf FSR,F	
movwf INDF	movlw "B"	
incf FSR,F	movwf INDF	
call Disp_m7	incf FSR,F	
movlw "/"	movlw "b"	
movwf INDF	movwf INDF	
incf FSR,F	incf FSR,F	
movlw_"A"	call Disp_m7	
movwf INDF	Disp_Bbm7X:return	
incf FSR,F	D: D 7116 T 40	
movlw "b"	Disp_Bm7:btfsc Temp1,0	
movwf INDF	goto Disp_Bm7X	
incf FSR,F	btfss Note_Lo,2	
call Disp_m7 Disp_Abm7X:return	goto Disp_Bm7X btfss Note_Lo,5	
Disp_Abili7X.Teturii	goto Disp_Bm7X	
Disp_Am7:btfsc Temp1,0	btfss Note_Hi,3	
goto Disp_Am7X	goto Disp_Bm7X	
btfss Note_Lo,0	btfss Note_Lo,0	
goto Disp_Am7X	goto Disp_Bm7X	
btfss Note_Lo,3	bsf Temp1,0	
goto Disp_Am7X	movlw "B"	
btfss Note_Hi,1	movwf INDF	
goto Disp_Am7X	incf FSR,F	
btfss Note_Hi,4	call Disp_m7	
goto Disp_Am7X	Disp_Bm7X:return	
bsf Temp1,0		
movlw "A"	Disp_m7: movlw "m"	
movwf INDF	movwf INDF	
incf FSR,F	incf FSR,F	
call Disp m7	movlw "7"	

movwf INDF	goto Disp_DbdimX
incf FSR,F	btfss Note_Hi,4
return	goto Disp_DbdimX
	btfss Note_Lo,1
Disp_Cdim:btfsc Temp1,0	goto Disp_DbdimX
goto Disp_CdimX	bsf Temp1,0
btfss Note_Lo,3	movlw "C"
goto Disp_CdimX	movwf INDF
btfss Note_Hi,0	incf FSR,F
goto Disp_CdimX	movlw "#"
btfss Note_Hi,3	movwf INDF
goto Disp_CdimX	incf FSR,F
btfss Note_Lo,0	movlw "."
goto Disp_CdimX	movwf INDF
bsf Temp1,0	incf FSR,F
movlw "C"	movlw "E"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "."	movlw "."
movwf INDF	movwf INDF
incf_FSR,F	incf FSR,F
movlw "D"	movlw "G"
movwf_INDF	movwf INDF
incf_FSR,F	incf_FSR,F
movlw "#"	movlw "."
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "."	movlw_"A"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "F"	movlw "#"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "#"	movlw "."
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw_"."	call Disp_dim
movwf_INDF	Disp_DbdimX:return
incf_FSR,F	
movlw "A"	Disp_Ddim:btfsc_Temp1,0
movwf_INDF	goto Disp_DdimX
incf FSR,F	btfss Note_Lo,5
movlw_"."	goto Disp_DdimX
movwf INDF	btfss Note_Hi,2
incf FSR,F	goto Disp_DdimX
call Disp_dim	btfss Note_Hi,5
Disp_CdimX:return	goto Disp_DdimX
	btfss Note_Lo,2
Disp_Dbdim:btfsc Temp1,0	goto Disp_DdimX
goto Disp_DbdimX	bsf Temp1,0
btfss Note_Lo,4	movlw "D"
goto Disp_DbdimX	movwf INDF
btfss Note_Hi,1	incf FSR,F

movlw "."	movlw "E"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "F"	movlw "."
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "."	movlw "G"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "G"	movlw "#"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "#"	movlw "."
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "."	call Disp_aug
movwf INDF	Disp_CaugX:return
incf FSR,F	Disp_caughtretain
movlw "B"	Disp_Dbaug:btfsc Temp1,0
movwf INDF	goto Disp_DbaugX
incf FSR,F	btfss Note_Lo,4
movlw "."	goto Disp_DbaugX
movwf INDF	btfss Note_Hi,2
incf FSR,F	goto Disp_DbaugX
call Disp_dim	btfss Note_Lo,0
Disp_DdimX:return	goto Disp_DbaugX
Disp_DaimX.recam	bsf Temp1,0
Disp_dim:movlw "d"	movlw "C"
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
movlw "i"	movlw "#"
movwf INDF	movwf INDF
incf FSR,F movlw "m"	incf FSR,F movlw "."
movwf INDF	movwf INDF
incf FSR,F	incf FSR,F
return	movlw "F"
Dian County of Town 1 0	movwf INDF
Disp_Caug:btfsc Temp1,0	incf FSR,F
goto Disp_CaugX	movlw "."
btfss Note_Lo,3	movwf INDF
goto Disp_CaugX	incf FSR,F
btfss Note_Hi,1	movlw "A"
goto Disp_CaugX	movwf INDF
btfss Note_Hi,5	incf FSR,F
goto Disp_CaugX	movlw "."
bsf Temp1,0	movwf INDF
movlw "C"	incf FSR,F
movwf INDF	call Disp_aug
incf_FSR,F	Disp_DbaugX:return
movlw "."	
movwf_INDF	Disp_Daug:btfsc_Temp1,0
incf FSR F	goto Disp DaugX

```
btfss Note Lo,5
                                                      movwf INDF
        goto Disp_DaugX
                                                      incf FSR,F
                                                      movlw "."
        btfss Note_Hi,3
        goto Disp_DaugX
                                                      movwf INDF
        btfss Note_Lo,1
                                                      incf FSR,F
                                                      movlw "B"
        goto Disp_DaugX
        bsf Temp1,0
                                                      movwf INDF
        movlw "D"
                                                      incf FSR,F
        movwf INDF
                                                      movlw "."
        incf FSR,F
                                                      movwf INDF
        movlw "."
                                                      incf FSR,F
        movwf INDF
                                                      call Disp aug
        incf FSR,F
                                             Disp_EbaugX:return
        movlw "F"
        movwf INDF
                                             Disp_aug:movlw "a"
        incf FSR,F
                                                      movwf INDF
        movlw "#"
                                                      incf FSR,F
        movwf INDF
                                                      movlw "u"
        incf FSR,F
                                                      movwf INDF
        movlw "."
                                                      incf FSR,F
                                                      movlw "g"
        movwf INDF
        incf FSR,F
                                                      movwf INDF
        movlw "A"
                                                      incf FSR,F
        movwf INDF
                                                      return
        incf FSR,F
        movlw "#"
        movwf INDF
        incf FSR,F
        movlw "."
        movwf INDF
        incf FSR,F
        call Disp_aug
Disp_DaugX:return
Disp_Ebaug:btfsc Temp1,0
        goto Disp_EbaugX
        btfss Note_Hi,0
        goto Disp_EbaugX
        btfss Note_Hi,4
        goto Disp_EbaugX
        btfss Note_Lo,2
        goto Disp_EbaugX
        bsf Temp1,0
        movlw "D"
        movwf INDF
        incf FSR,F
        movlw "#"
        movwf INDF
        incf FSR,F
        movlw "."
        movwf INDF
        incf FSR,F
        movlw "G"
```