Section 7.5: Summary of the integration techniques
tech nighter
1. Simplify $\int \overline{x} (1+\overline{x_1}) dx = \int \frac{1}{\sec^2 x} dx = \int \frac{1}{\sin x \cdot \cos x} dx$
2. Check for simple u-subs $\int \frac{x}{x^2-1} dx$
3. Classify the integrand:
3. Classify the integrand: (a) trig functions, products of sin, cos, etc.
(c) integration by parts { polynomial } × { e ^x , sin >1, cos >1 } arcton >1, arcsin >1
erctons, ercsina
Sove tonse ds
(d) Radicals
1 + 212 + 22 -> trig subs
· \\ a x + b \\ -> \(\lambda \)
un = 601+b (may work also for u= N/9/21) am also
$u = \delta_{3}(+b)$ $u = \sqrt{g(x)}, \text{ any } g(x)$
4. Fundamentally only 2 methods;
4. Fundamentally only 2 methods; u-sub / int by parts
(a) u-sub
. •
(c) elgebraic transformations
(d) reduce to known integrals
(e) combine

Eveluete the integrals $\frac{1}{\int \frac{t \, \text{on}^3 \, \text{sec}^3 \, \text{sec}^3$ I touse see 3 n de = I tous x see 2 n - seex touride = (see2x-1) sec2x. secx tours dr $= |u = sec_{x}| + (= (sec_{x})^{5} - (sec_{x})^{3} + ($ $\frac{1}{2} = \frac{1}{2} = \frac{1$ $=2\int ue^{u}du=2\left(u\cdot e^{u}-\int e^{u}du\right)$ = 2 (ueu - eu) + C = 2 (5xe5x - e5x) + (

Ex 3
$$\int \frac{6\pi^2 - 12\pi - 20}{3\pi^3 - 3\pi^2 - 10\pi} dx$$

$$\lim_{N \to \infty} \frac{3}{3\pi^2 - 10\pi} dx$$

$$\lim_{N \to \infty}$$

$$\int \frac{du}{\sqrt{1-n^2}} du = 1 - \frac{1}{2} du = -\frac{1}{2} \int \frac{du}{\sqrt{u}} du = -\frac{1}{2} \int \frac{du}{\sqrt{u}} du = -\frac{1}{2} \int \frac{du}{\sqrt{u}} du = -\frac{1}{2} \int \frac{u^{1/2}}{\sqrt{u}} du = -\frac{1}{$$

Conclusion: Not all functions have ontiderivatives expressible in elementary functions (polynomials, trig, inverse trig, etc).

$$\int_{0}^{2} e^{-t^{2}} dt = \int_{0}^{2} evf(x)$$

$$\int_{0.8}^{0.8} e^{-t^{2}} dt = \int_{0.8}^{2} evf(x)$$

$$\int_{0.8}^{0.8} e^{-t^{2}} dt = \int_{0.8}^{2} evf(x)$$