MA331 Intermediate Statistics

Lecture 05 Inference on Population Mean and Proportion ¹

Xiaohu Li

Department of Mathematical Sciences Stevens Institute of Technology Hoboken, New Jersey 07030

Weeks 06-07

¹Based on Chapters 6, 7 and 8.

1. Statistical hypothesis

Sometimes, experimenter only wants to know the partial information of μ , e.g., $\mu > \mu_0$? — to test a statement about μ based on the sample.

▲ statistical hypothesis is an assumption or a theory about the characteristics
of population distributions, and the procedure to prove or disprove it based on the
sample is called as a test of statistical significance.

Weight of cherry tomato packs:

- Does the calibrating machine that sorts cherry tomatoes into packs need revision?
- Statistical hypothesis: Is the population mean μ for the weight of cherry to packages equal to the designed 227g (0.5pound)?

2. Null hypothesis and alternative hypothesis

- $\angle M$ Alternative hypothesis (labeled H_a) is a more general statement about the population parameter, and H_0 and H_a are mutually exclusive.
- Meight of cherry tomato packages:
 - H_0 : $\mu = 227$ (the calibrating machine is good.)
 - H_a : $\mu \neq 227$ (the machine needs to be revised.)

For $H_0: \mu = \mu_0$, if $H_a: \mu \neq \mu_0$ ($H_a: \mu > \mu_0$ or $H_a: \mu < \mu_0$), then the test is called two-sided (one-sided)/two-tailed (one-tailed).

3. Testing statistic

To test the significance of H_0 we consider the sample X_1, \dots, X_n , which is from the population X and hence carries the concerned information.

To extract the useful information we resort to a statistic

$$T(X_1,\cdots,X_n),$$

some function of the sample and independent of unknown parameters.

E.g., To test H_0 : $p_H=1/2$ we use the sample proportion n_H/n with $n_H=(X_1+\cdots+X_n)/n$.

Query 1: How do you define X_i for $i = 1, \dots, n$?

To test $H_0: \mu = \mu_0$ (with known σ) we use

$$T(X_1, \cdots, X_n) = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \equiv Z.$$

4. p-value – evidence against the null hypothesis

- With the distribution of T under H_0 , one may evaluate the chance of observing the data x_1, \dots, x_n at hand p-value.
- \blacksquare A smaller (larger) p-value is against (in favor of) the null H_0 .
- **Example**: The cherry tomato packaging process has a known $\sigma = 5g$.
 - To test $H_0: \mu = \mu_0 = 227$ g versus $H_a: \mu \neq 227$ g, a dozen randomly selected boxes are observed to have the average weight $\bar{x} = 222$ g.
 - Under H_0 , $\bar{X} \sim \mathcal{N}(227, 5^2/12)$, and the prob of drawing a random sample with mean 5g (the observed distance) away from 227.

$$\begin{split} P(|\bar{X} - \mu_0| \geq |\bar{x} - \mu_0|) &= P\bigg(\frac{|\bar{X} - \mu_0|}{\sigma/\sqrt{n}} \geq \frac{|222 - 227|}{5/\sqrt{12}}\bigg) \\ &= P\bigg(|Z| \geq \sqrt{12}\bigg) = 2\Phi(-2\sqrt{3}) \approx 0.0005. \end{split}$$

• The small p-value 0.0005 disfavors H_0 . So, we reject $H_0: \mu = 227$.

Significance level and critical values

- Usually, a p-value less than 0.05 is considered to be significant.
 - The data observed is unlikely to be entirely due to randomness from the sampling. 0.1 and 0.01 are for looser and tougher alternatives, respectively.
 - A significance level $\alpha = 0.1, 0.05, 0.01$ is always given in practice.
- Based on the distribution of T, the lower and upper $\alpha/2$ quantile $c_{\alpha/2}$ and $c_{1-\alpha/2}$ serve as the critical values.
- Since $T \notin (c_{\alpha/2}, c_{1-\alpha/2})$ is equivalent to a p-value smaller than α , we can also make the decision by comparing the observed T with critical values.

(a) p-value 0.05

(b) p-value 0.01

6. z-test for a population mean μ

At significance level α , test $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$ based on (x_1, \dots, x_n) from pop $X \sim \mathcal{N}(\mu, \sigma^2)$ with known σ .

- \mathscr{O} Under H_0 , test statistic $Z = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$, observed as $z = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}$.
- \mathscr{O} p-value method: reject H_0 if $P(|Z| \ge |z|) = 2\Phi(-|z|) < \alpha$.
- 𝒞 Critical value method: reject H_0 if the observed $z \notin (z_{\alpha/2}, z_{1-\alpha/2})$, where $z_{\alpha/2}$, $z_{1-\alpha/2}$ are lower and upper $\alpha/2$ quantiles of $\mathcal{N}(0, 1)$.
- \mathscr{O} One side test: reject H_0 if

$$\left\{ \begin{array}{ll} \mathrm{P}(Z>z) < \alpha & \text{or} \quad z > z_{1-\alpha}, \quad \text{for } H_a: \mu > \mu_0, \\ \mathrm{P}(Z$$

Rejection regions

(c) $H_a: \mu < \mu_0$

(d)
$$H_a: \mu \neq \mu_0$$

7. A revisit to the cherry tomato packaging process

With a known standard deviation σ = 5g, test, at the significance level α = 0.05,

$$H_0: \mu = \mu_0 = 227$$
 versus $H_a: \mu \neq 227$

based on a randomly selected box with average weight $\bar{x} = 222g$.

- Under H_0 , the testing statistic $Z = \frac{\sqrt{\bar{n}}(\bar{X} \mu_0)}{\sigma} \sim \mathcal{N}(0, 1)$.
- Based on the sample, Z is observed as

$$z = \frac{222 - 227}{5/\sqrt{12}} = -\sqrt{12}.$$

Note that the p-value

$$P(|Z| \ge |z| = \sqrt{12}) \approx 0.0005 << 0.05 = \alpha.$$

We reject H_0 : $\mu = 227$. That is, the machine does need a calibration.

• Critical values $z_{.025} = -1.96$, $z_{.975} = 1.96$. Since

$$z = -3.46 \notin (-1.96, 1.96),$$

we reject H_0 : $\mu = 227$ again.

8. Use and abuse of the test for significance

- \mathscr{O} In statistics $\alpha=0.05$ is well accepted. A standard significance level is typically preferred in a specific area.
 - a smaller α may be appropriate if rejecting H_0 has 'costly' implications, e.g., global warming, convicting with DNA evidence.
 - a larger α makes it less likely to miss an interesting result in a preliminary study.
 - No sharp 'cutoffs', e.g., 4.9% versus 5.1%. Usually, we describe the evidence by p-value itself, and the magnitude matters: significant, somewhat/very significant.
- Statistical significance only logically tells whether the effect observed is likely to be due to chance (randomness) alone. Without the magnitude of the effect it may be of no practical interest.
- $\ensuremath{\mathscr{O}}$ E.g., a new drug lowers patient temperature by 0.4° (p-value < 0.01). But clinical benefit of temperature reduction only appears for a decrease no less than 1° .

9. Lack of significance and effect

Indeed, failing to find statistical significance in experimental results means

not rejecting H_0 , however this doesn't imply to accept it.

The sample size, for instance, could be too small to overcome large variability in the population.

- No consensus on how big an effect is to be considered meaningful. Sometimes, effects seeming trivial can be very important in reality.
- E.g., improving the format of a computerized test reduces the average response time by 2 seconds, a small effect; however, it is done millions of times a year, and the cumulated time savings will be gigantic.
- Always think about the context. Try to plot your results, and compare them a baseline or results from similar studies.

10. Two types of errors

The statistical hypothesis is tested based on p-value — the logical evidence, two types of error may occur when a decision is made.

Type I error

- Reject H_0 and H_0 is actually true (deny a true fact).
- Probability of making a type I error is controlled by the significance level α .

Type II error

- Fail to reject actually false H_0 (fail to deny a false fact).
- Probability of making a type II error is β .
- 1β , the probability to reject a false H_0 , is called the power of the test.

	H_0 true	H _a true			
Reject H ₀	Type I error	Correct decision			
Accept H ₀	Correct decision	Type II error			

 \varnothing α and β can not be simultaneously controlled smaller enough, and we set a small α only to protect H_0 and thus the stance of the researcher matters.

QUERY 2: If $\alpha + \beta = 1$? Why?

11. Student t distribution

At significance level α , H_0 : $\mu = \mu_0$ vs H_a : $\mu \neq \mu_0$ based on $(X_1, \dots, X_n) =$ (x_1, \dots, x_n) from $X \sim \mathcal{N}(\mu, \sigma^2)$ with unknown σ .

- \emptyset z-test fails because $Z = \frac{\sqrt{n}(\bar{X} \mu_0)}{\sigma}$ is not accessible any more.
- \mathscr{O} An estimation of σ is the sample standard error

$$S = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
. Naturally we turn to $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S}$.

- \mathscr{O} z-test evaluates p-value based on $Z \sim \mathcal{N}(0,1)$. Likewise, the null distribution of T is necessary to get p-value in this context.
- \emptyset W. S. Gosset (1908): Under $H_0: \mu = \mu_0$, the above T has Student's t distribution with degree of freedom (df) n-1.

12. t-test for a population mean μ

At significance level α , test $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$ based on (x_1, \dots, x_n) from $X \sim \mathcal{N}(\mu, \sigma^2)$ with unknown σ .

- \mathscr{O} Under H_0 , the testing statistic $T = \frac{\bar{X} \mu_0}{S/\sqrt{n}} \sim t(n-1)$, observed as $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$.
- \mathscr{O} p-value method: reject H_0 if the p-value $P(|T| \ge |t|) < \alpha$.
- \mathscr{O} Critical value method: reject H_0 if $t \notin (t_{\alpha/2}(n-1), t_{1-\alpha/2}(n-1))$, where $t_{\alpha/2}(n-1)$ 1) and $t_{1-\alpha/2}(n-1)$ are $\alpha/2$ and $(1-\alpha/2)$ quantiles respectively.
- \mathscr{O} One side test: reject H_0 if

$$\left\{ \begin{array}{ll} \mathrm{P}(T>t) < \alpha & \text{or} \quad t > t_{1-\alpha}(n-1), \quad \text{for } H_a: \mu > \mu_0, \\ \mathrm{P}(T$$

Rejection regions

$$\begin{cases} (-\infty,t_{\alpha}(n-1)), & \text{for } H_a:\mu<\mu_0, \\ (-\infty,t_{\alpha/2}(n-1))\cup(t_{1-\alpha/2}(n-1),\infty), & \text{for } H_a:\mu\neq\mu_0, \\ (t_{1-\alpha}(n-1),\infty), & \text{for } H_a:\mu>\mu_0. \end{cases}$$

13. z-table and t-table

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

$$f_n(x) = \frac{\Gamma(n/2)}{\sqrt{(n-1)\pi}\Gamma((n-1)/2)} \left(1 + \frac{x^2}{n-1}\right)^{n/2}.$$

p-value is concerned with the tail area,

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx$$
 and $\int_{-\infty}^{t} f_{n-1}(x) dx$

are both not solvable. So, we resort to z table and t table.

 \mathscr{O} In R: we do it by pnorm(z,0,1) and pt(t,n-1), resp.

14. z-table and t-table

TABLE A Standard normal probabilities

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110

1 1.000 2 0.7621 3 0.7621 4 0.7621 5 0.7621 6 0.		.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.000
3 0.7665 3 0.7665 4 0.7277 6 7 7717 7 0.7277 7 0.7277 8 0.7505 10 0.7505 10 0.7505 11			1.376	1.963	3.078	0.314	12.71	15 89	31.62	03.00	127.3	316 3	636
45 0.74417 6 0.7181 7 0.7061 8 0.7062 9 0.7063 10 0.7063 11 0.0077 11 0.0077 11 0.0071 11 0.0004 11 0.0004 11 0.0004 11 0.0004 11 0.0004 11 0.0004 12 0.0004 13 0.0004 14 0.0004 15 0.0004 16 0.0004 17 0.0004 18 0.0004 19 0.0004 10	2 0	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.0
5 0.727 1	3 0	2.765	0.978	1.250	1.638	2.353	3.182	3.482	4 341	7 25-9 1	7 453	10.21	129
e 0.7161 9 0.7161 9 0.7060 9 0.7061 11 0.6097	4 0	2.741	0.941	1.190	1.333	2.132	2.776	2 999	3.747	4.004	5.598	7.173	9.61
7 0.7110 9 0.703 9 0.703 10 0.703 11 0.703 11 1.009 11 1.	9 6	2.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86
8 0 700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 C		0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	7.95
9 0.703 11 0.7007 11 0.7007 12 0.0007 12 0.0001 13 0.0001 14 0.0002 14 0.0002 16 0.0002 17 0.0002 17 0.0002 17 0.0002 17 0.0002 17 0.0002 19 0.0002 19 0.0002 20 0.000			0.896	1.119	1.415	1.895	2.365	2.517	2.998	3,499	4.029	4.785	5.40
10 0.700 112 0.0001 112 0.0001 113 0.0004 113 0.0004 113 0.0001 114 0.0001 115 0.0001 116 0.0001 116 0.0001 116 0.0001 116 0.00000 116 0.00000 116 0.00000 116 0.00000 116 0.00000 116 0.00000 116 0.00000 116 0.00000 116 0			0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.633	4.501	5.04
111 0.697 113 0.697 113 0.697 113 0.692 113 0.692 114 0.692 116 0.692 117 0.		0.703	0.883	1.100	1.363	1.033	2.262	2.398	2.921	3.250	3.690	4.297	4 78
12 0.695 13 0.695 13 0.696 15 0.691 16 0.696 16 0.696 18 0.686 18 0.686 19 0.686 19 0.686 10			0.879	1.093	1.372	1.812	2.228	2.359	2.764	3,169	3.581	4.144	4.58
13			0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43
144			0.873	1.083	1.356	1.782	2.179	2.303	2.661	3.055	3.428	3.930	4.31
15			0.670	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
100 0.0000 117 0.0898 118 0.0898 118 0.0898 20 0.0697 21 0.0865 22 0.0695 23 0.0895 24 0.085 25 0.0844 27 0.0844 27 0.0844 27 0.0843 20 0.083 20 0.083 20 0.083 20 0.083			0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14
17 0.689 18 0.688 10 0.688 10 0.688 21 0.686 22 0.686 22 0.686 23 0.685 24 0.685 25 0.684 27 0.684 27 0.684 27 0.684 27 0.684 27 0.684 27 0.683 30 0.683 30 0.683 30 0.683	5 C	2.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
18	5 C	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3 2 3 2	3.080	4.01
19			0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
20 0.687 21 0.686 22 0.686 22 0.685 23 0.685 25 0.684 26 0.684 27 0.681 29 0.683 30 0.683 30 0.683		2.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.979	3.197	3.611	3.92
21 0.686 22 0.686 23 0.685 24 0.685 25 0.685 27 0.684 28 0.683 29 0.683 30 0.683 30 0.683 30 0.683) C	0.088	0.551	1.000	1.320	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3 242
22	0 0		0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3,153	3.552	3.85
23 0.685 24 0.685 25 0.684 26 0.684 27 0.684 28 0.683 29 0.683 30 0.683 40 0.681 50 0.679 60 0.679 80 0.679			0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.61
24 0.685 25 0.084 26 0.684 27 0.684 28 0.683 29 0.683 40 0.681 50 0.679 60 0.679 80 0.678		0.686	0.858	1.061	1.321	1.717	2.074	2.163	2.508	2.819	3.119	3.505	3.79
25	3 C		0.858	1.060	1.319	1.71+	2.069	2.177	2,500	2.807	3.10+	3.485	3.76
26 0.684 27 0.684 28 0.683 29 0.683 30 0.683 40 0.681 50 0.679 60 0.679 80 0.678			0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.74
27 0.684 28 0.683 29 0.683 30 0.683 40 0.681 50 0.679 60 0.679 80 0.678		1.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.797	3.078	3.450	3.72
28 0.683 29 0.683 30 0.683 40 0.681 50 0.679 60 0.679 80 0.678	5 C	0.004	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3 435	3.70
29 0.683 30 0.683 40 0.681 50 0.679 60 0.679 80 0.678			0.855	1.057	1.31+	1.703	2.052	2.158	2,473	2.771	3.057	3.421	3.69
30 0.683 40 0.681 50 0.679 60 0.679 80 0.678		683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
40 0.681 50 0.679 60 0.679 80 0.678	9 0	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.65
50 0.679 60 0.679 80 0.678		0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.64
60 0.679 80 0.678			0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.55
80 0.678	9 0	0.679	0.649	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.40
	9 0	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.000	2.913	3.232	3 40
			0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.41
		0.677	0.845	1.0+2	1.290	1.000	1.984	2.081	2.364	2.626	2.071	3.174	3.39
0.675			0.842	1.037	1.262	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.30
z* 0.674	0	.674	0.941	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.29
50%													

15. A revisit to the cherry tomato packaging process

& At the significance level $\alpha = 0.05$ and without the knowledge of σ , test

$$H_0: \mu = \mu_0 = 227$$
 versus $H_a: \mu < 227$

based on a randomly selected box with average weight $\bar{x}=222g$ and standard error s=6.

8 Under H_0 , $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{s} \sim t(12 - 1)$. Based on the sample values, it evaluates that $t = \sqrt{12}(222 - 227)/6 = -2.887$.

p-value

$$P(T < -2.887) \approx 0.007 << 0.05 = \alpha.$$

Then we reject $H_0: \mu = 227$. That is, the machine does need a calibration.

• Critical values $t_{0.05}(11) = -1.706$, and due to the observed t = -2.8876 -1.706 we reject $H_0: \mu = 227$ again.

16. Summary of inference on a single population mean

- & Given a confidence level 1α , the CI
 - with a known σ : $\bar{x} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$.
 - with σ unknown: $\bar{x} \pm t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}$.
- & A test of hypotheses is accomplished through the following steps:
 - State the null hypotheses H_0 and select the alternative H_a (one side or two sides).
 - 2 Choose a significance level α .
 - Calculate the observed testing statistics
 - with a known σ : $z = \frac{\sqrt{n}(\bar{x} \mu_0)}{\sigma}$.
 - with σ unknown: $t = \frac{\sqrt{n}(\bar{x} \mu_0)}{s}$ and d.f. n 1.
 - ullet Find the tail area under the z-curve and t-curve, respectively.
 - State the p-value, draw a conclusion and interpret your result.

17. Matched pairs *t*-test procedures

 \angle n Two samples of matched observations are recorded to compare treatments/control at the individual level. For examples,

- Engineering: in pre-test and post-test studies, data collected on the same sample elements before and after an experiment.
- Biometrics: twin studies tries to sort out the influence of genetic factors by comparing a variable between sets of twins.
- Social science: using people matched for age, sex, and education to screen out the effect due to lurking factors.

 \angle n In these cases, we use the paired data to test the difference between two population means. The variable here becomes the difference D = X - Y, and hypotheses are then

$$H_0: \mu_D = \mu_X - \mu_Y = \mu_0$$
 versus $H_a: \mu_D < \mu_0$.

Technically, this is of no difference from the tests for a single population.

18. An application: Lack of caffeine increase depression?

Individuals diagnosed as caffeine-dependent are deprived of caffeine-rich foods and assigned to receive daily pills. Sometimes, the pills contain caffeine and other times they contain a placebo. Depression was assessed in both situations.

& Each subject gets 2 variables, but well only look at the difference. The sample distribution appears appropriate for a *t*-test.

(f) paired data

(g) Normal quantile plot

11 "difference"

data points.

19. Lack of caffeine increase depression? continued

- & Based on d_1, \dots, d_{11} , we evaluate $\bar{d} = 7.38$ and s = 6.92 with n = 11.
- $\& H_0: \mu_D = 0$ versus $H_a: \mu_D > 0$ at significance level $\alpha = 0.05$.
- & T is observed as $t = \sqrt{n}(\bar{d} \mu_0)/s = 3.53$.
 - Since p-value $P(T > t = 3.53) \approx 0.0027 << 0.05 = \alpha$, we reject $H_0: \mu_D = 0$, i.e., caffeine does matters.
 - Critical values $t_{1-0.05}(10) = 1.81$, and due to t = 3.53 > 1.81 we reject H_0 : $\mu_D = 0$ again.
- - The smaller sample size n=11 fails to carry enough information. For n<15, the data must be close to normal and without outliers, for 15>n>40, mild skewness is acceptable but not outliers, and it is valid even with strong skewness for n>40.
 - The sample's deviation from normality undermines the *t*-test. So, check it using plot. For non-normal data, resort to transformation and nonparametric methods.

20. Distribution of sample proportion

8 Based on CLT, the distribution of a sample proportion \hat{p} is approximately normal, i.e., $\hat{p} \sim \mathcal{N}(p, p(1-p)/n)$, when the sample size is large enough.

- **8** The conditions for inference on the population proportion p:
 - Data used for the estimate \hat{p} are an SRS from the population to be studied.
 - Sample size *n* is large enough so that the sampling distribution can be proximated with a normal distribution.

21. Large-sample confidence interval for *p*

§ For an SRS of size n from a large population and with sample proportion \hat{p} calculated from the data, an approximate level $1 - \alpha$ confidence interval for p is

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

- Margin of error $m=z_{1-\alpha/2}\,\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},$ the quantile $z^*=z_{1-\alpha/2}.$
- $c = 1 \alpha$ is the area under the standard normal curve between $\pm z^*$.

This method is suitable when the number of successes and the number of ures are both at least 15.

22. Test for a population proportion p

At significance level α , test $H_0: p = p_0$ vs $H_a: p \neq p_0$ based on (x_1, \dots, x_n) from population X with probability of success p.

 \mathscr{O} Under H_0 , the testing statistic $Z \sim \mathcal{N}(0,1)$, which is observed based on the sample as

$$z = \frac{\sqrt{n}(\hat{p} - p_0)}{\sqrt{p_0(1 - p_0)}}.$$

 \mathscr{O} p-value method: reject H_0 if the p-value

$$P(|Z| \ge |z|) \approx 2\Phi(-|z|) < \alpha.$$

 \mathscr{O} Critical value method: reject H_0 if the observed $z \notin (z_{\alpha/2}, z_{1-\alpha/2})$, where $z_{\alpha/2}$ and $z_{1-\alpha/2}$ are lower and upper $\alpha/2$ quantiles of $\mathcal{N}(0,1)$.

One-tail tests:

- For $H_a: p > p_0$, reject H_0 if $z > z_{1-\alpha}$ or p-value $P(Z > |z|) < \alpha$.
- For $H_a: p < p_0$, reject H_0 if $z < z_\alpha$ or p-value $P(Z < -|z|) < \alpha$.

