18. Mid-term review

Goals for today

- Conceptual review of first half of course
- Technical review

- \blacksquare Numerical analysis is about solving **problems** $y=\phi(x)$
- \blacksquare I.e. given **input** x, calculate **output** y

- \blacksquare Numerical analysis is about solving **problems** $y=\phi(x)$
- \blacksquare I.e. given **input** x, calculate **output** y
- Example: Given a function ("x"), find a root ("y")

- \blacksquare Numerical analysis is about solving problems $y=\phi(x)$
- lacktriangle I.e. given **input** x, calculate **output** y

Example: Given a function ("x"), find a root ("y")

- Cannot solve exactly
- \blacksquare So construct approximations $y = \tilde{\phi}(x)$
- lacksquare Call $\widetilde{\phi}$ the constructed or engineered problem

- lacktriangle Numerical analysis is about solving **problems** $y=\phi(x)$
- \blacksquare I.e. given **input** x, calculate **output** y

Example: Given a function ("x"), find a root ("y")

- Cannot solve exactly
- lacksquare So construct approximations $y= ilde{\phi}(x)$
- lacksquare Call $\widetilde{\phi}$ the **constructed** or **engineered problem**

E.g.: "Calculate (x-1) using floating-point arithmetic"

How do we do this?

- Can break down into three (large!) steps:
 - Find a way to construct an approximation
 - Show how good an approximation it is
 - 3 Implement it via an algorithm

Approximate real numbers as floating-point numbers

Approximate real numbers as floating-point numbers

Approximate as closest dyadic rational:

$$x \simeq \pm 2^e \left(1 + \sum_{n=1}^d b_n 2^{-n} \right)$$

with binary digits $b_n \in \{0,1\}$

Approximate real numbers as floating-point numbers

Approximate as closest dyadic rational:

$$x \simeq \pm 2^e \left(1 + \sum_{n=1}^d b_n 2^{-n} \right)$$

with binary digits $b_n \in \{0,1\}$

 \blacksquare IEEE 754 standard: "Double precision" (Float64): d=52 and 11 digits for e

Approximate real numbers as floating-point numbers

Approximate as closest dyadic rational:

$$x \simeq \pm 2^e \left(1 + \sum_{n=1}^d b_n 2^{-n} \right)$$

with binary digits $b_n \in \{0,1\}$

 \blacksquare IEEE 754 standard: "Double precision" (Float64): d=52 and 11 digits for e

Evaluating functions

 \blacksquare Evaluate functions like $\exp(x)$ and $\sin(x)$

Evaluating functions

- \blacksquare Evaluate functions like $\exp(x)$ and $\sin(x)$
- lacktriangle Use Taylor polynomial approximations for small x

Evaluating functions

 \blacksquare Evaluate functions like $\exp(x)$ and $\sin(x)$

lacktriangle Use Taylor polynomial approximations for small x

- **Argument reduction** for other x (negative and large)
- lacksquare Relate value of f(x) to f(r) with r small

Convergence

 \blacksquare Often construct problem containing a parameter N or h

Convergence

- lacksquare Often construct problem containing a parameter N or h
- Design such that solution of constructed problem $\tilde{\phi}_N$ converges to true solution $\phi(x)$ as $N \to \infty$ or $h \to 0$:

$$\phi_N(x) \to \phi(x) \quad \text{as } N \to \infty$$

Even though original problem does not contain parameter!

Convergence II

- Example of convergence: Fixed-point algorithm for root finding
- Want to find a root x^* of f, i.e. $f(x^*) = 0$
- \blacksquare To do so, construct an auxiliary ("helper") problem g such that a **fixed point** $g(x^*)=x^*$ is a root of f
- E.g. g(x) = x Cf(x), with $C \neq 0$ some constant

Convergence III

 \blacksquare If x^* is a stable fixed point of g then if x_0 is close enough to x^* , the sequence x_n defined by

$$x_{n+1} = g(x_n)$$

satisfies $x_n \to x^*$

- \blacksquare By running the iteration long enough we obtain an approximation for the root x^*
- Running it longer (with high enough precision) we can obtain approximations that are arbitrarily good (i.e. as close as we want)
- E.g. Picard iteration for ODEs: $x^{(n+1)} = x_0 + \int f(x^{(n)})$

Rate of convergence

- How fast does $x_n \to x^*$?
- $\blacksquare \ \, \text{Make a plot of} \ \, \delta_n := |x_n x^*| \ \, \text{as function of} \ \, n$

Rate of convergence

- How fast does $x_n \to x^*$?
- $\blacksquare \ \, \text{Make a plot of } \delta_n := |x_n x^*| \text{ as function of } n$
- Usually decays too fast to get information from plot
- \blacksquare So plot $\log(\delta_n)$ against n straight line \Rightarrow $\delta_n \sim C \exp(-\alpha n)$
- lacksquare Plot $\log(\delta_n)$ against $\log(n)$ straight line $\Rightarrow \delta_n \sim Cx^{-\alpha}$

Order of convergence

- \blacksquare Rate of convergence tells us how fast δ_n tends to 0
- \blacksquare Order of convergence instead relates consecutive values of δ_n
- \blacksquare Defined as $\lim_{n \to \infty} \frac{\delta_{n+1}}{\delta_n^{\alpha}}$ if limit exists

Order of convergence

- \blacksquare Rate of convergence tells us how fast δ_n tends to 0
- \blacksquare Order of convergence instead relates consecutive values of δ_n
- \blacksquare Defined as $\lim_{n\to\infty}\frac{\delta_{n+1}}{\delta_n^\alpha}$ if limit exists
- \blacksquare I.e. $\delta_{n+1} \sim (\delta_n)^{\alpha}$
- \blacksquare E.g. for $\alpha=1$ have $\delta_n\sim \exp(-\alpha n)$
- $\blacksquare \text{ For } \alpha = 2 \text{ have} \Rightarrow \delta_n \sim \exp(-\alpha n^2)$

Fixed-point iterations

■ How do we design a fixed-point iteration?

Fixed-point iterations

- How do we design a fixed-point iteration?
 - f 1 Rearrange expression for f into fixed-point expression
 - f 2 Choose C appropriately in definition of g
 - 3 General methods: secant, Newton, ...

Newton method

- \blacksquare Solve nonlinear equation f(x)=0 by repeatedly solving linear equations
- $\blacksquare \ x_{n+1} = x_n J^{-1}f(x_n)$
- lacksquare Where $J:=\left(rac{\partial f_i}{\partial x_j}
 ight)$ is Jacobian matrix

Newton method

- \blacksquare Solve nonlinear equation f(x)=0 by repeatedly solving linear equations
- $\blacksquare \ x_{n+1} = x_n J^{-1}f(x_n)$
- \blacksquare Where $J:=\left(\frac{\partial f_i}{\partial x_j}\right)$ is Jacobian matrix
- Need to be able to calculate derivatives

Automatic differentiation

- Method to calculate derivatives automatically
- By encoding the basic rules

Automatic differentiation

- Method to calculate derivatives automatically
- By encoding the basic rules
- lacksquare Define dual number type $a+\epsilon\,b$
- $f(a + \epsilon b) = f(a) + \epsilon f'(a) b$

Automatic differentiation

- Method to calculate derivatives automatically
- By encoding the basic rules

- lacktriangle Define dual number type $a+\epsilon\,b$
- $f(a + \epsilon b) = f(a) + \epsilon f'(a) b$
- \blacksquare Derivative is given by coefficient of ϵ

Errors

- Consider a problem $y = \phi(x)$
- lacksquare Suppose perturb input by Δx to \tilde{x}
- \blacksquare Output changes by $\Delta y := \phi(\tilde{x}) \phi(x) = \tilde{y} y$

Errors

- lacksquare Consider a problem $y = \phi(x)$
- lacksquare Suppose perturb input by Δx to \tilde{x}
- \blacksquare Output changes by $\Delta y := \phi(\tilde{x}) \phi(x) = \tilde{y} y$
- Absolute error: $\Delta x := |\tilde{x} x|$
- Relative error: $\delta x := \frac{\Delta x}{x}$

Conditioning

- Conditioning tells us how sensitive a problem is\$
- Concept of conditioning is independent of which algorithm we use to solve problem

Conditioning

- Conditioning tells us how sensitive a problem is\$
- Concept of conditioning is independent of which algorithm we use to solve problem
- lacksquare (Relative) condition number $\kappa := \left \| rac{\delta y}{\delta x}
 ight \|$

Conditioning

- Conditioning tells us how sensitive a problem is\$
- Concept of conditioning is independent of which algorithm we use to solve problem
- lacksquare (Relative) condition number $\kappa := \left \| rac{\delta y}{\delta x}
 ight \|$
- lacksquare $-\log_{10}(\kappa)$ is number of accurate digits lost in calculation

Interpolation

 \blacksquare Given data $(t_i,y_i)_{i=0}^N$, find polynomial of degree N that passes through all data points

Interpolation

 \blacksquare Given data $(t_i,y_i)_{i=0}^N,$ find polynomial of degree N that passes through all data points

Exactly solvable (in exact arithmetic):

Interpolation

 \blacksquare Given data $(t_i,y_i)_{i=0}^N,$ find polynomial of degree N that passes through all data points

- Exactly solvable (in exact arithmetic):
 - Solve linear system (Vandermonde matrix)
 - Or write down explicit Lagrange interpolant (see also later)

Interpolation II

- lacksquare Given function f, data from sampling f
- $\blacksquare \text{ Define } y_i := f(t_i)$

Interpolation II

- lacksquare Given function f, data from sampling f
- $\blacksquare \text{ Define } y_i := f(t_i)$
- lacksquare For smooth f can get polynomial $\emph{arbitrarily close}$ to f
- \blacksquare By interpolating in Chebyshev points t_i and taking $N\to\infty$

Applications of interpolation

. .

- Use to find finite-difference approximations of derivatives
- E.g.

$$f'(x) \simeq \frac{f(x-h) + f(x+h)}{2}$$

Applications of interpolation

\ \

- Use to find finite-difference approximations of derivatives
- E.g.

$$f'(x) \simeq \frac{f(x-h) + f(x+h)}{2}$$

- Use to calculate approximations of integrals (quadrature)
- E.g.

Ordinary differential equations (ODEs)

- $\blacksquare \text{ Solve } \dot{x} = f(x)$
- $\blacksquare \text{ I.e. } \dot{x}(t) = f(x(t)) \quad \forall t$

Ordinary differential equations (ODEs)

- $\blacksquare \text{ Solve } \dot{x} = f(x)$
- $\blacksquare \text{ I.e. } \dot{x}(t) = f(x(t)) \quad \forall t$
- Solution is a *function* $t \mapsto x(t)$
- lacktriangle We need to approximate the unknown function x(t)

Numerical methods for ODEs

Simplest numerical method: Euler method:

$$x(t+h) = x(t) + hf(x)$$

Numerical methods for ODEs

■ Simplest numerical method: **Euler method**:

$$x(t+h) = x(t) + hf(x)$$

- Taylor methods: expand in Taylor series in h
- $x(t+h) = x(t) + h\dot{x}(t) + \frac{h^2}{2}\ddot{x}(t) + \cdots$

Numerical methods for ODEs

■ Simplest numerical method: **Euler method**:

$$x(t+h) = x(t) + hf(x)$$

- Taylor methods: expand in Taylor series in h
- $\blacksquare \ x(t+h) = x(t) + h\dot{x}(t) + \frac{h^2}{2}\ddot{x}(t) + \cdots$
- Runge–Kutta: Several stages, each an Euler step
- RK reproduce Taylor expansion
- lacksquare Order-p method if local error $\mathcal{O}(h^{p+1})$

Adaptive ODE methods

- Run two different ODE methods to estimate local error
- lacktriangle Use local error estimate to choose size h of time step

Adaptive ODE methods

- Run two different ODE methods to estimate local error
- lacktriangle Use local error estimate to choose size h of time step

Allows to control global error

Adaptive ODE methods

- Run two different ODE methods to estimate local error
- lacktriangle Use local error estimate to choose size h of time step

Allows to control global error

lacktriangle Embedded Runge-Kutta methods reuse evaluations of f to create two methods with different orders

Summary

- Design approximate problem (algorithm) that converges to true solution
- Find rate of convergence
- Implement