

COMP 307 Principles of Web Development

Web Security #2

Readings

- Readings
 - Wikipedia:
 - Public Key Infrastructure
 - HTTP_Secure
- Experiment:
 - GnuPT + WinPT
 - Info: http://windowsitpro.com/security/winpt-andgnupg
 - JavaScript easy plugin
 - http://www.jcryption.org/
 - Router security settings (at home)

Class Outline

- Public Key Infrastructure
- Technologies
 - The security stack
 - Programming

Development

General Security Technology

J. Vybihal (c) 2016

Messaging with Ciphers

5

Packet's Data

Messaging with Ciphers

Data

B encrypt B's public key with B's private key. Then A uses B's public key to decrypt signature to find B's public key number, which A already has and can validate.

Determine Secret / Public Keys

Cryptographic Authentication

The Challenge-Response Technique

General Authentication Techniques

McGill Vybihal (c) 2016 9

RADIUS Protocol

Remote Authentication Dial-in User Services

Elements of RADIUS

- PAP
 - Password login between client and server
- CHAP
 - Verification through challenges
 - 1. Server challenges client
 - 2. Client uses MD5 with password to server
 - 3. Server verifies info:
 - If passes then connection continues
 - If fails then connection terminates
 - CHAPS does this at login & random times

Kerberos Authentication

McGil1 Vybihal (c) 2016 12

Kerberos Problems

- System Load
 - When many users, need to have multiple Kerberos systems so that the servers are not overloaded by user requests for authentication or tickets. Each system is known as a Realm.
- "High-value" Target
 - If the Kerberos system goes "down" / "blocked" then no one has access to the resources.
 - If Kerberos systems is "breached" then you have access to everything.

Kerberos Problems

- DES symmetric encryption
 - Obsolete due to modern computing power
- Applications
 - Must support Kerberos communication
- IPv4 Based
 - Today we are migrating to IPv6 addresses
- **Key Distribution Center**
 - Must always be network reachable

Kerberos Benefits

- Reduces number of keys
 - Just shared public key 1 per user
 - Plus the user's encrypted password
- Session control
 - User logs in only once per session
 - And, only one ticket per type of resource
 - Does not require user's password to be transmitted across network (uses ticket)

Public Key Infrastructure

Keys Certificates Validation Process **Network Hardware and Software**

McGil1 Vybihal (c) 2016 16

Public-Key Infrastructure: #1 **About Keys**

McGill Vybihal (c) 2016 17 J. Vybihal

Asymmetric Encryption

http://alwajbaiss.com/wp-content/uploads/2011/03/IC21919.gif

Remember: private / public keys are related and can be interchanged in Encryption/Decryption algorithms.

Create Keys

User 1
Private key 1
Public key 1

User 2 Private key 2 Public key 2

Share Keys

User 1
Private key 1
Public key 1
Public key 2

User 2 Private key 2 Public key 2 Public key 1

Where do we get keys?

** Or it can be generated locally. **

(not guaranteed unique!)

Public Key Infrastructure #2 About Certificates

J. Vybihal McGill Vybihal (c) 2016

X.509 Certificate Fields by version

The X.509 Certificate

Used to ensure the key is valid and original

Vybihal (c) 2016 23

Certificate Signing Tree

J. Vybihal WcGill Vybihal (c) 2016

The Certificate Chain

Alice's Certificate Chain

Version #
Cert Serial #
Sig. alg. Identifier
Issuer (CA #A21) Identity
Period of Validity
Subject (Alice) Name
Subject (Alice) Pub key
Cert Extensions
Issuer (CA #A21) Signature

Version #
Cert Serial#
Sig. alg. Identifier
Issuer (CA #A2) Identity
Period of Validity
Subject (CA #A21) Name
Subject (CA #A21) Pub key
Cert Extensions
Issuer (CA #A2) Signature

Version #
Cert Serial #
Sig. alg. Identifier
Issuer (Alpha Root CA) Identity
Period of Validity
Subject (CA #A2) Name
Subject (CA #A2) Pub key
Cert Extensions
Issuer (Alpha Root) CA Signature

Version#
Cert Serial #
Sig. alg. Identifier
Issuer (Alpha Root CA) Identity
Period of Validity
Subject (Alpha Root CA) Name
Subject (Alpha Root CA) Pub key
Cert Extensions
Issuer (Alpha Root) CA Signature

Bob's Certificate Chain

Version #
Cert Serial #
Sig. alg. Identifier
Issuer (CA #A11) Identity
Period of Validity
Subject (Bob) Name
Subject (Bob) Pub key
Cert Extensions
Issuer (CA #A11) Signature

Version #
Cert Serial #
Sig. alg. Identifier
Issuer (CA #A1) Identity
Period of Validity
Subject (CA #A11) Name
Subject (CA #A11) Pub key
Cert Extensions
Issuer (CA #A1) Signature

Version #
Cert Serial #
Sig. alg. Identifier
Issuer (Alpha Root CA) Identity
Period of Validity
Subject (CA #A1) Name
Subject (CA #A1) Pub key
Cert Extensions
Issuer (Alpha Root) CA Signature

Version#
Cert Serial#
Sig. alg. Identifier
Issuer (Alpha Root CA) Identity
Period of Validity
Subject (Alpha Root CA) Name
Subject (Alpha Root CA) Pub key
Cert Extensions
Issuer (Alpha Root) CA Signature

McGill

Public Key Infrastructure #3 **Validation Process**

McGill Vybihal (c) 2016 26

PKI Validation Process

http://www.hitachi.com/rd/yrl/people/pki/img/image1.gif

- Step 1 On sequesters workstation
 - Generates asymmetric public/private key pair
 - Private key encrypted using symmetric algorithm (AES) secret key using 128 bit MD-5 digest of a "passphrase".
 - Clear-text private key erased
 - Black-text version stored in workstation
 - Called "private key ring"
 - Creates PKCS #10 message (ID, public key)
 - Clear-text public key erased from workstantion
 - PKCS #10 message
 - Encrypted with RA's public key
 - Clear-text version of PKCS #10 erased
 - Black-text version sent to RA


```
Subject
PKCS10 Certificate Request:
Version: 1
Subject: CN=Cheryl, E=cheryl@exair.com, OU=Development, O=Exploration Air.
 L=Redmond, S=WA, C=US
Public Key Algorithm:
  Algorithm ObjectId: 1.2.840.113549.1.1.1
                                                                  Public key
  Algorithm Parameters:
    95 88
PublicKey: UnusedBits=0
    30 48 02 41 00 e8 bl ce
    e7 8a d9 3b 83 85 2b a9 98 6b bf 21 85 ba a5 ed
    e7 b0 fa 95 89 9d cb ca e9 0b 62 ad 5a f0 71 20
                                                        .....b.Z.q
                                                        q.....n...0...
    71 bf d1 e1 e2 cd 9b e3 6d 05 db f5 4f 1d 86 f8
    91 39 d4 31 33 02 03 01 00 01
                                                        .9.13.....
Request Attributes: 3
1.3.6.1.4.1.311.13.2.3[0][0]:
                                                       ..5.0.2195.2
    16 0a 35 2e 30 2e 32 31 39 35 2e 32
1.3.6.1.4.1.311.2.1.14[1][0]:
Certificate Extensions: 2
  2.5.29.15: Flags = 1(Critical). Length = 4
    Key Usage
        Digital Signature , Non-Repudiation , Key Encipherment ,
 Data Encipherment(F0)
 2.5.29.37: Flags = 0(), Length = c
                                                        Requested certificate to be
    Enhanced Key Usage
        Client Authentication(1.3.6.1.5.5.7.3.2)
                                                        used for client authentication.
```


- Step 2 At RA
 - Decrypt received PKCS #10 with RA's private key
 - RA Administrator manually reviews the information telephoning the requester
 - If approved, the (ID, public key) is sent to the CA.

- Step 3 At CA
 - Constructs the X.509 certificate from (ID,public key) information provided by RA
 - Using the X.509 and the CA's private key creates an encrypted digest (digest now viewed as it's digital signature)
 - Adds the digest into the X.509 certificate
 - CA sends certificate to RA

- Step 4 At RA
 - Copy of created X.509 sent to Requester + the CA's personal X.509
 - RA posts a copy of the X.509 certificate into the LDAP database (Lightweight Directory Access Protocol) Server.

Public Key Infrastructure #4 Network Hardware and Software

J. Vybihal McGill Vybihal (c) 2016

Typical PKI Deployment

COMP 307
Principles
of Web
Developmenturn
Off

Secure Electronic Transactions (SET)

McGill Vybihal (c) 2016 35

B-to-B and C-to-B

Business-to-Business and Customer-to-Business Security

COMP 307 Principles of Web Developmen⁻

Mutual Peer-entity Authentication

Payment Info

Order Info

McGill 1 Vybihal (c) 2016 37

The Authentication Process

IIIOOIII

38

Development

of Web

Encryption Technologies

McGill Vybihal (c) 2016 39

On Your Server

- Install SSL (secure Socket Layer)
 - Run IIS (internet information services)
 - The security server
 - Get a certificate
 - Generate your own, or
 - Download from certificate authority (VeriSign)
 - Tell IIS about the certificate
 - Create a folder
 - Point IIS to it
 - Save all your secured pages and data in that folder
- You have: public html and secure html

ISP Provides Security Service

- ISP provides an https connection
- ISP has a Shared SSL server (for \$\$)
- You create a public_html & secure_html folders.
- ISP gives you the addresses:
 - http://www.WebHost.com/YourWeb/public_html /YourPublicPage.html
 - https://www.WebHostSecure.com/YourWeb/secure_html/YourPage.html

SIMPLER ADDRESSES ARE POSSIBLE

Programmer Security

- Use JavaScript to
 - Read input from user
 - Encrypt locally with your own function
 - Transmit to destination using:
 - Get/Post
 - Ajax
 - JWE (JSON Web Encryption), Etc.
- Advantage:
 - Encryption of only parts of packet
 - Faster
 - But maybe not as secure...

The Security Stack

All the layers of security your network uses

McGil1 Vybihal (c) 2016 43 J. Vybihal

Security Stack:

© by Michael S. Oberlaender