

(74) Agents: ESMOND, Robert, W. et al.; Sterne, Kessler, Goldstein & Fox, Suite 600, 1100 New York Avenue, N.W.,

Washington, DC 20005-3934 (US).

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification <sup>5</sup> :                                                                                                                                                                                                           |                            | (11) International Publication Number: WO 95/03069                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A61K 39/102, C07K 3/12, 3/18, 3/20, 3/26, 3/28, 15/04, 17/10, C12N 15/31, 15/70, C12P 21/02                                                                                                                                                                       | A1                         | (43) International Publication Date: 2 February 1995 (02.02.95)                                                                                                                        |
| (21) International Application Number: PCT/US                                                                                                                                                                                                                     | 94/083                     | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP,                                                                        |
| (22) International Filing Date: 22 July 1994 (                                                                                                                                                                                                                    | 22.07.9                    | 4) KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SL, SK, TJ, TT, UA, UZ,                                                                                 |
| (30) Priority Data:<br>08/096,181 23 July 1993 (23.07.93)                                                                                                                                                                                                         | τ                          | VN, European patent (AT, BE, CH, DE, PK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAP: patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD). |
| (71) Applicant: NORTH AMERICAN VACCINE, INC.<br>12103 Indian Creek Court, Beltsville, MA 20705                                                                                                                                                                    | -                          | Published  With international search report.                                                                                                                                           |
| (72) Inventors: TAI, Joseph, Y.; 1370 Cinnamon Dr<br>Washington, PA 19034 (US). PULLEN, Jef<br>6928 Garland Lane, Columbia, MA 21045 (US).<br>Thomas, S.; Apartment 374, 8216 Gorman Avenu<br>MA 20707 (US). LIANG, Shu-Mei; 6627 Riv<br>Bethesda, MA 20817 (US). | frey, I<br>SOPE<br>e, Laur | R.,                                                                                                                                                                                    |

(54) Title: METHOD FOR EXPRESSION AND PURIFICATION OF P2 PROTEIN FROM HAEMOPHILUS INFLUENZAE TYPE B

#### (57) Abstract

The present invention relates, in general, to a method of expressing the outer membrane protein P2 from Haemophilus influenzae type b (Hib-P2) and fusion proteins thereof. In particular, the present invention relates to a method of expressing the outer membrane protein P2 from Haemop .us influenzae type b or fusion protein thereof in E. coli wherein the Hib-P2 protein or fusion protein comprises more than 2 % of the total protein expressed in E. coli. The invention also relates to a method of purification and refolding of Hib-P2 protein and fusion protein thereof.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT  | Austria                  | GB   | United Kingdom               | MR | Mauritania               |
|-----|--------------------------|------|------------------------------|----|--------------------------|
| AU  | Australia                | GE   | Georgia                      | MW | Malawi                   |
| BB  | Barbedos                 | GN   | Guinea                       | NE | Niger                    |
| BE  | Belgium                  | GR   | Greece                       | NL | Netherlands              |
|     | Burkina Faso             | HU   | Hungary                      | NO | Norway                   |
| BF  |                          | IE.  | Ireland                      | NZ | New Zealand              |
| BG  | Bulgaria                 | π    | Italy                        | PL | Poland                   |
| BJ  | Benin                    | JP   | Japan                        | PT | Portugal                 |
| BR  | Brazil                   | KE   | Kenya                        | RO | Romania                  |
| BY  | Belarus                  | KG   | Kyrgystan                    | RU | Russian Federation       |
| CA  | Canada                   |      | Democratic People's Republic | SD | Sudan                    |
| CF. | Central African Republic | KP   | -                            | SE | Sweden                   |
| CG  | Congo                    |      | of Korea                     | SI | Slovenia                 |
| CE  | Switzerland              | KR   | Republic of Korea            | SK | Slovakia                 |
| α   | Côte d'Ivoire            | KZ   | Kazakhstan                   |    |                          |
| CM  | Cameroon                 | LI   | Liechtenstein                | SN | Senegal                  |
| CN  | China                    | LK   | Sri Lanka                    | TD | Chad                     |
| cs  | Czechoslovakia           | LU   | Luxembourg                   | 16 | Togo                     |
| cz  | Czech Republic           | LV   | Latvia                       | TJ | Tajikistan               |
| DE  | Germany                  | MC   | Monaco                       | TT | Trinidad and Tobago      |
| DK  | Denmark                  | MD   | Republic of Moldova          | UA | Ukraine                  |
| ES  | Spain                    | MG   | Madagascar                   | US | United States of America |
|     |                          | ML   | Mali                         | UZ | Uzbekistan               |
| Ħ   | Finland                  | MN   | Mongolia                     | VN | Vict Nam                 |
| FR  | France                   | 1724 | 11100000                     |    |                          |
| GA  | Gabon                    |      |                              |    | . به سه و                |
|     |                          |      |                              |    |                          |

10

15

20

25

# METHOD FOR EXPRESSION AND PURIFICATION OF P2 PROTEIN FROM HAEMOPHILUS INFLUENZAE TYPE B

## Background of the Invention

## Field of the Invention

The present invention is in the field of recombinant DNA technology, protein expression and vaccines. The present invention relates, in particular, to a method of expressing the outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2). The invention also relates to a method of purification and refolding of the recombinant protein.

## Background Information

Haemophilus influenzae type b causes bacterial meningitis and other invasive infections in children under the age of 4 years in the United States. The P2 protein from several H. influenzae type b strains has been purified and characterized (Munson et al., J. Clin. Invest. 72:677-684 (1983) and Vachon et al., J. Bacteriol. 162:918-924 (1985)). The structural gene encoding the P2 protein type 1H has been cloned and the DNA sequence determined (Hansen, E.J., et al., Infection and Immunity 56:2709-2716 (October 1988); Hansen, E.J., et al., Infection and Immunity 57:1100-1107 (April 1989); and Munson, Jr., R., and Tolan, Jr., R.W., Infection and Immunity 57:88-94 (January 1989)).

Although recombinant P2 genes have been expressed in H. influenzae Rd (Hansen, E.J., et al., Infection and Immunity 56:2709-2716 (October 1988)) and in E. coli (Munson, Jr., R., and Tolan, Jr., R.W., Infection and Immunity 57:88-94 (January 1989)), the level of expression present in E. coli was low, possibly due to the toxicity of the P2 protein in E. coli as suggested by Munson (Munson, Jr., R., and Tolan, Jr., R.W., Infection and Immunity 57:88-94 (January 1989)) and Hansen (Hansen, E.J., et al., Infection and

PCT/US94/08326

Immunity 56:2709-2716 (October 1988)). The present invention provides a method of expressing Hib-P2 in *E. coli* wherein the Hib-P2 protein comprises more than 2% of the total protein expressed in *E. coli*.

## Summary of the Invention

5

It is a general object of the invention to provide a method of expressing recombinant outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2), or a fusion protein thereof, in *E. coli*.

It is a specific object of the invention to provide a method of expressing the outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2), or a fusion protein thereof, in *E. coli* comprising:

10

- (a) transforming E. coli by a vector comprising a selectable marker and gene coding for a protein selected from the group consisting of
  - (i) a mature P2 protein and

15

(ii) a fusion protein comprising a mature P2 protein fused to amino acids 1 to 22 of the T7 gene  $\phi$ 10 capsid protein;

wherein said gene is operably linked to the T7 promoter; and

(b) growing the transformed E. coli in LB media containing glucose and a selection agent at about 30°C,

20

wherein the protein so produced comprises more than 2% of the total protein expressed in the  $E.\ coli$ .

It is another specific object of the invention to provide a method of purifying and refolding an outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2), or a fusion protein thereof, produced according to the above-described methods.

25

It is a further specific object of the invention to provide a vaccine comprising the outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2), or a fusion protein thereof, produced according to the above methods, in an amount effective to elicit protective antibodies in an animal to

PCT/US94/08326

Haemophilus influenzae type b; together with a pharmaceutically acceptable diluent, carrier, or excipient.

It is another specific object of the invention to provide the above-described vaccine, wherein said outer membrane protein P2 or fusion protein thereof is conjugated to a *Haemophilus* capsular polysaccharide.

It is a further specific object of the invention to provide a method of preventing bacterial meningitis in an animal comprising administering to the animal the Hib-P2 protein or fusion protein-vaccine produced according to the above-described methods.

It is another specific object of the invention to provide a method of preparing a polysaccharide conjugate comprising: obtaining the above-described outer membrane protein P2 or fusion protein; obtaining a polysaccharide from a *Haemophilus* organism; and conjugating the protein to the polysaccharide.

It is another specific object of the invention to provide a method of purifying the above-described outer membrane protein P2 or fusion protein comprising: lysing the transformed E. coli to release the P2 protein or fusion protein as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating E. coli cellular proteins; resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; diluting the resultant solution in a detergent; and purifying the solubilized P2 protein or fusion protein by gel filtration.

It is another specific object of the invention to provide a method of refolding the above-described outer membrane protein P2 or fusion protein comprising: lysing the transformed *E. coli* to release the P2 protein or fusion protein as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating *E. coli* cellular proteins; resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; diluting the resultant solution in a detergent; and purifying the solubilized P2 protein or fusion protein by gel filtration; and storing the gel filtration product

10

5

15

20

25

10

15

20

25

at about 4°C in an aqueous solution containing high concentrations of NaCl and calcium ions until the outer membrane protein P2 refolds.

Further objects and advantages of the present invention will be clear from the description that follows.

## Brief Description of the Drawings

FIGURE 1. Electrophoretic gel showing the kinetics of induction of plasmid pNV-3. (Coomassie blue stained linear 8-16% gradient SDS-PAGE (Novex)). Lane 1 shows molecular weight markers: phosphorylase b (97.4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21.5 kDa) and lysozyme (14.4 kDa). Lanes 2 and 14 show 4  $\mu$ g samples of purified rHib porin (recombinant). Lanes 3-13 show samples of E. coli extracts obtained from cells removed at 0, 15, 30, 45, 60, 120, 180, 240, 300, 360 and 420 minutes after addition of IPTG to the culture. At each time point, 5 ml of the culture was removed and immediately chilled to 4°C. The cells were then collected by centrifugation and stored at -75°C. A whole cell extract was made by adding 150  $\mu$ l of Tris-HCl, pH = 8.0, 5 M urea, 1% SDS, 30 mM NaCl, 2.5%  $\beta$ -mercaptoethanol and 0.05% bromphenol blue. After boiling the mixture for 5 minutes, the samples were then diluted 1:10 with load buffer and then 10  $\mu$ l of the diluted sample loaded per lane.

FIGURE 2. Electrophoretic gel showing the kinetics of induction of plasmid pNV-6. (Coomassie blue stained linear 8-16% gradient SDS-PAGE (Novex)). Lane 1 shows molecular weight markers: phosphorylase b (97.4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21.5 kDa) and lysozyme (14.4 kDa). Lanes 2 and 14 show 4  $\mu$ g samples of purified rHib porin. Lanes 3-13 show samples of E. coli extracts obtained from cells removed at 0, 15, 30, 45, 60, 120, 180, 240, 300, 360 and 420 minutes after addition of IPTG to the culture. At each time point, 5 ml of the culture was removed and immediately

10

15

20

25

30

chilled to 4°C. The cells were then collected by centrifugation and stored at -75°C. A whole cell extract was made as described in Figure 1.

FIGURES 3 and 3A. A graph showing the gel filtration of rHib porin. Inclusion bodies were extracted with 6 M guanidine HCl and detergent was added as described in Example 6. The mixture was centrifuged to remove any residual material and applied to a 180 x 2.5 cm S-300 column equilibrated in 100 mM Tris-HCl, 10 mM EDTA, 1 M NaCl and 0.05% 3,14-Zwittergent, at pH 8.0. A second batch was then applied in the same buffer with 20 mM CaCl<sub>2</sub>. The optical density at 280 nm was measured for each fraction. The arrows indicate the elution position of molecular weight markers (Sigma); 1 = blue dextran (2,000 kDa), 2 = alcohol dehydrogenase (150 kDa); 4 = bovine serum albumin; and 6 = cytochrome C (12.4 kDa). The insert shows a semilog plot of apparent molecular weight versus the elution position. Number 3 is the position of the major peak of the calcium ion treated porin, while number 5 is the position of the major peak of the untreated porin.

FIGURES 4A-4C. The DNA sequence of the Sall-Sall fragment of pNV-1. Restriction sites are underlined. The synthetic oligonucleotides used to sequence the DNA are shown doubly underlined. The arrows indicate the direction of the sequencing reaction. Those with left-arrows are complementary to the shown sequence. The rest of the plasmid is identical to pUC18. The lac promotor is adjacent to the lower SalI site.

FIGURES 5A-5C. The DNA sequence of the BamHI-XhoI fragment of pNV-2. The portion of the pET-17b vector that encodes the fusion sequence is shown in bold. Restriction sites are underlined. The rest of the plasmid is identical to pET-17b.

FIGURES 6A-6C. The DNA sequence of the NdeI-XhoI fragment of pNV-3. Restriction sites are underlined. The rest of the plasmid is identical to pET-17b.

FIGURES 7A-7C. The DNA sequence of the NdeI-BamHI fragment of pNV-6. Restriction sites are underlined. The rest of the plasmid is identical to pET-11a.

10

15

20

25

FIGURES 8A and 8B. Electrophoretic gel (Panel A) and Western blot (Panel B) showing the immunogenicity of native antiP2 from Haemophilus influenzae with recombinant P2. Panel A: (Coomassie blue stained, linear 8-16 % gradient SDS-PAGE (Novex)). Lane 1 shows molecular weight markers: phosphorylase b (97.4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21.5 kDa) and lysozyme (14.4 kDa). Lane 3 shows 1  $\mu$ g of purified recombinant H. influenzae type b porin. Lanes 2, 4, 9, 12 and 15 are blank. Lanes 5 and 6 show E. coli strain BL21 before and after 3 hours of induction with IPTG. Lanes 7 and 8 show BL21 [pNV-3] before and after induction. Lanes 10 and 11 show BL21 (DE3) [pNV-3], before and after induction. Lanes 13 and 14 show BL21 (DE3) [pNV-6] before and after induction. The samples loaded were prepared as described for Figure 1 herein. Panel B: (Western blot from a gel loaded in an identical fashion to that shown in Panel A). After transfer of the proteins to the nitrocellulose membrane (Novex), the membrane was blocked with powdered milk. Then, a polyclonal antibody generated by immunization of rabbits with a conjugate vaccine composed of purified P2 from Hib strain A2 which is equivalent to strain Eagan and polysaccharide isolated from the same organism were added. Goat antirabbit IgG coupled to alkaline phosphatase was also added thereafter. Visualization of the porin bands was achieved by using a nitro blue tetrazolium stain (Sigma) that reacted with the released phosphate from 5-bromo-4-chloro-3indolyphosphate, p-toluidine salt (Sigma) (Blake et al., Analyt. Biochem. 136:175-179 (1984)).

## Detailed Description of the Invention

The present invention relates to a method of expressing the outer membrane protein P2 from *Haemophilus influenzae* type b or a fusion protein thereof.

PCT/US94/08326

5

10

15

20

25

30

In one embodiment, the present invention relates to a method of expressing the outer membrane protein P2 from *Haemophilus influenzae* type b or fusion protein in *E. coli* comprising:

- transforming *E. coli* by a vector comprising a selectable marker and a gene coding for a protein selected from the group consisting of
  - (i) a mature P2 protein and
  - (ii) a fusion protein comprising a mature P2 protein fused to amino acids 1 to 22 of the T7 gene  $\phi$ 10 capsid protein;
- wherein said gene is operably linked to the T7 promoter; and
  - (b) growing the transformed *E. coli* in LB media containing glucose and a selection agent to which *E. coli* is sensitive (preferably, carbenicillin) at about 30°C; whereby the Hib-P2 or fusion protein thereof is expressed,

wherein the Hib-P2 protein or fusion protein thereof so expressed comprises more than about 2% of the total protein expressed in the *E. coli*. In a preferred embodiment, the Hib-P2 protein or fusion protein so expressed comprises more than about 5% of the total protein expressed in *E. coli*. In another preferred embodiment, the Hib-P2 protein or fusion protein so expressed comprises more than about 10% of the total protein expressed in *E. coli*. In yet another preferred embodiment, the Hib-P2 protein or fusion protein so expressed comprises more than about 40% of the total protein expressed in *E. coli*.

In another preferred embodiment, the vector comprises a Hib-P2 gene operably linked to the T7 promoter of expression plasmids pET-17b, pET-11a, pET-24a-d(+) or pET-9a, all of which are commercially available from Novagen (565 Science Drive, Madison, WI 53711). Plasmids pET-17b, pET-9a and pET-24a-d(+) comprise, in sequence, a T7 promoter, a ribosome binding site, restriction sites to allow insertion of the structural gene and a T7 terminator sequence. In addition, pET-11a has a lac operator fused to the T7 promotor and a copy of the *lac*I gene. The plasmid constructions employed

10

15

20

25

30

in the present invention are different than those used in Munson, Jr., R., and Tolan, Jr., R.W., *Infection and Immunity* 57:88-94 (January 1989), and allow for an unexpectedly high production of the P2 proteins and fusion proteins.

The transformed E. coli are grown in a medium containing a selection agent, e.g. any  $\beta$ -lactam to which E. coli is sensitive such as carbenicillin. The pET expression vectors provide selectable markers which confer antibiotic resistance to the transformed organism.

According to the present invention, an extraneous 3' portion down stream from the P2 gene containing P2 termination sequences is eliminated. The fragment thus constructed ends about 40 bp after the translational stop codon.

Any  $E.\ coli$  strain encoding T7 polymerase may be used in the practice of the invention. In a preferred embodiment,  $E.\ coli$  strain BL21 (DE3)  $\Delta ompA$  is employed. The above mentioned plasmids may be transformed into this strain or the wild-type strain BL21(DE3). The strain BL21 (DE3)  $\Delta ompA$  is a lysogen of bacteriophage  $\lambda$  DE3, which contains the T7 RNA polymerase gene under the control of the inducible lacUV5 promoter.  $E.\ coli$  strain BL21 (DE3)  $\Delta ompA$  is preferred as no OmpA protein is produced by this strain which might contaminate the purified porin protein and create undesirable immunogenic side effects. The transformed  $E.\ coli$  of the present invention may be grown and induced in LB broth containing glucose and carbenicillin at about 30°C and at a low aeration rate (about 150 rpm). Under these conditions, a high level of P2 expression was obtained.

Long term, high level expression of P2 can be toxic in *E. coli*. The highest expression level of Hib-P2 which has been reported is less than 2% of the total proteins expressed (Munson, Jr., R., and Tolan, Jr., R.W., *Infection and Immunity* 57(1):88-94 (January 1989)). Surprisingly, the present invention allows *E. coli* to express the Hib-P2 protein and fusion protein thereof to a level of about 35-50%, as measured by densitometry on an electrophoresis gel after staining with Coomassie blue.

In another preferred embodiment, the present invention relates to a vaccine comprising the outer membrane protein P2 from *Haemophilus influenzae* type b (Hip-P2) or fusion rotein thereof, produced according to the above-described methods, together with a pharmaceutically acceptable diluent, carrier or excipient, wherein the vaccine may be administered in an amount effective to elicit protective antibodies in an animal to *Haemophilus influenzae* type b. In a preferred embodiment, the animal is selected from the group consisting of humans, cattle, res, sheep and chickens. In another preferred embodiment, the animal is a human.

10

5

In another preferred embodiment, the present invention relates to the above-described vaccine, wherein said outer membrane protein P2 or fusion protein thereof is conjugated to a *Haemophilus* capsular polysaccharide (CP). *Haemophilus* CPs may be prepared or synthesized as described in Schneerson et al., J. Exp. Med. 152:361-376 (1980); Marburg et al., J. Am. Chem. Soc. 108:5282 (1986); Jennings et al., J. Immunol. 127:1011-1018 (1981); and Beuvery et al., Infect. Immunol. 40:39-45 (1983); the contents of each of which are fully incorporated by reference herein.

15

20

In a further preferred embodiment, the present invention relates to a method of preparing a polysaccharide conjugate comprising: obtaining the above-described outer membrane protein P2 or fusion protein; obtaining a CP or fragment from a *Haemophilus* organism; and conjugating the outer membrane protein P2 or fusion protein to the CP or CP fragment.

25

30

The conjugates of the invention may be formed by reacting the reducing end groups of the CP fragment to primary amino groups of the porin by reductive amination. The reducing groups may be formed by selective hydrolysis or specific oxidative cleavage, or a combination of both. Preferably, the CP is conjugated to the porin protein by the method of Jennings *et al.*, U.S. Patent No. 4,356,170, the contents of which are fully incorporated by reference herein, which involves controlled oxidation of the CP with periodate followed by reductive amination with the porin protein.

The vaccine of the invention comprises the Hib-P2 protein, fusion protein or conjugate vaccine in an amount effective depending on the route of administration. Although subcutaneous or intramuscular routes of administration are preferred, the Hib-P2, fusion protein or vaccine of the present invention can also be administered by an intraperitoneal or intravenous route. One skilled in the art will appreciate that the amounts to be administered for any particular treatment protocol can be readily determined without undue experimentation. Suitable amounts might be expected to fall within the range of 2 to 100 micrograms of the protein per kg body weight.

The vaccine of the present invention may be employed in such forms as capsules, liquid solutions, suspensions or elixirs for oral administration, or sterile liquid forms such as solutions or suspensions. Any inert carrier is preferably used, such as saline, phosphate-buffered saline, or any such carrier in which the Hib-P2 protein, fusion protein or conjugate vaccine have suitable solubility properties. The vaccines may be in the form of single dose preparations or in multi-dose flasks which can be used for mass vaccination programs. Reference is made to Remington's *Pharmaceutical Sciences*, Mack Publishing Co., Easton, PA, Osol (ed.) (1980), and *New Trends and Developments in Vaccines*, Voller *et al.* (eds.), University Park Press, Baltimore, MD (1978), for methods of preparing and using vaccines.

The Hib-P2 protein or conjugate vaccines of the present invention may further comprise adjuvants which enhance production of P2 antibodies. Such adjuvants include, but are not limited to, various oil formulations such as Freund's complete adjuvant (CFA), the dipeptide known as MDP, saponin, aluminum hydroxide or lymphatic cytokine.

Freund's adjuvant is an emulsion of mineral oil and water which is mixed with the immunogenic substance. Although Freund's adjuvant is powerful, it is usually not administered to humans. Instead, the adjuvant alum (aluminum hydroxide) may be used for administration to a human. Hib-P2 protein, fusion protein or a conjugate vaccine thereof may be absorbed onto the aluminum hydroxide from which it is slowly released after injection.

10

5

15

20

30

25

Hib-P2 protein, fusion protein or conjugate vaccine may also be encapsulated within liposomes according to Fullerton, U.S. Patent No. 4,235,877.

In another preferred embodiment, the present invention relates to a method of preventing bacterial meningitis in an animal comprising administering to the animal the Hib-P2 protein or conjugate vaccine produced according to methods described in an amount effective to prevent bacterial meningitis.

In a further embodiment, the invention relates to a method of purifying the pove-described outer membrane protein P2 or fusion protein, comprising: lysing the transformed *E. coli* to release the P2 protein or fusion protein as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating *E. coli* cellular proteins; resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; diluting the resultant solution in a detergent; and purifying the solubilized P2 protein or fusion protein by gel filtration in the absence of denaturant.

The lysing step may be carried out according to any method known to those of ordinary skill in the art, e.g. by sonication, enzyme digestion, osmotic shock or by passing through a mull press.

The inclusion bodies may be washed with any buffer which is capable of solubilizing the *E. coli* cellular proteins without solubilizing the inclusion bodies comprising the P2 protein or fusion protein. Such buffers include but are not limited to TEN buffer (50 mM Tris HCl, 1 mM EDTA, 100 mM NaCl, pH 8.0). Other buffers can be used such as Bicine, Tricine and HEPES.

Denaturants which may be used in the practice of the invention include 2 to 8 M urea or about 2 to 6 M guanidine HCl, more preferably, 4 to 8 M urea or about 4 to 6 M guanidine HCl, and most preferably, about 8 M urea or about 6 M guanidine HCl.

Examples of detergents which can be used to dilute the solubilized P2 protein or fusion protein include, but are not limited to, ionic detergents such as SDS and Cetavlon (Aldrich); non-ionic detergents such as Tween, Triton

5

10

15

20

25

30

X-100 and octyl glucoside; and zwitterionic detergents such as 3,14-Zwittergent and Chaps.

The solubilized P2 protein or fusion protein may be purified by gel filtration to separate the high and low molecular weight materials. Types of filtration matrices include but are not limited to Sephacryl-300, Sepharose CL-6B and Bio-Gel A-1.5m. The column is eluted with the buffer used to dilute the solubilized protein. The fractions containing the P2 protein or fusion thereof may then be identified by gel electrophoresis, the fractions pooled, dialyzed and concentrated.

5

10

15

20

25

30

Finally, substantially pure (>95%) P2 protein and fusion protein may be obtained by passing the concentrated fractions through a Fast Flow Q Sepharose High Performance (Pharmacia) column.

In another embodiment, the present invention relates to expression of Hib-P2 in a yeast Pichia expression system (Sreekrishna et al., J. Basic Microbiol. 28:265-278 (1988)) and an archaebacteria expression system (Blaseio and Pfeifer, Proc. Natl. Acad. Sci. U.S.A. 87:6772-6776 (1990); Cline et al., J. Bacteriol. 171:4987-4991 (1989)). The cloning of the P2 protein gene or fusion gene into an expression vector may be carried out in accordance with conventional techniques, including blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining and ligation with appropriate ligases. Reference is made to Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press (1989), for general methods of cloning.

The Hib-P2 and fusion protein expressed according to the present invention must be properly refolded in order to achieve a structure which is immunologically characteristic of the native protein. In yet another embodiment, the present invention relates to a method of refolding the above-described outer membrane protein P2 or fusion protein, comprising: lysing the transformed *E. coli* to release the outer membrane protein P2 or fusion protein

10

15

20

as part of insoluble inclusion bodies; washing the inclusion bodies with a buffer to remove contaminating *E. coli* cellular proteins; resuspending and dissolving the inclusion bodies in an aqueous solution of a denaturant; resuspending and dissolving the outer membrane protein P2 in high salt (preferably, 2 to 8 M urea or about 2 to 6 M guanidine HCl, more preferably, 4 to 8 M urea or about 4 to 6 M guanidine HCl, and most preferably, about 8 M urea or about 6 M guanidine HCl); diluting the resultant solution in a detergent (preferably, zwittergent, SDS or Tween-20); purifying the outer membrane protein P2 by gel filtration; and storing the gel filtration product at about 1°C to 15°C (preferably, about 4°C) until the outer membrane protein P2 refolds (preferably, one to 10 weeks; most preferably, about three weeks).

The gel filtration step separates high and low molecular weight material and also allows the separation of trimeric and monomeric porin.

After the gel filtration step, high levels of salt (1 to 4M NaCl) are required initially to keep the porin in solution. Calcium ions (preferably, 1mM to 1M CaCl<sub>2</sub>; most preferably, about 20mM CaCl<sub>2</sub>), but not magnesium or manganese ions, are required for efficient aggregation of the rHib porin. At this stage, while the rHib porin is trimeric, the conformation is not "native" because when the salt is removed, the porin precipitates from solution. This does not occur with wild-type Hib porin. However, as the porin is stored at 4°C, a slow conformational change occurs which allows the salt to be removed without precipitation of the porin.

The protein at this stage is about 80 to 90 percent pure as judged by Coomassie blue stained SDS-PAGE. This material is then applied to an ion exchange column and eluted with a salt gradient. The resulting material is  $\sim 95\%$  pure.

In another preferred embodiment, the present invention relates to a substantially pure refolded outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2) produced according to the above-described methods. A substantially pure protein is a protein that is generally lacking in other cellular *Haemophilus influenzae* components as evidenced by, for

25

30

-14-

example, electrophoresis. Such substantially pure proteins have a purity of >95% as measured by densitometry on an electrophoretic gel.

The present invention is described in further detail in the following non-limiting examples.

5

10

15

## Example 1

## Cloning of the Outer Membrane Protein P2 from Haemophilus Influenzae Type B

Total genomic DNA was isolated from 0.5 g of *Haemophilus influenzae* type b strain Eagan using methods previously described (Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press (1989)). This DNA was then used as a template for two P2 specific oligonucleotides in a polymerase chain reaction (PCR) using standard PCR conditions (U.S. Patent No. 4,683,195; U.S. Patent No. 4,683,202; Saiki *et al.*, *Science 230*:1350-1354 (1985); Innis *et al.*, *PCR Protocols: A Guide to Methods and Applications*, Academic Press, Inc., San Diego, CA (1990), the contents of which are fully incorporated by reference herein).

The 5' P2 specific oligonucleotide was designed to be 40 bp 5' of the ATG (start codon) and had the sequence (SEQ ID NO:1):

5' TTC-TGG-CGA-GTC-GAC-AAT-TCT-ATT-GG 3'.

20

25

The 3' P2 specific oligonucleotide was designed to be 300 bp 3' of the stop codon and had the sequence (SEQ ID NO:2):

5' AAC-CTT-TAT-CGT-CGA-CGA-GCA-ATT-GG 3'.

Both of the P2 specific oligonucleotides contained SalI restriction enzyme sites to facilitate cloning of the amplified product.

-15-

Subsequent to the PCR amplification reaction, the amplified DNA was isolated by electrophoresis on a 0.8% agarose gel. The gel demonstrated a single 1.4 kb band. This DNA was purified from the gel and digested with three restriction enzymes (*EcoRI*, *DraI* and *PvuII*) that yielded bands of predictable sizes. The 1.4 kb fragment was then digested with *SaII* and ligated to *SaII* digested pUC18 (Yanisch-Perron *et al.*, *Gene 33*:103-119 (1985)) using T4 DNA ligase.

5

10

15

20

25

30

The ligation mixture was used to transform competent E. coli strain DH5 $\alpha$  (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Resulting colonies were isolated and then analyzed by preparing mini-prep DNAs. The DNAs were analyzed by digesting with SalI which yielded a vector band of 2.7 kb and a fragment band of 1.4 kb.

The ligation that generated plasmid pNV-1 was nondirectional. This means that the DNA insert should be present in both orientations. To test the orientation of the insert, the plasmid was digested with both *MluI* and *NarI*. The size of the resulting fragments indicates whether the insert is oriented in the same direction as the *lac* promotor, or in the opposite direction. Several isolates of the plasmid were tested and all were found to be in the opposite direction to the *lac* promotor. Evidently, the inserts that were in the same direction as the promotor were selected against during growth. This suggests that expression of the rHib P2 is toxic in *E. coli*. Similar conclusions were reached earlier by Munson's group (Munson and Tolan, *Infect. Immunity* 57:88-94 (1989)) and by Hansen's group (Hansen *et al.*, *Infect. Immunity* 56:2709-2716 (1989)).

Clones containing the 1.4 kb fragment were chosen for DNA sequence analysis. One clone designated pNV-1 was sequenced in both directions using the Sanger method (Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463 (1977)). Plasmid pNV-1 was found to be identical to the published sequence for Hib strain Minn A (Munson, Jr., R., and Tolan, Jr., R.W., Infection and Immunity 57:88-94 (January 1989)).

PCT/US94/08326

Molecular biological techniques used herein may be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press (1989) and Ausubel et al., Current Protocols in Molecular Biology, Vols. 1 and 2, Wiley-Liss, New York, NY (1992), the contents of which are fully incorporated by reference herein.

li:

## Example 2

## Construction of Expression Vectors containing the Outer Membrane Protein P2 gene

10

15

5

WO 95/03069

The expression vector, pET-17b (Novagen pET System Manual), was used for the expression of P2. This plasmid utilizes the phage T7  $\phi$ 10 gene promotor. This promotor is not recognized by  $E.\ coli$  DNA dependent RNA polymerase and thus will not produce substantial levels of the porin unless T7 RNA polymerase is present. Strain BL21 (DE3) contains a lysogenic  $\lambda$  phage that encodes the required polymerase under control of the lacUV5 promotor. Two types of recombinant P2 proteins were made using the pET-17b expression vector. One type was the mature P2 containing a methionine at the N-terminus. The second type was a fusion protein (designated fusion-P2) containing the mature P2 with 22 amino acids of gene 10 of phage T7 at the N-terminus that were derived from the pET-17b vector.

20

To clone the P2 into pET-17b, the original P2 gene (in pNV-1) was modified using PCR. To construct the mature-P2, an oligonucleotide was constructed that allowed the mature porin to be cloned into the *Nde*I site of pET 17b, thus producing the mature-P2. The oligonucleotide designed for this had the sequence (SEQ ID NO:3):

25

5' GCT-TCA-GCA-GCA-CAT-ATG-GCT-GTT-GTT-TAT-AAC-AAC-GAA-GGG-AC 3'.

10

15

20

25

To construct the fusion-P2, an oligonucleotide was constructed that allowed the mature porin to be sioned into the *BamHI* site of pET 17b, thus yielding a fusion P2 to gene 10 which is a major capsid protein of T7. The sequence (SEQ ID NO:4) of this oligonucleotide was:

5' GCA- CT-TCA-GCA-GCG-GAT-CCA-GCT-GTT-GTT-TAT-AAC-AAC-GAA-GGG 3'.

The extraneous 3' sequences were eliminated by introducing a xhoI site about 40 bp from the translational stop codon. This oligonucleotide was designed to contain an XhoI site to allow it to be cloned into the XhoI site of pET-17b. The sequence (SEQ ID NO:5) of this oligonucleotide was:

5' GC-AAA-AAA-AGC-GAA-TCT-CTC-GAG-TCG-CCT-TGC-TTT 3'.

PCR was used to generate a 1.1 kb fragment from the full length P2 (pNV-1) with the 5' oligonucleotide containing the Ndel atte and the 3' oligonucleotide containing the XhoI site. This fragment was digested with Ndel and XhoI, purified and ligated into NdeI-XhoI digested pET-17b. This resulted in the mature-12 construct (pNV-3 or N-X).

Likewise, a 1.1 kb fragment was generated from the full length pNV-1 with the 5' oligonucleotide containing the *BamHI* site and the 3' oligonucleotide containing the *XhoI* site using PCR. This fragment was digested with *BamHI* and *XhoI*, purified and ligated into the *BamHI-XhoI* digested pET-17b. This yielded the fusion-P2 construct (pNV-2 or B-X). Both of the constructs (pNV-3 and pNV-2) were transformed into *E. coli* DH5 $\alpha$  strain which lacks T7 polymerase. Plasmid DNA was isolated from numerous DH5 $\alpha$  transformants. Both the mature-P2 and fusion-P2 constructs were sequenced at their 5' and 3' ends to ensure that the cloning junctions were correct.

Figure 1 shows the kinetics of induction by IPTG of *E. coli* strain BL21 (DE3) [pNV-3]. Note that even before addition of the gratuitous

-18-

inducer, there are significant levels of the porin present. This is because the *lacUV5* promotor is not fully repressed. The level of porin rapidly increases and reaches a maximum after about three hours.

Porin expression in strain BL21 (DE3) is still toxic. This is due to the significant uninduced levels of the porin observed in Figure 1. Care must be taken in handling this strain (keep frozen when not in use; induce at 30°C) because deletions or other mutations will be selected that do not produce porin.

5

10

15

20

25

# Example 3 Construction of pNV-6

Plasmid pET-11a (Novagen pET System Manual) has the same expression signals as pET-17b. However, this plasmid also contains the *lac* operator adjacent to the T7 gene  $\phi$ 10 promotor. This places the T7 promotor under regulation of the *lac* repressor. Plasmid pET-11a also contains an extra copy of the *lac*I gene that encodes the *lac* repressor. This construction should

result in substantially lower uninduced levels of porin.

Plasmid pET-11a contains fewer usable restriction sites than pET17b. There is a NdeI site in the same location as in pET17b, thus allowing reuse of oligonucleotide SEQ IN NO:3 at the 5' end of the P2 gene. However, there is no XhoI site available. Instead, a BamHI site is incorporated using the oligonucleotide (SEQ ID NO:6):

5' AAA-AAA-AGC-GAA-TCT-TTG-GAT-CCG-CCT-TGC-TTT-TAA-TAA-TG 3'.

PCR was used to generate a new 1.1 kb fragment from full length P2 (pNV-1) with the oligonucleotides 3 and 6. This fragment was digested with *NdeI* and *BamHI*, purified and ligated into pET11a previously cut with *NdeI-BamHI*. This resulted in a second mature-P2 construct (pNV-6). Both the 5'

and the 3' ends of this construction were sequenced to ensure the cloning junctions were correct.

Figure 2 shows the kinetics of induction of BL21 (DE3) [pNV-6]. Notice that the uninduced levels of the porin are much lower than observed with plasmid pNV-3. The time required to reach the maximum level of induction is slightly longer than observed with pNV-3 but after three hours, the levels of porin are comparable with pNV-3. The lower uninduced levels of porin observed in pNV-6 means that this plasmid should show lower levels of toxicity than plasmid pNV-3 and thus should be more stable.

10

15

20

25

5

## Example 4

## Construction of Expression Strain BL21 (DE3) DompA

Escherichia coli strains DME558 (from the collection of S. Benson; Silhavy, T.J., et al., "Experiments with Gene Fusions," Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1984)), BRE51 (Bremer, E., et al., FEMS Microbiol. Lett. 33:173-178 (1986)) and BL21(DE3) were grown on LB agar plates at 37°C.

PI Transduction: A Pl<sub>vir</sub> lysate of E. coli strain DME558 was used to transduce a tetracycline resistance marker to strain BRE51 (Bremer, E., et al., FEMS Microbiol. Lett. 33:173-178 (1986)) in which the entire ompA gene had been deleted (Silhavy, T.J., et al., Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984)). Strain DME558, containing the tetracycline resistance marker in close proximity of the ompA gene, was grown in LB medium until it reached a density of approximately 0.6 OD<sub>600 nm</sub>. One tenth of a milliliter of 0.5 M CaCl<sub>2</sub> was added to the 10 ml culture and 0.1 ml of a solution containing 1 x 10° PFU of P1<sub>vir</sub>. The culture was incubated for 3 hours at 37°C. After this time, the bacterial cell density was visibly reduced. One-half of a milliliter of chloroform was added and the phage culture stored at 4°C. Because typically 1-2% of the E. coli chromosome can be packaged in each phage, the number

of phage generated covers the entire bacterial host chromosome, including the tetracycline resistance marker close to the *omp*A gene.

Next, strain BRE51, which lacks the *omp*A gene, was grown in LB medium overnight at 37°C. The overnight culture was diluted 1:50 into fresh LB and grown for 2 hr. The cells were removed by centrifugation and resuspended in MC salts. One-tenth of a milliliter of the bacterial cells were mixed with 0.05 of the phage lysate described above and incubated for 20 minutes at room temperature. Thereafter, an equal volume of 1 M sodium citrate was added and the bacterial cells were plated out onto LB plates containing 12.5  $\mu$ g/ml of tetracycline. The plates were incubated overnight at 37°C. Tetracycline resistant (12  $\mu$ g/ml) transductants were screened for lack of OmpA protein expression by SDS-PAGE and Western blot analysis, as described below. The bacteria resistant to the antibiotic have the tetracycline resistance gene integrated into the chromosome very near where the *omp*A gene had been deleted from this strain. One particular strain was designated BRE-T<sup>R</sup>.

A second round of phage production was then carried out with the strain BRE-T<sup>R</sup> using the same method as described above. Representatives of this phage population contain both the tetracycline resistance gene and the *ompA* deletion. These phage were then collected and stored. These phage were then used to infect *E. coli* BL21(DE3). After infection, the bacteria contained the tetracycline resistance marker. In addition, there was a high probability that the *ompA* deletion was selected on the LB plates containing tetracycline.

Colonies of bacteria which grew on the plates were grown up separately in LB medium and tested for the presence of the OmpA protein. Of those colonies selected for examination, all lacked the OmpA protein as judged by antibody reactivity on SDS-PAGE western blots.

The SDS-PAGE was a variation of Laemmli's method (Laemmli, U.K., Nature 227:680-685 (1970)) as described previously (Blake and Gotschlich, J. Exp. Med. 159:452-462 (1984)). Electrophoretic transfer to Immobilion P

10

5

15

20

25

30

10

15

20

25

(Millipore Corp. Bedford, MA) was performed according to the methods of Towbin et al. (Towbin, H., et al., Proc. Natl. Acad. Sci. USA 76:4350-4354 (1979)) with the exception that the paper was first soaked in methanol. The Western blots were probed with phosphatase conjugated reagents (Blake, M.S., et al., Analyt. Biochem. 136:175-179 (1984)).

## Example 5

## Expression of the Outer Membrane Protein P2

The mature-P2 and fusion-P2 constructs were used to transform the expression strain BL21 (DE3) ΔompA. The transformation plates were cultured at 30°C. Colonies of both types were isolated from these plates and analyzed. It was found that virtually all transformants contained the desired plasmid DNA.

Various fusion-P2 and mature-P2 containing clones were then analyzed for protein expression. The clones were induced and grown in ... B media containing 0.4 % glucose and 118  $\mu$ M carbenicillin instead of ampicillin with an aeration speed of 100 to 150 rpm at about 30°C. The expression of the P2 protein was analyzed by loading 0.1 ml of the culture of total E. coli proteins on an 8-16% gradient SDS gel (see Figs. 1 and 2).

## Example 6

Purification and Refolding of the Outer Membrane Protein P2

E. coli strain BL21 (DE3)  $\Delta$ ompA [pNV-3] was grown to mid-log phase (OD = 0.6 at 600 nm) in Luria broth. Isopropyl thiogalactoside was then added (0.4 mM final) and the cells grown an additional three hours at 30°C. The cells were then harvested and washed with several volumes of TEN buffer (50 mM Tris-HCl, 0.2 M NaCl, 10 mM EDTA, at pH 8.0) and the cell paste stored frozen at -75°C.

10

15

20

25

30

For purification, about 3 grams of cells were thawed and suspended in 9 ml of TEN buffer. Lysozyme (Sigma, 0.25 mg/ml), then deoxycholate (Sigma, 1.3 mg/ml) plus PMSF (Sigma, 10 µg/ml) were added and the mixture gently shaken for one hour at room temperature. During this time, the cells lysed and the released DNA caused the solution to become very viscous. DNase was then added (Sigma, 2 µg/ml) and the solution again mixed for one hour at room temperature. The mixture was then centrifuged at 15 K rpm in an SA-600 rotor for 30 minutes and the supernatant discarded. The pellet was then twice suspended in 10 ml of TEN buffer and the supernatant discarded. The pellet was then suspended in 10 ml of 8 M urea (Pierce) in TEN buffer. Alternatively, the pellet was suspended in 10 ml of 6 M guanidine HCl (Sigma) in TEN buffer. The mixture was gently stirred to break up any clumps. The suspension was sonicated for 20 minutes or until an even suspension was achieved. Ten ml of a 10% aqueous solution of 3,14-Zwittergent was added and the solution thoroughly mixed. The solution was again sonicated for 10 minutes. Any residual insoluble material was removed by centrifugation.

This mixture was then applied to a 180 x 2.5 cm column of Sephacryl-300 (Pharmacia) equilibrated in 100 mM Tris-HCl, 1 M NaCl, 10 mM EDTA, 20 mM CaCl<sub>2</sub> and 0.05% 3,14-Zwittergent, at pH 8.0. The flow rate was maintained at 1 ml/min. Fractions of 10 ml were collected. The porin refolded into trimer during the gel filtration. The OD<sub>280 nm</sub> of each fraction was measured and those fractions containing protein were subjected to SDS gel electrophoresis assay for porin. Those fractions containing porin were pooled and stored at 4°C for three weeks. During the incubation at 4°C, a slow conformational change occurred. This was necessary for the protein to remain in solution without the elevated levels of salt. The pooled fractions were then dialyzed against 50 mM Tris-HCl, 200 mM NaCl, 10 mM EDTA and 0.05% 3,14-Zwittergent, at pH 8.0. This material was then applied to a 2.5 x cm Fast Flow Q (Pharmacia) column equilibrated in the same buffer. Any unbound protein was then eluted with starting buffer. A linear 0.2 to 2.0 M

PCT/US94/08326

NaCl gradient was then applied to the column. The porin eluted just before the center of the gradient. Fractions were assayed by SDS-PAGE and the purest fractions pooled and dialyzed against TEN buffer containing 0.05% 3,14-Zwittergent.

5

10

15

20

## Example 7

Coupling of Oxidized Hib Capsular Polysaccharide to the Native Haemophilus Influenzae P2 Protein

The oxidized Hib capsular polysaccharide (10.4 mg) was added to native Hib P2 protein (3.1 mg) purified by the method of Munson *et al.*, *J. Clin. Investig.* 72:677-684 (1983), dissolved in 0.21 ml of 0.2 M phosphate buffer, pH 7.5, containing 5% octyl glucoside. After the polysaccharide was dissolved, sodium cyanoborohydride (7 mg) was added and the reaction solution was incubated at 37°C for 4 days. The reaction mixture was then diluted with 0.15 M sodium chloride solution containing 0.01% thimerosal and separated by gel filtration column chromatography using Biogel A-1.5m (Bio-Rad).

The conjugate (Hib-PP) was obtained as a single peak eluting near the void volume. Analysis of the conjugate solution for sialic acid and protein showed that the conjugate consists of 43% polysaccharide by weight. The P2 protein was recovered in the conjugate in 44% yield and the polysaccharide in 12% yield. The protein recoveries in different experiments generally occur in the 50-80% range and those of the polysaccharide in the 9-13% range.

## Example 8

Immunogenicity Studies Using Native Hib-PP Conjugate

25

Immunogenicity studies were performed as follows. The immunogenicities of the Hib-PP conjugate and the Hib Tetanus toxoid (Hib-TT) conjugate, prepared by a similar coupling procedure, were assayed in 7-

week-old New Zealand white rabbits. The polysaccharide conjugates (10  $\mu$ g) were administered on days 0, 7 and 14, and the sera collected on day 28. The conjugates were administered in saline solutions.

The sera ELISA titers against the polysaccharide antigen are summarized in Table 1, below. "PP" in Table 1 represents the outer membrane porin protein, P2, purified from *Haemophilus influenzae* type b.

| Table 1. ELISA Titers of <i>Haemophilus Influenzae</i> Type b Conjugate Vaccines (Hib-Protein) |          |             |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------|-------------|--|--|--|--|--|--|--|--|
| Vaccine                                                                                        | Adjuvant | ELISA Titer |  |  |  |  |  |  |  |  |
| Hib-TT                                                                                         | Saline   | 270         |  |  |  |  |  |  |  |  |
| Hib-PP                                                                                         | Saline   | 6205        |  |  |  |  |  |  |  |  |
| Hib-PP / PP (30 μg)                                                                            | Saline   | 8055        |  |  |  |  |  |  |  |  |
| Hib, oxidized                                                                                  | Saline   | 0           |  |  |  |  |  |  |  |  |

Western blot analysis was performed, on both purified recombinant P2 and lysates derived from *E. coli* expressing the recombinant P2, using a polyclonal antisera generated by immunization of rabbits with a conjugate vaccine composed of Hib polysaccharide linked to the native P2 protein isolated from Hib strain A2 which is equivalent to strain Eagan. The antisera used in the Western blot had been previously shown by ELISA analysis to have a anti-polysaccharide titer of 8500 and an anti-P2 titer of 60,000.

Figure 8 shows the results, demonstrating that the polyclonal antisera generated by immunization of rabbits with a conjugate vaccine containing native P2 derived from the Hib bacteria reacted well with the recombinant P2 on a Western blot. This demonstrates the presence of shared epitopes between the native and recombinant P2 proteins.

The recombinant P2 purified from the high expression E. coli system resembles native P2 purified from Haemophilus influenzae type b organism in the following aspects. First, antibody against native P2 from H. influenza reacted well with the recombinant P2 from the high expression E. coli system

10

5

15

20

25

on a Western blot indicating the presence of shared epitopes between the native and recombinant P2 proteins.

Second, P2 is a porin. Like porins from other gram-negative bacteria, P2 is made up of three identical polypeptide chains and, in their native trimer conformation, form water-filled, voltage-dependent, channels within the outer membrane of the bacteria. The purified recombinant P2 is a trimer as shown in gel filtration chromatography using Superose 12 (Pharmacia). Recombinant P2 eluted from the column corresponding to a molecular weight of 120 kDa. Native P2 from H. influenzae and other bacterial porins such as Neisseria meningitidis class 2 and 3 porins also eluted in a similar profile. Unfolded P2 is not soluble and elutes from the size column as a monomer. Addition of CaCl<sub>2</sub> helps the refolding of P2 into trimeric conformation as shown in Figure 3 herein.

\* \* \* \* \*

All publications mentioned hereinabove are hereby incorporated in their entirety by reference.

While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.

20

15

5

10

-26-

#### SEQUENCE LISTING

## (1) GENERAL INFORMATION:

North American Vaccine, Inc. (i) APPLICANT:

12103 Indian Creek Court

Beltsville, MD 20705

**INVENTORS:** Tai, Joseph Y.

Pullen, Jeffrey K. Soper, Thomas S. Liang, Shu-Mei

- (ii) TITLE OF INVENTION: A Method For The High Level Expression, Purification And Refolding Of The Outer Membrane Protein P2 From Haemophilus Influenzae Type b
- (iii) NUMBER OF SEQUENCES: 14
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Sterne, Kessler, Goldstein & Fox
  - (B) STREET: 1100 New York Avenue, Suite 600
  - (C) CITY: Washington
  - (D) STATE: D.C.
  - (E) COUNTRY: U.S.A.
  - (F) ZIP: 20005-3934
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk

  - (B) COMPUTER: IBM PC compatible
    (C) OPERATING SYSTEM: PC-DOS/MS-DOS
    (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- - (B) FILING DATE: Herewith
  - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 08/096,181
    (B) FILING DATE: 23-JULY-1993
- (viii) ATTORNEY/AGENT INFORMATION:

  - (A) NAME: Esmond, Robert W.
    (B) REFERENCE/DOCKET NUMBER: 1438.001PC01
- (ix) TELECOMMUNICATION INFORMATION:
  - (A) TELEPHONE: (202) 371-2600 (B) TELEFAX: (202) 371-2540
- (2) INFORMATION FOR SEQ ID NO:1:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 26 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTCTGGCGAG TCGACAATTC TATTGG

| (2)  | INFOR  | MATION FOR SEQ ID NO:2:                                                                                                      |    |
|------|--------|------------------------------------------------------------------------------------------------------------------------------|----|
|      | (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear | •  |
|      | (xi)   | SEQUENCE DESCRIPTION: SEQ ID NO:2:                                                                                           |    |
| AAC  | TTTAT  | CC GTCGACGAGC AATTGG                                                                                                         | 26 |
| ·(2) | INFOR  | NMATION FOR SEQ ID NO:3:                                                                                                     |    |
|      | (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 44 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
|      | (xi)   | SEQUENCE DESCRIPTION: SEQ ID NO:3:                                                                                           |    |
| GCTT | rcagc? | AG CACATATGGC TGTTGTTTAT AACAACGAAG GGAC                                                                                     | 44 |
| (2)  | INFO   | RMATION FOR SEQ ID NO:4:                                                                                                     |    |
|      | (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 45 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
|      | (xi)   | SEQUENCE DESCRIPTION: SEQ ID NO:4:                                                                                           |    |
| GCA  | GCTTC  | AG CAGCGGATCC AGCTGTTGTT TATAACAACG AAGGG                                                                                    | 45 |
| (2)  | INFO   | RMATION FOR SEQ ID NO:5:                                                                                                     |    |
|      | (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear    |    |
|      | (xi)   | SEQUENCE DESCRIPTION: SEQ ID NO:5:                                                                                           |    |
| GCA  | AAAAA  | AG CGAATCTCTC GAGTCGCCTT GCTTT                                                                                               | 35 |
| (2)  | INFO   | RMATION FOR SEQ ID NO:6:                                                                                                     |    |
|      | (i)    | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 41 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |    |
|      | (xi)   | SEQUENCE DESCRIPTION: SEQ ID NO:6:                                                                                           |    |

AAAAAAAGCG AATCTTTGGA TCCGCCTTGC TTTTAATAAT G

|     | INFORMATION | EOD | CEC | TD | MA. 7. |
|-----|-------------|-----|-----|----|--------|
| リント | INFURMATION | FUR | SEU | LU | NO: /: |

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 1477 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: single
  (D) TOPOLOGY: linear

## (ix) FEATURE:

- (A) NAME/KEY: CDS
  (B) LOCATION: 65..1147

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

| 60  | ATACA             | AGGA.             | AT A              | AACC              | AAAC              | AGT               | AGAT              | CAI               | CAAT              | AGTI              | AA A              | 'GGAG             | TATI              | TT C              | ACAA              | GTCG              |
|-----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 109 | GCT<br>Ala<br>15  | GCA<br>Ala        | TTC<br>Phe        | GCA<br>Ala        | Gly               | GTT<br>Val<br>10  | ATC<br>Ile        | TTA<br>Leu        | GCA<br>Ala        | Ala               | CTI<br>Leu        | ACA<br>Thr        | A AAA<br>E Lys    | Lys               | ATG<br>Met<br>1   | AATT              |
| 157 | GTA<br>Val        | AAC<br>Asn<br>30  | ACT<br>Thr        | GGG .<br>Gly      | GAA<br>Glu        | AAC<br>Asn        | AAC<br>Asn<br>25  | TAT<br>Tyr        | GTT<br>Val        | GTT<br>Val        | GCT<br>Ala        | GCA<br>Ala<br>20  | AAC<br>Asn        | GCA<br>Ala        | GCA<br>Ala        | TCA<br>Ser        |
| 205 | ACT<br>Thr        | AGC<br>Ser        | AAT<br>Asn<br>45  | AGT<br>Ser        | CAA<br>Gln        | GAA<br>Glu        | GCA<br>Ala        | ATC<br>Ile<br>40  | ATT<br>Ile        | AGC<br>Ser        | TTA<br>Leu        | CGT<br>Arg        | GGT<br>Gly<br>35  | GGT<br>Gly        | TTA<br>Leu        | GAA<br>Glu        |
| 253 | TCA<br>Ser        | GGT<br>Gly        | CAA<br>Gln        | AAT<br>Asn<br>60  | CGC<br>Arg        | TTA<br>Leu        | GCA<br>Ala        | GGT<br>Gly        | CAC<br>His<br>55  | CAA<br>Gln        | CAG<br>Gln        | AAA<br>Lys        | CAA<br>Gln        | AAT<br>Asn<br>50  | GAT<br>Asp        | GTA<br>Val        |
| 301 | GCA<br>Ala        | TAT<br>Tyr        | TTC<br>Phe        | GGT<br>Gly        | GAT<br>Asp<br>75  | GGT<br>Gly        | TTC<br>Phe        | AAC<br>Asn        | CAT<br>His        | ACT<br>Thr<br>70  | GCA<br>Ala        | AAA<br>Lys        | ATT<br>Ile        | CAC<br>His        | TTC<br>Phe<br>65  | CGT<br>Arg        |
| 349 | GGT<br>Gly<br>95  | AAC<br>Asn        | GAA<br>Glu        | TCT<br>Ser        | GCC<br>Ala        | AAA<br>Lys<br>90  | ACA<br>Thr        | GTT<br>Val        | TTT<br>Phe        | CGT<br>Arg        | ACT<br>Thr<br>85  | GAA<br>Glu        | TTA<br>Leu        | TAT<br>Tyr        | GGT<br>Gly        | CAA<br>Gln<br>80  |
| 397 | TTA<br>Leu        | ACT<br>Thr<br>110 | GTT<br>Val        | TAT<br>Tyr        | GCT<br>Ala        | TAT<br>Tyr        | AAA<br>Lys<br>105 | AGC<br>Ser        | ACA<br>Thr        | ATT<br>Ile        | GAT<br>Asp        | GGT<br>Gly<br>100 | TTC<br>Phe        | AAC<br>Asn        | GAT<br>Asp        | TCA<br>Ser        |
| 445 | ATT<br>Ile        | ACT<br>Thr        | AAA<br>Lys<br>125 | GCG<br>Ala        | CGT<br>Arg        | GGT<br>Gly        | CTT<br>Leu        | AAA<br>Lys<br>120 | GTA<br>Val        | GAA<br>Glu        | GGT<br>Gly        | TTC<br>Phe        | GCA<br>Ala<br>115 | AAA<br>Lys        | TAA<br>NaA        | GGA<br>Gly        |
| 493 | AAC<br>Asn        | CTC<br>Leu        | GTT<br>Val        | GGC<br>Gly<br>140 | TAT<br>Tyr        | GAA<br>Glu        | AAA<br>Lys        | GAT<br>Asp        | GAA<br>Glu<br>135 | GCA<br>Ala        | AGT<br>Ser        | ACA<br>Thr        | Ile               | GGC<br>Gly<br>130 | GAT<br>Asp        | GCT<br>Ala        |
| 541 | TTT<br>Phe        | ACT<br>Thr        | TAT<br>Tyr        | GGC<br>Gly        | GTT<br>Val<br>155 | Thr               | AAT<br>Asn        | GGT<br>Gly        | Ser               | ACT<br>Thr<br>150 | CCT<br>Pro        | ATT<br>Ile        | TAT               | GAC<br>Asp        | AGT<br>Ser<br>145 | TAA<br>Asn        |
| 589 | CAA<br>Gln<br>175 | GCA<br>Ala        | TTA<br>Leu        | TTA<br>Leu        | TAT<br>Tyr        | AAT<br>Asn<br>170 | GCT<br>Ala        | GGC               | TTA<br>Leu        | Val               | TTA<br>Leu<br>165 | GGT<br>Gly        | GAT<br>Asp        | ATT               | Gly               | AAA<br>Lys<br>160 |
| 637 | GCT<br>Ala        | AAG<br>Lys<br>190 | GAT<br>Asp        | AAT<br>Asn        | CCT<br>Pro        | CGG<br>Arg        | AAG<br>Lys<br>185 | AAT<br>Asn        | GAA<br>Glu        | GGT<br>Gly        | AAA<br>Lys        | GCA<br>Ala<br>180 | GGT<br>Gly        | GAG<br>Glu        | CGT<br>Arg        | AAG<br>Lys        |
| 685 | GCA<br>Ala        | GGT<br>Gly        | Val               | Gln               | Ile               | Gly               | Asn               | Asn               | Ile               | Glu               | Gly               | ATA<br>Ile        | . Arg             | Val               | GAA<br>Glu        | GGT<br>Gly        |

| AAA<br>Lys        | TAT<br>Tyr        | GAT<br>Asp<br>210 | GCA<br>Ala        | AAC<br>Asn        | GAC<br>Asp        | ATC<br>Ile        | GTT<br>Val<br>215 | GCA<br>Ala        | AAA<br>Lys        | ATT<br>Ile        | GCT<br>Ala        | TAT<br>Tyr<br>220 | GGT<br>Gly        | AGA<br>Arg        | ACT<br>Thr        | 733    |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------|
| AAC<br>Asn        | TAC<br>Tyr<br>225 | AAA<br>Lys        | TAT<br>Tyr        | AAC<br>Asn        | GAA<br>Glu        | TCT<br>Ser<br>230 | GAC<br>Asp        | GAG<br>Glu        | CAT<br>His        | AAA<br>Lys        | CAG<br>Gln<br>235 | CAA<br>Gln        | TTA<br>Leu        | AAT<br>Asn        | GGT<br>Gly        | 781    |
| GTA<br>Val<br>240 | TTA<br>Leu        | GCA<br>Ala        | ACT<br>Thr        | TĩA<br>Leu        | GGC<br>Gly<br>245 | TAT<br>Tyr        | CGT<br>Arg        | TTT<br>Phe        | AGT<br>Ser        | GAT<br>Asp<br>250 | TTA<br>Leu        | GGC<br>Gly        | TTA<br>Leu        | TTA<br>Leu        | GTG<br>Val<br>255 | 829    |
| TCT<br>Ser        | CTA<br>Leu        | GAT<br>Asp        | AGT<br>Ser        | GGC<br>Gly<br>260 | TAT<br>Tyr        | GCA<br>Ala        | AAA<br>Lys        | ACT<br>Thr        | AAA<br>Lys<br>265 | AAC<br>Asn        | TAT<br>Tyr        | Lys<br>LAA        | ATT<br>Ile        | AAA<br>Lys<br>270 | CAC<br>His        | 877    |
| GAA<br>Glu        | AAA<br>Lys        | CGC<br>Arg        | TAT<br>Tyr<br>275 | TTC<br>Phe        | GTA<br>Val        | TCT<br>Ser        | CCA<br>Pro        | GGT<br>Gly<br>280 | TTC<br>Phe        | CAA<br>Gln        | TAT<br>Tyr        | GAA<br>Glu        | TTA<br>Leu<br>285 | ATG<br>Met        | GAA<br>Glu        | 925    |
| GAT<br>Asp        | ACT<br>Thr        | AAT<br>Asn<br>290 | GTC<br>Val        | TAT<br>Tyr        | GGC<br>Gly        | AAC<br>Asn        | TTC<br>Phe<br>295 | AAA<br>Lys        | TAT<br>Tyr        | GAA<br>Glu        | CGC<br>Arg        | ACT<br>Thr<br>300 | TCT<br>Ser        | GTA<br>Val        | GAT<br>Asp        | 973    |
| CAA<br>Gln        | GGT<br>Gly<br>305 | GAA<br>Glu        | AAA<br>Lys        | ACA<br>Thr        | CGT<br>Arg        | GAA<br>Glu<br>310 | CAA<br>Gln        | GCA<br>Ala        | GTA<br>Val        | TTA<br>Leu        | TTC<br>Phe<br>315 | GGT<br>Gly        | GTA<br>Val        | GAT<br>Asp        | CAT<br>His        | 1021   |
| AAA<br>Lys<br>320 | Leu               | CAC<br>His        | AAA<br>Lys        | CAA<br>Gln        | CTA<br>Leu<br>325 | TTA<br>Leu        | ACC<br>Thr        | TAT<br>Tyr        | ATT<br>Ile        | GAA<br>Glu<br>330 | GGT<br>Gly        | GCT<br>Ala        | TAC<br>Tyr        | GCT<br>Ala        | AGA<br>Arg<br>335 | 1069   |
| ACT<br>Thr        | AGA<br>Arg        | ACA<br>Thr        | ACT<br>Thr        | GAG<br>Glu<br>340 | Thr               | GGT<br>Gly        | AAA<br>Lys        | GGC<br>Gly        | GTA<br>Val<br>345 | Lys               | ACT<br>Thr        | GAA<br>Glu        | AAA<br>Lys        | GAA<br>Glu<br>350 | AAA<br>Lys        | 1117   |
| TCA<br>Ser        | GTG<br>Val        | GGT<br>Gly        | GTA<br>Val<br>355 | Gly               | TTA<br>Leu        | CGC<br>Arg        | GTT<br>Val        | TAC<br>Tyr<br>360 | Phe               | TAA               | TCAT              | TTG '             | TTAG              | AAAT              | AC                | 1167   |
| ATT               | 'ATTA             | AAA               | GCAA              | GGCG              | AA T              | CGAA              | AGAT              | T CG              | CTTT              | TTTT              | GCT               | CAAA              | ATC               | AAGT              | TAAAA             | A 1227 |
| ATC               | ATTA              | AGT               | TAAA              | AGTG              | TA T              | AAAT.             | ATTT              | A GG              | CTAT              | TTTA              | TAA               | GTAA              | CAA               | AATA              | TAAT              | A 1287 |
| AAA               | AATC              | TGT               | GACA              | TATA              | TC A              | CAGA              | TTTT              | T AA              | ATCA              | ATTA              | ACT               | ATTT              | AAG               | TGTT              | TACTA             | T 1347 |
| TAP               | TTCT              | CTT               | TCCA              | CTTT              | CC G              | TTTA              | CTAC              | T GT              | GCCG              | ATTA              | CTT               | GGTA              | ATT               | TGGC              | GTAAA             | C 1407 |
| ACC               | GCTA              | AGT               | TTGC              | TATO              | TT A              | .CCTT             | TTTC              | T AC              | CGAA              | CCTA              | AAC               | GATO              | ATC               | TATA              | .CCAAT            | т 1467 |
| GC7               | CGTC              | GAC               |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   | 1477   |

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 361 amino acids
  (B) TYPE: amino acid
  (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Lys Thr Leu Ala Ala Leu Ile Val Gly Ala Phe Ala Ala Ser 1 5 15

Ala Ala Asn Ala Ala Val Val Tyr Asn Asn Glu Gly Thr Asn Val Glu Leu Gly Gly Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn Ser Thr Val Asp Asn Gln Lys Gln Gln His Gly Ala Leu Arg Asn Gln Gly Ser Arg Phe His Ile Lys Ala Thr His Asn Phe Gly Asp Gly Phe Tyr Ala Gln Gly Tyr Leu Glu Thr Arg Phe Val Thr Lys Ala Ser Glu Asn Gly Ser Asp Asn Phe Gly Asp Ile Thr Ser Lys Tyr Ala Tyr Val Thr Leu Gly Asn Lys Ala Phe Gly Glu Val Lys Leu Gly Arg Ala Lys Thr Ile Ala Asp Gly Ile Thr Ser Ala Glu Asp Lys Glu Tyr Gly Val Leu Asn Asn Ser Asp Tyr Ile Pro Thr Ser Gly Asn Thr Val Gly Tyr Thr Phe Lys Gly Ile Asp Gly Leu Val Leu Gly Ala Asn Tyr Leu Leu Ala Gln Lys Arg Glu Gly Ala Lys Gly Glu Asn Lys Arg Pro Asn Asp Lys Ala Gly Glu Val Arg Ile Gly Glu Ile Asn Asn Gly Ile Gln Val Gly Ala Lys Tyr Asp Ala Asn Asp Ile Val Ala Lys Ile Ala Tyr Gly Arg Thr Asn 210 220 Tyr Lys Tyr Asn Glu Ser Asp Glu His Lys Gln Gln Leu Asn Gly Val Leu Ala Thr Leu Gly Tyr Arg Phe Ser Asp Leu Gly Leu Leu Val Ser Leu Asp Ser Gly Tyr Ala Lys Thr Lys Asn Tyr Lys Ile Lys His Glu Lys Arg Tyr Phe Val Ser Pro Gly Phe Gln Tyr Glu Leu Met Glu Asp 275 280 285 Thr Asn Val Tyr Gly Asn Phe Lys Tyr Glu Arg Thr Ser Val Asp Gln Gly Glu Lys Thr Arg Glu Gln Ala Val Leu Phe Gly Val Asp His Lys 305 310 315 Leu His Lys Gln Leu Leu Thr Tyr Ile Glu Gly Ala Tyr Ala Arg Thr Arg Thr Thr Glu Thr Gly Lys Gly Val Lys Thr Glu Lys Glu Lys Ser Val Gly Val Gly Leu Arg Val Tyr Phe

| (2) | INFORMATION | FOR | SEO | TD | NO - 9 - |
|-----|-------------|-----|-----|----|----------|
| [2] | INFORMATION | rok | 250 | ıυ | MO:3:    |

| (i) |     | ENCE CHA |      |      |      |
|-----|-----|----------|------|------|------|
|     | (A) | LENGTH:  | 1137 | base | pair |

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

## (ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 4..1092

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

|                   | (364)             |                   |                   |                   |                   |                   |                  |                   |                   |                   |                   |                   |                   |                   |                   |   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|-----|
| CAT               | ATG<br>Met<br>1   | GCT<br>Ala        | AGC<br>Ser        | ATG<br>Met        | ACT<br>Thr<br>5   | GGT<br>Gly        | GGA<br>Gly       | CAG<br>Gln        | CAA<br>Gln        | ATG<br>Met<br>10  | GGT<br>Gly        | CGG<br>Arg        | GAT<br>Asp        | TCA<br>Ser        | AGC<br>Ser<br>15  |   | 48  |
| TTG<br>Leu        | GTA<br>Val        | CCG<br>Pro        | AGC<br>Ser        | TCG<br>Ser<br>20  | GAT<br>Asp        | CCA<br>Pro        | GCT<br>Ala       | GTT<br>Val        | GTT<br>Val<br>25  | TAT<br>Tyr        | AAC<br>Asn        | AAC<br>Asn        | GAA<br>Glu        | GGG<br>Gly<br>30  | ACT<br>Thr        |   | 96  |
| AAC<br>Asn        | GTA<br>Val        | GAA<br>Glu        | TTA<br>Leu<br>35  | GGT<br>Gly        | GGT<br>Gly        | CGT<br>Arg        | TTA<br>Leu       | AGC<br>Ser<br>40  | ATT<br>Ile        | ATC<br>Ile        | GCA<br>Ala        | GAA<br>Glu        | CAA<br>Gln<br>45  | AGT<br>Ser        | AAT<br>Asn        |   | 144 |
| AGC<br>Ser        | ACT<br>Thr        | GTA<br>Val<br>50  | GAT<br>Asp        | AAT<br>Asn        | CAA<br>Gln        | AAA<br>Lys        | CAG<br>Gln<br>55 | CAA<br>Gln        | CAC<br>His        | GGT<br>Gly        | GCA<br>Ala        | TTA<br>Leu<br>60  | CGC<br>Arg        | AAT<br>Asn        | CAA<br>Gln        |   | 192 |
| GGT<br>Gly        | TCA<br>Ser<br>65  | CGT<br>Arg        | TTC<br>Phe        | CAC<br>His        | ATT<br>Ile        | AAA<br>Lys<br>70  | GCA<br>Ala       | ACT<br>Thr        | CAT<br>His        | AAC<br>Asn        | TTC<br>Phe<br>75  | GGT<br>Gly        | GAT<br>Asp        | GGT<br>Gly        | TTC<br>Phe        |   | 240 |
| TAT<br>Tyr<br>80  | GCA<br>Ala        | CAA<br>Gln        | GGT<br>Gly        | TAT<br>Tyr        | TTA<br>Leu<br>85  | GAA<br>Glu        | ACT<br>Thr       | CGT<br>Arg        | TTT<br>Phe        | GTT<br>Val<br>90  | ACA<br>Thr        | AAA<br>Lys        | GCC<br>Ala        | TCT<br>Ser        | GAA<br>Glu<br>95  |   | 288 |
| AAC<br>Asn        | GGT<br>Gly        | TCA<br>Ser        | GAT<br>Asp        | AAC<br>Asn<br>100 | TTC<br>Phe        | GGT<br>Gly        | GAT<br>Asp       | ATT<br>Ile        | ACA<br>Thr<br>105 | Ser               | AAA<br>Lys        | TAT<br>Tyr        | GCT<br>Ala        | TAT<br>Tyr<br>110 | GTT<br>Val        |   | 336 |
| ACT<br>Thr        | TTA<br>Leu        | GGA<br>Gly        | AAT<br>Asn<br>115 | Lys               | GCA<br>Ala        | TTC<br>Phe        | GGT<br>Gly       | GAA<br>Glu<br>120 | Val               | AAA<br>Lys        | CTT<br>Leu        | GGT<br>Gly        | CGT<br>Arg<br>125 | GCG<br>Ala        | AAA<br>ayd        |   | 384 |
| ACT<br>Thr        | ATT<br>Ile        | GCT<br>Ala<br>130 | Asp               | GGC               | ATA<br>Ile        | ACA<br>Thr        | AGT<br>Ser       | Ala               | GAA<br>Glu        | GAT<br>Asp        | AAA<br>Lys        | GAA<br>Glu<br>140 | Tyr               | GGC<br>Gly        | GTT<br>Val        |   | 432 |
| CTC<br>Leu        | AAC<br>Asn<br>145 | Asn               | AGT<br>Ser        | GAC<br>Asp        | TAT               | ATT<br>Ile<br>150 | Pro              | ACT<br>Thr        | AGT<br>Ser        | GGT<br>Gly        | AAT<br>Asn<br>155 | Thr               | GTT<br>Val        | GGC               | TAT               |   | 480 |
| ACT<br>Thr<br>160 | Phe               | AAA<br>Lys        | GGT<br>Gly        | 'ATT              | GAT<br>Asp<br>165 | Gly               | TTA<br>Leu       | GTA<br>Val        | TTA<br>Leu        | GGC<br>Gly<br>170 | Ala               | TAA '             | TAT               | TTA<br>Leu        | TTA<br>Leu<br>175 | : | 528 |
| GCA<br>Ala        | CAA<br>Gln        | AAG<br>Lys        | CGI<br>Arg        | GAG<br>Glu<br>180 | ı Gly             | GCA<br>Ala        | AAA<br>Lys       | GGI<br>Gly        | GAA<br>Glu<br>185 | Asn               | Lys               | CGG<br>Arg        | CCT<br>Pro        | AAT<br>Asn<br>190 | GAT<br>Asp        |   | 576 |
| AAG<br>Lys        | GCT<br>Ala        | GGT<br>Gly        | GAF<br>Glu        | ı Val             | CGT<br>Arg        | ATA               | GGI<br>Gly       | GAZ<br>Glu<br>200 | ı Ile             | AAT<br>Asn        | ' AAT<br>Asr      | GGA<br>Gly        | ATI<br>Ile<br>205 | Gln               | GTT<br>Val        |   | 624 |

PCT/US94/08326

|     |       |       |       |     |      |      |       | ATC<br>Ile        |     |      |     |       |     | 672  |
|-----|-------|-------|-------|-----|------|------|-------|-------------------|-----|------|-----|-------|-----|------|
|     |       |       |       |     |      |      |       | TCT<br>Ser        |     |      |     |       |     | 720  |
|     |       |       |       |     |      |      |       | TAT<br>Tyr        |     |      |     |       |     | 768  |
|     |       |       |       |     |      |      |       | GCA<br>Ala        |     | <br> |     | _     |     | 816  |
|     |       |       |       |     |      |      |       | TCT<br>Ser<br>280 |     |      |     |       |     | 864  |
|     |       |       |       |     |      |      |       | AAC<br>Asn        |     |      |     |       |     | 912  |
|     |       |       |       |     |      |      |       | GAA<br>Glu        |     |      |     |       |     | 960  |
|     | His   |       |       |     |      |      |       | TTÀ<br>Leu        |     |      |     |       |     | 1008 |
|     |       |       |       |     |      |      |       | GGT<br>Gly        |     |      |     |       |     | 1056 |
|     |       |       |       |     |      |      |       | CGC<br>Arg<br>360 |     |      | TAA | rcat: | rtg | 1102 |
| TTA | GAAA' | TAC 2 | ATTA! | TAA | AA G | CAAG | GCGA( | C TC              | GAG |      |     |       |     | 1137 |

#### (2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 363 amino acids
    (B) TYPE: amino acid
    (D) TOPOLCGY: linear

## (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu 1 5 15

Val Pro Ser Ser Asp Pro Ala Val Val Tyr Asn Asn Glu Gly Thr Asn 20 25 30

Val Glu Leu Gly Gly Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn Ser 35

Thr Val Asp Asn Gln Lys Gln Gln His Gly Ala Leu Arg Asn Gln Gly 50 60

Ser Arg Phe His Ile Lys Ala Thr His Asn Phe Gly Asp Gly Phe Tyr
65 75 80 Ala Gln Gly Tyr Leu Glu Thr Arg Phe Val Thr Lys Ala Ser Glu Asn Gly Ser Asp Asn Phe Gly Asp Ile Thr Ser Lys Tyr Ala Tyr Val Thr Leu Gly Asn Lys Ala Phe Gly Glu Val Lys Leu Gly Arg Ala Lys Thr Ile Ala Asp Gly Ile Thr Ser Ala Glu Asp Lys Glu Tyr Gly Val Leu Asn Asn Ser Asp Tyr Ile Pro Thr Ser Gly Asn Thr Val Gly Tyr Thr Phe Lys Gly Ile Asp Gly Leu Val Leu Gly Ala Asn Tyr Leu Leu Ala Gln Lys Arg Glu Gly Ala Lys Gly Glu Asn Lys Arg Pro Asn Asp Lys Ala Gly Glu Val Arg Ile Gly Glu Ile Asn Asn Gly Ile Gln Val Gly Ala Lys Tyr Asp Ala Asn Asp Ile Val Ala Lys Ile Ala Tyr Gly Arg Thr Asn Tyr Lys Tyr Asn Glu Ser Asp Glu His Lys Gln Gln Leu Asn Gly Val Leu Ala Thr Leu Gly Tyr Arg Phe Ser Asp Leu Gly Leu Leu Val Ser Leu Asp Ser Gly Tyr Ala Lys Thr Lys Asn Tyr Lys Ile Lys 260 265 270 His & Lu Lys Arg Tyr Phe Val Ser Pro Gly Phe Gln Tyr Glu Leu Met Glu Asp Thr Asn Val Tyr Gly Asn Phe Lys Tyr Glu Arg Thr Ser Val 290 295 300 Asp Gln Gly Glu Lys Thr Arg Glu Gln Ala Val Leu Phe Gly Val Asp His Lys Leu His Lys Gln Leu Leu Thr Tyr Ile Glu Gly Ala Tyr Ala Arg Thr Arg Thr Thr Glu Thr Gly Lys Gly Val Lys Thr Glu Lys Glu 340 350 Lys Ser Val Gly Val Gly Leu Arg Val Tyr Phe

## (2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1074 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 4..1029

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

|                   | (11)              | ייים              | ζΟ LII (C         |                   |                   |                   |                   | - ×               |                   |                   |                   |                   |                   |                   |                   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| CAT               | ATG<br>Met<br>1   | GCT<br>Ala        | GTT<br>Val        | GTT<br>Val        | TAT<br>Tyr<br>5   | AAC<br>Asn        | AAC<br>Asn        | GAA<br>Glu        | GGG<br>Gly        | ACT<br>Thr<br>10  | AAC<br>Asn        | GTA<br>Val        | GAA<br>Glu        | TTA<br>Leu        | GGT<br>Gly<br>15  | 48  |
| GGT<br>Gly        | CGT<br>Arg        | TTA<br>Leu        | AGC<br>Ser        | ATT<br>Ile<br>20  | ATC<br>Ile        | GCA<br>Ala        | GAA<br>Glu        | CAA<br>Gln        | AGT<br>Ser<br>25  | AAT<br>Asn        | AGC<br>Ser        | ACT<br>Thr        | GTA<br>Val        | GAT<br>Asp<br>30  | AAT<br>Asn        | 96  |
| CAA<br>Gln        | AAA<br>Lys        | CAG<br>Gln        | CAA<br>Gln<br>35  | CAC<br>His        | GGT<br>Gly        | GCA<br>Ala        | TTA<br>Leu        | CGC<br>Arg<br>40  | AAT<br>Asn        | CAA<br>Gln        | GGT<br>Gly        | TCA<br>Ser        | CGT<br>Arg<br>45  | TTC<br>Phe        | CAC<br>His        | 144 |
| ATT<br>Ile        | ААА<br>Lyв        | GCA<br>Ala<br>50  | ACT<br>Thr        | CAT<br>His        | AAC<br>Asn        | TTC<br>Phe        | GGT<br>Gly<br>55  | GAT<br>Asp        | GGT<br>Gly        | TTC<br>Phe        | TAT<br>Tyr        | GCA<br>Ala<br>60  | CAA<br>Gln        | GGT<br>Gly        | TAT<br>Tyr        | 192 |
| TTA<br>Leu        | GAA<br>Glu<br>65  | ACT<br>Thr        | CGT<br>Arg        | TTT<br>Phe        | GTT<br>Val        | ACA<br>Thr<br>70  | Lys<br>AAA        | GCC<br>Ala        | TCT<br>Ser        | GAA<br>Glu        | AAC<br>Asn<br>75  | GGT<br>Gly        | TCA<br>Ser        | GAT<br>Asp        | AAC<br>Asn        | 240 |
| TTC<br>Phe<br>80  | GGT<br>Gly        | GAT<br>Asp        | ATT<br>Ile        | ACA<br>Thr        | AGC<br>Ser<br>85  | AAA<br>Lys        | TAT<br>Tyr        | GCT<br>Ala        | TAT<br>Tyr        | Val               | ACT<br>Thr        | TTA<br>Leu        | GGA<br>Gly        | AAT<br>Asn        | AAA<br>Lys<br>95  | 288 |
| GCA<br>Ala        | TTC<br>Phe        | GGT<br>Gly        | GAA<br>Glu        | GTA<br>Val<br>100 | AAA<br>Lys        | CTT<br>Leu        | GGT<br>Gly        | CGT<br>Arg        | GCG<br>Ala<br>105 | AAA<br>Lys        | ACT<br>Thr        | ATT<br>Ile        | GCT<br>Ala        | GAT<br>Asp<br>110 | GGC<br>Gly        | 336 |
| ATA<br>Ile        | ACA<br>Thr        | AGT<br>Ser        | GCA<br>Ala<br>115 | GAA<br>Glu        | GAT<br>Asp        | AAA<br>Lys        | GAA<br>Glu        | TAT<br>Tyr<br>120 | GGC<br>Gly        | GTT<br>Val        | CTC<br>Leu        | AAC<br>Asn        | AAT<br>Asn<br>125 | AGT<br>Ser        | GAC<br>Asp        | 384 |
| TAT<br>Tyr        | ATT<br>Ile        | CCT<br>Pro<br>130 | Thr               | AGT<br>Ser        | GGT<br>Gly        | AAT<br>Asn        | ACG<br>Thr<br>135 | Val               | GGC<br>Gly        | TAT<br>Tyr        | ACT<br>Thr        | TTT<br>Phe<br>140 | AAA<br>Lys        | GGT<br>Gly        | ATT<br>Ile        | 432 |
| GAT<br>Asp        | GGT<br>Gly<br>145 | Leu               | GTA<br>Val        | TTA<br>Leu        | GGC<br>Gly        | GCT<br>Ala<br>150 | Asn               | TAT<br>Tyr        | TTA<br>Leu        | TTA<br>Leu        | GCA<br>Ala<br>155 | Gln               | AAG<br>Lys        | CGT<br>Arg        | GAG<br>Glu        | 480 |
| GGT<br>Gly<br>160 | Ala               | AAA<br>Lys        | GGT               | GAA<br>Glu        | AAT<br>Asn<br>165 | Lys               | CGG<br>Arg        | CCT<br>Pro        | AAT<br>Asn        | GAT<br>Asp<br>170 | Lys               | GCT<br>Ala        | GGT<br>Gly        | GAA<br>Glu        | GTA<br>Val<br>175 | 528 |
| CGT<br>Arg        | ATA<br>Ile        | GGT<br>Gly        | GAA<br>Glu        | ATC<br>Ile<br>180 | Asn               | AAT<br>Asn        | GGA<br>Gly        | ATT<br>Ile        | CAA<br>Gln<br>185 | Val               | GGT<br>Gly        | GCA<br>Ala        | AAA<br>Lys        | TAT<br>Tyr<br>190 | qaA               | 576 |
| GCA<br>Ala        | AAC<br>Asn        | GAC<br>Asp        | ATC<br>Ile        | Val               | GCA<br>Ala        | AAA<br>Lys        | ATT               | GCT<br>Ala<br>200 | Tyr               | GGT<br>Gly        | AGA<br>Arg        | ACT<br>Thr        | AAC<br>Asn<br>205 | TAC               | AAA<br>Lys        | 624 |
| TAT<br>Tyr        | ' AAC<br>' Asn    | GAA<br>Glu<br>210 | Ser               | GAC<br>Asp        | GAG<br>Glu        | CAT<br>His        | AAA<br>Lys<br>215 | Gln               | CAA<br>Gln        | TTA<br>Leu        | raA .             | GGT<br>Gly<br>220 | Val               | TTA<br>Leu        | GCA<br>Ala        | 672 |
| ACT<br>Thr        | TTA<br>Leu<br>225 | ı Gly             | TAT               | CGT<br>Arg        | TTT<br>Phe        | AGT<br>Ser<br>230 | Asp               | TTA<br>Leu        | GGC<br>Gly        | TTA<br>Leu        | TTA<br>Lev<br>235 | ı Val             | TCT<br>Ser        | CTA<br>Leu        | GAT<br>Asp        | 720 |

| AGT<br>Ser<br>240 | GGC<br>Gly        | TAT<br>Tyr        | GCA<br>Ala        | råe<br>Yyy        | ACT<br>Thr<br>245 | ГÀ<br>УУУ         | yau<br>Yyc        | TAT<br>Tyr        | AAA<br>Lys        | ATT<br>Ile<br>250 | AAA<br>Lys        | CAC<br>His        | GAA<br>Glu        | AAA<br>Lys        | CGC<br>Arg<br>255 | 768  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| TAT<br>Tyr        | TTC<br>Phe        | GTA<br>Val        | TCT<br>Ser        | CCA<br>Pro<br>260 | GGT<br>Gly        | TTC<br>Phe        | CAA<br>Gln        | TAT<br>Tyr        | GAA<br>Glu<br>265 | TTA<br>Leu        | ATG<br>Met        | GAA<br>Glu        | GAT<br>Asp        | ACT<br>Thr<br>270 | AAT<br>Asn        | 816  |
| GTC<br>Val        | TAT<br>Tyr        | GGC<br>Gly        | AAC<br>Asn<br>275 | TTC<br>Phe        | AAA<br>Lys        | TAT<br>Tyr        | GAA<br>Glu        | CGC<br>Arg<br>280 | ACT<br>Thr        | TCT<br>Ser        | GTA<br>Val        | GAT<br>Asp        | CAA<br>Gln<br>285 | GGT<br>Gly        | GAA<br>Glu        | 864  |
| AAA<br>Lys        | ACA<br>Thr        | CGT<br>Arg<br>290 | GAA<br>Glu        | CAA<br>Gln        | GCA<br>Ala        | GTA<br>Val        | TTA<br>Leu<br>295 | TTC<br>Phe        | GGT<br>Gly        | GTA<br>Val        | GAT<br>Asp        | CAT<br>His<br>300 | AAA<br>Lys        | CTT<br>Leu        | CAC<br>His        | 912  |
| AAA<br>Ly         | CAA<br>31n<br>305 | Le.1<br>CLY       | TTA<br>Leu        | ACC<br>Thr        | TAT<br>Tyr        | ATT<br>Ile<br>310 | GAA<br>Glu        | GGT<br>Gly        | GCT<br>Ala        | TAC<br>Tyr        | GCT<br>Ala<br>315 | AGA<br>Arg        | ACT<br>Thr        | AGA<br>Arg        | ACA<br>Thr        | 960  |
| A:<br>Thr<br>320  | GAG<br>Glu        | ACA<br>Thr        | GGT<br>Gly        | AAA<br>Lys        | GGC<br>Gly<br>325 | GTA<br>Val        | AAA<br>Lys        | ACT<br>Thr        | GAA<br>Glu        | AAA<br>Lys<br>330 | GAA<br>Glu        | AAA<br>Lys        | TCA<br>Ser        | GTG<br>Val        | GGT<br>Gly<br>335 | 1008 |
|                   |                   |                   | CGC<br>Arg        |                   |                   |                   |                   | rcat'             | TTG '             | rtag:             | TAAA              | AC A              | TAT               | TAAA              | A                 | 1059 |
| GCA               | AGGC              | GAC '             | TCGA              | G                 |                   |                   |                   |                   |                   |                   | •                 |                   | ٠                 |                   |                   | 1074 |

#### (2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 342 amino acids (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Ala Val Val Tyr Asn Asn Glu Gly Thr Asn Val Glu Leu Gly Gly
1 5 10 15

Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn Ser Thr Val Asp Asn Gln 20 25 30

Lys Gln Gln His Gly Ala Leu Arg Asn Gln Gly Ser Arg Phe His Ile

Lys Ala Thr His Asn Phe Gly Asp Gly Phe Tyr Ala Gln Gly Tyr Leu
50 60

Glu Thr Arg Phe Val Thr Lys Ala Ser Glu Asn Gly Ser Asp Asn Phe

Gly Asp Ile Thr Ser Lys Tyr Ala Tyr Val Thr Leu Gly Asn Lys Ala 85 90 95

Phe Gly Glu Val Lys Leu Gly Arg Ala Lys Thr Ile Ala Asp Gly Ile

Thr Ser Ala Glu Asp Lys Glu Tyr Gly Val Leu Asn Asn Ser Asp Tyr 115 120 125

| Ile        | Pro<br>130 | Thr        | Ser        | Gly        | Asn        | Thr<br>135 | Val        | Gly        | Tyr        | Thr        | Phe<br>140 | Lys        | Gly        | Ile        | Asp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly<br>145 | Leu        | Val        | Leu        | Gly        | Ala<br>150 | Asn        | Tyr        | Leu        | Leu        | Ala<br>155 | Gln        | Lys        | Arg        | Glu        | Gly<br>160 |
| Ala        | Lys        | Gly        | Glu        | Asn<br>165 | Lys        | Arg        | Pro        | Asn_       | Asp<br>170 | Lys        | Ala        | Gly        | Glu        | Val<br>175 | Arg        |
| Ile        | Gly        | Glu        | Ile<br>180 | Asn        | naA        | Gly        | Ile        | Gln<br>185 | Val        | Gly        | Ala        | Lys        | Tyr<br>190 | Asp        | Ala        |
| Asn        | Asp        | Ile<br>195 | Val        | Ala        | Lys        | Ile        | Ala<br>200 | Tyr        | Gly        | Arg        | Thr        | Asn<br>205 | Tyr        | Lys        | Tyr        |
| Asn        | Glu<br>210 | Ser        | Asp        | Glu        | His        | Lys<br>215 | Gln        | Gln        | Leu        | Asn        | Gly<br>220 | Val        | Leu        | Ala        | Thr        |
| Leu<br>225 | Gly        | Tyr        | Arg        | Phe        | Ser<br>230 | Asp        | Leu        | Gly        | Leu        | Leu<br>235 | Val        | Ser        | Leu        | Asp        | Ser<br>240 |
| Gly        | Tyr        | Ala        | Lys        | Thr<br>245 | Lys        | Asn        | Tyr        | Lys        | Ile<br>250 | Lys        | His        | Glu        | Lys        | Arg<br>255 | Tyr        |
| Phe        | Val        | Ser        | Pro<br>260 | Gly        | Phe        | Gln        | Tyr        | Glu<br>265 | Leu        | Met        | Glu        | Asp        | Thr<br>270 | Asn        | Val        |
| Туг        | Gly        | Asn<br>275 | Phe        | Lys        | Tyr        | Glu        | Arg<br>280 | Thr        | Ser        | Val        | Asp        | Gln<br>285 | Gly        | Glu        | Lys        |
| Thr        | Arg<br>290 |            | Gln        | Ala        | Val        | Leu<br>295 | Phe        | Gly        | Val        | Asp        | His<br>300 | Lye        | Leu        | His        | Lys        |
| Gl:<br>305 |            | Leu        | Thr        | Tyr        | 11e        | Glu        | ı Gly      | Ala        | Туг        | 315        | Arg        | Thr        | Arg        | Thr        | Thr<br>320 |
| Glu        | Thr        | Gly        | Lys        | Gly<br>325 | val        | . Lys      | 5 Thi      | Gl:        | 330        | Glu        | Lys        | Se:        | · Val      | Gly<br>335 | v Val      |
| Gl         | / Lev      | a Arg      | 7 Val      |            | - Phe      | •          |            |            |            |            |            |            |            |            |            |
|            |            |            |            | . 501      | CE/        | , TD       | NO.        | 13.        |            |            |            |            |            |            |            |

### (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 1072 base pairs
  (B) TYPE: nucleic acid
  (C) STRANDEDNESS: single
  (D) TOPOLOGY: linear
- (ix) FEATURE:

  - (A) NAME/KEY: CDS
    (B) LOCATION: 4..1029
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- CAT ATG GCT GTT GTT TAT AAC AAC GAA GGG ACT AAC GTA GAA TTA GGT Met Ala Val Val Tyr Asn Asn Glu Gly Thr Asn Val Glu Leu Gly 1
- GGT CGT TTA AGC ATT ATC GCA GAA CAA AGT AAT AGC ACT GTA GAT AAT Gly Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn Ser Thr Val Asp Asn

| CAA<br>Gln        | AAA<br>Lys        | CAG<br>Gln       | CAA<br>Gln<br>35  | CAC<br>His        | GGT<br>Gly        | GCA<br>Ala        | TTA<br>Leu         | CGC<br>Arg<br>40  | AAT<br>Asn        | CAA<br>Gln        | GGT<br>Gly        | Ser                  | CGT<br>Arg<br>45  | TTC<br>Phe        | CAC<br>His            | 144   |
|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-----------------------|-------|
| ATT<br>Ile        | AAA<br>Lys        | GCA<br>Ala<br>50 | ACT<br>Thr        | CAT<br>His        | AAC<br>Asn        | TTC<br>Phe        | GGT<br>Gly<br>55   | GAT<br>Asp        | GGT<br>Gly        | TTC<br>Phe        | TAT<br>Tyr        | GCA<br>Ala<br>60     | CAA<br>Gln        | GGT<br>Gly        | TAT<br>Tyr            | 192   |
| TTA<br>Leu        | GAA<br>Glu<br>65  | ACT<br>Thr       | CGT<br>Arg        | TTT<br>Phe        | GTT<br>Val        | ACA<br>Thr<br>70  | AAA<br>Lys         | GCC<br>Ala        | TCT<br>Ser        | GAA<br>Glu        | AAC<br>Asn<br>75  | GGT<br>Gly           | TCA<br>Ser        | GAT<br>Asp        | AAC<br>Asn            | 240   |
| TTC<br>Phe<br>80  | GGT<br>Gly        | GAT<br>Asp       | ATT<br>I3-a       | ACA<br>Thr        | AGC<br>Ser<br>85  | AAA<br>Lys        | TAT<br>Tyr         | GCT<br>Ala        | TAT<br>Tyr        | GTT<br>Val<br>90  | ACT<br>Thr        | TTA<br>Leu           | GGA<br>Gly        | AAT<br>Asn        | AAA<br>Lys<br>95      | 288   |
| GCA<br>Ala        | TTC<br>Phe        | GGT<br>Gly       | GAA<br>Glu        | GTA<br>Val<br>100 | AAA<br>Lys        | CTT<br>Leu        | GGT<br>Gly         | CGT<br>Arg        | GCG<br>Ala<br>105 | AAA<br>Lys        | ACT<br>Thr        | ATT<br>Ile           | GCT<br>Ala        | Asp               | GGC<br>Gly            | 336   |
| ATA<br>Ile        | ACA<br>Thr        | AGT<br>Ser       | GCA<br>Ala<br>115 | GAA<br>Glu        | GAT<br>Asp        | AAA<br>Lys        | GAA<br>Glu         | TAT<br>Tyr<br>120 | GGC<br>Gly        | GTT<br>Val        | CTC<br>Leu        | AAC<br>Asn           | AAT<br>Asn<br>125 | AGT<br>Ser        | GAC<br>Asp            | 384   |
| TAT<br>Tyr        | ATT               | CCT<br>Pro       | Thr               | AGT<br>Ser        | GGT<br>Gly        | TAA<br>Asn        | ACG<br>Thr<br>135  | Val               | GGC               | TAT<br>Tyr        | ACT<br>Thr        | TTT<br>Phe<br>140    | пåв               | GGT<br>Gly        | ATT<br>Ile            | 432   |
| GAT<br>Asp        | GGT<br>Gly<br>145 | Lev              | GTA<br>Val        | TTA<br>Leu        | GGC<br>Gly        | GCT<br>Ala<br>150 | Asn                | TAT<br>Tyr        | TTA<br>Leu        | TTA<br>Leu        | GCA<br>Ala<br>155 | GII                  | AAG<br>Lys        | CGT<br>Arg        | GAG<br>Glu            | 480   |
| GGT<br>Gly<br>160 | Ala               | AAA<br>Lys       | A GGT<br>s Gly    | GAA<br>Glu        | AAT<br>Asn<br>165 | Lys               | CGG<br>Arg         | CCT<br>Pro        | AAT<br>Asn        | GAT<br>Asp<br>170 | - TAF             | GCT<br>Ala           | GGT<br>Gly        | GAA<br>Glu        | GTA<br>Val<br>175     | 528   |
| CGI               | ATA               | GGT<br>Gly       | r GAZ<br>y Glu    | A ATC             | Asn               | TAA '             | GGA<br>Gly         | ATT               | CAA<br>Glr<br>185 | 1 val             | GG7               | r GCA<br>/ Ala       | YYY<br>L Lys      | TAT<br>Tyr<br>190 |                       | 576   |
| Ala               | a Ası             | ı Ası            | P Ile<br>19!      | e Val             | . Ala             | Lys               | : 11€              | 200               | i Tyi<br>)        | r GI              | ALS               | <b>.</b> 1111        | 205               | / -               | Lys                   | 624   |
| Ту                | r Ası             | n Gl             | u Se:<br>0        | r Asp             | GI.               | ı Hle             | 215                | 2<br>2            | 1 611             | п Бе              | , we              | 22                   | , ,               |                   | GCA<br>Ala            | 672   |
| Th                | 22                | u Gl<br>5        | у Ту              | r Arg             | g Phe             | 230               | c Asi              | o Let             | 1 61              | у ге              | 23                | u va<br>5            | r ber             |                   | A GAT                 | 720   |
| Se<br>24          | r Gl<br>O         | у Ту             | r Al              | a Ly              | 5 Th:             | r Бу:             | s Asi              | n Ty:             | г гу              | 25                | 0<br>6 Ty         | e ur                 |                   | . <u></u> .       | A CGC<br>s Arg<br>255 | 768   |
| ту                | r Ph              | e Va             | l Se              | r Pr<br>26        | 0<br>P GT         | у Ри              | e GI               | n Iy              | 26                | 5                 | u Me              | c Gi                 | u no              | 27                |                       | , 816 |
| Va                | ıl Ty             | r Gl             | Ly As<br>27       | n Ph              | e Ly              | в Ту              | r Gl               | u Ar<br>28        | 0<br>0            | ır se             | :I VC             | II Ac                | 28                | 5                 | T GAA<br>y Glu        | 864   |
| A.F<br>L          | A AC              | ir Ai            | ST GF<br>rg Gl    | A CA<br>Lu Gl     | A GC<br>n Al      | A GT<br>a Va      | A TT<br>1 Le<br>29 | u Pn              | C GO<br>Le G]     | ST GI<br>Ly Va    | A GA              | AT CA<br>sp Hi<br>30 | وند ه.            | A CT<br>s Le      | T CAC<br>u His        | 912   |

| AAA<br>Lys        | CAA<br>Gln<br>305 | CTA<br>Leu | TTA<br>Leu | ACC<br>Thr        | TAT<br>Tyr.       | ATT<br>Ile<br>310 | GAA<br>Glu | GGT<br>Gly | GCT<br>Ala | TAC<br>Tyr        | GCT<br>Ala<br>315 | AGA<br>Arg | ACT<br>Thr | AGA<br>Arg | ACA<br>Thr        |   | 960  |
|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|---|------|
| ACT<br>Thr<br>320 | GAG<br>Glu        | ACA<br>Thr | GGT<br>Gly | AAA<br>Lys        | GGC<br>Gly<br>325 | GTA<br>Val        | AAA<br>Lys | ACT<br>Thr | GAA<br>Glu | AAA<br>Lys<br>330 | GAA<br>Glu        | AAA<br>Lys | TCA<br>Ser | GTG<br>Val | GGT<br>Gly<br>335 |   | 1008 |
| GTA<br>Val        | GGT<br>Gly        | TTA<br>Leu | CGC<br>Arg | GTT<br>Val<br>340 | TAC<br>Tyr        | TTC<br>Phe        | TAA'       | rcat'      | rtg :      | ITAG              | TAAA              | AC A'      | TTAT       | raaai      | A                 |   | 1059 |
| GCA               | AGGC(             | GGA '      | TCC        |                   |                   |                   | ٠.         |            |            |                   |                   |            |            |            |                   | • | 1072 |

### (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 342 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

 Met 1
 Ala
 Val
 Tyr 5
 Asn Asn Glu Gly Thr Asn Val
 Glu Leu Gly Gly 15
 Gly Arg Leu Ser Ile 20
 Ile Ala Glu Gln Ser Asn Ser Thr Val Asp Asn Gln 30
 Asn Gln 30

Ile Gly Glu Ile Asn Asn Gly Ile Gln Val Gly Ala Lys Tyr Asp Ala 180 185 190

Ala Lys Gly Glu Asn Lys Arg Pro Asn Asp Lys Ala Gly Glu Val Arg

Asn Asp Ile Val Ala Lys Ile Ala Tyr Gly Arg Thr Asn Tyr Lys Tyr 195 200 205 
 Asn
 Glu
 Asp
 Glu
 His
 Lys
 Gln
 Gln
 Leu
 Asn
 Gly
 Val
 Leu
 Ala
 Thr

 Leu
 Gly
 Tyr
 Arg
 Phe
 Ser
 Asp
 Leu
 Gly
 Leu
 Leu
 Leu
 Leu
 Leu
 Ser
 Leu
 Asp
 Ser
 240

 Gly
 Tyr
 Asp
 Lys
 Lys
 Lys
 Lys
 Lys
 Lys
 Arg
 Tyr
 Lys
 Lys
 His
 Glu
 Lys
 Arg
 Tyr
 Arg
 Thr
 Ser
 Val
 Asp
 Gln
 Asp
 Gln
 Lys
 Lys
 Lys
 Arg
 Thr
 Thr
 Arg
 His
 Lys
 Leu
 His
 Lys
 Lys

#### What Is Claimed Is:

- 1. A method for the high level expression of the outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2) in E. coli comprising:
  - (a) transforming a vector comprising a selectable marker and a gene coding for a protein selected from the group consisting of
    - (i) a mature P2 protein and
    - (ii) a fusion protein comprising a mature P2 protein fused to amino acids 1 to 22 of the T7 gene  $\phi$ 10 capsid protein;

wherein said gene is operably linked to the T7 promoter; and

(b) growing said transformed *E. coli* in LB media containing glucose and a selection agent at about 30°C; whereby the protein is expressed,

wherein the protein so expressed comprises more than about 2% of the total protein expressed in said  $E.\ coli$ .

- 2. The method according to claim 1, wherein said protein comprises more than about 10% of the total protein expressed in said E. coli.
- 3. The method according to claim 1, wherein said protein comprises more than about 40% of the total protein expressed in said E. coli.
- 4. The method according to claim 1, wherein said vector is selected from the group consisting of pET-17b, pET-11a, pET-24a-d(+) and pET-9a.

- 5. The method according to claim 1, wherein said vector comprises a Hib-P2 gene operably linked to the T7 promoter of expression plasmid pET-17b.
- 6. A method of purifying the outer membrane protein P2 or fusion protein thereof obtained according to claim 1 comprising:
  - (c) lysing said E. coli obtained in step (b) to release said protein as insoluble inclusion bodies;
  - (d) washing said insoluble inclusion bodies obtained in step (c) with a buffer to remove contaminating E. coli cellular proteins;
  - (e) suspending and dissolving said inclusion bodies obtained in step (d) in an aqueous solution of a denaturant;
  - (f) diluting the solution obtained in step (e) with a detergent; and
  - (g) purifying said protein by gel filtration.
- 7. A method of refolding the outer membrane protein P2 or fusion protein obtained according to claim 1 comprising:
  - (c) lysing said E. coli obtained in step (b) to release said protein as insoluble inclusion bodies;
  - (d) washing said insoluble inclusion bodies obtained in step (c) with a buffer to remove contaminating E. coli cellular proteins;
  - (e) suspending and dissolving said inclusion bodies obtained in step (d) in an aqueous solution of a denaturant;
  - (f) diluting the solution obtained in step (e) with a detergent;
  - (g) purifying said protein by gel filtration; and
  - (h) storing said gel filtration product at about 4°C in an aqueous solution comprising high concentration of NaCl and calcium ions, until said protein refolds.

- 8. A substantially pure refolded outer membrane protein P2 from *Haemophilus influenzae* type b (Hib-P2) or fusion protein thereof produced according to the method of claim 7.
- 9. A vaccine comprising the outer membrane protein P2 from Haemophilus influenzae type b (Hib-P2) or a fusion protein thereof produced according to claim 7 together with a pharmaceutically acceptable diluent, carrier or excipient, wherein said protein is present, in an amount effective to elicit protective antibodies in an animal to Haemophilus influenzae type b.
- 10. The vaccine according to claim 9, wherein said outer membrane protein P2 is conjugated to a *Haemophilus* capsular polysaccharide.
- 11. A method of obtaining a P2 protein or P2 fusion protein-polysaccharide conjugate comprising:
  - (i) obtaining the outer membrane protein P2 or fusion protein according to claim 7;
  - (j) obtaining a Haemophilus capsular polysaccharide; and
  - (k) conjugating the outer membrane protein P2 or fusion protein of (i) to the polysaccharide of (j).
- 12. A method of preventing bacterial meningitis in an animal comprising administering to said animal the Hib-P2 protein or fusion protein produced according to claim 1, wherein said protein is administered in an amount effective to prevent bacterial meningitis.
  - 13. The vector pNV-3.

- 14. The vector pNV-2.
- 15. The vector pNV-6.



1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIG. 1



1 2 3 4 5 6 7 8 9 10 11 12 13 14

FIG. 2



10<sup>5</sup> 2 3 4 5 6 1.5 2.0 Ve/Vo

FIG.3A SUBSTITUTE SHEET (RULE 26)

| 3713                                                                                                                                                          |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Soll — oligo #1 —<br>GTCGACAATT CTATTGGAGA AAAGTTCAAT CATAGATAGT AAACAACCAT AAGGAATACA                                                                        | 60  |
| AATT ATG AAA AAA ACA CTT GCA GCA TTA ATC GTT GGT GCA TTC GCA GCT Met Lys Lys Thr Leu Ala Ala Leu Ile Val Gly Ala Phe Ala Ala 1 5 10 15                        | 109 |
| Pvull — oligo #2—  TCA GCA GCA AAC GCA GCT GTT GTT TAT AAC AAC GAA GGG ACT AAC GTA  Ser Ala Ala Asn Ala Ala Val Val Tyr Asn Asn Glu Gly Thr Asn Val  20 25 30 | 157 |
| GAA TTA GGT GGT CGT TTA AGC ATT ATC GCA GAA CAA AGT AAT AGC ACT Glu Leu Gly Gly Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn Ser Thr 35 40 45                      | 205 |
| GTA GAT AAT CAA AAA CAG <u>CAA CAC GGT GCA TTA</u> CGC AAT CAA GGT TCA<br>Vol Asp Asn Gln Lys Gln Gln His Gly Ala Leu Arg Asn Gln Gly Ser<br>50 55 60         | 253 |
| CGT TTC CAC ATT AAA GCA ACT CAT AAC TTC GGT GAT GGT TTC TAT GCA Arg Phe His Ile Lys Ala Thr His Asn Phe Gly Asp Gly Phe Tyr Ala 65 70 75                      | 301 |
| CAA GGT TAT TTA GAA ACT CGT TTT GTT ACA AAA GCC TCT GAA AAC GGT GIn Gly Tyr Leu Glu Thr Arg Phe Val Thr Lys Ala Ser Glu Asn Gly 80 85 90 95                   | 349 |
| TCA GAT AAC TTC GGT GAT ATT ACA AGC AAA TAT GCT TAT GTT ACT TTA<br>Ser Asp Asn Phe Gly Asp Ile Thr Ser Lys Tyr Ala Tyr Val Thr Leu<br>100 105 110             | 397 |
| GGA AAT AAA GCA TIC GGT GAA GTA AAA CTT GGT CGT GCG AAA ACT ATT GIy Asn Lys Ala Phe Gly Glu Val Lys Leu Gly Arg Ala Lys Thr Ile  115 120 125                  | 445 |

| GCT<br>Ala               | GAT<br>Asp          | <u>GGC</u><br>Gly<br>130 | ATA                        | -oli<br>ACA<br>Thr | ĀGT               | GCA<br>Ala               | GAA<br>G I u<br>135 | GAT               | /15<br>AAA<br>Lys   | GAA<br>Glu            | TAT<br>Tyr        | GGC<br>Gly<br>140 | GTT<br>Val        | CTC<br>Leu        | AAC<br>Asn               | 193            |
|--------------------------|---------------------|--------------------------|----------------------------|--------------------|-------------------|--------------------------|---------------------|-------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|----------------|
| TAA<br>Asn               | AGT<br>Ser<br>145   | Asp                      | TAT<br>Tyr                 | ATT<br>Ile         | CCT<br>Pro        | Spe<br>ACT<br>Thr<br>150 | AGT                 | GGT<br>Gly        | AAT<br>Asn          | ACG<br>Thr            | GTT<br>Val<br>155 | GGC<br>Gly        | TAT<br>Tyr        | ACT<br>Thr        | <u>Dra</u><br>TTT<br>Phe | 541            |
| <u>AAA</u><br>Lys<br>160 | GGT<br>Gly          | ATT                      | GAT<br>Asp                 | GGT<br>Gly         | TTA<br>Leu<br>165 | GTA<br>Val               | TTA<br>Leu          | GGC               | na I<br>GCT<br>Al a | AAT<br>Asn<br>170     | TAT<br>Tyr        | TTA<br>Leu        | TTA<br>Leu        | GCA<br>Ala        | CAA<br>GIn<br>175        | 589            |
| AA <u>G</u><br>Lys       | CGT                 | GAĞ                      | o #8<br>GGT<br>Gly         | GCA                | Lys               | GGT<br>Gly               | <u>GA</u> A<br>Glu  | AAT<br>Asn        | AAG<br>Lys<br>185   | Fnul<br>CGG<br>Arg    | <u>CC</u> T       | AAT<br>Asn        | GAT<br>Asp        | AAG<br>Lys<br>190 | AIG                      | 637            |
| GGT<br>G1y               | GAA<br>Glu          | G <u>TA</u><br>Val       | Sno<br>CGT<br>Arg<br>195   | ATA<br>Ile         | GGT               | GAA<br>Glu               | ATC<br>Ile          | AAT<br>Asn<br>200 | Asn                 | G <u>GA</u><br>Gly    | COR<br>ATT        | <u>C</u> AA       | GTT<br>Val<br>205 | Gly               | GCA<br>Ala               | 685            |
| AAA<br>Lys               | TAT<br>Tyr          | Asp                      | GCA<br>Alc                 | Asn                | Asp               | He                       | GTT<br>Val<br>215   | Ald               | AAA<br>Lys          | A ATT                 | GCT               | TAT<br>Tyr<br>220 | Gly               | AGA<br>Arg        | ACT<br>Thr               | 733            |
| AAC<br>Asn               | TAC<br>Tyr<br>225   | Lys                      | A TAT<br>s Tyr             | AAC                | -ol<br>GAA<br>Glu | TCT                      | GAC<br>Asp          | GAG               | <u>C</u> Al<br>His  | 「AAA<br>s Lys         | CAC<br>G1r<br>235 | ı Glr             | A TTA             | AAT<br>Asn        | GGT                      | 781            |
| GTA<br>Val<br>240        | Le                  | A GC/                    | A AC <sup>-</sup><br>a Thi | T TT/              | GGC<br>Gly<br>245 | Tyr                      | CG1                 | T TT              | T AG                | T GAT<br>r Asp<br>250 | Lei               | A GG(<br>u Gl)    | C TTA<br>y Lei    | ı Lei             | 255                      | <br>829        |
| T <u>C</u><br>Se         | Xba<br>T CT<br>r Le | A GA                     | T AG                       | T GG<br>r GI<br>26 | y Ty              | GC/                      | A AA                | s Th              | r Ly<br>26          | s Asr                 | ı Ty              | r Ly              | A AT              | T <u>AA/</u>      | A CAC<br>S His           | <br>877<br>.4B |

|                                             | 5                                                                             | /15 Ase                                                                          | Ī                                       |
|---------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| GAA AAA CGC TAT<br>Glu Lys Arg Tyr 1<br>275 | TTC GTA TCT CCA GGT<br>Phe Val Ser Pro Gly<br>280                             | TTC CAA TAT GAA TTA<br>Phe Gln Tyr Glu Leu                                       | ATG GAA 925                             |
|                                             |                                                                               | TAT GAA CGC ACT TCT<br>Tyr Glu Arg Thr Ser<br>300                                |                                         |
| CAA GGT GAA AAA                             | ACA CGT GAA CAA GCA                                                           | oligo #9— <u>Sa</u><br>GTA TT <u>A TTC GGT GTA</u><br>Val Leu Phe Gly Val<br>315 | <u>GAT CAT</u> 1021                     |
| AAA CTT CAC AAA<br>Lys Leu His Lys<br>320   | CAA CTA TTA ACC TAT<br>GIn Leu Leu Thr Tyr<br>325                             | ATT GAA GGT GCT TAC<br>lle Glu Gly Ala Tyr<br>330                                | GCT AGA 1069<br>Ala Arg<br>335          |
| ACT AGA ACA ACT<br>Thr Arg Thr Thr          | GAG ACA GGT AAA GGG<br>Glu Thr Gly Lys Gly<br>340                             | GTA AAA ACT GAA AAA<br>Val Lys Thr Glu Lys<br>345                                | GAA AAA 11117<br>Glu Lys<br>350         |
| TCA GTG GGT GTA                             | #15 — <u>Mlu</u> I<br><u>GGT TTA CGC GTT</u> TAG<br>Gly Leu Arg Val Ty<br>360 |                                                                                  | AAATAC 1167                             |
|                                             |                                                                               | - oligo #4<br>CCTTTTTTT CCTCAAAATC                                               |                                         |
| ATGATTAAGT TAAAA                            | AGTGTA TAAATATTTA G                                                           | GCTATTITA TAAGTAACAA                                                             | <u>Ase</u> l<br>AAT <u>ATTAATA</u> 1257 |
| - PCR-4 AAAAATCTGT GACA                     | <u>Dro</u><br>TATATC ACAGATT <u>TTT A</u>                                     | AATCAATTA ACTATTTAAG                                                             | TGTTTACT <u>AT</u> 1347                 |
| Ase I<br>TAAT TCTCTT TCCA                   | CIT <u>ICC GTITACTACT G</u>                                                   | — PCR-5 —<br>IGCCGATTA CTTGGTAATT                                                | TGGCGTAAAC 1407                         |
| ACGCTAAGT TIGC                              | TATCTT ACCTTTTTCT A                                                           | Sou3A<br>CCGAACCTA AACGATCATC                                                    | TATACCAATT 1467                         |
| <u>Sal</u> I<br>GCTCGTCGAC                  | FI(                                                                           | 6.4C                                                                             | . 1477                                  |

SUBSTITUTE SHEET (RULE 26)

6/15 Hindlll. Hdel Nhel CAT ATG GCT AGC ATG ACT GGT GGA CAG CAA ATG GGT CGG GAT TCA AGC 48 Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser BamHI Konl TTG GTA CCG AGC TCG GAT CCA GCT GTT GTT TAT AAC AAC GAA GGG ACT 96 Leu Val Pro Ser Ser Asp Pro Ala Val Val Tyr Asn Asn Glu Gly Thr 20 25 30 144 AAC GTA GAA TTA GGT GGT CGT TTA AGC ATT ATC GCA GAA CAA AGT AAT Asn Val Glu Leu Gly Gly Arg Leu Ser Ile Ile Ala Glu Gln Ser Asn 45 35 40 AGC ACT GTA GAT AAT CAA AAA CAG CAA CAC GGT GCA TTA CGC AAT CAA 192 Ser Thr Vol Asp Asn Gln Lys Gln Gln His Gly Ala Leu Arg Asn Gln 50 55 GGT TCA CGT TTC CAC ATT AAA GCA ACT CAT AAC TTC GGT GAT GGT TTC 240 Gly Ser Arg Phe His Ile Lys Alo Thr His Asn Phe Gly Asp Gly Phe 65 TAT GCA CAA GGT TAT TTA GAA ACT CGT TTT GTT ACA AAA GCC TCT GAA 288 Tyr Ala Gin Gly Tyr Leu Giu Thr Arg Phe Val Thr Lys Ala Ser Giu 85 90 95 80 AAC GGT TCA GAT AAC ITC GGT GAT ATT ACA AGC AAA TAT GCT TAT GTT 336 Asn Gly Ser Asp Asn Phe Gly Asp Ile Thr Ser Lys Tyr Ala Tyr Val 105 110 100 384 ACT TTA GGA AAT AAA GCA TTC GGT GAA GTA AAA CTT GGT CGT GCG AAA Thr Leu Gly Asn Lys Ala Phe Gly Glu Val Lys Leu Gly Arg Ala Lys 120 125 115 ACT ATT GCT GAT GGC ATA ACA AGT GCA GAA GAT AAA GAA TAT GGC GTT 432 Thr Ile Ala Asp Gly Ile Thr Ser Ala Glu Asp Lys Glu Tyr Gly Val 135 140 130

# FIG.5A

|     |  |             |             | ACT        |     | ACG<br>Thr                       |             |             |   | 480 |
|-----|--|-------------|-------------|------------|-----|----------------------------------|-------------|-------------|---|-----|
| TIT |  |             |             |            | GGC | AAT<br>Asn                       |             |             |   | 528 |
|     |  |             |             |            |     | <u>Fni</u><br>C <u>GG</u><br>Arg | <u>CC</u> T |             |   | 576 |
|     |  | GTA         | <u>A</u> TA |            |     | G <u>GA</u><br>Gly               |             | <u>C</u> AA | · | 624 |
|     |  |             |             |            |     | ATT<br>Ile<br>220                |             |             |   | 672 |
|     |  |             |             |            |     | AAA<br>Lys                       |             |             |   | 720 |
|     |  |             |             |            |     | GAT<br>Asp                       |             |             |   | 768 |
|     |  | <u>GA</u> T |             |            |     | AAC<br>Asn                       |             |             | ż | 816 |
|     |  |             |             | Ser<br>280 | Gly | CAA<br>G1n                       |             |             |   | 864 |

FIG.5B

|      |                  |       |       |      |       |      |      |   |            | AAA<br>Lys        |     |     |      |     | 912  |
|------|------------------|-------|-------|------|-------|------|------|---|------------|-------------------|-----|-----|------|-----|------|
| Val  |                  |       |       |      |       |      |      |   |            | GCA<br>Ala        |     |     |      |     | 960  |
|      |                  |       |       |      |       |      |      |   |            | TAT<br>Tyr<br>330 |     |     |      |     | 1008 |
|      |                  |       |       |      |       |      |      |   |            | GGC<br>Gly        |     |     |      |     | 1056 |
|      |                  |       |       |      |       |      | TTA  |   | Val        | TAC<br>Tyr        |     | TAA | TCAT | TTG | 1102 |
| TTAC | AAA <sup>°</sup> | TAC , | ATTA' | TTAA | AA GI | CAAG | GCGA | _ | hol<br>GAG |                   | • • |     |      |     | 1137 |

FIG.5C

|            | Hde | ı   |                   |   |     |  |  |   |  |      |
|------------|-----|-----|-------------------|---|-----|--|--|---|--|------|
| <u>CAT</u> | ATG | GCT | GTT<br>Val        |   |     |  |  |   |  | . 48 |
|            |     |     | AGC<br>Ser        |   |     |  |  |   |  | . 96 |
|            |     |     | CAA<br>GIn<br>35  |   |     |  |  |   |  | 144  |
|            |     |     | ACT<br>Thr        |   |     |  |  |   |  | 192  |
|            |     |     | CGT<br>Arg        |   |     |  |  |   |  | 240  |
|            |     |     | ATT<br>11e        |   |     |  |  |   |  | 288  |
|            |     |     | GAA<br>Glu        |   |     |  |  |   |  | 336  |
|            |     |     | GCA<br>Ala<br>115 |   |     |  |  |   |  | 384  |
|            |     |     | ACT<br>Thr        |   |     |  |  | Ш |  | 432  |
|            |     |     |                   | H | nal |  |  |   |  |      |
|            |     |     | GTA<br>Val        |   | _   |  |  |   |  | 480  |

| GGT<br>Gly<br>160 | GCA<br>Alo        | AAA<br>Lys        | GGT<br>Gly        | GAA<br>Glu        | AAT<br>Asn<br>165 | AAG<br>Lys        | CGG<br>Arg         | CCT<br>Pro         | AAT<br>Asn                | GAT<br>Asp<br>170 | AAG<br>Lys        | GCT<br>Ala        | GGT<br>Gly         | GAA<br>Glu        | GTA<br>Val<br>175 | 528 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|---------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-----|
| CGT               | ATA<br>I-I e      | GGT<br>Gly        | GAA<br>Glu        | ATC<br>Ile<br>180 | AAT<br>Asn        | AAT<br>Asn        | G <u>GA</u><br>Gly | EcoR<br>ATT<br>Ile | <u>C</u> AA               | GTT<br>Val        | GGT<br>Gly        | GCA<br>Ala        | AAA<br>Lys         | TAT<br>Tyr<br>190 | GAT<br>Asp        | 576 |
| GCA<br>Ala        | AAC<br>Asn        | GAC<br>Asp        | ATC<br>He<br>195  | GTT<br>Val        | GCA<br>Ala        | AAA<br>Lys        | ATT<br>Ile         | GCT<br>Ala<br>200  | TAT<br>Tyr                | GGT<br>Gly        | AGA<br>Arg        | ACT<br>Thr        | AAC<br>Asn<br>205  | TAC<br>Tyr        | AAA<br>Lys        | 624 |
| TAT<br>Tyr        | AAC<br>Asn        | GAA<br>Glu<br>210 | Ser               | GAC<br>Asp        | GAG<br>Glu        | CAT<br>His        | AAA<br>Lys<br>215  | CAG<br>G I n       | CAA<br>Gln                | TTA<br>Leu        | AAT<br>Asn        | GGT<br>Gly<br>220 | GTA<br>Val         | Leu               | Ala               | 672 |
| Thr               | TTA<br>Leu<br>225 | Gly               | TAT<br>Tyr        | CGT<br>Arg        | TTT<br>Phe        | AGT<br>Ser<br>230 | GAT<br>Asp         | TTA<br>Leu         | GGC<br>Gly                | TTA<br>Leu        | TTA<br>Leu<br>235 | GTG<br>Val        | TC <u>T</u><br>Ser | CTA<br>Leu        | <u>GA</u> T       | 720 |
| AGT<br>Ser<br>240 | GGC<br>Gly        | TAT<br>Tyr        | GCA<br>Ala        | AAA<br>Lys        | ACT<br>Thr<br>245 | Lys               | AAC<br>Asn         | TAT<br>Tyr         | AAA<br>Lys                | 11e<br>250        | Lys               | CAC<br>His        | GAA<br>Glu         | AAA<br>Lys        | CGC<br>Arg<br>255 | 768 |
| TAT<br>Tyr        | TTC<br>Phe        | GTA<br>Vol        | TCT<br>Ser        | CCA<br>Pro<br>260 | Gly               | TTC<br>Phe        | CAA<br>G1n         | TAT<br>Tyr         | GA <u>A</u><br>G1u<br>265 | Leu               | <u>AT</u> G       | GAA<br>Glu        | GAT<br>Asp         | ACT<br>Thr<br>270 | Asn               | 816 |
| GTC<br>Val        | TAT<br>Tyr        | GGC               | AAC<br>Asn<br>275 | Phe               | : AAA<br>: Lys    | TAT<br>Tyr        | GAA<br>Glu         | CGC<br>Arg<br>280  | Thr                       | TCT<br>Ser        | GTA<br>Val        | GAT<br>Asp        | CAA<br>GIn<br>285  | Gly               | GAA<br>Glu        | 864 |
| AAA<br>Lys        | ACA<br>Thr        | CGT<br>Arg<br>290 | g Gli             | CAA<br>J Glr      | GC/<br>Alc        | A GTA<br>Val      | TTA<br>Leu<br>295  | Phe                | GGT<br>Gly                | GTA<br>Val        | Asp               | CAT<br>His        | Lys                | CTT<br>Leu        | CAC               | 912 |
| AAA<br>Lys        | CAA<br>Glr<br>305 | Leu               | A TT/<br>J Lei    | A ACC<br>J Thr    | C TAI             | ATT<br>116<br>310 | Glu                | GGT<br>Gly         | GCT<br>Alc                | TAC<br>Tyr        | GCT<br>Alo        | Arg               | ACT<br>Thr         | AGA<br>Arg        | ACA<br>Thr        | 960 |

FIG.6B

SUBSTITUTE SHEET (RULE 26)

| ACT GAG ACA GGT AAA GGC GTA AAA ACT GAA AAA GAA AAA TCA GTG GG                                   | T 1008 |
|--------------------------------------------------------------------------------------------------|--------|
| Thr Glu Thr Gly Lys Gly Val Lys Thr Glu Lys Glu Lys Ser Val Gly 320 325 330 335                  | y<br>5 |
| GTA GGT TTA CGC GTT TAC TTC TAATCATTTG TTAGAAATAC ATTATTAAAA Vol Gly Leu Arg Vol Tyr Phe end 340 | 1059   |
| Xho I                                                                                            | 1074   |

FIG.6C

| <u>CAT</u> | _ | GCT | GTT<br>Val        |  |   |  |  |          |  | 48  |
|------------|---|-----|-------------------|--|---|--|--|----------|--|-----|
|            |   |     | AGC<br>Ser        |  |   |  |  |          |  | 96  |
|            |   |     | CAA<br>GIn<br>35  |  |   |  |  |          |  | 144 |
|            |   | -   | ACT<br>Thr        |  |   |  |  |          |  | 192 |
|            |   |     | CGT<br>Arg        |  |   |  |  |          |  | 240 |
|            |   |     | ATT<br>Ile        |  | • |  |  |          |  | 288 |
|            |   |     | GAA<br>Glu        |  |   |  |  |          |  | 336 |
|            |   |     | GCA<br>Ala<br>115 |  |   |  |  |          |  | 384 |
|            |   |     | Sp<br>ACT<br>Thr  |  |   |  |  | <u> </u> |  | 432 |

# FIG.7A

|   |  |  |   | H | naI |   |                 |                        |   |     |                   |       |   |
|---|--|--|---|---|-----|---|-----------------|------------------------|---|-----|-------------------|-------|---|
|   |  |  |   |   |     |   |                 | GCA<br>Alo<br>155      |   |     |                   | 480   | ) |
| , |  |  |   |   |     |   |                 | AAG<br>Lys             |   |     | GTA<br>Val<br>175 | 528   | 3 |
|   |  |  |   |   |     | _ | <br><u>C</u> AA | GGT<br>Gly             |   |     |                   | 576   | 3 |
|   |  |  |   |   |     |   |                 | AGA<br>Arg             |   |     |                   | 624   | 1 |
|   |  |  |   |   |     |   |                 | AAT<br>Asn             |   | Leu | Ala               | 672   | 2 |
|   |  |  |   |   |     |   |                 | TTA<br>Leu<br>235      | - |     | <u>GA</u> T       | 720   | ) |
|   |  |  |   |   |     |   |                 | AAA<br>Lys             |   |     |                   | 768   | } |
|   |  |  | • |   |     |   |                 | <br><u>AT</u> G<br>Met |   |     |                   | 816   | ; |
|   |  |  | • |   |     |   |                 | GTA<br>Val             |   |     |                   | . 864 | ļ |
|   |  |  |   |   |     |   |                 | GAT<br>Asp             |   |     |                   | 912   | ? |

|                           | 290         |     |             |  | 295 |        |       |                | •     | 300   |     |      |          |      |
|---------------------------|-------------|-----|-------------|--|-----|--------|-------|----------------|-------|-------|-----|------|----------|------|
| AAA CAA<br>Lys Gln<br>305 |             |     |             |  |     |        |       |                |       |       |     |      |          | 960  |
| ACT GAG<br>Thr Glu<br>320 |             |     |             |  |     |        |       |                |       |       |     |      |          | 1008 |
| GTA GGT<br>Vol Gly        | TTA         | Arg | <u>GT</u> T |  | TAA | ICAT 1 | ITG 1 | Γ <b>TA</b> G/ | VAAT. | AC AT | TAT | ΓΑΑΑ | <b>\</b> | 1059 |
| GCAAGGCG                  | Bom<br>GA I |     |             |  |     |        | •     |                |       |       |     |      |          | 1072 |

FIG.7C

WO 95/03069 PCT/US94/08326

kDa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



FIG. 8A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



FIG. 8B
SUBSTITUTE SHEET (RULE 26)

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/08326

| A CLASSICIAMION ON CLEAN                                                                                                                                               |                                                                                                                                  |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A. CLASSIFICATION OF SUBJECT MATTER  IPC(5) :Please See Extra Sheet.                                                                                                   |                                                                                                                                  |                                   |
| US CL :Please See Extra Sheet.                                                                                                                                         |                                                                                                                                  |                                   |
| According to International Patent Classification (IPC) or to bo                                                                                                        | th national classification and IPC                                                                                               |                                   |
| B. FIELDS SEARCHED                                                                                                                                                     |                                                                                                                                  |                                   |
| Minimum documentation searched (classification system follow                                                                                                           | ved by classification symbols)                                                                                                   |                                   |
| U.S.: Please See Extra Sheet.                                                                                                                                          |                                                                                                                                  |                                   |
| Documentation searched other than minimum documentation to                                                                                                             | the extent that such documents are included                                                                                      | in the fields searched            |
| Electronic data base consulted during the international search ( Please See Extra Sheet.                                                                               | name of data base and, where practicable                                                                                         | , search terms used)              |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                 |                                                                                                                                  |                                   |
| Category* Citation of document, with indication, where                                                                                                                 | appropriate, of the relevant passages                                                                                            | Relevant to claim No.             |
| Y EP, A, 0,320,289 (HANSEN) 1 document.                                                                                                                                | 4 JUNE 1989, see entire                                                                                                          | 6-11                              |
| Y EP, A, 0,378,929 (MUNSON JF see entire document.                                                                                                                     | R. ET AL.) 25 JULY 1990,                                                                                                         | 6-11                              |
| INFECTION AND IMMUNITY, Vol. January 1989, R. Munson Jr. e Expression, and Primary Sequence Haemophilus Influenzae Type b" document.                                   | et al., "Molecular Cloning,<br>e of Outer Membrane P2 of                                                                         | 1-3, 8-10, 12                     |
|                                                                                                                                                                        |                                                                                                                                  |                                   |
| X Further documents are listed in the continuation of Box C                                                                                                            | See patent family annex.                                                                                                         |                                   |
| Special categories of cited documents:  document defining the general state of the art which is not considered                                                         | "T' later document published after the inters<br>date and not in conflict with the applicati                                     | OD but Cited to understand the    |
| to be of particular relevance  earlier document published on or after the international filing date  document which may throw doubts on priority claim(s) or which is  | "X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone              | Claimed invention arms to         |
| cited to establish the publication date of another citation or other special reason (as specified)  document referring to an oral disclosure, use, exhibition or other | "Y" document of particular relevance; the considered to involve an inventive at                                                  | ten when the decument is          |
| document published prior to the international filing date but later than the priority date claimed                                                                     | combined with one or more other such of<br>being obvious to a person skilled in the<br>"&" document member of the same patent fa | ocuments, such combination<br>art |
| ate of the actual completion of the international search                                                                                                               | Date of mailing of the international search                                                                                      | ·                                 |
| 19 SEPTEMBER 1994                                                                                                                                                      | 2 7 OCT 199                                                                                                                      |                                   |
| ame and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231                                                            | Authorized officer ANTHONY C. CAPUTA                                                                                             | hoza for                          |
| rm PCT/ISA/210 (second sheet)(July 1992)*                                                                                                                              | Telephone No. (703) 308-0196                                                                                                     | I formal                          |

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/08326

| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                                                                                                                                                   |                          |            |  |  |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|--|--|--|--|--|--|--|
| Category*                                             | Citation of document, with indication, where appropriate, of the releva                                                                                                                                                           | Relevant to claim No.    |            |  |  |  |  |  |  |  |
| X<br>-<br>Y                                           | JOURNAL OF CLINICAL INVESTIGATION, Volume August 1983, R.S. Munson Jr. et al., "Purification and Comparison of Outer Membrane Protein P2 from Haem influenzae Type b isolates", pages 677-684, see entire description.            | 8<br><br>6, 7, 9, 10-12  |            |  |  |  |  |  |  |  |
| Y                                                     | JOURNAL OF EXPERIMENTAL MEDICINE, Volum issued 1980, R. Schneerson et al., "Preparation, Charac and Immunogenicity of Haemophilus influenzae Type b Polysaccharide-Protein Conjugates", pages 361-376, see document.              | cterization,             | 6-11       |  |  |  |  |  |  |  |
| Y                                                     | METHODS IN ENZYMOLOGY, Volume 182, issued Martson et al., "Solubilization of Protein Aggregates", 1276, see entire document.                                                                                                      | 1990, F.O.<br>pages 264- | 6-11       |  |  |  |  |  |  |  |
| Y                                                     | US, A, 4,656,255 (SEELY) 07 April 1987, see entire d                                                                                                                                                                              | ocument.                 | 6-11       |  |  |  |  |  |  |  |
|                                                       | JOURNAL OF BACTERIOLOGY, Volume 162, Numb issued June 1985, V. Vachon et al., "Transmembrane P Channels Across the Outer Membrane of <u>Haemophilus i</u> Type b", pages 918-924, see entire document.                            | ermeability              | 6-11       |  |  |  |  |  |  |  |
| Y                                                     | GIBCO BRL CATALOGUE AND REFERENCE GUID published 1991, pages 355 and 357, see pages 355 and 3                                                                                                                                     | DE 1992,<br>357.         | 1-5, 12-15 |  |  |  |  |  |  |  |
|                                                       | METHODS IN ENZYMOLOGY, Volume 185, issued 1 F.W. Studier et al., "Uses of T7 RNA Polymerase to D Expression of Cloned Genes", pages 60-89, see entire de                                                                          | irect                    | 1-5, 12-15 |  |  |  |  |  |  |  |
|                                                       | INFECTION AND IMMUNITY, Volume 57, Number 4 April 1989, E.J. Hansen et al., "Primary Structure of th Protein of <u>Haemophilus Influenzae</u> Type b Determined b Nucleotide Sequence Analysis", pages 1100-1107, see endocument. | e Porin                  | 1-15       |  |  |  |  |  |  |  |
|                                                       |                                                                                                                                                                                                                                   |                          |            |  |  |  |  |  |  |  |

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/08326

A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):

A61K 39/102; C07K 3/12, 3/18, 3/20, 3/26, 3/28, 15/04, 17/10; C12N 15/31, 15/70; C12P 21/02

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

424/256.1; 435/69.3, 320.1, 851; 530/350, 402, 412, 414, 415, 417

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

424/256.1; 435/69.3, 320.1, 851; 530/350, 402, 412, 414, 415, 417

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

CA, CABA, CAPREVIEWS, BIOSIS, MEDLINE, BIOTECHABS, BIOTECHDS, JICST-E, LIFESCI, WPIDS, IFIPAT, INPADOC, WPINDEX, DISSABS, GENBANK, CJACS, CJELSEVIER, PATOSDE, PATOSWO, PATOSEP, ANABSTR, AQUASCI, CEABA, CEN, CIN, FSTA, CONFSCI, DRUGNL. BIOBUSINESS search terms: P2, TAI?, PULLEN?, SPOER?, LAING?, PET 16B, T7, CAPSID, PROTEIN. NOVAGEN?, PET 17B, PET?