

Low-Complexity Compressed Analysis in Eigenspace with Limited Labeled Data for Real-Time Electrocardiography Telemonitoring

Kai-Chieh Hsu, Bo-Hong Cho, Ching-Yao Chou and An-Yeu (Andy) Wu

National Taiwan University

ECG Telemonitoring with Edge Computing

- Mobile Telemedicine with Wireless Body Area Network (WBAN) [1]
 - ❖ Patient-centered health-care
 - Ubiquitous health-care
- * ECG Telemonitoring [2], [3]
 - Record the electrical activity of the heart
 - Standard practice in hospitals for diagnoses
- Edge Computing [4]
 - bandwidth cost saving
 - battery life constraint
 - latency requirement

Sensors on Body Fig. 1. [2]

Edge Computing under Existing IoT Systems

Compressed Sensing for ECG Telemonitoring

- Problems of Digital Wavelet Transform (DWT)
 - High bandwidth incompatible to ADC (Nyquist sample rate)
 - High Computational Complexity (Compression)

- Compressed sensing (CS) combines sampling and compressing
 - Reduce cost and latency in sampling
 - CS-based sensors achieves a 37% node lifetime extension [2]

Compressed Analysis for ECG Telemonitoring

- Reconstructed Analysis (RA)
 - High computational complexity because of CS reconstruction algorithms
 - Inappropriate at edge devices.

AF: Atrial Fibrillation

- Compressed Analysis (CA)
 - *Reduce power (classification on compressed signals), suitable at edge devices
 - Reduce the bandwidth requirement (only transmitting AF signals)

Naïve CA (CA-N)

- Combining CS with Task-Driven Dictionary Learning (TDDL)
 - ❖What is TDDL [5]
 - \triangleright Learning a dictionary (**D**) to provide predictive sparse coding (α) at given data set
 - \triangleright Learning a classifier (**W**) to classify by the sparse coding α
 - ❖Why we choose TDDL?
 - ➤ Low Complexity → Overcome battery constraint and bandwidth scarcity
 - ➤ High Generalization → Limited label of ECG dataset
- The on-line inference mode of CA-N
 - ❖ D and W learned on original data (X)
 - Accuracy degrades, needing double parameters to reach same performance on original data

 Accuracy

Contribution of Proposed Scheme (1/2)

- Low-Complexity (overcame battery and bandwidth requirement)
 - Our proposed Eigenspace-aided Compressed Analysis (CA-E) vs Naïve Compressed Analysis (CA-N)

Model # Parameters		Training Time (s) Inference Time (ms)		Accuracy (%)	
CA-N	13k	452.56	26.94	89.24 ± 0.520	
CA-E (Our proposed)	4.25k	107.15	3.50	90.05 ± 0.256	

- ❖ Reduce about 67% parameters (Memory ↓)
- ❖ Reduce about 87% inference time (Power ↓)
- ❖ Reduce about 76% training time (Power ↓)

Contribution of Proposed Scheme (2/2)

- High-Stability
 - CA-E outperforms DNN and SVM by over 10% when the amount of data is halved. (Overcame limited label of ECG dataset)
 - CA-E reaches about 90% under all compressed ratio (Stable under all compressed ratio)

Eigenspace-Aided CA (Training)

- Principal Component Analysis (PCA)
 - ❖ Record mean vector (µ) of dataset (X)
 - **❖** Learn eigenspace (Ψ ∈ $\mathbb{R}^{N \times r}$) of X
 - ❖ Transpose to eigenspace by $\mathbf{T} = \mathbf{\Psi}^{\mathbf{T}}(\mathbf{X} \mathbf{\mu})$
- TDDL to learn D and W on T
 - Stage I. Initialize
 - Dictionary: online dictionary learning (ODL) [6]
 - Weight: square / logistic loss
 - ❖ Stage II. Co-optimize D and W with labels
 - > Alternates between A and D, W
 - > Update dictionary with back propagation rule
 - Sparse coding plays an important role in both stage.

$$\mathbf{\alpha}_{\mathbf{D}} \triangleq \underset{\alpha \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} - \mathbf{D}\mathbf{\alpha}\|_2^2 + \lambda \|\mathbf{\alpha}\|_1$$

$$\min_{\alpha, D} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

$$\min_{\mathbf{W}} \frac{1}{m} \sum_{i=1}^{m} l_{s}(\mathbf{y}_{i}, \mathbf{W})$$

$$\min_{\mathbf{W},\mathbf{D}} \frac{1}{m} \sum_{i=1}^{m} l_{s}(\mathbf{y}_{i}, \mathbf{W}, \boldsymbol{\alpha}_{\mathbf{D}}) + \frac{\gamma}{2} \|\mathbf{W}\|_{F}^{2}$$

Eigenspace-Aided CA (Inference)

- Eigenspace Transform
 - \diamond Compressed sensing signal is transmitted with known sensing matrix (Φ), the decoding data is obtained by

$$s = (\Phi \Psi)^+(\hat{x} - \Phi \mu) = \Theta^+(\hat{x} - \Phi \mu)$$

- ♦ ()+: pseudo-inverse
- The decoding vector (s) then pass through TDDL-based classifier
 - ♦ Get sparse coding $\alpha(\mathbf{s}, \mathbf{D})$ $\alpha_{\mathbf{D}} \triangleq \underset{\alpha \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} \mathbf{D}\alpha\|_2^2 + \lambda \|\alpha\|_1$

Scheme Development (1/2)

Scheme Development (2/2)

Compressed Analysis

Accuracy

❖ Naïve

*Eigenspace-aided CS x Eigenspace S Dictionary Classifier AF

*Edge Devices

Simulation Results (1/3) Different Dictionary Size

- Accuracy vs Dictionary Size
 - ❖To surpass DNN & SVM (~85%), CA-E needs 30 atoms, but CA-N needs 60 atoms.
 - Under same number of atoms, CA-E outperforms CA-N by about 7%.
- ❖ CA-E-50 vs. CA-N-100
 - ❖ Reduce about 67% parameters (Memory ↓)
 - ❖ Reduce about 87% inference time (Power ↓)
 - ❖ Reduce about 76% training time (Power ↓)

Model	# Parameters	Training Time (s)	Inference Time (ms)	Accuracy (%)	
CA-N (100) 13k		452.56	26.94	89.24 ± 0.520	
CA-E (50)	4.25k	107.15	3.50	90.05 ± 0.256	

Simulation Results (2/3) Different Data Set Size

- **\diamond** CA-E is **more immune** to limited data challenge (ex. $N_r \leq 0.5$)
 - SVM and DNN dramatically drops below 80%
 - CA still maintain the performance
 - ❖CA-E outperforms CA-N in 7% margin when the number of atoms is the same.

Simulation Results (3/3) Different Compressed Ratio

CA-E can achieve about 90% accuracy under all compressed ratios

CA-N requires 100 atoms to achieve same level of performance

❖SVM and DNN have only about 80%

CA-E is robust and address the entailed problems of variation of

compress ratio

Conclusion

- We propose an eigenspace-aided compressed analysis for ECG telemonitoring, using
 - ❖ PCA to mitigate the influence of sensing matrix and reduce the dimension
 - TDDL to learn predictive sparse coding at eigenspace.
- The proposed eigenspace-aided compressed analysis achieves
 - Low complexity
 - High generalization
 - High stability of different compressed ratios

Reference

- [1] F. Touati and R. Tabish, "U-healthcare system: state-of-the-art review and challenges," in *Journal of Medical Systems*, pp.120, May 2013.
- [2] H. Mamaghanian, N. Khaled, D. Atienza and P. Vandergheynst, "Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes," in *IEEE Trans. Biomed. Eng.*, vol. 58, no. 9, pp. 2456-2466, Sep. 2011.
- [3] M. Y. Tsai, C. Y. Chou and A. Y. Wu, "Robust compressed analysis using subspace-based dictionary for ECG telemonitoring systems," in *Proc. IEEE Int. Workshop on Signal Process. Syst.*, Oct. 2017
- [4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision and Challenges," in *IEEE Internet Things J.*, vol. 3, no. 5, pp. 637-646, Oct. 2016.
- [5] J. Mairal, F. Bach and J. Ponce, "Task-driven dictionary learning," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 34, no. 4, pp. 791-804, April 2012.
- [6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. "Online dictionary learning for sparse coding," ICML, 2009.

Thanks for your attention

Q&A

Backup

Experimental Setting

- ECG signals were recorded from the intensive care unit (ICU) of stroke in National Taiwan University Hospital (NTUH)
 - 231 normal records and 58 AF records (labeled by doctors)
 - ❖Sample Frequency: 512 Hz
 - Each record randomly sample 2250 seconds
 - > 1250 for training
 - > 1000 for testing
- CS setting
 - Entries of sensing matrix: Bernoulli (0.5)
- Simulation Environment
 - ❖ Measured on Intel i5-4200M CPU @ 2.5 GHz
 - Using Python3

TABLE I: Parameters setting for learning models

CA-E and CA-N					
ℓ_1 -Constraint (λ_1)	[0.2, 0.5, 0.8]				
Regularization (ν)	$[10^{-5}, 10^{-4}]$				
SVM					
Kernel	Radial Basis Function				
Gamma (γ)	[0.08, 0.10, 0.12, 0.15, 0.2]				
Cost (C)	[500, 800, 1000]				
DNN					
	[(16,32), (32,64), (64,128),				
Hidden Layer Dimension	(128,256), (8,16,32),				
	(16,32,64), (32,64,128)]				

Analysis of CA-N

❖ We need to increase the number of atoms in dictionary to compensate

the performance degrade

Figures below also present the sparse codings in original domain as comparison group.

Comparison of CA-E and CA-N

- ❖ CA-E-50 vs. CA-N-100
 - Reduce about 67% parameters
 - Reduce about 76% training time,
 - ❖ Reduce about **87%** inference time
 - Smaller performance variance

Far smaller classifier with faster training and inference time

The bottleneck of training and inference time lies in FISTA

Model	# Parameters	Training Time (s)		Inference Time (ms)				A (0/)
		Total	FISTA	Total	FISTA	# Iter	1 Iter	Accuracy (%)
CA-N (d=100)	$M \times d + d \times N_c$ (13k)	452.56	306.33	26.94	26.94	35.5	0.759	89.24 ± 0.520
CA-E (d=50)	$r \times d + d \times N_c$ (4.25k)	107.15	61.59	3.50	3.49	15.2	0.229	90.05 ± 0.256

M = 128, r = 83 and $N_r = 0.6$

Detailed Timing Analysis

- **The bottleneck in FISTA is** $\nabla_{\alpha} f$ operation

 - Above order matches the following table
- CA-E accelerates FISTA by
 - Cut off the complexity of each iteration
 - **❖** Reducing the number of iteration

Model	Training Time (s)		Inference Time (ms)				
	Total	FISTA	Total	FISTA	# Iter	1 Iter	
CA-N (d=100)	452.56	306.33	26.94	26.94	35.5	0.759	
CA-E (d=50)	107.15	61.59	3.50	3.49	15.2	0.229	

Reference

- [1] I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," *Commun. Pure Appl. Math.*, vol. 57, pp. 1413–1457, 2004.
- [2] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems", SIAM Journal on Imaging Sciences, vol. 2, pp. 183–202, 2009.