

Estimation of abundances in microbial communities from metagenomic data

September 6th 2018 Master 2 Informatique Fondamentale Université Paris-Est Marne-la-Vallée

Simone Pignotti

Supervised at LIGM by: Gregory Kucherov

Overview

- What is Metagenomics
- Sequence classification with ProPhyle
- Estimation of abundances
- Experiments and validation
- Conclusions and perspectives

Metagenomic sequencing

Phylogeny-based metagenomic classification

Metagenome reads (billions)

Phylogenetic tree

Full **reference** genomes (thousands)

Phylogeny-based metagenomic classification

Alignment-free methods

Alignment-free methods

Kraken's LCA

(lowest common ancestors)

Read: AGC

k-mers: AG

GC

Read: AGC

k-mers: AG

GC

ProPhyle: $AG \rightarrow \{4\} \rightarrow \{1,2,3\}$ $GC \rightarrow \{1,2\}$

Read: AGC

k-mers: AG GC

ProPhyle: $AG \rightarrow \{4\} \rightarrow \{1,2,3\}$ $GC \rightarrow \{1,2,6\}$

$$s(1) = 2$$

 $s(2) = 2$
 $s(3) = 1$
 $s(6) = 1$
 $s(*) = 0$

read \rightarrow $\{1,2\}$

Read: AGC

k-mers: AG

GC

 $AG \rightarrow 4 \rightarrow \{1,2,3\}$ $GC \rightarrow 8 \rightarrow \{*\}$ Kraken:

Read: AGC

k-mers: AG GC

Kraken: $AG \rightarrow 4 \rightarrow \{1,2,3\}$ $GC \rightarrow 8 \rightarrow \{*\}$

$$s(1) = 2$$

 $s(2) = 2$
 $s(3) = 2$

$$S(*) = 1$$

read
$$\rightarrow$$
 4
4 = LCA($\{1,2,3\}$)

What to do with multiple assignments?


```
R1 \rightarrow {1,2}

R2 \rightarrow {3,7} \rightarrow {3,5,6}

R3 \rightarrow {3}

R4 \rightarrow {1,3,6}
```

What to do with multiple assignments?

R1
$$\rightarrow$$
 {1,2}
R2 \rightarrow {3,7} \rightarrow {3,5,6}
R3 \rightarrow {3}
R4 \rightarrow {1,3,6}

"Redistribute" reads

Consider all **2**ⁿ - **1** possible combinations

$$\sim 10^{301}$$
 for $n = 1000$

$$\Sigma = 9$$

but only 4 reads...

Linear Regression!

Acquiring statistics about mult. ass.

"Redistributing" multiple assignments

$$m = S \cdot r \qquad \Rightarrow \qquad \begin{cases} m_1 = r_1 + s_{12}r_2 + s_{13}r_3 \\ m_2 = s_{21}r_1 + r_2 + s_{23}r_3 \\ m_3 = s_{31}r_1 + s_{32}r_2 + r_3 \end{cases}$$

S	G_{1}	G_2	G_3	r	_	m	
$G_{\scriptscriptstyle 1}$	1	0.1	0.1	?		11	
G_2	0.2	1	0.2	?	=	4	$\mathbf{r} = \arg\min_{r} m - S \cdot r ^2$
G_3	0	0.1	1	?		10	

"Redistributing" multiple assignments

$$m = S \cdot r \qquad \Rightarrow \qquad \begin{cases} m_1 = r_1 + s_{12}r_2 + s_{13}r_3 \\ m_2 = s_{21}r_1 + r_2 + s_{23}r_3 \\ m_3 = s_{31}r_1 + s_{32}r_2 + r_3 \end{cases}$$

S	G_1	G_2	G_3	r		m	
$G_{\scriptscriptstyle 1}$	1	0.1	0.1	10		11	
G_2	0.2	1	0.2	0	=	4	
G ₃	0	0.1	1	10		10	

Same thing in [#ref.gen.] dimensions

Need regularization

- Many assignments are inaccurate
 - sequencing errors
 - something not in DB
 - *k*-mers only heuristic
- 10⁹ reads + 10⁵ ref. Genomes → anything could get few assignments
- Real scenario: 100s of known organisms in a sample $\rightarrow 1/100$ of index
- Approximate the system while keeping results sparse
- Introduce penalties for "using too many variables"

LASSO regressor

$$r = \arg \min_{r} (\|m - S \cdot r\|^2 + \lambda_1 \|r\|_1)$$

Elastic Net (Zou & Hastie, 2005)

- L₂ regularization does not set regr. coeff. to 0
- Lasso (L₁) → among highly correlated variables will choose only 1
 (at random)
- Combine L_1 and L_2 !
- The quadratic part of the penalty:
 - encourages *grouping* effect
 - **stabilize** regularization path (selected variables)

$$r = \arg \min_r (\|m - S \cdot r\|^2 + \lambda_1 \|r\|_1 + \lambda_2 \|r\|_2^2)$$

Can also simulate LASSO, which has desirable effects

Simulation experiment (Mende et al, 2012)

- ~25M 75bp reads simulated from 193 genomes (85 species)
- includes multiple strains in the genera Bacillus and Mycobacterium
 - notoriously difficult to estimate ab. for (due to high similarity)
- Index for ProPhyle, Bracken and DiTASiC containing 1267 genomes
 - including simulated ones
 - $k = 31 \rightarrow 45 k$ -mers per read

• Residual Sum of Squares (RSS) error measure:

$$\sum_{i=1}^{n} \varepsilon^2 = \sum_{i=1}^{n} (t_i - e_i)^2$$

Results - Mende

		LASSO	E-Net	Bracken	DiTASiC
	RSS	7.52e-4	9.32e-4	NA	2.26e-02
Genome	FP# (ab)	32 (5.60e-02)	89 (8.57e-2)	NA	648 (3.22e-01)
	FN# (ab)	66 (1.06e-02)	2 (2.02e-4)	NA	32 (2.07e-02)
	RSS	3.84e-05	6.68e-6	2.80e-04	4.53e-02
Species	FP# (ab)	1 (1.44e-04)	26 (1.36e-3)	170 (9.73e-04)	381 (6.08e-02)

12 (3.62e-5)

0 (0)

0 (0)

0 (0)

1 (1.63e-02)

2.85e-04

78 (3.23e-04)

1 (1.63e-02)

0 (0)

5.45e-02

194 (1.06e-02)

0 (0)

FN# (ab) 0 (0) 0(0)RSS 1.33e-05 1.16e-06

FP# (ab)

FN# (ab)

Genus

"Stress Test"

- 10 samples with 500k read pairs of length 150bp
- Simulated from ref (250 genomes each, exponential distribution)
- Rare genomes (~50) have 10⁻⁵ abundance → 5 reads
- Index for all (6171) "reference" and "representative" RefSeq genomes (Archaea, Bacteria, Fungi, Viruses)
- ProPhyle index: ~50GB **vs** Kraken DB: ~330GB
- Kraken running for weeks on a powerful cluster

Results - Stress

- OK scalability (~5 days to generate simulation matrix with 0.3 cov)
- As for Mende, can effectively use LASSO for FP → 0
- Grid-Search for optimal parameters in few minutes (needs ground truth)
- Many FN as intended (genomes with <10 reads)

ISSUES:

- Parameters choice extremely important
- Most samples fit perfectly (Pearson >0.95), 2 of them **don't** (<0.4)
- Need more statistical info (e.g. P-values or other confidence est.)
- Cannot scale to index with ~100k ref

Real – HMP pilot

- 6.5M reads of length 75bp
- Even mixture of DNA from 22 isolates
- Same index as *stress* (6171 RefSeq genomes)
- 6 out of 22 isolates only have relatives in the index
- 1 fungus with 18S gene only (assignments suggest low copy number)

Results - HMP

		LASSO			
	RSS	0.15			
Genome	FP# (ab)	5 (0.01)			
	FN# (ab)	3 (0.14)			
	RSS	0.15			
Species	FP# (ab)	3 (6.30e-03)			
	FN# (ab)	1 (0.05)			
	RSS	0.15			
Genus	FP# (ab)	1 (5.66e-03)			
	FN# (ab)	0 (0)			

Results - HMP

		LASSO		
	RSS	0.15		
Genome	FP	5 (0.01)		
	FN	3 (0.14)		
	RSS	0.15		
Species	FP	3 (6.30e-03)		
	FN	1 (0.05)		
	RSS	0.15		
Genus	FP	1 (5.66e-03)		
	FN	0 (0)		

Illumina sequencing of HMP Mock Community even sample (SRR172902)

Warning: experimental software						
Taxonomy Analysis						
Unidentified reads: 28.13%						
Identified reads: 71.87%						
cellular organisms: 71.87 %						
Bacteria: 71.37%						
☐ Terrabacteria group: 41.44%						
Deinococcus-Thermus: 23.05%	.					
Deinococcus radiodurar	Strong signals					
Deinococcus radiodur	SuperKingdom	-	Rank		Kbp	weighted score
Deinococcus wulumuqie	Bacteria	Deinococcus radiodurans	species		124,506	38.2
Firmicutes: 13.51%	Bacteria	Acinetobacter baumannii	species	11.3	55,472	13.9
⇒ Bacilli: 10.84%	Bacteria	Bacteroides vulgatus	species	7.4	36,299	7.1
Lactobacillales: 4.49%	Bacteria	Propionibacterium	genus	3.6	17,558	17.6
Clostridia: 2.59%	Bacteria	Staphylococcus aureus	species	3.5	17,334	6.1
Actinobacteria: 4.3%	Bacteria	Streptococcus mutans	species	2.9	14,255	7.3
Proteobacteria: 17.69%	Bacteria	Clostridium beijerinckii	species	2.9	14,086	2.4
Gammaproteobacteria: 10.	Bacteria	Helicobacter pylori	species	2.6	13,027	8.0
delta/epsilon subdivisions: 2	Bacteria	Rhodobacter sphaeroides	species	2.4	11,687	2.5
Alphaproteobacteria: 2.07%	Bacteria	Streptococcus pneumoniae	species	2.1	10,342	5.0
Betaproteobacteria: 1.78%	Bacteria	Neisseria meningitidis	species	2.0	10,052	4.7
□ FCB group: 6.82%	Bacteria	Listeria monocytogenes	species	1.8	9,057	3.0
Bacteroidales: 6.81%	Bacteria	Actinomyces odontolyticus ATCC 17982		1.1	5,646	5.6
Bacteroides: 6.4%	Bacteria	Bacillus cereus group	species group	0.7	3,404	3.4
Bacteroides vulgatus: 1	Bacteria	Pseudomonas	genus	0.6	3,158	3.2
Eukaryota: 0.01 %	Archaea	Methanobrevibacter smithii	species	0.5		1.3
Edital yold. 0.0170	Bacteria	Enterococcus	genus	0.4		2.0

Adjusted Results - HMP

		LASSO
	RSS	0.03
Genome	FP	5 (0.01)
	FN	3 (2.28e-6)
	RSS	0.03
Species	FP	3 (6.30e-03)
	FN	1 (7.61e-07)
	RSS	0.03
Genus	FP	1 (5.66e-03)
	FN	0 (0)

Suggests problem with:

- reference genomes (e.g. contamination)
- sample preparation (e.g. not so even mix)
- current computational approaches

Conclusions and perspectives

- ProPhyle is a complete, resource-frugal and easy-to-use metagenomic classifier
- Lossless index, suitable for inaccurate phylogenetic trees
- Flexibility and feature richness (works with any tree, standard bioinformatics formats)

Future directions:

- Assignment quality and read/ref.genome length heuristics for abundances
- ML framework to estimate optimal reg. parameters based on:
 - complexity of sample
 - # ref. genomes
 - sequencing technology

http://github.com/karel-brinda/prophyle

Read the **Docs** http://prophyle.rtfd.io

\$ conda install prophyle

\$ pip install prophyle

Lasso and Elastic-Net Paths

