Linear Regression

Implement linear regression using python(sklearn, pandas, NumPy,...)

Perform regression analysis on the attached dataset.

Upload the notebook in your GIT repository and paste the link to the notebook as sunmission

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
df = pd.read csv("Ecom.csv")
df.shape
df
x=df.drop(['Avatar','Email','Address', 'Yearly Amount Spent'],axis=1)
Χ
y= df['Yearly Amount Spent']
for i in x.columns[0:4]:
 x[i]=(x[i]-x[i].min())/(x[i].max()-x[i].min())
Х
classifier = LinearRegression()
classifier.fit(x,y)
y pred = classifier.predict(x)
rmse = mean_squared_error(y, y_pred)
r2 = r2 \ score(y, y \ pred)
print('Slope:' ,classifier.coef_)
print('Intercept:', classifier.intercept )
print('Root mean squared error: ', rmse)
print('R2 score: ', r2)
     Slope: [170.03233857 256.20977739
                                         2.66032229 409.66089564]
     Intercept: 69.17592971266066
     Root mean squared error: 98.47102522148997
     R2 score: 0.9843155370226726
```