Utilize Linear and Non-Linear regression models to compare trends for a Texas state.

Linear Regression for Cases – Texas State

RMSE: 14016.649068165274

Linear Regression for Deaths – Texas State

RMSE: 104.41837115684291

Non-Linear Regression for Cases – Texas State

Non-Linear Regression for Cases in Texas

RMSE for degree = 1 is 14016.649068165274 RMSE for degree = 2 is 13897.354934418747 RMSE for degree = 3 is 13143.84481433265 RMSE for degree = 4 is 13005.77702809882

Non-Linear Regression for Deaths - Texas State

Non-Linear Regression for Deaths in Texas

Identify which counties are most at risk. Model for top 5 counties with cases within a state

Non-Linear Regression for Concho County Cases

Non-Linear Regression for concho_county Cases

Non-Linear Regression for Dimmit County Cases

Non-Linear Regression for Dimmit_county Cases

Non-Linear Regression for Jim Hogg County Cases

Non-Linear Regression for Jim_Hogg_county Cases

Non-Linear Regression for Loving County Cases

Non-Linear Regression for Loving_county Cases

Non-Linear Regression for Ulvade County Cases

Non-Linear Regression for Ulvade_county Cases

Confidence Interval

Observations

By looking at the trend lines and prediction paths, we can say that Dimmit County and Concho County are at high risk as the cases count is predicted to increase on a high scale when compared to other counties

Perform hypothesis tests on questions identified in Stage II

Data considered for 3 States - Alabama, Alaska, and Arkansas.

Null Hypothesis: Death rate of seniors is more than other age groups

Alternative Hypothesis: Death rate of seniors is not more than other age groups

```
In [56]: M stats.ttest_ind(a=data_group_st_age['Age_85over'], b= data_group_st_age['Death'],equal_var=False)
Out[56]: Ttest indResult(statistic=1.3143882000665275, pvalue=0.31735670321180154)
```

The pvalue in this case is greater than significance level (0.05). Hence, we cannot reject the null hypothesis.

Null Hypothesis: Death rate of children is more than other age groups

Alternative Hypothesis: Death rate of children is not more than other age groups

```
In [57]: M stats.ttest_ind(a=data_group_st_age['Age_under5'], b= data_group_st_age['Death'],equal_var=False)

Out[57]: Ttest_indResult(statistic=1.6178485047620426, pvalue=0.24690373079360323)
```

The pvalue in this case is greater than significance level (0.05). Hence, we cannot reject the null hypothesis.

Null Hypothesis: Males are more prone to covid

Alternative Hypothesis: Males are not more prone to covid

```
In [58]: M stats.ttest_ind(a=data_group_st_gender['Total_Male'], b= data_group_st_age['Cases'],equal_var=False)
Out[58]: Ttest_indResult(statistic=1.3003478790962522, pvalue=0.3164960946318385)
```

The pvalue in this case is greater than significance level (0.05). Hence, we cannot reject the null hypothesis.

Null Hypothesis: Females are more prone to covid

Alternative Hypothesis: Females are not more prone to covid

```
In [59]: M stats.ttest_ind(a=data_group_st_gender['Total_Female'], b= data_group_st_age['Cases'],equal_var=False)

Out[59]: Ttest_indResult(statistic=1.2669916622097117, pvalue=0.3271177552979792)
```

The pvalue in this case is greater than significance level (0.05). Hence, we cannot reject the null hypothesis.