Introduction to Statistical learning

Omid Safarzadeh

February 2, 2022

Table of contents

- Regression
- Simple linear regression
 - The least squares approach
 - (Multiple) linear regression
- Bias-variance tradeoff
- Walidation
 - Leave-one-out cross-validation
 - k-fold cross validation
- S Reference

*Acknowledgement: This slide is prepared based on Murphy, 2012 and James et al., 2013

Omid Safarzadeh Ingolicatora o Statistic Heaning February 2, 2022 2/28

Regression

Model:

- $Y \approx f(\mathbf{X}, \beta_{true})$
- $\mathbf{X} = [X_1, ..., X_p]^T$: independent variable vector
- Y: dependent variable
- β^{true} : unknown parameter vector
- Form of f is assumed to be known
- Usually

$$E[Y|\mathbf{X}] = f(\mathbf{X}, \beta^{true})$$

Some applications:

- Stock market prediction given macro economic variables
- Costumer satisfaction vs waiting time
- Smart grid load prediction
- Auto car sales prediction

4□ > 4□ > 4□ > 4□ > 4□ > □
900

3/28

Simple linear regression

Model:

- Y: response variable, X: predictor variable
- $Y \approx \beta_0^{true} + \beta_1^{true} X$

Omid Safarzadeh Innosmon a Church Stein St

The least squares approach

- Data: $\mathscr{D} = \{(x_i, y_i)\}_{i=1}^n$
- RSS: Residual sum of squares

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (\underbrace{y_i - (\beta_0 + \beta_1 x_i)}_{residual})^2$$

Least squares method:

$$(\hat{eta}_0,\hat{eta}_1):=\mathop{\it arg}_{(eta_0,eta_1)\in\mathbb{R}^2}\min {\it RSS}(eta_0,eta_1)$$

Properties of $\hat{\beta}_0$ and $\hat{\beta}_1$

Unbiasedness:

- $E[\hat{\beta}_0] = \beta_0^{true}$
- $E[\hat{\beta}_1] = \beta_1^{true}$

Variance:

- $\sigma^2 = Var(\epsilon)$, $\epsilon_i s$ are uncorrelated
- $Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i \bar{x})^2} \right]$
- $\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}$

Omid Safarzadeh Introduction to Statistical Jeanning February 2, 2022

(Multiple) linear regression

Given $[X - 1, ..., X_p]$ predict Y via a linear model:

$$\hat{Y} = \underbrace{\hat{\beta}_0}_{bias} + \sum_{j=1}^p \hat{\beta}_j X_j$$

Let
$$X = [1, X_1, ..., XP]^T$$
 and $\hat{\beta} = [\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p]^T$. Then,

$$\hat{Y} = X^T \hat{\beta} = \hat{\beta}^T X$$

Omid Safarzadeh February 2, 2022

The least squares approach

- Data: $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- $\mathbf{x}_i = [1, X_{i1}, ..., X_{in}]^T$
- RSS: Residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2$$

Least squares method:

$$\hat{eta}_{RSS} = \mathop{\it arg}_{eta \in \mathbb{R}^{p+1}} \min RSS(eta)$$

Omid Safarzadeh February 2, 2022

The least squares solution

Some notation:

$$\mathbf{y}_{n\times 1}$$
 $\hat{\mathbf{y}}_{n\times 1}$ $\mathbf{X}_{n\times p}$

Least squares solution:

$$\hat{\beta}_{RSS} = \underset{\beta \in \mathbb{R}^{p+1}}{arg} \min RSS(\beta) \underset{\beta \in \mathbb{R}^{p+1}}{arg} \min \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2$$

$$\Rightarrow \hat{\beta}_{RSS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Assumption: X has full column rank!
- Then $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}_{RSS} = \underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\text{projection matrix }\mathbf{H}}\mathbf{y}$

◆ロト ◆団 → ◆差 → ◆差 → ・差 ・ め へ ②

Omid Safarzadeh un rozdusukon uz Sieuksisch benning February 2, 2022

Gauss-Markov Theorem

Assumptions:

- $\mathbf{y}_i = (\beta^{true})^T \mathbf{x}_i + \epsilon_i, i = 1, ..., n$
- $E[\epsilon_i] = 0$, $Var(\epsilon_i) = \sigma^2$, $Cov(\epsilon_i, \epsilon_i) = 0$, $i \neq j$

Linear estimator of β_i^{true} :

- $\hat{\beta}_i = c_{1i} y_1 + \cdots + c_{ni} y_n$
- c_{ki} : possibly non-linear function of **X**

Theorem 2.1

Least squares estimate of β^{true} true have the smallest variance among all linear unbiased estimators.

Unbiased estimator:
$$E[\hat{\beta}] = \beta^{true}$$

"Best linear unbiased estimator" (BLUE) = $\hat{\beta}_{RSS}$

Omid Safarzadeh February 2, 2022

MLE of linear regression

- $y_i = (\beta^{true})^T \mathbf{x}_i + \epsilon_i$, (unknown)
- i.i.d. $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- We have access to $\mathscr{D} := \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Likelihood:

$$L(\beta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(y_i - \beta^T \mathbf{x}_i)}{2\sigma^2})$$

Log likelihood:

$$I(\beta) := \log L(\beta) = n \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta^T \mathbf{x}_i)^2$$

Omid Safarzadeh February 2, 2022 11/28

Probabilistic interpretation of the solution

• Maximizing $L(\beta)$ is equivalent to maximizing $I(\beta)$ since $I(\beta)$ is a strictly increasing function of $L(\beta)$!

$$\mathop{\arg\max}_{\beta} \mathit{I}(\beta) = \mathop{\arg\min}_{\beta} \mathit{RSS}(\beta) \Rightarrow \hat{\beta}_{\mathit{MLE}} = \hat{\beta}_{\mathit{RSS}}$$

• Note: MLE is independent of σ^2

12/28

Omid Safarzadeh Introduction to Statistical Learning February 2, 2022

- Data: $\mathscr{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \mathbf{x}_i \in \mathbb{R}^p, y_i \in \mathbb{R}$
- MSE: mean square error

$$MSE := \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(\mathbf{x}_i))^2$$

• Example: linear regression $\hat{f}(\mathbf{x}_i)$?

Goal: We want linear regression to perform well on unseen data. Not on $\mathcal{D}!$ Can we get RSS = 0 in \mathcal{D} ?

Omid Safarzadeh February 2, 2022 13/28

- Usually we are provided with a test set \mathcal{D}_{test} to measure how well our algorithm performs
- \mathcal{D}_{train} : dataset in which we trained (and fixed) our model.

$$\textit{MSE}_{\textit{train}} := \frac{1}{n_{\textit{train}}} \sum_{(\mathbf{x}_i, y_i) \in \mathscr{D}_{\textit{train}}} (y_i - \hat{f}(\mathbf{x}_i))^2$$

$$\textit{MSE}_{\textit{test}} := \frac{1}{n_{\textit{test}}} \sum_{(\mathbf{x}_i, y_i) \in \mathscr{D}_{\textit{test}}} (y_i - \hat{f}(\mathbf{x}_i))^2$$

Omid Safarzadeh February 2, 2022

Example 2.1

Figure: James et al., 2013

- Data generated by non-linear model
- LHS: fit to \mathcal{D}_{train}
- Red curve: MSE_{test}, gray curve: MSE_{train}

Example 2.2

Figure: James et al., 2013

- Data generated by noisy linear model
- LHS: fit to \mathcal{D}_{train}
- Red curve: MSE_{test}, gray curve: MSE_{train}

Bias-variance tradeoff

- $(\mathbf{x}_i, y_i) \sim p(\mathbf{X}, Y)$
- $(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., n$ is i.i.d.
- $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ (random dataset). $\mathscr{D} \sim J$ where $J := \prod_{i=1}^n p(\mathbf{X}_i, Y_i)$

Expected label:

$$\bar{y}(\mathbf{x}) = E[Y|\mathbf{X} = \mathbf{x}] = \int_{y} y p(y|\mathbf{x}) dy$$

Statistical learning algorithm \mathscr{A} :

$$\hat{f}_{\mathscr{D}} = \mathscr{A}(\mathscr{D})$$

Then, given $\mathbf{x} \in \mathbb{R}^p$, we have the prediction $\hat{y} = \hat{f}_{\mathscr{D}}(\mathbf{x})$

Omid Safarzadeh February 2, 2022

Bias-variance tradeoff

Tradeoff:

$$\underbrace{\frac{\mathcal{E}_{(\mathbf{X},Y)\sim p,\mathscr{D}\sim J}[(\hat{f}_{\mathscr{D}}(\mathbf{X})-Y)^2]}_{\text{expected squared test error}}}_{\text{expected squared test error}} = \underbrace{\mathcal{E}_{\mathbf{X}}[(\bar{f}(\mathbf{X})-\bar{y}(\mathbf{X}))^2]}_{\text{bias}^2} + \underbrace{\mathcal{E}_{\mathbf{X},\mathscr{D}}[(\hat{f}_{\mathscr{D}}(\mathbf{X})-\bar{f}(\mathbf{X}))^2]}_{\text{variance}}}_{\text{variance}}$$

Omid Safarzadeh Production to Statistical Hamily February 2, 2022

Bias-variance tradeoff

- Bias: Inherent error in your model (ex: due to the linearity assumption)
- Variance: Change in the model if trained on a different training set (over-specialization).
- Noise: Intrinsic noise in the data generation process (property of the data).

Which terms can you change by changing the learning algorithm **A?**

Illustration of bias-variance tradeoff

Figure: Ref.

- Each point represents the test accuracy given a random realization of the training set and the test set.
- Points close to the center imply good test accuracy.

Omid Safarzadeh Introduction to Statistic Heatings February 2, 2022 20/28

Illustration of bias-variance tradeoff

Figure: http://scott.fortmann-roe.com/docs/BiasVariance.html

- Black line is the test error
- High bias = underfit
- High variance = overfit

1 D > 4 A > 4 E > 4 E > 9 Q P

Omid Safarzadeh Ingolusiou to Statistical Inguity February 2, 2022

Illustration of bias-variance tradeoff

Figure: James et al., 2013

- ullet Flexibility pprox model complexity
- Data generated by non-linear model
- Red curve: MSE_{test}, gray curve: MSE_{train}

Omid Safarzadeh Involución vo Statistical Icamina February 2, 2022

What if we don't have a separate test set?

- MSE_{train} provides no information on how well our algorithm generalizes
- Divide \mathscr{D} randomly into \mathscr{D}_{train} and $\mathscr{D}_{validation}$
- Up: original dataset. Blue: training dataset. Beige: validation dataset
- Compute \hat{f} based on \mathcal{D}_{train} . Evaluate \hat{f} based on $\mathcal{D}_{validation}$

Figure: James et al., 2013

Leave-one-out cross-validation

- Train *n* models
- Train *ith* model on $\mathcal{D}_i = \mathcal{D} \{(\mathbf{x}_i, y_i)\}$
- Test *ith* model on (\mathbf{x}_i, y_i)
- Blue: training dataset. Beige: validation dataset

Figure: James et al., 2013

Omid Safarzadeh Ingolicatora o Statistic Heaning February 2, 2022 24/28

Leave-one-out cross-validation

- $MSE_i = (y_i \hat{f}_{\mathscr{D}_i}(\mathbf{x}_i))^2$
- $CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$

Figure: James et al., 2013

- No randomness in $CV_{(n)}$
- No over-estimation of test error

4 D > 4 A > 4 B > 4 B > B = 40 Q Q

Omid Safarzadeh https://doi.org/10.1001/j.com/p.

k-fold cross validation

- Randomly split D into k equal sized folds: $\mathscr{F}_1,...,\mathscr{F}_k$
- Train *ith* model on all folds except fold $i: \mathcal{D}_i := \mathcal{D} \mathcal{F}_i$
- Test *ith* model on fold $i : \mathscr{F}_i$
- Blue: training dataset. Beige: validation dataset

Figure: James et al., 2013

k-fold cross validation

.

•

$$\textit{MSE}_i = rac{1}{|\mathscr{F}_i|} \sum_{(\mathbf{x}_i, y_i) \in \mathscr{F}_i} (y_i - \hat{f}_{\mathscr{D}_i}(\mathbf{x}_j))^2$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

Figure: James et al., 2013

References

- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in r. Springer New York. https://books.google.fr/books?id=qcl%5C_AAAAQBAJ
- Murphy, K. (2012). *Machine learning: A probabilistic perspective*. MIT Press. https://books.google.fr/books?id=NZP6AQAAQBAJ

Omid Safarzadeh Ingolicatora o Statistic Heaning February 2, 2022 28 / 28

