MEDIA INFORMATIKA BUDIDARMA, Vol 2, No 2, April 2018 ISSN 2614-5278 (media cetak) ISSN 2548-8368 (media online) Hal 16-22

Sistem Pendukung Keputusan Pemilihan Peserta Jaminan Kesehatan Masyarakat (Jamkesmas) Menerapkan Metode MOORA

Mesran¹, Swandi Dedi Arnold Pardede², Arahman Harahap², Andysah Putera Utama Siahaan³

¹ STMIK Budi Darma, Medan, Indonesia
 ² Mahasiswa Program Studi Teknik Informatika, STMIK Budi Darma, Medan, Indonesia
 ³ Universitas Pembangunan Panca Budi Medan, Medan, Indonesia

Abstrak

Sistem pendukung keputusan sebagai sebuah sistem berbasis komputer yang terdiri atas komponen-komponen antara lain komponen sistem bahasa (language), komponen sistem pengetahuan (knowledge) dan komponen sistem pemerosesan masalah (problem processing) yang saling berinteraksi satu dengan yang lainnya, yang membantu pengambilan keputusan melalui pengunaan data dan model-model keputusan untuk memecahkan masalah yang sifatnya semi terstruktur maupun yang tidak terstruktur. Penelitian ini menggunakan Metode MOORA dalam menentukan yang berhak menjadi para peserta Jamkesmas berdasarkan kriteria dengan menggunakan rumus yang hasilnya lebih akurat dan tepat sasaran

Kata Kunci: Seleksi Peserta Jamkesmas, Sistem Pendukung Keputusan, MOORA

Abstract

Decision support system as a computer-based system consisting of components, among other components of the language system (language), components of knowledge systems (knowledge) and components of the problem processing system (problem processing) which interact with each other, which helps decision making through the use of data and decision models to solve problems that are semi-structured and unstructured. This study uses the MOORA Method in determining who is entitled to become participants Jamkesmas based on criteria by using a formula that results more accurate and targeted.

Keywords: Selection of Jamkesmas Participants, Decision Support System, MOORA

1. PENDAHULUAN

Kesehatan merupakan sesuatu hal yang sangat penting bagi manusia, yang mana telah diketahui bahwa kesehatan merupakan sesuatu yang sangat berharga dengan dibuktikan begitu banyak jumlah pasien yang dirawat di rumah sakit setiap harinya. Saat ini masih banyak masyarakat yang memilih mempertahankan penyakit yang berada dalam tubuhnya dari pada berobat ke rumah sakit. Hal tersebut dikarenakan berbagai faktor, seperti tidak adanya kemampuan secara ekonomi dikarenakan biaya kesehatan yang mahal.

Jamkesmas merupakan program pemerintah dalam hal pelindungan sosial di bidang kesehatan untuk menjamin masyarakat miskin dan tidak mampu, yang iurannya dibayar oleh pemerintah agar kebutuhan dasar kesehatannya yang layak dapat terpenuhi. Iuran bagi masyarakat miskin dan tidak mampu dalam program Jamkesmas bersumber dari Anggaran Pengeluaran dan Belanja Negara (APBN) dari Mata Anggaran Kegiatan (MAK) belanja bantuan sosial. Pada hakikatnya pelayanan kesehatan terhadap peserta menjadi tanggungjawab dan dilaksanakan bersama oleh Pemerintah Pusat dan Pemerintah Daerah Provinsi/Kabupaten/Kota berkewajiaban memberikan kontribusi sehingga menghasilkan pelayanan yang optimal[1].

Sistem Pendukung Keputusan merupakan sistem berbasis komputer yang mampu menyelesaikan masalah dengan menghasilkan alternatif terbaik untuk mendukung keputusan yang diambil oleh pengambil keputusan[2]. Penerapan sistem informasi ini sudah banyak di gunakan pada perusahaan perusahaan besar yang mendukung fungsi manajemen untuk pengambilan keputusan. Dalam SPK menggunakan metode metode dalam memutuskan yang menjadi alternatif terbaik, seperti WASPAS, TOPSIS, ELECTRE, MOORA[3][4]. Informasi yang dihasilkan merupakan informasi yang efektif yang mendukung kinerja manajemen dalam pengambilan keputusan, terkait tentang masalah yang dihadapi manajer.

Berdasarkan penelitian terdahulu Mesran(2017), bahwa menentukan calon siswa baru yang memiliki nilai terbesar dan dapat diterima dalam calon siswa unggul dengan menggunakan metode MOORA, alternatif A1 adalah calon siswa baru yang memiliki nilai terbesar dan dapat diterima[5]. Kemudian penelitian yang diteliti oleh Muhammad Ashari dan Fitri Mintarsih pada tahun 2017, bahwa pemilihan bibit ikan tawar dengan menggunakan metode MOORA, ikan lele sebagai alternatif terbaik bibit ikan air tawar dengan nilai -0,1009.

Sesuai Keputusan Menteri Kesehatan Republik Indonesia Nomor 125/Menkes/SK/II/2008 program JAMKESMAS bertujuan untuk meningkatkan akses dan mutu pelayanan kesehatan terhadap seluruh masyarakat miskin dan tidak mampu agar tercapai derajat kesehatan masyarakat yang optimal secara efektif dan efisien. Penyelenggara pelayanan kesehatan yang semakin kompleks menuntut penanganan professional yang mampu mengatasi suatu masalah dalam penerima jamkesmas bagi masyarakat agar program Jamkesmas tepat sasaran.

2. TEORITIS

2.1 Metode Multi-Objective Optimization on The Basic of Ratio Analysis (MOORA)

Metode Moora menggunakan perkalian sebagai untuk menghubungkan rating atribut,dimana rating atribut harus dipangkatkan dulu dengan bobot yang bersangkutan, Preferensi untuk alternatif Si.

Secara umum, prosedur MOORA[6] meliputi langkah-langkah sebagai berikut:

1. Penentuan nilai matrik

Menentukan Tujuan untuk mengindentifikasi atribut evaluasi yang bersangkutan

2. Normalisasi matriks

Mewakilkan semua informasi yang tersedia untuk setiap atrribut dalam bentuk matriks keputusan.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{1n} \\ x_{21} & x_{22} & x_{2n} \\ x_{31} & x_{32} & x_{3n} \end{bmatrix}$$

3. Normalisasi matriks

Breaures (2008) menyimpulkan bahwa untuk penyebut, pilihan terbaik adalah akar kuadrat dari jumlah kuadrat dan setiap alternatif peratribut.

$$X^*_{ij} = X_{ij} / \sqrt{\left[\sum_{i=1}^{m} x_{ij}^2\right]}$$
 (1)
Untuk j = 1 2...m

4. Mengoptimalkan Atribut

Untuk optimasi Multiobjektif, ukuran yang dinormalisasi ditambahkan dalam kasus maksimasi (untuk atribut yang menguntungkan) dan dikurangi dalam kasus minimasi (untuk atribut yang tidak menguntungkan).

$$Y_{i} = \sum_{j=1}^{g} -\sum_{j=g+1}^{n} x_{ij}^{x}$$
 (2)

Dimana G adalah jumlah atribut yang akan dimaksimalkan, (n-g) adalah jumlah atribut yang akan diminimalkan, dan yi adalah nilai penilaian yang telah dinormalisasikan dari altenatif 1 terhadap semua atribut. Saat atribut bobot dioertimbangkan, persamaan 3 menjadi sebagai berikut:

$$Y_{i} = \sum_{j=1}^{g} W_{j} X^{*}_{1j} - \sum_{j=g+1}^{n} W_{j} W^{*}_{ij}$$
 (3)

Wj adalah bobot dari Jth atribut, yang dapat ditentukan dengan menerapkan applying analtic hieararchy process (AHP) atau metode entrophy.

5. Perangkingan nilai Y

Nilai Yi bisa positif atau negatif tergantung dari total maksimak dan minimal dalam matriks keputusan. Sebuah urutan peringkat dan Yi menujukan pilihan terakhir.

Alternatif terbaik memiliki nilai Yi tertinggi, sedangkan alternatif terburuk memiliki nilai yang rendah.

3. ANALISA DAN PEMBAHASAN

Pimpinan puskesmas terkadang sering mengalami kesulitan dalam mendapatkan keputusan untuk menghitung dan menentukan suatu keputusan yang dihasilkan. Berdasarkan permasalahan diatas maka dibentuk sebuah sistem pengkajian untuk memecahkan masalah yang dialami oleh Puskesmas agar tidak terjadi kekeliruan.

Proses proses yang dilakukan pada Multi-Objective Optimization On The Basic Of Ratio Analysist (MOORA) memerlukan kriteria-kriteria yang mempegaruhi peserta (alternatif) dalam perhitungan.Kriteria (C) dapat dilihat pada tabel berikut.

Tabel 1. Kriteria

Kriteria	Keterangan	Bobot	Jenis
C_1	Pendapatan	0.25	Cost

Kriteria	Keterangan	Bobot	Jenis
C_2	Lamanya Warga Tinggal	0.20	Benefit
C_3	Perkerjaan	0.20	Cost
C_4	Jenis Dinding Rumah	0.20	Cost
C ₅	Jenis Lantai Rumah	0.15	Cost

Tabel 2 merupakan tabel yang berisikan pembobotan untuk perkerjaan warga

Tabel 2. Menentukan kriteria Perkerjaan warga

Range	Nilai	Bobot
Tukang becak	Buruk	0.25
Petani	Kurang	0.5
Wiraswasta	Cukup	0.75
Karyawan	baik	1

Tabel 3 merupakan tabel yang berisikan Pembobotan untuk jenis lantai rumah.

Tabel 3. Menentukan Kriteria untuk jenis lantai rumah

Range	Nilai	Bobot
Lantai Rumah masih tanah	Buruk	0.5
Lantai Rumah semen	Kurang	0.25
Lantai rumah keramik	cukup	0.75

Tabel 4 merupakan tabel yang berisikan Pembobotan untuk jenis Dinding Rumah

Tabel 4. Menentukan Kriteria Jenis Dingding rumah

Range	Nilai	Bobot
Fisik Dinding Rumah terbuat dari tepas	Buruk	0.25
Dingding bangunan terbuat dari papan	Kurang	0.5
Dingding bangunan permanen/tembok batu	Cukup	0.75
Dingding bangunan tergolong mewah luas	Baik	1

Tabel 5 merupakan tabel yang berisikan data masyarakat yang terdapat di daerah Galang. Data tersebut merupakan data masyarakat yang ingin mendapatkan Jamkesmas.

Tabel 5. Data Calon peserta Jamkesmas

Alternatif	C_1	C_2	C ₃	C ₄	C ₅
Adelan (A ₁)	500.000	15	Tukang Becak	Papan	Semen
Suwito	600.000	6	Petani	Papan	Semen
Manisem	1.000.000	3	Wiraswasta	Papan	Tanah
Kardik	650.000	10	Petani	Papan	Semen
Mislam	500.000	7	Tukang Becak	Papan	Semen
Sukirah	600.000	3	Petani	Tepas	Tanah
Nuriadi	400.000	5	Tukang Becak	Tepas	Tanah
Sutiyem	700.000	10	Petani	Papan	Semen
Poniman	500.000	8	Tukang Becak	Papan	Semen
Sugiatik	1.200.000	10	Wiraswasta	Papan	Semen

Berdasarkan pembobotan pada tabel 2-4, maka alternatif yang terdapat pada tabel 4 dapat dilihat pada tabel berikut ini.

Hal 16-22

Γ 0,6467(0,4)	0,2847(0,25)	0,4146(0,2)	0,4092(0,15)ן	
0,3104(0,4)	0,4746(0,25)	0,4738(0,2)	0,4385(0,15)	
0,2587(0,4)	0,5923(0,25)	0,5923(0,2)	0.5262(0,15)	
0,5174(0,4)	0,3796(0,25)	0,3554(0,2)	0,3800(0,15)	
L0,3880(0,4)	0,4746(0,25)	0,3554(0,2)	0,4677(0,15)	

Hasil perkaliian dari penyetaraan bobot

Tabel 5. Data Rating Kecocokan Bobot dan Kriteria

Alternatif	C_1	C_2	C_3	C ₄	C_5
A_1	500.000	15	0,25	0.5	0.25
A_2	600.000	6	0.5	0.5	0.25
A_3	1.000.000	3	0.75	0.5	0.5
A_4	650.000	10	0.5	0.5	0.25
A_5	500.000	7	0,25	0.5	0.25
A_6	600.000	3	0.5	0.25	0.5
A ₇	400.000	5	0,25	0.25	0.5
A_8	700.000	10	0.5	0.5	0.25
A ₉	500.000	8	0,25	0.5	0.25
A ₁₀	1.200.000	10	0.75	0.5	0.25

Setelah didapatkan nilai nilai alternatif yang telah di bobotkan, maka dilakukan pemrosesan keputusan menggunakan metode MOORA.

1. Mempersiapkan matrik keputusan X

$$x = \begin{bmatrix} 500.000 & 15 & 0.25 & 0.5 & 0.25 \\ 600.000 & 6 & 0.5 & 0.5 & 0.25 \\ 1.000.000 & 3 & 0.75 & 0.5 & 0.5 \\ 650000 & 10 & 0.5 & 0.5 & 0.25 \\ 500000 & 7 & 0.25 & 0.5 & 0.25 \\ 600000 & 3 & 0.5 & 0.25 & 0.5 \\ 400000 & 5 & 0.25 & 0.25 & 0.5 \\ 700000 & 10 & 0.5 & 0.5 & 0.25 \\ 500000 & 8 & 0.25 & 0.5 & 0.25 \\ 1200000 & 10 & 0.75 & 0.5 & 0.25 \end{bmatrix}$$

2. Melakukan normalisasi matrik X

$$C_1 = \sqrt{\frac{500000^2 + 600000^2 + 1000000^2 + 650000^2 + 500000^2 + 600000^2 + 400000^2 + 700000^2 + 500000^2 + 1200000^2 + 500000^2 + 1200000^2 + 500000^2 + 12000000^2 + 120000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 1200000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 12000000^2 + 120000000^2 +$$

MEDIA INFORMATIKA BUDIDARMA, Vol 2, No 2, April 2018 ISSN 2614-5278 (media cetak) ISSN 2548-8368 (media online) Hal 16-22

$$C_2 = \sqrt{15^2 + 6^2 + 3^2 + 10^2 + 7^2 + 3^2 + 5^2 + 10^2 + 8^2 + 10^2}$$

= $\sqrt{692}$ = 26.305

 $A_{12} = 15 / 26.305 = 0.5702$

 $A_{22} = 6/26.305 = 0.2280$

 $A_{32} = 3/26.305 = 0.1140$

 $A_{42} = 10/26.305 = 0.3801$

 $A_{52} = 7/26.305 = 0.26610$

 $A_{62} = 3/26.305 = 0.1140$

 $A_{72} = 5/26.305 = 0.1900$

 $A_{82} = 10/26.305 = 0.3801$

 $A_{92} = 8 / 26.305 = 0.3041$

 $A_{102} = 10/26.305 = 0.3801$

$$C_3 = \sqrt{0.25^2 + 0.5^2 + 0.75^2 + 0.5^2 + 0.25^2 + 0.5^2 + 0.25^2 + 0.25^2 + 0.25^2 + 0.25^2 + 0.75^2}$$

$$= \sqrt{2.375} = 1.541$$

 $A_{13} = 0.25 / 1.541 = 0.1622$

 $A_{23} = 0.5/1.541 = 0.3244$

 $A_{33} = 0.75/1.541 = 0.4866$

 $A_{43} = 0.5/1.541 = 0.3244$

 $A_{53} = 0.25 / 1.541 = 0.1622$

 $A_{63} = 0.5/1.541 = 0.3244$

 $A_{73} = 0.25/1.541 = 0.1622$

 $A_{83} = 0.5/1.541 = 0.3244$

 $A_{93} = 0.25 / 1.541 = 0.1622$

 $A_{103} = 0.75/1.541 = 0.4866$

$$C_4 = \sqrt{0.5^2 + 0.5^2 + 0.5^2 + 0.5^2 + 0.5^2 + 0.5^2 + 0.25^2 + 0.25^2 + 0.5^2 + 0.5^2 + 0.5^2}$$

$$= \sqrt{2.125} = 1.4577$$

 $A_{14} = 0.5 / 1.4577 = 0.3430$

 $A_{24} = 0.5/1.4577 = 0.3430$

 $A_{34} = 0.5/1.4577 = 0.3430$

 $A_{44} = 0.5/1.4577 = 0.3430$

 $A_{54} = 0.5 / 1.4577 = 0.3430$

 $A_{64} = 0.25/1.4577 = 0.1715$

 $A_{74} = 0.25 / 1.4577 = 0.1715$

 $A_{84} = 0.5/1.4577 = 0.3430$

 $A_{94} = 0.5 / 1.4577 = 0.3430$

 $A_{104} = 0.5/1.4577 = 0.3430$

$$C_5 = \sqrt{0.25^2 + 0.25^2 + 0.5^2 + 0.25^2 + 0.25^2 + 0.5^2 + 0.5^2 + 0.25^$$

 $A_{15} = 0.25 / 1.180 = 0.2118$

 $A_{25} = 0.25/1.180 = 0.2118$

 $A_{35} = 0.5/1.180 = 0.4237$

 $A_{45} = 0.25/1.180 = 0.2118$

 $A_{55} = 0.25 / 1.180 = 0.2118$

 $A_{65} = 0.5/1.180 = 0.4237$

 $\begin{array}{l} A_{75} = 0.5 / \ 1.180 = 0.4237 \\ A_{85} = 0.25 / \ 1.180 = 0.2118 \\ A_{95} = 0.25 / \ 1.180 = 0.2118 \\ A_{105} = 0.25 / \ 1.180 = 0.2118 \end{array}$

Hasilnya dari Nirmalisasi Matriks X diperoleh matriks X_{ij}^* dilihat berikut ini.

$$X_{ij}^* \ = \ \begin{vmatrix} 0.2240 & 0.5702 & 0.1622 & 0.3430 & 0.2118 \\ 0.2688 & 0.2280 & 0.3244 & 0.3430 & 0.2118 \\ 0.4480 & 0.1140 & 0.4866 & 0.3430 & 0.4237 \\ 0.2912 & 0.3801 & 0.3244 & 0.3430 & 0.2118 \\ 0.2240 & 0.2661 & 0.1622 & 0.3430 & 0.2118 \\ 0.2688 & 0.1140 & 0.3244 & 0.1715 & 0.4237 \\ 0.1792 & 0.1900 & 0.1622 & 0.1715 & 0.4237 \\ 0.3136 & 0.3801 & 0.3244 & 0.3430 & 0.2118 \\ 0.2240 & 0.3041 & 0.622 & 0.3430 & 0.2118 \\ 0.5376 & 0.3801 & 0.4866 & 0.3430 & 0.2118 \\ \end{vmatrix}$$

3. Mengoptimalkan atribut Menyertakan bobot dalam pencarian yang ternormalisasi

$$X_{wj} = \begin{bmatrix} 0.2240(0.25) & 0.5702(0.20) & 0.1622(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.2688(0.25) & 0.2280(0.20) & 0.3244(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.4480(0.25) & 0.1140(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.4237(0.15) \\ 0.2912(0.25) & 0.3801(0.20) & 0.3244(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.2240(0.25) & 0.2661(0.20) & 0.1622(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.2688(0.25) & 0.1140(0.20) & 0.3244(0.20) & 0.1715(0.20) & 0.4237(0.15) \\ 0.1792(0.25) & 0.1900(0.20) & 0.1622(0.20) & 0.1715(0.20) & 0.4237(0.15) \\ 0.3136(0.25) & 0.3801(0.20) & 0.3244(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.2240(0.25) & 0.3041(0.20) & 0.6220(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376(0.25) & 0.3801(0.20) & 0.4866(0.20) & 0.3430(0.20) & 0.2118(0.15) \\ 0.5376($$

Hasil perkalian dengan bobot kriteria, yaitu:

	₁ 0.0560	0.1140	0,0324	0.0686	0.0317
	0.0672	0.0456	0.0648	0.0686	0.0317
	0.1120	0.0228	0.0973	0.0686	0.0635
	0.0728	0.0760	0.0648	0.0686	0.0317
x =	0.0560	0.0532	0.0324	0.0686	0.0317
х —	0.0672	0.2280	0.0648	0.0343	0.0635
	0.0448	0.0380	0.0324	0.0343	0.0635
	0.0784	0.0760	0.0648	0.0686	0.0317
	0.0560	0.0608	0.1244	0.0686	0.0317
	$I_{0.0140}$	0.0760	0.0973	0.0686	0.0317

Tabel 6. Daftar Yi

Alternatif	Maximun $(C_1+C_2+C_3)$	Minimun (C_4+C_5)	Yi = Max - Min
A_1	0.2024	0.1003	0.1021
A_2	0.1776	0.1003	0.0773
A_3	0.2321	0.1321	0.1000
A_4	0.2136	0.1003	0.1133
A_5	0.1416	0.1003	0.0413
A_6	0.3600	0.0978	0.2622
A_7	0.1152	0.0978	0.0174
A_8	0.2192	0.1003	0.1189
A_9	0.2412	0.1003	0.1409
A_{10}	0.1873	0.1003	0.0870

Dari hasil diatas, dapat dilihat rangking setiap alternatif dari peserta Jamkesmas pada tabel berikut:

Table 7. Hasil rangking

Alternatif	Hasil	Rangking
A_6	0.2622	1
A_9	0.1409	2
A_8	0.1189	3
A_4	0.1133	4
A_1	0.1021	5
A_3	0.1000	6
A_{10}	0.0870	7
A_2	0.0773	8
A_5	0.0413	9
A_7	0.0174	10

Alternatif A₆>A₉>A₈ maka alternatif A₆ merupakan alternatif yang terbaik dibanding alternatif yang lainnya.

4. KESIMPULAN

Berdasarkan pembahasan diatas, peneliti menarik kesimpulan, sebagai berikut:

- Penentuan kriteria kriteria dalam pemilihan peserta jamkesmas sangat mempegaruhi hasil perhitungan MOORA.
- 2. Penerapan metode MOORA cukup mudah digunakan sebagai cara untuk pemilihan peserta Jamkesmas karena langkah langkah penyelesaiannya cukup sederhana.
- 3. Sistem pendukung keputusan dapat mengatasi permasalahan pemilihan peserta Jamkesmas menjadi lebih tersistem dan tepat pada masyarakat yang benar-benar membutuhkan

REFERENCES

- [1] M. Sholihin, N. Fuad, and N. Khamiliyah, "Sistem Pendukung Keputusan Penentuan Warga Penerima Jamkesmas Dengan Metode Fuzzy Tsukamoto," *J. Tek.*, vol. 5, no. 2 SPK, pp. 501–506, 2013.
- [2] Kusrini, Sistem Pendukung Keputusan dan Aplikasinya. Yogyakarta: Andi, 2007.
- [3] S. Syamsudin and R. Rahim, "Study Approach Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)," *Int. J. Recent Trends Eng. Res.*, vol. 3, no. 3, pp. 268–285, 2017.
- [4] Mesran, K. Tampubolon, R. D. Sianturi, F. T. Waruwu, and A. P. U. Siahaan, "Determination of Education Scholarship Recipients Using Preference Selection Index," Int. J. Sci. Res. Sci. Technol., vol. 3, no. 6, pp. 230–234, 2017.
- [5] Mesran, R. K. Hondro, M. Syahrizal, A. P. U. Siahaan, R. Rahim, and Suginam, "Student Admission Assessment using Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA)," *J. Online Jar. COT POLIPT*, vol. 10, no. 7, pp. 1–6, 2017.
- [6] N. W. Al-Hafiz, Mesran, and Suginam, "Sistem Pendukung Keputusan Penentukan Kredit Pemilikan Rumah Menerapkan Multi-Objective Optimization on the Basis of Ratio Analysis (Moora)," KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. I, no. 1, pp. 306–309, 2017.
- [7] Fadlina, L. T. Sianturi, A. Karim, Mesran, and A. P. U. Siahaan, "Best Student Selection Using Extended Promethee II Method," *Int. J. Recent Trends Eng. Res.*, vol. 3, no. 8, pp. 21–29, 2017.
- [8] S. Dian Utami Sutiksno, P. Rufaidah, H. Ali, and W. Souisa, "A Literature Review of Strategic Marketing and The Resource Based View of The Firm," *Int. J. Econ. Res.*, vol. 14, no. 8, pp. 59–73, 2017.
- [9] S. Kusumadewi, S. Hartati, A. Harjoko, and R. Wardoyo, *Fuzzy Multi-Attribute Decision Making (Fuzzy MADM)*. Yogyakarta: Graha Ilmu, 2006.
- [10] T. Murti, L. A. Abdillah, and M. Sobri, "Sistem Penunjang Keputusan Kelayakan Pemberian Pinjaman Dengan Metode Fuzzy Tsukamoto," Semin. Nas. Inov. dan Tren (SNIT)2015, pp. 252–256, 2015.
- [11] G. Ginting, Fadlina, Mesran, A. P. U. Siahaan, and R. Rahim, "Technical Approach of TOPSIS in Decision Making," *Int. J. Recent Trends Eng. Res.*, vol. 3, no. 8, pp. 58–64, 2017.
- [12] J. Simarmata, Pengenalan Teknologi Komputer dan Informasi. Yogyakarta: Andi, 2006.
- [13] M. I. Setiawan *et al.*, "Business Centre Development Model of Airport Area in Supporting Airport Sustainability in Indonesia," *J. Phys. Conf. Ser.*, vol. 954, no. 1, p. 12024, 2018.
- [14] D. Handoko, M. Mesran, S. D. Nasution, Y. Yuhandri, and H. Nurdiyanto, "Application Of Weight Sum Model (WSM) In Determining Special Allocation Funds Recipients," *IJICS (International J. Informatics Comput. Sci.*, vol. 1, no. 2, pp. 31–35, 2017.
- [15] H. Nurdiyanto and Heryanita Meilia, "SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PRIORITAS PENGEMBANGAN INDUSTRI KECIL DAN MENENGAH DI LAMPUNG TENGAH MENGGUNAKAN ANALITICAL HIERARCHY PROCESS (AHP)," in Seminar Nasional Teknologi Informasi dan Multimedia 2016, 2016, no. February, pp. 1–7.
- [16] Jimmy Abdel Kadar, D Agustono, and Darmawan Napitupulu, "Optimization of Candidate Selection Using Naive Bayes: Case Study in Company X Optimization of Candidate Selection Using Naive Bayes: Case Study in Company X," J. Phys. Conf. Ser., vol. 12, no. 1, 2016.