

Métodos Numéricos em Física Médica 11^a aula

MCNPX

Introdução

MCNPX = Monte-Carlo N-Particle X

 Código que permite o transporte de qualquer tipo de partícula utilizando métodos de Monte-Carlo

Execução

Atenção: o ficheiro de input/output não pode ter mais 8 caracteres.

Geral:

Mcnpx i=<input> o=<output> [opções]

Introdução

- Unidades utilizadas no MCNPX:
 - Comprimento (cm)
 - Energia (MeV)
 - Densidade mássica (g cm⁻³)
 - Densidade atómica $(10^{-24} * cm^{-3} = \#/(cm-barn))$
 - Secções eficazes (barns)

Estrutura do ficheiro de input

88 caracteres por linha ('&' indica que continua na linha seguinte)

Title card ----- primeira linha CELL CARDS (linhas com a definição das células) geometria linha em branco> c SURFACE CARDS (linhas com a definição das superfícies) linha em branco> c DATA CARDS \$ (ex:alumínio) m... (materiais) Dados de materiais Sdef (source definition) **Fontes** Sp.. (source probability..) **Física** etc. **Tallies** f (definição de tallies — grandezas a calcular) <linha em branco>

Exemplo

```
Titulo
c celulas
11 -1 -1 imp:p=1
        1 imp:p=0
20
c superficies
1 s 0 0 0 5 $ esfera raio 5 cm
c dados
mode p
m1 1001 2 8016 1
sdef par=2 pos=0 0 0 erg=1
nps 1000
```

```
mcnpx i=<input> ip → visualização gráfica

mcnpx i=<input> o=<output> → correr simulação
```

Notas: - 80 colunas por linha

- c significa comment
- \$ significa comentário após linha
- Não utilizar TAB

Copiar o código escrito na página anterior e correr o código em modo visualização e em modo de correr.

Ferramenta de visualização

- Na ferramenta de visualização pode utilizar vários comandos:
 - \checkmark px, py, pz \rightarrow visualizar nos planos definidos desta forma.
 - ✓ cursor → permite escolher uma parte do visualizador em detalhe a partir do cursor.
 - \checkmark factor \rightarrow permite fazer zoom in e out pelo factor referido.
 - ✓ scales \rightarrow 0,1,2 permite desenhar escalas no desenho.
 - ✓ label \rightarrow 0,1... permite colocar labels nas superfícies, células e nos materiais (separados por vírgulas)
 - ✓ help,?,options → lista dos comandos disponíveis.

Geometria

CELL E SURFACE CARDS

- ·Superfícies e células são numeradas de 1 a 9999
 - > sólidos geométricos simples são definidos por comandos que definem superfícies
 - –Planos (px,py, pz)
 - -Esferas (s, s0)
 - -Cilindros (cx, cy, cz)
 - -Cones (kx, ky, kx)
 - -etc.
 - > Células são definidas através de operações booleanas sobre as superfícies definidas.
 - >TODO o espaço tem de ficar definido

EXEMPLO geral de célula:

EXEMPLOS Superfícies

1 px 5 (plano perpendicular ao eixo dos x=5 cm) 2 so 10 (esfera centrada no centro (0,0,0) com r=10 cm) 3 cy 20 (cilindro ao longo do eixo dos y com 20 cm de raio)

Geometria

Mnemonic	Туре	Description	Equation	Card Entries			
Р		General	Ax + By + Cz - D = 0	A B	C D		
PX	Plane	Normal to x-axis	x - D = 0	D D			
PY		Normal to y-axis	y - D = 0				
PZ		Normal to z-axis	z - D = 0	D			
SO		Centered at Origin	$x^2 + y^2 + z^2 - R^2 = 0$	R			
S		General	$(x-\overline{x})+(y-\overline{y})^2+(z-\overline{z})^2-R^2=0$	Mnemonic	Туре	Description	Equation
SX	Sphere	Centered on x-axis	$(x - \overline{x})^2 + y^2 + z^2 - R^2 = 0$	sq	Ellipsoid Hyperboloid Paraboloid	Axis not parallel to x-, y-, or z-axis	$A(x-\overline{x})^2 + B(y-\overline{y})^2 + C(z-\overline{z})^2 $ $+ 2D(x-\overline{x}) + 2E(y-\overline{y}) + 2F(z-\overline{z})$ $+ G = 0$
SY SZ		Centered on y-axis Centered on z-axis	$x^{2} + (y - \overline{y})^{2} + z^{2} - R^{2} = 0$ $x^{2} + y^{2} + (z - \overline{z})^{2} - R^{2} = 0$	GQ	Cylinder Cone Ellipsoid Hyperboloid	Axes not parallel to x-, y-, or z-axis	$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fzx$ $+ Gx + Hy + Jz + K = 0$
C/X C/Y C/Z	Cylinder	Parallel to x-axis Parallel to y-axis Parallel to z-axis	$(y - \overline{y})^2 + (z - \overline{z})^2 - R^2 = 0$ $(x - \overline{x})^2 + (z - \overline{z})^2 - R^2 = 0$ $(x - \overline{x})^2 + (y - \overline{y})^2 - R^2 = 0$	TX TY	Paraboloid Elliptical or Circular Torus.	Axis is parallel to x-,y-, or z- axis	$ \frac{\left(x-\overline{x}\right)^2/B^2 + \left(\sqrt{\left(y-\overline{y}\right)^2 + \left(z-\overline{z}\right)^2} - A^2\right)/C^2 - 1 = 0 }{\left(y-\overline{y}\right)^2/B^2 + \left(\sqrt{\left(x-\overline{x}\right)^2 + \left(z-\overline{z}\right)^2} - A^2\right)/C^2 - 1 = 0 }{\left(z-\overline{z}\right)^2/B^2 + \left(\sqrt{\left(x-\overline{x}\right)^2 + \left(y-\overline{y}\right)^2} - A^2\right)/C^2 - 1 = 0 } $
CX	Cyllildel	On x-axis	$y^2 + z^2 - R^2 = 0$		K.	1	(z-z)/B + (y(x-x) + (y-y) - A)/C - 1 = 0
CY		On y-axis	$x^2 + z^2 - R^2 = 0$	R R			
CZ		On z-axis	$x^2 + y^2 - R^2 = 0$				
K/X		Parallel to x-axis	$\sqrt{(y-\overline{y})^2 + (z-\overline{z})^2} - t(x-\overline{x}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$			
K/Y		Parallel to y-axis	$\sqrt{(x-\overline{x})^2 + (z-\overline{z})^2} - t(y-\overline{y}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$			
K/Z		Parallel to z-axis	$\sqrt{(x-\overline{x})^2 + (y-\overline{y})^2} - t(z-\overline{z}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$			
KX	Cone	On x-axis	$\sqrt{y^2 + z^2} - t(x - \overline{x}) = 0$	$\overline{\mathbf{x}}$ \mathbf{t}^2	² ±1		

Geometria

SINAIS

Explicação dos sinais – e + na definição das células

OPERAÇÕES BOOLEANAS

- o Intersecção (e) -> é um espaço " "
- o Reunião (ou) -> é o sinal dois pontos ":"
- o Complementar (negação) -> é o sinal "#"

Desenhar uma esfera no vácuo no ponto (0,26,0) com r=3 cm e visualizar a estrutura.

Materiais

• O commando é: Mm ZAID₁ fraction₁ ZAID₂ fraction₂ ...

m = corresponde ao número do material no ficheiro

> ZAIDi = identificador do nuclídeo no formato:

ZZZAAA.<u>nn</u>X

ZZZ é o número atómico, **AAA** é a massa atómica *nn* identifica a biblioteca, e **X** a classe de dados

Os dois últimos não são obrigatórios, sendo usados por defeito.

fraction; = fracção atómica (ou fracção ponderada se com sinal menos) constituinte / no material

Exemplo: Água: m1 1001 2 8016 1 Exemplo 2 (por alto):Ar: m2 8016 -0.23 7014 -0.70 6012 -0.02 1001 -0.01 titulo: exercicio 2

C cell cards

10 -1 imp:p=1

2 0 1 imp:p=0

C surface cards

1 s 0 26 0 3

(1 sy 26 3)

C data cards mode p

Acrescentar uma segunda esfera centrada em 0,13,10 de raio 3 cm e fazer as duas esferas de água e visualizar.

NOTA:

Para inserir o material e densidade na célula usar o formato visto nos slides anteriores.

titulo: exercicio 3

C cell cards

11 -1.0 -1 imp:p=1

2 1 -1.0 -2 imp:p=1

3 0 1 2 imp:p=0

C surface cards

1 s 0 26 0 3

2 s 0 13 10 3

C data cards

mode p

m1 1001 2 8016 1

Acrescentar dois cilindros e visualizar:

- 1. Centro da base na origem, eixo segundo yy, altura 12, raio 5
- 2. Centro da base em 0,12,0 , eixo segundo yy, altura 8, raio 5

```
titulo: exercicio 4
C cell cards
11 -1.0 -1 2 -3 imp:p=1
2 1 -1.0 -1 3 -4 imp:p=1
3 1 -1.0 -5 imp:p=1
4 1 -1.0 -6 imp:p=1
5 0 #1 #2 #3 #4
                  imp:p=0
C surface cards
1 cy 5
2 py 0
3 py 12
4 py 20
5 s 0 26 0 3
6 s 0 13 10 3
mode p
m1 1001 2 8016 1
```


Acrescentar uma caixa a envolver as esferas e os cilindros:

Coordenadas da caixa

Eixo dos xx: -9 9 Eixo dos yy: -2 30 Eixo dos zz: -15 15

```
titulo: exercicio 6
C cell cards
11 -1.0 -1 2 -3 imp:p=1
21 -1.0 -1 3 -4 imp:p=1
3 1 -1.0 -5
              imp:p=1
4 1 -1.0 -6
              imp:p=1
5 1 -1.0 7 -8 9 -10 11 -12 #1 #2 #3 #4 imp:p=1
6 0 #1 #2 #3 #4 #5
                     imp:p=0
C surface cards
1 cy 5
2 py 0
3 py 12
4 py 20
5 s 0 26 0 3
6 s 0 13 10 3
7 px -9
8 px 9
9 py -2
10 py 30
11 pz -15
12 pz 15
mode p
m1 1001 2 8016 1
```