

Typetal for miljøfarlige forurenende stoffer i regnbetingede udledninger På baggrund af data fra det nationale overvågningsprogram 2000-2020

NOVANA

Januar 2022

Udgiver: Miljøstyrelsen

Redaktion:

Kristina Buus Kjær, DHI Dorte Rasmussen, DHI

ISBN: 978-87-7038-386-8

Forord

Denne rapport om fastsættelse af typetal for miljøfarlige forurenende stoffer (MFS) i spildevand og regnvand fra regnbetingede udledninger er den første i rækken om dette emne. Miljøstyrelsen har i 2021 udgivet en tilsvarende rapport om fastsættelse og opdatering af nøgletal for MFS i spildevand fra renseanlæg (Miljøstyrelsen, 2021a). Det er siden udgivelsen af (Miljøstyrelsen, 2021a) besluttet at ændre benævnelsen nøgletal til typetal.

Et typetal er bedste bud på en gennemsnitskoncentration for et givet stof i et medie – i dette tilfælde for henholdsvis fælleskloakerede overløb og separate regnvandsudledninger. Mere specifikt kan typetallet betragtes som en vægtet middelværdi af de måledata, der foreligger for regnbetingede udledninger fra punktkildeprogrammet under det nationale overvågningsprogram for vandmiljøet, NOVANA (tidligere NOVA). I denne rapport drejer det sig om data fra 2000 op til 2020.

Projektet er udført i perioden september 2021 til december 2021 med DHI A/S som rådgiver. Cand.scient. Anna Gade Holm og Mia Roest Christensen har været Miljøstyrelsens projektansvarlige sagsbehandlere.

Indhold

Forord		3
1.	Sammenfatning	6
1.1	Baggrund og formål	6
1.2	Datagrundlag og den anvendte metode	6
1.3	Typetal	7
1.4	Partikulært bundne MFS	7
1.5	Litteraturundersøgelse	8
1.6	Konklusion på anvendelse af typetal	8
2.	Indledning	10
2.1	Baggrund	10
2.2	Formål	10
2.3	Projektorganisation	10
2.4	Punktkildeprogrammet for MFS	10
2.4.1	Punktkildeprogrammets formål og strategi	11
2.4.2	Regnbetingede udledninger under punktkildeprogrammet	11
3.	Metode	14
3.1	Datagrundlag og bearbejdning	14
3.2	Statistiske analyser og vurderinger	14
3.2.1	Opstilling af typetal	14
3.2.2	Tilpasning til logaritmisk normalfordeling ved ML-metode	16
3.3	Usikkerheder ved typetal	17
4.	Typetal for MFS i regnbetingede udledninger	19
4.1	Sammenligning af resultater af metoder	20
4.2	Typetal for metaller og andre uorganiske sporstoffer	22
4.3	Typetal for organiske MFS	23
4.4	Partikulært bundne MFS	32
5.	Litteraturundersøgelse	35
5.1	Metode	35
5.2	Resultater	35
6.	Konklusion på anvendelse af typetal	38
7.	Referencer	39
Bilag 1.	Typetal for fælleskloakerede spildevandsoverløb beregnet ved ML-	
D ''. 6:	metoden	42
_	Typetal for separate regnvandsudledninger beregnet ved ML-metoden	51
•	Percentiler for fælleskloakerede spildevandsoverløb	56
_	Percentiler for separate regnvands-udledninger	65
Bilag 5.	Middelværdier for stoffer med lavt datagrundlag for fælleskloakerede	
	spildevandsoverløb	70

Bilag 6.Middelværdier for stoffer med lavt datagrundlag for separate	
regnvandsudledninger	79
Bilag 7.Opsummering af litteraturundersøgelse	84

1. Sammenfatning

1.1 Baggrund og formål

De nationale overvågningsprogrammer for vandmiljøet (hhv. benævnt NOVA 2003 og NOVANA) har siden 2000 omfattet et særligt program for overvågning af miljøfarlige forurenende stoffer (MFS) fra regnbetingede udledninger (RBU).

Formålet med dette projekt har været at bearbejde de overvågningsdata om MFS i regnbetingede udledninger, der er indsamlet under NOVANAs punktkildeprogram for perioden 2000 og frem til 2020, og analysere dem statistisk med henblik på at udarbejde typetal for henholdsvis separatkloakerede regnvandsudledninger og fælleskloakerede spildevandsoverløb. Typetallene beskriver den bedst beregnede middelværdi for et stof og benyttes til at vurdere påvirkningen fra landets øvrige punktkilder af samme type.

Det har desuden været formålet med denne rapport at gennemføre en litteraturundersøgelse med henblik på at identificere eventuelle relevante MFS, som er identificeret i lignende vandtyper (fælleskloak og separatkloak) i oplande, som er sammenlignelige med de danske.

1.2 Datagrundlag og den anvendte metode

I alt seks fælleskloakerede spildevandsoverløb og fem separatkloakerede regnvandsudledninger er i perioden 2000-2020 indgået i NOVANA-delprogrammet for regnbetingede udledninger. Der er i denne rapport fastsat et typetal for begge typer af regnbetingede udledninger.

Der er i overvågningsprogrammet for regnbetingede udledninger lagt vægt på at inkludere oplande, der primært repræsenterer bidrag fra husholdninger og boligområder – og dermed oplande, som er forholdsvis ens i oplandskarakteristikken. Det betyder, at typetallene repræsenterer en typisk udledning af MFS fra henholdsvis fælleskloakerede spildevandsoverløb og separate regnvandsudledninger fra boligområder. Typetallene dækker samtidig udelukkende udledninger uden forudgående rensning i form af fx filtrering eller sedimentation i regnvandsbassiner el.lign. Dette reducerer variationen og usikkerheden ved typetallene i forhold til udledningen fra almindeligt belastede regnbetingede udledninger uden rensning. Men sætter samtidig en begrænsning i forhold til vurderingen af udledningen af MFS fra regnbetingede udledninger, hvor der forekommer rensning, eller fra mere belastede områder, såsom industriområder og meget trafikerede veje.

Alle undersøgelser i overvågningsprogrammet for MFS i regnbetingede udledninger er udført efter de gældende tekniske anvisninger, og vandprøver er udtaget vandmængdeproportionalt for at sikre en prøveudtagning, som repræsenterer et gennemsnit af hele udledningshændelsen.

Alle statistiske analyser af data for MFS er udført efter samme metoder, som anvendt i nøgletalsrapporten for MFS i renseanlæg (Miljøstyrelsen, 2021a). Der er således anvendt en standardiseret statistisk metode baseret på Maximum Likelihood estimation til beregning af typetallene for MFS med korrektion for, at nogle målinger er under detektionsgrænsen. Ved at anvende Maximum Likelihood metoden udnyttes hele informationen for hvert enkelt stof - også de målinger, som ligger under detektionsgrænsen - og det er ikke nødvendigt at udvælge en fast fraktil til at beregne nøgletallet for hvert enkelt stof.

Ligesom for nøgletalsrapporten for MFS på renseanlæg er forskellige typetal udledt afhængigt af datamængden og dermed sikkerheden, hvormed typetallet er fastsat:

Robuste typetal: Beregnes med Maximum Likelihood (ML) metoden for alle stoffer,

hvor datagrundlaget indeholder ≥ 50 målinger over detektions-

grænsen (DG). Er angivet med fed og kursiv i tabellerne i Kapitel 4 Beregnes med ML metoden for alle stoffer, hvor datagrundlaget in-

deholder ≥50 målinger og >=5 over DG. Er ikke angivet med fed og

kursiv i tabellerne i Kapitel 4

Gennemsnit: For alle øvrige stoffer beregnes et geometrisk gennemsnit, idet

fund under DG indgår med ½ x DG. De beregnede geometriske

gennemsnit er ikke typetal

Det er således også i denne rapport antaget, at analysedata for et stof følger en logaritmisk fordelingskurve med en gennemsnitskoncentration og en standardafvigelse. Det blev fundet, at for langt de fleste stoffer - og for både regnvandsudledninger og spildevandsoverløb - er dette en rimelig antagelse. Dette blev primært undersøgt ved et visuelt tjek af et såkaldt Q-Q plot (eller kvantil-kvantil-plot).

For alle typetal – både de robuste og de indikative – er der angivet konfidensinterval, som illustrerer den statistiske usikkerhed ved typetallet. Det er desuden angivet, hvis måledataene udviser et dårligt fit til en logaritmisk normalfordeling, og der dermed er en større usikkerhed omkring bestemmelsen af typetallet.

I Bilag 5 og Bilag 6 er angivet geometriske gennemsnit for alle stoffer, hvor værdier under detektionsgrænsen er sat til halvdelen af detektionsgrænsen. Endeligt er percentilerne (5%, 10%, 25%, 50%, 64%, 77%, 89%, 90% og 95%) beregnet og rapporteret for alle stoffer i Bilag 3 og Bilag 4.

1.3 Typetal

Indikative typetal:

Både robuste og indikative typetal er angivet i Kapitel 4. I alle tabeller og bilag er de egentlige typetal markeret med fed og kursiv skrift, mens de indikative typetal står med almindelig skrift. Alle typetal og andre stofkoncentrationer er i resultattabellerne i såvel Kapitel 4 som i bilagene angivet med to betydende cifre uanset den faktisk usikkerhed på resultatet.

For de fælleskloakerede spildevandsoverløb har det været muligt at fastsætte robuste typetal for i alt 28 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 70 stoffer. For i alt 111 stoffer har det ikke været muligt at beregne et robust eller indikativt typetal.

For de separate regnvandsudledninger har det været muligt at fastsætte robuste typetal for i alt 24 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 30 stoffer. For i alt 56 stoffer har det ikke været muligt at beregne et robust eller indikativt typetal.

Det er især for metallerne, at datagrundlaget gør det muligt at fastsætte robuste typetal. For de fælleskloakerede spildevandsoverløb er det desuden også muligt at fastsætte indikative typetal for de fleste PAH-forbindelser samt en række af de farmaceutiske stoffer. For de separate regnvandsudledninger har det været muligt at fastsætte indikative typetal for knap halvdelen af PAH-forbindelserne.

1.4 Partikulært bundne MFS

En række stoffer er analyseret både i indløb og udløb samt i sediment fra tre regnvandsbassiner koblet til separate regnvandsudledninger (Brabrand, Himmelbovej og Højmarken). Der er kun foretaget sedimentanalyser på stoffer, som vides at adsorbere kraftigt til sediment, slam o.l.

Det er fundet, at en væsentlig andel af de adsorberende stoffer bliver fanget i sedimentet i regnvandsbassiner, samt at for visse af disse kan sedimentanalyser muligvis være en mere

følsom måde at undersøge, om et stærkt adsorberende (og miljøfarligt forurenende) stof findes i det afledte regnvand, end ved analyse i indløb til og udløb fra regnvandsbassiner. Acenaphten, benzylbutylphthalat og 4-nonylphenol er udelukkende detekteret i sediment fra de tre regnvandsbassiner, men er ikke fundet over detektionsgrænsen i indløbet til regnvandsbassinerne.

Et sedimentkvalitetskriterium eksisterer for nogle af de stoffer, der er fundet i sediment fra regnvandsbassiner (vanadium, bly, cadmium, sølv, nonylphenol, octylphenol, (mono, di, tri)-methylenaphthalener, naphtalen, antracen). Det målte koncentrationsniveau i sedimentprøverne kan eventuelt anvendes som et konservativt estimat på det forventede sedimentkoncentrationsniveau i recipienten ved udledning af ubehandlet regnvand (uden rensning) til en recipient. Herved er det fundet, at stoffer som nonylphenoler, (mono, di, tri)naphhalener og anthracen kan risikere at overskride sedimentkvalitetskriterierne. Dette vil selvfølgelig afhænge af fortyndingsforholdene i det pågældende vandområde.

1.5 Litteraturundersøgelse

Som en del af projektet er gennemført en litteraturundersøgelse for at indsamle viden om, hvilke MFS'er der er påvist i RBU'er nationalt og internationalt og i hvilke koncentrationsniveauer. Der er lagt vægt på at medtage stoffer, som ikke allerede indgår i det danske NO-VANA-delprogram for RBU'er.

Litteraturundersøgelsen er baseret på offentligt tilgængelige analysedata fra danske og europæiske regnvandsundersøgelser siden 2002 for at sikre relevansen og kvaliteten af data, således at de afspejler mulige indholdsstoffer og koncentrationer i regnvandsafstrømning i Danmark. Målingerne repræsenterer så vidt muligt regnvandsafstrømning fra boligområder, som er sammenlignelige med de områder, som er inkluderet i NOVANA-programmet.

Der er identificeret MFS i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger med relevans for danske forhold inden for følgende stofgrupper:

- Pesticider
- Alkylphenoler
- Lægemiddelstoffer
- Benzotriazoler
- Phosphortriestere
- Brommerede flammehæmmere
- Dioxiner
- PCB
- Organotin
- Chlorerede forbindelser
- PFAS
- Spildevandssporstoffer (levnedsmidler, sødemidler, parfumestoffer)

1.6 Konklusion på anvendelse af typetal

Typetallene beskriver den bedst beregnede nationale middelværdi for et stof og benyttes til at vurdere påvirkningen fra landets øvrige punktkilder af samme type. De robuste typetal angiver de typetal, hvor der er tilstrækkeligt solide data til, at det beregnede konfidensinterval dækker den sande værdi af typetallet. De indikative typetal er ligesom det robuste typetal også et bud på en national, gennemsnitlig koncentration, men det indikative typetal har ikke samme sikkerhed som selve det robuste typetal og skal dermed tages med forbehold.

Typetallene for MFS i de regnbetingede udledninger repræsenterer en gennemsnitskoncentration af de enkelte MFS i udledninger <u>uden</u> rensning – både for fælleskloakerede spildevandsoverløb og separate regnvandsudledninger.

Samtidig repræsenterer typetallene en typisk udledning af MFS fra regnbetingede udledninger fra almindeligt belastede boligområder – og dermed ikke regnbetingede udledninger fra andre typer oplande som fx industriområder eller meget trafikerede veje, der typisk vil have et højere indhold af MFS end fra almindelige boligområder. Forekommer der regnvandsbetingede udledninger fra industriområder eller meget trafikerede veje til et vandområde, kan typetallene derfor underestimere den faktiske udledning.

Hvis typetallene skal gøres mere robuste – især for de organiske MFS - er det nødvendigt med generelt flere målinger samt for en lang række af stofferne at reducere detektionsgrænserne, så flere værdier bliver over detektionsgrænserne.

Det vil desuden være relevant med flere målinger på indløb og udløb af regnvandsbassiner (evt. både tørre og våde) således, at der kan opstilles særskilte typetal for regnbetingede udledninger med rensning.

2. Indledning

2.1 **Baggrund**

De nationale overvågningsprogrammer for vandmiljøet (hhv. benævnt NOVA 2003 og NO-VANA) har siden 2000 omfattet et særligt program for overvågning af miljøfarlige forurenende stoffer (MFS) fra regnbetingede udledninger (RBU). Formålet har været at leve op til Danmarks internationale forpligtelser på området samt opfylde nationale behov for at følge udviklingen og kunne agere på baggrund heraf, fx gennem de nationale vandområdeplaner.

MFS omfatter organiske og uorganiske stoffer (herunder tungmetaller), som ikke er naturligt forekommende, eller som forekommer i koncentrationer, der er højere end de naturligt forekommende koncentrationer, og som kan være skadelige for natur, miljø og menneskers sund-

MFS tilføres ferske og marine vandområder bl.a. via udledning fra punktkilder som regnbetingede udledninger fra separat- eller fælleskloakerede oplande. På grund af de miljøfarlige forurenende stoffers potentielt skadelige effekter i vandmiljøet udarbejder Miljøstyrelsen nationale opgørelser for punktkildebelastningen i forhold til udledningen af MFS. Opgørelserne anvendes til fastsættelse af typetal baseret på målinger foretaget på en repræsentativ delmængde af punktkilder for den enkelte punktkilde- og stoftype. Typetallene beskriver den bedst beregnede middelværdi for et stof og benyttes til at vurdere påvirkningen fra landets øvrige punktkilder af samme type. Typetallene er i denne rapport fastsat for henholdsvis separatkloakerede regnvandsudledninger og fælleskloakerede spildevandsoverløb.

2.2 Formål

Formålet med projektet har været at bearbejde de overvågningsdata om MFS i regnbetingede udledninger, der er indsamlet under NOVANAs punktkildeprogram for perioden 2000 og frem til 2020, og analysere dem statistisk med henblik på at udarbejde typetal for henholdsvis separatkloakerede regnvandsudledninger og fælleskloakerede spildevandsoverløb.

Det har desuden været formålet med denne rapport at gennemføre en litteraturundersøgelse med henblik på at identificere eventuelle relevante MFS, som er identificeret i lignende vandtyper (fælleskloak og separatkloak) i oplande, som er sammenlignelige med de danske.

2.3 **Projektorganisation**

Miliøstyrelsens projektansvarlige har været cand.scient. Anna Gade Holm og Mia Roest Christensen. DHI A/S har haft ansvaret for projektudførelsen med Kristina Buus Kjær som faglig projektansvarlig. Dorte Rasmussen har forestået de statistiske analyser og bearbejdning af data.

2.4 Punktkildeprogrammet for MFS

Overvågningen af MFS blev med overvågningsprogrammet NOVA 2003 permanent iværksat, og overvågningen af MFS i regnbetingede udledninger har således væres inkluderet siden 2000. Den nationale overvågning, herunder overvågning af punktkilder som regnbetingede udledninger, har siden 2000 som udgangspunkt fulgt et 6-årigt forløb. Der har således været gennemført fire programperioder adskilt med såkaldte overgangsår, og overvågningsprogrammet er herigennem tilpasset gældende lovkrav og behov:

- NOVA 2003 (Miljøstyrelsen, 2000)
- NOVANA 2004-2009 (DMU, 2005, 2007)

- NOVANA 2010-2015 (Naturstyrelsen, 2011a, 2011b)
- NOVANA 2017-2021 (Miljøstyrelsen, 2017)

2.4.1 Punktkildeprogrammets formål og strategi

Formålet med overvågningen af MFS i regnbetingede udledninger er overordnet set at beskrive status og udvikling af udledningen af MFS fra denne type punktkilde. Desuden bidrager overvågningen af regnbetingede udledninger til at belyse eventuelle behov for at justere overvågningen af MFS i fx vandløb og søer, som der udledes til.

Strategien for MFS-overvågningen i regnbetingede udledninger har med NOVANA 2010-2015 været at indsamle data, der kan lægges til grund for fastsættelsen af enhedstal/typetal således, at der kan skabes et overordnet, landsdækkende billede af den generelle tilstand og udvikling i punktkildebelastningen.

Målingerne af MFS er omfattet af forpligtelserne i medfør af Vandrammedirektivet, hvilket betyder, at de står på EU's liste over prioriterede stoffer. Herudover medtages en række andre MFS, som er omfattet af nationale krav, eller som udledes i betydelige mængder. En række stoffer har således været inkluderet i overvågningsprogrammet siden 2000, mens stofgrupper som fx lægemidler og perflourerede alkylsyreforbindelser (PFAS) er udvidet betydeligt siden.

Enkelte stofgrupper som bl.a. brommerede flammehæmmere udgik i 2017 med NOVANA 2017-2021 og overvåges derfor ikke længere, mens undersøgelser for polyaromatiske kulbrinter (PAH) samtidig blev reduceret til kun at omfatte separate regnvandsudledninger og sediment i de tilhørende regnvandsbassiner.

For hver RBU, der er inkluderet i overvågningen, udføres en oplandsanalyse for at fastsætte, hvor stort det befæstede areal i kloakoplandet er, samt beskrive kloaksystemets dimensioner og fysiske tilstand m.m. Alle oplandsbeskrivelser fremgår af referencelisten i Kapitel 6 Referencer.

2.4.2 Regnbetingede udledninger under punktkildeprogrammet

Der er i overvågningsprogrammet lagt vægt på at inkludere oplande, der primært repræsenterer bidrag fra husholdninger og boligområder med én-familieshuse. De væsentligste karakteristika for de i alt seks fælleskloakerede spildevandsoverløb og fem separatkloakerede regnvandsudledninger, der er indgået i overvågningen og leveret data for MFS til denne rapport, fremgår af henholdsvis TABEL 1 og TABEL 2.

Der er en overrepræsentation af oplande i Nordjylland og til dels Midtjylland i forhold til de øvrige landsdele. Alle analyseresultater for MFS fra de regnbetingede udledninger er foretaget i 2000-2020.

TABEL 1. Karakteristika for de fælleskloakerede spildevandsoverløb i punktkildeprogrammet for MFS, hvis overvågningsdata nærværende projekt er baseret på.

Stednavn (reference)	Placering	Anlægsnavn	Prøvetagningsår inkluderet	Samlet areal (ha.)	Tilsluttet befæstet areal (red. Ha.)	Oplandsanvendelse (regnvandspåvirkning)	Oplandsanvendelse (spildevandspåvirkning)	Øvrige kommentarer
Sulsted (Nordjyllands Amt, 2006b)	Aalborg Kommune, Nordjylland	U1.1.10	2005-2006	25	7,7	25 ha villakvarter	Husspildevand 527 PE	Forekommer min- dre indsivning
Frejlev (Nordjyllands Amt, 2001)	Aalborg Kommune, Nordjylland	U4.2.01	2000	96	35	79 ha villakvarter 4 ha rækkehuskvarter 13 ha industriområder	Husspildevand fra max 2.000 PE Maskinstation vaskeplads Cementstøberi Mindre liberale erhverv	Giftfri by med be- grænset anven- delse af ukrudts- midler
Gug Skole (Miljøstyrelsen, a)	Aalborg Kommune, Nordjylland	U0.3.55	2012-2013	27	10	27 ha villakvarter	Husspildevand fra max 600 PE	Ubetydelig indsiv- ning
Grønlandstorv (Miljøstyrelsen, b)	Aalborg Kommune, Nordjylland	U0.3.41	2014-2016	45	21	45 ha villakvarter	Husspildevand ca. 3.000 PE	Ubetydelig indsiv- ning
Vejgaard (Miljøstyrelsen Østjylland, 2017)	Aalborg Kommune, Nordjylland	U0.3.13	2017-2020	132	58	132 ha ældre villakvarter og lidt rækkehuse	Husspildevand fra ca. 10.000 PE	
Toftøjevej Miljøstyrelsen (2006a)	Københavns Kom- mune, Hovedstaden	lkke kendt	2002-2003	144	49	121 ha villakvarter 15 ha halvhøj bebyggelse 3 ha vejarealer 5 ha industriområder	Husspildevand ca. 5.700 PE Mindre erhvervsområde med au- toværksteder og trykkerier To skoler	

TABEL 2. Karakteristika for de separate regnvandsudledninger i punktkildeprogrammet for MFS, hvis overvågningsdata nærværende projekt er baseret på.

Stednavn	Placering	Udløbsnr.	Prøvetagningsår inkluderet	Samlet areal (ha.)	Tilsluttet befæstet areal (red. Ha.)	Oplandsanvendelse
Brabrand (Miljøstyrelsen, c)	Aarhus Kommune, Østjylland	Mu35	2011-2016	74	38	Blokbyggeri (Gellerupparken) og centerområde (City Vest) og en mindre del villabebyggelse
Gistrup (Naturstyrelsen Aalborg, 2011)	Aalborg Kommune, Nordjylland	U3.1.16	2008-2010	47	16	47 ha villakvarter inkl. en landevej
Himmelbovej (Miljøstyrelsen Østjylland, 2017)	Randers Kommune, Midtjylland	F16u230	2017-2020	27	6,1	27 ha villakvarter
Højmarken (Miljøstyrelsen, 2021b)	Silkeborg Kommune, Midtjylland	I12041u	2012-2020	25	7,7	24 ha villakvarter og 1 ha omfartsvej
Sulsted (Nordjyllands Amt, 2004)	Aalborg Kommune, Nordjylland	U1.1.05	2002-2003	15	4,8	15 ha villakvarter

Metode

3.1 Datagrundlag og bearbejdning

Opstillingen af typetal for separate regnvandsudledninger og fælleskloakerede spildevandsoverløb er baseret på de samlede NOVANA-data for hele perioden fra 2000 og frem til 2020 for punktkildeprogrammet for MFS i regnbetingede udledninger. Data er som udgangspunkt samlet i PULS-databasen. Miljøstyrelsen har foretaget de relevante dataudtræk og sammenstillinger af data og leveret det samlede datasæt til DHI til brug for databearbejdning og opstilling af typetal.

Data er sorteret efter, om målingerne er foregået i separate regnvandsudledninger eller fælleskloakerede spildevandsoverløb og sorteret efter stofgruppe. En oversigt over de regnbetingede udledninger, som indgår i NOVANA-delprogrammet og dermed indgår i fastsættelsen af typetallet, fremgår af TABEL 1 og TABEL 2.

I NOVANA-delprogrammet for regnbetingede udledninger indgår målinger på både separate regnvandsudledninger og fra fælleskloakerede spildevandsoverløb. Der er fastsat et typetal for begge typer af regnbetingede udledninger.

For tre af de separate regnvandsudløb er der tilknyttet et regnvandsbassin inden udledning. Der er på disse regnvandsbassiner foretaget målinger både på indløbet og udløbet samt i sediment fra regnvandsbassinerne. Da formålet med denne rapport er at fastsætte et generisk typetal for MFS i regnvandsbetingede udledninger, der kan anvendes uanset, om der er tilknyttet et regnvandsbassin inden udledning eller ej, er det i fastsættelsen af typetallet valgt udelukkende at medtage målinger på tilløbet til regnvandsbassinerne. Disse værdier er sammenlignelige med indholdet af MFS i udledninger uden tilknyttet regnvandsbassiner og kan derfor indgå sammen med de øvrige målinger i beregningen af typetallet for separate regnvandsudledninger.

3.2 Statistiske analyser og vurderinger

De statistiske analyser af data for MFS er udført efter samme metoder, som anvendt i nøgletalsrapporten for MFS i renseanlæg (Miljøstyrelsen, 2021a). Dog er de statistiske analyser i dette projekt beregnet i MS Excel, hvor man i (Miljøstyrelsen, 2021a) har gjort brug af statistikprogrammet R til dataanalyse, inkl. udvidelsespakken Non-detects and Data Analysis for Environmental Data.

Data er i forbindelse med databehandlingen inddelt i to Excel-filer for henholdsvis separate regnvandsudledninger og fælleskloakerede spildevandsoverløb med et specifikt faneblad for hvert stof i hver af de to Excel-filer, hvori databehandlingen er foretaget.

3.2.1 Opstilling af typetal

Ved opstilling af typetal for MFS i regnbetingede udledninger er der en række forhold, som komplicerer databehandlingen og -analysen. Det gælder især følgende forhold:

- For en lang række stoffer er der foretaget målinger, hvor koncentrationen er lavere end analysemetodens følsomhed (detektionsgrænse). For disse målinger kendes således kun den angivne detektionsgrænse, som i øvrigt varierer i værdi - også for det enkelte stof fx som følge af interferens fra andre stoffer i prøven eller udvikling/skift af analysemetoder og -laboratorier
- Der er for en lang række stoffer meget få målinger. For de fælleskloakerede spildevandsoverløb er der fx for 63 stoffer <10 målinger, mens der for de separate regnvandsudledninger er 31 stoffer med <20 målinger

Målingerne er ligesom for renseanlæg generelt højreskæve, dvs. med en tendens til meget høje målinger i forhold til en typisk måling. MFS på regnbetingede udledninger er præget af variationer i kildernes udledninger, herunder høje pulsudledninger, samt variationer i afløbssystemerne og flowmønstrene. Det medfører, at data ofte ikke er normalfordelt, fordi der er tendens til, at de højeste koncentrationer er væsentligt højere end de typiske værdier (kan være flere størrelsesordner)

I nærværende rapport er der anvendt en standardiseret statistisk metode baseret på Maximum Likelihood estimation til beregning af typetallene for MFS med korrektion for, at nogle målinger er under detektionsgrænsen. Ved at anvende Maximum Likelihood metoden udnyttes hele informationen for hvert enkelt stof - også de målinger, som ligger under detektionsgrænsen - og det er ikke nødvendigt at udvælge en fast fraktil til at beregne nøgletallet for hvert enkelt stof. Ulempen ved at skulle vælge en fast fraktil er bl.a., at den samme fraktil ikke er optimal at benytte for alle stoffer. ML-metoden er beskrevet i Helsel (2012), og samme metode er anvendt i (Miljøstyrelsen, 2021a) til beregning af nøgletal for MFS i renseanlæg.

I (Miljøstyrelsen, 2021a) argumenteres der for, at minimum 50 målinger over detektionsgrænsen er nødvendige i forhold til at fastsætte et robust typetal. Dette er baseret på, at det i (Olsson, 2005) er undersøgt, hvor mange målinger der i praksis er brug for, for at det beregnede konfidensinterval dækker den sande værdi af typetallet. Resultaterne tyder på, at 50 målinger er et rimeligt krav. Analysen er baseret på, at alle målinger er over detektionsgrænsen. I Helsel (2012) anbefales dog samme antal målinger, også når nogle af målingerne er censorerede, altså at målingen kun består af viden om, at koncentrationen er lavere end detektionsgrænsen.

Derfor er der i nærværende rapport beregnet og angivet robuste typetal for alle stoffer, hvor der er mindst 50 målinger over detektionsgrænsen. De robuste typetal er markeret med fed og kursiv i tabellerne i Kapitel 4. For alle stoffer, hvor det er muligt at lave en beregning ved hjælp af ML-metoden, men hvor typetallet vurderes mindre robust, er der angivet et indikativt typetal i Kapitel 4. Det gælder stoffer med mindst 5 målinger over detektionsgrænse, men med mindre end 50 målinger over detektionsgrænsen.

For både robuste og indikative typetal i Kapitel 4 er angivet konfidensintervallet, som beskriver usikkerheden ved typetallet. De indikative typetal er ligesom det robuste typetal også et bud på en national, gennemsnitlig koncentration, men det indikative typetal har ikke samme sikkerhed som selve det robuste typetal.

For de stoffer, hvor det ikke har været muligt at beregne et typetal, er det i stedet valgt at beregne et geometrisk gennemsnit ved at fastsætte koncentrationer under detektionsgrænsen til halvdelen af detektionsgrænsen (½ x DG). Disse gennemsnit fremgår af Bilag 5 og Bilag 6. Dette er en almindelig anvendt og pragmatisk tilgang til håndtering af analyseresultater under detektionsgrænsen, men kan uden tvivl være behæftet med store usikkerheder, da der reelt ikke er viden om, hvor koncentrationsniveauet er. Hvis andelen af analyseresultater under detektionsgrænsen er høj, er det således muligt, at der generelt bliver anvendt for høje værdier, da det forhold, at der er mange målinger under detektionsgrænsen, antyder, at koncentrationerne generelt er væsentligt under detektionsgrænsen. Det forholder sig omvendt, hvis andelen af analyseresultater under detektionsgrænsen er lav. I sidstnævnte tilfælde vil valg af metode dog næppe have stor indflydelse, da den lave andel af målinger under detektionsgrænsen kun vægter lidt i det samlede gennemsnit. Disse tal er diskuteret videre i kapitel 4.

Det er således valgt at operere med følgende tre typer af resultater:

Robuste typetal:

Beregnes med Maximum Likelihood (ML) metoden for alle stoffer, hvor datagrundlaget indeholder ≥ 50 målinger over detektionsgrænsen (DG). Er angivet med fed og kursiv i tabellerne i Kapitel 4

Indikative typetal: Beregnes med ML metoden for alle stoffer, hvor datagrundlaget inde-

holder ≥50 målinger og >=5 over DG. Er ikke angivet med fed og kur-

siv i tabellerne i Kapitel 4

Gennemsnit: For alle øvrige stoffer beregnes et geometrisk gennemsnit, idet fund

under DG indgår med ½ x DG. De beregnede geometriske gennem-

snit er ikke typetal

Endeligt er det valgt at beregne percentilerne (5%, 10%, 25%, 50%, 64%, 77%, 89%, 90% og 95%) for alle stoffer. Percentilerne giver information om de bagvedliggende data og variationen i data for de enkelte stoffer. Percentilerne er rapporteret for alle stoffer i Bilag 3 og Bilag 4. Ved analyseresultater under detektionsgrænsen anvendes henholdsvis ½ x DG, hvis 20% af målinger er over DG - ellers anvendes værdien 0.

3.2.2 Tilpasning til logaritmisk normalfordeling ved ML-metode

Det er for MFS på renseanlæg tidligere beskrevet i (Naturstyrelsen, 2011) (Naturstyrelsen, 2014) og (Miljøstyrelsen, 2021a), hvordan fordelingen af koncentrationerne for hvert enkelt stof beskrives bedre med en log-normalfordeling end med en normalfordeling. Dette er også resultatet af denne analyse for MFS på regnbetingede udledninger og i øvrigt i overensstemmelse med mange andre undersøgelser af koncentrationer af MFS i vand, hvor log-normalfordelingen er fundet at være den mest almindeligt forekommende antagelse (Miljøstyrelsen, 2021a).

Det er således også i denne rapport antaget, at analysedata for et stof følger en logaritmisk fordelingskurve med en gennemsnitskoncentration og en standardafvigelse. Det blev fundet, at for langt de fleste stoffer - for både regnvandsudledninger og spildevandsoverløb - er dette en rimelig antagelse. Dette blev primært undersøgt ved et visuelt tjek af et såkaldt Q-Q plot (eller kvantilkvantil-plot), som giver en hurtig og nem mulighed for at se, om antagelsen om en logaritmisk normalfordeling er plausibel. Hvis Q-Q kurven generelt følger diagonalen pænt, og der ikke er synlige systematiske variationer, vurderes det normalt, at antagelsen er rimelig. Figur 3.1 giver et eksempel på et sådan Q-Q plot.

Figur 3.1. Eksempel på Q-Q plot for AMPA i separate regnvandsudledninger.

For hvert stof med over 5 målinger over detektionsgrænsen er følgende foretaget:

- Sortering af de målte koncentrationer og beregning af logaritmen til koncentrationen
- Etablering af en "målt fordelingskurve"
- Tilpasning til en logaritmisk fordelingskurve (parametre: middelværdi og spredning) ved at minimere summen af kvadratet på afvigelsen mellem den beregnede og den målte fordeling. Hvis samtlige målinger for et stof er over detektionsgrænsen, kan det beregnede gennemsnit og standardafvigelse af målingerne anvendes direkte

Som beskrevet ovenfor anvendes ML-metoden kun i de tilfælde, hvor der er minimum 5 målinger over detektionsgrænsen.

3.3 Usikkerheder ved typetal

Indholdet af MFS i fælleskloakerede overløb er stærkt afhængigt af spildevandssammensætningen, og hvilke aktiviteter spildevandet afledes fra. Det gælder især, hvis der er tale om industrielle aktiviteter, hvor indholdet af MFS kan variere meget afhængigt af virksomhedernes processer, produktion og anvendte stoffer/materialer. Ligeledes er regnvandsafstrømning fra befæstede arealer meget afhængig af aktiviteterne på overfladerne, hvilket kan påvirke indholdet af MFS i både fælleskloakerede spildevandsoverløb og separate regnvandsudledninger (Regnvandsforum, 2015).

Der er i overvågningsprogrammet for regnbetingede udledninger lagt vægt på at inkludere oplande, der primært repræsenterer bidrag fra husholdninger og boligområder – og dermed oplande, som er forholdsvis ens i oplandskarakteristikken. Typetallene repræsenterer således en typisk udledning af MFS fra henholdsvis fælleskloakerede spildevandsoverløb og separate regnvandsudledninger fra boligområder.

Det betyder, at regnbetingede udledninger fra andre typer af oplande kan repræsentere en anden sammensætning i forhold til koncentrationer af MFS. Fx vil koncentrationen af MFS i regnvandsafstrømning og spildevand fra industriområder typisk have et højere indhold af MFS end fra almindelige boligområder (Regnvandsforum, 2015). Dette vil variere afhængigt af bl.a. typen af virksomheder og aktiviteter i oplandet. Forekommer der regnvandsbetingede udledninger fra industriområder til et vandområde, kan typetallene derfor underestimere den faktiske udledning.

Der er for tre af oplandene til de separate regnvandsudledninger (Brabrand, Himmelbovej og Højmarken) tilknyttet et regnvandsbassin inden udledning. Der er i NOVANA-overvågningsprogrammet målt på både tilløb og afløb fra regnvandsbassinerne samt i sedimentet. Der kan forventes en vis reduktion af de partikulært bundne MFS i regnvandsbassinerne, men da datagrundlaget for afløbene fra RBU'er ikke er tilstrækkeligt til at fastsætte et typetal for afløbet fra regnvandsbassinerne, er det i stedet valgt udelukkende at medtage data fra tilløbene til regnvandsbassinerne. Disse data kan sidestilles med data fra de øvrige oplande, hvor der ikke er tilkoblet et regnvandsbassin. Typetallene for MFS i de separate regnvandsudledninger repræsenterer således en gennemsnitskoncentration af de enkelte MFS i udledninger uden rensning.

Koncentrationen af MFS i regnbetingede udledninger varierer desuden afhængigt af faktorer som prøvetagningsmetode- og frekvens, nedbørsforhold og deposition mellem nedbørshændelserne. Derudover er der usikkerheder forbundet med analysemetoder og kvantificeringen af koncentrationerne. Dette gælder især, når de detekterede koncentrationer ligger tæt på detektionsgrænsen.

Med henblik på at minimere usikkerhederne ved prøvetagningen er alle undersøgelser i overvågningsprogrammet for MFS i regnbetingede udledninger udført efter de gældende tekniske anvisninger, som kan findes på hjemmesiden for Fagdatacenter for Punktkilder: www.mst.dk/overvaagning/punktkilder/ta-for-punktkilder/

Den tekniske anvisning vedrørende sedimentundersøgelser i regnvandsbassiner er en integreret del af den gældende tekniske anvisning for udtagning af sedimentprøve til analyse for miljøfremmede stoffer i søer. Den kan ses på Fagdatacenter for Ferskvands hjemmeside: https://ecos.au.dk/forskningraadgivning/fagdatacentre/ferskvand/

Alle vandprøver er udtaget vandmængdeproportionalt for at sikre den mest repræsentative metode til udtagning af prøver, som repræsenterer et gennemsnit af hele udledningshændelsen. Der er suppleret med flere vandføringsmålinger under regn for at kunne kortlægge, hvor stor en del af den nedbør, som falder på de befæstede arealer i kloakerede områder, der afstrømmer til kloakken.

For alle typetal – både de robuste og de indikative – er konfidensintervallet angivet i tabellerne i Kapitel 4, som illustrerer den statistiske usikkerhed ved typetallet. Det er desuden angivet, hvis måledataene udviser et dårligt fit til en logaritmisk normalfordeling og dermed en stor usikkerhed omkring bestemmelsen af typetallet.

4. Typetal for MFS i regnbetingede udledninger

I dette kapitel præsenteres typetal for MFS for både fælleskloakerede spildevandsoverløb og separate regnvandsudledninger.

I dette kapitel præsenteres kun resultater baseret på beregninger foretaget med Maximum Likelihood-metoden (ML-metoden) beskrevet i det foregående kapitel. Alle typetal og andre stofkoncentrationer er i resultattabellerne i såvel dette kapitel som i bilagene angivet med to betydende cifre uanset den faktisk usikkerhed på resultatet.

I dette kapitel præsenteres alle typetal - både de, der kan betegnes som robuste, og de typetal, som på grund af lille datasæt må betegnes som indikative. Alle typetal er beregnet ud fra ML-metoden. I alle tabeller er de robuste typetal markeret med fed og kursiv skrift, mens de indikative typetal står med almindelig skrift. For alle typetal er angivet konfidensintervallet i tabellerne nedenfor.

TABEL 3 viser en oversigt over datagrundlaget for de videre analyser og vurderinger.

For de fælleskloakerede spildevandsoverløb har det været muligt at fastsætte robuste typetal for i alt 28 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 70 stoffer. For i alt 111 stoffer har det ikke været muligt at beregne et robust eller indikativt typetal.

For de separate regnvandsudledninger har det været muligt at fastsætte robuste typetal for i alt 24 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 30 stoffer. For i alt 56 stoffer har det ikke været muligt at beregne et robust eller indikativt typetal.

Det fremgår af TABEL 3, at det især er for metallerne, at datagrundlaget gør det muligt at fastsætte robuste typetal. For de fælleskloakerede spildevandsoverløb er det desuden muligt at fastsætte indikative typetal for de fleste PAH-forbindelser samt en række af de farmaceutiske stoffer.

For de fælleskloakerede spildevandsoverløb er der generelt få stoffer inden for stofgrupperne halogenerede alifatiske kulbrinter, halogenerede aromatiske kulbrinter, pesticider, bromerede flammehæmmere og PCB, som kvantificeres over detektionsgrænsen. For de separate regnvandsudledninger gælder dette primært stoffer inden for stofgrupperne halogenerede aromatiske kulbrinter og bromerede flammehæmmere.

Inden for stofgrupperne halogenerede alifatiske kulbrinter, organotin, østrogener, farmaceutiske stoffer, perfluorerede forbindelser, polychlorerede biphenyler (PCB) og aminer er der ikke foretaget nogle analyser for de separate regnvandsudledninger, da disse ikke har været omfattet af NOVANA-programmet.

TABEL 3. Oversigtstabel over datagrundlaget for de enkelte stofgrupper med angivelse af det totale antal stoffer, antal stoffer med ≥ 50 målinger over detektionsgrænsen (DG), antal stoffer med 5-49 målinger over DG og antal stoffer med ingen målinger over DG (intet detekteret) inden for de enkelte stofgrupper.

Stofnavn		Spildevand Antal s			Regnvandsudledninger Antal stoffer			
	l alt	≥ 50 målin- ger over DG	5-49 målin- ger over DG	Intet detek- teret	l alt	≥ 50 målin- ger over DG	5-49 målin- ger over DG	Intet detek- teret
Alle stoffer	209	28	70	71	110	24	30	33
Metaller og uorganiske sporstoffer	21	11	6	1	20	10	7	1
Aromatiske kulbrinter	17	3	8	1	11	0	3	3
Phenoler	7	4	1	1	7	2	1	4
Halogenerede alifatiske kulbrinter	20	0	2	13	0	0	0	0
Halogenerede aromatiske kulbrinter	21	0	0	19	4	0	0	4
Klorfenol	5	0	2	1	5	0	0	5
Polyaromatiske kulbrinter (PAH)	22	0	19	0	22	4	10	0
P-triestere	4	2	2	0	4	1	3	0
Blødgørere	8	3	4	0	7	2	2	0
Detergenter	2	1	0	0	1	0	1	0
Ethere	2	0	0	0	1	0	0	0
Organotin	4	0	2	1	0	0	0	0
Østrogener	3	1	1	0	0	0	0	0
Farmaceutiske stoffer	20	3	11	2	0	0	0	0
Perfluorerede forbindelser	13	0	6	2	0	0	0	0
Pesticider	18	0	3	13	19	5	3	8
Bromerede flammehæmmere	9	0	1	6	9	0	0	8
Polychlorerede biphenyler (PCB)	11	0	0	11	0	0	0	0
Aminer	2	0	2	0	0	0	0	0

4.1 Sammenligning af resultater af metoder

Figur 4.1 og Figur 4.2 sammenligner resultaterne ved at beregne hhv. det geometriske gennemsnit (refereres som ½ x DG-metoden), Maximum Likelihood metoden (ML) og 77% percentilen. I tilfælde, hvor 77% percentilen er en værdi under detektionsgrænsen, er værdien sat til ½ x DG, hvis mere end 20% af målingerne er over detektionsgrænsen – og ellers til 0. De tilfælde, hvor 77% percentilen er 0, hvilket er tilfældet, hvis over 77% af målinger er under detektionsgrænsen, vil ikke fremgå af figuren som følge af, at der er anvendt logaritmiske akser.

Som X-akse i begge figurer er anvendt det geometriske gennemsnit ved ½ x DG-metoden, da der for denne metode er værdier for samtlige stoffer. Diagonalen angiver således det geometriske gennemsnit ved ½ x DG-metoden. Det vil sige, at værdier, der ligger over diagonalen, er over værdien for ½ x DG-metoden – og omvendt for værdier under diagonalen.

Det fremgår generelt for begge typer af regnbetingede udledninger, at ML-metoden og $\frac{1}{2}$ x DG-metoden giver meget sammenlignelige resultater ved de høje værdier, mens ML-metoden generelt resulterer i lavere estimater end $\frac{1}{2}$ x DG-metoden ved de lavere værdier. Dette forhold er dog umiddelbart ikke overraskende, fordi stoffer med mange målinger under detektionsgrænsen generelt antyder, at koncentrationerne af disse stoffer er væsentligt under detektionsgrænsen, og at $\frac{1}{2}$ x DG-metoden således risikerer at overvurdere koncentrationen i forhold til ML-metoden.

Det fremgår videre, at værdierne ved 77%-percentilen generelt er højere end de værdier, der opnås med ML-metoden og ved $\frac{1}{2}$ x DG-metoden. Dette er heller ikke overraskende, da 77%-percentilen er over 50%-percentilen (medianen), som ville være sammenlignelig med $\frac{1}{2}$ x DG-metoden og ML-metoden.

Figur 4.1. Sammenligning af de tre beregningsmetoder for fælleskloakerede spildevandsoverløb. Koncentrationer angivet i μg/L.

Figur 4.2. Sammenligning af de tre beregningsmetoder for separate regnvandsudledninger. Koncentrationer angivet i µg/L.

4.2 Typetal for metaller og andre uorganiske sporstoffer

Samlet set er gruppen metaller og andre uorganiske sporstoffer den stofgruppe, der er foretaget flest målinger på i overvågningsprogrammet for regnbetingede udledninger, og andelen af målinger over detektionsgrænsen er gennemgående også størst inden for denne gruppe. Dette medfører, at sikkerheden i de beregnede nøgletal er større for metaller og andre uorganiske sporstoffer end for flertallet af de organiske MFS.

TABEL 4. Typetal for metaller og andre uorganiske sporstoffer i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
Aluminium	600	[500-800]	1.500	[1.000-2.100]	
Antimon	0,90	[0,90-1,00]	0,80	[0,60-1,1]	
Arsen	0,80	[0,60-0,90]	1,3	[1,1-1,7]	
Barium	15	[12-18]	12	[7,0-21]	
Bly	5,0	[4,0-7,0]	4,0	[3,0-5,0]	
Bor	22	[13-40]	21	[11-40]	
Cadmium	0,10	[0,080-0,13]	0,070	[0,050-0,090]	
Chrom	2,4	[1,8-3,1]	4,0	[2,9-5,0]	
Kobber	16	[12-20]	9,0	[7,0-12]	
Kobolt	#		0,40	[0,18-0,80]	
Kviksølv	0,05	[0,030-0,070]	0,03*	[0,021-0,050]	
Molybdæn	0,80	[0,60-0,90]	#		
Nikkel	2,7	[2,1-3,0]	4,0	[3,1-6,0]	
Selen	0,60	[0,50-0,70]	0,90*	[0,80-0,90]	
Sølv	#		#		
Tellur	#		l.a.		
Thalium	#		#		
Tin	1,4	[1,0-1,9]	1,1	[0,80-1,7]	
Uran	0,11	[0,050-0,22]	0,070	[0,0040-1,1]	
Vanadium	2,8	[2,3-3,0]	2,6	[1,6-4,0]	
Zink	170	[140-190]	130	[100-160]	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

4.3 Typetal for organiske MFS

De opstillede typetal for organiske miljøfarlige forurenende stoffer i dette afsnit er opdelt i grupper svarende til opdelingen i Miljøstyrelsens punktkilderapporter og i nøgletalsrapporterne (Naturstyrelsen, 2011), (Naturstyrelsen, 2014) og (Miljøstyrelsen, 2021a).

En række af stofferne i nedenstående tabeller har ikke været en del af NOVANA-programmet for separate regnvandsudledninger og der kan således ikke beregnes et typetal for disse (angivet med 'l.a.').

^{*} Tilpasning til log-normalfordelingen er ikke god (visuelt tjek af Q-Q-plottet)

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

TABEL 5. Typetal for aromatiske kulbrinter i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
1-Methyl-napthalen	#		#		
2-Methylnaphtalen	0,022	[0,015-0,030]	#		
5-tert-butyl-2,4,6-trini- tro-m-xylen	#		l.a.		
Benzen	0,0060	[0,0011-0,027]	#		
Biphenyl	0,0050	[0,0027-0,0100]	0,0012	[0,00019-0,0070]	
Dimethylnaphthalener	0,040	[0,031-0,050]	I.a.		
Ethylbenzen	0,010	[0,0050-0,022]	#		
Isopropylbenzen	#		I.a.		
m+p-Xylen	0,050	[0,026-0,11]	I.a.		
Methylnaphthalen	#		#		
Moskusxylener	#		#		
Naphtalen	0,019	[0,013-0,029]	0,0070	[0,0030-0,014]	
o-Xylen	0,023	[0,014-0,040]	l.a.		
p-Tert-butyl-toluen	#		#		
Toluen	0,11	[0,060-0,18]	0,11	[0,090-0,14]	
Trimethylnaphthale- ner	0,014	[0,0080-0,024]	l.a.		
Xylen	0,007	[0,00050-0,090]	#		

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 6. Typetal for phenoler i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
4-n-octylphenol	#		#		
4-Nonylphenol	#		#		
Bisphenol A	0,24	[0,19-0,30]	0,080	[0,060-0,12]	
Nonylphenol-dietho- xylater (NP2EO)	0,11	[0,060-0,19]	#		
Nonylphenoler	0,20	[0,14-0,29]	0,040	[0,020-0,080]	
Nonylphenol-mono- ethoxylater					
(NP1EO)	0,18	[0,11-0,28]	#		
Phenol	0,60	[0,40-0,90]	0,20	[0,16-0,27]	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

TABEL 7. Typetal for halogerende alifatiske kulbrinter i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
1,1,1-trichlorethan	#		l.a.		
1,1,1-trichlorethan	#		l.a.		
1,1,2,2-Tetrachlo- rethan	#		l.a.		
1,1,2-Trichlorethan	#		l.a.		
1,2-Dibromethane	#		l.a.		
1,2-Dichlorethan	#		I.a.		
1,2-Dichlorethylen	#		I.a.		
1-2-Dichlorpropan	#		l.a.		
3-Chlorpropen	#		I.a.		
Chloroform	0,022	[0,012-0,040]	I.a.		
Cis-1,2-dichlorethy- len	#		l.a.		
Dichlormethan	0,022	[0,0050-0,11]	l.a.		
Hexachlorbutadien	#		l.a.		
Hexachlorethan	#		l.a.		
Pentachlorethan	#		l.a.		
Tetrachlorethylen	#		l.a.		
Tetrachlormethan	#		l.a.		
Trans-1,2-dichlo- rethen	#		l.a.		
Trichlorethylen	#		l.a.		
Vinylchlorid	#		l.a.		

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

TABEL 8. Typetal for halogerende aromatiske kulbrinter i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
1,2,4-Trichlorbenzen	#		l.a.		
1,2-dichlor-4-nitrobenzen	#		l.a.		
1,2-Dichlorbenzen	#		l.a.		
1,3-Dichlorbenzen	#		l.a.		
1,4-dichlor-2-nitrobenzen	#		l.a.		
1,4-Dichlorbenzen	#		#		
1-Chlor-2-nitrobenzen	#		l.a.		
1-Chlor-3-nitrobenzen	#		l.a.		
1-Chlornaphthalen	#		l.a.		
2,5-Dichloranilin	#		#		
2-Chlornaphthalen	#		l.a.		
2-Chlortoluen	#		l.a.		
3,4-Dichloranilin	#		l.a.		
3-Chlortoluen	#		l.a.		
4-Chlor-2-nitrotoluen	#		l.a.		
4-Chlornitrobenzen	#		l.a.		
4-Chlortoluen	#		l.a.		
Benzylchlorid	#		l.a.		
Chlorbenzen	#		l.a.		
Hexachlorbenzen	#		#		
Pentachlorbenzen	#		#		

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 9. Typetal for klorfenol i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ındsoverløb	Regnvandsudledninger		
	Typetal (μg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
2,4,6-Trichlorphenol	0,031	[0,016-0,060]	#		
2,4+2,5-Dichlorp- henol	0,16*	[0,018-1,5]	#		
2,4-Dichlorphenol	#		#		
4-Chlor-3- methylphenol	#		#		
Pentachlorphenol	#		#		

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

^{*} Tilpasning til log-normalfordelingen er ikke god (visuelt tjek af Q-Q-plottet)

TABEL 10. Typetal for polyaromatiske kulbrinter (PAH) i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvandsudledninger		
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval	
1-Methylpyren	0,0025	[0,00060-0,0100]	#		
2-Methylphenanthren	0,0080	[0,0040-0,017]	0,0030	[0,0012-0,0090]	
2-Methylpyren	0,0070	[0,0040-0,0100]	#		
Acenaphthen	#		#		
Acenaphthylen	#		#		
Antracen	0,014	[0,0100-0,018]	0,0050	[0,0029-0,0080]	
Benz(a)anthracen	0,012	[0,0050-0,031]	0,0040	[0,0019-0,0080]	
Benz(a)fluoren	0,0050	[0,0022-0,013]	0,0016	[0,00027-0,0090]	
Benz(ghi)perylen	0,020	[0,0100-0,040]	0,0070	[0,0040-0,014]	
Benz[a]pyren	0,012	[0,0040-0,040]	0,0040	[0,0021-0,0080]	
Benzfluranthen b+j+k	0,030	[0,017-0,070]	0,012	[0,0070-0,022]	
Benzo(e)pyren	0,016	[0,0060-0,040]	0,0060	[0,0028-0,012]	
Crysen/triphenylen	0,029	[0,016-0,060]	0,011	[0,0060-0,020]	
Dibenz(ah)anthracen	0,0050	[0,0018-0,014]	0,0010	[0,00011-0,0100]	
Dibenzothiophen	#		#		
Dimethylphenanthren	0,0040	[0,0018-0,0100]	#		
Fluoranthen	0,030	[0,019-0,060]	0,013	[0,0080-0,021]	
Fluoren	0,012	[0,0090-0,015]	#		
Indeno(1,2,3-cd)pyren	0,016	[0,0050-0,050]	0,0060	[0,0030-0,0100]	
Perylen	0,0027	[0,00060-0,012]	#		
Phenanthren	0,025	[0,016-0,040]	0,010	[0,0070-0,016]	
Pyren	0,030	[0,018-0,060]	0,015	[0,0090-0,023]	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 11. Typetal for P-triestere i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildevandsoverløb		Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
TCPP	0,40	[0,28-0,50]	0,10	[0,080-0,13]
Tributylphosphat	0,0070	[0,0017-0,027]	0,015	[0,013-0,018]
Tricresylphosphat	0,0080	[0,0030-0,020]	0,0050	[0,0016-0,014]
Triphenylphosphat	0,050	[0,040-0,060]	0,014	[0,0090-0,023]

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 12. Typetal for blødgørere i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildevandsoverløb		Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
Benzylbuthylphthalat	0,060	[0,040-0,11]	#	
DEHP	2,8	[2,1-4,0]	0,70	[0,50-1,00]
Di(2-ethylhexyl)adipat	0,060	[0,026-0,12]	0,040	[0,017-0,11]
Di-2-ethoxyethyl phthalat	#		l.a.	
Dibuthylphthalat	0,27	[0,20-0,40]	#	
Diethylphthalat	0,30	[0,23-0,50]	0,10*	[0,070-0,13]
Diisononylphthalat	5,0	[4,0-7,0]	1,7	[1,1-2,6]
Di-n-octylphthalat	0,040	[0,019-0,080]	#	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 13. Typetal for detergenter i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	indsoverløb	Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
Alkylbenzensulfonat	260	[180-400]	1,2	[0,17-8,0]
Detergenter kationiske	#		l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 14. Typetal for ethere i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ındsoverløb	Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
MTBE	#		#	
Triclosan	#		l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5. I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

^{*} Tilpasning til log-normalfordelingen var ikke god for stoffet (visuelt tjek af Q-Q-plottet). Herved vil der være en stor usikkerhed forbundet med bestemmelsen af typetallet.

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

TABEL 15. Typetal for organotin i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og **kursiv**.

Stofnavn	Spildevandsoverløb		Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
Dibutyltin	0,0031	[0,0024-0,0040]	l.a.	
Monobutyltin	0,014	[0,012-0,018]	l.a.	
Tributyltin (TBT)	#		l.a.	
Triphenyltin(TPhT)	#		l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 16. Typetal for østrogener i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildevandsoverløb		Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
17Beta-østradiol	0,0014	[0,00070-0,0027]	l.a.	
Ethinyløstradiol	#		l.a.	
Østron	0,017	[0,013-0,022]	l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 17. Typetal for farmaceutiske stoffer i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildevandsoverløb		Regnvand	sudledninger
	Typetal (μg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
2-hydroxyibuprofen	3,0	[2,2-5,0]	l.a.	
Azithromycin	#		l.a.	
Carbamazepin	0,030	[0,022-0,050]	l.a.	
Cimetidin	#		l.a.	
Citalopram	0,050	[0,030-0,070]	l.a.	
Clarithromycin	#		l.a.	
Diclofenac	0,024	[0,013-0,040]	l.a.	
Erythromycin	#		l.a.	
Erythrosin	#		l.a.	
Furosemid	1,1	[0,40-2,7]	I.a.	
Ibuprofen	1,7	[1,3-2,2]	l.a.	
Naproxen	0,17	[0,100-0,29]	l.a.	
Paracetamol	13	[8,0-21]	l.a.	
Propofol	#		l.a.	
Propranolol	0,0070	[0,0040-0,014]	l.a.	
Salicylsyre	0,80	[0,60-1,3]	l.a.	

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

Sulfamethiazol	0,0080	[0,00026-0,23]	l.a.	
Sulfamethoxazol	0,030	[0,028-0,040]	l.a.	
Tramadol	0,21	[0,14-0,32]	l.a.	
Trimethoprim	0,040	[0,030-0,050]	l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 18. Typetal for perfluorerede forbindelser (PFAS) i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	indsoverløb	Regnvand	sudledninger
	Typetal (μg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
1H, 1H,2H,2H- Per- fluoroctansulfonsyre	#		l.a.	
Perfluorbutansulfon- syre (PFBS)	#		l.a.	
Perfluorbutansyre (PFBA)	0,0022*	[0,0015-0,0031]	l.a.	
Perfluordecansyre (PFDA)	0,0014	[0,0010-0,0018]	l.a.	
Perfluorheptansyre (PFHpA)	#		l.a.	
Perfluorhexansul- fonsyre (PFHxS)	#		l.a.	
Perfluorhexansyre (PFHxA)	0,0023*	[0,0014-0,0040]	l.a.	
Perfluornonansyre (PFNA)	0,0008	[0,00070-0,0010]	l.a.	
Perfluoroctansulfon- amid (PFOSA)	#		l.a.	
Perfluoroctansulfon- syre (PFOS)	0,0011	[0,00070-0,0017]	l.a.	
Perfluoroctansyre (PFOA)	0,0017	[0,0014-0,0021]	l.a.	
Perfluorpentansyre (PFPA)	#		l.a.	
Perfluorundecan- syre (PFUnA)	#		I.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

^{*}Tilpasning til log-normalfordelingen var ikke god for stoffet (visuelt tjek af Q-Q-plottet). Herved vil der være en stor usikkerhed forbundet med bestemmelsen af typetallet

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

TABEL 19. Typetal for pesticider i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvand	sudledninger
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
2,4,5-Trichlorphenol	#		#	
2,6-Dichlorbenzamid	#		0,0027	[0,00029-0,026]
Aldrin	#		#	
AMPA	0,12	[0,11-0,14]	0,17	[0,13-0,23]
Deisopropyl-hydroxyat- razin	#		#	
Dicamba	#		#	
Dichlobenil	#		#	
Dieldrin	#		#	
Diflufenican	#		0,023	[0,016-0,030]
Diuron	#		0,011	[0,0060-0,023]
Endrin	#		#	
Gamma Lindan (HCH)	#		#	
Glyphosat	0,40	[0,28-0,60]	0,40	[0,24-0,70]
Isodrin	#		#	
MCPA	#		0,013	[0,0040-0,050]
Mechlorprop	0,030	[0,019-0,050]	0,014	[0,0080-0,025]
Prosulfocarb	#		0,0070	[0,00060-0,090]
Simazin			#	
Tebuconazol	#		#	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 20. Typetal for bromerede flammehæmmere i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	ndsoverløb	Regnvand	sudledninger
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
BDE #28	#		#	
BDE #85	#		#	
BDE#100	#		#	
BDE#153	#		#	
BDE#154	#		#	
BDE#183	#		#	
BDE#209	0,0090	[0,0018-0,050]	#	
BDE#47	#		#	
BDE#99	#		#	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 21. Typetal for polychlorerede biphenyler i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildeva	Spildevandsoverløb		sudledninger
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
PCB #101	#		l.a.	
PCB #105	#		I.a.	
PCB #118	#		l.a.	
PCB #138	#		I.a.	
PCB #153	#		l.a.	
PCB #156	#		I.a.	
PCB #170	#		I.a.	
PCB #180	#		l.a.	
PCB #28	#		I.a.	
PCB #31	#		I.a.	
PCB #52	#		l.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

TABEL 22. Typetal for aminer i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Robuste typetal er markeret med fed og kursiv.

Stofnavn	Spildevandsoverløb		Regnvandsudledninger	
	Typetal (µg/l)	Konfidensinterval	Typetal (µg/l)	Konfidensinterval
Diethylamin	0,50	[0,30-0,60]	l.a.	
Dimethylamin	17	[12-24]	I.a.	

[#] Datagrundlaget er ikke tilstrækkeligt til at beregne et typetal efter ML-metoden. Der er angivet et gennemsnit i Bilag 5.

4.4 Partikulært bundne MFS

En række stoffer er analyseret både i indløb og udløb samt i sediment fra tre regnvandsbassiner koblet til separate regnvandsudledninger (Brabrand, Himmelbovej og Højmarken). Der er kun foretaget sedimentanalyser på stoffer, som vides at adsorbere kraftigt til sediment, slam o.l.

Til følgende kvalitative vurdering er analyseværdier under detektionsgrænsen (i tilløb, udløb og i sediment) sat til ½ x detektionsgrænsen. Det geometriske gennemsnit af disse koncentrationer er herefter beregnet sammen med den tilsyneladende fjernelse med sediment, og et groft estimat på fjernelsen i regnvandsbassinerne er beregnet. Figur 4.3 viser sammenhængen mellem de målte koncentrationsniveauer i sedimentet og i indløbet. Ikke overraskende er der en fin sammenhæng mellem indløbskoncentrationen og koncentrationen i sedimentet.

Nedenstående tabel giver en oversigt over resultaterne, hvor stofferne er inddelt i stofgrupperne: Metaller, PAH'ere, phthalater, alkylphenoler, pesticider og organotin. Det fremgår, at en væsentlig andel af disse stoffer bliver fanget i sedimentet.

For nogle af stofferne, fx visse PAH'ere, visse alkylphenoler, organotin og pesticider, er stofferne detekteret i sedimentet, men der er ikke udført målinger i indløb og udløb som en del af NO-VANA-programmet. Videre er der flere eksempler på, at stoffet ikke er detekteret i indløbet, men

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

I.a. Stoffet er ikke analyseret som en del af NOVANA for separate regnvandsudledninger

til gengæld er detekteret i sedimentet. Det gælder acenaphten, benzylbutylphthalat og 4nonylphenol. Derfor kan analyser af sedimentet være en mere følsom måde at undersøge, om et stærkt adsorberende stof findes i regnvand eller ej, da det opkoncentreres i sedimentet.

Da de stoffer, der er analyseret for i sedimentet, har et højt potentiale for at binde sig til sediment, må det forventes, at stofferne ved udledning til et vandområde primært vil ophobe sig i sedimentet. For enkelte af stofferne eksisterer der et sedimentkvalitetskrav (vanadium, bly, cadmium, sølv, nonylphenol, octylphenol, (mono, di, tri)-methylenaphthalener, naphtalen, antracen). Anvendes det koncentrationsniveau, der er målt i sedimentprøverne, som et konservativt estimat på forventede koncentrationsniveauer i sedimentet ved udledning af ubehandlet regnvand (uden tilknyttet regnvandsbassin) til en recipient, kan det ses, at stoffer som nonylphenoler, (mono, di, tri)naphhalener og anthracen muligvis kan overskride sedimentkvalitetskrav. Dette vil selvfølgelig afhænge af fortyndingsforholdene i det pågældende vandområde.

TABEL 23. Oversigt over koncentrationsniveauer i tilløb, afløb og i sediment fra regnvandsbassiner.

Stofgruppe	Koncentrations- niveau i sediment (μg/kg TS)	Koncentrations-ni- veau i indløb (µg/L)	Koncentrations- niveau i udløb (µg/L)	Tilsyneladende fjernelse i regn- vandsbassin (%)
Metaller				
Aluminium	11.000.000	1.500	370	76
Zink, vanadium, kobber, chrom, nickel, bly, lith- ium, arsen	5.900 – 410.000	1,5-150	0,85-25	46-96
Cadmium, sølv, kviksølv	49-400	0,030-1,40	0,02-0,60	48-59
PAH-er	3,3-230	<dl -="" 0,01<="" td=""><td><dl-0,006< td=""><td>50-65</td></dl-0,006<></td></dl>	<dl-0,006< td=""><td>50-65</td></dl-0,006<>	50-65
Phthalater (og én adipat)	11-11.000	<dl-2,3< td=""><td><dl-0,23< td=""><td>50-90</td></dl-0,23<></td></dl-2,3<>	<dl-0,23< td=""><td>50-90</td></dl-0,23<>	50-90
Alkylphenoler	1,3-130	<0,07*	<0,03*	≈50
Pesticider	1-12	Ingen analyser	Ingen analyser	-
Organotin	0,3-19	Ingen analyser	Ingen analyser	-

^{*}Der er kun foretaget kemisk analyse for nonylphenoler og 4-nonylphenol

Figur 4.3. Gennemsnitlig koncentration i sediment ($\mu g/kg$ TS) fra regnvandsbassiner som funktion af indløbskoncentrationen ($\mu g/L$) for de forskellige stofgrupper.

5. Litteraturundersøgelse

5.1 Metode

Som en del af projektet er gennemført en litteraturundersøgelse for at indsamle viden om, hvilke MFS'er der er påvist i RBU'er nationalt og internationalt og i hvilke koncentrationsniveauer. Der er lagt vægt på at medtage stoffer, som ikke allerede indgår i det danske NOVANA-delprogram for RBU'er.

Litteraturundersøgelsen er baseret på offentligt tilgængelige analysedata fra danske og europæiske regnvandsundersøgelser for at sikre relevansen og kvaliteten af data, således at de afspejler mulige indholdsstoffer og koncentrationer i regnvandsafstrømning i Danmark. Data er indsamlet via internationale artikeldatabaser og fra danske undersøgelser rapporteret gennem bl.a. Miljøstyrelsen, Naturstyrelsen, Partnerskaber og innovationsprojekter som "Vand i Byer" og "Byer i Vandbalance" m.fl.

Europæisk lovgivning inden for bl.a. kemikalier, pesticider og lægemiddelstoffer sætter ens rammer for anvendelsen af disse stoffer inden for EU og dermed for stoffernes mulige forekomst i RBU'er i EU. Derudover kan der være særlig national lovgivning, som kan begrænse visse stoffers forekomst i Danmark i forhold til resten af Europa. Der er derfor i vurderingen af stofferne også set på, om der er national lovgivning, som sætter særlige rammer for stoffernes anvendelse og dermed forekomst i Danmark.

Litteraturundersøgelsen er udelukkende baseret på data fra bynære områder tilsvarende de regnbetingede udledninger, som indgår i NOVANA delprogrammet for RBU. Dog repræsenterer en del af undersøgelserne større oplande, som inkluderer både bolig- og industriområder. Hvis det vurderes, at stofferne ikke er repræsentative for enten fælleskloakerede spildevandsoverløb eller separate regnvandsudledninger, er dette noteret i vurderingerne nedenfor.

De indsamlede data repræsenterer årene fra 2002 og fremefter. Udvikling af nye byggematerialer, regulering af pesticider og bedre luftrensning har påvirket sammensætningen af overfladeafstrømning, og derfor afspejler ældre regnvandsdata ikke nødvendigvis den nuværende sammensætning af regnvand. Igennem årene er analysemetoderne blevet forbedret og detektionsgrænserne sænket, hvilket også kan betyde, at ældre data er af ringere kvalitet.

I litteraturundersøgelsen er der således fokuseret på følgende:

- Danske og europæiske artikler og rapporter
- Målingerne har været foretaget efter år 2002 for at sikre en vis relevans
- Målingerne repræsenterer så vidt muligt regnvandsafstrømning fra boligområder, som er sammenlignelige med de områder, der er inkluderet i NOVANA
- Der er kun medtaget referencer, hvor der er analyseret for andre stoffer end de stoffer, som allerede indgår i NOVANA delprogrammerne for RBU

5.2 Resultater

En oversigt over alle undersøgelser af RBU'er, som er indgået i litteraturundersøgelsen, fremgår af Bilag 7. Alle referencer fremgår desuden af referencelisten i Kapitel 6.

I TABEL 26 og TABEL 27 i Bilag 7 er desuden vist en opsummering af koncentrationsniveauer for de MFS, som er identificeret i henholdsvis fælleskloakerede spildevandsoverløb og separate regnvandsudledninger i de inkluderede referencer – og som ikke hidtil er analyseret som en del af

NOVANA delprogrammet for RBU. Der er desuden angivet en kommentar i relation til relevansen for RBU'er i Danmark.

Pesticider

Der er identificeret en lang række pesticider i undersøgelser af både fælleskloakerede spildevandsoverløb og separate regnvandsudledninger primært i de europæiske undersøgelser, men også i danske. De fleste af disse pesticider er ikke længere tilladt at anvende i Danmark, jf. Bilag 7. Det er dog muligt, at de stadig kan identificeres i RBU'er i Danmark, men det må formodes, at koncentrationerne er nedadgående.

Af pesticider, som det stadig er tilladt at anvende i Danmark, er Benzisothiazolinon, Carbendazim, Clopyralid, DEET, Dichlorprop, Metamitron, Permethrin, Propiconazol, Terbutylazin og 2-phenylphenol identificeret i europæiske og danske undersøgelser af RBU'er, jf. Bilag 7; dog i varierende koncentrationsniveauer. Pesticiderne kan typisk forekomme både i fælleskloakerede spildevandsoverløb og separate regnvandsudledninger, idet de primære kilder vil være afstrømning og udvaskning fra jord og overflader i forbindelse med nedbør.

Alkylphenoler

4-n-octylphenol, 4-nonylphenol samt nonylphenoler og -ethoxylater er en del af NOVANA delprogrammet for fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Der er dog også identificeret alkylphenolerne 4-tert-butylphenol og 4-tert-octylphenol i både fælleskloakerede spildevandsoverløb og separate regnvandsudledninger i europæiske undersøgelser, jf. Bilag 7.

Lægemiddelstoffer

De lægemiddelstoffer (Atenolol, Metoprolol, Bezafibrate) og kontraststoffer (Diatriozat, Iohexol, lomeprol, lopromid og lopamidol), der er identificeret i fælleskloakerede spildevandsoverløb, er bredt forekommende i både husspildevand og hospitalsspildevand og er også alle identificeret i tilløb til danske renseanlæg (DHI, 2021). Det er mindre sandsynligt, at de forekommer i separate regnvandsudledninger.

Chloralkaner

Kort- og mellemkædede chlorparaffiner anvendes som blødgørere i plast og smøremidler i metalforarbejdning samt i fugemasser i bygninger. De er identificeret i en dansk undersøgelse af to fælleskloakerede spildevandsoverløb og en separat regnvandsudledning (COHIBA, 2010). Stofferne må forventes primært at forekomme i industrielt spildevand og i mindre grad i husspildevand og overfladeafstrømning.

Benzothiazoler og benzotriazoler

Flere benzothiazoler og benzotriazoler er identificeret i fælleskloakerede overløb og separate regnvandsudledninger i europæiske undersøgelser, jf. Bilag 7. Der er ikke noget registreret forbrug af benzothiazolerne i Danmark. Til gengæld er der et registreret forbrug af 1H-benzotriazol på 8,5 tons i Danmark i 2019 (SPIN, 2021). 1H-benzotriazol har en bred anvendelse til bl.a. frostmidler, rengøringsmidler, korrosionsinhibitorer, smøremidler, skæremidler, malinger o.l. 1H-benzotriazol er desuden identificeret i tilløb til danske renseanlæg (DHI, 2021). De højeste koncentrationer må forventes at findes i fælleskloakerede spildevandsoverløb.

Phosphortriestere

En række phosphortriestere er identificeret i fælleskloakerede spildevandsoverløb i en tysk undersgelse fra 2016 (Launay et al., 2016). Tris(2-butoxyethyl)-phosphat er identificeret i både fælleskloakerede spildevandsoverløb og separate regnvandsudledninger i tyske undersøgelser (Launay et al., 2016), (Wicke et al., 2021). Stoffet anvendes industrielt og i forbrugerprodukter (fx gulvpolering, malinger) og har et registreret forbrug på 4 tons i Danmark i 2019.

Brommerede flammehæmmere

HBCDD er identificeret i både en tysk og en dansk undersøgelse af fælleskloakerede spildevandsoverløb (Nickel et al., 2021), (COHIBA, 2010). HBCDD har generelt været anvendt som flammehæmmer siden 1960'erne i bl.a. elektrisk og elektronisk udstyr, møbler og interiørtekstiler (også i biler) og isoleringsmateriale.

Dioxiner

Dioxiner dannes i adskillige industrielle processer og fra de fleste forbrændingsprocesser, såsom forbrænding af kommunalt affald og afbrænding i mindre skala under dårligt kontrollerede forhold. Atmosfærisk deposition er den vigtigste kilde til dioxiner til vandmiljøet i dag (COHIBA, 2010). Dioxiner er således identificeret i både fælleskloakerede spildevandsoverløb (0,48-0,65 pg/l WHO(2005)-PCDD/F TEQ) og i separate regnvandsudledninger (0,41-1,4 pg/l WHO(2005)-PCDD/F TEQ) i Danmark (COHIBA, 2010).

PCB

PCB er ikke længere i anvendelse i Danmark, men findes stadig i byggematerialer i ældre bygninger og forekommer derfor i regnbetingede udløb via atmosfærisk deposition og udvaskning fra ældre bygningsflader. PCB indgår i NOVANA delprogrammet for fælleskloakerede spildevandsoverløb, men er også identificeret i separate regnvandsudledninger i franske og danske undersøgelser, jf. Bilag 7.

Organotin

TBT er et biocid, der traditionelt har været anvendt i antifoulingmiddel på skibsskrog, som træbeskyttelsesmiddel samt som pesticid. Brug og salg af TBT som antifoulingmiddel har været forbudt i Danmark siden 2003. TBT og nedbrydningsprodukterne DBT og MBT er er en del af NOVANA delprogrammet for fælleskloakerede spildevandsoverløb. Der er dog også identificeret TBT, DBT og MBT i separate regnvandsudledninger i europæiske undersøgelser, mens DBT og MBT er fundet i en dansk undersøgelse (COHIBA, 2010), jf. Bilag 7.

Chlorerede forbindelser

En række chlorerede opløsningsmidler og nedbrydningsprodukter fra chlor er identificeret i separate regnvandsudledninger i danske og franske undersøgelser. Der er en vis risiko for, at chlorerede nedbrydningsprodukter kan ende i separate regnvandsudledninger ved private husholdningers fejlagtige tømning af svømmebade til regnvandssystemet.

PFAS

Perflourerede forbindelser (PFAS) er en del af NOVANA delprogrammet for fælleskloakerede spildevandsoverløb. Der er dog også identificeret PFAS-forbindelser (bl.a. PFOS og PFOA) i separate regnvandsudledninger i europæiske og danske undersøgelser, jf. Bilag 7. PFAS-forbindelserne kan bl.a. stamme fra overfladeafstrømning fra brandøvelsespladser.

Spildevandssporstoffer (levnedsmidler, sødemidler, parfumestoffer)

Sødemidler (acesulfam, sucralose), levnedsmidler (koffein, nikotin) og parfumestoffer (galaxolide, tonalide) er typiske sporstoffer, der påviser menneskelig spildevandspåvirkning på vandmiljøet. De vil derfor typisk optræde i fælleskloakerede spildevandsoverløb, men bør ikke være til stede i separate regnvandsudledninger. Det afspejles også i de noget lavere koncentrationer, der er målt i separate regnvandsudledninger i forhold til fælleskloakerede spildevandsoverløb, jf. Bilag 7.

Konklusion på anvendelse af typetal

Der er i nærværende rapport beregnet robuste og indikative typetal ved Maximum Likelihood metoden (ML-metoden) for henholdsvis fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Typetallene er angivet i Kapitel 4.

For de fælleskloakerede spildevandsoverløb har det været muligt at fastsætte robuste typetal for i alt 28 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 70 stoffer.

For de separate regnvandsudledninger har det været muligt at fastsætte robuste typetal for i alt 24 stoffer, mens det har været muligt at fastsætte indikative typetal for i alt 30 stoffer.

Typetallene beskriver den bedst beregnede nationale middelværdi for et stof og benyttes til at vurdere påvirkningen fra landets øvrige punktkilder af samme type. De robuste typetal angiver de typetal, hvor der er tilstrækkeligt solide data til, at det beregnede konfidensinterval dækker den sande værdi af typetallet. De indikative typetal er ligesom det robuste typetal også et bud på en national, gennemsnitlig koncentration, men det indikative typetal har ikke samme sikkerhed som selve det robuste typetal og skal dermed tages med forbehold.

Typetallene for MFS i de regnbetingede udledninger repræsenterer en gennemsnitskoncentration af de enkelte MFS i udledninger uden rensning – både for fælleskloakerede spildevandsoverløb og separate regnvandsudledninger. Rensning i form af fx tørre eller våde regnvandsbassiner vil således have en effekt på udledningen af især de partikelbundne MFS.

Samtidig repræsenterer typetallene en typisk udledning af MFS fra regnbetingede udledninger fra almindeligt belastede boligområder – og dermed ikke regnbetingede udledninger fra andre typer oplande som fx industriområder eller meget trafikerede veje, som typisk vil have et højere indhold af MFS end fra almindelige boligområder. Forekommer der regnvandsbetingede udledninger fra industriområder eller meget trafikerede veje til et vandområde, kan typetallene derfor underestimere den faktiske udledning.

Typetallene angiver en gennemsnitlig koncentration. Ønskes en mere konservativ vurdering af udledningen af MFS fra regnbetingede udledninger, kan det i stedet overvejes at benytte 77-percentilen, som er angivet i hhv. Bilag 3 og Bilag 4 for fælleskloakerede spildevandsoverløb og separate regnvandsudledninger.

Hvis typetallene skal gøres mere robuste – især for de organiske MFS - er det nødvendigt med generelt flere målinger samt for en lang række af stofferne at reducere detektionsgrænserne, så flere værdier bliver over detektionsgrænserne.

Det vil desuden være relevant med flere målinger på indløb og udløb af regnvandsbassiner (evt. både tørre og våde) således, at der kan opstilles særskilte typetal for regnbetingede udledninger med rensning.

7. Referencer

Becouze-Lareure et al. (2019). Assessment of 34 dissolved and particulate organic and metallic micropollutants discharged at the outlet of two contrasted urban catchments. Becouze-Lareure, C. Dembélé A., Coquery M., Cren-Olivé C., Bertrand-Krajewski J.-L., Science of the Total Environment 651 (2019) 1810–1818

COHIBA (2010). WP3 innovative approaches to chemical controls of hazardous substances – Results from chemical analysis, acute and chronic toxicity tests in Case Studies, Danish National Report. Report published by COHIBA (Control of Hazardous Substances in the Baltic Sea Region), 2010

DHI (2021). Analysedata for lægemiddelstoffer i tilløb og udløb fra danske renseanlæg. Data ikke publiceret.

DMU (2005). NOVANA - Det nationale program for overvågning af vandmiljøet og naturen, Programbeskrivelse – del 2. Faglig rapport fra DMU, nr. 508

DMU (2007). NOVANA - Det nationale program for overvågning af vandmiljøet og naturen, Programbeskrivelse 2007-2009 – del 2. Faglig rapport fra DMU nr. 615, 2007

Eriksson et al. (2007). Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark. Eriksson, E., Baun, A., Mikkelsen, P.S., Ledin, A. Desalination 2007: 215: 187-197

Gasperi et al. (2008). Priority pollutants in wastewater and combined sewer overflow. Gasperi, J. Garnaud, S. Rocher, V. Moilleron, R. Science of the total Environment, 407: 263-272

Gasperi et al. (2012). Priority pollutants in urban stormwater: Part 2 - Case of combined sewers. J. Gasperi, S. Zgheib, M. Cladière, V. Rocher, R. Moilleron, G. Chebbo. Water Research 46 (2012) 6693-6703

Gladsaxe Kommune (2008). Overfladeafstrømning i Gladsaxe Kommune – Høje Gladsaxe, TV-byen, Skovbrynet Station samt tre udløb til Smørmosen. Rapport udarbejdet af DHI, juni 2008

Helsel, D.R. (2012). Statistics for censored environmental data using Minitab and R. Second Edition. Wiley, Hoboken. ISBN 978-0-470-47988.

Hvidovre Kommune (2008). Undersøgelse af regnvandsudløb i Hvidovre Kommune. Rapport udarbejdet af DHI, oktober 2008

Ingvertsen (2011). Sustainable urban stormwater management – The challenges of controlling water quality. Ingvertsen, Simon T. Faculty of LIFE Sciences, University of Copenhagen. Ph.D. thesis, 2011

Launay et al. (2016). Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes. Marie A. Launay, Ulrich Dittmer, Heidrun Steinmetz. Water Research 104 (2016) 82-92

Miljøstyrelsen (a). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2012-2013 - Gug Skole oplandet. Rapport ikke udgivet

Miljøstyrelsen (b). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2014-2016 - Grønlandstorv Aalborg. Rapport ikke udgivet

Miliøstyrelsen (c). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2012-2016 - Brabrand sø Aarhus. Rapport ikke udgivet

Miljøstyrelsen (2000). NOVA-2003 - Programbeskrivelse for det nationale program for overvågning af vandmiljøet i Danmark, 1998-2003. Redegørelse Nr. 1 2000

Miljøstyrelsen (2006a). Målinger af forureningsindhold i regnbetingede udledninger. Arbejdsrapport fra Miljøstyrelsen Nr. 10

Miljøstyrelsen (2017). NOVANA - Det nationale overvågningsprogram for vandmiljø og natur 2017-21 - Programbeskrivelse. Oktober 2017

Miljøstyrelsen (2021a). Nøgletal for miljøfarlige forurenende stoffer i spildevand fra renseanlæg -Opdatering på baggrund af data fra det nationale overvågningsprogram for punktkilder 1998-2019. NOVANA, marts 2021

Miljøstyrelsen (2021b). Data modtaget af Bo Skovmark, Miljøstyrelsen, Nordjylland overvågning d. 15. november 2021

Miljøstyrelsen Østjylland (2017). Overflade- og kloakbeskrivelser – ved Himmelbovej (Randers) og i Vejgaard (Aalborg). Rapport udarbejdet af Rambøll, november 2017

Naturstyrelsen Aalborg (2011). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2007-2010 - Gistrup oplandet, april 2011

Naturstyrelsen (2011). Nøgletal for miljøfarlige stoffer i spildevand fra renseanlæg – på baggrund af data fra det nationale overvågningsprogram for punktkilder 1998-2009. Naturstyrelsen, 2011

Naturstyrelsen (2011a). NOVANA - Det nationale program for overvågning af vandmiljøet og naturen, Programbeskrivelse 1. del, 2011

Naturstyrelsen (2011b). NOVANA - Det nationale program for overvågning af vandmiljøet og naturen 2011-2015, Programbeskrivelse 2. del i samarbejde med DMU og GEUS, 2011

Naturstyrelsen (2014). Opdatering af nøgletal for miljøfarlige forurenende stoffer i spildevand fra renseanlæg. Naturstyrelsen, 2014

Nickel et al (2019). Micropollutant emissions from combined sewer overflows. J.P. Nickel and S. Fuchs. IWA Publishing 2019 Water Science & Technology, 80.11, 2019

Nickel et al. (2021). Up-to-date monitoring data of wastewater and stormwater quality in Germany. J.P. Nickel, F. Sacher, S. Fuchs. Water Research 202 (2021) 117452

Nordjyllands Amt (2001). Afrapportering af Det intensive måleprogram for de regnvands-betingede udløb 2001 - Frejlev oplandet. April 2001

Nordjyllands Amt (2004). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2001-2003 - Sulsted oplandet. April 2004

Nordjyllands Amt (2006b). Afrapportering af Det intensive måleprogram for de regnbetingede udløb 2004-2006 – Sulsted oplandet. December 2006

Olsson, U. (2005). Confidence Intervals for the Mean of a Log-Normal Distribution, Journal of Statistics Education, 13:1, DOI: 10.1080/10691898.2005.11910638

Regnvandsforum (2015). Regnvandskvalitet og klimatilpasning - Screeningsværktøjet "RegnKvalitet" Dokumentation. Rapport udarbejdet af DHI, Januar 2015

SPIN (2021). SPIN database - Substances in Preparations in Nordic Countries. http://spin2000.net/

Wicke et al. (2021). Micropollutants in Urban Stromwater Runoff of Different Land Uses. D. Wicke, A. Matzinger, H. Sonnenberg, N. Caradot, R-L. Schubert, R. Dick, B. Heinzmann, U. Dünnbier, D. von Seggern and P. Rouault. Water 2021, 13(9), 1312

Zgheib et al. (2011). Partition of pollution between dissolved and particulate phases: What about emerging substances in urban stormwater catchments. Zgheib, S., R. Moilleron, M. Saad, and G. Chebbo. Water Research. 45:913-925, 2011

Zgheib et al (2012). Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Sally Zgheib, R. Moilleron, G. Chebbo. Water Research 46 (2012) 6683-6692

Bilag 1. Typetal for fælleskloakerede spildevandsoverløb beregnet ved MLmetoden

For typetallene i dette bilag ("Gnst.") er egentlige typetal markeret med fed kursiv skrift, mens indikative typetal blot står skrevet med normal skrift. Denne sondring er ikke foretaget for 5%- og 95%-percentilerne.

Metaller og andre uorganiske sporstoffer

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
Aluminium	60	60	190	600	1.900	[500-800]
Antimon	69	17	0,80	0,90	1,1	[0,90-1,00]
Arsen	80	46	0,30	0,80	1,9	[0,60-0,90]
Barium	64	63	5,0	15	50	[12-18]
Bly	80	80	1,0	5,0	24	[4,0-7,0]
Bor	69	53	2,2	22	220	[13-40]
Cadmium	80	65	0,030	0,10	0,31	[0,080-0,13]
Chrom	80	74	0,70	2,4	8,0	[1,8-3,1]
Kobber	80	80	5,0	16	50	[12-20]
Kobolt	9	3				
Kviksølv	80	52	0,008	0,050	0,30	[0,030-0,070]
Molybdæn	64	7	0,50	0,80	1,2	[0,60-0,90]
Nikkel	80	75	0,80	2,7	9,0	[2,1-3,0]
Selen	69	10	0,40	0,60	0,90	[0,50-0,70]
Sølv	19	2				
Tellur	4	0	_			
Thalium	9	1				
Tin	69	46	0,40	1,4	6,0	[1,00-1,9]
Uran	9	9	0,026	0,11	0,50	[0,050-0,22]
Vanadium	64	59	1,0	2,8	8,0	[2,3-3,0]
Zink	78	78	80	170	400	[140-190]

Aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1-Methyl-napthalen	34	1				
2-Methylnaphtalen	71	6	0,0090	0,022	0,050	[0,015-0,030]
5-tert-butyl-2,4,6-tri- nitro-m-xylen	8	0				
Benzen	59	14	0,00031	0,0060	0,11	[0,0011-0,027]
Biphenyl	78	18	0,0008	0,0050	0,030	[0,0027-0,0100]
Dimethylnaphthale- ner	66	52	0,011	0,040	0,15	[0,031-0,050]
Ethylbenzen	59	16	0,0016	0,010	0,060	[0,0050-0,022]
Isopropylbenzen	24	1				
m+p-Xylen	59	42	0,0050	0,050	0,50	[0,026-0,11]
Methylnaphthalen	11	1				
Moskusxylener	31	1				
Naphtalen	80	52	0,0040	0,019	0,10	[0,013-0,029]
o-Xylen	59	33	0,0040	0,023	0,13	[0,014-0,040]
p-Tert-butyl-toluen	33	1				
Toluen	59	52	0,018	0,11	0,70	[0,060-0,18]
Trimethylnaphthale- ner	66	19	0,0026	0,014	0,080	[0,0080-0,024]
Xylen	24	7	0,00023	0,0070	0,21	[0,00050-0,090]

Phenoler

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
4-n-octylphenol	11	0				
4-Nonylphenol	36	3				
Bisphenol A	79	76	0,070	0,24	0,80	[0,19-0,30]
Nonylphenol-dietho- xylater (NP2EO)	75	28	0,018	0,11	0,70	[0,060-0,19]
Nonylphenoler	78	72	0,030	0,20	1,2	[0,14-0,29]
Nonylphenol-mono- ethoxylater (NP1EO)	75	64	0,030	0,18	1,1	[0,11-0,28]
Phenol	78	73	0.10	0.60	4.0	[0.40-0.90]

Halogenerede alifatiske kulbrinter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1,1,1-trichlorethan	34	0				
1,1,1-trichlorethan	34	0				
1,1,2,2-Tetrachlo- rethan	9	0				
1,1,2-Trichlorethan	9	0				
1,2-Dibromethane	25	1				
1,2-Dichlorethan	34	0				
1,2-Dichlorethylen	4	1				
1-2-Dichlorpropan	9	0				
3-Chlorpropen	32	1				
Chloroform	69	23	0,0040	0,022	0,13	[0,012-0,040]
Cis-1,2-dichlorethy- len	21	0				
Dichlormethan	32	5	0,0022	0,022	0,22	[0,0050-0,11]
Hexachlorbutadien	9	0				
Hexachlorethan	9	0				
Pentachlorethan	9	0				
Tetrachlorethylen	69	3				
Tetrachlormethan	34	0				
Trans-1,2-dichlo- rethen	21	0				
Trichlorethylen	69	1				
Vinylchlorid	25	0				

Halogenerede aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
1,2,4-Trichlorben- zen	9	0				
1,2-dichlor-4-nitro- benzen	9	0				
1,2-Dichlorbenzen	9	0				
1,3-Dichlorbenzen	9	0				
1,4-dichlor-2-nitro- benzen	9	0				
1,4-Dichlorbenzen	18	0				
1-Chlor-2-nitroben- zen	9	0				
1-Chlor-3-nitroben- zen	9	0				
1-Chlornaphthalen	9	0				

2,5-Dichloranilin	18	1	
2-Chlornaphthalen	9	0	
2-Chlortoluen	9	0	
3,4-Dichloranilin	9	0	
3-Chlortoluen	9	0	
4-Chlor-2-nitroto- luen	9	1	
4-Chlornitrobenzen	9	0	
4-Chlortoluen	9	0	
Benzylchlorid	9	0	
Chlorbenzen	9	0	
Hexachlorbenzen	9	0	
Pentachlorbenzen	9	0	

Klorfenol

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
2,4,6-Trichlorphenol	18	5	0,0080	0,031	0,11	[0,016-0,060]
2,4+2,5-Dichlorp- henol	13	9	0,0050	0,16	5,0	[0,018-1,5]
2,4-Dichlorphenol	6	1				
4-Chlor-3- methylphenol	18	2				
Pentachlorphenol	18	0				

Polyaromatiske kulbrinter (PAH)

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1-Methylpyren	44	5	0,00026	0,0025	0,024	[0,00060-0,0100]
2-Methylphenanth- ren	44	15	0,0013	0,0080	0,050	[0,0040-0,017]
2-Methylpyren	42	10	0,0024	0,0070	0,020	[0,0040-0,0100]
Acenaphthen	43	1				
Acenaphthylen	33	4				
Antracen	44	15	0,0060	0,014	0,030	[0,0100-0,018]
Benz(a)anthracen	44	22	0,0012	0,012	0,12	[0,0050-0,031]
Benz(a)fluoren	44	11	0,0008	0,0050	0,030	[0,0022-0,013]
Benz(ghi)perylen	44	27	0,0020	0,020	0,20	[0,0100-0,040]
Benz[a]pyren	44	21	0,0006	0,012	0,23	[0,0040-0,040]
Benzfluranthen b+j+k	44	34	0,0031	0,030	0,29	[0,017-0,070]
Benzo(e)pyren	44	26	0,0011	0,016	0,23	[0,0060-0,040]

Crysen/triphenylen	44	30	0,003	0,029	0,28	[0,016-0,060]
Dibenz(ah)anthra-						
cen	44	9	0,0005	0,0050	0,050	[0,0018-0,014]
Dibenzothiophen	35	1				
Dimethylphenanth-						
ren	44	5	0,0008	0,0040	0,019	[0,0018-0,0100]
Fluoranthen	44	36	0,0050	0,030	0,18	[0,019-0,060]
Fluoren	44	8	0,0060	0,012	0,023	[0,0090-0,015]
Indeno(1,2,3-cd)py-						
ren	44	21	0,0008	0,016	0,30	[0,0050-0,050]
Perylen	35	5	0,00028	0,0027	0,026	[0,00060-0,012]
Phenanthren	44	37	0,0050	0,025	0,14	[0,016-0,040]
Pyren	44	32	0,0050	0,030	0,18	[0,018-0,060]

P-triestere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
TCPP	68	67	0,10	0,40	1,6	[0,28-0,50]
Tributylphosphat	68	17	0,0004	0,0070	0,13	[0,0017-0,027]
Tricresylphosphat	68	10	0,0008	0,0080	0,080	[0,0030-0,020]
Triphenylphosphat	68	60	0,016	0,050	0,16	[0,040-0,060]

Blødgørere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
Benzylbuthylphtha-						
lat	80	22	0,012	0,060	0,29	[0,040-0,11]
DEHP	78	77	0,60	2,8	13	[2,1-4,0]
Di(2-ethylhexyl)adipat	80	22	0,0060	0,06	0,60	[0,026-0,12]
Di-2-ethoxyethyl phthalat	2	2				
Dibuthylphthalat	80	42	0,080	0,27	0,90	[0,20-0,40]
Diethylphthalat	80	65	0,060	0,30	1,5	[0,23-0,50]
Diisononylphthalat	80	75	1,3	5,0	20	[4,0-7,0]
Di-n-octylphthalat	80	5	0,0090	0,040	0,17	[0,019-0,080]

Detergenter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
Alkylbenzensulfonat	80	76	40	260	1.600	[180-400]
Detergenter kationi-						
ske	3	3				

Ethere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
MTBE	73	1				
Triclosan	55	2				

Organotin

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
Dibutyltin	55	23	0,0014	0,0031	0,007	[0,0024-0,0040]
Monobutyltin	55	48	0,0060	0,014	0,030	[0,012-0,018]
Tributyltin (TBT)	55	1				
Triphenyltin(TPhT)	9	0				

Østrogener

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
17Beta-østradiol	55	29	0,00023	0,0014	0,0090	[0,00070-0,0027]
Ethinyløstradiol	55	3				
Østron	55	53	0,0050	0,017	0,060	[0,013-0,022]

Farmaceutiske stoffer

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
2-hydroxyibuprofen	55	53	0,60	3,0	15	[2,2-5,0]
Azithromycin	26	3				
Carbamazepin	26	23	0,0070	0,030	0,13	[0,022-0,050]
Cimetidin	47	1				
Citalopram	26	22	0,015	0,050	0,17	[0,030-0,070]
Clarithromycin	31	3				
Diclofenac	31	23	0,0040	0,024	0,16	[0,013-0,040]
Erythromycin	22	1				
Erythrosin	11	0				

Furosemid	55	55	0,040	1,1	27	[0,40-2,7]
Ibuprofen	55	55	0,50	1,7	6,0	[1,3-2,2]
Naproxen	26	25	0,030	0,17	1,0	[0,100-0,29]
Paracetamol	54	49	2,1	13	80	[8,0-21]
Propofol	8	0				
Propranolol	26	7	0,0017	0,0070	0,030	[0,0040-0,014]
Salicylsyre	55	38	0,15	0,80	4,0	[0,60-1,3]
Sulfamethiazol	55	30	0,00003	0,0080	2,2	[0,00026-0,23]
Sulfamethoxazol	55	6	0,019	0,030	0,050	[0,028-0,040]
Tramadol	26	25	0,050	0,21	0,80	[0,14-0,32]
Trimethoprim	55	18	0,023	0,040	0,070	[0,030-0,050]

Perfluorerede forbindelser

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1H, 1H,2H,2H- Per- fluoroctansulfonsyre	26	0				
Perfluorbutansulfon- syre (PFBS)	26	1				
Perfluorbutansyre (PFBA)	26	16	0,0007	0,0022	0,0070	[0,0015-0,0031]
Perfluordecansyre (PFDA)	94	10	0,0006	0,0014	0,0030	[0,00100-0,0018]
Perfluorheptansyre (PFHpA)	26	3				
Perfluorhexansul- fonsyre (PFHxS)	94	2				
Perfluorhexansyre (PFHxA)	26	9	0,0006	0,0023	0,0080	[0,0014-0,0040]
Perfluornonansyre (PFNA)	94	16	0,0005	0,0008	0,0014	[0,00070-0,00100]
Perfluoroctansulfon- amid (PFOSA)	94	2				
Perfluoroctansulfon- syre (PFOS)	94	42	0,00028	0,0011	0,0040	[0,00070-0,0017]
Perfluoroctansyre (PFOA)	92	32	0,0008	0,0017	0,0040	[0,0014-0,0021]
Perfluorpentansyre (PFPA)	26	1				
Perfluorundecan- syre (PFUnA)	42	0				

Pesticider

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
2,4,5-Trichlorphenol	9	0				
2,6-Dichlorben- zamid	6	0				
Aldrin	9	0				
AMPA	6	5	0,10	0,12	0,14	[0,11-0,14]
Deisopropyl-hydro- xyatrazin	6	0				
Dicamba	6	0				
Dichlobenil	6	0				
Dieldrin	9	0				
Diflufenican	6	4				
Diuron	6	0				
Endrin	9	0				
Gamma Lindan (HCH)	9	0				
Glyphosat	6	5	0,21	0,40	0,80	[0,28-0,60]
Isodrin	9	0				
MCPA	6	2				
Mechlorprop	6	6	0,013	0,030	0,070	[0,019-0,050]
Prosulfocarb	6	0				
Tebuconazol	6	0				

Bromerede flammehæmmere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
BDE #28	9	0				
BDE #85	9	0				
BDE#100	9	0				
BDE#153	9	0				
BDE#154	9	0				
BDE#183	9	0	·		·	
BDE#209	38	8	0,0005	0,0090	0,17	[0,0018-0,050]
BDE#47	38	2				
BDE#99	38	2				

Polychlorerede biphenyler (PCB)

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
PCB #101	11	0				
PCB #105	11	0				
PCB #118	11	0				
PCB #138	11	0				
PCB #153	11	0				
PCB #156	11	0				
PCB #170	1	0				
PCB #180	11	0				
PCB #28	11	0				
PCB #31	11	0				
PCB #52	11	0				

Aminer

Ailillei							
Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval	
Diethylamin	9	8	0,26	0,50	1,0	[0,30-0,60]	
Dimethylamin	9	9	8,0	17	40	[12-24]	

Bilag 2. Typetal for separate regnvandsudledninger beregnet ved ML-metoden

For typetallene i dette bilag ("Gnst.") er egentlige typeetal markeret med *fed kursiv* skrift, mens indikative typetal blot står skrevet med normal skrift. Denne sondring er ikke foretaget for 5%- og 95%-percentilerne.

Metaller on	andre	uorganiske s	norstoffer
wictanci og	undic	adigamone 3	porstorici

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
Aluminium	89	89	220	1.500	10.000	[1000-2100]
Antimon	103	40	0,30	0,80	2,1	[0,60-1,1]
Arsen	112	87	0,40	1,3	4,0	[1,1-1,7]
Barium	14	14	3,0	12	40	[7,0-21]
Bly	115	109	1,0	4,0	16	[3,0-5,0]
Bor	103	72	2,1	21	210	[11-40]
Cadmium	112	66	0,019	0,070	0,26	[0,050-0,090]
Chrom	112	101	0,70	4,0	22	[2,9-5,0]
Kobber	115	110	2,1	9,0	40	[7,0-12]
Kobolt	14	5	0,11	0,40	1,5	[0,18-0,80]
Kviksølv	112	47	0,0050	0,030	0,17	[0,021-0,050]
Molybdæn	14	2				
Nikkel	112	98	0,70	4,0	23	[3,1-6,0]
Selen	103	13	0,80	0,90	1,1	[0,80-0,90]
Sølv	24	3				
Thalium	14	0				
Tin	103	56	0,21	1,1	6,0	[0,80-1,7]
Uran	14	6	0,0023	0,070	2,1	[0,0040-1,1]
Vanadium	14	12	0,80	2,6	9,0	[1,6-4,0]
Zink	115	114	40	130	500	[100-160]

Aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1-Methyl-napthalen	56	2				
2-Methylnaphtalen	56	3				
Benzen	12	0				
Biphenyl	65	5	0,00009	0,0012	0,017	[0,00019-0,0070]
Ethylbenzen	12	1				
Methylnaphthalen	13	1				
Moskusxylener	14	0				
Naphtalen	102	35	0,0007	0,0070	0,070	[0,0030-0,014]
p-Tert-butyl-toluen	13	0				
Toluen	12	8	0,060	0,11	0,19	[0,090-0,14]
Xylen	12	2				

Phenoler

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterva
4-n-octylphenol	9	0				
4-Nonylphenol	43	0				
Bisphenol A	111	98	0,017	0,080	0,40	[0,060-0,12]
Nonylphenol-dietho- xylater (NP2EO)	22	0				
Nonylphenoler	111	38	0,0040	0,040	0,40	[0,020-0,080]
Nonylphenol-mono- ethoxylater						
(NP1EO)	22	0				
Phenol	111	87	0,050	0,20	0,80	[0,16-0,27]

Halogenerede aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
1,4-Dichlorbenzen	13	0				
2,5-Dichloranilin	13	0				
Hexachlorbenzen	13	0				
Pentachlorbenzen	13	0				

Klorfenol

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
2,4,6-Trichlorphenol	22	0				
2,4+2,5-Dichlorp- henol	13	0				
2,4-Dichlorphenol	9	0				
4-Chlor-3- methylphenol	22	0				
Pentachlorphenol	22	0				

Polyaromatiske kulbrinter (PAH)

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
1-Methylpyren	55	3				
2-Methylphenanth- ren	55	6	0,0005	0,0030	0,019	[0,0012-0,0090]
2-Methylpyren	55	3				
Acenaphthen	55	2				
Acenaphthylen	46	4				
Antracen	55	7	0,0017	0,0050	0,014	[0,0029-0,0080]
Benz(a)anthracen	101	20	0,0007	0,0040	0,024	[0,0019-0,0080]
Benz(a)fluoren	55	5	0,00016	0,0016	0,016	[0,00027-0,0090]
Benz(ghi)perylen	101	38	0,0007	0,0070	0,070	[0,0040-0,014]
Benz[a]pyren	101	22	0,0006	0,0040	0,027	[0,0021-0,0080]
Benzfluranthen b+j+k	101	57	0,0012	0,012	0,12	[0,0070-0,022]
Benzo(e)pyren	101	34	0,0006	0,0060	0,060	[0,0028-0,012]
Crysen/triphenylen	101	49	0,0011	0,011	0,11	[0,0060-0,020]
Dibenz(ah)anthra- cen	55	6	0,00005	0,0010	0,019	[0,00011-0,0100]
Dibenzothiophen	46	3				
Dimethylphenanth- ren	55	1				
Fluoranthen	101	56	0,0021	0,013	0,080	[0,0080-0,021]
Fluoren	55	3				
Indeno(1,2,3-cd)py- ren	101	28	0,0011	0,0060	0,030	[0,0030-0,0100]
Perylen	46	1				
Phenanthren	101	51	0,0021	0,010	0,050	[0,0070-0,016]
Pyren	101	62	0,0023	0,015	0,10	[0,0090-0,023]

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
TCPP	100	83	0,025	0,10	0,40	[0,080-0,13]
Tributylphosphat	100	21	0,0090	0,015	0,026	[0,013-0,018]
Tricresylphosphat	100	15	0,0004	0,0050	0,070	[0,0016-0,014]
Triphenylphosphat	100	36	0,0024	0,014	0,080	[0,0090-0,023]

Blødgørere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
Benzylbuthylphtha-						
lat	65	1				
DEHP	111	99	0,13	0,70	4,0	[0,50-1,00]
Di(2-ethylhexyl)adi-						
pat	56	15	0,0070	0,040	0,24	[0,017-0,11]
Dibuthylphthalat	65	1				
Diethylphthalat	111	10	0,050	0,10	0,22	[0,070-0,13]
Diisononylphthalat	111	96	0,28	1,7	10	[1,1-2,6]
Di-n-octylphthalat	65	1				

Detergenter

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
Alkylbenzensulfo-						
nat	89	24	0,023	1,2	60	[0,17-8,0]

Ethere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
MTBE	22	1				

Pesticider

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (µg/l)	95%	Konfidensinterval
2,4,5-Trichlorphenol	9	0				
2,6-Dichlorben- zamid	102	19	0,00004	0,0027	0,18	[0,00029-0,026]
Aldrin	22	0				
AMPA	108	106	0,040	0,17	0,80	[0,13-0,23]
Deisopropyl-hydro- xyatrazin	42	1				

Dicamba	89	4				
Dichlobenil	43	0				
Dieldrin	22	0				
Diflufenican	89	72	0,0040	0,023	0,12	[0,016-0,030]
Diuron	89	8	0,0019	0,011	0,060	[0,0060-0,023]
Endrin	22	0				
Gamma Lindan (HCH)	22	0				
Glyphosat	108	103	0,028	0,40	6,0	[0,24-0,70]
Isodrin	22	0				
MCPA	102	51	0,0004	0,013	0,50	[0,0040-0,050]
Mechlorprop	89	50	0,0014	0,014	0,14	[0,0080-0,025]
Prosulfocarb	89	32	0,00005	0,0070	1,0	[0,00060-0,090]
Simazin	13	1				
Tebuconazol	43	0				

Bromerede flammehæmmere

Stofnavn	Antal data	Andel > DG	5%	Typetal Gnst. (μg/l)	95%	Konfidensinterval
BDE #28	13	0				
BDE #85	13	0				
BDE#100	13	0				
BDE#153	13	0				
BDE#154	13	0				
BDE#183	13	0				
BDE#209	13	1				
BDE#47	13	0				
BDE#99	13	0				

Bilag 3. Percentiler for fælleskloakerede spildevandsoverløb

Stofnavn	An- tal data	An- del >	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
A I !		DG	400	000	000	400	000	000	4.400	4.000	4.000	0.400	4.000
Aluminium	60	60	100	300	300	400	600	900	1.100	1.600	1.600	2.400	4.000
Antimon	69	17	0,29	0,50	0,50	0,50	0,50	0,50	0,50	1,2	1,2	1,6	220
Arsen	80	46	0,15	0,15	0,30	0,40	0,60	0,90	1,2	1,7	1,8	2,3	2,8
Barium	64	63	0,50	7,0	8,0	10	14	18	26	50	50	50	100
Bly	80	80	1,1	1,7	2,1	2,8	5,0	7,0	12	22	23	30	700
Bor	69	53	5,0	5,0	5,0	10	18	50	60	100	100	260	700
Cadmium	80	65	0,025	0,025	0,025	0,070	0,11	0,13	0,19	0,23	0,23	0,30	0,60
Chrom	80	74	0,25	0,25	0,80	1,6	2,4	3,0	4,0	6,0	6,0	10,0	30
Kobber	80	80	1,8	6,0	7,0	10	16	20	29	40	40	60	290
Kobolt	9	3	0,25	0,25	0,25	0,25	0,25	0,60	1,0	1,1	1,2	1,7	2,2
Kviksølv	80	52	0,0010	0,002 5	0,007 0	0,025	0,026	0,070	0,12	0,22	0,31	1,0	9,0
Molybdæn	64	7	0	0	0	0	0	0	0	0,070	0,70	1,2	2,1
Nikkel	80	75	0,80	0,50	1,1	1,6	2,8	4,0	5,0	9,0	9,0	11	60
Selen	69	10	0,080	0	0	0	0	0	0	0,13	0,17	0,40	2,1
Sølv	19	2	0	0	0	0	0	0	0	0,021	0,21	1,5	5,0
Tellur	4	0	0	0	0	0	0	0	0	0	0	0	0
Thalium	9	1	0	0	0	0	0	0	0	0,015	0,025	0,080	0
Tin	69	46	0,25	0,30	0,50	0,50	1,4	1,8	2,9	6,0	6,0	10,0	23
Uran	9	9	0,022	0,040	0,070	0,090	0,090	0,21	0,22	0,29	0,29	0,32	0,30
Vanadium	64	59	0,50	0,50	1,2	2,0	2,8	4,0	5,0	6,0	7,0	8,0	14
Zink	78	78	70	90	110	140	160	190	250	300	300	400	

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
1-Methyl-napthalen	34	1	0	0	0	0	0	0	0	0	0	0	0
2-Methylnaphtalen	71	6	0	0	0	0	0	0	0	0	0	0,026	0
5-tert-butyl-2,4,6-tri- nitro-m-xylen	8	0	0	0	0	0	0	0	0	0	0	0	0
Benzen	59	14	0,010	0,010	0,010	0,010	0,010	0,010	0,017	0,050	0,060	0,13	0,18
Biphenyl	78	18	0,005	0,005	0,005	0,005	0,005	0,005	0,013	0,019	0,020	0,025	0,025
Dimethylnaphthale- ner	66	52	0,005	0,013	0,014	0,024	0,030	0,050	0,080	0,11	0,12	0,14	0,30
Ethylbenzen	59	16	0,010	0,010	0,010	0,010	0,010	0,010	0,021	0,050	0,050	0,060	0,100
Isopropylbenzen	24	1	0	0	0	0	0	0	0	0	0	0	0,031
m+p-Xylen	59	42	0,010	0,010	0,010	0,010	0,060	0,12	0,16	0,21	0,21	0,25	0,40
Methylnaphthalen	11	1	0	0	0	0	0	0	0	0	0	0,050	0,100
Moskusxylener	31	1	0	0	0	0	0	0	0	0	0	0	1,1
Naphtalen	80	52	0,005	0,005	0,005	0,010	0,020	0,025	0,030	0,070	0,070	0,12	0,70
o-Xylen	59	33	0,010	0,010	0,010	0,010	0,023	0,030	0,050	0,090	0,090	0,11	0,19
p-Tert-butyl-toluen	33	1	0	0	0	0	0	0	0	0	0	0	0
Toluen	59	52	0,010	0,010	0,010	0,050	0,12	0,17	0,24	0,40	0,40	1,00	7,0
Trimethylnaphthale- ner	66	19	0,005	0,005	0,005	0,005	0,010	0,017	0,025	0,025	0,026	0,030	0,050
Xylen	24	7	0,010	0,010	0,010	0,010	0,010	0,010	0,040	0,11	0,12	0,15	0,60
Phenoler													
Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
4-n-octylphenol	11	0	0	0	0	0	0	0	0	0	0	0	0
4-Nonylphenol	36	3	0	0	0	0	0	0	0	0	0	0,090	0,70
Bisphenol A	79	76	0,005	0,080	0,11	0,14	0,25	0,30	0,40	0,60	0,60	0,70	1,00
Nonylphenol-dietho- xylater (NP2EO)	75	28	0,050	0,050	0,050	0,050	0,100	0,14	0,25	0,30	0,40	0,50	2,6
Nonylphenoler	78	72	0,025	0,025	0,060	0,10	0,23	0,30	0,40	0,80	0,90	1,6	16
Nonylphenol-mono- ethoxylater (NP1EO)	75	64	0,025	0,025	0,050	0,090	0,15	0,21	0,50	0,80	1,00	1,7	11
, ,													

Phenol

78

73

0,050 0,12

0,18 0,30

0,60

0,90

1,5

2,4

2,5

3,0

8,0

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
1,1,1-trichlorethan	34	0	0	0	0	0	0	0	0	0	0	0	0
1,1,1-trichlorethan	34	0	0	0	0	0	0	0	0	0	0	0	0
1,1,2,2-Tetrachlo- rethan	9	0	0	0	0	0	0	0	0	0	0	0	0
1,1,2-Trichlorethan	9	0	0	0	0	0	0	0	0	0	0	0	0
1,2-Dibromethane	25	1	0	0	0	0	0	0	0	0	0	0	0
1,2-Dichlorethan	34	0	0	0	0	0	0	0	0	0	0	0	0
1,2-Dichlorethylen	4	1	0,010	0,010	0,010	0,010	0,010	0,010	0,027	0,050	0,050	0,060	0,070
1-2-Dichlorpropan	9	0	0	0	0	0	0	0	0	0	0	0	0
3-Chlorpropen	32	1	0	0	0	0	0	0	0	0	0	0	0
Chloroform	69	23	0,010	0,010	0,010	0,010	0,023	0,040	0,050	0,050	0,050	0,070	0,17
Cis-1,2-dichlorethy- len	21	0	0	0	0	0	0	0	0	0	0	0	0
Dichlormethan	32	5	0	0	0	0	0	0	0	0,15	0,18	1,0	5,0
Hexachlorbutadien	9	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorethan	9	0	0	0	0	0	0	0	0	0	0	0	0
Pentachlorethan	9	0	0	0	0	0	0	0	0	0	0	0	0
Tetrachlorethylen	69	3	0	0	0	0	0	0	0	0	0	0	0,18
Tetrachlormethan	34	0	0	0	0	0	0	0	0	0	0	0	0
Trans-1,2-dichlo- rethen	21	0	0	0	0	0	0	0	0	0	0	0	0
Trichlorethylen	69	1	0	0	0	0	0	0	0	0	0	0	0,11
Vinylchlorid	25	0	0	0	0	0	0	0	0	0	0	0	0

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
1,2,4-Trichlorben- zen	9	0	0	0	0	0	0	0	0	0	0	0	0
1,2-dichlor-4-nitro- benzen	9	0	0	0	0	0	0	0	0	0	0	0	0
1,2-Dichlorbenzen	9	0	0	0	0	0	0	0	0	0	0	0	0
1,3-Dichlorbenzen	9	0	0	0	0	0	0	0	0	0	0	0	0
1,4-dichlor-2-nitro- benzen	9	0	0	0	0	0	0	0	0	0	0	0	0
1,4-Dichlorbenzen	18	0	0	0	0	0	0	0	0	0	0	0	0
1-Chlor-2-nitroben- zen	9	0	0	0	0	0	0	0	0	0	0	0	0
1-Chlor-3-nitroben- zen	9	0	0	0	0	0	0	0	0	0	0	0	0

1-Chlornaphthalen	9	0	0	0	0	0	0	0	0	0	0	0	0
2,5-Dichloranilin	18	1	0	0	0	0	0	0	0	0	0	0,14	0,90
2-Chlornaphthalen	9	0	0	0	0	0	0	0	0	0	0	0	0
2-Chlortoluen	9	0	0	0	0	0	0	0	0	0	0	0	0
3,4-Dichloranilin	9	0	0	0	0	0	0	0	0	0	0	0	0
3-Chlortoluen	9	0	0	0	0	0	0	0	0	0	0	0	0
4-Chlor-2-nitroto- luen	9	1	0	0	0	0	0	0	0	0,017	0,028	0,080	0,14
4-Chlornitrobenzen	9	0	0	0	0	0	0	0	0	0	0	0	0
4-Chlortoluen	9	0	0	0	0	0	0	0	0	0	0	0	0
Benzylchlorid	9	0	0	0	0	0	0	0	0	0	0	0	0
Chlorbenzen	9	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorbenzen	9	0	0	0	0	0	0	0	0	0	0	0	0
Pentachlorbenzen	9	0	0	0	0	0	0	0	0	0	0	0	0

Klorfenol

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
2,4,6-Trichlorphenol	18	5	0,005	0,022	0,025	0,025	0,025	0,025	0,060	0,090	0,100	0,13	0,15
2,4+2,5-Dichlorp- henol	13	9	0,025	0,025	0,025	0,025	0,40	0,50	0,60	0,80	0,80	0,90	1,00
2,4-Dichlorphenol	6	1	0	0	0	0	0	0	0	0,080	0,090	0,13	0,17
4-Chlor-3- methylphenol	18	2	0	0	0	0	0	0	0	0,007	0,017	0,060	0,060
Pentachlorphenol	18	0	0	0	0	0	0	0	0	0	0	0	0

Polyaromatiske kulbrinter (PAH)

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
1-Methylpyren	44	5	0	0	0	0	0	0	0	0,0050	0,013	0,020	0
2-Methylphenanth- ren	44	15	0,005	0,005	0,005	0,005	0,005	0,010	0,017	0,030	0,030	0,040	0,060
2-Methylpyren	42	10	0,005	0,005	0,005	0,005	0,005	0,005	0,010	0,019	0,022	0,027	0,025
Acenaphthen	43	1	0	0	0	0	0	0	0	0	0	0	0
Acenaphthylen	33	4	0	0	0	0	0	0	0	0,014	0,024	0,040	0
Antracen	44	15	0,005	0,005	0,005	0,005	0,005	0,008	0,019	0,024	0,025	0,040	0,060
Benz(a)anthracen	44	22	0,005	0,005	0,005	0,005	0,016	0,025	0,040	0,050	0,050	0,060	0,080
Benz(a)fluoren	44	11	0,005	0,005	0,005	0,005	0,005	0,005	0,013	0,022	0,023	0,025	0,025
Benz(ghi)perylen	44	27	0,005	0,005	0,005	0,005	0,020	0,029	0,060	0,080	0,090	0,100	0,18
Benz[a]pyren	44	21	0,005	0,005	0,005	0,005	0,014	0,024	0,050	0,070	0,070	0,070	0,11

Benzfluranthen													
b+j+k	44	34	0,005	0,005	0,005	0,014	0,031	0,060	0,11	0,17	0,17	0,20	0,29
Benzo(e)pyren	44	26	0,005	0,005	0,005	0,005	0,014	0,030	0,050	0,080	0,080	0,11	0,18
Crysen/triphenylen	44	30	0,005	0,005	0,005	0,010	0,030	0,050	0,080	0,12	0,12	0,19	0,80
Dibenz(ah)anthra-													
cen	44	9	0,005	0,005	0,005	0,005	0,005	0,005	0,012	0,020	0,021	0,025	0,050
Dibenzothiophen	35	1	0	0	0	0	0	0	0	0	0	0	0
Dimethylphenanth-													
ren	44	5	0	0	0	0	0	0	0	0,0027	0,007	0,015	0
Fluoranthen	44	36	0,005	0,005	0,007	0,018	0,025	0,050	0,11	0,17	0,17	0,19	0,23
Fluoren	44	8	0	0	0	0	0	0	0	0,014	0,015	0,020	0,050
Indeno(1,2,3-cd)py-													
ren	44	21	0,005	0,005	0,005	0,005	0,020	0,027	0,060	0,080	0,090	0,100	0,100
Perylen	35	5	0	0	0	0	0	0	0	0,012	0,014	0,021	0
Phenanthren	44	37	0,005	0,005	0,005	0,014	0,025	0,040	0,060	0,100	0,100	0,11	
Pyren	44	32	0,005	0,005	0,005	0,015	0,029	0,050	0,100	0,15	0,15	0,19	

P-t	riest	tere
-----	-------	------

1 -111631616													
Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
TCPP	68	67	0,010	0,12	0,14	0,19	0,40	0,50	0,70	0,90	0,90	1,1	4,0
Tributylphosphat	68	17	0,010	0,010	0,010	0,010	0,010	0,010	0,050	0,080	0,080	0,10	0,16
Tricresylphosphat	68	10	0	0	0	0	0	0	0	0,021	0,022	0,026	0,30
Triphenylphosphat	68	60	0,010	0,010	0,023	0,030	0,050	0,060	0,090	0,11	0,11	0,12	1,1

Blødgørere

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
Benzylbuthylphtha-													
lat	80	22	0,050	0,050	0,050	0,050	0,050	0,050	0,11	0,20	0,23	0,29	0,25
DEHP	78	77	0,050	0,70	1,1	1,6	2,7	4,0	6,0	10	11	21	60
Di(2-ethylhexyl)adi- pat	80	22	0,050	0,050	0,050	0,050	0,050	0,050	0,13	0,25	0,26	0,30	0,70
Di-2-ethoxyethyl phthalat	2	2	5,0	5,0	5,0	6,0	7,0	8,0	9,0	9,0	9,0	10	10
Dibuthylphthalat	80	42	0,050	0,050	0,10	0,15	0,25	0,25	0,26	0,80	0,80	1,3	3,0
Diethylphthalat	80	65	0,050	0,050	0,10	0,16	0,32	0,40	0,80	1,4	1,4	2,0	4,0
Diisononylphthalat	80	75	0,050	0,10	0,40	2,9	6,0	7,0	10	12	13	16	70
Di-n-octylphthalat	80	5	0	0	0	0	0	0	0	0	0	0,10	0

Detergenter													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Alkylbenzensulfonat	80	76	2,5	10	50	150	270	400	600	1.000	1.100	1.100	1.800
Detergenter kationi-													
ske	3	3	12	15	17	25	40	60	80	90	100	100	110
Ethere													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
MTBE	73	1	0	0	0	0	0	0	0	0	0	0	1,2
Triclosan	55	2	0	0	0	0	0	0	0	0	0	0	0,70
Organotin													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Dibutyltin	55	23	0,000 5	0,001	0,001	0,002	0,002 5	0,002 5	0,003	0,005	0,005	0,007	0,008
Monobutyltin	55	48	0,004	0,005	0,005	0,011	0,015	0,018	0,021	0,028	0,029	0,040	0,15
Tributyltin (TBT)	55	1	0	0	0	0	0	0	0	0	0	0	0,005
Triphenyltin(TPhT)	9	0	0	0	0	0	0	0	0	0	0	0	0
Østrogener													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
			0,000	0,000	0,000	0,000	0,001	0,002	0,002	0,007	0,007		
17Beta-østradiol	55	29	5	5	5	5	4	0	5	0	0	0,012	0,017
Ethinyløstradiol	55	3	0	0	0	0	0	0	0	0	0	0,000	0,016
Østron	55	53	0,001	0,005	0,007	0,011	0,018	0,022	0,030	0,050	0,050	0,080	0,090
Farmaceutiske sto	effor.												
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
2-hydroxyibuprofen	55	53	0,025	0,70	0,90	1,7	3,1	5,0	7,0	12	13	13	23
Azithromycin	26	3	0	0	0	0	0	0	0	0,004	0,009	0,040	0
Carbamazepin	26	23	0,005	0,007	0,015	0,020	0,030	0,050	0,060	0,100	0,12	0,17	0,19
Cimetidin	47	1	0	0	0	0	0	0	0	0	0	0	0
Citalopram	26	22	0,005	0,009	0,021	0,030	0,050	0,060	0,080	0,10	0,10	0,11	0,18
Clarithromycin	31	3	0	0	0	0	0	0	0	0	0	0,080	0

Diclofenac	31	23	0,005	0,005	0,005	0,014	0,022	0,040	0,060	0,090	0,100	0,100	0,26
Erythromycin	22	1	0	0	0	0	0	0	0	0	0	0	0,17
Erythrosin	11	0	0	0	0	0	0	0	0	0	0	0	0
Furosemid	55	55	0,050	0,13	0,17	0,30	0,80	1,6	5,0	12	12	15	28
Ibuprofen	55	55	0,26	0,60	0,70	1,1	1,8	2,2	3,1	4,0	4,0	5,0	19
Naproxen	26	25	0,005	0,024	0,050	0,100	0,19	0,31	0,40	0,50	0,50	0,70	3,0
Paracetamol	54	49	0,013	0,013	0,80	7,0	16	21	29	50	50	60	100
Propofol	8	0	0	0	0	0	0	0	0	0	0	0	0
Propranolol	26	7	0,005	0,005	0,005	0,005	0,005	0,005	0,015	0,022	0,022	0,040	0,050
Salicylsyre	55	38	0,050	0,050	0,20	0,50	0,60	1,00	2,1	7,0	8,0	11	15
Sulfamethiazol	55	30	0,002 5	0,002 5	0,002 5	0,002 5	0,008	0,040	0,12	0,25	0,30	1,0	2,7
Sulfamethoxazol	55	6	0	0	0	0	0	0	0	0,0007	0,007	0,026	0
Tramadol	26	25	0,005	0,028	0,080	0,14	0,21	0,30	0,40	0,60	0,60	0,80	1,1
Trimethoprim	55	18	0,002 5	0,002 5	0,015	0,025	0,025	0,025	0,050	0,080	0,080	0,11	0,25

Perfluorerede forbindelser

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
1H, 1H,2H,2H- Per- fluoroctansulfonsyre	26	0	0	0	0	0	0	0	0	0	0	0	0
Perfluorbutansulfon- syre (PFBS)	26	1	0	0	0	0	0	0	0	0	0	0	0
Perfluorbutansyre (PFBA)	26	16	0,000 50	0,000 50	0,000	0,001	0,002	0,002 7	0,004	0,005 0	0,005 0	0,009	0,010
Perfluordecansyre (PFDA)	94	10	0,000 40	0	0	0	0	0	0	0	0,000 28	0,002	0
Perfluorheptansyre (PFHpA)	26	3	0,000 40	0	0	0	0	0	0	0,000 11	0,000 22	0,000 90	0
Perfluorhexansul- fonsyre (PFHxS)	94	2	0	0	0	0	0	0	0	0	0	0	0
Perfluorhexansyre (PFHxA)	26	9	0,000 90	0,000 50	0,000 50	0,001	0,002	0,002	0,002 6	0,004	0,004	0,005 0	0,014
Perfluornonansyre (PFNA)	94	16	0	0	0	0	0	0	0	0,001	0,001	0,001 4	0
Perfluoroctansulfon- amid (PFOSA)	94	2	0	0	0	0	0	0	0	0	0	0	0
Perfluoroctansulfon- syre (PFOS)	94	42	0,000 60	0,000 50	0,000 50	0,000 50	0,001 00	0,001 4	0,002	0,005 0	0,005 0	0,006	0,005
Perfluoroctansyre (PFOA)	92	32	0,000 80	0,000 50	0,000 50	0,001 00	0,001 00	0,001 6	0,002	0,004	0,005 0	0,005 0	0,010
Perfluorpentansyre (PFPA)	26	1	0,000 50	0	0	0	0	0	0	0	0	0	0
Perfluorundecan- syre (PFUnA)	42	0	0	0	0	0	0	0	0	0	0	0	0

Pesticider Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
2,4,5-Trichlorphenol	9	0	0	0	0	0	0	0	0	0	0	0	0
2,6-Dichlorben- zamid	6	0	0	0	0	0	0	0	0	0	0	0	0
Aldrin	9	0	0	0	0	0	0	0	0	0	0	0	0
AMPA	6	5	0,11	0,11	0,12	0,12	0,13	0,13	0,15	0,24	0,25	0,30	0,40
Deisopropyl-hydro- xyatrazin	6	0	0	0	0	0	0	0	0	0	0	0	0
Dicamba	6	0	0	0	0	0	0	0	0	0	0	0	0
Dichlobenil	6	0	0	0	0	0	0	0	0	0	0	0	0
Dieldrin	9	0	0	0	0	0	0	0	0	0	0	0	0
Diflufenican	6	4	0,005	0,005	0,005	0,010	0,026	0,040	0,060	0,070	0,070	0,070	0,070
Diuron	6	0	0	0	0	0	0	0	0	0	0	0	0
Endrin	9	0	0	0	0	0	0	0	0	0	0	0	0
Gamma Lindan (HCH)	9	0	0	0	0	0	0	0	0	0	0	0	0
Glyphosat	6	5	0,27	0,22	0,24	0,29	0,40	0,50	0,90	1,3	1,4	1,6	1,8
Isodrin	9	0	0	0	0	0	0	0	0	0	0	0	0
MCPA	6	2	0,005	0,005	0,005	0,005	0,005	0,008	0,016	0,030	0,030	0,040	0,050
Mechlorprop	6	6	0,014	0,017	0,021	0,027	0,040	0,040	0,050	0,050	0,050	0,050	0,060
Prosulfocarb	6	0	0	0	0	0	0	0	0	0	0	0	0
Tebuconazol	6	0	0	0	0	0	0	0	0	0	0	0	0
Bromerede flamme	ehæmr	nere											
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
BDE #28	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE #85	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE#100	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE#153	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE#154	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE#183	9	0	0	0	0	0	0	0	0	0	0	0	0
BDE#209	38	8	0,005	0,005	0,005	0,005	0,005	0,015	0,050	0,050	0,050	0,11	0,25
BDE#47	38	2	0	0	0	0	0	0	0	0	0	0,0012	0,012
BDE#99	38	2	0	0	0	0	0	0	0	0	0	0,001	0,015

Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
PCB #101	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #105	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #118	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #138	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #153	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #156	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #170	1	0	0	0	0	0	0	0	0	0	0	0	0
PCB #180	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #28	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #31	11	0	0	0	0	0	0	0	0	0	0	0	0
PCB #52	11	0	0	0	0	0	0	0	0	0	0	0	0
Aminer													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Diethylamin	9	8	0,16	0,20	0,25	0,28	0,50	0,50	0,50	0,60	0,70	0,80	1,0

Dimethylamin

9,0

9,0

Bilag 4. Percentiler for separate regnvands-udledninger

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Aluminium	89	89	70	290	400	700	1.600	2.400	3.000	6.000	7.000	9.000	24000
Antimon	103	40	0,50	0,50	0,50	0,50	0,50	1,00	1,4	1,7	2,0	2,9	4,0
Arsen	112	87	0,15	0,40	0,40	0,50	1,4	1,8	2,3	4,0	4,0	4,0	10
Barium	14	14	1,7	5,0	7,0	9,0	13	17	29	40	40	60	100
Bly	115	109	0,25	0,60	1,1	2,5	4,0	6,0	8,0	10	10	14	26
Bor	103	72	5,0	5,0	5,0	5,0	19	40	50	160	170	180	1500
Cadmium	112	66	0,025	0,025	0,025	0,025	0,060	0,090	0,12	0,19	0,19	0,24	0,70
Chrom	112	101	0,25	0,25	0,90	2,1	4,0	6,0	8,0	14	14	17	100
Kobber	115	110	0,50	1,9	2,9	6,0	9,0	13	18	26	28	30	60
Kobolt	14	5	0,25	0,25	0,25	0,25	0,25	0,30	0,70	1,0	1,1	1,6	2,3
Kviksølv	112	47	0,001	0,001	0,0026	0,025	0,025	0,025	0,050	0,15	0,15	0,22	3,0
Molybdæn	14	2	0	0	0	0	0	0	0	0,60	0,80	1,8	3,1
Nikkel	112	98	0,50	0,50	0,50	2,2	5,0	6,0	8,0	12	13	17	30
Selen	103	13	0	0	0	0	0	0	0	0,18	0,20	1,1	6,0
Sølv	24	3	0	0	0	0	0	0	0	0,90	1,4	2,5	6,0
Thalium	14	0	0	0	0	0	0	0	0	0	0	0	0
Tin	103	56	0,30	0,50	0,50	0,50	1,00	1,6	2,6	4,0	4,0	7,0	40
Uran	14	6	0,050	0,050	0,050	0,050	0,050	0,21	0,31	1,1	1,1	1,6	2,4
Vanadium	14	12	0,50	0,50	0,70	2,0	2,9	3,0	5,0	6,0	6,0	8,0	12
Zink	115	114	2,5	40	60	90	130	160	220	290	300	400	500

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
1-Methyl-napthalen	56	2	0	0	0	0	0	0	0	0	0	0	0,080
2-Methylnaphtalen	56	3	0	0	0	0	0	0	0	0	0	0,015	0,10
Benzen	12	0	0	0	0	0	0	0	0	0	0	0	0
Biphenyl	65	5	0	0	0	0	0	0	0	0	0	0,013	0,030

Ethylbenzen	12	1	0	0	0	0	0	0	0	0	0	0,080	0,17
Methylnaphthalen	13	1	0	0	0	0	0	0	0	0	0	0,032	0,080
Moskusxylener	14	0	0	0	0	0	0	0	0	0	0	0	0
Naphtalen	102	35	0,005	0,005	0,005	0,005	0,005	0,011	0,020	0,040	0,040	0,050	0,27
p-Tert-butyl-toluen	13	0	0	0	0	0	0	0	0	0	0	0	0
Toluen	12	8	0,050	0,050	0,050	0,050	0,12	0,14	0,15	0,27	0,29	0,30	0,31
Xylen	12	2	0	0	0	0	0	0	0	0,080	0,090	0,30	0,60

Phenoler													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
4-n-octylphenol	9	0	0	0	0	0	0	0	0	0	0	0	0
4-Nonylphenol	43	0	0	0	0	0	0	0	0	0	0	0	0
Bisphenol A	111	98	0,005	0,010	0,025	0,050	0,080	0,12	0,17	0,26	0,27	0,40	3,0
Nonylphenol-dietho- xylater (NP2EO)	22	0	0	0	0	0	0	0	0	0	0	0	0
Nonylphenoler	111	38	0,025	0,025	0,025	0,025	0,025	0,050	0,11	0,20	0,20	0,29	0,40
Nonylphenol-mono- ethoxylater (NP1EO)	22	0	0	0	0	0	0	0	0	0	0	0	0
Phenol	111	87	0,050	0,050	0,050	0,12	0,20	0,28	0,40	0,60	0,60	0,80	1,8

Stofnavn	An-	An-	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
	tal data	del > DG											
1,4-Dichlorbenzen	13	0	0	0	0	0	0	0	0	0	0	0	0
2,5-Dichloranilin	13	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorbenzen	13	0	0	0	0	0	0	0	0	0	0	0	0
Pentachlorbenzen	13	0	0	0	0	0	0	0	0	0	0	0	0
Klorfenoler Stofnavn	An- tal data	An- del > DG	Min.	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max.
2,4,6-Trichlorphenol	22	0	0	0	0	0	0	0	0	0	0	0	0
2,4+2,5-Dichlorp- henol	13	0	0	0	0	0	0	0	0	0	0	0	0
•	13	0	0	0	0	0	0	0	0	0	0	0	0
henol													

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
1-Methylpyren	55	3	0	0	0	0	0	0	0	0	0	0,004	0,019
2-Methylphenanth- ren	55	6	0	0	0	0	0	0	0	0,00070	0,007	0,017	0,021
2-Methylpyren	55	3	0	0	0	0	0	0	0	0	0	0,005 0	0,029
Acenaphthen	55	2	0	0	0	0	0	0	0	0	0	0	0,019
Acenaphthylen	46	4	0	0	0	0	0	0	0	0	0	0,012	0,024
Antracen	55	7	0	0	0	0	0	0	0	0,010	0,011	0,014	0,023
Benz(a)anthracen	101	20	0	0	0	0	0	0	0	0,015	0,019	0,030	0,40
Benz(a)fluoren	55	5	0	0	0	0	0	0	0	0	0	0,018	0,11
Benz(ghi)perylen	101	38	0,005	0,005	0,005	0,005	0,005	0,011	0,018	0,040	0,040	0,050	0,26
Benz[a]pyren	101	22	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,018	0,018	0,026	0,40
Benzfluranthen b+j+k	101	57	0,005	0,005	0,005	0,005	0,012	0,019	0,040	0,070	0,070	0,100	0,70
Benzo(e)pyren	101	34	0,005	0,005	0,005	0,005	0,005	0,005	0,016	0,030	0,031	0,050	0,31
Crysen/triphenylen	101	49	0,005	0,005	0,005	0,005	0,010	0,016	0,027	0,060	0,070	0,11	0,30
Dibenz(ah)anthra- cen	55	6	0	0	0	0	0	0	0	0,0009	0,009	0,020	0,070
Dibenzothiophen	46	3	0	0	0	0	0	0	0	0	0	0,029	0,050
Dimethyl-phenanth- ren	55	1	0	0	0	0	0	0	0	0	0	0	0,030
Fluoranthen	101	56	0,005	0,005	0,005	0,005	0,013	0,020	0,031	0,060	0,060	0,090	0,40
Fluoren	55	3	0	0	0	0	0	0	0	0	0	0,003	0,018
Indeno(1,2,3-cd)py- ren	101	28	0,005	0,005	0,005	0,005	0,005	0,005	0,012	0,022	0,022	0,040	0,29
Perylen	46	1	0	0	0	0	0	0	0	0	0	0	0,022
Phenanthren	101	51	0,005	0,005	0,005	0,005	0,011	0,016	0,022	0,029	0,030	0,040	0,12
Pyren	101	62	0,005	0,005	0,005	0,005	0,015	0,022	0,030	0,070	0,070	0,090	0,40

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
TCPP	100	83	0,025	0,025	0,025	0,060	0,100	0,16	0,19	0,40	0,40	0,60	1,2
Tributylphosphat	100	21	0,005	0,010	0,010	0,010	0,010	0,010	0,012	0,040	0,040	0,070	0,28
Tricresylphosphat	100	15	0	0	0	0	0	0	0	0,027	0,028	0,050	0,40
Triphenylphosphat	100	36	0,010	0,010	0,010	0,010	0,010	0,021	0,030	0,050	0,050	0,070	0,30
Blødgørere													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Benzylbuthylphtha- lat	65	1	0	0	0	0	0	0	0	0	0	0	0,40
DEHP	111	99	0,050	0,050	0,22	0,40	0,70	0,90	1,8	4,0	5,0	5,0	17
Di(2-ethylhexyl)adi- pat	56	15	0,050	0,050	0,050	0,050	0,050	0,050	0,13	0,30	0,40	0,50	0,70
Dibuthylphthalat	65	1	0	0	0	0	0	0	0	0	0	0	0,22
Diethylphthalat	111	10	0	0	0	0	0	0	0	0	0	0,15	1,5
Diisononylphthalat	111	96	0,050	0,050	0,12	0,80	2,0	2,6	4,0	7,0	9,0	13	31
Di-n-octylphthalat	65	1	0	0	0	0	0	0	0	0	0	0	0,12
Detergenter													
Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
Alkylbenzensulfonat	89	24	2,5	2,5	2,5	2,5	2,5	2,5	7,0	29	30	50	180
Ethere													
Stofnavn	An- tal data	An- del >	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max

DG

MTBE

0,80

Pe		

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
2,4,5-Trichlorphenol	9	0	0	0	0	0	0	0	0	0	0	0	0
2,6-Dichlorben- zamid	102	19	0	0	0	0	0	0	0	0,050	0,050	0,060	0,50
Aldrin	22	0	0	0	0	0	0	0	0	0	0	0	0
AMPA	108	106	0,005	0,040	0,050	0,100	0,19	0,25	0,30	0,70	0,70	0,80	1,8
Deisopropyl-hydro- xyatrazin	42	1	0	0	0	0	0	0	0	0	0	0	0,023
Dicamba	89	4	0	0	0	0	0	0	0	0	0	0	1,4
Dichlobenil	43	0	0	0	0	0	0	0	0	0	0	0	0
Dieldrin	22	0	0	0	0	0	0	0	0	0	0	0	0
Diflufenican	89	72	0,005	0,005	0,005	0,012	0,021	0,030	0,050	0,100	0,11	0,19	4,0
Diuron	89	8	0	0	0	0	0	0	0	0	0	0,040	2,3
Endrin	22	0	0	0	0	0	0	0	0	0	0	0	0
Gamma Lindan (HCH)	22	0	0	0	0	0	0	0	0	0	0	0	0
Glyphosat	108	103	0,005	0,040	0,080	0,13	0,40	0,80	1,2	2,4	4,0	9,0	40
Isodrin	22	0	0	0	0	0	0	0	0	0	0	0	0
MCPA	102	51	0,005	0,005	0,005	0,005	0,013	0,030	0,060	0,18	0,18	0,30	5,0
Mechlorprop	89	50	0,005	0,005	0,005	0,005	0,015	0,024	0,040	0,060	0,060	0,070	0,40
Prosulfocarb	89	32	0,005	0,005	0,005	0,005	0,005	0,030	0,090	0,15	0,15	0,25	0,60
Simazin	13	1	0	0	0	0	0	0	0	0	0	0,040	0,11
Tebuconazol	43	0	0	0	0	0	0	0	0	0	0	0	

_		•		
Bron	nerede	tlam	menær	nmere

Stofnavn	An- tal data	An- del > DG	Min	5%	10%	25%	50%	64%	77%	89%	90%	95%	Max
BDE #28	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE #85	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#100	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#153	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#154	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#183	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#209	13	1	0	0	0	0	0	0	0	0	0	0,027	0,070
BDE#47	13	0	0	0	0	0	0	0	0	0	0	0	0
BDE#99	13	0	0	0	0	0	0	0	0	0	0	0	0

Middelværdier for Bilag 5. stoffer med lavt datagrundlag for fælleskloakerede spildevandsoverløb

For alle stoffer er beregnet et geometrisk gennemsnit af alle værdier, hvor koncentrationer under detektionsgrænsen er fastsat til halvdelen af detektionsgrænsen.

Metaller	oa	andre	uora	aniske	sporstoffer

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
Aluminium	60	60	700	[600-800]
Antimon	69	17	0,60	[0,60-0,70]
Arsen	80	46	0,60	[0,60-0,70]
Barium	64	63	16	[14-17]
Bly	80	80	6	[5,0-7,0]
Bor	69	53	24	[21-28]
Cadmium	80	65	0,10	[0,090-0,11]
Chrom	80	74	2,4	[2,1-2,6]
Kobber	80	80	17	[15-18]
Kobolt	9	3	0,50	[0,40-0,60]
Kviksølv	80	52	0,050	[0,040-0,050]
Molybdæn	64	7	0,50	[0,50-0,60]
Nikkel	80	75	2,9	[2,6-3,2]
Selen	69	10	0,50	[0,40-0,50]
Sølv	19	2	0,40	[0,40-0,50]
Tellur	4	0	2,5	Kun én unik værdi
Thalium	9	1	0,16	[0,14-0,19]
Гin	69	46	1,4	[1,2-1,6]
Jran	9	9	0,12	[0,090-0,16]
Vanadium	64	59	2,8	[2,6-3,1]
Zink	78	78	180	[170-190]

Aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1-Methyl-napthalen	34	1	0,028	[0,026-0,029]
2-Methylnaphtalen	71	6	0,023	[0,021-0,025]
5-tert-butyl-2,4,6-tri- nitro-m-xylen	8	0	0,050	Kun én unik værdi
Benzen	59	14	0,015	[0,014-0,017]
Biphenyl	78	18	0,0070	[0,0070-0,0080]
Dimethylnaphthale- ner	66	52	0,040	[0,030-0,040]
Ethylbenzen	59	16	0,015	[0,013-0,016]
Isopropylbenzen	24	1	0,010	[0,0100-0,011]
m+p-Xylen	59	42	0,050	[0,050-0,060]
Methylnaphthalen	11	1	0,026	[0,022-0,030]
Moskusxylener	31	1	0,060	[0,050-0,070]
Naphtalen	80	52	0,019	[0,017-0,021]
o-Xylen	59	33	0,024	[0,021-0,027]
p-Tert-butyl-toluen	33	1	0,016	[0,014-0,019]
Toluen	59	52	0,11	[0,090-0,13]
Trimethylnaphthale- ner	66	19	0,011	[0,0100-0,012]
Xylen	24	7	0,020	[0,015-0,025]

Phenoler

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
4-n-octylphenol	11	0	0,060	[0,050-0,070]
4-Nonylphenol	36	3	0,007	[0,0060-0,0080]
Bisphenol A	79	76	0,23	[0,21-0,25]
Nonylphenol-dietho- xylater (NP2EO)	75	28	0,11	[0,100-0,12]
Nonylphenoler	78	72	0,22	[0,19-0,25]
Nonylphenol-mono- ethoxylater	75	04	0.40	[0.47.0.00]
(NP1EO)	75	64	0,19	[0,17-0,22]
Phenol	78	73	0,60	[0,60-0,70]
4-n-octylphenol	11	0	0,060	[0,050-0,070]

Halogenerede alifatiske kulbrinter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1,1,1-trichlorethan	34	0	0,015	[0,014-0,017]
1,1,1-trichlorethan	34	0	0,015	[0,014-0,017]
1,1,2,2-Tetrachlo- rethan	9	0	0,050	Kun én unik værdi
1,1,2-Trichlorethan	9	0	0,050	Kun én unik værdi
1,2-Dibromethane	25	1	0,0021	[0,0018-0,0025]
1,2-Dichlorethan	34	0	0,015	[0,014-0,017]
1,2-Dichlorethylen	4	1	0,016	[0,0100-0,025]
1-2-Dichlorpropan	9	0	0,050	Kun én unik værdi
3-Chlorpropen	32	1	0,011	[0,0100-0,012]
Chloroform	69	23	0,022	[0,020-0,025]
Cis-1,2-dichlorethy- len	21	0	0,010	[0,0100-0,0100]
Dichlormethan	32	5	0,030	[0,026-0,040]
Hexachlorbutadien	9	0	0,025	[0,025-0,025]
Hexachlorethan	9	0	0,050	Kun én unik værdi
Pentachlorethan	9	0	0,050	Kun én unik værdi
Tetrachlorethylen	69	3	0,015	[0,013-0,016]
Tetrachlormethan	34	0	0,011	[0,011-0,012]
Trans-1,2-dichlo- rethen	21	0	0,010	[0,0100-0,0100]
Trichlorethylen	69	1	0,014	[0,013-0,015]
Vinylchlorid	25	0	0,010	[0,0100-0,0100]

Halogenerede aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1,2,4-Trichlorben-				
zen	9	0	0,0060	[0,0050-0,0080]
1,2-dichlor-4-nitro-				
benzen	9	0	0,025	[0,025-0,025]
1,2-Dichlorbenzen	9	0	0,050	Kun én unik værdi
1,3-Dichlorbenzen	9	0	0,050	Kun én unik værdi
1,4-dichlor-2-nitro-				
benzen	9	0	0,025	[0,025-0,025]
1,4-Dichlorbenzen	18	0	0,050	[0,040-0,050]
1-Chlor-2-nitroben-				
zen	9	0	0,025	[0,025-0,025]
1-Chlor-3-nitroben-				
zen	9	0	0,025	[0,025-0,025]
1-Chlornaphthalen	9	0	0,025	[0,025-0,025]
2,5-Dichloranilin	18	1	0,030	[0,026-0,040]

2-Chlornaphthalen	9	0	0,025	[0,025-0,025]
2-Chlortoluen	9	0	0,025	[0,025-0,025]
3,4-Dichloranilin	9	0	0,029	[0,026-0,030]
3-Chlortoluen	9	0	0,025	[0,025-0,025]
4-Chlor-2-nitroto- luen	9	1	0,030	[0,025-0,040]
4-Chlornitrobenzen	9	0	0,025	[0,025-0,025]
4-Chlortoluen	9	0	0,025	[0,025-0,025]
Benzylchlorid	9	0	0,050	Kun én unik værdi
Chlorbenzen	9	0	0,025	[0,025-0,025]
Hexachlorbenzen	9	0	0,0025	Kun én unik værdi
Pentachlorbenzen	9	0	0,0050	[0,0040-0,0050]

Klorfenol

1.101101101					
Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
2,4,6-Trichlorphenol	18	5	0,030	[0,028-0,040]	
2,4+2,5-Dichlorp- henol	13	9	0,19	[0,13-0,29]	
2,4-Dichlorphenol	6	1	0,026	[0,017-0,040]	
4-Chlor-3- methylphenol	18	2	0,025	[0,022-0,028]	
Pentachlorphenol	18	0	0,022	[0,019-0,025]	

Polyaromatiske kulbrinter (PAH)

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1-Methylpyren	44	5	0,0060	[0,0060-0,0070]
2-Methylphenanth- ren	44	15	0,0090	[0,0080-0,0100]
2-Methylpyren	42	10	0,0070	[0,0060-0,0080]
Acenaphthen	43	1	0,0060	[0,0050-0,0060]
Acenaphthylen	33	4	0,0070	[0,0060-0,0080]
Antracen	44	15	0,0090	[0,0080-0,0100]
Benz(a)anthracen	44	22	0,014	[0,012-0,016]
Benz(a)fluoren	44	11	0,0070	[0,0070-0,0080]
Benz(ghi)perylen	44	27	0,020	[0,017-0,023]
Benz[a]pyren	44	21	0,015	[0,012-0,017]
Benzfluranthen b+j+k	44	34	0,030	[0,028-0,040]
Benzo(e)pyren	44	26	0,018	[0,015-0,022]
Crysen/triphenylen	44	30	0,028	[0,023-0,030]

Dibenz(ah)anthra-				
cen	44	9	0,0070	[0,0070-0,0080]
Dibenzothiophen	35	1	0,0060	[0,0050-0,0060]
Dimethylphenanth- ren	44	5	0,0060	[0,0060-0,0060]
Fluoranthen	44	36	0,030	[0,029-0,040]
Fluoren	44	8	0,0070	[0,0060-0,0070]
Indeno(1,2,3-cd)py- ren	44	21	0,018	[0,015-0,021]
Perylen	35	5	0,0060	[0,0060-0,0070]
Phenanthren	44	37	0,026	[0,022-0,030]
Pyren	44	32	0,031	[0,026-0,040]

P-triestere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
TCPP	68	67	0,40	[0,30-0,40]
Tributylphosphat	68	17	0,017	[0,015-0,019]
Tricresylphosphat	68	10	0,014	[0,013-0,015]
Triphenylphosphat	68	60	0,050	[0,040-0,050]

Blødgørere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
Benzylbuthylphtha-				
lat	80	22	0,070	[0,070-0,080]
DEHP	78	77	3,1	[2,7-4,0]
Di(2-ethylhexyl)adi- pat	80	22	0,080	[0,070-0,090]
Di-2-ethoxyethyl phthalat	2	2	7,0	Kun én unik værdi
 Dibuthylphthalat	80	42	0,24	[0,21-0,26]
Diethylphthalat	80	65	0,30	[0,29-0,40]
Diisononylphthalat	80	75	4,0	[3,1-4,0]
Di-n-octylphthalat	80	5	0,060	[0,050-0,060]

Detergenter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
Alkylbenzensulfonat	80	76	230	[200-270]
Detergenter kationi- ske	3	3	40	[19-70]

=+	h	^	-
⊏ι	H	e	ıe

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
MTBE	73	1	0,040	[0,040-0,040]
Triclosan	55	2	0,060	[0,050-0,060]

Organotin

Organisani				
Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
Dibutyltin	55	23	0,0024	[0,0022-0,0026]
Monobutyltin	55	48	0,015	[0,013-0,016]
Tributyltin (TBT)	55	1	0,0010	[0,00090-0,0011]
Triphenyltin(TPhT)	9	0	0,0006	[0,00050-0,00070]

Østrogener

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
17Beta-østradiol	55	29	0,0015	[0,0013-0,0017]
Ethinyløstradiol	55	3	0,0007	[0,00060-0,00070]
Østron	55	53	0,017	[0,015-0,019]

Farmaceutiske stoffer

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
2-hydroxyibuprofen	55	53	3,0	[2,5-4,0]
Azithromycin	26	3	0,0080	[0,0060-0,0090]
Carbamazepin	26	23	0,040	[0,029-0,040]
Cimetidin	47	1	0,0027	[0,0025-0,0028]
Citalopram	26	22	0,040	[0,040-0,050]
Clarithromycin	31	3	0,0080	[0,0060-0,0090]
Diclofenac	31	23	0,024	[0,020-0,029]
Erythromycin	22	1	0,0070	[0,0060-0,0090]
Erythrosin	11	0	0,0050	[0,0050-0,0050]
Furosemid	55	55	1,1	[0,90-1,3]
Ibuprofen	55	55	1,8	[1,6-2,0]
Naproxen	26	25	0,17	[0,13-0,22]
Paracetamol	54	49	8,0	[5,0-10,0]
Propofol	8	0	0,10	Kun én unik værdi
Propranolol	26	7	0,0080	[0,0070-0,0090]
Salicylsyre	55	38	0,90	[0,70-1,00]
Sulfamethiazol	55	30	0,017	[0,013-0,023]
Sulfamethoxazol	55	6	0,022	[0,020-0,025]

Tramadol	26	25	0,20	[0,16-0,25]
Trimethoprim	55	18	0,028	[0,024-0,030]

Perfluorerede forbindelser

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1H, 1H,2H,2H- Per- fluoroctansulfonsyre	26	0	0,0008	[0,00070-0,00100]
Perfluorbutansulfon- syre (PFBS)	26	1	0,0008	[0,00070-0,00100]
Perfluorbutansyre (PFBA)	26	16	0,0021	[0,0018-0,0025]
Perfluordecansyre (PFDA)	94	10	0,0010	[0,00100-0,0011]
Perfluorheptansyre (PFHpA)	26	3	0,0012	[0,00100-0,0014]
Perfluorhexansul- fonsyre (PFHxS)	94	2	0,0002	[0,00018-0,00022]
Perfluorhexansyre (PFHxA)	26	9	0,0018	[0,0015-0,0021]
Perfluornonansyre (PFNA)	94	16	0,0006	[0,00060-0,00070]
Perfluoroctansulfon- amid (PFOSA)	94	2	0,0004	[0,00040-0,00040]
Perfluoroctansulfon- syre (PFOS)	94	42	0,0011	[0,00100-0,0012]
Perfluoroctansyre (PFOA)	92	32	0,0014	[0,0013-0,0015]
Perfluorpentansyre (PFPA)	26	1	0,0015	[0,0012-0,0020]
Perfluorundecan- syre (PFUnA)	42	0	0,0012	[0,0011-0,0012]

Pesticider

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
2,4,5-Trichlorphenol	9	0	0,025	[0,025-0,025]
2,6-Dichlorben- zamid	6	0	0,011	[0,0080-0,016]
Aldrin	9	0	0,005	[0,0050-0,0060]
AMPA	6	5	0,15	[0,13-0,18]
Deisopropyl-hydro- xyatrazin	6	0	0,015	[0,0100-0,021]
Dicamba	6	0	0,0050	Kun én unik værdi
Dichlobenil	6	0	0,0050	Kun én unik værdi
Dieldrin	9	0	0,0060	[0,0050-0,0060]
Diflufenican	6	4	0,021	[0,013-0,030]
Diuron	6	0	0,013	[0,0090-0,017]

9	0	0,0050	[0,0050-0,0060]
9	0	0,0060	[0,0050-0,0070]
6	5	0,50	[0,30-0,70]
9	0	0,0060	[0,0060-0,0070]
6	2	0,0090	[0,0060-0,013]
6	6	0,030	[0,027-0,040]
6	0	0,0050	Kun én unik værdi
6	0	0,013	[0,0090-0,017]
	9 6 9 6 6 6	9 0 6 5 9 0 6 2 6 6 6 0	9 0 0,0060 6 5 0,50 9 0 0,0060 6 2 0,0090 6 6 0 0,030 6 0 0,0050

Bromerede flammehæmmere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
BDE #28	9	0	0,0025	Kun én unik værdi
BDE #85	9	0	0,0025	Kun én unik værdi
BDE#100	9	0	0,0025	Kun én unik værdi
BDE#153	9	0	0,0025	Kun én unik værdi
BDE#154	9	0	0,0025	Kun én unik værdi
BDE#183	9	0	0,0025	Kun én unik værdi
BDE#209	38	8	0,013	[0,011-0,016]
BDE#47	38	2	0,0027	[0,0026-0,0028]
BDE#99	38	2	0,0027	[0,0026-0,0028]

Polychlorerede biphenyler (PCB)

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
PCB #101	11	0	0,0050	[0,0050-0,0050]
PCB #105	11	0	0,0050	[0,0050-0,0050]
PCB #118	11	0	0,0050	[0,0050-0,0050]
PCB #138	11	0	0,0050	[0,0050-0,0050]
PCB #153	11	0	0,0050	[0,0050-0,0050]
PCB #156	11	0	0,0050	[0,0050-0,0050]
PCB #170	1	0	0,0050	Kun én unik værdi
PCB #180	11	0	0,0050	[0,0050-0,0050]
PCB #28	11	0	0,0050	[0,0050-0,0060]
PCB #31	11	0	0,0050	[0,0050-0,0060]
PCB #52	11	0	0,0050	[0,0050-0,0060]

Aminer

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
----------	---------------	------------	-------	-------------------

Diethylamin	9	8	0,40	[0,30-0,50]
Dimethylamin	9	9	18	[16-21]

Bilag 6. Middelværdier for stoffer med lavt datagrundlag for separate regnvandsudledninger

For alle stoffer er beregnet et geometrisk gennemsnit af alle værdier, hvor koncentrationer under detektionsgrænsen er fastsat til halvdelen af detektionsgrænsen.

Metaller og andre uorganiske sporstoffe	
- Metallet ou allute dotualliske spotstolle	r

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
Aluminium	89	89	1.500	[1300-1700]
Antimon	103	40	0,80	[0,70-0,80]
Arsen	112	87	1,2	[1,1-1,3]
Barium	14	14	14	[11-19]
Bly	115	109	4,0	[3,0-4,0]
Bor	103	72	23	[20-26]
Cadmium	112	66	0,060	[0,060-0,070]
Chrom	112	101	4,0	[3,0-4,0]
Kobber	115	110	9,0	[8,0-10,0]
Kobolt	14	5	0,40	[0,30-0,50]
Kviksølv	112	47	0,027	[0,023-0,031]
Molybdæn	14	2	0,60	[0,50-0,70]
Nikkel	112	98	4,0	[4,0-4,0]
Selen	103	13	0,50	[0,50-0,60]
Sølv	24	3	0,60	[0,60-0,70]
Thalium	14	0	0,20	[0,20-0,20]
Tin	103	56	1,2	[1,1-1,3]
Uran	14	6	0,14	[0,100-0,21]
Vanadium	14	12	2,6	[2,0-3,0]
Zink	115	114	130	[120-140]

Aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
1-Methyl-napthalen	56	2	0,026	[0,025-0,027]
2-Methylnaphtalen	56	3	0,027	[0,026-0,028]
Benzen	12	0	0,022	[0,021-0,023]
Biphenyl	65	5	0,0060	[0,0050-0,0060]
Ethylbenzen	12	1	0,040	[0,040-0,050]
Methylnaphthalen	13	1	0,027	[0,025-0,030]
Moskusxylener	14	0	0,050	Kun én unik værdi
Naphtalen	102	35	0,010	[0,0090-0,011]
p-Tert-butyl-toluen	13	0	0,040	[0,040-0,050]
Toluen	12	8	0,11	[0,090-0,13]
Xylen	12	2	0,050	[0,040-0,070]

Phenoler

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval
4-n-octylphenol	9	0	0,050	Kun én unik værdi
4-Nonylphenol	43	0	0,0050	[0,0050-0,0050]
Bisphenol A	111	98	0,080	[0,070-0,090]
Nonylphenol-dietho- xylater (NP2EO)	22	0	0,050	[0,050-0,050]
Nonylphenoler	111	38	0,050	[0,040-0,050]
Nonylphenol-mono- ethoxylater				
(NP1EO)	22	0	0,050	[0,040-0,050]
Phenol	111	87	0,20	[0,18-0,21]

Halogenerede aromatiske kulbrinter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
1,4-Dichlorbenzen	13	0	0,040		
2,5-Dichloranilin	13	0	0,025	[0,025-0,025]	
Hexachlorbenzen	13	0	0,020	[0,017-0,023]	
Pentachlorbenzen	13	0	0,0070	[0,0060-0,0090]	

Klorfenol

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
2,4,6-Trichlorphenol	22	0	0,025		
2,4+2,5-Dichlorp- henol	13	0	0,025	[0,025-0,025]	
2,4-Dichlorphenol	9	0	0,025 [0,025-0,02		
4-Chlor-3- methylphenol			0,025	[0,025-0,025]	
Pentachlorphenol	22	0,025	[0,025-0,025]		

Polyaromatiske kulbrinter (PAH)

Stofnavn	Antal data	Andel > DG	Gnst.	[0,0050-0,0060]	
1-Methylpyren	55	3	0,0050		
2-Methylphenanth- ren	55	6	0,0060	[0,0060-0,0060]	
2-Methylpyren	55	3	0,0060	[0,0060-0,0060]	
Acenaphthen	55	2	0,0050	[0,0050-0,0050]	
Acenaphthylen	46	4	0,0060	[0,0050-0,0060]	
Antracen	55	7	0,0060	[0,0050-0,0060]	
Benz(a)anthracen	101	20	0,0070	[0,0060-0,0070]	
Benz(a)fluoren	55	5	0,0060	[0,0050-0,0060]	
Benz(ghi)perylen	101	38	0,0090	[0,0090-0,0100]	
Benz[a]pyren	101	22	0,0070	[0,0060-0,0070]	
Benzfluranthen b+j+k	101	57	0,014	[0,013-0,016]	
Benzo(e)pyren	101	34	0,0090	[0,0080-0,0090]	
Crysen/triphenylen	101	49	0,013	[0,011-0,014]	
Dibenz(ah)anthra- cen	55	6	0,0060	[0,0060-0,0060]	
Dibenzothiophen	46	3	0,0060	[0,0050-0,0060]	
Dimethylphenanth- ren	55	1	0,0050	[0,0050-0,0050]	
Fluoranthen	101	56	0,014	[0,013-0,016]	
Fluoren	55	3	0,0050	[0,0050-0,0060]	
Indeno(1,2,3-cd)py- ren			0,0070	[0,0070-0,0080]	
Perylen	46	1	0,0050	[0,0050-0,0050]	
Phenanthren	101	51	0,011	[0,0100-0,012]	
Pyren	101	62	0,015	[0,014-0,017]	

P-triestere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
TCPP	100	83	0,11	[0,100-0,12]	
Tributylphosphat	100	21	0,014	[0,013-0,015]	
Tricresylphosphat	100 15 0,013		0,013	[0,012-0,014]	
Triphenylphosphat	100	36	0,017	[0,016-0,019]	

Blødgørere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
Benzylbuthylphtha-					
lat	65	1	0,050	[0,050-0,050]	
DEHP	111	99	99 0,80		
Di(2-ethylhexyl)adi-					
pat	56	15	0,080	[0,070-0,090]	
Dibuthylphthalat	65	1	0,16	[0,15-0,17]	
Diethylphthalat	111	111 10 0,070		[0,070-0,080]	
Diisononylphthalat	111	96	1,4 [1,2-1,7		
Di-n-octylphthalat	65	1	0,050 [0,050-0,050]		

Detergenter

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
Alkylbenzensulfo-					
nat	89	24	4,0	[4,0-5,0]	

Ethere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
MTBE	22	1	0,060	[0,050-0,060]	

Pesticider

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
2,4,5-Trichlorphenol	richlorphenol 9		0,025	[0,025-0,025]	
2,6-Dichlorben- zamid	102 19 0,00		0,0090	[0,0080-0,0100]	
Aldrin	22	0	0,0050	[0,0050-0,0050]	
AMPA	108	106	0,18	[0,16-0,19]	
Deisopropyl-hydro- xyatrazin	42	1	0,0090	[0,0070-0,011]	
Dicamba	89	4	0,010 [0,0080-0		
Dichlobenil	43	0	0,0050 [0,0050-0,0060]		

Dieldrin	22	0	0,0050	[0,0050-0,0060]
Diflufenican	89	72	0,026	[0,023-0,030]
Diuron	89	8	0,012	[0,0100-0,013]
Endrin	22	0	0,0050	[0,0050-0,0060]
Gamma Lindan (HCH)	22	0	0,0060	[0,0050-0,0060]
Glyphosat	108 103		0,40	[0,30-0,50]
Isodrin	22	0	0,005	[0,0050-0,0060]
MCPA	102	51	0,020	[0,017-0,023]
Mechlorprop	89	50	0,015	[0,014-0,017]
Prosulfocarb	89	32	0,017	[0,015-0,020]
Simazin	13	1	0,0060	[0,0050-0,0080]
Tebuconazol	43	0	0,0070	[0,0060-0,0080]

Bromerede flammehæmmere

Stofnavn	Antal data	Andel > DG	Gnst.	Konfidensinterval	
BDE #28	13	0	0,0025	Kun én unik værdi	
BDE #85	13	0	0,0025	Kun én unik værdi	
BDE#100	00 13 0		0,0025	Kun én unik værdi	
BDE#153	13	0	0,0025	Kun én unik værdi	
BDE#154	13	0	0 0,0025		
BDE#183	13	0	0,0025	Kun én unik værdi	
BDE#209	13	13 1 0		[0,013-0,018]	
BDE#47	13	13 0 0,00		Kun én unik værdi	
BDE#99	13	0	0,0025	Kun én unik værdi	

Bilag 7. Opsummering af litteraturundersøgelse

TABEL 24. Opsummering af litteraturundersøgelse for MFS i fælleskloakerede spildevandsoverløb (CSO, Combined Sewer Overflows). I tabellen er for hver undersøgelse angivet land og område, årstal, antallet af prøver, og om der er rensning inden prøveudtagningen. Desuden er opsummeret antal af stoffer og stofgrupper, som er indgået i undersøgelsen, samt hvilke stoffer der er målt over detektionsgrænsen i CSO, og som ikke tidligere er indgået i NOVANA delprogrammet for RBU for fælleskloakerede spildevandsoverløb.

Reference	Land og område	Årstal	Antal prø- ver	Forudgå- ende rens- ning	Stoffer i studie	Stoffer observeret i CSO og som ikke hidtil er indgået i NOVANA-delprogram for RBU for CSO
Gasperi et al (2008)	FR, Paris centrum. Tætbefol- ket område på 105 km² med 2,15 mio. indbyggere. Små butikker og kontorer. Meget lidt industri	2006- 2007		Ingen	7 metaller, 3 organotin, 3 chlorbenzener, 8 VOC, 16 PAH, 20 pesticider, 2 alkylphenoler, 5 phthalater, 1 PDBE, 1 chloralkan	Diazinon, Oxadiazon, Propiconazol, Terbutryn
Gasperi et al (2012)	FR, Paris centrum. Tætbefol- ket område på 105 km² med 2,15 mio. indbyggere. Små butikker og kontorer. Meget lidt industri	2010	4 RBU events	Ingen	8 metaller, 3 organotin, 16 PAH, 8 PCB, 12 VOC, 5 chlorobenzener, 2 chlorophenoler, 5 alkylphenoler, 3 PBDE, 24 pesticider, C10-C13 chloralkaner, 1 phthalat	Atrazin, desethylatrazin, Isoproturon, Aminotriazol Butylphenol C10-C13 chloralkaner
Becouze- Lareure et al (2019)	FR, Lyon. Tætbefolket bolig- område på 245 ha med 7.000 indbyggere	2008- 2009		Ingen	9 metaller, 13 pesticider, 6 PAH, 4 al- kylphenoler, 2 chlorbenzener	Atrazin, Chlorfenvinphos, Isoproturon, Simazin
Launay et al (2016)	DE, Stuttgart. 35 km² urbant område med boliger og indu- stri	2014	25 prøver fra 7 RBU events	Ingen	9 lægemiddelstoffer, 5 kontrastmidler, 7 pesticider, 2 sødestoffer, 5 personlig plejeprodukter, koffein, 9 p-triestere, 2 alkylphenoler, bisphenol A, DEHP, 3 benzotriazoler, 2 benzothiazoler, 6 PCB, 16 PAH	Atenolol, Metoprolol, Bezafibrate Diatriozat, Iohexol, Iomeprol, Iopromid, Iopromidol Carbendazim, Isoproturon, Terbutryn, DEET Acesulfam, Sucralose, Koffein, Galaxolide, Tonalide 4-tert-octylphenol, 1H-benzotriazol, 5-methyl-1H-benzotriazol, 4-methyl-1H-benzotriazol Benzothiazol, 2-methylthiobenzothiazol Triethylphosphat, Triisobutyl phosphat, Tris(2-chloroethyl)phosphate, Tris(1,3-dichloroisopropyl)-phosphat, Tris(2-butoxyethyl)phosphat, Triphenylphosphine oxid

Nickel et al (2019)	DE, Bayern. Både landdistrik- ter og urbane områder. I alt ca. 3.037 ha og 128.000 ind- byggere	2016- 2018		Sedimenta- tion i de fle- ste tilfælde	12 metaller, 16 PAH, 9 pesticider, 3 lægemid- delstoffer, 3 benzotriazoler, 1 sødestof, 1 phthalat	Carbendazim, Atrazin (kun i få prøver), Isoproturon, Meto- lachlor, Terbuthylazine, Terbutryn, Benzotriazol, 4-methylbenzotriazol, 5-methylbenzotriazol Metoprolol, Acesulfam
Nickel et al (2021)	DE, Bayern. Både landdistrikter og urbane områder. I alt ca. 3.037 ha og 128.000 indbyggere	2016- 2019	teter. 27-	Sedimenta- tion i de fle- ste tilfælde	4 metaller, 4 PAH, 2 alkylphenoler, 3 PFAS, 8 pesticider, 2 lægemiddelstoffer, 1 phthalat, 1 flammehæmmer, 1 sødestof	Diethyltoluamid (DEET), Isoproturon, Permethrin, Carbendazim, Terbutryn, HBCDD, Acesulfam
COHIBA (2010)	DK, København. Tætbefolket urbant område lejlighedsbyg- geri, virksomheder og industri- områder centralt i København		2 lokalite- ter i alt 3 prøver	Filtrering og UV ved den ene lokalitet	7 metaller, 4 organotin, 7 phthalater, 8 phenoler og alkylphenoler, 9 PAH, 6 pesticider, 17 dioxiner, 12 PCB, 36 chloralkaner (C10-C17), 25 brommerede flammehæmmere, 17 PFAS	Dioxiner (HeptaCDD, OctaCDD, OctaCDF), HBCDD C10-C13 chlorparaffin, C14-C17 chlorparaffin

TABEL 25. Opsummering af litteraturundersøgelse for MFS i separate regnvandsudledninger. I tabellen er for hver undersøgelse angivet land og område, årstal, antallet af prøver, og om der er rensning inden prøveudtagningen. Desuden er opsummeret antal af stoffer og stofgrupper, som er indgået i undersøgelsen, samt hvilke stoffer der er målt over detektionsgrænsen i separate regnvandsudledninger, og som ikke tidligere er indgået i NOVANA delprogrammet for RBU for separate regnvandsudledninger.

Reference	Land og område	Årstal	Antal prøver	Forudgående rensning	Stoffer i studie	Stoffer observeret i regnvandsudledning og som ikke hidtil er indgået i NOVANA-delprogram for RBU for regn- vandsudledninger
Zgheib et al (2011)	FR, Paris forstad. Tætbe- folket med 59.000 indbyg- gere. Indkøbscenter, lej- ligheder	2008		Ingen	8 metaller, 3 organotin, 16 PAH, 8 PCB, 12 VOC, 5 chlorobenzener, 2 chlorophenoler, 5 alkylphenoler, 3 PBDE, 24 pesticider, 1 chloralkan, 1 phthalat	Metaldehyd, Isoproturon, Aminotriazol TBT, DBT, MBT 7 PCB Dichlormethan Para-tert-octylphenol, 4-tert-butylphenol
Zgheib et al (2012)	FR, tre områder med for- skellige oplandstyper inkl. boligområder, tætbefolket byområde, indkøbscentre, virksomheder etc.	2008-2009	16 RBU events	Ingen	8 metaller, 3 organotin, 16 PAH, 8 PCB, 12 VOC, 5 chlorobenzener, 2 chloro- phenoler, 5 alkylphenoler, 3 PBDE, 24 pesticider, C10-C13 chloralkaner, 1 phthalat	TBT, DBT, MBT PCB Para-tert-octylphenol, 4-tert-butylphenol Chlorfenvinphos, Isoproturon, Metaldehyd, Aminotriazol Dichlormethan, Tetrachlorethylen
Eriksson et al (2007)	DK, Harrestrup Å. Modta- ger regnvand og fælles- kloakerede spildevands- overløb	2002		Ukendt	68 pesticider og nedbrydningsprodukter, 19 PAH, 5 halogenerede alifatiske kul- brinter, 1 halogeneret aromatisk kul- brinte, 3 phenoler, 1 phthalat, 1 ether, 1 detergent	2-hydroxyatrazin, 2-hydroxysimazin, 4-nitrophenol Dalapon, Dichlorprop, Dinitro-o-cresol, Isoproturon Metamitron, Terbutylazine Trikloreddikesyre, Chloroform
Nickel et al (2021)	DE, Bayern	2016-2019	20 prøver fra 2 lo- kaliteter	Sedimentation	4 metaller, 4 PAH, 2 alkylphenoler, 3 PFAS, 8 pesticider, 1 phthalat, 1 flammehæmmer	PFBA, PFOA, PFOS Diethyltoluamid (DEET), Carbendazim, Terbutryn

Wicke et al (2021)	DE, Berlin. Parcelhus- kvarter og villaveje	2014-2015	18 RBU events	Ingen	8 metaller, 8 phthalater, 6 organophosphater, 20 pesticider, 16 PAH, 9 PBDE, 5 organotin, 7 PCB, 4 alkylphenoler, 2 bisphenoler, 5 benzothiazoler og -triazoler, 2 PFAS, 6 sporstofer (inkl. 1 sødestof, 1 lægemiddelstof)	Tris(2-butoxyethyl)phosphat Carbendazim, Isoproturon, Benzisothiazolinon, Desethylter- butylazin, Terbuthylazin, Terbutryn, DEET Hydroxybenzothiazol, Benzothiazol, Benzotriazol, Tolyltriazo- ler, Methylthiobenzothiazol 2-Phenylphenol, 4-tert-butylphenol Nikotin, Koffein, Acesulfam
Gladsaxe Kom- mune (2008)	DK, Gladsaxe. To områ- der med lejlighedsbebyg- gelse	2007	2 prøver fra 2 lo- kaliteter	Ingen	9 metaller, 3 chlorphenoler, 6 nitrofor- bindelser, 8 klorerede forbindelser, 18 phthalater, 16 PAH, 12 alkylphenoler, 2 bisphenoler, 29 pesticider, 6 alifater og aromater, 7 PCB	4-t-octylphenoler
Hvidovre Kommune (2008)	DK, Hvidovre. Tre regn- vandskanaler, som afle- der overfladeafstrømning fra boligområder, industri- områder og veje	2008	3 prøver fra 3 lo- kaliteter	Sedimentation i kanaler	9 metaller, 3 chlorphenoler, 6 nitrofor- bindelser, 8 klorerede forbindelser, 18 phthalater, 16 PAH, 12 alkylphenoler, 2 bisphenoler, 29 pesticider, 6 alifater og aromater, 7 PCB	2,4-dichlorprop, Clopyralid, Terbutylazin, DMST
COHIBA (2010)	DK, Ørestad. Tætbefolket urbant område med lejlig- hedsbyggeri og større veje	2010	2 prøver fra 1 lo- kalitet	Sandfilter og olie- udskiller	7 metaller, 4 organotin, 7 phthalater, 8 phenoler og alkylphenoler, 9 PAH, 6 pesticider, 17 dioxiner, 12 PCB, 36 chloral-kaner (C10-C17), 25 brommerede flammehæmmere, 17 PFAS	

TABEL 26. Opsummering af koncentrationsniveauer for MFS i fælleskloakerede spildevandsoverløb identificeret i litteraturundersøgelsen (jf. **TABEL 24**). EMC står for 'Event Mean Concentration'. For nogle stoffer er angivet forekomsten i antallet af prøver (%) i parentes.

Stofgruppe	Stofnavn	Koncentrationsniveauer målt i undersøgelser af CSO	Kommentarer til relevans i forhold til DK regnbetingede udledninger
Pesticider	Aminotriazol	0,13-0,46 μg/l (100%) (Gasperi et al, 2012)	Tidligere godkendt i DK, men nu forbudt
	Atrazin	≈ 30 ng/l (25%) (Gasperi et al, 2012) EMC 2,3 ng/l (Becouze-Lareure et al, 2019) >10 ng/l (1-5%) (Nickel et al, 2019)	Forbudt i DK siden 1996
	Carbendazim	15-42 ng/l (Launay et al, 2016) <10-41 ng/l (Nickel et al, 2021) >10 ng/l (55-65%) (Nickel et al, 2019)	Anvendes som konserveringsmiddel i byggematerialer
	Chlorfenvinfos	EMC 0,34 ng/l (Becouze-Lareure et al, 2019)	Forbudt i DK siden 2007
	DEET	13-114 ng/l (Launay et al, 2016) 18-490 ng/l (Nickel et al, 2021)	Salget i DK angivet til ca. 132 kg (Miljøstyrelsen salgsstatistik, 2018)
	Desethylatrazin	≈ 0,02 µg/l (25%) (Gasperi et al, 2012)	Nedbrydningsprodukt fra Atrazin, som er forbudt i DK
	Diazinon	<0,02-1,05 μg/l (15%) (Gasperi et al, 2008)	Ikke godkendt i EU
	Isoproturon	0,02-0,04 µg/l (100%) (Gasperi et al, 2012) EMC 1,5 ng/l (Becouze-Lareure et al, 2019) 25-180 ng/l (Launay et al, 2016) <10-40 ng/l (Nickel et al, 2021) >10 ng/l (45%) (Nickel et al, 2019)	Forbudt i DK siden 1999
	Metolachlor	>10 ng/l (25%) (Nickel et al, 2019)	Ikke godkendt i EU
	Oxadiazon	<0,02-0,54 μg/l (77%) (Gasperi et al, 2008)	Ikke godkendt i EU (siden 2018)
	Permethrin	<10-47 ng/l (Nickel et al, 2021)	Salget i DK angivet til 1.457 kg (Miljøstyrelsen salgsstatistik, 2018)
	Propiconazol	<0,06-0,21 μg/l (57%) (Gasperi et al, 2012)	Salget i DK angivet til 4.846 kg (Miljøstyrelsen salgsstatistik, 2018)
	Simazin	EMC 1,7 ng/l (Becouze-Lareure et al, 2019)	Ikke godkendt i EU
	Terbutryn	<60-160 ng/l (31%) (Gasperi et al, 2012) 55-122 ng/l (Launay et al, 2016)	Ikke godkendt i EU

		<10-60 ng/l (Nickel et al, 2021)	
		>10 ng/l (75%) (Nickel et al, 2019)	
	Therbutylazin	>10 ng/l (25%) (Nickel et al, 2019)	Godkendt i EU frem til ultimo 2024. Salget i DK angivet til ca. 1.500 kg (Miljøstyrelsen salgsstatistik, 2018)
Alkylphenoler	4-tert-butylphenol	≈ 0,1 µg/l (50%) (Gasperi et al, 2012)	Monomer i polymerfremstilling (polycarbonat). Muligt nedbrydnings- produkt fra polycarbonat. Registreret i EU som CMR og kandidatli- stestof. Tonnage EU: 10.000-100.000 ton (ECHA)
	4-tert-octylphenol	286-336 ng/l (Launay et al, 2016)	Nedbrydningsprodukt fra non-ionisk tensid. Hormonforstyrrende. PBT. SVHC. EU Kandidatliste-stof
Lægemiddel-	Atenolol	5-62 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 2.700 ng/l (DHI, 2021)
stoffer	Metoprolol	89-365 ng/l (Launay et al, 2016) >10 ng/l (100%) (Nickel et al, 2019)	Målt i tilløb til DK renseanlæg op til 2.600 ng/l (DHI, 2021)
	Bezafibrate	23-173 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 140 ng/l (DHI, 2021)
	Diatriozat	4-44 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 1.600 ng/l (DHI, 2021)
	lohexol	33-360 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 100.000 ng/l (DHI, 2021)
	Iomeprol	71-438 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 96.000 ng/l (DHI, 2021)
	Iopromid	5-806 ng/l (Launay et al, 2016)	Målt i tilløb til DK renseanlæg op til 80.000 ng/l (DHI, 2021)
	lopamidol	25-206 ng/l (Launay et al, 2016)	Ikke målt over DG i tilløb til DK renseanlæg (DHI, 2021)
Chloralkaner	C10-C13 chlorparaffin	15-50 μg/l (75%) (Gasperi et al, 2012) 0,028-0,2 μg/l (COHIBA, 2010)	Anvendes som blødgørere i plast, smøremidler i metalforarbejdning samt i fugemasser i bygninger. Målt i fælleskloakerede overløb i DK til 0,028-0,2 µg/l (COHIBA, 2010)
	C14-C17 chlorparaffin	0,13-0,82 μg/l (COHIBA, 2010)	Anvendes som blødgørere i plast, smøremidler i metalforarbejdning samt i fugemasser i bygninger. Målt i fælleskloakerede overløb i DK til 0,13-0,82 μg/l (COHIBA, 2010)
	Benzothiazol	282-1.037 ng/l (Launay et al, 2016)	Intet registreret forbrug i DK (SPIN)
	2-methylthiobenzothiazol	45-280 ngL (Launay et al, 2016)	Intet registreret forbrug i DK (SPIN)

Benzothiazoler og benzotria- zoler	1H-benzotriazol	358-1.793 ng/l (Launay et al, 2016) >10 ng/l (100%) (Nickel et al, 2019)	Bred anvendelse til fx frostmiddel, rengøringsmiddel, korrosionsinhibitor, smøremiddel, skæremiddel, malinger o.l, Et registreret forbrug på 8,5 tons i DK i 2019 (SPIN)
	5-methyl-1H-benzotriazol	190-1.058 ng/l (Launay et al, 2016) >10 ng/l (100%) (Nickel et al, 2019)	Et registreret forbrug på 0,5 tons i DK i 2019 (SPIN)
	4-methyl-1H-benzotriazol	224-1.027 ng/l (Launay et al, 2016) >10 ng/l (100%) (Nickel et al, 2019)	Intet registreret forbrug i DK (SPIN)
Phosphor-tri- estere og	Triethylphosphat	241-2.500 ng/l (Launay et al, 2016)	Anvendes i rengøringsmiddel og som additiv i plastik. Et registreret forbrug på 1 tons i DK i 2019 (SPIN)
phosphiner	Triisobutyl phosphat	165-224 ng/l (Launay et al, 2016)	Et registreret forbrug på 4 tons i DK i 2019 (SPIN)
	Tris(2-chloroethyl)phosphat	41-340 ng/l (Launay et al, 2016)	Anvendes som flammehæmmer. SVHC stof (CMR)
	Tris(1,3-dichloroisopro- pyl)phosphat	47-230 ng/l (Launay et al, 2016)	Anvendes som flammehæmmer (fx i tekstiler). Et forbrug i EU på 1.000-10.000 tons/år (ECHA)
	Tris(2-butoxyethyl)phosphat	78-4.100 ng/l (Launay et al, 2016)	Anvendes industrielt, i forbrugerprodukter (fx gulvpolering, malinger). Et registreret forbrug på 4 tons i DK i 2019 (SPIN) og med et forbrug i EU på 1.000-10.000 tons/år (ECHA)
	Triphenylphosphine oxid	44-146 ng/l (Launay et al, 2016)	Industrikemikalie, Har et forbrug i EU på 1.000-10.000 tons/år (ECHA)
Bromerede flamme- hæmmere	HBCDD	<5-16 ng/l (Nickel et al, 2021) <0,01-6,6 ng/l (COHIBA, 2010)	Flammehæmmer, EU kandidatstof
Dioxiner	HeptaCDD, OctaCDD, OctaCDF	0,48-0,65 pg/l WHO(2005)-PCDD/F TEQ (COHIBA, 2010)	Atmosfærisk deposition. Målt i fælleskloakerede overløb i DK til 0,48-0,65 pg/l (COHIBA, 2010)
Spildevands- sporstoffer	Acesulfam	812-5.314 ng/l (Launay et al, 2016) 1.200-4.800 ng/l (Nickel et al, 2021) >100 ng/l (100%) (Nickel et al, 2019)	Sødemiddel
	Sucralose	160-1.858 ng/l (Launay et al, 2016)	Sødemiddel
	Koffein	3.495-18.540 ng/l (Launay et al, 2016)	Levnedsmiddel
	Galaxolide	62-320 ng/l (Launay et al, 2016)	Parfumestof

|--|

TABEL 27. Opsummering af koncentrationsniveauer for MFS i separate regnvandsudledninger identificeret i litteraturundersøgelsen (jf. **TABEL 25**). EMC står for 'Event Mean Concentration'. For nogle stoffer er angivet forekomsten i antallet af prøver (%) i parentes.

Stofgruppe	Stofnavn	Koncentrationsniveauer målt i undersøgelser af separate RBU	Kommentarer til relevans i forhold til DK regnbetingede udledninger
Pesticider	Aminotriazol	142-528 ng/l (Zgheib et al, 2011) <30-3.250 ng/l (80%) (Zgheib et al, 2012)	Tidligere godkendt i DK, men nu forbudt
	Benzisothiazolinon	EMC 170 ng/l (Wicke et al, 2021)	Bred anvendelse som konserveringsmiddel
	Carbendazim	11-46 ng/l (Nickel et al, 2021) EMC 120 ng/l (Wicke et al, 2021)	Anvendes som konserveringsmiddel i byggematerialer
	Chlorfenvinfos	<50-120 ng/l (7%) (Zgheib et al, 2012)	Forbudt i DK siden 2007
	Clopyralid	150-700 ng/l (Hvidovre Kommune, 2008)	Tilladt i DK. Forbrug i 2017: 11.000 kg
	Dalapon	20 ng/l (Eriksson et al, 2007)	Ingen godkendte produkter med dalapon i DK
	DEET	<10-34 ng/l (Nickel et al, 2021) EMC 27 ng/l (Wicke et al, 2021)	Salget i DK angivet til ca. 132 kg (Miljøstyrelsen salgsstatistik 2018)
	DMST	<10-20 ng/l (Hvidovre Kommune, 2008)	Nedbrydningsprodukt fra Tolylflouanid. Er ikke længere godkendt i EU
	2-hydroxyatrazin	30 ng/l (Eriksson et al, 2007)	Nedbrydningsprodukt fra Atrazin, som er forbudt i DK
	2-hydroxysimazin	30 ng/l (Eriksson et al, 2007)	Nedbrydningsprodukt fra Simazin, som er forbudt i DK
	Desethylterbutylazin	EMC 54 ng/l (Wicke et al, 2021)	Nedbrydningsprodukt fra Terbutylazin (se dette stof)
	Dichlorprop	110 ng/l (Eriksson et al, 2007) <10-50 ng/l (Hvidovre Kommune, 2008)	Salg i DK 2017: 111,4 kg
	Dinitro-o-cresol	40 ng/l (Eriksson et al, 2007)	Ingen godkendte produkter i DK
	Isoproturon	4-82 ng/l (Zgheib et al, 2011) <10-140 ng/l (60%) (Zgheib et al, 2012)	Forbudt i DK siden 1999

		20 ng/l (Eriksson et al. 2007)	
		EMC 45 ng/l (Wicke et al, 2021)	
	Metamitron	40 ng/l (Eriksson et al, 2007)	Salg i DK 2017: 38.500 kg
	Metaldehyd	<50-62 ng/l (Zgheib et al, 2011) <20-580 ng/l (60%) (Zgheib et al, 2012)	Ingen godkendte produkter i DK
	Terbutryn	20-87 ng/l (Nickel et al, 2021) EMC 110 ng/l (Wicke et al, 2021)	Ikke godkendt i EU
	Terbutylazin	70 ng/l (Eriksson et al, 2007) EMC 66 ng/l (Wicke et al, 2021) <10-20 ng/l (Hvidovre Kommune, 2008)	Godkendt i EU frem til ultimo 2024. Salget i DK angivet til ca. 1.500 kg (Miljøstyrelsen salgsstatistik, 2018)
РСВ	Sum af 7 PCB	<219-311 ng/l (Zgheib et al, 2011) <10-727 ng/l (67-87%) (Zgheib et al, 2012) 0,52-1,4 ng/l (COHIBA, 2010)	Anvendes ikke mere, men forekommer i atmosfærisk deposition og via udvaskning fra bygningsflader
Organotin	MBT	91-120 ng/l (Zgheib et al, 2011) 14-572 ng/l (100%) (Zgheib et al, 2012) 16-18 ng/l (COHIBA, 2010)	Nedbrydningsprodukt fra TBT
	DBT	74-93 ng/l (Zgheib et al, 2011) <10-516 ng/l (79%) (Zgheib et al, 2012) 7-10 ng/l (COHIBA, 2010)	Nedbrydningsprodukt fra TBT
	ТВТ	50-78 ng/l (Zgheib et al, 2011) <10-78 ng/l (21%) (Zgheib et al, 2012) <4 ng/l (COHIBA, 2010)	Anvendes som træbeskyttelsesmiddel og pesticid
Nitro-forbindelser	4-nitrophenol	60 ng/l (Eriksson et al, 2007)	Anvendes i synteser. Der er ikke et registreret forbrug i DK
Chlorerede forbindelser	Dichlormethan	1,5-13 μg/l (Zgheib et al, 2011) <1-13 μg/l (44%) (Zgheib et al, 2012)	Opløsningsmiddel og proceskemikalie med bred anvendelse
	Trichlormethan	50 ng/l (Eriksson et al, 2007)	Anvendes som opløsningsmiddel og i syntesen af pesticider, farvestoffer og lægemidler. Nedbrydningsprodukt fra chlor
	Tetrachlorethylen	<0,02-1,3 µg/l (25%) (Zgheib et al, 2012)	Anvendes til kemisk rensning af tekstiler og metal, som opløs- ningsmiddel og i syntese af andre kemikalier

	Trichloreddikesyre	2,4 μg/l (Eriksson et al, 2007)	Nedbrydningsprodukt fra chlor. Ikke et registreret forbrug i DK (SPIN). EU tonnage på 100-1.000 t/år (ECHA)
PFAS	PFBA	<1-11 ng/l (Nickel et al, 2021) <3,3-60 ng/l (COHIBA, 2010)	
	PFOA	<1-8,1 ng/l (Nickel et al, 2021) 3,7-67 ng/l (COHIBA, 2010)	Nedbrydningsprodukter fra flere polyfluorerede organiske forbindelser anvendt i bl.a. brandslukningsskum
	PFOS	<1-4,1 ng/l (Nickel et al, 2021) <3,3-419 ng/l (COHIBA, 2010)	
Phenoler	2-Phenylphenol	EMC 320 ng/l (Wicke et al, 2021)	Biocid med et registreret forbrug på 0,3 tons i 2019 (SPIN)
	4-tert-butylphenol	131-203 ng/l (Zgheib et al, 2011) <50-200 ng/l (86%) (Zgheib et al, 2012) EMC 75 ng/l (Wicke et al, 2021)	Monomer i polymerfremstilling (polycarbonat). Muligt nedbrydningsprodukt fra polycarbonat. Registreret i EU som CMR og kandidatlistestof. Tonnage EU: 10.000-100.000 ton (ECHA)
	4-tert-octylphenol	107-262 ng/l (Zgheib et al, 2011) <50-260 ng/l (86%) (Zgheib et al, 2012)	Nedbrydningsprodukt fra non-ionisk tensid. Hormonforstyrrende. PBT. SVHC. EU Kandidatliste-stof. Sum af 4-t-octylphenoletho-xylater målt til 3,2 μ g/l i (Gladsaxe Kommune, 2008)
Benzothiazoler og	Benzothiazol	EMC 400 ng/l (Wicke et al, 2021)	Intet registreret forbrug i DK (SPIN)
Benzotriazoler	2-methylthiobenzothiazol	EMC 210 ng/l (Wicke et al, 2021)	Intet registreret forbrug i DK (SPIN)
	Hydroxybenzothiazol	EMC 300 ng/l (Wicke et al, 2021)	Reagens i petpidsyntese. Intet registreret forbrug i DK (SPIN). Et registreret EU forbrug på 10-1000 t/år (ECHA)
	Tolyltriazoler	EMC 420 ng/l (Wicke et al, 2021)	Anvendes generelt om den kommercielle blanding sammensat af 4- og 5-methylbenzotriazol med små mængder af 6- og 7-methylisomererne. Et registreret forbrug i DK på 2,5 tons (SPIN). Forskellige anvendelser (se 1H-benzotriazol)
	1H-benzotriazol	EMC 160 ng/l (Wicke et al, 2021)	Bred anvendelse til fx frostmiddel, rengøringsmiddel, korrosions- inhibitor, smøremiddel, skæremiddel, malinger o.l. Et registreret forbrug på 8,5 tons i DK i 2019 (SPIN)
Phosphor-triestere	Tris(2-butoxyethyl)-phos- phat	EMC 0,19 μg/l (Wicke et al, 2021)	Anvendes industrielt, i forbrugerprodukter (fx gulvpolering, malinger). Et registreret forbrug på 4 tons i DK i 2019 (SPIN) og med et forbrug i EU på 1.000-10.000 tons/år (ECHA)

HeptaCDD, OctaCDD, OctaCDF	0,41-1,4 pg/l WHO(2005)-PCDD/F TEQ (COHIBA, 2010)	Atmosfærisk deposition. Målt i separate regnvandudledninger i DK til 0,41-1,4 pg/l (COHIBA, 2010)
C10-C13 chlorparaffin	33 ng/l (COHIBA, 2010)	Anvendes som blødgørere i plast, smøremidler i metalforarbejdning samt i fugemasser i bygninger. Målt i separat regnvandsudledning i DK til 33 ng/l (COHIBA, 2010)
C14-C17 chlorparaffin	71 ng/l (COHIBA, 2010)	Anvendes som blødgørere i plast, smøremidler i metalforarbejdning samt i fugemasser i bygninger. Målt i separat regnvandsudledning i DK til 71 ng/l (COHIBA, 2010)
Acesulfam	EMC 0,3 μg/l (Wicke et al, 2021)	Sødemiddel
Koffein	EMC 0,81 µg/l (Wicke et al, 2021)	Levnedsmiddel
Nikotin	EMC 0,36 μg/l (Wicke et al, 2021)	Levnedsmiddel
	OctaCDF C10-C13 chlorparaffin C14-C17 chlorparaffin Acesulfam Koffein	OctaCDF (COHIBA, 2010) C10-C13 chlorparaffin 33 ng/l (COHIBA, 2010) C14-C17 chlorparaffin 71 ng/l (COHIBA, 2010) Acesulfam EMC 0,3 μg/l (Wicke et al, 2021) Koffein EMC 0,81 μg/l (Wicke et al, 2021)

Typetal for miljøfarlige forurenende stoffer i regnbetingede udledninger

Den nationale overvågning (NOVANA) måler miljøfarlige forurenende stoffer (MFS) i regnbetingede udledninger. På baggrund af denne overvågning fastsættes typetal for en række stoffer. Et typetal er en estimering af et gennemsnit for et givent stof i regnbetingede udledninger. Denne rapport er den første af sin slags om udarbejdelse af typetal for MFS i regnbetiingede udledninger. Til beregning af typetallene er der lagt vægt på at inkludere regnbetingede udledninger fra oplande, der primært repræsenterer bidrag fra husholdninger og boligområder med enfamiliehuse, og dermed oplande som er forholdsvis ens i oplandskarakteristikken. Tallene er derfor ikke beskrivende for områder med industri eller meget trafikerede veje. Tallene dækker udelukkende udledninger uden forudgående rensning og giver derfor ikke et billede af renseeffekten i regnvandsbassiner. Typetallene skal bidrage til miljøforvaltningen hos kommuner og Miljøstyrelsen.

Miljøstyrelsen Tolderlundsvej 5 5000 Odense C

www.mst.dk