

NAT: Neural Architecture Transformer for Accurate and Compact Architectures

Yong Guo*, Yin Zheng*, Mingkui Tan†, Qi Chen, Jian Chen†, Peilin Zhao, Junzhou Huang

BACKGROUND AND MOTIVATION

Neural architecture design is one of the key factors behind the success of deep neural networks. Limitations of existing methods include:

- Hand-crafted architecture design methods: rely heavily on substantial human expertise and cannot fully explore the whole architecture space.
- Neural architecture search (NAS) methods: often produce subopimal architectures with limited performance due to the extremely large search space.

Our solution: propose a novel Neural Architecture Transformer (NAT) method to optimize neural architectures for better performance and less computational cost.

CONTRIBUTIONS

- We propose a novel Neural Architecture Transformer (NAT) method to optimize any arbitrary architecture for better performance without extra computational cost.
- We cast the architecture optimization process into a Markov decision process (MDP) and employ graph convolution network (GCN) to learn the optimal policy on architecture optimization.
- Extensive experiments show the effectiveness of NAT on both handcrafted and NAS-based architectures.

PROBLEM DEFINITION

We divide the operations in the architecture graph into three categories, namely, O, S, N. O denotes the original computational module (e.g. convolution, max pooling or skip connection), Sdenotes the skip connection and N denotes the null connection.

Figure 1: Operation transition

- We have c(O) > c(S) > c(N), where $c(\cdot)$ is a function to evaluate the computational cost.
- We constrain the possible transitions among O, S, and N in Figure 1 to reduce the computational cost.
- We seek to learn a Neural Architecture Transformer (NAT) to transform any given architecture into a better one with the improved performance and less computational cost.

MARKOV DECISION PROCESS

Let $R(\alpha', w')$ denote the **performance measure** for architecture α' with parameters $w^{'}$, e.g. the validation accuracy on validation data set. Then the architure optimization problem can be formulated as:

$$\max_{\theta} \mathbb{E}_{\beta \sim p(\cdot)} \left[\mathbb{E}_{\alpha \sim \pi(\cdot|\beta;\theta)} R(\alpha|\beta) \right], \text{ s.t. } c(\alpha) \leq \kappa, \ \alpha \sim \pi(\cdot|\beta;\theta), \quad (1)$$

- $R(\alpha|\beta) = R(\alpha, w_{\alpha}) R(\beta, w_{\beta})$ denote the performance difference between the optimized architectures α and the given architectures β . w_{α} and w_{β} are the parameters of α and β , respectively.
- $\mathbb{E}_{\beta \sim p(\cdot)} \left[\mathbb{E}_{\alpha \sim \pi(\cdot|\beta;\theta)} R(\alpha|\beta) \right]$ indicates the expectation of $R(\alpha|\beta)$ over the distribution of the given architectures $\beta \sim p(\cdot)$ and the distribution of the optimized architectures $\alpha \sim \pi(\cdot|\beta;\theta)$.
- $c(\cdot)$ is a function to measure the computation cost of architectures and κ is an upper bound of the cost.

To solve problem (1), we reformulate the constrained optimization problem into a Markov decision process (MDP), where

- An architecture is defined as a state.
- A transformation mapping $\beta \to \alpha$ is defined as an action.
- The validation accuracy on validation set is regraded as reward.
- The policy $\pi(\cdot|\beta;\theta)$ parameterized by θ is a probability distribution of the action to transform β into the improved architecture α .

POLICY LEARNING BY GCN

We propose an efficient policy learning algorithm. That is, we use a two-layer GCN and formulate the model as:

$$\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \text{Softmax}\left(\mathbf{A}\sigma\left(\mathbf{A}\mathbf{X}\mathbf{W}^{(0)}\right)\mathbf{W}^{(1)}\mathbf{W}^{\text{FC}}\right),$$
 (2)

- A denotes the adjacency matrix of the architecture graph.
- X denotes the attributes of the nodes together with their two input edges in the graph.
- ullet $\mathbf{W}^{(0)}$ and $\mathbf{W}^{(1)}$ denote the **weights** of two graph convolution layers.
- ullet \mathbf{W}^{FC} denotes the **weight** of the fully-connected layer, σ is a **non**linear activation function.
- **Z** refers to the learned policy $\pi(\cdot|\beta;\theta)$.

TRAINING METHOD FOR NAT

Algorithm 1 Training method for Neural Architecture Transformer (NAT).

Require: The number of sampled input architectures in an iteration m, the number of sampled optimized architectures for each input architecture n, learning rate η , regularizer parameter λ , input architecture distribution $p(\cdot)$, shared model parameters w, transformer parameters θ . Initiate w and θ .

- while not convergent do
- for each iteration on training data do
- // Fix θ and update w.
- Sample $\beta_i \sim p(\cdot)$ to construct a batch $\{\beta_i\}_{i=1}^m$.
- Update the model parameters w by descending the gradient: $w \leftarrow w - \eta \frac{1}{m} \sum_{i=1}^{m} \nabla_w \mathcal{L}(\beta_i, w).$
- for each iteration on validation data do
- // Fix w and update θ .
- Sample $\beta_i \sim p(\cdot)$ to construct a batch $\{\beta_i\}_{i=1}^m$. Obtain $\{\alpha_j\}_{j=1}^n$ according to the policy learned by GCN.
- Update the parameters θ by descending the gradient: $\theta \leftarrow \theta \eta \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\nabla_{\theta} \log \pi(\alpha_{j} | \beta_{i}; \theta) \left(R(\alpha_{j}, w) R(\beta_{i}, w) \right) + \lambda \nabla_{\theta} H(\pi(\cdot | \beta_{i}; \theta)) \right].$
- 15: end for
- 16: end while

INFERRING THE OPTIMIZED ARCHITECTURES

 We first sample several candidate optimized architectures from the learned policy $\pi(\cdot|\beta;\theta)$ and then select the architectures with the highest validation accuracy.

RESULTS ON CIFAR-10 AND IMAGENET

Table 1: Comparison of the hand-crafted architectures obtained by different methods on CIFAR-10 and ImageNet. "/" denotes the original models.

	CIFAR-10		ImageNet							
Model	Method	#Params (M)	#MAdds (M)	Acc. (%)	Model	Method	#Params (M)	#MAdds (M)	Acc. Top-1	(%) Top-5
	/	15.2	313	93.56		/	138.4	15620	71.6	90.4
VGG16	NAO	19.5	548	95.72	VGG16	NAO	147.7	18896	72.9	91.3
	NAT	15.2	313	96.04		NAT	138.4	15620	74.3	92.0
ResNet20	/	0.3	41	91.37	ResNet18	/	11.7	1580	69.8	89.1
	NAO	0.4	61	92.44		NAO	17.9	2246	70.8	89.7
	NAT	0.3	41	92.95		NAT	11.7	1580	71.1	90.0
ResNet56	/	0.9	127	93.21	ResNet50	/	25.6	3530	76.2	92.9
	NAO	1.3	199	95.27		NAO	34.8	4505	77.4	93.2
	NAT	0.9	127	95.40		NAT	25.6	3530	77.7	93.5
MobileNetV2	/	2.3	91	94.47	MobileNetV2	/	3.4	300	72.0	90.3
	NAO	2.9	131	95.05		NAO	4.5	513	72.2	90.6
	NAT	2.3	91	95.37		NAT	3.4	300	72.7	91.1

Table 2: Comparison of the optimized architectures obtained by different methods based on NAS based architectures. "-" denotes that the results are not reported. "/" denotes the original models that are not changed by architecture optimization methods. † denotes the models trained with cutout.

	CIFAR-10		ImageNet							
Model	Method	#Params (M)	#MAdds (M)	Acc. (%)	Model	Method	#Params (M)	#MAdds (M) -	Acc. (%)	
									Top-1	Top-5
AmoebaNet [†]		3.2	-	96.73	AmoebaNet		5.1	555	74.5	92.0
$PNAS^\dagger$	/	3.2	_	96.67	PNAS	/	5.1	588	74.2	91.9
$SNAS^\dagger$		2.9	_	97.08	SNAS		4.3	522	72.7	90.8
GHN^\dagger		5.7	-	97.22	GHN		6.1	569	73.0	91.3
ENAS [†]	/	4.6	804	97.11	ENAS	/	5.6	679	73.8	91.7
	NAO	4.5	763	97.05		NAO	5.5	656	73.7	91.7
	NAT	4.6	804	97.24		NAT	5.6	679	73.9	91.8
DARTS [†]	/	3.3	533	97.06	DARTS	/	5.9	595	73.1	91.0
	NAO	3.5	577	97.09		NAO	6.1	627	73.3	91.1
	NAT	3.0	483	97.28		NAT	3.9	515	74.4	92.2
NAONet [†]	/	128	66016	97.89	NAONet	/	11.35	1360	74.3	91.8
	NAO	143	73705	97.91		NAO	11.83	1417	74.5	92.0
	NAT	113	58326	98.01		NAT	8.36	1025	74.8	92.3

• NAT achieves the best performance with less computation cost.

COMPARISON OF VARIOUS POLICY LEARNERS

Table 3: Performance comparison of the architectures obtained by different methods on CIFAR-10. The reported accuracy (%) is the average performance of five runs with different random seeds. "/ denotes the original models that are not changed by architecture optimization methods. † denotes the models trained with cutout.

Method	VGG	ResNet20	MobileNetV2	ENAS [†]	DARTS [†]	NAONet [†]
/	93.56	91.37	94.47	97.11	97.06	97.89
Random Search	93.17	91.56	94.38	96.58	95.17	96.31
LSTM	94.45	92.19	95.01	97.05	97.05	97.93
Maximum-GCN	94.37	92.57	94.87	96.92	97.00	97.90
Sampling-GCN (Ours)	95.93	92.97	95.13	97.21	97.26	97.99

• Sampling-GCN outperforms other policies and inference methods.

VISUALIZATION OF ARCHITECTURES

Figure 2: Visualization of some optimized hand-crafted architectures

Figure 3: Visualization of some optimized NAS-based architectures

NAT replaces the original operations with less computational ones.

CONTACT INFORMATION

- Correspondence to: Prof. Mingkui Tan
- Email: mingkuitan@scut.edu.cn
- School: South China University of Technology