Convolutional Neural Networks

Stephen Baek

Fully Connected Layer

- 28 x 28 image \rightarrow stretch to 784 x 1
- 64 x 64 x 3 image → stretch to 12288 x 1

• ...

Fully Connected Layer

- 28 x 28 image \rightarrow stretch to 784 x 1
- 64 x 64 x 3 image → stretch to 12288 x 1

• ...

Hubel & Wiesel (1959 ~)

Neurons in the visual cortex respond selectively to oriented edges. Neurons in visual cortex typically respond vigorously to a bar of light oriented at a particular angle and weakly or not at all to other orientations.

Hubel & Wiesel (1959 ~)

Warning!! Visually Disturbing

Topographic Maps in Cortex

- Each visual sensitive cell only responses to stimuli of a limited region (receptive field)
- (Dayan and Abbott 2001)

- Neighboring cells have partially overlapping receptive fields
- Neighboring points in a visual image evoke activity in neighboring regions of visual cortex
- In this manner, the visual system easily maintain the information of the spatial location of stimulus

The human visual system

Image Courtesy: Kandel, "Reductionism in Art and Brain Science," 2016

- Retina: visual input
- Retina → Lateral Geniculate Nucleus
 - Visual information flows through the optic nerve
- Lateral Geniculate Nucleus (LGN):
 - A small, ovoid object at the end of the optic tract
 - One on each side of the brain
 - In humans, each LGN has six layers of neurons
 - Sends information to the primary visual cortex (V1)

e.g. Facial Recognition

- Holistic face detection
 - "Face cell" in the inferior temporal cortex
 - Fires when there is a face-like object

Convolutional Neural Networks

Key idea:

• As like how we (humans) understand a visual scene, if neural nets could see small pieces, understand patterns and textures, combine the pieces to see a bigger picture, computers should be able to recognize images.

A bonus:

- Typical neural networks are "fully connected".
- In an image domain, this means all the pixels are interconnected.
- However, pixels far apart have no significant meaning...
- By connecting only the nearing neighbors, computational load could be much lower.

Convolve the kernel with the image! In other words...

"slide the kernel over the image, compute dot products each time."

Conv kernels are trainable

A closer look...

Convolution

$$(f * g)(t) \coloneqq \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

A closer look...

• 2D Discrete Convolution

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Convolved Feature

A closer look...

• 2D Discrete Convolution

→ 5x5 output

Now with stride 2

Now with stride 2

Now with stride 2

→ 3x3 output

How about with stride 3?

How about with stride 3?

How about with stride 3?

→ ...?

Output size:

(N-f)/stride + 1

Example, N=7, f=3:

Stride 1: (7-3)/1 + 1 = 5

Stride 2: (7-3)/2 + 1 = 3

Stride 3: (7-3)/3 + 1 = 2.3333

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output size:

(N-f)/stride + 1

Q. 7x7 input, 3x3 kernel, with stride 1, padded with 1 pixel. Output size?

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output size:

(N-f)/stride + 1

Q. 7x7 input, 3x3 kernel, with stride 1, padded with 1 pixel. Output size?

→ 7x7

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output size:

(N-f)/stride + 1

- Q. 7x7 input, 3x3 kernel, with stride 1, padded with 1 pixel. Output size?
- → 7x7
- Q. 7x7 input, 3x3 kernel, with stride 3. You want to make 3x3 output, padding?

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output size:

(N-f)/stride + 1

- Q. 7x7 input, 3x3 kernel, with stride 1, padded with 1 pixel. Output size?
- → 7x7
- Q. 7x7 input, 3x3 kernel, with stride 3. You want to make 3x3 output, padding?
- **\rightarrow** 1

Pooling Layers

- Pooling == ConvNet way of downsampling
- "Reduce the image size" to obtain smaller but more manageable features
- Receptive fields becomes relatively larger as the image size gets smaller
- Operates over each activation map independently

Max Pooling

- A non-linear down-sampling method
- An image is partitioned into a set of (non-overlapping) rectangles.
- The maximum of each such sub-region is sampled.

VGG Networks

Abstraction of an Image

Conv2D + MaxPooling + Conv2D + MaxPooling + Conv2D + MaxPooling

+ ...

Abstraction of an Image

• Final decision is made by the fully-connected layers:

