Triplet

Objective

The objective of the problem is to introduce the importance of complexity analysis in algorithm design.

Problem Description

Given a list of N integers, find the minimum and maximum value of the product of the triplets.

Input

The first line of the input is N (3 <= N <= 50,000). The next line contains N integers, whose values are between -1000 and 1000 inclusive.

Output

The output contains 2 integers, i.e. the minimum and maximum value of the triplets.

Sample Input

5 3 -2 -10 0 1

Sample Output

-30 60

Explanation

The possible triplets are:

- 1. $(3, -2, -10) \rightarrow \text{value} = 60$
- 2. $(3, -2, 0) \rightarrow \text{value} = 0$
- 3. $(3, -2, 1) \rightarrow \text{value} = -6$
- 4. $(3, -10, 0) \rightarrow \text{value} = 0$
- 5. $(3, -10, 1) \rightarrow \text{value} = -30$
- 6. $(3, 0, 1) \rightarrow \text{value} = 0$
- 7. $(-2, -10, 0) \rightarrow \text{value} = 0$
- 8. $(-2, -10, 1) \rightarrow \text{value} = 20$
- 9. $(-2, 0, 1) \rightarrow \text{value} = 0$
- 10. $(-10, 0, 1) \rightarrow \text{value} = 0$

Note

The main Java class must be called **Triplet**, and be in the source file **Triplet.java**.

Marking

- You will only gain a maximum of 85% for this section if a $O(N^3)$ solution is implemented correctly.
- You will gain a maximum of 100% for this section if a O(N²) solution is implemented correctly.
- You will gain a maximum **bonus** of 5% for this section if a O(N logN) solution is implemented correctly.
- You will gain a maximum **bonus** of 10% for this section if a O(N) solution is implemented correctly.