

Departamento de Produção e Sistemas

Mestrado Integrado em Engenharia Informática

> Métodos Determinísticos de Investigação Operacional

TRABALHO 2

Gestão de Projeto

Bruno Pereira Aluno nº 72628

Resumo

Este relatório tem como objetivo apresentar a experiência de modelação e resolução dos casos propostos na realização do 1º trabalho prático da unidade curricular de Modelos Determinísticos de Investigação Operacional. Além da apresentação dos modelos, procuram-se justificar detalhadamente todas as decisões tomadas.

O relatório encontra-se dividido por capítulos, em que cada capítulo corresponde a uma parte do trabalho.

Conteúdo

1	Part	e 1										
	1.1	Análise do problema										
	1.2	Modelo										
		1.2.1 Parâmetros										
		1.2.2 Variáveis de decisão										
		1.2.3 Função objetivo										
		1.2.4 Restrições										
	1.3	Ficheiro Input										
	1.4	Output produzido pelo Relax4										
	1.5	Resultado										
	1.6	Validação do Modelo										
		1.6.1 Variáveis de Decisão										
		1.6.2 Função objetivo										
		1.6.3 Restrições										
2	Part											
	2.1	Análise Problema										
	2.2	Modelo Primal — Trabalho 1										
		2.2.1 Parâmetros										
		2.2.2 Variáveis de decisão										
		2.2.3 Função Objetivo										
		2.2.4 Restrições										
	2.3	Construção do modelo dual do Trabalho 1										
		2.3.1 Variáveis de decisão										
		2.3.2 Restrições										
		2.3.3 Função objetivo										
		2.3.4 Construção do modelo dual — concretização										
	2.4	Conclusão										
2	D4	arte 3										
3	Part											
	3.1	1										
	3.2											
	3.3											
	3.4											
	3.5	Ficheiro de <i>input</i> de <i>Relax4</i>										
	3.6	Output produzido pelo Relax 4										
	3.7	Resultado 23 Validação do modelo 23										
	3.8	3 Validação do modelo										

3.8.1	Variáveis de decisão	23
3.8.2	Restrições	23

1. Parte 1

1.1 Análise do problema

Neste capítulo, pretende-se criar o modelo do caminho mais longo — ou caminho crítico —, como um modelo de transportes em rede. No problema do caminho crítico os nós correspondem atividades e a as arestas unidirecionais representam as precedências entre atividades. Assim, a rede pode ser entendida como um projeto, no qual as atividades devem ser realizadas obedecendo à ordem das precedências. De notar que, o caminho mais longo é a duração mínima do projeto.

Figura 1.1: Grafo Inicial do enunciado

Antes de partir para a formulação do modelo, foi necessário saber qual a rede a considerar. À rede fornecida no enunciado (figura 1.1) foi necessário retirar dois nós, de acordo com a metodologia apresentada na secção *Determinação da Lista de Atividades* presente no final do enunciado. O número de aluno do autor deste relatório é o nº 72628. Logo o número mais alto é o 72628, então D=2 e E=8, sendo por isso os nodos 2 e 8 a ser retirados da rede. A rede resultante da remoção destes dois nós tem a representação gráfica mostrada na figura 1.2:

Figura 1.2: Grafo resultante da remoção das atividades 2 e 8, com indicação da duração de cada atividade (em unidades de tempo arbitrárias)

1.2 Modelo

1.2.1 Parâmetros

Os parâmetros deste modelo são as precedências e as durações de cada atividade, bem como as capacidades do arco orientado, as ofertas e as procuras em cada nodo.

1.2.2 Variáveis de decisão

Como já se mencionou anteriormente pretende-se achar o caminho crítico do grafo orientado. Cada arco terá um valor binário, i.e., 1 caso o arco faça parte do caminho, 0 caso contrário, considerando que se injeta uma unidade de fluxo no vértice inicial. Para o efeito, as variáveis de decisão serão nomeadas X_{I_J} para a representação dos arcos, tal que a atividade I precede a atividade J. Assim, X_{2_4} representa a aresta que vai da atividade 2 para a atividade 4.

1.2.3 Função objetivo

No caminho mais longo em programação linear, a função objetivo é uma expressão que indica a duração de um caminho, onde se pretende que tome o maior valor possível. Trata-se por isso de um problema de maximização. Todavia neste trabalho pretende-se achar o caminho crítico, modelando o problema como um problema de transportes em rede, ou seja pretende-se minimizar o custo de transporte, neste caso de uma unidade de fluxo da atividade inicial até à final, satisfazendo a oferta e a procura em cada nó do grafo. Adiante nesta capítulo esclarecer-se-á a transformação necessária do primeiro para o segundo modelo.

As variáveis de decisão indicam os arcos que fazem ou não parte de um caminho, tanto num caso como no outro. A essas variáveis de decisão associaram-se os custos de cada um dos arcos. Considerou-se que cada arco tem um custo associado à origem desse arco. Por exemplo, o arco $X_{0_{-}1}$ tem origem na atividade 0 e destino na atividade 1, e terá um custo de 4, visto ser essa a duração da atividade 0. Considera-se que a atividade não tem duração para efeitos práticos, no entanto a passagem de uma atividade para outra passa a assumir a duração.

A função objetivo será o somatório de todos os custos de cada arco multiplicado pela participação desse arco no caminho crítico. No modelo de programação linear, para determinar a duração mínima, temos que:

$$\max z = \sum C_{I_J} \times X_{I_J}$$

Onde:

 C_{IJ} Custo associado ao arco que vai de I para J — parâmetro do problema

 X_{I_J} Variável de decisão indicativa se o arco faz ou não parte do caminho, conforme detalhado na secção 1.2.2.

Para a transformação deste modelo num modelo de transportes em rede considerou-se o uso do método simplex dual. A solução com este método é simétrica da solução do simplex primal. Assim:

$$\max z = \sum C_{I_J} \times X_{I_J} \Leftrightarrow -\min -z = \sum -C_{I_J} \times X_{I_J}$$

Expandindo a expressão e substituindo os valores de C_{I_J} pelos valores de custos do enunciado, juntamente com as variáveis de decisão, temos a seguinte expressão:

```
- min: - 0 Xini_0 - 0 Xini_6 - 4 X0_1 - 4 X0_4

- 6 X1_3 - 2 X3_fim - 9 X4_3 - 9 X4_5

- 4 X5_3 - 4 X5_fim - 5 X6_7 - 5 X6_10

- 6 X7_4 - 6 X7_5 - 6 X7_9 - 2 X9_fim

- 8 X10_5 - 8 X10_9 - 8 X10_11

- 7 X11_9;
```

1.2.4 Restrições

No modelo de transportes em rede as restrições podem ser: restrições de conservação de fluxo e restrições aos limites superiores e inferiores das capacidades de cada arco. Dado que para este modelo se considera que uma unidade de fluxo entra no nodo inicial e sai do nodo final, nada pode permanecer no grafo, i.e., em cada nó o fluxo de entrada = fluxo de saida.

Assim temos que:

```
fluxo\ entrada = fluxo\ saida \Leftrightarrow fluxo\ entrada - fluxo\ saida = 0
```

Ao ter a equação escrita da segunda forma, considera-se implicitamente o fluxo de entrada como sendo positivo e o fluxo de saída como negativo, neste caso 1 e -1.

Com a utilização do método simplex dual estas restrições veriam, todos os sinais a inverteremse. No entanto, como as todas as restrições são equações e não inequações, não há nenhum efeito nestas pelo simplex dual. Ou seja, assumamos o arcos fictícios Xa_b e Xb_c , numa restrição também fictícia onde $Xa_b - Xb_c = 0$. Com o método dual esta restrição fica como $-Xa_b + Xb_c = 0$, que é equivalente a primeira. Assim $Xa_b - Xb_c = 0$ \Leftrightarrow $-Xa_b + Xb_c = 0$.

Estas restrições correspondem à procura e oferta em cada nó.

Dado que apenas entra e sai uma unidade de fluxo no grafo, a quantidade que passa em cada arco será sempre um, pelo que o limite superior terá que ser 1. Não obstante, as restrições de não-negatividade serão sempre o limite inferior.

As restrições completas do modelo podem ser vistas na secção 1.3.

Para utilizar o Relax4 foi necessário renomear alguns nodos, como demonstra a figura:

Figura 1.3: Grafo com nodos renomeados

1.3 Ficheiro Input

O ficheiro de *input* é constituído pela função objetivo e restrições, detalhadas em secções anteriores.

```
12
20
1
       2
                0
                        1
1
       6
                0
                        1
6
       7
              -5
                         1
6
     10
              -5
                         1
2
       4
              -4
2
       3
              -4
                         1
3
       8
              -6
                         1
4
       5
              -9
                         1
       8
4
              -9
                         1
5
       8
              -4
                         1
5
     12
              -4
                         1
7
       4
              -6
7
       5
              -6
                         1
7
       9
              -6
                         1
10
       5
              -8
                         1
10
     11
              -8
                         1
10
       9
              -8
                         1
11
       9
              -7
                        1
9
     12
              -2
                        1
8
     12
              -2
                        1
1
0
0
0
0
0
0
0
```

-1

1.4 Output produzido pelo Relax4

O *output* apresentado a seguir foi obtido por *copy-paste* direto resultante da execução do *Relax4* para o ficheiro de *input* apresentado anteriormente:

```
END OF READING
NUMBER OF NODES = 12, NUMBER OF ARCS = 20
CONSTRUCT LINKED LISTS FOR THE PROBLEM
CALLING RELAX4 TO SOLVE THE PROBLEM
 ********
TOTAL SOLUTION TIME = 0. SECS.
TIME IN INITIALIZATION = 0. SECS.
  1 6
       1.
  6 7
      1.
  4 5 1.
  5 8 1.
  7 4 1.
  8 12
       1.
OPTIMAL COST = -26.
NUMBER OF AUCTION/SHORTEST PATH ITERATIONS = 38
NUMBER OF ITERATIONS = 12
NUMBER OF MULTINODE ITERATIONS = 1
NUMBER OF MULTINODE ASCENT STEPS =
NUMBER OF REGULAR AUGMENTATIONS =
 *********
```

1.5 Resultado

De acordo com o ficheiro de *output* obtido, o caminho mais longo tem a duração de 26 unidades de tempo (multiplicando por -1, devido ao uso do método de simplex dual) e é o que passa pelas arestas X_{ini_6} , X_{6_7} , X_{7_4} , X_{4_5} , X_{5_3} e X_{3_fim} . Em termos gráficos, o resultado é o apresentado na figura 1.4. As setas de linha cheia indicam as arestas que fazem parte do caminho mais longo, e os nós por onde esse caminho passa foram colocados a verde.

Figura 1.4: Grafo com indicação do caminho crítico obtido. Os valores em cada nó representam a duração (em unidades de tempo) da respetiva atividade

Este resultado indica que as atividades 6,7,4,5 e 3 devem ser vigiadas de perto e deve-se tentar garantir que são executadas nos tempos previstos, sem atrasos, caso contrário todo o projeto será atrasado.

1.6 Validação do Modelo

Para validar os resultados, tanto na função objetivo como nas restrições, substituímos os valores das variáveis de decisão pelo valor que estas tomam na solução que o lp_solve indica como ótima. A ideia é verificar que os valores das variáveis de decisão obtidos confirmam o valor da função objetivo obedecendo a todas as restrições.

Para evitar ao máximo o erro humano, a substituição de variáveis foi feita recorrendo a ferramentas que auxiliaram a substituição automática das variáveis pelo seu valor.

1.6.1 Variáveis de Decisão

No resultado obtido todas as variáveis são de facto binárias, tomam apenas o valor de 0 ou 1, tal como esperado.

1.6.2 Função objetivo

Depois da substituição das variáveis pelo seu valor, a função objetivo fica:

$$0*0+0*1+4*0+4*0+6*0+2*1+9*0+9*1+4*1+4*0+5*1+5*0+6*1+6*0+6*0+2*0+8*0+8*0+7*0=26$$

Inserindo a expressão numa calculadora verifica-se que a expressão é igual a 26, o que confirma o resultado obtido com o *Relax4*.

1.6.3 Restrições

• Nodo Inicio

$$1 - X_{ini_6} - X_{ini_0} = 0$$
$$1 - 1 - 0 = 0$$

• Nodo 0

$$X_{ini_0} - X_{0_1} - X_{0_4} = 0$$
$$0 - 0 - 0 = 0$$

• Nodo 1

$$X_{0_{-}1} - X_{1_{-}3} = 0$$
$$0 - 0 = 0$$

• Nodo 3

$$X_{1_3} + X_{4_3} + X_{5_3} - X_{3_fim} = 0$$

 $0 + 0 + 1 - 1 = 0$

• Nodo 4

$$X_{0_4} + X_{7_4} - X_{4_3} - X_{4_5} = 0$$
$$0 + 1 - 0 - 1 = 0$$

• Nodo 5

$$X_{4_5} + X_{7_5} + X_{10_5} - X_{5_3} - X_{5_fim} = 0$$

 $1 + 0 + 0 - 1 - 0 = 0$

• Nodo 6

$$X_{ini_6} - X_{6_7} - X_{6_10} = 0$$
$$1 - 1 - 0 = 0$$

• Nodo 7

$$X_{6_7} - X_{7_4} - X_{7_5} - X_{7_9} = 0$$
$$1 - 1 - 0 - 0 = 0$$

• Nodo 9

$$X_{7_{-}9} + X_{10_{-}9} + X_{11_{-}9} - X_{9_{-}fim} = 0$$
$$0 + 0 + 0 - 0 = 0$$

• Nodo 10

$$X_{6_10} - X_{10_5} - X_{10_9} - X_{10_11} = 0$$
$$0 - 0 - 0 - 0 = 0$$

• Nodo 11

$$X_{10_11} - X_{11_9} = 0$$
$$0 - 0 = 0$$

• Nodo Fim

$$X_{3_fim} + X_{5_fim} + X_{9_fim} - 1 = 0$$

 $1 + 0 + 0 - 1 = 0$

Assim conclui-se que todas as restrições são respeitadas.

2. Parte 2

2.1 Análise Problema

O problema do Trabalho 1 tratava da descoberta do tempo em que cada atividade é iniciada, sabendo que todas as atividades são realizadas.

2.2 Modelo Primal — Trabalho 1

2.2.1 Parâmetros

Os parâmetros do problema são a duração de cada atividade e as suas precedências.

2.2.2 Variáveis de decisão

As variáveis de decisão correspondem ao tempo em que cada atividade é iniciada. Assim, a cada atividade está associada uma variável de decisão. Relativamente ao nome, a opção tomada foi a de considerar T_i como o tempo de início da atividade i (em unidades de tempo arbitrárias), em que i corresponde ao número da atividade. Uma vez que apenas se pretende conhecer os tempos de início de cada atividade, estas são as únicas variáveis deste modelo.

2.2.3 Função Objetivo

Neste modelo, quer-se minimizar o tempo de execução total do projeto. Isso corresponde a dizer que queremos que a atividade final seja iniciada o mais cedo possível. A atividade final é na verdade "fictícia", pois não corresponde a uma atividade que tenha de ser efetivamente realizada. De igual modo, atividade inicial é "fictícia". No entanto para efeitos de modelação, é útil considerá-las, para efeitos de modelação do modelo dual. Assume-se que a atividade final é realizada após todas as outras da rede terem terminado e que tem duração de 0 unidades de tempo. A atividade inicial tem, de igual modo, duração de 0 unidades de tempo, sendo pertinente usá-la para a transfonação no modelo dual. Nestas condições, o tempo inicial da atividade final indica a duração do projeto.

Uma vez que a variável T_{fim} indica a duração do projeto, a função objetivo fica simplesmente:

$$\min z = T_{fim} - T_{ini}$$

A variável T_{ini} está aqui para efeitos de futura modelação do dual.

2.2.4 Restrições

Com as restrições pretende-se indicar o espaço de possíveis soluções. Sabe-se que uma atividade não pode começar sem que as que lhe precedem tenham terminado. Qualquer solução que obedeça a este princípio é uma solução admissível para o problema. Para escrever as restrições é por isso necessário saber quando uma atividade termina. Ora, sabendo que as variáveis de decisão usadas indicam o tempo em que cada atividade se inicia e que se tem a duração das mesmas como parâmetro do modelo, pode-se dizer que o tempo final de uma atividade corresponde a somar o seu tempo de início com a sua duração. Ou seja:

$$Tf_i = T_i + D_i$$

Onde:

 Tf_i Tempo em que a atividade i termina

 T_i Tempo em que a atividade i começa (variável de decisão)

 D_i Duração da atividade i

Dizer que uma atividade não pode começar sem que as que lhe precedem tenham terminado é o mesmo que dizer que o tempo inicial da atividade tem que ser maior que o tempo final de todas as atividades que lhe precedem. Assumindo que se tem uma atividade j que precede uma atividade i, pode-se escrever que:

$$T_i \geq T_i + D_i$$

O modelo terá por isso uma restrição deste tipo por cada nodo e por cada atividade precedente ao nodo. Ou seja, um nó que tenha apenas 1 precedência, apenas originará uma restrição, enquanto que se o nodo tiver por exemplo 3 precedências, dará origem a 3 restrições — uma restrição para cada precedência do nodo.

A variável T_{ini} não é considerada nas restrições, como nó inicial uma vez que não possui duração. As restrições completas:

• Nodo 0

$$T_0 > T_{ini} + 0$$

• Nodo 1

$$T_1 \ge T_0 + 4$$

• Nodo 3

$$T_3 \ge T_1 + 6$$

 $T_3 \ge T_5 + 4$
 $T_3 \ge T_4 + 9$

• Nodo 4

$$T_4 \ge T_0 + 4$$
$$T_4 \ge T_7 + 6$$

Nodo 5

$$T_5 \ge T_4 + 9$$

 $T_5 \ge T_7 + 6$
 $T_5 \ge T_{10} + 8$

• Nodo 6

$$T_6 \geq T_{ini} + 0$$

• Nodo 7

$$T_7 > T_6 + 5$$

• Nodo 9

$$T_9 \ge T_7 + 6$$

 $T_9 \ge T_{11} + 7$
 $T_9 \ge T_{10} + 8$

• Nodo 10

$$T_{10} \ge T_6 + 5$$

• Nodo 11

$$T_{11} \geq T_{10} + 8$$

• Nodo final

$$T_{fim} \ge T_3 + 2$$
$$T_{fim} \ge T_5 + 4$$
$$T_{fim} \ge T_9 + 2$$

Visto que os tempos não podem ser negativos, neste modelo tem-se ainda restrições de nãonegatividade:

$$T_i \ge 0, \forall i_{\in \{ini,0,1,3,4,5,6,7,9,10,11,fim\}}$$

2.3 Construção do modelo dual do Trabalho 1

2.3.1 Variáveis de decisão

Dado o problema primal anterior, é necessário associar variáveis de decisão duais ao modelo Y_i , para cada restrição i do problema anterior descrito. Por exemplo, uma restrição no modelo primal é $T_{ini} \geq 0$. Como essa é a primeira linha, então a variável dual associada a essa restrição é Y1.

Cada variável de decisão na função objetivo tem um custo associado. A variável T_{fim} tem custo 1 e a variável T_{ini} tem custo -1. Todas as outras variáveis $T_i \forall i_{\in \{0,1,3,4,5,6,7,9,10,11\}}$ têm o custo 0. No modelo dual, estes valores corresponderão ao coeficiente de valor constante em cada inequação.

2.3.2 Restrições

Para cada variável de decisão do problema primal $T_i \forall i_{\in \{ini,0,1,3,4,5,6,7,9,10,11,fim\}}$ procuraramse ocorrências destas nas linhas de cada restrição, sendo depois associada a variável Y_i dessa linha, multiplicada pelo custo de T_i no modelo primal que ocorre nessa linha. Por exemplo, a variável T_{ini} ocorre na linhas de Y_1 , Y_2 Y_{12} , sendo o seu custo 1, -1 e -1, respetivamente. Como já foi dito, o custo da variável de de decisão na função objetivo passa a ser o valor do coeficiente constante da inequação da restrição, associado a T_i . O problema primal é de minimização e está na forma canónica (restrições de \geq). Então o dual é de maximização e todas as restrições serão de \leq . Para o exemplo dado, a nova restrição do modelo dual passa a ser:

$$Y_1 - Y_2 - Y_{12} \le -1$$

2.3.3 Função objetivo

Para a função objetivo do modelo dual, cada valor dos coeficientes constantes das restrições do modelo primal será o custo associado à variável Y_i nessa linha da restrição correspondente. Por exemplo, para $X_{ini} \geq 0$ cuja variável dual associada é Y_1 , na função objetivo do modelo dual estará $0 \times Y_i$.

De igual modo, como referido anteriormente, o modelo primal é de maximização, logo o seu dual é de minimização.

2.3.4 Construção do modelo dual — concretização

Neste passo, colocaram-se em evidencia os valores constantes das restrições do modelo primal, correspondentes às durações das atividades, assim como as variáveis duais Yi para cala linha. Assim, temos que:

	Nodo		_ >=	= 0	 	•	Y1
	Nodo		>=	4	 		Y2
T3 T3	Nodo - - -	T1 T5		4	 • • •	•	Y4
T4	Nodo - -	ΤO	>= >=				
T5 T5	Nodo - -	Т4 Т7	>=	6			Y8 Y9 Y10
	Nodo -		_ >	·= 0	 	•	Y11
	Nodo -		>=	5	 	•	Y12
T9 T9	Nodo - - -	T7 T11	>=	= 7		•	Y13 Y14 Y15
	Nodc) –		>=	= 5	 	•	Y16
	Nodo L –			·= 8	 	•	Y17
Tf:	Node im - im -	- T3	} >				Y18 Y19 Y20

A função objetivo com os custos associados, obtidos do valor das das durações das atividades figura da seguinte forma:

As restrições resultantes no processo anteriormente descrito são as seguintes:

De igual modo, é necessário acrescer as restrições de não-negatividade. Assim:

$$Y_i \ge 0 \ \forall i \in [1, 20] \cap \mathbb{N}$$

2.4 Conclusão

Pode-se concluir que o modelo dual é um modelo do caminho crítico. Perante o modelo dual construído, podem-se identificar o cumprimento dos requisitos de um modelo do género:

- Entra na rede uma unidade de fluxo.
- Sai da rede uma unidade de fluxo.
- O fluxo de entrada em cada nó é igual ao fluxo de cada nó de saída.
- As variáveis de decisão do modelo dual são binárias, e correspondem a arcos na rede, onde podem assumir o valor 1 se pertencem ao caminho, 0 caso contrário.
- As durações são todas positivas na função objetivo, que correspondem a durações no modelo do caminho crítico.

3. Parte 3

3.1 Análise do problema

Nesta 3ª parte do trabalho pretende-se introduzir o conceito do JIT *just-in-time*. O JIT preconiza a redução das folgas existentes entre o fim de uma atividade e o início da atividade que a segue. As restrições de JIT podem ser generalizadas, para exprimir que o instante de início da segunda operação deve acontecer num instante de tempo menor ou igual do que o instante de fim da primeira operação.

3.2 **Ponto 1**

Considerando o gráfico inicial, pretende-se impor que a atividade 2 comece imediatamente depois da atividade 1 ter começado, ou seja, $T_2 \leq T_1 + D_1$ onde T_2 é o tempo da atividade 2, T_1 é o tempo da atividade 1 e D_1 a duração requerida para a atividade 1. Generalizando $T_j \leq T_i + D_i$, onde T_j é o tempo da atividade j, T_i é o tempo da atividade i e e D_1 a duração requerida para a atividade i., tal que i precede j.

Com esta restrição, podemos achar o caminho mais longo até à atividade 2, para calcular em seguida o tempo em que atividade 1 pode começar no instante mais cedo, através da inequação anteriormente referida. Temos que, a duração no arco da atividade 1 para atividade 2 é igual a 6, que a duração da atividade 1. Então $T_2 \le T_1 + 6$

Como tal, o caminho mais longo para o nodo $2 \in 6$ ->7->4->2, onde as durações somadas são $T_2=5+6+9=20$. Não se considera o tempo da atividade 2 pois esta ainda não foi realizada. Para obter o valor do T_1 , temos que $20 \le T_1+6 \Leftrightarrow T_1 \ge 20-6 \Leftrightarrow T_1 \ge 14$. Com a restrição de precedência da atividade 1 com a atividade $2 (T_2 \ge T_1+6)$ ficamos com $T_1=14$, que é o instante mais cedo que a atividade 1 pode começar.

3.3 **Ponto 2**

As atividades escolhidas do grafo gerado para este trabalho são as atividade 1 e 3. Então $T_3 \leq T_1 + D_1 \Leftrightarrow T_3 \leq T_1 + 6$. Acrescentou-se esta restrição no modelo para resolução no lp_solve, com o mesmo *output* apresentado na secção anterior, com o acréscimo desta restrição

O output produzido pelo lp_solve é o seguinte:

Value of objective function: 26

Actual	values	of	the	variables:
Tfim				26
ΤO				0
Tini				0
T1				18
Т3				24
T5				20
T4				11
Т7				5
T10				5
T6				0
T9				20
T11				13

O output produzido pelo lp_solve sem a restrição é o seguinte:

Value of objective function: 26

Actual	values	of	the	variables:
Tfim				26
ΤO				0
Tini				0
T1				4
Т3				24
T5				20
T4				11
T7				5
T10				5
T6				0
T9				20
T11				13

Come se pode ver a atividade 1, ao contrário do modelo do trabalho 1, adiantou-se para poder cumprir a restrição.

3.4 Ponto 3

Como já foi anteriormente referido nas anteriores secções (Parte I — descrição das restrições e Parte II — passagem das restrições para variáveis de decisão, neste caso arcos, sendo o modelo primal baseado em nodos), a passagem de uma restrição no modelo primal para dual passa de uma restrição para um arco, sendo o arco em questão $X_{3\,\,1}$, a partir da restrição mencionada anteriormente.

3.5 Ficheiro de input de Relax4

```
12
21
1
      2
             0
                    1
      6
1
             0
                    1
6
      7
            -5
                     1
6
    10
            -5
                    1
2
      4
            -4
                     1
2
      3
            -4
                     1
3
      8
            -6
                     1
4
      5
            -9
                    1
      8
4
            -9
                    1
5
      8
            -4
                    1
5
    12
            -4
                     1
7
      4
            -6
                     1
7
      5
            -6
                     1
7
      9
            -6
                     1
10
      5
            -8
                    1
10
     11
            -8
                    1
10
      9
            -8
                    1
      9
            -7
11
                    1
9
     12
            -2
                    1
     12
            -2
8
                    1
                    1 -> restrição JIT
8
      3
            6
1
0
0
0
0
0
0
0
0
0
0
-1
```

3.6 Output produzido pelo Relax 4

```
END OF READING
NUMBER OF NODES = 12, NUMBER OF ARCS = 21
 CONSTRUCT LINKED LISTS FOR THE PROBLEM
CALLING RELAX4 TO SOLVE THE PROBLEM
 *******
 TOTAL SOLUTION TIME = 0. SECS.
 TIME IN INITIALIZATION = 0. SECS.
  1 6 1.
  6 7 1.
  3 8 1.
  4 5
      1.
  5 8 1.
  7 4 1.
  8 12 1.
  8 3 1.
 OPTIMAL COST = -26.
 NUMBER OF AUCTION/SHORTEST PATH ITERATIONS = 55
NUMBER OF ITERATIONS = 7
NUMBER OF MULTINODE ITERATIONS = 1
NUMBER OF MULTINODE ASCENT STEPS = 1
NUMBER OF REGULAR AUGMENTATIONS = 1
 *******
```

3.7 Resultado

De acordo com o ficheiro de *output* obtido, o caminho mais longo tem a duração de 26 unidades de tempo (multiplicando por -1, devido ao uso do método de simplex dual) e é o que passa pelas arestas X_{ini_6} , X_{6_7} , X_{7_4} , X_{1_3} , X_{3_1} X_{4_5} , X_{5_3} e X_{3_fim} . Em termos gráficos, o resultado é o apresentado na figura 3.1. As setas de linha cheia indicam as arestas que fazem parte do caminho mais longo, e os nós por onde esse caminho passa foram colocados a verde.

Figura 3.1: Novo caminho critico

3.8 Validação do modelo

Para validar os resultados, tanto na função objetivo como nas restrições, substituímos os valores das variáveis de decisão pelo valor que estas tomam na solução que o *Relax4* indica como ótima. A ideia é verificar que os valores das variáveis de decisão obtidos confirmam o valor da função objetivo obedecendo a todas as restrições.

3.8.1 Variáveis de decisão

No resultado obtido todas as variáveis são de facto binárias, tomam apenas o valor de 0 ou 1, tal como esperado.

3.8.2 Restrições

Nodo Inicio

$$1 - X_{ini_6} - X_{ini_0} = 0$$
$$1 - 1 - 0 = 0$$

• Nodo 0

$$X_{ini_0} - X_{0_1} - X_{0_4} = 0$$
$$0 - 0 - 0 = 0$$

• Nodo 1

$$X_{0_{-}1} - X_{1_{-}3} + X_{3_{-}1} = 0$$
$$0 - 1 + 1 = 0$$

• Nodo 3

$$X_{1_3} + X_{4_3} + X_{5_3} - X_{3_fim} - X_{3_1} = 0$$

 $1 + 0 + 1 - 1 + 1 = 0$

• Nodo 4

$$X_{0_4} + X_{7_4} - X_{4_3} - X_{4_5} = 0$$
$$0 + 1 - 0 - 1 = 0$$

• Nodo 5

$$X_{4_5} + X_{7_5} + X_{10_5} - X_{5_3} - X_{5_fim} = 0$$

 $1 + 0 + 0 - 1 - 0 = 0$

• Nodo 6

$$X_{ini_6} - X_{6_7} - X_{6_10} = 0$$
$$1 - 1 - 0 = 0$$

• Nodo 7

$$X_{6_7} - X_{7_4} - X_{7_5} - X_{7_9} = 0$$

1 - 1 - 0 - 0 = 0

• Nodo 9

$$X_{7_{-}9} + X_{10_{-}9} + X_{11_{-}9} - X_{9_{-}fim} = 0$$
$$0 + 0 + 0 - 0 = 0$$

• Nodo 10

$$X_{6_10} - X_{10_5} - X_{10_9} - X_{10_11} = 0$$
$$0 - 0 - 0 - 0 = 0$$

• Nodo 11

$$X_{10_11} - X_{11_9} = 0$$
$$0 - 0 = 0$$

• Nodo Fim

$$X_{3_fim} + X_{5_fim} + X_{9_fim} - 1 = 0$$

 $1 + 0 + 0 - 1 = 0$

Assim conclui-se que todas as restrições são respeitadas.