Algorytmy probabilistyczne

Lista zadań nr 4

1. Wykazać następujący fakt, z którego często korzysta się: Niech X_1,\ldots,X_n będą niezależnymi zmiennymi losowymi o wartościach 0-1 oraz $X=\sum_{i=1}^n X_i$. Niech $\mu=E[X]$ oraz $\mu_L\leq\mu\leq\mu_H$. Wtedy dla dowolnej $\delta>0$

$$Pr(X \ge (1+\delta)\mu_H) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_H}.$$

Podobnie wykazać, że dla dowolnej $0 < \delta < 1$ zachodzi

$$Pr(X \le (1-\delta)\mu_L) \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu_L}.$$

- 2. Rozważamy ciąg n niezależnych zmiennych losowych X_1,\ldots,X_n o wartościach ze zbioru $\{0,1,2\}$ wybieranych z prawdopodobieństwem $\frac{1}{3}$. Niech $X=\sum_{i=1}^n X_i$ oraz $0<\delta<1$. Wyprowadzić nierówności ogonowe Chernoffa na $Pr(X\leq (1-\delta)n)$ oraz $Pr(X\geq (1+\delta)n)$.
- 3. Dany jest algorytm zrandomizowany Monte Carlo, który może dać błędną odpowiedź TAK/NIE z prawdopodobieństwem błędu $\leq 1/2-1/p(n)$ przy wejściu rozmiaru n, gdzie p(n) jest wielomianem. Używając nierówności Chernoffa wyznaczyć liczbę powtórzeń tego algorytmu, która wystarczy do zredukowania prawdopodobieństwa popełnienia błędu do 2^{-n} .
- 4. Rozważmy następujący problem zero-jedynkowej aproksymacji wektora: dana jest macierz A rozmiaru $n \times n$ o elementach 0-1 oraz wektor p rozmiaru n liczb wymiernych z przedziału [0,1]. Wyznaczyć należy wektor q rozmiaru n o wartościach 0-1, który minimalizuje $||A(p-q)||_{\infty}$. Stosując metodę losowego zaokrąglania przyjmujemy, że q_i ma wartość 1 z prawdopodobieństwem p_i . Znaleźć oszacowanie na $||A(p-q)||_{\infty}$, które zachodzi z dużym prawdopodobieństwem.
- 5. Wykazać, że zrandominizowany QuickSort (RandQS) działa w czasie $O(n\log n)$ z dużym prawdopodobieństwem.

20 marca 2019 Marek Piotrów