Dimensionality reduction

Victor Kitov v.v.kitov@yandex.ru

Yandex School of Data Analysis

Table of Contents

- Dimensionality reduction intro
- Principal component analysis

Dimensionality reduction

Feature selection / Feature extraction

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs on data storage, transfer and processing
 - memory
 - disk
 - CPU usage
- remove multi-collinearity to improve performance of some machine-learning models

Categorization of dimensionality reduction methods

Supervision:

- supervised
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Principal components analysis - linear unsupervised method of dimensionality reduction.

Table of Contents

- Dimensionality reduction intro
- Principal component analysis
 - Definition
 - Application details

Dimensionality reduction - Victor Kitov
Principal component analysis
Definition

- Principal component analysis
 - Definition
 - Application details

Projections, orthogonal complements

- For point x and subspace L denote:
 - p: the projection of x on L
 - h: orthogonal complement
 - x = p + h, $\langle p, h \rangle = 0$.
- For training set $x_1, x_2, ... x_N$ and subspace L find:
 - projections: $p_1, p_2, ...p_N$
 - orthogonal complements: $h_1, h_2, ... h_N$.

Best subspace fit¹

Definition 1

Best-fit k-dimensional subspace for a set of points $x_1, x_2, ... x_N$ is a subspace, spanned by k vectors $v_1, v_2, ... v_k$, solving

$$\sum_{n=1}^{N} ||h_n||^2 \to \min_{v_1, v_2, \dots v_k}$$

Proposition 1

Vectors $v_1, v_2, ... v_k$, solving

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{v_1, v_2, \dots v_k}$$

also define best-fit k-dimensional subspace.

¹Prove equivalence of these definitions.

Definition of PCA

Definition 2

Principal components $a_1, a_2, ... a_k$ are vectors, forming orthonormal basis in the k-dimensional subspace of best fit.

- Properties:
 - Not invariant to translation:
 - center data before PCA:

$$x \leftarrow x - \mu$$
 where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$

- Not invariant to scaling:
 - scale features to have unit variance before PCA

Example: line of best fit

 In PCA the sum of squared perpendicular distances to line is minimized:

• What is the difference with least squares minimization in regression?

Example: plane of best fit

Dimensionality reduction - Victor Kitov
Principal component analysis
Application details

- Principal component analysis
 - Definition
 - Application details

Quality of approximation

Consider vector x. Since all D principal components form a full othonormal basis, x can be written as

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_D \rangle a_D$$

Let p^K be the projection of x onto subspace spanned by first K principal components:

$$p^{K} = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$$

Error of this approximation is

$$h^K = x - p^K = \langle x, a_{K+1} \rangle a_{K+1} + \dots + \langle x, a_D \rangle a_D$$

Quality of approximation

Using that $a_1, ... a_D$ is an orthonormal set of vectors, we get

$$\|x\|^{2} = \langle x, x \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$
$$\|p^{K}\|^{2} = \langle p^{K}, p^{K} \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{K} \rangle^{2}$$
$$\|h^{K}\|^{2} = \langle h^{K}, h^{K} \rangle = \langle x, a_{K+1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$

We can measure how well first K components describe our dataset $x_1, x_2, ... x_N$ using relative loss

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (1)

or relative score

$$S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|p_n^K\|^2}$$
 (2)

Evidently L(K) + S(K) = 1.

Application details

Contribution of individual component

Contribution of a_k for explaining x is $\langle x, a_k \rangle^2$. Contribution of a_k for explaining $x_1, x_2, ... x_N$ is:

$$\sum_{n=1}^{N} \langle x_n, a_k \rangle^2$$

Explained variance ratio:

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{d=1}^{D} \sum_{n=1}^{N} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

- Explained variance ratio measures relative contribution of component a_k to explaining our dataset $x_1, ... x_N$.
- Note that $\sum_{k=1}^K E(a_k) = S(K)$.

How many principal components to select?

- Data visualization: 2 or 3 components.
- Take most significant components until their explained variance ratio falls sharply down:

• Or take minimum K such that $L(K) \le t$ or $S(K) \ge 1 - t$, where typically t = 0.95.

Constructive definition of PCA

- **1** a_1 is selected to maximize $||Xa_1||$ subject to $\langle a_1, a_1 \rangle = 1$
- ② a_2 is selected to maximize $\|Xa_2\|$ subject to $\langle a_2, a_2 \rangle = 1$, $\langle a_2, a_1 \rangle = 0$
- ② a_3 is selected to maximize $||Xa_3||$ subject to $\langle a_3, a_3 \rangle = 1$, $\langle a_3, a_1 \rangle = \langle a_3, a_2 \rangle = 0$ etc.
 - It can be proved that:
 - $a_1, ... a_k$ form k-dimensional subspace of best fit.
 - $a_1, a_2, ...$ are first, second,... eigenvectors of $X^T X$ (ordered by decreasing eigenvalue).