

Equilíbrio iônico: Kps

Quer ver esse material pelo Dex? clique aqui

Resumo

Constante do produto de solubilidade (KPS)

Sabemos que cada composto possui um grau ou **coeficiente de solubilidade**, que é a relação/divisão entre a quantidade do composto em questão(soluto) e a quantidade de água que formam uma **solução saturada** desse soluto. Ou seja, se a quantidade de soluto pela quantidade de água de uma solução supera a solubilidade desse composto, a quantidade excedente do mesmo se cristaliza e precipita, formando o **precipitado**, para evitar que a solução fique supersaturada.

O que vamos estudar aqui é o **equilíbrio** que se estabelece **entre os íons dissociados do soluto e o precipitado** (íons não dissociados), atingido quando a velocidade de dissolução se iguala à de precipitação. Acontece assim com o cloreto de sódio, por exemplo:

$$NaCl_{(s)} \rightleftharpoons Na^+_{(aq)} + Cl^-_{(aq)}$$

Como todo bom equilíbrio químico, este também tem sua constante, seu padrão que varia com a temperatura: a **constante do produto de solubilidade**. Para o caso do NaCl, calculamos da seguinte forma:

$$K_{PS} = [Na^{+}][Cl^{-}]$$

Obs: Sólidos não entram na equação da constante de equilíbrio, lembra disso? Segue a regra.

Solubilidade (S) de um soluto é a **concentração** dele (geralmente concentração molar) que fica dissociada na solução, que não compõe o precipitado, a determinada temperatura. Logo, as concentrações de Na⁺ e Cl⁻ que entram na equação do K_{PS} são, cada uma, justamente a solubilidade do NaCl.

Assim, se sabemos o valor de S do NaCl, calculamos o K_{PS} dele assim:

$$K_{PS} = S \times S$$

$$K_{PS} = S^2$$

Que tal mais um exemplo para entender 100%? Vamos ao PbCl₂. Considerando que a solubilidade dele a 25°C seja S. Qual será o seu K_{PS}, na mesma temperatura?

$$PbCl_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2 Cl^{-}_{(aq)}$$

Se a solubilidade do $PbCl_2$ é S, a concentração de íons Pb^{2+} na solução será S e a de Cl^- será 2S, já que a proporção de $PbCl_2$: Pb^{2+} : Cl^- é 1:1:2. Logo, K_{PS} será:

$$K_{PS} = [Pb^{2+}][Cl^{-}]^{2}$$
 $K_{PS} = S.(2S)^{2}$
 $K_{PS} = 4S^{3}$

Exercícios

- **1.** Sabendo que o produto de solubilidade do cloreto de prata vale 1,80·10⁻¹⁰, podemos dizer que a solubilidade desse sal em água é (em mol/L)
 - a) $3,26 \times 10^{-20}$
 - **b)** 0.90×10^{-10}
 - **c)** $1,80 \times 10^{-10}$
 - **d)** $3,60 \times 10^{-5}$
 - **e)** $1,34 \times 10^{-5}$
- **2.** A solubilidade do fluoreto de cálcio, a 18 °C, é 2.10⁻⁵ mol/litro. O produto de solubilidade desta substância na mesma temperatura é:
 - **a)** 8.0×10^{-15}
 - **b)** 3.2×10^{-14}
 - c) 4×10^{-14}
 - **d)** 2×10^{-5}
 - **e)** 4×10^{-5}
- **3.** Não devem ser lançadas em cursos d'água naturais, soluções aquosas contendo altas concentrações de íons Hg²⁺(aq). Uma recomendação para "remover" tais íons, altamente poluidores e tóxicos, é precipitá-los sob forma de sulfeto de mercúrio (II), HgS. O produto de solubilidade desse sal em água é da ordem de 10⁻⁵⁴. Sendo assim, a "remoção" é tal que, estatisticamente, para dissolver-se um único íon Hg²⁺ contido no HgS, seria necessário um volume de água da ordem de (constante de Avogadro aproximada: 10²⁴ mol⁻¹)
 - a) dez mil litros.
 - b) mil litros.
 - c) cem litros.
 - d) dez litros.
 - e) um litro.

4. Nas estações de tratamento da água, comumente provoca-se a formação de flocos de hidróxido de alumínio para arrastar partículas em suspensão. Suponha que o hidróxido de alumínio seja substituído pelo hidróxido férrico. Qual a menor concentração de íons Fe^{3+,} em mol/L, necessária para provocar a precipitação da base, numa solução que contém 1,0 · 10⁻³ mol/L íons OH?

Dado: Produto de solubilidade do Fe(OH)₃ = $6.0 \cdot 10^{-38}$

- a) 2.0×10^{-41}
- **b)** 2.0×10^{-38}
- **c)** 2.0×10^{-35}
- **d)** 6.0×10^{-35}
- **e)** 6.0×10^{-29}
- **5.** O produto de solubilidade do carbonato de cálcio (CaCO₃), que apresenta solubilidade de 0,013 g/L a 20°C, é:
 - a) $1,69 \times 10^{-4}$
 - **b)** $1,69 \times 10^{-8}$
 - c) $1,30 \times 10^{-2}$
 - **d)** $1,30 \times 10^{-8}$
 - **e)** $1,69 \times 10^{-2}$
- **6.** Os sulfetos metálicos são encontrados em grande quantidade na natureza. Sabendo-se que a 25°C o produto de solubilidade do sulfeto de Zn (ZnS) vale 1,3 · 10⁻²³, determine sua solubilidade, em mol/L, nessa temperatura.
 - **a)** $3.6 \cdot 10^{-12}$
 - **b)** $3.6 \cdot 10^{-8}$
 - **c)** $3,49 \cdot 10^2$
 - **d)** 360 · 10¹
 - **e)** $3,49 \cdot 10^5$
- **7.** A determinada temperatura, a solubilidade do sulfato de prata em água é 2,0 · 10⁻² mol/L. O produto de solubilidade (Kps) desse sal à mesma temperatura é:
 - **a)** $4.0 \cdot 10^{-4}$
 - **b)** $8.0 \cdot 10^{-4}$
 - c) $6.4 \cdot 10^{-5}$
 - **d)** $3,2 \cdot 10^{-5}$
 - **e)** 8,0 · 10⁻⁵

8. Uma forma de identificar a presença de íons Cu²+ em solução aquosa, mesmo em baixas concentrações, é acrescentar amônia. Forma-se um íon complexo que confere à solução uma cor azul intensa. Dessa forma, quando a amônia é acrescentada a um sistema químico no qual ocorre o equilíbrio de solubilidade

$$Cu^{2+}_{(aq)}$$
 + 2 $OH^{\bullet}_{(aq)} \rightleftharpoons Cu(OH)_{2(s)}$

o mesmo:

- a) mantém-se inalterado, mas a solução sobrenadante torna-se ácida.
- b) mantém-se inalterado, mas a solução sobrenadante fica mais básica.
- c) sofre perturbação e estabelece-se outro estado de equilíbrio no qual a quantidade de precipitado é maior.
- **d)** sofre perturbação e estabelece-se outro estado de equilíbrio no qual a quantidade de precipitado é menor ou inexistente.
- e) sofre perturbação e estabelece-se outro estado de equilíbrio no qual a concentração de íons OH_(aq) é menor ou inexistente.
- **9.** Considere a adição de fluoreto de cálcio (CaF₂) a uma solução aquosa de fluoreto de estrôncio (SrF₂), contendo como corpo de fundo SrF₂ sólido, contidos em um béguer

Nessa adição, com agitação, quantos mols de CaF₂ se dissolverão, considerando 1 litro de solução saturada de SrF₂? (Desprezar a contribuição de F⁻ proveniente da dissolução do CaF₂).

Dados: Solubilidade do $SrF_2 = 9 \cdot 10^{-4} \text{ mol/L Kps}$, $CaF_2 = 3.2 \cdot 10^{-11}$

- a) 1 · 10⁻⁵ mol/L
- **b)** 2 · 10⁻⁵ mol/L
- c) 3 · 10⁻⁵ mol/L
- d) 4 · 10⁻⁵ mol/L
- e) 5 ⋅ 10⁻⁵ mol/L

- **10.** Preparam-se duas soluções saturadas, uma de oxalato de prata (Ag₂C₂O₄) e outra de tiocianato de prata (AgSCN). Esses dois sais têm, aproximadamente, o mesmo produto de solubilidade (da ordem de 10⁻¹²). Na primeira, a concentração de íons prata é [Ag+]1 e, na segunda, [Ag+]2; as concentrações de oxalato e tiocinato são, respectivamente, [C₂O₄ ²⁻] e [SCN-]. Nesse caso, é correto afirmar que:
 - a) $[Ag^+]1 = [Ag^+]2 e [C_2O_4^{2-}] < [SCN^-]$
 - **b)** $[Ag^+]1 > [Ag^+]2 e [C_2O_4^{2-}] > [SCN^-]$
 - c) $[Ag^+]1 > [Ag^+]2 e [C_2O_4^{2-}] = [SCN^-]$
 - **d)** $[Ag^+]1 < [Ag^+]2 e [C_2O_4^{2-}] < [SCN-]$
 - **e)** $[Ag^+]1 = [Ag^+]2 e [C_2O_4^{2-}] > [SCN^-]$

Gabarito

1. E

Equilíbrio químico: $AgC\ell(s) \rightleftharpoons Ag^{+}(aq) + C\ell^{-}(aq)$

Solubilidade: X

Expressão do produto de solubilidade: $K_{ps} = [Ag^{\dagger}]$. $[C\ell]$

Cálculo da solubilidade: 1,8 . $10^{-10} = (X) . (X) \rightarrow X^2 = 18 . 10^{-11} \rightarrow X = 1,34 . 10^{-5} mol/L$

2. B

Equilíbrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$

Solubilidade: 2.10-5M 4.10-5M

Expressão do produto de solubilidade: Kos = [Ca2+] . [F-]2

Cálculo do K_{ps} : $K_{ps} = (2.10^{-5}) \cdot (4.10^{-5})^2 = 2 \cdot 10^{-5} \cdot 16 \cdot 10^{-10} = 3,2 \cdot 10^{-14}$

3. B

Equilibrio químico: $HgS(s) \rightleftharpoons Hg^{2+}(aq) + S^{2-}(aq)$

Solubilidade: X X

Expressão do produto de solubilidade: Kps = [Hg2+]. [S2-]

Cálculo da solubilidade: $10^{-54} = (X)$. $(X) \rightarrow X^2 = 10^{-54} \rightarrow X = 10^{-27} \text{ mol/L}$

Cálculo do volume de água para dissolver 1 íon Hg²⁺:

1 íon
$$Hg^{+2}$$
. $\frac{Imol Hg^{2+}}{10^{24} ions Hg^{2+}}$. $\frac{IL água do mar}{10^{-27} mol Hg^{2+}} = 1000L de água$

4. E

Equilibrio químico: $Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3 OH(aq)$

Solubilidade: X 1.10⁻³M

Expressão do produto de solubilidade: Kps = [Fe3+] . [OH1]3

Cálculo da [Fe³⁺] na solução saturada: $6.10^{-38} = [Fe^{3+}] \cdot (10^{-3})^3 \rightarrow [Fe^{3+}] = 6.10^{-29} \text{ mol/L}$

5. B

Cálculo da concentração molar: $\frac{0.013 \text{g CaCO}_3}{1 \text{L de solução}} \cdot \frac{1 \text{mol CaCO}_3}{100 \text{g CaCO}_3} = 1.3.10^{-4} \text{ mol/L}$

Equilíbrio químico: $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$

Solubilidade: 1,3.10⁻⁴M 1,3.10⁻⁴M

Expressão do produto de solubilidade: Kps = [Ca2+] . [SO42-]

Cálculo do K_{ps} : $K_{ps} = (1,3.10^{-4}).(1,3.10^{-4}) = 1,69,10^{-8}$

6. A

Equilíbrio químico: $ZnS(s) \rightleftharpoons Zn^{2+}(aq) + S^{2-}(aq)$

Solubilidade: X X

Expressão do produto de solubilidade: Kps = [Zn2+] . [S2-]

Cálculo da solubilidade: 1,3 . $10^{-23} = (X)$. $(X) \rightarrow X^2 = 13$. $10^{-22} \rightarrow X = 3,6$. 10^{-12} mol/L

7. D

Equilíbrio químico: $Ag_2SO_4(s) \rightleftharpoons 2 Ag^+(aq) + 1 SO_4^{2-}(aq)$

Solubilidade: 4.10⁻² M 2.10⁻² M

Expressão do produto de solubilidade: $K_{ps} = [Ag^{+}]^{2}$. $[SO_{4}^{2-}]$

Cálculo do K_{ps} : $K_{ps} = (4.10^{-2})^2 \cdot (2.10^{-2}) = 16 \cdot 10^{-4} \cdot 2 \cdot 10^{-2} = 32 \cdot 10^{-6} = 3.2 \cdot 10^{-5}$

8. C

A adição de amônia à solução aquosa indicada origina íons OH^- no meio: $NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$. A presença adicional dos íons OH^- , aumenta a concentração destes no equilíbrio, para que a constante do equilíbrio permaneça inalterada, o equilíbrio será deslocado para a direita ocorrendo precipitação do sólido.

9. A

Equilibrio químico: $SrF_2(s) \rightleftharpoons Sr^{2+}(aq) + 2 F(aq)$

Solubilidade: 9.10⁻⁴M 18.10⁻⁴M

Cálculo da [Ca2+] na solução saturada de CaF2:

Equilibrio químico: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F(aq)$

Solubilidade: X 18.10⁻⁴M

Expressão do produto de solubilidade: $K_{ps} = [Ca^{2+}] \cdot [F^-]^2 \rightarrow 3,2 \cdot 10^{-11} = [Ca^{2+}] \cdot (18.10^{-4})^2 \rightarrow [Ca^{2+}] = 1 \cdot 10^{-5} \text{ mol/L}$

10. B

Equilibrio químico: $Ag_2C_2O_4(s) \rightleftharpoons 2 Ag^+(aq) + C_2O_4^{2-}(aq)$

Solubilidade: 2X)

Expressão do produto de solubilidade: Kps = [Ag+]2. [C2O42-]

Cálculo da solubilidade: $10^{-12} = (2X)^2$. $(X) \rightarrow 4X^3 = 10^{-12} \rightarrow X = 6,3$. 10^{-5} mol/L Com isso ficamos com: $[Ag^+]_1 = 1,26$. 10^{-4} mol/L $[C_2O_4^{2-}]_1 = 6,3$. 10^{-5} mol/L

Equilíbrio químico: AgSCN (s) \rightleftharpoons Ag+(aq) + SCN-(aq)

Solubilidade: X X

Expressão do produto de solubilidade: Kps = [Ag+] . [SCN-]

Cálculo da solubilidade: $10^{-12} = (X) \cdot (X) \rightarrow X^2 = 10^{-12} \rightarrow X = 1 \cdot 10^{-6} \text{ mol/L}$

Com isso ficamos com: $[Ag^{+}]_{2} = 1 \cdot 10^{-6} \text{ mol/L e } [C_{2}O_{4}^{2-}] = 1 \cdot 10^{-6} \text{ mol/L}$

Portanto temos: $[Ag^{+}]_{1} > [Ag^{+}]_{2} e [C_{2}O_{4}^{2-}] > [SCN^{-}]$