DM 11.

Exercice 1

Soient A et B deux parties d'un espace vectoriel normé E. On pose

$$d(A, B) = \inf\{\|a - b\|, a \in A, b \in B\}$$

- 1. Dans cette question $E = \mathbb{R}^2$, A est l'axe des abscisses et $B = \{(x, y), xy = 1\}$. Démontrer que A et B sont deux parties fermées de E et montrer que d(A, B) = 0.
- 2. Dans cette question, on suppose que A et B sont deux compacts tels que $A \cap B = \emptyset$. Démontrer qu'il existe $(a,b) \in A \times B$ tel que $d(A,B) = \|a-b\|$. En déduire que cette distance est non nulle.

Exercice 2

Rédiger l'exercice 65 du TD (exercice d'oral CCP)

Problème : une suite de fractions rationnelles

On pose $A_0(x) = \operatorname{sh} x$ (sinus hyperbolique) et pour tout $n \ge 0$ on définit par récurrence $A_{n+1}(x) = \int_0^x t A_n(t) dt$.

- 1. Calculer A_1 et A_2 . Etudier la parité de A_n , son signe et ses variations.
- 2. Montrer que pour tout $n \geq 2$ et tout x réel on a l'égalité :

$$A_n(x) = -(2n-1)A_{n-1}(x) + x^2 A_{n-2}(x)$$
(R)

- 3. Soit b un réel positif. Etablir les inégalités $0 \le A_1(x) \le \frac{x^2}{2} \operatorname{sh} b$ et $0 \le A_2(x) \le \frac{x^4}{8} \operatorname{sh} b$ valables pour tout $x \in [0,b]$. Etablir un encadrement analogue pour $A_n(x)$.
- 4. Montrer la convergence simple de la suite de fonctions (A_n) . Démontrer que la convergence est uniforme sur tout segment, mais pas sur \mathbb{R} .
- 5. Etablir l'existence et l'unicité des polynômes U_n et V_n tels que $A_n(x) = U_n(x)$. sh $x V_n(x)$. ch x.

Pour l'unicité, on pourra admettre ou démontrer que la famille de fonctions $(x^n e^{mx})_{n,m}$ est libre dans l'espace des fonctions continues

- 6. Etude du polynôme U_n .
 - (a) Montrer que U_n vérifie la relation de récurrence (R) et etudier la parité de U_n .
 - (b) Calculer $U_n(0)$. Déterminer selon la parité de n le signe des coefficients du polynôme U_n . En déduire une inégalité entre $|U_n(x)|$ et $|U_n(0)|$
- 7. Une suite de fractions rationnelle qui converge vers la fonction tangente hyperbolique.
 - (a) Montrer que la fraction rationnelle $Q_n(x)=\dfrac{V_n(x)}{U_n(x)}$ est définie sur $\mathbb R$

(b) En utilisant les résultats précédents, établir que la suite (Q_n) converge uniformément sur tout segment vers la fonction $x \to thx$.

Les questions qui suivent sont plus difficiles.

- 8. (a) Démontrer que la convergence de la suite (Q_n) n'est pas uniforme sur \mathbb{R} .
 - (b) Montrer qu'il n'existe aucune suite de fractions rationnelles qui converge uniformément sur $\mathbb R$ vers la fonction th
 - (c) En utilisant l'application $x \to \frac{1}{x+1}$, montrer l'existence d'une suite de fractions rationnelles qui converge uniformément vers $x \to thx$ sur $[0, +\infty[$. on utilisera le théorème de Weierstrass
- 9. Déterminer les fonctions qui sont limite uniforme sur $\mathbb{R}+$ d'une suite de fractions rationnelles.