CPT_S 260 Intro to Computer Architecture Lecture 24

Digital Design IV March 7, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Recap: 2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$Y = \bar{S}I_0 + SI_1$$

The circuit:

Recap: Decoders

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called n-to-m line decoders, where $m \le 2^n$, and
- Example: 2-to-4 decoder:

Logic Simplification

Rules of Boolean Algebra

Associative Law of multiplication

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributive Law of multiplication

$$A + BC = (A + B) \cdot (A + C)$$

Annulment law:

$$A \cdot 0 = 0$$
$$A + 1 = 1$$

• Identity law:

$$A \cdot 1 = A$$
$$A + 0 = A$$

Rules of Boolean Algebra

Complement law:

$$A + \bar{A} = 1$$
$$A \cdot \bar{A} = 0$$

Double negation law:

$$\bar{\bar{A}} = A$$

Absorption law:

$$A \cdot (A + B) = A$$

 $A + AB = A$
 $A + \bar{A}B = A + B$

• Idempotent law:

$$A + A = A$$

 $A \cdot A = A$

De Morgan's Laws

- Transformation rules that help simplification of negations
- Statement:

$$\frac{\overline{AB} = \overline{A} + \overline{B}}{(A+B)} = \overline{A} \cdot \overline{B}$$

Simplification Using Boolean Algebra

 A simplified Boolean expression uses the fewest gates possible to implement a given expression.

Simplification Using Boolean Algebra

AB+A(B+C)+B(B+C)

- (distributive law)
 - » AB+AB+AC+BB+BC
- (BB=B)
 - » AB+AB+AC+B+BC
- (AB+AB=AB)
 - » AB+AC+B+BC
- (B+BC=B)
 - » AB+AC+B
- (AB+B=B)
 - » B+AC

Examples

$$\blacksquare [A\overline{B}(C+BD)+\overline{A}\overline{B}]C$$

•
$$\bar{A}BC + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C + ABC$$

$$\blacksquare \overline{AB + AC} + \overline{AB}C$$

Examples

```
[A\overline{B}(C + BD) + \overline{A}\overline{B}]C
= [A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B}]C (distributive law)
= A\overline{B}CC + \overline{A}\overline{B}C (\overline{B}B = 0 using complement law)
= \overline{B}C(A + \overline{A})
= \overline{B}C (Complement law)
```

Examples

$$\overline{AB} + \overline{AC} + \overline{AB}C$$

= $(\overline{AB} \cdot \overline{AC}) + \overline{AB}C$ (DeMorgan Law)
= $(\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{AB}C$ (DeMorgan Law)
= $\overline{AA} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C$
= $\overline{A} + \overline{BC}$ (Take \overline{A} out and use annulment law)

Standard Forms of Boolean Expressions

- All Boolean expressions, regardless of their form, can be converted into either of two standard forms:
 - The sum-of-products (SOP) form (minterms)
 - The product-of-sums (POS) form (maxterms)
- Standardization makes the evaluation, simplification, and implementation of Boolean expressions much more systematic and easier

Sum of Products

- Minterm Expressions
- If input is 0 we take the complement of the variable
- If input is 1 we take the variable as is
- To get the desired canonical SOP expression we will add the minterms (product terms) for which the output is 1

$$F = \bar{A}B + A\bar{B} + AB$$

A	В	F	Minterm
0	0	0	A'B'
0	1	1	A'B
1	0	1	AB'
1	1	1	AB

Product of Sums

- Maxterm Expressions
- If input is 1, we take the comp
- If input is 0, we take the varial

A	В	F	Minterm
0	0	0	A'B'
0	1	1	A'B
1	0	1	AB'
1	1	1	AB

 To get the desired canonical POS expression we will multiply the maxterms (sum terms) for which the output is 0

$$F = (A + B)$$

Α	В	F	Maxterm
0	0	0	A + B
0	1	1	$A + \overline{B}$
1	0	1	$\overline{A} + B$
1	1	1	$\overline{A} + \overline{B}$

Designing a Simple ALU (Arithmetic Logic Unit)

Adder Algorithm

Truth Table for the above operations:

A	В	Cin	Sum Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adder Algorithm

	1	0	0	1
	0	1	0	1
Sum	1	1	1 🔨	0
Carry	0	<u> </u>	0	1

Truth Table for the above operations:

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Equations:

Sum = Cin
$$.\overline{A} .\overline{B} +$$

B $.\overline{Cin} .\overline{A} +$
A $.\overline{Cin} .\overline{B} +$
A $.\overline{B} .\overline{Cin}$

Carry Out Logic

Equations:

Sum = Cin
$$.\overline{A} . \overline{B} +$$

B $.\overline{Cin} . \overline{A} +$
A $.\overline{Cin} . \overline{B} +$
A $.\overline{B} . \overline{Cin}$

Carry Out Logic

$$\begin{aligned} C_{out} &= A \cdot B \cdot Cin + A \cdot B \cdot \overline{Cin} + A \cdot Cin \cdot \overline{B} + B \cdot Cin \cdot \overline{A} \\ &= A \cdot B \cdot (Cin + \overline{Cin}) + A \cdot Cin \cdot \overline{B} + A \cdot B \cdot Cin + B \cdot Cin \cdot \overline{A} + A \cdot B \cdot Cin \\ &= A \cdot B + A \cdot Cin \cdot (B + \overline{B}) + B \cdot Cin \cdot (A + \overline{A}) \end{aligned}$$

Full-Adder (3 inputs, 2 outputs)

Full-Adder Truth Table:

X	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Same as the previous example:

$$S = X \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z + X Y Z$$

 $C = X Y + X Z + Y Z$

4-bit Ripple-Carry Binary Adder

A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

32-bit Ripple Carry Adder

1-bit ALUs are connected
"in series" with the
carry-out of 1 box
going into the carry-in
of the next box

