4. Felsorolók, algoritmus minták

Határidő márc 26, 23:59 Pont 10 Kérdések 10 Időkorlát Nincs Engedélyezett próbálkozások 5

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	3. próbálkozás	6 perc	10 az összesen elérhető 10 pontból
LEGUTOLSÓ	3. próbálkozás	6 perc	10 az összesen elérhető 10 pontból
	2. próbálkozás	9 perc	9 az összesen elérhető 10 pontból
	1. próbálkozás	16 perc	5 az összesen elérhető 10 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 10 az összesen elérhető 10 pontból

Beadva ekkor: márc 23, 19:41

Ez a próbálkozás ennyi időt vett igénybe: 6 perc

1. kérdés	1 / 1 pont
Az alábbiak közül melyik NEM számít gyűjteménynek?	
sok komponensű rekord (azaz struktúra)	
egész szám valódi osztói	
egész számok egy sorozata	
O karakterlánc (sztring)	

2. kérdés	1 / 1 pont
Melyek a felsorolás műveletei?	
○ i:=m, i:=i+1, i<=n	
<pre>begin(), operator++(), end()</pre>	
<pre>first(), next(), end(), current()</pre>	
O foreach()	

3. kérdés	1 / 1 pont
Mit nevezünk felsoroló objektumnak?	
Azt a gyűjteményt, amely rendelkezik a felsorolás négy műveletének metódusaival.	
Azt a változót, amelyik típusát az enum kulcsszóval definiálták.	
Azt az objektumot, amelyik rendelkezik a felsoroló műveleteket megve metódusokkal.	alósító
Azt a gyűjteményt, amely műveleteket biztosít a benne eltárolt elemelbejárására.	K

4. kérdés 1/1 pont

Milye	en logikai állapotait vezettük be a felsoroló objektumoknak?
	O deklarált, példányosított, megszűnt
	0
	a gyűjtemény első elemén áll, egy közbülső elemén áll, az utolsó elemén áll
	indulásra kész, folyamatban van, befejeződött
	0
	egy ilyen van: ez igaz, ha a gyűjtemény elemeit tetszőleges sorrendben árjuk-e be; hamis, ha valamilyen rendezési szempont szerint.

5. kérdés	1 / 1 pont
Mi az az algoritmus minta?	
Egy struktogram.	
Egy konkrét feladat és azt megoldó algoritmus.	
Egy sokszor használt algoritmus.	
Egy kellően általános feladat és az azt megoldó algoritmus.	

6. kérdés	1 / 1 pont
Milyen szerepet töltenek be a felsorolós algoritmus minták f:E felt:E → L függvényei?	E—H, és

3 / 6

Ezek alapján lehet megkülönböztetni egymástól az algoritmus mintákat, hiszen az egyik csak az f függvényt, a másik csak a felt függvényt használja, de olyan is van, amelyik egyszerre mindkettőt.	
Az algoritmus mintával megoldható feladatok specifikálásához használt paraméterek.	
Nincsenek ilyen függvények.	
O Egy algoritmus minta alkalmazásakor ezeket a függvényeket kell majd önálló metódussal megvalósítani.	

1 / 1 pont 7. kérdés Hogyan működik az algoritmus mintára történő visszavezetés módszere? A kitűzött feladatot megfeleltetjük valamelyik algoritmus minta feladatának, és ekkor a minta programja fogja megoldani a kitűzött feladatot. A kitűzött feladat megoldásához egy algoritmus minta programját használjuk fel változtatás nélkül. A kitűzött feladathoz megkeressük azt az algoritmus mintát, amelynek feladatára a kitűzött feladat hasonlít, és úgy hozzuk létre (többnyire algoritmikus gondolkodással) a kitűzött feladatot megoldó programot, hogy követjük azt a folyamatot, ahogyan az algoritmus minta feladatához állítottuk elő a megoldó algoritmust. A kitűzött feladatot megfeleltetjük egy algoritmus minta feladatának, majd a minta programját a megfeleltetés során feltárt eltérések alapján átalakítjuk, és így kapjuk meg a kitűzött feladatot megoldó algoritmust.

2023. 03. 23. 19:41

8. kérdés	1 / 1 pont
Mit értünk szürke dobozos tesztelésen?	
Fehér és fekete dobozos tesztesestek vegyes alkalmazását.	
Egy végrehajtható specifikáció által előrevetített algoritmus működését ellenőrző fehér dobozos tesztesetek vizsgálatát.	
O Amikor a tesztelést nem a lekódolt programon, hanem annak absztrakt algoritmusán végezzük.	
Csak részben legális tesztesestek alkalmazását.	
	1 / 1 nont
9. kérdés	1 / 1 pont

9. kérdés Mi a különbség a maximum kiválasztás és a feltételes maximum keresés között? A feltételes maximum keresés a lineáris kereséssel rokon, a maximum kiválasztás pedig az összegzéssel. A maximum kiválasztás nem értelmezett üres felsorolásra, és minden felsorolt elemet megvizsgál; a feltételes maximum keresés egy felsorolásnak csak a feltételnek eleget tevő elemeit vizsgálja meg. A feltételes maximum keresés csak addig keresi a maximális elemet egy felsorolásban, amíg a feltétel teljesül, a maximum kiválasztás végig nézi az összes elemet.

A maximum kiválasztás a feltételes maximum keresés speciális változata arra az esetre, amikor a feltétel minden felsorolt elemre igazat ad.

Kvízeredmény: 10 az összesen elérhető 10 pontból