

The discrete Fourier transform can be found using

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}$$
 $k = 0,1,2,....,N-1$

Where N= 2, 4, 8, 16,... and

$$W_{N} = e^{-j2\pi/N}$$

X(k) can be expressed as

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{kn} + \sum_{n=N/2}^{N-1} x(n)W_N^{kn}$$

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{kn} + \sum_{n=0}^{N/2-1} x(n+N/2)W_N^{k(n+N/2)}$$

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{kn} + W_N^{kN/2} \sum_{n=0}^{N/2-1} x(n+N/2)W_N^{kn}$$

Digital Signal Processing

But

$$W_N^{(N/2)k} = e^{2\pi k(N/2)/N} = e^{\pi k} = (-1)^k$$

Then

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{kn} + (-1)^k \sum_{n=0}^{N/2-1} x(n+N/2)W_N^{kn}$$

If k = 2m or an even number

$$X(2m) = \sum_{n=0}^{N/2-1} (x(n) + x(n+N/2)) W_N^{2mn}$$
$$X(2m) = \sum_{n=0}^{N/2-1} a(n) W_{N/2}^{mn}$$

Slide t

Decimation in Frequency

Noting That

$$W_N^{2mn} = e^{-j2mn \times 2\pi/N} = e^{-j2\pi mn/(N/2)} = W_{N/2}^{mn}$$

$$a(n) = x(n) + x(n + N/2)$$

Then X(2m) is N/2-point DFT for a(n)

If k = 2m+1 (odd number) and using the same method

$$X(2m+1) = \sum_{n=0}^{N/2-1} (x(n) - x(n+N/2)) W_N^n W_N^{2mn}$$

$$X(2m+1) = \sum_{n=0}^{N/2-1} (b(n)W_N^n) W_{N/2}^{mn}$$

$$b(n) = x(n) - x(n+N/2)$$

X(2m+1) is N/2-point DFT for $b(n)W_N^n$

Digital Signal Processing

Using the previous algorithm , the complex multiplications needed is only 12. While using the normal DFT would require 64 complex multiplications

In general

Complex multiplication of DFT is: N^2

Complex multiplication of FFT is $(N/2) \log_2(N)$

If N = 1024

Complex multiplication of DFT is: 1,048,576

Complex multiplication of FFT is: 5,120

Digital Signal Processing

Slide /

Index mapping for Fast Fourier Transform

Input Data index n	Index Bits	Reversal Bits	Output data index k
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Digital Signal Processing

0111

Decimation in Frequency

Example Given a sequence x(n) where x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4 and x(n) = 0 elsewhere ,find DFT for the first four points

solution

Digital Signal Processing

Inverse Fourier Transform

The inverse discrete Fourier transform can be found using

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} \qquad n = 0, 1, 2, \dots, N-1$$

Which can be expressed as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W_N^{kn}}$$
 $n = 0,1,2,....,N-1$

where $\widetilde{W_N^{kn}} = W_N^{-kn}$ is called the twiddled factor

We can see that the difference between the inverse discrete Fourier and forward Fourier transform is the twiddled factor and the division by 1/N

Digital Signal Processing

Inverse Fourier Transform

Digital Signal Processing

Inverse Fourier Transform

Example Given a sequence X(n) given in the previous example. Find the IFFT using decimation in frequency method

solution

Digital Signal Processing