$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	126.b2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =36$	C_6	$r_E = 0$	$\Delta < 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	126.b1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_6	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_6	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_6	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 13^3 + O(13^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	136.a1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 17 + O(17^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	156.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	182.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5^4 + O(5^5)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205.a2	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 16 * 41^2 + O(41^3)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220.a4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =18$	C_6	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	234.e1	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	240.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 16$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315.b1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	320.a3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	320.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	325.d1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	370.d3	p=5	$R = \mathbb{Z}\left[\frac{1}{3}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_6	$r_E = 0$	$\Delta > 0$
370.d1 $p = 37$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 6*37^3 + O(37^4)$ $C_E = 1$ $ \text{III}_E = 12$ C_2 $r_E = 0$ $\Delta > 0$	370.d3	p = 37	$R = \overline{\mathbb{Z}\left[\frac{1}{1}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 14 * 37 + O(37^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 36$	C_6	$r_E = 0$	$\Delta > 0$
	370.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \overline{\coprod}_{E} = 12$	C_2	$r_E = 0$	$\Delta > 0$
377.a2 $p = 13$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 4$ $q_p = 9*13^2 + O(13^3)$ $C_E = 1$ $ \text{III}_E = 4$ $C_2 \times C_2$ $r_E = 1$ $\Delta > 0$	370.d1	p=37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 37^3 + O(37^4)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
	377.a2	p=13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 9 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	377.a2	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 7 * 29^2 + O(29^3)$	$C_E = 1$	$ \coprod_E =4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	378.e3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	378.g3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434.d2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ III_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434.d2	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 31 + O(31^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	455.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	455.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 13^2 + O(13^3)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480.c3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480.h2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 16$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	510.e2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5 + O(5^2)$	$C_E = 4$	$ III_E = 4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	510.e2	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 17 + O(17^2)$	$C_E = 4$	$ III_E = 4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	520.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	520.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 6 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	530.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	530.b1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 53 + O(53^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	545.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5^6 + O(5^7)$	$C_E = 1$	$ \mathbf{III}_E = 12$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	545.a2	p = 109	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 105 * 109^2 + O(109^3)$	$C_E = 1$	$ \mathrm{III}_E = 12$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	546.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	550.j1	p = 11	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 5$	$q_p = 11 + O(11^2)$	$C_E = 1$	$ \mathbf{III}_E = 50$	C_5	$r_E = 0$	$\Delta < 0$
620.b2 $p = 5$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 5^5 + O(5^6)$ $C_E = 1$ $ III_E = 30$ C_2 $r_E = 1$ $\Delta > 0$ 624.b4 $p = 13$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*13 + O(13^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	580.a1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 29 + O(29^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
624.b4 $p = 13$ $R = \mathbb{Z}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*13 + O(13^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	580.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 18$	C_2	$r_E = 1$	$\Delta > 0$
	620.b2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ \Pi_E = 30$	C_2	$r_E = 1$	$\Delta > 0$
624.b2 $p = 13$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 13^3 + O(13^4)$ $C_E = 1$ $ III_E = 6$ C_2 $r_E = 1$ $\Delta > 0$	624.b4	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
	624.b2	p=13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 13^3 + O(13^4)$	$C_E = 1$	$ \overline{\coprod}_{E} = 6$	C_2	$r_E = 1$	$\Delta > 0$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	651.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	651.b3	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 19 * 31 + O(31^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	663.a4	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 10 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =4$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	680.c1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =16$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 702.p3 & p=13 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 730.e1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5^4+O(5^5) & C_E=1 & \mathrm{III}_E =8 & C_2 & r_E=1 & \Delta>0\\ \hline 776.a1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=8*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 780.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =12 & C_2 & r_E=1 & \Delta>0\\ \hline 798.d6 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta>0\\ \hline 798.d5 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=6*19^2+O(19^3) & C_E=1 & \mathrm{III}_E =72 & C_6 & r_E=0 & \Delta>0\\ \hline 806.f3 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=8*13+O(13^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 819.c1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13+O(13^2) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 845.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=10*13+O(13^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 880.b2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta<0\\ \hline 890.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 903.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=2*7^3+O(7^4) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7$	693.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	702.m2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c }\hline 776.a1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=88*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\\hline 780.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =12 & C_2 & r_E=1 & \Delta>0\\\hline 798.d6 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta>0\\\hline 798.d5 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=6*19^2+O(19^3) & C_E=1 & \mathrm{III}_E =72 & C_6 & r_E=0 & \Delta>0\\\hline 806.f3 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=8*13+O(13^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 819.c1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13+O(13^2) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\\hline 832.f1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=10*13+O(13^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\\hline 845.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=0 & \Delta>0\\\hline 903.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=2*7^3+O(7^4) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 910.e6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\\hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\\hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\\hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\\hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E$	702.p3	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =54$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c }\hline 780.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =12 & C_2 & r_E=1 & \Delta>0\\ \hline 798.d6 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta>0\\ \hline 798.d5 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=6*19^2+O(19^3) & C_E=1 & \mathrm{III}_E =72 & C_6 & r_E=0 & \Delta>0\\ \hline 806.f3 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=8*13+O(13^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 819.c1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13+O(13^2) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 832.f1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=10*13+O(13^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 845.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 880.b2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 903.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^3+O(7^4) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^3+O(7^4) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O($	730.e1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	776.a1	p = 97	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 88 * 97 + O(97^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c }\hline 798.d5 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=6*19^2+O(19^3) & C_E=1 & \mathrm{III}_E =72 & C_6 & r_E=0 & \Delta>0\\ \hline 806.f3 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=8*13+O(13^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 819.c1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13+O(13^2) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 832.f1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=10*13+O(13^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 845.a1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 880.b2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 903.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 910.e2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=2*7^3+O(7^4) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 910.g6 & p=7 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=2*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta<0\\ \hline \end{array}$	780.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	798.d6	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 14 * 19 + O(19^2)$	$C_E = 1$	$ \coprod_E =36$	C_6	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	798.d5	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 6 * 19^2 + O(19^3)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_6	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	806.f3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	819.c1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	832.f1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 10 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	845.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	880.b2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
910.g6 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{2}\right]$ $ E(\mathbb{Q})_{Tor} = 6$ $q_p = 2 * 7^2 + O(7^3)$ $C_E = 1$ $ \text{III}_E = 36$ C_6 $r_E = 0$ $\Delta > 0$	903.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
	910.e2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7^3 + O(7^4)$	$C_E = 1$	$ \coprod_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
	910.g6	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 2 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_6	$r_E = 0$	$\Delta > 0$
910.g4 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right] \mid E(\mathbb{Q})_{\text{Tor}} = 6$ $q_p = 4*7 + O(7^2)$ $C_E = 1 \mid \text{III}_E = 36$ $C_6 \mid r_E = 0 \mid \Delta > 0$	910.g4	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =36$	C_6	$r_E = 0$	$\Delta > 0$
915.b3 $p = 61$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 5*61 + O(61^2)$ $C_E = 1$ $ \text{III}_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	915.b3	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 61 + O(61^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 2$	C_2	$r_E = 1$	$\Delta > 0$
925.a1 $p = 37$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 24 * 37 + O(37^2)$ $C_E = 1$ $ \text{III}_E = 4$ C_2 $r_E = 0$ $\Delta > 0$	925.a1	p = 37	$R = \overline{\mathbb{Z}\left[\frac{1}{1}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 24 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
938.d3 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 4*7 + O(7^2)$ $C_E = 1$ $ III_E = 18$ C_3 $r_E = 0$ $\Delta > 0$	938.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
938.d3 $p = 67$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 3$ $q_p = 31 * 67 + O(67^2)$ $C_E = 1$ $ \text{III}_E = 18$ C_3 $r_E = 0$ $\Delta > 0$	938.d3	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 31 * 67 + O(67^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	962.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	962.a1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 23 * 37 + O(37^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	986.c1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 21 * 29^2 + O(29^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1020.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1020.f1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 10 * 17 + O(17^2)$	$C_E = 1$	$ III_E = 16$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1118.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1118.a2	p = 43	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 25 * 43 + O(43^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1120.i3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5^4 + O(5^5)$	$C_E = 1$	$ \mathbf{III}_E = 16$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1120.i1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 8$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1120.j2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1155.e4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1206.f1	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 22 * 67 + O(67^2)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1300.d1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 10 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1300.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 11 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1325.d1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 27 * 53 + O(53^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1342.b3	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 5$	$q_p = 16 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =25$	C_5	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1370.c1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 2 * 5^6 + O(5^7)$	$C_E = 1$	$ \coprod_E =24$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1420.a2	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1422.f1	p = 79	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 21 * 79 + O(79^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1445.c1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \mathbf{III}_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
1480.b1 $p = 37$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 22 * 37 + O(37^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$ 1560.14 $p = 5$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 4$ $q_p = 3 * 5^2 + O(5^3)$ $C_E = 1$ $ III_E = 64$ C_4 $r_E = 0$ $\Delta > 0$	1455.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
1560.14 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 4$ $q_p = 3*5^2 + O(5^3)$ $C_E = 1$ $ \text{III}_E = 64$ C_4 $r_E = 0$ $\Delta > 0$	1480.b1	p=5	$R = \overline{\mathbb{Z}\left[\frac{1}{1}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
	1480.b1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 37 + O(37^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 2$	C_2	$r_E = 1$	$\Delta > 0$
1570.d1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 2*5 + O(5^2)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 0$ $\Delta > 0$	1560.14	$p=\overline{5}$	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \mathrm{III}_E = 64$	C_4	$r_E = 0$	$\Delta > 0$
	1570.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$

1570.d1 <i>j</i>	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 70 * 157 + O(157^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
1590.q4	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
1590.q4	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 35 * 53 + O(53^2)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
1590.n3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 48$	C_4	$r_E = 0$	$\Delta > 0$
1590.n3	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 53 + O(53^2)$	$C_E = 1$	$ III_E = 48$	C_4	$r_E = 0$	$\Delta > 0$
1638.f1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 9$	$ III_E =1$	C_3	$r_E = 0$	$\Delta < 0$
1638.f1	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 13 + O(13^2)$	$C_E = 9$	$ \mathbf{III}_E = 1$	C_3	$r_E = 0$	$\Delta < 0$
1780.a1	p = 89	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 89 + O(89^2)$	$C_E = 1$	$ \mathbf{III}_E = 1$	C_2	$r_E = 1$	$\Delta > 0$
1780.b1	p = 89	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 89^2 + O(89^3)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
1806.g3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
1856.n1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 29 + O(29^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
1890.k3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^2 + O(7^3)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
1890.i2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
1890.r1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^2 + O(7^3)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
1890.t2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
1920.j1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^5 + O(5^6)$	$C_E = 1$	$ \mathbf{III}_E = 10$	C_2	$r_E = 1$	$\Delta > 0$
1920.h1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
1920.w1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
1920.u1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^5 + O(5^6)$	$C_E = 1$	$ \mathrm{III}_E = 20$	C_2	$r_E = 0$	$\Delta > 0$
1928.a1 p	p = 241	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 241 + O(241^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
1930.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
1953.f1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 9$	$ III_E =2$	C_3	$r_E = 0$	$\Delta < 0$
1953.f1	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 10 * 31 + O(31^2)$	$C_E = 9$	$ III_E =2$	C_3	$r_E = 0$	$\Delta < 0$
1961.a2	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 33 * 37^2 + O(37^3)$	$C_E = 1$	$ III_E = 4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
1961.a2	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 36 * 53^2 + O(53^3)$	$C_E = 1$	$ III_E = 4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$

1970.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
1970.a1	p = 197	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 167 * 197 + O(197^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
1995.g3	p = 19	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 16 * 19 + O(19^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
2040.f3	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 14 * 17 + O(17^2)$	$C_E = 1$	$ \coprod_E =4$	C_4	$r_E = 1$	$\Delta > 0$
2074.a1	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 61^2 + O(61^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
2080.e1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 8 * 13 + O(13^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
2080.d2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$
2091.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 17^3 + O(17^4)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
2091.b1	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 41 + O(41^2)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
2142.i1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^3 + O(7^4)$	$C_E = 1$	$ \mathrm{III}_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
2163.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
2163.d3	p = 103	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 92 * 103 + O(103^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
2172.a2	p = 181	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 16 * 181 + O(181^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
2320.c1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 29 + O(29^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
2320.g1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
2330.d1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$
2378.d1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 29^2 + O(29^3)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 0$	$\Delta > 0$
2379.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
2379.a2	p = 61	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 22 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
2405.c1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^7 + O(5^8)$	$C_E = 1$	$ \coprod_E =14$	C_2	$r_E = 1$	$\Delta > 0$
2405.c1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 14$	C_2	$r_E = 1$	$\Delta > 0$
2418.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
2457.f3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
2465.a1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 9 * 17 + O(17^2)$	$C_E = 1$	$ \coprod_{E} =1$	C_2	$r_E = 2$	$\Delta > 0$
2502.g3	p = 139	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 62 * 139 + O(139^2)$	$C_E = 1$	$ \coprod_E = 72$	C_3	$r_E = 0$	$\Delta < 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c }\hline 2590.a2 & p=37 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*37+O(37^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta < \\ \hline 2595.b1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > \\ \hline 2595.b1 & p=173 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=115*173+O(173^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > \\ \hline 2665.a1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta > \\ \hline 2709.b1 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =4 & C_3 & r_E=0 & \Delta < \\ \hline 2709.b1 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=32*43+O(43^2) & C_E=9 & \mathrm{III}_E =4 & C_3 & r_E=0 & \Delta < \\ \hline 2718.o1 & p=151 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=125*151+O(151^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta < \\ \hline 2730.m4 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =6 & q_p=7+O(7^2) & C_E=1 & \mathrm{III}_E =36 & C_6 & r_E=0 & \Delta < \\ \hline \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ 2730.m4 p = 7 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 6 q_p = 7 + O(7^2) C_E = 1 III_E = 36 C_6 r_E = 0 \Delta > $

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3294.k3	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 58 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3324.b2	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 255 * 277 + O(277^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3380.j1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3380.c3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3380.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =18$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3392.p1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 53 + O(53^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3458.c2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3458.c2	p = 19	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 18 * 19^2 + O(19^3)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3474.h1	p = 193	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 72 * 193 + O(193^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3510.o2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3605.c3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3605.c3	p = 103	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 65 * 103 + O(103^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3615.c3	p = 241	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 16 * 241 + O(241^2)$	$C_E = 1$	$ \coprod_E =4$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3655.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3740.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 17^2 + O(17^3)$	$C_E = 1$	$ \mathrm{III}_E = 48$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3870.h1	p = 43	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 22 * 43 + O(43^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3874.f1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3874.f1	p = 149	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 27 * 149 + O(149^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3885.c2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5 + O(5^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3885.c2	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 23 * 37 + O(37^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3906.a1	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 30 * 31 + O(31^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
4070.d3 $p = 5$ $R = \mathbb{Z}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 4$ $q_p = 2 * 5 + O(5^2)$ $C_E = 1$ $ III_E = 16$ C_4 $r_E = 0$ $\Delta > 0$	3962.c3	p=7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ \overline{\coprod}_{E} = 9$	C_3	$r_E = 0$	$\Delta > 0$
	3962.c3	p = 283	$R = \overline{\mathbb{Z}\left[\frac{1}{1}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 209 * 283 + O(283^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$4070.d3 p = 37 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 4 q_p = 22 * 37 + O(37^2) C_E = 1 \text{III}_E = 16 C_4 r_E = 0 \Delta > 0$	4070.d3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$
	4070.d3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 22 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta > 0$ $\Delta > 0$ $\Delta < 0$
4123.b1 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 6*7 + O(7^2)$ $C_E = 1$ $ III_E = 1$ C_3 $r_E = 2$	
	$\Delta < 0$
	_ ` `
	$\Delta < 0$
	$\Delta < 0$
4158.b1 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{2}\right] E(\mathbb{Q})_{\text{Tor}} = 3$ $q_p = 2*7^2 + O(7^3)$ $C_E = 1$ $ \text{III}_E = 18$ C_3 $r_E = 0$	$\Delta < 0$
4158.ba2 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{2}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 4*7^2 + O(7^3)$ $C_E = 1$ $ III_E = 54$ C_3 $r_E = 0$	$\Delta < 0$
	$\Delta > 0$
$4446.j1 p = 13 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 3 q_p = 5*13^3 + O(13^4) C_E = 1 \mathbf{III}_E = 108 C_3 r_E = 0$	$\Delta < 0$
4480.b1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*5^2 + O(5^3)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 1$	$\Delta > 0$
	$\Delta > 0$
	$\Delta > 0$
	$\Delta > 0$
4580.a1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 5^5 + O(5^6)$ $C_E = 1$ $ \text{III}_E = 10$ C_2 $r_E = 1$	$\Delta > 0$
4662.i1 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 7^3 + O(7^4)$ $C_E = 1$ $ III_E = 108$ C_3 $r_E = 0$	$\Delta < 0$
4795.b1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 2 * 5^2 + O(5^3)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 1$	$\Delta > 0$
	$\Delta < 0$
	$\Delta < 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta > 0$
	$\Delta < 0$
5110.b3 $p = 73$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 23*73 + O(73^2)$ $C_E = 1$ $ III_E = 18$ C_3 $r_E = 0$	$\Delta < 0$
	$\Delta > 0$
	$\Delta > 0$
	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5200.bh1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13^2 + O(13^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5246.b2 & p=61 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =3 & q_p=12*61+O(61^2) & C_E=1 & \mathbf{III}_E =72 & C_3 & r_E=0 & \Delta <0\\ \hline 5248.d1 & p=41 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=32*41+O(41^2) & C_E=1 & \mathbf{III}_E =1 & C_2 & r_E=1 & \Delta >0\\ \hline 5248.c1 & p=41 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=32*41+O(41^2) & C_E=1 & \mathbf{III}_E =1 & C_2 & r_E=1 & \Delta >0\\ \hline 5252.b1 & p=101 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=81*101+O(101^2) & C_E=1 & \mathbf{III}_E =1 & C_2 & r_E=1 & \Delta >0\\ \hline 5300.c1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=6*53+O(53^2) & C_E=1 & \mathbf{III}_E =2 & C_2 & r_E=1 & \Delta >0\\ \hline 5420.a2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=6*7+O(7^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5530.k2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =3 & q_p=6*7+O(7^2) & C_E=1 & \mathbf{III}_E =54 & C_3 & r_E=0 & \Delta <0\\ \hline 5530.k2 & p=79 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =3 & q_p=6*7+O(7^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5564.a2 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=13+O(13^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathbf{III}_E =6 & C_2 & r_E=1 & \Delta >0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathbf{III}_E =9 & C_3 & r_E=0 & \Delta >0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathbf{III}_E =9 & C_3 & r_E=0 & \Delta <0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})$	5232.g2	p = 109	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 109 + O(109^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5246.b2	p = 43	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 36 * 43^2 + O(43^3)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c }\hline 5248.c1 & p=41 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=32*41+O(41^2) & C_E=1 & \mathrm{III}_E =1 & C_2 & r_E=1 & \Delta>0\\ \hline 5252.b1 & p=101 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=81*101+O(101^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 5300.c1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=6*53+O(53^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 5420.a2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=6*53+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5530.k2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 5530.k2 & p=79 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=65*79+O(79^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5564.a2 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=2*5*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(33^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p$	5246.b2	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5248.d1	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 32 * 41 + O(41^2)$	$C_E = 1$	$ III_E = 1$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5248.c1	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 32 * 41 + O(41^2)$	$C_E = 1$	$ III_E =1$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5420.a2 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5530.k2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 5530.k2 & p=79 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=65*79+O(79^2) & C_E=1 & \mathrm{III}_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 5564.a2 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=13+O(13^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5810.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=3*5$	5252.b1	p = 101	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 81 * 101 + O(101^2)$	$C_E = 1$	$ \coprod_{E} =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5530.k2 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 6*7 + O(7^2) & C_E = 1 & \text{III}_E = 54 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5530.k2 & p = 79 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 65*79 + O(79^2) & C_E = 1 & \text{III}_E = 54 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5564.a2 & p = 13 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 13 + O(13^2) & C_E = 1 & \text{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 5780.d1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 3*5 + O(5^2) & C_E = 1 & \text{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 5780.f3 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5^3 + O(5^4) & C_E = 1 & \text{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 5780.f1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5^3 + O(5^4) & C_E = 1 & \text{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 5790.f3 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 4 & q_p = 2*5^2 + O(5^3) & C_E = 1 & \text{III}_E = 128 & C_4 & r_E = 0 & \Delta > 0 \\ \hline 5805.g2 & p = 43 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 25*43 + O(43^2) & C_E = 1 & \text{III}_E = 9 & C_3 & r_E = 0 & \Delta > 0 \\ \hline 5835.i3 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5 + O(5^2) & C_E = 1 & \text{III}_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 5835.i3 & p = 389 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 272*389 + O(389^2) & C_E = 1 & \text{III}_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 5859.b3 & p = 31 & R = \mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 5*31 + O(31^2) & C_E = 1 & \text{III}_E = 9 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5890.a3 & p = 19 & R = \mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 14*19 + O(19^2) & C_E = 1 & \text{III}_E = 9 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5910.13 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 14*19 + O(19^2) & C_E = 1 & \text{III}_E = 9 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5910.13 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 14*19 + O(19^2) & C_E = 1 & \text{III}_E = 9 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 5910.13 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1$	5300.c1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 53 + O(53^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5530.k2 & p=79 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =3 & q_p=65*79+O(79^2) & C_E=1 & III_E =54 & C_3 & r_E=0 & \Delta<0\\ \hline 5564.a2 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=13+O(13^2) & C_E=1 & III_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=3*5+O(5^2) & C_E=1 & III_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=4*5^3+O(5^4) & C_E=1 & III_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=4*5^3+O(5^4) & C_E=1 & III_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=2*5^2+O(5^3) & C_E=1 & III_E =128 & C_4 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =3 & q_p=25*43+O(43^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=4*5+O(5^2) & C_E=1 & III_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =2 & q_p=272*389+O(389^2) & C_E=1 & III_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{Tor} =3 & q_p=5*31+O(31^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =3 & q_p=14*19+O(19^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =32 & C_4 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =32 & C_4 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} =4 & q_p=3*5+O(5^2) & C_E=1 & III_E =32 & C_4 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{$	5420.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c }\hline 5564.a2 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=13+O(13^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=2*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =128 & C_4 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2)$	5530.k2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c }\hline 5780.d1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=2*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=2*5*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.l3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.l3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \end{array}$	5530.k2	p = 79	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 65 * 79 + O(79^2)$	$C_E = 1$	$ \mathrm{III}_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c }\hline 5780.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5780.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=2*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =128 & C_4 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \end{array}$	5564.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c }\hline 5780.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=2*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =128 & C_4 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.13 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \end{array}$	5780.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5790.f3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=2*5^2+O(5^3) & C_E=1 & \mathrm{III}_E =128 & C_4 & r_E=0 & \Delta>0\\ \hline 5805.g2 & p=43 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=25*43+O(43^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.l3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \end{array}$	5780.f3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5780.f1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 5835.i3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5835.i3 & p=389 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=272*389+O(389^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=0 & \Delta>0\\ \hline 5859.b3 & p=31 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*31+O(31^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5890.a3 & p=19 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=14*19+O(19^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta<0\\ \hline 5910.l3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=3*5+O(5^2) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline \end{array}$	5790.f3	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =128$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5805.g2	p = 43	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 25 * 43 + O(43^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5835.i3	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5835.i3	p = 389	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 272 * 389 + O(389^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5859.b3	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 31 + O(31^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
	5890.a3	p = 19	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 14 * 19 + O(19^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
	5910.l3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 32$	C_4	$r_E = 0$	$\Delta > 0$
	5910.l3	p = 197	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 77 * 197 + O(197^2)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
	5916.c1	$p = \overline{17}$	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 17 + O(17^2)$	$C_E = 1$	$ \mathrm{III}_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
	5980.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^8 + O(5^9)$	$C_E = 1$	$ \coprod_E =16$	C_2	$r_E = 1$	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6045.f1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6045.g3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6095.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^5 + O(5^6)$	$C_E = 1$	$ \mathbf{III}_E = 10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6095.a1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 14 * 53 + O(53^2)$	$C_E = 1$	$ \coprod_E =10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6118.i2	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 19 + O(19^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6130.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6130.b1	p = 613	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 279 * 613 + O(613^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6138.e1	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 31 + O(31^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6154.a1	p = 181	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 181^2 + O(181^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6220.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6253.a1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6305.a1	p = 97	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 72 * 97 + O(97^2)$	$C_E = 4$	$ \coprod_{E} =1$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6305.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^7 + O(5^8)$	$C_E = 1$	$ \mathrm{III}_E = 28$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6305.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 28$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6315.d3	p = 421	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 74 * 421 + O(421^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6405.i3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^3 + O(7^4)$	$C_E = 1$	$ \coprod_E =81$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6489.c1	p = 103	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 103 + O(103^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6497.a3	p = 73	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 73 + O(73^2)$	$C_E = 1$	$ \coprod_E =1$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6497.a3	p = 89	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 81 * 89 + O(89^2)$	$C_E = 1$	$ \coprod_{E} =1$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6555.b4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_4	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6594.k2	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 112 * 157 + O(157^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
6780.g1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*5 + O(5^2)$ $C_E = 1$ $ III_E = 12$ C_2 $r_E = 0$ $\Delta > 0$	6606.i1	p = 367	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 109 * 367 + O(367^2)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_3	$r_E = 0$	$\Delta > 0$
	6633.e1	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 45 * 67 + O(67^2)$	$C_E = 1$	$ \underline{\mathrm{III}}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
6845.a1 $p = 5$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix} E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*5 + O(5^2)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 0$ $\Delta > 0$	6780.g1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
	6845.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$

6882.f3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 17 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
6920.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
6920.a1 p	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 46 * 173 + O(173^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
6980.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^7 + O(5^8)$	$C_E = 1$	$ III_E = 42$	C_2	$r_E = 1$	$\Delta > 0$
7120.h1	p = 89	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 89 + O(89^2)$	$C_E = 1$	$ \mathbf{III}_E = 1$	C_2	$r_E = 1$	$\Delta > 0$
7120.c1	p = 89	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 89^2 + O(89^3)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
7137.e1	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 58 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
7182.j1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 9$	$ III_E =2$	C_3	$r_E = 0$	$\Delta < 0$
7182.j1	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 19 + O(19^2)$	$C_E = 9$	$ \mathbf{III}_E = 2$	C_3	$r_E = 0$	$\Delta < 0$
7215.c3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$
7215.c3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 13 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$
7254.b1	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 31^2 + O(31^3)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
7462.i1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
7566.j4	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 6 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =160$	C_4	$r_E = 0$	$\Delta > 0$
7592.c1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_{E} =8$	C_2	$r_E = 0$	$\Delta > 0$
7730.d1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^5 + O(5^6)$	$C_E = 1$	$ \coprod_E =10$	C_2	$r_E = 1$	$\Delta > 0$
7730.d1 p	p = 773	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 381 * 773 + O(773^2)$	$C_E = 1$	$ \coprod_E =10$	C_2	$r_E = 1$	$\Delta > 0$
7816.a1 p	p = 977	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 291 * 977 + O(977^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
7820.b1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
7826.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =2$	C_3	$r_E = 2$	$\Delta < 0$
7826.b1	p=43	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 10 * 43 + O(43^2)$	$C_E = 1$	$ III_E =2$	C_3	$r_E = 2$	$\Delta < 0$
7925.c1 p	p = 317	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 127 * 317 + O(317^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
8194.e4	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 14 * 17 + O(17^2)$	$C_E = 4$	$ \coprod_E =32$	C_4	$r_E = 0$	$\Delta > 0$
8194.e4 p	p = 241	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 227 * 241 + O(241^2)$	$C_E = 4$	$ \coprod_E =32$	C_4	$r_E = 0$	$\Delta > 0$
8220.a1 p	p = 137	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 67 * 137 + O(137^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$

8235.f3	p = 61	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
8242.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8242.a1	p = 317	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 317 + O(317^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8320.k1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8320.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8320.i1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
8320.h1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
8355.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
8355.a1	p = 557	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 202 * 557 + O(557^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
8370.e3	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 31 + O(31^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
8414.g2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7^2 + O(7^3)$	$C_E = 1$	$ III_E = 54$	C_3	$r_E = 0$	$\Delta < 0$
8442.a1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 9$	$ III_E =2$	C_3	$r_E = 0$	$\Delta > 0$
8442.a1	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 28 * 67 + O(67^2)$	$C_E = 9$	$ III_E =2$	C_3	$r_E = 0$	$\Delta > 0$
8508.a2	p = 709	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 420 * 709 + O(709^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8510.f3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 192$	C_4	$r_E = 0$	$\Delta > 0$
8510.f3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 19 * 37 + O(37^2)$	$C_E = 1$	$ III_E = 192$	C_4	$r_E = 0$	$\Delta > 0$
8530.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8530.a1	p = 853	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 728 * 853 + O(853^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
8554.f3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7^3 + O(7^4)$	$C_E = 1$	$ III_E = 108$	C_3	$r_E = 0$	$\Delta < 0$
8585.d3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 4$	$ III_E = 1$	C_2	$r_E = 0$	$\Delta > 0$
8685.f1	p = 193	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 121 * 193 + O(193^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
8694.b1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^4 + O(7^5)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_3	$r_E = 0$	$\Delta > 0$
8694.13	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^4 + O(7^5)$	$C_E = 1$	$ III_E = 144$	C_3	$r_E = 0$	$\Delta > 0$
8745.h3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 16$	C_4	$r_E = 0$	$\Delta > 0$
8745.h3	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 21 * 53 + O(53^2)$	$C_E = 1$	$ \mathrm{III}_E = 16$	C_4	$r_E = 0$	$\Delta > 0$

8755.a2	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5^8 + O(5^9)$	$C_E = 1$	$ \coprod_E =32$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
8757.d1	p = 139	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 77 * 139 + O(139^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
8770.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
8770.b1	p = 877	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 322 * 877 + O(877^2)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
8778.i2	p = 19	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 19 + O(19^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
8796.a2	p = 733	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 612 * 733 + O(733^2)$	$C_E = 1$	$ III_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
8810.f3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5^4 + O(5^5)$	$C_E = 1$	$ \mathrm{III}_E = 64$	C_4	$r_E = 0$	$\Delta > 0$
8827.c3	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
8827.c3	p = 97	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 16 * 97 + O(97^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
8938.a1	p = 109	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 41 * 109^2 + O(109^3)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
8996.a1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 135 * 173 + O(173^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
9030.j4	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 4 * 7^2 + O(7^3)$	$C_E = 1$	$ \mathbf{III}_E = 72$	C_6	$r_E = 0$	$\Delta < 0$
9030.j3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 6$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 72$	C_6	$r_E = 0$	$\Delta > 0$
9061.b3	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 27 * 41^2 + O(41^3)$	$C_E = 4$	$ III_E = 8$	C_4	$r_E = 0$	$\Delta > 0$
9061.b2	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 32 * 41^4 + O(41^5)$	$C_E = 1$	$ III_E = 64$	$C_2 \times C_2$	$r_E = 0$	$\Delta > 0$
9074.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
9074.a1	p = 349	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 54 * 349 + O(349^2)$	$C_E = 1$	$ \mathbf{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
9135.g1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^5 + O(7^6)$	$C_E = 1$	$ \mathbf{III}_E = 90$	C_3	$r_E = 0$	$\Delta < 0$
9146.a1	p = 269	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 76 * 269^2 + O(269^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
9243.d3	p = 79	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 58 * 79 + O(79^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
9367.a1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 26 * 29^2 + O(29^3)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
9394.13	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
9394.13	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 40 * 61 + O(61^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
9490.d3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 13^4 + O(13^5)$	$C_E = 1$	$ III_E = 36$	C_3	$r_E = 0$	$\Delta > 0$
9546.d1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 19 * 37^2 + O(37^3)$	$C_E = 1$	$ III_E = 36$	C_3	$r_E = 0$	$\Delta < 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9590.i3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E = 96$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9605.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 17 + O(17^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9605.b1	p = 113	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 113 + O(113^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9618.e3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9618.e3	p = 229	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 149 * 229 + O(229^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9795.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9795.a1	p = 653	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 336 * 653 + O(653^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9842.a3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =2$	C_3	$r_E = 2$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9842.a3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =2$	C_3	$r_E = 2$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9860.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 17 + O(17^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9948.a2	p = 829	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 530 * 829 + O(829^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10010.h1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^3 + O(7^4)$	$C_E = 1$	$ \coprod_E =27$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10030.j4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5^6 + O(5^7)$	$C_E = 1$	$ \coprod_E =672$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10062.d1	p = 43	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 21 * 43 + O(43^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10155.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10155.c1	p = 677	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 573 * 677 + O(677^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10180.a1	p = 509	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 38 * 509 + O(509^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10180.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ \coprod_E =10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10220.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10234.d2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10255.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
10262.d3 $p = 733$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 146 * 733 + O(733^2)$ $C_E = 1$ $ \text{III}_E = 18$ C_3 $r_E = 0$ $\Delta > 0$	10255.b1	p = 293	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 125 * 293 + O(293^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
	10262.d3	p=7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
10480.l2 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2$ $q_p = 5 + O(5^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	10262.d3	p = 733	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = \overline{146 * 733 + O(733^2)}$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
	10480.12	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 + O(5^2)$	$C_E = 1$	$ \overline{\coprod}_{E} = 2$	C_2	$r_E = 1$	$\Delta > 0$

10582.a3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
10582.a3	p = 37	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 37^2 + O(37^3)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
10585.b1	p = 73	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 64 * 73^2 + O(73^3)$	$C_E = 4$	$ \mathrm{III}_E = 2$	C_2	$r_E = 0$	$\Delta > 0$
10621.c3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 11 * 13 + O(13^2)$	$C_E = 9$	$ III_E = 1$	C_3	$r_E = 0$	$\Delta > 0$
10621.c3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 19 + O(19^2)$	$C_E = 9$	$ \mathbf{III}_E = 1$	C_3	$r_E = 0$	$\Delta > 0$
10634.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 13^2 + O(13^3)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
10672.f2	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 29 + O(29^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
10790.h3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 192$	C_4	$r_E = 0$	$\Delta > 0$
10790.h3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 7 * 13^3 + O(13^4)$	$C_E = 1$	$ \coprod_E =192$	C_4	$r_E = 0$	$\Delta > 0$
10865.b1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 53^2 + O(53^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
10880.bd1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$
10880.e1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$
10906.k3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 17 * 19^2 + O(19^3)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
10930.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
10930.a1 p	p = 1093	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 590 * 1093 + O(1093^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
10990.g3	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 54 * 157 + O(157^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
11072.b1 n	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 25 * 173 + O(173^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
11080.b1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
11080.b1	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 221 * 277 + O(277^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
11136.c1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 15 * 29 + O(29^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
11136.p1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 15 * 29 + O(29^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
11142.f1	p = 619	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 524 * 619 + O(619^2)$	$C_E = 1$	$ \coprod_E =180$	C_3	$r_E = 0$	$\Delta < 0$
11170.b1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
11170.b1 p	p = 1117	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 834 * 1117 + O(1117^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
11180.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =16$	C_2	$r_E = 0$	$\Delta > 0$

11382.e1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
11382.e1	p = 271	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 87 * 271 + O(271^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
11394.g3	p = 211	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 173 * 211 + O(211^2)$	$C_E = 4$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
11440.d1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
11554.f1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 26 * 53 + O(53^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
11554.f1	p = 109	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 53 * 109 + O(109^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
11648.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13^2 + O(13^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
11648.r1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13^2 + O(13^3)$	$C_E = 1$	$ III_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
11674.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13^2 + O(13^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
11718.e1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta > 0$
11718.e1	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 29 * 31 + O(31^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta > 0$
11914.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^3 + O(7^4)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
11948.a2	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 25 * 29 + O(29^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
11951.d1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 23 * 37^2 + O(37^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
12080.n2	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
12116.b1	p = 233	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 121 * 233 + O(233^2)$	$C_E = 1$	$ \coprod_E =3$	C_2	$r_E = 1$	$\Delta > 0$
12194.b1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta < 0$
12194.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 11 * 13 + O(13^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta < 0$
12215.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta > 0$
12285.11	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 9$	$ \coprod_{E} =1$	C_3	$r_E = 0$	$\Delta > 0$
12285.l1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 13 + O(13^2)$	$C_E = 9$	$ \coprod_{E} =1$	C_3	$r_E = 0$	$\Delta > 0$
12370.d1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
12370.d1	p = 1237	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 743 * 1237 + O(1237^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
12545.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^5 + O(5^6)$	$C_E = 1$	$ \coprod_E =60$	C_2	$r_E = 0$	$\Delta > 0$
12545.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 13^3 + O(13^4)$	$C_E = 1$	$ \coprod_E =60$	C_2	$r_E = 0$	$\Delta > 0$

$ \begin{array}{ c c c c c c c c } \hline 12580.a1 & p = 37 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 17*37 + O(37^2) & C_E = 1 & \mathbf{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 12805.a1 & p = 13 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 2*13 + O(13^2) & C_E = 1 & \mathbf{III}_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 12805.a1 & p = 197 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 153*197 + O(197^2) & C_E = 1 & \mathbf{III}_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 12831.b1 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 5*7 + O(7^2) & C_E = 1 & \mathbf{III}_E = 18 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 12999.b2 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 4*7^2 + O(7^3) & C_E = 1 & \mathbf{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 12999.b2 & p = 619 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 418*619 + O(619^2) & C_E = 1 & \mathbf{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13296.b2 & p = 277 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 136*277 + O(277^2) & C_E = 1 & \mathbf{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13447.a1 & p = 17 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 7*17^4 + O(17^5) & C_E = 1 & \mathbf{III}_E = 8 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13520.bc3 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5^3 + O(5^2) & C_E = 1 & \mathbf{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13520.bc1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5^3 + O(5^4) & C_E = 1 & \mathbf{III}_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13538.d3 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 4*5^3 + O(5^4) & C_E = 1 & \mathbf{III}_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13542.e1 & p = 61 & R = \mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 5*7 + O(7^2) & C_E = 4 & \mathbf{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13542.e1 & p = 61 & R = \mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\text{Tor}} = 3 & q_p = 2*6^{12} + O(61^3) & C_E = 1 & \mathbf{III}_E = 18 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13580.k1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 5*5 + 697 + O(1697^2) & C_E = 1 & \mathbf{III}_E = 4 & C_2 & r_E = 1 & $
$\begin{array}{ c c c c c c c }\hline 12805.a1 & p = 197 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 153*197 + O(197^2) & C_E = 1 & \mathrm{III}_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 12831.b1 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 3 & q_p = 5*7 + O(7^2) & C_E = 1 & \mathrm{III}_E = 18 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 12999.b2 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 3 & q_p = 4*7^2 + O(7^3) & C_E = 1 & \mathrm{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 12999.b2 & p = 619 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 3 & q_p = 418*619 + O(619^2) & C_E = 1 & \mathrm{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13296.b2 & p = 277 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 136*277 + O(277^2) & C_E = 1 & \mathrm{III}_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13447.a1 & p = 17 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 7*17^4 + O(17^5) & C_E = 1 & \mathrm{III}_E = 8 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13455.e1 & p = 13 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 3 & q_p = 5*13^2 + O(13^3) & C_E = 1 & \mathrm{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13520.bc3 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 4*5 + O(5^2) & C_E = 1 & \mathrm{III}_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13520.bc1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 4*5^3 + O(5^4) & C_E = 1 & \mathrm{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13520.f1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 5*0(5^2) & C_E = 1 & \mathrm{III}_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13538.d3 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 3 & q_p = 6*7 + O(7^2) & C_E = 4 & \mathrm{III}_E = 36 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 13542.e1 & p = 61 & R = \mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 5*5*1697 + O(1697^2) & C_E = 1 & \mathrm{III}_E = 4 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13580.k1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 5*5*1697 + O(1697^2) & C_E = 1 & \mathrm{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 13580.k1 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} = 2 & q_p = 5*5*1697 + O(1697^2) & C_E = 1 & \mathrm{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \\ $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c }\hline 12999.b2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=4*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 12999.b2 & p=619 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=418*619+O(619^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13296.b2 & p=277 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=136*277+O(277^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13447.a1 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=7*17^4+O(17^5) & C_E=1 & \mathrm{III}_E =8 & C_2 & r_E=1 & \Delta>0\\ \hline 13455.e1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13520.bc3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.bc1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 &$
$\begin{array}{ c c c c c c c c c }\hline 12999.b2 & p=619 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=418*619+O(619^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13296.b2 & p=277 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=136*277+O(277^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13447.a1 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=7*17^4+O(17^5) & C_E=1 & \mathrm{III}_E =8 & C_2 & r_E=1 & \Delta>0\\ \hline 13455.e1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13520.bc3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.bc1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13542.e1 & p=61 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=22*61^2+O(61^3) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_$
$\begin{array}{ c c c c c c c c }\hline 13296.b2 & p=277 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=136*277+O(277^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13447.a1 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=7*17^4+O(17^5) & C_E=1 & \mathrm{III}_E =8 & C_2 & r_E=1 & \Delta>0\\ \hline 13455.e1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13520.bc3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.bc1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13542.e1 & p=61 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=22*61^2+O(61^3) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & $
$\begin{array}{ c c c c c c c c }\hline 13447.a1 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=7*17^4+O(17^5) & C_E=1 & \mathrm{III}_E =8 & C_2 & r_E=1 & \Delta>0\\\hline 13455.e1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\\hline 13520.bc3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\\hline 13520.bc1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\\hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\\hline 13542.e1 & p=61 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=22*61^2+O(61^3) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\\hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O($
$\begin{array}{ c c c c c c c c c }\hline 13455.e1 & p=13 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*13^2+O(13^3) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\\hline 13520.bc3 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\\hline 13520.bc1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=4*5^3+O(5^4) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\\hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\\hline 13542.e1 & p=61 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=22*61^2+O(61^3) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\\hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\\hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c }\hline 13520.f1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=5+O(5^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 13538.d3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7+O(7^2) & C_E=4 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta<0\\ \hline 13542.e1 & p=61 & R=\mathbb{Z}\left[\frac{1}{2}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=22*61^2+O(61^3) & C_E=1 & \mathrm{III}_E =18 & C_3 & r_E=0 & \Delta<0\\ \hline 13576.a1 & p=1697 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=585*1697+O(1697^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 13580.k1 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2*5+O(5^2) & C_E=1 & \mathrm{III}_E =6 & C_2 & r_E=1 & \Delta>0\\ \hline \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13930.d2	p = 199	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 107 * 199 + O(199^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13930.i3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13930.i3	p = 199	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 134 * 199 + O(199^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13940.d1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 16 * 17 + O(17^2)$	$C_E = 4$	$ \mathbf{III}_E = 1$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13980.a1	p = 233	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 233 + O(233^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14045.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14118.d3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14130.f1	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 111 * 157 + O(157^2)$	$C_E = 1$	$ III_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14180.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ III_E = 10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14315.c3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14315.c3	p = 409	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 35 * 409 + O(409^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14404.b1	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 69 * 277 + O(277^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14404.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 9 * 13^3 + O(13^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14539.e3	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 31^2 + O(31^3)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14539.e3	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 67 + O(67^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14656.o1	p = 229	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 212 * 229 + O(229^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14705.a1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 15 * 17 + O(17^2)$	$C_E = 1$	$ \coprod_E =1$	C_2	$r_E = 2$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14920.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14920.c1	p = 373	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 216 * 373 + O(373^2)$	$C_E = 1$	$ \mathbf{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14960.c1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 17^2 + O(17^3)$	$C_E = 1$	$ \mathbf{III}_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14966.c1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
15022.g4 $p = 37$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 4$ $q_p = 20*37 + O(37^2)$ $C_E = 1$ $ III_E = 48$ C_4 $r_E = 0$ $\Delta > 0$	14966.c1	p = 1069	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 785 * 1069 + O(1069^2)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
	15022.g4	p=29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 8 * 29 + O(29^2)$	$C_E = 1$	$ \Pi_E = 48$	C_4	$r_E = 0$	$\Delta > 0$
$15195.c1 p = 5 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2 q_p = 3*5 + O(5^2) C_E = 1 \mathbf{III}_E = 2 C_2 r_E = 1 \Delta > 0$	15022.g4	p=37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 20 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 48$	C_4	$r_E = 0$	$\Delta > 0$
	15195.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1 \mid \Delta > 0$
	$1 \Delta > 0$
15380.a1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 5^5 + O(5^6)$ $C_E = 1$ $ \text{III}_E = 30$ C_2 $r_E = 1$	$1 \Delta > 0$
15420.a1 $p = 257$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 54 * 257 + O(257^2)$ $C_E = 1$ $ III_E = 6$ C_2 $r_E = 1$	$1 \Delta > 0$
$ 15545.b2 p = 5 R = \mathbb{Z} \left[\frac{1}{1} \right] E(\mathbb{Q})_{\text{Tor}} = 4 q_p = 5^10 + O(5^11) C_E = 1 \text{III}_E = 20 C_2 \times C_2 r_E = 1 $	$1 \Delta > 0$
$ 15545.b2 p = 3109 R = \mathbb{Z} \begin{bmatrix} \frac{1}{1} \end{bmatrix} E(\mathbb{Q})_{\text{Tor}} = 4 q_p = 2530 * 3109^2 + O(3109^3) C_E = 1 \text{III}_E = 20 C_2 \times C_2 r_E = 1 C_2 \times C_2$	$1 \Delta > 0$
$ 15666.b1 p = 373 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 3 q_p = 144 * 373 + O(373^2) C_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 III$	$0 \Delta < 0$
$ 15694.b1 p = 19 R = \mathbb{Z}\left[\frac{1}{2}\right] E(\mathbb{Q})_{\text{Tor}} = 3 q_p = 14*19^2 + O(19^3) C_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 C_3 r_E = 1 \text{III}_E = 18 C_3 r_E = 1 C_3 r_E =$	$0 \Delta < 0$
$ 15916.b2 p = 173 R = \mathbb{Z} \begin{bmatrix} \frac{1}{1} \end{bmatrix} E(\mathbb{Q})_{\text{Tor}} = 2 q_p = 124 * 173 + O(173^2) C_E = 1 \mathbf{III}_E = 2 C_2 r_E = 1 \mathbf{III}_E = 2 \mathbf{III}_E = 2 $	$1 \Delta > 0$
	$0 \Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0 \Delta > 0$
	$0 \Delta < 0$
	$0 \mid \Delta < 0$
$ \boxed{ 16220.a2 p=5 R=\mathbb{Z}\left[\frac{1}{1}\right] \mid E(\mathbb{Q})_{\mathrm{Tor}} =2 q_p=5+O(5^2) \qquad C_E=1 \mathrm{III}_E =2 C_2 r_E=1 } $	$1 \Delta > 0$
	$0 \Delta < 0$
	$1 \Delta > 0$
	$1 \Delta > 0$
	$0 \mid \Delta < 0$
	$0 \mid \Delta > 0$
	$0 \mid \Delta > 0$
	$0 \Delta > 0$
16870.a3 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{2}\right] E(\mathbb{Q})_{\text{Tor}} = 3$ $q_p = 6*7 + O(7^2)$ $C_E = 1$ $ \text{III}_E = 9$ C_3 $r_E = 1$	$0 \Delta < 0$
	$0 \Delta < 0$
	$1 \Delta > 0$
	$0 \mid \Delta < 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17300.a1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 25 * 173 + O(173^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17394.f3	p = 223	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 59 * 223 + O(223^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17436.a2	p = 1453	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 1425 * 1453 + O(1453^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17468.b2	p = 397	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 279 * 397 + O(397^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17612.d1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 17^2 + O(17^3)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17797.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 13^3 + O(13^4)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18020.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18090.r3	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 45 * 67 + O(67^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18124.a2	p = 197	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 188 * 197 + O(197^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18165.b3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =16$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18165.b3	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 112 * 173 + O(173^2)$	$C_E = 1$	$ \mathbf{III}_E = 16$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18284.a2	p = 653	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 207 * 653 + O(653^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18320.g1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ III_E = 10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18460.e1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 8 * 13^2 + O(13^3)$	$C_E = 1$	$ III_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18486.e1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 13 + O(13^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18486.e1	p = 79	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 78 * 79 + O(79^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18649.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 9 * 17^2 + O(17^3)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18649.b1	p = 1097	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 418 * 1097 + O(1097^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18752.11	p = 293	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 198 * 293 + O(293^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18910.c1	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 31 + O(31^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
19045.a1 $p = 13$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 7*13 + O(13^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$ 19045.a1 $p = 293$ $R = \mathbb{Z}\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 213*293 + O(293^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	18925.c1	p = 757	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 701 * 757 + O(757^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 4$	C_2	$r_E = 0$	$\Delta > 0$
19045.a1 $p = 293$ $R = \mathbb{Z}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 213 * 293 + O(293^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$ $\Delta > 0$	18990.n1	p = 211	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 63 * 211 + O(211^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 36$	C_3	$r_E = 0$	$\Delta < 0$
	19045.a1	p=13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 2$	C_2	$r_E = 1$	$\Delta > 0$
19045 b1 $ n = 5 R = \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix} E(\mathbb{Q})_{T_{n-1}} = 2 q_n = 2 * 5 + O(5^2) C_n = 1 III_n = 14 C_2 r_n = 1 \Delta > 0$	19045.a1	$p = 29\overline{3}$	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 213 * 293 + O(293^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19045.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 14$	C_2	$r_E = 1$	$\Delta > 0$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19045.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 13^7 + O(13^8)$	$C_E = 1$	$ \coprod_E =14$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19186.g1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 53^3 + O(53^4)$	$C_E = 9$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 1933.b1 & p = 1933 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 977*1933 + O(1933^2) & C_E = 1 & III_E = 4 & C_2 & r_E = 0 & \Delta > 0 \\ \hline 19336.b1 & p = 2417 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 2155*2417 + O(2417^2) & C_E = 1 & III_E = 4 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 19474.d2 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 3 & q_p = 5*7^2 + O(7^3) & C_E = 1 & III_E = 180 & C_3 & r_E = 0 & \Delta < 0 \\ \hline 19570.e3 & p = 19 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 3 & q_p = 13*19 + O(19^2) & C_E = 1 & III_E = 36 & C_3 & r_E = 0 & \Delta > 0 \\ \hline 19635.j5 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 4 & q_p = 4*5 + O(5^2) & C_E = 4 & III_E = 8 & C_4 & r_E = 0 & \Delta > 0 \\ \hline 19815.b4 & p = 5 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 4 & q_p = 11*17 + O(17^2) & C_E = 4 & III_E = 8 & C_4 & r_E = 0 & \Delta > 0 \\ \hline 19885.c1 & p = 97 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 43*97 + O(97^2) & C_E = 1 & III_E = 32 & C_4 & r_E = 0 & \Delta > 0 \\ \hline 20028.b2 & p = 1669 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 389*1669 + O(1669^2) & C_E = 1 & III_E = 2 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 20070.01 & p = 223 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 3 & q_p = 91*223 + O(223^2) & C_E = 1 & III_E = 9 & C_3 & r_E = 0 & \Delta > 0 \\ \hline 20083.b3 & p = 7 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 3 & q_p = 6*7^2 + O(7^3) & C_E = 9 & III_E = 2 & C_3 & r_E = 0 & \Delta > 0 \\ \hline 20083.b3 & p = 151 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 3 & q_p = 12*19 + O(19^2) & C_E = 9 & III_E = 2 & C_3 & r_E = 0 & \Delta > 0 \\ \hline 20140.e1 & p = 53 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 335*1009 + O(1009^2) & C_E = 1 & III_E = 4 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 20180.a1 & p = 1009 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 335*1009 + O(1009^2) & C_E = 1 & III_E = 3 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 20208.b2 & p = 421 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{Tor} = 2 & q_p = 335*1009 + O(1009^2) & C_E = 1 & III_E = 3 & C_2 & r_E = 1 & \Delta > 0 \\ \hline 20208.b2 & p = 421 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q}$	19186.g1	p = 181	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 128 * 181 + O(181^2)$	$C_E = 9$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 19336.b1 & p=2417 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=2155*2417+O(2417^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 19474.d2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =180 & C_3 & r_E=0 & \Delta<0\\ \hline 19570.e3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=13*19+O(19^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta>0\\ \hline 19635.j5 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=4*5+O(5^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta>0\\ \hline 19635.j5 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=11*17+O(17^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta>0\\ \hline 19815.b4 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=5^2+O(5^3) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 19885.c1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=43*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 20028.b2 & p=1669 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=389*1669+O(1669^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20070.o1 & p=223 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=91*223+O(232^3) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=151 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=121*151+O(151^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20140.e1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=50*53^4+O(53^5) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 20180.a1 & p=1009 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =3 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & $	19330.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 19474.d2 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=5*7^2+O(7^3) & C_E=1 & \mathrm{III}_E =180 & C_3 & r_E=0 & \Delta < 0 \\ \hline 19570.e3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=13*19+O(19^2) & C_E=1 & \mathrm{III}_E =36 & C_3 & r_E=0 & \Delta > 0 \\ \hline 19635.j5 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=4*5+O(5^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta > 0 \\ \hline 19635.j5 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=11*17+O(17^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta > 0 \\ \hline 19815.b4 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=5^2+O(5^3) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta > 0 \\ \hline 19885.c1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=43*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20028.b2 & p=1669 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=389*1669+O(1669^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20070.01 & p=223 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta > 0 \\ \hline 20083.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta > 0 \\ \hline 20083.b3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*19+O(19^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta > 0 \\ \hline 20140.e1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=50*53^4+O(53^5) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20180.a1 & p=1009 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =3 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta > 0 \\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009$	19330.b1	p = 1933	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 977 * 1933 + O(1933^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19336.b1	p = 2417	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2155 * 2417 + O(2417^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 19635.j5 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=4*5+O(5^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta>0\\ \hline 19635.j5 & p=17 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=11*17+O(17^2) & C_E=4 & \mathrm{III}_E =8 & C_4 & r_E=0 & \Delta>0\\ \hline 19815.b4 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=5^2+O(5^3) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 19885.c1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=43*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 20028.b2 & p=1669 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=389*1669+O(1669^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20070.o1 & p=223 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=91*223+O(223^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*19+O(19^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=151 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*19+O(19^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20140.e1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=50*53^4+O(53^5) & C_E=1 & \mathrm{III}_E =48 & C_2 & r_E=1 & \Delta>0\\ \hline 20180.a1 & p=1009 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =3 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r$	19474.d2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^2 + O(7^3)$	$C_E = 1$	$ \coprod_E =180$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19570.e3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 19 + O(19^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 19815.b4 & p=5 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =4 & q_p=5^2+O(5^3) & C_E=1 & \mathrm{III}_E =32 & C_4 & r_E=0 & \Delta>0\\ \hline 19885.c1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=43*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 20028.b2 & p=1669 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=389*1669+O(1669^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20070.o1 & p=223 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=91*223+O(223^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*19+O(19^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=151 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=121*151+O(151^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20140.e1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=50*53^4+O(53^5) & C_E=1 & \mathrm{III}_E =48 & C_2 & r_E=0 & \Delta>0\\ \hline 20180.a1 & p=1009 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =3 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E$	19635.j5	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 4 * 5 + O(5^2)$	$C_E = 4$	$ III_E = 8$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c }\hline 19885.c1 & p=97 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=43*97+O(97^2) & C_E=1 & \mathrm{III}_E =4 & C_2 & r_E=1 & \Delta>0\\ \hline 20028.b2 & p=1669 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=389*1669+O(1669^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline 20070.o1 & p=223 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=91*223+O(223^2) & C_E=1 & \mathrm{III}_E =9 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=7 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=6*7^2+O(7^3) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=19 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*19+O(19^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20083.b3 & p=151 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =3 & q_p=12*1*151+O(151^2) & C_E=9 & \mathrm{III}_E =2 & C_3 & r_E=0 & \Delta>0\\ \hline 20140.e1 & p=53 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=50*53^4+O(53^5) & C_E=1 & \mathrm{III}_E =48 & C_2 & r_E=0 & \Delta>0\\ \hline 20180.a1 & p=1009 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=335*1009+O(1009^2) & C_E=1 & \mathrm{III}_E =3 & C_2 & r_E=1 & \Delta>0\\ \hline 20208.b2 & p=421 & R=\mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\mathrm{Tor}} =2 & q_p=122*421+O(421^2) & C_E=1 & \mathrm{III}_E =2 & C_2 & r_E=1 & \Delta>0\\ \hline \end{array}$	19635.j5	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 11 * 17 + O(17^2)$	$C_E = 4$	$ \mathbf{III}_E = 8$	C_4	$r_E = 0$	$\Delta > 0$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19815.b4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =32$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19885.c1	p = 97	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 43 * 97 + O(97^2)$	$C_E = 1$	$ \mathbf{III}_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20028.b2	p = 1669	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 389 * 1669 + O(1669^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20070.o1	p = 223	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 91 * 223 + O(223^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20083.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7^2 + O(7^3)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20083.b3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 19 + O(19^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20083.b3	p = 151	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 121 * 151 + O(151^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$ 20208.b2 p = 421 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2 \qquad q_p = 122*421 + O(421^2) \qquad C_E = 1 \mathrm{III}_E = 2 \qquad C_2 \qquad r_E = 1 \Delta > 0 $	20140.e1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 50 * 53^4 + O(53^5)$	$C_E = 1$	$ \coprod_E = 48$	C_2	$r_E = 0$	$\Delta > 0$
	20180.a1	p = 1009	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 335 * 1009 + O(1009^2)$	$C_E = 1$	$ \coprod_E =3$	C_2	$r_E = 1$	$\Delta > 0$
$\mathcal{L}_{\mathcal{L}}$	20208.b2	p = 421	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 122 * 421 + O(421^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{vmatrix} 20352.\text{k1} & p = 53 & R = \mathbb{Z}\left[\frac{1}{1}\right] & E(\mathbb{Q})_{\text{Tor}} = 2 & q_p = 33*53^3 + O(53^4) & C_E = 1 & \text{III}_E = 6 & C_2 & r_E = 1 & \Delta > 0 \end{vmatrix} $	20352.k1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 33 * 53^3 + O(53^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
	20352.be1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 33 * 53^3 + O(53^4)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_2	$r_E = 0$	$\Delta > 0$
	20605.a1	p=5		$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \Pi_E = 30$	C_2	$r_E = 1$	$\Delta > 0$
	20605.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13^5 + O(1\overline{3}^6)$	$C_E = 1$	$ \coprod_E =30$	C_2	$r_E = 1$	$\Delta > 0$
	20720.11	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$

	$z=1 \mid \Delta > 0 \mid$
	$\alpha = 1 \mid \Delta > 0$
$ 20826.11 \qquad p = 13 \qquad R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\mathrm{Tor}} = 3 \qquad q_p = 8*13^3 + O(13^4) \qquad C_E = 1 \mathrm{III}_E = 216 \qquad C_3 \qquad r_E = 1 $	$\Delta = 0$ $\Delta < 0$
$ 20878.f3 \qquad p = 13 \qquad R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\mathrm{Tor}} = 3 \qquad q_p = 3*13 + O(13^2) \qquad C_E = 1 \mathrm{III}_E = 18 \qquad C_3 \qquad r_B = 10^{-1} $	$\alpha = 0 \Delta > 0$
$ 20915.b3 p = 89 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 4 \qquad q_p = 67*89 + O(89^2) \qquad C_E = 1 \mathrm{III}_E = 4 \qquad C_4 \qquad r_B = 1 $	$\alpha = 1 \Delta > 0$
$ 21008.b1 p = 101 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2 \qquad q_p = 81*101 + O(101^2) \qquad C_E = 1 \mathrm{III}_E = 2 \qquad C_2 \qquad r_B = 100000000000000000000000000000000000$	$\alpha = 1 \Delta > 0$
$ 21180.c1 \qquad p = 5 \qquad R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 2 \qquad q_p = 3*5^3 + O(5^4) \qquad C_E = 1 \text{III}_E = 36 \qquad C_2 \qquad r_E = 1 $	$\alpha = 0 \Delta > 0$
	$\alpha = 1 \mid \Delta > 0$
	$\alpha = 0 \mid \Delta < 0$
	$z=0 \mid \Delta < 0 \mid$
	$z=1 \mid \Delta > 0$
	$z=1 \mid \Delta > 0$
21385.e4 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 4$ $q_p = 2 * 5^5 + O(5^6)$ $C_E = 1$ $ III_E = 160$ C_4 $r_E = 1$	$g = 0 \mid \Delta > 0$
	$g = 0 \mid \Delta > 0$
	$z=0 \mid \Delta > 0$
	$z=0 \mid \Delta > 0$
	$g=1 \mid \Delta > 0$
	$z=1$ $\Delta > 0$
	$g = 0 \mid \Delta > 0$
21530.a1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 3 * 5^2 + O(5^3)$ $C_E = 1$ $ \text{III}_E = 24$ C_2 $r_E = 1$	$g = 0 \mid \Delta > 0$
21692.a1 $p = 29$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*29 + O(29^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$	$z=1$ $\Delta>0$
21845.b1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 2 * 5^4 + O(5^5)$ $C_E = 1$ $ III_E = 8$ C_2 $r_E = 1$	$z=1$ $\Delta>0$
21845.c1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 2 * 5^6 + O(5^7)$ $C_E = 1$ $ \text{III}_E = 60$ C_2 $r_E = 1$	$z=1$ $\Delta>0$
21905.b1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 2$ $q_p = 2 * 5^4 + O(5^5)$ $C_E = 1$ $ III_E = 8$ C_2 $r_E = 1$	$z=1$ $\Delta > 0$
	$g = 0 \mid \Delta > 0 \mid$

22180.a1	p = 1109	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 441 * 1109 + O(1109^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
22274.f3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 24 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
22395.e1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
22395.e1	p = 1493	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 1425 * 1493 + O(1493^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
22516.a1	p = 433	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 433 + O(433^2)$	$C_E = 1$	$ \coprod_{E} =1$	C_2	$r_E = 1$	$\Delta > 0$
22562.a1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 29 + O(29^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
22562.a1	p = 389	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 363 * 389 + O(389^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
22594.b2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
22755.c4	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 4$	$ III_E = 4$	C_4	$r_E = 0$	$\Delta > 0$
22755.c4	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 22 * 37 + O(37^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
22778.e1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7^2 + O(7^3)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
22778.e1	p = 1627	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 1177 * 1627 + O(1627^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
22865.a1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 17 + O(17^2)$	$C_E = 4$	$ III_E =1$	C_2	$r_E = 0$	$\Delta > 0$
22890.11	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
22890.11	p = 109	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 44 * 109 + O(109^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
22940.a1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 20 * 37^2 + O(37^3)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 1$	$\Delta > 0$
23086.f3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^2 + O(7^3)$	$C_E = 1$	$ \mathrm{III}_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
23120.u1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
23120.i3	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
23120.i1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
23254.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
23254.d3	p = 151	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 85 * 151 + O(151^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
23330.i1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
23330.i1	p = 2333	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 597 * 2333 + O(2333^2)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
23403.e1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 10 * 29 + O(29^2)$	$C_E = 1$	$ \mathbf{III}_E = 4$	C_2	$r_E = 0$	$\Delta > 0$

23403.e1	p = 269	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 193 * 269 + O(269^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
23452.e1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
23545.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
23545.b1	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 17 * 277 + O(277^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
23555.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 1$	$\Delta > 0$
23664.i1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 17 + O(17^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
23680.o1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 37 + O(37^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
23680.d1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 37 + O(37^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
23732.a1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 17 + O(17^2)$	$C_E = 1$	$ III_E =1$	C_2	$r_E = 1$	$\Delta > 0$
23902.e3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 17 * 19 + O(19^2)$	$C_E = 1$	$ \mathrm{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
23920.o1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^8 + O(5^9)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_2	$r_E = 0$	$\Delta > 0$
23959.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 13^2 + O(13^3)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
23959.a1	p = 97	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 71 * 97^2 + O(97^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
24099.a3	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 66 * 277 + O(277^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
24328.b1	p = 3041	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 98 * 3041 + O(3041^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
24580.a1	p = 1229	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 187 * 1229 + O(1229^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
24766.d1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
24766.d1	p = 61	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 11 * 61 + O(61^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
24820.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
24853.a2	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 7 * 29^4 + O(29^5)$	$C_E = 1$	$ \mathbf{III}_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
24853.a2	p = 857	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 787 * 857^2 + O(857^3)$	$C_E = 1$	$ III_E = 8$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
24930.11	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 226 * 277 + O(277^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
24980.a1	p = 1249	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 805 * 1249 + O(1249^2)$	$C_E = 1$	$ III_E = 3$	C_2	$r_E = 1$	$\Delta > 0$
25160.h3	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 5 * 17 + O(17^2)$	$C_E = 4$	$ III_E = 8$	C_4	$r_E = 0$	$\Delta > 0$
25160.h3	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 35 * 37 + O(37^2)$	$C_E = 4$	$ III_E = 8$	C_4	$r_E = 0$	$\Delta > 0$

25185.c3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \mathbf{III}_E = 64$	C_4	$r_E = 0$	$\Delta > 0$
25220.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
25326.f2	p = 67	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 57 * 67 + O(67^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
25470.g3	p = 283	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 66 * 283 + O(283^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
25491.a1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 29 + O(29^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
25491.a1	p = 293	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 223 * 293 + O(293^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
25604.b1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 169 * 173 + O(173^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
25655.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
25655.a1	p = 733	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 579 * 733 + O(733^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
25690.p3	p = 367	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 168 * 367 + O(367^2)$	$C_E = 4$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
25803.f1	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 61^2 + O(61^3)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta > 0$
25805.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
25805.b1	p = 397	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 351 * 397 + O(397^2)$	$C_E = 1$	$ III_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
25870.c3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5^5 + O(5^6)$	$C_E = 1$	$ \mathrm{III}_E = 240$	C_4	$r_E = 0$	$\Delta > 0$
25870.c3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 2 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 240$	C_4	$r_E = 0$	$\Delta > 0$
26076.c1	p = 41	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 34 * 41 + O(41^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
26120.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
26120.b1	p = 653	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 220 * 653 + O(653^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
26156.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 9 * 13 + O(13^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
26187.g1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
26190.h1	p = 97	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 23 * 97 + O(97^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
26190.m3	p = 97	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 29 * 97 + O(97^2)$	$C_E = 1$	$ \mathbf{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
26330.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E = 40$	C_2	$r_E = 0$	$\Delta > 0$
26474.b3	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 23 * 31 + O(31^2)$	$C_E = 1$	$ \mathrm{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
26838.t1	p=7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7^4 + O(7^5)$	$C_E = 1$	$ \mathrm{III}_E = 144$	C_3	$r_E = 0$	$\Delta < 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26962.g3	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26962.g3	p = 61	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 61 + O(61^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27027.i1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 9$	$ III_E = 1$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27027.i1	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 + O(13^2)$	$C_E = 9$	$ III_E = 1$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27055.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27055.a1	p = 773	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 703 * 773 + O(773^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27105.f3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27105.f3	p = 139	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 139 + O(139^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27120.n1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_{E} =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27161.b2	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 75 * 157^2 + O(157^3)$	$C_E = 1$	$ III_E = 4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27161.b2	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 106 * 173^2 + O(173^3)$	$C_E = 1$	$ III_E = 4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27380.c3	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27380.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4 * 5^3 + O(5^4)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27572.a1	p = 113	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 62 * 113 + O(113^2)$	$C_E = 1$	$ III_E = 1$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27741.b1	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^2 + O(7^3)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27741.b1	p = 1321	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 831 * 1321 + O(1321^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27770.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27790.h2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27790.h2	p = 397	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 136 * 397 + O(397^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27794.k3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 10 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27794.k3	p = 1069	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 948 * 1069 + O(1069^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$ 27898.f2 \qquad p = 37 \qquad R = \mathbb{Z}\left[\frac{1}{2}\right] E(\mathbb{Q})_{\text{Tor}} = 3 \qquad q_p = 24 * 37 + O(37^2) \qquad C_E = 1 \text{III}_E = 27 \qquad C_3 \qquad r_E = 0 \Delta < 0 $	27824.d2	p=37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 16 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
	27898.f2	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 9 * 13 + O(13^2)$	$C_E = 1$	$ \overline{\coprod}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
$27920.11 p = 5 R = \mathbb{Z} \begin{bmatrix} \frac{1}{1} \end{bmatrix} E(\mathbb{Q})_{\text{Tor}} = 2 q_p = 5^7 + O(5^8) C_E = 1 \text{III}_E = 14 C_2 r_E = 1 \Delta > 0$	27898.f2	p = 37	$R = \overline{\mathbb{Z}\left[\frac{1}{2}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 24 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
TIES IN THE PROPERTY OF THE PR	27920.11	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^7 + O(5^8)$	$C_E = 1$	$ \mathrm{III}_E = 14$	C_2	$r_E = 1$	$\Delta > 0$

27970.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
27970.a1	p = 2797	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 690 * 2797 + O(2797^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
28095.c1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ \mathrm{III}_E = 24$	C_2	$r_E = 0$	$\Delta > 0$
28145.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^2 + O(5^3)$	$C_E = 1$	$ III_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
28210.b2	p = 13	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 12 * 13 + O(13^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
28372.a1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 85 * 173 + O(173^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
28595.d3	p = 19	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 19^3 + O(19^4)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
28769.a2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 9 * 13^6 + O(13^7)$	$C_E = 1$	$ \mathrm{III}_E = 12$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
28769.a2	p = 2213	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 837 * 2213^2 + O(2213^3)$	$C_E = 1$	$ \mathrm{III}_E = 12$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
28854.i1	p = 229	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 8 * 229 + O(229^2)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
28970.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
29020.a2	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ III_E = 18$	C_2	$r_E = 1$	$\Delta > 0$
29036.h1	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 59 * 61 + O(61^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
29300.c1	p = 293	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 198 * 293 + O(293^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
29638.k3	p = 73	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 59 * 73 + O(73^2)$	$C_E = 1$	$ \mathbf{III}_E = 72$	C_3	$r_E = 0$	$\Delta < 0$
29708.a2	p = 1061	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 807 * 1061 + O(1061^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
29711.g2	p = 37	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 27 * 37^2 + O(37^3)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
29778.j2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
29778.j2	p = 709	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 377 * 709 + O(709^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
29862.s3	p = 79	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 70 * 79 + O(79^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
29955.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
29955.a1	p = 1997	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 459 * 1997 + O(1997^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
30155.a3	p = 163	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 98 * 163^2 + O(163^3)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta > 0$
30310.d2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ III_E = 27$	C_3	$r_E = 0$	$\Delta < 0$
30818.b3	p = 811	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 110 * 811 + O(811^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$

$\begin{array}{llllllllllllllllllllllllllllllllllll$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31086.i1	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 46 * 157 + O(157^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31174.c1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 10 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =54$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31257.a1	p = 151	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 26 * 151 + O(151^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31280.t1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31348.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 15 * 17^2 + O(17^3)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31390.d3	p = 73	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 69 * 73 + O(73^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31420.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ \coprod_E =10$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31700.a1	p = 317	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 16 * 317 + O(317^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31880.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31880.b1	p = 797	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 797 + O(797^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31934.a3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 27$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31954.a1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 7 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31954.a1	p = 1229	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 586 * 1229 + O(1229^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32108.b2	p = 349	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 31 * 349 + O(349^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32185.a1	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 28 * 157^2 + O(157^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32396.d1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32445.e1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32445.e1	p = 103	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 35 * 103 + O(103^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32708.b1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 17 * 37^2 + O(37^3)$	$C_E = 1$	$ \mathbf{III}_E = 12$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32718.d2	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 19 + O(19^2)$	$C_E = 1$	$ \coprod_E =144$	C_3	$r_E = 0$	$\Delta < 0$
$32922.d1 p = 31 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 3 q_p = 29 * 31^2 + O(31^3) C_E = 4 III_E = 36 C_3 r_E = 0 \Delta < 0$	32860.a1	p = 53	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 27 * 53^2 + O(53^3)$	$C_E = 1$	$ III_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
	32880.t1	p = 137	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 67 * 137 + O(137^2)$	$C_E = 1$	$ \mathbf{III}_E = 8$	C_2	$r_E = 0$	$\Delta > 0$
33054.g2 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 3$ $q_p = 4 * 7 + O(7^2)$ $C_E = 1$ $ \text{III}_E = 18$ C_3 $r_E = 0$ $\Delta < 0$	32922.d1	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 29 * 31^2 + O(31^3)$	$C_E = 4$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
	33054.g2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$33054.g2 p = 787 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 3 q_p = 641 * 787 + O(787^2) C_E = 1 \mathbf{III}_E = 18 C_3 r_E = 0 \Delta < 0$	33054.g2	p = 787	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 641 * 787 + O(787^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$33564.a2 p = 2797 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\mathrm{Tor}} = 2 q_p = 1963 * 2797 + O(2797^2) C_E = 1 \mathrm{III}_E = 6 \qquad C_2 \qquad r_E = 1$
33794.a1 $p = 61$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 55 * 61 + O(61^2)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 0$
33839.a1 $p = 13$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 11 * 13^2 + O(13^3)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 1$
33920.i1 $p = 53$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 21 * 53 + O(53^2)$ $C_E = 1$ $ III_E = 2$ C_2 $r_E = 1$
$ 33928.b1 p = 4241 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2 q_p = 468 * 4241 + O(4241^2) C_E = 1 III_E = 4 C_2 r_E = 1 $
34131.c1 $p = 367$ $R = \mathbb{Z}\left[\frac{1}{2}\right]$ $ E(\mathbb{Q})_{\text{Tor}} = 3$ $q_p = 128 * 367 + O(367^2)$ $C_E = 1$ $ \text{III}_E = 9$ C_3 $r_E = 0$
34180.b1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 5^7 + O(5^8)$ $C_E = 1$ $ III_E = 42$ C_2 $r_E = 1$

35049.d3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 4$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
35049.d3	p = 1669	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 425 * 1669 + O(1669^2)$	$C_E = 4$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
35068.b2	p = 797	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 782 * 797 + O(797^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
35126.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 9$	$ III_E =1$	C_3	$r_E = 0$	$\Delta > 0$
35126.b3	p = 193	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 160 * 193 + O(193^2)$	$C_E = 9$	$ \mathbf{III}_E = 1$	C_3	$r_E = 0$	$\Delta > 0$
35292.c1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 105 * 173 + O(173^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
35415.a1	p = 787	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 397 * 787 + O(787^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
35570.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
35570.b1	p = 3557	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 1805 * 3557 + O(3557^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
35580.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
35620.f1	p = 137	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 117 * 137 + O(137^2)$	$C_E = 1$	$ \mathbf{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
35620.d1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
35620.g1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
35655.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
35657.b2	p = 181	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 13 * 181^2 + O(181^3)$	$C_E = 1$	$ \coprod_E =4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
35657.b2	p = 197	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 100 * 197^2 + O(197^3)$	$C_E = 1$	$ \coprod_E =4$	$C_2 \times C_2$	$r_E = 1$	$\Delta > 0$
35658.c1	p = 283	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 217 * 283 + O(283^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
35910.l3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta > 0$
35910.l3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 19 + O(19^2)$	$C_E = 9$	$ \mathbf{III}_E = 1$	C_3	$r_E = 0$	$\Delta > 0$
35910.o2	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 7^3 + O(7^4)$	$C_E = 1$	$ \coprod_E =54$	C_3	$r_E = 0$	$\Delta < 0$
35980.f1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
35984.i1	p = 173	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 135 * 173 + O(173^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
36022.g3	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7^3 + O(7^4)$	$C_E = 1$	$ \coprod_E =135$	C_3	$r_E = 0$	$\Delta < 0$
36110.b3	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
36110.b3	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 123 * 157 + O(157^2)$	$C_E = 1$	$ III_E = 32$	C_4	$r_E = 0$	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36127.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36127.b1	p = 397	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 377 * 397 + O(397^2)$	$C_E = 1$	$ III_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36205.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 13^3 + O(13^4)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36205.b1	p = 557	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 491 * 557 + O(557^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36218.e3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 13 + O(13^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36218.e3	p = 199	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 31 * 199 + O(199^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36365.c3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36365.c3	p = 1039	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 731 * 1039 + O(1039^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36522.d1	p = 2029	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 1267 * 2029 + O(2029^2)$	$C_E = 1$	$ III_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36621.e1	p = 313	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 261 * 313 + O(313^2)$	$C_E = 4$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36894.s2	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 13 + O(13^2)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36894.s2	p = 43	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 29 * 43 + O(43^2)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37020.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37095.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37355.c2	p = 31	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 14 * 31 + O(31^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37355.c2	p = 241	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 222 * 241 + O(241^2)$	$C_E = 1$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37480.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38048.b1	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 18 * 29^2 + O(29^3)$	$C_E = 4$	$ \mathbf{III}_E = 8$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38048.a2	p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 11 * 29^2 + O(29^3)$	$C_E = 1$	$ \mathrm{III}_E = 32$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38165.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5 * 17^4 + O(17^5)$	$C_E = 1$	$ \mathbf{III}_E = 8$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38358.d1	p = 2131	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 207 * 2131 + O(2131^2)$	$C_E = 1$	$ \overline{\mathrm{III}_E} = 90$	C_3	$r_E = 0$	$\Delta > 0$
$38739.d3 p = 37 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{\text{Tor}} = 2 q_p = 34 * 37 + O(37^2) C_E = 1 III_E = 2 C_2 r_E = 1 \Delta > 0$	38512.d2	p=29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 16 * 29 + O(29^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
	38620.b2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^7 + O(5^8)$	$C_E = 1$	$ \widetilde{\coprod}_E = 42$	C_2	$r_E = 1$	$\Delta > 0$
$38739.d3 p = 349 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 2 q_p = 334 * 349 + O(349^2) C_E = 1 \mathbf{III}_E = 2 C_2 r_E = 1 \Delta > 0$	38739.d3	p=37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 34 * 37 + O(37^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
	38739.d3	p = 349	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 334 * 349 + O(\overline{349^2})$	$C_E = 1$	$ \coprod_E = 2$	C_2	$r_E = 1$	$\Delta > 0$

p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =2$	C_3	$r_E = 0$	$\Delta < 0$
p = 103	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 100 * 103 + O(103^2)$	$C_E = 9$	$ \mathrm{III}_E =2$	C_3	$r_E = 0$	$\Delta < 0$
p = 103	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 101 * 103 + O(103^2)$	$C_E = 4$	$ \mathbf{III}_E = 9$	C_3	$r_E = 0$	$\Delta > 0$
p = 619	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 95 * 619 + O(619^2)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
p = 3253	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 795 * 3253 + O(3253^2)$	$C_E = 1$	$ \coprod_{E} =2$	C_2	$r_E = 1$	$\Delta > 0$
p = 313	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 88 * 313 + O(313^2)$	$C_E = 1$	$ III_E =1$	C_2	$r_E = 1$	$\Delta > 0$
p = 313	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 88 * 313 + O(313^2)$	$C_E = 1$	$ \coprod_{E} =1$	C_2	$r_E = 1$	$\Delta > 0$
p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 11 * 17 + O(17^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 6 * 13 + O(13^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
p = 1549	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 823 * 1549 + O(1549^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
p = 509	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 38 * 509 + O(509^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^5 + O(5^6)$	$C_E = 1$	$ \mathbf{III}_E = 10$	C_2	$r_E = 1$	$\Delta > 0$
p = 151	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 77 * 151 + O(151^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta > 0$
p = 151	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 48 * 151 + O(151^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta > 0$
p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 1$	$\Delta > 0$
p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ III_E = 4$	C_2	$r_E = 0$	$\Delta > 0$
p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =36$	C_3	$r_E = 0$	$\Delta < 0$
p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 27 * 31^2 + O(31^3)$	$C_E = 1$	$ \mathrm{III}_E = 36$	C_3	$r_E = 0$	$\Delta < 0$
p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 9 * 13 + O(13^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
p = 1069	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 689 * 1069 + O(1069^2)$	$C_E = 1$	$ \mathrm{III}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
p = 2089	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 432 * 2089 + O(2089^2)$	$C_E = 1$	$ \mathbf{III}_E = 3$	C_2	$r_E = 1$	$\Delta > 0$
p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 3 * 7 + O(7^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
p = 199	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 130 * 199 + O(199^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ III_E = 8$	C_2	$r_E = 1$	$\Delta > 0$
p = 29	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 15 * 29 + O(29^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
	p = 103 $p = 103$ $p = 619$ $p = 3253$ $p = 313$ $p = 313$ $p = 17$ $p = 13$ $p = 1549$ $p = 509$ $p = 5$ $p = 151$ $p = 15$ $p = 7$ $p = 31$ $p = 1069$ $p = 2089$ $p = 7$ $p = 199$ $p = 5$	$\begin{array}{c cccc} p = 103 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 103 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 619 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 3253 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 313 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 313 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 17 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 17 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 18 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 19 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 19 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 19 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 19 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 1069 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 1069 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 199 & R = \mathbb{Z} \left[\frac{1}{1} \right] \\ p = 1000 & R = \mathbb$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42514.a1	p = 733	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 182 * 733 + O(733^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42620.a2	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =18$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42658.b3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 4$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42658.b3	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 142 * 277 + O(277^2)$	$C_E = 4$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42772.e1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 18 * 37 + O(37^2)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42822.b3	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 19 * 61 + O(61^2)$	$C_E = 1$	$ \mathrm{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42895.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^3 + O(5^4)$	$C_E = 1$	$ \coprod_E =6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42895.a1	p = 373	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 23 * 373 + O(373^2)$	$C_E = 1$	$ \mathbf{III}_E = 6$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43127.e1	p = 61	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 32 * 61 + O(61^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43127.e1	p = 101	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 38 * 101 + O(101^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43370.a1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43435.d3	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 12 * 17 + O(17^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43435.d3	p = 73	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 4$	$q_p = 39 * 73 + O(73^2)$	$C_E = 4$	$ \coprod_E =4$	C_4	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43570.b1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43570.b1	p = 4357	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3689 * 4357 + O(4357^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43730.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43730.d1	p = 4373	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 1038 * 4373 + O(4373^2)$	$C_E = 1$	$ \coprod_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43820.b1	p = 5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43836.b1	p = 281	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 257 * 281^2 + O(281^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44310.i3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 4 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44585.a1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 22 * 37^2 + O(37^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
44695.a1 $p = 1277$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 980 * 1277 + O(1277^2)$ $C_E = 1$ $ III_E = 4$ C_2 $r_E = 0$ $\Delta > 0$	44588.a2	p = 157	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 109 * 157 + O(157^2)$	$C_E = 1$	$ \overline{\coprod}_{E} = 2$	C_2	$r_E = 1$	$\Delta > 0$
	44695.a1	p=5	$R = \overline{\mathbb{Z}\left[\frac{1}{1}\right]}$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
44720.j1 $p = 5$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 2$ $q_p = 3*5^4 + O(5^5)$ $C_E = 1$ $ III_E = 8$ C_2 $r_E = 1$ $\Delta > 0$	44695.a1	p = 1277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 980 * 1277 + O(1277^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
	44720.j1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^4 + O(5^5)$	$C_E = 1$	$ \coprod_E =8$	C_2	$r_E = 1$	$\Delta > 0$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50056.a1	p = 6257	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 886 * 6257 + O(6257^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50096.b2	p = 101	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 54 * 101 + O(101^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50180.b1	p = 193	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 60 * 193 + O(193^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50180.d1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5 + O(5^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50320.s1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 17 * 37 + O(37^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50817.b3	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 10 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50817.b3	p = 1303	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 292 * 1303 + O(1303^2)$	$C_E = 1$	$ \coprod_E =18$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51085.b1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 10 * 17^2 + O(17^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51092.a1	p = 241	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 125 * 241 + O(241^2)$	$C_E = 1$	$ \coprod_E =3$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51170.k2	p = 7	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51245.c1	p = 37	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 15 * 37 + O(37^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51245.c1	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 182 * 277 + O(277^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51325.a1	p = 2053	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 1027 * 2053 + O(2053^2)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51338.a3	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51338.a3	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 19 + O(19^2)$	$C_E = 9$	$ \coprod_E =1$	C_3	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51420.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ \mathrm{III}_E = 12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51855.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} =2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60014.e1	p = 811	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 298 * 811 + O(811^2)$	$C_E = 4$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60034.b1	p = 13	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 8 * 13 + O(13^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60034.b1	p = 2309	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 382 * 2309 + O(2309^2)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 0$	$\Delta > 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60078.h2	p = 19	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 13 * 19 + O(19^2)$	$C_E = 1$	$ \mathbf{III}_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
60585.g2 $p = 7$ $R = \mathbb{Z}\left[\frac{1}{1}\right]$ $ E(\mathbb{Q})_{Tor} = 3$ $q_p = 6 * 7 + O(7^2)$ $C_E = 1$ $ III_E = 18$ C_3 $r_E = 0$ $\Delta < 0$	60370.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5 + O(5^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
	60370.a1	p = 6037	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 4027 * 6037 + O(6037^2)$	$C_E = 1$	$ \overline{\coprod}_E = 2$	C_2	$r_E = 1$	$\Delta > 0$
$60585.g2 p = 577 R = \mathbb{Z}\left[\frac{1}{1}\right] E(\mathbb{Q})_{Tor} = 3 q_p = 263*577 + O(577^2) C_E = 1 \mathrm{III}_E = 18 C_3 r_E = 0 \Delta < 0$	60585.g2	p=7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 6 * 7 + O(7^2)$	$C_E = 1$	$ \Pi_E = 18$	C_3	$r_E = 0$	$\Delta < 0$
	60585.g2	p = 577	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 263 * 577 + O(577^2)$	$C_E = 1$	$ III_E = 18$	C_3	$r_E = 0$	$\Delta < 0$

60620.d1	p = 433	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 423 * 433 + O(433^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$
60642.k2	p = 1123	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 663 * 1123 + O(1123^2)$	$C_E = 4$	$ \coprod_E =45$	C_3	$r_E = 0$	$\Delta > 0$
60853.a3	p = 31	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 2 * 31 + O(31^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta > 0$
60940.h1	p = 277	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 179 * 277^2 + O(277^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
61130.a1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 3 * 5^6 + O(5^7)$	$C_E = 1$	$ \coprod_E =12$	C_2	$r_E = 1$	$\Delta > 0$
70115.a2	p = 379	$R = \mathbb{Z}\left[\frac{1}{2}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 133 * 379 + O(379^2)$	$C_E = 1$	$ \coprod_E =9$	C_3	$r_E = 0$	$\Delta < 0$
70448.k1	p = 17	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 12 * 17^2 + O(17^3)$	$C_E = 1$	$ \coprod_E =16$	C_2	$r_E = 0$	$\Delta > 0$
70570.c1	p=5	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 2 * 5^2 + O(5^3)$	$C_E = 1$	$ \coprod_E =4$	C_2	$r_E = 1$	$\Delta > 0$
80010.o1	p = 7	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 3$	$q_p = 5 * 7^3 + O(7^4)$	$C_E = 9$	$ \coprod_E =3$	C_3	$r_E = 0$	$\Delta > 0$
90064.e1	p = 433	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 49 * 433 + O(433^2)$	$C_E = 1$	$ \coprod_E =1$	C_2	$r_E = 1$	$\Delta > 0$
90116.a1	p = 1733	$R = \mathbb{Z}\left[\frac{1}{1}\right]$	$ E(\mathbb{Q})_{\mathrm{Tor}} = 2$	$q_p = 540 * 1733 + O(1733^2)$	$C_E = 1$	$ III_E =2$	C_2	$r_E = 1$	$\Delta > 0$