Combinatorics: Homework 2

Huize Shi - A92122910

Friday, January 26, 2018

1. Proof. Assume towards contradiction that $\log 23$ is a rational number. This implies that $\log_2 3 = \frac{a}{b}$ where $a, b \in \mathbb{Z}$.

$$\log_2 3 = \frac{a}{b}$$
$$2^{\frac{a}{b}} = 3$$
$$(2^{\frac{a}{b}})^b = 3^b$$
$$2^a = 3^b$$

This is clearly a contradiction because 2 is not a factor of 3^b , $b \in \mathbb{Z}$, but 2 is a factor of 2^a , $a \in \mathbb{Z}$. \square

2. By Legendre's Theorem $\nu_p(n!) = \sum_{k=1} \left\lfloor \frac{n}{p^k} \right\rfloor$, which gives the exact exponent of p in the prime factorization of n!

The formula for the multiplicity of p in the binomial coefficient $\binom{n}{k}$ is as follows:

$$\sum_{i=1} \left(\left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{k}{p^i} \right\rfloor - \left\lfloor \frac{(n-k)}{p^i} \right\rfloor \right)$$

3.

(a) Proof. Given $r=\frac{a}{b},\ r!=0,\ b>0,\ r$ is a rational number in normal form such that $\frac{a}{b}$ is a unique, irreducible representation of r. if r is not in normal form, normalization of r is trivial by eleminating shared factors between a and b. a and b are coprimes because any shared factor would have been elimenated during normalization of r. Let $l,\ i,\ j\in\mathbb{Z},\ l>=1,\ p\in\mathbb{P}$:

$$r = \frac{a}{b} = \frac{\pm \prod_{i=1}^{i} p_{i}^{k_{i}}}{\prod_{j=1}^{i} p_{j}^{e_{j}}}$$
$$= p_{l}^{k_{l}} \frac{\pm \prod_{i=1, i \neq l}^{i} p_{i}^{k_{i}}}{\prod_{j=1}^{i} p_{j}^{e_{j}}}$$

Since this is of the form $p^k \frac{a}{b}$, and a,b are coprimes, p^k is taken out of the prime factors of a, therefore it is not in the prime factor of a or b which is coprime to a, this proves that any nonzero rational number r can be written uniquely in the form $p^k \frac{a}{b}$, where k is an integer, a,b, are coprime integers coprime to p, and b is positive.

(b)

i. Proof. $x = 0 \Rightarrow |x|_p = 0$ is true by definition. Assume $|x|_p = 0$, show that x = 0:

$$x = 0 \Rightarrow |x|_p = 0$$
$$x \neq 0 \Rightarrow |x|_p = p^{-k} \neq 0$$
$$|x|_p = 0 \Rightarrow x = 0$$

Hence shown $x = 0 \Leftrightarrow |x|_p = 0$

ii. Proof. let $x = p^k \frac{a}{b}$, $y = p^l \frac{m}{n}$. Wants to show $|x|_p |y|_p = |xy|_p$

$$xy = p^k p^l \frac{am}{bn}$$

Since p^k is coprime with a and b, p^l is coprime with m and n. This means p is not a factor of m, n, a, b. This means p^kq^l is coprime with am and bn.

$$|xy|_p = (p^k q^l)^{-1} = p^{-k} q^{-l}$$

 $|x|_p |y|_p = p^{-k} p^{-l}$
 $|xy|_p = |x|_p |y|_p$

If either x, y is 0, then both sides are 0, the case is trivially proved. For all other cases the above processed proved $|xy|_p = |x|_p |y|_p$.

iii. Proof. If either x, y = 0: $y = 0 \Rightarrow |x|_p = |x|_p$, $x = 0 \Rightarrow |y|_p = |y|_p$. This case is trivially proved. Let $x = p^k \frac{a}{b}$, $y = p^l \frac{m}{n}$, assume $k \ge l \Rightarrow p^{-l} = max\{p^{-k}, p^{-l}\}$:

$$|x+y|_p = \left| p^k \frac{a}{b} + p^l \frac{m}{n} \right|_p$$

$$= \left| \frac{p^k a n + p^l m b}{n b} \right|_p$$

$$= \left| p^l \frac{p^{k-l} a n + m b}{n b} \right|_p$$

$$= \left| p^l \right|_p \cdot \left| \frac{p^{k-l} a n + m b}{n b} \right|_p$$

$$\leq p^{-l} \cdot 1 = \max\{p^{-k}, p^{-l}\}$$

Hence shown $|x+y|_p \le max\{p^{-k}, p^{-l}\}$

(c) Proof. In part (b), $|x+y|_p \le \max\{p^{-k}, p^{-l}\}$ is shown to be true. $\max\{p^{-k}, p^{-l}\} \le p^{-k} + p^{-l}$ is trivially true since neither p^{-k} or p^{-l} are negative. Hence the following inequality is true:

$$|x+y|_p \le max\{p^{-k}, p^{-l}\} \le p^{-k} + p^{-l}$$

Ergo $|x+y|_p \le p^{-k} + p^{-l}$ is true.

(d) *Proof.* From part 3.b.iii, we know the following holds: Let $x = p^k \frac{a}{b}$, $y = p^l \frac{m}{n}$,

$$|x+y|_p = |p^l|_p \cdot \left| \frac{p^{k-l}an + mb}{nb} \right|_p$$

Assume $|x|_p \neq |x|_p$, then $k > l0 \Rightarrow p^{-l} = \max\{p^{-k}, p^{-l}\}$. This means that $\left|\frac{p^{k-l}an+mb}{nb}\right|_p$ is 1 because p is coprime to an, mb and nb. This means that $|x+y|_p = p^{-l} \cdot 1 = \max\{p^{-k}, p^{-l}\}$. Assume $|x|_p = |x|_p$, $\left|\frac{p^{k-l}an+mb}{nb}\right|_p \leq 1$ because $p^{k-l} = p^0 = 1$. This term becomes $\left|\frac{an+mb}{nb}\right|_p$ which could contain p^x in the numerator. The p-adic of this term could therefore be less than 1. This means that $p^{-l} = \max\{p^{-k}, p^{-l}\}$ no longer holds when $|x|_p = |x|_p$. It is therefore shown that $|x+y|_p = \max|x|_p, |x|_p$ whenever $|x|_p \neq |y|_p$