2016 Estimation Theory Midexam

Warning: There is a penalty for the wrong answer (minus score). Be careful!

(1) Suppose X and Y are uncorrelated random variables, where $X \sim N(0, \sigma_x^2)$ and $Y \sim N(0, \sigma_y^2)$. A random process Z(t) is defined as follows:

$$Z(t) = X + Y$$

- Is Z(t) ergodic?
- What is $R_Z(\tau)$ (the autocorrelation function of Z(t)).
- (2) Consider the following continuous system

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w(t)$$

where w(t) is zero-mean white Gaussian noise with $E\{w^2(t)\}=1$. Suppose the x(t) is sampled with the period 1 sec. When the discretized system is given by

$$x_{k+1} = \Phi x_k + w_k$$

where $E\{w_k w_k'\} = Q$, find Φ and Q.

(3) Suppose Z is given by

$$Z = X + w$$

where X is a random variable whose distribution is N(1,1). Let w be a random variable whose distribution is N(0,2). Suppose X and w are uncorrelated. If Z=2, what is your optimal \hat{X} (estimated value of X), which minimizes $\mathrm{E}\{(X-\hat{X})^2\}$? And what is $\mathrm{E}\{(X-\hat{X})^2\}$ for the optimal estimate?

(4) Consider the following system:

$$\begin{array}{rcl} x_{k+1} & = & 0.5x_k + w_k \\ z_k & = & x_k + v_k \end{array}$$

where w_k and v_k are white Gaussian noises whose variances are Q=1 and R=1. We know that $z_0=10, z_1=6, z_2=3$. You can start Kalman filter by choosing $\hat{x}_0=z_0=10$ and $P_0=R=1$. Now compute \hat{x}_1 and \hat{x}_2 .

Estimation Theory Midexam: score _____/ (total 15)

- (1) \square not ergodic
- (1) \Box not eigens $\Box \Box R_x(\tau) = \sigma_x^2 + \sigma_y^2$ (2) $\Box \Box \Phi = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$ $\Box \Box Q = \begin{bmatrix} \frac{1}{3}T^3 + T^2 + R & T + 0.5T^2 \\ T + 0.5T^2 & T \end{bmatrix}$ (3) $\Box \Box \hat{x} = \frac{4}{3}$
- $\square \square P = \frac{2}{3}$ $(4) \quad \Box \quad \Box \quad \Box \quad \hat{x}_1 = \frac{50}{9}$

Estimation Theory Midexam: score _____/ (total 15)

- (1) \square not ergodic
- (1) \Box not engages $\Box \Box R_x(\tau) = \sigma_x^2 + \sigma_y^2$ (2) $\Box \Box \Phi = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}$ $\Box \Box Q = \begin{bmatrix} \frac{1}{3}T^3 + T^2 + R & T + 0.5T^2 \\ T + 0.5T^2 & T \end{bmatrix}$
- (3) \square \hat{x} =
- (4) $\square \square \square \hat{x}_1 = \frac{50}{9}$