Categorize the following as supervised learning, reinforcement learning, 1/1 unsupervised learning, or not machine learning: A social network's Al uses existing tagged photos of people to identify when those people appear in new photos. *
 Unsupervised learning
 Reinforcement learning
 Supervised learning
 Not an example of machine learning

✓ Imagine a regression AI that makes the following predictions for the following 5 data points. What is the total L2 loss across all of these data points (i.e., the sum of all the individual L2 losses for each data point)? * For data point 1, the true output is 2 and the AI predicted 4. For data point 2, the true output is 4 and the AI predicted 5. For data point 3, the true output is 4 and the AI predicted 3. For data point 4, the true output is 5 and the AI predicted 2. For data point 5, the true output is 6 and the AI predicted 5.
O 0
O 4
O 5
○ 8
O 19
O 21
O 64

\	If Hypothesis 1 has a lower L1 loss and a lower L2 loss than Hypothesis 2 on a set of training data, why might Hypothesis 2 still be a preferable hypothesis? *	1/1
0	Hypothesis 1 might be the result of regularization.	
0	Hypothesis 1 might be the result of regression.	
0	Hypothesis 1 might be the result of loss.	
0	Hypothesis 1 might be the result of cross-validation.	
•	Hypothesis 1 might be the result of overfitting.	✓

×	In the $\epsilon\text{-greedy}$ approach to action selection in reinforcement learning, which of the following values of ϵ makes the approach identical to a purely greedy approach? *	0/1
0	ε = 0	
0	ε = 0.25	
0	ε = 0.5	
•	ε = 0.75	×
0	ε = 1	
	nments, if any	

This form was created inside of CS50.

Google Forms