Question 1 1 pts

Note: To make sure that students can see the questions, two versions have been prepared: the text version (black) and the image version (blue). They have the same content, but the image version will be used as the standard because sometimes the system may not be able to show symbols in the text mode.

From the following circuit, find I_1 , I_2 , and the power dissipated by the resistor R_1 , R_2 .

From the following circuit, find I_1 , I_2 , and the power dissipated by the resistor R_1 , R_2 .

$$I_1 = 8 \text{ A}, I_2 = 3.5 \text{ A}, P_1: P_2 = 128:49$$

O I1 = -8A, I2 = -3.5 A, P1: P2 = 128:49

$$I_1 = -8 \text{ A}, I_2 = -3.5 \text{ A}, P_1: P_2 = 128:49$$

O I1 = 2 A, I2 = 1.5 A, P1: P2 = 8:9

$$I_1 = 2 \text{ A}, I_2 = 1.5 \text{ A}, P_1: P_2 = 8:9$$

 $I_1 = -2 \text{ A}, I_2 = -1.5 \text{ A}, P_1 : P_2 = 8:9$

$$I_1 = -2 \text{ A}, I_2 = -1.5 \text{ A}, P_1: P_2 = 8:9$$

Note: To make sure that students can see the questions, two versions have been prepared: the text version (black) and the image version (blue). They have the same content, but the image version will be used as the standard because sometimes the system may not be able to show symbols in the text mode.

In the following circuit, calculate V_1 and V_2 .

In the following circuit, calculate V_1 and V_2 .

$$V_1 = -17 \text{ V}, V_2 = -6 \text{ V}$$

$$V_1 = 3 \text{ V}, V_2 = 6 \text{ V}$$

V1 = - 17 V, V2 = -6 V

 $V_1 = 3 \text{ V}, V_2 = 6 \text{ V}$

V₁ = 17 V, V₂ = -6 V

$$V_1 = 17 \text{ V}, V_2 = -6 \text{ V}$$

$$V_1 = 17 \text{ V}, V_2 = 6 \text{ V}$$

$$V_1 = 17 \text{ V}, V_2 = 6 \text{ V}$$

Note: To make sure that students can see the questions, two versions have been prepared: the text version (black) and the image version (blue). They have the same content, but the image version will be used as the standard because sometimes the system may not be able to show symbols in the text mode.

Obtain v_1 , v_2 , v_3 , and v_4 (v_2 : v_3 = 3:1) in the following circuit.

Obtain v_1 , v_2 , v_3 , and v_4 (v_2 : v_3 = 3:1) in the following circuit.

$$V_1 = -15 \text{ V}, V_2 = 18 \text{ V}, V_3 = 6 \text{ V}, V_4 = 12 \text{ V}$$

0

$$V_1 = -27 \text{ V}, V_2 = -30 \text{ V}, V_3 = -10 \text{ V}, V_4 = 20 \text{ V}$$

v₁ = -15 V, v₂ = -18 V, v₃ = -6 V, v₄ = 12 V

$$V_1 = -15 \text{ V}, V_2 = -18 \text{ V}, V_3 = -6 \text{ V}, V_4 = 12 \text{ V}$$

v₁ = 33 V, v₂ = 30 V, v₃ = 10 V, v₄ = 20 V

$$V_1 = 33 \text{ V}, V_2 = 30 \text{ V}, V_3 = 10 \text{ V}, V_4 = 20 \text{ V}$$