Linguistic traits as heritable units? Spatial Bayesian clustering reveals Swiss German dialect regions

Supplementary materials

Noemi Romano* Sandro Bachmann[†] Peter Ranacher[‡] Stéphane Joost[§]

Contents

Results with 6 populations	2
Loading libraries	
Reading data	2
Results	•
Results with raw data	ę
Bern population	(
Central population	(
Walser population	(
Eastern population	.(
Ground population	-

This document provides supporting information for the main article Linguistic traits as heritable units? Spatial Bayesian clustering reveals Swiss German dialect regions.

This document contains some of the results from TESS analysis using data of the Syntactic Atlas of Swiss German (SADS).

- For results with full dataset (correlated features not removed), please visit: Raw results
- To explore the interactive maps choosing 6 populations, please visit: Mapping Swiss German dialects
- For full dataset (correlated features not removed), please visit: Raw data

^{*}Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), EPFL, Lausanne, Switzerland, +41 21 693 57 87, Route Cantonale Station 18 CH-1015 Lausanne

[†]German Department, University of Zurich (UZH), Zurich, Switzerland

[‡]Language and Space, University of Zurich (UZH), Zurich, Switzerland & Department of Geography, University of Zurich (UZH), Zurich, Switzerland

[§]Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), EPFL, Lausanne, Switzerland, +41 21 693 57 87, Route Cantonale Station 18 CH-1015 Lausanne

Results with 6 populations

These results have been obtained with the Admixture model of TESS using the least correlated syntactic phenomena of the Syntactic Atlas of Swiss German (SADS). Choosing 6 populations (K=6), we obtain the following results.

Loading libraries

```
library(tmap)
library(sf)
library(pophelper)
library(dplyr)
library(RColorBrewer)
```

Reading data

Read combined results with CLUMPP and merge them

```
#Read clumpp results
K6 <- readQ("../../Results/CLUMPP_output/pop_K6-combined-merged.txt")</pre>
#Merging results of 6 populations
merged_data <- mergeQ(K6)[[1]]</pre>
#Import coordinates
coord<-read.table('../../coordinates_wgs84.txt',header = T)</pre>
#Spatialize results
k6_results<-cbind(coord,merged_data)
#Convert data to sf format
point_data<-st_as_sf(k6_results, coords = c("X_1", "Y_1"), crs = 4326)</pre>
#Read municipalities
municipalities <- st_read("../../shapefiles/municipalities_voronoi.shp")
## Reading layer `municipalities_voronoi' from data source `/home/noe/Desktop/Paper/Romano_PdM/shapefil
\mbox{\tt \#\#} Simple feature collection with 356 features and 0 fields
## geometry type: MULTIPOLYGON
## dimension:
                   XY
                    xmin: 7.025109 ymin: 45.91675 xmax: 10.09691 ymax: 47.80846
## bbox:
## CRS:
#Create ID in municipalities
municipalities$id <- 1:nrow(municipalities)</pre>
```

Results

```
#Defining my palet of colors
mypaletTESS<-c("#1F78B4","#33A02C","#E31A1C","#FF7F00","#6A3D9A",'deeppink1')
palette <-colorRampPalette(c("white", mypaletTESS[6]))

#Defining breaks
breaks <- c(0, 0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

population_1_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster1','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster1 = mean(Cluster1, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_1_aggregated) +
tm_polygons("Cluster1", palette = palette(15), breaks = breaks)
```



```
palette <-colorRampPalette(c("white", mypaletTESS[4]))
population_2_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster2','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster2 = mean(Cluster2, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_2_aggregated) +
tm_polygons("Cluster2", palette = palette(15), breaks = breaks)
```



```
palette <-colorRampPalette(c("white", mypaletTESS[5]))

population_3_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster3','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster3 = mean(Cluster3, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_3_aggregated) +
tm_polygons("Cluster3", palette = palette(15), breaks = breaks)
```



```
palette <-colorRampPalette(c("white", mypaletTESS[3]))

population_4_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster4','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster4 = mean(Cluster4, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_4_aggregated) +
tm_polygons("Cluster4", palette = palette(15), breaks = breaks)
```



```
palette <-colorRampPalette(c("white", mypaletTESS[2]))

population_5_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster5','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster5 = mean(Cluster5, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_5_aggregated) +
tm_polygons("Cluster5", palette = palette(15), breaks = breaks)
```



```
palette <-colorRampPalette(c("white", mypaletTESS[1]))

population_6_aggregated = municipalities %>%
    st_join(point_data[,c('Cluster6','geometry')]) %>%
    group_by(id) %>%
    summarize(Cluster6 = mean(Cluster6, na.rm = TRUE))

tmap_mode("view")
tm_shape(population_6_aggregated) +
tm_polygons("Cluster6", palette = palette(15), breaks = breaks)
```


Results with raw data

These results have been obtained with the Admixture model of TESS using the full dataset (correlated features not removed) of the Syntactic Atlas of Swiss German (SADS).

Bern population

Data aources | Canton borders, Digital Height Model 200m : Swiss Federal Office of Topography (owisstop

Central population

Data asurces | Canton borders, Digital Height Model 200m : Swiss Federal Office of Topography (swisstops

Walser population

Eastern population

Ground population

Data aouroea | Canton borders, Digital Height Model 200m : Swiss Federal Office of Topography (ovisstopo)