Fundamentos de Redes de Computadores

Aula 05

Prof. Dr. Jéferson Campos Nobre

Sinais

- Sinal é um termo usado para representar a transmissão de alguma informação
- Exemplos:
 - Corrente elétrica que circula entre o aparelho de DVD e a TV
 - Corrente elétrica gerada por um microfone quando alguém fala próximo a ele
 - ♣Bits de um arquivo que precisa ser transmitido pela rede

Tipos de Sinais

- Os sinais podem ser analógicos ou digitais
- Sinal analógico
 - Informação que varia de forma contínua no tempo
 - Não é possível identificar quantos níveis de variação existem (embora seja possível identificar os limites superior e inferior)
 - **Հ**Exemplo: o som de uma sirene
- Sinal digital
 - Informação que varia de forma discreta no tempo
 - **LÉ** possível identificar um número finito de estados possíveis
 - Exemplo: código Morse

Modulação

- A transmissão de um sinal normalmente exige o emprego de alguma técnica de modulação
- A modulação consiste na inserção do sinal a ser transmitido em outro sinal, de intensidade e frequência mais adequadas ao meio de transmissão
- Analogia
 - Pessoas precisam ser transportadas de uma cidade para outra
 - ♣Pode-se usar um ônibus para isso → é um veículo mais adequado para esse transporte

Exemplo de Modulação

From Computer Desktop Encyclopedia @ 2007 The Computer Language Co. Inc.

Exemplo de modulação AM (sinal modulador analógico, portadora também analógica)

Portadora

Sinal modulador

Sinal modulado

Modulação Digital - Digital Introdução

- Transmissão de bits através de corrente elétrica é feita através de algum esquema de modulação
 - ▲Técnica de codificação dos dados apropriada para o meio de transmissão
 - Modulação digital-digital = dados digitais, meio digital
- Níveis de voltagem, ausência/presença de sinal, inversão de polaridade, etc. são usados para representar os bits 0 e 1
- Fatores de influência
 - Ruídos/interferências
 - Distâncias máximas (atenuação)
 - Complexidade do equipamento
 - Custo do equipamento e do meio físico

Período de 1 bit

- Cada tecnologia oferece uma determinada vazão máxima
 - **Հ**Ex.: Ethernet original → 10 Mb/s
- Ao analisar a evolução do sinal no tempo, percebemos a definição de períodos que correspondem à transmissão de um bit
- Ex.: 10 Mb/s = 10485760 bits por segundo

10.485.760 bits transmitidos em 1 s

NRZ-L

- Non-Return to Zero Level
- Forma mais simples de codificação
- Um bit corresponde a um nível de voltagem, o outro bit a outro nível de voltagem

Características do NRZ-L

- Equipamento bastante simples
 - **Z**Ex.: portas seriais nos PCs (RS-232)
- Polaridade bem definida
 - Inversão dos fios inverte todos os bits
- Problema: sequência longa do mesmo bit implica em voltagem constante → possível perda de sincronismo entre transmissor e receptor
 - Desejável haver mais transições entre nível baixo e nível alto no sinal

NRZI

- Non-Return to Zero Invert on ones
- Bit 0 → manter o nível do sinal em relação ao período anterior
- ■Bit 1 → inverter o nível do sinal (transição de nível)

Características do NRZI

- É um exemplo de codificação diferencial
 - Polaridade não afeta a representação dos dados
- Vantagens
 - Apresenta mais transições de nível
 - ▲Em toda ocorrência de bit 1
 - Mais imune a ruídos
 - Mudanças de nível só são consideradas no início dos períodos
 - Manutenção facilitada (polaridade)
- Ainda pode ocasionar perda de sincronismo na ocorrência de uma sequência longa de bits 0

AMI-bipolar

- Forma que procura equilibrar o nível médio de sinal em torno de zero
 - **Três níveis de sinal**
- Bit 0 corresponde ao nível de tensão 0 V
- Bit 1 corresponde a uma transição, que se alterna, a cada ocorrência, entre alto e baixo

Características do AMI-bipolar

- Evita perda de sincronismo mesmo quando de uma longa sequência de 1's
 - Ainda possível no caso de 0's
- Equilibra níveis de tensão entre positivo e negativo (evita efeito de "constante DC" na linha)
- Permite detecção de erros de transmissão
 - ♣Por exemplo, se forem recebidos dois pulsos negativos ou positivos em sequência → chamado de violação de código
- Equipamento mais complexo

Manchester

- Codificação usada na Ethernet original
- Bits são representados por transições de voltagem no meio do período
 - **Z**Bit 0 = transição de nível **alto para baixo**
 - ♣Bit 1 = transição de nível baixo para alto
 - ZSe necessário, o sinal é ajustado no início do período

Características da codificação Manchester

- Sempre há transições, independentemente dos bits transmitidos
 - **▲**Evita perda de sincronismo
- Permite detecção de erros → no meio do período sempre deve haver uma transição
- Exige maior largura de banda
 - **\blacksquare**Sequência do mesmo bit → sinal "quadrado" com frequência f (onde f = 1/periodo de um bit)
 - Sequência de bits alternados → sinal com frequência f/2 (1/(2 * período de um bit))
 - ▲Demais casos → variação de frequências intermediárias

Manchester Diferencial

- Transição no meio do período do bit sempre existe, para prover sincronismo
- Pode haver transição no início do período
 - **≰**Bit 0 = **existe** transição
 - **素**Bit 1 = **não existe** transição

Características do Manchester diferencial

- Herda as características do Manchester
 - **Հ**Sempre há transições → sincronismo
 - \blacksquare Sequência de bits 0 = f
 - **Sequência** de bits 1 = f/2
 - **Z**Demais casos = frequências intermediárias
- Possui ainda o benefício de ser diferencial
 - ♣ Facilita manutenção

Referências

Baseado em material dos Professores Rafael Ávila e Márcio Martini

