CSC384h: Intro to Artificial Intelligence

Knowledge Representation

- This material is covered in chapters 7—9 and 12 of the text.
- Chapter 7 provides a useful motivation for logic, and an introduction to some basic ideas. It also introduces propositional logic, which is a good background for first-order logic.
- What we cover here is mainly covered in Chapters 8 and 9. However, Chapter 8 contains some additional useful examples of how first-order knowledge bases can be constructed. Chapter 9 covers forward and backward chaining mechanisms for inference, while here we concentrate on resolution.
- Chapter 12 covers some of the additional notions that have to be dealt with when using knowledge representation in AI.

- What is knowledge?
- Information we have about the world we inhabit
 - Both the physical and mental world.
 - We have knowledge about many abstract mental constructs and ideas
- Besides knowledge we have various other mental attitudes and feelings about our environment.
 - John knows "..."
 - John fears "..."
 - Then things get complex: John knows that he fears "..."
 - So knowledge can take a variety of forms, some quite complex

- What is Representation?
- Symbols standing for things in the world

CSC 384

Words we use in language

Symbols we use in mathematics

• Can all knowledge be symbolically represented?

- Can all knowledge be symbolically represented?
- No we do not symbolically represent the "pixels" that we perceive at the back of our retina.
- So intelligent agents also perform a great deal of low level "non-symbolic reasoning" over their perceptual inputs.
- But higher level "symbolically represented" knowledge also seems to be essential
 - This is the kind of knowledge that we learn in school, by reading, etc.
- In this module we study symbolically represented knowledge

Reasoning

- What is reasoning (in the context of symbolically represented knowledge)?
 - Manipulating our symbols to produce new symbols that represent new knowledge.

Deriving a new sentence

- Typically "symbols" are sequences of symbols, e.g., words in language sequenced together to form sentences.
- So we will develop methods for manipulating "sentences" to produce new "sentences"

Reasoning

- In language we can make up a huge variety of sentences.
- Each of these sentences makes some sort of claim or assertion about our world (mental or physical).
- These claims could be true or false.
 - I am anxious, so the sentence "I feel calm and relaxed." Is false
- Reasoning aims to be **TRUTH PRESERVING**.
- If we use reasoning to manipulate a collection of **TRUE** sentences, we want the newly derived sentences to also be **TRUE**

• If our reasoning is truth preserving we say that is is **SOUND**

Reasoning

- A more subtle idea is **COMPLETENESS**.
- Completeness says that our reasoning system is powerful enough to produce ALL sentences that must be true given one current collection of true sentences.
- Completeness requires a formal characterization of "sentence" in order to answer the question of if we have produced **ALL** true sentences

- Consider the task of understanding a simple story.
- How do we test understanding?
- Not easy, but understanding at least entails some ability to answer simple questions about the story.

Example.

Three little pigs

Example.

Three little pigs

Example.

• Why couldn't the wolf blow down the house made of bricks?

• What background knowledge are we applying to come to that conclusion?

- Large amounts of knowledge are used to understand the world around us, and to communicate with others.
- We also have to be able to reason with that knowledge.
 - Our knowledge won't be about the blowing ability of wolfs in particular, it is about physical limits of objects in general.
 - We have to employ reasoning to make conclusions about the wolf.
 - More generally, reasoning provides an exponential or more compression in the knowledge we need to store. I.e., without reasoning we would have to store a infeasible amount of information: e.g., Elephants can't fit into teacups.

Logical Representations

• AI typically employs logical representations of knowledge.

• Logical representations useful for a number of reasons:

Logical Representations

- They are mathematically precise, thus we can analyze their limitations, their properties, the complexity of inference etc.
- They are formal languages, thus computer programs can manipulate sentences in the language.
- They come with both a formal syntax and a formal semantics.
- Typically, have well developed proof theories: formal procedures for reasoning at the syntactic level (achieved by manipulating sentences).
- In this module we will study First-Order logic, and a reasoning mechanism called resolution that operates on First-Order logic.

First Order Logic (FOL)

- Two components: Syntax and Semantics.
 - In a programming language we have a syntax for an if statement: "if <boolean condition>:<expressions>"
 - The if statement also has semantics: if <boolean condition> evaluates to TRUE then we execute <expressions>.
- Syntax gives the grammar or rules for forming proper sentences.
- Semantics gives the meaning.

Basic Semantic entities of FOL

- We have a set of objects **D**. These are objects in the world that are important for our application.
 - Often we will want to form tuples of objects, e.g., (d1,d2) where $d1 \in \mathbf{D}$ and $d2 \in \mathbf{D}$ are a pair of objects
 - A k-ary tuple is a subset of $\mathbf{D}^{k} = \mathbf{D} \times \mathbf{D} \times \dots \times \mathbf{D}$ the k-wise Cartesian product of \mathbf{D}
- We can identify special sets of objects (subsets of **D**) that have some property in common. These sets are called **properties (predicates)**.
 - E.g., female, male, children, adult could each nee subsets that we identify as being useful in our application. If an object d is in the set male, we can say that d has the property male : male(d).

Basic Semantic entities of FOL

- Sometimes individual objects are not sufficient, we want to identify special groups (tuples) of objects that are related to each other. We call these sets **relations**.
 - E.g. married might be a special subset of pairs that we wish to keep track of in out application.
- Finally, we might want to keep track of functions over our objects. f: **D** → **D**
 - E.g. for $d \in \text{student}$, we might want a function faculty(d) that gives the faculty the student is registered in.
 - More generally we might want $f: \mathbf{D}^k \to \mathbf{D}$, i.e., a function of many arguments mapping \mathbf{D} .

Basic Syntactic symbols of FOL

- The syntax starts off with a different symbol for each basic semantic entity (objects, functions, predicates, relations) that we have decided to utilize.
- We get to decide what symbols we use (but of course want to use symbols that are easy to understand
- These user specified symbols are called the primitive symbols

Syntax	Semantics
Constant symbols	A particular object $d \in \mathbf{D}$
Function symbols	Some function $f: \mathbf{D^k} \to \mathbf{D}$
Predicate symbols	Some subset of D
Relation symbols	Some subset of D ^k

Basic Syntactic symbols of FOL

• In addition we introduce some additional symbols that we will use to connect our basic symbols into sentences.

Syntax	Semantics
Constant symbols	A particular object $d \in \mathbf{D}$
Function symbols	Some function $f: \mathbf{D}^k \to \mathbf{D}$
Predicate symbols	Some subset of D
Relation symbols	Some subset of D ^k
Equality (commonly used relation)	Subset of $\mathbf{D}^2 = \{(d,d) \mid d \in \mathbf{D} \}$
Variables (as many as we need) x,y,z,	An object $d \in \mathbf{D}$ (which particular object can vary)
Logical connectives: $\Lambda, V, \neg, \rightarrow$	defined below
Quantifiers: ∀,∃	defined below

Example

- Teaching CSC384, want to represent knowledge that would be useful for making the course a successful learning experience. So we might choose syntactic symbols like
- Objects:
 - students, subjects, assignments, numbers.
- Predicates:
 - difficult(subject), CSMajor(student)
- Relations:
 - handedIn(*student*, *assignment*)
- Functions:
 - Grade(student, assignment) $\rightarrow number$

First Order Syntax (the grammar)

- We start with out basic syntactic symbols constants, functions, predicates, relations and variables.
 - Note: the function and relation symbols each have specific arities (the number of arguments it takes)
- From these we can build upon **terms** and **sentences(formulas)**. Terms are ways of applying functions to build up new "names" for objects. Formulas, are denoting true/false assertions about terms.

First Order Syntax - Terms

• Terms are used as names (perhaps complex nested names) for objects in the domain.

Terms	
Constants	c, john, mary
Variables	x, y, z,
	$f(t_1, t_2,, t_k)$ t_i are already constructed terms

- 5 is a constant term: a symbol representing the number 5. john is a term a symbol representing the person John.
- +(5,5) is a function application term a new symbol representing the number 10.

First Order Syntax - Terms

- **Note**: constants are the same as functions taking zero arguments.
- Terms are names for objects (things in the world):
 - Constants denote specific objects
 - Functions map tuples of objects to other objects
 - bill, jane, father(jane), father(father(jane))
 - X, father(X), hotel7, rating(hotel7), cost(hotel7)
 - Variables like X are not yet determined, but they will eventually denote particular objects.

First Order Syntax - Sentences.

• Once we have terms we can build up *sentences* (*formulas*)

Terms represent objects, *formulas* represent true/false
assertions about these objects

First Order Syntax - Sentences.

Formula	
Atomic formula	p(t) or $r(t_1, t_2,, t_k)$ p is a predicate symbol, r is a k-ary relation symbol, t_i are terms
Negation	rf f is a fomula
Conjunction	$f_1 \wedge f_2 \wedge \wedge f_k$ f_i are formulas
Disjunction	$f_1 \vee f_2 \vee \vee f_k$
Implication	$f_1 \rightarrow f_2$ f_1 and f_2 are fomulas f_1 often calles the antecedent, f_2 the consequence
Existential	3X.f f is a formula X is a variable
Universal	∀X.f

Intuition (formalized later).

- Atoms denote facts that can be true or false about the world
 - father_of(jane,bill), female(jane), system_down()
 - satisfied(client15), satisfied(C)
 - desires(client15,rome,week29), desires(X,Y,Z)
 - rating(hotel7,4), cost(hotel7,125)
- Other formulas generate more complex assertions by composing these atomic formulas.
 - Their truth is dependent on the truth of the atomic formulas in them

Semantics

- Formulas (syntax) can be built up recursively, and can become arbitrarily complex
- Intuitively, there are various distinct formulas (viewed as strings) that really are asserting the same thing
 - $\forall X, Y$. elephant(X) \land teacup(Y) \rightarrow largerThan(X,Y)
 - $\forall X, Y$. teacup(Y) \land elephant(X) \rightarrow largerThan(X,Y)
- To capture this equivalence and to make sense of complex formulas we utilize the semantics

Semantics

- A formal mapping from formulas to true/false assertions about our semantic entities (individuals, sets and relations over individuals, functions over individuals).
- The mapping mirrors the recursive structure of the syntax, so we can map any formula to a composition of assertions about the semantic entities.

Syntax - The language

• First, we must fix the particular first-order language we are going to provide semantics for. The **primitive** symbols included in the syntax defines the particular language.

L(F,P,V)

 $F = set \ of \ function \ (and \ constant \ symbols)$ $Each \ symbol \ fin \ Fhas \ a \ particular \ arity.$

 $P = set \ of \ predicate \ and \ relation \ symbols.$ Each relation symbol $r \in P$ has a particular arity. (The predicate symbols always have arity 1)

V = an infinite set of variables.

Semantics - Primitive Symbols

- An interpretation (model) specifies the mapping from the primitive symbols to semantic entities. It is a tuple $\langle D, \Phi, \Psi, V \rangle$
 - D is a non-empty set of objects (domain of discourse)
 - Φ specifies the meaning of each primitive function symbol
 - Also handles the primitive constant symbols (these can be viewed as being zero-arity functions.
 - Ψ specifies the meaning of each primitive predicate and relation symbol.
 - V specifies the meaning of the variables.
- Note, the semantic entities that a syntactic symbol maps to is often called the meaning of the symbol or the denotation of the symbol

Semantics - Primitive Symbols

Symbol	Semantics
Constant Symbol c	$\Phi(\mathbf{c}) \in \mathbf{D}$ (some particular object)
K-ary function symbol f	$\Phi(f)$ Some particular function $\mathbf{D^k} \to \mathbf{D}$
Predicate symbol p	$\Psi(\mathbf{p})$ Some particular subset of D
K-ary relation symbol r	Ψ (r) Some particular subset of D ^k
Variable x	$V(x) \in \mathbf{D}$ (some particular object)

Intuitions: Domain

• Domain D: $d \in D$ is an *individual*

- E.g. {craig, jane, grandhotel, marriot, rome, portofino, 100, 110, 120 ...}
- We use underlined symbols to talk about domain individuals (syntactic symbols of the first-order language are not underlined)
- Domains often infinite, but we'll use finite models to prime our intuitions

Intuitions: Φ

- Given k-ary function f and k individuals d1...dk, what individual does f(d1,...,dk) denote
 - Constants (0-ary functions) are mapped to individuals in **D**.
 - Φ (client17) = $\underline{\text{craig}}$, Φ (hote15) = $\underline{\text{marriot}}$, Φ (rome) = $\underline{\text{rome}}$
 - 1-ary functions are mapped to particular functions in $\mathbf{D} \rightarrow \mathbf{D}$
 - Φ (rating) = f_rating:
 - \underline{f} rating(grandhotel) = $\underline{5}$ stars
 - 2-ary functions are mapped to functions from $\mathbf{D}^2 \to \mathbf{D}$
 - Φ (distance) = f_distance:
 - f distance(toronto, sienna) = 3256
 - N-ary functions are mapped similarily

Intuitions: **Y**

- Given k-ary relation r, what does r denote
- 0-ary predicates are mapped to true or false. $\Psi(\text{rainy}) = \text{True } \Psi(\text{sunny}) = \text{False}$
- 1-ary predicates are mapped to subsets of **D**.
 - Ψ(privatebeach) = p_privatebeach: (the subset of hotels that have a private beach)

 $e.g.\ p_privatebeach = \{grandhotel, fourseasons\}$

- 2-ary predicates are mapped to subsets of D² (sets of pairs of individuals)
 - $\Psi(location) = p_location$: $p_location(grandhotel, rome) = True$ $p_location(grandhotel, sienna) = False$
 - $\Psi(available) = p$ _available: p_available(grandhotel, week29) = True
- •n-ary predicates..subsets of Dn

Intuitions: v

• V exists to take care of quantification. As we will see the exact mapping it specifies will not matter.

Semantics — Terms

• Given language L(F,P,V), and an interpretation $I = \langle D, \Phi, \Psi, V \rangle$ and a term t. I(t) is the denotation of t under I.

Term	Semantics
Constant Symbol c	$I(c) = \Phi(c) \in \mathbf{D}$ (some particular object)
Variable x	$I(x) = V(x) \in \mathbf{D}$ (some particular object)
Function application f(t ₁ ,t ₂ ,,t _k)	$I(f(t_1,t_2,,t_k)) = \Phi(f)(I(t_1,),I(t_2),,I(t_k))$ First we obtain the denotation of each argument under I, then we apply the function $\Phi(f)$ to these interpreted terms

• Hence the terms always denote individuals under interpretation I

Semantics — Formulas

• Formulas will always be True or False under any interpretation I.

Formula	Semantics
Atomic formula r(t ₁ ,t ₂ ,,t _k)	$\begin{split} & (\textbf{r}(\textbf{t}_1,\textbf{t}_2,,\textbf{t}_k)) = \\ &\text{True if } (\textbf{I}(\textbf{t}_1,\textbf{)},\textbf{I}(\textbf{t}_2),,\textbf{I}(\textbf{t}_k)) \in \varPsi(\textbf{r}) \\ &\text{False otherwise} \\ &\text{First we obtain the denotation of each argument } \\ &\text{under I. Then we check if this tuple of interpreted} \\ &\text{terms is in the set of tuples } \varPsi(\textbf{r}) \end{split}$

• Ψ Maps r to a subset of D^k (a subset of k-ary tuples of individuals). So the atomic formula is true if its arguments are in the stated relation.

Semantics — Formulas

Formula	Semantics
٦f	I(¬f) = True if I(f) = False False otherwise
$f_1 \wedge f_2 \wedge \wedge f_k$	$I(f_1 \land f_2 \land \land f_k) =$ True if $I(f_i) =$ True for every i False otherwise
$f_1 \vee f_2 \vee \vee f_k$	$I(f_1 \lor f_2 \lor \lor f_k) =$ True if $I(f_i) =$ True for any i False otherwise
$\mathbf{f_1} \rightarrow \mathbf{f_2}$	$I(f_1 \rightarrow f_2) =$ True if $I(f_1) =$ False or $I(f_2) =$ True False otherwise

• Standard rules for proposition logic that you would have seen before (check chap 7 if not)

Semantics — Formulas

Formula	Semantics
∃X.f	I(f) = True if for some $d \in \mathbf{D}$, I'(f) = True I' = $\langle \mathbf{D}, \Phi, \Psi, V[X=d] \rangle$ False Otherwise
∀X.f	I(f) = True if for all $d \in \mathbf{D}$, I'(f) = True I' = $\langle \mathbf{D}, \Phi, \Psi, V[X=d] \rangle$ False Otherwise

• Quantifiers. Exists checks if **f** is true under some different variable mapping for the variable X. Forall checks if **f** is true under all possible mappings of the variable X.

Example

```
D = \{\underline{bob}, \underline{jack}, \underline{fred}\}

I(happy = \{\underline{bob}, \underline{jack}, \underline{fred}\}

I(\forall X.happy(X))
```

- 1. $\Psi(\text{happy})(X)$, $(V[X = bob]) = \Psi(\text{happy})(bob) = True$
- 2. $\Psi(\text{happy})(X)$, $(V[X = \text{jack}]) = \Psi(\text{happy})(\text{jack}) = True$
- 3. $\Psi(\text{happy})(X)$, $(V[X = \text{fred}]) = \Psi(\text{happy})(\text{fred}) = \text{True}$

Therefore $I(\forall X.happy(X)) = True$.

Environment

Language (Syntax)

- Constants: a,b,c,e
- **■** Functions:
 - No function
- Predicates:
 - ■on: binary
 - ■above: binary
 - clear: unary
 - ontable: unary

Language (syntax)

- Constants: a,b,c,e
- Predicates:
 - ■on (binary)
 - ■above (binary)
 - ■clear (unary)
 - ontable(unary)

A possible Model I₁ (semantics)

- $\blacksquare D = \{\underline{A}, \underline{B}, \underline{C}, \underline{E}\}$
- $\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$
- $\Psi(on) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C})\}$
- $\Psi(above) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C}),(\underline{A},\underline{C})\}$
- $\Psi(\text{clear}) = \{ \underline{A}, \underline{E} \}$
- Ψ (ontable)={ $\underline{C},\underline{E}$ }

Model I₁

- $\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$
- $\Psi(on) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$
- Ψ(above)=

$$\{(\underline{A},\underline{B}),(\underline{B},\underline{C}),(\underline{A},\underline{C})\}$$

- $\Psi(\text{clear}) = \{ \underline{A}, \underline{E} \}$
- Ψ (ontable)={ $\underline{C},\underline{E}$ }

Environment

Models—Formulas true or false?

Model I₁

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

$$\Psi(on) = \{(\underline{A},\underline{B}),(\underline{B},\underline{C})\}$$

$$\{(\underline{A},\underline{B}),(\underline{B},\underline{C}),(\underline{A},\underline{C})\}$$

- $\blacksquare \Psi(\text{clear}) = \{\underline{A},\underline{E}\}$
- Ψ (ontable)={ $\underline{C},\underline{E}$ }

$$\forall X, Y. \text{ on}(X, Y) \rightarrow \text{above}(X, Y)$$

$$X=\underline{A}, Y=\underline{B}.$$

$$X=\underline{C}, Y=\underline{A}$$
 ?

• • •

$$\forall X, Y. above(X, Y) \rightarrow on(X, Y)$$

$$X=\underline{A}, Y=\underline{B}$$
 ?

$$X=A, Y=A$$
?

$$X=A, Y=C$$
?

Model I₁

$$\Phi(a) = \underline{A}, \Phi(b) = \underline{B}, \Phi(c) = \underline{C}, \Phi(e) = \underline{E}.$$

$$\Psi(on) = \{(\underline{A},\underline{B}), (\underline{B},\underline{C})\}$$

$$\{(\underline{A},\underline{B}),(\underline{B},\underline{C}),(\underline{A},\underline{C})\}$$

- $\blacksquare \Psi(\text{clear}) = \{\underline{A},\underline{E}\}$
- Ψ (ontable)={ $\underline{C},\underline{E}$ }

$$\forall X \exists Y. (clear(X) \lor on(Y,X))$$

$$X = \underline{A}$$

 $X = \underline{C}$, $Y = \underline{B}$

• • •

 $\exists Y \forall X.(clear(X) \lor on(Y,X))$

$$Y = \underline{A}$$
?

$$Y = \underline{C}$$
?

$$Y=E$$
?

$$Y=B$$
?

KB — many models

Models

- Let our Knowledge base KB, consist of a set of formulas.
- We say that I is a model of KB or that I satisfies KB
 - If, every formula $f \in KB$ is true under I
- We write $I \models KB$ if I satisfies KB, and $I \models f$ if f is true under I.

What's Special About Models?

• When we write KB, we intend that the real world (i.e. our set theoretic abstraction of it) is one of its models.

• This means that every statement in KB is true in the real world.

• Note however, that not every thing true in the real world need be contained in KB. We might have only incomplete knowledge.

Models support reasoning.

• Suppose formula f is not mentioned in KB, but is true in every model of KB; i.e.,

$$I \models KB \rightarrow I \models f$$
.

- Then we say that f is a logical consequence of KB or that KB entails f.
- Since the real world is a model of KB, f must be true in the real world.
- This means that entailment is a way of finding new true facts that were not explicitly mentioned in KB.

??? If KB doesn't entail f, is f false in the real world?

- elephant(clyde)
 - the individual denoted by the symbol *clyde* in the set denoted by *elephant* (has the property that it is an *elephant*).
- teacup(cup)
 - *cup* is a teacup.
- Note that in both cases a unary predicate specifies a set of individuals. Asserting a unary predicate to be true of a term means that the individual denoted by that term is in the specified set.

- $\forall X, Y. \text{elephant}(X) \land \text{teacup}(Y) \rightarrow \text{largerThan}(X, Y)$
 - For all pairs of individuals if the first is an elephant and the second is a teacup, then the pair of objects are related to each other by the *largerThan* relation.
 - For pairs of individuals who are not elephants and teacups, the formula is immediately true.

- $\forall X, Y. largerThan(X,Y) \rightarrow \neg fitsIn(X,Y)$
 - For all pairs of individuals if X is larger than Y (the pair is in the largerThan relation) then we cannot have that X fits in Y (the pair cannot be in the fitsIn relation).
 - (The relation largerThan has an empty intersection with the fitsIn relation).

Logical Consequences

- ¬fitsIn(clyde,cup)
- We know largerThan(clyde,teacup) from the first implication. Thus we know this from the second implication.

Logical Consequences

fitsIn largerThan ¬fitsIn Elephants × teacups (clyde, cup)

- If an interpretation satisfies KB, then the set of pairs *elephant* X *teacup* must be a subset of *largerThan*, which is disjoint from *fitsIn*.
- Therefore, the pair (*clyde,cup*) must be in the complement of the set *fitsIn*.
- Hence, ¬fitsIn(clyde,cup) must be true in every interpretation that satisfies KB.
- ¬fitsIn(clyde,cup) is a logical consequence of KB.

Models Graphically

Set of All Interpretations

Models of KB

a, b, c, and d are atomic formulas Consequences? a, $c \rightarrow b$, $b \rightarrow c$, $d \rightarrow b$, $\neg b \rightarrow \neg c$

Models and Interpretations

- the more sentences in KB, the fewer models (satisfying interpretations) there are.
- The more you write down (as long as it's all true!), the "closer" you get to the "real world"! Because Each sentence in KB rules out certain unintended interpretations.
- This is called axiomatizing the domain

Computing logical consequences

- We want procedures for computing logical consequences that can be implemented in our programs.
- This would allow us to reason with our knowledge
 - Represent the knowledge as logical formulas
 - Apply procedures for generating logical consequences
- These procedures are called proof procedures.

Proof Procedures

- Interesting, proof procedures work by simply manipulating formulas. They do not know or care anything about interpretations.
- Nevertheless they respect the semantics of interpretations!
- We will develop a proof procedure for first-order logic called resolution.
 - Resolution is the mechanism used by PROLOG

Properties of Proof Procedures

• Before presenting the details of resolution, we want to look at properties we would like to have in a (any) proof procedure.

• We write $KB \vdash f$ to indicate that f can be proved from KB (the proof procedure used is implicit).

Properties of Proof Procedures

- Soundness
 - $KB \vdash f \rightarrow KB \models f$

i.e all conclusions arrived at via the proof procedure are correct: they are logical consequences.

- Completeness
 - $KB \models f \rightarrow KB \vdash f$

i.e. every logical consequence can be generated by the proof procedure.

• Note proof procedures for FOL have very high complexity in the worst case. So completeness is not necessarily achievable in practice.