LYCEE TATAOUINE 2

03/05/2016

DEVOIR DE CONTROLE N°3

EPREUVE: SCIENCES PHYSIQUES

Prof: HANDOURA Naceur

CLASSE: 3^{éme} Sciences Expérimentales

Durée: 2 Heures

CHIMIE (9pts):

Exercice N°1 (5,5pts): On donne: $M(C) = 12g.mol^{-1}$; $M(O) = 16g.mol^{-1}$; $M(H) = 1g.mol^{-1}$

1°/ Un acide carboxylique **A** à une masse molaire $\mathbf{M} = \mathbf{88 \ g.mol}^{-1}$.

a- Déterminer la formule brute de cet acide.

b- Déterminer les formules semi-développées et les noms des isomères acides de A.

On note : A_1 : l'isomère à chaîne linéaire A_2 : l'isomère à chaîne ramifié.

2°/ L'acide A₂ a été obtenu à partir de l'oxydation ménagée d'un alcool B.

- a- Donner la formule semi-développée, le nom et la classe de l'alcool B.
- b- Au cours de l'oxydation de B, il se forme un autre produit.
 - Quelle est sa fonction chimique ?
 - Donner sa formule semi-développée et son nom.
- 3° / L'alcool B réagit avec un acide C on obtient un produit D de formule brute $C_6 H_{12} O_2$ et de l'eau.
- a- Donner la formule semi-développée et le nom de C.
- b- Ecrire l'équation de la réaction entre C et B puis précisé le nom de D.
- c- De quelle réaction s'agit-il? Donner ses caractères.
- 4° / L'acide A₁ provient de l'hydrolyse d'un ester E de masse molaire **M** = **102 g.mol**⁻¹.
 - a- Quelle est la formule brute de E?
 - b- Ecrire l'équation de la réaction d'hydrolyse de E.
- 5° / On fait agir du pentachlorure de phosphore PC ℓ_5 sur le composé A_1 .

Ecrire l'équation de la réaction et nommer les produits formés.

- 6°/ L'un des produits formés réagit avec le méthanol pour donner un composé F et le chlorure d'hydrogène.
- a- Déterminer les formules semi développées du méthanol et de composé F.
- b- Ecrire l'équation de la réaction et préciser ces caractères.

Exercice $N^{\circ}2$ (3,5pts):

On dispose de trois amines isomères (A_1) , (A_2) et (A_3) .

L'amine (A_1) de formule semi développée: $\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{NH_2}$ donne par action de l'acide nitreux (HO - N = O) du diazote (N_2) , de l'eau et un alcool (B).

- 1°/a- Donner le nom et la classe de l'amine (A₁).
 - b- Ecrire, en formules semi développées, l'équation de cette réaction.
 - c- Préciser le nom et la classe de l'alcool (B) obtenu.
- 2°/ On prépare une solution aqueuse de l'amine (A₂) de formule semi développée :
 - CH₃ CH₂ NH CH₃. On ajoute à cette solution quelques gouttes de bleu de bromothymol.
 - a- Donner le nom et la classe de l'amine (A₂).
 - b- Préciser si le BBT vire du vert au jaune ou bien du vert au bleu.
 - c- Déduire si la solution aqueuse de l'amine (A2) est acide, neutre ou base.
 - d- Ecrire, en formules semi développées, l'équation de la réaction d'ionisation de l'amine (A₂) dans l'eau.

3°/ Préciser parmi les quatre formules semi développées suivantes, celle qui correspond à l'amine (A₃). Justifier la réponse.

$$CH_3 - NH_2$$
; $CH_3 - CH_2 - CH_2 - CH_2 - NH_2$; $CH_3 - CH_2 - NH_2$; $CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_3 - CH_2 - CH_3 - CH_3$

PHYSIQUE (11pts): On donne $g = 10 \text{ m.s}^{-2}$

Exercice $N^{\circ}1$ (5,5pts):

Un jeu consiste à lancer, à partir d'un point A vers un point B, un solide (S) supposé ponctuel de masse m=0.2Kg sur un plan incliné d'un angle $\alpha=30^{\circ}$ par rapport à l'horizontal.

Le point B situé à une hauteur h par rapport au plan horizontal passant par A, se trouve à une distance **AB=4m**. A un instant t, le solide (S) passe par un point C avec une vitesse V.

On suppose qu'entre A et B le mouvement de (S) se fait sans frottement.

1°/a- Reproduire la figure-1- et représenter les différentes forces qui s'exercent sur (S) au point C.

b- Donner l'expression de l'énergie cinétique du solide (S) au point C.

2°/ Un premier jouer lance le solide (S), à partir du point A, avec une vitesse $V_1 = 6 \text{ m.s}^{-1}$.

a- Enoncer le théorème de l'énergie cinétique.

b- En appliquent ce théorème, montrer que le solide (S) ne puisse pas atteindre la point B.

3°/ Un deuxième jouer lance le solide (S), à partir du point A, avec une vitesse V₂ de sorte que ce dernier puisse atteindre le point B avec une vitesse nulle.

Déterminer la valeur de la vitesse V₂:

- En utilisant le théorème de l'énergie cinétique.
- En utilisant la relation fondamentale de la dynamique.

4°/ En réalité, les frottements au cours de mouvement de (S) entre A et B ne sont pas nuls. Leur action est équivalent à une force f constante notée | f | .

Pour que le solide (S) puisse atteindre le point B avec une vitesse nulle, il faut le lancer, à partir du point A, avec une vitesse $V_A = 7.15 \text{ m.s}^{-1}$.

Déterminer alors la valeur de f.

Exercice N°2 (5,5pts):

I- Au point P situé à une hauteur h=2,7 m au dessus du sol, une balle de tennis, assimilée à un point matériel, est frappée avec une raquette, elle part de ce point à instant pris comme origine des dates (t=0) avec une vitesse v_0 faisant un angle $\alpha=45^\circ$ avec l'horizontale, de valeur $\|v_0\|=10$ m.s⁻¹ (voir figure 2 de la page annexe). Le mouvement de la balle sera étudié dans le repère (0,i,k), O point du sol. 1°/a- Etablir l'expression littérale des lois horaires x(t) et z(t) du mouvement de la balle.

b- Déduire l'équation de la trajectoire de la balle dans le repère (O, i, k).

2°/ Calculer les coordonnées du point S le plus élevé atteint par la balle.

3°/ Déterminer les caractéristiques du vecteur vitesse de la balle lorsque celle-ci touche le sol.

II- Dans cette partie, la balle est frappée par la raquette en P et à un instant pris comme origine des(t=0) et elle est lancée avec une vitesse initiale horizontale v_1 de valeur 25 m.s⁻¹ (voir figure 3 page annexe). Le filet à une hauteur $\mathbf{h_0} = \mathbf{1m}$ est placé à une distance $\mathbf{\ell} = \mathbf{12}$ m de O.

1°/ Déduire l'équation de la trajectoire de la balle dans le repère (O, i, k) à partir de l'équation établie dans la question I-1°/b.

2- La balle franchira-t-elle le filet?

Si oui, à quelle distance derrière le filet retombera la balle sur le sol.

Devoir de contrôle N°3 page 2/3 3^{éme} Sc exp HANDOURA Naceur

Page annexe

Devoir de contrôle N°3 page 3/3 3^{éme} Sc exp HANDOURA Naceur