TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FA, 27 fev 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Calcule a difusividade numérica introduzida pelo esquema *upwind* explícito

$$\frac{u_i^{n+1} - u_i^n}{\Lambda t} + c \frac{u_i^n - u_{i-1}^n}{\Lambda x} = 0.$$

Sugestão: note que

Prof. Nelson Luís Dias

$$\begin{split} \frac{u_i^n - u_{i-1}^n}{\Delta x} &= \frac{2u_i^n}{2\Delta x} - \frac{u_{i-1}^n}{\Delta x} \\ &= \frac{2u_i^n}{2\Delta x} - \frac{1}{2} \frac{u_{i-1}^n}{\Delta x} - \frac{1}{2} \frac{u_{i-1}^n}{\Delta x} + \frac{u_{i+1}^n}{2\Delta x} - \frac{u_{i+1}^n}{2\Delta x} \\ &= \frac{-u_{i+1}^n + 2u_i^n - u_{i-1}^n}{2\Delta x} + \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x}. \end{split}$$

SOLUÇÃO DA QUESTÃO:

Reescrevemos o termo advectivo utilizando o resultado da sugestão:

$$\begin{split} \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \left[\frac{-u_{i+1}^n + 2u_i^n - u_{i-1}^n}{2\Delta x} + \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} \right] &= 0, \\ \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} &= c \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{2\Delta x}, \\ \frac{u_i^{n+1}-u_i^n}{\Delta t} + c \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} &= D \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}, \\ D &= \frac{c\Delta x}{2}. \end{split}$$

Portanto, o esquema é equivalente a uma discretização numérica da equação de advecção-difusão, com difusividade numérica dada pela penúltima linha acima

2 [25] Se o produto interno entre duas funções complexas de uma variável real no intervalo fechado [1,2] for definido como

$$\langle f, g \rangle = \int_{1}^{2} f^{*}(x)g(x)w(x) dx$$

com $w(x) = \ln(x)$, calcule $\langle x, x^2 \rangle$.

SOLUÇÃO DA QUESTÃO:

$$\langle x, x^2 \rangle = \int_1^2 x^3 \ln(x) \, dx$$

$$= \int_1^2 \underbrace{\ln(x)}_u \underbrace{x^3 \, dx}_{dv}$$

$$= \frac{x^4 \ln(x)}{4} \Big|_1^2 - \int_1^2 \frac{x^4}{4} \frac{1}{x} \, dx$$

$$= \frac{16}{4} \ln 2 - \frac{1}{16} x^4 \Big|_1^2$$

$$= 4 \ln 2 - \frac{1}{16} [16 - 1]$$

$$= 4 \ln 2 - 15/16 \blacksquare$$

$$f(x) = x, \ 0 \le x \le 1.$$

SOLUÇÃO DA QUESTÃO:

O problema se resume ao cálculo dos $c_n s \mod L = 1 - 0 = 1$,

$$c_n = \int_0^1 x \mathrm{e}^{-(2\pi \mathrm{i} n x)} \, \mathrm{d} x.$$

Integrando por partes,

$$c_n = -\frac{1-2\pi \mathrm{i} n - 1}{4\pi^2 n^2} = \frac{2\pi \mathrm{i} n}{4\pi^2 n^2} = \frac{\mathrm{i}}{2\pi n}, \ n \neq 0.$$

É evidente que o cálculo para n = 0 tem que ser feito separadamente:

$$c_0 = \int_0^1 x \, \mathrm{d}x = \frac{1}{2}.$$

O resultado é

$$x = \frac{1}{2} + \sum_{n = -\infty, n \neq 0}^{\infty} \frac{i}{2\pi n} e^{2\pi i nx} \blacksquare$$

4 [25] Resolva a equação diferencial parcial

$$\frac{\partial \phi}{\partial t} = a^2 \frac{\partial^2 \phi}{\partial x^2},$$

com condições inicial e de contorno

$$\phi(x,0) = \phi_0 \operatorname{sen}\left(\frac{\pi x}{L}\right),$$

$$\phi(0,t) = 0,$$

$$\frac{\partial \phi}{\partial x}(L,t) = 0.$$

Você pode usar as fórmulas a seguir (se forem, e as que forem, úteis) sem demonstração.

$$\int_0^L \sin^2\left(\frac{n\pi x}{L}\right) = \frac{L}{2}$$

$$\int_0^L \sin^2\left(\frac{(2n-1)\pi x}{2L}\right) dx = \frac{L}{2}$$

$$\int_0^L \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) = 0, \quad n > 1$$

$$\int_0^L \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{(2n-1)\pi x}{2L}\right) = \frac{4L(-1)^{n-1}}{3\pi + 4\pi n - 4\pi n^2}$$

$$\int_0^L \cos\left(\frac{\pi x}{L}\right) \cos\left(\frac{(2n-1)\pi x}{2L}\right) = \frac{2(2n-1)(-1)^n L}{\pi (2n-3)(2n+1)}$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi = X(x)T(t)$:

$$XT' = a^2 X''T,$$

$$\frac{1}{a^2} \frac{T'}{T} = \frac{X''}{X} = -\lambda.$$

É evidente que há um problema de Sturm-Liouville nos esperando em X, mas ganharemos um pouco de tempo resolvendo em T primeiro, e raciocinando fisicamente:

$$\frac{dT}{dt} = -\lambda a^2 T,$$

$$\frac{dT}{T} = -\lambda a^2 dt$$

$$\ln \frac{T}{T_0} = -\lambda a^2 t$$

$$T(t) = T_0 \exp(-\lambda a^2 t).$$

É evidente que não podemos deixar que a solução exploda para $t \to \infty$: $\lambda < 0$ não é aceitável; $\lambda = 0$ também não funciona, porque neste caso a solução permaneceria constante (é evidente que o perfil inicial $\phi(x,0)$ deve se abater, forçado pela condição de contorno esquerda). Segue-se que $\lambda > 0$. Além disto, sem perda de generalidade faremos $T_0 = 1$. O problema de Sturm-Liouville em X é

$$\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + \lambda X = 0,$$
$$X(0) = 0,$$
$$\frac{\mathrm{d}X}{\mathrm{d}x}(L) = 0.$$

A solução geral é

$$X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x),$$

$$\frac{dX}{dx} = \sqrt{\lambda} \left[-A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x) \right].$$

A condição de contorno esquerda (em x = 0) impõe A = 0; a condição de contorno direita (em x = L) impõe

$$\cos(\sqrt{\lambda}L) = 0,$$

$$\sqrt{\lambda_n}L = (2n-1)\frac{\pi}{2},$$

$$\lambda_n = \left(\frac{2n-1}{L}\right)^2 \frac{\pi^2}{4}.$$

As autofunções são

$$\phi_n(x) = \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right).$$

A solução do problema de Sturm-Liouville dá conta das condições de contorno, e agora nós nos voltamos para a condição inicial. A solução geral deve ser da forma

$$\phi(x,t) = \sum_{n=1}^{\infty} B_n \sec \left(\frac{(2n-1)\pi x}{2L} \right) \exp \left(-\frac{(2n-1)^2 a^2 \pi^2 t}{4L^2} \right).$$

Para atender à condição inicial, devemos ter

$$\phi_0 \operatorname{sen}\left(\frac{\pi x}{L}\right) = \sum_{n=1}^{\infty} B_n \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right),$$

$$\phi_0 \int_0^L \operatorname{sen}\left(\frac{\pi x}{L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx =$$

$$\sum_{n=1}^{\infty} B_n \int_0^L \operatorname{sen}\left(\frac{(2n-1)\pi x}{2L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx,$$

$$\phi_0 \int_0^L \operatorname{sen}\left(\frac{\pi x}{L}\right) \operatorname{sen}\left(\frac{(2m-1)\pi x}{2L}\right) dx = B_m \int_0^L \operatorname{sen}^2\left(\frac{(2n-1)\pi x}{2L}\right) dx \implies$$

$$B_m = \frac{2}{L} \frac{4\phi_0 L(-1)^n}{3\pi + 4\pi n - 4\pi n^2}$$

$$= \frac{8\phi_0(-1)^n}{3\pi + 4\pi n - 4\pi n^2} \blacksquare$$