Change of base

It's easier for us to evaluate logs to base 10 or base e, because calculators usually have \log and \ln buttons for these. When the base is anything other than 10 or e, we can use the **change of base** formula.

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Notice that, given a log function with a base of a and an argument of b, we can pick any value that we'd like to be the new base, c. Which is really helpful, because we can pick a new base of 10 or e if either of them is convenient for us.

Let's look at an example of using the change of base formula.

Example

Estimate the log to four decimal places.

$$log_5 4$$

We can use the change of base formula.

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$\log_5 4 = \frac{\log_{10} 4}{\log_{10} 5}$$

Now we can use a calculator to get the answer.

$$\log_5 4 \approx \frac{0.6021}{0.6990}$$

$$\log_5 4 \approx 0.8614$$

Realize that we can also work backwards, backing our way into the change of base formula.

Example

Simplify the expression to a single real number without using a calculator.

$$\frac{\log 625}{\log 25}$$

If we use the change of base formula, we can rewrite this expression in the form $\log_a b$.

$$\log_{25} 625$$

Let $x = \log_{25} 625$. Then, using the general rule for logarithms, we have

$$25^x = 625$$

Now we want to rewrite both sides of the equation in terms of the same base.

$$(5^2)^x = 5^4$$

$$5^{2x} = 5^4$$

Since the bases are equal, the exponents must also be equal in order for the equation to be true.

$$2x = 4$$

$$x = 2$$

Therefore, the value of the original expression is 2:

$$\frac{\log 625}{\log 25} = 2$$

We can also solve other kinds of exponential equations using logs and the change of base formula.

Example

Use logs to solve the equation.

$$10 \cdot 5^{2x} = 300$$

In problems like this, we have an equation, and we need to solve for the variable, x, which means we need to get x by itself on one side of the equation. In this particular example, we can start by dividing both sides by 10.

$$10 \cdot 5^{2x} = 300$$

$$5^{2x} = 30$$

Now we can use the general rule for logs to change this into a logarithmic equation.

$$\log_5 30 = 2x$$

We'll apply the change of base formula,

$$2x = \frac{\log 30}{\log 5}$$

And then we can solve for the variable.

$$x = \frac{\log 30}{2\log 5}$$

This is the exact value of the variable, but we can also use a calculator to find the decimal value.

$$x \approx 1.0566$$

