	4a	4b	3a	2a 2	b 4c	12a	4d	12b	4e	3b	6a	6b	2c	12c	4f	12d	12e	12f	$\frac{12g}{}$	6c	6d	6e	12h	12i	12j	12k	6f	12l
(1 1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\frac{1}{2}$	-1	-1	1	1 1	. 1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	1	1
$\frac{1}{3}$	-1	1	1	1 1	_1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	-1	1	1	-1
4 1	1	-1	1	1 1	_1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	1	-1
$\frac{1}{5}$ 1	-1	-1	$E(3)^{2}$	1 1	. 1	$-E(3)^2$	-1	$-E(3)^2$	-1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)^{2}$	1	-E(3)	$-E(3)^2$	-E(3)	$-E(3)^2$	E(3)	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	-E(3)	-E(3)	E(3)	E(3)
$\binom{6}{6}$	-1	-1	E(3)	1 1	. 1	-E(3)	-1	-E(3)		$E(3)^{2}$	E(3)	E(3)	1	E(3)	1	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$	-E(3)	$E(3)^{2}$	$E(3)^2$	E(3)	$E(3)^2$	E(3)	$-E(3)^{2}$	$-E(3)^{2}$	$E(3)^2$	$E(3)^{2}$
$\frac{1}{2}$	-1	1	$E(3)^{2}$	1 1	-1	$-E(3)^{2}$	-1	$E(3)^2$	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$-E(3)^{2}$	-1	-E(3)	$-E(3)^{2}$	E(3)	$E(3)^2$	E(3)	E(3)	$E(3)^2$	$-\dot{E}(3)$	$-E(3)^{2}$	-E(3)	E(3)	E(3)	$-\dot{E}(3)$
$\binom{1}{8}$	-1	1	E(3)	1 1	-1	-E(3)	-1	E(3)	1	$E(3)^{2}$	E(3)	E(3)	1	-E(3)	-1	$-E(3)^{2}$	-E(3)	$E(3)^2$	E(3)	$E(3)^2$	$E(3)^2$	E(3)	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$	$E(3)^{2}$	$E(3)^2$	$-E(3)^{2}$
$\stackrel{\cdot}{}_{(9)} \mid 1$	1	-1	$E(3)^2$	1 1	-1	$E(3)^{2}$	1	$-E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$-E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$-\dot{E}(3)$	$-E(3)^{2}$	E(3)	E(3)	$E(3)^2$	-E(3)	$-E(3)^{2}$	E(3)	$-\dot{E}(3)$	E(3)	-E(3)
$\chi_{10} 1$	1	-1	E(3)	1 1	-1	E(3)	1	-E(3)	-1	$E(3)^{2}$	E(3)	E(3)	1	-E(3)	-1	$E(3)^{2}$	E(3)	$-E(3)^{2}$	-E(3)	$E(3)^2$	$E(3)^2$	E(3)	$-E(3)^{2}$	-E(3)	$E(3)^2$	$-E(3)^{2}$	$E(3)^2$	$-E(3)^{2}$
$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	1	1	$E(3)^2$	1 1	. 1	$E(3)^{2}$	1	$E(3)^2$	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	$E(3)^2$	E(3)	$E(3)^{2}$	E(3)	E(3)	$E(3)^2$	E(3)	$E(3)^2$	E(3)	E(3)	E(3)	E(3)
$\chi_{12} \mid 1$	1	1	E(3)	1 1	1	E(3)	1	E(3)	1	$E(3)^2$	E(3)	E(3)	1	E(3)	1	$E(3)^2$	E(3)	$E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^2$	E(3)	$E(3)^2$	E(3)	$E(3)^2$	$E(3)^2$	$E(3)^2$	$E(3)^2$
$\lfloor 1 \rfloor$	-E(4)	-1	ì	1 -	1 E(4)	$-\hat{E(4)}$	E(4)	-1	1	1	ì	-1	-1	E(4)	-E(4)	$-\dot{E}(4)$	E(4)	-1	ì	1	-1	-1	E(4)	$-\dot{E(4)}$	E(4)	1	-1	$-\dot{E}(4)$
$\langle 14 \mid 1 \rangle$	E(4)	-1	1	1 -	1 - E(4)	E(4)	-E(4)	-1	1	1	1	-1	-1	-E(4)	E(4)	E(4)	-E(4)	-1	1	1	-1	-1	-E(4)	E(4)	-E(4)	1	-1	E(4)
$ _{15} _{1}$	-E(4)	-1	$E(3)^{2}$	1 -	1 E(4)	$-E(12)^1$	E(4)	$-E(3)^2$	1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$E(12)^{11}$	-E(4)	$-E(12)^{7}$	$E(12)^{11}$	-E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^2$	$E(12)^{7}$	$-E(12)^{11}$	$E(12)^{7}$	E(3)	-E(3)	$-E(12)^{7}$
$\chi_{16} 1$	-E(4)	-1	E(3)	1 -	1 E(4)	$-E(12)^{7}$	E(4)	-E(3)	1	$E(3)^{2}$	E(3)	-E(3)	-1	$E(12)^{7}$	-E(4)	$-E(12)^{11}$	$E(12)^{7}$	$-E(3)^{2}$	E(3)	$E(3)^{2}$	$-E(3)^{2}$	-E(3)	$E(12)^{11}$	$-E(12)^{7}$	$E(12)^{11}$	$E(3)^{2}$	$-E(3)^{2}$	$-E(12)^{11}$
$\langle 17 \mid 1 \rangle$	E(4)	-1	$E(3)^{2}$	1 -	1 - E(4)	$E(12)^{11}$	-E(4)	$-E(3)^{2}$	1	E(3)	$E(3)^{2}$	$-E(3)^{2}$	-1	$-E(12)^{11}$	E(4)	$E(12)^{7}$	$-E(12)^{11}$	-E(3)	$E(3)^{2}$	E(3)	-E(3)	$-E(3)^{2}$	$-E(12)^{7}$	$E(12)^{11}$	$-E(12)^{7}$	E(3)	-E(3)	$E(12)^{7}$
$\langle 18 \mid 1 \rangle$	E(4)	-1	E(3)	1 -	1 - E($E(12)^7$	-E(4)	-E(3)	1	$E(3)^2$	E(3)	-E(3)	-1	$-E(12)^{7}$	E(4)	$E(12)^{11}$	$-E(12)^{7}$	$-E(3)^{2}$	E(3)	$E(3)^{2}$	$-E(3)^{2}$	-E(3)	$-E(12)^{11}$	$E(12)^{7}$	$-E(12)^{11}$	$E(3)^{2}$	$-E(3)^{2}$	$E(12)^{11}$
$\chi_{19} \mid 1$	-E(4)	1	1	1 -	1 - E(4)	-E(4)	E(4)	1	-1	1	1	-1	-1	-E(4)	E(4)	-E(4)	E(4)	1	-1	1	-1	-1	-E(4)	E(4)	E(4)	-1	-1	E(4)
(20 1)	E(4)	1	1	1 -	1 E(4)	E(4)	-E(4)	1	-1	1	1	-1	-1	E(4)	-E(4)	E(4)	-E(4)	1	-1	1	-1	-1	E(4)	-E(4)	-E(4)	-1	-1	-E(4)
$\langle 21 \mid 1 \rangle$	-E(4)	1	$E(3)^{2}$	1 -	1 - E(4)	$-E(12)^1$	E(4)	$E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$-E(12)^{11}$	E(4)	$-E(12)^7$	$E(12)^{11}$	E(3)	$-E(3)^2$	E(3)	-E(3)	$-E(3)^2$	$-E(12)^7$	$E(12)^{11}$	$E(12)^{7}$	-E(3)	-E(3)	$E(12)^{7}$
$\langle 22 \mid 1 \rangle$	-E(4)	1	E(3)	1 -	1 - E(4)	$-E(12)^7$	E(4)	E(3)	-1	$E(3)^{2}$	E(3)	-E(3)	-1	$-E(12)^{7}$	E(4)	$-E(12)^{11}$	$E(12)^{7}$	$E(3)^{2}$	-E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$-E(12)^{11}$	$E(12)^{7}$	$E(12)^{11}$	$-E(3)^2$	$-E(3)^2$	$E(12)^{11}$
(23 1)	E(4)	1	$E(3)^{2}$	1 –	1 E(4)	$E(12)^{11}$	-E(4)	$E(3)^{2}$	-1	E(3)	$E(3)^{2}$	$-E(3)^2$	-1	$E(12)^{11}$	-E(4)	$E(12)^{7}$	$-E(12)^{11}$	E(3)	$-E(3)^2$	E(3)	-E(3)	$-E(3)^2$	$E(12)^{7}$	$-E(12)^{11}$	$-E(12)^{7}$	-E(3)	-E(3)	$-E(12)^7$
(24 1	E(4)	1	E(3)	1 –	1 E(4)	$E(12)^7$	-E(4)	E(3)	-1	$E(3)^{2}$	E(3)	-E(3)	-1	$E(12)^{7}$	-E(4)	$E(12)^{11}$	$-E(12)^7$	$E(3)^{2}$	-E(3)	$E(3)^{2}$	$-E(3)^2$	-E(3)	$E(12)^{11}$	$-E(12)^{7}$	$-E(12)^{11}$	$-E(3)^2$	$-E(3)^2$	$-E(12)^{11}$
$\binom{25}{2}$	0	0	2	-2 -	2 0	0	0	0	0	2	-2	-2	2	0	0	0	0	0	0	-2	-2	2	0	0	0	0	2	0
$\binom{26}{2}$	0	0	2	-2 2	2 0	0	0	0	0	2	-2	2	-2	0	0	0	0	0	0	-2	2	-2	0	0	0	0	-2	0
$\langle 27 \mid 2 \rangle$	0	0	2 * E(3)	-2 2	2 0	0	0	0	0	$2 * E(3)^2$	-2 * E(3)	2 * E(3)	-2	0	0	0	0	0	0	$-2*E(3)^2$	$2 * E(3)^2$	-2 * E(3)	0	0	0	0	$-2*E(3)^2$	0
$\mathbb{Z}_{28} \mid 2$	0	0	$2 * E(3)^2$	-2 2	2 0	0	0	0	0	2 * E(3)	$-2 * E(3)^2$	$2 * E(3)^2$	-2	0	0	0	0	0	0	-2 * E(3)	2 * E(3)	$-2 * E(3)^2$	0	0	0	0	-2 * E(3)	0
$(29 \mid 2)$	0	0	$2 * E(3)^2$	-2 -	2 0	0	0	0	0	2 * E(3)	$-2 * E(3)^2$	$-2*E(3)^2$	2	0	0	0	0	0	0	-2 * E(3)	-2 * E(3)	$2 * E(3)^2$	0	0	0	0	2 * E(3)	0
$(30 \mid 2)$	0	0	2 * E(3)	-2 -	2 0	0	0	0	0	$2 * E(3)^2$	-2 * E(3)	-2*E(3)	2	0	0	0	0	0	0	$-2*E(3)^2$	$-2*E(3)^2$	2 * E(3)	0	0	0	0	$2*E(3)^2$	0

	$\chi_{\rm S}$	80 2	0	$0 \qquad 2*E(3)$) -2 -2	0	0	0	0	0 2*E	$(3)^2 -2$	*E(3) -	2*E(3)	
Trivial source character table of $G \cong C3 \times (C4 : C4)$ at $p = 3$:														
Normalisers N_i				N_1							N_2			
p-subgroups of G up to conjugacy in G				P_1							P_2			
Representatives $n_j \in N_i$	1a $4a$	4b	2a $2b$	b 4c	4d	4e $2c$	4f	1a 4	b 4a	2b	4c $4e$	2c $4d$	4f	2a
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} +$	3 3	3	3 3	3	3	3 3	3	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	-3	-3	3 3	3	-3	-3 3	3	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	-3	3	3 3	-3	-3	3 3	-3	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	3 3	-3	3 3	-3	3	-3 3	-3	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	3 3*E((4) -3	3 - 3	3 - 3 * E(4)	-3*E(4)) 3 -3	3 * E(4)	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	3 -3*E	-3	3 - 3	3 * E(4)	3 * E(4)	3 -3	-3 * E(4	0 0	0	0	0 0	0 0	0	0
$\cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0$	3 3*E(4) 3	3 - 3	3 * E(4)	-3 * E(4)	-3 -3	-3*E(4)	0 0	0	0	0 0	0 0	0	0
$+\chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 $	3 -3*E	(4) 3	3 - 3	3 - 3 * E(4)	3*E(4)	-3 -3	3 * E(4)	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{29} + 1 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		0	-6 -6	6 0	0	0 6	0	0 0	0	0	0 0	0 0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	6 0	0	-6 6	0	0	0 -6	0	0 0	0	0	0 0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 1	1	1 1	. 1	1	1 1	1	1 1	1	1	1 1	1 1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1	-1	1 1	. 1	-1	-1 1	1	1 -	1 -1	1	1 -1	1 -1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		1	1 1	-1	-1	1 1	-1	1 1	-1	1 -	-1 1	1 -1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 1	-1	1 1	-1	1	-1 1	-1	1 -	1 1	1 -	-1 -1	1 1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 E(4)	-1	1 -	1 - E(4)	-E(4)	1 - 1	E(4)	1 -	1 E(4)	-1 -1	E(4) 1	-1 $-E($	E(4)) 1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		-1	1 -	$1 \qquad E(4)$	E(4)	1 - 1	-E(4)	1 -	1 - E(4)	-1 E	C(4) 1	-1 $E(4)$	-E(4)	 1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 E(4)	1	1 -	$1 \qquad E(4)$	-E(4)	-1 -1	-E(4)	1 1	E(4)	-1 E	C(4) -1	-1 $-E($	(4) -E(4)	1) 1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 - E(2)	1) 1	1 -	1 - E(4)	E(4)	-1 -1	E(4)	1 1	-E(4)	-1 -1	E(4) -1	-1 $E(4)$	E(4)	, 1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		0	-2 2	0	o ´	0 - 2	o ´	2 0	0	2	0 0	-2 0	0	-2
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		0	-2 -2	2 0	0	0 2	0	2 0	0	-2	0 0	2 0	0	-2

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,4,14)(2,8,21)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,22,36)(10,23,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48)]) \cong C3$

 $N_1 = Group([[(1,2,6,10)(3,19,13,35)(4,8,16,23)(5,9,17,24)(7,28,20,12)(11,33,27,45)(14,21,30,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(25,43,40,48)(29,36,42,46)(32,44,43)(34,45)(37,46)(49,47)(43,48)(13,47,46)(49,47)(43,48)(19,34,44)(24,38,46)(28,41,47)(35,45,48)(19,34)(19$