# Révisions de première année

#### Exercice 1

On considère une urne contenant 4 boules blanches et 8 boules rouges. Quelle est la probabilité de la suite «blanc, blanc, rouge» si on tire successivement trois boules sans remise?

#### Exercice 2

On considère une urne A contenant deux boules rouges et trois boules vertes et une urne B contenant trois boules rouges et deux boules vertes. On tire au hasard une boule dans l'urne A que l'on place dans l'urne B. On tire ensuite successivement et sans remise deux boules dans l'urne B. Quelle est la probabilité que la boulé tirée dans l'urne A soit verte sachant que les deux boules tirées dans l'urne B sont rouges?

#### Exercice 3

On considère n urnes numérotées de 1 à n. L'urne numéro k contient k boules blanches et n-k boules noires. On choisit au hasard une urne puis une boule dans cette urne.

- 1. Quelle est la probabilité d'obtenir une boule blanche?
- **2.** On suppose qu'on a tiré une boule blanche. Quelle est la probabilité qu'elle ait été tirée dans l'urne numéro *k* ?

# Exercice 4 Une chaîne de Markov

Un buveur impénitent décide d'essayer de ne plus boire. S'il ne boit pas un jour donné, la probabilité qu'il ne boive pas le lendemain est de 0,4. S'il succombe à la tentation un jour, alors le remords fait que la probabilité qu'il ne boive pas le lendemain monte à 0,8.

- 1. Quelle est la probabilité que ce buveur ne boive pas le  $n^{\text{ème}}$  jour?
- **2.** Que se passe-t-il lorsque n tend vers  $+\infty$ ?

#### **Exercice 5**

On dispose d'un dé à 6 faces et d'une pièce de monnaie. Après avoir lancé *n* fois le dé, on lance la pièce autant de fois qu'on a obtenu le 6 avec le dé. On note S le nombre de 6 obtenus avec le dé et F le nombre de faces obtenues avec la pièce.

- **1.** Quelle est la loi de S?
- **2.** Soit  $s \in [0, n]$ . Déterminer la loi de F conditionnée par l'événement S = s.
- **3.** Montrer que F suit la loi  $\mathcal{B}\left(n, \frac{1}{12}\right)$ .

#### Exercice 6

Une famille à n enfants ( $n \ge 2$ ). On note

- A l'événement «la famille a des enfants des deux sexes»;
- B l'événement «la famille a au plus une fille».

Montrer que A et B sont des événements indépendants si et seulement si n = 3.

#### Exercice 7

Une urne contient 2 boules blanches et n-2 boules rouges. On effectue n tirages sans remise dans cette urne. On appelle X le rang de sortie de la première boule blanche et Z le rang de sortie de la deuxième boule blanche.

- 1. Déterminer la loi du couple (X, Z).
- 2. En déduire les lois de X et Z.

Soient *n* et N des entiers naturels tels que  $2 \le n \le N$ .

On effectue un tirage simultané de *n* boules dans une urne contenant N boules numérotées de 1 à N. On note X et Y respectivement le plus grand et le plus petit numéro obtenu.

1. Question préliminaire : soient a et b des entiers naturels tels que  $a \le b$ . Montrer que

$$\sum_{k=a}^{b} \binom{k}{a} = \binom{b+1}{a+1}$$

- 2. Déterminer les lois de X et Y.
- 3. Déterminer la loi du couple (X, Y). En déduire la loi de X Y.
- 4. Déterminer les espérances de X et Y.
- 5. Déterminer les variances de X et Y.
- **6.** Déterminer la variance de X Y. En déduire la covariance du couple (X, Y).

#### **Exercice 9**

Soient X et Y deux variables aléatoires indépendantes suivant la loi uniforme sur [1, n] Calculer  $P(X \neq Y)$ .

#### Exercice 10

### Minimum et maximum de variables aléatoires

Dans tout l'exercice, N désigne un entier naturel non nul.

Soit  $(U_n)_{n\geq 1}$  une suite de variables aléatoires mutuellement indépendantes et suivant toutes la loi uniforme sur  $[\![1,N]\!]$ . On note  $T_n$  et  $Z_n$  les variables aléatoires définies pour tout  $n\in\mathbb{N}^*$  par

$$T_n = \max(U_1, \dots, U_n)$$
 et  $Z_n = \min(U_1, \dots, U_n)$ 

On pose  $S_n = T_n + Z_n - 1$ .

On pose enfin pour tout  $n \in \mathbb{N}^*$ 

$$a_n(N) = \begin{cases} \sum_{k=1}^{N-1} \left(\frac{k}{N}\right)^n & \text{si } N \ge 2\\ 0 & \text{si } N = 1 \end{cases}$$

1. Soit Y une variable aléatoire à valeurs dans [1, N]. Établir la relation suivante.

$$\mathbb{E}(\mathbf{Y}) = \sum_{k=0}^{\mathbf{N}-1} \mathbb{P}(\mathbf{Y} > k)$$

- **2. a.** Calculer  $\mathbb{P}(T_n \le k)$  pour tout  $k \in [1, N]$ .
  - **b.** En déduire la loi de  $T_n$ .
  - **c.** Calculer  $\mathbb{E}(T_n)$  en fonction de N et  $a_n(N)$ .
- 3. a. Calculer  $\mathbb{P}(\mathbb{Z}_n > k)$  pour tout  $k \in [0, N-1]$ .
  - **b.** En déduire  $\mathbb{E}(\mathbf{Z}_n)$  en fonction de  $a_n(\mathbf{N})$ .
- **4.** a. Déterminer  $\lim_{n\to+\infty} \mathbb{E}(T_n)$ .
  - **b.** Déterminer  $\mathbb{E}(S_n)$ .

## Exercice 11 ★★

Soient  $X_1, ..., X_n$  des variables aléatoires indépendantes suivant la même loi de Bernoulli de paramètre p. On note M la matrice aléatoire  $(X_iX_j)_{1 \le i,j \le n}$ .

- **1.** Déterminer la loi de rg(M).
- 2. Déterminer la loi de tr(M).

On considère dans cette partie des entiers naturels non nuls n, u, d, t, b vérifiant u+d+t=b

Une urne  $\mathcal U$  contient b boules parmi lesquelles u boules portent le numéro 1, d le numéro 2 et t le numéro 3.

Une expérience consiste en n tirages successifs d'une boule de l'urne  $\mathcal{U}$  avec remise. Les tirages sont supposés mutuellement indépendants.

A chaque tirage, toutes les boules de l'urne  $\mathcal U$  ont la même probabilité d'être tirées.

L'univers  $\Omega$  est l'ensemble  $\{1,2,3\}^n$  et on note U (resp. D, T) la variable aléatoire définie sur  $\Omega$  dont la valeur est le nombre de boules numérotées 1 (resp. 2, 3) tirées au cours de l'expérience.

**1.** Montrer que la variable aléatoire U suit une loi usuelle (à préciser). Donner son espérance et sa variance.

Donner de même les lois des variables aléatoires D et T.

- 2. Les variables U et D sont-elles indépendantes? Justifier.
- **3.** Déterminer sans calcul la loi de la variable aléatoire U + D, son espérance et sa variance.
- **4.** En déduire que la covariance du couple (U, D) est égale à  $-\frac{nud}{b^2}$ .

Exercice 13 ESCP 2007

Soient X et Y deux variables aléatoires indépendantes de loi uniforme sur [0, n]. On pose Z = |X - Y| et  $Y = \min(X, Y)$ .

- 1. Déterminer l'espérance de Z.
- 2. En déduire l'espérance de T.
- **3.** Calculer l'espérance de Z<sup>2</sup> en fonction de la variance de X.

## Exercice 14

Soit X une variable aléatoire suivant la loi uniforme sur [1, n]. Déterminer l'espérance de  $\frac{1}{X(X+1)}$ .

#### Exercice 15

On considère une urne contenant n boules numérotées. On procède à un tirage successif de n boules avec remise. On note X le nombre de numéros qui sont sortis au moins une fois pendant le tirage. Calculer l'espérance de X ainsi qu'un équivalent de celle-ci lorsque n tend vers  $+\infty$ .

#### Exercice 16

Soit un entier  $n \ge 2$ . On munit le groupe symétrique  $S_n$  de la probabilité uniforme. On note X la variable aléatoire qui à une permutation associe son nombre de points fixes. Déterminer l'espérance et la variance de X.

#### Exercice 17

On lance n fois une pièce de monnaie bien équilibrée. En utilisant l'inégalité de Bienaymé-Tchebychev, déterminer n pour que la fréquence d'apparition de «face» soit comprise entre 0, 45 et 0, 55 avec une probabilité au moins égale à 0, 9.

#### Exercice 18

Soit X une variable aléatoire suivant la loi binomiale de paramètres  $n \in \mathbb{N}$  et  $p \in [0,1]$ . On pose  $\mu_r = \mathbb{E}((X - np)^r)$ . Montrer que pour tout  $x \in \mathbb{R}$ , la série  $\sum_{r \in \mathbb{N}} \frac{\mu_r x^r}{r!}$  converge et calculer sa somme.

# Exercice 19 Saint-Cyr MP 2024

Un champ de tir comporte n cibles. Un archer tire une flèche sur chacune des n cibles. Il a une probabilité  $p \in ]0,1[$  de toucher chacune des cibles. Les tirs sont supposés indépendants.

- **1.** On note X le nombre de cibles touchées. Donner la loi de X, son espérance et sa variance.
- **2.** On note Y le nombre de cibles touchées après une première tentative sur chacune des *n* cibles puis une seconde tentative sur les cibles non touchées. Déterminer la loi de Y.

# Dénombrabilité

## Exercice 20 \*\*\*

Montrer qu'il n'existe pas d'application continue  $f: \mathbb{R} \to \mathbb{R}$  telle que  $f(\mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$  et  $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$ .

## Exercice 21 ★★★

On dit qu'un nombre complexe est un *entier algébrique* s'il est racine d'un polynôme unitaire à coefficients entiers. Montrer que l'ensemble des entiers algébriques est dénombrable.

#### Exercice 22 ★

Soit A un ensemble. Montrer que les propositions suivantes sont équivalentes.

- (i) A est fini ou dénombrable;
- (ii) il existe une injection de A dans un ensemble dénombrable;
- (iii) il existe une surjection d'un ensemble dénombrable sur A.

## Exercice 23 ★★

Support d'une famille sommable

Soit  $(a_j)_{j\in J}$  une famille sommable de nombres complexes. On note  $S=\{j\in J,\ a_j\neq 0\}$ . Montrer que S est au plus dénombrable.

# Généralités

#### Exercice 24

### Lemme de Borel-Cantelli et loi du zéro-un de Borel

Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'événements d'un espace probabilisé  $(\Omega, \mathcal{A}, \mathbb{P})$ . On pose  $B_n = \bigcup_{k \geq n} A_k$  et  $A = \bigcap_{n \in \mathbb{N}} B_n$ .

- **1.** On suppose que la série  $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n)$  converge.
  - **a.** Montrer que  $\mathbb{P}(A) = \lim_{n \to +\infty} \mathbb{P}(B_n)$ .
  - **b.** En déduire que  $\mathbb{P}(A) = 0$ .
- **2.** On suppose que les  $A_n$  sont mutuellement indépendants et que la série  $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)$  diverge.
  - **a.** Soit  $(n, p) \in \mathbb{N}^2$ . Montrer que

$$\mathbb{P}\left(\bigcap_{k=n}^{n+p} \overline{\mathbf{A}_k}\right) \le \exp\left(-\sum_{k=n}^{n+p} \mathbb{P}(\mathbf{A}_k)\right)$$

**b.** En déduire que  $\mathbb{P}(A) = 1$ .

## Exercice 25

D'après ESCP 2006

Des joueurs  $J_1, \ldots, J_n$  jouent successivement l'un après l'autre à un jeu indéterminé jusqu'à ce que l'un des joueurs gagnent (si aucun des joueurs n'a gagné lors du premier tour, on recommence un tour et ainsi de suite). On considère qu'à chaque fois que le joueur  $J_k$  joue, il a une probabilité  $p_k > 0$  de gagner. On pose également  $q_k = 1 - p_k$ . On note  $G_k$  l'événement «le joueur  $J_k$  gagne».

- **1.** Exprimer la probabilité de  $G_k$  en fonction de  $q_1, \ldots, q_n$  et  $p_k$ .
- 2. Montrer que le jeu se finit presque sûrement i.e. avec une probabilité 1.
- 3. Donner une condition nécessaire et suffisante pour que le jeu soit équitable i.e. que chaque joueur ait une probabilité 1/n de gagner.
- 4. Déterminer le nombre moyen de coups joués lors d'une partie.

## Exercice 26 ★★

Deux archers  $A_1$  et  $A_2$  sont en compétition : ils tirent alternativement ( $A_1$  aux rangs impairs,  $A_2$  aux rangs pairs), touchant la cible avec probabilité  $p_i$  (i=1,2), et la partie s'arrête dès que l'un des deux a atteint la cible.

- 1. Quelle est la probabilité que  $A_1$  l'emporte au tour 2n + 1?
- **2.** Quelle est la probabilité que  $A_2$  l'emporte au tour 2n + 2?
- **3.** En déduire les probabilités que  $A_1$  (resp  $A_2$ ) l'emporte, et celle que le jeu dure indéfiniment.
- **4.** A quelle condition le jeu est-il équitable? Est-ce le cas si  $p_1 > 1/2$ ?

## Exercice 27 \*\*\*

Dans un jeu de pile ou face infini, calculer la proabilité de l'événement A : «obtenir un nombre fini de faces».

# Indépendance

## Exercice 28 \*\*\*

**Banque Mines-Ponts MP 2018** 

On note  $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$  pour s > 1 et  $\mathcal{P} = \{2, 3, 5, \dots\}$  l'ensemble des nombres premiers.

- Quelle valeur doit prendre λ ∈ ℝ pour que la relation ℙ({n}) = λn<sup>-s</sup> définisse une loi de probabilité sur (N\*, P(N\*))?
  On considère l'espace probabilisé (N\*, P(N\*)) dans la suite.
- **2.** On pose  $A_r = r\mathbb{N}^*$  pour  $r \in \mathbb{N}^*$ . Calculer  $\mathbb{P}(A_r)$ .
- **3.** Montrer que la  $(A_p)_{p\in\mathcal{P}}$  est une famille d'événements mutuellement indépendants.
- **4.** Montrer que :  $\bigcap_{p \in \mathcal{P}} \overline{A_p} = \{1\}.$  En déduire que  $\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 p^{-s}}.$
- **5.** La famille  $\left(\frac{1}{p}\right)_{p\in\mathcal{P}}$  est-elle sommable?

### Exercice 29 \*\*

CCINP (ou CCP) MP 2023

Soient  $n \in \mathbb{N}$  et X et Y deux variables aléatoires à valeurs dans [0, n]. On pose  $\mathbb{P}(X = j, Y = i) = \lambda \binom{n}{i} \binom{n}{j}$  pour  $(i, j) \in [0, n]^2$ .

- 1. Déterminer  $\lambda$ .
- 2. Donner les lois de X et Y.
- 3. X et Y sont-elles indépendantes?
- **4.** On considère la matrice  $B = (\mathbb{P}(X = i \mid Y = j))_{0 \le i, j \le n}$ . Expliciter B, puis calculer  $B^p$  pour  $p \in \mathbb{N}^*$ .
- **5.** B est-elle diagonalisable ? Déterminer ses valeurs propres et les sous-espaces propres associés.

# Probabilités conditionnelles

#### Exercice 30

On dispose initialement d'une fleur  $F_0$  qui meurt à l'instant 1 en ayant deux descendances avec probabilité p, ou aucune. Chaque nouvelle fleur suit le même destin, les unes indépendamment des autres. On note  $D_n$ : «la lignée de  $F_0$  est éteinte à l'instant n (ou avant)» et  $p_n$  sa probabilité.

- **1.** Calculer  $p_0$  et  $p_1$ .
- **2.** Justifier que la suite  $(p_n)$  converge.
- 3. Prouver que  $p_{n+1} = pp_n^2 + 1 p$ .
- **4.** Déterminer la limite de  $(p_n)$ .

# Exercice 31 \*\*\*

On lance une infinité de fois une pièce de monnaie et on gagne à chaque lancer un point si pile apparaît (avec probabilité p), deux points si c'est face (avec probabilité q=1-p). On s'intéresse à la probabilité  $g_n$  qu'on ait marqué n points exactement au cours du jeu. Prouver la relation  $g_{n+2}=pg_{n+1}+qg_n$  et en déduire  $g_n$  en fonction de n.

## Probabilité d'obtenir deux piles consécutifs

On lance une infinité de fois une pièce donnant pile avec probabilité p>0 et face avec probabilité 1-p. Quelle est la probabilité d'obtenir deux piles consécutifs au cours de ces lancers ?

# Variables aléatoires

#### Exercice 33

**Mines-Ponts MP 2018** 

Soit  $r \in \mathbb{R}_+^*$ . On pose  $\mathbb{P}(X = k) = r \int_0^1 x^{k-1} (1 - x)^r dx$  pour tout  $k \in \mathbb{N}^*$ .

- 1. Montrer que cette relation définit bien la loi d'une variable aléatoire.
- 2. Donner une condition sur r pour que l'espérance soit définie et la calculer.

### Exercice 34 \*\*\*

BECEAS MP 2019

Soit  $(\Omega, \mathcal{A}, \mathbb{P})$  un espace probabilisé. Soit  $(X_n)_{n \in \mathbb{N}}$  une suite de variable aléatoires réelles définies sur cet espace.

Montrer que  $A = \left\{ \omega \in \Omega \mid \lim_{n \to +\infty} X_n(\omega) = 0 \right\}$  est un événement.

#### Exercice 35

CCINP (ou CCP) PSI 2021

On dispose d'une urne contenant trois jetons indiscernables numérotés de 1 à 3. On effectue une série de tirages indépendants avec remise d'un jeton. On note :

- Y la variable aléatoire indiquant le nombre de tirages nécessaires pour avoir deux nombres différents ;
- Z la variable aléatoire indiquant le nombre de tirages nécessaires pour avoir les trois numéros.
- 1. Reconnaître la loi de Y 1.
- 2. En déduire la loi de Y.
- **3.** En déduire  $\mathbb{E}(Y)$  et  $\mathbb{V}(Y)$ .
- 4. Déterminer la loi du couple (Y, Z).
- 5. En déduire la loi de Z.

#### Exercice 36

Soient X et Y deux variables aléatoires à valeurs dans  $\mathbb N$ . On suppose que la loi conjointe de X et Y vérifie

$$\forall (j,k) \in \mathbb{N}^2, \ \mathbb{P}(X=j,Y=k) = \frac{a(j+k)}{2^{j+k}}$$

- **1.** Déterminer la valeur de *a*.
- 2. Déterminer les lois marginales de X et Y.
- **3.** Les variables X et Y sont elles indépendantes ?
- **4.** Calculer  $\mathbb{P}(X = Y)$ .

# Lois usuelles

# Exercice 37 ★★

CCINP (ou CCP) PC 2017

Soient X et Y des variables aléatoires indépendantes de lois géométriques de paramètres  $p_1$  et  $p_2$ . Déterminer la loi de  $Z = \min(X, Y)$ .

## Exercice 38 ★★

#### CCINP (ou CCP) MP 2021

Soient X, Y, Z des variables aléatoires mutuellement indépendantes définies sur un même espace probabilisé  $(\Omega, \mathcal{A}, \mathbb{P})$  et suivant la même loi géométrique de paramètre  $p \in ]0, 1[$ .

- **1.** Calculer  $\mathbb{P}(X = Y)$ . En déduire  $\mathbb{P}(X \leq Y)$ .
- **2.** Déterminer la loi de X + Y.
- **3.** Calculer  $\mathbb{P}(\mathbb{Z} > n)$ .
- **4.** Calculer  $\mathbb{P}(Z > X + Y)$ .

## Exercice 39 ★★

#### Mines-Télécom (hors Mines-Ponts) MP 2021

Une urne contient initialement une boule blanche. On effectue un ou plusieurs lancers indépendants d'une pièce équilibrée :

- si on obtient pile, on ajoute une boule noire et on lance à nouveau la pièce;
- si on obtient face, on tire une boule de l'urne et l'expérience s'arrête.

On note X le numéro du lancer auquel on arrête l'expérience.

- 1. Déterminer la loi de X.
- **2.** Quelle est la probabilité de tirer une boule blanche à la fin de l'expérience?

# Exercice 40 ★★★★

# Centrale-Supélec MP 2021

Soit X et Y deux variables aléatoires indépendantes suivant la même loi géométrique de paramètre  $p \in ]0,1[$ . On pose  $U = \min(X,Y)$  et V = X - Y.

- 1. Écrire explicitement les lois suivies par X et Y.
- **2. a.** Déterminer la loi conjointe du couple (U, V) puis les lois de U et de V.
  - b. Montrer que U et V sont deux variables aléatoires indépendantes.
- **3.** Réciproquement, on suppose que X et Y sont indépendantes de même loi, et que U et V sont indépendantes telles que

$$\forall (n, m) \in \mathbb{N}^* \times \mathbb{Z}, \ \mathbb{P}(\{U = n\} \cap \{V = m\}) \neq 0$$

Montrer que X et Y suivent une loi géométrique dont on précisera le paramètre.

## Exercice 41

# CCINP (ou CCP) MP 2018

On cherche à obtenir toutes les pièces d'un puzzle de n pièces différentes. On achète chaque semaine une pièce emballée, chaque pièce étant équiprobable. Pour  $k \in \mathbb{N}^*$  on note  $Y_k$  le nombre d'achats à effectuer, sachant qu'on a eu une  $(k-1)^{\text{ème}}$  pièce différente, avant d'avoir une  $k^{\text{ème}}$  pièce qu'on n'a pas déjà eue.

- 1. a. Les variables aléatoires  $Y_k$  sont-elles mutuellement indépendantes? Justifier que  $Y_1$  peut s'écrire comme une constante simple.
  - **b.** Donner la loi de  $Y_k$ , pour  $k \in \mathbb{N}^*$ . Donner l'espérance, puis la variance de  $Y_k$ .
- 2. On note X le nombre d'achats à effectuer avant d'avoir le puzzle complet. Exprimer X en fonction des  $Y_k$ . Donner l'espérance de X en fonction de  $H_n = \sum_{k=1}^n \frac{1}{k}$ .
- 3. En utilisant une comparaison série-intégrale, déterminer un équivalent de  $H_n$ . En déduire un équivalent quand  $n \to +\infty$  de l'espérance de X.

## Exercice 42 Loi sans mémoire

Soit X une variable aléatoire à valeurs dans  $\mathbb{N}^*$ . Montrer que X suit une loi géométrique si et seulement si

$$\forall (n, p) \in \mathbb{N}^2, \ \mathbb{P}(X > n + p \mid X > n) = \mathbb{P}(X > p)$$

# Exercice 43 CCINP MP 2024

Soit X une variable aléatoire suivant la loi géométrique de paramètre 1/2. Pour  $k \in \mathbb{N}^*$ , on note  $A_k$  l'événement «X est un multiple de k».

- **1.** Calculer  $\mathbb{P}(A_k)$  pour  $k \in \mathbb{N}^*$ .
- **2.** Calculer  $\mathbb{P}(A_2 \cup A_3)$ .
- 3. On note B l'événement «X est premier». Donner une valeur approchée de  $\mathbb{P}(B)$  à  $10^{-2}$  près.

Soient X et Y deux variables aléatoires suivant des lois de Poisson telles que X + Y suit une loi de Poisson.

- 1. Montrer que Cov(X, Y) = 0.
- 2. X et Y sont-elles nécessairement indépendantes?

#### Exercice 45

**C.C.E. Mines MP 2015** 

On considère un péage composé de m guichets. On note N la variable aléatoire égale au nombre de voitures utilisant le péage en 1h. N suit une loi de Poisson de paramètre  $\lambda > 0$ . Le choix du guichet se fait de manière aléatoire et indépendamment des autres voitures. On note X la variable aléatoire égale au nombre de voitures ayant pris le guichet  $n^{\circ}1$ .

- **1.** Calculer la probabilité conditionnelle  $\mathbb{P}(X = k \mid N = n)$  pour  $0 \le k \le n$ .
- **2.** Montrer que  $\mathbb{P}(X = k) = e^{-\lambda} \left(\frac{\lambda}{m}\right)^k \frac{1}{k!} \sum_{n=0}^{+\infty} \lambda^n \left(1 \frac{1}{m}\right)^n \frac{1}{n!}$ .
- 3. Donner la loi de X.
- **4.** Espérance et variance de X?

## Exercice 46 ★★

Mines-Télécom (hors Mines-Ponts) MP 2019

Pour tout  $n \in \mathbb{N}$ , on pose  $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$ 

- 1. Justifier que  $I_n$  est bien définie.
- **2.** Trouver une relation de récurrence entre  $I_n$  et  $I_{n+2}$ .
- 3. On considère une variable aléatoire X suivant une loi de Poisson de paramètre  $\lambda > 0$ . On pose  $Y = I_X$ . Calculer  $\mathbb{E}(Y)$ .

# Espérance et variance

#### Exercice 47

Soit X une variable suivant la loi géométrique de paramètre p. Déterminer l'espérance de 1/X.

#### Exercice 48 \*\*\*

Formule d'antirépartition

Soit X une variable aléatoire à valeurs dans  $\mathbb{N}$ . Montrer que X admet une espérance finie si et seulement si la série  $\sum \mathbb{P}(X > n)$  converge et que, dans ce cas,  $\mathbb{E}(X) = \sum_{n=0}^{+\infty} \mathbb{P}(X > n)$ .

#### Exercice 49 \*\*\*

Centrale MP 2015

Soit  $(\Omega, \mathcal{A}, \mathbb{P})$  un espace probabilisé et  $(E_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$  une suite d'événements quelconques. On suppose que la série  $\sum_{n \in \mathbb{N}} \mathbb{P}(E_n)$  converge.

Pour X un ensemble, on note  $\mathbb{1}_X$  la fonction indicatrice de X.

- 1. Soit  $Z = \sum_{n=0}^{+\infty} \mathbb{1}_{E_n}$  (on convient que  $Z = \infty$  si la série diverge). Montrer que Z est une variable aléatoire. Prouver que Z est une variable aléatoire.
- 2. Soit

 $F = \{\omega \in \Omega, \ \omega \text{ appartient à un nombre fini de } E_n\}$ 

Prouver que F est un événement et que  $\mathbb{P}(F) = 1$ .

**3.** Prouver que Z admet une espérance.

## Exercice 50 \*\*\*

Soit  $p \in ]0,1[$ . On dispose d'une pièce amenant «pile» avec la probabilité p. On lance cette pièce jusqu'à obtenir pour la deuxième fois «pile». Soit X le nombre de «face» obtenus au cours de cette expérience.

- 1. Déterminer la loi de X.
- 2. Montrer que X admet une espérance finie et la calculer.
- **3.** On procède à l'expérience suivante : si X prend la valeur *n*, on place *n* + 1 boules numérotées de 0 à *n* dans une urne, et on tire ensuite une boule de cette urne. On note alors Y le numéro obtenu. Déterminer la loi et l'espérance de Y.
- **4.** On pose Z = X Y. Donner la loi de Z et vérifier que Z et Y sont indépendantes.

### Exercice 51 ★★

Mines-Télécom (hors Mines-Ponts) MP 2018

X et Y sont deux variables aléatoires indépendantes qui suivent respectivement les lois géométriques de paramètres p et q. On pose  $Z = \max(X, Y)$ . Déterminez  $\mathbb{E}(Z)$ .

### Exercice 52 ★★★

On lance une pièce équilibrée jusqu'à obtention d'un pile. On note X le nombre de lancers effectués. On pioche ensuite une boule dans une urne contenant des boules numérotées de 1 à X et on note Y le numéro de la boule piochée. Déterminer l'espérance de Y.

# Fonctions génératrices

#### Exercice 53

Soient  $X_1, \ldots, X_n$  des variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs  $\lambda_1, \ldots, \lambda_n$ . Déterminer la loi de  $S = \sum_{k=1}^n X_k$ .

# Exercice 54 ★

Somme de variables binomiales indépendantes

Soient  $X_1, \ldots, X_n$  des variables aléatoires mutuellement indépendantes. On suppose que  $X_i \sim \mathcal{B}(n_i, p)$  pour tout  $i \in [\![1, n]\!]$ . Déterminer la loi de  $S = \sum_{i=1}^n X_i$ .

## Exercice 55 \*\*

Formule de Wald

Soit X une variable aléatoire à valeurs dans  $\mathbb N$  sur un espace probabilisé  $(\Omega, \mathcal A, \mathbb P)$ . On considère une suite  $(X_n)_{n\in\mathbb N^*}$  de variables aléatoires indépendantes sur  $(\Omega, \mathcal A, \mathbb P)$  suivant la même loi que X.

On se donne une autre variable aléatoire N à valeurs dans  $\mathbb N$  sur le même espace probabilisé  $(\Omega, \mathcal A, \mathbb P)$  indépendante des variables aléatoires précédentes.

On pose 
$$S = \sum_{k=1}^{N} X_k$$
, c'est-à-dire

$$\forall \omega \in \Omega, \ S(\omega) = \sum_{k=0}^{N(\omega)} X_k(\omega)$$

- 1. Justifier que S est bien un variable aléatoire.
- **2.** On note  $G_X$ ,  $G_N$  et  $G_S$  les fonctions génératrices respectives de X, N et S. Montrer que pour tout  $t \in [0, 1]$ ,  $G_S(t) = G_N \circ G_X(t)$ .
- **3.** On suppose que les variables aléatoires X et N admettent des espérances finies. Montrer qu'il en est de même pour S et exprimer l'espérance de S en fonction de celles de N et X.
- **4.** On suppose que les variables aléatoires X et N admettent des moments d'ordre deux. Montrer qu'il en est de même pour S et exprimer la variance de S en fonction des espérances et des variances de N et X.

#### Exercice 56

Mines-Télécom (hors Mines-Ponts) MP 2019

On considère la série entière  $\sum_{n \in \mathbb{N}} \frac{n^2 + n + 1}{n!} t^n$ .

- 1. Donner le rayon de convergence R de cette série.
- **2.** Calculer sa somme S(t) sur ] R, R[.
- **3.** On se donne une variable aléatoire X telle que,  $\forall t \in [-1,1], \ G_X(t) = \lambda S(t)$  avec  $\lambda \in \mathbb{R}$ .
  - **a.** Que vaut  $\lambda$ ?
  - **b.** Calculer  $\mathbb{E}(X)$  et  $\mathbb{V}(X)$ .

Exercice 57 E3A MP 2021

Soient X et Y deux variables aléatoires indépendantes à valeurs dans  $\mathbb N$  définies sur un même espace probabilisé  $(\Omega, \mathcal A, \mathbb P)$ .

Pour |t| < 1, on définit les fonctions génératrices de X et de Y respectivement par :

• 
$$G_X(t) = \frac{1}{2-t}$$

- $G_Y(t) = 2 \sqrt{2 t}$
- 1. Déterminer le développement en série entière de la fonction  $G_X$ .
- **2.** Donner le coefficient d'ordre  $n \in \mathbb{N}^*$  du développement en série entière de la fonction  $t \mapsto (1+t)^{1/2}$ . On exprimera ce coefficient à l'aide de factorielles.
- 3. En déduire le développement en série entière de la fonction  $G_{\rm Y}$ .
- **4.** Pour tout  $n \in \mathbb{N}$ , calculer  $\mathbb{P}(X = n)$  et  $\mathbb{P}(Y = n)$ .
- **5.** Soient S = X + Y et  $n \in \mathbb{N}$ . Déterminer  $\mathbb{P}(S = n)$ .
- 6. Calculs d'espérances et de variances.
  - **a.** Justifier que la variable aléatoire X+1 suit une loi géométrique dont on déterminera le paramètre.
  - **b.** En déduire l'espérance et la variance de la variable aléatoire X.
  - c. Déterminer à l'aide de la fonction génératrice  $G_Y$  l'espérance des variables aléatoires Y et Y(Y-1).
  - **d.** En déduire la variance de la variable aléatoire Y.
  - e. Déterminer l'espérance et la variance de la variable aléatoire S.

# Temps d'arrêt

Exercice 58 ENS Ulm MPI 2019

On lance une pièce équilibrée jusqu'à ce que le nombre de «piles» soit égal au double du nombre de «faces». Quelle est la probabilité qu'on ne s'arrête jamais ?

### Exercice 59 \*\*

Mines-Télécom (hors Mines-Ponts) MP 2021

On considère une suite  $(X_i)_{i \in \mathbb{N}^*}$  de variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre  $p \in ]0,1[$ .

Soit  $r \in \mathbb{N}^*$ . On définit la variable aléatoire

$$\mathbf{T}_r = \min\left(\left\{n \in \mathbb{N}^*, \ \sum_{i=1}^n \mathbf{X}_i = r\right\} \bigcup \{+\infty\}\right)$$

- **1.** Pour r = 1, reconnaître la loi de  $T_r$ .
- **2.** Calculer  $P(T_r = n)$  pour  $n \in \mathbb{N}^*$ .
- 3. Montrer que l'évènement  $(T_r = +\infty)$  est négligeable.

#### Exercice 60

Obtention de deux piles consécutifs

On lance une infinité de fois une pièce donnant «pile» avec probabilité  $\frac{2}{3}$  et «face» avec probabilité  $\frac{1}{3}$ . On note X la variable aléatoire correspondant au nombre de lancers nécessaires pour obtenir pour la première fois deux piles consécutifs. On pose alors  $p_n = \mathbb{P}(X = n)$ .

- 1. Calculer  $p_2$  et  $p_3$ .
- **2.** Justifier que  $p_{n+2} = \frac{1}{3}p_{n+1} + \frac{2}{9}p_n$  pour tout entier  $n \ge 2$ .
- **3.** Quelle valeur de  $p_1$  doit-on choisir pour que la relation de récurrence précédente reste valide lorsque n = 1?
- **4.** Calculer  $p_n$  pour tout entier  $n \ge 1$ .
- **5.** Calculer l'espérance de X.

Exercice 61 ★★★

Marche aléatoire

On considère un point se déplaçant sur un axe. Au temps n=0, il se trouve à l'origine. Il se déplace ensuite successivement d'une unité vers la droite avec une probabilité p et d'une unité vers la gauche avec une probabilité 1-p. On note  $S_n$  sa position après n déplacements.

- 1. Déterminer la loi de  $S_0$ ,  $S_1$  et  $S_2$ .
- **2.** Déterminer de manière générale la loi de  $S_n$ .
- **3.** Calculer la probabilité  $p_n$  de l'événement  $\{S_n = 0\}$ .
- **4.** Justifier que P:  $t \mapsto \sum_{n=0}^{+\infty} p_n t^n$  est définie sur ]-1, 1[ et calculer P(t) pour  $t \in$  ]-1, 1[.
- 5. On note T l'instant où le point retourne pour la première fois à l'origine (on convient que  $T=+\infty$  si le point ne retourne jamais à l'origine) et on pose  $q_n=\mathbb{P}(T=n)$ . Justifier que  $Q\mapsto \sum_{n=0}^{+\infty}q_nt^n$  est définie et continue sur [-1,1].
- **6.** Montrer que P(t) = 1 + P(t)Q(t) pour tout t ∈ ] − 1, 1[.
- 7. En déduire la valeur de  $q_n$ .
- 8. Calculer la probabilité que le point retourne à l'origine.
- **9.** T est-elle d'espérance finie?

## Exercice 62 ★★★

CCINP (ou CCP) MP 2018

- **1.** Une urne contient *n* boules blanches et *n* boules noires indiscernables au toucher. On tire simultanément *n* boules de l'urne.
  - **a.** Quel est le nombre de tirages possibles?
  - **b.** Montrer que  $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$ .
- **2.** Une puce se déplace sur un axe gradué d'origine O par bonds successifs d'une unité. Elle peut aller à tout instant, soit à droite, soit à gauche, avec équiprobabilité. On note  $C_n$  l'événement : «la puce est en O après n sauts». On donne :  $P(C_0) = 1$ .
  - **a.** Déterminer  $\mathbb{P}(\mathbb{C}_{2n+1})$  et  $\mathbb{P}(\mathbb{C}_{2n})$ .
  - **b.** Calculer  $\lim_{n \to +\infty} \mathbb{P}(C_{2n})$  à l'aide de la formule de Stirling.
- **3.** La puce peut à présent se déplacer suivant deux directions (droite, gauche, haut, bas) avec équiprobabilité.
  - **a.** Montrer que  $\mathbb{P}(C_{2n}) = {2n \choose n}^2 \left(\frac{1}{4}\right)^{2n}$ .
  - **b.** Calculer  $\lim_{n\to+\infty} \mathbb{P}(C_{2n})$ .

## Exercice 63

Mines-Télécom MP 2024

La probabilité d'obtenir pile lors d'un lancer de pièce est  $p \in [0, 1]$ .

Le joueur A commence par lancer la pièce. S'il tombe sur pile alors il a gagné. Après le joueur A, le joueur B lance la pièce. S'il tombe sur face il a gagné. Le jeu s'arrête lorsque l'un des 2 joueurs a gagné.

- 1. Calculer la probabilité que le jeu s'arrête au lancer numéro n. (On distinguera les cas selon la parité de n).
- 2. Quelle est la probabilité que le joueur A gagne?
- **3.** Quelle est la probabilité que le jeu se termine?
- **4.** Quelle valeur donner à *p* pour que le jeu soit équitable.
- 5. Quel est le nombre moyen de coups joués.

# Inégalités

Exercice 64

Inégalité de Hoeffding

On considère une variable aléatoire discrète X centrée et à valeurs dans [-1,1].

1. Montrer que

$$\forall t \in \mathbb{R}, \ \forall x \in [-1, 1], \ e^{tx} \le \frac{1}{2}(1 - x)e^{-t} + \frac{1}{2}(1 + x)e^{t}$$

2. Montrer que

$$\forall t \in \mathbb{R}, \ \operatorname{ch}(t) \le e^{\frac{t^2}{2}}$$

3. En déduire que

$$\forall t \in \mathbb{R}, \ \mathbb{E}(e^{tX}) \le e^{\frac{t^2}{2}}$$

On considère une variable aléatoire réelle discrète Y.

4. Montrer que

$$\forall t \in \mathbb{R}_+^*, \ \forall \varepsilon \in \mathbb{R}_+^*, \mathbb{P}(Y \ge \varepsilon) \le e^{-t\varepsilon} \mathbb{E}(e^{tY})$$

On considère maintenant des variables aléatoires discrètes réelles centrées  $X_1,\dots,X_n$  indépendantes telles que  $|X_k| \leq c_k$  pour tout  $k \in [\![1,n]\!]$   $(c_k > 0)$ . On pose  $S = \sum_{k=1}^n X_k$ .

**5.** Montrer que pour tout  $\varepsilon \in \mathbb{R}_+^*$ ,

$$\mathbb{P}(|S| \ge \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{2\sum_{k=1}^n c_k^2}\right)$$

Exercice 65

**Centrale MP 2016** 

**1.** Pour  $(x, t) \in [-1, 1] \times \mathbb{R}$ , montrer que

$$e^{tx} \le \frac{1-x}{2}e^{-t} + \frac{1+x}{2}e^{t}$$

2. Soit X une variable aléatoire discrète centrée telle que  $|X| \le 1$ . Montrer que  $e^{tX}$  admet une espérance et que

$$E(e^{tX}) \le e^{\frac{t^2}{2}}$$

**3.** Soient  $X_1, ..., X_n$  des variables aléatoires réelles discrètes indépendantes centrées et  $a_1, ..., a_n$  dans  $\mathbb{R}_+^*$ . On suppose que

$$\forall i \in \llbracket 1, n \rrbracket, |X_i| \leq a_i$$

et on pose  $S_n = \sum_{i=1}^n X_i$ . Montrer que

$$\forall t \in \mathbb{R}, \ \mathbb{E}\left(e^{tS_n}\right) \le \exp\left(\frac{t^2}{2}\sum_{i=1}^n a_i^2\right)$$

**4.** On pose  $s = \sum_{i=1}^{n} a_i^2$ . Montrer que

$$\forall a \in \mathbb{R}_+, \ \mathbb{P}(|S_n| \ge a) \le 2e^{-\frac{a^2}{2s}}$$

Exercice 66 ★★★

Inégalité de Cantelli

Soient  $\lambda \in \mathbb{R}_+^*$  et X une variable aléatoire réelle discrère possédant un moment d'ordre 2.

- **1.** On suppose que  $\mathbb{E}(X) = 0$ .
  - **a.** Montrer que pour tout  $u \in \mathbb{R}_+$ ,  $\mathbb{E}((X + u)^2) = \mathbb{V}(X) + u^2$ .
  - **b.** Montrer que pour tout  $u \in \mathbb{R}_+$ ,  $\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{V}(X) + u^2}{(\lambda + u)^2}$ .
  - **c.** En déduire que  $\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{V}(X)}{\lambda^2 + \mathbb{V}(X)}$ .
- **2.** On ne suppose plus maintenant  $\mathbb{E}(X)=0$ . Montrer que  $\mathbb{P}(X-\mathbb{E}(X)\geq\lambda)\leq \frac{\mathbb{V}(X)}{\lambda^2+\mathbb{V}(X)}$ .