Weakly proregular sequence and Čech, local cohomology

安藤遼哉

東京理科大学理工学研究科

2021/10/13

- Research Background
- 2 Introduction
- 3 Čech cohomology and local cohomology
- Weakly proregular sequence
- 6 Proof of Schenzel's theorem
- 6 Reference

• 可換環論,特に非 Noether 環に注目して研究をしています。可換環論は代数幾何学と歴史的に結びつきの強い分野で(発表者も所属は代数幾何系の研究室です),積極的に研究されているのは Noether 環が中心です.

FAQ

- 非 Noether 環の研究って何をしているの?
- 目的は?
- 応用は?
- ···etc.

- Q. 非 Noether 環の研究って何をしているの?
 - ▶ A. 大きく分けて,Noether 環の理論を非 Noether に拡張する研究と,非 Noether でしか起こり得ない現象を調べる研究があります.
 - →→ Hamilton and Marley (2007), Kim and Walker (2020), Miller (2008) などが CM 環, Gorenstein 環などのホモロジカルな性質を拡張して、非 Noether 環上に一般化する研究を行っています。
 →→ 2次元以上の付値環は決して Noether 環にはなりません。
 - また Noether ではない環を含むような環のクラスに Krull 整域(UFD の一般化)があります (Noether 整域が Krull 整域であることと、整閉整域であることは同値です).
 - → 少し古いですが、非 Noether 可換環論の話題を集めた本も出ています (Chapman and Glaz (2000)).

今日は Schenzel (2003) による weakly proregular sequence を紹介して、Noether 環における事実が非 Noether 環に一般化される様子をみていきましょう.そして Schenzel の定理 (Theorem 4.1) の初頭的(?)な証明を発表者の preprint¹ (arXiv:2105.07652) に基づいて紹介します.

¹Accepted in Moroccan Journal of Algebra and Geometry with Applications.

- Research Background
- 2 Introduction
- ③ Čech cohomology and local cohomology
- 4 Weakly proregular sequence
- 6 Proof of Schenzel's theorem
- 6 Reference

Various cohomologies and homologies are used in (commutative) algebra theory.

Example. A: ring (unitary and commutative), I: ideal of A, and M, $N \in \text{Mod}(A)$.

 $(\operatorname{Mod}(A): \operatorname{the\ category\ of\ }A\operatorname{-modules}, \operatorname{mod}(A): \operatorname{the\ category\ of\ finitely\ }\operatorname{generated\ }A\operatorname{-modules}.)$

- $\operatorname{Ext}_A^i(M,-)$ Derived functor of $\operatorname{Hom}_A(M,-)$.
- $\operatorname{Tor}_{i}^{A}(M,-)$ Derived functor of $M \otimes_{A} -$.
- ullet $H_I^i(-)$ Derived functor of $\varinjlim \operatorname{Hom}_A(A/I^n,-)$.
- $\check{H}^i(a,-)$ Čech cohomology defined by the sequence $a=a_1,\ldots,a_r\in A$.
- and more!

Derived functor is obtained from a right (or left) exact functor. For example, let J^{\bullet} be an injective resolution of N, then $\operatorname{Ext}^i(M,N) := H^i(\operatorname{Hom}(M,J^{\bullet}))$.

Why are cohomologies used so much?

One of the reasons for this is that ideal theoretic data can be written in a easier form for calculation.

Definition 2.1

 $A: \mathrm{ring}$, $M \in \mathrm{Mod}(A)$. $a \in A$ is called M-regular if $\forall x \neq 0 \in M$, $ax \neq 0$.

A sequence $\underline{a} = a_1, \dots, a_r \in A$ is called an M-regular sequence if;

- $M/(a_1,\ldots,a_r)M\neq 0$,
- $1 \leq \forall i \leq r, a_i$ is an $M/(a_1, \ldots, a_{i-1})M$ -regular.

Definition 2.2

A: Noetherian ring, $M \in \text{mod}(A)$ and I: ideal with $IM \neq M$.

 $\operatorname{depth}_I(M) \coloneqq \sup \left\{ r \geq 0 \; \middle| \; \; \exists \underline{a} = a_1, \dots, a_r \in I, \underline{a} \text{ is an } M\text{-regular sequence.} \right\}$ is called an *I*-depth of M.

Theorem 2.3 (Rees)

Under the above notation, the length of a maximal regular sequence is constant. Also;

$$\operatorname{depth}_{I}(M) = \inf \{ i \geq 0 \mid \operatorname{Ext}^{i}(A/I, M) \neq 0 \}.$$

This theorem shows that the depth of module is calculatable by using a cohomology!

- Research Background
- 2 Introduction
- 3 Čech cohomology and local cohomology
- 4 Weakly proregular sequence
- 6 Proof of Schenzel's theorem
- Reference

Definition 3.1

A: ring, I: ideal of A.

 $H_I^i(-)$: the right derived functor of $\varinjlim \operatorname{Hom}_A(A/I^n,-)$ is called a **local cohomology**.

Note that there are following isomorphisms,

$$H_I^i(M) \cong \varinjlim \operatorname{Ext}^i(A/I^n, M)$$

since taking the inductive limit is an exact functor.

Definition 3.2

 $A: \text{ ring }, \underline{a}=a_1,\ldots,a_r \in A.$

 $\{e_i\}$: the standard basis of A^r .

For each $I = \{j_1, \dots, j_i\}$ $(1 \le j_1 < \dots < j_i \le r)$, let $a_I = a_{j_1} \dots a_{j_i}$ and $e_I = e_{j_1} \wedge \dots \wedge e_{j_i}$.

 $C^{\bullet}(\underline{a})$: the complex defined by;

$$C^{i}(\underline{a}) := \sum_{\#I=i} A_{a_{I}} e_{I},$$

$$d^{i}: C^{i}(\underline{a}) \to C^{i+1}(\underline{a}); e_{I} \mapsto \sum_{i=1}^{r} e_{I} \wedge e_{j}.$$

It is called a Čech complex.

 $\check{H}^i(a)$: the cohomology of $C^{\bullet}(a)$ is called a **Čech cohomology**.

For $M \in \operatorname{Mod}(A)$, we define $C^{\bullet}(\underline{a}, M) \coloneqq C^{\bullet}(\underline{a}) \otimes M, \check{H}^{i}(\underline{a}, M) \coloneqq H^{i}(C^{\bullet}(a, M)).$

Theorem 3.3

A: Noetherian ring, $\underline{a} = a_1, \dots, a_r \in A$ and $I = (a_1, \dots, a_r)$. There are isomorphisms;

$$H^i_I(M)\cong \check{H}^i(\underline{a},M)$$

for any $M \in Mod(A)$.

What happens if we remove the Noetherian assumption? Can we extend this theorem?

This theorem was extended by Schenzel (2003) by introducing a weakly proregular sequence.

- Research Background
- 2 Introduction
- ③ Čech cohomology and local cohomology
- 4 Weakly proregular sequence
- 6 Proof of Schenzel's theorem
- Reference

Theorem 4.1 (Schenzel)

$$A: ring, \underline{a} = a_1, \ldots, a_r \in A \text{ and } I = (a_1, \ldots, a_r).$$
 $\underline{a} \text{ is a weakly proregular sequence} \iff^{\forall} i \geq 0, ^{\forall} M \in \operatorname{Mod}(A), H_I^i(M) \cong \check{H}^i(\underline{a}, M).$

A weakly proregular sequence is defined using the Koszul complex.

Definition 4.2

A: ring, $\underline{a} = a_1, \dots, a_r \in A$. $\{e_i\}$: the standard basis of A^r .

 $K_{\bullet}(\underline{a})$ is the complex defined by ;

$$K_i(\underline{a}) = \bigwedge^i A^r$$

$$d_i: K_i(\underline{a}) \to K_{i-1}(\underline{a}); e_I \mapsto \sum_{k=1}^i (-1)^{k+1} a_{j_k} e_{j_1} \wedge \cdots \wedge \widehat{e_{j_k}} \wedge \cdots \wedge e_{j_i}.$$

It is called a Koszul (chain) complex.

 $H_i(\underline{a})$: the homology of $K_{\bullet}(\underline{a})$ is called a **Koszul homology**.

 \underline{a}^n : the sequence defined by a_1^n,\dots,a_r^n .

Note that by following morphisms, Koszul complexes constitute an inverse system $\{K_{\bullet}(\underline{a}^n)\}_{n\geq 0}$;

$$\varphi_{mn}: K_i(\underline{\underline{a}}^m) \to K_i(\underline{\underline{a}}^n); e_I \mapsto a_I^{m-n} e_I \ (n \leq m).$$

This induces a morphism between homologies.

Definition 4.3 (Schenzel)

A: ring, $\underline{a} = a_1, \ldots, a_r \in A$.

 \underline{a} is called a **weakly proregular sequence** if $1 \leq {}^{\forall} i \leq r, {}^{\forall} n \geq 0, {}^{\exists} m \geq n; \varphi_{mn} : H_i(\underline{a}^m) \to H_i(\underline{a}^n)$ is the zero map.

We will explain that Schenzel's theorem (Theorem 4.1) is an extension of the Noetherian case.

Definition 4.4 (Greenlees, May)

$$A$$
: ring, $\underline{a} = a_1, \ldots, a_r \in A$.

a is called a proregular sequence if

$$\overline{1} \leq \forall i \leq r, \forall n > 0, \exists m \geq n; \forall a \in A, aa_i^m \in (a_1^m, \dots, a_{i-1}^m) \Longrightarrow aa_i^{m-n} \in (a_1^n, \dots, a_{i-1}^n).$$

The following relations hold;

Regular \Longrightarrow Proregular \Longrightarrow Weakly proregular.

- The first implication is easy. If a is a regular sequence, for each n > 0, let m = n.
- The second is proved by calculating a Koszul homology.

Proposition 4.5

A: Noetherian ring, $\underline{a} = a_1, \dots, a_r \in A$. \underline{a} is a proregular sequence.

Proof.

Let
$$J_m^i = ((a_1^m, \dots, a_{i-1}^m) : a_i^m A), I_{n,m}^i = ((a_1^n, \dots, a_{i-1}^n) : a_i^{m-n} A).$$

$$\underline{a} \text{ is a proregular sequence} \iff 1 \leq \forall i \leq r, \forall n > 0, \exists m \geq n; J_m^i \subset I_{n,m}^i.$$

Fix $1 \leq \forall i \leq r$ and omit from the notation.

Fix n, $\{I_{n,m}\}_{m\geq n}$: ascending chain of ideals \leadsto $\exists m_0\geq n; \forall m\geq m_0, I_{n,m_0}=I_{n,m}$.

Let $m := m_0 + n$, then $\forall a \in J_{m_0}$, $aa_i^{m-n} = aa_i^{m_0} \in (a_1^{m_0}, \dots, a_{i-1}^{m_0}) \subset (a_1^n, \dots, a_{i-1}^n)$.

So $J_{m_0} \subset I_{n,m_0}$.

Corollary 4.6 (ICYMI : Theorem 3.3)

A: Noetherian ring, $\underline{a} = a_1, \dots, a_r \in A$ and $I = (a_1, \dots, a_r)$. There are isomorphisms;

$$H^i_I(M)\cong \check{H}^i(\underline{a},M)$$

for any $M \in Mod(A)$.

Another proof of Theorem 3.3.

By above proposition, \underline{a} is proregular. $\rightsquigarrow \underline{a}$ is weakly proregular.

Then according to Schenzel's theorem, $H_I^i(M) \cong \check{H}^i(a, M)$.

- Research Background
- 2 Introduction
- ③ Čech cohomology and local cohomology
- 4 Weakly proregular sequence
- 6 Proof of Schenzel's theorem
- 6 Reference

Why is a weakly proregular sequence defined by using a Koszul homology?

A Čech cohomology can be written by using a Koszul cohomology!

$$K^{\bullet}(\underline{a}) \coloneqq \operatorname{Hom}(K_{\bullet}(\underline{a}), A). \ \operatorname{For} \ M \in \operatorname{Mod}(A), K^{\bullet}(\underline{a}, M) \coloneqq \operatorname{Hom}(K_{\bullet}(\underline{a}), M) = K^{\bullet}(\underline{a}) \otimes M.$$

$$K_{\bullet}(\underline{a}): \cdots \longrightarrow K_{1}(\underline{a}) \longrightarrow K_{0}(\underline{a}) \longrightarrow 0$$

$$K^{\bullet}(\underline{a}): 0 \longrightarrow K^{0}(\underline{a}) \longrightarrow K^{1}(\underline{a}) \longrightarrow \cdots$$

The opposition of morphism induces an inductive system $\{K^{\bullet}(\underline{a}^n)\}_{n\geq 0}$;

$$\varphi^{nm}: K^i(\underline{a}^n) \to K^i(\underline{a}^m); (e_I)^* \mapsto a_I^{m-n}(e_I)^*.$$

Proposition 5.1

 $A: ring, \underline{a} = a_1, \ldots, a_r \in A \text{ and } M \in \operatorname{Mod}(A). Then;$ $\check{H}^i(\underline{a}, M) \cong \varinjlim H^i(\underline{a}^n, M).$

Sketch of the proof.

 $\varphi^i: K^i(\underline{a}) \to C^i(\underline{a}); (e_I)^* \mapsto (1/a_I)e_I \text{ is a morphism of complexes.}$ So we get $\varphi^{\bullet}_n: K^{\bullet}(\underline{a}^n) \to C^{\bullet}(\underline{a}^n) = C^{\bullet}(\underline{a}).$ It induces $\varphi: \varinjlim K^{\bullet}(\underline{a}^n) \to C^{\bullet}(\underline{a})$ and this is an isomorphism. $\cdots \longrightarrow K^{\bullet}(\underline{a}^n) \xrightarrow{\varphi^{nm}} K^{\bullet}(\underline{a}^m) \xrightarrow{} \cdots \longrightarrow \varinjlim K^{\bullet}(\underline{a}^n)$

 $\varphi_n^{\bullet} \xrightarrow{\varphi_m^{\bullet}} C^{\bullet}(\underline{a})$

Then ; $\varinjlim H^i(\underline{a}^n,M)=H^i(\varinjlim K^\bullet(\underline{a}^n)\otimes M)\cong H^i(C^\bullet(\underline{a}^n)\otimes M)=\check{H}^i(\underline{a}^n,M).$

Remark 5.2

By Proposition 5.1,

$$\check{H}^i(\underline{a}, M) \cong \varinjlim H^i(\underline{a}^n, M).$$

By the definition,

$$H_I^i(M) \cong \varinjlim \operatorname{Ext}^i(A/I^n, M).$$

Schenzel's theorem holds if $H^i(\underline{a}^n, M) \cong \operatorname{Ext}^i(A/I^n, M)$, which is true when \underline{a} is a regular sequence.

However, if a is not regular, it may not work. So we will need to find an another way.

 \longrightarrow We will show a way to use the δ -functor.

A: ring , I: ideal of A. Let $\Gamma_I(M) \coloneqq \left\{ x \in M \mid \exists n \geq 0; I^n x = 0 \right\}$. The functor $\Gamma_I(-)$ connects a local cohomology and a Čech cohomology.

Lemma 5.3

$$A$$
: ring, $\underline{a}=a_1,\ldots,a_r\in A, I=(a_1,\ldots,a_r)$: ideal of A and $M\in\operatorname{Mod}(A)$.
$$H_I^0(M)\cong\Gamma_I(M)\cong \check{H}^0(\underline{a},M).$$

Proof.

- First isomorphism : $H_I^0(M) = \varinjlim \operatorname{Hom}(A/I^n, M), \operatorname{Hom}(A/I^n, M) \cong \{x \in M \mid I^n x = 0\}$.
- $\check{H}^0(\underline{a}, M)$ is the kernel of $(M \to \bigoplus_{i=1}^r M_{a_i} e_i; x \mapsto (x/1)e_i)$.

$$\forall x \in \check{H}^0(\underline{a}, M), 1 \leq \forall i \leq r, \exists n_i \geq 0; a_i^{n_i} x = 0. \text{ i.e. } x \in \Gamma_I(M).$$

Similarly $\Gamma_I(M) \subset \check{H}^0(a, M)$. $\longrightarrow \check{H}^0(a, M) = \Gamma_I(M)$ as a submodule of M.

Definition 5.4

 \mathcal{A}, \mathcal{B} : Abelian categories.

 $T^{\bullet} := \{T^i : \mathcal{A} \to \mathcal{B}\}_{i > 0}$: family of additive functors.

 T^{\bullet} is called a δ -functor if :

• For each exact sequence $0 \to A_1 \to A_2 \to A_3 \to 0$ in \mathcal{A} , $\exists \delta^i : T^i(A_3) \to T^{i+1}(A_1)$;

$$0 \to T^0(A_1) \to T^0(A_2) \to T^0(A_3) \xrightarrow{\delta^0} \cdots \xrightarrow{\delta^{i-1}} T^i(A_1) \to T^i(A_2) \to T^i(A_3) \xrightarrow{\delta^i} \cdots$$

is exact.

It transfers a commutative diagram to a commutative diagram.

 δ^i is called a **connecting morphism**.

The δ -functor is a generalisation of the derived functor.

It is also useful for proving that the family of functors are form a derived functor!

Definition 5.5

 \mathscr{A}, \mathscr{B} : Abelian categories, $F : \mathscr{A} \to \mathscr{B}$: additive functor.

F is called **effaceable** if ${}^{\forall}A \in \mathscr{A}, {}^{\exists}M \in \mathscr{A}; {}^{\exists}u : A \to M$: injection; F(u) = 0.

Proposition 5.6

 \mathscr{A},\mathscr{B} : Abelian categories, \mathscr{A} has enough injectives. $T^{\bullet}=\{T^i\}_{i\geq 0}$: δ -functor.

- $\forall i > 0, T^i$ is effaceable. Then;
 - T⁰ is left-exact.
 - $\forall i \geq 0, T^i \cong R^i T^0$ (up to unique isomorphism).

Proposition 5.7

 $\check{H}^{\bullet}(\underline{a},-)$ is a δ -functor with $\check{H}^0(\underline{a},-)\cong H^0_I(-)$.

Sketch of the proof.

 $0 \to M_1 \to M_2 \to M_3 \to 0$: exact sequence of Mod(A).

 $C^{\bullet}(\underline{a}, M) = C^{\bullet}(\underline{a}) \otimes M$ and $C^{i}(\underline{a})$ is flat. \longrightarrow We obtain an exact sequence of complexes by taking tensor products.

$$0 \longrightarrow C^{\bullet}(a, M_1) \longrightarrow C^{\bullet}(a, M_2) \longrightarrow C^{\bullet}(a, M_3) \longrightarrow 0$$
.

So there are connecting morphisms.

Proposition 5.8

A: ring, $\underline{a} = a_1, \ldots, a_r \in A$.

 \underline{a} is a weakly proregular sequence $\iff \check{H}^{\bullet}(\underline{a}, -)$ is an effaceable δ -functor.

Sketch of the proof.

It is enough to check each injective module $J, \check{H}^i(\underline{a}, J) = 0 \ (\forall i > 0).$

Use Proposition 5.1. i.e. $\check{H}^i(\underline{a}, M) \cong \lim_{n \to \infty} H^i(\underline{a}^n, M)$.

 \longrightarrow Calculate the Koszul (co)homology! (Note that $H^i(\underline{a}^n, J) \cong \operatorname{Hom}(H_i(\underline{a}^n), J)$.)

Theorem 5.9 (ICYMI : Schenzel's theorem)

$$A: ring, \underline{a} = a_1, \ldots, a_r \in A \text{ and } I = (a_1, \ldots, a_r).$$
 $\underline{a} \text{ is a weakly proregular sequence} \iff^{\forall} i \geq 0, ^{\forall} M \in \operatorname{Mod}(A), H_I^i(M) \cong \check{H}^i(\underline{a}, M).$

Elementary proof of Schenzel's theorem. A(2021).

It is a combination of what has been said so far.

$$H_I^0(-) \cong \Gamma_I(M) \cong \check{H}^0(\underline{a}, -).$$
 (Lem. 5.3)

a is a weakly proregular sequence $\iff \check{H}^{\bullet}(a,-)$ is an effaceable δ -functor. (Prop. 5.8)

~~

 \underline{a} is a weakly proregular sequence \iff $^{\forall}i \geq 0, \check{H}^{i}(\underline{a}, -) \cong H^{i}_{I}(-) = R^{i}\Gamma_{I}(-).$ (Prop. 5.6)

П

Reference

- [And21] R. Ando (2021) "A note on weakly proregular sequences", Accepted in Moroccan Journal of Algebra and Geometry with Applications, arXiv:2105.07652.
- [CG00] S. T. Chapman and S. Glaz eds. (2000) Non-Noetherian Commutative Ring Theory: Springer.
- [GM92] J. P. C. Greenlees and J. P. May (1992) "Derived functors of I-adic completion and local homology", Journal of Algebra, Vol. 149, No. 2, pp. 438–453, DOI: 10.1016/0021-8693(92)90026-I.
- [HM07] T. D. Hamilton and T. Marley (2007) "Non-Noetherian Cohen–Macaulay rings", *Journal of Algebra*, Vol. 307, No. 1, pp. 343–360, DOI: 10.1016/j.jalgebra.2006.08.003.
- [KW20] Y. Kim and A. Walker (2020) "A note on Non-Noetherian Cohen–Macaulay rings", Proc. Amer. Math. Soc., Vol. 148, No. 3, pp. 1031–1042, DOI: 10.1090/proc/14836, arXiv:1812.05079.
- [Mil08] L. M. Miller (2008) "A Theory of Non-Noetherian Gorenstein Rings", Ph.D. dissertation, University of Nebraska at Lincoln.
- [Sch03] P. Schenzel (2003) "Proregular sequences, local cohomology, and completion", Math. Scand., Vol. 92, No. 2, pp. 161–180, DOI: 10.7146/math.scand.a-14399.