

ATK-10.1' RGBLCD 用户手册

10.1 寸 RGBLCD 电容触摸屏模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2017/9/5	第一次发布

目录

1.	特性参数	2
2.	使用说明	3
	2.1 模块引脚说明	
	2.1.1 RGB 接口	4
	2.1.2 LVDS 接口	5
	2.2 屏幕时序表	6
	2.3 电容触摸屏接口说明	7
	2.3.1 GT9271 寄存器简介	8
	2.3.2 GT9271 工作流程	9
3.	结构尺寸	10
4.	其他	11

1.特性参数

ATK-10.1' RGBLCD V1.0(V1.0 是版本号,下面均以 ATK-10.1' RGBLCD 表示该产品) 是 ALIENTEK 推出的一款高性能 10.1 寸 LCD 电容触摸屏模块,该模块采用了 4 通道 8bit 的 LVDS 屏,屏幕分辨率为 1280*800,最高支持 24 位真彩显示,其型号为: ATK-1018。

模块自带 RGB 转 LVDS 芯片,支持 RGB&LVDS 双接口。模块不带控制器,只能用于那些自带显示控制器的 MCU,如 ST 的 STM32F4x9,STM32F7x6等。该模块没显存,所以在使用的时候需要提供外部 RAM 来作为显示器的显存。模块采用电容触摸屏,最大支持 10点同时触摸,具有非常好的控制效果。

ATK-10.1' RGBLCD 模块各项参数如表 1.1 和表 1.2 所示。

项目	说明
接口类型	RGB: 24 位 RGB 接口
	LVDS: 4 通道 LVDS 接口
颜色格式	RGB888(也可用 RGB565、RGB666)
颜色深度	最大 24 位
显存容量	无显存 1
LCD 分辨率	1280*800
触摸屏类型	电容触摸
触摸点数	最多 10 点同时触摸
工作温度	-10°C-60°C
存储温度	-20°C-70°C
外形尺寸	230mm*150mm

表 1.1 ATK-10.1' RGBLCD 模块基本特性

注1: 在使用的时候需要外部 RAM 来作为 LCD 的显存

项目	说明
电源电压	$5V \pm 0.5V$
IO 口电平 ²	3.3V LVTTL
功耗	160~720mA

表 1.2 ATK-10.1' RGBLCD 模块电器特性

- 注 1: 3.3V 系统,可以直接接本模块(供电必须 5V),如果是 5V 的系统,建议串联 120Ω 左右电阻,做限流处理。
- 2: 160mA 对应背光关闭时的功耗,720mA 对应背光最亮时的功耗,此数据是在电源电压为5V 时测出的,实际应用中功耗会由于电源电压的波动而略微变化。

2. 使用说明

2.1 模块引脚说明

ATK-10.1' RGBLCD 电容触摸屏通过两个自带的 40P FPC 接口和外部连接,分别是: RGB接口(默认)和 LVDS 接口,两个接口用于实现不同的驱动方式。

RGB 接口(24 位 RGB)用于连接外部输入的 RGB 信号,输入的信号通过板载的 RGB 转 LVDS 芯片,将信号转换成 LVDS 信号驱动 LVDS 屏。

LVDS 接口(4 通道 LVDS)直接连接 LVDS 屏,无需经过转换芯片,当 MCU 支持 LVDS 接口时,可以使用该接口驱动。

注意: **模块默认使用 RGB 接口**。当需要使用 LVDS 接口时,请将模块背板上面的 RP8~RP12 等 5 个排阻去掉(自备烙铁); 当需要使用 RGB 接口时,RP8~RP12 等 5 个排阻 必须全部焊接上。

ATK-10.1' RGBLCD 电容触摸屏模块外观如图 2.1.1 所示:

图 2.1.1 ATK-10.1' RGBLCD 电容触摸屏模块正面图

图 2.1.2 ATK-10.1' RGBLCD 电容触摸屏屏模块背面图

用户可以通过 40P 的 FPC 线同外部的 RGB 接口或 LVDS 接口连接 (注意:不能同时连接),下面我们将分别讲解下 RGB 接口和 LVDS 接口:

2.1.1 RGB 接口

模块的 RGB 接口可以与 ALIENTEK 的 STM32F429 或 STM32F7 等开发板的 RGB 接口直接对接,我们提供相应的例程,用户可以在对应开发板上直接测试。

该接口引脚的描述如表 2.1.1.1 所示:

序号	名称	说明		
1,2	VCC5	5V 电源输入引脚		
3~10	R0~R7	8 位 RED 数据线		
11	GND	地线		
12~19	G0~G7	8 位 GREEN 数据线		
20	GND	地线		
21~28	B0~B7	8 位 BLUE 数据线		
29	GND	地线		
30	CLK	像素时钟		
31	HSYNC	水平同步信号		
32	VSYNC	垂直同步信号		
33	DE	数据使能信号		
34	BL	背光控制信号(高电平有效)		
35	CS	电容触摸屏复位信号(CT_RST)		
36	MOSI	电容触摸屏 IIC_SDA 信号(CT_SDA)		
37	MISO	NC,电容触摸屏未用到		
38	SCK	电容触摸屏 IIC_SCL 信号(CT_SCL)		
39	PEN	电容触摸屏中断信号(CT_INT)		
40	RESET	NC,未用到		

表 2.1.1.1 ATK-10.1' RGBLCD 模块 RGB 接口引脚说明

从上表可以看到,LCD 控制器总共需要 29 个 IO 口驱动 (RGB888 格式),电容触摸屏需要 4 个 IO 口驱动,这样整个模块需要 33 个 IO 口驱动。

注意:该模块的 RGB 接口数据线 R7、G7 和 B7 可以用于区分 RGB 屏的类型(可以看做是 ID)。MCU 在初始化 RGB 屏驱动参数之前,先读取 R7/G7/B7 的状态,从而判断 LCD 屏类型,对应关系如表 2.1.1.2 所示:

M2(B7)	M1(G7)	M0(R7)	LCD 模块参数
0	0	0	4.3 寸, 480*272 分辨率 (RGB)
0	0	1	7寸,800*480分辨率 (RGB)
0	1	0	7寸,1024*600分辨率(RGB)
0	1	1	7寸,1280*800分辨率(RGB)
1	0	0	8寸,1024*600分辨率(RGB)
1	0	1	10.1 寸 1280*800 分辨率
X	X	X	暂时未用到

表 2.1.1.2 R7/G7/B7 状态对应模块参数说明表

由表可知,我们可以通过读取 R7/G7/B7 来判断 LCD 的尺寸和分辨率,从而使得 MCU 可以在同一个程序里面,兼容不同尺寸和分辨率的 RGB 屏。从表 2.1.1.2 可知, ATK-10.1'

RGBLCD 电容触摸屏 ID 为 101。

2.1.2 LVDS 接口

ATK-10.1' RGBLCD 屏提供了 LVDS 接口,该接口可由外部带 LVDS 驱动接口的设备连接并使用,传输距离更远。下面将分别讲下 LVDS 屏的接口定义和驱动 LVDS 屏要求数据输入格式。

2.1.2.1 接口定义

LVDS 接口引脚描述如表 2.1.2.1 所示:

序号	7 PM 加	说明	
1	NC	未用	
2,3	VCC5	5V 电源输入引脚	
4,5,6	NC	未用	
7	GND	地线	
8	RXIN0-	LVDS 数据线 0,差分线-	
9	RXIN0+	LVDS 数据线 0,差分线+	
10	GND	地线	
11	RXIN1-	LVDS 数据线 1,差分线一	
12	RXIN1+	LVDS 数据线 1,差分线+	
13	GND	地线	
14	RXIN2-	LVDS 数据线 2,差分线一	
15	RXIN2+	LVDS 数据线 2,差分线+	
16	GND	地线	
17	RXCLK-	LVDS 时钟线,差分线—	
18	RXCLK+	LVDS 时钟线,差分线+	
19	GND	地线	
20	RXIN3-	LVDS 数据线 3,差分线一	
21	RXIN3+	LVDS 数据线 3,差分线+	
22	GND	地线	
23,24	NC	未用	
25	GND	地线	
26	NC	未用	
27	BL	背光控制信号(高电平有效)	
28	CS	电容触摸屏复位信号(CT_RST)	
29	NC	未用	
30	GND	地线	
31~32	NC	未用	
33	MOSI	电容触摸屏 IIC_SDA 信号(CT_SDA)	
34	SCK	电容触摸屏 IIC_SCL 信号(CT_SCL)	
35	NC	未用	
36	PEN	电容触摸屏中断信号(CT_INT)	
37,38,39,40	NC	未用	

表 2.1.2.1 ATK-10.1' RGBLCD 模块 LVDS 接口引脚说明

该 LVDS 屏驱动的差分信号线有 5 对,4 对信号线和 1 对时钟线,在使用 LVDS 接口时,需要将 LVDS 接口下的 RP8、RP9、RP10、RP11、RP12 共 5 个排阻去掉,如图 2.1.2.2 所示:

图 2.1.2.2 LVDS 接口去掉下面 5 个排阻

2.1.2.2 LVDS 数据格式

ATK-10.1' RGBLCD 屏模块 4 通道 8 位 LVDS 输入数据格式如图 2.1.2.2.1 所示:

1CLK INC G0 R5 R0 R0 IND0 G2 G1 B1 B0 G5 G4 G3 G2 G1 IND1 DE ٧S HS IND2 B2 B5 В3 B2 **B**3 R6 G7 R7 R6 R7 B7 B6 Ġ6 IND3 PREVIOUS DATA for current CLK cycle NEXT

LVDS Data Input Format

图 2.1.2.2.1 LVDS 数据输入格式

该 LVDS 屏采用了 VESA 标准的数据映射。用户在设计时,需采用支持该标准的 LVDS 发送芯片,以免导致驱动不正常。

2.2 屏幕时序表

ATK-10.1' RGBLCD 屏的 RGB 驱动时序如表 2.2.1 所示:

Parameter	Symbol	Value			Unit
Farameter		Min.	Тур.	Max.	Unit
DCLK frequency@ Frame rate=60Hz	DCLK	68.9	71.1	73.4	MHz
Horizontal display area	thd	1280			DCLK
1 Horizontal Line	th	1340	1440	1470	DCLK
HSYNC pulse width	thpw	-	10	-	DCLK
HSYNC Back Porch(Blanking)	thb	-	80	-	DCLK
HSYNC Front Porch	thfp	-	70	-	DCLK
Vertical display area	tvd	800		Н	
VSYNC period time	tv	815	823	833	Н
VSYNC pulse width	tvpw	-	3	-	Н
VSYNC Back Porch(Blanking)	tvb	-	10	-	Н
VSYNC Front Porch	tvfp	-	10	-	Н

表 2.2.1 ATK-10.1' RGBLCD 屏 RGB 时序表

表 2.2.1 中 thpw、thb、thfp、tvpw、tvb 和 tvfp 这六个参数很重要,在写驱动程序的时候会使用其配置 LCD 的时序。

2.3 电容触摸屏接口说明

ATK-10.1' RGBLCD V10 模块采用汇项科技(GOODIX)公司的 GT9271 作为电容触摸 屏的驱动 IC,支持 100Hz 触点扫描频率,支持 10 点触摸,支持 32*20 个检测通道,适合7~10.1 寸的电容触摸屏使用。

该驱动芯片通过 4 根线与外部连接: CT_RST、CT_INT、CT_SCL、CT_SDA。不过,GT9271 的 IIC 地址,可以是 0X28 或者 0XBA,当复位结束后的 5ms 内,如果 INT 是高电平,则使用 0X28 作为地址,否则使用 0XBA 作为地址,具体的设置过程,请看:电容触控芯片 GT9271 Datasheet 手册。本章我们使用 0X28 作为器件地址(读: 0X29,写: 0X28)

CT_RST 为 GT9271 的复位信号, 低电平有效, 可以用来复位 GT9271, 并可以让 GT9271 进入正常工作模式。

CT_INT 为 GT9271 的中断输出引脚,当 GT9271 有数据可以输出的时候,该引脚会输出脉冲信号,提醒 CPU 可以读数据了。

CT_SDA 和 CT_SCL 则是 GT9271 和 CPU 进行 IIC 通信的接口,通过 IIC 总线进行数据交换,最高能达 400Khz。

GT9271 的操作流程如图 2.3.1 所示:

图 2.3.1 GT9271 写操作流程图

图 2.3.1 为 CPU 写 GT9271 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X28(Address_W)。

GT9271 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后分 2 次发送 16 位首寄存器地址,先发送高 8 位,再发送低 8 位,随后发送 8 位要写入寄存器的数据内容。

GT9271 寄存器的地址指针,会在写入一个数据后,自动加1,所以当 CPU 需要对连续地址的寄存器进行写操作的时候,只需要写入第一个寄存器的地址,然后连续写入数据即可。最后,当写操作完成时,CPU 发送停止信号(E),结束当前的写操作。

GT9271 的读操作流程如图 2.3.2 所示:

图 2.3.2 GT9271 读操作流程图

图 2.3.2 为 CPU 读 GT9271 的操作流程图,首先 CPU 产生一个起始信号(S),然后发送地址信息及读写位信息"0"表示写操作: 0X28(Address_W)。

GT9271 接收到正确的地址后,发送 ACK 给 CPU, CPU 随后分两次发送 16 位首寄存器,设置要读取的寄存器地址。在收到应答后,CPU 重新发送一次起始信号(S),发送地址信息及读写位信息"1"表示读操作: 0X29(Address_R)。在收到应答(ACK)后,CPU 就可以开始读取数据了。

同样,GT9271 支持连续读操作,CPU 只需要在每收到一个数据后,发送一个 ACK 给GT9271,就可以读取下一个寄存器的数据,寄存器地址也是自动增加。当 CPU 想停止继续读数据的时候,发送 NACK,然后在发送停止信号(E),即可结束当前的读操作。

2.3.1 GT9271 寄存器简介

GT9271 的寄存器比较多,我们这里就不一一介绍了,仅介绍一部份比较重要的寄存器:

1、控制命令寄存器(0X8040)

该寄存器可以写入不同值,实现不同的控制,我们一般使用 0 和 2 这两个值,写入 2,即可软复位 GT9271,在硬复位之后,一般要往该寄存器写 2,实行软复位。然后,写入 0,即可正常读取坐标数据(并且会结束软复位)。

2、配置寄存器组(0X8047-0X8100)

这里共 186 个寄存器,用于配置 GT9271 的各个参数,这些配置一般由厂家提供给我们(一个数组),所以我们只需要将厂家给我们的配置,写入到这些寄存器里面,即可完成 GT9271 的配置。由于 GT9271 可以保存配置信息(可写入内部 FLASH,从而不需要每次上电都更新配置),我们有几点注意的地方提醒大家:1,0X8047 寄存器用于指示配置文件版本号,程序写入的版本号,必须大于等于 GT9271 本地保存的版本号,才可以更新配置。2,0X80FF 寄存器用于存储校验和,使得 0X8047~0X80FF 之间所有数据之和为 0。3,0X8100 用于控制是否将配置保存在本地,写 0,则不保存配置,写 1 则保存配置。

3,产品 ID 寄存器(0X8140~0X8143)

这里总共由 4 个寄存器组成,用于保存产品 ID,对于 GT9271,这 4 个寄存器读出来就是:9,2,7,1 四个字符(ASCII 码格式)。因此,我们可以通过这 4 个寄存器的值,来判断驱动 IC 的型号。

4, 状态寄存器 (0X814E)

该寄存器各位描述如表 2.3.1.1 所示:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0X814E	Buffer 状态	大点	保留	按键		有效触	点个数	

表 2.3.1.1 状态寄存器各位描述

这里,我们仅关心最高位和最低 4 位,最高位用于表示 buffer 状态,如果有数据(坐标/按键),buffer 就会是 1,最低 4 位用于表示有效触点的个数,范围是: 0~10,0,表示没有触摸,10表示有 10 点触摸。最后,该寄存器在每次读取后,如果 bit7 有效,则必须写 0,清除这个位,否者不会输出下一次数据!!! 这个要特别注意!!!

5, 坐标数据寄存器(共60个)

这里共分成 10 组(10 个点),每组 6 个寄存器存储数据,以触点 1 的坐标数据寄存器 组为例,如表 2.3.1.2 所示:

寄存器	bit7~0	寄存器	bit7~0
0X8150	触点1x坐标低8位	0X8151	触点 1 x 坐标低高位
0X8152	触点1y 坐标低8位	0X8153	触点 1 y 坐标低高位
0X8154	触点1 触摸尺寸低8位	0X8155	触点1 触摸尺寸高8位

表 2.3.1.2 触点 1 坐标寄存器描述

我们一般只用到触点的 x, y 坐标, 所以只需要读取 0X8150~0X8153 的数据, 组合即可得到触点坐标。其他 9 组分别是: 0X8158、0X8160、0X8168、0X8170、0X8178、0X8180、0X8188、0X8190、0X8198 等 36 个寄存器组成, 分别针对触点 2~10 的坐标。同样 GT9271 会自动地址自增, 从而提高读取速度。

GT9271 相关寄存器的介绍就介绍到这里,更详细的资料:请参考:电容触控芯片 GT9271 Datasheet 手册。

2.3.2 GT9271 工作流程

GT9271 只需要经过简单的初始化就可以正常使用了,初始化流程: 硬复位→延时 10ms→结束硬复位→设置 IIC 地址→延时 100ms→软复位→更新配置(需要时)→结束软复位。此时 GT9271 即可正常使用了。

然后,我们不停的查询 0X814E 寄存器,判断是否有有效触点,如果有,则读取坐标数据寄存器,得到触点坐标,特别注意,如果 0X814E 读到的值最高位为 1,就必须对该位写 0,否则无法读到下一次坐标数据。

3.结构尺寸

ATK-10.1' RGBLCD 电容触摸屏模块的尺寸结构如图 3.1 所示:

注意: 图中单位为 mm。

图 3.1 ATK-10.1' RGBLCD 模块尺寸图

4. 其他

1、购买地址:

官方店铺 1: https://eboard.taobao.com 官方店铺 2: https://openedv.taobao.com

2、资料下载

ATK-10.1' RGBLCD 模块资料下载地址:

http://www.openedv.com/forum.php?mod=viewthread&tid=133959

技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

传真: 020-36773971 电话: 020-38271790

