

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

Ejercicios resueltos - Práctica 1

Resolución de los ejercicios 10 y 18

- 10. Para $n \ge 1$, el n-cubo Q_n es el grafo cuyo conjunto de vértices es el conjunto de todas las n-uplas (a_1, \ldots, a_n) con $a_i \in \{0, 1\}$ para cada i, donde dos n-uplas son adyacentes si difieren en exactamente una coordenada.
 - a) Dibuje Q_1 , Q_2 , Q_3 y Q_4 .
 - b) Muestre que Q_n es un grafo regular. ¿Cuántas aristas inciden en un vértice de Q_n ?
 - c) Determine la cantidad de vértices y aristas de Q_n .
 - d) Pruebe que Q_n es bipartito para cada $n \ge 1$.

Resolución:

a)
$$V(Q_1) = \{(0), (1)\}\$$

 $E(Q_1) = \{(0)(1)\}\$

$$V(Q_2) = \{(00), (01), (10), (11)\}$$

$$E(Q_2) = \{(00)(01), (00)(10), (01)(11), (10)(11)\}$$

■ $V(Q_3) = \{(000), (001), (010), (011), (100), (101), (110), (111)\}$ $E(Q_3) = \{uv : u, v \in V(Q_3) \text{ tales que } u \text{ y } v \text{ differen en exactamente una coordenada}\}$

Observemos que podemos dibujar el grafo Q_3 a partir de Q_2 a partir de los siguientes pasos:

1) Dibujar dos copias de Q_2 .

2) A la etiqueta de cada vértice de la primer copia de Q_2 , agregarle un 0 adelante; y a la etiqueta de cada vértice de la segunda copia de Q_2 , agregarle un 1 adelante. Así, cada vértice representa una 3-upla.

3) Conectar cada vértice de la primer copia de Q_2 con el vértice correspondiente de la segunda copia de Q_2 . Esto es lo mismo que agregar una arista entre cada par de vértices que difiera en la primer coordenada de la 3-upla.

Es posible probar que esta construcción sirve para obtener Q_{n+1} a partir de Q_n para todo $n \ge 1$. (pensar)

La usaremos para obtener Q_4 a partir de Q_3 .

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

■ $V(Q_4) = \{(a_1 a_2 a_3 a_4) : a_i \in \{0, 1\}, i \in [4]\}$ $E(Q_4) = \{uv : u, v \in V(Q_4) \text{ tales que } u \text{ y } v \text{ differen en exactamente una coordenada}\}$ 1) Dibujamos dos copias de Q_3 .

2) Reetiquetamos los vértices.

3) Agregamos las aristas faltantes.

Obtenemos el grafo Q_4

 Q_4

b) Consideremos el grafo n-cubo Q_n , cuyo conjunto de vértices es $V(Q_n) = \{(a_1 \dots a_n) : a_i \in \{0,1\}, i \in [n]\}$ y dos vértices son adyacentes si y solo si difieren en exactamente una coordenada. Queremos ver que Q_n es un grafo regular. Es decir, que todos los vértices de Q_n tienen el mismo grado.

Consideremos un vértice $u=(a_1\ldots a_n)\in V(Q_n)$. Recordemos que el grado de u, d(u), es igual a la cantidad de aristas incidentes en u (donde los bucles cuentan como dos aristas). Como Q_n es un grafo simple, d(u) es igual a la cantidad de vecinos de u. Es decir, d(u)=|N(u)|. Notemos que para cada coordenada $i\in[n]$ exite un único vértice $v=(b_1\ldots b_n)$ tal que $b_j=a_j$ para todo $j\neq i, y$ $b_i\neq a_i$, donde $b_i=0$ si $a_i=1$ y $b_i=1$ si $a_i=0$. Es decir, existe un único vértice que difiere de u en la coordenada i-ésima. Luego existen n vértices adyacentes a u, uno por cada coordenada. Es decir, d(u)=n. Este razonamiento lo podemos seguir para cada vértice de Q_n .

Luego, d(u) = n para todo $u \in V(Q_n)$. Por lo tanto, Q_n es n-regular.

c) Buscamos ahora determinar la cantidad de vértices y aristas de Q_n . Por un lado, veamos que

$$V(Q_n) = \{(a_1 \dots a_n) : a_i \in \{0, 1\}, i \in [n]\} = \underbrace{\{0, 1\} \times \dots \times \{0, 1\}}_{n \text{ veces}}$$

Luego, $|V(Q_n)| = |\{0,1\}|^n = 2^n$.

Para determinar la cantidad de aristas de Q_n , recordemos que para todo grafo G se tiene $2|E(G)| = \sum_{v \in V(G)} d_G(v)$. Por lo realizado en el ítem anterior, tenemos que $d_{Q_n}(v) = n$ para todo $v \in V(Q_n)$. Luego,

$$2|E(Q_n)| = \sum_{v \in V(Q_n)} d_{Q_n}(v) = \sum_{v \in V(Q_n)} n = |V(Q_n)| = 2^n n.$$

Luego, $|E(Q_n)| = 2^{n-1}n$.

Por lo tanto, Q_n tiene 2^n vértices y $2^{n-1}n$ aristas.

d) Finalmente, queremos ver que para cada $n \ge 1$, Q_n es bipartito. Es decir, queremos ver que existe una bipartición (X,Y) de $V(Q_n)$ tal que toda arista $uv \in E(Q_n)$ tiene un extremo en cada uno de los conjuntos X e Y.

Consideremos los siguientes conjuntos:

$$X = \left\{ (a_1 \dots a_n) \in V(Q_n) : \sum_{i=1}^n a_i \text{ es par} \right\}$$
$$Y = \left\{ (a_1 \dots a_n) \in V(Q_n) : \sum_{i=1}^n a_i \text{ es impar} \right\}$$

Todo vértice $(a_1 \ldots a_n) \in V(Q_n)$ está en exactamente uno de estos dos conjuntos, ya que la suma de sus coordenadas es o bien par o bien impar, pero no ambas. Luego, $X \cup Y = V(Q_n)$ y $X \cap Y = \emptyset$. Esto es, (X,Y) es una bipartición de $V(Q_n)$.

Por otro lado, consideremos dos vértices adyacentes $u = (a_1 \dots a_n)$ y $v = (b_1 \dots b_n)$. Estos dos vértices difieren en exactamente una coordenada j. Tenemos

$$\sum_{i=1}^{n} a_i = \sum_{\substack{i=1\\i\neq j}}^{n} a_i + a_j = \sum_{\substack{i=1\\i\neq j}}^{n} b_i + a_j = \sum_{i=1}^{n} b_i + a_j - b_j$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

Observemos que si $a_j = 0$ entonces $b_j = 1$, y si $a_j = 1$ entonces $b_j = 0$. En cualquier caso, $a_j - b_j = \pm 1$. En consecuencia, si $v \in X$, i.e., $\sum_{i=1}^n b_i$ es par, entonces $\sum_{i=1}^n a_i$ resulta impar y $u \in Y$. Si $v \in Y$, i.e., $\sum_{i=1}^n b_i$ es impar, entonces $\sum_{i=1}^n a_i$ resulta par y $u \in X$. Por lo tanto, Q_n resulta bipartito con bipartición (X, Y).

- 18. Sea G = (V, E) un grafo simple. El complemento \overline{G} de G es el grafo simple cuyo conjunto de vértices es V y cuyas aristas son los pares de vértices no advacentes de G.
 - a) Exprese la sucesión de grados de \overline{G} en términos de la sucesión de grados de G.
 - b) Muestre que si G es no conexo, entonces \overline{G} es conexo. ¿Es cierta la recíproca?

Resolución:

a) Sea G un grafo simple con conjunto de vértices $V(G) = \{v_1, \ldots, v_n\}$. Recordemos que la sucesión de grados de G es $d = (d_1, \ldots, d_n)$, donde $d_i = d_G(v_i)$ para cada $i \in [n]$. Queremos determinar la sucesión de grados del complemento de G, \overline{G} . Es decir,

$$(d_{\overline{G}}(v_1), \ldots, d_{\overline{G}}(v_n)).$$

Observemos que $V(\overline{G}) = V(G) = \{v_1, \dots, v_n\}$ y $E(\overline{G}) = \{v_i v_j : i, j \in [n], i \neq j\} \setminus E(G)$. Es decir, para $i \neq j$, $v_i v_j \in E(\overline{G})$ si y solo si $v_i v_j \in E(G)$. Tenemos que

$$N_{\overline{G}}(v_j) = \{v_i \in V(\overline{G}) : v_i v_j \in E(\overline{G})\} =$$

$$= \{v_i \in V(G) \setminus \{v_j\} : v_i v_j \notin E(G)\} =$$

$$= (V(G) \setminus \{v_i\}) \setminus N_G(v_j)$$

Luego,

$$d_{\overline{G}}(v_i) = |N_{\overline{G}}(v_i)| = |(V(G)\setminus\{v_i\})\setminus N_G(v_i)| = n - 1 - d_G(v_i)$$

Por lo tanto, si (d_1, \ldots, d_n) es la sucesión de grados de G, entonces la sucesión de grados para \overline{G} es:

$$((n-1)-d_1,\ldots,(n-1)-d_n)$$

b) Sea G un grafo no conexo. Es decir, que existe una bipartición (A, B) de V(G) con $A \neq \emptyset$, $B \neq \emptyset$ tal que no existe ninguna arista que conecte vértices de A con vértices de B.

Queremos probar que el grafo \overline{G} es conexo. Para eso, debemos probar que para toda bipartición (X,Y) de $V(\overline{G})$ con $X \neq \emptyset$ e $Y \neq \emptyset$, hay al menos una arista que conecta vértices de X con vértices de Y.

Sea, entonces, (X,Y) una bipartición de $V(\overline{G}) = V(G)$. Es decir, $X \cup Y = V(G)$ y $X \cap Y = \emptyset$. Denotemos $A_X = A \cap X$, $A_Y = A \cap Y$, $B_X = B \cap X$ y $B_Y = B \cap Y$. Tenemos

$$X = A_X \cup B_X, \qquad Y = A_Y \cup B_Y$$

$$A = A_X \cup A_Y, \qquad B = B_X \cup B_Y$$

Observemos que en G no hay ninguna arista entre vértices de A y vértices de B. Entonces en su complemento, \overline{G} , todo vértice de A es adyacente a todo vértice de B.

Luego, si $A_X \neq \emptyset$ y $B_Y \neq \emptyset$, entonces si $u \in A_X = A \cap X$ y $v \in B_Y = B \cap Y$, uv es una arista de \overline{G} con un extremo en X y otro en Y.

En caso contrario, $A_X = \emptyset$ o $B_Y = \emptyset$. Si $A_X = \emptyset$, entonces $B_X = X \neq \emptyset$ y $A_Y = A \neq \emptyset$. Si $B_Y = \emptyset$, entonces $A_Y = Y \neq \emptyset$ y $B_X = B \neq \emptyset$. En cualquier caso, $A_Y \neq \emptyset$ y

 $B_X \neq \emptyset$. Entonces si $u \in A_Y = A \cap Y$ y $v \in B_X = B \cap X$, uv es una arista en \overline{G} con un extremo en X y otro en Y.

Por lo tanto, si G es no conexo, entonces su complemento \overline{G} es conexo.

La recíproca no es cierta. Existen grafos conexos cuyo complemento también es conexo. Por ejemplo: el grafo $camino P_4$.

