Computing *p*-adic *L*-functions

using Hilbert Eisenstein series

Håvard Damm-Johnsen

Y-RANT 18/08/21

University of Oxford

Outline

- o Motivation: why study L-functions?
- Theory behind the Klingen-Siegel method
- Algorithm for computing *p*-adic *L*-functions
- o Data: some explicit *L*-functions
- o Further research: coming up

 \circ *L-functions*: L(X,s) - meromorphic functions encoding arithmetic data

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{\mathsf{Res}}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{\mathsf{Reg}}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- ⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula
- ⋄ X = algebraic variety: Conjectures of Bloch, Beilinson, Deligne, ...

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- ⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula
- \diamond X = algebraic variety: Conjectures of Bloch, Beilinson, Deligne, ...
- o p-adic L-functions: $L_p(X,s)\colon \mathbb{Z}_p \to \mathbb{C}_p$ interpolates special values of L(X,s)

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- ⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula
- \diamond X = algebraic variety: Conjectures of Bloch, Beilinson, Deligne, ...
- o p-adic L-functions: $L_p(X,s)\colon \mathbb{Z}_p \to \mathbb{C}_p$ interpolates special values of L(X,s)
 - Iwasawa main conjectures

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- ⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula
- $\diamond X =$ algebraic variety: Conjectures of Bloch, Beilinson, Deligne, ...
- o p-adic L-functions: $L_p(X,s)\colon \mathbb{Z}_p \to \mathbb{C}_p$ interpolates special values of L(X,s)
 - ⋄ Iwasawa main conjectures
 - ⋄ p-adic BSD conjecture

- \circ *L-functions*: L(X,s) meromorphic functions encoding arithmetic data
 - $\diamond X = F$ number field: Dirichlet class number formula

$$\operatorname{Res}_{s=1} \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \operatorname{Reg}_F h_F}{w_F \sqrt{|D_F|}} \quad \text{where} \quad \zeta_F(s) := \sum_{I \subset \mathscr{O}_F} \frac{1}{N(I)^s}.$$

- ⋄ X = elliptic curve: BSD conjecture, Gross-Zagier formula
- $\diamond X =$ algebraic variety: Conjectures of Bloch, Beilinson, Deligne, ...
- o p-adic L-functions: $L_p(X,s)\colon \mathbb{Z}_p \to \mathbb{C}_p$ interpolates special values of L(X,s)
 - ⋄ Iwasawa main conjectures
 - ⋄ p-adic BSD conjecture
- Data is important!

• Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- **Kummer:** if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $\overline{k}_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- \circ By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $\overline{k}_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.
- We can approximate $\zeta_p(s)$ by computing $\zeta(1-k)$ for enough k and use polynomial interpolation:

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $\overline{k}_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.
- We can approximate $\zeta_p(s)$ by computing $\zeta(1-k)$ for enough k and use polynomial interpolation:
- o given pairs $(1 k_0, \zeta_p(1 k_0)), \dots, (1 k_d, \zeta_p(1 k_d))$, find a polynomial P of degree d such that $P(1 k_i) = \zeta_p(1 k_i)$.

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $\overline{k}_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.
- We can approximate $\zeta_p(s)$ by computing $\zeta(1-k)$ for enough k and use polynomial interpolation:
- o given pairs $(1 k_0, \zeta_p(1 k_0)), \dots, (1 k_d, \zeta_p(1 k_d))$, find a polynomial P of degree d such that $P(1 k_i) = \zeta_p(1 k_i)$.
- ∘ Eg. $p = 5, k_i \in \{2, 6, 10\}$, interpolate $\{(k_i, -(1 5^{k_i 1})B_{k_i}/k_i)\}$:

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $k_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.
- We can approximate $\zeta_p(s)$ by computing $\zeta(1-k)$ for enough k and use polynomial interpolation:
- o given pairs $(1 k_0, \zeta_p(1 k_0)), \dots, (1 k_d, \zeta_p(1 k_d))$, find a polynomial P of degree d such that $P(1 k_i) = \zeta_p(1 k_i)$.
- Eg. $p = 5, k_i \in \{2, 6, 10\}$, interpolate $\{(k_i, -(1 5^{k_i 1})B_{k_i}/k_i)\}$:

$$(5^2 \cdot 4828 + O(5^8)) s^2 + (5 \cdot 60514 + O(5^8)) s + 51662 + O(5^8)$$

- Euler + functional equation: for k even, $\zeta(1-k) = -B_k/k$.
- Kummer: if $k \equiv k' \mod (p-1)p^N$ are even, then

$$(1-p^{k-1})\frac{B_k}{k} \equiv (1-p^{k'-1})\frac{B_{k'}}{k'} \mod p^N.$$

- o By p-adic analysis, if $k_0 \equiv k_1 \equiv \dots \mod p-1$, then $(1-p^{k_i-1})\zeta(1-k_i)$ interpolate to $\zeta_p \colon \mathbb{Z}_p \to \mathbb{C}_p$.
- o different "branches" corresponding to $\overline{k}_0 \in \mathbb{Z}/(p-1)\mathbb{Z}$.
- We can approximate $\zeta_p(s)$ by computing $\zeta(1-k)$ for enough k and use polynomial interpolation:
- o given pairs $(1 k_0, \zeta_p(1 k_0)), \dots, (1 k_d, \zeta_p(1 k_d))$, find a polynomial P of degree d such that $P(1 k_i) = \zeta_p(1 k_i)$.
- Eg. $p = 5, k_i \in \{2, 6, 10\}$, interpolate $\{(k_i, -(1 5^{k_i 1})B_{k_i}/k_i)\}$:

$$(5^2 \cdot 4828 + O(5^8)) s^2 + (5 \cdot 60514 + O(5^8)) s + 51662 + O(5^8)$$
 " \approx " $\zeta_5(s)$

 $\circ~$ Fix F a totally real number field of degree d, ψ a character of $\mathrm{CI}^+_{\mathfrak{m}}.$

- $\circ~{\rm Fix}~{\it F}$ a totally real number field of degree ${\it d},\,\psi$ a character of ${\rm CI}_{\mathfrak{m}}^+.$
- $\circ \ \ \mathsf{Define} \ \mathit{L}(\psi,\mathsf{S}) := \textstyle \sum_{n>0} \psi(n) n^{-\mathsf{S}} ;$

- $\circ~{\rm Fix}~{\it F}$ a totally real number field of degree ${\it d},\,\psi$ a character of ${\rm CI}_{\mathfrak{m}}^+.$
- o Define $L(\psi, s) := \sum_{n>0} \psi(n) n^{-s}$; then $L(\psi, 1-k) = -B_{k,\psi}/k \in \overline{\mathbb{Q}}$.

/ı

- $\circ~$ Fix F a totally real number field of degree d, ψ a character of $\mathrm{CI}^+_{\mathfrak{m}}.$
- o Define $L(\psi,s):=\sum_{n>0}\psi(n)n^{-s}$; then $L(\psi,1-k)=-B_{k,\psi}/k\in\overline{\mathbb{Q}}$.
- o Interpolation: $L_p(\psi, 1-k) = (1-\psi(p)p^{k-1})L(\psi, 1-k)$.

/ı

- \circ Fix F a totally real number field of degree d, ψ a character of $\mathrm{CI}^+_{\mathfrak{m}}$.
- o Define $L(\psi, s) := \sum_{n>0} \psi(n) n^{-s}$; then $L(\psi, 1-k) = -B_{k,\psi}/k \in \overline{\mathbb{Q}}$.
- Interpolation: $L_p(\psi, 1 k) = (1 \psi(p)p^{k-1})L(\psi, 1 k)$.
- \circ However, not obvious how to compute $B_{k,\psi}$ algebraically, so we need a new strategy!

- \circ Fix F a totally real number field of degree d, ψ a character of $\mathrm{CI}^+_{\mathfrak{m}}$.
- o Define $L(\psi, s) := \sum_{n>0} \psi(n) n^{-s}$; then $L(\psi, 1-k) = -B_{k,\psi}/k \in \overline{\mathbb{Q}}$.
- Interpolation: $L_p(\psi, 1-k) = (1-\psi(p)p^{k-1})L(\psi, 1-k)$.
- \circ However, not obvious how to compute $B_{k,\psi}$ algebraically, so we need a new strategy!
- Serre (Antwerp III): The modular form

$$G_k^* = \frac{1}{2}\zeta_p(1-k) + \sum_{n=1}^{\infty} \left(\sum_{d|n, (d,p)=1} d^{k-1}\right) q^n$$

on $\Gamma_0(p)$ is a p-adic limit of G_{k_i} .

- \circ Fix F a totally real number field of degree d, ψ a character of $\mathrm{CI}^+_{\mathfrak{m}}$.
- o Define $L(\psi, s) := \sum_{n>0} \psi(n) n^{-s}$; then $L(\psi, 1-k) = -B_{k,\psi}/k \in \overline{\mathbb{Q}}$.
- Interpolation: $L_p(\psi, 1 k) = (1 \psi(p)p^{k-1})L(\psi, 1 k)$.
- \circ However, not obvious how to compute $B_{k,\psi}$ algebraically, so we need a new strategy!
- Serre (Antwerp III): The modular form

$$G_k^* = \frac{1}{2}\zeta_p(1-k) + \sum_{n=1}^{\infty} \left(\sum_{d|n, (d,p)=1} d^{k-1}\right) q^n$$

- on $\Gamma_0(p)$ is a p-adic limit of G_{k_i} .
- Congruences between non-constant terms gives congruences between the constant terms, in fact, the Kummer congruences.

o Idea: look for modular forms with constant term $L(\psi, 1 - k)$.

- o **Idea:** look for modular forms with constant term $L(\psi, 1 k)$.
- o There is a Hilbert modular form

$$G_{k,\psi}^{(p)}(Z_1,\ldots,Z_d) = L_p(\psi,1-k) + 2^d \sum_{\nu \in \mathfrak{d}_+^{-1}} \Big(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},p)=1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \Big) e^{2\pi i (\sigma_1(\nu)Z_1+\ldots\sigma_d(\nu)Z_d)}.$$

- Idea: look for modular forms with constant term $L(\psi, 1-k)$.
- o There is a Hilbert modular form

$$\mathsf{G}_{k,\psi}^{(p)}(\mathsf{Z}_1,\ldots,\mathsf{Z}_d) = \mathsf{L}_p(\psi,1-k) + 2^d \sum_{\nu \in \mathfrak{d}_+^{-1}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},\mathfrak{d}) = 1}} \psi(\mathfrak{a}) \mathsf{N}(\mathfrak{a})^{k-1} \right) e^{2\pi i (\sigma_1(\nu)\mathsf{Z}_1 + \ldots + \sigma_d(\nu)\mathsf{Z}_d)}.$$

• Setting $z_1 = \ldots = z_d = z$, we get the diagonal restriction

$$\Delta_{k,\psi}(z) = L_p(\psi, 1-k) + 2^d \sum_{n>0} \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \right) q^n$$

- Idea: look for modular forms with constant term $L(\psi, 1-k)$.
- o There is a Hilbert modular form

$$G_{k,\psi}^{(p)}(z_1,\ldots,z_d) = L_p(\psi,1-k) + 2^d \sum_{\nu \in \mathfrak{d}_+^{-1}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},\mathfrak{d}) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \right) e^{2\pi i (\sigma_1(\nu)z_1 + \ldots + \sigma_d(\nu)z_d)}.$$

• Setting $z_1 = \ldots = z_d = z$, we get the diagonal restriction

$$\Delta_{k,\psi}(z) = L_p(\psi, 1-k) + 2^d \sum_{n>0} \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \right) q^n$$

o This is a classical modular form of weight dk.

- Idea: look for modular forms with constant term $L(\psi, 1-k)$.
- o There is a Hilbert modular form

$$G_{k,\psi}^{(p)}(z_1,\ldots,z_d) = L_p(\psi,1-k) + 2^d \sum_{\nu \in \mathfrak{d}_+^{-1}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},\mathfrak{d}) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \right) e^{2\pi i (\sigma_1(\nu)z_1 + \ldots + \sigma_d(\nu)z_d)}.$$

• Setting $z_1 = \ldots = z_d = z$, we get the diagonal restriction

$$\Delta_{k,\psi}(z) = L_p(\psi, 1-k) + 2^d \sum_{n>0} \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \left(\sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a},p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k-1} \right) q^n$$

- This is a classical modular form of weight dk.
- **Key idea:** knowing a basis for M_{dk} and enough coefficients of $\Delta_{k,\psi}(z)$ lets us solve for $L_p(\psi, 1-k)$!

Algorithm

Input:

 \circ F totally real number field,

- ∘ *F* totally real number field,
- \circ *p* odd prime,

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \ \psi$ a character of F with the same parity as k_0 .

Input:

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathcal{O}_F[s]/(p^m)$.

Input:

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathscr{O}_F[s]/(p^m)$.

(I) Set interpolation weights $k_j = k_0 + j(p-1)$,

Input:

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathscr{O}_F[s]/(p^m)$.

(I) Set interpolation weights $k_j = k_0 + j(p-1)$, compute bases for $M_{dk_j}(\Gamma_0(M), \psi)$ for $j = 1, \dots, \delta_m$.

6

Input:

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathcal{O}_F[s]/(p^m)$.

- (I) Set interpolation weights $k_j = k_0 + j(p-1)$, compute bases for $M_{dk_i}(\Gamma_0(M), \psi)$ for $j = 1, \dots, \delta_m$.
- (II) Compute non-constant coefficients of $\Delta_{k_i,\psi}$:

$$a_n = \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a}, p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k_j - 1}, \qquad n > 0.$$

6

Input:

- o F totally real number field,
- o p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathcal{O}_F[s]/(p^m)$.

- (I) Set interpolation weights $k_j = k_0 + j(p-1)$, compute bases for $M_{dk_i}(\Gamma_0(M), \psi)$ for $j = 1, \dots, \delta_m$.
- (II) Compute non-constant coefficients of $\Delta_{k_i,\psi}$:

$$a_n = \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a}, p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k_j - 1}, \qquad n > 0.$$

(III) Write $\Delta_{k_j,\psi}$ as linear combination of modular forms in M_{dk_j} and solve for constant term, $L_p(\psi, 1 - k_i)$.

Input:

- o F totally real number field,
- p odd prime,
- ∘ $k_0 \in \mathbb{Z}$ "starting weight", $m \in \mathbb{N}$ "precision",
- $\circ \psi$ a character of F with the same parity as k_0 .

Output: $L_p(\psi, s)$ as an element of $\mathcal{O}_F[s]/(p^m)$.

- (I) Set interpolation weights $k_j = k_0 + j(p-1)$, compute bases for $M_{dk_i}(\Gamma_0(M), \psi)$ for $j = 1, \dots, \delta_m$.
- (II) Compute non-constant coefficients of $\Delta_{k_i,\psi}$:

$$a_n = \sum_{\substack{\nu \in \mathfrak{d}_+^{-1} \\ \operatorname{tr}(\nu) = n}} \sum_{\substack{\mathfrak{a} \mid (\nu)\mathfrak{d} \\ (\mathfrak{a}, p) = 1}} \psi(\mathfrak{a}) N(\mathfrak{a})^{k_j - 1}, \qquad n > 0.$$

- (III) Write $\Delta_{k_j,\psi}$ as linear combination of modular forms in M_{dk_j} and solve for constant term, $L_p(\psi, 1 k_i)$.
- (IV) Interpolate the $\delta_m + 1$ values of $L_p(\psi, 1 k_i)$ to find $L_p(\psi, s)$.

Data, $F = \mathbb{Q}(\sqrt{7})$

р	$L_p(1,s) \in \mathscr{O}_F[s] \pmod{p^m}$
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11	$ O(11^9)s^{12} + O(11^9)s^{11} + O(11^{10})s^{10} + \left(11^9 \cdot 9 + O(11^{10})\right)s^9 + \left(11^8 \cdot 45 + O(11^{10})\right)s^8 + \left(11^7 \cdot 538 + O(11^{10})\right)s^7 + \\ \left(11^6 \cdot 5908 + O(11^{10})\right)s^6 + \left(11^5 \cdot 94233 + O(11^{10})\right)s^5 + \left(11^4 \cdot 653451 + O(11^{10})\right)s^4 + \left(11^3 \cdot 1368033 + O(11^{10})\right)s^3 + \\ \left(11^3 \cdot 691404 + O(11^9)\right)s^2 + \left(11 \cdot 43622653 + O(11^9)\right)s + 25656523351 + O(11^{10}) $
13	$ \left(0(13^{10}) s^{11} + O(13^{10}) s^{10} + \left(13^9 \cdot 9 + O(13^{10}) \right) s^9 + \left(13^8 \cdot 167 + O(13^{10}) \right) s^8 + \left(13^7 \cdot 825 + O(13^{10}) \right) s^7 + \left(13^6 \cdot 20775 + O(13^{10}) \right) s^6 + \left(13^5 \cdot 260717 + O(13^{10}) \right) s^5 + \left(13^4 \cdot 3958931 + O(13^{10}) \right) s^4 + \left(13^3 \cdot 10298345 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^2 + \left(13 \cdot 10196962616 + O(13^{10}) \right) s + 104887446825 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^2 + \left(13 \cdot 10196962616 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 10298345 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 10298345 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 10298345 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 37593275 + O(13^{10}) \right) s^3 + \left(13^3 \cdot 10298345 +$
17	$ \left(0(17^{10}) s^{11} + O(17^{10}) s^{10} + \left(17^9 \cdot 16 + O(17^{10})\right) s^9 + \left(17^9 \cdot 11 + O(17^{10})\right) s^8 + \left(17^7 \cdot 3442 + O(17^{10})\right) s^7 + \left(17^6 \cdot 43576 + O(17^{10})\right) s^6 + \left(17^5 \cdot 731121 + O(17^{10})\right) s^5 + \left(17^4 \cdot 19535454 + O(17^{10})\right) s^4 + \left(17^3 \cdot 2220157 + O(17^{10})\right) s^3 + \left(17^2 \cdot 311956925 + O(17^{10})\right) s^2 + \left(17 \cdot 12743287888 + O(17^{10})\right) s + 497360978290 + O(17^{10}) $
19	$ \left((19^{10}) s^{11} + O(19^{10}) s^{10} + \left(19^9 \cdot 3 + O(19^{10}) \right) s^9 + \left(19^8 \cdot 356 + O(19^{10}) \right) s^8 + \left(19^7 \cdot 5512 + O(19^{10}) \right) s^7 + \left(19^6 \cdot 86567 + O(19^{10}) \right) s^6 + \left(19^5 \cdot 784303 + O(19^{10}) \right) s^5 + \left(19^4 \cdot 35196026 + O(19^{10}) \right) s^4 + \left(19^3 \cdot 755707686 + O(19^{10}) \right) s^3 + \left(19^2 \cdot 13133906787 + O(19^{10}) \right) s^2 + \left(19 \cdot 27470894456 + O(19^{10}) \right) s + 226617386081 + O(19^{10}) \right) $

o Currently only implemented for trivial character, real quadratic fields.

- o Currently only implemented for trivial character, real quadratic fields.
- sage has experimental support for Hecke characters via gp/pari.

- o Currently only implemented for trivial character, real quadratic fields.
- o sage has experimental support for Hecke characters via gp/pari.
- o Computationally heavy bits:

- o Currently only implemented for trivial character, real quadratic fields.
- sage has experimental support for Hecke characters via gp/pari.
- o Computationally heavy bits:
 - Computing diagonal restriction coefficients

- o Currently only implemented for trivial character, real quadratic fields.
- sage has experimental support for Hecke characters via gp/pari.
- Computationally heavy bits:
 - Computing diagonal restriction coefficients
 - -> For ring class characters, reduction theory of quadratic forms

- o Currently only implemented for trivial character, real quadratic fields.
- sage has experimental support for Hecke characters via gp/pari.
- Computationally heavy bits:
 - Computing diagonal restriction coefficients
 - -> For ring class characters, reduction theory of quadratic forms
 - ⋄ Finding q-expansion bases of modular forms of high weight

- o Currently only implemented for trivial character, real quadratic fields.
- o sage has experimental support for Hecke characters via gp/pari.
- Computationally heavy bits:
 - Computing diagonal restriction coefficients
 - -> For ring class characters, reduction theory of quadratic forms
 - ⋄ Finding q-expansion bases of modular forms of high weight
 - -> Randomised algorithm due to Lauder

- o Currently only implemented for trivial character, real quadratic fields.
- sage has experimental support for Hecke characters via gp/pari.
- Computationally heavy bits:
 - Computing diagonal restriction coefficients
 - -> For ring class characters, reduction theory of quadratic forms
 - ♦ Finding *q*-expansion bases of modular forms of high weight
 - -> Randomised algorithm due to Lauder
 - -> Is highly parallelisable

- o Currently only implemented for trivial character, real quadratic fields.
- o sage has experimental support for Hecke characters via gp/pari.
- Computationally heavy bits:
 - Computing diagonal restriction coefficients
 - -> For ring class characters, reduction theory of quadratic forms
 - ♦ Finding *q*-expansion bases of modular forms of high weight
 - -> Randomised algorithm due to Lauder
 - -> Is highly parallelisable
- Roblot '15: Alternative algorithm based on Cassou-Noguès'
 construction of p-adic L-functions less efficient in practice.

 \circ Statistics of λ -invariants à la Ellenberg-Jain-Venkatesh.

- \circ Statistics of λ -invariants à la Ellenberg-Jain-Venkatesh.
- o Darmon-Pozzi-Vonk: if $L(\psi,s)$ has an exceptional zero at 0, then $L'(\psi,0)$ is the constant term of an overconvergent modular form

- \circ Statistics of λ -invariants à la Ellenberg-Jain-Venkatesh.
- Darmon-Pozzi-Vonk: if $L(\psi,s)$ has an exceptional zero at 0, then $L'(\psi,0)$ is the constant term of an overconvergent modular form
 - computed using a similar algorithm

- \circ Statistics of λ -invariants à la Ellenberg-Jain-Venkatesh.
- o Darmon-Pozzi-Vonk: if $L(\psi,s)$ has an exceptional zero at 0, then $L'(\psi,0)$ is the constant term of an overconvergent modular form
 - computed using a similar algorithm
 - ⋄ gives log of "Gross-Stark units" of the Hilbert class field of F

- \circ Statistics of λ -invariants à la Ellenberg-Jain-Venkatesh.
- o Darmon-Pozzi-Vonk: if $L(\psi,s)$ has an exceptional zero at 0, then $L'(\psi,0)$ is the constant term of an overconvergent modular form
 - computed using a similar algorithm
 - ⋄ gives log of "Gross-Stark units" of the Hilbert class field of F
- Can we generalise to p-adic L-functions of automorphic representations?

Thank you! Questions?