# Linear Discriminant Analysis: Titanic Kaggle

Maria Aquino Alexander Montenegro Cris Navarijo Arin Parsanian

NSF Data Science Summer Institute B, June 2019





## Table of Contents

Linear Discriminant Analysis

2 Python Implementation





## Table of Contents

Linear Discriminant Analysis

2 Python Implementation





## What is LDA?

LDA can be used as a dimensional reduction technique similar to PCA or for classification tasks by making three crucial assumptions:

- Data is normally distributed
- Features are statistically independent
- Has identical covariance matrices for each class





## What does LDA do for classification?

### Example of ideal/non-ideal distributions for LDA:







## What does that mean?

### The model is limited in 2 major ways

- Data is assumed normally distributed
- Data must contain at least 1 continuous random variables to fit the model (IE, cannot use categorical data exclusively)





## Table of Contents

Linear Discriminant Analysis

2 Python Implementation





```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  %matplotlib inline
```

In [2]: DF = pd.read\_csv("train.csv")
print(DF.shape)
DF[:10]

10

2

(891, 12)

#### Out[2]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked 0 1 0 3 Braund, Mr. Owen Harris male 22.0 0 A/5 21171 7.2500 NaN s 2 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 0 PC 17599 71.2833 C85 С Heikkinen Miss Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN 3 1 Futrelle, Mrs. Jacques Heath (Lilv May Peel) female 35.0 1 113803 53.1000 C123 S 5 Ω 3 Allen, Mr. William Henry male 35.0 0 373450 8.0500 NaN 6 0 3 Moran Mr James male NaN 0 0 330877 8 4583 NaN 0 7 0 McCarthy, Mr. Timothy J 17463 51.8625 E46 s male 54.0 0 7 8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 349909 21.0750 NaN s s 9 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 347742 11.1333 NaN

Nasser, Mrs. Nicholas (Adele Achem) female 14.0





С

237736 30.0708

NaN

```
In [3]: Y = np.array(DF["Survived"])
X = pd.DataFrame([DF["Sex"], DF["Age"], DF["Fare"]]).T
```

```
In [4]: plt.hist(DF["Pclass"])
    plt.xlabel("Class")
    plt.ylabel("Frequency")
    plt.grid();
```





















| In [7]: | nameda | ata             |                                       |
|---------|--------|-----------------|---------------------------------------|
| Out[7]: |        | Surname/title   | First/Middle                          |
|         | 0      | Braund, Mr      | Owen Harris                           |
|         | 1      | Cumings, Mrs    | John Bradley (Florence Briggs Thayer) |
|         | 2      | Heikkinen, Miss | Laina                                 |
|         | 3      | Futrelle, Mrs   | Jacques Heath (Lily May Peel)         |
|         | 4      | Allen, Mr       | William Henry                         |
|         | 5      | Moran, Mr       | James                                 |
|         | 6      | McCarthy, Mr    | Timothy J                             |
|         | 7      | Palsson, Master | Gosta Leonard                         |
|         | 8      | Johnson, Mrs    | Oscar W (Elisabeth Vilhelmina Berg)   |
|         | 9      | Nasser, Mrs     | Nicholas (Adele Achem)                |
|         | 10     | Sandstrom, Miss | Marguerite Rut                        |

Elizabeth







11

Bonnell, Miss

#### Some broad data visualization

```
In [10]: ismale = DF["Sex"]-="male"
males = DF[ismale]
females = DF[ismale == False]
```

In [11]: plt.hist(males["Survived"]);
 print("Male survival rate: ", (len(males[males["Survived"] -- 1])/len(males))\*100, "%")

```
Male survival rate: 18.890814558058924 %
```







```
In [12]: plt.hist(females["Survived"]);
print("Female Survival rate: ",len(females[females["Survived"] == 1])/len(DF)*100, "%" )
```

Female Survival rate: 26.15039281705948 %



```
In [13]: plt.hist(DF[DF["Title")=="Master"]["Survived"])
   plt.kithe("Survived of Young Men (< 12yo)")
   plt.klabel("Survived")
   plt.ylabel("Frequency")
   plt.grid();</pre>
```







```
In [22]: plt.hist(secondclass('Survived'])
plt.title("Survived of 2nd class Passengers")
plt.xlabel("1-survived, 0-not')
plt.ylabel("Freq")
plt.grid();
```









```
In [23]: plt.hist(thirdclass['Survived'])
plt.title("Survived of 3rd Class Passengers")
plt.xlabel('1-survived, 0-not')
plt.ylabel('Freq')
plt.grid();
```













#### Training the model

```
In [25]: from sklearn.model selection import train test split
         from sklearn.metrics import accuracy score, confusion matrix
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         import warnings
         warnings.filterwarnings("error")
In [26]: errs=[]
         nsplits=100
         skipped=0
         X = pd.DataFrame([DF["Sex"], DF["Age"], DF["Pclass"]]).T
         # Casting categorical data to numerical categories
         X['Sex']= X['Sex'].astype('category')
         X['Sex'] = X['Sex'].cat.codes
         Y= np.array(DF["Survived"])
         for j in range(nsplits):
           try
             XTRAIN, XTEST, YTRAIN, YTEST=train test split(X,Y, test size = .2)
             LDA = LinearDiscriminantAnalysis(solver = "lsgr", shrinkage = "auto")
             LDA.fit(XTRAIN,YTRAIN)
             YP-LDA.predict(XTEST)
             errs.append(1-accuracy score(YTEST,YP))
           except UserWarning:
             skipped+=1
```







4 D > 4 B > 4 B > 4 B >

```
print("LDA mean error-%7.5f std-%7.5f" %(np.mean(errs),np.std(errs)))
print(skipped, "train/test splits had to be skipped because of Normalization Errors")
```

LDA mean error=0.21318 std=0.03139

0 train/test splits had to be skipped because of Normalization Errors

#### In [27]: X

| Out | [27]: |    | Sex | Age     | Pclass |
|-----|-------|----|-----|---------|--------|
|     |       | 0  | 1   | 22      | 3      |
|     |       | 1  | 0   | 38      | 1      |
|     |       | 2  | 0   | 26      | 3      |
|     |       | 3  | 0   | 35      | 1      |
|     |       | 4  | 1   | 35      | 3      |
|     |       | 5  | 1   | 32.3681 | 3      |
|     |       | 6  | 1   | 54      | 1      |
|     |       | 7  | 1   | 2       | 3      |
|     |       | 8  | 0   | 27      | 3      |
|     |       | 9  | 0   | 14      | 2      |
|     |       | 10 | 0   | 4       | 3      |
|     |       | 11 | 0   | 58      | - 1    |





#### Prediction to upload

```
In [28]: testDF = pd.read_csv("test.csv")
```

#### Cleaning test data

```
In [29]: testnames = []
for x in np.array(testDF["Name"]):
    tokens = x.split(.', maxsplit = 1)
    testnames.append(tokens)
testnamedata = pd.DataFrame(testnames, columns = ["Surname/title", "First/Middle"])

testsurnamesandtitles = pd.DataFrame(testnamedata["Surname/title"])
testnames2 = []
for x in np.array(testsurnamesandtitles["surname/title"]):
    tokens = x.split(',', maxsplit = 1)
    testnames2 = pd.DataFrame(testnames2, columns = ["Surname", "Title"])
np.unique(testnames2["Title"])
testDF = pd.concat([testDF, testnames2], axis = 1)
```







| 30]: |   | Passengerld | Pclass | Name                                            | Sex    | Age  | SibSp | Parch | Ticket    | Fare    | Cabin | Embarked | Surname  | Title |
|------|---|-------------|--------|-------------------------------------------------|--------|------|-------|-------|-----------|---------|-------|----------|----------|-------|
|      | 0 | 892         | 3      | Kelly, Mr. James                                | male   | 34.5 | 0     | 0     | 330911    | 7.8292  | NaN   | Q        | Kelly    | N     |
|      | 1 | 893         | 3      | Wilkes, Mrs. James (Ellen<br>Needs)             | female | 47.0 | 1     | 0     | 363272    | 7.0000  | NaN   | s        | Wilkes   | М     |
|      | 2 | 894         | 2      | Myles, Mr. Thomas Francis                       | male   | 62.0 | 0     | 0     | 240276    | 9.6875  | NaN   | Q        | Myles    |       |
|      | 3 | 895         | 3      | Wirz, Mr. Albert                                | male   | 27.0 | 0     | 0     | 315154    | 8.6625  | NaN   | S        | Wirz     |       |
|      | 4 | 896         | 3      | Hirvonen, Mrs. Alexander<br>(Helga E Lindqvist) | female | 22.0 | 1     | 1     | 3101298   | 12.2875 | NaN   | S        | Hirvonen | 1     |
|      | 5 | 897         | 3      | Svensson, Mr. Johan Cervin                      | male   | 14.0 | 0     | 0     | 7538      | 9.2250  | NaN   | s        | Svensson |       |
|      | 6 | 898         | 3      | Connolly, Miss. Kate                            | female | 30.0 | 0     | 0     | 330972    | 7.6292  | NaN   | Q        | Connolly | N     |
|      | 7 | 899         | 2      | Caldwell, Mr. Albert Francis                    | male   | 26.0 | 1     | 1     | 248738    | 29.0000 | NaN   | s        | Caldwell |       |
|      | 8 | 900         | 3      | Abrahim, Mrs. Joseph (Sophie<br>Halaut Easu)    | female | 18.0 | 0     | 0     | 2657      | 7.2292  | NaN   | С        | Abrahim  | 1     |
|      | 9 | 901         | 3      | Davies, Mr. John Samuel                         | male   | 21.0 | 2     | 0     | A/4 48871 | 24.1500 | NaN   | S        | Davies   |       |

```
In [31]: for x in np.unique(testDF["Title"]):
    tokenDF = pd.DataFrame(testDF[testDF["Title"]--x])
    averageage = np.mean(tokenDF["Age"])
    empties = tokenDF[tokenDF["Age"].isnull()]
    testDF[(testDF["Title"]--x) & (testDF["Age"].isnull())] - testDF[(testDF["Title"]--x) & (testDF["Age"].isnull())].fillna(validation)
In [32]: testDF[(testDF["Title"]--"Ms") & (testDF["Age"].isnull())] = testDF[(testDF["Title"]--"Ms") & (testDF["Age"].isnull())].fillna(validation)
```





| Out[32]: |   | Passengerld | Pclass | Name                                            | Sex    | Age       | SibSp | Parch | Ticket  | Fare    | Cabin | Embarked | Surname  | Title | ^ |
|----------|---|-------------|--------|-------------------------------------------------|--------|-----------|-------|-------|---------|---------|-------|----------|----------|-------|---|
|          | 0 | 892         | 3      | Kelly, Mr. James                                | male   | 34.500000 | 0     | 0     | 330911  | 7.8292  | NaN   | Q        | Kelly    | Mr    |   |
|          | 1 | 893         | 3      | Wilkes, Mrs. James (Ellen<br>Needs)             | female | 47.000000 | 1     | 0     | 363272  | 7.0000  | NaN   | s        | Wilkes   | Mrs   | Ī |
|          | 2 | 894         | 2      | Myles, Mr. Thomas<br>Francis                    | male   | 62.000000 | 0     | 0     | 240276  | 9.6875  | NaN   | Q        | Myles    | Mr    |   |
|          | 3 | 895         | 3      | Wirz, Mr. Albert                                | male   | 27.000000 | 0     | 0     | 315154  | 8.6625  | NaN   | S        | Wirz     | Mr    |   |
|          | 4 | 896         | 3      | Hirvonen, Mrs. Alexander<br>(Helga E Lindqvist) | female | 22.000000 | 1     | 1     | 3101298 | 12.2875 | NaN   | s        | Hirvonen | Mrs   |   |
|          | 5 | 897         | 3      | Svensson, Mr. Johan<br>Cervin                   | male   | 14.000000 | 0     | 0     | 7538    | 9.2250  | NaN   | s        | Svensson | Mr    |   |
|          | 6 | 898         | 3      | Connolly, Miss. Kate                            | female | 30.000000 | 0     | 0     | 330972  | 7.6292  | NaN   | Q        | Connolly | Miss  |   |
|          | 7 | 899         | 2      | Caldwell, Mr. Albert<br>Francis                 | male   | 26.000000 | 1     | 1     | 248738  | 29.0000 | NaN   | s        | Caldwell | Mr    |   |
|          | 8 | 900         | 3      | Abrahim, Mrs. Joseph<br>(Sonhia Halaut Fasu)    | female | 18.000000 | 0     | 0     | 2657    | 7.2292  | NaN   | С        | Abrahim  | Mrs   | ~ |

```
In [33]: XT = pd.DataFrame([testDF["Sex"], testDF["Age"], testDF["Pclass"]]).T
XT['Sex'] = XT['Sex'].astype('category')
XT['Sex'] = XT['Sex'].cat.codes
```





|   | vuctooj. |    | Sex | Age  | Pclass |
|---|----------|----|-----|------|--------|
|   |          | 0  | 1   | 34.5 | 3      |
|   |          | 1  | 0   | 47   | 3      |
|   |          | 2  | 1   | 62   | 2      |
| - |          | 3  | 1   | 27   | 3      |
| 1 |          | 4  | 0   | 22   | 3      |
| 1 |          | 5  | 1   | 14   | 3      |
| - |          | 6  | 0   | 30   | 3      |
| ı |          | 7  | 1   | 26   | 2      |
| ı |          | 8  | 0   | 18   | 3      |
| ı |          | 9  | 1   | 21   | 3      |
| 1 |          | 10 | 1   | 32   | 3      |
| l |          | 11 | 1   | 46   | 1      |

#### Prediction





| In [36]: | outp | ut          |          |
|----------|------|-------------|----------|
| Out[36]: |      | Passengerld | Survived |
|          | 0    | 892         | 0        |
|          | 1    | 893         | C        |
|          | 2    | 894         | 0        |
|          | 3    | 895         | (        |
|          | 4    | 896         | 1        |
|          | 5    | 897         | C        |
|          | 6    | 898         | 1        |
|          | 7    | 899         | 0        |
|          | 8    | 900         | 1        |
|          | 9    | 901         | 0        |
|          | 10   | 902         | 0        |
|          | 11   | 903         | 0        |





| ut[36]: | Pa | ssengerld | Survive |
|---------|----|-----------|---------|
|         | 0  | 892       |         |
|         | 1  | 893       |         |
|         | 2  | 894       |         |
|         | 3  | 895       |         |
|         | 4  | 896       |         |
|         | 5  | 897       |         |
|         | 6  | 898       |         |
|         | 7  | 899       |         |
|         | 8  | 900       |         |
|         | 9  | 901       |         |
|         | 10 | 902       |         |
|         | 11 | 903       |         |





Submission and Description Public Score Use for Final Score

result.csv 20 hours ago by Bungles

Linear Determinants: Sex, Pclass, Age(normalized)







0.78947