

Obiettivo della progettazione logica

"tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati nel formato di un modello intermedio (modello logico), ad es. il modello relazionale.

Dati di ingresso e uscita

- Ingresso:
 - schema concettuale
- informazioni sul carico applicativo
- modello logico
- Uscita:
 - schema logico (memorizzabile tramite il DBMS)
 - documentazione associata

Traduzione ER-Relazionale

- Non si tratta di una semplice trascrizione tra i due modelli
- Alcuni aspetti dello schema concettuale non sono direttamente rappresentabili nello schema logico
- In questa fase è opportuno anche valutare le prestazioni

Ristrutturazione schema E-R

- Motivazioni:
 - semplificare la traduzione
 - "ottimizzare" le prestazioni
- Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello
- Le prestazioni non sono valutabili con precisione su di uno schema concettuale!

Parametri per valutare le prestazioni

- numero di occorrenze previste
- numero di accessi ad occorrenze (di entità e relazioni) durante un'operazione

Principio di Pareto (80:20)

- Regola empirica secondo la quale un sistema dedica l'80% delle sue risorse per elaborare il 20% delle operazioni più frequenti.
- Sfruttando questo principio calcoliamo gli accessi totali per il 20% di operazioni più frequenti.

Tavole di Carico

- Pertanto, per stimare le prestazioni sviluppiamo 3 tipi di tavole:
 - Tavola Volumi, contenente una stima delle occorrenze per entità ed associazioni
 - Tavola operazioni, riporta tipo e frequenza per il 20% di operazioni più frequenti
 - Tavole accessi, numero accessi in lettura e scrittura su entità ed associazioni per il 20% di operazioni più frequenti

Cognome Telefono Direzione **(1,N)** Impiegato Dipartimento Codice Afferenza Nome (0,1) Composizione Partecipazione Data Sede Progetto Indirizzo Budget CAP

Tavola dei volumi

Concetto	Tipo	Volume
Sede	Ш	10
Dipartimento	Е	80
Impiegato	Е	2000
Progetto	Е	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Tavola delle operazioni

Operazione	Tipo	Frequenza
Operazione 1	1	1 volta/giorno
Operazione 2	В	1 volta/mese

- I: Operazione Interattiva
- B: Operazione Batch

In questo caso sono state previste 10 operazioni, quindi la stima si concentra sul 20% (2) con maggiore frequenza

Esempio di valutazione di costo

- Operazione frequente:
 - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su di uno schema di navigazione

Cognome
Telefono
(1,N)
Impiegato
(0,1)
(1,N)
Dipartimento

Codice
(0,N)
Partecipazione
(1,N)
Progetto

Budget Nome

Tavola degli accessi Concetto Costrutto Accessi Tipo Impiegato Entità 1 L Afferenza Relazione 1 L Dipartimento Entità 1 L Partecipazione Relazione 3 L Progetto Entità 3 L

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e associazioni
- Scelta degli identificatori primari

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- In questa fase si decide se eliminare le ridondanze eventualmente presenti o di mantenerle, in base al loro impatto sul numero di accessi per il 20% di operazioni più frequenti

Ridondanze

- Vantaggi
 - semplificazione delle interrogazioni
- ■Svantaggi
 - appesantimento degli aggiornamenti
 - maggiore occupazione di spazio

Forme di ridondanza in uno schema E-R

- attributi derivabili:
- da altri attributi della stessa entità (o associazione)
- da attributi di altre entità (o associazioni)
- Associazioni derivabili dalla composizione di altre associazioni in presenza di cicli

Attributo derivabile

Importo netto

Importo lordo

Ipotesi di Tavola dei volumi Concetto Tipo Volume Città E 200 Persona E 1000000 Residenza R 1000000 Inoltre, se una città può avere fino a milioni di abitanti, occorrono circa 3 byte per città per memorizzare il dato ridondante, totale 600 byte.

Ipotesi di Tavola Operazioni

Concetto	Tipo	Volume
Operazione 1		500 volte/giorno
Operazione 2	В	2 volte/giorno

- Operazione 1: memorizza una nuova persona e relativa città di residenza
- Operazione 2: stampa i dati di una città (incluso il numero di abitanti)

Tavole accessi (In presenza di ridondanza)

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

- PO: W=: 01:0 =			
Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

Tavole accessi (In assenza di ridondanza)

Operazione 1

Concetto	Costrutto	Accessi	Tip
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L
Residenza	Relazione	5000	L

20

Numero totale accessi (In presenza di ridondanza)

Costi:

- Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
- Operazione 2: 2 accessi in lettura.
- Contiamo doppi gli accessi in scrittura
- Totale di 3502 accessi al giorno e 600 byte per il dato ridondante

Assenza di ridondanza

Costi:

- Operazione 1: 1000 accessi in scrittura
- Operazione 2: 10000 accessi in lettura al giorno
- Contando doppi gli accessi in scrittura si hanno 12000 accessi al giorno

30

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relazioni
- Scelta degli identificatori primari

Eliminazione delle gerarchie

- il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e associazioni sono invece direttamente rappresentabili
- si eliminano perciò le gerarchie, sostituendole con entità e associazioni

Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- sostituzione della generalizzazione con relazioni

A01 A02

E0 R1 E3

A11 A21 E4

Scelte progettuali

- la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi)
- è possibile però seguire alcune semplici regole generali

40

Criteri di scelta

- conviene se gli accessi al padre e alle figlie sono contestuali
- conviene se gli accessi alle figlie sono distinti
- conviene se gli accessi alle entità figlie sono separati dagli accessi al padre
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e associazioni
- Scelta degli identificatori primari

44

Partizionamenti e Accorpamenti

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base ad un semplice principio
- Gli accessi si riducono:
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme

45

Ristrutturazioni, casi principali

- partizionamento verticale di entità
- partizionamento orizzontale di associazioni
- eliminazione di attributi multivalore
- accorpamento di entità/associazioni

Scelta degli identificatori principali

- Operazione indispensabile per la traduzione nel modello relazionale
- Criteri
 - · assenza di opzionalità
 - semplicità
 - utilizzo nelle operazioni più frequenti o importanti

Se nessuno degli identificatori soddisfa i requisiti visti?

Si introducono nuovi attributi (codici) contenenti valori speciali generati per questo scopo Traduzione verso il modello relazionale

- idea di base:
 - le entità diventano relazioni sugli stessi attributi
 - le associazioni (ovvero le relazioni E-R) diventano relazioni sugli identificatori delle entità coinvolte (più gli attributi propri)
 - Per queste ultime è importante esaminare le informazioni di cardinalità

58

Associazioni molti a molti Cognome Matricola (0,N) (1,N) Impiegato Partecipazione Progetto Stipendio Impiegato(Matricola, Cognome, Stipendio) Progetto(Codice, Nome, Budget) Partecipazione(Matricola, Codice, Datalnizio) 59

Associazioni molti a molti

Impiegato(<u>Matricola</u>, Cognome, Stipendio) Progetto(<u>Codice</u>, Nome, Budget) Partecipazione(<u>Matricola</u>, <u>Codice</u>, DataInizio)

- con vincoli di integrità referenziale fra
 - Matricola in Partecipazione è (la chiave di) Impiegato
 - Codice in Partecipazione è (la chiave di) Progetto

60

Nomi più espressivi per gli attributi della chiave della relazione

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(Codice, Nome, Budget)

Partecipazione(Matricola, Codice, Datalnizio)

Partecipazione(Impiegato, Progetto, Datalnizio)

Soluzione più compatta

Squadra(<u>Horric</u>) circa, colorisocian,

Giocatore(<u>Cognome, DataNasc</u>, Ruolo, Squadra, Ingaggio)

Squadra(Nome, Città, ColoriSociali)

- con vincolo di integrità referenziale fra Squadra in Giocatore e la chiave di Squadra
- se la cardinalità minima dell'associazione è 0, allora Squadra in Giocatore deve ammettere valore nullo

Schema finale

Impiegato(<u>Codice</u>, Cognome, Dipartimento*, Data*)

Dipartimento(Nome, Città, Telefono, Direttore)

Sede(Città, Via, CAP)

Progetto(Nome, Budget)

Partecipazione(Impiegato, Progetto)

Strumenti di supporto

 Esistono sul mercato prodotti CASE che forniscono un supporto a tutte le fasi della progettazione di basi di dati Usano Notazioni UML-like

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effective (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (EMMCOTTE ET) - (Mano Sidect Area / Oreptar)

**Logic Webs Effetive (E