In [1]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure1 = plt.figure()
axis1 = figure1.add_subplot(projection='3d')

x =[1,7,6,3,2,4,9,8,1,9]
y =[4,6,1,8,3,7,9,1,2,4]
z =[6,4,9,2,7,8,1,3,4,9]

axis1.plot(x,y,z)

axis1.set_xlabel('X-axis')
axis1.set_ylabel('Y-axis')
axis1.set_zlabel('Z-axis')
plt.show()
```


In [2]:

```
import seaborn as sns

plt .rcParams["figure.figsize"]=[10,8]

tips_data = sns.load_dataset('tips')

tips_data.head()
```

Out[2]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [3]:

```
bill = tips_data['total_bill'].tolist()
tip = tips_data['tip'].tolist()
size = tips_data['size'].tolist()
```

In [4]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis2 = figure2.add_subplot(projection='3d')

axis2.plot(bill, tip, size)

axis2.set_xlabel('bill')
axis2.set_ylabel('tip')
axis2.set_zlabel('size')

plt.show()
```


In [5]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis2 = figure2.add_subplot(projection='3d')

axis2.scatter(bill, tip, size)

axis2.set_xlabel('bill')
axis2.set_ylabel('tip')
axis2.set_zlabel('tip')
plt.show()
```


In [6]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook
figure2 = plt.figure()
axis3 = figure2.add_subplot(projection='3d')
x3 = bill
y3 = tip
z3 = np.zeros(tips_data.shape[0])
dx = np.ones(tips_data.shape[0])
dy = np.ones(tips_data.shape[0])
dz = bill
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set_xlabel('bill')
axis3.set_ylabel('tip')
axis3.set_zlabel('size')
plt.show()
```

In [7]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure2 = plt.figure()
axis3 = figure2.add_subplot(projection='3d')
x3 = bill
y3 = tip
z3 = np.zeros(tips_data.shape[0])
dx = np.ones(tips_data.shape[0])
dy = np.ones(tips_data.shape[0])
dz = bill
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set_xlabel('bill')
axis3.set_ylabel('tip')
axis3.set_zlabel('size')
plt.show()
```


In []:

In [8]:

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams["figure.figsize"] = [8,6]
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data.head()
```

Out[8]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Trı
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fal
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fal
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fal
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Trı
€											>

In [9]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis2 = figure2.add_subplot(projection='3d')

axis2.scatter(pclass, age, fare)

axis2.set_xlabel('pclass')
axis2.set_ylabel('age')
axis2.set_zlabel('fare')

plt.show()
```


In [10]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis2 = figure2.add_subplot(projection='3d')

axis2.scatter (fare, age, pclass)

axis2.set_xlabel('fare')
axis2.set_ylabel('age')
axis2.set_zlabel('pclass')

plt.show()
```


In [11]:

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams["figure.figsize"] = [10,8]

titanic_data = sns.load_dataset('titanic')
titanic_data.head()
```

Out[11]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Trı
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fal
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fal
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fal
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Trı
<											>

In [12]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis2 = figure2.add_subplot(projection='3d')

axis2.scatter (fare, age, pclass)

axis2.set_xlabel('fare')
axis2.set_ylabel('age')
axis2.set_zlabel('pclass')

plt.show()
```


In [13]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
%matplotlib notebook

figure2 = plt.figure()
axis3 = figure2.add_subplot(projection='3d')

axis3.scatter (fare, age, pclass)

axis3.set_xlabel('fare')
axis3.set_ylabel('age')
axis3.set_zlabel('pclass')

plt.show()
```


In [14]:

```
from mpl toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure2 = plt.figure()
axis3 = figure2.add_subplot(projection='3d')
x3 = age
y3 = fare
z3 = np.zeros(titanic_data.shape[0])
dx = np.ones(titanic_data.shape[0])
dy = np.ones(titanic data.shape[0])
dz = pclass
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set xlabel('age')
axis3.set_ylabel('fare')
axis3.set zlabel('pclass')
plt.show()
```


In [15]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure3 = plt.figure()
axis3 = figure3.add_subplot(projection='3d')
x3 = age
y3 = fare
z3 = np.zeros(titanic_data.shape[0])
dx = np.ones(titanic_data.shape[0])
dy = np.ones(titanic_data.shape[0])
dz = pclass
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set_xlabel('age')
axis3.set_ylabel('fare')
axis3.set_zlabel('pclass')
plt.show()
```


In [17]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure3 = plt.figure()
axis3 = figure3.add_subplot(projection='3d')
x3 = age.reshape
y3 = fare.reshape
z3 = np.zeros(titanic_data.shape[0])
dx = np.ones(titanic_data.shape[0])
dy = np.ones(titanic_data.shape[0])
dz = pclass
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set_xlabel('age')
axis3.set_ylabel('fare')
axis3.set_zlabel('pclass')
```


In [18]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure3 = plt.figure()
axis3 = figure3.add_subplot(projection='3d')
x3 = age
y3 = fare
z3 = np.zeros(titanic_data.shape[0])
dx = np.ones(titanic data.shape[0])
dy = np.ones(titanic_data.shape[0])
dz = pclass
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set xlabel('age')
axis3.set_ylabel('fare')
axis3.set_zlabel('pclass')
x = data[:,0].reshape(4,4)
y = data[:,1].reshape(4,4)
z = data[:,2].reshape(4,4)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot surface(X=x,Y=y,Z=z)
plt.show()
```


In [19]:

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook
figure3 = plt.figure()
axis3 = figure3.add_subplot(projection='3d')
x3 = age
y3 = fare
z3 = np.zeros(titanic_data.shape[0])
dx = np.ones(titanic_data.shape[0])
dy = np.ones(titanic_data.shape[0])
dz = pclass
axis3.bar3d(x3,y3,z3,dx,dy,dz)
axis3.set_xlabel('age')
axis3.set_ylabel('fare')
axis3.set_zlabel('pclass')
plt.show
```


In [20]:

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams["figure.figsize"] = [8,6]

sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
pclass = titanic_data['pclass'].tolist()
age = titanic_data['age'].tolist()
fare = titanic_data['fare'].tolist()

figure4 =plt.figure()
axis4 = figure4.add_subplot(projection='3d')

axis4.scatter(pclass,age,fare)

axis4.set_xlabel('pclass')
axis3.set_ylabel('age')
axis3.set_zlabel('fare')
```


Out[20]:

<function matplotlib.pyplot.show(*args, **kw)>

In []: