Inst. fysikk 2017

$\begin{array}{c} \textbf{TFY4115 Fysikk} \text{ (MTELSYS/MTTK/MTNANO)} \\ \textbf{Øving 3} \end{array}$

Veiledning: 12.-14. sep. Gruppeinndelingen finner du på emnets nettside. Innlevering: Fredag 15. sep. kl. 12:00 Lever øvinger i bokser utenfor R4.

Oppgave 1. Kloss på skråplan

En kloss med masse 1,00 kg er i ro på et skråplan med helningsvinkel 30°. Den statiske friksjonskoeffisienten er $\mu_s = 0,43$ og den kinetiske (dynamiske) friksjonskoeffisienten er $\mu_k = 0,40$.

a. Tegn et kraftdiagram som viser alle kreftene som virker på klossen.

b. Hvor stor er friksjonskrafta og akselerasjonen når klossen slippes?

 $\underline{\mathbf{c}}$. Vi lar så klossen bli påvirket av en tilleggskraft på F=1,00 N, rettet oppover parallelt med skråplanet. Hva blir nå klossens friksjonskraft og akselerasjon når den slippes? (Tilleggskrafta virker uendra både før og etter klossen slippes.)

 $\underline{\mathbf{d.}}$ Vi gjentar eksperimentet men med tilleggskraft lik $F=2{,}00$ N. Finn igjen klossens friksjonskraft og akselerasjon når den slippes.

Oppgave 2. To sammenbundne klosser på skråplanet

To klosser av forskjellig materiale er forbundet med ei snor og sklir nedover et skråplan med helningsvinkel θ . Klossene har forskjellig masse, og de kinetiske friksjonskoeffisientene er også forskjellige, med $\mu_2 > \mu_1$.

a. Vis at i dette tilfellet er snora alltid stram, uansett massenes størrelse, og finn et uttrykk for snordraget T (som altså må være positivt).

b. Vis at akselerasjonen nedover skråplanet er gitt ved

$$a = g \left(\sin \theta - \frac{\mu_1 m_1 + \mu_2 m_2}{m_1 + m_2} \cos \theta \right).$$

c. For hvilken vinkel θ sklir massene nedover med konstant hastighet?

Oppgave 3. Én pendel med to ulike lengder

En pendel består av ei kule med masse m i ei snor med lengde L, som vist i figuren. Pendelen trekkes ut til snora er vannrett i posisjon A, og slippes. Snora treffer en pinne P i avstand x rett under pendelens opphengingspunkt. Herfra svinger pendelen rundt denne pinnen slik at pendellengden blir kortere.

a. Bruk energibetraktning til å vise at farten til kula når den er rett over pinnen i posisjon B, blir:

$$v = \sqrt{2g(2x - L)}$$

b. Hvor stor må x være ift. L for at kula skal nå fram til posisjon B (dvs. med stram snor)?

Oppgave 4. Relativ bevegelse på flåte.

En flåte er i ro på et "blikk-stille" vann, uten strøm. En mann står i ene ytterkant av flåten og går rolig til den andre enden. Flåten er L=10.0 m lang og veier M=300 kg. Mannen veier m=100 kg. Hvor langt flytter flåten seg? Se bort fra friksjon i vannet.

TIPS: Bevaring bevegelsesmengde ift. koordinatsystem i ro. Anta konstant fart under hele bevegelsen.

Oppgave 5. Ikke-konstant akselerasjon.

En partikkel med masse m er opprinnelig i ro i posisjonen x=0. Ved t=0 blir partikkelen utsatt for ei tidsavhengig kraft i positiv x-retning gitt ved

 $F = F_0 e^{-t/T} ,$

der F_0 og T er konstanter. Ved t = T opphører krafta.

a. Hva er partikkelens hastighet idet krafta opphører?

b. Hva er partikkelens posisjon idet krafta opphører?

1b) 3,4 N, 1,51 m/s², 1c) 3,4 N, 1d) 2,9 N. 3b) $x > \frac{3}{5}L$. 4) 2,50 m. 5a) $\frac{F_0T}{m}[1 - e^{-1}];$ 5b) $\frac{F_0T^2}{m}e^{-1};$