

Fall 2008, Test 2, Models of Computation

Name:

Section:

Email id:

3rd November, 2008

Answer all Seven questions. You have 100 minutes to complete the exam.

1. Context Free Grammar

(a) What language is generated by the following context grammar with the indicated productions. $S \to a \ S \ a \ | \ b \ S \ b \ | \ a \ | \ b$

{ w | w = wk, w ∈ {a, b}* | w | is odd}

(b) What language is generated by the followinbg grammar with the indicated productions? Draw a parse tree for babab

 $S \rightarrow SaS \mid b$

{(ba)* b}

2. Construction of Context Free Grammar

(a) Construct a context-free grammar for the following language: $\{w \in \{a, b\}^* : \text{every prefix of } w \text{ has at least as many } a\text{'s as } b\text{'s}\}$ [5 points]

(b) Construct a context-free grammar for the following language: $\{a^nb^m:n\geq m \text{ and } n-m \text{is even}\}$

3. **PDA**

Construct a PDA that recognizes strings over $\{a,b\}$ such that the number of a's is more than the number of b's. $L = \{x \in \{a,b\}^* : n_a(x) \ge n_b(x)\}$ [10 points]

4. Context Free Grammar for Boolean Expression

Let $L = \{w \in \{[A-Z], \neg, \lor, \land, \rightarrow, (,),\}^* \mid w \text{ is a syntactically legal Boolean Expression}\}.$

- (a) Write an unambiguous context free grammar that generates L that $[\mathbf{6}$ **points**]
 - Associates left given operators of equal precedence, and
 - Corrspond to assigning the following precedence levels to the operators (from highest to lowest): \neg , \wedge , \vee , \rightarrow .
- (b) Show the parse tree for the following string in L

$$\neg P \lor R \to Q \to S$$

[4 points]

$$S_{,\rightarrow}$$
 $S_{,\rightarrow}' E_{,} | E_{,}$
 $E_{,} \rightarrow E_{,} | E_{,}$
 $T_{,} \rightarrow T_{,} \wedge F_{,} | F_{,}$
 $F_{,\rightarrow} \rightarrow T_{,} \wedge F_{,} | F_{,}$
 $F_{,\rightarrow} \rightarrow T_{,} \wedge F_{,} | F_{,} | (E_{,}) | (A-Z_{,})$

5. Closure Properties

(a) Prove that Context-free Languages are closed under union and concatenation [5 points]

det
$$G_1$$
 be the Grammar for L_1

$$(N_1,T_1,S_1,P_1)$$

$$\det G_1 (N_2,T_2,S_2,P_2) \text{ be the grammar for } L_2$$
For Union: $S \rightarrow S_1 \mid S_2$
For Concatenation $S \rightarrow S_1S_2$

(b) Give a counter example to show Context-free Languages are **Not** closed under intersection. [5 points]

$$L_1 = \{a^n b^n c^m \mid n, m > 0 \}$$
 $L_2 = \{a^m b^n c^n \mid n, m > 0 \}$
 $L_1 \cap L_2 = \{a^n b^n c^n \mid n > 0 \}$
 $L_1 \cap L_2 = \{a^n b^n c^n \mid n > 0 \}$
 $L_1 \cap L_2 = \{a^n b^n c^n \mid n > 0 \}$

6. Pumping Lemma

Show that the language a^{n^2} , is not context-free. [10 points]

Choose String with which to find a counterexample $W = a^{1}(P^{n}2)$, where p is the pumping length (magic number). Must show that for any portition urxyz, duplicating v and y by constant i-many times will produce a string not the language. For any partition, IVYI >1 for i=2, we will add attest I symbol and at most P symble. a" (P'2+k) cannot be equal to any a 1 (x12) because of the arrayinst on k. [a^(p^2) | < | a^(p^2+k) | < | a (e 2+2p+1) | < | a ((P+1) 2) |

arriving of a Contradiction

7. Normal Forms and Simplied Grammars

c . . c 10

(a) Convert the following grammar to Chomsky Normal Form. [5 points]

$$S o aACa$$
 1. removing null production $C o C$
 $A o B \mid a$
 $B o C \mid c$
 $C o cC \mid \epsilon$
 $A o B \mid a$
 $B o C \mid c$
 $C o cC \mid \epsilon$
 $A o C \mid c$
 $C o cC \mid \epsilon$
 $C o C \mid c$
 $C o C \mid c$

2. Removing B>E SaaAcala Aa

(= c()c

c - cclc A > Blale Remoing A > E

B > Clc S > CACala Aala Calaa

C : Cl-A>Bla

Remarky uniffroductions

Brock Arr B

Srancala AalaCalaa B = cc 1c C , c C 1 c

5 - T, V, T, V2 | T, V3 | T, T,

V, >AV4 V2 > AT Va - CTI V4 - CT/ A > T, ITC C B > T, C C Ca Tacle

7 -> a T2 - C (b) Explain with an example of two different (possible) parse trees in a nested if statements. How does compiler avoid this ambiguity or what is the assumption in parsing if statements? [5 points]

Then if E then S else S

Parse Frees

compiler always associates the else clause with the closest if a Hence parse Free 1 is used instead of Tree 2.