Planeamento e Gestão da Produção Planeamento da Produção, das Capacidades e dos **Materiais**

Marcos Daniel Marado Torres

Pedro Fernandes

marado@student.dei.uc.pt peter@student.dei.uc.pt

Departamento de Engenharia Informática Universidade de Coimbra

Vila Franca - Pinhal de Marrocos

3030 Coimbra, Portugal

Índice

- → Introdução
- → Plano de Produção (*Master Production Plan*)
- → Plano Director de Produção (*Master Production Schedule*)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Introdução

- A relação entre o mercado (cliente) e a unidade de produção é iteractiva:
 - → As exigências do mercado impelem a unidade de produção a produzir o produto, que por sua vez é devolvido ao mercado para satisfazer o pedido.
 - → Quando é exigida uma maior quantidade de produto, o processo repete-se.

- o Em muitos casos este ciclo ocorre quase instantaneamente, mas isso depende muito do tipo de produção:
 - → Para vender um café, ele pode ser "produzido" quando o cliente (mercado) o exige, logo que todo o material necessário para o fazer (café, máquina, água ...) esteja à disposição.
 - → Para vender uma casa as coisas já são diferentes: a casa demora a ser construída pelo que o produto não é imediato e a sua produção é composta por partes, pelo que há que planear a sua produção, capacidades e materiais.

Índice

- → Introdução
- → Plano de Produção (Master Production Plan)
- → Plano Director de Produção (Master Production Schedule)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

- → Após o Planeamento Agregado, falado anteriormente, há que fazer o Plano de Produção e o MPA (*Master Production Schedule*, ou, em Português, Plano Director de Produção);
- → O Plano de Produção e o *Master Production Schedule* estão directamente relacionados;
- → Estas três fases de Planeamento implicam uma componente de Previsão;
- → O Plano de Produção faz a ligação entre o Planeamento Agregado e o Plano Director de Produção, dando os meios necessários para que se possa especificar:
 - ✓ O volume total de produção para cada período subsequente;
 - ✓ O plano de *inputs* necessários à produção de cada período, detalhando as necessidades de mão-de-obra;
 - **/** ...

Índice

- → Introdução
- → Plano de Produção (*Master Production Plan*)
- → Plano Director de Produção (Master Production Schedule)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Plano Director de Produção (Master Production Schedule)

- ? Qual é o objectivo do Plano Director de Produção?
- ★ O objectivo deste Plano é calcular quantos produtos finais é que devem ser produzidos e quando.
- ★ Para isso, vai especificar:
 - → O volume total de produção para cada período subsequente;
 - → O plano de *inputs* necessários à produção de cada período, detalhando as necessidades de mão-de-obra e os requisitos em materiais;
 - → A utilização da capacidade produtiva;
 - → O volume de trabalho a subcontratar, ou a realizar em horas extraordinárias.

- ★ Por outras palavras, o Plano Director de Produção vai orientar para um período determinado toda a programação da produção que pode depois ser processado utilizando um MRP (como veremos adiante).
- ★ O MPS pode ser criado através:
 - → do Plano Agregado;
 - → de Estimativas de Procura de Produtos Finais:
 - Programação Linear;
 - * Discounted Cash Flow;
 - * Modelos Dinâmicos;
 - Cadeias de Markov;
 - * Outras técnicas Quantitativas;
 - * Outras técnicas Qualitativas.

- ★ Técnicas Quantitativas de Previsão:
 - → Sistemático não Quantificado
 - → Analogia Histórica
 - → Opinião de Especialistas
 - → Reuniões em Painel
 - → Alternativas Futuras

- ★ O Plano Director de Produção surge para que se possa fazer um planeamento a *médio prazo*, e tem em conta os seguintes factores:
 - → Inventário existente Há que jogar directamente com os stocks existentes
 - → Restrições de Capacidade Factor crítico, porque muitas vezes os *MPS*'s elaborados que ocultam este factor exigem a existêcia de um volume de *stocks* num determinado momento que ultrapassa a capacidade de armazenamento.
 - → Disponibilidade do Material Este é uma das últimas preocupações que procuram ser colmatadas através dos *Sistemas de Informação*.
 - → Tempo de Produção Factor que indica quanto tempo demora a um certo produto (ou volume de produtos) a ser produzido

Como assegurar um bom Plano Director de Produção?

- ★ Incluir todas as procuras da venda dos produtos, reabastecimentos dos armazéns, sobressalentes e necessidades internas da fábrica
- ★ Nunca perder de vista o Planeamento Agregado
- ★ Estar envolvido com os compromissos das encomendas dos clientes
- ★ Estar acessível a todos os níveis de gestão
- ★ Conciliar objectivamente os conflitos entre a produção, o *marketing* e a engenharia
- ★ Identificar e comunicar todos os problemas

Ambiente de Produto e Mercado

- ★ Make-to-Stock (MTS)
 - → Baixo tempo de entrega
 - → Custos de manutenção do *stock*
 - → Poucos produtos finais, geralmente *standardizados*
 - → Prevê-se uma procura elevada
 - → Sistema multi-produto
 - → Capacidade de produção limitada
 - ***** *Exemplos:*
 - → LeGrand (*Interruptores Eléctricos*)
 - → Vulcano (*Esquentadores*)

Ambiente de Produto e Mercado

- ★ Make-to-Order (MTO)
 - → Não existem *stocks* de produtos acabados
 - → As encomendas ficam em espera
 - → A data de entrega é combinada com o cliente
 - → Prevê-se uma baixa procura
 - → O produto é altamente configurável
 - → A matéria prima é usada em vários produtos
 - ***** Exemplos:
 - → Boeing (Aviões)
 - → Ina (*Chumaceiras*)
 - → Ferrari (*Automóveis*)
 - → Transmeca (Correntes de Transmissão)
 - → YKK (Fechos)

Ambiente de Produto e Mercado

- ★ Assemble-to-Order (ATO)
 - → Existem muitos produtos finais, constituídos por um conjunto limitado de sub-partes ou módulos
 - → A previsão da procura é difícil: normalmente as variáveis aleatórias não seguem uma *Lei Normal*!
 - → Existe um compromisso entre os custos relacionados com a existência de *stocks* e o tempo de entrega
 - → Prevê-se uma baixa procura
 - → Nestes casos o *Plano Director de Produção* adequa-se mais à gestão dos módulos
 - → Usa-se o *Final Assembly Schedule (FAS)*, em que a gestão da produção é orientada pelas ordens de compra
 - * Exemplo: Pegasus (Camiões)

Agora que já sabemos o que é o Plano Director de Produção...

- ? ...como podemos planeá-lo?
 - → Escolha de um período temporalExemplo: semana a semana
 - → Produção em lotes *ou* produção lote-a-lote
 - → Dados e Variáveis:
 - * Plano Director de Produção (Q_t)
 - * Previsão (F_t)
 - * Ordens dos Clientes (O_t)
 - * Inventário no final de cada período (I_t)
 - Inventário Inicial (I_0)

- * Plano Director de Produção (Q_t) Inicialmente não existe Plano Director de Produção, logo $Q_t = 0$
- * Inventário no final de cada período (I_t)
 - O Inventário no final de um determinado período é o inventário no período anterior (caso exista) menos a quantidade prevista de pedidos, ou o número efectivo de pedidos, caso este tenha ultrapassado a previsão. Ou seja, $I_t = max\{0, I_{t-1}\}$ $max\{F_t, O_t\}$
 - Se o Inventário resultante for positivo, então continua a não existir um Plano Director de Produção, ou, matematicamente,

if
$$I_t > 0$$
 then $Q_t = 0$

Se, por outro lado, o Inventário resultante for negativo ou nulo, para esse instante deve-se considerar como Plano Director de Produção para esse mesmo instante o tamanho do lote:

if
$$I_t \leq 0$$
 then $Q_t = "tamanho do lote"$

Para isso há que recalcular I_t , dizendo que o inventário no instante actual equivale ao do instante anterior somado do Q_t (que toma aqui as porporções do tamanho do lote), menos a quantidade prevista de pedidos para esse instante (ou a quantidade efectiva de pedidos para esse mesmo instante, caso tenham já alcançado ou ultrapassado os valores previstos).

$$I_t = I_{t-1} + Q_t - \max\{F_t, O_t\}$$

Resumindo... Temos:

$$\bigstar Q_t = 0$$

$$\star I_t = max\{0, I_{t-1}\} - max\{F_t, O_t\}$$

$$\bigstar$$
 if $I_t > 0$ then $Q_t = 0$

- \star if $I_t \leq 0$ then $Q_t = "tamanho do lote"$
- $\star I_t = I_{t-1} + Q_t max\{F_t, O_t\}$
- → Equação de equilíbrio de Materiais (no caso de um cenário "Make to Stock") $I_t = I_{t-1} + Q_t \max\{F_t, O_t\}$

Available-to-Promise (ATP)

- ★ Para o planeamento de produção, pode convir o cálculo da quantidade de *stock* que se pode comprometer para novas ordens. A essa quantidade dá-se o nome de *Available-to-Promise* (ATP).
- ★ Para o cálculo do *ATP* as previsões não são consideradas, logo:
 - → Se o *MTS* do período seguinte for positivo, então o *ATP* vai ser equivalente ao *MTS* do período actual subtraído do número de ordens dos clientes no mesmo período.
 - → Se, por outro lado, o *MTS* para o período seguinte for nulo, então o *ATP* será o *MTS* do período actual subtraído não só do número de ordens dos clientes no mesmo período mas também das ordens no período seguinte.
 - → O *ATP* não pode ser, obviamente, negativo.

★ Resumindo... Temos:

- \rightarrow if $Q_{t+1} > 0$ then $ATP = Q_t O_t$
- → if $Q_{t+1} == 0$ then $ATP = Q_t (O_t + O_{t+1})$
- \rightarrow $ATP \ge 0$

O Plano Director de Produção em sistemas Make-to-Stock

- ★ Como vimos anteriormente, o sistema *Make-to-Stock* é um sistema que controla vários produtos e tem uma capacidade limitada de produção, pelo que *há que entrar em consideração com os custos de montagem e inventário*.
- ★ Precisamos, assim, de lidar com outros factores e promenorizar as variáveis já existentes:
 - * Para cada período, saber a quantidade produzida de cada produto, o inventário existente de cada produto, a procura de cada produto e o número de horas de produção nesse período.
 - * Sobre cada produto, saber quanto tempo demora a produção de uma unidade, quanto custa a manutenção de uma unidade em stock durante um período e quanto custa montar uma unidade.

Dados e Variáveis do MPS em sistemas MTS

- \bigstar Quantidade produzida do produto i no período t (Q_{it})
- \star Inventário do produto i no final do período t (I_{it})
- \star Procura do produto i no período t (D_{it})
- \star Horas de produção existentes no período $t(G_t)$
- * Horas de produção de cada unidade do produto $i(a_i)$
- * Custo da manutenção de cada unidade do produto i em stock (h_i)
- * Custo de montagem de cada unidade do produto i (A_i)
- ightharpoonup Para indicar a existência de produção do produto i no período t, define-se y_{it}
 - if $Q_{it} == 0$ then $y_{it} = 0$
 - if $Q_{it} > 0$ then $y_{it} = 1$

Considerações sobre os Dados e Variáveis do MPS

- * A_iy_{it} Custo de montagem do produto i em t, caso se produza
- * h_iI_{it} Custo da stockagem de todos i iventariados no final de t
- $A_i y_{it} + h_i I_{it}$ Custo total referente ao produto i no período t

$$\sum_{t=1}^{T} (A_i y_{it} + h_i I_{it})$$
 - Custos totais referentes ao produto i

$$\sum_{i=1}^{n} \sum_{t=1}^{T} (A_i y_{it} + h_i I_{it}) - \text{Custos totais}$$

Qual é o nosso objectivo?

- * Minimizar os custos totais $Minimize \sum_{i=1}^{n} \sum_{t=1}^{I} (A_i y_{it} + h_i I_{it})$
- * O número de produtos produzidos nunca é negativo $Q_{it} \geq 0$
- lpha O número de produtos iventariados nunca é negativo $I_{it} \geq 0$
- * O indicador de existência de produção é booleano $y_{it} \in \{0,1\}$
- * Nunca se pode esperar a produção de mais produtos do que aqueles que temos tempo para produzir $\sum_{i=1}^{n} a_i Q_{it} \leq G_{it}$
- * O n^o de produtos vendidos corresponde à diferença entre o n^o de produtos em inventário anteriormente mais os produzidos e o n^o de produtos em inventário. $D_{it} = I_{i,t-1} + Q_{it} I_{it}$
- * Nunca se produz mais do que se vende $Q_{it} \leq y_{it}D_{it}$

Planeamento da Capacidade

- * Entendendo por *capacidade* o n^o de unidades produzidas por um recurso numa determinada unidade de tempo...
- ! A solução óptima para a minimização dos custos totais pode indicar que num determinado instante devemos ter uma capacidade de produção elevada, mas os sistemas reais têm uma capacidade de produção limitada!
- Além de ser extremamente difícil alterar a capacidade de um recurso...
- * há que saber classificá-la. Para isso existem dois métodos vulgarmente usados, um para o *Plano Director de Produção* e outro para o *Sistema de Controlo de Inventários e Produção*:
 - → MPS Rugh-Cut Capacity Planning (RCCP)
 - → MRP Capacity Requirement Planning (CRP)

MPS - Rugh-Cut Capacity Planning (RCCP)

- * Peguemos num exemplo de uma Empresa que fabrica quatro tipos de produtos...
- → Quantidade de produtos produzidos por semana

	Semana 1	Semana 2	Semana 3	Semana 4
Produto 1	1000			
Produto 2	900			
Produto 3	1500			
Produto 4	600			

→ Lista de capacidade

		Montagem	Inspecção
	Produto 1	20	2 minutos
-	Produto 2	24	2.5 minutos
	Produto 3	22	2 minutos
	Produto 4	25	2.4 minutos

$$M_1 = \frac{(1000 * 20 + 900 * 24 + 1500 * 22 + 600 * 25)}{60} = 1493.333$$

$$M_2 = \frac{(1000 * 2 + 900 * 2.5 + 1500 * 2 + 600 * 2.4)}{60} = 144.833$$

→ Capacidade necessária por semana

	Semana 1	Semana 2	Semana 3	Semana 4	Disponível
Montagem	1493.333				1500
Inspecção	144.833				200

Modelizar a capacidade

- * Heurística: baseada na análise de entradas e saídas (Karni)
 - \rightarrow G =capacidade de equipamento
 - \rightarrow R_t = trabalho atribuído no período t
 - \rightarrow Q_t = produção no período t
 - \rightarrow W_t = trabalho em execução no período t
 - \rightarrow U_t = fila no início do período t, antes do trabalho ser atribuído
 - \rightarrow L_t = Tempo de execução no período t

Usando as variáveis definidas anteriormente, temos:

*
$$Q_t = min\{G, U_{t-1} + R_t\}$$

* $U_t = U_{t-1} + R_t - Q_t$

$$* U_t = U_{t-1} + R_t - Q_t$$

$$W_t = U_{t-1} + R_t = U_t + Q_t$$

$$*L_t = \frac{W_t}{G}$$

Índice

- → Introdução
- → Plano de Produção (*Master Production Plan*)
- → Plano Director de Produção (*Master Production Schedule*)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Sistema de Controlo de Inventários e Produção (MRP)

- → Quais são os objectivos?
 - → Pretende-se calcular os requisitos de tempo e quantidade para:
 - * componentes;
 - subcomponentes;
 - * matéria-prima bruta.
 - → Tenta-se ainda:
 - Baixar os custos de stock;
 - * Melhorar a eficiência e a eficácia da produção;
 - * Reagir a possíveis mudanças de mercado.

- → Quais são as vantagens?
 - → Tem-se a capacidade de disciplinar e prioritizar a produção;
 - → Tem-se a capacidade de controlar o *stock*;
 - → Torna-se possível auxiliar a estruturação de produtos.
- → Quais são as entradas?
 - → Plano Director de Produção (MPS)
 - → Registos de Inventário (IR Inventory Records)
 - → Estrutura de Produtos (BOM Bill of Material)

Exemplo de um Plano Director de Produção para um telefone de secretária:

	Plano Director de Produção
Semana 1	
Semana 2	600
Semana 3	1000
Semana 4	1000
Semana 5	2000
Semana 6	2000
Semana 7	2000
Semana 8	2000

Registos de Inventário (IR - Inventory Records)

- → Contêm o estado de todos os produtos em stock;
- → Registam todas as transacções feitas ao inventário;
- → Actualizam os dados mantendo a integridade dos registos.

Estrutura de Produtos (BOM - Bill of Material)

- → A Estrutura de Produtos faz uma listagem de todos os materiais necessários para criar um produto numa forma hierárquica, que é normalmente a forma pela qual o produto é produzido
- → Extremamente importante num sistema MRP uma vez que é o guia principal do sistema
- → Não podem ser toleradas inexactidões
- → Sem o MRP ou qualquer outro sistema informático, a exactidão da BOM não é critica e as empresas podem viver com alguns erros.
- → Um primeiro passo antes de instalar um sistema MRP é verificar as BOM de todos os produtos e verificar se estão correctas

Sistema de Controlo de Inventários e Produção -Saídas

- → Ordens de Planeamento
 - → Ordens de Compra (Purchase Orders)
 - * Quantidade de *Partes Adquiridas* e *Matéria Prima* a adquirir
 - * Tempo que demora aos items a adquirir estarem disponíveis
 - → Ordens de Trabalho (Workorders)
 - * Quantidade de *Partes a Fabricar* e *Partes a Montar*
 - * Tempo de entrega

Processo de MRP's - Explosão

- → Decomposição da componente final das suas partes constituintes
- → Saber quantos componentes do nível inferior são precisos para criar um no nível superior

	Item	Requisitos
Nível 0 (MPS)	1	100
Nível 1	2	100
Nível 2	5	400
	6	200
Nível 3	9	400
	10	200
Nível 4	12	1600
	13	800

Processo de MRP's - Ligação em Rede

Pegando outra vez no exemplo do telefone de secretária...

	<u> </u>
	Plano Director de Produção
Semana 1	
Semana 2	600
Semana 3	1000
Semana 4	1000
Semana 5	2000
Semana 6	2000
Semana 7	2000
Semana 8	2000

Ligação em Rede - Requisitos de Rede

→ Requisitos de Rede = Requisitos Brutos - Inventário - Quantidade Económica

	R. Brutos	Q. Económica	Inventário	Req. de Rede
	(RB)	(E)	(I)	(RR)
Actualmente			1200	
Semana 1		400	1600	
Semana 2	600	700	1700	
Semana 3	1000	200	900	
Semana 4	1000	0	0	100
Semana 5	2000	0	0	2000
Semana 6	2000	0	0	2000
Semana 7	2000	0	0	2000
Semana 8	2000	0	0	2000

$$RR_2 = RB_2 - (I_1 + E_2) = 600 - (1600 + 700) = -1700$$

$$RR_3 = 1000 - (1700 + 200) = -900$$

$$RR_4 = 1000 - 900 = 100; RR_5 = 2000; (...)$$

Criação de offset's

- → Consiste no cálculo da altura em que as ordens saem, ou seja, a diferença entre o tempo do pedido de um produto e o de obtenção do mesmo
- → Se se pretende, por exemplo, 40 unidades de um certo produto na semana 5, e se o *offset* é de 1 semana, então este deve ser pedido na semana 4
- → À data em que se efectua o pedido dá-se o nome de *Planned*Order Release

Redimensionamento de Lotes

- → A utilização de dimensões de lotes, por conveniência, na produção ou nas quantidades económicas de encomenda, só é prática para artigos de nível inferior (peças básicas ou matérias primas)
- → A dificuldade em usar uma dimensão de lote num nível mais elevado é que a discrepância entre a procura real e a dimensão do lote se torna exagerada para os artigos componentes

→ Exemplo:

- \rightarrow O artigo A é composto por uma unidade B
- \rightarrow O artigo B é composto por uma unidade C
- \rightarrow A dimensão dos lotes de A, B e C é, respectivamente, 100, 150 e 200
- ightharpoonup Se não há actualmente unidades em stock, então uma procura de 75 unidades de A implicará a encomenda de 200 unidades de C
- ightharpoonup O excesso de 25 unidades de A levará a um excesso de 125 unidades de C
- → Quanto mais elevado for o nível na estrutura do produto da dimensão do lote, maior é o exagero potencial na procura nos níveis inferiores

- → Existem inúmeras abordagens para o dimensionamento de lotes
 - → O método *lote para o lote (L4L)*, provavelmente o mais comum, encomenda a quantidade exacta determinada pelas necessidades líquidas, de forma a que não exista dimensão padrão de lote
 - → O método do *custo mínimo total (LTC)* equilibra o custo de encomenda com o custo de manutenção para uma dimensão de lote que satisfaça as necessidades líquidas programadas do MRP
 - → O método do *custo mínimo unitário* (*LUC*) selecciona a dimensão do lote que oferece o custo mínimo por unidade
 - **→** ...

Registo MRP Completo

	R. Brutos	Q. Económica	PIB Ajustado	Req. Líquidos	Enc. Plan	Saída de Ordens
Actualmente			1200			
Semana 1		400	1600			
Semana 2	600	700	1700			3000
Semana 3	1000	200	900			
Semana 4	1000	0	2900	100	3000	3000
Semana 5	2000	0	900			3000
Semana 6	2000	0	1900	1100	3000	
Semana 7	2000	0	2900	100	3000	
Semana 8	2000	0	900			

- → Tamanho do lote = 3000
- → Tempo de Produção = 2 semanas

					Semana					
Nível		Actual	1	2	3	4	5	6	7	8
	12 Base									
	R. Brutos			600	1000	1000	2000	2000	2000	2000
	Q. Econom.		400	400	400					
1	PIB	800	1200	1000	400	2400	400	1400	2400	400
	R. Rede					600		1600	600	
	Enc. Plan					3000		3000	3000	
	Ordens Saída				3000		3000	3000		
	121 Recipiente									
	R. Brutos				3000		3000	3000		
	Q. Econom.									
2	PIB	500	500	500						
	R. Rede				2500		3000	3000		
	Enc. Plan				2500		3000	3000		
	Ordens Saída			2500		3000	3000			
	122 Borracha									
	R. Brutos				12000		12000	12000		
	Q. Econom.									
3	PIB	25000	25000	25000	13000	13000	1000			
	R. Rede							11000		
	Enc. Plan							11000		
	Ordens Saída						11000			

Métodos de Actualização

- → Método Regenerativo
 - → Volta-se a fazer o cálculo de tudo, usando novas previsões, novos tempos de entrega, etc.
 - → Cada registo MRP é recalculado
 - ★ Mais difícil de implementar
 - ★ Requer muito mais tempo de computação
 - ★ Não existem propagações de erro visto tudo ser recalculado

Métodos de Actualização

- → Método de Troca de Rede
 - → Calcula apenas os novos dados para os items que mudaram
 - → É feita uma explosão parcial
 - ★ Fácil de implementar
 - ★ Rápido a executar
 - ★ Geralmente é feito ou diariamente ou semanalmente
 - ★ Os erros propagam-se

Método de Troca de Rede - Exemplo

MPS para Fevereiro

Fevereiro Semana Produto 5 6 7 8 Modelo A 2000 2000 2000 2000 Modelo B 350 350 Modelo C 1000 1000 1000 Modelo D 300 200

MPS actualizado

	Fevereiro							
		Semana						
Produto	5	6	7	8				
Modelo A	2000	2000	2300	1900				
Modelo B	500		200	150				
Modelo C	1000		800	1000				
Modelo D		300	200					

Net Change

	Fevereiro				
	Semana				
Produto	5	6	7	8	
Modelo A			300	-100	
Modelo B			200	-200	
Modelo C		Ī	-200		
Modelo D					

- → *Net Change* é a diferença entre o *MPS* actual e o *MPS* directamente anterior
- → Que métodos se podem usar para prever as quantidades necessárias para cumprir o MPS?
 - → Explosão
 - ★ Permite fazer um *zoom* ao produto, conseguindo distinguir esse produto até à ínfima peça
 - → Combinar Requisitos
 - ★ Faz-se o levantamento das componentes que compõem um determinado produto
 - ★ Combinam-se os requisitos de um mesmo item, oriundos de vários produtos
 - ★ Níveis do *BOM* devem ser combinados

- ★ Relativo à linha de montagem
- ? Aonde é que determinado componente é necessário?
- ? Em que quantidades?

Lotes, Encomendas e Tempo Modelos Estáticos Dinâmicos **Simples Optimizados** Heurísticos Quanto maior for o lote, maior é o tempo de entrega Se a encomenda for grande e os lotes pequenos, o processamento é dificultado (tanto no envio como na recepção) → Maior demora no tempo de processamento da encomenda

Multi-Echelon

- Definição
 - → Sistema de Controlo de Inventários
 - → Controlo multi-ponto
 - → Composto por uma hierarquia de pontos de stock
- Concretamente...
 - → Fábrica
 - → Armazém

Multi-Echelon

- ★ EOQ Economic Order Quantity
 - → Sempre que se efectuam encomendas, ou planeamento de um determinado produto
 - → Usado para ter a matéria prima Just-In-Time para que a produção seja possível
 - → Distribuidores Purchase-To-Stock
 - → Fabricantes Make-to-Order

$$\rightarrow EOQ = \sqrt{\frac{2 \times A \times D}{H}}$$

- → *A* Custos adicionais para efectuar uma encomenda
- \rightarrow *D* Dinheiro proveniente das vendas de um ano
- → *H* Despesas de Encomenda

- ${\color{red} \rightarrow} \ \overline{I}(n) = \sqrt{n}(\frac{Q}{2} + S)$ Tempo médio de entrega
- $ightharpoonup S = Z\sigma_t$ Stock de segurança
- → *n* Número de pontos de *stock*
- $\rightarrow Q EOQ$

Stock de Segurança

- \bigstar Stock de Segurança $S=Z\sigma_t$
- \bigstar Nível de Reposição de *Stock R* = \overline{D} + S

- $\star \sigma_t = \sigma \sqrt{t}$
- $\star Z = \frac{R \overline{D}}{\sigma_t}$
- \star D Tempo médio de recepção da encomenda
- \star t Tempo de entrega

Índice

- → Introdução
- → Plano de Produção (*Master Production Plan*)
- → Plano Director de Produção (Master Production Schedule)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Outros Aspectos de MRP

- → Shop-Floor Control
 - → Releasing
 - → Scheduling
 - → Monitoring
 - → Updating

- → Vantagens
 - → Avaliar correctamente os planos de produção
 - → Controlo e redução do inventário
- → Falhas
 - → A capacidade de produção infinita
 - → Incerteza
 - → Tempo de execução da produção e fornecimento fixo
 - → Qualidade de produção
 - → System nervousness
 - → Integridade dos Dados
- → Exemplos comuns de soluções para Sistemas de Informação
 - → SAP Sollutions
 - → Oracle Information Systems
 - → PeopleSoft

Índice

- → Introdução
- → Plano de Produção (*Master Production Plan*)
- → Plano Director de Produção (Master Production Schedule)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Conclusão

- → Os modelos apresentados anteriormente, incluindo o método de Wilson, são modelos matemáticos destinados ao controlo de stocks a montante e juzante do sistema produtivo
- → Este capítulo explica como controlar os stocks em vias de fabrico
- → A procura deste tipo de produtos depende da procura a juzante, ao contrário dos modelos anteriores em que a procura é independente.
- → O modelo MRP aborda a utilização descontínua de materiais
- → Aborda também a procura de materiais directamente dependentes da produção de outros produtos semi-acabados ou produtos acabados
- → Tem como objectivo manter o nìvel de stocks o mais baixo possível
- → Pretende-se também assegurar que nunca faltem materiais, componentes ou produtos para a produção

Índice

- → Introdução
- → Plano de Produção (Master Production Plan)
- → Plano Director de Produção (*Master Production Schedule*)
- → Sistema de Controlo de Inventários e Produção (*MRP*)
- → Outros aspectos de MRP
- → Conclusão
- → Bibliografia
- → Questões

Bibliografia

- Sipper, D. and R. L. Buffin, Production Planning, Control and Integration, McGraw Hill, 1998
- → Chase, R. B. e N. J. Aquilino, Gestão da Produção e das Operações - Prespectiva do Ciclo de Vida, Monitor, Lisboa
- → Soreph G. Monks, Administração de Produção, McGraw Hill
- ightharpoonup A. Courtois, A. M. Pillet, C. Martin, Gestão de Produção, 4^a Edição, Lidel, 1997
- \rightarrow Ana Paula Marques, Gestão da Produção Diagnóstico, Planeamento e Controlo, 4^a Edição, Texto Editora, Lda., 1998
- Tavares, L. Valadares, Investigação Operacional, McGraw Hill, Lisboa
- → Manufacturing Planning and Control Systems, McGraw Hill

