

Course Information

Program : B.Sc. Engineering in CSE

Course Code : CSE 309

Course Title : Operating Systems

Course Credit : 3.00

Contact Hours : 3_{hrs}

Semester : Fall 2020-21

Intake : 39th [Shift: Day]

Section : 01

Prerequisites : None

Course Objectives

The course provides the students with an understanding of the basic components of a computer operating system, and the interactions among the various components. They will able to know the concept of process, thread and how interacts among them and communicate with each other. They will know how the system performs optimally and how the system can be made faster. They will able to know critical situations of software and hardware and solve the critical situation by learning CPU scheduling and utilization, deadlocks, starvation, memory management, physical memory, early paging and segmentation technique, modern virtual memory concepts and techniques, synchronization, system calls, and file systems. They will able to explore better solution in case of different kinds of operating system related issues. They will able to introduce with various tools. Students will also able to implement a significant portion of an operating system.

Course Synopsis

Principles of operating systems, Operating-System Structure, Operating-System Operations, Process Concept, Operations on Processes, Inter-process Communication, Threads, Multi-core Programming, Multi-threading Models, Thread Libraries, Threading Issues, Process Synchronization, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, CPU Scheduling, Scheduling Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-Processor Scheduling, Deadlocks, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock, Main Memory, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Virtual Memory, Page Replacement, Allocation of Frames, Mass-Storage Structure, File-System Interface, File-System Implementation.

Assessment

Class Participation	:	10%
Assignment/Presentation	:	10%
Class Test	:	10%
Midterm Examination	:	30%
Final Examination	:	40%

Course Outcomes (COs)

After completion of this course students will be able to:

CO1:	Understand the basic concept and design of the major components of modern Operating System.
CO2:	Explain different terms and techniques such as process, thread, CPU scheduling, deadlock and memory management.
CO3:	Apply algorithms for CPU scheduling, process synchronization, deadlocks handling etc for utilization of computer resources.
CO4:	Analyze several solutions for deadlock detection and handling, memory management techniques and disk scheduling algorithm for better performance.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2	√											
CO3			V									
CO4		V										

Sl. No.	COs	Corresponding POs	Bloom's taxonomy domain/level	Delivery methods and activities	Assessment tools
CO1	Understand the basic concept and design of the major components of modern Operating System.	PO1	Understand	Class Lecture	Midterm
CO2	Explain different terms and techniques such as process, thread, CPU scheduling, deadlock and memory management	PO1	Understand	Class Lecture	Midterm, Final
CO3	Apply algorithms for CPU scheduling, process synchronization, deadlocks handling etc for utilization of computer resources.	PO3	Apply	Class Lecture	Midterm, Final
CO4	Analyze several solutions for deadlock detection and handling, memory management techniques and disk scheduling algorithm for better performance.	PO2	Analyze	Class Lecture	Final

Descriptions of Program Outcomes (POs)

PO1	Engineering Knowledge (Cognitive): Apply the knowledge of mathematics, science,
	engineering fundamentals and an engineering specialization to the solution of complex
	engineering problems.
PO2	Problem Analysis (Cognitive): Identify, formulate, research the literature and analyze complex
	engineering problems and reach substantiated conclusions using first principles of mathematics,
	the natural sciences and the engineering sciences.

PO3	Design/Development of Solutions (Cognitive, Affective): Design solutions for complex
	engineering problems and design system components or processes that meet the specified needs
	with appropriate consideration for public health and safety as well as cultural, societal and
	environmental concerns.
PO4	Investigation (Cognitive, Psychomotor): Conduct investigations of complex problems,
	considering design of experiments, analysis and interpretation of data and synthesis of
	information to provide valid conclusions.
PO5	Modern Tool Usage (Psychomotor, Cognitive): Create, select and apply appropriate
	techniques, resources and modern engineering and IT tools including prediction and modeling to
	complex engineering activities with an understanding of the limitations.
PO6	The Engineer and Society (Affective): Apply reasoning informed by contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to professional engineering practice.
PO7	Environment and Sustainability (Affective, Cognitive): Understand the impact of professional
	engineering solutions in societal and environmental contexts and demonstrate the knowledge of,
	and need for sustainable development.
PO8	Ethics (Affective): Apply ethical principles and commit to professional ethics, responsibilities
	and the norms of the engineering practice.
PO9	Individual Work and Teamwork (Psychomotor, Affective): Function effectively as an
	individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
PO10	Communication (Psychomotor, Affective): Communicate effectively about complex
	engineering activities with the engineering community and with society at large. Be able to
	comprehend and write effective reports, design documentation, make effective presentations and
	give and receive clear instructions.
PO11	Project Management and Finance (Cognitive, Psychomotor): Demonstrate knowledge and
	understanding of the engineering and management principles and apply these to one's own work
	as a member or a leader of a team to manage projects in multidisciplinary environments.
PO12	Life-Long Learning (Affective, Psychomotor): Recognize the need for and have the
	preparation and ability to engage in independent, life-long learning in the broadest context of
	technological change.

Weekly Schedule

Week	ure	Course Topics	Remarks	CO	Assessment
We	Lecture				
1	1	Introduction, Computer system organization Operating system structure, Operating system operations	(Silberschatz) Ch-1	CO1	
	2	Dual Mode operation, Computer system architecture, Multi-programming, Multitasking	Ch -2	CO1	
2	3	Process management, storage management, memory management, protection security, Distributed systems,	Ch-3	CO1	
	4	Communication in client-server system, direction of data flow, Process concept, Process Scheduling, Operations on Process	66	CO1	
3	5	Short-term Scheduler, Medium term scheduler, long term scheduler and degree of multi-programming, Process mixing	"	CO2	
	6	Interposes communication, Multi-threaded Programming, basic concepts, multi-core programming	Ch-4	CO2	Mid- Term Exam
4	7	Multi-threaded models, thread libraries, threading issues	[CT-1]	CO2	(30)
	8	Process Scheduling, basic concepts, scheduling criteria	Ch-5	CO2	
5	9	Preemptive scheduling, Non-Preemptive scheduling, Scheduling algorithms: FCFS, SJF, Priority, RR	"	CO3	
	10	Preemptive scheduling, Non-Preemptive scheduling, Scheduling algorithms(Continued)	66	CO3	
6	11	Thread Scheduling, Multiple-processor scheduling, algorithm evaluation	"	CO3	
	12	Review class for Semester Mid Term			

7		Mid Term Examin	ation		
	13	Process synchronization, Critical section problem,	Ch-6	CO3	
8		Two process synchronization problems and solutions			
	14	Semaphore , Classical problems of synchronization, monitor	44	CO3	
9	15	Deadlocks, deadlock characterization ,resource allocation graph	Ch-7	CO2	
	16	Methods for handling deadlock, deadlock prevention	"	CO3	
10	17	Deadlock avoidance, safe state, Banker's algorithm	[CT-2]	CO4	
	18	Memory management strategies, swapping	Ch-8 "	CO2	
11	19	Contiguous memory allocation, paging	66	CO4	Final Exam (40)
	20	Segmentation	66	CO4	(10)
12	21	Virtual memory, demand paging	Ch-9	CO2	
	22	Copy-on-write, Page replacement algorithm, Thrashing, memory mapped files	"	CO4	
13	23	Disc Management ,Disc Scheduling	Ch-10	CO4	
	24	File concept, access methods	[CT-3]	CO2	
14	25	File system mounting, file sharing, protection	"	CO2	
	26	Review class for Semester Final Examination			
15		Final Examination	on		

Descriptions of Cognitive Domain (Anderson and Krathwohl's Taxonomy 2001):

Level	Category	Meaning	Keywords
C1	Remembering	Recognizing or recalling knowledge from memory.	Define, describe, draw,
		Remembering is when memory is used to produce or	find, identify, label, list,
		retrieve definitions, facts, or lists, or to recite	match, name, quote,
		previously learned information.	recall, recite, tell, write
C2	Understanding	Constructing meaning from different types of	Classify, compare,

functions be they written or graphic messages or exemplify, conclude, activities interpreting. demonstrate. discuss. exemplifying. classifying, summarizing, inferring, comparing, or explain, identify, explaining. illustrate, interpret, paraphrase, predict, report C3 Apply, choose. **Applying** Using procedure through executing, change, implementing. Applying relates to or refers to compute, dramatize, situations where learned material is used through implement, interview. products like models, presentations, interviews or select, show, transfer, use simulations. C4 Breaking materials concepts Analyzing or into parts, Analyze, characterize, determining how the parts relate to one another or classify, compare, how they interrelate, or how the parts relate to an contrast, debate, overall structure or purpose. Mental actions included deconstruct. deduce. in this function are differentiating, organizing, and differentiate, attributing, as well as being able to distinguish discriminate, distinguish, between the components or parts. When one is examine, organize, analyzing, he/she can illustrate this mental function outline, relate, research, by creating spreadsheets, surveys, charts, or separate, structure diagrams, or graphic representations. C5 Making judgments based on criteria and standards **Evaluating** Appraise, argue, assess. and choose, conclude, critique, through checking critiquing. Critiques, recommendations, and reports are some of the products decide, evaluate, judge, that can be created to demonstrate the processes of justify, prove, rank, rate, select, monitor evaluation. C6 Creating Putting elements together to form a coherent or Construct, design, functional whole; reorganizing elements into a new develop, generate, pattern or structure through generating, planning, or hypothesize, invent, plan, producing. Creating requires users to put parts produce, compose, create, together in a new way, or synthesize parts into make, perform, plan, something new and different creating a new form or produce product. This process is the most difficult mental function.

Teaching Materials/Equipment

Required Text Book:

1. Operating System Concepts, 9th Edition by Silberschatz, Galvin and Gagne.

Recommended References:

- 1. Modern operating systems, 4th Edition by Andrew S. Tanenbaum.
- 2. Operating Systems: Internals and Design Principles, 7th Edition by William Stallings.

Overall CO Assessment Scheme

Assessment Area			Assessment Area Mark		
	CO1	CO2	CO3	CO4	
Class Test					
Assignment					
Attendance					
Midterm Exam	10	10	10		30
Final Exam		10	20	10	40
Total Mark	10	20	30	10	70

COs (Bloom's Level)	Excellent (80%-100%)	Good (70%-79%)	Satisfactory (60%-69%)	Poor (40%-59%)	Unsatisfactory (0-39%)	Marks (70)
CO1 (Understand)	Answer is complete and sufficient detail provided to support issues related to the question.	Answer is brief with sufficient detail provided to support issues were introduced.	Answer is brief with insufficient detail provided to support issues were introduced.	Answer is incomplete and excessive discussion of unrelated issues.	None of the relevant details were included or didn't answer.	10
CO2 (Explain)	Answer is complete and sufficient detail	Answer is brief with sufficient detail	Answer is brief with insufficient detail	Answer is incomplete and excessive discussion of	None of the relevant details were included or didn't answer.	20

provided provided provided unrelated to support issues support issues support issues issues. related to the were And serious were gaps in the question. And introduced. introduced. And most of also deals basic details. fully with the basic the entire details are question. included but some are missing. CO₃ The question The question The question The question attempt to 30 No (Apply) answered answered answered answered implement is is the appropriately briefly correctly by incompletely suggested by method. by applying applying the applying the applying by the suggested suggested suggested the suggested method in the method in the method in the method in the question. question. question but question but some steps some steps are missing. are correct. CO4 10 The chain of One or more The stated chain clear. One or more of analysis does (Analyze) complete, and intermediate intermediate analyzing not lead to the properly steps is analyzing analyzing ordered chain complete and stated question. steps are steps are of analyzing correctly missing missing or or steps ordered but unclear, but unclear (i.e. to lack of proper the answer the explanation expected correctness of question. of the explanation. the analysis is procedure) is not followed compromised to answer the question.

Grading System

Numerical Grade	Letter G	rade	Grade Pont
80% and above	A+	(A Plus)	4.00
75% to less than 80%	A	(A Regular)	3.75
70% to less than 75%	A-	(A Minus)	3.50
65% to less than 70%	B+	(B Plus)	3.25
60% to less than 65%	В	(B Regular)	3.00
55% to less than 60%	B-	(B Minus)	2.75
50% to less than 55%	C+	(C Plus)	2.50
45% to less than 50%	С	(C Regular)	2.25
40% to less than 45%	D		2.00
Less than 40%	F		0.00

Instructor Information

Instructor: Suman Saha

Assistant Professor,

Department of Computer Science & Engineering

Office : Room No-321 (Building - 2)

Phone : 01912127578

Email : suman@bubt.edu.bd

Class Schedule

Day	Time	Room No
Wednesday	01:20 PM - 02:40 PM	313
Thursday	10:00 AM – 11:20 AM	318

Office Hour

Day	08:30 - 09:50	10:00 –11:20	11:30 –12:50	01:20 - 02:40	02:50 -04:10	04:20-05.40	06:00 - 09:00
Sun							
Mon			С.Н.	C.H.			
Tue		С.Н.	С.Н.				
Wed			С.Н.		С.Н.		
Thu				С.Н.	С.Н.		
Fri							

Special Instructions

- Students are expected to attend all classes and examinations. A student MUST have at least 70% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.

D 11		4 77
Prepared by:	Checked by:	Approved by:
- 1 - p		12001010101

Suman Saha Assistant Professor, Dept. of CSE, BUBT