BRBFCR_EL1, Branch Record Buffer Function Control Register

The BRBFCR EL1 characteristics are:

Purpose

Functional controls for the Branch Record Buffer.

Configuration

This register is present only when FEAT_BRBE is implemented. Otherwise, direct accesses to BRBFCR EL1 are undefined.

Attributes

BRBFCR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 5	5958575655	54	53	52	51	50	49	48	474645444342414	0 39	
						RES	0				
RESOBANK	RES0	CONDDIR	DIRCALL	INDCALL	RTN	INDIRECT	DIRECT	En	RES0	PAUSED	Ĺ
31 30 29 28 2	2726252423	22	21	20	19	18	17	16	151413121110 9 8	7	

Bits [63:30]

Reserved, res0.

BANK, bits [29:28]

Branch record buffer bank access control.

BANK	Meaning
0b00	Select branch records 0 to 31.
0b01	Select branch records 32 to 63.

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [27:23]

Reserved, res0.

CONDDIR, bit [22]

Match on conditional direct branch instructions.

CONDDIR	Meaning
0b0	Do not match on conditional
	direct branch instructions.
0b1	Match on conditional direct
	branch instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

DIRCALL, bit [21]

Match on direct branch with link instructions.

DIRCALL	Meaning
0b0	Do not match on direct
	branch with link
	instructions.
0b1	Match on direct branch with link instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

INDCALL, bit [20]

Match on indirect branch with link instructions.

INDCALL	Meaning
0b0	Do not match on indirect
	branch with link
	instructions.
0b1	Match on indirect branch
	with link instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

RTN, bit [19]

Match on function return instructions.

RTN	Meaning
0b0	Do not match on function return
	instructions.
0b1	Match on function return
	instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

INDIRECT, bit [18]

Match on indirect branch instructions.

INDIRECT	Meaning
0b0	Do not match on indirect branch instructions.
0b1	Match on indirect branch instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

DIRECT, bit [17]

Match on unconditional direct branch instructions.

DIRECT	Meaning
0b0	Do not match on
	unconditional direct branch
	instructions.
0b1	Match on unconditional direct
	branch instructions.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

EnI, bit [16]

Include or exclude matches.

EnI	Meaning
0d0	Include records for matches, and exclude records for non-matches.
0b1	Exclude records for matches, and include records for non-matches.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

Bits [15:8]

Reserved, res0.

PAUSED, bit [7]

Branch recording Paused status.

PAUSED	Meaning
0b0	Branch recording is not
	Paused.
0b1	Branch recording is Paused.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

LASTFAILED, bit [6] When FEAT TME is implemented:

Indicates transaction failure or cancellation.

LASTFAILED	Meaning
------------	---------

0d0	Indicates that no
	transactions in a non-
	prohibited region have
	failed or been canceled
	since the last Branch
	record was generated.
0b1	Indicates that at least
	one transaction in a non-
	prohibited region has
	failed or been canceled
	since the last Branch
	record was generated.

The reset behavior of this field is:

- On a Cold reset, when FEAT_BRBEv1p1 is implemented, this field resets to an architecturally unknown value.
- On a Warm reset, when FEAT_BRBEv1p1 is not implemented, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [5:0]

Reserved, res0.

Accessing BRBFCR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, BRBFCR EL1

op0	op1	CRn	CRm	op2
0b10	0b001	0b1001	0b0000	0b001

```
priority when SDD == '1'" && MDCR EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.nBRBCTL == '0'
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = BRBFCR\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR EL3.NS == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
SCR\_EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = BRBFCR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = BRBFCR\_EL1;
```

MSR BRBFCR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b1001	0b0000	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR\_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3)
SCR EL3.FGTEn == '1') && HDFGWTR EL2.nBRBCTL == '0'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
SCR EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        BRBFCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.SBRBE != '11' &&
SCR\_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.SBRBE == 'x0'
&& SCR\_EL3.NS == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE != '11' &&
SCR EL3.NS == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.SBRBE == 'x0' &&
SCR\_EL3.NS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        BRBFCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
```

 $BRBFCR_EL1 = X[t, 64];$

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.