

(11) EP 0 667 893 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
 18.09.1996 Patentblatt 1996/38
- (21) Anmeldenummer: 94900078.0
- (22) Anmeldetag: 26.10.1993

- (51) Int Cl.⁶: **C11D 1/825**, C11D 1/86, C11D 1/94
- (86) Internationale Anmeldenummer: PCT/EP93/02959
- (87) Internationale Veröffentlichungsnummer: WO 94/10278 (11.05.1994 Gazette 1994/11)
- (54) WÄSSRIGES TENSIDKONZENTRAT

AQUEOUS SURFACTANT CONCENTRATE CONCENTRE TENSIOACTIF AQUEUX

- (84) Benannte Vertragsstaaten:
 AT BE CH DE DK ES FR GB IT LI NL SE
- (30) Priorität: 04.11.1992 DE 4237178
- (43) Veröffentlichungstag der Anmeldung: 23.08.1995 Patentblatt 1995/34
- (73) Patentinhaber: Henkel Kommanditgesellschaft auf Aktien 40191 Düsseldorf (DE)
- (72) Erfinder:
 - GIESEN, Brigitte
 D-40235 Düsseldorf (DE)

- SYLDATH, Andreas D-40589 Düsseldorf (DE)
- SCHMID, Karl-Heinz D-40822 Mettmann (DE)
- NEUSS, Michael
 D-50997 Köln (DE)
- (56) Entgegenhaltungen:

EP-A- 0 272 574 DE-A- 3 942 727 GB-A- 2 204 321

WO-A-91/03536 FR-A- 2 247 531

US-A- 3 925 224

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

15

30

35

Beschreibung

Die vorliegende Erfindung betrifft wäßrige Tensidmischungen aus kurzkettigem Alkyloligoalkoxylat und langkettigem Alkyloligoalkoxylat sowie gegebenenfalls weiteren Tensiden, deren Verwendung als Vorgemische (Compounds) zur Herstellung von flüssigen Wasch- und Reinigungsmitteln sowie flüssige Wasch- oder Reinigungsmittel, die derartige Tensidmischungen enthalten.

Bei der Herstellung flüssiger Wasch- und Reinigungsmittel werden die einzelnen Komponenten in der
Regel als fließfähige Lösungen eingesetzt, die jeweils
einen Stoff enthalten oder die als Vorgemische, sogenannte Compounds, aus mehreren in den fertigen Mitteln üblichen Stoffen bestehen. Die für die Mischung
zum fertigen Mittel vorgesehenen Komponenten sollen
einen möglichst hohen Aktivsubstanzgehalt aufweisen
und gleichzeitig leicht handhabbar sein, das heißt, sie
sollen möglichst fließfähig und leicht pumpbar sein und
eine möglichst hohe Lagerstabilität besitzen.

Der Fachmann weiß, wie zum Beispiel in A.M. Schwartz, J.W. Perry, Surface Active Agents, Vol. I, Interscience Publishers, 1949, Seite 372 beschrieben, daß Tensidmischungen in der Regel synergistische Effekte aufweisen und oft bessere Reinigungseigenschaften besitzen, als sich aus der Summe der Werte der Einzelkomponenten ergeben würde. Nichtionische Tenside bilden in dieser Beziehung keine Ausnahme. So sind beispielsweise aus der deutschen Offenlegungsschrift DT 24 48 532 binäre Gemische aus höchstens 5-fach alkoxyliertem, insbesondere ethoxyliertem Alkohol mit mindestens 6-fach alkoxyliertem Alkohol bekannt. Diese Mischungen können als solche, an Feststoffträger adsorbiert oder in wäßriger beziehungsweise wäßrigalkoholischer Lösung vorliegen und weisen eine gute Wirksamkeit bei der Entfernung von Öl auf.In der USamerikanischen Patentschrift US 3 925 224 werden Waschmittelzusätze beschrieben,, die 0,1-60 Gew.-% eines im wesentlichen wasserunlöslichen Tensids bzw. Tensidgemische enthalten. Dabei weisen Tensidmischungen aus 1- bis 6-fach ethoxylierten C_{8-20} -Alkoholen in Kombination mit entsprechenden Alkoholen, die mindestens 7-fach ethoxyliert sind, eine besonders gute waschkraftverstärkende Wirkung auf. Aus der deutschen Patentschrift DE 23 27 862 ist bekannt, daß pulverförmige Waschmittel, die 3-30 Gew.-% einer Kombination (Gewichtsverhältnis 1:5 bis 2:1) aus 2- bis 6-fach ethoxylierten C₁₂₋₂₀-Alkoholen mit entsprechenden, 8bis 20-fach ethoxylierten Alkoholen enthalten, ein hervorragendes Waschvermögen besitzen. In der deutschen Offenlegungsschrift DT 25 59 225 werden 20- bis 70-gewichtsprozentige wäßrige beziehungsweise wäßrig-alkoholische Lösungen von Tensidgemischen als Bestandteile von flüssigen Mitteln mit überlegener Gesamtwaschkraft vorgeschlagen, die aus 30-80 Gew.-% 7- bis 15-fach ethoxyliertem C₁₇₋₂₅-Alkohol, 10-60 Gew.-% 2- bis 10-fach ethoxyliertem $\overline{C_{9-15}}$ -Alkohol und 10-50 Gew.-% Aniontensid bestehen. Die europäische

Patentanmeldung EP-A-0 272 574 betrifft Verbindungen einer allgemeinen Formel R-O-(PO)₁₋₂-(EO)₆₋₈-H, in der R einen ausgewählten C-Ketten-Schnitt bedeutet, welche im Verhältnis 1:2 bis 10:1 mit bestimmten nichtionischen Tensiden gemischt werden können, wobei die nichtionischen Tenside Ethoxylate von C₁₀₋₁₈-Alkoholen mit 1 bis 4 EO-Gruppen sind.

Überraschenderweise wurde nun gefunden, daß Mischungen aus bestimmtem langkettigem Alkyloligoalkoxylat und bestimmtem kurzkettigem Alkyloligoalkoxylat in bestimmten Gewichtsverhältnissen ein ausgezeichnetes Reinigungs- und Spülvermögen aufweisen, sehr gut fließfähig und pumpbar sind und eine hohe Lager- und Kältestabilität aufweisen.

Unter "langkettigen" Verbindungen werden im Rahmen der vorliegenden Erfindung aliphatische Verbindungen mit 12 bis 22 C-Atomen verstanden, die linear oder ein- oder mehrfach verzweigt sein können, so daß die längste Kette aus C-Atomen auch kürzer als 12 sein kann. "Kurzkettige" Verbindungen im Rahmen der vorliegenden Erfindung sind demgemäß, unabhängig vom Verzweigungsgrad, solche mit 6 bis höchstens 10 C-Atomen. Bevorzugt sind in beiden Fällen Verbindungen mit linearen Alkylgruppen.

Die Erfindung betrifft demgemäß Tensidmischungen, bestehend aus einem kurzkettigen Alkyloligoalkoxylat der Formel I,

$$R^{1}$$
-(OC₃H₆)_n-(OC₂H₄)_p-OH (I)

in der R1 einen Alkylrest mit 6 bis 10 C-Atomen, n eine Zahl von 0,5 bis 3 und p eine Zahl von 4 bis 10 bedeuten, und einem langkettigen Alkyloligoalkoxylat der Formel II,

$$R^2$$
- $(OC_2H_4)_q$ -OH (II)

in der R² einen Alkylrest mit 12 bis 22 C-Atomen, insbesondere 12 bis 16 C-Atomen, besonders bevorzugt 12 bis 14 C-Atomen und q eine Zahl von 5,0 bis 9,5 bedeuten, in Gewichtsverhältnissen von kurzkettigem zu langkettigem Alkyloligoalkoxylat von 4:1 bis 10:1, sowie gegebenenfalls Wasser. Wasser ist vorzugsweise in Mengen bis zu 50 Gew.-% enthalten.

Die Zahlen n beziehungsweise p und q in den Formeln I und II sind mittlere Propoxylierungs- beziehungsweise Ethoxylierungsgrade und können als analytisch zu ermittelnde Größen auch gebrochene Zahlenwerte annehmen. Vorzugsweise beträgt der mittlere Propoxylierungsgrad im kurzkettigen Alkyloligoalkoxylat gemäß Formel I n 0,5 bis 2,0, insbesondere 0,8 bis 1,5, der mittlere Ethoxylierungsgrad p im kurzkettigen Alkyloligoalkoxylat gemäß Formel I 5,0 bis 9,5, insbesondere 6,0 bis 9,0, und/oder der mittlere Ethoxylierungsgrad q im langkettigen Alkyloligoalkoxylat der Formel II 6,0 bis 9,0.

Das Gewichtsverhältnis von kurzkettigem Alkyloligoalkoxylat gemäß Formel I zu langkettigem Alkyloligoalkoxylat gemäß Formel II beträgt vorzugsweise 5: 1 bis 8:1. Vorzugsweise enthalten die erfindungsgemäßen Tensidmischungen 40 Gew.-% bis 90 Gew.-%, insbesondere 50 Gew.-% bis 88 Gew.-% kurzkettiges Alkyloligoalkoxylat gemäß Formel I.

Die erfindungsgemäßen Tensidmischungen können zusätzlich als weitere Tensidkomponenten bis zu 90 Gew.-%, insbesondere 10 Gew.-% bis 50 Gew.-% Aniontensid, bis zu 60 Gew.-%, insbesondere 1 Gew.-% bis 50 Gew.-% weiteres nichtionisches Tensid und/oder bis zu 60 Gew.-%, insbesondere 1 Gew.-% bis 50 Gew.-% Amphotensid aus der Klasse der Betaine und/oder Sulfobetaine enthalten.

Die erfindungsgemäßen Tensidmischungen werden vorzugsweise als lagerstabile, fließfähige, pumpbare Vorgemische für die Herstellung von flüssigen Wasch- oder Reinigungsmitteln verwendet.

Ein derartiges flüssiges Wasch- oder Reinigungsmittel, insbesondere zur maschinellen und bevorzugt zur manuellen Reinigung von Geschirr enthält vorzugsweise 1 Gew.-% bis 20 Gew.-% einer oben beschriebenen Tensidmischung aus kurzkettigem Alkyloligoalkoxylat gemäß Formel I zu langkettigem Alkyloligoalkoxylat gemäß Formel II, 5 Gew.-% bis 30 Gew.-% Aniontensid, bis zu 20 Gew.-%, insbesondere 1 Gew.-% bis 15 Gew.-% zusätzliches nichtionisches Tensid, bis zu 12 Gew.-%, insbesondere 0,5 Gew.-% bis 10 Gew.-% Amphotensid, bis zu 8 Gew.-%, insbesondere 2 Gew.-% bis 6 Gew.-% Alkalihydroxid, bis zu 5 Gew.-%, insbesondere 1 Gew.-% bis 4 Gew.-% Mono- oder Dicarbonsäure mit 2 bis 6 C-Atomen, bis zu 15 Gew.-%, insbesondere 2 Gew.-% bis 10 Gew.-% wassermischbares organisches Lösungsmittel und 15 Gew.-% bis 90 Gew.-% Wasser enthält.

Die als zusätzliche Tensidkomponente einsetzbaren Aniontenside werden vorzugsweise ausgewählt aus der Klasse der Alkylsulfate, Alkylethersulfate, Sulfofettsäuredisalze, Sulfofettsäurealkylestersalze, Alkansulfonate und/ oder Alkylbenzolsulfonate mit linearen Cgbis C₁₅-Alkylgruppen am Benzolkem. Zu den brauchbaren Tensiden vom Sulfat-Typ gehören insbesondere primäre Alkylsulfate mit vorzugsweise linearen Alkylresten mit 10 bis 20 C-Atomen, die ein Alkali-, Ammoniumoder Alkyl- beziehungsweise Hydroxyalkyl-substituiertes Ammoniumion als Gegenkation besitzen. Besonders geeignet sind die Derivate der linearen Alkohole mit insbesondere 12 bis 18 C-Atomen und deren verzweigtkettiger Analoga, der sogenannten Oxoalkohole. Brauchbar sind demgemäß insbesondere die Sulfatierungsprodukte primärer Fettalkohole mit linearen Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecylresten sowie deren Gemische. Besonders bevorzugte Alkylsulfate enthalten einen Talgalkylrest, das heißt Mischungen mit im wesentlichen Hexadecyl- und Octadecylresten. Die Alkylsulfate können in bekannter Weise durch Reaktion der entsprechenden Alkoholkomponente mit einem üblichen Sulfatierungsreagenz, insbesondere Schwefeltrioxid oder Chlorsulfonsäure, und anschlie-Bende Neutralisation mit Alkali-, Ammonium- oder Alkylbeziehungsweise Hydroxyalkyl-substituierten Ammoniumbasen hergestellt werden.

Außerdem können die sulfatierten Alkoxylierungsprodukte der genannten Alkohole, sogenannte Ethersulfate, als Aniontensidkomponente eingesetzt werden. Vorzugsweise enthalten derartige Ethersulfate 2 bis 30, insbesondere 4 bis 10, Ethylenglykol-Gruppen pro Molekül.

Zu den geeigneten Aniontensiden des Sulfonat-Typs gehören die durch Umsetzung von Fettsäuree-10 stern mit Schwefeltrioxid und anschließender Neutralisation erhältlichen Sulfoester, insbesondere die sich von Fettsäuren mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, und linearen Alkoholen mit bis 6 C-Atomen, vorzugsweise 1 bis 4 C-Atomen, ableitenden Sulfonierunsprodukte, sowie die von diesen ableitbaren Sulfofettsäuredisalze. Bei den erfindungsgemäß einsetzbaren Alkansulfonaten handelt es sich um Substanzen, die durch Sulfoxidation von Kohlenwasserstoffen, welche vorzugsweise 10 bis 20 C-Atome enthalten, gewonnen werden. Dabei entstehen in der Regel Produkte mit statistischer Verteilung der Sulfonsäure-Substituenten, die gewünschtenfalls in bekannter Weise getrennt werden können. Für die erfindungsgemäßen Mischungen sind sekundäre Alkansulfonate mit 12 bis 17 C-Atomen besonders geeignet. Als Kationen kommen in allen Fällen der genannten Aniontenside insbesondere solche aus der Gruppe der Alkaliionen, Ammoniumoder Alkyl- beziehungsweise Hydroxyalkyl-substituierten Ammoniumionen in Betracht.

Zu den in Frage kommenden zusätzlichen nichtionischen Tensiden gehören insbesondere Alkylglykoside, Fettsäurealkanolamide, Fettsäurepolyhydroxyamide, beispielsweise Glucamide, und die Alkoxylate, insbesondere die Ethoxylate und/oder Propoxylate von Alkylaminen, vicinalen Diolen und/oder Carbonsäureamiden, die Alkylgruppen mit 10 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, besitzen. Der Alkoxylierungsgrad dieser Verbindungen liegt dabei in der Regel zwischen 1 und 20, vorzugsweise zwischen 3 und 10. Sie können in bekannter Weise durch Umsetzung mit den entsprechenden Alkylenoxiden hergestellt werden. Bevorzugt sind die Ethanolamid-Derivate von Alkansäuren mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 16 C-Atomen. Zu den besonders geeigneten Verbindungen gehören die Laurinsäure-, Myristinsäure- und Palmitinsäuremonoethanolamide.

Die als weitere nichtionische Tensidkomponente für die erfindungsgemäßen Tensidmischungen geeigneten Alkylglykoside und ihre Herstellung werden zum Beispiel in den europäischen Patentanmeldungen EP92355, EP 301 298, EP 357 969 und EP 362 671 oder der US-amerikanischen Patentschrift US 3 547 828 beschrieben. Bei den Glykosidkomponenten derartiger Alkylglykoside handelt es sich um Oligo- oder Polymere aus natürlich vorkommenden Aldose- oder Ketose-Monomeren, zu denen insbesondere Glucose, Mannose, Fruktose, Galaktose, Talose, Gulose, Altrose, Allose, Idose, Ribose, Arabinose, Xylose und Lyxose

15

20

se gehören. Die aus derartigen glykosidisch verknüpften Monomeren bestehenden Oligomere werden außer durch die Art der in ihnen enthaltenen Zucker durch deren Anzahl, den sogenannten Oligomerisierungsgrad, charakterisiert, der als analytisch zu ermittelnde Größe auch gebrochene Zahlenwerte annehmen kann und in der Regel bei Werten zwischen 1 und 10, bei den vorzugsweise eingesetzten Alkylglykosiden unter einem Wert von 1,5, insbesondere zwischen 1,2 und 1,4, liegt. Bevorzugter Monomer-Baustein ist wegen der guten Verfügbarkeit Glucose. Der Alkylteil derartiger Alkylglykoside stammt bevorzugt ebenfalls aus leicht zugänglichen Derivaten nachwachsender Rohstoffe, insbesondere aus Fettalkoholen, obwohl auch deren verzweigtkettige Isomere, insbesondere sogenannte Oxoalkohole, zur Herstellung verwendbarer Alkylglykoside eingesetzt werden können. Brauchbar sind demgemäß insbesondere die primären Alkohole mit linearen Octyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecylresten sowie deren Gemische. Besonders geeignete Alkylglykoside enthalten einen Kokosfettalkylrest, das heißt Mischungen mit im wesentlichen Dodecyl- und Tetradecylresten.

Zu den geeigneten Amphotensiden gehören Derivate tertiärer oder quartärer aliphatischer Amine, deren aliphatische Reste geradkettig oder verzweigt sein können und von denen einer eine Carboxy-, Sulfo-, Phosphono-, Sulfato- oder Phosphato-Gruppe trägt. Beispiele für derartige Amphotenside sind N,N-Dimethyl-N-tetradecyl-glycin, N,N-Dimethyl-N-octadecyl-glycin, 3-(Dimethyl-dodecylammonio)-1-propansulfonat und die unter den Bezeichnungen Dehyton^(R) AB, CB, G und K (Hersteller Henkel) vertriebenen Amphotenside.

Zu den in den erfindungsgemäßen Tensidmischungen gegebenenfalls enthaltenen organischen Monooder Dicarbonsäuren mit 2 bis 6 C-Atomen gehören insbesondere Glyoxylsäure, Milchsäure, Weinsäure, Citronensäure, Bernsteinsäure, Adipinsäure und Glutarsäure.

Geeignete wassermischbare organische Lösungsmittel werden vorzugsweise aus der Gruppe umfassend Alkohole mit 1 bis 4 C-Atomen, Glykole mit 2 bis 4 C-Atomen und die aus diesen ableitbaren Di- und Triglykole sowie die entsprechenden Glykolether ausgewählt. Zu den geeigneten Lösungsmitteln gehören beispielsweise Methanol, Ethanol, Propanol, Isopropanol sowie deren Gemische.

Die erfindungsgemäßen Tensidmischungen können, direkt oder nach Verdünnen mit Wasser, für technische Anwendungen, zum Beispiel als Flotationshilfsmittel oder Bohrspülungen, eingesetzt werden. Vorzugsweise werden sie jedoch als Vorgemische zur Herstellung flüssiger Wasch- und Reinigungsmittel verwendet, zu denen insbesondere Feinwaschmittel, Wollwaschmittel und Geschirrspülmittel, aber auch Shampoos gehören. Derartige Mittel können in einfacher Weise durch Verdünnen der Compounds mit Wasser auf die

gewünschte Aktivsubstanzkonzentration hergestellt werden. Die Zugabe anderer in derartigen Mitteln üblicher Bestandteile, zu denen insbesondere Buildersubstanzen, wie Zeolithe und Schichtsilikate, Korrosionsinhibitoren, Bleichmittel, Bleichaktivatoren, Komplexbildner für Schwermetalle, beispielsweise Aminopolycarbonsäuren und/oder Polyphosphonsäuren bzw. deren Salze, Vergrauungsinhibitoren, beispielsweise Celluloseether, Farbübertragungsinhibitoren, beispielsweise Polyvinylpyrrolidon,optische Aufheller, Enzyme, antimikrobielle Wirkstoffe, Abrasivmittel, Schaumstabilisatoren, Konservierungsmittel, pH-Regulatoren, Schauminhibitoren, beispielsweise Organopolysiloxane oder Paraffine, Perlglanzmittel sowie Farb- und Duftstoffe gehören, ist möglich.

Die Herstellung der erfindungsgemäßen Tensidmischungen wie auch der diese enthaltenden Mittel bereitet keinerlei Schwierigkeiten. Sie kann problemlos durch einfaches Mischen der Einzelkomponenten, die als solche oder gegebenenfalls in wäßriger Lösung vorliegen können, erfolgen.

Beispiele

25 Beispiel 1

Durch einfaches Mischen der Komponenten wurden die in Tabelle 1 durch ihre Zusammensetzung (Gew.-% Aktivsubstanz) charakterisierten Mischungen M1 bis M6 hergestellt.

Tabelle 1:

	Zusammensetzung [Gew%]							
5		M1	M2	МЗ	M4	M5	M6	
	Tensid A	2	3	16	8	40	40	
	Tensid B	-	-	2	1		-	
,	Tensid C	7	12	-		45		
	Tensid D	7	20	7	6		_	
	Tensid E	1	-	-	-	-	_	
	Tensid F	-	3	7	8		_	
	Tensid G	2	4	-	8	_	30	
	Ethanol	5	8	-	-	.		
	NaOH	-	2	- [- [- 1	_	
	Säure H	-	2	-	_	.	-	
Į	Wasser	asser ad 100						

- A: Erfindungsgemäße Tensidmischung aus 85 Gew.-% eines 1-fach propoxylierten und anschließend 7-fach ethoxylierten C₈-Alkanols mit 15 Gew.-% eines 7-fach ethoxylierten C_{12/14}-Alkanols
 - B: Fettsäure-Monoethanolamid (Comperlan^(R) 100, Hersteller Henkel)
- C: Na-C_{12/14}-Alkylsulfat (Texapon^(R) LS, Hersteller Henkel)
- D: Natrium-C_{12/14}-Alkyl-(OCH₂CH₂)₃-Sulfat

50

55

15

20

- E: Amphotensid (Dehyton(R) AB, Hersteller Henkel)
- F: Amphotensid (Dehyton(R) K, Hersteller Henkel)
- G: C_{14/16}-Alkylglucosid, Oligomerisierungsgrad 1,4
- H: Bernsteinsäure-Glutarsäure-Adipinsäure-Gemisch (Sokalan^(R) DCS, Hersteller BASF)

Dabei ist besonders bemerkenswert, daß auch die konzentrierten Ausgestaltungen M5 und M6 eine vorteilhafte Kältestabilität aufweisen:

Tabelle 2

	M5	М6
Kältetrübungspunkt [°C]	-7	+4
Stockpunkt [°C]	-8	-9

Beispiel 2: Reinigungsleistung

Durch Verdünnen mit Wasser wurden aus den Mischungen M1 bis M4 gemäß Beispiel 1 Lösungen hergestellt, die jeweils 0,5 Gramm des Mittels pro Liter Lösung enthielten. Zur Demonstration der Reinigungsleistung wurde der in "Fette, Seifen, Anstrichmittel", 74 (1972), 163, beschriebene Tellertest durchgeführt. Es wurde mit Wasserhärten von 16°d (160mg CaO/Liter) bei 50 °C und mit Rindertalg (2g/Teller) gearbeitet; die angeschmutzten Teller wurden nach 24 Stunden Lagerung bei Raumtemperatur mittels einer rotierenden Spülbürste gespült. Dabei war die Reinigungsleistung der eine erfindungsgemäße Tensidmischung enthaltenden Mittel derjenigen von Vergleichsmischungen, die statt der erfindungsgemäßen Tensidmischung (A in Tabelle 1) andere nichtionische Tenside, beispielsweise einen 6,5-fach ethoxylierten C_{10/14}-Alkohol, enthielten, in allen Fällen überlegen. Dies traf auch auf unter diesen Bedingungen gestestete erfindungsgemäße Tensidmischungen aus 34 Gew.-% Teilen 1-fach propoxyliertem und anschließend 7-fach ethoxyliertem C8-Alkanol, 6 Gew.-Teilen 7-fach ethoxyliertem C_{12/14}-Alkanol und 60 Gew.-% Aniontensid (beispielsweise Natrium-Dodecylbenzolsulfonat oder Natrium-C_{12/14}-Alkyl-(OCH₂CH₂)₃-Sulfat) im Vergleich zu stattdessen als alleinige nichtionische Tensidkomponente den 6,5-fach ethoxylierten C_{10/14}-Alkohol enthaltenden Tensidmischungen zu.

Patentansprüche

 Tensidmischung, bestehend aus einem kurzkettigen Alkyloligoalkoxylat der Formel I,

$$R^{1}$$
-(OC₃H₆)_n-(OC₂H₄)_p-OH (I)

in der R¹ einen Alkylrest mit 6 bis 10 C-Atomen, n eine Zahl von 0,5 bis 3 und p eine Zahl von 4 bis 10 bedeuten, und einem langkettigen Alkyloligoalkoxylat der Formel II,

$$R^2$$
-(OC₂H₄)_a-OH (II)

in der R² einen Alkylrest mit 12 bis 22 C-Atomen und q eine Zahl von 5,0 bis 9,5 bedeuten, in Gewichtsverhältnissen von kurzkettigem zu langkettigem Alkyloligoalkoxylat von 4:1 bis 10:1, sowie gegebenenfalls Wasser.

- Tensidmischung nach Anspruch 1, dadurch gekennzeichnet, daß das Gewichtsverhältnis von kurzkettigem Alkyloligoalkoxylat gemäß Formel I zu langkettigem Alkyloligoalkoxylat gemäß Formel II 5: 1 bis 8:1 beträgt.
- Tensidmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das kurzkettige Alkyloligoalkoxylat der Formel I einen mittleren Propoxylierungsgrad n von 0,5 bis 2,0, insbesondere von 0,8 bis 1,5, besitzt.
- Tensidmischung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das kurzkettige Alkyloligoalkoxylat der Formel I einen mittleren Ethoxylierungsgrad p von 5,0 bis 9,5, insbesondere von 6,0 bis 9,0, besitzt.
- 25 5. Tensidmischung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das langkettige Alkyloligoalkoxylat der Formel II einen mittleren Ethoxylierungsgrad q von 6,0 bis 9,0, besitzt.
- 30 6. Tensidmischung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das kurzkettige Alkyloligoalkoxylat der Formel (I) einen Alkylrest R¹ mit 7 bis 9 C-Atomen besitzt.
- Tensidmischung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das langkettige Alkyloligoalkoxylat der Formel (II) einen Alkylrest R² mit 12 bis 16 C-Atomen, insbesondere 12 bis 14 C-Atomen, besitzt.
 - 8. Tensidmischung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie 40 Gew.-% bis 90 Gew.-%, insbesondere 50 Gew.-% bis 88 Gew.-% kurzkettiges Alkyloligoalkoxylat gemäß Formel I und bis zu 50 Gew.-% Wasser enthält.
 - Tensidmischung, bestehend aus einem kurzkettigen Alkyloligoalkoxylat der Formel I,

$$H^{1}$$
- $(OC_{3}H_{6})_{n}$ - $(OC_{2}H_{4})_{p}$ -OH (I)

in der R¹ einen Alkylrest mit 6 bis 10 C-Atomen, n eine Zahl von 0,5 bis 3 und p eine Zahl von 4 bis 10 bedeuten, und einem langkettigen Alkyloligoalkoxylat der Formel II,

$$R^2$$
- $(OC_2H_4)_q$ -OH (II)

in der R2 einen Alkylrest mit 12 bis 22 C-Atomen

45

50

35

40

45

und q eine Zahl von 5,0 bis 9,5 bedeuten, in Gewichtsverhältnissen von kurzkettigem zu langkettigem Alkyloligoalkoxylat von 4:1 bis 10:1, bis zu 90 Gew.-%, insbesondere 10 Gew.-% bis 50 Gew.-% Aniontensid, ausgewählt aus der Klasse der Alkylsulfate, Alkylethersulfate, Sulfofettsäuredisalze, Sulfofettsäurealkylestersalze, Alkansulfonate und/ oder Alkylbenzolsulfonate, bis zu 60 Gew.-%, insbesondere 1 Gew. -% bis 50 Gew. -% weiteres nichtionisches Tensid, ausgewählt aus der Klasse der Alkylglykoside, Fettsäurealkanolamide und/oder Fettsäurepolyhydroxyamide, und/oder bis zu 60 Gew.-%, insbesondere 1 Gew.-% bis 50 Gew.-% Amphotensid, ausgewählt aus der Klasse der Betaine und/oder Sulfobetaine, sowie gegebenenfalls Wasser

- 10. Verwendung der Tensidmischung nach einem der Ansprüche 1 bis 9 als lagerstabiles, fließfähiges, pumpbares Vorgemisch für die Herstellung von flüssigen Wasch- oder Reinigungsmitteln, insbesondere Mitteln für die manuelle Reinigung von Geschirr.
- 11. Flüssiges Wasch- oder Reinigungsmittel, insbesondere zur maschinellen und bevorzugt zur manuellen Reinigung von Geschirr, enthaltend 1 Gew.-% bis 20 Gew.-% Tensidmischung gemäß einem der Ansprüche 1 bis 8, 5 Gew.-% bis 30 Gew.-% Aniontensid, bis zu 20 Gew.-%, insbesondere 1 Gew.-% bis 15 Gew.-% zusätzliches nichtionisches Tensid, bis zu 12 Gew.-%, insbesondere 0,5 Gew.-% bis 10 Gew.-% Amphotensid, bis zu 8 Gew.-%, insbesondere 2 Gew.-% bis 6 Gew.-% Alkalihydroxid, bis zu 5 Gew.-%, insbesondere 1 Gew.-% bis 4 Gew.-% Mono- oder Dicarbonsäure mit 2 bis 6 C-Atomen, bis zu 15 Gew.-%, insbesondere 2 Gew.-% bis 10 Gew.-% wassermischbares organisches Lösungsmittel und 15 Gew.-% bis 90 Gew.-% Wasser.

Claims

 A surfactant mixture consisting of a short-chain alkyl oligoalkoxylate corresponding to formula (I):

$$R^{1}$$
-(OC₃H₆)_n-(OC₂H₄)_p-OH (I)

in which

R1 is an alkyl radical containing 6 to 10 carbon atoms, n is a number of 0.5 to 3 and p is a number of 4 to 10, and of a long-chain alkyl oligoalkoxylate corresponding to formula (II):

$$H^2$$
-(OC₂H₄)_q-OH (II)

in which

R² is an alkyl radical containing 12 to 22 carbon atoms and q is a number of 5.0 to 9.5,

in ratios by weight of short-chain to long-chain alkyl oligoalkoxylate of 4:1 to 10:1 and, optionally, water.

- A surfactant mixture as claimed in claim 1, characterized in that the ratio by weight of short-chain alkyl oligoalkoxylate corresponding to formula (I) to long-chain alkyl oligoalkoxylate corresponding to formula (II) is 5:1 to 8:1.
- A surfactant mixture as claimed in claim 1 or 2, characterized in that the short-chain alkyl oligoalkoxylate corresponding to formula (I) has an average degree of propoxylation n of 0.5 to 2.0 and, more particularly, 0.8 to 1.5.
 - 4. A surfactant mixture as claimed in any of claims 1 to 3, characterized in that the short-chain alkyl oligoalkoxylate corresponding to formula (I) has an average degree of ethoxylation p of 5.0 to 9.5 and, more particularly, 6.0 to 9.0.
 - 5. A surfactant mixture as claimed in any of claims 1 to 4, characterized in that the long-chain alkyl oligoalkoxylate corresponding to formula (II) has an average degree of ethoxylation q of 6.0 to 9.0.
- 6. A surfactant mixture as claimed in any of claims 1 to 5, characterized in that the short-chain alkyl oligoalkoxylate corresponding to formula (I) has a C₇₋₉ alkyl radical R¹.
- A surfactant mixture as claimed in any of claims 1 to 6, characterized in that the long-chain alkyl oligoalkoxylate corresponding to formula (II) has a C₁₂₋₁₆ and, more particularly, C₁₂₋₁₄ alkyl radical R².
- 8. A surfactant mixture as claimed in any of claims 1 to 7, characterized in that it contains 40% by weight to 90% by weight and, more particularly, 50% by weight to 88% by weight of short-chain alkyl oligoal-koxylate corresponding to formula (I) and up to 50% by weight of water.
- A surfactant mixture consisting of a short-chain alkyl oligoalkoxylate corresponding to formula (I):

$$R^{1}$$
-(OC₃H₆)_n-(OC₂H₄)_p-OH (I)

in which

R1 is an alkyl radical containing 6 to 10 carbon atoms, n is a number of 0.5 to 3 and p is a number of 4 to 10, and of a long-chain alkyl oligoalkoxylate corresponding to formula (II):

$$R^2$$
- $(OC_2H_4)_q$ -OH (II)

in which

R² is an alkyl radical containing 12 to 22 carbon atoms and q is a number of 5.0 to 9.5,

55