Señales y Sistemas de Variable Discreta

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2019

Señales de Variable Discreta

Representaciones de funciones de variable discreta

Representación gráfica

A n se le denomina número de muestra y a x(n) la n-ésima muestra de la señal.

Representación funcional

$$x(n) = \begin{cases} 1 & para \ n = 1 \\ 5 - n & para \ 2 \le n \le 4 \\ 0 & el \ resto \end{cases}$$

Esta es la representación más usual en el análisis matemático de funciones discretas.

Representación tabular

En programas computacionales para manipulación y modelado digital de sistemas, como por ejemplo el **MATLAB**TM o el **GNU/Octave** las funciones se representan usualmente de esta manera: por un lado con los números de muestra n, y por otro con los valores de las muestras x(n).

Representación como secuencia

Una secuencia de duración infinita con el origen en n=0 (indicado con "↑") se representa como

$$x(n) = \{..., 0, 0, 1, 3, 2, 1, 0, ...\}$$

Si la secuencia es 0 para n < 0 se puede representar como

$$x(n) = \{0, 1, 3, 2, 1, 0, ...\}$$

y si es finita

$$x(n) = \{0, 1, 3, 2, 1\} = \{0, 1, 3, 2, 1\}$$

Donde la flecha "1" se omite si la primera muestra en la secuencia corresponde a la muestra en 0.

Manipulaciones elementales de señales de variable discreta

Desplazamiento

- $x(n) \rightarrow x(n-k)$
- Sistemas en-línea vs fuera-de-línea

Ejemplo: escalón unitario como suma de impulsos (1)

Utilizando desplazamientos exprese el escalón unitario u(n) en términos de una suma de impulsos $\delta(n)$ desplazados.

Ejemplo: escalón unitario como suma de impulsos (2)

Solución:

$$u(n) = \delta(n) + \delta(n-1) + \delta(n-2) + \dots = \sum_{i=0}^{\infty} \delta(n-i)$$

Reflexión

•
$$x(n) \rightarrow x(-n)$$

Reflexión y desplazamiento no son conmutativos

$$x((-n) - k) = x(-n - k) \neq x(-(n - k)) = x(-n + k)$$

Escalado de variable o submuestreo

- $x(n) \to x(\kappa n), \ \kappa \in \mathbb{Z}$
- ¿Se puede interpreter como cambio en frecuencia de muestreo?

Suma, multiplicación y escalado de secuencias

- Escalado de amplitud: y(n) = Ax(n)
- Suma de secuencias: $y(n) = x_1(n) + x_2(n)$
- Producto: $y(n) = x_1(n)x_2(n)$

Ejemplo: Operaciones básicas con señales (1)

Dadas las secuencias

•
$$x_1(n) = u_r(n) = \{0,1,2,3,4,5,6,...\}$$

•
$$x_2(n) = (-1)^n u_r(n) = \{0, -1, 2, -3, 4, -5, 6, ...\}$$

•
$$x_3(n) = \{0,0,1\}$$

Calcule la secuencia

$$x_4(n) = 2x_3(2-n) - x_1(2n-1) + x_2(4-n)u(n)$$

Ejemplo: Operaciones básicas con señales (2)

• Solución: El primer término $2x_3(2-n)$ corresponde a una reflexión seguida por un atraso (de la reflexión), escalado por un factor de 2. Esto resulta en

$$2x_3(2-n) = \{2, 0, 0\}$$

El segundo término representa un submuestreo retrasado:

$$x_1(2n-1) = \{0, 1, 3, 5, 7, ...\}$$

El primer factor del tercer término contiene una inversión atrasada:

$$x_2(4-n) = \{..., 6, -5, 4, -3, 2, -1, 0\}$$

Ejemplo: Operaciones básicas con señales (3)

Luego, al multiplicarlo por un escalón unitario u(n) se eliminan todas las muestras anteriores a n = 0:

$$x_2(4-n)u(n) = \{4, -3, 2, -1, 0\}$$

Finalmente, se deben combinar estos tres resultados parciales aditivamente:

$$x_4(n) = \{6, -4, -1, -6, -7, -9, -11, -13, \dots\}$$

Clasificación de señales de variable discreta

Clasificación de señales de variable discreta

Propiedad	Clasificación	
Energía	Señal de energía	Señal de potencia
Periodicidad	Señal periódica	Señal aperiódica
Simetría	Señal simétrica	Señal asimétrica
Acotación	Señal acotada	Señal no acotada
Longitud	Señal finita	Señal infinita

Señales de energía y potencia

$$p(t) = \frac{v(t)v^*(t)}{R} = \frac{|v(t)|^2}{R}$$

$$e(t) = \int_{-\infty}^{t} p(\tau)d\tau$$

$$= \frac{1}{R} \int_{-\infty}^{t} |v(\tau)|^2 d\tau$$

$$p(t) = i(t)i^*(t)R = |i(t)|^2R$$

$$e(t) = \int_{-\infty}^{t} p(\tau)d\tau$$

$$= R \int_{-\infty}^{t} |i(\tau)|^2 d\tau$$

Señales de energía y potencia

Usualmente, a las funciones de forma $|f(t)|^2$ se les denomina entonces funciones de potencia de f(t) y a su integral hasta el instante t, $\int_{-\infty}^{t} |f(t)| dt$ la función de energía de f(t).

De forma análoga, para una señal de variable discreta x(n) se define su energía total como:

$$E = \sum_{n=-\infty}^{\infty} x(n)x^*(n) = \sum_{n=-\infty}^{\infty} |x(n)|^2$$

Si E es finita entonces a x(n) se le denomina señal de energía.

Señales de energía y potencia

Muchas señales de energía infinita poseen potencia promedio finita:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}$$

En caso de que P sea finita, se dice que x(n) es una señal de potencia.

Relación entre Potencia y Energía

Si se define la energía E_N de x(n) en un intervalo finito como

$$E_N = \sum_{n=-N}^N |x(n)|^2$$

Entonces

$$E = \lim_{N \to \infty} E_N$$

y la potencia promedio puede entonces también expresarse como

$$P = \lim_{N \to \infty} \frac{1}{2N+1} E_N$$

con lo que se deriva que si E es finita entonces P=0 y a su vez que si P>0 entonces $E\to\infty$, o en otras palabras, toda señal de potencia tiene energía infinita.

Ejemplo: Señales de energía y potencia (1)

Especifique si el escalón unitario u(n), la rampa $u_r(n)$ y la señal exponencial $x(n) = Ae^{j\omega_0 n}$ son señales de energía o potencia.

Ejemplo: Señales de energía y potencia (2)

Solución:

1. Si x(n) = u(n) entonces

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |u(n)|^{2}$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=0}^{N} 1$$

$$= \lim_{N \to \infty} \frac{N+1}{2N+1} = \frac{1}{2}$$

Lo que implica que u(n) es una señal de potencia.

Ejemplo: Señales de energía y potencia (3)

2. Para la señal rampa unitaria $u_r(n)$ se tiene que

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |u_r(n)|^2$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=0}^{N} n^2$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \frac{N(N+1)(2N+1)}{6} = \infty$$

Por lo que no es ni señal de energía ni señal de potencia al ser *E* como *P* infinitas.

Ejemplo: Señales de energía y potencia (4)

3. La señal $x(n) = Ae^{j\omega_0 n}$, $A \in \mathbb{R}$, tiene una potencia media

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |A|^2$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} (2N+1)|A|^2 = |A|^2$$

Y es por lo tanto una señal de potencia.

Señales acotadas y no acotadas

x(n) es acotada si $\exists M$ tal que |x(n)| < M para todo n

Señales periódicas y aperiódicas

$$x(n+N) = x(n)$$
, para todo n

Periodo fundamental: menor *N* positivo que cumple con x(n + N) = x(n).

Una señal periódica es una señal de potencia, pues su potencia promedio es finita e igual al promedio en un periodo:

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2$$

Señales pares e impares

Una señal es simétrica o par si

$$x(n) = x(-n)$$

Se dice ser asimétrica o impar si

$$\chi(-n) = -\chi(n)$$

En cuyo caso siempre debe cumplirse que x(0) = 0

Descomposición de función no simétrica

Si

$$x(n) = x_p(n) + x_i(n) \tag{1}$$

Entonces

$$x(-n) = x_p(-n) + x_i(-n) = x_p(n) - x_i(n)$$
 (2)

Sumando y restando (1) y (2) se despeja

$$x_p(n) = \frac{x(n) + x(-n)}{2}$$
 $x_i(n) = \frac{x(n) - x(-n)}{2}$

Ejemplo: Simetría de funciones

(1)

Dada una señal $x(n) = \{0, 1, 2\}$, encuentre sus componentes par e impar.

Ejemplo: Simetría de funciones

(2)

Solución:

Para calcular la componente par se realiza la suma de la señal con su reflexión, y luego se divide por dos:

$$x(n) = \{ 0, 0, 0, 0, 1, 2 \}$$

$$x(-n) = \{ 2, 1, 0, 0, 0 \}$$

$$x(n) + x(-n) = \{ 2, 1, 0, 1, 2 \}$$

$$x_p(n) = \frac{x(n) + x(-n)}{2} = \{ 1, 1/2, 0, 1/2, 1 \}$$

Ejemplo: Simetría de funciones

(3)

Para calcular la componente impar se le substrae la reflexión a la señal, y luego se divide por dos:

$$x(n) = \{ 0, 0, 0, 0, 1, 2 \}$$

$$x(-n) = \{ 2, 1, 0, 0, 0 \}$$

$$x(n) - x(-n) = \{ -2, -1, 0, 1, 2 \}$$

$$x_i(n) = \frac{x(n) - x(-n)}{2} = \{ -1, -1/2, 0, 1/2, 1 \}$$

Finalmente, se puede comprobar directamente que se cumple $x(n) = x_p(n) + x_i(n)$

Señales hermíticas

Una señal de valor complejo se denomina hermítica (simétrica conjugada o par conjugada) si cumple:

$$x(n) = x^*(-n)$$

De lo que se deduce que:

$$|x(n)| = |x(-n)|$$

 $Re\{x(n)\} = Re\{x(-n)\}$
 $arg\{x(n)\} = -arg\{x(-n)\}$
 $Im\{x(n)\} = -Im\{x(-n)\}$

Señales anti-hermíticas

La señal es anti-hermítica (asimétrica conjugada o impar conjugada) si cumple:

$$x(n) = -x^*(-n)$$

De lo que se deduce que

$$|x(n)| = |x(-n)|$$

Im{x(n)} = Im{x(-n)}

Es decir, tanto la magnitud como la parte imaginaria de una señal antihermítica tienen simetria par.

Para la parte real de la función anti-hermítica se cumple

$$Re\{x(n)\} = -Re\{x(-n)\}$$

Es decir, tiene simetría impar.

Fase de una señal anti-hermítica

Por otro lado

$$\arg\{x(n)\} = \pi - \arg\{x(-n)\}\$$

que no tiene ninguna simetría, aunque si se multiplica ambos lados de la ecuación por dos se obtiene:

$$2 \arg\{x(n)\} = 2\pi - 2\arg\{x(-n)\}\$$

$$2 \arg\{x(n)\} = -2 \arg\{x(-n)\}\$$

Es decir, el doble del ángulo tiene simetría impar.

Descomposición en funciones hermíticas y antihermíticas

Si

$$x(n) = x_h(n) + x_h(n) \tag{1}$$

Entonces

$$x^*(-n) = x_h^*(-n) + x_h^*(-n)$$

$$= x_h(n) - x_h(n)$$
(2)

Sumando y restando (1) y (2) se despeja

$$x_h(n) = \frac{x(n) + x^*(-n)}{2}$$

$$x_{\hbar}(n) = \frac{x(n) - x^*(-n)}{2}$$

Señales sinusoidales y el concepto de frecuencia

Señal sinusoidal continua

Oscilación armónica:

$$x_a(t) = A\cos(\Omega t + \theta), \quad -\infty < t < \infty$$

Con

$$\Omega = 2\pi F$$

$$x_a(t) = A\cos(2\pi F t + \theta), \quad -\infty < t < \infty$$

Periodicidad: señal sinusoidal continua

Si F es constante, entonces $x_a(t)$ es periódica

$$x_a(t+T_p) = x_a(t)$$

Con período fundamental $T_p = 1/F$

Señal sinusoidal discreta

La señal sinusoidal en tiempo discreto se expresa como:

$$x(n) = A\cos(\omega n + \theta), \quad -\infty < n < \infty$$

 $Y con \omega = 2\pi f$

$$x(n) = A\cos(2\pi f n + \theta), \quad -\infty < n < \infty$$

Dimensiones de *f* : ciclos por muestra:

Frecuencia en señal discreta

Ejemplo $\omega = \pi/6$ y $\theta = \pi/3$:

Periodicidad de un sinusoide discreto

Una señal x(n) es periódica con periodo N si:

$$x(n+N) = x(n)$$
, para todo n

Una señal sinusoidal de frecuencia f_0 es periódica si:

$$\cos(2\pi f_0(N+n) + \theta) = \cos(2\pi f_0 n + \theta)$$

Lo que se cumple solo si existe un entero k tal que:

$$2\pi f_0 N = 2k\pi$$

O, en otros términos, f_0 sea un número racional dado por

$$f_0 = \frac{k}{N}$$

De periodo N si k y N son enteros primos relativos.

Periodicidad de un sinusoide discreto

Equivalencia de frecuencias en sinusoides discretos

$$\cos((\omega_0 + 2\pi)n + \theta) = \cos(\omega_0 n + 2\pi n + \theta) = \cos(\omega_0 n + \theta)$$

$$x_k(n) = A\cos(\omega_k n + \theta), \qquad k = 0,1,2,...$$

$$\omega_k = \omega_0 + 2k\pi$$

Por otro lado:

- Rango $|\omega| \le \pi$ (ó $|f| \le 1/2$) es de frecuencias fundamentales.
- Frecuencias $|\omega| > \pi$ (ó |f| > 1/2) son las denominadas **alias**.

Equivalencia de frecuencias: sinusoides continuos y discretos

$$\cos(2\pi f n) = \cos(2\pi F t) \Big|_{t=nT_S}$$

$$2\pi f n = 2\pi F n T_S$$

Definiendo la frecuencia de muestreo $F_s = 1/T_s$, entonces se deriva la frecuencia normalizada para f dada por:

$$f = \frac{F}{F_s}$$

$$\omega = 2\pi \frac{\Omega}{\Omega_s}$$

Tasa máxima de oscilación

$$\omega_0 = 0 \ (f = 0)$$
 $\omega_0 = \pi/6 \ (f = 1/12)$ $\omega_0 = \pi/3 \ (f = 1/6)$

 $\omega_0 = \pi \ (f = 1/2)$

 $\omega_0 = \pi/2 \ (f = 1/4)$

Tasa máxima de oscilación

- Sea $x_0(n) = \cos(\omega_0 n) \cos \omega_0 \in [0, \pi]$
- Sea $\omega_1 = 2\pi \omega_0$.
- Si $\omega_0 \in [0,\pi]$ entonces $\omega_1 \in [\pi,2\pi]$ de tal forma que si ω_0 aumenta ω_1 disminuye.
- Debido a que

$$x_1(n) = A\cos(\omega_1 n) = A\cos((2\pi - \omega_0)n) = A\cos(-\omega_0 n) = x_0(n)$$

La frecuencia angular ω_1 es un **alias** de ω_0 .

Concepto de frecuencia negativa

$$x(n) = A\cos(\omega n + \theta) = \frac{A}{2}e^{j(\omega n + \theta)} + \frac{A}{2}e^{-j(\omega n + \theta)}$$

Rango válido de frecuencias

- Todas las frecuencias en un intervalo $[\omega_0, \omega_0 + 2\pi]$ representan todas las frecuencias existentes para señales discretas.
- Usualmente se utilizan los rangos de frecuencias angulares $\omega \in [-\pi,\pi]$ $(f \in \left[-\frac{1}{2},\frac{1}{2}\right])$ o $\omega \in [0,2\pi]$ $(f \in [0,1])$ y reciben el nombre de rango fundamental.

Exponenciales complejos relacionados armónicamente: caso en tiempo continuo

En tiempo continuo

$$s_k(t) = e^{jk\Omega_0 t} = e^{j2\pi k F_0 t}, \qquad k = 0, \pm 1, \pm 2, \dots$$

En este caso si $k_1 \neq k_2$ entonces $s_{k_1}(t) \neq s_{k_2}(t)$.

Exponenciales complejos relacionados armónicamente: caso en tiempo discreto

En tiempo discreto

$$s_k(n) = e^{jk\omega_0 n} = e^{j2\pi k f_0 n}, \qquad k = 0, \pm 1, \pm 2, \dots$$

A diferencia del caso continuo se tiene para $k_1 = k + N$

$$s_{k+N}(n) = e^{j2\pi \frac{(k+N)}{N}n} = e^{j\frac{2\pi kn}{N}}e^{j2\pi n} = e^{j\frac{2\pi kn}{N}} = s_k(n)$$

En el caso discreto solo existen N señales relacionadas armónicamente, donde todos los miembros del conjunto descrito tienen como periodo común N nuestras.

Bibliografía

• [1] P. Alvarado, Procesamiento Digital de Señales. Instituto Tecnológico de Costa Rica, 2011.

