

ASIGNATURA:

ESTADÍSTICA

ING. ALEXANDRA ELIZABETH ESCOBAR MENDEZ CARLOS ANDRES CARRASCO NOVOA

Contenido

Encuesta sobre aplicaciones de idiomas	3
Introducción	3
Objetivo general	3
Objetivos específicos	3
Desarrollo	3
Pregunta escogida	3
Datos no agrupados	4
Formulas	4
Cálculos realizados en Jamovi	5
Datos agrupados	6
Formulas	7
Teorema de ballas	7
Permutaciones y Combinaciones	8
Formulas	8
Probabilidad Hipergeométrica	8
Formula	9

Encuesta sobre aplicaciones de idiomas

Introducción

A través de distintas herramientas estadísticas, como las medidas de tendencia central y dispersión, las distribuciones de probabilidad (tanto continuas como discretas) y los métodos de conteo, se pretende obtener información útil que contribuya a sabaer que tanto aprecio tiene las aplicaciones para la enseñanza para aprender idiomas. Estos análisis facilitan la detección de patrones de comportamiento, el nivel de satisfacción de los usuarios, sus preferencias de contenido y otros indicadores clave.

Objetivo general

Analizar, mediante técnicas estadísticas, el grado de aceptación y valoración que tienen las aplicaciones para la enseñanza de idiomas, con el fin de identificar patrones de uso, satisfacción del usuario y preferencias de contenido.

Objetivos específicos

- Aplicar medidas de tendencia central y dispersión para describir el comportamiento general de los usuarios respecto al uso de aplicaciones para aprender idiomas.
- Utilizar distribuciones de probabilidad, tanto discretas como continuas, para modelar eventos relacionados con la frecuencia de uso y la satisfacción de los usuarios.
- Implementar técnicas de conteo para evaluar la frecuencia de ciertas preferencias y comportamientos dentro del uso de estas aplicaciones.

Desarrollo

Pregunta escogida

Se tomo una muestra de 13 estudiantes al azar variando entre las carreras de:

- MecatrónicaIng.
- SoftwareIng.
- Tecnologías de la Información

Cual se trabajó la pregunta "6. Califique del 1 al 100 su conocimiento sobre la aplicación de su preferencia para aprender idiomas"

	67
	70
į	70
	70
	75
į	75
1	75
į	80
١	80
١	80
	87
į	90
į	100

Datos no agrupados

Datos no agrupados	Columna1	
	Media	78,40
	Error típico	1,19
	Mediana	75
	Moda	70
	Desviación estándar	9,39
	Varianza de la muestra	88,30
	Curtosis	0,92
	Mínimo	67
	Máximo	100
	Suma	1019
	cv	1,13
	CA	1,09
CUARTILES	q1=	70
	q2=	75
	q3=	10,50
PERCENTILES	p90=	96
	p10=	68,2
CURTOSIS		
	curtosis=	-0,33

Formulas

$$egin{aligned} ar{x} &= rac{\sum x}{n} \ ME &= rac{x_{rac{n}{2}} + x_{rac{n}{2}+1}}{2} \ Mo \ R &= x_{ ext{max}} - x_{ ext{min}} \ \sigma^2 &= rac{\sum (x - ar{x})^2}{n-1} \ \sigma &= \sqrt{rac{\sum (x - ar{x})^2}{n-1}} \ CV &= rac{\sigma}{ar{x}} \end{aligned}$$

Cálculos realizados en Jamovi

Descriptivas

	Conocimiento sobre la aplicación de su preferencia
Media	78.4
Mediana	75
Moda	70.0^{a}
Suma	1019
Desviación estándar	9.39
Varianza	88.3
Mínimo	67
Máximo	100
Asimetría	1.06
Error est. asimetría	0.616
Curtosis	0.924
Error est. curtosis	1.19
25percentil	70.0
50percentil	75.0
75percentil	80.0

^a Existe más de una moda, solo se reporta la primera

Datos agrupados

1.- Primero se trabajo con el rango con la que se iba a realizar la tabla

$2^k \geq n$	k=5	$\frac{\text{Máximo} - \text{Mínimo}}{k} =$	6.6 = 7
32>= 13			
Rango =	67 - 1 = 66		
3-			

2.- Se realizo la tabla con el rango

		f		х								
intervalos		fr.abs.simple	fr.abs.Acumulada	marca de clase	fx	X-XPROM	[X-XPROM]	f[X-XPROM]	f(X-XPROM)^2	fx^2	(X-XPROM) ²	f(X-XPROM)^2
66	73	4	6	69,5	278	-9,5	9,5	38	361	19321	90,25	361
74	81	6	12	77,5	465	-1,5	1,5	9	13,5	36037,5	2,25	13,5
82	88	1	13	85	85	6	6	6	36	7225	36	36
89	96	1	14	92,5	92,5	92,5	92,5	92,5	8556,25	8556,25	8556,25	8556,25
97	106	1	15	101,5	101,5	22,5	22,5	22,5	506,25	10302,25	506,25	506,25
	Total	13	60	426	1022	110	132	168	9473	81442	9191	9473

3.- Con la tabla se puedo aplicar las debidas formulas para sacar los datos de la media, mediana, moda y desviación estándar

media=	79	
$\bar{x} = \frac{\sum fx}{n}$		
mediana=	76,0	
Me = Li +	$\left[\frac{\frac{n}{2} - FA}{f}(Ai)\right]$	
	7,2	
Mo = Li +	$\left[\frac{d1}{d1+d2}(Ai)\right]$	
desviació	n media =	9,5
$\sigma^2 = \frac{\sum f}{n}$	$\frac{(x-\bar{x})^2}{n-1}$	
Desviacio	n estandar=	90,5

Formulas

$$egin{aligned} ar{x} &= rac{\sum f_i x_i}{\sum f_i} \ ME &= L_i + \left(rac{n}{2} - F_a \over f_m
ight) \cdot c \ Mo &= L_i + \left(rac{f_m - f_a}{(f_m - f_a) + (f_m - f_s)}
ight) \cdot c \ R &= x_{ ext{máx}} - x_{ ext{mín}} \ \sigma^2 &= rac{\sum f_i (x_i - ar{x})^2}{\sum f_i} \ \sigma &= \sqrt{rac{\sum f_i (x_i - ar{x})^2}{\sum f_i}} \ CV &= rac{\sigma}{ar{x}} \cdot 100 \end{aligned}$$

Teorema de ballas

Se utilizo la regla de adición para poder realizar este ejercicio

	Duolingo	Memrise	Busuu	HelloTalk	Babbel	TOTAL
Ing. en Tecnologías de la Información	35	10	4	8	6	63
Ing. en Software	21	6	5	7	8	47
Ing. en Mecatrónica	19	9	2	4	6	40
TOTAL	75	25	11	19	20	150

Regla de Adición

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

Se debe realiasr una grafica con ramas principal y secundarias para así facilitar el calculo

Se debo tomar en cuanta que la totalidad debe ser exactamente 100%

3.- Se realizo los ejercicios planteados

Cual es la probabilidad o	de que un In	g. en Tecnolo	ogías de la Info	ormación esco	ga Busuu
P(netflix U STAR+)=	0,03	*	100	=	2,67
¿Cuál es La probabilidad de que escoja	Duolingo un	estudiante d	de software ?		
P(OTROS U MAGISTV)=	0,28	*	100	=	28,00

Permutaciones y Combinaciones

Se quiere o Duolingo g		ntes de la carrera de 1	TCs, que tiene u	in total de 100), para darles	un mes de		e tiene 5 formas di as formas tiene de a		n Duolingo, 3	en HelloTalk y	y 7 en
=	100						Duolingo	5				
-	20						HelloTalk	3				
							Busuu	7				
	$\frac{n!}{(n-r)!} = 1,3$	04*10^39					n=	15 5				
							$nCr = \frac{n!}{r! (n - 1)}$	- r)! =	8003			

Formulas

Permutación (nPr):

$$nPr = \frac{n!}{(n-r)!}$$

Combinación (nCr):

$$nCr = \frac{n!}{r!(n-r)!}$$

Probabilidad Hipergeométrica

Población finita: Se tiene un total de 25 estudiantes (N=25).

Dos categorías en la población: Estudiantes que "no utilizan aplicaciones para aprender idiomas" (5 de ellos) y los que sí las utilizan (25-5 = 20 de ellos).

Muestra sin reemplazo: Se toma una muestra de 7 estudiantes.

Interés en el número de éxitos en la muestra: Se busca la probabilidad de que "exactamente 5 no utilicen las aplicaciones".

toma una m	uestra de 7 estud	s, se sabe que 5 no util diantes. Determine la p n las aplicaciones para	robabilidad de q		e .
*					
N=25		$(5) \cdot (20)$	=	0,0004	
	P(X =	$5) = \frac{\binom{5}{5} \cdot \binom{20}{2}}{\binom{25}{5}}$	=	0,0004	
N=25 S=5 n=7	P(X =	$5) = \frac{\binom{5}{5} \cdot \binom{20}{2}}{\binom{25}{7}} -\frac{1}{2}$	=	0,0004	

Formula

$$P(X=x)=rac{inom{S}{x}\cdotinom{N-S}{n-x}}{inom{N}{n}}$$

N = Tamaño total de la población (25 estudiantes)

S = Número de "éxitos" en la población (5 estudiantes que no utilizan aplicaciones)

n = Tamaño de la muestra (7 estudiantes)

x = Número de "éxitos" en la muestra (5 estudiantes que no utilizan aplicaciones)