Tema 3 Algoritmica Grafurilor

Andrei Hălăucă Grupa A1 Cătălin-Cosmin Belu Grupa A6

January 11, 2019

Problema 1

```
a)
x_{ij} = 0;
x = x_{ij};
e(s) \leftarrow (\cdot, \cdot, \inf);
Etichetat[],Scanat[];
while \exists inod|Etichetat[i] == true \&\&Scanat[i] == false do
  Scan(i);
  if Etichetat[i] == true then
     x pe drumul dat de etichete;
     Etichetat[k] = false, \forall k;
     e(s) \leftarrow (\cdot, \cdot, \inf);
  end if
end while
S \leftarrow \{i : i \in V, Etichetat[i] == true\};
T \leftarrow V - S;
c(S,T) = NULL;
for i \in S do
  for j \in T do
     c(S,T) + = c_{ij};
  end for
end for
c(S', T') == NULL;
for i \in S' do
  for j \in T' do
     c(S',T')+=c_{ij};
  end for
```

```
end for
if c(S,T) == c(S',T') then
  return true;
end if
return false;
 b)
i \leftarrow s;
DFS(i)
if i == t then
  return false;//fluxul x nu este de valoare maximă
end if
BeenThere[i] = true;
for i=0;i< nrVertex;i++ do
  \mathbf{if}\ \mathrm{forward}(i,j)\&\&\mathrm{BeenThere}[j] \! = \! \mathrm{false}\ \mathbf{then}
     if x_{ij} < c_{ij} then
        DFS(j);
     end if
  else if backward(i,j)&&BeenThere(j)==false then
     if x_{ji} > 0 then
       DFS(j);
     end if
  end if
end for
return true;
}
```

```
c)
DFS(i, DRUM)
if i == t then
  return false;//fluxul x nu este de valoare maximă
end if
BeenThere[i] = true;
DRUM.push\_back(i);
for i=0;i< nrVertex;i++ do
  \mathbf{if}\ \mathrm{forward}(i, j) \&\& \mathrm{BeenThere}[j] \!\! = \!\! \mathrm{false}\ \mathbf{then}
     if x_{ij} < c_{ij} then
       DFS(j, DRUM);
     end if
  else if backward(i,j)&&BeenThere(j)==false then
    if x_{ji} > 0 then
       DFS(j, DRUM);
     end if
  end if
end for
return true;
c(e_0) + +;
Flux\_maxim(R, x);
if DFS(s) == false then
  x^* = x \bigotimes r(DRUM);
end if
returnx^*;
```

Problema 2 x flux întreg într-o rețea $R=(G,s,t,c), v(x)=v_1+v_2+...+v_n, v_i \in$ $\mathbb{N}^*, \forall i = 1, p, p \ge 1.$

Știm că o funcție $x: V \times V \to \mathbb{R}$ este flux dacă satisface următoarele:

(i) $0 \le x_{ij} \le c_{ij}, \forall (i,j) \in V \times V;$ (ii) $\sum_{j \in V} x_{ji} - \sum_{j \in V} x_{ij} = 0, \forall i \in V - \{s,t\}$ Din teorema fluxului întreg cunoaștem că dacă toate capacitățile din R sunt întregi atunci există un flux întreg, de valoare maximă, $\mathbf{x}(\forall x_{ij} \in \mathbb{Z}_+)$. În cadrul problemei noastre, fluxul întreg de valoare maximă este chiar x. De

asemenea, valoarea fluxului este $v(x) = \sum_{i \in V} x_{it} - \sum_{i \in V} x_{ti}$. Din ipoteză cunoaștem $v_i \in \mathbb{N}^*, \forall i = 1, p, p \ge 1 \implies \text{Fluxul } x > 0, \text{dar}$ din teorema fluxului întreg știm că $x \in \mathbb{Z}$, deci $x \in \mathbb{N}^*$, adică x este flux natural strict pozitiv.

Presupunem, prin reducere la absurd, că ar exista un x^1 un flux $\leq x$ (stim că x are valoarea maximă) astfel încât $v(x^1) = v(x) - 1, \forall x$ flux întreg. În continuare, x_1 trebuie să respecte proprietățile unui flux, deci le vom ilustra.

Ştim că $0 \le x_{ij} \le c_{ij}, \forall (i,j) \in V \times V$, dar și că $x^1 \le x$ (din presupunerea făcută), deci $0 \le x^1_{ij} \le c_{ij}$, $\forall (i,j) \in V \times V$. De asemenea, $\sum_{j \in V} x_{ji} - \sum_{j \in V} x_{ij} = 0$, $\forall i \in V - \{s,t\}$ și $x^1 \le x$ (tot din presupunerea făcută), deci $\sum_{j \in V} x^1_{ji} - \sum_{j \in V} x^1_{ij} = 0$, $\forall i \in V - \{s,t\}$. $\Longrightarrow x^1$ este flux.

Identic pentru $x^2, x^3, ..., x^p,$ sugerând faptul că pot scade cu o unitate din valoarea fluxului, care să fie $\leq x$ (deoarece x e de valoare maximă).

Problema 3

- a) G nu este 2-ring \Leftrightarrow
- (1) Toate gradele nodurilor sale nu sunt multipli de 2, dar numărul de muchii din G este multiplu de 2, adică vorbim despre un graf eulerian

SAU

(2)Există noduri cu grad care nu este multiplu de 2, deci nu avem graf eulerian.

Dacă G nu este 2-ring atunci el admite o 2-colorare-fair.

(1) G graf eulerian \Rightarrow Avem C-circuit eulerian în G(V,E) astfel încât $\forall e \in E, C \cap e \neq \emptyset$, și C-circuit eulerian, deci avem $\forall v \in V, C \cap v \neq \emptyset \Rightarrow$ Avem nevoie doar de două culori pentru a colora întregul graf, $\forall e_1, e_2 \in E$, unde e_1 și e_2 au un mod comun și sunt diferite(sunt muchii alăturate), e_1 și e_2 vor fi colorate diferit.

In aceste condiții vom avea numărul de muchii colorate cu culoarea a egal cu numărul de muchii colorate cu culoarea b în graful nostru, deci în fiecare nod vor intra un număr de muchii de culoare a egal cu numărul de muchii de culoare b, deci G admite o 2-colorare-fair.

(2) Avem graful G=(V,E).

Aici avem suma gradelor tuturor nodurilor= $2|E| \Rightarrow$ numărul de noduri de grad impar într-un graf este par.(\star)

Știind acestea vom adăuga un nou nod la graful nostru și vom adăuga câte o muchie între nodul nou adăugat și fiecare nod ce are gradul impar. Astfel toate nodurile ce aveau grad impar în G vor avea grad par.($\star\star$).

Din (\star) și $(\star\star)$ \Rightarrow gradul nodului adăugat în graf este par \Rightarrow Toate nodurile din noul graf G' au grad par.

Din punctul (1) știm că un grad cu toate nodurile de grad par admite o 2-colorare-fair, deci G' admite o 2-colorare-fair. Acum dacă vom scoate muchiile adăugate, pentru nodurile care în G aveau grad impar vom avea $c_v^{-1}(h) = c_v^{-1}(k) = 1$, ceea ce satisface proprietatea din enunț, deci graful G admite o 2-colorare-fair.

 $(1) + (2) \implies$ Graful G admite o 2-colorare-fair, dacă G nu este 2-ring.

b) Dacă G este p-ring \Longrightarrow G nu admite o p-colorare-fair. Din ipoteză știm că graful G este p-ring, deci știm că toate nodurile sale sunt multipli de p, dar numărul de muchii din graf nu este multiplu de p($\forall p \in \mathbb{N}, p > 2$).

Presupunem, prin reducere la absurd, că graful G admite o p-colorare, $\forall p \in \mathbb{N}, p \geq 2$. Din ipoteză știm că G este p-ring, deci toate nodurile sale sunt de forma $p \cdot k, \forall p, k \in \mathbb{N}, p \geq 2$.

Fie M_i -mulțimea nodurilor colorate cu aceeași culoare i, $\forall i \in C$, C=mulțimea culorilor.

Putem afirma că $|M_{i_1}| = |M_{i_2}| = |M_{i_3}| = \dots = |M_{i_n}|, \forall i_1, i_2, \dots, i_n \in C$, ceea ce ne permite să constatăm că graful G are $|V| = p \cdot k, \forall p, k \in \mathbb{N}, p \geq 2$.

Dacă $|V|=p\cdot k, \forall p,k\in\mathbb{N}, p\geq 2\implies$ este imposibil să avem toate gradele din G multipli de p dacă numărul de noduri este multiplu de p.

⇒ CONTRADICȚIE cu presupunerea făcută, deci dacă graful G este p-ring, atunci acesta nu admite o p-colorare-fair.

Problema 4

```
a)
iteratie=0;
while iterație<500 do
  i=1;
  A'=A;
  while \exists x \in A' do
    choose x: A';
    A_i.push\_back(x);
    A'.delete(x);
    if i == p then
       i=1;
    else
       i++;
    end if
  end while
  j=1;
  exit=false;
  while j \leq p do
    nrElem = A_i.dimensiune();
    maxim=-1;
    for s = 1; s \leq nrElem; s + + do
       for t = 1; t \leq nrElem; t + + do
         if \alpha(A_i[s], A_i[t]) > maxim then
           maxim = \alpha(A_i[s], A_i[t]);
         end if
       end for
    end for
    if maxim > s then
       exit=true;
       break;
    end if
    j++;
  end while
  if exit == true then
    break;
    iterație++;
  end if
end while
```

Algoritmul rezolvă polinomial problema CLUST-P. În algoritmul prezentat avel un while ce se execută de maxim 500 de ori, acesta conținând alte două bucle while:

-prima buclă are complexitatea O(n), n=nr de elemente ale mulțimii A

-în cea de-a doua buclă se parcurg mulțimile clasterizate și pentru fiecare mulțime se va calcula perechea de noduri pentru care $\alpha(u,v)$ are valoarea maximă în mulțimea respectivă; complexitatea acestei bucle este $O(m \cdot k_{A_i}^2)$, unde m=numărul de mulțimi clasterizate, k_{A_i} =dimensiunea fiecărei mulțimi. Astfel complexitatea totală este de $O(500(n+m\cdot)) = O(n^3)$.

Deci, problema noastră este în clasa NP. Mai departe vom arăta că o problemă NP-Hard se reduce polinomial la CLUST-P. Vom alege problema NP-Hard K-STABLE_SET.

instanță:G graf, k număr natural

întrebare: ∃ k mulțime stabilă în G astfel încât $\bigcup_k A_k = V(G)$

și
$$A_k \cap A_l = \emptyset, \forall k \neq l, \forall 1 \leq k \leq p, 1 \leq l \leq p, l \neq k.$$

Aici noi vom uni nodurile care nu respectă proprietatea precizată în enunț $(\alpha(u,v) \leq s)$. După ce vom uni aceste noduri, vom avea îndeplinită proprietatea $\max_{u,v \in A_i} \leq s$ pentru orice mulțime de noduri.

```
b)
MatAdiac[nrElem][nrElem];
while k < nrElem do
  for l = 0; l < nrElem; l + + do
    if \alpha(k,l) > s then
       A[k][l] \leftarrow 1;
    else
       A[k][l] \leftarrow 0;
    end if
  end for
  k++;
end while
Bipartit=true;
for i = 0; i < nrElem; i + + do
  stableSet[i] \leftarrow -1;
end for
Coada C;
C.push(0);
while Coada C nu este goala do
  elem = pop(C);
  while j < nrElem do
    C.push(j);
    if A[elem][j] == true \&\&stable Set[j] == -1 then
       stableSet[j] \leftarrow 1 - stableSet[j];
    else if A[elem][j] == true \&\&stable Set[elem] == stable Set[j] then
       Bipartit=false;
    end if
    j++;
  end while
end while
if Bipartit==true then
  return true;
end if
return false;
```

Cum algoritmul de mai sus este de complexitate polinomială $O(n^2)$, problema din cerință este polinomial rezolvabilă pentru p=2 fixat.