chapter 5 Performance Analysis

2021/6/27

Regret Analysis

- A player chooses an action $\theta^{(t)} \in K$ every t period, where K is a feasible set of actions.
- ullet The cost function $f^{(t)}$ determines the cost $f^{(t)}(\theta^{(t)})$ for action $\theta^{(t)}$.
- The player decides his action based on the strategy.

Regret Analysis

- How does the player choose an action which minimizes a total cost $\Sigma f^{(t)}(\theta^{(t)})$?
- Can the cost function be minimized even if it is not unknown?
- We introduce a regret about the strategy.

definition (Regret)

The difference between the total cost of an action based on a strategy A and the total cost of the optimal strategy θ^* is defined as the regret Regret(A) of strategy A.

$$Regret(A) = \Sigma_{t=1}^T f^{(t)}(\theta^{(t)}) - \Sigma_{t=1}^T f^{(t)}(\theta^*)$$

Regret Analysis

Regret analysis in online learning

- Let action be the parameter of the online learner $\boldsymbol{\theta}^{(t)} \in \mathbb{R}^m$ given the training data $(\boldsymbol{x}^{(t)}, y^{(t)})$.
- Let the cost function be a loss function $f^{(t)} = (\boldsymbol{x}^{(t)}, y^{(t)}, \boldsymbol{\theta})$.
- In this case, the optimal strategy is the strategy that chooses the action that minimizes the cost function for all training data.

Follow the Leader

 At first, We consider strategy for choosing action that minimizes the total cost to date.

$$\boldsymbol{\theta}^{(t)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} \Sigma_{i=1}^{t-1} f^{(t)}(\boldsymbol{\theta})$$

This strategy is called Follow the Leader (FTL).

Follow the Leader

- However, there are cases where FTL doesn't work.
- \bullet Consider action $\theta \in [-1,1]$ and cost function $f^{(t)}(\theta) = (1/2)(-1)^t \theta.$
- In this case, the action goes back and forth between -1 and 1 except for the first, as $\theta^{(1)}=0, \theta^{(2)}=-1, \theta^{(2)}=1,....$
- The cost function is 1/2 except for the first, as $f^{(1)}(\theta^{(1)})=0, f^{(2)}(\theta^{(2)})=1/2, f^{(3)}(\theta^{(3)})=1/2,....$

Follow the Leader

- On the other hand, The optimal strategy is $\theta=0$ and the total cost of it is 0.
- Therefore, FTL regret in this case doesn't approach 0.
- We have to expand FTL.

Regularized Follow the Leader (RFTL)

$$\boldsymbol{\theta}^{(t)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} \eta \Sigma_{i=1}^{t-1} f^{(t)}(\boldsymbol{\theta}) + R(\boldsymbol{\theta})$$

- Let $R(\theta)$ be convex regularization function. Let $\eta \geq 0$ be parameter that determines the degree of regularization.
- When choosing the first action, the cost function is not presented, so action is determined only by the regularization term.

$$\boldsymbol{\theta}^{(1)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} R(\boldsymbol{\theta})$$

• We introduce lemma and definitions to derive RFTL regret.

lemma

For any vector $\mathbf{u} \in K$, the following holds.

$$\Sigma_{t=1}^T \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \Sigma_{t=1}^T \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{t+1}) + \frac{1}{\eta} \left\{ R(\boldsymbol{u}) - R(\boldsymbol{\theta}^{(1)}) \right\} \tag{1}$$

Proof.

For simplicity, let us assume that ${\pmb f}^{(0)}=\frac{1}{\eta}R({\pmb \theta})$ and the algorithm starts at t=0.

$$\Sigma_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) = \Sigma_{t=1}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) + \frac{1}{\eta} R(\boldsymbol{\theta})$$

In this time, the lemma can be expressed as following.

$$\boldsymbol{\Sigma}_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \boldsymbol{\Sigma}_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})$$

Proof.

At t=0, by definition, $\boldsymbol{\theta}^{(1)}=\arg\min_{\boldsymbol{\theta}}R(\boldsymbol{\theta})$ and $\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})\leq \boldsymbol{f}^{(0)}(\boldsymbol{u})$ holds. therefore,

$$\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{u}) \leq \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})$$

Proof.

At t>0, assume that lemma holds for t=T. In this time,

$$\boldsymbol{\theta}^{(T+2)} = \arg\min_{\boldsymbol{\theta}} \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (2)

$$\boldsymbol{\theta}^{(T+1)} = \arg\min_{\boldsymbol{\theta}} \Sigma_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (3)

