Homework 2 • Graded

Student

周洛君

Total Points

56 / 60 pts

Question 1

Question 1 6 / 6 pts

- + 4 pts A minor mistake
- + 2 pts A major mistake or two minor mistakes
- + 0 pts Totally wrong or empty

Question 2

Question 2 12 / 12 pts

- + 10 pts A minor mistake
- + 8 pts A major mistake or two minor mistakes
- + 6 pts The question has two parts, but only one is correct
- + 4 pts Some reasonable effort
- + 0 pts Totally wrong or empty

Question 3

Question 3 6 / 6 pts

- + 4 pts A minor mistake
- + 2 pts A major mistake or two minor mistakes
- + 0 pts Totally wrong or empty

Question 4 12 / 12 pts

- - + 10 pts A minor mistake
 - + 8 pts A major mistake or two minor mistakes
 - + 6 pts The question has two parts, but only one is answered
 - + 0 pts Totally wrong or empty

Question 5

Question 5 6 / 6 pts

- - + 4 pts A minor mistake
 - + 2 pts A major mistake or two minor mistakes
 - + **0 pts** Totally wrong or empty

Question 6

Question 6 12 / 12 pts

- - + 10 pts A minor mistake (including no clear explanation on "why minimum")
 - + 8 pts A major mistake or two minor mistakes
 - **+ 6 pts** more than one major mistakes
 - + 4 pts Some reasonable effort
 - + 0 pts Totally wrong or empty

Question 7

Question 7 2 / 6 pts

- + 6 pts Correct and minimum (5, 12)
- + 4 pts Correct and non-minimum
- → + 2 pts Incorrect function or gate circuit
 - + 0 pts Totally wrong or empty

Digital System Design and Lab: HW1

Lo Chun, Chou R13922136

March 31, 2025

1

A	В	Γ	X	Y
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

From the values where X=1, we can form the following equation:

$$X = A'BC + AB'C + ABC' + ABC$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3, 5, 6, 7)$$

$$= \prod M(0, 1, 2, 4)$$

Similarly, from the values where Y=1, we can form the following equation:

$$Y = A'B'C + A'BC' + AB'C' + ABC$$

$$= m_1 + m_2 + m_4 + m_7$$

$$= \sum m(1, 2, 4, 7)$$

$$= \prod M(0, 3, 5, 6)$$

 $\mathbf{2}$

(1)

We form the table by first listing all possible combinations of A,B,C,D and their corresponding decimal values.

Then we calculate the decimal values multiplied by 5, and let S, T, U, V present the decimal values, and W, X, Y, Z present the values of $0 \sim 9$ left.

A	В	С	D	decimal	decimal $\times 5$	S	Т	U	V	W	X	Y	Z
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	5	0	0	0	0	0	1	0	1
0	0	1	0	2	10	0	0	0	1	0	0	0	0
0	0	1	1	3	15	0	0	0	1	0	1	0	1
0	1	0	0	4	20	0	0	1	0	0	0	0	0
0	1	0	1	5	25	0	0	1	0	0	1	0	1
0	1	1	0	6	30	0	0	1	1	0	0	0	0
0	1	1	1	7	35	0	0	1	1	0	1	0	1
1	0	0	0	8	40	0	1	0	0	0	0	0	0
1	0	0	1	9	45	0	1	0	0	0	1	0	1

(2)

First, we can find that D=X=Z, since when D=1, this means that the decimal value is an odd number, therefore the decimal value multiplied by 5 would have a unit digit of 5, which would result in a one in X and Z.

Then, we can find that C=V, since when C=1, this means that the decimal value is added by 2, therefore the decimal value multiplied by 5 would result in adding a 10, which is V=1. Similarly, we would have B=U.

Next, A = T, because when A = 1, the decimal value is greater than 8, which would result in 40 when multiplied by 5, thus the tens digit would be 4, which means T = 1.

We can observe that S=0, since in order to have a 1 in S, the resulting value after multiplied by 5 should be greater than 80, which is impossible, because the maximum value of a BCD digit ABCD is 9.

Finally, W=Y=0, since first, any value multiplied by 5 would not result in 2 or 8 in the unit digit, also, the maximum value of ABCD is 9, so when we have 10, it won't be W=Y=1 but moving the ten to be presented in the tens digit.

From the K-map, we can derive the following minimum SOP equation:

$$F(A, B, C) = A'B' + C'$$

4

(1)

First, we convert the maxterm expression into a minterm expression:

$$F(A,B,C,D) = \prod M(0,2,10,11,12,14,15) \cdot \prod D(5,7)$$
$$= \sum m(1,3,4,6,8,9,13) \cdot \sum d(5,7)$$

Next, we draw the K-map and find the minimum SOP equation:

CD AB	0 0	0 (1 1	[0
0 0	o	Ψ <u></u>	<i>D</i>	1
0 (1	* *	" [7 1
1-1	3 1	1 1	0	0
را	0	6 1	1 }	ا ⁰ ن

From the K-map, we can derive the following minimum SOP equation:

$$F(A, B, C, D) = A'B + C'D + A'D + AB'C'$$

(2)

For this subproblem, we also need to convert the maxterm expression into a minterm expression first, which is the same as the previous subproblem:

$$F(A,B,C,D) = \prod M(0,2,10,11,12,14,15) \cdot \prod D(5,7)$$
$$= \sum m(1,3,4,6,8,9,13) \cdot \sum d(5,7)$$

But in the K-map, we circle 0s instead of 1s:

From the K-map, we can derive the following minimum SOP equation for F':

$$F'(A, B, C, D) = A'B'D' + ABD' + AC$$

Then, we can derive the minimum POS equation for F by using De Morgan's law:

$$F(A, B, C, D) = (F'(A, B, C, D))'$$

$$= (A'B'D' + ABD' + AC)'$$

$$= (A + B + D)(A' + B' + D)(A' + C')$$

By the given restriction, we knew that ABCD=1111 and ABCD=0101 would never occur, so they are the don't care terms.

We then construct the K-map:

From the K-map, we can derive the following simplified equation:

$$F(A, B, C, D) = B'D' + A'D + C'D$$

K-map using SOP (circle 1s):

cp #3 00	۰ ۱	1.1	[0	
0000	* []	0		F= A'BU' + AC'D + AB'U' ALD - PI
01 0		"[]	7 (oV
11 0	0	0	0	F = 1 Bc + Bc D + Ag C BC D - PI
10 0	0	0	0	F= A'BC' + ABUD + AB'C / ABCO Not PI
				("Can be calceled by BCD or ACD)

From the order 1 \rightarrow 2 \rightarrow 3 \rightarrow 4, we can formulate the first four minimum two-level gate circuits:

K-map using POS (circle 0s):

CD AB 00	01	1.1	10	
000	4	0	ı	F'= 1/B' + U+ 1/BU'
01 0	1	7	1	$ \exists F = (F^I)' = (A'B' + C + ABD')' $
11 30	0	0	0	= (A+B) c'(4+B'+D)
10 0	0	0	ο	

From the order 5 \rightarrow 6 \rightarrow 7 \rightarrow 8, we can formulate the first four minimum two-level gate circuits:

Since we're using K-map to ensure that both SOP / POS expressions are minimum, we can conclude that the eight two-level gate circuits are minimum.

7

First, we convert the maxterm expression into a minterm expression:

$$F(A, B, C, D) = \prod_{i=1}^{n} M(0, 1, 3, 13, 14, 15)$$
$$= \sum_{i=1}^{n} m(2, 4, 5, 6, 7, 8, 9, 10, 11, 12)$$

Then, we draw the K-map:

50P:		F= 1/8'U + 1/80' + 10'0 + 18'C'
Po5:	C9 15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F'= A'B'U'+ A'BD + ABD'+ AC > F= (F')'= (A'B'C'+ A'BD+ ABD'+AC)' = (A+B+U)(A+B'+D')(A+B'+D)(A'+C')

From the K-map, we can formulate the curcuit with only AND, OR gates:

There are 5 gates and 11 gate inputs in the circuit.