Claire Voisin on the question of rationality

February 27, 2019

$$\left(\frac{3}{5},\frac{4}{5}\right)$$
,

$$\left(\frac{3}{5},\frac{4}{5}\right)$$
 , $\left(\frac{5}{13},\frac{12}{13}\right)$,

$$\left(\frac{3}{5}, \frac{4}{5}\right)$$
, $\left(\frac{5}{13}, \frac{12}{13}\right)$, $\left(\frac{8}{17}, \frac{15}{17}\right)$,

$$\left(\frac{3}{5}, \frac{4}{5}\right)$$
, $\left(\frac{5}{13}, \frac{12}{13}\right)$, $\left(\frac{8}{17}, \frac{15}{17}\right)$, $\left(\frac{7}{25}, \frac{24}{25}\right)$,

$$\left(\frac{3}{5}, \frac{4}{5}\right), \left(\frac{5}{13}, \frac{12}{13}\right), \left(\frac{8}{17}, \frac{15}{17}\right), \left(\frac{7}{25}, \frac{24}{25}\right), \left(\frac{20}{29}, \frac{21}{29}\right), \dots$$

Can you recognise these numbers?

$$\left(\frac{3}{5}, \frac{4}{5}\right), \left(\frac{5}{13}, \frac{12}{13}\right), \left(\frac{8}{17}, \frac{15}{17}\right), \left(\frac{7}{25}, \frac{24}{25}\right), \left(\frac{20}{29}, \frac{21}{29}\right), \ldots$$

These are solutions (x, y) of

$$x^2 + y^2 = 1.$$

Can you recognise these numbers?

$$\left(\frac{3}{5}, \frac{4}{5}\right)$$
, $\left(\frac{5}{13}, \frac{12}{13}\right)$, $\left(\frac{8}{17}, \frac{15}{17}\right)$, $\left(\frac{7}{25}, \frac{24}{25}\right)$, $\left(\frac{20}{29}, \frac{21}{29}\right)$,

These are solutions (x, y) of

$$x^2 + y^2 = 1.$$

All the solutions:

$$x = \frac{1 - t^2}{1 + t^2} \qquad y = \frac{2t}{1 + t^2}.$$

Two systems of equations \dots

Variables: x, y Variables: t

Equations: $x^2 + y^2 = 1$. Equations: None.

Two systems of equations . . .

Variables: x, y

Equations: $x^2 + y^2 = 1$. Equations: None.

Variables: t

...are equivalent by

$$x = \frac{1-t^2}{1+t^2}, \quad y = \frac{2t}{1+t^2} \qquad \longleftarrow \qquad t$$

$$x, y \qquad \longrightarrow \qquad \frac{y+t}{y+t}$$

Two systems of equations . . .

Variables: x, y

Equations: $x^2 + y^2 = 1$.

Variables: t

Equations: None.

...are equivalent by

$$x = \frac{1 - t^2}{1 + t^2}, \quad y = \frac{2t}{1 + t^2}$$

x, y

$$x^2 + y^2 = 1$$

An algebraic variety is the set of solutions of a system of polynomial equations.

An algebraic variety is the set of solutions of a system of polynomial equations.

Examples

$$x^2 + y^2 = 1$$

An algebraic variety is the set of solutions of a system of polynomial equations.

Examples

$$x^3 + y^3 + z^3 + 1 = (x + y + z + 1)^3$$

An algebraic variety is the set of solutions of a system of polynomial equations.

Examples

$$x^3 + y^3 + z^3 + 1 = (x + y + z + 1)^3$$

A Kummer K3

An algebraic variety is the set of solutions of a system of polynomial equations.

Example (The best one)

An algebraic variety is the set of solutions of a system of polynomial equations.

Example (The best one)

A variety X is rational if it is birational to \mathbf{A}^n .

A variety X is rational if it is birational to \mathbf{A}^n .

A variety X is rational if it is birational to \mathbf{A}^n .

System of equations ←-- Coördinate change --> No equations!

Which varieties are rational?

1. The variety defined by $x^2 + y^2 = 1$ is rational.

- 1. The variety defined by $x^2 + y^2 = 1$ is rational.
- 2. Varieties defined by linear equations are rational.

- 1. The variety defined by $x^2 + y^2 = 1$ is rational.
- 2. Varieties defined by linear equations are rational.
- Varieties defined by one quadratic equation are rational (over C).

- 1. The variety defined by $x^2 + y^2 = 1$ is rational.
- 2. Varieties defined by linear equations are rational.
- Varieties defined by one quadratic equation are rational (over C).
- 4. Varieties defined by one cubic?

- 1. The variety defined by $x^2 + y^2 = 1$ is rational.
- 2. Varieties defined by linear equations are rational.
- Varieties defined by one quadratic equation are rational (over C).
- 4. Varieties defined by one cubic?
 - 4.1 Cubic curves: not rational (ancient)
 - 4.2 Cubic surfaces: rational (Castelnuovo, Enriques: Early 1900s)
 - 4.3 Cubic threefolds: not rational (Clemens-Griffiths: 1972)
 - 4.4 Cubic fourfolds and higher: ???

Artin–Mumford (1971): If X is a rational smooth projective variety, then $H^3(X, \mathbf{Z})$ is torsion-free.

Artin–Mumford (1971): If X is a rational smooth projective variety, then $H^3(X, \mathbf{Z})$ is torsion-free.

So we have the Artin-Mumford invariant

$$H^3(X, \mathbf{Z})_{\mathrm{tors}}$$

as a candidate to detect non-rationality.

Artin–Mumford (1971): If X is a rational smooth projective variety, then $H^3(X, \mathbf{Z})$ is torsion-free.

So we have the Artin-Mumford invariant

$$H^3(X, \mathbf{Z})_{\mathrm{tors}}$$

as a candidate to detect non-rationality.

But $H^3(X, \mathbf{Z})_{\text{tors}} = 0$ for all interesting examples.

Photo credit: CNRS News Article "Claire Voisin, 2016 CNRS Gold Medal"

Definition (Voisin, 2015)

X admits a decomposition of the diagonal if in $Chow(X \times X)$,

$$[\Delta] \sim \{x\} \times X + \alpha$$

for some α supported on $X \times Z$ for $Z \subsetneq X$.

Theorem (Voisin, 2015)

- 1. X rational $\implies X$ admits a decomp. of the diagonal.
- 2. X admits decomp. of the diagonal $\implies H^3(X, \mathbf{Z})_{tors} = 0$.

Theorem (Voisin, 2015)

- 1. X rational $\implies X$ admits a decomp. of the diagonal.
- 2. X admits decomp. of the diagonal $\implies H^3(X, \mathbf{Z})_{tors} = 0$.
- 3. If X_t is a family of varieties such that some X_{t_0} does not admit a decomp. of the diagonal, then neither does X_t for almost all t.

For example, $X_t = \{x^4 + y^4 + z^4 + w^4 - txyzw = 0\}.$

New technique for non-rationality theorems:

- 1. Consider a family X_t .
- 2. Find a t_0 such that X_{t_0} does not admit a decomposition of the diagonal (for example, show $H^3(X_{t_0}, \mathbf{Z})_{\mathrm{tors}} \neq 0$).
- 3. Theorem: Almost all X_t are not rational!

New technique for non-rationality theorems:

- 1. Consider a family X_t .
- 2. Find a t_0 such that X_{t_0} does not admit a decomposition of the diagonal (for example, show $H^3(X_{t_0}, \mathbf{Z})_{\text{tors}} \neq 0$).
- 3. Theorem: Almost all X_t are not rational!
- Quartic double solids (Voisin, 2015),
- Rationality is not deformation invariant (Hassett-Pirutka-Tschinkel, 2016).
- Hypersurfaces in \mathbf{P}^{n+1} of degree $d \ge \log_2 n + 2$ (Schreieder, 2018)

There's a lot more...

- 1. Kodaira problem,
- 2. Green's conjecture for canonical curves,
- 3. Chow rings of K3 surfaces,
- 4. Many questions related to the Hodge conjecture.