The Eyring–Kramers Law for Extinction Time of Contact Process on Stars

Younghun Jo

KIAS APP Seminar June 20, 2024

Overview

Metastability of Contact Processes

Main Result

Proof Methodology

Contact process

- G = (V, E) (locally) finite connected graph
- $\lambda > 0$ infection rate
- \bullet Configurations of the contact process: $\eta \in \{0,1\}^V$

For
$$x \in V$$
, $\eta(x) = \begin{cases} 0 & x \text{ is healthy} \\ 1 & x \text{ is infected} \end{cases}$

 \bullet Abuse of notation: identify η with $\{x \in V: \eta(x) = 1\}$

• The all-healthy state $\eta = \emptyset$ is the unique absorbing state.

Metastability of contact processes

The extinction time of the contact process is

$$\tau_G = \inf\{t \ge 0 : \eta_t = \emptyset\}.$$

Q. Fix a (increasing) sequence of graphs $(G_N)_{N\geq 1}$, and study the growth of au_{G_N} .

Finite-volume phase transition for boxes ('84-'99)

On $\mathbb{Z}_N^d = [1, N]^d$ with free boundary, we have

$$au_{\mathbb{Z}_N^d} \sim egin{cases} \log |\mathbb{Z}_N^d| & \text{if } \lambda < \lambda_c, \\ \exp ig(c_\lambda |\mathbb{Z}_N^d | ig) & \text{if } \lambda > \lambda_c \end{cases}$$

where |G| denotes the number of vertices.

The latter case is a clear demonstration of the metastable behavior.

Metastability of contact processes

More generally, the following theorem holds.

Theorem (MMYV '16, SV '17)

Suppose that $\lambda > 0$ is sufficiently large.

(a) For all D > 0, there exists $c = c(\lambda, D)$ such that

$$\mathbb{E}\tau_G \ge \exp(c|G|)$$
 for all G with degrees $\le D$.

(b) For all $\varepsilon > 0$, there exists $c = c(\lambda, \varepsilon)$ such that

$$\mathbb{E}\tau_G \ge \exp\Bigl(c \cdot \frac{|G|}{(\log |G|)^{1+\varepsilon}}\Bigr)$$
 for all G .

Mean extinction time is already very informative

Proposition

- (a) (Markov inequality) $\mathbb{P}[\tau_G > t] \leq \frac{\mathbb{E}\tau_G}{t}$ for all t > 0.
- (b) ("Upside-down Markov inequality") $\mathbb{P}[\tau_G < t] \leq \frac{t}{\mathbb{E}\tau_G}$ for all t > 0.

Theorem (Schapira-Valesin '17)

Suppose that $\lambda > 0$ is sufficiently large. Then, it holds that

$$\frac{\tau_{G_N}}{\mathbb{E}\tau_{G_N}} \Longrightarrow \operatorname{Exp}(1) \qquad \textit{for all } (G_N)_{N\geq 1} \textit{ with } |G_N| \to \infty.$$

Precise estimate for mean extinction time

Levels of precision for mean transition time estimate:

- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll}$
 - 1 holds for graphs of uniformly bounded degree. (MMYV '16)
 - ② holds for \mathbb{Z}_N^d with free boundary. (Mountford '99) However, ② is open for even \mathbb{Z}_N^d with periodic boundary.
 - ② holds for a variety of random graph models. (Shapira-Valesin '21)
 - ③ is open only except for two cases.
 - 1. The triviality: complete graph K_N
 - 2. Main Result: star graph S_N (J. '24)

Main obstacles to precise estimation

- 1. Spatial asymmetry of the underlying graph complicates the process.
 - (2) heavily relies on very specific geometric features.
 - What are the typical states of the process on a cycle \mathbb{Z}_N ?
- 2. The process is non-reversible in general.

3. Former methodologies (e.g. percolation, coupling) rely on less precise formulas for the mean extinction time.

Contact process on stars

Let S_N be the star graph with one hub and N leaves.

Why do we study star graphs?

- It is a natural model for studying epidemic hubs.
- It serves as a building block within larger graph structures.

Contact process on stars

All leaves are homogenous, so we reduce to a random walk on the ladder graph:

$$(o_t, n_t) = (\mathsf{hub} \ \mathsf{state}, \#\mathsf{infected} \ \mathsf{leaves}) \in \{0, 1\} \times [0, N].$$

Transition rates for the contact process on a star

Main result

Eyring-Kramers law (J. '24)

Let $\varepsilon>0$ be given. Then, for $x\in\{0,1\}\times[\varepsilon N,N]$, we have

$$\mathbb{E}_x \tau_{(0,0)} \simeq \kappa_{\lambda} N^{-\frac{1}{1+2\lambda}} \left(\frac{(1+\lambda)^2}{1+2\lambda} \right)^N.$$

In particular, we have

$$\sup_{x \in \{0,1\} \times [\varepsilon N,N]} \frac{1}{N} \log \mathbb{E}_x \tau_{(0,0)} \xrightarrow{N \to \infty} c_{\lambda} = 2 \log(1+\lambda) - \log(1+2\lambda).$$

Main ingredients:

- Special function theory for precise estimation of quasi-stationary measure
- The potential theoretic approach to metastability of non-reversible processes

These methodologies have not previously been used in the study of the contact process.

Quasi-stationary distribution

The stationary measure of the process is the Dirac mass at the all-healthy state. To apply potential theory, we add supplementary transition rates from \emptyset .

- Natural choice: rate proportional to the stationary measure of the process conditioned on the non-extinction.
 - \Longrightarrow Hard to compute in general.
- We add a regeneration at the hub: $(0,0) \xrightarrow{\alpha} (1,0)$. Or equivalently, we consider the process restricted to the non-extinction.

A closed form solution for the quasi-stationary measure μ is due to (Cator–Mieghem '13).

Heuristics: High infection regime

If n is large, then we may approximate that the hub is constantly infected.

- \implies Each leaf gets infected with rate λ , and recovers with rate 1.
- $\implies n$ rapidly converges to $\operatorname{Binom}(N,\frac{\lambda}{1+\lambda})$ in distribution.
- $\implies \mu(1,n) \sim {N \choose n} \lambda^n.$

In particular, the metastable state of the process is $n \simeq \frac{\lambda}{1+\lambda} N$.

Heuristics: Low infection regime

If n is small, the states with healthy hub are dominant in path to the extinction.

#(cured leaves before the reinfection of the hub) $\sim \operatorname{Geom}(\frac{\lambda}{1+\lambda}) \wedge n$. $\Longrightarrow \mu(1,n) \sim (1+\lambda)^n$.

Precise asymptotics for quasi-stationary measure

Using special function theory and refined Laplace's method, we compute:

Uniform asymptotic behavior of the quasi-stationary measure μ

Potential theoretic approach

A precise framework for quantifying metastability metrics (e.g. $\mathbb{E} \tau$) in terms of potential theoretic terms (e.g. capacity, equilibrium potential) was established in (BEGK '01, '04), and then extended to non-reversible settings recently.

Hitting time formula for non-reversible process

$$\mathbb{E}_x \tau_y = \frac{1}{\operatorname{cap}(x, y)} \sum_z h_{x, y}^{\dagger}(z) \mu(z).$$

Precise asymptotics for the quasi-stationary measure

- ⇒ Good test functions/flows approximating the harmonic functions/flows
- ⇒ Sharp estimates for capacity and potential (via variational principles)

Further topics

Q. Can we extend our methodology to other graphs, for instance, cycles \mathbb{Z}_N ?

The potential theoretic approach is robust, but the difficult part is the computation of the quasi-stationary measure asymptotics.

Thank you!