Elizabeth Yankovsky

Phone: (803) 201-1802 GitHub: https://github.com/ElizabethYankovsky
Email: elizabeth.yankovsky@yale.edu, Website: https://elizabethyankovsky.github.io/

eyankovsky@gmail.com

EDUCATION Princeton University, Princeton, NJ

Ph.D., Atmospheric and Oceanic Sciences, 2015 – 2020.

Thesis: Modeling & parameterizing submesoscale turbulence in dense Arctic flows

Advisor: Dr. Sonya Legg

University of South Carolina Honors College, Columbia, SC

Thesis: Methane hydrates and cellular convection in the Central Aleutian Basin

B.S., Physics and Geophysics, 2011-2015

Advisors: Drs. Camelia Knapp and Darrell Terry

APPOINTMENTS Yale University, New Haven, CT

Assistant Professor in Earth and Planetary Sciences, July 2024-present

[C]Worthy, Boulder, CO

Postdoctoral Researcher, 2023-2024

Mentors: Drs. Matthew Long, Alicia Karspeck, Scott Bachman

Courant Institute, New York University, New York, NY

Postdoctoral Associate, Center for Atmosphere Ocean Science, 2020-present

Mentors: Drs. Laure Zanna and Shafer Smith

NOAA Geophysical Fluid Dynamics Laboratory, Princeton University

Graduate Research Assistant, Ocean & Ice Processes Group, 2015-2020

Mentors: Drs. Sonya Legg, Robert Hallberg, Rong Zhang

Geophysical Exploration Laboratory, University of South Carolina

Undergraduate Research Assistant, 2012-2015 Mentors: Drs. Camelia Knapp, Darrell Terry

Oregon State University, College of Earth, Ocean, & Atmospheric Sciences

NSF-REU program intern, June-August 2014

"Response of the Length and Stratification of the North River Estuary to Changes

in Forcing", Mentor: Dr. James Lerczak

Rutgers University, Department of Marine and Coastal Sciences

NSF-REU program intern, June-August 2013

"Quantifying Turbulent Dissipation in a Shallow Estuarine Environment"

Mentor: Dr. Robert Chant

AWARDS 2024 Council of the American Meteorological Society Editor's Award – JPO

2017 National Science Foundation Graduate Research Fellowship

2011 National Merit Scholarship

TEACHING Yale EPS 216 Global Warming: Climate Physics. Taught with John Wettlaufer,

Spring 2025.

Princeton Instructor Assistant: Introduction to Ocean Physics for Climate (GEO-

MAE 425). Taught by Gabriel Vecchi, Fall 2018.

Teaching Transcript Program, Princeton McGraw Center, completed 2020.

PUBLICATIONS

Yankovsky, E., M. Zhou, M. Tyka, S. Bachman, D. Ho, A. Karspeck, and M. Long, 2024: Impulse response functions as a framework for quantifying ocean-based carbon dioxide removal. *[Under review in Biogeosciences.]*

Zhou, M., M. Tyka, D. Ho, **E. Yankovsky**, S. Bachman, T. Nicholas, A. Karspeck, M. Long, 2024: Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide removal. *Nature Climate Change*.

Yankovsky, E., S. Bachman, K. S. Smith, L. Zanna, 2024: Backscatter parameterization of ocean mesoscale eddies informed by vertical structure. *Journal of Advances in Modeling Earth Systems*.

Yankovsky, E., A. Yankovsky, 2023: The cross-shelf regime of a wind-driven supercritical river plume. *Journal of Physical Oceanography*.

Yankovsky, E., L. Zanna, K. S. Smith, 2022: Influences of mesoscale ocean eddies on flow vertical structure in a resolution-based model hierarchy. *Journal of Advances in Modeling Earth Systems*.

Marques, G., N. Loose, **E. Yankovsky**, J. Steinberg, C. Chang, N. Bhamidipati, A. Adcroft, B. Fox-Kemper, S. Griffies, R. Hallberg, M. Jansen, H. Khatri, L. Zanna, 2022: NeverWorld2: An idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. *Geoscientific Model Development*.

N. Loose, R. Abernathey, I. Grooms, J. Busecke, A. Guillaumin, **E. Yankovsky**, G. Marques, J. Steinberg, A. S. Ross, H. Khatri, S. Bachman, L. Zanna, P. Martin, 2022: GCM-Filters: A Python package for diffusion-based spatial filtering of gridded data. *Journal of Open Source Software*.

I. Grooms, N. Loose, R. Abernathey, J. Steinberg, S. Bachman, G. Marques, A. Guillaumin, E. Yankovsky, 2021: Diffusion-based smoothers for spatial filtering of gridded geophysical data. *Journal of Advances in Modeling Earth Systems*.

Yankovsky, E., S. Legg, R. Hallberg, 2021: Parameterizing submesoscale symmetric instability and frontal mixing in dense flows along topography. *Journal of Advances in Modeling Earth Systems*.

Yankovsky, E., S. Legg, 2019: Symmetric and baroclinic instability in dense shelf overflows. *Journal of Physical Oceanography*.

Yankovsky, E. A., D. A. Terry, C. C. Knapp, 2015: Seismic and gravity evidence for methane-hydrate systems in the central Aleutian Basin. *International Journal of Earth Science and Geophysics*.

SELECTED SEMINARS AND TALKS

INVITED TALKS

Links between eddy horizontal and vertical structure: a geostrophic turbulence interpretation. *Climate Applications of Layering Workshop, Isaac Newton Institute for Mathematical Sciences*, University of Cambridge; and *Theoretical and Practical Perspectives in Geophysical Fluid Dynamics Program*, International Center for Theoretical Sciences, Bengaluru, India (virtual), 2024.

Impulse response functions as a framework for quantifying carbon uptake associated with ocean alkalinity enhancement. *Spring Symposium on Marine Carbon Dioxide Removal*, Yale University (YCNCC), 2024.

A backscatter-only parameterization for mesoscale eddies. *IUGG 2023 General Assembly*, Berlin, Germany, 2023.

The vertical structure of mesoscale ocean eddies. *Atmosphere Ocean Science Colloquium*, Courant Institute, New York University, 2023.

Improving ocean models across scales: techniques, progress, and open questions. *AOCD Spring Seminar Series*, Yale University, 2023.

The role of ocean turbulence in climate. *The Department of Earth and Planetary Sciences Colloquium*, Yale University, 2023.

Modeling & parameterizing mesoscale eddies in the Arctic Ocean. *US Interagency Arctic Research Policy Committee* modeling team meeting, 2022.

Parameterizing mesoscale eddy energetics and vertical structure at eddy-permitting resolutions. *NCAR Oceanography Seminar*, Boulder, CO, 2022.

Influences of mesoscale ocean eddies on flow vertical structure. *Oceans Research Group Seminar*, University of Oxford, 2022.

Modeling and parameterizing submesoscale turbulence in dense Arctic overflows. *Atmosphere, Ocean and Climate Sack Lunch Seminar Series, MIT EAPS*, 2021.

Constraining water mass transformation and overflow dynamics on the Arctic shelves. *Polar Oceans Seminar Series*, British Antarctic Survey, 2021.

Symmetric instability in Arctic dense gravity currents. *Seminar in Applied and Computational Mathematics*, University of Edinburgh, Scotland, 2019.

Modeling baroclinic and submesoscale instabilities in the Arctic Ocean. *AOCD Fall Seminar Series*, Yale University, 2018.

CONFERENCE PRESENTATIONS

Multi-resolution regional modeling to investigate variability in the carbon uptake efficiency of ocean alkalinity enhancement. *AGU Fall Meeting*, 2024.

Mesoscale turbulence in the context of marine carbon dioxide removal. *Climate Process Team Annual Meeting: Ocean Transport and Eddy Energy*, Brown University, 2024.

Evaluation of "Impulse Response Functions" as a framework for quantifying carbon uptake associated with ocean alkalinity enhancement. *Ocean Sciences Meeting*, New Orleans, LA, 2024 *and Ocean Model Working Group Meeting*, NCAR, Boulder, CO, 2024.

Exploring mesoscale eddy vertical structure regimes in the global ocean. *AGU Fall Meeting*, 2022.

Influences of mesoscale ocean eddies on flow vertical structure. *Ocean Sciences Meeting*, 2022; *Climate Process Team Annual Meeting: Ocean Transport and Eddy Energy*, Boulder, CO, 2022.

Effects of eddy representation on vertical structure and energetics. *CESM Ocean Model Working Group Meeting*, 2021.

Constraining Arctic water mass transformation and ventilation pathways in the GFDL-OM4.0. *AGU Fall Meeting*, 2020.

Modeling vertical transport and submesoscale frontal mixing in dense flows along topography. *Ocean Sciences Meeting*, San Diego, CA, 2020.

Symmetric and baroclinic instability in dense shelf overflows. *EGU General Assembly*, Vienna, Austria, 2019.

Symmetric instability in dense shelf overflows. *Ocean Sciences Meeting*, Portland, OR, 2018.

Dense water formation and transport on the Arctic continental shelves. *Forum for Arctic Ocean Modeling and Observational Synthesis (FAMOS)*, Woods Hole Oceanographic Institution, MA, 2017.

Response of the length and stratification of the North River estuary to changes in forcing. *AGU Fall Meeting*, San Francisco, CA, 2014.

PROFESSIONAL SERVICE

Associate Editor for Journal of Geophysical Research: Machine Learning and Computation, 2024-present.

Committee Member for American Physical Society: Topical Group on the Physics of Climate election, 2024.

Reviewer for: Journal of Physical Oceanography, Ocean Modelling, Journal of Advances in Modeling Earth Systems, Geophysical Research Letters, Environmental Fluid Mechanics, Journal of Geophysical Research: Oceans, NSF, NASA NSPIRES program.

Convener and chair for the session "Multiscale Eddy Dynamics and Tracer Transport: Bridging Observations, Theory, and Modeling" at Ocean Sciences Meeting, 2024.

Convener and chair for the session "Mesoscale Eddy Energy and Ocean Transport" at Ocean Sciences Meeting, 2022.

University Service

UCAR Annual Members Meeting Yale EPS substitute representative, 2024.

Scientific Leadership Team: Center for Natural Carbon Capture.

Faculty Affiliate: Yale Institute for Biospheric Studies.

Co-organizer: Atmosphere, Oceans, Climate Dynamics seminar, 2024.

NYU-CAOS Colloquium Organizing Committee (2022), Planning Committee for the yearly Princeton AOS Program Orientation and Retreat (2018), AOS Program Student-Faculty Representative (2017-18).

WORKSHOPS

Climate Applications of Layering, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, May 2024.

Machine Learning and Climate Modeling: Princeton AOS, July 2019.

Convection in Nature: Princeton Center for Theoretical Science, Feb. 2018.

Forum for Arctic Modeling and Observational Synthesis (FAMOS): Woods Hole Oceanographic Institution, Oct. 2017.

Les Houches Summer School on Fundamental Aspects of Turbulent Flows in Climate Dynamics: Les Houches Physics School, Aug. 2017.

COMPUTER EXPERIENCE

Regional Ocean Modeling System (ROMS): high-resolution, realistic simulations aimed at studying ocean alkalinity enhancement for carbon removal.

MIT General Circulation Model (MITgcm): idealized non-hydrostatic simulations of dense gravity currents, coastal buoyant plume dynamics, LES.

GFDL Modular Ocean Model (MOM6): idealized and regional simulations; analysis of global models including CM2.6 and OM4, model development.

Other: Python, MATLAB, GitHub, Jupyter, LaTeX, Fortran, shell scripting.

OUTREACH

Yale-New Haven Teachers Institute: developing lectures to present to local public school teachers, 2024-present.

STEM Professionals Day at PS154 in Brooklyn – volunteer, 2022.

NJ Ocean Fun Days, Estuary Day, Environment Day – volunteer, 2017-19.

Young Women's Conference in Science, Technology, Engineering & Mathematics (Princeton Plasma Physics Laboratory) – volunteer, 2018-19.

Plainsboro Library – developed youth program "Motion in the Ocean", 2017.

Future City – member of local nonprofit organization aimed at educating communities about environmental issues, working with policy-makers, and developing environmental initiatives, 2016-18.

Environmental Protection Agency: Trash Free Waters – attended meetings to discuss pollution issues facing New York and New Jersey waterways, 2017.