Tianxiang (Adam) Gao

Jan 16, 2025

Outline

- Universal Approximation Theorem
- Review of Derivatives
- Optimization and Gradient Descent
- Backpropogation

- Universal Approximation Theorem
- Optimization and Gradient Descent

An MLP with L layers computes an output $\hat{y} = x^L$, where each layer $\ell \in [L]$ is defined recursively as:

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} + oldsymbol{b}^\ell, \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

where the initial input is $x^0 = x$ and $\phi(\cdot)$ is the activation function.

Conclusion

MLPs can solve nonlinear problems like XOR that a single perceptron cannot handle.

Backpropogation

Universal Approximation Theorem (UAT) of MLPs

- An MLP can be expressed as a **parameterized** function $f(x; \theta)$ or $f_{\theta}(x)$, where θ is the collection of all weights and biases.
- We assume the existence of a **true** function $f^*(x): x \mapsto y$ maps the input x to the target y.
- ullet The goal of the parameterized function $f_{m{ heta}}$ is to approximate f^* by finding optimal values for $m{ heta}$.

Universal Approximation Theorem (UAT):

- Theorem: MLPs f_{θ} can approximate "any" function f^* with arbitrarily small errors, given sufficient parameters (or neurons).
- ullet The UAT holds because of the **hierarchical** structure and the **nonlinear** activation function ϕ ,
- Existence: the UAT implies the existence of suitable parameter values.

Key Question

How can we find the appropriate values of θ in practice?

- Universal Approximation Theorem
- Review of Derivatives
- Optimization and Gradient Descent

Definition of Derivative

Definition: Given a real-valued function f(x), the **derivative** of f measures how the output of the function changes with respect to (w.r.t.) changes in the input x.

- If the input changes from a to x, the change in x is $\Delta x = x - a$.
- Consequently, the change in the output is $\Delta y := f(x) f(a)$.
- The derivative of f at a is the rate of change of f w.r.t. the change of the input:

$$f'(a) \approx \frac{\Delta y}{\Delta x} = \frac{f(x) - f(a)}{x - a}$$

Here, the approximation error is small when x is close to a

Notation: We often denote the derivative of f at x as

$$f'(x) = \frac{df}{dx}, \quad df \approx \Delta y, \quad dx \approx \Delta x,$$

where the approximation is exact in the limit as $\Delta x \to 0$.

Properties of Derivatives

Here are some fundamental properties of derivatives:

• Linearity: The derivative of a linear combination of two functions h(x) = af(x) + bg(x) is:

$$h'(x) = af'(x) + bg'(x)$$

• **Product Rule**: The derivative of the product of two functions h(x) = f(x)g(x) is:

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

• Quotient Rule: The derivative of the quotient of two functions $h(x)=\frac{f(x)}{g(x)}$ (where $g(x)\neq 0$) is:

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

• Chain Rule: The derivative of a composition of two functions h(x) = g(f(x)) is:

$$h'(x) = g'(f(x)) \cdot f'(x)$$

Linear Approximation

A curve of f(x) lies very close to the line segment between P and Q. By zooming in toward the point a, the graph looks more and more like its straight line.

• Rewriting the "definition" formula of the derivative, we have:

$$f(x) \approx f(a) + f'(a) \cdot (x - a) := L(x)$$

- Here, L(x) is a linear function of x and it is called the linear approximation of f at a.
- \bullet The approximation error decreases as x gets closer to a.
- The function L(x) is the **tangent line** to f(x) at x=a.

Multivariate Function and Partial Derivatives

Consider a multivariate function f(x,y), where changes in the input can come from either x or y.

• If we fix y and vary only x, we compute the partial derivative of f with respect to x:

$$f\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \frac{\Delta_x f}{\Delta x}$$

Here, $\Delta_x f$ denotes the change in f caused **only** by changes in x.

• Similarly, if we fix x and vary only y, we compute the partial derivative of f with respect to y:

$$\frac{\partial f}{\partial y} \approx \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} = \frac{\Delta_y f}{\Delta y}$$

Here, $\Delta_y f$ denotes the change in f caused **only** by changes in y.

Note: Partial derivatives measure how f(x,y) changes with respect to one variable while keeping the other variable constant.

Tangent Plane as a Linear Approximation

Similar to a single-variable function f(x), a function f(x,y) has a linear approximation given by:

$$f(x,y) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b) := L(x,y)$$

Here, L(x,y) represents the **tangent plane** to the surface f(x,y) at the point (a,b,f(a,b)).

Gradient Vector

Consider a multivariate function $f(x) = f(x_1, ..., x_n)$, where $x \in \mathbb{R}^n$.

• Gradient: The gradient of f(x) is a vector of partial derivatives, defined as:

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}_1} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}_n} \end{bmatrix}^{\top}.$$

• Linear Approximation: The output change Δf can be approximated by:

$$\Delta f \approx \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \dots + \frac{\partial f}{\partial x_n} \cdot \Delta x_n = \nabla f(\boldsymbol{x}) \cdot \Delta \boldsymbol{x},$$

where the approximation becomes exact if $\Delta x \rightarrow 0$.

• Vector Field: The gradient ∇f is a vector field that comprises both magnitude and direction, where the magnitude is the Euclidean norm defined by $\|a\| = \sqrt{\sum_{i=1}^n a_i^2}$.

Descent Direction

The gradient direction is the steepest ascent direction for the function f. Hence, the **negative** gradient is the steepest **descent** direction.

ullet For simplicity, assume $\|\Delta x\|=1$. From the *output change approximation*, we have

$$\Delta f \approx \nabla f(\boldsymbol{x}) \cdot \Delta \boldsymbol{x} = \|\nabla f(\boldsymbol{x})\| \cdot \|\Delta \boldsymbol{x}\| \cdot \cos \alpha = \|\nabla f(\boldsymbol{x})\| \cdot \cos \alpha,$$

where α is the angle between $\nabla f(x)$ and Δx .

- The steepest ascent in Δf is obtained when $\alpha=0$, i.e., $\Delta x=\frac{\nabla f(x)}{\|\nabla f(x)\|}.$
- The steepest descent in Δf is obtained when $\alpha=\pi$, i.e., $\Delta x=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$.

- The derivative f' of a function f is the rate of change of the outputs w.r.t. to its input.
- Linearity, product rule, quotient rule, Chain rule, partial derivatives, gradient
- The output change can be approximated by the inner product of ∇f and Δx , *i.e.*, $\Delta f \approx \nabla f(x) \cdot \Delta x$.
- The **negative** gradient direction is the steepest **descent** direction.

Discussion Questions

Compute the gradients of the following functions:

•
$$f(x) = \frac{1}{2}(x-y)^2$$

•
$$f(x) = 1$$
 $\{x \ge 0\}$, i.e., the step function: $f(x) = 1$ if $x \ge 0$, and $f(x) = 0$ otherwise

•
$$f(x) = \frac{1}{1+e^{-x}}$$
, i.e., sigmoid function. **Hint**: use the chain rule by $z := 1 + e^{-x}$.

$$ullet$$
 $f(oldsymbol{x}) = oldsymbol{a}^ op oldsymbol{x}$, where $oldsymbol{a}, oldsymbol{x} \in \mathbb{R}^n$. Hint: write the dot product as summation.

Instructions: Discuss these questions in small groups of 2-3 students.

Compute the derivatives of the following functions:

•
$$f(x) = \frac{1}{2}(x-y)^2$$
, $f'(x) = x - y$

•
$$f(x) = \overline{1} \{x \ge 0\}$$
, $f'(x) = 0$ for all x , except $x = 0$ where $f'(x)$ is not defined.

•
$$f(x) = \frac{1}{1+e^{-x}}$$
, $f'(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x)(1-f(x))$

0000000000

•
$$f(x) = a^{\top}x$$
, the partial derivative is $\frac{\partial f}{\partial x_i} = a_i$, and the gradient is $\nabla f(x) = a$.

Zero Derivative

The step function's derivative, $\phi'(x)$, is zero (everywhere except at x=0).

•00000

- Universal Approximation Theorem
- Optimization and Gradient Descent

For a general machine learning (ML) model including MLPs f_{θ} , it is almost impossible to assign parameter values manually. Instead, we rely on the process called training:

- The **training set** is a collection of input-output pairs, i.e., $\{(x_i, y_i)\}_{i=1}^n$
- A ML model f_{θ} computes $\hat{y}_i = f_{\theta}(x_i)$ as an estimate to y_i . Our goal is to find θ such that

$$\hat{y}_i \approx y_i, \quad \forall i \in [n] := \{1, 2, \cdots, n\},$$

- To measure the divergence between \hat{y} and y, we use a loss function $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$.
- The objective or **cost** is the average of divergence among the training data:

$$\mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}_i, y_i) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

• The training process aims to iteratively update the parameters θ by gradually reduce the cost \mathcal{L} .

Universal Approximation Theorem

The choice of loss functions depends on the learning task:

- ullet If the output $y \in \mathbb{R}$ is real-valued, the learning problem is called **regression**
- If the output $y \in \{0,1\}$ is binary value, it is called **(binary) classification** and y is called **label**.
- Square loss: as a common loss function in regression problem, defined

$$\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

Cross entropy loss: as a broadly used loss function in classification, defined

$$\ell(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y})),$$

where $\log(\cdot)$ is the log function, which can be taken with a natural base e or base 10.

Example

Generally, our estimate \hat{y} is not binary value but a positive number between 0 and 1, e.g., $\hat{y} = 0.6$:

- If y = 1, then $\ell(\hat{y}, y) = -[1 \cdot \log 0.6 + (1 1) \log(1 0.6)] = -\log 0.6 \approx 0.22$,
- If y = 0, then $\ell(\hat{y}, y) = -[0 \cdot \log 0.6 + (1 0) \log(1 0.6)] = -\log 0.4 \approx 0.40$.

where we assume base 10.

Given an objective function $\mathcal{L}(\theta)$, the learning problem of finding θ to best fit each y_i by $f_{\theta}(x_i)$ in the training set is equivalent to solving the following optimization problem:

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}),$$

which can be interpreted as:

"Minimize the objective function $\mathcal L$ with respect to (w.r.t.) the variable m heta."

To solve this optimization problem, the gradient descent method iteratively updates θ by moving in **steepest descent direct**. For each iteration $k = 0, 1, 2, \ldots$, the update rule is:

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^k),$$

where:

- $\theta^k \in \mathbb{R}^p$ is the current value of the parameters, assuming θ has p components.
- $\boldsymbol{\theta}^{k+1} \in \mathbb{R}^p$ is the updated value.
- $\theta^0 \in \mathbb{R}^p$ is the **initial value** chosen by the practitioner.
- $\eta > 0$ is the **learning rate**, controlling the step size of each update.
- $\nabla_{\theta} \mathcal{L}(\theta)$ is the **gradient** of \mathcal{L} w.r.t. θ :

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_1} & \cdots & \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_p} \end{bmatrix}^{\top}$$

with each $\partial \mathcal{L}(\theta)/\partial \theta_i$ representing the partial derivative of \mathcal{L} w.r.t. θ_i for all $i \in [p]$.

Gradient Descent Intuition

Gradient Descent:

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \eta \nabla \mathcal{L}(\boldsymbol{\theta}^k).$$

000000

Warning

Learning rate η and initialization θ^0 are crucial to the performance of gradient descent.

- MLPs are parameterized functions $f_{\theta}(x)$, where θ represents the weights and biases.
- Given a training set, our goal is to find the optimal θ that best fits the training samples.
- The divergence between the estimate $\hat{y}_i = f_{\theta}(x_i)$ and the true value y_i is measured by the loss function ℓ .

000000

- The cost \mathcal{L} is the average loss over the training samples.
- Finding the optimal θ is equivalent to solving an **optimization problem** that minimizes the cost \mathcal{L} with respect to θ .
- The gradient descent method iteratively updates θ to reduce the cost \mathcal{L} .

Outline

- Universal Approximation Theorem

- Backpropogation

Perceptron

Perceptron

Gradient Computation for Perceptron

• **Perceptron**: Recall $\hat{y} = f_{\theta}(x)$ with $\theta = \{w, b\}$ is defined as follows:

$$z = \boldsymbol{w}^{\top} \boldsymbol{x} + b, \quad a = \phi(z), \quad f_{\boldsymbol{\theta}}(\boldsymbol{x}) = a.$$

• Given a training sample (x, y), with $\hat{y} = f_{\theta}(x) = a$, the loss is

$$\ell(a,y) = \frac{(\hat{y} - y)^2}{2} = \frac{(f_{\theta}(x) - y)^2}{2} = \frac{(a - y)^2}{2}$$

ullet Using the **chain rule**, the derivative of loss ℓ w.r.t. to each parameter θ is given by

$$\frac{\partial \ell(a, y)}{\partial \theta} = \frac{\partial \ell(a, y)}{\partial a} \cdot \frac{\partial a}{\partial \theta}$$

Specifically, we have

$$\frac{\partial \ell(a,y)}{\partial \boldsymbol{w}} = \frac{\partial \ell(a,y)}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial \boldsymbol{w}}, \qquad \frac{\partial \ell(a,y)}{\partial b} = \frac{\partial \ell(a,y)}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial b},$$

where

$$\frac{\partial \ell(a,y)}{\partial a} = a - y, \qquad \frac{\partial a}{\partial z} = \phi'(z), \qquad \frac{\partial z}{\partial \boldsymbol{w}} = \boldsymbol{x}, \qquad \frac{\partial z}{\partial b} = 1$$

Question: Have you seen any common terms involved in the computation?

Computational Graph in Perceptron

Computation:

- Denote $d\theta := \partial \ell(a,y)/\partial \theta$, where θ represents any variable involved, e.g., a, z, w, and b.
- ullet Rewrite gradient computation using d heta notation:

$$\frac{\partial \ell(a,y)}{\partial w} = \underbrace{\frac{\partial \ell(a,y)}{\partial a}}_{\substack{da}} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial w},$$

$$\frac{\partial \ell(a,y)}{\partial b} = \underbrace{\frac{\partial \ell(a,y)}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial t}}_{db}$$

• Using this relation, compute the gradients of the perceptron in a **backward** order:

$$da = a - y,$$
 $dz = da \cdot \phi'(z),$ $d\mathbf{w} = dz \cdot \mathbf{x},$ $db = dz$

Computational graph:

Information Propagation in Perceptron

Forward propagation to compute the loss:

$$z = \boldsymbol{w}^{\top} \boldsymbol{x} + \boldsymbol{b}, \qquad a = \phi(z), \qquad \ell = (a - y)^2 / 2$$

Backward propagation to compute the gradients:

$$da = a - y,$$
 $dz = da \cdot \phi'(z),$ $d\mathbf{w} = dz \cdot \mathbf{x},$ $db = dz$

Observations

- For gradient computation, perform one forward-backward pass and store intermediate variables.
- By the chain rule, break down the gradient computation into **smaller** computational units.
- The same concept applies to MLPs, where each perceptron or layer acts as a computational unit.

• Backward propagation for gradient computation:

$$da = a - y,$$
 $dz = da \cdot \phi'(z),$ $dw = dz \cdot x,$ $db = dz$

- Recall that the cost is given by $\mathcal{L}(m{ heta}) = rac{1}{n} \sum_{i=1}^n \ell(a_i,y_i).$
- Using linearity, the gradient is

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial}{\partial \theta} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(a_i, y_i) \right] = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell(a_i, y_i)}{\partial \theta}$$

That is the **average** of $d\theta = \partial \ell(a,y)/\partial \theta$ over all training samples.

• The gradient descent update rules for training the perceptron are:

$$\mathbf{w}^+ = \mathbf{w} - \frac{\eta}{n} \sum_{i=1}^n (a_i - y_i) \cdot \phi'(z_i) \cdot \mathbf{x}_i,$$

$$b^+ = b - \frac{\eta}{n} \sum_{i=1}^n (a_i - y_i) \cdot \phi'(z_i).$$

Choice of Activation Function

The sigmoid function is chosen as the activation function, since the step function has a zero derivative.

Universal Approximation Theorem

Forward propagation: $z = \mathbf{w}^{\top} \mathbf{x} + b \Longrightarrow a = \phi(z) \Longrightarrow \ell = (a - y)^2/2$

Backward propagation: $da = a - y \Longrightarrow dz = da \cdot \phi'(z) \Longrightarrow dw = dz \cdot x$ and db = dz

Cost function: $\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (a_i - y_i)^2$.

• Define data matrix $X \in \mathbb{R}^{n_x \times n}$ and output vector $\mathbf{u} \in \mathbb{R}^n$:

$$m{X} = egin{bmatrix} m{x}_1 & m{x}_2 & \cdots & m{x}_n \end{bmatrix}$$
 and $m{y} = egin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$

• The pre-activation z can be computed as follows:

$$\boldsymbol{z} = \begin{bmatrix} z_1 & \cdots & z_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{w}^{\top} \boldsymbol{x}_1 + b & \cdots & \boldsymbol{w}^{\top} \boldsymbol{x}_n + b \end{bmatrix} = \boldsymbol{w}^{\top} \boldsymbol{X} + \begin{bmatrix} b & \cdots & b \end{bmatrix} = \boldsymbol{w}^{\top} \boldsymbol{X} + b \boldsymbol{e}^{\top}$$

where e is a vector whose entries are all ones.

The forward propagation becomes

$$oldsymbol{z} = oldsymbol{w}^ op oldsymbol{X} + b oldsymbol{e}^ op, \qquad oldsymbol{a} = \phi(oldsymbol{z}), \qquad \mathcal{L} = rac{1}{2n} \|oldsymbol{a} - oldsymbol{y}\|^2$$

Accordingly, the backpropagation becomes

$$d\boldsymbol{a} = (\boldsymbol{a} - \boldsymbol{y})/n, \qquad d\boldsymbol{z} = d\boldsymbol{a} \odot \phi'(\boldsymbol{z}), \qquad d\boldsymbol{w} = d\boldsymbol{z} \cdot \boldsymbol{X} = \boldsymbol{X} d\boldsymbol{z}, \qquad d\boldsymbol{b} = d\boldsymbol{z} \cdot \boldsymbol{e} = \boldsymbol{e}^{\top} d\boldsymbol{z},$$

where \odot is the element-wise product.

Pseudocode for Training Perceptron with Square Loss

```
Initialize weights vector w and bias b
Set learning rate eta
Set number of iterations E
For epoch = 1 to E do:
   # Forward Propagation
   z = w.T * X + b * e.T
   a = phi(z) # Apply activation function element-wise
   L = ||a - y||^2 / (2 * n) # Compute the cost function
   # Backward Propagation
   da = (a - y)/n # Derivative of the loss w.r.t. a
   dz = da * phi'(z) # Derivative of the loss w.r.t. z (element-wise product)
   dw = X * dz # Derivative of the loss w.r.t. w
   db = sum(dz) # Derivative of the loss w.r.t. b (sum over all training samples)
   # Gradient Descent Update
   w = w - eta * dw
   b = b - eta * db
```


Multilayer Perceptron

Information Propagation in MLP

Let $\hat{y} = f_{\theta}(x) = x^L$ be an L-layer MLP. Given a training sample (x, y), where $x \in \mathbb{R}^{n_x}$ and $y \in \mathbb{R}^{n_y}$:

ullet Forward Propagation: Starting with $oldsymbol{x}^0 = oldsymbol{x}$, the output $\hat{oldsymbol{y}} = oldsymbol{x}^L$ is computed as:

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} + oldsymbol{b}^\ell, & orall \ell \in \{1, 2, \dots, L\}, \\ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), & orall \ell \in \{1, 2, \dots, L\}. \end{aligned}$$

• Backpropagation: Given the loss $\ell(\hat{y}, y) = \frac{1}{2} ||\hat{y} - y||^2$, start with $dz^L = (x^L - y) \odot \phi'(z^L)$ and propagate gradients backward:

$$\begin{split} d\boldsymbol{z}^{\ell} &= \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{z}^{\ell+1} \right] \odot \phi'(\boldsymbol{z}^{\ell}), & \forall \ell \in \{1, 2, \dots, L-1\}, \\ d\boldsymbol{W}^{\ell} &= d\boldsymbol{z}^{\ell} \boldsymbol{x}^{\ell \top}, & \forall \ell \in \{1, 2, \dots, L-1\}, \\ d\mathbf{b}^{\ell} &= d\boldsymbol{z}^{\ell}, & \forall \ell \in \{1, 2, \dots, L-1\}. \end{split}$$

ullet Using the chain rule, the derivative of loss $\ell(x,y)$ w.r.t. $oldsymbol{W}^\ell$ and $oldsymbol{b}^\ell$ are given by

$$\begin{split} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{b}_{i}^{\ell}} &= \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \frac{\partial \boldsymbol{z}_{\alpha}^{\ell}}{\partial \boldsymbol{b}_{i}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \cdot \delta_{\alpha, i} = \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{i}^{\ell}} \\ \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{W}_{ij}^{\ell}} &= \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \frac{\partial \boldsymbol{z}_{\alpha}^{\ell}}{\partial \boldsymbol{W}_{ij}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \cdot \delta_{\alpha, i} \boldsymbol{x}_{j}^{\ell-1} = \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{i}^{\ell}} \boldsymbol{x}_{j}^{\ell-1} \end{split}$$

where $\delta_{i,j} = 1$ if i = j and 0 otherwise.

 \bullet Using the $d\theta$ notation, we can put the derivatives in a matrix form:

$$doldsymbol{b}^\ell = doldsymbol{z}^\ell, \quad \text{and} \quad doldsymbol{W}^\ell = doldsymbol{z}^\ell oldsymbol{x}^{\ell op}$$

ullet By the computational graph, we can compute $doldsymbol{z}^\ell$ backward through a recurrent relation:

$$d\boldsymbol{z}^{\ell} = \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{z}^{\ell+1} \right] \odot \phi'(\boldsymbol{z}^{\ell}),$$

which is derived from

$$\frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \sum_{s=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\beta}^{\ell+1}} \frac{\partial \boldsymbol{z}_{\beta}^{\ell+1}}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \sum_{s=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\beta}^{\ell+1}} \boldsymbol{W}_{\beta\alpha}^{\ell+1} \phi'(\boldsymbol{z}_{\alpha}^{\ell}), \quad \text{where} \quad \frac{\partial \boldsymbol{z}_{\beta}^{\ell+1}}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \boldsymbol{W}_{\beta\alpha}^{\ell+1} \phi'(\boldsymbol{z}_{\alpha}^{\ell}).$$

Vectorization for MLPs

ullet Define data matrix $oldsymbol{X} \in \mathbb{R}^{d_x imes n}$ and target matrix $oldsymbol{Y} \in \mathbb{R}^{d_y imes n}$:

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1 & oldsymbol{x}_2 & \cdots & oldsymbol{x}_n \end{bmatrix}, \qquad oldsymbol{Y} = egin{bmatrix} oldsymbol{y}_1 & oldsymbol{y}_2 & \cdots & oldsymbol{y}_n \end{bmatrix}.$$

With the square loss, the cost function becomes

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{m} \frac{1}{2} ||\hat{y}_i - y_i||^2 = \frac{1}{2n} ||\hat{Y} - Y||_F^2,$$

where $\|\cdot\|_F$ is the Frobenius norm.

ullet With $oldsymbol{X}^0 = oldsymbol{X}$ and $\hat{oldsymbol{Y}} = oldsymbol{X}^L$, the forward propagation becomes

$$egin{align} oldsymbol{Z}^\ell &= oldsymbol{W}^\ell oldsymbol{X}^{\ell-1} + oldsymbol{b}^\ell oldsymbol{e}^ op, & orall \ell \in [L] \ oldsymbol{X}^\ell &= \phi(oldsymbol{Z}^\ell), & orall \ell \in [L] \ \end{pmatrix}$$

• With $d{m Z}^L=rac{1}{n}({m X}^L-{m Y})\odot\phi'({m Z}^L)$, the backpropagation is given by

$$\begin{split} d\boldsymbol{Z}^{\ell} &= \phi'(\boldsymbol{Z}^{\ell}) \odot \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{Z}^{\ell+1} \right], & \forall \ell \in [L-1] \\ d\boldsymbol{W}^{\ell} &= d\boldsymbol{Z}^{\ell} \boldsymbol{X}^{(\ell-1)\top}, & \forall \ell \in [L] \\ d\boldsymbol{b}^{\ell} &= d\boldsymbol{Z}^{\ell} \boldsymbol{e}, & \forall \ell \in [L] \end{split}$$

Pseudocode: Training an MLP with Gradient Descent

```
1 Initialize weights W and biases b for all layers
2 Set learning rate eta and number of epochs E
3
4 For epoch = 1 to E do:
      # Forward Propagation
      Set A[0] = X
      For l = 1 to l do:
           Z[1] = W[1] * A[1-1] + b[1] # Linear transformation
           A[1] = phi(A[1]) # Apply activation function
Q
10
      # Compute the cost function
      C = ||A[L] - Y||^2 / (2 * n) # Square loss between predicted and true output
13
      # Backward Propagation
14
      dZ[L] = (A[L]-Y) * \phi'(Z[L]) # Gradient of the loss w.r.t to Z[L]
15
      dW[L] = dZ[L] * A[L-1] # Gradient of w.r.t. W[L]
16
      db[L] = sum(dZ[L]) # Gradient of w.r.t. b[L]
      for 1 = 1.-1 to 1 do:
18
           dZ[1] = W[1+1].T * dZ[1+1] * \phi'(Z[1])
19
           dW[1] = dZ[1] * A[1-1].T # Gradient with respect to W[1]
20
           db[1] = sum(dZ[1]) # Gradient with respect to b[1]
21
23
      # Gradient Descent Update
      for l = 1 to L do:
24
           W[1] = W[1] - eta * dW[1]
25
          b[1] = b[1] - eta * db[1]
26
28 End For
```

Initialization

Problematic Zero Initialization

Forward Propagation (biases omitted): Start with $oldsymbol{x}^0 = oldsymbol{x}$

$$\mathbf{z}^{\ell} = \mathbf{W}^{\ell} \mathbf{x}^{\ell-1}, \quad \forall \ell \in \{0, 1, 2, \dots, L\}$$

 $\mathbf{x}^{\ell} = \phi(\mathbf{z}^{\ell}),$

Backward Propagation (biases omitted): Start with $dz^L = (x^L - y) \odot \phi'(z^L)$

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\}$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}$$

Zero Initialization Issues:

- If $W^\ell=0$, then $z^\ell=0$ and $x^\ell=\phi(z^\ell)$ will have identical coordinates across all layers. Since ϕ is applied element-wise, $\phi'(z^\ell)$ and dz^ℓ will also have identical coordinates. Consequently, dW^ℓ will have identical rows.
- After one gradient step, W^ℓ will contain **identical** rows, resulting in z^ℓ and x^ℓ having **identical** coordinates in subsequent iterations.
- This leads to only one active neuron per layer, drastically reducing the network's capacity.

Symmetric Activation Patterns

Zero initialization in DNNs results in symmetric activation patterns problem in deep learning models.

To address this problem, we use **random** initialization for the weights. For example, W_{ij}^{ℓ} is *i.i.d.* according to a Gaussian distribution with mean zero and variance σ^2 :

$$oldsymbol{W}_{ij}^{\ell} \overset{\textit{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{\ell}^2)$$

ullet Notably, σ_ℓ is usually a small number to prevent large values in $oldsymbol{W}^\ell$. Large weights can cause z to fall into the **flat** regions of the activation function ϕ .

ullet If so, $\phi'(z)$ becomes small, so as small gradients and slowing down training.

Choosing Variance σ_{ℓ}^2

With $W_{ij}^{\ell} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\ell}^2)$, and forward propagation $z^{\ell} = W^{\ell} x^{\ell-1}$, we have

$$\begin{split} \mathbb{E}[\boldsymbol{z}_{i}^{\ell}] = & n_{\ell-1} \mathbb{E}\left[\boldsymbol{W}_{ij}^{\ell}\right] \mathbb{E}[\boldsymbol{x}_{j}^{\ell-1}] = 0 \\ \operatorname{Var}[\boldsymbol{z}_{i}^{\ell}] = & n_{\ell-1} \operatorname{Var}[\boldsymbol{W}_{ij}^{\ell}] \mathbb{E}[\boldsymbol{x}_{j}^{\ell-1}]^{2} \\ = & n_{\ell-1} \sigma_{\ell}^{2} \mathbb{E}[\phi(\boldsymbol{z}_{j}^{\ell-1})]^{2} \\ = & n_{\ell-1} \sigma_{\ell}^{2} c_{\phi}^{2} \operatorname{Var}[\boldsymbol{z}_{i}^{\ell-1}] \end{split}$$

where $m{W}^\ell \in \mathbb{R}^{n_\ell imes n_{\ell-1}}$ and we use the fact that $m{W}_{ij}^\ell$ are independent from $m{x}^{\ell-1}$ and have mean zero. Repeat this iterative relation, we have

$$\operatorname{Var}[\boldsymbol{z}_i^L] = \left[\prod_{\ell=2}^L n_{\ell-1} \sigma_\ell^2 c_\phi^2\right] \cdot \operatorname{Var}[\boldsymbol{z}_i^1]$$

Hence, to have stable information propagation, we should have

$$n_{\ell-1}\sigma_{\ell}^2 c_{\phi}^2 = 1 \implies \sigma_{\ell}^2 = \frac{c_{\phi}^{-2}}{n_{\ell-1}}$$

Choosing Variance σ_ℓ^2

ullet Given $m{W}^\ell \in \mathbb{R}^{n_\ell imes n_{\ell-1}}$ are independent of $m{x}^{\ell-1}$ and $\mathbb{E}[m{W}_{ij}^\ell] = 0$:

$$\mathbb{E}[\boldsymbol{z}_i^{\ell}] = n_{\ell-1}\mathbb{E}[\boldsymbol{W}_{ij}^{\ell}] \cdot \mathbb{E}[\boldsymbol{x}_j^{\ell-1}] = 0.$$

ullet The variance of $oldsymbol{z}_i^\ell$ is:

$$\begin{aligned} \operatorname{Var}[\boldsymbol{z}_{i}^{\ell}] = & n_{\ell-1} \operatorname{Var}[\boldsymbol{W}_{ij}^{\ell}] \cdot \mathbb{E}[\boldsymbol{x}_{j}^{\ell-1}]^{2} \\ = & n_{\ell-1} \sigma_{\ell}^{2} \mathbb{E}[\phi(\boldsymbol{z}_{j}^{\ell-1})]^{2} \\ = & n_{\ell-1} \sigma_{\ell}^{2} \operatorname{Var}[\boldsymbol{z}_{j}^{\ell-1}], \end{aligned}$$

where we use $\operatorname{Var}[\boldsymbol{W}_{ij}^{\ell}] = \sigma_{\ell}^2$ and assume ϕ is linear.

Recursively applying this relation across layers:

$$\operatorname{Var}[oldsymbol{z}_i^L] = \left[\prod_{\ell=2}^L n_{\ell-1} \sigma_\ell^2\right] \cdot \operatorname{Var}[oldsymbol{z}_i^1].$$

• To ensure stable propagation (no vanishing or exploding features):

$$n_{\ell-1}\sigma_{\ell}^2 = 1 \implies \sigma_{\ell} = \frac{1}{\sqrt{n_{\ell-1}}}.$$

Universal Approximation Theorem

We use a training process iteratively update the parameters in MLPs:

- MLPs are parameterized function f_{θ} , where $\theta = \{W^{\ell}, b^{\ell}\}$
- Given a training set $\{x_i, y_i\}_{i=1}^{\ell}$ and a loss function ℓ , the training problem can be formulated as an optimization problem:

Optimization and Gradient Descent

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

• This optimization problem can be solved using gradient descent, which gradually reduces the cost \mathcal{L} along the steepest descent direction:

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \eta \nabla \mathcal{L}(\boldsymbol{\theta}^k)$$

where $\eta > 0$ is the **learning rate**.

• The gradients in MLPs can be computed using the chain rule backward from the total cost.

- By using the computational graph, the gradients can be effectively computed through backpropagation:
 - ullet Forward Propagation (biases omitted): Start with $oldsymbol{x}^0 = oldsymbol{x}$

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\} \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

ullet Backward Propagation (biases omitted): Start with $dm{z}^L = (m{x}^L - m{y}) \odot \phi'(m{z}^L)$

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\}$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}$$

• Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

Questions

- What are other common activation functions?
- How do I select the learning rate, width, and depth of the network?
- Does gradient descent always converge? How can I speed up training?
- Does good training performance guarantee good test performance?