Lista Computacional – Pontos Interiores

PI.1 Programar os algoritmos primal afim escala (PAE), dual afim escala (DAE) e primal-dual afim escala (PDAE). As rotinas devem receber como parâmetros de entrada a matriz A, os vetores b e c, a precisão ϵ e o limitador de passo α . Os códigos para os algoritmos PAE e DAE devem ser capazes de encontrar uma solução inicial factível. Os algoritmos devem ser capazes de fornecer algumas informações a cada iteração, de acordo com o que for solicitado nos exercícios apresentados na sequência.

As seguintes informações e diretrizes devem ser atendidas na apresentação dos resultados:

- Deve ser entre apenas um arquivo PDF, contendo todo material (incluindo os códigos fontes dos algoritmos).
- Preferencialmente deve ser usada a linguagem Matlab na programação dos algoritmos, mas qualquer outra linguagem será aceita.
- No início do trabalho devem ser apresentados: Nome e RA dos alunos, nome da disciplina, semestre atual e ano.
- Os códigos fontes dos algoritmos devem ser apresentados como apêndices (um para cada algoritmo).
- PI.2 Aplique os algoritmos desenvolvidos no seguinte problema de otimização

$$\min_{x} \begin{bmatrix} 0 & 0 & 0 & -\frac{3}{4} & 20 & -\frac{1}{2} & 6 \end{bmatrix} x
s.a \begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} & -8 & -1 & 9 \\ 0 & 1 & 0 & \frac{1}{2} & -12 & -\frac{1}{2} & 3 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} x = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
x_i \ge 0, \ i = 1, \dots, 6$$

(a) Considerando $\epsilon \in \{10^{-3}, 10^{-4}\}$ e $\alpha \in \{0.9, 0.99\}$ apresente uma tabela com o formato

Iter.	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	σ_c	F.O.
0										
:	:	:	:	:	:	:	:	:	:	

para cada par (ϵ, α) (4 no total), sendo F.O. o valor da função objetivo. Deverão ser apresentadas 4 tabelas para cada método (12 no total).

(b) Considerando $\epsilon \in \{10^{-3}, 10^{-4}, 10^{-5}\}$ e $\alpha \in \{0.9, 0.95, 0.99\}$ apresente uma tabela no seguinte formato

Método	α	ϵ	Iter.	Tempo	F.O.
10^{-3}	0.9				
10^{-3}	0.95				
:	:	:	:	:	
10^{-5}	0.99				

sendo Método \in {PAE, DAE, PDAE}, Iter. o número de iterações do método e o tempo computacional dado em segundos. No total a tabela terá 27 linhas.

(c) Com base nos resultados obtidos, é possível afirmar que algum método foi mais eficiente? Comente livremente.

PI.3 Considere o problema de otimização com variáveis canalizadas

$$\min_{x} z = 10x_1 + 20x_2
s.a. x_1 + x_2 \ge 3
1 \le x_1 \le 4
1 \le x_2 \le 4$$

Coloque na forma padrão (deve constar no relatório) eliminando as canalizações (ao preço de aumentar o número de restrições e variáveis de folga) e aplique os algoritmos desenvolvidos.

(a) Considerando $\epsilon \in \{10^{-3}, 10^{-5}\}$ e $\alpha \in \{0.915, 0.955, 0.995\}$ apresente uma tabela no formato

Método	α	ϵ	Iter.	Tempo	F.O.
10^{-3}	0.915				
10^{-3}	0.955				
:	:	:	:	:	
10^{-5}	0.995				

sendo Método \in {PAE, DAE, PDAE}, Iter. o número de iterações do método e o tempo computacional dado em segundos. No total a tabela terá 18 linhas.

(b) Considerando $(\epsilon, \alpha) = (10^{-4}, 0.955)$ apresente uma tabela com o formato

Iter.	x_1	x_2	σ_c	F.O.
0				
:	:	:	:	:

para cada método. Além disso, cada tabela deve ser acompanhada de um gráfico 2D, que evidencia a região factível e apresenta os pontos (x_1, x_2) em cada iteração.

(c) Com base nos resultados obtidos, é possível afirmar que algum método foi mais eficiente? Comente livremente.