

AD A U 74758

UNLIMITED

TR 79008 BR68659

VROYAL AIRCRAFT ESTABLISHMENT

LEVEL

January 1979 (14) RAE-TR-79498

SESAME—A SYSTEM OF EQUATIONS FOR THE SIMULATION OF AIRCRAFT IN A MODULAR ENVIRONMENT.

by

12/152

DC FILE COP

*

Procurement Executive, Ministry of Defence Farnborough, Hants

79.09:27 060

UNLIMITED 310 450

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UDC 5.001.57 : 5.001.58 : 531.31 : 519.688

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 79008

Received for printing 12 January 1979

SESAME - A SYSTEM OF EQUATIONS FOR THE SIMULATION OF AIRCRAFT IN A MODULAR ENVIRONMENT

by

B. N. Tomlinson

SUMMARY

A system of equations has been developed for the simulation of an aircraft's motion in real time using a digital computer. Those parts of the mathematical model common to all aircraft have been created as a set of Fortran subroutines, leaving the user to create only a small group of routines specifically to describe his aircraft. The equations employed are defined and the computer implementation described in detail. The Report can be used as a handbook and 'user guide' but as the routines described are not specific to real-time simulation they could be used as a basis for a general mathematical model of an aircraft for use on any computer which supports Fortran.

announced
stification
Christon/
Codes

Departmental Reference: FS 91

Copyright
©
Controller HMSO London
1979

LIST OF CONTENTS

			Page
1	INTRO	DUCTION	5
2	OBJEC	TIVES	6
	2.1	Size	6
	2.2	Creation and testing	6
	2.3	Transferability	7
	2.4	Communication	7 7 7
	2.5	Execution time Data logging	8
3		M EQUATIONS	8
	3.1	Choice of axes Definition of axes	8
	3.2		
		3.2.1 Earth axes 3.2.2 Geometric body axes	9
	3.3	Aircraft attitude	10
	3.5	Transformation from earth to body axes Equations of motion - translation	11
	3.6	Equations of motion - rotation	13
	3.7	Centre of gravity location	14
	3.8	Pilot position and positional rates	15
	3.9	Accelerations in body axes	16
	3.10	Wind, wind shear and turbulence Properties of the atmosphere	18
4		ICAL IMPLEMENTATION	18
	4.1	Initialisation	19
	4.2	Rotational motion	19
	4.3	Translational motion	20
	4.4	Utility functions	20
	4.5	Units	21
5	OVERA	LL PROGRAM STRUCTURE	21
	5.1	Introduction	21
	5.2	Initialisation	22
	5.3	PV100 - operator dialogue	23
6	COMMU	NICATION	24
	6.1	Introduction	24
	6.2	System COMMON	24
	6.3	User COMMON Documentation aids	24 25
	6.5	Access to variables at run-time	25
	6.6	Hybrid input/output (ADC, DAC)	25
		6.6.1 Introduction	25
		6.6.2 Analogue to digital conversion	26
		6.6.3 Digital to analogue conversion	27
		6.6.4 User summary of system COMMON relevant to ADC/DAC	29

LIST OF CONTENTS (concluded)

		Page
6.7	Hybrid input/output (discretes)	29
	 6.7.1 Introduction 6.7.2 Summary of lines available 6.7.3 Software interface 6.7.4 Dedicated functions 	29 29 30 31
7 USER'	S GUIDE	31
7.1 7.2 7.3 7.4	What the system expects from the user Typical user routines Data the user must provide Options available	31 31 32 33
	7.4.1 Software flags 7.4.2 External switches	33 35
7.5	Initial conditions and initial values	35
	7.5.1 Initial conditions 7.5.2 Initial values	35 36
7.6 7.7 7.8		36 37 38
8 CONCL	LUSIONS	38
Appendix A	Description of individual SESAME routines	39
Appendix B	Listing of SESAME routines	64
Appendix C	Listing of SLI program - single loop	89
Appendix D	Index to system COMMON, real variables	94
Appendix E	Index to system COMMON, integer variables	118
Appendix F	Description of program COMMLIST	124
Appendix G	Index to system data to be provided by the user, real variables	129
Appendix H	Index to system data to be provided by the user, integer variables	131
List of sym	nbols	132
References		134
Illustratio	ons	Figures 1-8 Figures A1-A9
Report docu	mentation page ins	side back cover

INTRODUCTION

This Report describes a system of equations for the simulation of an air-craft's rigid-body motion in real time using a digital computer. Known as SESAME - a System of Equations for the Simulation of Aircraft in a Modular Environment - it may be described as opening the door to flexible use of the simulator. Those parts of the mathematical model which are common to all aircraft, such as the equations of motion and axis transformations, have been created as a set of standard modules (written in Fortran), leaving the user to create only a small group of routines specifically to describe his aircraft. The two sets of modules are then linked together to produce a complete model program.

The simulator for which SESAME has been created changed from pure analogue to hybrid computing in 1974. The computer system consists of a Xerox Sigma 8 digital computer linked to an Applied Dynamics AD4 analogue computer. This Report is concerned mainly with the digital computer aspects. In the early days of using this new computing facility, the aircraft's mathematical model, computed entirely digitally, was coded using SLI, a simulation language for solving sets of ordinary differential equations. With increasing experience and increasingly complex simulations, the single large program imposed by the SLI language was found to be more and more inconvenient and the decision was taken to restructure the program into small, self-contained modules.

Such restructuring became feasible largely because a newly-created software package, for on-line parameter variation and inspection, provided the means to access and change, on-line, variables contained in subroutines.

Although the basic modules are themselves coded in Fortran, SLI itself has been retained to provide the overall framework in which the modules sit. This is because SLI provides facilities for numerical integration and for synchronisation with real-time.

The structure of the Report is as follows. After a discussion, in section 2, of the objectives to be achieved by the modular nature of SESAME, section 3 gives a brief theoretical background to the system equations, including such topics as choice of axes and definition of the equations of motion. This is followed in section 4 by an outline of how the equations to be solved are distributed among the specific routines. This is supplemented (in Appendix A) by a detailed definition of each routine and, as the ultimate specification for reference purposes, by a listing of the routines (Appendix B). Section 5 then describes the overall program structure in which the routines are embedded. Section 6 discusses how

79-09-27 060

communication among routines is achieved using the Fortran named COMMON facility, and how the user should adopt the same technique for his routines. Hybrid input/output (analogue to digital and digital to analogue conversion, and single bit discretes) is also described in section 6 in terms of what the user receives and must provide, while section 7 is a general "User's Guide", summarising what the system expects from the user, defining the set of routines and the data the user must provide, and outlining the choices the user may make regarding the atmosphere, turbulence and other features.

The Report has been written with three principal aims: to provide primary simulator users with a description of the standard computer model and an outline of how to build it into a full simulation; to provide simulator customers with an idea of how the model is formulated and what must be done to represent an individual aircraft, so that they can, if necessary, contribute to the creation of a complete simulation model; and to provide a general description of a computer model for others interested in doing something similar.

2 OBJECTIVES

Specific objectives to be achieved by the modular system of equations concern size, testing, transferability, communication and execution time, and are intended to overcome detailed weaknesses of the simulation language SLI. However, as explained later in section 5.1, SLI is retained as the appropriate language for the overall program, containing the individual modules.

2.1 Size

A complete model program is large, often exceeding 20000 words of computer storage. If coded entirely in SL1 source language this means many lines of code. The process of translating the SL1 source code into Fortran and then compiling is slow and tedious and must be repeated in its entirety whenever a change is made at source level. The present scheme drastically cuts the size of the SL1 source program, which in itself will speed up the translation/compilation process. In addition, changes at SL1 level will be rare, since the detail of a simulation is relegated to a lower level of routine. The existence of subroutines also provides the potential ability to create overlays, in order to reduce main store occupancy.

2.2 Creation and testing

Creation and checking of modules will be easier than handling a large SLI program since routines, such as for the generation of the aircraft's aerodynamic forces, can be defined, created and tested in isolation before being included in

the main program. Work could proceed in parallel on several routines, and be done by external users of the simulator, *ie* people who are not specialists in simulation as such.

Modifications will also be easier, since they should involve only revision of a single subroutine, its compilation and then creation of a new load module without having to repeat the SLI translation.

Using Fortran rather than SLI as the primary medium does not mean that all the useful SLI facilities, such as function generation by table look-up, must be discarded. These can still be used at the Fortran level, since each one involves a Fortran-callable subroutine or function. However, the calling sequence will, in general, be more complicated in Fortran than in SLI. SLI operators involving integration are not usable in subroutines without considerable effort.

2.3 Transferability

Having a modular structure means that simulation of a new aircraft requires only the creation of the routines specific to that aircraft. The standard parts can be picked up from libraries and special facilities, such as simulation of guidance beams, can readily be moved from simulation to simulation in subroutine form. With SLI the only way of transferring across an existing piece of code is by explicit inclusion of the source lines and punching of the necessary cards.

None of the modules includes any compromising feature which limits its employment to real-time simulation. Hence the routines described could also form the basis for a conventional digital model of aircraft dynamics for use in non-real-time studies.

2.4 Communication

A defect of the SLI language is the way most of the significant variables are lumped into one large block of labelled COMMON, the name of which is not fixed and the contents of which can change if the SLI source code is varied.

In this new system communication of variables among all the modules is achieved by using Fortran labelled COMMON, but under user control. This retains the advantage of using COMMON storage, that variables are conveniently accessible by any subroutine without using arguments, thus saving execution time.

2.5 Execution time

The aircraft's motion is computed by repeatedly integrating the differential equations. If a multi-pass integration technique is used, such as Runge-Kutta fourth order, there are some sections of the equations which are not part

of the dynamic loop and so need only be executed once per time step. Examples are calculation of ILS guidance and TV position signals. By having these elements as subroutines, it is easy to arrange that they are executed only as often as necessary and so save time for more important functions.

To date, aircraft model programs have been solved with only one basic loop or frame. SLI does provide a means to execute one part at a different iteration rate from another. Should circumstances arise where more than one frame time is necessary, recasting of the model program (at SLI skeleton level) will be aided by the simplicity of merely moving subroutine calls from one 'derivative' section to another, rather than blocks of code which would be necessary in a program coded completely in SLI. Communication between 'derivative' sections is also no problem when variables are in COMMON areas controlled by the user rather than by the SLI translator.

2.6 Data logging

Access to variables for data logging purposes is easy and convenient. A self-contained data logging routine can be written knowing that all variables may be accessed without special action and without run-time inefficiencies.

3 SYSTEM EQUATIONS

3.1 Choice of axes

The first requirement is to choose sets of axes in which to solve the fundamental equations of motion. In classic texts²⁻⁴ a set of axes fixed in the aircraft is generally chosen but, being a rotating frame of reference, such body axes result in the translational accelerations including angular velocity terms, as in

$$X - mg \sin \theta = m(u + qw - rv)$$
.

For efficient computer solution of the equations of motion, it is desirable to uncouple translational motion from rotational motion, a point which was made many years ago by Howe⁵ and reiterated recently⁶. This may be achieved by suitable choice of axes. Then, since rotational motion of aircraft is intrinsically more rapid than translational motion, solution of the rotational equations may be performed more frequently than the translational equations without an excessive computing load, and while maintaining overall accuracy.

Body-fixed axes still provide a natural frame for the solution of rotational equations of motion, with the advantage of constant moments of inertia. Choice

of axes therefore reduces to selecting an appropriate frame for the translational equations of motion.

So-called 'flight path axes' could be a suitable choice, with the origin at the aircraft's centre of gravity and the x axis aligned with the aircraft's velocity vector with respect to the ground. However, in the presence of winds and turbulence this introduces complications, so that, following Ref 7, the choice falls on earth-based axes.

3.2 Definition of axes

All axes systems used are orthogonal, right-handed triads.

3.2.1 Earth axes

Earth axes are an inertial frame assuming a flat, non-rotating earth. (See McFarland for the case of a spherical, rotating earth.)

The origin is at a datum point on the visual model* in use, typically at the runway threshold and on the centreline. The x-axis points northward (suffix N), the y-axis points eastward (suffix E), the xy plane being parallel to the earth's surface, and the z-axis (suffix D) points down to the centre of the earth.

3.2.2 Geometric body axes

Geometric body axes have their origin at the aircraft's centre of gravity and are located with respect to the aircraft by some geometric feature such as the longitudinal fuselage datum line. Once defined they are fixed in the aircraft. The x-axis points forward, the y-axis to starboard and the z-axis 'down'.

3.3 Aircraft attitude

Aircraft angular orientation with respect to the earth is defined 8 by a conventional trio of Euler angles ψ , θ , ϕ . The heading angle ψ is measured from north and lies in the range 0, 360° ; the elevation angle or pitch attitude θ is measured from the horizontal plane and lies in the range -90, $+90^\circ$; the roll (or bank) angle is measured from the horizontal plane and lies in the range -180, $+180^\circ$.

Rates of change of these angles may be related to the components of angular velocity of the aircraft by

^{*} Outside world cues are provided by a closed-circuit TV system viewing a physical model of an appropriate terrain.

$$\dot{\theta} = q \cos \phi - r \sin \phi$$

$$\dot{\phi} = p + (q \sin \phi + r \cos \phi) \tan \theta = p + \dot{\psi} \sin \theta$$

$$\dot{\psi} = (q \sin \phi + r \cos \phi) \sec \theta$$
(1)

and the angles themselves obtained by integration. However, a singularity occurs at $\theta = 90^{\circ}$. If all-attitude manoeuvring is desired, an alternative formulation of equations is necessary. No provision has yet been made for multiple rolls or turns.

3.4 Transformation from earth to body axes

Transformation of a set of variables from earth axes to body axes (or vice versa) is most conveniently achieved through the direction cosine matrix 4,9 . For example, the components of airspeed in body axes (u_B, v_B, w_B) are related to the components in earth axes (v_N, v_E, v_D) by

where \$\ell_1\$ etc are the direction cosines, given by

In matrix form, equations (2) may be written

$$\left\{ \mathbf{u}_{\mathbf{B}} \right\} = \mathbf{S} \left\{ \mathbf{V}_{\mathbf{N}} \right\} \tag{4}$$

where $\{u_B\}$, $\{v_N\}$ are column matrices (after Hopkin⁴) and S, the transformation matrix, is orthogonal, its transpose S^T being the same as its inverse.

The inverse relationship, for earth axes variables in terms of body axis variables, is then given by

$$\left\{ \mathbf{v}_{\mathbf{N}} \right\} = \mathbf{S}^{\mathbf{T}} \left\{ \mathbf{u}_{\mathbf{B}} \right\}. \tag{5}$$

Thus, for example, the total forces (suffix T) applied in body axes (suffix X, Y, Z) may be transformed to earth axes (suffix N, E, D) by

$$\left\{ F_{TN} \right\} = S^{T} \left\{ F_{TX} \right\} \tag{6}$$

which, expanded, is

$$F_{TN} = S_{11}F_{TX} + S_{21}F_{TY} + S_{31}F_{TZ}$$

$$F_{TE} = S_{12}F_{TX} + S_{22}F_{TY} + S_{32}F_{TZ}$$

$$F_{TD} = S_{13}F_{TX} + S_{23}F_{TY} + S_{33}F_{TZ} .$$
(7)

Other vector components are related in the same way.

3.5 Equations of motion - translation

The components of acceleration with respect to the earth are obtained from

$$\dot{\mathbf{v}}_{KN} = \mathbf{F}_{TN}/\mathbf{m}$$

$$\dot{\mathbf{v}}_{KE} = \mathbf{F}_{TE}/\mathbf{m}$$

$$\dot{\mathbf{v}}_{KD} = \mathbf{F}_{TD}/\mathbf{m} + \mathbf{g}$$
(8)

where the acceleration due to gravity, g, is assumed constant, and the forces F_{TN} etc in earth axes are obtained from the total forces in body axes F_{TX} , F_{TY} , F_{TZ} by the equations (7).

Integration of equations (8) yields the velocity components (V_{KN}, V_{KE}, V_{KD}) of the vehicle relative to the earth. Relative to the air mass, the velocity components of the aircraft are

$$\begin{vmatrix}
v_{N} &= v_{KN} - v_{WN} \\
v_{E} &= v_{KE} - v_{WE} \\
v_{D} &= v_{KD} - v_{WD}
\end{vmatrix}$$
(9)

where $v_{\overline{WN}}$, $v_{\overline{WE}}$, $v_{\overline{WD}}$ are the components of the wind velocity relative to the ground.

The body-axes components of the velocity vector relative to the air may then be derived using equations (2) and (9), from which the velocity (or True Airspeed, TAS) is

$$V_{T} = \left(u_{B}^{2} + v_{B}^{2} + w_{B}^{2}\right)^{\frac{1}{2}} \tag{10}$$

and equivalent airspeed is derived using the atmospheric density ratio

$$V = V_{T}^{\sigma^{\frac{1}{2}}} . \tag{11}$$

Angles of attack and sideslip are computed from 10

$$\alpha = \tan^{-1} w_B / u_B \tag{12}$$

(α being in the range -180, +180°) and

$$\beta = \tan^{-1} v_B / (u_B^2 + v_B^2)^{\frac{1}{2}}$$
 (13)

(β being in the range -90, +90° and taking the sign of v_B).

Derivatives of these angles with respect to time, needed to calculate the aerodynamic forces and moments, are created by simple difference equations. Flight path angles defining climb (γ) and track (χ) are derived from the velocity vector components relative to the ground, having first obtained the ground speed (V_{ν}) as the horizontal component

$$v_{K} = \left(v_{KN}^{2} + v_{KE}^{2}\right)^{\frac{1}{2}} \tag{14}$$

$$\gamma = \tan^{-1}\left(-v_{KD}/v_{K}\right) \tag{15}$$

$$\chi = \tan^{-1}\left(v_{KE}/v_{KN}\right). \tag{16}$$

Positional coordinates x, y, h of the aircraft's centre of gravity are found by integrating the velocities

$$\dot{x} = V_{KN}$$

$$\dot{y} = V_{KE}$$

$$\dot{h} = -V_{KD}$$
(17)

A block diagram of the translation equations is illustrated in Fig 1.

3.6 Equations of motion - rotation

It is assumed that the x and z body axes lie in a plane of mass symmetry so that products of inertia I_{yz} and I_{xy} are zero. Then the classical equations (Hopkin4, section 10.1) may be manipulated to give

$$\dot{p} = \left\{ L + \frac{I_{zx}}{I_{z}} N + \left[\frac{I_{zx}}{I_{z}} (I_{z} + I_{x} - I_{y}) \right] pq \right\}$$

$$+ \left[(I_{y} - I_{z}) - \frac{I_{zx}^{2}}{I_{z}} \right] qr \right\} / \left\{ I_{x} \left(I - \frac{I_{zx}^{2}}{I_{x}I_{z}} \right) \right\}$$

$$\dot{q} = \left\{ M + I_{zx} (r^{2} - p^{2}) + (I_{z} - I_{x}) rp \right\} / I_{y}$$

$$\dot{r} = \left\{ N + \frac{I_{zx}}{I_{x}} L + \left[(I_{x} - I_{y}) + \frac{I_{zx}^{2}}{I_{x}} \right] pq \right\}$$

$$+ \left[\frac{I_{zx}}{I_{x}} (-I_{x} + I_{y} - I_{z}) \right] qr \right\} / \left\{ I_{z} \left(I - \frac{I_{zx}^{2}}{I_{x}I_{z}} \right) \right\}$$

$$\dot{p} = CI_{1}L + CI_{2}N + (CI_{3}p + CI_{4}r)q$$

$$\dot{q} = CI_{5}M + CI_{6}(r^{2} - p^{2}) + CI_{7}rp$$
(19)

or

$$\dot{q} = CI_{1}L + CI_{2}N + (CI_{3}p + CI_{4}r)q$$

$$\dot{q} = CI_{5}M + CI_{6}(r^{2} - p^{2}) + CI_{7}rp$$

$$\dot{r} = CI_{8}N + CI_{2}L + (CI_{9}p + CI_{10}r)q$$
(19)

where CI, etc are constants evaluated during initialisation.

$$cI_{1} = I_{z}/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{2} = I_{zx}/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{3} = I_{zx}(I_{x} - I_{y} + I_{z})/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{4} = (I_{z}(I_{y} - I_{z}) - I_{zx}^{2})/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{5} = I/I_{y}$$

$$cI_{6} = I_{zx}/I_{y}$$

$$cI_{7} = (I_{z} - I_{x})/I_{y}$$

$$cI_{8} = I_{x}/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{9} = (I_{x}(I_{x} - I_{y}) + I_{zx}^{2})/(I_{x}I_{z} - I_{zx}^{2})$$

$$cI_{10} = -I_{zx}(I_{x} - I_{y} + I_{z})/(I_{x}I_{z} - I_{zx}^{2})$$

No terms are included in these equations (18) and (19) to allow for engine gyroscopic effects, but they could easily be added by the user when he provides the total moments L, M, N. It would also be straightforward to extend the equations to allow for a non-symmetric mass distribution.

Solution of the equations of rotational motion therefore consists in calculating the angular acceleration components from equations (19) given the total moments L, M, N; integrating to obtain angular velocity components; transforming, using equations (1), to attitude rates; integrating again to attitude angles and calculating the direction cosines according to equations (3). This total process is illustrated in Fig 2.

3.7 Centre of gravity location

An aircraft's centre of gravity location is usually defined, in a fore-and-aft sense, in terms of a reference length such as the mean chord \bar{c} . Thus if the centre of gravity is quoted as being at 0.1 \bar{c} , then it is 10% of the reference chord aft of the origin. This convention is in a direction contrary to the normal positive sense of x, but will be retained here. The vertical location of the

centre of gravity, however, is defined as being measured in the positive z direction (ie downwards) from some origin.

Aerodynamic moment data may often be quoted relative to some reference centre of gravity position, so that for an actual operational centre of gravity position, some correction is necessary. This is provided for as follows. If the moment reference position of the centre of gravity is $x_{cg\,ref}$, $z_{cg\,ref}$ and the actual centre of gravity position is x_{cg} , z_{cg} , all defined as fractions of some reference length c_{ref} then the differences are calculated as

$$\Delta x_{cg} = x_{cg} - x_{cgref}$$

$$\Delta z_{cg} = z_{cg} - z_{cgref} .$$
(21)

Then differences are then available to correct aerodynamic moments to the current centre of gravity position.

3.8 Pilot position and positional rates

Given the coordinates x, y, h of the aircraft's centre of gravity, the pilot's position, needed to drive outside world displays, is obtained from

$$x_{TV} = x + (x_{pcg} \cos \theta + z_{pcg} \sin \theta) \cos \psi$$

$$y_{TV} = y + (x_{pcg} \cos \theta + z_{pcg} \sin \theta) \sin \psi$$

$$h_{TV} = h + (x_{pcg} \sin \theta - z_{pcg} \cos \theta)$$
(22)

where

$$x_{pcg} = x_{p} + \Delta x_{cg}^{c}_{ref}$$

$$z_{pcg} = z_{p} - \Delta z_{cg}^{c}_{ref}$$
(23)

and x_p , z_p are the ocordinates of the pilot's eye point, assumed to be on the aircraft centre line, and defined relative to the reference centre of gravity position.

If we put

$$R_{xp} = x_{pcg} \cos \theta + z_{pcg} \sin \theta$$

$$R_{hp} = x_{pcg} \sin \theta - z_{pcg} \cos \theta$$
(24)

108

then

$$\dot{x}_{TV} = \dot{x} - R_{xp}\dot{\psi} \sin \psi - R_{hp} \dot{\theta} \cos \psi$$

$$\dot{y}_{TV} = \dot{y} + R_{xp}\dot{\psi} \cos \psi - R_{hp} \dot{\theta} \sin \psi$$

$$\dot{h}_{TV} = \dot{h} + R_{xp}\dot{\theta} .$$
(25)

3.9 Accelerations in body axes

Linear accelerations at the aircraft's centre of gravity, at the pilot's head and elsewhere (eg for accelerometers) are needed.

Referred to body axes, the components (in units of g) of the acceleration of the aircraft's centre of gravity are

$$\mathbf{a}_{xcg} = \mathbf{F}_{TX}/\mathbf{W}$$

$$\mathbf{a}_{ycg} = \mathbf{F}_{TY}/\mathbf{W}$$

$$\mathbf{a}_{zcg} = \mathbf{F}_{TZ}/\mathbf{W}$$
(26)

These are referred to as the 'specific' accelerations and are the acceleration components that would be measured by a set of orthogonal, body-fixed, accelerometers aligned with the body axes and located at the centre of gravity of the aircraft. 'Absolute' accelerations, including the gravity components, are then

$$a_{xacg} = a_{xcg} - \sin \theta = a_{xcg} + S_{13}$$

$$a_{yacg} = a_{ycg} + \sin \phi \cos \theta = a_{ycg} + S_{23}$$

$$a_{zacg} = a_{zcg} + \cos \phi \cos \theta = a_{zcg} + S_{33}$$

It should be remembered that a_{xacg} is not equal to \dot{u}_b because the body axis system is rotating, as explained in any text, such as Etkin³, Chapter 4.

At an arbitrary location $L(\mathbf{x}_L,\mathbf{y}_L,\mathbf{z}_L)$, the components of specific acceleration are

$$a_{x_{L}} = a_{xeg} - \left[x_{L}(q^{2} + r^{2}) - y_{L}(pq - \dot{r}) - z_{L}(pr + \dot{q})\right]/g$$

$$a_{y_{L}} = a_{yeg} + \left[x_{L}(pq + \dot{r}) - y_{L}(p^{2} + r^{2}) + z_{L}(qr - \dot{p})\right]/g$$

$$a_{z_{L}} = a_{zeg} + \left[x_{L}(pr - \dot{q}) + y_{L}(qr + \dot{p}) - z_{L}(p^{2} + q^{2})\right]/g .$$
(27)

The indication of an accelerometer or a 'g' meter may then be derived from equations (27) given the location of the device. Similarly the linear acceleration components at the pilot's station (x_p, z_p) may be derived for use in driving motion systems. Further details of the accelerations computed are given in the description of the SACCBOD routine in Appendix A.

3.10 Wind, wind shear and turbulence

Wind

A datum mean wind is defined in speed and direction by V_{WKTO} and ψ_W , from which the components in earth axes are obtained as

$$V_{WNLO} = -V_{WKTO} \cos \psi_{W}$$

$$V_{WELO} = -V_{WKTO} \sin \psi_{W}$$
(28)

bearing in mind the convention that when ψ_W is zero, the wind is from the north. The vertical component of mean wind, V_{WDLO} , is normally assumed to be zero.

Wind shear

Wind shear is obtained as a multiplying factor f according to altitude, and the wind components at height are then

$$V_{WNL} = fV_{WNLO}$$

$$V_{WEL} = fV_{WELO}$$
(29)

This shear is effective only in magnitude, not in direction. Three choices are available: no shear (f = 1.0), logarithmic profile and linear profile. The initialisation process allows for actual wind at the initial height and sets up the aircraft's track to give a desired initial heading.

Turbulence

Turbulence in three orthogonal directions can be added to the components of the mean wind to give total wind components. Gust velocity components u_G , v_G , w_G are calculated by a new technique 12 , based on the Statistical Discrete Gust theory of J.G. Jones 13 , which allows the intermittent character of the generated turbulence to be controlled. Scaled components of turbulence u_T , v_T , w_T are obtained by

$$u_{T} = u_{sig}^{u}_{G}$$

$$v_{T} = v_{sig}^{v}_{G}$$

$$w_{T} = w_{sig}^{w}_{G}$$
(30)

where u_{sig} , v_{sig} , w_{sig} are desired root-mean-square intensities. These turbulence components are considered to be along the wind, across the wind and vertical, so that the total fluctuating wind components, in earth axes, are

$$V_{WN} = V_{WNL} - (u_T \cos \psi_W - v_T \sin \psi_W)$$

$$V_{WE} = V_{WEL} - (v_T \cos \psi_W + u_T \sin \psi_W)$$

$$V_{WD} = V_{WDL} - w_T .$$
(31)

3.11 Properties of the atmosphere

The properties of the ICAO International Standard Atmosphere 1 are calculated up to a maximum height of 65616 ft by the routine SATMOS (see description of SVELOC2 in Appendix A). Given altitude, it returns the density ratio, speed of sound ratio, temperature ratio and pressure ratio for a standard day. A routine ATMOS is also available for hot days but this is not integrated into SESAME. Strictly the altitude input should be 'geopotential' but below 65616 ft it is adequate to treat geometric and geopotential altitude as interchangeable.

The user may optionally choose to use constant atmospheric properties (as in many classical studies) or else allow standard variation with altitude. A software flag KISA controls this option.

4 TECHNICAL IMPLEMENTATION

Section 3 has defined a set of equations which compose the standard processes of any aircraft simulation. These equations are distributed among a series of modules for solution by digital computer. This section briefly describes the routines and their functions. Full details of each routine are given in Appendix A and listings are given in Appendix B. In general, system routines have names beginning with S. The routines fall into four categories:

Initialisation - SINIT, SYSCOM

Rotational motion - SDCOS, SEULER, SACCROT

Translational motion - SVELOCI, SALFBET, SACCLIN, SPATH, SVELOC2

008

Utility functions - STV, SILS, SWIND, SACCBOD, SATMOS, SCOUNT

All the subroutines described in this Report are coded in Fortran. The particular dialect used is Xerox Extended Fortran IV, designed for the Xerox Sigma range of computers. It was not intended to use only those features of the language embodied in Standard Fortran IV and a few non-standard features have in fact been used. These include

variable names of up to 8 characters, initialisation of COMMON variables within subroutines, use of the NAMELIST feature (in SYSCOM only).

Conversion of the subroutines to run on another computer should, however, pose few problems.

4.1 Initialisation

Two routines (SINIT, SYSCOM) are specifically concerned with performing certain start-up, or initialisation, functions. Other initialisation functions may be performed internally in the other routines.

SINIT calculates various aircraft related constants, sets up initial height, derives initial values of atmospheric properties and initialises speeds and attitudes allowing for wind.

SYSCOM sets up communication with system variables by creating a NAMELIST table and reads 'semi-permanent' data changes from a file.

Execution of most routines during an initialisation pass is organised intrinsically by the SLI model program (see section 5.2). Many routines may need to perform preliminary calculations. If their nature is such that they must be performed once only (otherwise errors will result) then a local flag must be created and the routine structured as in Fig 3a, with the flag set 'off' on entry (eg by a DATA statement). However, if there are no reasons why initial calculations should not be performed more than once there is a standard flag available in the system COMMON, JJCOMP, which takes the value 0 until the 'compute' button is pressed, and thereafter is 1. In this case the structure in Fig 3b can be used.

4.2 Rotational motion

A diagram of the information flow is shown in Fig 4. Rotational motion is calculated first, principally to provide the direction cosines required by the translational motion.

SACCROT calculates the three components of angular acceleration, in body axes, using equations (19), given total moments (supplied by the user) and inertia constants, equations (20), (calculated by SINIT).

SEULER calculates the rate of change of body attitude angles from the angular velocity components, using equations (1).

SDCOS calculates the nine direction cosines S_{11} etc from the three attitude angles ψ , θ , ϕ using equations (3).

4.3 Translational motion

A diagram of the information flow is shown in Fig 5.

SVELOC1 derives components of velocity, relative to the air, in earth axes using equations (9) and transforms to body axes, using equations (2).

SALFBET takes the body axes velocity components and calculates α , β , $\dot{\alpha}$, $\dot{\beta}$ using equations (12) and (13).

SACCLIN transforms total force components in body frame to inertial (earth) frame, using equations (7), then calculates the translational acceleration using equations (8). It may sometimes be desirable to separate the vertical from the two horizontal components so that vertical motion can be solved more frequently for better simulation of undercarriage dynamics.

SPATH calculates flight path angles from velocities in earth axes, using equations (15) and (16).

SVELOC2 calculates resultant airspeed, dynamic pressure, Mach number etc, using SATMOS for atmospheric properties. Some features are at present only valid for Mach number less than 1.0, as indicated in the routine.

4.4 Utility functions

Fig 6 shows the flow of information among the utility routines, all of which have something to do with the simulation environment, eg visual display, motion cues, wind etc.

STV calculates, from equations (22) to (25), positions and velocities to drive the TV visual system, and also handles the logic of belt positioning.

SILS calculates one or two segment ILS guidance beams.

SWIND controls the generation of turbulence and adds it to wind, modified by shear effects (if any).

SACCBOD calculates accelerations in body axes of the aircraft centre of gravity, from equations (26), and pilot station, accelerometers etc, from equations (27).

SATMOS calculates the properties (in ratio form) of the ICAO international standard atmosphere. It is an existing library subroutine and is not otherwise described in this Report.

A further utility routine, SCOUNT, not included in Fig 6, has nothing to do with the simulation of aircraft, but assists in the management of the calculation process, by setting an 'initialisation complete' flag, by keeping track of the sub-steps (if any) of the integration routine, and by picking up the current run number from the data logging system.

4.5 Units

With Aeronautics still retaining the use of such units as knots, it is difficult at present to make a wholehearted conversion to SI units. However, the equations set up are self-consistent so that a force in newtons acting on a mass in kilograms will produce an acceleration in m/s^2 and likewise, a force in pounds and mass in slugs will yield ft/s^2 . The routines as set up are intrinsically in the feet, pound, second system but alteration of a few conversion constants (gravity, etc) and datum values (air density, etc), would enable the whole system to work in SI units.

5 OVERALL PROGRAM STRUCTURE

5.1 Introduction

The program which provides the general framework for all the system routines is written in the simulation language SL1 14 .

The basic structure (Fig 7) consists of an INITIAL region, for start-up calculations, a DYNAMIC region and a TERMINAL region. (The TERMINAL region, however, has no relevance to real-time simulation.) This is a common form for continuous system simulation languages, like SL1 or CSMP. The DYNAMIC region contains one or more DERIVATIVE sections. These DERIVATIVE sections, each of which can have its own integration algorithm and step size, contain the routines which are the core of a simulation. During real-time operation, the code generated from each DERIVATIVE section is executed repetitively to produce the desired solution as a function of time. A listing of an aircraft simulation program with one DERIVATIVE section, or loop, is given in Appendix C, and corresponding flow charts of the execution sequence are shown in Fig 8. The reason for using SL1

is that two major facilities are provided by the language. These are synchronisation with real-time and a centralised integration scheme with a choice of five algorithms. Further details are contained in the Reference Manuals 14-16 and in Ref 1.

The SLI program is translated into a series of Fortran modules. Communication is organised using Fortran labelled COMMON. To permit system COMMON to handle the main variables, however, some duplication of variables is necessary in order for SESAME routines to communicate with the integration operators.

This duplication is arranged through PROCEDURAL blocks, with the subterfuge that only those variables to be exchanged with the integration processes are contained in the argument list. Other variables thus remain invisible to the SLI translator and so may be placed in system COMMON. If they were visible to the SLI translator they would be placed in a separate COMMON area, no longer under control of the user.

For example, a PROCEDURAL block

PROCEDURAL (=VV)

V = VV

END

picks up VV from the SLI labelled COMMON and places its value in V. In the opposite direction

PROCEDURAL (VVDOT=)

VVDOT = VDOT

END

transfers VDOT to VVDOT, for use in the integration statement VV = INTEG (VVDOT, VVIC).

5.2 Initialisation

In the normal course of events, the code generated by the SLI translator causes the DERIVATIVE section(s) to be executed just once at the end of INITIAL to calculate the initial values of all the derivatives. This has been augmented by explicit code (see near the 'END' of the INITIAL region in the SLI listing in Appendix C) to force these calculations to be done twice. This is necessary because routines at the end of the sequence (such as SVELOC2) produce variables, such as dynamic pressure, needed early on. Once the whole system is running, there is no problem. This slight idiosyncracy needs to be remembered by the user. The other important point about initialisation is that at the start of a new run, a fresh copy of the program is loaded into main store from a disc file,

800

so all parameter values are restored to their datum values. However, the 'retained changes' facility (see section 7.7) permits revised parameter values to be retained from run to run.

5.3 PV100 - operator dialogue

A set of programs and routines, collectively known as the parameter variation package, exists to enable the user to interact on-line with the parameters of the simulation. The principal item is PV100, the operator dialogue routine, which provides a wider range of facilities than the 'interpreter' inherent in SL1. PV100 enables the user, on-line and during any phase of a simulation flight, to access, display and amend any variable within the scope of the model program Variables may be referred to by name (the principal and its subroutines. function of routines SYSCOM and USERCOM is to provide tables of names for use by PV100), and in addition the contents of any memory location may also be displayed. A display may be in alternative styles, eg binary, hexadecimal, integer or 'real' format. Selected changes may be 'retained' to operate for subsequent runs, otherwise the change vanishes at the end of the current run. A readable memory dump may be printed, such as all the parameters in system COMMON. There is also a facility for forcing an 'automatic hold' or freeze if a variable falls within defined limits. A description of the full facilities is given elsewhere 1.

During initialisation there are four explicit calls to PVIOO inserted at strategic points in the INITIAL region, as can be seen by inspection of the SLI listing in Appendix C. These calls to PVIOO are only executed if a switch (Desk Switch 1) on the simulator control desk is set on. These individual calls to PVIOO may be identified by reference to the indicator ITP, as follows.

- ITP = 1 After initial conditions or retained changes have been input, but before SINIT. Enables IC values to be altered, and other changes to be inserted before the main initialisation calculations of SINIT. In particular, if the frame time is to be altered, it should be done here, using FRAMET1, DELT1 for Loop 1 and similar variables for Loop 2 (if present).
- ITP = 2 After SINIT but before the integrator IC values are actually set up.
- ITP = 3 At end of INITIAL but before analogue to digital converter (ADC) read and DERIVATIVE section(s) initialised.
- ITP = 4 After DERIVATIVE section(s) initialised and ADC read. DAC
 values are calculated but not yet set.

6 COMMUNICATION

6.1 Introduction

Communication among all the routines which comprise the aircraft model program is achieved by Fortran labelled COMMON. Labelled COMMON designates a block of contiguous memory locations which may be accessed by any subroutine in which the COMMON block is declared. This technique provides flexibility and also avoids the time penalty associated with using arguments in subroutine calls.

Two large blocks of labelled COMMON are employed. One, named SYSTEM, is an inherent part of the standard subroutines and contains all the state variables and other parameters common to any aircraft simulation. This is of fixed size and has its variables in predefined locations. The other, named USER, is set up, in terms of size and content, by the user to handle variables specific to his particular simulation, eg the aerodynamic force coefficients, engine forces etc.

6.2 System COMMON

This is defined as

COMMON / SYSTEM / A(1000), L(400)

where the array A contains real variables and L contains integer variables. An index to all the variables, in numerical and alphabetical order, is provided in Appendices D and E.

If the user wishes to pick up the current value of angle of attack (say) he needs to include in his routine

COMMON / SYSTEM / A(1000), L(400)

EQUIVALENCE (ALFAD , A(112))

and then ALFAD can be used freely in his routine. System variables must not be altered by the user.

6.3 User COMMON

This is defined for example as

COMMON / USER / B(1000), M(100)

where the array B is for real variables and M for integer variables. Names and sizes of these arrays are defined by the user, but the COMMON name USER must be employed. Sizes should be kept as small as possible, in order to avoid sterilising areas of core unnecessarily. However, if the size is too small, the user will have to increase it frequently, with consequent work updating all routines in which the COMMON statement appears.

The user will choose his own variable names and allocate space in the COMMON arrays. This will normally be done by EQUIVALENCE techniques, for flexibility. (Routines could, in fact, be created and checked in the first place without considering inter-routine communication.)

6.4 Documentation aids

A utility program has been created, called COMMLIST, to assist the user in keeping track of his variable names and locations. As he creates a variable, the user punches a card defining the variable name, its meaning and the routine in which it is calculated. This is similar to a scheme described by Bean 18. The program COMMLIST can then produce an index of names in alphabetical order, of locations in numerical order or of names according to the routine in which they are created or used. A brief guide to the program COMMLIST is given in Appendix F. The lists in Appendices D and E, G and H have been produced by this program.

6.5 Access to variables at run-time

In order to be able to access his variables at run-time, to inspect and change values via PV100 ¹⁷, the user must create a NAMELIST table of his variable names. This is achieved in the routine USERCOM, which must be written by the user. The bulk of this routine will be COMMON (or EQUIVALENCE) statements, referencing the variables by name. Its structure will be identical to the routine SYSCOM which does the same job for system variables. A listing of SYSCOM is included in Appendix B.

6.6 Hybrid input/output (ADC, DAC)

6.6.1 Introduction

Hybrid input/output, that is analogue to digital conversion (ADC) and digital to analogue conversion (DAC), is integrated into SESAME so that the user merely has to define entries in a set of tables incorporated in system COMMON. Conversion and scaling then occurs automatically. The general form of conversion required is of the form

$$y = ax + b$$

where a is a scale factor and b is a bias. For ADC, x would be a scaled value and y a value in 'engineering' units whereas, for DAC, x would be in engineering units and y a value scaled appropriately for output. The present implementation does not include any bias.

Data transfer in both directions employs a special piece of hardware known as the DMS12 (Direct Memory Sub System) which is a processor capable of operating in parallel with the computer's central processor. Use of this device provides for an element of parallel operation which is exploited in the software to save execution time.

Overall, the software scheme offers the user convenience - because he only has to set up data tables; flexibility - because the tables can be changed on line; and speed - because the hardware is fully exploited. The operating routines, coded in assembler, are not described in this Report.

6.6.2 Analogue to digital conversion

Analogue to digital conversion, and scaling, are executed prior to entry into the Derivative Section of the SL1 model program, where the dynamic equations are solved. The main scaling calculation performed is of the form

YADC(I) = ADC(NADC(I)) * AADC(I)

where ADC is the array of raw converted values, nominally in the range ±1.0, held in the SLI labelled COMMON Z99999.

NADC is the array of ADC channel numbers

AADC is the array of scaling factors, set up by the user

YADC is the array of input values in engineering units (degrees etc) ready for use.

All 32 channels are read in raw form into the array ADC, but scaling and transfer to YADC stops when the first zero element in NADC is reached. Because of the parallel nature of the hardware (DMS12, mentioned above) scaling is begun as soon as the first raw converted value is available. Conversion of further channels then proceeds concurrently with scaling. To avoid the danger of scaling a channel before it has been converted, it is important, therefore, that ADC channels are kept in numeric order and are used, as far as possible, without large gaps. For example, to use channels 1, 3, 7, 9 is better than 1, 17, 24, 30. To use 1, 2, 3, 4 is best of all. Thus, for simplicity, NADC(I) = I.

The data structure being in table form allows considerable operational flexibility. For example, in the event of failure of ADC channel 2, the variable being input on this channel can be redirected to channel 9 (say) simply by repatching on the analogue computer and by changing the contents of NADC(2) from 2 to 9 via the keyboard. The scaling AADC(2) would not need to be altered. The necessary changes can all be achieved on-line and no program changes are necessary. However, the warning of the previous paragraph should not be overlooked.

At present 32 ADC channels are available and supported by software. Provision has been made for enlargement, however, by reserving 64 contiguous locations for each of the arrays AADC, YADC, NADC in the COMMON storage area.

The SLI model program includes in its source code (Appendix C) a sequence of the form

PROCEDURAL (=ADC(1))

END

in order to ensure that the key driving routine Z9991 is called. No special code has to be created by the user.

The user does, of course, wish to use the result of the conversion and scaling processes, as held in YADC. To do so he may either use an element of YADC directly, as in the following example

 $CL = CLETA*YADC(7) + \dots$

or may give the element of YADC his own names via the usual EQUIVALENCE declarations viz

DIMENSION YADC (32)

EQUIVALENCE (YADC(1), A(401))

EQUIVALENCE (ETAD , YADC(7))

and then

CL = CLETA * ETAD +

To make his variable names accessible via PV100, the user could include them in subroutine USERCOM.

6.6.3 Digital to analogue conversion

Digital to analogue conversion occurs once per frame, after the main integration loop. The DAC software scales output variables to be in the settable range for DACs and DCUs (otherwise known as vari-DACs).

In principle, the same calculation technique is adopted as for ADC. The special difficulty for variables to be output to DACs is that they must be selected from any location in the system or user COMMON arrays (A or B) and must be routed either to proper, four-quadrant DACs (the first 32) or to two-quadrant vari-DACs (the next 16). An additional requirement is that it should be possible to set DACs from either of two loops. (This description refers for completeness to two loops. For the moment, however, only Loop 1 is operational.)

To achieve these objectives, data for four arrays must be defined by the user.

- ADAC array of scaling factors. A variable in engineering units is multiplied by the scaling factor in the appropriate element to give a result in the desired range (nominally ±1.0).
- NADC is the array of pointers defining which variables are to be converted. The pointers may refer to the 'A' or 'B' arrays in any sequence. Distinction between the source arrays is controlled by arrays LIDAC, L2DAC below.
- LIDAC defines the source of data for each channel to be converted in Loop 1.
- L2DAC defines the source of data for each channel to be converted in Loop 2. Each element of L1DAC, L2DAC can take the value 0, 1 or 2: 1 means that the data for scaling is to be taken from array A and 2 that it comes from array B. If 0 is set, no scaling is performed.

As an example, if NDAC(6) = 112, L1DAC(6) = 1, ADAC(6) = 0.1 then DAC channel 6 is to be used to output, at the end of Loop 1, variable A(112), ie ALFAD, angle of attack in degrees, scaled to ± 10.0 .

This structure provides flexibility by enabling changes to be introduced on-line. For example, by changing NDAC(6) from 112 to 241 (say), and changing the scaling ADAC(6) to suit, a different variable from the same array can be output on a given DAC. The source array (A or B) can also be easily changed, via LIDAC.

Operational considerations

- (1) Of the 48 DAC channels available, the first 32 are true DACs, while the rest are only two-quadrant devices. The user needs to remember this when allocating channels, so that 33-48 are only used for variables which do not change sign, eg airspeed. Provision has been made for expansion to 64 channels by reserving extra space for ADAC, NDAC in the COMMON area.
- (2) For those DAC channels not used, the corresponding elements of ADAC should be set to zero.
- (3) A set of default hardware addresses associated with channel numbers is defined in the table IDACAD. DAC addresses can be reassigned during initialisation.
- (4) Timing tests have given the following results:

Convert and scale 32 ADC channels 1.2 ms
Scale and convert 48 DAC channels 3.8 ms .

All channels are converted, but only those specified are scaled and stored, 008 so that time can be saved if fewer channels are needed.

6.6.4 User summary of system COMMON relevant to ADC/DAC

A	301	364	401	464	501	564
	1 A	ADC 64	1 Y	ADC 64	1	ADAC 64

A System COMMON array (real)

AADC* Array of scaling factors for ADC

YADC Array of converted variables

ADAC* Array of scaling factors for DAC

L	11		74	82		144	305		352	353		400
	1	NDAC	64	1	NADC	64	1	LIDAC	48	1	L2DAC	48

L System COMMON array (integer)

NDAC* Array of pointers defining variables in 'A' array and user's 'B' array to be converted

NADC* Array of ADC channel numbers

LIDAC* Array of DAC source pointers for Loop 1

L2DAC* Array of DAC source pointers for Loop 2

6.7 Hybrid input/output (discretes)

6.7.1 Introduction

Discretes are single-bit logic lines enabling on/off information to be communicated into and out of the computer. These lines are read and set automatically and so are conveniently available to the user.

6.7.2 Summary of lines available

A number of lines are available in each direction

- (a) between the digital computer (Sigma 8) and the analogue computer (AD4) and
- (b) between the digital computer and other external hardware, such as the simulator cockpits and the control desk. The numbers and types are summarised in the table below, together with the relevant driving routine.

^{*} These items must have values supplied by the user. It is recommended that, for convenience, all such data be located in one routine, such as OUTSR, or a self-contained 'information' routine.

le ito nan	ntrol lin le sense itches nange-ove	Rack N logic patch panel Bay 5 of control desk s Rack N logic patch	16 32 32	To Sigma 8 From Sigma 8 To Sigma 8 To Sigma 8 From Sigma 8	Subroutine READSLR SETCLR READSCR SETDSCR
an	ange-ove	Rack N logic not			To Sigma 8 From Sigma 8

The driver routines READSLR etc are themselves executed by one of two supervisor routines DSCRT1 and DSCRT2. DSCRT2 is only relevant if the model program is structured to have two iteration loops. 6.7.3 Software interface

Discrete information to be input or output is communicated via the labelled COMMON system, viz COMMON/SYSTEM/A(1000), L(400).

The basic routines which handle the hardware are called implicitly and convert from bit patterns in 32-bit words to arrays of integers, as defined below. Each integer can take the value 0 or 1. Thus no coding or decoding (packing or

The layout of the relevant parts of L is

T	- 2 Is
L 150 151	160
1	166 170 171 186 1
	186 190 191 222 223 257 257
I ISLR	16 1 1012
Time	16 1 IP 30
IAD4SL	1 IDS 32
Where to-	TADIAN I I I I I I I I I I I I I I I I I I
where ISLR(16)	is the AD
	on the Any sense line array reserved
13LR(16)	is the AD4 sense line array, ISLR(1)

- is the AD4 sense line array, ISLR(1) corresponding to DGS00 on the AD4 patch panel (remember the AD4 is marked in octal!) ICLR(16)
 - is the AD4 control line array, ICLR(1) corresponding to DGC00 on the AD4 patch panel IP(32)
 - is the array of patchable sense lines IDS (32)
 - is the array of desk switches ICO(32)
 - is the array of relay change-overs
 - IAD4SL, IAD4CL, IDSCFL, IPCOFL are flags, defined in detail in section 7.4.1 below, which control in which iteration loop, if any, the discretes routines are executed.

All these names are defined in SYSCOM, to be accessible by PV100. For the user to obtain access to ISLR(3), for example, he will include in his routine

COMMON/SYSTEM/A(1000), L(400)

and either

EQUIVALENCE (ISLR(1), L(151))

DIMENSION ISLR(16)

or

EQUIVALENCE (ISLR(3), L(153))

The former is more general. Discrete information is then available for use in such constructs as

IF (ISLR(3).EQ.1) CALL XYZ

6.7.4 Dedicated functions

Some of these discrete lines are dedicated to certain functions within SESAME, as summarised in the following list.

Line	Purpose	Routine
ISLR(4)	Slew forward	STV
ISLR(5)	Slew back	STV
ICLR(16)	TV Desync	STV
IDS(1)	PV100 select	SLI
IDS(5)	TV cycle	STV
IDS(6)	X TV reset	STV
IDS(7)	Y TV reset	STV
IDS(8)	Turbulence	SWIND

7 USER'S GUIDE

7.1 What the system expects from the user

The user is required to provide the three components of total force (FTX, FTY, FTZ) and the three components of total moment (XLLTOT, XMMTOT, XNNTOT), all in body axes. Thereafter the appropriate integrations, resolutions etc occur, with the system providing back to the user all the state variables from which the forces etc are generated. Various constants must also be provided. These are described in section 7.3.

7.2 Typical user routines

The user is required to create the following set of routines, which may perform some or all of the tasks indicated.

'Input'

CONTROLS takes the raw control inputs from the pilot, applies any nonlinear gearings, computes autostabiliser contributions and finishes up with the total control surface deflections, for use by the aerodynamics routines. It may also organise the computation of engine performance, including dynamics, and total thrust, momentum drag etc.

'Calculation loop'

TOTF computes aerodynamic force coefficients etc, finishing up with three components of total force from all sources.

TOTM computes aerodynamic moment coefficients etc, finishing up with three components of total moment from all sources.

'Output'

OUTSR computes miscellaneous functions, eg scalings of non-linear instruments, navigation and guidance and handles data logging.

'Initial'

USERCOM contains the names of all the variables the user may wish to access via PV100, and also reads semi-permanent data changes from a file.

- * These routines are actually called at SLI level. All are executed in a DERIVATIVE section, except USERCOM, which is executed in INITIAL.
- * All these routines are likely to be umbrella routines, in the sense that they are likely merely to organise the calling of other, more detailed, routines. For example, TOTF may call a routine to compute all ground reactions, tyre forces etc.
- * Ideally, TOTF and TOTM should be kept separate, so that they can, if necessary, be executed in different loops at different frame times.
- * Routines in the calculation loop may be executed up to four times per frame, depending on the integration technique employed, eg Trapezoidal, Runge-Kutta fourth order. All other routines are only executed once per frame (see section 5.4).
- * Each routine should, as far as possible, contain its own constants.
- * The method for communication of variables other than by lengthy argument lists has been described in section 6.

7.3 Data the user must provide

In addition to the primary forces and moments (FTX, XLLTOT, etc) and initial values (section 7.5), the user must provide values for a number of constants and parameters. These fall into such categories as basic data, hybrid input/output and external environment. They are described briefly below and listed in full in Appendices G and H. Typically the values will be provided by DATA statements

in appropriate subroutines (eg TOTM, TOTF), unless default values are already provided, in which case new values should be provided in the SYSCHNG file (section 7.7). Zero values should be set up if the parameter is not relevant.

Aircraft basic data

Moments of inertia		XIX, XIY, XIZ, XIZX
Centre of gravity		XCGREF, ZCGREF, ZCG
Span, wing area etc		SPAN, SWREF, STAIL, XLTAIL, CREF
Pilot location		XP, ZP
Coordinates of slip ball		XI, YI, ZI
Coordinates of g meter		X2, Y2, Z2
Coordinates of accelerometer	(AX3)	X3, Y3, Z3
Coordinates of accelerometer	(AY4)	X4, Y4, Z4
Coordinates of accelerometer	(AZ5)	X5, Y5, Z5

Timing

Frame time	FRAMET1, FRAMET2
Step size	DELT1, DELT2

Hybrid input/output

Scaling factors for analogue to	AADC, ADAC
digital conversion etc, (for full	LIDAC, L2DAC, NDAC, NADC
details refer to section 6.6)	
Output discretes (see section 6.7)	ICLR, ICO

External environment

Turbulence rms	USIG, VSIG, WSIG
Turbulence character	NG, SFRACG, SRDECAY
Ship speed	VSHIPKT

Additional integer parameters which can take one of several specific values and thereby select alternative functions are described in the next section.

7.4 Options available

008

A number of choices may be made by software flags or hardware switches. These are summarised below, with default values where relevant.

7.4.1 Software flags

(a) Variation of atmospheric properties

KISA	default 0 set in SINIT
0	constant sea level conditions at all times
1	standard atmosphere as function of current height
-1	constant properties appropriate to initial height (HIC).

FOR KISA = 1, SATMOS is called within SVELOC2 to calculate the new properties. Otherwise, constant values are set up within SINIT.

(b) Selection of constants for TV belt in use

NTVB no default
1 700:1 model
2 2000:1 model
3 5000:1 model

(c) ILS on/off

LSILS no default

O ILS off

I ILS on

(d) Type of ILS beam

ILSFLG no default, value obtained from XILSFLG (see section 7.5.2)

3 straight beam

6 straight beam

6 changing to 3 at height HKINK (qv)

(e) Discretes in and out (see also section 6.7)

IAD4SL AD4 sense lines (default | set in DSCRT1)
IAD4CL AD4 control lines (default | set in DSCRT1)

IDSCFL discretes in to Sigma (default | set in DSCRT1)

IPCOFL discretes out from Sigma (default 0 set in DSCRT1)

0 do not execute at all

execute in DSCRT1, ie in fast loop

execute in DSCRT2, ie in slow loop (if any)

(f) Wind shear

ISHR default 1, set in SINIT

1 no shear

2 logarithmic profile

3 linear profile

The value of ISHR is obtained from XISHR set up in the Initial Conditions file.

(g) Control of random number generation for turbulence LSEED default 0, set in SWIND

O seeds for random number generation derived from time of day

008

constant seeds employed, enabling a repeatable turbulence sequence to be obtained

7.4.2 External switches

Desk switch	Name	Purpose when set on
1		Calls PV100 during INITIAL
5	LCYCLE	TV belt cycles continually
6	LXTVIC	Resets TV x position
7	LYTVIC	Resets TV y position
8	LTURB	Turbulence
TV slew	LFWD	TV belt (and x position) moves forward at maximum rate
TV slew	LBACK	TV belt (and x position) moves backward at maximum rate

7.5 Initial conditions and initial values

7.5.1 Initial conditions

008

The standard SLI model embodies 12 integrations, each of which requires an initial condition. These are given in the table below as 'SLI names'. Many of these variables do not form a natural or convenient set for the user, who is more interested, for example, in specifying an initial airspeed rather than components of speed relative to the ground, or an initial angle of attack rather than pitch attitude. Hence SINIT performs various calculations to transform a user's initial values into those that the system requires.

One particular feature is that, regardless of the wind, the ground speed components are derived implicitly to satisfy the specified initial heading PSIDIC so that any datum wind or wind shear conditions are not revealed inadvertently to the pilot. More detail is given in the description of the SINIT routine in Appendix A.

SL1 names	Source	Definition
VVKNIC	Calculation	Velocity comp rel to ground, north
VVKEIC	Calculation	Velocity comp rel to ground, east
VVKDIC	Calculation	Velocity comp rel to ground, down
SXIC	XIC	X position
SYIC	YIC	Y position
SHIC	HIC	Height
PPIC	PDIC, default zero	Rate of roll, body axes
QQIC	QDIC, default zero	Rate of pitch, body axes
RRIC	RDIC, default zero	Rate of yaw, body axes
PPHIC	PHIDIC, default zero	Roll attitude angle
TTHIC	Calculation	Pitch attitude angle
PPSIC	PSIDIC	Heading angle

7.5.2 Initial values

Initial values are parameters relevant to the current 'run' and are not in general true initial conditions for integration. However, those initial conditions listed above that are not calculated are obtained from a set of initial values created by the user in a file. This file is read, during the INITIAL phase, by the routine RDICFILE and its contents stored in a 20-element array (A(191) - A(210)) which is part of system COMMON.

At present only 14 elements are actually used (as defined by the value of NVALS). These are

Name	Element	Definition	Units
BETADIC	A(191)	Sideslip angle	degrees
ALFADIC	A(192)	Angle of attack	degrees
GAMDIC	A(193)	Climb angle	degrees
VKTIC	A(194)	Airspeed	knots
XIC	A(195)	X position	feet
YIC	A(196)	Y position	feet
HIC	A(197)	Height	feet
W	A(198)	Aircraft weight	pound
XCG	A(199)	Aircraft centre of gravity	fraction of ref chord
XILSFLG	A(200)	ILS flag (actually used in integer form, ILSFLG)	
XISHR	A(201)	Wind shear flag (actually used in integer form, ISHR)	
VWKTØ	A(202)	Datum wind speed	knots
PSIWD	A(203)	Wind direction	degrees
PSIDIC	A(204)	Aircraft heading	degrees
Spare A(2	05) - A(210)		

Additional items could be read by increasing NVALS, eg by inputting a new value from the semi-permanent changes file (see section 7.7) read in SYSCOM.

7.6 Modification status

To keep track of the modification status of each routine, it is recommended that the user allocate an identifier per routine and assign a value to identify the version. For example, with the routine TOTF

to indicate version 1, or

DATA MTOTF / 171176/

to indicate the date of the current version. These values should be changed whenever the routine is modified. By placing these status identifiers in user COMMON, the current versions of each routine can be readily checked on-line.

This technique has been adopted for all the SESAME routines. The name of the version identifier is the routine name preceded by K, eg for routine SALFBET, the identifier is KSALFBET and contains the date in integer form. These identifiers are held in system COMMON (see Appendix E).

Identification of a new version of the executable program, or load module, is desirable. The SLI model program has a version number (IVERSION) for its source code, but this is not changed if a new load module is built without changing the SLI source. Identifying individual routines as above will help but a global load module identifier could also be created in a 'history' routine, the only purpose of which is to set a version number for the load module, eg

DATA LHARRIER / 240776 /

and perhaps also to include a modification history in 'comment' form.

A recent modification to the loader utility in the RBM operating system now places the date and time of load module creation into the program header. This information can be inspected from the keyboard.

7.7 Changes to parameters

It is possible to introduce lasting parameter changes into a completed and working aircraft model program without recoding.

On-line changes can be achieved from a keyboard, during any mode of a simulation, through the program PV100 17. The user has the option, at the time of making the changes, of declaring that the changes be 'retained', in which case they are automatically copied into a file and read back again (by PV300) at the start of each subsequent run. These changes are initially name-orientated, but PV300 relies on absolute address so that if alternative aircraft model programs are used, the retained changes file needs to be reset.

Semi-permanent changes to a user's parameters held in USER COMMON may be achieved by creating (from cards) a file called USERCHNG which is read each time the routine USERCOM is executed. Changes to parameters in SYSTEM COMMON may be achieved by a similar process, via the file SYSCHNG. All these changes work only by parameter name, as explained in the description of SYSCOM in Appendix A.

7.8 Operational considerations

The binary versions of all SESAME routines, in relocatable form (ROM), are held in files on disc and may be incorporated when building, via OLOAD, the final executable program. To ensure that the size of user defined COMMON is correctly set up, it is essential that a user ROM containing the definition of USER COMMON be loaded before SDAC.

If data logging is in use, the correct run number may be obtained by inspecting the variable NRUN.

8 CONCLUSIONS

A system of equations and associated computer subroutines has been developed to make it easy to create an aircraft model program for real-time flight simulation. Several simulations have been completed and it has been found to be very useful. The objectives of the scheme have been achieved. In particular, the resulting model program is more efficient during execution in terms of time required and the modular structure has also given the desired benefits at the program development stage.

The facilities of SESAME are described as they exist at the time of publication of this Report. Extensions and enhancements may easily be added as new needs arise.

Furthermore, the routines as described in this Report are not specific either to real-time simulation or to the computer on which they have been developed. They are written in Fortran and, supplemented by appropriate integration techniques, could be used on other computers for general purpose calculations of aircraft dynamics in six degrees of freedom.

Appendix A
DESCRIPTION OF INDIVIDUAL SESAME ROUTINES

Section	Routine	Source file	Binary file (ROM)
A.1	SACCBOD	SACBS	SACBR
A.2	SACCLIN	SACLS	SACLR
A.3	SACCROT	SACRS	SACRR
A.4	SALFBET	SALFS	SALFR
A.5	SCOUNT	SCNTS	SCNTR
A.6	SDCOS	SDCSS	SDCSR
A.7	SEULER	SEULS	SEULR
A.8	SILS	SILSS	SILSR
A.9	SINIT	SINTS	SINTR
A.10	SPATH	SPTHS	SPTHR
A.11	STV	STVVS	STVVR
A.12	SVELOC 1	SVLIS	SVLIR
A.13	SVELOC2	SVL2S	SVL2R
A.14	SWIND	SWNDS	SWNDR
A.15	SYSCOM	SYSCS	SYSCR
A.16	DSCRT 1	SCRIS	SCRIR
A.16	DSCRT2	SCR2S	SCR2R
A.17	ISDSCR	ISDCS	ISDCR

SACCBOD A. 1 Subroutine

Calculates accelerations, in body axes, of aircraft centre A.1.1 Purpose of gravity (cg), pilot and various accelerometer locations.

CALL SACCBOD A.1.2 Call

P,Q,R A.1.3 Inputs PDOT, QDOT, RDOT RG, W

FTX, FTY, FTZ S13, S23, S33 XP, ZP

X1, Y1, Z1; X2, Y2, Z2; X3, Y3, Z3; X4, Y4, Z4; X5, Y5, Z5

AXCG, AYCG, AZCG A.1.4 Outputs AXACG, AYACG, AZACG AXP, AYP, AZP AZAP, AZCGI AY1, AZ2, AX3, AY4, AZ5

Data required A.1.5 XP, ZP XI, YI, ZI; X2, Y2, Z2; X3, Y3, Z3; X4, Y4, Z4; X5, Y5, Z5

A.1.6 Description (NB all accelerations in units of g) - see also section 3.9

A.1.6.1 Specific accelerations at aircraft centre of gravity (as measured by an accelerometer).

$$a_{xcg} = F_{TX}/W$$

$$a_{ycg} = F_{TY}/W$$

$$a_{zcg} = F_{TZ}/W$$

Note that in steady level flight, with $\theta = 0$, a 'normal' accelerometer at the centre of gravity registers -1 g and in a pull-up, for example, registers -1.5 g.

A.1.6.2 Absolute accelerations at aircraft centre of gravity

$$a_{xacg} = a_{xcg} + s_{13}$$

$$a_{yacg} = a_{ycg} + s_{23}$$

$$a_{zacg} = a_{zcg} + s_{33}$$

 S_{13} , S_{23} , S_{33} are direction cosines, eg S_{13} = - $\sin \theta$.

A.1.6.3 Accelerations at pilot

$$a_{xp} = a_{xcg} - \left[x_p(q^2 + r^2) - z_p(pr + \dot{q}) \right] / g$$

$$a_{yp} = a_{ycg} + \left[x_p(pq + \dot{r}) + z_p(qr - \dot{p}) \right] / g$$

$$a_{zp} = a_{zcg} + \left[x_p(pr - \dot{q}) - z_p(p^2 + q^2) \right] / g$$

A.1.6.4 Absolute normal acceleration at pilot (or 'manoeuvre g' used for motion cues)

$$a_{zap} = a_{zp} + S_{33}$$

A.1.6.5 Acceleration relative to 1 g for recording

$$a_{zcg1} = a_{zcg} + 1.0$$

A.1.6.6 Acceleration for slip ball (located at x, ,y,,z,)

$$a_{y_1} = a_{ycg} + \left[x_1(pq - \dot{r}) - y_1(p^2 + r^2) + z_1(qr - \dot{p})\right]/g$$

A.1.6.7 Accelerations for g meter (located at x_2, y_2, z_2)

$$a_{z_2} = a_{zcg} + \left[x_2(pr - \dot{q}) + y_2(qr - \dot{p}) - z_2(p^2 + q^2)\right]/g$$

A.1.6.8 Accelerations for three independent accelerometers

$$a_{x_3} = a_{xcg} - \left[x_3(p^2 + r^2) - y_3(pq - r) - z_3(pr + r)\right]/g$$

$$a_{y_4} = a_{ycg} + \left[x_4(pq + r) - y_4(p^2 + r^2) + z_4(qr - r)\right]/g$$

$$a_{z_5} = a_{zcg} + \left[x_5(pr - r) + y_5(qr + r) - z_5(p^2 + q^2)\right]/g$$

A.1.7 Initialisation

Nil

A.1.8 Subroutines used

Nil

A.1.9 Remarks

A.1.9.1 See Etkin (Dynamics of Atmospheric Flight) pp 122-124 for derivation of acceleration at an arbitrary point.

A.1.9.2 'Flat earth' is assumed.

A.2	Subroutine	SACCLIN
4.5	Subtoutine	DACCELIN

A.2.5 Description

A.2.5.1 Transforms total forces in body axes (FTX, FTY, FTZ) to earth axes (FTN, FTE, FTD), using direction cosines S_{11} etc.

$$F_{TN} = S_{11}F_{TX} + S_{21}F_{TY} + S_{31}F_{TZ}$$

$$F_{TE} = S_{12}F_{TX} + S_{22}F_{TY} + S_{32}F_{TZ}$$

$$F_{TD} = S_{13}F_{TX} + S_{23}F_{TY} + S_{33}F_{TZ}$$

A.2.5.2 Calculates accelerations in earth axes

$$\dot{v}_{KN} = F_{TN}/m$$

$$\dot{v}_{KE} = F_{TE}/m$$

$$\dot{v}_{KD} = F_{TD}/m + g$$

A.2.6 Initialisation

Nil

A.2.7 Subroutines used

Nil

A.2.8 Remarks

User must supply total forces in body axes (FTX, FTY, FTZ).

- A.3 Subroutine SACCROT
- A.3.1 Purpose Calculates angular accelerations in body axes
- A.3.2 Call CALL SACCROT

A.3.3 Inputs XLLTOT, XMMTOT, XNNTOT P, Q, R

CII - CIIO

A.3.4 Outputs PDOT, QDOT, RDOT

A.3.5 Description

Given total moments, angular velocity components and inertia coefficients, calculates angular acceleration components in body axes.

$$\dot{p} = CI_1L + CI_2N + CI_3pq + CI_4qr$$

$$\dot{q} = CI_5M + CI_6(r^2 - p^2) + CI_7rp$$

$$\dot{r} = cI_8N + cI_2L + cI_9pq + cI_{10}qr$$

A.3.6 Initialisation

Nil

A.3.7 Subroutines used

Nil

A.3.8 Remarks

A.3.8.1 CII etc are calculated in SINIT from inertia information supplied by the user.

A.3.8.2 The user must provide the total moments in body axes (XLLTOT, XMMTOT, XNNTOT).

A.3.8.3 An xz plane of symmetry is assumed.

A.4 Subroutine SALFBET

A.4.1 Purpose Calculates angles of attack and sideslip

A.4.2 Call . CALL SALFBET(DT)

A.4.3 Inputs UB, VB, WB, RADTOD

A.4.4 Outputs

ALFAR, ALFAD, SALFA, CALFA, ALFADOT,
BETAR, BETAD, SBETA, CBETA, BETADOT

A.4.5 Argument DT is frame time of loop in which SALFBET is used.

A.4.6 Description

008

A.4.6.1 Given the body axes components of airspeed, calculates α and β from (see Hopkin section 6.2)

 α = tan WB/UB, with α taking the sign of WB and being in the range $-\pi$ to $+\pi$.

 $\beta = \tan^{-1} VB/(UB^2 + WB^2)^{\frac{1}{2}}$ being in the range $-\pi/2$ to $+\pi/2$, and taking the sign of VB.

A.4.6.2 Calculates the sine and cosine of α and β .

A.4.6.3 Converts α and β to degrees and stores.

A.4.6.4 Estimates the rate of change of the incidence angles ($\mathring{\alpha}$ and $\mathring{\beta}$) from the present and two preceding values, eg

$$\dot{a} = (a_2 - 4a_1 + 3a)/(2DT)$$

where DT is the time step.

A.4.7 Initialisation

During the first entry to the routine the two preceding values of α and β used in estimating $\dot{\alpha}$, $\dot{\beta}$ are set to the current values of α and β , thus making $\dot{\alpha}$ = $\dot{\beta}$ = 0.0 for two time steps after 'compute'.

A.4.8 Subroutines used

Library mathematical functions.

A.4.9 Remarks

For UB = WB = 0.0, $\alpha = 0.0$.

If VB is zero as well, then $\beta = 0.0$.

- A.5 Subroutine SCOUNT
- A.5.1 Purpose Resets pass count for derivative section
- A.5.2 Call CALL SCOUNT
- 1.5.3 Inputs JCOMP (from COMMON 'CONTROL')
- A.5.4 Outputs NCPASS, JJCOMP, NRUN

A.5.5 Description

- A.5.5.1 Resets pass count NCPASS to zero. NCPASS is used in the derivative section to keep track of sub-steps of integration routine.
- A.5.5.2 Picks up JCOMP from COMMON 'CONTROL' and reassigns to JJCOMP in COMMON 'SYSTEM' to enable JJCOMP to be used as an 'initialisation complete' flag. JCOMP (and hence JJCOMP) gets set to 1 once 'compute' is pressed.

A.5.5.3 Calls DLRUN to pick up current run number held in mailbox.

A.5.6 Initialisation

Nil

A.5.7 Subroutines used

DLRUN

A.5.8 Remarks

A.5.8.1 Since DLRUN accesses the foreground mailbox, any program using SCOUNT or DLRUN must be run in the foreground.

A.5.8.2 Run number is only obtained if data logging is not inhibited.

A.5.8.3 Because SCOUNT is not called during initialisation, the run number is not obtained until after 'compute' is pressed.

A.6	Subroutine	SDCOS
A.6.1	Purpose	Calculates direction cosines from Euler angles
A.6.2	Call Call	CALL SDCOS
A.6.3	Inputs	PSIR, THETAR, PHIR, RADTOD
A.6.4	Outputs	PSID, THETAD, PHID, SPSI, CPSI, STHETA, CTHETA, SPHI, CPHI

A.6.5 Description

A.6.5.1 Calculates sines and cosines of the three Euler angles

$$\psi$$
 - heading 0-360° (or ±180)
 θ - pitch ±90°
 ϕ - bank ±180°

A.6.5.2 Calculates nine direction cosines used in transformation from earth to body axes and vice versa (see Hopkin 4 section 5.6).

```
S11 = \cos \theta \cos \psi = \ell_1

S12 = \cos \theta \sin \psi = \ell_2

S13 = -\sin \theta = \ell_3

S21 = \sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi = m_1

S22 = \sin \phi \sin \theta \sin \psi + \cos \phi \cos \psi = m_2

S23 = \sin \phi \cos \theta = m_3

S31 = \cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi = n_1

S32 = \cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi = n_2

S33 = \cos \phi \cos \theta = n_3
```

A.6.5.3 Calculates sec θ and tan θ .

A.6.5.4 Converts input angles (ψ, θ, ϕ) from radians to degrees and stores.

A.6.6 Initialisation

Nil

A.6.7 Subroutines used

Library mathematical functions, eg sine, cosine

A.6.8 Remarks

Makes no provision yet for $\theta = 90^{\circ}$, nor for large angles, *ie* multiple turns.

- A.7 Subroutine SEULER
- A.7.1 Purpose Calculates Euler attitude rates.
- A.7.2 Call CALL SEULER
- A.7.3 Inputs P, Q, R

SPHI, CPHI, TANTHT, SECTHT

RADTOD

A.7.4 Outputs PHIDT, THETDT, PSIDT

PD, QD, RD

A.7.5 Description

A.7.5.1 Calculates Euler attitude rates from body rates and Euler angles

$$\dot{\phi} = p + (q \sin \phi + r \cos \phi) \tan \theta$$

- $\dot{\theta} = q \cos \phi r \sin \phi$
- $\dot{\psi} = (q \sin \phi + r \cos \phi) \sec \theta$

A.7.5.2 Converts body rates to degrees/s and stores.

A.7.6 Initialisation

Nil

A.7.7 Subroutines used

Library mathematical functions.

- A.8 Subroutine SILS
- A.8.1 Purpose To calculate glide slope and localiser indications for conventional instrument landing system (ILS).

A.8.2 Call CALL SILS

A.8.3 Inputs

JJCOMP, LSILS, ILSFLG
X, Y, H, RADTOD, DEGTOR

A.8.4 Outputs

EGS, ELOC, HSLOPE, RGS, RLOC, RKINK

XGS, XLOC, YLOC, SGS, SLOC, USLOPE, BSLOPE, HKINK,

CILS1, CILS2, CILS3, CILS4, XKINK

A.8.5 User options

LSILS	ILS on/off flag
0	off, glide slope and localiser indications set to zero
1	on
ILSFLG	select beam type
1	3° straight beam
2	6° straight beam
3	6° changing to 3° at height defined by HKINK

A.8.6 Description

A.8.6.1 If ILS is required (set by LSILS), calculates conventional angular ILS beam, with no beam noise, assuming receiver in aircraft is at centre of gravity.

A.8.6.2 If ILS is not required, glide slope and localiser indications are set to zero and no other calculations are performed.

A.8.6.3 Localiser model

Beam origin is at XLOC, YLOC. (X = 0 is at runway threshold, Y = 0 on runway centre line).

RLOC is range from transmitter.

Angular error ELOC is returned scaled to ± 1.0 , ie as a fraction of the defined beam width.

Beam width is ±SLOC degrees.

A.8.6.4 Glide slope model

Glide path origin is at XGS.

RGS is range from transmitter.

HSLOPE is height of beam centre line at range RGS.

Angular error EGS is returned scaled to ± 1.0 , ie as a fraction of the defined beam width.

Beam width is ±SGS degrees.

USLOPE is upper segment slope (if applicable) in degrees.

BSLOPE is lower segment slope in degrees.

For a single segment beam, USLOPE = BSLOPE.

If a 2-segment slope is used (selected by ILSFLG), the kink occurs at the defined height HKINK.

Range and position from kink (RKINK, XKINK) are derived.

A.8.7 Initialisation

A.8.7.1 During initialisation (when JJCOMP = 0) beam constants are set up according to the choice of beam defined by ILSFLG. Initialisation occurs regardless of the state of the ILS on/off flag.

A.8.8 Subroutines used

BOUND

Library mathematical routines.

A.8.9 Remarks

A.8.9.1 SILS is used by SINIT, if requested, to place the aircraft exactly on the beam as an initial condition.

A.8.9.2 If the user wishes to create his own ILS routine (or similar guidance) he could use the same name and ensure that it will interface correctly to SINIT, ie receive a value X and return a value HSLOPE.

A.9	Subroutine	SINIT
A.9.1	Purpose	Various initialisation calculations
A.9.2	Call	CALL SINIT
A.9.3	Inputs	XIX, XIY, XIZ, XIZX HIC, XIC, HSLOPE DENR, SPSNDR, TEMPR, PRESSR SPSL, RHOSL, TEMPSL, PRESSL VWKTØ, PSIWD, SHRFAC PSIDIC, GAMDIC, VKTIC, BETADIC, ALFADIC SWRFF, SPAN, W. YCG, ZCG, YCGRFF, ZCGRF

KISA, ISHR

A.9.4 Outputs

CII - CIIØ

ROOTSIG, SPSOND, RHO, TALPHA, PALPHA CPSIW, SPSIW, VWNLØ, VWELØ, VWN, VWE, VWD VKNIC, VKEIC, VKDIC, VN, VE, VD, VK, VT THETADIC, PHIDIC SB2, XMASS, RXMASS, DXCG, DZCG

PDIC, QDIC, RDIC

RADTOD, DEGTOR, FPSTKT, XK2FPS, G, RG

A.9.5 Data to be supplied by user

SWREF, SPAN, XCGREF, ZCGREF, ZCG, XIX, XIY, XIZ, XIZX

A.9.6 User options

KISA	flag to control variation of atmospheric properties with height
0	sea level conditions at all times
1	standard atmosphere
-1	fixed values appropriate to initial height (HIC)
ISHR	wind shear selection flag (see SWIND for full description)

A.9.7 Description

38

A.9.7.1 Calculates inertia coefficients, according to equations (20)

CIØ = 1.0/(XIZ*XIX - XIZX*XIZX)

CII = XIZ*CIØ CI2 = XIZX*CIØ

= XIZX*(XIX - XIY + XIZ)*CIØCI3

 $= (XIZ*(XIY - XIZ) - XIZX*XIZX)*CI\emptyset$ CI4

CI5 1.0/XIY

= XIZX*CI5 CI6

= (XIZ - XIX)*CI5CI7

CI8 = XIX*CIØ

 $= (XIX*(XIX - XIY) + XIZX*XIZX)*CI\emptyset$ CI9

 $CII\emptyset = -XIZX(XIX - XIY + XIZ)*CI\emptyset$

- A.9.7.2 If HIC is set negative, calculates initial height to put aircraft exactly on ILS beam.
- A.9.7.3 Sets up initial values of atmospheric properties. If KISA = 0, sets up sea level conditions. Otherwise uses SATMOS to derive properties appropriate to HIC.
- A.9.7.4 Calculates local true wind components from datum wind speed $(V_{WKTØ})$ and direction (ψ_{tr})

$$V_{WNLØ} = -V_{WKTØ} \cos \psi_W$$

$$V_{WELØ} = -V_{WKTØ} \sin \psi_W$$

and allows for wind shear to give initial values for VWN, VWE.

A.9.7.5 If initial condition is not at rest derives velocity relative to ground, and then components for IC values, given wind speed and direction, desired initial airspeed and heading. (Note that VK in this routine is resultant velocity relative to ground, whereas VK obtained in SPATH is truly the ground speed, ie in the horizontal plane.)

An iteration technique is used to ensure that the initial track and heading are compatible with the specified wind. The initial heading will thus not reveal to the pilot anything about the applied wind.

A.9.7.6 If initial condition is at rest (defined by VKTIC < 1.0) then ground speed is set to zero.

A.9.7.7 An initial value for θ is calculated, assuming $\emptyset = 0$, from $\theta = \gamma + \alpha$.

A.9.7.8 Aircraft related constants are calculated from data supplied by the user

SB2 = SWREF*SPAN*SPAN
XMASS = W/G
RXMASS = 1.0/XMASS
DXCG = XCG - XCGREF
DZCG = ZCG - ZCGREF

A.9.7.9 Various system constants are given default values via DATA statements, as detailed below.

Default values

RADTOD	57.295780
DEGTOR	0.0174533
FPSTKT	0.5921053
XK2FPS	1.688889
G	32.174
RHOSL	0.0023769
SPSL	1116.45
RG	0.03108
TEMPSL	288.15
PRESSL	14.69597
DENR	1.0
SPSNDR	1.0
TEMPR	1.0
PRESSR	1.0
PDIC	0.0

QDIC 0.0
RDIC 0.0
PHIDIC 0.0
KISA 0
ISHR 1

A.9.7.10 A software switch is also set on (IHSHIO = 1) to enable the high speed hybrid input/output. It is communicated via labelled COMMON HSHIO.

A.9.8 Initialisation

Whole routine is for initialisation only.

A.9.9 Subroutines used

SATMOS, SILS, WSHEAR and library functions.

A.9.10 Remarks

Will not initialise correctly if initial ϕ is non-zero.

A.10 Subroutine SPATH

A.10.1 Purpose Calculates velocity over ground and flight path angles

A. 10.2 Call CALL SPATH

A.10.3 Inputs

VKN, VKE, VKD

RADTOD, FPSTKT

A.10.4 Outputs

VK, VKKT,

PSIKR, PSIKD,

GAMMAR, GAMMAD

A.10.5 Description

A.10.5.1 Calculates velocity over ground (ground speed)

$$VK = (VKN^2 + VKE^2)^{\frac{1}{2}}$$

A. 10.5.2 Converts VK to knots and stores.

A.10.5.3 Calculates climb angle

$$\gamma = \tan^{-1}(-VKD/VK)$$

in the range $-\pi/2$ to $+\pi/2$.

A.10.5.4 Calculates track

$$\chi(=\psi_k) = \tan^{-1}(V_{KE}/V_{KN})$$

A.10.5.5 Converts γ and χ to degrees and stores.

A. 10.6 Initialisation

None

A.10.7 Subroutines used

Library mathematical functions.

A.10.8 Remarks

A.10.8.1 If VKD = VK = 0.0, $\gamma = 0.0$.

A.10.8.2 If VKE = VKN = 0.0, $\chi = 0.0$.

A.10.8.3 For $V_{KE} = 0.0$, $\chi = 0$ for V_{KN} positive but $\chi = 180^{\circ}$ for V_{KN} negative.

A.11 Subroutine STV

A.11.1 Purpose Computes TV positions and rates, and controls belt logic.

A.11.2 Call CALL STV

A.11.3 Inputs VKN, VKE, VKD, VSHIPKT, XK2FPS

X, Y, H, XIC

XP, ZP, CTHETA, STHETA, CPSI, SPSI, PSIDT, THETDT

JJCOMP, NTVB

LFWD, LBACK, LYTVIC, LXTVIC, LCYCLE

A.11.4 Outputs XTV, YTV, HTV, XIC, XIHX, XIHY

XDOTM, XDTV, YDTV, HDTV

SXPL, SXMIN, SXPLUS, SXMINUS, SYPL, SYMIN, HTVLIM,

XDTMX

IDSYNC

A.11.5 Data to be supplied by user

NTVB TV belt flag

1 700:1 mode1

2 2000:1 model

3 5000:1 model

VSHIPKT ship velocity, knots.

A.11.6 Description

A.11.6.1 Initialisation.

A.11.6.2 Belt slew control.

If forward slew is selected, X rate is forced to maximum positive value.

108

If backward slew is selected, X rate is forced to maximum negative value.

In both cases, the aircraft's position keeps in step. Positional calculations can also be referred to a ship moving at constant velocity VSHIPKT.

- A.11.6.3 Integration control for X and Y (belt logic).
- (a) If Y reset is selected, Y position resets to YIC.
- (b) If X reset is selected, X position resets to XIC as originally defined in ICFILE.
- (c) If X reset is not selected, additional logic is invoked to control the belt (x):
 - * if X is not near the belt join (defined by SXMIN, SXPL see belt diagram), the program continues to the position module.
 - * If X is near the join but 'LCYCLE' is not set, the program continues to the position module.
 - * If 'LCYCLE' is not set, the program continues to the position module.
 - * If 'LCYCLE' is set, X is forced to cycle between SXMINUS and SXPLUS. IDSYNC is set to 1 to uncouple the belt position feedback.
 - * If 'LCYCLE' is set, but the demanded X position is less than the negative cycle limit SXMINUS (as can happen if X had been previously reset), the X integrator is reset and XIC is set to SXMINUS. This will force the belt to start to move.
 - * If X is between SXMINUS and SXPLUS, the program continues to the position module.
 - * When X reaches SXPLUS, it resets to SXMINUS, before going on to the position module.
- A.11.6.4 Position module TV positions and rates in three axes (equations (22) to (25)).
 - (a) Calculates pilot position, and rate of change of his position, allowing for his location away from the aircraft's centre of gravity.
 - (b) If TV belt is trying to position before minimum X possible on the belt (SXMIN), or if X reset is demanded, then \dot{x}_{TV} is set to zero to stop hunting. This is not done if LCYCLE is set.
 - (c) If H is above the ceiling for the model, \dot{h}_{TV} is set to zero to stop bouncing.

(d) Limits are finally applied to x_{TV}, y_{TV} and h_{TV} to keep within model confines. These limits do not affect computed aircraft position and navigation.

A.11.7 Initialisation

A.11.7.1 During initialisation, the set of TV constants appropriate to the particular belt are selected from the array TVCON(8,3). These constants define the limit of movement as follows:

SXPL	TVCON (1, NTVB)	Maximum value of \mathbf{x}_{TV} allowed, also determines when 'near belt join'.
SXMIN	TVCON (2, NTVB)	Minimum value of \mathbf{x}_{TV} allowed, also determines when 'near belt join'.
SXPLUS	TVCON (3, NTVB)	x cycles between these two values if
SXMINUS	TVCON (4, NTVB)	'cycle' mode is selected
SYPL	TVCON (5, NTVB)	Maximum value of y_{TV} allowed
SYMIN	TVCON (6, NTVB)	Minimum value of y_{TV} allowed
HTVLIM	TVCON (7, NTVB)	Ceiling for TV height
XDTMX	TVCON (8, NTVB)	Belt velocity when slewing.

The x-related quantities are illustrated in Fig A4.

STV holds three values of each parameter in TVCON, the appropriate one being selected according to the TV belt in use. Because of this, on-line permanent changes to SXPL etc can only be achieved by changing the associated element of TVCON.

A.11.7.2 The initial value of X obtained from the IC file is stored in a temporary location (XICF) so that a demand to reset X will reset X to this value regardless of whether cycle has previously been selected.

A.11.8 Subroutines used

BOUND

A.11.9 Remarks

A.11.9.1 The array of TV constants is accessible to PV100 and so can be overwritten if new values are found to be more appropriate to the hardware.

Alterations can also be made via the semi-permanent changes file (see SYSCOM).

A.11.9.2 The logical controls are set via special buttons etc on the control desk and so are hardware dependent.

LCYCLE	desk switch 5
LXTVIC	desk switch 6
LYTVIC	desk switch 7
LFWD	slew toggle patched to AD4 sense line DGSO3 (line 4)
LBACK	slew toggle patched to AD4 sense line DGSO4 (line 5)
IDSYNC	software flag controls AD4 control line DGC17 (line 16)

A.11.9.3 To start the aircraft at some position outside the limits of the TV model, set up XIC, YIC to suit. When the aircraft position comes within the confines of the belt, it will begin to move with the aircraft. X and Y positions can be reset using their appropriate buttons without having to reset the whole computation.

A.11.9.4 If, after a reset to some distant location, immediate movement of the belt is required, put 'X reset' off and 'cycle' on.

A.11.9.5 No provision has been made for large bank angles (>1 rev), nor for cloud or visibility control.

A.11.9.6 Successful use of this routine to drive the TV model is dependent on analogue computer circuitry incorporating position feedbacks.

A.11.9.7 Do not initialise with 'CYCLE' on if, subsequently in the run, you may want to reset X outside the confines of the belt. This is because initialisation occurs twice and so XIC is overwritten.

A.12	Subroutine	SVELOC1
A.12.1	Purpose	Calculates body axes velocity components
A.12.2	Call	CALL SVELOC1
A.12.3	Inputs	VKN, VKE, VKD VWN, VWE, VWD S ₁₁ - S ₃₃
A.12.4	Outputs	UB, VB, WB VN, VE, VD

A.12.5 Description

008

A.12.5.1 Given the components of velocity relative to ground (VKN, VKE, VKD) and the components of total wind speed, including turbulence (VWN, VWE, VWD), calculates components of velocity relative to the air in earth axes (VN, VE, VD), then resolves to body axes.

A.12.6 Initialisation

None

A.12.7 Subroutines used

None

A.12.8 Remarks

A.12.8.1 Assumes wind velocity component is positive in the same direction as the component relative to the air. Thus, for a head wind and for the aircraft on a northerly heading $(\psi = 0)$, VWN is negative.

A.12.8.2 VN, VE, VD are initially calculated in SINIT.

A.13 Subroutine SVELOC2

A.13.1 Purpose Calculates total airspeed, equivalent airspeed, Mach number etc using appropriate atmospheric properties.

A.13.2 Call CALL SVELOC2

A.13.3 Inputs UB, VB, WB

H

SWREF, CREF, SPAN, SB2

KISA

FPSTKT, RHOSL, SPSL, TEMPSL, PRESSL

A.13.4 Outputs VT, VTKT, VEAS, VEASKT, XMACH

QDYN, HLFROV, QDYNS, QSCREF, QSSPAN, QSB21V

ROOTSIG, RHO, SPSOND, DENR, SPSNDR, TEMPR, PRESSR TRATIO, ARATIO, DRATIO, PRATIO, TALPHA, PALPHA

A.13.5 Data to be supplied by user

Note that certain geometric parameters for the aircraft must be supplied by the user.

SWREF reference wing area
CREF reference chord

SPAN reference wing span

SB2 is a combination (SWREF*SPAN*SPAN) calculated in SINIT.

A.13.6 User options

The flag KISA selects the way in which atmospheric properties vary. It must only be changed in INITIAL, before SINIT is executed.

KISA = 1 standard atmosphere

= 0 fixed values appropriate to sea level

-1 fixed values appropriate to initial height HIC

008

A.13.7 Description

A.13.7.1 Calculates total airspeed, converts to knots and stores.

$$V_{T} = \left(u_{B}^{2} + v_{B}^{2} + w_{B}^{2}\right)^{\frac{1}{2}}$$

A.13.7.2 If the flag KISA is set to 1, obtains, for the current height, new properties (density ratio, speed of sound ratio, temperature ratio and pressure ratio) of a standard atmosphere, using the routine SATMOS.

If KISA is not set to 1, atmospheric properties are kept constant, as set up by SINIT.

A.13.7.3 Calculates properties of the atmosphere

air density
$$\rho = \rho_{SL}\sigma$$
speed of sound
$$a = a_{SL}a_r$$
ambient temperature
$$T_{\alpha} = T_{SL}T_r$$
ambient pressure
$$P_{\alpha} = P_{SL}P_r$$

A.13.7.4 Calculates equivalent airspeed, converts to knots and stores.

$$V_{EAS} = V_{T} \sigma^{\frac{1}{2}}$$
.

A.13.7.5 Calculates dynamic pressure and related terms

QDYN =
$$\frac{1}{2}\rho V_{T}^{2}$$

QDYNS = $\frac{1}{2}\rho V_{T}^{2}S_{W}$
QSCREF = $\frac{1}{2}\rho V_{T}^{2}S_{W}^{c}_{ref}$
QSSPAN = $\frac{1}{2}\rho V_{T}^{2}S_{W}^{b}$
QSB21V = $\frac{1}{2}\rho V_{T}^{2}(S_{W}^{b}^{2})$

A.13.7.6 Calculates Mach number

$$M = V_T/a$$

A.13.7.7 Calculates compressible adiabetic flow relationships for Mach number <1.0. For initialisation purposes, these ratios are given datum values of 1.0.

$$T_{ratio} = (1 + 0.2M^2)^{-1}$$
 $a_{ratio} = (T_{ratio})^{\frac{1}{2}}$
 $\rho_{ratio} = (a_{ratio})^{5}$
 $P_{ratio} = a_{ratio}^{T}$

008

A.13.8 Initialisation

In addition to those items mentioned above, datum values of atmospheric properties are provided in SINIT (qv).

A.13.9 Subroutines used

SATMOS

A.13.10 Remarks

Subroutine ATMOS, an alternative to SATMOS, is available to calculate atmospheric properties for hot days. It is not included as an option, however, as it is very much larger than SATMOS, the subroutine for 'standard' days.

A.14	Subroutine	SWIND
A.14.1	Purpose	Controls turbulence, wind and wind shear
A.14.2	<u>Call</u>	CALL SWIND
A.14.3	Inputs	H, HIC, VKTIC, XK2FPS, FRAMETI, SFRACG, SRDECAY VWNLØ, VWELØ, VWDLØ, CPSIW, SPSIW USIG, VSIG, WSIG ISHR, JJCOMP, NG, LTURB, LSEED
A.14.4	Outputs	UTURB, VTURB, WTURB VWN, VWE, VWD VWNL, VWEL, VWDL SHRFAC

Turbulence switch

A.14.5 User options

LTURB

0	no turbulence calculated or output
1	turbulence calculated and output
ISHR	wind shear selection
l (default)	no shear applied. Returns immediately with SHRFAC = 1.0. Time overhead is minimal.
2	ARB mean shear profile (logarithmic)
3	linear shear up to 333 ft, thereafter constant
LSEED	random number seed selector
0 (default)	seeds in GUSTS routine obtained from time of day
1	constant seeds enable a repeatable turbulence sequence to be obtained
USIG, VSIG, WSIG	rms settings for each component (never exactly achieved - it is a random process!). Can be changed in flight.
VWKTØ	datum wind speed, true (knots)

PSIWD

datum wind direction (degrees). PSIWD = 0.0 is a wind from the north. VWKTØ and PSIWD are set as initial conditions and are used by SINIT (qv) to calculate VWNLØ, CPSIW etc.

For the remaining parameters (except for VWDL) changes are only effective if applied during initialisation.

VWDL

wind component in 'down' sense (default = 0.0)

SRDECAY

decay parameter, should not be changed (default = 0.7)

SFRACG

intermittency parameter, in range 0.0 to 0.99 (default = 0.0). Should never be set equal to 1.0. For minimum intermittency, set SFRACG = 0.0. A value of 0.7 is probably as extreme as will ever be needed. Refer to Ref 12 for discussion.

NG

Controls the three gust ramp lengths used in the turbulence generation routine GUSTS 12 , via NGUSTS = NG* Initial speed (ft/s).

NGUSTS, an important parameter, required by the GUSTS routine, defines the number of gusts per second. Thus, if the initialisation speed is 200 ft/s (118 kn), NGUSTS = NG = 4 (the default value for NG) and so the shortest gust gradient distance is 200/4 = 50 ft and the longest, determined in the GUSTS subroutine, is 16 times the shortest, or 800 ft. Initialisation at speeds much below 100 kn may require NG to be increased. If the initial speed is zero, NGUSTS takes a minimum value of 1. A further limitation is that NGUSTS must be less than the repetition rate of the simulation, eg for a frame time of 50 ms (20 solutions/s) and NG = 4, the maximum initial speed must not exceed 1000 ft/s (592 kn). This constraint is checked and imposed in SWIND.

A.14.6 Description

- (a) Derives shear factor (SHRFAC) according to height, using WSHEAR subroutine.
- (b) Calculates local wind velocity components VWNL, VWEL at height, including shear effects.

VWNL = VWNLØ * SHRFAC VWEL = VWELØ * SHRFAC VWNLØ, VWELØ are calculated in SINIT.

(c) If turbulence is required (set by LTURB), calculates three raw components of turbulence (using GUSTS subroutine). The gust velocities obtained are scaled by nominal rms values for each component (USIG, VSIG, WSIG), set by the user, to give turbulence components UTURB, VTURB, WTURB.

- (d) If turbulence is not required, turbulence components are set to zero.
- (e) The calculated turbulence components are added to the mean wind components to provide three components of total wind (VWN, VWE, VWD) in earth axes.

VWN = VWNL - (UTURB * CPSIW - VTURB * SPSIW)

VWE = VWEL - (VTURB * CPSIW + UTURB * SPSIW)

VWD = VWDL - WTURB

(f) A flow chart is shown in Fig A9.

A.14.7 Initialisation

During initialisation, the gust generation routine GUSTS is called regardless of whether the turbulence switch LTURB is set on or off. This is necessary to perform the required preliminary calculations. However, the turbulence components returned are set to zero. GUSTS uses its own flag (IFLAG) to control initialisation, but this is tied to the system flag JJCOMP in SWIND.

A.14.8 Subroutines used

WSHEAR, GUSTS, FDC, RANDU, VSTEP, SEEDVAL Library mathematical functions.

A.14.9 Remarks

A.14.9.1 The calculated turbulence components are added to the mean wind components, which only later become resolved into body axes. UTURB is along the datum wind, a positive gust increasing the wind (crudely, increasing the airspeed); VTURB is across the wind (a positive gust, crudely, increasing the sideslip); WTURB is vertical, positive up (to increase incidence).

A.14.9.2 Wind shear and attenuation of vertical turbulence with height work from altitude rather than height above local terrain.

A.14.9.3 Details of the gust generation process are contained in Ref 12.

A.14.9.4 Wind shear is only in magnitude, not in direction.

A.14.9.5 The turbulence control, LTURB, is set by a desk switch (currently number 8).

A. 15	Subroutine	SYSCOM

A.15.1 Purpose Sets up communication with system variables.

A.15.2 Call CALL SYSCOM

A.15.3 Inputs

As set up in 'changes' file.

A.15.4 Outputs

Nil

A.15.5 Description

A.15.5.1 Includes in the labelled common area SYSTEM all the names of system variables so that they are set up in the Namelist table.

A.15.5.2 Calls PV200 in the defined way to set up the Namelist table address. The defined way is

DIMENSION NAME (2)
DATA NAME/'SYSCOM'/
NAMELIST
CALL PV200(NAME)
GO TO 3
INPUT 101

2 INPUT 101 3 CONTINUE

A.15.5.3 Provides for 'semi-permanent' changes to be read from a file, using the self-identified input facility

DATA ISYS/50/ REWIND ISYS INPUT (ISYS) REWIND ISYS

A.15.6 Initialisation

This routine is only called in the INITIAL region, so it is all initialisation.

A.15.7 Subroutines used

PV200 plus library routines. Note that to test SYSCOM in the background, a dummy PV200 should be supplied.

A.15.8 Remarks

A.15.8.1 Unit 50 used for inputting semi-permanent changes should be assigned at model load time to a file in the user's area, eg

A.15.8.2 Prior to running the aircraft model program, the 'changes' file should be filled with the desired changes in the form

X1 = 23.0SWREF = 560.0 The concluding asterisk (*) is essential. If no changes are required the file must contain an asterisk otherwise a run-time error occurs.

A.15.8.3 The positioning of SYSCOM means that IC values cannot be overwritten since they are read after SYSCOM is executed. However, changes introduced through SYSCOM can be altered on-line since retained changes are applied (by PV300) after SYSCOM.

A. 16	Subroutine	DSCRT1/DSCRT2
A. 16.1	Purpose	To control execution of routines for discrete input/output.
A.16.2	<u>Call</u>	CALL DSCRT1 (CALL DSCRT2)
A.16.3	Inputs	IAD4SL, IAD4CL, IDSCFL, IPCOFL
A.16.4	Outputs	By calling other routines, the arrays ISLR(16), ICLR(16), IP(32), IDS(32), ICO(32) are filled.

A.16.5 Data to be supplied by user

Four flags must be set to control which of the basic routines, if any, is executed in which real time loop.

IAD4SL	Execution control flag for AD4 sense lines (READSLR)	
IAD4CL	Execution control flag for AD4 control lines (SETCLR)	
IDSCFL	Execution control flag for discretes in to the Sigma (READSCR)	
IPCOFL	Execution control flag for discretes out from Sigma (SETDSCR)	
Each flag can take the values:		
0	Do not execute	
1	Execute in DSCRTI, ie in the fastest loop	
2	Execute in DSCRT2, ie in the second loop.	

Default values (set in DSCRT1) and typical values are

Flag	Routine	Default	Typical	(possible)
IAD4SL	READSLR	1	1	(2)
IAD4CL	SETCLR	1	1	(2)
IDSCFL	READSCR	1	2	
IPCOFL	SETDSCR	0	2	(1)

A.16.6 Description

Calls appropriate routines, according to flag settings. Routines which are called by DSCRT1 are not then called by DSCRT2, and vice versa.

A.16.7 Initialisation

Nil

A.16.8 Subroutines used

READSLR, SETCLR, READSCR, SETDSCR

A.16.9 Remarks

Execution timings are

 SETCLR
 0.16 ms

 READSLR
 0.22 ms

 SETDSCR
 0.34 ms

 READSCR
 0.87 ms

 Total
 1.59 ms

Hence a millisecond or more could be saved in the main loop by executing READSCR and SETDSCR in the second loop.

A.17 Function subroutine ISDSCR

A.17.1 Purpose To read a single specified Sigma 8 sense line

A.17.2 Call

I = ISDSCR (ISET, LINE)

ISDSCR is returned with a value 0 or 1, depending on whether the specified line LINE is off or on.

A.17.3 Description

This function tests the status of an individual sense line, either from the logic patch panel in rack N(ISET = 0) or from the control desk switches (ISET = 1).

A.17.4 Initialisation

Ni1

A.17.5 Subroutines used

READSCR

A.17.6 Remarks

This function is intended for use during the INITIAL region only, when time is not critical. It is not a fast routine.

Appendix B LISTING OF SESAME ROUTINES

```
2.
                             SUMPRUTINE SACCHIE
                000000000000
      3.
                                                          DATE : 20.02.78

DESCRIPTION : SACCHOD CALCULATES ACCELERATIONS
OF THE AIMCRAFT C.G. AND OF THE PILOT , IN
THE BOUY AXES , FOR USE DY MOTION , AUTOSTAN .
ETC..
    11.
                                                   COMMON/SYSTEM/4(1000), L1400)
                000
   16.
                       VERSION IDENTIFIER
                          DATA KSACCBOD/240278/
                  DATA KRACCBOD/2002/8/
12-8-76 SYSTEM CAMMON ENLARGED
20-2-78 XP/2P REPLACED BY XPCG/2PCG
EGUIVALENCE (KSACCHOD, LISSS) 1
               c
   20.
               c
   21.
 23.
                          ... VARIABLE BUTPUTS ...
                        EUUI VALF NCE LAXCO
                                                          .412-111.14YCG
                                                                                        .A(202)),(AZCG
.A(205)),(AYACG
.A(208)),(AYP
.A(201)),(AYI
.A(2001),(AYO
                                    (AZCG1
(AZACG
(AZP
                                                         **(201); (AYCG

**(200)); (AXACG

***(270); (AXP

***(250)); (AXP

***(250)); (AX3

***(250))
 28.
                                                                                                                       ,4(2+3)1,
,4(2+6)1,
,4(2+9)1,
 30.
                                        IAZS
33.
                                                                                                                       .4125511.
                        ... VARIABLE INPUTS ...
36.
36.
37.
                      EQUIVALENCE IX1
                                                       .4(257)),(Y1
.4(260)),(Y2
.4(263)),(Y3
                                     (X2
                                                                                       .A(258)).(21
                                                                                       ,A(261)1,(22
,A(260)1,(23
,A(267)),(24
                                                                                                                      .4125911.
                                                                                                                      .1159511.
                                                                                                                      .41268:11
```

```
( 45
( $1 )
( P
                                                                                                                                                                                                                                                                                    .4(269)),(75
.4(19)),(523
.4(26)),(Q
.4(65)),(QDRT
.4(280)),(2PCG
.4(135)),(FTZ
                                 39.
                                                                                                                                                                                                                                                                                                                                                                                                                                    .4127011.125
                           *1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ,A(2711),
,A(251),
,A(251),
,A(281),
,A(471),
,A(1341),
                                                                                                                                                                                                                                                                                                                                                                                                                            ,A( 221),(833
,A( 271),(R
,A( 96)),(RDOT
,A(281)),(FTX
,A(1361),(R
                                                                                                                                                                                                                 INPCG
                                                                              000
                                                                                                                                     .... CONSTANTS ....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  240278
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .4119811
                                                                                                                          EQUIVALENCEING
                       .4114611
                                                                                                 EVALUATING COMMON SUN-EXPRESSIONS
           50.
                                                                                                                       92 . P.P
                                                                                                               02 - 0-0

02 - 0-0

03 - 0-0

04 - 0-0

05 - 0-0

07 - 0-0

08 - 0-0
                                                          C THESE INCLUDE DIVISION BY 1G.

UPPER 1 PURPORTION BY 1G.

PROOF 1 PURPORTIONS

PROOF 1 PURPORTIONS

PROOF 1 PURPORTIONS

UPPER 1 PURP
          61.
62.
        65.
     ...
    10.
                                                                                                     RH . 1.0/W
                                                                          CALCULATING ACCELERATIONS IN 'G'UNITS
73.
                                                                    SPECIFIC ACCES AT AIRCRAFT C.J.
                                                                                                 ANCO . FTX ...
```

```
AYCG - FTY-NH
AZCG - FTZ-RH
76.

77.

79.

81.

82.

85.

85.

85.

87.

88.

92.

93.

94.

95.

94.

95.

100.

101.

105.

104.

109.

111.

111.

111.
              ABSOLUTE ACCES AT ATHENAFT C. ..
                    AMACO - AMCG-813
AVAC3 - AVCG-823
AZACO - AZCG-833
           C SPECIFIC ACCNS AT PILOT
                    AXP - AXCG-XPC3-QZN2 + ZPCU-PRODT
AYP - AYCG-XPC3-PCNDT + ZPCU-QRPDTB
AZP - AZCG-XPC3-PRUDTR - ZPCG-P2Q2
                                                                                                                      2+0278
2+0278
2+0278
           C ABSOLUTE (OR IMANUEUVRE GI) ACCHS AT PILOT
                    AZAP . AZP+533
           C ACCNS FOR RECORDERS RELATIVE TO 1.0 0
                    AZCG1 - AZCG+1.0
               ACCNS FOR SLIP BALL (LOCATED AT X1. Y1. Z1)
                    AVI . AVCG-X1-PURDT-V1-P2R2-Z1-QRPDT8
           000
              ACCNS FOR 'O' METER (AT X2.Y2.Z2)
                    AZZ - AZCG+XZ-PRODTB+YZ-GRPDT-ZZ-PZUZ
           AX3 - AXCG-X3-Q2P2-Y3-PQRDTR-Z3-PRQDT
AY+ - AYCG+X--PQHDT-Y4-P2R2-Z4-QRPUTB
```

```
110. AZS - AZCG+X50PRQDT8-Y50QHPUT-Z50P202
115. RETURN
116. END
1ABSIGN (MISI,D3,SACLS)
1FORTRAN LS,NS
EXT. FORTRAN 1V, VERSION EDD
```

```
SUBROUTINE SACCLIN
 1.
2.
3.
5.
6.
7.
8.
9.
10.
                                         00000000000000
                                                                                                        WRITTEN BY: D.OLDFIELD
                                                                                                                                  DATE:12-8-7A
DESCRIPTION: THIS SUBHOUTINE CALCULATES THE TOTAL
FONCE CAMPONENTS TO THE EARTH AXES GIVEN THE
COMPONENTS TO THE RODY AXES AND THE DIRECTION
COSINES. THE ACCELERATION IS ALSO CALCULATED
FROM THIS INFORMATION AND THE AIRCRAFT MASS
 15.
                                                                              12-8-76 SYSTEM CHMMON ENLARGED
COMMON/SYSTEM/A(1000),L(400)
                                   000
17.
18.
19.
20.
21.
22.
23.
                                                                 VERSION IDENTIFIER
                                                                            DATA KSACCLIN/120876/
EQUIVALENCE (KSACCLIN, L (256))
                                        000
                                                                                                                                   ... VARIABLE INPUTS ...
                                                                                                                                                                                                                                                                                                     ,A( 18)),(S13
,A( 21)),(S23
,A( 24)),(S33
,A(135)),(FTZ
                                                                                                                                   (E(S11 ,A(17)),(S12
(S21 ,A(201),(S22
(S31 ,A(231),(S32
(FTX ,A(1341),(FTY
(RXMASS ,A(11)
                                                                                                                                                                                                                                                                                                                                                                                                           ,A( 19)),
,A( 22)),
,A( 25)),
                                                                             EQUIVALENCE IS11
26.
27.
28.
29.
                                        000
 30.
31.
                                                                                                                                ... VARIABLE CUTPUTS ...
                                                                           ((062)A, TODDAY),((1662)A, TODDAY),((1862)A, TODDAY),((1662)A, TOD
35.
36.
37.
                                         000
                                                                                                                                   ... CENSTANTS ...
```

```
38. EQUIVALENCEIG ,A(145))

39. C

40. C

CALCULATE TOTAL FRANCES TO EARTH AXES

41. FTN = S11*FTX*S21*FTV*S32*FTV

43. FTD = S12*FTX*S23*FTV*S33*FTV

44. C

CALCULATE ACCELERATION

VKNDOT= FTN*RXMABS

VKNDOT= FTE*RXMASS

47. VKDDOT= FTE*RXMASS

47. VKDDOT= FTE*RXMASS

49. END.

1485IGN (MISI,D3,SACRS)

IFONTHAN LS,NS

EXT. FONTHAN LV, VERSION EOD
```

```
SUBROUTINE SACCROT
00000000000000
                                 WRITTEN BY : D. BLUFIELD
                                         DATE : 12-8-76

DESCRIPTION : THIS SUBROUTINE CALCULATES

THE ANGULAR ACCELENATIONS IN THE BODY

AXES GIVEN THE TOTAL MOMENTS, ANGULAR

VELOCITY COMPONENTS IN THE BODY AXES AND

THE INEMTIA COEFFICIENTS.
                        12-8-76 SYSTEM COMMON ENLARGED COMMON/SYSTEM/A(1000),L(400)
            000
                     VERSION IDENTIFIER
                        DATA KSACCROT/120876/
EUUIVALENCE(KSACCROT,L(257))
                                         ... VARIABLE INPUTS ...
                        EQUIVALENCE(XLLTOT ,A(131)),(XMMTOT ,A(132)),(XNNTOT ,A(133)),

(P ,A(26)),(Q ,A(27)),(R ,A(28)),

(CI1 ,A(35)),(CI2 ,A(36)),(CI3 ,A(37)),

(CI4 ,A(38)),(CI5 ,A(39)),(CI6 ,A(40)),

(CI7 ,A(41)),(CI8 ,A(42)),(CI9 ,A(43)),
                                             (CI1
(CI1
(CI7
(CI10
                                                           A( 36)),(Q
A( 35)),(CI2
A( 38)),(CI5
A( 41)),(CI8
A( 44))
             000
                                         *** VARIABLE GUTPUTS ***
                       EQUIVALENCE POOT
                                                            .A1 4511,(QDOT
                                                                                           . . A 1 4611, (RDOT
                                                                                                                                 .A. 4711
                        CALCULATE ANGULAR ACCELERATIONS
POOT = C11-XLLTOT+C12-XNNTOT+(C13-P+C14-R)-0
```

```
38. UDDT = CI5=XMMTDT+Cl6=(R-R-P-P)+CI/=R-P

39. RODT = CIS=XNNTDT+CI2=XLLTDT+(CI9=P+CI10=R)=Q

40. C

41. METURN

42. END

1ABGIGN (M;GI,O3)SALFS)

IFORTRAN LS,NE

EXT. FORTRAN LY, VERSION EOO
```

```
WHITTEN MY I CONCEPTED

DATE : PI-3-74

DERCHIPTION : THEM YOURHOUTER CALCULATES

THE ANOLE OF ATTACK AND MICH BUTE. THE

BINE AND CREEKE UP THE ANOLED OF THE ANOLER

ARE DESTROY FROM THE ADMINISTRATE OF THE ANOLER

GUADRATIC FIT TO THE DATA UNION THE

TIME INTERVAL TO PARRY AND A PARAMETER
                                                                                    ARE DINITYPO FROM THE ADMINISTRATE AS GUADRATIC FIT TO THE DATA UNION THE TIME INTERVAL TO PAURED AND PARAMETER
                                                               18-8-76 BYSTEP CAMPON SHEARGED
P1-3-78 TEMP VARIABLE NAME CHARGED
P-6-76 EVALUATION OF DERIVATIVES COMMECTED
COMMONOSTRETAL COURT, CLAUDI
                                                       VEH0104 1068111168
                                                                CATA REALFOLT/000879/
EUUIVALENCEIRBALFFET/LISSEIF
DATA 1/0/
                                                                                                              ... VARIABLE INPUTE ...
                                                                .....
                                                                Only action to the property of the control of the c
......
                                   000
                                                                                                            ... CONSTANTS ...
                                                                SQUIVALENCE (MAUTED .A.1141)
                                                   CALCULATE ANGLE MP ATTACK, IN MANUE */- 180 DEG.

ALFAM = 0.0

IF (188-80-0.0-AND-08-ED-0.0) US TO /

ALFAM = ATANCHA, USI

7 ALFAM = ATANCHA, USI

7 ALFAM = SINIALFAM

CALFA = CREIGLFAM

CALFA = CREIGLFAM

CALFA = CREIGLFAM

CALFA = CREIGLFAM

CALFA = 0.0

15 IV-LO-0.0-AND. VB-LO, 0.0) DE TO B

SETAM = 0.0

15 IV-LO-0.0-AND. VB-LO, 0.0) DE TO B

SETAM = ATANCLYN, V

S METAM = ATANCLYN, V

S METAM = CREIBLTAM

CRETA = CREIBLTAM

CRETA = CREIBLTAM

ALFAMINI = ALFAM

METAMINI = ALFAM

METAMINI = BETAM

1 = 1

C CONTINUE
                                                                                    CALCULATE ANGLE MF ATTACA. IN MANUE . .- 180 DEG.
                                    .
                                                 TO CONTINUE
CONTINUE
CONTINUE
FOR NEAT ENINY.
                                                      STALUATE CERETATIVES ON F CONTING CAST PALE OF INTERNATION STAP
                                                               IF INCPARE-LT-NIPARE-I INC TUNN
                                                                                                                                                                                                                                                                                                                                                                                                             .....
                                                               MT . U.B/DT
                                                                                                                                                                                                                                                                                                                                                                                                             2103/8
                                                              ALFAUST - IALFAN INC-L. UPALFAN INCOLUTAL FAN I ENT

BL TAUST - INCTANCY S-L. UPAG TANON S-L. UPAG TAN I EN I

ALFAN INC - ALFAN

BL TANIN S - ALFAN INC

BL TANIN S - PL TAN

BL TANIN S - PL TAN

BL TONON

END
 ***
```

SUSMOUTINE BALFALTIDES

310577

```
SUBROUTINE SCOUNT
1.
2.
3.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
17.
18.
                 0000000000000
                                          DESCRIPTION: THIS MOUTINE SETS FASS COUNT FOR
DERIVATIVE SECTION.
MRITTEN BY: B.N.TOMLINSON
DATE: 12-88-76
MODIFIED: 31-5-77 TO INCLUDE DLRUN
                                          VENSION IDENTIFIER
              C DATA KSCOUNT/310577/
EQUIVALENCE(KSCOUNT + L(2591)
C 12-8-76 SYSTEM COMMON ENLARGED
COMMON/SYSTEM/A(1000)/L(+00)
C PICK UP JCOMP (SET IN SWAIT)
COMMON/CONTROL/JCOMP
C JCOMP = 1 AFTER COMPUTE PRESSED
                                                                                                                                                                                                310577
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
                                                     *** VARIABLE INPUTS ***
                00000
                                                     *** VARIABLE BUTPUTS ***
                C EDUTVALENCE (NRUN ,L(169))
LGUIVALENCE (NRUN ,L(169))
LGUIVALENCE (NCPASS ,L(. 2)),(JJCOMP ,L( 8))
C NCPASS IS COUNT OF NUMBER UF PASSES THROUGH DERIVATIVE SECTION
C EXECUTED SO FAR IN UNE INTEGNATION STEP. SET TO ZERU IN THIS
NOTINE PRIOR TO DOING INTEGNATION.
NCPASS = 0
C SET JJCOMP, IN SYSTEM COMMON, TO ENABLE STATUS TO BE
USEO, E.G. IN SILE, STV
JJCOMP = JCOMP
                                                                                                                                                                                                310577
33.
34.
35.
36.
37.
```

```
38. C PICK UP RUN NUMBER FROM MAILBOX
39. CALL DLRUN (NRUN)
40. METURN
41. END
IASSIGN (MISI,03,SDCSS)
IFORTHAN LB, NS
EXT. FORTRAN LY, VERSION EDO
```

```
SUHA JUTINE SOCAS
                                                                                               WHITTEN HY : U. ULUF IELD
                                           0000000000
                                                                                                          DATE : 12-8-76

DATE : 12-8-76

DESCRIPTION : THIS SUBMOUTINE CALCULATES

THE DIMECTION COSINES, SINES AND JERREE

VALUE OF THREE INPUT ANGLES IN MAUIANS.

CALCULATED.
                     8.
                10.
              11.
              13.
                                                                                          1 ..
           15.
                                                                       12-6-76
                                                                                                                           SYSTEM COMMON ENLARGED
                                                                     COMMON/SYSTEM/A(1000),L(400)
                                          C
                                                            VENSION IDENTIFIER
           19.
                                       C
        51.
                                                                   DATA KSDCOS
                                                                EGUIVALENCEIKENCHE ILIZAOII
      24.
                                     c
                                                                                                         ... VARIABLE INPUTS ...
                                                              EUUI VALENCE (PSIR ,A ( 31), (THETAR ,A ( 51), (PHIN
                                     C
                                                                                                     ... VARTABLE BUTPUTS ...
    29.
                                   C
                                                                                                                                                                                                                                                                                                                         .41 711
                                                                                                    (SPSI (A) (9)), (THETAD (A) (6)), (PHID (SPSI (CTHETA (A))), (CPSI (A) (10)), (STHETA (A)), (SECTHT (A) (15)), (TANTHT (A) (16)), (CPHI (A) (16)), (S12 (A) (18)), (S13 (A) (18)), (S13 (A) (18)), (S13 (A) (20)), (S14 (20)), (S15 (A) (20)), (S15 (A) (20)), (S16 (A) (20)), (S17 (A) (20)),
                                                             EUUIVALENCEIPSID
   30.
   31 .
 32.
 33.
34.
36.
                              00
                                                                                               ... CONSTANTS ...
```

```
38.
39.
40.
41.
42.
43.
44.
45.
                                                                                                                                                                             C
                                                                                                                                                                                                                                            EGUIVALENCE(RAJTOD ,A(1-1))
                                                                                                                                                                                              CALCULATE SINE, COSINE AND TANGEN

STHETA - SINITHETAM;

CTHETA - COSITHETAM;

SPSI - COSITHETAM;

SPSI - SINIPSIN;

SPMI - SINIPSIN;

SPMI - SINIPSIN;

CALCULATE DINECTION COSINES

S11 - CTHETA-CPSI

S12 - CTHETA-SPSI

S13 - STHETA

S21 - SPMI-STHETA-SPSI-CPHI-SPSI

S22 - SPMI-STHETA-SPSI-CPHI-SPSI

S23 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S32 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S32 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S32 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-CTHETA

S22 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S32 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - STHETA-SPSI-SPMI-SPSI

S12 - STHETA-SPSI-SPMI-SPSI

S13 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S32 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S22 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - SPMI-STHETA-SPSI-SPMI-SPSI

S32 - SPMI-STHETA-SPSI-SPMI-SPSI

S31 - CPHI-STHETA-SPSI-SPMI-SPSI

S32 - SPMI-STHETA-SPSI-SPMI-SPSI

S32 - SPMI-STHETA-SPSI

S32 - SPMI-STHETA-SPSI

S32 - SPMI-STHETA-SPSI

S31 - CTHETA-SPSI

S
                                                                                                                                                                                                                                                                                   CALCULATE SINE, COSINE AND TANGENTS
                                                                                    **
                                                                                                                                                               C
                                                                                  50.
                                                                                52.
                                                                            53.
                                                                        5/.
                                                                      58.
                                                                                                                                       C
                                                                    61.
                                                                                                                                         C
                                                                    62.
                                                            64.
                                                              66.
        IASSIGN IMIST, D3, SEULS !
IFORTHAN LS, NE
```

```
SUBROUTINE SEULER
000000000000
                                  WRITTEN BY : O. OLUFIELD
DATE : 12-8-76
DESCRIPTION : THIS BUBHOUTINE CALCULATES
THE ALTITUDE RATES DIVEN THE COMPONENTS
OF THE ANGULAR VELOCITY IN THE BODY AXIS
                    12-8-76 SYSTEM CAMMON ENLARGED COMMON/SYSTEM/A(1000), L(+00)
          000
                    DATA KSEULER /120876/
LOUIVALENCEIKSEULEN ,LIZ6111
           000
                                   ... VARIABLE INPUTS ...
                   EQUIVALENCE(SPHI ,A( 131),(CPHI 1 (TANTHT ,A( 161),(P P (R ,A( 281)
                                                                               AL 1411, (SECTHT ,AL 1511)
           000
                                   ... VARIABLE OUTPUTS ...
28.
29.
30.
31.
32.
33.
36.
36.
                    EQUIVALENCE(PAIDT ,A( 291), (THETUT ,A( 3011, (PSIDT ,A( 3111, 1)))
                                    100
           CCC
                                   ... CONSTANTS ...
                    EUUIVALENCE (RADTOD ,A(141))
                     CALCULATE ATTITUDES
PHIDT - P-TANTHT-(Q-SPHI-N-CPHI)
```

```
38. THETUT = Q=CPMI=R=SPMI

39. PSIDT = SECTHT=(Q=SPMI=N=CPMI)

40. C CALCULATE ANGULAR VELOCITY IN DEGREES

41. PD = PORADTOD

42. UD = Q=RADTOD

43. ND = R=RADTOD

44. C

45. RETURN

46. END

IASSIGN (RISI,D3,SILSS)

IFORTHAN LS,NS

EXT. FORTHAN IV, VERSION EDO
```

```
Support of the second s
```

72

```
SATA 45565 /255976/
                                                            SOUTHLESCE POSTLE PLIEBRE
                            500
                                                                                                     ***
                                                       SOUTHEREST STREET
                                                                                                                                                                                                                                                                                                                           **1151.11
                                                                                                                                                                                                                                           A1110277 18
                               5
                                                          SOUPPLEMENTAL PLE ALL ALLACEM ALL BULLESTLE ALIENTE
                                                                                                      east recent its
                                                                                                       41172111, 3411721111, 3411721111, 41173111, 1855
51.
                                                                                                      ... INTERNALLY SENERATED PARAMETERS ...
                                                                                                          (E1795 ,4(1771),(%LOC ,4(1781),(%LOC ,4(1781),(%LOC ,4(181)),(%LOC ,4(181)),(%LOC ,4(181)),(%LOC ,4(181)),(%LOC ,4(181)),(%LOC ,4(187)),(%LOC ,4(187)),(%LOC
                                                            EQUIVALENCE I POS
.4117911.
                                                                                                                                                                                                                                                                                                                                 .4118211.
.4118511.
                                                                                                      ... CONSTANTS ...
                                                         IF IJJCOMP.EG.GIGG TO 99

IF ILSTLE-EG.LIGG TO 99

IF ILSTLE-EG.LIGG TO 90

C MO ILS MEGUIPED

EGS-ELGC-GO-G

GO TO 30

DO CONTINUE

C EXECUTE ONLY IF INITIALISATION NOT COMPLETE

GO TO 11.77.371LSFLG

LEGFLG

HAIN RUNNAY, J DEG SLOPE
                                                                                                     MAIN MUNWAY, 3 DEG SLOPE
MAIN MUNWAY, 6 DEG SLOPE
MAIN MUNWAY, 2 SEGMENT
```

```
114. XKINK = XGS = MKINK/CIL63

115. C MAIN ROUTINE

116. 20 CONTINUE

117. C HERE IMMEDIATELY IF IN 'COMPUTE'

118. MGS = (X = XKINK)

119. MGS = (X = XGS)

120. MLDC = (X = XLBC)

121. MSLCPE=RGS=CIL63 + 0.5=(RKINK + ABS(RKINK))+CIL64

122. LGS = BDUND(=1.0,1-0,CIL51+(M + MSLCPE)/RGS)

123. ELDC = RBUND(=1.0,1-0,CIL52+(Y = YLGC)/RL6C)

124. 30 CONTINUE

125. METUMN

126. LNO

1ABSIGN (MISI,03,SINTS)

IFORTHAN LS, MS

EXT. FORTHAN 14, VERSION EOO
```

```
SUBROUTINE SINIT
                 WHITTEN BY : D.OLDFIELD
                                                     DATE 17-10-77
DESCRIPTION: THIS SUBROUTINE CALCULATES
THE INITIAL VALUES OF THE IMENTIA COEFFICIENTS
GIVEN 1X,17,12,12x
THE INITIAL VALUES OF VANIABLES LISTED BELOW
FROM THE STATED IMPUT VARIABLES FROM THE USER
11.
                                                          USER PHOVIDED INFORMATION:-

BETADIC, ALFADIC, GAMDIC, VRTIC, XIC, YIC,

HIC, ISHM, VHK 10, PSIHD, PSIKUIC, SHREF, SPAN, H
14.
15.
14.
                                                          INITIAL VALUES BUTPUT :-
                                                                      MBLOPE; CPSIM; BPSIM; VMNLO; VMELO; SHRFAC;
VMN; VME; VMD; UB; MR; BPSNDR; TE, MPH; PRESSH;
RROTSIG; VT; VK; VKNIC; VKEIC; VKOIC; VN; VE;
VO; PSIOIC; TML; 40IC; RADTOD; DEUTOR;
18.
20.
53.
                                                                       FPSTKT,KTOFPS, Q, RHOSL, SPSL, PUIC, QDIC, HDIC, PHIDIC, XMASS, MXMASS, SB2
24.
                                                          MIC NEGATIVE PLACES AIRCRAFT ON ILS BEAM
AT SPECIFIED RANGE XIC
KISA = 0 (DEFAULT) SELECTS BEA LEVEL ATMOSPHERE
VKTIC- 0-0 SETS SYSTEM UP FOR ZERD GROUND SPEED OTHERWISE SETS UP FOR AIRSPEED(EAS)=VKTIC-
26.
28.
29.
31.
                                          12-8-76 SYSTEM COMMON ENLARGED
17-10-77 C13 CORRECTED
8. 2-78 FLAG FOR HIGH SPEED DAC CONTROL ADDED
5-6-78 COMMON MSHID ENLARGED TO 2 MORUS
COMMON/SYSTEM/A(1000),L(400)
33.
35.
```

```
38.
                                  COMMON/HEHIO/IHEHIO, IDUM
39.
+0.
                         VERSION IDENTIFIER
                  C
                                 DATA KBINIT /050678/
EMUIVALENCE(KSINIT ,L(263))
42.
                  000
***
                                                          INPUT VARIABLES
                                                              (XIX ,A( +81),(XIY ,A( +91),(XIZ ,A( 50)),
(XIZX ,A( 51)),(ZCG ,A( 98)),(XCGREF ,A( 99)),
(ZCGREF ,A(100)),(SPAN ,A(103)),(SRREF ,A(106)),
(HSLDPE ,A(173)),(BETAULC ,A(191)),(ALFAULC ,A(192)),
(GAMDIC ,A(193)),(VXIC ,A(194)),(XIC ,A(195)),
(HIC ,A(197)),(XCG ,A(199)),(VMKTQ ,A(202)),
(PSIND ,A(203)),(PSIDIC ,A(204)),(SMRFAC ,A(221)),
                                  EQUI VALENCE (XIX
• 9 •
61.
53.
54.
                                                              -
                                                                                     .A(198))
                                                                                                            ( 18HR
                                  EGUIVALENCE
                                                                                                                                    .LI BII. IKISA
                                                                                                                                                                                    .L. 111
                  000
56.
54.
                                                              OUTPUT VARIABLES
                                                                                    A( 1)),(XMASS ,A( 2)),(CI1

A( 36)),(CI3 ,A( 37)),(CI4

A( 39)),(CI6 ,A( 40)),(CI7

A( 42)),(CI9 ,A( 43)),(CI10

A( 55)),(VME ,A( 56)),(VMO

A( 79)),(SPSL ,A( 56)),(DXCG

A( 102)),(SS2 ,A( 108)),(X

A( 211)),(VMEIC ,A( 212)),(VMDIC

A( 211)),(THETAUIC,A( 215)),

A( 217)),(VE ,A( 218)),(VD
                                                                                                                                                                                   ,A( 3511,
,A( 3811,
,A( 4111,
,A( 4411,
                                  EQUI VALENCE ! RXMASS
...
                                                              1015
61.
                                                              IVWN
IRMOSL
IDZCG
IVKNIC
IPHIDIC
...
                                                                                                                                                                                    .A(101)).
• * •
...
                                                                                                                                                                                    .A121911
69.
                  c
                                                              (PDIC ,A(220)),(DDIC ,A(221)),(RDIC (CPB)W ,A(224)),(SPSIW ,A(225)),(VMNLO ,A(221)),(RMO ,A(221)),(SPSIND (RDITGIG ,A(71)),(VT ,A(27)),(VK (TALPMA ,A(381)),(PALPMA ,A(381))
                                 BUUI VALENCE I PO IC
71.
                                                                                                                                                                                   ,A(226)),
73·
70·
70·
                  6
```

```
76.
77.
78.
79.
80.
                                                                                                                                                                                                     CONSTANTS DERIVED
                                                                                                            | TATEM | TATE
       81.
83.
84.
85.
86.
                                                               C
                                                                                                            INITIALISE CONSTANTS

DATA RADTOD/DEGTOM/57.29578U,U.0170533/
UATA FPSTKT, XK2FPS/U.5921053,1.64RR89/
UATA G,RMGSL,8MSL/32.170,0.0023769,1110.00/
UATA RG/0.03108/
DATA TEMPSL,PRESSL/288.15,10.65597/
DATA DENR, SPSNDR,TEMPR,PRESSM/1.0,1.0,1.0/1.0/
DATA PDIC, QDIC, HDIC,PHIDIC/U.U.0.0.0.0.0.0/
UATA KISA/O/
DATA SHR/1/
       88.
89.
90.
       92.
93.
94.
                                                             C SET FLAG FOR HIGH SPEED HYRRID SUTPUT
                                                                                                               DATA INSHIO/1/
       96.
97.
98.
                                                               C
                                                                                                            C
 100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    171077
 102.
103.
105.
106.
107.
108.
169.
                                                                                                            ADJUST H FOR A/C HN BEAM (N<O)
IF (HIC-GT-0-0) GO TO 10
X = XIC
CALL BILS
```

```
HIC - HSLOPE
110.
                         IF IXISA-EQ-01 GO TO PO-
SET UP INITIAL ATMOSPHERIC VALUES
CALL SATMOSHMIC, DEMM, SPSNUM, TEMPM, PRESSR)
PO MODISIG - SUMITIDENN'
SPSOVD - SPSL-SPSNUM
HNO - HHOSL-DENN
TALPHA - TEMPSL-TEMPR
PALPHA - PRESSL-PRESSR
118.
                  C
150.
155.
124.
126.
                                        CALCULATE LOCAL TRUE WIND COMPONENTS GIVEN DATUM WIND SPEED AND DIRECTION
129.
                                CPSI# • COS!PSINDOULGTOR;
BPSI# • BINIPSINDOULGTOR;
VMNLO • • VMRTO•XK2FPS•CPSI#
ALLDHANCE FOR WIND SHEAM
CALL MSMEANISMN•MIC, SMRFAC;
VMN • VMNLO•SMRFAC;
VME • VMELU•SMRFAC
131.
                  C
130.
136.
137.
138.
139.
                  C
SET STARTING VALUE OF TRACK ENUAL TO MEADING PSIRDIC - PSIDIC
AND STORE DESIRED HEADING FOR REFERENCE PSIDICO - PSIDIC
140.
141.
143.
                                        CALCULATE SIN AND COS OF GAMMA
145.
144.
                                 CUY - COSIGNADIC -DEGTAR)
CUM - COSIPSINDIC -DEGTAR)
SUY - SINIGNADIC -DEGTAR)
SUY - SINIGNADIC -DEGTAR)
                                  IF ( VKT1C.LE . 1.0) 60 TO 20
150.
```

```
C SET UP VELOCITIES FOR DESIMED AIRSMEEL
C AND ITERATE TO GET DESIMED MEADING
C INITIALISE LOOP COUNT
154.
                                                         30 CONTINUE
 150.
156.
                                                                                                        1 . 1 . 1
CGH . CHS(MSIKOIC+DEGTHR)
158.
160.
161.
162.
163.
                                                                                                         VT . VKTIC+KEFPS/HOATSIG
                                                                                                         SJLVE GUADRATIC FIR VK
B ==2.0+((VhV+CGH+VhE+SUH)+CUV+VHD+SUV)
                                                  SILVE GUADRATIC FAP VK

d ==2+0+((VNN+CGH+VNE-SGH)+CGV+VND+SGV)

C = VNN+VNN+VNE+VNE+VND+VND+VNT

VK = (=++SGRT(N+H+++0+C)+()+0+5

VNNIC = VN+CGV+CGH

VN O = VNNIC + VN

VN = VN + (C+VN+N

VN = VN+(C+VN+N

VN = VN+(
 160.
166.
169.
171.
173.
175 •
176 •
177 •
178.
181.
182.
183.
184.
185.
186.
187.
188.
                                                                                                          UE TO 30
                                                         000
                                                                                                                                          SET UP VALUES FOR ZERO GROUND SPEED
```

IFORTHAN LS, NS EXT. FORTHAN IV, VENSION EOU

```
SUBNOUTINE SPATE
 1.
2.
3.
5.
6.
7.
8.
9.
10.
11.
12.
13.
                                                                                                                           WRITTEN BY : U.ULUFIELD
                                                                                                                        DATE : 12-8-78
DESCRIPTION : THIS SUBROUTINE CALCULATES THE ANGLE OF FLEVATION AND TRACK AND THE VELOCITY OVER THE GROUND
                                                                        12-8-76 SYSTEM CHMMN ENLANGED COMMON STRYSTMEND (COMMON COMMON CO
10.
                                                            VERSION IDENTIFIER
                                                                        DATA KSPATH /120876/
EUUIVALENCE(KSPATH ,L(2641)
                                      000
                                                                                                                           ... VARIABLE INPUTS ...
51.
                                                                   LUUIVALENCEIVKN
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
35.
35.
                                                                                                                                                                                          AL SELLIVEE
                                                                                                                                                                                                                                                                           .A. 5311. (VKD
                                      000
                                                                                                                           ... VARIABLE OUTPUTS ...
                                                                   EUUIVALENCE(GAMMAK ,A( 61)),(GAMMAD ,A( 62)),(PSIKH
1 (PSIKD ,A( 60)),(VK ,A( 65)),(VKKT
                                                                                                                                                                                                                                                                                                                                                                                                .A1 6311.
                                      000
                                                                                                                           ... CONSTANTS ...
                                                                       EUUIVALENCEIFPSTKT ,411+311,(HADTOD ,411+11)
                                                                                          CALCULATE VELOCITY OVER GROUND
                                                                        VK . SORTIVENOVENEVE OVE I
```

```
38. C
39. C
39. C
10. C
```

IFONTHAN LE, NE EXT. FORTHAN IV, VENSION EOO

```
I. SUBROUTINE STV

3. C

3. C

3. C

4. C

5. C

5. C

6. C

6. C

6. C

7. C

8. C

8. C

8. C

8. C

9. C

10. C

11. C

12. C

13. C

13. C

14. C

15. C

15. C

16. C

17. C

18. C

19. C

20. C

21. C

22. C

23. C

24. C

25. C

26. C

27. C

28. C

29. C
```

```
38.
39.
40.
                                                                                                                  CO 9MGM/SYSTEM/A(1000), L(+00)
                                                                             000
                                                                                                       VERSION IDENTIFIER
                                        42.
                                                                                                         DATA KSTV /240278/

EUUIVALENCE(KSTV

DIMENSION TYCON(8,3)

DIMENSION IDS(32),ISLR(16),IP(32)
                                **.
*5.
*6.
*7.
*8.
                                                                     000
                                                                                                                                                  *** VARIABLE IMPUTS ***
                                                                                                     EUUIVALENCEIX
                                50.
                            51.
                                                                                                                                                       (STHETA /A(199)),(Y
(CPSI /A(11)),(CTHETA /A(150)),(M
(CPSI /A(11)),(CTHETA /A(150)),(M
(VKN /A(10)),(PSIDT /A(131)),(SPSI /A(151)),
(DXCG /A(152)),(VKE /A(153)),(VKD /A(150)),
(VSM/PKT /A(169)),(CREF /A(160)),(CREF /A(160)),
(USM/PKT /A(169)),(CREF /A(160)),(CREF /A(160)),
(USM/PKT /A(169)),(CREF /A(160)),(CREF /A(160)
                 54.
55.
56.
57.
58.
59.
                                                                                               LOUI VALENCE DXCG
                                                             C
                                                                                      EUUIVALENCE(JUCOMP
EUUIVALENCE(IDS(1)
EUUIVALENCE(IDS(1)
EUUIVALENCE(LCYCLE
,IDS(5)),(LXTVIC
,IDS(6)),(LYTVIC ,IDS(7))
(ISLR(4)),(LBACK ,ISLR(5))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              240278
        60.
61.
62.
63.
64.
65.
66.
                                                    000
                                                                                   EQUIVALENCE IXTV
                                                                                                                                                                                         ,A(152)),(YTV
,A(155)),(YDTV
,A(159)),(XIMY
,A(159)),(XPCG
,A(182)),(RMP
                                                                                                                                         (XITY
(XIHX)
(XIC)
(RXP)
                                                                                                                                                                                                                                                                                         *A(153));(MTV
;A(156));(MDTV
;A(160));(XDBTM
;A(280));(ZPCG
;A(283));(XICF
67.
68.
69.
70.
71.
72.
73.
74.
75.
                                                                                                                                                                                                                                                                                                                                                                                       ,A(154)),
,A(157)),
,A(158)),
,A(281)),
,A(284))
                                              ¢
                                                                           EUUIVALENCE(IDSYNC,ICLH(16))
                                          C
                                                                         EQUIVALENCE(ISLR(1) ,L(151)),(ICLR(1) ,L(171))
                                     000
                                                                                                                                                                                                                                                                                                                                                                                                                                                            240278
240278
                                                                                                                   *** CONSTANTS ***
                                                                    EUUI VALENCE I XP
                                                                                                                                                                                -4110911,12P
                                                                                                                                                                                                                                                                               JA(110)) J (XK2FP8 JA(100))
```

```
EQUIVALENCE(NTVR .LI 21)
  78.
                                               ... INTERNALLY GENERATED PARAMETERS ...
                                                            CE(SAPL ,A(161)),(SKMIN ,A(162)),(SXMLUS ,A(163)),
(SXMINUS ,4(164)),(SYPL ,A(165)),(SYMIN ,A(166)),
(HTVLIM ,A(167)),(XOTMX ,A(168))
                                   EUUL VALENCE ( SAPL
   81 .
  82.
                  C
                                 EUUIVALENCE(TVCON (1,1),4(Jos))
                   C
   86.
                                    NIVE . 1(700). 2(2000) OR 3(5000). ACCORDING TO BELT USED
                 C SXPL - TV X TRAVEL LIMIT, PDS1T1VE, AND *NEAR BELT JOIN*

DATA TVCCHII, 1), TVCCHII, 2) a TVCCHII, 31/ 11590-0, 33000-0, 77500-0/

C SXMIN - TV X TRAVEL LIMIT, NEGATIVE, AND *NEAR BELT JOIN*

DATA TVCCHIZ, 1), TVCCHIZ, 2), TVCCHIZ, 31/-11590-0, -33000-0, -7/500-0/
   ...
   69.
   90.
  91.
                  C SXPLUS - X CYCLE LIMIT DATA TYCHNI3,11, TYCHNI3,21, TYCHNI3,31/ 12800.0, 34500.0, 89600.0/
  93.
                DATA TVCON(3,1), TVCON(3,2), TVCON(3,3)/ 12800.0, 34000.0, 87600.0/

SXMINUS - X CYCLE LIMIT

DATA TVCON(4,1), TVCON(4,2), TVCON(4,3)/-12800.0, 34500.0, -89600.0/

C SYPL - TV Y THAVEL LIMIT, POSITIVE(RIGHT)

DATA TVCON(5,1), TVCON(5,2), TVCON(5,3)/ 2700.0, 7650.0, 56650.0/

C SYPLN - TV Y TRAVEL LIMIT, MEGATIVE(LEFT)

DATA TVCON(5,1), TVCON(6,2), TVCON(6,3)/ -2700.0, -7650.0, -56650.0/

C HIVLIM - CEILING FOR TV OPERATION

DATA TVCON(7,1), TVCON(7,2), TVCON(7,3)/ 600.0, 1880.0, 2855.7/

C XDTMX - TV SLEW VELUCITY

DATA TVCON(8,1), TVCON(8,2), TVCON(8,3)/ 389.0, 368.0, 2727.3/

C
  95.
  97.
  99.
101.
102.
103.
                 C
105.
100.
                  C IF (JJCOMP.EG.1)GD TO 5
C EXECUTE ONLY IF INITIAL SATION NOT COMPLETE SAPL - TVCON(1,NTVB)
SAMIN - TVCON(2,NTVB)
SAPLUS - TVCON(3,NTVB)
SAMINUS - TVCON(5,NTVB)
SYPL - TVCON(5,NTVB)
108.
110.
111.
112.
```

```
SYMIN - TVCON(6, NTVR)
HTVLIM - TVCON(7, NTVR)
114.
116.
        ADTHE . TVCON(8, NTV8)
C STONE XIC FROM ICFILE FOR FUTURE USE
        XICF = XIC

C ACTUAL PILOT LOCATION NELATIVE TO CG

XPCG = XP + DXCG=CREF

ZPCG = ZP - DZCG=CREF
118.
120.
                                                                                                240278
        C
122.
153.
             S CONTINUE
         C HERE IMMEDIATELY IF IN COMPUTE!
124.
125.
124.
       129.
130.
131.
133.
134.
135.
136.
137.
138.
        GO TO 1+
12 KOOTH - VKN
C ALLOW FOR SHIP VELOCITY
1.0.
142.
143.
                ADOTH - ADOTH - VEHIPKT-XK2FPS
            14 CONTINUE
144.
              ****************************
146.
                     TV INTEGRATION CONTROL
             *****************************
144.
             TEST TO DETERMINE INTEGRATION STATE OF SA AND SY
151 .
```

```
C PUT SX AND SY IN COMPUTE, DESTRIC TO ZEMO

XINX = XINY = 1.0

1DSYNC = 0

C IF LYTVIC = 1, SY MESETS

IF LLYTVIC. E0.0100 TO 20

XINY = 0.0

20 CONTINUE

C IF LXTVIC = 1, SX MESETS

IF LLXTVIC. E0.0100 TO 22

XINX = 0.0

XIC = XICF

UD TO 20

C CMCCX FOR TV NEAR BELT JOIN

22 IF ISAMINLIT. X.LT. SXPLIGO TO 20

C IV NEAN HELT JOIN

C IF LCYCLE = 1, XX COMPUTATION CYCLES BETHEEN BAMINUS AND SXPLUS

IP LCYCLE-E0.0100 TO 20

LDSYNC = 1
                 C PUT SX AND SY IN COMPUTE, DESING TO ZENO
152.
153.
 155.
157.
 159.
 100.
161.
107.
100.
              170.
171.
173.
                       23 CONTINUE
XIHX - 0.0
XIC - SXMINUS
175.
176.
177.
178.
                     2. CONTINUE
179.
                C TV POSITION

C PILOT AT XP,ZP - NH ZP NORMALLY NEGATIVE(!) IF EYE ABOVE DATUM LINE MXP - XPCG-CTHETA + ZPCG-STHETA - XTV - X + MXP-CPSI YTV - Y + RXP-SPSI HTV - H + RMP

C TV NATES
181 .
183.
                                                                                                                                                                               240278
185.
186.
 188.
                             XOTY . XOUTH .HXP.BPSI.PSIDI .RHP.CPSI.THETUT
169.
```

```
190. YOTY • VKE • RXP•CPSI=PSIUT •RHP•SPSI=THETUT

191. HUTY • VKE • RXP•THETOT

192. C ON LIMITS, PUT RATES TO ZENO TO KEEP TV DRIVE GULESCENT

193. IF (LCYCLE.GE-1) IGO TO 30

194. IF (LXTV.LT.SXMIN.OH.(LXTVIC.GG-1) IXOTY • 0.J

195. 30 CONTINUE

196. C IF TV ABOVE CEILING, SET HUTY TO ZERO

197. IP (HTV.GT.HTVLIM: HDTY • 0.0

198. C KEEP TV POSITION BITMIN LIMITS

199. ATV • BOUNDISYMIN, SXPL, XTV

200. YIV • BOUNDISYMIN, SXPL, XTV

201. HTV • BOUNDISYMIN, SXPL, XTV

204. C

203. KETUM

204. C

105. HETUM

206. END

118SIUM (MISI, OB, SVLIS)

1FORTHAN LS, NE

EXT. FORTMAN IV, VENSION E00
```

```
SUBRBUTINE SVELCEL
3.

6.

7.

8.

9.

10.

112.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
                               WRITTEN BY : D. DLUF JELD

DATE : 12-R-76

REVISED: 22-12-76

DESCRIPTION : THIS SUBROUTINE CALCULATES THE VELOCITY RELATIVE TO BROV AKES GIVEN THE VELOCITIES HELATIVE TO THE GROUND AND OF THE WIND
                       12-8-76 SYSTEM COMMON ENLARGED COMMON/SYSTEM/A(1000),L(+0U)
          C VERSION IDENTIFIER
                       DATA KSVELOCI/2212/6/
          CCC
                                        ... VARIABLE INPUTS ...
                                           E(VRN ,A( 52)),(VRE
(VRN ,A( 55)),(VRE
(S11 ,A( 171),(S12
(S21 ,A( 20)),(S22
(S31 ,A( 20)),(S32
                                                                                             AL 5311, (VKU
AL 5611, (VKU
AL 1811, (S13
AL 2111, (S23
AL 2411, (S33
                                                                                                                              AL 5911,
AL 1911,
AL 2211,
AL 2511
                       EQUI VALENCE ( VKN
26.
27.
28.
29.
                                         (S11
(S21
             CCC
30.
                                       ... VARIABLE OUTPUTS ...
31.
                     EUUI VALENCE ( UB
                                                                                                                             ,A( 6011,
                                                                                             ,A( 5911,(MB
                                                            ,A( 581),(VE
35.
             c
                       CALCULATE VELOCITY RELATIVE TO THE AIR VN . VKN-VHN
```

```
SUBNITUTINE SVELECE
                     WHITTEN BY : D. DEUT IELD
                           PATETING TY: 0.000 FEED
DATE: 21-3.78
DESCRIPTION: THIS SUBROUTINE CALCULATES THE
RESULTANT ATM SMEED AND THE LUDIVALENT ATM
SPEED, DYNAMIC PHESSURE AND MACHINO.
USING ATMOSPHERIC PROPERTIES APPROPRIATE TO
SPECIFIED VALUE OF KISA
11.
                                -1 FIXED VALUES APPROPRIATE TO HIC
                                O FIRED SEA LEVEL) VALUES - DEFAULT
10.
16.
18.
                            SYSTEM CHAMON ENLARGED
TRATTO ETC GIVEN DATA VALUES
                21.3.78
...
                CO 4MON/845TE M/A(10001, L(400)
...
           VERSION TOENTIFIER
24.
25.
               DATA KSVELOCZ/2103/8/
EUUIVALENCEIKSVELOCZ,L(26711
...
21.
                            ... VARIABLE INPUTS ...
30.
                                         A(103)),(SBREP ,A(106)),(CRI
,A(103)),(SBREP ,A(108))
,L( 11
                                                                ,A(106)),(CREF ,A(107)),
                EUUIVALENCETUB
                                    ,A1 5811, (VB
              1 IH
...
                EUUIVALENCEIRISA ,LI 111
33.
        000
                           ... VARIABLE BUTPUTS ...
35.
                EQUIVALENCEIVE
                                       AL AZIZALVIKT
                                                                ,41 6811, (VEAS
                                                                                     .41 6911.
```

```
(VEASET ,A( 701),(QDYN ,A(1251),(XMACH ,A( 751), (MODISIO ,AI 71)),(RHO ,A( 721),(SPSONO ,A( 731), (OE',R ,A( 781),(SPSONO ,A( 841),(HLFHHOV ,A(1241), (UECREF ,A(1271),(QSPAN ,A( 841),(USCREF ,A(1271),(QSPAN ,A( 841),(USCREF ,A(1271),(ARATIO ,A( 841),(USCRIV ,A( 841),(RATIO ,A( 841),(R
39.
 ...
./.
                                                                                                                                  ... CONSTANTS ...
                                                                           EUUIVALENCE(FPSTRT .81143)), 1995L .A( 79)), (SPSL .A( 80)),
 ...
 . ..
 50.
                                                                                                     DATA THATLO, ANATIO, DRATLO, PRATLO TO AVOID PROBLEMS
 51 .
 02.
                                                                           DURING INITIAL ISATION
DATA THATIO, ANATIO, DRATIO, PRATIO, 4-1-0/
 53.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2103/8
 ...
50.
                                                                           CALCULATE TOTAL AIN -EED

VI - SURTIUD-UD-VN-VN-HR-Hd)

VIXI - VI-FPSIAT

SET VALUES OF NOOTSIG, NHO AND SPSOND

IF (XISA-NE-1) GO TO 3

CALL SATMOS IN AMPEND HHO, MOOTSIG, SPSOND

CALL SATMOS IN DENK, SPSNDN, TEMPN, PNESSN)

NHO - NHOSE - OLVN
59.
 61.
                                   C
 .2.
                                                                             AND - RANGE - DICH
SPSN 40 - SPSL - SPSNOR
NOOTSIG - SCHTICOLANI
TALPHA - TEMPSL-TEMPR
PALPHA - PHESSL-PHESSR
 ...
 69.
6/.
                                                              3 CONTINUE
 70.
                                                                                                   CALCULATE EQUIVALENT AINSPEED
                                                                             VEAS - VICHOUTSIG
  71.
                                         c
                                                                             CALCULATE UYNAMIC PRESSURE
HEFNHOV - 0.55-KHO-VI
UDYN - HEFNHOV-VI
```

```
76. UDYNS - QDYNOSHREF
77. USCREF - QDYNS-CREF
78. USSPAN - QDYNS-SPAN
79. USBPAN - QDYNS-SPAN
79. USBPAN - QDYNS-SPAN
80. C CALCULATE MACH MM.
81. XMACM - VT/SPSONO
82. C CALCULATE COMPMESSIBLE ADIABATIC FLOW RELATIONSHIPS
83. C MACH NUMBER C 1.0
84. XX = 1.0 + 0.2 *** NACH-SMACH
85. C ADIABATIC STATIC/TOTAL TEMPERATUME
184. TRATIO = 1.0/XX
87. C ADIABATIC SPEED OF BOUND HATIO
88. ANATIO - SURTITRATIO
90. URATIO - SURTITRATIO
91. C ADIABATIC STATIC/TOTAL PRESSURE
92. PRATIO - DHATIO-TRATIO
93. METURN
94. END
1ASSIUM (MISI,D3,SWNDS)
1FORTHAN LS,MS
EXT. FORTHAN LV, VERSION EOO
```

```
SUBROUTINE SHIND
2.
3.
5.
5.
8.
9.
10.
11.
12.
13.
            000000000
                              HRITTEN BY | B.N.TONLINSON

DATE | 20.9.76

REVISED | 22.12.76 TO IMPROVE COMM'N WITH GUSTS

24.02.78 VWE CONRECTED * FRACG, NOUSTS PROTECTED

DESCRIPTION! THIS SUBROUTINE CALCULATES TOTAL MIND

COMPONENTS, INCLUDING TURBULENCE AND WIND SHEAR
           COMMON/SYSTEM/A(1000), L(400)

C COMMON 'FRN' AND 'INITOUST' COMMUNICATE HITH S/N GUSTS ONLY
COMMON/SHAFRACO, ROBERT, NGUSTS
COMMON/INITGUST/IFLAD, IBN
15.
17.
                      EUUIVALENCEIKSHIND ,LIZOBII
50.
            000
                 VERSION IDENTIFIER
                      DATA KSWIND/240278/
            000
23.
24.
                          *** INPUT VARIABLES ***
                     EUUIVALENCE(H ,A(151)),(HIC ,A(197)),(VRTIC ,A(194)),

(VWNLO ,A(226)),(VWELO ,A(227)),(VWULO ,A(223)),

(CPSIN ,A(224)),(SPSIN ,A(225)),(FRAMET; ,A(192)),

(SFRACG ,A(278)),(SROECAY ,A(279))
24.
29.
30.
31.
            C
                      DIMENSION 105(32)
                                                       ** TOS(8)),(TOS(1) ** L(223)),(LSELO ** L(168))
                      EUUIVALENCE I ISHR
35.
            000
                          *** OUTPUT VARIABLES ***
```

```
.A1 5711.
39.
                                                                                                                                                              .A1 8611. (VHD
42.
                                              ... CONSTANTS ...
                                       AUUTVALENCE INREFPE .AISAAII
                C DATA NO/4/
DATA VNOL/0.0/
C BET UP FRACG, RDECAY
DATA BERACG, SRDECAY/0.0.0.7/
DATA LBEED/O/
C CALCULATE WIND AT HEIGHT
CALL MSMEAR(ISMR, H.B.MRFAC)
VMNL = VMNLO-SMRFAC
...
90.
91.
53.
50.
                VMEL * VMELO*BMRFAC

IPLAG *** JJCOMP

IF IJJCOMP**EG*** O1GO TO 10

C IMITIALISATION COMPLETE

IFICTURB**EG*** IT GO TO 20

C TUMBULENCE IS NOT REQUIRED

GO TO 30

10 CONTINUE

C INITIALISATION

M ** MIC

C PICK UP TURB PARAMETERS FROM SYSTEM VARIABLES

FNACG *** SFRACG

C CMECK ON RANGE

IF (FRACG***OT**** O****)FNACG *** O****

ISR *** LSEED

C SET UP NGUSTS ACCORDING TO INITIAL SPEED

NGUSTS *** NG**(VKTIC**XEFFS**200****)

C CMECK ON RANGE

IF (NGUSTS**LT**) NGUSTS *** 1
69.
•1:
...
68.
69.
70.
                                                                                                                                                                                                                                                           240278
                                                                                                                                                                                                                                                           240278
```

```
76. MMAX = 1000.0/FRAMETI 240278

77. IF INDUSTS: GT AMMAX INQUSTS = NMAX 240278

78. 20 CONTINUE

79. C TURB 18 REQUIRED

80. CALL GUSTS(UJ, VG, NG, FRAMETI, M)

81. IF (JJCORP-EG, O) 00 TO 30

82. C INITIALISATION IS COMPLETE, NO LET TURBULENCE OUT

83. UTURS = USIG+VG

84. VTURS = VSIG+VG

85. JO CONTINUE

88. C TURBULENCE OUTPUTS SET TO ZERO(INITIALISATION, ON NOT NEQUIRED)

89. UTURS = VTURS = WTURR = 0.0

90. 40 CONTINUE

91. C CALCULATE TOTAL NIND COMPONENTS

92. VMN = VMNL = (UTURN-CPSIN = VTURN-NPSIN)

93. VME = VML = (UTURN-CPSIN = VTURN-NPSIN)

94. VMD = VMNL = LUTURN-CPSIN = VTURN-NPSIN)

95. C

96. METURN

97. LABSIGN (MISI, OJ, SYNCE)

IFORTHAN LS, NS

EXT. FORTHAN LY, VERSION EQO
```

008

```
SUBROUTINE SYSCOM
                                        WRITTEN BY : B.N. TONLINSON
                                                  MRITTEN BY: B.N.-IOMLINSON

DATE: 24-2-78

THIS REUTINE CALLS PYZOU TO PHOVIUE ACCESS
TO SYSTEM COMMON VARIABLES

REVISEDIZI-9-7 TO INCLUDE INPUT FHOM CHANGES FILE
B-10-76 TVKON (8-3) ADUED

29-11-76 DISCHETES NAMES AUDED

22-12-75 FHAMETIME VANIABLES ADDED

18-10-77 NRUM ADDED
18-10-77 L1DACA ETC.

8- 2-78 DUMMY 'A' VARIABLES NEPLACED BY ARMAYS
24-2-78 L1DAC REVISED
11.
10.
18.
                                        20.
                         VERSION IDENTIFIER
21.
54.
               DATA KSYSCOM/240278/
C SET UP COMMUNICATION WITH DAC MANDWARE ADDRESSES COMMON/DACMOS/IDACAD(50)
                                                                                                                                                                                                080278
               C
26.
                           COMMON/SYSTEM/
X MXMABS,XMABS,PSIN,PSIO,THETAM,THETAD,PMIK,PMIO,SPSI,
1 CPSI,STHETA,CTHETA/SPHI,CPMI,SECTHT,TAMTHT,S11(9),
2
PMJAM,PMIUT,
3 THETOT,PSIUT,PD,GO,RD,C11(1U),
4
PDGT,GDGT,RDGT,XIX,XIY,
4
58.
                                                                                                                                                                                                0802/8
30.
                                                                                                                                                                                                080278
                           PDOT: UDOT; NDOT; NTATA NATT

6 KIZ: KIZX; YKN; YKE; YKO; YWE; YKO; YWE; YWD; UB; YB;

6 MB; QAMMAR; GAMMAD; PB; KR; PS; IAD; YK; YKKT; YT; YTKT; YEAS;

7 YEASKT; ROOTS [G; RMO; SPSOND: A; 4; XMACN; TEMPGL; PHESSL; UENR; RHOSL;

8 MPSL; TEMPR; PRESSR; DRATIO; MPMDR; AMATIO; PALPMA; PHATIO; TALPMA;

1 KAT
32.
                                                                                                                                                                                                080278
34.
36.
```

```
9 A90.DEL 11. FRAMETI. A93, TIME, UELTZ, FRAMETZ, A97, ZCG, XCGNEF
*0.
                                       C 100
                                                                   x ZCOMEF, DXCG,DZCQ, SPAN, XLTAIL, STAIL, SHMEF, CHEF, SH2, XP, 1 ZP, ALFAR, ALFAD, BETAR, BETAU, A115, SALFA, CALFA, SBETA, CHETA, 2 ALFADOT, AETAD, A123, HLF RHOV, GDYN, GDYN, GCREF, GSSPAN,
41.
42.
43.
45.
45.
45.
45.
                                                                Z ALFADOT, BETADOT, RECEZ, NECONTROLO CONTROLO C
51.
50.
                                       C 500
                                                                        COMMON/SYSTEM/
                                                                 080278
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                080278
59.
 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                080278
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                080278
63.
                                       C 300
                                                                         COMMON/SYSTEM/
                                                                   X A300, AADC (64),
6 TVCON(8,3),
8 A389T399(11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OKO2 IN
09.
70.
71.
                                      C 400
COMMON/SYSTEM/
                                                                 X A400, YADC (64),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               080278
 72.
                                       C BOO COMON/SYSTEM/
                                                                   x A500, ADAC (64),
```

```
76.
            C
                        COMMON/SYSTEM/
                      LBADVASTERY

A RISAANCPASSANIPASSANIESFLU AISHRALE ANTVEAULCHMMANDACIGE).

7 KSADCANDACIGEA

B LBOANADCIGEA
 78.
          8 L80, MADU.

C 100

CD 4MDN/SYSTEM/

+ L145/L146, L147, L61L5, L149/

5 1AD48L, IELR(16),

6 NG, LSEED, NRUN,

7 1AD4CL, ICLR(16),

8 L187, L188, L189,

9 10SCFL, IP(32)
 82.
                                                                                                                                                   310577
 80.
87.
88.
89.
91.
92.
93.
                  COMMON/SYSTEM/
2 1081321,
5 KSACCBOD, KSACCLIN, KSACCROT, KSALFBET, KSCOUNT,
6 KSDCOS, KSEULEN, KSILS, KSINIT, KSPATM, KSTY, NOVELOCI, KSVELOCZ,
C
7 1PCOFL, ICO1321
 95.
96.
97.
98.
          C 300
COMMON/SYSTEM/
100.
                     x L303,L30+,L1DAC(+8),
5 L2DAC(+8)
                                                                                                                                                       240278
            000
102.
                     EQUIVALENCES . DISCHETES
            c
                       S ILBACK JISLRI 511
105.
108.
            C
                       EUUIVALENCE : IDSYNC . ICLR(16)
            C
110.
                        EQUIVALENCE (LCYCLE , IDS ( 51), 6 (LXTVIC , IDS ( 61), 7 (LYTVIC , IDS ( 7)),
112.
```

```
114. B (LTJRB ,IDS( b))

115. C
116. C FOR CALL TO PV200

117. UIMENSION NAME(2)
118. DATA NAME/*SYSCOM!/
119. NAMELIST
120. C DEFINE INPUT UNIT FOR SYSTEM CHANGES FILE
121. DATA ISYS/50/
122. C
124. C
124. C
126. CALL PV2001NAME)
120. UO TO 3
120. 2 INPUT(101)
127. 3 CONTINUE
128. C INPUT SEMI-PEHMANENT CHANGES FROM SYSTEM INPUT FILE-UNIT ISYS
130. INPUT (15YS)
131. MEMINO ISYS
131. MEMINO ISYS
132. LETURN
133. LETURN
133. LETURN
133. LETURN
134. LETURN
135. LETURN
135. LETURN
136. LETURN
1485IUM (MISI,03,8CMIS)
```

```
1. SUBROUTINE DESCRT1

2. C

3. C

4. C

5. C

4. C

5. C

5. C

6. C

6. C

7. C

7. C

7. C

7. C

7. C

8. C

7. C

8. C

7. C

8. C

8. C

8. C

8. C

8. C

8. C

9. C

8. C

9. C

8. C

9. C

8. C

10. C

10. C

10. C

11. C

12. C

13. C

14. C

13. C

14. C

15. C

16. C

17. C

18. DATA KDSCHT1 /210976/

19. LOUIVALENCE(RDSCRT1 ,L(77))

20. C

21. EGUIVALENCE(RDSCRT1 ,L(150)),(IADACL ,L(170)),

22. DATA IADASL, IADACL, IBDECFL, IPCOFL ,L(270))

23. DATA IADASL, IADACL, IPCOFL ,L(270))

24. C

25. IF (IADASL, EG. 1) CALL READSCH

27. IF (IADASL, EG. 1) CALL READSCH

28. IF (IPCOFL, EG. 1) CALL SETCLR

29. METUAN

30. LAND

IASSIGN (HISI) 03, SCR2S)

IF OMTHAN LE, NS

EXT. FOWTHAN 1v, VERSION EOO
```

```
SUBROUTINE DSCHTZ
                     000000000000
          3. 4. 5. 6. 7. 8. 9.
                                . AUTHOR : B.N.TOMLINSON

    AUTHOR : DATE : 24-8-76
    PURPOSE : THIS HOUTINE HANDLES DISCHETES IN FHAME 2.
    THE FLAGS IADSEL, IADSCL, IDSCFL, IPCOPL ARE SET EXTERVALLY AND DETERMINE WHICH HOUTINES ARE TO BE EXECUTED.
        10.
                                CO 4MON/SYSTEM/A110001, L14001
        15.
                         VEHBION IDENTIFIER
                                DATA KOSCRTZ /2+0874/
LUUIVALENCEIKOSCRTZ (LI 781)
                     C
                                23.
                                IFIIAD-SL-EU-21CALL READSLM
IFIIAD-CL-EG-21CALL SETCLM
IFIIDSCFL-EG-21CALL READSCM
IFIIPCOFL-EU-21CALL SETDSCM
METURN
        59.
54.
54.
IFORTHAN LB, NS
EXT. FORTHAN IV, VERSION EOO
```

```
1. FUNCTION ISDSCR(ISET,LINE)

2. C

3. C

4. C

5. C

5. C

6. C

7. C

7. C

8. C

9. DATE

19-876

10. C

11. ISDSCR(ISET,LINE)

10. C

11. C

12. C

12. C

13. C

14. C

15. INTEROPT

15. INTEROPT

16. C

17. ISDSCR

18. C

18. C

19. C

10. C
```

Appendix C

LISTING OF SLI PROGRAM - SINGLE LOOP

```
PROGRAM GENERAL MODEL
C SET VERSION NUMBER
DATA IVERSION/ONO278/
C 12.8.76 SYSTEM COMMON ENLANGED
C 25.8.76 DISCRETES INCLUDED
C 51.10.76 FRAME TIME VARIABLES TIDIED UP
C 21.12.76 TOTM AND TOTF SEPARATED AND SOURCE CLEANED UP
C 8. 2.78 SMORT NAME LIST SPECIFIED TO CUT STORAGE
10
                          CONTROL MODE - REALT
                          ENDC
                     INITIAL
                  C DIMENSION, COMMON, DATA DECLARATIONS
                               COMMON/SYSTEM/A (1000) . L (400)
                              DIMENSION RICVALS(20)
DATA NIPASS/1/
EQUIVALENCE (RICVALS(1), A(191))
19
21 22 23 24 25 27 29
                               COMMUNICATION BETHEEN 'INSTIAL' AND SYSTEM COMMON
                              30
                 C NEAL TIME PARAMETERS

DATA FRAMETI/50-0/
DATA TIMLEFTI/0-0/
DATA DELTI/0-05D/
C NUMBER OF IC VALUES
DATA NVALS/10/
32
33
34
35
36
37
38
```

```
C SET UP COMMUNICATION, TO ENABLE VARIABLES IN SLI LABELLED
C COMMON TO BE ACCESSED

DIMENSION NAME (2)
DATA NAME / HODGE / Y
NAME LIST CINTI, IALGI, JALGI, IMX, IMY, ITP, IVERSION, HODE, ...
NSI, NVALS, SX, SY, HM, SXIL, SYIC, SMIC, T, TIMLEFTI
OB0278

LABC: CALL PV2001 NAME (2)
GO TO LABD
LABD: COMMINIONE
LABD: CALL SYSCON
CALL USERCON
CALL USERCON
CALL USERCON
CALL INTLADO
CALL ROICFILE (NVALS RICVALS)
LISTEG = RICVALS(10)
ISMR = RICVALS(11)
C = IMPUT RETAINED CHANGES •
CALL PV300
C STEP SIZE (FOR REAL TIME, = PNAMETI/1000.0)
STEP SIZE (FOR REAL TIME, = PNAMETI/1000.0)
C STEP SIZE (FOR REAL TIME, = PNAMETI/1000.0)
C IMITER PRETER
C IMITI = DELTI
C IMITI = DELTI
C IMITI = DELTI
C IMITI = DELTI
C IMITERPRETER
C CALL SINTY
```

```
77
78
79
                          C *********
                          ITP = 2
C CALL PY100 IF DEBK SWITCH 1 dN
IF(ISDSCR(1)1).EQ.11CALL PY100
 80
81
82
83
85
85
85
85
87
88
90
91
92
93
                                BET UP INSTIAL VALUES FOR INTEGRATIONS
                                         VYKNIC = VKNIC

VYKEIC = VKEIC

VYKDIC = VKDIC

SXIC = XIC

SYIC = YIC

SHIC = HIC

PPIC = PDIC=DEGTOR

QQIC = QDIC=DEGTOR

RRIC = PHIDIC=DEGTOR

THIC = THETADIC=DEGTOR

PPSIC = PSIDIC=DEGTOR
 94
96
97
98
99
100
101
                               FOR CONTROL OF 'POST-INTEGRATION' CALCULATIONS, SET UP VALUE OF NIPASS TO SUIT INTEGRATION ALGORITHM IALGOR. DEFAULT IS NIPASS-1

IF (IALG1 : EQ -4 | NIPASS - 2

IF (IALG1 : EQ -5 | NIPASS - 4

TO ENSURE THAT SUCH 'POST-INTEGRATION' ROUTINES ARE CALLED DURING THE INITIALISATION PASS THROUGH 'ZOOO1'

NCPASS-4
103
                        100
104
108
110
                             INITE: CONTINUE
                             INIT - INIT + 1
112
```

```
115
                    C INITIALISE THICE BO THAT 'QDYN' ETC SET UP CORRECTLY IF(INIT-EU-1) GO TO INITE
110
                    C
118
119
120
121
122
123
124
125
126
127
                    C INTERPRETER
                   C CALL PYJOO IF DESK SWITCH 1 DN
IF(15DSCR(1),1).EU.JICALL PYJOO
                    C START CLOCK FOR REAL TIME IF(MODE) CALL STARTC DYNAMIC
                               **********
                                                                                           DYNAMIC
                                                                                                                   ***************
129
                               IFINODE) CALL EXITS
131
                      DERIVATIVE LOOPS
133
134
135
136
137
138
140
141
142
143
144
145
146
147
148
149
150
151
152
                               DERIVATIVE ...........
                          **********************
                          . SYSTEM FUNCTIONS
                   C COMPON STATEMENT TO ALLOW CONTROL PARAMETER 'MODE'
C TO BE ACCESSED BY THE DERIVATIVE BECTION
COMMON/29980/MODE
DECLARE LOGICAL MODE
C INTEGNATION CONTROL STATEMENTS
VARIABLE T = 0.0
CINTERVAL CINTI = 0.05
NSTEPS NSI = 1
ALGORITHM IALGI = 5 , JALGI = 5
HTIMIL, FRAMETI, IPLAGI, TIMLEFTI, 1.0, 1)
PROCEDURAL
C 12-8-76 SYSTEM COMMON ENLARGED
                               12-8-76
                                                     SYSTEM COMMON ENLARGED
```

```
COMMON/SYSTEM/A110001.L14001
                                 .. INPUT VARIABLES ..
                                            (PMIDT ,A( 29)),(TMETDT ,A( 30)),(PSIDT,A( 31)),...
(POOT ,A( 29)),(WEDOT ,A( 29)),(VXDDOT,A( 240)),...
(XIC ,A( 19)),(XDDTM ,A( 158)),(DELT1,A( 24)),...
                          EQUIVALENCE (PHIDT
                                            IXIHX
                                                          . 4(159) 1. (XINY
                                                                                      .4116011
                 C
                          EQUIVALENCE (NCPASS .LI 2)), (NIPASS .LI 31)
                                 .. BUTPUT VARIABLES ..
                                                        EQUIVALENCE IPHIR
                                            IP
                                            ITIME
                       END
                                               READ AND WRITE DISCRETE LINES
CALL DSCRT1
                 c
181
182
183
184
185
186
                          CALL SCOUNT
                 C
                  PROCEDURAL

DATA IFIRST/1/

IF(IFIRST-NE-1) GO TO NOTF

C INSERT CALLS HERE FOR ROUTINES TO BE EXECUTED AFTER ADC BUT BEFORE INTEG

C -RATION , AND WHICH ARE NOT MART OF EVALUATION LOOP FOR DENIVATIVES.

C ONLY EXECUTE THESE ROUTINES ONCE PER FRAME

C 1) PRE DERIVATIVE S/R CALLS
188
```

```
191
                          C
                                 CALL CONTROLS
CALCULATE WIND
CALL SWIND
192
194
195
196
197
198
199
                         C RESET FLAG
IFIRST - O
NOTFICONTINUE
                                        END
200
201
202
203
204
205
206
207
208
209
                                    PROCEDURALI - ADCILI
                                 END
                                                                        . ANGULAR MOTION
                                ATTITUDE ANGLES

PREI - INTEU(PPSIDT, PPSIC)

TIMET - INTEG(TIMOT, TTNIC)

PPHI - INTEG(PPHIOT, PPHIC)
210
211
212
213
214
215
216
217
218
219
220
                          C
                                   PROCEDURAL("PPSI, TTMET, PPHI)
EQUATE VARIABLES
PSIR " PPSI
THETAR " TTHET
PHIR " PPHI
CALCULATE DIRECTION COSINES
                          C
557
                                        CALL SDCOS
553
                          C
                                    END
                          C
                                         PP - INTEGIPPOOT, PPICI
```

```
EQUATE VARIABLES
HHDOT - VKD
SYDOT - VKE
SXDOTM - XDOTM
266
267
268
269
270
271
272
273
274
                                       END
                                      CALCULATE POSITIONS

SX = MODINT(SXOOTH, SXIC, 1, 0, 1HX, T)

SY = MODINT(SYDOT, SYIC, 1, 0, 1HY, T)

HM = INTEG(HHDOT, SHIC)
275
276
277
278
279
280
281
282
283
284
285
284
285
286
289
291
291
292
292
293
294
295
                            C
                                       PROCEDURAL
                                      USERS ROUTINES
CALCULATE TOTAL FONCES IN BODY AXES
                            c
                                           CALL TOTE
                            c
                           C
                                    PROCEDURAL (PPDOT, JUDOT, RRDOT - PP, 99, RR)
USER'S ROUTINE TO CALCULATE MOMENTS
CALL TOTA
                            C
                                                                                                                                                                                                                               080278
                                   CALCULATE ANGULAR ACCELERATIONS
CALL SACCROT
EQUATE VARIABLES
PPDOT - PDOT
QODOT - UDOT
RROOT - ROOT
                                                                                                                                                                                                                               080278
                            C
                                                                                                                                                                                                                               080278
                                                                                                                                                                                                                               080278
                                                                                                                                                                                                                               080278
                            ç
296
                                      PROCEDURALIVYKNOT, VYKEDT, VYKDOT»)
CALCULATE LINEAR ACCELERATIONS
CALL BACCLIN
EQUATE VARIABLES
VYKNOT = VKEDOT
VYKEDT = VKEDOT
298
                            C
                            C
```

```
VVKDDT . VKDDBT
PROCEDURAL ( . SX, SY, HH)
                    00000
                                                          .POST-INTEGRAL CALLS.
                          .NCPASS-NCPASS-1
NCPASS - COUNT OF NUMBER OF PASSES EXECUTED SO FAR IN ONE INTEGRATION STEP
NIPASS - CONSTANT. SET UP IN INITIAL, FOR NUMBER OF PASSES USED BY
INTEGRATION ROUTINE.
IFINCPASS-LT.NIPASSIGO TO SKPASS
INSERT MERE CALLS TO 'POST-INTEGRATION' ROUTINES, TO BE EXECUTED ONLY
ONCE PER STEP.
                    CCC
                    C INSERT HERE CALLS
C ONCE PER STEP.
C FIRST PICK UP TIME
                            TIME . T
EQUATE VARIABLES
                     C
                            CALCULATE BODY ANEB ACCELERATIONS FOR MOTION ("OUTPUT" ONLY)
CALL BACCBOD
                    C
                    000
                             CALCULATE INSTRUMENT READINGS ('OUTPUT' ONLY)
CALCULATE ILS ('OUTPUT' ONLY)
CALL SILS
                    C
                             LOGIC AND POSITION FOR VFA CONTROL ('OUTPUT' ONLY)
                          CALL STV
EQUATE VARIABLES
SXIC = XIC
IMX = XIMX
IMY = XIMY
                            SXDOTH . XDOTH
CALCULATE EAS, MACH, DYNAMIC PHESSURE ETC.
CALL SVELOC2
```

```
341
342
344
345
347
348
351
353
354
355
356
357
367
368
369
369
371
372
373
374
373
374
                           C CALCULATE FLIGHT PATH ANGLES
                                          CALL SPATH
                                          31 POST DERIVATIVE BAR CALLS
                           000
                                          S/R 'OUTSR' HANDLES OUTPUT FUNCTIONS
                                          CALL OUTER
                           C
                                          CALL BOAC
                           C SET 'FIRST TIME' FLAG ON, READY FOR NEXT TIME ROUND
                                     IFIRST - 1
SKPASS I CONTINUE
                                     END
                           C
                                     PROCEDURAL(DAC( 1)*DAC( 2)*DAC( 3)*DAC( 4)*DAC( 5)***

DAC( 4)*DAC( 7)*DAC( 8)*DAC( 9)*DAC(10)***

DAC(11)*DAC(12)*DAC(13)*DAC(14)*DAC(15)***

DAC(16)*DAC(17)*DAC(18)*DAC(19)*DAC(20)***

DAC(11)*DAC(12)*DAC(13)*DAC(20)*DAC(25)***

DAC(16)*DAC(17)*DAC(18)*DAC(29)*DAC(30)***

DAC(31)*DAC(37)*DAC(38)*DAC(39)*DAC(30)****

DAC(31)*DAC(37)*DAC(38)*DAC(39)*DAC(40)***

DAC(41)*DAC(42)*DAC(43)*DAC(44)****

END
                                     END
                           C PROCESS AUTOMATIC HOLD
CALL PY700
IFIMODE: CALL TEMMNATE('AIMCRAFT')
                              END
TERMINAL
END
END
```

Appendix D INDEX TO SYSTEM COMMON, REAL VARIABLES

D.1 Numeric order

SYSTEM COMMON . REAL VARIABLES 15.3.78

NUMERIC BROEK			10:45 MAR 13,179			PAGE	1
ELEMENT NO.	FONTHAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED 1N	USED	
1	RXMASS		1/xmass		SINIT	SACCLIN	
2	XMASS		AIRCHAFT MASS	SLUG	SINIT	SINIT	
,	PSIR		MEADING ANULE	HADIANS	DENTIVE	soces	
•	P810		MEADING ANULE	DEGREES	suces		
•	THETAR		PITCH ATTITUDE	HADIANS	DERITIVE	socos	
	THETAD		PITCH ATTITUDE	DEGREES	soces		
,	PHIR		BANK ANGLE	RADIANS	DERITIVE	SDCOS	
	PHID		BANK ANGLE	DEGREES	SUCOS		
,	SPSI		SIN(PSIH)		soces	STV SDC05	
10	CPSI		Cos(PSIN)		SUCUS	STV	
11	STHETA		SIN (THE TAN)		spces	STV	
12	CTHETA		COS (THE TAN)		socos	STV SDC0S	

			The second secon			
NUMERIC 6	HDER	10:45	10:45 MAR 13,179			2
ELEMENT NO.	FONTRAN QUAN	TITY DESCRIPTION	UNITS	CALCULATED	IN	
13	SPH [PIN(PHIH)		spces	SEULER	
1+	CPH1	COS(PHIN)		suces	SEULER SOCOS	
15	BECTHT	SEC (THE TAR)		soces	SEULER SDC08	
10	TANTHT	TAN(THETAR)		soces	SEULER	
17	611	DIRECTION COSINE		suces	SVELUCI SACCLIN	
10	612	DIRECTION COSINE		soces	SVELOCI SACCLIN	
19	613	DIRECTION COSINE		soces	SVELOCI SACCLIN SACCBOD	
50	821	DIRECTION COSINE		soces	SVELOCI SACCLIN	
51	822	DIRECTION COSINE		suces	SVELOCI SACCLIN	
55	623	DIRECTION COSINE		soces	SVELOCI	

NUMERIC O	HDER		10:+5	MAR 13,179		PAGE 3
ELEMENT NO.	FONTRAN	VIITMAUD	DESCRIPTION	UNITS	CALCULATED	USED
						SACELIN SACEBOD
53	631		DIRECTION COSINE		socos	SVELOC1 SACCLIN
5+	632		DIRECTION COSINE		SDCOS	SVELOC1 SACCLIN
25	633		DIRECTION COSINE		SDCOS	SVELOC1 SACCLIN SACCBOD
26			ANG VEL, HOLL, BODY AXES	RADS/SEC	DERITIVE	SEULER SACCROT SACCBOD
27	•		ANG VEL, PITCH, BODY AXES	HADS/SEC	DERITIVE	SEULER SACCROT SACCBOD
2.	•		ANG VELSTANSBODY AXES	HADS/SEC	DER'TIVE	SEULER SACCROT SACCROD
29	PHIOT		ATTITUDE HATE, BANK	RAD/SEC	SEULER	DERTTIVE
30	THETOT		ATTITUDE HATE, PITCH	HAD/SEC	SEULER	STV

NUMERIC 6	HDER		10:45	MAR 13, 179		PAGE	
ELEMENT NO.	FONTRAN NAME	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED	
						DER'TIVE	
31	PSIDT		ATTITUDE MATE, MEADING	RAD/SEC	SEULER	STV DER'TIVE	
35	PO		ANG VEL, ROLL, BODY AXES	DEGS/SEC	SEULER		
33	40		ANG VEL, PITCH, BODY AXES	DEGS/SEC	SEULER		
34	HO		ANG VEL, YAW, BODY AXES	DEGS/SEC	SEULER		
35	CII		INERTIA COEFFICIENT		SINIT	SACCROT	
36	CIS		INERTIA COLFFICIENT		SINIT	SACCROT	
37	C13		INERTIA COEFFICIENT		SINIT	SACCROT	
38	C14		INERTIA COEFFICIENT		SINIT	SACCROT	
39	CIS		INERTIA COEFFICIENT		SINIT	SACCROT	
+0	CIO		INERTIA COEFFICIENT		SINIT	SACCROT	
+1	C17		INERTIA COEFFICIENT		SINIT	SACCROT	
+2	CIR		INERTIA COEFFICIENT		SINIT	SACCROT	
+3	CIS		INERTIA COEFFICIENT		TINIS	SACCROT	

NUMERIC BROER			10:45 M	PAGE 5		
ELEMENT NO.	FORTRAM	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED
	C110		INERTIA COEFFICIENT		SINIT	SACCRUT
+5	PDOT		ANGULAR ACCH. IN BODY AXES	RADS/SEC2	SACCHOT	SACCEOD
••	908T		ANGULAR ACCH. IN BODY ARES	RADS/SEC2	SACCHOT	SACCBOD
•1	ROST		ANGULAR ACCH. IN BODY AXES	RADS/SEC2	SACCROT	SACCHOD
**	xix		MOMENT OF INERTIA, ROLL	SLUG FT2	USER	SINIT
49	XIY		MOMENT OF INERTIA, PITCH	SLUG FT2	USER	SINIT
50	×12		MOMENT OF INERTIA, YAN	SLUG FTZ	USER	SINIT
51	XIZX		MOMENT OF INERTIA, PRODUCT	SLUG FT2	USER	SINIT
95	VKN		VELOCITY HEL TO GROUND, NUMTH	FT/SEC	DEHITIVE	SVELOC1 SPATH STV
53	VKE		VELOCITY MEL TO GROUND, EAST	FT/SEC	DENTIVE	SVELOC1 SPATH STV
64	VKD		VELOCITY NEL TO GROUND, DOWN	FT/SEC	DERITIVE	SVELOC1 SPATH STV

INERIC 0	HDER		10:45 MAR	13,179		PAGE
NO.	FORTRAN	OUANTITY	DESCRIPTION	UNITS	CALCULATED	IN
55	VWN		VELOCITY OF WIND, NORTH	FT/SEC	SHIND	SAEFACT
56	VHE		VELOCITY OF WIND, EAST	FT/SEC	SWIND	SVELOCI
57	VHD		AEFOCITA OF MIND'DOMY	FT/SEC	SHIND	SVELOCI
58	VB		VEL COMP HEL TO AIR, BODY AXES	FT/SEC	SVELOC:	SVELOC2 SALFBET
59	V8		VEL COMP MEL TO AIR, BODY AXES	FT/SEC	SVELOCI	SVELUC2 SALFBET
•0			VEL COMP MEL TO AIR, BODY AXES	FT/SEC	SVELOC1	SVELOC2 SALFBET
+1	GAMMAR		FLIGHT PAIN ANGLE, CLIMB	RADIANS	SPATH	SPATH
62	GAMMAD		FLIGHT PATH ANGLE, CLIMB	DEGREES	SPATH	
63	PSIKR		FLIGHT PATH ANGLE, TRACK	RADIANS	SPATH	SPATH
**	PSIKO		FLIGHT PAIN ANGLE, TRACK	DEGREES	SPATH	
• 5	**		VELOCITY MELATIVE TO GROUND	FT/SEC	SPATH	SINIT
66	VKKT		VELOCITY HELATIVE TO GROUND	KNOTS	SPATH	

-	HOER	10:45 HAR	13,179		PAGE ?
ELEMENT.	PONTRAN GUANTI	TV DESCRIPTION	UNITE	CALCULATED	USED
••	**	TOTAL AIN SPEED	F1/8EC	PAETOCS	81N17
••	VIRT	TOTAL AIR MPEED	KNOTE		
••	VEAS	EQUIVALENT AIR SPEED	FIZSEC		PAETOCS
70	VEADRT	EQUIVALENT AIR SPEED	-	SAFFOCS	
"	M001010	SQRTIDENSITY RATIO		PAFFOCS	PINIT
78	-	AIR DENSITY	BLUGIFTS	BAEFOCS	SAETOCS.
"	-	SPEED OF BOUND	FT/SEC	SAFFOCS	BAEFACS
74					
75	RMACH	MACH NUMBER		SAFFOCS	BAEFBCS
76	TEMPSL	AMB TEMP AT BLIBTANUANU DAY!	064. K	SINIT	SINIT
"	PHESSL	AMPLENT PRESSURE AT SEA LEVEL	FALIN 5	51417	BAFFOCS
76	DENA	DENSITY NATIO		SINIT	PAETOCS

-	HDEN	10	101+5 MAR 13,179			
ELEMENT NO.	FORTRAM GUA	NTITY DESCRIPTION	UNITS	CALCULATED	USED	
					SINIT	
79	HHOSL	DENSITY AT SEA LEVEL	Scua /F13	SINIT	SVELDCE	
•0	4466	seeto or mones of sev o	- 179EC	81~17	BINIT	
•1	TENPR	ATHOSPHERIC TERM MATTE		SATHES	PAECOCS	
**	PHE 86H	ATMOSPHERIC PHESSUR, R	**10		SINIT	
	DRATIO .	-DIABATIC DENSITY HATT	•	*******	PAEFOCS	
••	SPENDH	SPEED OF SOUND HATTO			SVELOCE	
**	ARATIO	START IC SPEED OF SOU			RAFFOCS	
••	PALPHA	REE STREAM STAT, C PHE	SHIPL LUTTE	SAFFACS		
87	PRATIO	AL " ATTE STATIC/TOTAL	PHESS	8 45 - 9 C 6		
	TALPHA	FREE STHEAM STATIC TEM	PERATURE DEG. K			
	TRATIO	ADIABATIC STATIC/TOTAL	16 90	SVELCCP		

-	HDER		10:45 MAH 13,179			
ELEMENT NO.	FONTRAN QUA	NTITY DESCRIPTION	UNITS	CALCULATED	USED	
90						
91	DEL TI	INTEG. STEP LENGTH NO	· 1 SECS	USER	INITIAL	
92	FHAMET1	FRAME TIME, LORP 1	MSEC	USER	INITIAL SWIND	
93						
94	TIME	TIME	SEC	DERITIVE		
95	DELTZ	INTEG. STEP LENGTH NO	· 2 SECS	USER	INITIAL	
96	FRAME 12	FRAME TIME, LOOP 2	MSEC	USER	INITIAL	
97						
98	206	Z C.G. LOCATION		USER	SINIT	
99	XCGHEF	A LOCATION OF REF PT		USER	SINIT	
100	ZCGHEF	Z LUCATION OF HEF PT		USER	SINIT	
101	DXCG	DIST OF C.G. AHEAD UP	h.k.L.	SINIT	STV	
105	DZCG	DIST OF C.G. BELOW M.	K.C.	SINIT	STV	
103	SPAN	WING SPAN	f1	USER	SVELUCE	

NUMERIC ONDER			10:45 MAR 13,179				PAGE 10	
ELEMENT NO.	FORTRAN NAME	QUANTITY	DESCRIPTION		UNITS	CALCULATED	USED	
							SINIT	
104	MLTAIL		TAIL ARM FHOM M.R.C.		1	USER		
105	STAIL		TAIL PLANE AREA		15	USER		
106	SHREF		WING REFERENCE AREA		12	USER	SINIT SVELOCS	
107	CREF		REFERENCE CHORD	11 11 11 11 11	•	USER	SVELOC2 STV	
108	802		SUREF + SPAN+ SPAN		14	SINIT	SAEFOCS	
109	XP		X LOC OF PILOT HEL TO RE	FCG F	T	USER	STV	
110	ZP		Z LOC OF PILOT REL TO RE	FCG F	1	USER	STV	
111	ALFAR		ANGLE OF ATTACK		AD IANS	SALFBET	SALFBET	
112	ALFAD		ANGLE OF ATTACK		EGREES	SALFBET		
113	BETAR		ANGLE OF SIDESLIP		AD IANS	SALFBET	SALFBET	
114	BETAD		ANGLE OF SIDESLIP		EGREES	SALFBET		
115								
110	SALFA		SINE OF ALPA			SALFBET		

NUMERIC C	RDER		10:45 MAR 13,179			PAGE 11		
ELEMENT NO.	FORTRAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED		
117	CALFA		COS OF ALFA		SALFBET			
118	BOETA		SINE OF BETA		SALFBET			
119	CBETA		COS OF BETA		SALFBET			
120	ALFADOT		HATE OF ANGLE OF ATTACK	RADS/SEC	SALFBET			
121	BETADOT		RATE OF ANGLE OF SIDESLIP	RADS/SEC	SALFBET			
155								
123								
124	HLFRHOV		0.5.RH0.VT		SVELOC2	SVELOCS		
125	UDYN		DYNAMIC PHESSURE	LB/FT2	SAETOCS	SAET@C5		
126	GOYNE		90YN+SHREF	LB	SAETOC5	SAETQC5		
127	OSCREF		GDANE+CHE+	LB-FT	SVELOC2			
128	USSPAN		UDYNS+SPAN	L8-FT	SVELOCE			
129	09821V		HLFRHOV+S82		SVELOCE			
130								

NUMERIC BROER		10:45 MAR	PAGE 12		
ELEMENT NO.	FORTRAN QUANTITY NAME	DESCRIPTION	UNITS	CALCULATED IN	IN
131	XLLTOT	TOTAL HOMENT, ROLL, BODY AXES	L8-FT	USER	SACCROT
132	XMMTOT	TOTAL HOMENT, PITCH, BODY AXES	LB-FT	USER	SACCROT
133	XNNTOT	TOTAL HUMENT, YAM, BODY AXES	L8-FT	USER	SACCROT
134	FTX	TOTAL FORCE COMP. IN BODY AXES	LB	USER	SACCLIN SACCBOD
135	FTY	TOTAL FORCE COMP. IN BODY AXES	LB	USER	SACCHOD
136	FTZ	TOTAL FORCE COMP. IN BODY AXES	LB	USER	SACCHED
137	FTN	TOTAL FORCE COMP IN EARTH AXES	LB	SACCLIN	SACCLIN
138	FTE	TOTAL FORCE COMP IN EARTH AXES	LB	SACCLIN	SACCLIN
139	FTD	TOTAL FORCE COMP IN EARTH AXES	LB	SACCLIN	SACCLIN
140					
141	RADTED	CONVERSION RADIANS TO DEGREES	CONSTANT	SINIT	SDC 08 SPATH SALFBET SEULER

NUMERIC BROER			10:45 MAR	PAGE 13		
ELEMENT NO.	FORT RAN NAME	PTITHAUD	DESCRIPTION	UNITS	CALCULATED IN	USED
						SILS
1+2	DEGTON		CONVERSION DEGREES TO HADIANS	CONSTANT	SINIT	SILS
143	FPSTRT		CONVERSION FT/SEC TO KNOTS	CONSTANT	SINIT	SVELOC2 SPATH
1**	XXZFPS		CONVERSION KNOTS TO FT/SEC	CONSTANT	SINIT	SWIND STV SINIT
1+5	•		ACCELERATION DUE TO GRAVITY	CONSTANT	SINIT	SACCLIN SINIT
107	RG		RECIPROCAL OF G		SINIT	SACCHOD
149			X POSITION OF C.G.	FT	DENTIVE	STV SILS
150	•		Y POSITION OF C.G.	FT	DERTIVE	STV SILS
151			MEIGHT OF CO	FT	DERITIVE	SATHOS

SYSTEM COPHUN - HEAL VARIABLES 15.3.7

NUMERIC SHOER		10:45 MAR 13,179			PAGE 14	
ELEMENT NO.	FONTRAN QUANTIT	V DESCRIPTION	UNITS	CALCULATED	IN USED	
					2414D 2172 246 246 246 246 246 246 246 246 246 24	
152	XTV	A POSITION FOR TV	FT	STV	STV	
153	YTV	Y POSITION FOR TV	Ħ	STV	STV	
15+	HTV	HEIGHT FOR TV	61	STV	STV	
155	ADTY	X VELOCITY FOR TV	FT/SEC	STV		
156	YDTY	Y VELOCITY FOR TV	FT/SEC	STV		
157	HOTY	H VELOCITY FOR TV	FT/SEG	STV		
150	XOOTH	RATE OF CHANGE OF A/C'S X POSN	+1/SEC	STV	DER'TIVE STV	
159	XIHX	CONTROL VAN FOR X INTEGNATION		STV	DER'TIVE	
100	XIHY	CONTROL VAN FOR Y INTEGRATION		STV	DERTIVE	
161	SAPL	NEAN BELT JOINIPOSIANU LINIT	FT	STV	STV	
162	SXMIN	NEAR BELT JOININEGIAND LINIT	FT	STV	STV	
163	SXPLUS	CYCLE LIMIT	FT	STV	STV	

NUMERIC BROER			10:05 MAN	PAGE 10		
ELEMENT NO.	FORTRAN	QUANTITY	DFPCHILITOR	UNITS	CALCULATED	USED
100	SANING		CYCLE LIMIT	**	stv	stv
100	STPL		LIMIT FOR SITEMATSIPOSITIVE!	**	STV	STV
100	-		LIMIT FOR SIDEWAYDING GATIVE!	*1	stv	STV
167	-		CETCING AND MEIGHT LIMIT	*1	STV	STV
100	MOTHE		PLE - HATE	+1/SEC	STV	STV
109	VEHIPAT		BHIP SPEED	K!	USER	stv
1/0						
171	146			DEGREES	811.8	
174	4100		LOCALISEN ENNON	DEGREES		
173	HSLOPE		MT OF ILD BEAM AT GIVEN HANGE	• •	811.6	SILS
1/4	HOS		HANGE FHON G/S THANSHITTEN	+1	SILS	51LS
175	HLOC		HANGE FROM LOC THANSHITTER	+1	SILS	SILS
176	HKINK		HANGE FROM BEAM KINK	+1	SILS	SILS
177	×GS		GLIDE SLOPE ORIGIN		SILS	SILS

NUMERIC BRUER		10:00	PAGE 16				
ELEM		FORTRAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED
17		XLOC		LOCALISER ORIGIN (X)	••	\$1L\$	SILS
17	,	YLOC		LOCALISER BRIGIN (Y)	FT	811.8	SILS
10	0	648		GLIDE SLOPE SENSITIVITY	DEGREES	81L8	SILS
10	1	SLOC		LOCALISEN SENSITIVITY	DEGREES		SILS
10		HKINK		HEIGHT OF BEAM KINK	FT	SILS	SILS
10	3	-		SLAPE OF LOWER SEAM	DEGREES		SILS
10		USLOPE		BLOPE OF UPPER BEAR	DEGREES	811.8	
10		REINE		POSITION OF BEAR KINK	**		811.8
10	•	CILOI		MADTOD/SGW			811.8
10	,	CITES		MADTOD/SLOC			81L8
10		CILBO		TANIBSLOPE		811.8	811.8
10	,	CILO		TANIUSLOPE I-CILSS			
19	0						
19		967401C		INITIAL VALUE OF BETA	DEGREES	ICF ILE	SINIT

NUMERIC 6	MDER		101+5 MA	R 13, 179		PAGE 17			
ELEMENT NO.	FORTRAN	PTETMAND	DESCRIPTION	UNITS	CALCULATED	IN			
192	ALFADIC		INITIAL VALUE OF ALFA	DEGREES	ICFILE	SINIT			
193	GAMDIC		INITIAL VALUE OF GARMA	DEGREES	1CF ILE	SINIT			
194	VKTIC		INITIAL AIN SPEED	KNOTS	1CF ILE	SINIT			
196	xic		INITIAL POSITION	FT	1CF ILE	SINIT INITIAL STV			
194	AIC		INITIAL POSITION	FT	ICF ILE	INITIAL			
197	HIE		INITIAL POSITION	F T	1CF ILE	SINIT SHIND INITIAL			
198	•		AIRCRAFT ME IGHT		1 CF ILE	SINIT			
199	xca		X C.G. LOCATION IN AIMCHAFT		1CFILE	SINIT			
500	ATLOFLAG		ILBFLAG IN 'REAL' FORM		1CF ILE	INSTIAL			
501	XIGHR		ISHR IN 'HEAL' FORM		1CF ILE	INITIAL			
505	VHKTO		DATUM WIND SPEED	KNOTS	ICF ILE	SINIT			

NUMERIC E	RDER		10:45 MAR 13,179				PAGE 18	
ELEMENT NO.	FORTRAN G	YTTTMAU	DESCRIPTION		UNITS	CALCULATED	USED	
203	P81W0	DA	TUM WIND DIRECTION		DEGREES	1CF ILE	SINIT	
50+	Petotc	111	ITIAL VALUE OF PSI		DEGREES	ICF ILE	INITIAL	
502	H1C15	**	ARE					
200	#IC16		ARE					
201	R1C17		ARE					
208	RICIS		ARE					
503	HIC19		ARE					
210	HICSO	80	ARE					
211	VKNIC	IN	IT GROUND SPEED CONF	- (NORTH)	FT/SEC	SINIT	INITIAL	
212	AKEIC	In	IT GROUND SPEED COMP	(EAST)	FT/SEC	SINIT	INITIAL	
613	AKDIC	14	IT GROUND SPEED CONF	(DOWN)	FT/BEC	SINIT	INITIAL	
21+	PHIDIC	In	ITIAL VALUE OF PHI		DEGREES	SINIT	INITIAL	

-	HOER	•	10:45 MAR	13,179		PAUE 15	,
ELLMENT NO.	FONTRAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED	
216	THETADIC		INITIAL VALUE OF THETA	DEGREES	SINIT	INITIAL	
216							
217	VA		COMP. OF THUE AIR SPEED (NORTH)	+T/SEC	SVELOC1	SVELOC1	
218	VE		COMP. OF THUE AIR SPEED (EAST)	FT/SEC	SAFFOCT	SVELOC1	
219	VO		COMP. OF THUE AIR SPEED (DOWN)	FT/SEC	SVELOC1	SVELOC1	
550	POIC		INITIAL ANGULAR HATE	RADS/SEC	SINIT	INITIAL	
551	001C		INITIAL ANGULAR HATE	HADS/SEC	SINIT	INITIAL	
555	HOIC		INITIAL ANGULAR RATE	HADS/SEC	SINIT	INITIAL	
553	****		MIND VELOCITY (DOWN) AT HEIGHT	FT/SEC	SHIND	SHIND	
55+	Chein		Cos(PSI=U)		SINIT	SHIND SINIT	
255	SPSIM		SIN(PSINO)		SINIT	SHIND	
550	VANLO		MIND VELOCITY (NONTH) AT HEIGHT	FT/SEC	SINIT	TIMIS	
227	VHELO		WIND VELOCITY (EAST)AT HEIGHT	FT/SEC	BINIT	S = 1 ND	

NUMERIC BROER			10:45 MAR 13,179			PAGE 20	
ELEMENT NO.	FORTHAN I	PTITMAUQ	DESCRIPTION	UNITS	CALCULATED	USEO	
						SINIT	
558	BHRFAC		SHEAR FACIOR		MSHEAR	SINIT	
559	VWNL		MEAN WINE COMP AT MEIGHTINTH)	F T/SEC	SWIND	54140	
230	VHEL		MEAN -140 COMP AT HEIGHT (LAST)	FT/SEC	SWIND	SHIND	
531	VWDL		MEAN AIND COMP AT HEIGHT CODEN.	F T/SEC	SHINE	SHIND	
235	UTURB		COMPONENT OF TURBULENCE	FT/SEC	SHIND	541 ND	
523	VTURB		COMPONENT OF TURBULENCE	FT/SEC	SHIND	SHIND	
231	HTURB		COMPONENT OF TURBULENCE	FT/SEC	SHIND	SPIND	
535	LSIG		HMS OF TURBULENCE	FT/SEC	USER	SHINU	
230	A810		HMS OF TURBULENCE	FT/SEC	USEN	SHIND	
23/	w810		RMS OF TURBULENCE	FT/SEC	USER	S-1 1D	
530	VKNDOT		ACCELERATION IN EARTH AXES	+ T/SEC2	SACCL IN	DERTTIVE	
539	VKEUOT		ACCELERATION IN EARTH AXES	+T/SEC2	SACCL IN	DENTIVE	

NUMERIC .	MOCH		10145 MAN	13,179		PAGE 21
		QUANT 11Y	nFPCulti10M	UNITS	CALCULATED	10
241	-		SPECIFIC ACCELENATION AT CUINT	•	640000	54CC800
***	AYCO		SPECIFIC ACCELEMATION AT CUIVI	•	-	84CC#80
543	42C0		SPECIFIC ACCELEMATION AT CUIZI	•	-	54CC880
***	43C01		Z ACCEL'N AT COMEL. 10 1.0	0	84CC800	
200	-		ABBOLUTE ACCELEMATION AT CUIX!	0	8400000	
***	AVACG		ABSOLUTE ACCELEMATION AT CUIVI	u	84CC800	
247	42400		AMBOLUTE ACCELEMATION AT COIZE	•	-	
248	410		SPECIFIC ACCEL'N AT PILOT IN		8400000	
249	417		SPECIFIC ACCEL'S AT PILOT IVE	0	84CC#00	
250	420		SPECIFIC ACCEL'N AT PILOT (2)		SACCHOD	SACCOOD
591	424			0	SACCHOD	
202	AVI		ACCELERATION AT BLIP BALL		SACCHOD	
103	412		ACCELERATION AT & METER		840000	
254	AKJ		A ACCEL'N AT IND. YD. 231	4	SACCHOD	

SYSTEM COMMON - MEAL VARIABLES 15.3.78

-	140ER	10:45 MAI	13.179		PAUE 22
HELEPENT	FONTRAN	QUANTITY DESCRIPTION	UNITS	CALCULATED	USEO
200	474	Y ACCEL'N AT (80,70,20)	ū	840000	
200	429	S ACCEL'N AT (X5.75.25)	•	SACC880	
207	N1	COCRDINATES OF BLIP BALL TAYS		USER	84CC880
200	*1	COONDINATES OF BLIP BALL LAY!	. FT	USER	SACCBOD
200	21	COORDINATES OF BLIP BALL LAY!		USER	8400000
200	No.	COORDINATED OF & METER (AZZ)	**	USER	840 000
201	**	COCHDINATED OF & METER (AZE)	**	USER	SACCHOD
***	24	COORDINATES OF O METER (AZZ)	**	USER	8400000
20.3	**	COORD. OF ACCELEROMETER IAX3	**	USER	SACCHOD
***	**	COORD. OF ACCELEROMETER (AND	**	USER	SACCHOU
***	23	COORD. OF ACCELEROMETER (AX3)		USER	84CC800
***	**	COORD. OF ACCELLHOMETER TAYOR		USER	84CC000
267	**	COORD. OF ACCELLATION TEN TAVE	**	USER	SACCHOU
***	24	CHAND. OF ACCELEROMETER TAVE	**	USER	\$4CC#00

NUMERIC !	ONDEN	10:45 MAN	13,179		PAGE 2
ELEMENT NO.	FONTHAN QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED
200	15	COOND. OF ACCELEROMETER TAZET	• 1	USER	SACCEDO
270	**	COORD. OF ACCELEROMETER (AZS)	FT	USEN	SACCBOD
271	25	CHOND. OF ACCELEROMETER (AZS)	FT	USER	SACCHOD
NO	TE HISSING ELEMENT NUMBER				
276	SFRACE	INTERMITTENCY FOR TURBULENCE		USER	641MD
279	BRDECAY	DECAY FACTOR FOR TURBULENCE		USEN	SHIND
500	APCO	ALOC OF PILOT REL TO CO		STV	STV SACCEDD
501	ZPCO	2 LOC OF PILOT MEL TO CO		STV	STV SACCHOD
202	HAP	PILOT X HADIUS	F1	STV	STV
583	RHP	PILOT H HAUIUS	+1	STV	614
284	MICE	EXTRA STONE FOR XIC	FT	STV	STV
NO	TE MISSING ELEMENT NUMBER				
301	AADCIII	ARRAY OF SCALING FACTORS		USEN	SADC

STREET COMMON - REAL VARIABLES 15.3.78

NUMBERIC OF	IDER		10145 MAR	13,179		PAGE 24
ELEMENT NO.	FONTRAN	GUANTITY	DESCRIPTION	UNITS	CALCULATED	USED
NOTE	H1881NG ELE	MENT NUMBERS	••			
361	AADC (64)	ARR	Y OF SCALING FACTORS		USER	SADC
349	TVCON(1.1)	ARR	Y OF CONSTANTS FOR TV BELT			STV
****** NOT		MENT NUMBERS	··			
300	TVCON(8,3)	ARR	Y OF CONSTANTS FOR TV BELT		STV	STV
****** NOT	-	MENT NUMBERS	••			
+01	YADC(1)	ARR	Y OF UESCALED INPUTS		SADC	USER
NOTE	-	MENT NUMBERS	••			
***	Y40C1641	ARR	Y OF DESCALED INPUTS		SADC	USER
****** NOT	-	MENT NUMBERS	••			
601	ADAC(1)	ARR	Y OF MEALING FACTORS		USER	SDAC
****** HOTE	-	MENT NUMBERS	••			
***	ADACIONI	ARR	Y OF SCALING FACTORS		USEH	BDAC

D.2 Alphabetical order

SYSTEM COMMON - HEAL VANIABLES 15.3.78

ALPHADE TI	C 080E#		10145 MAN	13.179		PAGE 1
NO.	FONTRAN	GUANTITY	DFPCHINITON	UN115	CALCULATED	USED
301	4400111		ARRAY OF SCALING FACTORS		USER	SADC
304	*****		ARRAY OF SCALING FACTORS		USER	SADC
501	404C(1)		ARRAY OF SCALING FACTORS		USER	SDAC
>**	40461041		ARRAY OF SCALING FACTORS		USER	SDAC
115	ALF AD		ANGLE OF ATTACK	DEGREES	SALFBET	
192	ALFADIC		INITIAL VALUE OF ALFA	DEGREES	ICFILE	SINIT
120	ALFADOT		MATE OF ANGLE OF ATTACK	HADS/SEC	SALFBET	
111	ALFAR		ANGLE OF ATTACK	HADIANS	SALFBET	SALFBET
	BITARA		ACTABATIC SPEED OF SOUND HATTE		SVELOCE	SVELOCE
250	AX)		x ACCEL 'N AT (X3.73.23)	0	SACCEDO	
245	AXACG		ABSOLUTE ACCELERATION AT CUINT	6	SACCB00	
2+1	AXCO		SPECIFIC ACCELEMATION AT CUINT	6	SACCHED	SACCHED
2**	AXP		SPECIFIC ACCELIN AT FILET IN	0	SACCHOD	
252	AYI		ACCELERATION AT SLIP BALL		SACCEDO	

SYSTEM COMMEN - MEAL VARIABLES 15.3.78

ALPHABET!	ALPHABETIC BROEM		10:45 ***		PAGE	5	
ELEMENT NO.	PONTRAN	GUANTITY	DESCRIPTION	UNITS	CALCULATED	USED	
200	474		Y ACCEL'N AT (X0, Y0, 20)	•	SACCHOO		
2**	AYACO		ABSOLUTE ACCELERATION AT CULY	6	54CC600		
2+5	AYCO		SPECIFIC ACCELEMATION AT COLY)	0	SACCHOD	5 AC C8 80	
2+9	446		SPECIFIC ACCEL'N AT PILOT IT	0	SACCHED		
293	AZZ		ACCELERATION AT U METER	0	8400800		
500	A25		Z ACCEL'N AT (X5,75,25)	G	SACCHOD		
247	AZACO		ABSOLUTE ACCELEMATION AT CUIZ!	0	SACCBOD		
162	424		ABSOLUTE ACCEL'N AT PILOT (2)	G	SACCBOO		
5+3	AZCO		SPECIFIC ACCELERATION AT COIZE	G	SACCHOD	SACCEOD	
5	AZC 01		Z ACCEL'N AT CONNEL. TO 1.0	G	SACCBOD		
250	AZP		SPECIFIC ACCELIN AT PILOT (2)	0	SACCBOD	SACCBOD	
114	BETAD		ANGLE OF BLOESLIP	DEGREES	SALFBET		
191	BETADIC		INITIAL VALUE OF BETA	DEGREES	1CF ILE	SINIT	
121	-		HATE OF ANOLE OF SIDESLIP	RADS/SEC	SALFBET		

BYSTEM COMMON - HEAL VARIABLES 15-3-78

-			10145 MAR 13,179		P40E :	1
ELEMENT NO.	FORTRAN GUAN	TITY DESCRIPTION	UNITS	CALCULATED	USED	
113	BETAR	ANGLE OF BIDEBLIP	RADIANS	SALFBET	SALFBET	
103		BLOPE OF LOWER BEAM	DEGREES	611.6	61L8	
117	CALFA	COS OF ALFA		SALFBET		
119	COETA	COS OF BETA		SALFBET		
35	cu	IMERTIA COLFFICIENT			SACCROT	
30	CIS	INERTIA COLFFICIENT		SINIT	SACCROT	
3/	CIS	INERTIA COLFFICIENT		SINIT	SACCROT	
30	CI+	INERTIA COLFFICIENT		SINIT	SACCROT	
39	C16	INERTIA COLFFICIENT		SINIT	SACCROT	
••	Cie	INERTIA COEFFICIENT		SINIT	SACCROT	
•1	C17	INERTIA CONFFICIENT		SINIT	SACCROT	
.5	CIB	INERTIA COEFFICIENT		SINIT	SACCROT	
•3	C19	INERTIA COLFFICIENT		SINIT	SACCROT	
••	C110	INERTIA COEFFICIENT		SINIT	SACCROT	

SYSTEM COMMON - HEAL VARIABLES 15.3.78

ALPHABETIC ORDER			10:45 MAR 13,179			PAGE .	
HERENT NO.	FORTRAN	GUANTITY	CFACEILLION	UNITS	CALCULATED	USED	
100	CILSI		RADTED/SGB		511.5	SILS	
187	CIF25		HADTOD/SLOL		SILS	SILS	
100	CILST		TAN (B SL DPE)		SILS	SILS	
109	CILSO		TANIUSLOPE I-CILS3		SILS	SILS	
1*	CPHI		COS(PHIA)		soces	SEULER	
10	CPSI		COS(PSIN)		suces	STV SDC 05	
55+	CPSIM		Castestan		SINIT	SHIND	
107	CREF		REFERENCE CHORD	**	USER	SVELOCE	
12	CTHETA		COS(THETAN)		soces	STV	
145	DEGTOR		CONVERSION DEGREES TO HALLANS	CONSTANT	SINIT	SILS	
91	DELTS		INTEG. STEP LENGTH NO. 1	SECS	USER	INITIAL	

ALPHABETIC BROEN		10:45 MAR 13,179			PAGE 5	
ELEMENT NO.	FORTRAN QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED	
95	DELTS	INTEG. STEP LENGTH NO. 2	SECS	USER	INITIAL	
76	DENR	DENSITY MATIO		SINIT	SVELOCE	
#3	DRATIO	ADIABATIC DENSITY RATIO		SAETQC5	SVELOC2	
101	DXCG	DIST OF C.U. AHEAD OF M.R.C.		SINIT	STV	
102	DZCG	DIST OF C.G. BELOW M.H.C.		SINIT	STV	
171	LOS	GLIDE SLOWE ERROR	DEGREES	SILS		
172	ELOC	LOCALISEN ERROR	DEGREES	SILS		
1+3	FPSTKT	CONVERSION FT/SEC TO KNOTS	CHNSTANT	BINIT	SVELOC2 SPATH	
92	FRAMET1	FRAME TIME, LOOP 1	MSEC	USER	INITIAL SHIND	
96	FRAMET2	FRAME TIME, LOOP 2	MSEC	USER	INITIAL	
139	FTD	TOTAL FONCE COMP IN EARTH AXES	LB	SACCL IN	SACCLIN	
138	FTE	TOTAL FONCE COMP IN EARTH AXES	LH	SACCLIN	SACCLIN	
137	FTN	TOTAL FORCE COMP IN EARTH AXES	LB	SACCLIN	SACCLIN	

SYSTEM COMMON - HEAL VARIABLES 15-3-78

ALPHABETI	C ORDER	10	45 MAR 13,17	,	PAGE 6
ELEMENT NO.	FORTRAN Q NAME	UANTITY DESCRIPTION	UI	NITS CALCULATED IN	USED
134	FTX	TOTAL FORCE COMP. IN BOX	Y AXES LB	USER	SACCL IN SACCHOD
136	FTY	TOTAL FORCE COMP. IN BO	Y AXES LB	USER	SACCL IN SACCBOD
136	FTZ	TOTAL FORCE COMP. IN BO	Y AXES LB	USER	SACCL IN SACCBOD
145	•	ACCELERATION DUE TO GRAV	VITY CONS	TANT SINIT	SACCLIN
193	GAMDIC	INITIAL VALUE OF GAMMA	DEGR	EES ICFILE	SINIT
62	GAMMAD	FLIGHT PATH ANGLE, CLIMB	DEGR	EES SPATH	
61	GAMMAN	FLIGHT PATH ANGLE, CLIMB	RADI	ANS SPATH	SPATH
151	•	HEIGHT OF CG	FT	DER'TIVE	SATMOS SVELOC2 STV SILS SWIND
157	HOTY	H VELOCITY FOR TV	F1/8	EC STV	
197	HIC	INITIAL POSITION	FT.	ICFILE	SINIT

ALPHAUETI	C ORDER		10145 MAR	13,179		PAGE 7	
ELEMENT NO.	FORTRAN	QUANTITY	DESCRIPTION	UN118	CALCULATED	USEO	
						SHIND INITIAL	
102	HKINK		HEIGHT OF BEAN KINK	**		611.8	
184	HLFRHOV		0.5-RH8-V1		BAEFOCS	PAEFOCS	
173	HELOPE		MY OF ILS BEAM AT GIVEN MANGE	••	611.9	SINIT	
104	HTV		MEIGHT FOR TY	FT	stv	614	
167	HTVLIN		CEILING AND HEIGHT LIMIT	**	8TV	BTV	
**	•		ANG VEL-ROLL, BODY AND	HADB/SEC	DERITIVE	SEULER BACCROT BACCBOD	
**	PALPHA		FREE STHEAM STATIC PRESSURE	FB/IN S	BAFFOCS		
35	PD		AND VELINOLLIBEDY AXES	DEGS/SEC	BEULER		
550	POIC		INITIAL ANGULAR MATE	RADS/SEC	SINIT	INITIAL	
**	POST		ANGULAR ACCN. IN BODY ARES	RADS/SEC2	BACCROT	6 AC CO 60	
	PHIO		BANK ANGLE	DEGREES	suces		
214	PH101C		INITIAL VALUE OF PHI	DEGREES	SINIT	INITIAL	

SYSTEM COMMON - REAL VARIABLES 15-3-78

ALPHABLTI	-		10:45 MAR	13,179		PAGE	
ELEMENT NO.	FORTRAN	QUANTITY	PERCHIPTION	UNITS	CALCULATED IN	IN	
29	PHIOT		ATTITUDE HATE, BANK	NAD/BEC	SEULER	DERTIVE	
,	PHIR		BANK ANGLE	HADIANS	DERITIVE	soces	
.,	PRATIO		ADIABATIC STATIC/TOTAL PRESS		SAFFOCS		
"	PRESSL		AMBIENT PHESSURE AT SEA LEVEL	F8/18 5	61M17	PAETOCS	
•12	PRESSR		ATHOSPHERIC PRESSURE NATIO		SATHOS	PINIT	
	P810		HEADING ANGLE	DEGREES	50008		
50+	Peloic		INITIAL VALUE OF PSI	DEGREES	ICFILE	INITIAL	
31	POLOT		ATTITUDE MATE, MEADING	RAD/BEC	BEULER	STV DER'TIVE	
••	POIKO		FLIGHT PAIN ANGLE, TRACK	DEGREES	SPATH		
••	POIKR		FLIGHT PATH ANGLE, TRACK	HADIANS	SPATH	SPATH	
	POIR		MEADING ANULE	RADIANS	DERTIVE	50C 08	
203	P61 HD		DATUM WING DIRECTION	DEGREES	ICFILE	SINIT	

ALPHABET!	-		10:45	MAR 13.179		PAGE 9
ELEMENT NO.	FONTRAN	QUANT 17Y	DEBCRIPTION	UNITS	CALCULATED	USED
**	•	A NO	VEL.PITCH. 800Y ANES	RADS/SEC	DEMITIVE	SEULER BACCROT BACCOOD
33	40	ANO	VEL.PITCH. BODY ANES	D298/8EC	BEULER	
551	001C	141	TIAL ANGULAR HATE	MADS/SEC	BINIT	INITIAL
**	9001	ANG	ULAR ACCH. IN BODY ARES	RADS/SEC2	SACCROT	BACCBOD
126	BOYN	DYN	AMIC PHESSURE	LB/FT2	BAFFOCS	PAFFOCS
120	BOYNE	404	NO BUHE F	Le	EAFFOCS	BAEFOCS
129	G0051A	HLF	RH6V+602			
127	USCHEF	904	NB+CREF	LB-FT	EVELOCE	
120	USSPAN	404	N6+8PAN	Lu-FT	EVELOCE	
20	*	ANG	VEL.YAM.BODY AXES	MADB/SEC	DENTIVE	SEULER SACCROT SACCROD
1+1	RADIED	CON	VERSION MADIANS TO DEGR	LES CONSTANT	SINIT	SOC OS SPATH SALFBET

SYSTEM COMMON . REAL VARIABLES 15.3.7.

ALPHAGE TI	C DROER		10:45	HAR 13,179		PAGE	10
ELEMENT NO.	FORTRAN NAME	GUANTITY	DESCRIPTION	UNITE	CALCULATED IN	USED	
						SEULER SILS SINIT	
34	RD	A+	NG VEL. YAW, BODY ARES	DEGS/SEC	BEULER		
555	MOIC	10	VITIAL ANGULAR RATE	HADS/SEC	SINIT	INITIAL	
•7	ROST	4	MOULAR ACCH. IN BODY AXES	HADB/SEC2	SACCROT	BACCHOD	
144	RO	**	CIPROCAL OF O		SINIT	SACCBOD	
174	ROS	R	INGE FROM G/S TRANSMITTER	FT	eire		
72	RHO	A1	R DENSITY	8LUQ/FT3	BAFFOCS	SAETOC5	
79	RHOSL	De	INBITY AT SEA LEVEL	BLUG /FT3	SINIT	SAFFOCS	
583	RHP	•1	LOT H RADIUS	**	STV	814	
205	#IC16		PARE				
500	MIC16		ARE				
207	MIC17		ARE				
500	RICIO		MARE				

ALPHABETIC ORDER			10:+5 M	R 13,179	PAG		
ELEMENT NO.	FONT HAN NAME	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED	
503	RIC19		SPARE				
210	WICSO		SPARE				
176	RKINK		RANGE FROM BEAM KINK	FT	SILS	SILS	
175	RLOC .		HANGE FROM LOC TRANSMITTER	FT	SILS	SILS	
71	R001810		SORTIDENSITY RATIO		BAETOCS	SINIT	
1	RXHASS		1/xH466		SINIT	SACCLIN	
585	HXP		PILOT X RAUTUS	FI	STV	STV	
17	611		DIRECTION LOSINE		soces	SVELUCI BACCLIN	
19	915		DIRECTION COSINE		soces	SVELOCI SACCLIN	
19	613		DIRECTION COSINE		SDCOS	SVELUCI SACCLIN SACCHOD	
50	951		DIRECTION COSINE		soces	SVELOC:	

SYSTEM COMMUN - REAL VARIABLES 15.3.78

					•	
ALPHABET1	C ONDER		10:+5 MA	R 13,179		PAGE 12
ELEMENT NO.	FORTHAN	PTITHAUD	DESCRIPTION	UNITS	CALCULATED	USED
51	655		DIRECTION COSINE		soces	SVELOC1 SACCLIN
55	623		DIRECTION COSINE		suces	SACCEDD SACCEIN
53	631		DIRECTION COSINE		SUCOS	SVELOC1
20	632		DIRECTION COSINE		SDC dS	SVELOC1 SACCLIN
50	633		DIRECTION COSINE		SDC 08	SVELOC1 SACCLIN SACCBOD
110	SALFA		SINE OF ALPA		SALFBET	
100	502		SHREF +SPAN+SPAN	FT4	BINIT	SAFFOCS
110	BOETA		SINE OF BETA		BALFBET	
10	BECTHT		SEC (THE TAR)		spces	SEULER SDC08
278	SFHACG		INTERMITTENCY FOR TURBULENCE		USER	SWIND

ALPHAUETI	-	10:45 MA	H 13,179		PAGE LJ
ELLMENT NO.	FONTRAN QUANTITY	DERCHILLION	UNITS	CALCULATED	IN
100	646	GLIDE SLOPE BENBITIVITY	DEGREES	SILS	81LS
228	SHRFAC	SHEAR FACTOR		HEHEAR	SHIND
101	erec	LOCALISEN SENSITIVITY	DEGREES	51L8	SIL 8
103	SPAN	HING SPAN	*1	USER	SINIT SVELOCS
13	SPH1	SINIPHINI		sucas	SEULER
•	5P51	SIN(PSIN)		8008	STV
552	PARTH	SIN(PSIND.		BINIT	PINIT
*0	SPSL	SPEED OF HOUND AT SEA LEVEL	FT/BEC	SINIT	SINIT SAFFOCS
**	SPENDH	SPEED OF SOUND HATED		SATHUS	SVELOCS
73	SPSOND	SPEED OF MOUND	FT/SEC	BAFFECS	SAFFOCS
279	BRDECAY	DECAY FACIOR FOR TURBULENCE		USER	SHIND

SYSTEM COMMON - REAL VARIABLES 15.3.78

ALPHABET!	C SHOEM		10:45 MAR	13,179		PAGE 1+
ELEMENT NO.	FORTRAN	OUANTITY	URBCRIPTION	UNITE	CALCULATED	IN
105	STAIL		ATL PLANE AREA	+ 12	USEN	
11	STHETA		INITHETAN		80008	57V 50C00
106	-		ING REFERENCE AREA	+ 12	USEN	BINIT
102	BANIN		EAR BELT JOININEGIAND LINIT	FT	STV	614
100	BUNINUB		YCLE LIMIT	FT	BTV	STV
101	BAPL		EAN BELT JOIN(POBIAND LINET	FT	814	874
163	-		YCLE LIMIT	FT	. TV	874
100	SYMIN		INIT FOR BIDEWAYBINEGATIVE)	**	814	814
165	SYPL		INIT FOR BIDEWAYS(POBITIVE)	FT	etv	814
**	TALPHA		REE STREAM STATIC TEMPENATURE	DEG. K	BAFFOCS	
16	TANTHT	•	ANITHETAN		80000	BEULER
•1	TENPR		THOSPHERIC TEMP RATIO		-	SVELOC2
70	TEMPOL		ME TEMP AT BLISTANDARD DAY!	DEO. K	BINIT	BAEFOCS

ALPHABET!	C ORDEN	10:45 MAH	13,179		PAGE 15	
ELEMENT NO.	FORTHAN QUANTITY	nFRCE ILLION	UNITS	CALCULATED IN	USED	
					SINIT	
	THETAD	PITCH ATTITUDE	DEGHEES	80008		
216	THETADIC	INITIAL VALUE OF THETA	DEGREES	SINIT	INITIAL	
	THETAN	PITCH ATTITUDE	HADIANS	DEHITIVE	80008	
30	THETOT	ATTITUDE MATE,PITCH	HAD/SEC	BEULER	BTV DER'TIVE	
94	TIME	TIME	SEC	DEHITIVE		
**	TRATIO	ADIABATIC STATIC/TOTAL TEMP		SAETOC5	SAETOCS.	
360	TVC0N(1+1)	ARRAY OF CONSTANTS FOR TV BELT		STV	STV	
384	TVC0N(8,3)	ARRAY OF CONSTANTS FOR TV BELT		STV	STV	
68	UB	VEL COMP MEL TO AIR, BOLY AXES	FT/SEC	8467901	SALFBET	
230	0810	HHS OF TURBULENCE	FT/SEC	USER	64140	
184	USLOPE	SLOPE OF UPPER BEAM	DEGREES	6118	EILE	
232	UTURB	COMPONENT OF TUMBULENCE	FT/SEC	SHIND	ENTHO	
69	ve	VEL COMP MEL TO AIR, BOLY AXES	+ T/SEC		EAEFACS	

SYSTEM COMMON - HEAL VARIABLES 15-3-78

ALPHABE TI	C GHOER		10:45 MAR	13,179		PAGE 16
ELEMENT NO.	FORTRAN NAME	QUANTITY	DESCRIPTION	UNITS	CALCULATED IN	USED
						SALFBET
219	VO		COMP. OF THUE AIR SPEED (DOWN)	FT/SEC	SAFFOC!	SVELOC1
218	VE		COMP. OF THUE AIR SPEED (EAST)	F T/SEC	SAFFAC!	SVELOC1
69	VEAS		EQUIVALENT AIR SPEED	FT/SEC	SVELOCE	SAEFOCS
70	VEASKT		EQUIVALENT AIR SPEED	KNOTS	SVELOC2	
65	VK.		VELOCITY MELATIVE TO GROUND	FT/SEC	SPATH	SINIT
b •	AKD		VELOCITY MEL (8 GROUND, DOWN	FT/SEC	DERITIVE	SVELOCI SPATH STV
240	VKDDOT		ACCELERATION IN EARTH AXES	FT/SEC2	SACCL IN	DERITIVE
213	AKDIC		INIT GROUND SPEED COMP (DOWN)	F1/SEC	SINIT	INITIAL
63	VKE		AEFACTIA MFF 18 BHOND'EVAL	F T/SEC	DERITIVE	SVELOC1 SPATH STV
239	VKEDOT		ACCELERATION IN EARTH AXES	FT/SEC2	SACCLIN	DERITIVE
515	AKEIC		INIT GROUND SPEED COMP (EAST)	FT/SEC	SINIT	INITIAL

-	IC ONDEN	10105 MAR	13, 179		PAGE 17		
ELEMENT NO.	FORTRAN QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED		
					SINIT		
••	VART	VELOCITY HELATIVE TO GHOUND	KNOTE	SPATH			
**	VKN	AEFOCILA MEF 10 BMONWD MANIM	FT/BEC	DENITIVE	SPATH STV		
530	VKNDOT	ACCELERATION IN EARTH ARES	FT/SEC2	SACCL IN	DERITIVE		
511	VANIC	INIT GROUND SPEED COMP (NORTH)	FT/SEC	BINIT	INITIAL		
194	VNTIC	INITIAL AIN SPEED	KNOTS	ICF ILE	TINIS		
417	VN	COMP. OF THUE AIR SPEED (NORTH)	+1/SEC	SVELOCI	SVELOC1		
109	VSHIPKT	BHEP SPEED	KT	USER	STV		
415	vs10	HME OF TUNBULENCE	FT/SEC	USER			
• *	VI .	TOTAL AIR SPEED	FT/SEC	SAFFOCS.	PAFFOCS		
••	VINT	TOTAL AIN SPEED	ANOTE	SVELOCE			
531	41UHS	COMPONENT OF TURBULENCE	FT/SEC	8 # 1 ND	8 W I NO		

SYSTEM COMMON - HEAL VARIABLES 15.3.78

ALPHABETI	C 0806 4	10:45 MAR	13,179		PAGE 18
ELLMENT NO.	FORTRAN QUANT	ITY DESCRIPTION	UNITS	CALCULATED	USED
57	Y WD	AEFOCILA OF MINDYDONN	FT/SEC	5 N I NO	SVELOC1
231	VHOL	MEAN WIND COMP AT MEIGHT (DOWN)	FT/8EC	BWIND	SHIND
223	VWDLO	MIND VELOCITY (DOWN) AT HEIGHT	FT/SEC	BHIND	8#110
	YHE	VELOCITY OF WIND, EAST	FT/BEC	-	SAEFOC!
230	VHEL	MEAN WIND COMP AT HEIGHTIEAST)	FT/SEC	SHIND	
227	Y-ELO	PING AFFOCIAL (EVBLIVE HEIGHA	FT/BEC	BINIT	SULNO
202	VHKTO	DATUM WIND SPEED	KNOTS	ICF ILE	SINIT
55	VWN	VELOCITY OF WIND, NORTH	FT/SEC	BWIND	SAFFOC!
***	VWNL	MEAN WIND COMP AT MEIGHT (MTH)	FT/SEC	-	-
226	AMMED	BIND VELOCITY (NORTH) AT HEIGHT	FT/BEC	SINIT	BHIND
198	•	AIRCHAFT MEIGHT	LB	ICFILE	SINIT SACCEGO
•0	••	VEL COMP MEL TO AIR, BODY AXES	FT/BEC	BAFFOCT	BALFOET

				The second second		
ALPHABLTI			10:+5 MAR	13.179		PAGE 19
ALLMENT NO.	FONTRAN	QUANTITY	DANCRIPTION	UNITS	CALCULATED	USED
***	**10		HME OF TUNBULENCE	FI/SEC	USER	-
530	- TURE		COMPONENT OF TUMBULENCE	F1/SEC	8 = 1 ND	-
149			A POSITION OF C.G.	**	DEHITTVE	STV
207	ML		COORDINATES OF SLIP BALL (AY)	F1	USER	BACCHOD
200	75		COORDINATES OF U METER (AZZ)	*1	USER	BACCBOD
503	X3		COORD. OF ACCELENGMETER (AX3)	F1	USER	BACCHOD
200			COORD. OF ACCELERONETEN (AYA)	F1	USER	SACCHOD
203	×9		COORD. OF ACCELENGMETER (AZS)	FT	USER	BACCBOD
143	xca		A C.G. LOCATION IN AIRCHAFT		1CF ILE	SINIT
**	ACUREF		A LOCATION OF NEF PT		USER	SINIT
158	AUSTR		NATE OF CHANGE OF A7C'S X POSN	FIZSEC	stv	DER'TIVE BTV
100	MOTHE		SLEW RATE	FIFSEC	RTV	SIV
155	A014		A VELOCITY FOR TV	FT/SEC	stv	

SYSTEM COMMON - REAL VARIABLES 15-3-78

ALPHAGE TI	C ORDER	10:+5 MAR	13.179		IN		
ELEMENT NO.	FONTRAM QUANTITY	DESCRIPTION	UNITS	CALCULATED			
177	xq#	OFIDE BROMF GAIGIN	• •	911.5	51L3		
190	xIC	INITIAL POSITION	••	ICE ILE	SINIT INITIAL STV		
284	RICF	EXTRA STORE FOR XIC	**	STV	etv		
199	KIMK	CONTROL VAN FOR & INTEGNATION		**V	DENTIVE		
100	XIHY	CONTROL VAN FOR T INTEGRATION		etv	DERTTIVE		
200	XILOFLAG	ILBFLAG IN 'REAL' FORM		ICLIFE	INITIAL		
201	XISHR	ISHN IN 'HEAL' FORM		1 CF ILE	INITIAL		
**	xix	MOMENT OF INERTIA, ROLL	stug FTE	USER	BINIT		
**	RIY	MOMENT OF INERTIA, PITCH		USER	B1N17		
•0	*12	MOMENT OF INERTIA, YAN	-	-	SINIT		
	MISM	MOMENT OF INERTIA, PRODUCT		UBER	BINIT		
1**	XX2FP0	CONVERSION KNOTS TO FT/SEC	CONSTANT	BINIT	SHIND STV SINIT		

	C 0806 8		10145 MAR	P40E 21		
ELEMENT NO.	FORTRAN	-	DESCRIPTION	UNITS	CALCULATED	IN
100	relea		POSITION OF BEAM KINK	**		61L0
131	ALLTOT		TOTAL MOMENT, MOLL, BODY AXES	LO-FT	USER	BACCROT
170	ALOC		FOCALISEN OUIDIN (X)	**	611.0	SILS
104	MUTASE		TAIL ARM FHOM M.H.C.	*1	USER	
70	MACH				BAFFOCS	SVELOCE
	3M488		AIRCRAFT MASS	-	BINIT	TINIT
136	-		TOTAL MOMENT, PETCH, BODY AXES	LB-FT	USER	SACCHOT
133	-		TOTAL MOMENT, YAM, BODY AXES	LO-FT	USER	SACCROT
109	XP.		A LOC OF PILOT MEL TO HEFCO	FT	USER	STV
200	xPCO		ALOC OF PILOT REL TO CG		etv	STV SACCBOD
195	ATV		A POSITION FOR TV	FT	874	STV
160	•		Y POSITION OF C.G.	**	DERITIVE	STV
500	Y1		COORDINATES OF SLIP BALL (AYI)	FT	USER	SACCHOD

SYSTEM COMMON - HEAL VARIABLES 15.3.78

LPHASE TI	C ONDER	10:45 MAR		PAGE 22		
ELEMENT NO.	FONTRAN QUANTITY	DESCRIPTION	UNITS	CALCULATED IN	USED	
541	12	COORDINATES OF U METER (AZZ)	FT	USER	SACCHOD	
200	Y3	COORD. OF ACCELEROMETER (AX3)	**	USER	SACCEO	
267	Y•	COORD. OF ACCELEROMETER 14441	FT	USER	SACCBOD	
270	**	COORD. OF ACCELEROMETER (AZS)	FT	USER	SACCHOD	
•01	Y40C(1)	ARRAY OF ULSCALED INPUTS		BADC	USER	
***	YADC(64)	ARRAY OF ULSCALED INPUTS		SADC	USER	
100	YOTY	Y VELOCITY FOR TV	FT/SEC	874		
196	VIC	INITIAL POSITION	FT	ICF ILE	INITIAL	
179	YLOC	LOCALISER BRIGIN (Y)	FT	811.8	81L9	
193	YTV	Y POSITION FOR TV	FT	814	BTV	
209	21	COORDINATES OF SLIP BALL (AY)	FT	USER	84CC800	
505	22	COORDINATES OF G METER (AZZ)	FT	USER	BACCOOD	
200	23	COORD. OF ACCELEROMETER (AX3)	FT	USER	BACCBOD	
200	24	COORD. OF ACCELEROMETER (AYA)	FT	USER	SACCBOD	

ALPHADET!			10:45 MAR	13,179		ES 3049
ELEMENT NO.	FONTRAM	GUANTITY	DERCHIPIION	UNITS	CALCULATED	USED
271	26		COORD. OF ACCELEROMETER (AZS)	FT	UBER	8ACC#80
**	100		Z C.G. LOCATION		UBER	SINIT
100	ZCOREF		2 LOCATION OF REF PT		USER	SINIT
110	20		2 LOC OF PILOT MEL TO MEFCO	FT	USER	STV
501	2900		2 LOC OF PILOT HEL TO CO		814	STV SACCEOD

Appendix E INDEX TO SYSTEM COMMON, INTEGER VARIABLES

E.1 Numeric order

SYSTEM COMMON - INTEGER VANIABLES 16-03-7

NUMERIC	DADER		10:50 MAN 1	PAGE 1		
ELEMENT NO.	FORTRAN	QUANTITY	DFRCMILLION	UNITS	CALCULATED	USED
•	*10*		SELECT ATMOSPHERE VANIATION		USER	SINIT
•	hCPASE		COUNT OF PASSES THRO DERITIVE		INITIAL	DER'TIVE SCOUNT
•	PIPASS		COUNT OF PASSES TO SULT INTEG		INITIAL	DERTIVE
	110710		BELECTS ILW BEAMISEE MILEFLES		INITIAL	51L8
•	1 SHR		WIND SHEAR SHAPE(SEE XISHH)		INITIAL	TINIS
•	1878		UNIT NO FOR SYSTEM CHANGES		USER	6 Y8 COM
,	NTVO		TV BELT BALECT		USER	STV
•	JUCOMP		INITIALISATION COMPLETE FLAG		SCOUNT	SILS STV SILO
	NUND		NO. OF DACE TO BE BET FROM 'A'		USER	SDAC
10	NUNY		NO.OF VARIDACS DE BET FROM 'A'		USER	SDAC
11	NDAC(1)		POINTER TO VARIABLE FOR DAG 1		USER	SDAC

SYSTEM COMMON - INTEGER VARIABLES 16.03.78

			SARIEM	CONHON - INTE	GER VARIA	SLES 10.03.78		
MUMERIC	-			10:50 MAR 13	1.179		PAGE	2
ELEMEN NO.	T FORTRAN	GUANTITY	DESCRIPTION		UNITS	CALCULATED	USED	
••••••	OTE HISSING ELE	HENT NUMBERS						
74	NOAC(64)	POINTE	R TO VARIABLE	FOR DAC 44		USER	SOAC	
76	KBADC	VERSIO	N IO - ROUTING	SADC		BADC		
76	KEDAC	VER810	N IU - ROUTIN	BDAC		SOAC		
"	KOSCRTS	VER810	N 10 - ROUTIN	DECHTI		DECRTI		
76	KDBCRTZ	VERSIO	N IU - ROUTING	DECRTE		DECRTE		
79	KISOSCR	VER810	N LU - ROUTIN	ISUSCR		ISOSCR		
80								
•1	MADCIST	ARRAY	OF ADC CHANNE	NUMBERS		USER	SADC	
*******		HENT HUMBERS						
144	NADCI641	ARRAY	OF ADC CHANNE	NUMBERS		USER	SADC	
146								
146								
147								

SYSTEM	COMMON	INTEGER	VARIABLES	16.03.78

NUMERIC O	MDER		10:50 M	AH 13,179		PAGE	3
ELEMENT NO.	FORTRAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED	IN	
1+#	LSILS		CONTROLS EXECUTION OF SILS		USER	SILS	
149							
150	1 AD +SL		CONTROLS EXECUTION OF REAUSLE	•	USER	DSCRT1	
151	1SLR(1)		ADA BENSE LINE 1		READELR	USER	
NOT	E HISSING ELEM	ENT NUMBERS	••••				
166	ISLR(10)		ADA SENSE LINE 16		READELR	USER	
167	NG		SCALE FACTOR IN NOUSTS		USER	SHIND	
168	LSEED		CONTROLS HANDON NUMBER SEED		USER	SHIND	
169	NRUN		CURRENT HUN NO. FROM MAILBOX		SCOUNT		
170	1AD+CL		CONTROLS EXECUTION OF SETCLE		USER	DSCRT1	
171	ICLR(1)		ADA CONTROL LINE 1		USER	SETCLR	
****** NOT	E MISSING ELEM	ENT NUMBERS	****				
186	ICLR(16)		ADA CONTROL LINE 16		USER	SETCLR	

SYSTEM COMMON - INTEGER VANIABLES 16-03-78

NUMERIC	ORDER		10:50	MAR 13, 179		PAGE	٠
ELEMENT NO.	FORTRAN NAME	GUANTITY	DESCHIPTION	UNITS	CALCULATED	IN	
187							
188							
189							
190	106CFL	CON	TROLS EXECUTION OF HEADS	SCR	USER	DSCRT1 DSCRT2	
191	19(1)	PAT	CHABLE DISCRETE 1 TO SE	SMA	READSCR	ISDSCR	
NO	TE MISSING ELE	MENT NUMBERS	•••				
525	19(32)	PAT	CHABLE DISCRETE 32 TO SE	IGHA	READSCR	ISDSCR	
553	106(1)	DES	K SHITCH 1 TO SIGMA		READSCR	INITIAL ISDSCR	
NO	TE HISSING ELE	MENT NUMBERS	•••				
254	106(32)	DES	K SWITCH 32 TO SIGNA		READSCR	ISDSCR	
255	KSACCHOO	VER	SION IU - ROUTINE SACCHO	00	SACCBOD		
256	KSACCLIN	VER	ISION ID - ROUTINE BACCLE	IN	SACCLIN		
257	KSACCHOT	VER	SION IU - ROUTINE SACCHE	ot	SACCROT		

SYSTEM COMMON - INTEGER VANIABLES 16.03.78

NUMERIC O	MDER			10:50 HAR 13	179		PAGE 5	
ELEMENT NO.	FORTRAN	QUANTITY	DESCRIPTION		UNITS	CALCULATED	USED	
258	KBALFBET		VERSION TO - ROUTINE	BALFBET		SALFBET		
259	KECOUNT		VERSION 10 - ROUTINE	SCOUNT		SCOUNT		
200	KSDCOS		VERSION TO - ROUTINE	soces		SOCOS		
201	KBEULEH		VERSION IU - ROUTINE	SEULER		SEULER		
202	K81L8		VERSION TO . ROUTINE	51L6		SILS		
263	K81N1T		VERSION 10 - ROUTINE	SINIT		SINIT		
204	KSPATH		VERBION ID - ROUTINE	SPATH		SPATH		
205	KSTV		VERSION TO - ROUTINE	STV		STV		
200	KOVEL OC1		VERSION TO - ROUTINE	SVEL OC1		SVELOC1		
267	KRAEFOCS		VERSION ID - ROUTINE	EVEL OCS		SVELOCE		
208	K SW 1ND		VERSION TO - ROUTINE	SHIND		SHIND		
209	M SY SC OM		VERSION ID - ROUTINE	SYSCOM		SYSCOM		
270	IPCOFL		CONTROLS EXECUTION O	FETUSCR		USER	DSCRT1 DSCRT2	
271	100(1)		CHANGE OVER 1 BUT OF	SIGHA		USER	SETOBER	

SYSTEM COMMON - INTEGER VARIABLES 16.03.78

NUMER	IC ORDER		10:50 MA	R 13.179		PAGE	6
ELEME		TITHAUD	DESCRIPTION	UNITE	CALCULATED	USED	
•••••	NOTE MISSING ELE	MENT NUMBERS					
306	100(32)	CHA	NGE OVER 320UT OF SIGHA		USER	SETOSCR	
30:							
304							
301	LIDACILI	DAC	SOURCE POINTERS, LOOPS		USER	BOACH	
******	NOTE HISSING ELE	MENT NUMBERS	•••				
352	L104C1+8)	DAC	SOUNCE POINTERS, LOOPS		USER	SOACH	
36:	LEDAC(1)	DAC	SOURCE POINTERS, LOOP2		USER	SDACH	
•••••		MENT NUMBERS	•••				
400	L20AC(48)	DAC	SOURCE POINTERS, LOOPS		USER	SDACH	

E.2 Alphabetic order

and the same and the					
SYSTEM	COMMON	-	IN TE GE B	VARIABLES	14.03.78

ALPHABET!	-	10:50 MAR 13,179				
HELLMENT NO.	FONTRAN	QUANTITY	DESCRIPTION	UNITS	CALCULATED	USED
170	1404CL		CONTROLS EXECUTION OF SETCLE		USER	DSCRT2
150	140+SL		CONTROLS EXECUTION OF REAUSER		USER	DSCRT; DSCRT
171	1014(1)		ADA CONTROL LINE 1		USER	SETCLR
100	1CLR(16)		ADA CONTROL LINE 16		USER	SETCLR
271	100(1)		CHANGE DULH 1 OUT OF SIGNA		UBER	SETOSCR
305	100(32)		CHANGE OVER 320UT OF SIGNA		USER	SETDSCR
553	106(1)		DESK SWITCH 1 TO SIGNA		READSCR	INITIAL ISDSCR
254	105(32)		DEBK SHITCH 32 TO SIGNA		HEADSCR	ISDSCR
190	LUSCFL		CONTROLS EXECUTION OF READSCR		USER	DSCRT1 DSCRT2
	ILEFLU		SELECTS ILW BEAMISEE XILSFLG)		INITIAL	SILS
191	19(1)		PATCHABLE DISCRETE 1 TO SIGMA		READSCR	ISDSCR
222	19(32)		PATCHABLE DISCRETE 32 TO SIGNA		READSCR	ISDSCR

SYSTEM COMMON . INTEGER VARIABLES 16.03.78

ALPHABETI	C ORDER		10:50 MAR	13, 179		PAGE	5
ELEMENT NO.	FORTRAN	PYTTHAUD	DESCRIPTION	UNITS	CALCULATED	USED	
270	1 PC OF L		CONTROLS EXECUTION OF SETUSCE		USER	DSCRT1 DSCRT2	
٠	18HR		MINO SHEAM SHAPE(SEE XIGHM)		INITIAL	SHIND	
151	ISLH(1)		AD& BENSE LINE 1		READSLR	USER	
100	1SLR(16)		AD& BENSE LINE 16		READSLR	USER	
	1875		UNIT NO FOR SYSTEM CHANGES		USER	SYSCOM	
	JJCOMP		INITIALISATION COMPLETE FLAG		SCOUNT	SILS STV SHIND	
"	KOSCRT1		VERSION IU - ROUTINE DECRTI		DSCRTI		
76	KOSCRTZ		VERBION IU - ROUTINE DECRTE		DSCRTZ		
	KISA		SELECT ATMOSPHENE VARIATION		USER	SVELOCE	
79	RISDSCR		VERSION TO - ROUTINE ISDSCH		ISDSCR		
200	K SACC BOD		VERSION IN - ROUTINE SACCOOD		SACCBOD		
256	KBACCLIN		VERSION TO - ROUTINE SACCLIN		SACCLIN		

SYSTEM COMMON - INTEGER VANIABLES 16.03.78

ALPHABETI	C ORDER			10:50 MAR 13,179		PAGE 3
ELLMENT NO.	FORTRAN NAME	QUANTITY	DESCRIPTION	UNITS	CALCULATED	IN
257	KSACCHOT	VERSI	ON 10 - ROUTINE	SACCHOT	SACCROT	
75	KSADC	VERSI	ON IU - ROUTINE	SADC	SAUC	
258	KSALFBET	VERSI	ON IU - ROUTINE	SALFBET	SALFBET	
259	KSCOUNT	VERSI	ON IO - ROUTINE	SCOUNT	SCOUNT	
76	KSDAC	VERSI	ON ID - ROUTINE	SUAC	SOAC	
590	KSDCOB	VERSI	ON 10 - ROUTINE	suces	60C 0S	
261	KSEULER	VERSI	ON IU - ROUTINE	SEULER	SEULER	
262	KSILS	VERS1	ON IU - ROUTINE	sira	SILS	
263	KSINIT	VERSI	ON IU - ROUTINE	SINIT	SINIT	
500	KSPATH	VERSI	ON IU - ROUTINE	SPATH	SPATH	
265	KSTV	VERSI	ON ID - ROUTINE	STV	STV	
266	KSVEL OC1	VERSI	ON IU - ROUTINE	SVEL OC1	SVELOC1	
267	KSVEL OC 2	VERSI	ON 10 - ROUTINE	SAET ACS	SVELOC2	
568	KSHIND	VERSI	ON IO - ROUTINE	SHIND	SHIND	

SYSTEM CUMMOY - INTEGER VANIABLES 16.03.78

ALPHABET!	C SHOEM		10:50 MAH	13, 179		PAGE	٠
ELEMENT NO.	FORTRAN NAME	PTITHAUP	DESCRIPTION	UNITS	CALCULATED	USED	
269	KSYSCOM		VERSION ID - ROUTINE SYSCOM		SYSCOM		
305	LIDAC(1)		DAC SOURCE POINTERS, LOOP1		USER	SDACH	
352	L104C(48)		DAC SOUNCE POINTERS, LOOP1		USER	SDACH	
353	L2DAC(1)		DAC SOUNCE POINTERS, LOUP2		USER	SDACH	
•00	LEDAC (+B)		DAC BOUNCE POINTERS, LOOPS		USER	SDACN	
168	LSEED		CONTROLS HANDOM NUMBER SEED		USER	SHIND	
1+8	LSILS		CONTROLS EXECUTION OF SILS		USER	SILS	
81	NADC(1)		ARRAY OF ADC CHANNEL NUMBERS		USER	SADC	
144	NADC(64)		ARRAY OF ADC CHANNEL NUMBERS		USER	SADC	
2	NCPASS		Count of PASSES THRO DEH-TIVE		INITIAL	DER'TIVE SCOUNT	
11	NOAC(1)		POINTER TO VARIABLE FOR DAC 1		USER	SDAC	
74	NOAC(64)		POINTER TO VARIABLE FOR DAC 64		USER	SDAC	
167	NO		SCALE FACTOR IN NOUSTS		USER	SHIND	
,	HIPASS		COUNT OF PASSES TO SULT INTEG		INITIAL	DERTTIVE	

SYSTEM COMMON - INTEGER VANIABLES 16.03.78

ALPHABET!	C DROEM		10:50 MAR 13	, 179		PAGE	•
ELEMENT NO.	FONTRAN NAME	QUANTITY	DESCRIPTION	UNITE	CALCULATED IN	USED	
169	NRUN		CURRENT RUN NO. FROM MAILBOX		SCOUNT		
,	NTVB		TV BELT SELECT		UBER	STV	
,	NUMD		NO. OF DACE TO BE SET FROM IA!		USER	SDAC	
10	NUMY		NA. OF VARIDACS BE SET FHOM IA		USER	SDAC	

Appendix F DESCRIPTION OF PROGRAM COMMLIST

F.1 Introduction

The program COMMLIST produces an index to the variable names used in a large labelled COMMON area. A data record is prepared on cards for each variable name, giving a brief definition of the variable, its units and where it is calculated and used. A collection of such cards (which may be held on a disc file) may be sorted according to a number of criteria, of which the most important are alphabetic order of name and numeric order of element number.

For simulator purposes, two large COMMON areas are in current use, one defining system variables which are the same from simulation to simulation, eg height, speed and the other defining user variables which are entirely specific to the particular aircraft being simulated.

F.2 Input data

F.2.1 Main data record

Column	Purpose	Length
1 - 4	Element number	4 digits
5 - 16	Variable name	12 characters
18 - 47	Description	30 characters
49 - 58	Units	10 characters
60 - 67	Name of routine in which variable is calculated	8 characters
69 - 76	Name of routine in which variable is used	8 characters
78	Continuation indicator	1 character
	blank = no continuation	
	C = continuation .	

In general, no field delimiters are required. However, it may help human reading of data cards to insert a comma between fields. This is allowed, but is optional. The element number should be right justified in its field. A minimum of 2 data cards must be input.

F.2.2 Continuation cards

If the continuation indicator is set (C in column 78), the next card is read for additional 'used in' subroutine names. The format of this continuation card is up to 8 fields of 8 characters, separated by commas, a blank field signifying the end of the list of subroutine names and a field containing Cbbbbbbb signifying continuation on the next card.

008

F.3 Complete job deck

F.3.1 Original data on cards

!JOB SIM, BARRY LIST COMMON VARIABLES

!ATTEND

!COMMLIST

Title card

Selection card

Data cards

!EOD

!FIN

F.3.2 Original data on disc file

It is assumed data cards have been copied to a file by :COPY

!JOB SIM, BARRY LIST COMMON VARIABLES

!ATTEND

!ASSIGN (F:100,DC,RCOMMON)

!COMMLIST

Title card

Selection card

Additional data cards (optional)

! EOD

!FIN

F.3.3 Remarks

Note, in example section F.3.2 above, that although the main input file is taken to be a disc file, data can still be read from the card reader in the same run. This enables additional data cards to be added to and merged with the main file, thus avoiding the need to recreate the main file for every small change in data.

Note also that if original data is on cards only, as in example section F.3.1, device 100 does not need to be assigned to the card reader.

!EOD is essential.

F.3.4 Title card

The 80 characters on this card are printed out as a heading on each page of the output listing exactly as they appear on the card. This enables the user to identify the nature of the information being listed. If the contents of the title card are centred on the card, they will be centred on the listing page.

126 Appendix F

F.3.5 Selection of listing options

Options are specified on a selection card, containing up to 20 words of 4 characters. The options are

Abbb Alphabetic order of variable name

Dbbb Data listed as stored

Nbbb Numeric order according to element number

CbbbSSSSSSS Lists all variables calculated in subroutine SSSSSSSS

UbbbSSSSSSS Lists all variables used in subroutine SSSSSSSS

Xbbb Read next card for additional instructions.

The blanks (b = blank) are essential. There are no field separators.

As many options as desired may be specified. If they will not fit on one selection card, continuation is indicated by the X option.

F.4 Output listings

The output listing reproduces the input information spaced out for better legibility. An extra column labelled 'quantity' is left blank for the insertion of mathematical symbols associated with the variable.

For the alphabetical option, all blank records (ie those with only an element number) are ignored and not printed.

For the numeric option, a warning message is output when an unused element number is encountered.

For options C and U the 'calculated in' or 'used in' columns are omitted, as appropriate.

In the early stages of building a COMMON list, it is worth including data cards containing only an element number. These will be listed by the numeric option and enable details of new variables to be written in on the listing.

Appendices D, E, G and H were produced by the COMMLIST program.

F.5 Arrays

It is recommended that the first and last elements of an array are included as data items, in order to make it clear in the listings which items in the complete list are genuinely unused. COMMLIST will handle arrays of more than one dimension, provided that an element, eg X(12,10) can be fitted into the allowable 12 characters. If this recommendation is adopted, the user will find the warning message 'NOTE MISSING ELEMENT NUMBERS' interspersed between the first and last elements in the numeric order listing.

F.6 Operational considerations

F.6.1 Devices used

DCB	Device	Purpose
100	defaults to card reader	data file
101	console TTY	opening message (!!COMMLIST)
105	card reader	title card
105	card reader	selection (control) cards
105	card reader	extra data
108	line printer	all listings

F.6.2 Messages

F.6.2.1 !!COMMLIST

This message on the console teletype announces the start of execution of COMMLIST.

F.6.2.2 *** NOTE MISSING ELEMENT NUMBERS ***

This is a warning message to draw attention to gaps in the sequence of element numbers.

F.6.2.3 COMMLIST ABORTED - TOO MANY INPUT RECORDS

This message is output on the teletype when too many input records have been read. It is repeated on device 108, supplemented by the last record read.

F.7 Limits on data

This program uses many (23) arrays to hold the input information. These arrays are dimensioned at present to cater for 500 input data cards. However, since the DO loops are in the range I to 1000, the number of input data cards could be increased to 1000 by altering the DIMENSION statements in the program and by increasing JMAX, the limit on the number of records read. Any increase will greatly enlarge the core store needed to run the program, so should not be made unless really necessary. This present limit of 500 applies, of course, to individual variable names, so the program will cope with a user array of 2000 or more locations if many constituents are themselves large arrays, for which it is adequate to include only the first and last elements, as already discussed.

F.8 Location of system COMMON

The raw data for system COMMON variables are held in files on the DC area of the disc. Real variables are in file DC, RCOMMON and integer variables in file DC, ICOMMON. An index listing may therefore be made at any time using the technique of section F.3.2, with the job card

!ASSIGN (F:100,DC, RCOMMON)

or

!ASSIGN (F:100,DC,ICOMMON)

included as required.

Appendix G INDEX TO SYSTEM DATA TO BE PROVIDED BY THE USER, REAL VARIABLES

SYSTEM COMMON - REAL VARIABLES 15-3-78

CALCULATE	O IN USER		10	145 MAR 13,179	PAGE 1
ELEMENT NO.	FORTRAN	QUANTITY	DFACUILION	UNITE	IN
••	xix	m	OMENT OF INERTIA, ROLL	SLUG FT2	SINIT
**	XIV	n	OMENT OF INERTIA, PITCH	SLUG FT2	SINIT
50	xIZ	n	INHENT OF INERTIA, YAN	SLUG FT2	SINIT
61	XIZX		OMENT OF INERTIA. PRODU	CT SLUG FT2	SINIT
91	DELTI	1.	NTEG. STEP LENGTH NO.	1 SECS	INITIAL
92	FRAMETS	•	RAME TIME, LOOP 1	MSEC	INITIAL
95	06172	11	NTEG. STEP LENGTH NO.	2 SECS	INITIAL
96	FRAMETE	•	RAME TIME, LOOP 2	MSEC	INITIAL
78	200	2	C.G. LOCATION		SINIT
99	XCOREF	×	LOCATION OF REF PT		SINIT
100	ZCOMEF	2	LOCATION OF REF PT		SINIT
103	SPAN	1.	ING SPAN	FT	SVELOCS
104	MLTAIL	1.	AIL ARM FHOM M.R.C.	+1	

SYSTEM COMMON - REAL VARIABLES 15.3.78

CALCULATE	D IN USER		10:45 MAR	13,179	PAGE 2
ELEMENT NO.	FORTRAN NAME	PYTTHAUG	DESCRIPTION	UNITS	USED
105	BTAIL		TAIL PLANE AREA	FTZ	
106	SUREF		WING REFERENCE AREA	FTZ	SVELOCS
107	CREF		MEFERENCE CHORD	FT	SVELOCS
109	xP		M LOC OF PILOT REL TO REFCG	FT	STV
110	20		Z LOC OF PILOT REL TO HEFCG	FT	STV
131	XLLTOT		TOTAL MOMENT, ROLL, BODY AXES	LB-FT	SACCROT
135	TOTMIK		TOTAL HOMENT, PITCH, BODY AXES	L8-FT	SACCROT
133	MINTOT		TOTAL MOMENT, YAW, BODY AXES	L8-FT	SACCROT
134	FYX		TOTAL FORCE COMP. IN BODY AXES	LB	SACCLIN SACCBOD
135	FTY		TOTAL FORCE COMP. IN BODY AXES		SACCL IN
136	FTZ		TOTAL FORCE COMP. IN BODY AXES	LB	SACCHOD SACCHOD
169	VSHIPKT		SHIP SPEED	KT	STV

CALCULATE	D IN USER		10:45 MAR	13,179	PAGE 3
ELEMENT.	FONTRAN NAME	QUANTITY	DESCRIPTION	UNITS	USED IN
235	0010		RMS OF TURBULENCE	FT/SEC	CHIMS
236	A010		RMS OF TUNBULENCE	FT/SEC	SHIND
237	M010		ANS OF TURBULENCE	FT/SEC	SHIND
257	X1		COORDINATES OF SLIP BALL (AY1)	FT	SACCBOD
250	¥1		COORDINATES OF SLIP BALL (AY1)	FT	SACCBOD
209	21		COORDINATES OF SLIP BALL (AVI)	FT	SACCBOD
260	xe		COORDINATES OF G METER (AZZ)	FT	SACCBOD
201	45		COORDINATES OF G METER (AZZ)	FT	8400860
242	22		COORDINATES OF G METER (AZZ)	FT	SACCBOD
203	жэ		COORD. OF ACCELEROMETER (AX3)	FT	SACCBOD
244	73		COORD. OF ACCELEROMETER (AX3)	FT	SACCBOD
200	23		COORD. OF ACCELEROMETER (AX3)	FT	SACCBOD
266	X+		COORD. OF ACCELEROMETER (AYA)	FT	SACCHOD
267	**		COORD. OF ACCELEROMETER (AYA)	FT	SACCBOD

SYSTEM COMMON - REAL VARIABLES 15.3.7

CALCULA	TED IN USER		10:45	HAR 13,179	PAGE +
ELEMEN NO.	T FORTRAN	- OUANTITY	DESCRIPTION	UNITS	USED
268	24		OORD. OF ACCELEROMETER I	AY41 FT	SACCEED
269	×s		OORD. OF ACCELEROMETER (A25) FT	SACCBOD
270	75		BORD. OF ACCELEROMETER (AZSI FT	SACCEED
271	25		BORD. OF ACCELEROMETER I	A25) FT	SACCBOD
278	SFRACE		NTERMITTENCY FOR TURBULEN	CE	SHIND
279	BRDECAY		ECAY FACTOR FOR TURBULENCE		SHIND
301	AADC(1)		RRAY OF SCALING FACTORS		SADC
364	AADCIGG		RRAY OF SCALING FACTORS		BADC
501	ADACILI		RRAY OF SCALING FACTORS		SDAC
870P 0	ADAC(++)	(Market)	RRAY OF UCALING FACTORS		SDAC

Appendix H INDEX TO SYSTEM DATA TO BE PROVIDED BY THE USER, INTEGER VARIABLES

BYSTEM COMMON - INTEGER VARIABLES 16.03.7

CALCULATE	D IN USER		10:50 MAR 13, '79	PAGE
ELEMENT NO.	FORTRAN NAME	QUANT ITY	DESCRIPTION UNITS	IN
	KISA		SELECT ATHOSPHENE VARIATION	SAFFOCS
•	1848		UNIT NO FOR SYSTEM CHANGES	SYSCOM
,	NTVS		TV BELT BELECT	STV
•	NUND		No. OF DACE TO BE SET FROM 'A'	SDAC
10	NUNY		NO. OF VARIDACE BE SET FROM 'A'	SDAC
11	NOAC(1)		POINTER TO VARIABLE FOR DAC 1	SDAC
74	NDAC(64)		POINTER TO VARIABLE FOR DAC 64	SDAC
•1	MADC(1)		ARRAY OF ADC CHANNEL NUMBERS	SADC
100	MADCI64)		ARRAY OF ADC CHANNEL NUMBERS	SADC
148	reire		CONTROLS EXECUTION OF SILS	SILS
190	1AD+SL		CONTROLS EXECUTION OF READSLR	DSCRT1 DSCRT2
167	MQ		SCALE FACIOR IN NOUSTS	SWIND
168	LSEED		CONTROLS HANDOM NUMBER SEED	SHIND

SYSTEM COMMON - INTEGER VARIABLES 16.03.78

CA	LCULATE	D IN USER		10:50	0 MAR 13,179	PAGE 2
E	NO.	FORTRAN	DUANTITY	DESCRIPTION	UNITS	USED
	170	1404CL		CONTROLS EXECUTION OF SET	CLR	DSCRT1 DSCRT2
	171	ICLR(1)		ADA CONTROL LINE 1		SETCLR
	186	ICL#(16)		ADA CONTROL LINE 16		SETCLR
	190	106CFL		CONTROLS EXECUTION OF REAL	USCR	DSCRT1 DSCRT2
	270	1PCOFL		CONTROLS EXECUTION OF SET	DSCR	DSCHTI
	271	100(1)		CHANGE OVER 1 OUT OF SIGN		SETOSCR
	302	100(32)		CHANGE OVEN 320UT OF SIGN	A contractor	SETUSCR
	306	LIDAC(1)		DAC SOUNCE POINTERS, LOOPS		SDACH
	305	LIDAC (48)		DAC SOUNCE POINTERS, LOOPS		SDACH
	353	LZDACILI		DAC SOUNCE POINTERS, LOUPS		SDACH
•STOP	+00	L20AC(48)		DAC SOUNCE POINTERS, LOOP2		SOACN

LIST OF SYMBOLS

a	speed of sound
ax,ay,az	accelerations along x, y, z body axes
b	reference wing span
č	mean chord
c _{ref}	reference chord
CI ₁ etc	inertia constants
f	shear factor
F _{TN} , F _{TE} , F _{TD}	applied forces in earth axes
FTX, FTY, FTZ	applied forces in body axes
g	acceleration due to gravity
h	height of centre of gravity
I_x, I_y, I_z, I_{zx}	moments of inertia
L,M,N	total moments
M	Mach number
l ₁ , l ₂ , l ₃ , m ₁ , n ₁ , etc	direction cosines
m	aircraft mass
P	atmospheric pressure
p,q,r	angular velocity components
R _{hp}	vertical distance of pilot's eye above centre of gravity
R	horizontal distance of pilot's eye from centre of gravity
s _{ij}	direction cosines $(S_{11} = \ell_1 \text{ etc})$
s	transformation matrix
S _W	reference wing area
T	atmospheric temperature
u,v,w	velocity components
V	equivalent airspeed
v _K	ground speed
v _T	true airspeed
v_{N}, v_{E}, v_{D}	components of airspeed in earth axes (north, east, down)
VKN, VKE, VKD	components of velocity relative to earth
VW, VWE, VWD	components of total wind velocity relative to earth
WNLØ, WELØ, WDLØ	components of datum mean wind speed in earth axes
VWKTØ	datum mean wind speed
VWNL, VWEL, VWDL	components of mean wind speed at height
W	aircraft weight
x	force along x-axis
x,y,2	positional coordinates

LIST OF SYMBOLS (concluded)

x _p ,z _p	coordinates of pilot's eye point, relative to reference centre of gravity
xpcg,zpcg	coordinates of pilot's eye point, relative to actual centre of gravity
Δx _{cg} , Δz _{cg}	centre of gravity displacements from reference position
α	angle of attack
β	angle of sideslip
Υ	climb angle
θ	pitch attitude
ρ	air density
σ	atmospheric density ratio
φ	bank angle
X	track angle
ψ	heading angle
$^{\psi}$ w	wind direction

Suffices

a	absolute
В	body axes
cg	at, or of, the centre of gravity
G	gusts
L	at arbitrary location
P	pilot
r	ratio
SIG	rms
SL	sea level
T	turbulence
TV	television (for outside world display)
α	ambient

A dot over a variable denotes differentiation with respect to time.

REFERENCES

No.	Author	Title, etc
1	B.N. Tomlinson	Hybrid computing for real-time flight simulation. UKSC 'Conference on Computer Simulation', Bowness-on-Windermere, May 1975. RAE Technical Memorandum FS 73 (1976) Published in 'Simulation Councils Proceedings Series', Vol 6, No.2, December 1976, by The Society for Computer Simulation
2	W.J. Duncan	The principles of the control and stability of aircraft. Cambridge University Press (1952)
3	B. Etkin	Dynamics of flight. John Wiley, New York (1959)
4	H.R. Hopkin	A scheme of notation and nomenclature for aircraft dynamics and associated aerodynamics. RAE Technical Report 66200 (Parts 1-5) (1966) ARC R & M No.3562, Parts 1-5 (1970)
5	R.M. Howe	Coordinate systems for solving the three-dimensional flight equations. WADC Technical Note 55-747, June 1956
6	L.E. Fogarty R.M. Howe	Computer mechanization of six degree-of-freedom flight equations. NASA CR 1344, May 1969
7	R.E. McFarland	A standard kinematic model for flight simulation at NASA-Ames. NASA CR 2497, January 1975
8		The equations of motion of a rigid aircraft. Engineering Sciences Data Item No.67003. Royal Aeronautical Society, September 1966
9		Geometric and kinematic relationships for various axis systems. Engineering Sciences Data Item No.67036
10		Royal Aeronautical Society, September 1967 Direction and incidence angles. Engineering Sciences Data Item No.67037 Royal Aeronautical Society, October 1967

REFERENCES (concluded)

No.	Author	Title, etc
11		Atmospheric data for performance calculations. Engineering Sciences Data Item No.68046 Royal Aeronautical Society, December 1968
12	B.N. Tomlinson	Developments in the simulation of atmospheric turbulence. AGARD Symposium 'Flight Simulation/Guidance Systems
		Simulation'. The Hague, Netherlands, October 1975. AGARD Conference Proceedings CP-198, Paper 19 RAE Technical Memorandum FS 46 (1975)
13	J.G. Jones	Modelling of gusts and wind shear for aircraft assessment and certification.
		Presented at CAARC Symposium on Operational Problems, India. Government of India Aeronautics R & D Board, ARDB-Proc~701 (1976)
14		Xerox SL1 Reference Manual Document 90 16 76B Xerox Data Systems, February 1972
15		Real Time SLI Reference Manual Version A
16		Rank Xerox Data Systems, February 1974 SL1 Technical Manual Document 70 29 46 Xerox Data Systems
17	J.L.M. Robertson	
18	H.E. Bean	Aircraft simulation system. Honeywell Aerospace Report T-331, April 1970
19	B. Etkin	Dynamics of atmospheric flight. John Wiley, New York (1972)

108

REPORTS QUOTED ARE NOT NECESSARILY AVAILABLE, TO MUMBERS OF THE PUBLIC OR TO COMMERCIAL ORGANISATIONS

Fig 1 Block diagram of translational equations

Fig 2 Block diagram of rotational equations

a Individual Flag

b System Flag, JJCOMP

Fig 4 Information flow — rotational motion

Fig 5 Information flow — translational motion

Fig 6 Information flow — utilities

PROGRAM

Set up aircraft data etc Read initial conditions Calculate consequential ICs

END DYNAMIC

DERIVATIVE LOOP 1

Receive inputs from ADC Generate functions Solve differential equations Set up outputs for DAC

END

DERIVATIVE LOOP 2

Solve other differential equations at a different frame rate or with a different integration technique

END

END TERMINAL END

END

Fig 7 SL1 model program structure

a Phases of calculation

* Indicates routine to be supplied by User

Fig 8a-c Execution sequence, single loop

* Indicates routine to be supplied by User

Fig A1 Flow diagram for SILS subroutine

Fig A2 Flow diagram for SINIT subroutine

Fig A3 Flow diagram for 'initial flight path' phase of SINIT

Fig A4 Definition of TV model belt positions

Fig A5 Overall flow diagram of STV subroutine

Fig A6 Flow diagrams of 'initialisation' and 'slew' phase of STV subroutine

Fig A7 Flow diagram of TV belt logic in STV subroutine

Fig A8 Flow diagram of TV position and rate control, STV subroutine

Fig A9 Flow chart of SWIND subroutine

REPORT DOCUMENTATION PAGE

Overall security classification of this page

UNCLASSIFIED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

1. DRIC Reference (to be added by DRIC)	2. Originator's Reference RAE TR 79008	3. Agency Reference N/A	4. Report Security Classification/Marking	
5. DRIC Code for Originato 7673000N		6. Originator (Corporate Author) Name and Location Royal Aircraft Establishment, Farnborough, Hants, UK		
5a. Sponsoring Agency's Co	de 6a. Sponsoring Agen	6a. Sponsoring Agency (Contract Authority) Name and Location N/A		
7. Title SESAME - A modular env	88-20-21 P. 14 14 14 14 14 14 14 14	or the simul	lation of aircraft in a	
7a. (For Translations) Title	in Foreign Language			
7b. (For Conference Papers) Title, Place and Date of Cont	ference		
8. Author 1. Surname, Initials Tomlinson, B.N.	9a. Author 2	9b. Authors	3, 4 Jo. Date Pages Refs 1979 149 19	
11. Contract Number N/A	12. Period N/A	13. Project	14. Other Reference Nos. FS 91	
15. Distribution statement (a) Controlled by — (b) Special limitation	Thead of Flight Syc s (if any) –	bene Departu		
16. Descriptors (Keywords) Simulation. Mati	(Descriptors marketematical modelling.			
			the simulation of an aircraft's parts of the mathematical	

A system of equations has been developed for the simulation of an aircraft's motion in real time using a digital computer. Those parts of the mathematical model common to all aircraft have been created as a set of Fortran subroutines, leaving the user to create only a small group of routines specifically to describe his aircraft. The equations employed are defined and the computer implementation described in detail. The Report can be used as a handbook and user guide but as the routines described are not specific to real-time simulation they could be used as a basis for a general mathematical model of an aircraft for use on any computer which supports Fortran.