CLAIMS

The following is claimed:

1	1. A method for providing encryption for the rerouting of multi-media data flow			
2	packets, comprising the steps of:			
3	assigning a sequence number to a first multi-media data flow packet received by a first			
4	endpoint, wherein said first multi-media data flow packet is within a series of multi-media data			
5	flow packets;			
6	pseudo-randomly shuffling said sequence number of said first multi-media data flow			
7	packet; and			
8	transmitting said pseudo-randomly shuffled sequence number to a second endpoint.			
1	2. The method of claim 1, wherein said multi-media data flow packets are real-time			
2	multi-media data flow packets.			

- The method of claim 1, wherein said pseudo-random shuffling is performed via
- 2 use of randomization code that is algorithmically predictable if a key to said randomization code
- 3 is known.

- 1 4. The method of claim 1, wherein said series of multi-media data flow packets,
- 2 including said first multi-media data flow packet, are assigned sequence numbers that are each
- 3 pseudo-randomly shuffled prior to said transmitting step.

- 5. The method of claim 1, further comprising the step of pseudo-randomly shuffling a destination address of said first multi-media data flow packet.
- 1 6. The method of claim 5, wherein said destination address is a destination port address of said second endpoint.

2

1

2

1

2

- 7. The method of claim 4, further comprising the step of re-sequencing said series of multi-media data flow packets so that said re-sequenced multi-media data flow packets are transmitted from said first endpoint to said second endpoint in a random order.
 - 8. The method of claim 7, wherein said re-sequenced multi-media data flow packets are transmitted within a predefined jitter buffer size.
- 9. The method of claim 1, further comprising the step of performing bit manipulation within said first multi-media data flow packet.
- 1 10. The method of claim 9, wherein said step of performing bit manipulation is 2 performed by using a bitsize operation that is restorable.
- 1 11. The method of claim 10, wherein said bitsize operation uses a negation operator, 2 such that every 1 bit becomes a 0 bit and every 0 bit becomes a 1 bit.

- 12. A system for providing encryption for the rerouting of multi-media data flow packets, comprising:
- means for assigning a sequence number to a first multi-media data flow packet received
- by a first endpoint, wherein said first multi-media data flow packet is within a series of multi-
- 5 media data flow packets;
- 6 means for pseudo-randomly shuffling said sequence number of said first multi-media
- 7 data flow packet; and
- means for transmitting said pseudo-randomly shuffled sequence number to a second endpoint.
 - 13. The system of claim 12, wherein said multi-media data flow packets are real-time multi-media data flow packets.
 - 14. The system of claim 12, wherein said means for pseudo-random shuffling performs said shuffling via use of randomization code that is algorithmically predictable if a key to said randomization code is known.
- 1 15. The system of claim 12, further comprising means for pseudo-randomly shuffling 2 a destination address of said first multi-media data flow packet.
- 1 16. The system of claim 15, wherein said destination address is a destination port 2 address of said second endpoint.

- 1 The system of claim 12, further comprising means for re-sequencing said series of
- 2 multi-media data flow packets so that said re-sequenced multi-media data flow packets are
- transmitted from said first endpoint to said second endpoint in a random order.
- 1 18. The system of claim 17, wherein said re-sequenced multi-media data flow packets
- 2 are transmitted within a predefined jitter buffer size.
- 1 19. The system of claim 12, further comprising means for performing bit
- 2 manipulation within said first multi-media data flow packet.
 - 20. The system of claim 19, wherein said means for performing bit manipulation uses
- 2 a bitsize operation that is restorable.

Marie Radi Gent Pro Marie Radi Radi

- 21. The system of claim 20, wherein said bitsize operation uses a negation operator,
- such that every 1 bit becomes a 0 bit and every 0 bit becomes a 1 bit.

1	22. A system for providing encryption for the rerouting of mutu-media data now
2	packets, comprising:
3	a first endpoint, connected to a second endpoint, wherein said first endpoint
4	comprises;
5	a transceiver;
6	software stored within said first endpoint defining functions to be performed by
7	said first endpoint; and
8	a processor configured by said software to perform the steps of,
9	assigning a sequence number to a first multi-media data flow packet
9 10 11 11	received by a first endpoint, wherein said first multi-media data flow packet is within a series of
11 11	multi-media data flow packets;
型 12	pseudo-randomly shuffling said sequence number of said first multi-media
13	data flow packet; and
14 11	transmitting said pseudo-randomly shuffled sequence number to a second
13 14 14 15	endpoint.
1	23. The system of claim 22, wherein said multi-media data flow packets are real-time
2	multi-media data flow packets.
1	24. The system of claim 22, wherein said multi-media data flow packets are real-time
2	multi-media data flow packets.

2

1

- 1 25. The system of claim 22, wherein said pseudo-random shuffling is performed via
- use of randomization code that is algorithmically predictable if a key to said randomization code 2
- is known. 3
- 26. The system of claim 22, wherein said series of multi-media data flow packets. 1
- including said first multi-media data flow packet, are assigned sequence numbers that are each 2
- pseudo-randomly shuffled prior to said transmitting step. 3
 - 27. The system of claim 22, wherein said processor is further configured by said software to perform the step of pseudo-randomly shuffling a destination address of said first multi-media data flow packet.
 - 28. The system of claim 27, wherein said destination address is a destination port address of said second endpoint.
- 29. The system of claim 26, wherein said processor is further configured by said software to perform the step of re-sequencing said series of multi-media data flow packets so that 2 said re-sequenced multi-media data flow packets are transmitted from said first endpoint to said 3 second endpoint in a random order. 4
- 30. The system of claim 29, wherein said re-sequenced multi-media data flow packets 1 2 are transmitted within a predefined jitter buffer size.

11

wherein said first data flow packet is within a series of data flow packets.

1	35.	A system for providing encryption for the routing of data flow packets,	
2	comprising:		
3	a first	endpoint connected to a second endpoint, wherein said first endpoint comprises:	
4		a transceiver; and	
5		a controller programmed to perform the steps of:	
6		assigning a sequence number to a first multi-media data flow packet	
7	received by a first endpoint, wherein said first multi-media data flow packet is within a series of		
8	multi-media data flow packets;		
9		pseudo-randomly shuffling said sequence number of said first data flow	
10	packet; and		
11		transmitting said pseudo-randomly shuffled sequence number to a second	
12	endpoint.		
13			
14	36.	The system of claim 35, wherein said multi-media data flow packets are real-time	
15	multi-media data flow packets.		
1	37.	The system of claim 35, wherein said series of multi-media data flow packets,	
2	including said first multi-media data flow packet, are assigned sequence numbers that are each		
3	pseudo-randomly shuffled prior to said transmitting step.		

Body draw from the Way from long I talk

- The system of claim 35, wherein said controller is further programmed to perform
- 2 the step of pseudo-randomly shuffling a destination address of said first multi-media data flow
- 3 packet.
- The system of claim 38, wherein said destination address is a destination port
- 2 address of said second endpoint.
 - 40. The system of claim 37, wherein said processor is further configured by said software to perform the step of re-sequencing said series of multi-media data flow packets so that said re-sequenced multi-media data flow packets are transmitted from said first endpoint to said second endpoint in a random order.
 - 41. The system of claim 40, wherein said re-sequenced multi-media data flow packets are transmitted within a predefined jitter buffer size.
- 1 42. The system of claim 35, wherein said controller is further configured to perform 2 the step of performing bit manipulation within said first multi-media data flow packet.
- 1 43. The system of claim 42, wherein said step of performing bit manipulation is 2 performed by using a bitsize operation that is restorable.
- 1 44. The system of claim 43, wherein said bitsize operation uses a negation operator, 2 such that every 1 bit becomes a 0 bit and every 0 bit becomes a 1 bit.