A hierarchical, synoptic, and dynamic seascape framework for observing and understanding biodiversity patterns in marine ecosystems 24 May, 2019

Maria T. Kavanaugh
College of Earth, Ocean, and Atmospheric Science
Oregon State University, USA

Gabrielle Canonico, Francisco Chavez, Paul DiGiacomo, Scott Doney, Jacqueline M. Grebmeier, Burke Hales, Katrin Iken, Enrique Montes, Frank Muller-Karger, Dan Otis, David Siegel, Joaquin Trinanes, Dawn Wright Roger Sayre, Russ Hopcroft, Cheryl Hopcroft, Joaquin Trinanes, Jarrod Santora, Willem Klabjor

Pelagic seascape ecology: framework to relate dynamic habitat to organisms for a global marine biodiversity observing network

Multiplatform Integration Machine Learning:

Satellite remote sensing, ecosystem models

Physics: e.g. SSS, SST, winds, SSHa

Biology: Chl-a, nFLH, CDOM

Global – regional dynamics: Seascape Classification/Prediction

Hierarchical, non-linear, dynamic See also Oliver et al., Devred et al, Platt and Sathyendranath,

Regional comparisons/parameterization: diversity, biogeochemistry, fisheries habitat

Dynamic Seascapes framework: Comparison, rarefaction, methods comparison, seasonal and interannual habitat variability

Method: attribution of uncertainty and the strength of ecotones or ecoclines (frontal regions).

NOAA CoastWatch: Operational Global Coverage Seascape Identity

EBVs

Ecosystem Structure Class

- Habitat Structure
- Habitat Extent
- Habitat Function (time dynamics of seascape identity)

Other Classes: Community Composition Ecosystem Structure

NOAA CoastWatch: Operational Global Coverage Seascape Uncertainty

Science and Management

How well is the system characterized? How do we quantify atypical?

Where do we need better/more in situ data to classify habitat?

http://cwcgom.aoml.noaa.gov/cgom/OceanViewer/#

NOAA CoastWatch, NASA Coverage, MBON Explorer

Continuity: Comparisons between MODIS and VIIRS have been excellent

Opportunity for local downscaling case

studies

Paul DiGiacomo, Michael Sarocco and Joaquin Trinanes, Vardis Tsontos and Jorge Vazquez, JPL, Axiom

The CEOS Ocean Variables
Enabling Research and
Applications for GEO (COVERAGE)
Initiative

Dynamic Seascapes Metadata: Class ID, mean and variance of state, & dominant latitude, hemisphere and season

								NFLH (W m^-				
SEASCAPE ID						CDOM (m^-		2 um^-1 sr^-			DOMINANT	
NUMBER	NOMINAL DESCRIPTOR	SST (°C)	SSS (psu)	ADT (m)	ICE (%)	1)	m^-3)	1)	NFLH:CHL	LATITUDE	HEMISPHERE	DOMINANT SEASON
	NORTH ATLANTIC SPRING, ACC											
1	TRANSITION	5.08	34.18	-0.37	0	0.01	0.21	0.08	0.37	SUBPOLAR	SOUTH	SPRING-AUTUMN
2	SUBPOLAR TRANSITION	12.23	34.43	0.5	0	0.01	0.12	0.06	0.51	TEMPERATE	SOUTH	YEAR ROUND
	TROPICAL SUBTROPICAL											
3	TRANSITION	24.12	35.34	0.68	0	0.01	0.15	0.06	0.4	TROPICAL	ВОТН	YEAR ROUND
	WESTERN WARM POOL											
4	SUBTROPICAL	28.25	34.4	1.1	0	0	0.06	0.05	0.79	SUBTROPICAL	ВОТН	AUTUMN
5	SUBTROPICAL GYRE TRANSITION	23.95	35.89	0.71	0	0	0.07	0.04	0.5	SUBTROPICAL TEI		AUTUMN-WINTER
6	ACC, NUTRIENT STRESS	1.38	34.01	-1	0	0.01	0.18	0.07	0.42	SUBPOLAR POLA	R SOUTH	WINTER
7	TEMPERATE TRANSITION	12.98	34.72	0.37	0	0.01	0.28	0.11	0.41	TEMPERATE	ВОТН	WINTER
8	INDOPACIFIC SUBTROPICAL GYRE	25.13	34.52	0.99	0	0	0.07	0.02	0.34	SUBTROPICAL	вотн	YEAR ROUND
9	EQUATORIAL TRANSITION	28.01	33.84	0.86	0	0.01	0.14	0.05	0.37	TROPICAL	вотн	YEAR ROUND
	HIGHLY OLIGOTROPHIC											
10	SUBTROPICAL GYRE	23.85	35.64	0.87	0	0	0.04	0.03	0.79	SUBTROPICAL	SOUTH	SUMMER
	TROPICAL/SUBTROPICAL											
11	UPWELLING	22.94	34.79	0.83	0	0.01	0.27	0.11	0.39	TROPICAL,SUBTR	ОВОТН	WINTER
12	SUBPOLAR	8.62	32.91	0.3	0	0.02	0.37	0.08	0.22	TEMPERATE/SUB	PIBOTH	YEAR ROUND
	SUBTROPICAL GYRE MESOSCALE											
13	INFLUENCED	23.47	35.89	0.52	0	0.01	0.1	0.02	0.19	SUBTROPICAL TEI	МВОТН	SPRING-SUMMER
14	TEMPERATE BLOOMS UPWELLING	9.95	33.91	-0.01	0	0.03	0.84	0.16	0.19	TEMPERATE/SUB	PIBOTH	SPRING SUMMER
15	TROPICAL SEAS	25.35	35.4	0.51	0	0.02	0.32	0.06	0.2	TROPICAL/SUBTR	RC BOTH	WINTER
16	MEDITTERANEAN RED SEA	18.74	37.87	0.03	0	0.02	0.22	0.05	0.22	SUBTROPICAL/TE	NORTH	WINTER
	SUBTROPICAL TRANSITION LOW											
17	NUTRIENT STRESS	20.89	33.59	0.64	0	0.01	0.17	0.02	0.15	TROPICAL/SUBTR	RC NORTH	SUMMER
18	MEDITTERANEAN RED SEA	21.94	37.72	-0.05	0	0.01	0.11	0.01	0.1	TEMPERATE/SUBI	P(BOTH	SPRING-SUMMER
19	ARTIC/ SUBPOLAR SHELVES	7.63	31.55	0.15	0	0.05	1.19	0.11	0.09	TEMPERATE/SUB	P(BOTH	YEAR ROUND
	SUBTROPICAL, FRESH INFLUENCED											
20	COASTAL	27.45	31.82	0.88	0	0.02	0.34	0.06	0.18	SUBTROPICAL	NORTH	WINTER/YEAR-ROUN
21	WARM, BLOOMS, HIGH NUTS	22.54	34.46	0.57	0	0.07	2.09	0.24	0.12	TROPICAL/SUBTR	RC BOTH	WINTER/YEAR-ROUN
22	ARCTIC LATE SUMMER	6.26	30.1	-0.09	0.43	0.03	0.47	0.03	0.06	SUBPOLAR/POLA	R NORTH	SUMMER
	FRESHWATER INFLUENCED											
		_	^									1

Regional Case Study: Arctic Marine Biodiversity Observing Network

Spatial Extent (km ^2)

8 × 10⁵

Dominant Seascape: Spatial Variability

Areal extent of habitat in Beaufort (top) and Chukchi (bottom)

Distributed Biological Observatory: Do satellite seascapes reflect meaningful benthic patterns?

Dominant Seascape (July): DBO sites 2013 and 2014

Benthic Temp and Salinity
Depth= 40-130 m

Regional Case Study: Arctic Marine Biodiversity Observing Network

Dataset: Zooplankton community structure 2008-2015

- ➤ 174 Unique Taxa
- ➤ ~1800 samples Current analysis: 0-50 m 150 mesh, Septembers

Florida: Seascapes plan ship-based studies & describe unique microplankton assemblages

Florida Keys NMS: RV Walton Smith

Phytoplankton community structure varies with seascape

Enrique Montes et al., soon to be submitted

California: Seascapes as fish habitat indicator Forage fish abundance and occupancy across seascapes

Collaboration with NOAA Southwest Fisheries Science Center Monterey Bay National Marine Sanctuary
Will Klabjor, Marine Resource Management MS

SBCLTER MBON: Biomarker Pigment Time Series

SBCLTER MBON: Biomarker Pigment Time Series

MBON Pole to Pole Montes et al.

Littoral zone biodiversity monitoring across Americas

Community of Practice: sharing and synthesis
Building access and understanding of ocean remote sensing
Science informing management (re-zoning of Galapagos marine reserves)

Anticipating Illegal, Unreported, Unregulated (IUU) Activities: James Watson, John Woodill OSU

Does the fleet respond to dynamic features?

Testing hypotheses in the Northern California Current: Regional Capacity building, NH line (1993- present) context How portable is the MBON?

Dynamic seascapes: global M(arine)-BON

Ongoing: Satellite-derived seascapes provide a metric of pelagic habitat geography (extent, location, representativeness) to inform EBV process

Continue to test hypotheses across ecosystems, trophic levels, occupancy metrics, and species distribution models.

Partnership with ESRI/USGS for EMU seascape comparison

Matt Oliver (University of Delaware)- global classification comparisons

Real-time monitoring and adaptive management: Axiom and NOAA Coastwatch, MBON Explored, and NASA COVERAGE

Global to regional trends: local variability and local products

Global classification

- Globally relevant variables:
- SST, chl-a, nFLH, SSH, SSS
- Seasonal, >9km resolution
- N=15 30 (variable dependent)

Systematic Hierarchical Downscaling

- Sequential MANOVA: regional domain using global seascapes (gSS)
- 7 regional SS (70%) > 20 gSS
- 12 regional SS (75%) > 50 gSS

Regional dynamic maps

Research to transition? Dynamic seascapes improve skill, models have fewer empirical parameters

A synoptic time series of carbonate system parameters from space is cool, but Is it useful for ecology?

