SEQUENCE LISTING

GENERAL INFORMATION:

(i) APPLICANT: ANDERSON, Darrell R. HANNA, Nabil

LEONARD, John E. NEWMAN, Roland A. REFF, Mitchell E. RASTETTER, William H.

- (ii) TATLE OF INVENTION: THERAPEUTIC APPLICATION OF CHIMERIC AND RADIOLABELED ANTIBODIES TO HUMAN B LYMPHOCYTE RESTRICTED DIFFERENTIATION ANTIGEN FOR THE TREATMENT OF B CELL L**X**MPHOMA
- (iii) NUMBER OF SEQUENCES: 11
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BURNS, DOANE, SWECKER & MATHIS, L.L.P.
 - (B) STREET P.O. Box 1404
 - (C) CITY: Alexandria
 - (D) STATE: Vikginia
 - (E) COUNTRY: United States
 - (F) ZIP: 22313-1404
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PG-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 0 921,060
 - (B) FILING DATE: 29-AUG-1997
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/149, 299
 - (B) FILING DATE: 03-NOV-1993
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/978,891
 - (B) FILING DATE: 13-NOV-1992
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Teskin, Robin L.
 - (B) REGISTRATION NUMBER: 35,030
 - (C) REFERENCE/DOCKET NUMBER: 012712-432
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 836-6620
 - (B) TELEFAX: (703) 836-2021

(A) LENGTH. 27 Sand T (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	27
GGGAGCTTGG ATCGATCCTC TATGGTT	
(2) INFORMATION FOR SEQ ID NO:2:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8540 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	60
GACGTCGCGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAG	60
AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA TGCATGGGGC	120
GGAGAATGGG CGGAACTGGG CGGAGTTAGG GGCGGGATGG GCGGAGTTAG GGGCGGGACT	180
ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCATACTTC TGCCTGCTGG GGAGCCTGGG	240
GACTTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT	300
GACTITCCAC ACCIGNITOS GACTITCCAC ACCICNITOS GACTITCCAC ACCICNITOS GACTITCCAC ACCICNITOS GACTITCCAC ACCICNITOS GACTITCCAC ACCICNITOS GACTITCAC G	360
GGGGAGCCTG GGGACTTTCC TESTS AGTTATTAAT AGTAATCAAT TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC	420
AGTTATTAAT AGTAATCAAT TACGGGGGTAAA TAGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG	480
GTTACATAAC TTACGGTAAA TGGCCCGCCT OOO ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA	540
ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCATATTO TGGGTGGACT ATTTACGGTA AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA	600

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs

660 AGTACGCCCC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC 720 ATGGTGATGC GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 780 TTTCCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG 840 GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC AAATGGGCGG TAGGCGTGTA 900 CGGTGGGAGG TCTATATAAG CAGAGCTGGG TACGTGAACC GTCAGATCGC CTGGAGACGC 960 CATCACAGAT CTCTCACCAT GAGGGTCCCC GCTCAGCTCC TGGGGCTCCT GCTGCTCTGG 1020 CTCCCAGGTG CACGATGTGA TGGTACCAAG GTGGAAATCA AACGTACGGT GGCTGCACCA 1080 TCTGTCTTCA TCTTCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACTGC CTCTGTTGTG 1140 TGCCTGCTGA ATAACTTCTA TCCCAGAGAG GCCAAAGTAC AGTGGAAGGT GGATAACGCC 1200 CTCCAATCGG GTAACTCCCA GGAGAGTGTC ACAGAGCAGG ACAGCAAGGA CAGCACCTAC 1260 1320 AGCCTCAGCA GCACCCTGAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC TGCGAAGTCA CCCATCAGGG CCTGAGCTCG CCCGTCACAA AGAGCTTCAA CAGGGGAGAG 1380 TGTTGAATTC AGATCCGTTA ACGGTTACCA ACTACCTAGA CTGGATTCGT GACAACATGC 1440 GGCCGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1500 GTTTGCCCCT CCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCTTTCC 1560 TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1620 GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1680 GCGGTGGGCT CTATGGAACC AGCTGGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 1740 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGGACT 1800 TTCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT 1860 GGCAGTACAT CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC 1920 CCATTGACGT CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC 1980 GTAACAACTC CGCCCCATTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2040 2100 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCGAC ATGGGTTGGA GCCTCATCTT GCTCTTCCTT GTCGCTGTTG CTACGCGTGT CGCTAGCACC 2160 2220 AAGGGCCCAT CGGTCTTCCC CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG GCCCTGGGCT GCCTGGTCAA GGACTACTTC CCCGAACCGG TGACGGTGTC GTGGAACTCA 2280 GGCGCCCTGA CCAGCGGCGT GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC 2340 TCCCTCAGCA GCGTGGTGAC CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC 2400 AACGTGAATC ACAAGCCCAG CAACACCAAG GTGGACAAGA AAGCAGAGCC CAAATCTTGT 2460 GACAAAACTC ACACATGCCC ACCGTGCCCA GCACCTGAAC TCCTGGGGGG ACCGTCAGTC 2520 TTCCTCTTCC CCCCAAAACC CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTCACA 2580 TGCGTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG GTACGTGGAC 2640 GGCGTGGAGG TGCATAATGC CAAGACAAAG CCGCGGGAGG AGCAGTACAA CAGCACGTAC 2700 CGTGTGGTCA GCGTCCTCAC CGTCCTGCAC CAGGACTGGC TGAATGGCAA GGACTACAAG 2760 TGCAAGGTCT CCAACAAAGC CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA 2820 GGGCAGCCCC GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGATGA GCTGACCAGG 2880 AACCAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT CGCCGTGGAG 2940 TGGGAGAGCA ATGGGCAGCC GGAGAACAAC TACAAGACCA CGCCTCCCGT GCTGGACTCC 3000 GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG GCAGCAGGGG 3060 AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC 3120 CTCTCCCTGT CTCCGGGTAA ATGAGGATCC GTTAACGGTT ACCAACTACC TAGACTGGAT 3180 TCGTGACAAC ATGCGGCCGT GATATCTACG TATGATCAGC CTCGACTGTG CCTTCTAGTT 3240 GCCAGCCATC TGTTGTTTGC CCCTCCCCG TGCCTTCCTT GACCCTGGAA GGTGCCACTC 3300 CCACTGTCCT TTCCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT 3360 CTATTCTGGG GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA GACAATAGCA 3420 GGCATGCTGG GGATGCGGTG GGCTCTATGG AACCAGCTGG GGCTCGACAG CGCTGGATCT 3480 CCCGATCCCC AGCTTTGCTT CTCAATTTCT TATTTGCATA ATGAGAAAAA AAGGAAAATT 3540 AATTTTAACA CCAATTCAGT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 3600 AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC CCAGAGCTGA 3660 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT CATCACCGAA 3720 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 3780 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATTTGCTT 3840 CTGACATAGT TGTGTTGGGA GCTTGGATAG CTTGGACAGC TCAGGGCTGC GATTTCGCGC 3900 CAAACTTGAC GGCAATCCTA GCGTGAAGGC TGGTAGGATT TTATCCCCGC TGCCATCATG 3960

GTTCGACCAT TGAACTGCAT CGTCGCCGTG TCCCAAAATA TGGGGATTGG CAAGAACGGA 4020 GACCTACCCT GGCCTCCGCT CAGGAACGAG TTCAAGTACT TCCAAAGAAT GACCACAACC 4080 TCTTCAGTGG AAGGTAAACA GAATCTGGTG ATTATGGGTA GGAAAACCTG GTTCTCCATT 4140 CCTGAGAACA ATCGACCTTT AAAGGACAGA ATTAATATAG TTCTCAGTAG AGAACTCAAA 4200 GAACCACCAC GAGGAGCTCA TTTTCTTGCC AAAAGTTTGG ATGATGCCTT AAGACTTATT 4260 GAACAACCGG AATTGGCAAG TAAAGTAGAC ATGGTTTGGA TAGTCGGAGG CAGTTCTGTT 4320 TACCAGGAAG CCATGAATCA ACCAGGCCAC CTTAGACTCT TTGTGACAAG GATCATGCAG 4380 4440 GAATTTGAAA GTGACACGTT TTTCCCAGAA ATTGATTTGG GGAAATATAA ACTTCTCCCA GAATACCCAG GCGTCCTCTC TGAGGTCCAG GAGGAAAAAG GCATCAAGTA TAAGTTTGAA 4500 GTCTACGAGA AGAAAGACTA ACAGGAAGAT GCTTTCAAGT TCTCTGCTCC CCTCCTAAAG 4560 TCATGCATTT TTATAAGACC ATGGGACTTT TGCTGGCTTT AGATCAGCCT CGACTGTGCC 4620 TTCTAGTTGC CAGCCATCTG TTGTTTGCCC CTCCCCCGTG CCTTCCTTGA CCCTGGAAGG 4680 TGCCACTCCC ACTGTCCTTT CCTAATAAAA TGAGGAAATT GCATCGCATT GTCTGAGTAG 4740 GTGTCATTCT ATTCTGGGGG GTGGGGTGGG GCAGGACAGC AAGGGGGAGG ATTGGGAAGA 4800 CAATAGCAGG CATGCTGGGG ATGCGGTGGG CTCTATGGAA CCAGCTGGGG CTCGAGCTAC 4860 TAGCTTTGCT TCTCAATTTC TTATTTGCAT AATGAGAAAA AAAGGAAAAT TAATTTTAAC 4920 4980 ACCAATTCAG TAGTTGATTG AGCAAATGCG TTGCCAAAAA GGATGCTTTA GAGACAGTGT TCTCTGCACA GATAAGGACA AACATTATTC AGAGGGAGTA CCCAGAGCTG AGACTCCTAA 5040 GCCAGTGAGT GGCACAGCAT TCTAGGGAGA AATATGCTTG TCATCACCGA AGCCTGATTC 5100 CGTAGAGCCA CACCTTGGTA AGGGCCAATC TGCTCACACA GGATAGAGAG GGCAGGAGCC 5160 AGGGCAGAGC ATATAAGGTG AGGTAGGATC AGTTGCTCCT CACATTTGCT TCTGACATAG 5220 TTGTGTTGGG AGCTTGGATC GATCCTCTAT GGTTGAACAA GATGGATTGC ACGCAGGTTC 5280 TCCGGCCGCT TGGGTGGAGA GGCTATTCGG CTATGACTGG GCACAACAGA CAATCGGCTG 5340 CTCTGATGCC GCCGTGTTCC GGCTGTCAGC GCAGGGGCGC CCGGTTCTTT TTGTCAAGAC 5400 CGACCTGTCC GGTGCCCTGA ATGAACTGCA GGACGAGGCA GCGCGGCTAT CGTGGCTGGC 5460 CACGACGGC GTTCCTTGCG CAGCTGTGCT CGACGTTGTC ACTGAAGCGG GAAGGGACTG 5520 5580 GCTGCTATTG GGCGAAGTGC CGGGGCAGGA TCTCCTGTCA TCTCACCTTG CTCCTGCCGA GAAAGTATCC ATCATGGCTG ATGCAATGCG GCGGCTGCAT ACGCTTGATC CGGCTACCTG 5640 CCCATTCGAC CACCAAGCGA AACATCGCAT CGAGCGAGCA CGTACTCGGA TGGAAGCCGG 5700 TCTTGTCGAT CAGGATGATC TGGACGAAGA GCATCAGGGG CTCGCGCCAG CCGAACTGTT 5760 CGCCAGGCTC AAGGCGCGCA TGCCCGACGG CGAGGATCTC GTCGTGACCC ATGGCGATGC 5820 CTGCTTGCCG AATATCATGG TGGAAAATGG CCGCTTTTCT GGATTCATCG ACTGTGGCCG 5880 GCTGGGTGTG GCGGACCGCT ATCAGGACAT AGCGTTGGCT ACCCGTGATA TTGCTGAAGA 5940 GCTTGGCGGC GAATGGGCTG ACCGCTTCCT CGTGCTTTAC GGTATCGCCG CTTCCCGATT 6000 CGCAGCGCAT CGCCTTCTAT CGCCTTCTTG ACGAGTTCTT CTGAGCGGGA CTCTGGGGTT 6060 CGAAATGACC GACCAAGCGA CGCCCAACCT GCCATCACGA GATTTCGATT CCACCGCCGC 6120 CTTCTATGAA AGGTTGGGCT TCGGAATCGT TTTCCGGGAC GCCGGCTGGA TGATCCTCCA 6180 GCGCGGGGAT CTCATGCTGG AGTTCTTCGC CCACCCCAAC TTGTTTATTG CAGCTTATAA 6240 TGGTTACAAA TAAAGCAATA GCATCACAAA TTTCACAAAT AAAGCATTTT TTTCACTGCA 6300 TTCTAGTTGT GGTTTGTCCA AACTCATCAA TCTATCTTAT CATGTCTGGA TCGCGGCCGC 6360 GATCCCGTCG AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCCTGTGTG AAATTGTTAT 6420 CCGCTCACAA TTCCACACAA CATACGAGCC GGAGCATAAA GTGTAAAGCC TGGGGTGCCT 6480 AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGGAA 6540 ACCTGTCGTG CCAGCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC GGTTTGCGTA 6600 TTGGGCGCTC TTCCGCTTCC TCGCTCACTG ACTCGCTGCG CTCGGTCGTT CGGCTGCGGC 6660 GAGCGGTATC AGCTCACTCA AAGGCGGTAA TACGGTTATC CACAGAATCA GGGGATAACG 6720 CAGGAAAGA CATGTGAGCA AAAGGCCAGC AAAAGGCCAG GAACCGTAAA AAGGCCGCGT 6780 TGCTGGCGTT TTTCCATAGG CTCCGCCCCC CTGACGAGCA TCACAAAAAT CGACGCTCAA 6840 GTCAGAGGTG GCGAAACCCG ACAGGACTAT AAAGATACCA GGCGTTTCCC CCTGGAAGCT 6900 CCCTCGTGCG CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC GCCTTTCTCC 6960 CTTCGGGAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTAGG 7020 TCGTTCGCTC CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC CGCTGCGCCT 7080 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG 7140 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTTGA 7200 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA 7260 AGCCAGTTAC CTTCGGAAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG 7320 GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG 7380 AAGATCCTTT GATCTTTTCT ACGGGGTCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG 7440 GGATTTTGGT CATGAGATTA TCAAAAAGGA TCTTCACCTA GATCCTTTTA AATTAAAAAT 7500 GAAGTTTTAA ATCAATCTAA AGTATATATG AGTAAACTTG GTCTGACAGT TACCAATGCT 7560 TAATCAGTGA GGCACCTATC TCAGCGATCT GTCTATTTCG TTCATCCATA GTTGCCTGAC 7620 TCCCCGTCGT GTAGATAACT ACGATACGGG AGGGCTTACC ATCTGGCCCC AGTGCTGCAA 7680 TGATACCGCG AGACCCACGC TCACCGGCTC CAGATTTATC AGCAATAAAC CAGCCAGCCG 7740 GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA CTTTATCCGC CTCCATCCAG TCTATTAATT 7800 GTTGCCGGGA AGCTAGAGTA AGTAGTTCGC CAGTTAATAG TTTGCGCAAC GTTGTTGCCA 7860 TTGCTACAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT 7920 CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 7980 TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 8040 CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG 8100 AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 8160 CGTCAATACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA 8220 AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 8280 AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT 8340 8400 GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 8460 TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 8520 TTCCCCGAAA AGTGCCACCT 8540

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9209 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GACGTCGCGG	CCGCTCTAGG	CCTCCAAAAA	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG	60
AGGCCGAGGC	GGCCTCGGCC	TCTGCATAAA	TAAAAAAAT	TAGTCAGCCA	TGCATGGGGC	120
GGAGAATGGG	CGGAACTGGG	CGGAGTTAGG	GGCGGGATGG	GCGGAGTTAG	GGGCGGGACT	180
ATGGTTGCTG	ACTAATTGAG	ATGCATGCTT	TGCATACTTC	TGCCTGCTGG	GGAGCCTGGG	240
GACTTTCCAC	ACCTGGTTGC	TGACTAATTG	AGATGCATGC	TTTGCATACT	TCTGCCTGCT	300
GGGGAGCCTG	GGGACTTTCC	ACACCCTAAC	TGACACACAT	TCCACAGAAT	TAATTCCCCT	360
AGTTATTAAT	AGTAATCAAT	TACGGGGTCA	TTAGTTCATA	GCCCATATAT	GGAGTTCCGC	420
GTTACATAAC	TTACGGTAAA	TGGCCCGCCT	GGCTGACCGC	CCAACGACCC	CCGCCCATTG	480
ACGTCAATAA	TGACGTATGT	TCCCATAGTA	ACGCCAATAG	GGACTTTCCA	TTGACGTCAA	540
TGGGTGGACT	ATTTACGGTA	AACTGCCCAC	TTGGCAGTAC	ATCAAGTGTA	TCATATGCCA	600
AGTACGCCCC	CTATTGACGT	CAATGACGGT	AAATGGCCCG	CCTGGCATTA	TGCCCAGTAC	660
ATGACCTTAT	GGGACTTTCC	TACTTGGCAG	TACATCTACG	TATTAGTCAT	CGCTATTACC	720
ATGGTGATGC	GGTTTTGGCA	GTACATCAAT	GGGCGTGGAT	ACCGGTTTGA	CTCACGCGGA	780
TTTCCAAGTC	TCCACCCCAT	TGACGTCAAT	GGGAGTTTGT	TTTGGCACCA	AAATCAACGG	840
GACTTTCCAA	AATGTCGTAA	CAACTCCGCC	CCATTGACGC	AAATGGGCGG	TAGGCGTGTA	900
CGGTGGGAGG	TCTATATAAG	CAGAGCTGGG	TACGTGAACC	GTCAGATCGC	CTGGAGACGC	960
CATCACAGAT	CTCTCACTAT	GGATTTTCAG	GTGCAGATTA	TCAGCTTCCT	GCTAATCAGT	1020
GCTTCAGTCA	TAATGTCCAG	AGGACAAATT	GTTCTCTCCC	AGTCTCCAGC	AATCCTGTCT	1080
GCATCTCCAG	GGGAGAAGGT	CACAATGACT	TGCAGGGCCA	GCTCAAGTGT	AAGTTACATC	1140
CACTGGTTCC	AGCAGAAGCC	AGGATCCTCC	CCCAAACCCT	GGATTTATGC	CACATCCAAC	1200
CTGGCTTCTG	GAGTCCCTGT	TCGCTTCAGT	GGCAGTGGGT	CTGGGACTTC	TTACTCTCTC	1260
ACAATCAGCA	GAGTGGAGGC	TGAAGATGCT	GCCACTTATT	ACTGCCAGCA	GTGGACTAGT	1320
AACCCACCCA	CGTTCGGAGG	GGGGACCAAG	CTGGAAATCA	AACGTACGGT	GGCTGCACCA	1380
TCTGTCTTCA	TCTTCCCGCC	ATCTGATGAG	CAGTTGAAAT	CTGGAACTGC	CTCTGTTGTG	1440
TGCCTGCTGA	ATAACTTCTA	TCCCAGAGAG	GCCAAAGTAC	AGTGGAAGGT	GGATAACGCC	1500

CTCCAATCGG GTAACTCCCA GGAGAGTGTC ACAGAGCAGG ACAGCAAGGA CAGCACCTAC 1560 AGCCTCAGCA GCACCCTGAC GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC 1620 TGCGAAGTCA CCCATCAGGG CCTGAGCTCG CCCGTCACAA AGAGCTTCAA CAGGGGAGAG 1680 TGTTGAATTC AGATCCGTTA ACGGTTACCA ACTACCTAGA CTGGATTCGT GACAACATGC 1740 GGCCGTGATA TCTACGTATG ATCAGCCTCG ACTGTGCCTT CTAGTTGCCA GCCATCTGTT 1800 GTTTGCCCCT CCCCCGTGCC TTCCTTGACC CTGGAAGGTG CCACTCCCAC TGTCCTTTCC 1860 TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT TCTGGGGGGT 1920 GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA TGCTGGGGAT 1980 GCGGTGGGCT CTATGGAACC AGCTGGGGCT CGACAGCTAT GCCAAGTACG CCCCCTATTG 2040 ACGTCAATGA CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGGACT 2100 TTCCTACTTG GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT 2160 GGCAGTACAT CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC 2220 CCATTGACGT CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC 2280 GTAACAACTC CGCCCCATTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA 2340 TAAGCAGAGC TGGGTACGTC CTCACATTCA GTGATCAGCA CTGAACACAG ACCCGTCGAC 2400 ATGGGTTGGA GCCTCATCTT GCTCTTCCTT GTCGCTGTTG CTACGCGTGT CCTGTCCCAG 2460 GTACAACTGC AGCAGCCTGG GGCTGAGCTG GTGAAGCCTG GGGCCTCAGT GAAGATGTCC 2520 TGCAAGGCTT CTGGCTACAC ATTTACCAGT TACAATATGC ACTGGGTAAA ACAGACACCT 2580 GGTCGGGGCC TGGAATGGAT TGGAGCTATT TATCCCGGAA ATGGTGATAC TTCCTACAAT 2640 CAGAAGTTCA AAGGCAAGGC CACATTGACT GCAGACAAAT CCTCCAGCAC AGCCTACATG 2700 CAGCTCAGCA GCCTGACATC TGAGGACTCT GCGGTCTATT ACTGTGCAAG ATCGACTTAC 2760 TACGGCGGTG ACTGGTACTT CAATGTCTGG GGCGCAGGGA CCACGGTCAC CGTCTCTGCA 2820 GCTAGCACCA AGGGCCCATC GGTCTTCCCC CTGGCACCCT CCTCCAAGAG CACCTCTGGG 2880 GGCACAGCGG CCCTGGGCTG CCTGGTCAAG GACTACTTCC CCGAACCGGT GACGGTGTCG 2940 TGGAACTCAG GCGCCCTGAC CAGCGGCGTG CACACCTTCC CGGCTGTCCT ACAGTCCTCA 3000 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAGCTTGGG CACCCAGACC 3060 TACATCTGCA ACGTGAATCA CAAGCCCAGC AACACCAAGG TGGACAAGAA AGCAGAGCCC 3120 AAATCTTGTG ACAAAACTCA CACATGCCCA CCGTGCCCAG CACCTGAACT CCTGGGGGGA 3180 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 3240 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 3300 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAC 3360 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCTGCACC AGGACTGGCT GAATGGCAAG 3420 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 3480 AAAGCCAAAG GGCAGCCCCG AGAACCACAG GTGTACACCC TGCCCCCATC CCGGGATGAG 3540 CTGACCAAGA ACCAGGTCAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC 3600 GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC GCCTCCCGTG 3660 CTGGACTCCG ACGGCTCCTT CTTCCTCTAC AGCAAGCTCA CCGTGGACAA GAGCAGGTGG 3720 CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG ATGCATGAGG CTCTGCACAA CCACTACACG 3780 CAGAAGAGCC TCTCCCTGTC TCCGGGTAAA TGAGGATCCG TTAACGGTTA CCAACTACCT 3840 AGACTGGATT CGTGACAACA TGCGGCCGTG ATATCTACGT ATGATCAGCC TCGACTGTGC 3900 CTTCTAGTTG CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG 3960 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT TGTCTGAGTA 4020 GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG CAAGGGGGAG GATTGGGAAG 4080 ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGA ACCAGCTGGG GCTCGACAGC 4140 GCTGGATCTC CCGATCCCCA GCTTTGCTTC TCAATTTCTT ATTTGCATAA TGAGAAAAAA 4200 AGGAAAATTA ATTTTAACAC CAATTCAGTA GTTGATTGAG CAAATGCGTT GCCAAAAAGG 4260 ATGCTTTAGA GACAGTGTTC TCTGCACAGA TAAGGACAAA CATTATTCAG AGGGAGTACC 4320 CAGAGCTGAG ACTCCTAAGC CAGTGAGTGG CACAGCATTC TAGGGAGAAA TATGCTTGTC 4380 ATCACCGAAG CCTGATTCCG TAGAGCCACA CCTTGGTAAG GGCCAATCTG CTCACACAGG 4440 ATAGAGAGG CAGGAGCCAG GGCAGAGCAT ATAAGGTGAG GTAGGATCAG TTGCTCCTCA 4500 CATTTGCTTC TGACATAGTT GTGTTGGGAG CTTGGATAGC TTGGACAGCT CAGGGCTGCG 4560 ATTTCGCGCC AAACTTGACG GCAATCCTAG CGTGAAGGCT GGTAGGATTT TATCCCCGCT 4620 GCCATCATGG TTCGACCATT GAACTGCATC GTCGCCGTGT CCCAAAATAT GGGGATTGGC 4680 AAGAACGGAG ACCTACCCTG GCCTCCGCTC AGGAACGAGT TCAAGTACTT CCAAAGAATG 4740 ACCACAACCT CTTCAGTGGA AGGTAAACAG AATCTGGTGA TTATGGGTAG GAAAACCTGG 4800 TTCTCCATTC CTGAGAAGAA TCGACCTTTA AAGGACAGAA TTAATATAGT TCTCAGTAGA 4860 GAACTCAAAG AACCACCACG AGGAGCTCAT TTTCTTGCCA AAAGTTTGGA TGATGCCTTA 4920 AGACTTATTG AACAACCGGA ATTGGCAAGT AAAGTAGACA TGGTTTGGAT AGTCGGAGGC 4980 AGTTCTGTTT ACCAGGAAGC CATGAATCAA CCAGGCCACC TTAGACTCTT TGTGACAAGG 5040 ATCATGCAGG AATTTGAAAG TGACACGTTT TTCCCAGAAA TTGATTTGGG GAAATATAAA 5100 CTTCTCCCAG AATACCCAGG CGTCCTCTT GAGGTCCAGG AGGAAAAAGG CATCAAGTAT 5160 AAGTTTGAAG TCTACGAGAA GAAAGACTAA CAGGAAGATG CTTTCAAGTT CTCTGCTCCC 5220 CTCCTAAAGC TATGCATTTT TATAAGACCA TGGGACTTTT GCTGGCTTTA GATCAGCCTC 5280 GACTGTGCCT TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCCGTGC CTTCCTTGAC 5340 CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG CATCGCATTG 5400 5460 TTGGGAAGAC AATAGCAGGC ATGCTGGGGA TGCGGTGGGC TCTATGGAAC CAGCTGGGGC 5520 TCGAGCTACT AGCTTTGCTT CTCAATTTCT TATTTGCATA ATGAGAAAAA AAGGAAAATT 5580 AATTTTAACA CCAATTCAGT AGTTGATTGA GCAAATGCGT TGCCAAAAAG GATGCTTTAG 5640 AGACAGTGTT CTCTGCACAG ATAAGGACAA ACATTATTCA GAGGGAGTAC CCAGAGCTGA 5700 GACTCCTAAG CCAGTGAGTG GCACAGCATT CTAGGGAGAA ATATGCTTGT CATCACCGAA 5760 GCCTGATTCC GTAGAGCCAC ACCTTGGTAA GGGCCAATCT GCTCACACAG GATAGAGAGG 5820 GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC ACATTTGCTT 5880 CTGACATAGT TGTGTTGGGA GCTTGGATCG ATCCTCTATG GTTGAACAAG ATGGATTGCA 5940 CGCAGGTTCT CCGGCCGCTT GGGTGGAGAG GCTATTCGGC TATGACTGGG CACAACAGAC 6000 AATCGGCTGC TCTGATGCCG CCGTGTTCCG GCTGTCAGCG CAGGGGCGCC CGGTTCTTTT 6060 TGTCAAGACC GACCTGTCCG GTGCCCTGAA TGAACTGCAG GACGAGGCAG CGCGGCTATC 6120 GTGGCTGGCC ACGACGGCG TTCCTTGCGC AGCTGTGCTC GACGTTGTCA CTGAAGCGGG 6180 AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT CTCCTGTCAT CTCACCTTGC 6240 TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCGG CGGCTGCATA CGCTTGATCC 6300 GGCTACCTGC CCATTCGACC ACCAAGCGAA ACATCGCATC GAGCGAGCAC GTACTCGGAT 6360 GGAAGCCGGT CTTGTCGATC AGGATGATCT GGACGAAGAG CATCAGGGGC TCGCGCCAGC 6420 CGAACTGTTC GCCAGGCTCA AGGCGCGCAT GCCCGACGGC GAGGATCTCG TCGTGACCCA 6480 TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC CGCTTTTCTG GATTCATCGA 6540 CTGTGGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA CCCGTGATAT 6600 TGCTGAAGAG CTTGGCGGCG AATGGGCTGA CCGCTTCCTC GTGCTTTACG GTATCGCCGC 6660 TCCCGATTCG CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTTCT GAGCGGGACT 6720 CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGAGA TTTCGATTCC 6780 ACCGCCGCCT TCTATGAAAG GTTGGGCTTC GGAATCGTTT TCCGGGACGC CGGCTGGATG 6840 ATCCTCCAGC GCGGGGATCT CATGCTGGAG TTCTTCGCCC ACCCCAACTT GTTTATTGCA 6900 GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT 6960 TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATC TATCTTATCA TGTCTGGATC 7020 GCGGCCGCGA TCCCGTCGAG AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA 7080 ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT 7140 GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTTCC 7200 AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG 7260 GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC 7320 GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG 7380 GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA 7440 AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC 7500 GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC 7560 CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG 7620 CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT 7680 CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC 7740 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC 7800 CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG 7860 AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG 7920 CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA 7980 CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG 8040 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT 8100 CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA 8160 ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT 8220 ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG 8280 TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 8340 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC 8400 AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT 8460 CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG 8520 TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA 8580 GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 8640 TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA 8700 TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG 8760 TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT 8820 CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA 8880 TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 8940 GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTACT TTCACCAGCG 9000 TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC 9060 GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT 9120 ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC 9180 9209 CGCGCACATT TCCCCGAAAA GTGCCACCT

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATCACAGATC TCTCACCATG GATTTTCAGG TGCAGATTAT CAGCTTC

(2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: YES	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TGCAGCATCC GTACGTTTGA TTTCCAGCTT	30
(2) INFORMATION FOR SEQ ID NO:6:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 384 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1384	
<pre>(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 67384</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
ATG GAT TTT CAG GTG CAG ATT ATC AGC TTC CTG CTA ATC AGT GCT TCA Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser -10 -22 -20	48
GTC ATA ATG TCC AGA GGG CAA ATT GTT CTC TCC CAG TCT CCA GCA ATC Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile -5 10	96

CTG TCT GCA TCT CCA GGG GAG AAG GTC ACA ATG ACT TGC AGG GCC AGC Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 15	144
TCA AGT GTA AGT TAC ATC CAC TGG TTC CAG CAG AAG CCA GGA TCC TCC Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser 30 35 40	192
CCC AAA CCC TGG ATT TAT GCC ACA TCC AAC CTG GCT TCT GGA GTC CCT Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro 45 50 55	240
GTT CGC TTC AGT GGC AGT GGG TCT GGG ACT TCT TAC TCT CTC ACA ATC Val Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 60 60 60	288
AGC AGA GTG GAG GCT GAA GAT GCT GCC ACT TAT TAC TGC CAG CAG TGG Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 75 80 85	336
ACT AGT AAC CCA CCC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATC AAA Thr Ser Asn Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys 95	384
THE TOP GEO ID NO.7:	
(2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 128 amino acids (B) TYPE: amino acid	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser -22 -20 -15 -10	
Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile -5 10	
Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser 15 20 25	
Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser 30 35 40	
Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro 45 50 55	
Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 60 65 70	
Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp	

90 85 80 75

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 95

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

27 GCGGCTCCCA CGCGTGTCCT GTCCCAG

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: YES
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (D) OTHER INFORMATION: /note= "Nucleotide 3 is N wherein N is G or C."
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (D) OTHER INFORMATION: /note= "Nucleotide 18 is N wherein (B) LOCATION: 18 N is A or C."
 - (ix) FEATURE:

<pre>(B) LOCATION: 19 (D) OTHER INFORMATION: /note= "Nucleotide 19 is N wherein N is A or G."</pre>	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 25 (D) OTHER INFORMATION: /note= "Nucleotide 25 is N wherein</pre>	
N is G or A."	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	29
GGNTGTTGTG CTAGCTGNNG AGACNGTGA	
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 420 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1420	
<pre>(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 58420</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
ATG GGT TGG AGC CTC ATC TTG CTC TTC CTT GTC GCT GTT GCT ACG CGT Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg -10 -5	48
GTC CTG TCC CAG GTA CAA CTG CAG CAG CCT GGG GCT GAG CTG GTG AAG	96
GTC CTG TCC CAG GTA CAA CIG CAG GAS GOT DIS Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys 1 5 10	
CCT GGG GCC TCA GTG AAG ATG TCC TGC AAG GCT TCT GGC TAC ACA TTT Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe 15 20 25	144
ACC AGT TAC AAT ATG CAC TGG GTA AAA CAG ACA CCT GGT CGG GGC CTG	192

(A) NAME/KEY: misc_feature

(B) LOCATION: 19

Thr	Ser	Tyr	Asn	Met	His 35	Trp	Val	Lys	Gln	Thr 40	Pro	Gly	Arg	Gly	Leu 45	
GAA	TGG Trp	ATT Ile	GGA Gly	GCT Ala 50	ATT Ile	TAT Tyr	CCC Pro	GGA Gly	AAT Asn 55	GGT Gly	GAT Asp	ACT Thr	TCC Ser	TAC Tyr 60	AAT Asn	240
CAG Gln	AAG Lys	TTC Phe	AAA Lys 65	GGC Gly	AAG Lys	GCC Ala	ACA Thr	TTG Leu 70	ACT Thr	GCA Ala	GAC Asp	AAA Lys	TCC Ser 75	TCC Ser	AGC Ser	288
ACA Thr	GCC Ala	TAC Tyr 80	ATG Met	CAG Gln	CTC Leu	AGC Ser	AGC Ser 85	CTG Leu	ACA Thr	TCT, Ser	GAG Glu	GAC Asp 90	TCT Ser	GCG Ala	GTC Val	336
тат туг	TAC Tyr 95	TGT Cys	GCA Ala	AGA Arg	TCG Ser	ACT Thr 100	TAC Tyr	TAC Tyr	GGC Gly	GGT Gly	GAC Asp 105	TGG Trp	TAC Tyr	TTC Phe	AAT Asn	384
GTC Val 110	TGG Trp	GGC Gly	GCA Ala	GGG Gly	ACC Thr 115	ACG Thr	GTC Val	ACC Thr	GTC Val	TCT Ser 120	GCA Ala					420
(2)			SEQU		SEQ				:							
			(в) T Y	NGTH PE:	: 14 amin	0 am o ac	ino . id		5						
	(ii)	(B) TY) TO	NGTH	: 14 amin GY:	0 am o ac line	ino id ar		5						
			(B (D MOLE) TY) TO	NGTH PE: 6	: 14 amin GY: E: p	0 am o ac line rote	ino id ar in	acid		11:					
Met -19	(Gly	xi)	(B (D MOLE SEQU) TY) TO CULE	NGTH PE: POLO TYP DES	: 14 amin GY: E: p CRIP	0 am o ac line rote TION	ino id ar in : SE	acida Q ID	NO:		Val	Ala	Thr	Arg	
-19	(Gly	xi) Trp	(B (D MOLE SEQU Ser) TY) TO CULE ENCE Leu -15	NGTH PE: POLO TYP DES	: 14 amin GY: E: p CRIP	0 am o ac line rote TION Leu	ino id ar in : SE	Q ID Leu -10	NO: Val	Ala		Leu	- 5	Arg	
-19 Val	(Gly	xi) Trp Ser	(B (D MOLE SEQU Ser Gln) TY) TO CULE ENCE Leu -15	NGTH PE: 6 POLO TYP DES Ile	: 14 amin GY: E: p CRIP Leu Leu	0 am o ac line rote TION Leu Gln 5	ino id ar in : SE Phe	Q ID Leu -10 Pro	NO: Val Gly	Ala	Glu 10 Gly	Leu	-5 Val		
-19 Val Pro	Gly Leu Gly 15	xi) Trp Ser	(B (D MOLE SEQU Ser Gln 1) TY) TO CULE ENCE Leu -15 Val	NGTH PE: POLO TYP DES Ile Gln Lys	: 14 amin GY: E: p CRIP Leu Leu Met 20 Trp	0 am o ac line rote TION Leu Gln 5	ino id ar in : SE Phe Gln	Q ID Leu -10 Pro	NO: Val Gly	Ala Ala Ser 25	Glu 10 Gly	Leu Tyr	-5 Val Thr	Lys	
-19 Val Pro	Gly Leu Gly 15	xi) Trp Ser Ala	(B (D MOLE SEQU Ser Gln 1 Ser) TY) TO CULE ENCE Leu -15 Val	NGTH PE: POLO TYP DES Ile Gln Lys His 35	: 14 amin GY: E: p CRIP Leu Leu Met 20 Trp	0 am o ac line rote TION Leu Gln 5 Ser	ino id ar in : SE Phe Gln Cys	Q ID Leu -10 Pro Lys	NO: Val Gly Ala Thr 40	Ala Ser 25	Glu 10 Gly	Leu Tyr Arg	-5 Val Thr	Lys Phe Leu 45	
-19 Val Pro Thr	Gly Leu Gly 15 Ser	xi) Trp Ser Ala Tyr	(B (D MOLE SEQU Ser Gln 1 Ser) TY) TO CULE ENCE Leu -15 Val Val Met	NGTH PE: POLO TYP DES Ile Gln Lys His 35	: 14 amin GY: E: p CRIP Leu Met 20 Trp	0 am o ac line rote TION Leu Gln Ser Val	ino id ar in : SE Phe Gln Cys	Q ID Leu -10 Pro Lys Gln -55	NO: Val Gly Ala Thr 40	Ala Ser 25 Pro	Glu 10 Gly Gly	Leu Tyr Arg	-5 Val Thr Gly Tyr 60	Lys Phe Leu 45	

Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn

Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala