电子技术实验 实验考核 实验报告

2019010485 自 91 刘祖炎* 2021 年 6 月 10 日

1 实验分析

1.1 电压一频率转换电路

电压一频率转换电路使用上一次实验采用的电路实现,如图1所示。

图 1: 电压一频率转换电路示意图

仿真波形如图2所示。可见,电路两个运放的输出波形均正确。

 $^{^*} liuzuyan 19@ mails.tsinghua.edu.cn\\$

图 2: 电压一频率转换电路仿真波形图

1.2 2 分频电路

程序代码如下:

```
module ClkDivider(clk_in, clk_out, outC);
 1
 2
    input clk_in, clk_out;
 3
    output reg outC = 1'b0;
    reg [12:0] clk\_cnt = 13'b0;
 4
    always @(posedge clk_in)
 5
    begin
 6
          clk\_cnt \, = \, \left\{ clk\_out \, , \; \, clk\_cnt \left[ \, 1 \, 2 \, : 1 \, \right] \, \right\};
 7
          if (clk_cnt == 13'b1111000000000)
 8
               begin
 9
                    outC = \sim outC;
10
               end
11
12
    end
    endmodule
13
```

2 实测数据

2.1 观察压控效果

表 1: 观察压控效果数据表格

输入电压 U_i/V	输出频率 f/Hz

2.2 锯齿波测量

- 指定电压:
- 测量锯齿波性质

表 2: 测量锯齿波数据表格

正程时间 T_1/ms	频率 f/Hz

2.3 矩形波测量

• 测量矩形波平均脉宽

表 3: 测量矩形波脉宽数据表格

序号	脉宽 $t_w/\mu s$
1	
2	
3	
平均	

• 测量矩形波上升、下降时间

表 4: 测量矩形波上升、下降时间数据表格

上升时间 t/ns	下降时间 t/ns

• 调节矩形波幅值

表 5: 调节矩形波幅值数据表格

高电平最小值 $V_{H(min)}/V$	低电平最大值 $V_{L(max)}/V$

2.4 FPGA 测量

• 二分频电路时序图

• 测量上升、下降时间

表 6: 测量上升、下降时间数据表格

信号	上升时间 t/ns	下降时间 t/ns
输入信号		
输出信号		

• 测量传输延迟时间

表 7: 测量 FPGA 输入到输出传输延迟时间数据表格

信号	延迟时间 t_{pd}/ns
上升沿	
下降沿	