AYUDANTÍA OPTIMIZACIÓN 4: (SESIÓN DE EJERCICIOS)

AYUDANTE: HARRY F. OVIEDO

(1) Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función definida por

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax + \phi(b^{\mathsf{T}}x),$$

donde $A \in \mathbb{R}^{n \times n}$ es una matriz simétrica, $b \in \mathbb{R}^n$ y $\phi : \mathbb{R} \to \mathbb{R}$ es una función diferenciable que satisface $\dot{\phi}(t) \neq 0$ para todo $t \in \mathbb{R}$. Pruebe que si x^* es un punto crítico de f entonces $b \in Im(A) := \{Ax : x \in \mathbb{R}^n\}$.

(2) Considere la sucesión $\{x_k\}$ definida por:

$$x_k = \begin{cases} \left(\frac{1}{4}\right)^{2^k} & \text{si } k \text{ es par} \\ \frac{x_{k-1}}{k} & \text{si } k \text{ es impar} \end{cases}$$

Demuestre que la sucesión $\{x_k\}$ converge a cero. La sucesión $\{x_k\}$ converge superlinealmente?

(3) Considere el algoritmo de gradiente con tamaño de paso

$$\alpha_k = \arg\min_{\alpha>0} ||\nabla f(x_k - \alpha \nabla f(x_k))||_2,$$

donde f es una función cuadrática convexa de la forma $f(x) = \frac{1}{2}x^{\top}Ax - x^{\top}b$, con $A^{\top} = A$ y $A \succ 0$. Demuestre que la sucesión $\{||\nabla f(x_k)||_2\}$ converge Q-linealmente a cero.

(4) Considere el caso de minimización de una función cuadrática estrictamente convexa. Se propone el siguiente método

$$y(\alpha) = x_k - \frac{1}{2}\alpha(\nabla f(x_k) + \nabla f(y(\alpha))),$$

 $x_{k+1} = y(\alpha).$

- Reescriba la formula de actualización del método como $y(\alpha) = (I + \frac{\alpha}{2}A)^{-1}(2x_k + \alpha b) x_k$. Que desventaja tiene este método?.
- Pruebe que la curva $y(\alpha)$ es una curva de descenso en x_k , es decir, $D_{\dot{y}(0)}f(x_k) < 0$ (derivada direccional)

Date: 1 de Marzo 2019.