UNIVERSITATEA POLITEHNICA DIN BUCURESTI

Facultatea _____

Iulie 2019

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui

DISCIPLINA: Algebră și Elemente de Analiză Matematică Ma

VARIANTA A

1. Să se determine mulțimea valorilor lui $a \in \mathbb{R}$ astfel încât ecuația $\ln(1+2x)-x^2=a$ să aibă o singură soluție strict negativă. (6 pct.)

a)
$$a \in (-e, e)$$
; b) $a \in (0, \ln 2)$; c) $a \in (-1, \ln 2)$; d) $a \in (-\infty, 0)$; e) $a \in [0, \ln 2 - \frac{1}{4}]$; f) $a \in [\frac{1}{2}, \ln 3]$.

- 2. Valoarea determinantului $\begin{vmatrix} 2 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$ este: (6 pct.)
 - a) -1; b) 0; c) 5; d) 1; e) -2; f) 2.
- 3. Pentru r > 0, fie mulțimea $M = \{z \in \mathbb{C} ; |z| = 1 \text{ și } |z 3i| = r\}$. Fie $A = \{r > 0 ; M \text{ are un singur element}\}$. Să se determine suma S a elementelor mulțimii A. (6 pct.)
 a) S = 6; b) S = 5; c) S = 4; d) S = 2; e) S = 8; f) S = 12.
- 4. Știind că numerele x, x+1, x+3 sunt în progresie geometrică (în această ordine), atunci: (6 pct.) a) x=3; b) x=-1; c) x=1; d) x=-2; e) x=4; f) x=2.
- 5. Fie matricele $A = \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Dacă X = A + 2B, să se calculeze determinantul matricei X. (6 pct.)
 - a) -10; b) 14; c) -14; d) 10; e) 20; f) -20.
- 6. Fie P un polinom cu coefficienți reali astfel încât $P(1)+P(2)+...+P(n)=n^5$, pentru orice număr natural $n \ge 1$. Să se calculeze $P\left(\frac{3}{2}\right)$. (6 pct.)

a)
$$\frac{225}{49}$$
; b) $\frac{121}{16}$; c) $\frac{114}{31}$; d) $\frac{47}{15}$; e) $\frac{91}{17}$; f) $\frac{169}{25}$.

- 7. Dacă a, b și c sunt determinate astfel încât să aibă loc egalitatea $\lim_{x\to 0} \frac{1}{x^5} \int_0^x (a+b\cos t + c\cos 2t) dt = \frac{1}{5}$, să se calculeze S = |a| + |b| + |c|. (6 pct.)
 - a) S = 16; b) S = 18; c) S = 14; d) S = 24; e) S = 20; f) S = 22.

8. Produsul soluțiilor ecuației $\sqrt{1-x} + \sqrt{x} = 1$ este: (6 pct.)

a) 0; b) 2; c) -1; d) 1; e)
$$\frac{1}{3}$$
; f) $\frac{1}{2}$.

9. Fie ecuația $x^3 + x^2 - 2x = 0$. Suma S a soluțiilor reale este: (6 pct.)

a)
$$S = 0$$
; b) $S = 1$; c) $S = -2$; d) $S = 2$; e) $S = -1$; f) $S = 3$.

10. Soluția ecuației $4^{x-1} = 16$ este: (6 pct.)

a)
$$x = -2$$
; b) $x = 4$; c) $x = 5$; d) $x = 2$; e) $x = 0$; f) $x = 3$.

11. Să se rezolve ecuația $\log_5(x-1)=1$. (6 pct.)

a)
$$x=11$$
; b) $x=0$; c) $x=4$; d) $x=1$; e) $x=6$; f) $x=3$.

12. Pe muțimea $A = \mathbb{R} \setminus \{1\}$ se definește legea de compoziție x * y = 2xy - 2(x + y) + c, unde c este un număr real. Știind că legea de compoziție "*" definește pe A o structură de grup comutativ, să se determine simetricul elementului x = 4. (6 pct.)

a)
$$\frac{15}{13}$$
; b) $\frac{11}{6}$; c) $\frac{12}{11}$; d) $\frac{12}{5}$; e) $\frac{13}{12}$; f) $\frac{11}{7}$.

13. Să se rezolve sistemul de ecuații $\begin{cases} x+y=4\\ 2x-y=-1 \end{cases}$ (6 pct.)

a)
$$x=2$$
, $y=2$; b) $x=-1$, $y=5$; c) $x=-2$, $y=-3$; d) $x=4$, $y=0$; e) $x=1$, $y=3$; f) $x=0$, $y=4$.

14. Fie polinomul $f = X^2 + 2X + 3$. Să se calculeze $S = f(x_1) + f(x_2) + f(x_3)$, unde x_1 , x_2 , x_3 sunt soluțiile complexe ale ecuației $x^3 - 1 = 0$. (6 pct.)

a)
$$S = i$$
; b) $S = 0$; c) $S = -1$; d) $S = 9$; e) $S = 6$; f) $S = 1$.

15. Dacă $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x - e^x$, să se calculeze f'(0). (6 pct.)

a)
$$-1$$
; b) 3; c) 1; d) 0; e) 2; f) -2 .