Notatki: Elementy logiki i teorii mnogości

Adrian Startek

17 października 2018

1 Podstawowe definicje i oznaczenia

Definicja 1.1. Zdanie logiczne: zdanie, któremu można przyporządkować wartość logiczną "prawda" (1) lub "falsz" (0).

Definicja 1.2. Tautologia: zdanie logiczne, które zawsze jest prawdziwe.

Definicja 1.3. Funkcja zdaniowa $\phi(x)$: wyrażenie, które po podstawieniu konkretnej wartości x staje się zdaniem logicznym.

Definicja 1.4. Para uporządkowana (x,y): zbiór $\{\{x\}, \{x,y\}\}$. Elementem pierwszym w parze jest ten, który jest elementem obu zbiorów, co jednoznacznie określa kolejność.

1.1 Oznaczenia zbiorów liczbowych

 $\mathbb N$ - zbiór liczb naturalnych

 $\mathbb Z$ - zbiór liczb całkowitych

 $\mathbb Q$ - zbiór liczb wymiernych

 $\mathbb R$ - zbiór liczb rzeczwistych

1.2 Kwantyfikatory

Kwantyfikator ogólny. Wyrażenie "dla każdego x należącego do X zachodzi $\phi(x)$ " oznacza się: $\forall_{x \in X} \phi(x)$

Kwantyfikator szczególny. Wyrażenie "istnieje x należący do X, dla którego zachodzi $\phi(x)$ " oznacza się: $\exists_{x \in X} \phi(x)$

Zaprzeczenia kwantyfikatorów. Zachodzi:

- $\neg [\forall_{x \in \mathbb{R}} \phi(x)] \Leftrightarrow \exists_{x \in \mathbb{R}} \neg \phi(x)$
- $\neg [\exists_{x \in \mathbb{R}} \phi(x)] \Leftrightarrow \forall_{x \in \mathbb{R}} \neg \phi(x)$
- $\neg [\forall_{x \in \mathbb{R}} \phi(x) \lor \psi(x)] \Leftrightarrow \exists_{x \in \mathbb{R}} \neg \phi(x) \land \neg \psi(x)$
- $\neg [\exists_{x \in \mathbb{R}} \phi(x) \land \psi(x)] \Leftrightarrow \forall_{x \in \mathbb{R}} \neg \phi(x) \lor \neg \psi(x)$

2 Rachunek zdań logicznych

2.1 Ważniejsze operacje na zdaniach

Negacja Wartością negacji zdania logicznego jest wartość odwrotna do wartości tego zdania.

Tabela 1: Negacja
$$\begin{array}{c|c} p & \neg p \end{array}$$

$$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

Alternatywa Alternatywa przyjmuje wartość "prawda", jeśli co najmniej jedno ze zdań jest prawdziwe.

Tabela 2: Alternatywa

p	q	$p \lor q$
0	0	0
$0 \\ 0$	1	1
1	0	1
1	1	1

Koniunkcja Koniunkcja przyjmuje wartość "prawda", tylko jeśli oba zdania są prawdziwe.

Tabela 3: Koniunkcja

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Implikacja Implikacja $(p \Longrightarrow q)$ jest prawdziwa, jeśli zarówno poprzednik (p) jak i następnik (q) są prawdziwe lub **poprzednik jest fałszywy (z fałszu wynika wszystko)**.

Tabela 4: Implikacja

p	q	$p \Longrightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

 ${\bf R\acute{o}wnoważnoś\acute{c}}$ Równoważność przyjmuje wartość "prawda" jeśli oba zdania mają tą samą wartość.

Tabela 5: Równoważność

''(z_{1a}	<i>j</i> . IU	ywnowazn
	p	q	$p \Leftrightarrow q$
	0	0	1
	0	1	0
	1	0	0
	1	1	1

Kreska Sheffera (NAND) – Zaprzeczenie koniunkcji.

Tabela 6: NAND

p	q	$p \mid q$
0	0	1
0	1	1
1	$\begin{array}{c} 1 \\ 0 \end{array}$	1
1	1	0

 ${\bf NOR}\quad {\bf Zaprzeczenie\ alternatywy.}$

Та <i>р</i>	q	$7: NOR \\ pNORq$
0	0	1
0	1	0
1	0	0
1	1	0

Twierdzenie 2.1. Za pomocą NAND lub NOR można wyrazić wszystkie inne funktory.

2.2 Ważniejsze tautologie

```
p\Longrightarrow p- prawo tożsamości p\Longrightarrow (q\Longrightarrow p)-prawo symplifikacji p\Leftrightarrow \neg(\neg p)- prawo podwójnej negacji p\vee \neg p- prawo wyłączonego środka (\neg p\Longrightarrow p)\Longrightarrow p \neg p\Longrightarrow (p\Longrightarrow q)- prawo Dunsa Szkota \neg(p\vee q)\Leftrightarrow (\neg p)\wedge (\neg q)- prawo De Morgana \neg(p\wedge q)\Leftrightarrow (\neg p)\vee (\neg q)- prawo De Morgana \neg(p\Rightarrow q)\Leftrightarrow p\wedge (\neg q)- \neg(p\Leftrightarrow q)\Leftrightarrow p\wedge (\neg q)- \neg(p\Leftrightarrow q)\Leftrightarrow (p\wedge \neg q)\vee (\neg p\wedge q)
```

3 Rachunek zbiorów

3.1 Oznaczenia i definicje

Fakt należenia elementu x do zbioru A oznacza się przez $x \in A$. Analogicznie, "x nie należy do zbioru A" ocznacza się $x \notin A$.

Zbiór można definiować podając jego elementy wprost: $A = \{a, b, c\}$ lub zadając warunek na przynależność elementów do zbioru: $A = \{x \in X : \phi(x)\}$.

3.2 Operacje i zależności

Zawieranie. Zbiór A zawiera się w zbiorze B (A jest podzbiorem B), ozn. $A \subset B$, jeśli każdy element zbioru A jest również elementem zbioru B: $A \subset B \Leftrightarrow \forall_{x \in A} \ x \in B$

Równość. Zbiory A i B są równe, jeśli są one nawzajem swoimi podzbiorami: $A=B\Leftrightarrow A\in B\land B\in A$

Działania na zbiorach. Definiuje się działania:

```
Suma zbiorów A \cup B = \{x : x \in A \lor x \in B\} Iloczyn zbiorów A \cap B = \{x : x \in A \land x \in B\} Różnica zbiorów A \setminus B = \{x : x \in A \land x \notin B\} Iloczyn kartezjański A \times B = \{(a,b) : a \in A, b \in B\}
```

Dopełnienie zbioru.

Definicja 3.1. Dopelnieniem zbioru $A \subset C$ do zbioru C nazywa się zbiór wszystkich elementów należących do C, które nie należą do A: $A = \{x \in C : x \notin A\}$

```
Własności dopełnienia. Niech A\subset X,\, B\subset X. Wtedy: \backslash (A\cup B)=(\backslash A)\cap (\backslash B) \backslash (A\cap B)=(\backslash A)\cup (\backslash B) \backslash (\backslash A)=A
```

3.3 Relacje.

Definicja 3.2. Relacją nazywa się dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów.

Niech R będzie relacją zadaną na $X \times X$ (tj. R jest relacją dwuargumentową, która przyjmuje za argumenty elementy X). Dodatkowo, niech xRy oznacza wyrażenie "pomiędzy x a y zachodzi relacja R". Wtedy:

R jest relacją zwrotną $\Leftrightarrow \forall_{x \in X} x R x$

R jest relacją przeciwzwrotną $\ \Leftrightarrow \forall_{x \in X} \, \neg (\, xRx \,)$

R jest relacją symetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \Longrightarrow yRx)$

R jest relacją słabo antysymetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \land yRx \Longrightarrow x = y)$

R jest relacją antysymetryczną $\Leftrightarrow \forall_{x,y \in X} \, (\, xRy \Longrightarrow \neg (\, yRx \,) \,)$

R jest relacją przechodnią $\ \Leftrightarrow \forall_{x,y,z \in X} \, (\, xRy \wedge yRz \Longrightarrow xRz \,)$

R jest relacją spójną $\Leftrightarrow \forall_{x,y \in X} (xRy \lor yRx \lor y = x)$