Readiness Assurance Test

Choose the most appropriate response for each question.

- 11) Which of the following sets describes where the polynomial $f(x) = x^3(x-1)^2(x+1)$ is **negative**?

 - (a) $(-1,0) \cup (1,\infty)$ (b) $(-\infty,-1) \cup (0,1)$ (c) (-1,0)
- (d) (0,1)

- 12) Compute $\int \frac{4}{4-x} dx$.
- (a) $\ln|4-x|+C$ (b) $-\ln|4-x|+C$ (c) $-4\ln|4-x|+C$ (d) $4\ln|4-x|+C$

- 13) Compute $\int e^{2x+1} dx$

- (a) $\frac{1}{2}e^{2x+1} + C$ (b) $2e^{2x+1} + C$ (c) $e^{2x+1} + C$ (d) $(2x+1)e^{2x+1} + C$

- 14) Compute $\int xe^{x^2+1} dx$.
- (a) $e^{x^2+1} + C$ (b) $xe^{x^2+1} + C$ (c) $\frac{1}{2}e^{x^2+1} + C$ (d) $2e^{x^2+1} + C$

- 15) Compute $\int x^2 e^x dx$.
 - (a) $(x^2 2x + 2)e^x + C$ (b) $x^2e^x + C$ (c) $2xe^x + C$ (d) $(x^2 2)e^x + C$

16) Compute $\int \frac{4}{4-x^2} dx$.

(a)
$$\ln|4-x^2|+C$$

(b)
$$\ln|x^2 - 4| + C$$

(c)
$$\ln \left| \frac{2+x}{2-x} \right| + C$$

(a)
$$\ln|4-x^2| + C$$
 (b) $\ln|x^2-4| + C$ (c) $\ln\left|\frac{2+x}{2-x}\right| + C$ (d) $\ln\left|\frac{x-2}{x+2}\right| + C$

17) Compute $\int x \sin(x) dx$.

(a)
$$-x\cos(x) + C$$

(a)
$$-x\cos(x) + C$$
 (b) $\sin(x) - x\cos(x) + C$ (c) $\frac{1}{2}x^2\cos(x) + C$ (d) $\frac{1}{2}x^2 - \cos(x) + C$

(c)
$$\frac{1}{2}x^2\cos(x) + C$$

(d)
$$\frac{1}{2}x^2 - \cos(x) + C$$

18) Exactly one of the four vector fields below is conservative. Identify which one is conservative.

(a)
$$\langle 2xy, y^2 \rangle$$

(b)
$$\langle y^2, 2xy \rangle$$

(c)
$$\langle x^2, 2xy \rangle$$

(a)
$$\langle 2xy, y^2 \rangle$$
 (b) $\langle y^2, 2xy \rangle$ (c) $\langle x^2, 2xy \rangle$ (d) $\langle 2xy, 2xy \rangle$

19) Which of the following is a potential function for the vector field $\langle 2xy + 2, x^2 - 3y^2 \rangle$.

(a)
$$xy^2 + 2y + \frac{1}{3}x^3 - 3xy^2$$
 (b) $x^2y - y^3 + 2x + 3$ (c) $x^2y + 2x + 3$ (d) $x^2y - y^3$

(b)
$$x^2y - y^3 + 2x + 3$$

(c)
$$x^2y + 2x + 3$$

(d)
$$x^2y - y^3$$

20) Find the general solution to y' - y = 3 - x.

(a)
$$y = ke^{-x} + x - 1$$

(a)
$$y = ke^{-x} + x - 1$$
 (b) $y = ke^{-x} + 2x - 3$ (c) $y = ke^{x} + x - 2$ (d) $y = ke^{x} + 3 - x$

(c)
$$y = ke^x + x - 2$$

(d)
$$y = ke^x + 3 - x$$