Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

- Hall's Matching Theorem
- König-Egeváry Theorem
- The Maximum Matching Problem
 - A Generic Algorithm and the Berge's Theorem
 - The Augmenting Path Problem in Bipartite Graphs
 - A simple DFS-based recursive algorithm

Matching in Bipartite Graphs

- Let G = (V, E) be a bipartite graph with partite sets A and B.
- An edge subset $M \subseteq E$ is called a matching for G, if each vertex in V is incident to at most one edge in M.
 - i.e., the endpoints of the edges in *M* are disjoint.

The same definition applies to general graphs, too.

Matching in Bipartite Graphs

- Let G = (V, E) be a bipartite graph with partite sets A and B.
- \blacksquare Let M be a matching for G.
 - For any $u, v \in V$, we say that u is matched to v by M (and vice versa), if $(u, v) \in M$.
 - For any $U \subseteq A$, we say that M matches U, or, M is a matching from U to B, or, M is a matching for U, if M matches every vertex in U to some vertex in B.

Matching in Bipartite Graphs

- Let G = (V, E) be a bipartite graph with partite sets A and B.
- \blacksquare Let M be a matching for G.
 - For any $U \subseteq A$, we say that M is a matching for U, if M matches every vertex in U to some vertex in B.

There is no enough candidates to be matched to for *A*.

Hall's Matching Condition

The necessary and sufficient condition for a matching in bipartite graphs to exist.

Theorem 5.1 (Hall's Theorem).

Let G = (V, E) be a bipartite graph with partite sets A and B.

There exists a matching M for A

if and only if

$$|N(U)| \ge |U|$$
 for all $U \subseteq A$. (*)

i.e., there is always a sufficient number of candidates to be matched to.

 $|N(U)| \ge |U|$, for any $U \subseteq A$.

Theorem 5.1 (Hall's Theorem).

Let G = (V, E) be a bipartite graph with partite sets A and B.

There exists a matching M for A

if and only if

$$|N(U)| \ge |U|$$
 for all $U \subseteq A$. (*)

- The direction (\Rightarrow) is clear.
 - \blacksquare M matches each vertex in U to a distinct vertex in B.
 - Hence, $|N(U)| \ge |U|$.

■ Proof. (continue)

- We prove the direction (\Leftarrow) by induction on the size of |A|, which we denote by m.
- The case m = 1 holds trivially.
- Assume that the statement (\Leftarrow) holds for any A with |A| < m.

Proof. (continue)

- Assume that the statement (\Leftarrow) holds when the number of vertices in the left partite set is < m.
- To prove for |A| = m, we distinguish the following two cases.
 - 1. For any $U \subset A$, we always have |N(U)| > |U|.

We <u>always</u> have more candidates than we need.

2. For some $U \subset A$, |N(U)| = |U|.

The number of candidates for some subset is tight.

We always have more candidates than we need.

We distinguish following two cases.

- 1. For any $U \subset A$, we always have |N(U)| > |U|.
 - Pick an arbitrary $u \in A$ and any $v \in N(u)$. Match u to v and remove v from the graph.
 - Then, it follows that, for any $U \subseteq A \{u\}$, we still have $|N(U)| \ge |U|$.
 - By the induction hypothesis, there exists a matching from $A - \{u\}$ to $B - \{v\}$.
 - Hence, we obtain a matching for *A*.

At most one vertex is removed from N(U).

We distinguish following two cases.

The number of candidates for some subset is tight.

- 2. For some $U \subset A$, |N(U)| = |U|.
 - By the induction hypothesis, there exists a matching M_1 from U to N(U). Remove N(U) from the graph.

Then, we claim that, for any $U' \subseteq A - U$, we still have $|N(U')| \ge |U'|$.

We distinguish following two cases.

The number of candidates for some subset is tight.

- 2. For some $U \subset A$, |N(U)| = |U|.
 - \blacksquare Remove N(U) from the graph.
 - Then, we claim that, for any $U' \subseteq A - U$, we always have $|N(U')| \ge |U'|$.
 - If not, then before N(U) is removed, we have $|N(U' \cup U)| \le |N(U')| + |N(U)| < |U'| + |U|,$ which is a contradiction.

We distinguish following two cases.

The number of candidates for some subset is tight.

- 2. For some $U \subset A$, |N(U)| = |U|.
 - By the induction hypothesis, there exists a matching M_1 from U to N(U). Remove N(U) from the graph.
 - Then, we claim that, for any $U' \subseteq A - U$, we always have $|N(U')| \ge |U'|$.
 - By induction hypothesis, there exists a matching M_2 for A U.
 - \blacksquare Together, we obtain a matching for A.

Application -

System of Distinct Representatives

Distinct Representative of Sets in a Family

- Let $F = \{S_1, S_2, ..., S_m\}$ be a set family.
- The elements $x_1, x_2, ..., x_m$ is called a set of <u>distinct representatives</u> for F, if the following two conditions hold.
 - $x_i \in S_i$ for all $1 \le i \le m$.
 - The elements $x_1, x_2, ..., x_m$ are distinct, i.e., $x_i \neq x_j$ for all $i \neq j$.

Corollary.

The set family $S_1, S_2, ..., S_m$ has a set of distinct representatives if and only if

$$\left|\bigcup_{i\in I} S_i\right| \ge |I| \quad \text{for all } I \subseteq \{1,2,\ldots,m\}.$$

 Construct a bipartite graph for the set family, and this corollary follows directly from the Hall's theorem.

Matching v.s. Vertex Cover

Vertex Cover of a Graph

- Let G = (V, E) be a graph.
- A *vertex cover* of G is a subset $U \subseteq V$ of vertices such that, every edge $e \in E$ has at least one endpoint in U.
 - Intuitively, we use the vertices in U to cover the edges in E.

Matching v.s. Vertex Cover

- Let G = (V, E) be a graph,
 - $M \subseteq E$ be a matching, and
 - $C \subseteq V$ be a vertex cover for G.
- It follows that

$$|M| \leq |C|$$
.

The matching M

- The endpoints of the edges in M are distinct.
- It takes <u>at least one vertex</u> to cover <u>each edge in M</u>, i.e.,
 at least one endpoint of each edge has to be selected in C.

Matching v.s. Vertex Cover

The matching M

- Let G = (V, E) be a graph, $M \subseteq E$ be a matching, and $C \subseteq V$ be a vertex cover for G.
- Then, it follows that $|M| \le |C|$.
 - This property is called the <u>weak-duality</u> between the matching and vertex cover.
 - It implies that, in any graph, the size of maximum matching is at most the size of minimum vertex cover.

The König-Egeváry Theorem

<u>In bipartite graphs</u>, the size of the *maximum matching* is equal to the size of the *minimum vertex cover*.

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of *maximum matching* is equal to the size of *minimum vertex cover*.

- Let G be a bipartite graph with partite sets U and V.
- Let M be a <u>maximum matching</u> and
 C be a <u>minimum vertex cover</u> for G, respectively.
- It suffices to prove that $|M| \ge |C|$.

The matching M

Theorem 5.5 (König-Egeváry 1931).

In a bipartite graph, the size of *maximum matching* is equal to the size of *minimum vertex cover*.

- It suffices to prove that $|M| \ge |C|$.
 - Let $A := U \cap C$ and $B := V \cap C$.
 - We will prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

- It suffices to prove that $|M| \ge |C|$.
- Let $A := U \cap C$ and $B := V \cap C$.
 - We will prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.
 - If the above is true, then by a similar argument, there exists a matching M_B for B to $U \setminus A$.
 - The endpoints of the edges in $M_A \cup M_B$ are distinct.
 - So, $M_A \cup M_B$ is a matching of size |A| + |B| = |C|.
 - Hence, this will prove that $|M| \ge |A| + |B| = |C|$.

It suffices to prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

- Suppose that there exists no such matching.
- Then, by Hall's matching theorem, there exists some $D \subseteq A$, such that

$$| N(D) \cap (V \setminus B) | < |D|.$$

- Indeed, if $|N(D) \cap (V \setminus B)| \ge |D|$ holds for all $D \subseteq A$, then there exists a matching from A to $V \setminus B$.
- Since there is no such matching, there must be such a $D \subseteq A$ with $|N(D) \cap (V \setminus B)| < |D|$.

It suffices to prove that, there exists a matching M_A that matches all the vertices in A to the vertices in $V \setminus B$.

- If not, there exists some $D \subseteq A$, such that $|N(D) \cap (V \setminus B)| < |D|$.
- Let $\widetilde{D} := N(D) \cap (V \setminus B)$, then $|\widetilde{D}| < |D|$.
- We claim that, $(A \setminus D) \cup \widetilde{D} \cup B$ is a valid vertex cover for G.
 - If this is true, we obtain a vertex cover with size smaller than |A| + |B| = |C|, a contradiction.

D is replaceable by \widetilde{D} .

It suffices to verify that, $(A \setminus D) \cup \widetilde{D} \cup B$ is a valid vertex cover for G.

- Let $\widetilde{D} := N(D) \cap (V \setminus B)$.
- \blacksquare There are four categories of edges in G.
 - $E_{A,B}$, $E_{U\setminus A,B}$ --- covered by B.
 - $E_{A \setminus D, V \setminus B}$ --- covered by $A \setminus D$.
 - $E_{D,\widetilde{D}}$ --- covered by \widetilde{D} .
- All the edges are covered.

Since $C = A \cup B$ is a vertex cover, there is not edge between $U \setminus A$ and $V \setminus B$.

The Maximum Matching Problem

To compute a maximum-size matching for the input graph.

The Maximum Matching Problem

- Input:
 - A graph G = (V, E).
- Output :
 - A matching $M \subseteq E$ that has the maximum size among all possible matchings.

Alternating Path & Augmenting Path

■ Let M be a matching for a graph G.

- An *M*-alternating path is a path
 that alternates between edges in *M* and edges not in *M*.
- An *M*-augmenting path is an *M*-alternating path that both starts and ends at unmatched vertices.

Both v_1, v_2, v_3 and v_2, v_3, v_4, v_5 are M-alternating paths.

 $v_1, v_2, v_3, v_4, v_5, v_6$ is an M-augmenting paths.

Observation

- We can see that,each *M*-augmenting path is a way to enlarge the size of *M* by 1.
 - This is done by swapping the status of the edges on the path.
 - Matched edges ⇒ *unmatched*
 - Unmatched edges ⇒ matched

So, this is still a valid matching with size increased by 1.

 v_1 and v_6 were unmatched.

All internal vertices are matched only by edges on the path.

Observation

- We can see that,each *M*-augmenting path *P* is a way to enlarge the size of *M* by 1.
- $M' := (M \setminus P) \cup (P \setminus M)$ is a valid matching with |M'| = |M| + 1.

 $M\Delta P$: the edges that appear exactly once in M and P.

A Simple Greedy Algorithm

- The observation suggests the following *greedy algorithm*.
 - Let G = (V, E) be the input graph.

- 1. $M \leftarrow \emptyset$.
- 2. Repeat until there is no M-augmenting path in G.
 - a. Compute an *M*-augmenting path *P*.
 - b. Set $M \leftarrow (M \setminus P) \cup (P \setminus M)$.
- 3. Output *M*.

- 1. $M \leftarrow \emptyset$.
- 2. Repeat until there is no M-augmenting path in G.
 - a. Find an *M*-augmenting path *P*.
 - b. Set $M \leftarrow (M \setminus P) \cup (P \setminus M)$.
- 3. Output *M*.

The philosophy behind the algorithm is very simple:

"Make the current matching larger until no augmenting path exists."

A direct question is that,

"Does it always output a maximum matching?"

Theorem 1. (Berge 1957).

A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path.

- Theorem 1 assures the correctness of the greedy algorithm.
 - When there is no *M*-augmenting path,
 M is guaranteed to be maximum.

■ We begin with some definition & helper lemma.

Symmetric Difference

- Let G = (V, E) be a graph, and $A, B \subseteq E$ be two edge sets.
 - The symmetric difference of *A* and *B* is defined as

$$A \triangle B \coloneqq (A \setminus B) \cup (B \setminus A)$$
.

- i.e., the set of edges that appear exactly once in A and B.

Lemma 2.

Let M, M' be matchings for a graph G. Then, every component of $M \triangle M'$ is a either *path* or a *cycle with an even length*.

- Let $F := M \triangle M'$.
 - Each vertex in G is incident to at most two edges in F.
 - Hence, each component in F is either a path or a cycle.
- \blacksquare Consider any cycle in F.
 - The cycle alternates between edges in M and M'.
 - It must have an even length.

Theorem 1. (Berge 1957).

A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path.

- Let us prove Theorem 1.
 - The direction (\Rightarrow) is clear.
 - For the direction (⇐),
 we prove the contrapositive statement.
 - We show that, if M' is a matching with |M'| > |M|, then G must have an M-augmenting path.

It suffices to prove that, if M' is a matching with |M'| > |M|, then G must have an M-augmenting path.

- \blacksquare Let $F := M \triangle M'$.
 - By Lemma 2, F is a union of paths and even cycles.
- Since |M'| > |M|, there must be a component in F that has more edges from M' than M.
 - The component must be a path.
 Furthermore, it must start and ends with edges in M'.
 - The path is then an *M*-augmenting path.