Cheatsheet on arithmetic

Erwann Rogard

2020/10/11

Abstract

Hints rather than complete proofs. Since these are common, by default no source.

Contents

1 Bézout and derivatives

 $\mathbf{2}$

1 Bézout and derivatives

Result 1 (Bézout identity). Let $a, b \in \mathbb{N}^+$, and $c = \gcd(a, b)$, then there exists $u, v \in \mathbb{Z}^*$ such that $c = a \times u + b \times v$.
<i>Proof.</i> Trivially, $i)$ $L^+ \neq \emptyset$, thus admits a minimum by the well ordering principle. $ii)$ c divides a and b , thus divides d , and $c \leq d$. But also, $iii)$ d divides a , as assuming otherwise leads to a contradiction. And, by symmetry, iv) d divides b . Altogether, v) d divides c , and $d \leq c$. In all, $d = c$.
Result 2 (Mutually primes). $a, b \in \mathbb{N}^+$ are mutually primes if and only if there exists $u, v \in \mathbb{Z}$ $a \times u + b \times v = 1$
<i>Proof.</i> Follows from 1
Result 3 (Gauss' lemma). $a,b,c \in \mathbb{N}^+$ and a divides $b \times c$, and a and b are mutually primes, then a divides c .
<i>Proof.</i> Follows from 1 and 3 \Box