Digital Logic Design

Sung-Soo Lim

Number Systems

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

$$125_{10} \Rightarrow 5 \times 10^{0} = 5$$

$$2 \times 10^{1} = 20$$

$$1 \times 10^{2} = 100$$

$$125$$

$$101011_{2} \Rightarrow 1 \times 2^{0} = 1$$

$$1 \times 2^{1} = 2$$

$$0 \times 2^{2} = 0$$

$$1 \times 2^{3} = 8$$

$$0 \times 2^{4} = 0$$

$$1 \times 2^{5} = 32$$

$$ABC_{16} \Rightarrow C \times 16^{0} = 12 \times 1 = 12$$

$$R \times 16^{1} = 11 \times 16^{2} = 176$$

$$ABC_{16} \Rightarrow C \times 16^{0} = 12 \times 1 = 12$$
 $B \times 16^{1} = 11 \times 16 = 176$
 $A \times 16^{2} = 10 \times 256 = 2560$

$$125_{10} = ?_2$$

$$125_{10} = 1111101_2$$

 $10AF_{16} = ?_2$

 $10AF_{16} = 0001000010101111_2$

$$1234_{10} = ?_{16}$$

$$1234_{10} = 4D2_{16}$$

 $1010111011_2 = ?_{16}$

 $1010111011_2 = 2BB_{16}$

$$1F0C_{16} = ?_{8}$$

Exercise

Decimal	Binary	Octal	Hexa-
33			
	1110101		
		703	
			1AF

Powers

Power	Preface	Symbol	Value
10-12	pico	p	.000000000001
10 ⁻⁹	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
10^{3}	kilo	k	1000
10^{6}	mega	M	1000000
10 ⁹	giga	G	1000000000
10 ¹²	tera	Т	10000000000000

Power	Preface	Symbol	Value
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
230	Giga	G	1073741824

Estimating Powers of Two

• What is the value of 2²⁴?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

이진수 덧셈

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

이진수 덧셈

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

이진수 덧셈

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Exercise

Decimal	Binary	Octal	Hexa-
29.8			
	101.1101		
		3.07	
			C.82

부호 있는 수의 표현

- Decimal
 - Represented by "+" or "-" sign
- Binary
 - Unsigned binary number
 - All bits determine magnitude of number
 - Signed binary number
 - n-1 bits determine magnitude of number
 - Sign denoted by left most bit
 - 0 indicates positive number
 - 1 indicates negative number

Unsigned number

Signed number

부호 있는 수의 표현

- How do we represent the magnitude?
 - Positive Binary Numbers
 - Represented by position numbering systems previously discussed
 - Negative Binary Numbers
 - Sign-and-Magnitude Representation
 - 1's Complement
 - 2's Complement

$$101_2 = (1 * 2^2) + (0 * 2^1) + (1 * 2^0)$$

= (1 * 4) + (0 * 2) + (1 * 1)
= 5₁₀

Sign and Magnitude Representation

- Sign-and-Magnitude Representation
- Decimal representation
 - Magnitude of a number is expressed the same way
 - Symbol distinguishes positive or negative

- n-1 bits denote magnitude
- Leftmost bit denotes positive (0) or negative value (1)
- Intuitive representation for humans
- Not well suited for computers

symbols distinguish between positive and negative value

$$0101_2 = 5_{10}$$

$$1101_2 = -5_{10}$$

Addition of Sign and Magnitude Numbers

 Addition of sign-and-magnitude integers 			
If signs are same		0101	(5 ₁₀)
	+	0010	(2 ₁₀)
Add magnitude values		0111	(7_{10})
 Copy sign 			
If signs are different			
 Subtract smaller magnitude from larger magnitud 		1011	(-3 ₁₀)
 Copy sign of larger magnitude 	+	1011	(-3 ₁₀)
 Circuitry required 		1110	(-6 ₁₀)
• Adder			
 Subtractor 			
Compare		0111	(7 ₁₀)
	_	1010	(2 ₁₀)
		0101	(5 ₁₀)

1's Complement Representation of Binary Numbers (1의 보수)

- ■1's Complement Representation
 - ◆K = n-bit negative number
 - ◆P = corresponding positive number

$$\bullet$$
K = (2n-1) - P

n = 4

Convert +5 (0101₂) to a negative number, using 1's complement

$$K = (2^4 - 1) - P$$

$$K = 15_{10} - P$$

$$K = 1111_2 - P$$

$$K = 1111_2 - 0101_2$$

$$K = 1010_2$$

Convert +3 (0011₂) to a negative number, using 1's complement

$$K = (2^4 - 1) - P$$

$$K = 15_{10} - P$$

$$K = 1111_2 - P$$

$$K = 1111_2 - 0011_2$$

$$K = 1100_2$$

What we are actually doing is just complementing each of the bits (including sign bit)

Addition of 1's Complement Numbers (1의 보수 덧셈)

- Addition of 1's complement integers
- Consider four possible combination of signs
 - Top two are correct
 - Bottom two are incorrect
 - Carry produced by sign bit
 - If carry produced by sign bit, add it to the LSB
 - New result correct
- Drawback signed addition may require twice as long as unsigned addition

```
0101 (+5_{10}) 1010 (-5_{10})
+ 0010 (+2_{10}) + 0010 (+2_{10})
0111 (+7_{10}) 1100 (-3_{10})
```


2's Complement Representation of Binary Numbers (2의 보수)

- 2's Complement Representation
 - K = n-bit negative number
 - P = corresponding positive number
 - $K = 2^n P$
- Notice value plus it's 2's complement result in 0 (ignoring carry)

n	_	- 1
	_	4

Convert +5 (0101₂) to a negative number, using 2's complement

$$K = 16_{10} - P$$

$$K = 10000_2 - P$$

$$K = 10000_2 - 0101_2$$

$$K = 1011_2$$

$$K = 16_{10} - P$$

$$K = 10000_2 - P$$

$$K = 10000_2 - 0011_2$$

$$K = 1101_2$$

2's Complement Representation of Signed Binary Numbers (부호 있는 수의 2의 보수)

- 2's Complement conversion shortcut
 - •Given signed number, $B = b_{n-1}, b_{n-2}, ..., b_1, b_0$
 - Start from right to left, copy all bits that are 0 and the first bit that is 1
 - Complement remaining bits

Convert +6 (0110₂) to a negative number, using 2's complement shortcut

O110
Start from right, copy all 0's until we hit first 1
Copy first bit that is 1
Complement remaining bits

Result: 1 0 1 0

Convert +180 (0 1011 0100₂) to a negative number, using 2's complement shortcut

Result: 1 0 1 0 0 1 1 0 0

부호 있는 수 표현의 비교

b ₃ b ₂ b ₁ b ₀	Sign and Magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

- Multiple zero representations
 - Sign-and-magnitude
 - 1's Complement
- Single zero representation
 - 2's Complement

- Represent numbers from -7 to + 7
 - Sign-and-magnitude
 - 1's Complement
- Represent numbers from -8 to +7
 - 2's Complement

2의 보수의 덧셈

- Addition of 2's complement integers
- Consider four possible combination of signs
 - All are correct
 - If carry produced by sign bit, ignore it
- Circuitry required
 - Adder
- Highly suitable for implementation of addition

27

덧셈을 이용한 뺄셈

- What about subtraction of 2's complement integers?
- We can use an adder to perform subtraction
 - Negate subtrahend, add to the minuend
 - A B = A + (-B)
 - A (-B) = A + (+B)

덧셈을 이용한 뺄셈

 Consider four possible combination of signs

= 5 + (-2)= 3

= 5 - 2

- All are correct
- If carry produced by sign bit, ignore it
- Using 2's complement representation of negative numbers
 - Only 1 adder required to perform addition and subtraction

$$= (-5) - 2$$

= $(-5) + (-2)$
= -7

$$= 5 - (-2)$$

= 5 + 2
= 7

$$= (-5) - (-2)$$

= $(-5) + 2$
= -3

$$\begin{array}{c}
0101 & (+5_{10}) \\
+ & 0010 & (+2_{10}) \\
\hline
0111 & (+7_{10})
\end{array}$$

Today's Objective

Logic의 완전 기초

Binary Switch

open

close

(a) Two states of a switch

(b) Symbol for a switch

Binary Switch Example

- Output
 - State of the light: L =1 if the light is on, L=0 (off)
 - The state of the light can be described as a function of the input variable x
- L(x) = x : logic function

(a) Simple connection to a battery

Two Switch Examples

• When will the light be on?

Logical AND Function

- We observed
 - Light on only when both switches are closed
 - If either switch open, light is off
- Logical expression to describe behavior
 - $L(x1, x2) = x1 \cdot x2$
- Function evaluates as follows
 - -L = 1, if x1 = 1 and x2 = 1
 - -L=0, otherwise

$$L(x1, x2) = x1 \cdot x2$$

"" symbol is called AND operator implements the logical AND function

Two Switch Example - Parallel

When will the light be on?

Logical OR Function

- Logical expression to describe behavior
 - L(x1, x2) = x1 + x2
 - Function evaluates as follows
 - L = 0, if x1 = 0 and x2 = 0
 - L = 1, otherwise

$$L(x1, x2) = x1 + x2$$

"+" symbol is called *OR operator* implements the *logical OR function*

Three Switch Example

- AND and OR functions
 - Building blocks for larger circuits
- When will the light be on?

AND/OR Function

Logical expression to describe behavior

$$-L(x1, x2, x3) = (x1 + x2) \cdot x3$$

Inversion

- What about light's turning on when the switch is closed?
- Logical expression to describe behavior
 - $-L(x) = \sim x$
 - Function evaluates as follows
 - L = 1, if x = 0
 - L = 0, if x = 1

overbar indicates complement implements the NOT function

Inversion – NOT Operation

- Different names for NOT operation
 - Complement, Invert, Inverse
- Different notations for NOT operation

$$-\overline{X} = X' = !X = \sim X$$

- NOT operation can be applied to a single variable or multiple variables
 - F(x) = x'
 - F(x) = x' + a
 - $-F(x) = \overline{x1 + x2} = (x1 + x2)^{2} = !(x1 + x2) = \sim (x1 + x2)^{2}$
- NOT operation can be applied to a function
 - If F(x) = x1 + x2 + x3
 - Complement of F(x) is F'(x) = (x1 + x2 + x3)

수학 아닌 Logic!!

Truth Table (진리표)

- To show all the possible logical results for all inputs
- Same operations can be defined in the form of a truth table

Left Side: All possible combinations for input values

x1	x2	x1·x2	x1+x2
0	0	0	0
0	1	0	1
1	0	0	1
_1	1	1	1

Right Side: Values for outputs

Truth table for AND Operation

Truth table for OR Operation

Truth Table (진리표)

x1	x2	x1·x2	x1+x2
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Truth tables can have single or multiple outputs

Truth tables can be formatted in different ways

$$F = a \cdot b$$

а	b	F
0	0	0
0	1	0
1	0	0
1	1	1

$$G = input1 + t$$

input1	t	G
0	0	0
0	1	1
1	0	1
1	1	1

진리표의 한계

- Advantages
 - Only one truth table
 - Intuitive to read
- Disadvantages
 - Size explosion

а	b	С	L F
0	0	0	. 0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2-input truth table

3-input truth table

a	b	С	d	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

4-input truth table

5+-input truth table

진리표의 확장

- AND and OR functions can be extended to n-inputs
 - AND function with n-inputs is equal to 1 only if all n inputs are 1
 - OR function with n-input is equal to 1 if at least one, or more n inputs are 1

F	= a	. p	. с
а	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Logic Gates and Networks

- AND, OR, and NOT operations can be implemented electronically with transistors
- Resulting circuit is a logic gate
 - One or more inputs
 - One output, function of its inputs
- Logic circuit often described graphically in a circuit diagram or schematic
 - Consists of graphical symbols for the AND, OR, and NOT gates

Logic Gates and Networks

- Larger circuits are implemented by a network of gates
 - Logic function previously constructed using switches can be implemented by a network of gates

무엇이 중요한가?

- Cost and Complexity!!
 - Reduce the cost always.
- Network of gates
 - Also called logic network, logic circuit, circuit

$$x1$$
 $x2$
 $x3$
 $x4$
 $f = (x1 + x2) \cdot (x3 + x4)$

디지털 설계 전문가가 하는 일

- Digital system designer faced with two basic issues
 - Determine function of an existing logic network –
 Analysis
 - Designing a logic network to implement the desired function Synthesis

- Logic circuit analysis
 - conversion to logical expression

$$f = f = a + b$$

 $f = x1' + b$
 $f = x1' + (x1 \cdot x2)$

- Logic circuit analysis
 - conversion to logical expression

$$f = f = a'$$
 $f = (x1 + b)'$
 $f = (x1 + (x1 \cdot x2))'$

Convert logic circuit to logical expression

$$f =$$
 $f = t1 + t2$
 $f = (a \cdot b)' + t2$
 $f = (a \cdot b)' + (c \cdot d)'$

Another way to specify circuit functionality – truth table

$$f = x1' + (x1 \cdot x2)$$

NOT			AND			(OR	
a	F		а	b	F	а	b	F
0	1		0	0	0	0	0	0
1	0		0	1	0	0	1	1
			1	0	0	1	0	1
			1	1	1	1	1	1

x1	x2	F
0	0	1
0	1	1
1	0	0
1	1	1

Logic Circuit Analysis

×	g

N	тс		AND)	(OR	
a	F	a	b	F	a	b	F
0	1	0	0	0	0	0	0
1	0	0	1	0	0	1	1
		1	0	0	1	0	1
		1	1	1	1	1	1

Functional Equivalence

- You may have noticed we got the same truth table for both examples
 - Logic circuits are functionally equivalent
- Logic function can be implemented in a variety of ways
 - Designer wants to use the simpler one lower cost

Timing Diagram

- Yet another way to describe logic circuit behavior -timing diagram
 - Time runs from left to right
 - Waveform shown indicating inputs, output, and internal signal values

x1	x2		F
0	0	1	1
0	1		1
1	0		0
1	1		1

- Convert f= x1' + (x1 · x2) to a logic circuit
 - What are your inputs?
 - x1, x2
 - What are is your output(s)?
 - f
 - How is the function evaluated?
 - Parentheses
 - NOT operation
 - OR operation

Symbol	Name	Description
()	Parentheses	Evaluate expression nested in parentheses first
,	NOT	Evaluate from left to right
	AND	Evaluate from left to right
+	OR	Evaluate from left to right

• Convert $H = a \cdot (b + c')'$ to a logic circuit

Name	Description
Parentheses	Evaluate expression nested in parentheses first
NOT	Evaluate from left to right
AND	Evaluate from left to right
OR	Evaluate from left to right
	Parentheses NOT AND

• Convert $R = (a \cdot b') \cdot (b + c')$ to a logic circuit

Name	Description
Parentheses	Evaluate expression nested in parentheses first
NOT	Evaluate from left to right
AND	Evaluate from left to right
OR	Evaluate from left to right
	Parentheses NOT AND

- Convert Fout = (a1 · bw' + c)' to a logic circuit
 - Expression inside parentheses first
 - NOT, AND, or OR operation?
 - NOT operation

Symbol	Name	Description
()	Parentheses	Evaluate expression nested in parentheses first
,	NOT	Evaluate from left to right
	AND	Evaluate from left to right
+	OR	Evaluate from left to right

- Convert Fout = $(a \cdot b \cdot c)$ to a logic circuit
 - How do we implement a 3-input gate?
 - Using 2-input AND gates
 - Using 3-input AND gates

Same for OR gates

$$- J = k + l + m + n$$

Circuit Drawing Conventions

