Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_st-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 = a_3 - 2r = 10 - 6 =$	3 p
	= 4	2 p
2.	$f(1) = 3 \Leftrightarrow 1 - m + 2m = 3$	3 p
	m=2	2 p
3.	$4^x = \frac{1}{4} \Leftrightarrow 4^x = 4^{-1}$	3 p
	x = -1	2 p
4.	Cifra unităților se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 3 moduri, deci se pot forma $3 \cdot 2 = 6$ numere	3p
5.	$x_M = 3$ și $y_M = 3$, unde M este mijlocul segmentului AB	2p
	$m_{AB} = -1 \Rightarrow m_{\text{mediatoare}} = 1$, deci ecuația mediatoarei segmentului AB este $y = x$	3 p
6.	BC = 10	2p
	R=5	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(-2) = \begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix} \Rightarrow \det(A(-2)) = \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} =$	2p
	=1-5=-4	3 p
b)	$A(x) + A(-x) = \begin{pmatrix} 1 & 2x+5 \\ 5 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2x+5 \\ 5 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 10 \\ 10 & 2 \end{pmatrix}$	3р
	$A(2017) + A(-2017) = \begin{pmatrix} 2 & 10 \\ 10 & 2 \end{pmatrix} = A(x) + A(-x)$, pentru orice număr real x	2p
c)	$A(0) \binom{p}{q} = \binom{1}{5} \binom{5}{1} \binom{p}{q} = \binom{p+5q}{5p+q}$	3р
	$ \binom{p+5q}{5p+q} = \binom{6}{6} \Leftrightarrow p=q=1 $	2p
2.a)	$x \circ y = xy + 6x + 6y + 36 - 6 =$	2p
	=x(y+6)+6(y+6)-6=(x+6)(y+6)-6, pentru orice numere reale x şi y	3 p
b)	$x \circ (-5) = (x+6) \cdot (-5+6) - 6 = x$	2p
	$(-5) \circ x = (-5+6) \cdot (x+6) - 6 = x = x \circ (-5)$, pentru orice număr real x	3 p
c)	(x+6)(-2017+6)-6=(2017+6)(-6+6)-6	2p
	$x + 6 = 0 \Leftrightarrow x = -6$	3 p

(30 de puncte) SUBIECTUL al III-lea

	(* * ** F ****		
1.a)	$f'(x) = \left(\frac{2}{x}\right)' + \left(\ln x\right)' =$	2p	
	$= -\frac{2}{x^2} + \frac{1}{x} = \frac{x-2}{x^2}, \ x \in (0, +\infty)$	3p	
b)	f(1) = 2, f'(1) = -1	2p	
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -x + 3$	3p	
c)	$f'(x) = 0 \Leftrightarrow x = 2$	1p	
	$x \in (0,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,2]$	1p	
	$x \in [2, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2, +\infty)$	1p	
	$f(x) \ge f(2)$ pentru orice $x \in (0, +\infty)$ și, cum $f(2) = 1 + \ln 2$, obținem $\frac{2}{x} + \ln x \ge 1 + \ln 2$,	2p	
	pentru orice $x \in (0, +\infty)$		
2.a)	$\int_{1}^{2} 2x f(x) dx = \int_{1}^{2} 2x \cdot \frac{x^{2} + 2}{2x} dx = \int_{1}^{2} (x^{2} + 2) dx = \left(\frac{x^{3}}{3} + 2x\right) \Big _{1}^{2} =$	3р	
	$= \left(\frac{8}{3} + 4\right) - \left(\frac{1}{3} + 2\right) = \frac{13}{3}$	2p	
b)	$F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^2}{4} + \ln x + c$, unde $c \in \mathbb{R}$	3p	
	$F(1) = 1 \Rightarrow c = \frac{3}{4}$, deci $F(x) = \frac{x^2}{4} + \ln x + \frac{3}{4}$	2p	
c)	$2\int_{1}^{n} (f(x) + x f'(x)) dx = 2\int_{1}^{n} (x f(x))' dx = 2(x f(x)) \Big _{1}^{n} = (x^{2} + 2) \Big _{1}^{n} =$	3р	
	$=(n^2+2)-(1+2)=n^2-1$, pentru orice număr natural $n, n \ge 2$	2p	