Problemas de electrónica 2020/2021

Análise de circuitos de corrente contínua

1. Para cada uma das formas de onda da figura, calcule:

- (a) O pico máximo.
- (b) O pico mínimo.
- (c) O valor médio.
- (d) O valor eficaz.
- 2. Para o circuito seguinte, qual o valor máximo que o amperímetro pode acusar?

3. No circuito da figura, *L*1, *L*2 e *L*3 representam lâmpadas de 24 V / 36 W. Usando as leis de Kirchhoff, calcule o valor da fonte de tensão *E*. Qual é a potência fornecida pela fonte?

 Utilizando o método das tensões nos nós calcule a corrente em todas as resistências do circuito representado a seguir.

- 5. Considere o circuito seguinte.
- 5.1 Utilize o método das tensões nos nós para determinar a potência dissipada em cada uma das resistências.
- 5.2 Mostre que a potência total dissipada é igual à potência fornecida.

- 6. Para o circuito obtenha o valor da corrente *i* utilizando:
- 6.1 O teorema de *Thévenin*.
- 6.2 O teorema de Norton.
- 6.3 O teorema da sobreposição.

7. Considere o circuito eléctrico representado na figura.

- a) Calcule Vo recorrendo ao teorema de Norton.
- b) Calcule a carga a colocar nos terminais AB de modo que a transferência de potência seja máxima.
- 8. Considerar as redes de 2 acessos representadas abaixo e determine as suas descrições de admitância e híbrida.

9. Considere o circuito eléctrico representado na figura.

Calcule as tensões $V_1\,e\,V_2$ usando o método dos nós.

Análise de circuitos de corrente alternada

- 10. Uma rede eléctrica de 230V/50Hz, alimenta diversos receptores cujas características nominais são:
 - Ar condicionado, cujas características nominais são: 6 kW, 230 V, 50 Hz, cos $(\phi) = 0.81$ indutivo.
 - Iluminação: 30 lâmpadas de 110 V, 100 W cada uma.
- a) Faça um esquema eléctrico mostrando a forma como os receptores devem ser ligados de modo a que todos fiquem a funcionar nas condições nominais.
- b) Calcule a corrente total nas linhas de alimentação
- c) Calcule o custo da energia eléctrica gasta pela instalação durante 8 horas à plena carga. O fornecedor de energia eléctrica, vende a energia ao preço seguinte (conforme o factor de potência da instalação):

$0.5 < \cos(\varphi) < 0.8$	13 cêntimos por kWh
$0.8 \le \cos(\varphi) \le 1.0$	10 cêntimos por kWh

- 11. Um receptor que é alimentado com uma tensão monofásica de 230 V, 50 Hz, consome uma corrente de 15 A, e apresenta um factor de potência = 0.707 (indutivo). Determine:
- a) O valor das potências activa, reactiva e aparente.
- b) Dimensione um condensador que corrija o factor de potência para a unidade e indique como ligá-lo.
 Qual o valor da corrente no condensador, da corrente total, e da potência activa?

Soluções

- 2. 50 mA 3. E=20V; P=20W 4. $I(4\Omega)=40/19 \text{ A}$; $I(5\Omega)=36/19 \text{ A}$; $I(10\Omega)=2/19 \text{ A}$
- 8. a) y_{11} =0.6 y_{12} = -0.4 y_{21} = -0.4 y_{22} =0.6 h_{11} =5/3 h_{12} =2/3 h_{21} =-2/3 h_{22} =5/3. b) y_{11} =1.6 y_{12} = -1.4 y_{21} = -1.4 y_{22} =1.6 h_{11} =5/8 h_{12} =7/8 h_{21} =-7/8 h_{22} =5/8