Docket No. 244669US2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Yoshiyi	IKI IKUMA	GAU:
SERIAL NO: NEW APPLICATION		EXAMINER:
FILED: HEREWITH		
FOR: LOW REFLECTION I	LIMITER AND TRANSMITTING/RECEI	VING MODULE UTILIZING SAME
REQUEST FOR PRIORITY		
COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313	}	
SIR:		
☐ Full benefit of the filing date of Uprovisions of 35 U.S.C. §120.	U.S. Application Serial Number , file	ed , is claimed pursuant to the
☐ Full benefit of the filing date(s) (§119(e):		ed pursuant to the provisions of 35 U.S.C. te Filed
Applicants claim any right to pri the provisions of 35 U.S.C. §119	iority from any earlier filed applications to 9, as noted below.	which they may be entitled pursuant to
In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:		
<u>COUNTRY</u> Japan	<u>APPLICATION NUMBER</u> 2002-318084	MONTH/DAY/YEAR October 31, 2002
Certified copies of the corresponding are submitted herewith	3 Convention Application(s)	
☐ will be submitted prior to pay	yment of the Final Fee	
☐ were filed in prior application	n Serial No. filed	
were submitted to the International Receipt of the certified copie acknowledged as evidenced	ational Bureau in PCT Application Numbe es by the International Bureau in a timely n by the attached PCT/IB/304.	r nanner under PCT Rule 17.1(a) has been
☐ (A) Application Serial No.(s)) were filed in prior application Serial No.	filed; and
☐ (B) Application Serial No.(s))	
☐ are submitted herewith		
☐ will be submitted prior	r to payment of the Final Fee	
	Respec	tfully Submitted,
		N, SPIVAK, McCLELLAND, R & NEUSTADT, P.C.
		Clmm Worlden !
Customer Number		J. Spivak ation No. 24,913
22850	•	Irvin McClelland
ZZOJU Tel. (703) 413-3000	C. Registr	ation Number 21,124

Fax. (703) 413-2220 (OSMMN 05/03)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年10月31日

出 願 番 号

Application Number:

特願2002-318084

[ST.10/C]:

[JP2002-318084]

出 願 人 Applicant(s):

株式会社東芝

2003年 7月 1日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-318084

【書類名】

特許願

【整理番号】

4EB0290341

【提出日】

平成14年10月31日

【あて先】

特許庁長官殿

【国際特許分類】

G01S 1/00

【発明の名称】

低反射型リミタおよび低反射型リミタを用いた送受信モ

ジュール

【請求項の数】

11

【発明者】

【住所又は居所】

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝

小向工場内

【氏名】

生熊 良行

【特許出願人】

【識別番号】

000003078

【氏名又は名称】

株式会社 東芝

【代理人】

【識別番号】

100081732

【弁理士】

【氏名又は名称】

大胡 典夫

【選任した代理人】

【識別番号】

100075683

【弁理士】

【氏名又は名称】 竹花 喜久男

【選任した代理人】

【識別番号】

100084515

【弁理士】

【氏名又は名称】 宇治 弘

【手数料の表示】

【予納台帳番号】 009427 【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0001435

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 低反射型リミタおよび低反射型リミタを用いた送受信モジュール

【特許請求の範囲】

【請求項1】 送信信号を増幅する第1増幅器と、受信信号を増幅する第2増幅器とを具備した送受信モジュールにおいて、前記第2増幅器の入力側に低反射型リミタを設けたことを特徴とする送受信モジュール。

【請求項2】 放射器から空間に放射される送信信号を増幅する第1増幅器と、前記放射器で受信された受信信号を増幅する第2増幅器とを具備した送受信モジュールにおいて、前記第2増幅器の入力側に低反射型リミタを設けたことを特徴とする送受信モジュール。

【請求項3】 送信信号を増幅する第1増幅器と、第1~第3の端子を有し、その第1端子に前記送信信号が入力し、その第2端子に放射器が接続されたサーキュレータと、このサーキュレータの第3端子に接続され、前記放射器で受信された受信信号を増幅する第2増幅器とを具備した送受信モジュールにおいて、前記サーキュレータと前記第2増幅器との間に低反射型リミタを設けたことを特徴とする送受信モジュール。

【請求項4】 低反射型リミタが、直列に接続されたリミタダイオードおよび 抵抗を有する請求項1ないし請求項3のいずれか1つに記載の送受信モジュール

【請求項5】 低反射型リミタが、リミタダイオードおよび抵抗が直列に接続された複数の直列接続回路と、この複数の直列接続回路間に接続された1/4波長線路とを有する請求項1ないし請求項3のいずれか1つに記載の送受信モジュール。

【請求項6】 低反射型リミタが、第1~第4の端子を有し、その第1端子に受信信号が入力し、その第2端子に終端抵抗が接続され、その第3端子に第1リミタダイオードが接続され、その第4端子に第2リミタダイオードが接続された第1方向性結合器を有する請求項1ないし請求項3のいずれか1つに記載の送受信モジュール。

【請求項7】 第1~第4の端子を有し、その第1端子が第1リミタダイオードに接続し、その第2端子が第2リミタダイオードに接続し、その第3端子が第2増幅器に接続し、その第4端子に終端抵抗が接続された第2方向性結合器を設けた請求項6記載の送受信モジュール。

【請求項8】 送信信号を増幅する第1増幅器と、第1~第3の端子を有し、その第1端子に前記送信信号が入力し、その第2端子に放射器が接続され、その第3端子に前記放射器で受信された受信信号が出力するサーキュレータと、第1~第4の端子を有し、その第1端子に前記サーキュレータの第3端子が接続され、その第2端子に終端抵抗が接続され、その第3端子に第1リミタダイオードが接続され、その第4端子に第2リミタダイオードが接続された第1方向性結合器と、前記第1リミタダイオードに接続され前記受信信号を増幅する第2増幅器と、前記第2リミタダイオードに接続され前記受信信号を増幅する第3増幅器と、第1~第4の端子を有し、その第1端子が前記第2増幅器に接続し、その第2端子が前記第3増幅器に接続し、その第3端子に前記第2増幅器および前記第3増幅器で増幅された信号が合成されて出力し、その第4端子に終端抵抗が接続された第2方向性結合器とを具備したことを特徴とする送受信モジュール。

【請求項9】 リミタダイオードと、このリミタダイオードに一端が接続され 、他端が接地された抵抗とを具備したことを特徴とする低反射型リミタ。

【請求項10】 リミタダイオードおよび一端が接地された抵抗が直列に接続された複数の直列接続回路と、この複数の直列接続回路間に接続された1/4波長線路とを具備したことを特徴とする低反射型リミタ。

【請求項11】 信号が入力する第1端子を含み第1~第4の端子を有する方向性結合器と、この方向性結合器の第2端子に接続された終端抵抗と、その第3端子に接続された第1リミタダイオードと、その第4端子に接続された第2リミタダイオードとを具備したことを特徴とする低反射型リミタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はアクティブフェーズドアレーアンテナなどに使用される低反射型リミ

タおよびこれを用いた送受信モジュールに関する。

[0002]

【従来の技術】

送受信モジュールは送信信号および受信信号を増幅する増幅器などから構成され、たとえばアクティブフェーズドアレーアンテナに使用されている。アクティブフェーズドアレーアンテナは送信信号を空間に放射する多数の放射器を有し、たとえば各放射器ごとに送受信モジュールが設けられている。また、放射器と送受信モジュール間に、送信信号と受信信号を分離する送受分離回路が設けられている。このような送受信モジュールと送受分離回路とを接続する回路は特許文献1などに記載されている。

[0003]

ここで、従来の送受信モジュールについて図5を参照して説明する。

[0004]

入力端子INから送信信号が送受信モジュール50に入力する。送信信号は移相器51によって所望位相に設定される。その後、送信側aに接続された送受切り換えスイッチ52を経て電力増幅器53に供給され電力増幅される。さらに、送受分離用の非可逆回路素子たとえばサーキュレータ54を図示矢印Y方向に低損失で通過し、出力端子OUTから放射器55に送られ、放射器55より空中へ放射される。空中へ放射された送信信号は目標で反射され、放射器55で受信される。受信信号はサーキュレータ54から低雑音増幅器56に送られ低雑音増幅される。その後、受信側bに接続された送受切り換えスイッチ52および移相器51、入力端子INなどを経て信号処理回路(図示せず)に送られる。

[0005]

アクティブフェーズドアレーアンテナでは、上記した送受信モジュール50および放射器55の組み合わせが多数設けられ、それぞれの放射器55から放射された送信信号が空間で合成され、所望の放射パターンを形成する。

[0006]

空中へ放射された送信信号は、たとえば近距離に障害物があると、その障害物で反射し放射器55に大きな強度で受信される。また、放射した方向によっては

、隣接する放射器との干渉で大きな強度の信号が受信される。このような障害物による反射あるいは隣接する放射器との干渉で、不要な送信信号成分(以後、不要反射成分という)が放射器に入力する場合がある。不要反射成分は電力振幅や位相がいろいろな状態を取り、その電力振幅は、通常の受信信号の10⁵ 倍(10万倍)以上にも達する。

[0007]

電力振幅が大きい不要反射成分がそのまま送受信モジュールに入力すると、受信信号用の低雑音増幅器を劣化させ、あるいは破壊する。また不要反射成分が、送信信号用の電力増幅器の出力側に何らかの理由で入力すると、見かけ上、電力増幅器に劣悪な反射特性の負荷を接続したことと等価となり、所望の性能を発揮できなくなる。

[0008]

そのため、従来の送受信モジュールは、受信信号用の低雑音増幅器および送信信号用の電力増幅器を不要反射成分から保護するために、たとえば受信信号が伝送する受信系統に保護回路が装備される。

[0009]

ここで、保護回路を装備した従来の送受信モジュールについて図6を参照して 説明する。図6は、図5に対応する部分に同じ符号を付し重複する説明を一部省 略する。

[0.0.1.0]

この従来例は、保護回路として受信系統にスイッチ61が設けられ、スイッチ61に終端抵抗62が接続されている。スイッチ61は、たとえば送受切り換えスイッチ52と同期して切り換えられ、送信パルス信号の送信時は端子a側に切り換えられ、受信時は端子b側に切り換えられる。

[0011]

上記した構成によれば、送信用パルス信号の送信時、スイッチ61によって受信系統の信号経路が遮断されている。したがって、近距離の目標あるいは隣接する放射器から入力する不要反射成分は低雑音増幅器56に入力せず、低雑音増幅器56が保護される。また、不要反射成分は終端抵抗62で熱に変換される。そ

のため、電力増幅器53の出力側への不要反射成分の入力が抑えられ、電力増幅器53も保護される。

[0012]

次に、保護回路を装備した従来の送受信モジュールのもう1つの例について図7を参照して説明する。図7は、図5に対応する部分に同じ符号を付し重複する説明を一部省略する。

[0013]

この従来例は、送受分離用の非可逆回路素子として4ポートサーキュレータ71が用いられている。4ポートサーキュレータ71は、たとえば第1および第2の2つの3ポートサーキュレータ71a、71bから構成され、第1の3ポートサーキュレータ71aの1つの端子と、第2の3ポートサーキュレータ71bの1つの端子が接続されている。また、第2の3ポートサーキュレータ71bの1つの端子に終端抵抗72が接続されている。そして、4ポートサーキュレータ71と低雑音増幅器56との間にリミタダイオード73が接続されている。

[0014]

この場合、不要反射成分は4ポートサーキュレータ71を通過した後、リミタダイオード73によって電力振幅が制限される。したがって、リミタダイオード73を漏れ出て低雑音増幅器56に入力する不要反射成分の電力振幅が小さくなり、低雑音増幅器56が保護される。また、リミタダイオード73から低雑音増幅器56側に漏れ出ない残りの不要反射成分はそのほとんどがリミタダイオード73で反射される。反射された不要反射成分は、第2の3ポートサーキュレータ71bに接続された終端抵抗72に加えられ熱に変換される。したがって、電力増幅器53の出力側への入力が抑えられ、電力増幅器53が保護される。

[0015]

次に、保護回路を装備した従来の送受信モジュールのもう1つの例について図 8を参照して説明する。図8は、図5に対応する部分に同じ符号を付し重複する 説明を一部省略する。

[0016]

この従来例は、送信信号と受信信号を分離する部分に、非可逆回路素子に代え、

てスイッチ 8 1 が設けられている。スイッチ 8 1 は、たとえば送受切り換えスイッチ 5 2 と同期して切り換えられ、送信パルス信号の送信時は端子 a 側に切り換えられる。

[0017]

この構成によれば、送信信号の送信時、スイッチ81によって受信系統の信号 経路が遮断され、不要反射成分の低雑音増幅器56への入力が防止される。しか し、この方法は、不要反射成分が電力増幅器53の出力側に入力し、電力増幅器 53が所望の性能を発揮できなくなる。

[0018]

また従来の送受信モジュールのその他の例が特許文献1に記載されている。

[0019]

【特許文献1】

特開平9-270601号公報

[0020]

【発明が解決しようとする課題】

図6の方法では、スイッチ61として、通常、PINダイオードや電界効果トランジスタ(以下FETという)が使用される。

[0.021]

PINダイオードは、挿入損失が小さいため、雑音指数を低く抑え、良好な雑音特性をもつ送受信モジュールが得られる。しかし、PINダイオードを高速にON/OFFさせる駆動回路が必要で、その分、コストが増大し大型化する。また、PINダイオードを駆動するための消費電力も無視できなくなる。また、PINダイオードを用いたスイッチはMMICとしての使用例が少なく、MMIC化による小型化が困難である。

[0022]

FETは、PINダイオードよりも消費電力が小さいという利点がある。また、FETを高速にON/OFFする制御回路も、CMOS論理回路などで構成することができ、低価格化が容易である。しかし、ON/OFFするための制御回路が必要とされ大型化する。また、挿入損失が大きいため、不要反射成分の電力

振幅が大きくなると、受信系統の雑音特性が劣化する。

[0023]

図7の方法は、駆動回路や制御回路を必要とせず、雑音特性が良好で、消費電力も少ないという利点がある。しかし、2個のサーキュレータを使用するため、コストが増大し、大型化し、質量が増加する。したがって、高性能化できるものの、送受信モジュールの小型化や低価格化が困難である。

[0024]

図8の方法は、良好な雑音特性が得られる。しかし、送信信号を増幅する電力 増幅器に不要反射電力が入力する。そのため、保護回路の基本的機能の1つ、た とえば送信側に位置する電力増幅器の性能を安定化させる機能が得られない。し たがって、図8の方法は、不要反射成分が小さい場合、たとえばビーム走査角が 狭い場合など用途が限定される。また、価格や消費電力、サイズなども、図6の 構成と同程度で、より一層の小型化が望まれる。

[0025]

本発明は、上記した欠点を解決し、送受信モジュールの小型化や低価格化が容易な低反射型リミタおよびこの低反射型リミタを用いた送受信モジュールを提供することを目的とする。

[0026]

【課題を解決するための手段】

本発明は、送信信号を増幅する第1増幅器と、受信信号を増幅する第2増幅器 とを具備した送受信モジュールにおいて、前記第2増幅器の入力側に低反射型リ ミタを設けたことを特徴とする。

[0027]

【発明の実施の形態】

本発明の実施形態について、アクティブフェーズドアレーアンテナに使用する 場合を例にとり図1を参照して説明する。

[0028]

入力端子INを通して送信信号が送受信モジュール10に入力する。送信信号 は移相器11によって所望位相に設定され、送信側の端子aに接続された送受切 り換えスイッチ12を経て電力増幅器13に供給され電力増幅される。その後、 送信信号と受信信号とを分離する送受分離回路たとえば非可逆回路素子のサーキ ュレータ14に加えられる。

[0029]

サーキュレータ14はたとえば第1~第3の3個の端子141~143を有し、第1端子141が電力増幅器13に接続し、第2端子142は出力端子OUTおよび放射器15に接続されている。

[0030]

サーキュレータ14に加えられた送信信号は、矢印Yで示した順方向に低損失 で通過し、第2端子142から出力端子OUTを経て放射器15に送られ、放射 器15から空中に放射される。

[0031]

空中へ放射された送信信号はたとえば目標で反射され、放射器 15によって受信される。受信信号は出力端子OUTを経てサーキュレータ 14に送られ、矢印Yで示した順方向に低損失で通過し、第3端子 143から低反射型リミタ 16に送られる。低反射型リミタ 16は、たとえばリミタダイオードDと、一端が接地された抵抗 R 20直列接続回路で構成されている。

[0032]

受信信号は低反射型リミタ16から低雑音増幅器17に送られ低雑音増幅される。その後、受信側の端子bに接続された送受切り換えスイッチ12および移相器11を経て信号処理回路(図示せず)に送られる。

[0033]

アクティブフェーズドアレーアンテナでは、送受信モジュール10および放射器15の組み合わせが多数設けられ、それぞれの放射器15から放射された送信信号は空間で合成され、所望の放射パターンを形成する。

[0034]

上記した構成によれば、低雑音増幅器17の入力側、たとえば受信信号が伝送する低雑音増幅器17およびサーキュレータ14間に、低反射型リミタ16が接続されている。この場合、放射器15に不要反射成分が受信されると、不要反射

[0035]

また、低反射型リミタ16は、たとえばリミタダイオードDと抵抗R´との直列接続回路で構成されている。この場合、大電力の不要反射成分が入力し、リミタダイオードDがON状態になると、受信信号が伝送する伝送路は抵抗R´を介して接地される。このとき、不要反射成分の一部は抵抗R´を通して流れる。したがって、低反射型リミタ16は入力する信号をすべて反射する完全反射ではなく、その一部を反射する。つまり、リミタダイオードだけが単独に接続され抵抗が接続されていない場合に比べ、反射成分が小さい低反射になる。

[0036]

この場合、低雑音増幅器17側に漏れ出ないその残りの不要反射成分は、低反射型リミタ16で反射される電力成分Aと、抵抗R'によって熱に変換される電力成分Bとに分かれる。

[0037]

電力成分Aと電力成分Bの和はエネルギー保存則によって一定で、電力成分Aがサーキュレータ14を経て電力増幅器13の出力側に入力する。しかし、電力増幅器13の出力側に入力する電力成分Aは、従来技術の図6や図7で示したようにゼロである必要はなく、電力成分Aをたとえば送信電力の1/10程度に抑えれば、所望の性能が得られ問題は生じない。

[0038]

電力成分Bはその値が小さいほど低反射型リミタの挿入損失が小さくなり、受信系統の雑音特性が良好となる。したがって、電力成分Aと電力成分Bのバランスを最適化し、たとえば電力成分Aを、電力増幅器13が所望の性能を発揮できる範囲の最大値とし、電力成分Bをできるだけ小さくすれば、受信系統および送信系統の各増幅器17、13が保護され、同時に、受信系統における雑音特性の劣化が防止される。

[0039]

上記した構成によれば、低反射型リミタ16を動作させる駆動電力が不要であるため、消費電力はゼロとなる。また、保護回路用のスイッチおよびそれを駆動し、あるいは制御する回路を必要としないため小型化する。また、上記した構成の低反射型リミタ16はMMICに容易に組み込めるため、コストが軽減し、小型化し軽量化した送受信モジュールが実現される。

[0040]

図1では、低反射型リミタは1組のリミタダイオードDと抵抗R ′ とで構成されている。しかし、図2に示すように、たとえばリミタダイオードD1と抵抗R 1 ′、および、リミタダイオードD2と抵抗R2 ′ が、それぞれ直列に接続された第1および第2の直列接続回路21、22を設け、第1直列接続回路21と第2直列接続回路22との間におよそ1/4波長線路23を接続する構成にすることもできる。

[0041]

この場合、およそ1/4波長線路23の入力端23aにおいて、入力端23aで反射された不要反射成分と、第2直列接続回路22で反射された不要反射成分とが逆相で打ち消し合い、低反射型リミタ16からサーキュレータ14方向に向う不要反射成分を小さくできる。

[0042]

また、リミタダイオードと抵抗が直列に接続された3組以上の直列接続回路を 設け、各組の直列接続回路間におよそ1/4波長線路を接続する構成にすること もできる。

[0043]

次に、本発明の他の実施形態について図3を参照して説明する。図3は、図1 に対応する部分に同じ符号を付し重複する説明を一部省略する。

[0044]

この実施形態は、低反射型リミタ16が第1方向性結合器31などから構成されている。第1方向性結合器31は、たとえば第1~第4の4個の端子311~324を有し、第1端子311から入力した信号が第3端子313および第4端子314に等分され、90°の位相差で出力する構成になっている。

[0045]

第1方向性結合器31は、その第1端子311がサーキュレータ14の第3端子143に接続され、第2端子312に終端抵抗R3が接続され、第3端子313に第1リミタダイオードD3が接続され、第4端子314に第2リミタダイオードD4が接続されている。

[0046]

第1リミタダイオードD1は第2方向性結合器32の第1端子321に接続され、第2リミタダイオードD2は第2方向性結合器32の第2端子322に接続されている。第2方向性結合器32の第3端子323は低雑音増幅器17に接続され、第4端子324は終端抵抗R4に接続されている。第2方向性結合器32は、第1方向性結合器31と同様、第1端子321から入力した信号が第3端子323および第4端子324に等分され、90°の位相差で出力する構成になっている。

[0047]

上記した構成の場合、受信信号は第1方向性結合器31の第3端子313および第4端子314に2分して出力される。それぞれの出力は第1、第2のリミタダイオードD1、D2を経て、第2方向性結合器32の第3端子323に合成されて出力し、受信信号用の低雑音増幅器17で電力増幅される。

[0048]

上記した構成において、第1方向性結合器31の第1端子311に不要反射成分が入力すると、不要反射成分は、第3端子313および第4端子314に出力し、第1および第2のリミタダイオードD1、D2で電力振幅が制限される。したがって、低反射型リミタ16を漏れ出て低雑音増幅器17へ入力する電力振幅は小さくなり、低雑音増幅器17が保護される。

[0049]

この場合、低反射型リミタ16から低雑音増幅器17側へ漏れ出ない残りのほとんどの不要反射成分は、第1および第2のリミタダイオードD1、D2で反射される。しかし、この反射成分は第1方向性結合器31に接続された終端抵抗R3で熱に変換される。その結果、低反射型リミタ16からサーキュレータ14方

向に向う不要反射成分はほぼゼロの低反射となり、電力増幅器13の出力側に入力する不要反射成分も抑制される。

[0050]

したがって、図1の構成と同様の効果、たとえば受信信号用の低雑音増幅器1 7および送信信号用の電力増幅器13を保護するなどの効果が得られる。

[0051]

この場合、図1の構成に比べると、方向性結合器が接続された分だけ損失が増加し、受信系統の雑音特性が劣化する。しかし、その雑音特性は従来技術よりは 劣化しない。

[0052]

次に、本発明の他の実施形態について図4を参照して説明する。図4は、図3 に対応する部分に同じ符号を付し重複する説明を一部省略する。

[0053]

この実施形態は、第1および第2のリミタダイオードD3およびD4に、それぞれ受信信号用の低雑音増幅器41、42が接続され、一方の低雑音増幅器41 は第2方向性結合器32の第1端子321に接続され、他方の低雑音増幅器42 は第2方向性結合器32の第2端子322に接続されている。そして、第2方向性結合器32の第3端子が送受切り換えスイッチ12に接続され、第4端子に終端抵抗R4が接続されている。

[0054]

この構成の場合、低雑音増幅器41、42で増幅された受信信号は、第2方向性結合器32の第3端子に合成されて出力される。

[0055]

また、不要反射成分は第1および第2のリミタダイオードD1、D2で電力振幅が制限される。したがって、第1および第2のリミタダイオードD1、D2を漏れ出て低雑音増幅器41、42へ入力する電力振幅が抑えられ、低雑音増幅器41、42が保護される。

[0056]

また、低雑音増幅器41、42へ漏れ出ない残りのほとんどの不要反射成分は

、第1および第2のリミタダイオードD1、D2によって反射され、第1方向性結合器31に接続された終端抵抗R3で熱に変換される。したがって、低反射型リミタ16からサーキュレータ14方向に向う不要反射成分はほぼゼロの低反射となり、電力増幅器13の出力側に入力する不要反射成分も抑制される。

[0057]

したがって、図3の構成と同様の効果、たとえば受信信号用の2つの低雑音増幅器41、42、および、送信信号用の電力増幅器13を保護するなどの効果が得られる。

[0058]

上記した構成によれば、低反射型リミタのリミタ機能によって漏れ電力が抑圧 され、受信系統の低雑音増幅器が保護される。また、低反射型リミタの低反射機 能によって、送信系統に位置する電力増幅器の出力側への入力が軽減し、あるい は抑圧され、送信系統の電力増幅器は所望の性能を安定に発揮できる。

[0059]

また、低反射型リミタにスイッチが用いられないため、回路構成が簡略化し、 小型化や低価格化が容易になる。また、低反射型リミタは挿入損失が小さく、受 信系統の雑音特性が向上する。また、低反射型リミタは消費電力がなく、MMI C化が容易であるため、安価で小型、軽量なマイクロ波送受信モジュールが容易 に得られる。

[0060]

【発明の効果】

本発明によれば、小型化や軽量化が容易な送受信モジュールを実現できる。

【図面の簡単な説明】

【図1】

本発明の実施形態を説明する回路構成図である。

【図2】

本発明に使用される低反射型リミタの他の例を説明する回路構成図である。

【図3】

本発明の他の実施形態を説明する回路構成図である。

【図4】

本発明の他の実施形態を説明する回路構成図である。

【図5】

従来例を説明する回路構成図である。

【図6】

他の従来例を説明する回路構成図である。

【図7】

他の従来例を説明する回路構成図である。

【図8】

他の従来例を説明する回路構成図である。

【符号の説明】

- 10…送受信モジュール
- 11…移相器
- 12…送受切り換えスイッチ
- 13…送信側の電力増幅器
- 14…サーキュレータ
- 15…放射器
- 16…低反射型リミタ
- 17…受信側の低雑音増幅器
- IN…入力端子
- OUT…出力端子
- D…リミタダイオード
- R…終端抵抗
- R′…抵抗

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【要約】

【課題】 送受信モジュールの小型化や低価格化が容易な低反射型リミタおよび この低反射型リミタを用いた送受信モジュールを提供すること。

【解決手段】 送信信号を増幅する電力増幅器13と、受信信号を増幅する低雑音増幅器17とを具備した送受信モジュールにおいて、低雑音増幅器17の入力側に低反射型リミタ16を設けた。

【選択図】 図1

出願人履歴情報

識別番号

[000003078]

1. 変更年月日

2001年 7月 2日

[変更理由]

住所変更

住 所

東京都港区芝浦一丁目1番1号

氏 名

株式会社東芝

2. 変更年月日

2003年 5月 9日

[変更理由]

名称変更

住 所

東京都港区芝浦一丁目1番1号

氏 名

株式会社東芝