INTRODUCTION TO DERIVATIVE, EXISTENCE OF DERIVATIVE:

1.	Which of the following statements is true (A) A continuous function is an increasing function (B) An increasing function is continuous (C) A continuous function is differentiable (D) A differentiable function is continuous				
2.	If $f(x) = \begin{cases} x+1, & \text{when } x < 2 \\ 2x-1, & \text{when } x \ge 2 \end{cases}$, then $f'(2)$ equals				
	(A) 0 (B) 1 (C) 2	(D) Does not exist			
3.	If $f(x) = x-3 $ then f is (A) Discontinuous at $x = 2$ (B) Not differential (C) Differentiable at $x = 3$ (D) Continuous but not differentiable at $x = 3$	able $x = 2$.			
4.	The function $f(x) = x $ at $x = 0$ is (A) Continuous but non-differentiable (B) Discontinuous (C) Discontinuous and non-differentiable (D) Continuous at	ns and differentiable			
5.	The function = $ \sin x $ is continuous for any x but it is not different in the function in the function of (A) and (A) but it is not different in the function (A) but it is not different in				
6.	Let $f(x) = \begin{cases} 0, & x < 0 \\ x^2, & x \ge 0 \end{cases}$, then for all values of x . (A) f is continuous but not differentiable (B) f is differentiable but not continuous (C) f' is continuous but not differentiable (D) f' is continuous and differentiable				
7.	Which of the following is not true (A) A polynomial function is always continuous (B) A continuous function is always differentiable (C) A differentiable function is always continuous (D) e ^x is continuous for all x				
8.	If $f(x) = x^2 - 2x + 4$ and $\frac{f(5) - f(1)}{5 - 1} = f'(c)$ then value of c will be				
	(A) 0 (B) 1 (C) 2	(D) 3			
9.	Suppose $f(x)$ is differentiable at $x = 1$ and $\lim_{h \to 0} \frac{1}{h} f(1+h) = 5$, then $f'(1)$ ex	quals			
	(A) 5 (B) 6 (C) 3	(D) 4			
10.	Which of the following functions is not differentiable at $x = 0$ - (A) $x x $ (B) x^3 (C) e^{-x}	(D) $x+ x $.			
11.					
	(A) $x^2 \sin \frac{1}{x}$ (B) $x x $ (C) $\cos x$	(D) all above			
12.	Function [x] is not differentiable at - (A) every rational number (B) every integer (C) origin (D) every where				
13.	Function $f(x) = x-1 + x-2 $ is differentiable in [0, 3], except at- (A) $x = 0$ and $x = 3$ (B) $x = 1$ (C) $x = 2$	(D) $x = 1$ and $x = 2$			
14.		(D) A - 1 and A - 2			
	(A) $\sin^{-1}x$ (B) $\tan x$ (C) a^{x}	(D) sin x			
15.	Section 1 v. o				

(A)
$$\sin^{-1}x$$
 (B) $\tan x$ (C) a^{x} (D) $\sin x$

Let $g(x) = x.f(x)$ where $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ at $x = 0$.

- (A) g is differentiable but g' is not continuous
- (B) g is not differentiable while f is differentiable
- (C) Both f and g are differentiable
- (D) g is differentiable and g' is continuous

1	2	3	4	5
D	D	D	Α	D
6	7	8	9	10
С	В	D	Α	D
11	12	13	14	15
D	В	D	Α	Α

DERIVATIVE IN OPEN AND CLOSE INTERVAL:

The function $f(x) = \begin{cases} x, & \text{if } 0 \le x \le 1 \\ 1, & \text{if } 1 < x \le 2 \end{cases}$ is: 1. (A) Continuous at all x and differentiable at all x, except x = 1 in the interval [0, 2](B) Continuous and differentiable at all x in [0, 2](C) Not continuous at any point in [0, 2] (D) Not differentiable at any point [0, 2] 2. Let [x] denotes the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is (A) Continuous at x = 0(C) Differentiable in (-1,1)

(B) Continuous in (-1,0) (D) All the above

 $f(x) = [\sin x] + [\cos x], x \in [0, 2\pi]$, where [\cdot] denotes the greatest integer function. Total number points where f(x) is not differentiable is equal to

(A) 2

(B) 3

(D) 5.

Suppose f(x) is differentiable at x = 1 and $\lim_{h \to 0} \frac{1}{h} f(1 + h) = 5$, then f'(1) equals:

(B) 5

(C) 4

5. Function f(x) = |x - 2| is:

(A) Continuous and differentiable in (0, 3)

(B) Continuous and differentiable in [0, 3]

(C) Continuous and differentiable in (0, 3) except at x = 2

(D) Continuous in (0, 3) and differentiable in [0, 3] - {2}

Function f(x) = |x-1| + |x-2| is differentiable in [0, 3] except at 6.

(A) x = 0 and x = 3 (B) x = 1

(C) x = 2

(D) x = 1 and x = 2.

The set of all those points, where the function $f(x) = \frac{x}{1+|x|}$ is differentiable, is 7.

(B) [0,∞)

(C) $(-\infty,0)\cup(0,\infty)$ (D) $(0,\infty)$

The number of points at which the function $f(x) = |x - 0.5| + |x - 1| + \tan x$ does not have a 8. derivative in the interval (0, 2), is

(A) 1

(B) 2

(C) 3

(D) 4

9. If
$$f(x) = \begin{cases} |x-3|, & when \ x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & when \ x < 1 \end{cases}$$
, then

correct statement is-

(A) f is discontinuous at x = 1

(B) f is discontinuous at x = 3

(C) f is differentiable at x = 1

(D) f is differentiable at x = 3

If $f(x) = \begin{cases} 1, & \text{when } x < 0 \\ 1 + \sin x, & \text{when } 0 \le x \le \pi/2 \end{cases}$, then at x = 0, f(x) equals-

(B) 0

(C) ∞

(D) Does not exist

If $f(x) = \begin{cases} e^x & x \le 0 \\ |1-x|, & x > 0 \end{cases}$, then f(x) is-11.

(A) continuous at x = 0

(B) differentiable at x = 0

(C) differentiable at x = 1

(D) differentiable both at x = 0 and 1

 $\int x^2, x \leq 0$ 12. Function $f(x) = \{1, 0 < x \le 1 \text{ is}-$ 1/x, x > 1

(A) differentiable at x = 0, 1

(B) differentiable only at x = 0

(C) differentiable at only x = 1

(D) Not differentiable at x = 0, 1

13. Let
$$f(x) = \begin{cases} (x-1)\sin\left(\frac{1}{x-1}\right), & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$$
. Then which one of the following is true?

- (A) f is neither differentiable at x = 0 nor at x = 1
- (B) f is differentiable at x = 0 and at x = 1
- (C) f is differentiable at x = 0 but not at x = 1
- (D) f is differentiable at x = 1 but not at x = 0
- 14. Let $f(x) = \max\{2\sin x, 1-\cos x\}, x \in (0,\pi)$. Then set of points of non-differentiability is -
 - (A) ø
- (B) {π/2}
- (C) $\{\pi \cos^{-1}3/5\}$ (D) $\{\cos^{-1}3/5\}$.
- 15. If the derivative of the function -

 $f(\mathbf{x})\!=\!\begin{cases} a\mathbf{x}^2\!+\!b, & \mathbf{x}<\!-\!1\\ b\mathbf{x}^2\!+\!a\mathbf{x}+\!4, & \mathbf{x}\geq\!-\!1 \end{cases}$ is everywhere continuous, then

- (A) a = 2, b = 3 (B) a = 3, b = 2 (C) a = -2, b = -3 (D) a = -3, b = -2

1	2	3	4	5
Α	D	Α	В	D
6	7	8	9	10
D	Α	С	С	D
11	12	13	14	15
Α	D	Α	С	Α

THEOREMS ON DIFFERENTIABILITY, PROBLEMS ON DIFFERENTIABILITY:

1. Let $f: (-1, 1) \rightarrow R$ be a differentiable function with f(0) = -2 and f(0) = 1.

(A) -4 (B) 0 (C) -2 (D) 4

Let $g(x) = [f(2)(f(x)+2)]^2$, then g'(0) is:

2.	The left-hand derivative of $f(x) = [x] \sin(\pi x)$ at $x = k, k$ is an integer and $[x]$ = greatest integer
	$\leq x$, is (A) $(-1)^k (k-1)\pi$ (B) $(-1)^{k-1} (k-1)\pi$ (C) $(-1)^k k\pi$ (D) $(-1)^{k-1} k\pi$.
4.	If $f(x) = \frac{1}{1+ x }$ for $x \in R$ then $f'(0) =$
	(A) 0 (B) 1 (C) 2 (D) 3
5.	The function $f(x) = (x^2 - 1) x^2 - 3x + 2 + \cos(x)$ is not differentiable at
	(A) -1 (B) 0 (C) 1 (D) 2
6.	If $f(x) = x(\sqrt{x} - \sqrt{x+1})$ then
	 (A) f(x) is continuous but non- differentiable at x = 0 (B) f(x) is differentiable at x = 0 (C) f(x) is not differentiable at x = 0 (D) None of these
7.	Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$ Then which one of the following is true?
	 (A) f is differentiable at x = 0 and at x = 1 (B) f is differentiable at x = 0 but not at x = 1 (C) f is differentiable at x = 1 but not at x = 0 (D) f is neither differentiable at x = 0 nor at x = 1
8.	Function $f(x) = \begin{cases} x \tan^{-1}(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$ at $x = 0$ is- (A) discontinuous (B) continuous (C) differentiable (D) None of these
9.	If $f(x) = \begin{cases} x^n \frac{e^{vx}}{1 + e^{vx}}; & x \neq 0 \\ 0, & x = 0 \end{cases}$ then (A) if $n = 1$, function is continuous and differentiable (B) if $n = 2$, function is continuous and differentiable (C) if $n = 0$, function is discontinuous and differentiable (D) None of these
10.	Let $f(x) = \begin{cases} (x-1)^2 \cdot \cos \frac{1}{(x-1)} - x ; & x \neq 1 \\ -1; & x = 1 \end{cases}$ The set of points where $f(x)$ is continuous but not
	differentiable is (A) {1} (B) {0, 1} (C) {0} (D) None of these
11.	If $f(x)$ is differentiable everywhere, then (A) $ f(x) $ is differentiable everywhere (B) $ f ^2$ is differentiable everywhere (C) $ f $ is not differentiable everywhere (D) None of these
12.	Let $f(x) = \begin{cases} e^{-x^x} \cdot \sin \frac{1}{x}; & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$. Then
	(A) $f(x)$ is continuous at $x = 0$ (B) $f(x)$ is discontinuous at $x = 0$ (C) $f(x)$ is differentiable at $x = 0$ (D) None of these
13.	Which of the following functions are differentiable at 0?
	(A) $\cos x $ (B) $\frac{x}{1+ x }$ (C) $\sin x - x $ (D) all
14.	If $f(x) = \begin{cases} x-4 , & \text{for } x \ge 1\\ (x^3/2) - x^2 + 3x + (1/2), & \text{for } x < 1 \end{cases}$, then
	(A) $f(x)$ is continuous at $x = 1$ and at $x = 4$ (B) $f(x)$ is differentiable at $x = 4$

12. Let
$$f(x) = \begin{cases} e^{-x^{x}} \cdot \sin \frac{1}{x}; & x \neq 0 \\ 0; & x = 0 \end{cases}$$
. Then

- (A) f(x) is continuous at x = 0 (B) f(x) is discontinuous at x = 0 (C) f(x) is differentiable at x = 0 (D) None of these

- 13. Which of the following functions are differentiable at 0?

(A)
$$\cos |x|$$
 (B) $\frac{x}{1+|x|}$

14. If
$$f(x) = \begin{cases} |x-4|, & \text{for } x \ge 1\\ (x^3/2) - x^2 + 3x + (1/2), & \text{for } x < 1 \end{cases}$$
, then

- (A) f(x) is continuous at x = 1 and at x = 4 (B) f(x) is differentiable at x = 4
- (C) f(x) is continuous and differentiable at x = 1 (D)f(x) is only continuous at x = 1
- 15. The function $f(x) = \sin^{-1}(\cos x)$ is -
 - (A) discontinuous at x = 0
- (B) continuous at x = 0
- (C) differentiable at x = 0
- (D) none of these

1	2	3	4	5
В	Α	D	В	D
6	7	8	9	10
В	В	В	В	С
11	12	13	14	15
В	С	D	Α	В

DETERMINATION OF DIFFERENTIABLE FUNCTIONS DEFINED BY SOME FUNCTIONAL VALUE:

1.	Let $f(x+y) = f(x) + f(y)$ and $f(x) = x^2g(x)$ for all $x, y \in R$ where $g(x)$ is continuous function. Then $f'(x)$ is equal to -				
	(A) g'(x)	(B) g(x)	(C) f(x)	(D) none of these	
2.	Let $f(x+y) = f(x)f(x)$	y) for all $x, y \in R$ Sup	pose that $f(3) = 3$ and	f'(0) = -11 then f'(3) is equal	
	(A) 22	(B) 44	(C) 28	(D) none of these	
3.	If for all values of	x & x; f(x+y) = f(x)f(y)) and $f(5) = 2$, $f'(0) = 3$, t	hen f'(5) is-	
	(A) 3	(B) 4	(C) 5	(D) 6	
4.	If f is a real-value	d differentiable funct	ion satisfying $ f(x)-f(y) $	$ y < (x-y)^2, x, y \in R \text{ and } f(0) =$	
	0, then $f(1)$ equals-				
	(A) -1	(B) 0	(C) 2	(D) 1	
5.		$\frac{f(y)}{f(y)}$ for all real x and	1 y and $f'(0) = -1, f(0) = 1$		
	(A) 1/2	(B) 1	(C) -1	(D) - 1/2	
6.	Let $f: R \to R$ be a f	unction such that $f(x)$	$+y)=f(x)+f(y), \forall x,y \in R$	If $f(x)$ is differentiable at x	
	(B) $f(x)$ is discon (C) $f'(x)$ is constant	tinuous $\forall x \in R$.	e interval containing zo	ero	
7.	Let $f(x+y) = f(x)f($	y) and $f(x) = 1 + \sin(3x)g$	g(x) where $g(x)$ is conti	nuous then $f'(x)$ is	
	(A) $f(x)g(x)$	(B) 3g(0)	(C) $f(x)\cos 3x$	(D) $3f(x)g(0)$.	
8.	Let f be a twice dif	ferentiable function s f''(x) = -f(x) as	such that $f'(x) = g(x)$.		
	If $h(x) = [f(x)]^2 + [g(x)]^2$	$[x]^2$, & $h(1) = 2$ find $h(1) = 2$	(0)		
	(A) 1	(B) 2	(C) 3	(D) None	
9.	$\operatorname{If} f(x) + f(y) = f\left\{\frac{x+1}{1-x}\right\}$	$\left\{ \frac{y}{y} \right\}$ for all x, y > 0 and	f be differentiable for	all x then:	
	(A) $f(0) \neq 0$		1 + X	(D) $f'(x) = 0$ for all x .	
10.	If $f(x) = \begin{cases} x+2, & -1 < 5, & x=3 \\ 8-x, & x > 3 \end{cases}$	x < 3, then at $x = 3$, $f'(x)$	x) =		
	(A) 1	(B) -1	(C) 0	(D) Does not exist	
11.	If $f(x) = \begin{cases} x, \\ 2x - 1, \end{cases}$	$0 \le x < 1$ $1 \le x$, then			
	(A) f is disconting (B) f is differentiage (C) f is continuou (D) None of these	able at x=1 is but not differentiab	ele at $x = 1$		

If $f(x) = \begin{cases} 1, & x < 0 \\ 1 + \sin x, & 0 \le x < \frac{\pi}{2} \text{ then } f'(0) = \end{cases}$

(A) 1

(B) 0 (C) ∞ (D) Does not exist

If $f(x) = \begin{cases} ax^2 + b, & x \le 0 \\ x^2, & x > 0 \end{cases}$ possesses derivative at x = 0, then

(A) a = 0, b = 0 (B) a > 0, b = 0 (C) $a \in R, b = 0$ (D) None of these

14. If $f(x) = sgn(x^3)$, then

(A) f is continuous but not derivable at x=0. (B) $f'(0^+)=2$

(C) $f^*(0^-) = 1$

(D) f is not derivable at x=0

15. Function $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is not differentiable for

(A) |x| < 1 (B) x = 1, -1 (C) |x| > 1 (D) None of these

1	2	3	4	5
D	D	D	В	С
6	7	8	9	10
С	D	В	С	D
11	12	13	14	15
С	D	С	D	В