(PCA Assignment)

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.preprocessing import scale

-----Read the Datasets-----data = pd.read_csv('Downloads/wine.csv')
data

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenois	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilution	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740
174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750
175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835
176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840
177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560

178 rows × 14 columns

-----Read the first 6 columns—----data.head(6)

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Hue	Dilution	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
5	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450

------Describe Data-----data.describe()

	Туре	Alcohol	Malic	Ash	Alcalinity	Magnesium	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color	Ηι
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00000
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.95744
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.22857
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.48000
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.78250
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.96500
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.12000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.71000

------Drop first column------divide = data.iloc [:,1:] divide

0 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 2 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03		1065 1050 1185
2 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03	3.17	1185
3 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86	3.45	1480
4 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04	2.93	735
		
173 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.70 0.64	1.74	740
174 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.30 0.70	1.56	750
175 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.20 0.59	1.56	835
176 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.30 0.60	1.62	840
177 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.20 0.61	1.60	560

178 rows × 13 columns

------Define Array------

array = divide.values array

```
array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00, 1.065e+03], [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00, 1.050e+03], [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00, 1.185e+03], ..., [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00, 8.350e+02], [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00, 8.400e+02], [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00, 5.600e+02]])
```

------Scale the array-------

scale = scale(array) scale

```
array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 0.36217728, 1.84791957, 1.01300893],
[ 0.24628963, -0.49941338, -0.82799632, ..., 0.40605066, 1.1134493 , 0.96524152],
[ 0.19687903, 0.02123125, 1.10933436, ..., 0.31830389, 0.78858745, 1.39514818],
...,
[ 0.33275817, 1.74474449, -0.38935541, ..., -1.61212515, -1.48544548, 0.28057537],
[ 0.20923168, 0.22769377, 0.01273209, ..., -1.56825176, -1.40069891, 0.29649784],
[ 1.39508604, 1.58316512, 1.36520822, ..., -1.52437837, -1.42894777, -0.59516041]])
```

```
------Define PCA-----
pca = PCA()
pca values = pca.fit transform(scale)
pca values
array([[ 3.31675081e+00, -1.44346263e+00, -1.65739045e-01, ...,
          -4.51563395e-01, 5.40810414e-01, -6.62386309e-02],
         [ 2.20946492e+00, 3.33392887e-01, -2.02645737e+00, ...,
          -1.42657306e-01, 3.88237741e-01, 3.63650247e-03],
         [ 2.51674015e+00, -1.03115130e+00, 9.82818670e-01, ...,
          -2.86672847e-01, 5.83573183e-04, 2.17165104e-02],
         [-2.67783946e+00, -2.76089913e+00, -9.40941877e-01, ...,
           5.12492025e-01,
                               6.98766451e-01,
                                                    7.20776948e-02],
         [-2.38701709e+00, -2.29734668e+00, -5.50696197e-01, ...,
            2.99821968e-01, 3.39820654e-01, -2.18657605e-02],
         [-3.20875816e+00, -2.76891957e+00, 1.01391366e+00, ...,
          -2.29964331e-01, -1.88787963e-01, -3.23964720e-01]])
var = pca.explained variance ratio
var
array([0.36198848, 0.1920749 , 0.11123631, 0.0706903 , 0.06563294,
        0.04935823, 0.04238679, 0.02680749, 0.02222153, 0.01930019,
        0.01736836, 0.01298233, 0.00795215])
var1 = np.cumsum(np.round(var, decimals = 4)*100)
var1
array([ 36.2 , 55.41, 66.53, 73.6 , 80.16, 85.1 , 89.34, 92.02,
        94.24, 96.17, 97.91, 99.21, 100.01])
  -----Define components—-----
pca.components
                    , -0.24518758, -0.00205106, -0.23932041, 0.1419920
, 0.4229343 , -0.2985331 , 0.31342949, -0.0886167
                        ., -0.00205100
0.4229343 , -0.2985331
0.37616741, 0.2967
array([[ 0.1443294
                                                                  0.14199204.
          0.39466085,
          0.29671456,
                                      0.28675223],
                      -0.22493093, -0.31606881,
        [-0.48365155,
                                                  0.0105905 , -0.299634 , -0.03930172, -0.52999567,
         0.06503951,
                        0.00335981, -0.02877949
                        0.16449619,
          0.27923515,
                                    -0.36490283],
        [-0.20738262,
                                                     .61208035,
                                                    0.61208035, 0.13075693, 0.14945431, -0.13730621,
          0.14617896.
                        0.1506819
                                      0.17036816
          0.08522192,
                        0.16600459.
                        0.53689028,
                                    -0.21417556,
                                                    0.06085941,
        [-0.0178563 ,
0.19806835,
                                                    0.06085941, -0.35179658, 0.39905653, 0.06592568,
                        0.15229479, -0.20330102
        -0.42777141,
[-0.26566365,
                        0.18412074, -0.23207086],
0.03521363, -0.14302547,
                                                    0.06610294,
        -0.14931841, -0.10902584, -0.50070298, -0.17361452, -0.10116099, -0.1578688], [-0.21353865, -0.53681385, -0.15447466,
                                                    0.13685982, -0.07643678,
         0.0841223 , 0.01892002,
0.10598274, -0.26585107,
                                      0.25859401,
                                                    0.53379539,
                                                                  0.41864414,
        Γ-0.05639636,
                                    -0.14917061,
                       0.42052391,
                                                   -0.28696914.
                                                                  0.3228833
                                                    0.37213935,
                                                                 -0.22771214,
                                      0.0768045 ],
          0.23207564,
                      -0.0447637
        [-0.39613926, -0.06582674,
                                      0.17026002, -0.42797018,
                        0.18724536,
         0.40593409,
                                                  -0.36822675,
                                      0.23328465
                                                                  0.03379692,
                                      0.12002267],
          0.43662362,
                        0.07810789.
                      -0.07528304,
                                    -0.30769445,
         0.50861912,
                                                    0.20044931, 0.27140257,
                                      0.19550132,
          0.28603452,
                        0.04957849,
                                                                  0.05621752,
                                                   -0.20914487,
                      0.0495/849, 0.19550132,
0.1372269 , -0.57578611],
          0.08582839.
```

Text(0.5, 1.0, 'Variance Plot for PCA components')

------Plot PCA1 and PCA2------Plot PCA1

x = pca_values[:,0]
y = pca_values[:,1]
plt.scatter(x,y, color = 'red')
plt.title('Plot between PCA1 AND PCA2')

Text(0.5, 1.0, 'Plot between PCA1 AND PCA2')

new = pd.DataFrame(pca_values[:,0:7]) from sklearn.cluster import KMeans kmeans = KMeans (n_clusters = 3) kmeans.fit(new) kmeans.labels_