# Capstone week 3 Assignment

```
In [2]: | #!pip3 install lxml
        import requests
        from bs4 import BeautifulSoup as bs
        import pandas as pd
        import numpy as np
        print ('libraries imported')
```

libraries imported

### **PART ONE**

#### 1. setting up the url to access the data from wikipedia

#### 2. parsing the data into html

```
In [3]: url = requests.get('https://en.wikipedia.org/wiki/List of postal codes of Canada: M
        ').text
        soup=bs(url,'lxml')
        table = str(soup.table)
```

### 3. reading the html into a pandas dataframe

```
In [12]: toronto_df = pd.read_html(table)
         toronto_df=toronto_df[0]
         toronto df
```

Out[12]:

|     | Postal Code | Borough          | Neighbourhood                                  |
|-----|-------------|------------------|------------------------------------------------|
| 0   | M1A         | Not assigned     | Not assigned                                   |
| 1   | M2A         | Not assigned     | Not assigned                                   |
| 2   | МЗА         | North York       | Parkwoods                                      |
| 3   | M4A         | North York       | Victoria Village                               |
| 4   | M5A         | Downtown Toronto | Regent Park, Harbourfront                      |
|     |             |                  |                                                |
| 175 | M5Z         | Not assigned     | Not assigned                                   |
| 176 | M6Z         | Not assigned     | Not assigned                                   |
| 177 | M7Z         | Not assigned     | Not assigned                                   |
| 178 | M8Z         | Etobicoke        | Mimico NW, The Queensway West, South of Bloor, |
| 179 | M9Z         | Not assigned     | Not assigned                                   |

180 rows × 3 columns

# 4. droping the 'Not assigned' values, combining neighborhoods, and replacing 'Not assigned' neighborhood value with the corresponding value from Borough column

#### Out[13]:

|     | Postal Code | Borough          | Neighbourhood                                  |
|-----|-------------|------------------|------------------------------------------------|
| 0   | МЗА         | North York       | Parkwoods                                      |
| 1   | M4A         | North York       | Victoria Village                               |
| 2   | M5A         | Downtown Toronto | Regent Park, Harbourfront                      |
| 3   | M6A         | North York       | Lawrence Manor, Lawrence Heights               |
| 4   | M7A         | Downtown Toronto | Queen's Park, Ontario Provincial Government    |
|     |             |                  |                                                |
| 98  | M8X         | Etobicoke        | The Kingsway, Montgomery Road, Old Mill North  |
| 99  | M4Y         | Downtown Toronto | Church and Wellesley                           |
| 100 | M7Y         | East Toronto     | Business reply mail Processing Centre, South C |
| 101 | M8Y         | Etobicoke        | Old Mill South, King's Mill Park, Sunnylea, Hu |
| 102 | M8Z         | Etobicoke        | Mimico NW, The Queensway West, South of Bloor, |
|     |             |                  |                                                |

103 rows × 3 columns

#### 5. the data frame should have no duplicates, test to see if true

```
In [14]: duplicateVAlues = toronto_df[toronto_df.duplicated()]
    print(duplicateVAlues)

Empty DataFrame
    Columns: [Postal Code, Borough, Neighbourhood]
    Index: []
```

#### 6. Print data frame shape

```
In [15]: toronto_df.shape
Out[15]: (103, 3)
```

## **PART TWO:**

------

# 1. Importing CSV file to obtain Lat, Lon

```
In [16]: lon_lat = pd.read_csv('http://cocl.us/Geospatial_data')
lon_lat.head(10)
```

Out[16]:

|   | Postal Code | Latitude  | Longitude  |
|---|-------------|-----------|------------|
| 0 | M1B         | 43.806686 | -79.194353 |
| 1 | M1C         | 43.784535 | -79.160497 |
| 2 | M1E         | 43.763573 | -79.188711 |
| 3 | M1G         | 43.770992 | -79.216917 |
| 4 | M1H         | 43.773136 | -79.239476 |
| 5 | M1J         | 43.744734 | -79.239476 |
| 6 | M1K         | 43.727929 | -79.262029 |
| 7 | M1L         | 43.711112 | -79.284577 |
| 8 | M1M         | 43.716316 | -79.239476 |
| 9 | M1N         | 43.692657 | -79.264848 |

# 2. join the longitude and latitude with toronto\_df

```
In [17]: toronto_df=pd.merge(toronto_df,lon_lat,on='Postal Code')
```

In [18]: toronto\_df

Out[18]:

|     | Postal Code | Borough          | Neighbourhood                                  | Latitude  | Longitude  |
|-----|-------------|------------------|------------------------------------------------|-----------|------------|
| 0   | МЗА         | North York       | Parkwoods                                      | 43.753259 | -79.329656 |
| 1   | M4A         | North York       | Victoria Village                               | 43.725882 | -79.315572 |
| 2   | M5A         | Downtown Toronto | Regent Park, Harbourfront                      | 43.654260 | -79.360636 |
| 3   | M6A         | North York       | Lawrence Manor, Lawrence Heights               | 43.718518 | -79.464763 |
| 4   | M7A         | Downtown Toronto | Queen's Park, Ontario Provincial Government    | 43.662301 | -79.389494 |
|     |             |                  |                                                |           |            |
| 98  | M8X         | Etobicoke        | The Kingsway, Montgomery Road, Old Mill North  | 43.653654 | -79.506944 |
| 99  | M4Y         | Downtown Toronto | Church and Wellesley                           | 43.665860 | -79.383160 |
| 100 | M7Y         | East Toronto     | Business reply mail Processing Centre, South C | 43.662744 | -79.321558 |
| 101 | M8Y         | Etobicoke        | Old Mill South, King's Mill Park, Sunnylea, Hu | 43.636258 | -79.498509 |
| 102 | M8Z         | Etobicoke        | Mimico NW, The Queensway West, South of Bloor, | 43.628841 | -79.520999 |
|     |             |                  |                                                |           |            |

103 rows × 5 columns

## **PART THREE:**

# 1. For the analysis i chose to work with borough that contain 'Etobicoke'

Out[27]:

|    | Postal Code | Borough   | Neighbourhood                                  | Latitude  | Longitude  |
|----|-------------|-----------|------------------------------------------------|-----------|------------|
| 0  | M9A         | Etobicoke | Islington Avenue, Humber Valley Village        | 43.667856 | -79.532242 |
| 1  | M9B         | Etobicoke | West Deane Park, Princess Gardens, Martin Grov | 43.650943 | -79.554724 |
| 2  | M9C         | Etobicoke | Eringate, Bloordale Gardens, Old Burnhamthorpe | 43.643515 | -79.577201 |
| 3  | M9P         | Etobicoke | Westmount                                      | 43.696319 | -79.532242 |
| 4  | M9R         | Etobicoke | Kingsview Village, St. Phillips, Martin Grove  | 43.688905 | -79.554724 |
| 5  | M8V         | Etobicoke | New Toronto, Mimico South, Humber Bay Shores   | 43.605647 | -79.501321 |
| 6  | M9V         | Etobicoke | South Steeles, Silverstone, Humbergate, Jamest | 43.739416 | -79.588437 |
| 7  | M8W         | Etobicoke | Alderwood, Long Branch                         | 43.602414 | -79.543484 |
| 8  | M9W         | Etobicoke | Northwest, West Humber - Clairville            | 43.706748 | -79.594054 |
| 9  | M8X         | Etobicoke | The Kingsway, Montgomery Road, Old Mill North  | 43.653654 | -79.506944 |
| 10 | M8Y         | Etobicoke | Old Mill South, King's Mill Park, Sunnylea, Hu | 43.636258 | -79.498509 |
| 11 | M8Z         | Etobicoke | Mimico NW, The Queensway West, South of Bloor, | 43.628841 | -79.520999 |

# 2. import classes to analyize and visualize the above data

```
In [32]: #!pip install geopy
    from geopy.geocoders import Nominatim
    import matplotlib.cm as cm
    import matplotlib.colors as colors
    #!pip install sklearn
    from sklearn.cluster import KMeans
    #!pip install folium
    import folium
    print('Libraries imported.')
```

Libraries imported.

# 3. getting the geo data of Etobicoke

```
In [33]: address = 'Etobicoke, Toronto, Canada'

geolocator = Nominatim(user_agent="ny_explorer")
    location = geolocator.geocode(address)
    latitude = location.latitude
    longitude = location.longitude
    print('The geograpical coordinate of Etobicoke are {}, {}.'.format(latitude, longitude))
```

The geograpical coordinate of Etobicoke are 43.6435559, -79.5656326.

### 4. create a map of the above geo data

```
In [52]: map_Etobicoke = folium.Map(location=[latitude, longitude], zoom_start=10)
         for lat, lng, borough, neighborhood in zip(Etobicoke_df['Latitude'],
                                                     Etobicoke_df['Longitude'],
                                                     Etobicoke_df['Borough'],
                                                     Etobicoke df['Neighbourhood']):
             label = '{}, {}'.format(neighborhood, borough)
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.7,
                 parse_html=False).add_to(map_Etobicoke)
         map Etobicoke
```

Out[52]:



# 5. Clustering neighborhoods

In [57]: Etobicoke\_df

Out[57]:

|    | Cluster<br>Labels | Postal<br>Code | Borough   | Neighbourhood                                     | Latitude  | Longitude  |
|----|-------------------|----------------|-----------|---------------------------------------------------|-----------|------------|
| 0  | 3                 | M9A            | Etobicoke | Islington Avenue, Humber Valley Village           | 43.667856 | -79.532242 |
| 1  | 0                 | М9В            | Etobicoke | West Deane Park, Princess Gardens, Martin Grov    | 43.650943 | -79.554724 |
| 2  | 0                 | М9С            | Etobicoke | Eringate, Bloordale Gardens, Old<br>Burnhamthorpe | 43.643515 | -79.577201 |
| 3  | 3                 | M9P            | Etobicoke | Westmount                                         | 43.696319 | -79.532242 |
| 4  | 3                 | M9R            | Etobicoke | Kingsview Village, St. Phillips, Martin Grove     | 43.688905 | -79.554724 |
| 5  | 4                 | M8V            | Etobicoke | New Toronto, Mimico South, Humber Bay Shores      | 43.605647 | -79.501321 |
| 6  | 2                 | M9V            | Etobicoke | South Steeles, Silverstone, Humbergate, Jamest    | 43.739416 | -79.588437 |
| 7  | 4                 | M8W            | Etobicoke | Alderwood, Long Branch                            | 43.602414 | -79.543484 |
| 8  | 2                 | M9W            | Etobicoke | Northwest, West Humber - Clairville               | 43.706748 | -79.594054 |
| 9  | 1                 | M8X            | Etobicoke | The Kingsway, Montgomery Road, Old Mill North     | 43.653654 | -79.506944 |
| 10 | 1                 | M8Y            | Etobicoke | Old Mill South, King's Mill Park, Sunnylea, Hu    | 43.636258 | -79.498509 |
| 11 | 1                 | M8Z            | Etobicoke | Mimico NW, The Queensway West, South of Bloor,    | 43.628841 | -79.520999 |

# 6. visualize clusters

7 of 8

```
In [60]: map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2 \text{ for } i \text{ in } range(kclusters)]
          colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors array]
         markers colors = []
         for lat, lon, poi, cluster in zip(Etobicoke df['Latitude'],
                                             Etobicoke df['Longitude'],
                                             Etobicoke df['Neighbourhood'],
                                             Etobicoke df['Cluster Labels']):
              label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
              folium.CircleMarker(
                  [lat, lon],
                  radius=5,
                  popup=label,
                  color=rainbow[cluster-1],
                  fill=True,
                  fill color=rainbow[cluster-1],
                  fill_opacity=0.7).add_to(map_clusters)
         map clusters
```

#### Out[60]:



```
In [ ]:
```

8 of 8