Lineare Algebra I - Prüfung Winter 2019

- 1. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete Teilaufgabe erhalten Sie 2 Punkte, sonst 0 Punkte. Bei dieser Aufgabe müssen Sie die Antworten nicht begründen.
 - (I) Im Körper \mathbb{F}_{17} gilt die Gleichung $x \cdot \overline{7} = \overline{1}$ für
 - (a) $x = \overline{15}$
 - **(b)** $x = \overline{9}$
 - (c) $x = \bar{3}$
 - (d) $x = \overline{5}$
 - (II) Sei f ein Endomorphismus eines Vektorraumes. Welche Aussage ist **richtig**?
 - (a) Die Summe zweier Eigenvektoren von f ist wieder ein Eigenvektor von f.
 - (b) Die Summe zweier Eigenwerte von f ist wieder ein Eigenwert von f.
 - (c) Jeder Eigenvektor von f gehört zu genau einem Eigenwert von f.
 - (d) Zu jedem Eigenwert von f existiert ein eindeutiger Eigenvektor von f.
 - (III) Sei V ein Vektorraum mit Dualraum V^* . Welche Aussage ist richtig?
 - (a) Der Begriff duale Basis bezeichnet eine durch V eindeutig bestimmte Basis von V^* .
 - (b) Die Elemente von V sind gleich den Elementen von V^* .
 - (c) Für $\dim(V) < \infty$ ist $V \cong V^*$.
 - (d) Es gilt $V^* = \operatorname{End}_K(V)$.
 - (IV) Welche der folgenden Definitionen ergibt einen Sinn für alle $n \ge 0$? Eine $n \times n$ -Matrix A über einem Körper K heisst
 - (a) positiv, wenn det(A) > 0 gilt.
 - **(b)** definit, wenn für alle $v \in K^n$ gilt $v^T A v = 0 \iff v = 0$.
 - (c) konstant, wenn für alle $v \in K^n$ ein $\lambda \in K$ existiert, so dass $Av = \lambda$ gilt.
 - (d) doppelsymmetrisch, wenn für die zusammengesetzte $n \times 2n$ -Matrix (A|A) gilt $(A|A)^T = (A|A)$.
 - (V) Seien A und B Aussagen. Welcher Ausdruck ist **nicht** äquivalent zum Ausdruck $\neg(\neg(A \lor B) \lor (B \land A)) \land B$?
 - (a) $B \wedge A$
 - **(b)** $\neg(\neg(A \lor B) \lor (B \land A) \lor \neg B)$
 - (c) $(A \lor B) \land \neg (B \land A) \land B$
 - (d) $B \wedge \neg A$

- (VI) Die Aussage "Alle Menschen machen die gleichen Fehler" ist äquivalent zu
 - (a) $\forall x, y \in \{\text{Mensch}\}\ \exists f \in \{\text{Fehler}\}\ (x \text{ macht } f) \land (y \text{ macht } f).$
 - (b) $\forall x \in \{\text{Mensch}\} \exists f, g \in \{\text{Fehler}\}: (x \text{ macht } f) \Leftrightarrow (x \text{ macht } g).$
 - (c) $\forall f \in \{\text{Fehler}\} \ \exists x, y \in \{\text{Mensch}\} \colon (x \text{ macht } f) \Rightarrow (y \text{ macht } f).$
 - (d) $\forall x, y \in \{\text{Mensch}\}\ \forall f \in \{\text{Fehler}\}: (x \text{ macht } f) \Rightarrow (y \text{ macht } f).$
- **(VII)** Für welche binäre Operation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ ist $(\mathbb{R}, *, 0)$ eine Gruppe?
 - (a) $a * b := ab^2 + a^2b$.
 - **(b)** a * b := a + ab + b.
 - (c) $a * b := a + a^2b^2 + b$.
 - (d) $a * b := (a^3 + b^3)^{\frac{1}{3}}$.
- (VIII) Sei V ein Vektorraum. Welche Aussage ist im allgemeinen falsch?
 - (a) Eine Teilmenge $U \subset V$ ist genau dann ein Unterraum, wenn $\langle U \rangle = U$ ist.
 - (b) Für alle Teilmengen $S_1, S_2 \subset V$ gilt $\langle S_1 \cup S_2 \rangle = \langle S_1 \rangle + \langle S_2 \rangle$.
 - (c) Für alle Teilmengen $S_1, S_2 \subset V$ gilt $\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle$.
 - (d) Für jede Basis $B \subset V$ ist $\langle B \rangle = V$.
- (IX) Welche Eigenschaft erfüllt die Determinante einer Matrix nicht?
 - (a) Invarianz unter Vertauschung zweier Spalten.
 - (b) Für alle $n \times n$ -Matrizen A und B gilt $\det(AB) = \det(A) \det(B)$.
 - (c) Linearität in jeder Spalte.
 - (d) Invarianz unter Addition einer Spalte zu einer anderen Spalte.
- (X) Welche Eigenschaft gilt für jede $n \times m$ -Matrix A und jede $m \times n$ -Matrix B?
 - (a) Wenn $AB = I_n$ gilt, dann ist n = m und A und B sind invertierbar.
 - (b) Falls AB invertierbar ist, so ist $m \ge n$.
 - (c) Ist AB die Nullmatrix, dann ist A oder B die Nullmatrix.
 - (d) Wenn $A^T A = BB^T$ gilt, dann ist A = B.

- 2. Sei M eine endliche Menge und $V:=\{f\colon M\to K\}$ die Menge aller Abbildungen von M in den Körper K.
 - (a) (6 Punkte) Zeige, dass V mit den Verknüpfungen

$$(f+g)(x) := f(x) + g(x)$$

$$(af)(x) := af(x)$$

für $f, g \in V$ und $a \in K$ einen K-Vektorraum bildet.

- (b) (3 Punkte) Bestimme die Dimension von V.
- (c) (3 Punkte) Wähle ein $m \in M$. Zeige, dass die Menge $U_m := \{ f \in V \mid f(m) = 0 \}$ ein Untervektorraum von V ist.
- (d) (3 Punkte) Bestimme ein Komplement zu U_m in V.
- 3. Betrachte die reelle 3×3 -Matrix

$$A := \begin{pmatrix} 1 & t & t^2 \\ t & t & 1 \\ t^2 & 1 & t \end{pmatrix}$$

mit Parameter $t \in \mathbb{R}$.

- (a) (1 Punkte) Gib eine Definition für den Rang einer allgemeinen Matrix an.
- (b) $(6 \ Punkte)$ Bestimme den Rang von A in Abhängigkeit von t.
- (c) (4 Punkte) Löse das lineare Gleichungssystem Ax = b im Fall t = 2 für $x \in \mathbb{R}^3$ und

$$b = \begin{pmatrix} 8 \\ 3 \\ -3 \end{pmatrix}.$$

(d) (4 Punkte) Sei C eine $n \times n$ -Matrix vom Rang m. Beweise, dass eine $n \times m$ -Matrix A und eine $m \times n$ -Matrix B existieren, so dass C = AB gilt.

3

4. Gegeben seien die komplexen Matrizen

$$\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ B := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (a) (4 Punkte) Zeige, dass das Tupel $(\sigma_0, \sigma_1, \sigma_2, \sigma_3)$ eine Basis des komplexen Vektorraumes $\mathrm{Mat}_{2\times 2}(\mathbb{C})$ der 2×2 -Matrizen bildet.
- (b) (2 Punkte) Zeige, dass die Abbildung

$$T \colon \operatorname{Mat}_{2 \times 2}(\mathbb{C}) \to \operatorname{Mat}_{2 \times 2}(\mathbb{C})$$

 $X \mapsto XB - BX$

linear ist.

- (c) (4 Punkte) Bestimme die Darstellungsmatrix der Abbildung T bezüglich der Basis $(\sigma_0, \sigma_1, \sigma_2, \sigma_3)$.
- (d) (5 Punkte) Bestimme eine Basis von $Mat_{2\times 2}(\mathbb{C})$, welche T trigonalisiert.
- **5.** Gegeben sei eine Folge a_1, a_2, a_3, \ldots in K. Für jede ganze Zahl $n \ge 1$ betrachte die Matrix $A_n := (a_{\min\{i,j\}})_{i,j=1,\ldots,n}$.
 - (a) (6 Punkte) Beweise die Formel für die Entwicklung einer Determinante nach der letzten Zeile.
 - (b) (1 Punkte) Schreibe A_n aus (mit Pünktchen).
 - (c) (4 Punkte) Zeige $\det(A_{n+1}) = \det(A_n) \cdot (a_{n+1} a_n)$ für alle $n \ge 1$.
 - (d) (4 Punkte) Gib eine explizite Formel für $det(A_n)$ an für alle $n \ge 1$ und beweise sie durch Induktion.
- **6.** Gegeben sei die Rekursionsformel einer Folge $(F_i)_{i\geqslant 0}\in\mathbb{C}$:

$$F_0 := 3$$
, $F_1 := 6$, $F_2 := 14$, $F_{n+1} := 6F_n - 11F_{n-1} + 6F_{n-2}$ für $n \ge 2$.

- (a) (2 Punkte) Sei $v_n := (F_n, F_{n-1}, F_{n-2})^T$ für alle $n \ge 2$. Schreibe die obige Rekursion in Matrixform $v_{n+1} = Av_n$ mit einer 3×3 -Matrix A.
- (b) (7 Punkte) Bestimme das charakteristische Polynom, die Eigenwerte und Eigenvektoren von A über \mathbb{C} .
- (c) $(6 \ Punkte)$ Gib eine explizite Formel für F_n an.