

To product one chip, basically, we need to process through 9 *steps*:

- Step 1 is processed by the Marketing or Selling department.
- Step 2, 3, 4, and 5 are processed by the Design department and are called Frontend Design.
- Step 6 and 7 are processed by the Design department and are called Backtend Design.
- Step 8 is processed by the Manufacture department.
- Step 9 is processed by the Software department.



#### **Step 1**: Customer Requirement

Marketers or sellers, along with engineers, will contact with customers to negotiate about demands or predicts market's needs.

- ◆ The requirements will be written in a contract by common language.
- Customers come from America, Europe and Asia's companies
- Our main products: MPU, MCU, SoCs for mobile phones, car information systems ....



Step 2: Specification Design [Processor, IP, SoC, FE]

The demands of customers will be transferred into technique documents (specifications).

- ◆ Speed of the chip: 1 Ghz, 200 Mhz, 100 Khz ...
- How much power consumption of the chip
- How many implemented peripherals
- How many CPU cores
- How to design and verify this chip ...





#### **Step 2:** Specification Design Outline of Specifications Table 1.1 lists the specifications of the RX610 Group in outline.

General purpose: Sixteen 32-bit registers

Data: Selectable as little endian or big endian

SCI boot mode, user program mode, and user boot mode

Accumulator: One 64-bit register (lower-order 16 bits are fixed to 0)

Control: Nine 32-bit registers

Instructions: Little endian

Description





### Step 3: Logic Design [Processor, IP, SoC, FE]

Logic Design or RTL (Register Transfer Level) Design is a step in which chip's specifications is designed by using HDL

(Hardware Design Language)

- Two commons HDL languages are Verilog and VHDL
  - → Verilog: Verification Logic [Verilog 1995, 2001, System *Veriloal*
  - → VHDL: VHSIC (Very High Speed Integrated Circuit) Hardware Design Language
- ◆ Today, Verilog is the most use in Hardware Design





### Step 3: Logic Design [Processor, IP, SoC, FE]

```
// A flip-flop
module ff (clk,rst n,in,out);
                // clock signal
  input clk;
  input rst n; // reset signal
                // data input signal (1 bit)
   input in;
   output out; // data output signal (1 bit)
                // register contains output data
   reg out;
   // Reset data when rst n is 0
   // Update data for each rising clock when
  // rst n is 1
   always @(posedge clk) begin
     if (rst n == 1'b0) begin
        out <= 1'b0:
     end
     else begin
        out <= in:
     end
   end
endmodule
```



### Step 4: Logic Verification [Processor, IP, SoC, FE]

This step is used to execute (simulate) RTL code on a simulator.

- To check whether functions of the RTL run correct or not.
- To check whether the timing (relationships among signals) of the chip run correct or not.







### Step 5: Logic Synthesis [Processor, IP, SoC]

This step will transfer a RTL code into a gate net list

- ◆ The advantage of each production process will be displayed here. Each cell will have different characteristics such as area, power consumption ... according to a corresponding process such as 60 nm, 45 nm, 28 nm and etc.
- The smaller synthesized area, the more advantages a chip gains.





**Step 5**: Logic Synthesis

[Processor, IP, SoC, Circuit Design]



A gate net list



A part of the standard cell



#### **Step 6:** Logic Implementation

#### [Logic Implementation, Processor, FE]

This step will work mainly on a gate net list for:

- Check timing of a chip in such field: hold/setup time, critical paths ...
- Add an extra gate net list for the DFT (Design For Test) function to enhance the later productivity





#### **Step 6:** Logic Implementation



**DFT:** During manufacturing, if a chip is defected, how do we diagnose the position of the error?



Add some circuits will help designers to find the correct position and fix the errors in some cases



#### Step 7: Layout Design [Backend]

This step will work arrange the chip's gate net list into a specified area (wafer).

- Minimize the chip's area.
- Check physical conditions can affect to the chip during the arrangement process.
- Arrange power supply for a chip.
- Wiring signals, etc.









Each color is a module



### **Step 8:** Fabrication

The chip will be produced and packaged in a manufacture

- This step will be done by Japanese factories
- Silicon (wafer) is a main material to product a chip
- A factory will cost from 3 ~ 4 billion to build.
- To product each manufacture process, a factory must be equipped with corresponding machines





**Step 8:** Fabrication



Wafer's sizes



Clean room to product chip



A chip on a wafer



**Step 9:** Software development

[Software solution, Mobile platform, Software IP

Processor, IP, and SoC ]

This is the final step in developing a chip. Renesas will also provide a complete or, part of, software solution for customers through:

- Port a operation system on chip.
- Develop demonstration, application, firmwares, middle wares and drivers.
- Develop tool kits for third parties.



Step 9: Software development



#### **Operation System:**

manage hardware resources and provide efficient executions for applications

#### **Application:**

designed to help the user to perform singular or multiple related specific tasks

#### Middleware:

help to provide the communication among applications

#### **Driver:**

help operation system to manage operate hardware resources

#### Firmware:

integrated in a hardware to perform some particular functions.