

Model Repair by Incorporating Negative Instances In Process Enhancement

Master Thesis

Author: Kefang Ding

Supervisor: Dr. Sebastiaan J. van Zelst

Examiners : Prof. Wil M.P. van der Aalst

Prof. Thomas Rose

Registration date: 2018-11-15

Submission date: 2019-04-08

This work is submitted to the institute

PADS RWTH University

Acknowledgments

The acknowledgments and the people to thank go here, don't forget to include your project advice.

Abstract

Big data projects have becomes a normal part of doing business, which raises the interest and application of process mining in organizations. Process mining combines data analysis with modeling, controlling and improving business processes, such that it bridges the gap of data mining on big data and business process management.

Process enhancement, as one of the main focuses in process mining, improves the existing processes according to actual execution event logs. It enables continuous improvement on business performance in organizations. However, most of the enhancement techniques only consider the positive instances which are execution sequences but lead to high business performance outcome. Therefore, the improved models tend to have a bias without the use of negative instances.

This thesis provides a novel strategy to incorporate negative information on process enhancement. Firstly, the directly-follows relations of business activities are extracted from the given existing reference process model, positive and negative instances of actual event log. Next, those relations are balanced and transformed into process model of Petri net by Inductive Miner. At end, long-term dependency on Petri net is further analyzed and added to block negative instances on the execution, in order to provide a preciser model.

Experiments for our implementation are conducted into scientific platform of KNIME. The results show the ability of our methods to provide better model with comparison to selected process enhancement techniques.

Chapter 1

Evaluation

This chapter presents an experimental evaluation of our techniques to repair model. At first, the evaluation measurements are defined. Next, we briefly introduce the test platform KNIME and ProM plugins tools for evaluation. In the following main part, the test on properties of our techniques is presented at the beginning. Then synthetic data is generated randomly to show the whole performance of our methods. At last, we conduct our experiments on real life data and also compare our techniques with other methods. The results show the ability of our techniques to repair model with high ranking according to defined measurements.

1.1 Evaluation Measurements

1.2 Experiment Platform

- 1.2.1 KNIME
- 1.2.2 ProM Evaluation Plugins

1.3 Experiment Result

1.3.1 Test On Property

In this experiment, we aim to answer the question: How do our techniques incorporate the existing model, positive and negative information to repair model? To answer this question, we applied the repaired techniques on event logs with different relations of activities, such as sequence, parallel and loop, exclusive choice. By manipulating the weights on the existing model, positive and negative instances, we investigated multiple effect on the repaired model.

Test On Sequence

This part is used to show the effect of our techniques on the sequence relation of activities. Given a fixed model in Petri net with sequence relation, a set of event logs with different deviations are used to test if our repair techniques work properly.

• Experiment 1 delete activity from sequence

Figure 1.1: Model M1 with sequence relation

Event Log:

 $Positive :< a > ^{50}$ $Negative :< a, b > ^{50}$

Test On Parallel

This part shows how the parallel relation of activities is affected by the weights for the existing model, positive and negative instances.

Test On Loop

This part investigated our repair method on activities with loop relation.

Test On Exclusive Choice

This part displays the changes of exclusive choices relation in the model under the different control weights.

For one exclusive choices, but with long-term dependency detected and added in the model, precision and accuracy increase, since model with long-term dependency blocks the negative information by adding transitions and places to limit activity selection.

1.3.2 Test On Synthetic Data

1.3.3 Test On Real life Data

Chapter 2

Conclusion

Bibliography

- [1] Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser. Process mining based on regions of languages. In *International Conference on Business Process Management*, pages 375–383. Springer, 2007.
- [2] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. On the role of fitness, precision, generalization and simplicity in process discovery. In OTM Conferences, 2012.
- [3] Josep Carmona and Jordi Cortadella. Process discovery algorithms using numerical abstract domains. *IEEE Transactions on Knowledge and Data Engineering*, 26(12):3064–3076, 2014.
- [4] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alex Yakovlev. Synthesizing petri nets from state-based models. In *Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)*, pages 164–171. IEEE, 1995.
- [5] Ana Karla A de Medeiros, Anton JMM Weijters, and Wil MP van der Aalst. Genetic process mining: an experimental evaluation. *Data Mining and Knowledge Discovery*, 14(2):245–304, 2007.
- [6] Marcus Dees, Massimiliano de Leoni, and Felix Mannhardt. Enhancing process models to improve business performance: a methodology and case studies. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pages 232–251. Springer, 2017.
- [7] Kefang Ding. Incorporatenegative information.
- [8] Dirk Fahland and Wil MP van der Aalst. Repairing process models to reflect reality. In International Conference on Business Process Management, pages 229–245. Springer, 2012.
- [9] Dirk Fahland and Wil MP van der Aalst. Model repair—aligning process models to reality. *Information Systems*, 47:220–243, 2015.
- [10] Mahdi Ghasemi and Daniel Amyot. Process mining in healthcare: a systematised literature review. 2016.
- [11] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust process discovery with artificial negative events. *Journal of Machine Learning Research*, 10(Jun):1305–1340, 2009.

- [12] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Discovering block-structured process models from event logs-a constructive approach. In *International conference on applications and theory of Petri nets and concurrency*, pages 311–329. Springer, 2013.
- [13] Hernan Ponce-de León, Josep Carmona, and Seppe KLM vanden Broucke. Incorporating negative information in process discovery. In *International Conference on Business Process Management*, pages 126–143. Springer, 2016.
- [14] Eindhoven Technical University. © 2010. Process Mining Group. Prom introduction.
- [15] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of business processes, volume 2. Springer, 2011.
- [16] Wil Van der Aalst. Data science in action. In *Process Mining*, pages 3–23. Springer, 2016.
- [17] Wil van der Aalst. *Process Mining: Data Science in Action*. Springer Publishing Company, Incorporated, 2nd edition, 2016.
- [18] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discovering process models from event logs. *IEEE Transactions on Knowledge and Data Engineering*, 16(9):1128–1142, 2004.
- [19] Jan Martijn EM Van der Werf, Boudewijn F van Dongen, Cor AJ Hurkens, and Alexander Serebrenik. Process discovery using integer linear programming. In *International conference on applications and theory of petri nets*, pages 368–387. Springer, 2008.
- [20] Boudewijn F Van Dongen, AK Alves De Medeiros, and Lijie Wen. Process mining: Overview and outlook of petri net discovery algorithms. In *Transactions on Petri Nets and Other Models of Concurrency II*, pages 225–242. Springer, 2009.
- [21] Seppe KLM vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Baesens. Determining process model precision and generalization with weighted artificial negative events. *IEEE Transactions on Knowledge and Data Engineering*, 26(8):1877–1889, 2014.
- [22] Anton JMM Weijters and Wil MP Van der Aalst. Rediscovering workflow models from event-based data using little thumb. *Integrated Computer-Aided Engineering*, 10(2):151–162, 2003.