

Inhaltsverzeichnis

1.	Zylindrischer Kondensator	2
1.1.	Einleitung	2
1.2.	Potential im Inneren einer einfachen zylindrischen Platte	2
1.3.	Potential im Inneren eines einfachen zylindrischen Kondensators	3
1.4.	Kapazität eines zylindrischen Kondensators	4
2.	Addieren von Kapazitäten	6
2.1.	Parallelschaltung	6
2.2.	Reihenschaltung	6

 $^{^{1} {\}tt alejandro.gallo@tuwien.ac.at}$

 $^{^2} h ttps://raw.githubusercontent.com/alejandrogallo/tutorium-elektrodynamik-SS-2019/master/kondensator/main.pdf$

1. Zylindrischer Kondensator

1.1. **Einleitung.** Hier werden wir einige typische Beispiele besprechen, die im Rahmen von der Kondensatorthematik auftauchen. Dafür werden wir den aus der Vorlesung bekannten Satz

(1)
$$\nabla^2 V(\mathbf{r}) = \rho/\epsilon_0$$

brauchen.

In einem zylindrisch symmetrischen Problem, d.h., wo das Potential V nur von r abhängt, $(V(r, \phi, z) = V(r))$ gilt

(2)
$$\nabla^2 V(\mathbf{r}) = \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} V(r).$$

1.2. Potential im Inneren einer einfachen zylindrischen Platte. Wir betrachten einen Zylinder mit Radius R_0 und einen Zylinder als Integrationsvolumen G.

Es wird nämlich eine Funktion V(r) gesucht, wo $0 \le r < R_0$. Wir versuchen zuerst, Gleichung 1 direkt zu lösen. Im G gibt es keine Ladung, also $\rho = 0$ und folglich

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}r\frac{\mathrm{d}}{\mathrm{d}r}V(r) = 0$$

woraus folgt dass

$$r \frac{\mathrm{d}}{\mathrm{d}r} V(r) = A, \qquad \Rightarrow \qquad \frac{\mathrm{d}}{\mathrm{d}r} V(r) = \frac{A}{r}$$

wobei A eine Konstante ist. Wir können von einem beliebigen Ort r_0 bis r integrieren, solange r_0 innerhalb des Zylinders bleibt,

$$\int_{r_0}^{r} \frac{d}{dr} V(r') dr' = V(r) - V(r_0) = \int_{r_0}^{r} \frac{A}{r'} dr' = A \ln \frac{r}{r_0}$$

woraus wir den allgemeinen Ausdruck für die Lösung bekommen.

$$(3) V(r) = A \ln \frac{r}{r_0} + B.$$

Es ist bemerkenswert dass man zwei Bedingungen benötigt, um die Integrationskonstanten A und B zu bestimmen. Dies ist so da Gleichung 1 eine Differentialgleichung zweiter Ordnung ist. Im allgemeinen

finden wir aber dass

$$V(r_0) = B.$$

In dem Sinne, wenn wir $r_0 = R_0$ setzen können wir

$$(4) V(r) = A \ln \frac{r}{r_0} + V_0$$

schreiben. Wir haben aber nicht genügende Bedingungen um A zu bestimmen. Das ist, wir können nicht $Cauchy\ Randbedingungen$ verwenden weil wir nur eine Information zur Verfügung haben, nämlich dass $V(R_0) = V_0$. Wir müssen dann erkunden wie die Ableitung der Funktion V (das heißt, das elektrische Feld) aussieht. Wenn dies uns gelingt dann wird es uns ermöglichen, Bedingungen für die erste Ableitung von V zu finden, dementsprechend arbeiten wir hier mit $Cauchy\ Randbedingungen$. Wir können das Volumen G dafür verwenden:

$$0 = \int_{G} \nabla \cdot \mathbf{E} \, d^{3}x = \int_{\partial G} \mathbf{E} \cdot d\mathbf{S} = ES$$

und deswegen haben wir im Inneren $\mathbf{E} = 0$, $V = V_0$. Daraus folgt, dass A = 0 und somit haben wir die fehlende Integrationskonstante A bestimmt, nämlich mittels $Cauchy\ Randbedingungen$.

1.3. Potential im Inneren eines einfachen zylindrischen Kondensators.

Hier die Lösung von vorhin gilt noch da im Abstand r das Problem noch zylindrisch symmetrisch bleibt. Deswegen wissen wir dass im Zwischenraum das Potential V

(5)
$$V(r) = A \ln \frac{r}{R_1} + V(R_1)$$

ist. In diesem Fall können wir aber A bestimmen da Dirichlet Randbedingungen herrschen, d.h., wir haben zwei Punkte für die Randbedingungen in V(r) wo $R_0 \le r \le R_1$. Diese Randbedingungen lauten

$$\begin{cases} V(R_0) = V_0 \\ V(R_1) = 0 \end{cases}$$

wie aus dem Bild abzulesen ist. Die R_1 Randbedingung ist schon von unserem Potential V(r) erfüllt, für die zweite müssen wir folgendes schreiben

$$V(R_0) = V_0 = A \ln \frac{R_0}{R_1} + 0, \qquad \Rightarrow \qquad A = -\frac{V_0}{\ln \frac{R_1}{R_0}} = \frac{V_0}{\ln \frac{R_0}{R_1}}$$

und deswegen wenn $R_0 \le r \le R_1$

$$V(r) = V_0 \frac{\ln \frac{r}{R_1}}{\ln \frac{R_0}{R_1}}$$

and

$$E(r) = -\frac{\mathrm{d}V}{\mathrm{d}r}(r) = \frac{V_0}{\ln\frac{R_1}{R_0}} \frac{1}{r}$$

1.4. **Kapazität eines zylindrischen Kondensators.** Die Kapazität eines Kondensators ist durch den Ausdruck

$$C = \frac{Q}{V}$$

definiert, wobei Q der Betrag der Ladung im Kondensator ist. Wir können die Ladung mittels folgender Gleichung ausrechnen

$$Q = \int_{\mathcal{V}} \rho(\mathbf{r}) \, \mathrm{d}^3 x.$$

Wir müssen das Volumen \mathcal{V} bestimmen, und man kann sich überzeugen, dass wir über dem grauen Bereich in der darunterliegenden Abbildung integrieren soll.

Dabei soll man bemerken welche Form das Potential V und die Ableitungen davon übernimmt. Hierunter sind die Hauptmerkmale skizziert

$$\begin{split} Q &= \int_{\mathcal{V}} \rho(\mathbf{r}) \; \mathrm{d}^3 x = \epsilon_0 \int_{\mathcal{V}} \nabla^2 V(r) \; \mathrm{d}^3 x = \epsilon_0 \int_{\mathcal{V}} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} V(r) \; \mathrm{d}^3 x \\ &= \epsilon_0 \int_{\mathcal{V}} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} V(r) \; r \mathrm{d}z \mathrm{d}\phi \mathrm{d}r \\ &= \epsilon_0 \int_{R_0 - \varepsilon}^{R_0 + \varepsilon} \int_0^{2\pi} \int_0^{\ell} \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} V(r) \; r \mathrm{d}z \mathrm{d}\phi \mathrm{d}r \\ &= 2\pi \ell \epsilon_0 \int_{R_0 - \varepsilon}^{R_0 + \varepsilon} \frac{\mathrm{d}}{\mathrm{d}r} r \frac{\mathrm{d}}{\mathrm{d}r} V(r) \; \mathrm{d}r = -2\pi \ell \epsilon_0 \int_{R_0 - \varepsilon}^{R_0 + \varepsilon} \frac{\mathrm{d}}{\mathrm{d}r} r E(r) \; \mathrm{d}r \\ &= -2\pi \ell \epsilon_0 \int_{R_0 - \varepsilon}^{R_0 + \varepsilon} \frac{\mathrm{d}}{\mathrm{d}r} r E(r) \; \mathrm{d}r \\ &= -2\pi \ell \epsilon_0 |r E(r)|_{R_0 - \varepsilon}^{R_0 + \varepsilon} \\ &= -2\pi \ell \epsilon_0 \frac{V_0}{\ln \frac{R_0}{R_1}} \end{split}$$

und deswegen wir bekommen

$$C = -\frac{2\pi\ell\epsilon_0}{\ln\frac{R_0}{R_1}} = \frac{2\pi\ell\epsilon_0}{\ln\frac{R_1}{R_0}}$$

wobei ℓ ist die Länge des Zylinders.

2. Addieren von Kapazitäten

2.1. Parallelschaltung.

$$Q_{\rm T} = Q_1 + Q_2$$

= $C_1V + C_2V = (C_1 + C_2)V = C_{\rm T}V$

2.2. Reihenschaltung.

$$V$$
 C_1 C_2

$$V = V_1 + V_2$$

$$= \frac{Q}{C_1} + \frac{Q}{C_2} = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right)$$