	Name:	Clas.	s & Div. :	. Page No. :
	Subject :		<i>Topic</i> :	Date :
	Unit Step	function: - (V	<u>la Example</u>	Date:
(1	Let f(t) = 5 sint, given function			
	ο π -5		f(t) = 5sin t	
CIT)	When the function f(t) is multiplied by unit step function $u(t-2)$ the resultant function $f(t)$ $u(t-2)$ ie (5sint· $u(t-2)$) will be part of the function $f(t)$ on the right of $t=2$ and the part of the function $f(t)$ on the left of $t=2$ is switched off (faut off)			
(111	When this multiplied will shifte	displaced fur by $u(t-2)$	$f(t) u(t-2) = \begin{cases} \\ \\ \\ \\ \\ \\ \end{cases}$ $nction f(t-2)$ $, the resultangle by 2 ur$	es function
	J(4)	$\frac{1}{2} \sqrt{\frac{\pi^{+2}}{2\pi^{+2}}}$	-f(t-2) U(t-2)	$)=\int_{\frac{1}{2}}^{0}\frac{t}{(t-2)}\frac{2}{t}$

Time Shifting (t-Shifting); Second Shifting The If Lifting = F(s), then Lift(t-a) u(t-a) =
$$e^{-as}$$
 Lift(t). Here $f(t-a)u(t-a) = \begin{cases} 0 & \text{if } t \neq a \\ f(t-a)u(t-a) = \begin{cases} 0 & \text{if } t \neq a \end{cases}$, Shifted function. Hence $f(t-a)u(t-a) = f(t-a)u(t-a)$.

Passof:

Lift(t-a)u(t-a) = $f(t-a)u(t-a)$ dt

$$f(t-a)u(t-a) = f(t-a)u(t-a)$$

$$f(t-a)u(t-a)$$

$$\begin{bmatrix}
f(t-a) u(t-a) f = e^{-as} \\
f(t+a) u(t-a) f = e^{-as}
\end{bmatrix} = e^{-as} \\
f(t) f = e^{-as}$$

______ Class & Div. : ______ Page No. :_____ Topic :_____ Date :____ Subject :____ Express the following function in terms of Heaviside's function and hence find their Laplace transform. $f(t) = \begin{cases} t^2 & 0 < t < 1 \\ 4 & 1 < 1 \end{cases}$ $f(t) = t^2 \left[u(t) - u(t-1) \right] + 4 + u(t-1)$ $\Rightarrow f(t) = t^2 u(t) + (4t-t^2) u(t-1)$ *. $L\{f(1)\} = L\{t^2u(1)\} + L\{(4t-t^2)u(t-1)\}$ ---("! LT is linear $- \left[\left(\frac{4t-4}{4t-4} \right) u(t-1) \right]$ [L { + (+) (L(+))} = L { + (+)} $= L + t^2 + e^{-\alpha t} L + (t+t) - (t+1)^2 + e^{-\alpha t}$ - - (L \{ f(t) U(t-a) \} = e L \{ f(t+a) \} $= \frac{2}{8^3} + e^{-\omega} \left[\sqrt{3 + 2t - t^2} \right]$ $=\frac{2}{8^2}+\frac{1}{100}\left(\frac{3}{100}+\frac{2}{100}-\frac{2}{100}\right)$

$$= \frac{8}{8^{2}+1} - \frac{-11.8}{e} \left(\frac{8}{12^{2}+4} + \frac{8}{12^{2}+1} \right) + \frac{e^{-211.8}}{e^{-211.8}} \left(\frac{8}{12^{2}+9} - \frac{8}{12^{2}+9} \right)$$

$$(4) f(t) = \begin{cases} \sin \left(t - \frac{\pi}{3}\right), t \neq \frac{\pi}{3} \\ 0, t \neq \frac{\pi}{3} \end{cases}$$

$$f(t)=\sin\left(t-\frac{\pi}{3}\right), u\left(t-\frac{\pi}{3}\right).$$

Here
$$f(t) = 8 \text{ in } t$$
, $\alpha = \frac{\pi}{3}$.

By
$$SST$$
, $L\{f(t-\alpha) \mid (t-\alpha)\} = e \quad L\{f(t)\}$.

$$= e^{\frac{17}{3}} \left\{ \frac{8 \ln t}{s^2 + 1} \right\}$$

$$= e^{\frac{17}{3}} \frac{s}{s^2 + 1} + \frac{s}{s} > 0$$

(a)
$$\frac{-48}{(8-3)^4}$$

Find
$$f = L \cdot I = -as$$

(a) $L \left\{ \frac{e^{-4s}}{(s-3)^4} \right\}$
 $L \left\{ \frac{e^{-as}}{(t-a)u(t-a)} \right\} = \frac{e^{-as}}{(t-a)u(t-a)}$
 $L \left\{ \frac{e^{-as}}{(s-a)^4} \right\} = \frac{e^{-as}}{(t-a)u(t-a)}$

Here
$$F(s) = \frac{1}{(8-3)}4 = L\{f(t)\}$$

$$f(t) = \left[\frac{1}{(3-3)^4}\right] = e^{3t} \left[\frac{1}{3^4}\right] - by \text{ using FST.}$$

$$= e^{3t} \left[\frac{1}{3^4}\right] - by \text{ using FST.}$$

$$= e^{3t} \left[\frac{1}{3^4}\right] - by \text{ using FST.}$$

By SST, (s-shift).

$$\frac{e^{-48}}{\left(\frac{8-3}{4}\right)^{\frac{3}{4}}} = e^{3(t-4)} \frac{(t-4)^3}{6} u (t-4)$$

$$\frac{3!}{(t-4)} = \frac{3(t-4)}{6} u (t-4)$$

$$\frac{1(3-3)^{4}}{f(t-4)} = \frac{3(t-4)}{6} + \frac{(t-4)^{3}}{6}$$

$$\frac{1}{f(t-4)} = \frac{(t-4)^{3}}{6} + \frac{(t-4)^{3}}{6}$$

$$\frac{1}{f(t-4)} = \frac{1}{f(t)} + \frac{1}{f(t)} = \frac{1}{f(t)} + \frac{1}{f(t)} = \frac{1}{f(t)} + \frac{1}{f(t)} = \frac{1}{f(t)} + \frac{1}{f(t)} + \frac{1}{f(t)} = \frac{1}{f(t)} + \frac{1}{$$

Hence
$$f(t) = \begin{cases} 3t \frac{1}{6} & t/4 \\ 0 & t/4 \end{cases}$$

$$\rightarrow \text{Here } F(s) = \frac{8+1}{8^2+8+1} = L\{f(t)\}$$

$$f(+) = \frac{1}{8} \left\{ \frac{8+1}{8^2+8+1} \right\}$$

$$= \frac{1}{8+\frac{1}{2}} \left\{ \frac{(8+\frac{1}{2})+\frac{1}{2}}{(8+\frac{1}{2})^2+\frac{3}{4}} \right\}$$

Page No. ∶. Class & Div.:___ Name: _ $T' \left\{ \begin{array}{c} 8+/2 \\ 8^2+(3/4) \end{array} \right\}$, by first shifting Th^m. $\frac{1}{8^2 + (\sqrt{3/2})^2} + \frac{1}{2} + \frac{1}{8^2 + (\sqrt{3/2})^2}$ $\left[\cos\left(\frac{\sqrt{3}}{2}t\right) + \frac{1}{2}\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)\right]$ $\frac{-t}{\sqrt{3}} \left(\frac{\sqrt{3}t}{\sqrt{3}} + \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$ By second shifting the I de FCD = f(t-a) u(t-a) $\frac{1}{\sqrt{3}} = \frac{(t-\Pi)/2}{\sqrt{3}} = \frac{(0)(\sqrt{3}(t-\Pi))}{\sqrt{3}(t-\Pi)} + \sin(\sqrt{3}(t-\Pi))$ $\frac{-(t-\Pi)}{e^{2}} \sqrt{3} \left(0 \right) \left(\frac{\sqrt{3}}{2} \left(t-\Pi \right) \right) + \sin \left(\frac{\sqrt{3}}{2} \left(t-\Pi \right) \right), t \right) \Pi$ $\frac{-t/2}{\sqrt{3}}$ $\left[\sqrt{3} \left(0 \right) \left(\frac{\sqrt{3}}{2} t\right) + \sin \left(\frac{\sqrt{3}}{2} t\right)\right], t$ Hence f(t) =

(c)
$$\frac{e^{-\pi s}}{(s^2+1)s}$$

Here $F(s) = \frac{1}{(s^2+1)}s = L\{f(t)\}$.

$$f(t) = \frac{1}{1}\left\{\frac{1}{(s^2+1)}\right\} du = -cos x \left[\frac{t}{u=0}\right]$$

$$= \int_{0}^{t} \frac{1}{1}\left\{\frac{1}{(s^2+1)}\right\} du = -cos x \left[\frac{t}{u=0}\right]$$

$$= \int_{0}^{t} \frac{1}{1}\left\{\frac{e^{-t}s}{s^2+1}\right\} du = -cos x \left[\frac{t}{u=0}\right]$$

$$= 1 - cos t$$
By $\frac{1}{2}\left\{\frac{e^{-t}s}{s(s^2+1)}\right\} = \left[1 - cos \left(t - \pi\right)\right] \cdot u \cdot (t - \pi)$

$$= \int_{0}^{t} \frac{1}{1}\left\{\frac{e^{-t}s}{s(s^2+1)}\right\} du = \int_{0}^{t} \frac{1}{1}\left\{\frac{e^{-t}s}{s(s^2+1)}\right\} du$$

Hence $f(t) = \begin{cases} 1 - \cos t, & t > T \\ 0 & o < t < T \end{cases}$

_____ Class & Div. : ______ Page No. : (d) [] e + e Topic: $\frac{-8\Pi s}{e} + \frac{1}{e} + \frac{-2\Pi s}{e}$ Here F(s) = 1 - Laf(t) $f(t) = \frac{1}{8^2 + 4} = \frac{1}{2} = \frac{8 \text{ in } 2t}{2}$ $L_{d} = F(s) = f(t-a) u(t-a).$ $\frac{-8\pi \$}{\$^2+4}$ = $\sin 2(t-8\pi) u(t-8\pi) + \sin 2(t-2)u(t-2\pi)$ (I) Find $L_{\{t-\Pi\}}$ sint $u(t-\Pi)$. $L_{\frac{1}{2}(t-\Pi)} \sin t \, u(t-\Pi) \int_{0}^{\infty} L_{\frac{1}{2}(t)} u(t-\alpha) \int_{0}^{\infty} e^{-\alpha s} \int_{0}^$ $= e^{\pi s} L \left\{ f(t+\pi) \right\} - - by$ $= e^{-\pi s} L \left\{ + \pi - \pi \sin \left(+ \pi \right) \right\}$ = e L { + sin (++11) }.

$$= e^{\pi s} L \left\{ t \left(sint \cdot cos(\pi) + cost sin(\pi) \right) \right\}$$

$$= e^{\pi s} L \left\{ -t sint \right\}$$

$$= e^{\pi s} \left[-t sint \right]$$

$$= -e^{\pi s} \left[-t sint \right]$$

Represent the function, for following figures in terms of unit for following figures in terms and hence

(3) If f(1)= { 3 +>2 , find L(f(1)) and L(f(1)).

$$(4) \quad \frac{1}{3} \left\{ \frac{e^{38}}{8^{2} + 88 + 25} \right\} \quad (5) \quad \frac{1}{3} \left\{ \frac{e^{23}}{\sqrt{8 + 5}} \right\}$$

_____ Class & Div. : ______ Page No. :_____ Name: _____ *Topic* :_____ Date : Subject :___ Convolution: As we know, If $L\{f\}=F(S)$, $L\{g\}=G(S)$ Lff+9j= Lfff+ Lf9j L{xf} = x L{f}, xeir (scalar). Also Lgf-9j= Lgfg-Lggg. Bul Lff.94 = Lff. Lf9} For example
Take $f(t) = e^{t}$, g(t) = 1.

Then $f \cdot g = e^{t}$ $\Rightarrow L \left\{ f \cdot g \right\} = L \left\{ e \right\} = \frac{1}{s-1} - . (i)$ BW $\frac{1}{2}\left\{\frac{1}{3}\left[\frac{1}{3}\left(\frac{1}{3-1}\right) = \frac{1}{3(3-1)} - \frac{1}{3(3-1)}\right]$ From $(i) \neq (ii)$ Let f and g defined on [0,0).
Then the convolution of f and g denoted by standard notation f*g and defined by the integral $(f*g)(t) = \int f(\tau)g(t-\tau) d\tau$