

Product Name : GPRS Module / POS

Model No. : H50-CM02, H50-4

FCC ID : UWJH50CM02

Applicant : BLUE BAMBOO (HK) LIMITED

Address : Unit 1001, Lucky Building, No.39 Wellington Street,

Central, Hong Kong

Date of Receipt : 2007/01/04

Issued Date : 2007/03/20

Report No. : 071S004-HP-US-P07V01

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNLA, NVLAP, NIST or any agency of the Government.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date : 2007/03/20

Report No. : 071S004-HP-US-P07V01

QuieTek

Product Name : GPRS Module / POS

Applicant : BLUE BAMBOO (HK) LIMITED

Address : Unit 1001, Lucky Building, No.39 Wellington Street,

Central, Hong Kong

Manufacturer : BLUE BAMBOO (HK) LIMITED

Model No. : H50-CM02, H50-4
FCC ID : UWJH50CM02
Rated Voltage : AC 230 V / 50 Hz

EUT Voltage : DC 7.4V / 1000mAH

Trade Name : BLUE BAMBOO

Applicable Standard : FCC CFR Title 47 Part 2, Part 22H and Part 24E

Test Result : Complied

Performed Location : SuZhou EMC laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng

Hi-Tech Development Zone., SuZhou, China

TEL: +86-512-6251-5088 / FAX:+86-512-6251-5098

FCC Registration number: 800392

Documented By : Mandy Liu

(Mandy Liu)

Dream Cao)

Approved By :

Gene Chang

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C. : BSMI, DGT, CNLA

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.

LinKou Testing Laboratory:

Suzhou Testing Laboratory:

TABLE OF CONTENTS

Descr	ription	Page
1. Ge	eneral Information	6
1.1.	EUT Description	6
1.2.	Mode of Operation	7
1.3.	Tested System Details	8
1.4.	Configuration of Tested System	9
1.5.	EUT Exercise Software	10
2. Te	echnical Test	11
2.1.	Summary of Test Result	11
2.2.	Test Environment	12
3. Pe	eak Output Power	13
3.1.	Test Equipment	13
3.2.	Test Setup	13
3.3.	Limit	14
3.4.	Test Procedure	14
3.5.	Uncertainty	15
3.6.	Test Result	16
3.7.	Test Photograph	18
4. Mo	odulation Characteristic	19
4.1.	Test Equipment	19
4.2.	Test Setup	19
4.3.	Limit	20
4.4.	Test Procedure	20
4.5.	Uncertainty	20
4.6.	Test Result	21
5. Oc	ccupied Bandwidth	23
5.1.	Test Equipment	23
5.2.	Test Setup	23
5.3.	Limit	24
5.4.	Test Procedure	24
5.5.	Uncertainty	24
5.6.	Test Result	25
6. Sp	ourious Emission At Antenna Terminals (+/- 1MHz)	29
6.1.	Test Equipment	29
6.2.	Test Setup	29
6.3.	Limit	30
6.4.	Test Procedure	30

6.5.	Uncertainty	30
6.6.	Test Result	31
7.	Spurious Emission	35
7.1.	Test Equipment	35
7.2.	Test Setup	35
7.3.	Limit	36
7.4.	Test Procedure	36
7.5.	Uncertainty	37
7.6.	Test Result	38
7.7.	Test Photograph	49
8.	Frequency Stability Under Temperature & Voltage Variations	51
8.1.	Test Equipment	51
8.2.	Test Setup	51
8.3.	Limit	51
8.4.	Test Procedure	52
8.5.	Uncertainty	52
8.6.	Test Result	53
9.	Attachment	55
	EUT Photograph	55

1. General Information

1.1. EUT Description

Product Name	GPRS Module / POS		
Trade Name	BLUE BAMBOO		
Model No.	H50-CM02, H50-4		
FCC ID	UWJH50CM02		
Working Voltage	DC 7.4V		
Ty Fraguency Bango	GSM 850: 824MHz to 849MHz		
Tx Frequency Range	PCS 1900: 1850MHz to 1910MHz		
Dy Fraguency Dongs	GSM 850: 869MHz to 894MHz		
Rx Frequency Range	PCS 1900: 1930MHz to 1990MHz		
Channel Number	GSM 850: 124		
Channel Number	PCS 1900: 299		
Antenna type	Dipole		
Antenna Gain	GSM 850: -4 dBd		
Antenna Gam	PCS 1900: -3 dBi		
Type of Modulation	GMSK		
Channel Control	Auto		
Hardware version	S30880-S8365-A100(B1)		
Software version	026		

Note: The Model of H50-CM02 is the Module of GPRS, and the Model of H50-4 is the final POS Base terminal include the GPRS Module.

Component				
AC Adapter	Manufacturer: BLUE BAMBOO			
	M/N: XKD-C1000NHS9.0-12			
	Input: AC 100-240V~50/60Hz 0.5A			
	Output: DC 9V, 1A			

1.2. Mode of Operation

QuieTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: GPRS 850
Mode 2: GPRS 1900

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
1 N/A	N/A	N/A	N/A	N/A

Page: 8 of 66

1.4. Configuration of Tested System

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on 1.5.
2	Turn on the power of EUT.
3	EUT Communicate with CMU200, then select channel to test.

Page: 10 of 66

2. Technical Test

2.1. Summary of Test Result

No deviations from the test standards
Deviations from the test standards as below description:

For GSM 850 (FCC Part 22H & Part 2)

Emission				
Performed Item	Normative References	Test	Deviation	
i enormed item	Normalive References	Performed		
Peak Output Power	FCC Part 22.913(a)(2) and Part 2.1046	Yes	No	
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No	
Occupied Bandwidth	FCC Part 2.1049	Yes	No	
Spurious Emission At Antenna	FCC Part 22.917(a) and Part 2.1049	Yes	No	
Terminals (+/- 1MHz)				
Spurious Emission	FCC Part 22.917(b) and Part 2.1051, 2.1053	Yes	No	
Frequency Stability Under	FCC Part 22.355 and 2.1055	Yes	No	
Temperature & Voltage				
Variations				

For PCS 1900 (FCC Part 24E & Part 2)

Emission				
Performed Item	Normative References	Test	Deviation	
		Performed		
Peak Output Power	FCC Part 24.232(b) and Part 2.1046	Yes	No	
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No	
Occupied Bandwidth	FCC Part 24.238(b) and Part 2.1049	Yes	No	
Spurious Emission At Antenna	FCC Part 24.238(a) and Part 2.1049	Yes	No	
Terminals (+/- 1MHz)				
Spurious Emission	FCC Part 24.238(b) and Part 2.1051, 2.1053	Yes	No	
Frequency Stability Under	FCC Part 24.235 and 2.1055	Yes	No	
Temperature & Voltage				
Variations				

Page: 11 of 66

2.2. Test Environment

Items	Required (IEC 68-1)	Actual	
Temperature (°C)	15-35	23	
Humidity (%RH)	25-75	52	
Barometric pressure (mbar)	860-1060	950-1000	

Page: 12 of 66

3. Peak Output Power

3.1. Test Equipment

Peak Output Power / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2006/03/23
Radio Communication Tester	R&S	CMU 200	106388	2006/11/22
Directional Couple	Agilent	87300C	N/A	N/A
Directional Couple	Agilent	778D	N/A	N/A
PSG Analog S.G.	Agilent	E8257D	MY44321116	2006/11/23
Preamplifier	Agilent	87405B	MY39500331	2006/11/25
RF Preamplifier	QuieTek	QTK-AMP-180	0001	2006/03/21
Bilog Type Antenna	Schaffner	CBL6141A	4278	2006/11/25
Half Wave Tuned Dipole Antenna	COM-POWER	AD-100	40137	2006/09/20
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	496	2006/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2006/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	294	2005/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	295	2005/11/25
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30

3.2. Test Setup

Conducted Power Measurement:

Page: 13 of 66

Radiated Power Measurement:

3.3. Limit

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

3.4. Test Procedure

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- I) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

3.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement \pm 1.2 dB, for Radiated Power Measurement \pm 3.2 dB

3.6. Test Result

Product	GPRS Module / POS		
Test Item	Peak Output Power		
Test Mode	Mode 1: GPRS 850		
Date of Test	2007/01/25	Test Site	AC-3

			Conducted Peak	Radiated Peak		
Channel	Frequency	Modulation	Output Power	Output Power	Limit	Dagult
No.	(MHz)	Modulation	Measurement	Measurement	(dBm)	Result
			(dBm)	(dBm)		
128	824.2	GPRS	33.00	29.18	38.50	Pass
189	836.4	GPRS	32.80	28.88	38.50	Pass
251	848.8	GPRS	32.60	28.21	38.50	Pass

Radiated Measurement

Frequency	SA	Ant.Pol.	SG	Cable	Gain	ERP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBd)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Chan	nel 128 (82	4.2MHz)						
824.2	-10.13	Н	32.20	3.09	0.07	29.18	38.50	-9.32
824.2	-11.20	V	30.90	3.09	0.07	27.88	38.50	-10.62
Middle Ch	annel 189 (836.4MHz)					
836.4	-10.90	Н	31.80	3.02	0.10	28.88	38.50	-9.62
836.4	-12.15	V	29.70	3.02	0.10	26.78	38.50	-11.72
High Channel 251 (848.8MHz)								
848.8	-11.60	Н	31.10	3.11	0.22	28.21	38.50	-10.29
848.8	-12.95	V	29.30	3.11	0.22	26.41	38.50	-12.09

Page: 16 of 66

Product	GPRS Module / POS		
Test Item	Peak Output Power		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/25	Test Site	AC-3

			Conducted Peak	Radiated Peak		
Channel	Frequency	Madulation	Output Power	Output Power	Limit	Dagult
No.	(MHz)	Modulation	Measurement	Measurement	(dBm)	Result
			(dBm)	(dBm)		
512	1850.2	GPRS	29.32	26.46	33.00	Pass
661	1880.0	GPRS	28.93	25.76	33.00	Pass
810	1909.8	GPRS	29.16	26.07	33.00	Pass

Radiated Measurement

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBuV/m)		(dBm)	(dB)				
Low Chan	nel 512 (18	50.2MHz)						
1850.2	13.98	Н	19.90	3.84	10.40	26.46	33.00	-6.54
1850.2	12.88	V	18.90	3.84	10.40	25.46	33.00	-7.54
Middle Ch	annel 661 (1880.0MH	z)					
1880.0	13.19	Н	19.20	3.87	10.43	25.76	33.00	-7.24
1880.0	12.15	V	18.10	3.87	10.43	24.66	33.00	-8.34
High Channel 810 (1909.8MHz)								
1909.8	13.60	Н	19.53	3.90	10.44	26.07	33.00	-6.93
1909.8	12.38	V	18.40	3.90	10.44	24.94	33.00	-8.06

Page: 17 of 66

3.7. Test Photograph

Test Mode: Mode 1: GPRS 850

Description: Radiated Peak Output Power Test Setup

Test Mode: Mode 2: GPRS 1900

Description: Radiated Peak Output Power Test Setup

Page: 18 of 66

4. Modulation Characteristic

4.1. Test Equipment

Modulation Characteristic / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date	
Spectrum Analyzer	Agilent	E4446A	MY45300103	2006/03/23	
Radio Communication	R&S	CMU 200	106388	2006/11/22	
Tester	Ras	CIVIO 200	100300	2006/11/22	
Directional Couple	Agilent	87300C	N/A	N/A	
Directional Couple	Agilent	778D	N/A	N/A	
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30	

4.2. Test Setup

Page: 19 of 66

4.3. Limit

N/A

4.4. Test Procedure

GMSK is a form of binary signaling schemes which represent digital states as a shift between discrete sinusoidal frequencies called Frequency Shift Keying (FSK). Minimum Shift Keying (MSK) is continuous phase FSK with the smallest possible modulation index h. Modulation index is defined as: h = 2*F*Tb

where F = Peak frequency deviation in Hz and Tb = Bit period in seconds

Two discrete frequencies, representing two distinct digital states, with equal phases at switch time t=0 requires a minimum value of h=0.5. The Gaussian part of GMSK describes the fact that the digital pulses are filtered in the time domain. This results in bits which are sinusoidal rather than square. The effective spectrum is then compressed with the average carrier frequency in the center of the passband. This is a great advantage because of the significantly reduced bandwidth. GMSK is utilized because of these bandwidth conservation properties.

The bandwidth for GSM is a 60 MHz up-link at 1850-1910 MHz and down-link at 1930-1990 MHz. The 65 MHz is divided into 299 channels, each of which is 200 kHz wide. Slight spectral spillage is allowed into neighboring channels (which is minimized by GMSK). This separated transmit/receive frequencies scheme under GSM enables easier duplex filtering.

Within the bandwidth, individual channels are subdivided into multiframes (made of 26 frames), frames (made of 8 time slots), and time slots (made of 8 fields). The time slots are 0.57 ms long allowing 156.25 bits of information including overhead.

The modulation used in GPRS is the same used in GSM. A GSM channel contains eight timeslots, each timeslot is dedicated to one circuit switched call. For GPRS the timeslots are assigned on an as needed basis, and more than one timeslot can be assigned for a particular transmission depending on the network and the device.

4.5. Uncertainty

The measurement uncertainty is defined as 0.1%

4.6. Test Result

Product	GPRS Module / POS		
Test Item	Modulation Characteristic		
Test Mode	Mode 1: GPRS 850		
Date of Test	2007/01/25	Test Site	AC-3

Figure (GPRS 850)

Product	GPRS Module / POS		
Test Item	Modulation Characteristic		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/25	Test Site	AC-3

Figure (GPRS 1900)

5. Occupied Bandwidth

5.1. Test Equipment

Occupied Bandwidth / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date	
Spectrum Analyzer	R&S	FSIQ 26	119.6001.27	2006/03/23	
Radio Communication	D ° C	CMILOOO	400000	2000/44/22	
Tester	R&S	CMU 200	106388	2006/11/22	
Directional Couple	Agilent	87300C	N/A	N/A	
Directional Couple	Agilent	778D	N/A	N/A	
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30	

5.2. Test Setup

5.3. Limit

N/A

5.4. Test Procedure

Using a resolution bandwidth of 3kHz and a video bandwidth of 10kHz, the -26dBc points were established and the emission bandwidth determined. The plots below show the resultant display from the Spectrum Analyzer.

5.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz

Page: 24 of 66

5.6. Test Result

Product	GPRS Module / POS		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: GPRS 850		
Date of Test	2007/01/25	Test Site	AC-3

Channel No.	Frequency (MHz)	Measurement of -26dB Bandwidth (kHz)
128	824.20	314.63
189	836.40	314.63
251	848.80	314.63

Figure Channel 128 (824.20MHz)

Figure Channel 189 (836.40MHz)

Figure Channel 251 (848.80MHz)

Product	GPRS Module / POS		
Test Item	Occupied Bandwidth		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/25	Test Site	AC-3

Channel No.	Frequency (MHz)	Measurement of -26dB Bandwidth (kHz)
512	1850.20	322.65
661	1880.00	318.64
810	1909.80	316.63

Figure Channel 512 (1850.20MHz)

Figure Channel 661 (1880.00MHz)

Figure Channel 810 (1909.80MHz)

6. Spurious Emission At Antenna Terminals (+/- 1MHz)

6.1. Test Equipment

Spurious Emission At Antenna Terminals (+/- 1MHz) / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	R&S	FSIQ 26	119.6001.27	2006/03/23
Radio Communication	R&S	CMU 200	106388	2006/11/22
Tester	Ras	CIVIO 200	100300	2000/11/22
Directional Couple	Agilent	87300C	N/A	N/A
Directional Couple	Agilent	778D	N/A	N/A
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30

6.2. Test Setup

6.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

6.4. Test Procedure

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

6.5. Uncertainty

The measurement uncertainty is defined as \pm 1.2 dB.

Page: 30 of 66

6.6. Test Result

Product	GPRS Module / POS		
Test Item	Spurious Emission At Antenna Terminals (+/- 1MHz)		
Test Mode	Mode 1: GPRS 850		
Date of Test	2007/01/25	Test Site	AC-3

Figure Channel 128 (824.20MHz)

Figure Channel 251 (848.80MHz)

Product	GPRS Module / POS		
Test Item	Spurious Emission At Antenna Terminals (+/- 1MHz)		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/25	Test Site	AC-3

Figure Channel 512 (1850.20MHz)

Figure Channel 810 (1909.80MHz)

7. Spurious Emission

7.1. Test Equipment

Spurious Emission / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	8566 A	1925A00257	2006/03/23
Spectrum Analyzer	R&S	FSIQ 26	119.6001.27	2006/03/23
Radio Communication Tester	R&S	CMU 200	106388	2006/11/22
Directional Couple	Agilent	87300C	N/A	N/A
Directional Couple	Agilent	778D	N/A	N/A
PSG Analog S.G.	Agilent	E8257D	MY44321116	2006/11/23
Preamplifier	Agilent	87405B	MY39500331	2006/11/25
RF Preamplifier	QuieTek	QTK-AMP-180	0001	2006/03/21
Bilog Type Antenna	Schaffner	CBL6141A	4278	2006/11/25
Half Wave Tuned Dipole Antenna	COM-POWER	AD-100	40137	2006/09/20
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	496	2006/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2006/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	294	2005/11/25
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	295	2005/11/25
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30

7.2. Test Setup

Conducted Spurious Measurement:

Page: 35 of 66

Radiated Spurious Measurement:

7.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.4. Test Procedure

Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1 MHz, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- q) The maximum signal level detected by the measuring receiver shall be noted.
- h) The transmitter shall be replaced by a substitution antenna.
- i) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- j) The substitution antenna shall be connected to a calibrated signal generator.
- k) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- I) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- m) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- n) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- p) The frequency range was checked up to 10th harmonic.

7.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement \pm 1.2 dB, for Radiated Power Measurement \pm 3.2 dB

7.6. Test Result

Product	GPRS Module / POS		
Test Item	Spurious Emission		
Test Mode	Mode 1: GPRS 850		
Date of Test	2007/01/26	Test Site	AC-3

Figure Channel 128 (824.2MHz)

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss (dB)	(dBi)	(dBm)	(dBm)	(dB)
	(dBuV/m)		(dBm)					
Low Chan	nel 128 (82	4.2MHz)						
1645	-40.532	V	-40.566	3.619	9.753	-33.982	-13.000	-20.982
2470	-61.013	V	-56.213	4.469	10.483	-50.199	-13.000	-37.199
3295	-67.499	V	-62.199	5.230	12.750	-54.679	-13.000	-41.679
5770	-68.430	V	-53.876	7.819	13.100	-48.695	-13.000	-35.695
1645	-33.809	Н	-33.824	3.619	9.753	-27.690	-13.000	-14.690
2470	-60.802	Н	-56.037	4.469	10.483	-50.103	-13.000	-37.103
3295	-66.646	Н	-61.526	5.230	12.750	-54.006	-13.000	-41.006
5770	-71.163	Н	-56.809	7.819	13.100	-51.528	-13.000	-38.528
Middle Ch	annel 189 (836.4MHz)					
1675	-42.390	V	-41.844	3.654	9.955	-35.543	-13.000	-22.543
2515	-63.700	V	-58.911	4.511	10.624	-52.798	-13.000	-39.798
4240	-69.117	V	-59.968	6.140	12.710	-53.398	-13.000	-40.398
5860	-66.877	V	-52.169	7.910	13.061	-47.018	-13.000	-34.018
1675	-35.236	Н	-35.110	3.654	9.955	-28.809	-13.000	-15.809
2515	-61.461	Н	-56.870	4.511	10.624	-50.757	-13.000	-37.757
3340	-67.461	Н	-62.563	5.266	12.849	-54.980	-13.000	-41.980
5860	-65.366	Н	-50.658	7.910	13.061	-45.507	-13.000	-32.507
High Chan	nel 251 (84	8.8MHz)						
1705	-43.667	V	-42.980	3.689	10.134	-36.545	-13.000	-23.545
2545	-62.424	V	-57.633	4.529	10.676	-51.486	-13.000	-38.486
4240	-69.130	V	-59.981	6.140	12.710	-53.411	-13.000	-40.411
6970	-71.843	V	-51.103	7.662	11.740	-47.025	-13.000	-34.025
1690	-35.445	Н	-35.048	3.872	10.061	-28.859	-13.000	-15.859
2545	-63.299	Н	-58.586	4.529	10.676	-52.439	-13.000	-39.439
3580	-69.641	Н	-63.170	5.508	12.572	-56.106	-13.000	-43.106
6985	-71.632	Н	-49.796	7.670	11.597	-45.869	-13.000	-32.869

Product	GPRS Module / POS		
Test Item	Spurious Emission		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/26	Test Site	AC-3

Figure Channel 512 (1850.2MHz)

Page: 42 of 66

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss (dB)	(dBi)	(dBm)	(dBm)	(dB)
	(dBuV/m)		(dBm)					
Low Chan	Low Channel 512 (1850.2MHz)							
3691.667	-51.607	V	-42.584	7.423	12.667	-37.34	-13.000	-24.340
5561.667	-55.243	V	-40.049	9.217	13.150	-36.116	-13.000	-23.116
7403.333	-65.971	V	-41.338	10.800	11.020	-41.178	-13.000	-28.178
9245.000	-69.956	V	-41.756	11.980	11.710	-42.026	-13.000	-29.026
3691.667	-52.390	Н	-43.724	7.423	12.667	-38.480	-13.000	-25.480
5561.667	-59.183	Н	-44.503	9.217	13.150	-40.570	-13.000	-27.570
7403.333	-71.771	Н	-46.214	10.800	11.020	-45.994	-13.000	-32.994
Middle Ch	annel 661 (1880.0MH	z)					
3748.333	-50.786	V	-41.65	7.430	12.717	-36.363	-13.000	-23.363
5646.667	-59.372	V	-43.845	9.337	13.137	-40.045	-13.000	-27.045
7516.667	-62.216	V	-40.712	10.927	11.273	-40.366	-13.000	-27.366
9386.667	-69.639	V	-41.106	11.940	11.597	-41.449	-13.000	-28.449
3748.333	-52.081	Н	-43.368	7.430	12.717	-38.081	-13.000	-25.081
5646.667	-64.541	Н	-59.468	9.337	13.137	-45.668	-13.000	-32.668
High Chan	nel 810 (19	09.8MHz)						
3833.333	-50.089	V	-40.652	7.500	12.723	-35.429	-13.000	-22.429
5731.667	-59.119	V	-43.156	9.470	13.110	-39.516	-13.000	-27.516
7630.000	-65.790	V	-41.380	10.890	11.460	-40.810	-13.000	-27.810
3833.333	-53.467	Н	-44.477	7.500	12.723	-39.254	-13.000	-26.254
5731.667	-62.126	Н	-46.376	9.470	13.110	-42.736	-13.000	-29.736
7630.000	-70.257	Н	-45.767	10.890	11.460	-45.197	-13.000	-32.197

7.7. Test Photograph

Test Mode: Mode 1: GPRS 850

Description: Radiated Spurious Emission Test Setup for Under 1 GHz

Test Mode: Mode 1: GPRS 850

Description: Radiated Spurious Emission Test Setup for Above 1 GHz

Test Mode: Mode 2: GPRS 1900

Description: Radiated Spurious Emission Test Setup for Under 1GHz

Test Mode: Mode 2: GPRS 1900

Description: Radiated Spurious Emission Test Setup for Above 1 GHz

8. Frequency Stability Under Temperature & Voltage Variations

8.1. Test Equipment

Spurious Emission At Antenna Terminals (+/- 1MHz) / AC-3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Spectrum Analyzer	Agilent	E4446A	MY45300103	2006/03/23
Radio Communication	R&S	CMU 200	106388	2006/11/22
Tester	κασ	CIVIO 200	100300	2006/11/22
Directional Couple	Agilent	87300C	N/A	N/A
Directional Couple	Agilent	778D	N/A	N/A
AC Power Supply	IDRC	CF-500TP	979422	2006/03/15
DC Power Supply	IDRC	CD-035-020PR	977272	2006/02/17
Programmable Temperature	Gaoyu	TH-1P-B	WIT-05121302	2006/01/24
& Humidity Chamber				
Temperature/Humidity Meter	zhicheng	ZC1-2	QT-TH003	2006/03/30

8.2. Test Setup

Temperature Chamber

Variable Power Supply

8.3. Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Page: 51 of 66

8.4. Test Procedure

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of +50°C reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

8.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz.

Page: 52 of 66

8.6. Test Result

Product	GPRS Module / POS			
Test Item	Frequency Stability Under Temp	Frequency Stability Under Temperature & Voltage Variations		
Test Mode	Mode 1: GPRS 850			
Date of Test	2007/01/26	Test Site	AC-3	

Frequency Stability Under Temperature

Temperature Interval (°ℂ)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-30	± 2091
-20	836.40	-24	± 2091
-10	836.40	-18	± 2091
0	836.40	-13	± 2091
10	836.40	-18	± 2091
20	836.40	-21	± 2091
30	836.40	-18	± 2091
40	836.40	-16	± 2091
50	836.40	-22	± 2091

Frequency Stability Under Voltage

DC Voltage	Test Frequency	Deviation	Limit
(V)	(MHz)	(Hz)	(KHz)
6.29	836.40	-8	± 2091
7.4	836.40	-3	± 2091
8.51	836.40	-23	± 2091

Page: 53 of 66

Product	GPRS Module / POS		
Test Item	Frequency Stability Under Temperature & Voltage Variations		
Test Mode	Mode 2: GPRS 1900		
Date of Test	2007/01/26	Test Site	AC-3

Frequency Stability Under Temperature

Temperature Interval (°C)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.0	35	± 4700
-20	1880.0	28	± 4700
-10	1880.0	28	± 4700
0	1880.0	24	± 4700
10	1880.0	22	± 4700
20	1880.0	22	± 4700
30	1880.0	24	± 4700
40	1880.0	28	± 4700
50	1880.0	28	± 4700

Frequency Stability Under Voltage

DC Voltage	Test Frequency	Deviation	Limit
(V)	(MHz)	(Hz)	(Hz)
6.29	1880.0	15	± 4700
7.4	1880.0	8	± 4700
8.51	1880.0	10	± 4700

Page: 54 of 66

9. Attachment

> EUT Photograph

(1) EUT Photo

(2) EUT Photo

Page: 55 of 66

(3) EUT Photo

(4) EUT Photo

(5) EUT Photo

(6) EUT Photo

(7) EUT Photo

(8) EUT Photo

(9) EUT Photo

(10) EUT Photo

(11) EUT Photo

(12) EUT Photo

(13) EUT Photo

(14) EUT Photo

(15) EUT Photo

(16) EUT Photo

(17) EUT Photo

(18) EUT Photo

(19) EUT Photo

(20) EUT Photo

(21) EUT Photo

(22) EUT Photo

(23) EUT Photo

(24) EUT Photo

