Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Booth's Multiplication Algorithm

- Depending on the current and previous bit
 - − 00 → no arithmetic operation
 - -01 → add multiplicand to the left half of the product
 - 10 → subtract the multiplicand to the left half of the product
 - 11 → no arithmetic operation
- Shift product register 1 bit right

0010×0110

Optimized multiplier

Booth's

Ite	Multip licand	Step	Product	Step	Product
0	0010	Initial values	0000 0110	Initial values	0000 0110 <u>0</u>
1	0010	0 -> no op	0000 0110	00 -> no op	0000 0110 <u>0</u>
		srl	0000 0011	srl	0000 0011 <u>0</u>
2	0010	1 -> PI = PI+M	0010 0011	10 -> PI = PI-M	1110 0011 <u>0</u>
		srl	0001 0001	srl	1111 0001 <u>1</u>
3	0010	1 -> PI = PI+M	0011 0001	11 -> no op	1111 0001 <u>1</u>
		srl	0001 1000	srl	1111 1000 <u>1</u>
4	0010	0 -> no op	0001 1000	01 -> PI = PI+M	0001 1000 <u>1</u>
		srl	0000 1100	srl	0000 1100 <u>0</u>

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

00000111 ÷0010

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 O111
1	2b: Rem < 0 ⇒ +Div, sII Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem < 0 ⇒ +Div, sII Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem < 0 ⇒ +Div, sII Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	@000 0001
5	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

FIGURE 3.12 Division example using the algorithm in Figure 3.11. The bit examined to determine the next step is circled in color.

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

000 0111 ÷ 0010

Iteration	Divisor	Step	Remainder
0	0010	Initial values	0000 0111
		sll	0000 1110
1		RI = RI - D	1110 1110
		R<0, RI = RI+D,	0000 1110
		sII, R0 =0	0001 1100
2		RI = RI - D	1111 1100
		R<0, RI = RI+D,	0001 1100
		sII, R0 =0	0011 1000
3		RI = RI - D	0001 1000
		sII, R0 = 1	0011 0001
4		RI = RI - D	0001 0001
		sII, R0 = 1	0010 0011
5		Srl Rl	0001 0011

Remainder

Quotient

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division)
 generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - -divrs, rt / divurs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mfl o to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

```
-2.34 \times 10^{56} normalized -+0.002 \times 10^{-4} not normalized -+987.02 \times 10^{9}
```

In binary

$$-\pm 1.xxxxxxx_2 \times 2^{yyyy}$$

Types fl oat and doubl e in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × $log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 \times $log_{10}2 \approx 52 \times 0.3 \approx$ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - -S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

```
11000000101000...00
```

- -S = 1
- Fraction = 01000...00₂
- Fxponent = $10000001_2 = 129$

•
$$X = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Denormal Numbers

• Exponent = $000...0 \Rightarrow \text{hidden bit is } 0$

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Single precision		Double p	recision	Object represented	
Exponent	Fraction	Exponent	Fraction		
0	0	0	0	0	
0	Nonzero	0	Nonzero	± denormalized number	
1-254	Anything	1-2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

FIGURE 3.14 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the sign. Denormalized numbers are described in the *Elaboration* on page 270. This information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. Copyright © 2009 Elsevier, Inc. All rights reserved.

Floating-Point Addition

- Consider a 4-digit decimal example
 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow 1.0015 × 10²
- 4. Round and renormalize if necessary
 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

• 2. Add significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary

$$1.000_2 \times 2^{-4}$$
 (no change) = 0.0625

FIGURE 3.16 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

Consider a 4-digit decimal example

```
1.110 \times 10^{10} \times 9.200 \times 10^{-5}
```

- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands

```
1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}
```

- 3. Normalize result & check for over/underflow
 1 0212 × 10⁶
- 4. Round and renormalize if necessary
 1.021 × 10⁶
- 5. Determine sign of result from signs of operands +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} \ (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands

$$1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$$

- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve

$$-1.110_2 \times 2^{-3} = -0.21875$$

FIGURE 3.18 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - I wc1, I d, swc1, sdc1
 - e.g., Id \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.s
 - e.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul. d, di v. d
 - e.g., mul. d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx. s, c. xx. d (xx is eq, I t, I e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c. It. s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

MIPS floating-point operands

Name	Example	Comments
32 floating- point registers	\$f0, \$f1, \$f2, , \$f31	MIPS floating-point registers are used in pairs for double precision numbers.
2 ³⁰ memory words	Memory[0], Memory[4], , Memory[4294967292]	Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential word addresses differ by 4. Memory holds data structures, such as arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly language

Category	Instruction	Example	Meaning	Comments
	FP add single	add.s \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)
	FP multiply single	mul.s \$f2,\$f4,\$f6	\$f2 = \$f4 x \$f6	FP multiply (single precision)
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
Arithmetic	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 x \$f6	P multiply (double precision)
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 - \$f4 / \$f6	FP divide (double precision)
Data	load word copr. 1	lwc1 \$f1,100(\$s2)	f1 = Memory[\$s2 + 100]	32-bit data to FP register
transfer	store word copr. 1	swcl \$f1,100(\$s2)	Memory[\$s2 + 100] = \$f1	32-bit data to memory
	branch on FP true	bc1t 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
Condi-	branch on IP false	bc1f 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
tional branch	FP compare single (eq,ne,lt,le,gt,ge)	c.1t.s \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	P compare less than single precision
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	P compare less than double precision

MIPS floating-point machine language

Name	Format		Example				Comments		
add.s	R	17	16	6	4	2	0	add.s	\$f2,\$f4,\$f6
sub.s	R	17	16	6	4	2	1	sub.s	\$f2,\$f4,\$f6
mul.s	R	17	16	6	4	2	2	mul.s	\$f2,\$f4,\$f6
div.s	R	17	16	6	4	2	3	div.s	\$f2,\$f4,\$f6
add.d	R	17	17	6	4	2	0	add.d	\$f2,\$f4,\$f6
sub.d	R	17	17	6	4	2	1	sub.d	\$f2,\$f4,\$f6
mul.d	R	17	17	6	4	2	2	mul.d	\$f2,\$f4,\$f6
div.d	R	17	17	6	4	2	3	div.d	\$f2,\$f4,\$f6
lwc1	T	49	20	2		100		lwc1	\$f2,100(\$s4)
swc1	1	57	20	2		100		swc1	\$f2,100(\$s4)
bc1t	I	17	8	1		25		bc1t	25
bc1f	1	17	8	0		25		bc1f	25
c.lt.s	R	17	16	4	2	0	60	c.lt.s	\$f2,\$f4
c.lt.d	R	17	17	4	2	0	60	c.lt.d	\$f2,\$f4
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS	instructions 32 bits

FIGURE 3.18 MIPS floating-point architecture revealed thus far. See Appendix B, Section B.10, for more detail. This information is also found in column 2 of the MIPS Reference Data Card at the front of this book. Copyright © 2009 Elsevier, Inc. All rights reserved.

op(31:26):								
28–26	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)
31-29		16						
0(000)	Rfmt	Bltz/gez	j	jal	beq	bne	blez	bgtz
1(001)	addi	addiu	slti	sltiu	ANDi	ORi	xORi	lui
2(010)	TLB	<u>F1Pt</u>						
3(011)								
4(100)	1 b	1h	lwl	1w	1 bu	1hu	1wr	
5(101)	sb	sh	swl	SW			swr	
6(110)	1wc0	lwc1						
7(111)	swc0	swc1	× .					

op(31:26) = 010001 (FIPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21):									
23–21	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)	
25–24									
0(00)	mfc1		cfc1		mtc1		ctc1		
1(01)	bc1. <i>c</i>								
2(10)	f - single	f - double							
3(11)									

op(31:26) = 010001 (FIPt), (ℓ above: 10000 => ℓ = s, 10001 => ℓ = d), funct(5:0):									
2-0	0(000)	1(001)	2(010)	3(011)	4(100)	5(101)	6(110)	7(111)	
5–3									
0(000)	add $.f$	sub.f	mul. f	div.f		abs. f	mov.f	neg.f	
1(001)									
2(010)									
3(011)									
4(100)	cvt.s.f	cvt.d.f		<u> </u>	cvt.w.f				
5(101)						8			
6(110)	c.f. <i>f</i>	c.un.f	c.eq.f	c.ueq.f	c.olt. <i>f</i>	c.ult.f	c.ole.f	c.ule.f	
7(111)	c.sf.f	c.ngle.f	c.seq.f	c.ngl.f	c.1t. <i>f</i>	c.nge.f	c.1e. <i>f</i>	c.ngt.f	

FIGURE 3.19 MIPS floating-point instruction encoding. This notation gives the value of a field by row and by column. For example, in the top portion of the figure, 1 w is found in row number 4 (100_{two} for bits 31-29 of the instruction) and column number 3 (011_{two} for bits 28-26 of the instruction), so the corresponding value of the op field (bits 31-26) is 100011_{two} . Underscore means the field is used elsewhere. For example, FIPt in row 2 and column 1 (op = 010001_{two}) is defined in the bottom part of the figure. Hence sub. f in row 0 and column 1 of the bottom section means that the funct field (bits 5-0) of the instruction) is 000001_{two} and the op field (bits 31-26) is 010001_{two} . Note that the 5-bit rs field, specified in the middle portion of the figure, determines whether the operation is single precision (f = s, so rs = 10000) or double precision (f = d, so rs = 10001). Similarly, bit 16 of the instruction determines if the bcl.c instruction tests for true (bit 16 = 1 = > bcl.t) or false (bit 16 = 0 = > bcl.f). Instructions in color are described in Chapter 2 or this chapter, with Appendix B covering all instructions. This information is also found in column 2 of the MIPS Reference Data Card at the front of this book. Copyright © 2009 Elsevier, Inc. All rights reserved.

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: I wc1 $f16, const5($gp)
I wc2 $f18, const9($gp)
di v. s $f16, $f16, $f18
I wc1 $f18, const32($gp)
sub. s $f18, $f12, $f18
mul. s $f0, $f16, $f18
j r $ra
```

FP Example: Array Multiplication

- X = X + Y x Z
 All 32 x 32 matrices, 64-bit double-precision elements
- C code:

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32  # $t1 = 32 (row size/loop end)
   li \$s0, 0 # i = 0; initialize 1st for loop
L1: Ii \$s1, 0 # j = 0; restart 2nd for loop
L2: Ii \$s2, 0 # k = 0; restart 3rd for loop
   sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)
   addu $t2, $t2, $s1 # $t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   I.d f_4, f_4, f_4 = 8 bytes of f_4
L3: $11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu $t0, $t0, $s1 # $t0 = k * size(row) + j
   addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
   I.d f16, 0(f0) # f16 = 8 bytes of z[k][j]
```

• • •

FP Example: Array Multiplication

```
$11 $t0, $s0, 5 # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2 # $t0 = i *size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0  # $t0 = byte address of y[i][k]
I.d f18, o(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = f16 = f16 = f16 | 
add. d f4, f4, f4, f4=x[i][j] + y[i][k]*z[k][j]
addi u $s2, $s2, 1 # $k =k + 1
bne $s2, $t1, L3 # if (k!= 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu \$\$1, \$\$1, 1 # \$j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addi u \$ \$ 0, \$ \$ 0, 1 # \$ i = i + 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

C type	Java type	Data transfers	Operations
int	int	lw, sw, lui	addu, addiu, subu, mult, div, and, andi, or, ori, nor, slt, slti
unsigned int	-	lw, sw, lui	addu, addiu, subu, multu, divu, and, andi, or, ori, nor, sltu, sltiu
char		lb, sb, lui	addu, addiu, subu, multu, divu, and, andi, or, ori, nor, sltu, sltiu
-	char	lh, sh, lui	addu, addiu, subu, multu, divu, and, andi, or, ori, nor, sltu, sltiu
float	float	lwc1, swc1	add.s, sub.s, mult.s, div.s, c.eq.s, c.lt.s, c.le.s
double	double	1.d, s.d	add.d, sub.d, mult.d, div.d, c.eq.d, c.lt.d, c.le.d

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent