要点

- co-teaching+的优化
- confirmation bias 由cross update变成joint loss 解决
- disagreement变成agreement, 并且加入使两个网络相似的正则

	Decoupling	Co-teaching	Co-teaching+	JoCoR
small loss	Х	✓	✓	✓
cross update	Х	✓	✓	Х
joint training	Х	Х	Х	✓
disagreement	✓	X	✓	Х
agreement	X	Х	X	✓

方法

```
Algorithm 1 JoCoR
Input: Network f with \Theta = \{\Theta_1, \Theta_2\}, learning rate \eta,
     fixed \tau, epoch T_k and T_{\text{max}}, iteration I_{\text{max}};
  1: for t = 1, 2, ..., T_{\text{max}} do
        Shuffle training set D;
 2:
        for n = 1, \ldots, I_{\text{max}} do
 3:
           Fetch mini-batch D_n from D;
 4:
 5:
           p_1 = f(x, \Theta_1), \forall x \in D_n;
           p_2 = f(x, \Theta_2), \forall x \in D_n;
 6:
           Calculate the joint loss \ell by (1) using p_1 and p_2;
 7:
           Obtain small-loss sets D_n by (4) from D_n;
           Obtain L by (5) on D_n;
 9:
10:
           Update \Theta = \Theta - \eta \nabla L;
        end for
11:
        Update R(t) = 1 - \min\left\{\frac{t}{T_k}\tau, \tau\right\}
12:
13: end for
Output: \Theta_1 and \Theta_2
```

loss function

$$\ell(x_i) = (1 - \lambda) * \ell_{\sup}(x_i, y_i) + \lambda * \ell_{\operatorname{con}}(x_i)$$
 (1)

 l_{sup} 两个网络的CE loss之和

 l_{con} 为contrastive loss, 参考的依据为 agreement maximization principle:

因此此正则项的目的为: wrong label的agreement error很大,不会被small loss采集

small loss selection

采用了R(t),随着时间增长选的小样本逐渐减少

总结

1.confirmation bias:两个网络从相互挑小样本到联合损失函数,都避免error flow在一个网络上 流动的情况

2.disagreement: 从两个网络更新disagreement area到共享一个agreement loss, 再配合small loss,都解决了每个样本都学习的问题

实验

t%e t%10e

Flipping-Rate	Standard	F-correction	Decoupling	Co-teaching	Co-teaching+	JoCoR
Symmetry-20%	79.56 ± 0.44	95.38 ± 0.10	93.16 ± 0.11	95.10 ± 0.16	97.81 ± 0.03	98.06 ± 0.04
Symmetry-50%	52.66 ± 0.43	92.74 ± 0.21	69.79 ± 0.52	89.82 ± 0.31	95.80 ± 0.09	96.64 \pm 0.12
Symmetry-80%	23.43 ± 0.31	72.96 ± 0.90	28.51 ± 0.65	79.73 ± 0.35	58.92 ± 14.73	84.89 ± 4.55
Asymmetry-40%	79.00 ± 0.28	89.77 ± 0.96	81.84 ± 0.38	90.28 ± 0.27	93.28 ± 0.43	95.24 ± 0.10

 $Figure \ 5. \ Results \ on \ CIFAR-10 \ dataset. \ Top: \ test \ accuracy(\%) \ vs. \ epochs; \ bottom: \ label \ precision(\%) \ vs. \ epochs.$

Table 3. Average test accuracy (%) on CIFAR-10 over the last 10 epochs.

Flipping-Rate	Standard	F-correction	Decoupling	Co-teaching	Co-teaching+	JoCoR
Symmetry-20%	69.18 ± 0.52	68.74 ± 0.20	69.32 ± 0.40	78.23 ± 0.27	78.71 ± 0.34	85.73 ± 0.19
Symmetry-50%	42.71 ± 0.42	42.19 ± 0.60	40.22 ± 0.30	71.30 ± 0.13	57.05 ± 0.54	79.41 ± 0.25
Symmetry-80%	16.24 ± 0.39	15.88 ± 0.42	15.31 ± 0.43	26.58 ± 2.22	24.19 ± 2.74	27.78 ± 3.06
Asymmetry-40%	69.43 ± 0.33	70.60 ± 0.40	68.72 ± 0.30	73.78 ± 0.22	68.84 ± 0.20	76.36 ± 0.49

Figure 6. Results on CIFAR-100 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Table 4. Average test accuracy (%) on CIFAR-100 over the last 10 epochs.

Flipping-Rate	Standard	F-correction	Decoupling	Co-teaching	Co-teaching+	JoCoR
Symmetry-20%	35.14 ± 0.44	37.95 ± 0.10	33.10 ± 0.12	43.73 ± 0.16	49.27 ± 0.03	53.01 ± 0.04
Symmetry-50%	16.97 ± 0.40	24.98 ± 1.82	15.25 ± 0.20	34.96 ± 0.50	40.04 ± 0.70	43.49 ± 0.46
Symmetry-80%	4.41 ± 0.14	2.10 ± 2.23	3.89 ± 0.16	15.15 ± 0.46	13.44 ± 0.37	15.49 ± 0.98
Asymmetry-40%	27.29 ± 0.25	25.94 ± 0.44	26.11 ± 0.39	28.35 ± 0.25	33.62 ± 0.39	32.70 ± 0.35

蒸馏实验

standard+: 带small loss pick的CE loss函数。他和co-teaching 和joint_only 对比证明要消除 confirmation bias才能提高模型性能.

joint only: 不带正则项的损失函数。它和joCoR对比证明了运用agreement maximization是正确的.

co_teaching: 它和joint_only对比证明了 联合损失要强于cross update.