ENSEMBLES DE NOMBRES

ACTIVITÉ 📐

En latin, *ratio* signifie « compter ». Un nombre *rationnel* est donc un nombre « que l'on sait compter » : il est quotient de deux entiers dont l'écriture décimale peut être infinie (mais dans ce cas nécessairement périodique). Par exemple,

$$\frac{2}{7} = 0,285714285714285714...$$

est un nombre rationnel.

L'objectif de cette activité est de démontrer que $\sqrt{2}$ n'est pas un nombre rationnel. On rappelle pour cela que :

- n est un nombre entier pair si et seulement s'il est de la forme n=2k avec $k \in \mathbb{Z}$. Par exemple, $4=2 \times \underbrace{2}_k$, $6=2 \times \underbrace{3}_k$...
- n est un nombre entier impair si et seulement s'il est de la forme n=2k+1 avec $k\in\mathbb{Z}$. Par exemple, $7=2\times\underbrace{3}_{k}+1,9=2\times\underbrace{3}_{k}+1,\ldots$
- **1. a.** Soit n un nombre. On suppose n impair. Démontrer que n^2 est impair.
 - **b.** Quelle est la contraposée de cette implication?
- **2.** On suppose par l'absurde que $\sqrt{2} = \frac{p}{q}$ où $\frac{p}{q}$ est une fraction irréductible.
 - **a.** Démontrer que $2q^2 = p^2$.
 - **b.** Que peut-on dire de p^2 ? Et de p?
 - **c.** Démontrer que q^2 est pair.
 - **d.** Trouver un diviseur commun à p et q.
 - e. Conclure.

INFORMATION |

Les grecs, et plus particulièrement l'école Pythagoricienne, voyaient en les nombres rationnels l'expression même de la beauté (visuelle comme musicale). Ceux-ci ont d'ailleurs basé leur philosophie dessus : « Tout est nombre ».

Hippase de Métaponte, disciple de Pythagore, montra que la diagonale d'un carré de côté 1 (qui vaut $\sqrt{2}$) ne peut pas s'écrire comme un quotient de deux entiers : il venait de divulguer l'existence des nombres **irrationnels**. La légende raconte que, pour avoir transgressé la doctrine Pythagoricienne, Hippase fut jeté par-dessus bord et noyé dans les eaux de la mer Méditerranée par les autres disciples...

