FOUNDATIONS OF MACHINE LEARNING MASTER IN DATA SCIENCES AND BUSINESS ANALYTICS CENTRALESUPÉLEC

Assignment 1

Instructor: Fragkiskos Malliaros TA: Hakim Benkirane and Konstantinos Florakis

Due: November 12, 2023 at 23:00

How to submit: Please complete the first assignment **individually**. *Typeset* all your answers (**PDF** file only). Submissions should be made on **gradescope** (Assignment 1; Entry Code: PWR777). You have already received an email on your cs email account from *gradescope* (if not, please contact me). Make sure that the answer to each question is on a **separate page** (questions 1-8).

I. General Questions

Question 1 [10 points]

True/False questions, with justification. [Keep your answer short]

- (a) Stochastic gradient descent performs less computation per update than gradient descent.
- (b) Both PCA and linear regression can be thought of as algorithms for minimizing a sum of squared errors.
- (c) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be the matrix representation of our data. Let's assume that we project our data on the k-dimensional space using Principal Component Analysis, where k equals the rank of \mathbf{A} . Then, no loss is incurred in the reconstruction of the data.
- (d) Let $y_i = \log(x^{\alpha_1}e^{\alpha_2}) + \epsilon_i$ be a model, where $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$ corresponds to Gaussian noise. Then, the maximum likelihood parameters of the model (α) can be learned using linear regression.
- (e) The eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$ are the same.

II. Dimensionality Reduction

Question 2 [10 points]

Let $M_{m \times n}$ be a data matrix (m observations (i.e., data points), n dimensions (i.e., features)).

- (a) [2 p] Are the matrices $\mathbf{M}\mathbf{M}^{\mathsf{T}}$ and $\mathbf{M}^{\mathsf{T}}\mathbf{M}$ symmetric, square and real? Justify your answer.
- (b) [2 p] Show that the eigenvalues of $\mathbf{M}\mathbf{M}^{\top}$ are the same as the ones of $\mathbf{M}^{\top}\mathbf{M}$. Are their eigenvectors the same too? Justify your answer.
- (c) [3 p] SVD decomposes the matrix M into the product $U\Sigma V^{\top}$, where U and V are orthonormal and Σ is a diagonal matrix. Given that $M = U\Sigma V^{\top}$, write a simplified expression of $M^{\top}M$ in terms of V, V^{\top} and Σ . Can we find an analogous expression for MM^{\top} ?
- (d) [3 p] What is the relationship (if any) between the eigenvalues of $\mathbf{M}^{\top}\mathbf{M}$ and the singular values of \mathbf{M} ? Justify your answer.

Question 3 [10 points]

As we have seen in the course, PCA projects data points from $\mathbf{x} \in \mathbb{R}^d$ to low-dimensional space defined by the k eigenvectors of the covariance matrix that correspond to the largest eigenvalues. Let \mathbf{U}_k denote the $d \times k$ matrix of the top k eigenvectors of the covariance matrix (\mathbf{U}_k is a truncated version of \mathbf{U} , which is the matrix of eigenvectors of the covariance matrix).

We have two ways to find the low-dimensional representation $\mathbf{w} \in \mathbb{R}^k$ of a data point $\mathbf{x} \in \mathbb{R}^d$:

- 1. Solve a least squares problem to minimize the reconstruction error.
- 2. Project x onto the span of the columns of U_k .

In this question, you will show that these approaches are equivalent.

- (a) [5 p] Formulate the least squares problem in terms of U_k , x and w. (Hint: the optimization problem should resemble linear regression.)
- (b) [5 p] Show that the solution of the least squares problem is equal to $\mathbf{U}_k^{\top}\mathbf{x}$, which is the projection of \mathbf{x} onto the span of the columns of \mathbf{U}_k . (Hint: use the closed-form solution of the least-squares problem).

III. Model Evaluation, Regression, and MLE

Question 4 [15 points]

Multiple choice questions, with short justification (max 5 lines). Indicate all the correct choices; there might be more than one correct choice per question. No partial credit will be given. All the correct answers should be selected.

(a) [5 p] Your role as a machine learning engineer in a consulting firm is to use social media data of 100 million (10^8) users to train a classification model to predict the binary election vote of each person, represented by $y=\pm 1$. In your solution, you decide to use regularized logistic regression with the following loss function:

$$\min_{\mathbf{w}} \frac{1}{10^8} \sum_{i=1}^{10^8} \log \left(1 + \exp \left(-y_i \mathbf{w}^\top \mathbf{X}_i \right) \right) + \lambda \|\mathbf{w}\|_2^2.$$

Using cross-validation, you find the best regularization hyperparameter λ_1 . Later, you are informed that only 10 million of these voters consented to this experiment. Considering the ethical concerns raised, you decide to re-train your model using only 10 million people, and discard the rest. That way, following a similar methodology, you find the best hyperparameter λ_2 . Which of the following statements are true?

- 1. λ_2 is expected to be greater than λ_1 .
- 2. λ_2 is expected to be smaller than λ_1 .
- 3. $\lambda_2 \approx \lambda_1$.
- 4. $10 \times \lambda_2 \approx \lambda_1$.
- 5. None of the above.
- (b) [5 p] Consider a least-squares linear regression model. Which of the following will never negatively impact the training error (mean squared error)?
 - 1. Using polynomial features
 - 2. Using Ridge to reduce the model complexity by coefficient shrinkage
 - 3. Using Lasso to encourage sparse coefficients
 - 4. Normalizing the data points
- (c) [5 p] Given a data matrix $X \in \mathbb{R}^{n \times d}$, labels Y, and $\lambda > 0$, we find the weighted vector \mathbf{w}^* that minimizes $\|Y X\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$. Let's assume that $\mathbf{w}^* \neq 0$. Choose the correct answer(s).
 - 1. The variance of the method decreases if λ increases enough
 - 2. There might be multiple solutions for w*
 - 3. The bias of the method decreases if λ increases enough
 - 4. $\mathbf{w}^* = X^+ Y$, where X^+ is the pseudoinverse of X

Question 5 [10 points]

Let $\{y_i, X_i\}_{i=1}^m$ denotes a set of m observations, where each X_i is an n-dimensional vector. In Ridge Regression, a regularization term is added in the linear regression model in order to penalize the model complexity, leading to the following optimization problem:

$$\underset{\theta}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{X}\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2},$$

where $\lambda > 0$ is a regularization parameter.

- (a) [8 p] Find the closed form solution of the ridge regression problem.
- (b) [2 p] Explain briefly why the ridge regression estimator is more robust to overfitting compared to the least-squares regression.

Question 6 [15 points]

Let's consider n random variables $x_i, i \in [1, n]$ drawn independently from a Bernoulli distribution with mean θ . Reminder: in a Bernoulli distribution $X \in \{0, 1\}$ and $p(X\theta) = \theta^x (1 - \theta)^{1 - x}$.

- (a) [3 p] Express the likelihood function $L(\theta; X_1, \dots, X_n)$.
- (b) [5 p] Find the expression of the log-likelihood (show the steps of your solution in detail).
- (c) [7 p] Prove that the expression of the Maximim Likelihood Estimate is $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$

V. Naive Bayes

Question 7 [10 points]

We consider a problem where have data points, as shown in the matrix below, composed of four feature $X=(x_1,x_2,x_3,x_4)$ and three labels $y=\{+1,0,-1\}$. Now, let's assume that p(X,y) and p(y) are both Bernoulli distributions.

x_1	x_2	x_3	x_4	y
1	1	0	1	+1
0	1	1	0	+1
1	0	1	1	0
0	1	1	1	0
0	1	0	0	-1
1	0	0	1	-1
0	0	1	1	-1

(a) [3 p] Fill in the table below with the MLE for $p(x_i = 1|y)$ for all different values of i and y.

	y = +1	y = 0	y = -1
$x_1 = 1$			
$x_2 = 1$			
$x_3 = 1$			
$x_4 = 1$			

- (b) [1 p] Compute the MLE for p(y=+1), p(y=0), and p(y=-1).
- (c) [6 p] Based on the values computed in the previous two sub-questions, clasify a new data point with feature values ($x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$) to one of the three classes.

VI. Regression in Practice

Question 8 [20 points]

In this exercise you will need to use the *GoodReads* dataset provided in the assignment. The above is a *.json* file, which includes reviews of fantasy novels from *Goodreads*. You can import the data using the following code or any other reader of Python.

```
path = dataDir + "fantasy_100.json"
f = open(path)
data = []
for l in f:
d = json.loads(l)
data.append(d)
f.close()
```

Using the dataset, you will need to answer the following questions. You can use the scikit-learn¹ library for your models. **Include only the basic parts of your code in the report - Python scripts will not be submitted**.

- (a) [2 p] What is the distribution of ratings in this dataset (e.g., number of 1-star, 2-star, 3-star (etc.) reviews)? Your answer can either be a table or a plot showing the distribution.
- (b) [6 p] Now, we will train a simple *linear regression* model to predict the star rating of each review using only the review length:

```
star rating \simeq \theta_0 + \theta_1 \times (review length in characters),
```

where the 'review length in characters' is the number of characters in the review. Report the values of θ_0 and θ_1 , and briefly provide an interpretation of these values (i.e., what do they represent). Also, compute the Mean Squared Error of your predictions.

(c) [6 p] Now, build a new model including a second feature based on the number of comments, i.e.,

```
star rating \simeq \theta_0 + \theta_1 \times \text{(review length)} + \theta_2 \times \text{(number of comments)}.
```

Compute the new coefficients and the Mean Squared Error. Explain your observations (why θ_1 is different from the one of sub-question (b)).

(d) [6 p] Finally, try to obtain a more powerful model using *polynomial features*, as we have examined in the class². Give the expression of the feature vector you have designed and the Mean Squared Error. Please explain your observations.

¹https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.

 $^{^2 \}texttt{https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.} \\ \texttt{html}$