CS 240		Complement and Logic Gates	42	18
Computer Systems	Jan. 25, 2022 · Wade Fagen	-Ulmschneider	- <u>18</u>	- <u>42</u>
For the past two DATA . Today, and into how da	tion: Binary Addition be lectures we have focused we are going to begin the that applies to the CPU. Bir n, but with only 0s and 1s:	ransition away from data ary addition work just like	-42	31
0b 010011	•	0011	- <u>32</u>	+ 4 <u>2</u>
+ 0b <u>001001</u>		<u>0111</u>	_	_
Negative Nun 0b 010011 - 0b <u>001001</u>		0011 <u>0111</u>	Overflow Detection	n in Two's Complement:
	plement is a way to represe	ent signed (ex: positive vs.	Towards Multiplica With Two's Complement about more complex of	ent, we can add and subtract numbers! What
For simplicity,	let's imagine running on a	n 7-bit machine :	10 x 4 =	
-4 =			Bit Shift Operation 1. [Left Shift]:	s:

-1 =

2. [Right Shift]:

Logic Gates and Truth TablesWe can begin to define the building blocks of the CPU by basic instructions with input bits and output bits through **logical gates**.

• By convention, you will see that the input bits are labeled A and **B** by default.

Dogic Oute #1.	Logic	Gate	#1:
----------------	-------	------	-----

Logic Gate #2:

Logic Gate #3:

Logic Gate Challenge: A XOR B

We can also express this in a table known as a **truth table**:

Op.	Binary	Math	Example Values			
	Α	х	1100	110011	101	
	В	у	1010	11	010	
AND	A & B	ху				
OR	A B	x + y				
XOR	A ^ B	x XOR y				
NOT	!A	x '				

Truth Table: Half Adder

Α	В	A + B	<u>s</u> um	<u>C</u> ARRY

Truth Table for a Half Adder

Circuit Diagram for a "Half Adder":

Full	Ado	der

A	В	CARRY _{in}			SUM	CARRY _{out}

Truth Table for a Full Adder

Circuit Diagram for a "Full Adder":

Chaining Circuits Together:

Disadvantages: