Sec	ction 4.3
	Basis for 1R ³
	The matrix [1] has determinant of an equal to one and is thus invertible. The columns of an invertible matrix span 183 and are linearly independent.
	The columns of an invertible mothix span
	IR3 and are linearly independent.
2	0,0,0,0 Not a basis for 1R3
	The set is not linearly independent since it contains the zero vector.
	it contains the zero vector.
	The set does not span IR since The
	matrix [1 0 0] does not have a pluot 1 0 0] in each row.

The set is not linearly independent since there are more vectors than entries in each vector.

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ -4 & 3 & -5 & 2 \\ 3 & -1 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & 7 & 2 \\ 0 & -1 & -5 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 2 \\ 0 & 0 & -8 & -4 \end{bmatrix}$$

Since there is a pivot in each row, the columns of the matrix span 183. Thus the set spans 183.

$$A = \begin{bmatrix} -24 - 2 - 4 \\ 2 - 6 - 3 & 1 \\ -382 - 3 \end{bmatrix} \sim \begin{bmatrix} 1065 \\ 0253 \\ 0000 \end{bmatrix} = B$$

Basis for Gol A is
$$\left[\begin{bmatrix} -2\\2\\3\end{bmatrix}, \begin{bmatrix} 4\\-6\\8\end{bmatrix}\right]$$

by Theorem 6.

The solutions to
$$A\hat{x} = \hat{0}$$
 are given by $\hat{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5/2x_3 - 3/2x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5/2x_3 - 3/2x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5/2x_3 - 3/2x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5/2x_3 - 3/2x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5/2x_3 - 3/2x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -6x_3 - 5x_4 \\ -5x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5x_1 - 3x_2 \\ -5x_2 \\ -5x_2 \end{bmatrix} = \begin{bmatrix} -5x_1 - 3x_2 \\$

$$\begin{bmatrix}
12 & 0 & 45 \\
0 & 0 & 5 & -78 \\
0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
12 & 0 & 4 & 0 \\
0 & 0 & -7/5 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-7/5 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-2 & -4 & -4 \\
-2 & -4 & -4 \\
-2 & -4 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
-2 & -4 & -4 \\
-2 & -4 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
-2 & -4 & -4 \\
-2 & -4 & -4
\end{bmatrix}$$
Thus a basis for Nul A is
$$\begin{bmatrix}
-2 & -4 & -4 & -4 \\
-7/5 & -4 & -4
\end{bmatrix}$$

$$\begin{bmatrix}
-4 & -3 & -4 & -4 \\
-7/5 & -4 & -4
\end{bmatrix}$$
We have a spanning set for H.

Since $4 = 5$ pan $4 = 5$

the spanning set is linearly dependent,
By Theorem 5 part a,
$Span \ \left[\frac{1}{3}, \left[\frac{1}{2}, \left[\frac{1}{3}\right]\right] = Span \ \left[\frac{1}{3}, \left[\frac{1}{2}\right]\right].$
(In fact any subset of 2 out of the 3)
(vectors would be a spanning set for H.)
Since neither of the two vectors is a
scalar multiple of the other, they form
a linearly independent set.
Thus $\left\{\begin{bmatrix} -4\\ 7\end{bmatrix}, \begin{bmatrix} 9\\ -2\end{bmatrix}\right\}$ is a basis for H .
a. False. [] is a linearly independent of set, but it is not a basis
LoJ set, but it is not a basis
for H = Span 2[8] [0]3.
b. True. Theorem 5 part b.
c. True. See paragraph before example 10. A basis is a maximal linearly independent subset of the subspace.

S= & Vi, ..., Vk3, k vectors in IR", k<n. Let A = [V,...Vn]. A is a nxk matrix with Ken. Since A has more rows than columns, not every row of A contains a pivot. Thus by Theorem 4 in section 1.4, the columns of A do not span 18". S= EVI, ..., VR3, k vectors in IR", k>n. 30 Since k=n, we have more vectors than entries in each vector. By Theorem 8 in section 1.7, the set is linearly dependent. { 1+t2, 1-t2} is a linearly independent 33. set in 193. Neither polynomial is a scalar multiple of the other.

El+t, 1-t, 23 (1+t)+(1-t)+-1(2)=0Since every polynomial is a linear combination of the other two polynomials, we may delete any of them from the spanning set. (Theorem 5 parta) Thus Span & Ht, 1-t, 23 = Span & Ht, 23 Since 1+t and 2 are not multiples of each other, they are a linearly independent set. Thus { 1+t, 23 is a basis for Span & Ht, 1-t, 23.