

UBIQUITOUS MAGNETIC FIELDS

PRIMORDIAL: PRODUCED BY BIG BANG PLASMA

ALLOWED PMF PARAMETER SPACE

PMFS
GENERATED
POST
INFLATION LIE
ON THE
DAMPING LINE

Banerjee and Jedamzik 2004

INFLATION
GENERATED
PMFS CAN BE
ANYWHERE ON
THE RIGHT OF
DAMPING LINE

GOAL: TEST THE PRIMORDIAL HYPOTHESIS OF MAGNETIC FIELDS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE DENSITY PERTURBATIONS

PRIMORDIAL MAGNETIC FIELDS ENHANCE POWER SPECTRUM ON SMALL SCALES

EARLY WORKS: BARYON DENSITY PERTURBATIONS SUPPRESSED BELOW MAGNETIC DAMPING (JEANS) SCALE

FINDING: HIGHLY ENHANCED POWER SPECTRUM BELOW JEANS SCALE

PART 1: DARK MATTER MINIHALOS BELOW JEANS SCALE

PART 2: LARGE SCALES RELEVANT FOR JWST

PART 1

Probing Primordial magnetic fields through dark matter minihalos

ARXIV: 2303.11861

SCALES OF INTEREST: PRE-RECOMBINATION AND SCALES SMALLER THAN PHOTON MFP

SCALES OF INTEREST: PRE-RECOMBINATION AND SCALES SMALLER THAN PHOTON MFP

IDEAL MHD IN PHOTON DRAG REGIME

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b.\nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

IDEAL MHD IN PHOTON DRAG REGIME

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b, \nabla)\vec{v}_b}{\alpha} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi\alpha\rho_b} - \frac{c_b^2}{4\pi\alpha\rho_b}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a} =$$

PRE-RECOMBINATION IDEAL MHD: MAGNETIC FIELDS INFLUENCE BY BARYON FLOW

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b.\nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

PRE-RECOMBINATION IDEAL MHD: BARYONS PUSHED BY LORENTZ FORCE

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

PRE-RECOMBINATION IDEAL MHD: REMAINING EQUATIONS SAME!

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b.\nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

PRE-RECOMBINATION IDEAL MHD: LARGE PHOTON DRAG

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

PRE-RECOMBINATION IDEAL MHD: LARGE PHOTON DRAG MAKES FLOW LAMINAR

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{\partial a \partial a} = \frac{\nabla^2 \phi}{(a^2 H)^2}$$

Jedamzik and Abel 2013

CAN ANALYTICALLY SOLVE MHD EQS: VISCOUS DAMPING

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(a) \sim \tau v_b$$

Assumed B is always Gaussian!

EVOLUTION OF MAGNETIC DAMPING SCALE

EVOLUTION OF MAGNETIC DAMPING SCALE

EVOLUTION OF MAGNETIC DAMPING SCALE

PERTURBATION EVOLUTION PLOT

LORENTZ FORCE ENHANCES BARYON PERTURBATIONS FOR MODES OUTSIDE k_D^{-1}

BARYON PERTURBATIONS ASYMPTOTE ONCE MODE ENTERS k_D^{-1}

BARYON PERTURBATIONS DAMPED BY THERMAL PRESSURE

BARYON PERTURBATIONS DAMPED BY TURBULENCE AT RECOMBINATION?

DARK MATTER PERTURBATIONS CONTINUES TO GROW!

DARK MATTER PERTURBATIONS ENHANCED BY ORDERS OF MAGNITUDE COMPARED TO ACDM

COMPARING WITH SIMULATIONS: ANALYTICAL NOT THAT BAD

 $B_{0I} = 0.525$ nG

CONSTRAINTS ON PMF

EVOLUTION OF
EARLY
UNIVERSE
PMFS

RELEVANCE
OF DARK
MATTER
MINIHALO
GENERATION

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES

Subscript I refers to the time at the beginning of photon drag regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: THEIA SKA SENSITIVITY

Subscript *I* refers to the time at the beginning of laminar flow regime

PARAMETER SPACE WITH ENHANCED POWER ON SMALL SCALES: PTA SENSITIVITY

Subscript *I* refers to the time at the beginning of laminar flow regime

MINIHALOS
FROM
CAUSALLY
GENERATED
PMFS

MINIHALOS
FROM
CAUSALLY
GENERATED
PMFS

PMFS TO
EXPLAIN
COSMIC VOID
OBSERVATIONS

Assuming Batchelor spectrum!

UNIVERSE
MAYBE FILLED
WITH DARK
MATTER
MINIHALOS!!

Assuming Batchelor spectrum!

SUMMARY AND CONCLUDING REMARKS

• Magnetic fields can enhance power dark matter power spectrum below magnetic Jeans scale.

 PTA/GAIA detection of DM minihalos can provide best probe of primordial magnetic fields

 Results are qualitative: Need MHD simulations to get accurate quantitative answers.

• Ironic: how invisible dark matter can help look for visible entity: magnetic fields

PART 2

Baryon fraction enhanced on Large scales

Arxiv: 2402.14079

PART 2: LARGE SCALES RELEVANT FOR JWST

POST-RECOMBINATION IDEAL MHD

$$\frac{\partial (\vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times \vec{B})}{a}$$

$$\frac{\partial \vec{v}_b}{\partial t} + H\vec{v}_b + \frac{(\vec{v}_b \cdot \nabla)\vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a^5 \rho_b} - \frac{c_b^2 \nabla \delta_b}{a}$$

$$\frac{\partial \delta_b}{\partial t} = -\frac{\nabla \cdot \vec{v}_b}{a} - \frac{\nabla \cdot (\delta_b \vec{v}_b)}{a}$$

$$\nabla^2 \phi = \frac{a^2}{2M_{Pl}^2} (\rho_b \delta_b + \rho_{DM} \delta_{DM})$$

$$\frac{\partial^2 \delta_{DM}}{\partial a^2} + \left[\frac{\partial \ln(a^2 H)}{\partial \ln a} + 1 \right] \frac{\partial \delta_{DM}}{a \partial a} =$$

POST RECOMBINATION: BARYON PERTURBATIONS MORE ENHANCED THAN DARK

POST RECOMBINATION: BARYON PERTURBATIONS MORE ENHANCED THAN DARK MATTER

POST RECOMBINATION: BARYON PERTURBATIONS MORE ENHANCED THAN DARK

MATTER

MHD SIMULATIONS: MATCHES ANALYTICAL

Ralegankar, Garaldi, Viel 2024

ENHANCEMENT MOVES TO SMALLER SCALES WITH SMALLER PMF STRENGTH

EARLIER ANALYTICAL STUDIES OVER-ESTIMATED MAGNETIC JEANS SCALE

SMALLER SCALES: DM MINIHALOS

IMPLICATIONS FOR LARGE SCALES: ENHANCED BARYON FRACTION IN HALOS

IMPLICATIONS FOR LARGE SCALES: ENHANCED BARYON FRACTION IN HALOS

Scale invariant 1 nG PMFs

IMPLICATIONS FOR PMFS

POWER **SPECTRUM ABOVE** MAGNETIC JEANS SCALE IS SENSITIVE **UPTO 0.05 NG PMFS**

SUMMARY

BACKUP SLIDES

BACKUP: ANALYTIC DERIVATION IN PRE-RECOMBINATION FLUID

IDEAL MHD IN PHOTON DRAG REGIME:

IDEAL MHD IN PHOTON DRAG REGIME: LAMINAR FLOW IN BARYONS

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha) \vec{v}_b + \frac{(\vec{v}_b, \nabla) \vec{v}_b}{a} = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

IDEAL MHD IN PHOTON DRAG REGIME: LAMINAR FLOW IN BARYONS

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

Abel and Jedamzik 2010, Campanelli 2013, Jedamzik and Saveliev 2018

IDEAL MHD IN PHOTON DRAG REGIME: KEY FORCES

$$\frac{\partial \vec{v}_b}{\partial t} + (H + \alpha)\vec{v}_b = \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b} - \frac{c_b^2 \nabla \delta_b}{a} - \frac{\nabla \phi}{a}$$

$$\text{Cravity}$$
Lorentz force
Thermal pressure

IDEAL MHD IN PHOTON DRAG REGIME: LARGE LORENTZ FORCE LIMIT

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

IDEAL MHD IN PHOTON DRAG REGIME: LARGE LORENTZ FORCE LIMIT

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\frac{\partial \ (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$

IDEAL MHD IN PHOTON DRAG REGIME: MAGNETIC DAMPING SCALE

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$

$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(a) \sim \tau v_b$$

Campanelli 2013

IDEAL MHD IN PHOTON DRAG REGIME: MAGNETIC DAMPING SCALE

$$(H + \alpha)\vec{v}_b \approx \frac{\left(\nabla \times \vec{B}\right) \times \vec{B}}{4\pi a \rho_b}$$
$$\frac{\partial (a^2 \vec{B})}{\partial t} = \frac{\nabla \times (\vec{v}_b \times a^2 \vec{B})}{a}$$

$$P_B(k,t) = P_B(k,t_I)e^{-\frac{k^2}{k_D^2}}$$

$$k_D^{-1}(a) \sim \tau v_b$$

Campanelli 2013

ASSUMED B_0 Gaussian

PROBLEM WITH LORENTZ FORCE IN MY LATTICE

INITIALIZING STOCHASTIC PMFS ON LATTICE

LORENTZ FORCE POWER SPECTRUM DOESN'T AGREE WITH THEORY

THE SUPPRESSION OF POWER IS ALSO SEEN IN AREPO (PRELIMINARY!!)

BACKUP SLIDES

SPECTRUM SHAPE DEPENDENCE OF SHIFT

COMPARING WITH FULL MHD SIMULATIONS

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

COMPARING WITH SIMULATIONS: SENSITIVE TO INITIAL POWER SPECTRUM

MORE PERTURBATION PLOTS

$$B_0 = 1$$
nG $k_I = 10^4 \ Mpc^{-1}$

MORE PERTURBATION PLOTS

$$B_0 = 8$$
nG $k_I = 10^4 \ Mpc^{-1}$

