Deep Learning: Real World Applications and Implementation Details

Webinar Series on Applied Artificial Intelligence Vikram Sarabhai Space Centre

Litu Rout

Space Applications Centre Indian Space Research Organisation

Three Pillars of Deep Learning

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

- Programming Language
- Image Processing
- Numeric Computation
- Data Manipulation

OpenCV

Pandas

Copyright 2019 Business over Broadway

- Programming Language
- Image Processing
- Numeric Computation
- Data Manipulation

OpenCV

Pandas

matpletlib

Puthon

python

r ercent or nespondents

Package Installation via "pip"
 >> pip install package

Package Installation via "conda"
 >> conda install package

Many packages ship pre-installed in Anaconda

- Offline Installation
 - Download on Thin Client

- >> pip install package.whl or
- >> pip install package.tar.gz

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Network Design

Popular Libraries

PyTorch (Solid) vs TensorFlow (Dotted) Raw Counts

DL Libraries in 2018

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Visualization

Popular Libraries

Visualization of Loss Surface

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

- Linear Function Approximation
 - Dataset Preparation

$$\left\{ \left(x_p, y_p \right) \right\}_{p=1}^n \subset R^{d_{in} \times d_{out}}$$

Function Approximator

$$f(m,c,x) = m x + c$$

Goal

$$m = ?, c = ?$$

$\boldsymbol{\mathcal{X}}$	\mathcal{Y}
-10	-48
- 9	-43
•••	•••
10	52

- Linear Function Approximation
 - **Error Computation**

r Computation
$$l(f(m,c,x),y) = \frac{1}{2}(f(m,c,x)-y)^{2}$$

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2 = \frac{1}{2n} \sum_$$

Optimization

$$(m^*,c^*) = \arg\min_{((m,c)\in R^{1\times 1})} L(m,c)$$

- Linear Function Approximation
 - Optimization

$$(m^*,c^*) = \arg\min_{((m,c)\in R^{1\times 1})} L(m,c)$$

Learning Algorithm: GD

$$\frac{dm}{dt} = -\eta \frac{\partial L(m,c)}{\partial m(t)}, \quad m(t+1) = m(t) - \eta \frac{\partial L(m,c)}{\partial m(t)}$$
$$\frac{dc}{dt} = -\eta \frac{\partial L(m,c)}{\partial c(t)}, \quad c(t+1) = c(t) - \eta \frac{\partial L(m,c)}{\partial c(t)}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m(t+1) = m(t) - \eta \frac{\partial L(m,c)}{\partial m(t)}$$

$$\frac{\partial L(m,c)}{\partial m(t)} < 0 \quad \text{at point A}$$

$$\frac{\partial L(m,c)}{\partial m(t)} > 0 \quad \text{at point B}$$

- Linear Function Approximation
 - Gradient Descent (GD)

Learning Rate: η

- Linear Function Approximation
 - **Gradient Descent (GD)**

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t), \nabla L(m_t) \triangleq \frac{\partial L(m,c)}{\partial m(t)}$$

• Assumption: β -Smoothness

$$\|\nabla L(m_{t+1}) - \nabla L(m_t)\|_2 \le \beta \|m_{t+1} - m_t\|_2$$

Or
$$\|\nabla^2 L(m_t)\|_2 \leq \beta$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$L(m_{t+1}) = L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t)$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$\begin{split} L(m_{t+1}) &= L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t) \\ &\leq L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{\beta}{2} \|m_{t+1} - m_t\|_2^2, \because \|\nabla^2 L(m_t)\|_2 \leq \beta \end{split}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$\begin{split} L(m_{t+1}) &= L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t) \\ &\leq L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{\beta}{2} \|m_{t+1} - m_t\|_2^2, \because \|\nabla^2 L(m_t)\|_2 \leq \beta \\ &\leq L(m_t) - \beta^{-1} \|\nabla L(m_t)\|_2^2 + \frac{\beta^{-1}}{2} \|\nabla L(m_t)\|_2^2, \end{split}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$L(m_{t+1}) \le L(m_t) - \frac{\beta^{-1}}{2} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - Iteration Complexity $L(m_1) \leq L(m_0) \frac{\beta^{-1}}{2} \|\nabla L(m_0)\|_2^2$ $L(m_2) \leq L(m_1) \frac{\beta^{-1}}{2} \|\nabla L(m_1)\|_2^2$ \vdots $L(m_T) \leq L(m_{T-1}) \frac{\beta^{-1}}{2} \|\nabla L(m_{T-1})\|_2^2$

- Linear Function Approximation
 - Iteration Complexity $L(m_1) \le L(m_0) \frac{\beta^{-1}}{2} \|\nabla L(m_0)\|_2^2$ $L(m_2) \le L(m_1) \frac{\beta^{-1}}{2} \|\nabla L(m_1)\|_2^2$

$$L(m_T) \le L(m_{T-1}) - \frac{\beta^{-1}}{2} \|\nabla L(m_{T-1})\|_2^2$$

- Linear Function Approximation
 - Iteration Complexity

$$L(m_T) \le L(m_0) - \frac{\beta^{-1}}{2} \sum_{t=0}^{I-1} \|\nabla L(m_t)\|_2^2$$

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} \sum_{t=0}^{T-1} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} \sum_{t=0}^{T-1} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \epsilon$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} T \in \mathbb{R}^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} T \in \mathbb{R}^2$$

$$T \le \frac{2\beta \left(L(m_0) - L(m_T)\right)}{\epsilon^2} = \mathcal{O}\left(\frac{1}{\epsilon^2}\right)$$

- Linear Function Approximation
 - Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L_{\mathcal{B}}(m,c) = \frac{1}{2|\mathcal{B}|} \sum_{p=1}^{|\mathcal{B}|} (f(m,c,x_p) - y_p)^2$$

$$m(t+1) = m(t) - \eta \frac{\partial L_{\mathcal{B}}(m,c)}{\partial m(t)}$$

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_r(m,c) = \frac{1}{2} (l_r(m,c))$$

Defining Problem Statement

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_r(m,c) = \frac{1}{2} (l_r(m,c))$$

$$m(t+1) = m(t) - \eta \frac{\partial L_r(m,c)}{\partial m(t)}$$

Defining Problem Statement

Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_{\mathcal{B}}(m,c) = \frac{1}{2|\mathcal{B}|} \sum_{p=1}^{|\mathcal{B}|} l_p(m,c)$$

$$m(t+1) = m(t) - \eta \frac{\partial L_{\mathcal{B}}(m,c)}{\partial m(t)}$$

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

Linear Function Approximation

Paired Training Data

Linear Function Approximation

Linear Function Approximation

Inference Stage

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

One Layer Neural Network Function Approximator

Dataset Preparation

$$\left\{ \left(x_p, y_p \right) \right\}_{p=1}^n \subset R^{d_{in} \times d_{out}}$$

$$d_{in} = 28 \times 28 = 784$$

$$d_{out} = 10$$

$$n = 60000$$

One Layer Neural Network Function Approximator

$x = (x_1, x_2, \dots, x_{784})$	$y = (y_1, y_2,, y_{10})$
(0,0.5,, 1)	(1,0,,0)
(0.8,1,,0)	(0,1,,0)
•••	•••
(1,0,,0.2)	(0,0,,1)

- One Layer Neural Network Function Approximator
 - Function Approximator

$$f_{i}(\mathbf{m}, c, \mathbf{x}) = m_{1}x_{1} + m_{2}x_{2} + \dots + m_{784}x_{784} + c_{i}$$

$$= \sum_{j=1}^{784} m_{j}x_{j} + c_{j}$$

$$\mathbf{f}(f_{1}, f_{2}, \dots, f_{10}) = \mathbf{M}\mathbf{x} + \mathbf{c}$$

$$[10x1] = [10x784][784x1] + [10x1]$$

$$x_{1} \quad x_{2} \quad y_{1} \quad \vdots \quad f_{10}(\mathbf{m}, c, \mathbf{x})$$

$$\vdots \quad y_{10} \quad \vdots \quad y_{10}$$

- One Layer Neural Network Function Approximator
 - Function Approximator

$$f_i(\mathbf{m}, c, \mathbf{x}) = m_1 x_1 + m_2 x_2 + \dots + m_{784} x_{784} + c_i$$

Trainable Parameters 10x784+10 = 7850

$$= \sum_{j=1}^{784} m_j x_j + c_j$$

$$f(f_1, f_2, ..., f_{10}) = Mx + c$$

$$[10x1] = [10x784][784x1] + [10x1]$$

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

- Two Layer Neural Network Function Approximator
 - Function Approximator

$$f(f_{1}, f_{2}, ..., f_{10}) = M_{2}(M_{1}x + c_{1}) + c_{2}$$

$$x_{1} \qquad M_{1} \qquad C_{1} \qquad M_{2} \qquad C_{2}$$

$$x_{2} \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_{784} \qquad k \qquad i$$

- Two Layer Neural Network Function Approximator
 - **Function Approximator**

nction Approximator
$$= 0, otherwise$$

$$f(f_1, f_2, ..., f_{10}) = M_2(\sigma(M_1x + c_1)) + c_2$$

 $\sigma(x) = x$, if $x \ge 0$

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

- Three Layer Convolutional Neural Network Function Approximator
 - Local Connectivity
 - Weight Sharing

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

Real World Applications

S2A: Wasserstein GAN with Spatio-Spectral Laplacian Attention for Multi-Spectral Band Synthesis

CVPR-EarthVision 2020

Litu Rout

Joint work with Indranil Misra, S Manthira Moorthi and Debajyoti Dhar

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

FCC: NIR (R), R (G), G(B)

- Reformulate as conditional band synthesis
- Geometry from existing high resolution bands: HR-NIR, R, G.
- Radiometry from corresponding low resolution band: LR-SWIR.

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

FCC: NIR (R), R (G), G(B)

- Reformulate as conditional band synthesis.
- Geometry from existing high resolution bands: HR-NIR, R, G.
- Radiometry from corresponding low resolution band: LR-SWIR.

LR-SWIR

FCC: SWIR (R), NIR (G), Red (B)

HR-SWIR-Original HR-SWIR-Predicted HR-NIR,R,G LR-Upsampled-SWIR **LR-SWIR**

Over dependence on upsampled <u>coarse</u> resolution band results in unpleasant artifacts

- Geometric distortion
- Radiometric imbalance

FCC: SWIR (R), NIR (G), Red (B)

HR-SWIR-Original HR-SWIR-Predicted HR-NIR,R,G LR-Upsampled-SWIR LR-SWIR

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

Proposed Approach

resolution band can be suppressed by replacing it with spatial attention map.

Traditional Approach

Proposed Approach

FCC: SWIR (R), NIR (G), Red (B)

$$A_s(x) = \mathcal{N}(D_s(x)),$$
 $D_s(x) = \sum_{i=1}^K \mathcal{N}\left(\sum_{j=1}^C |A_{ij}(x)|\right)$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss
$$\mathcal{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\|A_{s}(\tilde{y}) - A_{s}(y)\|_{2}^{2} \right]$$

Spatial Attention from Discriminator

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Real/Fake

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\tilde{y}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Discriminator Objective

$$\min_{D} \mathbb{E}_{\hat{X} \sim \mathbb{P}_{\hat{X}}} \left[D\left(\hat{X}\right) \right] - \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[D\left(X\right) \right]$$

$$+ \lambda_{gp} \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathbb{P}_{\tilde{\mathbf{x}}}} \left[(\|\nabla_{\tilde{\mathbf{x}}} D(\tilde{\mathbf{x}})\|_{2} - 1)^{2} + \lambda_{sa} \mathcal{L}_{sa} + \lambda_{da} \mathcal{L}_{da}, \right]$$

Spatial Attention from Discriminator

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\tilde{y}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Discriminator Objective

$$\begin{split} \min_{D} \mathbb{E}_{\hat{X} \sim \mathbb{P}_{\hat{X}}} \left[D\left(\hat{X}\right) \right] - \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[D\left(X\right) \right] \\ + \lambda_{gp} \mathbb{E}_{\tilde{X} \sim \mathbb{P}_{\tilde{X}}} \left[\left(\left\| \nabla_{\tilde{X}} D\left(\tilde{X}\right) \right\|_{2} - 1 \right)^{2} \right] \\ + \lambda_{sa} \mathcal{L}_{sa} + \lambda_{da} \mathcal{L}_{da}, \end{split}$$

Spatial Attention from Discriminator

Spatio-Spectral Laplacian Attention

Spatio-Spectral Laplacian Attention

Spectral attention coefficients

Combining Spatial Attention with Source Bands

Multiplication:

- Attention module latches on to bright targets.
- Synthesized band contains blocky artifacts.

Source Ground Truth AeroGAN DSen2 DeepSWIR ALERT S2A (ours) (SRE/SSIM) (44.62/86.03)(50.04/93.85)(50.35/94.02)(50.81/94.54)(**50.83/95.08**)

Method	RMSE	SSIM(%)	SRE(dB)	PSNR(dB)	SAM(deg)
AeroGAN [31]	21.62	86.03	44.62	36.50	12.15
DSen2 [21]	14.14	93.85	50.04	41.94	7.88
DeepSWIR [33]	13.75	94.02	50.35	42.27	7.66
ALERT [32]	12.97	94.54	50.81	42.80	7.48
S2A (ours)	11.74	95.08	50.83	42.76	6.87

- Learns to attend to relevant parts of source imagery.
- Homogeneous and heterogeneous targets are discernible.
- Similar features have similar attention coefficients

Wetland Delineation

Wetland Delineation

Water Segmentation

Additional Value Product Generation Hilly Terrain Desert

India Main land Coastal

Overview

- Formulated super resolution as conditional band synthesis
- Regulated band synthesis through spatial and Laplacian spectral channel attention
- Introduced two new cost functions for the discriminator:
 - Spatial attention loss
 - Domain adaptation loss
- Experimented on multiple datasets:
 - LISS-3
 - LISS-4
 - ◆ WorldView-2
- Demonstrated real world applications of synthesized band:
 - Wetland delineation
 - Index based water segmentation
 - Additional value product generation/ Large area mosaic

Summary

- Three Pillars of Deep Learning
 - Setting Up DL Environment
 - Data Processing
 - Network Design
 - Visualization
 - Defining Problem Statement
 - Paired Training Data
 - Gradient Descent (GD)
 - Stochastic Gradient Descent (SGD)

- Implementation Details
 - Linear Function Approximator
 - One Layer Neural Network Function Approximator
 - Two Layer Neural Network Function Approximator
 - Three Layer Convolutional Neural Network Function Approximator
- Real World Application
 - Super Resolution
 - Multi-Spectral Band Synthesis