A. Find Minimum Operations

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

You are given two integers n and k.

In one operation, you can subtract any power of k from n. Formally, in one operation, you can replace n by $(n-k^x)$ for any non-negative integer x.

Find the minimum number of operations required to make n equal to 0.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains two integers n and k ($1 \le n, k \le 10^9$).

Output

For each test case, output the minimum number of operations on a new line.

Standard Input	Standard Output
6	2
5 2	3
3 5	1
16 4	4
100 3	21
6492 10	10
10 1	

Note

In the first test case, n=5 and k=2. We can perform the following sequence of operations:

- 1. Subtract $2^0=1$ from 5. The current value of n becomes 5-1=4.
- 2. Subtract $2^2 = 4$ from 4. The current value of n becomes 4 4 = 0.

It can be shown that there is no way to make n equal to 0 in less than 2 operations. Thus, 2 is the answer.

In the second test case, n=3 and k=5. We can perform the following sequence of operations:

- 1. Subtract $5^0 = 1$ from 3. The current value of n becomes 3 1 = 2.
- 2. Subtract $5^0 = 1$ from 2. The current value of n becomes 2 1 = 1.
- 3. Subtract $5^0 = 1$ from 1. The current value of n becomes 1 1 = 0.

It can be shown that there is no way to make n equal to 0 in less than 3 operations. Thus, 3 is the answer.

B. Brightness Begins

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 256 megabytes

Imagine you have n light bulbs numbered $1, 2, \ldots, n$. **Initially, all bulbs are on**. To *flip* the state of a bulb means to turn it off if it used to be on, and to turn it on otherwise.

Next, you do the following:

• for each $i=1,2,\ldots,n$, flip the state of all bulbs j such that j is divisible by i^{\dagger} .

After performing all operations, there will be several bulbs that are still on. Your goal is to make this number exactly k.

Find the smallest suitable n such that after performing the operations there will be exactly k bulbs on. We can show that an answer always exists.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains a single integer k ($1 \le k \le 10^{18}$).

Output

For each test case, output n — the minimum number of bulbs.

Standard Input	Standard Output
3	2
1	5
3	11
8	

Note

In the first test case, the minimum number of bulbs is 2. Let's denote the state of all bulbs with an array, where 1 corresponds to a turned on bulb, and 0 corresponds to a turned off bulb. Initially, the array is [1, 1].

- After performing the operation with i=1 , the array becomes $[\underline{0},\underline{0}]$.
- After performing the operation with i=2, the array becomes $[0,\underline{1}].$

In the end, there are k=1 bulbs on. We can also show that the answer cannot be less than 2.

In the second test case, the minimum number of bulbs is 5. Initially, the array is [1, 1, 1, 1, 1].

- After performing the operation with i=1, the array becomes $[\underline{0},\underline{0},\underline{0},\underline{0},\underline{0}].$
- After performing the operation with i=2 , the array becomes $[0,\underline{1},0,\underline{1},0]$.
- After performing the operation with i=3 , the array becomes $[0,1,\underline{1},1,0]$.
- After performing the operation with i=4 , the array becomes $[0,1,1,\underline{0},0]$.

[†] An integer x is divisible by y if there exists an integer z such that $x = y \cdot z$.

- After performing the operation with i=5 , the array becomes $[0,1,1,0,\underline{1}]$.

In the end, there are k=3 bulbs on. We can also show that the answer cannot be smaller than $5.\,$

C. Bitwise Balancing

Input file: standard input
Output file: standard output

Time limit: 2 seconds
Memory limit: 256 megabytes

You are given three non-negative integers b, c, and d.

Please find a non-negative integer $a \in [0, 2^{61}]$ such that $(a \mid b) - (a \& c) = d$, where \mid and & denote the <u>bitwise OR operation</u> and the <u>bitwise AND operation</u>, respectively.

If such an a exists, print its value. If there is no solution, print a single integer -1. If there are multiple solutions, print any of them.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). The description of the test cases follows.

The only line of each test case contains three positive integers b, c, and d ($0 \le b, c, d \le 10^{18}$).

Output

For each test case, output the value of a, or -1 if there is no solution. Please note that a must be non-negative and cannot exceed 2^{61} .

Standard Input	Standard Output
3	0
2 2 2	-1
4 2 6	12
10 2 14	

Note

In the first test case, $(0 \mid 2) - (0 \& 2) = 2 - 0 = 2$. So, a = 0 is a correct answer.

In the second test case, no value of a satisfies the equation.

In the third test case, $(12 \mid 10) - (12 \& 2) = 14 - 0 = 14$. So, a = 12 is a correct answer.

D. Connect the Dots

Input file: standard input
Output file: standard output

Time limit: 2 seconds
Memory limit: 512 megabytes

One fine evening, Alice sat down to play the classic game "Connect the Dots", but with a twist.

To play the game, Alice draws a straight line and marks n points on it, indexed from 1 to n. Initially, there are no arcs between the points, so they are all disjoint. After that, Alice performs m operations of the following type:

- She picks three integers a_i , d_i ($1 \le d_i \le 10$), and k_i .
- She selects points $a_i, a_i + d_i, a_i + 2d_i, a_i + 3d_i, \dots, a_i + k_i \cdot d_i$ and connects each pair of these points with arcs.

After performing all m operations, she wants to know the number of connected components[†] these points form. Please help her find this number.

[†] Two points are said to be in one connected component if there is a path between them via several (possibly zero) arcs and other points.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^5$). The description of the test cases follows.

The first line of each test case contains two integers n and m ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 2 \cdot 10^5$).

The i-th of the following m lines contains three integers a_i , d_i , and k_i ($1 \le a_i \le a_i + k_i \cdot d_i \le n$, $1 \le d_i \le 10$, $0 \le k_i \le n$).

It is guaranteed that both the sum of n and the sum of m over all test cases do not exceed $2 \cdot 10^5$.

Output

For each test case, output the number of connected components.

Standard Input	Standard Output
3	2
10 2	96
1 2 4	61
2 2 4	
100 1	
19 2 4	
100 3	
1 2 5	
7 2 6	
17 2 31	

Note

In the first test case, there are n=10 points. The first operation joins the points 1,3,5,7, and 9. The second operation joins the points 2,4,6,8, and 10. There are thus two connected components: $\{1,3,5,7,9\}$ and $\{2,4,6,8,10\}.$

In the second test case, there are n=100 points. The only operation joins the points $19,\,21,\,23,\,25$, and 27. Now all of them form a single connected component of size 5. The other 95 points form single-point connected components. Thus, the answer is 1+95=96.

In the third test case, there are n=100 points. After the operations, all odd points from 1 to 79 will be in one connected component of size 40. The other 60 points form single-point connected components. Thus, the answer is 1+60=61.

E. Expected Power

Input file: standard input
Output file: standard output

Time limit: 4 seconds
Memory limit: 256 megabytes

You are given an array of n integers a_1, a_2, \ldots, a_n . You are also given an array p_1, p_2, \ldots, p_n .

Let S denote the random **multiset** (i. e., it may contain equal elements) constructed as follows:

- Initially, S is empty.
- For each i from 1 to n, insert a_i into S with probability $\frac{p_i}{10^4}$. Note that each element is inserted independently.

Denote f(S) as the <u>bitwise XOR</u> of all elements of S. Please calculate the expected value of $(f(S))^2$. Output the answer modulo 10^9+7 .

Formally, let $M=10^9+7$. It can be shown that the answer can be expressed as an irreducible fraction $\frac{p}{q}$, where p and q are integers and $q\not\equiv 0\pmod M$. Output the integer equal to $p\cdot q^{-1}\mod M$. In other words, output such an integer x that $0\leq x< M$ and $x\cdot q\equiv p\pmod M$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 2 \cdot 10^5$).

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 1023$).

The third line of each test case contains n integers p_1, p_2, \ldots, p_n ($1 \leq p_i \leq 10^4$).

It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, output the expected value of $(f(S))^2$, modulo 10^9+7 .

Standard Output
50000007
82000006
280120536
1

Note

In the first test case, a=[1,2] and each element is inserted into S with probability $\frac{1}{2}$, since $p_1=p_2=5000$ and $\frac{p_i}{10^4}=\frac{1}{2}$. Thus, there are 4 outcomes for S, each happening with the same probability of $\frac{1}{4}$:

- $S = \emptyset$. In this case, f(S) = 0, $(f(S))^2 = 0$.
- $S = \{1\}$. In this case, f(S) = 1, $(f(S))^2 = 1$.
- $S = \{2\}$. In this case, f(S) = 2, $(f(S))^2 = 4$.
- $S = \{1,2\}$. In this case, $f(S) = 1 \oplus 2 = 3$, $(f(S))^2 = 9$.

Hence, the answer is $0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 9 \cdot \frac{1}{4} = \frac{14}{4} = \frac{7}{2} \equiv 500\,000\,007 \pmod{10^9 + 7}$.

In the second test case, a = [1, 1], a_1 is inserted into S with probability 0.1, while a_2 is inserted into S with probability 0.2. There are 3 outcomes for S:

- $S=\varnothing$. In this case, f(S)=0, $(f(S))^2=0$. This happens with probability $(1-0.1)\cdot (1-0.2)=0.72$.
- $S=\{1\}$. In this case, f(S)=1, $(f(S))^2=1$. This happens with probability $(1-0.1)\cdot 0.2+0.1\cdot (1-0.2)=0.26$.
- $S=\{1,1\}$. In this case, f(S)=0, $(f(S))^2=0$. This happens with probability $0.1\cdot 0.2=0.02$.

Hence, the answer is $0 \cdot 0.72 + 1 \cdot 0.26 + 0 \cdot 0.02 = 0.26 = \frac{26}{100} \equiv 820\ 000\ 006 \pmod{10^9 + 7}$.

F. Count Leaves

Input file: standard input
Output file: standard output

Time limit: 4 seconds
Memory limit: 256 megabytes

Let n and d be positive integers. We build the *the divisor tree* $T_{n,d}$ as follows:

- The root of the tree is a node marked with number n. This is the 0-th layer of the tree.
- For each i from 0 to d-1, for each vertex of the i-th layer, do the following. If the current vertex is marked with x, create its children and mark them with all possible distinct divisors[†] of x. These children will be in the (i+1)-st layer.
- The vertices on the d-th layer are the leaves of the tree.

For example, $T_{6,2}$ (the divisor tree for n=6 and d=2) looks like this:

Define f(n,d) as the number of leaves in T_{nd} .

Given integers $n, \, k$, and d, please compute $\sum\limits_{i=1}^n f(i^k, d)$, modulo $10^9 + 7$.

 † In this problem, we say that an integer y is a divisor of x if $y \geq 1$ and there exists an integer z such that $x = y \cdot z$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains three integers n, k, and d (1 $\leq n \leq 10^9$, 1 $\leq k$, $d \leq 10^5$).

It is guaranteed that the sum of n over all test cases does not exceed 10^9 .

Output

For each test case, output $\sum\limits_{i=1}^n f(i^k,d)$, modulo 10^9+7 .

Standard Input	Standard Output
3	14
6 1 1	1

1 3 3	53
10 1 2	

Note

In the first test case, n=6, k=1, and d=1. Thus, we need to find the total number of leaves in the divisor trees $T_{1,1}$, $T_{2,1}$, $T_{3,1}$, $T_{4,1}$, $T_{5,1}$, $T_{6,1}$.

- $T_{1,1}$ has only one leaf, which is marked with 1.
- $T_{2,1}$ has two leaves, marked with 1 and 2.
- $T_{3,1}$ has two leaves, marked with 1 and 3.
- $T_{4,1}$ has three leaves, marked with 1, 2, and 4.
- $T_{5,1}$ has two leaves, marked with 1 and 5.
- $T_{6,1}$ has four leaves, marked with 1, 2, 3, and 6.

The total number of leaves is 1+2+2+3+2+4=14.

In the second test case, n = 1, k = 3, d = 3. Thus, we need to find the number of leaves in $T_{1,3}$, because $1^3 = 1$. This tree has only one leaf, so the answer is 1.