Дискретная математика II семестр

Лектор: Станкевич Андрей Сергеевич

зима/весна 2024

_scarleteagle

ikochelorov

Оглавление

І. Дискретная теория вероятностей	2	2
1.1. Введение		
1.2. Аксиоматическая теория вероятностей		
1.3. Независимость событий		
1.4. Прямое произведение вероятностных пространств		
1.5. Условная вероятность		
1.6. Случайная величина	[5
1.7. Математическое ожидание		
1.8. Дисперсия	8	8

1. Дискретная теория вероятностей

1.1. Введение

Случайности и вероятности давно интересовали людей, в основном в азартных играх. Первые теоремы дискретной теории вероятностей появились задолго до появления первого конечного автомата. Но философы всех времён задаются вопросом — "существует ли случайность?"

Философская мысль делится на 2 направления — считающих, что случайности существуют, и остальных детерминистов, считающих, что у нас просто недостаточно входных данных

Это всё мы с вами изучать не будем

1.2. Аксиоматическая теория вероятностей

by Андрей Николаевич Колмогоров

Бытовое восприятие случайностей мешает в понимании формальной модели

Определение: множество элементарных исходов

 Ω — множество всех возможных элементарных исходов случайного эксперимента, который может закончиться ровно одним из них

 Ω может быть не более чем счётным, счётным, или не счётным. Но мы будем рассматривать дискретное множество элементарных исходов

 $|\Omega|$ — конечно или счётно

Определение: элементарный исход

Элемент $\omega \in \Omega$

Определение: дискретная плотность вероятности

$$p:\Omega \to \mathbb{R}: p(\omega \geq 0), \sum_{\omega \in \Omega} p(\omega) = 1$$

Если Ω несчётна, то требуется другая теория

Определение: дискретное вероятностное пространство

Пара из множества элементарных исходов и дискретной плотности вероятностей (Ω, p)

Примеры:

1. Честная монета:

$$\Omega = \{0,1\}, \ p(0) = p(1) = \frac{1}{2}$$

2. Нечестная монета (распределение Бернулли):

$$\Omega = \{0, 1\}, \ p(1) = p, \ p(0) = 1 - p$$

3. Честная игральная кость (1d6):

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \ p(i) = \frac{1}{6}$$

1. "Честная" игральная кость (1d20):

$$\Omega = \{1, ..., 20\}, \ p(20) = 1$$

4. Колода карт:

$$\Omega = \{ \langle r, s \rangle \mid r = 1...13, s = 1...4 \}, \ p(\langle r, s \rangle)$$

Определение: случайное событие

Подмножество элементарных исходов $A\subset \Omega, \quad P(A)=\sum_{a\in A}p(a)$

Дискретное множество элементарных исходов является случайным событием

Примеры:

- 1. Пустое событие $P(\emptyset) = 0$
- 2. Достоверное событие (полное (?)) $P(\Omega) = 1$
- 3. Для честной монеты $P(\{0\}) = \frac{1}{2}, \quad P(\{1\}) = \frac{1}{2}$
- 4. Для честной 1d6 $P(\{1,3,5\})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}, \quad P(\{5,6\})=\frac{1}{3}, \quad P(\{1,2,3\})=\frac{1}{2}$

1.3. Независимость событий

Определение: независимое случайное событие

A и B независимы, если $P(A \cap B) = P(A) \cdot P(B)$

Примеры:

Для честной игральной кости

Even = $\{2, 4, 6\}$, Big = $\{5, 6\}$, Small = $\{1, 2, 3\}$

- $P(\text{Even} \cap \text{Big}) = P(\{6\}) = \frac{1}{6}$ $P(\text{Even}) \cdot P(\text{Big}) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$
- $P(\text{Even} \cap \text{Small}) = P(\{2\}) = \frac{1}{6}$ $P(\text{Even}) \cdot P(\text{Small}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$
- $P(\text{Big} \cap \text{Small}) = P(\emptyset) = 0$ $P(\text{Big}) \cdot P(\text{Small}) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$

Определение: события, независимые в совокупности

 $A_1,A_2,...,A_k$ – независимы в совокупности, если $\forall I\subset\{1,2,...,k\}$ $Pigg(\bigcap_{i\in I}A_iigg)=\prod_{i\in I}P(A_i)$

Примеры:

Для броска двух разных честных монет

$$\Omega = \{00, 01, 10, 11\}, \quad p(i \cdot j) = \frac{1}{4}$$

 $A = \{01,00\}, \quad B = \{10,00\}, \quad \tilde{C} = \{11,00\}$ не независимы в совокупности

1.4. Прямое произведение вероятностных пространств

Определение: прямое произведение вероятностей пространств

$$\begin{split} \langle \Omega_1, p_1 \rangle, \quad \langle \Omega_2, p_2 \rangle, \text{прямое произведение пространств } \Omega &= \Omega_1 \times \Omega_2: \quad p(\langle u_1, u_2 \rangle) = p_1(\omega_1) \cdot p_2(\omega_2) \\ \sum_{\langle \omega_1, \omega_2 \rangle \in \Omega_1 \times \Omega_2} p(\langle \omega_1, \omega_2 \rangle) &= \sum_{p_1(\omega_1)} p_1(\omega_1) \cdot p_2(\omega_2) = \sum_{\omega_1} \left(p_1(\omega_1) \cdot \sum_{\omega_2} p_2(\omega_2) \right) = 1 \end{split}$$

Пример:

$$A_1\subset\Omega_1,\ A_2\subset\Omega_2\Rightarrow A_1\times\Omega_2$$
 и $\Omega_1\times A_2$ — независимы $(A_1\times\Omega_2)\cap(\Omega_1\times A_2)=A_1\times A_2$

1.5. Условная вероятность

имеет смысл, если $P(B) \neq \emptyset$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) \neq 0$$

если
$$A$$
 и B независимы, то
$$P(A|B) = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

$$p_B(\omega) = \frac{p(\omega)}{P(B)}, \quad P_B(A) = \frac{P(A \cap B)}{P(B)})$$

Теорема: (Формула полной вероятности)

$$\Omega = \underbrace{A_1 \cup A_2 \cup \ldots \cup A_k}_{\text{полная система событий}}, \quad A_i \cap A_j = \varnothing \text{ при } i \neq j$$

$$\begin{split} B & P(B|A_i) \\ P(B) &= \sum_{i=1}^{n} P(B|A_i) P(A_i) \\ \sum_{i=1}^{k} P(B|A_i) P(A_i) &= \sum_{i=1}^{k} \frac{P(B \cap A_i)}{P(A_i)} \cdot P(A_i) = \sum_{i=1}^{k} P(B \cap A_i) = P(B) \end{split}$$

Задача:

Две урны, в одной 3 черных и 2 белых, в другой 4 черных и 1 белый шар. С какой вероятностью можно вынуть черный шар?

$$\begin{array}{cccc} A_1 & A_2 & \frac{1}{2} \\ P(B|A_1) = \frac{3}{5} & P(B|A_2) = \frac{4}{5} & P(B) = \frac{3}{5} \cdot \frac{1}{2} + \frac{4}{5} \cdot \frac{1}{2} = \frac{7}{10} \end{array}$$

Задача:

$$P(B|A_i)$$
 $P(A_i)$ найти $P(A_i|B)=?$ Достоверность = 1 - $P(B|A_2)=99\%$ Надёжность = $P(B|A_1)=95\%$ A_1 — болен $(\frac{1}{100})$

$$A_2$$
 — здоров ($\frac{99}{100}$)

$$P(A_1|B) = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.01 \cdot 0.99}$$

$$P(B|A_i) = \tfrac{P(A_i \cap B)}{P(A_i)}$$

Определение: формула Байеса

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum\limits_{j=1}^k P(B|A_j)P(A_j)}$$

Определение: Байесовский спам-фильтр

 A_1 — спам

 A_2 — не спам

В – критерий

 $P(B|A_1)$ — вероятность выполнения критерия, если письмо спам (можно посчитать)

 $P(B|A_2)$ — вероятность выполнения критерия, если письмо не спам (можно посчитать)

Сам фильтр: $P(A_1|B)$ — вероятность спама при выполнении критерия (можно вычислить, используя значения выше)

1.6. Случайная величина

Определение: случайная величина

 $\langle \Omega, p \rangle$ — вероятностное пространство

 $\xi:\Omega o\mathbb{R}-$ случайная величина (численная характеристика вероятностного эксперимента

Примеры:

Игральная кость

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$\xi(\omega) = \omega$$

 η — выигрыш Васи

Пример 1:

Вася получает 1 монету, если игральная кость падает нечётным числом и теряет 1 монету в ином случае:

ω	1	2	3	4	5	6
η	1	-1	1	-1	1	-1

Пример 2:

Вася получает число монет, равное 2 в степени числа бросков кости, которые потребовались, чтобы выпало определённое число

ω	1	01	001	0001	
η	2	4	8	16	

Операции над случайными величинами:

Произведение с числом:

$$\xi = c \cdot \eta \quad c \in \mathbb{R}$$

Сумма случайных величин:

$$\xi = \eta + \zeta$$

Произведение случайных величин:

$$\xi = \eta \cdot \zeta$$

Возведение в степень случайной величины:

$$\xi = \eta^{\zeta}$$

Можно даже рассмотреть синус случайной величины:

$$\xi = \sin \zeta$$

Определение: дискретная плотность распределения

 ξ — случайная величина

 $f_{\xi}:\mathbb{R}
ightarrow\mathbb{R}-$ дискретная плотность распределения

$$f_{\xi}(a) = P(\xi = a) = P(\{\omega \mid \xi(\omega) = a\})$$

Определение: функция распределения

 ξ — случайная величина

$$F_{\xi}: \mathbb{R}
ightarrow \mathbb{R} - \phi$$
ункция распределения

$$F_{\varepsilon}(a) = P(\xi \le a)$$

Пример:

Подбросим 10 монет

$$\Omega = \mathbb{B}^{10}$$

 $\xi(\omega)$ — число единиц

$$P(\xi = a) = \frac{\binom{10}{a}}{2^{10}}$$

$$\begin{array}{l} f(a) = F(a) - F(a - \delta) \\ F(a) = \sum\limits_{b \leq a} f(b) \end{array}$$

1.7. Математическое ожидание

Определение: математическое ожидание

 $\xi:\Omega o\mathbb{R}$ — случайная величина

$$\mathbf{E} \xi = \sum_{\omega \in \Omega} \xi(\omega) \cdot p(\omega)$$
 — математическое ожидание

Пример:

Игральная кость

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$\xi(\omega) = \omega$$

$$E\xi = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

Легко заметить, что 3.5 никогда не выпадает на игральной кости Математическое ожидание не означает наиболее вероятные исход

Пример 1:

Вася получает 1 монету, если игральная кость падает нечётным числом и теряет 1 монету в ином случае:

ω	1	2	3	4	5	6
η	1	-1	1	-1	1	-1

$$E\xi = 0$$

Математическое ожидание равно 0, но при этом, после 1 игры, Вася либо получит монету, либо потеряет

Пример 2:

Вася получает число монет, равное 2 в степени числа бросков кости, которые потребовались, чтобы выпало определённое число

ω	1	01	001	0001	
η	2	4	8	16	

$$E_c = +\infty$$

Математическое ожидание может равняться $+\infty$

$$Ec = c$$

Математическое ожидание константы равняется константе

Линейность математического ожидания:

Теорема:

$$\xi = c \cdot \eta$$
 $E\xi = c \cdot E\eta$
 $\xi = \eta + \zeta$ $E\xi = E\eta + E\zeta$

$$\mathrm{E}(\eta+\xi) = \sum\limits_{\omega \in \Omega} (\eta+\zeta)(\omega) = \sum\limits_{\omega \in \Omega} (\eta(\omega)+\zeta(\omega)) = \mathrm{E}\eta + \mathrm{E}\zeta$$

Примечание:

Если
$$|\Omega| = +\infty$$
, то $\exists E \xi \iff \exists E(|\xi|)$

Пример:

 ξ — выпало на верхней грани игральной кости D6

 η — выпало на нижней грани

$$E\xi = 3.5, E\eta = 3.5$$

$$E(\xi + \eta) = 7$$

Вне зависимости от расположения значений на игральной кости относительно друг друга

Пример:

 $\Omega = S_n$ — перестановки n элементов

$$|\Omega| = n!$$

 $\xi(\sigma) = |\{i \mid \sigma_i = i\}|$ — количество неподвижных точек

$$n = 3$$
 $\xi(\langle 1, 3, 2 \rangle) = 1$

$$E\xi = 1$$

Мы можем посчитать математическое ожидание, не зная распределение

$$\begin{aligned} \xi_i &= \begin{cases} 1, & \sigma_i = i \\ 0, & \text{иначе} \end{cases} \\ \xi_1 (1 \ 3 \ 2) &= 1 \end{aligned}$$

$$\xi_1(1\ 3\ 2)=1$$

$$\xi_2(1\ 3\ 2) = 0$$

$$\xi_3(1\ 3\ 2) = 0$$

$$\begin{split} \xi &= \sum_{i=1}^n \xi_i \\ P(\xi_i = 1) &= \frac{1}{n} \\ \mathrm{E} \xi_i &= \frac{1}{n} \cdot P(\xi_i = 1) + 0 \cdot P(\xi_i = 0) = \frac{1}{n} \\ \mathrm{E} \xi &= \sum_{i=1}^n \frac{1}{n} = 1 \end{split}$$

Теорема:

$$\begin{aligned} \mathbf{E}\xi &= \sum_{\alpha} a \cdot P(\xi = a) \\ &\sum_{\omega \in \Omega} \xi(\omega) p(\omega) &= \sum_{\alpha} \sum_{\omega : \xi(\omega) = a} \xi(\omega) p(\omega) = \sum_{\alpha} a \sum_{\omega : \xi(\omega) = a} p(\omega) = \sum_{\alpha} a \cdot P(\xi = a) \end{aligned}$$

Определение: независимые случайные величины

 ξ и η — независимы, если

$$\forall a,b\in\mathbb{R}\quad [\xi\leq a]\;\;$$
 и $[\eta\leq b]-$ независимые случайные события $P(\xi\leq a\wedge\eta\leq b)=P(\eta\leq a)\cdot P(\eta\leq b)$

Замечание:

 ξ и η — независимые, если

$$\forall a,b \in \mathbb{R} \quad [\xi=a] \quad$$
и $[\eta=b] -$ независимые

Работает за исключением патологических случаев, которые мы не будем рассматривать

Пример 1:

$$P(\xi=1)=rac{1}{2}$$
 — вероятность того, что Вася выиграл 1 монету

$$P(\eta=2)=\frac{1}{6}$$
 — вероятность выпадения на игральной кости 2

$$P(\xi = 1 \land \eta = 2) = 0$$

Пример 2:

η^{ξ}	-1	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	$\frac{1}{6}$	$\frac{1}{6}$

Теорема:

 ξ и η независимы \Rightarrow $\mathrm{E}(\xi \cdot \eta) = \mathrm{E}(\xi) \cdot \mathrm{E}(\eta)$

$$\begin{array}{l} \mathbf{E}(\xi \cdot \eta) = \sum\limits_{a} a \cdot P(\xi \cdot \eta = a) = \sum\limits_{a} \sum\limits_{b} \sum\limits_{c: b \cdot c = a} bc \cdot P(\xi = b \wedge \eta = c) = \sum\limits_{a} \sum\limits_{b} \sum\limits_{c: b \cdot c = a} bc P(\xi = b) P(\eta = c) = \sum\limits_{b} b \sum\limits_{c} c P(\xi = b) P(\eta = c) = \sum\limits_{b} b \sum\limits_{c} c P(\xi = b) P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} c P(\xi = b) P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} c P(\xi = b) P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} c P(\xi = b) P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} b \sum\limits_{c} b P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} b \sum\limits_{c} b P(\eta = c) = \sum\limits_{c} b \sum\limits_{c} b \sum\limits_{c} b P(\eta = c) = \sum\limits_{c$$

1.8. Дисперсия

Вступление:

Давайте посчитаем математическое ожидание отклонения этой случайной величины от ее математического ожидания. Внезапно обнаружим, что оно равняется 0

$$\mathbf{E}(\xi - \mathbf{E}\xi) = \mathbf{E}\xi - \mathbf{E}\mathbf{E}\xi = \mathbf{E}\xi - \mathbf{E}\xi = 0 \ \ \, \text{$\widehat{\boldsymbol{x}}$}$$

Определение: дисперсия

$$D\xi = E(\xi - E\xi)^2 - \delta$$
исперсия
$$E(\xi - E\xi)^2 = E(\xi^2 - 2\xi E\xi + (E\xi)^2) = E\xi^2 - 2E\xi E\xi + (E\xi)^2 = E\xi^2 - (E\xi)^2$$
 На английском: $Var \xi$

$$\begin{aligned} &\mathrm{D}c\xi = c^2\mathrm{D}\xi \\ &\mathrm{D}(\xi + \eta) = \mathrm{E}(\xi + \eta)^2 - \left(\mathrm{E}(\xi + \eta)\right)^2 = \mathrm{E}\xi^2 + 2\mathrm{E}\xi\eta + \mathrm{E}\eta^2 - \left(\mathrm{E}\xi\right)^2 + 2\mathrm{E}\xi\mathrm{E}\eta - \left(\mathrm{E}\xi\right)^2 = \mathrm{D}\xi + \mathrm{D}\eta + 2(\mathrm{E}\xi\eta - \mathrm{E}\xi\mathrm{E}\eta) \end{aligned}$$

Определение: ковариация

$$\mathbf{E}\xi\eta - \mathbf{E}\xi\mathbf{E}\eta = \mathbf{Cov}(\xi, \ \eta) - \kappa$$
овариация