数学B問題

(120分)

【必答問題】 数学B受験者はB1, B2, B3, B4 を全問解答せよ。

- **B1** 関数 $f(x) = x^2 x + a$ (a は定数) がある。
 - (1) y=f(x) のグラフの頂点の座標を求めよ。また、y=f(x) のグラフとx軸が異なる 2 点で交わるような a の値の範囲を求めよ。 $\left(\frac{1}{2}, -\frac{1}{4}+\alpha\right)$ ん $\left(\frac{1}{4}\right)$

(2) y=f(x) のグラフとx軸の -2 < x < 3 の部分が異なる 2点で交わるようなa の値の 範囲を求めよ。 $-6 < Q < \frac{1}{4}$

- **B2** 関数 $y = 2\sin\theta\cos\theta + \sqrt{3}\cos 2\theta$ がある。
 - (1) $\theta=0$ のとき, yの値を求めよ。また, $\theta=\frac{\pi}{4}$ のとき, yの値を求めよ。 $\underbrace{ } = \sqrt{3}$ 人
 - (2) yを $r\sin(2\theta + \alpha)$ (r>0, $0 \le \alpha < 2\pi)$ の形で表せ。また, $0 \le \theta < \pi$ のとき, $y = -\sqrt{3}$ を満たす θ の値を求めよ。 (配点 20)

 $y=2\sin(20+\frac{\pi}{3}), 0=\frac{\pi}{3}, \frac{2\pi}{3}$

- f B3 袋の中にf A, f 1, f 1, f 2, f 3, f 4 の f 6 枚のカードが入っている。この袋の中から同時に f 2 枚のカードを取り出したとき,f X を次のように定める。
 - ・ \mathbf{A} が含まれるとき、もう一方のカードに書かれた数の 2 倍を X とする。
 - ・ \mathbf{A} が含まれないとき、2 枚のカードに書かれた数の和を Xとする。
 - (1) X=8 となる確率を求めよ。
 - (2) X=6 となる確率を求めよ。また、X=5 となる確率を求めよ。 $\sqrt{5}$
 - (3) $X \le 4$ となる確率を求めよ。また、 $X \le 4$ のとき、取り出したカードにA が含まれている条件付き確率を求めよ。 A (配点 40)

 $\mathbf{B4}$ 座標平面上に円 $C: x^2+y^2-2kx-4ky+5k^2-9=0$ がある。ただし、kは k>2 を満 たす実数とする。

-(1) 円 C の中心の座標と半径を求めよ。 (2,24) 3

- (2) 円 C が点 (4,5) を通るときの円を K_1 とする。円 K_1 の中心の座標を求めよ。また、直 線 $\ell: x-y+2=0$ に関して円 K_1 と対称な円を K_2 とするとき、円 K_2 の方程式を求めよ。
- (3) 円 C と(2)で求めた円 K_2 が共有点をもつような k の最大値を求めよ。また、このときの 円 Cの中心をPとする。点Qが円 K_2 の周上を動くとき、線分PQを 3:1 に外分する点 Rの軌跡の方程式を求めよ。

(2) (4,8) $(2-6)^2 + (4-6)^2 = 9$, (3) Mox 6 $(2-6)^2 + (4-3)^2 = 4$ (選択問題) 数学 B 受験者は、次の B5 ~ B8 のうちから 2 題を選んで解答せよ。

 $\mathbf{B5}$ $a_2=1$, $a_{n+1}-a_n=2$ $(n=1, 2, 3, \dots)$ を満たす数列 $\{a_n\}$ がある。

- (1) a_1 を求めよ。また,数列 $\{a_n\}$ の一般項 a_n をnを用いて表せ。 $\Omega_1 = -1$, Ω_{k-2} Ω_{k-2}
- (2) $b_1=0$, $b_{n+1}-b_n=a_n$ (n=1, 2, 3, ……) を満たす数列 $\{b_n\}$ がある。数列 $\{b_n\}$ の一 般項 b_n をnを用いて表せ。 $b_n = \kappa^2 - 4n + 3$
- (3) (2)の数列 $\{b_n\}$ に対して、 $S_n = \sum_{k=1}^n b_k$ とする。 S_n を nを用いて表せ。また、 $\sum_{k=2}^{20} \frac{2k-7}{S_k}$ の 値を求めよ。 $S_{N} = \frac{1}{4} N (2N - 1) (N-1)$ (配点 40)

B6 正方形 ABCD を底面とする四角錐 OABCD があり、 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。また、辺 \overrightarrow{OA} を 2:3 に内分する点を P, 辺 OC 上の $\overline{OQ} = k \overline{OC} (0 \le k \le 1)$ と なる点を Qとする。

- (1) \overrightarrow{OP} を \overrightarrow{a} を用いて表せ。また、 \overrightarrow{PQ} を k, \overrightarrow{a} , \overrightarrow{c} を用いて表せ。
- (2) $|\overrightarrow{OA}| = |\overrightarrow{OC}| = 1$, $\cos \angle AOC = \frac{1}{4}$ とする。内積 $\overrightarrow{a} \cdot \overrightarrow{c}$ の値を求めよ。また, $\overrightarrow{OA} \cdot \overrightarrow{OQ} = \frac{1}{5}$ のとき、kの値を求めよ。
- (3) \overrightarrow{OD} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。また、(2)のとき、平面 PQD と直線 OB の交点を H と する。OHを方を用いて表せ。 (配点

(1)
$$\vec{OP} = \frac{2}{5}\vec{C}$$
, $\vec{PG} = \frac{1}{5}\vec{C} - \frac{2}{5}\vec{C}$, (2) \vec{C} , $\vec{C} = \frac{1}{5}\vec{F} = \frac{4}{5}\vec{C}$
(3) $\vec{OP} = \vec{C} - \vec{D} + \vec{C}$ $\vec{OH} = \frac{4}{5}\vec{C}$

- **B7** 関数 $f(x) = x^3 2ax^2 + 3a$ (a は定数) があり、f'(2) = 4 である。また、曲線 y = f(x) を C とし、点 A(2, f(2)) における曲線 C の接線を ℓ とする。
 - (1) a の値を求めよ。また,f(2) の値を求めよ。 $\Omega = \begin{pmatrix} 2 \end{pmatrix} = 2$
 - (2) 接線 ℓ の方程式を求めよ。また、 ℓ と曲線 ℓ の ℓ の ℓ の人以外の共有点を ℓ 的とする。点 ℓ 的座標を求めよ。 ℓ : ℓ :

1

9

- (3) (2)のとき、曲線 C上に点P(t, f(t)) があり、Pは点Aから点Bまで動くものとする。 $\triangle ABP$ の面積をSとするとき、Sをtを用いて表せ。また、Sが最大となるようなtの 値を求めよ。 $\begin{pmatrix} 1 & 3 & 1 & 2 & 1 \\ & 1 & 1 & 1 & 1 \end{pmatrix}$ (配点 40)
 - $S = 2(t^3 2t^2 4tt8)$ $t = -\frac{2}{3}$

- **B8** 関数 $y=9^x+2a\cdot 3^{x+1}+9a+6$ (a は定数) がある。また、 $t=3^x$ とおく。
 - (1) 9^x , 3^{x+1} をそれぞれ t を用いて表せ。 $Q = t^2$, $3^{x+1} = 3t$
 - (2) $a=-\frac{4}{9}$ とする。yを t を用いて表せ。また,y>3 を満たすxの値の範囲を求めよ。
 - (3) yの最小値が -4 となるような a の値を求めよ。また、このとき最小値をとる x の値を求めよ。

(3)
$$\alpha = -\frac{2}{3}$$
, $\chi = 1932$