Exam 2 Review Notes

The following is a collection of notes from the Exam 2 Review session. It does not constitute a comprehensive list of topics and problems required to know for the exam. Its purpose is to provide additional examples on some important concepts from Chapters 2 and 5.

1 Logic and English Translation

It's important here to know some important sets in math. Z is the set of integers $\{...-2,-1,0,1,2,...\}$. N is the set of natural numbers $\{0,1,2,3,...\}$. R is the set of real numbers (anything on the real number line).

1. $\forall x \in N \ x \in Z$

Solution: All natural numbers are integers.

2. Any real number divided by two is a real number.

Solution: $\forall x \in R \quad \frac{x}{2} \in R$

2 Set Operations and Definitions

In the following examples, let $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4, 5, 6\}$, $C = \{5, 6\}$, and the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

```
1. A \cup C
```

Solution: $\{1, 2, 3, 5, 6\}$

 $2. A \cap B$

Solution: $\{1, 2, 3\}$

3. \overline{B}

Solution: $\{7, 8, 9\}$

4. A - B

Solution: \emptyset

5. B - A

Solution: $\{4, 5, 6\}$

6. |C|

Solution: 2

7. $A \times C$

Solution: $\{(1,5),(1,6),(2,5),(2,6),(3,5),(3,6)\}$

8. $\mathcal{P}(A)$

Solution: $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

9. Give a recursive definition of the set of all even positive integers (i.e., $\{2, 4, 6, 8, 10, ...\}$).

Solution: $2 \in S$, and if $x \in S$ then $x + 2 \in S$.

3 Venn Diagrams

Draw a Venn Diagram to show the relationship between the sets $(\subseteq, =, \supseteq, \text{ no relation})...$

1. ...for the set $(A \cap C) \cup (B \cap C)$ and the set $A \cap B \cap C$

Solution:

Figure 1: $(A \cap C) \cup (B \cap C)$.

Figure 2: $A \cap B \cap C$.

As you can see from the figures above, $A \cap B \cap C \subseteq (A \cap C) \cup (B \cap C)$.

4 Set Equality

We can prove that two sets are equal using one of three methods: a membership table, set builder notation and propositional logic, or a containment proof.

1. Prove the absorption law for sets (that $A \cup (A \cap B) = A$) using a containment proof.

Solution: Suppose $x \in A \cup (A \cap B)$. Then $x \in A$ or $x \in A \cap B$ by the definition of union. In the former case, we have $x \in A$, and in the latter case we have $x \in A$ and $x \in B$ by the definition of intersection; thus in any event, $x \in A$, so we have proved that the left-hand side is a subset of the right-hand side. Conversely, let $x \in A$. Then by the definition of union, $x \in A \cup (A \cap B)$ as well. Thus we have shown that the right-hand side is a subset of the left-hand side. Q.E.D.

2. Prove the absorption law for sets (that $A \cup (A \cap B) = A$) using set-builder notation.

Solution:

$$A \cup (A \cap B) = \{x | x \in A \lor x \in (A \cap B)\}$$
 (by definition)
= $\{x \in A \lor (x \in A \land x \in B)\}$ (by definition of intersection)
= $\{x | x \in A\}$ (by absorption law for propositions)
= A

3. Prove the absorption law for sets (that $A \cup (A \cap B) = A$) using a membership table.

Solution:

A	B	$A \cap B$	$A \cup (A \cap B)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Since A and $A \cup (A \cap B)$ have the same values in each instance, they represent the same set.

5 Sequences

1. What is the value of $\sum_{i=3}^{4} i^2$?

Solution: $3^2 + 4^2 = 9 + 16 = 25$

2. Let $\{a_n\} = 3 + n$. What is the value of a_0, a_1 , and a_2 ?

Solution: $a_0 = 3$, $a_1 = 4$, and $a_2 = 5$.

6 Methods of Iteration

1. Use forward or backward substitute to conjecture a closed formula which describes the n^{th} term of the sequence $a_n = a_{n-1} - n$ where $a_0 = 4$.

Solution:

$$a_0 = 4$$

$$a_1 = a_0 - 1 = 4 - 1$$

$$a_2 = a_1 - 2 = 4 - 1 - 2$$

$$a_3 = a_2 - 3 = 4 - 1 - 2 - 3$$

$$a_4 = a_3 - 4 = 4 - (1 + 2 + 3 + 4)$$

$$a_n = 4 - (1 + 2 + 3 + 4 + \dots + n) = 4 - \frac{n \cdot (n+1)}{2}$$

7 Functions

1. If $f: R \to Z$ and $f(x) = \lfloor x \rfloor$, what is the domain and what is the range of the function?

Solution: The domain is R, and the range is Z.

2. Determine whether the function $f: Z \to Z$ is surjective (onto) if f(x) = x + 1.

Solution: Yes, it's surjective. It's possible to reach every integer in the codomain by plugging in some integer.

3. Determine whether the function $f: Z \to Z$ is injective (one-to-one) if $f(x) = x^2$.

Solution: No, it's not injective. For example, f(-1) = f(1) = 1.

- 4. Find the inverse for the function $f: Z \to Z$, where f(x) = x + 1, if the inverse exists. **Solution:** The inverse exists because f is bijective (both injective and surjective). The inverse is $f^{-1}(y) = y 1$.
- 5. Give a recursive definition for the factorial function.

Solution: f(0) = 1 and $f(n) = (n) \cdot f(n-1)$.

- 6. Given a function recursively defined by f(0) = 1 and $f(n) = \frac{1}{f(n-1)}$, find f(5). **Solution:** f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, so therefore f(5) = 1.
- 7. If f(x) = 3x and $g(x) = x^2$, where $f: R \to R$ and $g: R \to R$ what is $f \circ g$? **Solution:** $(f \circ g)(x) = f(g(x)) = 3(x^2) = 3x^2$.
- 8. If f(x) = 3x and $g(x) = x^2$, where $f: R \to R$ and $g: R \to R$ what is $g \circ f$? **Solution:** $(g \circ f)(x) = g(f(x)) = (3x)^2 = 9x^2$.
- 9. If $f: Z \to Z$ and $f(x) = \lfloor \frac{x}{2} \rfloor + \lceil \frac{3x}{2} \rceil + (x \mod 2) + x!$, what is f(3)? **Solution:** $f(3) = \lfloor \frac{3}{2} \rfloor + \lceil \frac{3 \cdot 3}{2} \rceil + (3 \mod 2) + 3! = 1 + 5 + 1 + 6 = 13$

8 Mathematical Induction

For any proof by mathematical induction, always clearly label the basis step and inductive step, and clearly state the assumptions in the inductive step.

To prove a statement of the form $\forall n \geq b \ P(n)$, the basis step proves that P(b) is true, and the inductive step proves that $P(k) \rightarrow P(k+1)$ for $k \geq b$. Use a direct proof to prove the inductive step, i.e., assume that P(k) is true and use this information to show that P(k+1) is also true.

In order to determine what b is from the problem description, it is helpful to know what it means for an integer n to be positive (n > 0) vs. non-negative $(n \ge 0)$.

1. Let P(n) be the statement that $n! < n^n$. Prove using mathematical induction that P(n) is true for any integer $n \ge 2$.

Solution:

Basis Step. P(2) is true, since $2! = 2 < 2^2 = 4$.

Inductive Step. Assume P(k) is true - that $k! < k^k$ for $k \ge 2$. We'll show P(k+1), that $(k+1)! < (k+1)^{k+1}$. We know that $(k+1)! = k! \cdot (k+1) < k^k \cdot (k+1) < (k+1)^k \cdot (k+1) = (k+1)^{k+1}$. Q.E.D.

2. Prove using mathematical induction that 3 divides $n^3 + 2n$ whenever n is a positive integer. **Solution:**

Basis Step. P(1) is true since $1^3 + 2(1) = 3$, which is evenly divisible by 3.

Inductive Step. Assume P(k) is true - that $k^3 + 2k$ is evenly divisible by 3. We'll show that P(k+1) is true - that $(k+1)^3 + 2(k+1)$ is evenly divisible by 3. We know that

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2(k+1)$$
$$= k^3 + 3k^2 + 3k + 2k + 3$$
$$= (k^3 + 2k) + 3(k^2 + k + 1)$$

Since $(k^3 + 2k)$ is evenly divisible by 3 by the inductive hypothesis, and $3(k^2 + k + 1)$ is evenly divisible by 3, then $(k+1)^3 + 2(k+1)$ is evenly divisible by 3. Q.E.D.

9 Structural Induction

1. The set of leaves and the set of internal vertices of a full binary tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with exactly one vertex r. This tree has no internal vertices.

Recursive step: The set of leaves of the tree $T = T_1 \cdot T_2$ is the union of the sets of leaves of T_1 and of T_2 . The internal vertices of T are the root T and the union of the set of internal vertices of T_1 and the set of internal vertices of T_2 .

Use structural induction to show that l(t), which is the number of leaves of a full binary tree T, is 1 more than i(T), which is the number of internal vertices of T.

Solution:

Basis Step. Consider a single vertex r, which has one leaf and no internal vertices. Therefore l(r) = 1 = i(r) + 1 = 0 + 1.

Recursive Step. Assume this property holds for T_1 and for T_2 , and consider the larger tree T with a new root whose children are T_1 and T_2 . We know that

$$l(T) = l(T_1) + l(T_2)$$

= $i(T_1) + 1 + i(T_2) + 1$ (inductive hypothesis)
= $i(T) + 1$ (from definition of $i(T)$)

Q.E.D.