Technology module

Virtual Master _____

Reference Manual

_...

Contents

1	About this documentation							
1.1	Document history							
1.2	Conventions used							
1.3	Definition of the notes used							
2	Safety instructions							
3	Functional description of "Virtual Master"							
3.1	Overview of the functions Important notes on how to operate the technology module							
3.2	Important notes on how to operate the technology module							
3.3	Function block L_TT1P_VirtualMaster[Base/State/High]							
	3.3.1 Inputs and outputs							
	3.3.2 Inputs							
	3.3.3 Outputs							
	3.3.4 Parameters							
3.4	State machine for the "Base" and "State" versions							
3.5	State machine for the "High" version							
3.6	Stop function							
3.7	Manual Jog (Jogging)							
3.8	Single cycle operation							
3.9	Continuous driving operation							
3.10	Loading of starting position							
3.11	Speed synchronism							
3.12	Path-based position synchronism							
3.13	Time-based position synchronism							
3.14	CPU utilisation (example Controller 3231 C)							
	Index							
	Your opinion is important to us							

1 About this documentation

This documentation ...

- contains detailed information on the functionalities of the "Virtual Master" technology module;
- is part of the "Controller-based Automation" manual collection. It consists of the following sets of documentation:

Documentation type	Subject
Product catalogue	Controller-based Automation (system overview, sample topologies) Lenze Controller (product information, technical data)
System manuals	Visualisation (system overview/sample topologies)
Communication manuals Online helps	Bus systems • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Reference manuals Online helps	Lenze Controllers: Controller 3200 C Controller c300 Controller p300 Controller p500
Software manuals Online helps	Lenze Engineering Tools: • »PLC Designer« (programming) • »Engineer« (parameter setting, configuration, diagnostics) • »VisiWinNET® Smart« (visualisation) • »Backup & Restore« (data backup, recovery, update)

More technical documentation for Lenze components

Further information on Lenze products which can be used in conjunction with Controller-based Automation can be found in the following sets of documentation:

Pla	Planning / configuration / technical data					
	Product cataloguesController-based AutomationControllersInverter Drives/Servo Drives					
Мо	ounting and wiring					
	Mounting instructions					
	Hardware manuals • Inverter Drives/Servo Drives					
Par	rameter setting / configuration / commissioning					
	Online help/reference manuals					
	Online help/communication manuals • Bus systems • Communication modules					
Sar	mple applications and templates					
	Online help / software and reference manuals i 700 application sample Application Samples 8400/9400 FAST Application Template Lenze/PackML					

- Printed documentation
- ☐ PDF file / online help in the Lenze engineering tool

Current documentation and software updates with regard to Lenze products can be found in the download area at:

www.lenze.com

Target group

This documentation is intended for all persons who plan, program and commission a Lenze automation system on the basis of the Lenze FAST Application Software.

1.1 Document history

1.1 Document history

Version			Description
4.2	05/2017	TD17	Content structure has been changed. General revisions
4.1	04/2016	TD17	General revisions
4.0	10/2015	TD17	Corrections and additions Content structure has been changed.
3.0	05/2015	TD17	 General revisions New: eSyncMode parameter (see parameter structure L_TT1P_scPar_VirtualMaster[Base/State/High] (□ 16)) New: Time-based position synchronism (□ 28)
2.0	01/2015	TD17	General editorial revision Modularisation of the contents for the »PLC Designer« online help
1.0	04/2014	TD00	First edition

1.2 Conventions used

1.2 Conventions used

This documentation uses the following conventions to distinguish between different types of information:

Type of information	Highlighting	Examples/notes							
Spelling of numbers									
Decimal separator	Point	The decimal point is always used. For example: 1234.56							
Text	Text								
Program name	» «	»PLC Designer«							
Variable names	italics	By setting <i>bEnable</i> to TRUE							
Function blocks	bold	The L_MC1P_AxisBasicControl function block							
Function libraries		The L_TT1P_TechnologyModules function library							
Source code	Font "Courier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>							
Icons	Icons								
Page reference	(🕮 6)	Reference to further information: Page number in PDF file.							

Variable names

The conventions used by Lenze for the variable names of Lenze system blocks, function blocks, and functions are based on the "Hungarian Notation". This notation makes it possible to identify the most important properties (e.g. the data type) of the corresponding variable by means of its name, e.g. xAxisEnabled.

1.3 Definition of the notes used

1.3 Definition of the notes used

The following signal words and symbols are used in this documentation to indicate dangers and important information:

Safety instructions

Layout of the safety instructions:

Pictograph and signal word!

(characterise the type and severity of danger)

Note

(describes the danger and gives information about how to prevent dangerous situations)

Pictograph	Signal word	Meaning
À	Danger!	Danger of personal injury through dangerous electrical voltage Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
\triangle	Danger!	Danger of personal injury through a general source of danger Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph	Signal word	Meaning
i	Note!	Important note to ensure trouble-free operation
	Tip!	Useful tip for easy handling
(Reference to another document

2 Safety instructions

2 Safety instructions

Please observe the safety instructions in this documentation when you want to commission an automation system or a plant with a Lenze Controller.

The device documentation contains safety instructions which must be observed!

Read the documentation supplied with the components of the automation system carefully before you start commissioning the Controller and the connected devices.

Danger!

High electrical voltage

Injury to persons caused by dangerous electrical voltage

Possible consequences

Death or severe injuries

Protective measures

Switch off the voltage supply before working on the components of the automation system.

After switching off the voltage supply, do not touch live device parts and power terminals immediately because capacitors may be charged.

Observe the corresponding information plates on the device.

Danger!

Injury to persons

Risk of injury is caused by ...

- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Protective measures

- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).
- During commissioning, maintain an adequate safety distance to the motor or the machine parts driven by the motor.

2 Safety instructions

._____

Stop!

Damage or destruction of machine parts

Damage or destruction of machine parts can be caused by ...

- Short circuit or static discharges (ESD);
- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Possible consequences

Damage or destruction of machine parts

Protective measures

- Always switch off the voltage supply before working on the components of the automation system.
- Do not touch electronic components and contacts unless ESD measures were taken beforehand.
- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).

3.1 Overview of the functions

3 Functional description of "Virtual Master"

3.1 Overview of the functions

In addition to the basic functions for operating the **L_MC1P_AxisBasicControl** function block and the **holding function**, the technology module offers the following functionalities which are assigned to the "Base", "State" and "High" versions:

Functionality		Versions			
	Base	State	High		
Stop function (20)	•	•	•		
Manual jog (jogging) (□ 21)	•	•	•		
Single cycle operation (22)		•	•		
Continuous driving operation (23)		•	•		
Loading of starting position (24)		•	•		
Speed synchronism (25)		•			
Path-based position synchronism (26)			•		
Time-based position synchronism (28)			•		

»PLC Designer« Online help

Here you'll find some detailed information with regard to the **L_MC1P_AxisBasicControl** function block and the **Holding function**.

Important notes on how to operate the technology module 3.2

3.2 Important notes on how to operate the technology module

Setting of the operating mode

The operating mode for the cross cutter axis has to be set to "cyclically synchronous position" (csp) because the axis is led via the master position value.

Controlled start of the axes

Motion commands that are set in the inhibited axis state (xAxisEnabled = FALSE) after enable (xRegulatorOn = TRUE) must be activated again by a FALSE → TRUE edge.

In this way it is prevented that the drive starts in an uncontrolled manner after controller enable.

Example Manual jog (jogging) (21):

- 1. In the inhibited axis state (xAxisEnabled = FALSE), xJogPos is set to TRUE.
 - xRegulatorOn = FALSE (axis is inhibited.) ==> "READY" state (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (manual jog is to be executed.)
- 2. Enable axis.
 - xRegulatorOn = TRUE ==> "READY" state (xAxisEnabled = TRUE)
- 3. Execute manual jog.
 - xJoaPos = FALSE7TRUE ==> "JOGPOS" state

3.3 Function block L_TT1P_VirtualMaster[Base/State/High]

3.3 Function block L_TT1P_VirtualMaster[Base/State/High]

The figure shows the relation of the inputs and outputs to the "Base", "State" and "High" versions. The additional inputs and outputs of the "State" and "High" versions are shaded.

3.3.1 Inputs and outputs

Designator Data type		Description		Available in version		
			Base	State	High	
VirtualAxis		Reference to the virtual master axis	•	•	•	
	AXIS_REF					

Inputs 3.3.2

Designator Data typ		Description		Available in version		
			Base	State	High	
xEnableInternalControl BOC	TRUE	In the visualisation, the internal control of the axis can be selected via the "Internal Control" axis.	•	•	•	
xEnable		on of the function block	•	•	•	
BOC	TRUE	The function block is executed.				
	FALSE	The function block is not executed.				
scCtrlABC scCtrl_AB	block • scCtr • If the	ructure for the L_MC1P_AxisBasicControl function ructure for the L_MC1P_AxisBasicControl function rlABC can be used in "Ready" state. ere is a request, the state changes to "Service". state change from "Service" back to "Ready" takes place ere are no more requests.	•	•	•	
xResetError BOC	TRUE	Reset axis error or software error.	•	•	•	
xRegulatorOn BOO	TRUE	Activate controller enable of the axis (via the MC_Power function block).	•	•	•	
xStop BOC	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrStopDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE). • The input is also active with "Internal Control".	•	•	•	
xHalt BOO	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrHaltDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE).	•	•	•	
scPar L_TT1P_scPar_Virtua Master[technol	ameter structure contains the parameters of the ogy module. a type depends on the version used (Base/State/High).	•	•	•	
xContinuous BOC	TRUE	Execute continuous driving operation. (Abort of the function via the inputs xStop and xHalt or by switching on the real master axis.)	•	•	•	
xCycle BOO	TRUE	Execute single-cycle operation. (Abort of the function via the inputs xStop and xHalt or by switching on the real master axis.)	•	•	•	
xLoadStartPos BOC	TRUE	Load starting position (IrStartPos input). This function can also be executed when the axis is inhibited or when xStop/xHalt = TRUE. This function cannot be executed during position synchronism.	•	•	•	
xJogPos BOC	TRUE	Traverse axis in positive direction (manual jog). If xJogNeg is also TRUE, the traversing direction selected first remains set.	•	•	•	
xJogNeg BOO	TRUE	Traverse axis in negative direction (manual jog). If xJogPos is also TRUE, the traversing direction selected first remains set.	•	•	•	

Designator	Data type	Description			ailable version	
				Base	State	High
IrSetVel	LREAL	any time The dire paramet Unit: Initia Valid Pos = T	Velocity New velocity values are transferred to one of the control inputs any time and without a renewed edge change. The direction of rotation is specified via the eSetDirection parameter. • Unit: units/s • Initial value: 10 • Valid values: • Positive values for single cycle operation (xCycle input = TRUE) • Negative and positive values for continuous driving operation (xContinuous input = TRUE)			•
IrStartPos	LREAL		position to be loaded erred when the input xLoadStartPos = TRUE. units	•	•	•
IrTargetPos	LREAL	Target p • Unit:		•	•	•
MasterAxis	AXIS_REF	Reference	reference to the real master axis			•
xSyncMasterAxis	BOOL	virtual n	nisation of the real master axis (master axis) to the naster axis master axis instanced at the MasterAxis input.		•	•
		TRUE	State version: The virtual master axis is coupled to the real master axis with synchronous velocity. The IrMasterAccDec parameter serves to specify the acceleration/deceleration (in units/s²) for clutchingin and declutching purposes.			
			High version: The virtual master axis is coupled to the real master axis with synchronous velocity and position. The IrMasterSyncInDist parameter serves to specify the relative clutch-in distance (in units) with regard to the virtual master position.			
		TRUE'N FALSE	The virtual master axis is decoupled from the real master axis and brought into the target position via the parameters IrSetVel, IrAcc, IrDec (IrTargetPos input).			

Outputs 3.3.3

Designator Data type	Description		Available in version			
			Base	State	High	
xInternalControlActive BOOL	TRUE	The internal control of the axis is activated via the visualisation. (xEnableInternalControl input = TRUE)	•	•	•	
eTMState L_TT1P_States	▶ <u>State</u>	state of the technology module machine for the "Base" and "State" versions (12 18) machine for the "High" version (12 19)	•	•	•	
scStatusABC scStatus_ABC	l	e of the status data of the L_MC1P_AxisBasicControl block	•	•	•	
xError BOOL	TRUE	There is an error in the technology module.	•	•	•	
xWarning BOOL	TRUE	There is a warning in the technology module.	•	•	•	
eErrorID L_IE1P_Error	ID of the xWarnir	error or warning message if xError = TRUE or og = TRUE.	•	•	•	
		chnology modules" reference manual: u can find information on error or warning messages.				
scErrorInfo L_TT1P_scErrorInfo		Error information structure for a more detailed analysis of the error cause		•	•	
xAxisEnabled BOOL	TRUE	The axis is enabled.	•	•	•	
xBusy BOOL	TRUE	The request/action is currently being executed.	•	•	•	
xInTarget BOOL	TRUE	The axis has reached the target position (IrTargetPosinput) and is at standstill.	•	•	•	
IrActPos LREAL	Current • Unit:	actual position units	•	•	•	
IrActVel LREAL	1	actual velocity units/s	•	•	•	
IrSetPosOut LREAL		position units	•	•	•	
IrSetVelOut LREAL		Setpoint speed • Unit: units/s		•	•	
xAccDecSync BOOL	TRUE	The synchronisation function is active. The virtual master axis is coupled to the real master axis.		•	•	
xSynchronised BOOL	TRUE	The virtual master axis is synchronised to the real master axis.		•	•	
		State version: The velocity of the virtual master axis is synchronised to the real master axis.				
		High version: The velocity and position of the virtual master axis is synchronised to the real master axis.				

3.3 Function block L_TT1P_VirtualMaster[Base/State/High]

3.3.4 Parameters

L_TT1P_scPar_VirtualMaster[Base/State/High]

The **L_TT1P_scPar_VirtualMaster[Base/State/High]** structure contains the parameters of the technology module.

Note!

Changes of the parameter values will only be considered when the functions are executed again.

Designator	Data type	Description	Available in version		
			Base	State	High
IrStopDec	LREAL	Deceleration for the stop function and when hardware/ software limit switches and the following error monitoring function are triggered • Unit: units/s ² • Initial value: 10000		•	•
IrStopJerk	LREAL	Jerk for the stop function and for the triggering of the hardware limit switches, software limit positions, and the following error monitoring function • Unit: units/s ³ • Initial value: 100000		•	•
IrHaltDec	LREAL	Deceleration for the holding function Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s² • Initial value: 3600 • Only positive values are permissible.		•	•
lrJerk	LREAL	Jerk for compensating a clutch or holding function • Unit: units/s³ • Initial value: 100000		•	•
lrJogJerk	LREAL	Jerk for manual jog • Unit: units/s ³ • Initial value: 10000		•	•
IrJogVel	LREAL	Maximum speed to be used for manual jog. • Unit: units/s • Initial value: 10		•	•
IrJogAcc	LREAL	Acceleration for manual jog Specification of the maximum speed variation which is to be used for acceleration. • Unit: units/s ² • Initial value: 100		•	•
IrJogDec	LREAL	Deceleration for manual jog Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s² • Initial value: 100		•	•
IrAcc	LREAL	Acceleration Specification of the maximum speed variation which is to be used for acceleration. • Unit: units/s ² • Initial value: 100		•	•

Designator Data type	Description e		Available in version		
		Base	State	High	
	Deceleration Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s² • Initial value: 100		•	•	
eDirection MC_DIRECTION	Traversing direction • Initial value: 1 (positive direction)		•	•	
	O Retain current direction. Only adjustable for:				
	1 Positive direction				
	2 Negative direction				
lrMasterAccDec LREAL	Acceleration/deceleration for clutching-in/declutching the synchronisation (xSyncMasterAxis input = TRUE) • Unit: units/s ² • Initial value: 100		•		
eSyncMode L_TT1P_SyncModeVirtual	Mode for the clutch-in process • Initial value: 5 (Ramp_Dist)			•	
Master	3 ramp_time: Time-based clutch-in within a time slot (time-based position synchronism)				
	5 Ramp_Dist: Path-based clutch-in to the cam (path-based position synchronism)				
IrMasterSyncInDist LREAL	Relative clutch-in/declutch distance with regard to the virtual master position for synchronisation (xSyncMasterAxis input = TRUE) • Unit: units • Initial value: 90			•	
lrSyncInTime LREAL	Duration of the clutch-in process in the time-based coupling mode (parameter eSyncMode = 3) • Unit: s • Initial value: 5			•	

3.4 State machine for the "Base" and "State" versions

- [3-1] State machine for the "Base" and "State" versions of the technology module
 - (*1 In the "Ready" state, xRegulatorOn has to be set to TRUE.
 - (*2 In the "ERROR" state, xResetError has to be set to TRUE in order to acknowledge and reset the errors.

3.5 State machine for the "High" version

3.5 State machine for the "High" version

[3-2] State machine for the "High" version of the technology module

- (*1 In the "Ready" state, xRegulatorOn has to be set to TRUE.
- (*2 In the "ERROR" state, xResetError has to be set to TRUE in order to acknowledge and reset the errors.

3.6 Stop function

3.6 Stop function

The virtual master axis is braked to standstill by setting the input xStop = TRUE using the IrStopDec parameter.

This function has the second highest priority (highest priority has "Loading of starting position (1) 24)").

As long as xStop = TRUE, the virtual axis remains at standstill.

The single cycle and continuous driving operation modes have to be restarted after being stopped.

The motion of the virtual master axis is also stopped during synchronisation (input xSyncMasterAxis = TRUE). As soon as xStop = FALSE, the synchronisation is made with the real master axis.

[3-3] Signal characteristic for the stop function

Parameters to be set

The parameters for the stop function are located in the <u>L_TT1P_scPar_VirtualMaster[Base/State/</u>High] (<u>L__16</u>) parameter structure.

```
lrStopDec : LREAL := 10000; // Deceleration [units/s^2]
lrStopJerk : LREAL := 100000; // Jerk [units/s^3]
```

3.7 Manual jog (jogging)

3.7 Manual jog (jogging)

When the xlogPos input = TRUE, the virtual master axis is traversed in positive direction and when the xlogNeg input = TRUE, the axis is traversed in negative direction. The axis is traversed as long as the input remains set to TRUE.

The current travel command cannot be replaced by another jog command. Only if both inputs have been reset, the state machine changes to the "Ready" state again.

Parameters to be set

The parameters for the manual jog are located in the <u>L_TT1P_scPar_VirtualMaster[Base/State/High]</u> (<u>LLL_16</u>) parameter structure.

The parameter values can be changed during operation. They are accepted when setting the inputs $x \log Pos = \text{TRUE or } x \log Neg = \text{TRUE}$.

3.8 Single cycle operation

3.8 Single cycle operation

The single cycle operation is started when the xCycle input = TRUE.

The cycle starts at the current *IrActPos* position of the virtual master axis and ends at the *IrTargetPos* target position.

The direction of rotation is defined using the *eDirection* parameter:

- Value '1' = positive direction (initial value)
- Value '2' = negative direction

The travelling speed is defined at the IrSetVel input.

If the single cycle operation is interrupted, e.g. by a stop or clutch-in to the real master axis, the xCycle has to be reset to TRUE.

[3-4] Signal characteristic for the single cycle operation

Parameters to be set

The parameters for the single cycle operation are located in the <u>L_TT1P_scPar_VirtualMaster[Base/State/High]</u> (<u>L_16</u>) parameter structure.

```
eDirection: MC_DIRECTION := 1; // 1 = Positive direction
lrAcc: LREAL := 100; // Acceleration [units/s^2]
lrDec: LREAL := 100; // Deceleration [units/s^2]
lrJerk: LREAL := 100000; // Jerk [units/s^3]
```

3.9 Continuous driving operation

3.9 Continuous driving operation

The continuous driving operation is started when the *xContinuous* input = TRUE and remains active until *xContinuous* = FALSE.

The cycle starts at the *IrSetPosOut* setpoint position of the virtual master axis and ends at the *IrTargetPos* target position.

The direction of rotation is defined using the *eDirection* parameter:

- Value '1' = positive direction (initial value)
- Value '2' = negative direction

The travelling speed is defined at the IrSetVel input.

If the single cycle operation is interrupted, e.g. by a stop or clutch-in to the real master axis, the *xContinuous* has to be reset to TRUE.

[3-5] Signal characteristic for continuous driving operation

Parameters to be set

The parameters for continuous driving operation are located in the LTT1P scPar VirtualMaster[Base/State/High] (16) parameter structure.

```
eDirection: MC_DIRECTION := 1; // 1 = Positive direction
lrAcc: LREAL := 100; // Acceleration [units/s^2]
lrDec: LREAL := 100; // Deceleration [units/s^2]
lrJerk: LREAL := 100000; // Jerk [units/s^3]
```

3.10 Loading of starting position

Stop!

Damage to machine parts

Machine parts can be damaged by a "strike" at the drive shaft(s).

Possible consequences

Damage or destruction of machine parts

Protective measures

Only activate the "Load starting position" function if ...

- the master axis is at standstill or
- all following axes are decoupled.

The "Load starting position" function supports the adjustment of the position of the virtual master with the position of the real master axis.

Example: The real master axis stands at 60°. When the "Load starting position" function is loaded, the starting position of the virtual master is set to 60°.

When the xLoadStartPos input is set to TRUE, the set IrStartPos starting position is directly transferred ("without smoothing") as IrSetPosOut setpoint position.

The "Load starting position" <u>cannot</u> be executed in the states ERROR, SYNCHRONISING_POS and POS IS SYNCHRONISED.

[3-6] Signal characteristic for the "Load starting position" function

3.11 Speed synchronism

3.11 Speed synchronism

When the xSyncMasterAxis input = TRUE, the virtual master axis is synchronised to the real master axis. The velocity of the real master axis is clutched in at the MasterAxis input (speed synchronism). This can also happen during operation when the real axis rotates.

With xSyncMasterAxis = FALSE, speed synchronism is cancelled and the virtual master axis is braked to a standstill with the deceleration defined in the *lrMasterAccDec* parameter. The target position results from the deceleration.

The <u>Stop function</u> (20) and the <u>Loading of starting position</u> (24) function can also be executed during the synchronism.

Up to »PLC Designer« version 3.5.1.10:

After a quick stop (QSP), the velocity synchronism must not be executed again. The virtual axis is immediately synchronised to the real axis again.

[3-7] Signal characteristic when clutching-in/declutching in the State version

Parameters to be set

The *IrMasterAccDec* parameter for the clutch function is located in the L TT1P scPar VirtualMaster[Base/State/High] (16) parameter structure.

lrMasterAccDec : LREAL := 100;

3.12 Path-based position synchronism

With the eSyncMode parameter = 5, path-based position synchronism specified.

Via the *eDirection* parameter, the clutch-in direction relating to the direction of rotation of the real master axis is set:

- *eDirection = 0*: retain current direction of rotation.
 - Only adjustable for:
 - Continuous driving operation (xContinuous input = TRUE)
 - Synchronisation with the real master axis (xSyncMasterAxis = TRUE)
- eDirection = 1: positive direction of rotation (initial value)
- eDirection = 2: negative direction of rotation

When the xSyncMasterAxis input = TRUE, the virtual master axis is synchronised to the real master axis. The position of the real axis is clutched in to the virtual axis via the distance defined in the IrMasterSyncInDist parameter (position synchronism).

Position synchronism is only possible in the "READY" state.

During operation, this means when the real axis rotates, a position synchronism is <u>not</u> possible.

When xSyncMasterAxis = FALSE, the position synchronism is completed. The virtual master axis is brought into the target position via the parameter IrSetVel, IrAcc, IrDec (IrTargetPos input).

The <u>Stop function</u> (20) and the <u>Loading of starting position</u> (24) function can also be executed during the synchronism.

[3-8] Signal characteristic when clutching-in/declutching in the High version

3.12 Path-based position synchronism

Parameters to be set

The parameters for the clutch function are located in the <u>L_TT1P_scPar_VirtualMaster[Base/State/High]</u> (<u>LL_16</u>) parameter structure.

3.13 Time-based position synchronism

3.13 Time-based position synchronism

With the eSyncMode parameter = 3, time-based position synchronism specified.

Via the *eDirection* parameter, the clutch-in direction relating to the direction of rotation of the real master axis is set:

- *eDirection = 0*: retain current direction of rotation.
 - Only adjustable for:
 - Continuous driving operation (xContinuous input = TRUE)
 - Synchronisation with the real master axis (xSyncMasterAxis = TRUE)
- eDirection = 1: positive direction of rotation (initial value)
- eDirection = 2: negative direction of rotation

The virtual axis is clutched in to the resulting position of the real master axis from its current position within a time defined (*IrSyncInTime* parameter) via a 5th degree polynomial. The movement is executed within the cycle of the Modulo axes.

This coupling mode is irrespective of the movement of the real master axis. Synchronisation of the virtual master axis with the position is also effected if the real master axis is at a standstill.

Position synchronism is only possible in the "READY" state.

Parameters to be set

The parameters for the clutch function are located in the <u>L_TT1P_scPar_VirtualMaster[Base/State/High]</u> (<u>L_16</u>) parameter structure.

3.14 CPU utilisation (example Controller 3231 C)

3.14 CPU utilisation (example Controller 3231 C)

The following table shows the CPU utilisation in microseconds using the example of the 3231 C controller (ATOM™ processor, 1.6 GHz).

Versions	Interconnection of the technology	CPU utilisation		
	module	Average	Maximum peak	
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	50 μs	115 μs	
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	50 μs	115 μs	
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	55 μs	118 μs	

Α M Application notes 7 Manual jog (jogging) 21 C Ν Continuous driving operation 23 Notes on how to operate the technology module 11 Controlled start of the axes 11 Conventions used 6 Operating mode 11 CPU utilisation (example Controller 3231 C) 29 Outputs 15 D Document history 5 Path-based position synchronism 26 Ε Position synchronisation (path-based) 26 E-mail to Lenze 31 Position synchronisation (time-based) 28 S Feedback to Lenze 31 Safety instructions 7, 8 Function block L_TT1P_VirtualMasterBase/State/High 12 Single cycle operation 22 Functional description of "Virtual Master" 10 Speed synchronism 25 Start of the axes 11 State machine for the "Base" and "State" versions 18 Inputs 13 State machine for the "High" version 19 Inputs and outputs 12 States for the "Base" and "State" versions 18 States for the "High" version 19 Stop function 20 L TT1P scPar VirtualMasterBase 16 L TT1P scPar VirtualMasterBase/State/High parameter Т structure <u>16</u> Target group 4 L TT1P scPar VirtualMasterHigh 16 Technology module functions (overview) 10 L_TT1P_scPar_VirtualMasterState 16 Time-based position synchronism 28 L_TT1P_VirtualMasterBase 12 L_TT1P_VirtualMasterHigh 12 L_TT1P_VirtualMasterState 12 Variable names 6 Layout of the safety instructions 7 Velocity synchronisation 25 Loading of starting position 24 Virtual Master (functional description) 10

Your opinion is important to us

These instructions were created to the best of our knowledge and belief to give you the best possible support for handling our product.

Perhaps we have not succeeded in achieving this objective in every respect. If you have suggestions for improvement, please e-mail us to:

feedback-docu@lenze.com

Thank you very much for your support.

Your Lenze documentation team

Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen GERMANY HR Hannover B 205381

+49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

© 008000 24 46877 (24 h helpline)

💾 +49 5154 82-1112

@ service@lenze.com

