

Аналитика в ІоТ

Tema №3. Организация IoT платформы InfluxData для работы с временными рядами

Кычкин Алексей Владимирович

канд. техн. наук доцент кафедры информационных технологий в бизнесе НИУ ВШЭ – Пермь

Вопросы ...

Что мы делаем ???

В программе «Аналитика IoT» рассматриваются инструменты статистического анализа данных, используемые для подготовки линейных, сводных и динамических отчетов, реализующие интеграцию и комбинирование разрозненных данных из различных источников информации, их агрегирование и предварительную подготовку...

Зачем нам столько много файлов и других источников??

В концепции Интернета вещей нет единого хранилища данных. Все данные распределены по информационным системам, базам данных, локальным накопителям и регистраторам, между которыми есть связь. Аналитик IoT должен уметь сформировать и подготовить данные для анализа, которые находятся в разных «местах» и представлены в разных форматах

Литература

James Turnbull (1 December 2014). The Art of Monitoring. James Turnbull

Lardinois, Frederic. <u>"Y Combinator-Backed Errplane Launches Comprehensive Performance Monitoring And Alert Service For Web Apps"</u>. TechCrunch. Retrieved 2016-09-07.

Miller, Ron. <u>"Errplane Snags \$ 8.1М для продолжения создания базы данных InfluxDB с</u> открытым исходным кодом". TechCrunch. Retrieved 2016-09-07.

Mannes, John. <u>"InfluxData закрывает \$ 16 миллионов серии В во главе с Battery Ventures</u> <u>для организации данных IOT"</u>. TechCrunch. Retrieved 2016-10-13.

<u>"Обновление кластеризации InfluxDB, высокая доступность и монетизация"</u>. GitHub. Influxdata

<u>"Я защищал и реализовал несколько установок InfluxDB в производстве ..."</u>. Hacker News. 2016-03-11. Retrieved 2016-08-08.

Кычкин А.В., Дерябин А.И., Викентьева О.Л., Шестакова Л.В. Архитектура киберфизической системы компрессорного оборудования на платформе InfluxData. Датчики и системы. 2019. № 2. С. 23-30

Литература

<u>https://www.influxdata.com</u> – официальный сайт платформы Интернета вещей InfluxData

https://www.influxdata.com/customers/iot-data-platform/ -сведения о возможностях и технологиях платформы InfluxData для мониторинга и аналитики

https://ru.bmstu.wiki/InfluxDB - информация о базе данных временных рядов InfluxDB

https://github.com/influxdata - ссылка на исходные коды платформы, а также библиотеки для работы с помощью языков программирования

<u>https://habr.com/ru/company/selectel/blog/245515/</u> - информация по установке и настройке платформы

https://portal.influxdata.com/downloads/ - сайт загрузки InfluxDB

<u>https://dl.influxdata.com/influxdb/releases/influxdb-1.7.4_windows_amd64.zip</u> - ссылка на скачивание для 64-битной версии Windows

Определения и основные понятия

Общие сведения о платформах ІоТ

8 компонентов ІоТ платформы

Repository that stores the important data sets

Database

External interfaces

APIs, SDKs and gateways that act as interfaces for 3rd party systems (e.g., ERP, CRM)

Analytics

Algorithms for advanced calculations and machine learning

Additional tools

Further development tools (e.g., app prototyping, access management, reporting)

Data visualization

Graphical depiction of (real-time) sensor data

Processing & action management

Rule engine that allows for (real-time) actions based on incoming sensor & device data

Device management

Backend tool for the management of device status, remote software deployment and updates

Connectivity & Normalization

Agents and libraries that ensure constant object connectivity and harmonized data formats

700 платформ

- •AllSeen Alliance фреймворк взаимодействия «вещей», который является проектом Linux Foundation
- •<u>DeviceHive</u> платформа управления устройствами для быстрого развертывания на облачных сервисах Azure, AWS. Фокусируется на анализе больших данных с использованием таких инструментов, как Apache Spark, Cassandra и Kafka
- •Eclipse IoT (Kura) IoT-решение от Eclipse Foundation. Написан на Java
- •<u>Каа</u> представляет собой масштабируемую инфраструктуру IoT, предназначенную для больших сетей. Платформа имеет серверную функцию REST-сообщений для служб, аналитику и управление данными
- •Macchina .io универсальная среда для разработки приложений IoT-шлюзов, работающих под Linux
- •GE Predix PaaS (платформа как услуга) для промышленного IoT. Платформа умеет "управлять активами, обеспечивать безопасность устройств и готовить аналитику в режиме реального времени
- •Home Assistant платформа для массового использования для целей домашней автоматизации. Написана на Python.
- •Mainspring платформа на Java. Предлагает инструменты настройки оборудования и моделирования
- •Node-RED этот инструмент визуальной разработки на Node.js
- •Open Connectivity Foundation (IoTivity). Совместная разработка Intel и Samsung
- •OpenHAB среда разработки для "умного дома" с открытым исходным кодом. JVM
- •OpenIoT Java-based платформа для создания IoT-приложений
- •OpenRemote система для автоматизации зданий
- Physical Web / Eddystone опен-сорс разработка Google
- •PlatformIO система разработана на Python и включает в себя IDE, генератор проектов и веб-менеджер библиотек
- •<u>The Thing System</u> программное обеспечение на Node.js, предназначенное для смартфонов. Утверждается, что имеется что-то похожее на "самообучение" и искусственный интеллект
- •ThingSpeak пользователи могут использовать версию MATLAB для анализа и визуализации данных, не покупая лицензию от Mathworks
- •Zetta сервер-ориентированная IoT-платформа на Node.js и REST/WebSockets

Cisco IoT Cloud
InfluxData
Oracle IoT Cloud
Samsung SmartThings
ThingsBoard
MindSphere Siemens
Blynk

Реальные платформы

Платформа InfluxData

Платформа InfluxData

Стек технологий TICK

Хранение временных рядов

Характеристика InfluxDB

- написана на языке Go (2013 год)
- не имеет внешних зависимостей, то есть после ее установки не требуется что-то устанавливать или настраивать
- база данных для хранения временных рядов, метрик и информации о событиях
- возможность работы в том числе и в кластерном режиме
- наличие библиотек для большого числа языков программирования (Python, JavaScript, PHP, C# и других)
- SQL-подобный язык запросов InfluxQL
- возможность сохранять миллиарды точек измерений
- классификация данных по тегам для быстрой и эффективной выборки

Возможности InfluxDB

Агрегация данных: Трансформация данных:

COUNT()
DISTINCT()
INTEGRAL()
MEAN()
MEDIAN()
MODE()
SPREAD()
STDDEV()
SUM()

ABS()
ACOS()
ASIN()
ATAN()
ATAN2()
CEIL()
COS()

CUMULATIVE SUM()

DERIVATIVE()
DIFFERENCE()
ELAPSED()

EXP()
FLOOR()
HISTOGRAM()

LN() LOG() LOG2() LOG10()

MOVING_AVERAGE()

NON NEGATIVE DERIVATIVE()
NON NEGATIVE DIFFERENCE()

POW()
ROUND()
SIN()
SQRT()
TAN()

Прогнозирование данных:

HOLT WINTERS()

Технический анализ:

CHANDE_MOMENTUM_OSCILLATOR()
EXPONENTIAL MOVING AVERAGE()

DOUBLE EXPONENTIAL MOVING AVERAGE()

KAUFMANS EFFICIENCY RATIO()

KAUFMANS ADAPTIVE MOVING AVERAGE()
TRIPLE EXPONENTIAL MOVING AVERAGE()

TRIPLE_EXPONENTIAL_DERIVATIVE()

RELATIVE STRENGTH INDEX()

Организация БД

- ключ-значение
- временная метка
- значения: 64-битные целые числа, 64-битные числа с плавающей точкой, строки и булевы переменные
- загрузка и выборка данных через <u>HTTP, TCP</u> и <u>UDP</u> (порт 8086 по умолчанию)

Формат измерений

<measurement>[,<;tag-key>=<tag-value>...] <field-key>=<fieldvalue>[,<field2-key>=<field2-value>...] [unix-nano-timestamp]

Пример1:

cluster, well=ID0100, region=Perm pressure1=0.64, pressure2=1.15 1434067467100293230

Пример2:

cluster,well=ID0678,region=Perm temperature=27,pressure=6.8 1434067467000000000

Пример3:

cluster, well=ID0100, region=Perm temperature=27, pressure=6.8

Работа с InfluxDB

Открываем Command Line Interface (CLI) командой **influx.exe** и посмотрим какие есть базы данных командой **show databases**:

```
Connected to http://localhost:8086 version 1.7.0~n201901110800
InfluxDB shell version: 1.7.0~n201901110800
Enter an InfluxQL query
> show databases
name: databases
name
----
telegraf
_internal
TestCSV
```

compressors

Создание базы данных в InfluxDB

Создадим новую базу данных командой create database <db_name>:

> create database testdb

Проверим, что база данных создалась:

> show databases

name: databases

name

telegraf _internal

TestCSV

compressors

testdb

>

Задание: дополнительно создайте 2 базы данных <raw_data> и production>

Использование базы данных InfluxDB

Выберем БД для последующих запросов командой use <db_name>:

> use raw_data
Using database raw_data

Задание: выберите БД cproduction>, a затем cнова <raw_data>

Вставка данных в измерение

Вставка данных с помощью команды **INSERT** с присвоением временной метке текущего значения времени на сервере:

- > insert cluster, well=ID0100, region=Perm pressure1=0.64, pressure2=1.15
- > insert cluster, well=ID0678, region=Perm temperature=27, pressure=6.8

Вставка данных с помощью команды **INSERT** с присвоением временной метке заданного значения

- > insert cluster, well=ID0100, region=Perm pressure1=0.64, pressure2=1.15 1434067467100293230
- > insert cluster,well=ID0678,region=Perm temperature=27,pressure=6.8 1434067467000000000

Вставка данных в измерение

Задание:

- добавьте в БД <raw_data> 10 записей с давлениями в измерение куста <cluster1> по скважине ID0100, которая располагается в Перми:

```
pressure1=0.10 pressure2=0.12 pressure3=1.70 pressure1=0.15 pressure2=0.18 pressure3=1.70 pressure1=0.51 pressure2=0.13 pressure3=1.74 pressure1=2.10 pressure2=0.13 pressure1=2.15 pressure2=0.20 pressure1=0.10 pressure2=0.12 pressure3=1.70 pressure1=0.15 pressure2=0.18 pressure3=1.70 pressure1=0.51 pressure2=0.13 pressure3=1.74 pressure1=2.10 pressure2=0.13 pressure3=1.74 pressure1=2.15 pressure2=0.13
```


Вставка данных в измерение

Посмотрим, какие есть измерения командой show measurements:

> show measurements

name: measurements

name

cluster

cluster1

cluster2

>

Выборка данных с помощью команды

SELECT <data> FROM <measurement>:

> select well,pressure1,pressure2,region from cluster

name: cluster

time	well	pressure	e1 pressure2	region	
1434067467100293230	ID0100	0.64	1.15	Perm	
1557748555192797300	ID0100	0.64	1.15	Perm #	
1557748586994304300	ID0100	0.64	1.15	Perm	
1557748635714372600	ID0100	0.64	1.15	Perm	

Видим, что InfluxDB устанавливает автоматически текущее время сервера для каждой вставленной точки, если не указано значение временной метки в INSERT

Для выбора всех данных используйте оператор *

Задание:

- выведите значение давление1 из БД <raw_data> из измерения cluster1
- выведете все данные из измерения cluster1

Вывод числа точек (записей), содержащих значения SELECT COUNT(<field>) FROM <measurement>:

> select count(pressure1) from cluster name: cluster time count

0 10

>

Для выбора данных, в название полей которых входит поле <field_text>, используйте оператор /<field_text>/

Задание:

- выведите общее число записей параметра давление2 для куста cluster1
- выведите общее число записей для всех параметров давлений куста cluster1

Добавим несколько точек с другим тегом:

- > insert cluster, well=ID0101, region=Osa pressure1=0.68, pressure2=2.75, pressure3=16
- > insert cluster, well=ID0101, region=Osa pressure1=0.87, pressure2=3.61, pressure3=66.4

Выведем все значения:

> select * from cluster

name: cluster

time well pressure1 pressure2 pressure3 region

1434067467100293230	ID0100 0.64	1.15		Perm
1557748555192797300	ID0100 0.64	1.15		Perm
1557748819362040700	ID0100 0.64	1.15	200	Perm
1557749996728928900	ID0101 0.68	2.75	16	Osa
1557750019728744200	ID0101 0.87	3.61	66.4	Osa

Задание:

```
- добавьте 10 записей в БД <raw_data> в измерение <cluster2>:
well=ID0102, pressure1=0.16 pressure2=0.12 pressure3=1.70 region=Barda
well=ID0102, pressure1=0.17 pressure2=0.18 pressure3=1.70 region=Barda
well=ID0102, pressure1=0.81 pressure2=0.13 pressure3=1.74 region=Barda
well=ID0102, pressure1=1.10 pressure2=0.13 region=Barda
well=ID0102, pressure1=1.15 pressure2=0.20 region=Barda
well=ID0103, pressure1=2.10 pressure2=1.12 pressure3=4.0 region=Ufa
well=ID0103, pressure1=2.15 pressure2=1.18 pressure3=4.0 region=Ufa
well=ID0103, pressure1=2.51 pressure2=1.13 pressure3=4.4 region=Ufa
well=ID0103, pressure1=2.10 pressure2=1.13 region=Ufa
well=ID0103, pressure1=2.10 pressure2=1.20 region=Ufa
```


Выведем N первых точек измерений с помощью команды **LIMIT** <N>:

> select * from cluster limit 2

name: cluster

well pressure1 pressure2 pressure3 region time

1434067467100293230 ID0100 0.64 1.15 Perm

1557748555192797300 ID0100 0.64

1.15

Perm

Выведем среднее значение давления1 с помощью команды **MEAN(**<field>):

```
> select mean(pressure1) from cluster
name: cluster
time mean
---- 0 0.713
```

Выведем средние значения для каждого из давлений с помощью /<field>/:

Задание: вывести все средние значения для всех кустов

Выборка данных по тегам и полям с условием **WHERE**:

Выведем все измерения для скважин в Перми:

> select * from cluster WHERE region='Perm'

Выведем все значения измерений куста для скважины №ID0100:

> select * from cluster WHERE well='ID0100'

Для составления условий используются операторы: and, or, <, >, =, <>, = \sim , ! \sim

Задание: что выводит этот запрос?

> select mean(pressure1) from cluster where region=~/[P]/ and pressure3>10 name: cluster time mean

0 0.786

Задание:

- вывести все записи для всех скважин куста cluster1, у которых давление больше 0.45, но меньше 0.93
- вывести все средние значения давлений2 для скважин всех кустов
- вывести записи с давлением1 для скважин куста2, которые находятся в Уфе
- вывести среднее значение давления1 для измерений куста 1, где в теге регион есть символ 'P' и давление2 меньше, чем 1.5

Вывод трансформированных данных:

> select pressure1 from cluster limit 3

name: cluster

time pressure1

1434067467100293230 0.64

1557748555192797300 0.64

1557748586994304300 0.64

> select (pressure1*10+5) from cluster limit 3

name: cluster

time pressure1

1434067467100293230 11.4

1557748555192797300 11.4

1557748586994304300 11.4

Вывод данных по времени с использованием ТІМЕ и NOW:

> select pressure1 from cluster where time<now()-3d17h30m

name: cluster

time pressure1

1434067467100293230 0.64

1557748555192797300 0.64

1557748586994304300 0.64

1557748635714372600 0.64

> select pressure1 from cluster where time<now()-3d17h40m

name: cluster

time pressure1

1434067467100293230 0.64

1557748555192797300 0.64

> select pressure1 from cluster where time<now()-3d18h

name: cluster

time pressure1

1434067467100293230 0.64

Группировка данных с помощью GROUP BY (<tag>):

Вывести первые 3 значения давлений1 по кусту2 сгруппированные по регионам select pressure1 from cluster2 group by region

> select pressure1 from cluster2 group by region limit 3

name: cluster

tags: region=Barda

time pressure1

1558073749860423800 0.64 1558073753373368100 0.64 1558073755188393600 0.64

name: cluster tags: region=Ufa

time pressure1

1434067467100293230 0.64 1557748555192797300 0.64 1557748586994304300 0.64

Вывести средние за день значения давлений1 по кусту1 за последние 5 дней select mean(pressure1) from cluster where time>now()-5d group by time(1d)

> select mean(pressure1) from cluster where time>now()-5d group by time(1d)

name: cluster

time mean

1557619200000000000

1557705600000000000 0.721111111111111

15577920000000000000

1557878400000000000

15579648000000000000

1558051200000000000 0.64

Задание:

- вывести максимальные за час значения для всех давлений куста2 для текущего месяца
- вывести средние на интервалах в 6 часов значения давлений1 и 2, превышающих 1.54, куста2 для разных регионов для текущего месяца

Заполнение пустых значений с помощью предыдущих FILL(previous): select pressure1 from cluster fill(previous)

Заполнение пустых значений с помощью предыдущих FILL(none) и FILL(null) select pressure1 from cluster fill(none)

Заполнение пустых значений функций величинами, рассчитываемыми с помощью линейной интерполяции, командой **FILL(linear)** select mean(pressure1) from cluster group by time(1h) fill(linear)

Задание:

- добавьте несколько записей для куста, чтобы данные по давлению 1 отсутствовали
- вывести значения давлений1 и 2 с использованием автозаполнения разными способами

Загрузим данные в БД **production** из файла DataSource.csv с помощью скрипта CSV2Influx.py

Выберем БД production и выведем содержимое измерений:

> select * from cluste	r3 limit 10						
name: cluster3				_			
time	pressure?	l pressui	re2 press	sure3 pres	ssure4 pre	essure5 we)
15463008000000000	00 0.302	0.579	0.772	11.915	10.989	ID0100	
154630260000000000	00 0.333	0.582	0.773	11.138	9.905	ID0100	
15463044000000000	00 0.549	0.582	0.779	10.629	9.577	ID0100	
154630620000000000	00 0.301	0.581	0.78	9.5	10.034	ID0100	
154630800000000000	00 0.522	0.577	0.781	10.055	8.072	ID0100	
15463098000000000	00 0.286	0.578	0.784	9.199	8.105	ID0100	
15463116000000000	00 0.252	0.579	0.784	7.692	7.19	ID0100	
15463134000000000	00 0.238	0.585	0.784	7.028	6.456	ID0100	
15463152000000000	00 0.158	0.585	0.79	6.197	5.952	ID0100	
15463170000000000	00 0.274	0.589	0.791	5.992	5.082	ID0100	
>							

НИУ ВШЭ - Пермь. 2019

Проведем сглаживание временного ряда значений давления 1 с помощью метода скользящего среднего командой MOVING_AVERAGE(<field>,N):

1546311600000000000 0.252

154631340000000000 0.238 154631520000000000 0.158

1546317000000000000 0.274

> select moving_average(pressure1,3) from cluster3 limit 10 name: cluster3 moving_average time 1546304400000000000 0.3946666666666667 1546306200000000000 0.3943333333333333 1546308000000000000 0.4573333333333333 1546309800000000000 0.36966666666666664 154631160000000000 0.35333333333333333 1546313400000000000 0.2586666666666666 1546315200000000000 0.216 154631700000000000 0,2233333333333333 1546318800000000000 0.2193333333333333 1546320600000000000 0.249

Выведем все минимальные, максимальные и средние значения для всех давлений:

Выведем разброс значений давления1 командой SPREAD(<field>):

Выведем стандартное отклонение для давления1 командой **STDDEV(<field>):**

> select stddev(pressure1) from cluster3

name: cluster3 time stddev

0 0.14932423129505185

> select stddev(pressure1),stddev(pressure2),stddev(pressure3) from cluster3 group by time(7d)

name: cluster3

time stddev stddev_1 stddev_2

---- -----

1545868800000000000 0.11731139398155126 0.1591020402462719 0.052064508527840864

154647360000000000 0.14299155396750265 0.14065010483483387 0.0675208715000834

154707840000000000 0.15601744040679372 0.16515084635641078 0.04775525056997095

1547683200000000000 0.14930002608119822 0.20099767145504022 0.042140666118823535

154828800000000000 0.15394832006978795 0.19380982569032754 0.15689270017259713

154889280000000000 0.12515040419516335 0.18401487278004275 0.04321236012272282

15494976000000000000

1550102400000000000

15507072000000000000

Задание: Что вывел этот запрос??

Прогноз по методу экспоненциального сглаживания со сглаживанием, трендом и сезонностью реализуется предиктором Хольта — Винтерса

HOLT_WINTERS(function(field_key),N,S):

N – число точек прогноза; S – длительность паттерна сезона (периода)

select holt_winters(first(pressure1),100,24) from cluster3 group by time(1h)

name: cluster3

time holt_winters

1548979200000000000 0.30485467960072776

1548982800000000000 0.33246311160704706

1548986400000000000 0.3277292273581258

1548990000000000000 0.22999131308255272

1548993600000000000 0.22246317346964242

1548997200000000000 0.2810665285774712

Задание:

- вывести все содержимое измерений по кусту3 базы данных production
- вывести первые 10 значений давлений 1 и 3, превышающих величину 0.5
- вывести средние за сутки значения давления2
- вывести максимальные значения давлений по суткам
- вывести разницу среднесуточных значений давлений 1 и 2 по каждым суткам за первые 2 недели измерений
- вывести минимальное, максимальное, среднее значения всех давлений по каждым суткам в первую смену работы персонала, то есть с 8-00 до 17-00
- вывести отклонения среднесуточных значений от среднего значения за месяц по давлению4 и давлению5
- посчитать количество дней, когда среднее за сутки давление1 превышало среднемесячное значение
- посчитать число дней, когда среднесуточные значения давление1 и давления2 одновременно находились в диапазонах +/-10% от среднего значения за месяц
- построить прогноз на 2 суток вперед

Спасибо за внимание!

Кычкин Алексей Владимирович

канд. техн. наук доцент кафедры информационных технологий в бизнесе НИУ ВШЭ – Пермь