第1章

層状化空間・因子化ホモロジー

[?], [?] のレビュー

1.1 conically smooth な層状化空間

1.1.1 層状化空間

定義 1.1: 半順序集合の位相

 (P,\leq) を半順序集合とする. P上の位相 $\mathscr{O}_{\leq} \subset 2^P$ を以下で定義する:

$$U \in \mathscr{O}_{\leq} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \forall x \in U, \, \forall y \in P, \, \left[\, x \leq y \quad \Longrightarrow \quad y \in U \, \right]$$

実際, 空集合の定義から $\emptyset \in \mathcal{O}_{<}$ であり, $\forall U_1, U_2 \in \mathcal{O}_{<}$ に対して $x \in U_1 \cap U_2$ であることは

$$\forall y \in P, \ x \leq y \implies y \in U_1$$
 かつ $y \in U_2$

と同値なので $U_1\cap U_2\in \mathscr{O}_{\leq}$ であり、さらに勝手な開集合族 $\{U_{\lambda}\in \mathscr{O}_{\leq}\}_{\lambda\in\Lambda}$ に対して $x\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ は

$$\exists \alpha \in \Lambda, \ \forall y \in P, \ x \leq y \quad \Longrightarrow \quad y \in U_{\alpha} \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

と同値であるから $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{O}_{\leq}$ であり、 \mathcal{O}_{\leq} は集合 P の位相である.

【例 1.1.1】 [n] の位相

半順序集合 $[2] \coloneqq \{0 \le 1 \le 2\}$ を考える. このとき, 位相 \mathscr{O}_{\le} とは

$$\mathscr{O}_{<} = \{ \emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\} \}$$

のことである. 同様に、半順序集合 $[n] := \{0 \le 1 \le \cdots \le n\}$ に対して

$$\mathcal{O}_{<} = \{\emptyset, \{n\}, \{n-1, n\}, \dots, \{0, \dots, n\}\}$$

が成り立つ.

定義 1.2: 層状化空間・層状化写像

 (P, \leq) を半順序集合とし、定義 1.1 の位相を入れて位相空間にする.

このとき,位相空間 X が P-層状化されている (P-stratified)とは,連続写像 $s\colon X\longrightarrow P$ が存在 することを言う.組 $(X,s\colon X\longrightarrow P)$ のことを P-層状化空間 (P-stratified space)と呼ぶ.また, $i\in P$ の逆像 $X_i:=s^{-1}(\{i\})\subset X$ のことを i-層 (i-strata)と呼ぶ.

層状化空間 $(X, s: X \longrightarrow P)$, $(X', s': X' \longrightarrow P')$ の間の**層状化写像** (stratified map) とは、連続写像の組み $(f: X \longrightarrow X', \tilde{f}: P \longrightarrow P')$ であって以下の図式を可換にするもののこと:

$$\begin{array}{ccc} X & \xrightarrow{f} & X' \\ s \downarrow & & \downarrow s' \\ P & \xrightarrow{\tilde{f}} & P' \end{array}$$

【例 1.1.2】[n]-層状化空間

半順序集合 $[n] := \{0 \le \cdots \le n\}$ に対して【例 1.1.1】の位相を入れる. まず、

$$X_0 = s^{-1}([n] \setminus \{1, \ldots, n\})$$

でかつ $\{1, \ldots, n\}$ は [n] の開集合であるから, s の連続性から X の部分空間 $X_0 \subset X$ は閉集合だとわかる. さらに

$$X_0 \cup X_1 = s^{-1}([n] \setminus \{2, \dots, n\}),$$

$$X_0 \cup X_1 \cup X_2 = s^{-1}([n] \setminus \{3, \dots, n\}),$$

$$\vdots$$

$$X_0 \cup \dots \cup X_n = X$$

が成り立つことから、s の連続性より X の部分空間 $X_0 \cup \cdots \cup X_{m \le n}$ は閉集合だと分かる.

【例 1.1.3】CW 複体

CW 複体 X を与える. $X_{\leq k}$ を X の k-骨格とするとき, $X_k \setminus X_{k-1}$ を $k \in \mathbb{Z}_{\geq 0}$ に写す写像 $s\colon X \longrightarrow \mathbb{Z}_{\geq 0}$ は X の層状化を与える.

直観的には、層状化空間とは defect 付き C^∞ 多様体の一般化である。特に X を C^∞ 多様体とするとき、[n]-層状化空間 $(X,s\colon X\longrightarrow [n])$ の i-層 X_i とは、多様体 X 上の余次元 d-i の defect を全て集めてきたものだと見做せる。

定義 1.3: 層状化開埋め込み

層状化写像 (f, \tilde{f}) : $(X, s: X \longrightarrow P) \longrightarrow (X', s': X' \longrightarrow P')$ が**層状化開埋め込み** (stratified open embedding) であるとは、以下の 2 条件を充たすことを言う:

- (1) 連続写像 $f: X \longrightarrow X'$ は位相的開埋め込みである^a
- (2) $\forall p \in P$ に対して, f の p-strata への制限 b

$$f|_{X_p}\colon X_p\longrightarrow X'_{\tilde{f}(p)}$$

は位相的開埋め込みである.

以下では混乱が生じにくい場合,層状化空間 $(X,s\colon X\longrightarrow P)$ のことを $(X\stackrel{s}{\to}P)$ や $(X\to P)$ と略記する.さらに,層状化写像 $(f,\tilde{f})\colon (X,s\colon X\longrightarrow P)\longrightarrow (X',s'\colon X'\longrightarrow P')$ のことを $f\colon (X\to P)\longrightarrow (X'\to P')$ と略記し,連続写像 $\tilde{f}\colon P\longrightarrow P'$ のことも f と書く場合がある.

圏 StTop を,

- 第2可算な Hausdorff 空間であるような層状化空間を対象とする
- 層状化開埋め込みを射とする

ことで定義する.

1.1.2 C^0 級層状化空間

定義 1.4: コーン

層状化空間 $(X \xrightarrow{s} P)$ を与える. X の**コーン** (cone) とは、以下のようにして構成される層状化空間 $(\mathsf{C}(X)\,,\,\mathsf{C}(s):\mathsf{C}(X)\longrightarrow\mathsf{C}(P))$ のこと:

• 位相空間 C(X) を,押し出し位相空間

$$\mathsf{C}(X) := \{ \mathsf{pt} \} \coprod_{\{0\} \times X} (\mathbb{R}_{>0} \times X)$$

と定義する:

$$\{0\} \times X \xrightarrow{\{0\} \times \mathrm{id}_X} \mathbb{R}_{\geq 0} \times X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{\mathrm{pt}\} \longleftarrow \{\mathrm{pt}\} \coprod_{\{0\} \times X} (\mathbb{R}_{\geq 0} \times X)$$

• 半順序集合 C(P) を、P に最小の要素 $-\infty$ を付け足すことで定義する. これは半順序集合の

 $[^]a$ i.e. $f \colon X \longrightarrow f(X)$ が同相写像かつ $f(X) \subset Y$ が開集合

^b 層状化写像の定義に登場する図式の可換性より、 $\forall x \in X_p$ に対して $s'\big(f(x)\big) = s' \circ f(x) = \tilde{f} \circ s(x) = \tilde{f}(p)$, i.e. $f(x) \in s'^{-1}\big(\{\tilde{f}(p)\}\} = X'_{\tilde{f}(p)}$ が分かる.

圏における押し出し

$$\mathsf{C}(P) := \{-\infty\} \coprod_{\{0\} \times P} ([1] \times P)$$

である.

• 連続写像

$$\mathbb{R}_{\geq 0} \times X \longrightarrow [1] \times P,$$

$$(t, x) \longmapsto \begin{cases} (0, s(x)), & t = 0, \\ (1, s(x)), & t > 0 \end{cases}$$

が誘導する連続写像 $C(X) \longrightarrow C(P)$ を C(s) と書く.

位相空間の圏における押し出しの公式から、位相空間 C(X) とは

$$i_1: \{0\} \times X \longrightarrow \mathbb{R}_{\geq 0} \times X, \ x \longmapsto (0, x),$$

 $i_2: \{0\} \times X \longrightarrow \{\text{pt}\}, \ x \longmapsto \text{pt}$

とおいたときのコイコライザ

$$\{0\} \times X \xrightarrow{i_1} \{\text{pt}\} \sqcup (\mathbb{R}_{\geq 0} \times X) \xrightarrow{q} \mathsf{C}(X)$$

である. i.e. 商位相空間

$$\frac{\mathbb{R}_{\geq 0} \times X}{i_1(x) \sim i_2(x)} = \frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X}$$

のこと. 従って $C(s): C(X) \longrightarrow C(P)$ とは, 連続写像*1

$$\frac{\mathbb{R}_{\geq 0} \times X}{\{0\} \times X} \longrightarrow \mathsf{C}\left(P\right), \ \left[\left(t, \, x\right)\right] \longmapsto \begin{cases} -\infty, & t = 0 \\ s(x), & t > 0 \end{cases}$$

のことである。また、コーンポイントのみからなる 1 点集合 $\{\mathrm{pt}\}\subset X$ は $q^{-1}ig(\{\mathrm{pt}\}ig)=\{0\}\times X$ を充たすが、 $\{0\}\times X$ は

以下では,混乱の恐れがない限り層状化空間 $(X \xrightarrow{s} P)$ のコーンを $\mathsf{C}\left(X \xrightarrow{s} P\right)$ と略記する.

^{*1} $\mathsf{C}(P)$ の位相 $\mathscr{O}_{\mathsf{C}(P)}$ は,P の位相 \mathscr{O}_P に 1 つの開集合 $\{-\infty\} \cup P$ を加えたものである. $\forall U \in \mathscr{O}_P$ に対して $\mathsf{C}(s)^{-1}(U) = \mathbb{R}_{>0} \times s^{-1}(U) \in \mathscr{O}_{\mathsf{C}(X)}$ で,かつ $\mathsf{C}(s)^{-1}(\{-\infty\} \cup P) = \mathsf{C}(X) \in \mathscr{O}_{\mathsf{C}(X)}$ なので $\mathsf{C}(s)$ は連続である.

定義 1.5: C^0 級層状化空間

以下を充たす \mathbf{StTop} の最小の充満部分圏を \mathbf{Snglr}^{C^0} と書き、圏 \mathbf{Snglr}^{C^0} の対象を $\mathbf{C^0}$ 級層状化空間 (C^0 stratified space) と呼ぶ:

(Snglr-1)
$$(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$

(Snglr-2)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ X, P が位相空間としてコンパクト $\Longrightarrow \mathsf{C}(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-3)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}) \implies (X \times \mathbb{R} \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})^a$$

(Snglr-4)

$$(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$$
 かつ $\mathrm{Hom}_{\mathbf{StTop}}\left((U \to P_U), (X \to P)\right) \neq \emptyset$ $\Longrightarrow (U \to P_U) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$

(Snglr-5)

$$(X \to P) \in \mathrm{Ob}(\mathbf{StTop})$$
 が開被覆 $\{(U_{\lambda} \to P_{\lambda}) \longrightarrow (X \to P)\}_{\lambda \in \Lambda}^{b}$ を持ち、かつ $\forall \lambda \in \Lambda$ に対して $(U_{\lambda} \to P_{\lambda}) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$ $\Longrightarrow (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^{0}})$

【例 1.1.4】位相多様体は C^0 級層状化空間

(Snglr-1) より、 $* := \mathsf{C}(\emptyset \to \emptyset) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ である. (Snglr-3) より、 $\forall n \geq 0$ に対して $\mathbb{R}^n = (\mathbb{R}^n \to [0]) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ であることが帰納的に分かる. \mathbb{R}^n の任意の開集合 $U \hookrightarrow \mathbb{R}^n$ に対して、

$$\begin{array}{ccc}
U & \longrightarrow \mathbb{R}^n \\
\downarrow & & \downarrow \\
[0] & \longrightarrow & [0]
\end{array}$$

は層状化埋め込みであり、従って (Snglr-4) より $U \coloneqq (U \to [0]) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が分かる. 以上の考察と (Snglr-5) を併せて、任意の位相多様体 M は a 圏 Snglr $^{C^0}$ の対象である.

1.1.3 C^0 basic

 $[^]aX \times \mathbb{R}$ の層状化は、連続写像 $X \times \mathbb{R} \longrightarrow X$, $(x,t) \longmapsto x$ を前もって合成することにより定める.

 $[^]b$ i.e. $\{U_\lambda\}_{\lambda\in\Lambda},\ \{P_\lambda\}_{\lambda\in\Lambda}$ が、それぞれ位相空間 X,P の開被覆を成す.

 $[^]a$ より正確には,M を<mark>層状化空間</mark> ($M \rightarrow [0]$) と同一視している.

定義 1.6: C⁰ basic

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が C^0 -basic であるとは、ある $n \in \mathbb{Z}_{\geq 0}$ およびコンパクトな C^0 級層状化空間 $(Z \to Q) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ が存在して $(X \to P) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to Q)$ が成り立つことを言う.

いま、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を 1 つとる. コーンの定義から、U の点を $(v, [t, z]) \in \mathbb{R}^n \times \frac{\mathbb{R}_{\geq 0} \times Z}{\{0\} \times Z}$ と表示することができる.この表示の下で自己同相

$$\gamma \colon \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^n \times \mathsf{C}(Z),$$
$$(t, (v, p), [s, z]) \longmapsto (t, (tv + p, p), [ts, z])$$

を考える*².

さらに、もう 1 つの C^0 basic な $(U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times \mathsf{C}(Z' \to P') \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ および $f \in \mathsf{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), (U' \to P_{U'}) \right)$ をとる。ただし、f はコーンポイントをコーンポイントへ写す、i.e. $\forall u \in \mathbb{R}^n$ に対して $f(u, \operatorname{pt}) \in \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ が成り立つことを仮定する。 $f|_{\mathbb{R}^n} : \mathbb{R}^n \times \{\operatorname{pt}\} \longrightarrow \mathbb{R}^{n'} \times \{\operatorname{pt}\}$ を f のコーンポイントへの制限として、

$$f_{\Delta} : \mathbb{R}_{>0} \times T\mathbb{R}^{n} \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{>0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z'),$$

 $(t, v, p, [s, z]) \longmapsto (t, f|_{\mathbb{R}^{n}}(v), f(p, [ts, z]))$

とおこう.

【例 1.1.5】

 $Z = Z' = \emptyset$ のとき, f とは単に連続関数 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^{n'}$ のことである. このとき,

$$(\gamma^{-1} \circ f_{\Delta} \circ \gamma)(t, v, p) = \gamma^{-1} \circ f_{\Delta}(t, tv + p, p)$$
$$= \gamma^{-1} (t, f(tv + p), f(p))$$
$$= \left(t, \frac{f(tv + p) - f(p)}{t}, f(p)\right)$$

と計算できるため,f が C^1 級であることと $\forall (v,p) \in T\mathbb{R}^n$ に対して $t \to +0$ の極限,i.e. v に沿った片側方向微分が存在することは同値である.

【例 1.1.5】をもとに、 C^0 basic な C^0 級層状化空間の間の層状化開埋め込みの conically smoothness を定義する. C^∞ 多様体の C^∞ 構造の定義においては、チャート $(U, \varphi \colon \mathbb{R}^n \to U)$ 、 $(V, \psi \colon \mathbb{R}^n \to V)$ の間の変換関数 $\psi^{-1} \circ \varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ が C^∞ 級であることを要請した. 次の小節で conically smooth structure の定義を行うが、その際にチャートに対応するものは basic $U = \mathbb{R}^n \times \mathbb{C}(Z)$ から着目している C^0 -級層状化空間 X への層状化開埋め込み $\varphi \colon U \to X$ であり、概ね*32 つのチャート $\varphi \colon U \to X$ 、 $\psi \colon V \to X$ の間の変換関数 $\psi^{-1} \circ \varphi \colon U \to V$ に対して conically smooth (along \mathbb{R}^n) であることを要請する.

^{*2} 接東 $T\mathbb{R}^n$ は \mathbb{R}^{2n} と微分同相である. [?, p.23] の記法に合わせて底空間 \mathbb{R}^n の点を p, p 上のファイバーの元を v としたとき $(v,p)\in T\mathbb{R}^n$ と書いた. 命題??の記法と順番が逆なので注意.

^{*3} コーンポイントをコーンポイントに写さない変換関数も存在しうるので、これだけではいけない.

定義 1.7: \mathbb{R}^n に沿って conically smooth

- C^0 basic $\not\subset (U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathbb{C}(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$
- C^0 basic $(U' \to P_{U'}) = (\mathbb{R}^{n'} \to [0]) \times C(Z' \to P') \in Ob(\mathbf{Snglr}^{C^0})$
- $f \in \text{Hom}_{\mathbf{Snglr}^{C^0}} \left((U \to P_U), \, (U' \to P_{U'}) \right)$ であって、コーンポイントを保存するもの

を与える. このとき, f が \mathbb{R}^n に沿って C^1 級 $(C^1 \text{ along } \mathbb{R}^n)$ であるとは, 以下の図式を可換にする 連続写像

$$\widetilde{D}f: \mathbb{R}_{\geq 0} \times T\mathbb{R}^n \times \mathsf{C}(Z) \longrightarrow \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}(Z')$$

が存在することを言う:

$$\mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right) \xrightarrow{\overset{\tilde{D}f}{-1}} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{R}_{\geq 0} \times T\mathbb{R}^{n} \times \mathsf{C}\left(Z\right)_{\gamma \xrightarrow{-1} \circ f_{\Delta} \circ \gamma} \mathbb{R}_{\geq 0} \times T\mathbb{R}^{n'} \times \mathsf{C}\left(Z'\right)$$

このような拡張が存在するとき、第一変数を t=0 に制限して得られる連続写像を

$$Df: T\mathbb{R}^n \times C(Z) \longrightarrow T\mathbb{R}^{n'} \times C(Z')$$

と書く. f が \mathbb{R}^n に沿って C^r 級 であるとは, Df が \mathbb{R}^n に沿って C^{r-1} 級であることを言う. f が \mathbb{R}^n に沿って conically smooth であるとは, $\forall r \geq 1$ について C^r 級であることを言う.

1.1.4 conically smooth な層状化空間

次に行うべきは、与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ の上の conically smooth structure i.e. 変換関数が conically smooth であるような**極大アトラス**を定義することである.この手続きは、次で定義する次元と深さに関する帰納法によって構成される.

定義 1.8: 被覆次元

X を位相空間とする. 以下の条件を充たす最小の $d \in \mathbb{Z}_{\geq -1}$ のことを(存在すれば)X の被覆次元 (covering dimension) と呼ぶ:

(covering)

X の任意の開被覆 $\mathscr U$ に対して、十分細かい細分 $\mathscr V_{\mathscr U} \prec \mathscr U$ をとると、任意の互いに異なる $\forall m>d+1$ 個の開集合 $V_1,\ldots,V_m\in\mathscr V_{\mathscr U}$ の共通部分が空になるようにできる.特に、 \emptyset の被覆次元は -1 と定義する.

点 $x \in X$ における**被覆次元**を以下で定義する:

$$\dim_x X \coloneqq \inf \big\{ \dim U \ge -1 \bigm| x \in U \underset{\mathrm{open}}{\subset} X \big\}$$

定義 1.9: 次元と深さ

空でない C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ を与える.

- $(X \to P)$ の点 $x \in X$ における局所的次元 (local dimension) とは、点 x における X の被覆 次元 $\dim_x(X)$ のことを言う.
- $(X \to P)$ の次元 (dimension) とは

$$\dim(X \to P) \coloneqq \sup_{x \in X} \dim_x(X)$$

のこと.

• $(X \xrightarrow{s} P)$ の点 $x \in X$ における局所的深さ (local depth) とは、

$$\operatorname{depth}_{x}(X \to P) := \dim_{x}(X) - \dim_{x}(X_{s(x)})$$

のこと.

• $(X \to P)$ の深さ (depth) とは,

$$\operatorname{\mathbf{depth}}(X \to P) \coloneqq \sup_{x \in X} \operatorname{depth}_x(X \to P)$$

のこと. ただし、 $depth(\emptyset) := -1$ と定義する.

【例 1.1.6】コーンの深さ

n 次元位相多様体 Z について,定義から $\forall x \in Z$ に対して $\dim_x(Z) = n$ が成り立つ.Z を【例 1.1.4】により C^0 級層状化空間 $(Z \stackrel{s}{\to} [0]) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ と見做すと,これのコーン $\mathbf{C}\left(Z \stackrel{s}{\to} [0]\right)$ について

$$\operatorname{depth}_x \left(\mathsf{C} \left(Z \xrightarrow{s} [0] \right) \right) = \begin{cases} n+1, & x = \mathsf{pt}, \\ 0, & \text{otherwise} \end{cases}$$

であることがわかる.実際 $\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})} = \{\mathrm{pt}\}$ であるが,1 点からなる位相空間の<mark>被覆次元</mark>は 0次元なので $\dim_{\mathrm{pt}}(\mathsf{C}(Z)_{\mathsf{C}(s)(\mathrm{pt})}) = 0$ である.一方,コーンポイント以外の点 $x \in \mathsf{C}(Z)$ に対して $\mathsf{C}(s)(x)$ -層は $\mathsf{C}(Z)_{\mathsf{C}(s)(x)} = \mathbb{R}_{>0} \times Z \approx \mathbb{R} \times Z$ であるから, $\dim_x(\mathsf{C}(Z)_{\mathsf{C}(s)(x)}) = n+1$ と計算できる a .

また、 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$\dim((\mathbb{R}^m \to [0]) \times (X \to P)) = m + \dim(X \to P),$$

$$\operatorname{depth}((\mathbb{R}^m \to [0]) \times (X \to P)) = \operatorname{depth}(X \to P)$$

が成り立つ. 従って、 C^0 basic な $(U \to P_U) = (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ に対して

$$depth(U \to P_U) = depth(Z \to P) + 1$$

が成り立つ.

a さらに、 $\forall x \in C(Z)$ に対して $\dim_x C(Z) = n+1$ である.

次元と深さに関する帰納法を実行する前に、構成したい圏を表す記号の整理をしておこう:

• conically smooth チャートの素材となる, basic が成す圏

Bsc

これは、 C^{∞} 多様体の圏 **Mfld** において \mathbb{R}^n ($\forall n \geq -1$) 全体が成す充満部分圏に相当するものである.

• 与えられた C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ に対して、その上に入る極大アトラス*4全体が成す集合を返す前層

$$\mathsf{Sm} \colon (\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$$

この対応が前層であることの直観は、層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X \to P), (Y \to Q)\right)$ が与えられると、 $(X \to P)$ 上の極大アトラス $\operatorname{Sm}(X \to P)$ が $(Y \to Q)$ 上の極大アトラス $\operatorname{Sm}(Y \to Q)$ を「制限」する写像 $\operatorname{Sm}(f) \colon \operatorname{Sm}(Y \to Q) \longrightarrow \operatorname{Sm}(X \to P)$ によって得られるということである.

• 深さが k 以下,かつ次元が n 以下であるような C^0 級層状化空間全体が成す \mathbf{Snglr}^{C^0} の充満部分圏を

$$\mathbf{Snglr}^{C^0} \underbrace{\leq k}_{\text{depth}}, \underbrace{\leq n}_{\text{dimension}}$$

と書く. 同様に

$$\mathbf{Bsc}_{\leq k,\,\leq n},\qquad \mathsf{Sm}_{\leq k,\,\leq n}\colon (\mathbf{Snglr}_{\leq k,\,\leq \infty}^{C^0})^{\mathrm{op}}\longrightarrow \mathbf{Sets}$$

と書く.

• conically smooth な層状化空間の圏

Snglr

これを作ることが本小節の最終目標である.

帰納法により、 $\forall k \geq -1$ に対して $\mathbf{Bsc}_{\leq k, \leq \infty}$ および $\mathsf{Sm}_{\leq k, \leq \infty} \colon (\mathbf{Snglr}_{\leq k, <\infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ が構成される.

定義 1.10: 帰納法の出発点

(Snglr-1) より $(\emptyset \to \emptyset) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq -1, \leq \infty}^{C^0})$ である.

- (1) $\mathbf{Bsc}_{<-1,<\infty} := \emptyset$
- (2) $\mathsf{Sm}_{<-1,<\infty}(\emptyset) := \{*\}$

と定義する.

^{*4} 存在するか分からないし、存在したとして一意であるとは限らない. 実際、例えば C^{∞} 多様体の段階においてさえ \mathbb{R}^4 の上の極大アトラス (i.e. C^{∞} 構造) は非可算無限個存在する [?].

仮定 1.1: 帰納法の仮定

与えられた $k \ge -1$ に対して以下の構成が完了していると仮定する:

- (1) 圏 $\mathbf{Bsc}_{\leq k, \leq \infty}$
- (2) 前層 $\mathsf{Sm}_{\leq k, \leq \infty} \colon (\mathbf{Snglr}_{\leq k, \leq \infty}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$
- (3) 関手

$$\mathbb{R} \times (-) \colon \mathbf{Bsc}_{\leq k, \leq \infty} \longrightarrow \mathbf{Bsc}_{\leq k, \leq \infty},$$

$$U \longmapsto \mathbb{R} \times U,$$

$$\left(U \xrightarrow{f} V\right) \longmapsto \left(\mathbb{R} \times U \xrightarrow{\mathrm{id} \times f} \mathbb{R} \times V\right)$$

およびそれが誘導する自然変換な

 aX の極大アトラス $\{U_{\alpha},\, \varphi_{\alpha}\}_{\alpha\in\Lambda}$ に対して、 $\{\mathbb{R}\times U_{\alpha},\, \mathrm{id}\times \varphi_{\alpha}\}_{\alpha\in\Lambda}$ を対応づける.

定義 1.11: 圏 $Bsc_{\leq k+1, \leq \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする。また, C^0 basic を $U^n_Z \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く.このとき,圏 $\mathbf{Bsc}_{\leq k+1, \leq \infty}$ を以下で定義する:

(対象)

$$C^0$$
 basic ${}^aU_Z^n\in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1,\,\leq\infty}^{C^0})$ および、極大アトラス $\mathcal{A}_Z\in \mathsf{Sm}_{\leq k,\,\leq\infty}(Z o P)$ の組み $(U_Z^n,\,\mathcal{A}_Z)$

を対象とする.

(射)

任意の 2 つの対象 $(U_Z^n,\mathcal{A}_Z),\; (U_W^m,\mathcal{A}_W)\in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1,\leq \infty})$ に対して、以下の条件を満た す層状化開埋め込み $f\in \mathrm{Hom}_{\mathbf{Snglr}^{\mathbb{C}^0}_{\leq k+1,<\infty}}\left(U_Z^n,U_W^m\right)$ を対象とする:

f がコーンポイントを保存しない場合

ある層状化開埋め込み $f_0\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq \infty}}\left(U^n_Z,\,\mathbb{R}^m\times\mathbb{R}_{>0}\times W\right)$ が存在して

$$f \colon U_Z^n \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow U_W^m = \mathbb{R}^m \times \mathsf{C}(W)$$

と書けて、かつ $(U_Z^n, f_0) \in \mathcal{A}_{\mathbb{R}^m \times \mathbb{R}_{>0} \times W} \in \mathsf{Sm}(\mathbb{R}^m \times \mathbb{R}_{>0} \times W)$

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ $Df: \mathbb{R}^n \times U_Z^n \longrightarrow \mathbb{R}^m \times U_W^m$ が単射

であり、かつ

$$\mathcal{A}_{f^{-1}(U_W^m \backslash \mathbb{R}^m)} = \mathsf{Sm}_{\leq k, \leq \infty} (f|_{f^{-1}(U_W^m \backslash \mathbb{R}^m)}) (\mathcal{A}_{U_W^m \backslash \mathbb{R}^m})$$

を充たす b . ただし, $U_{W}^{m} \setminus \mathbb{R}^{m} := U_{W}^{m} \setminus (\mathbb{R}^{m} \times \{\text{pt}\}) = \mathbb{R}^{m+1} \times W$ と略記した.

a 【例 1.1.6】より、 $(Z \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k_+ \leq \infty})$ であることが分かる.

定義 1.12: 前層 $Sm_{< k+1, < \infty}$

帰納法の仮定 1.1 がある $k \geq -1$ において成立しているとする. さらに定義 1.11 が完成しているとする.

• C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})$ に対して、 $X \to P$ のアトラス (atlas) を族

$$\mathcal{A} := \{ (U_{\alpha} \in \mathrm{Ob}(\mathbf{Bsc}_{\leq k+1, \leq \infty}), \, \varphi_{\alpha} \colon U_{\alpha} \hookrightarrow (X \to P)) \}_{\alpha \in \Lambda} \in \mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P)$$

であって以下の条件を充たすものとして定義する:

(Atlas-1)

A は $(X \to P)$ の開被覆である.

(Atlas-2)

 $\forall \alpha, \beta \in \Lambda$ および $\forall x \in \varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta})$ に対して、圏 $\mathbf{Bsc}_{\leq k+1, \leq \infty}$ の可換図式

$$\exists W \xrightarrow{f_{\beta}} U_{\beta}$$

$$f_{\alpha} \downarrow \qquad \qquad \downarrow \varphi_{\beta}$$

$$U_{\alpha} \xleftarrow{\varphi_{\alpha}} X$$

が存在して $x \in \varphi_{\alpha} \circ f_{\alpha}(W) = \varphi_{\beta} \circ f_{\beta}(W)$ を充たす

アトラス A の元 $(U_{\alpha}, \varphi_{\alpha}) \in A$ のことを**チャート** (chart) と呼ぶ.

- C^0 級層状化空間 $\forall (X \to P) \in \mathrm{Ob}(\mathbf{Snglr}_{\leq k+1, \leq \infty}^{C^0})$ の 2 つのアトラス A, $\mathcal B$ が同値であるとは, $A \cup \mathcal B$ が $(X \to P)$ のアトラスであることを言う.これは $(X \to P)$ のアトラス全体の集合の上に同値関係を定める。 $(X \to P)$ の極大アトラス (maximal atlas) とは,この同値関係によるアトラス A の同値類 [A] のことを言う.
- 前層

$$\mathsf{Sm}_{\leq k+1,\,\leq\infty}\colon (\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq\infty})^\mathrm{op} \longrightarrow \mathbf{Sets}$$

を以下のように定義する:

(対象)

任意の C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0}_{\leq k+1, \leq \infty})$ に対して

$$\mathsf{Sm}_{\leq k+1, \leq \infty}(X \to P) \coloneqq \{ [\mathcal{A}] \mid \mathcal{A} \text{ is an atlas of } (X \to P) \}$$

(射)

 $^{^{}b}$ ここで帰納法の仮定 1.1-(3) を暗に使っている.

任意の層状化開埋め込み $f\in \mathrm{Hom}_{\mathbf{Snglr}^{C^0}_{\leq k+1,\,\leq\infty}}$ に対して,f によるアトラスの引き戻しを対応付ける.

 a 同値関係であることの証明は [?, Lemma 3.2.11.] を参照.

以上の帰納法をまとめて、conically smooth な層状化空間と層状化開埋め込みの圏 Snglr を得る.

定義 1.13: 圏 Snglr

• basic のなす圏 Bsc を以下で定義する:

$$\mathbf{Bsc}\coloneqq igcup_{k>-1}\mathbf{Bsc}_{\leq k,\,\leq\infty}$$

• 極大アトラスの集合を与える関手 Sm: $(\mathbf{Snglr}^{C^0})^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ を以下の右 Kan 拡張として定義する:

$$(\mathbf{Snglr}^{C^0}_{<\infty, \leq \infty})^{\mathrm{op}} \xrightarrow{\mathsf{Sm}_{<\infty, \leq \infty}} \mathbf{Sets}$$

$$\downarrow \qquad \qquad \qquad \mathsf{Sm}$$
 $(\mathbf{Snglr}^{C^0})^{\mathrm{op}}$

ただし、 $\mathbf{Snglr}^{C^0}_{<\infty,\leq\infty}\coloneqq igcup_{k\geq -1}\mathbf{Snglr}^{C^0}_{\leq k,\leq\infty}$ とおいた.

• **conically smooth な層状化空間** (conically smooth stratified space) と**層状化開埋め込み**の 圏 **Snglr** を以下で定義する:

(対象)

 C^0 級層状化空間 $(X \to P) \in \mathrm{Ob}(\mathbf{Snglr}^{C^0})$ およびその極大アトラス $\mathcal{A}_{\mathcal{X}} \in \mathrm{Sm}(X \to P)$ の組み $((X \to P), \mathcal{A}_X)$ を対象とする.

(射)

層状化開埋め込み $f \in \operatorname{Hom}_{\mathbf{Snglr}^{C^0}}\left((X \to P),\, (Y \to Q)\right)$ であって、 $f^*\mathcal{A}_Y = \mathcal{A}_X$ を充たすものを射とする.

1.1.5 conically smooth map

ここまでは<mark>層状化開埋め込み</mark>のみを考えていたため、一般の<mark>層状化写像</mark>の conically smoothness を定義しなくてはいけない.

定義 1.14: conically smooth map

2 つの $\underline{\mathbf{basic}}^a X = (U_Z^n, A_Z), Y = (U_W^m, A_W) \in \mathrm{Ob}(\mathbf{Bsc})$ の間の層状化写像 $f \colon U_Z^n \longrightarrow U_W^m$ が conically smooth であることを、 $\mathrm{depth}(Y)$ に関する帰納法によって定義する:

- (1) まず、 $\operatorname{depth}(Y) = -1$ のときは $X = Y = \emptyset$ であり、一意的に定まる X, Y 間の層状化写像が conically smooth であると定義する.
- (2) 深さ $k \ge -1$ の basic に対して定義が完了しているとする. $Y \in \mathrm{Ob}(\mathbf{Bsc})$ の深さが高々 k+1 であるならば,層状化写像 $f\colon X \longrightarrow Y$ が conically smooth であることを以下で定義する: f がコーンポイントを保存しない場合

ある conically smooth な層状化写像 $f_0: X \longrightarrow \mathbb{R}^m \times \mathbb{R}_{>0} \times W$ が存在して

$$f \colon X \xrightarrow{f_0} \mathbb{R}^m \times (\mathbb{R}_{>0} \times W) \hookrightarrow Y = \mathbb{R}^m \times \mathsf{C}(W)$$

と書ける**b**.

f がコーンポイントを保存する場合

f は \mathbb{R}^n に沿って conically smooth であって、かつ制限

$$f|_{f^{-1}(Y\setminus\mathbb{R}^m)}\colon f^{-1}(Y\setminus\mathbb{R}^m)\longrightarrow Y\setminus\mathbb{R}^m$$

が conically smooth. ただし, $U_W^m \setminus \mathbb{R}^m \coloneqq U_W^m \setminus (\mathbb{R}^m \times \{\text{pt}\}) = \mathbb{R}^{m+1} \times W$ と略記した.

conically smooth な層状化空間 $((X \to P), A_X), ((Y \to Q), A_Y) \in Ob(\mathbf{Snglr})$ の間の層状化写像 $f: (X \to P) \longrightarrow (Y \to Q)$ が conically smooth であるとは、任意のチャートの組み合わせ $(U, \varphi) \in A_X, (V, \psi) \in A_Y$ に対して

$$\psi^{-1} \circ f \circ \varphi \colon U \longrightarrow V$$

が conically smooth (for basics) であることを言う.

命題 1.1: conically smooth map の基本性質

2つの conically smooth map の合成も conically smooth である.

証明 [?, Proposition 3.3.5]

命題 1.1 より, conically smooth な層状化空間の圏を定義できる.

 $^{{}^}aC^0$ basic を $U_Z^n \coloneqq (\mathbb{R}^n \to [0]) \times \mathsf{C}(Z \to P) \in \mathsf{Ob}(\mathbf{Snglr}^{C^0})$ と書く.

b 【例 1.1.6】より depth(W) < k+1 であり、帰納法の仮定が使える.

定義 1.15: conically smooth な層状化空間の圏 Strat conically smooth な層状化空間の圏 Strat を以下で定義する: (対象) 圏 Snglr と全く同じ対象を持つ: Ob(Strat) := Ob(Snglr^{C⁰}) (射) conically smooth map を射とする.

1.1.6 管状近傍・ハンドル分解