Problem Set 线性代数问题集一

Liu Xinyi

2021年8月20日

摘要

本问题集旨在对 Introduction to Linear Algebra(1) 中建立的理论提供反馈练习。换言之,使用在 ILA(1) 中给出的概念、推论、定理和普遍的数学证明工具,能够解决本问题集中的所有问题。

在本问题集中,按照 ILA(1) 建立起的理论成果,将可以解决的问题分为以下几类:

1 Problem Set

1. 设 ℝ+ 是全体正实数构成的集合,

在其中定义加法和标量乘法为 $+(a,b)=a\times b, \times (k,a)=a^k, \ \forall a,b\in\mathbb{R}^+, k\in\mathbb{R}.$ 证明 \mathbb{R}^+ 是线性空间.

2. 设 \mathbf{a} , \mathbf{b} 是向量空间 V^3 中的向量,证明集合 $W = \{k\mathbf{a} + l\mathbf{b} | k, l \in \mathbb{R} \in \mathbb{R} \}$ 化 的子空间.

3. 设 V 是一个非空的向量空间,证明: V 不能是它的两个真子空间的并集.

4. 设 W_1, W_2, \cdots, W_r 是向量空间 V 的真子空间. 证明: 在线性空间 V 中存在一个向量 ξ , 满足

 $\xi \notin \bigcup_{1 \leq i \leq r} W_i$.

5. 如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 两两线性无关,试问 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是否线性无关.

6. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,证明 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 也线性无关.

7. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关, 并且 $\beta + \alpha_1, \beta + \alpha_2, \dots, \beta + \alpha_n$ 线性相关, 那么 β 是否属于 $\mathbf{L}(\alpha_1, \alpha_2, \dots, \alpha_n)$.

8. 证明 \mathbb{R}^3 中不同四点 A,B,C,D 共面的充分必要条件是存在不全为零的实数 k_1,k_2,k_3,K_4 使

$$\vec{k_1OA} + \vec{k_2OB} + \vec{K_3OC} + \vec{k_4OD} = \vec{0}$$

9. 已知 β 可以被 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表示,但不能被 $\alpha_1, \alpha_2, \dots, \alpha_{r-1}$ 线性表示. 证明: $\alpha_1, \alpha_2, \dots, \alpha_r$ 和 $\alpha_1, \alpha_2, \dots, \alpha_{r-1}, \beta$ 等价.

10. 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关, 但 $\alpha_1, \alpha_2, \dots, \alpha_m, \beta, \gamma$ 线性相关. 判断 β, γ 与 $\mathbf{L}(\alpha_1, \alpha_2, \dots, \alpha_n)$ 的关系.

11. 设 W_1,W_2 是向量空间 V 的两个非零子空间,如果 $W_1\subset W_2$,且 $\dim W_1=\dim W_2$. 证明: $W_1=W_2$.

12. 假设 v_1, v_2, v_3, v_4 张成 V, 证明 $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$ 也能张成 V.

13. 设 $\alpha_1 = (1,1,1), \alpha_2 = (1,2,3), \alpha_3 = (1,3,t)$, 试问当 t 的取值如何决定 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关或线性无关.

14. 设 $\mathbf{W} = \{(a_1, a_2, \dots, a_r, 0, 0, \dots, 0) | a_i \in \mathbb{R} \} \subset \mathbb{R}^n$. 证明 dim W = r.

15. 设 W_1 和 W_2 是线性空间 V 的两个非零线性子空间, 如果 $W_1 \subset W_2$, 且 dim $W_1 = \dim W_2$. 证明: $W_1 = W_2$.

16. 将向量组 (2,1,-1,3),(-1,0,1,2) 扩充为 \mathbb{R}^4 的一个基.

17. 设 \mathbb{R}^n 中的向量组 $\alpha_1 = (1, 1, \dots, 1), \alpha_2 = (2, 2^2, \dots, 2^n), \dots, \alpha_n = (n, n^2, \dots, n^n)$. 证明: 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 \mathbb{R}^n 的一个张成组.

18. 已知 $\alpha_1 = (1, 2, 3), \alpha_2 = (-4, 5, 6), \alpha_3 = (7, -8, 9)$ 是 \mathbb{R}^3 的一个基, 求 向量 $\vec{\xi} = (5, -12, 3)$ 在这个基下的坐标.

6

19. 在 \mathbb{R}^3 中求出向量 α , 使得 α 在下列两个基有相同的坐标:

$$\alpha_1 = (1,0,1), \alpha_2 = (-1,0,0), \alpha_3 = (0,1,1);$$

$$\beta_1 = (0-1,1), \beta_2 = (1,-1,0), \beta_3 = (1,0,1).$$

20. 如果
$$\alpha + k\beta + \gamma = \mathbf{0}$$
. 证明: $\mathcal{L}(\alpha, \beta) = \mathcal{L}(\beta, \gamma)$.

21. 设
$$\mathbf{V} = \mathbb{R}^4, \mathbf{W_1} = \mathcal{L}(\alpha_1, \alpha_2, \alpha_3), \mathbf{W_2} = \mathcal{L}(\beta_1, \beta_2),$$
其中

$$\alpha_1 = (1, -1, 2, 3)$$

$$\alpha_1 = (1, -1, 2, 3),$$
 $\alpha_2 = (-1, 2, -1, 1),$

$$\alpha_3 = (-1, 0, -3, 5),$$

$$\beta_1 = (-1, 4, 0, -1),$$

$$\beta_2 = (0, 9, 5, -14).$$

求 W_1 与 W_2 的和与交基和维数.

7

22. 设 $\mathbf{W_1}, \mathbf{W_2}$ 是有限维向量空间 \mathbf{V} 的两个子空间, 并且

$$\dim(\mathbf{W_1}\cap\mathbf{W_2})=\dim(\mathbf{W_1}+\mathbf{W_2})-1.$$

证明: $W_1 \subset W_2$ 或者 $W_2 \subset W_1$.

23. 求 $\alpha_1 = (1, -1, 2, 3), \alpha_2 = (-1, 2, -1, 1)$ 在 \mathbb{R}^4 中的补子空间.

- 24. 设 U 是 \mathbb{R}^5 的子空间, $\mathbb{U} = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2, x_3 = 7x_4\}$. 求:
 - (a) U 的一个基;
 - (b) 将 (a) 中的基扩充为 \mathbb{R}^5 的基;

25. 证明: 若 v_1, v_2, v_3, v_4 是 ${\bf V}$ 的基, ${\bf W}$ 是 ${\bf V}$ 的子空间, 并且 $v_1, v_2 \in {\bf W}, 3, v_4 \notin {\bf W}$, 则 v_1, v_2 是 ${\bf W}$ 的基.

26. 设 $v_1, v_2, \cdots, v_m \in \mathbf{V}$ 的一组线性无关向量组, 又 $w \in \mathbf{V}$. 证明:

$$\dim \mathcal{L}(v_1+2, v_2+w, \cdots, v_m+w) \ge m-1.$$

2 分类表与原理