Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹

Under supervision of Prof. Maria Andrea Mroginski²

¹Freie Universität Berlin ²Techniche Universität Berlin

February 18, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity and log P Partition Coefficient

Hydrophob Potential

What is it?

Potential

General form

Force Constants

Surface

Solvent accesible surface Evenly distributed points

Prograi

Vhat are we interested in?

Result

Validation via Known log p

Outline Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points

Integration

Program

What are we interested in?

Program Specifications

Results

Validation via Known log p Values

An Example System

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Partition Coefficient

lolecular

ydrophobicity otential

hat is it?

Potential

General forn

Force Constants

urface

Evenly distributed points Integration

rogram

at are we interested in? ogram Specifications

Result

4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

Values

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Partition Coefficient

Molecular

Hydrophob Potential

hat is it?

Potential

General form

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Prograi

What are we interested in? Program Specifications

Result

Validation via Known log p Values

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

Commonly used: water and octanol

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Definition

The ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium

- Commonly used: water and octanol
- Can be measured at an ionized or unionized state

$$\qquad \log P_{\text{octanol/water}} = \log \left(\frac{[\text{solute}]_{\text{water}}}{[\text{solute}]_{\text{octanol}}} \right)$$

ightharpoonup Hydrophobicity increases with the (common) $\log P$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

What is MHP

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potentia

General fo

Force Constan

Distance

Surface

Solvent accesible surfa Evenly distributed point

....

What are we interested in: Program Specifications

Results

Validation via Known log | Values

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

Molecular Hydrophobicity

Vhat is it?

General form

orce Constants

Distance f

Surface Solvent accesible sur

Evenly distributed points Integration

Progra

Program Specifications

Resul

Validation via Known log | Values

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

1olecular Iydrophobicit

Vhat is it?

General form

orce Constants

Distance f

Surface

Evenly distributed points Integration

Prograi

rogram Specifications

Resul

Validation via Known log p Values

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicit

/hat is it?

General form

aenerai iorm

Distance fu

Surface

Solvent accesible surface Evenly distributed points Integration

Prograi

Vhat are we interested in? Program Specifications

Result

Validation via Known log p Values

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular /drophobicit

otential /hat is it?

Potential

General form

oroo Constants

Pieters for the

Surface

Solvent accesible surface Evenly distributed points

Progran

/hat are we interested in? rogram Specifications

Results

Validation via Known log p Values

Force Constants - Carbon

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular

drophobi ential at is it?

eneral form

Force Constants

Surface

Solvent accesible surfa Evenly distributed point Integration

rogram

hat are we interested in ogram Specifications

Result

√alidation via Known log p

Carbon atom contribution to hydrophobicity¹

Type	Description	f_i value
•	Carbon in:	
1	$\mathrm{CH_{3}R}$	-1.5603
3	CHR_3	-0.6681
7	CH_2X_2	-1.0305
13	RCX_3	0.7894
17	$=CR_2$	0.0383
24	RCHR	-0.3251
25	RCRR	0.1492
26	RCXR	0.1539

¹Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Hydrogen

Hydrogen atom contribution to hydrophobicity²

Type	Description	f_i value
	Hydrogen attached to:	
46	$\overline{\mathrm{C_{sp^3}}$, no X in $lpha$	0.7341
47	$ m C_{sp}^2$	0.6301
50	X	-0.1036
52	$\mathrm{C}_{\mathrm{sp}^3}$, 1 X in $lpha$	0.6666
54	C_{cm^3} . 3 X in α	0.6338

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular

ropnobici ential

otential

Force Constants

istance fund

Solvent accesible surfac Evenly distributed points

rogram

ogram Specifications

Result

Validation via Known log p Values

²Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Oxygen

Oxygen atom contribution to hydrophobicity³

Type	Description	f_i value
	Oxygen in:	
56	Alcohol	-0.3567
57	Phenol, enol, carboxyl OH	-0.0127
58	Ketone	-0.0233
61	Nitro, N-oxides	1.0520
62	O-	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular

aropnobic ential

otential

Force Constants

listance fui

urface Solvent acc

Solvent accesible surf Evenly distributed poil Integration

rogram

hat are we interested i

Resul

Validation via Known log p

³Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

Force Constants - Various

Various atom contribution to hydrophobicity⁴

Type	Description	f_i value
66	Primary amine	-0.5427
67	Secondary amine	-0.3168
81	F attached to $\mathrm{C}_{\mathrm{sp^3}}$	0.4797
106	S in R-SH (thiol)	1.0520
119	$P \text{ in } PR_3 \text{ (phosphine)}$	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

drophobicity

What is it?

eneral form

Force Constants

urface

Solvent accesible surfac Evenly distributed points Integration

ogram

/hat are we interested in

Result

Validation via Known log p

⁴Source: Ghose et al, J. Phys. Chem. A 1998, 102, 3762-3772

ın Example Syste

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicit

otential /hat is it?

otential

Force Constants

Distance function

Surface

Solvent accesible surface Evenly distributed points

Progran

/hat are we interested in's rogram Specifications

Result

Validation via Known log p Values

Solvent accesible surface

The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophob

lydrophobi otential

Vhat is it?

General form

orce Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Program

What are we interested in?
Program Specifications

Results

Validation via Known log Values

Solvent accesible surface

 The surface around a molecule accesible to solvent molecules

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular

ydrophobic otential

Vhat is it?

Potential General form

General form

Distance function

Solvent accesible surface

Evenly distributed points

Prograi

What are we interested in? Program Specifications

Resul

Validation via Known log Values

Solvent accesible surface

The surface around a molecule accesible to solvent molecules

For water molecules usually r = 1.4 |A|

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Solvent accesible surface

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potentia

General form

Distance function

Surface

Solvent accesible surface

Evenly distributed point Integration

Progran

What are we interested in Program Specifications

Results

Validation via Known log Values

1. Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potentia

General forn

Force Constants

Distance functi

Solvent accesible surface

Evenly distributed points

Progra

What are we interested in? Program Specifications

Resul

Validation via Known log Values

1. Take all atoms with their vdW-radii

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

lolecular ydrophobicity

otential /hat is it?

Potential

General form

Force Constants

Distance functio

Solvent accesible surface

Evenly distributed points Integration

S....

What are we interested in?

Result

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicity

hat is it?

Potential

General form

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Progra

/hat are we interested in? rogram Specifications

Resul

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

> olecular ydrophobicity

What is it?

Potential

General form

Distance function

Solvent accesible surface

Evenly distributed points

Integration

Program

What are we intere

hat are we interested in rogram Specifications

Resul

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with

$$R^i = R^i_{\text{vdw}} + R_{\text{probe}}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular odrophobicity

hat is it?

Potential

General form

Force Constants

Surface

Solvent accesible surface

Evenly distributed points

Integration

Progra

hat are we interested in?

Resul

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicity otential

What is it?

Potential

General form

Force Constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points Integration

Integration

hat are we interested in

Resul

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

drophobicity

/hat is it?

Potential

General form Force Constan

Distance function

Solvent accesible surface

Evenly distributed points Integration

Prograi

What are we interested in Program Specifications

Result

Validation via Known log p Values

- 1. Take all atoms with their vdW-radii
- 2. Create spheres around all atoms with $R^i = R^i_{\text{vdw}} + R_{\text{probe}}$
- 3. Delete all points that are "burried" in other extended spheres (i.e. $\Delta(p^i, c^j) \leq R^j + R_{\text{probe}}$)
- 4. The remaining surface is the solvent-accesible surface of the molecule

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular odrophobicity

Vhat is it?

Potential

Force Constants
Distance function

Solvent accesible surface

Evenly distributed points

Evenly distributed points Integration

Prograi

What are we interested in Program Specifications

Result

Validation via Known log p Values

How to distribute *N* points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Pelg Bar Sapir

troduction

Hydrophobicity and log I Partition Coefficient

Molecular Hydrophobi

Potential

What is it?

Conoral fo

General form

Distance function

Surface

Solvent accesible surface Evenly distributed points

Integration

What are we interested

ogram Specifications

Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Pelg Bar Sapir

troduction

Hydrophobicity and log F Partition Coefficient

lolecular ydrophobicity otential

What is it? Potential

otentiai General forn

Force Constants

Surface

urface Solvent acce

Solvent accesible surface Evenly distributed points

Program

What are we interested in? Program Specifications

Results

Validation via Known log p Values

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Pelg Bar Sapir

Molecular

Hydrophobicity Potential

How to distribute N points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

$$\theta_j = j \cdot \frac{\pi}{N}$$

Points are not evenly distributed

Several points overlap at poles Pelg Bar Sapir

Solution: Vogel's method

In 2 dimensions:

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Solution: Vogel's method

In 2 dimensions:

▶ Distances: $r_i = \sqrt{\frac{i}{N}}$

• Angle: $\theta_i = \varphi i$

(φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F Partition Coefficient

> Molecular Hydrophobicity Potential

What is it?

Potential

General form

Force Constants

JISTANCE IL

urface

Solvent accesible surface Evenly distributed points

Prograi

What are we interested in

Results

Validation via Known log

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

Solution: Vogel's method

In 2 dimensions:

- ▶ Distances: $r_i = \sqrt{\frac{i}{N}}$
- Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle:
$$\theta_i = \varphi i$$

(φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

▶ Distances:
$$z_i = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2i}{N-1}\right)$$

► Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular lydrophobicity

otential /hat is it?

Potential

General form

Force Constants

Distance

Surface

Solvent accesible surface Evenly distributed points

Program

nat are we interested in

Resul

Validation via Known log Values

Solution: Vogel's method

In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

• Angle: $\theta_i = \varphi i$ (φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

- ▶ Distances: z_i = $\left(1-\frac{1}{N}\right)\left(1-\frac{2i}{N-1}\right)$
- Angles: $\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Evenly distributed points

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

▶ The surface is represented by N points

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- ▶ In addition, each point has: MHP^a_i

Molecular Hydrophobicity Potential

Pelg Bar Sapir

► Each atom's total surface area: $V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}}\right)^2$

$$V^a = 4\pi \left(R_{\text{vdW}}^a + R_{\text{probe}} \right)^2$$

- ▶ The surface is represented by N points
- ▶ Meaning: each point has $V_j^a = \frac{4\pi}{N} \left(R_{\text{vdW}}^i + R_{\text{probe}} \right)^2$
- In addition, each point has: MHP^a_i

Therefore, each atom has a total MHP of:

$$\mathsf{MHP}^a = \frac{4\pi}{N} \sum_{j=0}^M \mathsf{MHP}^a_j$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Written in Python3, utylizing ProDy

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity

Vhat is it?

Potential

General form

Force Constants

Distance function

urface

Solvent accesible surface Evenly distributed points Integration

rogram

hat are we interested

Program Specifications

Results

Validation via Known log | Values

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

lolecular lydrophobic

Potentia

Potential

General form

Force Constants

Distance functio

urface

Solvent accesible surface Evenly distributed points

rogran

hat are we interested in

Program Specifications

Results

Validation via Known log

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

lolecular ydrophobicity

otentia Vhat is it?

Potential

General form

Force Constants

Distance

rface

Solvent accesible surfac Evenly distributed points Integration

ogram

at are we interested in?

Program Specifications

Results

Validation via Known log |

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- ▶ Uses PSF, PDB and DCD files

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

olecular ydrophobicity

otential /hat is it?

Potential

General form

Force Constants

urfooo

face olvent accesible s

Solvent accesible surface Evenly distributed points Integration

rogram /hat are we interested i

nat are we interested in

Program Specifications

Result

Validation via Known log | Values

- Written in Python3, utylizing ProDy
- Heavy calculation written in Cython
- Uses neighbor cells implementation for faster calculation
- Uses PSF, PDB and DCD files
- Generates a PDB output, MHP values in beta column

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

> olecular ydrophobicity

/hat is it?

Potential

Force Constants

Distance fu

urface

Solvent accesible surfa Evenly distributed poin Integration

rogram

hat are we interes

Program Specifications

r rogram opcome

Resul

Validation via Known log p

► Input: PSF + PDB or DCD

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it

Potential

aerierai iorini

Distance function

urface

Solvent accesible surface Evenly distributed points

rogram

What are we interested in

Program Specifications

Results

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

tential

Potential

General form

Force Constants

istance tuni

Solvent accesible surface Evenly distributed points

ntegration

What are we interested i

Program Specifications

Results

Validation via Known log

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- ▶ Number of points per atom (default: 64)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

Vhat is it?

Potential

General form

Force Constants

Distance fun

urface Solvent accesible surfa

Evenly distributed pointegration

rogram What are we interested

What are we interested in Program Specifications

riogram opecincan

Resul

Validation via Known log Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular ydrophobicity

tential

Potential

General form

Force Constants

Distance f

Surface

Solvent accesible surface Evenly distributed points

rogran

What are we interested in

Program Specifications

i rogiam opecin

Result

Validation via Known log p Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F Partition Coefficient

olecular drophobicity

What is it?

Potential

Force Constants

Surface

Solvent accesible surface Evenly distributed point

Integration

Program

What are we interested in Program Specifications

rogram Specification

Resul

Validation via Known log p Values

- ► Input: PSF + PDB or DCD
- Subselection (optional): Atomic selection (like vmd)
- Number of points per atom (default: 64)
- ► Solvent probe radius (defalt: 1.4Å)
- ► Cutoff distance for distance function (default: 4Å)
- ► Frame range (if DCD)

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P Partition Coefficient

drophobicity

otential
What is it?

Potential

General form

Distance f

Surface

iolvent accesible

Evenly distributed poir Integration

Prograi

What are we interested in Program Specifications

rogram Specification

Results

Results

Validation via Known log p Values

Validation via Known $\log P$ Values

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P Partition Coefficient

Molecular Hydrophobicity Potential

What is it?

Potential

deneral form

Force Constant

Surface

Solvent accesible surface Evenly distributed point

Prograi

What are we interested in?

Result

Validation via Known log p Values

An Example System

Molecular Hydrophobicity Potential

Pelg Bar Sapir