Chapter 8. Optimization (Part 2)

Prof. Jaeseung Choi

Dept. of Computer Science and Engineering

Sogang University

Topics

General background

- Goal and principle of optimization
- Scope of optimization
- Basic block and CFG

■ Common types of optimization

 Constant folding, constant propagation, copy propagation, common subexpression elimination, dead code elimination, ...

■ Data-flow analyses to realize the optimization

 Reaching-definition analysis, constant propagation analysis, available expression analysis, liveness analysis, ...

Data-Flow Analysis

- As we have observed before, correct optimization requires analysis of program behavior
 - Especially, about the data-flows along the program execution
- Various kinds of data-flow analyses are used
- However, there is a common principle and framework shared by those various data-flow analyses
 - Let's start with a concrete example, and generalize it later

Reaching Definition (RD) Analysis

- A definition of r at p reaches q if there is a path from p to q such that r is not redefined along the path
- Reaching definition analysis computes the set of reaching definitions for each program point

Use of Reaching Definition (RD)

- In real-world compiler, reaching definition analysis is one of the most important analyses
 - Used for lots of optimizations in practice
 - But in our course, only related to constant propagation
- Assume that we analyzed the RDs for a program point with instruction \$t7 = \$t1 + 10
 - If all the RD of \$t1 is defined with a constant C, \$t1 can be safely replaced with C

Reaching definitions

At p_1 : \$t1 = 5
At p_2 : \$t1 = 5
...

(and no more reaching definition for \$t1)

Principle: Conservativeness

- The analysis and optimization must be conservative
 - For constant propagation, the analysis must not miss any reaching definition that can occur at runtime
 - Instead, it is okay to over-approximate the reaching definition set (such over-approximation is usually inevitable)
- Q. What if the analysis misses some reaching definition?
 - We may end up replacing a register that should not be replaced!

RD Analysis: Transfer Function

- First, we must define how the RD set will change by the execution of a single instruction
- \blacksquare Assume that program point p contains instruction i
 - Transfer function f defines output RD in terms of input RD and i
 - $\blacksquare RD_out[p] = f(RD_in[p], i)$

RD Analysis: Transfer Function

- If the instruction i at p has the form of "\$t = ...":
 - $f(IN, i) = IN \{RD \in IN \mid RD \text{ defines } \$t \} \cup \{i\}$
 - Or you may include program point p in the RD as well: $\{\langle p, i \rangle\}$
- **■** For other kinds of instructions (e.g., store, goto, ...):
 - f(IN, i) = IN

Note: Gen-Kill Form

- Many compiler textbooks denote the transfer functions of any data-flow analysis in a *gen-kill* form:
 - $f(IN, i) = Gen_i \cup (IN Kill_i)$
 - For the example in the previous page, {\$t = 5} corresponds to Gen_i and {\$t = \$r} corresponds to Kill_i
- Although this form has some advantages, IMHO it brings unnecessary complexity (so we will not use it)
 - But it won't hurt to know about the existence of this form

RD Analysis: Propagation

- How should we propagate RDs along the control-flows?
- Node of CFG is originally a basic block, but let's simply assume that a node is just a single instruction
- For node n, the output RDs of n's predecessors must be joined with union (\cup) and used as n's input

RD Analysis: Iterative Algorithm

- Now we can put things together and run the following iterative algorithm (a.k.a. fixpoint algorithm)
 - There can be several variations, but the basic idea is same

```
for each node n { RD_out[n] = Ø; }
while (there is any change to RD_out[]) {
  for each node n and its instruction i {
    RD_in[n] = U_{p \in pred(n)} RD_out[p];
    RD_out[n] = f(RD_in[n],i);
  }
}
```

RD Analysis: Example

- Again, for simplicity let's assume that each node of CFG only contains a single instruction
- Compute the reaching definition for the code below

RD Analysis: Example

- Again, for simplicity let's assume that each node of CFG only contains a single instruction
- **■** Compute the reaching definition for the code below

(Fixpoint reached)

Node	RD_in
n1	Ø
n2	\$t1=10
n3	\$t1=10, \$t2=0, \$t2=\$t2+1, \$t3=\$t2<\$t1
n4	\$t1=10, \$t2=\$t2+1, \$t3=\$t2<\$t1
n5	\$t1=10, \$t2=\$t2+1, \$t3=\$t2<\$t1
n6	\$t1=10, \$t2=\$t2+1, \$t3=\$t2<\$t1

Generalization

- Recall that RD analysis had the following flow
 - Define how the RD is updated by each instruction
 - Define how the RD is propagated along the control
 - Run iterative algorithm until there is no more change in the RD analyzed for all the program points
- Other data-flow analyses will share the same flow

Available Expression (AE) Analysis

- \blacksquare Consider an expression e and program point p
 - e can have various forms: "\$t1", "\$t1 + \$t2", "4 * \$t1"
 - We can choose the scope of expression to trace
- Intuitively, e is available at p in register r if the recomputation of r at r produces a value stored in r
 - Note the difference with reaching definition

(∀ execution paths, none of \$r, \$t1, \$t2 is redefined)

(Program point) p

(Continued in Part 3)