Ação de homeos sobre o grafo fino de curvas: uma classificação

Pierre-Antoine Guihéneuf Sorbonne Université 24 de Outubro de 2024

1	Grafo fino de curvas	1
2	Um pouco sobre espaços Gromov-hiperbólicos	2
3	Classificação	3

1 Grafo fino de curvas

Fixe S uma superfície fechada de género $g \ge 1$. O *grafo fino de curvas* $C^+(S)$ (tem um grafo que não é fino que é exatamente a mesma coisa só que *up to homotopy*) é:

- Vértices: curvas simples fechadas não homotopicamente triviais em S.
- Arestas: $\alpha \beta$ sse $\#(\alpha \cap \beta) \leq 1$.

Tem uma distância natural em $C^+(S)$.

Observação Homeo(S) \sim C⁺(S) dada por h α = h(α) é uma ação por isometrias.

Observação $C^+(S)$ não é localmente compacto.

Teorema (BHW21 $\stackrel{\sim}{\smile}$) $C^+(S)$ é conexo, de diametro infinito e Gromov-hiperbólico.

Definição Um grafo é *Gromov-hiperbólico* se $\exists \delta > 0$ tal que todos os triangulos geodésicos são δ-finos.

Definição Triangulo δ-fino: que pode pegar uma vizinhança de raio δ de qualquer par de lados, e o lado restante fica conteúdo na união daquelas vizinhanças.

2 Um pouco sobre espaços Gromov-hiperbólicos

Exemplo

- Arvores
- \mathbb{H}^2

Classificação das isometrias

- *Eliptica* se existe uma órbita de diametro finito, i.e. $\exists x \in X \text{ tal que diam}\{f^n(x)\} < +\infty$.
- *Loxodrómica* se $\exists x \in X$ tal que

$$\lim_{n\to\infty}\frac{d(f^n(x),x)}{n}$$

• Parabólica o resto.

Definição Uma *quase-isometria* de $X \in g : X \to X$ tal que $\exists \lambda, c$

$$\lambda^{-1}d(x,y) - c \le d(g(x),g(y)) \le \lambda d(x,y) + c$$

O bordo de X

Definição O bordo de X é

$$\partial X = \{ \text{ mergulhos } Q \text{ de } R_+ \text{ em } X \} / \text{ dist. Hausdorff finita}$$

$$= \{ \text{conjunto de direções no infinito} \}$$

Proposição $X \cup \partial X$ é completo.

Pergunta Forma de $\partial C^+(S)$?

Observação Toda isometria de X se extende em um homeo de $X \cup \partial X$.

Teorema (Gromov)

- Se f é parabólica então f tem um único ponto fixo em $X \cup \partial X$, qué esta em ∂X .
- Se f é loxodrómico, então f tem dois pontos fixos em X ∪ ∂X que estão no bordo e a dinámica é norte-sul. f | é uma contração.

Observação (Dani) Parece que tem uma dinâmica dada simplesmente pela iteração da f. Supongo que essa f é um isomorfismo.

 $f^{-1}|_{\partial X\setminus \{\alpha^+\}}$ é uma contração. Isso permete jogar ping-pong.

Exercício $\exists n \text{ tal que } \langle f^n, g^n \rangle \text{ \'e livre.}$

Teorema (Hensel, le Raux (private communication)) Se f, $g \in \text{Homeo}(\Pi^2)$, $\rho(f)$, $\rho(g)$ com interior não vazio, $\rho(f)$, $\rho(g)$ não são os mesmos ao menos de homotecia/traslação. Então existe n tal que $\langle f^n, g^n \rangle$ é livre e $\forall h \in \langle f^n, g^n \rangle$, $\text{int}(\rho(h)) \neq \emptyset$.

3 Classificação

Teorema $f \in Homeo_0(S)$. Então aspse

- (i) f age sobre $C^+(S)$ de maneira loxodromica.
- (ii) $\exists P \subset S$ finito, f-invariante tal que $f|_{S \setminus P}$ é pseudo-Anosov.
- (iii) int $\rho_{erg}(f) \neq \emptyset$.

$$|\left\langle \tilde{f}^{n}(x)-n\rho,\nu\right\rangle |\leqslant C$$