## **CPET Summary**



| Name<br>ID<br>Age<br>Sex     | <b>A, A RSS01</b> 62 male    | <del>-</del>                                                  | 0.0 kg<br>77 cm          |
|------------------------------|------------------------------|---------------------------------------------------------------|--------------------------|
| Date<br>Duration<br>Operator | 3/21/2022 2:34 PM<br>0:12:32 | Workload Protoco<br>Kind of Test<br>Sport                     | l<br>Lab Test<br>Walking |
| Device<br>Workload Device    | MetaMax 3B-R2                | Ambient Conditions<br>Temperature 25.0°C<br>Pressure 1039mBar |                          |

## Normal Values —

| Variable                    | Author                                        | Value Unit  |
|-----------------------------|-----------------------------------------------|-------------|
| Maximum Oxygen Uptake       | Wasserman weight algorithm                    | 2.06 L/min  |
| Maximum Heart Rate          | Traditional formula for bicycle test          | 138 /min    |
| Maximum Oxygen Pulse        | Wasserman equation                            | 15 ml       |
| Maximum Work Rate           | Based on normal maximum oxygen uptake         | 176 W       |
| Maximum Minute Ventilation  | Individual normal value, based on MVV or FEV1 | 103.7 L/min |
| Maximum Breathing Frequency | Pollock et al. equation                       | 28 /min     |

| Protocol |  |
|----------|--|
| Name:    |  |

| Name:        |  |
|--------------|--|
| Description: |  |
|              |  |
|              |  |

Time

## Test Results —

| Variable                                                        | Unit                                                                                                                                         | Rest                                                                                                                                                                                                                                     | VT1                                                                                                                                                                                                                                                                                                     | V'O2peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Norm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t                                                               | S                                                                                                                                            | 0:04:51                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V'O2<br>V'O2%Norm<br>V'O2/kg<br>RER                             | L/min<br>%<br>ml/min/kg                                                                                                                      | 0.35<br>17<br>5<br>0.87                                                                                                                                                                                                                  | -<br>-<br>-<br>-                                                                                                                                                                                                                                                                                        | 0.64<br>31<br>9<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.56<br>27<br>8<br>0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.06<br>-<br>12<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HR<br>V'O2/HR<br>BPs<br>BPd                                     | /min<br>ml<br>mmHg<br>mmHg                                                                                                                   | 71<br>5<br>-<br>-                                                                                                                                                                                                                        | -<br>-<br>-                                                                                                                                                                                                                                                                                             | 78<br>8<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78<br>7<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 103<br>15<br>212<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V'E<br>VT<br>BF<br>%BR<br>V'E/V'O2<br>V'E/V'CO2<br>VD/VT(est)   | L/min<br>L<br>/min<br>%                                                                                                                      | 10.6<br>0.70<br>15<br>92<br>24.8<br>28.5<br>0.08                                                                                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                              | 16.5<br>0.99<br>17<br>87<br>22.8<br>27.9<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.2<br>0.83<br>19<br>88<br>23.3<br>27.6<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103.7<br>-<br>28<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PaO2<br>PaCO2(est.)<br>P(A-a)O2<br>P(a-et)CO2(est.)<br>pH<br>BE | mmHg<br>mmHg<br>mmHg<br>mmOl/L                                                                                                               | -<br>37<br>-<br>0<br>-                                                                                                                                                                                                                   | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                   | -<br>37<br>-<br>0<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>37<br>-<br>0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 | V'O2%Norm V'O2/kg RER HR V'O2/HR BPs BPd V'E VT BF %BR V'E/V'O2 V'E/V'CO2 V'E/V'CO2 VD/VT(est) PaO2 PaCO2(est.) P(A-a)O2 P(a-et)CO2(est.) pH | t s  V'O2 L/min V'O2%Norm % V'O2/kg ml/min/kg RER  HR /min V'O2/HR ml BPs mmHg BPd mmHg V'E L/min VT L BF /min %BR % V'E/V'O2 V'E/V'CO2 V'E/V'CO2 VD/VT(est) PaO2 mmHg PaCO2(est.) mmHg P(A-a)O2 mmHg P(a-et)CO2(est.) mmHg PH BE mmol/L | t s 0:04:51  V'O2 L/min 0.35 V'O2%Norm % 17 V'O2/kg ml/min/kg 5 RER 0.87 HR /min 71 V'O2/HR ml 5 BPs mmHg - BPd mmHg - V'E L/min 10.6 VT L 0.70 BF /min 15 %BR % 92 V'E/V'O2 24.8 V'E/V'CO2 28.5 VD/VT(est) 0.08 PaO2 mmHg - PaCO2(est.) mmHg 37 P(A-a)O2 mmHg - P(a-et)CO2(est.) mmHg 0 PH BE mmol/L - | t       S       0:04:51       -         V'O2       L/min       0.35       -         V'O2/kg       ml/min/kg       5       -         RER       0.87       -         HR       /min       71       -         V'O2/HR       ml       5       -         BPs       mmHg       -       -         BPd       mmHg       -       -         V'E       L/min       10.6       -         VT       L       0.70       -         BF       /min       15       -         %BR       %       92       -         V'E/V'O2       24.8       -         V'E/V'CO2       28.5       -         VD/VT(est)       0.08       -         PaO2       mmHg       -       -         PaCO2(est.)       mmHg       -       -         P(A-a)O2       mmHg       -       -         P(a-et)CO2(est.)       mmHg       -       -         BE       mmol/L       -       - | t       s       0:04:51       -       0:09:43         V'O2       L/min       0.35       -       0.64         V'O2%Norm       %       17       -       31         V'O2/kg       ml/min/kg       5       -       9         RER       0.87       -       0.82         HR       /min       71       -       78         V'O2/HR       ml       5       -       8         BPs       mmHg       -       -       -         BPs       mmHg       -       -       -         BPd       mmHg       -       -       -         V'E       L/min       10.6       -       16.5         VT       L       0.70       -       0.99         BF       /min       15       -       17         %BR       %       92       -       87         V'E/V'O2       24.8       -       22.8         V'E/V'CO2       28.5       -       27.9         VD/VT(est)       0.08       -       0.08         PaCO2(est.)       mmHg       -       -       -         PaCO2(est.)       mmHg | t         s         0:04:51         -         0:09:43         0:13:00           V'O2         L/min         0.35         -         0.64         0.56           V'O2/Norm         %         17         -         31         27           V'O2/kg         ml/min/kg         5         -         9         8           RER         0.87         -         0.82         0.84           HR         /min         71         -         78         78           V'O2/HR         ml         5         -         8         7           BPs         mmHg         -         -         -         -           BPs         mmHg         -         -         -         -           V'E         L/min         10.6         -         16.5         15.2           VT         L         0.70         -         0.99         0.83           BF         /min         15         -         17         19           %BR         %         92         -         87         88           V'E/V'O2         24.8         -         22.8         23.3           V'E/V'CO2         28.5         - </td |

Created on: 4/22/2022 3:48 PM

**Patient CPET Summary** Date A, A 3/21/2022 2:34 PM

## Medical Findings -

The patient executed a 6 minute walk test and reached a distance of 119 m. This is 25 % of the normal distance 482 m. The mean speed was 1.2 km/h.

Before the test the following drugs were administered: None.
The patient performed the test without pauses.
The patient executed the test completely.

Created on: 4/22/2022 3:48 PM