CEDT 2110252 Digital Computer Logic

Chap07 Finite State Machine

Finite State Machines

- Sequential circuits
 - primitive sequential elements
 - combinational logic
- Models for representing sequential circuits
 - finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
 - shift registers
 - counters
- Design procedure
 - state diagrams
 - state transition table
 - next state functions
- Hardware description languages

Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

- Asynchronous sequential logic state changes occur whenever state inputs change (elements may be simple wires or delay elements)
- Synchronous sequential logic state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - sequences through a series of states
 - based on sequence of values on input signals
 - clock period defines elements of sequence

Example finite state machine diagram

- Combination lock from introduction to course
 - 5 states
 - 5 self-transitions
 - 6 other transitions between states

Can any sequential system be represented with a state diagram?

Shift register

- input value shown on transition arcs
- output values shown within state node

Counters are simple finite state machines

Counters

- proceed through well-defined sequence of states in response to enable
- Many types of counters: binary, BCD, Gray-code
 - 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 - □ 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

Counter

- 3 flip-flops to hold state
- logic to compute next state
- clock signal controls when flip-flop memory can change
 - wait long enough for combinational logic to compute new value
 - don't wait too long as that is low performance

FSM design procedure

- Start with counters
 - simple because output is just state
 - simple because no choice of next state based on input
- State diagram to state transition table
 - tabular form of state diagram
 - like a truth-table
- State encoding
 - decide on representation of states
 - for counters it is simple: just its value
- Implementation
 - flip-flop for each state bit
 - combinational logic based on encoding

FSM design procedure: state diagram to encoded state transition table

- Tabular form of state diagram
- Like a truth-table (specify output for all input combinations)
- Encoding of states: easy for counters just use value

present state		next st	ate
0	000	001	1
1	001	010	2
2	010	011	3
3	011	100	4
4	100	101	5
5	101	110	6
6	110	111	7
7	111	000	0
	· · · · · · · · · · · · · · · · · · ·		

Implementation

present state next state

- D flip-flop for each state bit
- Combinational logic based on encoding

C3	C2	C1	N3	N2	N1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Verilog notation to show function represents an input to D-FF

N2		C3			
	0	1	1	0	
C1	1	0	0	1	- -
-			\sim		

N1	C3				
	1	1	1	1	
C1	0	0	0	0	
•		(C2		

Implementation

C 3	C2	C1	N3	N2	N1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0
			_		

N1 <= C1'
<= 1 xor C1
N2 <= C1C2' + C1'C2
<= C1 <u>xor</u> C2
N3 <= C1C2C3' + C1'C3 + C2'C3
<= (C1C2)C3' + (C1' + C2')C3
<= (C1C2)C3' + (C1C2)'C3
<= (C1C2) <u>xor</u> C3

Back to the shift register

Input determines next state

More complex counter example

- Complex counter
 - repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Present State					
C	В	Α	C+	B+	A +
0	0	0	0	1	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	–	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	_

More complex counter example (cont'd)

Step 3: K-maps for next state functions

Pre C	sent B	State A	Nex C+	t Stat B+	te A+
0	0	0	0	1	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	_	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	_
			l,		

A+ <= BC'

Self-starting counters (cont'd)

Re-deriving state transition table from don't care assignment

A +			(С
	0	1	0	0
Α	0	1	0	0
'			3	

	sent	State	Nex	t Stat	te
С	В	Α	C+	B+	A +
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0
				·	

Self-starting counters

Start-up states

- at power-up, counter may be in an unused or invalid state
- designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
 - design counter so that invalid states eventually transition to a valid state
 - may limit exploitation of don't cares

Activity

- 2-bit up-down counter (2 inputs)
 - \Box direction: D = 0 for up, D = 1 for down
 - □ count: C = 0 for hold, C = 1 for count

Activity (cont'd)

1

ů.

.. .

Counter/shift-register model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - values of flip-flops

General state machine model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - function of current state and inputs (Mealy machine)
 - function of current state only (Moore machine)

State machine model (cont'd)

- States: S₁, S₂, ..., S_k
- Inputs: I₁, I₂, ..., I_m
- Outputs: O₁, O₂, ..., O_n
- Transition function: $F_s(S_i, I_i)$

Output function: $F_o(S_i)$ or $F_o(S_i, I_j)$ output logic next state logic Next State

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
 - different outputs on arcs (n²) rather than states (n)
- Moore machines are safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if one isn't careful
- Mealy machines react faster to inputs
 - □ react in same cycle don't need to wait for clock
 - in Moore machines, more logic may be necessary to decode state into outputs – more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

Moore

Mealy

Synchronous Mealy

state feedback

Specifying outputs for a Moore machine

- Output is only function of state
 - specify in state bubble in state diagram
 - example: sequence detector for 01 or 10

		Current	HEXL	
reset	input	state	state	output
1	_	_	Α	
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	С	0
0	0	D	Е	1
0	1	D	С	1
0	0	Е	В	1
0	1	Е	D	1

current | nevt

Specifying outputs for a Mealy machine

- Output is function of state and inputs
 - specify output on transition arc between states
 - example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	_	_	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	С	1
0	0	С	В	1
0	1	С	C	0

Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
 - registered state AND outputs
 - avoids 'glitchy' outputs
 - easy to implement in PLDs (Programmable logic devices)
- Moore machine with no output decoding
 - outputs computed on transition to next state rather than after entering
 - view outputs as expanded state vector

Example: vending machine

- Release item after 15 cents are deposited
- Single coin slot for dimes (10 cents), nickels (5 cents)
- No change

- Suitable abstract representation
 - tabulate typical input sequences:
 - 3 nickels
 - nickel, dime
 - dime, nickel
 - two dimes
 - draw state diagram:
 - inputs: N, D, reset
 - output: open chute
 - assumptions:
 - assume N and D asserted for one cycle
 - each state has a self loop for N = D = 0 (no coin)

Minimize number of states - reuse states whenever possible

present state	inputs D N	next state	output open
0¢	0 0	0¢	0
·	0 1	5¢	0
	1 0	10¢	0
	1 1		_
5¢	0 0	5¢	0
·	0 1	10¢	0
	1 0	15¢	0
	1 1		_
10¢	0 0	10¢	0
•	0 1	15¢	0
	1 0	15¢	0
	1 1		_
15¢		15¢	1
•			

symbolic state table

Uniquely encode states

present state Q1 Q0	inp D	uts N	next state D1 D0	output open
0 0	0	0	0 0	0
	0	1	0 1	0
	1	0	1 0	0
	1	1		
0 1	0	0	0 1	0
	0	1	1 0	0
	1	0	1 1	0
	1	1		_
1 0	0	0	1 0	0
	0	1	1 1	0
	1	0	1 1	0
	1	1		_
1 1	_	_	1 1	1

present state	inp D	uts N	next state	output open
0¢	0	0	0¢	0
- 1	0	1	5¢	0
	1	ō	10¢	0
	1	1	_ '	_
5¢	0	0	5¢	0
	0	1	10¢	0
	1	0	15¢	0
	1	1	_ `	_
10¢	0	0	10¢	0
	0	1	15¢	0
	1	0	15¢	0
	1	1	_	-
15¢	-	-	15¢	1

Example: Moore implementation

Ν

Mapping to logic

D1	Q1				D0)1		
	0	0	1	1			0	1		0	
	0	1	Ţ	1	N		1	0	1	1	
	X	X	1/	X		اام	X	Χ	1	X	
	1	1	1	1			0	1		1/	
Q0								- ζ	00		

Ор	en		Q1				
	0	0	1	0			
	0	0	1	0	N		
D	Χ	Χ	1	Χ			
	0	0	1	0	•		
Q0							

present state Q1 Q0	inp D	uts N		state D0	output open
0 0	0	0	0	0	0
	0	1	0	1	0
	1	0	1	0	0
	1	1	_	_	
0 1	0	0	0	1	0
	0	1	1	0	0
	1	0	1	1	0
	1	1	_	_	
1 0	0	0	1	0	0
	0	1	1	1	0
	1	0	1	1	0
	1	1	_	_	-
1 1	_		1	1	1

$$D1 = Q1 + D + Q0 N$$

$$D0 = Q0' N + Q0 N' + Q1 N + Q1 D$$

$$OPEN = Q1 Q0$$

One-hot encoding

present state	inputs	next state output	
Q3 Q2 Q1 Q0	D N	D3 D2 D1 D0 open	
0 0 0 1	0 0	0 0 0 1 0	D0 = Q0 D' N'
	0 1	0 0 1 0 0	20 402
	1 0	0 1 0 0 0	
	1 1		D1 = Q0 N + Q1 D' N'
0 0 1 0	0 0	0 0 1 0 0	
	0 1	0 1 0 0 0	D2 = Q0 D + Q1 N + Q2 D' N'
	1 0	1 0 0 0 0	52
	1 1		D2 01 D + 02 D + 02 N + 02
0 1 0 0	0 0	0 1 0 0 0	D3 = Q1 D + Q2 D + Q2 N + Q3
	0 1	1 0 0 0 0	
	1 0	1 0 0 0 0	OPEN = Q3
	1 1		S \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 0 0 0		1 0 0 0 1	

Equivalent Mealy and Moore state diagrams

- Moore machine
 - outputs associated with state
 - N'D' + ResetReset **0**¢ N' D' [0] Ν **5**¢ D N' D' [0] Ν 10¢ N' D' D [0] N+D15¢ Reset' [1]

- Mealy machine
 - outputs associated with transitions

Example: Mealy implementation

Example: Mealy implementation

D0 = Q0'N + Q0N' + Q1N + Q1D

D1 = Q1 + D + Q0N

OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when resetby adding AND gate

Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine
 - it is common for programmable devices to have FF at end of logic

Vending machine: Mealy to synch. Mealy

Mealy and Moore examples

- Recognize A,B = 0,1
 - Mealy or Moore?

Mealy and Moore examples (cont'd)

Recognize A,B = 1,0 then 0,1

Mealy or Moore? out D clock <u>out</u> clock

Hardware Description Languages and Sequential Logic

- Flip-flops
 - representation of clocks timing of state changes
 - asynchronous vs. synchronous
- FSMs
 - structural view (FFs separate from combinational logic)
 - behavioral view (synthesis of sequencers not in this course)
- Data-paths = data computation (e.g., ALUs, comparators) + registers
 - use of arithmetic/logical operators
 - control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

Verilog FSM - Reduce 1s example

Moore machine

state assignment (easy to change, if in one place)

Moore Verilog FSM (cont'd)

```
always @(in or state) ←
                                                crucial to include
  case (state)
                                                all signals that are
    zero:
                                                input to state determination
  // last input was a zero
   begin
     if (in) next state = one1;
     else next state = zero;
   end
                                                       note that output
    one1:
                                                       depends only on state
  // we've seen one 1
   begin
     if (in) next state = two1s;
     else next state = zero;
   end
    two1s:
                                            always @(state)
  // we've seen at least 2 ones
                                               case (state)
   begin
                                                 zero: out = 0;
     if (in) next state = two1s;
                                                 one1: out = 0;
     else next state = zero;
                                                two1s: out = 1;
   end
                                               endcase
  endcase
                                          endmodule
```

Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
  rea out;
  reg state; // state variables
  reg next state;
  always @(posedge clk)
    if (reset) state = zero;
    else
               state = next state;
  always @(in or state)
    case (state)
                        // last input was a zero
      zero:
     begin
       out = 0;
       if (in) next state = one;
       else next state = zero;
     end
                        // we've seen one 1
      one:
     if (in) begin
         next state = one; out = 1;
     end else begin
        next state = zero; out = 0;
     end
    endcase
endmodule.
```


Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
  reg out;
  reg state; // state variables
  always @(posedge clk)
    if (reset) state = zero;
    else
     case (state)
      zero: // last input was a zero
     begin
       out = 0;
       if (in) state = one;
       else state = zero;
     end
      one: // we've seen one 1
     if (in) begin
        state = one; out = 1;
     end else begin
        state = zero; out = 0;
     end
    endcase
endmodule
```

Finite state machines summary

- Models for representing sequential circuits
 - abstraction of sequential elements
 - finite state machines and their state diagrams
 - inputs/outputs
 - Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - deriving state diagram
 - deriving state transition table
 - determining next state and output functions
 - implementing combinational logic