432 Class 5 Slides

github.com/THOMASELOVE/432-2018

2018-01-30

Setup

```
library(skimr)
library(broom)
library(modelr)
library(leaps)
library(tidyverse)

oh count <- read.csv("data/counties2017a.csv") %>% tbl df
```

Today's Materials

- Review of Minute Papers after Class 04
- Discussion of Homework 1
- Ohio County Health Rankings Data
- Variable Selection via Best Subsets
 - Adjusted R²
 - Mallows' C_p
 - AIC after Correction for Bias
 - BIC
- Cross-Validating to Compare Two Model-Building Approaches
- Assessing Residual Diagnostic Plots

Homework 1

Table 1

	Stratif	ied by p	ractice			
	A		В		p	test
n	180		150			
age (mean (sd))	56.34	(11.17)	54.17	(11.89)	0.088	
race (%)					<0.001	
Asian/PI	0	(0.0)	10	(6.7)		
Black/AA	166	(92.7)	14	(9.4)		
Multi-Racial	4	(2.2)	3	(2.0)		
White	9	(5.0)	122	(81.9)		
eth_hisp = Yes (%)	2	(1.1)	62	(41.6)	<0.001	
sex = M (%)	61	(33.9)	66	(44.0)	0.077	
insurance (%)					0.016	
Commercial	35	(19.4)	18	(12.0)		
Medicaid	66	(36.7)	68	(45.3)		
Medicare	76	(42.2)	54	(36.0)		
Uninsured	3	(1.7)	10	(6.7)		
bmi (mean (sd))	35.20	(8.20)	34.39	(7.83)	0.365	
bmi_cat (%)					0.587	
Underweight	1	(0.6)	1	(0.7)		
Normal	11	(6.1)	14	(9.3)		
Overweight	32	(17.8)	31	(20.7)		
Obese	136	(75.6)	104	(69.3)		
sbp (mean (sd))	130.82	(15.38)	125.44	(19.00)	0.005	
dbp (mean (sd))	74.49	(11.40)	75.05	(8.58)	0.617	

Notes for Table 1

- 1. There are 4 subjects missing Hispanic ethnicity status in practice A, and 1 in practice B.
- 2. There is 1 subject in each practice missing Race.
- Results are shown in terms of means and standard deviations for quantitative variables, and t tests are used for comparisons, because a Normal approximation was a reasonable choice for each such variable.
- 4. For categorical variables, we display counts and percentages, and use Pearson chi-square tests of significance.

Question 2

I don't see much to suggest a meaningful interaction here. The lines joining the points are essentially parallel. It looks like the group with the lowest (healthiest) mean SBP are the subjects in practice B without a medication.

Question 2 ANOVA (no interaction)

```
Call:
lm(formula = sbp ~ practice + bpmed, data = hbp330)
Residuals:
   Min
            10 Median
                           30
                                 Max
-41.844 -11.961 -0.702 9.369 63.039
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 125.844 1.768 71.164 < 2e-16 ***
practiceB -5.600 1.852 -3.023 0.0027 **
bpmed
      7.716 1.944 3.970 8.85e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.75 on 327 degrees of freedom
Multiple R-squared: 0.06889, Adjusted R-squared: 0.06319
F-statistic: 12.1 on 2 and 327 DF, p-value: 8.548e-06
```

Since each of the two factors is binary, we can simply read off that both practice and bpmed appear to have a significant impact on SBP, with practice B having lower SBP levels, on average, and subjects without BP medications having lower SBP levels, on average.

Question 3 (ANOVA test to compare models)

```
anova(hw1_q3, hw1_q2_no_int)
```

```
Analysis of Variance Table

Model 1: sbp ~ practice + bpmed + age

Model 2: sbp ~ practice + bpmed

Res.Df RSS Df Sum of Sq F Pr(>F)

1 326 90178

2 327 91712 -1 -1534.3 5.5467 0.01911 *

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

It does appear that age adds significant predictive value to the no-interaction model.

Question 3 (Fit Summaries)

```
Hide
```

```
r.squared adj.r.squared sigma statistic p.value df logLik
1 0.06888764 0.06319276 16.74708 12.09642 8.547555e-06 3 -1396.757
AIC BIC deviance df.residual
1 2801.513 2816.71 91711.92 327
```

The model with age included performs a bit better in terms of adjusted (and raw) R² and AIC and performs comparably in terms of BIC

glance(hw1 q2 no int)

Question 3 (Residual plots)

Ohio County Health Rankings Data http://www.countyhealthrankings.org/ rankings/data/oh

Codebook (2017 County Health Rankings), I

Variable	Description
fips	FIPS code for county (an ID)
state	Ohio in all cases
county	County Name (88 counties in Ohio)
years_lost	Years of potential life lost before age 75 per
	100,000 population (age-adjusted, 2012-14)
population	County population, Census Population Estimates,
	2015
female	% female (Census Population Estimates, 2015)
rural	3 categories from % rural (0-20: Urban, 20.1-50:
	Suburban, 50.1+: Rural; Census 2015)
non_white	4 categories from 100 - % white non-hispanic: (>
	20: High, 10.1-20: Medium, 5.1-10: Low, <=5:
	Very Low, Census 2015)

Codebook (2017 County Health Rankings), II

Variable	Description
sroh_fairpoor	% of adults reporting fair or poor health
	(age-adjusted via 2015 BRFSS)
smoker_pct	% of adults who currently smoke (2015 BRFSS)
food_envir	Food environment index $(0 = worst, 10 = best)$
	(via USDA Map the Meal 2014)
exer_access	% of population with adequate access to locations
	for physical activity (several sources)
income_ratio	Ratio of household income at the 80th percentile
	to income at the 20th percentile (ACS 2011-15)
air_pollution	Mean daily density of fine particulate matter in
	micrograms per cubic meter (PM2.5)
health_costs	Health Care Costs (from Dartmouth Atlas, 2014)

Basic Data Summaries

```
oh_count %>% select(-fips, -state, -county) %>% skim()
```

```
Skim summary statistics
n obs: 88
n variables: 12
Variable type: factor
  variable missing complete n n unique
                                                                top counts ordered
 non white
                 ō
                         88 88
                                      4 Low: 30, Ver: 27, Med: 23, Hig: 8
                                                                             FALSE
    rural2
                         88 88
                                      3 Rur: 43, Sub: 31, Urb: 14, NA: 0
                                                                             FALSE
Variable type: integer
   variable missing complete n
                                     mean
                                                                p25 median
                                                                                          p100
                                                        p0
                                                                                                   hist
 population
                          88 88 131970.72 216261.12 13048 36982.25 57733.5 123712.75 1255921 3
 vears_lost
                                            1563.34
                                                      4129
                                                            6538.75 7700
                                                                               8597.5
                          88 88
                                  7659.12
                                                                                         12091
Variable type: numeric
      variable missing complete n
                                        mean
                                                 sd
                                                         p0
                                                                p25
                                                                      median
                                                                                  p75
                                                                                           p100
 air pollution
                              88 88
                                       11.38
                                               0.47
                                                      10.5
                                                              11.1
                                                                       11.3
                                                                                11.7
                      0
                                       68.19
                                                      26.2
                                                                       69.73
   exer_access
                              88 88
                                             17.43
                                                              58.18
                                                                                80.09
                                                                                          96.23
                      0
                                       50.34
                                               1.38
                                                      41.78
                                                                                          52.41
        female
                              88 88
                                                              50.05
                                                                       50.58
                                                                                 50.96
    food envir
                              88 88
                                               0.67
                                                       5 3
                                                                        7.45
                                                                                  7.8
                                                                                           8.9
                                        7.4
  health_costs
                              88 88 10158.06 859.43 8274.48 9650.2
                                                                    10093.36 10577.49 13702.91
  income_ratio
                              88 88
                                       4.33
                                               0.6
                                                       3.45
                                                               3.94
                                                                        4.21
                                                                                 4.57
                                                                                           7.24
    smoker pct
                      0
                              88 88
                                       19.33
                                               2.05
                                                      13.82
                                                              18.23
                                                                       19.28
                                                                                20.61
                                                                                          24.53
 sroh_fairpoor
                              88 88
                                       15.99
                                               2.14
                                                      10.31
                                                              14.58
                                                                       15.86
                                                                                17.21
                                                                                          21.86
```

Our Outcome: Age-Adjusted Years Lost

Scatterplot Matrix with GGally, Part I

Scatterplot Matrix with GGally, Part II

Using "Best Subsets" to Select Variables

Using "Best Subsets" to Select Variables

We'll consider models using some combination of the 11 available meaningful predictors.

We'll look for models using up to 8 of those predictors.

Looking at bs_mods

bs mods

```
Subset selection object
11 Variables (and intercept)
               Forced in Forced out
                               FALSE
sroh_fairpoor
                   FALSE
smoker_pct
                   FALSE
                               FALSE
exer_access
                   FALSE
                               FALSE
food env
                   FALSE
                               FALSE
income_ratio
                   FALSE
                               FALSE
food_insecure
                   FALSE
                               FALSE
health_costs
                   FALSE
                               FALSE
population
                   FALSE
                               FALSE
female
                   FALSE
                               FALSE
rura12
                   FALSE
                               FALSE
race_mix
                   FALSE
                               FALSE
1 subsets of each size up to 8
Selection Algorithm: exhaustive
          sron_fairpoor_smoker_pct_exer_access food_env_income_ratio_food_insecure_health_costs_population_female_rural2_race_mix
                                                                         H gell
                                                                                        пел
                                                                         \Pi \cong \Pi
                                                                                        n g n
```

Look at the models that "win"

bs_mods\$which

```
bs mods $which
(Intercept) population female rural non_white sroh_fairpoor smoker_pct food_envir exer_access income_ratio air_pollution health_costs
                                            EALSE
                                                            FALSE
                                                                                    FALSE
                                                                                                 EALSE
                                                                                                                EALSE
                                                                                                                               EALSE
                                                                                                                                              EALSE
                                                                         TRUE
        TRUE
                   FALSE
                          FALSE FALSE
                                            FALSE
                                                            FALSE
                                                                         TRUE
                                                                                    FALSE
                                                                                                 FALSE
                                                                                                                FALSE
                                                                                                                               FALSE
                                                                                                                                               TRUE
       TRUE
                  FALSE
                          FALSE FALSE
                                            FALSE
                                                             TRUE
                                                                         TRUE
                                                                                    FALSE
                                                                                                 FALSE
                                                                                                                FALSE
                                                                                                                               FALSE
                                                                                                                                               TRUE
       TRUE
                   EAL SE
                          FALSE FALSE
                                            FALSE
                                                            EAL SE
                                                                         TRUE
                                                                                     TRUE
                                                                                                 FALSE
                                                                                                                 TRUE
                                                                                                                               EAL SE
                                                                                                                                               TRUE
       TRUE
                   FALSE
                            TRUE FALSE
                                            FALSE
                                                            FALSE
                                                                         TRUE
                                                                                     TRUE
                                                                                                 FALSE
                                                                                                                 TRUE
                                                                                                                               FALSE
                                                                                                                                               TRUE
       TRUE
                  FALSE
                            TRUE FALSE
                                            FALSE
                                                            FALSE
                                                                         TRUE
                                                                                     TRUE
                                                                                                   TRUE
                                                                                                                 TRUE
                                                                                                                               FALSE
                                                                                                                                               TRUE
                            TRUE FALSE
       TRUE
                   FALSE
                                            FALSE
                                                             TRUE
                                                                         TRUE
                                                                                     TRUE
                                                                                                   TRUE
                                                                                                                 TRUE
                                                                                                                               FALSE
                                                                                                                                               TRUE
                            TRUE FALSE
       TRUE
                   FALSE
                                             TRUE
                                                             TRUE
                                                                         TRUE
                                                                                     TRUE
                                                                                                   TRUE
                                                                                                                 TRUE
                                                                                                                               FALSE
                                                                                                                                               TRUE
```

Sometimes easier to transpose this...

t(bs_mods\$which)

```
t(bs_mods$which)
                                3
(Intercept)
                TRUE
                       TRUE
                             TRUE
                                    TRUE
                                                 TRUE
                                          TRUE
                                                       TRUE
                                                              TRUE
population
                                                EALSE
                           FALSE
                                   FALSE
                                         FALSE
                                                             FALSE
female
                                  FALSE
                                                              TRUF
               FALSE
                     FALSE
                           FALSE
                                          TRUF
                                                 TRUF
rural
                     FALSE
                            FALSE
                                  FALSE
                                         FALSE
                                               FALSE
                                                      FALSE
                                                             FALSE
<u>non_</u>white
               FALSE FALSE FALSE
                                  FAL SE
                                         FALSE
                                               FALSE
                                                              TRUE
sroh_fairpoor FALSE
                     FALSE
                             TRUF
                                  FALSE
                                         FALSE
                                               FALSE
                                                       TRUF
                                                              TRUE
smoker_pct TRUE
                                                              TRUE
                       TRUE
                             TRUE
                                    TRUE
                                          TRUE
                                                 TRUE
                                                       TRUE
food_envir
                           FALSE
                                          TRUF
                                                 TRUF
                                                       TRUF
                                                              TRUE
                     FALSE
                                   TRUF
                                                 TRUE
                                                              TRUE
exer_access
                     FALSE
                           FALSE
                                  FALSE
                                         FALSE
                                                       TRUE
income_ratio
               FALSE FALSE FALSE
                                   TRUE
                                          TRUE
                                                 TRUE
                                                       TRUE
                                                              TRUE
air_pollution FALSE
                     FALSE
                           FALSE
                                  FALSE
                                         FALSE
                                               FALSE
                                                      FALSE
                                                             FALSE
health_costs
               FALSE
                       TRUE
                             TRUE
                                    TRUE
                                          TRUE
                                                 TRUE
                                                        TRUE
                                                              TRUE
```

Look at the R-square values for each "winning" model

```
bs_mods$rsq
```

```
[1] 0.6172471 0.6397030 0.6460605 0.6530869 0.6649312 [6] 0.6730306 0.6783975 0.6802613
```

```
bs_mods$adjr2
```

```
 [1] \ \ 0.6127964 \ \ 0.6312255 \ \ 0.6334198 \ \ 0.6363682 \ \ 0.6445001
```

[6] 0.6488107 0.6502573 0.6478827

Place winning results in bs_winners

```
bs_winners <- tbl_df(bs_mods$which)
bs_winners$k <- 2:9 ## in general, this is 2:(nvmax + 1)
bs_winners$r2 <- bs_mods$rsq
bs_winners$adjr2 <- bs_mods$adjr2
bs_winners$cp <- bs_mods$cp
bs winners$bic <- bs mods$bic</pre>
```

Calculate Bias-Corrected AIC from Residual Sum of Squares

This requires specifying the sample size (temp.n) and the number of inputs that you'll look at in your largest subset (here, we limited the number of variables to 8 with nvmax and so that's 9 inputs, including the intercept term.)

Detailed Breakdown: bs_winners

Inputs	Predictors	Raw r ²	Adj. r ²	C _p	BIC	AIC_c
2	smoker_pct	.617	.613	8.0	-75.6	1213.0
3	$+\ {\tt health_costs}$.640	.631	4.6	-76.4	1209.9
4	$+ { m sroh_fairpoor}$.646	.633	5.1	-73.5	1210.5
5	(see below)	.653	.636	5.4	-70.8	1211.0
6	+ female	.665	.645	4.5	-69.4	1210.2
7	$+ \mathtt{exer_access}$.673	.649	4.6	-67.0	1210.4
8	$+ \; \mathtt{sroh_fairpoor}$.678	.650	5.3	-64.0	1211.4
9	$+ \ \mathtt{non_white}$.680	.648	6.9	-60.0	1213.4

- The "best" model with 5 inputs includes smoker_pct, health_costs, food_envir and income_ratio.
- That model forms the basis for the "best" models with 6-9 inputs.

Resulting bs_winners tibble

```
head(bs_winners, 2)
```

```
# A tibble: 2 x 18
 `(Intercept)` population female rural non_white
 <lgl>
          1 T
              F
                        F
                           F
2 T
              F
  ... with 13 more variables: sroh_fairpoor <lgl>,
#
   smoker pct <lgl>, food envir <lgl>, exer access <lgl>,
#
   income ratio <lgl>, air pollution <lgl>,
#
   health costs <lgl>, k <int>, r2 <dbl>, adjr2 <dbl>,
#
   cp <dbl>, bic <dbl>, aic.corr <dbl>
```

If You're Curious: A Stepwise Fit

using backwards elimination produces the model containing:

- smoker_pct, health_costs, food_envir, income_ratio, female, and exer_access
- also known as what "best subsets" chose for its model 7.

Building the "Best Subsets" Plots

Adjusted R-square plot using ggplot2

```
p1 \leftarrow ggplot(bs winners, aes(x = k, y = adjr2,
                        label = round(adjr2,2))) +
    geom line() +
    geom label() +
    geom_label(data = subset(bs_winners,
                              adjr2 == max(adjr2)),
               aes(x = k, y = adjr2, label = round(adjr2,2)),
               fill = "vellow", col = "blue") +
    theme bw() +
    scale_x_continuous(breaks = 2:9) +
    labs(x = "# of predictors (including intercept)",
         y = "Adjusted R-squared")
```

Adjusted R-square plot using ggplot2

Mallows' C_p plot using ggplot2

Mallows' C_p plot using ggplot2

Corrected AIC plot using ggplot2

```
p3 <- ggplot(bs_winners, aes(x = k, y = aic.corr,
                             label = round(aic.corr.1))) +
    geom line() +
    geom label() +
    geom label(data = subset(bs winners,
                             aic.corr == min(aic.corr)),
               aes(x = k, y = aic.corr),
               fill = "pink", col = "red") +
    theme bw() +
    scale_x_continuous(breaks = 2:9) +
    labs(x = "# of predictors (including intercept)",
         y = "Bias-Corrected AIC")
```

Corrected AIC plot using ggplot2

BIC plot using ggplot2

```
p4 \leftarrow ggplot(bs winners, aes(x = k, y = bic,
                              label = round(bic,1))) +
    geom line() +
    geom label() +
    geom_label(data = subset(bs_winners, bic == min(bic)),
               aes(x = k, y = bic),
               fill = "lightgreen", col = "blue") +
    theme bw() +
    scale x continuous(breaks = 2:9) +
    labs(x = "# of predictors (including intercept)",
         v = "BIC")
```

BIC plot using ggplot2

All Four Plots Together

gridExtra::grid.arrange(p1, p2, p3, p4, nrow = 2)

The Four Plots (using Base R plotting)

Candidate Models include

Inputs	Raw r ²	Adj. r ²	C _p	BIC	AIC_c
3	.640	.631	4.6	-76.4	1209.9
5	.653	.636	5.4	-70.8	1211.0
8	.678	.650	5.3	-64.0	1211.4

- 3: smoker_pct + health_costs
- 5: Model 3 + food_envir + income_ratio
- 8: Model 5 + female + exer_access + sroh_fairpoor

10-fold Cross-Validation for Model 3

```
set.seed(432012)
cv 3 <- oh count %>%
  crossv kfold(k = 10) %>%
  mutate(model = map(train, ~ lm(years lost ~
                     smoker pct + health costs, data = .)))
cv3 pred <- cv 3 %>%
  unnest(map2(model, test, ~ augment(.x, newdata = .y)))
cv3 res <- cv3 pred %>%
  summarize(Model = "3",
            RMSE = sqrt(mean((years_lost - .fitted) ^2)),
            MAE = mean(abs(years_lost - .fitted)))
```

10-fold Cross-Validation for Model 5

```
set.seed(432013)
cv 5 <- oh count %>%
  crossv kfold(k = 10) %>%
  mutate(model = map(train, ~ lm(years_lost ~
                     smoker_pct + health_costs +
                     food_envir + income_ratio, data = .)))
cv5 pred <- cv 5 %>%
  unnest(map2(model, test, ~ augment(.x, newdata = .y)))
cv5 res <- cv5 pred %>%
  summarize(Model = "5",
            RMSE = sqrt(mean((years lost - .fitted) ^2)),
            MAE = mean(abs(years_lost - .fitted)))
```

10-fold Cross-Validation for Model 8

```
set.seed(432014)
cv 8 <- oh count %>%
  crossv kfold(k = 10) %>%
  mutate(model = map(train, ~ lm(years_lost ~
                     smoker pct + health costs +
                     food envir + income ratio +
                     female + exer access +
                     sroh_fairpoor, data = .)))
cv8_pred <- cv_8 %>%
  unnest(map2(model, test, ~ augment(.x, newdata = .y)))
cv8_res <- cv8_pred %>%
  summarize(Model = "8",
            RMSE = sqrt(mean((years lost - .fitted) ^2)),
            MAE = mean(abs(years lost - .fitted)))
```

Cross-Validation Results

```
bind_rows(cv3_res, cv5_res, cv8_res)
```

Fitting the Chosen Model

Fitting the Chosen Model

```
m3 <- lm(years_lost ~ smoker_pct + health_costs,
        data = oh_count)
arm::display(m3)
lm(formula = years_lost ~ smoker_pct + health_costs, data = ol
            coef.est coef.se
(Intercept) -5749.51 1248.81
smoker pct 517.62 61.10
health costs 0.34 0.15
n = 88, k = 3
```

residual sd = 949.37, R-Squared = 0.64

Fitting the Chosen Model

glance(m3)

```
r.squared adj.r.squared sigma statistic p.value

1 0.639703 0.6312255 949.3663 75.45825 1.439049e-19

df logLik AIC BIC deviance df.residual

1 3 -726.6504 1461.301 1471.21 76610187 85
```

Residual Plots for the Chosen Model

$$par(mfrow = c(1,2)); plot(m3, which = c(1, 5))$$

Next Time

- Best Subsets (more)
- Stepwise Regression and the Allen-Cady Procedure
- (soon) Making Decisions about Non-Linearity in Y or the Xs