STOR 320 Exploratory Data Analysis

Lecture 12

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

EDA Definition

- Read Chapter 7
- Know the Process
- Respect the Process

EDA Purpose

 Purpose of Asking Questions and Exploring Those Questions Using Visualizations and Summaries is to Spot Patterns

- Ask Yourself:
 - Is it Coincidence?
 - How Strong is the Relationship?
 - What Variables May Be Confounding?
 - Do Subgroups Cause the Relationship to Change?
 - How Can You Model the Pattern?

Findings

 Negative relationship between cut and price

 Positive relationship between size and price

Question

What is the relationship between

and

Visualize Summarize

```
```{r}
diamonds %>%
 summarize(n=n(),avgprice=mean(price),sdprice=sd(price),
 avgcarat=mean(carat),sdcarat=sd(carat),
 correlation=cor(price,carat))
 avgprice <dbl>
 sdprice

«dbl»
 avgcarat

«dbl»
 sdcarat
 correlation
 n
 <int>
 53940
 3932.8
 3989.44
 0.7979397
 0.4740112
 0.9215913
```





## Question

- Refined Questions
  - Is the Observed Relationship Spurious?
  - Can I Represent the Relationship Using a Linear Model?
  - Should I Use an Exponential Model to Represent the Relationship?
  - Does Another Variable Exist to Explain the Drastic Change in Spread?

Linear Model



Linear Model



Exponential Model



Exponential Model



Exponential Model

```
`{r}
exp.mod=lm(price~exp(carat),data=diamonds)
diamonds.exp.resid = diamonds %>%
 add_residuals(mod=exp.mod)
ggplot(data=diamonds.exp.resid) +
 geom_point(aes(x=carat,y=resid)) +
 coord_cartesian(xlim=c(0,2.5),
 ylim=c(-25000, 25000))
 20000 -
 10000 -
 resid
 0 -
 -10000 -
 -20000 -
 0.0
 0.5
 1.0
 2.0
 2.5
 carat
```