Presentability of symmetric measures

竹田航太

2022年10月10日

目次

1 Hewitt-Savage(不完全)

確率変数の「交換可能性」と積測度 (の混合) による表現可能性を結びつける数学的記述.

1.1 諸概念

 \mathcal{X} をある集合 X の部分集合の algebra とする. $\widetilde{\mathcal{X}}$ を X の可算コピーの集合とする ($\{a_i\}_{i=1}^\infty, a_i \in X$ のような列を要素とする.). $\widetilde{\mathcal{X}}$ を「cylinder set」全体を含む最小の σ -algebra とする. 詳細は [1] を見よ. $\mathbb P$ を (X,\mathcal{X}) 上の確率測度全体の集合とする. $\widetilde{\mathbb P}$ を「 $\mathbb P$ の要素のコピーの無限積」全体の集合とする.

Definition 1.1. $(\widetilde{X},\widetilde{\mathcal{X}})$ 上の確率測度 ν が symmetric とは以下が成り立つことを言う. $\forall A \in \widetilde{\mathcal{X}}, \, \forall T: \mathbb{N} \to \mathbb{N}$ with bijection, 有限個の自然数以外動かさない. s.t.

$$\nu(TA) = \nu(A).$$

この symmetric という性質は確率変数の「交換可能性」に対応する.

 $\widetilde{\mathcal{S}}$ を symmetric な $(\widetilde{X},\widetilde{\mathcal{X}})$ 上の確率測度全体の集合とする.定義から, $\widetilde{\mathbb{P}}\subset\widetilde{\mathcal{S}}$ がわかる.

$$\mathcal{P}^* = \sigma\left(\left\{N(E; \lambda) = \left\{\pi \in \mathbb{P} \mid \pi(E) \le \lambda\right\} \mid \lambda \in \mathbb{R}, E \in \mathcal{X}\right\}\right)$$

と定める*1.

 $[\]sigma(\cdot)$ は・を含む最小の σ -algebra を表す.

Definition 1.2. $\nu \in \widetilde{\mathcal{S}}$ が presentable とは以下が成り立つことを言う. $\exists \mu$ with $(\mathbb{P}, \mathcal{P}^*)$ 上の確率測度かつ可算加法的. $s.t. \ \forall A \in \mathcal{X}$

$$\nu(A) = \int_{\mathbb{P}} \tilde{\pi}(A) d\mu(\pi).$$

Hewitt と Savage は $\widetilde{\mathbb{P}}$ や $\widetilde{\mathcal{S}}$ の性質を調べて, $\widetilde{\mathcal{S}}$ の元が presentable になるための X と \mathcal{X} に関する十分条件を導いている [1,7 章など].

参考文献

[1] E HEWITT and LJ SAVAGE. Symmetric measures on cartesian products. *BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY*, 59(4):397, 1953.