Cyclotomic Extensions of \mathbb{Q}_p

Let p be a prime number.

1 Review: Galois theory

Let L/K be an algebraic extension. It is called:

- \diamond **normal**, if every polynomial $f \in K[T]$ with a root in L split in $L \iff L$ is the splitting field of a bunch of polynomials over K;
- \diamond **separable**, if for every element in L, its minimal polynomial over K has no multiple roots in its splitting field;
- \diamond Galois, if it is normal and separable, whence we put $Gal(L/K) := Aut_K(L)$.

For a finite normal extension L/K, $|\operatorname{Aut}_K(L)| \leq [L:K]$, where the equality holds $\iff L/K$ is separable, i.e. Galois. This is because a K-automorphism of L = K[T]/(f) just maps a root of f to another.

Let L/K be a finite Galois extension. The basic results of Galois theory says that the intermediate fields of L/K corresponds to the subgroups of Gal(L/K) bijectively and Gal(L/K)-equivariantly, where Galois extensions corresponds to normal subgroups. They are descibed as below.

- \rightarrow : For an intermediate field F, it gives $\operatorname{Gal}(L/F) \subset \operatorname{Gal}(L/K)$. Note that L/F is Glaois, but F/K is NOT always Galois. The Galois group acts on {intermediate field of L/K} by $(\sigma, F) \mapsto \sigma F = \sigma(F)$.
- \leftarrow : For a subgroup H < G, it fixes a subfield $L^H \subset L$. The Galois group act on $\{H : H < \operatorname{Gal}(L/K)\}$ by conjugation, i.e., $(\sigma, H) \mapsto \sigma H \sigma^{-1}$.