ASEPA Stream Monitoring: Results from Year 1 and Preliminary Interpretation

Guy T. DiDonato
Report for the American Samoa Environmental Protection Agency
2004

ABSTRACT

Tutuila, the largest island of American Samoa, is the location of the majority of American Samoa's perennial stream ecosystems. These systems are poorly understood and currently under threat by the Territory's growing human population. The American Samoa Environmental Protection Agency (ASEPA) monitors local streams using a modified probabilistic design. To select streams for monitoring, all perennial streams on Tutuila are pooled in to four classes, representing levels of anthropogenic disturbance (pristine, minimal, intermediate, extensive) within island watersheds. These classes are determined from watershed population density. In 2003, eight (8) streams, 2 from each watershed class, were selected randomly for monthly monitoring. In addition, a habitat assessment was conducted for each stream during the initial visit. The data show that there is a general gradient of decreasing habitat scores with increasing level of human disturbance as predicted by population density. Furthermore, many of the measured stream variables (temperature, nutrients, etc.) also varied predictably along the watershed disturbance gradient. This monitoring protocol captured in Year 1 the range of variability in these tropical stream ecosystems, and future monitoring will further refine our understanding of these tropical ecosystems and human impacts on them.

INTRODUCTION

Tutuila, the largest island of American Samoa, is the location of the majority of American Samoa's perennial stream ecosystems. These systems are poorly understood and currently under threat by Tutuila's burgeoning human population. Serious modifications in channel structure, flow regimes, and nutrient dynamics have already occurred (DiDonato *in press*), and this will likely continue as human pressures for land and household water increases.

The ASEPA stream monitoring program was designed to assist with the agency's mandate to assess the natural waters of the Territory. The Clean Water Act (section 305(b)) requires that all States and Territories submit to Congress an assessment of jurisdictional waters; waters that are found to be impaired are then promulgated to the 303(d) list. Up until 2003, the Agency had participated in some stream monitoring efforts or conducted limited stream sampling; however, this was typically done for short periods or very infrequently.

The current ASEPA stream monitoring program utilizes a modified probabilistic design. A small number of streams (8 in 2003-2004) are selected from a pool of all perennial streams, and these streams are visited at monthly or near-monthly frequencies for 1 year. These data are used to assess and evaluate the stream's condition or designated use, and then a new population of streams is selected. After several iterations, the data can be pooled for a comprehensive assessment.

METHODS

Eight (8) streams were selected randomly for monthly monitoring. Of these 8 ecosystems, two (2) were selected from each watershed class (pristine, minimal, intermediate, extensive). Classifications for each watershed of American Samoa and the criteria used in that determination

are presented in Table 1; for a full description of the classification scheme, see DiDonato (2004). Physical characteristics of the selected streams (e.g., total length, stream order, etc.) are representative of Tutuila streams (Table 2). Furthermore, the streams are distributed across the island (Figure 1). Five streams were located on Tutuila's south shore; 3, the less populated north shore.

Each stream was reconnoitered and surveyed for regular sampling sites. Between 1 and 3 sites were located on each stream (specific locations given in Appendix B, Figures 1-8); site selection was determined by accessibility and cooperation of nearby land owners. Once visited, the field team conducted a habitat assessment at each site using methods based on the US EPA's Rapid Bioassessment Protocols (Barbour et al. 1999). The following characters were evaluated at each site: epifaunal substrate/available cover, embeddedness, sediment deposition, channel flow status, channel alteration, and riparian vegetative zone width (Barbour et al. 1999). These characters were evaluated with a ordinal scoring system of 7, 5, 3, and 1 (7 being the highest, 1 the lowest). The values for each character at each site were summed and divided by 42 (the highest possible score), indicating in terms of % of maximum score the quality of stream and adjacent habitat at each site. Sites within streams were averaged for an overall stream score.

After site selection and habitat assessment, the following data were collected at monthly or near-monthly intervals. Hydrographic data (temperature, specific conductivity, pH, dissolved oxygen, percent dissolved oxygen saturation, and turbidity) were collected using a calibrated YSI data sonde. These data were recorded at each site. In addition to hydrographic parameters, water samples were collected for bacterial analysis and water chemistry. Bacterial analysis used Enterolert® to enumerate *Enterococcus* as a potential indicator of animal waste contamination. Single bacterial samples were collected in sterile 100 mL bottles, and 1:10 dilutions in the laboratory were routinely done for

enumeration. In cases where a duplicate was collected, samples were averaged to generate a mean site estimate of bacterial load. Stream water was also collected in 125 mL plastic bottles and frozen within 4 hours. Frozen water samples were sent to a commercial laboratory (AECOS, Hawaii) and analyzed for total nitrogen (TN), total phosphorus (TP), nitrate+nitrite (NO₃⁻+NO₂⁻), and ammonium (NH₄⁺).

Flow rates were measured at one station for each stream. In most cases, fieldteams measured flow using a Marsh-McBirney FloMeter2000 following standard methods (Gore 1996); discharge was calculated using field data. In some of the more remote locations where using the flow meter was impracticable, or in some of the streams with extremely low water levels, discharge was measured when possible by volumetric method.

In cases where water level at particular sites was too low to collect some or all of the required data, those data are missing.

Data Summary and Statistical Analyses

Since the unit of interest for this study was the entire stream, all site values for a given month were averaged together. In some cases, stream averages were used to evaluate the condition of the stream by comparing stream data to the American Samoa Water Quality Standards (ASWQS). In cases where there is no standard (e.g., Enterococcus, NH₄⁺, NO₃⁻+NO₂⁻, specific conductivity), monthly averages were used to evaluate stream dynamics.

All statistical analyses used monthly stream averages. One major question about these stream data was whether there were statistical differences between watershed classes for the measured parameters. To examine potential class differences, both streams within each class were pooled. Stream classes were then compared using one-way analysis of variance (ANOVA), with class (i.e.,

pristine, minimal, intermediate, extensive) as the treatment factor. Prior to testing with ANOVA, the assumption of homoscedasticity was evaluated with a Bartlett's test. If variances were found to be heteroscedastic, data were log-transformed. If transformed data satisfied the assumption of homoscedasticity, then data were tested with ANOVA and followed with a Tukey HSD comparison. Data that did not demonstrate equal variances were examined with the nonparametric Kruskal-Wallis test. The z-value calculated from the Kruskal-Wallis test was used to point out the relationship of individual class data compared to the overall median for all the data. This was used as a proximate indicator of watershed class differences.

RESULTS

Sampled Streams

Streams sampled during the 2003-4 annual period are shown in Figure 1, and detailed watershed maps are presented in Appendix B. The general physical characteristics of the study streams are presented in Table 2. Short descriptions of the stream and the surrounding environs are presented below.

Fagalii1 Stream (names of all streams follow Burger and Maciolek 1981), in Fagalii watershed (#2), is a 1st order stream (Figure B1). This stream is approximately 720 meters long and drains a land area of approximately 0.12 km². The average gradient of the stream is 18%, but the section below the road is much steeper than the segment above the road. Two sample locations were selected for this stream. The upstream site was approximately 100 meters above the road crossing, while the downstream site was approximately the same distance below the road. The watershed is predominantly forested, with small plantation clearings. However, during the survey period, the steep

stream banks in the upstream section were cleared for agriculture. The cleared vegetation was tossed into the stream channel, where it choked the small stream and caused pooling. Because of the clearing and the difficult access created by the discarded vegetation, the upstream sample station was relocated to just above the road for the remaining months.

Malota Stream in Malota watershed (#3), a 3rd order stream with a length of 7.30 km, drains 2.67 km² of relatively intact forest (Figure B2). There is one family living in this watershed. The disturbed locations associated with residential structures are relatively discrete and concentrated in the area below the road to the west of the stream channel. There is some disturbance above the road near another house. Three sites were selected for this stream. The downstream site was approximately 150 meters below the road. The midstream site was 500 meters upstream from the road, and the upstream site was 500 meters further. The upstream site was a short 5 minute walk from the first waterfall on this stream.

Fagatuitui Stream (Figure B3) is the 2nd westernmost stream in the Fagatuitui watershed (#9). This stream is a 1st order stream approximately 600 meters in length. It drains an area of 0.13 km², and the average gradient is 38%. There were three stations on this stream, spread across approximately 300 meters. The downstream site was just above the short falls leading to the beach and Fagatuitui cove, and the midstream and upstream sites were spaced about 150 meters apart. This stream flows entirely within the National Park of American Samoa (NPSA); the watershed is largely intact forest with minimal disturbance.

Auvaiola Stream in Amouli watershed (#20) is a short (410 m) 1st order stream in the western part of the watershed (Figure B4). It drains a small area (0.08 km²) of steep (31%) terrain. Initially, two sampling stations were selected, one approximately 75 meters above the road crossing, the other

about 30 meters below theroad crossing. The downstream site was abandoned after 4 visits; the local residents dump refuse from coconut husks to glass near the access point, and this made for very unsafe hiking conditions.

Figure B5 shows Nuu Stream, a short (620 m) 2nd order stream which flows entirely within the village of Alofau in the Fagaitua watershed (#21). It drains 0.1 km², and the gradient is very gentle (16%). There were 2 sites selected on this stream. The downstream site is just below the confluence of the 2 1st order channels. This section of the stream is highly channelized. The upstream site is on the southern most tributary. This site is above the houses in the village in a mixed forest/plantation region adjacent to the pulenuu's house. Sites were approximately 150 meters apart.

Alega Stream (Figure B6) drains 0.67 km² of Alega watershed (#22). This stream is 2.3 km long, with a gentle average gradient (15%); however, there are several steep waterfalls in the lower section of this stream. Two sites were sampled on Alega Stream. The first was adjacent to the Posala house approximately 100 m from where the highway crosses the stream. The second site was at the base of the first waterfall, over 200 m upstream from the downstream site.

Vailoa Stream (Figure B7) in the Pago Pago watershed (#24) is a 2nd order stream that flows through the village of Utulei. The majority of the stream channel is within the village and behind the American Samoa Government Executive Office Building. This stream is 0.98 km long and drains 0.23 km². The average gradient is gentle (17%), but the upstream section is very steep. Three sites were chosen along a 400 m stretch of this stream. The downstream site was behind the EPA building, and the midstream site was 250 meters from that in the middle of the village. The upstream site was an addition 150 meters, above the last house in the village and adjacent to plantation and mixed forest area.

Mataalii Stream (Figure B8) in Nuuuli Pala watershed (#27) is a 1.46 km 2nd order stream draining 0.48 km². This stream is generally low gradient (17%). The headwaters begin above the village of Nuuuli, but much of the stream is within the village and has been extensively modified and channelized. Three sites over approximately 700 meters were chosen within this stream. The downstream site is just below the Faoa house on the pala side, approximately 150 meters below the road. The midstream site is over 200 meters upstream from the road, in the area behind FLY, Inc. The upstream site is 250 m further upstream, above the last house on the stream and adjacent to a small plantation area.

Habitat Assessment

Habitat assessments were conducted upon initial visits in February, 2003. The maximum possible habitat assessment score at each site was 42, and individual site scores were calculated as a percentage of that maximum. Habitat scores for the entire stream were calculated by averaging individual site scores. The data show that there is a trend of decreasing habitat scores with increasing level of human disturbance as estimated by population density (Figure 2). Both Fagatuitui1 and Malota Streams scored very high in the habitat assessment, with Fagatuitui1 and Malota averaging 100% and 98%, respectively, across all sites. There is a trend to lower scores across the remaining streams. Nuu Stream in Fagaitua watershed had the lowest average score (57%) of all streams. The low score reflects the extensive channelization and loss of riparian zone, as well as evidence of sediment deposition and poor habitat quality, at the downstream site. In the most densely populated watersheds (Nuuuli Pala and Pago Pago), study streams showed impacted habitats. The scores, however, are weighted by the poor condition of the downstream or village sites, where stream segments are extensively modified by channelization and riparian loss. In both cases, the stream

segments above the villages demonstrated better habitat quality.

Water Quality

The 8 streams were monitored beginning in March, 2003, until February, 2004. All streams were visited at least 9 times, and several streams were visited every month. In general all streams followed the predictable longitudinal gradient typically exhibited by streams. For instance, specific conductivity generally increased as the stream flowed downstream towards the ocean, indicating that solute concentrations increase as the stream picks up more materials from the watershed. Summarized data for all parameters for each stream are presented in Table 3 and graphically summarized in Figures 3-5. Raw data are presented in Appendix A (Tables A1-A8).

Stream water temperature increased significantly across the gradient of impacted watersheds (ANOVA $F_{3,82}$ =9.95, p<0.001). The average temperature of the streams from each watershed class was 25.0 °C, 25.4 °C, 26.1 °C, and 26.5 °C for pristine, minimal, intermediate, and extensive watersheds, respectively. The increase in temperature with increased population density more than likely reflects the removal of the riparian zone along much of the stream. Without the shading from adjacent trees, stream water temperatures increase.

Most streams demonstrated high dissolved oxygen (DO) and DO saturation levels exceeding the American Samoa Water Quality Standards (ASWQS) for fresh surface waters (Table 3, Figure 3). Of all the streams, only Nuu Stream demonstrated persistently low dissolved oxygen (DO), with an average percent saturation of 66.6%, and violated the standard (not less than 75%). There was a significant difference between stream DO across watershed class (K-W test, H=27.09, p<0.001), and this reflects the lower median DO levels in the streams sampled from intermediate watersheds (including Nuu Stream). Pristine streams had the highest overall DO concentration, but there was

little difference between those streams from minimal and extensive watersheds (Table 4).

All streams satisfied the ASWQS for pH, which specifies that the pH range of fresh surface waters shall be between 6.5 and 8.6. There was a significant decrease in pH across a gradient of watersheds demonstrating increased human population density (ANOVA $F_{3,82}$ =6.51, p=0.001). The exact reason for this decrease is unclear.

The ASWQS sets 5.0 Nephalometric Turbidity Units (NTU) as the turbidity standard for fresh surface waters in American Samoa. Four streams satisfied the ASWQS, but turbidity exceeded the standard in Fagalii1, Auvaiola, Nuu, and Vailoa Streams (Table 3). In most cases, this reflects localized sedimentation. In some cases, however, it indicates pig waste or household grey water being disposed in the stream. There was a significant difference (K-W test, H=30.5, p<0.001) in stream turbidity across watershed classes. Pristine streams had the lowest median turbidity (3.0 NTU) followed by minimal streams (4.2 NTU). Streams in extensively disturbed watersheds demonstrated higher turbidities (4.9 NTU), while the intermediate streams were the most turbid (27.5 NTU).

Enterococci numbers were high in most streams, but a few streams stood apart as having relatively low numbers of this bacterial indicator (Table 3). Malota Stream had the lowest median concentration of *Enterococcus* [141 colony forming units(CFU)/100 ml] of all the streams, and Alega Stream was next with 947 CFU/100 ml. All other streams, including Fagatuitui1 in the National Park, exhibited higher bacterial levels. In many cases, the elevated levels likely signal inputs of animal waste (either human or pig). In other cases, within the National Park for instance, it may reflect indigenous bacteria in soils. Analyzing the bacterial data with a Kruskal-Wallis test demonstrated a significant difference in median bacteria counts between the watershed classes

(H=27.15, p<0.001). Streams in pristine and minimally impacted watersheds had the lowest bacterial numbers (433 and 1493 CFU/100mL, respectively). The streams in extensively disturbed watersheds had the next highest bacteria numbers (2250 CFU/100mL). The streams in intermediate watersheds had the highest numbers of Enterococci (7940 CFU/100mL). This high number was heavily influenced by the downstream site of Nuu Stream. This site was located just downstream of a piggery; the consistent presence of the indicator *Enterococcus* in this case likely indicates actual animal waste.

There was significantly more NH_4^+ in streams located in watersheds with higher population density (K-W test, H=18.5, p<0.001) than in watersheds with lower population density. The streams from pristine or minimal watersheds had very little NH_4^+ present, while the more impacted streams often had residual NH_4^+ present (Table 3). In fact Nuu Stream had the highest median NH_4^+ concentration (0.186 mg NH_4^+ /L; Figure 4), and this was likely due to direct input of pig waste (high in NH_4^+) nearby.

Stream $NO_3^-+NO_2^-$ also demonstrated significant differences between watershed classes (K-W test, H=49.61, p<0.001, Table 3). Highest $NO_3^-+NO_2^-$ levels were found in streams from extensive watersheds (Figure 4), and minimal watersheds were next highest. Pristine watershed streams had the lowest levels of $NO_3^-+NO_2^-$.

Total nitrogen (TN) differed across watershed class (K-W test, H=32.95, p<0.001), with streams in pristine and minimal watersheds exhibiting the lowest TN and streams in the intermediate and extensive watersheds showing the highest TN (Table 3). Fagalii1 Stream (minimal) actually violated the ASWQS during this annual period (Figure 4), which limits the amount of TN in fresh surface water to 0.300 mg/L. Total phosphorus (TP) also demonstrated a significant increase with

increasing watershed disturbance (K-W test, H=27.47, P<0.001). In the case of TP, however, the only streams that satisfied the ASWQS (0.150 mg/L) were the two pristine streams (Figure 4). TP in streams from other watershed classes was largely indistinguishable across classes.

The coefficient of variation (CV) reflects the within-stream level of variability in particular parameters. I examined specifically the CV for TN and TP. A significant increase in the CV would reflect a strong longitudinal gradient along the stream, exactly what you expect when a stream flows from the relatively undisturbed high elevation headwaters down through a village. Like other parameters, I expect that the CV will increase with increasing level of watershed population density. In fact, this appears to be the case. Log-transformed CV values for TN demonstrated significant differences across watershed classes (ANOVA F_{3,63}=25.69, p<0.001), with minimal and pristine watersheds demonstrating less than 10% CV while intermediate and extensive watersheds had >70% CV (Figure 5). The results for the significance test for the CV of TP demonstrated a significant difference across watershed classes (K-W test, H=32.42, p<0.001). For TP CV, minimal, pristine, and extensive watersheds demonstrated 3.7%, 11.5%, and 18.1% CV (Figure 5), while the intermediate watershed class had a much higher CV (69.7%).

Measured discharge from these streams ranged over close to 3 orders of magnitude. Auvaiola and Fagalii 1 Streams had the lowest median discharge, estimated at 0.1 L/s, while Alega and Malota Streams had the highest median discharge (Table 3).

An overall summary of the statistical analyses is presented in Table 4. This table shows the results of each statistical test, with the watershed classes arranged in order of increasing value for each parameter. Where possible, subscripts indicate the results of the Tukey's HSD comparisons. If a Kruskal-Wallis test was used, a bar indicates where the z value changes from negative (class

scores below the overall median score) to positive (class scores above the overall median score).

In general, Table 4 shows that there was a consistent gradient for each parameter that runs from streams in less impacted classes (i.e., pristine and minimal) to streams in more disturbed watersheds (i.e., intermediate and extensive). At this point, the discriminant power of these analyses is low; with only 2 streams from each class, there is not much statistical power to say with confidence that there are differences between specific classes. However, the fact that there are consistent differences between streams that show little human influence (pristine and minimal streams) and ones that have been modified (intermediate and extensive) suggests that these watershed classes reflect the condition of the stream ecosystems within them.

305b Assessment

The habitat assessment data and conventional water quality data were used to assess these fresh surface waters of Tutuila, American Samoa. The habitat data were considered to demonstrate Data Quality Level 1, while the physical and chemical data were considered Data Quality Level 2. Of the 8 streams assessed, three streams (Malota, Fagatuitui1, and Alega) were considered fully supporting of their aquatic life designated use. The other 5 streams (Fagalii1, Auvaiola, Nuu, Vailoa, and Mataalii) were deemed to be not supporting. The summaries of these assessments and the rationale for the designated use determination are given in Appendix C.

DISCUSSION

The first year of the ASEPA Stream Monitoring Program revealed some interesting information concerning the fundamental design of the stream monitoring program, as well as some insight into Tutuila streams and their general condition.

Previous stream monitoring efforts undertaken on this island (e.g., M&E Pacific 1979, CH2MHill 1984) have yielded some useful information on the range of water quality in selected island streams. For instance, M&E Pacific (1979) reported stream water quality data from 12 streams across the island which were sampled over 2 short periods within one year. This study had nice spatial coverage, but did not delve into the temporal dynamics exhibited by tropical streams. CH2MHill (1984) summarized water quality data from selected streams in the Pago Pago harbor region. This work gives a concise picture of stream contributions to the harbor during a carefully defined temporal window. Later efforts by ASEPA staff sampled some of these streams again, and sampled them for several years. However, each stream might have been sampled from once to many times within an annual period. The primary shortcoming of these data is that the collected information does not provide a comprehensive picture of stream condition in the Territory (DiDonato in press).

The ASEPA stream monitoring program was designed to address our agency's requirement to survey, assess, and evaluate streams with respect to the ASWQS. We needed to develop a program that would provide quantitative data that could be used for assessment and also for comparison with other island streams. For this we selected a modified probabilistic approach that allowed us to select streams at random from watersheds classified according to their potential anthropogenic disturbance. In effect, this stratified the pool of over 140 perennial streams on Tutuila into 4 classes and allowed us to block for one potentially large source of between-stream variability; that is, the density of people living around that stream.

One of the main goals of Year 1 is to evaluate how useful and appropriate that classification scheme is by evaluating how stream hydrography, nutrients, and chemistry change across the

watershed gradient. These data demonstrate that watershed class (i.e., human impact) correlated across the gradient of streams for a variety of parameters. This is summarized in Table 4. Not only do the averages of the different parameters rank in the expected order (e.g., increasing temperature, nutrients) but statistical analyses show that there are differences across those groups. For instance, water temperature showed an increasing gradient from the most pristine to the most disturbed streams. Tukey analysis revealed that there were several statistical breakpoints along that gradient, and that the pristine streams showed significantly lower water temperatures over the course of a year than streams in extensively disturbed watersheds. That is also true for pH. For analyses where we could only employ the nonparametric K-W test, there were no post tests that could distinguish groups. However, the z scores, which show the group median in relation to the overall median (i.e., z scores are negative when a group median is below the overall median and positive then the group median is above the overall median), suggest that there were differences between the least and most impacted watershed streams.

Note that there is not a perfect correspondence between watershed class and particular parameters. For instance, the pristine and intermediate streams had the lowest NO₃⁻+NO₂⁻ levels, while the minimal and extensive streams had the highest NO₃⁻+NO₂⁻ levels. In general, however, the ordering and the presence of breaks in the data between the least and most impacted watershed streams suggests that the classification stratifies the stream ecosystems across a consistent and real source of variability. Continued monitoring using a different population of streams (already selected for the current 2004-2005 year) will provide more data and may provide a more rigorous indication of island streams along the suspected watershed gradient.

ACKNOWLEDGMENTS

The ASEPA Water Program supported this work, and the efforts of Edna Buchan, Water Program Manager, were a major impetus behind this work. ASEPA laboratory staff, including Joe Kim, Jansen Masaniai, Ati Tago, Iose Vaouli, and Elena Paselio, were also instrumental in all phases of this project. Assistance of the lab staff both in the field and in the laboratory is gratefully acknowledged. The author also thanks the staff of the National Park of American Samoa, Doug Neighbor, Superintendent, for logistical assistance. In particular, Ryan Moniello and Rory West, Jr., were instrumental in field collections. Troy Curry of ASDOC assisted with collecting spatial data and provided mapping assistance.

LITERATURE CITED

- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers; periphyton, benthic macroinvertebrates, and fish, 2nd Ed. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Burger, I. L. and J. A. Maciolek. 1981. Map inventory of nonmarine aquatic resources of American Samoa with on-site biological annotations. Review draft. U.S. Fish and Wildlife Service, National Fisheries Research Center, Seattle, WA.
- CH2MHill. 1984. Joint study of fish cannery wastewater effluent loading reduction at Pago Pago Harbor, American Samoa. Report prepared for the American Samoa Government.

 Bellevue, WA.
- DiDonato, G. T. 2004. Developing an initial watershed classification for American Samoa.

- Report prepared for the American Samoa Environmental Protection Agency.
- DiDonato, G. T. In press. Nitrogen and phosphorus concentrations in tropical Pacific insular streams: historical data from Tutuila, American Samoa. Micronesica.
- Gore, J. A. 1996. Discharge measurements and streamflow analysis. In: Methods in Stream Ecology (F. R. Hauer and G. A. Lamberti, eds.), Academic Press, San Diego, CA. Pp 53-74.
- M&E Pacific, Inc. 1979. Baseline water quality survey in American Samoa. Report prepared for the U.S. Army Engineering Division. Honolulu, HI.

Table 1. Information and classification for watersheds of American Samoa.

Watershed	Number	Watershed	Population ¹	Pop'n Density	Classification ³
		Area (mi ²)	•	(mi. ⁻²)	
Poloa	1	0.42	203	483	minimal
Fagalii	2	0.80	259	324	minimal
Maloata	3	1.08	17	16	pristine
Fagamalo	4	1.30	39	30	pristine
Aoloau Sisifo	5	0.62	0	0	pristine
Aoloau Sasae	6	2.05	nd^2		pristine
Aasu	7	3.27	1142	349	minimal
Fagasa	8	1.35	900	667	intermediate
Fagatuitui	9	2.00	0	0	pristine
Vatia	10	1.89	648	343	minimal
Afono	11	1.29	530	411	minimal
Masefau	12	1.42	435	306	minimal
Masausi	13	0.60	192	320	minimal
Sailele	14	0.26	100	385	minimal
Aoa	15	0.85	507	596	intermediate
Onenoa	16	0.30	153	510	intermediate
Tula	17	0.60	413	688	intermediate
Alao	18	0.52	528	1015	extensive
Auasi	19	0.40	189	473	minimal
Amouli	20	0.80	520	650	intermediate
Fagaitua	21	1.88	1460	777	intermediate
Alega	22	0.51	111	218	minimal
Laulii-Aumi	23	0.70	1186	1694	extensive
Pago Pago	24	4.00	10586	2647	extensive
Fagaalu	25	0.96	1006	1048	extensive
Matuu	26	1.00	671	671	intermediate
Nuuuli Pala	27	6.70	8344	1245	extensive
Tafuna Plain	28	5.50	17256	3137	extensive
Fagatele-Larso	29	1.23	nd		pristine
Leone	30	5.67	6600	1164	extensive
Afao-Asili	31	1.07	438	409	minimal
Nua-Seetaga	32	1.20	694	578	intermediate
Amanave	33	0.40	287	718	intermediate
Aunuu Sisifo	34	0.38	476	1253	extensive
Aunuu Sasae	35	0.22	0	0	pristine
Ofu Saute	36	1.78	289	162	minimal
Ofu Matu	37	1.06	10	9	pristine
Olosega Sisifo		0.80	216	270	minimal
Olosega Sasae		1.20	0	0	pristine
Tau Matu	40	14.20	873	61	pristine
Tau Saute	41	3.3	0	0	pristine

¹population data are taken from the US 2000 Census

²no data

³disturbance classification based on numeric criteria: density <100 mi², pristine; 101<density<500 mi², minimal; 501<density<1000 mi², intermediate; >1001 mi², extensive

Table 2. Stream name and geographical characteristics for streams selected for sampling in the 2003-04 sampling period. Stream names and physical characteristics were based on USGS maps and/or collected from unpublished survey reports.

Stream	Classification	Order	Drainage Area (km2)	Total Length (km)	Linear Distance (km)	Elevation (m)	Gradient
Fagatuitui1	Pristine	1	0.13	0.60	0.6	227	0.38
Malota	Pristine	3	2.67	7.30	2.6	338	0.13
Alega	Minimal	3	0.67	2.31	1.8	269	0.15
Fagalii1	Minimal	1	0.12	0.72	0.7	126	0.18
Auvaiola	Intermediate	1	0.08	0.41	0.4	122	0.31
Nuu	Intermediate	2	0.10	0.62	0.3	49	0.16
Mataalii	Extensive	2	0.48	1.46	1.5	246	0.16
Vailoa	Extensive	2	0.23	0.98	0.8	137	0.17

Table 3. Hydrographic and water chemistry data for 8 streams sampled from March, 2003 to February, 2004. For all water quality parameters, the tabulated number is the median monthly average across all sampled sites. The number in parentheses is the number of monthly samples.

Stream ¹	Classification	Temp (°C)	Sp. Cond. (mS/cm)	DO (mg/L)	DO (%sat)	Hd	Turbidity (NTU)	Enterococci (MPN)	$\mathrm{NH_4}^+$ (mg/L)	$NO_3^++NO_2^-$ (mg/L)	TN (mg/L)	TP (mg/L)	Discharge ² (L/s)
Fagatuitui 1	Pristine	25.23	0.145	7.95	96.9	7.89	1.5	1054 (8)	0.000 (8)	0.056	0.172 (8)	0.094 (8)	0.7
Malota	Pristine	25.13 (11)	0.076 (11)	8.65 (11)	106.4 (10)	7.39 (11)	3.6 (11)	141 (12)	0.000 (10)	0.012	0.083	0.089	79.2 (6)
Alega	Minimal	25.58 (12)	0.121 (12)	8.41 (12)	103.9 (12)	7.36 (12)	2.9 (12)	947 (12)	0.000 (10)	0.148	0.241 (10)	0.222 (10)	30.7
Fagalii 1	Minimal	25.74 (11)	0.083	7.30 (11)	85.0 (10)	6.94 (11)	11.3	2275 (12)	0.001	0.225 (10)	0.367	0.189	0.1 (5)
Auvaiola	Intermediate	25.59 (12)	0.186 (12)	6.82 (12)	83.3 (12)	7.42 (12)	30.3 (12)	4133 (12)	0.003	0.061	0.409	0.239	0.1 (4)
Nuu	Intermediate	26.87 (12)	0.233 (12)	5.26 (12)	66.6 (12)	7.15 (12)	24.1 (12)	9195 (12)	0.186	0.044	1.088 (10)	0.286	4.0 (6)
Mataalii	Extensive	26.17 (10)	0.120 (10)	8.00	101.0	7.12 (10)	2.2 (10)	1321 (12)	0.000 (10)	0.260 (10)	0.376 (10)	0.152	8.0 (5)
Vailoa	Extensive	26.77 (11)	0.137 (11)	7.86 (10)	98.9 (10)	7.14 (11)	7.1 (11)	3295 (12)	0.011	0.307	0.486	0.224 (10)	11.0
Stream nam	¹ Stream names follow Burger and Maciolek (1981)	nd Maciole	k (1981)										

¹Stream names follow Burger and Maciolek (1981)

 $^2\mathrm{Disc}$ harge calculated from flow measurement made at one station along the stream

Table 4. Results of the ANOVA (with Tukey HSD post test) or the Kruskal-Wallis test examining differences between watershed classes for different stream parameters.

Variable	inci	reasing a	verages -		•
Temperature	P ^a	$M^{\ a,b}$	I b,c	E c	ANOVA
Dissolved Oxygen	I	E	M	P	K-W
pH	E a	$\mathbf{M}^{a,b}$	$I^{a,b}$	P ^b	ANOVA
Turbidity	P	M	Е	I	K-W
Enterococcus	P	M	Е	I	K-W
$\mathrm{NH_4}^+$	P	M	Е	I	K-W
$NO_3^- + NO_2^-$	P	I	M	E	K-W
TN	P	M	E	I	K-W
TP	P	M	E	I	K-W
Coefficient of Variation (log ₁₀ TN)	M ^a	$P^{\ a}$	I b	E ^b	ANOVA
Coefficient of Variation (TP)	M	P	E	I	K-W

List of Figures

- Figure 1. Island of Tutuila, American Samoa, and its perennial streams. Streams indicated by darker lines represent the population sampled in 2003-2004.
- Figure 2. Habitat assessment data from 8 streams of Tutuila, American Samoa.
- Figure 3. Box-and-whisker plots showing monthly stream hydrographic data from 8 streams of Tutuila, American Samoa, sampled from 2003-2004.
- Figure 4. Box-and-whisker plots showing monthly stream chemistry data from 8 streams of Tutuila, American Samoa, sampled from 2003-2004.
- Figure 5. Box-and-whisker plots showing the coefficient of variation (CV) in TN and TP for 8 streams of Tutuila, American Samoa, sampled from 2003-2004. The CV reflects the withinstream level of variability of those nutrients.

Appendix A

Table A1. Raw data collected at near-monthly intervals from 3 sites on Fagatuitui† Stream (Watershed #9), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

ischarge (L/s)				ischarge (L/s)				ischarge (L/s)		0 4. L	2.0	į				
P (mg/L) D		0.065 0.093 0.082 0.084 0.113	0.060 0.090 0.217	P (mg/L) D		0.073 0.082 0.078 0.086 0.100	0.074 0.104 0.431	P (mg/L) D		0.081 0.089 0.099 0.128 0.125	0.079 0.114 0.102	P (mg/L)		0.073 0.088 0.086 0.099 0.113	0.071 0.103 0.250	0.094
'N (mg/L) T		0.146 0.203 0.150 0.179 0.312	0.150 0.161 0.890	TN (mg/L) T		0.128 0.171 0.154 0.151 0.223	0.157 0.148 1.860	TN (mg/L) T		0.148 0.190 0.156 0.274 0.295	0.161 0.137 0.244	TN (mg/L) T		0.141 0.188 0.153 0.201 0.277	0.156 0.149 0.998	0.172
Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0.037 0.049 0.017 0.038 0.060	0.024 0.029 0.140	Turb (NTU) Baci (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0.071 0.084 0.051 0.068 0.088	0.058 0.039 0.166	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0.064 0.085 0.031 0.057 0.121	0.053 0.048 0.110	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L)		0.057 0.073 0.033 0.054 0.090	0.045 0.039 0.139	0.056
H4 (mg/L) N		0 0 0.005 0.006	000	H4 (mg/L) N		0 0 0 0.004	0.06	H4 (mg/L) N		0 0 0.0026 0.002	000	H4 (mg/L) N		0 0 0.010 0.004	0.020	0.000
cti (MPN) N		7068 4611 1274 669 2118	959 954 14136	cti (MPN) N		1396 24192 122 316	156 565 24192	cti (MPN) N		413 1024 2332 413 257	218 1076 1112	cti (MPN) N		2959 9942 1243 466 848	444 865 13147	1054 8
rb (NTU) Ba	2.0	5.3 7.0 1.7 2.3	1.8 0.8	rb (NTU) Ba	2.0	3.5 0.2 0.9	4.1 0.1	rb (NTU) Ba	13.0	0.7 4.4 0.5 0.5	0.1	rb (NTU) Ba	79.7	2.63 4.97 0.70 1.23	0.33	1.5
PH Tu	8.01	8.08 8.00 7.56 7.46	7.59	Hq T	7.83	8.11 8.05 7.78 7.56	7.66	pH Tu	7.91	8.05 8.03 7.71 7.67	7.81	DH Tu	7.92	8.08 8.03 7.68 7.56	7.69	7.89
te)		93.2 84.3 88.7	92.1 94.3	site)		97.0 95.4 96.7	98.3 97.1	site)		100.6 95.0 100.4	103.7 99.9	O (% sat)		96.9 91.6 95.3	98.0 97.1	96.9
am si	8.38	7.93 6.98 7.32	7.42	eam s	8.49	8.17 7.87 7.96	8.03	strear o (mg/L) D	7.30	8.52 7.82 8.23	8.41	O (mg/L) D	8.06	8.21 7.56 7.84	7.95	7.95
upstream site) Sal (ppt) DO (mg/L) DO (% sat)	0.00	0.06 0.05 0.05	0.05	midstream site)	0.00	0.08 0.07 0.09 0.09	0.07	downstream site	0.00	0.07 0.07 0.09 0.08	0.07	ge Sal (ppt)	0.00	0.07 0.06 0.08 0.08	0.06	0.07
Stream, FG1 (upstream site)	0.144	0.121 0.115 0.135 0.136	0.112	FG2 (0.136	0.162 0.154 0.187 0.190	0.147	Stream, FG3 (downstream site)	0.118	0.153 0.144 0.185 0.177	0.157	Stream, average Temp (°C) SpCond (mS/cm) Sal (ppt) DO (mg/L) DO (% sat)	0.133	0.145 0.138 0.169 0.168	0.135	0.145
Strear emp (°C) Sp	25.50	24.78 23.40 24.88 25.06	26.40 25.79	Stream,	25.40	25.10 23.96 25.16 25.25	25.74 25.46	Strear emp (°C) Sp	25.20	25.29 23.64 25.15 25.38	26.04 25.40	Strear emp (°C) Sp	25.37	25.06 23.67 25.06 25.23	26.06 25.55	25.23 7
<u> </u>	12:50	10:07 11:50 10:30 11:44 11:39	13:30 11:09 10:55	$\overline{}$	12:06	11:07 10:09 11:09 10:52	13:03 10:38 10:20	← '	11:16	10:25 9:39 10:15	12:34 9:58 9:30	← '				
Fagatuitui Date Time	4/4/2003	6/24/2003 7/21/2003 8/28/2003 9/15/2003 10/28/2003	12/18/2003 1/21/2004 2/26/2004	Fagatuitui Date Time	4/4/2003	6/24/2003 7/21/2003 8/28/2003 9/15/2003 10/28/2003	12/18/2003 1/21/2004 2/26/2004	Fagatuitui Date Time	4/4/2003	6/24/2003 7/21/2003 8/28/2003 9/15/2003	12/18/2003 1/21/2004 2/26/2004	Fagatuitui Date Time	4/4/2003	6/24/2003 7/21/2003 8/28/2003 9/15/2003 10/28/2003	12/18/2003 1/21/2004 2/26/2004	
Month	April	June July August September October	December January February	Month	March April	_	December January February	Month	April	May June July August September October		£	April	_	December January February	

Table A2. Raw data collected at monthly intervals from 3 sites on Malora Stream (Watershed #3), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	Discharge (L/s)										Discharge (1 /s)	Discrina ge (L/s)													Discharge (L/s)						0.89	44.7	304.0	74.4	84.0	102.0	9													
	P (mg/L)		0.071		0.081	0.101	0.079	0.083	0.074		(I/500) O	(III)		0.079	0.077	0.567	0.082	0.0	0.1.0	0000	0000	0.083			P (mg/L)			0.092	0.085	000.0	0.111	0.117	0.106	0.091	0.110	0.094			P (mg/L)		0.081	0.078	0.616	0.084	0110	0.091	0.087	0.098	0.004	0.089
	V (mg/L) T		0.062		0.074	0.133	0.061	0.084	060.0		T (1/500/ 1	(J/6)		0.058	0.051	1.480	0.000	0.030	071.0	0.003	0.035	0.098			T (Mg/L) T			0.090	0.049	0.70	0.097	0.128	0.101	0.086	0.083	0.130		ŀ	(mg/L) T		0.070	0.049	1.620	0.072	0.127	0.075	0.088	0.077	0.100	0.083
	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0.014		0.009	0.018	0.009	0.010	0.007		T (1/5m/ 5/60)	1018 (1410) Baca (14114) 1414 (1119/L) 1402/3 (1119/L) 114 (1119/L) 11 (1119/L) Discribings (L.S.)		0.015	0.012	0.009	0.010	4 600	0.022	0.00	0.012	0.007			102/3 (mg/L) Ti	195.7 15531		0.018	4.0.0	0.00	0.020	0.023	0.017	0.015	0.004	0.013		i .	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) 170 9 8179		0.016	0.013	0.012	0.010	0.010	0.012	0.012	0.007	6000	0.012
	H4 (mg/L) N		00		00	0	0 0	0	0		4 (//5w) VH	1 (1)(5)(1)		0	0 0	210.0	-	> 0	-	0	0 0	0			H4 (mg/L) N			0 0	0 100	0.03	0	0	0	0	0	0			H4 (mg/L) N		0	0	0.05	0 0) C	0 0	0	0 0	>	0.000
	cti (MPN) NI	2187	359 4 122	: 1	52 74	94	249	20	20		IN (MDN) in	6820	285	185	63	10831	32	† *	4 6	200	1 20	158			cti (MPN) N	15531	240	776	327	- 230	169	89	816	266	0	182			cti (MPN) NI 8170	295	361	144	13181	138	2 80	421	138	49	7	141
	ırb (NTU) Ba	88.4	0. 6. 0. 6.	4	3.6 3.1	2.4	2.0	- 2	1.7		ea (LITIN) da	2283	64.0	4.6	0	226.0	9 0	, c	0.7	 	<u>.</u> 4	t 6:		_	irb (NTU) Ba	195.7	13.0	5.9	9 770	0.4.6	. e.	1.5	8.3	1.0	0.7	4.		Ë	rb (NTU) Ba	28.3	8.4		250.3	ۍ ۳ د	; 6	6.2	1.3	- 1	<u>:</u>	3.6
	된	7.70	04.7 7.44.7	!	7.67	7.38	7.24	6.85	7.18		Ę	7 88 7	7.08	7.37	1	07.7	7.73	7.70	7.57	7.57	24.7	7.30		roa	PH T	8.14	7.04	7.76	7	5.7	7.43	7.75	7.56	7.81	6.30	69.9			Ε 1 6	717	7.52		7.37	7.31	7.54	7.39	7.48	6.78	90.7	7.39
	0 (% sat)	100.4	0 0.00 11.5/ 3 0.03 7.53 92.2		112.3	102.9	104.4	101.5	103.9		(tes %) O	106.2		95.3		103.4	1.3.5	0.70	1.4.7	101.2	170.0	106.7		below	O (% sat)	5 0.03 8.58 106.0	;	92.8	000	13.0	110.8	111.6	112.8	112.3	106.7	107.4		3	(% sat)	7:40	93.4		103.4	100.4	1097	108.1	106.7	106.1	0.00	106.4 10
ite)	J (mg/L) 🗅	8.21	7.53	!	9.49 9.12	8.47	8.66	8.40	8.51	site)	(/ /	ר לאפריי האפרי	11.59	7.78	ò	8.61	0.0	0.00	9.21	0.0	0.0	8.68		n site] (J/gm) C	8.58	11.56	7.57	0	0.00	9.22	9.01	9.23	8.91	8.56	8.72			DO (mg/L) DO (% sat)	11.57	7.63		8.61	2.0 4.00	3 6	8.92	8.65	8.54	9.04	8.65
eam s	al (ppt) D	0.02	0.03		0.03	0.04	0.03	0.03	0.03	ream	Sal (mpt) DO (mpd/l.) DO (% sat)	(10d) IB	0.00	0.03	0	0.02	0.03	20.0	40.0	50.0	0.00	0.03		strear	al (ppt) Di	0.03	0.00	0.03	0	20.0	0.0	0.04	0.04	0.04	0.04	0.04		3	Sal (ppt) D	0.02	0.03		0.05	0.03	200	0.03	0.03	0.03	0.03	0.03
sdn)	nd (mS/cm	0.053	25.20 0.060 2 25.15 0.063		0.068	0.083	0.070	0.072	0.075	2 (midstream site)	(m2/2m)		0.062	0.066	0	0.043	0.00	0.000	0.087	0.07	0.077	0.074		eam, MA3 (downstream site below	ond (mS/cm) S	0.065	0.072	0.073	0.044	0.047	0.091	960:0	0.084	0.085	0.087	0.084		ลงตลนูด	Temp (°C) SpCond (mS/cm) S	0.055	0.067		0.045	0.072	080	0.076	0.078	0.079	0.0.0	0.076
eam, MA1	emp (°C) SpC	25.40	25.20 25.15	;	23.88	25.12	24.75	25.00	25.35	eam. MA2	Jus (J.) June	25 51 0 054	25.10	25.08		24.53	23.71	45.54	25.22	24.70	25.19	25.56		ım, MA	emp (°C) SpC	25.63 0.065	25.10	25.08	24 67	23.87	23.77	25.48	24.92	25.71	26.57	25.96		המווו, מעת	emp (°C) SpC	25.13	25.10		24.55	23.81	25.27	24.81	25.30	26.15	79.67	25.13
Strea		10:57	11:02	:	11:41	11:02	10:53	11:45	11:33	Strea)	7	11:00	10:37		12:01	40.1	30.07	10:42	10.0	5.5	11:16		Strea	Time	33	10:20	10:06	14.64	5.5	9:18	10:02	10:02	9:51	10:42	10:47	Otro	v	ıme											
Malota	Date	3/26/2003	4/23/2003 5/22/2003 6/17/2003	7/28/2003	8/18/2003 9/24/2003	10/24/2003	11/24/2003	12/22/2003	2/19/2004	Malota	ote C	3/26/2003	4/23/2003	5/22/2003	6/17/2003	7/28/2003	8/18/2003	9/24/2003	10/24/2003	17/24/2003	1/20/2003	2/19/2004		Malota	Date	3/26/2003	4/23/2003	5/22/2003	5/11/2003	8/18/2003	9/24/2003	10/24/2003	11/24/2003	12/22/2003	1/29/2004	2/19/2004	Moloto		Date	4/23/2003	5/22/2003	6/17/2003	7/28/2003	8/18/2003	10/24/2003	11/24/2003	12/22/2003	1/29/2004	7/19/2004	
	Month	March	Aprii May June	July	August September	October	November	January	February		Month	March	April	May	June	July	August	September	October	November	December	February	•		Month	March	April	May	June	August	September	October	November	December	January	February		:	Morreh	April	May	June	, July	September	October	November	December	January	rebluary	

Table A3. Raw data collected at monthly intervals from 2 sites on Alega Stream (Watershed #22), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)													NO2/3 (mg/l) TN (mg/l) TP (mg/l) Discharge (1/s)	(- i-) -6						7.7	22.2	56.1	36.5	24.8	41.4	30.7																
	TP (mg/L)		0.240	0.213	0.244	0.205	0.243	0.262	0.148	0.196	0.217	0.240		[P (mg/l) [1		0.223	0.209	0.239	0.202	0.235	0.244	0.156	0.191	0.206	0.226			rP (mg/L)			0.232	0.211	0.242	0.204	0.239	0.253	0.152	0.194	0.212	0.233	0.222	10
	rN (mg/L) 1		0.243	0.238	0.223	0.205	0.217	0.260	0.292	0.257	0.184	0.401		L (1/0m) N	, i		0.237	0.251	0.254	0.222	0.242	0.224	0.288	0.256	0.183	0.367			L (Mg/L) 1			0.240	0.245	0.239	0.214	0.230	0.242	0.290	0.257	0.184	0.384	0.241	10
	O2/3 (mg/L) 1		0.134	0.170	0.152	0.126	0.143	0.127	0.199	0.134	0.109	0.185		O2/3 (ma/l)			0.153	0.183	0.169	0.149	0.160	0.136	0.203	0.147	0.127	0.171			NO2/3 (mg/L) TN (mg/L) TP (mg/L)			0.144	0.177	0.161	0.138	0.152	0.132	0.201	0.141	0.118	0.178	0.148	10
	1H4 (mg/L) N		0	0	0	0	0	900.0	0	0	0	0		NH4 (ma/l) N			0	0	0	0	0	0	0	0	0	0			NH4 (mg/L) N			0	0	0	0	0	0.003	0	0	0	0	0.000	10
		3076 4740	418	448	894	275	161	1112	203	121	814	1671		Bacti (MPN)		2481	1354	220	2932	413	358	902	297	246	1353	1354				3591	3611	988	499	1913	344	260	1009	250	184	1084	1513	947	12
	$\overline{}$	5.1 35.8	3.5	7:	4.0	3.2	2.0	1.8	4.8	1.9	1.7	4.9		Turb (NTI.) B	37	19.6	2.3	1.1	1.7	2.7	1.6	6.0	2.9	1.0	9.0	3.5			Turb (NTU) Ba	4.4	27.7	2.9	1.1	2.9	3.0	1.8	4.1	3.9	1.5	1.2	4.2	2.9	12
	PH .	7.31	7.37	7.68	7.55	7.82	7.69	7.47	7.38	7.41	7.29	7.14		Ha	7 48	7.30	7.30	7.68	7.58	7.85	7.61	7.04	7.23	7.33	7.40	7.41			PH T	7.49	7.31	7.34	7.68	7.57	7.84	7.65	7.26	7.31	7.37	7.35	7.28	7.36	12
	DO (% sat)	97.2	90.4	99.5	99.1	108.2	101.0	110.7	113.3	104.3	101.0	100.2		DO (% sat)	2 26	97.1	91.5	108.1	108.7	106.4	102.4	108.5	108.5	105.0	100.4	108.1			DO (% sat)	97.5	97.1	91.0	103.8	103.9	107.3	101.7	109.6	110.9	104.7	100.7	104.2	103.9	12
(t)		7.89	7.12	8.61	8.13	9.25	8.25	8.87	9.25	8.34	8.10	8.13	site)			8.02	7.34	9.23	8.82	9.08	8.37	8.78	8.90	8.46	8.05	8.70			DO (mg/L) D	7.94	7.96	7.23	8.92	8.48	9.17	8.31	8.83	9.08	8.40	8.08	8.42	8.41	12
am site	Sal (ppt) DO (mg/L)	0.05	90.0	90.0	90.0	0.05	90.0	90.0	0.02	0.02	0.02	0.05	ream	Sal (ppt) DO (mg/l)	0.00	0.05	90.0	90.0	90.0	0.02	90.0	0.07	0.02	90.0	90.0	0.02			Sal (ppt)	90.0	0.02	90.0	90.0	90.0	0.02	90.0	0.07	0.02	90.0	90.0	0.05	0.00	12
Stream, AL1 (upstrea	Temp (°C) SpCond (mS/cm)	0.099	0.128	0.122	0.131	0.113	0.128	0.137	0.103	0.119	0.116	0.109	Stream, AL2 (downstream	Temp (°C) SpCond (mS/cm)	0.124	0.108	0.134	0.127	0.134	0.118	0.130	0.141	0.112	0.125	0.121	0.117	Ç	aga	Temp (°C) SpCond (mS/cm)	0.121	0.104	0.131	0.125	0.133	0.116	0.129	0.139	0.108	0.122	0.119	0.113	0.121	12
n, AL1	emp (°C) Sp	25.22 25.65	26.18	22.36	25.36	23.18	25.43	25.83	25.25	26.07	26.36	25.95	n, AL2	emp (°C) Sr	25.61	25.66	26.12	22.68	25.43	23.30	25.57	25.55	25.35	25.96	26.52	26.24	ć	ב, מע <u>ת</u>	əmp (°C) Sp	25.42	25.66	26.15	22.52	25.40	23.24	25.50	25.69	25.30	26.02	26.44	26.10	25.58	12
Strean	Time Te	10:47	11:45	14:46	14:41	12:11	13:07	11:48	12:25	11:11	12:52	13:28	Strean	Time	~	11:27	11:38	14:40	14:36	12:05	12:49	11:31	12:12	11:01	12:38	13:17	0,40	Silealli, avelaye	Time Te														
Alega 3	Date	3/19/2003	5/15/2003	6/23/2003	7/23/2003		9/16/2003	10/22/2003	11/25/2003	12/29/2003	1/28/2004	2/18/2004	Alega (Date (3/19/2003	4/21/2003	5/15/2003	6/23/2003	7/23/2003			10/22/2003	11/25/2003	12/29/2003	1/28/2004	2/18/2004	700	Ω	Date	3/19/2003	4/21/2003	5/15/2003	6/23/2003	7/23/2003	8/27/2003	9/16/2003		11/25/2003	12/29/2003	1/28/2004	2/18/2004		
	£	March	May	June	July	August	September	October	November	December	January	February		Month	March	April	May	June	July	August	ē	October	November	December	January	February			Month	March	April	May	June	July	August	September		November	December	January	February		

Table A4. Raw data collected at monthly intervals from 2 sites on Fagalii1 Stream (Watershed #2), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	charge (L/s)											(0/1/05/040	cialge (LS)						0.1		2.6	0.1	0.3	0.1	0.1														
	⁻ P (mg/L) Dis		0.159	0.408	0.201	0.203	0.231	0.152	0.178	0.196		, (/ / / / d	ביין (ביינייי) בי		0.169	0.171	0.665	0.185	0.237	0.244	0.233	0.149	0.189	0.175		-P (ma/l)	î .		0.164	0.175	0.537	0.193	0.220	0.244	0.232	0.151	0.184	0.186	0.19
	L (J/gm) N.		0.266	0.947	0.365	0.561	0.363	0.31	0.318	0.423		[\ [/~w/] N.	(J/6) N		0.303	0.392	1.380	0.349	0.591	0.535	0.364	0.192	0.365	0.426		L (/bw) N.	(i iii		0.285	0.370	1.164	0.357	0.576	0.535	0.364	0.251	0.342	0.425	0.37
	O2/3 (mg/L) T		0.132	0.297	0.222	0.302	0.193	0.128	0.251	0.260		T \ 1/200/ 6/60	02/3 (1119/1) 1		0.201	0.266	0.320	0.228	0.323	0.113	0.198	0.057	0.245	0.280		T (I/pm) 8/60	. (1.6)		0.167	0.225	0.309	0.225	0.313	0.113	0.196	0.093	0.248	0.270	0.22
	NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0.004	0.005	0.004	0.010	0	0.019	0	0		$\langle c_i \rangle / \langle c_i \rangle = \langle c_i \rangle / \langle c_$	NI (J/6III) #1 IN		C	0	0.008	0	0.009	0	0	0	0	0		NH4 (mg/l) ND2/3 (mg/l) TN (mg/l)	· (i)		0	0.002	0.007	0.002	0.010	0	0	0.010	0	0	0.00
		4748 6867	1664	22/2	229	307	802	712	624	256		(IADA)		5475 1664	1281	12997	24192	4352	243	4	3208	4352	3448	1547		Bacti (MPN)		4266	1473	7240	15979	2515	275	41	2007	2532	2036	905	2275.25 12
	Turb (NTU) Bacti (MPN)	30.0	19.8	134.9	12.9	12.6	25.6	4.7	7.5	7.9		J. (11TIA) A.1.1.		87.78 0.80	2.52)	144.2	9.3	10.0	2.7	23.9	2.5	5.6	4.8		Turb (NTU) B		29.0	17.3		139.6	11.1	11.3	2.7	24.8	3.6	9.9	6.4	11.30
		6.47	6.94	6.70	7.50	6.62	6.91	6.79	6.29	06.90		F	Ļ	7.15 7.15	7.20	ì	6.90	7.82	96.9	6.92	7.14	7.13	6.64	7.43		Ī	46	6.81	7.07		6.80	2.66	6.79	6.92	7.03	96.9	6.47	7.17	6.94
	DO (% sat)	67.5	85.8	100.2	55.9	84.3	88.8	46.2	61.2	57.2		(60 %)	(/o sar)	9.1.01	903		100.6	91.7	101.2	20.7	8.66	88.7	102.5	101.0		DO (% sat)	986		88.1		100.4	73.8	92.8	20.7	94.3	67.5	81.9	79.1	84.95
site)	<u>,</u>	10.31	06.9	8.33	4.59	6.50	7.21	3.57	4.75	4.35	Fa2 (downstream site)	(+55 /6/ OG (550/ OG (+55/ 153	(1/gill) (40.24	7.73) :	8.35	7.60	8.10	3.88	8.16	7.10	8.25	8.10		Q (1/bm) OQ		10.44	7.32		8.34	6.10	7.30	3.88	7.69	5.34	6.50	6.23	7.30
tream s	_	0.03	0.03	0.05	0.04	0.04	0.03	0.04	0.04	0.04	nstrea	(+aa/ 100	משו (אשנו) די המשו	0.03	0 03	5	0.05	0.04	0.04	0.02	0.04	0.04	0.04	0.04		Sal (not)		0.00	0.03		0.05	0.04	0.04	0.02	0.04	0.04	0.04	0.04	0.04
Fa1 (upsti	SpCond (mS/cm)	0.068	0.069	0.047	0.082	0.079	0.077	0.085	0.082	0.085	(dowr	(30)30) 650		0.072	0.077		0.048	0.083	0.087	0.098	0.080	0.089	0.090	0.090	average	SpCond (mS/cm)	0.070	0.065	0.073		0.048	0.083	0.083	0.098	0.079	0.087	0.086	0.088	0.08
am, Fa1	mp (°C) SpCon	25.30	26.19	24.63	25.20	24.88	25.47	26.11	26.21	26.16				25.80	26.01		24.68	24.77	24.36	25.95	25.48	25.89	25.64	26.11				25.30	26.10		24.66	24.99	24.62	25.95	25.48	26.00	25.93	26.14	25.74 11
1 Stre	Time Temp (°C)	9:05 9:28	11:55	12:29	14:15	11:35	11:53	11:22	10:22	10:31	1 Stre	() awot owit	D 6	 00	11.47	:	12:22	14:05	11:23	12:02	11:47	11:13	10:15	10:22	1 Stre	Time Te													
Fagalii 1 Stream,	Date	3/31/2003 4/23/2003	5/22/2003	7/28/2003	8/28/2003	9/24/2003	11/24/2003	12/22/2003	1/29/2004	2/19/2004	Fagalii 1 Stream,) {	Date 0.000	3/31/2003	5/22/2003	6/18/2003	7/28/2003	8/28/2003	9/24/2003	10/24/2003	11/24/2003	12/22/2003	1/29/2004	2/19/2004	Fagalii 1 Stream.	Date	3/31/2003	4/23/2003	5/22/2003	6/18/2003	7/28/2003	8/28/2003	9/24/2003	10/24/2003	11/24/2003	12/22/2003	1/29/2004	2/19/2004	
	Month	March April	May	July	August	September October	November	December	January	February		A+cc/A	INC. INC.	March	May	June	July	August	September	October	November	December	January	February		Month	March	April	May	June	July	August	September	October	November	December	January	February	

Table A5. Raw data collected at monthly intervals from 2 sites on Auvaiola Stream (Watershed #20), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

charge (L/s)	0.02	0.03 0.1 0.4 0.065	4 Discharge (L/s)		charge (L/s)
o (mg/L) Disc 0.260 0.233 0.326 0.33	0.301 0.301 0.146	0.231 0.231	o (mg/L) Disc	0.254	0.257 0.257 0.237 0.326 0.231 0.348 0.346 0.146 0.183 0.242 0.239
N (mg/L) TF 0.410 0.295 0.577	0.503	0.281 0.420 0.349	z (mg/L) TF	0.502	N (mg/L) TF 0.462 0.399 0.577 0.275 0.503 0.759 0.154 0.281 0.420 0.349 0.409
Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s) 34.1 9208 193.1 8164 0 0.084 0.410 0.280 17.0 1274 0.028 0.061 0.295 0.233 17.2 1984 0 0.055 0.089 0.577 0.231 30.4 1814 0 0.046 0.755 0.231	0.058	0.032 0.064 0.030	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) 27.5 3591 129.6 10462	0.159	Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s) 30.8 6400 0.128 0.462 0.257 161.4 9313 0.010 0.128 0.462 0.257 36.5 770 0.019 0.110 0.399 0.237 31.2 19863 0.055 0.089 0.577 0.326 30.4 1814 0 0.046 0.275 0.231 21.8 4611 0.017 0.077 0.503 0.318 30.1 8665 0.060 0.058 0.759 0.301 13.7 1137 0 0.014 0.154 0.146 13.2 2938 0.066 0.032 0.281 0.183 22.3 3654 0 0.064 0.242 23.8 4133 0.003 0.061 0.409 0.239 12 12 10 10 10 10
H4 (mg/L) Ni 0 0.028 0.055	0.017	0.006	H4 (mg/L) Ni	0.010	H4 (mg/L) N 0.019 0.055 0.017 0.060 0.006 0.006
acti (MPN) N 9208 8164 4884 1274 19863	4611 8665 1137	9208 2993 3654	acti (MPN) N 3591 10462	2665 2665	acti (MPN) N 6400 9313 2690 770 19863 1814 4611 8665 1137 9208 2993 3654 12
rb (NTU) Bi 34.1 193.1 33.1 17.0 30.2	21.8 30.1 13.7	13.2 22.3 23.8	rb (NTU) B3 27.5 129.6	26.0	76 (NTU) Bi 30.8 161.4 33.1 36.5 30.4 22.8 30.1 13.2 22.3 23.8 30.3
pH Tu 7.48 7.25 7.37 7.55 7.18 7.73	7.18	7.23 8.36 8.49	pH Tu 7.66 7.43	7.63	PH 7.57 7.34 7.37 7.38 7.18 7.18 7.18 7.18 7.18 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10
DO (% sat) 79.2 90.5 62.5 82.6 44.5	53.4 81.6 116.1	94.6 84.9 104.8	(% sat) 82.8 95.6	95.0 102.7	DO (% sat) 81.0 81.0 83.1 62.5 92.7 44.5 81.6 53.4 81.6 116.1 94.6 84.9 104.8
227550	4.36 6.55 9.31	7.61 6.67 8.46	o (mg/L) D	7. 8	DO (mg/L) C (5.51 7.51 7.51 7.86 7.86 6.96 6.96 6.55 9.31 7.61 6.67 6.82 6.82
Upstream site) 6.76m) Sal (ppt) DO (mg/L) 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	0.09 0.00	0.09	downstream site) (Skm) Sal (ppt) DO (mg/L) DO (% sat) (0.263 0.12 6.6 82.8	0. 4	Sal (ppt) D 0.11 0.08 0.09 0.12 0.01 0.08 0.09 0.09 0.09 0.09
(upStm) (mS/cm) 0.184 0.119 0.193 0.226 0.226	0.198 0.176 0.185	0.175 0.186 0.163	(dow (mS/cm) 0.263	0.286	Auvaiola Stream, average Date Time Temp (°C) SpCond (mS/cm) 3/19/2003 26.39 0.224 4/21/2003 25.82 0.165 5/15/2003 23.90 0.236 7/23/2003 25.33 0.226 8/27/2003 25.33 0.175 9/16/2003 25.44 0.198 10/22/2003 25.51 0.175 11/25/2003 25.51 0.175 2/18/2004 26.84 0.186 2/18/2004 25.66 0.186 25.59 0.186 12 25.59 0.186
a Stream, Au1 (9:30 26:06 10:30 25:66 10:40 26:06 13:37 23:19 13:40 23:20	25.44 25.51 25.47	25.73 26.84 25.66	(c) Sam, Asian (c) St. 26.71	24.61	ream, 6 Temp (°C) St 26.39 26.39 25.30 25.33 23.20 25.44 25.51 25.51 25.73 25.73 25.66 25.59
la Stre Time Te 9:30 10:30 10:40 13:40 11:10	10:53	9:52 11:20 12:06	la Stre Time Te 9:18	10:17	la Stre
Auvaiola Stream, Au1 Date Time Temp (°C) SpCond 3/19/2003 9:30 26.06 4/21/2003 10:30 25.66 5/15/2003 10:40 26.06 6/23/2003 13:37 23.19 7/23/2003 13:40 25.33	9/16/2003 10/22/2003 11/25/2003	12/29/2003 1/28/2004 2/18/2004	Auvaiola Stream, Au2 Date Time Temp (°C) SpCond 3/19/2003 9:18 26.71	4/2/1/2003 5/25/2003 6/25/2003 7/25/2003 8/27/2003 9/16/2003 10/22/2003 1/25/2003 1/28/2004	Auvaiol Date 3/19/2003 4/21/2003 5/15/2003 6/23/2003 7/23/2003 7/23/2003 9/16/2003 11/25/2003 11/28/2004 2/18/2004
Month March April May June June	September October November	December January February	Month March April	April May June July August September October November December January	Month March April May June July August September October November December January February

Table A6. Raw data collected at monthly intervals from 2 sites on Nuu Stream (Watershed #21), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	harge (L/s)										harde (1 /c)	(2) 26 (2)						2.8	0.8	27.8	2.2	2.0	23.6	4.0 6														
	P (mg/L) Disc	0.046	0.087	0.073	0.250	0.063	0.054	0.104	0.048		Jaio (I/pm/ d.) (i i i i i i i i i i i i i i i i i i i		0.738	0.671	0.942	0.259	0.964	0.799	0.147	0.269	0.283	0.106		(I/5m/ d.	(1)		0.392	0.379	0.942	0.166	0.964	0.525	0.105	0.162	0.194	0.077	0.286
	N (mg/L) T	0.393	0.151	0.269	1.000	0.236	0.265	0.554	1.010		T (1/2m) N	. /I		2.950	2.040	2.860	1.050	4.500	3.770	0.450	1.530	1.455	1.150		T (// 500/ N	(1)		1.672	1.096	2.860	0.660	4.500	2.385	0.343	0.898	1.005	1.080	1.088
	NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)	0.013	0.021	0.030	0.022	0.009	0.000	0.122	0.035		(s/ 1) epischaria (l/pm) TT (l/pm) NT (l/pm) (l/pm) NHV	. (1)8)		0.011	0.019	900.0	0.439	0.007	0.023	0.121	0.258	0.508	0.252		(/pm/ GT (/pm/ NT (/pm/ 8/60N	. (1,8,11)		0.012	0.020	900'0	0.235	0.007	0.023	0.065	0.129	0.315	0.144	0.044
	NH4 (mg/L) N	0	0.020	0	0.021	0	0	0.043	0.007		NH4 (mg/l) N	(1)		2.110	0	1.790	0.254	2.480	1.920	0	0.276	0.423	0.121		NH4 (mg//)			1.055	0.010	1.790	0.127	2.480	0.971	0	0.138	0.233	0.064	0.186
	Bacti (MPN) 24192	19863	1012	3873	226	393	1935	3654	24192		Racti (MPN)	17320	15531	16430	19863	24192	7701	9208	3476	4106	14136	12033	24192		Racti (MDN)	20761	17697	9182	10437	24192	2487	9208	1851	2250	8036	7844	24192	9195
		23.4	35.7	48.6	61.1	35.1	28.2	35.3	148.5		A (I ITH) ATI	() (74.7	10.6	9.9	16.0	10.4	12.8	10.2	21.0	25.8	5.5	29.0		HILLY (NTII)		92.2	17.0	21.2	16.0	29.5	12.8	35.7	28.1	27.0	20.4	103.8	24.1 12
	рН Ти 7.09	6.92 7.10	7.53	7.80	7.50	7.40	7.21	7.80	7.65		H	6	6.9	6.85	7.15	6.78	7.25	7.12	7.04	96.9	7.04	7.34	7.53		Ī	8	6.92	6.98	7.34	6.78	7.53	7.12	7.27	7.18	7.13	7.57	7.59	7.15
	O (% sat) 76.5	90.8 71.8	64.2	102.3	94.3	114.6	85.4	84.8	111.1	road)	OO (% sat)	(20 CV)	78.8	18.3	36.2	22.4	48.8	13.8	45.2	97.0	41.6	64.4	84.9		(tes %) OO	58.4	84.8	45.0	50.2	22.4	75.6	13.8	8.69	105.8	63.5	74.6	98.0	66.6
	DO (mg/L) DO (% sat) 6.09 76.5	7.32 5.61	5.16	8.58	7.55	9.13	6.81	6.53	8.72	near r			6.20	1.34	2.87	1.78	4.02	1.09	3.41	7.70	3.27	4.86	6.59		0 (1/5/1/)		6.76	3.48	4.02	1.78	6.30	1.09	5.48	8.42	5.04	5.70	7.66	5.26 12
site)	Sal (ppt) 0.44		0.08	90.0	0.07	0.02	90.0	90.0	0.02	hannel near	Cal (not) D) PP4					0.11	0.27	0.26	0.07	0.11	0.14	0.08		Cal (not) D	_	0.05	0.22	0.12	0.27	0.09	0.27	0.17	90.0	0.09	0.10	0.07	0.11
Nuu Stream, Nu1 (east trib	Temp (°C) SpCond (mS/cm) 36 26.81 0.900	0.127	0.175	0.121	0.151	0.116	0.124	0.138	0.110	Nuu Stream, Nu3 (main cha	(m2/Sm) buo'd	0.315	1 26.61 0.107	0.479	0.311	0.556	0.238	0.566	0.538	0.158	0.228	0.306	0.169	ade		0.608	0.117	0.451	0.243	0.556	0.180	0.566	0.345	0.137	0.176	0.222	0.140	0.233
Nul	emp (°C) S 26.81	27.02	24.08	24.19	26.49	26.59	26.51	27.39	27.40	Nu3	S (5°) uma) (G) do	26.61	27.76	25.37	27.03	24.88	26.91	27.99	26.56	27.14	29.03	28.01	avera	S (Se) ame	26.84	26.53	27.39	24.73	27.03	24.54	26.91	27.24	26.58	26.83	28.21	27.71	26.87
ream,	Time T 9:56	11:06	14:02	11:34	11:16	11:43	10:27	11:51	12:40	ream,	Time	07.0	10:51	10:59	13:54	13:56	11:27	11:48	11:03	11:31	10:13	11:40	12:28	ream,	Time T													
Nuu St	Date 3/19/2003	4/21/2003 5/15/2003	6/23/2003		_	11/25/2003	12/29/2003	1/28/2004	2/18/2004	Nuu St	Date	3/10/2003	4/21/2003	5/15/2003	6/23/2003	7/23/2003	8/27/2003		10/29/2003	11/25/2003	12/29/2003	1/28/2004	2/18/2004	Nuu Stream, average	Date	3/19/2003	4/21/2003	5/15/2003	6/23/2003	7/23/2003	8/27/2003	9/16/2003	10/29/2003	11/25/2003	12/29/2003	1/28/2004	2/18/2004	
	Month March	Aprii May	June Julv	August	October	November	December	January	February		Month	March	April	May	June	July	August	September	October	November	December	January	February		Month	March	April	May	June	July	August	September	October	November	December	January	February	

Table A.7. Raw data collected at monthly intervals from 3 sites on Mataalii Stream (Watershed #27), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	je (L/s)				1.7	;	82.6	8.0	8 0. c		ge (L/s)													ge (L/s)						700	t.08														
	Discharç										Dischar													Discharç																					
	P (mg/L) 1	0.531	0.168	0.155	0.175	0.135	0.128	0.158			P (mg/L) I			0.136	0.10	0.123	0.137	0.210	0.102	0.176	0.158	0.123		P (mg/L)		0.119	0.130	0.125	0.165	0.157	0.130	0.197		P (mg/L)			0.262	0.128	0.131	0.159	0.195	0.131	0.163	0.152	10
	N (mg/L) T	0.815	0.112	0.109	0.129	0.093	0.142	0.123			7 (mg/L) T			0.127	2.5	0.103	0.130	0.364	0.116	0.187	0.266	5		7 (mg/L) T		2.010	1.160	0.554	0.853	1 710	0.805	1.040		V (mg/L) T			0.984	0.303	0.255	0.371	0.373	0.940	0.168	0.376	10
	2/3 (mg/L) Tr	0:020	0.058	0.053	0.062	0.034	0.034	0.037			2/3 (mg/L) Ti			0.053	0.00	0.057	0.042	0.080	0.069	0.037	0.049	0.00		2/3 (mg/L) Th		1.780	1.070	0.440	0.755	1 440	0.600	0.847		2/3 (mg/L) Th			0.628	0.233	0.183	0.286	0.197	0.224	0.029	0.260	10
	NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)	0	0 0	0	00	0	0 0	00			Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		•	0 0	0 0	0 0	0	0.041	0	0	0 0	>		Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		0 0	0 0	0	0	c	0.004	0		Turb (NTU) Bacti (MPN) NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L)		,	0 0	0	0	0	0.021	0.001	00	0.000	10
		2063	373	97	266 1850	108	374	374			acti (MPN) N	831	4884	14136	780	1053	368	2481	121	1326	1515	320		acti (MPN) N	1899	1884	2903	1374	3255	100	924 6510	6510		acti (MPN) N	926	2548	6028	307 1346	841	1296	2166	2737	962 2737	1321	12
	Turb (NTU) Bacti (MPN)	115.4	2.4	1.3	0.1 0.6		5.2	- 6:0			rb (NTU) Ba	2.2	1.7	9.6	4	5.6	6.7	11.7		16.6	4 ¢ - v	ř	_	rb (NTU) Ba	1.2	1.6	0.8	0.0	6.0		0.0	0.0		rb (NTU) Ba	6 .	5.5	42.2	2.2	1.5	2.9	6.2	7.3	1.9	2.2	9
	pH Tur 7.24	7.00	7 20	7.17	6.96 7.15		7.05	7.18			pH Tu	7.90	7.15	7.15	7 15	7.3	7.05	7.65		6.9	6.90	02.7	v road	된	6.55	6.88	6.77	7.12	6.29		6.55	7.55		Hd T	7.23	7.19	7.01	7.04	7.20	6.77	7.40	6.86	6.85	7.12	9
	0 (% sat) 111.8		114.8	114.2	115.5 99.3		102.9	111.1			ಲ		105.3		7 00	103.8	102.7	102.6		106.4	100.4	5	belov	O (% sat)	73.9		72.4	1001	86.2		89.5	83.6		O (% sat)	99.5	111.0		95.5	106.0	101.5	101.0	9.66	104.6 99.6	101.0	6
oite)	0 (mg/L) D 8.84	9.40	9 44	9.43	9.18 7.96	;	8.38	9.00		site)	Q (mg/L) D	8.82	8.50		7 0 7	8.37	8.10	8.01		8.58	8.01 201	0.23	m site	O (mg/L) D	5.59		5.77	7.74	6.71		7.09	6.43		O (mg/L) D	7.75	8.95		7.73	8.51	8.00	7.99	8.02	8.38 7.91	8.00	6
(unstream site)	Sal (ppt) Do	0.03	0.04	0.04	0.04	;	0.03	0.04		(midstream site)	Sal (ppt) Do	0.04	0.05	0.03	2	0.0	0.04	0.05		0.03	0.0	5.5	(downstream site below road)	Sal (ppt) DO (mg/L) DO (% sat)	0.09	0.10	0.11	0.11	0.12		0.09	0.10		Sal (ppt) Do	90.0	0.05 8.95	0.05	90.0	90.0	0.07	0.02	0.05	0.04	0.00	10
	$\overline{}$	0.072	0 082	0.087	0.089	ļ	0.074	0.085		17 (mlas	Temp (°C) SpCond (mS/cm) Sal (ppt) DO (mg/L) DO	0.087	0.101	0.075	200.0	760.0	0.097	0.104		0.075	0.097	0.0	_	Temp (°C) SpCond (mS/cm)	0.187	0.208	0.225	0.226	0.251		0.19	0.222	average	~	0.121	0.101	0.118	0.134	0.137	0.146	0.105	0.113	0.094	0.120	10
Z Z	emp (°C) Sp 26.40	24.79	24.49	24.91	24.90 25.73	:	25.18	25.59		am, ⊠	emp (°C) Sp	27.35	26.17	24.85	25.86	26.24	25.83	26.26		25.27	26.45	20.03	am, M	emp (°C) Sp	29.33	26.58	26.61	28.67	28.31		26.73	27.61	a a	amp (°C) Sp	27.69	25.98	25.41	25.65	26.61	26.35	26.00	25.73	26.37 26.61	26.17	19
:: Syfre	Time Te	9:27	12.10	13:17	12:55 9:01	14:50	9:34	10:06	Č	= Stre	Time Te	12:18	11:13	9:15	10.01	13:03	12:44	8:46	14:41	9:22	9:39	9.00	ii Stre	Time Te	12:08	8:57	11:53	12:53	12:30	14.05	9:09	9:46	Stro	Time i											
Mataalii Stream MT1	Date 3/27/2003	5/21/2003	6/18/2003	8/21/2003	9/24/2003	11/20/2003	12/23/2003	2/12/2004		Mataalli Stream, MTZ	Date	3/27/2003	4/29/2003	5/21/2003	7/31/2003	8/21/2003	9/24/2003	10/16/2003	11/20/2003	12/23/2003	1/26/2004	2/12/2004	Mataalii Stream, MT3	Date	3/27/2003	5/21/2003	7/31/2003			10/16/2003	12/23/2003	1/26/2004 2/12/2003	Mataalii Straam	Date	3/27/2003	4/29/2003	5/21/2003	6/18/2003	8/21/2003	9/24/2003	10/16/2003	12/23/2003	1/26/2004 2/12/2003		
	Month March	May	June	, t	ے وا	9		February			ج	ے		May		Audust	September	October	November	Ξ.	January February	reblualy		Month	March April	May	anie Juk	August	ā	October		January February		ے			May		ıst	peı	October	December	January February		

Table A8. Raw data collected at monthly intervals from 3 sites on Vailoa Stream (Watershed #24), American Samoa. Monthly averages across all sampled sites are shown at the bottom.

	iischarge (L/s)									ischarge (L/s)												iecharde (1 /e)	iscriarge (L/s)					4.0	4.0 6	52.7	6.8	15.1	9											
	P (mg/L) D	0.179	0.183	0.193	0.175	0.152	0.181	0.191		P (mg/L)		0 234	0.252	0.253	0.268	0.256	0.339	0.234	0.273	0.257		J (1/5m/ d	בו (חושרו) ב		0.193	0.252	0.223	0.216	0.242	0.240	0.408	0.252		P (mg/L)			0.202	0.229	0.223	0.222	0.213	0.225	0.287	0.22
	N (mg/L) T	0.237	0.353	0.230	0.181	0.171	0.281	0.425		N (mg/L) T		0.352	0.533	0.465	0.708	0.512	0.541	0.599	0.758	0.569		T (1/2m/ N	- (118/LI) N		0.404	0.440	0.562	0.577	0.493	1.10	0.912	0.742		N (mg/L) T			0.331	0.460	0.500	0.471	0.555	0.883	0.613	0.49
	2/3 (mg/L) T	0.127	0.236	0.123	0.021	0.071	0.083	0.269		2/3 (mg/L) T		0.238	0.392	0.338	0.423	0.314	0.230	0.303	0.494	0.372		T (I/Du/) 2/3	(1)(B)(1) C/2		0.287	0.307	0.376	0.322	0.214	0.000	0.424	0.405		2/3 (mg/L) T			0.217	0.307	0.307	0.237	0.316	0.348	0.334	0.31
	NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)	00	0	0 00 0	0.016	0 0	o c	0		NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L) Discharge (L/s)		c	0	0	0	0 100	0.027	0 0	0	0		NH4 (had) NO3/3 (had) NT (had) Nischara (l/s)	(I)(III) t. I		0 70	0.004	0.007	0.029	0.016	0.097	0.130	0.032		NH4 (mg/L) NO2/3 (mg/L) TN (mg/L) TP (mg/L))		0 00 0	0.008	0.002	0.011	0.020	0.026	0.043	0.01
		2489	512	250 108	1500	313	290	1710		acti (MPN) N	3448	5 6.8 2143 0 14.4 2666	1211	3448	1313	2382	8164	3214	8164	3214				9450	1850	11199	1607	1153	3102	4062	7270	4962				3916	2335	5053	1057	1214	3634	3295	5241 3295	3295.33 12
	Turb (NTU) Bacti (MPN) 4.3 1747 2.8 156	11.8	7.7	3.3	4.1	0.0	15.0	2.5		irb (NTU) Ba	8.3	6.8	Ė	10.8	6.4	<u>د</u> و حن و	7.7	18.0	3.4	4.9		(MDM) ipod (ITM) danit	10.8	11.6	13.2	178	4.6	2.8	9.0	- 6 - 7	6.3	2.8		Turb (NTU) Bacti (MPN)	7.8	7.1	13.1	10.1	6.4	7.7	9.5	17.2	3.7 4.4	7.07
	pH Tu 6.87 7.22	6.71	7.38	7.42	7.90	6.98	6.79	6.77	_	핃	0	7.15	5	7.36	7.34	7.11	7.30	7.35	6.85	6.94	(96	7.51	6.83	7.74	7.40	98.9	7.16	04.7	7.34	6.91		표	6	7.29	6.78	7.49	7.39	6.97	7.19	7.14	6.99	7.14
	O (% sat) 97.1 126.5		111.7	111.4	101.6	110.6	102.1	107.7	bridg	O (% sat)	92.0	97.9		101.1	98.1	94.0	116.7	102.4	92.7	106.9	hing	100 %	(70 sat) 69.3	115.5		76.9	97.2	87.8	108.2	90.9	66.7	82.2		DO (% sat)	86.1	113.3		9.96	102.2	4.101	112.1	98.9	87.9 98.9	98.93
te)	Sal (ppt) DO (mg/L) DO (% sat) 0.05 7.75 97.1 0.06 10.70 126.5		9.18	9.07	8.06	8.97	8.32	8.50	site by bridge)	O (mg/L) D	06 7.23 92.0	7.62		8.24	7.90	7.20	29.30	8.21	7.37	8.47	aita		5.32 5.32	8.51		6.20	7.30	6.63	8.20	0. V	5.14	6.41		O (mg/L) D	6.77	0.08 8.94		78.7	8.09	7.82	8.90	7.97	6.94	7.86
am si	Sal (ppt) D 0.05 0.06	0.05	0.05	0.05	90.0	0.05	0.04	0.05		Sal (ppt) D	90.0	0.07	3	0.05	90.0	0.07	0.09	0.05	90.0	90.0	troan		3al (ppt) DO (111g/L) D 0.08 5.32	0.10	90.0	0.07	0.09	0.14	0.25	0.00	0.10	0.08		Sal (ppt) D	0.00	0.08	0.05	90.0	0.07	0.03	0.06	0.06	0.00	0.06
		0.098	0.109	0.111	0.132	0.107	0.118	0.116	VA2 (midstream	Temp (°C) SpCond (mS/cm)		0.148	3	0.115	0.124	0.142	0.197	0.104	0.133	0.125	VA3 (downstream site hehind lot)	Temp (°C) SpCop4 (mS/cm)	0.164	0.207	0.138	0.152	0.201	0.299	0.523	0.165	0.208	0.169	rade	(cm)	27.30 0.136	0.158	0.114	0.125	0.145	0.188	0.129	0.128	0.153	0.14
	emp (°C) Sp 26.56 26.13	26.15	24.92	25.63	26.19	25.80	25.37	26.45		emp (°C) Sp	27.50	27.28	20.50	25.44	26.28	25.81	26.78	25.79	26.75	26.75	Α.	, (°) cme	수 (৬) 약 27.85	30.96	27.66	26.29	30.21	29.13	27.67	26.01	27.00	27.28	Stream, average	emp (°C) Sp	27.30	28.12	26.67	25.55	27.37	26.77	26.24	25.87	26.66 26.83	26.77
Strea	Time T 10:30	10:34	10:49	12:22	10:30	9:39	8:30 9:04	11:02	Stream,	Time	6	10:13	2.5	10:40	12:12	14:00	10:21	8:27	8:50	10:50	Stream		7	10:02	10:13	10:31	12:01	13:49	10:04	5 - 2	8:32	10:38	Strea	Time										
Vailoa	Date 3/27/2003 4/29/2003	5/21/2003		8/21/2003		11/20/2003	1/26/2004	2/12/2004	Vailoa	Date	3/27/2003	4/29/2003	6/18/2003	7/31/2003		9/24/2003	10/16/2003	12/23/2003	1/26/2004	2/12/2004	Vailos	S etc.	3/27/2003	4/29/2003	5/21/2003	6/18/2003		9/24/2003	10/16/2003	12/23/2003	1/26/2004	2/12/2004	Vailoa	Date	3/27/2003	4/29/2003	5/21/2003	7/31/2003		9/24/2003	10/16/2003	12/23/2003	1/26/2004 2/12/2004	
	Month March April	May	Sin	August	October 10/16/2003	November	January 1/26/2004	February		Month	March	April	June	July	August	September	October 10/16/2003	December 12/23/2003	January	February	-	Month	March	April	May	anne III/	August	ē	October 10/16/2003	December	January	February	-	Month	March	April	May	July	August	ē	October 10/16/2003 November 11/20/2003	December	January February	

Appendix B

Appendix C

	S	T	R	E	A	M	1	
_	-						-	
	XX7.	-4-	Al-		T.			

WATERBODY DESCRIPTION

NAME/YEAR: Fagalii 1 Stream / FY2004

WATERSHED: Fagali'i (2)

REACH SIZE:

STRESSORS: other habitat alterations, nutrients, organic enrichment/low DO,

turbidity

SITES MONITORED: 1

	ASSESSMENT QUALITY											
DATA TYPE	LEVEL				DESCRIPTION							
	1	2	3	4								
BIOLOGICAL		*.										
HABITAT	X				ASEPA Stream Monitoring Program							
TOXICITY												
P/CHEMICAL		X			Conventional parameters: D. Vargo, ASCC Stream Survey; ASEPA Stream Monitoring Program							

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.				
FULLY SUP. (THREAT)				
		Threshold for attainment		
PARTIALLY SUP.		X		X
NOT SUP.				
	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: Several instances of low DO, and most samples exceeded nutrient (TN/TP) ASWQS. Turbidity also exceeds WQS. Recent clearing for agriculture has reduced ALUS habitat determination.

STR	A PER	78. AT	
	7 N. A		
. 7	N 11/2	LIVE	
~			

Waterbody Type

WATERBODY DESCRIPTION

NAME/YEAR: Malota Stream / FY2004

WATERSHED: Malota (3)

REACH SIZE:

STRESSORS: turbidity

SITES MONITORED: 3

				AS	SESSMENT QUALITY					
DATA TYPE	LEVEL			<u>.</u>	DESCRIPTION					
	1	2	3	4						
BIOLOGICAL										
HABITAT	X				ASEPA Stream Monitoring Program					
TOXICITY P/CHEMICAL	Address:	X			Conventional parameters: D. Vargo, ASCC Stream Survey; ASEPA Stream Monitoring Program; World Wildlife Fund research project					

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.		X		X
FULLY SUP. (THREAT)				
		Threshold for attainment		
PARTIALLY SUP.				
NOT SUP.				
	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: Turbidity exceeded ASWQS on 4 separate occasions, but overall median value is within ASWQS.

WA	TER	BODY	DESCR	PIPTIO	N
----	-----	------	-------	--------	---

NAME/YEAR: Fagatuitui 1 Stream / FY2004

WATERSHED: Fagatuitui (9)

REACH SIZE:

STRESSORS: turbidity

SITES MONITORED: 3

	ASSESSMENT QUALITY
DATA TYPE	LEVEL DESCRIPTION
	1 2 3 4
BIOLOGICAL	
HABITAT	X ASEPA Stream Monitoring Program
TOXICITY	
P/CHEMICAL	X Conventional parameters: ASEPA Stream Monitoring Program

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.		X		X
FULLY SUP. (THREAT)				
		Threshold for attainment		
PARTIALLY SUP. NOT SUP.				
	BIO.	нав.	TOX.	P/CHEM.

SUMMARY: One instance where turbidity value exceeded ASWQS, but median value is well within the ASWQS.

WATERBODY DESCRIPTION

NAME/YEAR: Auvaiola Stream / FY2004

WATERSHED: Amouli (20)

REACH SIZE:

STRESSORS: nutrients, turbidity

SITES MONITORED: 1

				AS	SESSMENT QUALITY
DATA TYPE	LEVEL				DESCRIPTION
	1	2	3	4	
BIOLOGICAL					
НАВІТАТ	X				ASEPA Stream Monitoring Program
TOXICITY					
P/CHEMICAL	-	X			Conventional parameters: ASEPA Stream Monitoring Program

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.		X		
(THREAT)				
		Threshold for attainment		
PARTIALLY SUP.				
NOT SUP.				X
	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: Total nitrogen (TN) and total phosphorus (TP) routinely exceed ASWQS. Turbidity does not comply with WQS.

WATERBODY DESCRIPTION

NAME/YEAR: Nuu Stream / FY2004

WATERSHED: Faga'itua (21)

REACH SIZE:

STRESSORS: nutrients, organic enrichment/low DO, turbidity

SITES MONITORED: 3

ASSESSMENT QUALITY								
DATA TYPE	LEVEL				DESCRIPTION			
	1 2 3 4			4				
BIOLOGICAL								
HABITAT	X				ASEPA Stream Monitoring Program			
TOXICITY								
P/CHEMICAL X Conventional parameters: ASEPA Monitoring Program					Conventional parameters: ASEPA Stream Monitoring Program			

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.				
FULLY SUP. (THREAT)		x		
		Threshold for attainment		
PARTIALLY SUP.				
NOT SUP.				X
A	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: The habitat assessment showed that the impacted segment was primarily in the short segment by the road. DO, turbidity, TN, and TP routinely violate the ASWQS at 1 of the two sites, and the stream medians for those conventional parameters also exceed the ASWQS.

STREAM	
Waterhody Type	

WATERBODY DESCRIPTION

NAME/YEAR: Alega Stream / FY2004

WATERSHED: Alega (22)

REACH SIZE: 2.8

STRESSORS: nutrients

SITES MONITORED: 2

ASSESSMENT QUALITY							
DATA TYPE	LEVEL			DESCRIPTION			
	1 2 3 4						
BIOLOGICAL							
HABITAT	X			ASEPA Stream Monitoring Program			
TOXICITY							
P/CHEMICAL		X		Conventional parameters: D. Vargo, ASCC Stream Survey, ASEPA Stream Monitoring Program			

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.		X		
FULLY SUP. (THREAT)				X
		Threshold for attainment	<u> </u>	
PARTIALLY SUP.				
NOT SUP.				
	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: Habitat assessment showed habitat to be in excellent condition, but total phosphorus (TP) routinely exceeded ASWQS. This is likely the background level of TP, as there are no obvious sources.

RESULT = Fully supporting (threatened); monitored data.

STREAM	
Waterhody Type	

WATERBODY DESCRIPTION

NAME/YEAR: Vailoa Stream / FY2004

WATERSHED: Pago Pago (24)

REACH SIZE:

STRESSORS: habitat modification, pH, nutrients, organic enrichment/low DO,

turbidity

SITES MONITORED: 3

ASSESSMENT QUALITY								
DATA TYPE		LEV	EL	DESCRIPTION				
	1	2	3 4					
BIOLOGICAL								
HABITAT	X			ASEPA Stream Monitoring Program				
TOXICITY								
P/CHEMICAL		X		Conventional parameters: D. Vargo, ASCC Stream Survey, ASEPA Stream Monitoring Program, CH2MHill harbor monitoring				

	ASSI	ESSMENT FIND	INGS	
FULLY SUP.				
FULLY SUP. (THREAT)				
		Threshold for attainment		
PARTIALLY SUP.		X		
NOT SUP.				X
	BIO.	HAB.	TOX.	P/CHEM.

SUMMARY: Habitat assessment shows degraded habitat and extensive channelization in this stream. Total nitrogen (TN) and total phosphorus (TP) routinely exceed ASWQS, and the annual value also exceeds ASWQS. Turbidity also exceeds ASWQS. There are many instances of DO below the WQS at specific sites, but overall stream value complies with WQS.

S	T	RE	CA	M	[
W۶	ıte	rhod	v T	vne		

WATERBODY DESCRIPTION

NAME/YEAR: Mataalii Stream / FY2003

WATERSHED: Nuuuli (27)

REACH SIZE:

STRESSORS: habitat modification, nutrients, turbidity

SITES MONITORED: 3

ASSESSMENT QUALITY								
DATA TYPE	LEVEL				DESCRIPTION			
	1 2 3 4			4				
BIOLOGICAL								
HABITAT	HABITAT X ASEPA Stream Monitoring P		ASEPA Stream Monitoring Program					
TOXICITY								
P/CHEMICAL		X			Conventional parameters: ASEPA Stream Monitoring Program			

ASSESSMENT FINDINGS							
FULLY SUP.							
FULLY SUP. (THREAT)							
	· L	Threshold for attainment	:	· January			
PARTIALLY SUP.							
NOT SUP.		X		X			
	BIO.	HAB.	TOX.	P/CHEM.			

SUMMARY: Habitat assessment showed degraded habitat, extensive channelization, and interrupted flow in this stream. Total nitrogen (TN) routinely exceeded ASWQS, and total phosphorus (TP) often did as well. Turbidity exceeded ASWQS on several occasions, but median value is below the standard.