Project 1

We used an ensemble model for this with NN, 2 GB models, and 1 backward logistic regression model

Diagram - Solution

Transform Variable: Standardize

NN:

Train			
Variables			
Continue Training	No		
Network			
Optimization			
Initialization Seed	1908		
Model Selection Criterion	Misclassification		
Suppress Output	No		
Score			
Hidden Units	No		
Residuals	Yes		
Standardization	Yes		
Status			
Create Time	11/28/23 3:47 PM	~	
General			
			<
General Properties			

GB 1:

GB 2:

Logistic Regression – Backward:

Ensemble:

Score:

For the second project, we tried many different models and then went ahead which had the highest ROC in validation (gradient boosting)

This was the final model selected:

Transformation – Max Normal

GB paramaters:

