CS 480 – Assignment 5 solutions

1. Convert each of the following FOL sentences into CNF form.
a. $\forall x P(x) \Rightarrow Q(x)$
$\neg P(x) \lor Q(x)$
b. $\forall x \forall y \ P(x,y) \Rightarrow Q(x)$
$\forall x \forall y \ (\neg P(x,y) \ V \ Q(x))$
¬P(x,y) V Q(x)
OR
$\forall x \neg (\forall y P(x,y) V Q(x))$
$\forall x \exists y \neg P(x,y) \lor Q(x)$
$\neg P(x, F(x)) \lor Q(x)$
c. $\exists x \ P(x) \land Q(x)$
P(A) Λ Q(A)
d. $\exists x \exists y \ P(x,y) \land Q(y,x)$
$P(A,B) \wedge Q(B,A)$
e. ∃x∀y P(x,y)
P(A,y)
f. ∀x∃y P(x,y)
P(x, F(x))
g. ∀x∀y∃z P(x,y,z)
P(x, y, F(x,y))

h. $\exists x \forall y \forall z P(x,y,z)$

P(A, y ,z)

i. $\forall x(\exists y \ P(x,y) \land Q(y)) \Rightarrow R(x)$

 $\forall x(\neg \exists y (P(x,y) \land Q(y)) \lor R(x)$

 $\forall x (\forall y \neg (P(x,y) \land Q(y)) \lor R(x)$

 $\neg P(x,y) \lor \neg Q(y) \lor R(x)$

j. $\forall x (\forall y \ P(x,y) \Rightarrow Q(y)) \Rightarrow R(x)$

 $\forall x (\neg \forall y \ P(x,y) \Rightarrow Q(y)) \ V \ R(x)$

 $\forall x(\neg \forall y \neg P(x,y) \lor Q(y)) \lor R(x)$

 $\forall x(\neg\neg\exists y \neg(\neg P(x,y) \lor Q(y))) \lor R(x)$

 $\forall x(\exists y P(x,y) \land \neg Q(y)) \lor R(x)$

 $(P(x, F(x)) \land \neg Q(F(x)) \lor R(x)$

 $(P(x, F(x)) \vee R(x)) \wedge (\neg Q(F(x)) \vee R(x))$

- 2. We are given the following pairs of FOL sentences. For each pair of sentences, provide a substitution to unify the sentences. If no such substitution exists, please write so.
 - a. P(x)
 - b. P(A)

Sol: {x/A}

- c. $P(x) \vee Q(x, A)$
- d. $P(B) \vee Q(x, A)$

Sol: {x/B}

- e. $P(x) \vee Q(A, x)$
- f. $P(x) \vee Q(A, B)$

Sol: {x/B}

g. $P(x, A) \vee Q(A, x)$

h. $P(B, y) \vee Q(y, B)$

Sol: {x/B, y/A}

i. $P(x) \vee Q(F(x))$

j. $P(A) \vee Q(F(A))$

Sol: {x/A}

k. $P(x, A) \vee Q(F(x), x)$

 $\mathsf{I.\ P(B,\,y)} \lor \mathsf{Q(F(B),\,B)}$

Sol: {x/B, y/A}

m. $P(x, A) \vee Q(F(x), x)$

n. $P(B, y) \vee Q(F(A), A)$

Sol: Fail

o. $P(x, y) \vee Q(F(A), B)$

 $p.\;P(x,y)\vee Q(x,y)$

Sol: {x/F(A), y/B}

q. $P(x, y) \vee Q(F(A), A)$

r. $P(x, y) \vee Q(x, y)$

Sol: {x/F(A), y/A}

s. $P(x, y) \vee Q(F(x), y)$

t. $P(z, y) \vee Q(z, y)$

Sol: Fail

3. We are given the following joint distribution for variables A, B, and C. Please compute the requested probabilities. Show each probability distribution as a table/vector. Feel free to use a calculator.

Α	В	С	P(A,B,C)
Т	T	T	0.014
T	Т	F	0.126
T	F	T	0.012
T	F	F	0.048
F	Т	T	0.392
F	Т	F	0.168
F	F	T	0.144
F	F	F	0.096

a. P(A, C)

Α	С	P(A,C)
T	Т	0.014 + 0.012 = 0.026
T	F	0.126 + 0.048 = 0.174
F	Т	0.392 + 0.144 = 0.536
F	F	0.168 + 0.096 = 0.264

b. P(C)

c. P(A|C)

d. P(A, B | C)

A	В	P(A,B C =T)	
Т	Т	0.014 / 0.562 = 0.025	
T	F	0.012 / 0.562 = 0.021	
F	Т	0.392 / 0.562 = 0.698	
F	F	0.144 / 0.562 = 0.256	
Α	В	P(A,B C =F)	
T	Т	0.126 / 0.438 = 0.288	
Т	F	0.048 / 0.438 = 0.110	
F	Т	0.168 / 0.438 = 0.384	
F	F	0.096 / 0.438 = 0.219	

d. P(B | A, C)

- 4. We are given random variables X2, X3, ..., Xn, where n>2. (There is no X1). Please answer the following questions.
 - a) Assuming all variables are binary, how many independent parameters are needed to represent
 - i. $P(X_2)$?

Sol: 1

ii. $P(X_n)$?

Sol: 1

iii.
$$P(X_2, X_3, ..., X_n)$$
?

iv.
$$P(X_2 | X_3, ..., X_n)$$
?

v.
$$P(X_2, X_3, ..., X_{n-1} | X_n)$$
?

- b) Assuming the size of the domain of Xi is i for all $i \in \{2, 3, ..., n\}$, how many independent parameters are needed to represent
- i. $P(X_2)$?

Sol: 1

ii.
$$P(X_n)$$
?

iii.
$$P(X_2, X_3, ..., X_n)$$
?

iv.
$$P(X_2 | X_3, ..., X_n)$$
?

v.
$$P(X_2, X_3, ..., X_{n-1} | X_n)$$
?