

planetmath.org

Math for the people, by the people.

criterion for maximal ideal

Canonical name CriterionForMaximalIdeal

Date of creation 2013-03-22 19:10:40 Last modified on 2013-03-22 19:10:40

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872) Entry type Theorem Classification msc 16D25 Classification msc 13A15

Related topic MaximalIdealIsPrime

Theorem. In a commutative ring R with non-zero unity, an ideal \mathfrak{m} is maximal if and only if

$$\forall a \in R \setminus \mathfrak{m} \ \exists r \in R \ \text{such that } 1 + ar \in \mathfrak{m}. \tag{1}$$

Proof. 1°. Let first \mathfrak{m} be a maximal ideal of R and $a \in R \setminus \mathfrak{m}$. Because $\mathfrak{m} + (a) = R$, there exist some elements $m \in \mathfrak{m}$ and $-r \in R$ such that m - ar = 1. Consequently, $1 + ar = m \in \mathfrak{m}$.

2°. Assume secondly that the ideal \mathfrak{m} satisfies the condition (1). Now there must be a maximal ideal \mathfrak{m}' of R such that

$$\mathfrak{m} \subseteq \mathfrak{m}' \subset R.$$

Let us make the antithesis that $\mathfrak{m}' \setminus \mathfrak{m}$ is non-empty. Choose an element

$$a \in \mathfrak{m}' \setminus \mathfrak{m} \subset R \setminus \mathfrak{m}.$$

By our assumption, we can choose another element r of R such that

$$s = 1 + ar \in \mathfrak{m} \subset \mathfrak{m}'.$$

Then we have

$$1 = s - ar \in \mathfrak{m}' + \mathfrak{m}' = \mathfrak{m}'$$

which is impossible since with 1 the ideal \mathfrak{m}' would contain the whole R. Thus the antithesis is wrong and $\mathfrak{m} = \mathfrak{m}'$ is maximal.