Robust Estimation for Erdös-Rényi Graphs

Arjan Chakravarthy, George Chemmala, Heon Lee

Erdös-Rényi Random Graph

• Parameters: n, p

• n nodes

Erdös-Rényi Random Graph

• Parameters: n, p

• n nodes

ullet Each edge independently has probability p of existing

Motivation

- Natural / baseline model for real world phenomena
 - social networks
 - epidemiology

Can we estimate p given that an arepsilon-fraction of the nodes have been corrupted?

Adversarial Model

- *E*-omniscient adversary:
 - observes the realization of graph $G \sim G(n,p)$
 - \bullet choose $B \subset V$ and rewire its edges
- \cdot ε -oblivious adversary:
 - ullet choose $B\subset V$ and distribution on B without observing the realization of G
- \cdot (q, arepsilon)-omniscient / oblivious adversary

Existing Algorithms

Methods	Error	Runtime	Authors
Mean/Median	O(arepsilon)	O(n)	Acharya et al.
Prune then Mean/Median	$O(arepsilon^2)$	$O(n\log(\epsilon n))$	Acharya et al.
Spectral Method	$O\left(\frac{\sqrt{p(1-p)\log n}}{n} + \frac{\varepsilon\sqrt{p(1-p)\log(1/\varepsilon)}}{\sqrt{n}} + \frac{\varepsilon}{n}\log n\right)$	$O\left(\varepsilon n^3 \frac{\log n}{\gamma}\right)$	Acharya et al.
Median – Mean	?	?	Us
Variance Method	?	?	Us

Mean/Median

Degrees of Unperturbed Graph

Degrees of Perturbed Graph

Errors and Time Complexity

• Error: $O(\varepsilon)$

• Time complexity: O(n)

Prune Then Mean / Median

Degrees of Perturbed Graph

Degrees of Unperturbed Graph

Errors and Time Complexity

• Error: $O(\varepsilon^2)$, $O(\varepsilon)$

• Time complexity: $O(n \log(n\varepsilon))$

Spectral Method

Main idea

- ullet We know that an uncorrupted subgraph should have an estimated p close to the frequency of 1s in the adjacency matrix
- $\|(A-P_S)_{S imes S}\|_2$ is small for uncorrupted subgraph S

Spectral Method

- We start with the entire graph
- Compute our metric $\|(A-P_S)_{S\times S}\|_2$
- Use the largest eigenvector to find the troublemaker node
- Remove the node
- Repeat

Our Algorithms

Notation

- G = (V, E) is our original graph
- G' = (V, E') is our perturbed graph
- $\cdot D, D'$ are degrees of V, V'
- $oldsymbol{\cdot}$ $ar{d}$, $ar{d}'$ is the mean of D and D'
- \cdot \tilde{d} , \tilde{d}' is the median of D and D'

Median - Mean

Main idea

- Median and mean have errors O(arepsilon)
- Observed median is ~2x closer to the true \boldsymbol{p} than mean
- We can exploit this by taking the median minus the mean to find how far away the median is from \boldsymbol{p}

How well can we estimate p?

Proof Sketch

$$\cdot \bar{d}' \approx d + \varepsilon (q - p)(2n - 1) - \varepsilon^2 n(q - p)$$

$$\cdot \tilde{d}' \approx d + \varepsilon n(q-p) - \varepsilon \sqrt{np(1-p)}$$

. Claim:
$$\hat{d}:=\tilde{d}'-\frac{\bar{d}'-\tilde{d}'}{1-\varepsilon}$$
 is good

$$\tilde{d}' - \frac{\bar{d}' - \tilde{d}'}{1 - \varepsilon} = \tilde{d}' - \left(\sum_{k=0}^{\infty} \varepsilon^k\right) (\bar{d}' - \tilde{d}') = d + \frac{1}{1 - \varepsilon} (q - p + \varepsilon \sqrt{np(1 - p)})$$

. Then
$$\hat{p} = \frac{\hat{d}}{n} = p + \frac{\frac{\varepsilon}{1-\varepsilon}(q-p+\varepsilon\sqrt{np(1-p)})-p}{n} = p + O\left(\frac{\varepsilon p}{(1-\varepsilon)n} + \frac{\varepsilon^2\sqrt{p(1-p)}}{(1-\varepsilon)\sqrt{n}}\right)$$

Algorithm 1 Median - Mean Algorithm

```
Require: adjacency matrix A, epsilon \epsilon
D \leftarrow \text{Degrees of nodes in A}
\bar{p} \leftarrow \text{normalized mean}
\tilde{p} \leftarrow \text{normalized median}
y \leftarrow \frac{1}{1-\epsilon} |\bar{p} - \tilde{p}|
if \bar{p} \leq \tilde{p} then
\text{return } \tilde{p} - y
else
\text{return } \bar{p} - y
end if
```

Errors and Time Complexity

• Error:
$$O\left(\frac{\varepsilon p}{(1-\varepsilon)n} + \frac{\varepsilon^2 \sqrt{p(1-p)}}{(1-\varepsilon)\sqrt{n}}\right)$$

• Time complexity: O(n)

Variance Method

Variance Method

- The variance of degrees on an unperturbed graph should be: (n-1)p(1-p)
- Variance significantly increases on a perturbed graph with an adversary

Variance Algorithm

- Remove the εn bad nodes
- Find the node that decreases the variance the most
- Remove that node
- Repeat

Algorithm 2 Variance Algorithm

```
Require: adjacency matrix A, epsilon \epsilon
n \leftarrow number of nodes
while t = 0, t < \epsilon n do
for node x in A do

Modify degrees of nodes after removing x
Compute variance on subgraph degrees
end for
v \leftarrow node with largest variance deviation
A \leftarrow A \setminus v
end while
```

Errors and Time Complexity

• Error: ?

• Time complexity: $O(\varepsilon n^3)$

Results

Results (Median - Mean)

Results (Median - Mean)

Results (Variance)

Results (Variance)

Results

Methods	Error	Runtime	Authors
Mean/Median	O(arepsilon)	O(n)	Acharya et al.
Prune then Mean/Median	$O(\varepsilon^2)$	$O(n\log(\epsilon n))$	Acharya et al.
Spectral Method	$O\left(\frac{\sqrt{p(1-p)\log n}}{n} + \frac{\varepsilon\sqrt{p(1-p)\log(1/\varepsilon)}}{\sqrt{n}} + \frac{\varepsilon}{n}\log n\right)$	$O\left(\varepsilon n^3 \frac{\log n}{\gamma}\right)$	Acharya et al.
Median – Mean	$O\left(\frac{\varepsilon p}{(1-\varepsilon)n} + \frac{\varepsilon^2 \sqrt{p(1-p)}}{(1-\varepsilon)\sqrt{n}}\right)^*$	O(n)	Us
Variance Method	?	$O(\varepsilon n^3)$	Us

Next Steps

- Update error bounds on Median-Mean algorithm for general adversary
- Attempt to prove error bounds for variance method

Thank you!