Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра Автоматизированных систем управления

Отчет по лабораторной работе № 4 «Управление процессами ОС Ubuntu» по курсу «ОС Linux»

Студент Группа АИ-18

Руководитель Кургасов В.В.

Цель работы

Ознакомиться со средствами управления процессами в Ubuntu OC.

Содержание

Χc	рд работы4
1.	Запуск Oracle VM VirtualBox
2.	Запуск Ubuntu5
3.	Окно интерпретатора команд
4.	Общая информация о системе6
,	• Информация о текущем интерпретаторе6
,	• Вывод информации о текущем пользователе6
,	• Информация о текущем каталоге6
,	• Информация об оперативной памяти и области подкачки6
	• Информация о дисковой памяти7
5.	Команды получения информации о процессах9
,	• Идентификатор процесса оболочки9
	• Идентификатор родительского процесса оболочки9
	• Идентификатор процесса инициализации системы9
	• Информация о выполняющихся процессах текущего пользователя 10
,	• Вывод всех процессов
6.	Команды управления процессами
,	• Определение текущего значения nice по умолчанию
,	• Запуск bash с приоритетом 10
,	• Определение PID текущего интерпретатора
,	• Установка приоритета 5 запущенному интерпретатору13
	• Получение информации о процессах bash13

Ход работы

1. Запуск Oracle VM VirtualBox

Рисунок 1 – Запуск Oracle VM VirtualBox

На Рисунок 1 изображён интерфейс программы Oracle VM VirtualBox. С её помощью я создал виртуальную машину name_oc с операционной системой Ubuntu. На рисунке ниже изображен этап авторизации в терминале уже запущенной машины.

2. Запуск Ubuntu

Рисунок 2 – Авторизация после запуска

3. Окно интерпретатора команд

После авторизации нам предоставляется окно интерпретатора команд:

Рисунок 3 – Окно интерпретатора команд

- 4. Общая информация о системе
 - Информация о текущем интерпретаторе

lovediehate@myubuntuserver:~\$ echo \$SHELL ∕bin/bash

Рисунок 4 – Информация об оболочке

На рисунке **Error! Reference source not found.** показано получение информации о текущем интерпретаторе с помощью команды echo \$SHELL. Переменная окружения SHELL хранит путь до исполняемого файла оболочки. Из вывода команды, мы видим, что используется оболочка bash.

• Вывод информации о текущем пользователе

С помощью команды whoami, пользователь может узнать ответ на вопрос «Who am I?». В моем случае ответ lovediehate, т.к. я авторизовался с данной учётной записи.

lovediehate@myubuntuserver:~\$ whoami lovediehate

Рисунок 5 – Команда whoami

• Информация о текущем каталоге

Команда pwd выводит путь к каталогу, в котором сейчас находится пользователь.

lovediehate@myubuntuserver:~\$ pwd /home/lovediehate

Рисунок 6 – Команда pwd

• Информация об оперативной памяти и области подкачки

Вывод содержит данные о физической памяти Мет и файле подкачки Swap. В операционной системе Linux, как и в других ОС, файл подкачки нужен для страховки оперативной памяти. Когда установленный объем ОЗУ заканчивается, используется именно выделенная область из файла подкачки.

lovediehate@myubuntuserver:/home\$ free											
	total	used	free	shared	buff/cache	available					
Mem:	1004848	157020	501324	1028	346504	694228					
Swap:	1751036	0	1751036								

Рисунок 7 – Команда free

В столбцах указаны следующие параметры:

Total – эта цифра представляет всю существующую память.

Used — вычисление общего значения оперативной памяти системы за вычетом выделенной свободной, разделяемой, буферной и кэш-памяти.

Free – это память, которая не используется ни для каких целей.

Shared, Buffer, и Cache – идентифицируют память, используемую для нужд ядра или операционной системы. Буфер и кэш складываются вместе, а сумма указывается в разделе «buff/cache».

Available – память появляется в более новых версиях free и предназначена для того, чтобы дать конечному пользователю оценку того, сколько ресурсов памяти все еще открыто для использования.

• Информация о дисковой памяти

Команда df предоставляет пользователю информацию о дисковой памяти. Параметр –h означает, что данные будут в мегабайтах и гигабайтах.

lovediehate@myubuntuserver:/home\$	df -h				
Filesystem	Size	Used	Avail	Use%	Mounted on
udev	448M	0	448M	0%	/dev
tmpfs	99M	1.1M	98M	2%	/run
/dev/mapper/ubuntuvg-ubuntulv	8.8G	4.3G	4.1G	52%	/
tmpfs	491M	0	491M	0%	/dev/shm
tmpfs	5.0M	0	5.OM	0%	/run/lock
tmpfs	491M	0	491M	0%	/sys/fs/cgroup
/dev/sda2	976M	197M	712M	22%	/boot
/dev/loop0	56M	56M	0	100%	/snap/core18/1932
/dev/loop2	68M	68M	0	100%	/snap/lxd/18150
/dev/loop3	55M	55M	0	100%	/snap/core18/1880
/dev/loop1	72M	72M	0	100%	/snap/lxd/16099
/dev/loop4	30M	30M	0	100%	/snap/snapd/8542
/dev/loop5	31M	31M	0	100%	/snap/snapd/9721
tmpfs	99M	0	99M	0%	/run/user/1000

Рисунок 8 – Команда df –h

Filesystem – файловая система.

Size – размер емкости точки монтирования в мегабайтах.

Used – количество используемого дискового пространства.

Available – количество свободного пространства в мегабайтах.

Use% – процент использования файловой системы.

Mounted on – точка монтирования, где установлена файловая система.

- 5. Команды получения информации о процессах
 - Идентификатор процесса оболочки

```
lovediehate@myubuntuserver:/home$ echo $$
lovediehate@myubuntuserver:/home$ ps -f
             PID
                    PPID
                          C STIME TTY
                                                TIME CMD
             941
lovedie+
                     662
                          0 11:45 tty1
                                            00:00:00 -bash
lovedie+
            1039
                     941
                          0 11:50 tty1
                                            00:00:00 /bin/bash
                    1039 0 12:21 tty1
lovedie+
            1636
                                            00:00:00 ps -f
```

Рисунок 9 – PID оболочки

Как видно на скриншоте, использовав команду echo \$\$, можно узнать PID текущей оболочки. В данном случае, оболочка /bin/bash имеет PID 1039.

• Идентификатор родительского процесса оболочки

Введя команду echo \$PPID, можно узнать идентификатор родительского процесса оболочки:

```
lovediehate@myubuntuserver:/home$ ps –f
             PID
                    PPID
                          C STIME TTY
                                                 TIME CMD
             941
lovedie+
                     662
                          0 11:45 ttu1
                                            00:00:00 -bash
lovedie+
            1039
                     941
                                            00:00:00 /bin/bash
                          0 11:50 tty1
lovedie+
            1636
                    1039
                                            00:00:00 ps -f
                         0 12:21 tty1
lovediehate@myubuntuserver:/home$ echo $PPID
```

Рисунок 10 – PPID оболочки

• Идентификатор процесса инициализации системы

```
lovediehate@myubuntuserver:/home$ pidof init
1
```

Рисунок 11 – PID инициализации системы

Получаем идентификатора процесса по имени init с помощью команды pidof init. Init – система инициализации в Unix-подобных системах, которая запускает все остальные процессы. Первый пользовательский процесс работает как демон и обычно имеет PID 1.

• Информация о выполняющихся процессах текущего пользователя

lovediehate	e@myubun	tuserve	r:/home\$	ps T –fu	lovedi	.ehate
UID	PID	PPID	C STIME	TTY	STAT	TIME CMD
root	662	1	0 11:45	tty1	Ss	0:00 /bin/login –p ––
lovedie+	935	1	0 11:45	?	Ss	0:00 /lib/systemd/systemd ––user
lovedie+	936	935	0 11:45	?	S	0:00 (sd-pam)
lovedie+	941	662	0 11:45	tty1	S	0:00 -bash
lovedie+	1039	941	0 11:50	tty1	S	0:00 /bin/bash
lovedie+	1885	1039	0 12:37	tty1	R+	0:00 ps T –fu lovediehate

Рисунок 12 – Процессы текущего пользователя

Команда ps T –fu lovediehate выводит информацию о процессах только текущего пользователя (параметр –u lovediehate) только в текущем интерпретаторе команд (параметр T).

• Вывод всех процессов

С помощью с параметра — можно указать команде ps отобразить все процессы.

PID TTY TIME	CMD
1 ? 00:00:01	=
	kthreadd
3 ? 00:00:00	
4 ? 00:00:00	rcu_par_gp
	kworker/0:OH–kblockd
	mm_percpu_wq
	ksoftirqd/0
11 ? 00:00:00	rcu_sched
12 ? 00:00:00	migration/O
13 ? 00:00:00	idle_inject/0
14 ? 00:00:00	cpuhp/0
15 ? 00:00:00	kdevtmpfs
16 ? 00:00:00	netns
17 ? 00:00:00	rcu_tasks_kthre
18 ? 00:00:00	kauditd
19 ? 00:00:00	khungtaskd
20 ? 00:00:00	oom_reaper
21 ? 00:00:00	writeback
	kcompactd0
23 ? 00:00:00	ksmd
24 ? 00:00:00	khugepaged
70 ? 00:00:00	kintegrityd
71 ? 00:00:00	kblockd
72 ? 00:00:00	blkcg_punt_bio
73 ? 00:00:00	tpm_dev_wq
74 ? 00:00:00	ata_sff
75 ? 00:00:00	
76 ? 00:00:00	edac-poller
77 ? 00:00:00	devfreq_wq
78 ? 00:00:00	watchdogd
81 ? 00:00:00	kswapd0
82 ? 00:00:00	ecryptfs-kthrea
	kthrot1d
85 ? 00:00:00	acpi_thermal_pm
86 ? 00:00:00	scsi_eh_0

Рисунок 13 – Вывод всех процессов

6. Команды управления процессами

• Определение текущего значения пісе по умолчанию.

```
lovediehate@myubuntuserver:/home$ nice
O
```

Рисунок 14 – Текущее значение пісе

В нашем случае значение пісе по умолчанию оказалось равным 0.

Во время создания каждой задаче присваивается статический приоритет (static priority), называемый также правильным значением (nice value). При обычном запуске команд или программ принимается равным приоритету родительского процесса.

Значение nice находится в диапазоне от -20 до 19. Большее значение означает меньший приоритет.

• Запуск bash с приоритетом 10

	lovediehate@myubuntuserver:/home\$ nice –n 10 bash lovediehate@myubuntuserver:/home\$ ps –l										
TOAR	атынагы	elligubuntt	iserver	:71	IUIIIE#	μs	-1				
F S	UID	PID	PPID	С	PRI	ΝI	ADDR SZ	WCHAN	TTY	TIME	CMD
4 S	1000	941	662	0	80	0	- 1768	do_wai	tty1	00:00:00	bash
0 S	1000	1039	941	0	80	0	- 1760	do_wai	tty1	00:00:00	bash
0 S	1000	2169	1039	0	90	10	- 1760	do_wai	tty1	00:00:00	bash
0 S	1000	2180	2169	0	99	19	- 1760	do_wai	tty1	00:00:00	bash
0 R	1000	2190	2180	0	99	19	- 1888	-	tty1	00:00:00	ps

Рисунок 15 – Запуск bash с понижением приоритета

На рисунке 15 видно, что значение NI у процесса bash поменялось на 10.

• Определение PID текущего интерпретатора

```
lovediehate@myubuntuserver:/home$ pidof bash
2180 2169 1039 941
```

Рисунок 16 – Команда pidof

На рисунке 16 видно, что запущено 4 интерпретатора bash.

• Установка приоритета 5 запущенному интерпретатору

```
lovediehate@myubuntuserver:/home$ ps −l && sudo renice −n 5 2180 && ps −l
 S
                                   NI ADDR SZ WCHAN TTY
                           C PRI
      UID
              PID
                      PPID
                                                                    TIME CMD
     1000
                       662
                                                                00:00:00 bash
              941
                               80
                                    0 -
                                          1768 do_wai tty1
     1000
             1039
                       941
                               80
                                          1760 do_wai tty1
                                                                00:00:00 bash
 S
                               90
     1000
             2169
                      1039
                                    10 -
                                          1760 do_wai tty1
                                                                00:00:00 bash
     1000
             2180
                      2169
                               99
                                   19 -
                                          1760 do_wai tty1
                                                                00:00:00 bash
                               99
     1000
             2445
                      2180
                                   19 -
                                          1888
                                                                00:00:00 ps
2180 (process ID) old priority 19, new priority 5
     UID
              PID
                      PPID
                           C PRI
                                   NI ADDR SZ WCHAN
                                                                    TIME CMD
              941
     1000
                       662
                               80
                                          1768 do_wai tty1
                                                                00:00:00 bash
     1000
             1039
                       941
                               80
                                          1760 do_wai tty1
                                                                00:00:00 bash
     1000
             2169
                      1039
                               90
                                          1760 do_wai
                                    10 -
                                                                00:00:00 bash
                               85
     1000
                      2169
                                    5
             2180
                                          1760 do_wai tty1
                                                                00:00:00 bash
     1000
                               85
                                    5
             2448
                      2180
                                          1888
                                                                00:00:00 ps
```

Рисунок 17 – Установка приоритета

С помощью команды sudo renice —n 5 2180 мы можем повысить приоритет процессу. Для понижения приоритета администраторские права не требуются.

• Получение информации о процессах bash

lovediehate@myubuntuserver:/home\$ ps lax grep bash											
4 1000	941	662	20	0	7072	5108 do_wai :	S	tty1	0:00 - <mark>bash</mark>		
0 1000	1039	941	20	0	7040	5064 do_wai :	S	tty1	0:00 /bin/ <mark>bash</mark>		
0 1000	2169	1039	30	10	7040	4920 do_wai :	SN	tty1	0:00 bash		
0 1000	2180	2169	25	5	7040	5028 do_wai :	SN	tty1	0:00 bash		
0 1000	2475	2180	25	5	5192	736 -	RN+	tty1	0:00 grep ––color=auto <mark>bash</mark>		

Рисунок 18 – Информация о процессах bash

С помощью утилиты grep bash, мы можем отобразить только нужные нам процессы, связанные с bash.