Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu

#### Višekriterijska optimizacija funkcije

dr. sc. Marko Čupić

Materijali za kolegij:

Rješavanje optimizacijskih problema algoritmima evolucijskog računanja u Javi

Zagreb, prosinac, 2013.

#### MOOP – formalni opis

minimiziraj/maksimiziraj 
$$f_m(\vec{x})$$
,  $m=1,2,...,M$  uz ograničenja  $g_j(\vec{x}) \ge 0$ ,  $j=1,2,...,J$   $h_k(\vec{x}) = 0$ ,  $k=1,2,...,K$   $\vec{x}_i^{(L)} \le \vec{x}_i \le \vec{x}_i^{(U)}$   $i=1,2,...,n$ 

Feasible solution – rješenje koje zadovoljava sva ograničenja Infeasible solution – ne zadovoljava barem jedno ograničenje

#### MOOP – formalni opis

- Radimo s dva prostora
  - Decision space prostor rješenja
  - Objective space prostor ciljnih funkcija



#### MOOP – formalni opis

- Rješenja su vektori u D
- Dobrota su vektori u Z

- Problem: usporedba vektora!
- Radimo *minimizaciju* prema dva kriterija i imamo rješenja dobrota:

$$f(R_1)=(17,20), f(R_2)=(15,21) \text{ te } f(R_3)=(13,15)$$

- Je li  $f(R_1) < f(R_2), f(R_1) < f(R_3), f(R_2) < f(R_3)$ u smislu "<" je bolje?

## Unaprijed zadani tradeoff

 Ako znamo u kojoj su nam mjeri pojedini kriteriji važni, možemo problem prevesti u klasičnu optimizaciju konstrukcijom težinske sume

$$f = \sum_{i=1}^{M} \omega_i \cdot f_i$$

 Pretpostavka MOOP jest da su svi kriteriji podjednako važni

Odluku će kasnije napraviti čovjek

### Pojam dominacije

• Uvodi se relacija dominacije

- Definicija
   Rješenje x<sup>(1)</sup> dominira nad x<sup>(2)</sup> ako vrijede oba sljedeća uvjeta
  - Rješenje x<sup>(1)</sup> nije gore od rješenja x<sup>(2)</sup> niti u jednoj kriterijskoj funkciji
  - Rješenje x<sup>(1)</sup> je *strogo bolje* od rješenja x<sup>(2)</sup>
     barem u jednoj kriterijskoj funkciji
- Nije refleksivna, nije simetrična, jest tranzitivna

#### Dominacija

- Pretpostavka: minimizacija po oba kriterija;  $f(R_1)=(17,20), f(R_2)=(15,21)$  te  $f(R_3)=(13,15)$
- $R_1 dom R_2 ==> NE$  $R_1 dom R_3 ==> NE$

- $R_{2} dom R_{1} ==> NE$
- $R_{2} dom R_{3} ==> NE$
- $R_3 dom R_1 ==> DA$
- $R_3 dom R_2 => DA$

#### Cilj MOOP-a

- U skupu rješenja P, nedominirani skup P' čine ona rješenja iz P nad kojima niti jedno rješenje iz P ne dominira
- P' je podskup od P

- Nedominirani skup čitavog feasible prostora rješenja zove se Pareto optimalni skup. (dakle, to je skup vektora iz decision space-a)
- Za dani Pareto optimalni skup *Pareto fronta* je skup pripadnih vektora iz *objective space-*a.

#### Primjer Pareto fronte



## Nedominirano sortiranje

- MOOP algoritmi koje ćemo raditi trebaju sortirati rješenja
- Algoritmi sortiranja zahtijevaju da je definirana relacija R koja je relacija potpunog uređaja:
  - za svaka dva elementa vrijedi (x,y) je u R ili je (y,x) u R
- Relacija dominacije je relacija parcijalnog uređaja

postoje neusporedivi elementi:
 niti je (x,y) u R, niti je (y,x) u R

### Nedominirano sortiranje

- **Problem**: ne mogu usporediti proizvoljna dva rješenja (u smislu relacije *dominacije*)
- Rješenje problema:

- za svako rješenje definiramo skalarnu mjeru
- rješenja uspoređujemo prema toj mjeri
- mjera je stupanj nedominiranosti, tj. za neko konkretno rješenje, gledamo koliko ima drugih rješenja u skupu rješenja koja ga dominiraju (očito – manje je bolje)
- ovaj stupanj ćemo još zvati rang rješenja, r

### Nedominirano sortiranje

• Prema stupnju nedominiranosti rješenja ćemo podijeliti u *fronte* 

- Fronta k "konceptualno" sadrži svako rješenje R
  za koje u skupu koji sortiramo postoji točno k
  drugih rješenja koja ga dominiraju
  - Preciznije, izbacimo li iz skupa sva rješenja fronti 0 do k-1, rješenja fronte k sadrže nedominirana rješenja
- Fronta 0 tada predstavlja *aproksimaciju* Pareto optimalnog skupa (odnosno u prostoru ciljnih funkcija aproksimaciju Pareto fronte)





# Nedominirano sortiranje - algoritam

- Za svako rješenje  $x_i$  iz predanog skupa P pronaći skup rješenja  $S_i$  nad kojima to rješenje dominira, te utvrditi stupanj nedominacije od  $x_i$  (oznaka  $n_i$ )
- Složenost ovog koraka je kvadratna s brojem rješenja (no množi se i s M) – O(MN²)

# Nedominirano sortiranje - algoritam

- Broj fronte i = 0; i-ta fronta  $f_i$  je početno prazna
- Iterativno ponavljaj dok ima rješenja
  - Pronađi sva rješenja  $r_k$  koja imaju  $n_i$ =0; makni ih i ubaci u  $f_i$ . Za svako to rješenje pogledaj njegov skup  $S_k$  i svakom rješenju iz  $S_k$  umanji stupanj nedominacije za 1.
- Vrati pronađeni slijed fronti.
- Primjer...



Stanje nakon provedenog koraka utvrđivanja  $S_i$  i  $n_i$ :

| Rješenje | Dominira nad (S <sub>i</sub> ) | Je dominiran od (n <sub>i</sub> ) |
|----------|--------------------------------|-----------------------------------|
| 1 (6,4)  |                                | <b>XXX</b> 4                      |
| 2 (5,2)  | 1                              | <b>X</b> X 2                      |
| 3 (4,1)  | 1, 2                           | 0                                 |
| 4 (3,3)  | 1                              | <b>)</b> (1                       |
| 5 (2,2)  | 1, 2, 4                        | 0                                 |

Stanje nakon utvrđivanja fronte 0:

| Rješenje | Dominira nad $(S_i)$ | Je dominiran od (n <sub>i</sub> ) |
|----------|----------------------|-----------------------------------|
| 1 (6,4)  |                      | <b>XXXXXX</b> 2                   |
| 2 (5,2)  | 1                    | <b>※米※米</b> 0                     |
| 3 (4,1)  | 1, 2                 | 0                                 |
| 4 (3,3)  | 1                    | <b>※米</b> 0                       |
| 5 (2,2)  | 1, 2, 4              | 0                                 |

$$f_0 = \{3, 5\}$$

Stanje nakon utvrđivanja fronte 1:

| Rješenje | Dominira nad (S <sub>i</sub> ) | Je dominiran od (n <sub>i</sub> ) |
|----------|--------------------------------|-----------------------------------|
| 1 (6,4)  |                                |                                   |
| 2 (5,2)  | 1                              | XXXX 0                            |
| 3 (4,1)  | 1, 2                           | 0                                 |
| 4 (3,3)  | 1                              | <b>※米</b> 0                       |
| 5 (2,2)  | 1, 2, 4                        | 0                                 |

$$f_0 = \{3, 5\}, f_1 = \{2, 4\}$$

Stanje nakon utvrđivanja fronte 2:

| Rješenje           | Dominira nad $(S_i)$ | Je dominiran od (n <sub>i</sub> )                |
|--------------------|----------------------|--------------------------------------------------|
| 1 (6,4)            |                      | XXXXXXXX 0                                       |
| 2 (5,2)            | 1                    | <del>*************************************</del> |
| 3 (4,1)            | 1, 2                 | 0                                                |
| 4 (3,3)            | 1                    | <b>X</b>                                         |
| <del>5 (2,2)</del> | 1, 2, 4              | 0                                                |

$$f_0 = \{3, 5\}, f_1 = \{2, 4\}, f_2 = \{1\}$$

#### **NSGA**

- Srinivas, Deb (1994): *Non-Dominated Sorting Genetic Algorithm* (stranice 209 do 218)
- Generacijski algoritam; ideja:

- Napravi podjelu populacije u fronte
- Prvoj fronti postavi dobrotu f=N (broj jedinki) i to korigiraj uporabom algoritma raspodjele funkcije cilja; zabilježi minimalni iznos i nešto umanjena vrijednost postaje početna dobrota za sljedeću frontu
- Radi proporcionalnu selekciju

#### **NSGA**

- Srinivas, Deb (1994): *Non-Dominated Sorting Genetic Algorithm* (stranice 209 do 218)
- Nije elitistički!

• Udaljenost računa u decision space-u:

$$d = \sqrt{\sum_{k=1}^{n} \left(\frac{x_{k}^{(i)} - x_{k}^{(j)}}{x_{k}^{max} - x_{k}^{max}}\right)^{2}}$$

• Za sh(.) uzima  $\alpha=2$ 

#### NSGA-II

- Deb et al. (2000): *Elitist Non-Dominated Sorting Genetic Algorithm* (stranice 245 do 253)
- Zbog elitizma treba mehanizam očuvanja genetske raznolikosti

#### NSGA-II

#### Algoritam

- Iz populacije roditelja  $P_t$  stvori populaciju djece  $Q_t$
- Napravi uniju  $R_t = P_t \cup Q_t$
- Provedi nedominirano sortiranje nad R
- Kreni frontu po frontu i tako dugo dok čitava fronta stane, dodaj je u novu populaciju
- Fronta na kojoj ovo pukne posebna obrada!

#### NSGA-II

Fronta na kojoj je dodavanje stalo

- Ne želimo proizvoljno odbaciti rješenja (moguć gubitak raznolikosti)
- Umjesto toga, nad tom frontom provedi *crowding-sort* pa odaberi podskup rješenja koja su na najvećim udaljenostima
- Algoritam stvara djecu uporabom operatora crowded tournament selection

#### NSGA-II, crowded tournament sel.

- Operator pretpostavlja da je za svakog roditelja izračunat stupanj nedominacije (non-domination rank r<sub>i</sub>) i crowding-distance d<sub>i</sub>
- d<sub>i</sub> govori koliko oko rješenja i ima praznog prostora

• Operator *CTS* tada je definiran na sljedeći način ...

#### NSGA-II, crowded tournament sel.

• Rješenje *i* pobjeđuje rješenje *j* ako je bilo koje od sljedećega ispunjeno

- Stupanj nedominacije od i je manji od stupnja nedominacije od j, odnosno  $r < r_i$
- Ako imaju isti stupanj nedominacije ali rješenje i ima veći crowding-distance od j, tj:  $r_i = r_j$  i  $d_i > d_j$

- Cilj je utvrditi *crowding-distance*; mjeru koja govori o gustoći rješenja u okolici promatranog rješenja (veći *crowding-distance*, manja gustoća)
- Ideja: za svaki kriterij (ima ih *M*) i za svako rješenje pogledati po tom kriteriju koliko ima do najbližeg manjeg susjeda i najbližeg većeg susjeda





$$d_{i} = d_{i} + \frac{f_{m}^{i+1} - f_{m}^{i-1}}{f_{m}^{max} - f_{m}^{min}}$$

#### • Koraci:

- Radimo sa skupom od F rješenja; l=|F|,  $d_i=0$
- Za svaki kriterij *m*=1,2,...,*M* sortiraj skup rješenja od od najgoreg prema najbolje po iznosu *m*-te kriterijske funkcije (to mogu, to je broj)
- Rubnim rješenjima (najmanjem i najvećem)
   dodaj neki veliki iznos (npr. ∞); za sva ostala
   rješenja (koja tada imaju lijevog i desnog
   susjeda) udaljenost rješenja povećaj za
   normiranu razliku fitnesa njegovih susjeda
   (slide ispred!)

Složenost algoritma:

- Trebam raditi onoliko sortova koliko imam kriterijskih funkcija ==> M puta
- Za neko pametno sortiranje  $\Longrightarrow N \log(N)$
- Ukupno:  $M N \log(N)$
- Podsjetnik: kasnije još frontu na kojoj smo stali treba sortirati po tim udaljenostima