Decisiones de los Consumidores: Demanda Marshaliana

Alberto Ramírez de Aguilar

ITAM

Otoño 2020

Economía III Otoño 2020

Modelo Marshaliano

Modelo Marshaliano

- A continuación estudiaremos el modelo de **Demanda Marshaliana**.
- Los principales ingredientes de este modelo son:
 - **①** Un agente (consumidor) que jerarquiza sus preferencias de acuerdo a una función de utilidad $u: \mathbb{R}^2_+ \to \mathbb{R}$.
 - 2 Este agente esta sujeto a una restricción presupuestal Marshaliana con parámetros (P_x, P_y, I) .
 - Sel agente busca maximizar su utilidad sujeto a las restricciones que enfrenta.

Modelo Marshaliano

• El problema a resolver es entonces:

$$\max_{\{x,y\}} \ u(x,y)$$
 sujeto a: $P_x x + P_y y \le I,$ $x \ge 0,$ $y \ge 0.$

• Por lo tanto, el Lagrangeano del problema esta dado por:

$$\mathcal{L}(x, y, P_{x}, P_{y}, I, \mu_{R}, \mu_{x}, \mu_{y}) = u(x, y) + \mu_{R}[I - P_{x}x - P_{y}y] + \mu_{x}x + \mu_{y}y.$$

Condiciones de Primer Orden

- Las condiciones de primer orden son las siguientes:
 - **1** Con respecto a la variable de decisión *x*:

$$umg_x(x^*, y^*) = P_x \mu_R^* - \mu_x^*.$$

2 Con respecto a la variable de decisión y:

$$umg_y(x^*, y^*) = P_y \mu_R^* - \mu_y^*.$$

3 Con respecto al multiplicador μ_R :

$$P_{x}x^{\star} + P_{y}y^{\star} \leq I, \quad \mu_{R}^{\star} \geq 0, \quad \mu_{R}^{\star}[I - P_{x}x^{\star} - P_{y}y^{\star}] = 0.$$

1 Con respecto al multiplicador μ_x :

$$x^* \ge 0, \quad \mu_x^* \ge 0, \quad \mu_x^* x^* = 0.$$

5 Con respecto al multiplicador μ_v :

$$y^* \ge 0, \quad \mu_v^* \ge 0, \quad \mu_v^* y^* = 0.$$

Soluciones del Modelo

- Ahora analizemos las condiciones que se deben cumplir en un óptimo. Como lo hemos hecho hasta ahora, haremos un análisis por casos.
- Utilizando las condiciones de primer orden, si suponemos que en el óptimo $P_x x^* + P_y y^* = I$ entonces:
 - Si $x^* > 0, y^* > 0$ entonces en el óptimo:

$$TMS(x^{\star}, y^{\star}) = \frac{P_x}{P_y}.$$

▶ Si $y^* = 0$ entonces en el óptimo:

$$TMS\left(\frac{I}{P_x},0\right) \ge \frac{P_x}{P_y}.$$

• Si $x^* = 0$ entonces en el óptimo:

$$TMS\left(0, \frac{I}{P_{\nu}}\right) \leq \frac{P_{x}}{P_{\nu}}.$$

Soluciones del Modelo

• Tarea: cómo se ven las condiciones para los ótpimos del modelo en el caso donde $P_x x^* + P_y y^* < I$?

Demanda Marshaliana

• **Definición**: A la solución óptima del problema (x^*, y^*) se le conoce como **Demandas Marshalianas**. Usualmente se denotan:

$$x^* = x^M(P_x, P_y, I)$$
 $y^* = y^M(P_x, P_y, I).$

• **Definición**: La **Función de Utilidad Indirecta**, denotada $V(P_x, P_y, I)$, es la función valor del problema Marshaliano:

$$V(P_x, P_y, I) = u(x^M(P_x, P_y, I), y^M(P_x, P_y, I))$$

Simplificaciones del Problema Marshaliano

- Dada una función u(x, y), dónde podemos esperar que se encuentre la solución del problema Marshaliano?
 - Las simplificaciones del problema Marshaliano nos ayudan a no tener que estar revisando todos los posibles casos y así encontrar de una manera más eficiente el óptimo del problema.
 - ▶ Advertencia: las siguientes simplificaciones solamente son válidas de usar en el contexto del problema Marshaliano. En general, pueden no ser ciertas en otros contextos.
- **Teorema (Ley de Walrás**): Si $u: \mathbb{R}^2_+ \to \mathbb{R}$ es una función monótona, entonces en la solución óptima (x^*, y^*) se cumple que:

$$P_x x^* + P_y y^* = I.$$

Simplificaciones del Problema Marshaliano

- Teorema (Condiciones de Inada): Sea $u: \mathbb{R}^2_+ \to \mathbb{R}$ una función monótona y diferenciable.
 - Si es el caso que:

$$\lim_{x\to 0} TMS(x,y) = \infty,$$

entonces $x^* > 0$.

2 Por otro lado, si es el caso que:

$$\lim_{y\to 0} TMS(x,y) = 0,$$

entonces $y^* > 0$.

• **Teorema (Teorema de Unicidad)**: Si $u : \mathbb{R}^2_+ \to \mathbb{R}$ es una función estrictamente cuasicóncava, entonces la solución al problema Marshaliando es única.

Propiedades de la Función de Utilidad Indirecta

- A continuación se listan una serie de propiedades de $V(P_x, P_y, I)$.
 - Homogenea de grado cero en precios e ingreso. Es decir, para toda $\lambda > 0$ y para todo vector (P_x, P_y, I) se cumple que:

$$V(\lambda P_x, \lambda P_y, \lambda I) = V(P_x, P_y, I).$$

② No creciente en P_x . Es decir, si $P_x < \hat{P}_x$ entonces:

$$V(\hat{P}_x, P_y, I) \leq V(P_x, P_y, I).$$

3 No creciente en P_y . Es decir, si $P_y < \hat{P}_y$ entonces:

$$V(P_x, \hat{P}_y, I) \leq V(P_x, P_y, I).$$

4 No decreciente en I. Es decir si $I < \hat{I}$ entonces:

$$V(P_x, P_y, I) \leq V(P_x, P_y, \hat{I}).$$

Propiedades de las Demandas Marshalianas

- En general las demandas Marshalianas solamente cumplen las siguientes dos propiedades.
 - Homogéneas de grado cero en precios e ingreso. Es decir, para toda $\lambda > 0$ se cumple que:

$$x^{M}(\lambda P_{x}, \lambda P_{y}, \lambda I) = x^{M}(P_{x}, P_{y}, I).$$
$$y^{M}(\lambda P_{x}, \lambda P_{y}, \lambda I) = y^{M}(P_{x}, P_{y}, I).$$

2 Si $V(P_x, P_y, I)$ es diferenciable, entonces:

$$x^{M}(P_{x}, P_{y}, I) = -\frac{\frac{\partial V}{P_{x}}(P_{x}, P_{y}, I)}{\frac{\partial V}{I}(P_{x}, P_{y}, I)},$$

$$y^{M}(P_{x}, P_{y}, I) = -\frac{\frac{\partial V}{P_{y}}(P_{x}, P_{y}, I)}{\frac{\partial V}{P_{y}}(P_{x}, P_{y}, I)}.$$

A esta propiedad se le conoce como Identidades de Roy.

Estática Comparativa en el Problema Marshaliano

- La pregunta que buscamos responder es: qué sucede con las demandas cuando cambiamos un parámetro?
- **Definición**: Consideremos un parámetro $P \in \{P_x, P_y, I\}$. La elasticidad del bien X con respecto al parámetro P se define como:

$$E_{x,P}(P_x, P_y, I) = \frac{\partial x^M}{\partial P}(P_x, P_y, I) \frac{P}{x^M(P_x, P_y, I)}.$$

De manera análoga se define la elasticidad del bien Y con respecto a P.

Estática Comparativa en el Problema Marshaliano

- **Definición**: Para cambios en el precio propio, decimos que un bien es:
 - ▶ Ordinario si la elasticidad del precio propio del bien es negativa.
 - ▶ Inelástico si la elasticidad del precio propio del bien es igual a cero.
 - ▶ **Giffen** si la elasticidad del precio propio del bien es positiva.
- Definición: Para cambios en el precio cruzado, decimos que un bien es:
 - ► Complemento si la elasticidad del precio cruzado del bien es negativa.
 - Independiente si la elasticidad del precio cruzado del bien es igual a cero.
 - **Sustituto** si la elasticidad del precio cruzado del bien es positiva.
- Definición: Para cambios en el ingreso, decimos que un bien es:
 - ▶ Inferior si la elasticidad del ingreso del bien es negativa.
 - ▶ **Neutro** si la elasticidad del ingreso del bien es igual a cero.
 - ▶ **Normal** si la elasticidad del ingreso del bien es positiva.

Agregaciones del Problema Marshaliano

- Las agregaciones son una manera de relacionar las distintas elasticidades de un bien con respecto a distintos parámetros.
- **Definición**: Sea $u: \mathbb{R}^2_+ \to \mathbb{R}$ una función monótona. El gasto de un consumidor en el bien X se define como:

$$s_x(P_x, P_y, I) = \frac{P_x x^M(P_x, P_y, I)}{I}.$$

Análogo para el bien Y.

• **Teorema (Agregación de Engel)**: Sea $u: \mathbb{R}^2_+ \to \mathbb{R}$ una función monótona. Entonces:

$$s_x(P_x, P_y, I)E_{x,I}(P_x, P_y, I) + s_y(P_x, P_y, I)E_{y,I}(P_x, P_y, I) = 1.$$

Agregaciones del Problema Marshaliano

• Teorema (Agregación de Cournot): Sea $u: \mathbb{R}^2_+ \to \mathbb{R}$ una función monótona. Entonces:

$$s_x(P_x, P_y, I) + s_x(P_x, P_y, I) E_{x, P_x}(P_x, P_y, I) + s_y(P_x, P_y, I) E_{y, P_x}(P_x, P_y, I) = 0,$$

$$s_y(P_x, P_y, I) + s_y(P_x, P_y, I) E_{y, P_y}(P_x, P_y, I) + s_x(P_x, P_y, I) E_{x, P_y}(P_x, P_y, I) = 0.$$

• Teorema (Agregación de Euler):

$$E_{x,P_x}(P_x, P_y, I) + E_{x,P_y}(P_x, P_y, I) + E_{x,I}(P_x, P_y, I) = 0,$$

$$E_{y,P_x}(P_x, P_y, I) + E_{y,P_y}(P_x, P_y, I) + E_{y,I}(P_x, P_y, I) = 0.$$