

Quadrilaterals Ex 14.4 Q13

Answer:

 ΔABC , an isosceles triangle is given with D_iE and F as the mid-points of BC_i , CA and AB respectively as shown below:

We need to prove that the segment AD and EF bisect each other at right angle.

Let's join DF and DE.

In ΔABC , D and E are the mid-points of BC and AC respectively.

Theorem states, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Therefore, we get: $DE \parallel AB$ Or $DE \parallel AF$

Similarly, we can get $DF \parallel AE$

Therefore, AEDF is a parallelogram

We know that opposite sides of a parallelogram are equal.

DF = AE and DE = AF

$$DF = AE$$
 and $DE = AF$

Also, from the theorem above we get $AF = \frac{1}{2}AB$

Thus,
$$DE = \frac{1}{2}AB$$

Similarly,
$$DF = \frac{1}{2}AC$$

It is given that ΔABC , an isosceles triangle

Thus, AB = AC

Therefore, DE = DF

Also, AE = AF

Then, AEDF is a rhombus.

We know that the diagonals of a rhombus bisect each other at right angle.

Therefore, M is the mid-point of EF and $AM \perp BC$

Hence proved.

Quadrilaterals Ex 14.4 Q14

Answer:

 $\triangle ABC$ is given with D a point on AB such that $AD = \frac{1}{4}AB$.

Also, E is point on AC such that $AE = \frac{1}{4}AC$.

We need to prove that $DE = \frac{1}{4}BC$

Let *P* and *Q* be the mid points of *AB* and *AC* respectively. It is given that

$$AD = \frac{1}{4}AB$$
 and $AE = \frac{1}{4}AC$

But, we have taken P and Q as the mid points of AB and AC respectively.

Therefore, D and E are the mid-points of AP and AQ respectively.

In ΔABC , P and Q are the mid-points of AB and AC respectively.

Theorem states, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Therefore, we get $PQ \parallel BC$ and $PQ = \frac{1}{2}BC$ (i)

In $\Delta\!APQ$, D and E are the mid-points of AP and AQ respectively.

Therefore, we get $DE \parallel PQ$ and $DE = \frac{1}{2}PQ$ (ii)

From (i) and (ii), we get:

$$DE = \frac{1}{4}BC$$

Hence proved.

******* END *******