

The average velocity = $\frac{change in position}{length of the time interval}$

The average velocity = $\frac{\text{change in position}}{\text{length of the time interval}}$ EXAMPLE Average velocity of a falling rock y=4.9xt² meters

after t seconds

The average velocity = $\frac{\text{change in position}}{\text{length of the time interval}}$

Example Average velocity of a falling rock

y=4.9×t² meters

after t seconds

What is the average velocity

during the first 2s?

The average velocity = $\frac{\text{change in position}}{\text{length of the time interval}}$

Example Average velocity of a falling nock

| y=4.9 x t² meters during the first 2s?

This

 $\frac{\Delta y}{\Delta t} = \frac{4.9 \times 2^2 - 4.9 \times 0^2}{2 - 0} = 9.8 \text{ m/s}$

Example for fast is the rock in the previous example falling at time t=2?

Example for fast is the rock in the previous example falling at time t=2?

Average velocity over [2, 2 + h]

h	$\Delta y/\Delta t$
1	24.5000
0.1	20.0900
0.01	19.6490
0.001	19.6049
0.0001	19.6005

Example fow fast is the rock in the previous example falling at time t=2?

Average velocity over [2, 2+h]

h		$\Delta y/\Delta t$	
1		24.5000	
0	.1	20.0900	
0	.01	19.6490	-
0	.001	19.6049	
0	.0001	19.6005	

average velocities get closer and closer to 19.6 as the lengths of time intervals get closer and closer to 0.

Example falling at time t=2?

Average velocity over [2, 2+h]

1	h	$\Delta y/\Delta t$	
	l	24.5000	
(0.1	20.0900	
(0.01	19.6490	
(0.001	19.6049	
(0.0001	19.6005	

notationally

$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{4 \cdot 9/2 + h^2 - 4 \cdot 9}{h} = 19.6$$

$$\lim_{h \to 0} \frac{4 \cdot 9/2 + h^2 - 4 \cdot 9}{h} = 19.6$$

EXAMPLE How fast is the rock falling t seconds after it is dropped?

the average velocity over the time interval $[t,t+h] = \frac{\Delta y}{\Delta t} = \frac{4.9(t+h)^2 - 4.9t^2}{h} = 9.8t + 4.9h$ As h

t seconds after the rock is dropped, its velocity is $9.8 \pm m/s$.

Approximating a circle with polygons

Pn: the perimeter of the polygon

An: the area of the polygon

C: the circumference of the circle

A: the area of the circle

$$P_n = 2 \operatorname{rnsin}\left(\frac{\pi}{n}\right)$$

$$A_n = r^2 n \sin(\frac{\pi}{n}) \cos(\frac{\pi}{n})$$

$$P_n = 2 \operatorname{rnsin}\left(\frac{\pi}{n}\right)$$

$$A_n = r^2 n \sin\left(\frac{\pi}{n}\right) \cos\left(\frac{\pi}{n}\right)$$

$$A_n = \frac{1}{2} r \cos(\frac{\pi}{n}) P_n$$

$$P_n = 2 \operatorname{rnsin}\left(\frac{\pi}{n}\right)$$

$$A_n = r^2 n \sin\left(\frac{\pi}{n}\right) \cos\left(\frac{\pi}{n}\right)$$

$$A_n = \frac{1}{2} r \cos(\frac{\pi}{n}) P_n$$

$$\frac{\pi}{n} \rightarrow 0$$
; so $\cos\left(\frac{\pi}{n}\right) = \frac{10Ml}{10Al} \rightarrow 1$.

$$P_n = 2 \operatorname{rnsin}\left(\frac{\pi}{n}\right)$$

$$A_n = r^2 n \sin\left(\frac{\pi}{n}\right) \cos\left(\frac{\pi}{n}\right)$$

$$A_n = \frac{1}{2} r \cos(\frac{\pi}{n}) P_n$$

As n grows large,

$$\frac{\pi}{n} \rightarrow 0$$
; so $\cos\left(\frac{\pi}{n}\right) = \frac{10Ml}{10Al} \rightarrow 1$.

Also, as n grows large, Pn-> C=2TT; so An->TTT?

EXAMPLE

Describe the behaviour of the function $f(x) = \frac{x^2 - 1}{x - 1}$ near x = 1.

EXAMPLE

Describe the behaviour of the function $f(x) = \frac{x^2 - 1}{x - 1}$ near x = 1.

EXAMPLE

Describe the behaviour of the function $f(x) = \frac{x^2 - 1}{x - 1}$ near x = 1.

EXAMPLE

What happens to the function $g(x) = (1+x^2)^{1/x^2}$ as x approaches zero?

EXAMPLE

What happens to the function $g(x) = (1+x^2)^{1/x^2}$ as x approaches zero?

x	g(x)
±1.0	2.0000 00000
± 0.1	2.7048 13829
± 0.01	2.7181 45927
± 0.001	2.7182 80469
± 0.0001	2.7182 81815
± 0.00001	1.0000 00000

EXAMPLE

What happens to the function $g(x) = (1+x^2)^{1/x^2}$ as x approaches zero?

X	approaches
2	eno
+	wough some
Po	irticular
M	mhen

x	g(x)
±1.0	2.0000 00000
± 0.1	2.7048 13829
± 0.01	2.7181 45927
± 0.001	2.7182 80469
± 0.0001	2.7182 81815
± 0.00001	1.0000 00000

EXAMPLE

What happens to the function $g(x) = (1+x^2)^{1/x^2}$ as x approaches zero?

zero
through some
particular
numbers

x	g(x)
±1.0	2.0000 00000
± 0.1	2.7048 13829
± 0.01	2.7181 45927
± 0.001	2.7182 80469
± 0.0001	2.718281815
± 0.00001	1.0000 00000

 $\lim_{x\to \infty} g(x) = 2.71828...$ = eas we shall see later.

EXAMPLE

What happens to the function $g(x) = (1+x^2)^{1/x^2}$ as x approaches zero?

zero
through some
particular
numbers

x	g(x)	
±1.0	2.0000 00000	
± 0.1	2.7048 13829	
± 0.01	2.7181 45927	1:00 000 0 71000
± 0.001	2.7182 80469	$\lim_{x\to \infty} g(x) = 2.71828$
± 0.0001	2.718281815	= e
± 0.00001	1.0000 00000	Tas use shall see later
± 0.00001	1.0000 00000	as we shall see lo

it should have been (1.0000000001) 10 000 000 000

An informal definition of limit

If f(x) is defined for all x near a, except possibly at a itself, and if we can ensure that f(x) is as close as we want to L by taking x close enough to a, but not equal to a, we say that the function f approaches the **limit** L as x approaches a, and we write

$$\lim_{x \to a} f(x) = L.$$

An informal definition of limit

If f(x) is defined for all x near a, except possibly at a itself, and if we can ensure that f(x) is as close as we want to L by taking x close enough to a, but not equal to a, we say that the function f approaches the **limit** L as x approaches a, and we write

$$\lim_{x \to a} f(x) = L.$$

EXAMPLE

Find (a) $\lim_{x\to a} x$ and (b) $\lim_{x\to a} c$ (where c is a constant).

An informal definition of limit

If f(x) is defined for all x near a, except possibly at a itself, and if we can ensure that f(x) is as close as we want to L by taking x close enough to a, but not equal to a, we say that the function f approaches the **limit** L as x approaches a, and we write

$$\lim_{x \to a} f(x) = L.$$

EXAMPLE

Find (a) $\lim_{x \to a} x$ and

and (b) $\lim_{x\to a} c$ (where c is a constant).

EXAMPLE

Let
$$g(x) = \begin{cases} x & \text{if } x \neq 2 \\ 1 & \text{if } x = 2. \end{cases}$$
 Then

 $\lim_{x \to 2} g(x) = \lim_{x \to 2} x = 2, \quad \text{although} \quad g(2) = 1.$

One-Sided Limits

Informal definition of left and right limits

If f(x) is defined on some interval (b, a) extending to the left of x = a, and if we can ensure that f(x) is as close as we want to L by taking x to the left of a and close enough to a, then we say f(x) has **left limit** L at x = a, and we write

$$\lim_{x \to a^-} f(x) = L.$$

If f(x) is defined on some interval (a, b) extending to the right of x = a, and if we can ensure that f(x) is as close as we want to L by taking x to the right of a and close enough to a, then we say f(x) has **right limit** L at x = a, and we write

$$\lim_{x \to a+} f(x) = L.$$

One-Sided Limits

EXAMPLE

The signum function sgn(x) = x/|x| has left limit -1 and right limit 1 at x = 0:

$$\lim_{x \to 0-} \text{sgn}(x) = -1$$
 and $\lim_{x \to 0+} \text{sgn}(x) = 1$.

One-Sided Limits

THEOREM Relationship between one-sided and two-sided limits

A function f(x) has limit L at x = a if and only if it has both left and right limits there and these one-sided limits are both equal to L:

$$\lim_{x \to a} f(x) = L \quad \Longleftrightarrow \quad \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L.$$

One-Sided Limits

THEOREM Relationship between one-sided and two-sided limits

A function f(x) has limit L at x = a if and only if it has both left and right limits there and these one-sided limits are both equal to L:

$$\lim_{x \to a} f(x) = L \quad \Longleftrightarrow \quad \lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = L.$$

EXAMPLE If
$$f(x) = \frac{|x-2|}{x^2 + x - 6}$$
, find: $\lim_{x \to 2+} f(x)$, $\lim_{x \to 2-} f(x)$, and $\lim_{x \to 2} f(x)$.

One-Sided Limits

What one-sided limits does $g(x) = \sqrt{1 - x^2}$ have at x = -1 and x = 1?

One-Sided Limits

EXAMPLE

What one-sided limits does $g(x) = \sqrt{1 - x^2}$ have at x = -1 and x = 1?

$$\lim_{X\to 1^-} g(x) = 0.$$

One-Sided Limits

EXAMPLE

What one-sided limits does $g(x) = \sqrt{1 - x^2}$ have at x = -1 and x = 1?

$$\lim_{x\to 1^{-}} g(x) = 0.$$

g(x) has no left limit or limit at x=-1 and no right limit or limit at x=1.

Rules for Calculating Limits

If $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$, and k is a constant, then

1. Limit of a sum:
$$\lim_{x \to a} [f(x) + g(x)] = L + M$$

2. Limit of a difference:
$$\lim_{x \to a} [f(x) - g(x)] = L - M$$

3. Limit of a product:
$$\lim_{x \to a} f(x)g(x) = LM$$

4. Limit of a multiple:
$$\lim_{x \to a} kf(x) = kL$$

5. Limit of a quotient:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad \text{if } M \neq 0.$$

If m is an integer and n is a positive integer, then

6. Limit of a power:
$$\lim_{x \to a} [f(x)]^{m/n} = L^{m/n}, \text{ provided } L > 0 \text{ if } n \text{ is even, and } L \neq 0 \text{ if } m < 0.$$

If $f(x) \leq g(x)$ on an interval containing a in its interior, then

7. Order is preserved: $L \leq M$

Rules for Calculating Limits

Example

Evaluate:

(a)
$$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 5x + 6}$$
, (b) $\lim_{x \to a} \frac{\frac{1}{x} - \frac{1}{a}}{x - a}$, and (c) $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16}$.

(b)
$$\lim_{x \to a} \frac{\overline{x} - \overline{a}}{x - a}$$
, a

(c)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 16}$$
.

EXAMPLE Find: (a)
$$\lim_{x \to a} \frac{x^2 + x + 4}{x^3 - 2x^2 + 7}$$
 and (b) $\lim_{x \to 2} \sqrt{2x + 1}$.

(b)
$$\lim_{x \to 2} \sqrt{2x + 1}$$

THEOREM

Limits of Polynomials and Rational Functions

1. If P(x) is a polynomial and a is any real number, then

$$\lim_{x \to a} P(x) = P(a).$$

2. If P(x) and Q(x) are polynomials and $Q(a) \neq 0$, then

$$\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}.$$

EXAMPLE Find the following limits:

(a)
$$\lim_{h\to 0} \frac{\sqrt{1+h-1}}{h}$$

(b)
$$\lim_{t\to 0} \frac{1}{t\sqrt{1+t}} - \frac{1}{t}$$

THEOREM The sequeeze (or sandwich) theorem

Suppose that $f(x) \le g(x) \le h(x)$ holds for all x in some open interval containing a, except possibly at x = a itself. Suppose also that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.$$

Then $\lim_{x\to a} g(x) = L$ also. Similar statements hold for left and right limits.

EXAMPLE

Given that $3 - x^2 \le u(x) \le 3 + x^2$ for all $x \ne 0$, find $\lim_{x \to 0} u(x)$.

EXAMPLE

Given that $3 - x^2 \le u(x) \le 3 + x^2$ for all $x \ne 0$, find $\lim_{x \to 0} u(x)$.

EXAMPLE

Show that if $\lim_{x\to a} |f(x)| = 0$, then $\lim_{x\to a} f(x) = 0$.

EXAMPLE Given that $3 - x^2 \le u(x) \le 3 + x^2$ for all $x \ne 0$, find $\lim_{x \to 0} u(x)$.

EXAMPLE

Show that if $\lim_{x\to a} |f(x)| = 0$, then $\lim_{x\to a} f(x) = 0$.

EXAMPLE Show that $\lim_{X\to 0} x^2 \sin \frac{1}{x} = 0$.

