MTEX 示例 MTEX Demo

bitjoy.net bitjoy@qq.com

2017年1月9日

目录

1	简介	1
2	数学相关	1
	=-= // 11 \$	1
	2.2 数学公式	1
3	计算机相关	3
	3.1 伪代码	3
	3.2 代码高亮	3
4	图表相关	4
	4.1 常规图表	4
	4.2 特殊图表(包含子图表)	4

表格

1	Matrix for Exercise 3.3.3(Mining of Massive Datasets)	4
2	需要求解的模型参数 $\vec{\lambda}$	4

插图

1	Lady symbol																	4
2	Four ladies .																	5

1 简介

此示例为本人常用 LATEX 中文模板,仅供参考。请使用 XELATEX 编译。

段首缩进两个中文字符,请使用 ctex 包替换 xeCJK 包。段首缩进两个中文字符,请使用 ctex 包替换 xeCJK 包。

2 数学相关

2.1 数学符号

$$\alpha A \beta B \gamma \Gamma \delta \Delta \epsilon E$$

$$\epsilon \zeta Z \eta H \theta \Theta \vartheta$$

$$\iota I \kappa K \lambda \Lambda \mu M \nu N$$

$$\xi \Xi o O \pi \Pi \varpi \rho P$$

$$\rho \sigma \Sigma \varsigma \tau T \upsilon \Upsilon$$

$$\phi \Phi \varphi \chi X \psi \Psi \omega \Omega$$

更多详情,请点击http://mohu.org/info/symbols/symbols.htm

2.2 数学公式

Baum-Welch 递归公式如下:

$$\hat{\mu}_i^{m+1} = \frac{P(\vec{Y} = \vec{y}, X_1 = i | \vec{\lambda}_m)}{P(\vec{Y} = \vec{y} | \vec{\lambda}_m)} = \gamma_1(i)$$
(1)

$$\hat{a}_{ij}^{m+1} = \frac{\sum_{t=1}^{T-1} P(X_t = i, X_{t+1} = j | \vec{Y} = \vec{y}, \vec{\lambda}_m)}{\sum_{t=1}^{T-1} P(X_t = i | \vec{Y} = \vec{y}, \vec{\lambda}_m)} \stackrel{\triangle}{=} \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$
(2)

$$\hat{b}_{il}^{m+1} = \frac{\sum_{t=1}^{T} P(\vec{Y} = \vec{y}, X_t = i | \vec{\lambda}_m) I_{\{l\}}(y_t)}{\sum_{t=1}^{T} P(\vec{Y} = \vec{y}, X_t = i | \vec{\lambda}_m)} \triangleq \frac{\sum_{t=1, y_t = l}^{T} \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}$$
(3)

Stable Matching Problem

min 0
s.t.
$$\sum_{i=1}^{n} x_{ij} = 1$$
 for all $j = 1, 2, ..., n$
 $\sum_{j=1}^{n} x_{ij} = 1$ for all $i = 1, 2, ..., n$
 $x_{ij} + x_{kl} \leq S_{i,j,k,l} + 1$ for all $i, j, k, l = 1, 2, ..., n, i \neq k, j \neq l$
 $x_{ij} \in \{0, 1\}$ for all $i, j = 1, 2, ..., n$ (4)

Subsequence Counting

$$dp[i][j] = \begin{cases} dp[i-1][j] & \text{if } S[i] \neq T[j] \\ dp[i-1][j] + dp[i-1][j-1] & \text{if } S[i] = T[j] \end{cases}$$
(5)

如果不需要公式标号,可以把 equation 环境去掉,换成 \$\$ \$\$ 或 \[\]。 Linear Program

$$\max 3x_1 + x_2 + 2x_3$$
s.t.
$$x_1 + x_2 + 3x_3 \le 30$$

$$2x_1 + 2x_2 + 5x_3 \le 24$$

$$4x_1 + x_2 + 2x_3 \le 36$$

$$x_1, x_2, x_3 \ge 0$$
(6)

We have:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 5 \\ 4 & 1 & 2 \end{bmatrix} \qquad b = \begin{bmatrix} 30 \\ 24 \\ 36 \end{bmatrix} \qquad c = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \tag{7}$$

After running my implementation, we get:

$$x = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix} \tag{8}$$

如果不需要矩阵标号,可以把 gather 改为 gather*。

Jacobi 矩阵:

$$J(i, j, \theta) = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & -s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} j$$

$$i \qquad j$$

3 计算机相关

3.1 伪代码

Introduction to Algorithms, third edition page 631, growing a minimum spanning tree.

```
MST-KRUSKAL(G, w)
1
   A = \emptyset
2
   for each vertex v \in G.V
3
        MAKE-SET(v)
   sort the edges of G.E into nondecreasing order by weight w
   for each edge (u, v) \in G.E, taken in nondecreasing order by weight
5
6
        if FIND-SET(u) \neqFIND-SET(v)
             A = A \cup \{(u, v)\}
8
             UNION(u, v)
9
   return A
```

3.2 代码高亮

```
#include <iostream>
using namespace std;
int main() {
    cout <<"Hello World!"<<endl;
    return 0;
}</pre>
```

4 图表相关

4.1 常规图表

图 1: Lady symbol

Element	S_1	S_2	S_3	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

表 1: Matrix for Exercise 3.3.3(Mining of Massive Datasets)

4.2 特殊图表(包含子图表)

	ТА	ТВ
TA		
ТВ		
初概率		

	A	С	Т	G
TA				
ТВ				

(a) 初始概率 $\vec{\mu}$ 和转移概率矩阵 A

(b) 发射概率矩阵 B

表 2: 需要求解的模型参数 $\vec{\lambda}$

图 2: Four ladies

使用 float 宏包, 然后用 [H] 标签可以固定图表的位置。

- \begin{figure}[H]
- 2 \end{figure}