Etude de limites

Exercice 1.

Etudier le comportement en 0 de la fonction définie par

$$f(x) = x^2 \left\lfloor \frac{1}{x} \right\rfloor.$$

Exercice 2.★

On note |x| la partie entière d'un réel x.

1. Déterminer les limites en $+\infty$ des expressions suivantes :

$$\mathbf{a.} \ f(x) = x \left\lfloor \frac{1}{x} \right\rfloor;$$

b.
$$g(x) = \frac{|x|}{x}$$
.

2. Déterminer la limite en 0+ de :

$$f(x) = x \left\lfloor \frac{1}{x} \right\rfloor.$$

3. Montrer que

$$h(x) = \frac{x^x}{|x|^{|x|}}$$

n'admet pas de limite en $+\infty$.

Exercice 3.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ croissante telle que

$$\lim_{x \to +\infty} (f(x) - f(x-1)) = 0.$$

Montrer que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0.$$

Exercice 4.

Reconnaître la fonction définie sur $\mathbb R$ par

$$f(x) = \lim_{n \to +\infty} \lim_{m \to +\infty} |\cos(n!\pi x)|^m.$$

Exercice 5.

Soit $f: \mathbb{R} \to \mathbb{R}_+$ croissante telle que $\lim_{x \to +\infty} f(2x) - f(x) = 0$. Montrer que $\lim_{x \to +\infty} \frac{f(x)}{\ln x} = 0$.

Exercice 6.

Montrer que toute fonction périodique f qui admet une limite finie en $+\infty$ est constante.

Exercice 7.

Soit f une fonction définie sur \mathbb{R}_+ croissante telle que la suite (f(n)) diverge vers $+\infty$. Montrer que $\lim_{x\to+\infty} f(x) = +\infty$.

EXERCICE 8.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction décroissante telle que $f(x) + f(x+1) \sim \frac{1}{x}$.

- **1.** Étudier la limite de f en $+\infty$.
- **2.** Donner un équivalent de f au voisinage de $+\infty$.

Continuité ponctuelle

Exercice 9.★

Etudier la continuité sur $\mathbb R$ de la fonction f définie par

$$x \in \mathbb{R} \longmapsto f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$$

Exercice 10.★

Etudier la continuité sur $\mathbb R$ de la fonction f définie par

$$x \in \mathbb{R} \longmapsto f(x) = |x| \sin(\pi x).$$

Exercice 11.

Etudier la continuité sur $\mathbb R$ de la fonction f définie par $f(x) = (-1)^{\mathbb E(x)} \left(x - \mathbb E(x) - \frac{1}{2}\right)$.

EXERCICE 12.

On note $\mathbb{1}_{\mathbb{Q}}$ la fonction indicatrice de \mathbb{Q} .

- **1.** Montrer que $\mathbb{1}_{\mathbb{O}}$ n'est continue en *aucun* point de \mathbb{R} .
- **2.** Démontrer que l'application $f: x \in \mathbb{R} \mapsto x^2 \mathbb{1}_{\mathbb{Q}}(x)$ est continue en 0 (et même dérivable en 0), alors qu'elle est discontinue en tout autre point de \mathbb{R} .

Exercice 13.

Soit $f: x \mapsto \left[x(\ln x)^2 + 1\right]^{\frac{1}{\ln x}}$.

- **1.** Montrer que f est définie sur $]0,1[\cup]1,+\infty[$.
- **2.** Montrer *avec soin* que f est continue sur $]0,1[\cup]1,+\infty[$.
- 3. Montrer que f est prolongable par continuité en 0 et 1.
- **4.** Etudier la limite de f en $+\infty$.

Exercice 14.★★

Soit $f:]0, +\infty[\to \mathbb{R}$ telle que:

- **1.** f est croissante;
- 2. $x > 0 \mapsto \frac{f(x)}{x}$ est décroissante.

Etablir que f est continue.

Applications du TVI

Exercice 15.

Soit f, une application continue, périodique, de période T > 0. Démontrer qu'il existe un réel t_0 tel que

 $f(t_0) = f\left(t_0 + \frac{\mathrm{T}}{2}\right).$

Exercice 16.★

Soit f une fonction rélle définie et continue sur [0,1] telle que f(0)=f(1)=0. On suppose que

$$\forall x \in [0, 7/10], f(x+3/10) \neq f(x).$$

Montrer que f s'annule au moins 7 fois sur [0,1].

Exercice 17.

Soit f une application réelle, continue sur un segment I telle que I $\subset f(I)$. Montrer qu'il existe $t_0 \in I$ tel que $f(t_0) = t_0$.

Exercice 18.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$. une fonction continue. On suppose qu'il existe $l \in [0,1[$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = l$. Montrer que f possède au moins un point fixe.

Exercice 19.

Soit f une fonction numérique continue sur [0,1] telle que f(0)=f(1). Montrer que pour tout $n \in \mathbb{N}^*$, il existe $x \in \left[0,1-\frac{1}{n}\right]$ tel que $f\left(x+\frac{1}{n}\right)=f(x)$.

Exercice 20.

Soient $f:[0,1] \to \mathbb{R}$ une application continue, $n \in \mathbb{N}^*$ et $x_1, \dots, x_n \in [0,1]$. Montrer qu'il existe $x \in \mathbb{R}$ tel que $f(x) = \frac{1}{n} \sum_{k=1}^{n} f(x_k)$.

Exercice 21.

Soit f une fonction décroissante et continue sur $\mathbb R$. Montrer que f admet un unique point fixe.

Exercice 22.★

Soit f, une fonction continue de [0,1] dans $\mathbb R$ telle que

$$\int_0^1 f(t)dt = \frac{1}{2}.$$

Démontrer l'existence d'un nombre réel $c \in [0,1]$ tel que f(c) = c.

Exercice 23.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue telle que $f \circ f$ admette un point fixe. f admet-elle un point fixe?

Continuité sur un segment

Exercice 24.★★

Soit $f:[0,+\infty[\longrightarrow \mathbb{R}$ continue ayant une limite finie ℓ en $+\infty$. Prouver que f est bornée.

Exercice 25.

Soient f et g continues sur [0,1] telles que

$$\forall x \in [0,1], \quad f(x) < g(x).$$

Montrer qu'il existe m > 0 tel que

$$\forall x \in [0,1], \quad f(x) + m < g(x).$$

Exercice 26.

Soit f continue sur \mathbb{R} telle que $f(x) \xrightarrow[x \to +\infty]{} + \infty$ et $f(x) \xrightarrow[x \to -\infty]{} + \infty$. Montrer que f est minorée et atteint sa borne inférieure.

Exercice 27.★

Soient $(a, b) \in \mathbb{R}^2$, a < b et

$$f:[a,b] \longrightarrow [a,b]$$

continue. Montrer que f admet au moins un point fixe.

Exercice 28.

Soit I un segment de $\mathbb R$ et f une fonction continue de I dans $\mathbb R$ telle que I $\subset f(I)$. Montrer que f admet un point fixe.

EXERCICE 29.

Soit f une fonction continue sur un segment I = [a, b] telle que $I \subset f(I)$.

- **1.** Montrer que f prend les valeurs a et b sur I.
- **2.** En déduire que f admet un point fixe.

Exercice 30.

Soit f et g deux applications continues de [0,1] dans [0,1] telles que $g \circ f = f \circ g$.

- **1.** Montrer que f admet au moins un point fixe.
- **2.** On note F l'ensemble des points fixes de f. Montrer que F admet un plus grand et un plus petit élément.
- **3.** Montrer que F est stable par *g*.
- **4.** Montrer qu'il existe $x \in [0,1]$ tel que f(x) = g(x).

Exercice 31.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique.

- **1.** Si f admet une limite finie en $+\infty$, montrer que f est constante.
- 2. Si f est continue non constante, montrer que f admet une plus petite période.
- 3. Si f est continue, montrer que f est bornée et atteint ses bornes.

Continuité et bijectivité

Exercice 32.★★

On se propose d'établir la continuité d'une fonction définie implicitement.

1. Montrer qu'il existe une unique fonction

$$f:[0,2] \longrightarrow [0,1]$$

telle que

$$\forall x \in [0,2], f(x)^5 + f(x) = x.$$

2. Prouver que f est continue.

Exercice 33.★★

Soit $f:[0,1] \longrightarrow [0,1]$ continue telle que $f \circ f = id_{[0,1]}$ et f(0) = 0.

- **1.** Etablir que f est strictement croissante.
- **2.** En déduire que $f = i d_{[0,1]}$.

Equations fonctionnelles

Exercice 34.★★

Soit f, une application de $\mathbb R$ dans $\mathbb R$, telle que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y). \tag{*}$$

- **1.** Calculer f(0).
- **2.** Vérifier que f est impaire.
- 3. On pose a = f(1). Calculer par récurrence f(n) pour tout $n \in \mathbb{Z}$.
- **4.** Montrer que $\forall r \in \mathbb{Q}, f(r) = ar$.
- **5.** On suppose en outre que f est continue en 0.
 - **a.** Montrer que f est continue sur \mathbb{R} .
 - **b.** En déduire que f(x) = ax pour tout réel x par densité de $\mathbb Q$ dans $\mathbb R$.
- **6.** Déterminer toutes les applications continues $f : \mathbb{R} \to \mathbb{R}$ vérifiant (*).

Exercice 35.★★

Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ continues telles que

$$\exists a \in \mathbb{R} \setminus \{-1, 1\}, \ \forall x \in \mathbb{R}, \ f(ax) = f(x).$$

Exercice 36.★★

Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ continues telles que

$$\exists n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f(x^n) = f(x).$$

Exercice 37.★★

Déterminer les fonctions $g : \mathbb{R} \longrightarrow \mathbb{R}$ continues telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad 2g\left(\frac{x+y}{2}\right) = g(x) + g(y)$$

EXERCICE 38.

Soit f, une application de \mathbb{R} dans \mathbb{R} telle que

$$\forall (x,y) \in \mathbb{R}^2, |f(x)-f(y)| = |x-y|.$$

Pour tout réel x, on pose g(x) = f(x) - f(0).

- **1.** Etablir que f et g sont continues sur \mathbb{R} .
- **2.** Calculer $(g(x))^2$ pour tout réel x et en calculant $(g(x) g(y))^2$, démontrer que g(x)g(y) = xy pour tous réels x et y.
- 3. En déduire l'expression de f.

EXERCICE 39.

Soit f, une application continue de $\mathbb R$ dans $\mathbb R$, telle que

$$\forall (x, y) \in \mathbb{R}^2, f(x+y) = f(x)f(y).$$

- 1. Quelles sont les valeurs possibles de f(0)?
- **2.** Déterminer f si f(0) = 0.
- 3. On suppose $f(0) \neq 0$.
 - a. Démontrer que f ne s'annule pas sur \mathbb{R} .
 - **b.** En déduire que, pour tout réel x, f(x) est strictement positif.
 - **c.** Montrer qu'il existe $a \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = e^{ax}.$$

Exercice 40.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 telle que f(2x) = f(x) pour tout $x \in \mathbb{R}$. Montrer que f est constante.

Exercice 41.

- **1.** Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $P_n(x) = \prod_{k=1}^n \cos \frac{x}{2^k}$. Montrer que pour $x \neq 0$, $\lim_{n \to +\infty} P_n(x) = \frac{\sin x}{x}.$
- **2.** Rechercher les fonctions $f : \mathbb{R} \to \mathbb{R}$ continues en 0 telles que $f(2x) = f(x)\cos x$ pour tout $x \in \mathbb{R}$.

Lipschitzianité

Exercice 42.

- **1.** Soit I un segment de \mathbb{R} et $f: \mathbb{I} \to \mathbb{R}$ continue telle que $f(\mathbb{I}) \subset \mathbb{I}$. Montrer que f admet un point fixe.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une application lipschitzienne de rapport $0 \le k < 1$. Montrer qu'il existe $M \in \mathbb{R}_+$ tel que $f([-M; M]) \subset [-M; M]$.
- 3. En déduire qu'une application $f: \mathbb{R} \to \mathbb{R}$ lipschitzienne de rapport $0 \le k < 1$ admet un unique point fixe.

Continuité uniforme

Exercice 43.

Soit $f:[0;+\infty[\to\mathbb{R}]$ une fonction continue ayant une limite finie en $+\infty$.

- 1. Montrer que f est bornée.
- 2. Montrer que f admet un minimum ou un maximum absolu mais pas nécessairement les deux.
- 3. Montrer que f est uniformément continue.

Exercice 44.

Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue telle que $\lim_{n \to +\infty} f(n) = +\infty$ avec $n \in \mathbb{N}$. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ avec $x \in \mathbb{R}$.

Exercice 45.

Soit f une application continue sur \mathbb{R}_+ admettant une limite finie en $+\infty$. Montrer que f est uniformément continue sur \mathbb{R}_+ .

Exercice 46.

Montrer que toute fonction périodique continue sur $\mathbb R$ est uniformément continue.