Image Restoration

Image Restoration

- Image Enhancement
 - A <u>subjective</u> process using mostly heuristics.
- Image Restoration
 - An <u>objective</u> process assuming a-priori knowledge of the degradation process.

blur due to motion

Modeling Image Degradation

• Degradation process can be modeled through a degradation function \mathbf{H} and additive noise $\mathbf{\eta}(\mathbf{x},\mathbf{y})$.

$$g(x,y) = H[f(x,y)] + n(x,y)$$

Goal of Image Restoration

 Given some knowledge of H and noise η(x,y), the objective of image restoration is to obtain an estimate of the original image.

Performance Characterization

 How do we characterize the performance of different image restoration algorithms?

Mean Square Error (MSE)

$$MSE = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x,y) - \mathcal{H}(x,y) \right]^2$$
 Warning: do not necessarily

imply

"best" in the visual sense.

Signal to Noise Ratio (SNR)

SNR =
$$\frac{\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \mathcal{L}(x,y)^{2}}{\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} [f(x,y) - \mathcal{L}(x,y)]^{2}}$$

Assumptions about degradation function H

H is linear:

$$H[f_1 + f_2] = H[f_1] + H[f_2],$$
 (1)
 $H[kf] = kH[f]$ (2)

H is shift invariant:

If
$$H[f(x,y)] = g(x,y)$$
 then $H[f(x-a,y-b)] = g(x-a,y-b)$ (i.e., shifting the input merely shifts the output by the same amount)

Degradation Model

(assuming linearity and shift invariance)

Any function f(x,y) can be written as follows:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,b)\delta(x-a,y-b) da db$$

• Then, H[f(x,y)] is:

$$H[f(x,y)] = H\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,b)\delta(x-a,y-b)dadb\right] =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H[f(a,b)\delta(x-a,y-b)]dadb = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha,b)H[\delta(x-\alpha,y-b)]d\alpha db$$

Degradation Model - Continuous Case (cont'd)

Suppose

$$H[\delta(x, y)] = h(x, y)$$
impulse response

Since H(x,y) is shift invariant:

from (3)
$$H[\delta(x-a, y-b)] = h(x-a, y-b)$$

• The $H[f(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a,b)h(x-a,y-b)dadb = f(x,y) * h(x,y)$

Degradation Model - Continuous Case (cont'd)

Under the assumptions of linearity and shift invariance:

$$g(x,y) = H[f(x,y)] + n(x,y)$$

Degradation Model: g(x, y) = f(x, y) * h(x, y) + n(x, y)

or in freq. domain: G(u,v) = H(u,v)F(u,v) + N(u,v)

Noise Properties

- Noise arises typically during image acquisition and/or transmission.
- For simplicity, we will assume that:
 - (1) noise is independent of spatial coordinates
 - (2) there is no correlation between pixel values and noise values (not true for periodic noise)

Noise Models

 Many types of noise can be modeled using a probability density function.

 Model is typically chosen based on some understanding of the noise source.

Gaussian noise

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(z-\bar{z})^2/2\sigma^2}$$

- Gaussian noise arises in an image due to factors such as:
 - (1) Electronic circuit noise
 - (2) Sensor noise due to poor illumination and/or high temperature

Rayleigh noise

$$p(z) = \begin{cases} \frac{2}{b} (z - a)e^{-(z - a)^{2}/b} & z \ge a \\ 0 & z < a \end{cases}$$

$$\bar{z} = a + \sqrt{\pi b/4} \qquad \sigma^2 = \frac{b(4-\pi)}{4}$$

• Typically used to characterize noise in **range** imaging.

Gamma (Erlang) noise

$$p(z) = \begin{cases} \frac{a^b z^{b-1}}{(b-1)!} e^{-az} & z \ge 0\\ 0 & z < 0 \end{cases}$$

$$\bar{z} = \frac{b}{a} \quad \sigma^2 = \frac{b}{a^2}$$

• Typically used to characterize noise in laser imaging.

Exponential noise

$$p(z) = \begin{cases} ae^{-az} & z \ge 0 \\ 0 & z < 0 \end{cases}$$
$$\bar{z} = \frac{1}{a} \quad \sigma^2 = \frac{1}{a^2}$$

• Typically used to characterize noise in laser imaging.

Uniform noise

$$p(z) = \begin{cases} \frac{1}{b-a} & a \le z \le b \\ 0 & otherwise \end{cases}$$

$$\bar{z} = \frac{a+b}{2} \quad \sigma^2 = \frac{(b-a)^2}{12}$$

- Least used in practice.
- Useful as the basis for random number generators.

Impulse noise

$$p(z) = \begin{cases} P_a & z = a \\ P_b & z = b \\ 0 & otherwise \end{cases}$$

- If $P_a = P_b$, a = 0, and b = 255, then this is salt and pepper noise.
- •Common in situations where quick transients (e.g., faulty switching), takes place during imaging.

Examples

noise corrupted images and their histograms

test pattern

Gaussian Rayleigh Gamma

Examples (cont'd)

noise corrupted images and their histograms

test pattern

Exponential Uniform Salt & Pepper

Estimation of noise parameters

- Estimate the noise model parameters from a small patch of reasonably constant background intensity.
- For impulse noise, estimate probability of black/white pixels (i.e., choose a mid-gray region).

FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the Rayleigh, and (c) the uniform noisy images in Fig. 5.4.

- (1) Estimate mean and variance
- (2) Compute a and b(i.e., parametersof noise distribution)

Restoration in the presence of noise only

```
    If noise can be estimated, then subtract it from the input image:
    cstimate m(x,y)
    g(x,y) = f(x,y) + m(x,y) → f(x,y) = g(x,y) - fi(x,y)
```

— Frequency-domain inters (band-reject, band-pass, etc.)

Arithmetic/Geometric mean filters

a b c d

FIGURE 5.7

(a) X-ray image. (b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3 . (d) Result of filtering with a geometric mean filter of the same size. (Original image courtesy of Mr. Joseph E. Pascente, Lixi,

Geometric mean filters tend to preserve more details (i.e., less blurring)

m x n mask

Inc.)

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{x,y}} g(s,t)$$

$$\hat{f}(x,y) = \left[\prod_{(s,t)\in S_{x,y}} g(s,t)\right]^{\frac{1}{mn}}$$

Arithmetic/Geometric mean filters

a b c d

FIGURE 5.7

(a) X-ray image. (b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3 . (d) Result of filtering with a geometric mean filter of the same size. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Geometric mean filters tend to preserve more details (i.e., less blurring)

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{x,y}} g(s,t)$$

$$\hat{f}(x,y) = \left[\prod_{(s,t) \in S_{x,y}} g(s,t) \right]^{\frac{1}{mn}}$$

Contra-Harmonic filters

a b c d

FIGURE 5.8

(a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contraharmonic filter of order 1.5. (d) Result of filtering (b) with Q = -1.5.

Q: order of filter

$$\hat{f}(x,y) = \frac{\sum_{(s,t) \in S_{x,y}} [g(s,t)]^{Q+1}}{\sum_{(s,t) \in S_{x,y}} [g(s,t)]^{Q}}$$

Good for removing salt or pepper noise (but not both simultaneously)

 $Q>0 \rightarrow pepper noise$ $Q<0 \rightarrow salt noise$

If Q=0, same as arithmetic filter!

Contra-Harmonic filters (cont'd)

Example of selecting the wrong sign:

a b FIGURE 5.9

filtering. (a) Result of filtering

(b) Result of

with Q = 1.5.

Order statistics filters

Their response is based on the <u>ordering</u>
 (ranking) of the pixels contained in an area
 covered by the filter.

Order statistics filters are <u>nonlinear</u> spatial filters.

Median filter

Multiple passes can improve results

a b c d

FIGURE 5.10

(a) Image corrupted by saltand-pepper noise with probabilities $P_a = P_b = 0.1.$ (b) Result of one pass with a median filter of size 3×3 . (c) Result of processing (b) with this filter. (d) Result of processing (c) with the same filter.

Less blurring compared to arithmetic filters

Max/Min filters

$$\hat{f}(x,y) = \min_{(s,t) \in S_{xy}} \{g(s,t)\}$$

$$\hat{f}(x,y) = \max_{(s,t) \in S_{xy}} \{g(s,t)\}\$$

Min filter is good for salt noise

Alpha-trimmed mean filter

Good for multiple types of noise (e.g., Uniform and salt-and-pepper noise)

Assume an $m \times n$ neighborhood:

0<=d<=mn-1

(1) Disregard d/2 lowest and d/2 highest values(2) Average the remaining values

Special cases:

 $d=0 \rightarrow arithmetic mean$ $d=mn-1 \rightarrow median$

a b c d e f

FIGURE 5.12

(a) Image corrupted by additive uniform noise. (b) Image additionally corrupted by additive salt-andpepper noise. Image (b) filtered with a 5 \times 5; (c) arithmetic mean filter: (d) geometric mean filter; (e) median filter; and (f) alphatrimmed mean filter with d = 5.

Adaptive Filters

- Adaptive filters have superior performance compared to non-adaptive filters.
 - Non-fixed (i.e., adaptive) parameters
 - Have higher complexity.

Adaptive median filtering:

a b c

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.25$. (b) Result of filtering with a 7 \times 7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.

Periodic noise

- Arises from interferences (e.g., electrical or electromechanical) during image acquisition.
- Can be analyzed and filtered quite effectively in the frequency domain using a band-reject filter.

image corrupted by sinusoidal noise

spectrum of noisy image

Band-reject filters

TABLE 4.6

Bandreject filters. W is the width of the band, D is the distance D(u, v) from the center of the filter, D_0 is the cutoff frequency, and n is the order of the Butterworth filter. We show D instead of D(u, v) to simplify the notation in the table.

	Ideal	Butterworth	Gaussian
$H(u,v) = \begin{cases} 0\\ 1 \end{cases}$	if $D_0 - \frac{W}{2} \le D \le D_0 + \frac{W}{2}$ otherwise	$H(u, v) = \frac{1}{1 + \left[\frac{DW}{D^2 - D_0^2}\right]^{2n}}$	$H(u, v) = 1 - e^{-\left[\frac{D^2 - D_0^2}{DW}\right]^2}$

Band-reject filters (cont'd)

a b c d

FIGURE 5.16

(a) Image corrupted by sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth bandreject filter (white represents 1). (d) Result of filtering.
(Original image courtesy of NASA.)

Bandpass filters

 Performs the opposite operation of a bandreject filter.

$$H_{BP}(u,v) = 1 - H_{BR}(u,v)$$

 Useful in isolating the effect of specific frequencies in an image.

Estimating degradation H

$$G(u,v)=H(u,v)F(u,v) + N(u,v)$$

Typically, H is modeled mathematically; let's look at

two examples:

- Atmospheric turbulence
- Motion blurring

Degradation due to environmental conditions

 Atmospheric turbulence (Hufnagel and Stanley [1964])

a b c d

FIGURE 5.25 Illustration of the atmospheric turbulence model. (a) Negligible turbulence. (b) Severe turbulence, k = 0.0025. (c) Mild turbulence, k = 0.001.(d) Low turbulence, k = 0.00025.(Original image courtesy of NASA.)

G(u,v)=H(u,v)F(u,v) + N(u,v)

where:

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

Degradation due to uniform linear motion

• Consider the case of camera/object planar motion (2D) where $x_0(t)$ and $y_0(t)$ is the motion trajectory.

Degradation due to uniform linear motion

 If T is the exposure time (i.e., time interval during which the camera shutter is open), then the output image g(x,y) is:

$$g(x,y) = \int_{0}^{T} f(x - x_0(t), y - y_0(t))dt$$

• Taking the FT: G(u,v)=H(u,v)F(u,v)

where
$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_{0}(t)+vy_{0}(t))} dt$$

Degradation due to uniform linear motion (cont'd)

• If $x_0(t)=\alpha t/T$ and $y_0(t)=0$, then:

$$H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_0(t))} dt = \int_{0}^{T} e^{-j2\pi u\alpha t/T} dt = \frac{T}{\pi u\alpha} \sin(\pi u\alpha) e^{-j\pi u\alpha}$$

• If $x_0(t) = \alpha t/T$ and $y_0(t) = bt/T$, then:

$$H(u,v) = \frac{T}{\pi(u\alpha + vb)} \sin(\pi(ua + vb))e^{-j\pi(ua+vb)}$$

Degradation due to uniform linear motion (cont'd)

a b

FIGURE 5.26

- (a) Original image.
- (b) Result of blurring using the function in Eq. (5.6-11) with a = b = 0.1 and

a = b = 0.1 and T = 1.

G(u,v)=H(u,v)F(u,v) where:

$$H(u,v) = \frac{T}{\pi(u\alpha + vb)} \sin(\pi(ua + vb))e^{-j\pi(ua + vb)}$$