자료구조설계: 2013

확장트리/최단경로

확장트리 / 최단경로

jhkang@cnu.ac.kr 충남대학교 컴퓨터공학과

강지훈

SPANNING TREES

Spanning Trees
Depth First Spanning Trees
Bread First Spanning Trees
Minimum Cost Spanning Trees

Spanning Trees

- G = (V, E): a connected graph.
- A spanning tree of G is a tree G' = (V', E') such that V' = V and $E' \subseteq E$.
- Let T = E': Tree edges B = E E': Back edges (Non-tree edges)

Spanning trees are not unique.

■ Depth First spanning trees and Breadth First spanning trees

dfs(0) spanning tree

bfs(0) spanning tree

— tree edge

----- back edge

How to determine Tree edges?

If any back edge is introduced in the spanning tree, then a cycle is formed.

- Path 1-2-3-4
- Back edge (4,1)
- A cycle 1-2-3-4-1

- Any connected graph with N vertices must have at least N-1 edges.
- Any connected graph with N vertices and N-1 edges is a (free) tree.

Minimum Cost Spanning Trees

Minimum Cost Spanning Trees ?

- The cost of a spanning tree
 - = the sum of the costs of the edges in that tree.
- A minimum cost spanning tree of a weighted graph G is a spanning tree which has the minimum cost among all the spanning trees of G.
- The problem is:

"How to find a minimum cost spanning tree?"

- Solutions:
 - Kruskal's Algorithm
 - Prim's Algorithm
 - Sollin's Algorithm

Example

Kruskal's Algorithm

Notations

- T: the current set of tree edges.
- |T| : number of edges in T.
- n: the number of vertices of the given graph
- E: the set of edges of the given graph

Algorithm

```
    T = Ø; /* T is the set of tree edges. */
    while ( (|T| < n-1) && (E is not empty) ) {</li>
    choose an edge (v,w) from E of the lowest cost;
    delete (v,w) from E;
    if ((v, w) does not create a cycle in T)
    add (v,w) to T;
    else
    discard (v,w);
    }
    if (|T| < n-1)</li>
    System.out.println("No spanning tree!");
```

Edge Cost Action					Tree	Edges	Pairwise disjoint sets			
-	 	 - - -	0	1	2	3	4	5	{0} {1} {2} {3} {4} {5}	
(1,2)	5	¦ ¦ Add	0	1.	2	3	4	5	{0} {1,2} {3} {4} {5}	
(1,3)	6	Add	0	1	3		4	5	{0} {1,2,3} {4} {5}	
(2,3)	10	Discard							{0} {1,2,3} {4} {5}	
(1,5)	11	Add		5) (3		4		{0} {1,2,3,5} {4}	
(3,5)	14	Discard							{0} {1,2,3,5} {4}	
(0,1)	16	Add	0		3		4		{0,1,2,3,5} {4}	
(3,4)	18	Add	0	5		2			{0,1,2,3,4,5}	
43										

Time Complexity of Kruskal's Algorithm

- For line 3 and 4,
 - Use a sorted list for E : $O(e \log e)$
 - Use Heap: Construction of Initial Heap: O(e)Each Action of deleteMin(): $O(\log e)$ $\Rightarrow O(e) + e \cdot O(\log e) = O(e \log e)$
- For line 5 and line 6,
 - Use the Union-and-Find algorithm (See Chapter 5).

```
\Rightarrow O(e \alpha(e))
```

- Note that O(α(e)) < O(log e) and the function α(e) is a very very slowly increasing function.
 In other words, α(e) is practically an almost constant function.
- The computing time is determined by line 3 and 4.
 - Therefore, the complexity is $O(e \log e)$.

Prim's Algorithm

■ Time Complexity: $O(n^2)$

Sollin's Algorithm: Example 1

Sollin's Algorithm: Example 2

Shortest Paths

"Single Source All Destinations"

"All Pairs"

Single Source All Destinations

Dijkstra's Algorithm

Path	Length
$v_0 - v_1$	10
$v_0 - v_3$	30
$v_0 - v_3 - v_2$	50
$v_0 - v_3 - v_2 - v_3$	v ₄ 60

Iteration	n S	u	distance[1]	distance[2]	distance[3]	distance[4]
초기화	{0}	-	10	∞	30	100
1	$\{0,1\}$	1	10	60	30	100
2	$\{0,1,3\}$	3	10	50	30	90
3	$\{0,1,3,2\}$	2	10	50	30	60
_	$\{0,1,3,2,4\}$	4	10	50	30	60

Proof Sketch of Dijkstra's Algorithm

- We attempt to devise an algorithm that generates the shortest paths in non-decreasing order of length.
- Notations

 v_0 : source vertex

S: the set of vertices, including v_0 , whose shortest paths have been found.

distance[w]: the length of the shortest path starting from v_0 , going through vertices only in S, and ending in w.

Observations

① If the next shortest path is to u, then the path begins at v_0 , ends at u, and goes through only those vertices in S.

(Proof) Assume that there is a vertex on this path that is not in S and that w is the first such vertex not in S among the path.

Then $v_0 \rightarrow w$ is shorter than $v_0 \rightarrow u$.

The algorithm should generate the paths in non-decreasing order.

So, w should be in S before u.

Contradiction!

No such w exist.

- ② Vertex u is chosen so that it has the minimum distance, distance[u], among all the vertices not in S. (This follows from the definition of distance[] and observation ①.)
 - Several vertices with the same distance[]?
 ⇒ any of them may be selected.

- \bigcirc Adding the new vertex u into S.
 - Once we have selected and generated the shortest path from v_0 to u, u becomes a member of S.
 - ◆ If distance[w] changes, then it must be due to a shorter path v_0 $\rightarrow u \rightarrow w$, where all intermediate vertices must be in S.
 - ◆ The subpath $u \rightarrow w$ can be chosen so as to have no intermediate vertices.

```
if ( (old distance[w]) > distance [u] + cost[u,w] ) {
     (new distance[w]) = distance[u] + cost[u,w];
}
```


Dijkstra's Algorithm

```
public void shortestPaths (int sourceVertex) {
   int i, u, w;
   boolean[] found = new boolean[this._numOfVertices];
   for (i = 0; i < this._numOfVertices; i++) {
       found[i] = false;
       this. distance[i] = this. cost[sourceVertex][i];
    found[sourceVertex] = true;
    this. distance[sourceVertex] = 0;
    for (i=0; i < this._numOfVertices-2; i++) {
       u = choose(found);
       this._found[u] = true;
       for (w = 0; w < this._numOfVertices; w++) {
          if (!found[w]) {
              if (this._distance[w] > this._distance[u] + this._cost[u][w])
                 this._distance[w] = this._distance[u] + this._cost[u][w];
```

Time Complexity : $O(n^2)$

Generation of Vertex Sequences

Use another array path[] of vertices.
path[u] = the vertex immediately before u in the shortest path

```
Initialize path[u] = v for all u ≠ v (v is the source);
path[v] = -1;
```

And then,

```
If ( this._distance[w] > this._distance[u]+ this._cost[u][w] ) {
     this._distance[u] = this._distance[u]+ this._cost[u][w] ;
     this._path[w] = u ;
}
```

Upon termination, the paths can be found by tracking backward. Finding Vertex Sequences of Paths:

The shortest paths in reverse vertex order

- **1**-0
- **2-3-0**
- **3**-0
- **4-2-3-0**

All Pairs Shortest Paths

- Apply the Dijkstra's Algorithm n times : $O(n^3)$
- A simpler algorithm using Cost Adjacency Matrix.

```
cost[i][i] = 0

cost[i][j] = cost of edge < i, j > \in E

cost[i][j] = \infty \text{ if } < i, j > \notin E
```

- Define $A^k[i][j]$ to be the cost of the shortest path from i to j going through no intermediate vertex of index greater than k.
- Then $A^{n-1}[i][j]$ will be the cost of the shortest path from i to j in G.
- $A^{-1}[i][j]$ is just cost[i][j].

Basic Idea

• Successively generate the matrices A^0 , A^1 , ..., $A^{n\text{-}1}$ starting from $A^{\text{-}1}$.

• Assume we have already generated A^{k-1} . Then we may generate A^k as follows: For any pair of vertices i and j, either

(a) the shortest path from i to j does not go through k, \Rightarrow its cost is $A^{k-1}[i][j]$

or

(b) the path goes through k. \Rightarrow its cost is $A^{k-1}[i][k] + A^{k-1}[k][j]$

Thus,

 $A^{k}[i][j] = \min\{A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j]\}, k \ge 0, \text{ and } A^{-1}[i][j] = \text{cost}[i][j]$

Floyd's Algorithm

```
private void allcosts (int[][] cost, int[][] distance, int n)
    int i, j, k;
    for (i=0; i< n; i++)
        for (j=0; j< n; j++)
           distance[i][j] = cost[i][j];
    for (k=0; k< n; k++)
        for (i=0; i< n; i++)
           for (j=0; j< n; j++)
              if (distance[i][j] > distance[i][k] + distance[k][j])
                  distance[i][j] = distance[i][k] + distance[k][j];
```

Time Complexity : $O(n^3)$

Example of Floyd's Algorithm

$$cost [] = \begin{pmatrix} 0 & 8 & 5 \\ 3 & 0 & \infty \\ \infty & 2 & 0 \end{pmatrix}$$

A-1	0	1	2
0	0	8	5
1	3	0	∞
2	∞	2	0

Example of Floyd's Algorithm (Cont'd)

$$A^{0}$$
 0 1 2 0 0 8 5 1 3 0 8 2 ∞ 2 0

$$A^{0}[1][2] = min\{\infty, 3+5\} = 8$$

 $A^{0}[2][1] = min\{2, \infty+8\} = 2$

$$A^{1}[0][2] = min\{5, 8+8\} = 5$$

 $A^{1}[2][0] = min\{\infty, 2+3\} = 5$

$$A^{2}[0][1] = min\{8, 5+2\} = 7$$

 $A^{2}[1][0] = min\{3, 8+5\} = 3$

Recovering the Paths

path[i][j] means that the shortest path from i to j goes through path[i][j].

Initially,
 path[i][j] = -1;

In the innermost loop,
 if (distance[i][j] > distance[i][k] + distance[k][j]) {
 distance[i][j] = distance[i][k] + distance[k][j];
 path[i][j] = k;
}

In order to print out the shortest path from i to j:
 private void showPath (int i, int j)
 {
 int k;
 k = path[i][j];
 if (k >= 0) {
 showPath (i, k);
 System.out.print (k);
 showPath (k, j);
 }
}

Example: Recovering the paths

path ⁻¹	0	1	2	path ⁰	0	1	2	$path^1$	0	1	2	path ²	0	1	2
0	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	0	-1	2	-1
1	-1	-1	-1	1	-1	-1	0	1	-1	-1	0	1	-1	-1	0
2	-1	-1	-1	2	-1	-1	-1	2	1	-1	-1	2	1	-1	-1

$$A^{0}[1][2] = min\{\infty, \frac{3+5}{2}\} = 8$$

path $^{0}[1][2] = 0$
 $A^{0}[2][1] = min\{2, \infty+8\} = 2$
path $^{0}[2][1]$: No change
 $A^{1}[0][2] = min\{5, 8+8\} = 5$
path $^{1}[0][2]$: No change
 $A^{1}[2][0] = min\{\infty, \frac{2+3}{2}\} = 5$
path $^{1}[2][0] = 1$
 $A^{2}[0][1] = min\{8, \frac{5+2}{2}\} = 7$
path $^{2}[0][1] = 2$
 $A^{2}[1][0] = min\{3, 8+5\} = 3$
path $^{2}[1][0]$: No change

Transitive Closures

Transitive Closures

- The existence problem of a path $i \rightarrow j$.
- Transitive closure : A+
 - All path lengths are required to be positive.

```
A^{+}[i][j] = \begin{cases} 1 \text{ if there is a path } i \rightarrow j \text{ of length} > 0 \\ 0 \text{ otherwise} \end{cases}
```

- Reflexive transitive closure : A*
 - Path lengths are to be nonnegative.

```
A^*[i][j] = \begin{cases} 1 & \text{if there is a path } i \to j \text{ of length} >= 0 \\ 0 & \text{otherwise} \end{cases}
```

- The only difference between A+ and A*:
 - the terms on the diagonal.
 - A⁺ [*i*][*i*] = 1 iff there is a cycle of length > 1 containing vertex *i*.
 - A*[i][i] = 1 always.

Use Floyd's Algorithm for A⁺ or A*

Let
$$Cost[i][j] = \begin{cases} 1 & \text{if } < i, j > \in E \\ \infty & \text{if } < i, j > \notin E \end{cases}$$

Then, the final matrix becomes
$$A^+$$
 by letting $A^+[i][j] = \begin{cases} 1 & \text{if } A[i][j] < +\infty \\ 0 & \text{otherwise} \end{cases}$

A* can be obtained from A+ by setting

$$A*[i][i] = 1$$
 for all $i = 1,..., n$

Simple Modification using Boolean Matrix for A+: Let

Cost[i][j] =
$$\begin{cases} \text{true if } \langle i, j \rangle \in E \\ \text{false if } \langle i, j \rangle \notin E \end{cases}$$

Then

$$A^{k}[i][j] = A^{k-1}[i][j] || (A^{k-1}[i][k] & A^{k-1}[k][j]);$$

Example for A⁺ and A^{*}

Using Cost Adjacency Matrix

$$\mathbf{A} = \left[\begin{array}{ccc} 2 & 1 & \infty \\ 1 & 2 & \infty \\ 2 & 1 & \infty \end{array} \right]$$

$$A^{+} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{vmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & \infty \\ 1 & 2 & \infty \\ 2 & 1 & \infty \end{pmatrix} \longrightarrow A^{+} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow A^{*} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Using Boolean Matrix

$$Cost = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \longrightarrow A = A^{+} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \longrightarrow A^{*} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

End of Spanning Trees & Shortest Paths