Fakultet tehničkih nauka, Novi Sad, SIIT

28. I 2018. godine

Statistika, kolokvijum 1 (Bodovi: $1\rightarrow 10, 2\rightarrow 10, 3\rightarrow 10$)

- 1. U seriji od 100 proizvoda ima 4 škarta. Na slučajan način se izvlači 20 proizvoda. Kolika je verovatnoća da je među izvučenim proizvodima 2 škarta, ako se izvlačilo:
 - (a) bez vraćanja, (b) sa vraćanjem?
 - (c) Aproksimirati verovatnoću za (b) Poasonovom raspodelom.
- 2. Baca se novčić tri puta. Slučajna promenljiva X predstavlja broj grbova u prva dva bacanja, Y predstavlja broj grbova u sva tri bacanja. Naći raspodelu slučajne promenljive $E(Y|X) = r_1(X)$, gde je $r_1(x)$ regresija Y po X.
- 3. Nezavisne slučajne promenljive *X* i *Y* imaju raspodele date funkcijama raspodele:

$$X: F_X(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x \le 1 \\ 1, & x > 1 \end{cases}, \quad Y: F_Y(y) = \begin{cases} 0, & y \le 0 \\ y^2, & 0 < y \le 1 \\ 1, & y > 1 \end{cases}.$$

Naći raspodelu i očekivanje slučajne promenljive $Z = \max\{X, Y\}$.

Statistika, kolokvijum 2 (Bodovi: $1\rightarrow 10, 2\rightarrow 10$)

1. Nezavisne slučajne promenljive $X_1, X_2, ..., X_{30}$ imaju istu uniformnu raspodelu $\mathcal{U}(0,1)$.

Pomoću Centralne granične teoreme oceniti verovatnoću $P\left(\sum_{i=1}^{30} X_i < 17\right)$.

2. Data je gustina obeležja $X: \varphi(x) = \left\{ \begin{array}{ll} \frac{1}{a}, & x \in (0,a) \\ 0, & x \notin (0,a) \end{array} \right.$, gde je parametar a > 0.

Za ocenu parametra a na osnovu prostog slučajnog uzorka $(X_1, X_2, ..., X_n)$ obeležja X predložena je ocena: $\hat{a} = \max\{X_1, X_2, ..., X_n\}$.

Ispitati centriranost predložene ocene i ako nije centrirana, naći centriranu ocenu koja je oblika $\bar{a} = K \cdot \hat{a}$, za neko K.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621