非平衡多体理論

中国科学院大学 Kavli 理論科学研究所,藤本純治 †

このメモは主に、H. J. W. Haug と A.-P. Jauho による著書"Quantum Kinetics in Transport and Optics of Semiconductors"の Part II に従う。まず前準備として、径路順序 Green 関数を定義し、それが causal, greater, lesser, antitime-ordered Green 関数に分解できることを見る。次に、径路順序 Green 関数の摂動展開について調べる。それから、径路順序 Green 関数の積を実時間の各種 Green 関数の積に書き換えるときに有用なLangreth 則を紹介する。以上の準備ののち、lesser Green 関数の時間発展を記す方程式である量子運動方程式を Kadanoff と Baym の方法に基づいて議論する。

1 径路順序 Green 関数

1.1 総説

非平衡問題は以下のように定式化される.以下のハミルトニアンのもとで時間発展する系を考える.

$$H = h + H'(t). \tag{1.1}$$

ここでハミルトニアンにおいて時間に依存しない部分 h を 2 つの部分に分ける: $h = H_0 + H_i$,ただし H_0 は (対角化でき,それゆえに Wick の定理が適用できるという意味で)"シンプル"であり, H_i は (問題の多体的側面を含んでおり,それゆえに特別な取り扱いが必要であるという意味で)"複雑"であるとする。 さらに仮定として,非平衡部分は $t < t_0$ においては消えるとする。

適切な時点で $t_0 \to -\infty$ と置き換えることがしばしばある. この手続きは問題の取り扱いを単純化し、非平衡理論の構造を可能な限り簡潔に示すことができるので、まず初めはこの極限を採用する. しかし、そのような極限をとってしまうと過渡現象 (transient phenomena) を取り扱うことが不可能になってしまう. 過渡現象は我々が述べたい中心的話題の一つなので、また必要なときにこの点に戻ってくることにする. (このメモでは戻ってきません.)

摂動を加える前では,系は熱平衡の密度行列

$$\rho(h) = \frac{\exp(-\beta h)}{\text{Tr}[\exp(-\beta h)]}$$
(1.2)

によって記述されている。 $\beta=1/k_BT$ は逆温度である。遂行すべきことは、与えられた観測量の期待値を計算することである。その観測量に関連づけられた量子力学的な演算子を O とすると、時刻 $t>t_0$ においては、その期待値は

$$\langle O(t) \rangle = \text{Tr}[\rho(h)O_H(t)]$$
 (1.3)

と書ける。下付き添字 H は、Heisenberg 描像で、その時間依存性は全ハミルトニアン H によって支配されていることを意味している。定義 (1.3) は、容易に 2 時刻(あるいはそれ以上)の量(たとえば Green 関数や相関関数)に一般化することができる。

ここで、式 (1.3) において、何らかの時間依存した密度行列ではなく、熱平衡密度行列を用いたことを記しておく。これは、物理的には、h に含まれている熱力学的な自由度は、H'(t) に含まれる速い振動に即座に追従しないことを意味している。この他に選び方があってもよいが、それに伴う困難 $^{1)}$ を避けるため、ここではこの選び方を採用する。潜在的にとても見込みのある代替的方法は、期待値に含まれる熱平衡密度行列を、あ

[†] junji@ucas.ac.cn

¹⁾ たとえば、文献 [1] の p.214-216 を参照。

る適切な一般化したものに置き換えることで構成され、それは Hershfield などによって指摘され [2]、近年いくつかの文献 [3-6] において精巧化された。この方法の可能性についても、半導体微細構造における時間依存輸送について書かれた 13 章で述べる。

1.2 2 つの変換

式 (1.3) を攻略する一般的な戦略は、熱平衡の場合に似ている。すなわち、 $O_H(t)$ の "望みが薄そうなほどに複雑な"時間依存性を、より簡単な O_{H_0} の時間依存の形へと変換させることである。消去すべき演算子は 2 つある;時間依存する外的摂動 H'(t) と "複雑な" 相互作用項 H_i である。したがって、熱平衡の場合よりも込み入った変換を行うことが予想される。しかしながら、適当に一般化することにともなって、非平衡と熱平衡の定式化を構造的に等価に行うことができると示せる。

最初に、 O_H の時間依存性を O_h の時間依存性に書き換える. これは、次の関係式を用いて行う.

$$O_H(t) = v_h^{\dagger}(t, t_0)O_h(t)v_h(t, t_0), \tag{1.4}$$

ここで

$$v_h(t,t_0) = T\left\{\exp\left[-i\int_{t_0}^t dt' H_h'(t')\right]\right\},\tag{1.5}$$

また $H'_{h}(t)$ は H'(t) の相互作用表示で,

$$H'_{h}(t) = e^{ih(t-t_0)}H'(t)e^{-ih(t-t_0)}$$
(1.6)

で与えられ、T は遅い時刻を左から並べていく時間順序演算子を表す.

ここで径路順序量を導入しよう。表式 (1.4) はまた別の、しかし等価な表式に書き換えることができる。

$$O_H(t) = \mathcal{T}_{C_t} \left\{ \exp\left[-i \int_{C_t} d\tau \, H_h'(\tau) \right] O_h(t) \right\},\tag{1.7}$$

ただし、径路 C_t は図1に示す。以下では、複素径路上の時刻を表す変数をギリシャ文字で表記し、実時刻を

図1 径路 C_t .

表す変数に対してはローマ文字を用いるようにする。経路 C_t は, t_0 から t に向けて実軸上を走り,もう一度 t から t_0 に戻る。(あるいは,実軸の少しだけ上を走る;H'(t) が解析的に連続であるならば何ら問題は起こらない。)経路順序演算子 T_{C_t} の意味は,次のようになる。 t_1 と t_2 が C_t 上の 2 つの時刻を表すとして,経路上で t_2 が t_1 に対して後に現れるならば, $T_{C_t}\{H'_h(t_1)H'_h(t_2)\}=H'_h(t_2)H'_h(t_1)$ のように,後ろの時刻を左に並べかえる演算を表す。次の計算で経路上に定義された関数の性質を示す。

式 (1.4) と式 (1.7) が等しいことを示す

経路上で定義された関数について理解を深めるために、ここで式 (1.4) と式 (1.7) が厳密に等しいことを示そう。まず、式 (1.7) に対して \exp を展開する。

$$T_{C_t}\left\{\exp\left[-i\int_{C_t} d\tau \, H_h'(\tau)\right] O_h(t)\right\} = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{C_t} d\tau_1 \cdots \int_{C_t} d\tau_n \, T_{C_t} \left[H_h'(\tau_1) \cdots H_h'(\tau_n) O_h(t)\right]. \tag{1.8}$$

ここで、経路 C_t を2つに分ける:

$$\int_{C_{t}} = \int_{\to} + \int_{\leftarrow},\tag{1.9}$$

ただし \int_{\to} は t_0 から t へ向かい, \int_{\leftarrow} は t から t_0 に戻ることを表している.よって,式 (1.8) の n 次の項は 2^n 個の項に分けられるが,そのうちの 1 つについて考えてみると,

$$\int_{\rightarrow} d\tau_{1} \int_{\rightarrow} d\tau_{2} \int_{\leftarrow} d\tau_{3} \cdots \int_{\leftarrow} d\tau_{n} \operatorname{T}_{C_{t}} \left[H'_{h}(\tau_{1}) \cdots H'_{h}(\tau_{n}) O_{h}(t) \right]
= \int_{\leftarrow} d\tau_{3} \cdots \int_{\leftarrow} d\tau_{n} \operatorname{T}_{\leftarrow} \left[H'_{h}(\tau_{3}) \cdots H'_{h}(\tau_{n}) \right] O_{h}(t) \int_{\rightarrow} d\tau_{1} \int_{\rightarrow} d\tau_{2} \operatorname{T}_{\rightarrow} \left[H'_{h}(\tau_{1}) H'_{h}(\tau_{2}) \right].$$
(1.10)

 2^n 個の項のうち, $m (m = 0, \cdots, n)$ 個の \int_{\rightarrow} を含み,n - m 個の \int_{\leftarrow} を含む項は n!/[m!(n - m)!] つあり,それらは全て等しく寄与する.よって,

$$\int_{C_{t}} d\tau_{1} \cdots \int_{C_{t}} d\tau_{n} \operatorname{T}_{C_{t}} \left[H'_{h}(\tau_{1}) \cdots H'_{h}(\tau_{n}) O_{h}(t) \right]
= \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \int_{\leftarrow} d\tau_{m+1} \cdots \int_{\leftarrow} d\tau_{n} \operatorname{T}_{\leftarrow} \left[H'_{h}(\tau_{m+1}) \cdots H'_{h}(\tau_{n}) \right] O_{h}(t)
\times \int_{\rightarrow} d\tau_{1} \cdots \int_{\rightarrow} d\tau_{m} \operatorname{T}_{\rightarrow} \left[H'_{h}(\tau_{1}) \cdots H'_{h}(\tau_{m}) \right]$$
(1.11)

と書ける. k=n-m と変数を書き換え、Kronecker のデルタを用いて k+m=n を保ちつつ k と m の和を 0 から ∞ までとるように書き換える. すると、式 () は、

$$\rightarrow \sum_{m,k=0}^{\infty} \frac{n!}{m!k!} \delta_{n,k+m} \left\{ \int_{\leftarrow} d\tau_{1} \cdots \int_{\leftarrow} d\tau_{k} \, T_{\leftarrow} \left[H'_{h}(\tau_{1}) \cdots H'_{h}(\tau_{k}) \right] \right\} O_{h}(t) \\
\times \left\{ \int_{\rightarrow} d\tau_{1} \cdots \int_{\rightarrow} d\tau_{m} \, T_{\rightarrow} \left[H'_{h}(\tau_{1}) \cdots H'_{h}(\tau_{m}) \right] \right\}.$$
(1.12)

さて、式 (1.8) に戻ると、n の和は $\delta_{n,k+m}$ のために簡単に実行でき、以下を得る.

$$T_{C_{t}}\left\{\exp\left[-i\int_{C_{t}}d\tau\,H'_{h}(\tau)\right]O_{h}(t)\right\}$$

$$=\sum_{k=0}^{\infty}\frac{(-i)^{k}}{k!}\left\{\int_{\leftarrow}d\tau_{1}\cdots\int_{\leftarrow}d\tau_{k}\,T_{\leftarrow}\left[H'_{h}(\tau_{1})\cdots H'_{h}(\tau_{k})\right]\right\}O_{h}(t)$$

$$\times\sum_{m=0}^{\infty}\frac{(-i)^{m}}{m!}\left\{\int_{\rightarrow}d\tau_{1}\cdots\int_{\rightarrow}d\tau_{m}\,T_{\rightarrow}\left[H'_{h}(\tau_{1})\cdots H'_{h}(\tau_{m})\right]\right\}.$$
(1.13)

しかして、O(t) に左右から掛けられている因子を見比べると、それらがそれぞれ $v_h^{\dagger}(t_0,t)$ と $v_h(t_0,t)$ に等しいことが分かる。以上で、式 (1.4) と式 (1.7) の等価性が示された。

経路順序演算子は、熱平衡理論と全く同じように非平衡理論を構築するのに強力な形式的道具である.

さて,経路順序 Green 関数 (contour-ordered Green function) を定義しよう:

$$G(x, x') \equiv -i\langle T_C[\psi_H(x)\psi_H^{\dagger}(x')]\rangle, \tag{1.14}$$

参考文献

- [1] G. D. Mahan, "Many-Particle Physics", 2nd edn. (Plenum, New York, 1990).
- [2] S. Hershfield: Phys. Rev. Lett. 70, 2135 (1993)

- [3] P. Bokes, H. Mera, R. W. Godby: Phys. Rev. B 72 165425 (2005)
- [4] P. Coleman, W. Mao: J. Phys. Cond. Matt. 16, L263 (2004)
- [5] B. Doyon, N. Andrei: Phys. Rev. B 73, 245326 (2006)
- [6] J. E. Han, Phys. Rev. B 73, 125319 (2006)