Camera Calibration

Kostas Daniilidis

The 3x4 projection matrix P

$$\lambda \left(\begin{array}{c} u \\ v \\ 1 \end{array} \right) = \left(\begin{array}{ccc} f & 0 & u_o \\ 0 & f & v_o \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} R & t \end{array} \right) \left(\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right) = P \left(\begin{array}{c} X_w \\ Y_w \\ Z_w \\ 1 \end{array} \right)$$

Cameras with large field of view have radial distortions

$$u^{dist} = u(1+k_1r+k_2r^2+k_3r^3+\ldots) \ v^{dist} = v(1+k_1r+k_2r^2+k_3r^3+\ldots)$$
 where $r^2 = u^2+v^2$

A procedure called calibration

Estimates the *intrinsic parameters*

- f focal length
- (u_o, v_o) image center
- k_1, k_2, \ldots radial distortion parameters

As a result of the calibration we have undistorted images and video

..as well as the poses of the camera and the projection rays in world coordinates

$$\begin{pmatrix} X_w \\ Y_w \\ Z_w \end{pmatrix} = \begin{bmatrix} -R^TT \\ +\lambda R^TK^{-1} \\ 1 \end{pmatrix}$$
known

We will return later on the specifics of calibration....

How we calibrate in Matlab?

Extracting corners of the checkerboard

Extrinsic parameter results (R,T)

Extrinsic parameter results (R,T)

Extrinsic parameter results (R,T)

Reproject undistorted coordinates

