

PHYSICS

SECTION ONE: SHORT ANSWER

Question 1(a)

Heat vs. temperature

Description	Mark
Heat is thermal or internal energy being transferred because of a difference in temperature.	1
Temperature is the average kinetic energy of the molecules that a substance is made of.	1

Question 1(b) Effects of heat

Description	on	Mark
NO		1
Temperature rise is determined by $Q = mc\Delta T$		1
Both m and c differ in this case.		1

Question 2

Kinetic energy

	Description		Mark
E_p on roof = E_k at ground			1
$E_p = mg\Deltah$			1
$=(2 \text{ kg})(9.8 \text{ m s}^{-2})(4.5 \text{ m})$			_
$E_k = 88.2 J.$			1

Question 3

Galaxy distance

Description	Mark
$v = \frac{s}{t}$	1
$s = v.t = (3 \times 10^8)(3600 \times 24 \times 365) = 9.46 \times 10^{15} \text{ m}.$	1

Question 4

Lamps in a room

Lamps in a room	
Description	Mark
All will be the correct brightness.	1
If one fails, the others keep working.	1

Question 5 Series resistors

Description	Mark
	1

Question 6

Nuclear equation

Description	Marks
${}^{10}_{5}\text{B} + {}^{1}_{0}\text{n} \rightarrow {}^{4}_{2}\alpha + {}^{11}_{3}\text{Li}$	1

Question 7

Resistance calculation

Description	Mark
$ \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} $	1
$\frac{1}{R_{T}} = \frac{1}{5} + \frac{1}{2} = \frac{7}{10}$	1
$R_{T} = \frac{10}{7} \Omega = 1.43 \Omega.$	1

Question 8 Half-life

	Description	Mark
n° of half lives = $\frac{\text{age of Earth}}{\text{half life}}$.		1
$\frac{5 \times 10^9}{7 \times 10^8} = \text{about 7 half lives}.$		1

Question 9 Geiger counter

Description	Mark
Radiation spreads out from the source.	1
Beta radiation is absorbed (attenuated) by air.	1

Question 10(a) Total energy radiated

Description	Mark
Energy radiated remains constant over one year	1
$E = 10^{-9} \times 3600 \times 24 \times 365 = 0.0315 J.$	_ T

Question 10(b)

Absorbed dose

7 10001 0000	
Description	Mark
$absorbed dose = \frac{energy absorbed}{body mass}.$	1
absorbed dose = $\frac{0.031536 \text{J}}{75 \text{kg}} = 4.20 \text{x} 10^{-4} \text{J} \text{kg}^{-1}$	1

Question 11(a)

Volt definition

Description	Mark
Volt.	1
The potential difference between two points is one volt if one joule of energy is needed to	
move one coulomb of charge from one point to the other.	

Question 11(b)

Emf calculation

Description	Mark
$emf = \frac{energy}{charge}$	1
emf = $\frac{15 \text{ J}}{2.5 \text{ C}}$ = 6.00 volt.	1

Question 12(a)

Reflective insulation

Description	Mark
Silver surfaces reflect emr well.	1
This would insulate against radiant heat such as infrared.	1

Question 12(b)

Batt-type insulation

Description	Mark
Glass is a poor thermal conductor	1
The trapped air is also a poor thermal conductor	1

Question 13(a)

Melting ice

Description	Mark
Must convert mass into kilograms m=0.360 kg	1
Q =mL	1
$Q = (0.36)(3.34 \times 10^5) = 1.20 \times 10^5 J$	1

Question 13(b) Energy transfer

	Description	Mark
INTO		1

Question 14

Hypothesis test

Description	Mark
B: Weighing the toast before and after it was on the plate.	1

Question 15

Water heaters

Description	Mark
Heat spreads through water by convection	1
Convection works best when the heat source is at the base of the convection cell.	

Energy added

Description	Mark
Shape of graph	1
Melting section smaller than boiling section	1
Caption: Ice melts (or equivalent)	1
Caption: Water heats up (or equivalent)	1
Caption: Water boils (or equivalent)	1

Question 17 Properties of radiation

ALPHA GAMMA BETA ⁴₂α -0β ⁰₀γ Formula Ability to ionise High Moderate Low matter Ability to penetrate Low Moderate High matter

Description	Mark
Formula of beta is ${}_{-1}^{0}\beta$	1
Ionising ability of gamma is low	1
Penetrating ability of beta is moderate	1
Penetrating ability of gamma is high	1

Question 18 Write and balance a nuclear equation $^{238}_{92}U+\,^1_0n\rightarrow \,\,^{239}_{94}Pu+2^{\,0}_{\text{-}1}\beta$

$$^{238}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{239}_{94}$ Pu + 2^{0}_{-1} β

Description	Mark
Neutron included on left	1
Betas shown as products on right	1

Question 19 Density of water

	Description		Mark
C: 277 K		<u> </u>	1

SECTION TWO: PROBLEM-SOLVING

Question 20(a)

Maximum height

Description	Mark
At max height, v = 0	1
If direction of u (upwards) is positive, then g (downwards) is negative.	1
$v^2 = u^2 + 2gs$	1
$s = \frac{v^2 - u^2}{2g} = \frac{0 - 10.24}{2(-9.8)} = \frac{10.24}{19.6} = 0.522 \text{m}$ above Geraldine's hand.	1

Question 20(b)

Final velocity

Description	Mark
$v^2 = u^2 + 2gs$	1
Since $s = 0$, $v^2 = u^2$ Thus, final velocity = 3.20 m s^{-1} downwards.	1

Question 20(c) Momentum explained

Description	Mark
Momentum is the product of an object's mass and its velocity.	1

Question 20(d) Momentum calculation

	Description	Mark
p = mv		1
$p = (2.2 \text{ kg})(3.2 \text{ m s}^{-1})$		1
Momentum = 7.04 kg m s ⁻¹ .		1
Direction is upwards.		1

Question 21(a) Power output

	Description	Mark
P = VI		1
P =(250)(4.2) =1050W		1

Question 21(b)

Energy transferred

Description	Mark
Must convert time taken = 10 minutes = 600 seconds	1
$P = \frac{\Delta E}{t}$	1
$\Delta E = Pt$	1
$E = (1050)(600) = 6.30 \times 10^5 \text{ J}$	1

Question 21(c)

Temperature rise

Description	Mark
$Q = mc\Delta T$	1
$\Delta T = \frac{Q}{mc}$	1
$\Delta T = \frac{6.3 \times 10^5}{(2)(4180)} = 75.4^{\circ} C$	1

Question 22(a)

Velocity from graph

	Description	Mark
12 m s ⁻¹ .		1

Question 22(b)

Acceleration from graph

	Description	Mark
gradient = $\frac{\text{rise}}{\text{run}}$		1
gradient = $\frac{10 - 0}{3 - 0}$ = 3.3		1
Acceleration is 3.3 m s ⁻² .		1

Question 22(c)

Displacement from graph

Description	Mar
	k
displacement from 0 to 4s = area of triangle = $\frac{1}{2}$ (base x height)	1
=(0.5)(4)(12) m = 24 m	
displacement from 4 to 10s =area of rectangle =(base x height)	1
=(4)(12) m = 48 m	+
Total displacement = displacement (0 to 4s) + displacement (4 to 8s)	1
Total displacement = 24 m + 48 m = 72 m.	+

Question 22(d) Direction of travel

	Description	Mark
No.		1

Question 23(a)

Bequerel

	Description	Mark
1.03 x 10 ¹⁵ Bq		1

Question 23(b)(i)

Mass defect

Description	Mark
Difference between the mass of a nucleus and the masses of its components.	1

Question 23(b)(ii)

Binding energy

Description	Mark
Energy released when the components of a nucleus come together; OR energy needed	1
to break up a nucleus into its components.	-

Question 23(b)(iii)

Relationship between mass defect and binding energy

<u> </u>	
Description	Mark
Binding energy is the potential energy decrease when the parts of a nucleus come together.	1
Energy and mass are equivalent through the relationship $\Delta E = (\Delta m)c^2$.	1
Mass therefore decreases when the potential energy of a nucleus decreases.	1

Question 23(c)

Decay releases energy

Description	Mark
Mass LHS = 31.973 907 u	1
Mass RHS = 31.972 071 + 0.000 549 u = 31.972 620 u	1
Mass LHS > mass RHS.	1
The 'lost' mass is replaced by energy.	1

Question 24(a)

Weight of lift

Description	Mark
$F_{w} = mg$	1
weight = $(2000 \text{ kg})(9.8 \text{ m s}^{-2}) = 19.6 \text{ kN}$.	1

Question 24(b)

Tension when moving at constant speed

	Description	Mark
19.6 kN.		1

Question 24(c)

Free body diagram—moving

Description	Mark
Upward force.	1
Downward force.	1
Same size (19.6 kN).	1

Question 25(a)

Resistance of hot lamp

Description	Mark
$P = \frac{V^2}{R}$	1
$R = \frac{V^2}{P} = \frac{240^2}{60}$	1
$R = 960 \Omega$.	1

Question 25(b)

Resistance of cold lamp

Description	Mark
$R_{cold} = \frac{R_{hot}}{10} = \frac{(answer from 21a)}{10} = 96 \Omega.$	1

Question 25(c)

Ohmic vs non-ohmic conductors

Description	Mark
Resistance is constant in ohmic conductors.	1
Resistance changes with current (or temperature) in non-ohmic conductors.	1

Question 25(d)

Lamps

	Description	Mark
No.		1

Question 25(e)

Measuring resistance

SECTION THREE: Comprehension section

Question 26(a)

Variables

Description	Mark
They measured: thinking time OR braking distance.	1
They controlled: [any two of] type of vehicle, daylight, condition of road, stimulus.	2

Question 26(b)

Experimental design

Description	Mark
This would reduce the uncertainty in their measurements.	1
By averaging out human errors by any one driver.	1

Question 26(c)

Error reduction

Description	Mark
Having trials for each driver at each speed reduces possible errors/uncertainties.	1
By allowing for people applying the brakes differently at different speeds (and so biasing the data).	1

Question 26(d)(i)

Line of best fit

Question 26(d)(ii)

Thinking distance and initial speed

Description	Mark
Thinking distance increases regularly as the initial speed increases.	1

Question 26(d)(iii)

Thinking distance from graph

Question 26(e)

Conclusion

Description	Mark	
The distance required to stop increases as the initial speed increases.	1	
The stopping distance increases faster than the initial speed increases.		
There would probably be fewer accidents if people drove more slowly.		

Physics Stage 2 exam

	2A				2B			
	Working in physics	Motion and forces	Nuclear physics		Working in physics	Heating and cooling	Electrical fundamental s	
SECT A								
1						Х		
2		Х						
3		Х						
4							Х	
5							Х	
6			Х					
7						*	Х	
8			Х					
9			Х					
10			Х					
11							Х	
12						Х		
13						X		
14					Х	Х		
15						Х		
16					Х	Х		
17			Х					
18			Х					
19	Х							
SECT								
В								
20		X				·		
21						Х		
22	Х	X						
23			X	X				
24		X		Х				
25				X			Х	
SECT C								
26	Х	X						