ĐỂ MINH HOẠ KIỂM TRA ĐỊNH KÌ
 Họ và tên sinh viên:

 Học phần: GIẢI TÍCH 1 Mã học phần: MI1111
 MSSV:

 Thời gian: 30 phút
 Mã lớp học:

 Họ, tên và chữ ký cán bộ coi thi
 Họ, tên và chữ ký cán bộ chấm thi

 Mã đề: 26937 (Đề gồm 15 câu)

 Chú ý: Thí sinh không được phép sử dụng tài liệu.

Trắc nghiệm một đáp án đúng

Câu hỏi 1. Tính khai triển Maclaurin đến cấp 4 của $\sin(2x)$.

Câu hỏi 2. Hàm nào sau đây có nhiều hơn 2 điểm gián đoạn?

Câu hỏi 3. Vô cùng bé nào sau đây tương đương với $\sin(x^2 + 2x)$ khi $x \to 0$?

Câu hỏi 4. Hàm số nào sau đây xác định trên đoạn [1,3]?

Câu hỏi 5. Tính vi phân của $(x^2 + 2)^x$.

Câu hỏi 6. Cặp giá trị $a, b \in \mathbb{R}$ nào sau đây thoả mãn $\lim_{x \to 0} \left(\frac{1}{ax} - \frac{1}{b \sin x} \right) = 0$?

$$a = -1, b = -1$$

$$a = 1, b = \frac{1}{6}$$

$$a = 0, b = 0$$

Câu hỏi 7. Hàm nào sau đây là hàm chẵn?

$\Box \frac{1}{12}$	$\Box \frac{5}{6}$	
$ \checkmark \frac{1}{10} $	$\Box \frac{1}{120}$	
Trắc nghiệm nhiều đáp án đúng (sinh viên phải chọn được tất cả các đáp án đúng)		
Câu hỏi 9. Cho hàm số $f(x) =$ dưới đây.	$\begin{cases} x^2, & x \ge 0, \\ x^2 + 1, & x < 0. \end{cases}$ Xác định tấ	t cả các phát biểu đúng trong các phát biểu
Hàm $f(x)$ liên tục trái tại x Hàm $f(x)$ có đạo hàm phải t $f'(x) = 2x \forall x \in \mathbb{R}$	ai x = 0 Hàm	$=0$ $f(x) \mbox{ liên tục phải tại } x=0$ $f(x) \mbox{ có đạo hàm trái tại } x=0$
Câu hỏi 10. Tìm tất cả các biểu thức có giới hạn hữu hạn khi $x \to 0$ trong các biểu thức dưới đây.		
$\frac{1}{2x} \frac{\sin(2x+x^2)}{2x}$	$\sqrt{1+x}$	
$\frac{1}{1 - \cos x} \tan x^2$		$\frac{1}{x(x+1)} \frac{\ln(x+1)}{x(x+1)}$
Câu hỏi 11. Tìm tất cả các hàm mà hệ số của x^4 trong khai triển Maclaurin khác 0.		
		$\sin(4x)$ $e^{2x} - 1$
Câu hỏi 12. Xác định tất cả tập con $D \subset \mathbb{R}$ trong các tập sau đây sao cho hàm $\ln(x+2)$ liên tục đều trên D .		
	$\boxed{\hspace{-0.2cm} D} D = [2, +\infty)$	$D = (-2, +\infty)$ $D = (-\infty, -2)$
D=(-2,1]	$ D = [0, +\infty) $	$ D = (-\infty, -2) $
Hoàn thiện các tính toán và các phát biểu sau HOC TẬP		
Câu hỏi 13. Hàm $y = \sin x$ là hàm xác định trên và tuần hoàn với chu kì		
Câu hỏi 14. Đạo hàm cấp n của hàm số $y = \frac{x-1}{(x+2)(x-4)}$ là		
Câu hỏi 15. Sử dụng vi phân để tính gần đúng giá trị của $\sqrt[4]{e^{0.04}-0.02^3}$.		
$\sqrt[4]{e^{0.04} - 0.02^3} \approx \dots$		

Hệ số của x^5 trong khai triển Maclaurin của $\sin(\sin x).$

Câu hỏi 8.

Câu hỏi 1. Tính khai triển Maclaurin đến cấp 4 của $\sin(2x)$.

$$2x - \frac{4x^3}{3} + o(x^4)$$

$$Sin x = x - \frac{x^3}{3!} + o(x^4)$$

$$\Rightarrow \sin 2 \infty = 2 \infty - \frac{8 \infty^3}{3!} + o(\infty^4) = 2 \infty - \frac{4 \infty^3}{3} + o(\infty^4)$$

Câu hỏi 2. Hàm nào sau đây có nhiều hơn 2 điểm gián đoạn?

$$\Box \frac{e^x}{x}$$

$$\Box \frac{x}{e^x}$$

+>
$$y = \frac{e^{3c}}{2c}$$
 gians atom tou $c = 0$

+>
$$y = \frac{\sin x}{x^2 + x}$$
 gian doon tai $x = 0$ va $x = -1$.

+>
$$y = \frac{\infty}{\sin x}$$
 gian don tai $x = k\pi (k \in \mathbb{Z})$
+> $y = \frac{\infty}{-\infty}$ lien tuc tren $|R|$

Câu hỏi 3. Vô cùng bé nào sau đây tương đương với $\sin(x^2 + 2x)$ khi $x \to 0$?

$$x \tan(x+2)$$

+>
$$\sin(x^2 + 2x)$$
 $x \to 0$ $x^2 + 2x$ $x \to 0$ $2x$ +> $\tan(3x^2 + 2x)$ $3x^2 + 2x$ $x \to 2x$

Câu hỏi 4. Hàm số nào sau đây xác định trên đoạn [1,3]?

$$\sqrt{\frac{x-1}{4-x}}$$

+>
$$\sqrt{-x^2+3x-2}$$
: $D = [1; 2]$
+> $\ln \left(\frac{4-x}{x-5}\right)$: $D = (4; 5)$

+)
$$\frac{x-1}{3-x} : 0 = [\pm i, 3]$$
+)
$$\frac{x-1}{4-x} : 0 = [\pm i, 4]$$

D= [4:4)

Câu hỏi 5. Tính vị phân của
$$(x^2 + 2)^x$$
.

$$(2x(x^2+2)^x + x(x^2+2)^{x-1})dx$$

$$x(x^2+2)^{x-1}dx$$

$$y = (x^2 + 2)^{\infty}$$

$$= \frac{1}{2} \text{ lny} = \frac{1}{2} \text{ ln}(x^2 + 2) \text{ HOC TÂP}$$

$$V = \frac{1}{2} \text{ lny} = \frac{1}{2} \text{ ln}(x^2 + 2)$$

$$= \frac{1}{2} \text{ lny} = \frac{1}{2} \text{ ln}(x^2 + 2)$$

$$\iff \frac{dy}{y} = \left[\ln \left(\cos^2 + 2 \right) + \frac{2 \cos^2}{x^2 + 2} \right] dx$$

$$\iff dy = \left[\ln(x^2 + a) + \frac{ax^2}{x^2 + a} \right] (x^2 + a)^{x} dx$$

$$= x - \frac{x^{3}}{6} + \frac{x^{5}}{120} - \frac{1}{6}(x^{3} - \frac{x^{5}}{2}) + \frac{1}{120}x^{5} + o(x^{5})$$

$$= x - \frac{x^{3}}{6} + \frac{x^{5}}{10} + o(x^{5})$$

 $f'(x) = 2x \, \forall x \in \mathbb{R}$

Câu hỏi 9. Cho hàm số $f(x) = \begin{cases} x^2, & x \ge 0, \\ x^2 + 1, & x < 0. \end{cases}$ Xác định tất cả các phát biểu đúng trong các phát biểu dưới đây.

Hàm f(x) có đạo hàm trái tại x=0

+)
$$f(0) = 0$$
 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} + 1) = 1$
 $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x^{2} = 0 = f(0)$

+>
$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^2}{x} = 0$$

$$f'(0) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x^2 + y}{x} = -\infty$$

=> $f(x)$ as too form phoi toy 0.

Câu hỏi 10. Tìm tất cả các biểu thức có giới hạn hữu hạn khi $x \to 0$ trong các biểu thức dưới đây.

$$\begin{array}{ccc}
 & x^2 \\
 & \sqrt{\frac{\tan x^2}{1 - \cos x}} & \sqrt{\frac{\tan x}{1 - \cos x}} & \sqrt{\frac{\ln(x+1)}{x(x+1)}}
\end{array}$$

+7
$$L_{\perp} = \lim_{\infty \to 0} \frac{\sin(2\alpha + x^2)}{2x} = \lim_{\infty \to 0} \frac{2x + x^2}{2x} (\sin x)$$

$$\lim_{x\to 0^+} \frac{\tan x}{1-\cos x} = \lim_{x\to 0^+} \frac{x}{x^2} = +\infty$$

$$\lim_{x\to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x\to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x\to 0^+} \frac{x}{x^2} + \infty$$

$$\lim_{x\to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x\to 0^+} \frac{x}{x^2} + \infty$$

$$\lim_{x\to 0^+} \frac{\ln(x+1)}{x^2} = \lim_{x\to 0^+} \frac{x}{x^2} = 1$$
Câu hỏi 11. Tìm tất cả các hàm mà hệ số của x^4 trong khai triển Maclaurin khác 0.

$$\cos(x^2) - 1$$
 $\sin(x^3)$ $\cos(x^2)$ $\cos(x^2)$

+>
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$$

=> $\cos (x^2) - 1 = -\frac{x^4}{2} + \frac{x^8}{24} + o(x^8)$
+> $\ln (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$

=)
$$\ln(1+x^5) = x^3 - \frac{x^6}{3} + \frac{x^9}{3} + o(x^9)$$

+) $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$
=) $\sin(4x) = 4x - \frac{32x^3}{3} + \frac{128x^5}{45} + o(x^5)$

Câu hỏi 13. Hàm $y = \sin x$ là hàm xác định trên \mathbb{R} và tuần hoàn với chu kì $\mathfrak{A} \pi$

Câu hỏi 14. Đạo hàm cấp
$$n$$
 của hàm số $y = \frac{x-1}{(x+2)(x-4)}$ là

$$y = \frac{x - 1}{(x + a)(x - 4)} = \frac{1}{2(x + a)} \frac{1}{2(x - 4)} \frac{1}{2(x - 4)}$$

$$\Rightarrow y^{(n)} = \frac{3 \cdot (\infty + 3)^{n+1}}{4 \cdot (-4)^n \cdot n!} + \frac{3 \cdot (-4)^n \cdot n!}{4 \cdot (-4)^{n+1}}$$

Câu hỏi 15. Sử dụng vi phân để tính gần đúng giá trị của $\sqrt[4]{e^{0.04}-0.02^3}$.

$$\sqrt[4]{e^{0.04} - 0.02^3} \approx \dots$$

Xet Ram
$$f(x) = \sqrt[4]{e^{2x} - x^3}$$

$$f'(x) = \frac{1}{4} \cdot \frac{2e^{2x} - 3x^2}{\sqrt{(e^{2x} - x^3)^3}}$$
+> $f(0) = 1$ $f'(0) = \frac{1}{4} \cdot \frac{2}{\sqrt{11}} = \frac{1}{2}$
=> $f(0,0) \approx f(0) + 0.00$ $f'(0) = 1.01$

