Ch-1 Number System

- 1. **Natural Numbers** Numbers from 1 onward are known as Natural numbers, denoted by 'N'. N = {1, 2, 3, 4,.....}.
- 2. **Whole Numbers** Numbers from 0 onward are known as Whole numbers, denoted by 'W'. W = $\{0, 1, 2, 3, 4, \dots\}$.
- 3. **Integers** The collection of all whole numbers and negative of natural numbers are called Integers, denoted by 'Z'. $Z = \{......-3, -2, -1, 0, 1, 2, 3,\}$.
- 4. **Rational Number** A number which can be expressed as $\frac{p}{q}$, where $q \neq 0$ and p, $q \in Z$, is known as rational number, denoted by 'Q'.
- 5. **Irrational Number** A number which can't be expressed in the form of $\frac{p}{q}$, and its decimal representation is non-terminating and non-repeating is known as irrational number. E.g., $\sqrt{2}$, $\sqrt{3}$, π , 1.1010010001..., etc.
- 6. Number Line -

- 7. Method to find two or more rational numbers between two numbers p and q If p < q, then one of the number be $p < \frac{p+q}{2} < q$ and other will be in continuation as $p < \frac{p+\frac{(p+q)}{2}}{2} < \frac{p+q}{2}$ and so on.
- 8. The sum of a rational number and an irrational number is always an irrational number.
- 9. The product of a non-zero rational number and an irrational number is always an irrational number. E.g., $\frac{2}{3} \times \sqrt{5}$ is an irrational number.
- 10. The sum of two irrational numbers is not always an irrational number. $(2 + \sqrt{2}) + (2 \sqrt{2}) = 4$ (a rational number).
- 11. The product of two irrational numbers is not always an irrational number. $(2 + \sqrt{2}) \cdot (2 \sqrt{2}) = 4 2 = 2$.
- 12. If a is a rational number and n is a positive integer such that the nth root of a is an irrational number, then $\sqrt[n]{a}$ is called a surd. E.g., $\sqrt{5}$, $\sqrt{2}$, $\sqrt{3}$, etc.
- 13. If $\sqrt[n]{a}$ is a surd, then 'n' is known as the order of the surd, and 'a' is known as the radicand.
- 14. Every surd is an irrational number, but every irrational number is not a surd.
- 15. Laws of radicals
 - a. $(\sqrt[n]{a})^n = a$.
 - b. $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$. (at least 1 of either a or b should be a non-negative integer.)
 - c. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$.
 - d. $\sqrt[n]{\frac{m}{\sqrt{a}}} = \sqrt[mn]{a} = \sqrt[m]{\frac{n}{\sqrt{a}}}$.
 - e. $\frac{\sqrt[p]{a^n}}{\sqrt[p]{a^m}} = \sqrt[p]{a^{n-m}}$.
 - f. $\sqrt[p]{a^n \times a^m} = \sqrt[p]{a^{n+m}}$.
 - g. $\sqrt[p]{(a^n)^m} = \sqrt[p]{a^{n.m}}$.
- 16. A surd which has unity only as rational factor is called a pure surd.
- 17. A surd which has a rational factor other than unity is called a mixed surd.

- 18. Order of a given surd can be changed by using following steps
 - a. Let the surd be $\sqrt[n]{a}$ and m be the order of the surd to which it has to be converted.
 - b. Compute $\frac{m}{n}$ and let $\frac{m}{n} = p$.
 - c. Write $\sqrt[n]{a} = \sqrt[m]{a^p}$, which is the required result.
- 19. Surds having same irrational factors are called similar or like surds.
- 20. Only similar surds can be added or subtracted by adding or subtracting their rational parts.
- 21. Surds of same order can be multiplied or divided.
- 22. If the surds to be multiplied or to be divided are not of the same order, we first convert them to the same order and then multiply or divide.
- 23. If the product of two surds is a rational number, then each one of them is called the rationalizing factor of the other. E.g., $\sqrt[3]{2}$ x $\sqrt[3]{4}$ = 2, then $\sqrt[3]{2}$ and $\sqrt[3]{4}$ are rationalizing factors of one another.
- 24. A surd consisting of one term only is called a monomial surd.
- 25. An expression consisting of the sum or difference of two monomial surds or the sum or difference of a monomial surd and a rational number is called binomial surd. E.g., $\sqrt{2} + \sqrt{5}$, $\sqrt{3} + 2$, $\sqrt{2} \sqrt{3}$, etc., are binomial surds.
- 26. The binomial surds which differ only in sign (+ or) between the terms connecting them, are called conjugate surds. E.g., $\sqrt{3} + \sqrt{2}$ and $\sqrt{3} \sqrt{2}$ or $2 + \sqrt{5}$ and $2 \sqrt{5}$ are conjugate surds.
- 27. Rational exponents
 - a. If x, y be any rational numbers different from zero and m be any integer, then $x^m \times y^m = (x \times y)^m$.
 - b. If x be any rational number different from zero and m, n be any integers, then $x^m \times x^n = x^{m+n}$ and $(x^m)^n = x^{m \times n}$.
- 28. Reciprocals of positive integers as exponents If q be any positive integer other than 1, and x and y be rational numbers, such that $x^q = y$, then $y^{\frac{1}{q}} = x$. We write $y^{\frac{1}{q}}$ as $\sqrt[q]{y}$ and read it as q^{th} root of y. $\sqrt[q]{y}$ is called a radical and q is called the index of the radical.
- 29. Positive rational numbers as exponents If $\frac{p}{q}$ be any positive rational number (where p and q are positive integers prime to each other), and let x be any rational number. We have already given a meaning to $x^{\frac{p}{q}}$. This can be done very easily, i.e., $x^{\frac{p}{q}}$ is the qth root of x^p . Thus, $(4)^{\frac{3}{2}} = (4^3)^{\frac{1}{2}} = (64)^{\frac{1}{2}} = 8$.
- 30. If $\frac{p}{q}$ is a negative rational number, then $x^{-\frac{p}{q}}$ (x \neq 0) is equal to $\frac{1}{x^{\frac{p}{q}}}$.
- 31. If x be any rational number different from zero, and a and b be any rational numbers, then, $x^a \div x^b = x^{a-b}$.