o.1 Models of Formal Languages

Definition 0.1.1. [?, Definition 1.1.1] A *formal language* \mathcal{L} in first order logic is given by the following:

- 1. A set \mathcal{F} of functions f of n_f variables, with $n_f \in \mathbb{Z}^+$ a positive integer,
- 2. A set \mathcal{R} of n_r -ary relations r, with $n_r \in \mathbb{Z}^+$ a positive integer,
- 3. A set *C* of constants.

0.2 The Löwenheim-Skolem Theorem

Lemma 0.2.1. [?, Lemma 2.1.1] Let T be a consistent set of sentences of \mathcal{L} . Let C be a set of new constant symbols of power $|C| = \|\mathcal{L}\|$ and let $\bar{\mathcal{L}} = \mathcal{L} \cup C$ be the simple expansion of \mathcal{L} formed by adding C.

Then T can be expanded to a consistent set of sentences \bar{T} in $\bar{\mathcal{L}}$, which has C as a set of witnesses in $\bar{\mathcal{L}}$.

Lemma 0.2.2. [?, Lemma 2.1.2] Let T be a set of sentences and let C be a set of witnesses of T in L. Then T has a model \mathfrak{U} , such that every element of \mathfrak{U} is an interpretation of a constant $c \in C$.

Theorem 0.2.3 (Extended Completeness Theorem). [?, Theorem 1.3.21] Let Σ be a set of sentences in \mathcal{L} . Then Σ is consistent if and only if Σ has a model.

Theorem 0.2.4 (Downward Löwenheim-Skolem Theorem). [?, Corollary 2.1.4] Every consistent theory T in \mathcal{L} , has a model of power at most $\|\mathcal{L}\|$.

Theorem 0.2.5 (Compactness Theorem). [?, Theorem 1.3.22] A set of sentences Σ has a model if and only if every finite subset of Σ has a model.

Theorem 0.2.6 (Upward Löwenheim-Skolem Theorem). [?, Corollary 2.1.6] If T has infinite models, then it has infinite models of any given power $\alpha \ge \|\mathcal{L}\|$.