SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

- High Slew Rate . . . 10.5 V/μs Typ
- High-Gain Bandwidth . . . 5.1 MHz Typ
- Supply Voltage Range 2.5 V to 5.5 V
- Rail-to-Rail Output
- 360 μV Input Offset Voltage
- Low Distortion Driving 600-Ω
 0.005% THD+N
- 1 mA Supply Current (Per Channel)
- 17 nV/√Hz Input Noise Voltage

- 2 pA Input Bias Current
- Characterized From $T_{\Delta} = -55^{\circ}C$ to $125^{\circ}C$
- Available in MSOP and SOT-23 Packages
- Micropower Shutdown Mode . . . I_{DD} < 1 μA</p>
- Available in Q-Temp Automotive
 High Reliability Automotive Applications
 Configuration Control / Print Support
 Qualification to Automotive Standards

description

The TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail output swing, high output drive, and excellent dc precision. The device provides 10.5 V/ μ s of slew rate and 5.1 MHz of bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make these devices a good choice for driving the analog input or reference of analog-to-digital converters. These devices also have low distortion while driving a 600- Ω load for use in telecom systems.

These amplifiers have a $360-\mu V$ input offset voltage, a $17 \text{ nV}/\sqrt{\text{Hz}}$ input noise voltage, and a 2-pA input bias current for measurement, medical, and industrial applications. The TLV277x family is also specified across an extended temperature range (-40°C to 125°C), making it useful for automotive systems, and the military temperature range (-55°C to 125°C), for military systems.

These devices operate from a 2.5-V to 5.5-V single supply voltage and are characterized at 2.7 V and 5 V. The single-supply operation and low power consumption make these devices a good solution for portable applications. The following table lists the packages available.

FAMILY PACKAGE TABLE

DE\//0E	NUMBER OF				PACKAG	E TYPES				CULTDOWN	UNIVERSAL			
DEVICE	CHANNELS	PDIP	CDIP	SOIC	SOT-23	TSSOP	MSOP	LCCC	CPAK	SHUTDOWN	EVM BOARD			
TLV2770	1	8	_	8	_	_	8	_	_	Yes				
TLV2771	1	_	_	8	5	_	_	_	_	_				
TLV2772	2	8	8	8	_	8	8	20	10	_	Refer to the EVM			
TLV2773	2	14	_	14	_	_	10	_	_	Yes	Selection Guide (Lit# SLOU060)			
TLV2774	4	14	_	14		14	_	_	_	_	(
TLV2775	4	16	_	16	_	16	_	_	_	Yes				

A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTST

	_			_			
	DEVICE	V _{DD} (V)	BW (MHz)	SLEW RATE (V/μs)	I _{DD} (per channel) (μA)	RAIL-TO-RAIL	
Т	LV277X	2.5 – 6.0	5.1	10.5	1000	0	
Т	LV247X	2.7 – 6.0	2.8	1.5	600	I/O	
Т	LV245X	2.7 – 6.0	0.22	0.11	23	I/O	
Т	LV246X	2.7 – 6.0	6.4	1.6	550	I/O	

[†] All specifications measured at 5 V.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

TLV2770 and TLV2771 AVAILABLE OPTIONS

	V AT 0500		PACKAGED	DEVICES		
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	SOT-23 (DBV)	MSOP (DGK)	PLASTIC DIP (P)	
0°C to 70°C	2.5	TLV2770CD TLV2771CD	— TLV2771CDBV	TLV2770CDGK [†] —	TLV2770CP —	
-40°C to 125°C	2.5	TLV2770ID TLV2771ID	— TLV2771IDBV	TLV2770IDGK [†] —	TLV2770IP —	
-40 C to 125°C	1.6	TLV2770AID TLV2771AID			TLV2770AIP —	

[†] This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

TLV2772 and TLV2773 AVAILABLE OPTIONS

	V AT 0500		PACKAGED DEVICES								
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	MSOP (DGK)	MSOP (DGS)	PLASTIC DIP (N)	PLASTIC DIP (P)					
0°C to 70°C	2.5	TLV2772CD TLV2773CD	TLV2772CDGK —	— TLV2773CDGS	— TLV2773CN	TLV2772CP —					
4000 1- 40500	2.5	TLV2772ID TLV2773ID	TLV2772IDGK —	— TLV2773IDGS	— TLV2773IN	TLV2772IP —					
-40°C to 125°C	1.6	TLV2772AID TLV2773AID	_ _	_ _	— TLV2773AIN	TLV2772AIP —					

TLV2774 and TLV2775 AVAILABLE OPTIONS

	V 47.0500		PACKAG	ED DEVICES	
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)
0°C to 70°C	2.7	TLV2774CD TLV2775CD	 TLV2775CN	TLV2774CP —	TLV2774CPW TLV2775CPW
4000 12 40500	2.7	TLV2774ID TLV2775ID	 TLV2775IN	TLV2774IP —	TLV2774IPW TLV2775IPW
-40°C to 125°C	2.1	TLV2774AID TLV2775AID	— TLV2775AIN	TLV2774AIP —	TLV2774AIPW TLV2775AIPW

TLV2772M/Q AND TLV2772AM/Q AVAILABLE OPTIONS

		PACKAGED DEVICES								
TA	V _{IO} max AT 25°C (mV)	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	CERAMIC FLATPACK (U)	TSSOP (PW)				
4000 1- 40500	2.5	TLV2772QD‡	_	_	_	TLV2772QPW [‡]				
-40°C to 125°C	1.6	TLV2772AQD‡	_	_	_	TLV2772AQPW [‡]				
FE°C to 125°C	2.5	TLV2772MD	TLV2772MFK	TLV2772MJG	TLV2772MU	_				
–55°C to 125°C	1.6	TLV2772AMD	TLV2772AMFK	TLV2772AMJG	TLV2772AMU	_				

[‡] Available in tape and reel

PACKAGE SYMBOLS

PACKAGE TYPE	PINS	PART NUMBER	SYMBOL [†]
COTOS	5 Dia	TLV2771CDBV	VAMC
SOT23	5 Pin	TLV2771IDBV	VAMI
		TLV2770CDGK	xxTIABO
	8 Pin	TLV2770IDGK	xxTIABP
мсор		TLV2772CDGK	xxTIAAF
MSOP		TLV2772IDGK	xxTIAAG
	40 Din	TLV2773CDGS	xxTIABQ
	10 Pin	TLV2773IDGS	xxTIABR

[†]xx represents the device date code.

TLV277x PACKAGE PINOUT

TLV2772M AND TLV2772AM FK PACKAGE (TOP VIEW)

NC - No internal connection

TLV277x PACKAGE PINOUTS(1)

†This device is in the Product Preview stage of development. Please contact your local TI sales office for availability. (1) SOT–23 may or may not be indicated

TYPICAL PIN 1 INDICATORS

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)		7 V
Differential input voltage, V _{ID} (see Note 2)		±V _{DD}
Input voltage range, VI (any input, see Note	e 1)	0.3 V to V _{DD}
Input current, I _I (any input)		±4 mĀ
Output current, IO		±50 mA
Total current into V _{DD+}		±50 mA
Total current out of GND		±50 mA
Duration of short-circuit current (at or below	w) 25°C (see Note 3)	unlimited
Continuous total power dissipation		See Dissipation Rating Table
Operating free-air temperature range, T _A :	C suffix	0°C to 70°C
	I suffix	40°C to 125°C
	Q suffix	40°C to 125°C
	M suffix	55°C to 125°C
Storage temperature range, T _{stq}		65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from		

- NOTES: 1. All voltage values, except differential voltages, are with respect to GND.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below GND 0.3 V.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
DBV	437 mW	3.5 mW/°C	280 mW	227 mW	87 mW
DGK	424 mW	3.4 mW/°C	271 mW	220 mW	85 mW
DGS	424 mW	3.4 mW/°C	271 mW	220 mW	85 mW
FK	1375 mW	11.0 mW/°C	672 mW	546 mW	210 mW
JG	1050 mW	8.4 mW/°C	880 mW	714 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW
PW	700 mW	5.6 mW/°C	448 mW	364 mW	140 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

recommended operating conditions

	C SUFFIX		13	SUFFIX	Q SUFFIX		M SUFFIX		LINUT
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}	2.5	6	2.5	6	2.5	6	2.5	6	V
Input voltage range, V _I	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	V
Common-mode input voltage, VIC	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	GND	V _{DD+} -1.3	V
Operating free-air temperature, TA	0	70	-40	125	-40	125	-55	125	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	DADAMETED		TEST COM	OITIONS	+ +	TI	_V277xC	;	UNIT	
	PARAMETER		TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNIT	
		TLV2770/1/2			25°C		0.48	2.5		
\/. ~	Innut offeet voltege	1LV2//0/1/2	VIC - 0,	$V_O = 0,$ $V_{DD} = \pm 1.35 \text{ V},$	Full range		0.53	2.7	m)/	
VIO	Input offset voltage	TI \ /0770 / 4 /F	$R_S = 50 \Omega$, No load	VDD = ±1.35 V,	25°C		0.8	2.7	mV	
		TLV2773/4/5	1101000		Full range		0.86	2.9		
ανιο	Temperature coeffici offset voltage	ent of input			25°C to 125°C		2		μV/°C	
	land offert comment		V _{IC} = 0,	$V_{O} = 0$,	25°C		1	60	A	
liO	Input offset current	oliset current $R_S = 50 \Omega$ V_{DI}		$V_{DD} = \pm 1.35 \text{ V}$	Full range		2	100	pA	
					25°C		2	60	рА	
I _{IB}	Input bias current				Full range		6	100		
			0.0754		25°C		2.6			
.,	LPak laval autout val	u	$I_{OH} = -0.675 \text{ mA}$		Full range		2.5		V	
VOH	High-level output vol	rtage			25°C		2.4		V	
			$I_{OH} = -2.2 \text{ mA}$		Full range		2.1			
			V 4.05.V	l 0.075 A	25°C		0.1			
	Lauren autaut val		$V_{IC} = 1.35 \text{ V},$	$I_{OL} = 0.675 \text{ mA}$	Full range		0.2		.,	
VOL	Low-level output vol	tage	V 4.05.V		25°C		0.21		V	
			$V_{IC} = 1.35 \text{ V},$	$I_{OL} = 2.2 \text{ mA}$	Full range		0.6			
_	Large-signal differen	itial voltage	V _{IC} = 1.35 V,	R _L = 10 kΩ,	25°C	20	380		\//m\/	
AVD	amplification		$V_0 = 0.6 \text{ V to } 2.1 \text{ V}$		Full range	13			V/mV	
ri(d)	Differential input res	istance			25°C		1012		Ω	
Ci(C)	Common-mode inpu	it capacitance	f = 10 kHz		25°C		8		pF	
z _O	Closed-loop output i	mpedance	f = 100 kHz,	A _V = 10	25°C		25		Ω	
CMRR	Common mode rois	ation ratio	$V_{IC} = 0 \text{ to } 1.5 \text{ V},$	$V_O = V_{DD}/2$,	25°C	60	84		40	
CIVIRR	Common-mode reje	Clion fallo	$R_S = 50 \Omega$		Full range	60	82		dB	
le = =	Supply voltage reject	tion ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	$V_{IC} = V_{DD}/2$,	25°C	70	89		40	
ksvr	$(\Delta V_{DD} / \Delta V_{IO})$		No load		Full range	70	84		dB	
Inn	Supply current (per	channel)	$V_O = V_{DD}/2$,	No load	25°C		1	2	mA	
IDD	Supply current (per	unannen)	VO = VDD/2	NO IOau	Full range			2	IIIA	
l== (=, ,=, , ,	Supply current in sh	utdown (per			25°C		0.8	1.5	^	
IDD(SHDN)	channel)				Full range		1.3	2	μΑ	
		TLV2770					1.47			
Turnon voltage (ON)	Turnon voltage level	TLV2773	A _V = 5		25°C		1.43		V	
\= '	10401	TLV2775]				1.40			
		TLV2770					1.27			
V(OFF)	Turnoff voltage level	TLV2773	A _V = 5		25°C		1.21		V	
, ,	10 10 1	TLV2775					1.20			

[†]Full range is 0°C to 70°C.

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	DADAMETER	TEST SON		- +	TLV277xC			LINIT	
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	UNIT	
		\/ 0.8\/	C: 400 = E	25°C	5	9			
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	$C_L = 100 pF$,	Full range	4.7	6		V/μs	
V	Emphysical transfer and the man	f = 1 kHz		25°C		21		nV/√ Hz	
V _n	Equivalent input noise voltage	f = 10 kHz	25°C		17		nv/∀HZ		
V	Park to made and advisor to a transfer college	f = 0.1 Hz to 1 Hz		0500		0.33		.,	
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz	<u> </u>	25°C	0.86			μV	
In	Equivalent input noise current	f = 100 Hz	25°C		0.6		fA/√ Hz		
		_	A _V = 1		0	.0085%			
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, $f = 1 \text{ kHz}$	A _V = 10	25°C		0.025%			
		1 - 1 Ki iz	$A_{V} = 100$		0.12%				
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		4.8		MHz	
	Sattling time	$A_V = -1$, Step = 1 V,	0.1%	25°C		0.186			
t _S	Settling time	$R_L = 600 \Omega$, $C_L = 100 pF$	0.01%	25°C		0.3		μ\$	
φm	Phase margin at unity gain	D. 600.0	C: 100 pF	25°C		46°			
	Gain margin	$R_L = 600 \Omega$,	C _L = 100 pF	25°C		12		dB	

[†] Full range is 0°C to 70°C.

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T. †	TI	V277x	С	
	PARAMETER		TEST CON	DITIONS	T _A †	MIN	TYP	MAX	UNIT
		TI \/2770/4/2			25°C		0.5	2.5	
\/	Innut offeet voltege	TLV2770/1/2	V _{IC} = 0,	$V_{O} = 0,$ $V_{DD} = \pm 2.5 V,$	Full range		0.6	2.7	\/
V _{IO}	Input offset voltage	TI \ /0770 / 4 /F	$R_S = 50 \Omega$, No load	$VDD = \pm 2.5 V$,	25°C		0.7	2.5	mV
		TLV2773/4/5	1101000		Full range		0.78	2.7	
ανιο	Temperature coefficier offset voltage	nt of input			25°C to 125°C		2		μV/°C
			V _{IC} = 0,	$V_{O} = 0$,	25°C		1	60	
IO	Input offset current		$R_S = 50 \Omega$	$V_{DD} = \pm 2.5 \text{ V}$	Full range		2	100	рA
			1		25°C		2	60	
IB	Input bias current				Full range		6	100	рA
					25°C		4.9		
ļ.,			$I_{OH} = -1.3 \text{ mA}$		Full range		4.8		.,
VOH	High-level output volta	ge			25°C		4.7		V
			$I_{OH} = -4.2 \text{ mA}$		Full range		4.4		
					25°C		0.1		
ļ.,			$V_{IC} = 2.5 \text{ V},$	$I_{OL} = 1.3 \text{ mA}$	Full range		0.2		.,
VOL	Low-level output voltage	ge			25°C		0.21		V
			$V_{IC} = 2.5 \text{ V},$	$I_{OL} = 4.2 \text{ mA}$	Full range		0.6	2.5 2.7 2.5 2.7 60 100	
	Large-signal differentia	al voltage	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega$	25°C	20	450		
AVD	amplification	-	$V_0 = 1 \text{ V to 4 V}$		Full range	13			V/mV
r _{i(d)}	Differential input resist	ance			25°C		1012		Ω
Ci(c)	Common-mode input of	capacitance	f = 10 kHz		25°C		8		pF
z _O	Closed-loop output imp	pedance	f = 100 kHz,	A _V = 10	25°C		20		Ω
01.400			$V_{IC} = 0 \text{ to } 3.7 \text{ V},$	$V_O = V_{DD}/2$,	25°C	70	96		
CMRR	Common-mode rejection	on ratio	$R_S = 50 \Omega$	0 22	Full range	70	93		dB
	Supply voltage rejection	n ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	$V_{IC} = V_{DD}/2$,	25°C	70	89		
ksvr	$(\Delta V_{DD} / \Delta V_{IO})$		No load	.0 22	Full range	70	84		dB
l	Cumply ourrent (nor ob	annal)	V - V /2	No load	25°C		1	2	A
IDD	Supply current (per ch	annei)	$V_O = V_{DD}/2$,	No load	Full range			2	mA
	Supply current in shute	down (per			25°C		0.8	1.5	
IDD(SHDN)	channel)	-			Full range		1.3	2	μΑ
		TLV2770					2.59		
V _(ON)	Turnon voltage level	TLV2773	A _V = 5		25°C		2.47		V
\= /		TLV2775]				2.48		
		TLV2770					2.41		
V(OFF)	Turnoff voltage level	TLV2773	A _V = 5		25°C		2.32		V
		TLV2775	<u> </u>				2.29		<u></u>

[†] Full range is 0°C to 70°C.

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

						Т	LV277xC		
	PARAMETER		TEST COND	DITIONS	T _A †	MIN	TYP	MAX	UNIT
				O 400 E	25°C	5	10.5		
SR	Slew rate at unity gain		$V_{O(PP)} = 2 V$, $R_L = 10 k\Omega$	$C_L = 100 \text{ pF},$	Full range	4.7	6		V/μs
.,			f = 1 kHz		25°C		17		->4/15
Vn	Equivalent input noise voltage		f = 10 kHz		25°C		12		nV/√ Hz
.,	5		f = 0.1 Hz to 1 Hz		2500		0.33		.,
V _{N(PP)}	Peak-to-peak equivalent input noise	e voltage	f = 0.1 Hz to 10 Hz		25°C		0.86		μV
In	Equivalent input noise current		f = 100 Hz		25°C		0.6		fA/√ Hz
				A _V = 1			0.005%		
THD + N	Total harmonic distortion plus noise		$R_L = 600 \Omega$, $f = 1 \text{ kHz}$	A _V = 10	25°C		0.016%		
			I - I KIIZ	A _V = 100			0.095%		
	Gain-bandwidth product		f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		5.1		MHz
	Cattling time		$A_{V} = -1$, Step = 2 V,	0.1%	25°C		0.335		
t _S	Settling time		$R_L = 600 \Omega$, $C_L = 100 pF$	0.01%	25°C		0.6		μs
φm	Phase margin at unity gain		D. 600.0	C: 100 pF	25°C		46°		
	Gain margin		$R_L = 600 \Omega$,	C _L = 100 pF	25°C		12		dB
		TLV2770		_			1.2		
t(ON)	Amplifier turnon time	TLV2773	$A_V = 5$, F Measured to 50% r	RL = Open,		25°C 2.4	μ	μs	
, ,		TLV2775	ivieasured to 50 % p	John			1.9		
	TLV27	TLV2770					335		
t(OFF)	Amplifier turnoff time	TLV2773	$A_V = 5$ F Measured to 50% p	RL = Open,	25°C		444		ns
. ,		TLV2775	ivicasureu to 50 % p	Jonit			345	MAX	

[†] Full range is 0°C to 70°C.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, $V_{DD} = 2.7 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	T _A †	TI	LV277x	d	TL	.V277x/	ΑI	
	FARAMETER		TEST CONDITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		TLV2770/1/2	$V_{IC} = 0, V_{O} = 0,$	25°C		0.48	2.5		0.48	1.6	
V	Input offset	1LV2//0/1/2	$R_S = 50 \Omega$	Full range		0.53	2.7		0.53	1.9	mV
V _{IO}	voltage	TLV2773/4/5	$V_{DD} = \pm 1.35 \text{ V},$	25°C		8.0	2.7		8.0	2.1	IIIV
		TLV2//3/4/5	No load	Full range		0.86	2.9		0.86	2.2	
α_{VIO}	Temperature coeffice offset voltage	cient of input		25°C to 125°C		2			2		μV/°C
			$V_{IC} = 0, V_{O} = 0,$	25°C		1	60		1	60	A
IIO	Input offset current		$R_S = 50 \Omega$	Full range		2	125		2	125	рA
			1	25°C		2	60		2	60	
I _{IB}	Input bias current			Full range		6	350		6	350	pΑ
				25°C		2.6			2.6		
			$I_{OH} = -0.675 \text{ mA}$	Full range		2.5			2.5		.,
VOH	High-level output v	oltage		25°C		2.4			2.4		V
			$I_{OH} = -2.2 \text{ mA}$	Full range		2.1			2.1		
			V _{IC} = 1.35 V,	25°C		0.1			0.1		
VOL L			I _{OL} = 0.675 mA	Full range		0.2			0.2		
	Low-level output voltage		V _{IC} = 1.35 V,	25°C		0.21			0.21		V
			I _{OL} = 2.2 mA	Full range		0.6			0.6		
	Lorgo signal diffora	ential valtage	V _{IC} = 1.35 V,	25°C	20	380		20	380		
AVD	Large-signal differe amplification	miai voitage	$R_L = 10 \text{ k}\Omega,$ V _O = 0.6 V to 2.1 V	Full range	13			13			V/mV
ri(d)	Differential input re	sistance		25°C		1012			1012		Ω
Ci(c)	Common-mode inp	ut	f = 10 kHz,	25°C		8			8		pF
z _o	Closed-loop output	impedance	f = 100 kHz, A _V = 10	25°C		25			25		Ω
01.155			V _{IC} = 0 to 1.5 V,	25°C	60	84		60	84		
CMRR	Common-mode rej	ection ratio	$V_O = V_{DD}/2$, R _S = 50 Ω	Full range	60	82		60	82		dB
	Supply voltage reje	ection ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	25°C	70	89		70	89		
ksvr	$(\Delta V_{DD} / \Delta V_{IO})$		V _{IC} = V _{DD} /2, No load	Full range	70	84		70	84		dB
1	Cumply or mant (, ohonne!\	$V_O = V_{DD}/2$,	25°C		1	2		1	2	A
IDD	Supply current (per	cnannél)	No load	Full range			2			2	mA
	Supply current in s	current in shutdown (per		25°C		0.8	1.5		0.8	1.5	
IDD(SHDN)	channel)			Full range		1.3	2		1.3	2	μΑ

[†] Full range is – 40°C to 125°C.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted) (continued)

	PARAMETER		TEST	- .+	TLV277xI		1	TLV277xAI			LINUT
	PARAMETER		CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		TLV2770				1.47			1.47		
V _(ON)	Turnon voltage level	TLV2773	A _V = 5	25°C		1.43			1.43		V
		TLV2775]			1.40			1.4		
		TLV2770				1.27			1.27		
V(OFF)	Turnoff voltage level	TLV2773	A _V = 5	25°C		1.21			1.21		V
		TLV2775]			1.20			1.2		

[†] Full range is – 40°C to 125°C.

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

				_ +	Т	LV277xI		TL	V277xAI		
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V 00V	0 400 - 5	25°C	5	9		5	9		
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pF,	Full range	4.7	6		4.7	6		V/µs
.,	Equivalent input noise	f = 1 kHz		25°C		21			21		nV/√ Hz
v _n	voltage	f = 10 kHz		25°C		17			17		nv/√Hz
v	Peak-to-peak	f = 0.1 Hz to 1 Hz		25°C		0.33			0.33		μV
V _{N(PP)}	equivalent input noise voltage	f = 0.1 Hz to 10 H	lz	25°C		0.86			0.86		μV
In	Equivalent input noise current	f = 100 Hz		25°C		0.6			0.6		fA/√ Hz
	Total barrania		A _V = 1		(0.0085%		(0.0085%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, f = 1 kHz	A _V = 10	25°C		0.025%			0.025%		
	alotortion place holoc	1 - 1 1012	A _V = 100			0.12%			0.12%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		4.8			4.8		MHz
	Cottling time	$A_V = -1$, Step = 0.85 V to 1.85 V,	0.1%	25°C		0.186			0.186		
t _S	Settling time	$R_L = 600 \Omega$, $C_L = 100 pF$	0.01%	25°C		3.92			3.92		μS
φm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C		46°			46°		
	Gain margin			25°C		12			12		dB

[†]Full range is -40°C to 125°C.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST	T _A †	Т	LV277x	1	TL	.V277x	ΑI	
	TANAMETER		CONDITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		TLV2770/1/2	V _{IC} = 0, No load	25°C		0.5	2.5		0.5	1.6	
V/	Input offeet voltage	1LV2//0/1/2	$V_{O} = 0,$	Full range		0.6	2.7		0.6	1.9	mV
V _{IO}	Input offset voltage	TLV2773/4/5	$R_S = 50 \Omega$,	25°C		0.7	2.5		0.7	2.1	IIIV
		1LV2//3/4/3	$V_{DD} = \pm 2.5 \text{ V}$	Full range		0.78	2.7		0.78	2.2	
αVIO	Temperature coefficion	ent of input	V _{IC} = 0,	25°C to 125°C		2			2		μV/°C
			$V_{O} = 0$,	25°C		1	60		1	60	
IIO	Input offset current		$R_S = 50 \Omega$,	Full range		2	125		2	125	pΑ
	Leaved black assessment		$V_{DD} = \pm 2.5 \text{ V}$	25°C		2	60		2	60	А
IIB	Input bias current			Full range		6	350		6	350	рA
				25°C		4.9			4.9		
.,			$I_{OH} = -1.3 \text{ mA}$	Full range		4.8			4.8		.,
VOH	High-level output vol	tage		25°C		4.7			4.7		V
			$I_{OH} = -4.2 \text{ mA}$	Full range		4.4			4.4		
			V _{IC} = 2.5 V,	25°C		0.1			0.1		
V	I am land andant make		IOL = 1.3 mA	Full range		0.2			0.2		V
VOL	Low-level output volt	age	V _{IC} = 2.5 V,	25°C		0.21			0.21		V
			$I_{OL} = 4.2 \text{ mA}$	Full range		0.6			0.6		
A _{VD}	Large-signal differen	tial voltage	$V_{IC} = 2.5 \text{ V},$ $R_L = 10 \text{ k}\Omega,$	25°C	20	450		20	450		V/mV
V D	amplification		$V_0 = 1 \text{ V to 4 V}$	Full range	13			13			
r _{i(d)}	Differential input resi	stance		25°C		1012			1012		Ω
^C i(c)	Common-mode inpu	t capacitance	f = 10 kHz	25°C		8			8		pF
z ₀	Closed-loop output in	mpedance	f = 100 kHz, A _V = 10	25°C		20			20		Ω
			$V_{IC} = 0 \text{ to } 3.7 \text{ V},$	25°C	60	96		70	96		
CMRR	Common-mode reject	ction ratio	$V_O = V_{DD}/2$, R _S = 50 Ω	Full range	60	93		70	93		dB
	Supply voltage reject	tion ratio	$V_{DD} = 2.7 \text{ V to 5 V},$	25°C	70	89		70	89		
ksvr	(ΔV _{DD} /ΔV _{IO})	uon rauo	V _{IC} = V _{DD} /2, No load	Full range	70	84		70	84		dB
	Complex promotes (/=	ah ann all	$V_O = V_{DD}/2$,	25°C		1	2		1	2	A
IDD	Supply current (per o	cnannei)	No load	Full range			2			2	mA
	Supply current shutd	lown (per		25°C		0.8	1.5		0.8 1.5	1.5	
I _{DD} (SHDN)	channel) Full range	Full range		1.3	2		1.3	2	μΑ		

[†] Full range is – 40°C to 125°C.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted) (continued)

	PARAMETER		TEST	T. †	TLV277xI		1	TLV277xAI			LINUT
	PARAMETER		CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		TLV2770				2.59			2.59		
V _(ON)	Turnon voltage level	TLV2773	A _V = 5	25°C		2.47			2.47		V
		TLV2775]			2.48			2.48		
		TLV2770				2.41			2.41		
V(OFF)	Turnoff voltage level	TLV2773	A _V = 5	25°C		2.32			2.32		V
	TLV2775	1			2.29			2.29			

[†] Full range is – 40°C to 125°C.

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	DADA44===	_	TEOT 65::	DITIONS	_ +	Т	LV277xI		Т	LV277xAI		
	PARAMETE	R	TEST CON	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			V 45V	0 400 - 5	25°C	5	10.5		5	10.5		
SR	Slew rate a	t unity gain	$V_{O(PP)} = 1.5 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pr,	Full range	4.7	6		4.7	6		V/μs
.,	Equivalent	input noise	f = 1 kHz		25°C		17			17		nV/√ Hz
V _n	voltage		f = 10 kHz		25°C		12			12		IIV/∀⊓Z
.,	Peak-to-pe		f = 0.1 Hz to 1 Hz	<u>z</u>	25°C		0.33			0.33		μV
V _{N(PP)}	equivalent noise volta	•	f = 0.1 Hz to 10 H	łz	25°C		0.86			0.86		μV
In	Equivalent current	input noise	f = 100 Hz		25°C		0.6			0.6		fA/√ Hz
	-		D 200 C	A _V = 1			0.005%			0.005%		
THD + N	Total harmo		$R_L = 600 \Omega$, f = 1 kHz	Ay = 10	25°C		0.016%			0.016%		
	alotortion p	100 110100	1 - 1 KHZ	Ay = 100			0.095%			0.095%		
	Gain-bandy product	width	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		5.1			5.1		MHz
+	Settling tim	۵	$A_V = -1$, Step = 1.5 V to 3.5 V,	0.1%	25°C		0.134			0.134		116
t _S	Setting tim	C	$R_L = 600 \Omega$, $C_L = 100 pF$	0.01%	25°C		1.97			1.97		μS
φm	Phase marg	gin at unity	R _L = 600 Ω,	C _L = 100 pF	25°C		46°			46°		
	Gain margi	n			25°C		12			12		dB
	Amplifier	TLV2770	A _V = 5,				1.2			1.2		
^t (ON)	turnon	TLV2773	R _L = Open,		25°C		2.4			2.4		μs
	time	TLV2775	Measured to 50%	b point			1.9			1.9		
	Amplifier	TLV2770	A _V = 5,				335			335	35	
t(OFF)	turnoff	off TLV2773 F	R _L = Open,		25°C		444			444		ns
	time	TLV2775	Measured to 50%	6 point			345			345		

[†]Full range is –40°C to 125°C.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS	T _A †		.V27720 .V27721			V2772A V2772A		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
V _{IO}	Input offset voltage			25°C		0.44	2.5		0.44	1.6	mV
VIO	input onset voltage			Full range		0.47	2.7		0.47	1.9	IIIV
ανιο	Temperature coefficient of input offset voltage	$V_{DD} = \pm 1.35 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$,	25°C to 125°C		2			2		μV/°C
		$R_S = 50 \Omega$		25°C		1	60		1	60	
liO	Input offset current			Full range		2	125		2	125	рA
				25°C		2	60		2	60	
I _{IB}	Input bias current			Full range		6	350		6	350	рA
Vian	Common-mode	CMRR > 60 dB,	R _S = 50 Ω	25°C	0 to 1.4	-0.3 to 1.7		0 to 1.4	-0.3 to 1.7		V
VICR	input voltage range	CIVIRK > 60 dB,	KS = 50 12	Full range	0 to 1.4	-0.3 to 1.7		0 to 1.4	-0.3 to 1.7		V
		0.075 4		25°C		2.6			2.6		
\/ - · ·	High-level output	$I_{OH} = -0.675 \text{ mA}$		Full range	2.45			2.45			V
VOH	voltage	Jan. 22 m A		25°C		2.4			2.4		V
		$I_{OH} = -2.2 \text{ mA}$		Full range	2.1			2.1			
		V _{IC} = 1.35 V,	I _{OL} = 0.675 mA	25°C		0.1			0.1		
VOL	Low-level output	VIC = 1.55 V,	IOL = 0.073 IIIA	Full range			0.2			0.2	V
VOL	voltage	V _{IC} = 1.35 V,	I _{OL} = 2.2 mA	25°C		0.21			0.21		V
		VIC = 1.55 V,	10L = 2.2 111A	Full range			0.6			0.6	
A _{VD}	Large-signal differential voltage	V _{IC} = 1.35 V, V _O = 0.6 V to 2.1 V	$R_L = 10 \text{ k}\Omega, \ddagger$	25°C	20	380		20	380		V/mV
	amplification	VO = 0.0 V to 2.1 V		Full range	13			13			
^r i(d)	Differential input resistance			25°C		1012			1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz,		25°C		8			8		pF
z _O	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		25			25		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} (min),	V _O = 1.5 V,	25°C	60	84		60	84		dB
		$R_S = 50 \Omega$		Full range	60	82		60	82		
ksvr	Supply voltage rejection ratio	$V_{DD} = 2.7 \text{ V to 5 V},$ No load	$V_{IC} = V_{DD}/2$,	25°C Full range	70 70	89		70 70	89		dB
	(ΔV _{DD} /ΔV _{IO})			,	70			70			
IDD	Supply current (per channel)	V _O = 1.5 V,	No load	25°C		1	2		1	2	mA
	(per channer)			Full range			2			2	

[†] Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. ‡ Referenced to 1.35 V

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

operating characteristics at specified free-air temperature, V_{DD} = 2.7 V (unless otherwise noted)

	PARAMETER TEST CONDITIONS	DITIONS	T _A †		LV2772Q LV2772M			V2772AQ V2772AN	-	UNIT	
				, ,	MIN	TYP	MAX	MIN	TYP	MAX	
		V- () 0.8 V	C: 100 pF	25°C	5	9		5	9		
SR	Slew rate at unity gain	$V_{O(PP)} = 0.8 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pr,	Full range	4.7	6		4.7	6		V/μs
V	Equivalent input	f = 1 kHz	lz 25°C 21 21			nV/√ Hz					
Vn	noise voltage	f = 10 kHz		25°C		17			17		IIV/\IIZ
Veren	Peak-to-peak equivalent input	f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10 Hz		25°C		0.33			0.33		μV
V _{N(PP)}	noise voltage			25°C		0.86			0.86		μV
In	Equivalent input noise current	f = 100 Hz		25°C	0.6				0.6		fA/√ Hz
		-	A _V = 1		0.0085%			0	.0085%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, $f = 1 \text{ kHz}$	A _V = 10	25°C		0.025%			0.025%		
	р		$A_{V} = 100$			0.12%			0.12%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		4.8			4.8		MHz
	Costiling time	$A_V = -1$, Step = 0.85 V to 1.85 V,	0.1%	25°C		0.186			0.186		
t _S	Settling time	$R_L = 600 \Omega$, $C_L = 100 pF$	0.01%	25°C		3.92			3.92		μs
φm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C		46°			46°		
	Gain margin			25°C		12			12		dB

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	T _A †		V27720 V27721			V2772A V2772A		UNIT
				, ,	MIN	TYP	MAX	MIN	TYP	MAX	
\/	Innut offset voltage			25°C		0.36	2.5		0.36	1.6	~^\/
VIO	Input offset voltage			Full range		0.4	2.7		0.4	1.9	mV
ανιο	Temperature coefficient of input offset voltage	$V_{DD} = \pm 2.5 \text{ V},$	$V_{O} = 0,$	25°C to 125°C		2			2		μV/°C
	land offering	$V_{IC} = 0,$	$R_S = 50 \Omega$	25°C		1	60		1	60	^
lio	Input offset current			Full range		2	125		2	125	рA
	lanut bing ground			25°C		2	60		2	60	^
IB	Input bias current			Full range		6	350		6	350	рA
Vion	Common-mode	CMRR > 60 dB,	R _S = 50 Ω	25°C	0 to 3.7	-0.3 to 3.8		0 to 3.7	-0.3 to 3.8		V
VICR	input voltage range	CIVILITY > 00 dB,	NS = 30 22	Full range	0 to 3.7	-0.3 to 3.8		0 to 3.7	-0.3 to 3.8		V
		1.2 m/		25°C		4.9			4.9		
	High-level output	$I_{OH} = -1.3 \text{ mA}$		Full range	4.8			4.8			V
VOH	voltage	1.2 mA		25°C		4.7			4.7		V
		$I_{OH} = -4.2 \text{ mA}$		Full range	4.4			4.4			
		V10 - 2 5 V	lov - 12 mA	25°C		0.1			0.1		
VOL	Low-level output	V _{IC} = 2.5 V,	$I_{OL} = 1.3 \text{ mA}$	Full range			0.2			0.2	V
VOL	voltage	V _{IC} = 2.5 V,	I _{OL} = 4.2 mA	25°C		0.21			0.21		V
		V ₁ C = 2.5 V,	10L = 4.2 111A	Full range			0.6			0.6	
AVD	Large-signal differential voltage	V _{IC} = 2.5 V, V _O = 1 V to 4 V	R _L = 10 kΩ,‡	25°C	20	450		20	450		V/mV
	amplification	VO = 1 V 10 4 V		Full range	13			13			
^r i(d)	Differential input resistance			25°C		1012			1012		Ω
ci(c)	Common-mode input capacitance	f = 10 kHz,		25°C		8			8		pF
z ₀	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		20			20		Ω
CMRR	Common-mode	$V_{IC} = V_{ICR}$ (min),	V _O = 3.7 V,	25°C	60	96		60	96		40
CIVIKK	rejection ratio	$R_S = 50 \Omega$		Full range	60	93		60	93		dB
ksvr	Supply voltage rejection ratio	V _{DD} = 2.7 V to 5 V,	$V_{IC} = V_{DD}/2$,	25°C	70	89		70	89		dB
	$(\Delta V_{DD} / \Delta V_{IO})$	No load		Full range	70	84		70	84		
I _{DD}	Supply current	V _O = 1.5 V,	No load	25°C		1	2		1	2	mA
יטט.	(per channel)	10,		Full range			2			2	

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part. ‡ Referenced to 2.5 V

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	T _A †		LV2772Q LV2772M			V2772AQ V2772AM	-	UNIT
				^	MIN	TYP	MAX	MIN	TYP	MAX	
		V 4.5.V	O: 400 = F	25°C	5	10.5		5	10.5		
SR	Slew rate at unity gain	$V_{O(PP)} = 1.5 \text{ V},$ $R_{L} = 10 \text{ k}\Omega$	CL = 100 pr,	Full range	4.7	6		4.7	6		V/μs
	Equivalent input	f = 1 kHz		25°C		17			17		nV/√ Hz
Vn	noise voltage	f = 10 kHz		25°C		12			12		IIV/VIIZ
V	Peak-to-peak equivalent input	f = 0.1 Hz to 1 Hz	:	25°C		0.33			0.33		μV
V _{N(PP)}	noise voltage	f = 0.1 Hz to 10 H	lz	25°C		0.86			0.86		μV
In	Equivalent input noise current	f = 100 Hz		25°C		0.6	0.6		fA/√ Hz		
		-	A _V = 1			0.005%			0.005%		
THD + N	Total harmonic distortion plus noise	$R_L = 600 \Omega$, $f = 1 \text{ kHz}$	A _V = 10	25°C		0.016%			0.016%		
	diotoriion piao noico		A _V = 100			0.095%			0.095%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 600 \Omega$,	25°C		5.1			5.1		MHz
	0 411 41	$A_V = -1$, Step = 1.5 V to	0.1%	25°C		0.134			0.134		
t _S	Settling time	$3.5 \text{ V},$ $R_L = 600 \Omega,$ $C_L = 100 \text{ pF}$	0.01%	25°C		1.97			1.97		μs
фm	Phase margin at unity gain	R _L = 600 Ω,	C _L = 100 pF	25°C		46°			46°		
	Gain margin			25°C		12			12		dB

[†] Full range is -40°C to 125°C for Q level part, -55°C to 125°C for M level part.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage Distribution	1,2 3,4 5,6
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	7
Vон	High-level output voltage	vs High-level output current	8,9
VOL	Low-level output voltage	vs Low-level output current	10,11
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	12,13
IOS	Short-circuit output current	vs Supply voltage vs Free-air temperature	14 15
VO	Output voltage	vs Differential input voltage	16
AVD	Large-signal differential voltage amplification and phase margin	vs Frequency	17,18
AVD	Differential voltage amplification	vs Load resistance vs Free-air temperature	19 20,21
z _o	Output impedance	vs Frequency	22,23
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	24 25
ksvr	Supply-voltage rejection ratio	vs Frequency	26,27
I _{DD}	Supply current (per channel)	vs Supply voltage	28
SR	Slew rate	vs Load capacitance vs Free-air temperature	29 30
Vo	Voltage-follower small-signal pulse response		31,32
VO	Voltage-follower large-signal pulse response		33,34
VO	Inverting small-signal pulse response		35,36
VO	Inverting large-signal pulse response		37,38
V _n	Equivalent input noise voltage	vs Frequency	39,40
	Noise voltage (referred to input)	Over a 10-second period	41
THD + N	Total harmonic distortion plus noise	vs Frequency	42,43
	Gain-bandwidth product	vs Supply voltage	44
B ₁	Unity-gain bandwidth	vs Load capacitance	45
φm	Phase margin	vs Load capacitance	46
	Gain margin	vs Load capacitance	47
	Amplifier with shutdown pulse turnon/off characteristics		48 – 50
	Supply current with shutdown pulse turnon/off characteristics		51 – 53
	Shutdown supply current	vs Free-air temperature	54
	Shutdown forward/reverse isolation	vs Frequency	55, 56

TYPICAL CHARACTERISTICS

DISTRIBUTION OF TLV2772 INPUT OFFSET VOLTAGE

Figure 1

Figure 2

INPUT OFFSET VOLTAGE

vs

COMMON-MODE INPUT VOLTAGE

Figure 4

TYPICAL CHARACTERISTICS

Figure 5

INPUT BIAS AND OFFSET CURRENT

vs FREE-AIR TEMPERATURE I IB and I IO - Input Bias and Input Offset Currents - nA 0.20 $V_{DD} = 5 V$ $V_{IC} = 0$ $V_O = 0$ $R_S = 50 \Omega$ 0.15 lιΒ 0.10 0.05 lΙΟ **-75** -50 -25 0 25 50 75 100 125 T_A – Free-Air Temperature – $^{\circ}C$

Figure 7

DISTRIBUTION OF TLV2772
INPUT OFFSET VOLTAGE

Figure 6

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS

I_{OL} - Low-Level Output Current - mA

Figure 11

TYPICAL CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 13

SHORT-CIRCUIT OUTPUT CURRENT **SUPPLY VOLTAGE**

SHORT-CIRCUIT OUTPUT CURRENT

Figure 16

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

vs **FREQUENCY** 100 300 A VD - Large-Signal Differential Amplification - dB $V_{DD} = 2.7 \text{ V}$ $R_L = 600 \Omega$ $C_{L} = 600 \text{ pF}$ 80 240 T_A = 25°C AVD m – Phase Margin – degrees 60 180 40 120 Phase 60 20 0 0 -20 -60 -90 -40 100 1k 10k 100k 1M 10M f - Frequency - Hz

Figure 17

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

٧S **FREQUENCY** 100 300 A_{VD} - Large-Signal Differential Amplification - dB $V_{DD} = 5 V$ $R_L = 600 \Omega$ $C_{L}^{-} = 600 \text{ pF}$ 80 240 T_A = 25°C Phase Margin – degrees A_{VD} 60 180 40 120 **Phase** 20 60 0 0 **₽** -20 -60 -90 -40 10k 100k 100 1k 1M 10M f - Frequency - Hz

Figure 18

TYPICAL CHARACTERISTICS

DIFFERENTIAL VOLTAGE AMPLIFICATION LOAD RESISTANCE 250 T_A = 25°C A_{VD} - Differential Voltage Amplification - V/mV 200 $V_{DD} = 2.7 \text{ V}$ $V_{DD} = 5 V$ 150 100 50 0.1 10 100 1000 R_L – Load Resistance – $k\Omega$

FREE-AIR TEMPERATURE 1000 $R_L = 10 \text{ k}\Omega$ A_{VD} - Differential Voltage Amplification - V/mV $R_L = 1 M\Omega$ 100 $R_L = 600 \Omega$ 10 $V_{DD} = 2.7 \text{ V}$ V_{IC} = 1.35 V $V_0 = 0.6 \text{ V to } 2.1 \text{ V}$ 0.1 -75 -50 -25 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 20

DIFFERENTIAL VOLTAGE AMPLIFICATION

DIFFERENTIAL VOLTAGE AMPLIFICATION vs

Figure 19

TEXAS INSTRUMENTS

COMMON-MODE REJECTION RATIO

TYPICAL CHARACTERISTICS

FREQUENCY 90 V_{DD} = 2.7 V $V_{IC} = 1.35 \text{ V}$ CMRR - Common-Mode Rejection Ratio - dB and 2.5 V 1.1111111 T_A = 25°C $V_{DD} = 5 V$ 80 70 60 50 40 10 100 1k 10k 100k 1M 10M f - Frequency - Hz

COMMON-MODE REJECTION RATIO

SUPPLY-VOLTAGE REJECTION RATIO VS

Figure 24

TYPICAL CHARACTERISTICS

SUPPLY VOLTAGE REJECTION RATIO **FREQUENCY** 120 $V_{DD} = 5 V$ kSvR - Supply Voltage Rejection Ratio - dB T_A = 25°C ksvr+ 100 ksvr-80 60 40 20 0 100 10 k 100 k 10 1 M 10 M f - Frequency - Hz

SUPPLY CURRENT (PER CHANNEL)

SLEW RATE
vs
FREE-AIR TEMPERATURE

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 $V_{DD} = 2.7 V$ $R_L = 600 \Omega$ 80 $C_L = 100 pF$ AV = 1Vo - Output Voltage - mV 60 T_A = 25°C 40 20 0 -20 -40 -60 0.5 2.5 4 4.5 5 0 1 1.5 2 3 3.5 $\textbf{t-Time}-\mu\textbf{s}$

Figure 31

TYPICAL CHARACTERISTICS

 $t - \text{Time} - \mu \text{s}$ Figure 38

t - Time - μs

Figure 37

TYPICAL CHARACTERISTICS

NOISE VOLTAGE OVER A 10 SECOND PERIOD

Figure 41

TYPICAL CHARACTERISTICS

TOTAL HARMONIC DISTORTION PLUS NOISE vs **FREQUENCY** THD+N – Total Harmonic Distortion Plus Noise – % $V_{DD} = 2.7 V$ $R_L = 600 \Omega$ $T_A = 25^{\circ}C$ $A_{V} = 100$ 0.1 $A_{V} = 10$ $A_V = 1$ 0.01 0.001 10 100 1k 10k 100k f - Frequency - Hz

TOTAL HARMONIC DISTORTION PLUS NOISE

Figure 43

UNITY-GAIN BANDWIDTH

VS

TYPICAL CHARACTERISTICS

Figure 49

TYPICAL CHARACTERISTICS

Figure 53

TYPICAL CHARACTERISTICS

TLV2770 SHUTDOWN REVERSE ISOLATION

PARAMETER MEASUREMENT INFORMATION

Figure 57

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 58. A minimum value of 20 Ω should work well for most applications.

Figure 58. Driving a Capacitive Load

APPLICATION INFORMATION

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

Figure 59. Output Offset Voltage Model

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 60).

Figure 60. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

Figure 61. 2-Pole Low-Pass Sallen-Key Filter

APPLICATION INFORMATION

using the TLV2772 as an accelerometer interface

The schematic, shown in Figure 62, shows the ACH04-08-05 interfaced to the TLV1544 10-bit analog-to-digital converter (ADC).

The ACH04-08-05 is a shock sensor designed to convert mechanical acceleration into electrical signals. The sensor contains three piezoelectric sensing elements oriented to simultaneously measure acceleration in three orthogonal, linear axes (x, y, z). The operating frequency is 0.5 Hz to 5 kHz. The output is buffered with an internal JFET and has a typical output voltage of 1.80 mV/g for the x and y axis and 1.35 mV/g for the z axis.

Amplification and frequency shaping of the shock sensor output is done by the TLV2772 rail-to-rail operational amplifier. The TLV2772 is ideal for this application as it offers high input impedance, good slew rate, and excellent dc precision. The rail-to-rail output swing and high output drive are perfect for driving the analog input of the TLV1544 ADC.

Figure 62. Accelerometer Interface Schematic

The sensor signal must be amplified and frequency-shaped to provide a signal the ADC can properly convert into the digital domain. Figure 62 shows the topology used in this application for one axis of the sensor. This system is powered from a single 3-V supply. Configuring the TLV431 with a 2.2-k Ω resistor produces a reference voltage of 1.23 V. This voltage is used to bias the operational amplifier and the internal JFETs in the shock sensor.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

APPLICATION INFORMATION

gain calculation

Since the TLV2772 is capable of rail-to-rail output using a 3-V supply, $V_O = 0$ (min) to 3 V (max). With no signal from the sensor, nominal $V_O =$ reference voltage = 1.23 V. Therefore, the maximum negative swing from nominal is 0 V - 1.23 V = -1.23 V and the maximum positive swing is 3 V - 1.23 V = 1.77 V. By modeling the shock sensor as a low impedance voltage source with output of 2.25 mV/g (max) in the x and y axis and 1.70 mV/g (max) in the z axis, the gain of the circuit is calculated by equation 1.

$$Gain = \frac{Output Swing}{Sensor Signal \times Acceleration}$$
 (1)

To avoid saturation of the operational amplifier, the gain calculations are based on the maximum negative swing of -1.23 V and the maximum sensor output of 2.25 mV/g (x and y axis) and 1.70 mV/g (z axis).

Gain (x, y) =
$$\frac{-1.23 \text{ V}}{2.25 \text{ mV/g} \times -50 \text{ g}}$$
 = 10.9 (2)

and

Gain (z) =
$$\frac{-1.23 \text{ V}}{1.70 \text{ mV/g} \times -50 \text{ g}}$$
 = 14.5 (3)

By selecting R3 = 10 k Ω and R4 = 100 k Ω , in the x and y channels, a gain of 11 is realized. By selecting R3 = 7.5 k Ω and R4 = 100 k Ω , in the z channel, a gain of 14.3 is realized. The schematic shows the configuration for either the x- or y-axis.

bandwidth calculation

To calculate the component values for the frequency shaping characteristics of the signal conditioning circuit, 1 Hz and 500 Hz are selected as the minimum required 3-dB bandwidth.

To minimize the value of the input capacitor (C1) required to set the lower cutoff frequency requires a large value resistor for R2 is required. A 1-M Ω resistor is used in this example. To set the lower cutoff frequency, the required capacitor value for C1 is:

$$C1 = \frac{1}{2\pi f_{LOW} R_2} = 0.159 \,\mu\text{F} \tag{4}$$

Using a value of 0.22 μF, a more common value of capacitor, the lower cutoff frequency is 0.724 Hz.

To minimize the phase shift in the feedback loop caused by the input capacitance of the TLV2772, it is best to minimize the value of the feedback resistor R4. However, to reduce the required capacitance in the feedback loop a large value for R4 is required. Therefore, a compromise for the value of R4 must be made. In this circuit, a value of $100 \text{ k}\Omega$ has been selected. To set the upper cutoff frequency, the required capacitor value for C2 is:

$$C2 = \frac{1}{2\pi f_{HIGH} R_4} = 3.18 \,\mu\text{F} \tag{5}$$

Using a 2.2-nF capacitor, the upper cutoff frequency is 724 Hz.

R5 and C3 also cause the signal response to roll off. Therefore, it is beneficial to design this roll-off point to begin at the upper cutoff frequency. Assuming a value of 1 k Ω for R5, the value for C3 is calculated to be 0.22 μ F.

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV277x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes—It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling—Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins
 will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
 is the best implementation.
- Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components—Using surface-mount passive components is recommended for high
 performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
 surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
 size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
 inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
 kept as short as possible.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 63 and is calculated by the following formula:

$$P_{D} = \left(\frac{T_{MAX} - T_{A}}{\theta_{JA}}\right)$$

Where:

P_D = Maximum power dissipation of TLV277x IC (watts)

T_{MAX} = Absolute maximum junction temperature (150°C)

 T_A = Free-ambient air temperature (°C)

 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

MAXIMUM POWER DISSIPATION

vs FREE-AIR TEMPERATURE

NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.

Figure 63. Maximum Power Dissipation vs Free-Air Temperature

TLV277x, TLV277xA FAMILY OF 2.7-V HIGH-SLEW-RATE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

APPLICATION INFORMATION

shutdown function

Three members of the TLV277x family (TLV2770/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.8 μ A/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care needs to be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to $V_{DD}/2$. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to $V_{DD}-$ (not GND) to disable the operational amplifier.

The amplifier's output with a shutdown pulse is shown in Figures 48, 49, and 50. The amplifier is powered with a single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon and turnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. The *bump* on the rising edge of the TLV2770 output waveform is due to the start-up circuit on the bias generator. For the dual and quad (TLV2773/5), this *bump* is attributed to the bias generator's start-up circuit as well as the crosstalk between the other channel(s), which are in shutdown.

Figures 55 and 56 show the amplifier's forward and reverse isolation in shutdown. The operational amplifier is powered by ± 1.35 -V supplies and configured as a voltage follower ($A_V = 1$). The isolation performance is plotted across frequency for both 0.1 V_{PP} and 2.7 V_{PP} input signals. During normal operation, the amplifier would not be able to handle a 2.7-V_{PP} input signal with a supply voltage of ± 1.35 V since it exceeds the common-mode input voltage range (V_{ICR}). However, this curve illustrates that the amplifier remains in shutdown even under a worst case scenario.

SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$ Release 8, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 4) and subcircuit in Figure 64 are generated using the TLV2772 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

Figure 64. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

14-Sep-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9858802QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9858802QPA TLV2772AM	Samples
TLV2770AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2770AI	Samples
TLV2770AIP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2770AI	Samples
TLV2770CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2770C	Samples
TLV2770CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2770C	Samples
TLV2770CP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLV2770C	Samples
TLV2770IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ABP	Samples
TLV2770IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27701	Samples
TLV2770IP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2770I	Samples
TLV2771AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2771AI	Samples
TLV2771CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2771C	Samples
TLV2771CDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	VAMC	Samples
TLV2771CDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	VAMC	Samples
TLV2771CDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	VAMC	Samples
TLV2771CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2771C	Samples
TLV2771ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27711	Samples
TLV2771IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VAMI	Samples

www.ti.com

14-Sep-2018

Orderable Device Status Packag		Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV2771IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VAMI	Samples
TLV2771IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27711	Samples
TLV2772AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772AI	Samples
TLV2772AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772AI	Samples
TLV2772AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772AI	Samples
TLV2772AIP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2772AI	Samples
TLV2772AMD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	2772AM	Samples
TLV2772AMDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2772AM	Samples
TLV2772AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9858802QPA TLV2772AM	Samples
TLV2772AQPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772AQ	Samples
TLV2772CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2772C	Samples
TLV2772CDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	AAF	Samples
TLV2772CDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	AAF	Samples
TLV2772CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2772C	Samples
TLV2772CP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLV2772C	Samples
TLV2772ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27721	Samples
TLV2772IDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	AAG	Samples
TLV2772IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	AAG	Samples

www.ti.com

14-Sep-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLV2772IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772	Samples
TLV2772IP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2772IP	Samples
TLV2772MD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM -55 to 125		2772M	Samples
TLV2772MDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	2772M	Samples
TLV2772QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772Q	Samples
TLV2772QPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772Q	Samples
TLV2772QPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2772Q	Samples
TLV2772QPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2772Q	Samples
TLV2773AIN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2773AI	Samples
TLV2773CDGS	ACTIVE	VSSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ABQ	Samples
TLV2773CDGSG4	ACTIVE	VSSOP	DGS	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	ABQ	Samples
TLV2773IDGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ABR	Samples
TLV2774AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2774A	Samples
TLV2774AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2774A	Samples
TLV2774AIN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2774A	Samples
TLV2774AIPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM -40 to 12		TY2774A	Samples
TLV2774CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV2774C	Samples
TLV2774CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV2774C	Samples

www.ti.com

14-Sep-2018

Orderable Device	Status	Package Type	Package	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV2774CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV2774C	Samples
TLV2774CN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLV2774C	Samples
TLV2774CPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2774C	Samples
TLV2774CPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TV2774	Samples
TLV2774ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2774I	Samples
TLV2774IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2774I	Samples
TLV2774IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2774I	Samples
TLV2774IN	ACTIVE	PDIP	N	14	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2774I	Samples
TLV2774IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TY2774	Samples
TLV2774IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TY2774	Samples
TLV2774IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TY2774	Samples
TLV2775AIN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2775A	Samples
TLV2775AIPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2775AI	Samples
TLV2775CN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLV2775C	Samples
TLV2775ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2775I	Samples
TLV2775IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2775I	Samples
TLV2775IPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27751	Samples
TLV2775IPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	27751	Samples

PACKAGE OPTION ADDENDUM

14-Sep-2018

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV2771, TLV2772, TLV2772A, TLV2772AM, TLV2774, TLV2774A:

- Catalog: TLV2772A
- Automotive: TLV2771-Q1, TLV2772-Q1, TLV2772A-Q1, TLV2772A-Q1
- Enhanced Product: TLV2772A-EP, TLV2772A-EP, TLV2774-EP, TLV2774A-EP

ww.ti.com 14-Sep-2018

Military: TLV2772AM

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2770CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2770IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2770IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2771AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2771CDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2771CDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2771CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2771IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2771IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2771IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2772AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2772CDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2772CDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2772CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2772IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2772IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2772IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2772MDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2772QPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLV2772QPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLV2773IDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2774AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2774CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2774CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV2774IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2774IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV2775IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TLV2775IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2770CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2770IDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TLV2770IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2771AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2771CDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV2771CDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV2771CDR	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2771IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV2771IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TLV2771IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2772AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2772CDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TLV2772CDGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV2772CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2772IDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TLV2772IDGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TLV2772IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2772MDR	SOIC	D	8	2500	350.0	350.0	43.0
TLV2772QPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLV2772QPWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
TLV2773IDGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0
TLV2774AIDR	SOIC	D	14	2500	350.0	350.0	43.0
TLV2774CDR	SOIC	D	14	2500	350.0	350.0	43.0
TLV2774CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TLV2774IDR	SOIC	D	14	2500	350.0	350.0	43.0
TLV2774IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
TLV2775IDR	SOIC	D	16	2500	350.0	350.0	43.0
TLV2775IPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE TRANSISTOR

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated