Problem 0: Homework checklist

✓I didn't talk with any one about this homework.

✓ Source-code are included at the end of this document.

Problem 1: Prove or disprove

For the proof below, I will assume all the matrices are $n \times n$ square matrices.

1. The product of two diagonal matrices is diagonal.

 \boldsymbol{A} and \boldsymbol{B} are diagonal matrices, so

$$\mathbf{A}_{ij} = 0, if \ i \neq j$$

$$\boldsymbol{B}_{ij} = 0, if \ i \neq j$$

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

 $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ Only if i = j = k, C_{ij} will not be zero, which mean C is also a diagonal matrix.

2. The product of two upper triangular matrices is upper triangular A and Bare two upper triangular matrices, so

$$\mathbf{A}_{ij} = 0, if \ i \geqslant j$$

$$\mathbf{B}_{ij} = 0, if \ i \geqslant j$$

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{ki}$$

 $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ When $i \geqslant j$, $C_{ij} = 0$ because one of A_{ik} and B_{kj} must be zero.

3. The product of two symmetric matrices is symmetric. A and B are two symmetric matrices, so

$$oldsymbol{A}_{ij} = oldsymbol{A}_{ji}$$

$$oldsymbol{B}_{ij} = oldsymbol{B}_{ji}$$

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

 $m{C}_{ij} = \sum_{k=1}^n m{A}_{ik} m{B}_{kj}$ Then $m{C}_{ij}$ is not necessary to be equal to $m{C}_{ji}$

Counter-example:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 is a symmetric matrix;

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \text{ is a symmetric matrix;}$$

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ is also a symmetric matrix.}$$

$$C = A \times B = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$$
 which is not a symmetric matrices.

- 4. The product of two orthogonal matrices is orthogonal.
- 5. The product of two square, full rank matrices is full rank This statement is incorrect.

Counter-example:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 is a full rank matrix;

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \text{ is a full rank matrix;}$$

$$B = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix} \text{ is also a full rank matrix.}$$

$$C = A \times B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$$
 which is not a full matrices.

Problem 2

We know U and V are square orthogonal matrices, then

$$\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}, \boldsymbol{V}^T \boldsymbol{V} = \boldsymbol{I} \tag{1}$$

$$||UAV||_2^2 = V^T A^T U^T UAV$$
$$= V_A^T A^T AV$$

$$= V^T ||A||_2^2 V$$

$$= \mathbf{V}^T \|\mathbf{A}\|_2^2 \mathbf{V}$$
$$= \mathbf{V}^T \mathbf{V} \|\mathbf{A}\|_2^2$$

$$= \|A\|_2^2$$

Therefore $\|A\|_2$ is orthogonally invariant.

Problem 3

$$f(\mathbf{A}) = \max_{i,j} |A_{ij}| \tag{2}$$

1.
$$\bullet$$
 $f(A) > 0, when \mathbf{A} \neq 0,$
 $f(A) = 0 \ iff \mathbf{A} = 0$

• For and scalar
$$k$$
, $f(k\mathbf{A})$

$$= \max_{i,j} |kA_{ij}|$$

$$= k \max_{i,j} |A_{ij}|$$
$$= k f(\mathbf{A})$$

•
$$f(A + B)$$

$$= \max_{i,j} |A_{ij} + B_{ij}|$$

$$\leq \max_{i,j} |A_{ij}| + \max_{i,j} |B_{ij}|$$

$$= f(\boldsymbol{A}) + f(\boldsymbol{B})$$

Therefore $f(\mathbf{A})$ is a matrix norm.

$f(\mathbf{AB})$

$$= \max_{i,j} |A_{ij}B_{ij}|$$

$$\leq \max_{i,j} |A_{ij}| \max_{i,j} |B_{ij}|$$

$$= f(\boldsymbol{A})f(\boldsymbol{B})$$

The \leq is not necessary to be. A counter example:

$$A = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$
$$B = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 3 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} 18 & 18 \\ 18 & 18 \end{bmatrix}$$
$$f(\mathbf{A}) = 3$$

$$f(\mathbf{B}) = 3$$

$$f(\mathbf{A}\mathbf{B}) = 18$$

Then
$$f(\mathbf{AB}) > f(\mathbf{A})f(\mathbf{B})$$

So f does not satisfy the sub-multiplicative property.

3.

$$g(\mathbf{A}) = \sigma f(\mathbf{A}) \tag{3}$$

$$g(\mathbf{AB}) = \sigma \max_{i,j} |A_{ij}B_{ij}|$$

$$g(\mathbf{A})g(\mathbf{B}) = \sigma^2 \max_{i,j} |A_{ij}| \max_{i,j} |B_{ij}|$$

To make

$$g(\mathbf{A}\mathbf{B}) \le g(\mathbf{A})g(\mathbf{B}) \tag{4}$$

$$\sigma \max_{i,j} |A_{ij}B_{ij}| \le \sigma^2 \max_{i,j} |A_{ij}| \max_{i,j} |B_{ij}| \tag{5}$$

$$\sigma \max_{i,j} |A_{ij}B_{ij}| \le \sigma^2 \max_{i,j} |A_{ij}| \max_{i,j} |B_{ij}|$$

$$\sigma \ge \frac{\max_{i,j} |A_{ij}B_{ij}|}{\max_{i,j} |A_{ij}| \max_{i,j} |B_{ij}|}$$

$$(5)$$

Therefore there exists $\sigma > 0$ such that: $g(\mathbf{A}) = \sigma f(\mathbf{A})$

Problem 4

$$f(x) = ||x\mathbf{k}^T|| \tag{7}$$

- $f(x) > 0, when \mathbf{A} \neq 0$, f(x) = 0 iff $\mathbf{A} = 0$ because $\|\mathbf{A}\|$ is a matrix norm.
 - $f(mx) = ||mx\mathbf{k}^T|| = m||x\mathbf{k}^T|| = mf(x)$
 - $f(x+y) = \|(x+y)\mathbf{k}^T\| = \|x\mathbf{k}^T + y\mathbf{k}^T\| \le \|x\mathbf{k}^T\| + \|y\mathbf{k}^T\| = f(x) + f(y)$

Therefore f is a vector norm.

2. If $\|A\|$ is a sub-multiplicative matrix norm,

$$f(\mathbf{A}x) = \|\mathbf{A}x\mathbf{k}^T\| \le \|\mathbf{A}\| \|x\mathbf{k}^T\| = \|\mathbf{A}\| f(x)$$
(8)

Problem 5 (Choice 1)

 $f(\mathbf{x}) = \text{sum of two largest entries in } \mathbf{x}$ by absolute value is a vector form. Suppose

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then the unit-ball should include all points which satisfy conditions:

$$\begin{aligned} |x_1| + |x_2| &= 1, |x_3| \le |x_1|, \ |x_3| \le |x_2| \\ |x_2| + |x_3| &= 1, |x_1| \le |x_2|, \ |x_3| \le |x_3| \\ |x_3| + |x_1| &= 1, |x_2| \le |x_3|, \ |x_3| \le |x_1| \end{aligned}$$

I used Monte Carlo method to generate N = 300000 points which satisfy those conditions, as shown ind Figure 1.

Figure 1: The unit-ball surface from different views. Color images are in electronic version.