IMPERIAL

Quantum Compilation With Neutral Atoms

Chen Huang 13/04/2025

Quantum bits (Qubits)

Basic carriers of quantum information

A theoretician's qubit:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
 $|\alpha|^2 + |\beta|^2 = 1$

$$|\alpha|^2 + |\beta|^2 = 1$$

Naturally occurring qubits:

electrons, protons (spin-1/2 systems), photons (two polarization states)

But: unbound electron — wave packet in position or momentum space

photon wave packet → energy dispersion

Engineered quantum system: atoms, molecules, solid state systems

But: many energy levels

An experimentalist's qubit:

Quantum computing stack

How to build a quantum computer?

1	1 1.0080														© h			18 2 4.00260 He Helium Noble Gas
2	3 7.0	4 9.012183 Be Beryllium Alkaline Earth Me			Atomic N	lumber 1 Name	7 35.4 Cl Chlorine	Symb					5 10.81 B Boron Metalloid	6 12.011 C Carbon Nonmetal	7 14.007 Nitrogen Nonmetal	8 15.999 Oxygen Nonmetal	9 18.9984 F Fluorine Halogen	10 20.180 Ne Neon Noble Gas
3	Na Sodium	12 24.305 Mg Magnesium Alkaline Earth Me	3	4	5	6	Halogen 7	Chem	ical Group	Block 10	11	12	13 26.981 Al Aluminum Post-Transition M	14 28.085 Si Silicon Metalloid	15 30.973 P Phosphorus Nonmetal	16 32.07 Sulfur Nonmetal	17 35.45 Cl Chlorine Halogen	18 39.9 Ar Argon Noble Gas
4	K Potassium	20 40.08 Ca Calcium Alkaline Earth Me	21 44.95591 SC Scandium Transition Metal	22 47.867 Ti Titanium Transition Metal	23 50.9415 V Vanadium Transition Metal	24 51.996 Cr Chromium Transition Metal	25 54.93804 Mn Manganese Transition Metal	26 55.84 Fe Iron Transition Metal	27 58.93319 CO Cobalt Transition Metal	28 58.693 Ni Nickel Transition Metal	29 63.55 Cu Copper Transition Metal	30 65.4 Zn Zinc Transition Metal	31 69.723 Ga Gallium Post-Transition M	32 72.63 Ge Germanium Metalloid	33 74.92159 As Arsenic Metalloid	34 78.97 Se Selenium Nonmetal	35 79.90 Br Bromine Halogen	36 83.80 Kr Krypton Noble Gas
	37 85.468 Rb Rubidium Alkali Metal	38 87.62 Sr Strontium kaline Earth Me	39 88.90584 Y Yttrium Transition Metal	40 91.22 Zr Zirconium Transition Metal	41 92.90637 Nb Niobium Transition Metal	42 95.95 Mo Molybdenum Transition Metal	43 96.90636 TC Technetium Transition Metal	44 101.1 Ru Ruthenium Transition Metal	45 102.9055 Rh Rhodium Transition Metal	46 106.42 Pd Palladium Transition Metal	47 107.868 Ag Silver Transition Metal	48 112.41 Cd Cadmium Transition Metal	49 114.818 In Indium Post-Transition M	50 118.71 Sn Tin Post-Transition M	51 121.760 Sb Antimony Metalloid	52 127.6 Te Tellurium Metalloid	53 126.9045 lodine Halogen	Xe Xenon Noble Gas
€	55 132.90 CS Cesium Alkali Metal	Ba Barium kaline Earth Me		72 178.49 Hf Hafnium Transition Metal	73 180.9479 Ta Tantalum Transition Metal	74 183.84 W Tungsten Transition Metal	75 186.207 Re Rhenium Transition Metal	76 190.2 OS Osmium Transition Metal	77 192.22 Ir Iridium Transition Metal	78 195.08 Pt Platinum Transition Metal	79 196.96 Au Gold Transition Metal	80 200.59 Hg Mercury Transition Metal	81 204.383 TI Thallium Post-Transition M	82 207 Pb Lead Post-Transition M	83 208.98 Bi Bismuth Post-Transition M	Po Polonium Metalloid	85 209.98 At Astatine Halogen	Rn Radon Noble Gas
7	Fr Francium	88 226.02 Ra Radium Alkaline Earth Me		104 267.1 Rf Rutherfordium Transition Metal	105 268.1 Db Dubnium Transition Metal	106 269.1 Sg Seaborgium Transition Metal	107 270.1 Bh Bohrium Transition Metal	108 269.1 HS Hassium Transition Metal	109 277.1 Mt Meitnerium Transition Metal	DS Darmstadtium Transition Metal	Rg Roentgenium Transition Metal	112 286.1 Cn Copernicium Transition Metal	113 286.1 Nh Nihonium Post-Transition M	114 290.1 Fl Flerovium Post-Transition M	MC Moscovium Post-Transition M	116 293.2 LV Livermorium Post-Transition M	117 294.2 TS Tennessine Halogen	Og Oganesson Noble Gas
				57 138.9055 La Lanthanum Lanthanide	58 140.116 Ce Cerium Lanthanide	59 140.90 Pr Praseodymium Lanthanide	60 144.24 Nd Neodymium Lanthanide	61 144.91 Pm Promethium Lanthanide	62 150.4 Sm Samarium Lanthanide	63 151.964 Eu Europium Lanthanide	64 157.2 Gd Gadolinium Lanthanide	65 158.92 Tb Terbium Lanthanide	66 162.500 Dy Dysprosium Lanthanide	67 164.93 Ho Holmium Lanthanide	68 167.26 Er Erbium Lanthanide	69 168.93 Tm Thulium Lanthanide	70 173.05 Yb Ytterbium Lanthanide	71 174.9668 Lu Lutetium Lanthanide
				89 227.02 AC Actinium Actinide	90 232.038 Th Thorium Actinide	91 231.03 Pa Protactinium Actinide	92 238.0289 U Uranium Actinide	93 237.04 Np Neptunium Actinide	94 244.06 Pu Plutonium Actinide	95 243.06 Am Americium Actinide	96 247.07 Cm Curium Actinide	97 247.07 Bk Berkelium Actinide	98 251.07 Cf Californium Actinide	99 252.0830 ES Einsteinium Actinide	100 257.0 Fm Fermium Actinide	101 258.0 Md Mendelevium Actinide	102 259.1 No Nobelium Actinide	103 266.1 Lr Lawrencium Actinide

Imperial College London Quantum Compilation with Neutral Atoms 4

Quantum computing with neutral atoms Platform

Quantum computing with neutral atoms Platform

Henriet, Loïc, et al. "Quantum computing with neutral atoms." Quantum 4 (2020): 327.

Imperial College London Quantum Compilation with Neutral Atoms 6 13/04/2025

Quantum computing with neutral atoms Platform

Barredo, Daniel, et al. "Synthetic three-dimensional atomic structures assembled atom by atom." *Nature* 561.7721 (2018): 79-82.

Quantum computing with neutral atoms Coulomb blockade

van der Waals interaction

$$H = \sum_i \left(-rac{\hbar \Delta}{2} \sigma_z^{(i)} + rac{\hbar \Omega}{2} (\sigma_x^{(i)})
ight) + \sum_{i < j} rac{C_6}{r_{ij}^6} |r_i r_j
angle \langle r_i r_j |$$

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Quantum compilation

Fidelity analysis and scheduling

Platform

Excitation by a global Rydberg laser exposure

Fidelity

$$f = (f_1)^{g_1} \cdot (f_2)^{g_2} \cdot (f_{\text{crosstalk}})^{N_{\text{crosstalk}}} \cdot (f_{\text{trans}})^{N_{\text{trans}}}$$
$$\times \prod_{q \in O} \left(1 - \frac{t_q}{T_2}\right).$$

ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array

Chen Huang^{†,1,5}, Xi Zhao^{†,1,6}, Hongze Xu^{†,1}, Weifeng Zhuang¹,

Meng-Jun Hu^{1, a}, Dong E. Liu^{1, 2, 3, 4, b}, Jingbo Wang^{1, c}

¹Beijing Academy of Quantum Information Sciences, Beijing 100193, China

²State Key Laboratory of Low Dimensional Quantum Physics,

Department of Physics, Tsinghua University, Beijing 100084, China

³Frontier Science Center for Quantum Information, Beijing 100184, China

⁴Hefei National Laboratory, Hefei 230088, China

⁵Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

⁶CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

Email: ahumi@baqis.ac.cn, bdongeliu@mail.tsinghua.edu.cn, cwangjb@baqis.ac.cn

Scheduling: ASAP

Quantum compilation

Placing and routing

Architecture

physics?
physiCS!

Example: Cat state preparation n35

Bluvstein, Dolev, et al. "Logical quantum processor based on reconfigurable atom arrays." *Nature* 626.7997 (2024): 58-65.

Summary Advantages and drawbacks

Advantages

Scalability

Manetsch, Hannah J., et al. "A tweezer array with 6100 highly coherent atomic qubits." *arXiv preprint arXiv:2403.12021* (2024).

- Connectivity
- Parallelism
- Small crosstalk
- High coherence time ~ s

Coherence time (T ₂)	12.6(1) s				
Global single-qubit gate RB fidelity	0.999834(2)				

Drawback

- Individual addressing
- Gate operation time ~ us
- Readout time ~ ms
- Atom loss

Imperial College London Quantum Compilation with Neutral Atoms 11 13/04/2025

IMPERIAL

北京量子信息科学研究院 Beijing Academy of Quantum Information Sciences

Thank you

北京量子院远程实习生

【工作内容】从事超导、中性原子、离子阱的量子编译与控制相关研究 或辅助工作,要求具备一定的物理、数学背景。

【薪酬】4000元/月(远程实习,很自由,时间自己安排)

【要求】在读本科/硕士/博士,对量子信息、量子编译等领域有浓厚兴趣;具备良好的学习能力、沟通能力与团队协作精神。

【简历投递】请将个人简历 (含研究背景、学术成果或项目经历)、求职意向及相关材料发送至招聘邮箱 (wangjb@baqis.ac.cn),邮件主题注明 "应聘岗位+姓名+在读院校"。

【招聘流程】简历筛选-笔试/面试(远程或线下)-综合评估-录用通知。

Quantum Compilation with Neutral Atoms 13/04/2025