C.24 Model isinga ferromagnetyka

Paweł Rzońca

Wstęp

Dokładny opis projektu znajduje się na stronie [1].

Dobrym roztóżnieniem pomiędzy różnymi magnetykami jest zachowanie się podatności magnetycznej χ wraz ze zmianą temperatury (1). Dla ferromagnetyka w obszarze paramagnetycznym $(T\gg T_C)$ spełnione jest prawo Curie-Weissa

$$\chi = \frac{C}{T - T_C},\tag{1}$$

gdzie T_C jest temperaturą Curie, a C jest stałą.

Metodyka

W programie zaimplementowano algorytm podany w ćwiczeniu [1]. Do przeglądania sieci wybrano metodę Monte Carlo. Za jeden krok MCS (Monte Carlo Step) przyjęto sprawdzenie moliwości odwrócenia spinów w N węzłach.

We wstępnych fazach doświadczenia zbadano zachowanie układu w zależności od ilości kroków N_{MC} Dla różnych wielkości siatki oraz różnych temperatur (wykresy 2 - 5).

Widzimy iż układ osiąga porządany stan szybciej dla małych siatek. Oznacza to że z rozmiarem siatki musimy zwiększać ilość kroków co powoduje wydłużenie czasu obliczeń. Z tego względu zdecydowano się na siatkę o rozmiarze 32×32 . Widzimy, iż układ ustala się we właściwej pozycji już po 150 MCSs. W doświadczeniach przyjęto siatkę o wielkości 32×32 oraz 200 MCS.

Wyniki

Ferromagnetyk

Sporządzono wykresy 6 i 7 zależności magnetyzacji od temperatury dla ferromagnetykówo różnych całkach wymiany. Widzimy, że skalując temperaturę czynnikiem k/J otrzymujemy zawsze tę samą tempe-

Rysunek 1: Podatność magnetyczna dla różych materiałów od temperatury materiału. Źródło [2].

Rysunek 2: Porównanie szybkości stabilizacji układu dla różnych wielkości siatki w przypadku ferromagnetyka $J=0.05\,\mathrm{eV}$ w temperaturze kT=J.

Rysunek 3: Porównanie szybkości stabilizacji układu dla różnych temperatur w przypadku ferromagnetyka $J=0.05\,\mathrm{eV}$ przy siatce wielkości 32×32 .

Rysunek 4: Porównanie szybkości stabilizacji układu dla różnych wielkości siatki w przypadku antyferromagnetyka $J=-0.05\,\mathrm{eV}$ w temperaturze kT=J.

Rysunek 5: Porównanie szybkości stabilizacji układu dla różnych temperatur w przypadku antyferromagnetyka $J=-0.05\,\mathrm{eV}$ przy siatce wielkości 32×32 .

Rysunek 6: Zależność magnetyzacji od temperatury dla ferromagnetyków.

raturę prejścia T_C w okolicach kT/J=2-2,5. Oznacza to że temperatura Curie T_C jest proporcjonalna do całki wymiany J.

Na wykresie 9 widzimy zachowanie się modelu ferromagnetyka w polu zewnętrznym H dla różnych temperatur. Dla niskich temperatur $T < T_C$ obserwujemy charakterystczną dla ferromagnetyka pętlę histerezy. Ze wzrostem temperatury pętla się zwęża. Przy dostatecznie wysokiej temperaturze uporządkowanie znika i ferromagnetyk przechodzi w paramagnetyk (liniowa zależność od przyłożonego pola).

Następnie dla temperatur wyższych niż oszacowana $T_C=2-2,5J/k$ sporządzono wykres podatności magnetycznej od temperatury. Podatność magnetyczną wyznaczano ze wzoru $M(H)=\chi H$ w obszarze paramangetycznym gdzie zależność ta była liniowa. Do otrzymanych punktów dopasowano krzywą zgodną z prawem Curie-Weissa. Otrzymano w ten sposób wartość $T_C=2,35J/k$. Należy zaznaczyć iż wyznaczono niewiele punktów pomiarowych ze względu na długość obliczeń.

Antyferromagnetyk

Znalogicznie jak dla ferromagntyka wyznaczono zależność magnetyzacji od temperatury (wykresy 10 i 11). Analgicznie obserwujemy, że temperatura przejścia T_N (Neela) jest proporcjonalna do całki wymiany J.

Wyznaczono również zależność magnetyzacji od przyłożonego pola (wykres 12). Widzimy, że wraz z obniżaniem temperatury wykres robi się bardziej stromy. Tak jak poprzednio przy dużych temperaturach przechodzi w paramagnetyka.

Podsumowanie

W ćwiczeniu zaimplementowano model Isinga. Zbadano zależność magnetyzacji od temperatury oraz zewnętrznego pola zarówno w ferromagnetyku jak i antyferromagnetyku. W niskich temperaturach momenty magnetyczne w ferromagnetyku ustawiają się równolegle, a w ferromagnetyku antyrównolegle. Wykorzystując prawo Curie-Weissa wyznaczono temperaturę Curie ferroamgnetyka.

Literatura

[1] http://newton.fis.agh.edu.pl/~wojcik/mof/mof1/Projekty_C.pdf

Rysunek 7: Zależność magnetyzacji od temperatury dla ferromagnetyków.

Rysunek 8: Zależność magnetyzacji od pryłożonego pola ${\cal H}$ dla ferromagnetyków.

Rysunek 9: Zależność magnetyzacji od pryłożonego pola ${\cal H}$ dla ferromagnetyków.

Rysunek 10: Zależność magnetyzacji od temperatury dla ferromagnetyków.

Rysunek 11: Zależność magnetyzacji od temperatury dla ferromagnetyków.

Rysunek 12: Zależność magnetyzacji od pryłożonego pola ${\cal H}$ dla antyferromagnetyków.

[2] Charles Kittel, "Wstęp do fizyki ciała stałego", wydanie I, wyd. PWN, Warszawa 1999