HW 2: page 140-141, #2-5 (Section 3.4)

Theorem 3.3.10

Each of the following is equivalent to the AP:

- a. $\forall z \in \mathbb{R}$, $\exists n \in \mathbb{N} \text{ st } n > z$
- b. $\forall x > 0, y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ st } nx > y$
- c. $\forall x > 0, \exists n \in \mathbb{N} \text{ st } 0 < \frac{1}{n} < x$

Proof.

We shall prove:

- i) AP \Rightarrow a
- ii) $a \Rightarrow b$
- iii) b \Rightarrow c
- iv) $c \Rightarrow AP$

In other words, they all imply each other.

a. AP \Rightarrow a

Suppose: a is false.

So, $\forall z \in \mathbb{R}$, $\exists n \in \mathbb{N}$, P(z, n) (st $n \leq z$) ???

-Side Note-

$$\neg [\exists \ x_1 \ \forall \ x_2 \ st \ p(x_1, \ x_2)] = \\ \forall \ x_1, \ \exists \ x_2 \ st \ \neg p(x_1, \ x_2)$$

 $\exists~z_0 \in \mathbb{R} ~st~\forall~n \in \mathbb{N}$, $n \leq z_0$

This indicates that the AP is false.

Thus, $AP \Rightarrow a$.

b. $a \Rightarrow b$

Assume: a) is true.

Let: $z = \frac{y}{x} \in \mathbb{R}$

By (a), $\exists n \in \mathbb{N}$ st

 $n > \frac{y}{x}$

nx > y

Hence, $a \Rightarrow b$ is true.

$c. b \Rightarrow c$

Assume: b) is true.

$$\forall x > 0$$
, if $y = 1$,

we see from (b) that $\exists n \in \mathbb{N} \text{ st } nx > 1$

Then,

$$x > \frac{1}{n} > 0.$$

Hence, $b \Rightarrow c$.

$d. c \Rightarrow AP$

Reminder of c: \forall x where $0 < x \in \mathbb{R}$, \exists n $\in \mathbb{N}$ st. $0 < \frac{1}{n} < x$

Suppose: $\mathbb N$ is bounded above. (In other words, that the AP is false.

Thus, $\exists z_0 \in \mathbb{R} \text{ st } 0 < n \leq z_0, \forall n \in \mathbb{N}$

$$0 < n \leq z_0$$

$$\frac{1}{n} \geq \frac{1}{z_0}$$

 $\frac{1}{n} \ge \frac{1}{z_0}$ This contradicts c with $x = \frac{1}{z_0}$ where $0 < \frac{1}{z_0} \in \mathbb{R}$

Hence, result.

Theorems 3.3.13 and 3.3.15

Let: $x, y \in \mathbb{R} \text{ st } x < y$

Then:

a.
$$\exists \ r \in \mathbb{Q} \ st \ x < r < y$$

b.
$$\exists z \in \mathbb{R} \setminus \mathbb{Q} \text{ st } x < z < y$$

\mathbf{a}

Case:

(i):
$$y > 0$$

$$y = 0.a_1a_2...a_n$$
 i.e. $0.141 = \frac{141}{1000}$

(ii):
$$y \le 0$$

$$-y \ge 0, -y < -x, 0 \le -y < -x$$

By case (i), $\exists r \in \mathbb{Q}$ st

$$-y < r < -x$$

$$y > -r > x$$

$$x < -r < y$$

b

$$\exists \ z \in \mathbb{R} \ \setminus \mathbb{Q} \ \mathrm{st} \ x < z < y$$

Apply (a) to
$$\frac{x}{\sqrt{2}} < \frac{y}{\sqrt{2}}$$
 to find $r \in \mathbb{Q}$ st $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$

$$\frac{\omega}{\sqrt{2}} < r < \frac{3}{\sqrt{2}}$$

$$x < r\sqrt{2} < y$$

Let:
$$r\sqrt{2} = z$$

Hence, result.

Section 3.4: Topology of \mathbb{R}

Definitions 3.4.1 and 3.4.2

Let $x \in \mathbb{R}$ and $\epsilon > 0$.

(a)

An ϵ -neighborhood of x is:

 $N(x, \epsilon) = \{ y \in \mathbb{R} : |y - x| < \epsilon \}$

(b)

A deleted ϵ -neighborhood of x is:

 $N^*(\mathbf{x}, \epsilon) = \{ \mathbf{y} \in \mathbb{R} : 0 < |y - x| < \epsilon \}$

Open Set Topology: Definition 3.4.3 (interior / boundary point)

Let: $S \subset \mathbb{R}$

A point $x \in \mathbb{R}$ is an **interior point** of S if $\exists \epsilon > 0$ st $N(x, \epsilon) \subset S$.

If, $\forall \epsilon > 0$,

 $N(x, \epsilon) \cap S \neq \emptyset$

and

 $N(x, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$

Then x is a **boundary point** of S.

The set of all interior points is denoted by int S.

The set of all boundary points is denoted by bd S.

Nota Bene (N.B.):

int $S \subset S$ and $bd S = bd (\mathbb{R} \setminus S)$

-Side Note-

Let: $x \in int S$

Then $\exists \epsilon > 0 \text{ st N}(x, \epsilon) \subset S$

In particular, $x \in S$. Thus, int $S \subset S$.

Let: $S^C = \mathbb{R} \setminus S$, and $\mathbb{R} \setminus S^C = S$

Then $s \in bd S^C$ if $\forall \epsilon > 0$,

 $N(x, \epsilon) \cap S^C \neq \emptyset$

 $N(x, \epsilon) \cap \mathbb{R} \setminus S^C \neq \emptyset$

Thus, $N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$, and $N(x, \epsilon) \cap S \neq \emptyset$

So, $x \in bd S$

Theorem 1

Let: $x \in S \subset \mathbb{R}$

Then either $x \in \text{int } S$, or $x \in \text{bd } S$.

Proof.

Let: $x \in S \subset \mathbb{R}$

- i) $\exists \ \epsilon > 0 \ \text{st N}(x, \ \epsilon \) \subset S$. Then, by def, $x \in \text{int S}$
- ii) $\forall \epsilon > 0, N(x, \epsilon) \cap (\mathbb{R} \setminus S) \neq \emptyset$.

However, since $x \in S$, then $N(x, \epsilon) \cap S \neq \emptyset$.

By definition, $x \in bd S$.

Hence, result.

Section 3.4.4 Examples

a. Let: S = (0, 5)

Here, int S = (0, 5) and $S = \{0, 5\}$

To see this *****,

Let: $x \in (0, 5), \epsilon = \min \{x, 5-x\}$

Then $N(x, \epsilon) \subset (0, 5)$

To see this, let $y \in N(x, \epsilon)$.

Want to show: 0 < y < 5

Since $y \in N(x, \epsilon)$, we have

$$x - \epsilon < y < x + \epsilon \tag{1}$$

Notice that

$$\epsilon \le x$$
 (2)

and

$$\epsilon \le 5 - x \tag{3}$$

From **(3)**,

$$x + \epsilon \le x + (5 - x) = 5 \tag{4}$$

From (2),

$$x - x \le x - \epsilon, \ 0 \le x - \epsilon \tag{5}$$

From (1), (4), (5),

$$0 \le x - \epsilon < y \le x + \epsilon < 5,$$

We see that $y \in (0, 5)$.

Hence, 0 < y < 5.

Since $N(x, \epsilon) \subset (0, 5)$, we see that

int
$$S = (0, 5) = S$$

Want to show: $0 \in bd S$

Let: $0 < \epsilon < 5$

Notice that:

 $N(0, \epsilon) \cap (0, 5) \neq \emptyset$ and $N(0, \epsilon) \cap (\mathbb{R} \setminus (0, 5)) \neq \emptyset$

Using $y = (+/-) \frac{\epsilon}{2}$, notice that:

$$y \in N(0,\,\epsilon\;)$$
 since $|(+/-)\frac{\epsilon}{2}| < \epsilon$

2

b. **Let:** S = [0, 5]

Here, int
$$S = (0, 5)$$
, bd $S = \{0, 5\}$

Notice that bd $S \subset S$

c. **Let:** S = [0, 5)

Here, int
$$S = (0, 5)$$
, $bd S = 0, 5$

Notice that some bd points are in S, but some aren't.

d. Let: $S = [2, \infty)$

Here, int
$$S = (2, \infty)$$
, bd $S = \{2\}$

e. Let: $S = \mathbb{R}$

int
$$S = \mathbb{R} = S$$
, bd $S = \emptyset$

Here, bd
$$S \subset S$$

-Side Note-

0, x-ep, y, x, xplEp, 5

from 0 to x is x, from x to 5 is 5-x

2

-Side Note-

—(——(——)—-)—-0-ep, -ep/2, 0, ep/2, 0plEp, 5