Review for Exam 1

- 1. Let p, q and r be the propositions
 - p: Jim always studies hard.
 - q: Jim doesn't get 100 on the final exam.
 - r: Jim receives an A+ in this course.

Express the following propositions in English.

- (a) $p \to r$
- (b) $p \leftrightarrow (\neg q)$
- (c) $(p \vee \neg q) \to r$
- (a) If Jim always studies hard, then he'll receive an A+ in this course.
- (b) Jim always studies hard, if and only if he get 100 on the final exam.
- (c) If Jim either always studies hard or get 100 on the final exam, then he'll receive an A+ in this course.
- 2. Determine the truth values of the following statements.
 - (a) If 2 is odd or 3 is odd, then the sum of 2 and 3 is even.
 - (b) If 5 is larger than 10 and 10 is less than 20, then 5 is larger than 20.
 - (c) If 12 is a multiple of 3, then either 12 is odd or 3 is odd.
 - (d) The product of 4 and 5 is 20 if and only if both 4 and 5 are even.
 - (a) F, since $(F \vee T) \to F \equiv T \to F \equiv F$
 - (b) T, since $F \vee T \rightarrow F \equiv F \rightarrow F \equiv T$
 - (c) T, since $T \to F \lor T \equiv T \to T \equiv T$
 - (d) F, since $T \leftrightarrow T \land F \equiv T \leftrightarrow F \equiv F$
- 3. Show that the following statements are tautology using truth tables.
 - (a) $p \to (p \lor \neg q)$
 - (b) $((p \lor q) \land (\neg p)) \rightarrow q$

	p	q	$\neg q$	$p \vee \neg q$	$p \to (p \vee \neg q)$
(a)	Т	Т	F	Τ	T
	Т	F	Т	Τ	T
	F	Т	F	F	T
	F	F	Т	Τ	T

	p	q	$\neg p$	$p \lor q$	$(p \vee q) \wedge (\neg p)$	$(p \lor q) \land (\neg p) \to q$
	Τ	Τ	F	Τ	F	T
(b)	Τ	F	F	Τ	F	T
	F	Т	Т	Τ	T	T
	F	F	T	F	F	T

- 4. Show that the following statements are logically equivalent using truth tables.
 - (a) $p \land (p \lor q) \equiv p$
 - (b) $(p \land q) \rightarrow r \equiv (p \rightarrow q) \rightarrow (p \rightarrow r)$

	p	q	$p \lor q$	$p \wedge (p \vee q)$
(a)	Τ	Т	Τ	T
	Τ	F	Τ	T
	F	Τ	Τ	F
	F	F	F	F

	p	q	r	$p \wedge q$	$(p \land q) \to r$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \to (p \to r)$
	Τ	T	Τ	Τ	T	Τ	T	T
	Τ	T	F	Τ	F	Т	F	F
	Τ	F	Т	F	T	F	Т	T
(b)	F	Τ	Т	F	T	Т	Т	T
	Τ	F	F	F	T	F	F	T
	F	F	Т	F	T	Т	Т	T
	F	Τ	F	F	T	Т	Т	T
	F	F	F	F	T	Т	Τ	T

5. Re-do #3 and #4 using equivalent formulas.

(a)
$$p \to (p \lor \neg q) \equiv \neg p \lor (p \lor \neg q) \equiv (\neg p \lor p) \lor \neg q \equiv T \lor \neg q \equiv T$$

(b)
$$((p \lor q) \land (\neg p)) \rightarrow q \equiv \neg ((p \lor q) \land (\neg p)) \lor q \equiv \neg (p \lor q) \lor \neg (\neg p) \lor q$$

$$\equiv \neg (p \lor q) \lor p \lor q \equiv \neg (p \lor q) \lor (p \lor q) \equiv T$$

(c)
$$p \land (p \lor q) \equiv (p \lor F) \land (p \lor q) \equiv p \lor (F \land q) \equiv p \lor F \equiv p$$

(d)
$$(p \wedge q) \rightarrow r \equiv \neg (p \wedge q) \vee r$$

 $(p \rightarrow q) \rightarrow (p \rightarrow r) \equiv \neg (p \rightarrow q) \vee (p \rightarrow r) \equiv \neg (\neg p \vee q) \vee (\neg p \vee r)$
 $\equiv \neg (\neg p \vee q) \vee (\neg p \vee r) \equiv (p \wedge \neg q) \vee \neg p \vee r$
 $\equiv [(p \wedge \neg q) \vee \neg p] \vee r \equiv [(p \vee \neg p) \wedge (\neg q \vee \neg p)] \vee r$
 $\equiv [T \wedge (\neg q \vee \neg p)] \vee r \equiv (\neg q \vee \neg p) \vee r \equiv \neg (q \wedge p) \vee r$

6. For each of the following statements, determine its truth value and write a proof for your conclusion. Assume the domain is the set of all real numbers.

(a)
$$\exists x(x^2 = 2x - 1)$$
: T
Proof: Let $x = 1$, then $1^2 = 2 \cdot 1 - 1$

(b)
$$\forall x((x^2 > 1) \rightarrow (x > 1))$$
: F
Proof of Negation: $\exists x((x^2 > 1) \land (x \not> 1))$
Let $x = -2$, then $(-2)^2 > 1 \land (-2) \not> 1$

(c)
$$\forall x \forall y (x^2 + y^2 \ge 2xy)$$
: T
Proof: $\forall x \forall y, (x - y)^2 \ge 0 \Rightarrow x^2 - 2xy + y^2 \ge 0 \Rightarrow x^2 + y^2 \ge 2xy$

(d)
$$\forall x \exists y (2x + y > 0)$$
: T
Proof: There is a $y = -2x + 1$, such that $2x - 2x + 1 > 0$

(e)
$$\exists x \forall y (x + y^2 > 0)$$
: T
Proof: Let $x = 1$, since $y^2 \ge 0$, then $1 + y^2 > 0$

(f)
$$\forall x \exists y \left(\frac{y}{x+2} = 1 \right)$$
: F

Proof of negation:
$$\exists x \forall y \left(\frac{y}{x+2} \neq 1\right)$$

Let x = -2, such that $\frac{y}{-2+2}$ is undefined

(g)
$$\forall x \forall y \left((x > y > 0) \to \left(\frac{1}{x} < \frac{1}{y} \right) \right)$$
: T

Proof: $x > y > 0 \Rightarrow \frac{x}{xy} > \frac{y}{xy} \Rightarrow \frac{1}{x} < \frac{1}{y}$

(h)
$$\forall x \exists y \forall z (x + y = z)$$
: F

Proof of negation: $\exists x \forall y \exists z (x + y \neq z)$

Let x = 1 and z = y, then $1 + y \neq y$

(i)
$$\forall x \forall y \exists z (2x + z = 3y + 2z)$$
: T

Proof: There is a z = 2x - 3y

such that $2x + 2x - 3y = 3y + 2(2x - 3y) \Rightarrow 4x - 3y = 4x - 3y$

- 7. (a) Show that $\frac{1}{2}$ is not an integer.
 - (b) Let x and \bar{y} be integers. Show that $2xy + 3y^2$ is even if and only if y is even.
 - (c) Show that if x is irrational, then 4x 1 is irrational.
 - (a) Proof by contradition:

Assume $\frac{1}{2}$ is an integer, then $\frac{1}{2} = x, x \in \mathbb{Z}$ $\frac{1}{2} = x \Rightarrow 1 = 2x \Rightarrow 1$ is even, contradict to 1 is odd

Hence, $\frac{1}{2}$ is not an integer.

(b)
$$p \to q$$
:

Assume $2xy + 3y^2$ is even, then 2xy and $3y^2$ must be either both odd or both even;

Since 2(xy) is even, then $3y^2$ must be even too;

Since $3y^2$ is even, then at least one of 3 and y^2 is even;

Since 3 is odd, then y^2 is even;

Hence, y must be even.

$$q \rightarrow p$$
:

Assume y is even, then $y = 2n, n \in \mathbb{Z}$

$$2xy + 3y^{2} = 2x(2n) + 3(2n)^{2} = 4xn + 12n^{2} = 2(2xn + 6n^{2})$$

Since $x, n \in \mathbb{Z}$, then $2xn + 6n^2 \in \mathbb{Z}$

Hence, $2xy + 3y^2$ is even.

(c) Proof by contraposition:

Assume 4x - 1 is rational, then $4x - 1 = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$

$$4x - 1 = \frac{a}{b} \Rightarrow 4x = \frac{a}{b} + \frac{b}{b} = \frac{a+b}{b} \Rightarrow \frac{1}{4}(4x) = \frac{1}{4} \cdot \frac{a+b}{b} \Rightarrow x = \frac{a+b}{4b}$$

Since $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$ and $4b \in \mathbb{Z}$ Since $b \neq 0$, then $4b \neq 0$

Hence, x is rational.

- 8. Prove or disprove the following statements
 - (a) if $4x^2 + 1$ is odd, then 3x + 1 is odd. F, Let x = 1, then $4x^2 + 1 = 5$, which is odd, but 3x + 1 = 4, which is not odd
 - (b) if 2x + 3y 1 is irrational, then either x is irrational or y is irrational. T, Proof by contraposition:

Assume both x and y is rational, then 2x + 3y - 1 is rational

Assume both
$$x$$
 and y is rational, then $2x + by = 1$ is read
$$x = \frac{a}{b}, y = \frac{c}{d}, a, b, c, d \in \mathbb{Z}, b, d \neq 0$$
$$2 \cdot \frac{a}{b} + 3 \cdot \frac{c}{d} - 1 = \frac{2ad + 3bc - bd}{bd}$$
Since $a, b, c, d \in \mathbb{Z}$, then $2ad + 3bc - bd \in \mathbb{Z}$ and $bd \in \mathbb{Z}$

Since $b, d \neq 0$, then $bd \neq 0$ Hence, 2x + 3y - 1 is rational

- (c) If both x and y are irrational, then $2x^2 + y$ is irrational. F, Let $x = \sqrt[4]{2}$ and $y = -2\sqrt{2}$, which are irrational, then $2x^2 + y = 0$, which is rational.
- 9. Show that the following statements are equivalent.
 - (i) $3x^2 + 7$ is even
 - (ii) x + 6 is odd
 - (iii) $x^3 + 4x + 3$ is even
 - (a) (i) \rightarrow (ii):

 $3x^2 + 7$ is even, then $3x^2$ and 7 must be either both odd or both even;

since 7 is odd, then $3x^2$ must be odd:

since $3x^2$ is odd, then both 3 and x^2 must be odd, then x must be odd.

Since x is odd and 6 is even, x + 6 must be odd.

(b) (ii) \rightarrow (iii):

x + 6 is odd, then exactly one of x and 6 is odd, and the other one is even;

since 6 is even, then x must be odd;

since x is odd, then x^2 is odd, then x^3 is odd;

since 4 is even, 4x must be even;

since x^3 is odd, 4x is even, then $x^3 + 4x$ must be odd;

since 3 is odd, $x^3 + 4x$ is odd, then $x^3 + 4x + 3$ is even.

(c) (iii) \rightarrow (i):

 $x^3 + 4x + 3$ is even, then $x^3 + 4x$ and 3 must be either both odd or both even; since 3 is odd, then $x^3 + 4x$ must be odd:

since $x^3 + 4x = x(x^2 + 4)$ is odd, then both x and $x^2 + 4$ are odd.

Since x is odd, then x^2 is odd:

since 3 is odd, then $3x^2$ must be odd;

Since 7 is odd, then $3x^2 + 7$ must be even.