Nous innovons pour votre réussite!

École d'ingénierie

Examen en Hydraulique urbaine et assainissement

Durée (2 h:00 mn)

GC₂

Prof.: A.Ramadane, Ph.D.

19-06-2015

EXERCICE 1 (5 points):

La figure montre schématiquement un réseau d'égout comprenant quatre bassins de drainage situés dans la région de Montréal et quatre conduites pluviales.

La période de retour choisie pour la conception étant de 1/5, on peut utiliser la relation suivante qui décrit la courbe IDF pour cette récurrence :

$$i = \frac{21844}{t+12}$$

où i est l'intensité des précipitations (mm/h) et t la durée de la pluie en minutes.

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

Caractéristique des bassins de drainage avant urbanisme

Noeud	A _i	C_{i}	Li	S_i	Cote au sol
	(ha)		(m)	(%)	Z _i (m)
1	1,4	0,48	81	1,0	20,0
2	1,5	0,58	79	1,0	19,1
3	1,3	0,59	78	1,0	18,8
4	1,2	0,60	75	1,0	18,2
5					16,0

Après urbanisation le coefficient de ruissèlement est augmenté de 5 %

Noeud		Longueur de	Coefficient de
1	j	conduite	Manning
		(m)	
1	3	100	0,013
2	3	100	0,013
3	4	90	0,013
4	5	100	0,013

Après réhabilitation par la méthode de chemisage le coefficient de Manning est amélioré de 1/100

Nous innovons pour votre réussite!

Diamètres disponibles®

Le diamètre doit être choisi parmi ceux de la liste suivante (en millimètres): 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 2100, 2400 et 2700.

Contraintes

Quand une conduite coule pleine, les vitesses maximale et minimale d'écoulement sont respectivement:

$$V_{max} = 3.0 m/s$$
 et $V_{min} = 0.9 m/s$.

La couverture de sol minimale au-dessus de la couronne doit être de 2,0m pour toutes les conduites. Cette profondeur protège les conduites du gel et assure un écoulement gravitaire à partir des sous-sols des maisons.

Faites la conception du réseau d'égout pluvial

Nous innovons pour votre réussite!

Exercice 2

La vitesse permise est comprise entre 0,9 et 3 m/s

Faites la conception du réseau d'assainissement sanitaire.

Exercice 3:

Comment on peut prendre en considération les changements climatiques lors de la conception d'un réseau pluvial ?

