A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data

Brian Neelon¹, A. James O'Malley² and Sharon-Lise Normand²

¹Department of Biostatistics and Bioinformatics Duke University School of Medicine

> ²Department of Health Care Policy Harvard Medical School

> > July 31, 2012

FEHB Parity Mandate of 2001

- The Federal Employees Health Benefits (FEHB) Program provides health insurance to more than 8.5 million federal employees, spouses and dependents
- In 2001, the U.S. Office of Personnel Management implemented a "parity directive"
- Required FEHB health plans to provide mental health benefits on par with general medical benefits
 - Comparable deductibles and copays
 - 1996: Mental Health Parity Act
 - 2008: Mental Health and Addiction Equity Act

Previous Research on Parity

- A previous study examined total mental health spending two years before and two years after policy initiation (Goldman et al., 2006)
- On average, no significant impact of parity
 - No large increases in annual expenditures as predicted by opponents of parity
 - Nor increased use of mental health services as anticipated by proponents

Research Question

- However, the study focused on the average effect across the entire population of participants
- Certain patient subgroups may respond to parity more than others
- Research Question: Do specific subgroups benefit from parity?

FEHB Data

 We examined annual expenditures for 1581 FEHB enrollees from 1999–2002

- Each subject had four observations (N = 6324)
- Over 80% zeros

• A small fraction had large annual expenditures $(\max > \$13,000)$

Semicontinuous Data

Annual Spending Patterns for FEHB Enrollees

Annual Expenditures for Four Subjects

Two-Part Model for Semicontinuous Data

- Semicontinuous data can be viewed as arising from two distinct processes: one governing the occurrence of zeros, and the second determining the value given a nonzero response
- Two-part mixture models (Manning, 1981) are an ideal choice for modeling semicontinuous data, since they accommodate both processes:

$$f(y; \phi, \mu, \sigma^2) = (1 - \phi)1_{(y=0)} + [\phi \times LN(y; \mu, \sigma^2)]1_{(y>0)}$$

where:

$$\phi=\Pr(Y>0)\quad 0<\phi<1$$

$${\rm LN}(y;\mu,\sigma^2)={\rm lognormal\ density}$$
 μ and σ^2 denote the mean and variance of $\log(Y|Y>0).$

Repeated Measures Two-Part Model

Two-part models can easily be extended to the longitudinal regression setting (Olsen and Shafer, 2001; Tooze, 2002):

$$\begin{split} f(y_{ij}|b_{1i},b_{2i}) &= (1-\phi_{ij})1_{(y_{ij}=0)} + \phi_{ij}\mathsf{LN}(y_{ij};\mu_{ij},\sigma^2)1_{(y_{ij}>0)} \\ \Phi^{-1}(\phi_{ij}) &= \mathbf{x}'_{ij}\beta_1 + b_{1i} \\ \mu_{ij} &= \mathbf{x}'_{ij}\beta_2 + b_{2i} \end{split}$$

where:

$$y_{ij}=j$$
-th response for the i -th subject $\phi_{ij}=\Pr(Y_{ij}>0|b_{1i})$ $\mathbf{x}_{ij}=p imes1$ covariate vector $\left(egin{array}{c} b_{1i} \ b_{2i} \end{array}
ight)\sim \mathsf{N}_2(\mathbf{0},\mathbf{\Sigma})=\mathsf{correlated}$ random intercepts

Latent Class Approach

- Recall, our aim is to identify groups of enrollees with distinct pre- and post-parity spending patterns
- In particular, do we observe some groups who are more or less responsive to the parity mandate?
- To answer this, we fit a latent class (finite mixture) two-part model

Latent Class Two-Part Model

$$f(y_{ij}|\mathbf{b}_{i}) = \sum_{k=1}^{K} \pi_{ik} \Big[(1 - \phi_{ijk}) \mathbf{1}_{(y_{ij}=0)} + \phi_{ijk} \mathsf{LN}(y_{ij}; \mu_{ijk}, \sigma_{k}^{2}) \mathbf{1}_{(y_{ij}>0)} \Big]$$

$$\Phi^{-1}(\phi_{ijk}) = \mathbf{t}'_{ij} \beta_{1k} + b_{1i}$$

$$\mu_{ijk} = \mathbf{t}'_{ij} \beta_{2k} + b_{2i}$$

$$(\mathbf{b}_{i}|i \in k) \sim \mathsf{N}_{2}(\mathbf{0}, \mathbf{\Sigma}_{k}),$$

where:

$$\pi_{ik} = \Pr(\text{subject } i \in \text{class } k)$$

$$\phi_{ijk} = \Pr(Y_{ij} > 0 | i \in k)$$

$$\mathbf{t}_{ij} = 4 \times 1 \text{ vector of time variables (i.e., dichotomous indicators for year)}$$

Modeling the Mixing Weights

Next, we model π_{ik} as a function of baseline covariates via a multinomial logit model:

$$\pi_{ik}(\mathbf{w}_i) = \frac{e^{\mathbf{w}_i' \boldsymbol{\gamma}_k}}{\sum_{h=1}^K e^{\mathbf{w}_i' \boldsymbol{\gamma}_h}}, \text{ with } \boldsymbol{\gamma}_1 = \mathbf{0},$$

where:

 \mathbf{w}_i = vector of covariates (sex and employee status)

 $\gamma_k =$ vector of regression parameters for class $k \ (k \ge 2)$

Parameter Estimation

- Maximum Likelihood Estimation: EM algorithm (Mplus)
- Bayesian Inference: Place prior distributions on model parameters and use Markov chain Monte Carlo (MCMC) to draw from joint posterior
 - Weakly informative proper priors for all model parameters
 - All updates have closed-form full conditionals except γ and \mathbf{b}_i
 - Used a modified DIC to select the optimal number of classes (Spiegelhalter et al., 2002; Celeux et al., 2006)
 - Stephens's (2000) relabeling algorithm for label switching

Class Trajectories

Year

Trajectories for Classes 1 and 2

Contrasts for Assessing Parity Effect

- To assess parity effect, we can form contrasts that compare average spending before and after parity
- Form one contrast on the probit scale for the binary part, and a second on the log scale for the lognormal part
- Then plot the bivariate 95% highest posterior density (HPD) regions for the two contrasts
- Regions that exclude the origin suggest a change in spending following parity
- Can do this separately for each class
- Analogous to a 2-df test of parity effect

95% HPD Regions for Assessing Parity Effect

Predicted Spending Curves

19 / 24

Class-Membership Probabilities

Posterior class-membership probabilities by covariate profile.

-		Class-Membership Probabilities		
Gender	Employee Status	Class 1	Class 2	Class 3
Male	Non-Employee	0.04	0.17	0.79
Male	Employee	0.04	0.14	0.82
Female	Non-Employee	0.08	0.29	0.63
Female	Employee	0.09	0.25	0.66

Triangle Plot of Posterior Probabilities

Recap

The latent class two-part model allowed us to accomplish four goals:

- 1) Estimate mean spending trajectories for latent subgroups
- Formally assess the impact of parity through the use of joint contrasts statements (class 2 most responsive)
- 3) Obtain accurate predictions of individual trajectories
- 4) Estimate class membership probabilities for various covariate profiles (women more likely to belong to classes 2 and 3)

Recent Extensions

- Growth mixture model for gestational blood pressure and correlated binary endpoints (Neelon et al., Stats in Med, 2011)
- Spatial Poisson hurdle model of emergency department visits, with bivariate CAR random effects for each component (Neelon et al., JRSS-A, forthcoming)
- Spatial multivariate mixture model for standardized exam scores

Contact Info

Website: www.duke.edu/~neelo003

E-mail: brian.neelon@duke.edu