Breadth - First Search (BFS)

I Graph Search "explore grouph"

graph G: (V, E) V: set of vortices E: set of edges $directed \to e = {v, w} unordered pairs$ $directed \to e = {v, w} ordered pairs$

e.g. (a) (b) (c) (c,6), (b,0)}

E= {(a,c), (b,c), (c,6), (b,0)}

....}

o Application

- · Web crawling: gogle search
- · Social nethorizing = facebook find friend
- · Network broud cast
- · gorbage collection: modern programming lungurages
- · model cheeking
- · checking morthemotical congection
- · Solving puzzles & games

o Pocket Cube: 2 x 2 x 2
- Confizuration: graph
- vertex for earch possible state of cube
Vertices = 8: .38
= 264,539,520
= 264, 539, 520 (11), 11) # Unique & reachable:
Varlices / z4 / 3
- edge for each possible move
solled O i
possible mores
readable in
z steps
diameter of graph =11
$(3 \times 3 \times 3) \implies 20$
2 x 2 x 2 : 11
$3 \times 3 \times 3$: ≥ 0 $n \times n \times n$: \mathcal{U} $\boxed{1gn}$
I Gragh regresentation
a Dejarancy lists
-Array of size IV linked lists
- For each vertex UEV, AdiEUT stores u's neighbors

 $dj[u] = \{u \in V \mid (u, v) \in E \}$ $dj[b] = \{a, c \} \quad dj[c] = \{b\}$ directed

Idj can be realized:

- array
- hust -lable

o Object - oriented V. neighbors = Adj[v]

o Implicit representation

— Adj'(u) is a function

— or v. neighbor() is a method

I Breadth-first Search (BFS) Simplest algorithm in grown scench

- Visit all nodes, renchable from given se y
- O(V+E) Lime

-look at nodes reachable in 0 move, 1 move,
2 moves,

- careful to avoid duplicates (cycle)

BFS (s. 4dj):

level = \(\sigma \sigma \)

Parent = \(\sigma \sigma \)

i = \(1 \)

\[
\left\{ \sortier = \[\sigma \] \sigma \]

\[
\left\{ \sigma \text{not in formulaer}: \\

\left\{ \sigma \text{not in feval: \\

\left\{ \sigma \text{not in feval

frontier = next

i += 1

o eig

o Shartest Path

- V = parent [V]

= parent [parent [V]]

= S

is a showst path from S to V

of leagth level [V] hombelvery leman

Yunning fine vev | Adj [V] = { 2 [E], undirected | |E|, directed | |E|, di