APC Practica 2

David Candela (1563873), Alex Casamitjana (1568143), Guillermo Raya (1568864) $13~{\rm de~desembre~de~2021}$

${\rm \acute{I}ndex}$

1	Apa	artat B	3
	1.1	Classificació per diversos valors de C	3
	1.2	Classificació per diversos valors de gamma	4
	1.3	Classificació per diversos valors de degree	6
2	Apa	artat A	9
	2.1	EDA (exploratory data analysis)	9
	2.2	Preprocessing (normalitzation, outlier removal, feature selection)	11
	2.3	Model Selection	14
	2.4	Crossvalidation	14
	2.5	Metric Analysis	15
	2.6	Hyperparameter Search	16

1 Apartat B

1.1 Classificació per diversos valors de C

Plots for different models with C=1000

Figura 1: Plot per C = 1000

Plots for different models with C=1

Figura 2: Plot per C = 1

Figura 3: Plot per C = 0.0001

Com es pot apreciar als plots, per Cs petites, els kernels lineals no treballen massa bé mentre que el polinomial i el RBF donen bons resultats. Per valors grans de C els kernels lineals donen bones prediccions mentre que el RBF i el polinomial comencen a fer overfitting.

1.2 Classificació per diversos valors de gamma

Figura 4: Plot per gamma = 0.1

Figura 5: Plot per gamma = 1.0

Figura 6: Plot per gamma = 2.0

Figura 7: Plot per gamma = 10.0

Als plots anteriors podem observar que

1.3 Classificació per diversos valors de degree

Figura 8: Plot per degree = 1

Figura 9: Plot per degree = 2

Figura 10: Plot per degree = 5

Figura 11: Plot per degree = 7

Figura 12: Plot per degree = 8

2 Apartat A

2.1 EDA (exploratory data analysis)

- Quants atributs té la vostra base de dades? La nostra base de dades té 41 atributs.
- Quin tipus d'atributs tens? (Numèrics, temporals, categòrics, binaris...) Els tipus d'atributs que tenim són els següents:

Atribut	Tipus	Descripció			
name	String	The English name of the Pokemon			
japanese_name	String	The Original Japanese name of the Pokemon			
pokedex_number	Numeric	The entry number of the Pokemon in the National Pokedex			
percentage_male	Numeric.	The percentage of the species that are male. Blank if the Poken is genderless.			
type1	String categoric	The Primary Type of the Pokemon			
type2	String categoric	The Secondary Type of the Pokemon			
classfication	String categoric	The Classification of the Pokemon as described by the Sun and Moon Pokedex			
height_m	Numeric	Height of the Pokemon in metres			
$weight_kg$	Numeric	The Weight of the Pokemon in kilograms			
capture_rate	Numeric	Capture Rate of the Pokemon			
base_egg_steps	Numeric	The number of steps required to hatch an egg of the Pokemon			
abilities	String categoric	A stringified list of abilities that the Pokemon is capable of having			
experience_growth	Numeric	The Experience Growth of the Pokemon			
base_happiness	Numeric	Base Happiness of the Pokemon			
against_?	Numeric	Eighteen features that denote the amount of damage taken against an attack of a particular type			
hp	Numeric	The Base HP of the Pokemon			
attack	Numeric	The Base Attack of the Pokemon			
defense	Numeric	The Base Defense of the Pokemon			
sp_attack	Numeric	The Base Special Attack of the Pokemon			
$sp_defense$	Numeric	The Base Special Defense of the Pokemon			
speed	Numeric	The Base Speed of the Pokemon			
generation	Numeric	The numbered generation which the Pokemon was first introduced			
is_legendary	Binary	Denotes if the Pokemon is legendary			

- Com es el target, quantes categories diferents existeixen? El nostre target és 'is_legendary', i, com que és una dada binària, té dues categories (una per a Pokémon llegendaris, l'altra per a no llegendaris).
- Podeu veure alguna correlació entre X i y? Si. A continuació el gràfic de correlació i els histogrames de les variables més importants:

Figura 13: Correlació de les dades

140 - 120 - 100 -

500 -400 -500 -

Figura 16: Felicitat base

Figura 17: Rati de captura

2.2 Preprocessing (normalitzation, outlier removal, feature selection..)

- Estan les dades normalitzades? Caldria fer-ho?

 No, les dades no estan normalitzades: l'escala amb que es mesuren els atributs no és la mateixa per a tots. Pensem que serà convenient normalitzar les dades.
- En cas que les normalitzeu, quin tipus de normalització serà més adient per les vostres dades? Per assegurar-nos de que totes les dades estan normalitzades i no complicar-nos massa aplicarem a tots la mateixa normalització, el *StandardScaler* que transforma les dades perquè la mitja sigui 0 i la variància 1.
- \bullet Teniu gaires dades sense informació? Els NaNs a pandas? Tingueu en compte que hi ha mètodes que no els toleren durant el aprenentatge. Com afecta a la classificació si les filtrem? I si les reompliu? Com ho faríeu?
 - Sí, tenim un atribut on és molt frequent trobar NaNs: $percentage_male$. Aquests NaN tenen una explicació lògica: hi ha tot un conjunt de Pokémon que no tenen gènere (anomenats genderless). Hem aprofitat la presència d'aquests NaN per a crear un atribut genderless, que val 1 per als casos on $percentage_male$ és NaN, i zero altrament. Aquesta variable sembla tenir força correlació amb el comportament de la variable objectiu $is_legendary$. Un altre atribut que té NaN és $type_2$, ja que hi ha força pokémon que són d'un sol tipus. Hem provat a crear un atribut

per a els Pokémon d'un sol tipus, però no té gaire correlació amb la variable objectiu. Els últims atributs amb NaN són $height_m$ i $weight_kg$ on apareixen els pokémons que tenen una forma alola alternativa. Aquest atribut té el valor NaN en aquests casos inclús quan les dades de les formes coincideixen.

Figura 18: Correlació de noves dades

• Teniu dades categoriques? Quina seria la codificació amb més sentit? Sí, tenim dades categòriques als atributs type1, type2, classfication i abilities. Les variable classfication i abilities no les farem servir ja que hi ha una quantitat excessiva (per diverses mostres la seva categoria és única, per tant, el regressor ignoraria aquestes variables al training igualment) i no sembla aportar-nos gaire informació, i com que type2 té força NaN (que indican que no té un segon tipus) i representa el mateix que type1 l'ajuntarem amb aquesta per fer la codificació. Per tant, per a aquesta combinació, provarem a fer ús d'una codificació 'OneHotEncoder', ja que 'OrdinalEncoder' pot donar problemes (trobar relacions espúries entre l'ordinal que representa cada categoria amb el comportament de la variable objectiu).

Figura 19: Tipus

Figura 20: Habilitats

Figura 21: Classificació

• Caldria aplicar sklearn.decomposition.PCA? Quins beneficis o inconvenients trobaríeu? No, només usant 3 bons atributs ja podem fer classificacions quasi perfectes (com es veu més endevant) aixi que no val la pena fer-ho.

2.3 Model Selection

- Quins models heu considerat? Logístic regression, SVM amb kernels linears i kernels RBF.
- Considereu les SVM amb els diferents kernels implementats. Si, el provem amb kernels linears i RBF.
- Quin creieu que serà el més precís? El més precís és el SVM amb kernel RBF
- Quin serà el més ràpid? El model més ràpid és el Logístic regression.
- Seria una bona idea fer un 'ensemble'? Quins inconvenients creieu que pot haver-hi? Els resultats ja son prou bons, per tant no sembla necessari fer un 'ensemble', ja que seria més lent i difícilment ho milloraria d'una manera significativa.

Model	Percentatge	Mitjana	general	Mitjana ponderada		
Model	1 ercentatge	precisió	f1 score	precisió	f1 score	
	50%	0.96	0.97	0.99	0.99	
Logístic	70%	0.99	0.96	0.99	0.99	
	80%	0.95	0.98	0.94	0.94	
	50%	0.96	0.96	0.99	0.99	
SVM Lineal	70%	1.00	0.99	1.00	1.00	
	80%	0.94	0.96	0.99	0.99	
	50%	0.97	0.97	0.99	0.99	
SVM RBF	70%	0.97	0.96	0.99	0.99	
	80%	1.00	1.00	1.00	1.00	

Figura 22: Resultats dels models

2.4 Crossvalidation

- Per què és important cross-validar els resultats?

 Per comprobar que no s'està produint overfitting al fer la regressió del nostre model.
- Separa la base de dades en el conjunt de train-test. Com de fiables serán els resultats obtinguts? En quins casos serà més fiable, si tenim moltes dades d'entrenament o poques?

 Si tenim moltes dades d'entrenament i poques de cross-validation, el regressor tindrà major coneixement per generalitzar. En canvi si en té menys pot ser que no hi hagi casos que hagi pogut aprendre pero el test ens donarà més seguretat.

• Quin tipus de K-fold heu escollit? Quants conjunts heu seleccionat (quina k)? Com afecta els diferents valors de k?

Hem provat per K d'entre 3 i 5:

Model	K	cross validation					Mitja
	3	1.00	0.98	0.96			0.98
Logístic	4	0.99	1.00	0.96	0.94		0.97
	5	0.99	0.99	0.99	0.98	0.95	0.98
	3	0.99	0.96	0.96			0.97
SVM Lineal	4	0.99	0.98	0.98	0.96		0.98
	5	0.98	0.99	0.99	0.96	0.93	0.97
	3	0.99	0.96	0.96			0.97
SVM RBF	4	0.99	0.98	0.98	0.96		0.98
	5	0.97	0.98	0.98	0.96	0.93	0.96

Figura 23: Resultats per diferents valors de K

• Es viable o convenient aplicar 'LeaveOneOut'?

No es molt convenient ja que es tindria que recalcular el model 801 vegades i per tant trigaria molt de temps.

2.5 Metric Analysis

models 22)

- A teoria, hem vist el resultat d'aplicar el 'accuracy_score' sobre dades no balancejades. Podrieu explicar i justificar quina de les següents mètriques será la més adient pel vostre problema? 'accuracy_score', 'f1_score' o 'average_precision_score'

 Qualsevol d'aquestes ens pot indicar que tal ho està fent si la calculem per cada label i ajuntem aquests valors com una mitjana. (tal i com surt a la columna 'Mitjana general' de la taula dels
- Mostreu la Precisió-Recall Curve i la ROC Curve. Quina és més rellevant pel vostre dataset? Expliqueu amb les vostres paraules, la diferencia entre una i altre.

Figura 24: Logístic

Figura 25: SVM RBF

Figura 26: SVM Linear

La ROC Curve mostra el true positive rate contrastats amb el false positive rate. La precisió-Recall Curve mostra la precisió contrastada amb el recall. Mentres que el recall i el true positive rate son iguals, les corbes son diferents pq sifereixen el l'eix on estan situats aquests i el false positive rate no es igual a la precisió.

• Què mostra 'classification_report'? Quina métrica us fixareu per tal de optimitzar-ne la classificació pel vostre cas?

Els resultats del 'classification_report' es troben a la taula dels models 22. D'aquesta taula el que més ens impora és la columna de 'Mitjana general', d'aquest columna utilitzarem el valor de 'f1 score'.

2.6 Hyperparameter Search

- Quines formes de buscar el millor paràmetre heu trobat? Són costoses computacionalment parlant?
 - La primera és agafar diversos punts a l'atzar i anar probant, l'altra és fent una malla i examinant tots els punts d'aquesta.
- Si disposem de recursos limitats (per exemple, un PC durant 1 hora) quin dels dos mètodes creieu que obtindrà millor resultat final? Si tenim molts hiperparametres o l'execució per comprovar l'eficàcia és molt costosa, llavors serà millor agafar punts a l'atzar ja que agafes una mica de la idea general. Si no son molts o és calcula molt ràpid, serà millor fer una malla perquè el resultat es més fàcil de visualitzar.
- Existeixen altres mètodes de búsqueda més eficients?

• Feu la prova, i amb el model i el mètode de cross-validació escollit, configureu els diferents mètodes de búsqueda per a que s'executin durant el mateix temps (i.e. depenent del problema, 0,5~1 hora). Analitzeu quin ha arribat a una millor solució. (estimeu el temps que trigarà a fer 1 training, i aixi trobeu el número de intents que podeu fer en cada cas)

Hem fet una proba pel model del regressor logístic per buscar quina era la C i la tolerància ideal pel mètode:

Figura 27: Busca d'hiperparametre amb 200 punts aleatoris

Figura 28: Busca d'hiperparametre amb una malla de 10×10 punts

Els resultats mostren que només sembla ser important tenir una C una mica elevada. ($\log_{10}(C) > -1 \Rightarrow C > 0.1$) Els resultats dels hiperparametres es poden veure més clarament al gràfic fet amb la malla.

Referències

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.