Session 7: Rasters and Terrain Analysis

Randy Bucciarelli randobucci@gmail.com

Class Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
08/05/19	08/06/19	08/07/19	08/08/19	08/09/19
Introduction to Geographical Information Systems 10:45 am–12:15 am	Cartography and Spatial Data Display 8:30am – 11:00pm	Querying Data for Spatial & Attribute Selections 8:30am – 11:00pm	Data Formats and Open-Source GIS 8:30am – 11:00pm	Map Projections and Coordinate Systems 8:30am – 11:00pm
08/12/19 Spatial Analysis Tools 8:30am – 11:00pm	Raster and Terrain Analysis 8:30 am - 10:00 am Scripps Institution of Oceanography 1:00pm - 4:00pm	08/14/19 Image Analysis 8:30am – 11:00pm	08/15/19 Editing Spatial Data and Geocoding 8:30am – 11:00pm	08/16/19 Web Mapping/ Wrap up 8:30am – 11:30am

Outline: Rasters and Terrain Analysis

- Introduction
- Map Algebra
- Local Functions
- Neighborhood, Zonal, and Global Functions
- Terrain Analysis
- Demonstration

Introduction: Raster Analysis

- Raster cells store data
 - Integer or floating point values
- Connected cells can form networks
 - Grouped into neighborhoods
- Examples:
 - Predict fate of pollutants
 - Model spread of disease

Raster Data Models

- Each cell represents some variable (e.g. temperature or elevation)
- Groups of cell share a value representing some sort of geographic characteristic

Source: ESRI - Displaying Raster Data

Raster Cells

Example: Raster cells representing land use classes

Raster Cell Size

- Cell size = Spatial resolution
- Determines how coarse or fine features are represented

Example: Lake polygon represented as rasters

Raster Cell Size

Choosing right cell size is important!

This comparison of large and small cell size in a raster shows how cell size affects the level detail represented by a raster.

Choosing Cell Size

- Not simple choice
- Considerations:
 - Display time
 - Processing time
 - Storage
- Smaller cell size = greater spatial resolution

Source: ESRI - Displaying Raster Data

Choosing Cell Size

The following factors should be considered when specifying cell size:

- The spatial resolution of the input data and the storage size of the raster
- The application and analysis to be performed
- The level of detail you want for the analysis to be performed
- Accuracy and precision and the desired response time

Raster and Images

- Raster and Image are often interchanged
 - Image: 2-D pictorial representation
 - Raster: Data model describing how image is stored
- All images are rasters
- Not all rasters are images

Resampling Rasters

- Processing or displaying rasters requires resampling
- Datasets with different cell sizes are resampled to match coarsest cell size

Map Algebra

- Cell-by-cell combination of raster data layers
- Raster layers are combined through operations:
 - Addition
 - Subtraction
 - Multiplication

Map Algebra

a) Inlayer * 2 = Outlayer

b) LayerB + LayerA =SumLayer

ArcGIS Pro: Raster Calculator

Raster Analysis: Scope

- Local operations
 - Single cell used
- Neighborhood operations
 - Set of cells in a specified arrangement
- Global operations
 - Every cell involved

Scope: Local Operations

Scope: Neighborhood Operations

Local Functions/Operations

Four classes of local operations:

- Mathematical functions
- Boolean/Logical functions
- Reclassification
- Multi-layer overlay

Logical Operations

- Also known as Boolean operations
- Involves comparison of a cell to single scalar value
- Outputs a "true" or "false" value
 - TRUE: represented by "1"
 - FALSE: represented by "0"
- Three types of operations: AND, OR, and NOT

Logical Operations Example: AND

Assigns true to the output if both of the corresponding input cells is true

Raster Reclassification

- Raster reclassification assigns output values based on a specific set of input values
- Assignment can be defined by:
 - Input table
 - Range of values
 - Conditional test ("con" function)
- Used in creating raster "masks"

Reclassification: Conditional

- Reclassify raster based on a condition statement
- Condition results in a TRUE or FALSE outcome

Output = CON (test, out_if_true, out_if_false)

CON: conditional function

test: condition to be tested

out_if_true: value assigned if true

out_if_false: value assigned if false

Example Con Function

OutRas = Con(InRas1, 40, 30, "Value >= 2")

1	1	0	0		30	30	30	30	
	1	2	2	_		30	40	40	
4	0	0	2	=	40	30	30	40	
4	0	1	1		40	30	30	30	■ Value = NoData
InRas1					Ou	tRas		E TOIGE - NODGE	

Raster Overlay

- Raster overlay combines features from two or more layers
- Raster overlay limited to nominal data (not continuous data)
- Overlay examples
 - Clipping/Extraction
 - Union

Raster Overlay: Mask Grid

Terrain Analysis

- Digital Elevation Models (DEMs)
- Slope/Aspect
- Shaded Relief
- Contour Lines
- Viewsheds

Digital Elevation Models (DEM)

- Raster representation of the earth surface
- Cells contain continuous elevation values
- Accuracy determined by raster resolution

Terrain Analysis: Slope

Slope: Rise over run% Slope

Terrain Analysis: Aspect

Slope: Rise over run% Slope

Terrain Analysis: Hillshade

• Shaded Relief = Terrain reflections

Contour Lines

- Connected lines of uniform elevation
- Also called Isolines
- Density of lines indicate terrain steepness

Viewsheds

Visible lines of sight

33 Source: ESRI