

A randomized controlled trial

Acquired Immunodeficiency Syndrome (AIDS)

- CD4 cells are white blood cells that fight infection in the body
 - The more you have the better it is
 - A normal range is 500 to 1500 cells/mm³
- CD4 cells kill the human immunodeficiency virus (HIV)
 - When HIV progresses the number of CD4 decline
 - A CD4 count less than 200 cells/mm³ is a diagnosis for HIV
- If HIV is untreated it may lead to AIDS
 - If HIV is controlled the CD4 cells typically increase
 - People with controlled HIV can have healthy lives

A randomized controlled trial

Randomized Controlled Trial (RCT)

- Four HIV treatments
 - [TRT=1]: 600mg of zidovudine alternating monthly with 400mg didanosine
 - [TRT=2]: 600mg of zidovudine plus 2.25mg of zalcitabine
 - [TRT=3]: 600mg of zidovudine plus 400mg of didanosine
 - [TRT=4]: 600mg of zidovudine plus 400mg of didanosine plus 400mg of nevirapine
- Treatments are randomly assigned to 182 AIDS patients
- Three-time points with CD4 counts
 - Baseline: just before treatment was allocated
 - Eight-weeks after treatment
 - Sixteen-weeks after treatment

A randomized controlled trial

Observed Data Set:

- Type of variables involved
 - ID: Indicator for patient
 - TRT: Indicator for treatment {1,2,3,4}
 - AGE: The age in years at baseline
 - SEX: The sex of the patient (Female = 0; Male = 1)
 - TIME: Time point (1 = baseline; 2 = eight-weeks; 3 = sixteen-weeks)
 - CD4: Number of CD4 cells per mm³
- The medical scientist want to understand the effects of treatment
 - They ask you to analyze the data
 - Report back to them so that they can write one or more research papers

A randomized controlled trial

Potential research questions:

- Is there a treatment effect?
 - Is there a difference between treatments?
 - Is there an effect over time and is this different for treatments?

does each treatments deals similarly with the ages?

- Does age affect the outcome?
 - Is an age effect mediated by treatment?
 - Is an age effect mediated by time?
- Does sex effect the outcome?
 - Is a sex effect mediated by treatment?
 - Is a sex effect mediated by time?
 - Is an age effect mediated by age?

Randomized controlled trial

Assignment:

- Develop statistical analysis plan (SAP)
 - Think carefully about the different treatment effects
 - Think carefully about the dependence structure in the data and how to capture it
- Analyze the data
 - Execute the SAP
 - Evaluate the analysis assumptions
- Report the results
 - Include also descriptives [including randomization performance]
- Report the conclusions

Assignment expectations:

- Create an analysis group: 4-6 students
 - You are responsible for task allocation
 - Maintaining the group size at full strength
- Write a two-page document
 - Maximum number of words: 1200
 - Tables, figures and references not included
 - Goal is to write for the medical scientists, so that they can use your work in a paper
- Document all the SAS codes
 - Report in an appendix
 - If we run the codes, we should be obtaining all your results [reproducibility]

Randomized controlled trial

Important elements of assignment:

- Conduct a sound data analysis:
 - Research questions are translated into testable or estimable data analytic features or statistical model parameters
 - The data analysis addresses the data structure and correlations properly
 - You provide arguments for the choice of the analysis, and you report on the strengths and weaknesses of your analysis
 - You conduct and report alternative approaches to investigate analysis or model sensitivity

- There is no "best" data analysis plan
 - Different ways of analyzing the data exists
 - Importance is that analysis fits with answering the research questions and that it can be defended data scientifically
- Built a logic to the analyses with goals
 - Descriptive analyses [who are in the study]
 - Primary analyses [main hypotheses]
 - Secondary analyses [subgroup analysis]
 - Goodness-of-fit [verifying your choices]
- Make sure you report relevant details
 - Models, assumptions, estimation, etc.
 - Understandable results and graphics

Randomized controlled trial

Structure of the report:

- Statistical analysis plan
 - Small intro to understand the experiment and research questions
 - Description of statistical analyses/models: making sure you are precise, complete and relate them to the research questions
 - Interpretation of statistical parameters and hypotheses and how they relate to the research questions
 - Investigation of the (model) assumptions to help you formulate the strength and weaknesses of the analyses: possibly sensitivity analysis

Results

- Report on all the analyses (following the logic of the analysis plan)
- Do not repeat the description of the analysis plan (just refer)
- Explanation of how to read or interpret the results
- Do not report conclusions on the observation of t
- Conclusions & Discussion
 - Summarize the general conclusions
 - Describe strength and weaknesses and how they may affect the conclusions
 - Be honest in what you have found (do not over state)

