Regular expressions over an alphabet ∑

- Algebraic expressions defined recursively
- Each regular expression R denotes a language L(R)

Regular expressions are:

- ε, φ and a for any a ∈ ∑ are regular expressions. These are Basic or Elementary Regular expressions.
 Moreover we have regular expressions defined recursively.
- 2) If R is a R.E. then (R) is also a R.E. denoting L((R)) = L(R).
- 3) If R is a R.E. R* is a R.E. denoting (L(R))*.
- 4) If R1, R2 are R.E. then R1 + R2 is also a R.E. denoting L(R1) U L(R2).
- 5) If R1, R2 are R.E. then R1 . R2 or R1 R2 is a R.E. denoting L(R1) L(R2).

Any expression is a R.E. if it is obtained from elementary R.E.'s by a finite number of applications of *,. and +. Prrecedence is *, . followed by + and can be altered by ().

Theorem: Every regular expression denotes a regular language.

Proof: Every elementary R.E. clearly denotes a regular language by simple construction of the corresponding DFA's. By closure properties of regular languages, the theorem follows.

Conversion of R.E. R to ε-NFA

The elementary R.E.'s present in R are first converted and then are combined using prescriptions of combining the respective ε -NFA's.

Design R.E. and convert to ε -NFA

Set of all strings that begin with 110
 110(0+1)*

2) Substring 1011 (0+1)*1011(0+1)*

3) Exactly 3 1's 0*10*10*10*

4) At most 3 1's $0^* + 0^*10^* + 0^*10^*10^* + 0^*10^*10^*10^* = 0^*(\epsilon + 1 + 10^*1 + 10^*10^*1)0^*$

- 5) At least 3 1's HW
- 6) Number of 0's odd 1*01*(01*01*)*

- 7) Number of 0's 1 mod 3 HW
- 8) Start and end with the same symbol HW
- 9) Even length ((0+1)(0+1))*

10) Odd length HW

Describe the language:

- 1) 1*(011*)* every 0 followed by at least one 1
- 2) $1*(011*)*(0+\epsilon)$ HW
- 3) (0+1)(0+1)((0+1)(0+1)(0+1))* HW
- 4) (0+10+11)(0+1)* start with 0 or start with 1 and length at least 2.

Convert to ε-NFA

1) ((00)*11+01)*

(00)*11

(00)*11+01

((00)*11+01)*

One can cut down the steps. Thus

(00)*11+01

2) (0+11*)00*11*

3) 00*+01(01)*

Regular expression identities:

1)
$$\phi + R = R + \phi = R$$

2)
$$\phi R = R\phi = \phi$$

3)
$$\varepsilon R = R\varepsilon = R$$

4)
$$\varepsilon^* = \varepsilon$$
, $\phi^* = \varepsilon$

5)
$$R + R = R, R*R* = R*, RR* = R*R, L(RR*) = R*$$

6)
$$\varepsilon + RR^* = R^* = \varepsilon + R^*R$$

7)
$$(PQ)*P = P(QP)*$$

8)
$$(P+Q)^* = (P^*Q^*)^* = (P^* + Q^*)^*$$

9)
$$P+Q=Q+P,(P+Q)R=PR+QR,R(P+Q)=RP+RQ$$

Arden's Theorem : The equation R = Q + RP has a solution $R = QP^*$ where P,Q, and R are regular expressions. The solution is unique provided ϵ is not in P.

For the proof of the first part we put R=QP* in the equation.

LHS =
$$QP^*$$

RHS = Q + QP*P = Q(
$$\epsilon$$
 + P*P) = QP*

Hence R=QP* is a solution.

The proof of the second part is advanced.

In conversion of an ϵ -NFA to a regular expression the second part is not needed. So we don't have to check whether ϵ does not belong to P.

Method of conversion of an ε -NFA to a R.E. :

Let R_i be the R.E. for the set of strings that take the automaton from the start state to the state i. From the transition diagram/table we write down equations for the R_i's and solve them by repeated applications of Arden's Theorem. Finally the required R.E. is obtained as

$$R = \sum_{i \in F} R_i$$

Example 1

$$R_1 = \varepsilon + R_1 a + R_2 b \tag{1}$$

$$R_2 = R_1 (a + b)$$
 (2)

Putting (2) in (1)

$$R_1 = \varepsilon + R_1 a + R_1 (a + b) b = \varepsilon + R_1 (a + (a + b)b)$$

Using Arden's Theorem R_1 =(a+(a+b)b)* which is the required regular expression.

Example 2

$$R_1 = \varepsilon + R_1 a + R_2 b \tag{1}$$

$$R_2 = R_1 b + R_2 a$$
 (2)

Using Arden's Theorem in (1) $R_1 = (\varepsilon + R_2b)a^*$ (3)

Putting this in (2) $R_2=(\varepsilon+R_2b)a*b+R_2a=a*b+R_2(ba*b+a)$. Using Arden's Theorem

 $R_2=a*b+(ba*b+a)*$ which is the required R.E.

Example 3

$$R_1 = \varepsilon + R_2 a \tag{1}$$

$$R_2 = R_1 + R_3 (a + b)$$
 (2)

$$R_3 = R_1 a + R_3 b$$
 (3)

From (3) using Arden's Theorem and using (1)

$$R_3 = R_1 a b^* = (\varepsilon + R_2 a) a b^*$$
 (4)

Putting (4) in (2) and using (1)

 $R_2=\epsilon+R_2a+(\epsilon+R_2a)ab^*(a+b)=\epsilon+ab^*(a+b)+R_2(a+ab^*(a+b))$. Using Arden's Theorem we get the required R.E. $R_2=(\epsilon+ab^*(a+b))(a(\epsilon+ab^*(a+b)))^*$ HW

