Методические указания к лабораторной работе № 2

Для выполнения лабораторной работы № 2 следует изучить методы статистической проверки гипотез.

В лабораторной работе № 2 необходимо

- 1) проверить гипотезу согласия с помощью критериев Пирсона и Колмогорова,
- 2) проверить гипотезы об однородности параметров (математических ожиданий и дисперсий) двух нормальных распределений.

1. Проверка соответствия выбранной модели распределения исходным данным (критерии согласия)

Критерии согласия предназначены для проверки гипотезы

$$H_0: F_{\xi}(x) = F_0(x; \theta^{(1)}, ..., \theta^{(s)})$$
 (2.1)

Этот тип критериев основан на использовании различных мер расстояний между анализируемой эмпирической функцией распределения, определяемой по выборке, и гипотетической модельной $F_0(x;\theta^{(1)},...,\theta^{(s)})$.

При выполнении лабораторной работы необходимо проверить гипотезу согласия с помощью критериев Пирсона и Колмогорова.

1.1. Критерий χ^2 Пирсона

Критерий χ^2 Пирсона позволяет проверить гипотезу (2.1), когда значения параметров $\theta^{(1)},...,\theta^{(s)}$ неизвестны и данные группированы. Процедура проверки гипотезы состоит из следующих шагов.

- 1. Диапазон значений исследуемой случайной величины ξ разбивается на k взаимно исключающих и непересекающихся интервалов $I_1,...,I_k$. Длина интервалов разбиения не обязательно одинакова.
- 2. На основании выборочных данных $x_1, x_2, ..., x_n$ строятся статистические оценки $\hat{\theta}^{(1)}, ..., \hat{\theta}^{(s)}$ неизвестных параметров $\theta^{(1)}, ..., \theta^{(s)}$, от которых зависит закон распределения F.
- 3. Подсчитывается число наблюдений n_i , попадающих в каждый интервал группирования I_i , $i=1,\ldots,k$.

4. Вычисляются вероятности событий $\xi \in I_i$, т.е. вероятности p_i попадания случайной величины ξ в интервал I_i :

$$p_i = F_0(l_i; \hat{\theta}^{(1)}, ..., \hat{\theta}^{(s)}) - F_0(l_{i-1}; \hat{\theta}^{(1)}, ..., \hat{\theta}^{(s)}),$$

где и l_i – левый и правый концы i-го интервала группирования.

- 5. Вычисляется ожидаемое число наблюдений v_i в интервале I_i при условии справедливости гипотезы H_0 : $v_i = n \ p_i$.
 - 6. Вычисляется статистика

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - v_i)^2}{v_i},$$

которая при верной H_0 имеет χ^2 -распределение с f=k-s-1 степенями свободы.

7. *Гипотеза* о том, что исследуемая случайная величина ξ подчиняется закону распределения F_0 , *принимается на уровне значимости а*, если

$$\Delta(\alpha/2) \le \chi^2 < \Delta(1 - \alpha/2),$$

где $\Delta(\epsilon)$ – квантиль уровня ϵ имеет χ^2 – распределение с f=k-s-1 степенями свободы.

Если $\chi^2 \ge \Delta$ $(1-\alpha/2)$, *гипотеза H_0 отклоняется*, так как выполнение неравенства свидетельствует о слишком большом отклонении исследуемого закона распределения от $F_0(x)$. Случай $\chi^2 < \Delta\left(\alpha/2\right)$ требует дополнительного исследования. Слишком малые значения статистики критерия говорят о неудачном выборе закона F (завышение числа параметров), нарушении технологии выборочного обследования и т.д.

Пример 2.1. Требуется проверить гипотезу H_0 (2.1) о том, что генеральная совокупность имеет стандартное нормальное распределение ($\mu = 0$, $\sigma^2 = 1$), т.е. $H_0: F(x) = \Phi(x)$. Для проверки этой гипотезы используем критерий согласия χ^2 на уровне значимости $\alpha = 0.05$ по результатам наблюдений выборки объема n = 100.

Воспользуемся приведенной выше схемой проверки гипотезы согласия с помощью χ^2 -критерия.

Найдем статистические оценки параметров нормального распределения. Статистические оценки параметров нормального распределения, полученные по результатам наблюдений, составляют: среднее значение $\overline{X}=0,0025$, выборочная дисперсия $s^2=2,5398$, среднее квадратическое отклонение s=1,5937.

Результаты выполнения пунктов 1, 3-5 представлены в табл.2.1. Структура этой таблицы такова:

столбец 1 – значения границ интервалов группирования;

столбец 2 — число наблюдений n_i , попадающих в каждый интервал группирования (наблюдаемая частота);

столбец 3 — наблюдаемое число значений случайной величины, не превышающих верхнюю границу рассматриваемого интервала (наблюдаемая накопленная частота);

столбцы 4 и 5 – значения частоты в столбцах 2 и 3, выраженные в %;

столбец 6 – ожидаемое число наблюдений ν_i в интервале I_i (ожидаемая частота);

столбец 7 — теоретическое число значений случайной величины, не превышающих верхнюю границу рассматриваемого интервала (накопленная ожидаемая частота);

столбцы 8 и 9 – величины из столбцов 6 и 7, выраженные в %: вероятности p_i попадания случайной величины ξ в интервал I_i ; столбец 9 – значения теоретической функции распределения $F_0(l_i; \hat{\theta}^{(1)},...,\hat{\theta}^{(s)})$;

столбец 10 – разность между эмпирической и теоретической функциями распределения.

В результате вычислений получаем значение статистики $\chi^2 = 5,3818$ и число степеней свободы f=7.

Таблица 2.1 Результаты вычислений критерия согласия

Границы	Наблю-	Накопл.	Наблюд.	Накопл.	Ожидае-	Накопл.	Ожид.	Ожид.	Набл.–
интерва-	даемая	наблюд.	частота	набл.час-	мая	ожидаем.	частота,	накопл.	ожид.
лов	частота	частота	%	тота, %	частота	частота	%	част.,%	%
1	2	3	4	5	6	7	8	9	10
<= -4,	0	0	0	0	0,596	0,596	0,596	0,596	-0,596
-3,5	1	1	1	1	0,821	1,417	0,821	1,417	0,179
-3,0	0	1	0	1	1,655	3,072	1,655	3,072	-1,655
-2,5	3	4	3	4	3,007	6,079	3,007	6,079	-0,007
-2,0	9	13	9	13	4,930	11,009	4,930	11,009	4,070
-1,5	6	19	6	19	7,293	18,302	7,293	18,302	-1,293
-1,0	9	28	9	28	9,734	28,036	9,734	28,036	-0,734
-,5	14	42	14	42	11,722	39,758	11,722	39,758	2,278
0,0	15	57	15	57	12,735	52,493	12,735	52,493	2,265
,5	9	66	9	66	12,483	64,976	12,483	64,976	-3,483
1,0	12	78	12	78	11,040	76,016	11,040	76,016	0,960
1,5	5	83	5	83	8,809	84,825	8,809	84,825	-3,809
2,0	8	91	8	91	6,342	91,167	6,342	91,167	1,658
2,5	4	95	4	95	4,119	95,286	4,119	95,286	-0,119
3,0	1	96	1	96	2,414	97,700	2,414	97,700	-1,414
3,5	1	97	1	97	1,276	98,976	1,276	98,976	-0,276
4,0	2	99	2	99	0,609	99,585	0,609	99,585	1,391
4,5	1	100	1	100	0,262	99,847	0,262	99,847	0,738
∞	0	100	0	100	0,153	100,000	0,153	100,000	-0,153

По таблицам χ^2 – распределения или с помощью программы **Probability Calculator** (Вероятностный Калькулятор) пакета STATISTICA определяем границы области принятия H_0 : $\chi^2_{0.025;7} = 1,690$ и $\chi^2_{0.975;7} = 15,750$. Так как $1,690 < \chi^2 = 5,3818 < 15,750$, то можно сделать вывод о том, что результаты наблюдений не противоречат гипотезе H_0 , т.е. выборочные данные принадлежат совокупности со стандартным нормальным распределением.

Применим другой способ проверки гипотезы, в котором используется решающее правило, основанное на P-значении:

принимается гипотеза
$$\begin{cases} H_0, & \text{если } P \geq \alpha, \\ H_1, & \text{если } P < \alpha. \end{cases}$$

Для статистики критерия, равной $\chi^2 = 5,3818$, вычисляется P—значение. Его величина p = 0,613, поэтому при уровне значимости $\alpha = 0,05$ нулевая гипотеза о нормальности распределения принимается.

1.2. Критерий Колмогорова-Смирнова

Когда модельное распределение известно полностью и является непрерывным, для проверки гипотезы согласия (2.1) целесообразно использовать критерий Колмогорова—Смирнова.

Определим расстояние Колмогорова между эмпирической $F_9(x)$ и теоретической $F_0(x)$ функциями распределения:

$$D = \max_{x} |F_{9}(x) - F_{0}(x)|.$$

Решающее правило:

принимается гипотеза
$$\begin{cases} H_0, & \text{если} & n^{1/2}D < \Delta(\alpha), \\ H_1, & \text{если} & n^{1/2}D \geq \Delta(\alpha). \end{cases}$$

Пример 2.2. Проверить на уровне значимости $\alpha=0.05$ гипотезу H_0 (2.1) о том, что распределение анализируемой случайной величины является стандартным нормальным ($\mu=0,\ \sigma^2=1$). Получена выборка объема n=100. Для проверки этой гипотезы используем критерий Колмогорова. В результате обработки данных имеем D=0.0451. Отсюда значение статистики критерия $n^{1/2}$ $D=\sqrt{100}\cdot0.0451=0.451$. По табл. 2.2 при $\alpha=0.05$ находим границу области принятия нулевой гипотезы $\Delta(\alpha)=1.36$. Так как $n^{1/2}$ D=0.451<1.36, то результаты наблюдений не противоречат гипотезе H_0 . Следовательно, полученная выборка подчиняется стандартному нормальному распределению.

Таблица 2.2

Значения квантилей распределения Колмогорова

α	0.01	0.05	0.1	0.2
Δ	1.63	1.36	1.22	1.07

Результаты проверки гипотезы согласия с помощью критериев χ^2 - Пирсона и Колмогорова показаны на рис. 2.1.

Нормальное распределение Критерий Колмогорова d=0.045

Критерий хи-квадрат: 5,382, df = 7, p = 0,613

Рис. 2.1. Результаты проверки гипотезы согласия

1.3. Проверка гипотезы согласия в пакете STATISTICA

Для проверки гипотезы согласия необходимо выполнить следующую последовательность действий.

- 1. Из главного диалогового окна пакета вызвать программный модуль «Непараметрическая статистика» **Nonparametrics/Distrib.**
- 2. После появления диалогового окна Nonparametric Statistics задать с помощью радиокнопки режим выбора распределения Distribution Fitting, выбрать вид распределения из списков непрерывных и дискретных распределений и нажать кнопку ОК.
- 3. В открывшемся диалоговом окне **Fitting Continuous Distributions** с помощью кнопки **Variables** перейти к заданию анализируемой переменной.
- 4. После задания переменной по кнопке **ОК** получить таблицу с результатами проверки гипотезы согласия.
- 5. С помощью кнопки **GRAPH** построить гистограмму и графики плотности и функции распределения.

2. Проверка гипотез однородности

Гипотезы равенства (однородности) математических ожиданий H_1 и дисперсий H_2 и их двусторонние альтернативы \overline{H}_1 и \overline{H}_2 можно записать в виде

$$H_1: \ \mu_1 = \mu_2, \ \overline{H}_1: \ \mu_1 \neq \mu_2;$$
 (2.2)

$$H_2: \sigma_1^2 = \sigma_2^2, \ \overline{H}_2: \sigma_1^2 \neq \sigma_2^2.$$
 (2.3)

2.1. Однородность математических ожиданий

Случай равных дисперсий $(\sigma_1^2 = \sigma_2^2)$

Исходные данные. Две независимые случайные выборки $X^{(1)}$ и $X^{(2)}$ объемов n_1 и n_2 соответственно: $X^{(i)} = (x_{i1},...,x_{in_i}), i = 1, 2.$

Предположения. Выборки извлечены из нормальных распределений с равными дисперсиями $(\sigma_1^2 = \sigma_2^2)$.

Пример 2.3. Сравниваются по урожайности два сорта пшеницы. Сорт A – обычная разновидность, сорт B – новый гибрид. Была засеяна одинаковая площадь пшеницей каждого сорта, причем условия созревания на обоих участках были одинаковы. Средний урожай сорта A – 32 ц/га с дисперсией, равной 5,9. Средний урожай сорта B – 36,2 ц/га с дисперсией, равной 11,2. Является ли урожайность сорта B значительно более высокой, чем урожайность сорта A?

Решение

1. Выдвижение гипотез H_0 , H_1 :

$$H_0: \quad \mu_A = \mu_B, \ H_1: \ \mu_A < \mu_B.$$

- 2. Выбор уровня значимости: $\alpha = 0.05$.
- 3. Выбор критической статистики (критерия). В качестве статистики критерия выберем двухвыборочную статистику Стьюдента:

$$t = (\overline{X}_1 - \overline{X}_2) / (s^2 (1/n_1 + 1/n_2))^{1/2}, \qquad (2.4)$$

$$s^2 = \sum_{i=1}^2 (n_i - 1) s_i^2 / (\sum_{i=1}^2 n_i - 2)$$
 —объединенная выборочная дисперсия. (2.5)

При справедливости H_0 и нормальном распределении исходной случайной переменной статистика имеет t—распределение Стьюдента с $n_1 + n_2 - 2$ степенями свободы.

4. Определение границы критической области x_k . Значение границы критической области при левосторонней H_1 представляет собой квантиль уровня $p=\alpha$ распределения статистики критерия. Определим значение квантили $t_{0,05;48}$ уровня $\alpha=0,05$ t-распределения Стьюдента с $n_1+n_2-2=48$ степенями свободы: $t_{0,05;48}=-1,645$.

Следовательно, значение границы критической области x_k равно -1,645. Это означает, что при значениях статистики критерия $t \ge -1,645$ принимается гипотеза H_0 , а при значениях t < -1,645 — гипотеза H_1 .

- 5. Определение по формулам (2.4) и (2.5) численной величины статистики критерия: t = -5.08.
 - 6. Выработка решения. Используем решающее правило:

принимается гипотеза
$$\begin{cases} H_0, & \text{если} \quad t \geq \Delta(\epsilon), \\ H_1, & \text{если} \quad t < \Delta(\epsilon), \end{cases}$$

где $\Delta(\epsilon)$ – квантиль уровня α t—распределения Стьюдента с $n_1 + n_2 - 2$ степенями свободы, определяющая границу критической области при левосторонней альтернативе.

В п.4 было найдено значение границы критической области $x_k = \Delta(\alpha) = -1,645$.

При уровне значимости $\alpha = 0.05$ гипотеза о равенстве среднего значения $\mu_A = \mu_B$, отклоняется, так как t = -5.08 < -1.645. Следовательно, при уровне значимости $\alpha = 0.05$ принимается гипотеза H_1 . Это означает, что урожайность сорта B значительно более высокая, чем урожайность сорта A.

Применим другой способ проверки гипотезы, в котором используется решающее правило, основанное на *P*–значении:

принимается гипотеза
$$\begin{cases} H_0, & \text{если } P \geq \alpha, \\ H_1, & \text{если } P < \alpha. \end{cases}$$

Находим значение функции t—распределения с $n_1 + n_2 - 2 = 48$ степенями свободы, соответствующее значению статистики t = -5,08: $F_t(-5,08) = 0,000003$. В условиях левосторонней альтернативы получаем $P = F_t(-5,08) = 0,000003$

=0,000003. Так как $P<\alpha=0,05$, поэтому при уровне значимости $\alpha=0,05$ гипотеза H_0 отклоняется.

Случай неравных дисперсий $(\sigma_1^2\!\neq\!\sigma_2^2)$

При нарушении условия равенства дисперсий $(\sigma_1^2 \neq \sigma_2^2)$ для проверки гипотезы (2.2) используется статистика Уэлча

$$t_1 = (\overline{X}_1 - \overline{X}_2 - \delta) / (s_1^2 / n_1 + s_2^2 / n_2)^{1/2},$$

имеющая t-распределения Стьюдента с v_1 степенями свободы,

$$v_1 = \left(\frac{c_1^2}{n_1 - 1} + \frac{(1 - c_1^2)^2}{n_2 - 1}\right)^{-1}, \quad c_1 = \frac{s_1^2 / n_1}{s_1^2 / n_1 + s_2^2 / n_2}.$$

Последовательность проверки гипотезы (2.2) в условиях неравенства дисперсий аналогична случаю равных дисперсий.

2.2. Однородность дисперсий

Исходные данные. Две независимые случайные выборки $X^{(1)}$ и $X^{(2)}$ объемов n_1 и n_2 соответственно: $X^{(i)} = (x_{i1},...,x_{in_i}), i=1,2.$

Предположения. Выборки извлечены из нормальных распределений.

Пример 2.4. В Примере 2.3 сравнивалась урожайность двух сортов пшеницы. Можно ли утверждать равенство дисперсий для урожайности сорта A и урожайности сорта B?

Решение

1. Выдвижение гипотез H_0 , H_1 :

$$H_0: \quad \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2.$$

- 2. Выбор уровня значимости: $\alpha = 0.05$.
- 3. Выбор критической статистики (критерия). В качестве статистики критерия выберем

$$F = \frac{s_1^2}{s_2^2} = \frac{\sum_{i=1}^{n_1} (x_{1i} - \overline{X}_1)^2 / (n_1 - 1)}{\sum_{i=1}^{n_2} (x_{2i} - \overline{X}_2)^2 / (n_2 - 1)},$$
(2.6)

При справедливости H_0 и нормальном распределении исходной случайной переменной статистика (2.6) имеет F—распределение Фишера с числами

степеней свободы числителя и знаменателя, равными соответственно n_1-1 и n_2-1 .

- 4. Определение границы критической области x_k . Значение границ критической области при двусторонней H_1 представляет собой квантили уровней $p_1 = \alpha/2$ и $p_2 = 1 \alpha/2$ распределения статистики критерия. Из таблиц F—распределения для значений функции распределения, равных соответственно 0,025 и 0,975, и степеней свободы $n_1 1 = 24$ и $n_2 1 = 24$ находим значение квантилей $F_{0,025;24} = 0,4407$ и $F_{0,975;24} = 2,2693$. Это означает, что при значениях статистики критерия $0,4407 \le F \le 2,2693$ принимается гипотеза H_0 , а при значениях F < 0,4407 или F > 2,2693 гипотеза H_1 .
- 5. Определение по формуле (2.6) численной величины статистики критерия: F = 11,2/5,9 = 1,90.
 - 6. Выработка решения. Используем решающее правило:

принимается гипотеза
$$\begin{cases} H_2, & \text{если} \quad \Delta(\alpha/2) \leq F \leq \Delta(1-\alpha/2), \\ \overline{H}_2, & \text{если} \quad F < \Delta(\alpha/2) \text{ или } F > \Delta(1-\alpha/2), \end{cases}$$

где $\Delta(\epsilon)$ – порог теста, определяемый при верной H_0 (2.3) как квантиль уровня ϵ F–распределения Фишера с n_1 – 1 и n_2 – 1 степенями свободы.

В п.4 были найдены значения границ критической области $x_{k1} = \Delta(\alpha/2) =$ = 0,4407 и $x_{k2} = \Delta(1-\alpha/2) =$ 2,2693.

При уровне значимости $\alpha = 0.05$ гипотеза о равенстве дисперсий $\sigma_1^2 = \sigma_2^2$ принимается, так как 0.4407 < F = 1.90 < 2.2693. Следовательно, при уровне значимости $\alpha = 0.05$ принимается гипотеза H_0 . Это означает равенство дисперсий для урожайности сорта A и урожайности сорта B.

Применим другой способ проверки гипотезы, в котором используется решающее правило, основанное на P-значении:

принимается гипотеза
$$\begin{cases} H_0, & \text{если } P \geq \alpha, \\ H_1, & \text{если } P < \alpha. \end{cases}$$

Находим значение функции F-распределения с n_1 - 1 = 24 и n_2 - 1 = 24 степенями свободы, соответствующее значению статистики F = 1,90: F_F (1,90)= = 0,9385. В условиях двусторонней альтернативы получаем $1 - P/2 = F_t$ (1,90)= = 0,9386. Отсюда P = 0,1228. Так как P > α = 0,05, поэтому при уровне значимости α = 0,05 гипотеза H_0 принимается.

2.3. Проверка гипотез однородности в пакете STATISTICA

Для проверки гипотез однородности необходимо выполнить следующую последовательность действий.

- 1. Из главного диалогового окна пакета вызвать программный модуль «Основная статистика» **Basic Statistics.**
- 2. После появления диалогового окна **Basic Statistics and Tables** выбрать в нем строку **T-test for independent samples** для вызова программы вычисления t–критерия Стьюдента и F –критерия и нажать кнопку **ОК**.
- 3. В открывшемся диалоговом окне **T-test for independent samples** с помощью кнопки **Variables** перейти к заданию анализируемых переменных: в левом списке задать группирующую переменную, в правом списке анализируемые переменные. В полях Code for group указать код анализируемых групп (выборок). Затем выставить флажок для опции проверки гипотезы равенства средних значений в условиях неравенства дисперсий: **T-test for separate variance estimates.**
- 4. После задания переменных и установки необходимых режимов вычислений по кнопке **ОК** получить таблицу с результатами проверки гипотезы однородности средних и дисперсий.
- 5. С помощью кнопки Categorized histograms построить гистограммы анализируемых признаков для каждой выборки.