Benzenesulphonamide derivatives as herbicides or desiccant/defoliant compounds

5 The present invention relates to benzenesulfonamide derivatives of the formula I

in which the variables are as defined below:

10

X¹ is hydrogen or halogen;

X²

is hydrogen, cyano, CS-NH₂, halogen, C₁-C₆-alkyl or C₁-C₆-haloalkyl;

15 X³

is hydrogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy– C_1 - C_4 -alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or phenyl- C_1 - C_4 -alkyl, where the phenyl radical for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy;

20

Y is a group -C(A)B, SO₂ or SO₂NR²;

A is

is oxygen or sulfur;

25 B

is oxygen, sulfur, NR² or a bond;

 R^1

is hydrogen, halogen, hydroxyl, C_1 - C_8 -alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl- C_1 - C_4 -alkyl, C_2 - C_8 -alkenyl, C_5 - C_7 -cycloalkenyl, C_3 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_3 - C_7 -cycloalkyloxy, C_2 - C_8 -alkenyloxy, C_3 - C_8 -alkynyloxy, aryl, and C_1 - C_2 -alkyl

30

aryloxy, aryl-C₁-C₄-alkyl;

where the 13 last mentioned radicals for their part may be partially or fully halogenated and/or may be substituted by one to three substituents from the group consisting of cyano, NO_2 , hydroxyl, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyloxy,

35

 C_2 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, amino, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -

haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -alkoxysulfonyl, formyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_2 - C_6 -alkenylcarbonyl, C_3 - C_6 -alkynylcarbonyl, carboxy, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxycarbonyl, C_3 - C_6 -alkynyloxycarbonyl, C_3 - C_6 -alkynyloxycarbonyl, mercaptocarbonyl, C_1 - C_6 -alkylthiocarbonyl, C_1 - C_6 -haloalkylthiocarbonyl, C_1 - C_6 -alkylaminocarbonyl, C_1 - C_6 -alkylaminocarbonyl, di(C_1 - C_6 -alkylamino)carbonyl, C_1 - C_6 -haloalkylaminocarbonyl, di(C_1 - C_6 -haloalkylamino)carbonyl, C_2 - C_6 -alkenylaminocarbonyl, di(C_2 - C_6 -alkenylamino)carbonyl, C_3 - C_6 -alkynylaminocarbonyl, di(C_3 - C_6 -alkynylamino)carbonyl, phenoxy, phenyl- C_1 - C_4 -alkyl and phenyl- C_1 - C_4 -alkoxy;

four- to six-membered heterocyclyl which may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy; or

four- to six-membered heterocyclyl- C_1 - C_4 -alkyl which may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy; or

five- or six-membered heteroaryl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radical may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, amino, C_1 - C_6 -alkylamino and di(C_1 - C_6 -alkyl)amino; or

five- or six-membered heteroaryl- C_1 - C_4 -alkyl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radical may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, amino, C_1 - C_6 -alkylamino and di(C_1 - C_6 -alkyl)amino;

is hydrogen, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_3 - C_8 -alkynyl, C_3 - C_7 -cycloalkyl, where the four last mentioned radicals may be partially or fully halogenated; or

R¹ and R² together with the nitrogen atom to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully

15

10

5

20

25

30

35 R²

10

halogenated and/or substituted by one to three radicals from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl and C_1 - C_6 -alkoxy;

Q is a radical from the group consisting of Q¹ to Q³⁹

Q16 Q¹⁷ Q¹⁸ A⁹ Q² 1 Q²⁰ A⁹ Q^{2 3} Q² ² Q² ⁴ Q²⁶ Q²⁷ Q²⁵ Q²⁸ Q²⁹ Q³⁰

A¹ to A¹⁷ are oxygen or sulfur;

5

10

20

- R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ are hydrogen, cyano, hydroxyl, C₁-C₆-alkyl, C₁-C₆-cyanoalkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyloxy, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkynyl, C₃-C₆-alkynyloxy, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, phenyl-C₁-C₆-alkyl, amino, C₁-C₆-alkylamino or di(C₁-C₆-alkyl)amino; or
- 15 R³ and R⁴, R¹¹ and R¹², R¹8 and R¹9, or R⁴6 and R⁴² together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C6-alkyl and C₁-C6-alkoxy;

R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² and R⁴³ are hydrogen, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyloxy, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₁-C₆-

alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkylsulfonyloxy, amino, C_1 - C_6 -alkylamino or di(C_1 - C_6 -alkyl)amino; or

- R⁵ and R⁶, R⁹ and R¹⁰, R¹⁵ and R¹⁶, R²⁰ and R²¹, or R³⁰ and R³¹ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy;
- 10 R^{13} , R^{14} , R^{22} , R^{23} , R^{25} and R^{26} are hydrogen, halogen or C_1 - C_6 -alkyl;
 - R¹⁷, R²⁸, R³⁴, R³⁷ and R⁴⁰

15

25

30

35

40

are hydrogen, halogen, hydroxyl, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyloxy, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -alkynyloxy;

R²⁴ is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_6 -haloalkoxy, amino, C_1 - C_6 -alkylamino or di(C_1 - C_6 -alkyl)amino;

and their agriculturally useful salts.

Moreover, the invention relates to processes and intermediates for preparing compounds of formula I, to compositions comprising them and to the use of these derivatives or of the compositions comprising them for controlling unwanted plants.

Furthermore, the invention relates to the use of the compounds of the formula I or of compositions comprising them for the desiccation and/or defoliation of plants.

Further, the invention relates to the preparation of herbicidal compositions and compositions for the desiccation/defoliation of plants using the compounds I, and to methods for controlling unwanted vegetation or for the desiccation/defoliation of plants using the compounds I.

Substituted phenyluracils are disclosed in the literature, for example in WO 96/07323, WO 96/08151, WO 97/42176 and DE 44 37 197. Phenylpyrazoles are described in WO 95/32188. Bicyclic triazolones are described in WO 02/38562. Furthermore, phenyl-substituted pyrimidin(ethi)ones (WO 96/07647), phenylpyridazones (WO 99/52878) and triazole derivatives (WO 96/18618) are known from the literature. WO

15

20

93/03019 discloses phenyl-substituted sulfonamides.

However, the herbicidal or desiccant/defoliant properties of the prior-art compounds and/or their compatibilities with crop plants are not always entirely satisfactory. Accordingly, it was an object of the present invention to provide novel, in particular herbicidally active, compounds having improved properties.

The object also extends to providing novel compounds with desiccant/defoliant action.

We have found that this object is achieved by the benzenesulfonamide derivatives of the formula I and their herbicidal action.

Furthermore, we have found herbicidal compositions which comprise the compounds I and have very good herbicidal action. Moreover, we have found processes for preparing these compositions and methods for controlling unwanted vegetation using the compounds I.

Furthermore, it has been found that the compounds I are also suitable for desiccating and defoliating plant parts, suitable plants being crop plants, such as cotton, potatoes, oilseed rape, sunflowers, soybeans or broad beans, in particular cotton. In this respect, the invention provides compositions for the desiccation and/or defoliation of plants, processes for preparing these compositions and methods for the desiccation and/or defoliation of plants using the compounds I.

- Depending on the substitution pattern, the compounds of the formula I may comprise one or more centers of chirality, in which case they are present as enantiomers or mixtures of diastereomers. The invention provides both the pure enantiomers or diastereomers and their mixtures.
- The compounds of the formula I can also be present in the form of their agriculturally useful salts, the type of salt generally being immaterial. Suitable salts are, in general, the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the herbicidal action of the compounds I.

Suitable cations are in particular ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, where, if desired, one to four hydrogen atoms may be replaced by C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl,

35

10

15

20

25

40

phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy)eth-1-yl-ammonium, di-(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfonium, and sulfoxonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfoxonium.

Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and the anions of C₁-C₄-alkanoic acids, preferably formate, acetate, propionate and butyrate.

The organic moieties mentioned for the substituents X², X³, R¹-R⁴⁷ or as radicals on phenyl, heterocyclyl or heteroaryl radicals are collective terms for individual enumerations of the individual group members. All hydrocarbon chains, i.e. all alkyl, alkylene, haloalkyl, cyanoalkyl, phenylalkyl, alkenyl, haloalkenyl, alkynyl, alkoxy, alkylenoxy, haloalkoxy, alkylamino, dialkylamino and alkoxyalkyl moieties can be straight-chain or branched. Unless indicated otherwise, halogenated substituents preferably carry one to five identical or different halogen atoms. The term "halogen" denotes in each case fluorine, chlorine, bromine or iodine.

Examples of other meanings are:

- C₁-C₄-alkyl and the alkyl moieties of C₁-C₆-alkoxycarbonyl-C₁-C₄-alkyl, C₂-C₆-alkynyloxycarbonyl-C₁-C₄-alkyl, aryl-C₁-C₄-alkyl, cycloalkyl-C₁-C₄-alkyl, heterocyclyl-C₁-C₄-alkyl and heteroaryl-C₁-C₄-alkyl: methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;
- C₁-C₆-alkyl and the C₁-C₆-alkyl moieties of C₁-C₆-cyanoalkyl, C₁-C₆-alkylthio, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkylthiocarbonyl, C₁-C₆-alkylaminocarbonyl, di(C₁-C₆-alkyl)aminocarbonyl: C₁-C₄-alkyl as mentioned above, and also, for example, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-3-methylpropyl;
 - C₁-C₈-alkyl: C₁-C₆-alkyl as mentioned above, and also, for example, heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, 2,4-

dimethylpentyl, 3,3-dimethylpentyl, 2,2-dimethyl-3-methylbutyl, octyl, 2-methyl-heptyl, 3-methylheptyl, 4-methylheptyl, 2,2-dimethylhexyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 3,3-dimethylhexyl, 2,2,3-trimethylpentyl, 2,3,3-trimethylpentyl, 2,3,4-trimethylpentyl and 2,2,3,3-tetramethylbutyl;

5

C₃-C₇-cycloalkyl and the C₃-C₇-cycloalkyl moieties of C₃-C₇-cycloalkyl-C₁-C₄-alkyl and C₃-C₇-cycloalkyloxy: a monocyclic saturated hydrocarbon having 3 to 7 ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl;

10

- C₅-C₇-cycloalkenyl: a monocyclic unsaturated hydrocarbon having 5 to 7 ring members, for example 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, 2,4-cyclopentadienyl, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1,3-cyclohexadienyl, 2,5-cyclohexadienyl, 1-cycloheptenyl, 2-cycloheptenyl, 3-cycloheptenyl, 4-cycloheptenyl, 2,6-cycloheptadienyl, 3,5-cycloheptadienyl;
- four- to six-membered heterocyclyl: a monocyclic saturated or partially unsaturated hydrocarbon having four to six ring members as mentioned above which, in addition to carbon atoms, may comprise one to four nitrogen atoms, one or two oxygen atoms, one sulfur atom, one to three nitrogen atoms and one oxygen or one sulfur atom or one oxygen and one sulfur atom and which may be attached via a carbon atom or a nitrogen atom, for example 2-oxetanyl, 3-oxetanyl, 3-thiethanyl, 1-azetidinyl, 2-azetidinyl, 1-azetinyl, 2-azetinyl;
- for example 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 1,2,4-oxadiazolidin-3-yl, 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-5-yl, 1,2,4-triazolidin-3-yl, 1,3,4-oxadiazolidin-2-yl, 1,3,4-thiadiazolidin-2-yl, 1,3,4-triazolidin-2-yl, 1,2,3,4-tetrazolidin-5-yl;
- for example 1-pyrrolidinyl, 2-isothiazolidinyl, 2-isothiazolidinyl, 1-pyrazolidinyl, 3-oxazolidinyl, 3-thiazolidinyl, 1-imidazolidinyl, 1,2,4-triazolidin-1-yl, 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4-thiadiazolidin-5-yl, 1,2,3,4-tetrazolidin-5-yl; for example 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2,5-dihydro-

pyrrol-2-yl, 2,5-dihydropyrrol-3-yl, 4,5-dihydroisoxazol-3-yl, 2,5-dihydroisoxazol-3yl, 2,3-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl, 2,5-dihydroisoxazol-4-yl, 2,3-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol-5-yl, 2,5-dihydroisoxazol-5-yl, 2,3dihydroisoxazol-5-yl, 4,5-dihydroisothiazol-3-yl, 2,5-dihydroisothiazol-3-yl, 2,3-5 dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl, 2,5-dihydroisothiazol-4-yl, 2,3dihydroisothiazol-4-yl, 4,5-dihydroisothiazol-5-yl, 2,5-dihydroisothiazol-5-yl, 2,3dihydroisothiazol-5-yl, 2,3-dihydropyrazol-2-yl, 2,3-dihydropyrazol-3-yl, 2,3dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4-dihydropyrazol-3-yl, 3,4dihydropyrazol-4-yl, 3,4-dihydropyrazol-5-yl, 4,5-dihydropyrazol-3-yl, 4,5-10 dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydroimidazol-2-yl, 2,3dihydroimidazol-3-yl, 2,3-dihydroimidazol-4-yl, 2,3-dihydroimidazol-5-yl, 4,5dihydroimidazol-2-yl, 4,5-dihydroimidazol-4-yl, 4,5-dihydroimidazol-5-yl, 2,5dihydroimidazol-2-yl, 2,5-dihydroimidazol-4-yl, 2,5-dihydroimidazol-5-yl, 2,3dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 3,4-15 dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 3,4-dihydrooxazol-5-yl, 2,3dihydrothiazol-3-yl, 2,3-dihydrothiazol-4-yl, 2,3-dihydrothiazol-5-yl, 3,4dihydrothiazol-3-yl, 3,4-dihydrothiazol-4-yl, 3,4-dihydrothiazol-5-yl, 3,4dihydrothiazol-2-yl, 3,4-dihydrothiazol-3-yl, 3,4-dihydrothiazol-4-yl; for example 4,5-dihydropyrrol-1-yl, 2,5-dihydropyrrol-1-yl, 4,5-dihydroisoxazol-2-20 yl, 2,3-dihydroisoxazol-1-yl, 4,5-dihydroisothiazol-1-yl, 2,3-dihydroisothiazol-1-yl, 2,3-dihydropyrazol-1-yl, 4,5-dihydropyrazol-1-yl, 3,4-dihydropyrazol-1-yl, 2,3dihydroimidazol-1-yl, 4,5-dihydroimidazol-1-yl, 2,5-dihydroimidazol-1-yl, 2,3dihydrooxazol-2-yl, 3,4-dihydrooxazol-2-yl, 2,3-dihydrothiazol-2-yl, 3,4dihydrothiazol-2-yl; 25 for example 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1,3-dioxan-5-yl, 1,3-dithian-5-yl, 2-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 4-tetrahydrothiopyranyl, 3-hexahydropyridazinyl, 4-hexahydropyridazinyl, 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 2-piperazinyl, 1,3,5-hexahydrotriazin-2-yl, 1,2,4-hexahydrotriazin-3-yl, tetrahydro-1,3-oxazin-2-30 yl, tetrahydro-1,3-oxazin-6-yl, 2-morpholinyl, 3-morpholinyl; for example 1-piperidinyl, 1-hexahydropyridazinyl, 1-hexahydropyrimidinyl, 1-piperazinyl, 1,3,5-hexahydrotriazin-1-yl, 1,2,4-hexahydrotriazin-1-yl, tetrahydro-1,3-oxazin-1-yl, 1-morpholinyl; for example 2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl, 2H-35 pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl, 2H-thiopyran-4-yl, 2H-thiopyran-5-yl, 2H-thiopyran-6-yl, 5,6-dihydro-4H-1,3-oxazin-2-yl;

- three- to seven-membered heterocyclyl: four- to six-membered heterocyclyl as mentioned above, and also

for example 2-oxiranyl, 1-aziridinyl, 2-aziridinyl, 2-thiiranyl;

10

15

20

25

for example azepan-2-yl, azepan-3-yl, azepan-4-yl, oxepan-2-yl, oxepan-3-yl, oxepan-4-yl, thiepan-2-yl, thiepan-3-yl, thiepan-4-yl, 1,2-diazepan-3-yl, 1,2-diazepan-5-yl;

for example azepan-1-yl, 1,2-diazepan-1-yl, 1,4-oxazepan-4-yl, 1,4-thiazepan-4-yl;

yl; for example 2,3,6,7-tetrahydro-1H-azepin-2-yl, 2,3,6,7-tetrahydro-1H-azepin-3-yl, 2,3,6,7-tetrahydro-1H-azepin-4-yl, 2,3,4,5-tetrahydro-1H-azepin-2-yl, 2,3,4,5-tetrahydro-1H-azepin-2-yl, 2,3,4,5-tetrahydro-1H-azepin-4-yl, 1H-azepin-2-yl, 1H-azepin-3-yl, 1H-azepin-4-yl, oxepin-2-yl, oxepin-3-yl, oxepin-4-yl, thiepin-2-yl, thiepin-3-yl, thiepin-4-yl, 1,4-oxazepin-2-yl, 1,4-oxazepin-3-yl, 1,4-oxazepin-5-yl, 1,4-thiazepin-3-yl, 1,4-thiazepin-3-yl, 1,4-thiazepin-3-yl, 1,4-thiazepin-5-yl, 1,4-thiazepin-6-yl, 1,4-thiazepin-6-yl, 4,5,6,7-tetrahydro-1H-[1,3]-diazepin-2-yl, 4,5,6,7-tetrahydro-1H-[1,3]-diazepin-6-yl, 4,5,6,7-tetrahydro-1H-[1,3]-diazepin-6-yl, 4,5,6,7-tetrahydro-1H-[1,3]-diazepin-6-yl, 2,3,4,5-tetrahydro-1H-[1,4]-diazepin-2-yl, 2,3,4,5-tetrahydro-1H-[1,4]-diazepin-5-yl,

2,3,4,5-tetrahydro-1H-[1,4]-diazepin-6-yl, 2,3,4,5-tetrahydro-1H-[1,4]-diazepin-7-yl, 2,3-dihydro-1H-[1,2]diazepin-3-yl, 2,3-dihydro-1H-[1,2]diazepin-4-yl, 2,3-dihydro-1H-[1,2]diazepin-6-yl, 2,3-dihydro-1H-[1,2]diazepin-6-yl, 4,7-dihydro-1H-[1,2]diazepin-7-yl, 4,7-dihydro-[1,4]-oxazepin-2-yl, 4,7-dihydro-[1,4]-oxazepin-3-yl, 4,7-dihydro-[1,4]-oxazepin-6-yl, 4,7-dihydro-[1,4]-oxazepin-6-yl, 2,3-dihydro-[1,3]-thiazepin-4-yl, 2,3-dihydro-[1,3]-thiazepin-6-yl, 2,3-dihydro-[1,3]-thi

[1,3]-thiazepin-7-yl; for example azepin-1-yl, 2,3,6,7-tetrahydroazepin-1-yl, 2,3,4,5-tetrahydroazepin-1-yl, 4,5,6,7-tetrahydro-[1,3]-diazepin-1-yl, 2,3,4,5-tetrahydro-[1,4]-diazepin-1-yl, 2,3-dihydro-[1,2]diazepin-1-yl, 4,7-dihydro-[1,4]-oxazepin-4-yl, 2,3-dihydro-[1,3]-thiazepin-3-yl;

- C₂-C₄-alkenyl and the alkenyl moieties of C₁-C₆-alkoxycarbonyl-C₂-C₄-alkenyl: ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl;
- C₃-C₆-alkenyl: for example 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-di-

10

methyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 2-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-1-butenyl, 2,3-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 1-ethyl-1-butenyl, 1-ethyl-1-butenyl, 2-ethyl-1-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 1-ethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-2-propenyl, 1-ethyl-2-propenyl;

- C₂-C₆-alkenyl and the C₂-C₆-alkenyl moieties of C₂-C₆-alkenyloxy, C₂-C₆-alkenyloxycarbonyl, C₂-C₆-alkenyloxycarbonyl, C₂-C₆-alkenyloxycarbonyl, C₂-C₆-alkenylthiocarbonyl, C₂-C₆-alkenylaminocarbonyl, di(C₂-C₆-alkenyl)aminocarbonyl: C₃-C₆-alkenyl as mentioned above, and also ethenyl;
- C₂-C₈-alkenyl and the C₂-C₈-alkenyl moieties of C₂-C₈-alkenyloxy: C₂-C₆-alkenyl 20 as mentioned above, and also, for example, 1-heptenyl, 2-heptenyl, 3-heptenyl, 2-methyl-1-hexenyl, 2-methyl-2-hexenyl, 2-methyl-3-hexenyl, 2-methyl-4-hexenyl, 2-methyl-5-hexenyl, 3-methyl-1-hexenyl, 3-methyl-2-hexenyl, 3-methyl-3-hexenyl, 3-methyl-4-hexenyl, 3-methyl-5-hexenyl, 2,2-dimethyl-3-pentenyl, 2,2-dimethyl-4-25 pentenyl, 2,3-dimethyl-1-pentenyl, 2,3-dimethyl-2-pentenyl, 2,3-dimethyl-3pentenyl, 2,3-dimethyl-4-pentenyl, 2,4-dimethyl-1-pentenyl, 2,4-dimethyl-2pentenyl, 3,3-dimethyl-1-pentenyl, 2,2-dimethyl-3-methyl-3-butentyl, 1-octenyl, 2octenyl, 3-octenyl, 4-octenyl, 2-methyl-1-heptenyl, 2-methyl-2-heptenyl, 2-methyl-3-heptenyl, 2-methyl-4-heptenyl, 2-methyl-5-heptenyl, 2-methyl-6-heptenyl, 3-30 methyl-1-heptenyl, 3-methyl-2-heptenyl, 3-methyl-3-heptenyl, 3-methyl-4heptenyl, 3-methyl-5-heptenyl, 3-methyl-6-heptenyl, 4-methyl-1-heptenyl, 4methyl-2-heptenyl, 4-methyl-3-heptenyl, 2,2-dimethyl-3-hexenyl, 2,2-dimethyl-4hexenyl, 2,2-dimethyl-5-hexenyl, 2,3-dimethyl-1-hexenyl, 2,3-dimethyl-2-hexenyl, 2,3-dimethyl-3-hexenyl, 2,3-dimethyl-4-hexenyl, 2,3-dimethyl-5-hexenyl, 2,4-35 dimethyl-1-hexenyl, 2,4-dimethyl-2-hexenyl, 2,4-dimethyl-3-hexenyl, 2,4-dimethyl-4-hexenyl, 2,4-dimethyl-5-hexenyl, 3,3-dimethyl-1-hexenyl, 3,3-dimethyl-4hexenyl, 3,3-dimethyl-5-hexenyl, 2,2,3-trimethyl-3-pentenyl, 2,2,3-trimethyl-4pentenyl, 2,3,3-trimethyl-1-pentenyl, 2,3,3-trimethyl-4-pentenyl, 2,3,4-trimethyl-1pentenyl and 2,3,4-trimethyl-2-pentenyl;

- C₃-C₆-alkynyl and the C₃-C₆-alkynyl moieties of C₃-C₆-alkynyloxy, C₃-C₆-alkynyl-carbonyl, C₃-C₆-alkynyloxycarbonyl, C₃-C₆-alkynylthiocarbonyl, C₃-C₆-alkynyl-aminocarbonyl, di(C₃-C₆-alkynyl)aminocarbonyl: for example 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-methyl-4-pentynyl, 2-methyl-3-pentynyl, 1-methyl-1-pentynyl, 3-methyl-1-pentynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2-ethyl-3-butynyl, and 1-ethyl-1-methyl-2-propynyl;
- C₃-C₈-alkynyl and the C₃-C₈-alkynyl moieties of C₃-C₈-alkynyloxy: C₃-C₆-alkynyl as mentioned above, and also, for example, 1-heptynyl, 2-heptynyl, 3-heptynyl, 2-methyl-3-hexynyl, 2-methyl-4-hexynyl, 2-methyl-5-hexynyl, 3-methyl-1-hexynyl, 3-methyl-4-hexynyl, 3-methyl-5-hexynyl, 2,2-dimethyl-3-pentynyl, 2,2-dimethyl-4-pentynyl, 2,3-dimethyl-4-pentynyl, 3-dimethyl-1-pentynyl, 1-octynyl, 2-octynyl, 3-octynyl, 4-octynyl, 2-methyl-3-heptynyl, 2-methyl-4-heptynyl, 2-methyl-5-heptynyl, 3-methyl-6-heptynyl, 3-methyl-1-heptynyl, 4-methyl-4-heptynyl, 3-methyl-5-hexynyl, 2,2-dimethyl-1-heptynyl, 4-methyl-2-heptynyl, 2,2-dimethyl-3-hexynyl, 2,2-dimethyl-4-hexynyl, 2,3-dimethyl-5-hexynyl, 3,3-dimethyl-1-hexynyl, 3,3-dimethyl-5-hexynyl, 3,3-dimethyl-1-hexynyl, 3,3-dimethyl-4-pentynyl, 3,3-dimethyl-4-pentynyl, 2,2,3-trimethyl-3-pentynyl, 2,2,3-trimethyl-4-pentynyl
- C₁-C₄-haloalkyl: a C₁-C₄-alkyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl and nonafluorobutyl;
- 40 C₁-C₆-haloalkyl and the C₁-C₆-haloalkyl moieties of C₁-C₆-haloalkylthio, C₁-C₆-

10

25

30

35

40

haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -haloalkylthiocarbonyl, C_1 - C_6 -haloalkylaminocarbonyl, di(C_1 - C_6 -haloalkyl)-aminocarbonyl: C_1 - C_4 -haloalkyl as mentioned above, and also, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl and dodecafluorohexyl;

- C₁-C₈-haloalkyl: C₁-C₆-haloalkyl as mentioned above, and also, for example,
 7-fluoroheptyl, 7-chloroheptyl, 7-bromoheptyl, 7-iodoheptyl, perfluoroheptyl,
 8-fluorooctyl, 8-chlorooctyl, 8-bromooctyl, 8-iodooctyl and perfluorooctyl;
- C₂-C₆-haloalkenyl: a C₂-C₆-alkenyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 2-chlorovinyl, 2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3-trichloroallyl, 2,3-dichlorobut-2-enyl, 2-bromovinyl, 2-bromoallyl, 3-bromoallyl, 2,3-dibromoallyl, 3,3-dibromoallyl, 2,3,3-tribromoallyl and 2,3-dibromobut-2-enyl;
- C₂-C₈-haloalkenyl: a C₂-C₆-haloalkenyl radical as mentioned above, and also, for example, 2-chloro-1-heptenyl, 3-chloro-1-heptenyl, 2,3-dichloro-1-heptenyl, 3,3-dichloro-1-heptenyl, 2,3,3-trichloro-1-heptenyl, 2-bromo-1-heptenyl, 3-bromo-1-heptenyl, 2,3-dibromo-1-heptenyl, 2,3-dichloro-1-octenyl, 3,3-dichloro-1-octenyl, 2,3,3-trichloro-1-octenyl, 2-bromo-1-octenyl, 3-bromo-1-octenyl, 2,3-dibromo-1-octenyl, 3,3-dibromo-1-octenyl and 2,3,3-tribromo-1-octenyl;
 - C₃-C₆-haloalkynyl: a C₃-C₆-alkynyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example 1,1-difluoroprop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1-yl, 1,1-difluorobut-2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1-yl, 5-iodopent-4-yn-1-yl, 6-fluorohex-4-yn-1-yl and 6-iodohex-5-yn-1-yl;
 - C₁-C₄-alkoxy and the C₁-C₄-alkoxy moieties of C₁-C₄-alkoxy-C₁-C₄-alkyl and phenyl-C₁-C₄-alkoxy: for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy and 1,1-dimethylethoxy;
 - C₁-C₆-alkoxy and the C₁-C₆-alkoxy moieties of C₁-C₆-alkoxy-C₁-C₄-alkyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₆-alkoxycarbonyl-C₂-C₄-alkenyl, C₁-C₆-alkoxysulfonyl: C₁-C₄-alkoxy as mentioned above, and also, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methoxylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy,

10

30

hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy;

- C₁-C₈-alkoxy: C₁-C₆-alkoxy as mentioned above, and also, for example, heptoxy, 2-methylhexoxy, 3-methylhexoxy, 2,2-dimethylpentoxy, 2,3-dimethylpentoxy, 2,4-dimethylpentoxy, 3,3-dimethylpentoxy, 2,2-dimethyl-3-methylbutoxy, octoxy, 2-methylheptoxy, 3-methylheptoxy, 4-methylheptoxy, 2,2-dimethylhexoxy, 2,3-dimethylhexoxy, 2,4-dimethylhexoxy, 3,3-dimethylhexoxy, 2,2,3-trimethylpentoxy, 2,3,4-trimethylpentoxy and 2,2,3,3-tetramethylbutoxy;
- C₁-C₄-haloalkoxy: a C₁-C₄-alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy, 1-(chloromethyl)-2-chloroethoxy, 1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy and nonafluorobutoxy;
 - C₁-C₆-haloalkoxy and the C₁-C₆-haloalkoxy moieties of C₁-C₆-haloalkoxycarbonyl:
 C₁-C₄-haloalkoxy as mentioned above, and also, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy and dodecafluorohexoxy;
- C₁-C₆-alkoxy-C₁-C₄-alkyl and the alkyl radicals of C₁-C₆-alkylthio-C₁-C₄-alkyl: a C₁-C₄-alkyl which is substituted by C₁-C₆-alkoxy as mentioned above, i.e., for example, methoxymethyl, ethoxymethyl, propoxymethyl, (1-methylethoxy)methyl, butoxymethyl, (1-methylpropoxy)methyl, (2-methylpropoxy)methyl, (1,1-dimethylethoxy)methyl, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(propoxy)ethyl, 2-(1-methylethoxy)ethyl, 2-(1-methylpropoxy)ethyl, 2-(2-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl, 2-(methoxy)propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl, 2-(1-methylpropoxy)propyl, 2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl, 2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,

3-(ethoxy)propyl, 3-(propoxy)propyl, 3-(1-methylethoxy)propyl, 3-(butoxy)propyl, 3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl, 3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl, 2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl, 3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl, 3-(1-methylethoxy)butyl, 3-(1-methylpropoxy)butyl, 3-(2-methylpropoxy)butyl, 3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl, 4-(butoxy)butyl, 4-(1-methylpropoxy)butyl, 4-(2-methylpropoxy)butyl, and 4-(1,1-dimethylethoxy)butyl;

10

15

20

25

30

5

C₁-C₆-alkoxycarbonyl-C₁-C₄-alkyl: C₁-C₄-alkyl which is substituted by C₁-C₆alkoxycarbonyl as mentioned above, i.e., for example, methoxycarbonylmethyl, ethoxycarbonylmethyl, propoxycarbonylmethyl, (1-methylethoxycarbonyl)methyl, butoxycarbonylmethyl, (1-methylpropoxycarbonyl)methyl, (2-methylpropoxycarbonyl)methyl, (1,1-dimethylethoxycarbonyl)methyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxycarbonyl)ethyl, 2-(1-methylethoxycarbonyl)ethyl, 2-(butoxycarbonyl)ethyl, 2-(1-methylpropoxycarbonyl)ethyl, 2-(2-methylpropoxycarbonyl)ethyl, 2-(1,1-dimethylethoxycarbonyl)ethyl, 2-(methoxycarbonyl)propyl, 2-(ethoxycarbonyl)propyl, 2-(propoxycarbonyl)propyl, 2-(1methylethoxycarbonyl)propyl, 2-(butoxycarbonyl)propyl, 2-(1-methylpropoxycarbonyl)propyl, 2-(2-methylpropoxycarbonyl)propyl, 2-(1,1-dimethylethoxycarbonyl)propyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl, 3-(propoxycarbonyl)propyl, 3-(1-methylethoxycarbonyl)propyl, 3-(butoxycarbonyl)propyl, 3-(1-methylpropoxycarbonyl)propyl, 3-(2-methylpropoxycarbonyl)propyl, 3-(1,1-dimethylethoxycarbonyl)propyl, 2-(methoxycarbonyl)butyl, 2-(ethoxycarbonyl)butyl, 2-(propoxycarbonyl)butyl, 2-(1-methylethoxycarbonyl)butyl, 2-(butoxycarbonyl)butyl, 2-(1-methylpropoxycarbonyl)butyl, 2-(2methylpropoxycarbonyl)butyl, 2-(1,1-dimethylethoxycarbonyl)butyl, 3-(methoxycarbonyl)butyl, 3-(ethoxycarbonyl)butyl, 3-(propoxycarbonyl)butyl, 3-(1-methylethoxycarbonyl)butyl, 3-(butoxycarbonyl)butyl, 3-(1-methylpropoxycarbonyl)butyl, 3-(2-methylpropoxycarbonyl)butyl, 3-(1,1-dimethylethoxycarbonyl)butyl, 4-(methoxycarbonyl)butyl, 4-(ethoxycarbonyl)butyl, 4-(propoxycarbonyl)butyl, 4-(1-methylethoxycarbonyl)butyl, 4-(butoxycarbonyl)butyl, 4-(1-methylpropoxy)-

35

- C₁-C₄-alkylthio: for example methylthio, ethylthio, n-propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio and 1,1-dimethylethylthio;

butoxy, 4-(2-methylpropoxy)butoxy and 4-(1,1-dimethylethoxycarbonyl)butyl;

- C₁-C₆-alkylthio: C₁-C₄-alkylthio as mentioned above, and also, for example, 40 pentylthio, methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethyl-

propylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropylthio and 1-ethyl-2-methylpropylthio;

- C₁-C₈-alkylthio: C₁-C₆-alkylthio as mentioned above and the alkylthio moieties of C₁-C₈-alkylthio-C₁-C₈-alkyl, and also, for example, heptylthio, 2-methylhexylthio, 3-methylhexylthio, 2,2-dimethylpentylthio, 2,3-dimethylpentylthio, 2,4-dimethylpentylthio, 3,3-dimethylpentylthio, 2,2-dimethyl-3-methylbutylthio, octylthio, 2-methylheptylthio, 3-methylheptylthio, 4-methylheptylthio, 2,2-dimethylhexylthio, 2,3-dimethylhexylthio, 2,3-dimethylhexylthio, 3,3-dimethylhexylthio, 2,2,3-trimethylpentylthio, 2,3,3-trimethylpentylthio, 2,3,4-trimethylpentylthio and 2,2,3,3-tetramethylbutylthio;
- C₁-C₆-alkylamino: for example methylamino, ethylamino, propylamino, 1-methylethylamino, butylamino, 1-methylpropylamino, 2-methylpropylamino, 1,1-dimethylethylamino, pentylamino, 1-methylbutylamino, 2-methylbutylamino, 3-methylbutylamino, 2,2-dimethylpropylamino, 1-ethylpropylamino, hexylamino, 1,1-dimethylpropylamino, 1,2-dimethylpropylamino, 1-methylpentylamino, 1,1-dimethylbutylamino, 3-methylpentylamino, 4-methylpentylamino, 1,1-dimethylbutylamino, 1,2-dimethylbutylamino, 1,3-dimethylbutylamino, 2,2-dimethylbutylamino, 2,3-dimethylbutylamino, 1-ethylbutylamino, 2-ethylbutylamino, 1,1,2-trimethylpropylamino, 1,2,2-trimethylpropylamino, 1-ethyl-1-methylpropylamino and 1-ethyl-2-methylpropylamino;
- di(C₁-C₄-alkyl)amino: for example N,N-dimethylamino, N,N-diethylamino, N,Ndipropylamino, N,N-di(1-methylethyl)amino, N,N-dibutylamino, N,N-di(1-methyl-30 propyl)amino, N,N-di(2-methylpropyl)amino, N,N-di(1,1-dimethylethyl)amino, N-ethyl-N-methylamino, N-methyl-N-propylamino, N-methyl-N-(1-methylethyl)amino, N-butyl-N-methylamino, N-methyl-N-(1-methylpropyl)-amino, N-methyl-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino, N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino, N-ethyl-N-(1-35 methylpropyl)amino, N-ethyl-N-(2-methylpropyl)amino, N-ethyl-N-(1,1-dimethylethyl)amino, N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino, N-(1methylpropyl)-N-propylamino, N-(2-methylpropyl)-N-propylamino, N-(1,1dimethylethyl)-N-propylamino, N-butyl-N-(1-methylethyl)amino, N-(1-methylethyl)-N-(1-methylpropyl)amino, N-(1-methylethyl)-N-(2-methylpropyl)amino, N-(1,1-40 dimethylethyl)-N-(1-methylethyl)amino, N-butyl-N-(1-methylpropyl)amino, N-butyl-

N-(2-methylpropyl)amino, N-butyl-N-(1,1-dimethylethyl)amino, N-(1-methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino and N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino;

5 - di(C₁-C₆-alkyl)amino and the dialkylamino moieties of di(C₁-C₆-alkyl)amino-C₁-C₆-alkyl, di(C₁-C₆-alkyl)aminocarbonyl and di(C₁-C₆-alkyl)aminocarbonyl-C₁-C₆-alkyl: di(C₁-C₄-alkyl)amino as mentioned above, for example, N,N-dipentylamino, N,N-dipentylamino, N-methyl-N-pentylamino, N-ethyl-N-pentylamino, N-methyl-N-hexylamino;

10

35

- aryl and the aryl moieties of aryloxy and aryl-C₁-C₄-alkyl: a monocyclic to tricyclic aromatic carbocycle having 6 to 14 ring members, such as, for example, phenyl, naphthyl and anthracenyl;
- 5- or 6-membered heteroaryl and the 5- or 6-membered heteroaryl moieties of 5- or 6-membered heteroaryl-C₁-C₆-alkyl: aromatic 5- or 6-membered heterocycles which, in addition to carbon atoms, may comprise one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom or one oxygen or sulfur atom as ring members, for example
- 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-triazol-3-yl, 1,3,4-oxadiazol-2-yl, 1,3,4-thiadiazol-2-yl and tetrazol-2-yl; 2-pyridinyl, 3-pyridinyl, 3-pyridinyl, 4-pyridinyl, 4

2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl and 1,2,4,5-tetrazinyl.

In a particular embodiment, the variables of the compounds of the formula I are as defined below, these definitions being, both on their own and in combination with one another, particular embodiments of the compounds of the formula I:

Preference is given to the benzenesulfonamides of the formula I in which X¹ is hydrogen, fluorine or chlorine; particularly preferably hydrogen or fluorine; especially preferably fluorine.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- X² is hydrogen, cyano, CS-NH₂ or halogen; particularly preferably hydrogen, cyano or halogen such as fluorine and chlorine; especially preferably chlorine.
- 5 Preference is also given to the benzenesulfonamide derivatives of the formula I in which
 - X¹ is hydrogen, fluorine or chlorine;
 particularly preferably hydrogen or fluorine;
 especially preferably fluorine; and
- 10 X² is hydrogen, cyano, CS-NH₂ or halogen;
 particularly preferably hydrogen, cyano, halogen such as fluorine and chlorine;
 especially preferably chlorine.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- X³ is hydrogen, cyano, C₁-C₆-alkyl or phenyl-C₁-C₄-alkyl; particularly preferably hydrogen, cyano, C₁-C₄-alkyl, such as CH₃, and C₂H₅, or benzyl; especially preferably hydrogen or cyano;
- with extraordinary preference hydrogen.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

Y is a group C(A)B;

particularly preferably C(A)B, where A is oxygen; especially preferably C(A)B, where A is oxygen and B is oxygen or sulfur; with extraordinary preference C(A)B, where A and B are oxygen.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- Y is a group C(A)B; particularly preferably C(A)B, where A is oxygen; especially preferably C(A)B, where A is oxygen and B is NR².
- 35 Preference is also given to the benzenesulfonamide derivatives of the formula I in which
 - Y is a group C(A)B; particularly preferably C(A)B, where A is oxygen; especially preferably C(A)B, where A is oxygen and B is a bond.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- R¹ is hydrogen, hydroxyl, C_1 - C_8 -alkyl, C_1 - C_8 -haloalkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl- C_1 - C_4 -alkyl, C_2 - C_8 -haloalkenyl, C_2 - C_8 -haloalkenyl,
- 5 C_3-C_8 -alkynyl, C_1-C_8 -alkoxy $_1$ C_1-C_6 -alkoxy- C_1-C_4 -alkyl, C_1-C_6 -alkoxycarbonyl- C_1-C_4 -alkyl, C_1-C_6 -alkoxycarbonyl- C_2-C_4 -alkenyl, C_2-C_6 -alkenyloxycarbonyl- C_1-C_4 -alkyl, C_3-C_6 -alkynyloxycarbonyl- C_1-C_4 -alkyl, C_1-C_6 -alkylthio- C_1-C_4 -alkyl, aryl, aryl- C_1-C_4 -alkyl;
- four- to six-membered heterocyclyl which may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy;

four- to six-membered heterocyclyl- C_1 - C_4 -alkyl which may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

five- or six-membered heteroaryl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radicals may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, amino, C₁-C₄-alkylamino and di(C₁-C₄-alkylamino;

five- or six-membered heteroaryl- C_1 - C_4 -alkyl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radicals may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

particularly preferably

25

30

35

40

 $hydrogen,\ hydroxyl,\ C_1\text{--}C_6\text{--alkyl},\ C_1\text{--}C_6\text{--haloalkyl},\ C_3\text{--}C_7\text{--cycloalkyl},$

 C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl- C_2 - C_4 -alkenyl, C_1 - C_4 -alkenyloxycarbonyl- C_1 - C_4 -alkyl, C_3 - C_6 -alkynyloxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, phenyl, benzyl;

five- or six-membered heterocyclyl which may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

five- or six-membered heteroaryl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radicals may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, amino, C₁-C₄-alkylamino and di(C₁-C₄-alkylamino and di(C₁-C₄-al

10

20

25

30

alkyl)amino;

especially preferably

 C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_5 - C_6 -cycloalkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, phenyl, benzyl; five- or six-membered heterocyclyl which may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

five- or six-membered heteroaryl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, where the two last mentioned radicals may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

15 with extraordinary preference

 C_1 - C_4 -alkyl, such as CH_3 , C_2H_5 , $CH(CH_3)_2$, $-CH_2$ - CH_2 - CH_3 , C_1 - C_4 -haloalkyl, such as CF_3 , C_5 - C_6 -cycloalkyl, C_2 - C_4 -alkenyl, C_3 - C_4 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, phenyl, benzyl, five- or six-membered heterocyclyl or five- or six-membered heteroaryl having one to four nitrogen atoms, where the two last mentioned radicals may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

R² is hydrogen, C₁-C₈-alkyl or C₂-C₈-alkenyl, particularly preferably hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl, especially preferably hydrogen or C₁-C₄-alkyl, with extraordinary preference hydrogen, CH₃, C₂H₅ or CH(CH₃)₂, with most extraordinary preference hydrogen or CH₃.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

R¹ and R² together with the nitrogen atom to which they are attached
form a three- to seven-membered heterocycle which for its part may be partially
or fully halogenated and/or may carry one to three radicals from the group
consisting of C₁-C6-alkyl, C₁-C6-haloalkyl and C₁-C6-alkoxy;
particularly preferably a three- to seven-membered heterocycle which for its part
may be partially or fully halogenated and/or may carry one to three radicals from
the group consisting of C₁-C4-alkyl and C₁-C4-alkoxy;

especially preferably a five- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy; with extraordinary preference a five- or six-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy; with most extraordinary preference a heterocycle from the group consisting of pyrrolidin-1-yl, 2,3-dihydropyrrol-1-yl, 2,5-dihydropyrrol-1-yl, piperidin-1-yl, 1,2,3,4-tetrahydropyridin-1-yl, 1,2,3,6-tetrahydropyridin-1-yl, piperazin-1-yl, morpholin-4-yl, which heterocycle may for its part be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- Y is C(A)B, where A and B are oxygen; and
- R¹ has the preferred meanings mentioned above.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- Y is C(A)B, where A is oxygen and B is NR²; and
- R² is hydrogen, C₁-C₈-alkyl or C₂-C₈-alkenyl, particularly preferably hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl, especially preferably hydrogen or C₁-C₄-alkyl,
- with extraordinary preference hydrogen, CH₃, C₂H₅ or CH(CH₃)₂; with most extraordinary preference hydrogen or CH₃;

with particular preference

20

- Y is C(=A)B, where A is oxygen and B is NR^2 ;
- 30 R² is hydrogen, C₁-C₈-alkyl or C₂-C₈-alkenyl, particularly preferably hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl, especially preferably hydrogen or C₁-C₄-alkyl, with extraordinary preference hydrogen, CH₃, C₂H₅ or CH(CH₃)₂; with most extraordinary preference hydrogen or CH₃; and
- 35 R¹ has the preferred meanings mentioned above.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- Y is C(A)B where A is oxygen and B is NR²; and
- 40 R¹ and R² together with the nitrogen atom to which they are attached,

form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl and C_1 - C_6 -alkoxy;

- particularly preferably a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy;
- especially preferably a five- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;
- with extraordinary preference a five- or six-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy;
 - with most extraordinary preference a heterocycle from the group consisting of pyrrolidin-1-yl, 2,3-dihydropyrrol-1-yl, 2,5-dihydropyrrol-1-yl, piperidin-1-yl,
- 1,2,3,4-tetrahydropyridin-1-yl, 1,2,3,6-tetrahydropyridin-1-yl, piperazin-1-yl, morpholin-4-yl, which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₄-alkyl and C₁-C₄-alkoxy.
- 20 Preference is also given to the benzenesulfonamide derivatives of the formula I in which
 - Y is C(A)B, where A is oxygen and B is a bond; and
 - R¹ has the preferred meanings mentioned above.
- 25 Preference is also given to the benzenesulfonamide derivatives of the formula I in which
 - Y is a group SO₂;

particularly preferably

- 30 Y is SO₂; and
 - R¹ has the preferred meanings mentioned above.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

35 Y is a group SO₂NR²;

particularly preferably

- Y is SO₂NR²; and
- R² is hydrogen, C₁-C₈-alkyl or C₂-C₈-alkenyl,
- 40 particularly preferably hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl,

especially preferably hydrogen or C₁-C₄-alkyl, with extraordinary preference hydrogen, CH₃, C₂H₅ or CH(CH₃)₂; with most extraordinary preference hydrogen or CH₃.

- 5 especially preferably
 - Y is SO₂NR²;
 - R² is hydrogen, C₁-C₈-alkyl or C₂-C₈-alkenyl, particularly preferably hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl, especially preferably hydrogen or C₁-C₄-alkyl,
- with extraordinary preference hydrogen, CH₃, C₂H₅ or CH(CH₃)₂; with most extraordinary preference hydrogen or CH₃; and
 - R¹ has the preferred meanings mentioned above.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- Q is Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ or Q³⁹; particularly preferably Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴, Q²⁷, Q³¹, Q³², Q³⁸ or Q³⁹;
- especially preferably Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ or Q³⁹; with extraordinary preference Q²¹, Q³² or Q³⁸.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

- 25 Q is Q¹, Q², Q³, Q⁴, Q⁶, Q⁷, Q⁸, Q⁹, Q¹⁰, Q¹¹, Q¹², Q¹³, Q¹⁴, Q¹⁵, Q¹⁶, Q¹⁷, Q¹⁸, Q¹⁹, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁵, Q²⁶, Q²⁷, Q²⁸, Q²⁹, Q³⁰, Q³¹, Q³², Q³³, Q³⁴, Q³⁵, Q³⁶, Q³⁷, Q³⁸ or Q³⁹,
 - particularly preferably Q¹, Q², Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ or Q³⁹,
- 30 especially preferably Q^1 , Q^2 , Q^7 , Q^8 , Q^{10} , Q^{12} , Q^{13} , Q^{17} , Q^{20} , Q^{21} , Q^{22} , Q^{24} , Q^{27} , Q^{31} , Q^{32} , Q^{38} or Q^{39} ,

with extraordinary preference Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ or Q³⁹, with most extraordinary preference Q²¹, Q³² or Q³⁸.

- 35 Preference is also given to the benzenesulfonamide derivatives of the formula I in which
 - $\label{eq:Q} Q \qquad \text{is } Q^7,\, Q^{21},\, Q^{22},\, Q^{27},\, Q^{32},\, Q^{38} \text{ or } Q^{39};$

particularly preferably

40 Q⁷, where Y is SO₂, SO₂NR² or C(A)B where B = oxygen or NR²;

```
Q^{21}, where Y is SO_2, SO_2NR^2 or C(A)B where B = oxygen, sulfur or NR^2,
                            preferably Y is SO<sub>2</sub>NR<sup>2</sup> or C(A)B where B = oxygen or NR<sup>2</sup>.
                           more preferably Y is SO<sub>2</sub>NR<sup>2</sup> or C(A)B where B = oxygen or NR<sup>2</sup>,
                                                        and X<sup>2</sup> is hydrogen, cyano or halogen, such as fluorine or
 5
                                                       chlorine;
                  Q<sup>22</sup>: Q<sup>27</sup>:
                  Q^{32}, where Y is SO_2, SO_2NR^2 or C(A)B where B = oxygen, sulfur or NR^2;
                  Q<sup>38</sup> or Q<sup>39</sup>:
10
         especially preferably
                           Q^{21}, where Y is SO_2, SO_2NR^2 or C(A)B where B = oxygen, sulfur
                           or NR<sup>2</sup>,
                           preferably Y is SO<sub>2</sub>NR<sup>2</sup> or C(A)B where B = oxygen or NR<sup>2</sup>,
                           more preferably Y is SO<sub>2</sub>NR<sup>2</sup> or C(A)B where B = oxygen or NR<sup>2</sup>, and
                                                       X<sup>2</sup> is hydrogen, cyano or halogen, such as fluorine or
15
                                                       chlorine;
                            Q^{32}, where Y is SO_2, SO_2NR^2 or C(A)B where B = oxygen, sulfur
                            or NR2; or
                            Q^{38}.
20
         Preference is also given to the benzenesulfonamide derivatives of the formula I in
                  which
         X^1
                  is hydrogen, fluorine or chlorine;
                  particularly preferably hydrogen or fluorine;
25
                  especially preferably fluorine;
         X^2
                  is hydrogen, cyano, CS-NH2 or halogen;
                  particularly preferably hydrogen, halogen, such as fluorine or chlorine;
                  especially preferably chlorine; and
                  is Q^1, Q^2, Q^5, Q^7, Q^8, Q^{10}, Q^{12}, Q^{13}, Q^{17}, Q^{20}, Q^{21}, Q^{22}, Q^{23}, Q^{24}, Q^{27}, Q^{31}, Q^{32}, Q^{34},
         Q
                  Q^{38} or Q^{39}.
30
                   particularly preferably Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>5</sup>, Q<sup>7</sup>, Q<sup>8</sup>, Q<sup>10</sup>, Q<sup>12</sup>, Q<sup>13</sup>, Q<sup>17</sup>, Q<sup>20</sup>, Q<sup>21</sup>, Q<sup>22</sup>, Q<sup>24</sup>,
                  Q<sup>27</sup>, Q<sup>31</sup>, Q<sup>32</sup>, Q<sup>38</sup> or Q<sup>39</sup>,
                  especially preferably Q<sup>5</sup>, Q<sup>7</sup>, Q<sup>21</sup>, Q<sup>22</sup>, Q<sup>27</sup>, Q<sup>32</sup>, Q<sup>38</sup> or Q<sup>39</sup>.
                  with extraordinary preference Q<sup>21</sup>, Q<sup>32</sup> or Q<sup>38</sup>.
35
         Preference is also given to the benzenesulfonamide derivatives of the formula I in
                  which
                  is Q<sup>1</sup> to Q<sup>39</sup>; and
         Q
         \mathsf{R}^3,\,\mathsf{R}^4,\,\mathsf{R}^7,\,\mathsf{R}^8,\,\mathsf{R}^{11},\,\mathsf{R}^{12},\,\mathsf{R}^{18},\,\mathsf{R}^{19},\,\mathsf{R}^{27},\,\mathsf{R}^{29},\,\mathsf{R}^{32},\,\mathsf{R}^{33},\,\mathsf{R}^{38},\,\mathsf{R}^{39},\,\mathsf{R}^{44},\,\mathsf{R}^{45},\,\mathsf{R}^{46}\text{ and }\mathsf{R}^{47}
40
                   are hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-
```

25

 C_6 -alkylsulfonyl or amino; preferably hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfonyl or amino;

especially-preferably hydrogen, CH₃, C₂H₅, CF₃, CHF₂, CH₂CF₃, OCH₃, OCHF₂, OCF₂CHF₂, SO₂CH₃ or amino;

R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² and R⁴³ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylsulfonyl or amino;

preferably hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -

10 haloalkoxy, C₁-C₄-alkylsulfonyl or amino; especially preferably bydrogen, CH₂, C₂H₃, CE₃, CHE₃, OCH

especially preferably hydrogen, CH₃, C₂H₅, CF₃, CHF₂, OCH₃, OCHF₂, SO₂CH₃ or amino;

R¹³, R¹⁴, R²², R²³, R²⁵ and R²⁶

are hydrogen, halogen or C₁-C₄-alkyl;

particularly preferably hydrogen, halogen or CH₃; especially preferably hydrogen, chlorine or bromine;

 R^{17} , R^{28} , R^{34} , R^{37} or R^{40}

are hydrogen, halogen or C_1 - C_4 -alkyl;

particularly preferably hydrogen, halogen or CH₃;

20 especially preferably hydrogen, chlorine or bromine.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

Q is Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ or Q³⁹, particularly preferably Q²¹, Q³² or Q³⁸;

A¹. A⁸. A⁹, A¹⁰, A¹¹, A¹², A¹³, A¹⁵, A¹⁶ and A¹⁷ are oxygen;

R⁷, R⁸, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷

are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfonyl or amino;

preferably hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylsulfonyl or amino; especially preferably hydrogen, CH₃, C₂H₅, CF₃, CHF₂, CH₂CF₃, OCH₃, OCHF₂, OCF₂CHF₂, SO₂CH₃ or amino;

35 R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴², R⁴³

are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfonyl or amino;

preferably hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfonyl or amino;

especially preferably hydrogen, CH₃, C₂H₅, CF₃, CHF₂, OCH₃, OCHF₂, SO₂CH₃ or

amino; and

R³⁴, R³⁷, R⁴⁰

are hydrogen, halogen or C₁-C₄-alkyl;

5 particularly preferably hydrogen, halogen or CH₃;

especially preferably hydrogen, chlorine or bromine.

Preference is also given to the benzenesulfonamide derivatives of the formula I in which

10 Q is Q^1 , Q^7 , Q^8 , Q^{10} , Q^{12} , Q^{13} , Q^{21} , Q^{23} , Q^{24} , Q^{31} or Q^{34} ;

 A^{1} , A^{2} , A^{3} , A^{4} , A^{5} , A^{6} , A^{7} , A^{8} , A^{9} , A^{14} , A^{16} and A^{17} are oxygen; and

R³ and R⁴, R⁵ and R⁶, R⁵ and R¹⁰, R¹⁵ and R¹⁶, R¹ã and R¹ゥ, R²⁰ and R²¹, R³⁰ and R³¹ or R⁴⁶ and R⁴⁷ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of

halogenated and/or may carry one to three radicals from the group consisting of C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy;

particularly preferably

Q is Q^1 , Q^7 , Q^8 , Q^{10} , Q^{12} , Q^{13} , Q^{21} , Q^{24} or Q^{31} ;

20 A¹, A², A³, A⁴, A⁶, A⁸, A⁹, A¹⁶ and A¹⁷ are oxygen; and

R³ and R⁴, R⁵ and R⁶ R⁵ and R¹⁰, R¹⁵ and R¹⁶, R¹в and R¹ゥ, R²⁰ and R²¹, R³⁰ and R³¹ or R⁴⁶ and R⁴¹ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₀-alkyl and C₁-C₀-alkoxy;

especially preferably

Q is Q^7 or Q^{21} ,

 A^8 , A^9 , A^{16} and A^{17} are oxygen;

30 R²⁹ is hydrogen, C₁-C₆-alkyl or amino; and

R³⁰ and R³¹ or R⁴⁶ and R⁴⁷ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy.

35

40

15

25

Extraordinary preference is given to the compounds of the formula I.1 [corresponds to formula I where X^1 = fluorine; X^2 = chlorine; X^3 = hydrogen; Y = -C(A)B (where A =oxygen, $B = NR^2$); $Q = Q^{21}$ (where A^8 , A^9 = oxygen, R^{29} = methyl, R^{30} = trifluoromethyl and R^{31} = hydrogen)], in particular to the compounds of the formulae I.1.1 to I.1.689 of Table 1, where the definitions of the variables X^1 , X^2 , X^3 , Y, A, B, R^1 , R^2 and Q are of

particular importance for the compounds according to the invention not only in combination with one another but in each case also on their own.

Table 1		
No.	R ¹	R ²
1.1.1	CH ₃	Н
1.1.2	C ₂ H ₅	Н
1.1.3	CH ₂ CH ₂ CH ₃	Н
1.1.4	CH ₂ CH ₂ CH ₂ CH ₃	Н
1.1.5	CH(CH ₃) ₂	Н
I.1.6	CH(CH₃)CH₂CH₃	H
1.1.7	CH ₂ CH(CH ₃) ₂	Н
1.1.8	C(CH ₃) ₃	Н
I.1.9	CH(CH₃)CH₂CH₂CH₃	Η
1.1.10	CH ₂ CH(CH ₃)CH ₂ CH ₃	H
1.1.11	CH ₂ CH ₂ CH(CH ₃) ₂	Τ
I.1.12	CH₂CHF₂	H
1.1.13	CH₂CF₃	H
1.1.14	CH ₂ CH ₂ CI	Н
l.1.15	CH ₂ CH ₂ Br	Н
1.1.16	CH₂CH₂CN	Н
1.1.17	CH(CH₃)CN	H
I.1.18	CH ₂ CH(CH ₃)CN	Н
1.1.19	cyclopropyl	Н
1.1.20	CH ₂ -cyclopropyl	Н
1.1.21	cyclopentyl	Н
1.1.22	CH ₂ -cyclopentyl	Н
1.1.23	cyclohexyl	Н
1.1.24	CH ₂ CH=CH ₂	Н
1.1.25	C(CH ₃)=CH ₂	Н
1.1.26	CH=CHCH₃	Н

1.1.27	CH₂CH=CHCH₃	Н
1.1.28	CH ₂ CF=CF ₂	Н
1.1.29	CH ₂ C≡CH	Н
1.1.30	CH(CH ₃)–C≡CH	Н
1.1.31	CH₂-CO-OCH₃	Н
1.1.32	CH ₂ CH ₂ -CO-OCH ₃	Н
1.1.33	CH ₂ -CO-OC ₂ H ₅	Н
1.1.34	CH(CH ₃)-CO-OCH ₃	Н
1.1.35	C(CH ₃) ₂ –CO–OCH ₃	Н
1.1.36	CH=CH-CO-OCH₃	Н
1.1.37	C(CH ₃) ₂ –CO–OCH ₂ -CH=CH ₂	Н
1.1.38	CH₂CH₂OCH₃	Н
1.1.39	CH₂CH₂OC₂H₅	Н
1.1.40	CH₂CH₂SCH₃	Н
1.1.41	CH₂CH₂S(O)CH₃	Н
1.1.42	CH₂CH₂SO₂CH₃	Н
1.1.43	CH ₂ (1,3–dioxolanyl)	Н
1.1.44	CH ₂ (2-furyl)	Н
1.1.45	CH ₂ (3–furyl)	Н
1.1.46	CH ₂ (2-thienyl)	Н
1.1.47	CH ₂ (3-thienyl)	Н
1.1.48	phenyl	Н
I.1.49	2-chlorophenyl	Н
I.1.50	3-chlorophenyl	Н
1.1.51	4-chlorophenyl	Н
1.1.52	2-fluorophenyl	Н
I.1.53	3-fluorophenyl	Н
1.1.54	4-fluorophenyl	Н
I.1.55	2-methylphenyl	Н
1.1.56	3-methylphenyl	Н
1.1.57	4-methylphenyl	Н
I.1.58	2-methoxyphenyl	Н
I.1.59	3-methoxyphenyl	Н
I.1.60	4-methoxyphenyl	Н
1.1.61	2–(methoxycarbonyl)phenyl	Н
1.1.62	3–(methoxycarbonyl)phenyl	Н
1.1.63	4–(methoxycarbonyl)phenyl	Н
I.1.64	2-nitrophenyl	Н

1.1.65	3-nitrophenyl	H
1.1.66	4-nitrophenyl	Н
1.1.67	2–(dimethylamino)phenyl	Н
1.1.68	3–(dimethylamino)phenyl	Н
1.1.69	4–(dimethylamino)phenyl	Н
1.1.70	2–(trifluoromethyl)phenyl	Н
1.1.71	3–(trifluoromethyl)phenyl	H
1.1.72	4–(trifluoromethyl)phenyl	Н
1.1.73	3–(phenoxy)phenyl	H
1.1.74	4–(phenoxy)phenyl	Н
1.1.75	2,4-difluorophenyl	Н
1.1.76	2,4-dichlorophenyl	H
1.1.77	3,4-difluorophenyl	Н
1.1.78	3,4-dichlorophenyl	Н
1.1.79	3,5-difluorophenyl	Н
1.1.80	3,5-dichlorophenyl	Н
1.1.81	2-pyridyl	Н
1.1.82	3-pyridyl	Н
I.1.83	4–pyridyl	Н
1.1.84	α-naphthyl	Н
1.1.84	benzyl	Н
1.1.86	2-chlorobenzyl	Н
1.1.87	3-chlorobenzyl	Н
I.1.88	4-chlorobenzyl	Н
1.1.89	2-methoxybenzyl	Н
1.1.90	3-methoxybenzyl	Н
1.1.91	4-methoxybenzyl	Н
1.1.92	4-chloro-6-methoxy-1,3-pyrimidin-2-yl	Н
1.1.93	4-methyl-6-methoxy-1,3-pyrimidin-2-yl	Н
1.1.94	4-methyl-6-methylamino-1,3-pyrimidin-2-yl	Н
I.1.95	4,6-dimethyl-1,3-pyrimidin-2-yl	Н
1.1.96	4-trifluoromethyl-6-methoxy-1,3-pyrimidin-2-yl	Н
1.1.97	4-methoxy-6-methylamino-1,3-pyrimidin-2-yl	Н
I.1.98	4-difluoromethoxy-6-methyl-1,3-pyrimidin-2-yl	Н
I.1.99	4,6-bis(difluoromethoxy)-1,3-pyrimidin-2-yl	Н
1.1.100	4-methyl-6-methoxy-1,3,5-triazin-2-yl	Н
1.1.101	4,6-dimethyl-1,3,5-triazin-2-yl	Н
1.1.102	4-methylamino-6-methoxy-1,3,5-triazin-2-yl	Н

1.1.103	4-trifluoromethyl-6-methoxy-1,3,5-triazin-2-yl	H
1.1.104	4,6-dimethoxy-1,3,5-triazin-2-yl	Н
1.1.105	CH₃	CH₃
1.1.106	C₂H₅-	CH ₃
1.1.107	CH₂CH₂CH₃	CH ₃
I.1.108	CH₂CH₂CH₃	CH ₃
1.1.109	CH(CH ₃) ₂	CH ₃
1.1.110	CH(CH₃)C₂H₅	CH ₃
1.1.111	CH₂CH(CH₃)₂	CH₃
1.1.112	C(CH₃)₃	CH ₃
1.1.113	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH ₃
1.1.114	CH₂CH(CH₃)CH₂CH₃	CH ₃
1.1.115	CH₂CH₂CH(CH₃)₂	CH₃
1.1.116	CH₂CHF₂	CH₃
1.1.117	CH₂CF₃	CH₃
1.1.118	CH₂CH₂CI	CH ₃
1.1.119	CH₂CH₂Br	CH₃
1.1.120	CH₂CH₂CN	CH ₃
I.1.121	CH(CH ₃)CN	CH ₃
I.1.122	CH₂CH(CH₃)CN	CH₃
I.1.123	cyclopropyl	CH₃
I.1.124	CH₂-cyclopropyl	CH₃
I.1.125	cyclopentyl	CH₃
I.1.126	CH ₂ -cyclopentyl	CH₃
1.1.127	cyclohexyl	CH ₃
1.1.128	CH₂CH=CH₂	CH₃
1.1.129	C(CH ₃)=CH ₂	CH₃
1.1.130	CH=CHCH ₃	CH ₃
1.1.131	CH₂CH=CHCH₃	CH₃
1.1.132	CH ₂ CF=CF ₂	CH ₃
1.1.133	CH₂C≡CH	CH₃
1.1.134	CH(CH₃)–C≡CH	CH₃
1.1.135	ОН	CH ₃
1.1.136	OCH₃	CH₃
1.1.137	CH₂-CO-OCH₃	CH₃
1.1.138	CH ₂ CH ₂ -CO-OCH ₃	CH₃
I.1.139	CH₂-CO-OC₂H₅	CH₃
I.1.140	CH(CH ₃)–CO–OCH ₃	CH₃

1.1.141	C(CH ₃) ₂ –CO–OCH ₃	CH ₃
1.1.142	CH=CH-CO-OCH₃	CH ₃
1.1.143	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH ₃
1.1.144	CH₂GH₂OCH₃	CH ₃
1.1.145	CH ₂ CH ₂ OC ₂ H ₅	CH ₃
1.1.146	CH₂CH₂SCH₃	CH₃
1.1.147	CH₂CH₂S(O)CH₃	CH₃
1.1.148	CH₂CH₂SO₂CH₃	CH₃
1.1.149	CH₂(1,3–dioxolanyl)	CH₃
1.1.150	CH₂(2–furyl)	CH₃
1.1.151	CH₂(3–furyl)	CH₃
1.1.152	CH ₂ (2-thienyl)	CH₃
1.1.153	CH ₂ (3-thienyl)	CH₃
1.1.154	phenyl	CH₃
1.1.155	2-chlorophenyl	CH₃
1.1.156	3-chlorophenyl	CH ₃
1.1.157	4-chlorophenyl	CH₃
I.1.158	2–fluorophenyl	CH ₃
1.1.159	3-fluorophenyl	CH₃
1.1.160	4–fluorophenyl	CH ₃
1.1.161	2-methylphenyl	CH ₃
1.1.162	3-methylphenyl	CH₃
1.1.163	4-methylphenyl	CH₃
1.1.164	2-methoxyphenyl	CH₃
I.1.165	3-methoxyphenyl	CH₃
1.1.166	4-methoxyphenyl	CH₃
I.1.167	2–(methoxycarbonyl)phenyl	CH₃
I.1.168	3–(methoxycarbonyl)phenyl	CH₃
1.1.169	4–(methoxycarbonyl)phenyl	CH₃
1.1.170	2-nitrophenyl	CH₃
1.1.171	3-nitrophenyl	CH₃
1.1.172	4-nitrophenyl	CH₃
1.1.173	2–(dimethylamino)phenyl	CH₃
1.1.174	3-(dimethylamino)phenyl	CH₃
1.1.175	4–(dimethylamino)phenyl	CH₃
1.1.176	2-(trifluoromethyl)phenyl	CH₃
1.1.177	3–(trifluoromethyl)phenyl	CH₃
1.1.178	4–(trifluoromethyl)phenyl	CH ₃

1.1.179	3–(phenoxy)phenyl	CH ₃
1.1.180	4–(phenoxy)phenyl	CH ₃
1.1.181	2,4-difluorophenyl	CH₃
1.1.182	2,4-dichlorophenyl	CH₃
1.1.183	3,4-difluorophenyl	CH₃
1.1.184	3,4-dichlorophenyl	CH₃
I.1.185	3,5-difluorophenyl	CH₃
1.1.186	3,5-dichlorophenyl	CH ₃
1.1.187	2–pyridyl	CH ₃
1.1.188	3–pyridyl	CH ₃
1.1.189	4–pyridyl	CH₃
1.1.190	α-naphthyl	CH₃
1.1.191	benzyl	CH ₃
1.1.192	2-chlorobenzyl	CH₃
1.1.193	3-chlorobenzyl	CH₃
1.1.194	4-chlorobenzyl	CH₃
1.1.195	2-methoxybenzyl	CH₃
1.1.196	3-methoxybenzyl	CH₃
1.1.197	4-methoxybenzyl	CH ₃
1.1.198	C₂H₅	C₂H₅
1.1.199	CH₂CH₂CH₃	C ₂ H ₅
1.1.200	CH ₂ CH ₂ CH ₂ CH ₃	C ₂ H ₅
1.1.201	CH(CH ₃) ₂	C ₂ H ₅
1.1.202	CH(CH₃)CH₂CH₃	C ₂ H ₅
I.1.203	CH ₂ CH(CH ₃) ₂	C₂H₅
1.1.204	C(CH₃)₃	C ₂ H ₅
1.1.205	CH(CH ₃)CH ₂ CH ₂ CH ₃	C₂H₅
1.1.206	CH₂CH(CH₃)CH₂CH₃	C₂H₅
1.1.207	CH ₂ CH ₂ CH(CH ₃) ₂	C₂H₅
I.1.208	CH₂CHF₂	C₂H₅
I.1.209	CH₂CF₃	C₂H₅
I.1.210	CH ₂ CH ₂ CI	C ₂ H ₅
1.1.211	CH ₂ CH ₂ Br	C ₂ H ₅
1.1.212	CH ₂ CH ₂ CN	C ₂ H ₅
1.1.213	CH(CH ₃)CN	C ₂ H ₅
1.1.214	CH ₂ CH(CH ₃)CN	C ₂ H ₅
1.1.215	cyclopropyl	C ₂ H ₅
1.1.216	CH ₂ -cyclopropyl	C ₂ H ₅

1.1.217	cyclopentyl	C ₂ H ₅
1.1.218	CH ₂ -cyclopentyl	C ₂ H ₅
1.1.219	cyclohexyl	C ₂ H ₅
1.1.220	CH ₂ GH=CH ₂	C ₂ H ₅
1.1.221	C(CH ₃)=CH ₂	C ₂ H ₅
1.1.222	CH=CHCH₃	C ₂ H ₅
1.1.223	CH₂CH=CHCH₃	C ₂ H ₅
1.1.224	CH ₂ -CF=CF ₂	C ₂ H ₅
1.1.225	CH ₂ –C≡CH	C ₂ H ₅
1.1.226	CH(CH ₃)–C≡CH	C ₂ H ₅
1.1.227	ОН	C ₂ H ₅
I.1.228	OCH₃	C ₂ H ₅
1.1.229	CH ₂ -CO-OCH ₃	C ₂ H ₅
1.1.230	CH ₂ -CH ₂ -CO-OCH ₃	C ₂ H ₅
1.1.231	CH ₂ -CO-OC ₂ H ₅	C ₂ H ₅
1.1.232	CH(CH ₃)-CO-OCH ₃	C ₂ H ₅
1.1.233	C(CH ₃) ₂ –CO–OCH ₃	C ₂ H ₅
1.1.234	CH=CH-CO-OCH₃	C ₂ H ₅
1.1.235	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	C ₂ H ₅
I.1.236	CH₂CH₂OCH₃	C ₂ H ₅
1.1.237	CH₂CH₂OC₂H₅	C ₂ H ₅
1.1.238	CH ₂ CH ₂ SCH ₃	C ₂ H ₅
1.1.239	CH ₂ CH ₂ S(O)CH ₃	C ₂ H ₅
1.1.240	CH ₂ CH ₂ SO ₂ CH ₃	C₂H₅ .
1.1.241	CH ₂ (1,3–dioxolanyl)	C ₂ H ₅
1.1.242	CH ₂ (2–furyl)	C₂H₅
1.1.243	CH₂(3–furyl)	C ₂ H ₅
1.1.244	CH₂(2–thienyl)	C ₂ H ₅
1.1.245	CH ₂ (3–thienyl)	C ₂ H ₅
1.1.246	phenyl	C ₂ H ₅
1.1.247	2-chlorophenyl	C ₂ H ₅
1.1.248	3-chlorophenyl	C₂H₅
1.1.249	4-chlorophenyl	C ₂ H ₅
1.1.250	2–fluorophenyl	C₂H₅
I.1.251	3-fluorophenyl	C₂H₅
1.1.252	4–fluorophenyl	C ₂ H ₅
1.1.253	2-methylphenyl	C ₂ H ₅
1.1.254	3-methylphenyl	C ₂ H ₅

1.1.255	4-methylphenyl	C ₂ H ₅
1.1.256	2-methoxyphenyl	C₂H₅
1.1.257	3-methoxyphenyl	C₂H₅
1.1.258	4-methoxyphenyl	C₂H₅
1.1.259	2–(methoxycarbonyl)phenyl	C₂H₅
1.1.260	3–(methoxycarbonyl)phenyl	C₂H₅
1.1.261	4–(methoxycarbonyl)phenyl	C₂H₅
1.1.262	2-nitrophenyl	C₂H₅
1.1.263	3-nitrophenyl	C ₂ H ₅
1.1.264	4-nitrophenyl	C₂H₅
1.1.265	2-(dimethylamino)phenyl	C ₂ H ₅
1.1.266	3–(dimethylamino)phenyl	C ₂ H ₅
1.1.267	4–(dimethylamino)phenyl	C ₂ H ₅
1.1.268	2–(trifluoromethyl)phenyl	C₂H₅
1.1.269	3–(trifluoromethyl)phenyl	C ₂ H ₅
1.1.270	4–(trifluoromethyl)phenyl	C ₂ H ₅
1.1.271	3–(phenoxy)phenyl	C ₂ H ₅
1.1.272	4–(phenoxy)phenyl	C₂H₅
1.1.273	2,4—difluorophenyl	C₂H₅
1.1.274	2,4-dichlorophenyl	C ₂ H ₅
1.1.275	3,4-difluorophenyl	C₂H₅
1.1.276	3,4-dichlorophenyl	C₂H₅
1.1.277	3,5-difluorophenyl	C₂H₅
I.1.278	3,5-dichlorophenyl	C ₂ H ₅
1.1.279	2–pyridyl	C ₂ H ₅
I.1.280	3-pyridyl	C ₂ H ₅
1.1.281	4-pyridyl	C ₂ H ₅
1.1.282	α-naphthyl	C ₂ H ₅
1.1.283	benzyl	C₂H₅
1.1.284	2-chlorobenzyl	C₂H₅
1.1.285	3-chlorobenzyl	C ₂ H ₅
1.1.286	4-chlorobenzyl	C ₂ H ₅
1.1.287	2-methoxybenzyl	C ₂ H ₅
I.1.288	3-methoxybenzyl	C ₂ H ₅
1.1.289	4-methoxybenzyl	C ₂ H ₅
1.1.290	CH ₂ CH ₂ CH ₃	CH₂CH₂CH₃
1.1.291	CH₂CH₂CH₂CH₃	CH ₂ CH ₂ CH ₃
1.1.292	CH(CH ₃) ₂	CH₂CH₂CH₃

1.1.293	CH(CH₃)CH₂CH₃	CH₂CH₂CH₃
1.1.294	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
1.1.295	C(CH ₃) ₃	CH ₂ CH ₂ CH ₃
1.1.296	CH(GH ₃)CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
1.1.297	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
1.1.298	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
1.1.299	CH ₂ CHF ₂	CH ₂ CH ₂ CH ₃
1.1.300	CH ₂ CF ₃	CH ₂ CH ₂ CH ₃
1.1.301	CH₂CH₂CI	CH ₂ CH ₂ CH ₃
1.1.302	CH₂CH₂Br	CH ₂ CH ₂ CH ₃
1.1.303	CH₂CH₂CN	CH ₂ CH ₂ CH ₃
1.1.304	CH(CH₃)CN	CH ₂ CH ₂ CH ₃
1.1.305	CH₂CH(CH₃)CN	CH₂CH₂CH₃
1.1.306	cyclopropyl	CH ₂ CH ₂ CH ₃
1.1.307	CH₂-cyclopropyl	CH ₂ CH ₂ CH ₃
1.1.308	cyclopentyl	CH ₂ CH ₂ CH ₃
1.1.309	CH ₂ -cyclopentyl	CH ₂ CH ₂ CH ₃
1.1.310	cyclohexyl	CH ₂ CH ₂ CH ₃
1.1.311	CH ₂ CH=CH ₂	CH ₂ CH ₂ CH ₃
1.1.312	C(CH ₃)=CH ₂	CH ₂ CH ₂ CH ₃
1.1.313	CH=CHCH₃	CH ₂ CH ₂ CH ₃
1.1.314	CH₂CH=CHCH₃	CH ₂ CH ₂ CH ₃
1.1.315	CH ₂ CF=CF ₂	CH ₂ CH ₂ CH ₃
1.1.316	CH ₂ –C≡CH	CH ₂ CH ₂ CH ₃
1.1.317	CH(CH₃)–C≡CH	CH ₂ CH ₂ CH ₃
1.1.318	ОН	CH ₂ CH ₂ CH ₃
1.1.319	OCH₃	CH ₂ CH ₂ CH ₃
1.1.320	CH ₂ -CO-OCH ₃	CH ₂ CH ₂ CH ₃
1.1.321	CH₂-CH₂-CO-OCH₃	CH ₂ CH ₂ CH ₃
1.1.322	CH₂-CO-OC₂H₅	CH ₂ CH ₂ CH ₃
1.1.323	CH(CH ₃)-CO-OCH ₃	CH ₂ CH ₂ CH ₃
1.1.324	C(CH ₃) ₂ –CO–OCH ₃	CH ₂ CH ₂ CH ₃
1.1.325	CH=CH-CO-OCH ₃	CH₂CH₂CH₃
1.1.326	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH ₂ CH ₂ CH ₃
1.1.327	CH₂CH₂OCH₃	CH₂CH₂CH₃
1.1.328	CH₂CH₂OC₂Ḥ₅	CH₂CH₂CH₃
1.1.329	CH₂CH₂SCH₃	CH₂CH₂CH₃
1.1.330	CH₂CH₂S(O)CH₃	CH₂CH₂CH₃

1.1.331	CH ₂ CH ₂ SO ₂ CH ₃	CH₂CH₂CH₃	
1.1.332	CH ₂ (1,3–dioxolanyl)	CH₂CH₂CH₃	
1.1.333	CH₂(2–furyl)	CH₂CH₂CH₃	
1.1.334	CH₂(3–furyl)	CH₂CH₂CH₃	
1.1.335	CH ₂ (2-thienyl)	CH₂CH₂CH₃	
1.1.336	CH ₂ (3-thienyl)	CH₂CH₂CH₃	
1.1.337	phenyl	CH₂CH₂CH₃	
1.1.338	2-chlorophenyl	CH₂CH₂CH₃	
1.1.339	3-chlorophenyl	CH₂CH₂CH₃	
1.1.340	4-chlorophenyl	CH₂CH₂CH₃	
1.1.341	2-fluorophenyl	CH₂CH₂CH₃	
1.1.342	3-fluorophenyl	CH₂CH₂CH₃	
1.1.343	4-fluorophenyl	CH₂CH₂CH₃	
1.1.344	2-methylphenyl	CH₂CH₂CH₃	
1.1.345	3-methylphenyl	CH ₂ CH ₂ CH ₃	
1.1.346	4-methylphenyl	CH₂CH₂CH₃	
1.1.347	2-methoxyphenyl	CH₂CH₂CH₃	
1.1.348	3-methoxyphenyl	CH ₂ CH ₂ CH ₃	
1.1.349	4-methoxypheny!	CH₂CH₂CH₃	
I.1.350	2–(methoxycarbonyl)phenyl	CH₂CH₂CH₃	
1.1.351	3–(methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₃	
I.1.352	4-(methoxycarbonyl)phenyl	CH ₂ CH ₂ CH ₃	
I.1.353	2-nitrophenyl	CH ₂ CH ₂ CH ₃	
1.1.354	3-nitrophenyl	CH ₂ CH ₂ CH ₃	
1.1.355	4-nitrophenyl	CH ₂ CH ₂ CH ₃	
1.1.356	2-(dimethylamino)phenyl	CH ₂ CH ₂ CH ₃	
1.1.357	3-(dimethylamino)phenyl	CH₂CH₂CH₃	
1.1.358	4-(dimethylamino)phenyl	CH ₂ CH ₂ CH ₃	
I.1.359	2–(trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₃	
1.1.360	3-(trifluoromethyl)phenyl	CH ₂ CH ₂ CH ₃	
1.1.361	4–(trifluoromethyl)phenyl	CH₂CH₂CH₃	
1.1.362	3-(phenoxy)phenyl	CH₂CH₂CH₃	
1.1.363	4–(phenoxy)phenyl	CH₂CH₂CH₃	
1.1.364	2,4-difluorophenyl	CH₂CH₂CH₃	
1.1.365	2,4-dichlorophenyl	CH₂CH₂CH₃	
1.1.366	3,4-difluorophenyl	CH₂CH₂CH₃	
1.1.367	3,4-dichlorophenyl	CH₂CH₂CH₃	
1.1.368	3,5-difluorophenyl	CH ₂ CH ₂ CH ₃	

1.1.369	3,5-dichlorophenyl	CH ₂ CH ₂ CH ₃	
1.1.370	2–pyridyl	CH₂CH₂CH₃	
1.1.371	3-pyridyl	CH₂CH₂CH₃	
1.1.372	4–pyridyl	CH ₂ CH ₂ CH ₃	
1.1.373	α-naphthyl	CH₂CH₂CH₃	
1.1.374	benzyl	CH₂CH₂CH₃	
1.1.375	2-chlorobenzyl	CH₂CH₂CH₃	
1.1.376	3-chlorobenzyl	CH ₂ CH ₂ CH ₃	
1.1.377	4-chlorobenzyl	CH₂CH₂CH₃	
1.1.378	2-methoxybenzyl	CH₂CH₂CH₃	
1.1.379	3-methoxybenzyl	CH ₂ CH ₂ CH ₃	
1.1.380	4-methoxybenzyl	CH₂CH₂CH₃	
I.1.381	CH₂CH₂CH₃	CH(CH₃)₂	
1.1.382	CH(CH ₃) ₂	CH(CH ₃) ₂	
1.1.383	CH(CH₃)CH₂CH₃	CH(CH ₃) ₂	
1.1.384	CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂	
1.1.385	C(CH ₃) ₃	CH(CH ₃) ₂	
1.1.386	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃) ₂	
1.1.387	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH(CH ₃) ₂	
1.1.388	CH ₂ CH ₂ CH(CH ₃) ₂	CH(CH ₃) ₂	
1.1.389	CH ₂ CHF ₂	CH(CH ₃) ₂	
1.1.390	CH₂CF₃	CH(CH ₃) ₂	
1.1.391	CH₂CH₂CI	CH(CH ₃) ₂	
1.1.392	CH₂CH₂Br	CH(CH ₃) ₂	
1.1.393	CH₂CH₂CN	CH(CH ₃) ₂	
1.1.394	CH(CH₃)CN	CH(CH ₃) ₂	
1.1.395	CH₂CH(CH₃)CN	CH(CH ₃) ₂	
1.1.396	cyclopropyl	CH(CH ₃) ₂	
1.1.397	CH ₂ -cyclopropyl	CH(CH ₃) ₂	
1.1.398	cyclopentyl	CH(CH ₃) ₂	
1.1.399	CH ₂ -cyclopentyl	CH(CH ₃) ₂	
1.1.400	cyclohexyl	CH(CH ₃) ₂	
1.1.401	CH ₂ CH=CH ₂	CH(CH ₃) ₂	
1.1.402	C(CH ₃)=CH ₂	CH(CH ₃) ₂	
1.1.403	CH=CHCH₃	CH(CH ₃) ₂	
1.1.404	CH₂CH=CHCH₃	CH(CH ₃) ₂	
1.1.405	CH ₂ CF=CF ₂	CH(CH ₃) ₂	
1.1.406	CH ₂ –C≡CH	CH(CH ₃) ₂	

1.1.407	CH(CH₃)–C≡CH	CH(CH ₃) ₂
1.1.408	ОН	CH(CH ₃) ₂
1.1.409	OCH₃	CH(CH₃)₂
1.1.410	CH ₂ -CO-OCH ₃	CH(CH ₃) ₂
1.1.411	CH ₂ -CH ₂ -CO-OCH ₃	CH(CH ₃) ₂
1.1.412	CH ₂ -CO-OC ₂ H ₅	CH(CH ₃) ₂
1.1.413	CH(CH ₃)–CO–OCH ₃	CH(CH ₃) ₂
1.1.414	C(CH ₃) ₂ –CO–OCH ₃	CH(CH ₃) ₂
1.1.415	CH=CH-CO-OCH₃	CH(CH ₃) ₂
1.1.416	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	CH(CH ₃) ₂
1.1.417	CH₂CH₂OCH₃	CH(CH ₃) ₂
1.1.418	CH ₂ CH ₂ OC ₂ H ₅	CH(CH ₃) ₂
1.1.419	CH ₂ CH ₂ SCH ₃	CH(CH ₃) ₂
1.1.420	CH₂CH₂S(O)CH₃	CH(CH ₃) ₂
1.1.421	CH ₂ CH ₂ SO ₂ CH ₃	CH(CH₃)₂
1.1.422	CH₂(1,3–dioxolanyl)	CH(CH ₃) ₂
1.1.423	CH₂(2–furyl)	CH(CH ₃) ₂
1.1.424	CH₂(3–furyl)	CH(CH ₃) ₂
1.1.425	CH₂(2–thienyl)	CH(CH ₃) ₂
1.1.426	CH₂(3–thienyl)	CH(CH ₃) ₂
1.1.427	phenyl	CH(CH ₃) ₂
1.1.428	2-chlorophenyl	CH(CH ₃) ₂
1.1.429	3-chlorophenyl	CH(CH ₃) ₂
1.1.430	4-chlorophenyl	CH(CH ₃) ₂
1.1.431	2–fluorophenyl	CH(CH ₃) ₂
1.1.432	3-fluorophenyl	CH(CH ₃) ₂
1.1.433	4-fluorophenyl	CH(CH ₃) ₂
1.1.434	2-methylphenyl	CH(CH ₃) ₂
1.1.435	3-methylphenyl	CH(CH₃)₂
I.1.436	4-methylphenyl	CH(CH ₃) ₂
1.1.437	2-methoxyphenyl	CH(CH₃)₂
1.1.438	3-methoxyphenyl	CH(CH₃)₂
1.1.439	4-methoxyphenyl	CH(CH ₃) ₂
1.1.440	2-(methoxycarbonyl)phenyl	CH(CH ₃) ₂
1.1.441	3–(methoxycarbonyl)phenyl	CH(CH ₃) ₂
1.1.442	4–(methoxycarbonyl)phenyl	CH(CH ₃) ₂
1.1.443	2-nitrophenyl	CH(CH ₃) ₂
1.1.444	3-nitrophenyl	CH(CH ₃) ₂

1.1.445	4-nitrophenyl	CH(CH ₃) ₂	
1.1.446	2–(dimethylamino)phenyl	CH(CH ₃) ₂	
I.1.447	3–(dimethylamino)phenyl	CH(CH ₃) ₂	
1.1.448	4–(dimethylamino)phenyl	CH(CH ₃) ₂	
1.1.449	2–(trifluoromethyl)phenyl	CH(CH ₃) ₂	
1.1.450	3–(trifluoromethyl)phenyl	CH(CH ₃) ₂	
1.1.451	4-(trifluoromethyl)phenyl	CH(CH ₃) ₂	
1.1.452	3-(phenoxy)phenyl	CH(CH ₃) ₂	
1.1.453	4–(phenoxy)phenyl	CH(CH ₃) ₂	
I.1.454	2,4-difluorophenyl	CH(CH ₃) ₂	
1.1.455	2,4-dichlorophenyl	CH(CH ₃) ₂	
1.1.456	3,4-difluorophenyl	CH(CH ₃) ₂	
1.1.457	3,4-dichlorophenyl	CH(CH ₃) ₂	
1.1.458	3,5-difluorophenyl	CH(CH ₃) ₂	
1.1.459	3,5-dichlorophenyl	CH(CH₃)₂	
1.1.460	2–pyridyl	CH(CH ₃) ₂	
1.1.461	3-pyridyl	CH(CH₃)₂	
1.1.462	4-pyridyl	CH(CH₃)₂	
1.1.463	α-naphthyl	CH(CH₃)₂	
1.1.464	benzyl	CH(CH ₃) ₂	
1.1.465	2-chlorobenzyl	CH(CH₃)₂	
I.1.466	3-chlorobenzyl	CH(CH₃)₂	
1.1.467	4-chlorobenzyl	CH(CH₃)₂	
I.1.468	2-methoxybenzyl	CH(CH₃)₂	
I.1.469	3-methoxybenzyl	CH(CH₃)₂	
I.1.470	4-methoxybenzyl	CH(CH ₃) ₂	
1.1.471	CH(CH₃)CH₂CH₃	CH ₂ CH ₂ CH ₃	
1.1.472	CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃	
I.1.473	C(CH₃)₃	CH ₂ CH ₂ CH ₃	
1.1.474	CH(CH₃)CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.475	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	
I.1.476	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.477	CH ₂ CHF ₂	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.478	CH₂CF₃	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.479	CH ₂ CH ₂ CI	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.480	CH₂CH₂Br	CH ₂ CH ₂ CH ₂ CH ₃	
I.1.481	CH ₂ CH ₂ CN	CH₂CH₂CH₂CH₃	
1.1.482	CH(CH₃)CN	CH ₂ CH ₂ CH ₂ CH ₃	

1.1.483	CH₂CH(CH₃)CN	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.484	cyclopropyl	CH₂CH₂CH₃	
1.1.485	CH₂-cyclopropyl	CH₂CH₂CH₃	
1.1.486	cyclopentyl	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.487	CH ₂ -cyclopentyl	CH₂CH₂CH₃	
1.1.488	cyclohexyl	CH₂CH₂CH₃	
1.1.489	CH ₂ CH=CH ₂	CH₂CH₂CH₃	
1.1.490	C(CH ₃)=CH ₂	CH₂CH₂CH₃	
1.1.491	CH=CHCH₃	CH₂CH₂CH₃	
1.1.492	CH₂CH=CHCH₃	CH₂CH₂CH₃	
1.1.493	CH ₂ CF=CF ₂	CH₂CH₂CH₃	
1.1.494	CH ₂ –C≡CH	CH₂CH₂CH₃	
1.1.495	CH(CH ₃)–C≡CH	CH₂CH₂CH₃	
1.1.496	ОН	CH₂CH₂CH₃	
1.1.497	OCH₃	CH₂CH₂CH₃	
1.1.498	CH₂-CO-OCH₃	CH₂CH₂CH₃	
1.1.499	CH ₂ -CH ₂ -CO-OCH ₃	CH₂CH₂CH₃	
1.1.500	CH ₂ -CO-OC ₂ H ₅	CH₂CH₂CH₃	
1.1.501	CH(CH ₃)–CO–OCH ₃	CH₂CH₂CH₂CH₃	
1.1.502	C(CH ₃) ₂ –CO–OCH ₃	CH₂CH₂CH₃	
1.1.503	CH=CH-CO-OCH ₃	CH₂CH₂CH₃	
1.1.504	C(CH ₃) ₂ –CO–OCH ₂ -CH=CH ₂	CH₂CH₂CH₃	
1.1.505	CH ₂ CH ₂ OCH ₃	CH₂CH₂CH₃	
1.1.506	CH ₂ CH ₂ OC ₂ H ₅	CH₂CH₂CH₃	
I.1.507	CH ₂ CH ₂ SCH ₃	CH₂CH₂CH₃	
I.1.508	CH ₂ CH ₂ S(O)CH ₃	CH₂CH₂CH₃	
I.1.509	CH ₂ CH ₂ SO ₂ CH ₃	CH₂CH₂CH₃	
1.1.510	CH₂(1,3–dioxolanyl)	CH₂CH₂CH₃	
1.1.511	CH₂(2–furyl)	CH₂CH₂CH₃	
1.1.512	CH₂(3–furyl)	CH₂CH₂CH₃	
1.1.513	CH₂(2–thienyl)	CH₂CH₂CH₃	
1.1.514	CH₂(3–thienyl)	CH ₂ CH ₂ CH ₃	
1.1.515	phenyl	CH ₂ CH ₂ CH ₂ CH ₃	
1.1.516	2-chlorophenyl	CH₂CH₂CH₂CH₃	
1.1.517	3-chlorophenyl	CH ₂ CH ₂ CH ₃	
1.1.518	4-chlorophenyl	CH ₂ CH ₂ CH ₃	
1.1.519	2–fluorophenyl	CH₂CH₂CH₃	
1.1.520	3-fluorophenyl	CH ₂ CH ₂ CH ₂ CH ₃	

1.1.521	4-fluorophenyl	CH₂CH₂CH₂CH₃
1.1.522	2-methylphenyl	CH₂CH₂CH₂CH₃
1.1.523	3-methylphenyl	CH₂CH₂CH₃
1.1.524	4-methylphenyl	CH₂CH₂CH₃
1.1.525	2-methoxyphenyl	CH₂CH₂CH₂CH₃
1.1.526	3-methoxyphenyl	CH₂CH₂CH₃
1.1.527	4-methoxyphenyl	CH₂CH₂CH₃
1.1.528	2–(methoxycarbonyl)phenyl	CH₂CH₂CH₃
1.1.529	3–(methoxycarbonyl)phenyl	CH₂CH₂CH₃
1.1.530	4–(methoxycarbonyl)phenyl	CH₂CH₂CH₃
1.1.531	2-nitrophenyl	CH₂CH₂CH₃
1.1.532	3-nitrophenyl	CH₂CH₂CH₃
1.1.689	4-nitrophenyl	CH₂CH₂CH₃
1.1.534	2–(dimethylamino)phenyl	CH₂CH₂CH₃
I.1.535	3–(dimethylamino)phenyl	CH₂CH₂CH₃
1.1.536	4–(dimethylamino)phenyl	CH₂CH₂CH₃
1.1.537	2–(trifluoromethyl)phenyl	CH₂CH₂CH₃
1.1.538	3-(trifluoromethyl)phenyl	CH₂CH₂CH₃
1.1.539	4–(trifluoromethyl)phenyl	CH₂CH₂CH₃
1.1.540	3–(phenoxy)phenyl	CH₂CH₂CH₃
1.1.541	4–(phenoxy)phenyl	CH₂CH₂CH₃
1.1.542	2,4-difluorophenyl	CH₂CH₂CH₃
1.1.543	2,4-dichlorophenyl	CH₂CH₂CH₃
1.1.544	3,4-difluorophenyl	CH₂CH₂CH₃
1.1.545	3,4-dichlorophenyl	CH₂CH₂CH₃
1.1.546	3,5-difluorophenyl	CH₂CH₂CH₃
1.1.547	3,5-dichlorophenyl	CH₂CH₂CH₃
1.1.548	2–pyridyl	CH₂CH₂CH₃
1.1.549	3–pyridyl	CH₂CH₂CH₃
1.1.550	4-pyridyl	CH₂CH₂CH₃
I.1.551	α-naphthyl	CH ₂ CH ₂ CH ₃
1.1.552	benzyl	CH ₂ CH ₂ CH ₃
1.1.553	2-chlorobenzyl	CH₂CH₂CH₃
1.1.554	3-chlorobenzyl	CH₂CH₂CH₃
1.1.555	4-chlorobenzyl	CH₂CH₂CH₃
I.1.556	2-methoxybenzyl	CH₂CH₂CH₂CH₃
I.1.557	3-methoxybenzyl	CH₂CH₂CH₃
1.1.558	4-methoxybenzyl	CH₂CH₂CH₃

1.1.559	CH(CH₃)CH₂CH₃	CH₂CH(CH₃)₂
1.1.560	CH ₂ CH(CH ₃) ₂	CH₂CH(CH₃)₂
1.1.561	CH(CH₃)CH₂CH₂CH₃	CH₂CH(CH₃)₂
1.1.562	CH₂GH(CH₃)CH₂CH₃	CH ₂ CH(CH ₃) ₂
1.1.563	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂
1.1.564	CH₂CHF₂	CH ₂ CH(CH ₃) ₂
I.1.565	CH₂CF₃	CH₂CH(CH₃)₂
1.1.566	CH₂CH₂CI	CH ₂ CH(CH ₃) ₂
1.1.567	CH₂CH₂Br	CH₂CH(CH₃)₂
I.1.568	CH₂CH₂CN	CH₂CH(CH₃)₂
1.1.569	CH(CH₃)CN	CH₂CH(CH₃)₂
1.1.570	CH ₂ CH(CH ₃)CN	CH₂CH(CH₃)₂
1.1.571	cyclopropyl	CH₂CH(CH₃)₂
1.1.572	CH ₂ -cyclopropyl	CH ₂ CH(CH ₃) ₂
1.1.573	cyclopentyl	CH₂CH(CH₃)₂
1.1.574	CH ₂ -cyclopentyl	CH₂CH(CH₃)₂
1.1.575	cyclohexyl	CH₂CH(CH₃)₂
1.1.576	CH ₂ CH=CH ₂	CH ₂ CH(CH ₃) ₂
I.1.577	C(CH₃)=CH₂	CH ₂ CH(CH ₃) ₂
1.1.578	CH=CHCH₃	CH ₂ CH(CH ₃) ₂
1.1.579	CH₂CH=CHCH₃	CH₂CH(CH₃)₂
1.1.580	CH ₂ CF=CF ₂	CH ₂ CH(CH ₃) ₂
I.1.581	CH ₂ –C≡CH	CH ₂ CH(CH ₃) ₂
1.1.582	CH(CH ₃)–C≡CH	CH₂CH(CH₃)₂
1.1.583	ОН	CH ₂ CH(CH ₃) ₂
1.1.584	OCH₃	CH₂CH(CH₃)₂
1.1.585	CH₂-CO-OCH₃	CH ₂ CH(CH ₃) ₂
1.1.586	CH₂-CH₂-CO-OCH₃	CH₂CH(CH₃)₂
1.1.587	CH ₂ -CO-OC ₂ H ₅	CH₂CH(CH₃)₂
I.1.588	CH(CH₃)–CO–OCH₃	CH₂CH(CH₃)₂
1.1.589	C(CH ₃) ₂ –CO–OCH ₃	· CH ₂ CH(CH ₃) ₂
1.1.590	CH=CH-CO-OCH₃	CH ₂ CH(CH ₃) ₂
1.1.591	C(CH ₃) ₂ –CO–OCH ₂ -CH=CH ₂	CH₂CH(CH₃)₂
1.1.592	CH ₂ CH ₂ OCH ₃	CH₂CH(CH₃)₂
1.1.593	CH ₂ CH ₂ OC ₂ H ₅	CH₂CH(CH₃)₂
1.1.594	CH₂CH₂SCH₃	CH₂CH(CH₃)₂
1.1.595	CH ₂ CH ₂ S(O)CH ₃	CH₂CH(CH₃)₂
1.1.596	CH ₂ CH ₂ SO ₂ CH ₃	CH ₂ CH(CH ₃) ₂

1.1.597	CH(CH ₃)C ₂ H ₅	CH(CH ₃)CH ₂ CH ₃	
I.1.598	CH(CH ₃)CH ₂ CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃	
1.1.599	CH ₂ CH(CH ₃)CH ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃	
1.1.600	CH ₂ GH ₂ CH(CH ₃) ₂	CH(CH ₃)CH ₂ CH ₃	
1.1.601	CH ₂ CHF ₂	CH(CH₃)CH₂CH₃	
1.1.602	CH ₂ CF ₃	CH(CH₃)CH₂CH₃	
1.1.603	CH₂CH-CI	CH(CH₃)CH₂CH₃	
1.1.604	CH ₂ CH ₂ Br	CH(CH₃)CH₂CH₃	
1.1.605	CH ₂ CH ₂ CN	CH(CH₃)CH₂CH₃	
1.1.606	CH(CH₃)CN	CH(CH₃)CH₂CH₃	
1.1.607	CH ₂ CH(CH ₃)CN	CH(CH₃)CH₂CH₃	
1.1.608	cyclopropyl	CH(CH₃)CH₂CH₃	
1.1.609	CH ₂ —cyclopropyl	CH(CH₃)CH₂CH₃	
1.1.610	cyclopentyl	CH(CH ₃)CH ₂ CH ₃	
1.1.611	CH ₂ -cyclopentyl	CH(CH₃)CH₂CH₃	
1.1.612	cyclohexyl	CH(CH ₃)CH ₂ CH ₃	
1.1.613	CH ₂ CH=CH ₂	CH(CH₃)CH₂CH₃	
1.1.614	$C(CH_3)=CH_2$	CH(CH ₃)CH ₂ CH ₃	
1.1.615	CH=CHCH₃	CH(CH₃)CH₂CH₃	
1.1.616	CH₂CH=CHCH₃	CH(CH₃)CH₂CH₃	
I.1.617	CH ₂ CF=CF ₂	CH(CH₃)CH₂CH₃	
I.1.618	CH ₂ –C≡CH	CH(CH₃)CH₂CH₃	
1.1.619	CH(CH₃)–C≡CH	CH(CH₃)CH₂CH₃	
1.1.620	ОН	CH(CH₃)CH₂CH₃	
1.1.621	OCH₃	CH(CH₃)CH₂CH₃	
1.1.622	CH ₂ -CO-OCH ₃	CH(CH₃)CH₂CH₃	
I.1.623	CH ₂ -CH ₂ -CO-OCH ₃	CH(CH₃)CH₂CH₃	
1.1.624	CH ₂ -CO-OC ₂ H ₅	CH(CH₃)CH₂CH₃	
I.1.625	CH(CH₃)–CO–OCH₃	CH(CH₃)CH₂CH₃	
1.1.626	C(CH ₃) ₂ –CO–OCH ₃	CH(CH₃)CH₂CH₃	
I.1.627	CH=CH-CO-OCH₃	CH(CH₃)CH₂CH₃	
1.1.628	C(CH ₃) ₂ –CO–OCH ₂ -CH=CH ₂	CH(CH₃)CH₂CH₃	
1.1.629	CH₂CH₂OCH₃	CH(CH₃)CH₂CH₃	
1.1.630	CH₂CH₂OC₂H₅	CH(CH ₃)CH ₂ CH ₃	
1.1.631	CH₂CH₂SCH₃	CH(CH₃)CH₂CH₃	
1.1.632	CH₂CH₂S(O)CH₃	CH(CH₃)CH₂CH₃	
1.1.633	CH ₂ CH ₂ SO ₂ CH ₃	CH(CH ₃)CH ₂ CH ₃	
1.1.634	CH(CH₃)C₂H₅	C(CH ₃) ₃	

1.1.635	CH ₂ CH(CH ₃) ₂	C(CH ₃) ₃
1.1.636	C(CH ₃) ₃	C(CH ₃) ₃
1.1.637	CH(CH ₃)CH ₂ CH ₂ CH ₃	C(CH ₃) ₃
1.1.638	CH₂GH(CH₃)CH₂CH₃	C(CH ₃) ₃
1.1.639	CH₂CH₂CH(CH₃)₂	C(CH ₃) ₃
1.1.640	CH ₂ CHF ₂	C(CH ₃) ₃
1.1.641	CH ₂ CF ₃	C(CH ₃) ₃
1.1.642	CH ₂ CH ₂ CI	C(CH ₃) ₃
1.1.643	CH ₂ CH ₂ Br	C(CH ₃) ₃
1.1.644	CH₂CH₂CN	C(CH ₃) ₃
1.1.645	CH(CH₃)CN	C(CH ₃) ₃
1.1.646	CH₂CH(CH₃)CN	C(CH ₃) ₃
1.1.647	cyclopropyl	C(CH ₃) ₃
1.1.648	CH ₂ -cyclopropyl	C(CH ₃) ₃
1.1.649	cyclopentyl	C(CH ₃) ₃
1.1.650	CH₂-cyclopentyl	C(CH ₃) ₃
1.1.651	cyclohexyl	C(CH ₃) ₃
1.1.652	CH ₂ CH=CH ₂	C(CH ₃) ₃
1.1.653	C(CH₃)=CH₂	C(CH ₃) ₃
1.1.654	CH=CHCH₃	C(CH ₃) ₃
1.1.655	CH₂CH=CHCH₃	C(CH ₃) ₃
I.1.656	CH ₂ CF=CF ₂	C(CH ₃) ₃
1.1.657	CH₂-C≡CH	C(CH ₃) ₃
1.1.658	CH(CH ₃)–C≡CH	C(CH ₃) ₃
1.1.659	ОН	C(CH ₃) ₃
1.1.660	OCH ₃	C(CH ₃) ₃
1.1.661	CH₂-CO-OCH₃	C(CH ₃) ₃
1.1.662	CH ₂ -CH ₂ -CO-OCH ₃	C(CH ₃) ₃
1.1.663	CH₂-CO-OC₂H₅	C(CH ₃) ₃
I.1.664	CH(CH ₃)-CO-OCH ₃	C(CH ₃) ₃
1.1.665	C(CH ₃) ₂ –CO–OCH ₃	C(CH₃)₃
1.1.666	CH=CH-CO-OCH₃	C(CH ₃) ₃
1.1.667	C(CH ₃) ₂ -CO-OCH ₂ -CH=CH ₂	C(CH ₃) ₃
I.1.668	CH₂CH₂OCH₃	C(CH₃)₃
I.1.669	CH ₂ CH ₂ OC ₂ H ₅	C(CH ₃) ₃
1.1.670	CH₂CH₂SCH₃	C(CH ₃) ₃
1.1.671	CH₂CH₂S(O)CH₃	C(CH ₃) ₃
1.1.672	CH ₂ CH ₂ -SO ₂ -CH ₃	C(CH ₃) ₃

1.1.673	-CH ₂ -CH ₂ -CH ₂ -	
1.1.674	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	
1.1.675	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-	
1.1.676	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	
1.1.677	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -CH ₂ -	
1.1.678	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₂ CH ₂ CI)-	
1.1.679	-CH ₂ -CH ₂ -CH(CH ₂ CH ₂ CI)-CH ₂ -	
1.1.680	-CH ₂ -CH ₂ -CH(CH ₂ CH ₂ CI)-CH ₂ -CH ₂ -	
I.1.681	-CH=CH-CH ₂ -CH ₂ -	
1.1.682	-CH₂-CH=CH-CH₂-	
I.1.683	-CH=CH-CH ₂ -CH ₂ -	
1.1.684	-CH₂-CH=CH-CH₂-CH₂-	
1.1.685	-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -	
1.1.686	-CH ₂ -CH ₂ -O-CH(CH ₃)-CH ₂ -	
1.1.687	-CH ₂ -CH ₂ -O-CH ₂ -CH(CH ₃)-	
1.1.688	-CH ₂ -CH(CH ₃)-O-CH(CH ₃)-CH ₂ -	
1.1.689	-CH ₂ -CH ₂ -N(CH ₃)-CH ₂ -CH ₂ -	

Extraordinary preference is also given to the compounds of the formula 1.2, in particular to the compounds of the formulae 1.2.1 to 1.2.689 which differ from the corresponding compounds of the formulae 1.1.1 to 1.1.689 in that B is oxygen.

5

Extraordinary preference is also given to the compounds of the formula I.3, in particular to the compounds of the formulae I.3.1 to I.3.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur.

10

Extraordinary preference is also given to the compounds of the formula I.4, in particular to the compounds of the formulae I.4.1 to I.4.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond.

5

Extraordinary preference is also given to the compounds of the formula I.5, in particular to the compounds of the formulae I.5.1 to I.5.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂.

10

Extraordinary preference is also given to the compounds of the formula I.6, in particular to the compounds of the formulae I.6.1 to I.6.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR².

15

Extraordinary preference is also given to the compounds of the formula I.7, in particular to the compounds of the formulae I.7.1 to I.7.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that R²⁹ is amino.

10

15

Extraordinary preference is also given to the compounds of the formula I.8, in particular to the compounds of the formulae I.8.1 to I.8.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.9, in particular to the compounds of the formulae I.9.1 to I.9.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.10, in particular to the compounds of the formulae I.10.1 to I.10.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.11, in particular to the compounds of the formulae I.11.1 to I.11.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.12, in particular to the compounds of the formulae I.12.1 to I.12.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.13, in particular to the compounds of the formulae I.13.1 to I.13.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen.

Extraordinary preference is also given to the compounds of the formula I.14, in particular to the compounds of the formulae I.14.1 to I.14.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and B is oxygen.

Extraordinary preference is also given to the compounds of the formula I.15, in particular to the compounds of the formulae I.15.1 to I.15.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and B is sulfur.

Extraordinary preference is also given to the compounds of the formula I.16, in particular to the compounds of the formulae I.16.1 to I.16.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and B is a bond.

Extraordinary preference is also given to the compounds of the formula I.17, in particular to the compounds of the formulae I.17.1 to I.17.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and Y is SO₂.

Extraordinary preference is also given to the compounds of the formula I.18, in particular to the compounds of the formulae I.18.1 to I.18.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and Y is SO₂NR².

Extraordinary preference is also given to the compounds of the formula I.19, in particular to the compounds of the formulae I.19.1 to I.19.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen and R²⁹ is amino.

15

20

10

Extraordinary preference is also given to the compounds of the formula I.20, in particular to the compounds of the formulae I.20.1 to I.20.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is hydrogen, B is oxygen and R^{29} is amino.

Extraordinary preference is also given to the compounds of the formula I.21, in particular to the compounds of the formulae I.21.1 to I.21.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen, B is sulfur and R²⁹ is amino.

10 Extraordinary preference is also given to the compounds of the formula I.22, in particular to the compounds of the formulae I.22.1 to I.22.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen, B is a bond and R²9 is amino.

$$F_3C$$
 NH_2
 N
 O
 S
 N
 R^1
 $I.22$

15

20

5

Extraordinary preference is also given to the compounds of the formula I.23, in particular to the compounds of the formulae I.23.1 to I.23.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is hydrogen, Y is SO_2 and R^{29} is amino.

Extraordinary preference is also given to the compounds of the formula I.24, in particular to the compounds of the formulae I.24.1 to I.24.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is hydrogen, Y is SO₂NR² and R²⁹ is amino.

Extraordinary preference is also given to the compounds of the formula I.25, in particular to the compounds of the formulae I.25.1 to I.25.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q⁵ (where A¹ = oxygen, R⁷ = diffuoromethyl and R⁸ = methyl).

15

20

Extraordinary preference is also given to the compounds of the formula I.26, in particular to the compounds of the formulae I.26.1 to I.26.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^5 (where A^1 = oxygen, R^7 = difluoromethyl and R^8 = methyl).

Extraordinary preference is also given to the compounds of the formula I.27, in particular to the compounds of the formulae I.27.1 to I.27.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^5 (where $A^1 = oxygen$, $R^7 = diffuoromethyl$ and $R^8 = methyl$).

Extraordinary preference is also given to the compounds of the formula I.28, in particular to the compounds of the formulae I.28.1 to I.28.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q⁵ (where A¹ = oxygen, R⁷ = difluoromethyl and R⁸ = methyl).

15

20

5

Extraordinary preference is also given to the compounds of the formula I.29, in particular to the compounds of the formulae I.29.1 to I.29.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^5 (where A^1 = oxygen, R^7 = difluoromethyl and R^8 = methyl).

15

20

Extraordinary preference is also given to the compounds of the formula I.30, in particular to the compounds of the formulae I.30.1 to I.30.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^5 (where $A^1 = oxygen$, $R^7 = diffuoromethyl and <math>R^8 = methyl$).

Extraordinary preference is also given to the compounds of the formula I.31, in particular to the compounds of the formulae I.31.1 to I.31.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine and Q is Q⁵ (where A¹ = oxygen, R² = difluoromethyl and R³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.32, in particular to the compounds of the formulae I.32.1 to I.32.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is oxygen and Q is Q^5 (where A^1 = oxygen, R^7 = difluoromethyl and R^8 = methyl).

Extraordinary preference is also given to the compounds of the formula I.33, in particular to the compounds of the formulae I.33.1 to I.33.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is sulfur and Q is Q^5 (where A^1 = oxygen, R^7 = difluoromethyl and R^8 = methyl).

Extraordinary preference is also given to the compounds of the formula I.34, in particular to the compounds of the formulae I.34.1 to I.34.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine, B is a bond and Q is Q⁵ (where A¹ = oxygen, R⁷ = difluoromethyl and R⁸ = methyl).

Extraordinary preference is also given to the compounds of the formula I.35, in particular to the compounds of the formulae I.35.1 to I.35.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine, Y is SO₂ and Q is Q⁵ (where A¹ = oxygen, R⁷ = difluoromethyl and R⁸ = methyl).

Extraordinary preference is also given to the compounds of the formula I.36, in particular to the compounds of the formulae I.36.1 to I.36.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2NR^2 and Q is Q^5 (where A^1 = oxygen, R^7 = difluoromethyl and R^8 = methyl).

Extraordinary preference is also given to the compounds of the formula I.37, in particular to the compounds of the formulae I.37.1 to I.37.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{22} (where A^{10} and A^{11} = oxygen, A^{12} = sulfur and R^{32} , R^{33} = methyl).

$$CH_3$$
 CH_3
 CH_3

15

5

Extraordinary preference is also given to the compounds of the formula I.38, in particular to the compounds of the formulae I.38.1 to I.38.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{22} (where A^{10} and A^{11} = oxygen, A^{12} = sulfur and R^{32} , R^{33} = methyl).

Extraordinary preference is also given to the compounds of the formula I.39, in particular to the compounds of the formulae I.39.1 to I.39.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{22} (where A^{10} and A^{11} = oxygen, A^{12} = sulfur and R^{32} , R^{33} = methyl).

Extraordinary preference is also given to the compounds of the formula I.40, in particular to the compounds of the formulae I.40.1 to I.40.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q²² (where A¹⁰ and A¹¹ = oxygen, A¹² = sulfur and R³², R³³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.41, in particular to the compounds of the formulae I.41.1 to I.41.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q²² (where A¹⁰ and A¹¹ = oxygen, A¹² = sulfur and R³², R³³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.42, in particular to the compounds of the formulae I.42.1 to I.42.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{22} (where A^{10} and A^{11} = oxygen, A^{12} = sulfur and R^{32} , R^{33} = methyl).

Extraordinary preference is also given to the compounds of the formula I.43, in particular to the compounds of the formulae I.43.1 to I.43.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q²² (where A¹⁰, A¹¹, A¹² = oxygen and R³², R³³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.44, in particular to the compounds of the formulae I.44.1 to I.44.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q²² (where A¹⁰, A¹¹, A¹² = oxygen and R³², R³³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.45, in particular to the compounds of the formulae I.45.1 to I.45.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{22} (where A^{10} , A^{11} , A^{12} = oxygen and R^{32} , R^{33} = methyl).

$$CH_3$$
 CH_3
 CH_3

Extraordinary preference is also given to the compounds of the formula I.46, in particular to the compounds of the formulae I.46.1 to I.46.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q²² (where A¹⁰, A¹¹, A¹² = oxygen and R³², R³³ = methyl).

Extraordinary preference is also given to the compounds of the formula I.47, in particular to the compounds of the formulae I.47.1 to I.47.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q²² (where A¹⁰, A¹¹, A¹² = oxygen and R³², R³³ = methyl).

10

Extraordinary preference is also given to the compounds of the formula I.48, in particular to the compounds of the formulae I.48.1 to I.48.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{22} (where A^{10} , A^{11} , A^{12} = oxygen and R^{32} , R^{33} = methyl).

Extraordinary preference is also given to the compounds of the formula I.49, in particular to the compounds of the formulae I.49.1 to I.49.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q²⁷ (where A¹³ = oxygen, R³⁴, R³⁶ = hydrogen, R³⁵ = trifluoromethyl).

Extraordinary preference is also given to the compounds of the formula I.50, in particular to the compounds of the formulae I.50.1 to I.50.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q²⁷ (where A¹³ = oxygen, R³⁴, R³⁶ = hydrogen, R³⁵ = trifluoromethyl).

20 Extraordinary preference is also given to the compounds of the formula I.51, in

particular to the compounds of the formulae I.51.1 to I.51.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{27} (where A^{13} = oxygen, R^{34} , R^{36} = hydrogen, R^{35} = trifluoromethyl).

$$F_3C$$
 N
 O
 S
 N
 S
 R
 $I.51$

5

Extraordinary preference is also given to the compounds of the formula I.52, in particular to the compounds of the formulae I.52.1 to I.52.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{27} (where A^{13} = oxygen, R^{34} , R^{36} = hydrogen, R^{35} = trifluoromethyl).

$$\begin{array}{c|c} F_3C & N & O & O \\ \hline & N & O & O \\ \hline$$

10

15

Extraordinary preference is also given to the compounds of the formula I.53, in particular to the compounds of the formulae I.53.1 to I.53.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} , R^{36} = hydrogen, R^{35} = trifluoromethyl).

20

Extraordinary preference is also given to the compounds of the formula I.54, in particular to the compounds of the formulae I.54.1 to I.54.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} , R^{36} = hydrogen, R^{35} = trifluoromethyl).

Extraordinary preference is also given to the compounds of the formula I.55, in particular to the compounds of the formulae I.55.1 to I.55.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = trifluoromethyl, R^{36} = methyl).

Extraordinary preference is also given to the compounds of the formula I.56, in particular to the compounds of the formulae I.56.1 to I.56.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = trifluoromethyl, R^{36} = methyl).

Extraordinary preference is also given to the compounds of the formula I.57, in particular to the compounds of the formulae I.57.1 to I.57.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q²⁷ (where A¹³ = oxygen, R³⁴ = hydrogen, R³⁵ = trifluoromethyl, R³⁶ = methyl).

Extraordinary preference is also given to the compounds of the formula I.58, in particular to the compounds of the formulae I.58.1 to I.58.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q²⁷ (where A¹³ = oxygen, R³⁴ = hydrogen, R³⁵ = trifluoromethyl, R³⁶ = methyl).

10

15

Extraordinary preference is also given to the compounds of the formula I.59, in particular to the compounds of the formulae I.59.1 to I.59.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = trifluoromethyl, R^{36} = methyl).

Extraordinary preference is also given to the compounds of the formula I.60, in particular to the compounds of the formulae I.60.1 to I.60.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = trifluoromethyl, R^{36} = methyl).

Extraordinary preference is also given to the compounds of the formula I.61, in particular to the compounds of the formulae I.61.1 to I.61.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = methylsulfonyl, R^{36} = amino).

20 Extraordinary preference is also given to the compounds of the formula I.62, in particular to the compounds of the formulae I.62.1 to I.62.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is

 Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = methylsulfonyl, R^{36} = amino).

$$H_3C-SO_2$$
 N
 O
 O
 O
 R^1
 $I.62$

Extraordinary preference is also given to the compounds of the formula I.63, in particular to the compounds of the formulae I.63.1 to I.63.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q²⁷ (where A¹³ = oxygen, R³⁴ = hydrogen, R³⁵ = methylsulfonyl, R³⁶ = amino).

$$H_3C-SO_2$$
 N
 O
 S
 N
 S
 R^1
 $I.63$

Extraordinary preference is also given to the compounds of the formula I.64, in particular to the compounds of the formulae I.64.1 to I.64.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q²⁷ (where A¹³ = oxygen, R³⁴ = hydrogen, R³⁵ = methylsulfonyl, R³⁶ = amino).

15

Extraordinary preference is also given to the compounds of the formula I.65, in particular to the compounds of the formulae I.65.1 to I.65.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = methylsulfonyl, R^{36} = amino).

$$H_3C-SO_2$$
 N
 O
 S
 N
 S
 R^1
 1.65

20

Extraordinary preference is also given to the compounds of the formula I.66, in

particular to the compounds of the formulae I.66.1 to I.66.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{27} (where A^{13} = oxygen, R^{34} = hydrogen, R^{35} = methylsulfonyl, R^{36} = amino).

5

Extraordinary preference is also given to the compounds of the formula I.67, in particular to the compounds of the formulae I.67.1 to I.67.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = chlorine, R^{38} = difluoromethoxy, R^{39} = methyl).

10

15

20

Extraordinary preference is also given to the compounds of the formula I.68, in particular to the compounds of the formulae I.68.1 to I.68.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{32} (where R^{37} = chlorine, R^{38} = difluoromethoxy, R^{39} = methyl).

H₃C=N,

Extraordinary preference is also given to the compounds of the formula I.69, in particular to the compounds of the formulae I.69.1 to I.69.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{32} (where R^{37} = chlorine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.70, in particular to the compounds of the formulae I.70.1 to I.70.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{32} (where R^{37} = chlorine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.71, in particular to the compounds of the formulae I.71.1 to I.71.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q³² (where R³⁷ = chlorine, R³⁸ = difluoromethoxy, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.72, in particular to the compounds of the formulae I.72.1 to I.72.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q³² (where R³⁷ = chlorine, R³⁸ = difluoromethoxy, R³⁹ = methyl).

10

15

Extraordinary preference is also given to the compounds of the formula I.73, in particular to the compounds of the formulae I.73.1 to I.73.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.74, in particular to the compounds of the formulae I.74.1 to I.74.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.75, in particular to the compounds of the formulae I.75.1 to I.75.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.76, in particular to the compounds of the formulae I.76.1 to I.76.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q³² (where R³⁷ = bromine, R³⁸ = difluoromethoxy, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.77, in particular to the compounds of the formulae I.77.1 to I.77.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q³² (where R³⁷ = bromine, R³⁸ = difluoromethoxy, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.78, in particular to the compounds of the formulae I.78.1 to I.78.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q³² (where R³⁷ = bromine, R³⁸ = difluoromethoxy, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.79, in particular to the compounds of the formulae I.79.1 to I.79.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine and Q is Q³² (where R³³ = bromine, R³8 = difluoromethoxy, R³9 = methyl).

10

15

20

Extraordinary preference is also given to the compounds of the formula I.80, in particular to the compounds of the formulae I.80.1 to I.80.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is oxygen and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.81, in particular to the compounds of the formulae I.81.1 to I.81.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is sulfur and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.82, in particular to the compounds of the formulae I.82.1 to I.82.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is a bond and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.83, in particular to the compounds of the formulae I.83.1 to I.83.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

10

Extraordinary preference is also given to the compounds of the formula I.84, in particular to the compounds of the formulae I.84.1 to I.84.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2NR^2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = difluoromethoxy, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.85, in particular to the compounds of the formulae I.85.1 to I.85.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = chlorine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.86, in particular to the compounds of the formulae I.86.1 to I.86.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q³² (where R³⁷ = chlorine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

15

Extraordinary preference is also given to the compounds of the formula I.87, in particular to the compounds of the formulae I.87.1 to I.87.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{32} (where R^{37} = chlorine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.88, in particular to the compounds of the formulae I.88.1 to I.88.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{32} (where R^{37} = chlorine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.89, in particular to the compounds of the formulae I.89.1 to I.89.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{32} (where R^{37} = chlorine, R^{38} = trifluoromethyl, R^{39} = methyl).

$$F_3C$$
 CI
 O
 O
 O
 O
 $I.89$
 F
 CI
 H

Extraordinary preference is also given to the compounds of the formula I.90, in particular to the compounds of the formulae I.90.1 to I.90.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q³² (where R³⁷ = chlorine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.91, in particular to the compounds of the formulae I.91.1 to I.91.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.92, in particular to the compounds of the formulae I.92.1 to I.92.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q³² (where R³⁷ = bromine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.93, in particular to the compounds of the formulae I.93.1 to I.93.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q³² (where R³⁷ = bromine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

$$H_3C-N$$
 R^1
 R^1
 R^2
 R^3
 R^4
 R^3
 R^4
 R

15

20

Extraordinary preference is also given to the compounds of the formula I.94, in particular to the compounds of the formulae I.94.1 to I.94.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.95, in particular to the compounds of the formulae I.95.1 to I.95.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.96, in particular to the compounds of the formulae I.96.1 to I.96.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.97, in particular to the compounds of the formulae I.97.1 to I.97.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.98, in particular to the compounds of the formulae I.98.1 to I.98.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is oxygen and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.99, in particular to the compounds of the formulae I.99.1 to I.99.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine, B is sulfur and Q is Q³² (where R³⁷ = bromine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

$$H_3C-N$$
 R^1
 R^1
 R^2
 R^3
 R^4
 R

Extraordinary preference is also given to the compounds of the formula I.100, in particular to the compounds of the formulae I.100.1 to I.100.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine, B is a bond and Q is Q³² (where R³⁷ = bromine, R³⁸ = trifluoromethyl, R³⁹ = methyl).

$$H_3C-N$$
 N
 CI
 CI
 N
 R^1
 $I.100$

15

Extraordinary preference is also given to the compounds of the formula I.101, in particular to the compounds of the formulae I.101.1 to I.101.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

$$F_3C$$
 H_3C-N
 N
 S
 N
 S
 R^1
 $I.101$

Extraordinary preference is also given to the compounds of the formula I.102, in particular to the compounds of the formulae I.102.1 to I.102.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2NR^2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = trifluoromethyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.103, in particular to the compounds of the formulae I.103.1 to I.103.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = chlorine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.104, in particular to the compounds of the formulae I.104.1 to I.104.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q³² (where R³⁷ = chlorine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.105, in particular to the compounds of the formulae I.105.1 to I.105.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{32} (where R^{37} = chlorine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.106, in particular to the compounds of the formulae I.106.1 to I.106.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q³² (where R³⁷ = chlorine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.107, in particular to the compounds of the formulae I.107.1 to I.107.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q³² (where R³⁷ = chlorine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

$$H_3C-SO_2$$
 H_3C-N
 O
 S
 N
 S
 R^1
 $I.107$

10

15

Extraordinary preference is also given to the compounds of the formula I.108, in particular to the compounds of the formulae I.108.1 to I.108.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{32} (where R^{37} = chlorine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.109, in particular to the compounds of the formulae I.109.1 to I.109.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

$$H_3C-SO_2$$
 Br
 O
 O
 O
 R^1
 $I.109$

Extraordinary preference is also given to the compounds of the formula I.110, in particular to the compounds of the formulae I.110.1 to I.110.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.111, in particular to the compounds of the formulae I.111.1 to I.111.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q³² (where R³⁷ = bromine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.112, in particular to the compounds of the formulae I.112.1 to I.112.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

$$H_3C-SO_2$$
 Br
 O
 O
 R^1
 R^1
 R^1
 R^1

Extraordinary preference is also given to the compounds of the formula I.113, in particular to the compounds of the formulae I.113.1 to I.113.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q³² (where R³⁷ = bromine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

$$H_3C-SO_2$$
 H_3C-N
 N
 S
 N
 S
 R^1
 $I.113$

Extraordinary preference is also given to the compounds of the formula I.114, in particular to the compounds of the formulae I.114.1 to I.114.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q³² (where R³⁷ = bromine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

10

15

Extraordinary preference is also given to the compounds of the formula I.115, in particular to the compounds of the formulae I.115.1 to I.115.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.116, in particular to the compounds of the formulae I.116.1 to I.116.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is oxygen and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.117, in particular to the compounds of the formulae I.117.1 to I.117.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, B is sulfur and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.118, in particular to the compounds of the formulae I.118.1 to I.118.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X¹ is chlorine, B is a bond and Q is Q³² (where R³⁷ = bromine, R³⁸ = methylsulfonyl, R³⁹ = methyl).

Extraordinary preference is also given to the compounds of the formula I.119, in particular to the compounds of the formulae I.119.1 to I.119.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

$$H_3C-SO_2$$
 H_3C-N
 N
 S
 N
 S
 R^1
 $I.119$

Extraordinary preference is also given to the compounds of the formula I.120, in particular to the compounds of the formulae I.120.1 to I.120.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that X^1 is chlorine, Y is SO_2NR^2 and Q is Q^{32} (where R^{37} = bromine, R^{38} = methylsulfonyl, R^{39} = methyl).

Extraordinary preference is also given to the compounds of the formula I.121, in particular to the compounds of the formulae I.121.1 to I.121.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q³⁸ (where R⁴⁰ = chlorine, R⁴¹, R⁴³ = hydrogen, R⁴² = trifluoromethyl).

$$F_3C$$

$$CI$$

$$O$$

$$S$$

$$N$$

$$N$$

$$R^1$$

$$I.121$$

Extraordinary preference is also given to the compounds of the formula I.122, in particular to the compounds of the formulae I.122.1 to I.122.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q^{38} (where R^{40} = chlorine, R^{41} , R^{43} = hydrogen, R^{42} = trifluoromethyl).

5

10

Extraordinary preference is also given to the compounds of the formula I.123, in particular to the compounds of the formulae 1.123.1 to 1.123.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{38} (where R^{40} = chlorine, R^{41} , R^{43} = hydrogen, R^{42} = trifluoromethyl).

Extraordinary preference is also given to the compounds of the formula I.124, in 15

particular to the compounds of the formulae I.124.1 to I.124.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{38} (where R^{40} = chlorine, R^{41} , R^{43} = hydrogen, R^{42} = trifluoromethyl).

20

Extraordinary preference is also given to the compounds of the formula I.125, in particular to the compounds of the formulae I.125.1 to I.125.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q³⁸ (where R^{40} = chlorine, R^{41} , R^{43} = hydrogen, R^{42} = trifluoromethyl).

10

Extraordinary preference is also given to the compounds of the formula I.126, in particular to the compounds of the formulae I.126.1 to I.126.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{38} (where R^{40} = chlorine, R^{41} , R^{43} = hydrogen, R^{42} = trifluoromethyl).

Extraordinary preference is also given to the compounds of the formula I.127, in particular to the compounds of the formulae I.127.1 to I.127.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^{39} (where $A^1 = oxygen$, $A^{15} = sulfur$, R^{44} , $R^{45} = methyl$).

Extraordinary preference is also given to the compounds of the formula I.128, in particular to the compounds of the formulae I.128.1 to I.128.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q³⁹ (where A¹ = oxygen, A¹⁵ = sulfur, R⁴⁴, R⁴⁵ = methyl).

Extraordinary preference is also given to the compounds of the formula I.129, in particular to the compounds of the formulae I.129.1 to I.129.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^{39} (where $A^1 = oxygen$, $A^{15} = sulfur$, R^{44} , $R^{45} = methyl$).

$$R_3$$
 R_4 R_4 R_5 R_4 R_4 R_5 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_5 R_4 R_5 R_5

5

Extraordinary preference is also given to the compounds of the formula I.130, in particular to the compounds of the formulae I.130.1 to I.130.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^{39} (where $A^1 = oxygen$, $A^{15} = sulfur$, R^{44} , $R^{45} = methyl$).

$$CH_3$$
 CH_3
 CH_3

15

10

Extraordinary preference is also given to the compounds of the formula I.131, in particular to the compounds of the formulae I.131.1 to I.131.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^{39} (where $A^1 = oxygen$, $A^{15} = sulfur$, R^{44} , $R^{45} = methyl$).

20

Extraordinary preference is also given to the compounds of the formula I.132, in particular to the compounds of the formulae I.132.1 to I.132.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^{39} (where $A^1 = oxygen$, $A^{15} = sulfur$, R^{44} , $R^{45} = methyl$).

Extraordinary preference is also given to the compounds of the formula I.133, in particular to the compounds of the formulae I.133.1 to I.133.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^7 (where A^{16} , A^{17} = oxygen and R^{46} , R^{47} form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.134, in particular to the compounds of the formulae I.134.1 to I.134.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q⁷ (where A¹⁶, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.135, in particular to the compounds of the formulae I.135.1 to I.135.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^7 (where A^{16} , A^{17} = oxygen and R^{46} , R^{47} form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.136, in particular to the compounds of the formulae I.136.1 to I.136.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^7 (where A^{16} , A^{17} = oxygen and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.137, in particular to the compounds of the formulae I.137.1 to I.137.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q⁷ (where A¹⁶, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.138, in particular to the compounds of the formulae I.138.1 to I.138.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q⁷ (where A¹⁶, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.139, in particular to the compounds of the formulae I.139.1 to I.139.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^7 (where A^{16} = sulfur, A^{17} = oxygen and R^{46} , R^{47} form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.140, in particular to the compounds of the formulae I.140.1 to I.140.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q⁷ (where A¹⁶ = sulfur, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.141, in particular to the compounds of the formulae I.141.1 to I.141.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q⁷ (where A¹⁶ = sulfur, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.142, in particular to the compounds of the formulae I.142.1 to I.142.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^7 (where A^{16} = sulfur, A^{17} = oxygen and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.143, in particular to the compounds of the formulae I.143.1 to I.143.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q⁷ (where A¹⁶ = sulfur, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.144, in particular to the compounds of the formulae I.144.1 to I.144.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q⁷ (where A¹⁶ = sulfur, A¹⁷ = oxygen and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.145, in particular to the compounds of the formulae I.145.1 to I.145.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^7 (where A^{16} , A^{17} = sulfur and R^{46} , R^{47} form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.146, in particular to the compounds of the formulae I.146.1 to I.146.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q⁷ (where A¹⁶, A¹⁷ = sulfur and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.147, in particular to the compounds of the formulae I.147.1 to I.147.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q^7 (where A^{16} , A^{17} = sulfur and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

10

Extraordinary preference is also given to the compounds of the formula I.148, in particular to the compounds of the formulae I.148.1 to I.148.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^7 (where A^{16} , A^{17} = sulfur and R^{46} , R^{47} form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.149, in particular to the compounds of the formulae I.149.1 to I.149.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2 and Q is Q^7 (where A^{16} , A^{17} = sulfur and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.150, in particular to the compounds of the formulae I.150.1 to I.150.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO_2NR^2 and Q is Q^7 (where A^{16} , A^{17} = sulfur and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.151, in particular to the compounds of the formulae I.151.1 to I.151.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Q is Q^7 (where $A^{16} = oxygen$, $A^{17} = sulfur$ and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.152, in particular to the compounds of the formulae I.152.1 to I.152.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is oxygen and Q is Q⁷ (where A¹⁶ = oxygen, A¹⁷ = sulfur and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.153, in particular to the compounds of the formulae I.153.1 to I.153.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is sulfur and Q is Q⁷ (where A¹⁶ = oxygen, A¹⁷ = sulfur and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.154, in particular to the compounds of the formulae I.154.1 to I.154.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that B is a bond and Q is Q^7 (where $A^{16} = oxygen$, $A^{17} = sulfur$ and R^{46} , R^{47} form a chain $-CH_2-CH_2-O-CH_2-$).

Extraordinary preference is also given to the compounds of the formula I.155, in particular to the compounds of the formulae I.155.1 to I.155.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂ and Q is Q⁷ (where A¹⁶ = oxygen, A¹⁷ = sulfur and R⁴⁶, R⁴⁷ form a chain -CH₂-CH₂-O-CH₂-).

Extraordinary preference is also given to the compounds of the formula I.156, in particular to the compounds of the formulae I.156.1 to I.156.689, which differ from the corresponding compounds of the formulae I.1.1 to I.1.689 in that Y is SO₂NR² and Q is Q⁷ (where A¹⁶ = oxygen, A¹⁷ = sulfur and R⁴⁶, R⁴⁷ form a chain –CH₂-CH₂-O-CH₂-).

The benzenesulfonamide derivatives of the formula I can be obtained by different routes, for example by one of the processes below:

5 Process A

10

15

Appropriately substituted aromatic compounds of the formula VIII are, by chlorosulfonylation, converted into the corresponding benzenesulfonyl chlorides of the formula VII which are then reacted with ammonia to give the corresponding sulfonamides of the formula V. The sulfonamides of the formula V are then reacted with (thio)phosgene of the formula VI to give the benzenesulfonyl iso(thio)cyanates of the formula II which are then reacted with amines of the formula III or alcohols or thiols of the formula IV to give the desired benzenesulfonamide derivatives of the formula I, where X³ is hydrogen, Y is -C(A)B and B is NR², oxygen or sulfur and the other radicals are as defined under claim 1:

chlorosulfonylation
$$X_1$$
 X_2 X_3 X_4 X_4 X_4 X_5 X_5 X_5 X_7 X_8 $X_$

Q in formula VIII denotes the radicals Q1 to Q39 mentioned above or a substituent which

10

15

20

25

35

40

is a precursor suitable for the synthesis of Q^1 to Q^{39} , for example a nitro or carboxyl group.

The chlorosulfonylation of the aromatic compounds of the formula VIII to give the corresponding benzenesulfonyl chlorides of the formula VII is usually carried out at temperatures of from 0°C to 150°C, preferably from 20°C to 130°C, particularly preferably from 30°C to 110°C, using, for example, chlorosulfonic acid, sulfonyl chloride (SO₂Cl₂) or using sulfonyl chloride in the presence of chlorosulfonic acid in an inert organic solvent [cf. Houben-Weyl, Methoden der organischen Chemie (Methods of organic chemistry), Vol. 9, 1955, pp. 572 – 579].

Suitable solvents are halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, nitriles, such as acetonitrile and propionitrile, and also chlorosulfonic acid, particularly preferably chlorosulfonic acid.

It is also possible to use mixtures of the solvents mentioned.

If appropriate, this reaction can also be carried out in the presence of a metal catalyst, for example aluminum chloride, analogously to a Friedel-Crafts reaction [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, pp. 578 – 579].

Suitable acids and acid catalysts include inorganic acids, such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid and perchloric acid, Lewis acids, such as boron trifluoride, aluminum trichloride, iron(III) chloride, tin(IV) chloride, titanium(IV) chloride and zinc(II) chloride.

The acid catalysts are generally employed in catalytic amounts; however, they can also be used in equimolar amounts, in excess, or, if appropriate, as solvent.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to use an excess of chlorosulfonic acid or sulfonyl chloride, based on VIII, or to work directly in chlorosulfonic acid, as solvent.

The reaction mixtures are worked up in a customary manner, for example by mixing with water, phase separation and, if appropriate, chromatographic purification of the crude products. Some of the intermediates and end products are obtained in the form of viscous oils which can be freed from volatile components or purified under reduced pressure and at moderately elevated temperatures. If the intermediates and end products are obtained as solids, purification can also be carried out by recrystallization or digestion.

Furthermore, it is also possible to cleave dialkyl sulfides with chlorine in the presence of water, followed by conversion into the corresponding benzenesulfonyl chlorides of the formula VII [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, pp. 580 – 582].

Analogously, it is also possible to convert thiophenols into the corresponding benzenesulfonyl chlorides of the formula VII [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, p. 582].

10

5

Benzenesulfonyl chlorides of the formula VII can also be prepared by reacting benzenesulfonic acids with chlorinating agents such as thionyl chloride, phospene, phosphorus trichloride or phosphorus pentachloride [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, pp. 564 – 568].

15

It is also possible to convert anilides via their diazonium salts with sulfur dioxide in the presence of copper(II) chloride (Meerwein reaction) into the corresponding benzenesulfonyl chlorides of the formula VII [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, p. 579-580].

20

The starting materials required for preparing the compounds I are known from the literature [for example CAS 112, 157842; JP 01/168662] or can be prepared in accordance with the literature cited.

Benzenesulfonyl chlorides of the formula VII in which Q is Q⁷ are known, for example, from WO 02/38562.

The preparation of benzenesulfonyl chlorides of the formula VII in which Q is Q²¹ is described, for example, in US 5,169,430.

30

35

40

Benzenesulfonyl chlorides of the formula VII in which Q is Q³² are known, for example, from WO 96/15115.

The preparation of benzenesulfonyl chlorides of the formula VII in which Q is Q³⁸ is described, for example, in WO 95/02580.

Benzenesulfonyl chlorides of the formula VII having other radicals Q can be prepared analogously to the methods mentioned above (cf. for example JP 05/164386). Further precursors are described in Böger, Wakabayashi, Peroxidizing Herbicides, Springer Verlag 1999.

The subsequent reaction of the benzenesulfonyl chlorides of the formula VII with gaseous or aqueous ammonia to give the corresponding sulfonamides of the formula V where

5 X³ = hydrogen is usually carried out at temperatures of from -10°C to 50°C, preferably from 0°C to 30°C, particularly preferably from 5°C to 15°C, in an inert organic solvent, if appropriate in the presence of a base [cf. US 5,169,430; WO 95/02580; Houben-Weyl, Methoden der organischen Chemie, Vol. 9, 1955, pp. 398-400 and 605].

Ammonia is preferably used in an excess of from 200 to 230%; however, it is also possible to use an auxiliary base.

Suitable auxiliary bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal amides, such as lithium amide, sodium amide, and potassium amide, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines.

30

35

40

15

20

25

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts, in excess or, if appropriate, as solvent.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C₅-C₈-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butylmethyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methylethyl ketone, diethyl ketone and tert-butyl methyl ketone, and also dimethylformamide and dimethylacetamide, particularly

20

25

preferably dioxane, tetrahydrofuran, 1,2-dichloroethane, toluene or cyclohexane.

It is also possible to use mixtures of the solvents mentioned.

5 Work-up and isolation of the products can be carried out in a manner known per se.

Further sulfonamides of formula V can be prepared by analogous reaction of benzenesulfonyl chlorides of the formula VII with an amine H₂NX³.

Sulfonamides of the formula V, in which Q is Q⁷ are described, for example, in WO 02/38562.

US 5,169,430 and WO 95/02580 describe sulfonamides of the formula V in which Q is Q^{21} and Q^{28} , respectively.

The reaction of the sulfonamides of the formula V where X³ = hydrogen with (thio)phosgene of the formula VI to give benzenesulfonyl iso(thio)cyanates of the formula II is usually carried out at temperatures of from 50°C to 110°C, preferably from 60°C to 90°C, in an inert organic solvent, if appropriate in the presence of a catalyst [cf. Houben-Weyl, Methoden der organischen Chemie, Vol. 11, 2, 1985, p. 1106; US 4,379,769; DD 238 522].

Suitable catalysts are, for example, aliphatic isocyanates, such as, for example, n-propyl isocyanate, isopropyl isocyanate or n-butyl isocyanate.

The catalyst is generally employed in a substoichiometric amount of from 5% to 15% per mole of sulfonamide of the formula V.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C₅-C₈-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, particularly preferably toluene, 1,2-dichloroethane or chlorobenzene.

It is also possible to use mixtures of the solvents mentioned.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of VI, based on V.

15

Work-up and isolation of the products can be carried out in a manner known per se.

The conversion of the sulfonamides of the formula V where X³ = hydrogen into benzenesulfonyl iso(thio)cyanates of the formula II can also be carried out using diphosgene [CIC(O)OCCl₃] or using carbon disulfide in phosgene.

Expediently, the sulfonamides of the formula V where X^3 = hydrogen can also be initially pre-treated with thionyl chloride under reflux and then be reacted with phosgene to give benzenesulfonyl iso(thio)cyanates of the formula II (cf. DE 43 22 726).

Benzenesulfonyl iso(thio) cyanates of the formula II can also be prepared by reacting sulfonamides of the formula V where X^3 = hydrogen with chlorosulfonyl isocyanate (cf. DE 31 32 944).

Benzenesulfonyl iso(thio)cyanates of the formula II can furthermore be prepared in a manner known per se by reacting benzenesulfonyl chlorides of the formula VII with alkali metal isocyanates (cf. US 4,546,179).

The reaction of benzenesulfonyl iso(thio)cyanates of the formula II with a primary amine of the formula III or an alcohol or thiol of the formula IV to give the desired benzenesulfonamide derivatives of the formula I where X³ = hydrogen, Y = -C(A)B and B = NR², oxygen or sulfur is usually carried out at temperatures of from 0°C to 120°C, preferably from 10°C to 100°C, particularly preferably from 20°C to 70°C, in an inert organic solvent [cf. EP 162 723].

The reaction can be carried out under atmospheric pressure or under elevated pressure (up to 50 bar), preferably from 1 to 5 bar, continuously or batchwise.

30 Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C₅-C₈-alkanes; nitrated hydrocarbons, such as nitromethane, nitroethane, nitrobenzene, o-, m-, p-chloronitrobenzene and o-nitrotoluene; aromatic hydrocarbons, such as toluene, o-, m- and p-xylene; halogenated hydrocarbons, such as methylene chloride, 1,2-dichloroethane, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran and also nitriles, such as acetonitrile and propionitrile, particularly preferably tetrahydrofuran, dioxane and 1,2-dichloroethane.

It is also possible to use mixtures of the solvents mentioned.

40

As catalyst, it is possible to add, before or during the reaction, a base, which accelerates the reaction and improves the quality of the product.

Suitable bases are, in general, organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tri(n-propyl)amine, N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine or 1,4-diazabicyclo[2.2.2]octane.

10 The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts.

The benzenesulfonyl iso(thio)cyanates of the formula II are generally reacted in equimolar amounts with the primary amine of the formula III or the alcohol or thiol of the formula IV. It may be advantageous to employ an excess of III or IV, based on II.

Work-up and isolation of the products can be carried out in a manner known per se.

20 Process B

Sulfonamides of the formula V are reacted with (thio)carbamates of the formula IX to give the desired benzenesulfonamide derivatives of the formula I, where Y is -C(A)B and B is NR² and the other radicals are as defined under claim 1:

25

30

15

5

SO₂NX³H Z O NR¹R²

$$Z = aikyl, phenyl$$

Where $Y = -C(A)B$,
 $B = NR^2$

Z in formula IX denotes a C_1 - C_6 -alkyl or phenyl radical, where both radicals for their part may be partially or fully halogenated and/or may carry one to three radicals from the group consisting of nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and C_1 - C_4 -alkoxycarbonyl.

This reaction is usually carried out at temperatures of from 0°C to 120°C, preferably from 20°C to 100°C, in an inert organic solvent [cf. EP 141 777 and EP 101 670].

The reaction can be carried out under atmospheric pressure or under elevated pressure (up to 50 bar), preferably at 1 to 5 bar, continuously or batchwise.

Suitable solvents are aliphatic or cycloaliphatic hydrocarbons, such as pentane, 1,2,4trimethylpentane, 2,2,3-trimethylpentane, 2,3,3-trimethylpentane, hexane, heptane, octane, nonane, mixtures of C₅-C₈-alkanes, pinane, cyclohexane, methylcyclohexane, o-, m-, p-cymene, petroleum fractions within a boiling point range of from 70°C to 10 190°C, decalin, petroleum ether, ligroin; nitrated hydrocarbons, such as nitromethane, nitroethane, nitrobenzene, o-, m-, p-chloronitrobenzene and o-nitrotoluene; aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as 1,2-dichloroethane, 1,1-dichloroethane, 1,2-cis-dichloroethylene, 1,1,1- or 1,1,2trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,2,2- or 1,1,1,2-15 tetrachloroethane, pentachloroethane, dichloropropane, methylene chloride, dichlorobutane, chloroform, carbon tetrachloride, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, o-, m-, p-difluorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-dibromobenzene, o-, m-, p-chlorotoluene, 1,2,4-trichlorobenzene, chloronaphthalene, dichloronaphthalene; ethers, such as diethyl ether, ethyl propyl 20 ether, diisopropyl ether, tert-butyl methyl ether, n-butyl ethyl ether, di-n-butyl ether, diisobutyl ether, diisoamyl ether, dioxane, cyclohexyl methyl ether, ethylene glycol dimethyl ether, β,β '-dichlorodiethyl ether, tetrahydrofuran, anisole, thioanisole, phenetol; nitriles, such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, benzonitrile, m-chlorobenzonitrile; ketones, such as acetone, methyl ethyl ketone, 25 diethyl ketone and tert-butyl methyl ketone; esters, such as ethyl acetate, isobutyl acetate; amides, such as formamide, methylformamide, dimethylformamide; particularly preferably 1,2-dichloroethane, tetrahydrofuran, tert-butyl methyl ether and toluene.

30

It is also possible to use mixtures of the solvents mentioned.

As catalyst, a base can be added before or during the reaction, which accelerates the reaction and improves the quality of the product.

35

40

Suitable bases are, in general, organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tri(n-propyl)amine, N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine and 1,4-diazabicyclo[2.2.2]octane.

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts.

The sulfonamides of the formula V are generally reacted in equimolar amounts with the (thio)carbamate of the formula IX. It may be advantageous to employ an excess of IX, based on V.

The work-up and isolation of the products can be carried out in a manner known per se.

By analogous reaction with carboxylic acid derivatives $ZO(A)R^1$, it is possible to prepare benzenesulfonamide derivatives of the formula I where Y = -C(A)B and B = a bond.

15

Process C

Sulfonamides of the formula V can be reacted with iso(thio)cyanates of the formula X to give the desired benzenesulfonamide derivatives of the formula I where Y is -C(A)B and B is NH and the other radicals are as defined under claim 1:

SO₂NX³H
$$X^{1}$$

$$X^{2}$$

$$X^{2}$$

$$X^{3}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$X^{1}$$

$$X^{2}$$

$$X^{3}$$

$$X^{4}$$

$$Y = -C(A)B,$$

$$Y = -C(A)B$$

25 This reaction is usually carried out at temperatures of from 0°C to 150°C, preferably from 10°C to 100°C, in an inert organic solvent [cf. EP 234 352].

The reaction can be carried out under atmospheric pressure or under elevated pressure (up to 50 bar), preferably at 1 to 5 bar, continuously or batchwise.

30

Suitable solvents are aliphatic or cycloaliphatic hydrocarbons, such as pentane, 1,2,4-

trimethylpentane, 2,2,3-trimethylpentane, 2,3,3-trimethylpentane, hexane, heptane, octane, nonane, mixtures of C₅-C₈-alkanes, pinane, cyclohexane, methylcyclohexane, o-, m-, p-cymene, petroleum fractions within a boiling point range of from 70°C to 190°C, decalin, petroleum ether, ligroin; nitrated hydrocarbons, such as nitromethane, 5 nitroethane, nitrobenzene, o-, m-, p-chloronitrobenzene and o-nitrotoluene; aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as 1,2-dichloroethane, 1,1-dichloroethane, 1,2-cis-dichloroethylene, 1,1,1- or 1,1,2trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,2,2- or 1,1,1,2tetrachloroethane, pentachloroethane, dichloropropane, methylene chloride, 10 dichlorobutane, chloroform, carbon tetrachloride, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, o-, m-, p-difluorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-dibromobenzene, o-, m-, p-chlorotoluene, 1,2,4-trichlorobenzene, chloronaphthalene, dichloronaphthalene; ethers, such as diethyl ether, ethyl propyl ether, diisopropyl ether, tert-butyl methyl ether, n-butyl ethyl ether, di-n-butyl ether, 15 diisobutyl ether, diisoamyl ether, dioxane, cyclohexyl methyl ether, ethylene glycol dimethyl ether, β , β '-dichlorodiethyl ether, tetrahydrofuran, anisole, thioanisole, phenetol; nitriles, such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, benzonitrile, m-chlorobenzonitrile; ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone; esters, such as ethyl acetate, isobutyl 20 acetate; amides, such as formamide, methylformamide, dimethylformamide; particularly preferably 1,2-dichloroethane, tetrahydrofuran, ethyl acetate, tert-butyl methyl ether, acetone and also toluene.

It is also possible to use mixtures of the solvents mentioned.

25

30

40

As catalyst, a base can be added before or during the reaction, which accelerates the reaction and improves the quality of the product.

Suitable bases are, in general, organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tri(n-propyl)amine, N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine or 2,4,6-collidine.

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts.

The sulfonamides of the formula V are generally reacted in equimolar amounts with an iso(thio)cyanate of the formula X. It may be advantageous to employ an excess of X, based on V.

To bring the reaction to completion, the reaction mixture may, after addition of the components, be stirred at from 0 to 120°C, preferably from 10 to 100°C, in particular from 20 to 80°C, for another 20 min. to 24 h.

5

Work-up and isolation of the products can be carried out in a manner known per se.

10 Process D

Sulfonamides of the formula V can be reacted with halides of the formula XI to give the desired benzenesulfonamide derivatives of the formula 1:

15

Hal in formula XI denotes halogen, such as fluorine, chlorine, bromine, particularly preferably chlorine.

20

This reaction is usually carried out at temperatures of from 0°C to 150°C, preferably from 10°C to 100°C, in an inert organic solvent [cf. JP 05/194386, CAS 120, 134277].

The reaction can be carried out under atmospheric pressure or under elevated pressure (up to 50 bar), preferably at 1 to 5 bar, continuously or batchwise.

25

30

Suitable solvents are aliphatic or cycloaliphatic hydrocarbons, such as pentane, 1,2,4trimethylpentane, 2,2,3-trimethylpentane, 2,3,3-trimethylpentane, hexane, heptane, octane, nonane, mixtures of C5-C8-alkanes, pinane, cyclohexane, methylcyclohexane, o-, m-, p-cymene, petroleum fractions within a boiling point range of from 70°C to 190°C, decalin, petroleum ether, ligroin; nitrated hydrocarbons, such as nitromethane, nitroethane, nitrobenzene, o-, m-, p-chloronitrobenzene and o-nitrotoluene; aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as 1,2-dichloroethane, 1,1-dichloroethane, 1,2-cis-dichloroethylene, 1,1,1- or 1,1,2trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,2,2- or 1,1,1,2tetrachloroethane, pentachloroethane, dichloropropane, methylene chloride,

35

10

dichlorobutane, chloroform, carbon tetrachloride, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, o-, m-, p-difluorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-dibromobenzene, o-, m-, p-chlorotoluene, 1,2,4-trichlorobenzene, chloronaphthalene, dichloronaphthalene; ethers, such as diethyl ether, ethyl propyl ether, diisopropyl ether, tert-butyl methyl ether, n-butyl ethyl ether, di-n-butyl ether, diisobutyl ether, diisoamyl ether, dioxane, cyclohexyl methyl ether, ethylene glycol dimethyl ether, β,β -dichlorodiethyl ether, tetrahydrofuran, anisole, thioanisole, phenetol; nitriles, such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, benzonitrile, m-chlorobenzonitrile; ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone; esters, such as ethyl acetate, isobutyl acetate; amides, such as formamide, methylformamide, dimethylformamide; particularly preferably 1,2-dichloroethane, tetrahydrofuran, ethyl acetate, acetonitrile and also toluene.

15 It is also possible to use mixtures of the solvents mentioned.

As catalyst, a base can be added before or during the reaction, which accelerates the reaction and improves the quality of the product.

Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tri(n-propyl)amine, N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine or 2,4,6-collidine.

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts.

The sulfonamides of the formula V are generally reacted in equimolar amounts with the isocyanate or isothiocyanate of the formula X. It may be advantageous to employ an excess of XI, based on V.

To bring the reaction to completion, the reaction mixture may, after addition of the components, be stirred at from 0 to 120°C, preferably from 10 to 100°C, in particular from 20 to 80°C, for another 20 min to 24 h.

35

Work-up and isolation of the products can be carried out in a manner known per se.

Analogously to process D described above, it is also possible to react sulfonamides of the formula V with anhydrides of the formula XII

$$A[C(=A)-R^{1}]_{2}$$
 XII

to give the desired benzenesulfonamide derivatives of the formula I in which Y is -C(A)B where B is a bond and the other radicals are as defined under claim 1.

10 Process E

5

15

20

Sulfonyl(thio)carbamates of the formula XIII are reacted with amines of the formula XIV to give the desired benzenesulfonamide derivatives of the formula I where Y is -C(A)B and B is NR² and the other radicals are as defined under claim 1:

Q
$$X^{1}$$
 X^{2}
 X^{3}
 X^{3}
 X^{2}
 X^{3}
 X^{3}
 X^{2}
 X^{3}
 X^{3}
 X^{2}
 X^{3}
 $X^$

Z in formula XIII is C_1 - C_6 -alkyl or phenyl, where both radicals may for their part be partially or fully halogenated and/or may carry one to three radicals from the group consisting of nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and C_1 - C_4 -alkoxycarbonyl.

This reaction is usually carried out at temperatures of from 0°C to 120°C, preferably from 10°C to 100°C, in an inert organic solvent [cf. EP 120 814; EP 101 407].

Suitable solvents are aliphatic or cycloaliphatic hydrocarbons, such as pentane, 1,2,4-trimethylpentane, 2,2,3-trimethylpentane, 2,3,3-trimethylpentane, hexane, heptane, octane, nonane, mixtures of C₅-C₈-alkanes, pinane, cyclohexane, methylcyclohexane, o-, m-, p-cymene, petroleum fractions within a boiling point range of from 70°C to 190°C, decalin, petroleum ether, ligroin; nitrated hydrocarbons, such as nitromethane, nitroethane, nitrobenzene, o-, m-, p-chloronitrobenzene and o-nitrotoluene; aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such

as 1,2-dichloroethane, 1,1-dichloroethane, 1,2-cis-dichloroethylene, 1,1,1- or 1,1,2trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,2,2- or 1,1,1,2tetrachloroethane, pentachloroethane, dichloropropane, methylene chloride, dichlorobutane, chloroform, carbon tetrachloride, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, o-, m-, p-difluorobenzene, o-, m-, p-dichlorobenzene, o-, 5 m-, p-dibromobenzene, o-, m-, p-chlorotoluene, 1,2,4-trichlorobenzene, chloronaphthalene, dichloronaphthalene; ethers, such as diethyl ether, ethyl propyl ether, diisopropyl ether, tert-butyl methyl ether, n-butyl ethyl ether, di-n-butyl ether, diisobutyl ether, diisoamyl ether, dioxane, cyclohexyl methyl ether, ethylene glycol 10 dimethyl ether, β , β '-dichlorodiethyl ether, tetrahydrofuran, anisole, thioanisole, phenetol; nitriles, such as acetonitrile, propionitrile, butyronitrile, isobutyronitrile, benzonitrile, m-chlorobenzonitrile; ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone; esters, such as ethyl acetate, isobutyl acetate; amides, such as formamide, methylformamide, dimethylformamide; 15 particularly preferably tetrahydrofuran, dioxane, dimethylformamide and also toluene.

It is also possible to use mixtures of the solvents mentioned.

As catalyst, a base can be added before or during the reaction, which accelerates the reaction and improves the quality of the product.

Suitable bases are, in general, organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine, tri(n-propyl)amine, N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to triethylamine and 1,4-diazabicyclo[2.2.2]octane.

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts.

The sulfonylcarbamates of the formula XII are generally reacted in equimolar amounts with an amine of the formula XIV. It may be advantageous to employ an excess of XIV, based on XII.

35 Work-up and isolation of the products can be carried out in a manner known per se.

The starting materials required for preparing the compounds I are known from the literature [cf. for example, CAS 112, 157842; JP 01/168662], or they can be prepared in accordance with the literature cited.

40

25

30

Process F

20

25

Compounds of the formula I in which the radicals Q carry the substituents R³, R⁴, R⁷, R¹¹, R¹⁸, R¹⁹, R²⁴, R²⁷, R²⁹, R³², R³⁹, R⁴⁴-R⁴⁷ on their nitrogen atoms [these radicals denoting, inter alia, C₁-C₆-alkyl or amino, C₁-C₆-alkylamino or di(C₁-C₆-alkyl)amino] can be prepared by reacting, either prior to the synthesis of the sulfonamide side chain (i.e. at the stage of the aromatic compounds of the formula VIII) or after synthesis of the sulfonamide side chain, with an alkyl halide, alkyl sulfate, alkyl tosylate or an electrophilic aminating agent of the formula XVII, analogously to the methods described in the literature.

Examples of electrophilic aminating agents of the formula XVII are 2,4dinitrophenylhydroxylamine and o-mesitylenesulfonyl hydroxylamine.

The benzenesulfonyl chlorides of the formula VII mentioned above can be converted, for example, by action of alcohols, expediently in the presence of a base, into the corresponding benzenesulfonyl esters [Houben-Weyl, Methoden der organischen Synthese, Vol. 9, 1955, p. 663]. The benzenesulfonyl esters can then be alkylated or aminated on the free nitrogen atoms of the corresponding radicals Q. Subsequently, the benzenesulfonyl esters can be hydrolyzed again [cf. Kocienski, Protecting groups, Thieme-Verlag 1994; Greene, Wuts, Protecting groups in organic synthesis, Wiley 1999; Houben-Weyl, Methoden der organischen Chemie, Vol. E5 part I, 1985, p. 223f.).

By way of example, an amination at the radical $Q = Q^{21}$ is shown here. The aminations of the other radicals Q and alkylations at the radicals Q can be carried out analogously. This route affords, for example, sulfonic acids of the formula XVI. These can then be converted using methods known from the literature into the desired

30 benzenesulfonamide derivatives of the formula I.

This reaction is usually carried out at temperatures of from 10°C to 80°C, preferably from 20°C to 40°C, in an inert organic solvent in the presence of a base [cf. DE 19 652 431; WO 01/83459].

- Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of C₅-C₈-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile,
 ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, and also dimethyl sulfoxide, dimethyl formamide and dimethylacetamide, particularly preferably tetrahydrofuran, dioxane, acetonitrile and also dimethylformamide.
- 15 It is also possible to use mixtures of the solvents mentioned.

Suitable bases are, in general, inorganic compounds, for example alkali metal and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to potassium carbonate and also calcium carbonate.

The bases are generally employed in catalytic amounts; however, they can also be employed in equimolar amounts, in excess or, if appropriate, as solvent.

The starting materials are generally reacted with one another in equimolar amounts. However, it may also be advantageous to employ an excess of XVII, based on XV.

Work-up and isolation of the products can be carried out in a manner known per se.

40

35

20

25

The starting materials required for preparing the compounds I are known from the literature [for example CAS 112, 157842; JP 01168662], or they can be prepared in accordance with the literature cited.

5

The present invention also provides benzenesulfonyl iso(thio)cyanates of the formula II

$$Q$$
 $SO_2N=C=A$ II ,

10

where X1, X2, A and Q are as defined under claim 1.

The particularly preferred embodiments of the intermediates with respect to the variables correspond to those of the radicals X¹, X², A and Q of formula I.

15

Particular preference is given to intermediates of the formula IV in which

- X¹ is hydrogen, fluorine or chlorine;
 particularly preferably hydrogen or fluorine;
 especially preferably fluorine;
- 20 X² is hydrogen, cyano, CS-NH₂ or halogen; particularly preferably hydrogen, halogen such as fluorine and chlorine; especially preferably chlorine; and
 - Q is Q^1 , Q^2 , Q^5 , Q^7 , Q^8 , Q^{10} , Q^{12} , Q^{13} , Q^{17} , Q^{20} , Q^{21} , Q^{22} , Q^{23} , Q^{24} , Q^{27} , Q^{31} , Q^{32} , Q^{34} , Q^{38} or Q^{39} ,
- particularly preferably Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²⁴, Q²⁷, Q³¹, Q³², Q³⁸ or Q³⁹, especially preferably Q⁵, Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ or Q³⁹, with extraordinary preference Q⁷, Q²¹, Q²², Q²⁷, Q³², Q³⁸ or Q³⁹, with most extraordinary preference Q²¹, Q³² or Q³⁸.

30

Preparation Examples

35 Example 1

2-Chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]-benzenesulfonamide

$$F_3C$$
 N
 O
 SO_2NH_2
 CI

With stirring, 1.6 g (93.8 mmol) of ammonia gas were, at 0°C, introduced into a mixture of 18 g (44.6 mmol) of 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]-benzenesulfonylchloride in tetrahydrofuran (THF). Then, at 10°C, ethyl acetate was added and the mixture was acidified with 1N hydrochloric acid. The phases were separated and the aqueous phase was extracted, and the combined organic phases were then washed, dried and the solvent was removed. Customary purification methods gave 14.4 g (82.4% of theory) of the title compound (m.p.: 257-258 °C).

Example 2

20

25

2-Chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1yl] benzenesulfonylisocyanate

At 60°C, 7.4 g (62.3 mmol) of thionyl chloride were added dropwise with stirring to a suspension of 10.0 g (24.9 mmol) of 2-chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]-benzenesulfonylamide in 1,2-dichloroethane. The mixture was then boiled under reflux for 4 h. The mixture was then cooled to 60°C, a catalytic amount of pyridine was added and phosgene was introduced under reflux for 12 h until a clear solution was obtained. After cooling to 30°C, the product was freed from the solvent. This gave 11.6 g (98% of theory) of the title compound.

¹H-NMR (400 MHz, CDCl₃) δ [ppm] = 8.12 (d, 1H), 7.55 (d, 1H), 6.38 (s, 1H), 3.57 (s, 3H).

Example 3

2-Chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]-benzenesulfonyl isocyanate

$$F_3C$$
 N
 O
 $SO_2N=C=O$

5

10.0 g (26.1 mmol) of 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]-benzenesulfonamide were reacted analogously to the method described in Example 2. This gave 13.4 g (99% of theory) of the title compound.

¹H-NMR (400 MHz, CDCl₃) δ [ppm] = 8.02 (s, 1H), 7.76 (d, 2H), 7.5 (d, 1H), 6.38 (s, 1H), 3.70 (s, 3H).

Example 4 (No. 3.32)

15 Benzyl{2-chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]phenyl}sulfonylcarbamate

25

20

With stirring, 0.6 g (1.4 mmol) of 2-chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl] benzenesulfonylisocyanate in 1,2-dichloroethane was added to a solution of 0.15 g (1.4 mmol) of benzyl alcohol in methylene chloride, and the reaction mixture was stirred overnight. Removal of the solvent and customary purification methods gave 0.4 g (52% of theory) of the title compound as a colorless solid (m.p.: 231-232 °C).

Example 5 (No. 2.26)

3-[4-Chloro-2-fluoro-5-{[isopropyl(methyl)amino]carbonylaminosulfonyl}phenyl]-

1-methyl-2,4-dioxo-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine

5 With stirring, 1.0 g (2.34 mmol) of 2-chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]benzenesulfonyl isocyanate in 1,2-dichloroethane was added to a solution of 0.34 g (4.68 mmol) of N-methylisopropylamine in 1,2-dichloroethane, and the mixture was stirred overnight. The reaction mixture was concentrated, the residue was taken up in methylene chloride and 0.5N hydrochloric acid was added. The organic phase was then dried and the solvent was removed. This gave 0.5 g (42% of theory) of the title compound as a colorless solid (m.p.: 145°C).

15 Example 6 (No. 4.5)

N-isobutynyl-[2-chloro-5-(3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-1-(2H)-pyrimidinyl)]benzenesulfonamide

20

25

With stirring, 0.15 g (1.43 mmol) of isobutyryl chloride was added to a mixture of 0.5 g (1.3 mmol) of 2-chloro-4-fluoro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-trifluoromethyl-(2H)-pyrimidin-1-yl]benzenesulfonyl isocyanate, 0.26 g (2.61 mmol) of triethylamine and catalytic amounts of N,N-dimethylaminopyridine in methylene chloride, and the mixture was stirred overnight. The reaction mixture was washed with 1N hydrochloric acid and dried and the solvent was removed. This gives 0.6 g (96% of theory) of the title compound as a colorless solid (m.p.: 114-116 °C).

In addition to the compounds above, Tables 2 to 4 list further benzenesulfonamide derivatives of the formula I which were prepared or are preparable in a manner similar to the processes described above.

Table 2

rabic	_					
No.	X ¹	X ²	R ¹	R ²	R ²⁹	m.p. [°C]
2.1	Н	CI	CH₃	Н	CH₃	
2.2	Н	CI	CH₃	Н	NH ₂	
2.3	Н	CI	CH₃	CH₃	CH ₃	
2.4	Н	CI	CH₃	CH₃	NH ₂	
2.5	Н	CI	OCH₃	CH₃	CH ₃	95
2.6	Н	CI	C₂H₅	Н	CH₃	
2.7	Н	CI	C₂H₅	н	NH ₂	
2.8	Н	CI	C ₂ H ₅	C ₂ H ₅	CH ₃	
2.9	Н	CI	CH₂CH₂CH₃	Н	CH₃	
2.10	Н	CI	CH₂CH₂CH₃	Н	NH ₂	
2.11	Н	CI	CH(CH ₃) ₂	Н	CH ₃	
2.12	Н	CI	CH(CH ₃) ₂	CH₃	CH₃	197
2.13	Н	CI	CH₂=CH-CH₂	Н	CH₃	
2.14	Н	CI	4-methoxy-6-methyl- pyrimidin-2-yl	H	CH₃	209-211
2.15	Н	CI	4,6-dimethoxy- pyrimidin-2-yl	Н	CH₃	208-212
2.16	Н	CI	4-methoxy-6-methyl- 1,3,5-triazin-2- yl	Н	CH₃	146-175
2.17	F	CI	CH₃	Н	CH₃	228-230
2.18	F	CI	CH₃	Н	NH ₂	
2.19	F	CI	CH₃	CH₃	CH₃	198-205
2.20	F	CI	CH₃	CH₃	NH ₂	

2.21	F	CI	C ₂ H ₅	Н	CH ₃	
2.22	F	CI	C₂H₅	Н	NH ₂	
2.23	F	Cl	C ₂ H ₅	CH₃	CH ₃	
2.24	F	CI	CH₂CH₂CH₃	Н	CH₃	
2.25	F	CI	CH₂CH₂CH₃	CH₃	CH₃	
2.26	F	CI	CH(CH ₃) ₂	CH₃	CH ₃ ·	145
						(decompositi
						on)
2.27	F	CI	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₃	179-181
2.28	F	Cl	CH(CH₃)C≡CH	CH₃	CH ₃	160-165
2.29	F	CI	C ₆ H ₅	Н	CH₃	160
2.30	F	CI	-(CH ₂) ₅ -		CH₃	
2.31	F	CI	-(CH ₂) ₆ -		CH ₃	
2.32	CI	CI	CH₃	Н	CH₃	234-235
2.33	CI	CI	CH₃	CH₃	CH ₃	
2.34	CI	CI	CH₃	CH₃	NH ₂	
2.35	CI	CI	C₂H₅	Н	CH ₃	
2.36	CI	CI	CH₂CH₂CH₃	Н	CH₃	
2.37	F	CI	CH(CH ₃) ₂	Н	NH ₂	

$$F_3C$$
 N
 O
 S
 N
 B
 R^1
 S
 N
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

Table 3

No.	X ¹	X ²	Α	В	R ¹	R ²⁹	m.p. [°C]
3.1	Н	CI	0	0	CH ₃	CH ₃	120-148
3.2	H	CI	0	0	C₂H₅	CH ₃	189-190
3.3	Н	CI	0	0	CH₂CH₂CH₃	CH ₃	
3.4	Н	CI	0	0	CH(CH ₃) ₂	CH ₃	
3.5	Н	CI	0 -	0	(CH ₂) ₃ CH ₃	CH ₃	194-195
3.6	Н	CI	0	0	CH(CH₃)CH₂CH₃	CH ₃	
3.7	Н	CI	0	0	CH ₂ CH(CH ₃) ₂	CH₃	

3.8	Н	CI	0	0	C(CH ₃) ₃	CH ₃	
3.9	Н	CI	0	0	(CH ₂)₄CH ₃	CH ₃	
3.10	Н	CI	0	0	cyclopentyl	CH ₃	114-116
3.11	Н	Cŀ	0	0	CH₂CH₂CI	CH ₃	
3.12	Н	CI	0	0	(CH ₂)OCH ₃	CH ₃	
3.13	Н	CI	0	0	(CH ₂)SCH ₃	CH ₃	
3.14	Н	CI	0	0	CH₂CH₂CN	CH ₃	
3.15	Н	CI	0	S	CH ₃	CH ₃	
3.16	Н	CI	0	S	C ₂ H ₅	CH ₃	
3.17	Н	CI	0	S	CH₂CH₂CH₃	CH ₃	
3.18	F	CI	0	0	CH₃	CH ₃	120-135
3.19	F	CI	0	0	C₂H₅	CH₃	228-231
3.20	F	CI	0	0	CH ₂ CH ₂ CH ₃	CH₃	203
3.21	F	CI	0	0	CH(CH ₃) ₂	CH₃	228-230
3.22	F	CI	0	0	(CH₂)₃CH₃	CH₃	238
3.23	F	CI	0	0	CH(CH ₃)CH ₂ CH ₃	CH₃	195-198
3.24	F	CI	0	0	CH ₂ CH(CH ₃) ₂	CH₃	233-235
3.25	F	CI	0	0	C(CH ₃) ₃	CH₃	185
3.26	F	CI	0	0	(CH₂)₄CH₃	CH₃	235
3.27	F	CI	0	0	cyclopentyl	CH₃	214
3.28	F	CI	0	0	CH₂CH₂CI	CH₃	
3.29	F	CI	0	0	(CH₂)OCH₃	CH₃	
3.30	F	CI	0	0	(CH₂)SCH₃	CH₃	
3.31	F	CI	0	0	CH₂CH₂CN	CH₃	
3.32	F	CI	0	0	CH₂C ₆ H ₅	CH₃	231-232
3.33	F	CI	0	S	CH₃	CH₃	
3.34	F	CI	0	S	C₂H₅	CH₃	
3.35	F	CI	0	S	CH₂CH₂CH₃	CH₃	
3.36	CI	CI	0	S	CH₃	CH₃	
3.37	CI	CI	0	S	C₂H₅	CH₃	
3.38	CI	CI	0	S	CH ₂ CH ₂ CH ₃	CH₃	
3.39	Ci	CI	0	0	CH₃	CH₃	218-220
3.40	CI	CI	0	0	C₂H₅	CH₃	235-237
3.41	F	CI	0	0	CH₂COOCH₃	CH₃	142-160
3.42	F	CI	0	0	C(CH ₃) ₂ CH ₂ OCH ₃	CH₃	178

Table 4

lable	4				
No.	X ¹	X ²	R ¹	R ²⁹	m.p. [°C]
4.1	Н	CI	Н	CH₃	
4.2	Н	CI	CH₃	CH₃	
4.3	Н	CI	C ₂ H ₅	CH₃	
4.4	Н	CI	CH₂CH₂CH₃	CH ₃	
4.5	Н	CI	CH(CH ₃) ₂	CH ₃	114-116
4.6	Н	CI	(CH ₂) ₃ CH ₃	CH ₃	
4.7	Н	CI	CH(CH ₃)CH ₂ CH ₃	CH₃	
4.8	Н	CI	CH ₂ CH(CH ₃) ₂	CH ₃	
4.9	Н	CI	cyclopentyl	CH₃	
4.10	Н	CI	CH ₃	NH ₂	
4.11	Н	CI	C ₂ H ₅	NH ₂	
4.12	Н	CI	CH₂CH₂CH₃	NH ₂	
4.13	F	CI	CH ₃	CH₃	269 (decomposition)
4.14	F	CI	C ₂ H ₅	CH ₃	229-230
4.15	F	CI	CH ₂ CH ₂ CH ₃	CH ₃	
4.16	F	CI	CH(CH ₃) ₂	CH ₃	243-245
4.17	F	CI	CH₂CI	CH ₃	
4.18	F	CI	CF₃	CH ₃	
4.19	F	CI	C ₆ H ₅	CH ₃	
4.20	F	CI	2-CI-C ₆ H ₄	CH₃	
4.21	F	CI	3-CI-C ₆ H ₄	CH₃	
4.22	F	CI	4-CI-C ₆ H ₄	CH ₃	
4.23	F	CI	CH ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃	
4.24	CI	CI	CH₃	CH ₃	275-277
4.25	CI	CI	C ₂ H ₅	CH₃	225-230
4.26	CI	CI	CH ₂ CH ₂ CH ₃	CH₃	
4.27	CI	CI	CH ₂ CH(CH ₃) ₂	CH₃	
4.28	CI	CI -	CH₃	NH ₂	
4.29	CI	CI	C ₂ H ₅	NH ₂	
4.30	CI	CI	CH₂CH₂CH₃	NH ₂	
L		<u> </u>			<u></u>

Biological activity

The benzenesulfonamide derivatives of the formula I and their agriculturally useful salts are suitable, both in the form of isomer mixtures and in the form of the pure isomers, as herbicides. The herbicidal compositions comprising compounds of the formula I control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and harmful grasses in crops such as wheat, rice, maize, soya and cotton without causing any significant damage to the crop plants. This effect is mainly observed at low rates of application.

Depending on the application method used, the compounds of the formula I, or the herbicidal compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.

In addition, the compounds of the formula I may also be used in crops which tolerate the action of herbicides owing to breeding, including genetic engineering methods.

Furthermore, the benzenesulfonamide derivatives of the formula I and their agriculturally useful salts are also suitable for the desiccation and/or defoliation of plants.

40

15

20

25

30

As desiccants, they are particularly suitable for desiccating the above-ground parts of crop plants such as potatoes, oilseed rape, sunflowers and soybeans. This allows completely mechanical harvesting of these important crop plants.

15

20

Also of economic interest is

- the concentrated, within a certain time, fruit drop or the reduction of the adherence of the fruits to the plant, for example in the case of citrus fruit, olives or other species and varieties of pomaceous fruit, stone fruit and hard-shelled fruit, thus facilitating the harvesting of these fruits, and also
- the controlled defoliation of useful plants, in particular cotton.

The drop, promoted by using compounds of the formula I according to the invention and agriculturally useful salts thereof, is a result of the formation of abscission tissue between fruits or leaves and the shoot of the plants.

The defoliation of cotton is of very particular economic interest, since it facilitates harvesting. At the same time, the reduced period of time within which the individual plants mature results in a better quality of the harvested fiber material.

The compounds of the formula I, or the herbicidal compositions comprising them, can be used for example in the form of ready-to-spray aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for broadcasting or granules, by means of spraying, atomizing, dusting, broadcasting or watering. The use forms depend on the intended aims; in any case, they should ensure a very fine distribution of the active compounds according to the invention.

The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or an agriculturally useful salt of I and auxiliaries customary for formulating crop protection agents.

Essentially, suitable inert auxiliaries include:

mineral oil fractions of medium to high boiling point, such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as
 cyclohexanone, or strongly polar solvents, e.g. amines such as N-methylpyrrolidone, and water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare

40 emulsions, pastes or oil dispersions, the substrates, either as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetting agent, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or oil, which are suitable for dilution with water.

Suitable surfactants (adjuvants) are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene, or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignosulfite waste liquors or methylcellulose.

Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.

Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Solid carriers are mineral earths, such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate and ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers.

25

30

20

5

10

The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise from about 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).

The formulation examples below illustrate the production of such preparations:

- 20 parts by weight of an active compound of the formula I are dissolved in a
 mixture composed of 80 parts by weight of alkylated benzene, 10 parts by
 weight of the adduct of 8 to 10 mol of ethylene oxide to 1 mol of oleic acid Nmonoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate
 and 5 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of
 castor oil. Pouring the solution into 100,000 parts by weight of water and finely
 distributing it therein gives an aqueous dispersion which comprises 0.02% by
 weight of the active compound of the formula I.
 - 20 parts by weight of an active compound of the formula I are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight

of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active compound of the formula I.

20 parts by weight of an active compound of the formula I are dissolved in a Ш mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide to 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active

IV 20 parts by weight of an active compound of the formula I are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalene sulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel, and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the 20 active compound of the formula I.

compound of the formula I.

3 parts by weight of an active compound of the formula I are mixed with 97 ٧ parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active compound of the formula I.

VI 20 parts by weight of an active compound of the formula I are mixed intimately with 2 parts by weight of calcium dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.

VII 1 part by weight of an active compound of the formula I is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.

1 part by weight of an active compound of the formula I is dissolved in a VIII mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol^R EM 31 (=nonionic emulsifier based on ethoxylated castor oil). This gives a stable emulsion concentrate.

The herbicidal compositions or the compounds of the formula I can be applied pre- or post-emergence. If the active compounds are less well tolerated by certain crop plants,

10

5

15

25

30

35

application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that they come into contact as little as possible, if at all, with the leaves of the sensitive crop plants, while the active compounds reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by).

The application rates of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0 kg/ha of active substance (a.s.), depending on the control target, the season, the target plants and the growth stage.

10

15

20

25

5

To widen the activity spectrum and to achieve synergistic effects, the benzenesulfonamide derivatives of the formula I may be mixed with a large number of representatives of other herbicidal or growth-regulating active compound groups and then applied concomitantly. Suitable components for mixtures are, for example, 1,2,4thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles, anilides, (het)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-hetaroyl/aroyl-1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates, quinolinecarboxylic acid and its derivatives, chloroacetanilides, cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenyl-propionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.

It may furthermore be advantageous to apply the compounds of the formula I, alone or else concomitantly in combination with other herbicides, in the form of a mixture with other crop protection agents, for example together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions, which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates may also be added.

30 Use Examples (herbicidal efficacy)

The herbicidal activity of the benzenesulfonamide derivatives of the formula I was demonstrated by the following greenhouse experiments:

The culture containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown

separately for each species.

For the pre-emergence treatment, the active compounds, emulsified or suspended in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants, unless this was adversely affected by the active compounds.

For the post-emergence treatment, the test plants were first grown to a height of 3 to
15 cm, depending on the plant form, and only then treated with the active compounds,
emulsified or suspended in water. The test plants were for this purpose either sown
directly and grown in the same containers, or they were first grown separately as
seedlings and transplanted into the test containers a few days prior to treatment.

15 The application rate for the pre- and post-emergence treatment was from 62.5 to 3.1 g of a.s./ha.

Depending on the species, the plants were kept at 10-25°C or 20-35°C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

Evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the above-ground parts, and 0 means no damage, or normal course of growth.

The plants used in the greenhouse experiments were composed of the following species:

Scientific Name	Common Name
Abutilon theophrasti	Velvet leaf
Amaranthus retroflexus	Pigweed
Chenopodium album	Common lambsquarters
Commelina benghalensis	Bengal commelina
Galium aparine	Cleavers harrif
Ipomoea hederacea	Morning glory
Pharbitis purpurea	Common morning glory
Polygonum convolvulus	Wild buckwheat
Polygonum persicaria	Ladysthumb
Solanum nigrum	Common nightshade

25

20

At application rates of 12.5 and 6.2 g/ha, the compounds 3.1 and 3.18 (Table 3) showed very good pre-emergence activity against the unwanted plants pigweed, common lambsquarters, common morning glory and wild buckwheat.

5

Furthermore, compounds 3.24 (Table 3) and 4.16 (Table 4), when applied by the preemergence method at application rates of 6.2 and 3.1 g/ha, effected very good control of the unwanted plants velvet leaf, pigweed, common lambsquarters and morning glory.

10

The effectiveness of compound 3.32 (Table 3), when applied by the pre-emergence method at application rates of 62.5 and 31.2 g/ha, was very good against the unwanted plants velvet leaf, pigweed, common lambsquarters and common nightshade.

15

At application rates of 15.6 and 7.8 g/ha, the compounds 3.27, 3.19, 3.20 and 3.22 (Table 3) showed very good post-emergence activity against the unwanted plants pigweed, common lambsquarters, common morning glory and ladysthumb.

20

Furthermore, compounds 2.29 (Table 2) and 3.26 (Table 3), when applied by the postemergence method at application rates of 15.6 and 7.8 g/ha, effected very good control of the unwanted plants pigweed, common lambsquarters and common morning glory.

The effectiveness of compound 3.42 (Table 3), when applied by the post-emergence method at application rates of 15.63 g/ha, was very good against the unwanted plants velvet leaf, common morning glory and ladiesthumb.

25

At application rates of 15.63 g/ha, the compounds 3.41 (Table 3) and 4.14 (Table 4) showed very good post-emergence activity against the unwanted plants pigweed, cleavers harrif and ladiesthumb.

30

Furthermore, compound 2.17 (Table 2), when applied by the post-emergence method at application rates of 15.63 g/ha, effected very good control of the unwanted plants velvet leaf, common lambsquarters and Bengal commelina.

35

The effectiveness of compound 2.28 (Table 2), when applied by the post-emergence method at application rates of 15.63 g/ha, was very good against the unwanted plants pigweed, common lambsquarters and common morning glory.

40

At application rates of 15.63 g/ha, the compound 2.27 (Table 2) showed very good post-emergence activity against the unwanted plants pigweed and common morning

glory.

Use examples (desiccant/defoliant efficacy)

- The test plants used were young 4-leaf cotton plants (without cotyledons) which were grown under greenhouse conditions (rel. atmospheric humidity 50 to 70%; day/night temperature 27/20°C).
- The leaves of the young cotton plants were sprayed to runoff point with aqueous preparations of the active compounds (with addition of 0.15% by weight of the fatty alcohol alkoxylate Plurafac[®] LF 700¹⁾, based on the spray liquor). The amount of water applied was 1000 l/ha (converted). After 13 days, the number of leaves that had been shed and the degree of defoliation in % were determined.
- 15 The untreated control plants did not lose any leaves.
 - 1) A low-foam nonionic surfactant from BASF AG

We claim:

 R^1

25

30

35

5

1. A benzenesulfonamide derivative of the formula I

$$\begin{array}{c|c} Q & \begin{array}{c} O \\ \\ \end{array} & \begin{array}{c} S \\ \end{array} & \begin{array}{c} O \\ \end{array} & \begin{array}{c} Y \\ \end{array} & \begin{array}{c} I, \end{array}$$

in which the variables are as defined below: X^1 is hydrogen or halogen; 10 X^2 is hydrogen, cyano, CS-NH₂, halogen, C₁-C₆-alkyl or C₁-C₆-haloalkyl; X^3 is hydrogen, cyano, C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₄-alkyl, C₃-C₇-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or phenyl-C₁-C₄-alkyl, 15 where the phenyl radical for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy; is a group -C(A)B, SO₂ or SO₂NR²; Υ 20 Α is oxygen or sulfur; is oxygen, sulfur, NR² or a bond; В

is hydrogen, halogen, hydroxyl, C_1 - C_8 -alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl- C_1 - C_4 -alkyl, C_2 - C_8 -alkenyl, C_5 - C_7 -cycloalkenyl, C_3 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_3 - C_7 -cycloalkyloxy, C_2 - C_8 -alkenyloxy, C_3 - C_8 -alkynyloxy, aryl, aryloxy, aryl- C_1 - C_4 -alkyl; where the 13 last mentioned radicals for their part may be partially or fully halogenated and/or may be substituted by one to three substituents from the group consisting of cyano, NO_2 , hydroxyl, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyloxy, C_2 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, amino, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkoxysulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkoxysulfonyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_6 -alkoxysulfonyl,

formyl, C₁-C₆-alkylcarbonyl, C₁-C₆-haloalkylcarbonyl, C₂-C₆-alkenyl-

carbonyl, C₃-C₆-alkynylcarbonyl, carboxy, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkoxycarbonyl, C₂-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, mercaptocarbonyl, C₁-C₆-alkylthiocarbonyl, C₁-C₆-halo-- alkylthiocarbonyl, C2-C6-alkenylthiocarbonyl, C3-C6-alkynylthiocarbonyl, aminocarbonyl, C₁-C₆-alkylaminocarbonyl, di(C₁-C₆-alkyl-5 amino)carbonyl, C₁-C₆-haloalkylaminocarbonyl, di(C₁-C₆-haloalkylamino)carbonyl, C2-C6-alkenylaminocarbonyl, di(C2-C6-alkenylamino)carbonyl, C₃-C₆-alkynylaminocarbonyl, di(C₃-C₆-alkynylamino)carbonyl, phenyl, phenoxy, phenyl-C₁-C₄-alkyl and phenyl-10 C₁-C₄-alkoxy; four- to six-membered heterocyclyl which may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy; or 15 four- to six-membered heterocyclyl-C₁-C₄-alkyl which may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy; or five- or six-membered heteroaryl having one to four nitrogen atoms or 20 having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom, which radical may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl, C₁-C₆-haloalkyl, 25 C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, amino, C₁-C₆-alkylamino and di(C₁-C₆-alkyl)amino; or five- or six-membered heteroaryl-C₁-C₄-alkyl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen 30 or one sulfur atom or having one oxygen or sulfur atom, which radical may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, amino, C₁-C₆-alkylamino and di(C₁-C₆-alkyl)amino; 35 R^2 is hydrogen, C₁-C₈-alkyl, C₂-C₈-alkenyl, C₃-C₈-alkynyl, C₃-C₇-cycloalkyl, where the four last mentioned radicals may be partially or fully halogenated; or R¹ and R² together with the nitrogen atom to which they are attached form a 40

three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl, C₁-C₆-haloalkyl and - C₁-C₆-alkoxy;

5

Q

A¹ to A¹⁷ are oxygen or sulfur,

10 R³, R⁴, R⁵, R¹¹, R¹², R¹², R¹³, R²⁵, R²⁵, R²³, R³³, R³³, R³³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁵ are hydrogen, cyano, hydroxyl, C₁-C₆-alkyl, C₁-C₆-cyanoalkyl, C₁-C₆-haloalkyl, C₃-Cȝ-cycloalkyl, C₃-Cȝ-cycloalkyloxy, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkylyl, C₃-C₆-alkylyloxy, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, phenyl-C₁-C₆-alkyl, amino, C₁-C₆-alkylamino or di(C₁-C₆-alkyl)amino; or

10

20

35

- R³ and R⁴, R¹¹ and R¹², R¹⁸ and R¹⁹, or R⁴⁶ and R⁴⁷ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy;
 - R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² and R⁴³ are hydrogen, hydroxyl, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyloxy, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -alkyloxy, C_3 - C_6 -alkyloxyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyloxy, amino, C_1 - C_6 -alkylamino or di(C_1 - C_6 -alkyl)amino; or
- 15 R⁵ and R⁶, R⁹ and R¹⁰, R¹⁵ and R¹⁶, R²⁰ and R²¹, or R³⁰ and R³¹ together with the atoms to which they are attached form a three- to seven-membered heterocycle which for its part may be partially or fully halogenated and/or substituted by one to three radicals from the group consisting of C₁-C₆-alkyl and C₁-C₆-alkoxy;
 - R¹³, R¹⁴, R²², R²³, R²⁵ and R²⁶ are hydrogen, halogen or C₁-C₆-alkyl;
- R¹⁷, R²⁸, R³⁴, R³⁷ and R⁴⁰
 25 are hydrogen, halogen, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyloxy, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkynyl or C₃-C₆-alkynyloxy;
- 30 R^{24} is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_6 -haloalkoxy, amino, C_1 - C_6 -alkylamino or di(C_1 - C_6 -alkyl)amino;

or an agriculturally useful salt thereof.

- 2. A benzenesulfonamide of the formula I as claimed in claim 1, in which X¹ is hydrogen, fluorine or chlorine.
- 3. A benzenesulfonamide of the formula I as claimed in claim 1, in which X² is hydrogen, cyano, CS-NH₂ or halogen.

20

30

- 4. A benzenesulfonamide of the formula I as claimed in claim 1, in which Y is a group -C(A)B.
- A benzenesulfonamide of the formula I as claimed in claim 1, in which Q is Q¹, Q², Q⁵, Q⁷, Q⁸, Q¹⁰, Q¹², Q¹³, Q¹⁷, Q²⁰, Q²¹, Q²², Q²³, Q²⁴, Q²⁷, Q³¹, Q³², Q³⁴, Q³⁸ or Q³⁹.
- 6. A benzenesulfonamide of the formula I as claimed in claim 1, in which Q is Q^7 , Q^{21} , Q^{22} , Q^{27} , Q^{32} , Q^{38} or Q^{39} .
 - 7. A process for preparing benzenesulfonamide derivatives of the formula I as claimed in claim 1, where X³ is hydrogen, Y is -C(A)B and B is oxygen, sulfur or NR², which comprises reacting benzenesulfonyl iso(thio)cyanates of the formula II

$$Q$$
 $SO_2N=C=A$ II ,

where X1, X2, A and Q are as defined under claim 1,

with amines of the formula III or alcohols or thiols of the formula IV

$$HBR^1$$
 III where $B = NR^2$
 IV where $B = O, S$

- 25 where R¹ and R² are as defined in claim 1.
 - 8. A benzenesulfonyl iso(thio)cyanate of the formula II

$$Q$$
 $SO_2N=C=A$
 X^1
 X^2

where X¹, X², A and Q are as defined under claim 1.

10

15

20

25

- 9. A composition, comprising a herbicidally effective amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 and auxiliaries customary for formulating crop protection agents.
- 10. A composition for the desiccation and/or defoliation of plants, comprising such an amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 that it acts as a desiccant and/or defoliant, and auxiliaries customary for formulating crop protection agents.
 - 11. A process for preparing herbicidally effective compositions, which comprises mixing a herbicidally effective amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 and auxiliaries customary for formulating crop protection agents.
 - 12. A process for preparing compositions having desiccant and/or defoliant action, which comprises mixing such an amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 that it acts as a desiccant and/or defoliant and auxiliaries customary for formulating crop protection agents.
- 13. A method for controlling unwanted vegetation, wherein a herbicidally effective amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 is allowed to act on plants, their habitat and/or on seeds.
- 14. A method for the desiccation and/or defoliation of plants, which comprises allowing such an amount of at least one benzenesulfonamide derivative of the formula I or an agriculturally useful salt of I as claimed in any of claims 1 to 6 that it acts as a desiccant and/or defoliant to act on plants.
- 15. The use of the benzenesulfonamide derivatives of the formula I and their agriculturally useful salts as claimed in any of claims 1 to 6 as herbicides or for the desiccation and/or defoliation of plants.

Abstract

The present invention relates to benzenesulfonamide derivatives of the formula I

$$\begin{array}{c|c}
Q & & & & & \\
& & & & & \\
X^1 & & & & & \\
X^2 & & & & & \\
\end{array}$$

5

in which the variables are as defined below:

X¹ is hydrogen or halogen;

10

is hydrogen, cyano, CS-NH₂, halogen, alkyl or haloalkyl;

 X_3

 X^2

is hydrogen, cyano, alkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkynyl or phenyl-alkyl, where the phenyl radical for its part may be substituted;

15

Y is a group -C(A)B, SO_2 or SO_2NR^2 ;

Α

is oxygen or sulfur;

20 B

is oxygen, sulfur, NR² or a bond;

 R^1

is hydrogen, halogen, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl, cycloalkenyl, alkynyl, alkoxy, cycloalkyloxy, alkenyloxy, alkynyloxy, aryl, aryloxy, arylalkyl, where the 13 last mentioned radicals for their part may be substituted;

25

unsubstituted or substituted four- to six-membered heterocyclyl; unsubstituted or substituted four- to six-membered heterocyclyl-C₁-C₄-alkyl; unsubstituted or substituted five- or six-membered heteroaryl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom; or

30

unsubstituted or substituted five- or six-membered heteroaryl-C₁-C₄-alkyl having one to four nitrogen atoms or having one to three nitrogen atoms and one oxygen or one sulfur atom or having one oxygen or sulfur atom;

35 R²

is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, where the four last mentioned radicals may be partially or fully halogenated; or

- R¹ and R² together with the nitrogen atom to which they are attached form an unsubstituted or substituted three- to seven-membered heterocycle;
- Q is a radical from the group consisting of Q¹ to Q³⁹;

to processes and intermediates for their preparation and to the use of these compounds or of the compositions comprising these compounds for controlling unwanted plants and for the desiccation/defoliation of plants.