

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190905805

FCC REPORT

Applicant: General Procurement, Inc

Address of Applicant: 800 E Dyer Road Santa Ana, CA 92705 United States

Equipment Under Test (EUT)

Product Name: 5.7 inch smartphone

Model No.: Eternity G57L

Trade mark: Hyundai

FCC ID: 2AIOHHT2G57L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Sep., 2019

Date of Test: 17 Sep., to 15 Oct., 2019

Date of report issued: 17 Oct., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	17 Oct., 2019	Original

Tanet Wei Date:

Test Engineer 17 Oct., 2019 Tested by:

Winner thang Reviewed by: Date: 17 Oct., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	_
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	23
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	46
7	TES	ST SETUP PHOTO	54
0	ELIT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 **Test Method:** ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	General Procurement, Inc
Address:	800 E Dyer Road Santa Ana, CA 92705 United States
Manufacturer/ Factory:	Shen Zhen Cheng Fong Digital-Tech Limited
Address:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China

5.2 General Description of E.U.T.

Product Name:	5.7 inch smartphone
Model No.:	Eternity G57L
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.36dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2750mAh
AC adapter:	Model: K-T50501000U1 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 55

Report No: CCISE190905805

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 55

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.36 dBi.

6.2 Conducted Emission

T (D : (500 D (45 0 0); 4	5.007		
Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz		
Limit:	Frequency range	Limit (c	dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30 60 50			
Test procedure	* Decreases with the log-	arithm of the frequency. Ilators are connected to the		
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulat Remark E.U.T: Equipment Under 1 LISN: Line Impedence Sta	E.U.T EMI Receiver	Iter — AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	5.7 inch smartphone	Product model:	Eternity G57L
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	₫B	dB	dBu₹	—dBu⊽	<u>d</u> B	
1	0.158	42.66	-0.44	10.77	52.99	65.56	-12.57	QP
2	0.381	25.28	-0.37	10.72	35.63	48.25	-12.62	Average
1 2 3	0.385	36.00	-0.37	10.72	46.35	58.17	-11.82	QP
4	0.442	25.24	-0.38	10.74	35.60	47.02	-11.42	Average
4 5 6	0.489	36.82	-0.39	10.76	47.19	56.19	-9.00	QP
6	0.502	23.37	-0.39	10.76	33.74	46.00	-12.26	Average
7	0.555	35.10	-0.39	10.76	45.47	56.00	-10.53	QP
7 8 9	1.636	17.66	-0.40	10.93	28.19	46.00	-17.81	Average
9	3.547	20.81	-0.45	10.90	31.26	46.00	-14.74	Average
10	3.623	33.56	-0.45	10.90	44.01	56.00	-11.99	QP
11	4.180	32.75	-0.47	10.88	43.16	56.00	-12.84	QP
12	4.180	20.57	-0.47	10.88	30.98	46.00	-15.02	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	5.7 inch smartphone	Product model:	Eternity G57L
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	₫B	dBu∀	—dBu⊽	<u>ab</u>	
1	0.442	27.18	-0.64	10.74	37.28	47.02	-9.74	Average
2	0.447	36.69	-0.64	10.74	46.79	56.93	-10.14	QP
2	0.481	38.90	-0.65	10.75	49.00	56.32	-7.32	QP
4	0.481	27.08	-0.65	10.75	37.18	46.32	-9.14	Average
5	0.541	35.85	-0.65	10.76	45.96	56.00	-10.04	QP
4 5 6	0.541	25.67	-0.65	10.76	35.78	46.00	-10.22	Average
7	0.608	24.45	-0.64	10.77	34.58	46.00	-11.42	Average
8	0.904	34.85	-0.63	10.84	45.06	56.00	-10.94	QP
9	3.547	23.66	-0.69	10.90	33.87	46.00	-12.13	Average
10	3.603	36.59	-0.69	10.90	46.80	56.00	-9.20	QP
11	5.005	37.59	-0.72	10.85	47.72	60.00	-12.28	QP
12	5.005	23.14	-0.72	10.85	33.27	50.00	-16.73	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Max	Maximum Conducted Output Power (dBm) Limit(dBm) R					
Test Cn	802.11b	802.11g	Limit(abin)	Result			
Lowest	14.21	11.13	10.96	12.72			
Middle	13.77	12.91	12.96	12.52	30.00	Pass	
Highest	14.15	13.15	13.08	13.05			

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH		Limit/kU=)	Result				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	9.28	15.92	16.24	35.68			
Middle	9.68	15.84	16.48	35.84	>500	Pass	
Highest	9.76	16.00	16.56	34.24			
Test CH		99% Occupy Ba	andwidth (MHz)		Limit/kU=)	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	12.56	16.72	17.68	37.12			
Middle	12.64	16.96	17.84	36.64	N/A	N/A	
Highest	12.64	16.96	17.92	35.68			

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

Test CH			Limit(dBm) Result			
rest on	802.11b	802.11g	Limit(dBm)	Result		
Lowest	-10.07	-15.86	-15.51	-15.97		
Middle	-9.62	-14.17	-13.63	-15.53	8.00	Pass
Highest	-10.48	-13.58	-13.76	-14.67		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oolidabtea Elilloololi				
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission W	etilou						
	Test Requirement:	FCC Part 15 C	Section 15.2	209 and 15.205				
	Test Frequency Range:	2.3GHz to 2.5G	Hz					
	Test Distance:	3m						
	Receiver setup:	Frequency Detection		RBW	VBW	Remark		
		Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	122	Fraguana	RMS	1MHz .imit (dBuV/m @	3MHz	Average Value Remark		
	Limit:	Frequenc		54.00		Average Value		
		Above 1GH	lz —	74.00		Peak Value		
	Test coture:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
	Test setup:	Horn Antenna Tower AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Anchier Controller						
	Test Instruments:	Refer to section	5.9 for deta	ails				
	Test mode:	Refer to section	5.3 for deta	ails				
	Test results:	Passed						

802.11b mode:

Product Name:	5.7 inch smartphone	Product model: Eternity G57L	
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu∜		 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000							

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∇	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	—dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11b Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 31 of 55

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Antenna Factor						
MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>dB</u>	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq					Limit Over Level Line Limit			
	MHz	—dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						Remark
	MHz	—dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

	00=000000000000000000000000000000000000								
Product Name:	5.7 inch smartphone	Eternity G57L							
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode						
Test Channel:	Lowest channel	Polarization:	Vertical						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%						

	Freq	ReadAntenna Freq Level Factor							
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBu√/m	$\overline{\mathtt{dBuV/m}}$	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L		
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq			ntenna Cable Factor Loss					
	MHz	dBu∜	─dB/m	<u>db</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	−dBuV	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	<u>dB</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L			
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode			
Test Channel:	Lowest channel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

				ntenna Cable Pre Factor Loss Fac					
	MHz	MHz dBuV	dB/m	m dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

6.7.1 Conducted Ellission	Wethod						
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreaspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Rad	diated Emission Me	ethod								
Test	Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205					
Test	Frequency Range:	9kHz to 25GHz	9kHz to 25GHz							
Test	Distance:	3m								
Rece	eiver setup:	Frequency	Detect	ector RBW		VBW		Remark		
	·	30MHz-1GHz	Quasi-p	i-peak 120KHz		300KHz		Quasi-peak Value		
		Above 1GHz	Peak		1MHz	3MHz		Peak Value		
		RMS 1 1MHz 3MHz Average Value								
Limit	t:	Frequency		Limit	(dBuV/m @3i	m)		Remark		
		30MHz-88MH			40.0			uasi-peak Value		
		88MHz-216MH 216MHz-960MI			43.5 46.0			uasi-peak Value uasi-peak Value		
		960MHz-1GH	-		54.0			uasi-peak Value		
		900WI12-1GI1			54.0			Average Value		
		Above 1GHz			74.0		,	Peak Value		
		The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit specified Buse of the EUT whave 10dB med.	as rotated ation. Is set 3 mich was rotated and versurement and the anche rota to aximum rever system with the rota to aximum rever system on level of cified, the would be nargin wo	d 360 meters mount is varied in the vertical ent. emissi tenna able was readin tem which with Month of the entest report ould be	away from the ed on the toped from one need from one need from one need from the EUT was turned from the ed. Otherwise re-tested output to describe the ed. Otherwise re-tested output to describe to describe to the ed. Otherwise re-tested output to describe t	ne into of a neter value s of the was a neter of the	erferen variabl to four of the fine ante arrange phts froi degree tect Fui de. e was 1 poed and emissi	e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees		
Test	setup:	Below 1GHz EUT Tum Table Ground F	0.8m	4m						

Measurement Data (worst case):

Below 1GHz:

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	46.340	51.86	12.24	1.28	29.85	35.53	40.00	-4.47	QP
2 3 4	52.945	48.34	11.80	1.32	29.81	31.65	40.00	-8.35	QP
3	59.232	42.27	11.43	1.38	29.77	25.31	40.00	-14.69	QP
4	77.865	45.10	7.69	1.64	29.66	24.77	40.00	-15.23	QP
5	109.029	42.54	11.75	2.04	29.46	26.87	43.50	-16.63	QP
6	181,920	39.31	10.03		28.96				F-00 777 (C-0)

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.7 inch smartphone	Product model:	Eternity G57L
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						Remark
9	MHz	dBu∜	dB/m		<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>ab</u>	
1	46.340	37.73	12.24	1.28	29.85	21.40	40.00	-18.60	QP
2	54.835	39.36	11.60	1.36	29.80	22.52	40.00	-17.48	QP
1 2 3	77.865	46.00	7.69	1.64	29.66	25.67	40.00	-14.33	QP
4	112.131	39.54	11.49	2.08	29.44	23.67	43.50	-19.83	QP
5	166.651	42.57	9.52	2.64	29.08	25.65	43.50	-17.85	QP
4 5 6	183.844	43.88	10.11						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz												
				802.11b								
Test channel: Lowest channel												
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	47.83	30.94	6.81	41.82	43.76	74.00	-30.24	Vertical				
4824.00	48.36	30.94	6.81	41.82	44.29	74.00	-29.71	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	36.42	30.94	6.81	41.82	32.35	54.00	-21.65	Vertical				
4824.00	37.74	30.94	6.81	41.82	33.67	54.00	-20.33	Horizontal				
				nannel: Midd								
		I I		tector: Peal	value T		1					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	47.97	31.20	6.85	41.84	44.18	74.00	-29.82	Vertical				
4874.00	48.65	31.20	6.85	41.84	44.86	74.00	-29.14	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	37.22	31.20	6.85	41.84	33.43	54.00	-20.57	Vertical				
4874.00	38.16	31.20	6.85	41.84	34.37	54.00	-19.63	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peak	k Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.02	31.46	6.89	41.86	44.51	74.00	-29.49	Vertical				
4924.00	49.13	31.46	6.89	41.86	45.62	74.00	-28.38	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	38.26	31.46	6.89	41.86	34.75	54.00	-19.25	Vertical				
4924.00	39.05	31.46	6.89	41.86	35.54	54.00	-18.46	Horizontal				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g								
	Test channel: Lowest channel											
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	47.99	30.94	6.81	41.82	43.92	74.00	-30.08	Vertical				
4824.00	49.32	30.94	6.81	41.82	45.25	74.00	-28.75	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	37.35	30.94	6.81	41.82	33.28	54.00	-20.72	Vertical				
4824.00	38.16	30.94	6.81	41.82	34.09	54.00	-19.91	Horizontal				
				nannel: Mido								
		T .		tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	48.37	31.20	6.85	41.84	44.58	74.00	-29.42	Vertical				
4874.00	49.16	31.20	6.85	41.84	45.37	74.00	-28.63	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	38.34	31.20	6.85	41.84	34.55	54.00	-19.45	Vertical				
4874.00	39.55	31.20	6.85	41.84	35.76	54.00	-18.24	Horizontal				
			Test ch	annel: High	est channel							
			De	tector: Peak	Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	48.56	31.46	6.89	41.86	45.05	74.00	-28.95	Vertical				
4924.00	49.78	31.46	6.89	41.86	46.27	74.00	-27.73	Horizontal				
			Dete	ector: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4924.00	38.95	31.46	6.89	41.86	35.44	54.00	-18.56	Vertical				
4924.00	39.76	31.46	6.89	41.86	36.25	54.00	-17.75	Horizontal				
Remark:												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT20)									
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.67	36.06	6.81	41.82	49.72	74.00	-24.28	Vertical		
4824.00	49.33	36.06	6.81	41.82	50.38	74.00	-23.62	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.86	36.06	6.81	41.82	38.91	54.00	-15.09	Vertical		
4824.00	38.58	36.06	6.81	41.82	39.63	54.00	-14.37	Horizontal		
			Test ch	nannel: Mido	dle channel					
			De	tector: Peak	. Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.46	36.32	6.85	41.84	50.79	74.00	-23.21	Vertical		
4874.00	49.33	36.32	6.85	41.84	50.66	74.00	-23.34	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.69	36.32	6.85	41.84	40.02	54.00	-13.98	Vertical		
4874.00	40.13	36.32	6.85	41.84	41.46	54.00	-12.54	Horizontal		
			Test ch	annel: High	est channel					
		T		tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	49.50	36.58	6.89	41.86	51.11	74.00	-22.89	Vertical		
4924.00	50.28	36.58	6.89	41.86	51.89	74.00	-22.11	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	39.21	36.58	6.89	41.86	40.82	54.00	-13.18	Vertical		
4924.00	39.88	36.58	6.89	41.86	41.49	54.00	-12.51	Horizontal		
Remark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11n(HT	40)					
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	49.12	36.06	6.81	41.82	50.17	74.00	-23.83	Vertical		
4844.00	49.55	36.06	6.81	41.82	50.60	74.00	-23.40	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	38.41	36.06	6.81	41.82	39.46	54.00	-14.54	Vertical		
4844.00	39.22	36.06	6.81	41.82	40.27	54.00	-13.73	Horizontal		
			Test ch	nannel: Mido	lle channel					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	49.67	36.32	6.85	41.84	51.00	74.00	-23.00	Vertical		
4874.00	50.40	36.32	6.85	41.84	51.73	74.00	-22.27	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	39.14	36.32	6.85	41.84	40.47	54.00	-13.53	Vertical		
4874.00	40.58	36.32	6.85	41.84	41.91	54.00	-12.09	Horizontal		
			Test ch	annel: High	est channel					
		T		tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	49.64	36.45	6.87	41.85	51.11	74.00	-22.89	Vertical		
4904.00	49.31	36.45	6.87	41.85	50.78	74.00	-23.22	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	39.87	36.45	6.87	41.85	41.34	54.00	-12.66	Vertical		
4904.00	39.25	36.45	6.87	41.85	40.72	54.00	-13.28	Horizontal		
Remark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.