What is claimed is:

- 1 method for I/O mismatch calibration in receiver having an I/Q correction module using parameters A_p 2 and B_p , the method comprising the steps of: 3 generating an analog test signal x(t) containing 4 $\cos(2\pi(f_c+f_T)t)$, where f_c and f_T are predetermined 5 real numbers; 6 7 applying I/Q demodulation to reduce the frequency of the signal x(t) by f_c Hz 8 9 outputting a demodulated signal $x_{dem}(t)$; converting the analog signal $x_{dem}(t)$ to a digital signal 10 $x_{dem}[n]$ with a preset sampling rate of f_s Hz; 11 sending the signal $x_{dem}[n]$ into the I/Q correction 12 module using parameters A_p and B_p and outputting a 13 corrected signal w[n]; 14 obtaining two measures U_1 and U_2 of the corrected 15 signal w[n] where U_1 and U_2 are values indicative 16 discrete-Fourier transform 17 the corresponding to frequency $+f_T$ Hz and $-f_T$ Hz, 18 respectively; and 19 20 updating the parameters A_p and B_p of the I/Q correction
 - 1 2. The method as claimed in claim 1, wherein the I/Q correction module implements a function:

module respectively by a first

current values of the parameters A_p and B_p .

function of the two measures U_1 and U_2 , and the

and

 $w[n] = A_p \cdot x_{dem}[n] + B_p \cdot x_{dem}^*[n] ,$

21

22

23

where the superscript * refers to a complex conjugate.

- 1 3. The method as claimed in claim 1, wherein the 2 first and second function are respectively:
- $A_n = A_n \mu \cdot B_n^* \cdot U_1 \cdot U_2; \text{ and}$
- 4 $B_p^{'} = B_p \mu \cdot A_p^* \cdot U_1 \cdot U_2 ,$
- where A_p and B_p are the updated values, A_p and B_p are the current values, and μ is a preset step size
- 7 parameter.
- 1 4. The method as claimed in claim 1, wherein:
- $f_T = \frac{K}{M} f_s ,$
- 3 where K and M are integers and the measures U_1 and U_2
- are respectively obtained by:
- 5 $U_{1} = \frac{1}{M} \sum_{n=0}^{M-1} w[n] \cdot e^{-j2\pi \frac{K}{M}n} ; \text{ and}$
- $U_{2} = \frac{1}{M} \sum_{n=0}^{M} w[n] \cdot e^{j2\pi \frac{K}{M}n} \ .$
- 1 5. The method as claimed in claim 1 further 2 comprising the step of:
- normalizing the updated parameters A_p and B_p so that the power of the corrected signal w[n] is the same as that of the digital signal $x_{dem}[n]$.
- 1 6. An apparatus for I/Q mismatch calibration of a receiver, comprising:
- a signal generator generating an analog test signal $x(t) \text{ containing } \cos(2\pi(f_c+f_T)t), \text{ where } f_c \text{ and } f_T \text{ are }$ predetermined real numbers;

- 6 a demodulator applying I/Q demodulation to reduce the 7 central frequency of the signal x(t) by f_c Hz and 8 outputting a demodulated signal $x_{dem}(t)$; 9 A/D converters converting the analog signal $x_{dem}(t)$ to a 10 digital signal $x_{dem}[n]$ with a preset sampling rate of f_s Hz; 11 an I/Q correction module using parameters A_p and B_p to 12 13 compensate I/Q mismatch in the signal $x_{dem}[n]$ and outputting a corrected signal w[n]; 14 a dual-tone correlator outputting two measures U_1 and 15 16 U_2 of the corrected signal w[n] where U_1 and U_2 are values indicative of the discrete-Fourier 17 transform of w[n] corresponding to frequency $+f_T$ 18 Hz and $-f_T$ Hz, respectively; and 19 20 a processor implementing the step of: updating the parameters A_p and B_p of the I/Q 21 22 correction module respectively by a first 23 and second function of the two measures U_1 24 and U_2 , and the current values of the
 - 7. The apparatus as claimed in claim 6, wherein the processor further implements the step of:

parameters A_p and B_p .

- normalizing the updated parameters A_p and B_p so that the power of the corrected signal w[n] is the same as that of the digital signal $x_{dem}[n]$.
- 1 8. The apparatus as claimed in claim 6, wherein the 2 first and second function are respectively:
- $A_p' = A_p \mu \cdot B_p^* \cdot U_1 \cdot U_2; \text{ and}$

25

- $B_p' = B_p \mu \cdot A_p^* \cdot U_1 \cdot U_2 ,$
- where $A_p^{'}$ and $B_p^{'}$ are the updated values, A_p and B_p are
- 6 the current values, and μ is a preset step size
- 7 parameter.
- 1 9. The apparatus as claimed in claim 6, wherein the
- 2 I/Q correction module implements a function:
- $w[n] = A_p \cdot x_{dem}[n] + B_p \cdot x_{dem}^*[n] ,$
- where the superscript * refers to a complex conjugate.
- 1 10. The apparatus as claimed in claim 6, wherein :
- $f_T = \frac{K}{M} f_s ,$
- where K and M are integers and the measures U_1 and U_2
- 4 are respectively obtained by:
- 5 $U_{I} = \frac{1}{M} \sum_{n=0}^{M-1} w[n] \cdot e^{-j2\pi \frac{K}{M}n}$; and
- $U_{2} = \frac{1}{M} \sum_{n=0}^{M} w[n] \cdot e^{j2\pi \frac{K}{M}n} .$