Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
\Box Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 7

Exercice 1 (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

Question 1

L'équation $2x^2 - 8x + 6 = 0$ admet deux solutions. Leur somme S et leur produit P sont :

A) B) C) D) S = -8 S = -4 S = 4 S = 3 P = 6 P = 3 P = -4

Question 2

 α est un nombre réel tel que $\sin(\alpha) = 0.5$. On a alors :

A) B) C) D) $\sin(\pi - \alpha) = 0.5$ $\sin(\pi - \alpha) = -0.5$ $\sin(\pi - \alpha) = -\frac{\sqrt{3}}{2}$ $\sin(\pi - \alpha) = \frac{\pi}{6}$

Question 3

Dans un repère orthonormé du plan, on considère le cercle d'équation :

$$(x-3)^2 + (y+0.5)^2 = \frac{25}{4}$$

On peut affirmer que :

A)	В)	C)	D)
ce cercle a un rayon de 6,25.	ce cercle passe par le point $R(5; -2)$.	le centre de ce cercle a pour coordonnées $(-3; 0,5)$	aucune des réponses A), B) ou C) n'est
	,	, ,	correcte.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	otio	n:			
	(Les n	uméros	figure	ent sur	· la con	vocatio	on.)			ı							•	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/															1.1

Question 4

Dans un repère orthonormé du plan, une équation cartésienne de la droite passant par le point A(2; -4) et de vecteur normal $\vec{n}(5;6)$ est :

$$6x - 5y - 32 = 0$$

$$6x + 5v + 8 = 0$$

$$5x + 6v + 14 = 0$$

$$6x - 5y - 32 = 0$$
 $6x + 5y + 8 = 0$ $5x + 6y + 14 = 0$ $5x + 6y - 14 = 0$

Question 5

On considère la fonction f définie sur \mathbf{R} par $f(x) = (2x+3)e^x$. La fonction dérivée de la fonction f est notée f'. On a alors :

$$f'(x) = 2e^x$$

$$f'(x) = (2x + 3)e^{x}$$

$$f'(x) = (2x + 1)e^x$$

$$f'(x) = 2e^x$$
 $f'(x) = (2x + 3)e^x$ $f'(x) = (2x + 1)e^x$ $f'(x) = (2x + 5)e^x$

Exercice 2 (5 points)

Une entreprise fabrique des jeux en bois. Avant sa commercialisation, chaque jeu est soumis à deux contrôles : un contrôle de peinture et un contrôle de solidité.

Après un très grand nombre de vérifications, on constate que :

- 8 % des jeux ont un défaut de peinture,
- parmi les jeux qui n'ont pas de défaut de peinture, 5 % ont un défaut de solidité,
- 2 % des jeux présentent les deux défauts.

On choisit au hasard un jeu parmi ceux fabriqués par l'entreprise. On note :

- T l'événement : « le jeu a un défaut de peinture. »
- S l'événement : « le jeu a un défaut de solidité. »
- **1.** Démontrer que $P_T(S) = 0.25$.
- **2.** Recopier et compléter l'arbre pondéré de probabilité ci-dessous traduisant les données de l'énoncé.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les no	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

- **3.** Démontrer que la probabilité que le jeu choisi au hasard n'ait pas de défaut de solidité est égale 0,934.
- **4.** Les jeux qui présentent un défaut de solidité sont détruits. Dans cette question, on leur attribuera un prix de vente de 0 €.

Les jeux ne présentant aucun défaut sont vendus 14 € chacun.

Les autres jeux sont vendus 9 € chacun.

On note X la variable aléatoire qui donne le prix de vente, en euros, d'un jeu.

a. Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur x_i de X, la probabilité de l'événement $\{X=x_i\}$.

x_i	0	9	14
$P(X = x_i)$			

b. Quel est le prix de vente moyen d'un jeu fabriqué par cette entreprise ? On arrondira le résultat au centime d'euro.

Page **5** sur **7 G1SSMAT02649**

Exercice 3 (5 points)

L'évolution d'une population de bactéries dépend de l'environnement dans lequel ces bactéries sont placées. Cette population peut être modélisée par la suite (P_n) définie, pour tout entier naturel n, par : $P_{n+1}=(1+\alpha)P_n+\beta$, où α et β sont des paramètres liés à l'environnement, notamment à la température et à l'humidité.

 P_n modélise alors le nombre de bactéries, en milliers, qui composent cette population n jours après les avoir introduites dans un certain environnement.

- **1.** Une population, initialement composée de 500 mille bactéries, est étudiée dans un environnement pour lequel $\alpha=0.2$ et $\beta=70$.
 - a. Combien y a-t-il de bactéries dans cet environnement au bout de deux jours ?
 - **b.** Recopier et compléter le programme suivant, écrit en langage Python, pour que la fonction Nombrebacteries renvoie le nombre de bactéries présentes dans cet environnement au bout de N jours.

```
def Nombrebacteries(N):
    P=500
    for i in range (0,N):
        P=...
    return ...
```

- **2.** Une autre population, initialement composée de 500 mille bactéries, est étudiée dans un nouvel environnement. On constate que le nombre de bactéries de cette population augmente de 9 % par jour.
 - **a.** Déterminer les valeurs des paramètres α et β pour cet environnement.
 - **b.** Quelle est, dans ce cas, la nature de la suite (P_n) ?
 - **c.** Justifier qu'après 9 jours dans cet environnement, le nombre de bactéries de cette a doublé.

Modèle CCYC : ©DNE																				
Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																	Щ	Щ	Щ	Щ
Prénom(s) :																				
N° candidat :											N° c	d'ins	crip	tion	n :					
	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)		1	•										
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/														1.1

Exercice 4 (5 points)

On considère la fonction f définie sur l'intervalle $[0; +\infty[$ par $f(x)=3x\mathrm{e}^{-0.4x}$. La fonction dérivée de la fonction f est notée f'.

On admet que la fonction f' a pour expression $f'(x) = (-1.2x + 3)e^{-0.4x}$

- **1.** Déterminer le signe de f'(x) sur l'intervalle $[0; +\infty[$.
- **2.** En déduire le tableau de variation de la fonction f sur l'intervalle $[0; +\infty[$.
- **3.** Un sportif a pris un produit dopant. La fonction f modélise la quantité, en mg/L, de ce produit dopant présent dans le sang du sportif x heures après la prise.
 - **a.** Pourquoi peut-on affirmer que ce produit dopant n'est pas naturellement présent dans l'organisme du sportif ?
 - **b.** Combien de temps après son absorption, ce produit dopant sera-t-il présent en quantité maximale dans le sang du sportif ?
 - c. Le sportif absorbe ce produit dopant au début d'une séance d'entraînement. Le même jour, 6 heures après le début de cette séance d'entraînement, il est soumis à un contrôle anti-dopage. Celui-ci se révèlera positif si la quantité de produit dopant présent dans l'organisme de ce sportif dépasse 1,4 mg/L.

Ce contrôle anti-dopage sera-t-il positif? Justifier.