電子電路設計_補充教材

Liquid nitrogen reservoir

Medical Image Processing by using Matlab

Hao-Li Liu

Department of Electrical Engineering, Chang-Gung University

2014, Fall

1

Solonoid coil region

Cold mass supports

Outline

• Fundamental Matlab usage

1m Bore

- Image Filtering by Using Matlab
- Fourier Transform by Using Matlab
- Reconstructing an Image from Projection Data by using Matlab

Image Filtering by Using Matlab

3

Data types and conversions

- Data type
 - int8, uint8, int16, uint16, double
- Data conversion
 - ind2gray, gray2ind, rgb2gray, gray2rgb, rgb2ind, ind2rgb.
 - How to use? Type help XXX!

Example: ind2gray

• Usage: Convert indexed image (0-128) to

intensity image (0-1)

- Code example
 - load trees;
 - I = ind2gray(X,map);
 - Figure; imshow(X,map);
 - Figure; imshow(I);

5

Image import and show

- >> w=imread('spine.tif');
- >> imshow(w); %w is a uint8 format

- >> imdistline
 >> impixelinfo

 Pixel info (17, 168) 0
- imfinfo('spine.tif') >> imfinfo('spine.tif') ans = Filename: 'C:\MATLAB7\toolbox\images\imdemos\spine.tif' FileModDate: '04-Dec-2000 13:57:52' FileSize: 69292 Format: 'tif' FormatVersion: [] Width: 490 Height: 367 BitDepth: 8 ColorType: 'indexed'
 FormatSignature: [73 73 42 0]
 ByteOrder: 'little-endian' NewSubfileType: 0 BitsPerSample: 8 Compression: 'PackBits' PhotometricInterpretation: 'RGB Palette' StripOffsets: [23x1 double] SamplesPerPixel: 1 RowsPerStrip: 16 StripByteCounts: [23x1 double]

- >> w1 = double(w);
- >> figure;
- >> imshow(w1)

- Correct the image scale ($0 \sim 1$):
 - ->> figure;
 - ->> imshow(w1/256)

- Or use "im2double":
 - ->> w2 = im2double(w);
 - ->> figure;
 - ->> imshow(w2)

- The simplest way to Increase image contrast:
 - ->> w = w*2;
 - ->> imshow(w)

- Change the image resolution:
 - ->> w3 = imresize(imresize(w,1/8),8);
 - >> imshow(w3)

- ->> w3 = imresize(imresize(w,1/32),32);
- ->> imshow(w3)

Image filtering

- Average filtering
 - ->> w1 = double(w);
 - ->> figure;
 - >> imshow(w1/max(max(w1)));
 - ->> f1= fspecial('average',10); % 2-D filter;
 - ->> w5 = filter2(f1,w);
 - ->> figure;
 - >> imshow(w5/max(max(w5)));


```
• A 5*5 averaging filter:
  - f2= fspecial('average',5);
>> f2
f2 =
    0.0400
               0.0400
                         0.0400
                                   0.0400
                                             0.0400
    0.0400
               0.0400
                         0.0400
                                   0.0400
                                             0.0400
    0.0400
               0.0400
                         0.0400
                                   0.0400
                                             0.0400
    0.0400
              0.0400
                         0.0400
                                   0.0400
                                             0.0400
    0.0400
               0.0400
                         0.0400
                                   0.0400
                                             0.0400
```

- Average filter is a high-pass filter
- A example of high-pass filter:
 - Laplacian filter
 - Log filter

Gaussian filter

- >> f3 = fspecial('gaussian', [5,5]);
- ->> w7 = filter2(f3,w);
- >> imshow(w7/max(max(w7)))

21

- >> f1 = fspecial('gaussian', [5,5], 0.5);
- >> f2 = fspecial('gaussian', [5,5], 2);
- ->> f3 = fspecial('gaussian',[11,11],1);
- ->> f4 = fspecial('gaussian',[11,11],5);
- ->> w1 = filter2(f1,w);
- ->> w2 = filter2(f2,w);
- ->> w3 = filter2(f3,w);
- ->> w4 = filter2(f4,w);
- ->> figure;imshow(w1/max(max(w1)))
- ->> figure;imshow(w2/max(max(w2)))
- ->> figure;imshow(w3/max(max(w3)))
- ->> figure;imshow(w4/max(max(w4)))

Fourier Transform by Using Matlab

25

Fourier Transform

• "fft" and "ifft" represents the Fourier and inverse Fourier transform

```
>> a= [1 2 3 4 5 6];

>> fft(a)'

ans =

21.0000

-3.0000 - 5.1962i

-3.0000 - 1.7321i

-3.0000

-3.0000 + 1.7321i
```

-3.0000 + 5.1962i

• The fft(ifft(a)) mean the original number itself:

```
>> b =fft(a);
>> ifft(b)
ans =
    1.0000
              2.0000
                       3.0000
                                  4.0000
                                            5.0000
                                                      6.0000
```

Shifting property

```
>> x = [2 3 4 5 6 7 8 1];
                                >> fft(x1)'
>> x1 = (-1).^[0:7].*x;
\gg fft(x)'
                                ans =
ans =
                                    4.0000
                                   1.6569 - 4.0000i
  36.0000
                                   -4.0000 - 4.0000i
  -9.6569 - 4.0000i
                                   -9.6569 + 4.0000i
  -4.0000 + 4.0000i
                                 36.0000
   1.6569 + 4.0000i
                                   -9.6569 - 4.0000i
   4.0000
                                   -4.0000 + 4.0000i
   1.6569 - 4.0000i
                                   1.6569 + 4.0000i
  -4.0000 - 4.0000i
  -9.6569 + 4.0000i
                                                             28
```

2-D Fourier Transform

- fft2.m: 2-D Fourier transform
- ifft2.m: 2-D inverse Fourier transform
- fftshift.m: automatically shift

29

Create an useful subroutine for fft plot:

```
- >> a = [zeros(256,128), ones(256,128)];
- >> af = fftshift(fft2(a));
- >> figure;imshow(a)
- >> figure;fftshow(af)
```

FFT for a rectangular function

- ->> a = zeros(256,256);
- ->> a(78:178,78:178) = 1;
- ->> af = fftshift(fft2(a));
- ->> figure;imshow(a)
- ->> figure;fftshow(af,'log')

FFT for a circular function

- >> [x,y]=meshgrid(-128:127,-128:127);
- >> $z = sqrt(x.^2+y.^2);$
- >> c = (z<15);
- >> cf = fftshift(fft2(c));
- >> figure;imshow(c)
- >> figure;fftshow(cf,'log')

33

• Original image and its Fourier transform:

An example for low-pass filter

- ->> w=imread('cameraman.tif');
- >> f = fftshift(fft2(w));
- ->> cf = c.*f;
- >> cfi = ifft2(cf);
- ->> figure;imshow(cfi/max(max(cfi)))
- ->> figure;fftshow(cf,'log')

An example for high-pass filter

- >> [x,y]=meshgrid(-128:127,-128:127);
- >> $z = sqrt(x.^2+y.^2);$
- >> c = (z>15);
- >> f = fftshift(fft2(w));
- >> cf = c.*f;
- >> cfi = ifft2(cf);
- >> figure;fftshow(cf,'log')
- >> figure;imshow(cfi/max(max(cfi)))

37

Exercise

• Create a 2-D Gaussian function to erase the ringing effect caused by a rigid low-pass filter in the "caremaman.tif" image.

39

Reconstructing an Image from Projection Data

(Parallel Beam)

Create phantom

 A shape-and-logan phantom (left in your homework)

41

Radon transform

```
->> theta1 = 0:10:170;
```

$$- >> [R1,xp] = radon(P,theta1);$$

$$->>$$
 theta2 = 0:5:175;

$$- \gg [R2,xp] = radon(P,theta2);$$

$$->>$$
 theta3 = 0:2:178;

$$- >> [R3,xp] = radon(P,theta3);$$

Plot the radon transform

- Figure; imagesc(theta3,xp,R3);
- colormap(hot)
- colorbar
- xlabel('Parallel Rotation Angle \theta (degrees)');
- ylabel('Parallel Sensor Position x\prime (pixels)');

Image reconstruction using "iradon.m"

- >> dtheta1 = theta1(2) theta1(1);
- >> I1 = iradon(R1,dtheta1,256);
- >> figure; imshow(I1);

->> output_size = 256;

->> dtheta2 = theta2(2) - theta2(1);

->> I2 = iradon(R2,dtheta2,output_size);

->> figure, imshow(I2);

45

- ->> dtheta3 = theta3(2) theta3(1);
- $->> I3 = iradon(R3,dtheta3,output_size);$
- ->> figure, imshow(I3);

How to create matrix variable?

- Meshgrid.m >> [X,Y] = meshgrid(-2:.2:2, -2:.2:2);
- Zeros.m $>> Z = X \cdot \exp(-X \cdot ^2 Y \cdot ^2);$
- Ones.m
- Special functions >> mesh(Z)
 - Peaks.m
- Others:
 - See "demo"... ans =

0 0 0 0 0

17

How to create circle?

- Example:
 - >> x = -64:63;
 - >> y = -64:63;
 - >> [X,Y]=meshgrid(x,y);
 - >> Z = zeros(128,128);
 - >> Z(X.^2+Y.^2<10^2)\(\text{\tinte\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tin{\tintet{\texit}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tin{
 - >> mesh(Z)

