

Proving Vector Dot Product Properties

Source: Proving vector dot product properties (video) | Khan Academy

Commutativity of the Dot Product

Problem Statement

We aim to prove that the dot product is commutative, i.e.,

$$\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$$

Vector Definitions

Let

$$ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}, \quad ec{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_n \end{bmatrix}$$

Compute Each Dot Product

• First, compute $\vec{v} \cdot \vec{w}$:

$$v_1w_1+v_2w_2+\cdots+v_nw_n$$

• Now compute $\vec{w} \cdot \vec{v}$:

$$w_1v_1+w_2v_2+\cdots+w_nv_n$$

Why Are They Equal?

Because scalar multiplication of real numbers is **commutative**:

$$v_i w_i = w_i v_i$$
 for all i

👉 Hence,

$$\vec{v}\cdot\vec{w}=\vec{w}\cdot\vec{v}$$

Analogy: Think of two people high-fiving—doesn't matter who raises their hand first, the clap happens either way!

Distributivity of the Dot Product Over Vector Addition +=

Property to Prove

We want to show:

$$(\vec{v} + \vec{w}) \cdot \vec{x} = \vec{v} \cdot \vec{x} + \vec{w} \cdot \vec{x}$$

Define All Vectors

$$ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}, \quad ec{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_n \end{bmatrix}, \quad ec{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

Step-by-Step Breakdown

1. Left-Hand Side

First compute $\vec{v} + \vec{w}$:

$$ec{v}+ec{w}=egin{bmatrix} v_1+w_1\ v_2+w_2\ dots\ v_n+w_n \end{bmatrix}$$

Then compute the dot product:

$$(\vec{v}+\vec{w})\cdot \vec{x} = (v_1+w_1)x_1 + (v_2+w_2)x_2 + \cdots + (v_n+w_n)x_n$$

2. Right-Hand Side

• Compute each dot product:

$$ec{v} \cdot ec{x} = v_1 x_1 + v_2 x_2 + \dots + v_n x_n \ ec{w} \cdot ec{x} = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

• Add the results:

$$ec{v}\cdotec{x}+ec{w}\cdotec{x}=(v_1+w_1)x_1+\cdots+(v_n+w_n)x_n$$

>> Voilà! Both sides are identical.

Analogy: Like splitting a pizza (dot product with x) between two friends (v and w). Distribute the slices equally—they still add up to the full pie!

Scalar Associativity with the Dot Product

Statement to Prove

Show that scalar multiplication associates with the dot product:

$$(c\vec{v})\cdot\vec{w}=c(\vec{v}\cdot\vec{w})$$

Define Scalar and Vectors

Let c be a real number, and

$$ec{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}, \quad ec{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_n \end{bmatrix}$$

Compute Both Sides

Left-Hand Side

Compute scalar multiplication first:

$$cec{v} = egin{bmatrix} cv_1 \ cv_2 \ dots \ cv_n \end{bmatrix}$$

• Then take the dot product:

$$(cv_1)w_1+(cv_2)w_2+\cdots+(cv_n)w_n=c(v_1w_1+v_2w_2+\cdots+v_nw_n)$$

Right-Hand Side

• Compute $\vec{v} \cdot \vec{w}$ first:

$$v_1w_1+v_2w_2+\cdots+v_nw_n$$

• Then multiply by scalar:

$$c(v_1w_1 + v_2w_2 + \cdots + v_nw_n)$$

Both sides yield the same result!

 Analogy: Scaling a smoothie recipe (vector) before or after blending (dot product) gives the same delicious outcome—just multiplied by the scalar (c)!

Key Takeaways 🧼 🧩

• **Commutativity**:

Order doesn't matter in dot product:

$$\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$$

• V Distributivity:

Dot product distributes over vector addition:

$$(ec{v}+ec{w})\cdotec{x}=ec{v}\cdotec{x}+ec{w}\cdotec{x}$$

Associativity with Scalars:

You can factor out the scalar:

$$(c\vec{v})\cdot\vec{w}=c(\vec{v}\cdot\vec{w})$$

- Frame These properties make the dot product behave like normal multiplication in arithmetic—but with vectors!
- We can't just assume these properties—they must be proven from first principles using component-wise definitions.

Feeling bored by the repetition? That's the price of mathematical rigor—it may feel mundane, but it builds intuition and confidence