LABORATORIO DI CALCOLO 2 PREAPPELLO 15-19/01/2009 COMPITO 1

COGNOME		NOME
MATR	FIRMA	

Creare una cartella dal nome cognome_nome_matricola nella vostra home directory: mkdir cognome_nome_matricola

Svolgere l'esercizio in tale cartella e, al termine dello svolgimento, copiare l'intera cartella in /home/comune/lab2_pre09_compito1 con i comandi: cd

cp -r cognome_nome_matricola /home/comune/lab2_pre09_compito1 La cartella deve contenere tutto il necessario per compilare il programma ed eseguirlo dando i comandi:

make compito

./compito

ed un file di testo soluzione.txt contente le risposte alle domande nel testo.

Si calcoli il seguente integrale (simile ad una densità di probabilità gaussiana): $I_1 = \int_{-5}^{5} dx e^{-x^2/2}$ con una precisione relativa almeno di 10^{-6} . Indicare il metodo usato ed il numero di valutazioni della funzione usate e quanto questo integrale differisce dal valore $\sqrt{2\pi}$ che si ha per estremi $\pm \infty$.

Nel caso di due variabili correlate, la funzione integranda diventa $G(x, y; \rho) = e^{-(x^2 - 2\rho xy + y^2)/2(1-\rho^2)}$ Calcolare sia con il metodo Monte Carlo "hit or miss" e con quello della media,

$$I_2(\rho) = \int_{-5}^{5} dx \int_{-5}^{5} dy G(x, y; \rho)$$

per ρ =0, 0.5, 0.95. Se gli estremi fossero infiniti, l'integrale darebbe come risultato $2\pi\sqrt{1-\rho^2}$ Utilizzare almeno 10^6 punti e, per ciascun valore di ρ , il risultato del calcolo e di quanto questo si discosta dal valore per estremi infiniti.

Soluzione:

A seconda del metodo di integrazione utilizzato, il numero di punti varia tra 27 (midpoint iterativo) e 64 (trapezoidi).

Il vale 2.506627 e differisce da quello con estremi infiniti di 1.4×10^{-6} .

Con la statistica data, I2 deve differire dal suo valore con estremi infiniti di $1-3\times10^{-2}$

Tali valori sono rispettivamente 6.2832, 5.4414 e 1.9619, per ρ =0, 0.5 e 0.95.

Normalmente il metodo della media dà risultati un po' migliori.