# Reinforcement Learning

Luca Citi Iciti@essex.ac.uk

School of Computer Science and Electronic Engineering University of Essex (UK)

CE802

#### Outline

- Modelling the problem
  - Introduction
  - Markov Decision Process
  - Policy, rewards, discount factor
  - Bellman's equations
- Learning
  - Model-Based Learning
  - Model-Free Learning
  - Deterministic Q-Learning
  - Exploration / Exploitation
  - Non-deterministic settings

### Examples of Reinforcement Learning problems

- A child learning to ride a bicycle
- A rat learning to run a maze, poke its nose into a device and receive water
- A driver learning the best route between her home and her office in rush hour traffic
- A robot learning how to find the recharging unit in a laboratory
- An AI agent learning to play backgammon/chess/go/poker/any game (at human or superhuman level)







## What is Reinforcement Learning?

- Reinforcement learning is the study of how animals and artificial systems can learn to optimize their behaviour in the face of rewards and punishments – Peter Dayan, Encyclopedia of Cognitive Science
- Not supervised learning the animal/agent is not provided with examples of optimal behaviour, it has to be discovered!
- Not unsupervised learning either we have more guidance than just observations
- Draws ideas from a wide range of contexts, including psychology, philosophy, neuroscience, operations research, cybernetics

### Common aspects of learning problems

- An agent is learning to choose a sequence of actions that will lead to a reward
- The ultimate consequences of an action may not be immediately apparent; when a reward is achieved, it is often not (not just) because of the last action performed (credit assignment problem)
- It is often hard to assess the effects of an action in isolation but rather one needs to consider it as part of an overall policy
- There is no pre-defined set of training examples: experiences forming the basis of learning are derived through some form of exploration
- The learning is expected to be permanent; that is, it will determine the agents behaviour for the indefinite future

#### Problem abstraction

Like with many complex problems, to better understand and address learning tasks we must abstract the essential features.

Most learning tasks can be modelled using the following abstraction:

- There is a single learner, called the agent
- Everything it interacts with is called the environment
- The agent and the environment interact at discrete steps t:
  - ullet the agent receives some representation of the environment's state  $s_t$  and on that basis selects an action  $a_t$
  - one time step later, the environment responds presenting new situations to the agent, in the form of a new state  $s_{t+1}$ , and providing a reward  $r_{t+1}$



#### The Markov Decision Process

It is often useful to represent a learning task mathematically as a discrete Markov Decision Process (MDP).

A discrete MDP is defined as a 4-tuple  $\langle S, A, T, R \rangle$  where:

- $S, s \in S$  is a discrete set of states
- $A, a \in A$  is a discrete set of actions
- $T: S \times S \times A \rightarrow [0,1]$  represents the state transition probability:  $T(s'|s,a) \triangleq \Pr(s_{t+1}=s' \mid s_t=s, a_t=a)$  is the probability of an agent transitioning from state s to state s' after taking action a
- $R: S \times A \to \mathbb{R}$  is the expected reward obtained at the next time step in response to taking action a in state s:

$$R(s,a) \triangleq \mathbb{E} [r_{t+1} | s_t = s, a_t = a]^*$$

Important: the "Markov property" requires that the probability of the next state (T) and reward (R) only depends on the current state and action.

 $<sup>^*\</sup>mathbb{E}$  [] is the "Expected value" operator: the average value that one would expect after carrying out an infinite number of independent repetitions of an experiment (e.g. game).

### The Markov Property

- By "state" we mean whatever information is available to the agent
- A state signal should summarize the current knowledge compactly, yet in such a way that all relevant information is retained
- In a MDP, the best policy for choosing actions as a function of a Markov state is just as good as the best policy for choosing actions as a function of complete histories
- Examples:
  - Chess: current configuration of all the pieces summarizes everything important about the complete sequence of moves that led to it
  - Cannonball: current position and velocity is all that matters for its future flight
  - Tetris: all information captured by a single screen-shot



### Policy

- The type of actions the agent takes when in a given state is called "the policy"
- While the MDP tuple represents a model of the environment, the policy describes the behaviour of the agent
- We can say that learning boils down to finding the optimal policy
- We can have a stochastic policy defined as Pr(a|s), i.e. the probability of taking a given action when in a given state
- We will only consider deterministic policies (in a possibly stochastic environment):

$$\pi: S \to A$$
,  $\pi(s_t) \triangleq a_t$ 

- i.e. the agent will take a given action whenever in a given state
- Policies are Markov and stationary: they depend only on the current state (not on the history and not on the time:  $s_t = s_{t'} \Rightarrow \pi(s_t) = \pi(s_{t'})$ )

#### Rewards and discount factor

- Rewards allow the agent to improve its policy, i.e. to learn
- Way of telling the agent what to achieve, not how to do it (e.g., in chess reward for winning, not for taking opponent's pieces)
- This means rewards can be distant in the future: a greedy approach (choosing the action maximising  $r_{t+1}$ ) would not work
- It usually makes more sense to maximise the total payoff over time
- On the other hand, rewards in the very distant future are often not as valuable as one received immediately

We define the discounted cumulative reward from time step t as:

$$r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

where  $\gamma \in [0,1]$  is called the discount factor



#### Value function

#### We define the following:

• State-value function (or discounted cumulative value)  $V^{\pi}(s)$  is the expected discounted cumulative reward starting from state s, and then following the policy  $\pi$ :

$$V^{\pi}(s) \triangleq \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \, \middle| \, s_{t} = s \right]$$

• Action-value function (or Q-function)  $Q^{\pi}(s,a)$  is the expected discounted cumulative reward starting from state s, taking action a, and then following the policy  $\pi$  afterwards:

$$Q^{\pi}(s, a) \triangleq \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \, \middle| \, s_{t} = s, a_{t} = a \right]$$

### Value function (example)

#### Example:

#### MDP with deterministic transitions, $\gamma$ =0.75



### Bellman's Expectation Equation (maths for reference)

Remembering the definitions:

• 
$$T(s'|s,a) \triangleq \Pr(s_{t+1}=s'|s_t=s,a_t=a)$$
 (state transition probability)

• 
$$R(s, a) \triangleq \mathbb{E} [r_{t+1} | s_t = s, a_t = a]$$

(expected reward)

$$\bullet \ \pi(s_t) \triangleq a_t$$

(policy)

we can rewrite the state-value function as:

$$V^{\pi}(s) \triangleq \mathbb{E}_{\pi} \left[ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \, \middle| \, s_{t} = s \right] = \mathbb{E}_{\pi} \left[ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+1+k+1} \, \middle| \, s_{t} = s \right]$$
$$= R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s'|s, \pi(s)) \, V^{\pi}(s')$$

Similarly, we can rewrite the action-value function as:

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) Q^{\pi}(s', \pi(s'))$$

#### Optimal policy

The best control policy, indicated with  $\pi^*$ , is clearly that which maximises the expected cumulative reward, thus

$$\pi^* = \underset{\pi}{\operatorname{arg\,max}} V^{\pi}(s) \text{ for all } s.$$

The state-value and action-value functions given by the optimal policy  $\pi^*$  are denoted  $V^*(s)$  and  $Q^*(s,a)$ , respectively.

If we have a way to find  $Q^*(s,a)$ , an optimal policy can be determined as

$$\pi^* : \pi^*(s) = \arg\max_{a \in A} Q^*(s, a).$$

This means that if we know the values of  $Q^*(s, a)$ , then by using a greedy search at each local step we get the optimal sequence of steps maximising the cumulative reward. Finally, also observe that:

$$V^*(s) = \max_{a \in A} Q^*(s, a).$$

### Bellman's Optimality Equation

Following the optimal policy  $\pi^*(s) = \underset{a \in A}{\arg\max} \, Q^*(s,a)$ , Bellman's eqs

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s'|s, \pi(s)) V^{\pi}(s') \qquad \text{and}$$

$$T(s, \sigma) = R(s, \sigma) + \gamma \sum_{s' \in S} T(s'|s, \sigma) O^{\pi}(s', \pi(s'))$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) Q^{\pi}(s', \pi(s'))$$

become

These are recursive equations; no closed form solution (in general). There are iterative solution methods, we'll now see a couple of them.

#### Outline

- Modelling the problem
  - Introduction
  - Markov Decision Process
  - Policy, rewards, discount factor
  - Bellman's equations
- Learning
  - Model-Based Learning
  - Model-Free Learning
  - Deterministic Q-Learning
  - Exploration / Exploitation
  - Non-deterministic settings

### Model-Based Learning

#### In Model-Based Learning:

- The agent has access to model, i.e., has a copy of the MDP (the outside world) in its mind
- Using that copy, it tries to "think" what is the best route of action (mentally simulating possible scenarios and oucomes)
- It then executes this policy on the real world MDP
- In this case, we do not need any exploration and can directly solve for the optimal value function and policy

### Model-Based Learning

Value iteration algorithm for model-based learning:

If the values of all states s' out of a given state s are known exactly, we obtain the final  $V^*(s)$  in one iteration. In general, the algorithm will iteratively converge to the correct  $V^*(s)$  values.

### Value iteration (example)



Value iteration (batch version) alternates between:

UPDATE ALL Qs: 
$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) V(s')$$

UPDATE ALL Vs:  $V(s) \leftarrow \max_{a \in A} \ Q(s,a)$ 

### Model-Based VS Model-Free Learning

In "Model-Based Learning", once the agent has "internally" computed the value of each state (or state-action) using the internal model, it will act on the world using the optimal policy  $\pi^*(s) = \underset{a \in A}{\operatorname{arg}} \max_{a \in A} Q^*(s,a)$ .

But, in general, we are concerned with learning when T and R are not known in advance. This is called "Model-Free Learning".

There are two alternatives:

- The agent explores the world to learn T and R first, then it proceeds to learn  $V^{\ast}$
- ullet The agent explores the world and tries to learn  $Q^*$  directly

This second approach is more efficient in practice.

#### Deterministic Model-Free Learning

We start assuming deterministic transitions and rewards, i.e. taking an action from a given state will always lead to the same new state and always result in the same reward.

As a result, Bellman's optimality equation simplifies to:

$$Q^*(s_t, a_t) = r_{t+1} + \gamma \max_{a \in A} Q^*(s_{t+1}, a)$$

We can use the following algorithm implementing Deterministic Q-learning:

```
Initialise all \hat{Q}(s,a) to zero (or small random values) REPEAT UNTIL CONVERGENCE
```

From state  $s_t$ , select an action  $a_t$  using an exploration policy The world responds moving the agent into state  $s_{t+1}$  and giving reward  $r_{t+1}$ Update the estimate of Q for the last action:

$$\hat{Q}(s_t, a_t) \leftarrow r_{t+1} + \gamma \max_{a \in A} \hat{Q}(s_{t+1}, a)$$

Increment t

### An Example (1)

Suppose we want to write a program to learn to play a simple "adventure" type game.

The game finishes when the player reaches the goal state and receives a reward of 100.



Following the Q-learning algorithm, we initialise all estimates of Q to zero:  $\hat{Q}(s,a)=0$  for all states s and actions a.

### An Example (2)

Now suppose the agent begins at state HALL and selects the action ToCAVE.

The reward is zero and  $\hat{Q}(CAVE, a) = 0$  for all actions a.

Hence, applying the Q-learning update procedure

 $\hat{Q}(\mathtt{HALL}, \mathtt{ToCAVE}) \leftarrow r(\mathtt{CAVE}) + \gamma \max_{a} \hat{Q}(\mathtt{CAVE}, a) \text{ produces no change}.$ 



### An Example (3)

Next suppose the agent, now in state CAVE, selects action ToGOAL. The reward is 100 and  $\hat{Q}(\text{GOAL}, a) = 0$  for all actions (there are no actions). Hence  $\hat{Q}(\text{CAVE}, \text{ToGOAL}) \leftarrow r(\text{GOAL}) + \gamma \max_{a} \hat{Q}(\text{GOAL}, a) = 100$ 



### An Example (4)

Let's start at hall again and select the same action ToCAVE.

The reward is zero and  $\hat{Q}({\tt CAVE},{\tt GOAL})=100$  while  $\hat{Q}({\tt CAVE},a)=0$  for all other actions a

Hence  $\max_{a \in A} Q(\mathtt{CAVE}, a) = 100.$  Assuming  $\gamma = 0.8$ , we have

$$\hat{Q}(\mathtt{HALL},\mathtt{ToCAVE}) = r(\mathtt{CAVE}) + \gamma \max_{a} \hat{Q}(\mathtt{CAVE},a) = 0 + 0.8 \cdot 100 = 80$$



### Exploration / Exploitation

The choice of actions determines the agent's trajectory through state space and hence its learning experience.

How should the agent choose?

- U) Uniform random selection (explore)
  - Advantage: Will explore the whole space and thus satisfy criteria of convergence theorem.
  - Disadvantage: May spend a great deal of time learning the value of transitions that are not on any optimal path.
- G) Select action with highest expected cumulative reward (exploit)
  - Advantage: Concentrates resources on apparently useful transitions.
  - Disadvantage: May ignore even better pathways whose value has not been explored, and does not satisfy convergence criterion.

One of the most common methods:

 $\epsilon$ -greedy: act greedily (G) with probability  $1 - \epsilon$ , random (U) otherwise

### Algorithms for non-deterministic settings

What can we do if the MDP is not deterministic?

• Q-learning:

$$\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \eta \left[ R(s,a) + \gamma \max_{a' \in A} \hat{Q}(s',a') - \hat{Q}(s,a) \right]$$
 where  $\eta$  is a small learning rate, e.g.,  $\eta = 0.001$ .

- SARSA(0)
- SARSA(1)/MC

(beyond the scope of this course)

#### Outline

- Modelling the problem
  - Introduction
  - Markov Decision Process
  - Policy, rewards, discount factor
  - Bellman's equations
- Learning
  - Model-Based Learning
  - Model-Free Learning
  - Deterministic Q-Learning
  - Exploration / Exploitation
  - Non-deterministic settings

#### References

#### Required course material reading:

Alpaydin 2010/2014  $\underline{18.1}$ ,  $\underline{18.3}$ ,  $\underline{18.4}$ ,  $\underline{18.4.1}$ , 18.5.1 (epsilon-greedy, softmax),  $\underline{18.5.2}$ ,  $\underline{18.5.3}$  (on-policy, off-policy, sarsa,  $\overline{TD}$  learning)

Reinforcement Learning: An Introduction, by RS Sutton and AG Barto (http://incompleteideas.net/sutton/book/the-book.html) 3.1, 3.2, 3.5

#### **Further reading:**

Mitchell 1997

Chapter 13

#### **Credits:**

Partly based on previous slides by Paul Scott and Spyros Samothrakis, and on the book by Sutton&Barto