2.7 Операція додавання чисел

2.7.1 Теоретичне обгрунтування способу

На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком.

На другому етапі виконують додавання мантис. Додавання мантис виконується у *доповняльних кодах*.

2.7.2 Операційна схема

Рисунок 2.7.1. Операційна схема пристрою додавання/віднімання у МДК

2.7.3 Змістовний мікроалгоритм

Рисунок 2.7.2. Змістовний мікроалгоритм пристрою додавання/віднімання у МДК 2.7.4 Таблиця станів регістрів

Вирівнювання порядків:

$$P_x > P_y \rightarrow P_z = P_x = 10010_2,$$

 $P_x - P_y = 10010_2 - 110_2 = 1100_2 = 12_{10}.$
 $\Delta P = 12_{10}$; $n = 6_{10}$; $min(\Delta P, n) = 6_{10} = 110_2$

Числа у МДК:

$$X_{MJJK} = 11.001101$$

$$Y_{MJJK} = 00.111110$$

Таблиця 2.7.1. Таблиця станів регістрів пристрою додавання/віднімання у МДК двох чисел

№ ц.	RG1	RG2→	RG3	CT
П.С.	11001101	00111110	00000000	110
1	11001101	00011111	00000000	101
2	11001101	00001111	00000000	100
3	11001101	00000111	00000000	011
4	11001101	00000011	00000000	010
5	11001101	0000001	00000000	001
6	11001101	00000000	00000000	000
			11001101	
			+	
-			0000000	
			=	
	11001101	00000000	11.001101	000

2.7.5 Обробка порядків

$$P_z = 10010_2$$

Мантиса: $M_z = 0,110011$; $P_z = 10010$.

Знак мантиси: 1.

2.7.6 Форма запису нормалізованого результату з плаваючою комою в пам'ять

2.8 Операція добування кореня додатного числа

2.8.1 Теоретичне обгрунтування способу

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 $Z_i^2 \le X \le Z_i^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - Z_i^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$