Further Pure Mathematics FP2 Mark scheme

ritical Values -2 and -5 $\frac{x}{x+2} - \frac{2}{x+5} < 0$ $\frac{x^2 + 3x - 4}{x+2)(x+5)} < 0$ $\frac{x+4)(x-1)}{x+2)(x+5)} < 0$ ritical values -4 and 1 $5 < x < -4, -2 < x < 1$ $-5, -4) \cup (-2,1)$	of -2 o A1, A1: Can be	Atternume Corron a attemper -5 v	mpt sing erator or ect critic graph or	re in solution B1B1; one correct le fraction and factorise use quad formula al values May be seen number line. real inequality using one	B1 B1 M1	
$\frac{x}{x+2} - \frac{2}{x+5} < 0$ $\frac{x^2 + 3x - 4}{x+2)(x+5)} < 0$ $\frac{x+4)(x-1)}{x+2)(x+5)} < 0$ ritical values -4 and 1	dM1: A of -2 o A1, A1: Can be	Atternume Corron a attemper -5 v	mpt sing erator or rect critic graph or	B1B1; one correct le fraction and factorise use quad formula al values May be seen number line. rval inequality using one	B1 M1	
$\frac{x}{x+2} - \frac{2}{x+5} < 0$ $\frac{x^2 + 3x - 4}{x+2)(x+5)} < 0$ $\frac{x+4)(x-1)}{x+2)(x+5)} < 0$ ritical values -4 and 1	of -2 o A1, A1: Can be	Atternume Correon a	mpt sing erator or rect critic graph or t an inter	B1B1; one correct le fraction and factorise use quad formula al values May be seen number line. rval inequality using one	B1 M1	
$\frac{x}{x+2} - \frac{2}{x+5} < 0$ $\frac{x^2 + 3x - 4}{x+2)(x+5)} < 0$ $\frac{x+4)(x-1)}{x+2)(x+5)} < 0$ ritical values -4 and 1	of -2 o A1, A1: Can be	Atternume Correon a	mpt sing erator or rect critic graph or t an inter	B1B1; one correct le fraction and factorise use quad formula al values May be seen number line. rval inequality using one	M1	
$\frac{x^2 + 3x - 4}{x + 2)(x + 5)} < 0$ $\frac{x + 4)(x - 1)}{x + 2)(x + 5)} < 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 $	of -2 o A1, A1: Can be	Atternumo Corron a attemper –5 v	mpt sing erator or ect critic graph or t an inter	le fraction and factorise use quad formula al values May be seen number line.		
$\frac{x^2 + 3x - 4}{x + 2)(x + 5)} < 0$ $\frac{x + 4)(x - 1)}{x + 2)(x + 5)} < 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 2 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 = 0$ $x + 4 = 0$ $x + 3x - 4 $	of -2 o A1, A1: Can be	Corron a attempt	erator or rect critic graph or t an inter	use quad formula al values May be seen number line. rval inequality using one		
$\frac{(x+4)(x-1)}{(x+2)(x+5)} < 0$ ritical values -4 and 1	of -2 o A1, A1: Can be	Corron a attempt	erator or rect critic graph or t an inter	use quad formula al values May be seen number line. rval inequality using one		
ritical values -4 and 1 $5 < x < -4, -2 < x < 1$	of -2 o A1, A1: Can be	Corron a attempt	erator or rect critic graph or t an inter	use quad formula al values May be seen number line. rval inequality using one		
ritical values -4 and 1 $5 < x < -4, -2 < x < 1$	of -2 o A1, A1: Can be	Corre on a attempt or -5 v	ect critic graph or t an inter	al values May be seen number line.	A1	
5 < <i>x</i> < -4, -2 < <i>x</i> < 1	of -2 o A1, A1: Can be	on a attempt or -5 v	graph or t an inter	number line. rval inequality using one	A1	
	of -2 o A1, A1: Can be	or -5 v		1 5 5		
	Can be	: Corre		nei cv		
	Can be		ect interv	A1, A1: Correct intervals		
$-5, -4) \cup (-2, 1)$	One cor	Can be in set notation			dM1	
	$(-5,-4)\cup(-2,1)$ One corr		cores A1	A0	A1	
	Award on basis of the inequalities seen - ignore any and/or between them Set notation answers do not need the union			A1		
	sign.					
					(7)	
lternative		I				
Critical Values –2 and	-5	Seen	anywhe	re in solution	B1, B1	
$\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2 (x+5)^2$	+2) $< 2(x)$	$(c+2)^2$	(x+5)			
$\Rightarrow (x+5)(x+2)[x(x+5)-2$	2(x+2)	< 0				
			Multipl	$(x+5)^2(x+2)^2$		
$\Rightarrow (x+5)(x+2)[(x-1)(x+4)]$	4) < 0			, , , ,	M1	
	/					
ritical values -4 and 1					A1	
· · · · · · · · · · · · · · · · · · ·						
				_	13.4	
,					dM	
$-5, -4) \cup (-2, 1)$			A1, A1	: Correct intervals	A1 A1	
, , ,					AI	
		ch gra	ph follov	wed by critical values		
•					 7 marks	
<u>r</u>	itical values -4 and 1 $5 < x < -4, -2 < x < 1$	5 < x < -4, -2 < x < 1 $-5, -4) \cup (-2, 1)$	itical values -4 and 1 $5 < x < -4, -2 < x < 1$ $-5, -4) \cup (-2,1)$ by solutions with no algebra (eg sketch graden)	and attended at the quartic stricted values -4 and 1 Correct dM1: A inequal $-5 < x < -4, -2 < x < 1$ $-5, -4) \cup (-2, 1)$ A1, A1 Can be One contains a substraction of the contains and attended at the quartic quartic and attended at the quartic part of the property of the contains and attended at the quartic dM1: A inequal -5 with the property of the prop	quartic or use quad formula Correct critical values $(5 < x < -4, -2 < x < 1)$ $(5 < x < -4, -2 < x < 1)$ $(5 < x < -4) \cup (-2,1)$ Al, Al: Correct intervals Can be in set notation One correct scores A1A0 The provided HTML and the provided	

Question	Scheme	e	Marks
2(a)	$\frac{1}{(r+6)(r-1)}$	-8)	
	$\frac{1}{2(r+6)} - \frac{1}{2(r+8)}$ oe	Correct partial fractions, any equivalent form	B1
			(1)
(b)	$= \left(2 \times \frac{1}{2}\right) \left(\frac{1}{7} - \frac{1}{9} + \frac{1}{8} - \frac{1}{10} + \frac{1}{9} - \frac{1}{11} \dots + \frac{1}{n+5} - \frac{1}{n+7} + \frac{1}{n+6} - \frac{1}{n+8}\right)$ Expands at least 3 terms at start and 2 at end (may be implied) The partial fractions obtained in (a) can be used without multiplying by 2. Fractions may be $\frac{1}{2} \times \frac{1}{7} - \frac{1}{2} \times \frac{1}{9}$ etc These comments apply to both M1 and A1		
	$= \frac{1}{7} + \frac{1}{8} - \frac{1}{n+7} - \frac{1}{n+8}$	Identifies the terms that do not cancel	A1
	$= \frac{15(n+7)(n+8)-56(2n+15)}{56(n+7)(n+8)}$	Attempt common denominator Must have multiplied the fractions from (a) by 2 now	M1
	$= \frac{n(15n+113)}{56(n+7)(n+8)}$		A1 cso
			(4)
			(5 marks)

Question	Sche	me	Marks
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x\mathrm{e}^{-x^2}y^3$		
	$z = y^{-2} \Rightarrow y = z^{-\frac{1}{2}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}z^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x}$	$M1: \frac{\mathrm{d}y}{\mathrm{d}x} = kz^{-\frac{3}{2}} \frac{\mathrm{d}z}{\mathrm{d}x}$	M1 A1
		A1: Correct differentiation	
	$-\frac{1}{2}z^{-\frac{3}{2}}\frac{dz}{dx} + \frac{2x}{z^{\frac{1}{2}}} = xe^{-x^2}z^{-\frac{3}{2}}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	A1 cso
			(4)
	Alternative 1		
	$\frac{\mathrm{d}z}{\mathrm{d}v} = -2y^{-3} \text{oe}$	$M1: \frac{\mathrm{d}z}{\mathrm{d}y} = ky^{-3}$	M1 A1
		A1: Correct differentiation	
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	A1
	Alternative 2		
	$\frac{\mathrm{d}z}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1: $\frac{dz}{dx} = ky^{-3} \frac{dy}{dx}$ inc chain rule	M1 A1
		A1: Correct differentiation	
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	A1
(b)	$I = e^{\int -4x dx} = e^{-2x^2}$	$M1: I = e^{\int \pm 4x dx}$	M1 A1
		A1: e^{-2x^2}	
	$ze^{-2x^2} = \int -2xe^{-3x^2} dx$	$z \times I = \int -2x e^{-x^2} I dx$	dM1
	$\frac{1}{3}e^{-3x^2}(+c)$	$\int x e^{qx^2} dx = p e^{qx^2} (+c)$	M1
	$z = ce^{2x^2} + \frac{1}{3}e^{-x^2}$	Or equivalent	A1
			(5)

Question	Scheme	
3(c)	$\frac{1}{y^2} = ce^{2x^2} + \frac{1}{3}e^{-x^2} \Rightarrow y^2 = \frac{1}{ce^{2x^2} + \frac{1}{3}e^{-x^2}} \qquad y^2 = \frac{1}{(b)} \left(= \frac{3e^{x^2}}{1 + ke^{3x^2}} \right)$	B1ft
		(1)
	(1	0 marks)

Question	Scheme		Marks	
4(a)	$w = \frac{z - 1}{z + 1}$			
	$w = \frac{z - 1}{z + 1} \Rightarrow wz + w = z - 1 \Rightarrow z = \dots$	Attempt to make z the subject	M1	
	$z = \frac{w+1}{1-w}$	Correct expression in terms of w	A1	
	$= \frac{u+iv+1}{1-u-iv} \times \frac{1-u+iv}{1-u+iv}$	Introduces " $u + iv$ " and multiplies top and bottom by the complex conjugate of the bottom	M1	
	$x = \frac{-u^2 - v^2 + 1}{\dots}, y = \frac{2v}{\dots}$			
	$y = 2x \Longrightarrow 2v = -2u^2 - 2v^2 + 2$	Uses real and imaginary parts and $y = 2x$ to obtain an equation connecting " u " and " v " Can have the 2 on the wrong side.	M1	
	$u^2 + \left(v + \frac{1}{2}\right)^2 - \frac{1}{4} = 1$	Processes their equation to a form that is recognisable as a circle ie coefficients of u^2 and v^2 are the same and no uv terms	M1	
	Centre $(0, -\frac{1}{2})$, radius $\frac{\sqrt{5}}{2}$	A1: Correct centre (allow -½i) A1: Correct radius	A1,A1	
			(7)	
	Special Case:			
	$w = \frac{x + iy - 1}{x + iy + 1} = \frac{(x - 1) + 2xi}{(x + 1) + 2xi} \times \frac{(x + 1) - 2xi}{(x + 1) - 2xi}$	M1: rationalise the denominator, may have $2x$ or y		
	$= \frac{\left(x^2 - 1\right) + 4x^2 + 2xi\left(x + 1 - \left(x - 1\right)\right)}{\left(x + 1\right)^2 + 4x^2}$	A1: Correct result in terms of <i>x</i> only. Must have rational denominator shown, but no other simplification needed		
(b)		B1ft: Their circle correctly positioned provided their equation does give a circle	D10 D1	
	R	B1: Completely correct sketch and shading	B1ft B1	
		1	(2)	
			9 marks)	

Question	Sche	eme	Marks
5(a)	y = c	ot x	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 x$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (-2\csc x)(-\csc x \cot x)$	M1: Differentiates using the chain rule or product/quotient rule A1: Correct derivative	M1A1
	$= 2\csc^2 x \cot x = 2\cot x + 2\cot^3 x^*$	A1: Correct completion to printed answer $1+\cot^2 x = \csc^2 x \text{ or } \cos^2 x + \sin^2 x = 1$ must be used Full working must be shown	Alcso*
			(3)
	Alternative		
	$y = \frac{\cos x}{\sin x} \to \frac{dy}{dx} = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$		
	$\frac{d^2y}{dx^2} = -\left(-2\sin^{-3}x\cos x\right) = \dots$		M1A1
	Correct completion to printed answer see above		A1
		I	(3)
(b)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2\mathrm{cosec}^2 x - 6\cot^2 x \mathrm{cosec}^2 x$	Correct third derivative	B1
	$= -2(1+\cot^2 x) - 6\cot^2 x(1+\cot^2 x)$	Uses $1 + \cot^2 x = \csc^2 x$	M1
	$=-6\cot^4 x - 8\cot^2 x - 2$	cso	A1
			(3)
(c)	$f\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}, f'\left(\frac{\pi}{3}\right) = -\frac{4}{3}, f''\left(\frac{\pi}{3}\right) = \frac{8}{3\sqrt{3}}, f'''\left(\frac{\pi}{3}\right) = -\frac{16}{3}$ M1: Attempts all 4 values at $\frac{\pi}{3}$ No working need be shown		M1
	$(y =) \frac{1}{\sqrt{3}} - \frac{4}{3} \left(x - \frac{\pi}{3}\right) + \frac{4}{3\sqrt{3}} \left(x - \frac{\pi}{3}\right)^2 - \frac{8}{9} \left(x - \frac{\pi}{3}\right)^3$ M1: Correct application of Taylor using their values. Must be up to and		
	including $\left(x - \frac{\pi}{3}\right)^3$		M1A1
	A1: Correct expression Must start $y =$ or $\cot x$		
	f(x) allowed provided defined here or all Decimal equivalents allowed (min 3 sf (0.7698, so accept 0.77) 0.889	` '	
	(0.00., 00 accept 0.77) 0.007		(3)
		(9 marks)

Question	Scho	eme	Marks	
6(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 2\sin x$			
	AE: $m^2 - 2m - 3 = 0$			
	$m^2 - 2m - 3 = 0 \Rightarrow m =(-1,3)$	Forms Auxiliary Equation and attempts to solve (usual rules)	M1	
	$(y=)Ae^{3x}+Be^{-x}$	Cao	A1	
	PI: $(y =) p \sin x + q \cos x$	Correct form for PI	B1	
	$(y' =) p \cos x - q \sin x$ $(y'' =) - p \sin x - q \cos x$			
	$-p\sin x - q\cos x - 2(p\cos x - q\sin x)$ Differentiates twice and substitutes	$-3p\sin x - 3q\cos x = 2\sin x$	M1	
	$2q - 4p = 2, \ 4q + 2p = 0$	Correct equations	A1	
	$p = -\frac{2}{5}, \ q = \frac{1}{5}$	A1A1 both correct A1A0 one correct	A1 A1	
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$			
	$y = Ae^{3x} + Be^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Follow through their <i>p</i> and <i>q</i> and their CF	B1ft	
			(8)	
(b)	$y' = 3Ae^{3x} - Be^{-x} - \frac{1}{5}\sin x - \frac{2}{5}\cos x$	Differentiates their GS	M1	
	$0 = A + B + \frac{1}{5}, \ 1 = 3A - B - \frac{2}{5}$	M1: Uses the given conditions to give two equations in A and B	M1 A1	
	3 3	A1: Correct equations		
	$A = \frac{3}{10}, B = -\frac{1}{2}$	Solves for A and B Both correct	A1	
	$y = \frac{3}{10}e^{3x} - \frac{1}{2}e^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Sub their values of A and B in their GS	A1ft	
			(5)	
		(2	13 marks)	

Question	Scheme		Marks
7(a)	$\theta = \frac{\pi}{3} \Rightarrow r = \sqrt{3} \sin\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Attempt to verify coordinates in at least one of the polar equations	M1
	$\theta = \frac{\pi}{3} \Rightarrow r = 1 + \cos\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Coordinates verified in both curves (Coordinate brackets not needed)	A1
			(2)
	Alternative		
	Equate $rs: \sqrt{3} \sin \theta = 1 + \cos \theta$ and verify (by substitution or solve by using $t = \tan \frac{\theta}{2}$ or writing $\frac{\sqrt{3}}{2} \sin \theta - \frac{1}{2} \cos \theta = \frac{1}{2} \qquad \sin \left(\theta - \frac{\pi}{6}\right) = \frac{1}{2} \theta = 0$ Squaring the original equation allowed as θ is π	$\frac{\pi}{3}$	M1
	Use $\theta = \frac{\pi}{3}$ in either equation to obtain $r = \frac{3}{2}$		
	2		(2)
(b)	$\frac{1}{2} \int (\sqrt{3} \sin \theta)^2 d\theta, \frac{1}{2} \int (1 + \cos \theta)^2 d\theta$	Correct formula used on at least one curve (1/2 may appear later) Integrals may be separate or added or subtracted.	M1
	$ = \frac{1}{2} \int 3\sin^2\theta d\theta, \qquad \frac{1}{2} \int (1 + 2\cos\theta + \cos^2\theta) d\theta $		
	$= \left(\frac{1}{2}\right) \int \frac{3}{2} (1 - \cos 2\theta) d\theta, \left(\frac{1}{2}\right) \int (1 + 2\cos \theta + \frac{1}{2}(1 + \cos 2\theta)) d\theta$ Attempt to use $\sin^2 \theta$ or $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ on either integral Not dependent 1/2 may be missing		
	$= \frac{3}{4} \left[\theta - \frac{1}{2} \sin 2\theta \right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \frac{1}{2} \left[\frac{3}{2} \theta + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]_{\left(\frac{\pi}{3}\right)}^{(\pi)}$		
	Correct integration (ignore limits) A1A1 or $R = \frac{3}{4} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} (-0) \right] + \frac{1}{2} \left[\frac{3\pi}{2} - \left(\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right]$	Correct use of limits for both integrals Integrals must be added. Dep on both previous M marks	ddM1
	$=\frac{3}{4}(\pi-\sqrt{3})$	Cao No equivalents allowed	A1
	+ ' '	110 equivalents anowed	(6)
<u> </u>	1	ı	(8 marks)

Question	Scheme			Marks
8(a)	$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = \left(z^2 - \frac{1}{z^2}\right)^3$			
	$=z^6-3z^2+\frac{3}{z^2}-z^{-6}$		1: Attempt to expand	M1A1
	4		: Correct expansion	
	$=z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	See	rrect answer with no errors	A1
				(3)
	Alternative			
	$\left(z + \frac{1}{z}\right)^3 = z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}, \left(z - \frac{1}{z}\right)^3 = z^3$	-32	$z + \frac{3}{z} - \frac{1}{z^3}$	M1A1
	M1: Attempt to expand both cubic brackets A	1: (Correct expansions	
	$=z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$		Correct answer with no errors	A1
				(3)
(b)(i)(ii)	$z^{n} = \cos n\theta + i \sin n\theta$ Correct application of de Moivre		B1	
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \pm \cos n\theta \pm \sin r$ but must be different from their z^n	$i\theta$	Attempt z ⁻ⁿ	M1
	$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta^{*}, \ z^{n} - \frac{1}{z^{n}} = 2i\sin n\theta^{*}$		$z^{-n} = \cos n\theta - i \sin n\theta$ must be seen	A1*
				(3)
(c)	$\left \left(z + \frac{1}{z} \right)^3 \left(z - \frac{1}{z} \right)^3 = \left(2 \cos \theta \right)^3 \left(2i \sin \theta \right)^3$			B1
	$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow through their k in place of 3		B1ft
	$-64i\sin^3\theta\cos^3\theta = 2i\sin6\theta - 6i\sin2\theta$	si	quating right hand sides and mplifying $2^3 \times (2i)^3$ (B mark eeded for each side to gain I mark)	M1
	$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$			A1cso
				(4)

Question	Scheme		Marks
8(d)	$\int_0^{\frac{\pi}{8}} \cos^3 \theta \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - \sin 6\theta) d\theta$		
	77	M1: $p\cos 2\theta + q\cos 6\theta$	
	$=\frac{1}{32}\left[-\frac{3}{2}\cos 2\theta + \frac{1}{6}\cos 6\theta\right]_0^{\frac{2}{8}}$	A1: Correct integration Differentiation scores M0A0	M1 A1
	$= \frac{1}{32} \left[\left(-\frac{3}{2\sqrt{2}} - \frac{1}{6\sqrt{2}} \right) - \left(-\frac{3}{2} + \frac{1}{6} \right) \right] = \frac{1}{32} \left(\frac{4}{3} - \frac{5\sqrt{2}}{6} \right)$	dM1: Correct use of limits – lower limit to have nonzero result. Dep on previous M mark	dM1 A1
		A1: Cao (oe) but must be exact	
			(4)