Census-Income

February 20, 2019

1 Census-Income (KDD) Data Set

1.1 Data Set Information

This data set contains weighted census data extracted from the 1994 and 1995 Current Population Surveys conducted by the U.S. Census Bureau. The data contains 41 demographic and employment related variables.

One instance per line with comma delimited fields. There are 199523 instances in the data file and 99762 in the test file.

The data was split into train/test in approximately 2/3, 1/3 proportions using MineSet's MIndUtil mineset-to-mlc.

Source: https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29

1.2 Attribute Information

More information detailing the meaning of the attributes can be found in the Census Bureau's documentation. To make use of the data descriptions at this site, the following mappings to the Census Bureau's internal database column names will be needed:

age 'Age' class of worker 'ClassOfWorker' industry code 'Industry Code' occupation code 'OccupationCode' education 'Education' wage per hour 'WagePerHour' enrolled in edu inst last wk 'EnrolledEducation' marital status 'MaritalStatus' major industry code 'MajorIndustryCode' major occupation code 'MajorOccupationCode' Race 'Race' hispanic Origin 'HispanicOrigin' sex 'Sex' member of a labor union 'LabourUnion' reason for unemployment 'ReasonUnemployed' full or part time employment stat 'FullOrPartTime' capital gains 'CapitalGains' capital losses 'CapitalLosses' divdends from stocks 'StockDividends' federal income tax liability tax filer status 'TaxFilerStat'

region of previous residence 'PrevResidenceRegion' state of previous residence 'PrevResidenceState' detailed household and family stat 'HouseholdFamilyStatus' detailed household summary in household 'HouseholdSummary' instance weight 'InstanceWeight' migration code-change in msa 'MigrationCodeChangeMSA' migration code-change in reg 'MigrationCodeChangeReg' migration code-move within reg 'MigrationCodeMoveWithinRegion' live in this house 1 year ago 'LiveInHouse1Y' migration prev res in sunbelt 'MigPrevResidenceSunbelt' num persons worked for employer 'NumPersonsWorkedEmployer' family members under 18 'FamilyMembersU18' country of birth father 'CountryBirthFather' country of birth mother 'CountryBirthMother' country of birth self 'CountryBirthSelf' citizenship 'Citizenship' own business or self employed 'OwnBusiness' fill inc questionnaire for veteran's admin 'Questionnaire Veteran' veterans benefits 'VeteranBenefits' weeks worked in year 'WeeksWorkedInY' Incomes 'Income'

Note that Incomes have been binned at the \$50K level to present a binary classification problem, much like the original UCI/ADULT database. The goal field of this data, however, was drawn from the "total person income" field rather than the "adjusted gross income" and may, therefore, behave differently than the original ADULT goal field.

1.3 Problem Statement

The goal of this analysis is to try to find which factors can be used to predict an individual's annual income (higher or lower than 50k USD), and then predict the income level based on these factors.

1.4 Summary

As part of the analysis, I will be going through the following steps:

1- Data Extraction:

Data is available in CSV files that can be downloaded at the source mentioned above.

- 2- Data Cleaning
- 3- Exploratory Data Analysis
- 4- Modeling:
- a) Feature Selection: I will use Random Forest Classification for feature selection
- b) Model Selection: I will use the selected features and apply Decision Trees and Logistic Regression. I will then proceed with the one with better rates.
- **5- Oversampling:** Given that the data is skewed (only 8% are positive), I will also try oversampling using SMOTE to enhance the recall rates. I will then compare both results (with and without oversampling).

```
In [437]: import pandas as pd
import numpy as np
```

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

2 Read the data

4

```
In [438]: #Training and Test data is already split into two CSV's. Hence we will read them sep
                       columns = ['Age', 'ClassOfWorker', 'IndustryCode', 'OccupationCode', 'Education', 'Way
                                                'MaritalStatus', 'MajorIndustryCode', 'MajorOccupationCode', 'Race', 'Hispa
                                                'ReasonUnemployed', 'FullOrPartTime', 'CapitalGains', 'CapitalLosses', 'St
                                                'PrevResidenceRegion', 'PrevResidenceState', 'HouseholdFamilyStatus', '
                                                'MigrationCodeChangeMSA', 'MigrationCodeChangeReg', 'MigrationCodeMoveWithi:
                                                     'MigPrevResidenceSunbelt', 'NumPersonsWorkedEmployer', 'FamilyMembersU18
                                                'CountryBirthMother', 'CountryBirthSelf', 'Citizenship', 'OwnBusiness', 'Q
                                                'VeteranBenefits','WeeksWorkedInY', 'Year','Income']
                       df = pd.read_csv('Data/census-income.data', header=None)
                       df.columns = columns
                       df.drop(['InstanceWeight'], axis=1, inplace=True)
                       df_test = pd.read_csv('Data/census-income.test', header=None)
                       df_test.columns = columns
                       df_test.drop(['InstanceWeight'], axis=1, inplace=True)
In [439]: df.shape
Out [439]: (199523, 41)
In [440]: df_test.shape
Out [440]: (99762, 41)
In [441]: df.head()
Out [441]:
                               Age
                                                                                     ClassOfWorker
                                                                                                                       IndustryCode
                                                                                                                                                          OccupationCode
                                                                                Not in universe
                       0
                                73
                                                                                                                                                   0
                       1
                                58
                                             Self-employed-not incorporated
                                                                                                                                                   4
                                                                                                                                                                                       34
                                18
                                                                                Not in universe
                                                                                                                                                   0
                                                                                                                                                                                         0
                       3
                                   9
                                                                                Not in universe
                                                                                                                                                   0
                                                                                                                                                                                         0
                       4
                                10
                                                                                Not in universe
                                                                                                                                                   0
                                                                                                                                                                                         0
                                                                                                 WagePerHour EnrolledEducation
                                                                         Education
                                                                                                                                                                               MaritalStatus
                       0
                                               High school graduate
                                                                                                                                    Not in universe
                                                                                                                                                                                             Widowed
                       1
                                 Some college but no degree
                                                                                                                           0
                                                                                                                                    Not in universe
                                                                                                                                                                                           Divorced
                       2
                                                                       10th grade
                                                                                                                           0
                                                                                                                                              High school
                                                                                                                                                                               Never married
                       3
                                                                                                                                    Not in universe
                                                                            Children
                                                                                                                           0
                                                                                                                                                                               Never married
```

Children

Never married

Not in universe

```
0
              Not in universe or children
                                                                 Not in universe
          1
                             Construction
                                             Precision production craft & repair
          2
              Not in universe or children
                                                                 Not in universe
          3
              Not in universe or children
                                                                 Not in universe
              Not in universe or children
                                                                 Not in universe
                       CountryBirthFather CountryBirthMother CountryBirthSelf
                            United-States
          0
               . . .
                                                United-States
                                                                 United-States
                            United-States
          1
                                                United-States
                                                                 United-States
          2
                                  Vietnam
                                                      Vietnam
                                                                       Vietnam
          3
                            United-States
                                                United-States
                                                                 United-States
          4
                                                United-States
                                                                 United-States
                            United-States
                                       Citizenship OwnBusiness QuestionnaireVeteran
          0
                Native- Born in the United States
                                                             0
                                                                    Not in universe
          1
                Native- Born in the United States
                                                             0
                                                                    Not in universe
          2
              Foreign born-Not a citizen of US
                                                             0
                                                                    Not in universe
          3
                Native- Born in the United States
                                                             0
                                                                    Not in universe
                Native- Born in the United States
                                                                    Not in universe
          4
             VeteranBenefits WeeksWorkedInY Year
                                                        Income
          0
                                                      - 50000.
          1
                           2
                                           52
                                                 94
                                                      - 50000.
          2
                           2
                                                 95
                                                      - 50000.
                                            0
                           0
          3
                                                 94
                                                      - 50000.
                                            0
          4
                           0
                                                 94
                                            0
                                                      - 50000.
          [5 rows x 41 columns]
In [442]: #Trim the strings in the data
          for i in df.columns:
              if type(df[i][0]) == str:
                  df[i] = df[i].apply(lambda x: str(x).strip())
                  df_test[i] = df_test[i].apply(lambda x: str(x).strip())
In [443]: #Drop duplicates
          df.drop_duplicates(inplace=True)
          df_test.drop_duplicates(inplace=True)
   Data Cleaning
In [444]: #Check missing data
          for i in df.columns:
              print(df[i].unique())
[73 58 18 9 10 48 42 28 47 34 8 32 51 46 26 13 39 16 35 12 27 56 55 2
37 4 63 25 81 11 30 7 66 84 52 5 36 72 61 41 90 49 6 0 33 57 50 24 17
```

MajorIndustryCode

MajorOccupationCode

```
53 40 54 22 29 85 38 76 21 31 74 19 15 3 43 68 71 45 62 23 69 75 44 59 60
64 65 70 67 78 20 14 83 86 89 77 79 82 80 87 88]
['Not in universe' 'Self-employed-not incorporated' 'Private'
 'Local government' 'Federal government' 'Self-employed-incorporated'
'State government' 'Never worked' 'Without pay']
[ 0 4 40 34 43 37 24 39 12 35 45 3 19 29 32 48 33 23 44 36 31 30 41 5 11
 9 42 6 18 50 2 1 26 47 16 14 22 17 7 8 25 46 27 15 13 49 38 21 28 20
51 10]
[ 0 34 10 3 40 26 37 31 12 36 41 22 2 35 25 23 42 8 19 29 27 16 33 13 18
 9 17 39 32 11 30 38 20 7 21 44 24 43 28 4 1 6 45 14 5 15 46]
['High school graduate' 'Some college but no degree' '10th grade'
 'Children' 'Bachelors degree(BA AB BS)'
 'Masters degree(MA MS MEng MEd MSW MBA)' 'Less than 1st grade'
 'Associates degree-academic program' '7th and 8th grade'
'12th grade no diploma' 'Associates degree-occup /vocational'
'Prof school degree (MD DDS DVM LLB JD)' '5th or 6th grade' '11th grade'
'Doctorate degree(PhD EdD)' '9th grade' '1st 2nd 3rd or 4th grade']
  0 1200 876 ..., 3156 2188 1092]
['Not in universe' 'High school' 'College or university']
['Widowed' 'Divorced' 'Never married' 'Married-civilian spouse present'
 'Separated' 'Married-spouse absent' 'Married-A F spouse present']
['Not in universe or children' 'Construction' 'Entertainment'
 'Finance insurance and real estate' 'Education'
'Business and repair services' 'Manufacturing-nondurable goods'
 'Personal services except private HH' 'Manufacturing-durable goods'
'Other professional services' 'Mining' 'Transportation' 'Wholesale trade'
 'Public administration' 'Retail trade' 'Social services'
'Private household services' 'Utilities and sanitary services'
 'Communications' 'Hospital services' 'Medical except hospital'
 'Agriculture' 'Forestry and fisheries' 'Armed Forces']
['Not in universe' 'Precision production craft & repair'
 'Professional specialty' 'Executive admin and managerial'
'Handlers equip cleaners etc' 'Adm support including clerical'
 'Machine operators assmblrs & inspctrs' 'Other service' 'Sales'
 'Private household services' 'Technicians and related support'
 'Transportation and material moving' 'Farming forestry and fishing'
'Protective services' 'Armed Forces']
['White' 'Asian or Pacific Islander' 'Amer Indian Aleut or Eskimo' 'Black'
 'Other']
['All other' 'Do not know' 'Central or South American' 'Mexican (Mexicano)'
'Mexican-American' 'Other Spanish' 'Puerto Rican' 'Cuban' 'Chicano' 'NA']
['Female' 'Male']
['Not in universe' 'No' 'Yes']
['Not in universe' 'Job loser - on layoff' 'Other job loser' 'New entrant'
 'Re-entrant' 'Job leaver']
['Not in labor force' 'Children or Armed Forces' 'Full-time schedules'
 'Unemployed full-time' 'Unemployed part- time'
'PT for non-econ reasons usually FT' 'PT for econ reasons usually PT'
```

```
'PT for econ reasons usually FT']
    0 5178
                        3464 5556 7298 15024
                                                1831
                                                      3137 10605 20051
             991
                  2829
 2538 3908 2407 2050 3103 1086 7688 5013
                                                4386
                                                      2414 99999 13550
 2174 4650 4064
                  914 2354 4787 2009
                                          2597
                                                1055
                                                      6097
                                                            2635
                                                                 2105
             2228 2062 3942 27828 9562
                                                      2202 2290 1173
 3325
       6767
                                          2176
                                                7262
 8614
       2329
            2653 7430 3456 2580 10520
                                          2907
                                                      2885
                                                            9386 2993
                                                3471
 7896 14084 3818 1409
                          594 7978 1797
                                          2964
                                                4934
                                                      1848
                                                           4101 3418
 3432 2774 1424 6849 4687 6418 4508
                                          3674
                                                3411
                                                      2936 4416 2346
10566 7443 5455 1151 25236 2463 1455
                                          3781 14344
                                                      4865 11678 1471
        114 4931 1506
 5060
                          401 25124 15020
                                          2036
                                                3273
                                                      6514
                                                           1111 2977
41310 18481 6497 6723 15831 2098 1264 34095 22040
                                                      3887
                                                            2961 5721
 1090 6360 3800 2387 1731 6612 9472 4594 2601
                                                      1140 2227 8530]
   0 1590 1977 1669 1719 2444 1421 1848 2205 2149 2001 1902 2090 1573 2415
2377 1876 1602 1740 1974 2339 1887 1258 2597 2603 1408 1980 1721 1816 1340
2788 2174 2042 1485 2489 2129 2457 2051 1762 2057 1672 2258 213 1651 2206
3770 1628 1564 1668 1735 1579 625 4608 2559 2246 4356 1844 2002 2267 3175
1380 2392 1092 1504 2238 2704 2467 810 1539 2824 1741 1870 1944 1825 419
2547 1510 880 1617 1411 1648 323 2282 2352 3004 1755 1429 653 2163 2179
1436 2722 3500 1640 974 1021 2754 1726 3900 2027 772 2231 1138 1594 2465
2519 1956 1911 2472 2201 2080 3683 155]
   0 6000 100 ..., 169 1055 7958]
['Nonfiler' 'Head of household' 'Joint both under 65' 'Single'
'Joint both 65+' 'Joint one under 65 & one 65+']
['Not in universe' 'South' 'Northeast' 'Midwest' 'West' 'Abroad']
['Not in universe' 'Arkansas' 'Utah' 'Michigan' 'Minnesota' 'Alaska'
'Kansas' 'Indiana' '?' 'Massachusetts' 'New Mexico' 'Nevada' 'Tennessee'
'Colorado' 'Abroad' 'Kentucky' 'California' 'Arizona' 'North Carolina'
'Connecticut' 'Florida' 'Vermont' 'Maryland' 'Oklahoma' 'Oregon' 'Ohio'
'South Carolina' 'Texas' 'Montana' 'Wyoming' 'Georgia' 'Pennsylvania'
'Iowa' 'New Hampshire' 'Missouri' 'Alabama' 'North Dakota' 'New Jersey'
'Louisiana' 'West Virginia' 'Delaware' 'Illinois' 'Maine' 'Wisconsin'
'New York' 'Idaho' 'District of Columbia' 'South Dakota' 'Nebraska'
'Virginia' 'Mississippi']
['Other Rel 18+ ever marr not in subfamily' 'Householder'
'Child 18+ never marr Not in a subfamily'
'Child <18 never marr not in subfamily' 'Spouse of householder'
'Secondary individual' 'Other Rel 18+ never marr not in subfamily'
'Nonfamily householder' 'Grandchild <18 never marr not in subfamily'
'Grandchild <18 never marr child of subfamily RP'
'Child 18+ ever marr Not in a subfamily'
'Child 18+ never marr RP of subfamily' 'Child 18+ spouse of subfamily RP'
'Other Rel <18 never marr child of subfamily RP'
'Child under 18 of RP of unrel subfamily'
'Grandchild 18+ never marr not in subfamily'
'Child 18+ ever marr RP of subfamily'
'Other Rel 18+ ever marr RP of subfamily' 'RP of unrelated subfamily'
'Other Rel 18+ spouse of subfamily RP'
'Other Rel <18 never marr not in subfamily'
```

```
'Other Rel <18 spouse of subfamily RP' 'In group quarters'
 'Grandchild 18+ spouse of subfamily RP'
'Other Rel 18+ never marr RP of subfamily'
 'Child <18 never marr RP of subfamily'
 'Child <18 ever marr not in subfamily'
 'Other Rel <18 ever marr RP of subfamily'
 'Grandchild 18+ ever marr not in subfamily'
 'Child <18 spouse of subfamily RP' 'Spouse of RP of unrelated subfamily'
 'Other Rel <18 never married RP of subfamily'
 'Grandchild 18+ never marr RP of subfamily'
 'Grandchild 18+ ever marr RP of subfamily'
 'Child <18 ever marr RP of subfamily'
 'Other Rel <18 ever marr not in subfamily'
 'Grandchild <18 never marr RP of subfamily'
 'Grandchild <18 ever marr not in subfamily']
['Other relative of householder' 'Householder' 'Child 18 or older'
'Child under 18 never married' 'Spouse of householder'
'Nonrelative of householder' 'Group Quarters- Secondary individual'
'Child under 18 ever married']
['?' 'MSA to MSA' 'Nonmover' 'NonMSA to nonMSA' 'Not in universe'
 'Not identifiable' 'Abroad to MSA' 'MSA to nonMSA' 'Abroad to nonMSA'
 'NonMSA to MSA']
['?' 'Same county' 'Nonmover' 'Different region'
'Different county same state' 'Not in universe'
'Different division same region' 'Abroad' 'Different state same division']
['?' 'Same county' 'Nonmover' 'Different state in South'
'Different county same state' 'Not in universe'
'Different state in Northeast' 'Abroad' 'Different state in Midwest'
'Different state in West']
['Not in universe under 1 year old' 'No' 'Yes']
['?' 'Yes' 'Not in universe' 'No']
[0 1 6 4 5 3 2]
['Not in universe' 'Both parents present' 'Mother only present'
'Neither parent present' 'Father only present']
['United-States' 'Vietnam' 'Philippines' '?' 'Columbia' 'Germany' 'Mexico'
 'Japan' 'Peru' 'Dominican-Republic' 'South Korea' 'Cuba' 'El-Salvador'
'Canada' 'Scotland' 'Outlying-U S (Guam USVI etc)' 'Italy' 'Guatemala'
'Ecuador' 'Puerto-Rico' 'Cambodia' 'China' 'Poland' 'Nicaragua' 'Taiwan'
 'England' 'Ireland' 'Hungary' 'Yugoslavia' 'Trinadad&Tobago' 'Jamaica'
'Honduras' 'Portugal' 'Iran' 'France' 'India' 'Hong Kong' 'Haiti' 'Greece'
 'Holand-Netherlands' 'Thailand' 'Laos' 'Panama']
['United-States' 'Vietnam' '?' 'Columbia' 'Mexico' 'El-Salvador' 'Peru'
 'Puerto-Rico' 'Cuba' 'Philippines' 'Dominican-Republic' 'Germany'
 'England' 'Guatemala' 'Scotland' 'Portugal' 'Italy' 'Ecuador' 'Yugoslavia'
 'China' 'Poland' 'Hungary' 'Nicaragua' 'Taiwan' 'Ireland' 'Canada'
 'South Korea' 'Trinadad&Tobago' 'Jamaica' 'Honduras' 'Iran' 'France'
 'Cambodia' 'India' 'Hong Kong' 'Haiti' 'Japan' 'Greece'
 'Holand-Netherlands' 'Thailand' 'Panama' 'Laos'
```

```
'Outlying-U S (Guam USVI etc)']
['United-States' 'Vietnam' '?' 'Columbia' 'Mexico' 'Peru' 'Cuba'
 'Philippines' 'Dominican-Republic' 'El-Salvador' 'Canada' 'Scotland'
 'Portugal' 'Guatemala' 'Ecuador' 'Germany' 'Outlying-U S (Guam USVI etc)'
 'Puerto-Rico' 'Italy' 'China' 'Poland' 'Nicaragua' 'Taiwan' 'England'
 'Ireland' 'South Korea' 'Trinadad&Tobago' 'Jamaica' 'Honduras' 'Iran'
 'Hungary' 'France' 'Cambodia' 'India' 'Hong Kong' 'Japan' 'Haiti'
 'Holand-Netherlands' 'Greece' 'Thailand' 'Panama' 'Yugoslavia' 'Laos']
['Native- Born in the United States' 'Foreign born- Not a citizen of U S'
 'Foreign born- U S citizen by naturalization'
 'Native- Born abroad of American Parent(s)'
 'Native- Born in Puerto Rico or U S Outlying']
[0 2 1]
['Not in universe' 'No' 'Yes']
[2 0 1]
[ 0 52 30 49 32 15 38 48 9 24 50 10 45 43 4 26 40 20 6 12 51 1 8 39 13
16 34 14 36 44 22 41 46 28 23 35 25 17 11 37 5 42 29 2 21 19 47 3 27 7
18 33 31]
[95 94]
['- 50000.' '50000+.']
In [445]: #Some missing data is represented as '?', others are 'Not in universe'
          df.replace("?", np.nan, inplace=True)
          df.replace("Not in universe", np.nan, inplace=True)
          df_test.replace("?", np.nan, inplace=True)
          df test.replace("Not in universe", np.nan, inplace=True)
In [446]: df.isnull().sum()
Out[446]: Age
                                                0
          ClassOfWorker
                                            54165
          IndustryCode
                                                0
                                                0
          OccupationCode
          Education
                                                0
          WagePerHour
                                                0
          EnrolledEducation
                                           142243
          MaritalStatus
                                                0
          MajorIndustryCode
                                                0
          MajorOccupationCode
                                            54548
          Race
                                                0
          HispanicOrigin
                                                0
                                                0
          LabourUnion
                                           133840
          ReasonUnemployed
                                           146884
          FullOrPartTime
                                                0
          CapitalGains
                                                0
                                                0
          CapitalLosses
```

	Taxi Tierbuau	U	
	PrevResidenceRegion	137492	
	PrevResidenceState	138190	
	${\tt HouseholdFamilyStatus}$	0	
	HouseholdSummary	0	
	MigrationCodeChangeMSA	75288	
	MigrationCodeChangeReg	75288	
	MigrationCodeMoveWithinRegio	on 75288	
	LiveInHouse1Y	0	
	MigPrevResidenceSunbelt	137492	
	NumPersonsWorkedEmployer	0	
	FamilyMembersU18	134959	
	CountryBirthFather	6383	
	CountryBirthMother	5810	
	CountryBirthSelf	3322	
	Citizenship	0	
	OwnBusiness	0	
	QuestionnaireVeteran	150931	
	VeteranBenefits	0	
	WeeksWorkedInY	0	
	Year	0	
	Income	0	
	dtype: int64		
	'MigPrevResidenceSt 'MigrationCodeChang df_test.drop(['EnrolledEduca 'MigPrevResidenceSt	nbelt','Ques geReg','Migra ation','Labou nbelt','Ques	n', 'ReasonUnemployed', 'PrevResidenceRegion tionnaireVeteran', 'FamilyMembersU18', 'Migrat: tionCodeMoveWithinRegion'], axis=1, inplace=' rUnion', 'ReasonUnemployed', 'PrevResidenceRetionnaireVeteran', 'FamilyMembersU18', 'Migrat: tionCodeMoveWithinRegion'], axis=1, inplace='
In [448]:	-	irthFather','	CountryBirthMother', 'CountryBirthSelf'], inpler', 'CountryBirthSelf'] er', 'CountryBirthMother', 'CountryBirthSelf']
In [449]:	<pre>df.isnull().sum()</pre>		
Out[449]:	Age	0	
	ClassOfWorker	49901	
	IndustryCode	0	
	OccupationCode	0	
	Education	0	
	WagePerHour	0	
	MaritalStatus	0	
	MajorIndustryCode	0	
	MajorOccupationCode	50258	
	. J		

StockDividends

 ${\tt TaxFilerStat}$

```
0
          HispanicOrigin
                                             0
          Sex
          FullOrPartTime
                                             0
          CapitalGains
                                             0
          CapitalLosses
                                             0
          StockDividends
                                             0
          TaxFilerStat
                                             0
          HouseholdFamilyStatus
                                             0
          HouseholdSummary
                                             0
          LiveInHouse1Y
                                             0
          {\tt NumPersonsWorkedEmployer}
                                             0
          CountryBirthFather
                                             0
          CountryBirthMother
                                             0
          CountryBirthSelf
                                             0
          Citizenship
                                             0
          OwnBusiness
                                             0
          VeteranBenefits
                                             0
          WeeksWorkedInY
                                             0
          Year
                                             0
          Income
                                             0
          dtype: int64
In [450]: #ClassOfWorker and MajorOccupationCode are missing for those who do not work. I will
          df[['ClassOfWorker','MajorOccupationCode']] = df[['ClassOfWorker','MajorOccupationCode']]
          df_test[['ClassOfWorker','MajorOccupationCode']] = df_test[['ClassOfWorker','MajorOccupationCode']] = df_test[['ClassOfWorker','MajorOccupationCode']]
In [451]: df['Income>50k'] = np.where(df['Income'] == '- 50000.', 0, 1)
          df.drop('Income', axis=1, inplace=True)
          df_test['Income'] == '- 50000.', 0, 1)
          df_test.drop('Income', axis=1, inplace=True)
In [452]: df.head(100)
Out [452]:
                                        ClassOfWorker IndustryCode OccupationCode \
                Age
                 73
          0
                                                                                     0
          1
                 58
                     Self-employed-not incorporated
                                                                                    34
          2
                 18
                                                                    0
                                                    NΑ
                                                                                     0
          3
                                                                                     0
                  9
                                                   NA
                                                                    0
          4
                 10
                                                   NA
                                                                    0
                                                                                     0
          5
                 48
                                                                   40
                                                                                    10
                                              Private
          6
                 42
                                                                   34
                                                                                     3
                                              Private
          7
                 28
                                                                    4
                                                                                    40
                                              Private
          8
                 47
                                                                   43
                                                                                    26
                                    Local government
          9
                 34
                                              Private
                                                                    4
                                                                                    37
          10
                  8
                                                   NA
                                                                    0
                                                                                     0
          12
                 51
                                              Private
                                                                    4
                                                                                    34
          13
                 46
                                              Private
                                                                   37
                                                                                    31
```

Race

14	26	Private	24	12
15	13	NA	0	0
16	47	Private	39	36
17	39	NA	0	0
18	16	NA	0	0
19	35	Private	12	41
20	12	NA	0	0
21	27	Self-employed-not incorporated	4	34
22	56	Private	35	22
23	46	Private	45	12
24	55	NA	0	0
25	2	NA NA	0	0
27	37	Private	3	34
28	4	NA NA	0	0
29	37	Private	4	2
30	63	Private	19	35
31	34	Federal government	29	25
7.1		 Dadaa ta		
74 75	51	Private	32	18
75	10	NA	0	0
76	48	State government	43	9
77	27	Private	33	16
78	24	NA	0	0
79	17	NA	0	0
80	58	Self-employed-not incorporated	35	17
81	2	NA	0	0
82	53	Private	4	34
83	33	Private	45	23
84	7	NA	0	0
85	40	Private	19	42
86	25	Private	33	29
88	54	NA	0	0
89	22	Private	34	26
90	29	NA	0	0
91	9	NA	0	0
93	40	Private	29	17
94	38	NA	0	0
95	7	NA	0	0
96	49	State government	29	26
98	7	NA	0	0
99	21	Private	33	3
100	52	NA	0	0
101	34	Local government	43	10
102	6	NA	0	0
103	31	Private	5	39
104	74	NA	0	0
105	0	NA	0	0
106	19	Private	39	32

	Education	WagePerHour
0	High school graduate	0
1	Some college but no degree	0
2	10th grade	0
3	Children	0
4	Children	0
5	Some college but no degree	1200
6	Bachelors degree(BA AB BS)	0
7	High school graduate	0
8	Some college but no degree	876
9	Some college but no degree	0
10	Children	0
12	Some college but no degree	0
13	High school graduate	0
14	Bachelors degree(BA AB BS)	0
15 16	Children	0
16	Bachelors degree(BA AB BS)	0
17	10th grade	0
18 19	10th grade	0 0
20	High school graduate Children	0
21	Some college but no degree	0
22	Some college but no degree	500
23	Masters degree(MA MS MEng MEd MSW MBA)	0
24	Some college but no degree	0
25	Children	0
27	Some college but no degree	0
28	Children	0
29	Bachelors degree(BA AB BS)	0
30	Less than 1st grade	0
31	Some college but no degree	0
74	Some college but no degree	0
75	Children	0
76	Some college but no degree	0
77	Some college but no degree	0
78	High school graduate	0
79	7th and 8th grade	0
80	Prof school degree (MD DDS DVM LLB JD)	0
81	Children	0
82	10th grade	0
83	Bachelors degree(BA AB BS)	0
84	Children	0
85	5th or 6th grade	0
86	High school graduate	0
88	High school graduate	0
89	High school graduate	0

\

00	201110 00111080 240 110	438133
91	Ch	ildren 0
93	High school gr	aduate 0
94	Less than 1st	grade 0
95	Ch	ildren 0
96	11th	grade 0
98	Ch	ildren 0
99	Some college but no	degree 0
100	7th and 8th	-
101	Bachelors degree(BA	
102	_	ildren 0
103	11th	grade 0
104	High school gr	-
105		ildren 0
106	Some college but no	
	MaritalStatus	MajorIndustryCode \
0	Widowed	Not in universe or children
1	Divorced	Construction
2	Never married	Not in universe or children
3	Never married	Not in universe or children
4	Never married	Not in universe or children
5	Married-civilian spouse present	Entertainment
6	Married-civilian spouse present	Finance insurance and real estate
7	Never married	Construction
8	Married-civilian spouse present	Education
9	Married-civilian spouse present	Construction
10	Never married	Not in universe or children
12	Married-civilian spouse present	Construction
13	Divorced	Business and repair services
14	Never married	Manufacturing-nondurable goods
15	Never married	Not in universe or children
16	Never married	Personal services except private HH
17	Married-civilian spouse present	Not in universe or children
18	Never married	Not in universe or children
19	Married-civilian spouse present	Manufacturing-durable goods
20	Never married	Not in universe or children
21	Married-civilian spouse present	Construction
22	Married-civilian spouse present	Finance insurance and real estate
23	Married-civilian spouse present	Other professional services
24	Married-civilian spouse present	Not in universe or children
25	Never married	Not in universe or children
27	Married-civilian spouse present	Mining
28	Never married	Not in universe or children
29	Never married	Construction
30	Married-civilian spouse present	Manufacturing-nondurable goods
31	Married-civilian spouse present	Transportation
-		• • •

Some college but no degree

14	Married-Civillan	spouse preser	16	wholesale trade
75		Never marrie	ed	Not in universe or children
76	Married-civilian	spouse preser	ıt	Education
77		Never marrie		Retail trade
78	Mammiad airrilian			Not in universe or children
	Married-civilian			
79		Never marrie		Not in universe or children
80	Married-civilian	spouse preser	it Fir	nance insurance and real estate
81		Never marrie	ed	Not in universe or children
82	Married-civilian	spouse preser	ıt	Construction
83		Never marrie	ed	Other professional services
84		Never marrie	ed	Not in universe or children
85	Married-civilian	spouse preser	ıt.	Manufacturing-nondurable goods
86		Never marrie		Retail trade
88	Married-civilian			Not in universe or children
	Married-civilian			
89	Married-civilian			nance insurance and real estate
90	Married-civilian			Not in universe or children
91		Never marrie		Not in universe or children
93	Married-civilian	spouse preser	ıt	Transportation
94		Never marrie	ed	Not in universe or children
95		Never marrie	ed	Not in universe or children
96	Married-civilian	spouse presen	ıt	Transportation
98		Never marrie		Not in universe or children
99		Never marrie		Retail trade
100	Married-civilian			Not in universe or children
101	Married-civilian			Education
102		Never marrie		Not in universe or children
103	Married-civilian			Manufacturing-durable goods
104	Married-civilian	spouse preser	ıt	Not in universe or children
105		Never marrie	ed	Not in universe or children
106		Never marrie	ed Perso	onal services except private HH
		MajorOccupat	ionCode	Race \
0		3 1	NA	White
1	Precision produ	iction craft l		White
2	rrecibion produ	icolon claic a	NA	Asian or Pacific Islander
3			NA	White
4	_		NA	White
5	Pı	rofessional sp	ecialty	Amer Indian Aleut or Eskimo
6	Executive	admin and man	agerial	White
7	Handleı	rs equip clear	ers etc	White
8	Adm suppor	rt including o	clerical	White
9	Machine operators	s assmblrs & i	nspctrs	White
10	1		NA	
12	Precision produ	oction craft &		White
13	11001510H Produ		service	White
14	-ת			
	PI	rofessional sp		
15	M 1 .	17 0	NA	Black
16	Machine operators	s assmblrs & i	nspctrs	White

Wholesale trade

74

Married-civilian spouse present

4 17	77.4	
17	NA	White
18	NA	White
19	Handlers equip cleaners etc	White
20	NA	Other
21	Precision production craft & repair	White
22	Adm support including clerical	White
23	Professional specialty	White
24	NA	Asian or Pacific Islander
25	NA	White
27	Precision production craft & repair	White
28	NA	White
29	Executive admin and managerial	White
30	Precision production craft & repair	Other
31	Adm support including clerical	White
	•••	• • •
74	Sales	White
75	NA	White
76	Professional specialty	White
77	Sales	White
78	NA	Black
79	NA	White
80	Sales	White
81	NA	Black
82	Precision production craft & repair	White
83	Adm support including clerical	Black
84	NA	White
85	Handlers equip cleaners etc	White
86	Other service	White
88	NA	Asian or Pacific Islander
89	Adm support including clerical	White
90	NA	Black
91	NA NA	White
93	Sales	White
94 95	NA NA	White
		White
96	Adm support including clerical	White
98	NA	White
99	Executive admin and managerial	White
100	NA .	White
101	Professional specialty	White
102	NA	White
103	Transportation and material moving	White
104	NA	White
105	NA	White
106	Other service	White
_		ntryBirthFather CountryBirthMother
0	0	United-States United-States

1		1	United-States	United-States
2		0	Vietnam	Vietnam
3		0	United-States	United-States
4		0	United-States	United-States
5		1	Philippines	United-States
6		6	United-States	United-States
7		4	United-States	United-States
8		5	United-States	United-States
9		6	United-States	United-States
10		0	United-States	United-States
12		3	United-States	United-States
13		6	Columbia	Columbia
14		6	United-States	United-States
15		0	United-States	United-States
16		6	Germany	United-States
17		0	Mexico	Mexico
18		0	United-States	El-Salvador
19		4	United-States	United-States
20		0	United-States	United-States
21		6	United-States	United-States
22		2	United-States	United-States
23		1	United-States	United-States
24		0	Japan	United-States
25		0	United-States	United-States
27		3	United-States	United-States
28		0	United-States	United-States
29		6	United-States	United-States
30		6	Mexico	Mexico
31		6	United-States	United-States
74		4	United-States	United-States
75		0	United-States	Mexico
76		6	United-States	United-States
77		6	United-States	United-States
78		6	United-States	United-States
79		0	United-States	United-States
80		1	United-States	United-States
81		0	United-States	United-States
82	• • •	1	United-States	United-States
83	• • •	6	United-States	United-States
84	• • •	0	Germany	United-States
85	• • •	3	Mexico	Mexico
86	• • •	3	United-States	United-States
88	• • •	0	Vietnam	Vietnam
89	• • •	3	United-States	United-States
90	• • •	6	United-States	United-States
91	• • •	0	United-States	United-States
93	• • •	3	United-States	United-States

94	• • •	0 United-States United-Stat	tes
95	• • •	0 United-States United-Stat	tes
96	• • •	6 United-States United-Stat	tes
98	• • •	0 United-States United-Stat	tes
99	• • •	6 United-States United-Stat	tes
100	• • •	0 United-States United-Stat	tes
101	• • •	6 United-States United-Stat	tes
102	• • •	0 United-States United-Stat	tes
103	• • •	2 United-States United-Stat	tes
104	• • •	0 United-States United-Stat	tes
105	• • •	O Mexico Mexi	ico
106	• • •	3 United-States United-Stat	tes
	CountryBirthSelf	Citizenship OwnBusiness \setminus	
0	United-States	Native- Born in the United States 0	
1	United-States	Native- Born in the United States 0	
2	Vietnam	Foreign born- Not a citizen of U S 0	
3	United-States	Native- Born in the United States 0	
4	United-States	Native- Born in the United States 0	
5	United-States	Native- Born in the United States 2	
6	United-States	Native- Born in the United States 0	
7	United-States	Native- Born in the United States 0	
8	United-States	Native- Born in the United States 0	
9	United-States	Native- Born in the United States 0	
10	United-States	Native- Born in the United States 0	
12	United-States	Native- Born in the United States 0	
13	Columbia	Foreign born- Not a citizen of U S 0	
14	United-States	Native- Born in the United States 0	
15	United-States	Native- Born in the United States 0	
16	United-States	Native- Born in the United States 0	
17	Mexico	Foreign born- Not a citizen of U S 0	
18	United-States	Native- Born in the United States 0	
19	United-States	Native- Born in the United States 0	
20	United-States	Native- Born in the United States 0	
21	United-States	Native- Born in the United States 1	
22	United-States	Native- Born in the United States 2	
23	United-States	Native- Born in the United States 0	
24	United-States	Native- Born in the United States 0	
25	United-States	Native- Born in the United States 0	
27	United-States	Native- Born in the United States 0	
28	United-States	Native- Born in the United States 0	
29	United-States	Native- Born in the United States 0	
30	Mexico	Foreign born- Not a citizen of U S 0	
31	United-States	Native- Born in the United States 0	
	•••		
74	United-States	Native- Born in the United States 0	
75	United-States	Native- Born in the United States 0	
76	United-States	Native- Born in the United States 2	

77	United-States	Native- Born	in the United States	0
78	United-States	Native- Born	in the United States	0
79	United-States	Native- Born	in the United States	0
80	United-States	Native- Born	in the United States	0
81	United-States	Native- Born	in the United States	0
82	United-States	Native- Born	in the United States	0
83	United-States	Native- Born	in the United States	0
84	United-States	Native- Born	in the United States	0
85	Mexico	Foreign born-	Not a citizen of U S	0
86	United-States	Native- Born	in the United States	0
88	Vietnam	Foreign born-	Not a citizen of U S	0
89	United-States	Native- Born	in the United States	0
90	United-States	Native- Born	in the United States	0
91	United-States	Native- Born	in the United States	0
93	United-States	Native- Born	in the United States	0
94	United-States	Native- Born	in the United States	0
95	United-States	Native- Born	in the United States	0
96	United-States	Native- Born	in the United States	0
98	United-States	Native- Born	in the United States	0
99	United-States	Native- Born	in the United States	2
100	United-States	Native- Born	in the United States	0
101	United-States	Native- Born	in the United States	0
102	United-States	Native- Born	in the United States	0
103	United-States	Native- Born	in the United States	0
104	United-States	Native- Born	in the United States	0
105	United-States	Native- Born	in the United States	0
106	United-States	Native- Born	in the United States	0

VeteranBenefits WeeksWorkedInY Year Income>50k

20	0	0	94	0
21	2	52	94 94	0
22	2	32	95	0
23	2	52	94	0
24	2	0	94	0
25	0	0	94	0
27	2	52	95	0
28	0	0	95	0
29	2	52	94	0
30	2	15	95	0
31	2	52	95	0
				• • • •
74	2	52	95	0
75	0	0	95	0
76 	2	52	95	0
77	2	52	95	0
78	2	52	95	0
79	2	0	94	0
80	2	52	95	1
81	0	0	94	0
82	2	45	95	0
83	2	52	95	0
84	0	0	94	0
85	2	43	94	0
86	2	4	94	0
88	2	0	95	1
89	2	52	94	0
90	2	52	95	0
91	0	0	95	0
93	2	52	94	0
94	2	0	94	0
95	0	0	94	0
96	2	52	94	0
98	0	0	95	0
99	2	52	95	0
100	2	0	95	0
101	2	40	94	0
102	0	0	94	0
103	2	50	94	0
104	2	0	94	0
105	0	0	94	0
106	2	4	95	0

[100 rows x 30 columns]

In [453]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 145005 entries, 0 to 199520

Data columns (total 30 columns): Age 145005 non-null int64 ClassOfWorker 145005 non-null object IndustryCode 145005 non-null int64 OccupationCode 145005 non-null int64 Education 145005 non-null object WagePerHour 145005 non-null int64 MaritalStatus 145005 non-null object MajorIndustryCode 145005 non-null object MajorOccupationCode 145005 non-null object 145005 non-null object Race 145005 non-null object HispanicOrigin Sex 145005 non-null object FullOrPartTime 145005 non-null object CapitalGains 145005 non-null int64 145005 non-null int64 CapitalLosses StockDividends 145005 non-null int64 TaxFilerStat 145005 non-null object HouseholdFamilyStatus 145005 non-null object HouseholdSummary 145005 non-null object LiveInHouse1Y 145005 non-null object 145005 non-null int64 NumPersonsWorkedEmployer CountryBirthFather 145005 non-null object CountryBirthMother 145005 non-null object CountryBirthSelf 145005 non-null object 145005 non-null object Citizenship 145005 non-null int64 OwnBusiness VeteranBenefits 145005 non-null int64 WeeksWorkedInY 145005 non-null int64 Year 145005 non-null int64 Income>50k 145005 non-null int32 dtypes: int32(1), int64(12), object(17)

memory usage: 33.7+ MB

In [454]: df.describe()

Out[454]:		Age	${\tt IndustryCode}$	OccupationCode	WagePerHour	\
	count	145005.000000	145005.000000	145005.000000	145005.000000	
	mean	39.418468	20.221965	14.959374	73.836302	
	std	19.327772	18.201672	14.910480	313.499755	
	min	0.000000	0.000000	0.000000	0.000000	
	25%	25.000000	0.000000	0.000000	0.000000	
	50%	38.000000	24.000000	12.000000	0.000000	
	75%	52.000000	37.000000	29.000000	0.000000	
	max	90.000000	51.000000	46.000000	9999.000000	

CapitalGains CapitalLosses StockDividends NumPersonsWorkedEmployer

count mean std min 25% 50% 75% max	145005.000000 557.842136 5286.552736 0.000000 0.000000 0.000000 0.000000 99999.000000	145005.000000 48.684659 308.852831 0.000000 0.000000 0.000000 0.000000 4608.000000	145005.000000 252.061688 2260.621084 0.000000 0.000000 0.000000 0.000000 99999.000000	145005.000000 2.581587 2.402695 0.000000 0.000000 2.000000 5.000000 6.000000
count mean std min 25% 50% 75% max	OwnBusiness 145005.000000 0.234282 0.629074 0.000000 0.000000 0.000000 0.0000000 2.0000000	VeteranBenefits 145005.000000 1.826165 0.551837 0.000000 2.000000 2.000000 2.000000 2.000000	WeeksWorkedInY 145005.000000 30.532313 23.667317 0.000000 0.000000 47.000000 52.000000 52.000000	Year \ 145005.000000 94.488976 0.499880 94.000000 94.000000 95.000000 95.000000
count mean std min 25% 50% 75% max	Income>50k 145005.000000 0.080577 0.272185 0.000000 0.000000 0.000000 1.0000000			

Looks like there are some wrong values, such as WagePerHour (9999). I will look into those during ${\it EDA}$

4 Exploratory Data Analysis

```
Out[457]: count
                   145005.000000
          mean
                       39.418468
          std
                       19.327772
          min
                        0.000000
          25%
                       25.000000
          50%
                       38.000000
          75%
                       52.000000
                       90.000000
          max
          Name: Age, dtype: float64
```

In [458]: sns.distplot(df['Age'], bins=10)
 plt.grid()

In [459]: sns.boxplot(x='Income>50k', y='Age',data=df)

Out[459]: <matplotlib.axes._subplots.AxesSubplot at 0x12cc1a08160>

In [460]: sns.violinplot(x='Income>50k', y='Age',data=df)

Out[460]: <matplotlib.axes._subplots.AxesSubplot at 0x12da2f2cb00>


```
In [461]: plt.figure(figsize=(10,10))
    g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
    g.map(sns.distplot, 'Age', bins=5)
    for ax in g.axes.flat:
        labels = ax.get_xticklabels() # get x labels
        ax.set_xticklabels(labels, rotation=90) # set new labels
```

<Figure size 720x720 with 0 Axes>

ClassOfWorker

In [462]: df['ClassOfWorker'].describe()

Out[462]: count 145005 unique 9

top Private freq 69208

Name: ClassOfWorker, dtype: object

In [463]: df['ClassOfWorker'].value_counts()

Out [463]:	Private	69208
	NA	49901
	Self-employed-not incorporated	7935
	Local government	7512
	State government	4090
	Self-employed-incorporated	3033
	Federal government	2813
	Never worked	357
	Without pay	156

Name: ClassOfWorker, dtype: int64


```
df['ClassOfWorker'] = np.where(df['ClassOfWorker'] == 'Never worked', 'NA', df['Class
df['ClassOfWorker'] = np.where(df['ClassOfWorker'] == 'Without pay', 'NA', df['Class
df['ClassOfWorker'] = np.where(df['ClassOfWorker'] == 'Local government', 'Non Feder
df['ClassOfWorker'] = np.where(df['ClassOfWorker'] == 'State government', 'Non Feder
df_test['ClassOfWorker'] = np.where(df_test['ClassOfWorker'] == 'Never worked', 'NA'
df_test['ClassOfWorker'] = np.where(df_test['ClassOfWorker'] == 'Without pay', 'NA',
df_test['ClassOfWorker'] = np.where(df_test['ClassOfWorker'] == 'Local government',
df_test['ClassOfWorker'] = np.where(df_test['ClassOfWorker'] == 'State government',
df_test['ClassOfWorker'] .value_counts()
```

Out[465]: Private 69208

NA 50414

Non Federal Government 11602

Self-employed-not incorporated 7935

Self-employed-incorporated 3033

Federal government 2813

Name: ClassOfWorker, dtype: int64

In [466]: sns.boxplot(y='ClassOfWorker', x='CapitalGains', data=df, orient='h')

Out[466]: <matplotlib.axes._subplots.AxesSubplot at 0x12d9b2f4160>

Industry Code - Major Industry Code

In [468]: df['IndustryCode'].value_counts() Out[468]: 0

```
17 153
28 138
26 124
51 33
20 31
10 4
```

Name: IndustryCode, dtype: int64

Out[469]: <matplotlib.legend.Legend at 0x12d9b24d630>


```
In [471]: df['MajorIndustryCode'].value_counts()
Out[471]: Not in universe or children
                                                  50258
          Retail trade
                                                  16241
          Manufacturing-durable goods
                                                   8732
          Education
                                                   7922
          Manufacturing-nondurable goods
                                                   6661
          Finance insurance and real estate
                                                   5883
          Construction
                                                   5771
          Business and repair services
                                                   5361
          Medical except hospital
                                                   4493
          Public administration
                                                   4478
          Other professional services
                                                   4226
          Transportation
                                                   4041
          Hospital services
                                                   3808
          Wholesale trade
                                                   3458
          Agriculture
                                                   2880
          Personal services except private HH
                                                   2797
          Social services
                                                   2457
          Entertainment
                                                   1589
          Utilities and sanitary services
                                                   1143
          Communications
                                                   1141
          Private household services
                                                    892
          Mining
                                                    557
          Forestry and fisheries
                                                    183
          Armed Forces
                                                     33
          Name: MajorIndustryCode, dtype: int64
In [472]: plt.figure(figsize=(15,10))
          sns.countplot(y='Income>50k', hue='MajorIndustryCode', data=df[df['Income>50k']==1],
          plt.grid()
          plt.legend(fontsize='medium')
Out[472]: <matplotlib.legend.Legend at 0x12d9a1b8358>
```



```
In [474]: df.groupby('MajorIndustryCode')['IndustryCode'].unique()
Out[474]: MajorIndustryCode
          Agriculture
                                                                                              [2
          Armed Forces
          Business and repair services
                                                                                            [37,
          Communications
          Construction
          Education
          Entertainment
          Finance insurance and real estate
                                                                                            [34,
          Forestry and fisheries
          Hospital services
          Manufacturing-durable goods
                                                  [12, 5, 11, 9, 6, 18, 16, 14, 17, 7, 8, 15, 18
          Manufacturing-nondurable goods
                                                           [24, 19, 23, 26, 22, 25, 27, 21, 28,
          Medical except hospital
          Mining
          Not in universe or children
          Other professional services
          Personal services except private HH
          Private household services
                                                                                    [48, 50, 47,
          Public administration
          Retail trade
          Social services
          Transportation
          Utilities and sanitary services
          Wholesale trade
          Name: IndustryCode, dtype: object
In [475]: df.groupby(['IndustryCode','MajorIndustryCode'])['Income>50k'].sum().sort_values()
Out[475]: IndustryCode MajorIndustryCode
                        Manufacturing-durable goods
                                                                  0
          10
                        Private household services
                                                                  4
          36
          28
                        Manufacturing-nondurable goods
                                                                  7
                        Armed Forces
                                                                  7
          51
                        Manufacturing-durable goods
          17
                                                                 12
          20
                        Manufacturing-nondurable goods
                                                                 15
          46
                                                                 25
                        Forestry and fisheries
                        Manufacturing-durable goods
                                                                 26
          6
          21
                        Manufacturing-nondurable goods
                                                                 26
          22
                        Manufacturing-nondurable goods
                                                                 32
          18
                        Manufacturing-durable goods
                                                                 35
          5
                        Manufacturing-durable goods
                                                                 36
          7
                        Manufacturing-durable goods
                                                                 44
```

45

Agriculture

1

26	Manufacturing-nondurable goods	48
27	Manufacturing-nondurable goods	56
48	Public administration	63
14	Manufacturing-durable goods	69
44	Social services	79
8	Manufacturing-durable goods	86
19	Manufacturing-nondurable goods	90
38	Business and repair services	90
23	Manufacturing-nondurable goods	92
39	Personal services except private HH	98
40	Entertainment	103
15	Manufacturing-durable goods	109
16	Manufacturing-durable goods	115
9	Manufacturing-durable goods	121
2	Agriculture	127
3	Mining	143
49	Public administration	148
24	Manufacturing-nondurable goods	167
13	Manufacturing-durable goods	202
31	Utilities and sanitary services	245
30	Communications	262
12	Manufacturing-durable goods	267
25	Manufacturing-nondurable goods	276
50	Public administration	282
47	Public administration	308
11	Manufacturing-durable goods	310
29	Transportation	453
41	Hospital services	455
37	Business and repair services	482
34	Finance insurance and real estate	494
4	Construction	508
32	Wholesale trade	524
42	Medical except hospital	557
35	Finance insurance and real estate	568
33	Retail trade	750
0	Not in universe or children	820
43	Education	840
45	Other professional services	963
Name:	<pre>Income>50k, dtype: int32</pre>	

OccupationCode and MajorOccupationCode

In [477]: df['OccupationCode'].describe()

Out[477]: count 145005.000000 mean 14.959374

```
std
                         14.910480
           \min
                          0.000000
           25%
                          0.000000
           50%
                         12.000000
           75%
                         29.000000
                         46.000000
           max
          Name: OccupationCode, dtype: float64
In [478]: df['OccupationCode'].value_counts()
Out[478]: 0
                 50258
           2
                  8368
           26
                  7613
           19
                  5130
           29
                  4904
           36
                  4011
           34
                  3855
           10
                  3531
           23
                  3283
           16
                  3272
           33
                  3200
           12
                  3171
           35
                  3064
                  3044
           3
           38
                  2894
                  2601
           31
           32
                  2295
           37
                  2169
           8
                  2063
           42
                  1873
           30
                  1811
           24
                  1784
           17
                  1700
           28
                  1608
           44
                  1553
           41
                  1525
           43
                  1273
           4
                  1269
                  1230
           13
           18
                  1035
           39
                  1001
           14
                   909
           5
                   806
           15
                   777
           25
                   745
           27
                   733
           9
                   681
           7
                   663
```

```
40
                  604
          11
                  591
          1
                  519
          21
                  518
                  404
          6
          22
                  397
          45
                  169
          20
                   68
          46
                   33
          Name: OccupationCode, dtype: int64
In [479]: df['MajorOccupationCode'].unique()
Out[479]: array(['NA', 'Precision production craft & repair',
                 'Professional specialty', 'Executive admin and managerial',
                 'Handlers equip cleaners etc', 'Adm support including clerical',
                 'Machine operators assmblrs & inspctrs', 'Other service', 'Sales',
                 'Private household services', 'Technicians and related support',
                 'Transportation and material moving',
                 'Farming forestry and fishing', 'Protective services',
                 'Armed Forces'], dtype=object)
In [480]: plt.figure(figsize=(12,20))
          sns.barplot(y='OccupationCode', x='Income>50k', data=df, orient="h", hue='Year', dod
          plt.grid(True)
```



```
In [481]: df.groupby('MajorOccupationCode')['OccupationCode'].unique()
Out[481]: MajorOccupationCode
          Adm support including clerical
                                                          [26, 22, 25, 23, 21, 24]
          Armed Forces
                                                                               [46]
          Executive admin and managerial
                                                                          [3, 2, 1]
          Farming forestry and fishing
                                                                      [44, 43, 45]
          Handlers equip cleaners etc
                                                                      [40, 41, 42]
          Machine operators assmblrs & inspctrs
                                                                          [37, 36]
          NA
                                                                                [0]
          Other service
                                                                  [31, 29, 32, 30]
          Precision production craft & repair
                                                                      [34, 35, 33]
          Private household services
                                                                               [27]
          Professional specialty
                                                    [10, 12, 8, 9, 11, 7, 4, 6, 5]
          Protective services
                                                                               [28]
                                                              [19, 16, 18, 17, 20]
          Sales
          Technicians and related support
                                                                      [13, 14, 15]
          Transportation and material moving
                                                                          [39, 38]
          Name: OccupationCode, dtype: object
In [482]: g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
          g.map(sns.countplot, 'OccupationCode', order=df['OccupationCode'].unique())
          for ax in g.axes.flat:
              labels = ax.get_xticklabels() # get x labels
              ax.set xticklabels(labels, rotation=60) # set new labels
```


Out[483]: <matplotlib.legend.Legend at 0x12d99f609e8>

Out[485]: <matplotlib.legend.Legend at 0x12c80222ef0>

Education

In [487]: df['Education'].value_counts()

Out [487]:	High school graduate	41733
	Some college but no degree	25146
	Bachelors degree(BA AB BS)	18278
	Children	11679
	10th grade	6199
	Masters degree(MA MS MEng MEd MSW MBA)	6059
	11th grade	6003
	7th and 8th grade	5852
	Associates degree-occup /vocational	5034
	9th grade	4787
	Associates degree-academic program	4125
	5th or 6th grade	2999
	12th grade no diploma	1949
	1st 2nd 3rd or 4th grade	1683
	Prof school degree (MD DDS DVM LLB JD)	1598
	Doctorate degree(PhD EdD)	1120

```
Less than 1st grade 761
Name: Education, dtype: int64

In [488]: g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
g.map(sns.countplot, 'Education', order=df['Education'].unique() )
for ax in g.axes.flat:
labels = ax.get_xticklabels() # get x labels
ax.set_xticklabels(labels, rotation=90) # set new labels
```


Out[490]: <matplotlib.legend.Legend at 0x12cd3999588>

In [492]: #I will group all Education levels other than 'High school graduate', 'Some college #Bachelors degree(BA AB BS)' and 'Masters degree(MA MS MEng MEd MSW MBA)' as 'Other' #I will also rename 'Some college but no degree' as 'High school graduate'.

```
df['Education'] = df['Education'].apply(lambda x: 'Other' if x not in ['High school ;
                  'Bachelors degree(BA AB BS)', 'Masters degree(MA MS MEng MEd MSW MBA)',
                  'Prof school degree (MD DDS DVM LLB JD)', 'Doctorate degree(PhD EdD)'] else :
          df['Education'] = np.where(df['Education'] == 'Some college but no degree', 'High so
          df_test['Education'] = df_test['Education'].apply(lambda x: 'Other' if x not in ['Hi]
                  'Bachelors degree(BA AB BS)', 'Masters degree(MA MS MEng MEd MSW MBA)',
                  'Prof school degree (MD DDS DVM LLB JD)', 'Doctorate degree(PhD EdD)'] else :
          df_test['Education'] = np.where(df_test['Education'] == 'Some college but no degree'
  WagePerHour
In [493]: df.columns
Out[493]: Index(['Age', 'ClassOfWorker', 'Education', 'WagePerHour', 'MaritalStatus',
                 'MajorIndustryCode', 'MajorOccupationCode', 'Race', 'HispanicOrigin',
                 'Sex', 'FullOrPartTime', 'CapitalGains', 'CapitalLosses',
                 'StockDividends', 'TaxFilerStat', 'HouseholdFamilyStatus',
                 'HouseholdSummary', 'LiveInHouse1Y', 'NumPersonsWorkedEmployer',
                 'CountryBirthFather', 'CountryBirthMother', 'CountryBirthSelf',
                 'Citizenship', 'OwnBusiness', 'VeteranBenefits', 'WeeksWorkedInY',
                 'Year', 'Income>50k'],
                dtype='object')
In [494]: plt.figure(figsize=(10,10))
          sns.boxplot(x='Income>50k', y='WagePerHour', data=df)
Out[494]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4eb24d68>
```


In [495]: df.groupby('WagePerHour')['Age'].count()

Out[495]: WagePerHour

_	
0	134017
20	1
70	1
75	2
100	11
110	1
125	1
135	1
143	1
150	6
170	1
173	1

190 200 205 210 212 213 215 220 225 230 232 233 234 235 245 250 252 255	1 27 1 7 2 20 2 2 4 1 1 1 2 1 11 1 3
4300 4500 4800 4807 4900 5000 5200 5250 5500 5525 6000 6410 6500 6600 6800 7000 7400 7700 7800 8000 8300 8600 8800 9000 9400 9800 9916	1 4 1 5 1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

```
9999 1
Name: Age, Length: 1227, dtype: int64

In [496]: plt.figure(figsize=(10,10))

g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
g.map(sns.distplot, 'WagePerHour', bins=5)
for ax in g.axes.flat:
    labels = ax.get_xticklabels() # get x labels
    ax.set_xticklabels(labels, rotation=90) # set new labels
```

<Figure size 720x720 with 0 Axes>

In [497]: sns.distplot(df['WagePerHour'], bins=4)

Out[497]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4be8aeb8>

In [498]: sns.countplot(x='Income>50k', data=df[df['WagePerHour']>2000])

Out[498]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4be50eb8>

5 It looks like the WagePerHouse has some wrong inputs. I might delete the rows, but a big oercentage of them are positive

for Income>50K. I will cap the Wages at \$2000 per hour.

Marital Status

In [501]: df['MaritalStatus'].value_counts()

Out[501]:	Married-civilian spouse present	73979
	Never married	45594
	Divorced	12046
	Widowed	8032
	Separated	3325
	Married-spouse absent	1396
	Married-A F spouse present	633
	Name: MaritalStatus, dtype: int64	

In [502]: sns.countplot(x='Income>50k', hue='MaritalStatus', data=df)

Out[502]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4bdfb0f0>

Out[504]: <matplotlib.legend.Legend at 0x12d4eb55320>

45594

15371

Never married

Divorced

Widowed 8032

Name: MaritalStatus, dtype: int64

Race

In [509]: df['Race'].value_counts()

 Out[509]: White
 120679

 Black
 14424

 Asian or Pacific Islander
 4896

 Other
 3154

 Amer Indian Aleut or Eskimo
 1852

Name: Race, dtype: int64

In [510]: sns.countplot(x='Income>50k', hue='Race', data=df)

Out[510]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4ebc3c50>

HispanicOrigin

In [514]: df['HispanicOrigin'].value_counts(normalize=True)

Out[514]:	All other	0.842978
	Mexican (Mexicano)	0.043364
	Mexican-American	0.041185
	Central or South American	0.021323
	Puerto Rican	0.020068
	Other Spanish	0.014606
	Cuban	0.006862
	NA	0.005593
	Chicano	0.002034
	Do not know	0.001986
	Name: HispanicOrigin, dtype:	float64

Name: HispanicOrigin, dtype: float64

```
In [515]: g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
                g.map(sns.countplot, 'HispanicOrigin', order=df['HispanicOrigin'].unique())
                g.set_xticklabels(rotation=30)
                for ax in g.axes.flat:
                      labels = ax.get_xticklabels() # get x labels
                      ax.set_xticklabels(labels, rotation=90) # set new labels
                              Year = 94 | Income>50k = 0
                                                                                       Year = 94 | Income>50k = 1
       60000
       50000
       40000
       30000
       20000
       10000
                              Year = 95 | Income>50k = 0
                                                                                       Year = 95 | Income>50k = 1
       60000
       50000
       40000
       30000
       20000
       10000
                                                                       All other.
                                                                                                                         ΑĀ
                   Do not know
                         Central or South American
                               Mexican (Mexicano)
                                               Ouban
                                                                            Do not know
                                                                                                             Puerto Rican
                                          Other Spanish
                                                                                  Central or South American
                                                                                        Mexican (Mexicano)
                                                                                                  Other Spanish
```

In [516]: df['HispanicOrigin'].replace('All other', 'NA', inplace=True)

HispanicOrigin

HispanicOrigin

```
df_test['HispanicOrigin'].replace('All other', 'NA', inplace=True)
In [517]: g = sns.FacetGrid(data=df[df['HispanicOrigin'] !='NA'], col='Income>50k', row='Year'
               g.map(sns.countplot, 'HispanicOrigin', order=df['HispanicOrigin'].unique())
               g.set_xticklabels(rotation=30)
               for ax in g.axes.flat:
                     labels = ax.get_xticklabels() # get x labels
                     ax.set_xticklabels(labels, rotation=90) # set new labels
                           Year = 94 | Income>50k = 0
                                                                                 Year = 94 | Income>50k = 1
       3000
       2500
       2000
       1500
       1000
        500
                           Year = 95 | Income>50k = 0
                                                                                 Year = 95 | Income>50k = 1
       3000
       2500
       2000
       1500
       1000
        500
         0
             Α
                        Central or South American
                             Mexican (Mexicano)
                                         Other Spanish
                                               Ouban
                                                                  Ă
                                   Mexican-American
                                                    Puerto Rican
                                                                        Do not know
                  Do not know
                                                                             Central or South American
                                                                                                    Ouban
                                                                                   Mexican (Mexicano
```

HispanicOrigin

HispanicOrigin

FullOrPartTime

```
In [523]: df['FullOrPartTime'].value_counts()
```

```
Out[523]: Children or Armed Forces 78981
Full-time schedules 38956
Not in labor force 19201
PT for non-econ reasons usually FT 3210
Unemployed full-time 2200
PT for econ reasons usually PT 1166
```

```
Unemployed part- time 779
PT for econ reasons usually FT 512
Name: FullOrPartTime, dtype: int64

In [524]: g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
g.map(sns.countplot, 'FullOrPartTime', order=df['FullOrPartTime'].unique() )
for ax in g.axes.flat:
labels = ax.get_xticklabels() # get x labels
ax.set_xticklabels(labels, rotation=90) # set new labels
```


Looks like the data for this column is missing for 1994. It doesn't make sense that all those who answered the survey in 1994 are of the same type

```
In [526]: sns.countplot(x='Income>50k', hue='FullOrPartTime', data=df[df['Year']==94])
Out[526]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4fb44ac8>
```


Even though this columns seems to be correlated with Income levels, but I will have to drop it as I cannot impute the values of 1994

CapitalGains & CapitalLosses

```
In [529]: df['CapitalGains'].describe()
```

```
      Out [529]: count
      145005.000000

      mean
      557.842136

      std
      5286.552736

      min
      0.000000

      25%
      0.000000

      50%
      0.000000
```

```
75% 0.000000

max 99999.000000

Name: CapitalGains, dtype: float64

In [530]: plt.figure(figsize=(10,10))

g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)

g.map(sns.distplot, 'CapitalGains', bins=5)

for ax in g.axes.flat:

labels = ax.get_xticklabels() # get x labels

ax.set_xticklabels(labels, rotation=90) # set new labels
```

<Figure size 720x720 with 0 Axes>

In [531]: sns.distplot(df['CapitalGains'], bins=4)

Out[531]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4f0c29b0>

Out[532]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4f0af390>


```
In [533]: df['CapitalLosses'].describe()
Out[533]: count
                   145005.000000
                       48.684659
          mean
                      308.852831
          std
          min
                        0.000000
          25%
                        0.000000
          50%
                        0.000000
          75%
                        0.000000
                     4608.000000
          max
          Name: CapitalLosses, dtype: float64
In [534]: plt.figure(figsize=(10,10))
          g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
          g.map(sns.distplot, 'CapitalLosses', bins=5)
          for ax in g.axes.flat:
```

labels = ax.get_xticklabels() # get x labels
ax.set_xticklabels(labels, rotation=90) # set new labels

<Figure size 720x720 with 0 Axes>

In [535]: sns.distplot(df['CapitalLosses'], bins=4)

Out[535]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4ebc07f0>

Out[536]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4ebcc860>

Out[537]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4ebc42e8>

Out[538]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4eb964a8>

This is unexpected, since higher income should probably mean lower Capital Losses. StockDividends

```
In [539]: df['StockDividends'].describe()
Out[539]: count
                   145005.000000
                      252.061688
          mean
          std
                     2260.621084
                        0.000000
          min
          25%
                        0.00000
          50%
                        0.000000
          75%
                        0.00000
                    99999.000000
          Name: StockDividends, dtype: float64
In [540]: plt.figure(figsize=(10,10))
          g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
```

```
g.map(sns.distplot, 'StockDividends', bins=5)
for ax in g.axes.flat:
    labels = ax.get_xticklabels() # get x labels
    ax.set_xticklabels(labels, rotation=90) # set new labels
```

<Figure size 720x720 with 0 Axes>


```
In [541]: sns.distplot(df['StockDividends'], bins=4)
     plt.xlim(0,30000)
```

Out[541]: (0, 30000)

Out[542]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4fb36cf8>

TaxFilerStat

```
In [543]: df['TaxFilerStat'].describe()
Out[543]: count
                                  145005
          unique
                    Joint both under 65
          top
                                   61723
          freq
          Name: TaxFilerStat, dtype: object
In [544]: df['TaxFilerStat'].value_counts()
Out[544]: Joint both under 65
                                           61723
          Single
                                           34850
          Nonfiler
                                           32260
          Head of household
                                            7195
          Joint both 65+
                                            5767
```

```
Joint one under 65 & one 65+
                                 3210
Name: TaxFilerStat, dtype: int64
```

```
In [545]: g = sns.FacetGrid(data=df, col='Income>50k', row='Year', height=6)
          g.map(sns.countplot, 'TaxFilerStat', order=df['TaxFilerStat'].unique() )
          for ax in g.axes.flat:
              labels = ax.get_xticklabels() # get x labels
```

ax.set_xticklabels(labels, rotation=90) # set new labels

Out[547]: <matplotlib.legend.Legend at 0x12d4fb514e0>


```
In [548]: #Group the values: ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Joint one under 65 & one df['TaxFilerStat'] = df['TaxFilerStat'].apply(lambda x: 'Other' if x in ['Head of household', 'Joint both 65+', 'Jo
```

HouseholdFamilyStatus

In [549]: df['HouseholdFamilyStatus'].describe()

Name: HouseholdFamilyStatus, dtype: object

In [550]: df['HouseholdFamilyStatus'].value_counts()

```
Out[550]: Householder
                                                              48707
          Spouse of householder
                                                              35347
          Nonfamily householder
                                                              19255
          Child <18 never marr not in subfamily
                                                              14015
          Child 18+ never marr Not in a subfamily
                                                              10969
          Secondary individual
                                                               5711
          Other Rel 18+ ever marr not in subfamily
                                                               1709
          Other Rel 18+ never marr not in subfamily
                                                               1611
          Child 18+ ever marr Not in a subfamily
                                                                991
          Grandchild <18 never marr child of subfamily RP
                                                                799
          RP of unrelated subfamily
                                                                663
          Child 18+ ever marr RP of subfamily
                                                                652
          Other Rel 18+ ever marr RP of subfamily
                                                                609
          Other Rel 18+ spouse of subfamily RP
                                                                591
          Child 18+ never marr RP of subfamily
                                                                569
          Other Rel <18 never marr child of subfamily RP
                                                                515
          Grandchild <18 never marr not in subfamily
                                                                485
          Child under 18 of RP of unrel subfamily
                                                                412
          Other Rel <18 never marr not in subfamily
                                                                391
          Grandchild 18+ never marr not in subfamily
                                                                364
          In group quarters
                                                                179
          Child 18+ spouse of subfamily RP
                                                                121
          Other Rel 18+ never marr RP of subfamily
                                                                 92
          Child <18 never marr RP of subfamily
                                                                 76
          Spouse of RP of unrelated subfamily
                                                                 49
          Child <18 ever marr not in subfamily
                                                                 35
          Grandchild 18+ ever marr not in subfamily
                                                                 34
          Grandchild 18+ spouse of subfamily RP
                                                                 10
          Grandchild 18+ ever marr RP of subfamily
                                                                  9
                                                                  9
          Child <18 ever marr RP of subfamily
                                                                  6
          Grandchild 18+ never marr RP of subfamily
          Other Rel <18 ever marr RP of subfamily
                                                                  6
          Other Rel <18 never married RP of subfamily
                                                                  4
          Other Rel <18 spouse of subfamily RP
                                                                  3
          Child <18 spouse of subfamily RP
                                                                  2
          Grandchild <18 ever marr not in subfamily
                                                                  2
          Grandchild <18 never marr RP of subfamily
                                                                  2
          Other Rel <18 ever marr not in subfamily
          Name: HouseholdFamilyStatus, dtype: int64
```


Out[552]: <matplotlib.legend.Legend at 0x12d4fb71dd8>


```
In [554]: #To simplify the model, I will replace all small values with Other
          df['HouseholdFamilyStatus'] = df['HouseholdFamilyStatus'].apply(lambda x: 'Other' if
          df_test['HouseholdFamilyStatus'] = df_test['HouseholdFamilyStatus'].apply(lambda x:
In [555]: df['HouseholdFamilyStatus'].value_counts()
Out[555]: Householder
                                   48707
          Other
                                   41696
          Spouse of householder
                                   35347
          Nonfamily householder
                                   19255
          Name: HouseholdFamilyStatus, dtype: int64
  LiveInHouse1Y
In [556]: df['LiveInHouse1Y'].describe()
Out [556]: count
                                               145005
          unique
          top
                    Not in universe under 1 year old
                                                71217
          freq
          Name: LiveInHouse1Y, dtype: object
In [557]: df['LiveInHouse1Y'].value_counts()
Out[557]: Not in universe under 1 year old
                                               71217
          Yes
                                               58972
                                               14816
          Name: LiveInHouse1Y, dtype: int64
In [558]: #Too much missing info, I will drop this column
          df.drop('LiveInHouse1Y', axis=1, inplace=True)
          df_test.drop('LiveInHouse1Y', axis=1, inplace=True)
  NumPersonsWorkedEmployer
In [559]: df['NumPersonsWorkedEmployer'].describe()
Out [559]: count
                   145005.000000
                        2.581587
          mean
                        2.402695
          std
          min
                        0.000000
          25%
                        0.000000
          50%
                        2.000000
          75%
                        5.000000
          max
                        6.000000
          Name: NumPersonsWorkedEmployer, dtype: float64
```


Out[562]: <matplotlib.legend.Legend at 0x12d9b33d358>

In [563]: sns.boxplot(x='Income>50k', y="NumPersonsWorkedEmployer", data=df)

Out[563]: <matplotlib.axes._subplots.AxesSubplot at 0x12d9b2e1438>

CountryBirthFather

Out[566]: <matplotlib.legend.Legend at 0x12d9b36ce10>

Citizenship

In [571]: df['Citizenship'].describe()

Out[571]: count 145005 unique 5

```
Native- Born in the United States
          top
                                               126782
          freq
          Name: Citizenship, dtype: object
In [572]: df['Citizenship'].value_counts()
Out[572]: Native- Born in the United States
                                                         126782
          Foreign born-Not a citizen of US
                                                          10829
          Foreign born- U S citizen by naturalization
                                                           4614
          Native- Born in Puerto Rico or U S Outlying
                                                           1469
          Native- Born abroad of American Parent(s)
                                                           1311
          Name: Citizenship, dtype: int64
In [573]: df['Citizenship'].value_counts(normalize=True)
Out[573]: Native-Born in the United States
                                                         0.874328
          Foreign born- Not a citizen of U S
                                                         0.074680
          Foreign born- U S citizen by naturalization
                                                         0.031820
          Native- Born in Puerto Rico or U S Outlying
                                                         0.010131
          Native- Born abroad of American Parent(s)
                                                         0.009041
          Name: Citizenship, dtype: float64
In [574]: plt.figure(figsize=(10,10))
          sns.countplot(x='Income>50k', hue='Citizenship', data=df[df['Income>50k']==1],palette
          plt.grid()
          plt.legend(fontsize='x-small')
Out[574]: <matplotlib.legend.Legend at 0x12da05a8cc0>
```


OwnBusiness

```
In [577]: df['OwnBusiness'].value_counts()
Out[577]: 0
               126718
                15685
                  2602
          Name: OwnBusiness, dtype: int64
In [578]: plt.figure(figsize=(12,12))
          sns.barplot(x='OwnBusiness', y='Income>50k', data=df, dodge=True)
          plt.xticks(rotation=90)
          plt.grid(True)
      0.25
      0.20
      0.15
      0.00
```

```
In [579]: #Very clear correlation between Owning a Business and Income.
#I will rename '2' to 1.
df['OwnBusiness'] = np.where(df['OwnBusiness'] == 0, 0, 1)
```

OwnBusiness

```
df_test['OwnBusiness'] = np.where(df_test['OwnBusiness'] == 0, 0, 1)
          df['OwnBusiness'].value_counts(normalize=True)
Out[579]: 0
               0.873887
               0.126113
          Name: OwnBusiness, dtype: float64
  VeteranBenefits'
In [580]: df['VeteranBenefits'].describe()
Out[580]: count
                   145005.000000
          mean
                        1.826165
          std
                        0.551837
          min
                        0.000000
          25%
                        2.000000
          50%
                        2.000000
          75%
                        2.000000
                        2.000000
          max
          Name: VeteranBenefits, dtype: float64
In [581]: df['VeteranBenefits'].value_counts()
Out[581]: 2
               131464
          0
                11666
                 1875
          Name: VeteranBenefits, dtype: int64
In [582]: plt.figure(figsize=(12,12))
          sns.barplot(x='VeteranBenefits', y='Income>50k', data=df, dodge=True)
          plt.xticks(rotation=90)
          plt.grid(True)
```


WeeksWorkedInY

In [584]: df['WeeksWorkedInY'].describe()

```
      Out [584]: count
      145005.000000

      mean
      30.532313

      std
      23.667317

      min
      0.000000

      25%
      0.000000

      50%
      47.000000

      75%
      52.000000
```

max 52.000000

Name: WeeksWorkedInY, dtype: float64

In [585]: plt.figure(figsize=(12,12))

sns.boxplot(x='Income>50k', y='WeeksWorkedInY', data=df)

Out[585]: <matplotlib.axes._subplots.AxesSubplot at 0x12cc6d242e8>

In [586]: sns.distplot(df['WeeksWorkedInY'])

Out[586]: <matplotlib.axes._subplots.AxesSubplot at 0x12caab58240>

Out[588]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4fb583c8>

Year

In [592]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 145005 entries, 0 to 199520

Data columns (total 20 columns):

Age 145005 non-null int64
ClassOfWorker 145005 non-null object
Education 145005 non-null object
WagePerHour 145005 non-null int64
MaritalStatus 145005 non-null object
MajorIndustryCode 145005 non-null object

MajorOccupationCode	145005	non-null	object
Race	145005	non-null	object
Male	145005	non-null	int32
CapitalGains	145005	non-null	int64
CapitalLosses	145005	non-null	int64
StockDividends	145005	non-null	int64
TaxFilerStat	145005	non-null	object
HouseholdFamilyStatus	145005	non-null	object
HouseholdSummary	145005	${\tt non-null}$	object
NumPersonsWorkedEmployer	145005	${\tt non-null}$	int64
Citizenship	145005	non-null	int64
OwnBusiness	145005	non-null	int32
WeeksWorkedInY	145005	${\tt non-null}$	int64
Income>50k	145005	non-null	int32
d+vroce : in+20(2) : in+61(0)	object	(a)	

dtypes: int32(3), int64(8), object(9)

memory usage: 26.6+ MB

In [593]: df.describe()

Out[593]:		Age	WagePerHour	Male	CapitalGai	ns \	
	count	145005.000000	145005.000000	145005.000000	145005.0000	00	
	mean	39.418468	70.766222	0.485866	557.8421	36	
	std	19.327772	277.214096	0.499802	5286.5527	36	
	min	0.000000	0.000000	0.00000	0.0000	00	
	25%	25.000000	0.000000	0.00000	0.0000	00	
	50%	38.000000	0.000000	0.000000	0.0000	00	
	75%	52.000000	0.000000	1.000000	0.0000	00	
	max	90.000000	2000.000000	1.000000	99999.0000	00	
		${\tt CapitalLosses}$	${\tt StockDividends}$	NumPersonsWor	kedEmployer	Citizenship	\
	count	145005.000000	145005.000000	14	5005.000000	145005.000000	
	mean	48.684659	252.061688		2.581587	0.925320	
	std	308.852831	2260.621084		2.402695	0.262876	
	min	0.000000	0.000000		0.000000	0.000000	
	25%	0.000000	0.000000		0.000000	1.000000	
	50%	0.000000	0.000000		2.000000	1.000000	
	75%	0.000000	0.000000		5.000000	1.000000	
	max	4608.000000	99999.000000		6.000000	1.000000	
		OwnBusiness	WeeksWorkedInY	Income>50k			
	count	145005.000000	145005.000000	145005.000000			
	mean	0.126113	30.532313	0.080577			
	std	0.331978	23.667317	0.272185			
	min	0.000000	0.000000	0.000000			
	25%	0.000000	0.000000	0.000000			
	50%	0.000000	47.000000	0.000000			
	75%	0.000000	52.000000	0.000000			
	max	1.000000	52.000000	1.000000			

In [594]: d	f.head()
Out[594]:	Age ClassOfWorker Education WagePerHour
(0 44 4 8 4 4 4 4
1	58 Self-employed-not incorporated High school graduate 0
2	NA Other 0
3	NA Other O
4	NA Other O
	MaritalStatus MajorIndustryCode \
(Widowed Not in universe or children
1	Divorced Construction
2	Never married Not in universe or children
3	
4	
	MajorOccupationCode Race Male \
(NA White O
1	Precision production craft & repair White 1
2	NA Asian or Pacific Islander 0
3	NA White O
4	NA White O
	CapitalGains CapitalLosses StockDividends TaxFilerStat \
	-
(
1	
2	
3	
4	0 0 Nonfiler
	HouseholdFamilyStatus HouseholdSummary \
(Other Other relative of householder
1	Householder Householder
2	Other Child 18 or older
3	Other Child under 18 never married
4	Other Child under 18 never married
	NumPersonsWorkedEmployer Citizenship OwnBusiness WeeksWorkedInY \
(• • •
1	
2	
3	
4	0 1 0
	Income>50k
(0
1	. 0
,	0

3 0

In [595]: plt.subplots(figsize=(10, 10))

df_cor = df.corr()

sns.heatmap(df_cor, annot=True, fmt = ".1f", cmap = "coolwarm")

Out[595]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4fb709b0>

In [596]: df_test.shape

Out[596]: (74777, 20)

In [597]: df.shape

Out[597]: (145005, 20)

6 MODELING

6.1 Encoding

```
In [598]: df_train_encoded=pd.get_dummies(df, columns=['ClassOfWorker', 'Education', 'MaritalS'
                                                                                                        'MajorOccupationCode', 'Race', 'TaxFilerStat'
                                                                                                       'HouseholdSummary'],
                                                                          prefix=['ClassOfWorker', 'Education', 'MaritalStatus', 'Maje
                                                                                                        'MajorOccupationCode', 'Race', 'TaxFilerStat'
                                                                                                       'HouseholdSummary'])
                     df_test_encoded=pd.get_dummies(df_test, columns=['ClassOfWorker', 'Education', 'Mari
                                                                                                        'MajorOccupationCode', 'Race', 'TaxFilerStat'
                                                                                                       'HouseholdSummary'],
                                                                          prefix=['ClassOfWorker', 'Education', 'MaritalStatus', 'Maje
                                                                                                        'MajorOccupationCode', 'Race', 'TaxFilerStat'
                                                                                                       'HouseholdSummary'])
In [599]: df_train_encoded.shape
Out [599]: (145005, 86)
In [600]: X_train = df_train_encoded.loc[:,df_train_encoded.columns != 'Income>50k']
                     y_train = df_train_encoded['Income>50k']
                     X_test = df_test_encoded.loc[:,df_test_encoded.columns != 'Income>50k']
                     y_test = df_test_encoded['Income>50k']
6.2 Use RandomForest for Feature Selection
In [601]: #First, scale the data
                     from sklearn.preprocessing import StandardScaler
                     scaler = StandardScaler()
                     scaler.fit(X_train)
                     X_train = pd.DataFrame(scaler.transform(X_train), columns=X_train.columns)
                     X_test = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns)
C:\Users\ahmed\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:625: DataConversionWatarburkanaconda3\lib\site-packages\sklearn\preprocessing\data.py:625: DataConversionWatarburkanaconda3\lib\site-packages\sklearn\preproces\sklearn\preproces\sklearn\preproces\sklearn\preproces\sklearn\preproces\sklearn\preproces\skl
    return self.partial_fit(X, y)
C:\Users\ahmed\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: DataConversionWarning: Data
C:\Users\ahmed\Anaconda3\lib\site-packages\ipykernel_launcher.py:6: DataConversionWarning: Data
In [602]: from sklearn.ensemble import RandomForestClassifier
                     rfc = RandomForestClassifier(n_estimators=300)
                     rfc.fit(X_train, y_train)
Out[602]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                                              max_depth=None, max_features='auto', max_leaf_nodes=None,
```

```
min_impurity_decrease=0.0, min_impurity_split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min_weight_fraction_leaf=0.0, n_estimators=300, n_jobs=None,
                      oob_score=False, random_state=None, verbose=0,
                      warm start=False)
In [603]: from sklearn.feature_selection import SelectFromModel
          sel = SelectFromModel(rfc, prefit=True)
          selected_feat= X_train.columns[(sel.get_support())]
In [604]: print('Selected Features:\n',*selected_feat, sep='\n')
Selected Features:
Age
WagePerHour
Male
CapitalGains
CapitalLosses
StockDividends
NumPersonsWorkedEmployer
OwnBusiness
WeeksWorkedInY
Education_Bachelors degree(BA AB BS)
Education_High school graduate
Education_Masters degree(MA MS MEng MEd MSW MBA)
Education Other
Education_Prof school degree (MD DDS DVM LLB JD)
MajorOccupationCode_Executive admin and managerial
MajorOccupationCode_Professional specialty
In [605]: X_train = X_train[selected_feat]
          X_test = X_test[selected_feat]
In [606]: df2 = pd.concat([X_train,y_train.reset_index()], axis=1)
          df2.drop('index', axis = 1 ,inplace=True)
          plt.subplots(figsize=(10, 10))
          df_cor = df2.corr()
          sns.heatmap(df_cor, annot=True, fmt = ".1f", cmap = "coolwarm")
Out[606]: <matplotlib.axes._subplots.AxesSubplot at 0x12d4eb89898>
```


6.3 Model Selection

```
In [610]: #Doing 10-fold cross validation, using Decision Tree and Logistic Regression
          rs=42
          classifiers = [] # list of classifiers tested
          classifiers.append(LogisticRegression(random_state = rs))
          classifiers.append(DecisionTreeClassifier(random_state = rs))
          cv_results = []
          for classifier in classifiers :
              cv_results.append(cross_val_score(classifier, X_train, y_train, scoring = 'roc_a'
          cv_means = []
          cv_std = []
          for cv_result in cv_results:
              cv_means.append(cv_result.mean())
              cv_std.append(cv_result.std())
          cv_res = pd.DataFrame({'CV_score':cv_means, 'CV_stddev':cv_std, 'Algorithm':['Logist
In [611]: cv_res
Out[611]:
            CV_score CV_stddev
                                           Algorithm
                        0.006893 LogisticRegression
          0 0.908088
          1 0.729347
                        0.005867
                                        DecisionTree
In [612]: plt.subplots(figsize=(10, 10))
          g = sns.barplot('CV_score', 'Algorithm', data = cv_res, palette='Set2', orient = 'h',
          g.set_xlabel('Mean AUC score')
          g = g.set_title('Cross validation scores')
```


6.4 Logistic Regression

```
In [613]: from sklearn.metrics import roc_curve, auc

LR = LogisticRegression(random_state=42)
    y_score = LR.fit(X_train, y_train).decision_function(X_test)
    fpr = dict()
    tpr = dict()
    roc_auc = dict()

fpr[0], tpr[0], _ = roc_curve(y_test, y_score)
    roc_auc[0] = auc(fpr[0], tpr[0])

# Compute micro-average ROC curve and ROC area
    fpr[1], tpr[1], _ = roc_curve(y_test.ravel(), y_score.ravel())
    roc_auc[1] = auc(fpr[1], tpr[1])
```

C:\Users\ahmed\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning
FutureWarning)


```
In [615]: import itertools
          from sklearn.metrics import confusion_matrix
          def plot_confusion_matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
              This function prints and plots the confusion matrix.
              Normalization can be applied by setting `normalize=True`.
              if normalize:
                  cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                  print("Normalized confusion matrix")
              else:
                  print('Confusion matrix, without normalization')
              print(cm)
              plt.imshow(cm, interpolation='nearest', cmap=cmap)
              plt.title(title)
              plt.colorbar()
              tick_marks = np.arange(len(classes))
              plt.xticks(tick_marks, classes, rotation=45)
              plt.yticks(tick_marks, classes)
              fmt = '.2f' if normalize else 'd'
              thresh = cm.max() / 2.
              for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                  plt.text(j, i, format(cm[i, j], fmt),
                           horizontalalignment="center",
                           color="white" if cm[i, j] > thresh else "black")
              plt.tight_layout()
              plt.ylabel('True label')
              plt.xlabel('Predicted label')
In [616]: # use trained model to make predictions on test set
          y_pred = LR.predict(X_test)
In [617]: # Compute confusion matrix
          cnf_matrix = confusion_matrix(y_test, y_pred)
          np.set_printoptions(precision=2)
          class_names = ['Income < 50k', 'Income > 50k']
```


Precision: 70.32 % Recall: 33.05 %

Accuracy is 93.70%, i.e. better than simply predicting that everybody make <50k. Precision 70.32% means that 70.32 of the one predicted >50k are actually >50k

Recall 33% means that out of the ones who actually make >50k, the model could only find 33% of them.

Given the skewness of the data, I will to use Oversampling, hoping to get better results.

6.5 Oversampling

Due to the unbalanced data I use SMOTE to oversample the training data.

```
In [619]: from imblearn.over_sampling import SMOTE
          print("Number transactions X_train dataset: ", X_train.shape)
          print("Number transactions y_train dataset: ", y_train.shape)
          print("Number transactions X_test dataset: ", X_test.shape)
          print("Number transactions y_test dataset: ", y_test.shape)
Number transactions X_train dataset: (145005, 16)
Number transactions y_train dataset: (145005,)
Number transactions X_test dataset: (74777, 16)
Number transactions y_test dataset: (74777,)
In [620]: print("Before OverSampling, counts of label '1': {}".format(sum(y_train==1)))
          print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train==0)))
          sm = SMOTE(random_state=2)
          X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel())
          print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape))
          print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.shape))
          print("After OverSampling, counts of label '1': {}".format(sum(y_train_res==1)))
          print("After OverSampling, counts of label '0': {}".format(sum(y_train_res==0)))
Before OverSampling, counts of label '1': 11684
Before OverSampling, counts of label '0': 133321
After OverSampling, the shape of train_X: (266642, 16)
After OverSampling, the shape of train_y: (266642,)
After OverSampling, counts of label '1': 133321
After OverSampling, counts of label '0': 133321
In [621]: X_train_res = pd.DataFrame(X_train_res, columns = X_train.columns)
In [622]: #Using Random Forest for feature selection
          rfc.fit(X_train_res, y_train_res)
          sel = SelectFromModel(rfc, prefit=True)
          selected_feat= X_train_res.columns[(sel.get_support())]
```

```
print('Selected Features:\n',*selected_feat, sep='\n')
          X_train_res = X_train_res[selected_feat]
          X_test = X_test[selected_feat]
Selected Features:
Age
Male
StockDividends
NumPersonsWorkedEmployer
WeeksWorkedInY
In [623]: #Doing 10-fold cross validation, using Decision Tree and Logistic Regression
          rs=42
          classifiers = [] # list of classifiers tested
          classifiers.append(LogisticRegression(random_state = rs))
          classifiers.append(DecisionTreeClassifier(random_state = rs))
          cv_results = []
          for classifier in classifiers :
              cv_results.append(cross_val_score(classifier, X_train_res, y_train_res, scoring =
          cv_means = []
          cv_std = []
          for cv_result in cv_results:
              cv_means.append(cv_result.mean())
              cv_std.append(cv_result.std())
          cv_res = pd.DataFrame({'CV_score':cv_means, 'CV_stddev':cv_std, 'Algorithm':['Logist
In [624]: cv_res
Out[624]:
            CV_score CV_stddev
                                           Algorithm
          0 0.854965
                        0.006464 LogisticRegression
          1 0.936062
                        0.060799
                                        DecisionTree
In [625]: plt.subplots(figsize=(10, 10))
          g = sns.barplot('CV_score', 'Algorithm', data = cv_res, palette='Set2', orient = 'h',
          g.set_xlabel('Mean AUC score')
          g = g.set_title('Cross validation scores')
```



```
np.set_printoptions(precision=2)
          class_names = ['Income < 50k', 'Income > 50k']
          # Plot non-normalized confusion matrix
          plt.figure(figsize=(10,10))
          plot_confusion_matrix(cnf_matrix, classes=class_names,
                                title='Confusion matrix (counts)')
          # Plot normalized confusion matrix
          plt.figure(figsize=(10,10))
          plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
                                title='Confusion matrix (percent)')
Confusion matrix, without normalization
[[64303 4647]
 [ 3499 2328]]
Normalized confusion matrix
[[ 0.93 0.07]
 [ 0.6 0.4 ]]
```


Accuracy: 89.11 % Precision: 33.38 % Recall: 39.95 %

Recall rate got much better after oversampling, but accuracy and precisoin went down.

6.6 Conclusion

Based on the above two scenarios (with and without oversampling), the user can select the one that matches his requirements. Since Recall and precision varied significantly, then it will depend on what is more important:

- 1- Making correct predictions => No oversampling
- 2- Finding as many >50k as possible => Oversampling
- 3- Correctly predicting >50k => No Oversampling