

COMPUTER GRAPHICS

ЗАСОБИ ПРОГРАМУВАННЯ КОМП'ЮТЕРНОЇ ГРАФІКИ

Лек. 03 2021 ІПЗ-19

ПРЕДСТАВЛЕНИЕ ОБЪЕКТОВ

- Модель. Геометрическое моделирование объектов, процессы создания модели.
- Точечные модели объектов.
- Каркасные модели объектов.
- Поверхностные модели. Полигональные сетки. Правило Эйлера.
- Объемные модели. Воксельное представление.
- Объемные модели. Сплошные конструктивы.

МОДЕЛИРОВАНИЕ

МОДЕЛЬ -

АБСТРАКТНОЕ ПРЕДСТАВЛЕНИЕ НЕКОТРОЙ СУЩНОСТИ РЕАЛЬНОГО МИРА

Моделирование

- Физическое моделирование
- Математическое моделирование
 - о геометрическое моделирование
- Компьютерное моделирование
- Алгоритмическое моделирование

ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

- Моделирование объектов различной природы с помощью геометрических типов данных
- Моделируются объекты
 - а) реального мира
 - б) синтетические объекты (научная визуализация и др.)

Выбор представления:

- Формирование геометрической модели
- Редактирование геометрической модели
- Алгоритмы обработки модели в графической системе

ПРИМЕР СИСТЕМЫ ФОРМИРОВАНИЯ МОДЕЛИ МИРА

КЛАССИФИКАЦИЯ ГЕОМЕТРИЧЕСКИХ МОДЕЛЕЙ И СИСТЕМ МОДЕЛИРОВАНИЯ

Что описывается?

- Декомпозиция пространства
- Описание поверхностей
- Описание структуры

Как описывается?

- Непрерывное представление vs дискретное представление
- Явное vs параметрическое представление

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ГЕОМЕТРИЧЕСКИХ МОДЕЛЕЙ

Явное описание – модель задается в виде зависимости одной координаты фигуры от остальных координат.

2D
$$y = F(x)$$
, **3D** $z = F(x, y)$.

Неявное описание – модель задается в виде зависимости связи между всеми координатами.

2D
$$F(x, y) = 0$$
, **3D** $F(x, y, z) = 0$.

Параметрическое описание - модель задается в виде зависимости координат от некоторого параметра.

$$x = F_x(t), y = F_y(t), \qquad z = F_z(t).$$

Математическое описание ОТРЕЗКА ПРЯМОЙ в 2D

Задано:
$$V_1 = \begin{bmatrix} X_1 \\ Y_1 \end{bmatrix}$$
; $V_2 = \begin{bmatrix} X_2 \\ Y_2 \end{bmatrix}$; $X_1 \le x \le X_2$

Явное описание:

$$y = \frac{Y_2 - Y_1}{X_2 - X_1} (x - X_1) + Y_1$$

Неявное описание:

$$\frac{x - X_1}{X_2 - X_1} = \frac{y - Y_1}{Y_2 - Y_1}$$

Параметрическое описание:

$$x(t) = (X_2 - X_1)t + X_1; \ y(t) = (Y_2 - Y_1)t + Y_1$$
 параметр $0 \le t \le 1$

СОЗДАНИЕ МОДЕЛИ

Автоматическое

- Устройства ввода трехмерной информации(томография, 3-D сканеры)
- Реконструкция из изображений (машинное зрение, CV)
- Результаты математических вычислений

Ручное

- Системы моделирования (3D Max, Maya ...)
- Аналитическое, явное

КЛАССИФИКАЦИЯ ГЕОМЕТРИЧЕСКИХ МОДЕЛЕЙ И СИСТЕМ МОДЕЛИРОВАНИЯ

Характеристики алгоритмов

- Сложность
- Применимость

Размеры модели

- Объем: при хранении, при обработке, при визуализации
- Возможность сжатия

Область применения

ОСНОВНЫЕ ПОХОДЫ К СОЗДАНИЮ МОДЕЛЕЙ 3-D ОБЪЕКТОВ

точечные модели

Объект – совокупность точек Основное свойство отсутствие информации об объекте в пространстве между

$$V = \{v_1, v_2, \dots, v_L\}$$

$$v_i = \{x_i, y_i, z_i\}, i=1,2,\dots, L$$

точками

ТОЧЕЧНЫЕ МОДЕЛИ

Объект описывается набором (множеством) точек в пространстве.

- **Графовая модель -** объект описывается некоторым изображением связанных точек.
- **Табличная модель** объект описывается таблицей координат точек.

$\#\mathbf{V}$	X	Y	Z
1	1	-2	5
2	8	-2	5
3	8	-2	12
*	*	*	*

Основное использование – синтез устилающих поверхностей

КАРКАСНЫЕ МОДЕЛИ

Объект описывается каркасом геометрических фигур, называемых геометрическими примитивами.

Векторная - линейная каркасная модель, геометрический примитив - вектор. Сплайновая - нелинейная каркасная модель, геометрический примитив - сплайн.

ВЕКТОРНАЯ КАРКАСНАЯ МОДЕЛЬ

Объект – совокупность ребер и вершин Объект задается списками ребер и

ВЕКТОРНАЯ КАРКАСНАЯ МОДЕЛЬ

Список вершин (vertices) $V=\{v_1,v_2,...v_I\}, v_i=\{x_i,y_i,z_i\},$

L-кол-во вершин в объекте

Список ребер (edges) $E=\{e_1,e_2,...e_M\},\,e_j=\{pv_{j1},\,pv_{j2}\}$ М-кол-во ребер в объекте

КАРКАСНЫЕ МОДЕЛИ

Таблица вершин

#	X	Y	Z
1	1	-2	5
2	8	-2	5
3	8	-2	12
4	1	-2	12
5	1	3	5
6	8	3	5
7	8	3	12
8	1	3	12

Таблица ребер

#			#		
1	1	4	7	3	7
2	4	3	8	2	6
3	3	2	9	5	8
4	2	1	10	8	7
5	1	5	11	7	6
6	4	8	12	6	5

КАРКАСНЫЕ МОДЕЛИ

- Высокая скорость обработки
- Низкое качество синтезируемых изображений
- Неоднозначная интерпретация

Основное использование – предварительный просмотр синтезируемых сцен

КАРКАСНАЯ МОДЕЛЬ. ПРИМЕР

ПОВЕРХНОСТНЫЕ МОДЕЛИ

Объект определяется неявно, путем некоторой геометрической аппроксимации ограничивающей его поверхности.

Пинейная поверхностная модель - сложная поверхность приближается наборам плоских граней с неким компактным математическим представлением.

Нелинейная поверхностная модель - сложная поверхность приближается наборам нелинейных ограниченных поверхностей (сплайновые поверхности).

ЛИНЕЙНАЯ ПОВЕРХНОСТНАЯ МОДЕЛЬ

ГРАНЬ ← → ГРАНИЦА

Границы граней – ребра (фрагменты кривых) Часть кривой (прямой), формирующей ребро называется вершинами.

Поверхностная модель с плоскими выпуклыми гранями называется полигональной.

поверхностные модели

Линейная полигональная модель - гранями обычно являются плоские, выпуклые треугольники, четырехугольники или другие простые выпуклые многоугольники (полигоны).

ПОЛИГОНАЛЬНАЯ МОДЕЛЬ (MESH)

Иерархическая структура:

Нижний уровень - список вершин (vertices)

$$V=\{v_1,v_2,...v_L\}, v_i=\{x_i, y_i, z_i\},$$

L-кол-во вершин в объекте

Средний уровень - список ребер (edges)

$$E=\{e_1,e_2,\dots e_M\}, e_j=\{pv_{j1}, pv_{j2},f_{j1},f_{j1}\},$$

М-кол-во ребер в объекте

Верхний уровень - список полигонов (polygons)

$$P = \{p_1, p_2, \dots p_R\}, p_k = \{pe_{k1}, pe_{k2}, \dots, pe_{kR}\},\$$

R-кол-во полигонов в объекте

ПОЛИГОНАЛЬНАЯ СЕТКА. ПРИМЕР

$$V = \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4)\}$$

$$E = \{(v_1, v_2, 1, 0), (v_1, v_3, 1, 0), (v_2, v_3, 1, 0), (v_2, v_3, 1, 0), (v_2, p_4, 0, 0), (v_3, v_4, 0, 0)\}$$

$$P = \{(e_1, e_2, e_3), (e_3, e_4, e_5)\}$$

ПОЛИГОНАЛЬНАЯ МОДЕЛЬ. ФОРМАТ ОВЈ

Открытый формат описания геометрии:

- позиция каждой вершины:
 - v 0.1 0.2 0.3
 - V
- нормаль:
 - vn -0.7 +0.4 -0.33
 - vn
- поверхность:
 - f v1 v2 v3 ...
 - f
- текстурные координаты
 - vt

ПОЛИГОНАЛЬНАЯ МОДЕЛЬ. ПРИМЕР Стенфордский кролик

OBJ file format with ext .obj # vertex count = 2503 # face count = 4968

v -3.41e-003 1.30e-001 2.17e-002

v -8.17e-002 1.52e-001 2.96e-002

v -3.05e-002 1.24e-001 1.09e-003

v -2.49e-002 1.12e-001 3.750e-002

• • •

f 1069 1647 1578

f 1058 909 939

f 421 1176 238

f 1055 1101 1042

f 238 1059 1126

f 1254 30 1261

f 1065 1071 1

f 1037 1130 1120

ПОЛИГОНАЛЬНАЯ МОДЕЛЬ. ПРИМЕР

```
# OBJ file format with ext .obj

# vertex count = 1258

# face count = 2492

v -0.000581696 -0.734665 -0.623267

v 0.000283538 -1 0.286843

v -0.117277 -0.973564 0.306907

v -0.382144 -0.890788 0.221243

v -0.247144 -0.942602 0.276051

v -0.656078 -0.718512 -0.109025
```


ПОЛИГОНАЛЬНАЯ МОДЕЛЬ ОСНОВНЫЕ ОПЕРАЦИИ

- Проверка правильности задания
- Вычисление габаритного объема
- Вычисление нормали к полигону
- Нахождение пересечения с лучом (или кривой)
- Определение положения точки относительно поверхности

ПОЛИГОНАЛЬНАЯ МОДЕЛЬ
ПРАВИЛЬНОСТЬ ЗАДАНИЯ

Выполняется с помощью формулы Эйлера, которая связывает количество вершин (L), ребер (М) и граней (R) - необходимое условие правильности задания сплошного (замкнутого) объекта

$$L-M+R=2$$
 (без отверстий)

ПОЛИГОНАЛЬНАЯ СЕТКА
 ПРАВИЛЬНОСТЬ ЗАДАНИЯ

Для объекта с отверстиями

$$L-M+R = 2-2H+S$$

Н – количество сквозных отверстий S- количество несквозных (углублений) отверстий

ПОЛИГОНАЛЬНАЯ СЕТКА ПРАВИЛЬНОСТЬ ЗАДАНИЯ. ПРИМЕРЫ

$$L=13$$
, $M=20$, $R=10$, $S=1$
 $13-20+10=2+1$

ОБЪЕМНЫЕ МОДЕЛИ

Объект – совокупность непересекающихся элементарных объектов, более простых, чем исходный, но не обязательно того же типа

ВОКСЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ Объект – совокупность вокселей (voxel – volume element). Воксель – параллелепипед фиксированного размера (часто куб единичного размера)

ВОКСЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ

Воксель $V_{i,j,k}$. Объектное пространство «плотно» заполнено вокселями, которые можно представить как трехмерный массив элементов.

Значение вокселя определяет принадлежность вокселя объекту и, дополнительно, может включать некоторые характеристики объекта (цвет, интенсивность, прозрачность и т.п.).

ВОКСЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ

Фактически это некая дискретная аппроксимация реального «непрерывного» объекта. Качество аппроксимации зависит как от размера вокселя, так и от «частотных характеристик» сложности поверхности объекта.

Требует значительных объемов памяти для хранения описания объекта.

Представление эффективно для вычисления «пространственных» характеристик объекта (объем, центр масс и т.п.)

ВОКСЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ

ВОКСЕЛЬНОЕ ПРЕДСТАВЛЕНИЕ Стенфордский кролик

Задается некоторый базовый набор примитивов, определяемый предметной областью (параллелепипеды, сферы, конусы, цилиндры и т.п.)
Объект представляется в виде древовидной структуры (дерева) у которого

- Листья есть базовые примитивы определенного размера
- Узлы основные операции над примитивами
- Вершина искомый объект

Операции над примитивами

• Объединение (union) A+B

• Разность (difference) A-B

• Пересечение (intersection) A & B

СРАВНЕНИЕ МОДЕЛЕЙ

Точность представления объектов

Сплошные конструктивы всегда представляют объект точно, а точечные, проволочные или ячеечные модели для многих объектов могут быть представлены приблизительно

Однозначность представления объектов

Сплошные конструктивы - это единственный способ представить объект с учетом его размера и расположения (только объекты ограниченного класса и при специфическом наборе примитивов)

СРАВНЕНИЕ МОДЕЛЕЙ

Область применения

Проволочные или поверхностные модели составляются для ограниченного класса объектов, ячеечные для любого типа объекта

Вопросы для экзамена

Тема: Представление объектов

- 1. Точечное представление модели объекта. Структура данных, достоинства, недостатки.
- 2. Каркасное представление модели объекта. Структура данных, достоинства, недостатки.
- 3. Поверхностное представление. Полигональные сетки. Структура данных, достоинства, недостатки.
- 4. Правило Эйлера проверки правильности полигональной сетки (случаи без отверстий, с отверстиями и выемками). Примеры
- 5. Объемное моделирование. Воксельное представление. Достоинства, недостатки.
- 6. Объемное моделирование. Твердотельные конструктивы. Достоинства, недостатки.

END #3