

I8255A PROGRAMMABLE PERIPHERAL INTERFACE

INDUSTRIAL.

- Industrial Temperature Range: -40°C to +85°C
- 24 Programmable I/O Pins
- **Completely TTL Compatible**
- **Improved Timing Characteristics**

- Direct Bit Set/Reset Capability Easing Control Application Interface
- 40-Pin Dual In-Line Package
- Reduces System Package Count
- Improved DC Driving Capability

The Intel® I8255A is a general purpose programmable I/O device designed for use with Intel microprocessors. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE 0), each group of 12 I/O pins may be programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

Figure 1. Block Diagram

Figure 2. Pin Configuration

ABSOLUTE MAXIMUM RATINGS*

 *NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V_{CC} = +5\text{V} \pm 5\%, \text{GND} = 0\text{V})$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VIL	Input Low Voltage	-0.5	8.0	V	
V _{IH}	Input High Voltage	2.2	Vcc	V	
V _{OL} (DB)	Output Low Voltage (Data Bus)		0.45	٧	I _{OL} = 2.5mA
V _{OL} (PER)	Output Low Voltage (Peripheral Port)		0.45	٧	I _{OL} = 1.7mA
V _{OH} (DB)	Output High Voltage (Data Bus)	2.4		٧	I _{OH} = -400μA
V _{OH} (PER)	Output High Voltage (Peripheral Port)	2.4		٧	I _{OH} = -200μA
IDAR[1]	Darlington Drive Current	-1.0	-4.0	mA	R _{EXT} = 750Ω; V _{EXT} = 1.5V
1 _{CC}	Power Supply Current		120	mA	
Ι _Ι L	Input Load Current		±10	μА	V _{IN} = V _{CC} to 0V
loft	Output Float Leakage		±10	μΑ	V _{OUT} = V _{CC} to 0V

NOTE

CAPACITANCE (T_A = 25°C, V_{CC} = GND = 0V)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
CIN	Input Capacitance			10	pF	fc = 1MHz
C _{I/O}	I/O Capacitance			20	pF	Unmeasured pins returned to GND

A.C. CHARACTERISTICS ($T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$, $V_{CC} = +5\text{V} \pm 5\%$, GND = 0V)

Bus Parameters

READ [2]

Symbol	Parameter	Min.	Max.	Unit
t _{AR}	Address Stable Before READ	0		ns
t _{RA}	Address Stable After READ	0		ns
t _{RR}	READ Pulse Width	300		ns
t _{RD}	Data Valid From READ ^[2]		250	ns
t _{DF}	Data Float After READ	10	150	ns
^t RV	Time Between READs and/or WRITEs	850		ns

^{1.} The I8255A will operate as an 8255A-5 from 0°C to 70°C.

A.C. CHARACTERISTICS (Continued)

WRITE

Symbol	Parameter	Min.	Max.	Unit
t _{AW}	Address Stable Before WRITE	0		ns
t _{WA}	Address Stable After WRITE	20		ns
tww	WRITE Pulse Width	400		ns
t _{DW}	Data Valid to WRITE (T.E.)	100		ns
twp	Data Valid After WRITE	30		ns

OTHER TIMINGS [3]

Symbol	Parameter	Min.	Max.	Unit
t _{WB}	WR = 1 to Output [2]		350	ns
t _{IR}	Peripheral Data Before RD	0		ns
t _{HR}	Peripheral Data After RD	0		ns
t _A K	ACK Pulse Width	300		. ns
t _{ST}	STB Pulse Width	500		ns
t _{PS}	Per. Data Before T.E. of STB	0		ns
t _{PH}	Per. Data After T.E. of STB	180		ns
t _{AD}	ACK = 0 to Output [2]		300	ns
t _{KD}	ACK = 1 to Output Float	20	250	ns
twoB	WR = 1 to OBF = 0 ^[2]		650	ns
t _{ACB}	ACK = 0 to OBJ = 1[2]		350	ns
t _{SIB}	STB = 0 to IBF = 1 [2]		300	ns
t _{RIB}	RD = 1 to IBF = 0 [2]		300	ns
t _{RIT}	RD = 0 to INTR = 0 ^[2]		400	ns
t _{SIT}	STB = 1 to INTR = 1 [2]		300	ns
t _{AIT}	ACK = 1 to INTR = 1 [2]		350	ns
t _{WIT}	WR = 0 to INTR = 0 [2]		850	ns

NOTES:

- 1. Available on any 8 pins from Port B and C.
- 2. Test Conditions: 8255A: C_L = 100pF; 8255A-5: C_L = 150pF.
 Period of Reset pulse must be at least 50µs during or after power on. Subsequent Reset pulse can be 500 ns min.
- 3. $C_L = 100 pF$.

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

9-78 AFN-00863A

WAVEFORMS

9-79 AFN-00863A

WAVEFORMS (Continued)

WAVEFORMS (Continued)

