BRIQUETTE FOR METALLURGY AND METHOD OF MANUFACTURE OF SUCH BRIQUETTE

Publication number: RU2197544

Publication date: 2003-01-27
Inventor: OI FNNIKO

OLENNIKOV V G; KASHKOVSKIJ JU V; MURAT S G;

SITNOV A G; ISKALIN V I; KOTENEV V I

Applicant: OOO MAS; HGEO TNTTS; OOO EHKOMASHGEO:

OLENNIKOV VLADIMIR GRIGOR EVIC; MURAT SERGEJ GAVRILOVICH; KOTENEV VASILIJ IL ICH

Classification:

- international: C22B1/248; C22B1/14; (IPC1-7): C22B1/248

- European:

Application number: RU20010109462 20010411 Priority number(s): RU20010109462 20010411

Report a data error here

Abstract of RU2197544

FIELD: metallurgy; preparation of materials for melting iron and making steel; production of molten iron and steel for production of various castings. SUBSTANCE: proposed briquette includes screenings of iron shot, 92.0-96.95; water glass, 3.0-7.5; sodium fluosilicate, 0.05-0.5; water, above 100 % in the amount of 0.4-1.1 of mass of water glass. Said components of charge are mixed and molded in flexible mold; before drying, sump is laid on mold and mold is turned through 180 deg.; drying is performed at temperature of 150 to 250 C continued for 2 to 3.5 hours. Used as binder is aqueous solution of water sodium glass at modulus of 2.3-3.0 and density of 1.1-.5 g/cu cm. Use of small articles in briquetted form reduces considerably their loss in storage and use enhancing their activity. EFFECT: enhanced efficiency. 3 cl, 5 tbl

Data supplied from the esp@cenet database - Worldwide

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 197 544 ⁽¹³⁾ C2

(51) MITK⁷ C 22 B 1/248

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12)	ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕ	ДЕРАL	ΙИИ

A KIND 13400K SINDACINI V	<u>ПАТЕНТУ РОССИИСКОИ ФЕДЕРАЦИ</u>
(21), (22) Заявка: 2001109462/02, 11,04,2001	(71) Заявитель:
(24) Дата начала действия патента: 11.04.2001	Общество с ограниченной ответственностью

маштво тата, ООО "ЭкоМашТео", Оленников Владимир Григорьваич, (46) Дата лубликации: 27.01.2003 Мурат Сергей Гаврилович, (56) Ссылки: RU 2142018 C1, 27.11.1999. RU

Котенев Василий Ильич 2055919 C1, 10.03.1996. DE 2919272, 27.11.1980. US 4308055, 29.12.1981. (72) Изобретатель: Оленников В.Г., Кашковский Ю.В., Мурат С.Г., Ситнов

(98) Адрес для переписки: 300027, г.Тула, ул.Металлургов, 80-А, кз.42, А.Г., Искалин В.И., Котенев В.И. А.Г.Ситнову (73) Латентообладатель:

Общество с ограниченной ответственностью "Машгео ТНТЦ", Оленников Владимир Григорьевич, Мурат Сергей Гаврилович, Котонев Василий Ильич, ООО "ЭкоМашГео"

(54) БРИКЕТ ДЛЯ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА И СПОСОБ ИЗГОТОВЛЕНИЯ БРИКЕТОВ

(57)
Изобретение относится к области
к подготов: изооретение относится к соодасти метаплургии, конкретно к подготовхе материалоз для выплавки чугуна и стали, и может быть использовано при получении жидкого чугуна и жидкой стали для

изготовления отлизск различного назначения. Сущность изобретения; брикет для металлургического производства содержит отсев чугунной дроби 92,096,95, жидкое стекло 3,0-7,5, кремнефтористый натрий 0,05-0,5, вода сверх 100% в ксличество от 0,4 - 1,1 от массы жидкого стекла. Перечисленные компоненты

смешивают, прессуют в упругой форме, на

форму перед сушкой укладызают лоддон и переворачивают на 180°, а сушку осуществляют при температуре 150-250 °C в твчение 2-3,5 ч. В качестве связующего используют водный раствор жидкого натриевого стекта с модулем 2,3-3,0 и плотностью 1,1-1,5 г/см³. Применение мелких материалов в брикетированном виде в материалов в ориметированном виде в значительной степени снижает их потери при хранении и использовании, придвет материалам ряд свойств, присущих только брикетированному сырью - повышенную активность, оптимальное удоосние в процессе успользования 2 с. и 1 з д м.ты. 5 тебя использования. 2 с. и 1 з.п.ф-лы, 5 табл.

S

ပ

4

S

ത

~1

ග

Ç

Изобретение относится к черной металлургии, конкретно к подготовке шихтовых материалов для выплавки стали, и может быть использовано при получении жидкого чугуна для стливок специального назначения

В настоящее время имеющийся отход производства - отсев чугунной дроби загружается на колошних доменной печи, без предварительного скускования.

Рассев отсева чугунной дроби сравним с тонкоизмельченным железорудным концентратом и, естественно, эт нецелесообразно с точки зрения ведения технологии доменного процесса из-за явного ухудшения газопроницаемости столба шихты.

Известны способы утилизации мелкодисперсных материалов (отходов производства) металлургического брикетирования методом динамического горячего прессования, брикетирования руд с стружкой электрохимической электрохимической коррозии, Наи близким к изобретению является Наиболее брикетирование железорудного концентрата, чугунной стружки, карбюризатора углеродистое связующее (патент РФ 2142018 прототип). На 300-тонном гидропрессе получают брикеты вышеназванного состава. Плотность брикетов с размерами: диаметром 105 им и высотой 60-70 им, составляет не менее 5,0 кг/дм³. Дальнейшее использование их в шихте сталеплавильной печи показало увеличение количества шлака и увеличение содержания в нем окислов железа. Брикеты удовлетворяли основным требованиям сталеплавильного производства, однаже количество шлака и повышенное содержание окислов железа в нем отрицательно влияет на ход процесса.

Технической задачей является снижение расходов твердого чугуна в металлошихте сталеллавильных лечей. утилизация отходов от производства литой чугунной дроби, снижение себестоимости жидкого чугуна и жидкой стали за счет использования более дешевого сырыя.

Технический результат достигается тем, что при выплавке стали применяется брикет металлургического производства, содержащий измельченный связующее, который дополнительно содержит кремнефтористый натрий, в качестве измельченного чугуна отсев чугунной дроби, а связующего - водный раствор жидкого стекла при следующем соотношении мас.%:

Отсев чугунной дроби - 92,0-96,95 Жидкое стекло - 3,0-7,5

Кремнефтористый натрий - 0,05-0,5 Вода - Сверх 100% в количестве 0,4-1,1 от массы жидкого стекла

Применение заявляемого брикета расширяет металлургические возможности, так как применяется материал, который лежал в отходах. Зерхние и нижние пределы компонентов выбраны экспериментально. Использование отсева чугунной дроби в виде брикета не ухудшило качество выплавляемой стали, позволило применить новый компонент шихты. Снижение расхода ОСНОВНЫХ дорогостоящих компонентов металлургической шихты за счет утилизации и возврата в производственный цикл мелкодисперсных отходов, делающих их по элементному составу не менее ценными, чем основное сырье, является актуальной проблемой всех металлургических заводов.

В данном случае, полученные указанным способом брикеты из отсева чугунной дроби выдерживают нагрузку до 250 кг/см² в холодном состоянии, что соответствует перегрузочным и внутрипечным нагрузкам в агрегатах, фракционный металпургических первоначальный материала сравним тонкоизмельченными железорудными концентратами. Фракционный состав отсева чугунной дроби приведен в табл. 1.

Химический состав отсева чугунной досби приведен в табл, 2.

Получены брикеты со следующим химическим составом (см. табл. 3).

Брижеты проходили лабораторные испытания методом плавки в печи Таммана, лабораторные на установке по определению размягчаемости железорудных материалов на предмет горячей прочности с нагрузкой и без нее, которые показали, что использование этих изделий в шихте индукционных печей. дуговых печей, вагранках - целесообразно, все технологические требования к исходным шихтовым материалам соблюдаются.

Составы предлагаемого брикета результаты производства стали использованием брикетов представлены в

Результаты испытаний показали: применение брикетов заявляемого состава повесляет сократить продолжительность плавок в среднем на 10-15 мин и снизить удельный расход электроэнергии на 35 кВт "ч/т (по прототилу продолжительность плавки 95 мин, удельный электроэнергии 425 кВт_•ч/т). расход

Известен способ брикетирования стальной окалины, с предварительным ее дроблением, посредством комплексного связующего, состоящего их кварцевого песка, соды, известняка, попевого шпата и гликозема с последующим обжигом в печи в течение 0,5-1,0 ч при температуре 700-1000°C (Патент РФ 2055919 - прототил).

Недостатком данного способа является сложный процесс подготовки связующего, включающей в себя дозировку, совместный помол и их высохотемпературную варку при 1450-1500°C, а также энергоемкий процесс высокотемпературного обжига самого брикета при_температуре 1000°С.

Технической задачей . изобретения является снижение расходов твердого чугуна MIXIOSKS ngapor 14 знергозатрат.

Гехнический результат достигается тем, что способ изготовления брикетов включает смешивание шихты из железосодержащего материала и связующего, ее прессование в форме и сушку, при этом шихта дополнительно содержит кремнефтористый натрий, в качестве железосодержащего материала - отсев чугунной дроби и жидков стекло в качества связующего и шихту прессуют в упругой форме, на форму перед сушкой укладывают поддон и переворачивают ее вместе с поддоном на 180°, а сушку осуществляют при температуре 150-250°C в течение 2-3,5 ч.

В качестве связующего используют водный раствор жидкого натриевого стекла с

SDOCID: <BU 2197544C2 1 >

Таблица 1

Размер, мм	+2.5	+1.6	+1	+0,63	+0,4	+0,34	+0,18	+0,172	+0,1	-0,1
Кол-во, % Масс	0,15	0,05	0,6	16,3	28,5	8,4	27,25	2,45	7,9	7,95

Химический состав отсева чугунной дроби.

Таблица 2

Элемент	Fe	Fe мет.	Mn	P	S	Ti	Si	С	AĊ
Кол-во, % масс	92,0	88,0	0,61	0,044	0,073	0,013	3,37	3,85	0,04

Химический состав брикетов

Таблица 3

Компонен- ты	С	S	F	Sio2	P	Cao	Al2 ₀ 3	Mn	Mg O	Ti02
Кол-во, % масс	3,07	0,106	86,39	6,95	0,074	2,03	0,54	0,4	0,3	0,14

Таблица 4

Состав	Комвот	енты бракс	Сверх	Удельный		
	Отсев чугунной дроби	Жидкое стекло	ІСремнефтористый натрий	100% в кол-ве 0,4-1,1 от массы ж.ст.	расход эл.энергин, квт. ч/т	
1	92,0	7,5	0,5	1,1	415	
2	96,95	3,0	0,05	0,4	420	
3	94,0	5,6	0,4	0,8	390	
4	95,0	4,7	0,3	0,6	400	
5	93,0	6,75.	0,25	0,9	395	

Химический состав отливок

Таблица 5

Ком- понен- ты	С	S	P	Si	Mn	V	Cr	Fe
Кол- во % масс	2,74	0,074	0,099	2,31	0,23	0,017	0,21	94,32

C