Paper: AGI from the perspectives of categorical logic and algebraic geometry

YKY

August 6, 2024

Contents

- How does "No Free Lunch" guide us to accelerate AGI?
 - The hypothesis space
 - A motivating example of mapping spaces
 - Dumb animals and dumb knowledge
- 2 Basics of categorical logic
- 3 Fibrations in particular

Part I

How does "No Free Lunch" guide us to accelerate AGI?

The hypothesis space

In deep learning, our hypothesis space = neural networks = parameter space = weight space = \mathbb{R}^n or $[0,1]^n$. It looks like this:

Imagine a loss function as sitting above this space; We seek to minimize it by gradient descent.

The hypothesis space has plenty of "dumb structures"

■ Nature has produced more dumb animals than intelligent ones

Part II

Basics of categorical logic

Curry-Howard isomorphism

• "Floating" regions and points as models

Part III

Fibrations in particular

Definition of a **fiber bundle**

A fiber bundle is a tuple $\xi = (E, p, B, F)$ such that:

- (i) E =total space
- (ii) B =base space
- (iii) F = a topological space called the **fiber** of ξ
- (iv) \downarrow_p^E is a continuous surjective map, called the **projection**
 - (v) for each point $b \in B$, the inverse image $p^{-1}(b) = F_b$, called the fiber over b, is homeomorphic to F
- (vi) B has an opening covering $\{U_a\}_{a\in A}$ such that for each $a\in A$, there is a homeomorphism: $\psi_a: U_a\times F\to p^{-1}(U_a)$. If F is a discrete space, then the structure $F\hookrightarrow E\stackrel{p}{\to} B$ is called a

If F is a discrete space, then the structure $F \hookrightarrow E \xrightarrow{P} B$ is called a **covering** of B.

The condition (vi) is just a re-phrase of (v) in the form of open sets, similar to the "gluing" together of charts in differential manifolds. So the essential condition is (v).

The "boring" cross product

is equivalent to $A \times A \times A$.

References

Thanks for watching 😌