

Training-Inference Mismatch In LLM KD

Alephia 25/6/25

BACKGROUND

模型 q_{θ} 依据前缀 w^{t-1} 生成文本的时候,loss可以表示为

$$l(q_{ heta}, w^{t-1}; o) = \mathop{\mathbb{E}}_{w_t \sim oldsymbol{o}(\cdot|w^{t-1})} \log rac{o(w_t|w^{t-1})}{q_{ heta}(w_t|w^{t-1})}$$

由**目标分布o**采样下一个 $token w_t$,再进行KLD对齐。

可以展开得到

$$L(q_{ heta};o)pprox \sum_{t=1}^{T} \mathop{\mathbb{E}}_{w^{t-1}\sim d_{oldsymbol{o}}^{t-1},\; w_{t}\sim o(\cdot|w^{t-1})}\lograc{o(w_{t}|w^{t-1})}{q_{ heta}(w_{t}|w^{t-1})}$$

ר ז

TRAIN-INFERENCE MISMATCH

由于模型能力不足,生成token的分布与目标分布存在差距,进而模型训练和推理时面对的前缀是不同的

- Distribution Mismatch (Exposure Bias)
- Error Accumulation

Distribution Mismatch会导致Error Accumulation,且Accumulation行为无法被已有的loss捕捉

Arora, K., Asri, L.E., Bahuleyan, H., & Cheung, J.C. Why Exposure Bias Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation. In ACL, 22

模型与目标的总偏差表示为

记生成第t个token的期望误差为

$$\epsilon_t = \mathop{\mathbb{E}}_{w_0^{t-1} \sim d_o^t, \ w_t \sim o(\cdot | w^{t-1})} \log rac{o(w_t | w^{t-1})}{q_{ heta}(w_t | w^{t-1})}$$

Arora, K., Asri, L.E., Bahuleyan, H., & Cheung, J.C. Why Exposure Bias Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation. In ACL, 22

$$l\epsilon_{\leq l} \leq L_{\leq l}(q_{ heta}) \leq l^2\epsilon_{\leq l}, \;\; \epsilon_{\leq l} = rac{1}{l}\sum_{t=1}^{l}\epsilon_t$$

$$AccErr_{\leq}(l) = rac{L_{\leq l}(q_{ heta})}{\epsilon_{\leq l}}$$

如果Distribution Mismatch确实会导致误差累积的话,应当观察到 AccErr值是随着序列长度增加而超线性增长的。

$$ExAccErr_{\leq}(l) = rac{L_{\leq l}(q_{ heta}) - l\epsilon_{\leq l}}{l\epsilon_{\leq l}} \cdot 100$$

如果一个模型能够做到每一个的损失不会累积的话,<mark>那么这个值应当</mark> 一直在0左右,否则,就会呈不断上升的趋势。

$$egin{aligned} \epsilon &= rac{1}{T} \sum_{t=1}^{T} \sum_{w_0^{t-1} \sim d_o^t} \mathbb{E} \ w_t^{t-1} \sim d_o^t w_t \sim o(\cdot | w_0^{t-1}) & rac{o(w_t | w_0^{t-1})}{q_ heta(w_t | w_0^{t-1})} \ &pprox -rac{1}{|D|} \sum_{(w_0^{i-1}, w_i) \in D} \log q_ heta(w_i | w_0^{i-1}) + c \ &= H(q_ heta; D) + c' \end{aligned}$$

这里 $H(q_{ heta};D)$ 代表 \log Perplexity

不管是CE Loss,还是Perplexity,都无法监督error的累加过程

THE UTILIZATION OF SGO

引入模型自己推理生成的内容用于训练(Student Generated Output)

$$L_{SGO}(q_{ heta};o) = \sum_{t=1}^{T} \mathop{\mathbb{E}}_{w^{t-1} \sim d_{oldsymbol{q_{ heta}}}^{t-1}, \ w_{t} \sim o(\cdot|w^{t-1})} \log rac{o(w_{t}|w^{t-1})}{q_{ heta}(w_{t}|w^{t-1})}$$

每次有 λ 的概率使用SGO, $1 - \lambda$ 的概率使用训练集样本

Agarwal, R., Vieillard, N., Zhou, Y., Stańczyk, P., Ramos, S., Geist, M., & Bachem, O. On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. In ICLR, 24

THE UTILIZATION OF SGO

- 使用SGO时,Teacher也面临Train-Inference Mismatch,会带来噪声
 - 更加保守地使用SGO
- 每次都要学生重新生成SGO,利用率低,计算开销大
 - on-policy -> off-policy

Ko, J., Kim, S., Chen, T., & Yun, S. DistiLLM: Towards Streamlined Distillation for Large Language Models. In ICML, 24

THE UTILIZATION OF SGO

Figure 10. Plot of validation loss values (y-axis) across each validation iteration (x-axis). Although validation loss tends to increase as training progresses, employing SGO effectively prevents this increase. This is the core philosophy of our adaptive SGO scheduler (orange line).

Loss↑, ROUGE_L↑

"Our observations indicate that training on a diverse range of SGOs, rather than solely on a fixed dataset, mitigates training-inference mismatch and consequently lowers validation loss"

过拟合? train-inference mismatch? 指标与loss的不匹配?

INTRODUCE SAMPLE-WISE WEIGHT

P为真实分布,Q为合成数据分布, q_{θ} 为模型预测分布

$$E_Q[-\log q_{ heta}(y|x; heta)]$$

$$E_Q\left[-rac{P(y|x)}{Q(y|x)}{
m log}\,q_ heta(y|x; heta)
ight] = E_P[-\log q_ heta(y|x; heta)]$$

P(y|x)大,数据点与真实分布高度相关且明确,有参考意义。 Q(y|x)越小,数据点在分布Q中所包含的信息越多。

Kuo, H., Liao, Y., Chao, Y., Ma, W., & Cheng, P. Not All LLM-Generated Data Are Equal: Rethinking Data Weighting in Text Classification. In ICLR, 25

INTRODUCE SAMPLE-WISE WEIGHT

加权策略更新为

$$E_Q\left[-rac{q_{ heta}(y|x; heta,D_{P'})}{q_{ heta}(y|x; heta)} \log q_{ heta}(y|x; heta)
ight]$$

$q_{\theta}(y|x)$ 越小,模型在这个数据点上学的越差,越应注重

Dataset	Method	Financial		Tweet Irony		MRPC	
		Acc	F1	Acc	F1	Acc	F1
	GPT-3.5 few-shot	79.46	81.6	63.39	69.39	69.28	71.75
Small real world	CE-Loss (quality checker)	78.05	75.26	62.5	62.38	73.16	68.69
	Focal-Loss	78.47	76.2	67.73	62.32	73.10	66.64
	DIMP-Loss (Ours)	79.87	77.05	69.01	67.05	74.84	66.80
GPT-3.5 generated	CE-Loss	77.39	74.01	76.91	76.8	72	65.47
	Focal-Loss	79.29	75.32	74.87	74.82	72.17	62.77
	Hu et al.'s	71.7	61.93	71.42	70.18	67.13	50.08
	SunGen	80.45	76.87	78.96	75.06	71.65	66.08
	IMP-Loss (Ours)	82.09	79.40	81.89	81.71	75.83	70.52
	DIMP-Loss (Ours)	82.67	79.53	78.44	78.14	75.83	70.04
	 w/o diversity checker 	81.35	77.94	77.68	77.62	74.72	69.34
Large real world	CE-Loss	84.74	82.69	68.75	68.41	80.92	77.73
	Focal-Loss	84.98	81.98	67.6	67.19	80.35	76.28
	Hu et al.'s	80.19	76.58	60.33	37.63	71.36	67.78
	SunGen	84.65	82.51	63.9	62.66	80.81	78.78
	IMP-Loss (Ours)	85.3	83.27	70.15	70.08	81.33	78.3
	DIMP-Loss (Ours)	85.4	82.79	69	68.78	82.84	80.49

THINKINGS

Add weight to SGO?

$$L_{WSGO}(q_{ heta};o) = \sum_{t=1}^{T} \underset{w^{t-1} \sim d_{o}^{t-1}}{\mathbb{E}} \lambda(t-1,w^{t-1}) D_{KL}(o(\cdot|w^{t-1})||q_{ heta}(\cdot|w^{t-1}))$$

 $oxed{\mathbb{S}}$ When using SGO, add adaptive weight for L_{Base} w.r.t L_{KD} ?

$$L = L_{KD} + \phi_{epoch} L_{Base}$$

- Deeper research in teacher's response to SGO?
- How to solve error accumulation?

LLM KD WITH DIFFERENT VOCABULARIES

教师 $(m \times D)$ 向学生 $(n \times d)$ 对齐:

$$egin{aligned} Q &= P^q([e^s_{1:n};e^s_{2:n+1}]; heta_P^q) \in R^{n imes 2D} \ &K = [e^t_{1:m};e^t_{2:m+1}] \in R^{m imes 2D} \end{aligned}$$

$$V = P^{v}(e^t_{2:m+1} + h^t_{1:m}; heta^v_P) \in R^{m imes d}$$

Zhang, S., Zhang, X., Sun, Z., Chen, Y., & Xu, J. Dual-Space Knowledge Distillation for Large Language Models. In EMNLP, 24

LLM KD WITH DIFFERENT VOCABULARIES

教师变换后的emd可以表示为

$$h_{1:n}^{t
ightarrow s} = softmax(rac{QK^T}{\sqrt{2D}}V) \in R^{n imes d}$$

最后过学生的映射头得到概率分布

$$p^t = softmax(h_{1:n}^{t
ightarrow s} W_S)$$

()

THANKS!