Reply to Office Action of August 18, 2009

AMENDMENTS TO THE CLAIMS

Docket No.: 21517/0205369-US0

1. (Currently Amended): A method of controlling the speed of an electric motor powered by a triac to maintain a preset speed, by varying the electrical angle at which the triac is triggered, comprising characterized in that it comprises the steps of:

producing a signal related to the first derivative of the motor speed;

producing a signal related to the difference in value between the motor current speed and the preset speed (Error P); and

producing a control signal based on said first derivative related signal and said Error P related signal to adjust the triac electrical triggering angle to operate the motor at the preset speed, wherein:

the step of producing said first derivative related signal further comprises the steps of

measuring the motor speed at different times and calculating the first derivative

of the measured motor speed,

determining a yield value (Yield D) of the value of the first derivative from a numerical range of values, and

producing a band (Band D) value as the product of the value of said calculated first derivative and said Yield D value;

the step of producing said signal related to said Error P value further comprises the steps of:

determining a yield value (Yield P) of the Error P value from a numerical range
of values, and

producing a band (Band P) value as the product of the value of said Error P
signal and said Yield P value; and

the step of producing said control signal further comprises the steps of:

producing a signal of the sum of said Band D and said Band P values (Total Error), and

converting said Total Error signal into a signal which corresponds to the error of the triac electrical triggering angle needed to achieve the motor preset speed.

Application No. 10/598,526 Docket No.: 21517/0205369-US0 Amendment dated February 16, 2010

Reply to Office Action of August 18, 2009

2. (Canceled).

3. (Canceled).

4. (Canceled).

5. (Canceled).

6. (Currently Amended): The method as claimed in claim 1 [[2]], characterized in that wherein the step of determining said Yield D value includes having zero, median and high values.

- 7. (Currently Amended): The method as claimed in claim <u>6</u> [[4]], characterized in that, wherein in the step of determining said Yield D value which includes having zero, median and high values, is carried out the step of determining said Yield P value <u>is carried out</u> only if said Yield D value is of median value.
- 8. (Currently Amended): The method as claimed in claim 7, characterized in that wherein the step of determining said Yield P value includes having values of low and high corresponding to low and high values of Error P.
- 9. (Currently Amended): The method as claimed in claim 8, eharacterized in that wherein if the Yield P value in neither of low or high and the first derivative of the motor speed is of a low value, a Yield P of a low value is produced if either of the conditions of Error P being of positive sign and the first derivative of the motor speed is of negative value, or the Error P being of positive sign and the first derivative is of positive value.
- 10. (Currently Amended): The method as claimed in claim 8, characterized in that wherein if the Yield P value is neither low or high and the first derivative of the motor speed is of a low value,

Application No. 10/598,526 Docket No.: 21517/0205369-US0 Amendment dated February 16, 2010

Reply to Office Action of August 18, 2009

no Yield P value is produced if both of the conditions exist that the Error P value is of positive sign

and the first derivative of the motor speed is of negative value and Error P is of positive sign and the

first derivative of the motor speed is of positive value.

11. (Currently Amended): The method as claimed in claim 1 [[5]], characterized in that it

further comprising comprises the step of limiting the Total Error signal to limit excessive changes of

the triac electrical triggering angle.

12. (Currently Amended): The method as claimed in claim 1 [[5]], characterized in that it

further comprising comprises the step of computing the final triac electrical triggering angle by

adding the triac electrical triggering angle of said Total Error to the electric triggering angle that

produces the current motor speed.

13. (Currently Amended): The method as claimed in claim 12, characterized in that it further

comprising comprises the step of limiting the final triac electrical triggering angle to avoid loss of

control.

4

4738645.1 0205369-US0