МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра <u>«Прикладная информатика»</u> <u>Форма обучения: очная</u>

ПАСПОРТ ПРОЕКТА «АНАЛИЗ ДАННЫХ И ЭКОНОМЕТРИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ»

Тема: «Построение эконометрической модели и исследование проблемы выявления и коррекции гетероскедастичности с помощью тестов Вайта и Голдфельда-Квандта (включая тестирование случайных отклонений модели, сравнительный анализ результатов указанных тестов, коррекцию с помощью ВМНК или других методов)»

Группа	<u>191-363</u>	
Студенты		А.Н. Игнатьев
		<u>Д.С. Кондратьев</u>
		Е.В. Липина
		Н.С. Милин
		А.Д. Перехожих
Преподаватель,		
к.п.н., доцент		<u>Н.И. Царькова</u>
Оценка работы		« <u>_</u> » <u></u> 2021
Лата		

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1 ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ МОДЕЛИ	8
1.1 Гетероскедастичность	8
1.2 Тест Вайта	9
1.3 Тест Голдфельда-Квандта	10
1.4 BMHK	12
2 ПОСТРОЕНИЕ И АНАЛИЗ ЭКОНОМЕТРИЧЕСКОЙ МОДЕЛИ	13
2.1 Построение первой модели	14
ЗАКЛЮЧЕНИЕ	17
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ	26
ПРИЛОЖЕНИЕ 1	27
ПРИЛОЖЕНИЕ 2	18
ПРИЛОЖЕНИЕ 3	21

ВВЕДЕНИЕ

Золото - главный драгоценный металл, признанный таковым по всему миру. Еще издавна золото использовалось многими народами в качестве денег. Золотые монеты — наиболее хорошо сохраняющийся памятник старины. Однако как монопольный денежный товар золотые монеты утвердились только к XIX веку. Вплоть до Первой мировой войны все мировые валюты были основаны на золотом стандарте. Бумажные банкноты в это время выполняли функцию удостоверений о наличии золота. Они свободно обменивались на золото.

Рынок золота в отличие от остальных видов рынка является чрезвычайно нестабильным. Нельзя заранее с точностью прогнозировать будущий скачок его оценок. Ведь это зависит не только от ценовых факторов, но и также от различных других неценовых факторов. Например, при подорожании доллара США на мировом валютном рынке, спрос на золото уменьшается, так как вкладчики и инвесторы переводят свои активы в более доходный актив. И наоборот, когда цена на доллар падает, котировки на золото ползут вверх. В какие-то моменты рынок золота может быть крайне нестабильным. Это зависит от огромного количества факторов, таких как цены различных валют, стоимость некоторых ресурсов и т.д.

Не существует человека, организации или государства, которые устанавливали бы цену на золото. Абсолютно все цены и все котировки зависят от факторов, некоторые из которых перечислены выше.

Помимо официальных и законных мировых и государственных рынков золота, существуют еще и так называемые «черные рынки», которые также оказывают очень сильное влияние на цены и котировки.

Золото служит основой денежной и валютной систем. В результате официальной демонетизации золото ушло из обращения в сокровище, а операции с ним сосредоточены на особых рынках.

Мировая цена золота определяются на двух важных рынках: рынок золота в Лондоне и нью-йоркская биржа СОМЕХ. При этом берётся спотовая

цена золота в Лондоне и стоимость фьючерсов в Нью-Йорке. Комбинацией этих двух цен и становится так называемая «мировая цена золота».

Цена на золото, учитывая его особую функцию, с начала существования золотого стандарта и до 1970-х годов устанавливалась денежными властями государства, как правило, центральным эмиссионным банком.

Мировая цена золота ежедневно устанавливается по результатам золотого фиксинга (утренний фиксинг — AM Fixing; вечерний фиксинг — PM Fixing).

В 1971 году президент США Ричард Никсон отменил привязку доллара к золоту, хотя официально этот шаг был подтверждён лишь в 1976 году, когда была создана Ямайская валютная система плавающих курсов. Это означало, что доллар больше не был обеспечен ничем, кроме долговых обязательств США. После этого золото превратилось в особый инвестиционный товар. Инвесторы на протяжении многих лет доверяли исключительно золоту.

Сегодня золото продолжает оставаться средством выравнивания платежного баланса на международном рынке (причем в виде слитков определенного веса).

Динамика цен на золото является важнейшим экономическим индикатором, позволяя оценить склонность инвесторов к риску. Зачастую можно наблюдать, что цена на золото и фондовые индексы движутся в противофазе, так как в периоды неустойчивой экономической ситуации инвесторы предпочитают консервативные активы, защищённые от полного обесценивания. И наоборот, когда ожидания роста экономики становятся оптимистичнее, аппетиты к повышенной доходности растут, заставляя котировки жёлтого металла снижаться.

С начала 2016 года цены на золото показывают уверенный рост. Январская цена \$1095,655 повысилась до \$1241,452 в апреле. Столь быстрыми темпами золото не дорожало с ноября 2008 года. Рост связывают с ожиданиями новых стимулов со стороны ведущих ЦБ развитых стран.

В июле 2019 года мировые цены на золото превысили \$1414,611 за унцию, впервые с сентября 2013 года. Цены на золото 13 августа 2019 года достигли шестилетнего максимума на фоне мирового экономического спада, за последние три месяца его стоимость выросла на 20 %.

6 марта 2020 года цены на мировом рынке на золото достигло максимума – 1690 долларов за унцию. 8 марта, после срыва сделки ОПЕК+ по понижению добычи нефти и последовавшим обвалом цен на нефть, золото выросло до рекордных 1702 долларов за унцию.

В июле 2020, в связи с пандемией коронавируса, цена на золото обновила рекордные показатели с 2011 года: стоимость августовского фьючерса поднялась до \$1846,51 за тройскую унцию, что является максимальным показателем с 21 сентября 2011 года.

27 июля 2020 года стоимость золота поставила новый рекорд - \$1943,9275 за тройскую унцию, побив предыдущий рекорд \$1921,18 в сентябре 2011 года. Инвесторы продолжают вкладывать средства в золото на фоне пандемии коронавируса.

В связи с этим, тема данного проекта как никогда актуальна.

В данном проекте основной задачей является проведение анализа на основании выбранных данных. Цель эконометрического анализа – разработка эконометрических моделей, эконометрического позволяющих прогнозировать тенденции развития экономических и бизнеспроцессов для получения наиболее эффективных и обоснованных решений. Эконометрические модели помогают выявить какие-либо особенности экономического объекта. Ha функционирования ИХ основе предсказывать его будущее поведение при изменении каких-либо параметров. В анализе все взаимосвязи переменных оценены количественно. Это позволяет получить более качественный и надежный прогноз, который не получишь, опираясь лишь на интуицию. Для любого субъекта возможность прогнозирования означает получение лучших результатов.

В качестве данных для построения модели нами были выбраны средние цена на золото в долларах США, уровень ВВП США, уровень мировой инфляции и цены на нефть за баррель. Данные являются поквартальными за период с 2000-го по 2019 год включительно. В качестве зависимой переменной выступает цена на золото в долларах США за одну унцию, а независимых — другие валюты мира, ВВП США, уровень мировой инфляции, и цены нефть. Данные были взяты с официального сайта Мирового банка. Все данные были сформированы в виде таблицы для работы с ними в программе Microsoft Excel. (ПРИЛОЖЕНИЕ 1)

Цель проекта: исследование зависимости средних цен на золото в долларах США от уровня ВВП США, уровня мировой инфляции, цен на нефть в баррелях и от других валют мира.

Объектом исследования является набор статистических данных средних цен на золото в долларах США, уровень ВВП США, уровень мировой инфляции и цены на нефть за баррель.

Предметом исследования является эконометрическая модель.

Задачи:

- 1) сбор статистических данных по месяцам о средней цене на золото, в долларах, а также в различных других валютах; ВВП США; об уровне мировой инфляции и ценах на нефть.
- 2) формирование данных в виде таблицы для их анализа в программе Microsoft Excel;
 - 3) построение эконометрической модели исследуемой зависимости;
- 4) исследование проблемы выявления и коррекции гетероскедастичности в эконометрической модели исследуемой зависимости с помощью теста Вайта;
- 5) исследование проблемы выявления и коррекции гетероскедастичности в эконометрической модели исследуемой зависимости с помощью теста Голдфельда-Квандта;
 - б) анализ результатов указанных тестов;

- 7) построение прогноза цен на золото на 2020 год;
- 8) сравнение полученных значений цен на золото с реальными значениями.

ГЛАВА 1. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ МОДЕЛИ

Практически во всех науках построение и использование моделей является мощным орудием познания. Активное использование моделей в современных исследованиях обусловлено, прежде всего, высокой сложностью изучаемых явлений. Реальные объекты и процессы бывают столь многогранны и сложны, что оптимальным способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой.

Рассматривая модель в качестве объекта научного познания, исследователи пытались выделить основные признаки, которые отличают ее от других подобных методов. Множество определений понятию «модель» можно объяснить тем, что определение модели также модель, а разным целям требуется сопоставить разные аспекты моделей, поэтому различие в определении моделей неизбежно. Необычайная общность понятия модели, тесная связь со свойствами отражения в природе ведут к тому, что достаточно точное определение не может быть простым и включает весьма общие категории.

Наиболее точное и функциональное определение модели даёт В.А. Штофф в своей книге «Моделирование и философия». Он понимает под моделью такую мысленно представляемую или материально реализованную систему, которая, отображая или воспроизводя объект исследования, способна замещать его так, что её изучение даёт нам новую информацию об этом объекте. В данном определении акцентируется внимание на получении новой информации об изучаемом объекте в процессе моделирования, исходя из чего можно сделать вывод, что именно информативность и функциональность (т.е. возможность использования для получения информации) являются критерием качества построенной модели.

1.1 Гетероскедастичность

Если остатки имеют постоянную дисперсию, они называются гомоскедастичными, но если они непостоянны, то гетероскедастичными.

Гетероскедастичность приводит к тому, что коэффициенты регрессии больше не представляют собой лучшие оценки или не являются оценками с минимальной дисперсией, следовательно, они больше не являются наиболее эффективными коэффициентами.

Воздействие гетероскедастичности на оценку интервала прогнозирования и проверку гипотезы заключается в том, что хотя коэффициенты не смещены, дисперсии и, следовательно, стандартные ошибки этих коэффициентов будут смещены. Если смещение отрицательно, то оценочные стандартные ошибки будут меньше, чем они должны быть, а критерий проверки будет больше, чем в реальности. Таким образом, мы можем сделать вывод, что коэффициент значим, когда он таковым не является. И наоборот, если смещение положительно, то оценочные ошибки будут больше, чем они должны быть, а критерии проверки — меньше. Значит, мы можем принять нулевую гипотезу, в то время как она должна быть отвергнута.

1.2 Тест Вайта

Предполагается, что дисперсии связаны с объясняющими переменными в виде:

$$\sigma_{\varepsilon_i}^2 = f(X_{i1}, X_{i2}, ..., X_{im}) + \eta_i, \quad i = \overline{1, n}$$

где $f(\cdot)$ — квадратичная функция от аргументов. Т.к. дисперсии неизвестны, то их заменяют оценками квадратов отклонений e_i^2 .

- 1. Строится уравнение регрессии: $\hat{y}_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3}$ и вычисляются остатки.
- 2. Оценивают вспомогательное уравнение регрессии:

$$e_i^2 = \alpha_0 + \alpha_1 X_{i1} + \alpha_2 X_{i2} + \alpha_3 X_{i3} + \alpha_4 X_{i1}^2 + \alpha_5 X_{i2}^2 + \alpha_6 X_{i3}^2 + \alpha_7 X_{i1} X_{i2} + \alpha_8 X_{i1} X_{i3} + \alpha_9 X_{i2} X_{i3} + \eta_i$$

- 3. Определяют из вспомогательного уравнения тестовую Статистику $U = nR^2$
- 4. Проверяют общую значимость уравнения с помощь критерия χ^2 . Если $U > \chi^2_{\alpha;k}$ то гипотеза гомоскедастичности отвергается. Число степеней свободы k равно числу объясняющих переменных вспомогательного уравнения. В частности, для рассматриваемого случая k = 9. $H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_n^2$,

Тест Уайта является более общим чем тест Голдфельда-Квандта. Неудобство использования теста Уайта: если отвергается нулевая гипотеза о наличии гомоскедастичности, то неясно, что делать дальше.

1.3 Тест Голдфельда-Квандта

Данный тест предназначен для того, чтобы проверить гипотезу об отсутствии гетероскедастичности случайных возмущений в схеме Гаусса-Маркова.

Задача: проверить гипотезу об отсутствии гетероскедастичности в полученной модели.

В основе теста лежат два предположения:

- 1. Случайные возмущения подчиняются нормальному закону распределения.
- 2. Стандартные ошибки случайных возмущений σ(ut) пропорциональны значениям регрессора xt.

Тест Голдфельда-Квандта состоит в следующем:

- 1. Все наблюдений упорядочиваются по величине.
- 2. Вся упорядоченная выборка после этого разбивается на три подвыборки размерностей k, n-2k, k соответственно.
- 3. Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для третьей подвыборки (последних наблюдений). Для парной регрессии Голдфелд и Квандт предлагают следующие пропорции: n=30, k=11; n=60, r=22

Если предположение о пропорциональности дисперсий отклонений значениям верно, то дисперсия регрессии по первой подвыборке

(рассчитываемая как $S_1 = \sum_{i=1}^k e_i^2$) будет существенно меньше дисперсии

регрессии по третьей подвыборке (рассчитываемой как $S_3 = \sum_{i=n-k+1}^n e_i^2$).

4. Для сравнения соответствующих дисперсий строится соответствующая -статистика:

$$F = \frac{\frac{S_3}{k - m - 1}}{\frac{S_1}{k - m - 1}} = \frac{S_3}{S_1}$$

Здесь k-m-1 - число степеней свободы соответствующих выборочных дисперсий (- количество объясняющих переменных в уравнении регрессии). Построенная -статистика имеет распределение Фишера с числом степеней свободы $v_1 = v_2 = n-m-1$.

 $F_{\mu\nu\delta\sigma} = \frac{S_3}{S_1} > F_{\nu\rho}$ (где $F_{\nu\rho} = F_{\alpha,\nu_1,\nu_2}$, определяется по таблице, - выбранный уровень значимости), то гипотеза об отсутствии гетероскедастичности отклоняется.

Критическое значение - статистики рассчитывается с помощью функции MS Excel FPACПОБР, в панели которой вводятся значения пороговой значимости (например, 0,05) и степени свободы.

Этот же тест может использоваться при предположении об обратной пропорциональности между σ_i и значениями объясняющей переменной. При

этом статистика Фишера имеет вид:
$$F = \frac{S_1}{S_3}$$

Для множественной регрессии данный тест обычно применяется для той объясняющей переменной, которая в наибольшей степени связана с . При этом должно быть больше, чем $^{m+1}$. Если нет уверенности относительно выбора переменной, то данный тест может осуществляться для каждой из объясняющих переменных.

1.4 BMHK

Гетероскедастичность приводит к неэффективности оценок, что может привести к необоснованным выводам по качеству модели. Поэтому при установлении гетероскедастичности необходимо преобразовать модель с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений.

Если дисперсии отклонений известны применяется метод взвешенных наименьших квадратов.

Данный метод применяется при известных для каждого наблюдений значений. В этом случае можно устранить гетероскедастичность, разделив каждое наблюдаемое значение на соответствующее ему значение дисперсии. В этом суть метода взвешенных наименьших квадратов (ВМНК).

- 1. Значения каждой пары наблюдений $[x_i, y_i]$ делят на известную величину. Тем самым наблюдениям с наименьшими дисперсиями придаются наибольшие веса, а с максимальными дисперсиями наименьшие веса. Это увеличивает вероятность получения более точных оценок.
- 2. По методу наименьших квадратов для преобразованных значений ($\frac{1}{\sigma_i}$, $\frac{x_i}{\sigma_i}$, $\frac{y_i}{\sigma_i}$) строится уравнение регрессии без свободного члена с гарантированными качествами оценок.

ГЛАВА 2. ПОСТРОЕНИЕ И АНАЛИЗ ЭКОНОМЕТРИЧЕСКОЙ МОДЕЛИ

Для исследования зависимости цены золота (US / Ozt) в период с 2000 до 2019 гг. были выбраны следующие факторы:

- Kypc AUSTRALIAN DOLLAR/US \$
- Kypc EURO/ US \$
- Kypc NEW ZELAND DOLLAR/US \$
- Kypc UNITED KINGDOM POUND/US \$
- Kypc REAL/US \$
- Kypc CANADIAN DOLLAR/US \$
- Kypc YUAN/US \$
- Kypc HONG KONG DOLLAR/US \$
- Kypc INDIAN RUPEE/US \$
- Kypc WON/US \$
- Kypc MEXICAN PESO/US \$
- Kypc RAND/US \$
- Kypc SINGAPORE DOLLAR/US \$
- Kypc DANISH KRONE/US \$
- Kypc YEN/US \$
- Kypc RINGGIT/US \$
- Kypc NORWEGIAN KRONE/US \$
- Kypc KRONA/US \$
- Kypc SRI LANKAN RUPEE/US \$
- Kypc FRANC/US \$

- Kypc NEW TAIWAN DOLLAR/US \$
- Kypc BAHT/US \$
- ВВП США, Трилл. US \$
- Мировая инфляция, %
- Цена на нефть за баррель, US \$

2.1 Построение модели.

Вычисление коэффициентов уравнения регрессии производилось с помощью метода наименьших квадратов. Была найдена аппроксимирующая функция

$$Y = f(x, a, b, ...) (1)$$

такая, что в точках $x = x_i$ она принимала значения по возможности близкие к табличным. Для отыскания коэффициентов применялся метод наименьших квадратов, который состоит из следующих пунктов:

- 1. Выбор функции.
- 2. Составление системы уравнений, состоящий из частных производных по каждому параметру, приравненных нолю.
- 3. Решение системы уравнений.
- 4. Получение искомой функции путем подставления коэффициентов, найденных в системе.

Выполнив данные инструкции, была получена аппроксимирующая функция.

2.2 Исключение факторов.

После получения коэффициентов, для каждого из них была вычислена t-статистика Стьюдента по формуле $T_i = b_i / m_i$. T_i должно быть больше $T_{\text{табл}}$, который для уровня значимости 0,05 и степени свободы 56 (n-m-1) равно 2,004

	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16	b15	b14	b13
	2.04673	458.4344501	0.0294738	-9.154083382	21.85656389	-930.815526	6.472332186	-36.08847475	-4.327310936	-136.4985572	-7.13259679	471.2143657	217.7389998
	1.30143	1114.957159	0.0339844	7.001336132	14.08234402	248.0575347	2.521869816	43.55982468	49.78188438	106.6788581	1.840059659	1002.323762	571.1601745
	0.98969	57.01734314	#Н/Д	#Н/Д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#Н/Д
	207.379	54	#Н/Д	#н/д	#н/д	#Н/Д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#Н/Д
	1.7E+07	175552.7806	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д
Ti	1.57268	0.411167771	0.8672733	1.307476631	1.552054392	3.752417871	2.566481484	0.828480716	0.086925415	1.279527731	3.876285618	0.470121914	0.381222308
Trafin	2.00488												

Рисунок 2.1.1 Т-критерий Стьюдента для первой модели. Часть 1.

b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	а
5.336201921	-6.033089594	-0.248781	-14.00781985	-531.2653773	-130.25761	326.068303	26.96130327	568.6143862	405.0331553	-1477.8	-838.67	5579.230158
13.29910594	15.82873819	0.260949	5.036191159	534.9842207	69.3312516	316.7712852	39.25405914	381.7161449	158.9170551	7343.51	227.474	4061.856454
#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д
#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д
#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д	#н/д
0.401245162	0.381147854	0.95337	2.781431325	0.993048686	1.87877201	1.029349307	0.686841154	1.489626241	2.548707909	0.20125	3.68689	1.37356655

Рисунок 2.1.2 Т-критерий Стьюдента для первой модели. Часть 2.

По t-критерию самым незначимым фактором является X17 (курс RAND / US). Исключив данный фактор, была получена новая регрессия. Для факторов новой аппроксимирующий функции так же были вычислены значения t-критерия Стьюдента.

Фактор X2 (EURO/ US) так же был исключен из функции как незначимый. Далее как незначимый был убран фактор X13 (SINGAPORE DOLLAR/US).

b25	b24	b23	b22	b21	b20	b19	b18	b16	b15	b14	b13
2,073325	466,429996	0,02899528	9,000034534	21,27280396	926,9595973	6,515667712	35,30654868	139,4935432	7,047496989	268,6918786	199,9740329
1,084903	1075,909606	0,02997699	6,835371931	13,46510942	233,4183606	2,348592663	41,45424214	92,73791719	1,759597006	44,34899694	529,5061081
0,989684	56,0117884	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
233,5762	56	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
16854481	175689,9446	#Н/Д	#Н/Д	#н/д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
1,91107	0,433521546	0,96725118	1,316685416	1,579846349	3,97123686	2,774285986	0,851699292	1,504169464	4,005176734	6,058578483	0,377661428

Рисунок 2.2.1 Т-критерий Стьюдента для третьей модели. Часть 1.

b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b1	a
5,094915962	6,228763751	0,245023347	14,03959	555,0526294	128,1752755	312,6837433	28,60631734	562,4142617	404,3923391	833,0127911	5787,561
12,86009345	15,13919891	0,221266155	4,5478684	501,7555401	65,73675288	304,5266359	36,8785008	331,6538227	155,2864422	221,7797651	3744,497
#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д	#Н/Д
#Н/Д	#н/д	#Н/Д	#Н/Д	#Н/Д	#н/д	#Н/Д	#н/д	#Н/Д	#н/д	#Н/Д	#Н/Д
0,396180322	0,41143285	1,107369301	3,08707	1,106221227	1,949826694	1,026786187	0,775690896	1,695787062	2,60417029	3,756036042	1,545618

Рисунок 2.2.2 Т-критерий Стьюдента для третьей модели. Часть 2.

По t-критерию Стьюдента дальше были убраны факторы X12 (RAND/US), X11 (MEXICAN PESO/US), X24 (Мировая инфляция), X5 (REAL/US), X10 (WON/US), X8 (HONG KONG DOLLAR/US), X18 (KRONA/US), X4 (UNITED KINGDOM POUND/US), X6 (CANADIAN DOLLAR/US), X23 (ВВП США, Трилл. US) и X16 (RINGGIT/US).

Оставшиеся критерии оказались значимыми. Далее была построена межфакторная корреляция для исключения мультиколлиниароности.

	Y	X1	X3	X7	X9	X14	X15	X19	X20	X21	X22	X25
Υ	1											
X1	-0,73956	1	0,947652	0,687668	-0,04351	0,897326	0,699075	-0,33084	0,850526	0,67804	0,837614	-0,8548
X3	-0,73253	0,947652	1	0,685482	-0,22571	0,859286	0,526242	-0,49544	0,908214	0,624355	0,815444	-0,75838
X7	-0,93919	0,687668	0,685482	1	-0,58714	0,507209	0,534831	-0,68603	0,873146	0,717522	0,852076	-0,70932
X9	0,573329	-0,04351	-0,22571	-0,58714	1	0,140339	0,089331	0,886936	-0,48979	-0,35991	-0,34918	0,056162
X14	-0,5173	0,897326	0,859286	0,507209	0,140339	1	0,591885	-0,2071	0,74944	0,421188	0,707956	-0,76681
X15	-0,63395	0,699075	0,526242	0,534831	0,089331	0,591885	1	-0,09065	0,551198	0,620361	0,609416	-0,6736
X19	0,733591	-0,33084	-0,49544	-0,68603	0,886936	-0,2071	-0,09065	1	-0,70771	-0,46853	-0,61969	0,304208
X20	-0,89644	0,850526	0,908214	0,873146	-0,48979	0,74944	0,551198	-0,70771	1	0,664376	0,867318	-0,73587
X21	-0,78334	0,67804	0,624355	0,717522	-0,35991	0,421188	0,620361	-0,46853	0,664376	1	0,76481	-0,73322
X22	-0,88497	0,837614	0,815444	0,852076	-0,34918	0,707956	0,609416	-0,61969	0,867318	0,76481	1	-0,79241
X25	0,740123	-0,8548	-0,75838	-0,70932	0,056162	-0,76681	-0,6736	0,304208	-0,73587	-0,73322	-0,79241	1

Рисунок 2.3 Таблица межфакторной корреляции №1.

Самая большая корреляция была выявлена у факторов X1 и X3. Фактор X3 (NEW ZELAND DOLLAR/US) больше связан с остальными факторами, изза этого было принято решение исключить именно его. Далее в полученном уравнение были высчитаны t-критерии Стьюдента для проверки значимости оставшихся факторов. Все факторы остались значимыми. Продолжим убирать мультиколлиниарность.

	Y	X1	X7	X9	X14	X15	X19	X20	X21	X22	X25
Υ	1										
X1	-0,73956	1									
X7	-0,93919	0,687668	1								
X9	0,573329	-0,04351	-0,58714	1							
X14	-0,5173	0,897326	0,507209	0,140339	1						
X15	-0,63395	0,699075	0,534831	0,089331	0,591885	1					
X19	0,733591	-0,33084	-0,68603	0,886936	-0,2071	-0,09065	1				
X20	-0,89644	0,850526	0,873146	-0,48979	0,74944	0,551198	-0,70771	1			
X21	-0,78334	0,67804	0,717522	-0,35991	0,421188	0,620361	-0,46853	0,664376	1		
X22	-0,88497	0,837614	0,852076	-0,34918	0,707956	0,609416	-0,61969	0,867318	0,76481	1	
X25	0,740123	-0,8548	-0,70932	0,056162	-0,76681	-0,6736	0,304208	-0,73587	-0,73322	-0,79241	

Рисунок 2.4 Таблица межфакторной корреляции №2.

Самая большая корреляция была выявлена у факторов X1 и X14. Фактор X1 (AUSTRALIAN DOLLAR/US) больше связан с остальными факторами, изза этого было принято решение исключить именно его. Далее в полученном уравнение были высчитаны t-критерии Стьюдента для проверки значимости оставшихся факторов. Фактор X21 (DANISH KRONE/US) стал незначимым и был исключен.

	Y	X7	X9	X14	X15	X19	X20	X22	X25
Υ	1								
X7	-0,93919	1							
X9	0,573329	-0,58714	1						
X14	-0,5173	0,507209	0,140339	1					
X15	-0,63395	0,534831	0,089331	0,591885	1				
X19	0,733591	-0,68603	0,886936	-0,2071	-0,09065	1			
X20	-0,89644	0,873146	-0,48979	0,74944	0,551198	-0,70771	1		
X22	-0,88497	0,852076	-0,34918	0,707956	0,609416	-0,61969	0,867318	1	
X25	0,740123	-0,70932	0,056162	-0,76681	-0,6736	0,304208	-0,73587	-0,79241	

Рисунок 2.5 Таблица межфакторной корреляции №3.

Самая большая корреляция была выявлена у факторов X9 и X19. Фактор X19 (SRI LANKAN RUPEE/US) больше связан с остальными факторами, из-за этого было принято решение исключить именно его. Далее в полученном уравнение были высчитаны t-критерии Стьюдента для проверки значимости оставшихся факторов. Фактор X9 (INDIAN RUPEE/US) стал незначимым и был исключен.

	Y	X7	X14	X15	X20	X22	X25
Υ	1						
X7	-0,93919	1					
X14	-0,5173	0,507209	1				
X15	-0,63395	0,534831	0,591885	1			
X20	-0,89644	0,873146	0,74944	0,551198	1		
X22	-0,88497	0,852076	0,707956	0,609416	0,867318	1	
X25	0,740123	-0,70932	-0,76681	-0,6736	-0,73587	-0,79241	1

Рисунок 2.6 Таблица межфакторной корреляции №4.

Самая большая корреляция была выявлена у факторов X7 и X20. Фактор X20 (FRANC/US) больше связан с остальными факторами, из-за этого было принято решение исключить именно его. Далее в полученном уравнение были высчитаны t-критерии Стьюдента для проверки значимости оставшихся факторов. Фактор X25 (Цена на нефть за баррель) стал незначимым и был исключен.

	Y	X7	X14	X15	X22
Y	1				
X7	-0,93919	1			
X14	-0,5173	0,507209	1		
X15	-0,63395	0,534831	0,591885	1	
X22	-0,88497	0,852076	0,707956	0,609416	1

Рисунок 2.7 Таблица межфакторной корреляции №5.

Самая большая корреляция была выявлена у факторов X7 и X22. Фактор X22 (BAHT/US) больше связан с остальными факторами, из-за этого было принято решение исключить именно его. Далее в полученном уравнение были высчитаны t-критерии Стьюдента для проверки значимости оставшихся факторов. Фактор X14 (DANISH KRONE/US) стал незначимым и был исключен.

	Y	X7	X15
Y	1		
X7	-0,93919	1	
X15	-0,63395	0,534831	1

Рисунок 2.8 Таблица межфакторной корреляции №6.

Оставшиеся факторы являются значимыми и не коррелируют между собой. По данным факторам была построена итоговая корреляция.

2.3 Тест Голдфелда-Кванта

Применение теста Голдфелъда-Квандта предполагает, что возмущения являются нормально распределенными случайными величинами. Поэтому перед тем, как провести тест, мы проверили пятую предпосылку МНК о нормальном распределении остатков.

Тест Голдфельда — Квандта имеет несколько незначительных, на наш взгляд, недостатков. В первую очередь, тест Голдфельда — Квандта требует, чтобы данные были упорядочены по известной независимой переменной. Также к сожалению, тест Голдфельда — Квандта не очень устойчив к ошибкам спецификации, он обнаруживает негомоскедастические ошибки, но не может отличить структуру гетероскедастических ошибок от основной проблемы спецификации, такой как неправильная функциональная форма или пропущенная переменная.

Также минус теста является то, что он позволяет выявить факт наличия гетероскедастичности, но не позволяет описать характер зависимостей дисперсий ошибок регрессии количественно. Но, к счастью, нас это не коснулось, потому что подтвердилась гипотеза о наличии гомоскедастичности.

Преимущество теста Голдфелда – Квандта заключается в том, что он является точными в том смысле, что данный тест непосредственно учитывает количество наблюдений в выборке.

Были проведены тесты Голдфелда-Кванта для каждого из факторов. Тесты показали, что факторы гетероскедастичны.

Цена на золото , US \$/ Ozt	Kypc YUAN/US \$	Kypc YEN/US\$				
Υ	Х7	X15				
279,961	8,2799	107,98		-4,18499	-706,527	6667,0
282,152	8,2792	109,68		1,319548	60,01507	532,239
265,934	8,2781	116,39		0,839899	52,77547	#Н/Д
284,59	8,2777	107,33		70,82173	27	#Н/Д
270,405	8,2775	109,15	ESS ₁	394512,5	75201,76	#Н/Д
260,75	8,2774	123,57				
350,765	8,2774	120,42				
302,862	8,2773	128,45				
316,748	8,2771	122,78				
328,208	8,2771	119,07				
404,85	8,2771	110,37				
267,707	8,277	125				
398,441	8,2769	111,39				
283,322	8,2768	122,54				
356,864	8,2768	119,96				
414,495	8,2768	105,84				
313,567	8,2767	119,77				
379,093	8,2766	110,1				
420,21	8,2766	106,04				
281,764	8,2765	134,06				
424,08	8,2765	103,55				
429,14	8,2765	104,64				
424,745	8,1056	112,25				
470,107	8,0845	116,36				
549,433	8,0608	116,88				
611,853	8,0165	113,79				
633,093	7,969	114,44				
586,648	7,8785	116,82				
630,352	7,7714	121,02				
680,008	7,709	119,44				

Рисунок 2.9.1 Статистика по первой половине теста Голдфелда-Кванта по Х7.

1268,929	6,7735	105,07		-9,84018	-145,235	3280,516
1287,65	6,7347	111,4		1,049736	77,41785	503,7053
1235,1	6,724	110,38		0,773545	88,13984	#Н/Д
1291,63	6,6958	108,84		46,11456	27	#Н/Д
1343,19	6,6707	80,48	ESS ₂	716494	209753,1	#Н/Д
1337,429	6,6371	102,32				
1280,677	6,6328	113,63				
1360,475	6,6017	81,97	ESS _{max}	716494		
1095,655	6,5752	121,05	ESS,,,in	394512,5		
1474,431	6,49	81,31	F _{spar}	1,929213		
1241,452	6,4738	106,9	$\mathbf{F}_{\phi ascr}$	1,81615		
1568,526	6,436	77,18				
1592,784	6,361	78,1				
1667,893	6,3547	77,97				
1335,332	6,3325	109,28				
1157,123	6,318	120,7				
1656,095	6,308	76,34				
1332,809	6,2841	109,31				
1648,539	6,279	79,81				
1299,175	6,2591	102,14				
1249,333	6,2495	117,44				
1746,348	6,2372	79,94				
1671,886	6,2186	91,28				
1131,58	6,2097	123,94				
1198,253	6,2018	119,86				
1312,989	6,1737	102,75				
1485,905	6,1647	97,52				
1284,348	6,1284	98,35				
1223,565	6,1124	112,09				
1314,402	6,0943	98,1				
1243,068	6,059	102,28				

Рисунок 2.9.2 Статистика по второй половине теста Голдфелда-Кванта по Х7.

Цена на золото , US \$/ Ozt	Kypc YUAN/US \$	Kypc YEN/US\$				
Υ	X7	X15				
281,764	8,2765	134,06		-12,9667	-429,418	5474,232
302,862	8,2773	128,45		3,255941	20,31382	374,0258
267,707	8,277	125		0,953789	84,04283	#Н/Д
1131,58	6,2097	123,94		278,6377	27	#Н/Д
260,75	8,2774	123,57	ESS ₁	3936147	190706,3	#Н/Д
316,748	8,2771	122,78				
283,322	8,2768	122,54				
1095,655	6,5752	121,05				
630,352	7,7714	121,02				
1157,123	6,318	120,7				
350,765	8,2774	120,42				
356,864	8,2768	119,96				
1198,253	6,2018	119,86				
313,567	8,2767	119,77				
680,008	7,709	119,44				
665,266	7,572	119,13				
328,208	8,2771	119,07				
1249,333	6,2495	117,44				
549,433	8,0608	116,88				
586,648	7,8785	116,82				
265,934	8,2781	116,39				
470,107	8,0845	116,36				
754,48	7,4682	115,27				
633,093	7,969	114,44				
611,853	8,0165	113,79				
1280,677	6,6328	113,63				
1214,726	6,9737	112,86				
1192,648	6,8768	112,72				
424,745	8,1056	112,25				
1223,565	6,1124	112,09				

Рисунок 2.10.1 Статистика по первой половине теста Голдфелда-Кванта по X15.

414,495 1268,929 429,14 911,6	8,2766 8,2768 6,7735 8,2765 6,987 8,2765	106,04 105,84 105,07 104,64			-429,545 44,87827	-
1268,929 429,14 911,6	6,7735 8,2765 6,987	105,07 104,64				309,2343
429,14 911,6	8,2765 6,987	104,64			144 240	#U/n
911,6	6,987			0,87367	-	#Н/Д
	-		Foo	93,36271	27	#Н/Д
424,08		104,53	ESS ₂	3890674	562581,2	#Н/Д
4040.000	-	103,55				
_	6,1737	102,75				
	6,6371	102,32	ESS _{max}	3936147		
1243,068	6,059	102,28	ESS _{min}	3890674		
_	6,2591	102,14	F _{spar}	1,929213		
892,663	6,818	98,76	$\mathbf{F}_{\phi a \kappa \tau}$	1,011688		
	6,1284	98,35				
812,815	6,8388	98,28				
1314,402	6,0943	98,1				
1485,905	6,1647	97,52				
934,272	6,8319	94,54				
1148,475	6,8247	94,24				
1671,886	6,2186	91,28				
1043,511	6,8264	90,5				
1119,575	6,8268	90,38				
857,726	6,8392	89,83				
1196	6,7735	86,43				
1360,475	6,6017	81,97				
1474,431	6,49	81,31				
1343,19	6,6707	80,48				
1746,348	6,2372	79,94				
1648,539	6,279	79,81				
1592,784	6,361	78,1				
	6,3547	77,97				
1568,526	6,436	77,18				
1656,095	6,308	76,34				

Рисунок 2.10.2 Статистика по второй половине теста Голдфелда-Кванта по X15.

2.4 Тест Вайта.

Затем мы провели наиболее простой и часто употребляемый тест на гетероскедастичность — тест Вайта. Привлекательной чертой данного теста является универсальность, однако если гипотеза Н0 отвергается, этот тест не дает никаких указаний на функциональную форму гетероскедастичности. Ещё одним недостатком является то, что тест Вайта не учитывает зависимость дисперсий ошибок от невключенных в модель регрессоров. Кроме того мощность теста значительно уменьшается при большом количестве оцениваемых факторов.

Проведя тест Вайта, был получен результат, что рассматриваемая нами функция является гетероскедастична. Но учитывая все проблемы и сложности этого теста, было решено не учитывать его.

Тест Вай	та			
	1390,647279	-46,8164331	-11337,1	80173,77
	665,989472	22,17685281	5110,761	21009,76
	0,118057218	35105,26687	#Н/Д	#Н/Д
	3,391130253	76	#Н/Д	#Н/Д
	12537480884	93660861937	#Н/Д	#Н/Д
nR²	9,444577421			
χ²	5,991464547			
v ² < nD ²	следовательно	retenecuena	CTULIND.	

Рисунок 2.11 Результат теста Вайта

ЗАКЛЮЧЕНИЕ

Рассмотрим результаты работы, целью которой являлось исследование зависимости средних цен на золото в долларах США от уровня ВВП США, уровня мировой инфляции, цен на нефть в баррелях и от других валют мира.

В ходе работы были выполнены все поставленные задачи:

- 1. Сбор статистических данных
- 2. Формирование данных в виде таблицы для их анализа в программе Microsoft Excel
- 3. Построение эконометрической модели исследуемой зависимости
- 4. Исследование проблемы выявления и коррекции гетероскедастичности в эконометрической модели исследуемой зависимости с помощью теста Вайта
- 5. Исследование проблемы выявления и коррекции гетероскедастичности в эконометрической модели исследуемой зависимости с помощью теста Голдфельда-Квандта
- 6. Анализ результатов указанных тестов
- 7. Построение прогноза цен на золото на 2020 год
- 8. Сравнение полученных значений цен на золото с реальными значениями.

В данной работе была построена эконометрическая модель зависимости средних цен на золото в долларах США от уровня ВВП США, уровня мировой инфляции, цен на нефть в баррелях и от других валют мира.

Была создана математическая модель с двумя значащими факторами (иена и юань). Оказалось, что наибольшее влияние имеет юань.

Тест Голдфельда-Квандта показал, что модель гомоскедастична.

В ходе исследования мы также пришли к выводу, что цены на золото не зависят от инфляции и цен на нефть.

Стоит также отметить довольно аномальный 2020 год из-за рекордных показателей пен.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Артамонов Н.В. Введение в эконометрику. Курс лекций. 2010 г.. 2010 г.
- 2. Бородич С.А. Вводный курс эконометрики: Учеб. пособие. Мн.:БГУ, 2000. 354 с.
- 3. Елисеева И.И., Курышева С.В., Костеева Т.В. и др. Эконометрика: учебник / под ред. И.И. Елисеевой. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2007. 576 с.
- 4. Новиков А.И. Эконометрика, 2-е издание, 2010 год.
- 5. Каталог данных Всемирного банка [Электронный ресурс] URL https://datacatalog.worldbank.org/ (дата обращения: 01.06.2021)
- 6. Сайт Федерального резервного банка [Электронный ресурс] URL: https://fred.stlouisfed.org/series/GDP (дата обращения: 01.06.2021)
- 7. Курсы валют [Электронный ресурс] URL: https://www.x-rates.com/ (дата обращения: 01.06.2021)
- 8. Kaggle [Электронный ресурс] URL: https://www.kaggle.com/ (дата обращения: 01.06.2021)
- 9. World Bank Open Data [Электронный ресурс] URL: https://data.worldbank.org/ (дата обращения: 01.06.2021)

приложения

ПРИЛОЖЕНИЕ 1

Таблица исходных данных

	Цена на залого , US\$/ Ort	Kypc AUSTRALIAN DOLLAR/US \$	Nypc EURO/ US \$	Kypc NEW ZELAND DOLLAR/US \$	Kypc UNITED KINGDOM POUND/US \$	Nypc REAL/US \$	Kypc CANADIAN DOLLAR/US \$	Wypc YUAN/US \$	Nypc HONG KONG DOLLAR/US \$	Hypc INDIAN RUPEE/US \$	Kypc WON/US \$	Rypc MEXICAN PESO/US S	Kypc RAND/US \$	Kypc SINGAPORE DOLLAR/US \$	Mypc DANISH KRONE/US \$	Wypc YEN/US \$	Hypc RINGGIT/US \$	Hypc NORWEGIAN KRONE/US \$	Kypc KRONA/US \$	Kypc SRI LANKAN RUPEE/US \$	Wypc FRANC/US \$	Nypc NEW TANKAN DOLLAR/US \$	Wypc BAHT/US \$	BBTI CULA, Tpwss. US S	Мировал инфлация, %	Цена на нефть за баррель, USS
	Υ	X1	X2	X3	Х4	X5	X6	X7	XX	X9	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24	325
2000-01	284,59	1,5669	1,0249	2,019	0,618	1,802	1,4517	8,2777	7,781	43,65	1124	9,64	6,3125	1,701	7,633	207,33	3,8	8,301	8,815	73,5	1,6495	30,75	37,55	10002,86		25,220
2000-04		1,7132	1,1002	2,0597	0,6427	1,805	1,4818	8,2799	7,789	43,7	1110	9,411	6,783	1,7065	8,2935	107,98	3,8	8,959	8,967	74,55	1,725	30,67	38,09	10247,68		22,540
2000-07		1,728	1,0792	2,2026 2,524	0,6674	1,776	1,488	8,2792	7,7988 7,7995	45,15 46.9	1116,9	9,368	6,965 7.56	1,7342	8,0475 8,77	109,68	3,8	8,864	9,172	78,4 79.46	1,6689	31,06 32,35	41,34	10319,83		28,530 30,930
2000-10		1,9301	1,1784	2,524	0,6894	1,908	1,5273	8,2775	7,7995	46,9	1139	9,564	7,56	1,7568	8,77	116.39	3,8	9,279	9,997	79,46	1,7978	32,35	44,06			30,930 25,640
2001-04		1.9623	1.1269	2.4225	0,699	2.189	1.536	8.2774	7.799	46.88	1329	9.261	8.035	1.821	8.415	123.57	3.8	9.101	10.26	90.7	1,7345	32.94	45.65	10597.82		25,550
2001-07	267,707	1,9685	1,1426	2,4278	0,7017	2,437	1,531	8,277	7,7997	47,18	1303	9,151	8,256	1,8031	8,515	125	3,8	9,135	10,625	90	1,7285	34,8	45,75	10596,29	0,0272	24,540
2001-10	283,322	1,9881	1,112	2,4242	0,688	2,701	1,5905	8,2768	7,8002	48,04	1296	9,27	9,4325	1,8235	8,283	122,54	3,8	8,904	10,671	91,9	1,6347	34,55	44,73	10660,29		20,480
2002-01		1,9716	1,1636	2,3998	0,7082	2,409	1,5915	8,2765	7,7995	48,56	1314,4	9,152	11,42	1,8365	8,647	134,06	3,8	9,108	10,672	93,6	1,719	34,99	44,05	10788,95		19,480
2002-04		1,8615	1,1109	2,2361	0,6866	2,36	1,5681	8,2773	7,7992	48,98	1294	9,375	10,64	1,813	8,258	128,45	3,8	8,405	10,28	96,2	1,6216	34,72	43,26	10893,21		25,650
2002-07		1,8365	1,0208	2,1345	0,64	3,485	1,5845	8,2767 8,2771	7,8 7,7995	48,69	1183	9,8	10,19	1,763	7,583 7,526	129,77	3,8	7,62	9,515	96,23	1,4833	33,61 34.75	42,04	10992,05		25,770 27.550
2003-01		1,7065	0.9312	1.8382	0,608	3,529	1,5286	8,2711	7,7995	47.83	1165	10,15	8.5	1,7396	6,9255	122,78	3,8	6,966	8,614	96.95	1,4605	34,61	43,35	11071,46 11183.51		31,231
2003-04		1,5969	0.8945	1,7857	0,625	2.887	1,4336	8,2771	7,7991	47,37	1215.5	20,306	7.2875	1,7745	6.64	119.07	3.8	6,995	8.17	97.14	1,3545	34.85	42.86	11312.88		25,208
2003-07		1,5446	0,8904	1,7274	0,6215	2,965	1,4074	8,2774	7,799	46,15	1181	20,585	7,3901	1,7595	6,6265	120,42	3,8	7,288	8,22	97,16	1,3736	34,41	42	11567,33		28,398
2003-10		1,413	0,8634	1,6345	0,5898	2,8645	1,3195	8,2766	7,7684	45,33	1184	11,055	6,895	1,74	6,4035	110,1	3,8	7,091	7,814	94,78	1,3382	33,98	39,95	11769,28	0,0204	29,590
2004-01		1,3115	0,8031	1,4914	0,549	2,924	1,3265	8,2768	7,7775	45,32	1174	11,012	7,07	1,6936	5,982	205,84	3,8	7,0161	7,412	97,33	1,2593	33,39	39,25	11920,17		31,144
2004-04		1,387	0,8351	1,6021	0,5636	2,944	1,3711	8,2771	7,7998	44,52	1173,6	11,402	6,94	1,7017	6,215	110,37	3,8	6,8725	7,6425	98,35	1,2984	33,27	40,04	12108,99		33,363
2004-07		1,4215	0,8311	1,5723	0,55	3,0275	1,3296	8,2769 8,2766	7,7999	46,4	1170	11,41	6,2725	1,7197	6,1844 5.8307	111,39	3,8	7,009 6,3908	7,6805	103,7	1,2796	34,04	41,39	12303,34		38,371 49,770
2005-01		1,339	0,7663	1,4633	0,5451	2,6115	1,2209	8,2765	7,7834	43,6	1026.85	11,3905	5,93	1,6362	5,8307	203,55	3,8	6,3558	6,9779	104,1	1,1988	31.71	38,55	12761.34		44,770
2005-04		1,2886	0,7863	1,4061	0,5305	2.533	1,2568	8,2765	7,7946	43,6	997	11,2005	6.07	1,6337	5,7624	204,64	3,8	6,3338	7.1123	99.75	1,1877	31,71	39,43	12910.02		51.857
2005-07		1,3168	0,8245	1,4633	0,5684	2,3855	1,2257	8,1056	7,7744	43,4	1026,5	10,5995	6,56	1,661	6,1496	112,25	3,7505	6,4785	7,7614	100,67	1,287	31,92	41,65	13142,87		57,579
2005-10	470,107	1,3369	0,8337	1,428	0,5653	2,2478	1,1796	8,0845	7,7519	45,09	1043,5	10,789	6,7077	1,6955	6,2219	116,36	3,7748	6,4951	7,9489	101,78	1,29	33,55	40,77	13332,32		58,522
2006-01		1,3207	0,8225	1,4584	0,5612	2,2094	1,1436	8,0608	7,7561	43,96	958,9	10,44	6,082	1,6219	6,1377	116,88	3,751	6,6537	7,6029	102,1	1,2784	31,97	38,89	13603,93		63,361
2006-04		1,317	0,7921	1,5704	0,5488	2,09	1,1203	8,0165	7,7529	44,86	942,8	11,089	6,0185	1,5809	5,9076	113,79	3,6255	6,1645	7,3579	102,81	1,2411	31,9	37,51	13749,81		70,433
2006-07	633,093	1,3048	0,7835	1,6221	0,5352	2,1745	1,1309	7,969	7,7703	46,49 44.9	954,9 942.2	30,936 30,767	6,92 7,385	1,5792	5,8446 5.8352	114,44	3,656	6,1592	7,2147 7,2111	103,95	1,2311	32,74 33.26	37,83 36.71	13867,47		73,898 58.382
2005-10		1,2915	0,7829	1,491	0,524	2,135	1,1227	7,8785	7,778	44,9	942,2	10,767	7,385	1,5575	5,8352 5,7365	121,02	3,651	6,532	7,2111 6.9653	107,8	1,2424	33,26	36,71	14037,23		54,554
2007-04		1,292	0,7893	1,4586	0,5099	2,0308	1,1792	7,7714	7,8212	41.04	931	10,9295	7,031	1,5362	5,7905	129,44	3,42	5,9441	6,6975	110,58	1,297	33,33	32.8	14382.36		67,505
2007-07		1,1636	0,7293	1,2962	0,4911	1,869	1,0656	7,572	7,8264	40,18	919	10,9311	7,088	1,5157	5,426	119,13	3,457	5,8086	6,7147	111,77	1,2021	32,88	29,97		0,0236	77,205
2007-10		1,0786	0,6912	1,2999	0,4813	1,7386	0,9496	7,4682	7,7502	39,26	903,2	10,6996	6,535	1,4485	5,1514	115,27	3,334	5,3867	6,3608	110,9	1,1589	32,39	31,45	14681,5	0,0354	82,832
2008-01		1,1151	0,6738	1,2684	0,5026	1,7578	1,0018	7,1818	7,7961	39,31	943,4	30,829	7,4525	1,4165	5,0208	206,74	3,2355	5,4126	6,3758	107,8	1,0845	32,15	31,22	14651,04		92,007
2008-04		1,0617	0,6423	1,2804	0,5039	1,695	1,0092	6,987	7,795	40,45	1005	10,5101	7,5685	1,3576	4,7933	204,53	3,1585	5,1175	5,991	107,88	1,0422	30,47	31,64	14805,61		110,189
2008-07		1,0621	0,6415	1,3624	0,5049	1,566	1,0261	6,8388	7,8017	42,47	1011,5	10,0345	7,3105	1,3676	4,7858	108,1 98.28	3,2565	5,1323	6,0532 7.7816	107,65	1,0489	30,72	33,48	14835,19	0,0560	133,899 72 843
2008-10		1,5211	0,7885	1,7197	0,6186	2,123	1,2158	6,8392	7,7503	49,4	1277,5	12,705	9,87	1,4841	5,8883	98,28	3,547	6,7089	7,7816 8.3647	113.82	1,1609	32,97	35,05	14394.55		72,843 44,729
2009-04		1,3674	0.7551	1,967	0,6938	2,313	1,2365	6,8392	7,7544	40,83	1277	13.801	8.44	1,5100	5,6225	98.76	3,558	6,9158	7 9887	120	1,1612	33,7	35,23	14357.85		50.983
2009-07		1.1992	0.7003	1.514	0.5983	1.8653	1.0791	6.8319	7.75	47,91	1222.2	13.2025	7.8125	1.439	5,2346	94,54	3,52	6.1147	7.2171	114,75	1,0668	32.8	34,01	14420.31	-0.0210	64,920
2009-10		1,1064	0,6777	1,3831	0,6068	1,7445	1,0767	6,8264	7,7497	46,9	1182	13,1555	7,821	1,398	5,0422	90,5	3,41	5,695	7,0508	114,75	1,0238	32,61	33,42	14628,02	-0,0018	73,294
2010-01		1,127	0,721	1,4192	0,6246	1,8755	1,0652	6,8268	7,7665	46,08	1158,7	13,0285	7,58	1,4055	5,3676	90,38	3,41	5,9201	7,3852	114,6	1,0557	31,94	33,17	14721,35		76,412
2010-04		1,0746	0,7518	1,3661	0,6533	1,727	1,0112	6,8247	7,7637	44,2	1108	12,2281	7,3515	1,3701	5,5952	94,24	3,184	5,9005	7,2359	113,9	1,0767	31,31	32,33	14926,1		84,929
2010-07		1,1049	0,7652	1,3772	0,6364	1,7585	1,0293	6,7735	7,7672	46,35 ALA4	1182	12,6421 12,3415	7,2915	1,3595	5,701 5,3671	85,43 80,48	3,1825	6,0455 5,8785	7,2972 6.2048	112,75 111.6	1,041	31,95 30,6	32,24	15079,92		74,735 82 918
2010-10		1,0024	0,7291	1,3115	0,6242	1,6982	1,002	6,6017	7,7515	45.92	1119.1	12,3415	7,1776	1,2794	5,9071	81.97	3,11	5,8785	6,4318	110.85	0.9402	29.03	30.86	15285.83		96,295
2011-04		0.9143	0,6747	1,2395	0.5991	1.567	0.9486	6.49	7,7673	44,24	1068.4	11.5237	6.581	1,223	5,0315	81.31	2,961	5,2398	6,0258	109.85	0.8666	28.67	29.86	15496.19		123.150
2011-07	1568.526	0.909	0.695	1.1395	0.6077	1,5495	0.9539	6.436	7,7942	44.2	2054	11.7235	6,7061	1.2031	5,1779	77.18	2.964	5,375	6.286	109.4	0.7881	28.88	29.74	15591.85		116.461
2011-10		0,9425	0,717	1,2315	0,6195	1,6933	0,9932	6,3547	7,7641	48,67	1112,05	13,169	7,882	1,2515	5,333	77,97	3,067	5,5131	6,4635	110,06	0,8706	29,91	30,69	15796,46	0,0353	109,469
2012-01		0,9436	0,7661	1,2127	0,6348	1,7527	1,005	6,308	7,7555	49,54	1125,7	13,0356	7,835	1,2576	5,6949	76,34	3,04	5,873	6,8161	113,85	0,922	29,61	30,97	16019,76		110,994
2012-04		0,9606	0,7559	1,2234	0,6163	1,893	0,9886	6,279	7,7587	52,65	1130,05	12,99	7,7594	1,2368	5,6236	79,81	3,0232	5,7276	6,7274	129,6	0,9081	29,15	30,74	16152,26		120,591
2012-07		0,9504	0,812	1,2323	0,6375	2,0514	1,0014	6,361	7,7538	55,55 53.8	1130,27 2090.17	13,2669	8,2351 8,6982	1,2437	6,0431 5,7559	78,1	3,123	5,7075	6,787	131,7	0,9753	29,91	31,49	16257,15 16358.86		103,141
2012-10		0,9643	0,7717	1,2165	0,6207	1,0298	0,9994	6,2372	7,7494	53,8	1090,17	13,0877	8,6982	1,22	5,7559	91.28	3,0445	5,7075	6,6348	130,1	0,9311	29,2	29.85	16558,86		111,973
2013-04		0,9641	0,7594	1,1655	0,6435	1,9875	1,0072	6,1647	7,7606	53,68	1101,52	12,7344	8,9741	1,2376	5,6614	97,52	3,0425	5,7674	6,4817	126,7	0,9298	29,52	29,85	16637,93		102,875
2013-07	1284,348	1,1164	0,7529	1,2577	0,6589	2,2987	1,0287	6,1284	7,7558	60,77	1122,66	12,857	9,9145	1,2746	5,6081	98,35	3,245	5,904	6,5284	131,65	0,9284	30,03	31,34	16848,75		107,716
2013-10	1314,402	1,0559	0,7356	1,2082	0,6234	2,2235	1,0429	6,0943	7,753	61,61	1060,83	12,9995	10,002	1,3402	5,4862	98,1	3,155	5,9476	6,4692	130,85	0,9056	29,42	31,14	17083,14		109,479
2014-01		1,1438	0,7407	1,2361	0,6079	2,4116	1,1116	6,059	7,7642	62,63	1080,36	13,3585	11,1445	1,2772	5,5263	102,28	3,345	6,2768	6,5412	130,7	0,9052	30,31	33,01	17104,56		107,570
2014-04		1,0774	0,721	1,1621	0,5923	2,296	1,0956	6,2591	7,7527	60,21	1032,85 1027.75	13,0835	10,5195	1,2553	5,3817	102,14	3,261	5,9463	6,5049	130,63	0,88	30,36 30,06	32,36	17432,91		107,875
2014-07		1,0752	0,7468	1,1779	0,5921	2,2696	1,0889	6,1737	7,7497	60,55	1027,75	13,237	10,706	1,2466	5,5687	102,75	3,195	6,285	6,8958 7,3971	130,2	0,9086	30,06	32,18 32.58	17721,66		106,983 87,270
2014-10		1,1375	0,7981	1,2853	0,625	2,4535	1,1272	6,1124	7,7551	62,01	1104.3	15,4925	11,047	1,2854	5,9397	117,44	3,2895	6,7491 7.7498	7,3971 8.2732	130,75	0,9623	30,45	32,58	17984.18		48,417
2015-04		1,2711	0,8959	1,3173	0,6524	3,0121	1,2116	6,2018	7,7513	63,58	1076,74	15,3855	11,9355	1,3261	6,6872	119,86	3,56	7,568	8,3778	133,1	0,941	30,64	33,03	18219,41		59,390
2015-07	1131,58	1,3639	0,9068	1,5094	0,6396	3,4078	1,3047	6,2097	7,7514	63,87	1159,7	16,061	12,62	1,3694	6,767	123,94	3,8156	8,1366	8,5925	133,66	0,9636	31,59	34,94	18344,71		55,866
2015-10		1,4019	0,9056	1,478	0,6475	3,8439	1,3082	6,318	7,7496	65,4	1140,5	16,53	13,8135	1,4005	6,755	120,7	4,292	8,4643	8,4922	140,96	0,9858	32,46	35,62	18350,83		48,124
2016-01		1,4142	0,9232	1,5458	0,705	4,0364	1,4074	6,5752	7,7876	67,87	1210,04	18,211	15,9535	1,4241	6,8886	121,05	4,15	8,7071	8,5709	143,2	1,0226	33,43	35,67	18424,28		30,803
2016-04		1,3137	0,874	1,4318	0,6838	3,4547	1,2549	6,4738	7,757 7,7588	66,39	1144,09 1112,89	17,19 18,761	14,2355 13,8875	1,3454	6,5059	106,9	3,903	8,0543 8,425	8,0267 8,5503	145,6	0,9598	32,28 31,82	34,91 34,78	18637,25 18806,74		42,248 45,071
2016-07		1,316	0,8954	1,3858	0,7536	3,238	1,3403	6,6371	7,7588	66,77	1112,89	18,761	13,8875	1,3431	6,0096	102,12	4,067	8,425	9,0207	147.6	0,969	31,82	34,78	18991.88		45,071
2017-01		1,3139	0,9122	1,3644	0.7946	3,1608	1,3403	6,8768	7,7549	67.48	1151.45	20.8355	13,5075	1,4095	6,8894	112.72	4,428	8,2444	8,7525	150.1	0.9888	31,54	35.09	19190.43		49,732 54,893
2017-04	1267,15	1,3378	0,9179	1,4577	0,7729	3,1896	1,3669	6,89	7,7779	64,27	1136,99	18,934	13,335	1,397	6,8271	111,44	4,339	8,5726	8,8635	152,1	0,9944	30,29	34,58	19356,65		53,064
2017-07		1,2519	0,8456	1,3328	0,7578	3,1338	1,249	6,724	7,81	64,18	1121,86	17,859	13,2225	1,3559	6,2876	110,38	4,28	7,8922	8,0752	153,5	0,965	30,2	33,28	19611,7		48,690
2017-10		1,3041	0,8585	1,4599	0,753	3,2705	1,2894	6,6328	7,8015	64,75	1115,68	19,129	14,1325	1,3622	6,3982	113,63	4,2315	8,1634	8,3612	153,55	0,9968	30,12	33,23	19918,91		57,618
2018-01		1,2393	0,8046	1,3565	0,7047	3,1782	1,2293	6,2841	7,821	63,58	1068,33	18,6215	11,89	1,3103	5,9881	109,31	3,8995	7,7019	7,8736	153,9	0,9321	29,16	31,33	20163,16		68,987
2018-04		1,3257	0,8282	1,4198	0,7272	3,4854	1,2818	6,3325	7,8479	66,5	1069,07	18,7715	12,4775	1,3249	6,1711	109,28	3,92	8,0232	8,763	157,6	0,9911	29,6	31,57	20510,18		71,628
2018-07		1,3444	0,8543	1,468	0,7629	3,745	1,3017	6,8038	7,8484 7,8393	68,54 73,95	1112,75 1140,78	18,598 20,255	13,095 14,76	1,3604	6,3647 6,5832	111,88 112,86	4,063 4,183	8,1466 8,41	8,7856 9,1462	159,55 175,3	0,9895 1,0057	30,54 30,94	33,17 33,1	20749,75		74,438 80,470
2018-10		1,4104	0,8825	1,5314	0,7825	3,7129	1,3129	6,9737	7,8393	73,95	1111.82	20,255 19,0525	14,76	1,3845	6,5832	112,86	4,183	8,41	9,3462	175,3	0.9938	30,94	33,1	21098.83		80,470 59,273
2019-04		1.4205	0.8928	1,4993	0.7675	3,9367	1,3427	6.7347	7,8451	69.64	1165,1	18,9945	14,325	1,3613	6,6651	111,4	4,132	8,6434	9,5041	176	1.02	30.91	31,89	21340.27		71,297
2019-07		1,4518	0,8985	1,5156	0,8183	3,7571	1,3143	6,8833	7,8275	68,81	1182,74	18,993	14,1525	1,3687	6,7092	108,58	4,126	8,7908	9,5929	176,3	0,9902	31,09	30,7	21542,54	0,0181	64,000
2019-10	1494,765	1,4518	0,8965	1,5591	0,7729	4,013	1,3144	7,0379	7,8376	71,01	1169,1	29,174	15,064	1,3608	6,6964	108,09	4,1761	9,1818	9,6334	181,05	0,9868	30,44	30,18	21729,12	0,0176	59,370

ПРИЛОЖЕНИЕ 2

Таблица итоговых данных

	,	r 1				
Цена на золото , US \$/ Ozt	Kypc YUAN/US \$	Kypc YEN/US \$				
Υ	X7	X15				
284,59	8,2777	107,33				
279,961	8,2799	107,98				
282,152	8,2792	109,68				
270,405	8,2775	109,15				
265,934	8,2781	116,39				
260,75	8,2774	123,57				
267,707	8,277	125				
283,322	8,2768	122,54				
281,764	8,2765	134,06				
302,862	8,2773	128,45				
313,567	8,2767	119,77				
316,748	8,2771	122,78				
356,864	8,2768	119,96				
328,208	8,2771	119,07				
350,765	8,2774	120,42				
379,093	8,2766	110,1				
414,495	8,2768	105,84				
404,85	8,2771	110,37				
398,441	8,2769	111,39				
420,21	8,2766	106,04				
424,08	8,2765	103,55				
429,14	8,2765	104,64				
424,745	8,1056	112,25				
470,107	8,0845	116,36				
549,433	8,0608	116,88				
611,853	8,0165	113,79				
633,093	7,969	114,44				
586,648	7,8785	116,82				
630,352	7,7714	121,02				
680,008	7,709	119,44				
665,266	7,572	119,13				
754,48	7,4682	115,27				

911,6 6,987 104,53 941,167 6,8388 108,1 812,815 6,8388 98,28 857,726 6,8392 89,83 892,663 6,818 98,76 934,272 6,8319 94,54 1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402	887,784	7,1818	106,74
812,815 6,8388 98,28 857,726 6,8392 89,83 892,663 6,818 98,76 934,272 6,8319 94,54 1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175	911,6	6,987	104,53
857,726 6,8392 89,83 892,663 6,818 98,76 934,272 6,8319 94,54 1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989	941,167	6,8388	108,1
892,663 6,818 98,76 934,272 6,8319 94,54 1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565	812,815	6,8388	98,28
934,272 6,8319 94,54 1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 <td>857,726</td> <td>6,8392</td> <td>89,83</td>	857,726	6,8392	89,83
1043,511 6,8264 90,5 1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253<	892,663	6,818	98,76
1119,575 6,8268 90,38 1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1137,58	934,272	6,8319	94,54
1148,475 6,8247 94,24 1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,12	1043,511	6,8264	90,5
1196 6,7735 86,43 1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 <td< td=""><td>1119,575</td><td>6,8268</td><td>90,38</td></td<>	1119,575	6,8268	90,38
1343,19 6,6707 80,48 1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371	1148,475	6,8247	94,24
1360,475 6,6017 81,97 1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735	1196	6,7735	86,43
1474,431 6,49 81,31 1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768	1343,19	6,6707	80,48
1568,526 6,436 77,18 1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1360,475	6,6017	81,97
1667,893 6,3547 77,97 1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1474,431	6,49	81,31
1656,095 6,308 76,34 1648,539 6,279 79,81 1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1568,526	6,436	77,18
1648,5396,27979,811592,7846,36178,11746,3486,237279,941671,8866,218691,281485,9056,164797,521284,3486,128498,351314,4026,094398,11243,0686,059102,281299,1756,2591102,141312,9896,1737102,751223,5656,1124112,091249,3336,2495117,441198,2536,2018119,861131,586,2097123,941157,1236,318120,71095,6556,5752121,051241,4526,4738106,91337,4296,6371102,321268,9296,7735105,071192,6486,8768112,72	1667,893	6,3547	77,97
1592,784 6,361 78,1 1746,348 6,2372 79,94 1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1656,095	6,308	76,34
1746,3486,237279,941671,8866,218691,281485,9056,164797,521284,3486,128498,351314,4026,094398,11243,0686,059102,281299,1756,2591102,141312,9896,1737102,751223,5656,1124112,091249,3336,2495117,441198,2536,2018119,861131,586,2097123,941157,1236,318120,71095,6556,5752121,051241,4526,4738106,91337,4296,6371102,321268,9296,7735105,071192,6486,8768112,72	1648,539	6,279	79,81
1671,886 6,2186 91,28 1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1592,784	6,361	78,1
1485,905 6,1647 97,52 1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1746,348	6,2372	79,94
1284,348 6,1284 98,35 1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1671,886	6,2186	91,28
1314,402 6,0943 98,1 1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1485,905	6,1647	97,52
1243,068 6,059 102,28 1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1284,348	6,1284	98,35
1299,175 6,2591 102,14 1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1314,402	6,0943	98,1
1312,989 6,1737 102,75 1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1243,068	6,059	102,28
1223,565 6,1124 112,09 1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1299,175	6,2591	102,14
1249,333 6,2495 117,44 1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1312,989	6,1737	102,75
1198,253 6,2018 119,86 1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1223,565	6,1124	112,09
1131,58 6,2097 123,94 1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1249,333	6,2495	117,44
1157,123 6,318 120,7 1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1198,253	6,2018	119,86
1095,655 6,5752 121,05 1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1131,58	6,2097	123,94
1241,452 6,4738 106,9 1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1157,123	6,318	120,7
1337,429 6,6371 102,32 1268,929 6,7735 105,07 1192,648 6,8768 112,72	1095,655	6,5752	121,05
1268,9296,7735105,071192,6486,8768112,72	1241,452	6,4738	106,9
1192,648 6,8768 112,72	1337,429	6,6371	102,32
	1268,929	6,7735	105,07
1267,15 6,89 111,44	1192,648	6,8768	112,72
	1267,15	6,89	111,44

1235,1	6,724	110,38
1280,677	6,6328	113,63
1332,809	6,2841	109,31
1335,332	6,3325	109,28
1238,064	6,8038	111,88
1214,726	6,9737	112,86
1291,63	6,6958	108,84
1287,65	6,7347	111,4
1414,611	6,8833	108,58
1494,765	7,0379	108,09

ПРИЛОЖЕНИЕ 3

Лист Анализ данных для итоговых данных

