Лабораторная работа 5. Решение задачи Дирихле для уравнения Пуассона методом установления. Вариант 2

Петраков Иван МФТИ

> 2021 Май

Описание задачи

Имеем задачу Дирихле для уравнения Пуассона:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -25\pi^2 \sin(3\pi x)\sin(4\pi y)|\\ u|_{\Gamma} = 0 \end{cases}$$
 (1)

х и у заданы на отрезке от 0 до 1.

Аналитическое решение

Аналитическое решение можно подобрать, заметив, что можно искать решение в виде $u = a \cdot sin(3\pi x)sin(4\pi y)$. Тогда, подставив решение в таком виде в исходное уравнение, найдем, что a = 1. Итоговое аналитическое решение есть $u = sin(3\pi x)sin(4\pi y)$.

Программная реализация и практические исследования

В качестве разностной схемы рассмотрим:

$$\begin{cases} \frac{u_{l,m}^{n+1} - u_{l,m}^n}{\tau_n} = \frac{u_{l+1,m}^n - 2u_{l,m}^n + u_{l-1,m}^n}{h_x^2} + \frac{u_{l,m+1}^n - 2u_{l,m}^n + u_{l,m-1}^n}{h_y^2} + 25\pi^2 sin(3\pi x)(sin(4\pi y)) \\ l = 1, 2, ..., L - 1, m = 1, 2, ..., M - 1, n = 0, 1, ..., N \\ u_{l,m}^0 = \psi_{l,m}, l = 0, 1, ..., L, m = 0, 1, ..., M \\ u_{0,m}^n = u_{L,m}^n = u_{l,0}^n = u_{l,M}^n = 0, l = 1, 2, ..., L - 1, m = 0, 1, ..., M, n = 0, 1, ..., N \end{cases}$$

$$(2)$$

Здесь ψ - произвольная функция, определенная в области интегрирования. Для удобства зададим ее равной нулю.

Определимся с оптимальными шагами по времени. Они задаются следующим выражением:

$$\tau_n = \frac{2}{2\pi^2 + 4(L^2 + M^2) + \left[4(L^2 + M^2) - 2\pi^2\right]\cos(\frac{\pi(2n-1)}{2N})}$$
(3)

Для придания устойчивости необходимо изменить порядок следования элементов в полученной последовательности τ_n . Как это сделать - написано в предложенной к лабораторной работе литературы. Здесь же будет приведена итоговая последовательность с измененным порядком для каждой тройки L, M, N.

В нашем случае, ошибка ϵ задана равной 10^{-4} . Для придания устойчивости N оценивается как

$$N > = \ln(\frac{2}{\epsilon}) / \ln \frac{\sqrt{4(L^2 + M^2)} + \sqrt{2\pi^2}}{\sqrt{4(L^2 + M^2)} - \sqrt{2\pi^2}}$$
 (4)

Поэтому, задавая набор L, M мы сразу определяем и необходимое значение N, и

набор τ_n .

Перейдем к расчетам. Их будем проводить на последовательно удваеваемых сетках L=M, начиная с L=5, заканчивая L=320.

	5, L = 5,												
			5.0, 17.0,	7.0, 25.0	, 9.0, 23.	0, 3.0,	29.0,	13.0,	19.0,	5.0,	27.0,	11.0,	21.
	ical solut ataFrame	ion:											
Row	0.0	0.2	0.4	0.6	0.8	1.	а						
NOW		Float64			Floate								
1	0.0	0.0	0.0	0.0	0.0		0.0						
2	0.0	0.884718	-1.4315	1.4315	-0.884	718	0.0						
3	0.0	-0.546786	0.884718	-0.8847	18 0.546	786	0.0						
4	0.0	-0.546786	0.884718	-0.8847	18 0.546	786	0.0						
5	0.0	0.884718	-1.4315	1.4315	-0.884	718	0.0						
6	0.0	0.0	0.0	0.0	0.0		0.0						
Analyt	tical solu	tion:											
6×6 Da	ataFrame												
Row	0.0	0.2	0.4	0.6	0.8	1.	Э						
	Float64	Float64	Float64	Float64	Floate	64 F1	pat64						
1	0.0	0.0	0.0	0.0	0.0		0.0						
2	0.0	0.559017	-0.904508	0.9045	08 -0.559	017	0.0						
3	0.0	-0.345492	0.559017	-0.5590	17 0.345	492	0.0						
4	0.0	-0.345492	0.559017	-0.5590	17 0.345	492	0.0						
5	0.0	0.559017	-0.904508	0.9045	08 -0.559	017	0.0						
6	0.0	0.0	0.0	0.0	0.0		0.0						
Frror	:												
5×6 Da	ataFrame												
Row	0.0	0.2	0.4	0.6	0.8	1.0							
	Float64	Float64	Float64	Float64	Float64	Float6	4						
1	0.0	0.0	0.0	0.0	0.0	0.	9						
2	0.0	0.325701	0.526996	0.526996	0.325701	0.	Э						
3	0.0	0.201295	0.325701	0.325701	0.201295	0.	Э						
4	0.0	0.201295	0.325701	0.325701	0.201295	0.	Э						
5	0.0	0.325701	0.526996	0.526996	0.325701	0.	Э						
6	0.0	0.0	0.0	0.0	0.0	0.	Э						
√ax er	ror = 0.5	2699586453	93001										

N = 32, L = 10, M = 10 thetta(n) = [1.0, 63.0, 31.0, 33.0, 15.0, 49.0, 17.0, 47.0, 7.0, 57.0, 25.0, 39.0, 9.0, 55.0, 23.0, 41.0, 3.0, 61.0, 29.0, 35. 0, 13.0, 51.0, 19.0, 45.0, 5.0, 59.0, 27.0, 37.0, 11.0, 53.0, 21.0, 43.0] Numerical solution:

Nume		Τ.	Co	1	- >	OI	u
6×6	D	a	ta	ıΕ	ra	me	

Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.624343	-1.01021	1.01021	-0.624343	0.0
3	0.0	-0.385865	0.624343	-0.624343	0.385865	0.0
4	0.0	-0.385865	0.624343	-0.624343	0.385865	0.0
5	0.0	0.624343	-1.01021	1.01021	-0.624343	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Analy	tical solu	tion:				
6×6 D	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
3	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
4	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
5	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Error						
	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0653258	0.105699	0.105699	0.0653258	0.0
3	0.0	0.0403736	0.0653258	0.0653258	0.0403736	0.0
4	0.0	0.0403736	0.0653258	0.0653258	0.0403736	0.0
5	0.0	0.0653258	0.105699	0.105699	0.0653258	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Max e	rror = 0.1	11138920566	33368			

 $\begin{array}{l} N=63,\,L=20,\,M=20\\ \text{thetta}(n)=[1.0,\,125.0,\,61.0,\,65.0,\,29.0,\,97.0,\,33.0,\,93.0,\,13.0,\,113.0,\,49.0,\,77.0,\,17.0,\,109.0,\,45.0,\,81.0,\,5.0,\,121.0,\,57.\\ 0,\,69.0,\,25.0,\,101.0,\,37.0,\,89.0,\,9.0,\,117.0,\,53.0,\,73.0,\,21.0,\,105.0,\,41.0,\,85.0,\,3.0,\,123.0,\,59.0,\,67.0,\,27.0,\,99.0,\,35.0,\,9.0,\,123.$ 1.0, 11.0, 115.0, 51.0, 75.0, 19.0, 107.0, 43.0, 83.0, 7.0, 119.0, 55.0, 71.0, 23.0, 103.0, 39.0, 87.0, 15.0, 111.0, 47.0, 79. 0, 31.0, 95.0, 63.0]

Numerical solution:

6×6 Da	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.574759	-0.929979	0.929979	-0.574759	0.0
3	0.0	-0.35522	0.574759	-0.574759	0.35522	0.0
4	0.0	-0.35522	0.574759	-0.574759	0.35522	0.0
5	0.0	0.574759	-0.929979	0.929979	-0.574759	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Analy	tical solu	rtion:				
6×6 Da	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
3	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
4	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
5	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Error	:					
6×6 Da	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0157416	0.0254704	0.0254704	0.0157416	0.0
3	0.0	0.00972883	0.0157416	0.0157416	0.00972883	0.0
4	0.0	0.00972883	0.0157416	0.0157416	0.00972883	0.0
5	0.0	0.0157416	0.0254704	0.0254704	0.0157416	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Max ei	rror = 0.0	26781161447	603896			

4

N = 127, L = 40, M = 40 thetta(n) = [1.0, 253.0, 125.0, 129.0, 61.0, 193.0, 65.0, 189.0, 29.0, 225.0, 97.0, 157.0, 33.0, 221.0, 93.0, 161.0, 13.0, 241.0, 113.0, 141.0, 49.0, 205.0, 77.0, 177.0, 17.0, 237.0, 109.0, 145.0, 45.0, 209.0, 81.0, 173.0, 5.0, 249.0, 121.0, 133.0, 57.0, 197.0, 69.0, 185.0, 25.0, 229.0, 101.0, 153.0, 37.0, 217.0, 89.0, 165.0, 9.0, 245.0, 117.0, 137.0, 53.0, 201.0, 73.0, 181.0, 2 1.0, 233.0, 105.0, 149.0, 41.0, 213.0, 85.0, 169.0, 3.0, 251.0, 123.0, 131.0, 59.0, 195.0, 67.0, 187.0, 27.0, 227.0, 99.0, 155.0, 35.0, 219.0, 91.0, 163.0, 11.0, 243.0, 115.0, 139.0, 51.0, 203.0, 75.0, 179.0, 19.0, 235.0, 107.0, 147.0, 43.0, 211.0, 83.0, 171.0, 7.0, 247.0, 119.0, 135.0, 55.0, 199.0, 71.0, 183.0, 23.0, 231.0, 103.0, 151.0, 39.0, 215.0, 87.0, 167.0, 15.0, 239.0, 11 1.0, 143.0, 47.0, 207.0, 79.0, 175.0, 31.0, 223.0, 95.0, 159.0, 63.0, 191.0, 127.0]
Numerical solution: Numerical solution:

6×6 Da	ataFrame	.10				
Row	0.0 Float64	0.2 Float64	0.4 Float64	0.6 Float64	0.8 Float64	1.0 Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.562903	-0.910796	0.910796	-0.562903	0.0
3	0.0	-0.347893	0.562903	-0.562903	0.347893	0.0
4	0.0	-0.347893	0.562903	-0.562903	0.347893	0.0
5	0.0	0.562903	-0.910796	0.910796	-0.562903	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Analy	tical solu	ıtion:				
6×6 Da	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
3	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
4	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
5	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Error	:					
6×6 Da	ataFrame					
Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.6
2	0.0	0.00388559	0.00628701	0.006287	01 0.00388	559 0.6
3	0.0	0.00240142	0.00388559	0.003885	59 0.002403	142 0.6

Max error = 0.006950747671868429

0.0 0.0 ______

N = 253, L = 80, M = 80

thetta(n) = [1.0, 505.0, 251.0, 255.0, 125.0, 381.0, 127.0, 379.0, 61.0, 445.0, 191.0, 315.0, 65.0, 441.0, 187.0, 319.0, 29.0, 477.0, 223.0, 283.0, 97.0, 409.0, 155.0, 351.0, 33.0, 473.0, 219.0, 287.0, 93.0, 413.0, 159.0, 347.0, 13.0, 493.0, 239.0, 267. 0, 113.0, 393.0, 139.0, 367.0, 49.0, 457.0, 203.0, 303.0, 77.0, 429.0, 175.0, 331.0, 17.0, 489.0, 235.0, 271.0, 109.0, 397.0, 1 0, 113.0, 393.0, 139.0, 367.0, 49.0, 457.0, 263.0, 363.0, 77.0, 429.0, 175.0, 331.0, 17.0, 489.0, 235.0, 271.0, 169.0, 397.0, 1
43.0, 363.0, 45.0, 267.0, 299.0, 81.0, 425.0, 171.0, 335.0, 5.0, 501.0, 247.0, 259.0, 121.0, 385.0, 131.0, 375.0, 57.0,
449.0, 195.0, 311.0, 69.0, 437.0, 183.0, 323.0, 25.0, 481.0, 227.0, 279.0, 101.0, 405.0, 151.0, 355.0, 37.0, 469.0, 215.0, 291.
0, 89.0, 417.0, 163.0, 343.0, 9.0, 497.0, 243.0, 263.0, 117.0, 389.0, 135.0, 371.0, 53.0, 453.0, 199.0, 307.0, 73.0, 433.0, 17
9.0, 327.0, 21.0, 485.0, 231.0, 275.0, 105.0, 401.0, 147.0, 359.0, 41.0, 465.0, 211.0, 295.0, 85.0, 421.0, 167.0, 339.0, 3.0, 5
03.0, 249.0, 257.0, 123.0, 383.0, 129.0, 377.0, 59.0, 447.0, 193.0, 313.0, 67.0, 439.0, 185.0, 321.0, 27.0, 479.0, 225.0, 281.
0, 99.0, 407.0, 153.0, 353.0, 353.0, 350.0, 471.0, 217.0, 289.0, 91.0, 415.0, 161.0, 345.0, 11.0, 495.0, 241.0, 265.0, 115.0, 391.0, 13 7.0, 369.0, 51.0, 455.0, 201.0, 305.0, 75.0, 431.0, 177.0, 329.0, 19.0, 487.0, 233.0, 273.0, 107.0, 399.0, 145.0, 361.0, 43.0, 463.0, 209.0, 297.0, 83.0, 423.0, 169.0, 337.0, 7.0, 499.0, 245.0, 261.0, 119.0, 387.0, 133.0, 373.0, 55.0, 451.0, 197.0, 309.0, 71.0, 435.0, 181.0, 325.0, 23.0, 483.0, 229.0, 277.0, 103.0, 403.0, 149.0, 357.0, 39.0, 467.0, 213.0, 293.0, 87.0, 419.0, 16 5.0, 341.0, 15.0, 491.0, 237.0, 269.0, 111.0, 395.0, 141.0, 365.0, 47.0, 459.0, 205.0, 301.0, 79.0, 427.0, 173.0, 333.0, 31.0, 475.0, 221.0, 285.0, 95.0, 411.0, 157.0, 349.0, 63.0, 443.0, 189.0, 317.0, 253.0]

Numerical solution:

		•	_	_	٠,	_	_	~	_	٠,	٦	_	_
60	_	n	_	+	_	Е.		m	_				

	itaFrame	.1011.								
Row	0.0	0.2	0.4	0.		0.8		1.0		
	F10at64	Float64	Float64	FI	oat64	F10	at64	Floa	T64	
1	0.0	0.0	0.0	0	.0	0.	0		0.0	
2	0.0	0.559983	-0.906072	0	.906072	-0.	559983		0.0	
3	0.0	-0.346089	0.559983	-0	.559983	0.	346089		0.0	
4	0.0	-0.346089	0.559983	-0	.559983	0.	346089		0.0	
5	0.0	0.559983	-0.906072	0	.906072	-0.	559983		0.0	
6	0.0	0.0	0.0	0	.0	0.	0		0.0	
Analyt	ical solu	tion:								
6×6 Da	taFrame									
Row	0.0	0.2	0.4	0.	6	0.8		1.0		
	Float64	Float64	Float64	Fl	oat64	Flo	at64	Floa	t64	
1	0.0	0.0	0.0	0	.0	0.	0		0.0	
2	0.0	0.559017	-0.904508	0	.904508	-0.	559017		0.0	
3	0.0	-0.345492	0.559017	-0	.559017	0.	345492		0.0	
4	0.0	-0.345492	0.559017	-0	.559017	0.	345492		0.0	
5	0.0	0.559017	-0.904508	0	.904508	-0.	559017		0.0	
6	0.0	0.0	0.0	0	.0	0.	0		0.0	
Error										
6×6 Da	taFrame									
Row	0.0	0.2	0.4		0.6		0.8		1.0	
	Float64	Float64	Float64		Float64		Float6	4	Flo	at64
1	0.0	0.0	0.0		0.0		0.0			0.0
2	0.0	0.00096622	0.001563	38	0.00156	338	0.0009	6622		0.0
3	0.0	0.000597157	7 0.000966	22	0.00096	622	0.0005	97157		0.0
4	0.0	0.000597157	7 0.000966	22	0.00096	622	0.0005	97157		0.0
5	0.0	0.00096622	0.001563	38	0.00156	338	0.0009	6622		0.0
6	0.0	0.0	0.0		0.0		0.0			0.0
Max er	ror = 0.0	017284271036	9424403							

N = 505, L = 160, M = 160

thetta(n) = [1.0, 1009.0, 503.0, 507.0, 251.0, 759.0, 253.0, 757.0, 125.0, 885.0, 379.0, 631.0, 127.0, 883.0, 377.0, 633.0, 61.0, 949.0, 443.0, 567.0, 101.0, 819.0, 313.0, 697.0, 65.0, 945.0, 439.0, 571.0, 187.0, 823.0, 317.0, 693.0, 29.0, 981.0, 475.0, 535.0, 223.0, 787.0, 281.0, 729.0, 97.0, 913.0, 447.0, 633.0, 155.0, 855.0, 349.0, 661.0, 33.0, 977.0, 471.0, 539.0, 219.0, 79 1.0, 285.0, 725.0, 93.0, 917.0, 411.0, 599.0, 159.0, 851.0, 345.0, 665.0, 13.0, 997.0, 491.0, 519.0, 239.0, 771.0, 265.0, 745.0, 113.0, 897.0, 391.0, 619.0, 139.0, 871.0, 365.0, 645.0, 49.0, 961.0, 455.0, 555.0, 203.0, 887.0, 301.0, 709.0, 77.0, 933.0, 427.0, 583.0, 175.0, 835.0, 835.0, 329.0, 681.0, 17.0, 993.0, 487.0, 523.0, 235.0, 755.0, 203.0, 887.0, 301.0, 709.0, 77.0, 933.0, 427.0, 583.0, 175.0, 835.0, 459.0, 951.0, 459.0, 551.0, 207.0, 803.0, 297.0, 713.0, 81.0, 929.0, 423.0, 587.0, 171.0, 839.0, 333.0, 677.0, 5.0, 1005.0, 499.0, 511.0, 247.0, 763.0, 257.0, 753.0, 121.0, 889.0, 383.0, 627.0, 131.0, 879.0, 373.0, 637.0, 570.0, 593.0, 447.0, 563.0, 195.0, 415.0, 427.0, 763.0, 257.0, 753.0, 121.0, 889.0, 383.0, 627.0, 311.0, 889.0, 253.0, 245.0, 459.0, 515.0, 447.0, 563.0, 195.0, 415.0, 410.0, 909.0, 403.0, 607.0, 151.0, 859.0, 353.0, 657.0, 37.0, 973.0, 467.0, 543.0, 215.0, 795.0, 227.0, 783.0, 217.0, 453.0, 410.0, 909.0, 463.0, 607.0, 151.0, 859.0, 353.0, 657.0, 37.0, 973.0, 467.0, 543.0, 215.0, 795.0, 289.0, 721.0, 891.0, 415.0, 595.0, 163.0, 847.0, 341.0, 669.0, 9.0, 1001.0, 495.0, 515.0, 243.0, 765.0, 73.0, 937.0, 431.0, 599.0, 433.0, 357.0, 653.0, 410.0, 909.0, 463.0, 547.0, 211.0, 799.0, 293.0, 717.0, 85.0, 925.0, 419.0, 591.0, 167.0, 843.0, 357.0, 653.0, 410.0, 909.0, 463.0, 547.0, 211.0, 799.0, 293.0, 717.0, 85.0, 129.0, 881.0, 375.0, 653.0, 410.0, 909.0, 463.0, 547.0, 211.0, 799.0, 293.0, 717.0, 85.0, 129.0, 881.0, 375.0, 635.0, 599.0, 511.0, 489.0, 483.0, 547.0, 211.0, 799.0, 293.0, 717.0, 85.0, 129.0, 881.0, 375.0, 635.0, 599.0, 511.0, 489.0, 484.0, 555.0, 139.0, 481.0, 999.0, 443.0, 557.0, 159.0, 999.0, 493.0, 517.0, 999

6×6 DataFrame

Row	0.0 Float64	0.2 Float64	0.4 Float64	0.6 Float64	0.8 Float64	1.0 Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.559256	-0.904896	0.904896	-0.559256	0.0
3	0.0	-0.345639	0.559256	-0.559256	0.345639	0.0
4	0.0	-0.345639	0.559256	-0.559256	0.345639	0.0
5	0.0	0.559256	-0.904896	0.904896	-0.559256	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0

Analytical solution:

6×6 DataFrame

Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
3	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
4	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0
5	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0

Error: 6x6 DataFrame

Row	0.0	0.2	0.4	0.6	0.8	1.0
	Float64	Float64	Float64	Float64	Float64	Float64
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.000239216	0.00038706	0.00038706	0.000239216	0.0
3	0.0	0.000147844	0.000239216	0.000239216	0.000147844	0.0
4	0.0	0.000147844	0.000239216	0.000239216	0.000147844	0.0
5	0.0	0.000239216	0.00038706	0.00038706	0.000239216	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0
Max er	ror = 0.0	0042792310977	457504			

Max error = 0.00042792310977457504

N = 1009, L = 320, M = 320

```
thetta(n) = [1.0, 2017.0, 1007.0, 1011.0, 503.0, 1515.0, 505.0, 1513.0, 251.0, 1767.0, 757.0, 1261.0, 253.0, 1765.0, 755.0, 126
3.0, 125.0, 1893.0, 883.0, 1135.0, 379.0, 1639.0, 629.0, 1389.0, 127.0, 1891.0, 881.0, 1137.0, 377.0, 1641.0, 631.0, 1387.0, 6
1.0. 1957.0. 947.0. 1071.0. 443.0. 1575.0. 565.0. 1453.0. 191.0. 1827.0. 817.0. 1201.0. 313.0. 1705.0. 695.0. 1323.0. 65.0. 195
3.0, 943.0, 1075.0, 439.0, 1579.0, 569.0, 1449.0, 187.0, 1831.0, 821.0, 1197.0, 317.0, 1701.0, 691.0, 1327.0, 29.0, 1989.0, 97
9.0, 1039.0, 475.0, 1543.0, 533.0, 1485.0, 223.0, 1795.0, 785.0, 1233.0, 281.0, 1737.0, 727.0, 1291.0, 97.0, 1921.0, 911.0, 110
7.0. 407.0. 1611.0. 601.0. 1417.0. 155.0. 1863.0. 853.0. 1165.0. 349.0. 1669.0. 659.0. 1359.0. 33.0. 1985.0. 975.0. 1043.0. 47
1.0, 1547.0, 537.0, 1481.0, 219.0, 1799.0, 789.0, 1229.0, 285.0, 1733.0, 723.0, 1295.0, 93.0, 1925.0, 915.0, 1103.0, 411.0, 160
7.0, 597.0, 1421.0, 159.0, 1859.0, 849.0, 1169.0, 345.0, 1673.0, 663.0, 1355.0, 13.0, 2005.0, 995.0, 1023.0, 491.0, 1527.0, 51
7.0, 1501.0, 239.0, 1779.0, 769.0, 1249.0, 265.0, 1753.0, 743.0, 1275.0, 113.0, 1905.0, 895.0, 1123.0, 391.0, 1627.0, 617.0, 14
01.0, 139.0, 1879.0, 869.0, 1149.0, 365.0, 1653.0, 643.0, 1375.0, 49.0, 1969.0, 959.0, 1059.0, 455.0, 1563.0, 553.0, 1465.0, 20
3.0, 1815.0, 805.0, 1213.0, 301.0, 1717.0, 707.0, 1311.0, 77.0, 1941.0, 931.0, 1087.0, 427.0, 1591.0, 581.0, 1437.0, 175.0, 184 3.0, 833.0, 1185.0, 329.0, 1689.0, 679.0, 1339.0, 17.0, 2001.0, 991.0, 1027.0, 487.0, 1531.0, 521.0, 1497.0, 235.0, 1783.0, 77
3.0, 1245.0, 269.0, 1749.0, 739.0, 1279.0, 109.0, 1909.0, 899.0, 1119.0, 395.0, 1623.0, 613.0, 1405.0, 143.0, 1875.0, 865.0, 11
53.0, 361.0, 1657.0, 647.0, 1371.0, 45.0, 1973.0, 963.0, 1055.0, 459.0, 1559.0, 549.0, 1469.0, 207.0, 1811.0, 801.0, 1217.0, 297.0, 1721.0, 711.0, 1307.0, 81.0, 1937.0, 927.0, 1091.0, 423.0, 1595.0, 585.0, 1433.0, 171.0, 1847.0, 837.0, 1181.0, 333.0, 168 5.0, 675.0, 1343.0, 5.0, 2013.0, 1003.0, 1015.0, 499.0, 1519.0, 509.0, 1509.0, 247.0, 1771.0, 761.0, 1257.0, 257.0, 1761.0, 75
1.0, 1267.0, 121.0, 1897.0, 887.0, 1131.0, 383.0, 1635.0, 625.0, 1393.0, 131.0, 1887.0, 877.0, 1141.0, 373.0, 1645.0, 635.0, 13
83.0, 57.0, 1961.0, 951.0, 1067.0, 447.0, 1571.0, 561.0, 1457.0, 195.0, 1823.0, 813.0, 1205.0, 309.0, 1709.0, 699.0, 1319.0, 6
9.0, 1949.0, 939.0, 1079.0, 435.0, 1583.0, 573.0, 1445.0, 183.0, 1835.0, 825.0, 1193.0, 321.0, 1697.0, 687.0, 1331.0, 25.0, 199
3.0, 983.0, 1035.0, 479.0, 1539.0, 529.0, 1489.0, 227.0, 1791.0, 781.0, 1237.0, 277.0, 1741.0, 731.0, 1287.0, 101.0, 1917.0, 90 7.0, 1111.0, 403.0, 1615.0, 605.0, 1413.0, 151.0, 1867.0, 857.0, 1161.0, 353.0, 1665.0, 655.0, 1363.0, 37.0, 1981.0, 971.0, 104
     467.0, 1551.0, 541.0, 1477.0, 215.0, 1803.0, 793.0, 1225.0, 289.0, 1729.0, 719.0, 1299.0, 89.0, 1929.0, 919.0, 1099.0, 41
5.0, 1603.0, 593.0, 1425.0, 163.0, 1855.0, 845.0, 1173.0, 341.0, 1677.0, 667.0, 1351.0, 9.0, 2009.0, 999.0, 1019.0, 495.0, 152
3.0, 513.0, 1505.0, 243.0, 1775.0, 765.0, 1253.0, 261.0, 1757.0, 747.0, 1271.0, 117.0, 1901.0, 891.0, 1127.0, 387.0, 1631.0, 62
1.0, 1397.0, 135.0, 1883.0, 873.0, 1145.0, 369.0, 1649.0, 639.0, 1379.0, 53.0, 1965.0, 955.0, 1063.0, 451.0, 1567.0, 557.0, 146
1.0, 199.0, 1819.0, 809.0, 1209.0, 305.0, 1713.0, 703.0, 1315.0, 73.0, 1945.0, 935.0, 1083.0, 431.0, 1587.0, 577.0, 1441.0, 17 9.0, 1839.0, 829.0, 1189.0, 325.0, 1693.0, 683.0, 1335.0, 21.0, 1997.0, 987.0, 1031.0, 483.0, 1535.0, 525.0, 1493.0, 231.0, 178
      777.0, 1241.0, 273.0, 1745.0, 735.0, 1283.0, 105.0, 1913.0, 903.0, 1115.0, 399.0, 1619.0, 609.0, 1409.0, 147.0, 1871.0, 86
1.0, 1157.0, 357.0, 1661.0, 651.0, 1367.0, 41.0, 1977.0, 967.0, 1051.0, 463.0, 1555.0, 545.0, 1473.0, 211.0, 1807.0, 797.0, 122 1.0, 293.0, 1725.0, 715.0, 1303.0, 85.0, 1933.0, 923.0, 1095.0, 419.0, 1599.0, 589.0, 1429.0, 167.0, 1851.0, 841.0, 1177.0, 33
7.0, 1681.0, 671.0, 1347.0, 3.0, 2015.0, 1005.0, 1013.0, 501.0, 1517.0, 507.0, 1511.0, 249.0, 1769.0, 759.0, 1259.0, 255.0, 176
3.0, 753.0, 1265.0, 123.0, 1895.0, 885.0, 1133.0, 381.0, 1637.0, 627.0, 1391.0, 129.0, 1889.0, 879.0, 1139.0, 375.0, 1643.0, 63.0, 1385.0, 59.0, 1959.0, 949.0, 1069.0, 445.0, 1573.0, 563.0, 1455.0, 193.0, 1825.0, 815.0, 1203.0, 311.0, 1707.0, 697.0, 132
      67.0, 1951.0, 941.0, 1077.0, 437.0, 1581.0, 571.0, 1447.0, 185.0, 1833.0, 823.0, 1195.0, 319.0, 1699.0, 689.0, 1329.0,
0, 1991.0, 981.0, 1037.0, 477.0, 1541.0, 531.0, 1487.0, 225.0, 1793.0, 783.0, 1235.0, 279.0, 1739.0, 729.0, 1289.0, 99.0, 1919.0, 909.0, 1109.0, 405.0, 1613.0, 603.0, 1415.0, 153.0, 1865.0, 855.0, 1163.0, 351.0, 1667.0, 657.0, 1361.0, 35.0, 1983.0, 973.
   1045.0, 469.0, 1549.0, 539.0, 1479.0, 217.0, 1801.0, 791.0, 1227.0, 287.0, 1731.0, 721.0, 1297.0, 91.0, 1927.0, 917.0, 1101.
0, 413.0, 1605.0, 595.0, 1423.0, 161.0, 1857.0, 847.0, 1171.0, 343.0, 1675.0, 665.0, 1353.0, 11.0, 2007.0, 997.0, 1021.0, 493.0, 1525.0, 515.0, 1503.0, 241.0, 1777.0, 767.0, 1251.0, 263.0, 1755.0, 745.0, 1273.0, 115.0, 1903.0, 893.0, 1125.0, 389.0, 162
9.0, 619.0, 1399.0, 137.0, 1881.0, 871.0, 1147.0, 367.0, 1651.0, 641.0, 1377.0, 51.0, 1967.0, 957.0, 1061.0, 453.0, 1565.0, 55
5.0, 1463.0, 201.0, 1817.0, 807.0, 1211.0, 303.0, 1715.0, 705.0, 1313.0, 75.0, 1943.0, 933.0, 1085.0, 429.0, 1589.0, 579.0, 143 9.0, 177.0, 1841.0, 831.0, 1187.0, 327.0, 1691.0, 681.0, 1337.0, 19.0, 1999.0, 989.0, 1029.0, 485.0, 1533.0, 523.0, 1495.0, 23
     1785.0, 775.0, 1243.0, 271.0, 1747.0, 737.0, 1281.0, 107.0, 1911.0, 901.0, 1117.0, 397.0, 1621.0, 611.0, 1407.0, 145.0, 18
73.0, 863.0, 1155.0, 359.0, 1659.0, 649.0, 1369.0, 43.0, 1975.0, 965.0, 1053.0, 461.0, 1557.0, 547.0, 1471.0, 209.0, 1809.0, 79 9.0, 1219.0, 295.0, 1723.0, 713.0, 1305.0, 83.0, 1935.0, 925.0, 1093.0, 421.0, 1597.0, 587.0, 1431.0, 169.0, 1849.0, 839.0, 117
     335.0, 1683.0, 673.0, 1345.0, 7.0, 2011.0, 1001.0, 1017.0, 497.0, 1521.0, 511.0, 1507.0, 245.0, 1773.0, 763.0, 1255.0
9.0, 1759.0, 749.0, 1269.0, 119.0, 1899.0, 889.0, 1129.0, 385.0, 1633.0, 623.0, 1395.0, 133.0, 1885.0, 875.0, 1143.0, 371.0, 16
47.0, 637.0, 1381.0, 55.0, 1963.0, 953.0, 1065.0, 449.0, 1569.0, 559.0, 1459.0, 197.0, 1821.0, 811.0, 1207.0, 307.0, 1711.0, 70
1.0, 1317.0, 71.0, 1947.0, 937.0, 1081.0, 433.0, 1585.0, 575.0, 1443.0, 181.0, 1837.0, 827.0, 1191.0, 323.0, 1695.0, 685.0, 133
3.0, 23.0, 1995.0, 985.0, 1033.0, 481.0, 1537.0, 527.0, 1491.0, 229.0, 1789.0, 779.0, 1239.0, 275.0, 1743.0, 733.0, 1285.0, 10
3.0, 1915.0, 905.0, 1113.0, 401.0, 1617.0, 607.0, 1411.0, 149.0, 1869.0, 859.0, 1159.0, 355.0, 1663.0, 653.0, 1365.0, 39.0, 197
     969.0, 1049.0, 465.0, 1553.0, 543.0, 1475.0, 213.0, 1805.0, 795.0, 1223.0, 291.0, 1727.0, 717.0, 1301.0, 87.0, 1931.0, 92
1.0, 1097.0, 417.0, 1601.0, 591.0, 1427.0, 165.0, 1853.0, 843.0, 1175.0, 339.0, 1679.0, 669.0, 1349.0, 15.0, 2003.0, 993.0, 102 5.0, 489.0, 1529.0, 519.0, 1499.0, 237.0, 1781.0, 771.0, 1247.0, 267.0, 1751.0, 741.0, 1277.0, 111.0, 1907.0, 897.0, 1121.0, 39
     , 1625.0, 615.0, 1403.0, 141.0, 1877.0, 867.0, 1151.0, 363.0, 1655.0, 645.0, 1373.0, 47.0, 1971.0, 961.0, 1057.0, 457.0, 156
1.0, 551.0, 1467.0, 205.0, 1813.0, 803.0, 1215.0, 299.0, 1719.0, 709.0, 1309.0, 79.0, 1939.0, 929.0, 1089.0, 425.0, 1593.0, 58
3.0, 1435.0, 173.0, 1845.0, 835.0, 1183.0, 331.0, 1687.0, 677.0, 1341.0, 31.0, 1987.0, 977.0, 1041.0, 473.0, 1545.0, 535.0, 148
3.0, 221.0, 1797.0, 787.0, 1231.0, 283.0, 1735.0, 725.0, 1293.0, 95.0, 1923.0, 913.0, 1105.0, 409.0, 1609.0, 599.0, 1419.0, 15
7.0, 1861.0, 851.0, 1167.0, 347.0, 1671.0, 661.0, 1357.0, 63.0, 1955.0, 945.0, 1073.0, 441.0, 1577.0, 567.0, 1451.0, 189.0, 182 9.0, 819.0, 1199.0, 315.0, 1703.0, 693.0, 1325.0, 1009.0]
```

Row	0.0	0.2	0.4	0.6	0.8	1.0	
	Float64	Float64	Float64	Float64	Float64	Float64	
1		0.0					
2	0.0	0.559075	-0.904602	0.904602	-0.559075	0.0	
3	0.0	-0.345527	0.559075	-0.559075	0.345527	0.0	
4	0.0	-0.345527	0.559075	-0.559075	0.345527	0.0	
5		0.559075					
6		0.0					
Analy	tical solu	tion:					
6×6 D	ataFrame						
Row	0.0	0.2	0.4	0.6	0.8	1.0	
	Float64	Float64	Float64	Float64	Float64	Float64	
1	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0	
3	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0	
4	0.0	-0.345492	0.559017	-0.559017	0.345492	0.0	
5	0.0	0.559017	-0.904508	0.904508	-0.559017	0.0	
6	0.0	0.0	0.0	0.0	0.0	0.0	
Error							
6×6 D	ataFrame						
Row	0.0	0.2	0.4	0.6	0.8	1.0	
	Float64	Float64	Float64	Float64	Float64	Flo	at64
1	0.0	0.0	0.0	0.0	0.0		0.0
2	0.0	5.7692e-5	9.33476e-5	9.33476e-	5 5.7692e	-5	0.0
3	0.0	3.56556e-5	5.7692e-5	5.7692e-5	3.56556	e-5	0.0
4	0.0	3.56556e-5	5.7692e-5	5.7692e-5	3.56556	e-5	0.0
5	0.0	5.7692e-5	9.33476e-5	9.33476e-	5 5.7692e	-5	0.0
6	0.0	0.0	0.0	0.0	0.0		0.0

Результаты и обсуждения

В данной работе представлена схема, по которой проводились численные расчеты, найдено аналитическое решение и ее след. Выявлен набор τ_n для каждой тройки N, L, M. Найдено численное решение для каждой тройки с учетом выбранного чебышевского набора, причем наблюдается устойчивость и сходимость решения на последовательно удваеваемых сетках. На последовательно удваеваемых сетках также наблюдается уменьшение ошибки примерно в 4 раза при уменьшении сетки вдвое по каждой оси.