Algoritmi di ordinamento (sorting algorithms)

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

Motivazioni

- Il nostro obiettivo è **ordinare** una struttura dati sulla base del valore di una chiave e del significato dell'operatore *confronto*:
 - ad esempio, per gli interi sappiamo che è definito l'ordinamento: 5 < 6, 8 < 9, etc...
 - altro esempio: per le stringhe di caratteri di un alfabeto è definito l'ordinamento lessicografico (l'ordine del dizionario):
 - aceto < acqua < birra < gingerino < grappa < vino < vodka
 - per ora proveremo ad ordinare soltanto array di interi
- Questo problema ha innumerevoli applicazioni in Informatica:
 - ordinare per poi cercare una chiave (pensate alla ricerca binaria)
 - produrre output ordinati da input disordinati
 - fare statistiche su insiemi di dati (pensare ad esempio alla mediana)

Bogo sort

- Ci sono diversi metodi (che si tradurranno in *algoritmi*) per ordinare una sequenza di interi
- Alcuni metodi sono intuitivi ma poco efficienti, altri sono meno intuitivi ma molto più efficienti
- **Bogo sort** è un algoritmo che mostra come sia effettivamente possibile ordinare un array in un modo molto intuitivo, ma spaventosamente lento. Lo pseudocodice di questo algoritmo è il seguente:

```
int v[10] = {0, 4, 7, 2, 8, 6, 2, 3, 10, 9};
bool sorted = false;
while (sorted == false) {
  if (is_sorted(v)) {
    sorted = true;
  }
  shuffe(v);
}
```

Bogo sort

- Ordinare un array con Bogo sort equivale a ordinare un mazzo di carte lanciandolo in aria diverse volte finché non cade ordinato
- Questo algoritmo esegue un numero di operazioni proporzionale al **fattoriale** della dimensione dell'array. <u>In Informatica, quando sentite parlare di fattoriali ed esponenziali dovete spaventarvi...</u>

- Considerazioni intuitive:
 - se un array A è ordinato in senso crescente, allora A[i] >= A[j] per ogni i, j indici dell'array, con j < i
 - in altre parole: se un array è ordinato in senso crescente, ogni elemento è >= uguale di tutti i precedenti
- Sfruttiamo questa intuizione per ordinare un array
- Leggiamo l'array da sinistra a destra, controllando come è posizionato ciascun elemento rispetto ai precedenti

10	11	14	•	20	10	7	21	12	11	1
10	TT	14	ð	20	19		ZI	13	TT	-T

- si inizia a leggere dal secondo elemento perché il primo non ha elementi precedenti
- 11 è posizionato bene rispetto ai precedenti. Nessuna operazione

10	11	14	8	20	19	7	21	13	11	-1

• 14 è posizionato bene rispetto ai precedenti. Nessuna operazione

10	11	14	8	20	19	7	21	13	11	-1
						I	I			

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

10	11	14	20	19	7	21	13	11	-1

8			
---	--	--	--

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

10	11	14	20	19	7	21	13	11	-1
	I		1				1		1

8	
---	--

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

10	11	14	20	19	7	21	13	11	-1
				-					

8	
---	--

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

10 11 14 2	20 19	9 7	21	13	11	-1

8	
---	--

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

0	10	11	14	20	10	7	21	12	11	1
8	TO	T T	14	20	19		Z I	13		-1

- 8 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 8
- tutti gli elementi > 8 che lo precedono vanno shiftati a destra di una posizione

13

8	10	11	14	20	19	7	21	13	11	-1

• 20 è posizionato bene rispetto ai precedenti. Nessuna operazione

8	10	11	14	20	19	7	21	13	11	-1

- 19 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 19
- tutti gli elementi > 19 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	20	7	21	13	11	-1

		19			

- 19 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 19
- tutti gli elementi > 19 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	20	7	21	13	11	-1
									<u> </u>

19

- 19 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 19
- tutti gli elementi > 19 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	19	20	7	21	13	11	-1
									-	

- 19 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 19
- tutti gli elementi > 19 che lo precedono vanno shiftati a destra di una posizione

8 10	11	14	19	20	7	21	13	11	-1
									_

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	19	20	21	13	11	-1

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

					ļ			
8 10	11	14	19	20	21	13	11	-1

7

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

8 10	11	14	19	20	21	13	11	-1

7

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	19	20	21	13	11	-1
	1	,		,	·	1		,	

	7	
--	---	--

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	19	20	21	13	11	-1
	1								

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

	ı I		
8 10 11 14 19 20 21	13	11	-1

				7			
--	--	--	--	---	--	--	--

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

8	10	11	14	19	20	21	13	11	-1
I	I	I			1	1	I		

		7		
				<u>. </u>

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	14	19	20	21	13	11	-1

- 7 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 7
- tutti gli elementi > 7 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	14	19	20	21	13	11	-1

• 21 è posizionato bene rispetto ai precedenti. Nessuna operazione

7	8	10	11	14	19	20	21	13	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

31

7	8	10	11	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7 0 40 44					· · · · · · · · · · · · · · · · · · ·	
7 8 10 11	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	11	-1

- 13 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 13
- tutti gli elementi > 13 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	11	-1

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21		-1
									4.4	

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	-1

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	-1
								44	

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14		19	20	21	-1
		1				1				
									4.4	

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	-1

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	13	14	19	20	21	-1
								4.4	

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21	-1

- 11 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= 11
- tutti gli elementi > 11 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21	-1

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > -1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21	

	-1
--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21
7	8	10	11	11	13	14	19	20	21

-1

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

	-1
--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > -1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

							-1
--	--	--	--	--	--	--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13		14	19	20	21
			1	1	1	1		<u> </u>	<u> </u>	1

	-1
--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > -1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

										-1
--	--	--	--	--	--	--	--	--	--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11		11	13	14	19	20	21
		I	1	I	1	I	I	I	I	1

	-1
--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

	-1
--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21
				1	1				

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

										-1
--	--	--	--	--	--	--	--	--	--	----

- −1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > −1 che lo precedono vanno shiftati a destra di una posizione

7	8	10	11	11	13	14	19	20	21

- -1 è posizionato male rispetto ai precedenti. Va sistemato al posto giusto, ossia appena dopo il primo elemento precedente <= −1
- tutti gli elementi > -1 che lo precedono vanno shiftati a destra di una posizione

-1	7	8	10	11	11	13	14	19	20	21

- l'array è ordinato
- è un ordinamento di tipo **incrementale**: alla fine dell'iterazione i, la fetta dell'array da 0 a i è ordinata
- quando si verifica il **worst case** di Insertion sort?
- quando si verifica il **best case** di Insertion sort?

```
for i = 1, i <= A.size - 1, i = i + 1:
   item = A[i]
   j = i - 1
   while j >= 0 and item < A[j]:
     A[j + 1] = A[j]
     j = j - 1
   A[j + 1] = item</pre>
```

- l'assegnazione A[j + 1] = A[j] realizza il right shift
- perché A[j + 1] = item? Se j è ultimo indice per il quale item < A[j], allora item va posto in posizione j. Ma, dato che item < A[j], si entra nel corpo del ciclo, al termine del quale j viene decrementata di 1. Quindi, quando si esce dal ciclo, la posizione giusta in cui porre item è j + 1

- Considerazione intuitiva:
 - se un array A è ordinato in senso crescente, allora è vero che
 A[i] <= A[i + 1] per ogni i indice dell'array
- Quindi, se un array non è ordinato in senso crescente, allora esiste almeno un i per il quale A[i] > A[i + 1]
- Bubble sort esamina le coppie (A[i], A[i + 1]) una ad una, sistemando quelle disordinate
- Bubble sort procede per passate, vediamo come

	1st pass									
swap	6	3	6	87	11	13	6	3	9	12
	3	6	6	87	11	13	6	3	9	12
	3	6	6	87	11	13	6	3	9	12
swap	3	6	6	87	11	13	6	3	9	12
swap	3	6	6	11	87	13	6	3	9	12
swap	3	6	6	11	13	87	6	3	9	12
swap	3	6	6	11	13	6	87	3	9	12
swap	3	6	6	11	13	6	3	87	9	12
swap	3	6	6	11	13	6	3	9	87	12
	3	6	6	11	13	6	3	9	12	87

	2nd pass									
	3	6	6	11	13	6	3	9	12	87
	3	6	6	11	13	6	3	9	12	87
	3	6	6	11	13	6	3	9	12	87
	3	6	6	11	13	6	3	9	12	87
swap	3	6	6	11	13	6	3	9	12	87
swap	3	6	6	11	6	13	3	9	12	87
swap	3	6	6	11	6	3	13	9	12	87
swap	3	6	6	11	6	3	9	13	12	87
	3	6	6	11	6	3	9	12	13	87

- in grigio le coppie esaminate ed eventualmente sistemate
- gli elementi blu sono sistemati correttamente, per cui non si sposteranno più
- in verde la porzione dell'array non ancora sistemata al termine della passata

3rd	pass

swap swap swap

J. a pass									
3	6	6	11	6	3	9	12	13	87
3	6	6	11	6	3	9	12	13	87
3	6	6	11	6	3	9	12	13	87
3	6	6	11	6	3	9	12	13	87
3	6	6	6	11	3	9	12	13	87
3	6	6	6	3	11	9	12	13	87
3	6	6	6	3	9	11	12	13	87
3	6	6	6	3	9	11	12	13	87

4th pass

swap

3	6	6	6	3	9	11	12	13	87
3	6	6	6	3	9	11	12	13	87
3	6	6	6	3	9	11	12	13	87
3	6	6	6	3	9	11	12	13	87
3	6	6	3	6	9	11	12	13	87
3	6	6	3	6	9	11	12	13	87
3	6	6	3	6	9	11	12	13	87

5th pass

swap

Jul pass									
3	6	6	3	6	9	11	12	13	87
3	6	6	3	6	9	11	12	13	87
3	6	6	3	6	9	11	12	13	87
3	6	3	6	6	9	11	12	13	87
3	6	3	6	6	9	11	12	13	87
3	6	3	6	6	9	11	12	13	87

6th pass

swap

3	6	3	6	6	9	11	12	13	87
3	6	3	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87

7th pass

3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87

8th pass

3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87

9th pass

3	3	6	6	6	9	11	12	13	87
3	3	6	6	6	9	11	12	13	87

- Cosa c'entrano le **bolle** con l'ordinamento?
- Bubble sort deve il suo nome al fatto che, al termine di ciascuna passata, <u>l'elemento più grande non ancora sistemato (la bolla più grande che non è ancora salita) si sistema nella prima posizione libera a destra (va più in alto possibile)</u>
- Questa è anche una dimostrazione intuitiva della correttezza dell'algoritmo: se dopo ciascuna passata viene posizionato correttamente l'elemento più grande che doveva essere sistemato, dopo massimo n – 1 (dove n è la dimensione dell'array) passate l'array è completamente ordinato
- Ottimizzazione: se al termine di una passata si verifica che tutte le coppie considerate sono ordinate, allora non ha senso fare ulteriori passate

```
for i = A.size - 1, i >= 1, i = i - 1:
  for j = 0, j <= i - 1, j = j + 1:
    if A[j] > A[j + 1]:
      swap(A[j], A[j + 1])
```

- il ciclo esterno procede da destra a sinistra perché Bubble sort sistema gli elementi giusti al posto giusto a partire da destra
- il ciclo interno arriva fino a i 1 perché nel corpo del ciclo ciascun elemento viene confrontato con il successore. L'ultimo successore con cui ha senso effettuare il confronto è l'elemento in posizione i, il cui predecessore è in posizione i 1
- al termine della passata di indice i, in posizione i c'è l'elemento corretto, che di conseguenza non verrà più spostato

- Considerazione intuitiva:
 - l'elemento più piccolo di un array ordinato in senso crescente deve essere posizionato all'inizio dell'array
- Sfruttiamo la considerazione precedente per studiare un algoritmo di ordinamento molto semplice e inefficiente: **Selection sort**
- Per implementare questo algoritmo, dobbiamo ricordarci come si cerca l'elemento minimo di un array, e come si scambia il contenuto di 2 variabili, cose che sappiamo già fare

indexes	0	1	2	3	4	5	6	7	8	9
values	9	3	10	2	4	20	10	11	9	6

iterazione 1:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	10	9	4	20	10	11	9	6

iterazione 1:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	10	9	4	20	10	11	9	6

iterazione 2:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	10	9	4	20	10	11	9	6

iterazione 2:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	10	9	4	20	10	11	9	6

iterazione 3:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	9	10	20	10	11	9	6

iterazione 3:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	9	10	20	10	11	9	6

iterazione 4:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	10	20	10	11	9	9

iterazione 4:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	10	20	10	11	9	9

iterazione 5:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	20	10	11	10	9

iterazione 5:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	20	10	11	10	9

iterazione 6:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	11	10	20

iterazione 6:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	11	10	20

iterazione 7:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	11	10	20

iterazione 7:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	11	10	20

iterazione 8:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	10	11	20

iterazione 8:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	10	11	20

iterazione 9:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	10	11	20

iterazione 9:

trovare l'elemento minimo della porzione grigia sistemarlo all'inizio della porzione grigia

indexes	0	1	2	3	4	5	6	7	8	9
values	2	3	4	6	9	9	10	10	11	20

- la porzione rimasta ha un solo elemento, che ovviamente è già posizionato bene
- l'array è ordinato
- <u>l'efficienza di Selection sort dipende dagli elementi dell'array?</u>

```
for i = 0, i <= A.size - 2, i = i + 1:
    min = A[i]
    ind_min = i
    for j = i + 1, j <= A.size - 1, j = j + 1:
        if A[j] < min:
            min = A[j]
        ind_min = j
    swap(A[i], A[ind_min])</pre>
```

Considerazioni

- L'ordinamento è uno dei problemi più studiati dell'Informatica
- Gli algoritmi che abbiamo visto sono detti in place: operano senza utilizzare memoria aggiuntiva rispetto a quella necessaria per l'array
- Vedremo altri algoritmi di ordinamento meno intuitivi, ma molto più efficienti

Da vedere a casa

• Programming BASIC and Sorting - Computerphile