MATLAB FOR BIOMEDICAL ENGINEERS

Modeling Molecular Biophysics

MOLECULAR TRANSPORT

DIFFUSION THROUGH SOLUTION

- Fick's First Law states that flux is proportional to the concentration gradient at steady state
 - Where J is flux, D is the diffusion coefficient, C is concentration, and
 x is location

$$J = -D \frac{\delta C}{\delta x}$$

■ For the simplest way to solve for flux, rewrite the equation so

$$J = -D \frac{C_2 - C_1}{x_2 - x_1}$$

This allows the block diagram to only consist of basic operations

DIFFUSION THROUGH SOLUTION

Simulink model will look something like this

DIFFUSION THROUGH A MEMBRANE

- Diffusion through the cell membrane uses different models
 - Depends on type of solute
- Cell membrane is impermeable to ions and large uncharged polar molecules
 - These substances use channels or pores in the membrane
 - Use the Microporous Membrane model
 - Some of these pores or channels are not always open/active must use Facilitated Diffusion model
- Hydrophobic and small uncharged polar molecules diffuse directly through the membrane
 - Use the Lipid Bilayer model

MICROPOROUS MEMBRANE MODEL

- For the microporous membrane model at steady state
 - Flux is proportional to the concentration gradient and pore size
 - Where n is the number of pores and a is the pore radius

$$J_s = n\pi a^2 D \frac{\delta C}{\delta x}$$

Again, to make modeling simpler, the equation can be rewritten as

$$J_S = n\pi a^2 D \frac{C_2 - C_1}{x_2 - x_1}$$

MICROPOROUS MEMBRANE MODEL

Now the Simulink model becomes a bit more complicated, but still only uses simple operations

LIPID BILAYER MEMBRANE MODEL

- For the lipid bilayer membrane model at steady state
 - p is the permeability coefficient
 - c'in is the concentration just inside the membrane on the interior side
 - c_{in} is the concentration on the inside of the cell
 - D_m is the diffusion coefficient of the solute in the membrane
 - k is the partition coefficient
 - x is the membrane thickness

$$J = p\Delta C = p(c_{in} - c'_{in})$$
$$p = \frac{D_m k}{x}$$
$$k = \frac{c'_{in}}{c_{in}}$$

LIPID BILAYER MEMBRANE MODEL

So, expanded out, the new equation for flux through a lipid bilayer membrane is

$$J = \frac{D_m c'_{in}}{x c_{in}} (c_{in} - c'_{in})$$

The Simulink model will be

- Includes facilitated diffusion and active transport
- Very similar, except active transport goes against the concentration gradient
 - Requires ATP hydrolysis
- Other than ATP usage, can be modeled very similarly

- Used when solutes require designated transport proteins
- Can be modeled using Henri-Michaelis-Menten Kinetics
 - Where V_{max} is the maximum rate, [S] is the concentration of solute, and k_m is the concentration of solute at $\frac{1}{2}V_{max}$

$$V = \frac{V_{max}[S]}{k_m + [S]}$$

Simplest modeling assumes all variables are known

Simplest model

OSMOSIS

OSMOSIS

- Osmosis is the flow of water through a membrane in response to concentration differences or external forces
- Important concept osmolarity
 - Measure of total solute concentration in solution
 - Ionic compounds will dissociate, increasing osmolarity
 - ex) 1M glucose → 1 osmolar solution
 1M NaCl → 2 osmolar solution
 - Osmolarity is used to calculate osmotic pressure, the driving force behind osmotic flux

OSMOTIC PRESSURE

Osmotic pressure π is proportional to the osmolarity of the solution

$$\pi = RTC_{solute}$$

- Where R is the gas constant, T is the temperature in Kelvin, and C_{solute} is the osmolarity
- Difference in osmotic pressure across the membrane is the driving force of osmosis

$$\Delta \pi = RT \Delta C_{solute}$$

■ However, if the membrane is semipermeable to solute, $\Delta\pi = \sigma RT \Delta C_{solute} \text{ where } \sigma = 1 - \frac{P_{solute}}{P_{water}} \text{ and P values are permeability}$

OSMOTIC FLUX

- Osmotic flux is proportional to the osmotic pressure and external applied force
 - Where L_p is hydraulic permability, $\Delta \pi$ is osmotic pressure difference, and ΔP is external pressure difference (essentially $\Delta F/A$)

$$J = L_p(\Delta \pi - \Delta P)$$

Expanded form of osmotic flux (A = membrane surface area)

$$J = L_p(RT\Delta C_{solute} - \frac{\Delta F}{A})$$

OSMOTIC FLUX

Osmotic Flux model

ELECTROCHEMICAL POTENTIAL

ELECTROCHEMICAL POTENTIAL

- Potential of solution due to electrical and chemical components
 - Electrical due to ions z is ion charge, F is Faraday's constant, ϕ is the electrical potential
 - Chemical due to solute concentration gradients
 - Has a baseline component μ_0 $\mu = \mu_0 + RT \ln C + zF \varphi$
- Derivative is the electrochemical force

TRANSMEMBRANE POTENTIAL

- Measure of the electrical potential for a specific ion across a membrane
- Derived from the electrochemical potential difference across the membrane
- Transmembrane potentials calculated at equilibrium for each species
 - $\Delta G = 0 \rightarrow \Delta \mu = 0 \rightarrow -RT \ln \Delta C + zF\Delta \varphi = 0$
 - V is $\Delta \Phi$, the electrical potential (voltage)

$$V = \frac{RT}{zF} \ln \frac{C_{out}}{C_{in}}$$

TRANSMEMBRANE POTENTIAL

Simple model

