

MOS INTEGRATED CIRCUIT μ PD161704A

1-CHIP DRIVER FOR 240 RGB x 320 DOT TFT-LCD WITH RAM

DESCRIPTION

The μ PD161704A is a TFT-LCD 1-chip driver that includes display RAM.

This driver has 720-source outputs, 322-gate outputs (including 2-dummy outputs), a display RAM capacity of 1,382,400 bits (240 pixels x 18 bits x 320 lines) and can provide a 262,144-color display.

FEATURES

- TFT-LCD 1-chip driver with on-chip display RAM
- Logic power supply voltage: 2.3 V (Using internal regulator circuit)
- CPU/RGB interface voltage: 1.65 to 3.3 V
- Driver power supply voltage: 3.4 to 5.5 V
- Display RAM: 240 x 18 x 320 bits
- Driver outputs: 720 outputs (Source), 322 outputs (Gate, including 2 dummy)
- CPU interface: Three types of interfaces selectable
 - · 6-/16-/18-bit RGB interface (Through mode, capture mode)
 - · i80/M68 parallel interface (Selectable from 8-/16-/18-bit)
 - · 16-/18-bit serial interface (No reading in serial interface mode)
- Colors: 262,144 colors/pixel
- On-chip timing generator
- · On-chip oscillator

ORDERING INFORMATION

Part Number	Package
μ PD161704AP	Chip

Remark Purchasing the above chip entails the exchange of documents such as a separate memorandum on product quality, so please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

CONTENTS

1.	BL	OCK I	DIAGRAM	4
2.	PIN	I CON	FIGURATION (Pad Layout)	5
3.	PIN	I FUN	CTIONS	14
	3.1	Powe	er Supply System Pins	14
	3.2	Logic	System Pins	16
	3.3	Drive	r Control Pins	18
	3.4	Test	or Other Pins	19
4.	PIN	1 I/O C	CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS	20
5.			PTION OF FUNCTIONS	
	5.1	CPU I	nterface	22
		5.1.1	Selection of interface type (Each common register mode)	22
		5.1.2	Selection of data transfer mode	24
		5.1.3	RGB interface (Each common register mode)	41
		5.1.4	i80/M68 parallel interface (Each common register mode)	
		5.1.5	VSYNC interface (Each common register mode)	50
		5.1.6	Serial interface (Each common register mode)	51
		5.1.7	Chip select (Each common register mode)	52
		5.1.8	Access to display data RAM and internal registers (Each common register mode)	52
	5.2	Displ	ay Data RAM (Each common register mode)	58
		5.2.1	X address circuit	58
		5.2.2	Y address circuit	58
		5.2.3	Arbitrary address area access (Window access mode (WAS))	
	5.3	Oscil	lator (Each common register mode)	63
	5.4	Displ	ay Timing Generator (Each common register mode)	
		5.4.1	Horizontal period	64
		5.4.2	Vertical period	65
		5.4.3	About source output of dummy period	
		•	rve Correction Circuit (Each common register mode)	
	5.6	Partia	al Display Mode (Each common register mode)	76
	5.7	Stand	d-by (Each common register mode)	81
		5.7.1	Stand-by sequence	82
		5.7.2	Stand-by release sequence	83
	5.8	Gate	Driver Control (Each common register mode)	84
		5.8.1	Inverting n lines	86
		5.8.2	Skip polarity inversion	87
		5.8.3	Gate scan function	88
	_	5.8.4	Skip inversion	
6.			INTERFACE	
	6.1	The μ	∕PD161704A and E ² PROM Connection	92
	6 2	Each	Operation	03

7. P	OWER SUPPLY CONTROL	99
7.	1 Boost Voltage Construction	100
7.2	2 Boost Voltage Auto Start and Rising Order	100
7.3	3 Power Shift Circuit	101
7.4	4 VDCI Circuit	101
7.	5 Vs_AMP Circuit, Vr_AMP Circuit and V _{GM} _AMP Circuit	102
7.6	6 Common Drive Circuit	102
7.7	7 Variable Boost Steps	103
7.8	8 Mode Description	104
	7.8.1 DC/DC converter control	104
	7.8.2 DC/DC frame synchronous selection	104
	7.8.3 DC/DC operation frequency selection	105
	7.8.4 DC/DC converter power ON time selection	105
	7.8.5 Division ratio selection of the DC/DC converter at power ON	105
	7.8.6 VREFR regulator selection output	106
	7.8.7 Vgm regulator selection output	106
	7.8.8 Vs regulator selection output	106
	7.8.9 VR regulator selection output	107
	7.8.10 Vpci regulator selection output	107
	7.8.11 RV _{DD} regulator selection output	107
	7.8.12 Vs, VR Amp. current selection	107
	7.8.13 VCOMM output control	108
	7.8.14 VCOMM output capability control	108
	7.8.15 VCOM Amp. current selection	108
	7.8.16 VCOMM center adjustment selection	108
	7.8.17 VCOM output amplitude adjustment	109
	7.8.18 VCOMM output center adjustment	110
7.9	9 Value of Wiring Resistance to Each Pin	111
7.	10 Recommended Capacitance Values of External Capacitor	112
7.	11 Shottky Diode Specification	112
	OWER SUPPLY INJECTION/INTERCEPTION	
8.	1 Example of the μ PD161704A Power ON Sequence	113
8.2	2 Example of the μ PD161704A Power OFF Sequence	118
	ESET	
10. I	POWER SUPPLY INJECTION/INTERCEPTION ORDER	120
10	0.1 Recommendation Power Supply Injection Order	120
10	0.2 Recommendation Power Supply Interception Order	120
11. (COMMAND	121
11	.1 Command List	121
	.2 Command Description	
	ELECTRICAL SPECIFICATIONS	
	EXAMPLE OF μ PD161704A AND CPU CONNECTION	169
1 <i>1</i> I	REVISION HISTORY	170

1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

2. PIN CONFIGURATION (Pad Layout)

Chip size: 24.25 x 2.17 mm²

Output bump size (Type A): 25 x 104 μ m² Input bump size (Type B): 40 x 125 μ m²

Alignment mark (Mark center, unit: μ m)

	Х	Υ
AM (Cross)	-11675.0	-950.0
AM (Cross)	11675.0	-950.0
AM (Circle)	11949.5	960.0
AM (Circle)	-11949.5	960.0

Table 2-1. Pad Coordinate (1/8)

	PE: BUMP SIZE ch 70 um	X = 40 u	ım, Y = 125 u BUMP	m		PE: SIZE X = 25 OUTPUTS 25 ui				PADTYPE: BUMP SIZE GATE OUTPUTS 25 ur			
PAD No.	PAD NAME	TYPE	X [um]	Y [um]	PAD No.	PAD NAME	BUMP	X [um]	Y [um]	PAD No. PAD NAME	BUMP	X [um]	Y [um]
-	Alignment Mar	-	-11675.0	-950.0	328		Α	12000.0	-939.0	865 Y361	Α	50.0	960.0
1	Dummy	В	-11550.0	-949.5	329	Dummy	Α	11861.0	-914.0	866 Y362	Α	25.0	821.0
	VCL	В	-11480.0	-949.5	330	Dummy	Α	12000.0	-889.0	867 Y363	Α	0.0	960.0
3	VCL	В	-11410.0	-949.5	331	Dummy	Α	11861.0	-864.0	868 Y364	Α	-25.0	821.0
4	VCL	В	-11340.0	-949.5	332	Dummy	Α	12000.0	-839.0	869 Y365	Α	-50.0	960.0
5	VCL	В	-11270.0	-949.5	333	Dummy	Α	11861.0	-814.0	870 Y366	Α	-75.0	821.0
	C31-	В	-11200.0	-949.5	334	Dummy	Α	12000.0	-789.0	871 Y367	Α	-100.0	960.0
	C31-	В	-11130.0	-949.5	335		Α	11861.0	-764.0	872 Y368	Α	-125.0	821.0
	C31-	В	-11060.0	-949.5	336		Α	12000.0	-739.0	873 Y369	Α	-150.0	960.0
	C31-	В	-10990.0	-949.5	337		Α	11861.0	-714.0	874 Y370	Α	-175.0	821.0
	C31+	В	-10920.0	-949.5	338		A	12000.0	-689.0	875 Y371	Α	-200.0	960.0
	C31+	В	-10850.0	-949.5	339		A	11861.0	-664.0	876 Y372	A	-225.0	821.0
	C31+	В	-10780.0	-949.5	340		A	12000.0	-639.0	877 Y373	A	-250.0	960.0
13	C31+	В	-10710.0	-949.5	341	G167	A	11861.0	-614.0	878 Y374	A	-275.0	821.0
14 15	C12-	B B	-10640.0 -10570.0	-949.5 -949.5	342 343	G168 G169	A	12000.0 11861.0	-589.0 -564.0	879 Y375 880 Y376	A A	-300.0 -325.0	960.0 821.0
	-	В					A						
16 17	C12- C12-	В	-10500.0 -10430.0	-949.5 -949.5	344 345	G170 G171	A	12000.0 11861.0	-539.0 -514.0	881 Y377 882 Y378	A A	-350.0 -375.0	960.0 821.0
18	C12-	В	-10430.0	-949.5 -949.5	345	G171	A	12000.0	-514.0 -489.0	883 Y379	A	-375.0 -400.0	960.0
19	C12-	В	-10360.0	-949.5 -949.5	340	G173	A	12000.0	-464.0	884 Y380	A	-400.0 -425.0	821.0
20	C12+	В	-10290.0	-949.5 -949.5	348		A	12000.0	-439.0	885 Y381	A	-450.0	960.0
	C12+	В	-10220.0	-949.5	349		A	11861.0	-414.0	886 Y382	A	-475.0	821.0
22	C12+	В	-10130.0	-949.5	350		A	12000.0	-389.0	887 Y383	A	-500.0	960.0
	C12+	В	-10010.0	-949.5	351		A	11861.0	-364.0	888 Y384	A	-525.0	821.0
	C12+	В	-9940.0	-949.5	352	G178	A	12000.0	-339.0	889 Y385	A	-550.0	960.0
	C12+	В	-9870.0	-949.5	353	G179	A	11861.0	-314.0	890 Y386	A	-575.0	821.0
	C11-	В	-9800.0	-949.5	354		Α	12000.0	-289.0	891 Y387	Α	-600.0	960.0
27	C11-	В	-9730.0	-949.5	355	G181	Α	11861.0	-264.0	892 Y388	Α	-625.0	821.0
28	C11-	В	-9660.0	-949.5	356	G182	Α	12000.0	-239.0	893 Y389	Α	-650.0	960.0
29	C11-	В	-9590.0	-949.5	357	G183	Α	11861.0	-214.0	894 Y390	Α	-675.0	821.0
	C11-	В	-9520.0	-949.5	358	G184	Α	12000.0	-189.0	895 Y391	Α	-700.0	960.0
31	C11-	В	-9450.0	-949.5	359	G185	Α	11861.0	-164.0	896 Y392	Α	-725.0	821.0
32	C11+	В	-9380.0	-949.5	360	G186	Α	12000.0	-139.0	897 Y393	Α	-750.0	960.0
33	C11+	В	-9310.0	-949.5	361	G187	Α	11861.0	-114.0	898 Y394	Α	-775.0	821.0
	C11+	В	-9240.0	-949.5	362	G188	Α	12000.0	-89.0	899 Y395	Α	-800.0	960.0
35	C11+	В	-9170.0	-949.5	363	G189	Α	11861.0	-64.0	900 Y396	Α	-825.0	821.0
	C11+	В	-9100.0	-949.5	364		Α	12000.0	-39.0	901 Y397	Α	-850.0	960.0
	C11+	В	-9030.0	-949.5	365		Α	11861.0	-14.0	902 Y398	Α	-875.0	821.0
	VDD2	В	-8960.0	-949.5	366	G192	A	12000.0	11.0	903 Y399	A	-900.0	960.0
40	VDD2	В	-8890.0	-949.5	367	G193	A	11861.0	36.0	904 Y400	A	-925.0	821.0
40	VDD2 VDD2	B B	-8820.0	-949.5 -949.5	368 369	G194 G195	A A	12000.0 11861.0	61.0 86.0	905 Y401 906 Y402	A A	-950.0 -975.0	960.0 821.0
41	VDD2 VDD2	В	-8750.0	-949.5 -949.5	370	G195	A	12000.0	111.0	906 Y402 907 Y403	A	-1000.0	960.0
42	VDD2 VDD2	В	-8680.0 -8610.0	-949.5 -949.5	370	G196 G197	A	12000.0	136.0	907 Y403 908 Y404	A	-1000.0	821.0
43	VDD2 VDD2	В	-8510.0 -8540.0	-949.5 -949.5	371	G198	A	12000.0	161.0	908 Y404 909 Y405	A	-1025.0	960.0
45	VDD2 VDD2	В	-8470.0	-949.5	373	G199	A	11861.0	186.0	910 Y406	A	-1075.0	821.0
46	VDD2	В	-8400.0	-949.5	374	G200	A	12000.0	211.0	911 Y407	A	-1100.0	960.0
47	VDD2	В	-8330.0	-949.5	375	G201	A	11861.0	236.0	912 Y408	A	-1125.0	821.0
48	TVREFR	В	-8260.0	-949.5	376	G202	A	12000.0	261.0	913 Y409	A	-1150.0	960.0
49	VGM	В	-8190.0	-949.5	377	G203	Α	11861.0	286.0	914 Y410	Α	-1175.0	821.0
50	VGM	В	-8120.0	-949.5	378		Α	12000.0	311.0	915 Y411	Α	-1200.0	960.0
	VGM	В	-8050.0	-949.5	379		Α	11861.0	336.0	916 Y412	Α	-1225.0	821.0
52	VGM	В	-7980.0	-949.5	380	G206	Α	12000.0	361.0	917 Y413	Α	-1250.0	960.0
	VGM	В	-7910.0	-949.5	381	G207	Α	11861.0	386.0	918 Y414	Α	-1275.0	821.0
	VGM	В	-7840.0	-949.5	382	G208	Α	12000.0	411.0	919 Y415	Α	-1300.0	960.0
55	VS	В	-7770.0	-949.5	383	G209	Α	11861.0	436.0	920 Y416	Α	-1325.0	821.0
56		В	-7700.0	-949.5	384	G210	Α	12000.0	461.0	921 Y417	Α	-1350.0	960.0
57	VS	В	-7630.0	-949.5	385	G211	Α	11861.0	486.0	922 Y418	Α	-1375.0	821.0
	VS	В	-7560.0	-949.5	386		Α	12000.0	511.0	923 Y419	Α	-1400.0	960.0
	VS	В	-7490.0	-949.5	387	G213	Α	11861.0	536.0	924 Y420	Α	-1425.0	821.0
	VS	В	-7420.0	-949.5	388		A	12000.0	561.0	925 Y421	Α	-1450.0	960.0
	VR	В	-7350.0	-949.5	389		A	11861.0	586.0	926 Y422	A	-1475.0	821.0
62	VR	В	-7280.0	-949.5	390		A	12000.0	611.0	927 Y423	A	-1500.0	960.0
	VR	В	-7210.0	-949.5	391		A	11861.0	636.0	928 Y424	A	-1525.0	821.0
	VR	В	-7140.0	-949.5	392		A	12000.0	661.0	929 Y425	A	-1550.0	960.0
	VR	В	-7070.0	-949.5	393		A	11861.0	686.0	930 Y426	A	-1575.0	821.0
66	VCOMM	В	-7000.0	-949.5	394	G220	Α	12000.0	711.0	931 Y427	Α	-1600.0	960.0

Table 2-1. Pad Coordinate (2/8)

	PE: BUMP SIZE	X = 40 u		m	PADTYPE: SIZE X = 25 um, Y = 104 um					PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan				
	ch 70 um		BUMP			OUTPUTS 25 un								
PAD No.			X [um]	Y [um]		PAD NAME		X [um]	Y [um]			AME BUMP	X [um]	Y [um]
	VCOMM	В	-6930.0	-949.5		Dummy	A	11861.0	736.0		Y428	A	-1625.0	821.0
	VCOMM VCOMM	B B	-6860.0 -6790.0	-949.5 -949.5		Dummy Dummy	A	12000.0 12039.5	761.0 960.0	933	Y429 Y430	A A	-1650.0 -1675.0	960.0 821.0
	VCOMM	В	-6720.0	-949.5	381	Alignment Mar	-	11949.5	960.0	935	Y431	A	-1700.0	960.0
	VCOMM	В	-6650.0	-949.5	398	Dummy	Α	11859.5	960.0	936	Y432	A	-1725.0	821.0
	VCOMM	В	-6580.0	-949.5		Dummy	A	11700.0	960.0	937	Y433	A	-1750.0	960.0
73	VCOMM	В	-6510.0	-949.5		Dummy	Α	11675.0	821.0	938	Y434	Α	-1775.0	821.0
74	Dummy	В	-6440.0	-949.5	401	G221	Α	11650.0	960.0	939	Y435	Α	-1800.0	960.0
	VCOMINM	В	-6370.0	-949.5	402		Α	11625.0	821.0		Y436	A	-1825.0	821.0
	VCOMHM	В	-6300.0	-949.5		G223	A	11600.0	960.0	941	Y437	A	-1850.0	960.0
	VCOMHM VCOMHM	B B	-6230.0 -6160.0	-949.5 -949.5	404	G224 G225	A	11575.0 11550.0	821.0 960.0	942	Y438 Y439	A A	-1875.0 -1900.0	821.0 960.0
	VCOMHM	В	-6090.0	-949.5	406		A	11525.0	821.0	943	Y440	A	-1900.0	821.0
	VCOMHM	В	-6020.0	-949.5	407		A	11500.0	960.0	945	Y441	A	-1950.0	960.0
	Dummy	В	-5950.0	-949.5		G228	Α	11475.0	821.0	946	Y442	A	-1975.0	821.0
82	Dummy	В	-5880.0	-949.5	409	G229	Α	11450.0	960.0	947	Y443	Α	-2000.0	960.0
83	Dummy	В	-5810.0	-949.5		G230	Α	11425.0	821.0	948	Y444	A	-2025.0	821.0
84		В	-5740.0	-949.5		G231	A	11400.0	960.0	949	Y445	A	-2050.0	960.0
85	Dummy Dummy	B B	-5670.0	-949.5 -949.5	412	G232 G233	A	11375.0	821.0 960.0	950 951	Y446	A	-2075.0 -2100.0	821.0
86 87	VCOMLM	В	-5600.0 -5530.0	-949.5 -949.5		G233 G234	A	11350.0 11325.0	960.0 821.0	951	Y447 Y448	A A	-2100.0 -2125.0	960.0 821.0
	VCOMLM	В	-5460.0	-949.5		G235	A	11325.0	960.0	952	Y449	A	-2125.0	960.0
	VCOMLM	В	-5390.0	-949.5		G236	A	11275.0	821.0	954	Y450	A	-2175.0	821.0
	VCOMLM	В	-5320.0	-949.5		G237	Α	11250.0	960.0	955		A	-2200.0	960.0
	VCOMLM	В	-5250.0	-949.5	418	G238	Α	11225.0	821.0	956	Y452	Α	-2225.0	821.0
	Dummy	В	-5180.0	-949.5		G239	Α	11200.0	960.0	957	Y453	A	-2250.0	960.0
93	Dummy	В	-5110.0	-949.5		G240	A	11175.0	821.0	958	Y454	A	-2275.0	821.0
94	Dummy	В	-5040.0	-949.5	421		A	11150.0 11125.0	960.0	959	Y455	A	-2300.0	960.0 821.0
95 96	Dummy Dummy	B B	-4970.0 -4900.0	-949.5 -949.5	422	G242 G243	A	11125.0	821.0 960.0	960 961	Y456 Y457	A A	-2325.0 -2350.0	960.0
97	Dummy	В	-4830.0	-949.5		G244	A	11075.0	821.0	962	Y458	A	-2375.0	821.0
98		В	-4760.0	-949.5		G245	A	11050.0	960.0	963	Y459	A	-2400.0	960.0
	Dummy	В	-4690.0	-949.5	426	G246	Α	11025.0	821.0	964	Y460	A	-2425.0	821.0
100	VSS	В	-4620.0	-949.5	427	G247	Α	11000.0	960.0	965	Y461	Α	-2450.0	960.0
101	VSS	В	-4550.0	-949.5		G248	Α	10975.0	821.0	966	Y462	A	-2475.0	821.0
102	VSS	В	-4480.0	-949.5	429		Α	10950.0	960.0	967	Y463	A	-2500.0	960.0
103	VSS	В	-4410.0	-949.5	430		A	10925.0	821.0	968	Y464	A	-2525.0	821.0
104 105	VSS VSS	B B	-4340.0 -4270.0	-949.5 -949.5	431		A	10900.0 10875.0	960.0 821.0	969	Y465 Y466	A A	-2550.0 -2575.0	960.0 821.0
105	VSS	В	-4270.0	-949.5		G253	A	10850.0	960.0	970	Y467	A	-2600.0	960.0
107	VSS	В	-4130.0	-949.5		G254	A	10825.0	821.0	972	Y468	Ä	-2625.0	821.0
108	VSS	В	-4060.0	-949.5	435		Α	10800.0	960.0	973	Y469	A	-2650.0	960.0
109	VSS	В	-3990.0	-949.5	436	G256	Α	10775.0	821.0	974	Y470	Α	-2675.0	821.0
	VSS	В	-3920.0	-949.5	437		Α	10750.0	960.0	975	Y471	A	-2700.0	960.0
	VSS	В	-3850.0	-949.5	438		A	10725.0	821.0	976	Y472	A	-2725.0	821.0
112	VSS	В	-3780.0	-949.5	439		A	10700.0	960.0	977	Y473	A	-2750.0	960.0
113 114	VSS VSS	B B	-3710.0 -3640.0	-949.5 -949.5		G260 G261	A	10675.0 10650.0	821.0 960.0	978	Y474 Y475	A A	-2775.0 -2800.0	821.0 960.0
114	VSS	В	-3570.0	-949.5 -949.5		G262	A	10625.0	821.0	980	Y475 Y476	A	-2800.0	821.0
	VSS	В	-3500.0	-949.5	443		A	10600.0	960.0	981	Y477	A	-2850.0	960.0
	VSS	В	-3430.0	-949.5		G264	A	10575.0	821.0	982	Y478	A	-2875.0	821.0
	VSS	В	-3360.0	-949.5	445		Α	10550.0	960.0	983	Y479	Α	-2900.0	960.0
	VSS	В	-3290.0	-949.5		G266	Α	10525.0	821.0	984	Y480	A	-2925.0	821.0
	VDC	В	-3220.0	-949.5	447		Α	10500.0	960.0	985	Y481	A	-2950.0	960.0
121	VDC	В	-3150.0	-949.5		G268	A	10475.0	821.0	986	Y482	A	-2975.0	821.0
122 123	VDC VDC	B B	-3080.0	-949.5 -949.5		G269 G270	A	10450.0	960.0	987	Y483 Y484	A A	-3000.0	960.0 821.0
	VDC	В	-3010.0 -2940.0	-949.5 -949.5	450		A	10425.0 10400.0	821.0 960.0	988 989	Y484 Y485	A A	-3025.0 -3050.0	960.0
125	VDC	В	-2870.0	-949.5	451		A	10375.0	821.0	990	Y486	A	-3075.0	821.0
126	VDC	В	-2800.0	-949.5		G273	A	10373.0	960.0	991	Y487	Ä	-3100.0	960.0
127	VDC	В	-2730.0	-949.5		G274	A	10325.0	821.0	992	Y488	A	-3125.0	821.0
128	VDC	В	-2660.0	-949.5	455	G275	Α	10300.0	960.0	993	Y489	A	-3150.0	960.0
	VDC	В	-2590.0	-949.5		G276	Α	10275.0	821.0		Y490	A	-3175.0	821.0
	VDC	В	-2520.0	-949.5		G277	A	10250.0	960.0		Y491	A	-3200.0	960.0
	VDC	В	-2450.0	-949.5		G278	A	10225.0	821.0		Y492	A	-3225.0	821.0
	VDC VDC	В	-2380.0 -2310.0	-949.5		G279 G280	A	10200.0	960.0		Y493	A	-3250.0	960.0
	VDC	B B	-2310.0 -2240.0	-949.5 -949.5		G280 G281	A	10175.0 10150.0	821.0 960.0		Y494 Y495	A A	-3275.0 -3300.0	821.0 960.0
	VDC	В	-2170.0	-949.5 -949.5		G282	A	10125.0	821.0		Y496	A	-3325.0	821.0
	VDCI	В	-2100.0	-949.5		G283	A	10100.0	960.0		Y497	A	-3350.0	960.0
	VDCI	В	-2030.0	-949.5		G284	A	10075.0	821.0	1002	Y498	A	-3375.0	821.0
	VDCI	В	-1960.0	-949.5		G285	Α	10050.0	960.0	1003	Y499	A	-3400.0	960.0
	VDCI	В	-1890.0	-949.5		G286	Α	10025.0	821.0		Y500	Α	-3425.0	821.0
												•		

Table 2–1. Pad Coordinate (3/8)

	E: BUMP SIZE	X = 40 u	ım, Y = 125 u BUMP	im I	PADTYPE: SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan						PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan				
PAD No.	PAD NAME	TYPE	X [um]	Y [um]		PAD NAME		X [um]	Y [um]		PAD NAME		X [um]	Y [um]	
	VDCI	В	-1820.0	-949.5		G287	А	10000.0	960.0		Y501	A	-3450.0	960.0	
	VDCI	В	-1750.0	-949.5	468		A	9975.0	821.0		Y502	Α	-3475.0	821.0	
	VDCI	В	-1680.0	-949.5		G289	Α	9950.0	960.0		Y503	Α	-3500.0	960.0	
	VDCI	В	-1610.0	-949.5		G290	Α	9925.0	821.0		Y504	Α	-3525.0	821.0	
144	VDCI	В	-1540.0	-949.5	471	G291	Α	9900.0	960.0	1009	Y505	Α	-3550.0	960.0	
	VDCI	В	-1470.0	-949.5	472	G292	Α	9875.0	821.0	1010		Α	-3575.0	821.0	
	RVDD	В	-1400.0	-949.5	473	G293	Α	9850.0	960.0	1011		Α	-3600.0	960.0	
	RVDD	В	-1330.0	-949.5	474	G294	Α	9825.0	821.0	1012		Α	-3625.0	821.0	
	RVDD	В	-1260.0	-949.5	475	G295	Α	9800.0	960.0	1013	Y509	Α	-3650.0	960.0	
	RVDD	В	-1190.0	-949.5	476	G296	A	9775.0	821.0	1014		A	-3675.0	821.0	
	RVDD RVDD	B B	-1120.0 -1050.0	-949.5 -949.5	477 478	G297 G298	A	9750.0 9725.0	960.0 821.0	1015 1016		A	-3700.0 -3725.0	960.0 821.0	
	VDD	В	-1050.0	-949.5 -949.5	478	G298 G299	A A	9725.0 9700.0	960.0	1016		A	-3725.0 -3750.0	960.0	
	VDD	В	-910.0	-949.5	480	G300	A	9675.0	821.0	1017		A	-3775.0	821.0	
	VDD	В	-840.0	-949.5	481	G300	A	9650.0	960.0	1018		A	-3800.0	960.0	
	VDD	В	-770.0	-949.5	482	G302	A	9625.0	821.0		Y516	A	-3825.0	821.0	
	VDD	В	-700.0	-949.5	483	G303	A	9600.0	960.0		Y517	A	-3850.0	960.0	
157	VDD	В	-630.0	-949.5	484	G304	A	9575.0	821.0	1022		A	-3875.0	821.0	
	TOSCI	В	-560.0	-949.5	485	G305	Α	9550.0	960.0	1023		Α	-3900.0	960.0	
	TOSCSELI	В	-490.0	-949.5	486	G306	Α	9525.0	821.0		Y520	Α	-3925.0	821.0	
160	OSCIN	В	-420.0	-949.5	487	G307	Α	9500.0	960.0	1025	Y521	Α	-3950.0	960.0	
	OSCOUT	В	-350.0	-949.5	488	G308	Α	9475.0	821.0	1026		Α	-3975.0	821.0	
	PVDC	В	-280.0	-949.5	489		Α	9450.0	960.0	1027		Α	-4000.0	960.0	
	OSCSEL	В	-210.0	-949.5	490	G310	Α	9425.0	821.0	1028		Α	-4025.0	821.0	
	PVSS	В	-140.0	-949.5	491	G311	Α	9400.0	960.0	1029		Α	-4050.0	960.0	
	RESET_SEL	В	-70.0	-949.5	492	G312	Α	9375.0	821.0	1030		Α	-4075.0	821.0	
	PVCCIO	В	0.0	-949.5	493	G313	Α	9350.0	960.0	1031		Α	-4100.0	960.0	
	EPEN	В	70.0	-949.5	494	G314	A	9325.0	821.0	1032		A	-4125.0	821.0	
168		B B	140.0 210.0	-949.5 -949.5	495 496	G315	A A	9300.0 9275.0	960.0 821.0	1033 1034	Y529	A	-4150.0 -4175.0	960.0 821.0	
169 170		В	280.0	-949.5 -949.5	496	G316 G317	A	9275.0	960.0	1034	Y530 Y531	A	-4175.0 -4200.0	960.0	
	EDO	В	350.0	-949.5	498	G318	A	9225.0	821.0	1035	Y532	A	-4225.0	821.0	
	CSTB	В	420.0	-949.5	499	G319	A	9200.0	960.0	1037	Y533	A	-4250.0	960.0	
173		В	490.0	-949.5	500	G320	A	9175.0	821.0	1038	Y534	A	-4275.0	821.0	
	TOUT0	В	560.0	-949.5	501	G321	Α	9150.0	960.0	1039	Y535	Α	-4300.0	960.0	
	D1	В	630.0	-949.5	502	Dummy	Α	9125.0	821.0	1040	Y536	Α	-4325.0	821.0	
176	TOUT1	В	700.0	-949.5	503	Dummy	Α	9100.0	960.0	1041	Y537	Α	-4350.0	960.0	
177	D2	В	770.0	-949.5	504	Y1	Α	9075.0	821.0	1042	Y538	Α	-4375.0	821.0	
	TOUT2	В	840.0	-949.5	505		Α	9050.0	960.0	1043	Y539	Α	-4400.0	960.0	
179		В	910.0	-949.5		Y3	Α	9025.0	821.0	1044		Α	-4425.0	821.0	
	TOUT3	В	980.0	-949.5		Y4	Α	9000.0	960.0		Y541	Α	-4450.0	960.0	
181		В	1050.0	-949.5		Y5	Α	8975.0	821.0		Y542	Α	-4475.0	821.0	
	TOUT4	В	1120.0	-949.5		Y6	A	8950.0	960.0		Y543	A	-4500.0	960.0	
183	TOUT5	B B	1190.0 1260.0	-949.5 -949.5		Y7 Y8	A A	8925.0 8900.0	821.0 960.0	1048 1049		A	-4525.0 -4550.0	821.0 960.0	
185		В	1330.0	-949.5 -949.5		Y9	A	8875.0	821.0	1049		A	-4575.0	821.0	
	TOUT6	В	1400.0	-949.5 -949.5	512		A	8850.0	960.0	1050		A	-4600.0	960.0	
187		В	1470.0	-949.5	514		A	8825.0	821.0	1052		A	-4625.0	821.0	
	TOUT7	В	1540.0	-949.5	515		A	8800.0	960.0	1053		A	-4650.0	960.0	
189		В	1610.0	-949.5	516		Α	8775.0	821.0	1054		Α	-4675.0	821.0	
190	TOUT8	В	1680.0	-949.5	517	Y14	Α	8750.0	960.0	1055	Y551	Α	-4700.0	960.0	
191		В	1750.0	-949.5	518	Y15	Α	8725.0	821.0	1056		Α	-4725.0	821.0	
	TOUT9	В	1820.0	-949.5	519	Y16	Α	8700.0	960.0	1057	Y553	Α	-4750.0	960.0	
193		В	1890.0	-949.5	520	Y17	Α	8675.0	821.0	1058	Y554	Α	-4775.0	821.0	
	TOUT10	В	1960.0	-949.5	521	Y18	A	8650.0	960.0	1059		A	-4800.0	960.0	
195		В	2030.0	-949.5	522	Y19	A	8625.0	821.0		Y556	A	-4825.0	821.0	
	TOUT11	В	2100.0	-949.5	523	Y20	A	8600.0	960.0	1061		A	-4850.0	960.0	
197	TOUT12	B B	2170.0 2240.0	-949.5 -949.5	524 525		A	8575.0 8550.0	821.0 960.0		Y558 Y559	A	-4875.0 -4900.0	821.0 960.0	
199		В	2310.0	-949.5	526	Y23	A	8525.0	821.0		Y560	A	-4900.0 -4925.0	821.0	
	TOUT13	В	2380.0	-949.5	527	Y24	A	8500.0	960.0	1065		A	-4950.0	960.0	
201		В	2450.0	-949.5	528	Y25	A	8475.0	821.0	1066		A	-4975.0	821.0	
	TOUT14	В	2520.0	-949.5	529	Y26	A	8450.0	960.0	1067		A	-5000.0	960.0	
203		В	2590.0	-949.5	530	Y27	A	8425.0	821.0	1068		A	-5025.0	821.0	
	TOUT15	В	2660.0	-949.5	531	Y28	Α	8400.0	960.0	1069		Α	-5050.0	960.0	
205	D16	В	2730.0	-949.5	532	Y29	Α	8375.0	821.0	1070	Y566	Α	-5075.0	821.0	
	TOUT16	В	2800.0	-949.5	533	Y30	Α	8350.0	960.0	1071	Y567	Α	-5100.0	960.0	
207		В	2870.0	-949.5		Y31	Α	8325.0	821.0	1072	Y568	Α	-5125.0	821.0	
208	TOUT17	В	2940.0	-949.5	535	Y32	Α	8300.0	960.0	1073	Y569	Α	-5150.0	960.0	

Table 2-1. Pad Coordinate (4/8)

	E: BUMP SIZE	X = 40 u		m	PADTYPE: SIZE X = 25			PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan				
PAD No.	PAD NAME	TYPE	BUMP X [um]	Y [um]	PAD No. PAD NAME		X [um]	Y [um]	PAD No. PAD NAME			Y [um]
209	PVSS	В	3010.0	-949.5	536 Y33	A	8275.0	821.0	1074 Y570	A	-5175.0	821.0
210	TGOF1S	В	3080.0	-949.5	536 133 537 Y34	A	8250.0	960.0	1074 1570 1075 Y571	A	-5200.0	960.0
211	TGOE 1S	В	3150.0	-949.5	538 Y35	A	8225.0	821.0	1076 Y572	A	-5225.0	821.0
212	TGCLK	В	3220.0	-949.5	539 Y36	A	8200.0	960.0	1077 Y573	A	-5250.0	960.0
213	TGSTB	В	3290.0	-949.5	540 Y37	Α	8175.0	821.0	1078 Y574	Α	-5275.0	821.0
214	TRL	В	3360.0	-949.5	541 Y38	Α	8150.0	960.0	1079 Y575	Α	-5300.0	960.0
	PVSS	В	3430.0	-949.5	542 Y39	Α	8125.0	821.0	1080 Y576	Α	-5325.0	821.0
216		В	3500.0	-949.5	543 Y40	Α	8100.0	960.0	1081 Y577	Α	-5350.0	960.0
	PVCCIO	В	3570.0	-949.5	544 Y41	A	8075.0	821.0	1082 Y578	A	-5375.0	821.0
218		В	3640.0	-949.5	545 Y42	A	8050.0	960.0	1083 Y579	A	-5400.0	960.0
219	TDELAY0	B B	3710.0 3780.0	-949.5 -949.5	546 Y43 547 Y44	A	8025.0 8000.0	821.0 960.0	1084 Y580 1085 Y581	A	-5425.0 -5450.0	821.0 960.0
	TDELAY1	В	3850.0	-949.5	548 Y45	A	7975.0	821.0	1085 Y582	A	-5475.0	821.0
	RESET	В	3920.0	-949.5	549 Y46	A	7950.0	960.0	1087 Y583	A	-5500.0	960.0
	TDELAY2	В	3990.0	-949.5	550 Y47	Α	7925.0	821.0	1088 Y584	Α	-5525.0	821.0
224		В	4060.0	-949.5	551 Y48	Α	7900.0	960.0	1089 Y585	Α	-5550.0	960.0
	TSTVIHL	В	4130.0	-949.5	552 Y49	Α	7875.0	821.0	1090 Y586	Α	-5575.0	821.0
226		В	4200.0	-949.5	553 Y50	Α	7850.0	960.0	1091 Y587	Α	-5600.0	960.0
	TSTRTST	В	4270.0	-949.5	554 Y51	A	7825.0	821.0	1092 Y588	A	-5625.0	821.0
228		В	4340.0	-949.5	555 Y52	A	7800.0	960.0	1093 Y589	A	-5650.0	960.0
	VSYNC HSYNC	B B	4410.0 4480.0	-949.5 -949.5	556 Y53 557 Y54	A	7775.0 7750.0	821.0 960.0	1094 Y590 1095 Y591	A	-5675.0 -5700.0	821.0 960.0
	DOTCLK	В	4480.0 4550.0	-949.5 -949.5	557 Y54 558 Y55	A	7750.0 7725.0	960.0 821.0	1095 Y591 1096 Y592	A	-5700.0 -5725.0	960.0 821.0
	PSX	В	4620.0	-949.5	559 Y56	A	7700.0	960.0	1090 1592 1097 Y593	A	-5750.0	960.0
	PVCCIO	В	4690.0	-949.5	560 Y57	A	7675.0	821.0	1098 Y594	A	-5775.0	821.0
	REGSEL0	В	4760.0	-949.5	561 Y58	Α	7650.0	960.0	1099 Y595	Α	-5800.0	960.0
235	REGSEL1	В	4830.0	-949.5	562 Y59	Α	7625.0	821.0	1100 Y596	Α	-5825.0	821.0
	C86	В	4900.0	-949.5	563 Y60	Α	7600.0	960.0	1101 Y597	Α	-5850.0	960.0
	DTX1	В	4970.0	-949.5	564 Y61	Α	7575.0	821.0	1102 Y598	Α	-5875.0	821.0
	PVCCIO	В	5040.0	-949.5	565 Y62	A	7550.0	960.0	1103 Y599	A	-5900.0	960.0
	DTX2 RGB DTX2	B B	5110.0 5180.0	-949.5 -949.5	566 Y63 567 Y64	A	7525.0 7500.0	821.0 960.0	1104 Y500 1105 Y601	A	-5925.0 -5950.0	821.0 960.0
	DTX0	В	5250.0	-949.5	568 Y65	A	7475.0	821.0	1105 1601 1106 Y602	A	-5975.0	821.0
	RGB_DTX1	В	5320.0	-949.5	569 Y66	A	7450.0	960.0	1107 Y603	A	-6000.0	960.0
	PVCCIO	В	5390.0	-949.5	570 Y67	Α	7425.0	821.0	1108 Y604	Α	-6025.0	821.0
244	TWPNL	В	5460.0	-949.5	571 Y68	Α	7400.0	960.0	1109 Y605	Α	-6050.0	960.0
245	IF_SHARE	В	5530.0	-949.5	572 Y69	Α	7375.0	821.0	1110 Y606	Α	-6075.0	821.0
	PVSS	В	5600.0	-949.5	573 Y70	Α	7350.0	960.0	1111 Y607	Α	-6100.0	960.0
	VSTBY	В	5670.0	-949.5	574 Y71	A	7325.0	821.0	1112 Y608	Α	-6125.0	821.0
	VCCIO	В	5740.0	-949.5	575 Y72	A	7300.0	960.0	1113 Y609	A	-6150.0	960.0
	VCCIO VCCIO	B B	5810.0 5880.0	-949.5 -949.5	576 Y73 577 Y74	A	7275.0 7250.0	821.0 960.0	1114 Y610 1115 Y611	A	-6175.0 -6200.0	821.0 960.0
	VCCIO	В	5950.0	-949.5	578 Y75	A	7225.0	821.0	1116 Y612	A	-6225.0	821.0
252	VCCIO	В	6020.0	-949.5	579 Y76	A	7200.0	960.0	1117 Y613	Â	-6250.0	960.0
	PVDC	В	6090.0	-949.5	580 Y77	A	7175.0	821.0	1118 Y614	A	-6275.0	821.0
	CONTACT1	В	6160.0	-949.5	581 Y78	Α	7150.0	960.0	1119 Y615	Α	-6300.0	960.0
255	CONTACT2	В	6230.0	-949.5	582 Y79	Α	7125.0	821.0	1120 Y616	Α	-6325.0	821.0
	Dummy	В	6300.0	-949.5	583 Y80	Α	7100.0	960.0	1121 Y617	Α	-6350.0	960.0
	Dummy	В	6370.0	-949.5	584 Y81	Α	7075.0	821.0	1122 Y618	Α	-6375.0	821.0
	Dummy	В	6440.0	-949.5	585 Y82	A	7050.0	960.0	1123 Y619	A	-6400.0	960.0
	Dummy	B B	6510.0 6580.0	-949.5 -949.5	586 Y83	A	7025.0 7000.0	821.0 960.0	1124 Y620 1125 Y621	A	-6425.0	821.0
	Dummy Dummy	В	6650.0	-949.5 -949.5	587 Y84 588 Y85	A	7000.0 6975.0	960.0 821.0	1125 Y621 1126 Y622	A	-6450.0 -6475.0	960.0 821.0
262	Dummy	В	6720.0	-949.5	589 Y86	A	6950.0	960.0	1120 1622 1127 Y623	A	-6500.0	960.0
	Dummy	В	6790.0	-949.5	590 Y87	A	6925.0	821.0	1128 Y624	A	-6525.0	821.0
	Dummy	В	6860.0	-949.5	591 Y88	Α	6900.0	960.0	1129 Y625	Α	-6550.0	960.0
265	Dummy	В	6930.0	-949.5	592 Y89	Α	6875.0	821.0	1130 Y626	Α	-6575.0	821.0
	Dummy	В	7000.0	-949.5	593 Y90	Α	6850.0	960.0	1131 Y627	Α	-6600.0	960.0
	Dummy	В	7070.0	-949.5	594 Y91	A	6825.0	821.0	1132 Y628	A	-6625.0	821.0
	Dummy	B B	7140.0	-949.5 -949.5	595 Y92	A	6800.0	960.0 821.0	1133 Y629 1134 Y630	A	-6650.0	960.0 821.0
	Dummy Dummy	В	7210.0 7280.0	-949.5 -949.5	596 Y93 597 Y94	A	6775.0 6750.0	960.0	1134 Y630 1135 Y631	A	-6675.0 -6700.0	960.0
	Dummy	В	7280.0	-949.5 -949.5	597 Y94 598 Y95	A	6725.0	821.0	1136 Y632	A	-6725.0	821.0
	Dummy	В	7420.0	-949.5	599 Y96	A	6700.0	960.0	1137 Y633	A	-6750.0	960.0
-	Dummy	В	7490.0	-949.5	600 Y97	Α	6675.0	821.0	1138 Y634	A	-6775.0	821.0
	Dummy	В	7560.0	-949.5	601 Y98	Α	6650.0	960.0	1139 Y635	Α	-6800.0	960.0
275	Dummy	В	7630.0	-949.5	602 Y99	Α	6625.0	821.0	1140 Y636	Α	-6825.0	821.0
								-				

10

Table 2-1. Pad Coordinate (5/8)

PADTYPE: BUMP SIZE X = 40 um, Y = 125 um PAD pitch 70 um BUMP											
AD No.	PAD NAME	TYPE	X [um]	Y [um]							
276				. ,							
277	Dummy	В	7700.0	-949.5							
	Dummy	В	7770.0	-949.5							
	Dummy	В	7840.0	-949.5							
	Dummy	В	7910.0	-949.5							
280	Dummy	В	7980.0	-949.5							
	Dummy	В	8050.0	-949.5							
282	Dummy	В	8120.0	-949.5							
283	Dummy	В	8190.0	-949.5							
	Dummy	В	8260.0	-949.5							
	Dummy	В	8330.0	-949.5							
286	Dummy	В	8400.0	-949.5							
287	Dummy	В	8470.0	-949.5							
	Dummy	В	8540.0	-949.5							
	Dummy	В	8610.0	-949.5							
	CONTACT3	В	8680.0	-949.5							
291	CONTACT4	В	8750.0	-949.5							
292	VGH	В	8820.0	-949.5							
293	VGH	В	8890.0	-949.5							
294	VGH	В	8960.0	-949.5							
	VGH	В	9030.0	-949.5							
296	VGH	В	9100.0	-949.5							
297	VGH	В	9170.0	-949.5							
298	VGH	В	9240.0	-949.5							
299	C21+	В	9310.0	-949.5							
300	C21+	В	9380.0	-949.5							
301	C21+	В	9450.0	-949.5							
	C21-	В	9520.0	-949.5							
	C21-	В	9590.0	-949.5							
	C21-	В	9660.0	-949.5							
	C22+	В	9730.0	-949.5							
	C22+	В	9800.0	-949.5							
307	C22+	В	9870.0	-949.5							
308	C22-	В	9940.0	-949.5							
309	C22-	В	10010.0	-949.5							
	C22-	В	10080.0	-949.5							
311	C23+	В	10150.0	-949.5							
312	C23+	В	10220.0	-949.5							
313	C23+	В	10290.0	-949.5							
	C23-	В	10360.0	-949.5							
	C23-	В	10430.0	-949.5							
	C23-	В	10500.0	-949.5							
317	VGL	В	10570.0	-949.5							
	VGL	В	10640.0	-949.5							
319	VGL	В	10710.0	-949.5							
320	VGL	В	10780.0	-949.5							
321	VGL	В	10850.0	-949.5							
322	VGL	В	10920.0	-949.5							
323	VGL	В	10990.0	-949.5							
324	VGL	В	11060.0	-949.5							
325	VGL	В	11130.0	-949.5							
326	VGL	В	11200.0	-949.5							
327	Dummy	В	11270.0	-949.5							
	Alignment Mar		11675.0	-950.0							

D No.		n pitch tar	X [um]	Y [um]
603		A	6600.0	960.0
	Y101	A	6575.0	821.0
605	Y102	A	6550.0	960.0
606		Α	6525.0	821.0
607	Y104	Α	6500.0	960.0
608	Y105	Α	6475.0	821.0
609	Y106	Α	6450.0	960.0
610	Y107	Α	6425.0	821.0
611	Y108	Α	6400.0	960.0
612	Y109	Α	6375.0	821.0
613	Y110	Α	6350.0	960.0
614		Α	6325.0	821.0
615	Y112	Α	6300.0	960.0
616	Y113	Α	6275.0	821.0
617		Α	6250.0	960.0
	Y115	Α	6225.0	821.0
619	Y116	Α	6200.0	960.0
620		Α	6175.0	821.0
621	Y118	Α	6150.0	960.0
622	Y119	Α	6125.0	821.0
	Y120	Α	6100.0	960.0
	Y121	Α	6075.0	821.0
	Y122	Α	6050.0	960.0
	Y123	Α	6025.0	821.0
	Y124	Α	6000.0	960.0
628	Y125	Α	5975.0	821.0
629	Y126	A	5950.0	960.0
	Y127	A	5925.0	821.0
	Y128	A	5900.0	960.0
	Y129 Y130	A	5875.0 5850.0	821.0 960.0
635	Y131 Y132	A	5825.0 5800.0	821.0
636	Y133	A	5775.0	960.0 821.0
637	Y134	A	5750.0	960.0
638	Y135	A	5725.0	821.0
	Y136	A	5700.0	960.0
	Y137	A	5675.0	821.0
	Y138	A	5650.0	960.0
	Y139	A	5625.0	821.0
643	Y140	A	5600.0	960.0
644		Α	5575.0	821.0
	Y142	Α	5550.0	960.0
646		Α	5525.0	821.0
	Y144	Α	5500.0	960.0
	Y145	Α	5475.0	821.0
	Y146	Α	5450.0	960.0
650	Y147	Α	5425.0	821.0
651	Y148	Α	5400.0	960.0
652	Y149	Α	5375.0	821.0
	Y150	Α	5350.0	960.0
	Y151	Α	5325.0	821.0
	Y152	Α	5300.0	960.0
	Y153	Α	5275.0	821.0
657	Y154	Α	5250.0	960.0
	Y155	Α	5225.0	821.0
	Y156	Α	5200.0	960.0
	Y157	Α	5175.0	821.0
661		Α	5150.0	960.0
	Y159	Α	5125.0	821.0
663	Y160	Α	5100.0	960.0
664	Y161	Α	5075.0	821.0
665	Y162	Α	5050.0	960.0
666	Y163	Α	5025.0	821.0
667		Α	5000.0	960.0
	Y165	Α	4975.0	821 (

	um, Y =							PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan							
	pitch ta		V ()					V from 1							
ME	BUMP	X [um]	Y [um]	PAD No.		BUMP	X [um]	Y [um]							
	Α	6600.0	960.0	1141		Α	-6850.0	960.0							
	A	6575.0	821.0	1142	Y638	A	-6875.0	821.0							
	A	6550.0	960.0	1143		A	-6900.0	960.0							
	A	6525.0	821.0	1144		A	-6925.0	821.0							
	A	6500.0 6475.0	960.0 821.0	1145 1146		A A	-6950.0 -6975.0	960.0							
	A	6450.0	960.0	1146		A	-7000.0	821.0 960.0							
	A	6425.0	821.0	1148		A	-7025.0	821.0							
	A	6400.0	960.0	1149		A	-7050.0	960.0							
	A	6375.0	821.0		Y646	A	-7075.0	821.0							
	A	6350.0	960.0	1151		A	-7100.0	960.0							
	A	6325.0	821.0	1152		A	-7125.0	821.0							
	Α	6300.0	960.0	1153		Α	-7150.0	960.0							
	Α	6275.0	821.0	1154	Y650	Α	-7175.0	821.0							
	Α	6250.0	960.0	1155		Α	-7200.0	960.0							
	Α	6225.0	821.0	1156	Y652	Α	-7225.0	821.0							
	Α	6200.0	960.0	1157	Y653	Α	-7250.0	960.0							
	Α	6175.0	821.0	1158	Y654	Α	-7275.0	821.0							
	Α	6150.0	960.0	1159	Y655	Α	-7300.0	960.0							
	Α	6125.0	821.0	1160	Y656	Α	-7325.0	821.0							
	Α	6100.0	960.0		Y657	Α	-7350.0	960.0							
	Α	6075.0	821.0	1162		Α	-7375.0	821.0							
	Α	6050.0	960.0	1163		Α	-7400.0	960.0							
	Α	6025.0	821.0	1164		Α	-7425.0	821.0							
	Α	6000.0	960.0	1165		Α	-7450.0	960.0							
	A	5975.0	821.0	1166		Α	-7475.0	821.0							
	A	5950.0	960.0	1167		A	-7500.0	960.0							
	A	5925.0	821.0	1168		A A	-7525.0	821.0							
	A	5900.0 5875.0	960.0 821.0	1169	Y665 Y666	A	-7550.0 -7575.0	960.0 821.0							
_	A	5850.0	960.0	1170		A	-7600.0	960.0							
	A	5825.0	821.0	1172		A	-7625.0	821.0							
	A	5800.0	960.0	1173		A	-7650.0	960.0							
	A	5775.0	821.0	1174		A	-7675.0	821.0							
	Α	5750.0	960.0	1175		A	-7700.0	960.0							
	Α	5725.0	821.0	1176	Y672	Α	-7725.0	821.0							
	Α	5700.0	960.0	1177	Y673	Α	-7750.0	960.0							
	Α	5675.0	821.0	1178		Α	-7775.0	821.0							
	Α	5650.0	960.0		Y675	Α	-7800.0	960.0							
	Α	5625.0	821.0		Y676	Α	-7825.0	821.0							
	Α	5600.0	960.0	1181		Α	-7850.0	960.0							
	Α	5575.0	821.0	1182		Α	-7875.0	821.0							
	A	5550.0	960.0	1183		A	-7900.0	960.0							
_	A	5525.0	821.0	1184		A	-7925.0	821.0							
	A	5500.0	960.0	1185		A A	-7950.0	960.0							
_	A	5475.0 5450.0	821.0 960.0	1186 1187		A	-7975.0 -8000.0	821.0 960.0							
_	A	5425.0	821.0	1188		A	-8025.0	821.0							
-	A	5400.0	960.0	1189		A	-8050.0	960.0							
	A	5375.0	821.0	1190		A	-8075.0	821.0							
	A	5350.0	960.0	1191		A	-8100.0	960.0							
	A	5325.0	821.0	1192		A	-8125.0	821.0							
	A	5300.0	960.0	1193		A	-8150.0	960.0							
	A	5275.0	821.0	1194		A	-8175.0	821.0							
	A	5250.0	960.0	1195	Y691	A	-8200.0	960.0							
	Α	5225.0	821.0	1196		Α	-8225.0	821.0							
	Α	5200.0	960.0	1197	Y693	Α	-8250.0	960.0							
	Α	5175.0	821.0	1198		Α	-8275.0	821.0							
	Α	5150.0	960.0	1199	Y695	Α	-8300.0	960.0							
	Α	5125.0	821.0	1200		Α	-8325.0	821.0							
	Α	5100.0	960.0	1201		Α	-8350.0	960.0							
	Α	5075.0	821.0	1202		Α	-8375.0	821.0							
	Α	5050.0	960.0	1203		Α	-8400.0	960.0							
	Α	5025.0	821.0	1204		Α	-8425.0	821.0							
	A	5000.0	960.0	1205		A	-8450.0	960.0							
	Α	4975.0	821.0	1206	Y702	Α	-8475.0	821.0							

Table 2-1. Pad Coordinate (6/8)

	PE: SIZE X = 25 OUTPUTS 25 un					PE: BUMP SIZE OUTPUTS 25 ur			
PAD No.		BUMP	X [um]	Y [um]	PAD No.		BUMP	X [um]	Y [um]
	Y166	A		960.0		Y703	A	-8500.0	960.0
	Y167	A	4950.0 4925.0	821.0		Y704	A	-8525.0	821.0
	Y168	A	4920.0	960.0		Y705	A	-8550.0	960.0
	Y169	A	4875.0	821.0		Y706	A	-8575.0	821.0
	Y170	A	4850.0	960.0		Y707	A	-8600.0	960.0
	Y171	A	4825.0	821.0		Y708	A	-8625.0	821.0
675	Y172	Α	4800.0	960.0		Y709	A	-8650.0	960.0
676	Y173	Α	4775.0	821.0	1214	Y710	Α	-8675.0	821.0
677	Y174	Α	4750.0	960.0	1215	Y711	Α	-8700.0	960.0
678	Y175	Α	4725.0	821.0	1216	Y712	Α	-8725.0	821.0
679	Y176	Α	4700.0	960.0	1217	Y713	Α	-8750.0	960.0
	Y177	Α	4675.0	821.0		Y714	Α	-8775.0	821.0
	Y178	Α	4650.0	960.0		Y715	Α	-8800.0	960.0
	Y179	Α	4625.0	821.0		Y716	Α	-8825.0	821.0
	Y180	Α	4600.0	960.0		Y717	Α	-8850.0	960.0
	Y181	Α	4575.0	821.0		Y718	Α	-8875.0	821.0
	Y182	A	4550.0	960.0		Y719	A	-8900.0	960.0
	Y183	Α	4525.0	821.0		Y720	Α	-8925.0	821.0
	Y184	A	4500.0	960.0		Dummy	A	-8950.0	960.0
	Y185	A	4475.0	821.0		Dummy		-8975.0	821.0
	Y186	A A	4450.0 4425.0	960.0 821.0		Dummy Dummy	A	-9000.0 -9025.0	960.0 821.0
	Y187 Y188	A	4400.0	960.0		Dummy	A	-9050.0	960.0
692	Y189	A	4375.0	821.0		Dummy	A	-9075.0	821.0
	Y190	A	4375.0	960.0		Dummy	A	-9100.0	960.0
	Y191	A	4325.0	821.0		Dummy	A	-9125.0	821.0
	Y192	A	4300.0	960.0		G160	A	-9150.0	960.0
	Y193	A	4275.0	821.0		G159	A	-9175.0	821.0
	Y194	A	4250.0	960.0		G158	A	-9200.0	960.0
698		Α	4225.0	821.0		G157	Α	-9225.0	821.0
	Y196	Α	4200.0	960.0		G156	Α	-9250.0	960.0
700	Y197	Α	4175.0	821.0	1238	G155	Α	-9275.0	821.0
701	Y198	Α	4150.0	960.0	1239	G154	Α	-9300.0	960.0
	Y199	Α	4125.0	821.0		G153	Α	-9325.0	821.0
	Y200	Α	4100.0	960.0		G152	Α	-9350.0	960.0
	Y201	Α	4075.0	821.0		G151	Α	-9375.0	821.0
	Y202	Α	4050.0	960.0		G150	Α	-9400.0	960.0
	Y203	Α	4025.0	821.0		G149	Α	-9425.0	821.0
707	Y204	Α	4000.0	960.0		G148	Α	-9450.0	960.0
708	Y205	A	3975.0	821.0		G147	A	-9475.0	821.0
	Y206	A	3950.0	960.0		G146	A	-9500.0	960.0
	Y207	A	3925.0	821.0		G145	A	-9525.0	821.0
	Y208 Y209	A A	3900.0 3875.0	960.0 821.0		G144 G143	A A	-9550.0 -9575.0	960.0 821.0
	Y210	A	3850.0	960.0		G142	A	-9600.0	960.0
	Y211	A	3825.0	821.0		G141	A	-9625.0	821.0
	Y212	A	3800.0	960.0		G140	A	-9650.0	960.0
	Y213	A	3775.0	821.0		G139	A	-9675.0	821.0
	Y214	A	3750.0	960.0		G138	A	-9700.0	960.0
	Y215	Α	3725.0	821.0		G137	Α	-9725.0	821.0
	Y216	Α	3700.0	960.0		G136	Α	-9750.0	960.0
	Y217	Α	3675.0	821.0		G135	Α	-9775.0	821.0
	Y218	Α	3650.0	960.0		G134	Α	-9800.0	960.0
	Y219	Α	3625.0	821.0		G133	Α	-9825.0	821.0
	Y220	Α	3600.0	960.0		G132	Α	-9850.0	960.0
724	Y221	Α	3575.0	821.0		G131	Α	-9875.0	821.0
725	Y222	Α	3550.0	960.0		G130	Α	-9900.0	960.0
726	Y223	Α	3525.0	821.0		G129	Α	-9925.0	821.0
727	Y224	Α	3500.0	960.0		G128	Α	-9950.0	960.0
728	Y225	A	3475.0	821.0		G127	A	-9975.0	821.0
729	Y226	A	3450.0	960.0		G126	A	-10000.0	960.0
730	Y227	Α	3425.0	821.0	1268	G125	Α	-10025.0	821.0

Table 2-1. Pad Coordinate (7/8)

	PE: SIZE X = 25 OUTPUTS 25 ur				PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan							
PAD No.		BUMP	X [um]	Y [um]		PAD NAME	BUMP	X [um]	Y [um]			
731		Α	3400.0	960.0		G124	A	-10050.0	960.0			
732	Y229	A	3375.0	821.0		G123	A	-10075.0	821.0			
733	Y230	Α	3350.0	960.0		G122	Α	-10100.0	960.0			
734	Y231	Α	3325.0	821.0		G121	Α	-10125.0	821.0			
735	Y232	Α	3300.0	960.0	1273	G120	Α	-10150.0	960.0			
736	Y233	Α	3275.0	821.0		G119	Α	-10175.0	821.0			
737	Y234	Α	3250.0	960.0		G118	Α	-10200.0	960.0			
738	Y235	Α	3225.0	821.0		G117	Α	-10225.0	821.0			
739	Y236	A	3200.0	960.0		G116	A	-10250.0	960.0			
740 741	Y237	A	3175.0	821.0		G115	A	-10275.0	821.0 960.0			
741	Y238 Y239	A A	3150.0 3125.0	960.0 821.0		G114 G113	A A	-10300.0 -10325.0	960.0 821.0			
742	Y240	A	3100.0	960.0		G112	A	-10325.0	960.0			
744	Y241	A	3075.0	821.0		G111	A	-10375.0	821.0			
745	Y242	A	3050.0	960.0		G110	A	-10400.0	960.0			
746	Y243	Α	3025.0	821.0		G109	Α	-10425.0	821.0			
747	Y244	Α	3000.0	960.0		G108	Α	-10450.0	960.0			
748	Y245	Α	2975.0	821.0		G107	Α	-10475.0	821.0			
749	Y246	Α	2950.0	960.0	1287	G106	Α	-10500.0	960.0			
750	Y247	Α	2925.0	821.0		G105	Α	-10525.0	821.0			
751	Y248	Α	2900.0	960.0		G104	A	-10550.0	960.0			
752	Y249	A	2875.0	821.0		G103	A	-10575.0	821.0			
753	Y250	A	2850.0	960.0		G102	A	-10600.0	960.0			
754 755	Y251 Y252	A	2825.0 2800.0	821.0 960.0		G101 G100	A A	-10625.0 -10650.0	821.0 960.0			
756	Y253	A	2775.0	821.0		G99	A	-10675.0	821.0			
757	Y254	A	2750.0	960.0	1295		A	-10700.0	960.0			
758	Y255	A	2725.0	821.0	1296		A	-10725.0	821.0			
759	Y256	Α	2700.0	960.0		G96	Α	-10750.0	960.0			
760	Y257	Α	2675.0	821.0	1298	G95	Α	-10775.0	821.0			
761	Y258	Α	2650.0	960.0	1299		Α	-10800.0	960.0			
762	Y259	Α	2625.0	821.0		G93	Α	-10825.0	821.0			
763	Y260	Α	2600.0	960.0		G92	Α	-10850.0	960.0			
764	Y261	Α	2575.0	821.0	1302		Α	-10875.0	821.0			
765	Y262	A	2550.0	960.0	1303		A	-10900.0	960.0			
766	Y263	A	2525.0	821.0 960.0	1304	G89	A A	-10925.0	821.0			
767 768	Y264 Y265	A	2500.0 2475.0	821.0	1305		A	-10950.0 -10975.0	960.0 821.0			
769	Y266	A	2450.0	960.0	1300		A	-11000.0	960.0			
770	Y267	A	2425.0	821.0	1308	G85	A	-11025.0	821.0			
771	Y268	A	2400.0	960.0	1309		A	-11050.0	960.0			
772	Y269	Α	2375.0	821.0	1310		Α	-11075.0	821.0			
773	Y270	Α	2350.0	960.0	1311	G82	Α	-11100.0	960.0			
774	Y271	Α	2325.0	821.0	1312	G81	Α	-11125.0	821.0			
775	Y272	Α	2300.0	960.0	1313	G80	Α	-11150.0	960.0			
776	Y273	Α	2275.0	821.0	1314		Α	-11175.0	821.0			
777	Y274	A	2250.0	960.0	1315		A	-11200.0	960.0			
778 779	Y275 Y276	A	2225.0 2200.0	821.0 960.0	1316	G77 G76	A A	-11225.0	821.0 960.0			
779	Y276 Y277	A	2175.0	821.0		G75	A	-11250.0 -11275.0	960.0 821.0			
780	Y277 Y278	A	2175.0	960.0		G74	A	-11275.0	960.0			
782	Y279	A	2125.0	821.0		G73	A	-11325.0	821.0			
783	Y280	A	2100.0	960.0		G72	A	-11350.0	960.0			
784	Y281	A	2075.0	821.0	1322		A	-11375.0	821.0			
785	Y282	Α	2050.0	960.0		G70	Α	-11400.0	960.0			
786	Y283	Α	2025.0	821.0	1324	G69	Α	-11425.0	821.0			
787	Y284	Α	2000.0	960.0	1325		Α	-11450.0	960.0			
788		Α	1975.0	821.0	1326		Α	-11475.0	821.0			
789	Y286	Α	1950.0	960.0	1327		Α	-11500.0	960.0			
790	Y287	A	1925.0	821.0	1328		A	-11525.0	821.0			
791	Y288	A	1900.0	960.0	1329		A	-11550.0	960.0			
792	Y289	A	1875.0	821.0	1330		A	-11575.0	821.0			
793	Y290	A	1850.0	960.0	1331		A	-11600.0	960.0			
794 795	Y291	A A	1825.0 1800.0	821.0 960.0	1332 1333		A A	-11625.0 -11650.0	821.0 960.0			
795 796	Y292 Y293	A	1775.0	821.0		Dummy	A	-11675.0	960.0 821.0			
796	Y293 Y294	A	1775.0	960.0		Dummy	A	-11700.0	960.0			
798	Y295	A	1730.0	821.0		Dummy	A	-11859.5	960.0			
190	Y296	A	1700.0	960.0	1550	Alignment Mar		-11949.5	900.0			

Table 2-1. Pad Coordinate (8/8)

	PE: SIZE X = 25			ľ	PADTYPE: BUMP SIZE X = 25 um, Y = 104 um GATE OUTPUTS 25 um pitch tartan							
	OUTPUTS 25 un											
PAD No.	PAD NAME	BUMP	X [um]	Y [um]	PAD No.		BUMP	X [um]	Y [um]			
800	Y297	Α	1675.0	821.0	1337	Dummy	Α	-12039.5	960.0			
801	Y298	Α	1650.0	960.0	1338	Dummy	Α	-12000.0	761.0			
802	Y299	Α	1625.0	821.0	1339	Dummy	Α	-11861.0	736.0			
803	Y300	Α	1600.0	960.0		G59	Α	-12000.0	711.0			
804	Y301	Α	1575.0	821.0	1341		Α	-11861.0	686.0			
805	Y302	Α	1550.0	960.0	1342	G57	Α	-12000.0	661.0			
806	Y303	Α	1525.0	821.0	1343		Α	-11861.0	636.0			
807	Y304	Α	1500.0	960.0	1344		Α	-12000.0	611.0			
808	Y305	Α	1475.0	821.0	1345	G54	Α	-11861.0	586.0			
809	Y306	Α	1450.0	960.0	1346		Α	-12000.0	561.0			
810	Y307	Α	1425.0	821.0	1347	G52	Α	-11861.0	536.0			
811	Y308	Α	1400.0	960.0	1348	G51	Α	-12000.0	511.0			
812	Y309	Α	1375.0	821.0	1349	G50	Α	-11861.0	486.0			
813	Y310	Α	1350.0	960.0	1350	G49	Α	-12000.0	461.0			
814	Y311	Α	1325.0	821.0	1351	G48	Α	-11861.0	436.0			
815	Y312	Α	1300.0	960.0	1352	G47	Α	-12000.0	411.0			
816	Y313	Α	1275.0	821.0	1353	G46	Α	-11861.0	386.0			
817	Y314	Α	1250.0	960.0	1354	G45	Α	-12000.0	361.0			
818	Y315	Α	1225.0	821.0	1355	G44	Α	-11861.0	336.0			
819	Y316	Α	1200.0	960.0	1356	G43	Α	-12000.0	311.0			
820	Y317	Α	1175.0	821.0	1357		A	-11861.0	286.0			
821	Y318	Α	1150.0	960.0	1358		Α	-12000.0	261.0			
822	Y319	A	1125.0	821.0	1359		A	-11861.0	236.0			
823	Y320	Α	1100.0	960.0	1360	G39	Α	-12000.0	211.0			
824	Y321	Α	1075.0	821.0	1361	G38	Α	-11861.0	186.0			
825	Y322	Α	1050.0	960.0	1362	G37	Α	-12000.0	161.0			
826	Y323	Α	1025.0	821.0	1363	G36	Α	-11861.0	136.0			
827	Y324	Α	1000.0	960.0	1364		Α	-12000.0	111.0			
828	Y325	Α	975.0	821.0	1365	G34	Α	-11861.0	86.0			
829	Y326	Α	950.0	960.0	1366		Α	-12000.0	61.0			
830	Y327	Α	925.0	821.0	1367	G32	Α	-11861.0	36.0			
831	Y328	Α	900.0	960.0	1368	G31	Α	-12000.0	11.0			
832	Y329	Α	875.0	821.0	1369		Α	-11861.0	-14.0			
833	Y330	Α	850.0	960.0	1370		A	-12000.0	-39.0			
834	Y331	Α	825.0	821.0	1371	G28	Α	-11861.0	-64.0			
835	Y332	Α	800.0	960.0	1372	G27	Α	-12000.0	-89.0			
836	Y333	Α	775.0	821.0	1373		Α	-11861.0	-114.0			
837	Y334	Α	750.0	960.0	1374	G25	Α	-12000.0	-139.0			
838	Y335	Α	725.0	821.0	1375		Α	-11861.0	-164.0			
839	Y336	Α	700.0	960.0	1376		Α	-12000.0	-189.0			
840	Y337	Α	675.0	821.0	1377	G22	Α	-11861.0	-214.0			
841	Y338	Α	650.0	960.0	1378		Α	-12000.0	-239.0			
842	Y339	Α	625.0	821.0	1379		Α	-11861.0	-264.0			
843	Y340	Α	600.0	960.0	1380		A	-12000.0	-289.0			
844	Y341	A	575.0	821.0	1381		A	-11861.0	-314.0			
845	Y342	A	550.0	960.0	1382	G17	A	-12000.0	-339.0			
846	Y343	A	525.0	821.0	1383		A	-11861.0	-364.0			
847	Y344	A	500.0	960.0	1384		A	-12000.0	-389.0			
848	Y345	A	475.0	821.0	1385		A	-11861.0	-414.0			
849	Y346	A	450.0	960.0	1386		A	-12000.0	-439.0			
850	Y347	Α	425.0	821.0	1387	G12	Α	-11861.0	-464.0			
851	Y348	A	400.0	960.0	1388	G11	A	-12000.0	-489.0			
852	Y349	A	375.0	821.0	1389		A	-11861.0	-514.0			
853	Y350	A	350.0	960.0	1390		A	-12000.0	-539.0			
854	Y351	A	325.0	821.0	1391	G8	A	-11861.0	-564.0			
855	Y352	A	300.0	960.0	1392	G7	A	-12000.0	-589.0			
856	Y353	Â	275.0	821.0	1393		A	-11861.0	-614.0			
857	Y354	A	250.0	960.0	1394		A	-12000.0	-639.0			
858	Y355	A	225.0	821.0	1395	G4	A	-11861.0	-664.0			
859	Y356	A	200.0	960.0	1396		A	-12000.0	-689.0			
860	Y357	A	175.0	821.0	1397	G2	A	-11861.0	-714.0			
861	Y358	A	150.0	960.0	1398		Ä	-12000.0	-739.0			
862	Y359	A	125.0	821.0	1399		A	-11861.0	-764.0			
863	Y360	A	100.0	960.0	1400		A	-12000.0	-789.0			
	Dummy	A	75.0	821.0	1400	Dummy	A	-11861.0	-814.0			
804	Dullilly	А	/5.0	821.0								
					1402		A	-12000.0	-839.0			
					1403		A	-11861.0	-864.0			
					1404	Dummy	A	-12000.0	-889.0			
					1405	Dummy Dummy	A	-11861.0 -12000.0	-914.0 -939.0			

3. PIN FUNCTIONS

3.1 Power Supply System Pins

(1/2)

			1	(1/2)
Symbol	Pin Name	Pad No.	I/O	Function
V _{DD}	Power supply for logic	152 to 157	_	Power supply pin for logic circuit. Connect to RVDD pin.
RV _{DD}	Amp. output generator for internal logic power supply	146 to 151	_	Connect to VDD pin, and capacitor between Vss.
Vccio	CPU/RGB interface power supply	248 to 252	_	Power supply pin for CPU/RGB interface.
VDC	DC/DC converter reference power supply	120 to 135	_	Reference power supply pin for DC/DC converter.
Vss	Ground	100 to 119	_	Connect to ground on system.
Vs	Vs regulator output	55 to 60	_	Adjustment power supply voltage pin for source driver driving. The Vs output voltage can be changed by setting VSSEL0 to VSSEL2.
VR	V _R regulator output	61 to 65	-	Reference adjustment power supply voltage pin for DC/DC converter. This pin can adjust power supply voltage (VgH, VgL) for gate driving. The VR output voltage can be changed by setting VRSEL0 to VRSEL2.
V _{GM}	Power supply output for gamma and VCOM DA	49 to 54	Output	Gamma resistance and reference power supply output pin for VCOM DA. V _{GM} output voltage can be changed by setup of VSEL2 to VSEL0. Connect to capacitor between Vss.
V _{DCI}	Power supply output for DC/DC converter	136 to 145	_	This is reference voltage output pin for VDD2, VCL boost. Connect to capacitor between Vss.
V _G H	DC/DC converter output	292 to 298	_	Boost output voltage of DC/DC converter (VR x 2 to VR x 4). VR voltage level is outputted 2 to 4 time of booster. The number of boost steps of VGH is chosen by the connection method of VGHREF, VGHON0, VGHON1 registers and an external capacitor. The voltage level outputted from this pin is used as top voltage for gate drive. Connect the capacitor for boost between Vss.
V _{DD2}	DC/DC converter output	38 to 47	-	Boost output voltage of DC/DC converter (V _{DCI} x 2 or x 3). V _{DCI} voltage level is outputted 2 times of booster. Connect the capacitor for boost between V _{SS} . Also, connect a schottky diode between V _{DC} .
V _G L	DC/DC converter output	317 to 326	_	Boost output voltage of DC/DC converter (VR x -1 to VR x -3). VR voltage level is outputted -1 to -3 time of booster. The number of boost steps of V _{GL} is chosen by the connection method of VGLREF, VGLON0, VGLON1 registers and an external capacitor. The voltage level outputted from this pin is used as bottom voltage for gate drive. Connect the capacitor for boost and schottky diode between Vss.
VcL	DC/DC converter output	2 to 5	_	Boost output voltage of DC/DC converter (V _{DCI} x -1). V _{DCI} voltage level is outputted -1 time of booster. Control of V _{CL} of operation is controllable by the VCLON register. The voltage level outputted from this pin is used as voltage of the regulator for negative side voltage output of VCOM drive circuit. When unused VCOM drive circuit, give it as intact (setup VCLON = 0). Connect the capacitor for boost between V _{SS} .

Data Sheet S17583EJ2V0DS

14

(2/2)

Symbol	Pin Name	Pad No.	I/O	Function
C11+, C11-	Capacitor connect pin for	32 to 37,	-	To connect booster for DC/DC converter.
C12+, C12-	boost	26 to 31,		For detail of the connection of capacitor, refer to 7.7 Variable
C21+, C21-		20 to 25,		Boost Steps.
C22+, C22-		14 to 19,		For the recommended values of the capacitance and withstanding
C23+, C23-		299 to 301,		voltage of each capacitor, refer to 7.10 Recommended
C31+, C31-		302 to 304,		Capacitance Values of External Capacitor.
		305 to 307,		
		308 to 310,		
		311 to 313,		
		314 to 316,		
		10 to 13,		
		6 to 9		
PVccio	Mode setting	166, 217,	_	Pull-up power supply pin for mode setting
		233, 238,		
		243		
PV _{DC}	Mode setting	162, 253	_	Pull-up power supply pin for mode setting
PVss	Mode setting	164, 209,	1	Pull-down power supply pin for mode setting
		215, 246		

3.2 Logic System Pins

(1/3)

	D: 1:	5	1/2	1					- ··	(1/3	
Symbol	Pin Name	Pad No.	I/O						Function		
DTX0 to DTX2	CPU interface bus width selection	241, 237, 239	Input		s pin sele B interfa		ne bus	width o	of the i80/M68 inter	face (it is invalid for the	
				lr	DTX0	DTX	(1	DTX2	i80/M68 Parallel	Serial	
					L	L		L	18 bits	Setting prohibited	
					L	L		Н	8 bits	Setting prohibited	
					L	Н		L	8 bits	18 bits	
					L	Н		Н	8 bits	Setting prohibited	
					Н	L		L	16 bits	16 bits	
					Н	L		Н	16 bits	Setting prohibited	
					Н	Н		L	16 bits	Setting prohibited	
					Н	Н		Н	16 bits	Setting prohibited	
RGB_DTX1, RGB_DTX2	RGB interface bus width selection	242, 240	Input		s pin sele erface).	ects th	ne bus	width	of RGB interface (it	is invalid for the CPU	
				ΙL	RGB_D	TX1	RGB	DTX2	RGB Interfa	ice Bus Width	
					L			L	18 bits		
					L			Н	16 bits		
					Н			L	16 bits		
				L	Н			H	6 bits		
PSX	CPU interface mode selection	232	Input		•				e CPU interface.		
/CS	Chip select	220	Input	Thi	s pin is u	sed fo	or chip	select	signals. When /CS	S = L, the chip is active mmand and data I/O.	
/RESET	Reset	222	Input	Wh exe pin	en /RES cuted at at powe	ET is the /F	L, an i RESET	internal Γsignal	reset is performed	. The reset operation is perform reset via this	
/RD	Read	228	Input						ransfer (/RD) has b	een selected the	
(E)	(Enable)								` ,	s. Data is output to the	
(-)	(=:::::::)			_	a bus on						
						•		•		en selected, the signal	
									ad/write operations.	err ocicolea, tric oignar	
/WR	Write	226	Input						ransfer (/WR) has b	soon solocted the	
		220	IIIput						` ,	*	
(R,/W)	(Read/write)			_		•			ble write operation		
				When M68 series parallel data transfer (R,/W) has been selected, this							
				pin is used to determine the direction of data transfer.							
			 		Vrite, H:						
C86	Select interface	236	Input					h betw	een interface mode	s (i80 series CPU or	
			1		8 series						
				1					e, H: Selects M68 s	series CPU mode	
SI	Serial input	216	Input	Thi	s pin is d	ata in	put of	serial i	nterface.		
SCL	Serial clock	218	Input	This	s pin is c	lock ir	nput of	f serial	interface.		

Data Sheet S17583EJ2V0DS

16

(2/3)

17

Symbol	Pin Name	Pad No.	I/O	Function (2/3							
D ₀ to D ₁₇	Data bus for both	173, 175, 177,	I/O	These pins comprise 18-bit bi-directional data bus.							
D0 10 D17	CPU and RGB	179, 181, 183,	""	These pins comprise to sit of directional data sus.							
	interface	185, 187, 189,									
	interrace										
		191, 193, 195,									
		197, 199, 201,									
110)/110	Harimantal arma airmal	203, 205, 207	1	This is the head-contell come since Lefth a DOD interfere							
HSYNC	Horizontal sync signal	230	Input	This is the horizontal sync signal of the RGB interface.							
VSYNC	Vertical sync signal	229	Input	This is the vertical sync signal of the RGB interface.							
DOTCLK	Dot clock	231	Input	This is the dot clock signal of the RGB interface.							
RS	Data/command	224	Input	When parallel data transfer has been selected, this pin is usually							
	selection			connected to the least significant bit of the standard CPU address							
				bus and is used to distinguish between data from display data and							
				commands.							
				RS = L: Indicates that data from D ₀ to D ₁₇ is command.							
				RS = H: Indicates that data from D ₀ to D ₁₇ is data.							
CSTB	Frame synchronize	172	Output	This pin outputs signal synchronized frame leveled by interface							
	signal			power supply voltage (Vccio).							
RESET_SEL	Reset selection signal	165	Input	This pin selects initialization of the register by /RESET pin input.							
				H: Hard/command reset valid (In case of selecting register mode 1							
				or 3, only E2OPC [R68] and DC/DC operation setting							
				[R24/R257] register is valid for hard reset.							
DECCEI 4	Desisten mede	234,	Input	L: Only command reset is valid The μ PD161704A builds in two registration tables and two register							
REGSEL1,	Register mode		IIIput								
REGSEL0	selection	235		initialization modes. These modes can be chosen by setup of this							
				pin. For more details about register mode, refer to 9. RESET.							
				REGSEL1 REGSEL0 Mode Setting							
				L L Register mode 1							
				L H Register mode 2							
				H L Register mode 3							
				H H Register mode 4							
IF SHARE	Data bus switch	245	Input	This pin selects the mode which uses the data bus D ₀ to D ₁₇ for							
_	selection			CPU access, or sharing it with the data bus of RGB interface.							
				L: Do to D ₁₇ is interface only for CPU.							
				H: Do to D ₁₇ is input pin only for RGB							
				In case of selecting this mode, command transfer is available only for							
				serial interface (both register read and data read are impossible).							
OSCSEL	Oscillation sizes!	162	Input								
OSCSEL	Oscillation signal	163	input	This pin is used to select the oscillation signal.							
	select			L: Selects CR on-chip oscillator.							
	<u> </u>			H: Selects oscillator connected to external resistor							
OSCIN	Oscillation signal	160	Input	This is the oscillation signal pin.							
	_	161	_	OSCEL = H: Be sure to connect 36 k Ω resistor between OSCIN and							
OSCOUT			Output	OSCOUT pin.							
				OSCEL = L: Leave OSCIN and OSCOUT pin open.							

(3/3)

	Symbol	Pin Name	Pad No.	I/O	Function				
	EPEN	Valid for external	167	Input	This pin selects valid or invalid for external E ² PROM.				
		E ² PROM			L: Valid for external E ² PROM				
					H: Invalid for external E ² PROM				
	EDI	Data input for E ² PROM	168	Input	This pin is data input for E ² PROM interface.				
		interface			It is used for reading of the data of E ² PROM.				
					It connects with DOUT (data out pin) of E ² PROM.				
	ECS	Chip select for E ² PROM	169	Output	This pin is used as the chip select pin for the E ² PROM interface.				
		interface			When ECS = H, the E ² PROM goes to active status, after which data is				
					transferred.				
					This pin is connected to the E ² PROM's CS (chip select) pin.				
<r></r>	ESK	Serial clock for E ² PROM	170	Output	This pin is CLK for E ² PROM interface. This is the E ² PROM clock for				
		interface			which has 8 divided circumferences in internal oscillator.				
					In the fall of ESK, data is outputted from EDO to E ² PROM.				
					It connects with CLK (shift clock pin) of E ² PROM.				
	EDO	Data output for	171	Output	This pin is data output for E ² PROM interface.				
		E ² PROM interface			Data is outputted to E ² PROM. It connects with DIN (data-in pin) of				
					E ² PROM.				

3.3 Driver Control Pins

18

Symbol	Pin Name	Pad No.	I/O	Function
Y ₁ to Y ₇₂₀	Source output	504 to 863, 865 to 1224	Output	These pins are source output pins.
Go to G321	Gate output	1399 to 1340, 1333 to 1233, 335 to 394, 401 to 501	Output	These pins are gate output pins (G ₀ and G ₃₂₁ are dummy outputs).
VCOMHM	Common high-level output	76 to 80	Output	<comonm [r30]="1"> Output high level of VCOM voltage. This pin changes voltage, corresponding DA0 to DA5 [R31], MCDA0 to MCDA6 [R32]. Connect to capacitor between Vss. <comonm [r30]="0"> This is open when not using.</comonm></comonm>
VCOMLM	Common low-level output	87 to 91	Output	COMONM [R30] = 1> Output low level of VCOM voltage. This pin changes voltage, corresponding DA0 to DA5 [R31], MCDA0 to MCDA6 [R32]. Connect to capacitor between Vss. COMONM [R30] = 0> This is open when not using.
VCOMM	VCOM output	66 to 73	Output	<comonm [r30]="1"> Output VCOM voltage which synchronizing input VCINM. Connect to common pin of LCD panel. <comonm [r30]="0"> This is open when not using.</comonm></comonm>
VCOMINM	VCOM center voltage input	75	Input	This is VCOM center voltage input pin. When COMINM [R32] = 0, connect VCOMINM pin to PVss. <cominm [r32]="0"> Internal D/A valid <cominm [r32]="1"> VCOMINM input voltage valid</cominm></cominm>

3.4 Test or Other Pins

Symbol	Pin Name	Pad No.	I/O	Function
CONTACT1 to	For Bump	254, 255, 290,	_	This is the pin used for Bump resistance measurement.
CONTACT4	resistance	291		CONTACT1, 2 and CONTACT3, 4 short-circuit inside IC,
	measurement			respectively. When not use it, leave open.
TOUT0 to TOUT17	Test output	174, 176, 178,	Output	This is output pin when IC is in test mode.
		180, 182, 184,		Normally, leave it open.
		186, 188, 190,		
		192, 194, 196,		
		198, 200, 202,		
		204, 206, 208		
TDELAY0 to	Test input	219, 221,	Input	These input pins are to set up test mode of IC.
TDELAY2,		223,		Normally, connected it to Vss or open.
TSTRTST,		227,		
TSTVIHL,		225,		
TOSCI,		158,		
TOSCSELI,		159,		
VSTBY,	Test input	247,	Input	This is input pin when IC is in test mode.
TWPNL		244		Normally, connected it to Vss.
TVREFR,	Test output	48,	Output	This is output pin when IC is in test mode.
TGCLK,		212,		Normally, leave it open.
TGSTB,		213,		
TGOE1S,		210,		
TGOE2S,		211,		
TRL		214		
DUMMY	Dummy	1, 74, 81 to 86,	_	Dummy pin
		92 to 99, 256 to		
		289, 327 to 334,		
		395 to 400,		
		502, 503, 864,		
		1225 to 1232,		
		1334 to 1339,		
		1400 to 1406		

4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The I/O circuit types of each pin and recommended connection of unused pins are described below.

(1/2)

						(172	
Pin Name	Inner of Trans	I/O	Power Supply	Recommended Con	nection of Unused Pins	Note	
Pin Name	Input Type	1/0	Power Supply	Parallel Interface	Serial Interface	Note	
PSX	Schmitt trigger	Input	Vccio	Mode setting pin		1	
RGB_DTX1, RGB_DTX2	Schmitt trigger	Input	Vccio	Mode setting pin		1	
DTX0 to DTX2	Schmitt trigger	Input	Vccio	Mode setting pin		1	
REGSEL0, REGSEL1	Schmitt trigger + low path filter	Input	Vccio	Mode setting pin	1		
IF_SHARE	Schmitt trigger	Input	Vccio	Mode setting pin		1	
RS	Schmitt trigger	Input	Vccio	Register setting pin		_	
/RD(E), /WR	Schmitt trigger	Input	Vccio	Connect to Vccio Connect to Vccio or Vs (when i80 series interface)		1	
C86	Schmitt trigger	Input	Vccio	Mode setting pin	Connect to Vccio or Vss	1	
Do to D ₁₇	Schmitt trigger	I/O	Vccio	=	Connect to Vss	_	
SI, SCL	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss	Connect to Vccio or Vss -		
HSYNC	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss		_	
VSYNC	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss		_	
DOTCLK	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss		-	
/RESET	Schmitt trigger + low path filter	Input	Vccio	Always reset on power appli	cation	_	
EPEN	Schmitt trigger	Input	Vccio	Mode setting pin		1	
EDI	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss		_	
ECS	_	Output	Vccio	Leave open		_	
ESK	_	Output	Vccio	Leave open		-	
EDO	_	Output	Vccio	Leave open		-	
CSTB	_	Output	Vccio	Leave open		_	
RESET_SEL	Schmitt trigger	Input	Vccio	Connect to Vccio or Vss		_	
OSCIN	_	Input	V _{DC}	Leave open		_	
OSCOUT	_	Output	VDC	Leave open		_	
OSCSEL	-	Input	VDC	Mode setting pin		2	
Y ₁ to Y ₇₂₀	_	Output	Vs	Leave open		_	
G ₀ to G ₃₂₁	_	Output	Vgн, VgL	Leave open		_	

Notes 1. Connect to Vccio or Vss, depending on the mode selected.

2. Connect to VDC or Vss, depending on the mode selected.

Data Sheet S17583EJ2V0DS

20

(2/2)

						(212
Pin Name	Input Type	I/O	Power Supply	Recommended Conne	ection of Unused Pins	Note
Fill Name	пристуре	1/0	Fower Supply	Parallel Interface	Serial Interface	Note
CONTACT1 to	_	_	_	Leave open		_
CONTACT4						
TOUT0 to TOUT17	_	Output	Vccio	Leave open	_	
VSTBY	_	Output	VDC	Connect to Vss		_
TVREFR	_	Output	V _{DD}	Leave open		_
TWPNL	_	Output	Vccio	Connect to Vss		-
TSTRTST	_	Input	Vccio	Connect to Vss or open		-
TSTVIHL	_	Input	Vccio	Connect to Vss or open		-
TOSCI	_	Input	VDC	Connect to Vss or open		-
TOSCSELI	_	Input	VDC	Connect to Vss or open		-
TDELAY0 to	_	Input	Vccio	Connect to Vss or open		-
TDELAY2						
TGCLK,	_	Input	_	Leave open		-
TGSTB,						
TGOE1S,						
TGOE2S,						
TRL						

5. DESCRIPTION OF FUNCTIONS

5.1 CPU Interface

5.1.1 Selection of interface type (Each common register mode)

The μ PD161704A chip transfers data using a RGB interface (18/16/6-bit), i80/M68 parallel interface (18/16/8-bit), and serial interface (18/16-bit). The PSX, DTX0 to DTX2, RGB_DTX1, and RGB_DTX2 pins are used to select the modes shown in the Table 5–1 below. Note that the i80/M68 parallel interface and serial interface can write data to the display data RAM and registers, but that the RGB interface can write data only to the display data RAM.

Table 5-1. CPU Interface Mode (IF_SHARE = L)

PSX	DTX0	DTX1	DTX2	Mode	/RD (E)	/WR (R,/W)	C86	D17, D16	D ₁₅ to	D ₉	D ₈	D ₇ to D ₁	Do	SI, SCL
	L	L	L	18-bit parallel	/RD (E)	/WR (R,/W)	C86	D17, D16	D ₁₅ to	D ₉	D ₈	D7 to D1	Do	Hi-Z ^{Note}
L	Н	L H H	L H L	16-bit parallel	/RD	/WR	/R /W) C86	Hi-Z ^{Note}	D ₁₅ to	D ₉	D8	D ₇ to D ₁	Do	Hi-Z ^{Note}
		L	Н		(E) (R,/V	(R,/W)		D17, D16	D ₁₅ to	Hi-Z ^{Note}	D8	D ₇ to D ₁	Hi-Z ^{Note}	
	L	L H H	H L H	8-bit parallel	/RD (E)	/WR (R,/W)	C86	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z ^{Note}	D7 to D1	Do	Hi-Z ^{Note}
	L	18-bit												
Н	Н	L	L	16-bit serial	Х	Х	Х	Hi-Z Note	Hi-Z ^{Note}	Hi-Z Note	Hi-Z ^{Note}	Hi-Z ^{Note}	Hi-Z Note	SI, SCL
	Other then above							Setting prohibited						

Remark X: Don't care

22

Note Hi-Z: High impedance (low clamping inside)

Table 5–2. RGB Interface Mode (IF_SHARE = H)

PSX	RGB_DTX1	RGB_DTX2	Mode	/RD (E)	/WR (R,/W)	C86	SI, SCL	D17, D16	D ₁₅ to D ₁₃	D ₁₂	D ₁₁ to D ₈	D7 to D1	Do
L	Х	Х	-	/RD (E) Note2	/WR (R,/W) ^{Note2}	C86	Hi-Z Note1	D17, D16	D ₁₅ to D ₁₃	D ₁₂	D ₁₁ to D ₈	D7 to D1	D₀
	Н	L	40.1.11					Hi-Z Note1	D ₁₅ to D ₁₃	D ₁₂	D ₁₁ to D ₈	D7 to D1	D ₀
	L	Н	16-bit				01	D17, D16	D ₁₅ to D ₁₃	Hi-Z Note1	D ₁₁ to D ₈	D7 to D1	Hi-Z Note1
Н	L	L	18-bit	Х	Х	Х	SI, SCL	D17, D16	D ₁₅ to D ₁₃	D ₁₂	D ₁₁ to D ₈	D7 to D1	D ₀
	Н	Н	6-bit				SUL	Hi-Z Note1	Hi-Z Note1	Hi-Z Note1	Hi-Z Note1	D ₇ , D ₆ : Hi-Z ^{Note1} D ₅ to D ₁	Do
	Other th	nen above						Sett	ing prohibite	ed			

Remark X: Don't care

Notes 1. Hi-Z: High impedance (low clamping inside)

2. When use it by IF_SHARE = H in parallel interface (PSX = L), use /CS, /RD (E) and /WR (R,/W) in non-active state.

5.1.2 Selection of data transfer mode

When the 18-bit parallel interface is selected, the length of 1 pixel is fixed to 18 bits. With the 16-bit or 8-bit parallel interface, however, the length of 1 pixel can be selected from 18 or 16 bits.

If the 16-bit or 8-bit parallel interface is selected, therefore, several modes of transferring data to the display RAM are selectable.

[16-bit parallel interface]

- <When 1 pixel = 18 bits>
 - <1> Transferring 16-bit data transfer + 2-bit data transfer two times (DTX0 = H, DTX1 = H, DTX2 = H)
 - 1 pixel = 18-bit data is divided into 16-bit data and 2-bit data for transfer, as shown in Figure 5-3.
- <R> <2> Transferring 9 + 9-bit data transfer two times (DTX0 = H, DTX1 = H, DTX2 = L)
 - 1 pixel = 18-bit data transfer by 2 times transmission of 9-bit data as shown in Figure 5-4.
 - <When 1 pixel = 16 bits>
 - <1> 16-bit data transfer (DTX0 = H, DTX2 = L, DTX3 = L)

Display data of 1 pixel is transferred by one transmission as shown in Figure 5–5 to 5–8. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

[8-bit parallel interface]

- < When 1 pixel = 18 bits>
 - <1> Transferring 6 + 6 + 6-bit data three times (DTX0 = L, DTX1 = H, DTX2 = L)
 - 1 pixel = 18-bit data is divided into three 6-bit data for transfer, as shown in Figure 5–9.
- <2> Transferring 8 + 8 + 2-bit data three times (DTX0 = L, DTX1 = H, DTX2 = H)
 - 1 pixel = 18-bit data transfer by 3 times transmission of 8-bit data transfer two times + 2-bit data transfer as shown in Figure 5–10.
- <Where 1 pixel = 16 bits>

24

- <1> Transferring 8 + 8 bit twice (DTX0 = L, DTX1 = L, DTX2 = H)
 - 1 pixel is divided into two 8-bit data for transfer, as shown in Figure 5–11. Because 1 pixel is 16 bits long, the number of display colors is limited to 65,536.

1 pixel of the μ PD161704A display RAM consists of 18 bits. If the 16-bit parallel interface is used to transfer 16 bits as 1 pixel (DTX1 = 0), therefore, the data transferred by the CPU (16 bits) runs short by 2 bits, and these 2 bits must be made up for.

For how to do this, refer to Figures 5–5, 5–6 and 5–11.

<R>

Table 5-3. Interfaces and Data Transfer Modes

IF_SHARE = L

PSX	DTX0	DTX1	DTX2	RGB_DTX1	RGB_DTX2	Interface Mode	Number of Data of 1 Pixel	Mode of Transferring 1-Pixel Data
		L	L			18-bit parallel	18-bit	18-bit transfer
		Н	Η				40.1.11	Transferring 8+8+2- bit three times
	L	Н	L			8-bit parallel	18-bit	Transferring 6+6+6- bit three times
		L	Н				16-bit	Transferring 8+8-bit two times
L		Н	Н	L/H ^{Note}	L/H ^{Note}		40 %	Transferring 16+2-bit two times
		Н	L			40 hit manallal	18-bit	Transferring 9+9-bit two times
	Н	L	н			16-bit parallel	40.11	16-bit transfer (D17 to D10, D8 to D1)
		L	L				16-bit	16-bit transfer (D15 to D0)
	Н	L	L			16-bit serial	16-bit	16-bit transfer
Н	L	Н	L			18-bit serial	18-bit	18-bit transfer

Note When IF_SHARE = L, both RGB_DTX1 and RGB_DTX2 setting are invalid.

IF_SHARE = H

PSX	DTX0	DTX1	DTX2	RGB_DTX1	RGB_DTX2	Interface Mode	Number of Data of 1 Pixel	Mode of Transferring 1-Pixel Data
				Н	L			16-bit transfer (D15 to D0)
Н	L/H	L/H	L/H	L	Н	_	16-bit	16-bit transfer (D17 to D13, D11 to D1)
				L	L			18-bit transfer
				Н	Н		18-bit	Transferring 6-bit three times

Remark When it is not using serial interface, it regards as PSX = 0, therefore, DTX0 to DTX2 are "Don't care".

Figure 5–1. Relationship between Bus Data and Display RAM Data (18-bit parallel interface)

Data bus side

								18-b	it data								
D17	D16	D ₁₅	D ₁₄	D ₁₃	D12	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀
<u> </u>	DAM LDAM LDAM LDAM LDAM LDAM LDAM LDAM L																
RAM	RAM																
D17	D16	D 15	D14	D13	D12	ווט	D10	D 9	D8	D/	D6	D 5	D4	D 3	D2	D1	D 0
R data G data B data																	
	1 pixel																

Display RAM side

Figure 5–2. Relationship between Bus Data and Display RAM Data (18-bit RGB interface)

Data bus side

								18-b	it data								
D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D₀
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D ₁₂	RAM D ₁₁	RAM D10	RAM D9	RAM D8	RAM D ₇	RAM D ₆	RAM D5	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
	R data G data B data																
	1 pixel																

Display RAM side

Figure 5–3. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode, 16-bit parallel interface (DTX0, DTX1, DTX2 = H, H, H))

Data bus side

							16-b	it data	(at 1-	byte)						2-bit (at 2	data -byte)
D15	D14	D13	D ₁₂	D11	D10	D9	D8	D7	D ₆	D ₅	D4	Dз	D2	D1	D٥	D ₁	D₀
RAM D ₁₇	1000 10													RAM D ₁	RAM D ₀		
R data G data B data																	
								1 p	oixel								

Display RAM side

26

Caution Data D2 to D15 of the second byte are treated as invalid data when the 16-bit parallel interface is used.

Figure 5–4. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode, 16-bit parallel interface (DTX0, DTX1, DTX2 = H, H, L))

Data bus side

			9-bit	data (a	t 1-by	te)					9	-bit da	ta (at	2-byte)		
D ₈	D ₇	D ₆	D5	D ₄	Dз	D ₂	D ₁	Do	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do
RAM D ₁₇									RAM D8	RAM D ₇	RAM D ₆	RAM D5	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
		R da	ata					G	data					В	data		
								1 p	oixel								

Display RAM side

Figure 5–5. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode, 16-bit parallel interface (DTX0, DTX1, DTX2 = H, L, L))

Data bus side

								16-bi	t data								
D ₁₅	D ₁₄	D13	D ₁₂	D ₁₁		D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do	
					4			Data s	upplem	ent fund	ction						->
					D ₁₅												D4
															Note		
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D ₁₂	RAM D ₁₁	RAM D ₁₀	RAM D9	RAM D8	RAM D ₇	RAM D ₆	RAM D ₅	RAM D4	RAM D ₃	RAM D ₂	RAM D ₁	RAM Do
		R d	ata					G c	lata					Вс	lata		
	1 pixel																

Display RAM side

Note When in used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₅ and D₄ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–6. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode, 16-bit parallel interface (DTX0, DTX1, DTX2 = H, L, H))

Data bus side 16-bit data D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ Dз D₂ D1 D₁₇ D₁₀ D₈ D₇ D₆ D₅ D₄ Data supplement function D17 D₅ Note Note RAM RAM RAM RAM RAM RAM RAM RAM RAM RAMRAM RAM RAM RAMRAM RAM RAM RAM D₁₃ Dз D_6 D₁₇ D₁₅ D₁₄ D12 D₁₁ D₁₀ D₉ D₈ D_7 D_5 D_4 D_2 D_1 D_0 R data G data B data 1 pixel

Display RAM side

Note When in used 16-bit parallel interface (DTX0, DTX1, DTX2 = H, L, H), display RAM data D₁₂ and D₀ are supplemented by D₁₇ and D₅ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–7. Relationship between Bus Data and Display RAM Data (16-bit RGB interface (RGB_DTX1, RGB_DTX2 = H, L))

Data bus side 16-bit data D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D_9 D₈ D₇ D_6 D_4 Dз D_2 D_1 D_0 Data supplement function D₁₅ D₄ Note Note RAM D₁₀ D٩ D₈ D_7 D_5 D_4 Dз D₁ D_0 R data G data B data 1 pixel

Display RAM side

Note When in used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₅ and D₄ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–8. Relationship between Bus Data and Display RAM Data (16-bit RGB interface (RGB_DTX1, RGB_DTX2 = L, H))

Data bus side 16-bit data D₁₅ D₁₄ D₁₁ D₉ D₈ Дз D₂ D1 D₁₃ D₁₀ D₇ D_6 D_5 D_4 D17 D16 Data supplement function D₁₇ D₅ Note: Note RAM D₁₂ D_5 R data G data B data 1 pixel

Display RAM side

Note When In used 16-bit parallel interface, display RAM data D₁₂ and D₀ are supplemented by D₁₇ and D₅ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–9. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode, 8-bit parallel interface (DTX0, DTX1, DTX2 = L, H, L))

Data bus side

	6-b	it data	(at 1-by	/te)			6-b	it data	(at 2-by	rte)			6-b	it data	(at 3-by	rte)	
D ₅	D4	Dз	D ₂	D ₁	D٥	D ₅	D ₄	Dз	D ₂	D ₁	Do	D ₅	D ₄	Dз	D ₂	D ₁	Do
										RAM							
D ₁₇	D ₁₆	D ₁₅	D14	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D4	D₃	D ₂	D ₁	D₀
R data G data B data																	
	1 pixel																

Display RAM side

Caution Display data De and D7 of the 8-bit parallel interface are treated as invalid data.

Figure 5–10. Relationship between Bus Data and Display RAM Data (1-pixel/18-bit mode, 8-bit parallel interface (DTX0, DTX1, DTX2 = L, H, H))

Data bus side

		8-bi	data	(at 1-b	yte)					8-b	it data	(at 2-k	oyte)			2-bit (at 3	data -byte)
D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do	D₁	Do
RAM D ₁₇									RAM D8	RAM D7	RAM D6	RAM D5	RAM D4	RAM D3	RAM D2	RAM D1	RAM Do
		R da	ata					G	data					В	data		
								1 p	oixel								

Display RAM side

Caution Display data D2 to D7 of the 3 word treated as invalid data.

Figure 5–11. Relationship between Bus Data and Display RAM Data (1-pixel/16-bit mode, 8-bit parallel interface (DTX0, DTX1, DTX2 = L, L, H))

Data bus side

			8-bit da	ata (at 1	-byte)							8-bit da	ata (at 2	2-byte)			
D ₇	D ₆	D ₅	D ₄	Dз		D ₂	D ₁	D ₀	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D₀	
												/					
					7			Data s	upplem	ent fund	ction						<i>></i>
					D ₇												D4
					Note												Note
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D ₁₂	RAM D ₁₁	RAM D ₁₀	RAM D ₉	RAM D8	RAM D ₇	RAM D ₆	RAM D ₅	RAM D4	RAM D ₃	RAM D ₂	RAM D ₁	RAM D ₀
	F	R data						Go	lata					B dat	а		
	1 pixel																

Display RAM side

Note When in used 8-bit parallel interface, display RAM data D₀ and D₁₂ are supplemented by bit D₇ of the first byte of the bus data and bit D₄ of the second byte of the bus data, and written to the display RAM as 18-bit data

Figure 5–12. Relationship between Bus Data and Display RAM Data (6-bit RGB interface)

Data bus side

	6-b	it data	(at 1-by	rte)			6-l	oit data	(at 2-by	yte)			6-l	oit data	(at 3-b)	yte)	
D ₅	D4	Dз	D ₂	D₁	D₀	D ₅	D ₄	Dз	D ₂	D ₁	D₀	D ₅	D ₄	Dз	D ₂	D ₁	D₀
RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM
D ₁₇	17 D16 D15 D14 D13 [D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D₁	D₀
		Ro	lata					G	data					Во	data		

Display RAM side

Figure 5-13. Relationship between Bus Data and Display RAM Data (18-bit serial interface)

Data bus side

18-bit data																	
D ₁₇	D16	D ₁₅	D ₁₄	D13	D ₁₂	D11	D10	D9	D8	D7	D ₆	D5	D4	Dз	D2	D1	D₀
<u>-</u>	:											5444		DAM			
RAM D ₁₇	RAM D ₁₆	RAM D ₁₅	RAM D ₁₄	RAM D ₁₃	RAM D ₁₂	RAM D ₁₁	RAM D ₁₀	RAM D9	RAM D8	RAM D ₇	RAM D ₆	RAM D₅	RAM D4	RAM D3	RAM D2	RAM D ₁	RAM Do
		G data						B data									
	1 pixel																

Display RAM side

30

Figure 5–14. Relationship between Bus Data and Display RAM Data (16-bit serial interface)

Data bus side 16-bit data D13 D12 D8 D7 D1 Do D₁₄ D11 --- D10 D9 D₆ D5 D4 Дз D2 Data supplement function D₁₅ D₄ Note Note: RAM D₁₇ RAM RAM RAM RAM RAM RAM D₁₁ RAM D₁₆ D₁₅ D14 D13 D₁₂ D10 D8 D₇ D₆ D5 Дз D_2 Do D9 D_4 D1 R data G data B data 1 pixel

Display RAM side

Note When in used 16-bit serial interface, display RAM data D₁₂ and D₀ are supplemented by D₁₅ and D₄ of bus data respectively, and written to the display RAM as 18-bit data.

Figure 5–15. 16-bit Parallel Interface Data Transfer (1-pixel/18-bit mode)

Figure 5–16. 8-bit Parallel Interface Data Transfer (1-pixel/16-bit mode)

1-pixel data

/CS RS /WR Invalid D7 Invalid Invalid Invalid Invalid Invalid D_6 Invalid Invalid Invalid Invalid Invalid Invalid D_5 D₁₇ D17 D₁₁ D5 D_{11} D_5 D_4 D₁₀ D_4 D₁₆ D₁₀ ł ŀ D_1 D₁₃ D7 D_1 D₁₃ D7 D_1 $D_0 \\$ D₁₂ D_6 $D_0 \\$ D₁₂ D_6 $D_0 \\$ 1st byte 2nd byte 3rd byte 1st byte 2nd byte 3rd byte

1-pixel data

Figure 5-17. 8-bit Parallel Interface Data Transfer (1-pixel/18-bit mode)

Figure 5-18. Relationship between Bus Data and Setting Data in 18-bit Parallel Interface Mode

36

Figure 5–19. Relationship between Bus Data and Setting Data in 16-bit Parallel Interface Mode (except for DTX0, DTX1, DTX2 = H, L, L)

• 16-bit parallel interface <Read/write in command> Data bus D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₉ D₈ D₇ D₆ D₅ D₄ Dз D₂ D₁ Do IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 Index (RS = low level) Data bus D₁₀ D₉ D_0 D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D٥ D_7 D_6 D_5 D_4 Dз D_1 D₁₂ D₁₀ D₇ D_6 D₃ D_{14} D_{13} D₁₁ D_9 D_8 D_5 D_4 D_2 D_1 $D_0 \\$ Data (RS = high level) <Read/write in display data (1 pixel = 16-bit) > D₁₅ D₁₄ D₁₃ D₁₁ D₁₀ D₉ D₇ Data bus D₁₂ D₈ D₆ D₅ D₄ Dз D₂ D₁ Do IB10 IB5 IB4 IB15 | IB14 | IB13 | IB12 | IB11 | IB9 IB8 IB7 IB6 IB3 IB2 IB0 IB1 Index: 0EH (RS = low level) Data bus D₁₅ D₁₃ D_{12} D₁₁ D_9 D₈ D_7 D_6 Internal RAM D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₉ D₈ D₇ D_6 D_5 D_4 D₃ D_2 D_1

Display data (RS = high level)

Internal RAM

D₁₇

D₁₆

D₁₅

D₁₄

D₁₃

Figure 5–20. Relationship between Bus Data and Setting Data in 16-bit Parallel Interface Mode (DTX0, DTX1, DTX2 = H, L, H)

• 16-bit parallel interface <Read/write in command> Data bus D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₈ D₇ D₆ D₅ D₄ Dз D₁ IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 Index (RS = low level) D₁₁ Data bus D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₀ D₈ D₇ D_6 D_5 D_4 Dз D_2 D_1 D₁₁ D₇ D₅ Дз D₁₄ D_{13} $D_{12} \\$ D₁₀ D_9 D₈ D_6 D_4 D_2 D_1 D_0 Data (RS = high level) <Read/write in display data (1 pixel = 16-bit) > D₁₀ D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₈ D₇ D₆ D₅ Data bus D₄ Dз D₂ D₁ IB7 IB5 IB3 IB2 IB13 IB12 IB11 IB10 IB9 IB8 IB6 IB4 IB1 IB0 IB15 | IB14 Index: 0EH (RS = low level) Data bus D₁₅ D₁₄ D₁₃ D_{12} D₁₁ D₁₀ D₈ D_7 D_5

D₁₀ D₉

 D_8

D₇

 D_6

 D_5

 D_4

Dз

 D_2

 D_1

D₁₁

38

Figure 5-21. Relationship between Bus Data and Setting Data in 8-bit Parallel Interface Mode

8-bit parallel interface

<Read/write in command>

DB3 DB2

DB1

DB0

Figure 5-22. Relationship between Bus Data and Setting Data in 16-bit Serial Interface Mode

• 16-bit serial interface

Internal RAM DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4

Figure 5-23. Relationship between Bus Data and Setting Data in 18-bit Serial Interface Mode

• 18-bit serial interface <Write in command> Data bus D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D_{12} D₁₁ D_{10} D_9 D٥ D_7 D_6 D₅ D_4 D₃ D_2 D_1 D_0 IB5 IB1 IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 IB8 IB7 IB6 IB4 IB3 IB2 IB0 Index (RS = low level) Data bus D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₉ D₈ D₇ D₆ D₅ D₄ Dз D₂ D₁₅ D₁₂ D₁₁ D₁₀ D₈ D_7 D_6 D_4 D₁₄ D₁₃ D₉ D_5 Dз D_2 D_1 D_0 Data (RS = high level) <Write in display data (1 pixel = 18-bit)> Data bus D₁₇ D₁₆ D₁₅ D₁₀ D₁₄ D₁₃ D_{12} D₁₁ D_9 D₈ D₇ D_6 D_5 D_4 D₃ D_2 D_1 D_0 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 Index: 0EH (RS = low level) Data bus D₁₇ D₁₆ D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₉ D₈ D₇ D₆ D₅ D₄ Dз D_2 D1 D₀ Internal RAM | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 DB5 DB4 DB3 DB2 DB1 DB0 Display data (RS = high level)

5.1.3 RGB interface (Each common register mode)

The μ PD161704A can be directly connected to the RGB interface when NWRGB (bit D₂) of R2 register is set to 1.

The HSYNC and VSYNC signals establish synchronization in the horizontal and vertical direction, respectively, and data input to the data bus (D_{17} to D_0) is latched in synchronization with DOTCLK. For the electrical specifications, refer to **11**.

ELECTRICAL SPECIFICATIONS.

When the RGB interface is selected, the display output timing can be selected from <HSYNC/VSYNC/DOTCLK> or <internal oscillation clock>. It can also be selected whether the data input from the RGB interface is to be written to the display RAM or not.

The mode in which the data input from the RGB interface is not written to the display data RAM and is used for display output is called the through mode (the display output timing is generated by HSYNC/VSYNC/DOTCLK).

The mode in which the data input from the RGB interface is written to the display data RAM for display output is called the capture mode. In the capture mode, the display output timing can be selected from < HSYNC/VSYNC/DOTCLK > or <internal oscillation clock>.

Movement of μ PD161704A when making display output timing into <HSYNC/VSYNC/DOTCLK> is as follows.

Note 323 = 320-display line + 3-dummy line

Remark When VSYNC and HSYNC are low active and DOTCLK is latched (VSEG, HSEG and DCKEG pins are L and BPSEL = 0, respectively) about data in the rising edge.

Data Sheet S17583EJ2V0DS

Caution As for low active and VSYNC and HSYNC, DOTCLK latch data by the rising edge when RGB 18/16-bit mode is selected. Moreover, low active is latched by the rising edge of the 3rd shot at the time of RGB 6-bit mode selection, and, as for DOTCLK, VSYNC and HSYNC latch data.

In addition, an RGB data invalid mode is also available. In this mode, data input from a motion picture chip via the RGB interface is ignored. Note that only data input from the RGB interface is ignored in this mode and that access from the i80/M68 parallel interface and serial interface is possible.

<R> However, mode selection operates NWRGB, RGBS, and DISPCK bits of R2 register on shown as follows.

	R2			RGB Interface		
NWRGB D ₂	RGBS D ₁	DISPCK D ₀	Mode	Display Output Timing Clock	Writing from RGB Interface to Display Data RAM	
1	0	0/1	Through mode	HSYNC/VSYNC/DOTCLK	No	
1	1	1	0	HSYNC/VSYNC/DOTCLK	V	
1	1	0	Capture mode	Internal oscillation clock	Yes	
	6/4	1	DOD 14 : 111 1	HSYNC/VSYNC/DOTCLK	No	
0	0/1	0	RGB data invalid mode	Internal oscillation clock		

Table 5-4. RGB Interface Mode Selection

When capture mode is selected, DOTCLK is used as a write-in signal to a display data RAM. In addition, X addresses of an address pointer are reset by the HSYNC signal, and an increment is carried out by DOTCLK. Y address is reset by the VSYNC signal and an increment is carried out by HSYNC signal.

The blanking period can be set by the horizontal back porch register and vertical back porch register. When in RGB 6-bit mode, the value which increased the value of a level back porch register 3 times comes back porch period.

The active levels of HSYNC and VSYNC can be set. In addition, the active level of DOTCLK can also be set. <u>In the through mode</u>, however, the partial function and window access mode cannot be used.

Data Sheet S17583EJ2V0DS

[Example of using RGB interface]

<Through mode>

In the through mode, the area to be displayed by the RGB interface is specified by the RGB interface start line register (RGBST [8:0], R16) and RGB interface end line register (RGBED [8:0], R17). The data written to the display data RAM are displayed in areas other than the RGB interface area. In the through mode, the display data RAM and registers can be accessed (written or read) by the i80/M68 interface or serial interface when an access is made by the RGB interface.

Therefore, an operation such as rewriting the time or antenna by a base band IC while inputting motion picture data from a DSP via the RGB interface can be performed.

<Capture mode>

In the capture mode, the area set in the window access mode is written by the RGB interface (CAPXMIN [7:0], CAPXMAX [7:0], CAPYMIN [8:0], CAPYMAX [8:0], R18 to R21).

Even in this mode, the i80/M68 parallel interface or serial interface, which are shared with the RGB interface, can be used. Note, however, that data can be written to a register while the RGB interface is accessed, but that the RAM cannot be accessed. Make sure that only one of these accesses is made (shift to the RGB data invalid mode so that RGB data is not input).

Data Sheet S17583EJ2V0DS

<Notes on using RGB interface>

- <1> Be sure to input data from the RGB interface every frame.
- <2> When changing the mode (e.g., from the through mode to the capture mode, and vice versa), issue defined mode of selection command after once always setting RGB invalid mode.
- <3> It is a shift flow from the time of internal oscillation use (DISPCK [R2] = 0) to each mode as a display clock.

Shift to through mode (DOT) Shift to capture mode (internal oscillator) Shift to capture mode (DOT)

Remark WAIT time 1: Set sufficient time of one or more frames.

<4> It is a shift flow from the time of DOTCLK use (DISPCK [R2] = 1) to each mode as a display clock.

Remarks 1. WAIT time 2: External clock for two frames is required.

- 2. WAIT time 3: External clock + VSYNC for one frame is required.
- <5> Data (back porch period is included) of one line should be set within the period of HSYNC to HSYNC.
- <6> Data (back porch period is included) of one frame should be set within the period of VSYNC to VSYNC.
- <7> INC function cannot be used about the writing to the display data RAM at the time of capture mode. However, ADX and an ADR function can be used.
- <8> A setup of XA [7:0], YA [8:0], XMN [7:0], XMX [7:0], YMN [8:0], YMX [8:0], R6 to R11 is invalid at the time of RGB interface mode (since these are set up of CPU interface).
- <9> The period from "the DOTCLK standup after falling of HSYNC" to "the standup of DOTCLK after HSYNC standup" should not start VSYNC. For more details, refer to the next Figure 5–24.

<R> Figure 5–24. Example of HSYNC, VSYNC, and DOTCLK Input Timing (both HSYNC and VSYNC are low active, and data latch by DOTCLK rising edge)

(1) BPSEL = 0

(2) BPSEL = 1

Figure 5-25. HSYNC and VSYNC Input Image Figure (when both HSYNC and VSYNC are high active)

Figure 5-26. RGB Interface Horizontal Period and Vertical Period Back Porch

Horizontal period back porch (Example of back porch number = 5)

Vertical period back porch (Example of back porch number = 3)

5.1.4 i80/M68 parallel interface (Each common register mode)

When the parallel interface has been selected, setting the C86 pin as either H or L enables a direct connection to an i80 series or M68 series CPU (Refer to Table 5–5 below).

Table 5-5.

C86	Mode	/RD (E)	/WR (R,/W)		
Н	M68 series CPU	E	R, /W		
L	i80 series CPU	/RD	/WR		

The data bus signal is identified according to the combination of the /RD (E), and /WR (R,/W) signals, as shown in the following Table 5-6.

Table 5-6.

M68 Series CPU	i80 Seri	es CPU	Function		
R,/W	/RD	/WR			
Н	L	Н	Read display data		
L	Н	L	Write display data		

Data Sheet S17583EJ2V0DS

(1) i80 Series Parallel Interface

When i80 series parallel data transfer has been selected, data is written to the μ PD161704A at L period of the /WR signal. The data is output to the data bus when the /RD signal is L.

/RD
DBn
Hi-Z
Writing data
Valid data
Data read

Figure 5-27. i80 Series Interface Data Bus Status

(2) M68 Series Parallel Interface

When M68 series parallel data transfer has been selected, data is written at the H period of the E signal when the R,/W signal is L. In a data read operation, data is output at the rising edge of the E signal in a period when the R,/W signal is H. The data bus is released (Hi-Z) at the falling edge of the E signal.

Figure 5-28. M68 Series Interface Data Bus Status

5.1.5 VSYNC interface (Each common register mode)

The VSYNC interface in which the video display is possible is built in only by i80/M68 conventional parallel interface and a conventional frame synchronized signal (VSYNC).

By setting up with VIMD = 1, VSYNC interface comes usable. In VSYNC interface, internal display operation is synchronized by the frame synchronized signal (VSYNC). From i80/M68 interface, it abolishes that the data before rewriting and the data after rewriting are intermingled in one frame by writing display data in RAM at a write-in speed more than fixed speed from internal display operation.

In addition, if VSYNC comes active, being simultaneous (the above figure falling of VSYNC), when the writing from a system interface to RAM begins to be performed, it is necessary to write in data above the speed computed by the following expression of relations.

<R> In this mode, secure to keep width over 1 H MIN. for VSYNC active width.

[RAM write-in speed]

50

RAM write-in speed (MIN.) [Hz] < 1/ {one-line time (calibration time) / the number of one-line write-in data}

Remark The number of 1 line write-in data is the number of data for one line transmitted from CPU.

[Example 1 of calculation] When writing in data of 320 pixel of 240 RGB,

- Rewriting pixel size : 240 RGB x 320

Interface : 16-bit package transmission
 One-line time : 51 μs (frame frequency of 60 Hz)

RAM write-in speed minimum value = 1/ (51 μ s/240) = 4.62 MHz (when not taking variation in a calibration into consideration)

5.1.6 Serial interface (Each common register mode)

When the serial interface has been selected, if the chip is active (/CS = L), serial data input (SI) and serial clock input (SCL) can be received. When 18-bit serial interface is used, serial data is read from D₁₇ and then from D₁₆ to D₀ on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the eighteenth serial clock's rising edge and is then converted to parallel data for processing.

When 16-bit serial interface is used, serial data is read from D₁₅ and then from D₁₄ to D₀ on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the sixteenth serial clock's rising edge and is then converted to parallel data for processing.

Also, like using parallel interface, serial interface can judge what it is by RS input.

RS = L	RS = H
Index	Data

Remark When it writes in display RAM, it is possible by selecting specified register number same as register.

The serial interface signal chart is shown below.

Figure 5–29. Serial Interface Signal Chart (16-bit serial interface)

Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings.

- 2. The data read function is disabled during serial interface mode.
- **3.** When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from external sources. We recommend checking operation with the actual device.

5.1.7 Chip select (Each common register mode)

The μ PD161704A has a chip select pin (/CS). The CPU parallel interface and serial interface can be used only when /CS = L. When the chip select pin is inactive, D₀ to D₁₇ are set to high impedance (invalid) and input of RS, /RD, or /WR is not active.

Therefore, keep the chip select pin active for 1 cycle period of data transfer (until a read/write operation has been completed once in the parallel interface mode).

It is not necessary to keep the chip select signal active when successively transferring data. It may be non-active between data transfer operations.

5.1.8 Access to display data RAM and internal registers (Each common register mode)

Figures 5–30 to 5–34 show read/write accesses to the display data RAM and write accesses to internal registers 8-, 16-, and 18-bit parallel interface modes and serial interface mode.

Note that the display data RAM and registers can't read operation in the serial interface mode.

When the CPU accessed the μ PD161704A, the CPU only has to satisfy the AC standard requirement of the cycle time (tcyc) and can transfer data at high speeds. Usually, it is not necessary for the CPU to take WAIT time into consideration.

However, in the vertical writing (INC = 1) which an address is changed in the direction of Y and written in it, note that the cycle time is severe rather than the case of the horizontal writing (INC = 0).

Figure 5-30. Read/Write in 16-/18-Bit Parallel Interface Mode

Figure 5-31. Read/Write in 8-Bit Parallel Interface Mode

- Cautions 1. While setting the writing to a register, set it the fixed input of the low level to RS pin. While setting the writing to a register, "index (upper 8 bit) + (bottom 8 bit)" period is pointed out.
 - 2. While setting the writing to display data RAM, set it the fixed input of the high level to RS pin. While setting the writing to display data RAM, a "data transfer for 1 pixel (1 register)" period is pointed out.
 - 3. When use 8-bit parallel interface, RS pin always start transfer after hard reset release, after set up 100 ns MIN. input of high level.

Data Sheet S17583EJ2V0DS

Figure 5-32. 18-bit Serial Interface Mode

Remark 16 bits of lower are used as an index among serial input data.

Remark In the case of register data, 16 bits of lower of serial data are used.

- Cautions 1. While setting the writing to index, set it the fixed the low level to RS pin.
 - 2. While setting the writing to data, set it the fixed output of the high level to RS pin.
 - 3. When write in register, setting value of D₁₇ and D₁₆ are assigned to empty (Don't care) bit.

Figure 5-33. 16-bit Serial Interface Mode

Cautions 1. While setting the writing to index, set it the fixed output of the low level to RS pin.

2. While setting the writing to data, set it the fixed output of the high level to RS pin.

Data Sheet S17583EJ2V0DS

Figure 5-34. Image of Internal Access to Display RAM

Writing

Reading

5.2 Display Data RAM (Each common register mode)

This RAM stores dot data for display and consists of 240 x 320 x 18 bits. Any address of this RAM can be accessed by specifying X address and Y address.

Display data RAM construction refers to Figure 5–35.

Figure 5-35. Display Data RAM

D ₁₇	D ₁₆	D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀
R data						G data						B data					
	Pixel 1 (= 1 X address)																

LCD panel	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7	Pixel 8	
	00H	01H	02H	03H	04H	05H	06H	07H	
	UUH	UIH	U2H	USH	U4H	USH	ОбП	0/11	

5.2.1 X address circuit

X address of the display data RAM is specified by using the X address register (XA [7:0], R6) as shown in Figure 5–36. The specified X address is incremented by one each time display data is written or read.

In the X address increment mode, the X address is incremented up to EFH. If more display data is written or read, the Y address is incremented, and the X address returns to 00H.

The relationship between the X address and source output can be inverted by the ADX [R1] flag of the display setting register 2 as shown in Figure 5–36. The input data can be rotated 90 degrees and displayed by changing the ADY function and address increment direction between X and Y.

5.2.2 Y address circuit

58

Y address of the display data RAM is specified by using the Y address register (YA [8:0], R7).

The Y address is incremented each by one when one each time display is written or read and X address is incremented to last address.

When the Y address has been incremented up to 13FH and the X address up to the final address, if further display data is read or written, the X address return to 00H and Y addresses return to 000H.

As shown in Figure 5–36, the relationship between the Y address and gate output can be inverted by the ADY [R1] flag of the display setting register 2. The data written to the display can be rotated 90 degrees and output by changing the ADX function and address increment switch direction between X and Y.

Table 5-7. Data Access Control (INC) Setting

INC [R5]	Setting
0	When data access, X directions an address continuing an increment or a decrement is carried out.
1	When data access, Y directions an address continuing an increment or a decrement is carried out.

Figure 5-36. Example of 90-Degree Rotation

Data Sheet S17583EJ2V0DS

Figure 5–37. The μ PD161704A RAM Addressing

1) ADX = 0

Source	ADC = L	Y1	Y2	Y3	Y4	Y5	Y6			Y715	Y716	Y717	Y718	Y719	Y720
output	ADC = H	Y720	Y719	Y718	Y717	Y716	Y715	1	-	Y6	Y5	Y4	Y3	Y2	Y1
	X-address	000H		001H		-		13EH			13FH				
		D [17:12]	D [11:6]	D [5:0]	D [17:12]	D [11:6]	D [5:0]	-		D [17:12]	D [11:6]	D [5:0]	D [17:12]	D [11:6]	D [5:0]
		1st pixel		2nd pixel				239th pixel		240th pixel					

Gate	output					
R,/L = L	R,/L = H	Y-ad	dress			
		ADR = L	ADR = H			
G0	G321	(Dummy line)				
G1	G320	000H	13FH			
G2	G319	001H	13EH			
:						
:	:	:	:			
G159	G162	09EH	0A1H			
G160	G161	09FH	0A0H			
G161	G160	0A0H	09FH			
G162	G159	0A1H	09EH			
:	:	:	:			
:	:	:	:			
G319	G2	13EH	001H			
G320	G1	13FH	000H			
G321	G0	(Dummy line)				

2) ADX = 1

Source	ADC = L	Y1	Y2	Y3	Y4	Y5	Y6	-		Y715	Y716	Y717	Y718	Y719	Y720
output	ADC = H	Y720	Y719	Y718	Y717	Y716	Y715	1	-	Y6	Y5	Y4	Y3	Y2	Y1
	X-address	13FH		13EH			-		001H			000H			
		D [17:12]	D [11:6]	D [5:0]	D [17:12]	D [11:6]	D [5:0]	-		D [17:12]	D [11:6]	D [5:0]	D [17:12]	D [11:6]	D [5:0]
		240th pixel		239th pixel				2nd pixel		1st pixel					

Gate	output				
R,/L = L	R,/L = H	Y-ad	dress		
		ADR = L	ADR = H		
G0	G321	(Dumn	ny line)		
G1	G320	000H	13FH		
G2	G319	001H	13EH		
:	:				
:	:	:			
G159	G162	09EH	0A1H		
G160	G161	09FH	0A0H		
G161	G160	0A0H	09FH		
G162	G159	0A1H	09EH		
:	:		:		
:	:	:			
G319	G2	13EH	001H		
G320	G1	13FH	000H		
G321	G0	(Dumn	ny line)		

5.2.3 Arbitrary address area access (Window access mode (WAS))

With the µPD161704A, which can also access only the RAM address area specified arbitrarily.

First, select the area to be accessed by using the MIN.·X/Y address registers [R8, R10] and MAX.·X/Y address registers [R9, R11]. When WAS [R5] of data access control register is set to 1, the window access mode is then selected. The address scanning setting is also valid in this mode, in the same manner as when data is normally written to the display RAM. In addition, data can be written from any address by specifying the X address register and Y address register.

The data input from the RGB interface in the through mode of the RGB interface cannot be used in the window access mode.

Figure 5-38. Example of Incrementing Address when in Window Access Mode

Cautions 1. When using the window access mode, the relationship between the start point and end point shown in the table below must be established.

Item	Address Relationship
X address	00H ≤ MIN.·X address [R8] ≤ X address (XA [7:0]< R6) ≤ EFH
	00H ≤ X address (XA [7:0], R6) ≤ MAX.·X address [R9] ≤ EFH
	However, MIN.·X address [R8] < MAX.·X address [R9]
Y address	00H ≤ MIN.·Y address [R10]≤ Y address (YA [8:0], R7) ≤ 13FH
	00H ≤ Y address (YA [8:0], R7) ≤ MAX.·Y address [R11] ≤ 13FH
	However, MIN.·Y address [R10]< MAX.·Y address [R11]

2. If invalid address data is set as the MIN./MAX. address, operation is not guaranteed.

Data Sheet S17583EJ2V0DS

A set up of MIN.·X address register, MIN.·Y address register, MAX.·X address register, MAX.·Y address register can be set up in any order different.

Figure 5-39. Example of Sequence in Window Access Mode

5.3 Oscillator (Each common register mode)

The μ PD161704A has a CR oscillator (with external R), which generate the display clock. When OSCSEL is L, an internal resistance mode for oscillator is selected. On the other hand, leave both OSCIN and OCSOUT pin open. When OSCSEL is H, an external resistance mode for oscillator is selected. At the time of external resistance mode, connect 36 k Ω on resistance between OSCIN and OSCOUT pin.

This oscillator also has a calibration function, which is available by itself to set the number of frame frequency of display driving. Frame frequency calibration is set by calibration register (OC [R45]). The time to drive one line (1H) is set by the calibration start (OC = 1) and stop (OC = 0) commands.

Figure 5-40. Frame Frequency Calibration

The calibration function involves counting the clock number of oscillation circuit generated between the start and stop signals (set as OC = 1) and storing that number in a register. The number of oscillation clocks is then continually compared with this register value in subsequent operations, and the time of the clock number stored in the register is set as 1 line selection time, and used as the internal reference clock.

By this function, even if the frequency of an oscillation circuit varies, frame frequency can be kept constant. Using the time to set calibration (tcal) can be selected either tcal or tcal x 2 through LTS [R1] register.

Figure 5-41. Calibration Function Timing (LTS = 0)

Data Sheet S17583EJ2V0DS

5.4 Display Timing Generator (Each common register mode)

The display timing generator generates the timing signals for the internal timing of the source driver and for the gate driver.

5.4.1 Horizontal period

Each following signal is controlled by register setup.

<GOE1 signal>

GOE1 standup timing register [GOST [7:0]] GOE1 falling timing register [GOED [7:0]] performs output timing control of GOE1 signal.

<VCOM signal>

It changes commonly, VCOM changes by the timing register [VMCHG [7:0]], and timing is controlled.

<Driving start timing>

A drive start and end timing are set up by the drive timing register [SWST [7:0], SWED [7:0]].

In addition, about SWST [7:0], VMCHG [7:0], and GOST [7:0], it sets of a level period up to what clock a signal changes flatly period (left side from 0 clock on below figure). Moreover, SWED [7:0] and GOED [7:0] set up to what count a signal changes from the last of a level.

Remark The setting value of GOST [7:0] and SWST [7:0] comes the same operation as an initial value, when the value below an initial value is set up.

Caution The Horizontal period is decided by setting the number of direct level period clocks as BCNT [7:0] of a calibration or calibration register. In addition, although arbitrary values can usually be set up, when the DOTCLK display of the RGB interface is used, set up BCNT [7:0] register with [3BH]. The display may be confused when a setup of those other than BCNT [7:0] = 3BH is performed at the time of the DOTCLK display of the RGB interface.

5.4.2 Vertical period

The output timings for normal operation, for normal operation \rightarrow STBY input mode, for STBY status \rightarrow return to normal operation, are shown figure as follows.

Figure 5–42. During Normal Operation (during line inversion)

Figure 5–43. Normal Operation → STBY Input Mode (during line inversion)

Caution Oscillator does not stop only by the STBY command (Since it is necessary to output booster clock to power supply IC).

Data Sheet S17583EJ2V0DS

Figure 5–44. STBY Status \rightarrow Return to Normal Operation (during line inversion)

5.4.3 About source output of dummy period

In the μ PD161704A, it is possible to set up the source output during dummy period by SOUT_MODE 1 and SOUT_MODE0 registers.

In the case of SOUT_MODE1, SOUT_MODE0 = 0, 0

As for the source output in the dummy period, Vs (when common = L) or Vss (when common = H) is outputted by common polarity.

In the case of SOUT_MODE1, SOUT_MODE0 = 0, 1 or 1, 1 As for the source output in the dummy period, Hi-Z is outputted.

In the case of SOUT_MODE1, SOUT_MODE0 = 1, 0

As for the source output in the dummy period, Hi-Z is outputted before common polarity inversion and Vs or Vss is outputted by common polarity as well as the case of "0, 0" after common polarity inversion.

Data Sheet S17583EJ2V0DS

5.5 γ-Curve Correction Circuit (Each common register mode)

The μ PD161704A includes γ -curve correction circuit. It is possible to adjust inclination of γ - amplitude by register setup. Each register of the register setup (GPH [6:0], R36, GPL [6:0], R38, GNH [6:0], R37, and GNL [6:0], R39) performs amplitude of γ -curve of positive and negative polarity. Moreover, fine tuning is set to G3SW [R82] register = 1, and the register setup (GM1P [5:0], R97, GM2P [5:0], R99, GM3P [5:0], R101, GM3N [5:0], R98, GM2N [5:0], R100, and GM1N [5:0], R102) performs it.

Figure 5–45. γ -Curve Correction Circuit (Positive polarity, GRES = 0)

γ-curve correction circuit $\gamma\text{-curve}$ string VGM resistor GNH (R37) VR123-VR250, 1-step V43 VR-250 O Y1 Vr-500 VR-249 -O Y2 Vr-499 VR-248 -O Y3 Vr-498 -O Y4 VR-241 **-**○ Y5 VR-240 Vr-473 V62 -○ Y6 Vr-472 VR-190 -O Y7 VR-189 -O Y8 Vr-461 GM1N (R102) VR114-VR240, 6-bit (2VR step) VR-137 Vr-460 VR-136 Vr-459 Vr-458 V61 VR-128 Vr-457 Source output circuit VR-127 VR-124 Vr-246 GM2N (R100) VR63-VR189, 6-bit, (2VR setp) VR-123 Vr-245 Vr-244 V31 VR-115 Vr-243 VR-114 VR-64 Vr-72 GM3N (R98) VR10-VR136, VR-63 6-bit, (2VR setp) Vr-71 VR-11 Vr-7 V1 VR-10 -O Y717 Vr-6 -○ Y718 VR-3 Vr2 O Y719 VR-2 Vr1 GNL (R39) VR127-VR0, 7-bit, (1VR step) V0 VR-1 O Y720 vss-

Figure 5–46. γ -Curve Correction Circuit (Negative polarity, GRES = 0)

A setup of the gray-scale voltage (Vr) in each gray-scale mode is as follows.

(1) GRES = 0: Default

1 V_r is positive polarity: (VPH–VPL)/500 and negative polarity: (VNH–VNL)/500.

Gray-scale Mode		Positive Polarity	Negative Polarity
64 gray-scale	2 gray-scale	Vr	Vr
0	0	500	0
1	<u> </u>	494	6
2		486	14
3		478	22
4		470	30
5		462	38
6		454	46
7		446	54
8		439	61
9		432	68
10		424	76
11		416	84
12		408	92
13		400	100
14		392	108
15		384	116
16		376	124
17		367	133
18		358	142
19		348	152
20		339	161
21		330	170
22		322	178
23		314	186
24		306	194
25		299	201
26		292	208
27		285	215
28		278	222
29		271	229
30		264	236
31		257	243

Gray-scale Mode		Positive	Negative
City 500	are mode	Polarity	Polarity
64 gray-scale	2 gray-scale	Vr	Vr
32		250	250
33		243	257
34		236	264
35		229	271
36		223	277
37		217	283
38		211	289
39		205	295
40		199	301
41		193	307
42		187	313
43		181	319
44		175	325
45		169	331
46		163	337
47		157	343
48		151	349
49		145	355
50		138	362
51		131	369
52		124	376
53		117	383
54		109	391
55		101	399
56		93	407
57		84	416
58		75	425
59		66	434
60		55	445
61		43	457
62		28	472
63	1	0	500

(2) GRES = 1

1 V_r is positive polarity: (VPH–VPL)/500 and Negative polarity: (VNH–VNL)/500.

Gray-scale Mode		Positive Polarity	Negative Polarity
64 gray-scale	2 gray-scale	Vr	Vr
0	0	500	0
1		493	5
2		485	13
3		477	21
4		468	28
5		460	36
6		452	43
7		444	51
8		436	58
9		428	66
10		420	74
11		412	81
12		404	89
13		396	96
14		388	104
15		380	112
16		372	120
17		363	129
18		353	138
19		342	148
20		333	157
21		324	165
22		316	173
23		308	181
24		300	188
25		292	195
26		285	201
27		278	208
28		271	215
29		264	222
30		258	228
31		251	235

Gray-scale Mode		Positive	Negative
		Polarity	Polarity
64 gray-scale	2 gray-scale	Vr	Vr
32		245	241
33		239	248
34		232	254
35		225	260
36		219	266
37		213	272
38		207	279
39		201	285
40		194	291
41		188	298
42		181	304
43		175	311
44		169	317
45		163	323
46		157	330
47		150	337
48		144	343
49		137	350
50		131	356
51		124	363
52		117	371
53		110	378
54		103	386
55		96	394
56		88	403
57		80	412
58		71	421
59		62	431
60		53	443
61		41	455
62		27	471
63	1	0	500

Table 5–8. γ -amplifier Connection Place

Positive Polarity		
GPH	Vr 500	
GM1P	Vr 421	
GM2P	Vr 235	
GM3P	Vr 36	
GPL	Vr 0	

Negative Polarity		
GNH	Vr 500	
GM1N	Vr 460	
GM2N	Vr 245	
GM3N	Vr 71	
GNL	Vr 0	

1 VRn = Vs/250 (20 mV step when Vs = 5 V)

		when vs - 5 v			Ι	
GPH	GM1P	GM2P	GM3P	GPL		
GNH	GM1N	GM2N	GM3N	GNL	VRn	Vs = 5 V (V)
7-bit	6-bit	6-bit	6-bit	7-bit		
				00H	0	0.000
				01H	1	0.020
					:	:
			00H	0AH	10	0.200
			_	0BH	11	0.220
			01H	0CH	12	0.240
			:	:	:	:
		00H	_	3FH	63	1.260
		_	1BH	40H	64	1.280
		01H	_	41H	65	1.300
		:	:		:	:
	00H	_	34H	72H	114	2.280
	_	1AH		73H	115	2.300
	01H	-	35H	74H	116	2.320
	:	:	:	:	:	:
00H	_	1EH	_	7BH	123	2.460
01H	05H	_	39H	7CH	124	2.480
02H		1FH	_	7DH	125	2.500
03H	06H	_	ЗАН	7EH	126	2.520
04H	_	20H	_	7FH	127	2.540
:	:	:	:		:	:
0BH	0AH	_	3EH		134	2.680
0CH	_	24H	_		135	2.700
0DH	0BH	_	3FH		136	2.720
:	:	:			:	:
40H	_	3EH			187	3.740
41H	25H	_			188	3.760
42H	_	3FH			189	3.780
:	:				:	:
73H	3EH				238	4.760
74H	_				239	4.780
75H	3FH				240	4.800
:					:	:
7EH					249	4.980
7FH					250	5.000

Table 5-9. Gray-scale (Upper side) Bias Current Setup

GAN2	GAN1	GAN0	Current Value (magnification)
0	0	0	0.5
0	0	1	1.0 (default)
0	1	0	1.5
0	1	1	2.0
1	0	0	3.0
1	0	1	4.0
1	1	0	6.0
1	1	1	7.5

Table 5-10. Gray-scale (Bottom side) Bias Current Setup

GAP2	GAP1	GAP0	Current Value (magnification)
0	0	0	0.5
0	0	1	1.0 (default)
0	1	0	1.5
0	1	1	2.0
1	0	0	3.0
1	0	1	4.0
1	1	0	6.0
1	1	1	7.5

Table 5–11. γ -amplifier Bias Current Setup

GI2	GI1	GI0	Current Value (magnification)
0	0	0	0.5
0	0	1	1.0 (default)
0	1	0	1.5
0	1	1	2.0
1	0	0	2.5
1	0	1	3.0
1	1	0	3.5
1	1	1	4.0

5.6 Partial Display Mode (Each common register mode)

The μ PD161704A is provided with a function that allows sections within the screen to be displayed separately (partial display mode). The start line of the area to be displayed in partial display mode is set using the partial display area start line register, the number of lines in the area to be displayed is set using the partial non-display area line count register.

Moreover, the address of the image data displayed on partial display area can be specified by the partial display area display area address register (P1SA [8:0], P2SA [8:0]).

A setup of color is possible for partial non-displaying area at partial non-displaying area setting register. If "1" is set in the partial display area line count registers, the partial display areas each become 1 line. If "0" is set, there are no partial display areas but only normal display areas.

The non-display area indicated by P1SL [8:0] and P1AW [8:0] is called partial 1, and the non-display area indicates by P2SL [8:0] and P2AW [8:0] is called partial 2. The partial 2 setting is enabled only when the partial 1 setting has been performed (when P1AW [8:0] \neq 0). Therefore, to set only one area as a non-display area, perform only the setting for partial 1.

Low power consumption cannot be achieved if only the partial mode is set. If low power consumption is required, the mode must be switched to the 8-color mode.

Figure 5-47. Partial Display Mode

- Cautions 1. The specified partial areas must not directly overlap, and the partial 1 area and partial 2 area must be separated by at least one line. If the areas overlap, only the partial 1 settings are valid, and partial display is not performed for the partial 2 area.
 - When setting the partial display areas, be sure to observe the following relationship.
 P1AW [8:0] (P2AW [8:0]) ≤ "13FH" (Setting gate line number 1)

The following sequence is recommended to avoid display malfunction when switching from normal display mode to partial display mode and vice versa.

(1) Recommended sequence for switching from normal display mode to partial display mode

Notes 1. <2> to <7> can be executed in any order.

2. <8> must be executed after <4> to <6> have been set.

(2) Recommended sequence for switching from partial display mode to normal display mode

Note <2> to <4> can be executed in any order.

(3) Recommended sequence for switching from partial display mode to partial display mode (switching the partial display area)

Notes 1. <2> to <5> can be executed in any order.

- **2.** Execute <2> only when necessary.
- 3. <6> must be executed after <3> to <5> have been set.

(4) Partial display setting examples

Setting A-1

Register	Setting Value	Details of Setting Value
Partial display area start line register (P1SL [8:0], P2SL [8:0])	00H	Specifies Y address 00H
Partial display area line count register (P1AW [8:0], P2AW [8:0])	A0H	Sets an area of 160 lines
Partial display area RAM address register (P1SA [8:0], P2SA [8:0])	00H	Specified Y address 00H

Setting A-2

Register	Setting Value	Details of Setting Value
Partial display area start line register (P1SL[8:0], P2SL[8:0])	A0H	Specifies Y address A0H
Partial display area line count register (P1AW[8:0], P2AW[8:0])	A0H	Sets an area of 160 lines
Partial display area RAM address register (P1SA[8:0], P2SA[8:0])	A0H	Specifies Y address A0H

Setting A-3

Register	Setting Value	Details of Setting Value
Partial display area start line register (P1SL [8:0], P2SL [8:0])	50H	Specifies Y address 50H
Partial display area line count register (P1AW [8:0], P2AW [8:0])	A0H	Sets an area of 160 lines
Partial display area RAM address register (P1SA [8:0], P2SA [8:0])	50H	Specifies Y address 50H

Setting A-4

Register	Setting Value	Details of Setting Value
Partial display area start line register (P1SL [8:0], P2SL [8:0])	F0H	Specifies Y address F0H
Partial display area line count register (P1AW [8:0], P2AW [8:0])	A0H	Sets an area of 160 lines
Partial display area RAM address register (P1SA [8:0], P2SA [8:0])	F0H	Specifies Y address F0H

Setting A-5

Register	Setting Value	Details of Setting Value
Partial display area start line register (P1SL [8:0], P2SL [8:0])	F0H	Specifies Y address F0H
Partial display area line count register (P1AW [8:0], P2AW [8:0])	A0H	Sets an area of 160 lines
Partial display area RAM address register (P1SA [8:0], P2SA [8:0])	00H	Specifies Y address 00H

Figure 5-48. Partial Display Setting

5.7 Stand-by (Each common register mode)

The μ PD161704A has a stand-by function.

By setting STBY register = 1, and during the frame dummy line interval, all gate outputs are set to ON, from output to Vss, VCOM to Vss, and the panel charge is discharged. By setting DCON register = 0 after all gate outputs have become ON, regulator OFF and DC/DC converter OFF are executed, and by setting OSCON register = 0, full stand-by mode is entered after the internal oscillator stops.

<Stand-by sequence>

```
STBY register = 1

↓

(Wait in one frame period)

↓

DCON register = 0

↓

OSCON register = 0
```

The transition from the stand-by mode to the regular mode is the opposite sequence from the stand-by sequence, and is executed in the order of OSCON = 1, DCON = 1, and STBY = 0.

Figure 5-49. Outline of Operation During Stand-by Mode Execution

- Remarks 1. In the stand-by mode (STBY = 1), display data RAM access, display data RAM hold, and register access are possible even during DC/DC converter OFF and internal oscillation stop, as long as power is supplied to VDD, VCCIO, and VDC.
 - 2. If STBY_GOFF = 1, gate, source, and VCOM level can be set up as follows.

Gate level: V_{GL} Source level: Hi-Z VCOM level: V_{SS}

5.7.1 Stand-by sequence

As power supply control, the example of a sequence at the time of performing an internal sequence is shown.

Set μ PD161704A to stand-by mode

$$\mu$$
PD161704A STBY set (R0: STBY = 0 \rightarrow 1)

 \downarrow

1 frame time wait

The electric charge of the panel is discharge. It will become white display if it is normally white panel.

 μ PD161704A stand-by
Gate, source, VCOM level setting
(R0: STBY_GOFF = 0 \rightarrow 1)

 \downarrow

Changing of gate, source, VCOM level

 μ PD161704A power supply OFF setting (R24: DCON = 1 \rightarrow 0)

 \downarrow

The power OFF completed

 μ PD161704A oscillation circuit stop (R58: OSCON = 1 \rightarrow 0)

 \downarrow

Oscillation circuit stop (Stand-by status)

5.7.2 Stand-by release sequence

As power supply control, the example of a sequence at the time of performing an internal sequence is shown.

 μ PD161704A oscillation circuit start (R58: OSCON = 0 \rightarrow 1)

 \downarrow

1-line WAIT time MIN. (wait for oscillation stable time)

 μ PD161704A power supply ON setting (R24: DCON = 0 \rightarrow 1)

 \downarrow

Power ON after time set to PUPT0 and PUPT1 register has lapsed.

μPD161704A stand-by
Gate, source, VCOM level setting
(R0: STBY_GOFF = 1 \rightarrow 0)

 \downarrow

Changing of gate, source, VCOM level

 μ PD161704A STBY mode release (R0: STBY = 1 \rightarrow 0)

J.

Complete return to normal operation

5.8 Gate Driver Control (Each common register mode)

The μ PD161704A builds in 322 gate output circuits, and outputs a scanning signal according to display timing.

Figure 5-50. Gate Scan Waveform

Remark Go and G321 are dummy line.

 μ PD161704A

R,/L = Scan direction of gate "L" $1 \rightarrow 320$

R,/L = Scan direction of gate "H" $320 \rightarrow 1$

SCN1 = "0", SCN = "0": Panel connection mode "MODE1"

SCN1 = "0", SCN = "1": Panel connection mode "MODE2"

SCN1 = "1", SCN = "0": Panel connection mode "MODE3"

SCN1 = "1", SCN = "1"" Setting prohibited

NLINE1 = "0", NLINE0 = "0": 1-line inversion

NLINE1 = "0", NLINE0 = "1": 2-line inversion

NLINE1 = "1", NLINE0 = "0": 4-line inversion

NLINE1 = "1", NLINE0 = "1": 8-line inversion

GSCAN1 = "0", GSCAN0 = "0": Line inversion

GSCAN1 = "0", GSCAN0 = "1": Frame inversion

GSCAN1 = "1", GSCAN0 = "0": Skip inversion 1D

GSCAN1 = "1", GSCAN0 = "1": Skip inversion 2B

5.8.1 Inverting n lines

The inversion operation is executed by the number of lines n set to the NLINE [1:0] register. Figure 5–50 shows the inversion operation when 2, 4, and 8 is set as the number of lines n.

2-line polarity inversion + + + | + | + | + After 1 frame 313 316 -316 + + + + + + 319 + + + + + 319 -+ + 4-line polarity inversion After 1 frame 313 + 314 + 314 316 -316 + + + 317 + + + + + + 317 319 320 + + + + + + + + + + + 8-line polarity inversion After 1 frame 312 312 313 313 314 314 + 315 315 316 316 + + + + + + 317 317 + + + 319

Figure 5-51. Example of Inverting n Lines

5.8.2 Skip polarity inversion

Figure 5-52. Skip Polarity Inversion

5.8.3 Gate scan function

Three types of scan methods can be selected for the gate scan operation. Make the selection using GSCAN0 and GSCAN1 register. The scan operations corresponding to the settings of the GSCAN0 and GSCAN1 register are shown in Table 5–12.

Table 5–12. Selecting Gate Scan Function

GSCAN1	GSCAN0	Scan Function	Operation
0	0	Common line inversion (n line inversion)	Inverts the number of lines set by the NLINE [1:0] register R51 = 0,0: Inverts 1 line, R51 = 1,0: Inverts 4 lines R51 = 0,1: Inverts 2 line, R51 = 1,1: Inverts 8 lines
0	1	Common frame inversion	Performs inversion every frame.
1	0	Skip inversion 1D Note	Skips and inverts 1 line and common inversion is carried out in a cycle of 1/2 frame. For details, refer to Figure 5–53 .
1	1	Skip inversion 2B Note	Skips and inverts 1 line and common inversion is carried out in a cycle of 1/3 frame. For details, refer to Figure 5–54 .

Note It cannot be used at the time of the through mode/capture mode selection of RGB interface.

Data Sheet S17583EJ2V0DS

88

Moreover, the scan direction of the gate can be vertically inverted every frame, as specified by R,/L register. The setting is as follows.

Table 5-13. Selecting Inversion Direction

R,/L	Operation					
0	Scans the gate from the top to the bottom. Line 1 \rightarrow Line 320					
1	Scans the gate from the bottom to the top. n frames: Line 320 \rightarrow line 1					

Also, eight kinds shown below can be selected as scanning mode of the non-display area at the time of partial operation.

Table 5-14. Partial Non-display Area Scan Mode

GSM	GSMLN [2:0]	Scan Mode		
0	X, X, X	Same scan cycle as partial display area		
1	0, 0, 0	Partial non-display area doesn't scan		
1	0, 0, 1	Partial non-display area scans every 3 frames.		
1	0, 1, 0	Partial non-display area scans every 5 frames.		
1	0, 1, 1	Partial non-display area scans every 7 frames.		
1	1, 0, 0	Partial non-display area scans every 9 frames.		
1	1, 0, 1	Partial non-display area scans every 11 frames.		
1	1, 1, 0	Partial non-display area scans every 13 frames.		
1	1, 1, 1	Partial non-display area scans every 15 frames.		

5.8.4 Skip inversion

One or two line is skipped and inverted. Figure 5–53 and 5–54 show specific waveforms.

Figure 5-53. Skip Inversion 1D

Figure 5-54. Skip Inversion 2B

6. E²PROM INTERFACE

The μ PD161704A builds in the interface function to E²PROM corresponding to the micro-wire interface.

However, the capacity of E²PROM corresponds only 2 K and 4 K bit article.

6.1 The μ PD161704A and E²PROM Connection

Connection with E²PROM is made as shown in the following figure.

Table 6-1. LCD Controller Side Signal

Pin	Function
ECS	Chip select signal over E ² PROM.
	With outputting ECS = 1, E ² PROM is made into an active state and data is transmitted after that.
	It connects with CS (chip select pin) of E ² PROM.
ESK	Clock signal over E ² PROM.
	In falling of ESK, data is outputted from EDO to E ² PROM.
	It connects with CLK (shift clock pin) of E ² PROM.
	This is the E ² PROM clock for which has 8 divided circumferences in internal oscillator.
EDO	Data output pin.
	Data is outputted to E ² PROM.
	It connects with DIN (data in pin) of E ² PROM
EDI	Data input pin.
	It is used for reading of the data of E ² PROM and a BUSY/READY check.
	It connects with DOUT (data out pin) of E ² PROM.

<R>

<R> 6.2 Each Operation

The μ PD161704A can perform writing of register data, reading of a register date and elimination of E²PROM data to E²PROM. Selection of each operation is performed using R68 register.

	R68 Register		F ² DDOM Command		
E2OPC2	E2OPC1	E2OPC0	E ² PROM Command		
0	0	0	Setting prohibited		
0	0	1	EPSAVE: Writing to E ² PROM		
0	1	0	MASKON: Permission of the writing and elimination to E ² PROM Note		
0	1	1	MASKOF: Prohibition of the writing and elimination to E ² PROM		
1	0	0	EPCLR: All area elimination of E ² PROM		
1	0	1	EPWALL: FFH is written in all the area of E ² PROM		
1	1	0	EPREAD: Reading from E ² PROM		
1	1	1	Setting prohibited		

Note Only when making it E2OPC [2:0] = 0, 1, 0 before setting a value as E2OPC, it is necessary to set E2EN [7:0] register as AAH. The signal of the permission of writing and elimination to E²PROM as for E2OPC [2:0] = 0, 1, 0 is not transmitted not setting E2EN [7:0] register to AAH. In addition, when E2EN [7:0] register sets up Index in addition to E2OPC [2:0] or E2EN [7:0], it is reset by 00H.

In addition, explain each operation as follows.

μPD161704A

[E²PROM read command: Reading from E²PROM]

From the "E²PROM address" set as "the E²PROM reading start address register (E2SA [7:0])", <u>it reads in order of "index (D₀ to D₁₅: Index" + "Data (D₀ to D₁₅)"</u> and the register data stored in E²PROM is saved to the applicable index of the μ PD161704A. In addition, reading operation is continuously performed until it reads the reading end ID (Index area wrote by E²PROM is FFFFH).

E2SA[7:0]: Setting of reading start address E2OPC = 110: E²PROM read execution

 E^2 PROM read end (auto reset as E2OPC = 000)

[EPSAVE command: Writing of the data to E²PROM]

The register data of the μ PD161704A, data is written in the E²PROM address based on E2A [7:0] with corresponding E2IR [15:0].

In addition, when an E²PROM address is set as an even number address, an index is written in, and data is written in when it is set as an odd number address. Moreover, write the data corresponding to the index in the next address of the E²PROM address in which the index was written.

[MASKON command: Writing/elimination permission to E²PROM]

Elimination/writing to E²PROM is permitted.

Elimination/writing permission and enable setting

E2EN = AAH: Elimination/writing permission and enable register setting

Remark Unless setting E2EN = AAH, it can't execute elimination/writing permission.

Elimination/writing permission and command input

E2OPC = 010: Elimination/writing permission execution

EWEN <Erase Write ENable> issue (wait is desired)

E²PROM to an elimination/writing permission state

Completion of elimination/writing permission processing

 E^2 PROM elimination / write-in permission end (auto reset as E2OPC = 000)

[MASKOF: Writing protected to E²PROM]

Elimination/writing to E²PROM are protected (Reading of data is possible).

Elimination/writing protection and Command input

E2OPC = 010: Elimination/writing protection execution

EWDS <Erase Write DiSable> issue (wait is desired)

E²PROM to an elimination/writing protection state

Completion of elimination/writing permission processing

E²PROM elimination / write-in permission end (auto reset as E2OPC = 000)

[EPCLR command: E²PROM elimination]

The data of E²PROM is initialized.

Elimination/writing permission and E2EN = AAH: Elimination/writing permission and enable register setting enable setting Remark Unless setting E2EN = AAH, it can't execute elimination/writing permission. Elimination/writing permission and E2OPC = 010: Elimination/writing permission execution command input EWEN < Erase Write ENable > issue E²PROM to an elimination/writing permission state (wait is desired) E²PROM elimination and E^2 PROM elimination execute (E2OPC = 100) command input ERAL < ERase ALI > issue All data elimination of E²PROM (wait is desired) Elimination/writing protection and E2OPC = 010: Elimination/writing protection execution Command input EWDS < Erase Write DiSable > issue E²PROM to an elimination/writing protection state (wait is desired) Completion of processing of E²PROM E^2 PROM elimination end (auto reset as E2OPC = 000) elimination

[EPWALL]

FFFFH is written in all the data of E²PROM.

At the time of E^2PROM initialization, it reads to all E^2PROM data, an end command (FFFFH) is written and the infinite loop of reading by the noise etc. is prevented.

Data Sheet S17583EJ2V0DS

98

7. POWER SUPPLY CONTROL

DC/DC, VCOM block diagram

7.1 Boost Voltage Construction

The boost voltage generated is shown below.

7.2 Boost Voltage Auto Start and Rising Order

Data Sheet S17583EJ2V0DS

100

7.3 Power Shift Circuit

VSTBY	SFVSEL	Function		
0 (Vss)	0	Regulator ON, RV _{DD} = 2.1 V (Test mode)		
0 (Vss)	1	Regulator ON, RVDD = 2.3 V (Default)		
1 (V _{DC})	_	Regulator OFF, RV _{DD} = Hi-Z (Test mode)		

7.4 VDCI Circuit

VD2ON1	V _{DCI} (Limit value)
0 (2 times boost)	V _{DCI} = 3.2 V
1 (3 times boost)	V _{DCI} = 2.1 V

7.5 Vs_AMP Circuit, VR_AMP Circuit and VGM_AMP Circuit

Vs, VR and VGM generating amplifier circuit is shown below.

Refer to **7.8 Mode Description** for the relation of each output voltage and register.

7.6 Common Drive Circuit

The common drive circuit is shown below.

7.7 Variable Boost Steps

The number of boost step VDD2 is fixed to VDCI x 2 or x 3. It sets up by VD2ON1 and VD2ON0 register.

The boost steps of V_{GH}, V_{GL} and V_{CL} are selected according to how the external capacitor is connected and by VGHON1 and VGHON0, VGLON1 and VGLON0, VGHREF, and VGLREF registers.

The example of connection is shown below.

7.8 Mode Description

7.8.1 DC/DC converter control

DCON	VD2ON1	VD2ON0	DC1HZ	State of VDD2
0	х	х	0	V _{DC}
0	х	х	1	Hi-Z
1	0	0	0	V _{DC}
1	0	0	1	Hi-Z
1	0	1	х	V _{DCI} x 2 boost
1	1	х	Х	V _{DCI} x 3 boost

DCON	VGHREF	VGHON1	VGHON0	VGLON1	VGLON0	DC2HZ	State of V _{GH}
0	х	х	х	х	х	0	$V_{GH} = V_{DD2}$
0	х	х	х	х	х	1	V _{GH} = Hi-Z
1	х	0	0	х	х	0	V _{GH} = V _{DD2}
1	х	0	0	0	0	1	V _{GH} = Hi-Z
1	0	0	1	х	х	х	V _{GH} = V _R x 2 boost + V _R
1	0	1	х	Х	х	Х	V _{GH} = V _R x 3 boost + V _R
1	1	0	1	х	х	х	V _{GH} = V _R x 2 boost + V _{DCI}
1	1	1	х	х	х	х	V _{GH} = V _R x 3 boost + V _{DCI}

DCON	VGLREF	VGLON1	VGLON0	VGHON1	VGHON0	DC2HZ	State of V _{GL}
0	х	х	х	х	х	0	V _{GL} = V _{SS}
0	х	х	х	х	х	1	V _{GL} = Hi-Z
1	х	0	0	х	х	0	V _{GL} = V _{SS} (V _{GL} = V _{CL} when V _{CL} = ON)
1	х	0	0	0	0	1	V _{GL} = Hi-Z
1	0	0	1	х	х	х	V _{GL} = V _R x -2 boost
1	0	1	х	х	х	х	V _{GL} = V _R x –3 boost
1	1	0	1	х	х	Х	V _{GL} = V _R x -2 boost + V _{CL}
1	1	1	х	х	х	х	V _{GL} = V _R x -3 boost + V _{CL}

DCON	VCLON	DC3HZ	State of VcL
0	Х	0	V _{CL} = V _{SS}
0	х	1	V _{CL} = Hi-Z
1	0	0	V _{CL} = V _{SS}
1	0	1	V _{CL} = Hi-Z
1	1	х	V _{DCI} x –1 boost

7.8.2 DC/DC frame synchronous selection

104

DCFRM	DC/DC Operation
0	Asynchronous to frame signal
1	Synchronous to frame signal

7.8.3 DC/DC operation frequency selection

LPM	FS1	FS0	LFS1	LFS0	VDD2 and VCL Operation Frequency
0	0	0	-	-	DCCLK/1
0	0	1	_	_	DCCLK/2
0	1	0	_	_	DCCLK/4
0	1	1	_	_	DCCLK/8
1	_	-	0	0	DCCLK/1
1	_	ı	0	1	DCCLK/2
1	_	_	1	0	DCCLK/4
1	_	_	1	1	DCCLK/8

LPM	FS3	FS2	LFS3	LFS2	V _{GH} and V _{GL} Operation Frequency
0	0	0	х	х	DCCLK/1
0	0	1	х	х	DCCLK/2
0	1	0	х	х	DCCLK/4
0	1	1	х	х	DCCLK/8
1	х	х	0	0	DCCLK/1
1	х	х	0	1	DCCLK/2
1	х	х	1	0	DCCLK/4
1	х	х	1	1	DCCLK/8

7.8.4 DC/DC converter power ON time selection

PONM	PON	PUPT1	PUPT0	V _{DD2} Boost	Vr ON	V _{GL} Boost	VgH/VgL Boost Vs/VgM Boost	
1	Х	0	0	16/DCCLK	0.5 x 128/DCCLK	1.5 x 128/DCCLK	2.5 x 128/DCCLK	Internal sequence
1	х	0	1	16/DCCLK	0.5 x 256/DCCLK	1.5 x 256/DCCLK	2.5 x 256/DCCLK	Internal sequence
1	х	1	0	16/DCCLK	0.5 x 512/DCCLK	1.5 x 512/DCCLK	2.5 x 512/DCCLK	Internal sequence
1	х	1	1	16/DCCLK	0.5 x 1024/DCCLK	1.5 x 1024/DCCLK	2.5 x 1024/DCCLK	Internal sequence
0	1	Х	x	External input	External input	External input	External input	External sequence
0	0	Х	Х	_	_		_	Normal mode

7.8.5 Division ratio selection of the DC/DC converter at power ON

				•
PONM	PON	DUPF1	DUPF0	Division Ratio of the DC/DC Converter OSC Frequency
1	х	0	0	Internal sequence OSC = DCCLK/1
1	х	0	1	Internal sequence OSC = DCCLK/2
1	х	1	0	Internal sequence OSC = DCCLK/4
1	х	1	1	Internal sequence OSC = DCCLK/8
0	1	0	0	External sequence OSC = DCCLK/1
0	1	0	1	External sequence OSC = DCCLK/2
0	1	1	0	External sequence OSC = DCCLK/4
0	1	1	1	External sequence OSC = DCCLK/8
0	0	х	х	Valid of FS0, FS1, FS3, and FS4 setting

7.8.6 VREFR regulator selection output

RGON	VC2	VC1	VC0	Vrefr
0	х	Х	Х	VREFR regulator OFF (VREFR = Hi-Z)
1	0	0	0	1.50 V
1	0	0	1	1.60 V
1	0	1	0	1.70 V
1	0	1	1	1.80 V
1	1	0	0	1.90 V
1	1	0	1	2.00 V
1	1	1	0	2.05 V
1	1	1	1	2.10 V

<R> 7.8.7 Vgm regulator selection output

DOON	ON VSHI VSEL2 VSEL1		VOEL4	VSEL0	V _{GM}				
RGON	GOIN VOITI VOLLZ VOL	VSELT	VSELU	V _{GM}	V _{REFR} = 1.5 V	V _{REFR} = 2.0 V	V _{REFR} = 2.1 V		
0	х	х	х	х	V _{GM} regulator OF	F (VGM = Vss)			
1	1	х	х	х	V _{GM} regulator OF	F (VGM = Hi-Z)			
1	0	0	0	0	V _{REFR} x 2.200	3.30	4.40	4.62	
1	0	0	0	1	V _{REFR} x 2.250	3.38	4.50	4.73	
1	0	0	1	0	VREFR x 2.300	3.45	4.60	4.83	
1	0	0	1	1	V _{REFR} x 2.350	3.53	4.70	4.94	
1	0	1	0	0	V _{REFR} x 2.400	3.60	4.80	5.04	
1	0	1	0	1	V _{REFR} x 2.450	3.68	4.90	5.15	
1	0	1	1	0	V _{REFR} x 2.500	3.75	5.00	5.25	
1	0	1	1	1	V _{REFR} x 2.550	3.83	5.10	5.36	

7.8.8 Vs regulator selection output

DOON	VCIII	VOCELO	VSSEL1	VSSEL0		Vs				
RGON	VSHI	VSSEL2		VSSELU	Vs	V _{REFR} = 1.5 V	V _{REFR} = 2.0 V	V _{REFR} = 2.1 V		
0	х	х	х	х	Vs regulator OFF	(Vs = Vss)				
1	1	х	х	х	Vs regulator OFF	(Vs = Hi-Z)				
1	0	0	0	0	V _{REFR} x 2.425	3.64	4.85	5.09		
1	0	0	0	1	V _{REFR} x 2.450	3.68	4.90	5.15		
1	0	0	1	0	V _{REFR} x 2.475	3.71	4.95	5.20		
1	0	0	1	1	V _{REFR} x 2.500	3.75	5.00	5.25		
1	0	1	0	0	V _{REFR} x 2.525	3.79	5.05	5.30		
1	0	1	0	1	V _{REFR} x 2.550	3.83	5.10	5.36		
1	0	1	1	0	V _{REFR} x 2.575	3.86	5.15	5.41		
1	0	1	1	1	VREFR x 2.600	3.90	5.20	5.46		

7.8.9 VR regulator selection output

DOONE	VDIII	VDOELO	VDOELA	VDOELO	VR				
RGONR	VRHI	VRSEL2	VRSEL1	VRSEL0	VR	V _{REFR} = 1.5 V	V _{REFR} = 2.0 V	V _{REFR} = 2.1 V	
0	Х	х	х	х	V _R regulator OFF	(VR = VSS)			
1	1	х	х	х	V _R regulator OFF	$(V_R = Hi-Z)$			
1	0	0	0	0	Vrefr x 2.250	3.38	4.50	4.73	
1	0	0	0	1	V _{REFR} x 2.400	3.60	4.80	5.04	
1	0	0	1	0	V _{REFR} x 2.450	3.68	4.90	5.15	
1	0	0	1	1	V _{REFR} x 2.500	3.75	5.00	5.25	
1	0	1	0	0	V _{REFR} x 2.525	3.79	5.05	5.30	
1	0	1	0	1	V _{REFR} x 2.550	3.83	5.10	5.36	
1	0	1	1	0	Vrefr x 2.600	3.90	5.20	5.46	
1	0	1	1	1	Vrefr x 2.700	4.05	5.40	5.67	

7.8.10 VDCI regulator selection output

VDCION	VDCIHZ	VDCISEL	VD2ON1	V _{DCI} (Limit value)
1	x	x	0	3.2 V
1	x	x	1	2.1 V
0	1	x	x	Hi-Z
0	0	0	x	V _{DC}
0	0	1	x	Vss

7.8.11 RV_{DD} regulator selection output

VSTBY	SFVSEL	RV _{DD}
Vss	0	2.1 V
Vss	1	2.3 V
V _{DC}	х	Hi-Z

7.8.12 Vs, VR Amp. current selection

RGON, RGONR	LPM	ACS1	ACS0	LACS1	LACS0	Vs Status	V _R Status	State of Circuit Current
1	0	0	0	х	х	Output	Output	Amp. current = x 1
1	0	0	1	х	х	Output	Output	Amp. current = x 2
1	0	1	0	х	х	Output	Output	Amp. current = x 3
1	0	1	1	х	х	Output	Output	Amp. current = x 6
1	1	х	х	0	0	Output	Output	Amp. current = x 0.25
1	1	х	х	0	1	Output	Output	Amp. current = x 0.5
1	1	х	х	1	0	Output	Output	Amp. current = x 1.0
1	1	х	Х	1	1	Output	Output	Amp. current = x 1.5

7.8.13 VCOMM output control

COMONM	COHIM	COHIS	STBY	STBY GOFF	CDA_AMP	VCOMHM/ VCOMLM	VCOMM	Gate
						AMP		
0	Х	Х	0	0	OFF	OFF	Hi-Z	ON
1	1	х	0	0	ON	OFF	Hi-Z	ON
1	0	х	0	0	ON	ON	ON	ON
1	0	х	1	0	ON	ON	VCOMLM	V _{GH}
1	0	Х	1	1	ON	ON	Vss	V _G L
х	0	0	1	1	ON	ON	Vss	V _G L

7.8.14 VCOMM output capability control

COMONM	COHIM1	COHIM0	COMP1	COMP0	VCOMM
1	1	х	0	0	VCOMM capability = x 1 mode
1	1	х	0	1	VCOMM capability = x 1.5 mode
1	1	х	1	0	VCOMM capability = x 2 mode
1	1	х	1	1	VCOMM capability = x 2.5 mode

7.8.15 VCOM Amp. current selection

COMONM	LPM	COMCS1	COMCS0	LCOMCS1	LCOMCS0	VCOMHM-AMP, VCOMLM-AMP	State of Circuit Current		
0	х	х	Х	Х	х	OFF	Amp., CS power OFF		
1	0	0	0	Х	Х	ON	Amp. current = x 1		
1	0	0	1	Х	х	ON	Amp. current = x 2		
1	0	1	0	Х	х	ON	Amp. current = x 3		
1	0	1	1	Х	Х	ON	Amp. current = x 7		
1	1	х	Х	0	0	ON	Amp. current = x 0.25		
1	1	х	Х	0	1	ON	Amp. current = x 0.5		
1	1	х	Х	1	0	ON	Amp. current = x 1.0		
1	1	х	Х	1	1	ON	Amp. current = x 1.5		

7.8.16 VCOMM center adjustment selection

Setting by COMINM (D7 of R32), this register can select the setting method of common drive waveform VCOMM center voltage.

When COMINM = 1 is set, input directly VCOMM center voltage to VCOMINM pin outside IC.

COMINM	VCOMM Center Adjustment
0	Internal D/A valid (R32 valid setting)
1	Valid of VCOMINM input center level voltage

7.8.17 VCOM output amplitude adjustment

This is used to adjust the output amplitude of main/sub VCOMM output. The VCOM output amplitude voltage (VCOM_{P-P}) can be adjusted as shown by the expression below using VCOM amplitude control register (R31), which is the output voltage of a D/A converter circuit for which V_{GM} is the reference potential.

 $VCOMM_{p-p} = V_{GM} \times \{3/5 + \{3.15/5 \times (DA_{R31}/63)\}\}$

Remark DAR31: R31 setting values

The values of R31 that can be set are determined by the relationship of booster voltages V_{DD2} and V_{CL} to the potential level of the actual common drive waveform after VCOMM center adjustment.

Set the VCOMM output amplitude voltage, the VCOMM output center potential voltage setting level according to VCOMM center level control register (R32), or the VCOM output center potential input from VCOMINM in the relationships shown in the Figure 7–1.

Vs - 0.1 V — Common drive waveform

VCL + 0.1 V — VCL — VCL

Figure 7–1. Voltage Ranges that can be Set for Common Drive Waveform

<Conditions on common drive waveform voltage settings>

 $3~V \leq VCOMM_{p-p} \leq 5.5~V~(VCOMM_{p-p}~is~not~dependent~on~V_{DD2}~and~Vs)$ $Vs \geq VCOMHM \geq VCOMLM \geq VcL$

Remark VCOMHM = 1/2 VCOMM_{p-p} + VCOMCM VCOMLM = VCOMCM - 1/2 VCOMM_{p-p}

VCOMCM: R32 setting values [COMINM (R32) = 0] or VCOMINM input voltage level [COMINM (R32) = 1]

Data Sheet S17583EJ2V0DS

109

Table 7–1. VCOM Output Amplitude Voltage (VCOM_{P-P}) Adjustment and D/A Converter Setting Values

DA5	DA4	DA3	DA2	DA1	DA0	DA _{R31}	VCOM _{p-p} (Sample of V _{GM} = 5 V)		
0	0	0	0	0	0	0	3.00 V		
0	0	0	0	0	1	1	3.05 V		
0	0	0	0	1	0	2	3.10 V		
:	*:		• . • .	*:	•		:		
1	1	0	0	1	0	50	5.50 V		
1	1	0	0	1	1	51	5.55 V (setting prohibited under here)		
:	*:		• . • .	*:	•		÷		
1	1	1	1	0	1	61	6.05 V (setting prohibited)		
1	1	1	1	1	0	62	6.10 V (setting prohibited)		
1	1	1	1	1	1	63	6.15 V (setting prohibited)		

Remark The variable range of VCOMM output amplitude is set to V_{CL} + 0.1 V to V_S – 0.1 V. Also, use VCOM_{P-P} to come a setup between 3.0 V and 5.5 V.

7.8.18 VCOMM output center adjustment

This is used to adjust the center potential level of VCOMM output. By VCOMM center level adjustment register (R32, R33), VCOMM output center potential voltage (VCOMCM) can adjust the output voltage, or the D/A converter circuit which makes V_{GM} reference potential so that it may be below formula.

 $VCOMCM = V_{GM} \times \{1/5 + \{2/5 \times (DA/127)\}\}$

Remark DA: R32 setting values or R33 setting values

Table 7–2. VCOMM Output Center Potential Voltage (VCOMCM) and D/A Converter Setting Values

MCDA6	MCDA5	MCDA4	MCDA3	MCDA2	MCDA1	MCDA0	D/A	VCOMCM (V _{GM} = 5 V)
0	0	0	0	0	0	0	0	1.000 V
0	0	0	0	0	0	1	1	1.016 V
0	0	0	0	0	1	0	2	1.031 V
:	:	•	:	• •	• •		:	:
1	1	1	1	1	0	1	125	2.968 V
1	1	1	1	1	1	0	126	2.984 V
1	1	1	1	1	1	1	127	3.000 V

Remark The range in which the VCOMM output center can be varied is restricted by the output voltage of Vs and Vcl.

7.9 Value of Wiring Resistance to Each Pin

The recommended wiring resistance values are shown below. The wiring resistance values affect the current capacity of the power supply, so be sure to design using values that do not exceed those recommended.

Table 7-3. Recommended Wiring Resistor Values

Pin Name	Wiring Resistor Values (Ω)
Vss	< 10
VDC	< 10
V _{DCI}	< 10
RV _{DD}	< 10
Vs	< 10
Vr	< 10
V _{GM}	< 10
V _{GH}	< 50
V _{DD2}	< 10
V _{GL}	< 10
VcL	< 10
VCOMHM	< 10
VCOMLM	< 10
VCOMM	< 10
C11+	< 10
C11–	< 10
C12+	< 10
C12-	< 10
C21+	< 50
C21-	< 50
C22+	< 50
C22-	< 50
C23+	< 50
C23-	< 50
C31+	< 10
C31-	< 10

7.10 Recommended Capacitance Values of External Capacitor

The recommended capacitance values of the external capacitor are shown below. These values should be finally determined only after performing sufficient evaluation on the module.

Table 7-4. Recommended Values of External Capacitor

Pin Name	Recommended Value of Capacitors (µF)	Withstanding Voltage (V)		
V _{DC}	1 to 4.7	6.3 or more		
V _{DCI}	1 to 4.7	6.3 or more		
RVDD	1 to 4.7	6.3 or more		
Vs	1 to 4.7	6.3 or more		
V _R	1 to 4.7	10 or more		
V _{GM}	1 to 4.7	6.3 or more		
V _G H	0.47 to 1	25 or more		
V_{DD2}	1 to 4.7	10 or more		
V _{GL}	0.47 to 1	25 or more		
VcL	1 to 4.7	6.3 or more		
VCOMHM	1 to 4.7	6.3 or more		
VCOMLM	1 to 4.7	6.3 or more		
C11+, C11-	1 to 4.7	6.3 or more		
C12+, C12-	1 to 4.7	6.3 or more		
C21+, C21-	0.47 to 1	10 or more		
C22+, C22-	0.47 to 1	10 or more		
C23+, C23-	0.47 to 1	10 or more		
C31+, C31-	1 to 4.7	6.3 or more		

7.11 Shottky Diode Specification

112

The recommended specification of the external shottky diode are shown below. These values should be finally determined only after performing sufficient evaluation on the module.

Connection Place	Connect by low resistance (10 Ω or less) between $$V_{\text{GL-V}SS}$$ and between $V_{\text{DC-V}DD2}$$				
VF	0.5 V (200 mA) or less				
V_{R}	30 V or more				
lR	5 μ A or less				

8. POWER SUPPLY INJECTION/INTERCEPTION

The example of power ON/OFF sequence in the µPD161704A chip set is indicated.

8.1 Example of the PD161704A Power ON Sequence

The example of sequence is indicated. It is the case that the simple sequence is used.

R3

R58

Input hard-reset to μ PD161704A

μPD161704A register reset

 μ PD161704A command reset (R3 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1

μPD161704A oscillator start

 μ PD161704A internal oscillator start (R58 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1

 \downarrow

MIN. 1 line period (It is for the waiting for oscillation stable time)

 μ PD161704A γ -setting

 μ PD161704A γ -setting (If you need it, you set it.)

R36 to R39, R82, R83, R97 to

R102

Setting of R36 to R39, R82, R83 and R97 to R102 are in random order.

RS	D15	D14	D13	D12	D11	D10	D9	D8
L	Х	Х	Х	Х	Х	Х	Х	Х
	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Χ	Х	Х	Х	Х	Χ

X: Set in accordance with the usage conditions.

μPD161704A Horizontal period timing setting

 μ PD161704A horizontal period timing setting (If you need it, you set it)

R77 to R79 Setting of R77 to R79 are in random order.

RS	D15	D14	D13	D12	D11	D10	D9	D8
	Х	Х	Х	Х	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Х	Х	Х	Х	Х	Х

X: Set in accordance with the usage conditions.

1

LCD display area setting

 μ PD161704A LCD display area setting (R41-R44 register)

 \downarrow

R41 to R44

Setting of R41 to R44 are in random order.

RS	D15	D14	D13	D12	D11	D10	D9	D8
	Х	Х	Х	Х	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Χ	Χ	Х	Χ	Х	Х

X: Set in accordance with the usage conditions.

Window setting

 μ PD161704A window setting (R8-R11 register)

 \downarrow

R8 to R11

R5

Setting of R8 to R11 are in random order.

RS	D15	D14	D13	D12	D11	D10	D9	D8
	Х	Х	Х	Х	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Χ	Х	Х	Х	Х	Х

X: Set in accordance with the usage conditions.

 μ PD161704A window mode setting (R5 register)

RS	;	D15	D14	D13	D12	D11	D10	D9	D8
		0	0	0	0	0	0	0	0
L		D7	D6	D5	D4	D3	D2	D1	D0
		0	0	0	1	0	Χ	0	0

X: Set in accordance with the usage conditions.

R6, μ PD161704A write address setting (R6, R7 register)

 \downarrow

R7

Setting of R6 and R7 are in random order.

RS	D15	D14	D13	D12	D11	D10	D9	D8
	Х	Х	Х	Х	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	X	Χ	X	X	Х	X	Х	Х

X: Set in accordance with the usage conditions.

 μ PD161704A display data input

 \downarrow

 \downarrow

RS	D15	D14	D13	D12	D11	D10	D9	D8
	Х	Х	Х	Х	Х	Х	Χ	Х
Н	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

X: Set in accordance with the usage conditions.

Power supply setting

 μ PD161704A power supply setting (R25 register)

R25

R26

R27

R28

R29

L	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
_	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	1	0	0	0

 \downarrow

 μ PD161704A power supply setting (R26 register)

L	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Х	Х	Χ	Χ	Χ	Х

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R27 register)

L	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	0	X	Х	Х	Х

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R28 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	1	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R29 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Х	Х	Х	Х	Х	Х

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R30 register)

R30

R31

R32

R24

RS D15 D14 D13 D12 D11 D10 D8 0 0 0 0 0 0 0 0 D7 D5 D4 D3 D2 D0 D6 D1 0 0 0 Χ Χ 0 0 1

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R31 register)

D8 RS D15 D14 D13 D12 D11 D10 D9 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 Χ Χ Χ Χ

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R32 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х

X: Set in accordance with the usage conditions.

 \downarrow

 μ PD161704A power supply setting (R24 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	1	1	1	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Х	Χ	Χ	Χ	Х	1

X: Set in accordance with the usage conditions.

J.

Power supply ON after the time set by PUPT0/PUPT1 in R27 is passed.

Display start setting

 μ PD161704A GOE1, GOE2 signal start (R59 register)

R59

R0

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	1

 \downarrow

After time of 1-flame is passed, the display color is all white of all black.

 μ PD161704A display setting (R0 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	Χ	0	0	0	0	0

X: Set in accordance with the usage conditions.

After DISP0 and DISP1 are released, normal RAM data is display.

8.2 Example of the μ PD161704A Power OFF Sequence

The example of sequence is indicated. It is the case that the internal sequence is used.

Set μ PD161704A in stand-by mode

 μ PD161704A stand-by mode setting 1 (R0 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Χ	Χ	1	0	Х	Х

X: Set in accordance with the usage conditions.

2 flame time wait

↓

Panel is discharged. In case that the panel is normally white, the display color is white.

 μ PD161704A stand-by mode setting 2 (R0 register)

R0

R0

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	Х	Х	Х	Х	1	1	Х	Χ

X: Set in accordance with the usage conditions.

1

Source output = Hi-Z, VCOM output = Vss, GATE output = Low level. The stress to the panel at the time of stand-by can be stopped.

R24

 μ PD161704A power off setting (R24 register)

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	Х	Х	Х	Х	Х
L	D7	D6	D5	D4	D3	D2	D1	D0
	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0

X: Set in accordance with the usage conditions.

 \downarrow

Power OFF!

μPD161704A internal oscillator stop (R58 register)

R26

RS	D15	D14	D13	D12	D11	D10	D9	D8
	0	0	0	0	0	0	0	0
L	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0

↓

Power OFF is completed!! (Stand-by is completed)

9. RESET

and REGSEL0 pin input differ.

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. The reset command will also initialize each register to its default value. These default values are listed in the table below.

Moreover, /RESET pin input can also be changed into the state of a default setup of each register by setting RESET_SEL pin to "H." However, the registers which will be in the state of a default setup by the register mode set up by REGSEL1

Table 9-1. Relationship Register which Register Mode and Default State by REGSEL1, REGSEL0 pin and RESET SEL pin

REGSEL1	REGSEL0	Register Mode	RESET_SEL	Register which becomes Default setup with /RESET Pin
,		1	L	E2OPC [2:0]
L	L	ı	Н	E2OPC [2:0], R24 register
			L	E2OPC [2:0]
L	Н	2	Н	All register (same as reset command)
			L	E2OPC [2:0]
Н	L	3	Н	E2OPC [2:0], R257 register
			L	E2OPC [2:0]
Н	Н	4	Н	All register (same as reset command)

Figure 9-1. Caution at the time of Power Injection

In addition, set up as short as possible time (1) until it applies hardware reset from a power supply injection at the time of a power supply injection. The /RESET pin is set to L from before the power supply injection, and if it rises after a power supply injection, it is not necessary to care about the time of (1). In between until it restricts at the time of low temperature and applies hardware reset, since an internal setup of a power supply system is unstable, an over-current may flow.

When using it by setup which does not reset a register in hardware reset (RESET_SEL = L), set up about time (1) until it applies hardware reset from a power supply injection (set up also about time (2) until it applies command reset from hardware reset release) as short (1 μ s MIN.) as possible. Since an internal setup of a power supply system is unstable, an over-current may flow, until it restricts at the time of low temperature and command reset is inputted.

<R> 10. POWER SUPPLY INJECTION/ITERCEPTION ORDER

10.1 Recommendation Power Supply Injection Order

Caution After Vccio power supply injection, if it is in the state of Vpc = 0 V, the state of I/O pin will become unfixed.

10.2 Recommendation Power Supply Interception Order

Cautioin If it will be in the state of VDC = 0 V during VCCIO power supply injection, the state of I/O pin will become unfixed.

Data Sheet S17583EJ2V0DS

120

11. COMMAND

11.1 Command List

(it supplements about the view of a table)

Ind	lex								Da	ata								Description
10 HEX.	16 HEX.	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
000	0000								8	DISP1	DISP0	ADC	DTY	STBY			GSM	Display setting register 1
										1						K		Display data all 1 output (0: Normal, 1: All 1 fixed [6'h3F])
											9							Display data all 0 output (0: Normal, 1: All 0 fixed [6'h00])
												9						RAM write control (X direction, both R and B are switchable) (0: Y1 to Y768, 1: Y768 to Y1)
													9					Partial display (0: Normal display, 1: Partical display)
													1	9				Display OFF (0: Normal display, 1: Display OFF)
															/		9	Partial non-display area gate scan (0: Normal operation, 1: Stop)
												/	/					
												. / .						Register name
										In	itializa	tion in	rese	t				•

122

Register mode 1, 2

Inc	lex	1							D:	ata							1	(1/3) Description
	iox																	Description
10 HEX.	16 HEX.	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
000	0000									DISP1	DISP0	ADC	DTY	STBY	STRY_GOFF	LPM	GSM	Display setting register € ±
	-									1								Display data all 1 output (0: Normal, 1: All 1 fixed [6'h3F]£ ©
							_				0	0						Display data all 0 output (0: Normal, 1: All 0 fixed [6'h00]£ RAM write control (X direction, both R and B are switchable) (0: Y1 to Y720, 1: Y720 to Y1)
												Ť	0					Partial display (0: Normal display, 1: Partial display)
														0	0			Display OFF (0: Normal operation, 1: Display OFF) Stand-by fixed status control (0: As usual, 1: Source = Hi-Z, gate = All OFF, common = VSS)
															Ů	0		Low power mode (0: Normal mode, 1: Low power mode)
001	0001									ADV	ADY		BGR			LTS	0	Gate scan on partial non-display area (0: Normal operation, 1: Stop) Display setting register 2
001	0001									0	ADT		BGK			LIO		RAM X address direction inversion (0: Normal, 1: Inversion)
											0	0						RAM Y address direction inversion (0: Normal, 1: Inversion) Test register (0 fixed)
												٥	0					RGB data inversion (both R and B are switchable) (0: Normal, 1: Inversion)
000	0000													VIMD		0 RGBS	DISPCK	Frame frequency 1/2 (= 1 line time x 2) (0: Normal, 1: 1/2)
002	0002										DCKEG 0	VSEG	HSEG	VIMD	NWRGB	RGBS	DISPCK	RGB interface register DOTCLK active direction (0: Rising edge, 1: Falling edge)
												0						VSYNC active direction (0: L active, 1: H active)
													0	0				HSYNC active direction (0: L active, 1: H active) VSYNC interface mode (0: OSC or RGB interface display, 1: VSYNC interface display)
															0			RGB interface mode (0: RGB invalid, 1: RGB valid)
		_			\vdash	\vdash		 					\vdash		\vdash	0	0	RGB interface mode (0: Through mode, 1: Capture mode) Display clock (0: OSC, 1: DOTCLK)
003	0003																CRES	Soft reset
004	0004																	Soft reset (reset pulse occurs by writing in "1") Color mode
004	0004																	GS = 0: 260-k color (64 gray scale), GS = 1: 8 color (2 gray scale)
005	0005											•	WAS	DINV	INC			RAM control register
												0	0					Test register £ 0 fixed) Window access control (0: Normal access, 1: Window access)
														0				RAM write, read data inversion (0: Normal, 1: Data inversion)
															0	0		RAM address counter control (0: Count to X direction, 1: Count to Y direction) Test register (0 fixed)
																		Test register (0 fixed)
006	0006									XA[7] 0				XA[3] 0			XA[0] 0	RAM X address
007	0007								YA[8]	YA[7]	YA[6]	YA[5]	YA[4]	YA[3]	YA[2]	YA[1]	YA[0]	RAM Y address
008	0008								0	O XMN[7]	O XMN[6]	O XMN[5]	O XMN[4]	_	O XMN[2]	0 XMN[1]	O XMN[0]	Minimum X address in window access mode
000	0000									0	0	0	0	_	_	0	0	William A address in window access mode
009	0009									XMX[7]	XMX[6]	XMX[5]	XMX[4]		XMX[2]	XMX[1]	XMX[0]	Maximum X address in window access mode
010	000A								YMN[8]	YMN[7]	YMN[6]	YMN[5]			YMN[2]	YMN[1]	YMN[0]	Minimum Y address in window access mode
011	000B								O YMX[8]	0 YMX[7]	O YMX[6]	0 YMX[5]					O YMX[0]	Mayimum V addraga in winday agges made
011	UUUB								1	0	0	1	1	1 MIX[3]	1	1	1	Maximum Y address in window access mode
012				0	0	0	0	0	0	0	0			0		_		
013 014	000D 000E			0	0	0	0	0	0	0	0	0	0	0	0	0	U	Test register (0 fixed) RAM Write index
015	000F																	
016	0010																	Partial non-display area display setting Partial non-display area display setting (0: Specified color, 1: RAM data 8-color display)
017	0011															PGG		Partial non-display area display setting
															0	0		Partial non-display area [R] specified color setting (0:6'h00; ¢:6'h3F) Partial non-display area [G] specified color setting (0:6'h00; ¢:6'h3F)
																Ľ	0	Partial non-display area [B] specified color setting (0:6'h00; \$:6'h3F)
018	0012								P1SL[8]	P1SL[7]	P1SL[6]	P1SL[5]	P1SL[4]		P1SL[2]	P1SL[1]	P1SL[0]	Partial 1 display area start line
019	0013								P2SL[8]	P2SL[7]	P2SL[6]	P2SL[5]	P2SL[4]	P2SL[3]	P2SL[2]	P2SL[1]	P2SL[0]	Partial 2 display area start line
020	0014								O P1AW[8]	0	0 P1AW[6]	O P1AW[5]	O P1AW[4]	0 P1AW[3]	0 P1AW[2]	O P1AW[1]	O P1AW[0]	Partial 1 display area line number
020	0014								O PIAW[8]	0	O	O	O	0 0	O	0	0	Partial 1 display area line number
021	0015								P2AW[8]	P2AW[7]	P2AW[6]	P2AW[5]	P2AW[4]	P2AW[3]	P2AW[2]	P2AW[1]	P2AW[0]	Partial 2 display area line number
022	0016								0 P1SA[8]	0 P1SA[7]	0 P1SA[6]	0 P1SA[5]	0 P1SA[4]	0 P1SA[3]	0 P1SA[2]	0 P1SA[1]	0 P1SA[0]	Partial 1 display area start line display RAM address
									0	0	0	0	0	0	0	0	0	
023	0017								P2SA[8]	P2SA[7]	P2SA[6]	P2SA[5]	P2SA[4]	P2SA[3]	P2SA[2]	P2SA[1]	P2SA[0]	Partial 2 display area start line display RAM address
024	0018				VDCION	RGONR	RGON	VCLON	VGLREF	VGLON[1]	VGLONIO	VGHREF	VGHON[1]	VGHON[0]	VD2ON[1]	VD2ON[0]	DCON	DC/DC operation setting
025	0019				0	0	0	0	0	O MDCISEI	O VDCIHZ	0 VRHI	0 VSHI		O DC3HZ	O DC2HZ	0 DC1HZ	DC/DC output setting
025	0019									O	0	0	0		0	0	0	Dondo output Setting
026	001A									LFS[3]	LFS[2]	LFS[1]	LFS[0]		FS[2]	FS[1]	FS[0]	DC/DC frequency setting
027	001B							\vdash		0		O PONM		O DUPF[1]		O PUPT[1]	PUPT[0]	DC/DC rising setting
												1	0	0	0	1	0	
028	001C				SFVSEL	VSEL[2]	_	VSEL[0]	VRSEL[2]	VRSEL[1]	vrseljoj	VSSEL[2]	VSSEL[1]	vssel(0)	VC[2]	VC[1]	VC[0]	Regulator voltage setting
029	001D					Ť	Ľ	Ľ	REGMON	LCOMCS[1]	LCOMCS(0)	COMCS[1]	сомскиј	LACS[1]	_			Regulator current setting
030	001E							H	0	0	0	O COMP[1]	O COMP[0]	0	О	1	O COMONM	VCOM output setting
030	UUIE											DOME[1]	UOMF(0)	1	COMPIN		Cornell	v o o ivi o u put setting

1031																			(2/3)
1932 1935	031	001F																	
032 032 033 035	032	0020									COMINM	CDA[6]							VCOMM cencter setting
1948 1962 1964 1965	022	0021									0	0	0	0	0	0	0	0	
1.5 1.5																			
1.5 1.5																			
1.5 1.5	036	0024						_				GPH[6]	GPH[5]	GPH[4]	GPH[3]	GPH[2]	GPH[1]	GPH[0]	amplitude setting
1.58 1.56	037	0025										GNH[6]	GNH[5]	_		GNH[2]	GNH[1]	GNH[0]	amplitude setting
1939 1927 1939	038	0026										GPL[6]	GPL[5]			GPL[2]	GPL[1]	GPL[0]	amplitude setting
Mathematics	000	0007																	
042 0028	039	0027						_							_			_	amplitude setting
10																			IL CDCIZET V MINI size and
1.5 1.5	041	0029									O	O	O	O CCOMMEN	О	O CERONA(2)	O	CCDonadal	[LCDSIZE] X MIN. SIZE SET
0.000 0.00	042	002A								LCDYMN(s)	LCDYMN(7)	rcovvedel	rcovmési	rcovmv(4)	LCDYMN(S)	LCDYMN[2]	LCDYMN(1)	rcovvedol	[LCDSIZE] Y MIN. size set
Math	043	002B								0	LCEOMORT								[LCDSIZE] X MAX. size set
1											1	1	1	_	1	1	1	1	
OC Calibration register OC Calibration r	044	002C								ссочноев 1	ССБУМОПР		термиця	LCDYMOQ4]	LCDYMX(3)	сочиод 1	теринодії	термине)	LCDSIZE Y MAX. size set
400 0.0	045	002D									,								
147 002F	046	002F									BCNTI71	BCNTI61	BCNT(5)	BCNT[4]	BCNTI3	BCNTI21	BCNT[1]		
0.49 0.031	010										0			_	_	_		_	padical disaktor i line (processivity) say hamber speamed
1969 19032 1969																			
O																			
	050	0032															SCN1	SCN0	
1																U	0	0	
Numerishal Numerish Numerishal Numerishal Numerishal Numerishal Numerishal	051	0033																	
																	0	0	
	052	0034																	
1.053 0.056 0.05																0	0	0	
	050	0005																	1,1,0: 13-frame cycle, 1,1,1: 15-frame cycle}
1055 0037 0038 0038 0038 0039 0038 0039 0038 0039 0038 0039 0038 0039 0038 0039 0038 0039 0038 0039	053	0035																	
	055	0037																GSCAN[0]	
057 0039 0038 0	0.50																		
0.58 0.03A							-	┢											
Company Comp																			
060 003C 0	059	003B															GOE2ON	_	
Column C	- 000	OOOD																	Gate "H" fixed function (0: Normal operation, 1: Gate all "H")
061 003D	060	0030								RGBSTJ81	RGBST[7]	RGBST[6]	RGBST[5]	RGBST[4]	RGBSTJ3	RGBST[2]	RGBST[1]		
062 003E										0	0	0	0	0	0	0	0	0	
	061	003D																	RGB interface through mode display end line
0	062	003E								U	HBP[3]	HBP[2]	HBP[1]						
063 003F											0	0	0	1	0	0	0	1	
064 0040 0	063	003F									CAPXMIN[7]	CAPXMN[0]	CAPXMIN(S)	CAPXMIN[4]	CAPXMIND	CAPXMM[2]	CAPXMIN[1]	CAPXMINIQ	
1	064	0040									0	0	0	0	0			0	Maximum V address in BCB interface capture made window access
0 0 0 0 0 0 0 0 0 0	004	0040									1	1	1	0	1	1	1	1	INFORMATION A AUGUESS III NOD IIILEITACE CAPTUIE IIIOUE WINDOW ACCESS
066 0042	065	0041								CAPTMINE	CAPYMIN[7]	сирумица	CAPYMNIS	CAPYMINES	CAPYMINDS	CAPYMIN[2]			Minimum Y address in RGB interface capture mode window access
	066	0042								CAPYMAXIN	CAPYMAX[7]	САРУПИХЦИ	САРУМАЦІЯ	САРУМАХЫ	О	CAPYMAX(Z)	CAPYMAX(1)	САРУМАХДО	Maximum Y address in RGB interface capture mode window access
068 0044										1	0	0	1	1	1	1	1	1	
069 0045																E20PC[2]	E20PC[1]	E20PC[0]	E2PROM operation
0 0 0 0 0 0 0 0 0 E2PROM write permission enable register 070 0046																0	0	0	E2PROM operation start
070 0046 E2ATJ E2AU E2AU E2AU E2AU E2AU E2AU E2AU E2AU	069	0045																	
071 0047 Eurity	070	0046												E2A[4]			E2A[1]	E2A[0]	
	071	0047	Colore	ESIDIA O	ENDIAM	ENDIAM	E3ID(44)	ESIDA	Egipici	ESIDIO									E2DDOM write index register specified
	0/1	0047																	LZI NOW WITE IIIUEX register specified

																		(3/3)
072	0048									E2ID[23]	E2ID[22]	E2ID[21]		E2ID[19]			E2ID[16]	1 1
073	0049									O E2ID[15]	0 E2ID[14]	O E2ID[13]	0 E2ID[12]			0 E2ID[9]	0 E2ID[8]	Product information register [15:8]
074	004A									0 E2ID[7]	0 E2ID[6]	0 E2ID[5]	0 E2ID[4]	0 E2ID[3]	0 E2ID[2]	0 E2ID[1]	0 E2ID[0]	Product information register [7:0]
										0	0	0	0	0	0	0	0	¥
075	004B									E2SA[7]	E2SA[6]	E2SA[5]	E2SA[4]	E2SA[3]	E2SA[2]	E2SA[1]	E2SA[0]	E2PROM read start address specified
076	004C																	2054
077	004D	GOED[7]	GOED(6)	GOED(5)	GOED(4)	GOED[3]	GOED[2]		GOED(0)	GOST[7]	GOST[6]	GOST[5]	GOST[4]	GOST[3]	GOST[2]	GOST[1]	GOST[0]	GOE1 change position setting GOE1 falling position setting
078	004E									O VMCHGI7I	О	O VMCHQISI	О	O vmcHg[3]	1 VMCHGIZ	0	1 vwchqiqi	GOE1 rising position setting COM(VM) polarity switch position
076										0	0	0	0	0	0	0	1	
079	004F	SWED(7)	SWED(6)	SWED[5]	SWED[4]	SWED[3]	SWED[2]	SWED[1]	SWED(0)	SWST[7]	SWST[6]	SWST[5]	SWST[4]	SWST[3]	SWST[2]	SWST[1]	SWST[0]	SWON change position SWON falling edge position
		Ů	Ů	Ů	Ů	Ŭ	Ŭ	Ŭ	Ů	0	0	0	0	0	1	0	0	SWON rising edge position
080	0050 0051																	
082	0052											GI[0]			GRES		G3SW	circuit setting 1
										0	0	1						amplifier bias current (set up for magnification, using a default state as 1) {Gl2,1,0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
															0			1,0,0: 2.5 time, 1,0,1: 3 time, 1,1,0: 3.5 time, 1,1,1: 4 time resistance switch
															U		0	middle amplifier (0: OFF, 1: ON)
083	0053										GAP[2]	GAP[1]	GAP[0]		GAN[2]	GAN[1]	GAN[0]	circuit setting 2 Gray scale amp. 0 to 31-gray scale bias current control (set up for maginfication, using a default state as 1)
											Ů	Ů	Ė					{GAP2 to 0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
															0	0	1	1,0,0: 3 time, 1,0,1: 4 time, 1,1,0: 6 time, 1,1,1: 7.5 time Gray scale amp. 32 to 63-gray scale bias current control (set up for magnification, using a default state as 1)
																		{GAP2 to 0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
084	0054																	1,0,0: 3 time, 1,0,1: 4 time, 1,1,0: 6 time, 1,1,1: 7.5 time
086	0056													1	0	1	0	Test register
096	0060																	
097	0061											GM1P[5]	GM1P(4)	_	GM1P[2]	GM1P[1]	GM1P(0)	adjustment V10 positive polarity
098	0062											GM3N[5]	GM3N[4]		GM3N[2]	GM3N[1]	GM3N[0]	adjustment V9 negative polarity
099	0063											O GM2P[5]	1 GM2P[4]	O GM2P[3]	1 GM2P[2]	O GM2P[1]	O GM2P(0)	adjustment V34 positive polarity
												0	1	1	1	1	1	
100	0064											GM2N[5]	GM2N[4]	GM2N[3]	GM2N[2]	GM2N[1]	GM2N[0]	adjustment V31 negative polarity
101	0065											GM3P[5]	GM3P[4]		GM3P[2]		GM3P(0)	adjustment V61 positive polarity
102	0066											O GM1N[5]	GM1N[4]	O GM1N[3]	GM1N[2]	O GM1N[1]	O GM1N[0]	adjustment V61 negative polarity
												1	0	1	0	1	1	
103	0067											O sonu'montid	1 1					Source Hi-Z period setting/display data complement Source Hi-Z period setting {SOUT_MODE1,SOUT_MODE0} =
															0			0,0: COM voltage output, 0,1: Hi-Z, 1,0: COM voltage & Hi-Ź, 1,1: Hi-Z Test register (0 fixed)
															U	0		Test register (0 fixed)
104	0068																0	Test register (0 fixed)
111	006F 0070																BPSEL	Back porch count method switch
112	0070											1					OLL	Test register (1 fixed)
		-				\vdash		-			-	\vdash	0				0	Test register (0 fixed)
113	0071													0		0	0	
114 115	0072 0073	-			_	\vdash					┝	\vdash	_		0	0	0	
117	0075										Ļ		Ļ				0	Test register (0 fixed)
118 119	0076 0077		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Test register Test register (0 fixed)
121	0079				0	0	_	_	_	0	0	0	0				0	Test register (0 fixed)
123 126	007B 007E				_	\vdash				0	0	0	0	0	0	0	0	Test register (0 fixed) Test register (0 fixed)
127	007F						Ì	Ì								0	0	
192	00C0																0	Test register (0 fixed)
_ :																		
00035	FFFF		l				1	1		L						L		

Data Sheet S17583EJ2V0DS

124

Register mode 3, 4

(1/4)

									_									(1/4)
Inc	dex	-	1			ı —	_		Da	ata	_	ı —	ı —	_	ı —	1	ı —	Description
10 HEX.	16 HEX.	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
000	0000																OSCON	
000	0000	1															0	Oscillator control (0: Oscillator stop, 1: Oscillator operation)
001	0001					SCN1	SCN0	R_L	ADX	ADY	ADC							
						0	0											Panel connection setting on gate signal
							_	0	0		_			_				Gate scan direction (0: O1 to O320, 1: O320 to O1) RAM X address direction inversion (0: Normal, 1: Inversion)
									U	0	-							RAM Y address direction inversion (0: Normal, 1: Inversion)
											0							RAM write control (X direction, both R and B are switchable) (0: Y1 to Y720, 1: Y720 to Y1)
												0						Test register (0 fixed)
002	0002						GSCAN[1]	GSCAN(I)								NLINE[1]	NLINE[0]	
							0	0			-			-				Interlace display
							-							-		0	0	{GSCAN1,GSCAN0} = 0,0: n line inversion, 0,1: Frame inversion, 1,0: Skip 1D, 1,1: Skip 2B Line number of line inversion
																Ŭ	Ť	{NLINE1,NLINE0} = 0,0: 1-line inversion, 0,1: 2-line inversion, 1,0: 4-line inversion, 1,1: 8-line inversion
003	0003				BGR				WAS			YDIR	XDIR	INC				
					0													RGB data inversion (R and B are swichable) (0: Normal, 1: Inversion)
		\vdash		\vdash		<u> </u>	_		0	0		<u> </u>	<u> </u>		<u> </u>		<u> </u>	Window access control (0: Normal access, 1: Window access)
		\vdash		\vdash		\vdash				U		0	\vdash				\vdash	Test register (0 fixed) Y address counter control (0: Increment, 1: Decrement)
												١Ť	0					X address counter control (0: Increment, 1: Decrement)
														0				RAM address counter control (0: Count to X direction, 1: Count to Y direction)
004	0004																	
005	0005																	
006	0006																CRES	Soft reset (occur reset pulse when write to "1")
007	0007											GOE2ON	GOE10N	DISP1	DISPO	STRY_GOFF	STBY	Soft reset (occur reset paise when white to 1)
007	0007					1								Dioi i	Dioi 0		OIDI	Test register (1 fixed)
							0											Test register (0 fixed)
								1										Test register (1 fixed)
							_		0			_						Test register (0 fixed)
							-	-			-	0	0	<u> </u>				Gate "H" fixed function (0: Normal operation, 1: Gate all "H") Gate "L" fixed function (0: Gate all "L", 1: Normal operation)
											1		Ť	1				Display data all 1 output (0: Normal, 1: All 1 fixed [6'h3F])
															0			Display data all 0 output (0: Normal, 1: All 0 fixed [6'h00])
																0		Stand-by fixed state control (0: As usual, 1: Source = Hi-Z, gate = all OFF, common = VSS)
000	0000	_															0	Display OFF (0: Normal operation, 1: Display OFF)
008	0008				PSEL		DCD	PGG	PGB	DNEDM			GSM		GSMLN[2]	GSMLN[1]	GSMI NITI	
009	0003				0		I OK	1 66	I OD	1141104			GOIVI					Partial non-display area display setting (0: Specified color, 1: RAM data 8-color display)
							0											Partial non-display area [R] specified color setting (0:6'h00, 1:6'h3F)
								0										Partial non-display area [G] specified color setting (0:6'h00, 1:6'h3F)
							_		0	0	_							Partial non-display area [B] specified color setting (0:6'h00, 1:6'h3F)
										U			0					Polarity inversion on partial non-display area (0: Line inversion, 1: Frame inversion) Gate scan on partial non-display area (0: Normal operation, 1: Stop)
													Ť		0	0	0	Gate scan in partial mode
																		{GSMLN2,1,0} = 0,0,0,: Scan stop, 0,0,1: 3-frame cycle, 0,1,0: 5-frame cycle
0	005	L		$ldsymbol{\sqcup}$		L						L					L	1,1,0: 13-frame cycle, 1,1,1: 15-frame cycle}
010	000A																00	
011	000B																GS 0	GS = 0: 260-k color (64-gray scale), GS = 1: 8 color (2-gray scale)
012	000C							NWRGB	RGBS			VIMD	DISPCK				Ť	5. 200 k color (04-gray scale), GO = 1. 0 color (2-gray scale)
								0										RGB interface mode (0: RGB invalid, 1: RGB valid)
									0									RGB interface mode (0: Through mode, 1: Capture mode)
				<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>	0	<u> </u>	<u> </u>	<u> </u>		<u> </u>	VSYNC interface mode (0: OSC or RGB interface display, 1: VSYNC interface display)
013	000D					H			LTC	BCNT[7]	BCNT[6]	BCNT(5)	O BCNT[4]	BCNT[3]	BCNT[2]	BCNT[1]	BCNT[0]	Display clock (0: OSC, 1: DOTCLK)
013	עטטט								0	BON1[7]	DUN1[6]	DUNI[5]	BUNI[4]	BUNI[3]	BUN1[2]	BON1[1]	DON1[0]	Frame frequency 1/2 (= 1-line time x 2) (0: Normal, 1: 1/2)
						I			Ť	0	0	0	0	0	0	0	0	Basical clock for 1 line (BASECOUNT[7:0]) number specified
014	000E																OC	
																	0	Calibration start/stop (0: Stop, 1: Start)
015	000F		VBP[2]	VBP[1]	VBP[0]	HBP[3]	HBP[2]	HBP[1]	HBP[0]	BPSEL			VSEG	HSEG			DCKEG	Madical heat, good good
		0	0	0	Т	0	0	0	4		_	 	 	_	<u> </u>		 	Vertical back porch period Horizontal back porch period
						۲	٦	٦		0	\vdash	\vdash	\vdash				\vdash	Back porch count method switchable
											0							Test register (0 fixed)
													0	Ļ				VSYNC active direction (0: L active, 1: H active)
		<u> </u>				<u> </u>	_				_	<u> </u>	<u> </u>	0			_	HSYNC active direction (0: L active, 1: H active)
Ц			<u> </u>			<u> </u>						<u> </u>	<u> </u>		<u> </u>	<u> </u>	0	DOTCLK active direction (0: Rising edge, 1: Falling edge)

																		(2/4)
016	0010								RGBST[8]	RGBST[7]	RGBST[6]	RGBST[5]	RGBST[4]	RGBST[3	RGBST[2]	RGBST[1]	RGBST[0]	(2.1)
0.0	00.0								0	0	0	0	0	0	0	0	0	RGB interface through mode display start line
017	0011								RGBED(8)	RGBED(7)	RGBED(6)	RGBED[5]	RGBED[4]	RGBED(3	RGBED[2]	RGBED(1)	RGBED(0	
									0	0	0	0	0	0	0	0	0	RGBinterface through mode display end line
018	0012									САРХМИЦП	CAPYOMNIS	CAPYMINES	CAPXMIN(4)	CAPXMIND	CAPXMN[2]	CAPXMN(1)	CAPXMINIO	
0.10	2212									0	0	0	0	0	0	0	0	Minimum X address in RGB interface capture mode window access
019	0013			-			<u> </u>			CAP90MAN(7)	CAPXMANQU	CAPXMANQS	Onexworket	сиямих з	CAPHRANGE	CAPROMO(1)	сархимиро	Mayimum V addraga in DCB interface centure made window access
020	0014								Campanage	camanam	companie	Company	CATTONIAGE	Carramer	Campanaga	Campanan	common	Maximum X address in RGB interface capture mode window access
020	0014								0	0	0	0	0	0	0	0	0	Minimum Y address in RGB interface capture mode window access
021	0015								CAPYLLOQUE	CAPYBBAN(7)	CAPYNAUQO	Сирумиця	CAPYTRAXQU	CAPYMAXQ	CAPYMAX(Z)	CAPYMAX(1)	САРУЛИКОО	The state of the s
									1	0	0	1	1	1	1	1	1	Maximum Y address in RGB interface capture mode window access
022	0016																	
023	0017																	
024	0018	GOED[7]	GOED[6]	GOED[5]	GOED[4]	GOED[3]	GOED[2]	GOED[1]	GOED[0]	GOST[7]	GOST[6]	GOST[5]	GOST[4]	GOST[3	GOST[2]	GOST[1]	GOST[0]	
		0	0	0	0	0	0	0	1	_	_			_		_		GOE1 falling position setting
025	0019			┢			┢	-		O vwchg(7)	О	О	O VMCHG[4]	О миснеца	VMCHG[2]	O VMCHG[1]	VMCHG(0	GOE1 rising position setting
025	0019						-			0	0	0	0	0	0	0	1	COM(VM) polarity switch position
026	001A	SWED(7)	SWED(6)	SWED[5]	SWED[4]	SWED(3)	SWED(2)	SWED(1)	SWED(0)	SWST[7]	SWST[6]	SWST[5]	SWST[4]	SWST[3	SWST[2]	SWST[1]	SWST[0]	CONT VIVI) POLICITY SWITCH POSITION
020	00 (0	0	0	0	0	0	0	0									SWON falling edge position
										0	0	0	0	0	1	0	0	SWON rising edge position
027	001B																	
028	001C																	
029	001D																	
030	001E															SOUT_MODERT	sour_somp	O LET LE US COOLE MODEL COUT MODES
						-						-				0	1	Source Hi-Z period setting {SOUT_MODE1,SOUT_MODE0} = 0,0: COM voltage output, 0,1: Hi-Z, 1,0: COM voltage & Hi-Z, 1,1: Hi-Z
031	001F																	0,0. COM Voltage output, 0,1. Hi-2, 1,0. COM Voltage & Hi-2, 1,1. Hi-2
:	0011																	
067	0043																	
068	0044														E2OPC[2]	E20PC[1]	E20PC[0]	
															0	0	0	E2PROM operation start
069	0045									E2EN[7]	E2EN[6]	E2EN[5]	E2EN[4]		E2EN[2]	E2EN[1]	E2EN[0]	
				-	<u> </u>	_	┢	-		0	0	0	0	0	0	0	0	E2PROM write permission enable register
																		When making it E2OPC[2:0] =0,1,0, unless it sets this register to AAH, signal is not outputted to E2PROM
070	0046									E2A[7]	E2A[6]	E2A[5]	E2A[4]	E2A[3]	E2A[2]	E2A[1]	E2A[0]	Signal is not outputted to Ezi Now
										0	0	0	0	0	0	0		E2PROM write address specified
071	0047	E2IR[15]	E2IR[14]	E2IR[13]	E2IR[12]	E2IR[11]	E2IR[10]	E2IR[9]	E2IR[8]	E2IR[7]	E2IR[6]	E2IR[5]	E2IR[4]	E2IR[3]	E2IR[2]	E2IR[1]	E2IR[0]	·
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	E2PROM write index register specified
072	0048									E2ID[23]	E2ID[22]	E2ID[21]	E2ID(20)	E2ID[19	E2ID[18]	E2ID[17]	E2ID[16	
	00.10									0	0	0	0	0	0	0	0	Product information register [23:16]
073	0049			_			_			E2ID[15]	E2ID[14]	E2ID[13]	E2ID[12]	E2ID[11	E2ID[10]	E2ID[9]	E2ID[8]	Deschart information as sister (45.0)
074	004A			H			H			0 E2ID[7]	0 E2ID[6]	0 E2ID(5)	0 E2ID[4]	0 E2ID[3	0 E2ID[2]	0 E2ID[1]	0 E2ID[0]	Product information register [15:8]
0/4	UUHA									0	0	0	0	0	0	0	0	Product information register [7:0]
075	004B									E2SA[7]	E2SA[6]	E2SA[5]	E2SA[4]			E2SA[1]	E2SA[0]	
										0	0	0	0	0	0	0	0	E2PROM read start address specified
076	004C																	
112				oxdot		匚	lacksquare				lacksquare	1	0					Test register
113		<u> </u>									<u> </u>			0		0	_	Test register (0 fixed)
114	0072	<u> </u>		-	-	—					┡	-	\vdash	┡—	0	0	0	
115 118	0073 0076	-		┢	┢	H	┢	-		0	0	0	0	0	0	0	0	Test register (0 fixed) Test register
119	0076			0	0	0	0	0	0	0	0	0	0	0	0	0	0	
121	0079				0	0				0	0	0	0				0	
123	007B					Ť	Ť				Ť			Ť			0	
126	007E									0	0	0	0	0	0	0	0	
127	007F															0	0	
\equiv																		
192	00C0			<u> </u>			<u> </u>										0	Test register (0 fixed)

(3/4)

																	· · ·
OEG.	0100												LDM				Lauranuar mada acttina
256	0100												LPM				Low power mode setting
													0				Low power mode (0: Normal mode, 1: Low power mode)
257	0101			VDCION	RGONR	RGON	VOLON	VGLREF	VGLON[1]	AGTOVÍO	VGHREF	VGHON[1]	VGHON[0]	VD2ON[1]	VD2ON[0]	DCON	DC/DC operation setting
				0	0	0	0	0	0	0	0	0	0	0	0	0	
258	0102								VDCISEL	VDCIHZ	VRHI	VSHI	DCFRM	DC3HZ	DC2HZ	DC1HZ	DC/DC output setting
									0	0	0	0	1	0	0	0	,
259	0103								LFS[3]	LFS[2]			ECISI				DC/DC frequency setting
209	0103									LFO[Z]		LFO[U]		ro[2]		rojuj	DO/DC frequency Setting
									0	1	0	1	0	1	0	1	
260	0104										PONM			DUPF[0]	PUPT[1]	PUPT[0]	DC/DC rising setting
											1	0	0		1	0	
261	0105			SFVSEL	VSEL[2]	VSEL[1]	VSEL[0	VRSEL[2]	VRSEL[1]	VRSEL[0]	VSSEL[2]	VSSEL[1]	VSSEL[0]	VC[2]	VC[1]	VC[0]	Regulator voltage setting
				1	0	0	0	0	1	1	0	1	1	1	0	1	
262	0106				Ť	Ť	Ť	REGMON	LCOMCS[1]	LCOMOS(0)	COMCS[1]	COMCS[0]	LACS[1]	LACS[0]		ACSIN1	Regulator current setting
202	0100	-						_			_		_		/ loc[1]		regulator current setting
								0	0	0	0	0	0	0		0	
263	0107										COMP[1]	COMP[0]		COMHIM		COMONM	VCOM output setting
					L		<u>L</u>				0	0		0		0	
264	0108										DA[5]	DA[4]	DA[3]	DA[2]	DA[1]	DA[0]	VCOM amplitude setting
											0	0	0	0	0	0	*
265	0109								COMINM	CDA[6]	CDA[5]	CDA[4]				CDA[0]	VCOMM cencter setting
200	0103	-				_											VOOIVIIVI CERICLER SELLING
000	0.100	Ш	 _		_	_	_	_	0	0	0	0	0	0	0	0	
266	010A																
_ :																	
512	0200								XA[7]	XA[6]	XA[5]	XA[4]	XA[3]	XA[2]	XA[1]	XA[0]	RAM X address
									0	0		0				0	
513	0201							YA[8]	YA[7]	YA[6]	YA[5]						RAM Y address
313	0201								_								RAIVI 1 address
								0	0	0	0	0	0	0	0	0	
514	0202																RAM write index
515	0203		WM[11]	WM[10]	WM[9]	WM[8]	WM[7]] WM[6]			WM[5]	WM[4]	WM[3]	WM[2]	WM[1]	WM[0]	RAM write mask
			0	0	0	0	0	0			0	0	0	0	0	0	
516	0204										WM[17]	WM[16]	WM[15]	WM[14]	WM[13]	WM[12]	RAM write mask
0.0	020.										0	0	0	0	0	0	TO THE HOLE.
517	0205					-	-	1			Ľ	•	۲	0	0		Test register
317	0203													U	U	U	rest register
527	020F		_								_			_			
528																	
0_0	0210								XMN[7]	XMN[6]	XMN[5]	XMN[4]	XMN[3]	XMN[2]	XMN[1]	XMN[0]	Minimum X address in RGB interface capture mode window access
020									XMN[7]	XMN[6]	XMN[5]	XMN[4]	XMN[3]	XMN[2]	XMN[1]	хми[о] О	Minimum X address in RGB interface capture mode window access
	0210								0	0	0	0	0	0	0	0	
529									О хмх[7]	O XMX[6]	0	0 xmx[4]	0	0	0	0	Minimum X address in RGB interface capture mode window access Maximum X address in RGB interface capture mode window access
529	0210								0 xmx[7]	0 хмх[6]	0 xmx[5]	0 xmx[4] 0	0 хмҳ(з)	0 хмх[2]	0 xmx[1]	0 хмх[о]	Maximum X address in RGB interface capture mode window access
	0210							YMN[8]	0 xmx[7] 1 ymn[7]	0 xwx[6] 1 ywn[6]	0 xmx[5] 1 ymv[5]	0 xmx[4] 0 ymn[4]	0 xwx[3] 1 ywx[3]	0 xmx[2] 1 ymn[2]	0 XMX[1] 1 YMN[1]	0 xmx[0] 1 ymn[0]	
529	0210 0211 0212							0	0 xmx[7] 1 ymn[7] 0	0 xmx[6] 1 ymn[6] 0	0 xmx[5] 1 ymv[5]	0 XMX[4] 0 YMN[4] 0	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529	0210								0 xmx[7] 1 ymn[7]	0 xwx[6] 1 ywn[6]	0 xmx[5] 1 ymv[5]	0 xmx[4] 0 ymn[4]	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access
529	0210 0211 0212							0	0 xmx[7] 1 ymn[7] 0	0 xmx[6] 1 ymn[6] 0	0 xmx[5] 1 ymv[5]	0 XMX[4] 0 YMN[4] 0	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529 530 531	0210 0211 0212 0213							0	0 xMx[7] 1 ymn[7] 0 ymx[7]	O XMX[6] 1 YMN[6] 0 YMX[6]	0 xmx[5] 1 ymv[5]	0 XMX[4] 0 YMN[4] 0	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529	0210 0211 0212							0	0 xMx[7] 1 ymn[7] 0 ymx[7]	O XMX[6] 1 YMN[6] 0 YMX[6]	0 xmx[5] 1 ymv[5]	0 XMX[4] 0 YMN[4] 0	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529 530 531 532	0210 0211 0212 0213 0214							0	0 xMx[7] 1 ymn[7] 0 ymx[7]	O XMX[6] 1 YMN[6] 0 YMX[6]	0 xmx[5] 1 ymv[5]	0 XMX[4] 0 YMN[4] 0	0 xwx[3] 1 ymx[3] 0	0 xmx[2] 1 ymn[2] 0	0 XMX[1] 1 YMN[1] 0	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529 530 531 532 :	0210 0211 0212 0213 0214							0	0 xMx[7] 1 YMN[7] 0 YMX[7] 0	O XMX[6] 1 YMIV[6] O YMX[6] O	0 xMx[5] 1 YMN[5] 0 YMX[5] 1	0 xwx4 0 ywx4 0 ywx4 1	0 xvvz(3) 1 yvvz(3) 0 yvvz(3) 1	0 xmx[2] 1 ymx[2] 0 ymx[2] 1	0 xwx[1] 1 ymx[1] 0 ymx[1] 1	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access
529 530 531 532	0210 0211 0212 0213 0214							0	0 xMx(7) 1 YMN(7) 0 YMx(7) 0	O XMX[6] 1 YMN[6] O YMX[6] O	O XMX[5] 1 YMN[5] O YMX[5] 1	0 xMx[4] 0 yMx[4] 0 yMx[4] 1	0 xvv(3) 0 yvv(3) 1	0 xMx[2] 1 yMx[2] 0 yMx[2] 1	0 xMx[1] 1 yMx[1] 0 yMx[1] 1	0 xmx[0] 1 ymx[0] 0 ymx[0] 1	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access
529 530 531 532 :	0210 0211 0212 0213 0214							0	0 xMx[7] 1 YMN[7] 0 YMX[7] 0	O XMX[6] 1 YMIV[6] O YMX[6] O	0 xMx[5] 1 YMN[5] 0 YMX[5] 1	0 xwx4 0 ywx4 0 ywx4 1	0 xvvz(3) 1 yvvz(3) 0 yvvz(3) 1	0 xMx[2] 1 yMx[2] 0 yMx[2] 1	0 xwx[1] 1 ymx[1] 0 ymx[1] 1	0 xmx[0] 1 ymn[0] 0	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access
529 530 531 532 : 535 536	0210 0211 0212 0213 0214 0217 0218							0	0 xMx(7) 1 YMN(7) 0 YMx(7) 0	O XMX[6] 1 YMN[6] O YMX[6] O	O XMX[5] 1 YMN[5] O YMX[5] 1	0 xMx[4] 0 yMx[4] 0 yMx[4] 1	0 xvv(3) 0 yvv(3) 1	0 xMx[2] 1 yMx[2] 0 yMx[2] 1	0 xMx[1] 1 yMx[1] 0 yMx[1] 1	0 xmx[0] 1 ymn[0] 0 ymx[0] 1	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set
529 530 531 532 :	0210 0211 0212 0213 0214							0	0 xMx[7] 1 yMn[7] 0 yMx[7] 0	O XMX[6] 1 YMN[6] O YMX[6] O	O XMX[5] 1 YMN[5] O YMX[5] 1	O	0 xvvx(3) 1 yvvvx(3) 0 yvvx(3) 1	0 xMx[2] 1 yMx[2] 0 yMx[2] 1	0 XMX[1] 1 YMN[1] 0 YMX[1] 1	0 xmx[0] 1 ymn[0] 0 ymx[0] 1	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access
529 530 531 532 : 535 536	0210 0211 0212 0213 0214 0217 0218 0219							0 үмҳв 1	0 xMx[7] 1 YMN[7] 0 YMx[7] 0 LCD000[7] 1	0 xMV(6) 1 yMV(6) 0 yMV(6) 0	0 xxxx[5] 1 yxxx[5] 0 yxxx[5] 1	0 XMD(4) 0 YMN(4) 0 YMD(4) 1	0 xivx(3) 1 yviv(3) 0 yviv(3) 1	0 xMx[2] 1 yMx[2] 0 yMx[2] 1	0 xMX[1] 1 YMN[1] 0 YMX[1] 1	0 xMx(0) 1 YMN(0) 0 YMX(0) 1	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set [LCDSIZE] X MAX. size set
529 530 531 532 : 535 536	0210 0211 0212 0213 0214 0217 0218							O YMX(8)	0 xmx(7) 1 ymx(7) 0 ymx(7) 0 LCCOMP(7) 0 LCCOMP(7)	0 xMX(6) 1 yMX(6) 0 yMX(6) 0 LCDAR(6) 0 LCDAR(6) 1 LCDAR(6)	0 XMX(5) 1 YMN(5) 0 VMX(5) 1 LCOMM(6) 0 LCOMM(6)	0 XMX(4) 0 YMM(4) 0 YMX(4) 1	0 XMX(3) 1 YMN(3) 0 YMX(3) 1 LCD06(9) 0 LCD06(9)	0 XMXQZ 1 YMN[Z] 0 YMXQZ 1 LCD004QZ 0 LCD004QZ LCD004QZ	0 XMX[1] 1 YMM[1] 0 YMX[1] 1 LCD000[1] 1 LCD000[1]	O XMX[0] 1 YMN[0] O YMX[0] 1 LCDMe[0] LCDMe[0] LCDMe[0]	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set
529 530 531 532 : 535 536 537	0210 0211 0212 0213 0214 0217 0218 0219 021A							0 YMX[8] 1	0 xMx[7] 1 YMN[7] 0 YMx[7] 0 LCD000[7] 1	0 xMV(6) 1 yMV(6) 0 yMV(6) 0	0 XMX(5) 1 YMM(5) 0 VMX(5) 1 LCDMM(4) 0 LCDMM(4) 1 LCDMM(4) 0	O	0 xmv(3) 1 ymv(3) 0 ymv(3) 1 Lconnequ 0 Lconnequ 0	0 XMX[2] 1 YMX[2] 0 LCD04(2) 1 LCD04(2) 1 LCD04(2) 0 LCD04(2) 0 0	0 xmx(1) 1 ymm(1) 0 LCDOM(1) 1 LCDOM(1) 1 0 LCDOM(1) 0	O XMX(0) T YMX(0) O YMX(0) LCOMM(0) O LCOMM(0) O LCOMM(0) O LCOMM(0)	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set [LCDSIZE] X MAX. size set [LCDSIZE] Y MIN. size set
529 530 531 532 : 535 536	0210 0211 0212 0213 0214 0217 0218 0219							O YMX(8)	0 xMx(7) 1 YMN(7) 0 YMX(7) 0 LCCMAR(7) 0 LCCMAR(7) 1 LCCMAR(7)	O XMX(6) 1 YMN(6) O YMX(6) O LCDORRES O LCDORRES O LCDORRES	0 XMX(5) 1 YMN(5) 0 VMX(5) 1 LCOMM(6) 0 LCOMM(6)	0 XMX(4) 0 YMM(4) 0 YMX(4) 1	0 XMX(3) 1 YMN(3) 0 YMX(3) 1 LCD06(9) 0 LCD06(9)	0 XMXQZ 1 YMXQZ 0 VMXQZ 1 LCD004QZ 0 LCD004QZ LCD004QZ LCD004QZ	0 XMX[1] 1 YMM[1] 0 YMX[1] 1 LCD000[1] 1 LCD000[1]	O XMX[0] 1 YMN[0] O YMX[0] 1 LCDMe[0] LCDMe[0] LCDMe[0]	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set [LCDSIZE] X MAX. size set
529 530 531 532 : 535 536 537 538	0210 0211 0212 0213 0214 0217 0218 0219 021A							0 YMX[8] 1	0 xmx(7) 1 ymx(7) 0 ymx(7) 0 LCCOMP(7) 0 LCCOMP(7)	O XMX(6) 1 YMN(6) O VMX(6) O LCDMM(6) I LCDMM(6) LCDMM(6) LCDMM(6) LCDMM(6) LCDMM(6) LCDMM(6) LCDMM(6) LCDMM(6)	0 XMX(5) 1 YMM(5) 0 VMX(5) 1 LCDMM(4) 0 LCDMM(4) 1 LCDMM(4) 0	O	0 xmv(3) 1 ymv(3) 0 ymv(3) 1 Lconnequ 0 Lconnequ 0	0 XMX[2] 1 YMX[2] 0 LCD04(2) 1 LCD04(2) 1 LCD04(2) 0 LCD04(2) 0 0	0 xmx(1) 1 ymm(1) 0 LCDOM(1) 1 LCDOM(1) 1 0 LCDOM(1) 0	O XMX(0) T YMX(0) O YMX(0) LCOMM(0) O LCOMM(0) O LCOMM(0) O LCOMM(0)	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set [LCDSIZE] X MAX. size set [LCDSIZE] Y MIN. size set
529 530 531 532 : 535 536 537	0210 0211 0212 0213 0214 0217 0218 0219 021A							0 YMX[8] 1	0 xMx(7) 1 YMN(7) 0 YMX(7) 0 LCCMAR(7) 0 LCCMAR(7) 1 LCCMAR(7)	O XMX(6) 1 YMN(6) O YMX(6) O LCDORRES O LCDORRES O LCDORRES	0 XMX(5) 1 YMM(5) 0 VMX(5) 1 LCDMM(4) 0 LCDMM(4) 1 LCDMM(4) 0	O	O XMACIS 1 YMMCIS O YMACIS 1 LCDMACIS O LCDMACIS O LCDMACIS	0 XMX[2] 1 YMX[2] 0 LCD04(2) 1 LCD04(2) 1 LCD04(2) 0 LCD04(2) 0 0	0 xmx(1) 1 ymm(1) 0 LCDOM(1) 1 LCDOM(1) 1 0 LCDOM(1) 0	O XMX(0) T YMX(0) O YMX(0) LCOMM(0) O LCOMM(0) O LCOMM(0) O LCOMM(0)	Maximum X address in RGB interface capture mode window access Minimum Y address in RGB interface capture mode window access Maximum Y address in RGB interface capture mode window access [LCDSIZE] X MIN. size set [LCDSIZE] X MAX. size set [LCDSIZE] Y MIN. size set

(4/4)

-:																		•
768	0300			GM3Pf51	GM3P(4)	GM3PI31	GM3PI2I	GM3P[1]	GM3P[0]			GM1PI5	GM1PI4	GM1PI3	GM1P[2]	GM1P[1]	GM1P(0)	
700	0000			0	4	0	1	0	0	_						(1)	(0)	adjustment V61 positive polarity
				·	_	U		U	U			4	0	4	0	4	4	adjustment V10 positive polarity adjustment V10 positive polarity
700	0004												U	_	U	-	_	adjustrient v to positive polarity
769	0301																	
770	0302																	
771	0303											GM2P[5]	GM2P[4	GM2P[3	GM2P[2]	GM2P[1]	GM2P[0]	
												0	1	1	1	1	1	adjustment V34 positive polarity
772	0304		GPL[6]	GPL[5]	GPL[4]	GPL[3]	GPL[2]	GPL[1]	GPL[0]		GPH[6]	GPH[5]	GPH[4]	GPH[3	GPH[2]	GPH[1]	GPH[0]	
			0	0	0	0	0	0	0									amplitude setting
			Ť	Ť	Ť	Ť	Ť	Ť	Ť		1	1	1	1	1	1	1	amplitude setting
773	0305			GM3NISI	GM3N[4]	GM3N[3]	GM3NI21	GM3N[1]	GM3N(0)		_	GM1NI5	GM1N[4	GM1N[3	GM1N[2]	GM1N[1]	GM1N(0)	amplitude setting
113	0305			ee.qey	dinare[4]		d	0	0	_		Cinitie	Ciminal	Gianne	J CHITT(Z)	Omne	Carrieto	adicates at 1/0 as active as last.
				0	1	0	1	U	U				_					adjustment V9 negative polarity
												1	0	1	0	1	1	adjustment V61 negative polarity
774	0306																	
775	0307																	
776	0308											GM2N[5]	GM2N[4	GM2N[3	GM2N[2]	GM2N[1]	GM2N[0]	
												0	1	1	1_	1_	1_	adjustment V31 negative polarity
777	0309		GNL[6]	GNL[5]	GNL[4]	GNL[3]	GNL[2]	GNL[1]	GNL[0]		GNH[6]	_	GNHt4	Chris	GNH[2]	GNHI	GNH[0]	adjustment 10. negative polarity
111	0309										SINI I[0]	SIVI I[5]	GIVI (4	Olai (S	ON (Z)	ON [1]	SINI I[U]	amplitude cotting
		<u> </u>	0	0	0	0	0	0	0	<u> </u>				L				amplitude setting
											1	1	1	1	T	T	T	amplitude setting
778	030A																	
779	030B																	
780	030C						GI[2]	GI[1]	GI[0]		GAP[2]	GAP[1]	GAP[0]	i	GAN[2]	GAN[1]	GAN[0]	
							0	0	1									amplifier bias current (set up for magnification, using a default state as 1)
							Ť	Ť										{GI2,1,0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
																		1,0,0: 2.5 time, 1,0,1: 3 time, 1,1,0: 3.5 time, 1,1,1: 4 time
								-		_	0	0	1					Gray scale amp. 0 to 31-gray scale bias current control (set up for maginfication, using a default state as 1)
								-			٠	U	-					{GAP2 to 0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
														-				
										_			-	-	_	_		1,0,0: 3 time, 1,0,1: 4 time, 1,1,0: 6 time, 1,1,1: 7.5 time
															0	0	1	Gray scale amp. 32 to 63-gray scale bias current control (set up for magnification, using a default state as 1)
																		{GAP2 to 0} = 0,0,0: 0.5 time, 0,0,1: 1 time, 0,1,0: 1.5 time, 0,1,1: 2 time
																		1,0,0: 3 time, 1,0,1: 4 time, 1,1,0: 6 time, 1,1,1: 7.5 time
781	030D												GRES			G3SW		
													0					resistance switch
																0		middle amplifier (0: OFF, 1: ON)
782	030E																	
102	UUUL																	
1004	0400																DTV	
1024	0400																DTY	
																	0	Partial display (0: Normal display, 1: Partial display)
1025	0401																DINV	
																	0	RAM write, read data inversion (0: Normal, 1: Data inversion)
1026	0402								P1SL[8]	P1SL[7]	P1SL[6]	P1SL[5]	P1SL[4	P1SL[3	P1SL[2]	P1SL[1]	P1SL[0]	
									0	0	0	0	0	0	0	0	0	Partial 1 display area start line
1027	0403								P1AW(8)	P1AW[7]	P1AW[6]	P1AW[5]	P1AW[4				P1AW[0]	. araa arapidy drod otdirt into
1027	0403									_								De d'al 4 d'autre de la completa de
		_					_	_	0	0	0	0	0			0	0	Partial 1 display area line number
1028	0404								P1SA[8]	P1SA[7]	P1SA[6]	P1SA[5]	P1SA[4			P1SA[1]	P1SA[0]	
									0	0	0	0	0			0	0	Partial 1 display area start line display RAM address
1029	0405								P2SL[8]	P2SL[7]	P2SL[6]	P2SL[5]	P2SL[4]	P2SL[3]	P2SL[2]	P2SL[1]	P2SL[0]	
									0	0	0	0	0	0	0	0	0	Partial 2 display area start line
1030	0406								P2AW[8]	P2AW[7]	P2AW[6]	P2AW[5]	P2AW[4			P2AW[1]	P2AW[0]	and a doping and durit line
1030	0400																	Dartial 2 diaplay area line number
10-	0.000	_		_	_		_	_	0	0	0	0	0			0	0	Partial 2 display area line number
1031	0407								P2SA[8]	P2SA[7]	P2SA[6]	P2SA[5]	P2SA[4]		P2SA[2]	P2SA[1]	P2SA[0]	
							<u> </u>		0	0	0	0	0	0	0	0	0	Partial 2 display area start line display RAM address
1032	0408																	
:																		
65535	FFFF													П				
, 50000			1															

11.2 Command Description

• Register mode 1/register mode 2

(1/16)

Register	Bit	Symbol	Function
R0	D7	DISP1	This command performs the same output as when all data is 1, independently of the internal RAM
			data (white display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 1.
			DISP1 takes precedence over DISP0. When DISP1 = 1, DISP0 = 1 is ignored.
	D6	DISP0	This command performs the same output as when all data is 0, independently of the internal RAM
			data (black display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 0.
	D5	ADC	The direction of column address
			The direction of source driver output can be selected.
	D4	DTY	Partial function is selected.
			In addition, efficiency of this command is carried out after transmission from the timing which
			outputs the following line data.
			0: Normal display mode
			1: Partial display mode
	D3	STBY	This bit selects the stand-by function. When the stand-by function is selected, a display OFF
			operation is executed, the amplifiers, and oscillator at each output circuit are stopped.
			After executing the stand-by function using this bit, set the regulator for gate power supply IC to
			OFF and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product
			information of the power supply IC etc.
			Note that when releasing stand-by, perform the opposite operation, after setting the DC/DC
			converter to ON and setting the regulators of the gate IC and power supply IC to ON, execute the
			normal operation command.
			0: Normal operation
			1: Stand-by function
			(Display read OFF from RAM stop, VCOM stop, display OFF = all data output as 1)
	D2	STBY_G	This bit selects the gate level, source level, and VCOM level at the time of stand-by.
		OFF	0: Gate level (Vgн), source level (Vss), VCOM level (COML)
			1: Gate level (VgL), source level (Hi-Z), VCOM level (Vss)
	D1	LPM	This bit is used in case it sets to the low power mode.
			0: Normal mode
			1: Low power mode
	D0	GSM	Sets output of the gate scanning signal during partial display.
			If this bit is set to 1, the gate of the lines set in the partial non-display area is scanned every frame
			period set by the R52 register.
			0: Normal mode
			1: The gate scanning cycle of partial non-display area is determined with the setting value to R52
			register.

(2/16)

Register	Bit	Symbol			Function	,		
R1	D7	ADX	Addressing of X ad	ddress is inverted. For mo	ore details, refer to Figure	5–36.		
	D6	ADY	Addressing of Y ad	ddress is inverted. For mo	ore details, refer to Figure	5–36.		
	D4	BGR	The order of RGB data is changed at the time of writing (The data of R and B is replaced).					
			0: Normal operation					
			<18 bits bus width: 1 pixel = 18 bits>					
			Date bus	D17 to D12	D11 to D6	D5 to D0		
			RAM	RAM • D17 to RAM • D12	RAM • D11 to RAM • D6	RAM • D5 to RAM • D0		
			<16 bits bus widt	h: 1 pixel = 16 bits>				
			Data bus	D15 to D11	D10 to D5	D4 to D0		
			RAM	RAM • D17 to RAM • D13	RAM • D11 to RAM • D6	RAM • D5 to RAM • D1		
				(D12: Supplemental		(D0: Supplemental transaction)		
				transaction)				
			<18 bits bus widt	h: 1 pixel = 18 bits> D17 to D12	D11 to D6	D5 to D0		
			<18 bits bus width: 1 pixel = 18 bits>					
			RAM	RAM • D5 to RAM • D0	RAM • D11 to RAM • D6	RAM • D17 to RAM • D12		
			<16 bits bus width	h: 1 pixel = 16 bits>				
			Data bus	D15 to D11	D10 to D5	D4 to D0		
			RAM	RAM • D5 to RAM • D1	RAM • D11 to RAM • D6	RAM • D17 to RAM • D13		
				(D0: Supplemental		(D12: Supplemental		
				transaction)		transaction)		
	D1	LTS	The setting time of calibration is selected.					
			The calibration function adjusts frame frequency by setting up the time of one line. The setting time					
				selected from the following	g setup by this command.			
			0: 1 line time = t _{cal}					
			1: 1 line time = t _{cal}					
			(tcal: calibration set	ting time = 1 ÷ frame frequ	uency ÷ display line numb	er)		

(3/16)

	Register	Bit	Symbol	Function	
R>	R2	D6	DCKEG	The active level of DOTCLK is selected.	
				0: Data latch by rising edge	
				1: Data latch by falling edge	
		D5	VSEG	The active level of VSYNC is selected.	
				0: Low active	
				1: High active	
		D4	HSEG	The active level of HSYNC is selected.	
				0: Low active	
				1: High active	
		D3	VIMD	VSYNC interface mode is selected. If VSYNC is inputted when VSYNC interface mode is selected,	
				scan for one frame will be performed.	
				0: Normal mode	
				1: VSYNC interface mode	
		D2	NWRGB		
				0: The input of RGB interface becomes invalid.	
				1: The input of RGB interface becomes valid.	
		D1	RGBS	The mode of RGB interface is selected.	
				0: Through mode	
				1: Capture mode	
		D0	DISPCK	The timing clock for display output at the time of RGB interface is selected.	
				0: Internal oscillation clock	
				1: HSYNC/VSYNC/DOTCLK	
	R3	D0	CRES	This bit is command reset function. Be sure to perform after power supply injection.	
				Command reset clears this bit automatically after execution (CRES = 1). Therefore, there is no	
				necessity (normal operation is selected) of setting up 0 more nearly again soft. Moreover, after	
				command reset execution, since this bit of time to change to $1 \rightarrow 0$ is very short, by the time it sets	
				up the following command, it is not necessary to vacate time after command reset setup.	
				0: Normal operation	
				1: Command reset	

(4/16)

Register	Bit	Symbol	Function			
R4	D0	GS	This bit selects color numbers.			
			GS = 0: 262,144-color			
			GS = 1: 8-color			
R5	D4	WAS	Window access mode setting			
			When the window access mode is set, the address is increment/decrement only in the range set by			
			the MIN. ·X address setting register (R8), MAX. ·X address setting register (R9), MIN. ·Y address			
			setting register (R10), and MAX. ·Y address setting register (R11).			
			0: Normal operation 1: Window access mode			
			·			
	D3	DINV	RAM write date inversion			
			0: Normal mode			
			1: Inversion mode			
	D2	INC	This bit selects the direction in which the address is to be increment.			
			This bit selects the direction in which the address is to be increment. 0: Increments X address			
			1: Increments Y address			
R6	D7 to D0	XAn	This register sets the X address of the display RAM.			
			Set 00H to EFH.			
R7	D8 to D0	YAn	This register sets the Y address of the display RAM.			
			Set 000H to 13FH.			
R8	D7 to D0	XMINn	The minimum value of X address at the time of window access mode is set up.			
			After carrying out the increment of the X address to X address maximum set up by the MAX. X			
			address register (R9), they are the next increments and are initialized by the address value set up			
			by this command. Set up 00H to EFH.			
R9	D7 to D0	XMXn	The maximum of X address at the time of window access mode is set up.			
			After carrying out the increment of the X address to the address value set up by this command,			
			they are the next increments and are initialized by X address minimum value set up by the MIN. X			
			address register (R8). Set up 00H to EFH.			
R10	D8 to D0	YMINn	The minimum value of Y address at the time of window access mode is set up.			
			After carrying out the increment of the Y address to Y address maximum set up by the MAX. Y			
			address register (R11), they are the next increments and are initialized by the address value set up			
			by this command. Set up to 000H to 13FH.			
R11	D8 to D0	YMXn	The maximum of Y address at the time of window access mode is set up.			
			After carrying out the increment of the Y address to the address value set up by this command, it is			
			the next increment and is initialized by Y address minimum value set up by the MIN. Y address			
			register (R10). Set up to 000H to 13FH.			

(5/16)

Register	Bit	Symbol	Function
R16	D0	PSEL	Partial OFF area color register 1
			Selects whether the data specified in R17 register as color data, using MSB of a display data RAM
			is used as color data.
			0: Use the data specified to be R17 register
			1: Use MSB of display data RAM, making it into color data.
R17	D2,	PGR,	Partial OFF area color register 2
	D1,	PGG,	Sets the color of the screen other than the partial display area during partial display (R0: DTY = 1).
	D0	PGB	One of eight colors can be selected (RGB: 1 bit each) as the OFF color.
			The relationship between each color data and the bits of this register is as follows.
			This relationship is not dependent upon the value of ADC.
			PGR: R OFF = 0, ON = 1
			PGG: G OFF = 0, ON = 1
			PGB: B OFF = 0, ON = 1
R18	D8 to D0	P1SLn	This is partial 1 display area start line register (000H to 13FH).
			From the line set up by this command to the line set up by the partial 1 display area end line
			register (R20) becomes partial 1 display area at the time of partial display (R0: DTY = 1).
R19	D8 to D0	P2SLn	This is partial 2 display area start line register (000H to 13FH).
			From the line set up by this command to the line set up by the partial 2 display area end line
			register (R21) becomes partial 2 display area at the time of partial display (R0: DTY = 1).
R20	D8 to D0	P1AWn	This is partial 1 display area line count register (000H to 13FH).
			An area starting from the line set by the partial 1 display area start register (R18) and ending as set
			by this command is the partial 1 display area.
			If this register is 0, the values of the partial 2 display area start line register (R19) and the partial 2
			display area line count register (R21) are not valid.
R21	D8 to D0	P2AWn	This is partial 2 display area line count register (000H to 13FH)
			An area starting from the line set by the partial 2 display area start register (R19) and ending as set
			by this command is the partial 2 display area.
			If the partial 1 display area line count register is 0, the values of the partial 2 display area start line
			register (R19) and partial 2 display area line count register (R21) are not valid.
R22	D8 to D0	P1SAn	This is partial 1 display area start line display RAM address.
R23	D8 to D0	P2SAn	This is partial 2 display area start line display RAM address.

(6/16)

Register	Bit	Symbol	Function
R24	D12	VDCION	ON/OFF of V _{DCI} regulator is controlled.
			0: V _{DCI} regulator OFF
			1: Voci regulator ON
	D11	RGONR	ON/OFF of V _R regulator is controlled.
			0: V _R regulator OFF
			1: V _R regulator ON
	D10	RGON	ON/OFF of Vs regulator is controlled.
			0: Vs regulator OFF
			1: Vs regulator ON
	D9	VCLON	ON/OFF of Vc∟ boost is controlled.
			0: VcL boost OFF
			1: Vcl boost ON (Vbci x -1)
	D8	VGLREF	V _{GL} boost mode is switched
			0: $V_{GL} = V_R x (-2 \text{ or } -3) + V_{SS}$
			1: V _{GL} = V _R x (-2 or -3) + V _{CL}
			ON/OFF of VgL boost is controlled.
			<vglon1, 0="" vglon0="0,"> VGL boost OFF</vglon1,>
			<VGLON1, VGLON0 = 0, 1> V _{GL} = V _R x -2 + (V _{SS} or V _{CL})
			<vglon1, vglon0="1," x=""> V_{GL} = V_R x -3 + (V_{SS} or V_{CL})</vglon1,>
	D5	VGHREF	V _{GH} boost mode is switched.
			0: $V_{GH} = V_R x (2 \text{ or } 3) + V_R$
			1: V _{GH} = V _R x (2 or 3) + V _{DCI}
	D4, D3	VGHON1	ON/OFF of V _{GH} boost is controlled.
		VGHON0	<vghon1, 0="" vghon0="0,"> V_{GH} boost OFF</vghon1,>
			<vghon1, 1="" vghon0="0,"> V_{GH} = V_R x 2 + (V_R or V_{DCI})</vghon1,>
			<vghon1, vghon0="1," x=""> VgH = VR x 3 + (VR or Vdci)</vghon1,>
	D2, D1	VD2ON1	ON/OFF of VDD2 boost is controlled.
		VD2ON0	<vd2on1, 0="" vd2on0="0,"> VDD2 boost OFF (VDCI or Hi-Z)</vd2on1,>
			<vd2on1, 1="" vd2on0="0,"> VDD2 = VDCI x 2 boost ON</vd2on1,>
			<vd2on1, vd2on0="1," x=""> VDD2 = VDC1 x 3 boost ON</vd2on1,>
	D0	DCON	ON/OFF of DC/DC converter is controlled.
			0: DC/DC converter OFF
			1: DC/DC converter ON

(7/16)

	Register	Bit	Symbol	Function
	R25	D7	VDCISEL	When Vpci regulator OFF (VDCION [R24] = 0) and Vpci output is not set into Hi-Z (VDCIHZ
				[R25] = 0), the output state of Voci regulator is controlled.
				<vdcisel 0="" ==""> V_{DCI} = V_{DC}</vdcisel>
				<vdcisel 1="" ==""> V_{DCI} = V_{SS}</vdcisel>
<r></r>		D6	VDCIHZ	Output state of VDCI pin is defined when VDCI regulator is OFF (VDCION [R24] = 0).
				<vdcihz 0="" ==""> VDCI = VDC or Vss (setting by VDCISEL)</vdcihz>
				<vdcihz 1="" ==""> V_{DCI} =Hi-Z</vdcihz>
		D5	VRHI	Output of V _R regulator is selected.
				<vrhi 0="" ==""> VR regulator = ON</vrhi>
				<vrhi 1="" ==""> VR regulator = Hi-Z</vrhi>
		D4	VSHI	Output of Vs regulator is selected.
				<vshi 0="" ==""> Vs regulator = ON</vshi>
				<vshi 1="" ==""> Vs regulator = Hi-Z</vshi>
		D3	DCFRM	This bit selects whether DC/DC operation is synchronized with frame signal.
				<dcfrm 0="" ==""> DC/DC operation = frame asynchronous</dcfrm>
				<dcfrm 1="" ==""> DC/DC operation = frame synchronization</dcfrm>
		D2	DC3HZ	The output state of VcL at the time of VcL boost OFF is controlled.
				<dc3hz 0="" ==""> Vcl = Vss</dc3hz>
				<dc3hz 1="" ==""> Vcl = Hi-Z</dc3hz>
		D1	DC2HZ	The output state of VgH and VgL at the time of VgH and VgL boost OFF is controlled.
				<dc2hz 0="" ==""> V_{GH} = V_{DD2}, V_{GL} = V_{SS}</dc2hz>
				<dc2hz 1="" ==""> V_{GH} = Hi-Z, V_{GL} = Hi-Z</dc2hz>
		D0	DC1HZ	The output state of VDD2 at the time of VDD2 boost OFF is controlled.
				<dc1hz 0="" ==""> V_{DD2} = V_{DC1}</dc1hz>
				<dc1hz 1="" ==""> V_{DD2} = Hi-Z</dc1hz>

(8/16)

Register	Bit	Symbol			Function	
R26	D7,	LFS3,	When low powe	r mode (LPM [R0]	= 1), V _{GH} , V _{GL} boost frequency are selected.	
	D6	LFS2	LFS3	LFS2	Boost Frequency	
			0	0	fdcclk/1	
			0	1	fdcclk/2	
			1	0	fdcclk/4	
			1	1	fdcclk/8	
	D5,	LFS1,	When low powe	r mode (LPM [R0]	= 1), V _{DD2} , V _{CL} boost frequency are selected.	
	D4	LFS0	LFS1	LFS0	Boost Frequency	
			0	0	fdcclk/1	
			0	1	fdcclk/2	
			1	0	fdcclk/4	
			1	1	fdcclk/8	
	D3,	FS3,	When normal dr	ive (LPM [R0] = 0)	, V _{GH} , V _{GL} boost frequency are selected.	
	D2	FS2	FS3	FS2	Boost Frequency	
			0	0	fdcclk/1	
			0	1	fdcclk/2	
			1	0	fdcclk/4	
			1	1	fdcclk/8	
	D1,	FS1,	When normal drive (LPM [R0] = 0), V _{DD2} , V _{CL} boost frequency are selected.			
	D0	FS0	FS1	FS0	Boost Frequency	
			0	0	fdcclk/1	
			0	1	fdcclk/2	
			1	0	fdcclk/4	
			1	1	fdcclk/8	
R27	D5	PONM			sing operation and an external sequence are selected.	
			0: External sequence			
			1: Internal seque			
	D4	PON		•	ime of the rising of V _{GH} , V _{DD2} , V _{GL} and V _{CL} when DC/DC rising	
					at the time of PONM = 0.	
			0: Normal operat			
		511554	1: Rising operation			
	D3,	DUPF1,		-	le DC/DC converter circuit when DC/DC rising is selected.	
	D2	DUPF0	DUPF1	DUPF0	Boost Frequency	
			0	0	fdcclk/1	
			0	1	fdcclk/2	
			1	0	fdcclk/4	
			1	1	fdcclk/8	
	D1,	PUPT1,			ng of V _{GH} , V _{DD2} , V _{GL} , V _{CL} RGON, RGONR when DC/DC rising	
	D0	PUPT0	is selected. It be	ecomes valid only	at the time of PONM = 1.	

(9/16)

Register	Bit	Symbol	Function (9/16
R28	D12	SFVSEL	Output voltage of RVDD regulator is selected.
			<sfvsel 0="" ==""> RV_{DD} = 2.1 V (for test)</sfvsel>
			<sfvsel 1="" ==""> RVDD = 2.3 V</sfvsel>
	D11 to	VSEL2 to	Output voltage of V _{GM} regulator is selected.
	D9	VSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At V_{REFR} = 2.0 V</vc2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.40 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.50 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.60 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.70 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.80 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.90 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 5.00 V</vsel2>
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 5.10 V</vsel2>
	D8 to D6	VRSEL2 to	Output voltage of V _R regulator is selected.
		VRSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At VREFR = 2.0 V</vc2>
			<vrsel2 0,="" =="" vrsel0="0" vrsel1="0,"> V_R = 4.50 V</vrsel2>
			<vrsel2 0,="" =="" vrsel0="1" vrsel1="0,"> V_R = 4.80 V</vrsel2>
			<vrsel2 0,="" =="" vrsel0="0" vrsel1="1,"> V_R = 4.90 V</vrsel2>
			<vrsel2 0,="" =="" vrsel0="1" vrsel1="1,"> V_R = 5.00 V</vrsel2>
			<vrsel2 1,="" =="" vrsel0="0" vrsel1="0,"> V_R = 5.05 V</vrsel2>
			<vrsel2 1,="" =="" vrsel0="1" vrsel1="0,"> V_R = 5.10 V</vrsel2>
			<vrsel2 1,="" =="" vrsel0="0" vrsel1="1,"> V_R = 5.20 V</vrsel2>
			<pre><vrsel2 1,="" =="" vrsel0="1" vrsel1="1,"> VR = 5.40 V</vrsel2></pre>
	D5 to D3	VSSEL2 to	Output voltage of Vs regulator is selected.
		VSSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At V_{REFR} = 2.0 V</vc2>
			<vssel2 0,="" =="" vssel0="0" vssel1="0,"> Vs = 4.85 V</vssel2>
			<vssel2 0,="" =="" vssel0="1" vssel1="0,"> Vs = 4.90 V</vssel2>
			<vssel2 0,="" =="" vssel0="0" vssel1="1,"> Vs = 4.95 V</vssel2>
			<vssel2 0,="" =="" vssel0="1" vssel1="1,"> Vs = 5.00 V</vssel2>
			<vssel2 1,="" =="" vssel0="0" vssel1="0,"> Vs = 5.05 V</vssel2>
			<vssel2 1,="" =="" vssel0="1" vssel1="0,"> Vs = 5.10 V</vssel2>
			<vssel2 1,="" =="" vssel0="0" vssel1="1,"> Vs = 5.15 V</vssel2>
			<vssel2 1,="" =="" vssel0="1" vssel1="1,"> Vs = 5.20 V</vssel2>
	D2 to D0	VC2 to VC0	Output voltage of REFR regulator is selected.
			<vc2 0,="" =="" vc0="0" vc1="0,"> V_{REFR} = 1.50 V</vc2>
			<vc2 0,="" =="" vc0="1" vc1="0,"> V_{REFR} = 1.60 V</vc2>
			<vc2 0,="" =="" vc0="0" vc1="1,"> VREFR = 1.70 V</vc2>
			<vc2 0,="" =="" vc0="1" vc1="1,"> V_{REFR} = 1.80 V</vc2>
			<vc2 1,="" =="" vc0="0" vc1="0,"> V_{REFR} = 1.90 V</vc2>
			<vc2 1,="" =="" vc0="1" vc1="0,"> V_{REFR} = 2.00 V</vc2>
			<vc2 1,="" =="" vc0="0" vc1="1,"> VREFR = 2.05 V</vc2>
			<vc2 1,="" =="" vc0="1" vc1="1,"> V_{REFR} = 2.10 V</vc2>

(10/16)

Register	Bit	Symbol	Function
R29	D8	REGMONI	Output state of TVREFR is selected.
			0: TVREFR = Hi-Z
			1: TVREFR = Output setup voltage in VC2 to VC0
	D7,	LCOMCS1	When low power mode, COMH/COML amplitude current is selected.
	D6	LCOMCS0	<pre><lcomcs1, 0="" lcomcs0="0,"> Amp. current = x 0.25 mode</lcomcs1,></pre>
			<lcomcs1, 1="" lcomcs0="0,"> Amp. current = x 0.5 mode</lcomcs1,>
			<lcomcs1, 0="" lcomcs0="1,"> Amp. current = x 1.0 mode</lcomcs1,>
			<lcomcs1, 1="" lcomcs0="1,"> Amp. current = x 1.5 mode</lcomcs1,>
	D5,	COMCS1,	COMH/COML amplitude current is selected.
	D4	COMCS0	<comcs1, 0="" comcs0="0,"> Amp. current = x 1 mode</comcs1,>
			<comcs1, 1="" comcs0="0,"> Amp. current = x 2 mode</comcs1,>
			<comcs1, 0="" comcs0="1,"> Amp. current = x 3 mode</comcs1,>
			<comcs1, 1="" comcs0="1,"> Amp. current = x 7 mode</comcs1,>
	D3,	LACS1,	When low power mode (LPM [R0] = 1), V _R and V _S regulator amplitude current is selected.
	D2	LACS0	<lacs1, 0="" lacs0="0,"> Amp. current = x 0.25 mode</lacs1,>
			<pre><lacs1, 1="" lacs0="0,"> Amp. current = x 0.5 mode</lacs1,></pre>
			<pre><lacs1, 0="" lacs0="1,"> Amp. current = x 1.0 mode</lacs1,></pre>
			<lacs1, 1="" lacs0="1,"> Amp. current = x 1.5 mode</lacs1,>
	D1	ACS1,	When normal drive (LPM [R0] = 0), V _R and V _S regulator amplitude current is selected.
	D0	ACS0	<acs1, 0="" acs0="0,"> Amp. current = x 1 mode</acs1,>
			<acs1, 1="" acs0="0,"> Amp. current = x 2 mode</acs1,>
			<acs1, 0="" acs0="1,"> Amp. current = x 3 mode</acs1,>
			<acs1, 1="" acs0="1,"> Amp. current = x 6 mode</acs1,>

(11/16)

Register	Bit	Symbol	Function	
R30	D5,	COMP1,	VCOMM ability at VCOMM output is selected.	
	D4	COMP0	<comp1, 0="" comp0="0,"> x 1 mode</comp1,>	
			<comp1, 1="" comp0="0,"> x 1.5 mode</comp1,>	
			<comp1, 0="" comp0="1,"> x 2 mode</comp1,>	
			<comp1, 1="" comp0="1,"> x 2.5 mode</comp1,>	
	D2	СОМНІМ	Output state of VCOMM is controlled.	
			0: VCOMHM/VCOMLM	
			1: Hi-Z	
	D0	COMONM	ON/OFF control of the common drive output VCOMM is carried out.	
			0: OFF (VCOMHM and VCOMLM amplifier-OFF)	
			1: ON (VCOMHM and VCOMLM amplifier-ON)	
R31	D5 to D0	DAn	The amplitude of VCOMM output is controlled by 6-bit D/A.	
R32	D7	COMINM	The center voltage input of VCOMM is selected.	
NOZ		OOMININ	0: Internal D/A becomes valid	
			1: Center level voltage of VCOMINM input becomes valid	
	D6 to D0	CDAn	The center level of VCOMM output is controlled by 7-bit D/A.	
R36	D6 to D0	GPHn	Sets the positive polarity γ -amplitude adjustment.	
130	D0 10 D0	GFIIII	For more detail, refer to 5.5 γ -Curve Correction Circuit .	
R37	DG to DO	GNHn	Sets the negative polarity γ -amplitude adjustment.	
K31	D6 to D0	GNHII		
Dan	DC 4= D0	CDI =	For more detail, refer to 5.5 γ-Curve Correction Circuit.	
R38	D6 to D0	GPLn	Sets the positive polarity γ -amplitude adjustment.	
Dag	D0 / D0	0111	For more detail, refer to 5.5 γ-Curve Correction Circuit.	
R39	D6 to D0	GNLn	Sets the negative polarity γ -amplitude adjustment.	
	D= / D0		For more detail, refer to 5.5 γ-Curve Correction Circuit.	
R41	D7 to D0	LCDXMINn	The minimum value of X addresses of a liquid crystal display area is set up.	
			When window access mode is not being used, after carrying out the increment of the X	
			addresses to X address maximum set up by the LCDMAX X address register (R43), they are the	
			next increments and are initialized by the address value set up by this command.	
			In addition, the source output pin which is not specified by LCDXMIN (R41) and LCDXMX (R43)	
			does not output.	
			Set up 00H to EFH. Moreover, specify a surely bigger area than the window area in window	
			access mode.	
R42	D8 to D0	LCDYMINn	The minimum value of Y address of a liquid crystal display area is set up.	
			When window access mode is not being used, after carrying out the increment of the Y address	
			to Y address maximum set up by the LCDMAX Y address register (R44), it is the next increment	
			and is initialized by the address value set up by this command.	
			Set up 000H to 13FH. Moreover, specify a surely bigger area than the window area in window	
			access mode.	
R43	D7 to D0	LCDXMXn	The maximum of X addresses of a liquid crystal display area is set up.	
			When window access mode is not being used, after carrying out the increment of the X	
			addresses to the address value set up by this command, they are the next increments and are	
			initialized by X address minimum value set up by the LCDMIN X address register (R41).	
			In addition, the source output pin which is not specified by LCDXMIN (R41) and LCDXMX (R43)	
			does not output.	
			Set up 00H to EFH. Moreover, specify a surely bigger area than the window area in window	
		1	access mode.	

(12/16)

1	1	ı			(12/16)			
Register	Bit	Symbol			Function			
R44	D8 to D0	LCDYMXn	The maximum	of Y address	of a liquid crystal display area is set up.			
			When window access mode is not being used, after carrying out the increment of the Y address					
			to the address	s value set up b	by this command, it is the next increment and is initialized by Y			
			address minin	num value set ι	up by the LCDMIN Y address register (R42).			
			Set up 000H t	o 13FH. More	over, specify a surely bigger area than the window area in window			
			access mode.					
R45	D0	ОС	This bit is use	d for calibration	n.			
			The time from	calibration sta	rt command execution until calibration stop command execution			
			becomes the	time for 1 line.				
			0: Calibration	stop				
			1: Calibration	start				
R46	D7 to D0	BCNTn	It specifies a	part for what clo	ock of a basic clock (an internal oscillation clock or DOTCLK) 1			
			horizontal per	iod becomes.	Moreover, 1 horizontal period determined by the calibration function			
			is able to get	to know a part f	for what clock of a basic clock it is by reading and adding this			
			register.					
R50	D2	R_L	Scan direction	n of gate driver	is selected.			
			0: Scan to G320 from G0					
			1: Scan to G0 from G320					
	D1	SCN1	Gate scan mode is selected.					
	D0	SCN0	{SCN1, SCN0} = 0, 0: MODE1 0, 1: MODE2 1, 0: MODE3 1, 1: Setting prohibited					
R51	D1,	NLINE1,	The number of lines of n line inversion is set up.					
	D0	NLINE0	NLINE1	NLINE0	Number of Lines of n Line Inversion			
			0	0	n = 1			
			0	1	n = 2			
			1	0	n = 4			
			1	1	n = 8			
R52	D2,	GSMLN2,	Gate scan op	ı	al non-displaying area is selected.			
	D1,	GSMLN1,	1	•	, 0: Gate scan stop			
	D0	GSMLN0		•	•			
			GSMLN2 to GSMLIN0 = 0, 0, 1: 3 frame cycle GSMLN2 to GSMLIN0 = 0, 1, 0: 5 frame cycle					
				· · · · · · · · · · · · · · · · · · ·	,			
			GSMLN2 to G	SMLIN0 = 1, 1	, 0: 13 frame cycle			
					, 1: 15 frame cycle			
R53	D0	PNFRM			rea carries out frame inversion operation. This bit becomes valid			
Ros	DU	PINFRIVI	, , ,	, , ,	•			
					rea is line inversion.			
					a is line inversion.			
DEC	D1	CCCAN14			a is frame inversion.			
R55	D1,	GSCANO,		mode is selec				
	D0	GSCAN0	GSCAN1	GSCAN0	Scan Operation			
			0	0	n line inversion			
			0	1	Frame inversion			
			1	0	Skip inversion 1D			
			1	1	Skip inversion 2B			
R58	D0	OSCON		ator is controlle	d.			
			0: Oscillator s	top				
			1: Oscillator operate					

(13/16)

		1		1			(13/16)				
	Register	Bit	Symbol	Function							
	R59	D1	GOE2ON		ut is controlled	d.					
				0: Normal operation							
				1: GOE2 output Low fixation (All gate ON).							
		D0	GOE10N	Gate scan ON/OFF is selected by GOE1 output.							
				0: Gate scan OFF (GOE1 = Low fixation)							
				1: Normal operation							
	R60	D8 to D0	RGBSTn	These bits s (000H ≤ R66		lay area to be displayed by in RGB interface through mode.					
				Be sure to c	bserve the re	relationship "Set value of R60 register < Set value of R61 register".					
	R61	D8 to D0	RGBEDn	These bits set the end line of the display area to be displayed by in RGB interface through mode. $(000H \le R61 \le 13FH)$							
				Be sure to observe the relationship "Set value of R60 register < Set value of R61 register".							
<r></r>	R62	D7 to D4	HBPn	These bits set the horizontal back porch period of the RGB interface.							
				18/16-bit mode: Horizontal back porch period = This register setting value x DOTCLK unit							
				6-bit mode: Horizontal back porch period = This register setting value x 3 x DOTCLK unit							
		D3 to D0	D0 VBPn	These bits set the vertical back porch period of the RGB interface.							
				Vertical back porch period = This register setting value x HSYNC unit.							
	R63	D7 to D0	CAPXMINn	The minimum value of X addresses of window access at the time of RGB interface capture mode							
				is set up. After carrying out the increment of the X addresses to X address maximum set up by							
				the MAX X	address regis	y are the next increments and are initialized by the address					
				value set up	by this comr	00H to EFH.					
	R64	D7 to D0	CAPXMXn			ow access at the time of RGB interface capture mode is set					
						the X addresses to the address value set up by this					
					is and are initialized by X address minimum value set up by						
					up 00H to EFH.						
	R65	D8 to D0	CAPYMINn	The minimum value of Y address of window access at the time of RGB interface capture mode is							
				•		nt of the Y address to Y address maximum set up by the					
					_	next increment and is initialized by the address value set					
				up by this command. Set up 000H to 13FH.							
	R66	D8 to D0	CAPYMXn	The maximum of Y address of window access at the time of RGB interface capture mode is set							
				up. After carrying out the increment of the Y address to the address value set up by this							
				command, it is the next increment and is initialized by Y address minimum value set up by the							
	DCO	DO	E20D02	MIN Y address register (R65). Set up 000H to 13FH. C2 E ² PROM interface is controlled.							
	R68	D2,	E2OPC2	E PROM IN	errace is con	trollea.					
		D1, D0	E2OPC1 E2OPC0	E2OPC2	E2OPC1	E2OPC0	E ² PROM Control				
				0	0	0	Setting prohibited				
				0	0	1	EPSAVE: Writing execution to E ² PROM				
				0	1	0	MASKON: Writing/elimination permission to E ² PROM				
				0	1	1	MASKOF: Writing/elimination prohibit to E ² PROM				
				1	0	0	EPCLR: All area elimination of E ² PROM				
		1 0 1				EPWALL: It is the writing of FFFFH to all the area of					
						E ² PROM					
							EPREAD: Reading execution of E ² PROM				
				1	1	1	Setting prohibited				

(14/16)

	Register	Bit	Symbol	Function					
	R69	D7 to D0	E2ENn	This is writing permission to E ² PROM enable register.					
	R70	D7 to D0	E2An	The writing address to E ² PROM is specified.					
	R71	D15 to D0	E2Irn	The index of a register which writes in to E ² PROM is specified.					
				The index and data of the register specified to be this register are written in the address of					
				E ² PROM sp	ecified by R7	0.			
	R72	D7 to D0	E2Idn	The product information register for			The setting of this register is not the register that		
				E ² PROM [23:16]			affects driver operation but the temporary register		
	R73	D7 to D0	E2ldn	The product information register for E ² PROM [15:8]			which saves data.		
	R74	D7 to D0	E2ldn	The product information register for					
				E ² PROM [7:0]					
	R75	D7 to D0	E2SAn	The reading	start address	s of E ² PROM	is specified.		
<r></r>	R77	D15 to D8	GOEDn	GOE1 fallin	e detail, refer to 5.4.1 Horizontal period .				
		D7 to D0	GOSTn	GOE1 rising	e detail, refer to 5.4.1 Horizontal period .				
<r></r>	R78	D7 to D0	VMCHGn	Polarity cha	etup. For more detail, refer to 5.4.1 Horizontal period .				
				Also, set up over 1.					
<r></r>	R79	D15 to D8	SWEDn	The drive end timing in horizontal period is set up. For more detail, refer to 5.4.1 Ho					
				period.					
		D7 to D0	SWSTn	The drive start timing in horizontal period is set up.					
	R82	D7 to D5	Gln	The bias current of γ -amplifier is adjuste			ted.		
				GI2	GI1	GI0	Current Value (Magnification)		
				0	0	0	0.5		
				0	0	1	1.0 (default)		
				0	1	0	1.5		
				0	1	1	2		
				1	0	0	2.5		
				1	0	1	3		
				1	1	0	3.5		
				1	1	1	4		
		D2	GRES	The γ -resistance is switched.					
				For more detail, refer to 5.5 γ-Curve Correction Circuit.					
		D0	G3SW	γ-center An					
				0: γ -center Amp. OFF 1: γ -center Amp. ON					

(15/16)

Register	Bit	Symbol	Function					
R83	D6 to D4	GAPn	The bias current of positive polarity side γ -gray scale amplifier is adjusted.					
			GAP2	GAP1	GAP0	Current Value (Magnification)		
			0	0	0	0.5		
			0	0	1	1.0 (default)		
			0	1	0	1.5		
			0	1	1	2		
			1	0	0	3		
			1	0	1	4		
			1	1	0	6		
			1	1	1	7.5		
	D2 to D0	GANn	The bias current of negative polarity side γ -gray scale amplifier is adjusted.					
			GAN2	GAN1	GAN0	Current Value (Magnification)		
			0	0	0	0.5		
			0	0	1	1.0 (default)		
			0	1	0	1.5		
			0	1	1	2		
			1	0	0	3		
			1	0	1	4		
			1	1	0	6		
			1	1	1	7.5		
R97	D5 to D0	GM1Pn	Positive polarity side γ -adjustment register					
R98	D5 to D0	GM3Nn	Negative polarity side γ -adjustment register					
R99	D5 to D0	GM2Pn	Positive polarity side γ -adjustment register					
R100	D5 to D0	GM2Nn	Negative polarity side γ -adjustment register					
R101	D5 to D0	GM3Pn	Positive polarity side γ -adjustment register					
R102	D5 to D0	GM1Nn	Negative polarity side γ -adjustment register					
R103	D5,	SOUT_MODE1,						
D4 SOUT_MODE0								
			SOUT_M	IODE1	SOUT_MODE	Source Output in Dummy Period		
			0		0	Reverse phase for COM and Vs or Vss		
			0		1	Hi-Z		
			1		0	(Reverse phase for COM and Vs or Vss) and Hi-Z		
			1		1	Hi-Z		
	1	1						

(16/16)

• Register mode 3/register mode 4

(1/13)

Register	Bit	Symbol			Function			
R0	D0	OSCON	Internal oscillator is controlled.					
(R0H)			0: Oscillator stop					
, ,			1: Oscillator operate					
R1	D11,	SCN1,	Gate scan mode is se	elected.				
(R1H)	D10	SCN0	SCN1	SCN0	Gate Scan Mode			
			0	0	MODE1			
			0	1	MODE2			
			1	0	MODE3			
			1	1	Setting prohibited			
	D9	R_L	Scan direction of gate	driver is selected.				
			0: Scan to G320 from	G0				
			1: Scan to G0 from G320					
	D8	ADX	Addressing of X address is inverted. For more details, refer to Figure 5–36 .					
	D7	ADY	Addressing of Y address is inverted. For more details, refer to Figure 5–36.					
	D6	ADC	Column address direction					
			Source driver output direction is selected.					
R2	D10,	GSCAN1,	Skip inversion mode is	s selected.				
(R2H)	D9	GSCAN0	GSCAN1	GSCAN0	Scan Operation			
			0	0	n line inversion			
			0	1	Frame inversion			
			1	0	Skip inversion 1D			
			1	1	Skip inversion 2B			
	D1,	NLINE1,	Line number of n line	inversion is selected.				
	D0	NLINE0	NLINE1	NLINE0	Line Number of n Line Inversion			
			0	0	n = 1			
			0	1	n = 2			
			1	0	n = 4			
			1	1	n = 8			

(2/13)

Register	Bit	Symbol	Function (2/13
R3	D12	BGR	In case it writes in display data RAM, this bit changes into BGR the data written in as RGB.
(35H)	012	BGK	0: RGB
(3311)			1: BGR
	D8	WAS	Window access mode setting
	D6	WAS	When the window access mode is set, the address is increment/decrement only in the range set by
			the MIN. X address setting register (R528), MAX. X address setting register (R529), MIN. Y
			address setting register (R530), and MAX. Y address setting register (R531).
			0: Normal operation
			1: Window access mode
	D5	YDIR	Y address counter control
	D3	IDIK	0: Y address increment
			1: Y address decrement
	D4	XDIR	X address counter control
	D4	ADIK	0: X address increment
	D2	INIC	1: X address decrement
	D3	INC	Address increment direction is selected.
			0: X address increment 1: Y address increment
De	DO	CDEC	This bit is command reset function. Be sure to perform after power supply injection.
		CRES	Command reset clears this bit automatically after execution (CRES = 1). Therefore, there is no
(R6H)			necessity (normal operation is selected) of setting up 0 more nearly again soft. Moreover, after
			command reset execution, since this bit of time to change to $1 \rightarrow 0$ is very short, by the time it sets
			up the following command, it is not necessary to vacate time after command reset setup.
			0: Normal operation
			1: Command reset
R7	D5	GOE2ON	GOE2 output is controlled.
(R7H)		GOLZON	0: Normal operation
(14711)			1: GOE2 output Low fixed (gate all ON)
	D4	GOE10N	ON/OFF of gate scan is selected by GOE1 output.
		OOLION	0: OFF (GOE1 = L fixed)
			1: Normal operation
	D3	DISP1	This command performs the same output as when all data is 1, independently of the internal RAM
		DISI	data (white display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 1.
			DISP1 takes precedence over DISP0. When DISP1 = 1, DISP0 = 1 is ignored.
	D2	DISP0	This command performs the same output as when all data is 0, independently of the internal RAM
			data (black display in the case of normally white).
			This command is executed, after it has been transferred, when the next line is output.
			0: Normal operation
			1: Ignores data of RAM and outputs all data as 0.

(3/13)

Register	Bit	Symbol	Function
R7	D1	STBY_GOFF	This bit selects the gate level, source level, and VCOM level at the time of stand-by.
(R7H)			0: Gate level (V _{GH}), source level (Vss), VCOM level (COML)
,			1: Gate level (V _{GL}), source level (Hi-Z), VCOM level (Vss)
	D0	STBY	This bit selects the stand-by function. When the stand-by function is selected, a display OFF
			operation is executed, the amplifiers at each output circuit are stopped.
			After executing the stand-by function using this bit, set the regulator for gate power supply IC to
			OFF and set the DC/DC converter to OFF. For the sequence, refer to the preliminary product
			information of the power supply IC etc.
			Note that when releasing stand-by, perform the opposite operation, after setting the DC/DC
			converter to ON and setting the regulators of the gate IC and power supply IC to ON, execute the
			normal operation command.
			0: Normal operation
			1: Stand-by function
			(Display read OFF from RAM stop, VCOM stop, display OFF = all data output as 1)
R9	D12	PSEL	Partial OFF area color register 1
(R9H)			Selects whether the data specified in PGR/PGB/PGG registers as color data, using MSB of a
` ,			display data RAM is used as color data.
			0: Use the data specified to be PGR/PGB/PGG register
			1: Use MSB of display data RAM, making it into color data.
	D10,	PGR,	Partial OFF area color register 2
	D9,	PGB.	Sets the color of the screen other than the partial display area during partial display (R1024: DTY =
	D8	PGG	One of eight colors can be selected (RGB: 1 bit each) as the OFF color.
			The relationship between each color data and the bits of this register is as follows.
			This relationship is not dependent upon the value of ADC.
			PGR: R OFF = 0, ON = 1
			PGG: G OFF = 0, ON = 1
			PGB: B OFF = 0, ON = 1
	D7	DNEDM	
	D/	PNFRM	Only partial non-displaying area carries out frame inversion operation. This bit becomes valid only
			when a partial display area is line inversion.
			0: Partial non-displaying area is line inversion.
		0014	1: Partial non-displaying area is frame inversion.
	D4	GSM	
	D2 to	GSMLN2 to	Gate scan operation of partial non-displaying area is selected.
	D0	GSMLN0	GSMLN2 to GSMLIN0 = 0, 0, 0: Gate scan stop
			GSMLN2 to GSMLIN0 = 0, 0, 1: 3 frame cycle
			GSMLN2 to GSMLIN0 = 0, 1, 0: 5 frame cycle
			:
			GSMLN2 to GSMLIN0 = 1, 1, 0: 13 frame cycle
			GSMLN2 to GSMLIN0 = 1, 1, 1: 15 frame cycle
R11	D0	GS	Color number is selected.
(RBH)			GS = 0: 262,144-color
			GS = 1: 8-color
R12	D9	NWRGB	The input of RGB interface becomes invalid.
(RCH)			0: The input of RGB interface becomes invalid.
			1: The input of RGB interface becomes valid.
	D8	RGBS	RGB interface mode is selected.
			0: Through mode
			1: Capture mode

(4/13)

	Regist er	Bit	Symbol	Function (4/13)
	R12 (RCH)	D5	VIMD	VSYNC interface mode is selected. If VSYNC is inputted when VSYNC interface mode is selected, scan for one frame will be performed. 0: Normal mode 1: VSYNC interface mode
		D4	DISPCK	The timing clock for display output at the time of RGB interface is selected. 0: Internal oscillation clock 1: HSYNC/VSYNC/DOTCLK
	R13 (RDH)	D8	LTS	The setting time of calibration is selected. The calibration function adjusts frame frequency by setting up the time of one line. The setting time of one line can be selected from the following setup by this command. 0: 1 line time = t _{cal} 1: 1 line time = t _{cal} x 2 (t _{cal} : calibration setting time = 1 ÷ frame frequency ÷ display line number)
		D7 to D0	BCNTn	It specifies a part for what clock of a basic clock (an internal oscillation clock or DOTCLK) 1 horizontal period becomes. Moreover, 1 horizontal period determined by the calibration function is able to get to know a part for what clock of a basic clock it is by reading and adding this register.
	R14 (REH)	D0	ОС	This bit is used for calibration. The time from calibration start command execution until calibration stop command execution becomes the time for 1 line. 0: Calibration stop 1: Calibration start
<r></r>	R15 (RFH)	D15 to	VBPn	These bits set the vertical back porch period of the RGB interface. Vertical back porch period = This setting value x HSYNC unit.
		D11 to D8	HBPn	These bits set the horizontal back porch period of the RGB interface. 18/16-bit mode: Horizontal back porch period = This setting value x DOTCLK unit 6-bit mode: Horizontal back porch period = This setting value x 3 x DOTCLK unit
		D7	BPSEL	Count method of back porch is selected.
		D4	VSEG	The active level of VSYNC is selected. 0: Low active 1: High active
		D3	HSEG	The active level of HSYNC is selected. 0: Low active 1: High active
		D0	DCKEG	The active level of DOTCLK is selected. 0: Data latch by rising edge 1: Data latch by falling edge
	R16 (R10H)	D8 to D0	RGBSTn	These bits set the start line of the display area to be displayed by in RGB interface through mode. $(000H \le R16 \le 13FH)$ Be sure to observe the relationship "Set value of R16 register < Set value of R17 register".
	R17 (R11H)	D8 to D0	RGBETn	These bits set the end line of the display area to be displayed by in RGB interface through mode. $(000H \le R17 \le 13FH)$ Be sure to observe the relationship "Set value of R16 register < Set value of R17 register".
	R18 (R12H)	D7 to D0	CAPXMINn	The minimum value of X addresses of window access at the time of RGB interface capture mode is set up. After carrying out the increment of the X addresses to X address maximum set up by the MAX X address register (R19), they are the next increments and are initialized by the address value set up by this command. Set up 00H to EFH.
	R19 (R13H)	D7 to D0	CAPXMAXn	The maximum of X addresses of window access at the time of RGB interface capture mode is set up. After carrying out the increment of the X addresses to the address value set up by this command, they are the next increments and are initialized by X address minimum value set up by the MIN X address register (R18). Set up 00H to EFH.

(5/13)

I	Register	Bit	Symbol	Function				
ľ	R20	D8 to D0	CAPYMINn		ım value of	Y address of	window a	access at the time of RGB interface capture mode is
	(R14H)		0,					e Y address to Y address maximum set up by the
	,							ncrement and is initialized by the address value set up
					_	up 000H to 1		,
ľ	R21	D8 to D0	CAPYMAXn					s at the time of RGB interface capture mode is set up.
	(R15H)							ess to the address value set up by this command, it is
	,			-	_			ress minimum value set up by the MIN Y address
						000H to 13FH	•	, ,
ľ	R24	D15 to D8	GOEDn					il, refer to 5.4.1 Horizontal period.
	(R18H)	D7 to D0	GOSTn					I, refer to 5.4.1 Horizontal period.
ا .	R25	D7 to D0	VMCHGn					For more detail, refer to 5.4.1 Horizontal period .
	(R19H)	2. 10 20		Also, set up	-	go poolaoio	oot up	5
ŀ	R26	D15 to D8	SWEDn			horizontal ne	rind is se	et up. For more detail, refer to 5.4.1 Horizontal
	(R1AH)	D 13 to D0	OWLDII	period.				
	(171711)	D7 to D0	SWSTn		tart timing i	n horizontal ne	ariod is se	et up. For more detail, refer to 5.4.1 Horizontal
		טל טו זע	3003111	period.				et up. 1 of more detail, refer to 5.4.1 Horizontal
ŀ	R30	D1,		•	out in dumn	ny poriod is so	lootod	
		D1, D0	SOUT_MODE1,			ny period is se		Course Outrout in Duraneu Paried
	(R1EH)	D0	SOUT_MODE0	SOUT_N	IODE1	SOUT_MC	DDEO	Source Output in Dummy Period
				0		0		Reverse phase for COM and Vs or Vss
				0		11		Hi-Z
				1		0		(Reverse phase for COM and Vs or Vss) and Hi-Z
Ļ				1		1		Hi-Z
	R68	D2 to D0	E2OPC2 to	E ² PROM in	iterface is c	ontrolled.		
	(R44H)		E2OPC0	E2OPC2	E2OPC1	E2OPC0		E ² PROM Control
				0	0	0	Setting	prohibited
				0	0	1		/E: Writing execution to E ² PROM
				0	1	0		DN: Writing/elimination permission to E ² PROM
				0	1	1		DF: Writing/elimination prohibit to E ² PROM
				1	0	0		t: All area elimination of E ² PROM
				1	0	1		LL: It is the writing of FFFFH to all the area of E ² PRON
				1	1	0		AD: Reading execution of E ² PROM
								-
ŀ	Doo	D7.4- D0	FOEN	1	1	1		prohibited
	R69	D7 to D0	E2ENn	I nis is writi	ng permiss	ion to E ² PROM	/i enable	register.
ŀ	(R45H)	D7.1 D0	F04	T 1 '''		E2DDOM:	.6. 1	
	R70	D7 to D0	E2An	The writing	address to	E ² PROM is s	pecified.	
ŀ	(R46h)						_?_	
	R71	D15 to D0	E2IRn	The index of	of a register	which writes	n to E ² PI	ROM is specified.
ŀ	(R47H)							
	R72	D7 to D0	E2IDn	Products in	formation r	egister [23:16]		The setting of this register is not the register that
Ł	(R48H)							affects driver operation but the temporary register
	R73	D7 to D0	E2IDn	Products in	formation r	egister [15:8]		which saves data.
L	(R49H)							
	R74	D7 to D0	E2IDn	Products information register [7:0]				
L	(R4AH)							
	R75	D7 to D0	E2SAn	The reading start address of E ² PROM is specified.				
	(R4BH)							
	R256	D3	LPM	This bit is u	sed in case	e it sets to the	low powe	er mode.
1	(R100H)			0: Normal r	node			
ı								

(6/13)

Register	Bit	Symbol	Function					
R257	D12	VDCION	ON/OFF of V _{DCI} regulator is controlled.					
(R101H)			0: V _{DCI} regulator OFF					
			1: Voci regulator ON					
	D11	RGONR	ON/OFF of V _R regulator is controlled.					
			0: V _R regulator OFF					
			1: V _R regulator ON					
	D10	RGON	ON/OFF of Vs regulator is controlled.					
			0: Vs regulator OFF					
			1: Vs regulator ON					
	D9	VCLON						
			0: VcL boost OFF					
			1: VcL boost ON (Vpci x -1)					
	D8	VGLREF	V _{GL} boost mode is switched					
			0: $V_{GL} = V_R x (-2 \text{ or } -3) + V_{SS}$					
			1: V _{GL} = V _R x (-2 or -3) + V _{CL}					
	D7,	VGLON1,	ON/OFF of V _{GL} boost is controlled.					
	D6	VGLON0	<vglon1, 0="" vglon0="0,"> VGL boost OFF</vglon1,>					
			<vglon1, 1="" vglon0="0,"> V_{GL} = V_R x -2 + (V_{SS} or V_{CL})</vglon1,>					
			<vglon1, vglon0="1," x=""> V_{GL} = V_R x -3 + (Vss or V_{CL})</vglon1,>					
	D5	VGHREF	V _{GH} boost mode is switched.					
			0: $V_{GH} = V_R x (2 \text{ or } 3) + V_R$					
			1: V _{GH} = V _R x (2 or 3) + V _{DCI}					
	D4,	VGHON1,	ON/OFF of V _{GH} boost is controlled.					
	D3	VGHON0	<vghon1, 0="" vghon0="0,"> V_{GH} boost OFF</vghon1,>					
			<vghon1, 1="" vghon0="0,"> V_{GH} = V_R x 2 + (V_R or V_{DCI})</vghon1,>					
			<vghon1, vghon0="1," x=""> VgH = VR x 3 + (VR or Vdci)</vghon1,>					
	D2,	VD2ON1,	ON/OFF of V _{DD2} boost is controlled.					
	D1	VD2ON0	<vd2on1, 0="" vd2on0="0,"> VDD2 boost OFF (VDCI or Hi-Z)</vd2on1,>					
			<vd2on1, 1="" vd2on0="0,"> VDD2 = VDCI x 2 boost ON</vd2on1,>					
			<vd2on1, vd2on0="1," x=""> VDD2 = VDCI x 3 boost ON</vd2on1,>					
	D0	DCON	ON/OFF of DC/DC converter is controlled.					
			0: DC/DC converter OFF					
			1: DC/DC converter ON					

(7/13)

	Register	Bit	Symbol	Function
<r></r>	R258 (R102H)	D7	VDCISEL	When Vpci regulator OFF (VDCION [R257] = 0) and Vpci output is not set into Hi-Z (VDCIHZ [R25] = 0), the output state of Vpci regulator is controlled. <vdcisel 0="" ==""> Vpci = Vpc <vdcisel 1="" ==""> Vpci = Vss</vdcisel></vdcisel>
		D6	VDCIHZ	Output state of V _{DCI} pin is defined when V _{DCI} regulator is OFF (VDCION [R257] = 0). <vdcihz 0="" ==""> V_{DCI} = V_{DC} or V_{SS} (setting by VDCISEL) <vdcihz 1="" ==""> V_{DCI} =Hi-Z</vdcihz></vdcihz>
		D5	VRHI	Output of V_R regulator is selected. $ V_R$ regulator = ON $ V_R$ regulator = Hi-Z
		D4	VSHI	Output of Vs regulator is selected. <vshi 0="" ==""> Vs regulator = ON <vshi 1="" ==""> Vs regulator = Hi-Z</vshi></vshi>
		D3	DCFRM	This bit selects whether DC/DC operation is synchronized with frame signal. <dcfrm 0="" ==""> DC/DC operation = frame asynchronous <dcfrm 1="" ==""> DC/DC operation = frame synchronization</dcfrm></dcfrm>
		D2	DC3HZ	The output state of V _{CL} at the time of V _{CL} boost OFF is controlled. <dc3hz 0="" ==""> V_{CL} = V_{SS} <dc3hz 1="" ==""> V_{CL} = Hi-Z</dc3hz></dc3hz>
		D1	DC2HZ	The output state of V _{GH} and V _{GL} at the time of V _{GH} and V _{GL} boost OFF is controlled. <DC2HZ = 0> V _{GH} = V _{DD2} , V _{GL} = V _{SS} <DC2HZ = 1> V _{GH} = Hi-Z, V _{GL} = Hi-Z
		D0	DC1HZ	The output state of V _{DD2} at the time of V _{DD2} boost OFF is controlled. <dc1hz 0="" ==""> V_{DD2} = V_{DC1} <dc1hz 1="" ==""> V_{DD2} = Hi-Z</dc1hz></dc1hz>

(8/13)

Register	Bit	Symbol	Function					
R259	D7,	LFS3,	When low power	mode (LPM [R	256] =	I), V _{GH} , V _{GL} boost frequency are selected.		
(R103H)	D6	LFS2	LFS3	LFS2		Boost Frequency		
			0	0	foce			
			0	1	foce	elk/2		
			1	0	foce	ELK/4		
			1	1	foce	elk/8		
	D5,	LFS1,	When low power	mode (LPM [R	256] =	1), V _{DD2} , V _{CL} boost frequency are selected.		
	D4	LFS0	LFS1	LFS0		Boost Frequency		
			0	0	foce	ELK/1		
			0	1	foce	elk/2		
			1	0	foce	elk/4		
			1	1	foce	elk/8		
	D3,	FS3,	When normal dri	ve (LPM [R256] = 0), \	Gн, VgL boost frequency are selected.		
	D2	FS2	FS3	FS2		Boost Frequency		
			0	0	foce	elk/1		
			0	1	foce	elk/2		
			1	0	foce	stk/4		
			1	1	foce	stk/8		
	D1,	FS1,	When normal drive (LPM [R256] = 0), VDD2, VCL boost frequency are selected.					
	D0	FS0	FS1	FS0		Boost Frequency		
			0	0	foce	clk/1		
			0	1	foce	clk/2		
			1	0	foce	clk/4		
			1	1	foce	elk/8		
R260	D5	PONM	The internal sequence of DC/DC rising operation and an external sequence are selected.					
(R104H)			0: External sequence					
	D.4	DON	1: Internal seque			fills states of M. M. W. and M. suban DO/DO states in		
	D4	PON	The frequency of operation at the time of the rising of V _{GH} , V _{DD2} , V _{GL} and V _{CL} when DC/DC rising is					
			selected. It becomes valid only at the time of PONM = 0.					
			0: Normal operation					
	D3,	DUPF1,	1: Rising operation		hole DO	C/DC converter circuit when DC/DC rising is selected.		
	D3, D2	DUPF0	DUPF1	DUPF		Boost Frequency		
	DZ		0	0	U	foccis/1		
			0	1		foccik/2		
			1	0		focck/4		
			1	1		foccik/8		
	D1,	PUPT1,		I	ising of			
ŀ	וט,	' 0' ' ',	inc or time at t	The ON time at the time of the rising of V_{GH} , V_{DD2} , V_{GL} , V_{CL} RGON, RGONR when DC/DC				

(9/13)

Register	Bit	Symbol	Function				
R261	D12	SFVSEL	Output voltage of RVpp regulator is selected.				
(R105H)		<sfvsel 0="" ==""> RV_{DD} = 2.1 V (for test)</sfvsel>					
			<sfvsel 1="" ==""> RV_{DD} = 2.3 V</sfvsel>				
	D11 to	VSEL2 to	Output voltage of V _{GM} regulator is selected.				
	D9	VSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At VREFR = 2.0 V</vc2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.40 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.50 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.60 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.70 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.80 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 4.90 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 5.00 V</vsel2>				
			<vsel2 0,="" =="" vsel0="0" vsel1="0,"> V_{GM} = 5.10 V</vsel2>				
	D8 to D6	VRSEL2 to	Output voltage of VR regulator is selected.				
		VRSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At V_{REFR} = 2.0 V</vc2>				
			<vrsel2 0,="" =="" vrsel0="0" vrsel1="0,"> VR = 4.50 V</vrsel2>				
			<pre><vrsel2 0,="" =="" vrsel0="1" vrsel1="0,"> VR = 4.80 V</vrsel2></pre>				
			<pre><vrsel2 0,="" =="" vrsel0="0" vrsel1="1,"> VR = 4.90 V</vrsel2></pre>				
			<vrsel2 0,="" =="" vrsel0="1" vrsel1="1,"> VR = 5.00 V</vrsel2>				
			<pre><vrsel2 1,="" =="" vrsel0="0" vrsel1="0,"> VR = 5.05 V</vrsel2></pre>				
			<pre><vrsel2 1,="" =="" vrsel0="1" vrsel1="0,"> VR = 5.10 V</vrsel2></pre>				
			<pre><vrsel2 1,="" =="" vrsel0="0" vrsel1="1,"> VR = 5.20 V</vrsel2></pre>				
			<pre><vrsel2 1,="" =="" vrsel0="1" vrsel1="1,"> VR = 5.40 V</vrsel2></pre>				
	D5 to D3	VSSEL2 to	Output voltage of Vs regulator is selected.				
		VSSEL0	<vc2 1,="" =="" vc0="1" vc1="0,"> At V_{REFR} = 2.0 V</vc2>				
			<vssel2 0,="" =="" vssel0="0" vssel1="0,"> Vs = 4.85 V</vssel2>				
			<vssel2 0,="" =="" vssel0="1" vssel1="0,"> Vs = 4.90 V</vssel2>				
			<vssel2 0,="" =="" vssel0="0" vssel1="1,"> Vs = 4.95 V</vssel2>				
			<vssel2 0,="" =="" vssel0="1" vssel1="1,"> Vs = 5.00 V</vssel2>				
			<vssel2 1,="" =="" vssel0="0" vssel1="0,"> Vs = 5.05 V</vssel2>				
			<vssel2 1,="" =="" vssel0="1" vssel1="0,"> Vs = 5.10 V</vssel2>				
			<vssel2 1,="" =="" vssel0="0" vssel1="1,"> Vs = 5.15 V</vssel2>				
			<vssel2 1,="" =="" vssel0="1" vssel1="1,"> Vs = 5.20 V</vssel2>				
	D2 to D0	VC2 to	Output voltage of REFR regulator is selected.				
		VC0	<vc2 0,="" =="" vc0="0" vc1="0,"> VREFR = 1.50 V</vc2>				
			<vc2 0,="" =="" vc0="1" vc1="0,"> V_{REFR} = 1.60 V</vc2>				
			<vc2 0,="" =="" vc0="0" vc1="1,"> V_{REFR} = 1.70 V</vc2>				
			<vc2 0,="" =="" vc0="1" vc1="1,"> V_{REFR} = 1.80 V</vc2>				
			<vc2 1,="" =="" vc0="0" vc1="0,"> VREFR = 1.90 V</vc2>				
			<vc2 1,="" =="" vc0="1" vc1="0,"> V_{REFR} = 2.00 V</vc2>				
			<vc2 1,="" =="" vc0="0" vc1="1,"> V_{REFR} = 2.05 V</vc2>				
			<vc2 1,="" =="" vc0="1" vc1="1,"> V_{REFR} = 2.10 V</vc2>				

154

(10/13)

	1	Т	(10/1			
Register	Bit	Symbol	Function			
R262	D8	REGMONI	Output state of TVREFR is selected.			
(R106H)			0: TVREFR = Hi-Z			
			1: TVREFR = Output setup voltage in VC2 to VC0			
	D7,	LCOMCS1,	When low power mode, COMH/COML amplitude current is selected.			
	D6	LCOMCS0	<pre><lcomcs1, 0="" lcomcs0="0,"> Amp. current = x 0.25 mode</lcomcs1,></pre>			
			<pre><lcomcs1, 1="" lcomcs0="0,"> Amp. current = x 0.5 mode</lcomcs1,></pre>			
			<pre><lcomcs1, 0="" lcomcs0="1,"> Amp. current = x 1.0 mode</lcomcs1,></pre>			
			<lcomcs1, 1="" lcomcs0="1,"> Amp. current = x 1.5 mode</lcomcs1,>			
	D5,	COMCS1	COMH/COML amplitude current is selected.			
	D4	COMCS0	<comcs1, 0="" comcs0="0,"> Amp. current = x 1 mode</comcs1,>			
			<comcs1, 1="" comcs0="0,"> Amp. current = x 2 mode</comcs1,>			
			<comcs1, 0="" comcs0="1,"> Amp. current = x 3 mode</comcs1,>			
			<comcs1, 1="" comcs0="1,"> Amp. current = x 7 mode</comcs1,>			
	D3,	LACS1.	When low power mode (LPM [R256] = 1), V _R and V _S regulator amplitude current is selected.			
	D2	LACS0	Although drive capability is improved so that there is much current passed in amplifier, power			
			consumption increases. This value recommends what it opts for after evaluating enough by the			
			real panel.			
			<lacs1, 0="" lacs0="0,"> Amp. current = x 0.25 mode</lacs1,>			
			<pre><lacs1, 1="" lacs0="0,"> Amp. current = x 0.5 mode</lacs1,></pre>			
			<pre><lacs1, 0="" lacs0="1,"> Amp. current = x 1.0 mode</lacs1,></pre>			
			<pre><lacs1, 1="" lacs0="1,"> Amp. current = x 1.5 mode</lacs1,></pre>			
	D1,	ACS1,	When normal drive (LPM [R256] = 0), V _R and V _S regulator amplitude current is selected.			
	D0	ACS0	<acs1, 0="" acs0="0,"> Amp. current = x 1 mode</acs1,>			
			<acs1, 1="" acs0="0,"> Amp. current = x 2 mode</acs1,>			
			<acs1, 0="" acs0="1,"> Amp. current = x 3 mode</acs1,>			
			<acs1, 1="" acs0="1,"> Amp. current = x 6 mode</acs1,>			
R263	D5,	COMP1	VCOMM ability at VCOMM output is selected.			
(R107H)	D4	COMP0	<comp1, 0="" comp0="0,"> x 1 mode</comp1,>			
			<comp1, 1="" comp0="0,"> x 1.5 mode</comp1,>			
			<comp1, 0="" comp0="1,"> x 2 mode</comp1,>			
			<comp1, 1="" comp0="1,"> x 2.5 mode</comp1,>			
	D2	COHIM	Output state of VCOMM is controlled.			
			0: VCOMHM/VCOMLM			
			1: Hi-Z			
	D0	COMONM	ON/OFF control of the common drive output VCOMM is carried out.			
			0: OFF (VCOMHM and VCOMLM amplifier-OFF)			
			1: ON (VCOMHM and VCOMLM amplifier-ON)			
R264	D5 to D0	DAn	The amplitude of VCOMM/VCOMS output is controlled by 6-bit D/A.			
(R108H)						
R265	D7	COMINM	The center voltage input of VCOMM is selected.			
(R109H)			0: Internal D/A becomes valid			
			1: Center level voltage of VCOMINM input becomes valid			
	D6 to D0	MCDA	The center level of VCOMM output is controlled by 7-bit D/A.			

(11/13)

Dogistor	Dit	Cumbal	(11/13) Function
Register	Bit	Symbol	Function
R512	D7 to D0	XAn	This register sets the X address of the display RAM.
(R200H)			Set 00H to EFH.
R513	D8 to D0	YAn	This register sets the Y address of the display RAM.
(R201H)			Set 000H to 13FH.
R515	D13 to D8	WMn	Display data write mask setup (D [11:6] support)
(R203h)	D5 to D0	WMn	Display data write mask setup (D [5:0] support)
R516	D5 to D0	WMn	Display data write mask setup (D [17:12] support)
(R204H)			
R528	D7 to D0	XMNn	The minimum value of X address at the time of window access mode is set up.
(R210H)			After carrying out the increment of the X address to X address maximum set up by the MAX. X
			address register (R529), they are the next increments and are initialized by the address value set
			up by this command. Set up 00H to EFH.
R529	D7 to D0	XMXn	The maximum of X address at the time of window access mode is set up.
(R211H)			After carrying out the increment of the X address to the address value set up by this command,
,			they are the next increments and are initialized by X address minimum value set up by the MIN.
			X address register (R528). Set up 00H to EFH.
R530	D8 to D0	YMNn	The minimum value of Y address at the time of window access mode is set up.
(R212H)			After carrying out the increment of the Y address to Y address maximum set up by the MAX. Y
(address register (R531), they are the next increments and are initialized by the address value set
			up by this command. Set up to 000H to 13FH.
R531	D8 to D0	YMXn	The maximum of Y address at the time of window access mode is set up.
(R213H)	20 10 20	110741	After carrying out the increment of the Y address to the address value set up by this command, it
(112 1011)			is the next increment and is initialized by Y address minimum value set up by the MIN. Y address
			register (R530). Set up to 000H to 13FH.
R536	D7 to D0	LCDXMNn	The minimum value of X addresses of a liquid crystal display area is set up.
(R218H)	D7 10 D0	LODAWINI	When window access mode is not being used, after carrying out the increment of the X
(112 1011)			addresses to X address maximum set up by the LCDMAX X address register (R537), they are
			the next increments and are initialized by the address value set up by this command.
			In addition, the source output pin which is not specified by LCDXMIN (R536) and LCDXMX
			(R537) does not output.
			Set up 00H to EFH. Moreover, specify a surely bigger area than the window area in window
	D= / D0		access mode.
R537	D7 to D0	LCDXMXn	, , , , , , , , , , , , , , , , , , ,
(R219H)			When window access mode is not being used, after carrying out the increment of the X
			addresses to the address value set up by this command, they are the next increments and are
			initialized by X address minimum value set up by the LCDMIN X address register (R536).
			In addition, the source output pin which is not specified by LCDXMIN (R536) and LCDXMX
			(R537) does not output.
			Set up 00H to EFH. Moreover, specify a surely bigger area than the window area in window
			access mode.
R538	D8 to D0	LCDYMNn	The minimum value of Y address of a liquid crystal display area is set up.
(R21AH)			When window access mode is not being used, after carrying out the increment of the Y address
			to Y address maximum set up by the LCDMAX Y address register (R539), it is the next increment
			and is initialized by the address value set up by this command.
			Set up 000H to 13FH. Moreover, specify a surely bigger area than the window area in window
			access mode.

(12/13)

		1	T			(12/13		
Register	Bit	Symbol		Function				
R539	D8 to D0	LCDYMXn	The maximu	m of Y address	s of a liquid cr	ystal display area is set up.		
(R21BH)			When windo	w access mod	e is not being	used, after carrying out the increment of the Y address to		
			the address	value set up b	y this comman	nd, it is the next increment and is initialized by Y address		
			minimum val	ue set up by th	ne LCDMIN Y	address register (R538).		
			Set up 000H	to 13FH. Mor	eover, specify	a surely bigger area than the window area in window		
			access mode	access mode.				
R768	D13 to D8	GM3Pn	Positive pola	ırity side γ -adjı	ustment regist	er		
(R300H)	D5 to D0	GM1Pn	Positive pola	ırity side γ -adjı	ustment regist	er		
R771	D5 to D0	GM2Pn	Positive pola	ırity side γ -adjı	ustment regist	er		
(R303H)								
R772	D14 to D8	GPLn	Sets the pos	itive polarity γ	-amplitude adj	ustment.		
(R304H)			For more de	tail, refer to 5.5	γ-Curve Co	prrection Circuit.		
	D6 to D0	GPHn	Sets the pos	itive polarity γ	-amplitude adj	justment.		
			For more def	tail, refer to 5.5	γ-Curve Co	prrection Circuit.		
R773	D13 to D8	GM3n	Negative pol	arity side γ -ad	justment regis	ster		
(R305H)	D5 to D0	GM1n	Negative pol	arity side γ -ad	justment regis	ster		
R776	D5 to D0	GM2n	Negative pol	arity side γ -ad	justment regis	ster		
(R308H)								
R777	D14 to D8	GNLn	Sets the neg	ative polarity γ	/-amplitude ac	ljustment.		
(R309H)			For more detail, refer to 5.5 γ-Curve Correction Circuit.					
	D6 to D0	GNHn	Sets the negative polarity γ -amplitude adjustment.					
			For more def	tail, refer to 5.5	γ-Curve Co	prrection Circuit.		
R780	D10 to	Gln	The bias cur	rent of γ -ampli	ifier is adjuste	d.		
(R30CH)	D8		GI2	GI1	GI0	Current value (magnification)		
			0	0	0	0.5		
			0	0	1	1.0 (default)		
			0	1	0	1.5		
			0	1	1	2		
			1	0	0	2.5		
			1	0	1	3		
			1	1	0	3.5		
			1	1	1	4		
	D6 to D4	GAPn	The bias cur	rent of positive	polarity side	γ -gray scale amplifier is adjusted.		
			GAP2	GAP1	GAP0	Current value (magnification)		
			0	0	0	0.5		
			0	0	1	1.0 (default)		
			0	1	0	1.5		
			0	1	1	2		
				0		3		
			1		0			
			1	0	1	4		
			1	1	0	6		
i			1	1	1	7.5		

(13/13)

Desiri	D.,	0				(13/13)				
Register	Bit	Symbol				Function				
R780	D2 to D0	GANn		ent of negative	e polarity side	γ-gray scale amplifier is adjusted.				
(R30CH)			GAN2	GAN1	GAN0	Current value (magnification)				
			0	0	0	0.5				
			0	0	1	1.0 (default)				
			0	1	0	1.5				
			0	1	1	2				
			1	0	0	3				
			1	0	1	4				
			1	1	0	6				
			1	1	1	7.5				
R781	D4	GRES	The γ-resista	ance is switche	ed.					
(R30DH)			For more det	ail, refer to 5.5	γ-Curve Co	prrection Circuit.				
	D1	G3SW	γ -center Am	o. is controlled						
			0: γ-center A	mp. OFF						
			1: γ-center A	mp. ON						
R1024	D0	DTY	Partial function	on is selected.						
(R400H)			In addition, e	fficiency of this	s command is	carried out after transmission from the timing which				
,			outputs the f	utputs the following line data.						
			0: Normal di	splay mode						
			1: Partial dis	olay mode						
R1025	D0	DINV	RAM write da	AM write data is inverted.						
(R401H)			(0: Normal m	ode 1: Inve	rsion mode)					
R1026	D8 to D0	P1SLn	This is partia	l 1 display area	a start line reg	gister (000H to 13FH).				
(R402H)			From the line	set up by this	command to	the line set up by the partial 1 display area end line				
			register (R10	27) becomes j	partial 1 displa	ay area at the time of partial display (R1024: DTY = 1).				
R1027	D8 to D0	P1AWn	This is partia	l 1 display area	a line count re	egister (000H to 13FH).				
(R403H)			An area start	ing from the lir	ne set by the p	partial 1 display area start register (R1026) and ending as				
			set by this co	mmand is the	partial 1 displ	ay area.				
			If this registe	r is 0, the valu	es of the parti	al 2 display area start line register (R1029) and the partial				
			2 display are	a line count re	gister (R1030) are not valid.				
R1028	D8 to D0	P1SAn	This is partia	l 1 display area	a start line dis	play RAM address.				
(R404H)										
R1029	D8 to D0	P2SLn	This is partia	l 2 display area	a start line reg	gister (000H to 13FH).				
(R405H)			From the line	set up by this	command to	the line set up by the partial 2 display area end line				
			register (R10	30) becomes j	partial 2 displa	ay area at the time of partial display (R1024: DTY = 1).				
R1030	D8 to D0	P2AWn	This is partia	l 2 display area	a line count re	egister (000H to 13FH)				
(R406H)				-		partial 2 display area start register (R1029) and ending as				
			1	mmand is the		•				
			-		_	ister is 0, the values of the partial 2 display area start line				
			register (R10	29) and partia	l 2 display are	ea line count register (R1030) are not valid.				
R1031	D8 to D0	P2SAn	This is partia	l 2 display area	a start line dis	play RAM address.				
(R407H)		j								

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C, Vss = 0 V)

Parameter	Symbol	Ratings	Unit
Power supply voltage	V _{DD}	-0.3 to +3.0	V
Power supply voltage	Vccio	-0.3 to +6.0	V
Power supply voltage	V _{DC}	-0.3 to +4.2	V
Power supply voltage	V _{GM} , V _S	-0.3 to +6.0	V
Power supply voltage	VR	-0.3 to +7.0	V
Power supply voltage	V _{DD2}	-0.3 to +7.0	V
Power supply voltage	VcL	-4.2 to +0.3	V
Power supply voltage	V _{GH} -V _{GL}	-0.3 to +40.0	V
Power supply voltage	V _{DCI} -V _{CL}	-0.3 to +7.0	V
Input voltage	V _I Note 1	-0.3 to Vccio + 0.3	V
Input voltage	V _I Note 2	-0.3 to $V_{DC} + 0.3$	V
Input current	Iı	±10	mA
Output current	Note 3	±10	mA
Output current	Note 4	±100	mA
Output current	lo3 Note 5	0 to 50	mA
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Notes 1. Power supply system of Vccio pin

- 2. Power supply system of VDC pin
- 3. D0 to D17, CSTB, ECS, ESK, EDO, Y1 to Y720, G1 to G240
- 4. VCOMM
- 5. RVDD

Recommended Operating Conditions (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Power supply voltage	V _{DD}	2.1	2.3	2.5	V
Power supply voltage	Vccio	1.65	2.8	3.3	V
Power supply voltage	VDC	2.5	2.8	3.3	V
Power supply voltage	V _{GM}	3.0	5.0	5.5	V
Power supply voltage	Vs	3.4	5.0	5.5	V
Power supply voltage	VR	3.0	5.0	6.5	V
Power supply voltage	V _{DD2}	4.6	5.6	6.5	V
Power supply voltage	VcL	-3.3	-2.8	-1.9	V
Power supply voltage	V _{GH} -V _{GL}	8.3	25.0	35.0	V
Input voltage	V _{I1} Note1	0		Vccio	V
Input voltage	V _{I2} Note2	0		VDC	V

Notes 1. Power supply system of Vccio pin

2. Power supply system of V_{DC} pin

Power supply series (Unless Otherwise Specified, $T_A = -40$ to +85°C, $V_{DD} = 2.1$ to 2.5 V, $V_{CCIO} = 1.65$ to 3.3 V, $V_{DC} = 2.5$ to 3.3 V, $V_{SS} = 0$ V)

(1/2)

						(1/2)
Parameter	Symbol	Conditions	MIN.	TYP. Note1	MAX.	Unit
Vs output voltage	Vs	VC[2:0] = 101, VSSEL[2:0] = 011,	4.6	5.0	5.4	V
		Is = 1 mA, V _{DD2} = 5.5 to 6.5 V				
Vs output resistance	RVs	Is = 0→1 mA variable,		10	30	Ω
•		Vs measurement conditions				
V _R output voltage	VR	VC[2:0] = 101, VRSEL[2:0] = 011,	4.6	5.0	5.4	V
		I _R = 1 mA, V _{DD2} = 5.5 to 6.5 V				
V _R output resistance	RVR	$I_R = 0 \rightarrow 1$ mA variable,		10	30	Ω
•		V _R measurement conditions				
V _{GM} output voltage	V _{GM}	VC[2:0] = 101, VSEL[2:0] = 000,	4.05	4.4	4.75	V
, ,		I _{GM} = 100 μA, VSSEL[2:0] = 011				
V _{GM} output resistance	RV _{GM}	I _{GM} = 0→100 μ A variable,		30	60	Ω
		V _{GM} measurement conditions				
V _{DD2} boost voltage efficient 1	V _{DD21}	V _{DCI} x 2 boost, I _{DD2} = 4 mA Note2	92		100	%
V _{DD2} boost voltage efficient 2	V _{DD22}	V _{DCI} x 3 boost, I _{DD2} = 4 mA Note2	75		100	%
Vc∟ boost voltage efficient	VcL	V _{DCI} x -1 boost, I _{CL} = -2 mA Note2	79		100	%
V _{GH} boost voltage efficient 1	V _{GH1}	$V_R \times 2 + V_R$ boost, I _{GH} = 300 μ A Note2	85		100	%
V _{GH} boost voltage efficient 2	V _{GH2}	$V_R \times 3 + V_R$ boost, I _{GH} = 300 μ A Note2	85		100	%
V _{GH} boost voltage efficient 3	V _{GH3}	V _R x 2 + V _{DCI} boost, I _{GH} = 300 μA Note2	82		100	%
V _{GH} boost voltage efficient 4	V _{GH4}	V _R x 3 + V _{DCI} boost, I _{GH} = 300 μA Note2	82		100	%
V _{GL} boost voltage efficient 1	V _{GL1}	$V_R \times -2 + V_{SS}$ boost, $I_{GL} = -300 \mu A$ Note2	82		100	%
Vgl boost voltage efficient 2	V _{GL2}	$V_R x - 3 + V_{SS}$ boost, $I_{GL} = -300 \mu A$ Note2	82		100	%
V _{GL} boost voltage efficient 3	V _{GL3}	$V_R \times -2 + V_{CL}$ boost, $I_{GL} = -300 \mu A$ Note2	85		100	%
V _{GL} boost voltage efficient 4	V _{GL4}	$V_R \times -3 + V_{CL}$ boost, $I_{GL} = -300 \mu A$ Note2	85		100	%
V _{DD2} output resistance 1	RV _{DD21}	V _{DC} x 2 boost, I _{DD2} = 0→4 mA variable Note2		65	100	Ω
V _{DD2} output resistance 2	RV _{DD22}	V _{DC} x 3 boost, I _{DD2} = 0→4 mA variable Note2		210	330	Ω
Vc∟ output resistance	RVcL	V _{DCI} x −1 boost, I _{CL} = 0→−2 mA variable Note2		200	300	Ω
V _{GH} output resistance 1	RV _{GH1}	$V_R \times 2 + V_R$ boost, $I_{GH} = 0 \rightarrow 300 \ \mu A$ variable Note2		4.2	7.0	kΩ
<u> </u>	D) (F. 2	0.0	1.0
V _{GH} output resistance 2	RV _{GH2}	VR x 3 + VR boost, IGH = $0\rightarrow300~\mu\text{A}$ variable Note2		5.2	9.0	kΩ
V _{GH} output resistance 3	RV _{GH3}	VR x 2 + V _{DCI} boost, I _{GH} = 0 \rightarrow 300 μ A variable Note2		4.2	7.0	kΩ
V _{GH} output resistance 4	RV _{GH4}	$V_R \times 3 + V_{DCI}$ boost, I _{GH} = 0 \rightarrow 300 μ A variable Note2		5.5	10.0	kΩ

Notes 1. TYP. values are reference values when V_{DD} = 2.3 V, V_{CCIO} = 2.8 V, V_{DC} = 2.8 V, T_A = 25°C.

<R>
2. External capacitance: V_{GH}, V_{GL}, C21 to C23 = 0.47 μ F, V_{DD2}, VCL, C11, C12, C31 = 1 μ F, DC/DC boost frequency setup: FS<3:0> = 0101

Power supply series (Unless Otherwise Specified, $T_A = -40$ to +85°C, $V_{DD} = 2.1$ to 2.5 V, $V_{CCIO} = 1.65$ to 3.3 V, $V_{DC} = 2.5$ to 3.3 V, $V_{SS} = 0$ V)

(2/2)

Parameter	Symbol	Conditions	MIN.	TYP. Note1	MAX.	Unit
V _{GL} output resistance 1	RV _{GL1}	$V_R x - 2 + V_{SS}$ boost, $I_{GL} = 0 \rightarrow -300 \ \mu A$ variable Note2		3.3	5.5	kΩ
V _{GL} output resistance 2	RV _{GL2}	V _R x -3 + V _{SS} boost, I _{GL} = 0 \rightarrow -300 μ A variable Note2		4.2	7.5	kΩ
V _{GL} output resistance 3	RV _{GL3}	$V_R x - 2 + V_{CL}$ boost, $I_{GL} = 0 \rightarrow -300 \ \mu A$ variable Note2		3.5	6.0	kΩ
V _{GL} output resistance 4	RV _{GL4}	$V_R x - 3 + V_{CL}$ boost, $I_{GL} = 0 \rightarrow -300 \ \mu A$ variable Note2		4.4	8.0	kΩ
RVDD output voltage	VRVDD	SFVSEL = 1, IRVDD = 10 mA	2.1	2.3	2.5	V
RVDD output resistance	RRVDD	SFVSEL = 1, IRVDD = 0→10 mA variable		1	5	Ω
V _{DCI} output voltage 1	V _{DCI1}	VD2ON1 = 1, IVDCI = 10 mA, V _{DC} = 3.3 V	2.9	3.2	3.3	V
Voci output voltage 2	V _{DCl2}	VD2ON1 = 0, IVDCI = 10 mA	1.9	2.1	2.3	V
V _{DCI} output resistance 1	RVDCI1	VD2ON1 = 0, IVDCI = 0 \rightarrow 10 mA variable, VDC = 3.3 V		7	14	Ω
V _{DCI} output resistance 2	RV _{DCI2}	VD2ON1 = 0, IVDCI = 0→10 mA variable		1	14	Ω
Consumption current	Iccio	Vccio pin (CPU non-access) Note3		0.1	10	μА
	IDC	V _{DC} pin (CPU non-access) Note3		2.7	4.5	mA
	Isтву1	Vccio pin (stand-by mode) Note4		0.1	3	μΑ
	Isтву2	V _{DC} pin (stand-by mode) Note4		1.6	10	1

Notes 1. TYP. values are reference values when V_{DD} = 2.3 V, V_{CCIO} = 2.8 V, V_{DC} = 2.8 V, T_A = 25°C.

- <R>
- **2.** External capacitance: V_{GH}, V_{GL}, C21, C22, C23 = 0.47 μ F, V_{DD2}, VCL, C11, C12, C31 = 1 μ F, DC/DC boost frequency setup: FS<3:0> = 0101
- **3.** Vccio = 2.8 V, Vbc = 2.8 V, Vbb: RVbb connection (VSTBY = L), at SFVSEL = 1, white display, line inversion, frame frequency: 60 Hz, Vbb2 = Vbc x 2 boost, 262,144-color mode, γ-middle AMP_ON, Vs = 5 V, COMCS<1:0> = 11, ACS<1:0> = 11, no load
- 4. Vccio = 3.3 V, Vbc = 3.3 V, Vbb: RVbb connection (VSTBY = L), at SFVSEL = 1

Logic series (Unless Otherwise Specified, $T_A = -40$ to +85°C, $V_{DD} = 2.1$ to 2.5 V, $V_{CCIO} = 1.65$ to 3.3 V,

V_{DC} = 2.3 to 3.3 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High level input voltage	VIH	Vccio series	0.8 Vccio			V
Low level input voltage	VIL	Vccio series			0.2 Vccio	V
High level output voltage 1	V _{OH1}	Vccio series, lout = -100μ A	0.8 Vccio			V
Low level output voltage 1	V _{OL1}	Vccio series, louτ = 100 μA			0.2Vccio	V
High level output voltage 2	V _{OH2}	V _{DC} series, I _{OUT} = -100μ A	0.8 V _{DC}			V
Low level output voltage 2	V _{OL2}	V _{DC} series, I _{OUT} = 100 μA			0.2V _{DC}	V
High level input current	I _{IH1}	Vccio series			1	μΑ
	I _{IH2}	V _{DC} series			1	μΑ
Low level input current	IIL1	Vccio series	-1			μΑ
	I _{IL2}	V _{DC} series	-1			μΑ

Driver series (Unless otherwise specified, $T_A = -40$ to +85°C, $V_{DD} = 2.1$ to 2.5 V, $V_{CCIO} = 1.65$ to 3.3 V, $V_{DC} = 2.5$ to 3.3 V, $V_{SCIO} = 3.4$ to 5.5 V, $V_{SSI} = 0$ V, $V_{GH} = 15$ V, $V_{GL} = -15$ V)

Parameter	Symbol		Condition	MIN.	TYP. Note1	MAX.	Unit
Source driver output voltage range	V _{P-P}			Vss + 0.1		Vs – 0.1	V
Source driver output deviation	ΔVo			-10		+10	mV
Source driver output delay time	tPHLS1	R _L = 40 kΩ, Note2	1-output select		2.5	5	μs
	tPHLS2	C _L = 20 pF	720-output simultaneous		5.0	10	μs
			selection				
	t PLHS1	R _L = 40 kΩ,	1-output select		2.5	5	μs
	tPLHS2	C _L = 20 pF	720-output simultaneous		5.0	10	μs
			selection				
Gate driver output through rate	t THLG1	Note2 C _L = 35 pF	1-output order driving		0.50	1.0	μs
time	t _{THLG2}		320-output simultaneous		0.50	1.0	μs
			driving				
	t TLHG1	Note2 C _L = 35 pF	1-output order driving		0.75	1.5	μs
	t _{TLHG2}		320-output simultaneous		0.75	1.5	μs
			driving				
VCOMM output voltage range				VcL + 0.1		Vs – 0.1	V
VCOMHM output voltage	Vсомнм	Iсомнм = 1 mA N	lote3	2.25	2.50	2.75	V
VCOMLM output voltage	Vсомьм	ICOMLM = 1 mA N		-0.70	-0.50	-0.30	V
VCOMHM output resistance	Rvсомнм		nA variable Note3		15	30	Ω
VCOMLM output resistance	RVCOMLM	Ісомьм = 0→1 m	A variable Note3		20	40	Ω
VCOMM high level output	Vсоммн	Ivсомм = 1 mA,	COMP < 1:0 > = 00 Note3	2.20	2.50	2.75	V
voltage							
VCOMM low level output	Vcomml	Ivсомм = 1 mA,	COMP<1:0> = 00 Note3	-0.70	-0.50	-0.25	V
voltage							
VCOMM high level output	Rvсоммн	I∨сомм = 0→1 m	•		50	100	Ω
resistance		Vсоммн conditio	n ^{Note3}				
VCOMM low level output	RVCOMML	I∨сомм = 0→1 m	*		50	100	Ω
resistance		VCOMML condition	Note3				

Notes 1. The TYP. Values are reference values at $V_S = 5.0 \text{ V}$, $V_{GH} = 15 \text{ V}$, $V_{GL} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

- **2.** Load is thing per one output.
- 3. VCOMM amplitude setup: DA<5:0> = 00H, VCOMM center setup: MCDA<6:0> = 00H, VC<2:0> = 101, VSEL<2:0> = 110 (V_{GM} = 5 V output setup)

AC specification (Unless Otherwise Specified, TA = -40 to +85°C, VDD = 2.1 to 2.5 V, Vccio = 1.65 to 3.3 V)

<R> (a) 16-bit /18-bit RGB interface

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
<r></r>	Dot clock cycle time	tclk		120			ns
	Dot clock high level pulse width	t clkH		60			ns
	Dot clock low level pulse width	t CLKL		60			ns
	Data set-up time	tos		50			ns
<r></r>	Data hold time	t DH		50			ns
	HSYNC pulse width	thsw		1			DOTCLK
<r></r>	HSYNC set-up time	tнss		50			ns
<r></r>	HSYNC hold time	tнsн		50			ns
	Horizontal period back porch time	t HBP		1			DOTCLK
	VSYNC pulse width	tvsw		1			Н
<r></r>	VSYNC set-up time	tvss	BPSEL = 0	thsw			DOTCLK
<r></r>	VSYNC hold time	tvsн	BPSEL = 1	thsw			DOTCLK
	Vertical period back porch time	tvbp		1			Н

Remarks 1. The rise and fall times (tr, tr) of an input signal are 15 ns or less.

- 2. All timing data is specified at 20 to 80% of Vccio.
- 3. The DOTCLK number which should be inputted also at the lowest in 1 level period is as follows.

 1 horizontal period DOTCLK number ≥ [DOTCLK number of HSYNC "L" in mode] + [Horizontal back porch period] + [Pixel display time 240 times] = 242
- **4.** The HSYNC number which should be inputted also at the lowest in 1 level period is as follows.

 1 frame period HSYNC number ≥ [HSYNC number of VSYNC "L" period mode] + [Vertical back porch period]

 + [Pixel display time 320 line] = 322
- 5. When use it by IF_SHARE = H in parallel I/F (PSX = L), use /CS, /RD (E) and /WR (R,/W) in non-active state.

(b) 6-bit RGB interface

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Dot clock cycle time	t clk		47			ns
Dot clock high level pulse width	tclkh		24			ns
Dot clock low level pulse width	tclkl		24			ns
Data set-up time	tos		30			ns
Data hold time	tон		10			ns
HSYNC pulse width	thsw		3			DOTCLK
HSYNC set-up time	tuss		20			ns
HSYNC hold time	tнsн		20			ns
Horizontal period back porch time	tнвр		3			DOTCLK
VSYNC pulse width	tvsw		1			Н
VSYNC set-up time	tvss	BPSEL = 0	thsw			DOTCLK
VSYNC hold time	tvsн	BPSEL = 1	thsw			DOTCLK
Vertical period back porch time	tvвр		1			Н

<R>

<R>

Remarks 1. The rise and fall times (tr, tr) of an input signal are 15 ns or less.

- 2. All timing data is specified at 20 to 80% of Vccio.
- 3. The DOTCLK number which should be inputted also at the lowest in 1 level period is as follows. 1 horizontal period DOTCLK number ≥ [DOTCLK number of HSYNC "L" in mode] Note1 + [DOTCLK number of horizontal back porch period] Note2 + [Pixel display time 240 times x 3] +3 = 726
 - Notes 1. [DOTCLK number of HSYNC "L" in mode] = 3 multiple (3, 6, 9...)
 - 2. [DOTCLK number of horizontal back porch period] = 3 multiple (3, 6, 9...)
- 4. The HSYNC number which should be inputted also at the lowest in 1 level period is as follows.
 - 1 frame period HSYNC number ≥ [HSYNC number of VSYNC "L" period mode] + [Vertical back porch period] + [Pixel display time 320 line] = 322
- 5. When use it by IF_SHARE = H in parallel I/F (PSX = L), use /CS, /RD (E) and /WR (R,/W) in non-active state.

(c) i80 CPU interface

 V_{DD} = 2.1 to 2.5 V (SFVSEL = 1), Vccio = 1.65 to 3.3 V

Parameter	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Address hold time	t _{AH8}	RS		20			ns
Address set-up time	t _{AS8}	RS		0			ns
System cycle time	tcyc8	Read		400			ns
		Write		60			ns
		Horizon	tal writing (INC = 0)				
		Write		100			ns
		Vertical	writing (INC = 1)				
Control low level pulse width (/WR)	tccLw	MR		25			ns
Control low level pulse width (/RD)	tcclr	/RD		200			ns
Control high level pulse width (/WR)	tcchw	/WR		25			ns
Control high level pulse width (/RD)	tcchr	/RD		80			ns
Data set-up time	t _{DS8}	D0 to D	17	40			ns
Data hold time	t _{DH8}	D ₀ to D ₁	7	0			ns
CS set-up time	tcss8	cs	Vccio ≥ 2.55 V	35			ns
			Vccio < 2.55 V	75			ns
CS hold time	tcsH8	CS		0			ns
/RD access time	t _{ACC8}	D0 to D17, C _L = 100 pF				200	ns
Output disable time	toн8	D0 to D	17			100	ns

- <R> Remarks 1. The rise and fall times (tr, tr) of an input signal are 15 ns or less. It is prescribed by (tr + tr) < (tcycs-tcclr-tcchr) or (tr + tr) < (tcycs-tcclw-tcchw) the case where system cycle time is used at high speed.</p>
 - 2. All timing data is specified at 20 to 80% of Vccio.

(d) M68 CPU interface

V_{DD} = 2.1 to 2.5 V (SFVSEL = 1), V_{CCIO} = 1.65 to 3.3 V (Normal write mode)

Parameter		Symbol		Condition	MIN.	TYP.	MAX.	Unit
Address hold time		t _{AH6}	RS		20			ns
Address set-up time		tas6	RS		0			ns
System cycle time		tcyc6	Read		400			ns
			Write (V	_{DD} > 2.0 V)	60			ns
			Horizont	tal writing (INC = 0)				
			Write (V	DD > 2.0 V)	100			ns
			Vertical	writing (INC = 1)				
Data set-up time tose		D0 to D	D0 to D17				ns	
Data hold time		t _{DH6}	D0 to D17		0			ns
CS set-up time		tcss6	CS	$V_{\text{DDIO}} \geq 2.55 \text{ V}$	40			ns
				V _{DDIO} < 2.55 V	75			ns
CS hold time		tcsH6	CS		0			ns
Access time		t _{ACC6}	D0 to D	17, C∟ = 100 pF			200	ns
Output disable time		t он6	D0 to D	17			100	ns
Enable high level pulse width	Read	t ewhr	Е		200			ns
	Write	tewnw	E		25			ns
Enable low level pulse width Read		tewlr	Е	E				ns
	Write	tewlw	Е		25			ns

Remarks 1. The rise and fall times (t_r, t_f) of an input signal are 15 ns or less. It is prescribed by $(t_r + t_f) < (t_{CYC6} - t_{EWLR} - t_{EWHR})$ or $(t_r + t_f) < (t_{CYC6} - t_{EWLW} - t_{EWHW})$ the case where system cycle time is used at high speed.

2. All timing data is specified at 20 to 80% of Vccio.

(e) Serial interface (between CPU and μ PD161704A)

V_{DD} = 2.1 to 2.5 V, V_{CCIO} = 1.65 to 3.3 V

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Serial clock cycle	tscyc	SCL	66			ns
SCL high level pulse width	tsнw	SCL	20			ns
SCL low level pulse width	tsLw	SCL	20			ns
Address hold time	t sah	RS	20			ns
Address set-up time	tsas	RS	10			ns
Data set-up time	tsps	SI	10			ns
Data hold time	tsdH	SI	20			ns
CS – SCL time	taccs	/CS	20			ns
	tонs	/CS	20			ns

Remarks 1. The rise and fall times (tr, tr) of an input signal are 15 ns or less.

2. All timing data is specified at 20 to 80% of Vccio.

(f) Common

Parameter	Symbol	Condition	MIN.	TYP. Note1	MAX.	Unit
Calibration setting time	tcal1	Note2, fframe = 60 Hz		51.60		μs
(frame frequency)	(frameo)			(60)		(Hz)
Frame frequency	fFRAME1	Before calibrate,	35	60	96	Hz
		OSCSEL = L (use of internal				
		oscillation)				
		Before calibrate,	47	60	67	Hz
		OSCSEL = H (use of external				
		oscillation), R = 24 k Ω				
	fFRAME2	Calibrated Note3	40	60	80	Hz
		$T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ OSCSEL} = \text{L}$				
		Calibrated Note3	51	60	67	Hz
		T _A = -40 to +85°C				
		OSCSEL = H, R = 24 kΩ				
	fFRAME3	Calibrated Note4	55	60	65	Hz
		$T_A = 25 \pm 5$ °C, OSCSEL = L				
		Calibrated Note4	57	60	63	Hz
		T _A = 25 ± 5°C				
		OSCSEL = H, R = 24 k Ω				
Oscillation frequency	fosc1	OSCSEL = L	0.69	1.16	1.86	MHz
	fosc2	OSCSEL = H, R = 24 k Ω	0.92	1.16	1.28	MHz
Reset pulse width	trw		10			μs
Reset un-reacted pulse width	t er				2	μs

- Notes 1. TYP. values are reference values when VDD = 2.3 V, VCCIO = 2.8 V, VDC = 2.8 V, TA = 25°C.
 - 2. The relationship between the frame frequency (fframe) and the calibration setting time is as follows.
 - $t_{cal} = 1 / (f_{FRAME} \times (320 + 3))$
 - 3. Measured at $T_A = -40$ to +85°C, after calibration at frame frequency = 60 Hz, $T_A = 25$ °C exactly.
 - **4.** Measured at ±5°C, after calibration at frame frequency = 60 Hz exactly.

5. Frequency changes by the parasitism capacity to which it is connected with OSCIN pin at the time of external resistance mode. (R = 24 k Ω) is obtained as a reference value, in case use it, sufficient evaluation is carried out, and please determine the resistance to be used. The recommendation resistance value which uses general module is 36 k Ω .

/RESET Note

Normal operation Reset Default status

Figure 12-1. /RESET Specification

Note Secure recovery time more than 10 μ s after reset release.

Data Sheet S17583EJ2V0DS

<R>

13. EXAMPLE OF μ PD161704A AND CPU CONNECTION

Examples of μ PD161704A and CPU connection are shown below.

In the example below, RS pin control in parallel interface mode is described for the case when the least significant bit of the address bus is being used.

(1) i80 series format

(2) M68 series format

14. REVISION HISTORY

Edition/	Pa	Page		Description			
Date	Previous	This	Type of	Location			
	edition	edition	revision				
1.0 edition/			New	From the μ PD161704 preliminary product information 2.7 version			
May, '05				change product name.			
1.1 edition/	p.45	p.45	Added	The figure about a back porch is added.			
June, '05	p.157, 158	p.157, 158	Added	Spec. item addition			
1.2 edition/	p.107	p.107	Corrected	V _{GH} : 0.47 to 1 F are corrected to 0.47 to 1.			
June, '05	p.133	p.133	Corrected	D7 to D0 of R44 is corrected to D8 to D0.			
	p.136	p.136	Corrected	"5.8 γ -curve Correction Circuit" is corrected to 5.5.			
	p.150	p.150	Corrected	"5.8 γ -curve Correction Circuit" is corrected to 5.5.			
$PPI \to DS$	p.24	p.24	Added	Notes 2 is added.			
1.0 edition/	p.118	p.118	Corrected	Explanation of R103 is corrected.			
September, '05	p.120	p.120	Corrected	Explanation of R30 is corrected.			
	p.137	p.137	Corrected	Explanation of R103 is corrected.			
	p.142	p.142	Corrected	Explanation of R30 is corrected.			
	p.154	p.154	Corrected	The MIN. value of the VCOMM output voltage range is corrected.			
	p.155, 156	p.155, 156	Added	Remarks 3 is added.			
	p.157	p.157	Corrected	tcycs (write, inc = 0) and tcclr are corrected.			
	p.158	p.158	Corrected	tcyc6 (write, inc = 0) and tewer are corrected.			
	p.159	p.159	Corrected	t_{SAH} and t_{SDH} are corrected to 10 ns \rightarrow 20 ns.			
	p.160	p.160	Added	Notes 5 is added.			
1.1 edition/	p.65	p.65	Corrected	Description is corrected			
October, '05	p.66	p.66	Corrected,	Add and correct figure of γ -curve correction circuit			
			added				
	p.82	p.83	Corrected	N line inversion in figure is corrected.			
	p.105	p.106	Corrected	Formula on VCOMLM and example of VCOM _{P-P}			
	p.115 to 121	p.116 to 124	Corrected	Test register, DINV to register mode 1, 2, and other			
				modifications			
	p.125	p.128	Added	DINV bit			
	All	All	Corrected	Misspelling and so			
2.0 edition/	p.18, 92	p.18, 92	Corrected	ESK in description			
March, '06	p.20	p.20	Corrected	3.4 Test or Other Pins			
	p.26	p.26	Corrected	Table 5–3			
	p.44	p.44	Added	Figure 5–24			
	p.50	p.50	Added	VSYNC interface mode			
	p.93	p.93	Corrected	Register number in 6.2 Each Operation			
	_	p.106	Added	7.8.7 VGM Regulator selection output			
	_	p.120	Added	10. POWER SUPPLY INJECTION/INTERCEPTION ORDER			
	p.122 to 128	p.122 to 128	Corrected	11.1 Command List (Register mode 1 to 4)			
	p.134, 141,	p.135, 142,	Corrected	Command description			
	148	149					
	p.140, 147	p.141, 148	Added	HBPn, VBPn setting method			
	p.162	p.163	Corrected	(a) 16-bit/18-bit RGB interface table and figure			
	p.163	p.164	Corrected	(b) 6-bit RGB interface			
	p.167	p.168	Corrected	Part of notes 5 is corrected			

Data Sheet S17583EJ2V0DS

170

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4 STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of March 2006. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).