Detailed description of the cortical microcircuit model (Potjans et al., 2014)

Contents

1	Model description	2
2	Model parameters	7
A	Single-neuron dynamics in normal form (subthreshold)	9
В	Exact integration of single-neuron dynamics (subthreshold)	10

1 Model description

	Summary					
Populations	8 cortical populations in 4 layers (L2/3, L4, L5, L6), driven by a thalamic population (\mathcal{T}) and cortico-cortical inputs (\mathcal{C})					
Connectivity	random, independent, population specific					
Neuron model	cortex: leaky integrate-and-fire (LIF); thalamus, cortico-cortical inputs: Poisson point pro-					
	cess					
Synapse model	exponential postsynaptic currents with static, normally distributed weights and delays					
Predictions	population specific spiking activity					

Populations									
Name	Elements	Size							
$x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\}$	LIF	N_x							
$\mathcal{P} = \bigcup_{x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\}}$	LIF	$N = \sum_{x} N_x$							
\mathcal{T}	realizations of Poisson point process	$N_{\mathcal{T}}$							
$C = \bigcup_x C_x$	realizations of Poisson point process	$N = \sum_{x} N_x$							

Table 1: Description of the network model (continued on next page).

Connectivity								
Source	Target	Pattern						
$x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$							
		$ullet$ random, fixed total number K_{yx} of connections 1						
		$ullet$ synaptic weights J_{ij} ($orall i\in y, j\in x$)						
		• spike-transmission delays d_{ij} ($\forall i \in y, j \in x$)						
\mathcal{T}	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$							
		$ullet$ random, fixed total number $K_{y\mathcal{T}}$ of connections $^{oldsymbol{1}}$						
		$ullet$ synaptic weights J_{ij} $(orall i\in y, j\in \mathcal{T})$						
		• spike-transmission delays d_{ij} ($\forall i \in y, j \in \mathcal{T}$)						
C_y	$y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$							
		• one-to-one ²						
		$ullet$ synaptic weights J_{ij} $(orall i\in y, j\in \mathcal{C}_y)$						
		$ullet$ spike-transmission delays d_{ij} $(orall i\in y, j\in \mathcal{C}_y)$						

Connectivity patterns:

$$K_{yx} = \frac{\ln\left(1 - C_{yx}\right)}{\ln\left(1 - \left(N_x N_y\right)^{-1}\right)},$$

connections between a source population x of size N_x and a target population y of size N_y . C_{yx} denotes the connection probability. Sources and targets are randomly and independently drawn from x and y with replacement. Multiple connections between two neurons and self-connections are permitted (\mathbb{M} , \mathbb{A}).

² one-to-one (δ) : Each neuron in the source population is connected to one corresponding neuron in the target population (bijection).

(see "Network sketch" above and Senk et al., 2022)

Table 1: Description of the network model (continued).

 $^{^{1}}$ random, fixed total number (N_{Syn}): This rule establishes a total number of

	Neurons
	Cortical neurons
Туре	leaky integrate-and-fire (LIF)
Description	dynamics of membrane potential $V_i(t)$ and spiking activity $s_i(t)$ of neuron $i \in x$ for $x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$:
	$ullet$ emission of k th $(k=1,2,\ldots)$ spike of neuron i at time t_i^k if
	$V_i\left(t_i^k ight) \geq heta$
	with spike threshold $ heta$
	• reset and refractoriness:
	$orall k, \; orall t \in \left[t_k^i, t_k^i + au_{ref} ight]: V_i(t) = V_{reset}$
	with refractory period $ au_{ref}$ and reset potential V_{reset}
	$ullet$ spike train $s_i(t) = \sum_k \delta(t-t_i^k)$
	$ullet$ subthreshold dynamics of membrane potential $V_i(t)$:
	$\forall k, \ \forall t \notin \left[t_i^k, t_i^k + \tau_{ref}\right):$
	$\tau_{\rm m} \frac{\mathrm{d}V_i(t)}{\mathrm{d}t} = \left[E_{\rm L} - V_i(t) \right] + R_{\rm m} I_i(t) \tag{1}$
	with membrane time constant $\tau_{\rm m}$, membrane resistance $R_{\rm m}$, resting potential $E_{\rm L}$, and total synaptic input current $I_i(t)$
	Thalamic neurons
Туре	Poisson point process
Description	spike trains $s_i(t)$ $(i \in \mathcal{T})$ modeled as independent realizations of Poisson point process with piece-wise constant rate
	$ u_{\mathcal{T}}(t) = u_{\mathcal{T}} \cdot (\Theta(t - t_{start}) - \Theta(t - t_{stop}))$
	Cortico-cortical inputs
Туре	Poisson point process
Description	independent realizations $s_i(t)$ ($i \in \mathcal{C}_x$ for $x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$) of a Poisson point process with constant rate
	$ u_{\mathcal{C}_x} = K_{\mathcal{C}_x} \cdot \nu_{\mathcal{C}} ,$
	where $K_{\mathcal{C}_x}$ is the cortico-cortica in-degree and $ u_{\mathcal{C}}$ a constant rate

Table 2: Description of the network model (continued).

	Synapses									
Туре	exponential postsynaptic currents with static weights and delays									
Description	$ullet$ total synaptic input current $I_i(t)$ to neuron i $ig(orall i\in y\in\{\mathcal{E}_{23},\dots,\mathcal{I}_6\}ig)$ is governed									
	by:									
	$\left(\frac{d}{dt} + \frac{1}{\tau_{s}}\right) I_i(t) = f_i(t) \tag{2}$									
	with superposition from all neurons $j \in x, \ \forall x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}, \mathcal{C}\}$									
	$f_i(t) = \sum_{x} \sum_{j} f_{ij}(t) = \sum_{x} \sum_{j} \hat{I}_{ij} s_j(t - d_{ij})$									
	of weighted spike trains with static synaptic weigths \hat{I}_{ij} , synaptic time constant and spike transmission delays d_{ij}									
	• solution of (2) for $f_{ij}(t) = \hat{I}_{ij}s_j(t)$ and $I_{ij}(t=0) = 0$:									
	$PSC_{ij}(t) = \hat{I}_{ij} \exp(-t/ au_{s})\Theta(t)$									
	with Heaviside function $\Theta(\cdot)$									
	(exponential decaying) posynaptic current triggered by a single presynaptic spike									
	• solution of (1) for $I_i(t) = PSC_{ij}(t)$, $V_i(t=0) = 0$, and $E_L = 0$:									
	$PSP_{ij}(t) = \hat{I}_{ij} R_m \frac{\tau_s}{\tau_s - \tau_m} \left(e^{-t/\tau_s} - e^{-t/\tau_m} \right) \Theta(t)$									
	PSC amplitude (synaptic weight):									
	$\hat{I}_{ij} = rac{J_{ij}}{J_{unit}(au_{m}, au_{s}, R_{m})}$									
	parameterized by PSP amplitude $J_{ij} = max_t ig(PSP_{ij}(t)ig)$									
	with unit PSP amplitude (PSP amplitude for $\hat{I}_{ij}=1$):									
	$J_{\rm unit}(\tau_{\rm m},\tau_{\rm s},R_{\rm m}) = R_{\rm m} \frac{\tau_{\rm s}}{\tau_{\rm s}-\tau_{\rm m}} \left(\left[\frac{\tau_{\rm m}}{\tau_{\rm s}} \right]^{-\tau_{\rm m}/(\tau_{\rm m}-\tau_{\rm s})} - \left[\frac{\tau_{\rm m}}{\tau_{\rm s}} \right]^{-\tau_{\rm s}/(\tau_{\rm m}-\tau_{\rm s})} \right)$									
	and time to PSP maximum:									
	$t_{max} = \frac{\tau_{s} \tau_{m}}{\tau_{m} - \tau_{s}} \ln \left(\frac{\tau_{m}}{\tau_{s}} \right)$									

Table 3: Description of the network model (continued).

	Synapses (continued)								
Description									
	synaptic weights								
	$\hat{I}_{ij} = \begin{cases} \max(0, z_{yx}), & j \in x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{T}\} \\ \min(0, z_{yx}), & j \in x \in \{\mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\} \\ \bar{I}_{yx}, & j \in x = \mathcal{C} \end{cases}$								
	with $z_{yx} \sim \mathcal{N}\left\{ar{I}_{yx}, \sigma_{s,yx}^2 ight\}$								
	drawn from a normal distribution with mean $ar{I}_{yx}$, variance $\sigma^2_{s,yx}$								
	note: clipping of synaptic weights leads to a deviation of the total number of synapses with non-zero weights from K_{yx} (see "Connectivity")								
	distributed synaptic delays								
	$d_{ij} = egin{cases} max(d_{min}, z_x), & j \in x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}\} \ ar{d}_x, & j \in x = \mathcal{C} \end{cases}$								
	with $z_x \sim \mathcal{N}\left\{ar{d}_x, \sigma_{d,x}^2 ight\}$								
	drawn from a normal distribution with mean \bar{d}_x , variance $\sigma_{{\rm d},x}^2$, and minimal delay $d_{\rm min}>0$								
	Initial conditions								
Туре	random initial membrane potentials and homogeneous initial synaptic currents								
Description									
	$ullet$ membrane potentials $V_i(t=0) \sim \mathcal{N}(ar{V}_{0,x},\sigma^2_{ extsf{v},x})$								

Table 4: Description of the network model (continued).

ullet synaptic currents: $I_i(t=0)=0\,\mathrm{pA}$ $ig(orall i\in y\in\{\mathcal{E}_{23},\dots,\mathcal{I}_6\}ig)$

randomly and independently drawn from a normal distribution with mean $\bar{V}_{0,x}$ and variance $\sigma^2_{\mathbf{v},x}$ ($\forall i \in x \in \{\mathcal{E}_{23},\dots,\mathcal{I}_6\}$)

2 Model parameters

Network and connectivity											
Population sizes											
x \mathcal{E}_{23} \mathcal{I}_{23}			\mathcal{I}_{23}	\mathcal{E}_4	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	\mathcal{T}	
N_x 20,683 5,83		4 21,915	5,479	4,850	1,065	14, 395	2,948	902			
Connection probabilities C_{yx}											
	$\begin{array}{ c c c c }\hline x \\ y \\ \hline \end{array}$	\mathcal{E}_{23}	\mathcal{I}_{23}	$oxed{\mathcal{E}_4}$	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	\mathcal{T}	
	\mathcal{E}_{23}	0.1009	0.168	89 0.0437	0.0818	0.0323	0.0	0.0076	0.0	0.0	
	\mathcal{I}_{23}	0.1346	0.13	71 0.0316	0.0515	0.0755	0.0	0.0042	0.0	0.0	
	\mathcal{E}_4	0.0077	0.00	59 0.0497	0.1350	0.0067	0.0003	0.0453	0.0	0.0983	
	\mathcal{I}_4	0.0691	0.003	29 0.0794	0.1597	0.0033	0.0	0.1057	0.0	0.0619	
	\mathcal{E}_5	0.1004	0.065	22 0.0505	0.0057	0.0831	0.3726	0.0204	0.0	0.0	
	\mathcal{I}_5	0.0548	0.020	69 0.0257	0.0022	0.0600	0.3158	0.0086	0.0	0.0	
	\mathcal{E}_6	0.0156	0.00	66 0.0211	0.0166	0.0572	0.0197	0.0396	0.2252	0.0512	
	\mathcal{I}_6	0.0364	0.00	10 0.0034	0.0005	0.0277	0.0080	0.0658	0.1443	0.0196	
	_					ıron					
Name Value				Description							
)	−50 m\			spike threshold							
EL	−65 m\	/		resting potential							
^r m	10 ms			membrane time constant							
C_{m}	250 pF			membrane capacitance							
R_{m}		$=40\mathrm{M}\Omega$		membrane resistance							
V_{reset}	−65 m\	/		reset potential							
$ au_{ref}$	2 ms			absolute refractory period							
$ au_{s} = 0.5ms$				postsynaptic current time constant							
$\nu_{\mathcal{T}}$	$120{\rm s}^{-1}$			rate of thalamic neurons							
$t_{\sf start}$ 700 ms				start time of thalamic input							
$\Delta t_{\mathcal{T}}$ 10 ms				duration of thalamic input							
stop		$\Delta t_{\mathcal{T}} = 71$		stop time of							
VC .	$8{\rm s}^{-1}$			rate of corti				T-			
Population specific cortico-cortica in-degree $K_{\mathcal{C}_x}$											
0				0	0	0	0	0			
\mathcal{C}_x	$\mathcal{C}_{\mathcal{E}}$		<i>I</i> ₂₃	$C_{\mathcal{E}_4}$	$\mathcal{C}_{\mathcal{I}_4}$	$\mathcal{C}_{\mathcal{E}_5}$	$\mathcal{C}_{\mathcal{I}_5}$	$\mathcal{C}_{\mathcal{E}_6}$	$\mathcal{C}_{\mathcal{I}_6}$	$\mathcal{C}_{\mathcal{T}}$	
$K_{\mathcal{C}}$	$\frac{16}{x}$	500 1	500	2100	1900	2000	1900	2900	2100) –	

Table 5: Model parameters (continued on next page).

Synapse										
Name	Value		Description							
J	0.15 mV		(mean) we	eight (PSP	amplitude	e) of excita	tory synap	ses		
\bar{I}_{yx}			synaptic w	eights:						
	$J/J_{\rm unit} \approx 87$	7.81 pA	$x \in \{\mathcal{E}_{23}, a\}$	$\mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{E}_6$	$\mathcal{T}, \mathcal{C}\}$					
	$-4J/J_{unit}$		$x \in \{\mathcal{I}_{23}, \mathcal{I}_{23}, \mathcal{I}$	$\mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6$, except fo	r:				
	$2J/J_{unit}$		$(x,y) = (\delta$	$\mathcal{E}_{23},\mathcal{E}_4)$						
$\sigma_{s,yx}$	$0.1 \cdot \bar{I}_{yx}$		standard c	leviation o	f weight di	stribution				
\bar{d}_x			mean spike transmission delays:							
$1.5\mathrm{ms}$			$x \in \{\mathcal{E}_{23}, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{T}, \mathcal{C}\}$							
	$0.75\mathrm{ms}$	$x \in \{\mathcal{I}_{23}, \mathcal{I}_4, \mathcal{I}_5, \mathcal{I}_6\}$								
$\sigma_{d,x}$	$0.5 \cdot \bar{d}_x$		standard deviation of spike transmission delays							
d_{min}	0.1 ms		minimal spike transmission delay							
				Initial o	conditions	1				
Po	opulation spec	ific mean	and stand	dard devia	ition of in	itial mem	brane-pot	ential dist	tributions	
р	population x \mathcal{E}_{23}		\mathcal{I}_{23}	\mathcal{E}_4	\mathcal{I}_4	\mathcal{E}_5	\mathcal{I}_5	\mathcal{E}_6	\mathcal{I}_6	
\bar{V}	$ar{V}_{0,x}$ (mV) -68.28		-63.16	-63.33	-63.45	-63.11	-61.66	-66.72	-61.45	
σ	$r_{v,x} \; (mV)$	5.36	4.57	4.74	4.94	4.94	4.55	5.46	4.48	

Table 6: Model parameters (continued).

A Single-neuron dynamics in normal form (subthreshold)

• linear, inhomogeneous dynamics of synaptic input currents and (subthreshold) membrane potential for neuron $i \in y \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6\}$ (cf. eqs. (1) and (2)):

$$\dot{I}_i + \frac{1}{\tau_s} I_i = f_i(t)$$

$$\dot{V}_i + \frac{1}{\tau_m} \left[V_i - E_L \right] - \frac{R_m}{\tau_m} I_i = 0$$
(3)

with

$$f_i(t) = \sum_{x} \sum_{j \in x} \hat{I}_{ij} s_j(t - d_{ij}) \qquad (x \in \{\mathcal{E}_{23}, \dots, \mathcal{I}_6, \mathcal{T}, \mathcal{C}\})$$

$$\tag{4}$$

ullet rescale membrane potential $v_i(t)=V_i(t)-E_{
m L}$ and total current $x_i(t)=rac{R_{
m m}}{ au_{
m m}}I_i(t)$:

$$\dot{x}_i + \frac{1}{\tau_s} x_i = \frac{R_m}{\tau_m} f_i(t)$$

$$\dot{v}_i + \frac{1}{\tau_m} v_i - x_i = 0$$
(5)

• normal form of neuron-i dynamics (5):

$$\frac{\mathsf{d}}{\mathsf{d}t}\boldsymbol{y}_i = \boldsymbol{A}\boldsymbol{y}_i + \boldsymbol{f}_i(t) \tag{6}$$

with D=2 dimensional state vector

$$\mathbf{y}_i(t) = \left(x_i(t), v_i(t)\right)^\mathsf{T},\tag{7}$$

with constant $(D\times D)$ matrix

$$\mathbf{A} = \begin{bmatrix} -1/\tau_{\mathsf{s}} & 0\\ 1 & -1/\tau_{\mathsf{m}} \end{bmatrix},\tag{8}$$

and inhomogeneity vector

$$\mathbf{f}_{i}(t) = \left(\frac{R_{\mathsf{m}}}{\tau_{\mathsf{m}}} f_{i}(t), 0\right)^{\mathsf{T}} \tag{9}$$

(see Sec. 3.2.2 in Rotter & Diesmann, 1999)

- see App. B for an efficient, exact integration scheme of (6)
- back-transform to physical quantities:

$$\begin{split} V_i(t) &= v_i(t) + E_{\mathsf{L}} \\ I_i(t) &= \frac{\tau_{\mathsf{m}}}{R_{\mathsf{m}}} x_i(t) \end{split} \tag{10}$$

B Exact integration of single-neuron dynamics (subthreshold)

• exact integration of (6) for spikes arriving at the target neuron i on a time grid $\mathcal{T}_{\Delta}=\{t_k=k\Delta|k\in\mathbb{N},\Delta\in\mathbb{R}^+\}$, i.e., for spike trains $s_j(t)=\sum_l \delta(t-t_j^l)$ with $t_j^l\in\mathcal{T}_{\Delta}$ (Rotter & Diesmann, 1999):

$$y_i(t_{k+1}) = Py_i(t_k) + f_i(t_{k+1})$$
 (11)

with $(D \times D)$ propagator matrix (matrix exponential)

$$P = e^{A\Delta} \tag{12}$$

with components

$$\mathbf{P} = \begin{bmatrix} e^{-\Delta/\tau_{s}} & 0\\ \frac{e^{-\Delta/\tau_{m}} - e^{-\Delta/\tau_{s}}}{1/\tau_{s} - 1/\tau_{m}} & e^{-\Delta/\tau_{m}} \end{bmatrix}$$
(13)

(see Sec. 3.2.2 in Rotter & Diesmann, 1999)

References

- Potjans, T. C., Diesmann, M. (2014). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral cortex (New York, N.Y.: 1991), 24(3), 785–806. https://doi.org/10.1093/cercor/bhs358
- Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neural modeling. *Biological Cybernetics*, 81:381–402.
- Senk, J., Kriener, B., Djurfeldt, M., Voges, N., Jiang, H.-J., Schüttler, L., Gramelsberger, G., Diesmann, M., Plesser, H.E., van Albada, S.J. (2022). Connectivity concepts in neuronal network modeling. *PLoS Computational Biology*, 18(9):e1010086.