PATENT APPLICATION

Application No. 10/621,710

Paper Dated: August 9, 2005

Attorney Docket No.: 128346.60401

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the

present application.

1. (currently amended) A method for making a metal carbide supported

polycrystalline diamond (PCD) compact having improved abrasion resistance properties, said

method comprises the steps of:

providing a cell assembly comprising:

a body of diamond crystals comprising a bimodal mixture of about 60 wt wt. % to

about 90 80 wt. % of a coarse fraction having an average particle size ranging from about 15 to

70 µm and a fine fraction having an average particle size of less than about one half of the

average particle size of the coarse fraction; and

a support body disposed adjacent said body of diamond crystals, said support

body comprising a mixture of a carbide of Group IVB, VB, or VIB metal and at least a sintering

binder-catalyst in an amount of about or less than 20 16 vol. % of the total weight of the support

body; and

b) subjecting said cell assembly reaction to high pressure high temperature (HP /

HT) conditions for a sufficient amount of time and at a sufficiently high temperature and high

pressure to sinter said body of diamond crystals into a PCD layer and to bond said PCD layer to

said carbide body.

2. (currently amended) The method of claim 1, wherein the weight ratio of the

coarse fraction to the fine fraction of said body of diamond crystals ranges from about 90:10

80:20 to 60:40.

3. (previously presented) The method of claim 1, wherein the fine fraction of

diamond crystals ranges in size from about 1 to 25 µ.

Page 2 of 8

PATENT APPLICATION

Application No. 10/621,710

Paper Dated: August 9, 2005

Attorney Docket No.: 128346.60401

4. (previously presented) The method of claim 1, wherein the cemented metal

carbide support comprises a carbide of Group IVB, VB, or VIB metal, and the binder is one or

more of cobalt, nickel, iron, or alloys thereof.

5. (previously presented) The method of claim 5, wherein the cemented metal

carbide support is WC and the binder is Co.

6. (cancel)

7. (previously presented) The method of claim 1, wherein HP/HT processing

conditions comprising sintering of said body of diamond crystals for about 3 to 120 minutes at a

temperature of at least 1000° C and a pressure of at least 20 Kbar.

8. (currently amended) A sintered supported polycrystalline diamond (PCD)

compact having improved abrasion resistance properties, said compact comprising:

(a) a body of diamond crystals comprising a bimodal mixture of about 60 wt wt.

% to about 90 80 wt. % of a coarse fraction having an average particle size ranging from about

15 to 70 µm and a fine fraction having an average particle size of less than about one half of the

average particle size of the coarse fraction; and

(b) a support body in contact with the body of diamond crystals, the support body

comprises a mixture of a carbide of Group IVB, VB, or VIB metal and at least a sintering binder-

catalyst in an amount of about or less than 20 16 vol. % of the total weight of the support body.

9. (currently amended) The PCD compact of claim 8, wherein the weight ratio of

the coarse fraction to the fine fraction of diamond crystals ranges from about 90:10 80:20 to

60:40.

10. (previously presented) The PCD compact of claim 8, wherein the fine fraction

of diamond crystals ranges in size from about 1 to 25 µm.

Page 3 of 8

PATENT APPLICATION

Application No. 10/621,710

Paper Dated: August 9, 2005

Attorney Docket No.: 128346.60401

11. (previously presented) The PCD compact of claim 8, wherein the cemented

metal carbide support comprises a carbide of Group IVB, VB, or VIB metal, and the binder is

one or more of cobalt, nickel, iron, or alloys thereof.

12. (previously presented) The PCD compact of claim 11, wherein the cemented

metal carbide support is WC and the binder is Co.

13. (cancel)

14. (previously presented) The PCD compact of claim 8, wherein said compact is

formed via a high pressure/high temperature (HP/HT) processing method, wherein the HP/HT

processing method comprises sintering said body of diamond crystals and said support body for a

sufficient period of time at a temperature of at least 1000° C and a pressure of at least 20 Kbar.

15. (previously presented) The PCD compact of claim 8, wherein said compact is

formed via a high pressure/high temperature (HP/HT) processing method, and wherein said body

of diamond crystals and said support body are pre-formed in an HP/HT processing environment

for a sufficient period of time at a temperature of at least 1000° C and a pressure of at least 20

Kbar, prior to being fused together via brazing or in an HP/HT processing environment.

Page 4 of 8