Dado:
$$[\sigma] = \begin{bmatrix} 10 & 0 & 0 \\ 0 & -30 & -5 \\ 0 & -5 & 15 \end{bmatrix}$$

I) Esboçan o temon graficament 2) Para a superficie $\overline{m} = \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}$

I) Representação gráfico do temon de temoros

[σ] = $\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{zz} \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & -30 & -5 \\ 0 & -5 & 15 \end{bmatrix}$

Limba = face; columa = direção

2) Rela equação de Cauchy:

 $\{t\} = [\sigma] \{m\} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & -30 & -5 \\ 0 & -5 & 15 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 15 & 15 \\ 15 & 15 \end{bmatrix}$

O produto escalar $(\overline{t} \cdot \overline{m})$ dá a projeção de $[\overline{t}] = 10,801$
 \overline{t} abre \overline{m} , ou siza, t \overline{m} .

 $\overline{t}_{m} = (\overline{t} \cdot \overline{m}) = \frac{10}{13} \cdot \frac{1}{13} + (-10 \cdot \overline{t}^{2}) \cdot \frac{12}{13} + (-5 \cdot \overline{t}^{2}) \cdot 5 = \frac{10}{3} \cdot \frac{20}{3} = -\frac{10}{3}$
 $t_{m} = -3,333 \longrightarrow logo$, há Compressão! : $[\overline{t}_{m}] = 3,333$

Como \overline{t}_{m} e \overline{t} to são entegamais e \overline{t} e a resultante dos dais, reale o Turema de Ritágeras sobre os módulos.

 $|\overline{t}|^{2} = |\overline{t}_{m}|^{2} + |\overline{t}_{t}|^{2}$
 $|\overline{t}|^{2} = |\overline{t}_{m}|^{2} + |\overline{t}_{t}|^{2}$
 $|\overline{t}|^{2} = 3,333^{2} + |\overline{t}_{t}|^{2}$
 $|\overline{t}|^{2} = 10,274$