An Agent-Based Model To Improve The Simulation Of Pedestrian Dynamics

Marcelo C. Toyama

Advisor: Profa. Ana Lúcia C. Bazzan

mctoyama@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul

Outline

- Motivation
- Objectives
- Model Definition
- Project Status

Motivation

- Pedestrian Dynamics is complex
- Pedestrian activity increases with density
- Computer simulation of pedestrian dynamics allow:
 - Better comprehension of pedestrian dynamics principles
 - Experiments with room geometry and exit paths avoiding expensive experiments

Objectives

- Model must represents pedestrian dynamics features: lane formation, oscillations at narrow doors, jamming.
- Model must be able to simulate large crowds
- Pedestrian level of model representation
- Pedestrian model must be easily incremented to more detailed behavior descriptions

Model Definition - Model Concepts

- Floor Field (Repulsion Floor Field Contribution)
- Preferences Matrix
- Sensitivity Coefficients
- Speed (Contribution)
- Hindrance Coefficient (Contribution)
- ▶ Transition Probabilities
- Collision Resolution

Floor Field

- ▶ Static Floor Field $S_{i,j} = MD DIST_{i,j}$
- Dynamic Floor Field Diffusion and Decay
- Repulsion Floor Field

E2	E2	E2	E2	E2
E2	E1	E1	E1	E2
E2	E1		E1	E2
E2	E1	E1	E1	E2
E2	E2	E2	E2	E2

Preferences Matrix

	$M_{-1,0}$	
$M_{0,-1}$	$M_{0,0}$	$M_{0,1}$
	$M_{1,0}$	

Sensitivity Coefficients

- ▶ $K_s \in [0, \infty[$ is a static floor field sensitivity coefficient.
- ▶ $K_d \in [0, \infty[$ is a dynamic floor field sensitivity coefficient.
- ▶ $K_r \in [0, \infty[$ is a repulsion field sensitivity coefficient.

Speed

Gender	Medium	Variance
Male	1.62 ms^{-1}	0.22
Female	1.38 ms^{-1}	0.17

Hindrance Coefficient

We introduce a hindrance coefficient $T_{ij} \in [0,1]$ to represent the possibility of a pedestrian jumping over an obstacle.

Transition Probability

(1)
$$P_{ij} = \frac{N \cdot M_{ij} \cdot (1 - n_{ij}) \cdot exp(K_d \cdot D_{ij}) \cdot exp(K_s \cdot S_{ij})}{exp(K_r \cdot R_{ij})}$$

(2)
$$P_{ij} = \frac{N \cdot M_{ij} \cdot (1 - n_{ij}) \cdot exp(K_d \cdot D_{ij}) \cdot exp(K_s \cdot S_{ij}) \cdot (1 - T_{ij})}{exp(K_r \cdot R_{ij})}$$

where N is the normalization factor to ensure that the sum over all the matrix cells is 1 ($\sum_i \sum_j P_{ij} = 1$).

Colision Resolution

Results - Lane Formation

Results - Flow

Results - Men and Women

Project Status

- Model Validation in SeSAm
- Model implementation
- Writing an article with more details and results

An Agent-Based Model To Improve The Simulation Of Pedestrian Dynamics

Marcelo C. Toyama

Advisor: Profa. Ana Lúcia C. Bazzan

mctoyama@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul

