Computational biology Homology and sequence alignment

Clovis Galiez

Grenoble

Statistiques pour les sciences du Vivant et de l'Homme

October 8, 2024

Today's outline: from gene sequence to protein structure

- Sequence-structure-function paradigm
 - Genomes, genes, proteins
 - Databases
- Evolution
 - Selection
 - Sequence homology
 - Multiple sequence alignment

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

On a genome (\sim 5Mbp), specific motifs define begining and end of a gene

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

Transcription + translation, to form a chain of amino acids (\sim 300-3000AA)

C. Galiez (LJK-SVH) Computational biology October 8, 2024 3/15

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

Protein folding under pysico-chemical interactions, diameter \sim few nanometers

ACGATGTATTCAGCGATTACGATAAAGCTACGTAGTGGCA

O₂ transport

Protein endowed with a function (biochemical reactions, transport, etc.)

Data at every steps

Nucleic seq.

Amino acid seq.

Protein

Function

Data at every steps

Nucleic seq.

Amino acid seq.

Protein

Function

V G G Ś F A D M G

..ATTGTCGATGAC..

ncbi.nlm.nih.gov

uniprot.org

rcsb.org

geneontology.or

Data at every steps

Nucleic seq.

Amino acid seq.

Protein

Function

ncbi.nlm.nih.gov

uniprot.org

rcsb.org

How do we predict the function from the sequence?

Protein evolution through mutations

We arrange sequences in a phylogenetic tree:

Protein evolution through mutations

We arrange sequences in a phylogenetic tree:

Sequence alignement: algorithm and p-value

Find the best alignment between your query sequence S_Q and a reference sequence S_R :

MEAIGNA.GSAI QEAIGNAMGSNI

Sequence alignement: algorithm and p-value

Find the best alignment between your query sequence S_Q and a reference sequence S_R :

MEAIGNA.GSAI QEAIGNAMGSNI

Algorithm (sketch):

- \bullet given a 20×20 matrix of scores between amino-acids, set gap penalties
- find the alignment maximizing the total score.

Can be solved by **dynamic programming** in $\mathcal{O}(L^2)$ (see *Smith-Waterman algorithm*).

Sequence alignement: algorithm and p-value

Find the best alignment between your query sequence S_Q and a reference sequence S_R :

MEAIGNA.GSAI QEAIGNAMGSNI

Algorithm (sketch):

- \bullet given a 20×20 matrix of scores between amino-acids, set gap penalties
- find the alignment maximizing the total score.

Can be solved by **dynamic programming** in $\mathcal{O}(L^2)$ (see *Smith-Waterman algorithm*). An approximate **p-value** can be derived to assess the significance of the alignment.

Under a given p-value threshold we estimate the function to be similar.

Big data: need for heuristic

Uniprot (amino acid db) have more than 200M sequences.

Big data: need for heuristic

Uniprot (amino acid db) have more than 200M sequences. Even with optimized versions of Smith-Waterman, it is still too heavy to compare sequences to all known sequences.

Big data: need for heuristic

Uniprot (amino acid db) have more than 200M sequences. Even with optimized versions of Smith-Waterman, it is still too heavy to compare sequences to all known sequences.

Tools have developed heuristics to filter down the possible target sequences:

- Blast (the historical tool)
- Diamond
- MMseqs2
- ...

Heuristics are mostly based on efficient pre-filtering (often using similar k-mers, with constant time looks up in hash tables).

Sequence conservation

Sequence conservation

Aligning the sequences (MSA, multiple sequence alignment):

```
RYDSRTTIFSP..EGRLYQVEYAMEAIGNA.GSAIGILS
RYDSRTTIFSPLREGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP..EGRLYQVEYAQEAISNA.GTAIGILS
RYDSRTTIFSP..EGRLYQVEYAMEAISHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGNA.GSALGVLA
RYDSRTTTFSP..EGRLYQVEYALEAINNA.SITIGLIT
SYDSRTTIFSP..EGRLYQVEYALEAINHA.GVALGIVA
```

Tools	Database
ClustalW [Larkin et al. 07]	Pfam pfam.xfam.org

Sequence conservation

Aligning the sequences (MSA, multiple sequence alignment):

```
RYDSRTTIFSP..EGRLYQVEYAMEAIGNA.GSAIGILS
RYDSRTTIFSPLREGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP..EGRLYQVEYAMEAISHA.GTCLGILS
RYDSRTTIFSP..EGRLYQVEYAMEAISHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGHA.GTCLGILA
RYDSRTTIFSP..EGRLYQVEYAMEAIGHA.GSALGVLA
RYDSRTTTFSP..EGRLYQVEYAMEAIGNA.SITIGLIT
SYDSRTTIFSP..EGRLYQVEYALEAINHA.GVALGIVA
```

Tools	Database
ClustalW [Larkin et al. 07]	Pfam pfam.xfam.org

Why some positions are conserved, some other aren't?

Conserved amino acids are essential for the structure/function

From an MSA, we can easily build a **probabilistic model** for modelling the sequence of the protein family:

```
Position on seq. 123456789 ...

GSAIGILS

GTCLGILS

GTAIGILS

GTCLGILA

GTCLGILA

GTCLGILA

GSALGVLA

SITIGLIT

GVALGIVA
```

From an MSA, we can easily build a **probabilistic model** for modelling the sequence of the protein family:

By assuming independence of positions, one find the best alignment σ that maximizes the likelihood of a given sequence s=GICLGILA:

$$\max_{\sigma} \prod P(X_i = s_{\sigma(i)})$$

By assuming independence of positions, one find the best alignment σ that maximizes the likelihood of a given sequence s=GICLGILA:

$$\max_{\sigma} \prod P(X_i = s_{\sigma(i)})$$

This can be solved again using Smith-Waterman algorithm again. Matching important (=conserved) positions will play an important role in the likelihood \rightarrow it finds homologs with matching conserved regions.

On-line tools and databases

- Blastn Nucl-Nucl comparison
 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn
- Blastx Nucl-Prot comparison https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx
- Pfam Prot-Prot comparison http://pfam.xfam.org/search/sequence
- Protein structure PDB https://www.rcsb.org/

Summary

Check what you've learn:

- What is a genome, a gene, a protein, its structure
- How real sequencing data look like
- What is a SNP, what can be the impact
- Main tools and databases in computational biology
- Potential application of computational biology for public health studies

The project involved basic skills from different area:

- biology
- statistics (Poisson distribution)
- algorithmics (linear time algorithms required)

Projects

Remember that your project should be like professional answers to the call:

- Clarity
- Fulfilment of the call
- Trustworthiness in the description of the approach

Projects

Remember that your project should be like professional answers to the call:

- Clarity
- Fulfilment of the call
- Trustworthiness in the description of the approach

You should send:

- a \approx 5-page report, including:
 - description of the strategy
 - approximations and choices
 - application to the project data (what gene is impacted by the SNP)
- your code
- a step-by-step guide to reproduce the results of the report

The TATFAR waits for interesting answers to its call!