LinAlgDM I. 15-16. gyakorlat: Vektor szorzatok

2023. november 16.

Skaláris szorzat

Def.: A 2 vagy 3 dimenziós \underline{a} , \underline{b} vektorok skaláris szorzatán az alábbi számot értjük $a \cdot b = |a||b|\cos \varphi$,

ahol $|\underline{v}| = v$ jelöli \underline{v} vektor hosszát (abszolút értékét), φ pedig a két vektor által közbezárt szög.

Ha a vektorokat ortonormált bázisban írjuk fel, a skaláris szorzatot koordinátáik segítségével is kiszámíthatjuk: $\underline{a} \cdot \underline{b} = \sum_{i=1}^{n} a_i b_i$, ahol a_i és b_i az \underline{a} és \underline{b} vektorok i. koordinátái, $i = 1, \dots, n$.

A két számítási módot egyenlővé téve, kifejezhetjük a két vektor által közrezárt szög koszinuszát:

$$\cos \varphi = \frac{\sum_{i=1}^{n} a_i b_i}{|a||b|}$$

A fenti képletekben a vektor <u>hosszát</u> – más néven <u>abszolút értékét</u> – a következőképp számolhatjuk (mivel ortonormált bázisban írtuk fel a vektorokat):

$$|a| = \sqrt{\sum_{i=1}^{n} a_i^2}.$$

Mivel \underline{a} és \underline{b} helyvektorok, így mindkettő ugyanabból a pontból (az origóból) kifelé mutat. (Ha a két vektor közül az egyik irányítását megfordítanánk, a képlet alapján kapott szög az eredeti szög kiegészítő szöge lenne.)

Vegyük észre, hogy a fenti vektorok két különböző szöget (φ és φ') zárnak be egymással. Egyezményesen a kisebb szöget tekintjük a két vektor szögének, emiatt $0^{\circ} \le \varphi \le 180^{\circ}$.

Fontos megjegyezni, hogy $\underline{a} \perp \underline{b} \iff \underline{a} \cdot \underline{b} = 0$. Ez két vektor merőlegességére szükséges és elégséges feltétel.

Feladatok

Feladat 1. Számítsuk ki az $\underline{a} = \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix}$ és $\underline{b} = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix}$ vektorok által bezárt szöget!

Feladat 2. A $p \in \mathbb{R}$ paraméter mely értéke esetén lesznek a $\underline{v} = \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix}$ és $\underline{w} = \begin{pmatrix} -2 \\ 7 \\ p \end{pmatrix}$ vektorok egymásra merőlegesek? Mikor zárnak be hegyes- ill. tompasszöget?

1

Merőleges vetítés – a skaláris szorzat geometriai jelentése

Legyen φ a \underline{v} és \underline{w} vektorok által bezárt szög. Ekkor $\cos \varphi = \frac{\underline{v} \cdot \underline{w}}{|v| \cdot |w|}$

A v vektor w-re eső merőleges vetületének előjeles hosszát a következőképp számolhatjuk:

$$h = |\underline{v}| \cdot \cos \varphi = \frac{\underline{v} \cdot \underline{w}}{|\underline{w}|} = \underline{v} \cdot \underline{e}_w$$

ahol $\underline{e}_w = \frac{\underline{w}}{|\underline{w}|}$ a \underline{w} vektor
ral párhuzamos, vele azonos irányítású, egységnyi hosszúságú vektor. Az előjeles hossz
azt jelenti, hogy ha a két vektor hegyesszöget zár be egymással, akkor a vetülethossz pozitív lesz, azonban ha
tompaszöget zár be egymással, a vetület a másik irányba fog esni, ezért a vetülethossz negatív lesz.
Ha az \underline{e}_w egységvektort a fent kiszámolt előjeles vetülethosszra nyújtjuk, megkapjuk a \underline{v} vektor \underline{w} -re eső merőleges vetület
vektorát: $(\underline{v} \cdot \underline{e}_w) \cdot \underline{e}_w$.

Megjegyzés: A fenti képletben az első szorzás skaláris szorzás, melynek eredménye egy szám, ezzel a számmal szorozzuk a második szorzás során az \underline{e}_w vektort.

A fenti vetületvektor-számítás segítségével a \underline{v} vektor felbontható egy \underline{w} -vel párhuzamos \underline{p} és egy \underline{w} -re merőleges \underline{m} összetevőre, ahol $\underline{v} = p + \underline{m}$. Itt p az előzőleg megadott vetületvektor lesz, \underline{m} pedig egyszerűen kiszámolható:

$$p = (\underline{v} \cdot \underline{e}_w) \cdot \underline{e}_w$$
 , $\underline{m} = \underline{a} - p$

Feladatok

Feladat 3. Határozzuk meg a $\underline{v} = \begin{pmatrix} -5 \\ 4 \\ -2 \end{pmatrix}$ vektornak a $\underline{w} = \begin{pmatrix} -4 \\ 7 \\ 4 \end{pmatrix}$ vektorra eső merőleges vetületét és vetületvektorát!

Bontsuk fel a \underline{v} vektort a \underline{w} vektorra merőleges, valamint azzal párhuzamos összetevőkre! Ezután, ha ábrázoljuk a \underline{v} vektort és ennek vetületét közös kezdőpontból, akkor a vektorok közös kezdőpontja, valamint a vektorok végpontjai egy háromszöget határoznak meg. E háromszögben adjuk meg a \underline{v} vektor végpontján áthaladó magasságvektort, valamint annak hosszát!

Vektoriális szorzat

Míg két vektor skaláris szorzata egy számot ad, a vektoriális szorzatuk eredménye egy vektor lesz. Az \underline{a} és \underline{b} vektorok vektoriális szorzata az alábbi:

$$\underline{a} \times \underline{b} = |\underline{a}| \cdot |\underline{b}| \cdot \sin \varphi \cdot \underline{e}_{\perp},$$

ahol φ a két vektor által közbezárt szög, valamint \underline{e}_{\perp} egy olyan egységvektor, amely mind az \underline{a} , mind a \underline{b} vektorra merőleges és az \underline{a} , \underline{b} és \underline{e}_{\perp} vektorok - ebben a sorrendben - jobbrendszert alkotnak.

A fenti képletből látható, hogy az $\underline{a} \times \underline{b}$ vektor is merőleges lesz mind az \underline{a} , mind a \underline{b} vektorokra, ugyanis egyirányú az \underline{e}_{\perp} vektorral.

 \overline{A} vektoriális szorzat geometriai jelentése az, hogy a kapott vektor hossza megegyezik az \underline{a} és \underline{b} vektorok által kifeszített paralelogramma területével:

$$T_{par.} = |\underline{a} \times \underline{b}| = |\underline{a}| \cdot |\underline{b}| \cdot \sin \varphi$$

Feladatok

Feladat 4. Adottak az \underline{a} 6 egységnyi hosszúságú, valamint a \underline{b} 3 egységnyi hosszúságú vektorok. Adjuk meg a vektoriális szorzatuk abszolútértékét, ha a közbezárt szögük

- a) 30°
- b) 150°.

Feladat 5. Tegyük fel, hogy a tábla síkjában van két vektor. Milyen irányú lesz a vektoriális szorzat?

Feladat 6. Az \underline{a} vektor négyszerese a \underline{k} vektornak. Az $\underline{i},\underline{j}$ síkbeli \underline{b} vektor hossza 5 és első két koordinátája pozitív. Mekkora e két vektor vektoriális szorzatának hossza és milyen előjelűek a koordinátái?

Alternatív kiszámolási mód, ha ismertek a vektorok koordinátái

Ha ismerjük az \underline{a} és \underline{b} vektoroknak az $\{\underline{i},\underline{j},\underline{k}\}$ bázisra vonatkozó koordinátáit: $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$; úgy az $\underline{a} \times \underline{b}$ vektoriális szorzatot számolhatjuk a következő módon:

$$\begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \underline{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \underline{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \underline{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \underline{i} \cdot (a_2 \cdot b_3 - a_3 \cdot b_2) - \underline{j} \cdot (a_1 \cdot b_3 - a_3 \cdot b_1) + \underline{k} \cdot (a_1 \cdot b_2 - a_2 \cdot b_1).$$

Feladatok

Feladat 7. Számítsuk ki az $\underline{a} = \begin{pmatrix} -2\\4\\1 \end{pmatrix}$ és $\underline{b} = \begin{pmatrix} -1\\-3\\2 \end{pmatrix}$ vektorok vektoriális szorzatát, ha a koordinátáik az $\{\underline{i},\underline{j},\underline{k}\}$

bázisra vonatkoznak! Számítsuk ki továbbá a vektorok által kifeszített paralelogramma területét! Mekkora az \underline{a} és \underline{b} oldalélekkel rendelkező háromszög területe?

Vegyes szorzat

Az $\underline{a}, \underline{b}$ és \underline{c} vektorok vegyes szorzata: $(\underline{a} \times \underline{b}) \cdot \underline{c}$. Ez tulajdonképpen az $\underline{a} \times \underline{b}$ vektornak és a \underline{c} vektornak a skaláris szorzata. Geometriai jelentése: a három vektor által kifeszített paralelepipedon előjeles térfogata.

Kiszámolása történhet pl. a definíció szerint, vagyis elvégezzük egymás után a vektoriális, majd a skaláris szorzást. A következő módszerrel viszont egy lépésben megkapjuk a vegyes szorzat eredményét. Legyenek adottak a vektorok koordinátái az $\{\underline{i},\underline{j},\underline{k}\}$ bázisban:

$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \quad \underline{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix},$$

Ekkor

$$(\underline{a} \times \underline{b}) \cdot \underline{c} = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = c_1 \cdot (a_2 \cdot b_3 - a_3 \cdot b_2) - c_2 \cdot (a_1 \cdot b_3 - a_3 \cdot b_1) + c_3 \cdot (a_1 \cdot b_2 - a_2 \cdot b_1).$$

Feladat 8. Határozzuk meg az $\underline{a} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$, $\underline{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ és $\underline{c} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$ vektorok által meghatározott paralelepipedon

3

térfogatát és az \underline{a} és \underline{b} által meghatározott oldallaphoz tartozó magasságát! Adjuk meg a magasságvektort is! **Feladat 9.** Hozzuk egyszerűbb alakra a következő kifejezéseket:

- a) $(\underline{a} + \underline{b}) \times (\underline{a} 2\underline{b})$
- b) $(3a b) \times (b + 3a)$
- c) $(\underline{a} + 2\underline{b}) \times (2\underline{a} + \underline{b}) + (\underline{a} 2\underline{b}) \times (2\underline{a} \underline{b})$

Plusz feladat 1. Számítsuk ki a $\underline{v} = \begin{pmatrix} -6 \\ -4 \\ 3 \end{pmatrix}$ vektornak a koordinátatengelyekkel bezárt szögeit.

Plusz feladat 2. Az ABC háromszög csúcsainak koordinátái: $A = \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix} -9 \\ 11 \\ 42 \end{pmatrix}$ 1, $C = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$.

- a) Számítsuk ki a háromszög kerületét!
- b) Jelölje M az AC oldal A-hoz legközelebbi negyedelőpontját. Bizonyítsuk be, hogy az AMB szög tompaszög!
- c) Adjuk meg a háromszög legnagyobb szögét!

Plusz feladat 3. A szögek kiszámítása nélkül döntsük el, hogy az alábbi vektorpárok hegyes-, derék- vagy tompaszöget zárnak-e be! (A megadott koordináták \mathbb{R}^3 kanonikus $\{i,j,\underline{k}\}$ bázisára vonatkoznak.)

a)
$$\underline{a} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$$
 és $\underline{b} = \begin{pmatrix} -3 \\ 4 \\ -2 \end{pmatrix}$

b)
$$\underline{c} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 és $\underline{d} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$

c)
$$\underline{e} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 és $\underline{f} = \begin{pmatrix} -10 \\ 7 \\ 3 \end{pmatrix}$

Plusz feladat 4. Bontsuk fel az $\underline{a} = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}$ vektort a $\underline{b} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ vektorral párhuzamos \underline{p} és arra merőleges \underline{m} vektorok összegére!