PENDEKATAN DALAM PEMBANGUNAN SISTEM

2

The Systems Development Lifecycle (SDLC)

- Systems development life cycle (SDLC)
 - Provides overall framework for managing systems development process
- ◆ Two main approaches to SDLC
 - Predictive approach assumes project can be planned out in advance
 - Adaptive approach more flexible, assumes project cannot be planned out in advance
- All projects use some variation of SDLC

Choosing the Predictive vs. Adaptive Approach to the SDLC (Figure 2-1)

3

2

Traditional Predictive Approach to the SDLC

- Project planning initiate, ensure feasibility, plan schedule, obtain approval for project
- Analysis understand business needs and processing requirements
- Design define solution system based on requirements and analysis decisions
- Implementation construct, test, train users, and install new system
- ◆ Support keep system running and improve

SDLC and Problem Solving

- Similar to problem-solving approach in Chapter 1
 - Organization recognizes problem (project planning)
 - Project team investigates, understands problem and solution requirements (analysis)
 - Solution is specified in detail (design)
 - System that solves problem is built and installed (implementation)
 - System used, maintained, and enhanced to continue to provide intended benefits (support)

Newer Adaptive Approaches to the SDLC

- Based on spiral model
 - Project cycles through development activities over and over until project is complete
 - Prototype created by end of each cycle
 - Focuses on mitigating risk
- Iteration Work activities are repeated
 - Each iteration refines previous result
 - Approach assumes no one gets it right the first time
 - There are a series of mini projects for each iteration

q

2

The Spiral Life Cycle Model (Figure 2-6)

Activities of Each SDLC Phase

- ◆ Predictive or adaptive approach use SDLC
- Activities of each "phase" are similar
- Phases are not always sequential
- ◆ Phases can overlap
- Activities across phases can be done within an iteration

Activities of Planning Phase of SDLC

- Define business problem and scope
- Produce detailed project schedule
- Confirm project feasibility
 - Economic, organizational, technical, resource, and schedule
- Staff the project (resource management)
- ◆ Launch project → official announcement

13

Activities of Analysis Phase of SDLC

- Gather information to learn problem domain
- Define system requirements
- Build prototypes for discovery of requirements
- Prioritize requirements
- Generate and evaluate alternatives
- Review recommendations with management

Activities of Design Phase of SDLC

- Design and integrate the network
- Design the application architecture
- Design the user interfaces
- Design the system interfaces
- Design and integrate the database
- Prototype for design details
- Design and integrate system controls

15

Activities of Implementation Phase of SDLC

- Construct software components
- Verify and test
- Convert data
- Train users and document the system
- Install the system

Activities of Support Phase of SDLC

- Maintain system
 - Small patches, repairs, and updates
- ◆ Enhance system
 - Small upgrades or enhancements to expand system capabilities
 - Larger enhancements may require separate development project
- Support users
 - Help desk and/or support team

17

2

Methodologies and Models

- ◆ Methodologies
 - Comprehensive guidelines to follow for completing every SDLC activity
 - Collection of models, tools, and techniques
- Models
 - Representation of an important aspect of real world, but not same as real thing
 - Abstraction used to separate out aspect
 - Diagrams and charts
 - Project planning and budgeting aids

2

Tools and Techniques

- ◆ Tools
 - Software support that helps create models or other required project components
 - Range from simple drawing programs to complex CASE tools to project management software
- ◆ Techniques
 - Collection of guidelines that help analysts complete a system development activity or task
 - Can be step-by-step instructions or just general advice

Relationships Among Components of a Methodology

23

Two Approaches to System Development

- ◆ Traditional approach
 - Also called structured system development
 - Structured analysis and design technique (SADT)
 - Includes information engineering (IE)
- ◆ Object-oriented approach
 - Also called OOA, OOD, and OOP
 - Views information system as collection of interacting objects that work together to accomplish tasks

Traditional Approach

- ◆ Structured programming
 - Improves computer program quality
 - Allows other programmers to easily read and modify code
 - Each program module has one beginning and one ending
 - Three programming constructs (sequence, decision, repetition)

Top-Down Programming

- Divides complex programs into hierarchy of modules
- The module at top controls execution by "calling" lower level modules
- Modular programming
 - Similar to top-down programming
- One program calls other programs to work together as single system

Structured Design

- Technique developed to provide design guidelines
 - What set of programs should be
 - What program should accomplish
 - How programs should be organized into a hierarchy
- Modules are shown with structure chart
- Main principle of program modules
 - Loosely coupled module is independent of other modules
 - Highly cohesive module has one clear task

29

Structure Chart Created Using Structured Design Technique

Figure 2-14
A structure chart created using the structured design technique

2

Structured Analysis

- Define what system needs to do (processing requirements)
- Define data system needs to store and use (data requirements)
- Define inputs and outputs
- Define how functions work together to accomplish tasks
- Data flow diagrams (DFD) and entity relationship diagrams (ERD) show results of structured analysis

31

2

Data Flow Diagram (DFD) Created Using Structured Analysis Technique (Figure 2-15)

Information Engineering (IE)

- Refinement to structured development
- Methodology with strategic planning, data modeling, automated tools focus
- More rigorous and complete than SADT
- Industry merged key concepts from structured development and information engineering approaches into traditional approach

35

Object-Oriented Approach

- Completely different approach to information systems
- Views information system as collection of interacting objects that work together to accomplish tasks
 - Objects things in computer system that can respond to messages
 - Conceptually, no processes, programs, data entities, or files are defined – just objects
- ◆ OO languages: Java, C++, C# .NET, VB .NET

Figure 2-18
The object-oriented approach to systems [read clockwise starting with user]

37

2

Object-Oriented Approach (continued)

- Object-oriented analysis (OOA)
 - Defines types of objects users deal with
 - Shows use cases are required to complete tasks
- ◆ Object-oriented design (OOD)
 - Defines object types needed to communicate with people and devices in system
 - Shows how objects interact to complete tasks
 - Refines each type of object for implementation with specific language of environment
- Object-oriented programming (OOP)
 - Writing statements in programming language to define what each type of object does

SDLC Variations

- Many variations of SDLC in practice
 - Based on variation of names for phases
 - No matter which one, activities/tasks are similar
- Some increase emphasis on people
 - User-centered design, participatory design
 - Sociotechnical systems
- Some increase speed of development
 - Rapid application development (RAD)
 - Prototyping

Life Cycles with Different Names for Phases (Figure 2-20)

	Early Example of an SDLC	Information Engineering	Unified Process (UP)	SDLC with Activity Names for Phases
Planning Phase	Feasibility study	Information strategy planning		Organize the project and study feasibility
Analysis Phase		Business area analysis	Inception phase	Study and analyze the current system
	System investigation			Model and prioritize the functional requirements
	Systems analysis		Elaboration phase	Generate alternatives and propose the best solution
Design Phase Implementation Phase	Systems design	Business system design Technical		
			Construction phase	Design the system
		design		Obtain needed
	Implementation	Construction		hardware and software Build and test the
		Tanadalan		new system
Support Phase		Transition	Transition phase	Install and operate the
	Review and maintenance	Production		new system

41

Current Trends in Development

- More adaptive approaches
 - The Unified Process (UP)
 - Extreme Programming (XP)
 - Agile Modeling
 - Scrum
- ◆ Details on each in Chapter 16

The Unified Process (UP)

- Object-oriented development approach
- Offered by IBM / Rational
 - Booch, Rumbaugh, Jacobson
- Unified Modeling Language (UML) used primarily for modeling
- UML can be used with any OO methodology
- UP defines four life cycle phases
 - Inception, elaboration, construction, transition

43

2

The Unified Process (UP) (continued)

- Reinforces six best practices
 - Develop iteratively
 - Define and manage system requirements
 - Use component architectures
 - Create visual models
 - Verify quality
 - Control changes

Extreme Programming (XP)

- ◆ Recent, lightweight, development approach to keep process simple and efficient
- Describes system support needed and required system functionality through informal user stories
- Has users describe acceptance tests to demonstrate defined outcomes
- Relies on continuous testing and integration, heavy user involvement, programming done by small teams

45

2

Agile Modeling

- Hybrid of XP and UP (Scott Ambler); has more models than XP, fewer documents than UP
- Interactive and Incremental Modeling
 - Apply right models
 - Create several models in parallel
 - Model in small increments
- Teamwork
 - Get active stakeholder participation
 - Encourage collective ownership
 - Model with others and display models publicly

Agile Modeling (continued)

- Simplicity
 - Use simple content
 - Depict models simply
 - Use simplest modeling tools
- Validation
 - Consider testability
 - Prove model is right with code

47

2

Scrum

- For highly adaptive project needs
- Respond to situation as rapidly as possible
- Scrum refers to rugby game
 - Both are quick, agile, and self-organizing
- Team retains control over project
- Values individuals over processes

Tools to Support System Development

- Computer-aided system engineering (CASE)
 - Automated tools to improve the speed and quality of system development work
 - Contains database of information about system called repository
- Upper CASE support for analysis and design
- Lower CASE support for implementation
- ◆ ICASE integrated CASE tools
- Now called visual modeling tools, integrated application development tools, and round-trip engineering tools

