DESCRIPTION	FORMULA
Future value of an n-period investment	$FV_n = PV (1+i)^n$
Future value with compounding m times per period	$FV_n = PV \times \left(1 + \frac{i}{m}\right)^{mn}$
Present value of an n-period investment	$PV = \frac{FV_n}{(1+i)^n}$
Present value of a perpetuity	$PVP = \frac{C}{i}$
Present value of a growing perpetuity	$PVP = \frac{C}{i - g}$
Present value of an annuity	$PVA = \frac{C}{i} \times \left[1 - \frac{1}{(1+i)^N}\right]$
Present value of a growing annuity	$PVA = \frac{C}{i-g} \times \left[1 - \frac{(1+g)^N}{(1+i)^N}\right]$
Total holding period return	$R_T = R_{CA} + R_i = \frac{\Delta P + CF_1}{P_0}$
Holding period return with continuous compounding	$R_T = ln[\frac{P_1 + CF_1}{P_0}]$
Arithmetic average return	$R_{Arithmetic\ average} = \frac{\sum_{i=1}^{n} R_i}{n}$
Geometric average return	$R_{Geom} = [(1 + R_1) \times (1 + R_2) \times \times (1 + R_n)]^{1/n} - 1$
Expected return on an asset	$E(R_{Asset}) = \sum_{i=1}^{n} (p_i \times R_i)$
Variance of return on an asset	$\sigma_R^2 = \sum_{i=1}^n \{p_i \times [R_i - E(R)]^2\}$
Expected return and systematic risk (CAPM)	$E(R_i) = R_{rf} + \beta_i \big[E(R_m) - R_{rf} \big]$
Price of a bond	$P_{B} = \frac{C/_{m}}{1 + i/_{m}} + \frac{C/_{m}}{\left(1 + i/_{m}\right)^{2}} + \dots + \frac{C/_{m} + F}{\left(1 + i/_{m}\right)^{mn}}$
Price of a zero-coupon bond	$P_Z = \frac{F_{mn}}{\left(1 + i/m\right)^{mn}}$