Einführung in die Geometrie und Topologie - Mitschrieb -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp, Simon Bischof 23. November 2011

Inhaltsverzeichnis

Ι	Hor	notopie und Fundamentalgruppe	2
	0	Vorwort	2
	1	Grundlagen der allgemeinen Topologie	10
II	Top	ologische Eigenschaften	22
	1	Trennungseigenschaften	28
	2	Abzählbarkeitsaxiome	30
II	[Bei	spiele und Konstruktionen topologischer Räume	33
	1	Mannigfaltigkeiten	33
	2	Produkt-Topologie	38
	3	Differenzierbare Abbildungen	40
	4	Quotientenräume	47
	5	Quotientenabbildungen	50

Zusammenfassung

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

Kapitel I

Homotopie und Fundamentalgruppe

0 Vorwort

Topologischer Raum

Ein topologischer Raum X ist gegeben durch eine Menge X und ein System $\mathcal O$ von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\mathcal{O} \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \mathcal{O} \Rightarrow O_1 \cap O_2 \in \mathcal{O}$
- (2) $O_{\alpha} \in \mathcal{O}, \alpha \in A, A \text{ Indexmenge} \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{O}$
- (3) $X, \emptyset \in \mathcal{O}$

Beispiel

 $\mathcal{O}=\{X,\emptyset\}\Rightarrow (X,\mathcal{O})$ ist topologischer Raum!

Beispiel

X Menge, $\mathcal{O} = \{\{x\} \mid x \in X\} + \text{Axiome, die zu erfüllen sind} \leadsto \tilde{\mathcal{O}} = \mathcal{P}(X)$ $\Rightarrow (X, \tilde{\mathcal{O}})$ ist topologischer Raum. \mathcal{O} ist "Basis" der Topologie $\tilde{\mathcal{O}}$.

Metrischer Raum

Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d\colon X\times X\to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt: $\forall x,y,z\in X$

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"

Stetigkeit

Eine Abbildung $F\colon X\to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Abbildung I.1: Stetige Abbildung

Bemerkung I.1. Ist (X,d) ein metrischer Raum, so sind die offenen Mengen der von der Metrik induzierten Topologie Vereinigungen von endlichen Durchschnitten von Umgebungen $U_{\epsilon}(x) := \{y \in X \mid d(x,y) < \epsilon\} (\epsilon > 0), und F: (X,d) \to (Y,d')$ ist stetig im obigen Sinn genau dann, falls für alle $\epsilon > 0$ ein $\delta > 0$ existiert mit $F(U_{\delta}(x)) \subset U_{\epsilon}(F(x))$.

Homotopie

Eine <u>Homotopie</u> $H\colon f\simeq g$ zwischen zwei (stetigen) Abbildungen $f,g\colon \overline{X\to Y}$ ist eine (stetige) Abbildung

$$H: X \times I^a \to Y, (x,t) \mapsto H(x,t)$$

mit H(x,0) = f(x) und H(x,1) = g(x) $\forall x \in X$.

 $^{^{}a}I=[0,1]\subset\mathbb{R}$

Abbildung I.2: Homotopie

Abbildung I.3: f und g sind jeweils <u>nicht</u> homotop!

Bemerkung I.2. H heißt auch $\underline{Homotopie}$ $\underline{von\ f\ nach\ g}$, eine solche ist also eine parametrisierte Schar von Abbildungen \overline{mit} "Anfang" f und "Ende" g. f und g heißen dann homotop, in Zeichen: $f \simeq g$.

Erinnerung Sind X und Y topologische Räume, so ist eine Homotopie $H = (h_t), t \in [0, 1]$, eine parametrisierte Schar von ste-

tigen Abbildungen $h_t \colon X \to Y$ mit Anfang h_0 und Ende h_1 .

Homotope Abbildungen

Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Bemerkung I.3. "Homotop sein" ist eine Äquivalenzrelation.

Beweis. Symmetrie: Gilt für $f,g\in C(X,Y):=\{F\colon X\to Y\text{ stetig }\}$ $f\simeq g$ vermöge $H=(h_t),t\in [0,1],$ so liefert $(\tilde{h_t})$ mit $\tilde{h_t}:=h_{1-t}$ eine Homotopie von g nach f, d.h. $f\simeq g\Leftrightarrow g\simeq f$.

Reflexivität: $f \simeq f$ vermöge $h_t :\equiv f \forall t \in [0, 1]$

<u>Transitivität</u>: Es sei $f \simeq g$ vermöge (h_t) und ferner $g \simeq l$ vermöge (k_t) . Dann liefert $M: X \times [0,1] \to Y$ mit

$$M_t := \begin{cases} h_{2t} & 0 \le t \le \frac{1}{2} \\ k_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}$$

eine Homotopie von f nach l. Also ist $f \simeq g, g \simeq l \Rightarrow f \simeq l$.

Bemerkung I.4. Die Äquivalenzrelation "Homotopie von Abbildungen" liefert also eine Partition von C(X,Y) in Äquivalenzklassen. Diese heißen Homotopieklassen und die Menge aller Homotopieklassen stetiger Abbildungen von X nach Y wird mit [X,Y] bezeichnet.

Abbildung I.4: Transitivität der Relation "homotop sein"

Abbildung I.5: Äquivalenzklassen [X, Y] von C(X, Y)

Bemerkung I.5. C(X,Y) ist im Allgemeinen <u>wiel</u> schwieriger zu verstehen als [X,Y]!

Beispiel

Je zwei stetige Abbildungen $f,g\colon X\to \mathbb{R}^n$ sind homotop! Denn

$$H(x,t) := (1-t)f(x) + t \cdot g(x)$$

liefert eine Homotopie von f nach g:

Nullhomotopie

Eine stetige Abbildung $f\colon X\to Y$ heißt <u>nullhomotop</u>, falls sie homotop zu einer konstanten Abbildung ist.

Abbildung I.6: f ist nullhomotop

Korollar I.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Beispiel

Jeder geschlossene Weg im \mathbb{R}^2 , d.h. jede stetige Abbildung $f\colon [0,1]\to \mathbb{R}^2$ mit f(0)=f(1) ist nullhomotop. $\big[[0,1],\mathbb{R}^2\big]$ + gleicher Anfangs- und Endpunkt besteht nur aus einem Punkt, zum Beispiel der Äquivalenzklasse der konstanten Kurve $t\mapsto (1,0)$.

Abbildung I.7: Geschlossene Wege in \mathbb{R}^n

Interpretiere einen geschlossenen Weg im \mathbb{R}^2 auch als stetige Abbildung von $S^1:=\{x\in\mathbb{R}^2\mid \ ||x||=1\}$ in \mathbb{R}^2 , so gilt also $[S^1,\mathbb{R}^2]$ ist einelementig. Aber $[S^1,\mathbb{R}^2\setminus\{0\}]$ ist nichttrivial!

Abbildung I.8: $[S^1,\mathbb{R}^2\backslash\{(0,0)\}]$ "=" $[S^1,S^1]$

Teilraumtopologie

Es sei (X, \mathcal{O}) topologischer Raum und $A \subset X$. Die auf A durch

$$\mathcal{O}\Big|_A := \{U \cap A \mid U \in \mathcal{O}\}$$

induzierte Topologie heißt <u>Teilraumtopologie</u> und der dadurch gegebene topologische Raum $(A, \mathcal{O}\Big|_A)$ heißt <u>Teilraum</u> von (X, \mathcal{O}) .

Bemerkung I.6. $B \subset A$ ist also genau dann <u>offen in A</u>, wenn B der Schnitt einer <u>in X</u> offenen Menge mit A ist.

Beispiel

$$X = \mathbb{R}^2, A = S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$$

Achtung: B ist <u>nicht</u> offen in \mathbb{R}^2 !

1 Grundlagen der allgemeinen Topologie

Beispiel

- (1) $X, \mathcal{O} := \{X, \emptyset\}$ 'triviale Topologie'
- (2) $X, \mathcal{O} := \mathcal{P}(X)$ 'diskrete Topologie'
- (3) Metrische Räume, siehe unten
- (4) $X := \{a, b, c, d\} \Rightarrow \mathcal{O} := \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}, \{a, b\}\}$ definiert eine Topologie auf X, aber $\mathcal{O}' := \{X, \emptyset, \{a, c, d\}, \{b, d\}\}$ nicht!
- (5) $X := \mathbb{R}, \mathcal{O} := \{O \mid O \text{ ist Vereinigung von Intervallen } (a, b) \text{ mit } a, b \in \mathbb{R}\}. \Rightarrow (X, \mathcal{O}) \text{ ist topologischer Raum, und } \mathcal{O} \text{ heißt Standard-Topologie.}$
- (6) $X := \mathbb{R}, \tilde{\mathcal{O}} := \{O \mid O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich}\} \cup \{\emptyset\}$ ist auch eine Topologie auf \mathbb{R} , die so genannte \mathcal{T}_1 -Topologie.

Abgeschlossenheit

 $A \subset X, X$ topologischer Raum, heißt abgeschlossen

 $:\Leftrightarrow X\backslash A \text{ ist offen.}$

Bemerkung I.7. Beliebige Durchschnitte abgeschlossener Mengen sind abgeschlossen, ebenso endliche Vereinigungen und genauso X und \emptyset .

Beispiel

In einem diskreten topologischen Raum sind <u>alle Teilmengen</u> abgeschlossen, in $\mathbb{R}_{\mathcal{T}_1}^{-1}$ alle endlichen Teilmengen und X, \emptyset .

Umgebung

Ist X topologischer Raum und $x \in X$, so heißt jede <u>offene</u> Teilmenge $O \subset X$ mit $x \in O$ eine Umgebung von x.

Bemerkung I.8. Umgebungen sind per definitionem offen!

Bemerkung I.9. Jede offene Teilmenge von $\mathbb{R}_{Standard}$ ist eine Vereinigung disjunkter offener Intervalle, doch abgeschlossene Teilmengen von \mathbb{R} sind keinesfalls immer Vereinigungen abgeschlossener Intervalle!

Beispiel

 $\Rightarrow \mathcal{C}$ ist abgeschlossen in $\mathbb{R},$ enthält überabzählbar viele Elemente und hat 'Hausdorff-Dimension' $\frac{\ln 2}{\ln 3}\approx 0,6\ldots$

 $^{^1\}mathbb{R}$ mit $\mathcal{T}_1\text{-Topologie}$

Basis

Ist (X, \mathcal{O}) topologischer Raum mit $\mathcal{B} \subset \mathcal{O}$, so heißt \mathcal{B} Basis der Topologie : \Leftrightarrow Jede (nichtleere) offene Menge ist Vereinigung von Mengen aus \mathcal{B} .

Beispiel

- (1) Die offenen Intervalle bilden eine Basis der Standard-Topologie von \mathbb{R} .
- (2) Sämtliche offenen² Kreisscheiben und auch sämtliche offenen Quadrate bilden Basen ein und derselben Topologie auf \mathbb{R}^2 .

Bemerkung I.10. • $\mathcal{B} \subset \mathcal{O}$ ist Basis der Topologie von $X \Leftrightarrow \forall O \in \mathcal{O} \forall x \in O \exists B \in \mathcal{B} \colon x \in B \subset O$.

• $\mathcal{B} \subset \mathcal{P}(X)$ bildet die Bais <u>einer</u> Topologie auf $X \Leftrightarrow X$ ist Vereinigung von Mengen aus \mathcal{B} und der Schnitt je zweier Mengen aus \mathcal{B} ist eine Vereinigung von Mengen aus \mathcal{B} .

Feiner und gröber

Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X und $\mathcal{O}_1 \subset \mathcal{O}_2$, so heißt \mathcal{O}_2 <u>feiner</u> als \mathcal{O}_1 und \mathcal{O}_1 gröber als \mathcal{O}_2 .

Beispiel

- ullet Die triviale Topologie ist die gröbste Topologie auf X, die diskrete Topologie die feinste.
- Die Standard-Topologie auf \mathbb{R} ist feiner als die \mathcal{T}_1 -Topologie.

Mehr zu metrischen Räumen

 $^{^2{\}rm bezüglich}$ der euklidischen Metrik

ϵ -Ball, Sphäre

Für einen metrischen Raum (X, d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p, x) < \epsilon\}$ der offene ϵ -Ball um p
- $D_{\epsilon}(p) := \{x \in C \mid d(p, x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p):=\{x\in C\mid d(p,x)=\epsilon\}$ die $\underline{\epsilon\text{-Sph\"are}}$ um p (oder Sph\"are vom Radius ϵ)

Metrischer Unterraum

Ist (X, d) metrischer Raum und $A \subset X$, so heißt der metrische Raum $(A, d|_{A \times A})$ (metrischer) Unterraum von X.

Beispiel

Für $X = \mathbb{R}^n_{Eukl.}$ sind $B_1(0), D_1(0) =: D^n$ und $S^{n-1} := S_1(0)$ metrische Unterräume und heißen auch offener bzw. abgeschlossener Einheitsball bzw. (n-1)-Sphäre.

Beschränktheit, Durchmesser

 $A \subset (X, d)$ heißt <u>beschränkt</u>

 $\Rightarrow \exists 0 < \rho \in \mathbb{R} : d(x,y) < \rho \ \forall x,y \in A$

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Bemerkung I.11. In einem metrischen Raum (X,d) bilden die offenen Bälle die Basis einer Topologie $\mathcal{O} = \mathcal{O}_d$ von X, diese heißt die von der Metrik induzierte Topologie.

Bemerkung I.12. $A \subset (X, d)$ ist <u>offen</u> $\Leftrightarrow \forall p \in A \exists \ ein \ offener \ Ball \ B_{\epsilon}(p) \ um \ p \ mit \ B_{\epsilon}(p) \subset A$

Abstand

(X,d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p, A) := dist(p, A) := \inf\{d(p, a) \mid a \in A\}$$

heißt Abstand von p und A.

Erinnerung Ist (X, \mathcal{O}) topologischer Raum und $A \subset X$, so definiert $\mathcal{O}_A := \{A \cap O \mid O \in \mathcal{O}\}$ eine Topologie auf A, die <u>Teilraumtopologie</u> der <u>in A</u> offenen Mengen.

Bemerkung I.13. Ist $A \subset X$ offen $\underline{in \ X}$, so ist auch jede in A offene Menge offen in X, und abgeschlossene³ $\overline{Teilmengen}$ einer in X abgeschlossenen Menge A sind auch abgeschlossen in X.

 $^{^3}$ in A

Aber abgeschlossene Mengen B in $A \subset X$ sind für beliebiges A im Allgemeinen nicht abgeschlossen in X.

Beispiel

$$B:=A:=(a,b)\subset X:=\mathbb{R}$$

Innerer Punkt, äußerer Punkt, Randpunkt

Für $p \in A \subset X$, X topologischer Raum, heißt p

- (1) <u>innerer Punkt</u> von A, falls es eine in A enthaltene Umgebung U um p gibt.
- (2) <u>äußerer Punkt</u>, falls eine zu p disjunkte Umgebung V in X existiert.
- (3) Randpunkt von A, falls jede Umgebung von p nichtleeren Durchschnitt mit A und $X \setminus A$ hat.

Inneres

Für $A \subset X$ heißt die größte in X offene und in A enthaltene Teilmenge \mathring{A} Inneres von A.

Bemerkung I.14. Å ist die Menge aller inneren Punkte von A und die Vereinigung aller in X offenen Teilmengen von A, und A ist offen \Leftrightarrow $A = \mathring{A}$

Beispiel

$$\mathbb{R}\mathring{\setminus}\mathbb{Q}=\mathring{\mathbb{Q}}=\emptyset$$

Abschluss

Der <u>Abschluss</u> \bar{A} von A ist $X \setminus ((\mathring{X} \setminus A))$.

Rand

Der Rand ∂A von A ist

$$\partial A := \bar{A} \backslash \mathring{A},$$

d.h. Rand $A = \{ Randpunkte von A \}.$

(TODO:Exkurs zu 'Randbildung (topologisch) und Ableitung (analytisch) sind dual zueinander')

Stetigkeit

 $f\colon X\to Y$ ist stetig : $\Leftrightarrow \forall$ offenen Mengen in Y ist das Urbild unter f offene Menge in X.

Beispiel

- $f \colon X \to Y$ ist stetig \Leftrightarrow Urbilder abgeschlossener Mengen sind abgeschlossen.
- Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X, so ist die Identität id: $(X, \mathcal{O}_1) \to (X, \mathcal{O}_2)$ stetig $\Leftrightarrow \mathcal{O}_2 \subset \mathcal{O}_1$.

• Für $A \subset X$ ist die Teilraumtopologie $\mathcal{O}_A = \mathcal{O}|_A$ die gröbste Topologie, bezüglich der die Inklusion $i \colon A \hookrightarrow X, a \mapsto a$ stetig ist.

Stetigkeit

 $f \colon X \to Y$ ist stetig in $x \in X$

 $:\Leftrightarrow \forall \ Umgebungen \ V \ von \ f(x) \quad \exists \ Umgebung \ U \ von \ x \ mit$ $f(U) \subset V.$

Bemerkung I.15. $f: X \to Y$ ist stetig $\Leftrightarrow f$ ist stetig in jedem Punkt $x \in X$.

Beispiel

Eine Abbildung $f \colon X \to Y$ zwischen <u>metrischen</u> Räumen ist bezüglich der von den Metriken induzierten Topologien stetig in $x \in X$ genau dann, wenn für jeden offenen Ball B um f(x) ein offener Ball um x existiert, der unter f in B abgebildet wird. (Und ferner stetig in $x \in X$ genau dann, wenn für alle $\epsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $x' \in X$ mit $d_X(x, x') < \delta$ auch $d_Y(f(x), f(x')) < \epsilon$ folgt.)

Isometrische Einbettung, Isometrie

Sind X,Y metrische Räume, so heißt eine Abbildung $f\colon X\to Y$ isometrische Einbettung

$$\exists \Leftrightarrow \forall x, x' \in X \text{ gilt } d_Y(f(x), f(x')) = d_X(x, x').$$

Eine isometrische Einbettung ist immer injektiv.

Ist f zusätzlich bijektiv, so heißt f <u>Isometrie</u>.

Homöomorphismus

Eine invertierbare Abbildung $f: X \to Y$ topologischer Räume heißt Homöomorphismus, falls f und f^{-1} stetig sind.

Beispiel

• $f: [0,1) \to S^1 \subset \mathbb{C} = \mathbb{R}^2, t \mapsto e^{2\pi i t} (=\cos 2\pi t, \sin 2\pi t)$ ist stetig, injektiv, aber <u>kein</u> Homöomorphismus!

• $id_X \colon X \to X$ ist immer ein Homöomorphismus, Kompositionen von Homöomorphismen ebenfalls.

Bemerkung I.16. 'Homöomorph sein' ist eine Äquivalenzrelation für topologische Räume.

homöomorph

Zwei topologische Räume X und Y heißen <u>homöomorph</u> oder vom gleichen Homöomorphietyp, in Zeichen $X \cong Y$, falls es einen Homöomorphismus $f: X \to Y$ gibt.

Bemerkung I.17. Homöomorphismen erhalten sämtliche topologischen Strukturen:

- Ist $f: X \to Y$ Homöomorphismus, so ist $U \subset X$ offen $\Leftrightarrow f(U)$ offen in Y.
- $A \subset X$ ist abgeschlossen $\Leftrightarrow f(A)$ ist abgeschlossen in Y.
- $f(\bar{A}) = \overline{f(A)}, f(\hat{A}) = (f(\hat{A})).$
- U ist Umgebung von $x \in X \Leftrightarrow f(U)$ ist Umgebung von f(x).

Beispiel

- Jede Isometrie zwischen metrischen Räumen ist ein Homöomorphismus.
- $[0,1] \cong [a,b] \forall a < b \in \mathbb{R}$
- $(0,1) \cong (a,b) \cong \mathbb{R} \forall a < b \in \mathbb{R}$

Beispiel

Die stereographische Projektion ist ein Homö
omorphismus von $S^n \setminus \{N\}, N := (0, \dots, 0, 1) \in \mathbb{R}^{n+1}$, gegeben wie folgt:

Der Schnitt der Geraden im \mathbb{R}^{n+1} durch N und $x \in S^n \setminus \{N\}$ mit der Hyperebene $\mathbb{R}^n = \{x \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\}, f(x)$, ist gegeben durch $x = (x_1, \dots, x_{n+1}) \mapsto (\frac{x_1}{1-x_{n+1}}, \frac{x_2}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}}) =: f(x)$ mit Umkehrabbildung $y = (y_1, \dots, y_n) \mapsto (\frac{2y_1}{||y||^2+1}, \dots, \frac{2y_n}{||y||^2+1}, \frac{||y||^2-1}{||y||^2+1})$.

Einbettung

 $f \colon X \to Y$ stetig heißt Einbettung

 $:\Leftrightarrow X \xrightarrow{f} f(X) \subset Y$ Homöomorphismus.

Beispiel

- Für $A \subset X$ ist die Inklusion $\iota \colon A \hookrightarrow X, x \mapsto x$, stets eine Einbettung.
- $[0,1) \to S^1$ ist <u>keine</u> Einbettung!

• Der Satz über die Umkehrabbildung/ Impliziter Funktionensatz aus der Analysis zeigt:

Ist $f \colon \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar und in $p \in \mathbb{R}^n$ die Jacobi-Matrix Df(p) invertierbar, so existiert eine Umgebung von p, auf der $f\big|_U$ eine Einbettung ist.

Äquivalenz von Einbettungen

Zwei Einbettungen $f,g\colon X\to Y$ heißen <u>äquivalent</u> : \Leftrightarrow \exists Homöomorphismen $h_X\colon X\to X, h_Y\colon Y\to Y$ mit $g\circ h_X=h_Y\circ f,$

d.h. dass das Diagramm

kommutiert.

Knoten

Eine Einbettung $S^1 \to \mathbb{R}^3$ heißt <u>Knoten</u>.

Beispiel

Kapitel II

Topologische Eigenschaften

zusammenhängend

Ein topologischer Raum heißt zusammenhängend : \Leftrightarrow Die einzigen in X gleichzeitig offenen und abgeschlossenen Teilmengen sind \emptyset und X.

Ansonsten heißt X <u>un-</u> oder nicht zusammenhängend.

Überdeckung

Eine Familie $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}^a$ von Teilmengen von X heißt <u>Überdeckung von X</u>: $\Leftrightarrow X = \bigcup_{\alpha \in A} U_{\alpha}$.

 \mathcal{U} heißt <u>offene</u> beziehungsweise <u>abgeschlossene</u> Überdeckung \Leftrightarrow alle U_{α} sind offen beziehungsweise abgeschlossen.

Für $X' \subset X$ heißt eine Familie $\mathcal{U} = \{U_{\alpha}\}$ wie oben Überdeckung von $X' : \Leftrightarrow X' \subset \bigcup_{\alpha \in A} U_{\alpha}$.

 $[^]aA$ Indexmenge

Partition

Eine <u>Partition</u> oder <u>Zerlegung</u> einer Menge ist eine Überdeckung dieser Menge durch paarweise disjunkte Teilmengen.

Bemerkung II.1. Ein topologischer Raum X ist zusammenhängend \Leftrightarrow Es existiert keine Partition von X in zwei nichtleere offene Teilmengen \Leftrightarrow es existiert keine Partition von X in zwei nichtleere abgeschlossene Teilmengen \underline{Denn} : $A \subset X$ ist offen \underline{und} abgeschlossen \Leftrightarrow A und $X \setminus A$ sind offen \Leftrightarrow A und $X \setminus A$ sind abgeschlossen

Beispiel

- \mathbb{Q} als Teilmenge von \mathbb{R} ist nicht zusammenhängend, denn $\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \pi)) \cup (\mathbb{Q} \cap (\pi, +\infty)).$
- Die einzigen zusammenhängenden und mit der diskreten Topologie versehenen Räume sind \emptyset und der nur aus einem Punkt bestehende Raum.

Bemerkung II.2. Allgemein sagt man von einer Menge, sie sei zusammenhängend, wenn diese, aufgefasst als Teilraum eines topologischen Raumes, zusammenhängend ist.

Beispiel

 $[0,1](\subset \mathbb{R})$ ist zusammenhängend, aber $[0,1]\cup(2,3)$ nicht!

Beispiel

Eine Teilmenge A von $\mathbb{R}_{\mathcal{T}_1}$ ist zusammenhängend $\Leftrightarrow A$ ist leer, einpunktig, oder unendlich!

Bemerkung II.3 (Eigenschaften zusammenhängender Mengen). • A zusammenhängend $\Rightarrow \bar{A}$ zusammenhängend

- $A, B \subset X$ zusammenhängend, $A \cap B \neq \emptyset \Rightarrow A \cup B$ zusammenhängend
- $A \cup B$ zusammenhängend, $A \cap B$ zusammenhängend $\not\Rightarrow A, B$ zusammenhängend $(A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q})$

Zusammenhangskomponente

Eine $\underline{\text{Zusammenhangskomponente}}$ eines topologischen Raumes X ist eine $\underline{\text{maximale zusammenhängende}}$ Teilmenge von X.

Bemerkung II.4. • Jeder Punkt von X liegt genau in einer Zusammenhangskomponente, und diese ist die Vereinigung aller diesen Punkt enthaltenden zusammenhängenden Teilmengen.

- Zwei Zusammenhangskomponenten sind damit entweder gleich oder disjunkt.
- Zusammenhangskomponenten sind abgeschlossen.

Satz II.1. Stetige Bilder zusammenhängender Mengen sind zusammenhängend.

(D.h.: Ist $f: X \to Y$ stetig und X zusammenhängend, so auch $f(X) \subset Y$.)

Beweis. Es sei ohne Einschränkung Y = f(X) und sei $Y = U \cup V$ Partition von Y in zwei offene Mengen $\Rightarrow f^{-1}(U), f^{-1}(V)$ sind offen in X (f stetig) und bilden eine Partition von X. X ist zusammenhängend. $\Rightarrow f^{-1}(U)$ oder $f^{-1}(V) = \emptyset$.

Sei o.E. $f^{-1}(U) = \emptyset \Rightarrow U = f(\emptyset) = \emptyset \Rightarrow V = f(X)$ (f surjektiv auf f(X)) \Rightarrow Es existiert <u>keine</u> Partition von Y in nichtleere offene Mengen $\Leftrightarrow Y$ zusammenhängend.

Korollar II.1. Zusammenhang bleibt unter Homöomorphismen erhalten, und ebenso die Zahl der Zusammenhangskomponenten.

Beispiel

Für n > 1 sind \mathbb{R}^n und \mathbb{R} nicht homöomorph!

<u>Denn:</u> $\mathbb{R}^n \cong \mathring{D}^n$ (Einheitskugel) und nimmt man aus \mathring{D}^n einen Punkt p heraus, so bleibt für n > 1 $\mathring{D}^n \setminus \{p\}$ zusammenhängend, $\mathring{D}^1 = (-1,1) \cong \mathbb{R}$ aber nicht!

 $\frac{\text{Angemeiner (Brouwder)}}{m} = \mathbb{R} \iff m - n$

Korollar II.2. Zwischenwertsatz: Eine stetige Funktion $f: [a,b] \to \mathbb{R}$ nimmt jeden Wert zwischen f(a) und f(b) an.

Beispiel

Eine Waffel, wie unregelmäßig auch immer, lässt sich immer in zwei gleich große Teile schneiden.

Bei unzusammenhängenden Waffeln ist die Schnittgerade selbst bei vorgegebener Schnittrichtung nicht eindeutig.

Weg, Anfangspunkt, Endpunkt

ein Weg in einem topologischen Raum X ist eine stetige Abbildung $\gamma\colon \overline{[0,1]}\to X,$ und $\gamma(0)$ heißt Anfangs-, $\gamma(1)$ Endpunkt.

Wegzusammenhang

X heißt wegzusammenhängend

:
$$\Leftrightarrow$$
 Zu je zwei Punkten $x, x' \in X \quad \exists \text{ Weg } \gamma \colon [0, 1] \to X$ mit $\gamma(0) = x, \gamma(1) = x'.$

Beispiel

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = \sin \frac{1}{x}\} \subset \mathbb{R}^2$$
$$B = A \cup \{(0, 0)\}$$

 $\Rightarrow B$ ist zusammenhängend, aber
 nicht wegzusammenhängend.

Bild: http://de.wikipedia.org/w/index.php? title = Datei: Sinuseins durchx.png & filetimestamp = 20080624085708

Kompaktheit

Ein topologischer Raum X heißt <u>kompakt</u>, falls jede offene Überdeckung von X eine endliche Teilüberdeckung enthält.

1 Trennungseigenschaften

T_1 -Raum

Ein topologischer Raum X heißt $\underline{T_1\text{-Raum}}$ bzw. $\underline{\text{erfüllt das erste Trennungsaxiom}}$: \Leftrightarrow Für je zwei verschiedene Punkte von X existiert für jeden dieser Punkte eine Umgebung in X, die den anderen nicht enthält.

 $\forall x \neq y \in X \exists U = U_X \colon y \notin U_X$

T_2 -Raum

 $\forall x \neq y \in X \exists U_x \ni x, U_y \ni y \text{ mit } U_x \cap U_y = \emptyset$

Beispiel

Jeder metrische Raum ist Hausdorff-Raum.

Bemerkung II.5. Hausdorff-Räume sind z.B. deshalb wichtig, weil Grenzwerte dort eindeutig sind!

Grenzwert

Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge von Punkten in einem topologischen Raum X, so heißt $x\in X$ Grenzwert der Folge (x_n) genau dann, wenn zu jeder Umgebung U von x ein $N\in\mathbb{N}$ existiert mit $x_n\in U$ $\forall n\geq N$.

Beispiel

In einem Hausdorff-Raum hat jede Folge höchstens einen Grenzwert.

Bemerkung II.6. Hausdorff-Räume sind auch T_1 -Räume, aber:

Beispiel

In $X = \mathbb{R}_{\mathcal{T}_1}$ ist jeder Punkt abgeschlossen $(\Rightarrow T_1)$, doch je zwei nichtleere offene Mengen schneiden sich - X ist damit nicht T_2 ! "Schlimmer": In $\mathbb{R}_{\mathcal{T}_1}$ ist jeder Punkt Grenzwert der Folge $x_n = n$! Denn eine Umgebung eines Punktes in $\mathbb{R}_{\mathcal{T}_1}$ hat die Form $U = \mathbb{R} \setminus \{x_1, \dots, x_M\}$ mit $x_1 < \dots < x_M$. Dann gilt aber $x_n = n \in U \forall n > x_M$.

2 Abzählbarkeitsaxiome

Umgebungsbasis

Ist X topologischer Raum und $x \in X$, so ist eine <u>Umgebungsbasis</u> oder <u>Basis von X in x eine Familie von Umgebungen von x, sodass jede Umgebung von x eine Umgebung aus der Familie enthält.</u>

Beispiel

Ist B Basis der Topologie eines Raumes X, so ist für jedes $x \in X \{U \in B \mid x \in U\}$ eine Basis von X in x.

Beispiel

In einem <u>metrischen</u> Raum X sind folgende Mengen von Bällen Basen von X in $x \in X$:

- ullet alle offenen Bälle mit Zentrum x
- \bullet alle offenen Bälle mit Zentrum x und rationalen Radii

Beispiel

Ist X mit der diskreten bzw. trivialen Topologie versehen, so ist die 'kleinste' Basis in $x \in X$ gegeben durch $\{\{x\}\}$ bzw. $\{X\}$.

Abzählbarkeitsaxiome, Separabilität

X <u>erfüllt das erste Abzählbarkeitsaxiom</u> : \Leftrightarrow jeder Punkt $x \in X$ besitzt eine abzählbare Basis.

X <u>erfüllt das zweite Abzählbarkeitsaxiom</u> : $\Leftrightarrow X$ selbst besitzt eine abzählbare Basis.

X heißt <u>separabel</u>: $\Leftrightarrow X$ enthält eine abzählbare und dichte $(\bar{A} = X)$ Menge A.

Bemerkung II.7. Das zweite Abzählbarkeitsaxiom impliziert das erste, aber:

Beispiel

Überabzählbare diskrete Räume (wie $(\mathbb{R}, \mathcal{O}_{diskret})$) erfüllen nach Beispiel 2 das erste Abzählbarkeitsaxiom, nicht aber das zweite!

Bemerkung II.8. Jeder metrische Raum erfüllt das erste Abzählbarkeitsaxiom und jeder separable metrische Raum auch das zweite.

Beispiel

 \mathbb{R}_{T_1} erfüllt <u>nicht</u> das erste Abzählbarkeitsaxiom, ist aber separabel - \mathbb{N} ist dicht!

Beispiel

Euklidische Räume und alle ihre Teilmengen erfüllen das 2. Abzählbarkeitsaxiom und sind separabel.

Wozu das Ganze?

- \leadsto Funktionenräume
- \leadsto Mannigfaltigkeiten
- → <u>Satz von Lindelöf:</u> Jede offene Überdeckung eines Raumes, der das zweite Abzählbarkeitsaxiom erfüllt, enthält auch eine abzählbare Teilüberdeckung.

Lokale Kompaktheit

X heißt <u>lokal</u> kompakt

: \Leftrightarrow Jeder Punkt $x\in X$ besitzt eine Umgebung
 U, sodass \overline{U} kompakt ist.

Lokale Endlichkeit

Eine Familie Γ von Teilmengen eines topologischen Raumes X heißt <u>lokal endlich</u>: $\Leftrightarrow \forall x \in X \quad \exists U = U(x) \colon A \cap U = \emptyset \quad \forall A \in \Gamma$ bis auf endlich viele A.

Verfeinerung

 $\begin{array}{l} \Gamma, \Delta \ \ \ddot{U}berdeckungen \ von \ X. \ \Delta \ heißt \ \underline{Verfeinerung} \ von \ \Gamma \\ :\Leftrightarrow \forall A \in \Delta \exists B \in \Gamma \colon A \subset B. \end{array}$

Parakompak the it

Xheißt
 parakompakt : \Leftrightarrow Jede offene Überdeckung besitzt eine lokal endliche offene Verfeinerung.

 $\underline{\text{Cut-off}}$

Kapitel III

Beispiele und Konstruktionen topologischer Räume

1 Mannigfaltigkeiten

Beispiele zu Mannigfaltigkeiten (Exkurs) Doppelpendel, Quanten-

Mannigfaltigkeit, Karte

 $\begin{array}{lll} Ein & topologischer & Raum & M & heißt & \underline{n\text{-}dimensionale} \\ (topologische) & Mannigfaltigkeit, wenn gilt: \end{array}$

- $1.\ M$ ist ein Hausdorff-Raum mit abzählbarer Basis der Topologie
- 2. M ist lokal homöomorph zu \mathbb{R}^n , d.h. zu jedem $p \in M$ existieren eine Umgebung $U = U(p) \subset_{offen} M$ und ein Homöomorphismus $\varphi \colon U \to V, V \subset_{offen} \mathbb{R}^n$.
 - Jedes solche Paar (U,φ) heißt eine <u>Karte</u> oder ein lokales Koordinatensystem um p.

Bemerkung III.1. Die Zahl n, die <u>Dimension von M</u>, ist eindeutig bestimmt! (folgt aus Brouwers Satz von der Invarianz des Gebietes)

Atlas

Ein Atlas für eine topologische n-Mannigfaltigkeit M ist eine Menge $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}^a \text{ von Karten } \varphi_{\alpha} \colon U_{\alpha} \to V_{\alpha} = \varphi(U_{\alpha}) \subset \mathbb{R}^n,$ so dass $M = \bigcup_{\alpha \in \Lambda} U_{\alpha}$

C^k -Atlas, Kartenwechsel

Ein Atlas heißt <u>differenzierbar</u> <u>von der Klasse C^k </u> (oder: C^k -Atlas von M), wenn für alle $\alpha, \beta \in \Lambda$ mit $U_{\alpha} \cap U_{\beta} \neq \emptyset$ der <u>Kartenwechsel</u> $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ eine C^k -Abbildung, also k-mal stetig differenzierbar ist. $(k = 0, 1, 2, \ldots, \infty, \omega)$

 $[^]a\Lambda$ Indexmenge

Verträglichkeit, differenzierbare Struktur

Ist M topologische Mannigfaltigkeit und $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ ein C^k -Atlas von M, so heißt eine Karte (φ, U) von M mit \mathcal{A} verträglich, falls $\mathcal{A}' := \mathcal{A} \cup \{(\varphi, U)\}$ ebenfalls C^k -Atlas ist. Ein C^k -Atlas heißt maximal (oder differenzierbare Struktur (der Klasse C^k)), falls \mathcal{A} alle mit \mathcal{A} verträglichen Karten enthält.

C^k -Mannigfaltigkeit, glatt

Eine differenzierbare Mannigfaltigkeit der Klasse C^k (kurz: C^k -Mannigfaltigkeit) ist ein Paar (M, A) bestehend aus einer topologischen Mannigfaltigkeit M und einer C^k -Struktur auf M. Eine C^∞ -Mannigfaltigkeit heißt auch glatt.

Richtig toller Exkurs zu Mannigfaltigkeiten \dots Killing-Fields, Lie-Groups (festgenommener Matheprof kurz nach 9/11), Perverse Garben, wir leben in einer 4-dimensionalen Mannigfaltigkeit, \dots

2 Produkt-Topologie

Produkt-Topologie

Sind (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) topologische Räume, so bildet

$$\mathcal{B}_{X\times Y} := \{U \times V \mid U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$$

die Basis einer Topologie für die Menge $X \times Y$, und diese heißt Produkt-Topologie auf $X \times Y$.

Versehen mit der Produkt-Topologie ist $X \times Y$ sebst ein topologischer Raum und für gegebene X, Y denkt man sich $X \times Y$ stillschweigend mit der Produkt-Topologie versehen.

Beispiel

Einige Eigenschaften der Produkt-Topologie

- Produkte von Hausdorff-Räumen sind Hausdorff-Räume.
- Produkte von zusammenhängenden Räumen sind zusammenhängend.
- Produkte von wegzusammenhängenden Räumen sind wegzusammenhängend.
- Produkte von kompakten/separablen Räumen sind kompakt/separabel.

• Produkte von Räumen, die das erste oder zweite Abzählbarkeitsaxiom erfüllen, erfüllen diese auch.

Beispiel

Produkte topologischer oder differenzierbarer Mannigfaltigkeiten sind topologische oder differenzierbare¹ Mannigfaltigkeiten.

Beispiel

• $\mathbb{R}^2 \setminus \{0\} \cong S^1 \times \mathbb{R}^{>0}$ (Polarkoordinaten)

- $O(n) \cong SO(n) \times O(1)$
- $(S^1)^n := \underbrace{S^1 \times \ldots \times S^1}_{\text{n mal}}$ heißt <u>n-dimensionaler Torus</u> (TODO: Bild 3:

Exkurs höherdimensionale Sphären)

 $^{^{1}(}C^{\infty})$

3 Differenzierbare Abbildungen

C^l -Abbildung

Es seien (M, \mathcal{A}) eine n-dimensionale C^k -Mannigfaltigkeit, (M', \mathcal{A}') eine n'-dimensionale $C^{k'}$ -Mannigfaltigkeit und $l \leq \min(k, k')$. Eine stetige Abbildung $f: M \to M'$ heißt <u>differenzierbar</u> (von der Klasse C^l) oder kurz: C^l -Abbildung, falls gilt:

$$\forall (\varphi, U) \in \mathcal{A} \text{ und } (\varphi', U') \in \mathcal{A}' \text{ mit } f(U) \cap U' \neq \emptyset \text{ ist}$$

$$\varphi' \circ f \circ \varphi^{-1} \colon \varphi(U \cap f^{-1}(U')) \to \varphi'(f(U) \cap U')$$

eine C^l -Abbildung im üblichen Sinn.

TODO: Exkurs über Tangentialvektoren, Vektorfelder, Satz vom Igel, Physik des starren Körpers, Differentialtopologie

Spezielle Mannigfaltigkeiten: Untermannigfaltigkeiten topologischer Räume:

Satz III.1 (Äquivalente Beschreibungen einer Untermannigfaltigkeit von \mathbb{R}^{n+l}). Für Teilmengen $M \subset \mathbb{R}^{n+l}$ sind äquivalent:

(a)
$$\forall x_0 \in M \exists \ Umgebung \ U = U(x_0) \subset_{offen} \mathbb{R}^{n+l} \ und$$

$$f \in C^{\infty}(U, \mathbb{R}^l) := \{g \colon U \to \mathbb{R}^l \mid g \text{ ist } C^{\infty}\} \text{ mit Rang } Df(x) = l \quad \forall x \in U$$

 2 dergestalt, dass $U \cap M = f^{-1}(0) = \{x \in U \mid f(x) = 0\}$

(b) $\forall x_0 \in M \exists U = U(x) \subset_{offen} \mathbb{R}^{n+l} \text{ und } \varphi \colon U \to \mathbb{R}^{n+l} \text{ mit folgenden } Eigenschaften: } \varphi(U) \subset \mathbb{R}^{n+l} \text{ ist offen, } \varphi \text{ ist } C^{\infty}\text{-Diffeomorphismus } U \to \varphi(U) \text{ und}$

$$\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{ (y_1, \dots, y_{n+l}) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0 \}$$

- (c) $\forall x_0 \in M \exists U = U(x_0) \subset_{offen} \mathbb{R}^{n+l}, W \subset \mathbb{R}^n \text{ offen } und \ \psi \in C^{\infty}(W, U)$ mit
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$

(Jedes solche ψ heißt lokale Parametrisierung von M).

Interpretation

- (a) besagt: $U \cap M$ ist (im Sinne der Rangbedingung) durch l unabhängige Gleichungen $f_1(x) = \ldots = f_l(x) = 0$ definiert.
- (b) besagt: nach Anwendung eines Diffeomorphismus sieht $U\cap M$ wie eine offene Teilmenge eines linearen Unterraumes von \mathbb{R}^{n+l} aus.
- (c) besagt: M lässt sich lokal parametrisieren.

 $^{^2}Df$ ist die Jacobi-Matrix von f

Untermannigfaltigkeit

Eine Menge $M \subset \mathbb{R}^{n+l}$, die eine der Bedingungen (a), (b) oder (c) erfüllt, heißt dann <u>n-dimensionale</u> (glatte/differenzierbare) Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Satz III.2. Äquivalente Beschreibung einer glatten Untermannigfaltigkeit von \mathbb{R}^{n+l} Es sei $M \subseteq \mathbb{R}^{n+l}$. Es sind äquivalent:

- (a) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ f \in C^{\infty}(U, \mathbb{R}^l)$ $mit \ Rang \ Df(x) = l \ f\ddot{u}r \ alle \ x \in U \ dergestalt, \ dass \ U \cap M = f^{-1}(0).$
- (b) $\forall x_0 \in M \exists U = U(x) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ \varphi \colon U \to \mathbb{R}^{n+l} \ mit \ folgenden \ Eigenschaften:$
 - $\varphi(U) \subseteq \mathbb{R}^{n+l}$ ist offen
 - φ ist C^{∞} -Diffeomorphismus $U \to \varphi(U)$
 - $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_n) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0\}$
- (c) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l}, W \subseteq \mathbb{R}^n \text{ offen } und \ \psi \in C^{\infty}(W, U)$ mit folgenden Eigenschaften:
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$.

Beispiel

zu (a)

 $\overline{\text{Die }n}$ -Sphäre vom Radius r

$$S_r^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = r\}$$

ist eine n-dimensionale glatte Untermannigfaltigkeit von \mathbb{R}^{n+1} .

<u>Denn:</u> Definiere $f: \mathbb{R}^{n+1} \to \mathbb{R}, x \mapsto ||x||^2 - r^2$. Dann gilt:

- $S_r^n = f^{-1}(0)$ und
- $Df(x) = (2x_1, \dots, 2x_{n+1}) = 2x$ erfüllt Rang Df(x) = 1 für alle $x \in \mathbb{R}^{n+1} \setminus \{0\} \supseteq S_r^n$ (wegen $||x|| = \sqrt{x_1^2 + \dots + x_{n+1}^2}$).

Allgemeiner:

• Niveaumengen: Es seien $V \subseteq_{\text{offen}} \mathbb{R}^{n+l}, f \in C^{\infty}(V, \mathbb{R}^l), c \in \mathbb{R}^l$. Gilt Rang Df(x) = l in jedem Punkt x der Niveaumenge

$$f^{-1}(c) = \{ x \in V \mid f(x) = c \},\$$

so ist $f^{-1}(c)$ eine glatte *n*-dimensionale Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Beweis. (a) \Rightarrow (b): Es seien U und f wie in (a) gewählt und f_1, \ldots, f_l die Komponenten von f. Sei $x_0 \in M$. Durch Umnummerierung seien die Indizes so gewählt, dass ohne Einschränkung die Reihenfolge so, dass die $(l \times l)$ -Matrix

$$\left(\frac{\partial f_i}{\partial x_{n+j}}\right)_{i,j\in\{1,\dots,l\}}$$

in x_0 invertierbar ist. Definiere die Abbildung $\varphi \colon U \to \mathbb{R}^{n+l}, x \mapsto (x_1, \dots, x_n, f_1(x), \dots, f_l(x))$. Dann gilt:

$$D\varphi(x_0) = (TODO: Matrix2)$$

und damit

$$\det D\varphi(x_0) = \det \left(\frac{\partial f_i}{\partial x_{n+j}}\right)_{i,j} \neq 0.$$

Mit dem Satz über inverse Funktionen (oder "Satz über die Umkehrabbildung") folgt: Es existieren Umgebungen $U' = U'(x_0) \subseteq U$ und $V'(\varphi(x_0)) \subseteq V = \varphi(U)$, so dass $\varphi|_{U'} : U' \to V'$ ist C^{∞} -Diffeomorphismus.

Es gilt: $\varphi(U' \cap M) = \{(y_1, \dots, y_{n+l}) \in \varphi(U') \mid y_{n+1} = \dots = y_{n+l} = 0\}, \underline{\text{denn:}}$ " \subseteq ": ist klar nach Definition von f und φ .

" \supseteq ": Ist y Element der rechten Seite, so existiert $x \in U'$ mit $\varphi(x) = y$ und f(x) = 0. Da $x \in U' \subseteq U$ und f(x) = 0, gilt: $x \in U' \cap M$, und damit $y = \varphi(x) \in \varphi(U' \cap M)$.

(b) \Rightarrow (c): Es seien U und φ wie in (b) gewählt und

$$\pi: \mathbb{R}^{n+l} = \mathbb{R}^n \times \mathbb{R}^l \to \mathbb{R}^n, (x_1, \dots, x_{n+l}) \mapsto (x_1, \dots, x_n),$$

die Projektion und

$$\iota \colon \mathbb{R}^n \to \mathbb{R}^{n+l}, (x_1, \dots, x_n) \to (x_1, \dots, x_n, 0, \dots, 0)$$

die Inklusion.

Setze $W := \pi(\varphi(U \cap M))$ und definiere $\psi \colon W \to U$ durch $\psi := \varphi^{-1} \circ \iota$.

$$\mathbb{R}^{n+l} \xrightarrow{\iota} \mathbb{R}^{n}$$

$$\varphi \uparrow \qquad \qquad \bigcup \mid$$

$$U \xrightarrow{\psi = \varphi^{-1} \circ \iota} W$$

Dann ist W offen und $\psi \colon W \to U \cap M$ ein Homöomorphismus, denn $\iota' \colon W \to \varphi(U \cap M)$ ist Homöomorphismus und $\varphi^{-1} \colon \varphi(U \cap M) \to U \cap M$ ist Homöomorphismus.

Mit der Kettenregel folgt: Für alle $w \in W$ gilt:

$$D\psi(w) = D(\varphi^{-1} \circ \iota')(w) = (D\varphi^{-1})(\iota'(w)) \cdot D\iota'(w)$$

$$\stackrel{(D\varphi^{-1})(y)=((\underline{D}\varphi)(\varphi^{-1}(y)))^{-1}}{=}((D\varphi)(\varphi^{-1}(\iota'(w))))^{-1}\circ\iota'$$
$$=(D\varphi(\psi(w))^{-1}\circ\iota'.$$

Somit ist $D\psi(w)$ als Komposition einer bijektiven und einer injektiven Abbildung injektiv für alle $w \in W$.

 $\underline{\text{(c)}\Rightarrow\text{(a)}}$: Es seien U,W und ψ wie in (c) gewählt und $\psi(\hat{w})=x_0$ für $\hat{w}\in W$. Da Rang $D\psi(\hat{w})=n$ folgt nach evtl. Umnummerierung

$$\left(\frac{\delta\psi_i}{\delta w_j}(\hat{w})\right)_{i,j\in\{1,\dots,n\}}$$

ist invertierbar. Definiere $g: W \times \mathbb{R}^l \to \mathbb{R}^{n+l}, (w,y) \mapsto \psi(w) + (0,y), \text{ d.h.}$ $g(w_1, \ldots, w_n, y_1, \ldots, y_l) = (\psi_1(w), \ldots, \psi_n(w), \psi_{n+1}(w) + y_1, \psi_{n+l}(w) + y_l).$ Dann gilt:

$$Dy(\hat{w}, 0) = (TODO : Matrix 4)$$

ist invertierbar. Mit dem Satz über inverse Funktionen folgt: Es existieren Umgebungen $V = V((\hat{w}, 0)) \subseteq W \times \mathbb{R}^l$ und $U' = U'(g(\hat{w}, 0))$, so dass $g|_V \colon V \to U'$ ein C^{∞} -Diffeomorphismus ist.

Verkleinert man gegebenenfalls V, so kann man ohne Einschränkung annehmen, dass gilt: $U' \subseteq U$. Da $\{w \in W \mid (w,0) \in V\}$ offen ist in W und $\psi \colon W \to \psi(W)$ nach Voraussetzung ein Homöomorphismus ist, folgt: $\{\psi(w) \mid (w,0) \in V\}$ ist offen in $\psi(W)$.

Nach Definition der Unterraumtopologie existiert $U'' \subseteq_{\text{offen}} \mathbb{R}^{n+l}$ mit $\{\psi(w) \mid (w,0) \in V\} = U'' \cap \psi(W)$.

Wegen $\psi(w) = q(w,0)$ bedeutet dies:

$$(*)U''\cap \psi(W)=g(V\cap (W\times \{0\})).$$

Setze $\tilde{U}:=U'\cap U'', \tilde{V}:=(g\big|_V)^{-1}(\tilde{U})=g^{-1}(\tilde{U})\cap V$. Dann ist $g\big|_{\tilde{V}}\colon \tilde{V}\to \tilde{U}$ ein C^∞ -Diffeomorphismus.

Behauptung: Es gilt: $\tilde{U} \cap M = g(\tilde{V} \cap (\mathbb{R}^n \times \{0\})).$

[Beweis: folgt mit (*)].

Ist $\pi: \mathbb{R}^{n+l} \to \mathbb{R}^l, (x_1, \dots, x_{n+l}) \mapsto (x_{n+1}, \dots, x_{n+l})$ die Projektion, so erfüllt $f := \pi \circ (g|_{\tilde{V}})^{-1} \colon \tilde{U} \to \mathbb{R}^l$ die Bedingung in (a).

Satz III.3. $(C^{\infty}$ -Untermannigfaltigkeiten von \mathbb{R}^{n+l} sind C^{∞} -Mannigfaltigkeiten) Es sei $M \subseteq \mathbb{R}^{n+l}$ n-dimensionale C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} und $\{\psi_{\alpha} \colon W_{\alpha} \to U_{\alpha} \cap M \mid \alpha \in \Lambda\}$ eine Menge lokaler Parametrisierungen (wie in (c)) mit $M \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Dann ist $\mathcal{A} = \{(\psi_{\alpha}^{-1}, U_{\alpha} \cap M) \mid \alpha \in \Lambda\}$ ein C^{∞} -Atlas und M eine C^{∞} -Mannigfaltigkeit.

4 Quotientenräume

Erinnerung Jede Partition S einer Menge X bestimmt eine Äquivalenzrelation auf X (und umgekehrt). Menge der Äquivalenzklassen (oder auch: Quotient von X nach S) ist X/S. Zusätzlich existiert dann die Quotientenabbildung $\pi: X \to X/S, x \mapsto [x]$

Bemerkung III.2. Ist X ein topologischer Raum und X/S ein Quotientenraum von X, so gibt es auf X/S eine natürliche Topologie:

Quotienten(raum)topologie

Eine Teilmenge $U \subset X/S$ heißt <u>offen</u> : $\Leftrightarrow \pi^{-1}(U)$ ist offen in X

Bemerkung III.3. Alle im Sinne dieser Definition offenen Teilmengen von X/S definieren dann eine Topologie auf X/S und die Menge X/S zusammen mit dieser Topologie heißt Qotienten<u>raum</u> von X nach S.

Bemerkung III.4. $\pi\colon X\to X/S,\ X/S$ versehen mit der Quotiententopologie, ist dann eine stetige Abbildung zwischen topologischen Räumen.

Eigenschaften der Quotiententopologie

- Quotientenräume zusammenhängender Räume sind zusammenhängend.
- Quotientenräume wegzusammenhängender Räume sind wegzusammenhängend.
- Quotientenräume separabler Räume sind separabel.
- Quotientenräume kompakter Räume sind kompakt.

Achtung: Die Hausdorff-Eigenschaft vererbt sich i.a. nicht!

Beispiel

$$X = \mathbb{R}, \quad S := \{\mathbb{R}^{>0}, \mathbb{R} \backslash \mathbb{R}^{>0}\}$$

TODO: Exkurs: Instabilität von Planetensystemen

5 Quotientenabbildungen

Quotientenabbildung

Ist S eine Partition von X in nichtleere disjunkte Teilmengen und $f\colon X\to Y$ eine Abbildung, die auf jedem Element von S konstant ist, so existiert eine Abbildung $X/S\to Y$, die jedes Element A von S auf $f(a), a\in A$, abbildet.

Diese heißt dann **Quotientenabbildung** von f nach S, in Zeichen f/S.

Interpretation

Allgemeiner S Partition von X, T Partition von Y \Rightarrow Jede Abbildung $f\colon X\to Y$, die jedes Element von S auf ein Element von T abbildet, induziert eine Abbildung

$$f/_{S,T} \colon X/S \to Y/T$$

Bemerkung III.5. Sind X, Y topologische Räume, S Partition von X und $f: X \to Y$ eine auf Elementen von S konstante, stetige Abbildung, so ist auch $f/S: X/S \to Y$ stetig. $f \mapsto f/S$ ist dann Bijektion!

Erinnerung $F: X \to Y$ stetige Bijektion von einem kompakten Raum X auf einen Hausdorff-Raum $Y \Rightarrow F$ ist Homöomorphismus!

Korollar III.1. X kompakt, Y Hausdorffsch und $f: X \to Y$ sei stetig \Rightarrow Der injektive Quotient $f/_{S(f)}$ ist Homöomorphismus $X/_{S(f)} \to f(X)$

injektiver Quotient

 $\underline{\underline{\operatorname{Jede}}}$ Abbildung $f\colon X\to Y$ definiert eine Partition S=S(f) von X, und zwar in die nichtleeren Urbilder der Elemente von Y unter f. Die induzierte Abbildung $f/_{S(f)}\colon X/_{S(f)}\to Y$ ist dann $\underline{\operatorname{injektiv}}$ und heißt injektiver Quotient von f.

Beispiel

$$(x,0) \sim (x,1)$$

$$(x,0) \sim (x,1)$$

 $(0,y) \sim (1,y)$

Möbiusband

Bild Möbiusband von:

http://de.wikipedia.org/w/index.php?title=Datei: M%C3%B6biusband.png&filetimestamp=20090802105255