CS 70 Fall 2021

Discrete Mathematics and Probability Theory

DIS 3A

1 Short Answers

- (a) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?
- (b) How many edges need to be removed from a 3-dimensional hypercube to get a tree?

2 Always, Sometimes, or Never

In each part below, you are given some information about the so-called original graph, OG. Using only the information in the current part, say whether OG will always be planar, always be non-planar, or could be either. If you think it is always planar or always non-planar, prove it. If you think it could be either, give a planar example and a non-planar example.

- (a) OG can be vertex-colored with 4 colors.
- (b) OG requires 7 colors to be vertex-colored.
- (c) $e \le 3v 6$, where e is the number of edges of OG and v is the number of vertices of OG.
- (d) OG is connected, and each vertex in OG has degree at most 2.
- (e) Each vertex in OG has degree at most 2.

CS 70, Fall 2021, DIS 3A

3 Edge Colorings

An edge coloring of a graph is an assignment of colors to edges in a graph where any two edges incident to the same vertex have different colors. An example is shown on the left.

- (a) Show that the 4 vertex complete graph above can be 3 edge colored. (Use the numbers 1,2,3 for colors. A figure is shown on the right.)
- (b) Prove that any graph with maximum degree $d \ge 1$ can be edge colored with 2d 1 colors.
- (c) Show that a tree can be edge colored with d colors where d is the maximum degree of any vertex.

4 Hypercubes

The vertex set of the *n*-dimensional hypercube G = (V, E) is given by $V = \{0, 1\}^n$ (recall that $\{0, 1\}^n$ denotes the set of all *n*-bit strings). There is an edge between two vertices x and y if and only if x and y differ in exactly one bit position. These problems will help you understand hypercubes.

(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit strings.

CS 70, Fall 2021, DIS 3A 2

(b) Show that for any $n \ge 1$, the *n*-dimensional hypercube is bipartite.

CS 70, Fall 2021, DIS 3A 3