Kodowanie ASN.1

Grzegorz Danilewicz

Podstawowe kodowanie BER

O czym mówimy?

 Przykładowe reguły kodowania ze specyfikacji ASN.1 do reprezentacji bitowej

2/-

Podstawy BER

- Podstawowe reguły kodowania BER, to ogólne reguły kodowania dla ASN.1
- Pierwsze zasady kodowania dla ASN.1
- Proste, dość łatwe do wdrożenia
- Zorientowane na strukturę oktetową
- BER może zapewnić składnię transferu dla każdej wartości typu zdefiniowanego w ASN.1

3/49

Basic Encoding Rules

- Składnia abstrakcyjna jest konwertowana na składnię transferową przy użyciu reguły kodowania
- ASN.1 zawiera zestaw podstawowych zasad kodowania zdefiniowanych w ISO 8825/X.209
- X.209 jest nieefektywny, więc zdefiniowane są reguły kodowania upakowanego (Packed Encoding Rules), które dają bardziej zwarte rozwiązanie

5/49

7/49

Podstawy kodowania BER

- Podstawowe zasady kodowania dla ASN.1 kodują każdą wartość ASN.1 w trzech częściach
- ILC częściej przedstawiane jako TLV

I(dentyfier)	L(ength)	C(ontents)
T(ype)	L(ength)	V(alue)

Basic Encoding Rules

- Każdy element danych jest zakodowany tak, aby zawierał
- identyfikator (znacznik lub typ)
- długość wskazującą rozmiar pola danych
- dane, które zawierają rzeczywistą zawartość obiektu
- opcjonalną flagę końca zawartości, jeśli długość danych jest nieznana
- Wyrównywanie do granic oktetu

6/4

8/49

Kodowanie typu

				Тур				
bit	7	6	5	4	3	2	1	О
znaczenie	Kla	asa	P/C			Znacznik	(

2

Kodowanie typu

Kodowanie znacznika

				Тур						
bit	7	6	5	4	3	2	1	0		
znaczenie	Kla	isa	P/C	Znacznik						
Znacznik typu, kodowany binarnie (zależny od klasy)										

9/49

Kodowanie znacznika

				Тур							
bit	7	6	5	4	3	2	1	0			
znaczenie	Kla	asa	P/C	Znacznik							
				Zn		ypu, kodo ależny od		narnie			
Klas	a	7	6			/budowan					
Uniwer	salna	ılna o o ze specyfikacji ASN.1)									

Kodowanie znacznika

11/49 12/49

Kodowanie znacznika dla wartości < 31

Kody dziesiętne znacznika typów złożonych

Znacznik typu klasy uniwersalnej Znaczenie

SEQUENCE, SEQUENCE
OF

17 SET, SET OF

Kody dziesiętne znacznika wbudowanych typów prostych dla wartości < 31 (wybrane)

Znacznik typu klasy uniwersalnej	Znaczenie
0	Zarezerwowany dla BER
1	BOOLEAN
2	INTEGER
3	BIT STRING
4	OCTET STRING
5	NULL
6	OBJECT IDENTIFIER
9	REAL
10	ENUMERATED
12	UTF8String
18	NumericString
22	IA ₅ String
27	GeneralString
29	CHARACTER STRING

Kodowanie znacznika dla wartości ≥ 31

Тур											
bit	7	6	5	4	3	2	1	0			
znaczenie	Kla	isa	P/C			Znacznik					
Тур	o	0	0	1	1	1	1	1			
II oktet	1										
	1										
	1		Bity długiego znacznika (kolejne)								
ostatni oktet	0										

15/49 16/49

4

Kody dziesiętne znacznika wbudowanych typów prostych dla wartości ≥ 31 (wybrane)

Znacznik typu klasy uniwersalnej	Znaczenie
31	DATE
32	TIME-OF-DAY
33	DATE-TIME
34	DURATION

Ale:

Znacznik typu klasy uniwersalnej	Znaczenie
14	TIME

17/49

Przykład kodowania DATE [UNIVERSAL 31]

Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	o	Kodowanie
Тур	0	0	0						Typ prosty

Przykład kodowania DATE [UNIVERSAL 31]

• Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	0	Kodowanie
Тур	0	0							Uniwersalny

18/

Przykład kodowania DATE [UNIVERSAL 31]

• Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	0	Kodowanie
Тур	0	0	0	1	1	1	1	1	≥ 31

19/49

Przykład kodowania DATE [UNIVERSAL 31]

■ Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	0	Kodowanie
Тур	0	0	0	1	1	1	1	1	1FH
Ostatni oktet znacznika	o								21/49

Przykład kodowania DATE [UNIVERSAL 31]

Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	0	Kodowanie
Тур	0	0	0	1	1	1	1	1	1FH
Ostatni oktet znacznika	o	o	o	1	1	1	1	1	1FH 23/49

Przykład kodowania DATE [UNIVERSAL 31]

• Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Oktet	7	6	5	4	3	2	1	0	Kodowanie
Тур	0	0	0	1	1	1	1	1	1FH
Ostatni oktet znacznika	o	o	o	1	1	1	1	1	Znacznik = 31 22/49

Przykład kodowania DATE [UNIVERSAL 31]

■ Definicja typu ASN.1

Date ::= DATE

• Nadanie wartości zmiennej nowego typu

myDay Date ::= "2022-06-30"

Początek zakodowanej informacji (2 oktety typu)

1F 1F

Podstawy kodowania BER

- Podstawowe zasady kodowania dla ASN.1 kodują każdą wartość ASN.1 w trzech częściach
- ILC częściej przedstawiane jako TLV

I(dentyfier)	L(ength)	C(ontents)
T(ype)	L(ength)	V(alue)

26/49

Forma krótka pola długości

Kodowanie długości

- Forma krótka, gdy długość jest mniejsza od 128 oktetów
- Forma długa, gdy długość mieści się w granicach $<128,2^{1008})$ oktetów
- Długość nieskończona (nieokreślona)

27/4

Forma długa pola długości

Oktet	7	6	5	4	3	2	1	0			
Długość wskaźnika długości	1	1 K – długość pola L									
Długość zawartości		Pole L 1. K oktetów 2. Koduje ile oktetów ma V									
Zawartość lub wartość	V										

Przykład dla zawartości równej 128 oktetów:

- 1. 1000 0001 81H
- 2. 1000 0000 80H

29/49

Długość nieskończona

Oktet	7	6	5	4	3	2	1	0		
Długość wskaźnika długości	1	0	0	0	0	0	0	0		
Zawartość lub wartość	(nieokreślona długość)									
Jawny wskaźnik	0	0	0	0	0	0	0	О		
końca zawartości	0	0	0	0	0	0	0	0		

Przykład:

1. 1000 0000 - 80H ... N-1 0000 0000 - 00H

0000 0000 - 00H

30/49

Przykłady

```
MyModule DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

B ::= [APPLICATION 0] EXPLICIT BOOLEAN
b B ::= FALSE

i INTEGER ::= -1
j INTEGER ::= 255

S ::= SEQUENCE {
   a INTEGER,
   b OCTET STRING
}
s S ::= { a 4, b 'ABCD'H }
END
```

Kodowanie typów złożonych

- Typy zawarte w typach są wysyłane w części zawartości wiadomości
- Wskaźnik długości zawartości typu zawierającego obejmuje wszystkie oktety typu zawartego

Тур А	Długość zawartości	Тур В	Długość zawartości B	Zawartość B				
	A	Zawartość A						

31/4

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Klasa: Aplikacja

34/49

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

_		V					
•	' L		L	٧			
6oH	озН	01H	01H	ооН			
0110 0000	0000 0011	0000 0001	0000 0001	0000 0000			

Klasa: Aplikacja P/C: aplikacja musi być typu złożonego Znacznik: o

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Klasa: Aplikacja P/C: aplikacja musi być typu złożonego

35/4

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Długość zawartości typu B

36/49

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Zawartość typu B: [UNIVERSAL 1], boolean

38/49

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

-		V					
•	_	Т	L	٧			
6oH	озН	01H	01H	ооН			
0110 0000	0000 0011	0000 0001	0000 0001	0000 0000			

Zawartość typu B: [UNIVERSAL 1], boolean Długość zawartości typu boolean Zawartość – FALSE (ooH)

Przykłady

B ::= [APPLICATION 0] EXPLICIT BOOLEAN

b B ::= FALSE

Zawartość typu B: [UNIVERSAL 1], boolean Długość zawartości typu boolean

39/4

Przykłady

i INTEGER ::= -1 j INTEGER ::= 255

[UNIVERSAL 2], integer, -1

[UNIVERSAL 2], integer, 255

41/49

Przykłady - kodowana długość

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                     value Division ::=
Division ::= CHOICE {
                                       r-and-d :
 labID 48.
   majorProduct OCTET STRING
                                         currentProject '44582D37'H
 r-and-d
              [1] IMPLICIT SEQUENCE {
   labID
                INTEGER.
   currentProject OCTET STRING
 unassigned
              [2] IMPLICIT NULL
ÉND
```

Przykłady - długość nieskończona

```
S ::= SEQUENCE {
    a INTEGER,
    b OCTET STRING
}
S S ::= { a 4, b 'ABCD'H }

T L V

T = [UNIVERSAL 16], structured, sequence
L = 7

T = CONTEXT [o], simple T = CONTEXT [1], simple
L = 1

V = 04H

V = ABCDH
```

Przykład CHOICE

```
value Division ::=
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
Division ::= CHOICE {
                                       r-and-d :
 labID 48.
   majorProduct OCTET STRING
                                         currentProject '44582D37'H
 r-and-d
              [1] IMPLICIT SEQUENCE {
   labID
                INTEGER.
   currentProject OCTET STRING
 unassigned
              [2] IMPLICIT NULL
ÉND
                                                                   Kontekst
```

45/49 46/49

Division ::= CHOIC manufacturing [0 plantID I	},								:D37'H	
<pre>r-and-d [1] IMPLICIT SEQUENCE { labID</pre>										
unassigned [2	2] IMPLICI	T NU	ILL							
} END	Oktet	7	6	5	4	3	2	1	0	Kodowanie
	Тур	1	0	1						Typ złożony

47/49

49/49

Przykład CHOICE

Przykład CHOICE

48/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                              value Division ::=
Division ::= CHOICE {
                                                r-and-d :
 manufacturing [0] IMPLICIT SEQUENCE {
  plantID     INTEGER,
                                                  labID 48.
    majorProduct OCTET STRING
                                                  currentProject '44582D37'H
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                             Kod:
    labID
                    INTEGER.
    currentProject OCTET STRING
                                            A1 09
  unassigned
                 [2] IMPLICIT NULL
ÉND
                    Długość o
                                                                                  о9Н
```

Division ::= CH manufacturing plantID	MPLICIT TAGS ::= BEGIN OICE { [0] IMPLICIT SEQUENCE { INTEGER, t OCTET STRING	<pre>value Division ::= r-and-d : { labID 48, currentProject }</pre>	
r-and-d labID currentProj },	[1] IMPLICIT SEQUENCE { INTEGER, ect OCTET STRING	Kod: A1 09	
unassigned	[2] IMPLICIT NULL		
} END	Oktet 7 6	5 4 3 2	1 o Kodowanie
	Тур о о		Uniwersalna

51/49

53/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                      value Division ::=
Division ::= CHOICE {
                                       r-and-d:
 labID 48.
   majorProduct OCTET STRING
                                         currentProject '44582D37'H
 },
 r-and-d
              [1] IMPLICIT SEQUENCE {
                                    Kod:
   labID
                INTEGER.
   currentProject OCTET STRING
                                    A1 09
 },
 unassigned
              [2] IMPLICIT NULL
ÉND
                                                                  INTEGER
```

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                           value Division ::=
Division ::= CHOICE {
                                             r-and-d :
 manufacturing [0] IMPLICIT SEQUENCE {
                                               labID 48,
   plantID
                 INTEGER,
   majorProduct OCTET STRING
                                               currentProject '44582D37'H
 },
  r-and-d
                [1] IMPLICIT SEQUENCE {
                                          Kod:
   labID
                  INTEGER,
   currentProject OCTET STRING
                                          A1 09
                [2] IMPLICIT NULL
 unassigned
END
                                                                            Typ prosty
```

52/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                              value Division ::=
Division ::= CHOICE {
                                                r-and-d :
  manufacturing [0] IMPLICIT SEQUENCE {
  plantID     INTEGER,
                                                  labID 48.
    majorProduct OCTET STRING
                                                  currentProject '44582D37'H
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                             Kod:
    labID
                    INTEGER.
    currentProject OCTET STRING
                                             A1 09
                                                    02
  unassigned
                 [2] IMPLICIT NULL
ÉND
                                                                                   02H
```

<pre>M DEFINITIONS IMPLICIT TAGS Division ::= CHOICE { manufacturing [0] IMPLICI plantID</pre>	T SEQUENCE {				'44582	D37'H	
<pre>labID INTEGER, currentProject OCTET ST },</pre>		Kod: A1 09	2 01				
unassigned [2] IMPLICI	T NULL						
END Oktet	7 6	5 4	3	2	1	0	Kodowanie
Długość	0 0	0 0	0	0	0	1	01H

55/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                      value Division ::=
Division ::= CHOICE {
                                        r-and-d:
 labID 48.
   majorProduct OCTET STRING
                                         currentProject '44582D37'H
 },
 r-and-d
              [1] IMPLICIT SEQUENCE {
                                     Kod:
   labID
                INTEGER.
   currentProject OCTET STRING
                                     A1 09
 },
                                           02 01 30
 unassigned
              [2] IMPLICIT NULL
ÉND
                                                                  Uniwersalna
```

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                           value Division ::=
Division ::= CHOICE {
                                              r-and-d :
  manufacturing [0] IMPLICIT SEQUENCE {
                                                labID 48,
    plantID
                 INTEGER,
    majorProduct OCTET STRING
                                               currentProject '44582D37'H
 },
  r-and-d
                [1] IMPLICIT SEQUENCE {
                                          Kod:
    labID
                   INTEGER,
   currentProject OCTET STRING
                                          A1 09
                                                 02 01 30
  unassigned
                [2] IMPLICIT NULL
ÉND
                   Wartość
                                                                            30H = 48
```

56/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                              value Division ::=
Division ::= CHOICE {
                                                r-and-d :
  manufacturing [0] IMPLICIT SEQUENCE {
  plantID     INTEGER,
                                                   labID 48.
    majorProduct OCTET STRING
                                                   currentProject '44582D37'H
  r-and-d
                  [1] IMPLICIT SEQUENCE {
                                             Kod:
    labID
                    INTEGER.
    currentProject OCTET STRING
                                             A1 09
                                                    02 01 30
  unassigned
                  [2] IMPLICIT NULL
ÉND
                       Тур
                                                                                 Typ prosty
```

	DICE {	SEQUENCE		<pre>value Division ::= r-and-d : { labID 48, currentProject }</pre>				D37'H	
<pre>r-and-d labID currentProje },</pre>		od: 1 09	2 01 30						
unassigned	[2] IMPLICIT	NULL							
} END	Oktet					2	1		Kodowanie
	Тур	0 0	o	0	0	1	0	o	OCTET STRING

59/49

61/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                             value Division ::=
Division ::= CHOICE {
                                               r-and-d:
  manufacturing [0] IMPLICIT SEQUENCE {
  plantID      INTEGER,
                                                 labID 48,
    majorProduct OCTET STRING
                                                 currentProject '44582D37'H
  },
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                            Kod:
   labID
                   INTEGER,
    currentProject OCTET STRING
                                            A1 09
  },
                                                   02 01 30
  unassigned
                 [2] IMPLICIT NULL
                                                   04 04
ÉND
                    Długość o
                                                                                 04H
```

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                           value Division ::=
Division ::= CHOICE {
                                             r-and-d :
 manufacturing [0] IMPLICIT SEQUENCE {
                INTEGER,
                                               labID 48,
   plantID
   majorProduct OCTET STRING
                                              currentProject '44582D37'H
 },
  r-and-d
                [1] IMPLICIT SEQUENCE {
                                          Kod:
   labID
                  INTEGER,
   currentProject OCTET STRING
                                         A1 09
                                                02 01 30
                                                04
                [2] IMPLICIT NULL
 unassigned
ÉND
                                                                              04H
```

60/49

Przykład CHOICE

<pre>M DEFINITIONS IMPLICIT TAGS ::= BEGIN Division ::= CHOICE { manufacturing [0] IMPLICIT SEQUENCE { plantID</pre>					<pre>value Division ::= r-and-d : { labID 48, currentProject '44582D37'H }</pre>							
<pre>r-and-d [1] IMPLICIT SEQUENCE { labID</pre>					Kod: A1 09 02 01 30 04 04 44 58 2D 37							
} END	Oktet	7	6	5	4	3	2	1	0	Kodowanie		
LIND	Wartość	0	1	0	0	0	1	0	0	44H		
		0	1	0	1	1	0	0	0	58H		
		0	0	1	0	1	1	0	1	2DH		
		0	0	1	1	0	1	1	1	37^{Ң2/49}		

```
value Division ::=
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                             r-and-d :
Division ::= CHOICE {
  manufacturing [0] IMPLICIT SEQUENCE {
    plantID
                INTEGER,
                                                labID 48,
    majorProduct OCTET STRING
                                               currentProject '44582D37'H
  },
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                          Kod:
   labID
                   INTEGER,
    currentProject OCTET STRING
                                          A1 09
                                                                     długość 3
                                                 02 01 30
                                                 04 04 44 58 2D 37
                                                                     długość 6
  unassigned
                [2] IMPLICIT NULL
END
```

Przykład CHOICE

```
value Division ::=
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                              r-and-d:
Division ::= CHOICE {
  manufacturing [0] IMPLICIT SEQUENCE {
   plantID
                 INTEGER,
                                                labID 48,
    majorProduct OCTET STRING
                                                currentProject '44582D37'H
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                          Kod:
   labID
                   INTEGER,
   currentProject OCTET STRING
                                          A1 09
                                                                      długość 1
                                                 02 01 30
                                                 04 04 44 58 2D 37
 unassigned
                [2] IMPLICIT NULL
END
```

63/49

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                       value Division ::=
Division ::= CHOICE {
                                        r-and-d :
 labID 48.
   majorProduct OCTET STRING
                                          currentProject '44582D37'H
 },
 r-and-d
              [1] IMPLICIT SEQUENCE {
                                     Kod:
   labID
                 INTEGER.
   currentProject OCTET STRING
                                     A1 09
 },
                                            02 01 30
                                           04 04 44 58 2D 37
                                                              długość 4
              [2] IMPLICIT NULL
 unassigned
ÉND
```

Przykład CHOICE

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
                                             value Division ::=
Division ::= CHOICE {
                                               r-and-d :
  manufacturing [0] IMPLICIT SEQUENCE {
    plantID
                 INTEGER,
                                                 labID 48.
    majorProduct OCTET STRING
                                                 currentProject '44582D37'H
  r-and-d
                 [1] IMPLICIT SEQUENCE {
                                            Kod:
    labID
                   INTEGER.
    currentProject OCTET STRING
                                            A1 09
                                                  02 01 30
                                                  04 04 44 58 2D 37
  unassigned
                 [2] IMPLICIT NULL
ÉND
                                 labID
                                                       currentProject
            T=A1 L=09 T=02 L=01 V=30
                                               T = 04 L = 04 V = 44 58 2D 37
                                                                                  66/49
                                 Typ złożony – Division (zawartość 9 oktetów)
```

65/49

```
M DEFINITIONS IMPLICIT TAGS ::= BEGIN
Division ::= CHOICE {
   manufacturing [0] IMPLICIT SEQUENCE {
      plantID INTEGER,
      majorProduct OCTET STRING }
},

r-and-d [1] IMPLICIT SEQUENCE {
      labID INTEGER,
      currentProject OCTET STRING }
},

unassigned [2] IMPLICIT NULL A1 09 02 03
```

```
value Division ::=
r-and-d :
{
   labID 48,
   currentProject '44582D37'H
}
```

Kod heksadecymalny dla ciągu bitów wysyłanego i odbieranego do/z łącza:

A1 09 02 01 30 04 04 44 58 2D 37

67/49

Zapis wartości typu REAL

Zapis wartości rzeczywistych w ASN.1
 { mantysa, baza, cecha }
 wartość = mantysa × baza^{cecha}

• Przykład zapisu wartości 10.0 w ASN.1 ten REAL ::= { 10, 2, 0 } ten = 10×2^0

68/4

Zapis wartości typu REAL

Zasady

- mantysa i cecha mogą przyjmować dowolną (dodatnią bądź ujemną) wartość całkowitą
- baza może przyjmować wartość 2, 4 lub 16
- każda kombinacja tych wartości jest dozwolona
- Zapis z bazą 10 jest możliwy w notacji ASN.1, ale wtedy zapis wartości traktowany jest jak łańcuch znaków

Zapis wartości typu REAL

 Dla kodowania mantysa jest dodatkowo dzielona na kolejne pola

 $mantysa = znak \times liczba \times 2^{skalowanie}$

- Zasady
- znak może przyjmować wartość +1 lub -1
- liczba jest dodatnią wartością całkowitą
- skalowanie może przyjmować wartości 0, 1, 2 lub 3

69/49

Zapis wartości typu REAL

• Przykład

```
ten REAL ::= { 10, 2, 0 } 

ten = 10 \times 2^0 (mantysa = 10) 

mantysa = 1 \times 10 \times 2^0 (znak = +1, liczba = 10, skalowanie = 0)
```

71/49

Kodowanie wartości typu REAL w BER

Kodowanie wartości typu REAL w BER

Kodowanie wartości typu REAL w BER

18

BER - CER - DER

- BER posiada wiele opcji kodowania, np.
- kodowanie o określonej długości a kodowanie o nieokreślonej długości
 niesegmentowane wartości łańcuchowe a wartości łańcuchowe podzielone na segmenty
- Jedna wartość może mieć wiele zakodowanych postaci
- Nieodpowiednie dla np. sum kontrolnych czy podpisów cyfrowych
- Rozwiązanie: ograniczone reguły kodowania wywodzące się z BER
- kanoniczne zasady kodowania (CER)
- kodowanie zawsze o nieokreślonej długości
- ciągi zakodowane w segmentach po 1000 oktetów
- Wyróżnione reguły kodowania (DER)
- zawsze kodowanie o określonej długości
- brak segmentacji w wartościach ciągów

75/49

Podstawy PER

- Specjalistyczne kodowanie oparte na znajomości typów danych
- Generuje znaczniki tylko wtedy, gdy są potrzebne, aby zapobiec niejasności
- Generuje długości tylko wtedy, gdy rozmiar obiektu może się zmieniać
- Długości reprezentowane są w zwartej formie

Podstawy PER

- Problemy BER
- BER jest gadatliwy ilość informacji sterujących jest ogromna w porównaniu z ilością rzeczywistych danych
- BER nie jest dobry, jeśli zdolności przesyłowe są ograniczone
- Packed Encoding Rules (PER) minimalizują liczbę przesyłanych oktetów i bitów
- Bardziej złożone niż BER
- Zorientowane na kodowanie bitowe

76/49

Podstawy PER

- Kodowanie nie zawsze jest wyrównane do granic oktetów chyba że zastosowano wariant "wyrównany" (aligned) reguł
- Elementy opcjonalne w sekwencji są wskazywane przez listę flag jednobitowych umieszczonych na początku sekwencji

77/49

Podstawy PER

- Tylko istotne informacje są przesyłane przy użyciu najmniejszej potrzebnej liczby bitów
- Informacje kontrolne są wysyłane tylko w razie potrzeby
- gdy obecne są opcjonalne komponenty
- długości list
- wybrane alternatywy z CHOICE
- Warianty z wyrównaniem do oktetu i bez
- wyrównany czasami dodawane są bity wypełniające, aby wartości zaczynały się od granicy oktetu
- niewyrównany brak bitów wypełniających (UPER)

79/49

81/49

Prosty przykład kodowania PER

Jak kodować wartość całkowitą 5?

PER
Ograniczanie typu nie ma dużego
znaczenia w kodowaniu BER
Każdy przypadek wymaga 24 bitów

oooB

• Uwagi:

- Bez identyfikatora typu
- Długość kodowana tylko, gdy potrzeba
- Kodowanie wartości używa najmniejszej koniecznej liczby bitów

Prosty przykład kodowania PER

Jak kodować wartość całkowitą 5?

		BER		PER		
INTEGER	02H	01H	05H	01H	05H	
INTEGER (05)	02H	01H	05H	10	ıB	
INTEGER (010)	02H	01H	05H	010	1B	
INTEGER (510)	02H	01H	05H	00	οВ	

- Uwagi:
 - Bez identyfikatora typu
 - Długość kodowana tylko, gdy potrzeba
 - Kodowanie wartości używa najmniejszej koniecznej liczby bitów

80/49

Prosty przykład kodowania PER

Jak kodować wartość całkowitą 5?

Uwagi:

- Bez identyfikatora typu
- Długość kodowana tylko,
- Kodowanie wartości używa koniecznej liczby bitów

Ograniczanie typu ma realne znaczenia w kodowaniu PER

Prosty przykład kodowania PER

■ Jak kodować wartość całkowita 5? PER 01H 05H 02H 01H 05H INTEGER 02H 01H 05H INTEGER (0..5)101B INTEGER (0..10) 02H 01H 05H 0101B INTEGER (5..10) 02H 01H 05H oooB Uwagi: - Bez identyfikatora typu N wartości kodowanych na maks. - Długość kodowana tylko, [log₂ N] bitach - Kodowanie wartości używa koniecznej liczby bitów

83/49

Prosty przykład kodowania PER

Prosty przykład kodowania PER

Przykład kodowania PER dla typu złożonego

Przykład kodowania PER dla typu złożonego

```
S SEQUENCE: tag = [UNIVERSAL 16] constructed; length = 6
a INTEGER: tag = [0] primitive; length = 1
4
b BOOLEAN: tag = [1] primitive; length = 1
TRUE

BER, określona długość PER
30 06 80 01 04 81 01 FF B8
sequence, len = 6
context, tag = 0 (integer), len = 1, v = 4
context, tag = 1 (boolen), len = 1, v = <> 0
```

87/49

Przykład kodowania PER dla typu złożonego

Przykład kodowania PER dla typu złożonego

88/49

Przykład kodowania PER dla typu złożonego

```
S ::= SEQUENCE {
    a INTEGER (1..5),
    b BOOLEAN OPTIONAL
}

s S ::= { a 4, b TRUE }

Ograniczenie wartości –
    struktura indeksowana od o do 4

BER, określona długość

30 06 80 01 04 81 01 FF

B8

1011 1000
```

89/49

Przykład kodowania PER dla typu złożonego

Przykład kodowania PER dla typu złożonego

93/49

Przykład kodowania PER dla typu złożonego

92/49

94/49

Przykład kodowania PER dla typu złożonego

```
S::= SEQUENCE { -- AUTOMATIC TAGS a INTEGER (1..5), b BOOLEAN OPTIONAL } s S::= { a 4, b TRUE }

BER, określona długość PER 30 06 80 01 04 81 01 FF B8 1011 1000 zysk 7/8 = 87,5%
```

23