Exploration 1-3a: Translations and Dilations, Numerically

Date: _____

Objective: By calculating values and plotting points, discover the effect on a function graph of adding and multiplying by constants.

1. The table shows values of a **pre-image** function y = f(x). The graph of f is a set of line segments connecting the points, shown dashed in the figure. Find values of the **image** function g(x) = f(x) + 3. For instance, g(-2) = 2 + 3 = 5. Plot the graph of this transformed function.

X	f(x)	g(x)
-2	2	
-1	3	
0	1	
1	-2	
2	0	
3	1	

2. The transformation in Problem 1 is a **vertical translation** by 3 units. Give the meaning of a vertical translation.

3. Use the values of f(x) in Problem 1 to make a table of values of a new image function, g(x) = f(x - 3). For instance, g(1) = f(1 - 3) = f(-2) = 2. Plot the image of this transformed function.

X	g(x) = f(x-3)					
1						
2						
3						
4						
5						
6						

4. Describe the transformation in Problem 3.

5. Use the values of f(x) in Problem 1 to make a table of values of a new image function, g(x) = 2f(x). For instance, $g(-1) = 2f(-1) = 2 \cdot 3 = 6$. Plot the image of this transformed function.

X	g(x) = 2f(x)							y					
-2			•	•	· ·		· · 5	- · - ·					
-1						į	· ^\	[.					
0		<u>.</u>	.5	•			. `	· ·	· /	, ^^	•		· X
1								- \	/ `.			•	
2							∸5	- ·					
3		٠	٠	۰	٠	٠	٠	Ι.	٠	۰	۰	۰	٠

- 6. The transformation in Problem 5 is a **vertical dilation** by a factor of 2. Give the meaning of a vertical dilation, and explain how it differs from a vertical translation.
- 7. Use the values of f(x) in Problem 1 to make a table of values of a new image function, $g(x) = f(\frac{1}{2}x)$. For instance,

$$g(-2) = f\left(\frac{1}{2} \cdot (-2)\right) = f(-1) = 3$$

Plot the image of this transformed function.

X	$g(x) = f\left(\frac{1}{2}x\right)$
-4	
-2	
0	
2	

6

- 8. The transformation in Problem 7 is a **horizontal dilation.** By what factor is the graph dilated? How is that factor related to the $\frac{1}{2}$ in $f(\frac{1}{2}x)$?
- 9. What did you learn as a result of doing this Exploration that you did not know before?