# Pulse Path

Bongo Bozos | Sep 29, 2024



### Overview

#### What's at risk

Time is of the essence when providing emergency medical care. Sadly, ambulances are frequently delayed in responding to critical accidents, which results in **avoidable fatalities**. Numerous lives are impacted by this important issue, which highlights a serious weakness in the public sector's capacity to respond.

#### What we ask for

We offer a system based on four important data points (hospital locations, patient locations, real-time ambulance locations, and historical accident data) that might potentially save **millions of lives per year.** Since no personal patient data is needed, privacy is not a concern, albeit prioritization based on severity is an option. Since all models are internally performed on Wolfram One, no data is lost from the system, which makes **integration easy for cities.** 

#### What we built

Using geographic libraries and TimeTravel from Wolfram One, we have developed an **advanced patient prediction model to forecast ambulance demands** based on historical and real-time data. Adjustable weights are included in the model for external inputs such as news and crises. We've developed a really effective method by combining these potent Wolfram tools.

#### How will this help?

This system will dramatically improve ambulance response times by predicting demand and positioning ambulances in advance, using real-time and historical data. This technology can reduce **mortality** rates, optimize resources and therefore reduce cost and increase public trust in emergency services.

## Examples

#### Situation A

Ambulance services in Paris are inefficient, causing overcrowding in some areas and slow response times in others.



Optimized ambulance services in Paris ensure swift response times throughout the city.



### Situation B

Overcrowding in hospitals and ambulances in the west is resulting in inadequate emergency response in the east.



Despite suboptimal hospital locations, ambulances effectively cover major neighborhoods.



- Patients (Red)
- Ambulances (Blue)
- Previous Accidents (Green)
- Hospitals (Purple)