협업필터링(CF)

- Matrix Factorization

추천시스템 종류

행렬 분해(MF) 기반의 잠재 요인 협업필터링

잠재 요인 협업 필터링의 개요

잠재 요인 협업 필터링은 사용자-아이템 평점 행렬 속에 숨어 있는 잠재 요인을 추출해 추천 예측을 할 수 있게 하는 기법입니다. 대규모 다차원 행렬을 SVD와 같은 행렬 분해(Matrix Factorization) 기법으로 분해하는 과정에서 잠재 요인을 추출하는데, 이 잠재 요인을 기반으로 사용자-아이템 평점 행렬을 재 구성하면서 추천을 구현합니다.

잠재 요인 협업 필터링의 이해

잠재 요인 협업 필터링은 사용자-아이템 평점 행렬 속에 숨어 있는 잠재 요인을 추출해 추천 예측을 할 수 있게 하는 기법입니다

잠재 요인 협업 필터링 – 넷플릭스 추천 엔진 경연

백만 달러의 상금이 걸린 넷플릭스 추천 엔진 경연 대회 우승팀 사진

행렬 분해를 통한 잠재 요인 협업 필터링

 잠재 요인 협업 필터링의 행렬 분해 목표는 희소 행렬 형태의 사용자-아이템 평점 행렬을 밀집(Dense) 행렬 형태의 사용자-잠재 요인 행렬과 잠재 요인-아이템 행렬로 분해 한 뒤 이를 재 결합하여 밀집 행렬 형태의 사용자-아이템 평점 행렬을 생성하여 사용자에게 새로운 아이템을 추천하는 것입니다.

행렬 분해를 통한 잠재 요인 협업 필터링

행렬 분해를 통한 잠재 요인 협업 필터링

잠재 요인 기반의 행렬 분해 이해

- M은 총 사용자 수
- N은 총 아이템 수
- K는 잠재 요인의 차원 수
- R은 M X N 차원의 사용자-아이템 평점 행렬
- P는 사용자와 잠재 요인과의 관계 값을 가지는
 M X K 차원의 사용자-잠재 요인 행렬
- Q는 아이템과 잠재 요인과의 관계 값을 가지는 N X K 차원의 아이템-잠재 요인 행렬
- Q.T는 Q 매트릭스의 행과 열 값을 교환한 전치 행렬

행렬 분해를 통한 평점 예측

$$\hat{r}$$
 = 2.14 * 1.36 + 0.08 * 0.75 = 2.97

행렬 분해를 통한 평점 예측

 \hat{r} (2,3) = 2.14 * 1.41 + 0.08 * 0.14 = 3.02

행렬 분해를 통한 평점 예측

사용자-아이템 평점 행렬 분해 이슈

사용자-아이템 평점 행렬

	Item 1	Item 2	Item 3		Item M
User 1	3	?	3	?	?
User 2	4	2		•	3
User 3		1	2		2
User 4	1				
		3	1		
User N	4	2			5

그러나 SVD 는 Missing Value 가 없는 행렬에 적용 가능 합니다. 따라서 P 와 Q 행렬을 일반적인 SVD 방식으로는 분해 할 수 없습니다.

P 와 Q 를 모르는데 어떻게 R 을 예측할 수가 있는가?

경사 하강법(Gradient Descent)를 이용하여 P 와 Q에 기반한 예측 R 값이실제 R 값과 가장 최소의 오류를 가질 수 있도록 비용함수 최적화를 통해 P 와 Q를 최적화 유추.

경사 하강법 기반의 행렬 분해

경사 하강법을 이용한 행렬 분해 방법은 P와 Q 행렬로 계산된 예측 R 행렬 값이 실제 R 행렬 값과 가장 최소의 오류를 가질 수 있도록 반복적인 비용 함수 최적화를 통해 P와 Q를 유추해내는 것입니다

경사 하강법 기반의 행렬 분해 순서

- 1. P와 Q를 임의의 값을 가진 행렬로 설정합니다.
- 2. P와 Q.T 값을 곱해 예측 R 행렬을 계산하고 예측 R 행렬과 실제 R 행렬에 해당하는 오류 값을 계산합니다.
- 3. 이 오류 값을 최소화할 수 있도록 P와 Q 행렬을 적절한 값으로 각각 업데이트합니다.
- 4. 만족할 만한 오류 값을 가질 때까지 2, 3번 작업을 반복하면서 P와 Q 값을 업데이트해 근사화합니다

경사 하강법 기반의 행렬 분해 비용 함수

실제 값과 예측값의 오류 최소화와 L2 규제(Regularization)를 고려한 비용 함수식

$$min\sum (\eta_{u,i} - p_u q_i^t)^2 + \lambda \left(\| q_i \|^2 + \| p_u \|^2 \right)$$

실제값과 예측값의 오류 최소화 과적합 개선을 위한 L2 규제

경사 하강법 기반의 행렬 분해 업데이트 식

실제 R 행렬 값과 예측 R 행렬 값의 차이를 최소화하는 방향성을 가지고 P행렬과 Q행렬에 업데이트 값을 반복적으로 수행하면서 최적화된 예측 R 행렬을 구하는 방식이 경사 하강법 기반의 행렬 분해입니다

비용 함수를 최소화하기 위해서 새롭게 업데이트되는 $ot\!p'_u$ 와 $ot\!q_i$

$$\dot{p}_{u} = p_{u} + \eta \left(e_{(u,i)} * q_{i} - \lambda * p_{u} \right)$$

$$\dot{q}_{i} = q_{i} + \eta \left(e_{(u,i)} * p_{u} - \lambda * q_{i} \right)$$

- p_y : P 행렬의 사용자 u행 벡터
- q_i^t : Q 행렬의 아이템 i행의 전치 벡터(transpose vector)
- $r_{(u,i)}$: R 행렬의 u행, i열에 위치한 값.
- $\hat{r}_{(u,i)}$: $p_u * q_i^t$ 로 계산하며, u행, i열에 위치한 행렬의 예측값
- $e_{(u,i)}$: $r_{(u,i)} \hat{r}_{(u,i)}$ 의 값으로, u행, i열에 위치한 실제 행렬 값 과 예측 행렬 값의 차이 오류
- α: SGD 학습률
- λ: L2 Regularization 계수

Logout

