DCE-12

3 February 1997

Data Report

Dielectric Properties of Soils

Fort A. P. Hill, VA -- 2nd Sample Set

Prepared for:

Regina Dugan

U.S. Department of Defense

Advanced Research Projects Agency (ARPA)

3701 North Fairfax Drive Arlington, VA 22203-1714

703-696-2296

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

Prepared by:

John O. Curtis and Jerry L. Miller U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

20011031 063

Clifton, Peggy

From:

George, Vivian Ms PM-MCD [vivian.george@nvl.army.mil]

Sent:

Friday, April 27, 2001 9:27 AM

To:

'Clifton, Peggy'

Subject:

RE: Distribution on DARPA/Walcoff Documents & Data

All are approved for public distribution A, unlimited.

----Original Message----

From: Clifton, Peggy [mailto:pclifton@dtic.mil] Sent: Wednesday, April 11, 2001 9:50 AM

To: 'Vivian George'

Subject: Distribution on DARPA/Walcoff Documents & Data

Vivian,

I am putting in the background clutter data documents and discs; some are marked "Approved for public release, distribution is unlimited," but others have no markings for distribution. Are they all unlimited distribution? If, not we will have to figure out what the distribution levels are for the unmarked documents. TIA,

Peg Clifton

Margaret Clifton Nonprint Program Manager Defense Technical Information Center 703.767.9085 pclifton@dtic.mil

"Civilization advances by extending the number of important operations which we can perform without thinking about them."

-Alfred North Whitehead

Introduction	1
Source of Soil Samples	1
Experimental Procedures	2
Fundamental Relationships	3
Theoretical Loss Tangent Effects	5
Representative Data	Q
Properties at 50 Mhz	g
Properties at 50 Mhz Properties at 100 Mhz 3	0
Properties at 200 Mhz	1
Properties at 895 Mhz 7	2

!

•

Introduction

This report contains dielectric property measurement results for soils. The original data were collected in the form of the real and imaginary parts of the complex dielectric constant versus frequency utilizing a Hewlett-Packard 8510C Vector Network Analyzer System with an S-Parameter Test Set and a coaxial sample holder. Software developed at the U.S. Army Engineer Waterways Experiment Station was used to convert S-parameter measurements at selected frequencies into a complex dielectric constant. The soils were assumed to be nonmagnetic. Other useful electromagnetic properties were calculated from the dielectric constant and frequency, including an equivalent electrical conductivity, the loss tangent, power attenuation, and a normalized phase velocity. The section entitled, "Fundamental Relationships," contains the formulae used to calculate these properties. Additional physical parameters of the soil samples that are included in the report include their dry density, volumetric moisture content, and temperature.

Measurement results and calculated parameters are listed at four selected frequencies and displayed as a function of volumetric moisture content. The intent of presenting data in this way is to demonstrate the experimental observation that the real part of the dielectric constant, as well as the normalized phase velocity are strong functions of volumetric moisture and reasonably independent of soil texture. Other parameters are clearly dependent on soil texture, and, given enough data from several different types of soils, their graphs versus moisture content would show a great deal of scatter. The four frequencies chosen for data presentation span the range of frequencies normally associated with ground penetrating radars.

For additional details on how the data were collected, please contact the first author at the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS, (voice: 601-634-2855, FAX: 601-634-2732, e-mail: curtisj@ex1.wes.army.mil).

Source of Soil Samples

The samples used for these measurements were collected in the last week of August, 1996, by Messrs. Chuck Hahn, David Leese, and Joe Wooley, all members of the site investigation team from WES. Bag samples of soil were taken from five different locations on each test site at Fort A.P. Hill. At each of these five locations a near-surface sample was acquired along with a sample at a depth of about 0.5 meters and another at a depth of about 1.0 meter.

The two test sites at Fort A.P. Hill were located at Firing Point 20 and Firing Point 22. Each individual soil sample has been given unique identifiers making use of the site name, the easting coordinate, in meters (relative to the southwest corner of the test site), where the sample was collected, and the depth from which it was taken. The character "1" was used for samples taken from a depth of one meter; a "2" was assigned to those collected at one-half of a meter; and an "s" identifies surface samples. One additional character was added to the sample identifier to indicate whether the soil used came straight from the sample bag in an "as is" condition (the letter "b"), or had been air dried while still in the sample holder (the letter "d"), or, finally, had been wetted with distilled deionized water while still in the sample holder (the letter "w"). Using these guidelines, the sample identifier, 20123_2d, refers to a sample collected from the Firing Point 20 test site at a location 123 meters east and 97 meters north of the southwest corner, at a depth of 0.5 meters, and which had been air-dried prior to measurement of its electrical properties.

Experimental Procedures

The experimental procedure used to collect electrical property data at WES normally consists of the following steps. First of all, soil is taken from the source container and packed into a brass coaxial sample holder using small spoons and other utensils. The holders used in these measurements have a square cross section whose dimension is 0.75 cm and are either 5 cm or 10 cm in length, resulting in total sample volumes of about 2.8 cm³ and 5.6 cm³, respectively. The samples are packed as tightly as possible at whatever moisture content they retained in the bags. Hence, there is no control over sample dry density. It is highly unlikely, however, that the densities achieved by this sample preparation technique will ever exceed *in situ* densities.

After enclosing the sample in the holder with a brass cover plate, the holder is placed in a temperature control device and connected to the S-parameter test set. After the sample has reached the desired temperature, data are collected over the selected range of frequencies. Following removal of the sample holder from the temperature control apparatus, the cover plate is removed, and the sample is allowed to air dry (usually for a twenty-four hour period). After the collected of a second set of data at nominally-dry conditions, the sample is wetted to near saturation by the careful addition of distilled, deionized water. After allowing some time for the added moisture to fully penetrate the soil structure (usually about an hour), the electrical properties are once again measured. Therefore, each sample is tested three times, once as is, once after air drying, and once at near-saturation conditions. The addition of water would not work for a sample that contained a large amount of swelling clay minerals, as the sample would expand too far out of the sample holder to allow a measurement to be made.

Sample masses are recorded prior to each measurement. Following the last data collection, the soil is scraped and flushed from the sample holder and dried in an oven to obtain its dry mass, which, by virtue of knowing the sample volume, leads to the sample dry density and the calculation of sample volumetric moisture contents for each measurement. Of course, these data can also be used to calculate the commonly used weight-based moisture content as well.

Fundamental Relationships

Assuming plane harmonic wave propagation in a lossy, non-magnetic, unbounded medium, the wave amplitude function may be written:

$$e^{i(kx - \omega t)}$$

where

$$k = \beta + i\alpha = \omega N/c$$
is the complex propagation constant,

- β is the phase constant,
- α is the amplitude attenuation factor,
- ω is the radial frequency,
- N is the complex index of refraction,
- c is the velocity of light in a vacuum,
- is the symbol designating an imaginary quantity = $\sqrt{-1}$,
- x is a space coordinate, and
- t is time.

Furthermore,

$$N^2 = \epsilon = \epsilon' + \epsilon''$$

where ϵ is the relative complex dielectric constant, which, along with the electrical conductivity from Ohm's Law, represents the electrical properties of the medium. The interpretation of these properties as used in this study is that the conductivity, σ , accounts for current due to free charged particle motion, while the imaginary part of the complex dielectric constant, ϵ'' , accounts for displacement current losses (those due to the electric polarization of the medium). When both conduction and displacement currents are considered, one finds two terms in Ampere's law for current flow that represent losses (or a shift in phase), one containing the electrical conductivity and one containing the imaginary part of the dielectric constant. While these two terms account

for different loss mechanisms, most researchers use only one term or the other to identify losses, with many users preferring to deal with the concept of electrical conductivity. In MKS units, the relationship between the two quantities is taken to be

$$\sigma = \epsilon'' \epsilon_0 \omega$$

where the units of conductivity are mhos/meter (or siemens/meter) and ϵ_0 is the permittivity of free space $(8.85 \times 10^{-12} \text{ farads/meter})$.

Squaring the expression for the complex propagation constant, substituting the expression for the square of the complex index of refraction, and equating real and imaginary components, one obtains two algebraic equations that relate the amplitude attenuation factor and phase constant to the complex dielectric constant:

$$\beta^2 - \alpha^2 = \frac{\omega^2}{c^2} \epsilon'$$

and

$$\alpha\beta = \frac{\omega^2 \epsilon''}{2c^2}$$

Solving these equations for the amplitude attenuation factor and for the phase constant results in the following expressions:

$$\alpha = \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} - 1 \right) \right)^{1/2}$$

and

$$\beta = \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} + 1 \right) \right)^{1/2}$$

The ϵ''/ϵ' ratio is also referred to as the loss tangent. Some researchers prefer to work with the electrical conductivity in place of the dielectric loss term.

Plane waves of constant phase will propagate with a velocity

$$v = \frac{\omega}{\beta} = c \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} + 1 \right) \right)^{-1/2}$$

This phase velocity is not necessarily the speed with which the energy of the wave propagates through the

medium. The latter is refered to as the group velocity and can be calculated as the rate of change of radial frequency with respect to the phase constant. However, as long as the phase velocity is relatively constant over the range of frequencies of interest, then there is little difference between phase velocity and group velocity.

The power intensity of the plane electromagnetic wave decreases exponentially with depth of penetration by the factor, $e^{-2\alpha x}$, or, in one unit of distance traveled, a decrease of $e^{-2\alpha}$. Power attenuation expressed in decibels per meter can then be written as:

$$PL = -8.6859 \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} - 1 \right) \right)^{1/2}$$

Theoretical Loss Tangent Effects

The most straightforward design of a ground-penetrating radar data collection effort and subsequent analysis of those data would require estimates of the speed with which a radar signal will propagate through the terrain and the rate at which the power level of the signal will be attenuated. The former provides the locations of subsurface anomalies, while the latter controls the depth to which meaningful data can be collected.

Usually, phase velocity is taken to be a good approximation of electromagnetic wave speed. Furthermore, many designers and analysts choose to assume that the material through which the wave is propagating is relatively lossless. The first figure that follows is a plot of normalized phase velocity (v/c) for selected values of the real part of the complex dielectric constant (often referred to as the permittivity of the material) against values of the loss tangent. The permittivity values easily span the range of values found in most soils. The figure clearly demonstrates that as long as the loss tangent is relatively small (say, less than 0.5), the lossless material assumption is a good one. However, a loss tangent of 1.0, which is not uncommon, will result in about a ten percent error in phase velocity compared to the lossless assumption.

As for signal power attenuation, obviously the lossless material assumption is meaningless. One can see from the second plot that follows that the rate at which the power level of an electromagnetic wave decreases when traveling through the soil is very sensitive to the value of the loss tangent and to the frequency at which the signal is being propagated.

Representative Data

The following pages contain a sample of the electrical property data associated with these Fort A.P. Hill soil samples. Although laboratory data are collected as a function of frequency for a constant value of volumetric moisture, it has been found that one particularly useful format for displaying these data is to plot results (both measured and calculated) versus moisture content at selected frequencies. The frequencies chosen for this report are 50, 100, 200, and 895 MHz, and were chosen to be representative of the normal operating frequencies of ground penetrating radar systems.

At each frequency, the data are presented in the following way. First of all, one will find a table of measured and calculated parameters, the first page being for samples taken from Firing Point 20, and the second page being for Firing Point 22 samples. The first column of each page provides the location and depth code, while the second column lists the volumetric moisture content (in percent) of that particular sample. The third column contains the dry density (in grams per cubic centimeters) of the sample that was tested. The last six columns list the real and imaginary components of the measured relative complex dielectric constant, the equivalent conductivity (in mhos per meter), the loss tangent, the power attenuation factor in decibels per meter, and the normalized phase velocity.

The table is followed by several plots of parameters versus volumetric moisture. The first six plots represent a composite of all sample depths and both test sites. Experience from previous data collection efforts with many different types of soils has shown that the permittivity and the normalized phase velocity are very strong functions of volumetric moisture and virtually independent of soil type. These data confirm those previous observations. The first six plots clearly establish that there is no fundamental difference in electrical property values for the two test sites.

The next question to be answered is whether or not sample depth makes a difference in electrical properties. This question is addressed by plotting the six parameters versus moisture content while distinguishing sample depth. Six plots appear for the Firing Point 20, and six plots are shown for the Firing Point 22 soils. Once again, the overwhelming conclusion is that there is no difference in electrical properties as a result of sample depth.

Fort A.P. Hill_2 Properties at 50 Mhz

Fort AP Hill_2 Soil Properties at 50 MHz

Firing Point 20

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	Im(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
200_1b	2.57	1.40	3.22	0.33	0.001	0.10	0.84	0.56
200_1d	2.65	1.40	3.25	0.39	0.001	0.12	0.98	0.55
200_1w	49.42	1.40	32.93	6.00	0.017	0.18	4.74	0.17
200_2b	5.97	1.21	3.41	0.47	0.001	0.14	1.16	0.54
200_2d	2.52	1.21	2.69	0.23	0.001	0.08	0.62	0.61
200_2w	51.44	1.21	35.35	4.84	0.014	0.14	3.69	0.17
200_sb	9.01	1.39	4.54	0.55	0.002	0.12	1.17	0.47
200_sd	2.27	1.39	2.92	0.18	0.001	0.06	0.47	0.58
200_sw	47.36	1.39	30.48	3.23	0.009	0.11	2.66	0.18
20122_1b	30.94	1.53	18.03	11.83	0.033	0.66	12.09	0.22
20122_1d	6.41	1.53	4.54	1.35	0.004	0.30	2.85	0.46
20122_1w	41.25	1.53	29.91	16.37	0.046	0.55	13.16	0.18
20122_2b	16.89	1.37	8.20	3.10	0.009	0.38	4.84	0.34
20122_2d	2.98	1.37	3.47	0.47	0.001	0.14	1.15	0.54
20122_2w	48.22	1.37	34.13	10.68	0.030	0.31	8.22	0.17
20122_sb	17.37	1.47	7.14	3.12	0.009	0.44	5.19	0.37
20122_sd	3.19	1.47	2.73	0.14	0.000	0.05	0.37	0.61
20122_sw	40.39	1.47	23.34	7.93	0.022	0.34	7.36	0.20
20123_1b	8.11	1.33	4.21	0.81	0.002	0.19	1.78	0.49
20123_1d	1.61	1.33	2.74	0.18	0.001	0.06	0.49	0.60
20123_1w	52.69	1.33	35.15	5.25	0.015	0.15	4.02	0.17
20123_2b	21.49	1.66	10.13	3.84	0.011	0.38	5.40	0.31
20123_2d	4.55	1.66	3.52	0.56	0.002	0.16	1.36	0.53
20123_2w	32.55	1.66	20.12	6.56	0.018	0.33	6.56	0.22
20123_sb	19.71	1.54	9.26	5.28	0.015	0.57	7.60	0.32
20123_sd	1.95	1.54	2.87	0.10	0.000	0.03	0.26	0.59
20123_sw	36.96	1.54	22.48	12.99	0.036	0.58	12.01	0.20
2027_1b	7.44	1.53	4.33	0.47	0.001	0.11	1.03	0.48
2027_1d	1.54	1.53	2.78	0.05	0.000	0.02	0.15	0.60
2027_1w	44.38	1.53	28.61	2.08	0.006	0.07	1.77	0.19
2027_2b	22.63	1.53	11.08	4.21	0.012	0.38	5.65	0.30
2027_2d	5.34	1.53	4.11	0.92	0.003	0.22	2.06	0.49
2027_2w	42.86	1.53	29.13	9.91	0.028	0.34	8.24	- 0.18
2027_sb	10.49	1.44	4.04	0.38	0.001	0.09	0.86	0.50
2027_sd	5.16	1.44	2.73	0.07	0.000	0.03	0.19	0.61
2027_sw	45.55	1.44	26.16	3.23	0.009	0.12	2.87	0.20
2065_1b	17.55	1.47	7.40	1.99	0.006	0.27	3.30	0.36
2065_1d	4.15	1.47	3.43	0.52	0.001	0.15	1.26	0.54
2065_1w	44.58	1.47	28.58	6.43	0.018	0.22	5.44	0.19
2065_2b	19.52	1.48	9.44	2.97	0.008	0.31	4.34	0.32
2065_2d	4.91	1.48	3.84	0.68	0.002	0.18	1.58	0.51
2065_2w	42.22	1.48	28.39	7.30	0.020	0.26	6.18	0.19
2065_sb	13.39	1.37	5.32	0.69	0.002	0.13	1.36	0.43
2065_sd	2.09	1.37	2.62	0.14	0.000	0.05	0.40	0.62
2065_sw	45.70	1.37	29.89	4.02	0.011	0.13	3.34	0.18

Fort AP Hill_2 Soil Properties at 50 MHz

Firing Point 22

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	Im(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
22122_1b	19.30	1.53	10.63	3.72	0.010	0.35	5.11	0.30
22122_1d	3.88	1.53	4.59	0.88	0.003	0.19	1.87	0.46
22122_1w	45.79	1.53	34.02	10.15	0.028	0.30	7.83	0.17
22122_2b	20.45	1.83	10.95	4.34	0.012	0.40	5.86	0.30
22122_2d	2.94	1.83	3.37	0.23	0.001	0.07	0.57	0.54
22122_2w	35.24	1.83	16.46	4.84	0.014	0.29	5.37	0.24
22122_sb	13.05	1.69	8.08	1.62	0.005	0.20	2.58	0.35
22122_sd	2.04	1.69	3.54	0.39	0.001	0.11	0.93	0.53
22122_sw	35.25	1.69	21.26	3.57	0.010	0.17	3.51	0.22
22123_1b	21.20	1.53	9.83	3.17	0.009	0.32	4.54	0.32
22123_1d	4.87	1.53	3.67	0.65	0.002	0.18	1.54	0.52
22123_1w	43.69	1.53	27.37	7.30	0.020	0.27	6.29	0.19
22123_2b	12.82	1.51	7.06	2.08	0.006	0.30	3.53	0.37
22123_2d	3.22	1.51	3.73	0.58	0.002	0.16	1.36	0.52
22123_2w	45.59	1.51	28.53	6.72	0.019	0.24	5.68	0.19
22123_sb	18.55	1.55	8.38	4.52	0.013	0.54	6.87	0.33
22123_sd	3.80	1.55	2.98	0.25	0.001	0.08	0.66	0.58
22123_sw	39.36	1.55	22.72	13.42	0.037	0.59	12.31	0.20
2227_1b	26.33	1.51	13.70	3.61	0.010	0.26	4.40	0.27
2227_1d	3.15	1.51	3.80	0.40	0.001	0.11	0.93	0.51
2227_1w	42.47	1.51	28.28	6.54	0.018	0.23	5.56	0.19
2227_2b	37.85	1.66	27.50	10.19	0.028	0.37	8.70	0.19
2227_2d	4.37	1.66	4.83	0.83	0.002	0.17	1.71	0.45
2227_2w	38.96	1.66	26.50	9.92	0.028	0.37	8.62	0.19
2227_sb	47.54	1.31	30.03	5.80	0.016	0.19	4.79	0.18
2227_sd	2.27	1.31	3.11	0.13	0.000	0.04	0.35	0.57
2227_sw	42.39	1.31	23.85	3.94	0.011	0.17	3.66	0.20
222_1b	20.41	1.40	8.57	2.11	0.006	0.25	3.25	0.34
222_1d	4.12	1.40	3.63	0.47 6.99	0.001	0.13	1.13	0.52
222_1w	47.74	1.40	30.21	3.92	0.019	0.23	5.75	0.18
222_2b	22.82 2.51	1.57	12.53	0.41	0.011	0.31	4.98	0.28
222_2d 222_2w	40.82	1.57 1.57	3.71 27.55	7.51	0.001 0.021	0.11 0.27	0.97 6.45	0.52 0.19
222_2w 222_sb	20.23	1.57	8.16	3.68	0.021	0.27	5.72	0.19
222_sb 222_sd	3.26	1.55	2.86	0.28	0.010	0.43	0.74	0.59
222_su 222_sw	35.92	1.55	21.54	9.13	0.025	0.42	8.76	0.39
2265_1b	23.21	1.99	14.52	2.57	0.023	0.18	3.06	0.26
2265_1d	3.65	1.99	4.06	0.44	0.007	0.11	0.98	0.50
2265_1u 2265_1w	25.57	1.99	13.62	2.25	0.006	0.17	2.76	0.37
2265_1W 2265_2b	20.71	1.94	12.80	1.79	0.005	0.14	2.28	0.28
2265_2d	2.09	1.94	3.76	0.20	0.003	0.05	0.47	0.52
2265_2w	24.72	1.94	14.56	2.08	0.001	0.03	2.47	0.32
2265_zw 2265_sb	30.08	1.82	18.65	9.04	0.025	0.48	9.27	0.23
2265_sd	3.87	1.82	3.81	0.28	0.023	0.43	0.65	0.23
2265_su	30.94	1.82	16.15	6.31	0.018	0.39	7.01	0.24
££00_5W	JU.94	1.02	10.13	0.01	0.010	0.55	7.01	0.24

AP Hill_2
Properties at 50 MHz , All Depths

AP Hill_2
Properties at 50 MHz , All Depths

AP Hill_2, Firing Point 20 Properties at 50 MHz by Depth

Volumetric Moisture Content - %

0.1

Fort A.P. Hill_2 Properties at 100 Mhz

Fort AP Hill_2 Soil Properties at 100 MHz

Firing Point 20

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	lm(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
200_1b	2.57	1.40	3.08	0.29	0.002	0.09	1.48	0.57
200_1d	2.65	1.40	3.12	0.33	0.002	0.11	1.71	0.57
200_1w	49.42	1.40	31.16	4.18	0.023	0.13	6.80	0.18
200_2b	5.97	1.21	3.25	0.35	0.002	0.11	1.76	0.55
200_2d	2.52	1.21	2.62	0.18	0.001	0.07	1.02	0.62
200 2w	51.44	1.21	34.13	3.44	0.019	0.10	5.35	0.17
200_sb	9.01	1.39	4.37	0.39	0.002	0.09	1.71	0.48
200_sd	2.27	1.39	2.85	0.15	0.001	0.05	0.79	0.59
200_sw	47.36	1.39	29.87	2.25	0.013	0.08	3.74	0.18
20122_1b	30.94	1.53	15.11	7.65	0.043	0.51	17.39	0.25
20122_1d	6.41	1.53	4.14	1.06	0.006	0.26	4.69	0.49
20122_1w	41.25	1.53	25.32	10.82	0.060	0.43	19.14	0.19
20122_2b	16.89	1.37	7.27	2.15	0.012	0.30	7.18	0.37
20122_2d	2.98	1.37	3.31	0.39	0.002	0.12	1.97	0.55
20122_2w	48.22	1.37	30.92	7.37	0.041	0.24	11.97	0.18
20122_sb	17.37	1.47	6.83	1.76	0.010	0.26	6.09	0.38
20122_sd	3.19	1.47	2.75	0.12	0.001	0.04	0.67	0.60
20122_sw	40.39	1.47	22.71	4.49	0.025	0.20	8.52	0.21
20123_1b	8.11	1.33	3.98	0.60	0.003	0.15	2.71	0.50
20123_1d	1.61	1.33	2.72	0.16	0.001	0.06	0.89	0.61
20123_1w	52.69	1.33	33.49	3.83	0.021	0.11	6.02	0.17
20123_2b	21.49	1.66	9.15	2.63	0.015	0.29	7.82	0.33
20123_2d	4.55	1.66	3.42	0.47	0.003	0.14	2.29	0.54
20123_2w	32.55	1.66	18.31	4.44	0.025	0.24	9.38	0.23
20123_sb	19.71	1.54	8.78	2.92	0.016	0.33	8.86	0.33
20123_sd	1.95	1.54	2.88	0.09	0.001	0.03	0.49	0.59
20123_sw	36.96	1.54	21.80	7.00	0.039	0.32	13.46	0.21
2027_1b	7.44	1.53	4.15	0.34	0.002	0.08	1.51	0.49
2027_1d	1.54	1.53	2.76	0.05	0.000	0.02	0.28	0.60
2027_1w	44.38	1.53	27.96	1.65	0.009	0.06	2.83	0.19
2027_2b	22.63	1.53	9.94	2.88	0.016	0.29	8.23	0.31
2027_2d	5.34	1.53	3.84	0.73	0.004	0.19	3.37	0.51
2027_2w	42.86	1.53	26.36	6.69	0.037	0.25	11.76	0.19
2027_sb	10.49	1.44	3.95	0.26	0.002	0.07	1.21	0.50
2027_sd	5.16	1.44	2.75	0.07	0.000	0.03	0.40	0.60
2027_sw	45.55	1.44	25.55	2.02	0.011	0.08	3.64	0.20
2065_1b	17.55	1.47	6.79	1.39	0.008	0.20	4.83	0.38
2065_1d	4.15	1.47	3.28	0.42	0.002	0.13	2.13	0.55
2065_1w	44.58	1.47	26.68	4.39	0.024	0.16	7.70	0.19
2065_2b	19.52	1.48	8.58	2.10	0.012	0.25	6.49	0.34
2065_2d	4.91	1.48	3.61	0.55	0.003	0.15	2.65	0.53
2065_2w	42.22	1.48	26.19	5.15	0.029	0.20	9.10	0.19
2065_sb	13.39	1.37	5.20	0.44	0.002	0.08	1.75	0.44
2065_sd	2.09	1.37	2.62	0.13	0.001	0.05	0.71	0.62
2065_sw	45.70	1.37	29.26	2.49	0.014	0.09	4.18	0.18

Fort AP Hill_2 Soil Properties at 100 MHz

Firing Point 22

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	lm(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
22122_1b	19.30	1.53	9.55	2.53	0.014	0.27	7.39	0.32
22122_1d	3.88	1.53	4.25	0.73	0.004	0.17	3.20	0.48
22122_1w	45.79	1.53	30.98	6.96	0.039	0.22	11.31	0.18
22122_2b	20.45	1.83	10.65	2.42	0.014	0.23	6.71	0.30
22122_2d	2.94	1.83	3.33	0.19	0.001	0.06	0.94	0.55
22122_2w	35.24	1.83	16.06	2.73	0.015	0.17	6.18	0.25
22122_sb	13.05	1.69	7.58	1.15	0.006	0.15	3.80	0.36
22122_sd	2.04	1.69	3.40	0.30	0.002	0.09	1.49	0.54
22122_sw	35.25	1.69	20.23	2.55	0.014	0.13	5.15	0.22
22123_1b	21.20	1.53	9.01	2.11	0.012	0.23	6.36	0.33
22123_1d	4.87	1.53	3.58	0.55	0.003	0.15	2.65	0.53
22123_1w	43.69	1.53	25.41	4.87	0.027	0.19	8.75	0.20
22123_2b	12.82	1.51	6.47	1.47	0.008	0.23	5.21	0.39
22123_2d	3.22	1.51	3.57	0.47	0.003	0.13	2.28	0.53
22123_2w	45.59	1.51	26.65	4.68	0.026	0.18	8.21	0.19
22123_sb	18.55	1.55	7.89	2.55	0.014	0.32	8.15	0.35
22123_sd	3.80	1.55	3.00	0.22	0.001	0.07	1.17	0.58
22123_sw	39.36	1.55	22.20	7.26	0.040	0.33	13.83	0.21
2227_1b	26.33	1.51	12.54	2.49	0.014	0.20	6.36	0.28
2227_1d	3.15	1.51	3.60	0.37	0.002	0.10	1.79	0.53
2227_1w	42.47	1.51	26.19	4.54	0.025	0.17	8.03	0.19
2227_2b	37.85	1.66	24.68	6.87	0.038	0.28	12.46	0.20
2227_2d	4.37	1.66	4.47	0.70	0.004	0.16	2.98	0.47
2227_2w	38.96	1.66	23.87	6.70	0.037	0.28	12.36	0.20
2227_sb	47.54	1.31	29.04	3.54	0.020	0.12	5.97	0.19
2227_sd	2.27	1.31	3.04	0.12	0.001	0.04	0.60	0.57
2227_sw	42.39	1.31	23.40	2.54	0.014	0.11	4.76	0.21
222_1b	20.41	1.40	7.86	1.52	0.008	0.19	4.89	0.36
222_1d	4.12	1.40	3.43	0.43	0.002	0.12	2.09	0.54
222_1w	47.74	1.40	28.20	4.89	0.027	0.17	8.34	0.19
222_2b	22.82	1.57	11.46	2.70	0.015	0.24	7.19	0.29
222_2d	2.51	1.57	3.53	0.35	0.002	0.10	1.69	0.53
222_2w	40.82	1.57	25.76	5.13	0.029	0.20	9.16	- 0.20
222_s b	20.23	1.55	7.85	2.11	0.012	0.27	6.79	0.35
222_sd	3.26	1.55	2.89	0.24	0.001	0.08	1.26	0.59
222_sw	35.92	1.55	20.87	5.05	0.028	0.24	9.98	0.22
2265_1b	23.21	1.99	13.82	1.78	0.010	0.13	4.35	0.27
2265_1d	3.65	1.99	3.97	0.37	0.002	0.09	1.70	0.50
2265_1w	25.57	1.99	12.98	1.58	0.009	0.12	3.97	0.28
2265_2b	20.71	1.94	12.42	1.19	0.007	0.10	3.08	0.28
2265_2d	2.09	1.94	3.70	0.18	0.001	0.05	0.87	0.52
2265_2w	24.72	1.94	14.12	1.38	0.008	0.10	3.33	0.27
2265_sb	30.08	1.82	17.95	4.95	0.028	0.28	10.52	0.23
2265_sd	3.87	1.82	3.72	0.25	0.001	0.07	1.18	0.52
2265_sw	30.94	1.82	15.59	3.57	0.020	0.23	8.17	0.25

AP Hill_2 Properties at 100 MHz , All Depths 50 Firing Point 20 - Firing Point 22 Im(Dielectric Constant) 0 30 10 40 50 60 Volumetric Moisture Content - %

AP Hill_2
Properties at 100 MHz , All Depths

AP Hill_2
Properties at 100 MHz , All Depths

AP Hill_2, Firing Point 20 Properties at 100 MHz by Depth

AP Hill_2, Firing Point 20 Properties at 100 MHz by Depth

AP Hill_2, Firing Point 22 Properties at 100 MHz by Depth

Fort A.P. Hill_2 Properties at 200 Mhz

Fort AP Hill_2 Soil Properties at 200 MHz

Firing Point 20

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	Im(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
200_1b	2.57	1.40	2.96	0.24	0.003	0.08	2.49	0.58
200_1d	2.65	1.40	3.00	0.27	0.003	0.09	2.78	0.58
200 1w	49.42	1.40	30.08	3.00	0.033	0.10	9.94	0.18
200_2b	5.97	1.21	3.13	0.24	0.003	0.08	2.48	0.56
200_2d	2.52	1.21	2.55	0.14	0.002	0.05	1.57	0.63
200_2w	51.44	1.21	33.21	2.64	0.029	0.08	8.34	0.17
200_sb	9.01	1.39	4.24	0.29	0.003	0.07	2.53	0.49
200_sd	2.27	1.39	2.79	0.12	0.001	0.04	1.35	0.60
200_sw	47.36	1.39	29.34	1.88	0.021	0.06	6.31	0.18
20122_1b	30.94	1.53	13.36	4.80	0.053	0.36	23.51	0.27
20122_1d	6.41	1.53	3.83	0.79	0.009	0.21	7.28	0.51
20122_1w	41.25	1.53	22.56	6.88	0.077	0.31	26.06	0.21
20122_2b	16.89	1.37	6.68	1.43	0.016	0.21	10.03	0.38
20122_2d	2.98	1.37	3.17	0.32	0.004	0.10	3.28	0.56
20122_2w	48.22	1.37	28.98	4.80	0.053	0.17	16.17	0.19
20122_sb	17.37	1.47	6.65	1.04	0.012	0.16	7.29	0.39
20122_sd	3.19	1.47	2.77	0.10	0.001	0.04	1.08	0.60
20122_sw	40.39	1.47	22.22	2.73	0.030	0.12	10.53	0.21
20123_1b	8.11	1.33	3.82	0.41	0.005	0.11	3.84	0.51
20123_1d	1.61	1.33	2.69	0.14	0.002	0.05	1.54	0.61
20123_1w	52.69	1.33	32.32	2.60	0.029	0.08	8.30	0.18
20123_2b	21.49	1.66	8.49	1.75	0.020	0.21	10.89	0.34
20123_2d	4.55	1.66	3.33	0.35	0.004	0.11	3.53	0.55
20123_2w	32.55	1.66	17.16	2.98	0.033	0.17	13.06	0.24
20123_sb	19.71	1.54	8.52	1.66	0.018	0.19	10.28	0.34
20123_sd	1.95	1.54	2.87	0.08	0.001	0.03	0.86	0.59
20123_sw	36.96	1.54	21.30	3.88	0.043	0.18	15.22	0.22
2027_1b	7.44	1.53	4.04	0.24	0.003	0.06	2.18	0.50
2027_1d	1.54	1.53	2.74	0.06	0.001	0.02	0.61	0.60
2027_1w	44.38	1.53	27.49	1.43	0.016	0.05	4.96	0.19
2027_2b	22.63	1.53	9.19	1.94	0.022	0.21	11.55	0.33
2027_2d	5.34	1.53	3.61	0.55	0.006	0.15	5.25	0.53
2027_2w	42.86	1.53	24.45	4.38	0.049	0.18	16.06	- 0.20
2027_sb	10.49	1.44	3.87	0.19	0.002	0.05	1.72	0.51
2027_sd	5.16	1.44	2.72	0.05	0.001	0.02	0.60	0.61
2027_sw	45.55	1.44	25.25	1.42	0.016	0.06	5.13	0.20
2065_1b	17.55	1.47	6.43	0.94	0.011	0.15	6.73	0.39
2065_1d	4.15	1.47	3.12	0.31	0.004	0.10	3.22	0.57
2065_1w	44.58	1.47	25.59	2.93	0.033	0.11	10.53	0.20
2065_2b	19.52	1.48	7.98	1.44	0.016	0.18	9.21	0.35
2065_2d	4.91	1.48	3.40	0.43	0.005	0.13	4.21	0.54
2065_2w	42.22	1.48	24.77	3.53	0.039	0.14	12.86	0.20
2065_sb	13.39	1.37	5.11	0.30	0.003	0.06	2.38	0.44
2065_sd	2.09	1.37	2.61	0.09	0.001	0.04	1.06	0.62
2065_sw	45.70	1.37	28.87	1.61	0.018	0.06	5.44	0.19

Fort AP Hill_2 Soil Properties at 200 MHz

Firing Point 22

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	Im(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
22122_1b	19.30	1.53	8.90	1.66	0.019	0.19	10.09	0.33
22122_1d	3.88	1.53	3.97	0.59	0.007	0.15	5.33	0.50
22122_1w	45.79	1.53	29.15	4.49	0.050	0.15	15.08	0.18
22122_2b	20.45	1.83	10.44	1.44	0.016	0.14	8.11	0.31
22122_2d	2.94	1.83	3.30	0.16	0.002	0.05	1.58	0.55
22122_2w	35.24	1.83	15.80	1.68	0.019	0.11	7.66	0.25
22122_sb	13.05	1.69	7.25	0.80	0.009	0.11	5.43	0.37
22122_sd	2.04	1.69	3.29	0.24	0.003	0.07	2.43	0.55
22122_sw	35.25	1.69	19.58	1.82	0.020	0.09	7.46	0.23
22123_1b	21.20	1.53	8.51	1.38	0.015	0.16	8.57	0.34
22123_1d	4.87	1.53	3.46	0.43	0.005	0.12	4.18	0.54
22123_1w	43.69	1.53	24.12	3.22	0.036	0.13	11.89	0.20
22123_2b	12.82	1.51	6.06	1.00	0.011	0.17	7.37	0.40
22123_2d	3.22	1.51	3.42	0.37	0.004	0.11	3.67	0.54
22123_2w	45.59	1.51	25.44	3.24	0.036	0.13	11.66	0.20
22123_sb	18.55	1.55	7.61	1.47	0.016	0.19	9.66	0.36
22123_sd	3.80	1.55	3.00	0.17	0.002	0.06	1.77	0.58
22123_sw	39.36	1.55	21.67	4.14	0.046	0.19	16.12	0.21
2227_1b	26.33	1.51	11.88	1.68	0.019	0.14	8.83	0.29
2227_1d	3.15	1.51	3.42	0.33	0.004	0.10	3.26	0.54
2227_1w	42.47	1.51	25.08	3.03	0.034	0.12	10.99	0.20
2227_2b	37.85	1.66	22.97	4.59	0.051	0.20	17.35	0.21
2227_2d	4.37	1.66	4.19	0.56	0.006	0.13	4.94	0.49
2227_2w	38.96	1.66	22.20	4.45	0.050	0.20	17.10	0.21
2227_sb	47.54	1.31	28.57	⁻ 2.19	0.024	0.08	7.43	0.19
2227_sd	2.27	1.31	3.00	0.11	0.001	0.04	1.17	0.58
2227_sw	42.39	1.31	23.05	2.12	0.024	0.09	8.01	0.21
222_1b	20.41	1.40	7.43	1.06	0.012	0.14	7.03	0.37
222_1d	4.12	1.40	3.27	0.38	0.004	0.12	3.79	0.55
222_1w	47.74	1.40	27.01	3.37	0.037	0.12	11.76	0.19
222_2b	22.82	1.57	10.77	1.81	0.020	0.17	10.01	0.30
222_2d	2.51	1.57	3.38	0.30	0.003	0.09	2.96	0.54
222_2w	40.82	1.57	24.56	3.50	0.039	0.14	12.82	0.20
222_sb	20.23	1.55	7.65	1.26	0.014	0.16	8.24	0.36
222_sd	3.26	1.55	2.89	0.17	0.002	0.06	1.79	0.59
222_sw	35.92	1.55		2.87	0.032	0.14	11.55	0.22
2265_1b	23.21	1.99		1.27	0.014	0.09	6.29	0.27
2265_1d	3.65	1.99	3.89	0.29	0.003	0.07	2.65	0.51
2265_1w	25.57	1.99	12.59	1.14	0.013	0.09	5.86	0.28
2265_2b	20.71	1.94	12.17	0.83	0.009	0.07	4.33	0.29
2265_2d	2.09	1.94	3.62	0.16	0.002	0.04	1.51	0.53
2265_2w	24.72	1.94	13.85	0.95	0.011	0.07	4.66	0.27
2265_sb	30.08	1.82		2.89	0.032	0.16	12.51	0.24
2265_sd	3.87	1.82		0.19	0.002	0.05	1.85	0.52
2265_sw	30.94	1.82	15.21	2.16	0.024	0.14	10.04	0.26

AP Hill_2 Properties at 200 MHz , All Depths Firing Point 20 - Firing Point 22 Conductivity - mho/m 100.0 100 0.0001 0 10 20 30 50 60 Volumetric Moisture Content - %

AP Hill_2, Firing Point 20 Properties at 200 MHz by Depth

AP Hill_2
Properties at 200 MHz , All Depths

AP Hill_2, Firing Point 22

Properties at 200 MHz by Depth

AP Hill_2, Firing Point 22 Properties at 200 MHz by Depth

Fort A.P. Hill_2 Properties at 895 Mhz

Fort AP Hill_2 Soil Properties at 895 MHz

Ξ

Firing Point 20

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	Im(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
200_1b	2.57	1.40	2.79	0.18	0.009	0.06	8.78	0.60
200_1b 200_1d	2.65	1.40	2.84	0.14	0.007	0.05	6.61	0.59
200_1d 200_1w	49.42	1.40	28.77	2.15	0.107	0.07	32.60	0.19
200_1W 200_2b	5.97	1.21	3.00	0.14	0.007	0.05	6.55	0.58
200_20 200_2d	2.52	1.21	2.46	0.11	0.006	0.05	5.76	0.64
200_2d 200_2w	51.44	1.21	31.89	2.29	0.114	0.07	32.95	0.18
200_2W 200_sb	9.01	1.39	4.12	0.17	0.008	0.04	6.71	0.49
200_sb	2.27	1.39	2.72	0.07	0.003	0.02	3.32	0.61
200_su	47.36	1.39	28.36	1.96	0.098	0.07	29.98	0.19
200_3W 20122_1b	30.94	1.53	11.76	1.97	0.098	0.17	46.58	0.29
20122_1d	6.41	1.53	3.39	0.39	0.020	0.12	17.30	0.54
20122_1w	41.25	1.53	20.25	2.85	0.142	0.14	51.52	0.22
20122_2b	16.89	1.37	6.14	0.60	0.030	0.10	19.69	0.40
20122_2d	2.98	1.37	2.93	0.20	0.010	0.07	9.48	0.58
20122_2w	48.22	1.37	27.06	2.83	0.141	0.10	44.21	0.19
20122_sb	17.37	1.47	6.43	0.49	0.025	0.08	15.85	0.39
20122_sd	3.19	1.47	2.72	0.08	0.004	0.03	3.88	0.61
20122_sw	40.39	1.47		1.71	0.085	0.08	30.10	0.22
20123_1b	8.11	1.33		0.19	0.009	0.05	7.91	0.52
20123_1d	1.61	1.33		0.14	0.007	0.05	6.88	0.62
20123_1w	52.69	1.33		2.41	0.120	0.08	35.11	0.18
20123_2b	21.49	1.66		0.80	0.040	0.10	23.20	0.36
20123_2d	4.55	1.66	3.12	0.21	0.010	0.07	9.52	0.57
20123_2w	32.55	_ 1.66	15.84	_ 1.61	0.080	0.10	32.87	0.25
20123_sb	19.71	1.54	8.24	0.70	0.035	0.08	19.75	0.35
20123_sd	1.95	1.54	2.81	0.06	0.003	0.02	2.99	0.60
20123_sw	36.96	1.54	20.71	1.90	0.094	0.09	33.87	0.22
2027_1b	7.44	1.53	3.94	0.13	0.006	0.03	5.15	0.50
2027_1d	1.54	1.53	2.69	0.06	0.003	0.02	2.97	0.61
2027_1w	44.38	1.53	26.75	1.72	0.086	0.06	27.11	0.19
2027_2b	22.63	1.53		0.93	0.047		26.15	0.34
2027_2d	5.34	1.53		0.30	0.015	0.09	13.32	0.55
2027_2w	42.86			2.38	0.119	0.10	40.60	0.21
2027_sb	10.49	1.44		0.13	0.006	0.03	5.40	0.51
2027_sd	5.16	1.44		0.07	0.003	0.03	3.41	0.61
2027_sw	45.55			1.53	0.076	0.06	25.08	0.20
2065_1b	17.55			0.43	0.021	0.07	14.22	
2065_1d	4.15			0.19	0.010		9.21	0.58
2065_1w	44.58			2.02	0.101	0.08	33.39	0.20
2065_2b	19.52				0.034		20.53	
2065_2d	4.91	1.48			0.012		10.90	
2065_2w	42.22				0.111	0.10	37.69	
2065_sb	13.39				0.010		6.92	
2065_sd	2.09						2.15	
2065_sw	45.70	1.37	27.99	2.41	0.120	0.09	37.07	0.19

Fort AP Hill_2 Soil Properties at 895 MHz

Firing Point 22

File Name	Vol Moist	Dry Dens g/cc	Re(eps)	lm(eps)	Cond mho/m	Loss Tan	Attn dB/m	Norm Vel
22122_1b	19.30	1.53	8.28	0.74	0.037	0.09	21.01	0.35
22122_1d	3.88	1.53	3.62	0.30	0.015	0.08	12.63	0.53
22122_1w	45.79	1.53	27.52	2.52	0.125	0.09	39.06	0.19
22122_2b	20.45	1.83	10.15	0.74	0.037	0.07	19.01	0.31
22122_2d	2.94	1.83	3.20	0.10	0.005	0.03	4.49	0.56
22122_2w	35.24	1.83	14.72	1.58	0.079	0.11	33.54	0.26
22122_sb	13.05	1.69	6.91	0.43	0.021	0.06	13.24	0.38
22122_sd	2.04	1.69	3.16	0.13	0.006	0.04	5.73	0.56
22122_sw	35.25	1.69	18.63	1.29	0.064	0.07	24.37	0.23
22123_1b	21.20	1.53	8.05	0.65	0.032	0.08	18.57	0.35
22123_1d	4.87	1.53	3.23	0.24	0.012	0.07	10.90	0.56
22123_1w	43.69	1.53	22.73	2.03	0.101	0.09	34.59	0.21
22123_2b	12.82	1.51	5.64	0.45	0.023	0.08	15.48	0.42
22123_2d	3.22	1.51	3.20	0.20	0.010	0.06	9.11	0.56
22123_2w	45.59	1.51	23.97	2.04	0.101	0.08	33.81	0.20
22123_sb	18.55	1.55	7.28	0.61	0.030	0.08	18.43	0.37
22123_sd	3.80	1.55	2.91	0.10	0.005	0.04	4.93	0.59
22123_sw	39.36	1.55	20.99	1.95	0.097	0.09	34.56	0.22
2227_1b	26.33	1.51	11.26	0.84	0.042	0.07	20.36	0.30
2227_1d	3.15	1.51	3.17	0.22	0.011	0.07	10.05	0.56
2227_1w	42.47	1.51	23.81	1.76	0.087	0.07	29.29	0.20
2227_2b	37.85	1.66	21.20	2.27	0.113	0.11	40.12	0.22
2227_2d	4.37	1.66	3.81	0.33	0.017	0.09	13.91	0.51
2227_2w	38.96	1.66	20.33	2.26	0.113	0.11	40.76	0.22
2227_sb	47.54	1.31	28.01	2.13	0.106	0.08	32.72	0.19
2227_sd	2.27	1.31	2.92	0.10	0.005	0.03	4.85	0.59
2227_sw	42.39	1.31	21.97	1.67	0.083	0.08	28.91	0.21
222_1b	20.41	1.40	7.01	0.52	0.026	0.07	15.88	0.38
222_1d	4.12	1.40	2.99	0.23	0.012	0.08	11.02	0.58
222_1w	47.74	1.40	25.74	2.18	0.108	0.08	34.88	0.20
222_2b	22.82	1.57	10.11	0.89	0.044	0.09	22.77	0.31
222_2d	2.51	1.57	3.18	0.20	0.010	0.06	8.92	0.56
222_2w	40.82	1.57	23.32	2.24	0.111	0.10	37.71	· 0.21
222_sb	20.23	1.55	7.38	0.59	0.029	0.08	17.65	0.37
222_sd	3.26	1.55	2.82	0.11	0.005	0.04	5.12	0.60
222_sw	35.92	1.55	19.37	1.76	0.088	0.09	32.47	0.23
2265_1b	23.21	1.99	13.00	0.77	0.038	0.06	17.27	0.28
2265_1d	3.65	1.99	3.72	0.15	0.007	0.04	6.22	0.52
2265_1w	25.57	1.99	12.08	0.88	0.044	0.07	20.61	0.29
2265_2b	20.71	1.94	11.93	0.74	0.037	0.06	17.47	0.29
2265_2d	2.09	1.94	3.56	0.06	0.003	0.02	2.78	0.53
2265_2w	24.72	1.94	13.13	1.08	0.054	0.08	24.14	0.28
2265_sb	30.08	1.82	16.85	1.44	0.072	0.09	28.56	0.24
2265_sd	3.87	1.82	3.54	0.12	0.006	0.04	5.38	0.53
2265_sw	30.94	1.82	14.56	1.14	0.057	0.08	24.35	0.26

AP Hill_2
Properties at 895 MHz , All Depths

AP Hill_2
Properties at 895 MHz , All Depths

AP Hill_2, Firing Point 20 Properties at 895 MHz by Depth

AP Hill_2, Firing Point 20 Properties at 895 MHz by Depth

AP Hill_2, Firing Point 22 Properties at 895 MHz by Depth

Data Report

Dielectric Properties of Soils

Fort A.P. Hill, VA

Prepared for:

Roshni Mehta

AMSEL-RD-NV-CD-MD 10221 Burbeck Road, Suite 430 Fort Belvoir, VA 22060-5806

703-704-2477

Prepared by:

John O. Curtis

U.S. Army Corps of Engineers Waterways Experiment Station

3909 Halls Ferry Road

Vicksburg, MS 39180-6199

Introduction	. l
Source of Soil Samples	. 1
Fundamental Relationships	. 2
Properties at 100 Mhz	. 5
Individual Sample Results	. 13
Collective Sample Results	. 59

Introduction

This report contains dielectric property measurement results for soils. The original data were collected in the form of the real and imaginary parts of the complex dielectric constant versus frequency. The data collection apparatus was a Hewlet-Packard 8510C Vector Network Analyzer System with an S-Parameter Test Set. Software developed at the U.S. Army Engineer Waterways Experiment Station was used to convert S-parameter measurements at selected frequencies into a complex dielectric constant. The soils were assumed to be nonmagnetic. Other useful electromagnetic properties were calculated from the dielectric constant and frequency, including an equivalent electrical conductivity, the loss tangent, power attenuation, and a normalized phase velocity. The section entitled, "Fundamental Relationships," contains the formulae used to calculate these properties. Additional physical parameters of the soil samples that are included in the report include their dry density, volumetric moisture content, and temperature.

Measurement results and calculated parameters are displayed in three sections. The first includes properties at a selected frequency(ies) and displayed as a function of volumetric moisture content. The intent of presenting data in this way is to demonstrate the experimental observation that the real part of the dielectric constant, as well as the normalized phase velocity are strong functions of volumetric moisture and reasonably independent of soil texture. Other parameters are clearly dependent on soil texture, and, given enough data from several different types of soils, their graphs versus moisture content would show a great deal of scatter. A second set of graphs and tables contain parameters plotted versus frequency for each individual sample tested with the laboratory apparatus. Finally, a third set of graphs contain parameters plotted against frequency for all of the samples. This was done to simply demonstrate that, when viewed as a function of frequency, soil electromagnetic properties are strong functions of moisture and texture.

For additional details on how the data were collected, please contact me at the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, (voice: 601-634-2855, FAX: 601-634-2732, e-mail: curtisj@ex1.wes.army.mil).

Source of Soil Samples

The laboratory measurements reported, herein, were performed on soils from Fort A.P. Hill, MI, Will Near-surface bag samples were collected on 21 March, 1996, by Mr. Jose Llopis, from the Goetechnical Laboratory at the U.S. Army Engineer Waterways Experiment Station. Mr. Llopis' sketches of sample locations are included as the last item in this data report.

Gradation curves of the three soils measured in this study were provided to the Fort Belvoir, Countermine Directorate, Mine Detection Office in May of 1996. These curves and supporting Atterberg limits data indicated little, if any, clay content in the Fort A.P. Hill soils. The absence of swelling clay minerals was confirmed during the collection of electromagnetic property data, as no change in sample volume was observed following the addition of water to the samples.

Fundamental Relationships

Assuming plane harmonic wave propagation in a lossy, non-magnetic, unbounded medium, the wave amplitude function may be written:

$$e^{i(kx - \omega t)}$$

where

$$k = \beta + i\alpha = \omega N/c$$
is the complex propagation constant,

 β is the phase constant,

α is the amplitude attenuation factor,

 ω is the radial frequency,

N is the complex index of refraction,

c is the velocity of light in a vacuum,

i is the symbol designating an imaginary quantity = $\sqrt{-1}$,

x is a space coordinate, and

t is time.

Furthermore,

$$N^2 = \epsilon = \epsilon' + \epsilon''$$

where ε is the relative complex dielectric constant, which, along with the electrical conductivity from Ohm's Law, represents the electrical properties of the medium. The interpretation of these properties as used in this study is that the conductivity, σ , accounts for current due to free charged particle motion, while the imaginary part of the complex dielectric constant, ε'' , accounts for displacement current losses (those due to the electric polarization of the medium). When both conduction and displacement currents are considered, one finds two terms in Ampere's law for current flow that represent losses (or a shift in phase), one containing the electrical conductivity and one containing the imaginary part of the dielectric constant. While these two terms account

for different loss mechanisms, most researchers use only one term or the other to identify losses, with many users preferring to deal with the concept of electrical conductivity. In MKS units, the relationship between the two quantities is taken to be

$$\sigma = \epsilon'' \epsilon_0 \omega$$

where the units of conductivity are mhos/meter (or siemens/meter) and ϵ_0 is the permittivity of free space $(8.85 \times 10^{-12} \text{ farads/meter})$.

Squaring the expression for the complex propagation constant, substituting the expression for the square of the complex index of refraction, and equating real and imaginary components, one obtains two algebraic equations that relate the amplitude attenuation factor and phase constant to the complex dielectric constant:

$$\beta^2 - \alpha^2 = \frac{\omega^2}{c^2} \epsilon'$$

and

$$\alpha\beta = \frac{\omega^2 \epsilon''}{2c^2}$$

Solving these equations for the amplitude attenuation factor and for the phase constant results in the following expressions:

$$\alpha = \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} - 1 \right) \right)^{1/2}$$

and

$$\beta = \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} + 1 \right) \right)^{1/2}$$

The ϵ''/ϵ' ratio is also referred to as the loss tangent. Some researchers prefer to work with the electrical conductivity in place of the dielectric loss term.

Plane waves of constant phase will propagate with a velocity

$$v = \frac{\omega}{\beta} = c \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'} \right)^2} + 1 \right) \right)^{-1/2}$$

This phase velocity is not necessarily the speed with which the energy of the wave propagates through the

medium. The latter is referred to as the group velocity and can be calculated as the rate of change of radial frequency with respect to the phase constant. However, as long as the phase velocity is relatively constant over the range of frequencies of interest, then there is little difference between phase velocity and group velocity.

The power intensity of the plane electromagnetic wave decreases exponentially with depth of penetration by the factor, $e^{-2\alpha x}$, or, in one unit of distance traveled, a decrease of $e^{-2\alpha}$. Power attenuation expressed in decibels per meter can then be written as:

$$PL = -8.6859 \frac{\omega}{c} \left(\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'}\right)^2} - 1 \right) \right)^{1/2}$$

Fort A.P. Hill Properties at 100 Mhz

Fort A.P. Hill Soil Properties at 100 MHz

	Off Road, dry density = 1.51 g/cc	Dart Road, dry density = 1.47 g/cc	Top 3", dry density = 1.48 g/cc
Norm. Velocity	0.6077	0.581	0.5916
	0.3737	0.3458	0.37
	0.2243	0.2125	0.2399
tn dB/m	0.7144	0.7866	0.7202
	6.2993	2.3673	3.9028
	10.9376	3.5785	5.6003
ond mho/m Loss Tangent Attn dB/m	0.0478	0.0503	0.0469
	0.2632	0.0902	0.1598
	0.2748	0.0838	0.1485
Sond mho/m	0.0007	0.0008	0.0007
	0.0103	0.0042	0.0064
	0.0298	0.0103	0.0143
Im(Dielectric) C	0.1293	0.1488	0.1338
	1.8532	0.7527	1.1596
	5.3602	1.8511	2.5664
Re(Dielectric)	2.7067	2.9602	2.856
	7.0409	8.347	7.2575
	19.5089	22.0987	17.2805
Vol. Moisture - % Re(Dielectric) Im(Dielectric)	2.3	2.8	3
	17.6	19.6	17.4
	35.1	37.3	32.4

Fort A.P. Hill Individual Sample Results

0.0634

2.6581

0.475

0.0239

1.68

0.495	2.657	0.0626	0.0017	0.0235	1.728	0.6134
0.52	2.6557	0.0612	0.0018	0.023	1.775	0.6136
0.54	2.6543	0.0604	0.0018	0.0228	1.8223	0.6138
0.565	2.6531	0.0599	0.0019	0.0226	1.8893	0.6139
0.585	2.6528	0.0591	0.0019	0.0223	1.9314	0.6139
0.61	2.653	0.059	0.002	0.0222	2.0099	0.6139
0.64	2.6543	0.0581	0.0021	0.0219	2.0761	0.6138
0.665	2.6555	0.058	0.0021	0.0218	2.1533	0.6136
0.695	2.6559	0.0573	0.0022	0.0216	2.2224	0.6136
0.725	2.6562	0.0579	0.0023	0.0218	2.3425	0.6135
0.755	2.6606	0.0523	0.0022	0.0197	2.2027	0.613
0.785	2.6542	0.0587	0.0026	0.0221	2.5732	0.6138
0.82	2.6531	0.0596	0.0027	0.0225	2.728	0.6139
0.855	2.6525	0.0606	0.0029	0.0229	2.8954	0.614
0.895	2.6533	0.0629	0.0031	0.0237	3.1414	0.6139
0.033	2.6539	0.0671	0.0035	0.0253	3.4818	0.6138
0.97	2.6456	0.066	0.0036	0.025	3.5814	0.6148
1.015	2.645	0.0668	0.0038	0.0252	3.7901	0.6148
1.055	2.6427	0.0675	0.004	0.0255	3.9814	0.6151
1.033	2.6395	0.0673	0.0042	0.026	4.2339	0.6155
1.15	2.6344	0.0693	0.0044	0.0263	4.4657	0.6161
1.195	2.6301	0.0683	0.0045	0.026	4.5781	0.6166
1.195	2.625	0.0657	0.0046	0.025	4.6088	0.6172
1.23	2.6219	0.0634	0.0046	0.0242	4.6262	0.6175
1.36	2.6197	0.0601	0.0045	0.023	4.5963	0.6178
1.415	2.6186	0.0568	0.0045	0.023	4.5197	0.6179
	2.6171	0.0536	0.0043	0.0217	4.4409	0.6181
1.475 1.54	2.6171	0.0506	0.0044	0.0194	4.3851	0.6181
1.605	2.6186	0.0300	0.0043	0.0182	4.3104	0.6179
1.675	2.6202	0.0476	0.0043	0.0172	4.2391	0.6178
	2.6202	0.043	0.0042	0.0172	4.2381	0.6175
1.745		0.0432	0.0042	0.0158	4.2368	0.6169
1.82	2.6274	0.0413	0.0042	0.0130	5.913	0.6145
1.9	2.6475	0.0537	0.0039	0.021	6.0624	0.6174
1.98	2.6233	0.0545	0.0063	0.0200	6.376	0.6173
2.065	2.6241		0.0067	0.021	6.7918	0.6176
2.155	2.6212 2.6187	0.0561	0.0007	0.0214	7.174	0.6179
2.25		0.0567		0.0217	7.3099	0.6183
2.345	2.6155	0.0554	0.0072		7.3783	0.6186
2.445	2.6126	0.0536	0.0073	0.0205 0.0188	7.0297	0.6189
2.55	2.6103	0.049	0.0069		6.399	0.6187
2.66	2.6123	0.0427	0.0063	0.0164	5.4067	0.6174
2.775	2.6232	0.0347	0.0054	0.0132		
2.89	2.6174	0.0856	0.0137	0.0327	13.8999	0.618
3.015	2.6046	0.0528	0.0088	0.0203	8.9695	0.6196
3.145	2.6087	0.0504	0.0088	0.0193	8.92	0.6191
3.28	2.6091	0.0504	0.0092	0.0193	9.3039	0.6191
3.42	2.6085	0.0497	0.0094	0.019	9.5656	0.6191
3.57	2.6094	0.0482	0.0096	0.0185	9.6976	0.619
3.72	2.6139	0.0486	0.0101	0.0186	10.1792	0.6185
3.88	2.598	0.0616	0.0133	0.0237	13.4875	0.6204
4.045	2.6024	0.0509	0.0114	0.0196	11.6081	0.6199

0.5775

0.475

6.8184

9.5475

0.0847

0.3826

Contract of the state of the st

0.495	6.8144	0.565	0.0156	0.0829	9.7358	0.3827
0.52	6.8101	0.551	0.0159	0.0809	9.9778	0.3829
0.54	6.8068	0.5404	0.0162	0.0794	10.166	0.383
0.565	6.8017	0.5282	0.0166	0.0777	10.4012	0.3831
0.585	6.7974	0.5176	0.0168	0.0761	10.5553	0.3833
0.61	6.8002	0.5035	0.0171	0.074	10.7056	0.3832
0.64	6.8023	0.4968	0.0177	0.073	11.0821	0.3832
0.665	6.802	0.4922	0.0182	0.0724	11.4072	0.3832
0.695	6.8013	0.487	0.0188	0.0716	11.7973	0.3832
0.725	6.7999	0.4833	0.0195	0.0711	12.2137	0.3832
0.755	6.7989	0.4787	0.0201	0.0704	12.5993	0.3833
0.785	6.7984	0.4802	0.021	0.0706	13.1421	0.3833
0.82	6.7963	0.4805	0.0219	0.0707	13.7378	0.3833
0.855	6.7927	0.4828	0.023	0.0711	14.3958	0.3834
0.895	6.7867	0.4862	0.0242	0.0716	15.1828	0.3836
0.93	6.7799	0.488	0.0252	0.072	15.8429	0.3838
0.93	6.7737	0.4905	0.0265	0.0724	16.6186	0.384
1.015	6.7648	0.493	0.0278	0.0729	17.4892	0.3842
1.015	6.7576	0.4943	0.0270	0.0723	18.2364	0.3844
1.033	6.7492	0.4956	0.0303	0.0734	19.0745	0.3847
1.15	6.7416	0.4915	0.0303	0.0729	19.7862	0.3849
1.195	6.7438	0.5005	0.0314	0.0742	20.9358	0.3848
1.195	6.7257	0.5003	0.0357	0.0742	22.5158	0.3853
1.23	6.7051	0.5163	0.0337	0.0704	23.5594	0.3859
1.36		0.5058	0.0373	0.0757	24.1855	0.3865
	6.6839 6.6788	0.3038	0.0383	0.0737	24.1857	0.3867
1.415		0.4861	0.0307	0.0737	25.2099	0.3866
1.475	6.6827	0.4911	0.0399	0.0727	26.5844	0.3865
1.54	6.6861		0.0421	0.0754	28.3588	0.3865
1.605	6.6839	0.5026	0.0449	0.0752	30.5005	0.3869
1.675	6.6717	0.5175 0.5234	0.0402	0.0778	32.206	0.3877
1.745 1.82	6.644 6.6299	0.5254	0.0308	0.0760	31.5757	0.3881
1.02	6.6485	0.4913	0.0497	0.0741	33.0278	0.3876
1.98	6.6506		0.0521	0.0742	35.0278	0.3875
		0.5027 0.5127	0.0553	0.0730	37.3167	0.3875
2.065 2.155	6.6506 6.6477	0.5127	0.0569	0.0771	39.9739	0.3875
2.135	6.6477 6.6393	0.5262	0.0677	0.0792	42.9642	0.3878
2.25			0.0077	0.0815	45.3016	0.3882
2.445	6.6255	0.5472 0.5499	0.0713	0.083	47.4593	0.3881
2.445	6.628 6.6251	0.5499	0.0748	0.0856	51.0335	0.3882
			0.086	0.0830	54.6427	0.3883
2.66	6.6205	0.5817		0.0079	58.8767	0.3884
2.775	6.6154	0.6006	0.0927			
2.89	6.6028	0.621	0.0998	0.094	63.4576	0.3887
3.015	6.5842	0.631	0.1058	0.0958	67.357	0.3893
3.145	6.5802	0.6376	0.1115	0.0969	71.0214	0.3894
3.28	6.5775	0.654	0.1193	0.0994	75.9906	0.3894
3.42	6.5726	0.6726	0.1279	0.1023	81.5013	0.3896
3.57	6.5661	0.6945	0.1379	0.1058	87.8929	0.3897
3.72	6.5539	0.7182	0.1486	0.1096	94.7847	0.39
3.88	6.5393	0.7372	0.159	0.1127	101.5743	0.3904
4.045	6.5256	0.7513	0.169	0.1151	108.0309	0.3908


```
17JL61701
A.P. HILL, OFF RD
      9.7
                    A.P. HILL, OFF RD , File: 17JL61701
        3
                    20 deg C, Mv = 35.1\%, 1.510 g/cc (dry)
     35.1
       20
     1.51
                                                                0.2169
                                            0.5593
                                                      9.8376
                      11.0809
                                  0.0277
    0.045
           19.8122
                                                      9.9747
                                                                0.2182
                                  0.0279
                                            0.5077
                      10.0503
     0.05
           19.7959
                                  0.0282
                                            0.4662
                                                     10.1066
                                                                0.2194
                       9.2067
           19.7486
    0.055
                                            0.4252
                                                     10.0917
                                                                 0.2204
                                   0.028
                       8.3893
     0.06
           19.7283
                                                                 0.2211
                                            0.4013
                                  0.0286
                                                     10.3311
    0.065
           19.6991
                       7.9044
                                                                 0.2217
                                            0.3754
                                                     10.4278
     0.07
           19.6825
                       7.3887
                                  0.0288
                                                                 0.2223
                       6.9391
                                  0.0289
                                            0.3532
                                                     10.5214
             19.648
    0.075
                                                                 0.2227
                                  0.0292
                                            0.3345
                                                     10.6394
                       6.5649
           19.6255
     0.08
                                            0.3166
                                                     10.7027
                                                                 0.2232
                                  0.0293
                       6.2008
    0.085
            19.5856
                                                                 0.2236
                                            0.3009
                                                     10.7758
                       5.8859
                                  0.0295
     0.09
            19.5609
                                             0.287
                                                     10.8546
                                                                 0.2239
                                  0.0296
    0.095
            19.5461
                       5.6094
                                                                 0.2243
                                            0.2748
                                                     10.9376
            19.5089
                       5.3602
                                  0.0298
      0.1
                                  0.0299
                                            0.2628
                                                     10.9835
                                                                 0.2247
                       5.1184
    0.105
             19.478
                                            0.2532
                                                     11.0933
                                                                 0.2248
                         4.931
                                  0.0302
     0.11
            19.4722
                                            0.2435
                                                      11.1512
                                                                 0.2252
                                  0.0303
                       4.7347
    0.115
            19.4408
                                                                 0.2253
                                            0.2353
                                                      11.2466
                       4.5727
                                  0.0305
     0.12
            19.4298
                                                                 0.2256
                                              0.227
                                                      11.2997
                                  0.0306
    0.125
            19.4087
                       4.4061
                                                                 0.2258
                                            0.2196
                                                      11.3661
     0.13
              19.39
                       4.2578
                                  0.0308
                                                                 0.2259
            19.3725
                        4.1216
                                  0.0309
                                             0.2128
                                                      11.4348
    0.135
                                                                 0.2261
                                  0.0311
                                             0.2065
                                                      11.5047
     0.14
             19.352
                        3.9953
                                  0.0314
                                              0.195
                                                      11.6406
                                                                 0.2264
                        3.7681
            19.3234
     0.15
                                               0.19
                                                       11.716
                                                                 0.2266
                                  0.0316
                         3.668
    0.155
            19.3105
                                                                 0.2267
                                             0.1849
                                                      11.7709
                                  0.0317
     0.16
            19.2954
                        3.5679
                                                                 0.2269
                                             0.1758
                                                        11.89
                                   0.032
     0.17
            19.2698
                        3.3883
                                                                 0.2271
                                             0.1715
                                                      11.9335
    0.175
            19.2549
                        3.3017
                                  0.0321
                                                                 0.2273
                                  0.0324
                                             0.1636
                                                      12.0323
    0.185
            19.2306
                        3.1461
                                  0.0325
                                             0.1601
                                                      12.0896
                                                                 0.2274
            19.2226
                        3.0768
      0.19
                                              0.153
                                                      12.1601
                                                                 0.2275
                                  0.0327
       0.2
            19.2068
                         2.938
                                             0.1495
                                                                 0.2276
                                   0.0327
                                                      12.1849
            19.2034
                        2.8716
    0.205
                                             0.1435
                                                      12.2642
                                                                 0.2277
                                   0.0329
    0.215
            19.1889
                        2.7542
                                                      12.2948
                                                                  0.2278
    0.225
              19.183
                        2.6374
                                   0.033
                                             0.1375
                                                                  0.2278
                        2.5394
                                   0.0332
                                             0.1324
                                                      12.3675
    0.235
            19.1795
                                   0.0332
                                             0.1271
                                                      12.3765
                                                                  0.2279
                         2.437
    0.245
            19.1776
                                   0.0333
                                             0.1223
                                                          12.4
                                                                  0.2279
                        2.3459
     0.255
            19.1836
                                                      12.4418
                                                                  0.2279
                                             0.1181
                        2.2647
                                   0.0334
     0.265
            19.1829
                                             0.1141
                                                      12.4799
                                                                  0.2279
                                   0.0335
     0.275
            19.1901
                        2.1892
                                                                  0.2279
                                             0.1089
                                                      12.5713
      0.29
            19.2047
                        2.0916
                                   0.0337
                                             0.1059
                                                      12.6511
                                                                  0.2278
             19.2155
                        2.0351
                                    0.034
       0.3
                                   0.0345
                                             0.1023
                                                      12.8412
                                                                  0.2277
     0.315
             19.2288
                        1.9679
                                   0.0349
                                             0.1003
                                                      12.9848
                                                                  0.2278
                        1.9285
     0.325
             19.2285
                                                                  0.2279
                                             0.0972
                                                      13.1598
                         1.867
                                   0.0353
             19.2056
      0.34
                                                      12.6996
                                                                   0.228
                                             0.0898
                                   0.0341
     0.355
             19.2046
                         1.7253
                                                                  0.2273
                                                       12.8375
             19.3158
                          1.678
                                   0.0345
                                              0.0869
      0.37
                                                       13.3619
                                                                  0.2271
                         1.6805
                                    0.036
                                              0.0868
     0.385
             19.3602
                                                                  0.2269
                                    0.038
                                               0.087
                                                       14.0908
                         1.6857
     0.405
             19.3858
                                              0.0872
                                                        14.655
                                                                  0.2269
                                   0.0395
             19.3932
                         1.6909
      0.42
                                                                  0.2269
                                                       15.4465
                                   0.0416
                                              0.0877
             19.3883
                         1.7011
      0.44
                                                                  0.2269
                                              0.0881
                                                       16.0346
                                   0.0432
             19.3801
                         1.7073
     0.455
                                                                   0.227
                                                       16.8228
```

0.475

19.3621

0.0453

0.495	19.3373	1.7208	0.0474	0.089	17.6017	0.2272
0.52	19.304	1.7194	0.0497	0.0891	18.4917	0.2274
0.54	19.2745	1.7146	0.0515	0.089	19.1632	0.2276
0.565	19.2321	1.7002	0.0534	0.0884	19.9049	0.2278
0.585	19.2004	1.682	0.0547	0.0876	20.4054	0.228
0.61	19.1626	1.6544	0.0561	0.0863	20.9503	0.2282
0.64	19.1305	1.6141	0.0574	0.0844	21.4638	0.2284
0.665	19.1127	1.5846	0.0586	0.0829	21.9059	0.2285
0.695	19.1048	1.5533	0.06	0.0813	22.4473	0.2286
0.725	19.1103	1.5358	0.0619	0.0804	23.1495	0.2286
0.755	19.1181	1.5397	0.0646	0.0805	24.1632	0.2285
0.785	19.1134	1.533	0.0669	0.0802	25.0165	0.2286
0.82	19.1033	1.5387	0.0702	0.0805	26.2369	0.2286
0.855	19.0867	1.5478	0.0736	0.0811	27.5296	0.2287
0.895	19.0617	1.5577	0.0775	0.0817	29.0215	0.2289
0.033	19.0393	1.5622	0.0808	0.0821	30.2605	0.229
0.97	19.017	1.5619	0.0842	0.0821	31.5735	0.2291
1.015	19.0044	1.5649	0.0883	0.0823	33.1128	0.2292
1.055	18.9876	1.5812	0.0928	0.0833	34.7913	0.2293
1.000	18.9621	1.5717	0.0961	0.0829	36.0808	0.2294
1.15	18.9655	1.5751	0.1007	0.083	37.7996	0.2294
1.195	18.963	1.5937	0.1057	0.084	39.7443	0.2294
1.195	18.9517	1.6215	0.1127	0.0856	42.3097	0.2295
1.25	18.9359	1.6397	0.1127	0.0866	44.5156	0.2296
1.36	18.9197	1.6554	0.1153	0.0875	47.0344	0.2297
1.415	18.9114	1.6712	0.1232	0.0884	49.4143	0.2297
	18.9282	1.6919	0.1313	0.0894	52.1223	0.2296
1.475	18.941	1.7468	0.1300	0.0034	56.1636	0.2295
1.54 1.605	18.9259	1.8122	0.1430	0.0958	60.7433	0.2296
1.675	18.8905	1.8683	0.174	0.0989	65.4125	0.2298
1.745	18.8583	1.9021	0.174	0.1009	69.4321	0.23
1.743	18.8398	1.931	0.1954	0.1025	73.5532	0.2301
1.02	18.8362	1.976	0.2088	0.1049	78.5759	0.2301
1.98	18.8206	2.0402	0.2246	0.1044	84.5723	0.2302
2.065	18.7822	2.1007	0.2412	0.1118	90.9031	0.2304
2.155	18.7458	2.1507	0.2577	0.1147	97.215	0.2306
2.133	18.7185	2.2007	0.2753	0.1176	103.9222	0.2307
2.345	18.696	2.2675	0.2957	0.1213	111.6495	0.2309
2.445	18.6591	2.3383	0.2337	0.1253	120.151	0.2311
2.445	18.6198	2.4017	0.3406	0.129	128.8318	0.2313
2.66	18.594	2.4631	0.3643	0.1325	137.9048	0.2314
2.775	18.5757	2.5345	0.3911	0.1364	148.0896	0.2315
2.773	18.5571	2.612	0.4198	0.1408	159.0004	0.2316
	18.5283	2.6972	0.4522	0.1456	171.3867	0.2317
3.015		2.7835	0.4322	0.1506	184.6812	0.2319
3.145	18.4857		0.4000	0.1555	198.5977	0.2322
3.28	18.4321 18.3763	2.8665 2.9518	0.5226	0.1606	213.5193	0.2325
3.42			0.6055	0.1665	230.6167	0.2329
3.57	18.3166	3.0499 3.1537	0.6524	0.1003		0.2323
3.72	18.2654	3.1537	0.7065	0.1727	269.676	0.2333
3.88	18.2199		0.7646	0.1797		0.2335
4.045	18.1824	3.3992	U./040	0.1009	292.0000	0.2000

0.0861

0.0301

2.1989

0.5911

0.475

0.495	2.8591	0.0842	0.0023	0.0295	2.2419	0.5913
0.52	2.8567	0.0809	0.0023	0.0283	2.2648	0.5916
0.54	2.8548	0.0785	0.0024	0.0275	2.2821	0.5918
0.565	2.8532	0.076	0.0024	0.0267	2.3135	0.592
0.585	2.8525	0.074	0.0024	0.0259	2.33	0.592
0.61	2.8518	0.0721	0.0024	0.0253	2.3694	0.5921
0.64	2.8521	0.0683	0.0024	0.0239	2.3538	0.5921
0.665	2.8539	0.0653	0.0024	0.0229	2.3383	0.5919
0.695	2.8548	0.0619	0.0024	0.0217	2.3142	0.5918
0.725	2.8561	0.0591	0.0024	0.0207	2.3075	0.5917
0.755	2.8622	0.0513	0.0022	0.0179	2.083	0.5911
0.785	2.8585	0.0547	0.0024	0.0191	2.308	0.5914
0.82	2.861	0.0524	0.0024	0.0183	2.3093	0.5912
0.855	2.8669	0.0494	0.0023	0.0172	2.2693	0.5906
0.895	2.9027	0.0435	0.0022	0.015	2.0783	0.5869
0.93	2.857	0.1018	0.0053	0.0356	5.0916	0.5915
0.97	2.8527	0.0747	0.004	0.0262	3.9038	0.592
1.015	2.8558	0.0718	0.0041	0.0251	3.9205	0.5917
1.055	2.8561	0.0719	0.0042	0.0252	4.08	0.5917
1.1	2.8551	0.0739	0.0045	0.0259	4.3748	0.5918
1.15	2.8522	0.0754	0.0048	0.0264	4.6709	0.5921
1.195	2.8488	0.0768	0.0051	0.027	4.9469	0.5924
1.25	2.844	0.0773	0.0054	0.0272	5.2112	0.5929
1.3	2.8395	0.077	0.0056	0.0271	5.4027	0.5934
1.36	2.8355	0.0753	0.0057	0.0265	5.5278	0.5938
1.415	2.8324	0.073	0.0057	0.0258	5.5801	0.5941
1.475	2.8287	0.0696	0.0057	0.0246	5.5519	0.5945
1.54	2.8267	0.0657	0.0056	0.0233	5.4753	0.5947
1.605	2.8268	0.0609	0.0054	0.0206	5.2898	0.5947
1.675	2.8288	0.0545	0.0051	0.0210	4.9351	0.5947
1.745	2.8351	0.047	0.0046	0.0193	4.4287	0.5939
1.82	2.8951	0.0664	0.0043	0.0229	6.4625	0.5877
1.9	2.8285	0.0781	0.0083	0.0229	8.0245	0.5945
1.98	2.8308	0.0686	0.0076	0.0242	7.344	0.5943
2.065	2.833	0.0697	0.008	0.0246	7.7725	0.5943
2.155	2.8311	0.0721	0.0086	0.0255	8.402	0.5943
2.25	2.8277	0.0741	0.0093	0.0253	9.0146	0.5946
2.345	2.8231	0.0733	0.0096	0.0259	9.2982	0.5951
2.445	2.8193	0.0701	0.0095	0.0249	9.2865	0.5955
2.55	2.8181	0.0642	0.0091	0.0248	8.8758	0.5957
2.66	2.8237	0.0545	0.0081	0.0220	7.84	0.5951
2.775	2.8403	0.0948	0.0146	0.0193	14.2034	
2.89	2.8162	0.0746	0.012	0.0334		0.5933
3.015	2.8198	0.0743	0.012	0.0253	11.6842	0.5958
3.145	2.821	0.0713	0.012		11.6472	0.5955
3.28	2.82	0.0757		0.0261	12.5576	0.5953
3.42	2.82 2.8183	0.0769	0.014	0.0273	13.6669	0.5954
3.42 3.57	2.8186	0.0796	0.0151	0.0282	14.7508	0.5956
3.72	2.7938		0.0168	0.03	16.3691	0.5956
3.72	2.7938	0.0948	0.0196	0.0339	19.1822	0.5982
4.045		0.078	0.0168	0.0279	16.4575	0.5978
4.043	2.7985	0.0767	0.0172	0.0274	16.858	0.5977


```
16JL61059
A.P. HILL, DART
      9.7
                    A.P. HILL, DART, File: 16JL61059
       4
    19.6
                    20 deg C, Mv = 19.6\%, 1.470 g/cc (dry)
      20
    1.47
   0.045
            8.4837
                       1.3059
                                 0.0033
                                            0.1539
                                                      1.8298
                                                                0.3423
    0.05
            8.4618
                       1.2149
                                 0.0034
                                            0.1436
                                                      1.8946
                                                                0.3429
   0.055
            8.4399
                       1.1369
                                 0.0035
                                            0.1347
                                                      1.9534
                                                                0.3434
    0.06
             8.472
                       1.0426
                                 0.0035
                                            0.1231
                                                      1.9513
                                                                0.3429
   0.065
            8.4115
                        1.006
                                 0.0036
                                           0.1196
                                                      2.0472
                                                                0.3442
    0.07
            8.4019
                      0.9543
                                 0.0037
                                           0.1136
                                                      2.0928
                                                                0.3444
   0.075
              8.39
                       0.914
                                 0.0038
                                           0.1089
                                                      2.1496
                                                                0.3447
    80.0
            8.3706
                      0.8708
                                 0.0039
                                             0.104
                                                      2.1871
                                                                0.3452
   0.085
            8.3704
                      0.8392
                                  0.004
                                           0.1003
                                                      2.2399
                                                                0.3452
    0.09
            8.3566
                      0.8064
                                  0.004
                                           0.0965
                                                       2.281
                                                                0.3455
   0.095
            8.3557
                      0.7798
                                 0.0041
                                           0.0933
                                                      2.3286
                                                                0.3456
     0.1
             8.347
                      0.7527
                                 0.0042
                                           0.0902
                                                      2.3673
                                                                0.3458
   0.105
            8.3227
                      0.7237
                                 0.0042
                                             0.087
                                                      2.3937
                                                                0.3463
    0.11
            8.3304
                      0.7101
                                0.0043
                                           0.0852
                                                      2.4593
                                                                0.3462
   0.115
            8.3223
                      0.6925
                                0.0044
                                           0.0832
                                                      2.5086
                                                                0.3463
    0.12
            8.3152
                      0.6761
                                0.0045
                                           0.0813
                                                      2.5571
                                                                0.3465
   0.125
            8.3093
                      0.6552
                                 0.0046
                                           0.0789
                                                      2.5823
                                                                0.3466
    0.13
            8.3027
                      0.6438
                                0.0047
                                           0.0775
                                                      2.6399
                                                                0.3468
  0.135
            8.2994
                      0.6274
                                0.0047
                                           0.0756
                                                      2.6723
                                                                0.3469
    0.14
            8.2945
                      0.6162
                                0.0048
                                           0.0743
                                                      2.7229
                                                                 0.347
    0.15
            8.2836
                      0.5905
                                0.0049
                                           0.0713
                                                     2.7976
                                                                0.3472
  0.155
            8.2808
                      0.5813
                                  0.005
                                           0.0702
                                                     2.8464
                                                                0.3473
    0.16
            8.2753
                       0.573
                                0.0051
                                           0.0692
                                                     2.8971
                                                                0.3474
    0.17
            8.2675
                      0.5535
                                0.0052
                                            0.067
                                                     2.9751
                                                                0.3476
  0.175
            8.2618
                      0.5456
                                0.0053
                                            0.066
                                                      3.0196
                                                                0.3477
  0.185
             8.252
                      0.5293
                                0.0054
                                           0.0641
                                                     3.0988
                                                                0.3479
    0.19
            8.2527
                      0.5249
                                0.0055
                                           0.0636
                                                      3.1559
                                                                0.3479
     0.2
            8.2451
                      0.5131
                                0.0057
                                           0.0622
                                                      3.249
                                                                0.3481
  0.205
            8.2411
                      0.5083
                                0.0058
                                           0.0617
                                                     3.3003
                                                                0.3482
  0.215
            8.2359
                      0.4961
                                0.0059
                                           0.0602
                                                     3.3793
                                                               0.3483
  0.225
           8.2285
                      0.4888
                                0.0061
                                           0.0594
                                                     3.4858
                                                               0.3485
  0.235
           8.2252
                      0.4809
                                0.0063
                                           0.0585
                                                     3.5825
                                                               0.3485
  0.245
            8.2177
                      0.4727
                                0.0064
                                           0.0575
                                                     3.6731
                                                               0.3487
  0.255
           8.2104
                      0.4637
                                0.0066
                                           0.0565
                                                     3.7518
                                                               0.3489
  0.265
           8.2045
                        0.46
                                0.0068
                                           0.0561
                                                      3.869
                                                                 0.349
  0.275
               8.2
                      0.4542
                                0.0069
                                           0.0554
                                                     3.9661
                                                               0.3491
   0.29
           8.1914
                      0.4454
                                0.0072
                                           0.0544
                                                     4.1035
                                                               0.3493
    0.3
           8.1866
                      0.4399
                                0.0073
                                           0.0537
                                                     4.1943
                                                               0.3494
  0.315
           8.1789
                      0.4338
                                0.0076
                                            0.053
                                                     4.3444
                                                               0.3495
  0.325
           8.1747
                      0.4289
                                0.0078
                                           0.0525
                                                     4.4329
                                                               0.3496
   0.34
             8.168
                      0.4244
                                 0.008
                                            0.052
                                                     4.5908
                                                               0.3498
  0.355
           8.1556
                      0.4159
                                0.0082
                                            0.051
                                                      4.701
                                                               0.3501
   0.37
           8.1537
                      0.4134
                                0.0085
                                           0.0507
                                                     4.8706
                                                               0.3501
  0.385
           8.1475
                       0.408
                                0.0087
                                           0.0501
                                                     5.0042
                                                               0.3502
  0.405
           8.1402
                      0.4008
                                 0.009
                                           0.0492
                                                     5.1739
                                                               0.3504
   0.42
           8.1352
                      0.3956
                                0.0092
                                           0.0486
                                                     5.2974
                                                               0.3505
   0.44
           8:1266
                      0.3885
                                0.0095
                                           0.0478
                                                     5.4525
                                                               0.3507
  0.455
           8.1228
                      0.3826
                                0.0097
                                           0.0471
                                                     5.5539
                                                               0.3508
```

8.1178

0.3738

0.0099

0.046

5.6661

0.495	8.1144	0.3623	0.01	0.0446	5.7246	0.351
0.52	8.1221	0.3405	0.0098	0.0419		0.3508
0.54	8.1846	0.3557	0.0107	0.0435	6.1059	0.3495
0.565	8.1226	0.3992	0.0125	0.0491	7.1958	0.3508
0.585	8.1088	0.3868	0.0126	0.0477	7.2256	0.3511
0.61	8.1038	0.3783	0.0128	0.0467		0.3512
0.64	8.102	0.3739	0.0133	0.0461	7.6442	0.3512
0.665	8.1012	0.3728	0.0138	0.046		0.3512
0.695	8.1008	0.3741	0.0145	0.0462		0.3513
0.725	8.1009	0.3787	0.0153	0.0468	8.7728	0.3512
0.755	8.0958	0.3843	0.0161	0.0475	9.2728	0.3514
0.785	8.0949	0.3886	0.017	0.048	9.75	0.3514
0.82	8.0898	0.3965	0.0181	0.049	10.3933	0.3515
0.855	8.0815	0.4041	0.0192	0.05	11.0512	0.3517
0.895	8.0695	0.4111	0.0205	0.0509	11.7772	0.3519
0.93	8.0577	0.4134	0.0214	0.0513	12.3139	0.3522
0.97	8.044	0.4103	0.0221	0.051	12.76	0.3525
1.015	8.0328	0.3958	0.0223	0.0493	12.8905	0.3527
1.055	8.0481	0.3631	0.0213	0.0451	12.2774	0.3524
1.1	8.1216	0.4458	0.0273	0.0549	15.6471	0.3508
1.15	8.0429	0.4657	0.0298	0.0579	17.1708	0.3525
1.195	8.0247	0.4519	0.03	0.0563	17.3342	0.3529
1.25	8.0219	0.4449	0.0309	0.0555	17.8533	0.3529
1.3	8.024	0.4467	0.0323	0.0557	18.6417	0.3529
1.36	8.0258	0.4567	0.0345	0.0569	19.9351	0.3529
1.415	8.0235	0.4696	0.0369	0.0585	21.3287	0.3528
1.475	8.0155	0.4824	0.0396	0.0602	22.8498	0.3529
1.54	8.0053	0.4876	0.0418	0.0609	24.1294	0.3533
1.605	8.0171	0.4821	0.043	0.0601	24.8435	0.353
1.675	8.0223	0.5407	0.0504	0.0674	29.0666	0.3529
1.745	7.9849	0.55	0.0534	0.0689	30.8774	0.3529
1.82	7.9709	0.5478	0.0554	0.0687	32.1019	0.354
1.9	7.9675	0.551	0.0582	0.0692	33.7178	0.3541
1.98	7.9675	0.5603	0.0617	0.0703	35.7293	0.3541
2.065	7.9666	0.5753	0.0661	0.0722	38.2611	0.3541
2.155	7.9641	0.5954	0.0713	0.0748	41.3236	0.3541
2.25	7.9538	0.6145	0.0769	0.0773	44.5623	0.3543
2.345	7.9478	0.6288	0.082	0.0791	47.5358	0.3544
2.445	7.9442	0.6465	0.0879	0.0814	50.9693	0.3545
2.55	7.9402	0.6685	0.0948	0.0842	54.9792	0.3546
2.66	7.9347	0.6956	0.1029	0.0877	59.6871	0.3546
2.775	7.9156	0.7246	0.1118	0.0915	64.9426	0.3551
2.89	7.9019	0.7375	0.1185	0.0933	68.8952	0.3551
3.015	7.8952	0.7597	0.1274	0.0962	74.0609	0.3555
3.145	7.8834	0.7857	0.1274	0.0902	79.9558	
3.28	7.8714	0.8098	0.1374	0.1029	86.0005	0.3557
3.42	7.8547	0.8357	0.1589	0.1029	92.6263	0.356
3.57	7.8403	0.8552	0.1509	0.1004	92.0263 99.0358	0.3563
3.72	7.8316	0.8787	0.1818	0.1091	106.0771	0.3566
3.88	7.822	0.908	0.1010	0.1122	114.3894	0.3568
4.045	7.8106	0.9412	0.1939	0.1101	123.6841	0.357
		0.0712	0.2111	0.1203	123.0041	0.3572


```
17JL61643
A.P. HILL, DART
      9.7
                    A.P. HILL, DART, File: 17JL61643
        4
     37.3
                    20 deg C, Mv = 37.3\%, 1.470 g/cc (dry)
       20
     1.47
                                                                0.2101
    0.045
                        3,224
                                 0.0081
                                            0.1431
                                                       2.773
            22.532
     0.05
           22.4839
                       2.9876
                                 0.0083
                                            0.1329
                                                      2.8592
                                                                0.2104
                                 0.0085
                                                      2.9374
                                                                0.2108
                                            0.1243
    0.055
           22.4121
                       2.7851
                                 0.0089
                                            0.1187
                                                      3.0657
                                                                0.2105
     0.06
           22.4939
                       2.6689
                                                      3.0925
                                            0.1108
                                                                0.2113
    0.065
           22.3357
                                 0.0089
                       2.4758
                                            0.1056
                                                      3.1726
                                                                0.2113
     0.07
           22.3268
                       2.3577
                                 0.0092
                                 0.0094
                                             0.101
                                                      3.2465
                                                                0.2117
    0.075
           22.2535
                       2.2478
                                 0.0095
                                            0.0962
                                                      3.2941
                                                                0.2119
     80.0
           22.2132
                        2.136
                                            0.0929
                                                      3.3783
                                                                0.2121
                                 0.0097
    0.085
           22.1873
                       2.0604
                                 0.0099
                                            0.0893
                                                      3.4377
                                                                0.2122
                       1.9788
     0.09
           22.1611
                                            0.0864
                                                      3.5098
                                                                0.2123
                                 0.0101
    0.095
           22.1354
                       1.9128
                                 0.0103
                                            0.0838
                                                      3.5785
                                                                0.2125
      0.1
           22.0987
                       1.8511
    0.105
                       1.7763
                                 0.0104
                                            0.0805
                                                      3.6086
                                                                 0.2127
            22.0659
                                 0.0106
                                            0.0789
                                                      3.7036
                                                                 0.2127
     0.11
           22.0606
                       1.7399
                                 0.0108
                                            0.0764
                                                       3.749
                                                                 0.2129
    0.115
            22.0312
                       1.6835
                                 0.0109
                                            0.0741
                                                      3.7925
                                                                  0.213
     0.12
             22.021
                       1.6316
                                                         3.87
                                            0.0726
                                                                 0.2131
    0.125
            21.9986
                       1.5975
                                  0.0111
                                  0.0113
                                            0.0709
                                                      3.9293
                                                                 0.2132
     0.13
            21.9779
                       1.5588
    0.135
                       1.5239
                                  0.0114
                                            0.0694
                                                      3.9906
                                                                 0.2132
            21.9634
                                  0.0116
                                            0.0681
                                                      4.0627
                                                                 0.2133
     0.14
            21.9442
                       1.4954
     0.15
            21.9239
                       1.4375
                                   0.012
                                            0.0656
                                                       4.1865
                                                                 0.2135
                                  0.0122
                                            0.0646
                                                        4.258
                                                                 0.2135
    0.155
            21.9126
                       1.4145
                                            0.0634
                                                       4.3194
                                                                 0.2136
     0.16
                       1.3898
                                  0.0124
            21.9051
     0.17
                          1.34
                                  0.0127
                                            0.0612
                                                       4.4277
                                                                 0.2137
            21.8787
    0.175
                         1.318
                                  0.0128
                                            0.0603
                                                       4.4845
                                                                 0.2138
             21.867
    0.185
            21.8506
                       1.2786
                                  0.0132
                                            0.0585
                                                       4.6009
                                                                 0.2138
                                                       4.6611
                                                                 0.2139
     0.19
                       1.2611
                                  0.0133
                                            0.0577
            21.8442
                                                       4.7686
      0.2
             21.833
                       1.2253
                                  0.0136
                                            0.0561
                                                                 0.2139
    0.205
            21.8256
                        1.2086
                                  0.0138
                                            0.0554
                                                       4.8219
                                                                  0.214
                                                       4.9216
                                                                  0.214
    0.215
                                  0.0141
                                            0.0539
            21.8158
                        1.1759
                                                       5.0205
    0.225
                                  0.0143
                                            0.0525
                                                                  0.214
            21.8174
                        1.1462
    0.235
            21.8139
                        1.1243
                                  0.0147
                                            0.0515
                                                       5.1437
                                                                  0.214
    0.245
                        1.0948
                                  0.0149
                                            0.0502
                                                       5.2219
                                                                  0.214
            21.8135
                                                       5.3285
                                                                  0.214
    0.255
            21.8231
                        1.0735
                                  0.0152
                                            0.0492
    0.265
                                  0.0156
                                            0.0485
                                                       5.4551
                                                                  0.214
            21.8189
                        1.0574
                                             0.048
                                                       5.6134
                                                                  0.214
    0.275
            21.8291
                        1.0488
                                   0.016
                                            0.0476
                                                       5.8656
                                                                 0.2139
     0.29
            21.8461
                        1.0396
                                  0.0168
                                            0.0477
                                                       6.0896
                                                                 0.2138
       0.3
            21.8582
                        1.0436
                                  0.0174
    0.315
            21.8855
                        1.0832
                                   0.019
                                            0.0495
                                                       6.6322
                                                                 0.2137
                                                       7.4661
                                                                 0.2138
    0.325
                                  0.0213
                                             0.054
            21.8617
                        1.1813
     0.34
            21.6815
                        1.0853
                                  0.0205
                                            0.0501
                                                       7.2057
                                                                 0.2147
                                  0.0204
                                            0.0475
                                                       7.1409
                                                                 0.2144
    0.355
            21.7335
                        1.0313
                                  0.0214
                                             0.0479
                                                        7.514
                                                                 0.2143
     0.37
            21.7532
                        1.0416
                                                       7.9032
                                             0.0484
                                                                 0.2144
    0.385
            21.7459
                        1.0527
                                  0.0225
    0.405
            21.7294
                        1.0643
                                   0.024
                                              0.049
                                                       8.4086
                                                                 0.2145
                                             0.0494
                                                       8.7852
                                                                 0.2145
                        1.0719
                                   0.025
     0.42
            21.7123
                                  0.0264
                                             0.0497
                                                       9.2631
                                                                 0.2147
      0.44
            21.6846
                        1.0781
                                             0.0499
                                                       9.6072
                                                                 0.2148
    0.455
             21.666
                        1.0809
                                  0.0273
```

1.076

0.475

21.6438

0.0497

9.9894

0.405	04 6047	4 0707	0.0005	0.0405	40.0000	0.045
0.495	21.6247	1.0707	0.0295	0.0495	10.3632	0.215
0.52	21.6127	1.0562	0.0305	0.0489	10.743	0.215
0.54	21.6064	1.0429	0.0313	0.0483	11.0173	0.2151
0.565	21.6147	1.0315	0.0324	0.0477	11.3984	0.215
0.585	21.6322	1.0299	0.0335	0.0476	11.7791	0.2149
0.61	21.6653	1.0554	0.0358	0.0487	12.5772	0.2148
0.64	21.6884	1.1904	0.0424	0.0549	14.8749	0.2146
0.665	21.418	1.2911	0.0477	0.0603	16.8666	0.216
0.695	21.4741	0.9924	0.0384	0.0462	13.5345	0.2157
0.725	21.5804	1.0448	0.0421	0.0484	14.8275	0.2152
0.755	21.6162	1.132	0.0475	0.0524	16.7142	0.215
0.785	21.6024	1.1496	0.0502	0.0532	17.6549	0.2151
0.82	21.5833	1.1908	0.0543	0.0552	19.1112	0.2152
0.855	21.5618	1.2192	0.058	0.0565	20.4108	0.2153
0.895	21.5491	1.242	0.0618	0.0576	21.7725	0.2153
0.93	21.5588	1.2724	0.0658	0.059	23.1715	0.2153
0.97	21.5482	1.3783	0.0743	0.064	26.1846	0.2153
1.015	21.3692	1.308	0.0738	0.0612	26.1098	0.2162
1.055	21.5139	1.2582	0.0738	0.0585	26.0202	0.2155
1.1	21.5814	1.3476	0.0824	0.0624	29.0099	0.2152
1.15	21.5952	1.4577	0.0932	0.0675	32.7928	0.2151
1.195	21.5932	1.5467	0.0932	0.0073	36.1694	0.2151
1.195	21.5488	1.6345	0.1026	0.0717	40.0052	0.2151
1.25			0.1136	0.0759	44.5342	0.2153
	21.5426	1.7495				
1.36	21.3187	1.8826	0.1424	0.0883	50.3896	0.2164
1.415	21.2192	1.7774	0.1399	0.0838	49.619	0.2169
1.475	21.2465	1.74	0.1427	0.0819	50.6021	0.2168
1.54	21.2779	1.7663	0.1513	0.083	53.5909	0.2166
1.605	21.2935	1.8378	0.164	0.0863	58.0882	0.2165
1.675	21.2423	1.9319	0.1799	0.0909	63.7977	0.2167
1.745	21.2019	1.9406	0.1883	0.0915	66.8251	0.2169
1.82	21.2099	1.9841	0.2008	0.0935	71.2406	0.2169
1.9	21.2086	2.0635	0.218	0.0973	77.3446	0.2169
1.98	21.1806	2.154	0.2372	0.1017	84.182	0.217
2.065	21.1211	2.2149	0.2543	0.1049	90.399	0.2173
2.155	21.1035	2.2602	0.2708	0.1071	96.3039	0.2174
2.25	21.0888	2.3329	0.2919	0.1106	103.8072	0.2174
2.345	21.0632	2.4188	0.3154	0.1148	112.229	0.2175
2.445	21.0291	2.4933	0.339	0.1186	120.7036	0.2177
2.55	21.0066	2.5825	0.3662	0.1229	130.4445	0.2178
2.66	20.9641	2.6849	0.3971	0.1281	141.5903	0.218
2.775	20.9059	2.769	0.4273	0.1324	152.5259	0.2182
2.89	20.8693	2.8389	0.4562	0.136	162.9829	0.2184
3.015	20.8393	2.9258	0.4905	0.1404	175.3351	0.2185
3.145	20.8055	3.0255	0.5291	0.1454	189.2503	0.2187
3.28	20.768	3.1341	0.5716	0.1509	204.5985	0.2188
3.42	20.7244	3.2493	0.6179	0.1568	221.3608	0.219
3.57	20.6693	3.3746	0.6699	0.1633	240.2341	0.2192
3.72	20.6029	3.4916	0.7223	0.1695	259.3598	0.2195
3.88	20.5363	3.602	0.7771	0.1754	279.4477	0.2198
4.045	20.4813	3.7143	0.8354	0.1814	300.7429	0.2201


```
16JL61026
A.P. HILL, TOP 3
      9.7
        2
                    A.P. HILL, TOP 3, File: 16JL61026
        3
                    20 deg C, Mv = 3.0\%, 1.480 g/cc (dry)
      20
     1.48
   0.045
             2.8709
                       0.1486
                                  0.0004
                                            0.0518
                                                      0.3588
                                                                   0.59
    0.05
             2.8674
                       0.1457
                                  0.0004
                                            0.0508
                                                      0.3912
                                                                 0.5904
   0.055
            2.8623
                       0.1486
                                  0.0005
                                            0.0519
                                                      0.4394
                                                                 0.5909
     0.06
             2.8877
                        0.155
                                  0.0005
                                            0.0537
                                                      0.4977
                                                                 0.5883
                                            0.0489
   0.065
            2.8613
                       0.1399
                                  0.0005
                                                      0.4887
                                                                  0.591
     0.07
             2.8621
                       0.1389
                                  0.0005
                                            0.0485
                                                      0.5227
                                                                 0.5909
   0.075
             2.8573
                       0.1371
                                  0.0006
                                             0.048
                                                      0.5533
                                                                 0.5914
    0.08
              2.856
                       0.1366
                                  0.0006
                                            0.0478
                                                      0.5879
                                                                 0.5916
   0.085
             2.8557
                       0.1347
                                  0.0006
                                            0.0472
                                                      0.6161
                                                                 0.5916
    0.09
             2.8491
                       0.1312
                                  0.0007
                                             0.046
                                                        0.636
                                                                 0.5923
   0.095
                                            0.0459
            2.8539
                        0.131
                                  0.0007
                                                      0.6699
                                                                 0.5918
      0.1
              2.856
                       0.1338
                                  0.0007
                                            0.0469
                                                      0.7202
                                                                 0.5916
                                            0.0496
   0.105
            2.8684
                       0.1421
                                  0.0008
                                                      0.8013
                                                                 0.5903
    0.11
             2.8495
                       0.1324
                                  0.0008
                                            0.0465
                                                      0.7847
                                                                 0.5922
   0.115
            2.8478
                       0.1298
                                  0.0008
                                            0.0456
                                                      0.8044
                                                                 0.5924
    0.12
             2.8475
                       0.1264
                                  8000.0
                                            0.0444
                                                      0.8172
                                                                 0.5925
   0.125
            2.8457
                       0.1274
                                  0.0009
                                            0.0448
                                                      0.8588
                                                                 0.5926
    0.13
             2.8416
                       0.1276
                                  0.0009
                                            0.0449
                                                      0.8946
                                                                 0.5931
   0.135
            2.8423
                       0.1244
                                  0.0009
                                            0.0438
                                                      0.9058
                                                                  0.593
    0.14
            2.8416
                       0.1238
                                   0.001
                                            0.0436
                                                      0.9353
                                                                 0.5931
    0.15
            2.8385
                       0.1202
                                   0.001
                                            0.0424
                                                      0.9735
                                                                 0.5934
   0.155
              2.836
                       0.1196
                                   0.001
                                            0.0422
                                                      1.0012
                                                                 0.5937
    0.16
            2.8343
                       0.1186
                                  0.0011
                                            0.0418
                                                      1.0248
                                                                 0.5939
    0.17
             2.8312
                                  0.0011
                       0.1154
                                            0.0408
                                                      1.0607
                                                                 0.5942
   0.175
             2.8291
                       0.1146
                                  0.0011
                                            0.0405
                                                      1.0843
                                                                 0.5944
   0.185
             2.8264
                       0.1102
                                  0.0011
                                             0.039
                                                        1.103
                                                                 0.5947
    0.19
             2.8255
                       0.1104
                                  0.0012
                                            0.0391
                                                      1.1343
                                                                 0.5948
      0.2
            2.8219
                       0.1081
                                  0.0012
                                            0.0383
                                                      1.1705
                                                                 0.5952
   0.205
             2.8203
                        0.107
                                  0.0012
                                            0.0379
                                                      1.1874
                                                                 0.5953
   0.215
             2.8177
                       0.1055
                                  0.0013
                                            0.0374
                                                      1.2288
                                                                 0.5956
   0.225
             2.8147
                       0.1035
                                  0.0013
                                            0.0368
                                                      1.2627
                                                                  0.596
   0.235
            2.8098
                       0.1024
                                  0.0013
                                            0.0365
                                                        1.306
                                                                 0.5965
   0.245
             2.8087
                       0.1019
                                  0.0014
                                            0.0363
                                                        1.355
                                                                 0.5966
   0.255
             2.8032
                       0.1011
                                  0.0014
                                             0.036
                                                      1.3997
                                                                 0.5972
   0.265
             2.8001
                       0.1003
                                  0.0015
                                            0.0358
                                                      1.4451
                                                                 0.5975
   0.275
             2.7965
                       0.0994
                                  0.0015
                                            0.0356
                                                      1.4869
                                                                 0.5979
    0.29
            2.7925
                       0.0979
                                  0.0016
                                             0.035
                                                      1.5445
                                                                 0.5983
      0.3
            2.7901
                       0.0963
                                  0.0016
                                            0.0345
                                                      1.5723
                                                                 0.5986
   0.315
              2.783
                                            0.0335
                                                      1.6024
                       0.0933
                                  0.0016
                                                                 0.5994
   0.325
             2.7855
                       0.0933
                                  0.0017
                                            0.0335
                                                      1.6522
                                                                 0.5991
    0.34
              2.785
                       0.0917
                                  0.0017
                                            0.0329
                                                      1.6997
                                                                 0.5991
   0.355
                                                                  0.599
             2.7862
                       0.0938
                                  0.0019
                                            0.0337
                                                      1.8138
    0.37
             2.7806
                                             0.032
                       0.0891
                                  0.0018
                                                      1.7974
                                                                 0.5996
   0.385
             2.7803
                       0.0884
                                  0.0019
                                            0.0318
                                                      1.8556
                                                                 0.5997
   0.405
             2.7785
                        0.085
                                  0.0019
                                            0.0306
                                                       1.8787
                                                                 0.5999
    0.42
             2.7775
                       0.0834
                                  0.0019
                                               0.03
                                                       1.9121
                                                                    0.6
    0.44
             2.7753
                       0.0806
                                   0.002
                                             0.029
                                                      1.9362
                                                                 0.6002
   0.455
             2.7742
                       0.0785
                                   0.002
                                            0.0283
                                                       1.9509
                                                                 0.6003
```

2.7723

0.0762

0.002

0.0275

1.9772

0.495	2.7703	0.0749	0.0021	0.027	2.0259	0.6008
0.52	2.7681	0.0723	0.0021	0.0261	2.0559	0.601
0.54	2.7666	0.0706	0.0021	0.0255	2.0855	0.6012
0.565	2.7643	0.0684	0.0022	0.0248	2.1156	0.6014
0.585	2.7636	0.0666	0.0022	0.0241	2.1318	0.6015
0.61	2.7629	0.065	0.0022	0.0235	2.1702	0.6016
0.64	2.7631	0.0624	0.0022	0.0226	2.1857	0.6016
0.665	2.763	0.0602	0.0022	0.0218	2.1906	0.6016
0.695	2.763	0.0573	0.0022	0.0207	2.179	0.6016
0.725	2.7637	0.0556	0.0022	0.0201	2.2035	0.6015
0.755	2.7684	0.0474	0.002	0.0171	1.9569	0.601
0.785	2.7638	0.0511	0.0022	0.0185	2.1936 ⁻	0.6015
0.82	2.7646	0.049	0.0022	0.0177	2.1986	0.6014
0.855	2.7664	0.0463	0.0022	0.0167	2.1641	0.6012
0.895	2.7716	0.0402	0.002	0.0145	1.9651	0.6007
0.93	2.8034	0.0692	0.0036	0.0247	3.4936	0.5972
0.97	2.7726	0.0607	0.0033	0.0219	3.216	0.6005
1.015	2.7729	0.0568	0.0032	0.0205	3.1509	0.6005
1.055	2.7747	0.0563	0.0033	0.0203	3.2416	0.6003
1.1	2.7768	0.0582	0.0036	0.021	3.4953	0.6001
1.15	2.7771	0.0601	0.0038	0.0216	3.7717	0.6
1.195	2.7765	0.0626	0.0042	0.0225	4.08	0.6001
1.25	2.7743	0.0643	0.0045	0.0232	4.3891	0.6003
1.3	2.773	0.0656	0.0047	0.0237	4.6612	0.6005
1.36	2.7725	0.0673	0.0051	0.0243	4.9972	0.6005
1.415	2.7719	0.0687	0.0054	0.0248	5.3127	0.6006
1.475	2.7701	0.0701	0.0058	0.0253	5.6523	0.6008
1.54	2.7681	0.0726	0.0062	0.0262	6.1081	0.601
1.605	2.7665	0.075	0.0067	0.0271	6.5848	0.6012
1.675	2.7636	0.0771	0.0072	0.0279	7.0654	0.6015
1.745	2.7607	0.0798	0.0077	0.0289	7.6182	0.6018
1.82	2.7571	0.0881	0.0089	0.0319	8.7775	0.6022
1.9	2.7349	0.0722	0.0076	0.0264	7.5395	0.6046
1.98	2.7418	0.0702	0.0077	0.0256	7.6365	0.6039
2.065	2.7415	0.0699	0.008	0.0255	7.9234	0.6039
2.155	2.7393	0.0685	0.0082	0.025	8.1086	0.6042
2.25	2.7376	0.0668	0.0084	0.0244	8.263	0.6043
2.345	2.7352	0.0646	0.0084	0.0236	8.3246	0.6046
2.445	2.7334	0.0619	0.0084	0.0226	8.3196	0.6048
2.55	2.7321	0.0582	0.0083	0.0213	8.1666	0.605
2.66	2.7341	0.0534	0.0079	0.0195	7.8127	0.6047
2.775	2.7503	0.0546	0.0084	0.0199	8.3132	0.603
2.89	2.7316	0.0618	0.0099	0.0226	9.8289	0.605
3.015	2.7333	0.0606	0.0102	0.0222	10.0504	0.6048
3.145	2.7313	0.062	0.0108	0.0227	10.7375	0.605
3.28	2.7288	0.0613	0.0112	0.0225	11.0762	0.6053
3.42	2.7295	0.0595	0.0113	0.0218	11.1968	0.6052
3.57	2.7392	0.0595	0.0118	0.0217	11.6692	0.6042
3.72	2.7444	0.1109	0.0229	0.0404	22.6461	0.6035
3.88	2.6958	0.0706	0.0152	0.0262	15.1806	0.609
4.045	2.7066	0.0646	0.0145	0.0239	14.4552	0.6078

0.475

7.0094

0.0115

0.0624

7.1326

0.495	7.0022	0.4286	0.0118	0.0612	7.2888	0.3777
0.52	6.9925	0.4172	0.0121	0.0597	7.4585	0.378
0.54	6.9819	0.4064	0.0122	0.0582	7.5511	0.3783
0.565	6.9634	0.3767	0.0118	0.0541	7.3327	0.3788
0.585	7.0064	0.314	0.0102	0.0448	6.3115	0.3777
0.61	7.039	0.3756	0.0127	0.0534	7.8517	0.3768
0.64	7.023	0.3887	0.0138	0.0553	8.5343	0.3772
0.665	7.015	0.3892	0.0144	0.0555	8.8848	0.3774
0.695	7.0088	0.3884	0.015	0.0554	9.2711	0.3776
0.725	7.0059	0.3881	0.0156	0.0554	9.6655	0.3777
0.755	6.9991	0.3843	0.0161	0.0549	9.9729	0.3778
0.785	6.9974	0.3856	0.0168	0.0551	10.4046	0.3779
0.82	6.9942	0.3861	0.0176	0.0552	10.8854	0.378
0.855	6.9916	0.3861	0.0184	0.0552	11.3516	0.378
0.895	6.988	0.388	0.0193	0.0555	11.9438	0.3781
0.93	6.9853	0.3896	0.0201	0.0558	12.4652	0.3782
0.97	6.982	0.3916	0.0211	0.0561	13.0702	0.3783
1.015	6.9795	0.3954	0.0223	0.0567	13.8118	0.3784
1.055	6.9787	0.3997	0.0234	0.0573	14.5125	0.3784
1.1	6.9789	0.4094	0.025	0.0587	15.4992	0.3784
1.15	6.9681	0.4213	0.0269	0.0605	16.6882	0.3787
1.195	6.9538	0.4223	0.0281	0.0607	17.4005	0.379
1.25	6.9469	0.4228	0.0294	0.0609	18.2318	0.3792
1.3	6.943	0.4254	0.0308	0.0613	19.082	0.3793
1.36	6.9381	0.4317	0.0326	0.0622	20.2629	0.3795
1.415	6.9321	0.4376	0.0344	0.0631	21.3829	0.3796
1.475	6.9239	0.4436	0.0364	0.0641	22.607	0.3798
1.54	6.9151	0.448	0.0384	0.0648	23.8502	0.3801
1.605	6.9071	0.4509	0.0402	0.0653	25.0326	0.3803
1.675	6.8982	0.4524	0.0421	0.0656	26.2295	0.3805
1.745	6.8927	0.4437	0.0431	0.0644	26.8104	0.3807
1.82	6.912	0.4504	0.0456	0.0652	28.3468	0.3802
1.9	6.9109	0.4711	0.0498	0.0682	30.9504	0.3802
1.98	6.9034	0.4863	0.0535	0.0704	33.3155	0.3804
2.065	6.894	0.4977	0.0571	0.0722	35.5802	0.3806
2.155	6.8879	0.5027	0.0602	0.073	37.5223	0.3808
2.25	6.9001	0.5099	0.0638	0.0739	39.7031	0.3804
2.345	6.9108	0.5672	0.074	0.0821	45.9797	0.3801
2.445	6.8526	0.5866	0.0797	0.0856	49.7878	0.3817
2.55	6.8396	0.5763	0.0817	0.0843	51.0664	0.382
2.66	6.8386	0.583	0.0862	0.0852	53.8886	0.3821
2.775	6.8346	0.5961	0.092	0.0872	57.502	0.3821
2.89	6.8355	0.6088	0.0978	0.0891	61.1509	0.3821
3.015	6.8272	0.6376	0.1069	0.0934	66.8466	0.3823
3.145	6.8137	0.6514	0.1139	0.0956	71.3087	0.3827
3.28	6.8102	0.6669	0.1216	0.0979	76.1539	0.3827
3.42	6.8079	0.6895	0.1311	0.1013	82.1015	0.3828
3.57	6.7972	0.7214	0.1432	0.1061	89.7252	0.383
3.72	6.7768	0.7396	0.153	0.1091	95.9861	0.3836
3.88	6.7662	0.7545	0.1628	0.1115	102.2131	0.3838
4.045	6.7582	0.7762	0.1746	0.1149	109.6815	0.384
			_			

0.0622

0.028

0.475

17.0404

1.0602

11.0908

0.2421

0.495	17.0218	1.0622	0.0292	0.0624	11.5863	0.2423
0.52	16.9992	1.0584	0.0306	0.0623	12.1362	0.2424
0.54	16.9835	1.0523	0.0316	0.062	12.5362	0.2425
0.565	16.9628	1.0407	0.0327	0.0614	12.9796	0.2427
0.585	16.9506	1.0302	0.0335	0.0608	13.3082	0.2428
0.61	16.9382	1.0174	0.0345	0.0601	13.7094	0.2429
0.64	16.9323	1.0034	0.0357	0.0593	14.1886	0.2429
0.665	16.9322	0.9971	0.0369	0.0589	14.6502	0.2429
0.695	16.9348	0.9994	0.0386	0.059	15.3451	0.2429
0.725	16.9297	1.0124	0.0408	0.0598	16.2187	0.2429
0.755	16.9168	0.999	0.0419	0.0591	16.6723	0.243
0.785	16.9483	1.0072	0.044	0.0594	17.4618	0.2428
0.82	16.9454	1.0448	0.0476	0.0617	18.9213	0.2428
0.855	16.9236	1.0733	0.051	0.0634	20.2797	0.243
0.895	16.8906	1.0943	0.0545	0.0648	21.6654	0.2432
0.033	16.8637	1.1028	0.057	0.0654	22.7054	0.2434
0.97	16.8369	1.1028	0.0595	0.0656	23.7206	0.2436
1.015	16.8207	1.0998	0.0621	0.0654	24.7447	0.2437
1.015	16.8171	1.0996	0.0643	0.0652	25.6333	0.2437
1.055	16.8216	1.090	0.0668	0.0649	26.6359	0.2437
1.15	16.863	1.1204	0.0716	0.0664	28.5244	0.2434
1.195	16.8559	1.1204	0.0782	0.0698	31.1442	0.2434
1.195	16.833	1.2241	0.0851	0.0727	33.901	0.2436
1.23	16.8081	1.2532	0.0906	0.0746	36.1189	0.2437
1.36	16.7817	1.2752	0.0964	0.076	38.4798	0.2439
1.415	16.7686	1.2896	0.0904	0.0769	40.502	0.244
1.475	16.7683	1.2090	0.1015	0.0703	42.4913	0.244
1.475	16.7663	1.3238	0.1003	0.0787	45.1855	0.2437
1.605	16.8308	1.4069	0.1154	0.0737	50.0223	0.2435
1.675	16.812	1.4885	0.1236	0.0885	55.2567	0.2436
1.745	16.7777	1.5526	0.1507	0.0005	60.1002	0.2439
1.82	16.7777	1.6039	0.1623	0.0923	64.8267	0.2441
1.02	16.7362	1.6567	0.1025	0.0992	69.9792	0.2444
1.98	16.6424	1.6898	0.175	0.1015	74.504	0.2448
2.065	16.6019	1.7014	0.1954	0.1015	78.3281	0.2451
2.155	16.5833	1.7154	0.1954	0.1023	82.4597	0.2452
2.133	16.5823	1.7134	0.2030	0.1054	87.5229	0.2452
2.345	16.5851	1.8044	0.2353	0.1088	94.3677	0.2452
2.445	16.5615	1.8748	0.2549	0.1132		0.2453
2.445	16.5372	1.9402	0.2751	0.1173	110.4747	0.2455
2.66	16.5175	2.0067	0.2751	0.1175	119.2447	0.2456
2.775	16.5002	2.0773	0.3205	0.1259	128.8276	0.2457
2.773	16.4856	2.142	0.3442	0.1299	138.3885	0.2458
3.015	16.4754	2.2088	0.3703	0.1341	148.904	0.2458
3.145	16.4571	2.2799	0.3783	0.1385	160.3878	0.2459
3.143	16.4259	2.3512	0.4288	0.1431	172.6369	0.2461
3.42	16.4259	2.3312	0.4260	0.1431	185.8244	0.2464
3.42 3.57	16.326	2.4243 2.5183	0.4999	0.140		0.2468
3.57 3.72	16.2681	2.6223	0.4999		219.2828	0.2471
	16.2194	2.0223 2.754	0.5424		240.4744	0.2471
3.88					264.3022	0.2474
4.045	16.184	2.9014	0.6526	0.1783	204.3022	0.2470

Fort A.P. Hill Collective Sample Results

AP Hill Soil Samples - All Data

FT. A.P. Hick Soil Samples Collected ZIMARZ96 DSample - OFF Road Sample - ...
Collected in off Road area (Hoterial in top Sample حده روب Main TRAILUR. NOT to Scale 2) Sample - top 3" Callected by hand held area Sample 78 × 27'→1 To Main TRALLER 1/07 to SCALE

(Sample collected)

3 Sample - Dart Road Sample Collected by Webiele Road Survey TRAILER STRAVER TEST ROAD (Somple collected in) Houd Hold area Main TRAILERS NOT to SCALE