Particle Cloud Generation with Message Passing GANs

INFORMATION Raghav Kansal¹, Javier Duarte¹, Hao Su¹, Breno Orzari², Thiago Tomei², Maurizio Pierini³, Mary Touranakou^{3,4}, Jean-Roch Vlimant⁵, Dimitrios Gunopulos⁴ PROCESSING SYSTEMS ¹UC San Diego, ²Universidade Estadual Paulista, ³CERN, ⁴National and Kapodistrian University of Athens, ⁵California Institute of Technology

ML for CERN LHC Simulations

- Traditional computing techniques in high energy physics (HEP) can't keep up with data needs at the Large Hadron Collider (LHC)
- Significant opportunity to speed up tasks such as simulation using ML
- In this work, we:
- I. Release a new HEP dataset and package (JetNet) to facilitate research in this area,
- 2. Test existing point cloud GANs on JetNet
- 3. Develop a new physics-informed GAN which is significantly more performant

Jets

- · Jets, collimated sprays of high energy particles, are ubiquitous at the LHC
- Natural representation as a "particle cloud"
- Particle angular coordinates (η, ϕ) and transverse momenta p_T as node features

particle cloud generative models

Dataset: |etNet

- JetNet [1]: high p_T jets of max 30 particles
- 3 classes/jet types:
- Gluon: simple baseline generation test
- Lighter quarks: fewer particles; test handling of variable-sized clouds
- Top quark: complex topology

- We test r-GAN (fully-connected), GraphCNN-GAN, and TreeGAN generators on JetNet
- Results inadequate for physics applications
- Instead, our new MPGAN approach is significantly more performant
- We invite researchers to improve on this, and we release this dataset
- + **JetNet** package [2] with:
- Accessible interfaces for ML+HEP datasets
- Implementations for evaluation metrics
- Conveniences to facilitate research in this area

Evaluation

- Want to evaluate quantitatively and in a standardised way key aspects of simulations
- · We develop four physics- and computer-visioninspired metrics:
 - I. Minimum matching distance (MMD)
- 2. Coverage
- 3. Fréchet ParticleNet Distance (FPND)
- 4. I-Wasserstein (WI) distances between particle- and jet-level feature distributions, with bootstrapped real baselines

Simulations Aspect	MMD	COV	FPND	WI
Quality	✓		√	√
Diversity		√	\checkmark	✓
Physics Performance				✓

- We find them to be complementary:
 - MMD and coverage are focused tests of quality and diversity
 - FPND is the most discriminating, good for model selection
 - Wland comparing with bootstrapped baselines gives interpretable validation

Approach: MPGAN

Results

 Sample feature distributions, with our MPGAN compared to existing generators + PointNet discriminators for light quark jets:

And top quark jets:

Generator	WI-P (10-3)	WI-M (10-3)	FPND	Coverage	MME
Fully Connected (FC)	1.6 ± 0.4	2.7 ± 0.1	3.9	0.56	0.075
GraphCNN	30 ± 10	11.3 ± 0.9	30k	0.39	0.085
TreeGAN	9.1 ± 0.3	5.19 ± 0.08	17	0.53	0.079
MPGAN	2.3 ± 0.3	0.6 ± 0.2	0.37	0.57	0.07

- MPGAN best performing on nearly every metric
- Significantly outperforms on high level (jet kinematics, substructure) feature metrics i.e. WI-M, FPND...
- Mass and other substructure W_1 scores are within error of the real vs real baseline > learning jet substructure correctly
- Only one to learn bimodal top jet distributions

[1] https://zenodo.org/record/5502543 [2] https://github.com/jet-net/JetNet

• Contact us at rkansal@ucsd.edu if you're interested in collaborating!

Summary/Outlook

• We advocate for physics-motivated particle cloud representations for HEP data

• We propose four physics- and computer-vision-inspired metrics for evaluating

• Our MPGAN outperforms existing point cloud GANs on nearly all metrics

Next: conditional GAN, scaling up to larger clouds, dataset development