Flight Dynamics Model for the Real-Time Flight Simulation

Copyright © 2020 Marek M. Cel. All rights reserved.

Author: Marek M. Cel

Revision: 12 Date: 2020-01-12

This work is licensed under a

Creative Commons CC0 1.0 Universal Public Domain Dedication

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights (defined below) upon the creator and subsequent owner(s) (each and all, an "owner") of an original work of authorship and/or a database (each, a "Work").

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons of creative, cultural and scientific works ("Commons") that the public can reliably and without fear of later claims of infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any form whatsoever and for any purposes, including without limitation commercial purposes. These owners may contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scientific works, or to gain reputation or greater distribution for their Work in part through the use and efforts of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or compensation, the person associating CC0 with a Work (the "Affirmer"), to the extent that he or she is an owner of Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and intended legal effect of CC0 on those rights.

- 1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or neighboring rights ("Copyright and Related Rights"). Copyright and Related Rights include, but are not limited to, the following:
 - i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;
 - ii. moral rights retained by the original author(s) and/or performer(s);

- iii. publicity and privacy rights pertaining to a person's image or likeness depicted in a Work;
- iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in paragraph 4(a), below;
- v. rights protecting the extraction, dissemination, use and reuse of data in a Work:
- vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and
- vii. other similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof.
- 2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer's Copyright and Related Rights and associated claims and causes of action, whether now known or unknown (including existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each member of the public at large and to the detriment of Affirmer's heirs and successors, fully intending that such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt the quiet enjoyment of the Work by the public as contemplated by Affirmer's express Statement of Purpose.
- 3. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account Affirmer's express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and unconditional license to exercise Affirmer's Copyright and Related Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "License"). The License shall be deemed effective as of the date CC0 was applied by Affirmer to

the Work. Should any part of the License for any reason be judged legally invalid or ineffective under applicable law, such partial invalidity or ineffectiveness shall not invalidate the remainder of the License, and in such case Affirmer hereby affirms that he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and causes of action with respect to the Work, in either case contrary to Affirmer's express Statement of Purpose.

4. Limitations and Disclaimers.

- a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or otherwise affected by this document.
- b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning the Work, express, implied, statutory or otherwise, including without limitation warranties of title, merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest extent permissible under applicable law.
- c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or any use thereof, including without limitation any person's Copyright and Related Rights in the Work. Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other rights required for any use of the Work.
- d. Affirmer understands and acknowledges that Creative Commons is not a party to this document and has no duty or obligation with respect to this CC0 or use of the Work.

Contents

N	otati	on	6
1	Intr	roduction	9
	1.1	Conventions	9
	1.2	Coordinates Systems	9
		1.2.1 Body Axis System	9
		1.2.2 Stability Axis System	9
		1.2.3 Aerodynamic Axis System	10
		1.2.4 Gravity Axis System	10
		1.2.5 Earth-fixed Axis System	12
	1.3	Aircraft Attitude	12
	1.4	Transformations Between Coordinates Systems	13
		1.4.1 Rotation Matrices	13
		1.4.2 Geographic Coordinates	14
2	Flig		16
	2.1	Assumptions	16
	2.2	Equations of Motion	16
		2.2.1 Dynamic Equations	16
		2.2.2 Kinematic Equations	19
	2.3	Numerical Integration	20
3	Env	rironment	22
	3.1	Atmosphere	22
4	Aer	odynamics	25
	4.1	v	26
	4.2		$\frac{1}{27}$
	4.3	Stabilizers	27
5	Lan	ding Gear	28

	5.1	Contact Point	28
	5.2	Forces and Moments	29
6	Mas	ss and Inertia	31
	6.1	Empty Aircraft Moments of Inertia	31
	6.2	Variable Masses	31
7	Pro	pulsion	33
	7.1	Piston Engine	33
	7.2	Propeller	34
		7.2.1 Propeller Induced Velocity	34
Bi	bliog	graphy	36

Notation

a	[m] ellipsoid equatorial radius
b	[m] ellipsoid polar radius
\hat{c}	[m] mean aerodynamic chord
c	[N/(m/s)] damping coefficient
c_S	[m/s] speed of sound
$\overset{\circ}{C_D}$	[-] drag coefficient
C_l	[-] rolling moment coefficient
C_L	[-] lift coefficient
$\overline{C_m}$	[-] pitching moment coefficient
C	[-] yawing moment coefficient
P	
$C_{P} = \frac{P}{\rho n^{3} D^{5}}$ $C_{T} = \frac{T}{\rho n^{2} D^{4}}$	[-] power coefficient
T	
$C_T = \frac{1}{\rho n^2 D^4}$	[-] thrust coefficient
C_Y	[-] side force coefficient
$C_{\Delta P}$	[-] engine power losses coefficient
D	[N] drag
D	[m] propeller diameter
g	[m/s ²] gravity acceleration
h	[m] altitude
$\vec{H} = [H_X, H_Y, H_Z]^T$	$[kg \cdot m^2/s]$ angular momentum vector
i	[rad] incidence angle
I	$[kg \cdot m^2]$ inertia matrix
J	[-] propeller advance ratio
k	[N/m] spring constant
L	[N] lift
m	[kg] mass
M	$[kg],[kg \cdot m],[kg \cdot m^2]$ generalized inertia matrix
n	[rpm] engine revolutions per minute
n	[rev./s] propeller revolution speed

p	[Pa] pressure
P	[W] power
$\vec{P} = [P_X, P_Y, P_Z]^T$	$[kg \cdot m/s]$ momentum vector
Q	[N·m] torque
$\vec{P} = [P_X, P_Y, P_Z]^T$ Q $\vec{Q} = [L, M, N]^T$	[N·m] moment of force vector
$\vec{r} = \left[x, y, z \right]^T$	[m] coordinates vector
R	[J/(kmol·K)] universal gas constant
$\vec{R} = [X, Y, Z]^T$	[N] force vector
$\boldsymbol{s} = [u, v, w, p, q, r]^T$	[m/s],[rad/s] aircraft state vector
S	[m ²] wing area
S	[K] Sutherland constant
$\vec{S} = \left[S_X, S_Y, S_Z \right]^T$	[kg·m] first moment of mass
T	[K] temperature
T	[N] thrust
V	[m/s] velocity
$\vec{V} = \left[u, v, w\right]^T$	
$\boldsymbol{x} = [x, y, z, e_0, e_x, e_y,$	$\left[e_{z} ight]^{T}$
	[m],[-] aircraft coordinates vector
α	[rad] angle of attack
β	[rad] angle of sideslip
$\hat{\delta}$	[-] normalized controls position
θ	[rad] pitch angle
λ	[rad] geographic longitude
μ	[-] friction coefficient
μ	[Pa·s] dynamic viscosity
ν	[m ² /s] kinematic viscosity
ho	[kg/m ³] air density
φ	[rad] geographic latitude
ϕ	[rad] roll angle
ψ	[rad] yaw angle
$\vec{\omega} = [p, q, r]^T$	[rad/s] angular velocity vector
$\frac{\partial \epsilon}{\partial t}$	[-] horizontal stabilizer downwash angle derivative with
$\overline{\partial \alpha}$	respect to the aircraft angle of attack

Indices:

 $\begin{array}{ll} a & \text{Aerodynamic Axis System} \\ A & \text{aerodynamics} \\ AC & \text{aerodynamic center} \\ b & \text{Body Axis System} \end{array}$

CM Center of Mass

e Earth-fixed Axis System

g Gravity (North-East-Down) Axis System

h horizontal stabilizer

LG landing gear

M mass

MAP manifold absolute pressure

N normal

O coordinate system's origin

P propulsion

s Stability Axis System

T tangent

 $egin{array}{lll} v & ext{vertical stabilizer} \ X & ext{x-axis component} \ Y & ext{y-axis component} \ Z & ext{z-axis component} \ \end{array}$

Introduction

1.1 Conventions

Flight Dynamics Model uses International System of Units (SI) for all internal computations. It is clearly specified if other units are used.

All rotations and rotation related operations are considered to be a passive (alias) rotations.

1.2 Coordinates Systems

1.2.1 Body Axis System

Body Axis System is body-centered, body-fixed coordinate system, with the x-axis positive forwards, the y-axis positive right and the z-axis positive downwards.

1.2.2 Stability Axis System

Origin of the Stability Axis System is coincident with the origin of the Body Axis System, the x-axis is directed along air freestream velocity vector projected onto the XZ plane of the Body Axis System, the y-axis is coincident with the the y-axis

Figure 1.1: Body Axis System

of the Body Axis System, and the z-axis completes a right-handed coordinate system.

1.2.3 Aerodynamic Axis System

Origin of the Aerodynamic Axis System is coincident with the origin of the Body Axis System, the x-axis is directed along air freestream velocity vector, the z-axis lies in the aircraft plane of symmetry pointing upwards, and the y-axis completes a right-handed coordinate system.

1.2.4 Gravity Axis System

There are basically two conventions of Gravity Axis Systems used for the purpose of flight dynamics East-North-Up and North-East-Down.

It is convenient to use North-East-Down axes system together with the Body Axis System and Bryant angles (Euler angles in z-y-x convention) as those angles in NED frame become aircraft heading, pitch and roll.

Considering all this, Gravity Earth Axis System is a coordinate system, with the x-axis positive North, the y-axis positive East and z-axis positive downwards.

Figure 1.2: Stability Axis System

Figure 1.3: Aerodynamic Axis System

Figure 1.4: World Geodetic System 1984

1.2.5 Earth-fixed Axis System

For any further considerations World Geodetic System 1984 as described in [1] is used as the Earth-fixed Axis System.

1.3 Aircraft Attitude

Figure 1.5: Tait-Bryan angles

Aircraft attitude is defined either by a quaternion or by quasi-Euler Tait-Bryan ψ - θ - ϕ angles in z-y-x convention. It is convenient to use such a convention, as this angles becomes aircraft roll, pitch and heading when expressed in North-East-Down coordinate system.

Transformations Between Coordinates Systems 1.4

Rotation Matrices 1.4.1

ransformation to the coordinate system rotated by Tait-Bryan ψ - θ - ϕ angles can be performed using rotation matrix, which is given by the following relations. [2, 3]

$$\boldsymbol{T}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix}$$
(1.1)

$$T(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$

$$T(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$(1.1)$$

$$T(\psi) = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (1.3)

$$T(\phi, \theta, \psi) = T(\phi)T(\theta)T(\psi) = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta\\ \cos\psi\sin\phi\sin\theta - \cos\phi\sin\psi & \cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi & \cos\theta\sin\phi\\ \sin\phi\sin\psi + \cos\phi\cos\psi\sin\theta & \cos\phi\sin\theta\sin\psi - \cos\psi\sin\phi & \cos\phi\cos\theta \end{bmatrix}$$
(1.4)

1.4.2 Geographic Coordinates

Conversion from Geographic to Cartesian Coordinates

Procedure of conversion from geographic coordinates to the Cartesian coordinates system is given as follows.

$$e = \frac{1}{a}\sqrt{a^2 - b^2} \tag{1.5}$$

$$\chi = \sqrt{1 - e^2 \sin^2 \varphi} \tag{1.6}$$

$$x_e = \left(\frac{a}{\chi} + h\right) \cos \varphi \cos \lambda \tag{1.7}$$

$$y_e = \left(\frac{a}{\chi} + h\right) \cos \varphi \sin \lambda \tag{1.8}$$

$$z_e = \left(a\frac{1 - e^2}{\chi} + h\right)\sin\varphi\tag{1.9}$$

Conversion from Cartesian to Geographic Coordinates

Reverse conversion is given as follows. [4]

$$r = \sqrt{x_e^2 + y_e^2} (1.10)$$

$$E^2 = a^2 - b^2 (1.11)$$

$$e^{\prime 2} = \frac{a^2 - b^2}{b^2} \tag{1.12}$$

$$F = 54b^2 z_e^2 (1.13)$$

$$G = r^{2} + (1 - e^{2}) z_{e}^{2} - e^{2}E^{2}$$
(1.14)

$$C = \frac{e^4 F r^2}{G^3} \tag{1.15}$$

$$S = \sqrt[3]{1 + C + \sqrt{C^2 + 2C}} \tag{1.16}$$

$$P_0 = S + \frac{1}{S} + 1 \tag{1.17}$$

$$P = \frac{F}{3P_0^2 G^2} \tag{1.18}$$

$$Q = \sqrt{1 + 2e^4 P} \tag{1.19}$$

$$r_0 = \frac{-(Pe^2r)}{1+Q} + \sqrt{\frac{1}{2}a^2\left(1+\frac{1}{Q}\right) - \frac{P(1-e^2)z_e^2}{Q+Q^2} - \frac{1}{2}Pr^2}$$
 (1.20)

$$U_0 = r - e^2 r_0 (1.21)$$

$$U = \sqrt{U_0^2 + z_e^2} (1.22)$$

$$V = \sqrt{U_0^2 + (1 - e^2) z_e^2}$$
 (1.23)

$$Z_0 = \frac{b^2 z_e}{aV} \tag{1.24}$$

Geographic coordinates are given as.

$$h = U\left(1 - \frac{b^2}{aV}\right) \tag{1.25}$$

$$\varphi = \arctan\left(\frac{z_e + e'^2 Z_0}{r}\right) \tag{1.26}$$

$$\lambda = \arctan\left(\frac{y_e}{z_e}\right) \tag{1.27}$$

Flight Dynamics Model

2.1 Assumptions

Following assumptions are made:

- forces and moments acting on the aircraft are considered to be quasi-steady,
- aircraft is considered to be a rigid body,
- mass and moments of inertia depend only on variable masses (fuel, payload, etc.).

2.2 Equations of Motion

2.2.1 Dynamic Equations

Dynamic equations of motion are derived in Body Axis System for a rigid aircraft using conservation of momentum and angular momentum principles which are

given by the following formulas. [5, 6, 7]

$$\frac{d\vec{P}_b}{dt} = \sum_j \vec{R}_{j,b} \tag{2.1}$$

$$\frac{d\vec{H}_{O,b}}{dt} + \vec{V}_{O,b} \times \vec{P}_b = \sum_j \vec{Q}_{O,j,b} \tag{2.2}$$

Where:

$$\sum_{j} \vec{R}_{j,b} = \vec{R}_{A,b} + \vec{R}_{M,b} + \vec{R}_{LG,b} + \vec{R}_{P,b}$$
(2.3)

$$\sum_{j} \vec{Q}_{O,j,b} = \vec{Q}_{O,A,b} + \vec{Q}_{O,M,b} + \vec{Q}_{O,LG,b} + \vec{Q}_{O,P,b}$$
 (2.4)

Momentum and angular momentum are: [6, 7]

$$\vec{P_b} = m\vec{V}_{CM,b} \tag{2.5}$$

$$\vec{H}_{O,b} = \mathbf{I}_{O,b}\vec{\omega}_b + m\left(\vec{r}_{CM,b} \times \vec{V}_{O,b}\right) \tag{2.6}$$

Center of mass velocity is:

$$\vec{V}_{CM,b} = \vec{V}_{O,b} + \vec{\omega}_b \times \vec{r}_{CM,b} \tag{2.7}$$

Substituting equation (2.7) into equations (2.5) and (2.6) gives:

$$\vec{P}_b = m\vec{V}_{O,b} + \vec{\omega}_b \times \vec{S}_b \tag{2.8}$$

$$\vec{H}_{O,b} = \mathbf{I}_b \vec{\omega}_b + \vec{S}_b \times \vec{V}_{O,b} \tag{2.9}$$

Where:

$$\vec{S}_b = [S_X, S_Y, S_Z]^T = m\vec{r}_{CM,b}$$
 (2.10)

Derivatives of momentum and angular momentum in rotating reference frame are: [5, 6, 7]

$$\frac{d\vec{P}_b}{dt} = \frac{\delta\vec{P}_b}{\delta t} + \vec{\omega}_b \times \vec{P}_b \tag{2.11}$$

$$\frac{d\vec{H}_{O,b}}{dt} = \frac{\delta \vec{H}_{O,b}}{\delta t} + \vec{\omega}_b \times \vec{H}_{O,b}$$
 (2.12)

Substituting equations (2.11) and (2.12) into (2.1) and (2.2) gives:

$$\frac{\delta \vec{P_b}}{\delta t} = \sum_{j} \vec{R}_{j,b} - \vec{\omega}_b \times \vec{P_b} \tag{2.13}$$

$$\frac{\delta \vec{H}_{O,b}}{\delta t} = \sum_{j} \vec{Q}_{O,j,b} - \vec{V}_{O,b} \times \vec{P}_{b} - \vec{\omega}_{b} \times \vec{H}_{O,b}$$
 (2.14)

Differentiating equations (2.8) and (2.9) gives:

$$\frac{\delta \vec{P}_b}{\delta t} = m \frac{\delta \vec{V}_{O,b}}{\delta t} + \frac{\delta \vec{\omega}_b}{\delta t} \times \vec{S}_b$$
 (2.15)

$$\frac{\delta \vec{H}_{O,b}}{\delta t} = \mathbf{I}_b \frac{\delta \vec{\omega}_b}{\delta t} + \vec{S}_b \times \frac{\delta \vec{V}_{O,b}}{\delta t}$$
 (2.16)

Substituting equations (2.15) and (2.16) into (2.13) and (2.14) gives:

$$m\frac{\delta \vec{V}_{O,b}}{\delta t} + \frac{\delta \vec{\omega}_b}{\delta t} \times \vec{S}_b = \sum_j \vec{R}_{j,b} - \vec{\omega}_b \times \vec{P}_b$$
 (2.17)

$$\boldsymbol{I}_{b} \frac{\delta \vec{\omega}_{b}}{\delta t} + \vec{S}_{b} \times \frac{\delta \vec{V}_{O,b}}{\delta t} = \sum_{j} \vec{Q}_{O,j,b} - \vec{V}_{O,b} \times \vec{P}_{b} - \vec{\omega}_{b} \times \vec{H}_{O,b}$$
 (2.18)

Representing vector cross product as matrix-vector multiplication equations (2.17) and (2.18) can be written as:

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} + \begin{bmatrix} 0 & S_Z & -S_Y \\ -S_Z & 0 & S_X \\ S_Y & -S_X & 0 \end{bmatrix} \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \sum_j \vec{R}_{j,b} - \vec{\omega}_b \times \vec{P}_b \quad (2.19)$$

$$\begin{bmatrix} I_{X} & -I_{XY} & -I_{XZ} \\ -I_{XY} & I_{Y} & -I_{YZ} \\ -I_{XZ} & -I_{YZ} & I_{Z} \end{bmatrix} \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} 0 & -S_{Z} & S_{Y} \\ S_{Z} & 0 & -S_{X} \\ -S_{Y} & S_{X} & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} = \sum_{i} \vec{Q}_{O,j,b} - \vec{V}_{O,b} \times \vec{P}_{b} - \vec{\omega}_{b} \times \vec{H}_{O,b} \quad (2.20)$$

Combined equations (2.19) and (2.20) can be written as follows. [3]

$$\mathbf{M}\dot{\mathbf{s}} = \mathbf{R} \tag{2.21}$$

Where:

$$\dot{\boldsymbol{s}} = \left[\dot{u}, \dot{v}, \dot{w}, \dot{p}, \dot{q}, \dot{r}\right]^{T} \tag{2.22}$$

$$\mathbf{R} = \begin{bmatrix} \sum_{j} \vec{R}_{j,b} - \vec{\omega}_b \times \vec{P}_b \\ \sum_{j} \vec{Q}_{O,j,b} - \vec{V}_{O,b} \times \vec{P}_b - \vec{\omega}_b \times \vec{H}_{O,b} \end{bmatrix}$$
(2.23)

$$\mathbf{M} = \begin{bmatrix} m & 0 & 0 & 0 & S_Z & -S_Y \\ 0 & m & 0 & -S_Z & 0 & S_X \\ 0 & 0 & m & S_Y & -S_X & 0 \\ 0 & -S_Z & S_Y & I_X & -I_{XY} & -I_{XZ} \\ S_Z & 0 & -S_X & -I_{XY} & I_Y & -I_{YZ} \\ -S_Y & S_X & 0 & -I_{XZ} & -I_{YZ} & I_Z \end{bmatrix}$$
(2.24)

For the purpose of numerical simulation equation (2.21) can be written in the following form, which is easy to solve with Gaussian methods.

$$\dot{\boldsymbol{s}} = \boldsymbol{M}^{-1} \boldsymbol{R} \tag{2.25}$$

2.2.2 Kinematic Equations

Time Derivatives

Position vector derivative is given as follows. [8]

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\psi & \cos\psi\sin\phi\sin\phi\sin\theta - \cos\phi\sin\psi & \sin\phi\sin\psi + \cos\phi\cos\psi\sin\theta \\ \cos\theta\sin\psi & \cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi & \cos\phi\sin\psi - \cos\psi\sin\phi \\ -\sin\theta & \cos\theta\sin\phi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(2.26)

Tait-Bryan angles derivatives are given as follows. [3, 8]

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin \phi \tan \theta & \cos \phi \tan \theta \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi \sec \theta & \cos \phi \sec \theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
(2.27)

There are singularities in equation (2.27) for value of $\theta = \pm 90^{\circ}$. One method of solving this problem is to use quaternions instead of Tait-Bryan angles to describe aircraft attitude.

Quaternions

Quaternion time derivative is given as follows. [3, 9]

$$\begin{bmatrix} \dot{e}_0 \\ \dot{e}_X \\ \dot{e}_Y \\ \dot{e}_Z \end{bmatrix} = \begin{bmatrix} 1 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} e_0 \\ e_X \\ e_Y \\ e_Z \end{bmatrix}$$
(2.28)

2.3 Numerical Integration

State vector s can be calculated by solving initial value problem given by the following expression.

$$\mathbf{s}(t_0 + \Delta t) = \mathbf{s}(t_0) + \int_{t_0}^{t_0 + \Delta t} \dot{\mathbf{s}} dt$$
 (2.29)

State vector derivative \dot{s} can be calculated using formula (2.25).

Aircraft position and attitude can be calculated by solving initial value problem given as follows.

$$\boldsymbol{x}(t_0 + \Delta t) = \boldsymbol{x}(t_0) + \int_{t_0}^{t_0 + \Delta t} \dot{\boldsymbol{x}} dt$$
 (2.30)

Where:

$$\mathbf{x} = [x, y, z, e_0, e_X, e_Y, e_Z]^T$$
 (2.31)

Coordinates vector derivative $\dot{\boldsymbol{x}}$ can be calculated using formulas (2.26) and (2.28).

Initial value problems, given by the (2.29) and (2.30) expressions, can be solved using Runge-Kutta 4th-order method which is given as follows. [10, 11, 12]

$$y(t_0 + \Delta t) \approx y(t_0) + \frac{1}{6}\Delta t(k_1 + 2k_2 + 2k_3 + k_4)$$
 (2.32)

Where:

$$k_1 = f(t_n, y_n)$$
 (2.33)

$$k_2 = f\left(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}\Delta t k_1\right)$$
(2.34)

$$k_3 = f\left(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}\Delta t k_2\right)$$
(2.35)

$$k_4 = f\left(t_n + \Delta t, y_n + \Delta t k_3\right) \tag{2.36}$$

(2.37)

Environment

3.1 Atmosphere

US Standard Atmosphere 1976 is used to calculate air temperature, pressure, density, viscosity and speed of sound depending on altitude.

Mean molecular weight is given as follows:

$$M_0 = \frac{\sum_j M_j F_j}{\sum_j F_j} = 28.9645 \tag{3.1}$$

Temperature is given by the following formula: [13]

$$T(h) = T_j + \left(\frac{dT}{dh}\right)_j (h - h_j)$$
(3.2)

Pressure is given as follows: [13]

$$p(h) = p_j \left(\frac{T_j}{T(h)}\right)^{\frac{gM_0}{R\left(\frac{dT}{dh}\right)_j}} \text{ for } \left(\frac{dT}{dh}\right)_j \neq 0$$
(3.3)

$$p(h) = p_j e^{\frac{gM_0(h-h_j)}{RT_j}} \text{ for } \left(\frac{dT}{dh}\right)_j = 0$$
(3.4)

Density is expressed by the following formula: [13]

$$\rho(h) = \frac{p(h) M_0}{RT(h)} \tag{3.5}$$

Speed of sound is given as follows: [13]

$$c_S(h) = \sqrt{\frac{\gamma RT(h)}{M_0}}$$
 (3.6)

Dynamic viscosity is given by the formula: [13]

$$\mu(h) = \frac{1.458 \cdot 10^{-6} \sqrt{[T(h)]^3}}{T(h) + S}$$
(3.7)

Kinetic viscosity is given as follows: [13]

$$\nu\left(h\right) = \frac{\mu\left(h\right)}{\rho\left(h\right)}\tag{3.8}$$

Altitude	Temperature gradient	Temperature	Pressure
h_{j}	$\left(\frac{dT}{dh}\right)_{i}$	T_{j}	p_{j}
[m]	[K/m]	[K]	[Pa]
0	-6.5×10^{-3}	288.15	101 325.0
11000	0.0	216.65	22632.0
20000	1.0×10^{-3}	216.65	5474.8
32000	2.8×10^{-3}	228.65	868.01
47000	0.0	270.65	110.9
51000	-2.8×10^{-3}	270.65	66.938
71000	-2.0×10^{-3}	214.65	3.9564

Table 3.1: Reference levels [13]

Gas species	Molecular weight	Fractional volume
	[kg/kmol]	[-]
Nitrogen	28.0134	0.78084
Oxygen	31.9988	0.209476
Argon	39.948	0.00934
Carbon Dioxide	44.00995	0.000314
Neon	20.183	0.00001818
Helium	4.0026	0.00000524
Krypton	83.8	0.00000114
Xenon	131.3	0.000000087
Methane	16.043 03	0.000002
Hydrogen	2.015 94	0.0000005

Table 3.2: Molecular weights and fractional volume composition of S/L dry air [13]

Aerodynamics

Aerodynamic forces are calculated in Aerodynamic Axis System, while moments are calculated in Stability Axis System. Rotation matrix from Stability Axis System to Body Axis System can be calculated using formula (4.1). Rotation matrix from Aerodynamic Axis System to Body Axis System can be calculated using following formulas:

$$\boldsymbol{T}(\alpha) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix} = \begin{bmatrix} -\cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & -\cos \alpha \end{bmatrix}$$
(4.1)

$$T(\beta) = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(4.2)

$$T(\alpha, \beta) = T(\alpha)T(\beta) = \begin{bmatrix} -\cos\alpha\cos\beta & -\cos\alpha\sin\beta & \sin\alpha \\ -\sin\beta & \cos\beta & 0 \\ -\sin\alpha\cos\beta & -\sin\alpha\sin\beta & -\cos\alpha \end{bmatrix}$$
(4.3)

Considering a no-wind conditions angle of attack and angle of sideslip (positive when the aircraft velocity component along the transverse axis is positive [14]) are given as follows:

$$\alpha = \arctan\left(\frac{w}{\sqrt{u^2 + v^2}}\right) \tag{4.4}$$

$$\beta = \arcsin\left(\frac{v}{V}\right) \tag{4.5}$$

4.1 Tail-off Aircraft

Tail-off aircraft aerodynamics model is intended to be used in application, e.g. fixed-wing aircrafts, where asymmetric aerodynamic effects, such as autorotation spin or roll damping, are significant.

Forces and moments are calculated for each half-wing to consider asymmetric effects. Half wing aerodynamic center velocity vector used to calculate angle of attack, angle of sideslip as well as forces and moments is given as follows:

$$\vec{V}_{AC} = \vec{V}_O + \vec{\Omega} \times \vec{r}_{AC} \tag{4.6}$$

Forces and moments generated by the half-wing are given as follows: [9]

$$\vec{F}_a = [F_{X,a}, F_{Y,a}, F_{Z,a}]^T \tag{4.7}$$

$$\vec{M}_s = [M_{X,s}, M_{Y,s}, M_{Z,s}]^T$$
 (4.8)

Where:

$$F_{X,a} = \frac{1}{2}\rho V^2 SC_D \tag{4.9}$$

$$F_{Y,a} = \frac{1}{2}\rho V^2 S C_Y \tag{4.10}$$

$$F_{Z,a} = \frac{1}{2}\rho V^2 S C_L \tag{4.11}$$

$$M_{X,s} = \frac{1}{2}\rho V^2 S\hat{c}C_l \tag{4.12}$$

$$M_{Y,s} = \frac{1}{2}\rho V^2 S\hat{c}C_m \tag{4.13}$$

$$M_{Z,s} = \frac{1}{2}\rho V^2 S\hat{c}C_n \tag{4.14}$$

Forces and moments generated by the half-wing expressed in Body Axis System are given by the following formulas:

$$\vec{F}_b = T(\alpha, \beta) \, \vec{F}_a \tag{4.15}$$

$$\vec{M}_b = \mathbf{T} (\alpha) \, \vec{M}_s + \vec{r}_{AC,b} \times \vec{F}_b \tag{4.16}$$

4.2 Fuselage

Fuselage aerodynamics model is intended to be used in application where asymmetric aerodynamic effects can be neglected, e.g. to model helicopter fuselage. It is very much like, described above, tail-off aircraft model. The main difference is that calculations are performed for whole fuselage unlike the tail-off aircraft where calculations are performed for each half-wing.

4.3 Stabilizers

Velocity vector used to calculate stabilizer angle of attack, angle of sideslip as well as forces and moments is calculated using expression (4.6).

Horizontal stabilizer angle of attack is modified due to incidence angle and downwash angle, what can be expressed as follows. [15]

$$\Delta \alpha_h = i_h + \frac{\partial \epsilon}{\partial \alpha} \alpha \tag{4.17}$$

Forces generated by stabilizers are calculated using formulas (4.9), (4.10) and (4.11).

Formula (4.15) can be used to calculate stabilizer generated forces expressed in Body Axis System.

It is assumed that horizontal stabilizer generates only drag and lift, while vertical stabilizer generates only drag and side force. Moments generated by stabilizers comes only from force acting on arm, other moments are neglected.

$$\vec{M}_b = \vec{r}_{AC,b} \times \vec{F}_b \tag{4.18}$$

Landing Gear

5.1 Contact Point

Landing gear contact point is considered to be an intersection of the ground plane and the line segment with the beginning at the strut attachment point and the end at the tire bottom.

Intersection of a line segment and a plane can be calculated using following expression: [16]

$$u = \frac{\vec{n} \cdot (\vec{r_p} - \vec{r_b})}{\vec{n} \cdot (\vec{r_e} - \vec{r_b})}$$

$$(5.1)$$

Where:

 \vec{n} — unit vector normal to the plane

 \vec{r}_b — position vector of the line segment beginning

 \vec{r}_e — position vector of the line segment end

 \vec{p}_b — position vector of any point on the plane

u — normalized coordinate of intersection point along line segment

If $0 \le u \le 1$ then intersection point is within line segment and its coordinates are given by the following formula:

$$\vec{r} = \vec{r_b} = u \, (\vec{r_e} - \vec{r_r}) \tag{5.2}$$

Figure 5.1: Segment-plane intersection

If denominator of expression (5.1) is zero then the line segment is parallel to the plane. If both numerator and denominator are zero then the line segment lies on the plane.

5.2 Forces and Moments

Forces generated by the landing gear can be divided into:

- normal to the ground plane forces due to struts and tires deflection,
- tangent to the ground plane forces due to friction between tires and the ground.

Normal forces are the sum of forces due to spring and damper while tangent force are caused by static or kinetic friction and optional rolling friction and are given as follows: [17]

$$F_N = kx + c\dot{x} \tag{5.3}$$

$$F_T = \mu F_N \tag{5.4}$$

Surface	Static friction coefficient	Kinetic friction coefficient
Concrete (dry)	0.8 - 1.0	0.7 - 0.8
Concrete (wet)	0.6 - 0.8	0.5 - 0.6
Tarmac (dry)	0.7 - 0.8	0.6 - 0.7
Tarmac (wet)	0.4 - 0.5	0.3 - 0.4
Dirt (dry)	0.5 - 0.6	0.2 - 0.3
Dirt (wet)	0.3 - 0.4	0.2 - 0.3
Snow	0.1 - 0.4	0.2 - 0.3
Ice	0.05 - 0.15	0.05 - 0.10

Table 5.1: Static and kinetic friction coefficients $\left[18\right]$

Surface	Rolling friction coefficient
Tarmac	0.010 - 0.012
Concrete	0.012 - 0.015
Dirt	0.030 - 0.140

Table 5.2: Static and kinetic friction coefficients [18]

Mass and Inertia

6.1 Empty Aircraft Moments of Inertia

Aircraft is divided into structure groups which mass is estimated. This groups are assumed to be homogeneous rigid body with simple shape which allows to calculate its moment of inertia using an exact closed-form expression, given e.g. in [19].

Steiner's theorem, given by the following expression, is used to express aircraft structure groups inertia tensor in Body Axis System. [5, 17]

$$\mathbf{I}_{b} = \mathbf{I}_{0} + m \begin{bmatrix} y^{2} + z^{2} & -xy & -xz \\ -yx & x^{2} + z^{2} & -yz \\ -zx & -zy & x^{2} + y^{2} \end{bmatrix}$$
(6.1)

Sum of all aircraft structure groups inertia tensors gives empty aircraft inertia tensor:

$$\boldsymbol{I}_b = \sum_{j} \boldsymbol{I}_{j,b} \tag{6.2}$$

6.2 Variable Masses

All variable masses, crew, fuel, payload, etc., are considered to be point masses. Point mass inertia tensor can be calculated using formula (6.1), where $I_b = 0$. This

tensors are then added to the empty aircraft inertia tensor giving total aircraft inertia tensor.

Aircraft total first moment of mass is given as follows:

$$\vec{S}_b = \sum_j m_j \vec{r}_{CM,j,b} \tag{6.3}$$

Position of aircraft center of mass including variable masses is then given by following formula:

$$\vec{r}_{CM,b} = \frac{\vec{S}_b}{\sum_j m_j} \tag{6.4}$$

Propulsion

7.1 Piston Engine

Piston engine manifold absolute pressure due to engine revolution speed and normalized throttle position is approximated by the following formula.

$$p_{MAP} = p(h) + \left(4 \cdot 10^5 \hat{\delta}_{throttle} - 4.05 \cdot 10^5\right) \frac{n}{n_{max}}$$
 (7.1)

Fuel to air ratio is approximated by the following expression: [8]

$$FAR = 0.1 \left(2 - \hat{\delta}_{mixture}^2 \right) \frac{\rho_0}{\rho} \tag{7.2}$$

Engine static power is approximated as:

$$P_S = 1.093 \cdot 10^{-5} \left(1 + C_{\Delta P} \right) P_{max} p_{MAP} \left(\frac{n}{n_{max}} - 0.05 \right)$$
 (7.3)

Power losses can be calculated using following formula:

$$\Delta P = P_{max} C_{\Delta P} \left(\frac{n}{n_{max}}\right)^2 \tag{7.4}$$

Engine net power is given as:

$$P = P_S - \Delta P \tag{7.5}$$

7.2 Propeller

Thrust generated by the propeller and power required by the propeller are given by the following equations. [8, 20] Propeller revolution speed n is expressed in revolutions per second.

$$T = \rho n^2 D^4 C_T \tag{7.6}$$

$$P = \rho n^3 D^5 C_P \tag{7.7}$$

Where thrust C_T and power C_P coefficients are functions of advance ratio and blade angle.

Advance ratio is given by the following formula: [8, 20, 21]

$$J = \frac{V}{nD} \tag{7.8}$$

The propeller torque required is given as: [17]

$$Q = \frac{P}{2\pi n} \tag{7.9}$$

7.2.1 Propeller Induced Velocity

The pressure jump across the propeller disk can be expressed as:

$$\Delta p = \frac{1}{2}\rho \left[(V + V_i)^2 - V^2 \right]$$
 (7.10)

Hence:

$$T = \Delta pA \tag{7.11}$$

$$T = \frac{1}{2}\rho A \left[(V + V_i)^2 - V^2 \right]$$
 (7.12)

Induced velocity can be found by solving equation (7.12).

Bibliography

- [1] Department of Defense World Geodetic System 1984. National Imagery and Mapping Agency, TR-8350.2, 2000.
- [2] G. D. Padfield, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling. Blackwell Publishing, 2007.
- [3] K. Sibilski, Modelowanie i symulacja dynamiki ruchu obiektow latajacych. Oficyna Wydawnicza MH, 2004. [in Polish].
- [4] J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinate," *IEEE Transactions on Aerospace & Electronic Systems*, 1994.
- [5] J. R. Taylor, Classical Mechanics. University Science Books, 2005.
- [6] Z. Osinski, Mechanika ogolna. Wydawnictwo Naukowe PWN, 1997. [in Polish].
- [7] J. Leyko, *Mechanika ogolna. Tom 2: Dynamika*. Wydawnictwo Naukowe PWN, 2002. [in Polish].
- [8] D. Allerton, *Principles of Flight Simulation*. John Wiley and Sons, 2009.
- [9] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. John Wiley and Sons, 1992.
- [10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes: The Art of Scientific Computing*. Cambridge University Press, 2007.
- [11] A. Krupowicz, Metody numeryczne zagadnien poczatkowych rownan rozniczkowych zwyczajnych. Wydawnictwo Naukowe PWN, 1986. [in Polish].
- [12] B. Baron and L. Piatek, $Metody\ numeryczne\ w\ C++\ Builder$. Helion, 2004. [in Polish].

- [13] U.S. Standard Atmosphere 1976. National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, TM-X-74335, 1976.
- [14] Flight dynamic Concepts, quantities and symbols Part 1: Aircraft motion relative to the air. International Organization for Standardization, ISO 1151-1:1988, 1988.
- [15] B. Etkin, Dynamics of Atmospheric Flight. John Wiley and Sons, 1972.
- [16] J. O'Rourke, Computational Geometry in C. Cambridge University Press, 1998.
- [17] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics. John Wiley and Sons, 2011.
- [18] K. Studzinski, Samochod. Teoria, konstrukcja i obliczenia. Wydawnictwo Komunikacji i Lacznosci, 1980. [in Polish].
- [19] G. W. Housner and D. E. Hudson, *Applied Mechanics: Dynamics*. Division of Engineering. California Institute of Technology, 1980.
- [20] D. P. Raymer, Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, 1992.
- [21] E. Torenbeek, Synthesis of Subsonic Airplane Design. Delft University Press, 1982.