Lemat 1. $\binom{-\frac{1}{2}}{n}(-4)^n = \binom{2n}{n}$.

Dowód. Mamy

$$\binom{-\frac{1}{2}}{n}(-4)^n = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\cdots\left(-\frac{1}{2}-n+1\right)}{n!}(-4)^n =$$

$$= \frac{1\cdot 3\cdot 5\cdot 7\cdots (2n-1)}{n!}2^n =$$

$$= \frac{1\cdot 3\cdot 5\cdot 7\cdots (2n-1)}{n!}\frac{2\cdot 4\cdot 6\cdots (2n)}{1\cdot 2\cdot 3\cdots n} =$$

$$= \frac{(2n)!}{n!n!} = \binom{2n}{n}$$

Zadanie 0

Funkcja $r(x)=x-f(x)=ax^p+\psi(x)$, gdzie $\psi(x)=o(p)$ jest określona w prawostronnym otoczeniu zera. Ponieważ $\lim_{x\to 0^+}\frac{\psi(x)}{x^p}=0$, to w pewnym otoczeniu $[0,\delta_0)$ mamy $|\frac{\psi(x)}{x^p}|<\frac{a}{2}$, zatem w tym otoczeniu $r(x)>\frac{ax^p}{2}$, co jest dodatnie dla x>0. Ponadto r(0)=0. Ponadto analogicznie możemy zapisać f(x)=x+o(x) i wywnioskować, że dla $x\in[0,\delta_1)$ mamy f(x)>0. Ustalmy $\delta=\min(\delta_0,\delta_1)$.

Wtedy dla $x_0 \in [0,\delta)$ mamy, że x_n jest ciągiem nierosnącym i ograniczonym przez zero, zatem ma granicę g. Mamy $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n)$, zatem $\lim_{n \to \infty} x_n - f(x_n) = 0$. Stąd jednak, ponieważ w przedziale $[0,\delta)$ mamy $x_n - f(x_n) \geqslant \frac{\alpha x_n^p}{2} \geqslant 0$ (możemy to zastosować dla całego ciągu, gdyż jeśli $x_0 \in [0,\delta)$, to dowolne $x_n \in [0,\delta)$) to na mocy twierdzenia o trzech ciągach $\lim_{n \to \infty} \frac{\alpha x_n^p}{2} = 0$, zatem $g = \lim_{n \to 0} x_n = 0$.

Policzmy na mocy tw. Stolza oraz korzystając z faktu, że $\lim_{n\to\infty} x_n = g = 0$:

$$\begin{split} \lim_{n \to \infty} \frac{x_n^{1-p}}{n} & \stackrel{S}{=} \lim_{n \to \infty} \frac{x_{n+1}^{1-p} - x_n^{1-p}}{(n+1) - n} \\ & = \lim_{n \to \infty} \left(f(x_n)^{1-p} - x_n^{1-p} \right) \\ & \stackrel{\sqsubseteq}{=} \lim_{x \to 0^+} \left(f(x)^{1-p} - x^{1-p} \right) \\ & = \lim_{x \to 0^+} \left(x^{1-p} \left(\left(\frac{f(x)}{x} \right)^{1-p} - 1 \right) \right) \\ & = \lim_{x \to 0^+} \left(x^{1-p} \left(\left(1 - \alpha x^{p-1} + o(x^{p-1}) \right)^{1-p} - 1 \right) \right) \\ & = \lim_{x \to 0^+} \left(x^{1-p} \left(1 + \binom{1-p}{1} \left(-\alpha x^{p-1} + o(x^{p-1}) \right) + o\left(-\alpha x^{p-1} + o(x^{p-1}) \right) - 1 \right) \right) \\ & = \lim_{x \to 0^+} \left(x^{1-p} \left(1 - \alpha(1-p)x^{p-1} + o(x^{p-1}) - 1 \right) \right) \\ & = \lim_{x \to 0^+} \left(\alpha(p-1) + o(1) \right) = \alpha(p-1) \end{split}$$

 $\text{Zatem } \lim_{n \to \infty} \frac{x_n}{n^{\frac{1}{1-p}}} = \left(\lim_{n \to \infty} \frac{x_n^{1-p}}{n}\right)^{\frac{1}{1-p}} = (\alpha(p-1))^{\frac{1}{1-p}}, \text{ zatem } x_n \sim (\alpha(p-1))^{\frac{1}{1-p}} \, n^{-\frac{1}{p-1}}.$

Zadanie 1

Oznaczmy $f(x) = \frac{1}{1+x+x^2+x^3}$. Mamy jednak $f(x) \cdot \frac{1}{1-x} = \frac{1}{1-x^4}$, zatem $f(x) = (1-x)\frac{1}{1-x^4} = (1-x)\left(1+x^4+x^8+x^{12}+\ldots\right) = 1-x+x^4-x^5+x^8-x^9+x^{12}-x^{13}+\ldots$. Szereg ten opisuje funkcję f ponieważ jest ona iloczynem dwóch funkcji analitycznych, więc jest analityczna.

Ponieważ szereg dla $\frac{1}{1-x^4}$ był zbieżny dla |x| < 1, to ten także. Ponadto dla x = 1 uzyskujemy szereg $1-1+1-1+1-1+\dots$, który nie jest zbieżny, zaś dla x = -1 szereg $1+1+1+1+\dots$, który także nie jest zbieżny. Zatem przedziałem zbieżności jest (-1,1).

nr albumu: 347208 str. 2/3 Seria: 4

Oznaczmy
$$g(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$
. Wtedy $g'(x) = \left(1 + \frac{2x}{2\sqrt{1 + x^2}}\right) \cdot \frac{1}{x + \sqrt{1 + x^2}} = \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} \cdot \frac{1}{x + \sqrt{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}}$.

Zapiszmy funkcję $\hat{g}(x) = \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} {2n \choose n} \frac{(-1)^n x^{2n+1}}{(2n+1)4^n}$. Jej pochodną jest funkcja $\hat{g}'(x) = \sum_{k=0}^{\infty} {-\frac{1}{2} \choose n} x^{2n} = (1+x^2)^{-\frac{1}{2}} = g'(x)$. Wynikają z tego dwie rzeczy: po pierwsze, ponieważ \hat{g}' ma promień zbieżności równy jeden, to \hat{g} też. Po drugie, ponieważ funkcje g oraz \hat{g} mają równe pochodne, to różnią się o stałą, ale ponieważ $g(0) = 0 = \hat{g}(0)$, to $g(x) = \hat{g}(x)$ dla $x \in (-1,1)$.

Należy jeszcze zbadać zachowanie na krańcach przedziału. Jednak, jak było dowodzone w pierwszym semestrze, $4^{-n} {2n \choose n} = O(\frac{1}{\sqrt{n}})$, zatem szereg $\sum_{n=0}^{\infty} \frac{{2n \choose n}}{(2n+1)4^n}$ jest zbieżny na mocy kryterium porównawczego z szeregiem $\frac{1}{n^{3/2}}$. Stąd $\hat{g}(1)$ i $\hat{g}(-1)$ są zbieżne bezwzględnie.

Zadanie 2

Niech I będzie otwartym otoczeniem zera, na którym zarówno f jak i g rozwijają się w szereg potęgowy. Wtedy zauważmy, że funkcja h(x) = f(x) - g(x) też rozwija się na tym otoczeniu w szereg potęgowy $h(x) = \sum_{i=0}^{\infty} a_i x^i$ i na mocy warunków zadania $h\left(\frac{1}{k}\right) = 0$ dla dostatecznie dużych k naturalnych.

Przypuścmy, że h(x) nie jest funkcją tożsamościowo równą zeru. Ponieważ jest sumą szeregu potęgowego, to znaczy to, że istnieje pewne n takie, że $a_n \neq 0$. Weźmy więc najmniejsze takie n. Z ciągłości funkcji danej szeregiem potęgowym mamy h(0) = 0, gdyż $\frac{1}{k} \rightarrow 0$, zatem $a_0 = 0$, czyli n > 0.

Popatrzmy teraz na funkcję $\hat{h}(x) = \frac{h(x)}{x^n}$. Dla $x \in I \setminus \{0\}$ jest ona zadana szeregiem potęgowym $\sum_{i=0}^{\infty} \alpha_{i-n} x^i$. Jednak w związku z tym możemy ustalić wartość $\hat{h}(0) = \alpha_n$. Teraz jednak mamy, że ponieważ $h\left(\frac{1}{k}\right) = 0$, to także $\hat{h}\left(\frac{1}{k}\right) = \frac{h\left(\frac{1}{k}\right)^n}{\left(\frac{1}{k}\right)^n} = 0$, zatem z ciągłości musielibyśmy uzyskać $\hat{h}(0) = 0$, co daje sprzeczność, gdyż założyliśmy, że $\alpha_n \neq 0$.

Uzyskana sprzeczność dowodzi, że funkcja h(x) rozwija się w szereg o wszystkich współczynnikach zerowych, zatem f(x) = g(x) dla $x \in I$.

Zadanie 3

Policzmy na razie rozwinięcie h(x) w formalny szereg potęgowy (tj. element pierścienia $\mathbb{R}[[X]]$) $h(x) = \sum_{k=0}^{\infty} a_k x^k$. Mamy $\left(\sum_{k=0}^{\infty} a_k x^k\right) \left(\sum_{k=0}^{\infty} b_k x^k\right) = h(x)g(x) = 1$, zatem $a_0b_0 = 1$, a dla n > 0 uzyskujemy $a_nb_0 + a_{n-1}b_1 + \ldots + a_0b_n = 0$, zatem mamy $a_0 = 1$, $a_n = -(a_{n-1}b_1 + \ldots + a_0b_n)$ dla n > 0. Należy teraz pokazać, że szereg ten ma dodatni promień zbieżności.

Funkcja $\sum_{k=1}^{\infty}|b_k|x^k$ określona we wnętrzu przedziału zbieżności szeregu dla h(x) (jest on tam bezwzględnie zbieżny) jest ciągła i w zerze osiąga wartość zero, zatem istnieje taka $\delta>0$, że dla $0\leqslant x\leqslant \delta$ zachodzi $|\sum_{k=1}^{\infty}|b_k|x^k|<1$.

Pokażę indukcyjnie, że $|a_k| \leqslant \delta^{-k}$. Istotnie, dla k=0 teza jest trywialna, gdyż $a_k=1$. Dla k>0 mamy zaś na mocy nierówności trójkąta i założenia indukcyjnego, że

$$\begin{split} |a_k| &= |a_{k-1}b_1 + \ldots + a_0b_k| \leqslant |a_{k-1}||b_1| + \ldots + |a_0||b_k| \\ &\leqslant \delta^{-(k-1)}|b_1| + \ldots + \delta^0|b_k| = \delta^{-k} \left(\delta^1|b_1| + \ldots + \delta^k|b_k|\right) \\ &\leqslant \delta^{-k} \left(\delta^1|b_1| + \ldots + \delta^k|b_k| + \ldots\right) \\ &< \delta^{-k} \end{split}$$

co kończy dowód kroku indukcyjnego.

Stąd jednak $\limsup_{n\to\infty} \sqrt[n]{|a_n|} \leqslant \delta^{-1}$, zatem promień zbieżności szeregu $\sum_{k=0}^{\infty} a_k x^k$ wynosi przynajmniej δ . Zauważmy jednak, że gdy oznaczymy przez R minimum z promieni zbieżności szeregów $\sum_{k=0}^{\infty} a_k x^k$ oraz $\sum_{k=0}^{\infty} b_k x^k$, a także promienia, na którym ten drugi szereg opisuje funkcję g, to na przedziale (-R,R) iloczyn tych szeregów wynosi jeden, zatem ponieważ ten drugi opisuje funkcję g, to ten pierwszy opisuje funkcję h.

nr albumu: 347208 str. 3/3 Seria: 4

Zadanie 4

Rozpatrzmy funkcję $f(x) = (1-4x)^{-\frac{1}{2}}$ dla $|x| < \frac{1}{4}$. Rozwija się ona w szereg potęgowy $f(x) = \sum_{i=0}^{\infty} {-\frac{1}{2} \choose i} (-4x)^i = \sum_{i=0}^{\infty} {2n \choose i} x^n$.

Zatem $(1-4x)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}{2n\choose n}x^n$. Szukany iloczyn skalarny (oznaczmy go s_n) jest współczynnikiem przy x^n w iloczynie Cauchy'ego (spłocie) tego szeregu samym ze sobą, zatem $\sum_{n=0}^{\infty}s_nx^n=\left((1-4x)^{-\frac{1}{2}}\right)^2=\frac{1}{1-4x}=\sum_{n=0}^{\infty}4^nx^n$. Z jednoznaczności szeregu potęgowego mamy $s_n=4^n$.

Zadanie 5

Niech $f(x) = \sum_{i=0}^{\infty} \alpha_i x^i$. Wiemy, że $\alpha_0 = \alpha_1 = 0$ na mocy faktu, że f(0) = f'(0) = 0. Porównajmy współczynniki przy x^n po obu stronach równości funkcji zadanych szeregami funkcyjnymi: $f''(x) - x^2 f''(x) = 2 + x f'(x)$. Dla n = 0 uzyskujemy $2 \cdot 1 \cdot \alpha_2 = 2$, skąd $\alpha_2 = 1$. Zaś dla n > 0 mamy $(n+2)(n+1)\alpha_{n+2} - n(n-1)\alpha_n = n\alpha_n$, czyli $(n+2)(n+1)\alpha_{n+2} = n^2\alpha_n$, czyli $\alpha_{n+2} = \frac{n^2}{(n+2)(n+1)}\alpha_n$.

Mamy więc, że dla parzystego n = 2k > 0 zachodzi

$$\begin{split} \alpha_{2k} &= \frac{(2k-2)^2}{2k(2k-1)} \cdot \frac{(2k-4)^2)}{(2k-4)^2} \cdots \frac{2^2}{4 \cdot 3} \alpha_2 \\ &= \frac{2 \left(2^{k-1}(k-1)!\right)^2}{(2k)!} = \frac{2 \cdot 4^{k-1}(k-1)!^2}{(2k)!} \end{split}$$

Dla nieparzystego n=2k+1 mamy $\alpha_{2k+1}=\frac{(2k-1)^2}{(2k+1)2k}\cdots\frac{1^2}{3\cdot 2}\alpha_1=0$, bo $\alpha_1=0$, zatem ostatecznie uzyskujemy

$$f(x) = \sum_{k=1}^{\infty} \frac{2 \cdot 4^{k-1} \left((k-1)! \right)^2}{(2k)!} x^{2k}$$