Variables aléatoires en Python (Part. 2)

■ Bibliothèque numpy.random

import numpy.random as rd

On a déjà vu que les instruction rd.randint et rd.binomial permettent de simuler des réalisations de variables aléatoires de loi uniforme et binomiale.

On va voir à présent comment construire d'une autre façon de telles variables aléatoires, en utilisant des instructions aléatoires!

Instructions aléatoires avec rd.random

La commande rd.random() génère un "nombre réel aléatoire" choisi dans l'intervalle [0,1]. Ceci correspond à une réalisation d'une variable aléatoire U suivant la loi uniforme sur $[0,1]: U \hookrightarrow \mathcal{U}([0,1])$ (loi étudiée en détail l'année prochaine...)

rd.random

- rd.random() génère un nombre réel uniformément choisi dans [0, 1].
- rd.random([n,p]) génère un tableau de taille $n \times p$ contenant de tels nombres aléatoires générés indépendamment.

Exercice 1

Après avoir importé la bibliothèque numpy.random :

- 1. Tester la commande rd.random() dans la console plusieurs fois d'affilée.
- Quelques résultats obtenus :
- 2. Tester la commande rd.random(5) dans la console :

.....

On admet qu'une variable $U \hookrightarrow \mathcal{U}([0,1])$ satisfait la propriété suivante :

$$\forall p \in [0,1], \quad P(U \leqslant p) = P(U < p) = p.$$

Par exemple : • L'évènement $[U \leq 1]$ est réalisé avec probabilité 1 (logique!)

• $[U\leqslant \frac{1}{2}]$ est réalisé avec probabilité $\frac{1}{2},~[U\leqslant \frac{1}{3}]$ avec probabilité $\frac{1}{3}$ etc...

Ainsi, en quelque sorte :

```
\texttt{rd.random()} < \texttt{p} = \left\{ \begin{array}{ll} \texttt{True} & \text{avec probabilit\'e } p \\ \texttt{False} & \text{avec probabilit\'e } 1-p \end{array} \right.
```

■ Effectuer une instruction "aléatoirement"

La syntaxe suivante permet de réaliser l'instruction 1 avec probabilité p ou bien l'instruction 2 avec probabilité 1-p:

Construction "à la main" de la loi de Bernoulli

Exercice 2

1. En s'inspirant de l'idée donnée dans l'encadré précédent, définir une fonction bernoulli qui prend en entrée un réel $p \in [0,1]$ et simule une réalisation d'une variable aléatoire de loi $\mathcal{B}(p)$ (elle devra donc renvoyer 0 ou 1).

```
import numpy.random as rd
def bernoulli(p) :
```

2. Tester l'instruction bernoulli(1/3) 10 fois d'affilée dans la console.

Résultats obtenus :

Proportion de "1" obtenus sur ces 10 réalisations :

3. Après un grand nombre d'appels de l'instruction bernoulli(1/3), on s'attend bien-sûr à ce que la proportion de "1" obtenus se rapproche de 1/3... Compléter le programme pour afficher cette proportion sur N = 1000 appels.

Proportion de "1" sur 1000 appels : Sur 10000 appels :

Construction "à la main" de la loi binomiale

Exercice 3

Rappel: Une variable aléatoire de loi $\mathcal{B}(n,p)$ compte le nombre de succès lors de n répétitions indépendantes d'une épreuve de Bernoulli de paramètre p.

1. A partir de ce rappel, compléter la fonction binomiale pour qu'elle simule la réalisation d'une variable aléatoire de loi $\mathcal{B}(n,p)$.

2. Pour un vecteur ou une liste L et un nombre x, on admet que :

L'instruction np.sum(L < x) renvoie

En déduire une façon plus rapide de simuler une loi $\mathcal{B}(n,p)$:

Approximation de π (méthode de Monte-Carlo)

On considère le carré plein de côté 1 donné par l'ensemble :

$$C = \{(x, y) \in \mathbb{R}^2 \mid 0 \leqslant x, y \leqslant 1\} = [0, 1] \times [0, 1] = [0, 1]^2$$

On considère le disque de centre $(\frac{1}{2},\frac{1}{2})$ et de rayon $\frac{1}{2}$ inscrit dans ce carré :

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid \left(x - \frac{1}{2} \right)^2 + \left(y - \frac{1}{2} \right)^2 \leqslant \left(\frac{1}{2} \right)^2 \right\}$$

On dit qu'un point M est choisi uniformément au hasard dans le carré C si :

$$M = (X, Y)$$
 avec $X \hookrightarrow \mathcal{U}([0, 1])$ et $Y \hookrightarrow \mathcal{U}([0, 1])$ (avec X et Y indépendantes).

On admet que la probabilité qu'un tel point M tombe dans le disque D est alors :

$$P(M \in D) = \frac{Aire(D)}{Aire(C)} = \dots$$

On propose de générer $N=10^4$ points choisis uniformément dans le carré C, puis d'afficher la proportion de points qui appartiennent au disque. Cete proportion sera une approximation de la probabilité théorique $P(M \in D)$. (Loi des grands nombres)