SDD_Arbres_Exercices_Partie_II_Corrigé

Par convention, la racine a une hauteur de zéro dans les exercices suivants.

Exercice 1: Vrai / Faux, vocabulaire des arbres

VRAI. Taille et hauteur sont égales en cas d'arbre dégénéré (ou filiforme).

FAUX. Seulement dans un parcours préfixe.

VRAI car c'est un parcours par niveau.

VRAI.

FAUX. Le coût de recherche est de $\log_2(n)$ dans le cas d'un ABR équilibré ce qui est le cas (en général). Il est linéaire dans le cas d'un arbre dégénéré.

VRAI (seulement s'il s'agit d'un ABR).

VRAI.

Exercice 2: Dessins d'ABR

1^{er} cas:

Exercice 3: Recherche dans un ABR

Le deuxième cas n'est pas possible car toutes les valeurs qui suivent 35 doivent être supérieures à 23 ce qui n'est pas le cas de 22.

Exercice 4 : Ajout de méthodes dans un ABR

1/ La plus petite valeur d'un ABR est donnée par celle de la feuille la plus à gauche.

2/ La plus grande valeur d'un ABR est donnée par celle de la feuille la plus à droite. Il suffit de remplacer « gauche » par « droite » dans le programme ci-contre. On suppose qu'une classe a été définie en amont!

```
# Version itérative
def min_it(self) :
    s = self
    # On cherche la feuille la plus à gauche possible
    while s.gauche :
        s = s.gauche

    return s.valeur

# Version récursive
def min_rec(self) :
    # Cas d'arrêt
    if not self.gauche :
        return self.valeur
    # Cas général
    else :
        return self.gauche.min_rec()
```

Exercice 5: Parcours d'arbre binaire

