Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Análise Matemática I - Engenharia Informática 2022-23

1. Funções reais de variável real

Aulas TP+P: Folha 1

Curvas de referência, transformações gráficas, domínios, função inversa e resolução de equações

1. Faça um esboço das seguintes curvas e confirme a sua resposta recorrendo ao Geogebra:

a)
$$y = x$$
:

b)
$$y = x - 1$$
;

c)
$$y = 2x - 2$$
:

d)
$$y = x^2$$
;

e)
$$y = x^2 - 1$$
;

f)
$$y = x^2 - 2x + 1$$
;

g)
$$x = y^2 + 1$$
;

h)
$$x^2 + y^2 = 1$$
;

i)
$$(x+1)^2 + (y-1)^2 = 4$$
;

$$j) \ y = \cos(x);$$

$$k) y = \cos(x) - 1$$

k)
$$y = \cos(x) - 1;$$
 l) $y = \cos(x - \frac{\pi}{2});$

m)
$$y = 2\cos(x)$$
;

$$n) y = -\cos(x);$$

o)
$$y = \sin(x)$$
;

p)
$$y = 2^x$$
;

q)
$$y = 2^x - 1$$
;

r)
$$y = 2^{x-1}$$
;

s)
$$y = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$$
; t) $y = |x|$;

$$t) \ y = |x|$$

u)
$$y = |x - 1|$$
.

Transformações gráficas (a > 0), a partir de uma função de referência y = f(x):

 $y = f(x \pm a)$ $y = f(x) \pm a$

 $y = f(\mathbf{a} x)$

 $y = \mathbf{a} f(x)$

translação horizontal

translação vertical

contração/dilatação horizontal

contração/dilatação vertical reflexão relativamente ao eixo Ox

y = f(-x)y = -f(x)reflexão relativamente ao eixo Oy \rightarrow se -a, \leftarrow se +a \uparrow se +a, \downarrow se -a

dilatação se 0 < a < 1, contração se a > 1contração se 0 < a < 1, dilatação se a > 1

Comandos Geogebra:

- Definir uma função y = f(x): f(x):= <expressão em x>
- Definir uma curva f(x,y)=0: <condição (igualdade) em x e y>
- Módulo: abs(<expressão>)
- Função por ramos $y = \begin{cases} f(x), & \text{condição} \\ g(x), & \text{c.c.} \end{cases}$: Se(<condição para f(x)>, <f(x)>, <g(x)>)

2. Determine, analiticamente, o domínio das seguintes funções e confirme a sua resposta recorrendo ao Geogebra: b) $f(x) = \frac{1}{x-1}$; c) $f(x) = \sqrt[3]{x-1}$; d) $f(x) = \sqrt{x-1}$; e) $f(x) = e^{x-1}$; f) $f(x) = \ln(x-1)$

a)
$$f(x) = x - 1$$
;

b)
$$f(x) = \frac{1}{x-1}$$

c)
$$f(x) = \sqrt[3]{x-1}$$
;

d)
$$f(x) = \sqrt{x-1}$$
;

e)
$$f(x) = e^{x-1}$$

f)
$$f(x) = \ln(x - 1)$$
;

$$f(x) = \sin(x - 1)$$

i)
$$f(x) = \arcsin(x-1)$$

Domínios de referência:

$$f(x) = \frac{\bullet}{\Box}$$

$$D_f = \{x \in \mathbb{R} : \blacksquare \neq 0\}$$

$$f(x) = \sqrt[n]{\blacksquare}, \quad \text{com } n \text{ par} \qquad D_f = \{x \in \mathbb{R} : \blacksquare \ge 0\}$$

$$D_f = \{ x \in \mathbb{R} : \blacksquare \ge 0 \}$$

$$f(x) = \log_a(\blacksquare)$$

$$D_f = \{ x \in \mathbb{R} : \blacksquare > 0 \}$$

funções trigonométricas inversas ver tabelas de Matemática

Comandos Geogebra:

- Resolver equações ou inequações: Resolver(< Equação ou inequação >, < Variável >)
- Raiz quadrada: sqrt(<expressão>)
- Raiz de índice n: (<expressão>) $\wedge (1/n)$
- Separador entre equações, inequações ou condições: &&
- Representar a região plana $a \le x \le b$: a<= x <= b
- Representar uma região plana $f(x) \le y \le g(x)$: f(x)<= y <= g(x)
- 3. Determine a função inversa de cada uma das seguintes funções, numa restrição conveniente.
 - a) f(x) = 2x 1; b) $f(x) = x^2$;
- c) $f(x) = \cos(2x) + 1$;
- d) $f(x) = \arcsin(x-1) + \pi$; e) $f(x) = e^{2x} 1$; f) $f(x) = \ln(-x) + 1$.

Sugestões para realizar a análise no Geogebra:

- i) represente o gráfico da função f(x);
- ii) determine, analiticamente, a restrição principal do domínio da função f(x) (contradomínio de $f^{-1}(x)$);
- iii) defina a restrição da função: Função(<expressão>, <x inicial>, <x final>)
- iv) determine a expressão analítica da função inversa: Resolver(<y=f(x)>, <x>)
- v) determine, analiticamente, a restrição principal do domínio da função inversa $f^{-1}(x)$;
- vi) represente o gráfico da função inversa $f^{-1}(x)$;
- vii) confirme que os gráficos de f(x) e $f^{-1}(x)$ são simétricos relativamente à reta y = x.
- 4. Calcule o valor das seguintes expressões numéricas:
 - a) $\sqrt{3^2+4^2}$;
- b) $\sqrt{e^6}$:

c) $\sqrt[3]{8^2}$:

- d) $\log(100)$;
- e) $\ln(e^4)$;

f) $e^{2\ln(4)}$;

- g) $\sin\left(\frac{\pi}{3}\right)$;
- h) $\sin\left(\frac{5\pi}{3}\right)$;
- i) $\sin\left(\frac{13\pi}{3}\right)$;

- j) $\cos\left(-\frac{\pi}{6}\right)$;
- k) $\operatorname{tg}\left(\frac{\pi}{3}\right)$;
- l) $\cot\left(\frac{10\pi}{3}\right)$;

- m) arccos(-1);
- n) $\cos(\arcsin(0))$; o) $\arccos(\sin(\pi))$;
- p) $\arccos\left(\cos\left(\frac{\pi}{5}\right)\right);$ q) $\arccos\left(\cos(2\pi)\right);$
- r) $arccos(e^0)$;

Comandos Geogebra:

- Usar a folha CAS
- Para calcular ou simplificar basta inserir a expressão em causa
- Simplificação de expressões: Simplificar(<expressão>)
- símbolo π :
- exponencial e^x : exp(<expressão>)
- 5. Simplifique a seguinte expressão:

$$\cos\left(x-\frac{\pi}{2}\right)+\sin(x-\pi)+\operatorname{tg}\left(x+\frac{3\pi}{2}\right).$$

- 6. Considere a função $f(x) = 3\sin(2x)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Faça um esboço do gráfico da função f(x) e confirme a resposta da alínea (a).
 - (c) Determine o valor de $f\left(\frac{\pi}{6}\right)$.
 - (d) Resolva a equação f(x) = -3.
 - (e) Interprete graficamente a alínea (d) e confirme a solução recorrendo o Geogebra.
 - (f) Defina uma restrição de injectividade de f e caracterize a função inversa, nessa restrição.

Comandos Geogebra:

- Calcular o valor de f(a), estando a função f(x) já definida: f(<valor>)
- Representar o ponto (a, f(a)): (<valor>, <f(valor)>)
- 7. Considere a função $f(x) = -\frac{\pi}{3} + \arccos(3x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Determine os zeros da função f(x).
 - (c) Calcule $f\left(\frac{1}{6}\right)$.
 - (d) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 8. Considere a função $f(x) = 3 + 2\ln(x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Calcule f(2).
 - (c) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 9. Resolva, caso seja possível, as seguintes equações:

a)
$$x^2 - 2x + 1 = 0$$

b)
$$x^3 - 2x^2 + x = 0$$
;

a)
$$x^2 - 2x + 1 = 0$$
; b) $x^3 - 2x^2 + x = 0$; c) $x^3 - 3x^2 + 3x - 1 = 0$.

d)
$$e^x - 1 - 0$$

e)
$$e^{2x} - e^x = 0$$

d)
$$e^x - 1 = 0$$
; e) $e^{2x} - e^x = 0$; f) $e^{2x} - 3e^x + 2 = 0$;

g)
$$-3 + \log(x) = 0$$
;

h)
$$\ln(x+1) = 0$$
; i) $\ln(x^2) - 4 = 0$;

i)
$$\ln(x^2) - 4 = 0$$
;

j)
$$\sin(3x - \pi) = \frac{1}{2}$$
; k) $\sin(3x - \pi) = \sin(x)$; l) $1 - 2\cos(2x) = 2$; m) $\arcsin(3x) = \frac{\pi}{4}$; n) $\arcsin(3x) = \pi$; o) $\arccos(3x) = \pi$.

$$k) \sin(3x - \pi) = \sin(x);$$

$$1) 1 - 2\cos(2x) = 2$$

$$m) \arcsin(3x) = \frac{\pi}{4}$$

n)
$$\arcsin(3x) = \pi$$

o)
$$\arccos(3x) = \pi$$

10. Verifique que as seguintes equações têm uma única solução e aproxime-a, com uma casa decimal correcta.

a)
$$x + e^x = 0$$
;

b)
$$\sin(x) - x + 2 = 0$$
; c) $x + \ln(x) = 0$.

c)
$$x + \ln(x) = 0$$

Sugestões para realizar a análise e cálculo no Geogebra:

- i) localize e separe todas as soluções da equação, recorrendo ao gráfico da função f(x);
- ii) defina um intervalo que contenha a solução pretendida e onde sejam válidas as condições de convergência do método numérico a utilizar (bisseção ou Newton);
- iii) recorrendo à folha CAS, itere até obter a aproximação pretendida.
 - bisseção: calcular o ponto médio do intervalo $[a_n, b_n]$ e escolher o sub-intervalo conveniente;
 - Newton: calcular a raiz da tangente ao gráfico de f(x) no ponto de abcissa x_n :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$