CS 383: Machine Learning

Prof Adam Poliak
Fall 2024
09/10/2024
Lecture 02

Reading Quiz 1

K-nearest neighbors

Featurization (intro)

Entropy & Decision Trees

- 1) Generalization: ability to answer new questions related to the topic studied
- 2) No! If we look at the test data (either the *features* or the *labels*), then any measurement of the performance of our algorithm becomes inaccurate
- 3) Multiclass classification
- 4) Regression

Reading Quiz 1

K-nearest neighbors

Featurization (intro)

Entropy & Decision Trees

Typical Supervised Learning setup

- X: Input matrix
 - *n* rows (examples/instances/individuals)
 - *m* columns (features/attributes)
- y: Label vector
- \hat{y} : Prediction vector

Simple Evaluation

How close is \hat{y} to y?

Indicator variable

Accuracy: $\frac{1}{n}\sum_{i} 1 (\hat{y_i}, y_i)$

K-nearest neighbors

<u>Problem</u>: Given a collection of labeled examples, determine the class of a new unlabeled example

Solution: assign the same class as the *most similar* examples

Key idea: whats *most similar*?

K-NN creates implicit decision boundaries

Figure 2.14 from ISL book, KNN with two classes (C=2), and K=3

HW01 – K-Nearest Neighbor

Implement KNN

Given:

- starter code, unit tests
- Train data with labels, dev data with labels, test data w/o labels

Deliverables:

- Implemented code
- Predictions on test data

Reading Quiz 1

K-nearest neighbors

Featurization (intro)

Entropy & Decision Trees

Terminology

Features: feature names

• e.g. shape

Feature values: what values are possible

• e.g. {circle, square, triangle}

Feature vector: values for a particular example

• e.g. $\mathbf{x} = [x_1, x_2, x_3, ..., x_p]$

Terminology

Decision boundary:

separates regions of the feature space that would be classified as positive or negative (or multiclass)

Underfitting:

"had the opportunity to learn something but didn't" (Duame)

Overfitting:

memorized individual training examples (fit to noise) and can't generalize

Handout 2 (find and work with a partner)

Comparing Decision Boundaries

Figure 2.16 from ISL book (dashed line is "ideal" boundary)

Comparing Decision Boundaries

KNN: K=1 KNN: K=100

Figure 2.16 from ISL book (dashed line is "ideal" boundary)

Comparing Decision Boundaries

KNN: K=1 KNN: K=100

Overfitting Underfitting

Figure 2.16 from ISL book (dashed line is "ideal" boundary)

Featurization (rule of thumb)

• Real-valued features get copied directly.

Duame, Chap 3

- Binary features become 0 (for false) or 1 (for true).
- Categorical features with *V* possible values get mapped to *V*-many binary indicator features.

Haven't discussed:

- -normalization
- -categorical variables on a spectrum

Handout

4. Using your response from the previous question, what would the feature vector become for x_1 ?

 $oldsymbol{x}_1$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis (y)
x_1	Sunny	Hot	High	Weak	No
x_2	Sunny	Hot	High	Strong	No
$ x_3 $	Overcast	Hot	High	Weak	Yes
$oldsymbol{x}_4$	Rain	Mild	High	Weak	Yes
$oldsymbol{x}_5$	Rain	Cool	Normal	Weak	Yes
x_6	Rain	Cool	Normal	Strong	No
x_7	Overcast	Cool	Normal	Strong	Yes
$ m{x}_8 $	Sunny	Mild	High	Weak	No
$oldsymbol{x}_9$	Sunny	Cool	Normal	Weak	Yes
$oldsymbol{x}_{10}$	Rain	Mild	Normal	Weak	Yes

 Sunny:
 {0,1}

 Overcast:
 {0,1}

 Rain:
 {0,1}

 Temperature:
 {0, 1, 2}
 (Cool, Mild, Hot)

 Humidity:
 {0,1}
 (Normal, High)

 Wind
 {0,1}
 (Weak, Strong)

Data from Machine Learning by Tom Mitchell (Table 3.2)

Sunny	Overcast	Rain	Temp	Humidity	Wind
1	0	0	2	1	0

Reading Quiz 1

K-nearest neighbors

Featurization (intro)

Entropy & Decision Trees

Each internal node: test one feature

Each branch from node: selects one value of the feature

Each leaf node: predict y

(test example) x =

Outlook	Temp	Humidity	Wind
Rain	Hot	High	Strong

(test example) x =

Outlook	Temp	Humidity	Wind
Rain	Hot	High	Strong

 $\hat{y} = No$

Continuous Features

9/17/2024 CS383 - ML Example by: Eric Eaton

Continuous Features

$$x_2 \leq 3$$

9/17/2024 CS383 - ML Example by: Eric Eaton

Continuous Features

9/17/2024 CS383 - ML Example by: Eric Eaton

Decision Trees: Pros vs Cons

Discuss with a partner! Think about:

- * training and testing
- * featurization
- * runtime
- * human factors

Decision Trees: Pros vs Cons

 Very interpretable! Easy to say why we made a classification (can point to which features)

Compact representation and fast predictions

Can be brittle (not looking at each example holistically)

Featurization and implementation difficulties

Next class

Algorithm to create decision trees

HW01 due Friday night

Wednesday's Lab will be a lecture

- Thursday lecture back on schedule
 - Reading quiz on Thursday