Calculabilité TD5

Antonio E. Porreca aeporreca.org/calculabilite

Calculabilité TD5

Antonio E. Porreca aeporreca.org/calculabilite

Examen session 1 2018–2019

Examen session 1 2018–2019

Exercice 1 Notions de base

Exercice 1 Notions de base

Compléter la phrase suivante : Un langage L est récursif si et seulement si...

• ...il existe une machine de Turing M telle que

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$
 - M rejette tous les mots $w \notin L$

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$
 - M rejette tous les mots $w \notin L$
 - M s'arrête toujours

Compléter la phrase suivante :

Un langage L est récursivement énumérable si et seulement si...

Compléter la phrase suivante : Un langage L est récursivement énumérable si et seulement si...

• ...il existe une machine de Turing M telle que

Compléter la phrase suivante : Un langage L est récursivement énumérable si et seulement si...

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$

Compléter la phrase suivante : Un langage L est récursivement énumérable si et seulement si...

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$
 - M rejette tous les mots $w \notin L$

Compléter la phrase suivante : Un langage L est récursivement énumérable si et seulement si...

- ...il existe une machine de Turing M telle que
 - M accepte tous les mots $w \in L$
 - M rejette tous les mots $w \notin L$
- \triangle On ne demande pas que M s'arrête toujours : les mots sur lesquels M ne s'arrête pas comptent aussi comme rejetés

Dans la définition des machines de Turing, pourquoi impose-t-on que $B \in \Gamma \setminus \Sigma$? (avec B le symbole blanc, Γ l'alphabet de ruban, et Σ l'alphabet d'entrée)

Dans la définition des machines de Turing, pourquoi impose-t-on que $B \in \Gamma \setminus \Sigma$? (avec B le symbole blanc, Γ l'alphabet de ruban, et Σ l'alphabet d'entrée)

ullet On utilise le symbole B pour trouver la fin du mot d'entrée

Dans la définition des machines de Turing, pourquoi impose-t-on que $B \in \Gamma \setminus \Sigma$? (avec B le symbole blanc, Γ l'alphabet de ruban, et Σ l'alphabet d'entrée)

- ullet On utilise le symbole B pour trouver la fin du mot d'entrée
- Si B était un symbole d'entrée, on ne saurait pas où arrêter de lire le ruban d'entrée de la machine

Soient L_1 et L_2 deux langages. Montrer que si $L_1 \leq_m^T L_2$ et L_2 est récursif, alors L_1 est récursif.

Soient L_1 et L_2 deux langages. Montrer que si $L_1 \leq_m^T L_2$ et L_2 est récursif, alors L_1 est récursif.

• Si L_2 est récursif, alors il existe une machine M_2 qui reconnaît L_2 et qui s'arrête toujours

Soient L_1 et L_2 deux langages. Montrer que si $L_1 \leq_m^T L_2$ et L_2 est récursif, alors L_1 est récursif.

- Si L_2 est récursif, alors il existe une machine M_2 qui reconnaît L_2 et qui s'arrête toujours
- Si $L_1 \leq_m^T L_2$ alors il existe une machine M_f qui calcule la réduction $f\colon \Sigma_1^\star \to \Sigma_2^\star$ tel que $x\in L_1$ ssi $f(x)\in L_2$ (donc M_f s'arrête toujours)

• Voici une machine M_1 qui reconnaît L_1 et s'arrête toujours :

• Voici une machine M_1 qui reconnaît L_1 et s'arrête toujours :

```
M_1(x) = simuler M_f(x) en obtenant f(x); simuler M_2(f(x)) et renvoyer le même résultat
```

• Voici une machine M_1 qui reconnaît L_1 et s'arrête toujours :

```
M_1(x) =  \text{simuler } M_f(x) \text{ en obtenant } f(x) \text{ ;}   \text{simuler } M_2\big(f(x)\big) \text{ et renvoyer le même résultat }
```

• M_1 accepte x ssi M_2 accepte f(x)

• Voici une machine M_1 qui reconnaît L_1 et s'arrête toujours :

```
M_1(x) =  \text{simuler } M_f(x) \text{ en obtenant } f(x) \text{ ;}   \text{simuler } M_2\big(f(x)\big) \text{ et renvoyer le même résultat }
```

- M_1 accepte x ssi M_2 accepte f(x)
- M_2 accepte f(x) ssi $f(x) \in L_2$ ssi $x \in L_1$

• Voici une machine M_1 qui reconnaît L_1 et s'arrête toujours :

```
M_1(x) =  \text{simuler } M_f(x) \text{ en obtenant } f(x) \text{ ;}   \text{simuler } M_2\big(f(x)\big) \text{ et renvoyer le même résultat }
```

- M_1 accepte x ssi M_2 accepte f(x)
- M_2 accepte f(x) ssi $f(x) \in L_2$ ssi $x \in L_1$
- Donc M_1 reconnaît L_1 en s'arrêtant toujours, donc L_1 est récursif

Parmi les deux affirmations suivantes, laquelle est correcte?

- (a) Si L est récursif, alors L est récursivement énumérable.
- (b) Si L est récursivement énumérable, alors L est récursif.

Parmi les deux affirmations suivantes, laquelle est correcte ? (a) Si L est récursif, alors L est récursivement énumérable. (b) Si L est récursivement énumérable, alors L est récursif.

• Si L est récursif alors il existe une MT M qui accepte les mots $w \in L$, rejette les mots $w \notin L$ et s'arrête toujours

Parmi les deux affirmations suivantes, laquelle est correcte ? (a) Si L est récursif, alors L est récursivement énumérable. (b) Si L est récursivement énumérable, alors L est récursif.

- Si L est récursif alors il existe une MT M qui accepte les mots $w \in L$, rejette les mots $w \notin L$ et s'arrête toujours
- Donc, en particulier, c'est vrai que M accepte les mots $w \in L$ et rejette les mots $w \notin L$, ce qui implique que L est récursivement énumérable

Parmi les deux affirmations suivantes, laquelle est correcte ? (a) Si L est récursif, alors L est récursivement énumérable. (b) Si L est récursivement énumérable, alors L est récursif.

- Si L est récursif alors il existe une MT M qui accepte les mots $w \in L$, rejette les mots $w \notin L$ et s'arrête toujours
- Donc, en particulier, c'est vrai que M accepte les mots $w \in L$ et rejette les mots $w \notin L$, ce qui implique que L est récursivement énumérable
- Donc (a) est la bonne réponse ; (b) n'est pas vrai en général, parce qu'on ne demande pas que la machine s'arrête toujours

Donner un exemple de langage non récursivement énumérable, différent de

$$L_{\bar{u}} = \{ \langle M \rangle \# w \mid M \text{ n'accepte pas } w \}$$

Donner un exemple de langage non récursivement énumérable, différent de

$$L_{\bar{u}} = \{ \langle M \rangle \# w \mid M \text{ n'accepte pas } w \}$$

• $L_d = \{\langle M \rangle \mid M \text{ n'accepte pas } \langle M \rangle \}$ (voir notes du CM3)

Donner un exemple de langage non récursivement énumérable, différent de

$$L_{\bar{u}} = \{ \langle M \rangle \# w \mid M \text{ n'accepte pas } w \}$$

- $L_d = \{\langle M \rangle \mid M \text{ n'accepte pas } \langle M \rangle \}$ (voir notes du CM3)
- Sinon, rappel : $L \in \mathbf{R}$ ssi $L \in \mathbf{RE}$ et $L \in \mathbf{RE}$; donc on peut prendre le complémentaire de n'importe quel langage L qui soit \mathbf{RE} mais pas \mathbf{R}

Donner si possible un exemple de langage non récursivement énumérable mais récursif

Donner si possible un exemple de langage non récursivement énumérable mais récursif

 C'est impossible, on a vu dans l'exercice 1.5 que chaque langage R est aussi RE

Donner si possible un exemple de langage non récursif mais récursivement énumérable

• $L_u = \{\langle M \rangle \# w \mid M \text{ accepte } w\}$, voici une machine qui le reconnaît :

Donner si possible un exemple de langage non récursif mais récursivement énumérable

• $L_u = \{\langle M \rangle \# w \mid M \text{ accepte } w\}$, voici une machine qui le reconnaît :

 $M_u(\langle M \rangle \# w) = \text{simuler } M \text{ sur } w \text{ et renvoyer le même résultat}$

- $L_u=\{\langle M\rangle \# w\mid M \text{ accepte } w\}$, voici une machine qui le reconnaît : $M_u\big(\langle M\rangle \# w\big)=\text{simuler } M \text{ sur } w \text{ et renvoyer le même résultat}$
- Si M accepte w alors M_u accepte $\langle M \rangle \# w$

- $L_u=\{\langle M\rangle \# w\mid M \text{ accepte } w\}$, voici une machine qui le reconnaît : $M_u\big(\langle M\rangle \# w\big)=\text{simuler } M \text{ sur } w \text{ et renvoyer le même résultat}$
- Si M accepte w alors M_u accepte $\langle M \rangle \# w$
- Si M rejette w en s'arrêtant, alors M_u rejette $\langle M \rangle \# w$ en s'arrêtant

- $L_u=\{\langle M\rangle \# w\mid M \text{ accepte }w\}$, voici une machine qui le reconnaît : $M_u\big(\langle M\rangle \# w\big)=\text{simuler }M \text{ sur }w \text{ et renvoyer le même résultat}$
- Si M accepte w alors M_u accepte $\langle M \rangle \# w$
- Si M rejette w en s'arrêtant, alors M_u rejette $\langle M \rangle \# w$ en s'arrêtant
- Si M ne s'arrête pas sur w, alors M_u non plus sur $\langle M \rangle \# w$

- $L_u=\{\langle M\rangle \# w\mid M \text{ accepte }w\}$, voici une machine qui le reconnaît : $M_u\big(\langle M\rangle \# w\big)=\text{simuler }M \text{ sur }w \text{ et renvoyer le même résultat}$
- Si M accepte w alors M_u accepte $\langle M \rangle \# w$
- Si M rejette w en s'arrêtant, alors M_u rejette $\langle M \rangle \# w$ en s'arrêtant
- Si M ne s'arrête pas sur w, alors M_u non plus sur $\langle M \rangle \# w$
- M_u reconnaît L_u , qui est donc \mathbf{RE} , mais il n'est pas \mathbf{R} (Corollaire 3, notes CM3)

Exercice 2 Machine de Turing

Exercice 2 Machine de Turing

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

$$L_1 = \{ w_1 w_2 \cdots w_n \in \{a, b\}^* \mid n \ge 2 \text{ et } n \equiv 0 \text{ mod } 3 \text{ et } w_{n-1} = a \}$$

Peut-on déduire de la question 1 que L_1 est : (a) récursif ? (b) récursivement énumérable ?

Peut-on déduire de la question 1 que L_1 est : (a) récursif ? (b) récursivement énumérable ?

• L_1 est reconnu par une machine qui s'arrête toujours, donc il est (a) récursif

Peut-on déduire de la question 1 que L_1 est : (a) récursif ? (b) récursivement énumérable ?

- L_1 est reconnu par une machine qui s'arrête toujours, donc il est (a) récursif
- Un langage récursif est toujours (b) récursivement énumérable (exercice 1.5), donc L_1 l'est aussi

Exercice 3 Réduction many-one Turing

Exercice 3 Réduction many-one Turing

```
Montrer que L_{\bar{u}} \leq_m^T L_2, avec L_{\bar{u}} = \{\langle M \rangle \# w \mid M \text{ n'accepte pas } w\} et L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \}
```

```
Montrer que L_{\bar{u}} \leq_m^T L_2, avec L_{\bar{u}} = \{\langle M \rangle \# w \mid M \text{ n'accepte pas } w\} et L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \}
```

• Soit $f(\langle M \rangle \# w) = \langle M' \rangle \# w$ avec M' définie par

```
M'(x) = simuler M sur x; si M accepte x alors accepter, sinon boucler à l'infini
```

```
Montrer que L_{\bar{u}} \leq_m^T L_2, avec L_{\bar{u}} = \{\langle M \rangle \# w \mid M \text{ n'accepte pas } w\} et L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \}
```

• Soit $f(\langle M \rangle \# w) = \langle M' \rangle \# w$ avec M' définie par

```
M'(x) = simuler M sur x; si M accepte x alors accepter, sinon boucler à l'infini
```

• f est calculable par une machine de Turing ; il suffit de modifier le codage $\langle M \rangle$ en $\langle M' \rangle$ et recopier w

```
Montrer que L_{\bar{u}} \leq_m^T L_2, avec L_{\bar{u}} = \{\langle M \rangle \# w \mid M \text{ n'accepte pas } w\} et L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \}
```

• Soit $f(\langle M \rangle \# w) = \langle M' \rangle \# w$ avec M' définie par

```
M'(x) = simuler M sur x; si M accepte x alors accepter, sinon boucler à l'infini
```

- f est calculable par une machine de Turing ; il suffit de modifier le codage $\langle M \rangle$ en $\langle M' \rangle$ et recopier w
- Maintenant il faut montrer que $\langle M \rangle \# w \in L_{\bar{u}}$ ssi $f(\langle M \rangle \# w) = \langle M' \rangle \# w \in L_2$

• Si $\langle M \rangle \# w \in L_{\bar{u}}$ alors M n'accepte pas w, soit parce qu'elle ne termine pas, soit parce qu'elle s'arrête sans accepter

- Si $\langle M \rangle \# w \in L_{\bar{u}}$ alors M n'accepte pas w, soit parce qu'elle ne termine pas, soit parce qu'elle s'arrête sans accepter
- Donc M' ne s'arrête pas sur l'entrée w :

```
M'(w) = simuler M sur w ; si M accepte w alors accepter, sinon boucler à l'infini
```

- Si $\langle M \rangle \# w \in L_{\bar{u}}$ alors M n'accepte pas w, soit parce qu'elle ne termine pas, soit parce qu'elle s'arrête sans accepter
- Donc M' ne s'arrête pas sur l'entrée w :

```
M'(w) = simuler M sur w; si M accepte w alors accepter, sinon boucler à l'infini
```

• Soit la simulation de M sur w ne termine pas (donc M' non plus), soit elle termine en rejetant et M' entre dans une boucle infinie

- Si $\langle M \rangle \# w \in L_{\bar{u}}$ alors M n'accepte pas w, soit parce qu'elle ne termine pas, soit parce qu'elle s'arrête sans accepter
- Donc M' ne s'arrête pas sur l'entrée w :

```
M'(w) = simuler M sur w; si M accepte w alors accepter, sinon boucler à l'infini
```

- Soit la simulation de M sur w ne termine pas (donc M' non plus), soit elle termine en rejetant et M' entre dans une boucle infinie
- Dans le deux cas on obtient $\langle M' \rangle \# w \in L_2$

• Si, au contraire, $\langle M \rangle \# w \not\in L_{\bar{u}}$ alors M accepte w et en particulier elle s'arrête

- Si, au contraire, $\langle M \rangle \# w \not\in L_{\bar{u}}$ alors M accepte w et en particulier elle s'arrête
- Donc M' s'arrête aussi sur l'entrée w :

```
M'(w) = simuler M sur w; si M accepte w alors accepter, sinon boucler à l'infini
```

- Si, au contraire, $\langle M \rangle \# w \not\in L_{\bar{u}}$ alors M accepte w et en particulier elle s'arrête
- Donc M' s'arrête aussi sur l'entrée w :

```
M'(w) = simuler M sur w; si M accepte w alors accepter, sinon boucler à l'infini
```

• La simulation de M sur w termine et donc M' accepte

- Si, au contraire, $\langle M \rangle \# w \not\in L_{\bar{u}}$ alors M accepte w et en particulier elle s'arrête
- Donc M' s'arrête aussi sur l'entrée w :

```
M'(w) = simuler M sur w; si M accepte w alors accepter, sinon boucler à l'infini
```

- La simulation de M sur w termine et donc M' accepte
- Donc on obtient $\langle M' \rangle \# w \notin L_2$

Pourquoi peut-on en déduire que L_2 n'est pas récursif ?

Pourquoi peut-on en déduire que L_2 n'est pas récursif ?

• On vient de démontrer que $L_{\bar{u}} \leq_m^T L_2$

Pourquoi peut-on en déduire que L_2 n'est pas récursif ?

- On vient de démontrer que $L_{\bar{u}} \leq_m^T L_2$
- Dans ce cas, si L_2 était récursif, alors $L_{\bar{u}}$ serait récursif aussi (exercice 1.4)

Pourquoi peut-on en déduire que L_2 n'est pas récursif ?

- On vient de démontrer que $L_{\bar{u}} \leq_m^T L_2$
- Dans ce cas, si L_2 était récursif, alors $L_{\bar{u}}$ serait récursif aussi (exercice 1.4)
- Mais $L_{\bar{u}}$ n'est pas récursivement énumérable, donc pas récursif non plus (exercice 1.5, réponse (a))

Exercice 4 Théorème de Rice

Exercice 4 Théorème de Rice

Qu'est-ce qu'une propriété non triviale ?

Qu'est-ce qu'une propriété non triviale ?

• C'est une famille (ensemble) de langages $P\subseteq \mathscr{P}(\Sigma^\star)$ telle que

Qu'est-ce qu'une propriété non triviale ?

- C'est une famille (ensemble) de langages $P\subseteq \mathscr{P}(\Sigma^\star)$ telle que
 - il existe une machine M_1 telle que $L(M_1) \in P$

Qu'est-ce qu'une propriété non triviale ?

- C'est une famille (ensemble) de langages $P \subseteq \mathscr{P}(\Sigma^{\star})$ telle que
 - il existe une machine M_1 telle que $L(M_1) \in P$
 - il existe une machine M_2 telle que $L(M_2) \not\in P$

Donner un exemple de propriété triviale

Donner un exemple de propriété triviale

• L'ensemble vide $P=\emptyset$ est une propriété triviale, parce que pour chaque machine M on a $L(M) \notin P$

Donner un exemple de propriété triviale

- L'ensemble vide $P=\emptyset$ est une propriété triviale, parce que pour chaque machine M on a $L(M) \notin P$
- La famille de tous les langages $P=\mathscr{P}(\Sigma^{\star})$ est une propriété triviale, parce que pour chaque machine M on a $L(M)\in P$

Donner un exemple de propriété triviale

- L'ensemble vide $P=\varnothing$ est une propriété triviale, parce que pour chaque machine M on a $L(M)\not\in P$
- La famille de tous les langages $P=\mathscr{P}(\Sigma^{\star})$ est une propriété triviale, parce que pour chaque machine M on a $L(M)\in P$
- La famille de langages $P=\{L_{\bar{u}}\}$ est aussi une propriété triviale, parce que $L_{\bar{u}}\neq \mathbf{RE}$, donc pour aucune machine M on a $L(M)\in P$

Cette propriété (celle de votre réponse à la question 2) est-elle intéressante ?

Cette propriété (celle de votre réponse à la question 2) est-elle intéressante ?

• Les propriétés $P=\varnothing$ et $P=\mathscr{P}(\Sigma^\star)$ sont triviales pour des raisons banales

Cette propriété (celle de votre réponse à la question 2) est-elle intéressante ?

- Les propriétés $P=\varnothing$ et $P=\mathscr{P}(\Sigma^\star)$ sont triviales pour des raisons banales
- En revanche, $P=\{L_{\bar{u}}\}$ est triviale mais peut-être pour des raisons un peu plus intéressantes...

Donner un exemple de propriété non triviale

• $P = \{L \mid \text{tous les mots de } L \text{ ont longueur paire}\}$

- $P = \{L \mid \text{tous les mots de } L \text{ ont longueur paire}\}$
- Il existe une machine de Turing M_1 qui accepte exactement tous les mots de longueur paire, donc $L(M_1) \in P$

- $P = \{L \mid \text{tous les mots de } L \text{ ont longueur paire}\}$
- Il existe une machine de Turing M_1 qui accepte exactement tous les mots de longueur paire, donc $L(M_1) \in P$
- Il existe aussi une machine de Turing M_2 qui accepte exactement tous les mots de longueur impaire, donc $L(M_2) \not\in P$

- $P = \{L \mid \text{tous les mots de } L \text{ ont longueur paire}\}$
- Il existe une machine de Turing M_1 qui accepte exactement tous les mots de longueur paire, donc $L(M_1) \in P$
- Il existe aussi une machine de Turing M_2 qui accepte exactement tous les mots de longueur impaire, donc $L(M_2) \not\in P$
- En général, il suffit de trouver une famille de langages qui contient au moins un langage $\mathbf{R}\mathbf{E}$ mais pas la totalité de $\mathbf{R}\mathbf{E}$

Que dit le théorème de Rice de cette propriété (celle de votre réponse à la question 4) ? Répondre en complétant la phrase suivante : Il n'existe pas de machine de Turing qui prenne en entrée...

Que dit le théorème de Rice de cette propriété (celle de votre réponse à la question 4) ? Répondre en complétant la phrase suivante : Il n'existe pas de machine de Turing qui prenne en entrée...

• ...le code $\langle M \rangle$ d'une machine de Turing M et décide, en s'arrêtant toujours, si M n'accepte que des mots de longueur paire (autrement dit, si le langage de M appartient à P)

Que dit le théorème de Rice de cette propriété (celle de votre réponse à la question 4) ? Répondre en complétant la phrase suivante : Il n'existe pas de machine de Turing qui prenne en entrée...

- ...le code $\langle M \rangle$ d'une machine de Turing M et décide, en s'arrêtant toujours, si M n'accepte que des mots de longueur paire (autrement dit, si le langage de M appartient à P)
- En général, le langage $L_P=\{\langle M\rangle\mid L(M)\in P\}$ n'est pas récursif pour toute propriété P non triviale

Exercice 5 Bonus

Exercice 5 Bonus

Montrer que $L_2 \leq_m^T L_\infty$, avec $L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \}$ et $L_\infty = \{\langle M \rangle \mid M(w) \uparrow \text{ pour tout } w \in \Sigma^{\star} \}$

```
Montrer que L_2 \leq_m^T L_\infty, avec L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \} et L_\infty = \{\langle M \rangle \mid M(w) \uparrow \text{ pour tout } w \in \Sigma^* \}
```

• L_2 parle de machines M qui ne s'arrêtent pas sur un certain mot w, alors que L_∞ parle de machines qui ne s'arrêtent jamais

```
Montrer que L_2 \leq_m^T L_\infty, avec L_2 = \{\langle M \rangle \# w \mid M(w) \uparrow \} et L_\infty = \{\langle M \rangle \mid M(w) \uparrow \text{ pour tout } w \in \Sigma^\star \}
```

- L_2 parle de machines M qui ne s'arrêtent pas sur un certain mot w, alors que L_∞ parle de machines qui ne s'arrêtent jamais
- L'astuce pour cette réduction est de transformer la machine M en une machine M' qui ne s'arrête jamais si M ne s'arrête pas sur w; sinon M' doit s'arrêter sur au moins un mot... c'est simple de choisir w lui-même!

• On fait la réduction (fonction calculable) $f(\langle M \rangle \# w) = \langle M' \rangle$ avec M' définie par

 $M'(x) = \mathbf{si} \ x = w \ \mathbf{alors} \ \mathbf{simuler} \ M \ \mathbf{sur} \ x \ \mathbf{sinon} \ \mathbf{boucler} \ \dot{\mathbf{a}} \ \mathbf{l'infini}$

- On fait la réduction (fonction calculable) $f(\langle M \rangle \# w) = \langle M' \rangle$ avec M' définie par

 $M'(x) = \mathbf{si} \ x = w \ \mathbf{alors} \ \mathbf{simuler} \ M \ \mathbf{sur} \ x \ \mathbf{sinon} \ \mathbf{boucler} \ \dot{\mathbf{a}} \ \mathbf{l'infini}$

• La machine M' ne s'arrête jamais, sauf éventuellement sur w

- On fait la réduction (fonction calculable) $f(\langle M \rangle \# w) = \langle M' \rangle$ avec M' définie par

 $M'(x) = \mathbf{si} \ x = w \ \mathbf{alors} \ \mathbf{simuler} \ M \ \mathbf{sur} \ x \ \mathbf{sinon} \ \mathbf{boucler} \ \dot{\mathbf{a}} \ \mathbf{l'infini}$

- La machine M' ne s'arrête jamais, sauf éventuellement sur w
- Si $\langle M \rangle \# w \in L_2$ alors M ne s'arrête pas sur w, donc M' ne s'arrête sur aucun mot d'entrée, donc $\langle M' \rangle \in L_\infty$

- On fait la réduction (fonction calculable) $f(\langle M \rangle \# w) = \langle M' \rangle$ avec M' définie par

 $M'(x) = \mathbf{si} \ x = w \ \mathbf{alors} \ \mathbf{simuler} \ M \ \mathbf{sur} \ x \ \mathbf{sinon} \ \mathbf{boucler} \ \dot{\mathbf{a}} \ \mathbf{l'infini}$

- La machine M' ne s'arrête jamais, sauf éventuellement sur w
- Si $\langle M \rangle \# w \in L_2$ alors M ne s'arrête pas sur w, donc M' ne s'arrête sur aucun mot d'entrée, donc $\langle M' \rangle \in L_\infty$
- Si $\langle M \rangle \# w \not\in L_2$ alors M s'arrête sur w, donc M' s'arrête sur exactement un mot (notamment w), donc $\langle M' \rangle \not\in L_{\infty}$

Que dire de $L_{\infty} \leq_m^T L_2$?

Que dire de $L_{\infty} \leq_m^T L_2$?

Peut-on faire aussi une réduction dans l'autre direction ?

Que dire de $L_{\infty} \leq_m^T L_2$?

- Peut-on faire aussi une réduction dans l'autre direction ?
- Il faut transformer une entrée $\langle M \rangle$ de L_{∞} en une entrée $\langle M' \rangle \# w$ tel que M' ne s'arrête pas sur le mot w ssi M ne s'arrête sur aucune entrée

Que dire de $L_{\infty} \leq_m^T L_2$?

- Peut-on faire aussi une réduction dans l'autre direction ?
- Il faut transformer une entrée $\langle M \rangle$ de L_{∞} en une entrée $\langle M' \rangle \# w$ tel que M' ne s'arrête pas sur le mot w ssi M ne s'arrête sur aucune entrée
- Ça nous demande de simuler M sur toutes les entrées possibles jusqu'à en trouver une sur laquelle M s'arrête (ou continuer a simuler a l'infini si ça n'arrive jamais)

• Soit w_1, w_2, \ldots une énumération de tous les mots de Σ^*

- Soit w_1, w_2, \ldots une énumération de tous les mots de Σ^{\star}
- Par exemple, d'abord le mot de longueur 0, puis les mots de longueur 1 en ordre lexicographique, puis les mots de longueur 2, etc...

- Soit w_1, w_2, \ldots une énumération de tous les mots de Σ^*
- Par exemple, d'abord le mot de longueur 0, puis les mots de longueur 1 en ordre lexicographique, puis les mots de longueur 2, etc...
- Sur l'alphabet $\Sigma = \{a, b\}$ ça donne l'énumération
 - ϵ , a,b, aa,ab,ba,bb, aaa,aab,aba,abb,baa,bab,bba,bbb,...

• On commence en simulant 1 étape de M sur le mot w_1 ; si M accepte en 1 étape, on s'arrête aussi en acceptant

- On commence en simulant 1 étape de M sur le mot w_1 ; si M accepte en 1 étape, on s'arrête aussi en acceptant
- Sinon, on simule 2 étapes de M sur le mot w_1 , puis 2 étapes sur le mot w_2 ; si M accepte l'un des deux mots en 2 étapes, on s'arrête aussi en acceptant

- On commence en simulant 1 étape de M sur le mot w_1 ; si M accepte en 1 étape, on s'arrête aussi en acceptant
- Sinon, on simule 2 étapes de M sur le mot w_1 , puis 2 étapes sur le mot w_2 ; si M accepte l'un des deux mots en 2 étapes, on s'arrête aussi en acceptant
- Sinon, on simule 3 étapes de M sur les mots w_1 , w_2 et w_3 , en acceptant si elle accepte l'un des mots

- On commence en simulant 1 étape de M sur le mot w_1 ; si M accepte en 1 étape, on s'arrête aussi en acceptant
- Sinon, on simule 2 étapes de M sur le mot w_1 , puis 2 étapes sur le mot w_2 ; si M accepte l'un des deux mots en 2 étapes, on s'arrête aussi en acceptant
- Sinon, on simule 3 étapes de M sur les mots w_1 , w_2 et w_3 , en acceptant si elle accepte l'un des mots

• ...

- On commence en simulant 1 étape de M sur le mot w_1 ; si M accepte en 1 étape, on s'arrête aussi en acceptant
- Sinon, on simule 2 étapes de M sur le mot w_1 , puis 2 étapes sur le mot w_2 ; si M accepte l'un des deux mots en 2 étapes, on s'arrête aussi en acceptant
- Sinon, on simule 3 étapes de M sur les mots w_1 , w_2 et w_3 , en acceptant si elle accepte l'un des mots

•

• Sinon, on simule t étapes de M sur les mots w_1, w_2, \ldots, w_t , en acceptant si elle accepte l'un des mots

• Ça revient à faire la réduction (fonction calculable) $f(\langle M \rangle) = \langle M' \rangle \# w$ avec n'importe quel w fixé, par exemple w = abba, et M' définie par

• Ça revient à faire la réduction (fonction calculable) $f(\langle M \rangle) = \langle M' \rangle \# w$ avec n'importe quel w fixé, par exemple w = abba, et M' définie par

```
M'(x) =
\mathbf{si} \ x = w \ \mathbf{alors}
\mathbf{soit} \ w_1, w_2, \dots l'énumération de \Sigma^{\star}
\mathbf{pour} \ t := 1 \ \mathbf{a} \ \infty \ \mathbf{faire}
\mathbf{pour} \ i := 1 \ \mathbf{a} \ t \ \mathbf{faire}
\mathbf{simuler} \ t \ \mathbf{etapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i
\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter}
\mathbf{sinon} \ \mathbf{accepter}
```

• Si $\langle M \rangle \in L_{\infty}$ alors M ne s'arrête sur aucune entrée w_i , c'est-à-dire que pour tout $t \in \mathbb{N}$, M ne s'arrête pas en t étapes sur aucun mot

• Si $\langle M \rangle \in L_{\infty}$ alors M ne s'arrête sur aucune entrée w_i , c'est-à-dire que pour tout $t \in \mathbb{N}$, M ne s'arrête pas en t étapes sur aucun mot

```
M'(x) =
\mathbf{si} \ x = w \ \mathbf{alors}
\mathbf{soit} \ w_1, w_2, \dots l'énumération de \Sigma^*
\mathbf{pour} \ t := 1 \ \mathbf{a} \ \infty \ \mathbf{faire}
\mathbf{pour} \ i := 1 \ \mathbf{a} \ t \ \mathbf{faire}
\mathbf{simuler} \ t \ \mathbf{etapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i
\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter}
\mathbf{sinon} \ \mathbf{accepter}
```

• Si $\langle M \rangle \in L_{\infty}$ alors M ne s'arrête sur aucune entrée w_i , c'est-à-dire que pour tout $t \in \mathbb{N}$, M ne s'arrête pas en t étapes sur aucun mot

```
M'(x) =
\mathbf{si} \ x = w \ \mathbf{alors}
\mathbf{soit} \ w_1, w_2, \dots l'énumération de \Sigma^*
\mathbf{pour} \ t := 1 \ \mathbf{a} \ \infty \ \mathbf{faire}
\mathbf{pour} \ i := 1 \ \mathbf{a} \ t \ \mathbf{faire}
\mathbf{simuler} \ t \ \mathbf{etapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i
\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter}
\mathbf{sinon} \ \mathbf{accepter}
```

• Donc M' ne s'arrête pas sur w, ce qui implique $\langle M' \rangle \# w \in L_2$

• Si $\langle M \rangle \not\in L_{\infty}$ alors M s'arrête sur une entrée w_i , c'est-à-dire que pour quelque $t \in \mathbb{N}$, M s'arrête en t étapes sur w_i

• Si $\langle M \rangle \not\in L_{\infty}$ alors M s'arrête sur une entrée w_i , c'est-à-dire que pour quelque $t \in \mathbb{N}$, M s'arrête en t étapes sur w_i

```
M'(x) =
\mathbf{si} \ x = w \ \mathbf{alors}
\mathbf{soit} \ w_1, w_2, \dots l'énumération de \Sigma^{\star}
\mathbf{pour} \ t := 1 \ \mathbf{a} \ \infty \ \mathbf{faire}
\mathbf{pour} \ i := 1 \ \mathbf{a} \ t \ \mathbf{faire}
\mathbf{simuler} \ t \ \mathbf{etapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i
\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter}
\mathbf{sinon} \ \mathbf{accepter}
```

• Si $\langle M \rangle \not\in L_{\infty}$ alors M s'arrête sur une entrée w_i , c'est-à-dire que pour quelque $t \in \mathbb{N}$, M s'arrête en t étapes sur w_i

```
\begin{aligned} \mathbf{M}'(x) &= \\ &\mathbf{si} \ x = w \ \mathbf{alors} \\ &\mathrm{soit} \ w_1, w_2, \dots \text{l'énumération de } \Sigma^{\bigstar} \\ &\mathbf{pour} \ t := 1 \ \mathbf{\grave{a}} \ \infty \ \mathbf{faire} \\ &\mathbf{pour} \ i := 1 \ \mathbf{\grave{a}} \ t \ \mathbf{faire} \\ &\mathrm{simuler} \ t \ \mathbf{\acute{e}tapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i \\ &\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter} \\ &\mathbf{sinon} \ \mathbf{accepter} \end{aligned}
```

• Donc M' s'arrête en acceptant sur w, ce qui implique $\langle M' \rangle \# w \not\in L_2$

• Si $\langle M \rangle \not\in L_{\infty}$ alors M s'arrête sur une entrée w_i , c'est-à-dire que pour quelque $t \in \mathbb{N}$, M s'arrête en t étapes sur w_i

```
\begin{aligned} \mathbf{M}'(x) &= \\ &\mathbf{si} \ x = w \ \mathbf{alors} \\ &\mathrm{soit} \ w_1, w_2, \dots \text{l'énumération de } \Sigma^{\bigstar} \\ &\mathbf{pour} \ t := 1 \ \mathbf{\grave{a}} \ \infty \ \mathbf{faire} \\ &\mathbf{pour} \ i := 1 \ \mathbf{\grave{a}} \ t \ \mathbf{faire} \\ &\mathrm{simuler} \ t \ \mathbf{\acute{e}tapes} \ \mathbf{de} \ M \ \mathbf{sur} \ w_i \\ &\mathbf{si} \ M \ \mathbf{s'arrête} \ \mathbf{alors} \ \mathbf{accepter} \\ &\mathbf{sinon} \ \mathbf{accepter} \end{aligned}
```

• Donc M' s'arrête en acceptant sur w, ce qui implique $\langle M' \rangle \# w \not\in L_2$

N'hésitez pas à poser des questions!

aeporreca.org/forum-calculabilite

N'hésitez pas à poser des questions!

aeporreca.org/forum-calculabilite

Bon courage!

Bon courage!