

Contents

Abstracted/Indexed in/Cited in: API Abstracts; Chemical Engineering and Biotechnology Abstracts; Catalysts & Catalysis; Chem Inform; Chemical Abstracts; Current Contents: Engineering; Current Contents: Engineering Index; Current Contents: Physical, Chemical & Earth Sciences; Engineering, Technology & Applied Sciences; Metals Abstracts; Research Alert; SCISEARCH; Science Citation Index; Theoretical Chemical Engineering Abstracts. Also covered in the abstract and citation database SciVerse Scopus®. Full text available on SciVerse ScienceDirect®

Mesoporous NiO nanomagnets as catalysts and separators of chemical agents M. Khairy, S.A. El-Safty, M. Ismael and H. Kawarada (Japan)	1
Adjustable kinetics in heterogeneous photocatalysis demonstrating the relevance of electrostatic interactions J. Ungelenk and C. Feldmann (Germany)	11
Electrochemical promotion of methane oxidation on impregnated and sputtered Pd catalyst-electrodes deposited on YSZ F. Matei, D. Ciuparu, C. Jiménez-Borja, F. Dorado, J.L. Valverde and S. Brosda (Romania, Spain, Greece)	18
A new sight on hydrogenation of F and N-F doped {0 0 1} facets dominated anatase TiO ₂ for efficient visible light photocatalyst W. Wang, C. Lu, Y. Ni, M. Su and Z. Xu (PR China)	28
Catalytic activities of Fe ₂ O ₃ and chromium doped Fe ₂ O ₃ for sulfuric acid decomposition reaction in an integrated boiler, preheater, and catalytic decomposer A.M. Banerjee, A.R. Shirole, M.R. Pai, A.K. Tripathi, S.R. Bharadwaj, D. Das and P.K. Sinha (India)	36
Three-dimensionally ordered macroporous Au/CeO ₂ -Co ₃ O ₄ catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde B. Liu, Y. Liu, C. Li, W. Hu, P. Jing, Q. Wang and J. Zhang (PR China)	47
Cobalt hydrotalcites as catalysts for bioethanol steam reforming. The promoting effect of potassium on catalyst activity and long-term stability R. Espinal, E. Taboada, E. Molins, R.J. Chimentao, F. Medina and J. Llorca (Spain)	59
Characterization of thermally treated Co ²⁺ -exchanged zeolite X H.Y. Jeong, D.-C. Koh, K.-S. Lee and H.H. Lee (South Korea)	68
Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene A. Aranda, S. Agouram, J.M. López, A.M. Mastral, D.R. Sellick, B. Solsona, S.H. Taylor and T. García (Spain, UK)	77
Effect of calcium dopant on catalysis of Ir/La ₂ O ₃ for hydrogen production by oxidative steam reforming of glycerol G. Yang, H. Yu, X. Huang, F. Peng and H. Wang (China)	89
Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters A.M. Hosseini, A. Tungler, Z. Schay, S. Szabó, J. Kristóf, É. Széles and L. Szentmiklósi (Hungary)	99
Room-temperature catalytic oxidation of benzo(a)pyrene by Ce-SBA-15 supported active CeSiO ₄ phase X. Zhang, S. Liu, H. Tong and G. Yong (China)	105
Effect of deposition of silver on structural characteristics and photoactivity of TiO ₂ -based photocatalysts E. Pulido Melián, O. González Díaz, J.M. Doña Rodríguez, G. Colón, J.A. Navío, M. Macías and J. Pérez Peña (Spain)	112
HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes R. Amrousse, K. Hori, W. Fetimi and K. Farhat (Japan, France)	121
Active size-controlled Ru catalysts for selective CO oxidation in H ₂ Y.H. Kim, J.E. Park, H.C. Lee, S.H. Choi and E.D. Park (Republic of Korea)	129

(Contents continued on page III)

SciVerse ScienceDirect

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com for more information.

0926-3373 (20121030) 127, 1-0