Studiengang Molekulare Biotechnologie Mathematik A Wintersemester 2019/2020 Carl Herrmann

Übungsblatt 9 – Diagonalisierung

Aufgabe 1

Eine symmetrische Matrix A hat die Eigenwerte $\lambda_1=1, \lambda_2=-2, \lambda_3=2$ und die dazugehörigen Eigenvektoren:

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad u_3 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

- ullet Bestimmen Sie die Matrix A
- Berechnen Sie A^{-1} , det A und Rang(A)

Aufgabe 2

Wir definieren die Reihe G_k so, dass jeder Term der Mittelwert der beiden vorhergehenden Terme ist:

$$G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$$

Wir definieren $g_k = \begin{pmatrix} G_{k+1} \\ G_k \end{pmatrix}$

1. Schreiben Sie folgendes Gleichungssystem in Matrixform $g_{k+1} = Ag_k$ um:

$$G_{k+2} = 1/2G_{k+1} + 1/2G_k \tag{1}$$

$$G_{k+1} = G_{k+1} \tag{2}$$

(Hinweis: die 2. Gleichung ist ein Trick, um die Folge in Matrixform bringen zu können.)

- 2. Bestimmen Sie Eigenwerte und Eigenvektoren von A. Ist A diagonalisierbar?
- 3. Bestimmen Sie den Grenzwert der Matrix A (d.h. A^n wenn $n \to \infty$)
- 4. Zeigen Sie, dass wenn $g_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ist, die Reihe nach dem Wert 2/3 strebt.

Aufgabe 3

Wir betrachten eine diagonalisierbare Matrix A, mit der Eigenschaft $A^n \to 0$ wenn $n \to \infty$, d.h. dass die einzelnen Einträge der Potenzen von A gegen Null tendieren, und die gesamte Matrix A gegen die Nullmatrix tendiert.

Zeigen Sie, dass dann für alle Eigenwerte λ_i gilt: $|\lambda_i| < 1$.