8 queen problem 4,7,3,8,2,5,1,6

3,1,4,2

5, 2, 4, 7, 3, 8, 6, 1

4,6,8,3,1,7,5,2

3	, 6	, 8	, 1,	4,	7, .	5,	2
0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0
	0						
1	0	0	0	0	0	0	0
6	0	0	1	0	0	0	0
0	0	0	0	0	0	1	0
0	0	0	0	l	0	0	0
	1						

5,7,4,1,3,8,6,2

 3,6,4,1,8,5,7,2

6,2,7,1,4,8,5,3

4,7,1,8,5,2,6,3

6, 4, 7, 1, 8, 2, 5, 3

Adjacency matrix: 34

1 0 1 1 1

2 1 0 1 1

3 1 1 0 0

State space tree

Solution:

Scanned with CamScanner

Solutions:

- O a=b→c→d→c→a
- (2) a → b → c → e → d → a
- (3) a > b > e > c > d -> a
- (4) a >d > C => b -> e -> a
 - (5) a > d > c > e > b > a
 - (b) a>d>e>c>b>a
 - ① a > e > b > C > d > a
 - (8) a >e >d > c ->b ->a
- (3) State Space true

Job assignment is Worker A — tosk2 Worker B — tosk1 Worker C — tosk3 Total Cost = 15

Row 3 canning:

1 2 3 Rown

A [12 0 11]

B 0 3 10 | 4

3 zelos = 3 works Worker A = Tayk 2 Worker B (- Tayk 1 Worker C <- Tayk 3

Total Cost = 15

Job assignmently statespace tree is equal to Job! assignmently Hungarian method.

7) Solve the following TSP using Branch and Bound technique.

Adjucency Matrix,
$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 3 & \infty & 3 \end{bmatrix}$$

Cost = 7

	Α	В	C	D	ϵ
A	∫∞	a	5	7	1
B	6	∞	૨	5	3
۷	7	6	ø	4	6
D	10	3	5	Ø	4
E	1	3	2	8	8

Row Reduced Mataix	r.¹
A B C D E A \ \infty	cost of reduction G=11
B 4 00 0 3 1	2
C 3 2 0 0 2	4 (-11)
D70201	3
E0 2 1 70	
opin-0 0 0 0 0	H San

Cost (A,C) = C (A,C) + 8+C1 = 4+1+11=16

		<i>D:</i>	Rew reduced matrix
	AB	C D E munio	- A B C D E roumin
	A so	∞ ¢ ∞ ∞ _	$A[\infty \infty \infty \infty \infty]$
	B 4 00	0 00 1 0	B 4 0 0 0 1 0
1	C 3 a	∞ ∞ 2 2	1
	D 00 0	2010	c 1 0 0 0 0 0 0 0
			0/00 0 2 00 1/10
	E O &	1 ~ ~ 0	E 0 2 1 00 00 0
		2	
		1	Colmin. 1 0 0 0 - 0 2
			Colmin: 0 0 0 - 0 2

Cost of Reduction = 2

(08+(A,D) = C(A,D)+++ C1=6+2+11=19

4	98 [(A,E)) <i>:</i>						Ro	wre	duce	dma	a6:	אלא	
	_				E	לישטמון	2_	A						מי ני פע	'-
A	00	ø	90	ø	ø]	-	A	S	ø	s	∞	~	$I \setminus$	-	10
,	ı					0	ß	4	ø	0	3	∞		0	
C	3	ي	ø	0	∞	0		3							
D	7	0	2	ø	∞	0	D	7				∞			
E	∞	2	l	7.	00	1	E	∞ 1				ا ص			
	- ;		•			1	colnin:	3	0	0	0	With Street Works	-	4	
Co	Cal reduced matrice														

-	_				_		
	A	B	C	D	ϵ_{-}	ריוחנים	
A	00	Ø	0	æ	0	-	Cost of reduction=4
В	1:	op	0	3	B	0	Cost (AIE) = C(AIE) + O+ CI
C	0	್ಷಿ	æ	Ø	00	0	
	4						=0+4+11
E	Ø	1	0	0	لره	1	= 15·
(dain	3	0	0	0	_	14	

$$C_{2} = \min \begin{cases} Cost(A,R) \\ Cost(A,C) \\ Cost(A,C) \end{cases} = \min \begin{cases} 14 \\ 15 \end{cases} = 14 \end{cases}$$

$$Cost(A,B) Cost(A,B) C$$

 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow A$

TSP Gyde;

Got of TSP= 14

9) W= 10
Sort items based on
$$\frac{V_{i}}{U_{i}}$$
 Value

Item $1 = \frac{21}{3} = 7$

Item $2 = \frac{26}{5} = 6$

Item $3 = \frac{24}{4} = 6$

The Sorted order in Item 1

Flow 2

Item 3

Upon Bound, WB = V + (W-W) + V_{i+1}

Selecting Item 1:

WB = O + (10-0) + $\left(\frac{21}{3}\right)$

= O + (10X7) = 70

Selecting Item 2:

UB = O + (10-0) + $\left(\frac{30}{5}\right)$

- i + (10x 6) = 60

UB = $21 + \left(7x 6\right) = 63$

Soluting Item 3:-

UB = $51 + \left(10-3\right) + \left(\frac{24}{4}\right)$

= $51 + \left(2\right) + 6 = 51 + 12 = 63$

UB = $21 + \left(10-3\right) + \left(\frac{24}{4}\right)$

= $21 + \left(7x 6\right) = 63$

UB = $30 + \left(10-5\right) + \left(\frac{24}{4}\right) = 30 + \left(5x 6\right) = 63$

UB = $30 + \left(10-5\right) + \left(\frac{24}{4}\right) = 30 + \left(5x 6\right) = 63$

UB = $30 + \left(10-5\right) + \left(\frac{24}{4}\right) = 30 + \left(5x 6\right) = 63$

UB = $30 + \left(10-6\right) + \frac{24}{4} = 0 + \left(10x 6\right) = 60$

State Spa Co true:

1	Items	Wi	V;
	1	2	12
	2	3	15
	3	4	16
	4	5	25

With Knapsack capacity W=12

W=12

Sort items based on Vi value.

Item $1 = \frac{12}{2} = 6$ Item 2 = 15 = 5

Item3= 16=4

Item 4 = 25 = 5.

The sorted order is Item 1, Item 2, Item 4, Item UpperBound, UB= V+(N-W) * Vi+1

selecting Item 1 + UUB= 0+((12-0)*(12))= 12x6=72 Selecting I tem 2 : W UB = 12+((12-2)* (15)) = 12+(10x5)=62 (2) UB = 0 + ((12-0) * (3)) = 0 + (12x5) = 60

3 decting Item &

;UUB = 27+((a-5)*(学)) = 27+(7×5)=62 (D) UB = 12+((12-2)*(25)) = 12+(10x5)=62

(3) UB = 15+((12-3)*(等)) = 15+(9x5)=60

(y)UB = 0+((12-0)*(2=5)) = 0+(12x5)=60

sdeching Item 3 : (1) UB = 52+(62-10)* (16)) = 52+(2x4) = 60

(1) UB = 27+ ((12-5) × (16)) = 27+ (7×4) = 55

(3) UB = 37+ ((12-7) × (16)) = 37+ (5x4) = 57

(4) $UB = 12 + ((12-2) \times (\frac{6}{4})) = 12 + (10 \times 4) = 52$ (5) $UB = 40 + ((12-8) \times (\frac{6}{4})) = 40 + (4 \times 4) = 58$ (6) $UB = 15 + ((12-3) \times (\frac{6}{4})) = 15 + (9 \times 4) = 51$

(1) UB = 25+((12-5) x(15)) = 25+(7x4) = 53

Scanned with CamScanner