HX1230 液晶显示模块 用户说明书 (V0.2)

广西好学科技有限公司

2017. 01

目 录

1	概述	1
2	引脚	1
3	操作	1
	3.1 操作时序	1
	3.2 指令集	2
	3.3 DDRAM MAP(显存地图)	3
	3.4 初始化过程	3
	3.4.1 复位	3
	3.4.2 设置内部电源	3
	3.4.3 设置反显	3
	3.4.4 设置全部显示点	4
	3.4.5 设置显示开关	4
	3.4.6 设置扫描起始线	4
	3.4.7 设置 DDRAM 的 X 地址	4
	3.4.8 设置 DDRAM 的 X 地址的高三位 <mark>低四位</mark>	
	3.4.9 清除 DDRAM 显存的数据(清屏)	5
	3.5 例程	5

1 概述

HX1230 液晶显示模块是一款结构简单、小巧的单色点阵显示器;

- 分辨率为 96 列, 68 行
- 只需要 4 个 IO 就可以驱动
- 单个 LED 背光,功耗更低
- 串行速率最高 4.0Mbits/s
- 外部 RST (复位) 输入引脚
- 电压范围: 2.7V~5.0V
- 低功耗,适用于电池供电系统
- 使用温度范围: -25~70 ℃

2 引脚

模块的引脚功能说明如表1所示。

序号	引脚名称	功能说明	备注
1	▲ RST	模块复位	低电平有效
2	CE	模块使能	低电平有效
3	N/C	悬空	
4	DIN	串行数据	数据出入引脚
5	CLK	串行时钟	上升沿, DIN 数据有效
6	VCC	液晶电源	3. 3-5. 0V
7	BL	背光灯电源	3. 3-5. 0V
8	GND	接地	

3 操作

3.1 操作时序

RST 引脚是用于显示模块复位,复位时间建议 10ms~100ms。

CE 引脚只有低电平时串行数据才有效。

DIN 串行数据引脚,数据格式如图 1 所示。

由一个控制位 D/C,加一个参数字节(高位先低位后)组成的 9Bit 的格式,当 D/C 数据/指令控制位为 1 时,后面的参数字节是数据;当 D/C 控制位为 0 时,后面的参数字节是指令;

图 1 指令格式

CLK 串行时钟, 当 CLK 上升沿时,对 Din 数据进行采样。

3.2 指令集

HX1230 指令集如表 2 所示。

表 2 HX1230 指令集

指令	D/C	命令字节								描述	
担マ	ט / ט	D7	D6	D 5	D4	D3	D2	D1	DO	田匹	
设置内部电源	0	0	0	1	0	W3	W2	W1	W0	当 W 都为"1111"时,开启; 当 W 为"1000"时,关闭;	
设置对比度	0	1	0	0	B4	В3	B2	B1	В0	HX1230 型号 (不可用);	
设置反显	0	1	0	1	0	0	1	1	N/R	当 N/R 为 "0" 时,正常显示; 当 N/R 为 "1" 时,反转显示;	
设置全部显示点	0	1	0	1	0	0	1	0	N/O	当 N/O 为 "0" 时, 关闭全显示; 当 N/O 为 "1" 时, 打开全显示;	
设置显示开关	0	1	0	1	0	1	1	1	N/S	当 N/S 为 "0" 时, 关闭显示; 当 N/S 为 "1" 时, 打开显示;	
设置 DDRAM 的 Y 地址	0	1	0	1	1	0	Y2	Y1	Y0	设置 RAM 的 Y 地址 0≤Y≤7	
设置 DDRAM 的 X 地址的低四位	0	0	0	0	0	Х3	X2	X1	X 0	设置 RAM 的 X 地址	
设置 DDRAM 的 X地址的高三位	0	0	0	0	1	0	X 6	X5	X4	0≤Y≤95	
设置扫描起始线	0	0	1	S5	S4	S3	S2	S1	S0	设置扫描起始线 S:0≤Y≤63	
写数据	1	D 7	D6	D5	D4	D3	D2	D1	D0	写数据到显示 RAM 中	

3.3 DDRAM MAP(显存地图)

图 3 HX1230 显存地图

HX1230 显示模块 DDRAM 显存是 9 行,96 列的阵列,如图 3 所示;在每次 DDRAM 写入 1 次,列地址会自动加一,指向下一个 DDRAM 字节;当一行 96 字节写完后,会自动对行地址加一;当写到最后一行最后一列时,会自动跳回 0 行,0 列的地址。

在使用 HX1230 显示模块时,取模应该设置: 阴码, 逆向, 列行式;

3.4 初始化过程

3.4.1 复位

接上电源后,内部寄存器和 DDRAM 的内容不确定,必须给 RST 一个复位脉冲信号。复位时间建议 10ms – 100ms。

3.4.2 设置内部电源

指令	D/C				1	命令字节	5			描述
相文	D/ C	D7	D6	D5	D4	D3	D2	D1	DO	佃处
设置内部电源	0	0	0	1	0	W3	W2	W1	W 0	当 W 都为"1111"时,开启; 当 W 为"1000"时,关闭;

3.4.3 设置反显

4E.A.	D/0				f	命令字节	##: #			
指令	D/C	D7	D6	D5	D4	D3	D2	D1	DO	描述
设置反显	0	1	0	1	0	0	1	1	N/R	当 N/R 为 "0" 时,正常显示; 当 N/R 为 "1" 时,反转显示;

3.4.4 设置全部显示点

指令		D/0				命	令字节	描述			
相	7	D/C	D7	D6	D5	D4	D3	D2	D1	DO	畑处
设置全示。		0	1	0	1	0	0	1	0	N/O	当 N/O 为 "0" 时, 关闭全显示; 当 N/O 为 "1"时, 打开全显示;

3.4.5 设置显示开关

指令	D/C				命	令字节	ī			描述
祖文	D/ C	D7	D6	D5	D4	D3	D2	D1	DO	畑处
设置显示开关	0	1	0	1	0	1	1	1	N/S	当 N/S 为 "0" 时,关闭显示; 当 N/S 为 "1" 时,打开显示;

3.4.6 设置扫描起始线

指令	D/C				命令	字节		描述		
担点	D/C	D7	D6	D5	D4	D3	D2	D1	DO	畑处
设置扫描起 始线	0	0	1	S 5	S4	S3	S2	S1	S0	设置扫 描起始线 S: 0≤Y≤63

3.4.7 设置 DDRAM 的 Y 地址

北人	D/0				命令	描述				
指令	D/C	D7	D6	D5	D4	D3	D2	D1	DO	加 处
DDRAM 的 Y地址设置	0	1	0	1	1	0	Y2	Y1	Y0	设置 RAM 的 Y 地址: 0≪Y≪7

3.4.8 设置 DDRAM 的 X 地址的高三位低四位

指令	D/C				命令	描述				
担文	D/ 0	D7	D6	D5	D4	D3	D2	D1	DO	佃处
设置 DDRAM 的	0	0	0	0	0	ХЗ	X2	X1	X 0	
X地址的低四位	"	"	"	U	١	λ3	AZ	AI	AU	设置 RAM 的 X 地址:
设置 DDRAM 的	_	_	_	0	1	_	V/	V.F	37.4	0≤Y≤95
X地址的高三位	0	0	0	0	1	0	X6	X5	X4	

3.4.9 清除 DDRAM 显存的数据(清屏)

```
set_XY(0,0); //设置坐标。
for(i=0;i<9;i++)
    for(j=0;j<96;j++)
         write_LCD(0x00,1);
```

3.5 例程

```
************************************
   注意: 例程适用于广西好学科技有限公司出品的型号 HX1230 显示模块
   接线:
       RST --> P1.0
       CE --> P1.1
       DIN --> P1.2
       CLK --> P1.3
       BL-->P1.4
#include "stc12c5a60s2.h"
#include <stdio.h>
#include "char_tab.h"
sbit HX RST = P1^0; //定义复位引脚
sbit HX_CE = P1^1; //定义使能引脚
sbit HX_DIN = P1^2; //定义数据引脚
sbit HX_CLK = P1^3; //定义时钟引脚
sbit HX_BL = P1^4; //定义背光引脚
void delay(unsigned int t);
                                 //延时函数
                                 //向 HX1230 显示模块写入一个指令/数据
void write HX(char volue,bit DC);
DC=0:指令 DC=1:数据
void initinal_HX(void);
                                 //初始化 HX1230 屏幕
void set_XY(unsigned char x,unsigned char y); //定位坐标
                                  //清屏函数
void clr_HX(void);
void Display_Picture(char *ch);
                                  //显示图片函数
void english_display8x8(char x , char y , char input);  //显示一个8*8 英文字符
void sping_english8x8(char x , char y , char *ch );
                                        //显示一串 8x8 的字符串
void display_betty_logo(int power);
                                       //显示电量
```



```
void english_display8x16(char x , char y , char input);  //显示一个16*8 英文字符
                                      //显示一串 16x8 的字符
void sping_english8x16(char x , char y , char *ch );
*********************************
   函数名称: delay ()
   功能描述: 用于程序延时
void delay(unsigned int t)
   unsigned int i,j;
   for(i=0;i<t;i++)
      for(j=0;j<1000;j++);
   函数名称: write_LCD(char volue,bit DC)
   功能描述:向HX1230显示模块写入一个字节的指令或数据
void write_HX(char volue,bit DC) //写入一个Icd 指令/数据 DC=0:指令 DC=1:数据
   int i;
   HX\_CE = 0;
                   //使能 HX1230 显示模块的操作
                   //指令或数据
   HX DIN = DC;
                    //产生一个上升沿写入控制位
   HX_CLK = 1;
   HX\_CLK = 0;
   for(i=0;i<8;i++) //写一个指令或数据字节
       if(volue&0x80)
          HX_DIN = 1;
       else
          HX DIN = 0;
       HX_CLK = 1;
       volue=volue<<1;
      HX_CLK = 0;
   }
                    //禁止 HX1230 显示模块的操作
   HX_CE = 1;
```

```
函数名称: initinal_LCD(void)
   功能描述:初始化HX1230模块的控制寄存器
 *********************
void initinal_HX(void)  //初始化 lcd
   HX_CLK = 0;
   HX RST = 0;
   delay(50);
   HX_RST = 1;
   HX_CE = 0;
   delay(1);
   HX_CE = 1;
   delay(1);
                  //设置内部电源(ON: 0x2f / OFF:0x28 ), 开启内部电源开关
   write_HX(0x2f,0);
                 //设置对比度(不可以用)
   write_HX(0x90,0);
                  //设置反显 (正常: 0Xa6/反显: 0xa7), 设置正常显示
   write_HX(0xa6,0);
                  //设置全部显示点(关闭: OXA4/开启: A5),关闭全显示
   write_HX(0xa4,0);
                 //设置显示开关(打开: OxAF/ 关闭: OxAE),打开显示
   write_HX(0xaf,0);
   write_HX(0x40,0);
                  //设置扫描起始线,设置扫描起始线为0
                  //设置 DDRAM 的 Y 地址,设置 RAM 的 Y 地址为 0
   write_HX(0xb0,0);
                  //设置 DDRAM 的 X 地址的高三位,RAM 的 X 地址的高三位为 0
   write_HX(0x10,0);
                  //设置 DDRAM 的 X 地址的低四位,RAM 的 X 地址的低四位 0
   write_HX(0x00,0);
   clr_HX();
         **********************
   函数名称: set_XY(unsigned char x,unsigned char y)
   功能描述:设定显存 DDRAM 的坐标
      **********************
void set_XY(unsigned char x,unsigned char y) //定位坐标
                                  //设置 DDRAM 的 Y 地址
   write_HX(0xb0 + y, 0);
   write_HX(0x10 \mid ((x \& 0x7f) >> 4), 0);
                                  //设置 DDRAM 的 X 地址的高三位
                                  //设置 DDRAM 的 X 地址的低四位
   write HX(0x0f \& x, 0);
   函数名称: void clr_HX(void)
```



```
功能描述:清屏
               //清屏函数
void clr_HX(void)
   unsigned char i,j;
   set_XY(0,0); //设置坐标。
   for(i=0;i<9;i++)
      for(j=0;j<96;j++)
          write_HX(0x00,1);
   }
   函数名称: void Display_Picture(char *ch)
   功能描述:显示一张大小为 96*68 的图片
  void Display_Picture(char *ch) //显示图片函数
   unsigned char i,j;
   set_XY(0,0); //设置坐标。
   for(i=0;i<9;i++)
       for(j=0;j<96;j++)
          write_HX(*(ch+(i * 96) + j),1);
   }
   函数名称: english_display8x8(char x, char y, char input)
   功能描述:显示一个8*8的英文字符
void english_display8x8(char x , char y , char input)  //显示一个8*8 英文字符
   char i, *ch;
   ch = ENGLISH_tab8x8 + 8 * ( input - 32 );
   set_XY(x,y);
   for(i=0;i<8;i++)
```

```
{
       write_HX(*(ch+i),1);
函数名称: sping_english8x8(char x, char y, char *ch)
   功能描述:显示一个8*8的英文字符串
   *******************************
void sping_english8x8(char x , char y , char *ch ) //显示一串 8x8 的字符串
   char i=0;
   while(*(ch+i)!='\0')
       english_display8x8(x+8*i ,y, *(ch+i));
       i++;
   函数名称: display_betty_logo(int power)
   功能描述:显示电池电量图标
void display_betty_logo(int power)
                                         //显示电量
   char i,volue=0,Power_mark=0x00;
   int k;
   set_XY(80,0);
   k=(0xff-power)/36;
   for(i=0;i<k;i++)
       Power mark | =0x01<<i;
   for(i=0;i<10;i++)
       volue = *(bettey_logo+i);
       if(i > = 2 \&\& i < 9)
          if(Power_mark&0x01<<(i-2))
              volue&=~0x3c;
```

```
write_HX(volue,1);
          *********************
   函数名称: english_display16x8(char x, char y, char input)
   功能描述:显示一个8*16英文字符
   ************************
void english_display8x16(char x , char y , char input) //显示一个8*16 英文字符
   char i, *ch;
  ch = ENGLISH_tab8x16 + 16 * ( input - 32 );
   set_XY(x,y);
  for(i=0;i<8;i++)
      write_HX(*(ch+i),1);
   set_XY(x,y+1);
  for(i=0;i<8;i++)
      write_HX(*(ch+i+8),1);
   函数名称: sping_english8x16(char x, char y, char *ch)
   功能描述:显示一个16*8英文字符串
void sping_english8x16(char x , char y , char *ch )
                                    //显示一串 8*16 的字符
   char i=0;
   while(*(ch+i)!='\0')
      english_display8x16(x+8*i ,y, *(ch+i));
      i++;
   函数名称: void chinese_display(char x , char y , char *ch)
   功能描述:显示一个16*16的汉字
```

```
//显示一个汉字
void chinese_display(char x , char y , char *ch)
   char i;
   set_XY(x,y);
   for(i=0;i<16;i++)
       write_HX(*(ch+i),1);
   set_XY(x,y+1);
   for(i=0;i<16;i++)
       write_HX(*(ch+i+16),1);
    函数名称: void main(void)
    功能描述: 主函数
  void main(void)
   char PChar[30] = 0;
   int i = 0;
                                              //初始化
   initinal_HX();
   while(1)
   {
       Display_Picture(Tab_Logo);
                                              //显示图片函数
       delay(1000);
                                              //清屏
       clr_HX();
                                              //显示一串 8x8 的字符
       sping english8x8(0, 1, "abcdefghijkl");
       sping_english8x16(0,2, "abdcefghijkl");
       chinese_display(0,4,tab_chinese);
                                              //显示电量
       display_betty_logo(80);
       sprintf(PChar,"Count:%d", i);
                                             //显示一串 8x8 的字符
       sping_english8x8(0, 6 , PChar );
       i++;
       delay(1000);
   }
```