

SENSO-LINK

Integrantes del grupo 9:

- Daniel Alexander Rodríguez Giraldo
- Oliver Nicolás Rimapa Canches
- Leonardo Fabrizzio Ramírez Huerta
- Gabriel Enrique Rodriguez Marujo

Análisis del Caso: Síndrome CHARGE y afectaciones multisistémicas

El paciente Piero Franco Zapata, varón de 23 años, diagnosticado con **síndrome CHARGE**, una enfermedad genética multisistémica de baja prevalencia (≈1:8 500 nacidos vivos), asociada principalmente a mutaciones del gen **CHD7** localizado en el cromosoma 8q12.2.

Diagnóstico:

- Síndrome CHARGE: colobomas oculares bilaterales, ceguera total (OI) y baja visión (OD).
- Hipoacusia neurosensorial bilateral (moderada OD, severa OI).
- Cirugía de escoliosis dorsolumbar (D3–L4): rigidez postural y fatiga.
- **Déficit vestibular**: dificultad de equilibrio.
- Estado actual: clínicamente estable, pero con dependencia sensorial y emocional al desplazarse solo.

Incidencia:

Se reporta una incidencia aproximada de 1 en 10 000 nacidos vivos.

Imagenes sacadas del caso clínico en el blackboard

Análisis del Caso: Limitaciones sensoriales y funcionales en la vida diaria

Las principales limitaciones funcionales de Piero se relacionan con sus déficits sensoriales (visión y audición) y su alteración del equilibrio y la postura.

- Visual: dependencia tecnológica para lectura y orientación, con riesgo de caídas por falta de referencia espacial.
- Auditiva: dificultad para discriminar sonidos y comprender mensajes en ambientes ruidosos; eleva el volumen de su voz y requiere apoyo en terapia de lenguaje.
- Postural y locomotora: dolor y rigidez dorsal por fijación vertebral, lo que reduce su tolerancia a la bipedestación prolongada y genera fatiga.
- Cognitiva y emocional: atención conservada, pero con rasgos del espectro autista y antecedentes de depresión, que afectan la interacción social y la motivación.

En conjunto, su caso demanda soluciones de apoyo sensorial y postural no invasivas, que mejoren la autonomía en desplazamiento, la comunicación efectiva y la seguridad en sus actividades diarias y académicas.

personas con discapacidad visual en todo el Perú, Gobierno del Perú, 2024. [Online]. Available: n-todo-el-peru

Análisis del Caso: Necesidad no cubierta

Tras la entrevista con la **Dra. Karen Amaya** y el propio paciente, el grupo identificó que las terapias de rehabilitación motora habían sido exitosas, pero **la principal limitación persistente es sensorial**.

Piero expresó que su mayor frustración es no poder orientarse y movilizarse con seguridad en la universidad, ya que sus herramientas actuales —lupa digital y aplicación de lectura— no son suficientes para garantizar independencia visual ni autonomía en entornos cambiantes.

Necesidad identificada: "Falta de capacidad sensorial para realizar actividades cotidianas fuera de casa, especialmente derivada de su discapacidad visual y auditiva combinada.."

Estado del Arte: Tecnologías de asistencia visual y sensorial existentes

Gama	Dispositivo / Proyecto	Funcionalidad principal	Ventajas	Limitaciones
Baja	Access Light / Access Sound (Marquette University)	App móvil que mide niveles de luz y sonido del entorno mediante sensores del smartphone.	Bajo costo; usa hardware existente; permite evaluar condiciones ambientales.	Precisión variable según modelo del celular; no sustituye visión; no mejora orientación.
Media	Pocketalker 2.0 (Williams AV)	Amplificador auditivo portátil con micrófono direccional y salida a audífono o auricular.	Mejora la comprensión del habla en entornos ruidosos; económico y fácil de usar.	No corrige hipoacusia profunda; requiere audición residual; puede generar retroalimentación acústica.
Alta	OrCam MyEye Pro (OrCam Technologies)	Clip inteligente con cámara y procesamiento IA para lectura de texto, reconocimiento facial y objetos.	Lectura y orientación manos libres; gran autonomía; integración con actividades académicas.	Alto costo (~US\$4 500–5 000); dependencia de batería y soporte técnico.
Alta	eSight Go (eSight Eyewear)	Gafas electrónicas con cámara frontal, procesamiento en tiempo real y micro-pantallas internas de alta resolución.	Mejora la agudeza visual (~7 líneas Snellen); permite lectura, movilidad y reconocimiento de rostros; conserva visión periférica.	Precio elevado (~US\$4 950); requiere entrenamiento y condiciones lumínicas adecuadas.

Estado del Arte: Inspiraciones tecnológicas para nuestro prototipo

Patente	Dispositivo	Aporte clave	Aplicación
US9805619B2	Gafas hápticas	Convierte visión en tacto	Base para señal táctil en chaleco
US2022295209A1	Bastón inteligente	Detección de obstáculos	Integración con chaleco
WO2022131891A1	Bastón háptico	Vibración direccional	Refuerzo de seguridad
US10900788B2	Cinturón sensorial	Percepción 3D	Inspiración para vibraciones localizadas

1. Requerimientos del sistema

Funcionales (F):

- 1. Detección de obstáculos en rango cercano (0.2 m a 3 m).
- 2. **Retroalimentación háptica direccional** según proximidad/dirección del obstáculo.
- 3. **Sincronización bastón–chaleco** mediante comunicación inalámbrica (p. ej. Bluetooth).
- 4. **Modo bajo consumo de energía** para prolongar autonomía.
- 5. **Calibración del usuario** (ajuste de sensibilidad, zonas de vibración).

No funcionales (NF):

- 1. **Peso máximo**: < 500 g adicionales (bastón + chaleco).
- Tiempo de respuesta: latencia < 100 ms.
- 3. **Durabilidad**: resistente a impactos leves, uso diario.
- 4. **Facilidad de uso**: interfaz mínima, intuitiva.
- 5. **Costo objetivo**: menor que tecnologías altas (e.g. < US\$ 500).

Función principal:

"Permitir que el usuario perciba obstáculos en su entorno mediante vibraciones, con mínima dependencia visual/auditiva."

Subfunciones:

- Sensado ambiental: sensores ultrasónicos / de proximidad miden distancia.
- **Procesamiento:** módulo microcontrolador interpreta los datos y decide fuerza/vibración.
- Comunicación: transmite señales entre bastón y chaleco.
- Actuación háptica: vibradores ubicados estratégicamente en el chaleco (y opcionalmente en el bastón) vibran según dirección y proximidad.
- Interfaz usuario: opción de ajuste (umbral, intensidad) mediante botón o app.

Flujo simplificado (para la diapositiva):

Sensado → procesamiento → envío señal → vibración háptica → feedback al usuario

Puede representarse con flechas entre bloques.

Variable / Dimensión	Alternativa A	Alternativa B	Alternativa C
Tipo de sensor	Ultrasónico	Infrarrojo	LIDAR / Time-of-Flight
Vibración	Motores vibratorios lineales	Actuadores piezoeléctricos	Motores excéntricos de bajo perfil
Comunicación	Bluetooth BLE	ZigBee	Cable (modo respaldo)
Ubicación de vibradores	Chaleco (espalda)	Chaleco + hombros	Chaleco + guantes leves
Fuente de energía	Batería Li-Po recargable	Pilas AA recargables	Supercondensador + recarga solar
Estructura de bastón	Carcasa modular	Cuerpo monolítico con ranuras	Segmentado (modularidad futura)

Conclusiones/siguientes pasos

Al aplicar un proceso sistemático, identificamos y abordamos las barreras sensoriales y posturales del paciente con síndrome de CHARGE, como alteraciones multisensoriales que impactan autonomía y equilibrio –especialmente la visión limitada en casos como Piero Franco Zapata.

Siguiendo VDI, diseñamos una solución modular óptima: pechera inteligente con sensores de proximidad y dirección, sincronizada vía Bluetooth con un bastón que traduce el entorno en vibraciones táctiles intuitivas.

Esto prioriza ergonomía, ligereza y accesibilidad, usando materiales flexibles, electrónica confiable (sensores ultrasónicos, Arduino Nano) y fabricación como impresión 3D. Frente a opciones caras y auditivas actuales, ofrece una alternativa háptica barata y modular, mejorando orientación sin depender de vista u oído. Impacto: mayor seguridad, confianza e independencia diaria, validada por criterios técnicos y usabilidad.

Conclusiones/siguientes pasos

Recomendaciones clave:

- Probar sensores en entornos reales (luz/ruido variable) y respuesta háptica en simulaciones de movilidad.
- Ajustes personalizados vía app: vibración, detección y batería.
- Evaluar comodidad del chaleco (peso, ajuste) e integración con aids como audífonos.
- Validar ergonomía con equipos de rehab.

Pasos próximos:

- Fabricar prototipo: impresión 3D para bastón modular y chaleco con vibradores.
- Integrar electrónica: sensores, microcontrolador y Bluetooth.
- Pruebas piloto con fisios/terapeutas; optimizar vibración/detección.
- Añadir logging de datos (distancias, uso) para análisis clínicos.
- Mejorar software para calibración e informes; obtener aprobaciones éticas/técnicas para despliegue en rehab.

Esto inicia iteraciones basadas en feedback real, evolucionando la solución para potenciar independencia segura y cotidiana

Referencias

- [1] "J. R. Holt, "US9805619B2 Modular autonomous reconfigurable robot," U.S. Patent US 9 805 619 B2, Oct. 31, 2017.
- [2] "J. Hendrix, "US2022295209A1 Smart Cane Assembly," U.S. Patent Application, Sept. 15, 2022.
- [3] "WO2022131891A1 Bastón háptico: Vibración direccional y refuerzo de seguridad," World Intellectual Property Organization Patent Application, 2022.
- [4] "US10900788B2 Cinturón sensorial: Percepción 3D e inspiración para vibraciones localizadas," U.S. Patent, Jan. 26, 2021.