MPP03a Jednadzba difuzije

Ivan Slapničar

24. listopada 2018.

1 Jednadžba difuzije

zakon očuvanja + jednadžba stanja (konstitutivna jednadžba) + rubni uvjeti

1.1 Zakon očuvanja

Neka je *I* dio cilindrične cijevi od *a* do *b*, neka je *A* površina presjeka i neka je

gustoća ili koncentracija nečega/tvari/energije na mjestu x u trenutku t.

Količina tvari u unutar I je gustoća \times volumen (površina baze \times visina):

$$\int_{a}^{b} u(x,t)A\,dx.$$

Neka se tvar kreće i neka je

$$\phi(x,t)$$

tok kroz presjek A na mjestu x u trenutku t po jedinici površine. Ako je $\phi(x,t)>0$, tok je prema pozitivnom smjeru x-osi.

Stopa po kojoj tvar ulazi u I jednaka je razlici količine koja ulazi na mjestu a i količini koja izlazi na mjestu b:

cijev

$$A\phi(a,t) - A\phi(b,t)$$
.

Na primjer, ako se radi o vodi, ova razlika je nula.

Neka tvar nastaje ili nestaje pomoću izvora ili uvira po stopi

po jedinici površine. Stopa po kojoj tvar nastaje/nestaje unutar I je

$$\int_{a}^{b} f(x,t,u)A dx.$$

Vremenska promjena količine tvari unutar *I* jednaka je zbroju stope po kojoj tvar ulazi u *I* i stope po kojoj tvar nastaje/nestaje u *I*:

$$\frac{d}{dt}\int_{a}^{b}u(x,t)A\,dx=A\phi(a,t)-A\phi(b,t)+\int_{a}^{b}f(x,t,u)A\,dx.$$

Možemo skratiti s *A* i dobili smo *zakon očuvanja u integralnom obliku*:

$$\frac{d}{dt}\int_{a}^{b}u(x,t)\,dx=\phi(a,t)-\phi(b,t)+\int_{a}^{b}f(x,t,u)\,dx.$$

Pretpostavimo da su u i ϕ neprekidno diferencijabilne (glatke) funkcije. Na lijevu stranu jednadžbe primijenimo postupak deriviranja pod znakom integrala (Leibnitz-ovu formulu), a desnu stranu jednadžbe primijenimo Newton-Leibnitzovu formulu u obrnutom smislu, pa imamo

$$\int_{a}^{b} u_{t}(x,t) dx = -\int_{a}^{b} \phi_{x}(x,t) dx + \int_{a}^{b} f(x,t,u) dx,$$

odnosno

$$\int_{a}^{b} \left[u_t(x,t) + \phi_x(x,t) - f(x,t,u) \right] dx = 0.$$

Jednakost vrijedi za sve a i b pa je podintegralna funkcija jednaka nuli, odnosno vrijedi zakon očuvanja u diferencijalnom obliku:

$$u_t(x,t) + \phi_x(x,t) - f(x,t,u) = 0.$$

1.2 Jednadžba stanja

Jednadžba stanja ili konstitutivna jednadžba je empirijska.

Fickov zakon kaže da je tok proporcionalan promjeni koncentracije:

$$\phi(x,t) = -Du_x(x,t),$$

gdje je *D konstanta difuzije*. Na primjer, toplina ide s mjesta veće koncentracije na mjesto manje koncentracije.

Dakle,

$$\phi_x(x,t) = -Du_{xx}(x,t).$$

1.2.1 Primjeri

Difuzijska jednadžba (bez izvora) glasi:

$$u_t(x,t) - Du_{xx} = 0$$
,

a reakcijska-difuzijska jednadžba glasi:

$$u_t(x,t) - Du_{xx} = f(x,t,u).$$

Ponekad i ϕ ovisi o u, $\phi(x, t, u)$.

Primjer za oba slučaja je toplinska jednadžba.

Fisherova jednadžba nastaje iz logističke jednadžbe

$$u'(t) = ku(t) \left(1 - \frac{u(t)}{K}\right).$$

Ako populacija ovisi i o mjestu te ako imamo tok (npr. kukci se sele i nema ih svugdje jednako), jednadžba glasi

$$u_t(x,t) + \phi_x = ku(x,t) \left(1 - \frac{u(x,t)}{K}\right).$$

Ako pretpostavimo da vrijedi Fickov zakon (npr. kukci se sele u manje naseljena područja), imamo

$$u_t - Du_{xx} = ku\left(1 - \frac{u}{K}\right).$$

1.3 Rubni uvjeti

Prirodno je zadati gustoću u početnom trenutku t = 0,

$$u(x,0) = f(x), \quad a \le x \le b,$$

te gustoću ili njenu promjenu na rubovima.

Dirichletovi ili geometrijski uvjeti glase

$$u(a,t) = g(t), \quad u(b,t) = h(t), \quad t > 0.$$

Na primjer, u(a, t) = 1 znači da je temperatura fiksirana na rubu.

Neumannovi ili prirodni uvjeti glase:

$$u_x(a,t) = g(t), \quad u_x(b,t) = h(t), \quad t > 0.$$

Na primjer, $u_x(a, t) = 0$ znači da je rub izoliran.

Robinovi ili mješoviti uvjeti glase:

$$\alpha_1 u(a,t) + \alpha_2 u_x(a,t) = g(t), \quad \beta_1 u(b,t) + \beta_2 u_x(b,t) = h(t), \quad t > 0.$$

Na primjer, prema Newtonovom zakon hlađenja je tok topline kroz rub proporcionalan razlici temperature ruba i okolne temperature:

$$u_x(a,t) = \alpha(u(a,t) - T_{ambienta}(t)).$$

Moguće su i kombinacije uvjeta u različitim rubovima.

1.4 Jedinstvenost rješenja

Ako dokažemo da problem rubnih vrijednosti ima jedinstveno rješenje, onda znamo da je rješenje koje smo dobili bilo kojom metodom upravo rješenje koje tražimo. Na primjer:

Teorem Rješenje problema rubnih vrijednosti

$$u_t - Du_{xx} = 0$$
, $D > 0$, $0 < x < l$, $0 < t < T$, $u(x,0) = f(x)$, $0 < x < l$, $u(0,t) = g(t)$, $u(l,t) = h(t)$, $0 < t < T$,

pri čemu su funkcije f, g i h neprekidne, je jedinstveno za svaki T > 0.

Dokaz: Dokaz je kontradikcijom. Pretpostavimo da postoje dva rješenje, u₁ i u₂, i definirajmo

$$w(x,t) = u_1(x,t) - u_2(x,t).$$

Tada je w rješenje problema rubnih vrijednosti

$$w_t - Dw_{xx} = 0,$$

 $w(x,0) = f(x) - f(x) = 0,$
 $w(0,t) = 0, \quad w(l,t) = 0.$

Definirajmo integral energije:

$$E(t) = \int\limits_0^l w^2(x,t) \, dx.$$

Vrijedi $E(t) \ge 0$ i $E(0) = \int_0^0 w^2 dx = 0$. Deriviranje pod znakom integrala, uvrštavanje jednadžbe i parcijalna integracija daju:

$$E'(t) = \int_{0}^{1} 2w(x,t)w_{t}(x,t) dx$$

$$= 2D \int_{0}^{1} w(x,t)w_{xx}(x,t) dx$$

$$= 2D \left[w(x,t)w_{x}(x,t) \Big|_{0}^{1} - \int_{0}^{1} w_{x}^{2}(x,t) dx \right]$$

$$= 2D \left[w(l,t)w_{x}(l,t) - w(0,t)w_{x}(0,t) - \int_{0}^{1} w_{x}^{2}(x,t) dx \right].$$

Prva dva izraza u zagradi su jednaka nuli zbog rubnih uvjeta, a integral nenegativan, pa je

$$E'(t) \leq 0$$
,

odnosno E(t) pada. Kako je E(0)=0 i $E(t)\geq 0$, zaključujemo da je E(t)=0 za svaki t. No, onda je i w(x,t)=0 pa je $u_1=u_2$ i rješenje je jedinstveno.

Zadatak: Dokažite jedinstvenost u slučaju Neumannovih rubnih uvjeta.