Khari Ollivierre Lab 3 Section 1490

Pseudocode

Lab 3a

Define clock control/status and IOREG codes as constants

Define CLKEVOUT code for PORTC_6 output ("00000001")

BEGIN MAIN

CALL CLKSEL

SET PORTC_7 to output

SET PORTCFG_CLKEVOUT to constant defined above

WHILE true

END WHILE

END MAIN

BEGIN CLKSEL

SET CPU_CCP to IOREG (0xD8)

WHILE OSC_STATUS is ~(status constant for desired clock)

END WHILE

SET OSC_CTRL to (control constant for desired clock)

SET CLK_PSCTRL to (chosen prescalar settings)

SET CLK_CTRL to (control constant for desired clock)

END CLKSEL

Lab 3b

Define clock control/status and IOREG codes as constants DEFINE PERIOD_L as constant "0x00" DEFINE PERIOD_H as constant "0xFF" DEFINE C0_CTRL as constant "0x07" **BEGIN MAIN** LOAD 4 registers used in CLKSEL with codes for 2 MHz clock CALL CLKSEL CALL CNTCFG C0 SET PORTC to output WHILE true OUTPUT TCCO CNTL to PORTC **END WHILE END MAIN BEGIN CLKSEL** SET CPU_CCP to IOREG (0xD8) WHILE OSC_STATUS is ~(status constant for desired clock) **END WHILE** SET OSC CTRL to (control constant for desired clock) SET CLK_PSCTRL to (chosen prescalar settings) SET CLK_CTRL to (control constant for desired clock) **END CLKSEL** BEGIN CNTCFG_C0 LOAD PERIOD_L into TCC0_PERL

LOAD PERIOD_H into TCC0_PERH

```
LOAD C0_CTRL into TCC0_CTRLA
```

END CNTCFG_C0

DEFINE EBI_CTRL constant "0x41"

DEFINE EBI_CS0_CTRLA constant "0x42"

DEFINE EBI_CS0_CTRLB constant "0x06"

DEFINE EBI_CS0_BASEADDR constant "0x2000"

DEFINE TDATA constant "0xA5"

DEFINE TDATA_ADDR constant "0x04"

DEFINE PORTH pins as appropriate control signals

BEGIN MAIN

CALL EBICONFIG

SET CS0 to 0

// Load value for writing

LOAD TDATA into R18

WHILE true

LOAD TDATA_ADDR into Z // Load high and low bytes individually

CALL WRITE

LOAD TDATA_ADDR into Z

CALL READ // Read operation results stored in R16

END WHILE

END MAIN

BEGIN MEMADDRLD

SET PORTK to ZL

INC Z

END MEMADDRLD

```
BEGIN WRITE
      CALL MEMADDRLD
      SET PORTJ to R18 // Low byte to be written
      LSR R18
                             // Mask out low byte
      CALL WRTGL
      CALL MEMADDRLD
      SET J[3-0] to R18
                       // High byte to be written
      CALL WRTGL
END WRITE
BEGIN WRTGL
      SET CS to 0
      SET ALE to 1
      SET WE to 0
     // Just in case
      NOP
      NOP
     NOP
      NOP
      NOP
      SET CS to 1
      SET ALE to 0
      SET WE to 0
END WRTGL
```

BEGIN READ

CALL MEMADDRLD

CALL RDTGL

```
LOAD PORTJ into R16
                               // Low byte read
      CALL MEMADDRLD
      CALL RDTGL
                               // High byte read
      LOAD PORTJ into R17
                               // Shifted to its correct position
      LSL R17
      ADD R16, R17
                               // Concatenate both bits
      CLR R17
END READ
BEGIN RDTGL
      SET CS to 0
      SET ALE to 0
      SET RE to 1
      NOP
      NOP
      NOP
      NOP
      SET CS to 1
      SET ALE to 0
      SET RE to 0
END RDTGL
BEGIN EBICONFIG
      SET EBI CTRL to constant defined above
      SET EBI_CS0_CTRLA to constant defined above
      SET EBI_CS0_BASEADDR to constant defined above
      SET PORTH to output for control signals
```

SET PORTK to output for address signal

// Control signals predefined above

SET CS to 1

SET WE to 1

SET RE to 1

SET ALE to 0

SET CS3 to 1

SET CS2 to 1

SET CS1 to 1

SET CS0 to 1

END EBICONFIG

Lab 3d

```
// Reserved registers: R16 (Read register), R17 (temp register for reads), R18 (write register)
```

Define clock control/status and IOREG codes fo 32 MHz clock as constants

Define CLKEVOUT code for PORTC_6 output ("00000001")

DEFINE EBI_CTRL constant "0x41"

DEFINE EBI_CS0_CTRLA constant "0x42"

DEFINE EBI_CS0_CTRLB constant "0x06"

DEFINE EBI_CS0_BASEADDR constant "0x3000"

DEFINE PORTH pins as EBI control signals

DEFINE PERIOD_L as constant "0xA2"

DEFINE PERIOD_H as constant "0x07"

DEFINE C0_CTRL as constant "0x07"

DEFINE CCAFLAGS as "10000000"

BEGIN MAIN

SET PORTA as input for switches

SET PORTC as output for LEDs

CLR Z // For accessing external memory

CALL CLKSEL

CALL EBICONFIG

CALL CNTCFG_C0

CLR R19 // Register for counter flags

WHILE true

WHILE R19!= CCAFLAGS

```
LOAD TCC0_INTFLAGS into R19
```

R19 << 3 // Mask out extra flag bits

END WHILE

LOAD PORTA into R18

CALL WRITE // Write switch data to memory

CLR Z // Reset Z to original memory location

CALL READ // Read memory into R16

STORE R18 on PORTC // Output read data to LEDS

END WHILE

END MAIN

BEGIN CLKSEL

SET CPU_CCP to IOREG (0xD8)

WHILE OSC_STATUS is ~(status constant for desired clock)

END WHILE

SET OSC_CTRL to (control constant for desired clock)

SET CLK_PSCTRL to (chosen prescalar settings)

SET CLK_CTRL to (control constant for desired clock)

END CLKSEL

BEGIN CNTCFG_C0

LOAD PERIOD_L into TCC0_PERL

LOAD PERIOD_L into TCC0_CCAL

LOAD PERIOD_H into TCC0_PERH

LOAD PERIOD_H into TCC0_CCAH

LOAD C0_CTRL into TCC0_CTRLA

END CNTCFG_C0

BEGIN MEMADDRLD

```
SET PORTK to ZL
      INC Z
END MEMADDRLD
BEGIN WRITE
      CALL MEMADDRLD
     SET PORTJ to R18 // Low byte to be written
                             // Mask out low byte
     LSR R18
      CALL WRTGL
      CALL MEMADDRLD
     SET J[3-0] to R18
                      // High byte to be written
      CALL WRTGL
END WRITE
BEGIN WRTGL
     SET CS to 0
      SET ALE to 1
      SET WE to 0
     // Just in case
     NOP
     NOP
     NOP
     NOP
      NOP
      SET CS to 1
      SET ALE to 0
      SET WE to 0
END WRTGL
```

```
CALL MEMADDRLD
      CALL RDTGL
      LOAD PORTJ into R16
                              // Low byte read
      CALL MEMADDRLD
      CALL RDTGL
      LOAD PORTJ into R17
                              // High byte read
                              // Shifted to its correct position
      LSL R17
      ADD R16, R17
                              // Concatenate both bits
      CLR R17
END READ
BEGIN RDTGL
      SET CS to 0
      SET ALE to 0
      SET RE to 1
      NOP
      NOP
      NOP
      NOP
      SET CS to 1
      SET ALE to 0
      SET RE to 0
END RDTGL
```

BEGIN EBICONFIG

BEGIN READ

SET EBI_CTRL to constant defined above

SET EBI_CS0_CTRLA to constant defined above

SET EBI_CS0_BASEADDR to constant defined above

SET PORTH to output for control signals SET PORTK to output for address signal

// Control signals predefined above

SET CS to 1

SET WE to 1

SET RE to 1

SET ALE to 0

SET CS3 to 1

SET CS2 to 1

SET CS1 to 1

SET CS0 to 1

END EBICONFIG