

CNN Implementation

2022.08.25 / 이승연

Contents

1. Speed of Convergence

- Weight Initialization
- Learning Rate
- Batch Normalization

2. How CNN Works?

- Character of CNN
- 1D CNN
- Deconvolution

3. Transfer Learning

- Concept of Transfer Learning
- Size Similarity Matrix

Speed of Convergence

Speed of Convergence

Strategies to Handle Speed of Convergence

- 1. Momentum term
- 2. Activation Function
- 3. Weight Initialization
- 4. Learning Rate
- 5. Batch Normalization (BN)

Speed of Convergence

Strategies to Handle Speed of Convergence

- 1. Momentum term
- 2. Activation Function
- 3. Weight Initialization
- 4. Learning Rate
- 5. Batch Normalization (BN)

Activation Functions

Activation Function and Activation Values

Traditional Activation Function Sigmoid & Tanh Function

Activation Functions

Cases of Activation Value

Most of activation values are either -1 or 1 only

Most of activation values are 0

Activation values distributes from -1 to 1 although most are 0

Poor Initialization Problem

Distribution of activation values of each node affects speed of convergence

Weight initialized with too Small or Big Number

Output value = WX^T = too small or big

Some calculated values are too small and vice versa.

Extremely high or low values drive activation value towards -1 or 1

Weight Initialization

How can we initialize weight values well?

- 1. Initialize with 0
- 2. Initialize with Uniform Distribution
- 3. Initialize with Standard Gaussian Distribution

Initialize with Zero

NN's task is optimizing weight values. Then, how can we initialize the weight value?

Weight Initialization

Initialize with Zero

300 neurons

300 neurons

10 neurons

300 neurons

300 neurons

Weight Initialization

Initialize with Uniform Distribution

Weight Initialization

Initialize with Standard Gaussian Distribution

Weight Initialization

Solution for Poor Initialization Problem

- 1. Xavier Initialization
- 2. Kaiming He Initialization

Weight Initialization

Xavier Initialization

Xavier weight $w_i \sim G(0, \frac{1}{N_{in}})$

Weight Initialization

Initialize with Xavier Method

300 neurons

300 neurons

10 neurons

300 neurons

300 neurons

Xavier Initialization

But for ReLU Function, doesn't work well

It shows same problem (most of activation values converge to 0)

Neuron output values at each hidden layer

17

Ref: Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Aistats. Vol. 9. 2010

Kaiming He Initialization

Xavier weight $w_i \sim G(0, \frac{2}{N_{in}})$

Kaiming He Initialization

He initialization also work well with ReLU function

Neuron output values at each hidden layer

Learning Rate

What is the Best Learning Rate?

Learning Rate

Learning Rate Scheduling

Seek to adjust the learning rate during training by reducing the learning rate according to a pre-defined schedule

- Time-based decay: $lr = \frac{lr_0}{1+kt}$
- SquareRoot decay: $lr = lr_0/\sqrt{t+1}$
- Exponential decay: $lr = lr_0 \exp(-kt)$

Ir : Learning Rate, lr_0 : Initial Learning Rate, k : hyperparameter, t : iteration number

Learning Rate

Learning Rate Scheduling

Step-based decay (Ir annealing)

Reduce a% of learning rate after each or every b epoch

Learning Rate

Learning Rate Scheduling

Cosine Scheduler

$$\eta_t = \eta_T + rac{\eta_0 - \eta_T}{2}(1 + \cos(\pi t/T))$$

Epoch t<T, η_0 is the initial learning rate, η_T is the target rate at time. For t>T, we simply pin the value to η_T without increasing it again

Learning Rate

Learning Rate Scheduling

Learning Rate

Warmup

A warmup period before optimization can prevent divergence

Increase learning rate to its initial maximum and then cool down the rate until the end of the optimization process

Warmup can be applied to any scheduler

Normalizing the input value is crucial for gradient descent It also important for the **activation value between hidden layers**

Pre-activations or post-activations for each batch (BN) makes the learning much faster and boost the accuracy

Remind the mini-batch operation, we divide the input into number of batches

Ref: S. loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," presented at ICML, 2015, pp. 448-456

Ref: S. loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reduçingsel Data Science Lab | DSL Internal Covariate Shift," presented at ICML, 2015, pp. 448–456.

Basic operation of BN is calculating the **mean** and **std** of result of input and weight calculation.

Ref: S. loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," presented at ICML, 2015, pp. 448-456

With using the mean and std value, **normalize** the z value **before they pass the activation function**

Ref: S. loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," presented at ICML, 2015, pp. 448-456

Why we need beta and gamma

After Normalization, 95% of activation values are in between -1.96 ~ 1.96

That range is linear-liked for these activation functions, so we should shift and rescale the activation values

Pros and Cons

Pros

- Previously we say high learning rate is a disaster, BN makes high learning rate use is possible
- Previously we say **sigmoid**, **tanh** functions don't work due to gradient vanishing, BN enables these functions **usable in the deep networks**
- BN makes weights initialization not so critical
- BN can also increase the accuracy of the model (make model generalize)

Normalization

Pros and Cons

Cons

- Batch number (B) should be large to estimate reliable statistics
- · Not suitable for dynamic network structure and recurrent network

Without using any initialization, BN makes very nice activation value distribution

Activation function: ReLU

How CNN Works?

How CNN Works?

Why CNN works well for image data?

And why we use CNN for several task?

How CNN Works?

CNN is a special case of MLP

What is a difference of CNN and MLP?

Original MLP (Fully connected layers) considers **all input feature**. They flatten the all-input features and feed them to next neuron. In fact, next neuron always **reflects entire features** from current input.

How CNN Works?

Two characters of CNN

1. Local Connectivity

How CNN Works?

Two characters of CNN

2. Weight Sharing

Different weights for every single neuron

Same weight for every single feature map

1D CNN

With using the local connectivity of CNN, we can adjust it for NLP field.

CNN also can be used for generate the novel image.

We can use **Deconvolution** to do **Image Segmentation** and **Super-Resolution**

Deconvolution for non-padded feature map

Recall from CNN calculation : $o = \left[\frac{i + 2p - k}{s}\right] + 1$

If
$$p = 0$$
, $p' = k - 1$, $o' = s(i' - 1) + k$

$$o' = s(i' - 1) + k = 1(2 - 1) + 3 = 4$$

Deconvolution

Deconvolution for padded feature map

Recall from CNN calculation :
$$o = \left[\frac{i + 2p - k}{s}\right] + 1$$

If
$$p = 2$$
, $p' = k - p - 1$, $o' = s(i' - 1) + k$

$$o' = s(i' - 1) + k - 2p = 1(6 - 1) + 4 - 4 = 5$$

Deconvolution

Application

Dense pixel-wise predictions such as semantic segmentation, computing optical flow and disparity maps, contour detection etc.

Application

It also can make a high-resolution image from low resolution image

FCN (Fully Convolution Network)

FCN (Fully Convolution Network)

First End-to-End CNN architecture for semantic segmentation

Build on top of VGG backbone

Convolutionation
Deconvolution
Skip Architecture

Convolutionation

We only store the 'Weights value' after training

So, if we feed different size image to pre-trained model, there are some dimension issue

Convolutionation

Training	
Training Input	250*250*3
Feature Map Size	7*7*512 = 25088
(last layer)	
FC Layer	4096
# of weights	4096*25088

Inference		
Training Input	150*150*3	
Feature Map Size	3*3*512 = 4608	
(last layer)		
FC Layer	4096	
# of weights	4096*4096 D o	pesn't Matched !!

Convolutionation

The weights of FC layer vary with input vector size

So, if the size of an input vector change, pre-trained model cannot work

But weights of **Convolution layer doesn't change** with various input sizes

Only the **size of kernel** determine the # of weights

50

1x1 Convolution for Skip-Connection

For skip-connection or the other skip-architecture has one problem

They conduct the elementwise calculation, but the **size of feature map** for skipped one and pass the conv. layer one **do not matched**.

Transfer Learning

Concept of Transfer Learning

Myth in Deep Learning

You can't do deep learning unless you have a million labeled examples for your problem

Reality

You can learn useful representations from unlabeled data

You can train on a nearby surrogate objective for which it is easy to generate labels

You can **transfer** learned representations from a related task

→ Transfer Learning, Few-shots learning

Transfer Learning

Concept of Transfer Learning

Definition

The ability of a system to recognize and apply knowledge and skills learned in previous task to novel tasks (in new domains).

It is motivated by **human learning**. People can often transfer knowledge learnt previously to novel situations

- Know how to ride a motorbike → Learn how to ride a car
- Know how to play classic piano → Learn how to play jazz piano

Schematic Overview of TL

Way for Transfer Learning

Ref : J. Pan and Q. Yang, "A survey on Transfer Learning", IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, Oct.2010

Size Similarity Matrix

The Guideline of basic Transfer Learning

X axis is Dataset Similarity

Y axis is Dataset Size

Dataset Size Quadrant 1 Quadrant 2 Large dataset, Large dataset but different from and similar to the the pre-trained pre-trained model's dataset model's dataset **Dataset Similarity** Quadrant 3 Quadrant 4 Small dataset and Small dataset and different from the similar to the pretrained model's pre-trained model's dataset dataset

Size-Similarity Matrix

Transfer Learning Process

- Since the dataset is very large, we may expect that we can afford to train a ConvNet from scratch.
- However, in practice it is very often still beneficial to initialize with weights from a pretrained model.
- In this case, we would have enough data and confidence to fine-tune through the entire network.

- Another perspective, this practice also can be seen as an another "initialization" method.
- Pre-trained models to provide a "good initial" point.
- Then fine tune + retrain is used to train the network with training data of interest.

Transfer Learning Process

Transfer Learning Process

- Since the data is small, it is likely best to only train a linear classifier.
- Since the dataset is very different,, we also have to remove several late convolution layers and retain a few early convolution layers only.
- Alternatively, consider retrain many late conv layers & consider data augmentation.

Transfer Learning

Way for Transfer Learning

- This case also can be seen like we use a pretrained CNN as a feature extractor without finetuning the convolution layers.
- Classifier still has to be retrained on the target data.
- Example: prebuilt model trained on ImageNet and use to classify small size target dataset..

3. Summary

Speed of Convergence

Good convergence is the first thing to consider and followed by generalization issue. Good convergence doesn't imply good generalization.

First Ladder (most important): Learning Rate

Second Ladder: Hidden units, mini-batch size, momentum coefficient

Third Ladder (least important): Number of layers, Learning rate decay, other optimizer hyperparameters

3. Summary

CNN

CNN extracts local information from the data (using certain size kernel and bias) and extract the global information by combining them

Based on this basic principle, it can be used not only for image processing but also for **other areas**

Transfer Learning

TL is a powerful tool when we want to train with a small amount of data, and when we want to slightly change the guaranteed models.

Thank you