

Tartalom

- Elemi adatszerkezetek és adattípusok
- Verem (stack) adattípus: LIFO
- Sor (queue) adatszerkezet: FIFO
- Lineáris adatszerkezetek
- Egyirányú listák (one-way or singly linked lists)
- Beszúró rendezés H1L listákra
- Összefésüléses rendezés S1L-re

Elemi adatszerkezetek és adattípusok

Adatszerkezet

- adatok tárolásának és elrendezésének egy lehetséges módja
 - adatok elérése, módosítása, beszúrása, törlése
- A megfelelő adatszerkezetek kiválasztása vagy megalkotása a programozási feladat megoldásának alapvető része
- A programok hatékonysága nagymértékben függ az alkalmazott adatszerkezetektől

Adattípus

- Adatszerkezet + a rajta értelmezett műveletek
- Absztrakt adattípus (ADT) (Abstract Data Type)
 - Nem definiáljuk pontosan az adatszerkezetet, csak informálisan a műveleteket
 - Az ADT megvalósításának részei: (UML)
 - reprezentálása: adatszerkezet megadása (adattagok)
 - implementálása: műveleti kód (metódusok)

Verem (stack) adattípus: LIFO

Az utoljára benne eltárolt, és még benne lévő adat érhető el, illetve törölhető

```
Stack
-A:\mathfrak{I}[] // \mathfrak{I} is some known type; A.length is the physical
- constant m0: \mathbb{N}_+ := 16 // size of the stack, its default is m0.
-n: \mathbb{N} // n \in 0..A.length is the actual size of the stack
+ Stack(m: \mathbb{N}_+ := m0) \{A := \mathbf{new} \ \mathfrak{T}[m] \ ; \ n := 0\} // \text{ create empty stack}
+ \sim \text{Stack}() \{ \text{ delete } A \}
+ push(x:\mathfrak{I}) // push x onto the top of the stack
+ pop(): \mathcal{T} // remove and return the top element of the stack
+ top(): \mathfrak{T} // return the top element of the stack
+ isEmpty() : \mathbb{B} \{ \mathbf{return} \ n = 0 \}
+ setEmpty() \{n := 0\} // reinitialize the stack
```

Verem példa

- Gyakorlati alkalmazása
 - CALL STACK
 - Kifejezések postfix formára hozása
 - Postfix forma kiértékelés

Verem műveletek

- Műveletidő: Θ(1)
 - Nem tartalmaz ciklust / rekurziót
- Push művelet:
 - $mT(n) \in \Theta(1)$
 - $MT(n) \in \Theta(n)$
 - $AT(n) \in \Theta(1)$

Példa a verem használatára

- Az input adatok kiírása fordított sorrendben
- read(&x:T): \mathbb{B} függvény
 - a kurrens inputról olvas
 - sikeres (visszatérés: igaz)
 - ha nincs még vége az inputnak
 - Ilyenkor beolvassa x-be a következő input adatot
 - Sikertelen (visszatérés: hamis):
 - vége van az inputnak
 - Ekkor x értéke definiálatlan
- write(x): a kurrens outputra írja x értékét

Sor (queue) adattípus: FIFO

Queue

```
-Z:\mathfrak{I}[] // \mathfrak{I} is some known type; Z.length is the physical
- constant m0: \mathbb{N}_+ := 16 // length of the queue, its default is m0.
-n: \mathbb{N} // n \in 0..Z.length is the actual length of the queue
-k: \mathbb{N} // k \in 0..(Z.length-1): the starting position of the queue in Z
+ Queue(m : \mathbb{N}_+ := m0) \{ \overline{Z} := \mathbf{new} \, \mathfrak{T}[m] \; ; \; n := 0 \; ; \; k := 0 \; \}
// create an empty queue
+ \operatorname{add}(x : \mathfrak{T}) // \operatorname{join} x to the end of the queue
+ \text{ rem}() : \mathfrak{T} // \text{ remove and return the first element of the queue}
+ first(): \Im // return the first element of the queue
+ \operatorname{length}() : \mathbb{N} \{ \mathbf{return} \ n \}
+ isEmpty() : \mathbb{B} \{ \mathbf{return} \ n = 0 \}
+ \sim \text{Queue}() \{ \text{ delete } Z \}
+ setEmpty() \{n := 0\} // reinitialize the queue
```

Sor példa

Egy sor néhány művelete			
Queue(4)	add(5)	add(3)	rem():5
0 1 2 3	0 1 2 3	0 1 2 3	0 1 2 3
	5	5 3	3
k	k	k	k
n = 0	n = 1	n=2	n = 1
rem():3	add(7)	add(2)	add(4)
0 1 2 3	0 1 2 3	0 1 2 3	0 1 2 3
	7	7 2	4 7 2
k	\overline{k}	\overline{k}	k
n = 0	n = 1	n=2	n=3

Sor műveletek

- Műveletidő: Θ(1)
- Add művelet
 - $mT(n) \in \Theta(1)$
 - $MT(n) \in \Theta(n)$
 - $AT(n) \in \Theta(1)$
- doubleFullQueueArray(Z, k)
 - ha már tele van a tömb -> cserélje le nagyobbra, pontosan kétszer akkorára!

Sor gyakorlati alkalmazása

- IO pufferek
- Ügyfélszolgálati programok (üzletek, bankok)
- Folyamat ütemezés
- Fák szintenkénti bejárása
- Szélességi keresés gráfokon
- Legrövidebb út keresése a legáltalánosabb esetben

Lineáris adatszerkezetek

Tömbök vs. Listák

- MT(beszúrás / törlés adott pozícióra): $\Theta(n)$ $\Theta(1)$
- MT(egy elemének elérése): $\Theta(1)$ $\Theta(n)$

Láncolt listák fajtái

- Egyirányú kétirányú
 - Mozgás: csak a lista elejétől vs vissza felé is (több memória, utasítás)
- Fejelemes- fejelem nélküli

Egyirányú listák (one-way or singly linked lists)

Egyszerű egyirányú listák (S1L = Simple one-way List)

- E1* -pointer: E1 típusú objektum címét tartalmazhatja (vagy o)
- (*p).key / p->key, (*p).next, p->next
- Fejelemes egyirányú listák (H1L = Header node + one-way List)

 $+key: \mathfrak{T}$

 $+\mathbf{E1}()$

+next: E1*

E1

... // satellite data may come here

 $next := \emptyset$

Végelemes egyirányú listák

Ciklikus egyirányú listák

Egyszerű egyirányú listák (S1L)

• L_1 ->key=9; L_1 ->next->key=1; L_1 ->next->next= \bigcirc

- $p = \emptyset$
 - > *p hibás
 - p->next; p->key hibásak
 - > futási hiba
- Ha *p* pointernek nem adunk értéket
 - *p; p->next; p->key definiálatlanok

Példa: egyszerű egyirányú lista (S1L) hossza

- S1L_length(L:E1*):N
 - L paraméter
 - absztrakt (azaz logikai) szinten: lista
 - L:E1*: a függvény által elvégzett számítás helyességének *előfeltétele*
 - konkrét (azaz fizikai) szinten: memóriacím, ami a listát azonosítja
- Műveletigény:
 - n: az L lista hossza
 - a ciklus *n* iterációt végez
 - $ightharpoonup T_{S1L_length}(n) \in \Theta(n)$

Fejelemes listák (H1L)

- Mindig tartalmaznak egy fejelemet
 - A fejelemére mutató pointer azonosítja
 - Key mező: definiálatlan
 - Next pointere: a H1L-nek megfelelő S1L-t azonosítja
- Üres H₁L:
 - van fejeleme, aminek a next pointere 🕖
 - $(L_2 -> key: definiálatlan; L_2 -> next = \emptyset)$

- H1L_length(*H*:E1*):N
 - $T_{H_{1}L_length}(n) \in \Theta(n)$

Egyirányú listák további műveletei

- Fejelemes egyirányú listák (H1L)
 - alapműveletek segítségével minden összetett listamódosító művelet megadható
- Egyszerű egyirányú listák (S1L)
 - beszúrás a lista legelejére
 - első elem kifűzésére

```
// Unlink the first element of list L. q := L L := q \to next [q \to next := 0]
```

Egyirányú listák alapműveletei

- Egyirányú listák kezelése
 - Listaelemek megfelelő átláncolása
 - Kerüljük a felesleges adatmozgatást
 - Járulékos adatok
- Listába szúrás
 - *p eleme után fűzi a *q objektumot
 - végrehajtása előtt *q nincs listába fűzve
 - $T \in \Theta(1)$
- Kifűzés listából
 - EF: *p és *q valamely egyirányú lista egymás utáni elemei,
 - $p \rightarrow next = q \neq \emptyset$
 - $T \in \Theta(1)$.
 - átfűzésnél a $q \rightarrow next = \emptyset$ elhagyható

```
// Provided that *p is followed

// by *q, unlink *q.

p \to next := q \to next

[q \to next := \emptyset]
```

S₁L és H₁L összehasonlítása

S₁L H₁L

- Sok rövid lista
 - > Szignifikáns a tárigények különbsége
 - Fejelemek allokálása és deallokálása a futási időt jelentősen megnövelheti
 - (pl. hasító táblák, összefésüléses rendezés)
- Egy (rész)feladatban a listát mindig csak a legelején, azaz veremszerűen kell módosítani
- A lista első eleme biztosan a helyén marad

- Kevesebb esetszétválasztás
 - Mindig valami után kell beszúrni
 - Mindig valami mögül kell kifűzni.
- Eggyel több objektumot tartalmaz
 - Megnöveli a program tárigényét
- Őrszem: fejelem, végelem
- Végelem: pl. sorok

 $\operatorname{cut}(L:\operatorname{E1*};n:\mathbb{N}):\operatorname{E1*}$

- L S1L-t kettévágása
 - Az első n elemét hagyja L-ben
 - Visszaadja a lista levágott maradékát azonosító pointert
- A listaelemek sorrendjét megtartja

• $T_{cut}(n) \in \Theta(n)$

H1L_read(): E1*

- Feladata
 - beolvas egy adatsort a kurrens inputról
 - bemenet sorrendje szerint egy H1L-t épít belőlük
 - visszaadja a fejeleme címét
- read($\&x: \mathcal{T}$): \mathbb{B}
 - következő adat beolvasása x-be
 - igaz: ha a beolvasás előtt még volt adat a bemeneten
 - hamis: különben (x definiálatlan marad)

- Műveletigény
 - $T_{H1L_read}(n) \in \Theta(n)$

Dinamikus memóriagazdálkodás

- ullet objektumok dinamikus létrehozása: new ${\mathcal T}$
 - ${\mathcal T}$ típusú objektumot hoz létre, és visszaadja a címét
 - helyfoglalás a memóriában
- p mutató
 - a p := new T utasítás végrehajtása előtt is létezik
 - azt a mutató deklarációjának kiértékelése hozza létre

- objektumok dinamikus törlése: delete p
 - *p* mutató által hivatkozott objektumot törli
 - memória felszabadítása
 - delete *p* végrehajtása után is létezik
 - egészen az őt (automatikusan) deklaráló eljárás vagy függvény végrehajtásának befejezéséig

- Az absztrakt programokban az objektumokat dinamikusan létrehozó (new) és törlő (delete)
 utasítások műveletigényeit konstans értékeknek, azaz Θ(1)-nek vesszük,
 - Valójában nem tudjuk, mennyi.
 - A lehető legkevesebbet használjuk a new és a delete utasításokat.

Beszúró rendezés H1L listákra

 $mT_{IS}(n) \in \Theta(n)$ $AT_{IS}(n), MT_{IS}(n) \in \Theta(n^2)$

Összefésüléses rendezés S1L-re

(mergeSort(&L : E1*)) // L is an S1L. $n := S1L_length(L)$ ms(L, n)

$$mT_{MS}(n), MT_{MS}(n) \in \Theta(n \log n)$$

Köszönöm a figyelmet!

Pusztai Kinga

A bemutató Ásványi Tibor: Algoritmusok és adatszerkezetek I. Előadásjegyzete alapján készült.