MOSFETs de Potência:

Aspectos Construtivos e de Funcionamento

Alunos(as):

Eduardo Carvalho

Igor Rockstroh

Julia Almeida

Julio Teodoro

Belo Horizonte, 29 de Janeiro de 2025

Fabricação

Agenda

- Introdução
 - Contexto
 - Principais Parametros

Introdução

- Características Construtivas
 - D-MOSFET
- Fabricação
 - Dopagem
- **Outras Estruturas**
 - R_{on} DMOSFET
- Referências

Fabricação

MOSFETs têm vantagens sobre BJT em aplicações de potência porque:

- São controlados por tensão, o que reduz consumo e complexidade no circuito de acionamento do gate;
- Não sofrem com acumulo de portadores minoritários guando em saturação, o que reduz o tempo de comutação;
- Têm coeficiente térmico positivo para R_{on}, o que favorece a associação em paralelo

Fabricação

Vblocking

Máximo V_{ds} que o dispositivo suporta, quando em bloqueio, sem que haja condução de corrente.

Buscamos maximizar V_{blocking} para aumentar a robustez do dispositivo.

Ron

Resistência do dispositivo quando em condução. Buscamos minimizar R_{on} para reduzir perdas em condução. **Principais Parametros**

Ron Ideal

Conforme (BALIGA, 2010),

$$R_{on,ideal} = \frac{4V_b^2}{\epsilon_s \mu E_c^3}$$

(1)

Portanto, há um trade-off entre o aumento da tensão de bloqueio e a redução da resistência de condução.

Figura: R_{on} ideal para MOSFETs de potência em Silício

Estrutura

Figura: Visão em corte vertical de um D-MOSFET

Fonte: (SZE, 2012)

V_{blocking}

 $V_{blocking}$ é, principalmente, definida pela região n^{-} , chamada de n-drift.

R_{on}

Figura: Modelo de composição da resistência de condução de um D-MOSFET

R_{on}

Figura: Cotas relevantes para a resistência de condução de um D-MOSFET

$\boldsymbol{R}_{\text{on}}$

Figura: Contribuição dos componentes de Ron em um D-MOSFET

Resistance	Value (mOhm-cm²)	Percentage Contribution
Source Contact (R _{CS,SP})	0.05	2.2
Source (R _{N+,SP})	0.01	0.4
Channel (R _{CH,SP})	0.92	41.0
Accumulation (R _{A,SP})	0.66	29.5
JFET (R _{JFET,SP})	0.19	8.5
Drift (R _{D,SP})	0.34	15.2
Substrate (R _{SUB,SP})	0.06	2.7
Drain Contact (R _{DS,SP})	0.01	0.4
Total (R _{T,SP})	2.24	100

Referências

Fonte: (BALIGA, 2010)

D-MOSFET R_{ch}

$$R_{ch} = \frac{L_{ch}W_{cell}}{2\mu_{ni}C_{ox}(V_G - V_{th})}$$

Fabricação

(2)

(3)

Referências

R_A

$$R_A = K_A \frac{(W_G - 2)W_{cell}}{2\mu_{ni}C_{ox}(V_G - V_{th})}$$

R_{drift}

Multiplos modelos, mas, sempre,

$$R_{drift} \propto
ho_{ extsf{D}}$$

Fabricação

Fabricação •

Slide 1 assunto 1...

BALIGA, B. Fundamentals of Power Semiconductor Devices. [S.l.: s.n.], 2010. 6, 7, 10,

11, 12, 13, 14

SZE, S. Semiconductor Devices: Physics and Technology. [S.l.: s.n.], 2012.

8, 9

