$11a_{325} (K11a_{325})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -36589u^{20} - 75173u^{19} + \dots + 133419a + 168070, \ u^{21} + 7u^{19} + \dots + 2u - 1 \rangle \\ I_2^u &= \langle -1.50267 \times 10^{47}u^{35} + 7.89794 \times 10^{47}u^{34} + \dots + 8.17083 \times 10^{48}b + 1.26464 \times 10^{50}, \\ &\quad 1.51725 \times 10^{32}u^{35} + 1.19597 \times 10^{32}u^{34} + \dots + 1.00338 \times 10^{33}a - 5.77606 \times 10^{33}, \ u^{36} + u^{35} + \dots - 88u + 1 \\ I_3^u &= \langle b+u, \ -u^9 - u^8 - 5u^7 - 5u^6 - 11u^5 - 9u^4 - 11u^3 - 6u^2 + a - 5u - 1, \\ &\quad u^{10} + 5u^8 + u^7 + 10u^6 + 3u^5 + 9u^4 + 3u^3 + 4u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b-u, -3.66 \times 10^4 u^{20} - 7.52 \times 10^4 u^{19} + \dots + 1.33 \times 10^5 a + 1.68 \times 10^5, \ u^{21} + 7u^{19} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_9 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_3 &= \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_6 &= \begin{pmatrix} 0.274241u^{20} + 0.563435u^{19} + \dots - 0.725182u - 1.25972 \\ u \end{pmatrix} \\ a_7 &= \begin{pmatrix} 0.274241u^{20} + 0.563435u^{19} + \dots + 0.274818u - 1.25972 \\ u \end{pmatrix} \\ a_{10} &= \begin{pmatrix} -0.364446u^{20} - 0.326445u^{19} + \dots + 0.141996u + 0.459290 \\ -0.171242u^{20} - 0.393302u^{19} + \dots + 0.147370u + 0.563435 \end{pmatrix} \\ a_1 &= \begin{pmatrix} 0.563435u^{20} - 0.171242u^{19} + \dots - 1.80820u + 1.27424 \\ u^2 \end{pmatrix} \\ a_4 &= \begin{pmatrix} -0.535284u^{20} + 0.170748u^{19} + \dots + 1.53655u + 0.520353 \\ 0.0475045u^{20} + 0.315750u^{19} + \dots + 0.00530659u - 0.199304 \end{pmatrix} \\ a_8 &= \begin{pmatrix} -u \\ u^3 + u \end{pmatrix} \\ a_5 &= \begin{pmatrix} 0.644788u^{20} + 0.909233u^{19} + \dots - 0.487914u - 1.42985 \\ -0.254102u^{20} + 0.0146306u^{19} + \dots + 1.08378u - 0.175665 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -0.582496u^{20} - 0.577624u^{19} + \dots - 0.376093u + 0.851783 \\ -0.441159u^{20} - 0.406276u^{19} + \dots + 0.464934u + 0.246457 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -0.582496u^{20} - 0.577624u^{19} + \dots + 0.464934u + 0.246457 \\ -0.441159u^{20} - 0.406276u^{19} + \dots + 0.464934u + 0.246457 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{129645}{44473}u^{20} + \frac{33237}{44473}u^{19} + \dots - \frac{265846}{44473}u + \frac{357015}{44473}u^{19} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_8	$u^{21} + 7u^{19} + \dots + 2u - 1$
c_3, c_4, c_{10} c_{11}	$u^{21} - 6u^{20} + \dots + 38u - 4$
c_5, c_7	$u^{21} - 6u^{19} + \dots - 7u - 1$
<i>c</i> ₉	$u^{21} - 18u^{20} + \dots + 4352u - 512$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$y^{21} + 14y^{20} + \dots + 12y^2 - 1$
$c_3, c_4, c_{10} \ c_{11}$	$y^{21} + 24y^{20} + \dots + 108y - 16$
c_5, c_7	$y^{21} - 12y^{20} + \dots + 27y - 1$
<i>c</i> ₉	$y^{21} + 2y^{20} + \dots + 65536y - 262144$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.089530 + 0.984696I		
a = -0.10595 + 1.89249I	-0.41138 - 2.40421I	1.72315 + 4.22426I
b = -0.089530 + 0.984696I		
u = -0.089530 - 0.984696I		
a = -0.10595 - 1.89249I	-0.41138 + 2.40421I	1.72315 - 4.22426I
b = -0.089530 - 0.984696I		
u = -0.709348 + 0.727206I		
a = 1.013410 - 0.479147I	8.83155 - 2.25669I	7.66847 + 3.47538I
b = -0.709348 + 0.727206I		
u = -0.709348 - 0.727206I		
a = 1.013410 + 0.479147I	8.83155 + 2.25669I	7.66847 - 3.47538I
b = -0.709348 - 0.727206I		
u = 0.241671 + 1.064200I		
a = 0.20712 + 1.60998I	6.84048 + 5.76907I	4.07518 - 4.56239I
b = 0.241671 + 1.064200I		
u = 0.241671 - 1.064200I		
a = 0.20712 - 1.60998I	6.84048 - 5.76907I	4.07518 + 4.56239I
b = 0.241671 - 1.064200I		
u = 0.819786 + 0.389956I		
a = -0.690629 + 0.984448I	10.89630 - 2.89300I	9.55027 + 0.75508I
b = 0.819786 + 0.389956I		
u = 0.819786 - 0.389956I		
a = -0.690629 - 0.984448I	10.89630 + 2.89300I	9.55027 - 0.75508I
b = 0.819786 - 0.389956I		
u = 0.420437 + 1.104620I		
a = -1.57981 - 0.05796I	-1.62807 + 2.56050I	4.45468 - 5.57761I
b = 0.420437 + 1.104620I		
u = 0.420437 - 1.104620I		
a = -1.57981 + 0.05796I	-1.62807 - 2.56050I	4.45468 + 5.57761I
b = 0.420437 - 1.104620I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.628080 + 0.259561I		
a = 0.99006 + 1.03585I	2.86823 + 1.78605I	10.67672 - 1.49019I
b = -0.628080 + 0.259561I		
u = -0.628080 - 0.259561I		
a = 0.99006 - 1.03585I	2.86823 - 1.78605I	10.67672 + 1.49019I
b = -0.628080 - 0.259561I		
u = -0.476681 + 1.277180I		
a = 1.297630 + 0.183037I	-5.88506 - 6.78578I	-0.85150 + 5.15843I
b = -0.476681 + 1.277180I		
u = -0.476681 - 1.277180I		
a = 1.297630 - 0.183037I	-5.88506 + 6.78578I	-0.85150 - 5.15843I
b = -0.476681 - 1.277180I		
u = 0.274697 + 0.539680I		
a = -0.715108 - 0.945305I	0.19501 + 1.45011I	2.94900 - 3.15728I
b = 0.274697 + 0.539680I		
u = 0.274697 - 0.539680I		
a = -0.715108 + 0.945305I	0.19501 - 1.45011I	2.94900 + 3.15728I
b = 0.274697 - 0.539680I		
u = 0.55258 + 1.36736I		
a = -1.134920 + 0.188406I	-4.07842 + 11.41590I	1.76912 - 8.47188I
b = 0.55258 + 1.36736I		
u = 0.55258 - 1.36736I		
a = -1.134920 - 0.188406I	-4.07842 - 11.41590I	1.76912 + 8.47188I
b = 0.55258 - 1.36736I		
u = -0.62291 + 1.42854I		
a = 1.038290 + 0.171241I	4.0861 - 14.4126I	4.28661 + 7.20471I
b = -0.62291 + 1.42854I		
u = -0.62291 - 1.42854I		
a = 1.038290 - 0.171241I	4.0861 + 14.4126I	4.28661 - 7.20471I
b = -0.62291 - 1.42854I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.434772		
a = -1.64018	0.983801	10.3970
b = 0.434772		

II.
$$I_2^u = \langle -1.50 \times 10^{47} u^{35} + 7.90 \times 10^{47} u^{34} + \cdots + 8.17 \times 10^{48} b + 1.26 \times 10^{50}, \ 1.52 \times 10^{32} u^{35} + 1.20 \times 10^{32} u^{34} + \cdots + 1.00 \times 10^{33} a - 5.78 \times 10^{33}, \ u^{36} + u^{35} + \cdots - 88 u + 121 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.151215u^{35} - 0.119194u^{34} + \cdots - 29.7352u + 5.75661 \\ 0.0183906u^{35} - 0.0966602u^{34} + \cdots + 19.1446u - 15.4775 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.132824u^{35} - 0.215854u^{34} + \cdots - 10.5906u - 9.72088 \\ 0.0183906u^{35} - 0.0966602u^{34} + \cdots + 19.1446u - 15.4775 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.142950u^{35} - 0.110929u^{34} + \cdots - 23.0740u + 5.02934 \\ -0.0996243u^{35} - 0.0572367u^{34} + \cdots + 8.34916u + 0.642617 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.235158u^{35} + 0.150714u^{34} + \cdots + 43.1286u - 10.6737 \\ 0.240469u^{35} + 0.255649u^{34} + \cdots + 27.1442u - 2.79189 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.231245u^{35} - 0.605373u^{34} + \cdots + 13.5883u - 48.7866 \\ 0.040469u^{35} + 0.255649u^{34} + \cdots + 27.1442u - 2.79189 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.231245u^{35} - 0.605373u^{34} + \cdots + 13.5883u - 48.7866 \\ -0.0590880u^{35} - 0.422425u^{34} + \cdots + 36.6423u - 48.0768 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.181447u^{35} - 0.279824u^{34} + \cdots + 22.4844u - 9.51522 \\ 0.0242422u^{35} - 0.0920959u^{34} + \cdots + 19.7108u - 15.9838 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.342315u^{35} - 0.0676417u^{34} + \cdots - 73.5185u + 27.0801 \\ -0.340322u^{35} - 0.200761u^{34} + \cdots - 48.3147u + 13.7797 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.342315u^{35} - 0.0676417u^{34} + \cdots - 48.3147u + 13.7797 \\ -0.340322u^{35} - 0.200761u^{34} + \cdots - 48.3147u + 13.7797 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0198670u^{35} + 0.230113u^{34} + \cdots 18.4708u + 28.1644$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_8	$u^{36} + u^{35} + \dots - 88u + 121$
$c_3, c_4, c_{10} \ c_{11}$	$(u^9 + u^8 + 6u^7 + 5u^6 + 11u^5 + 7u^4 + 6u^3 + 2u^2 + u + 1)^4$
c_5, c_7	$u^{36} + 9u^{35} + \dots - 8u + 1$
<i>c</i> ₉	$(u^2 + u + 1)^{18}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$y^{36} + 27y^{35} + \dots + 187308y + 14641$
c_3, c_4, c_{10} c_{11}	$(y^9 + 11y^8 + 48y^7 + 105y^6 + 121y^5 + 73y^4 + 20y^3 - 6y^2 - 3y - 1)^4$
c_5, c_7	$y^{36} + 3y^{35} + \dots - 44y + 1$
<i>c</i> ₉	$(y^2 + y + 1)^{18}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.039626 + 0.981491I		
a = 0.860387 - 0.544166I	2.12882 - 0.18400I	2.24115 - 0.41812I
b = -0.29688 - 1.73262I		
u = -0.039626 - 0.981491I		
a = 0.860387 + 0.544166I	2.12882 + 0.18400I	2.24115 + 0.41812I
b = -0.29688 + 1.73262I		
u = 0.154191 + 1.093140I		
a = 0.840038 - 0.338907I	-2.09801 + 2.02988I	-0.33330 - 3.46410I
b = -0.794470 + 0.015853I		
u = 0.154191 - 1.093140I		
a = 0.840038 + 0.338907I	-2.09801 - 2.02988I	-0.33330 + 3.46410I
b = -0.794470 - 0.015853I		
u = -0.129901 + 1.110370I		
a = -0.821381 - 0.354208I	-4.89942 - 0.92019I	-1.44626 - 2.77537I
b = 0.40998 - 1.53870I		
u = -0.129901 - 1.110370I		
a = -0.821381 + 0.354208I	-4.89942 + 0.92019I	-1.44626 + 2.77537I
b = 0.40998 + 1.53870I		
u = 1.165700 + 0.010466I		
a = 0.435562 + 0.739012I	0.22800 + 5.44061I	3.88238 - 7.86053I
b = -0.334918 - 1.124560I		
u = 1.165700 - 0.010466I	0.00000 5.440017	0.00000 . #.000001
a = 0.435562 - 0.739012I	0.22800 - 5.44061I	3.88238 + 7.86053I
$\frac{b = -0.334918 + 1.124560I}{u = -0.334918 + 1.124560I}$		
•	0.00000 F 440017	2 00020 1 7 000527
a = -0.828987 - 0.197728I	0.22800 - 5.44061I	3.88238 + 7.86053I
b = 1.165700 - 0.010466I $u = -0.334918 - 1.124560I$		
	0.99900 + 5.440617	2 00020 7 000527
a = -0.828987 + 0.197728I	0.22800 + 5.44061I	3.88238 - 7.86053I
b = 1.165700 + 0.010466I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.794470 + 0.015853I		
a = -0.607357 - 1.102190I	-2.09801 + 2.02988I	-0.33330 - 3.46410I
b = 0.154191 + 1.093140I		
u = -0.794470 - 0.015853I		
a = -0.607357 + 1.102190I	-2.09801 - 2.02988I	-0.33330 + 3.46410I
b = 0.154191 - 1.093140I		
u = -0.806995 + 0.905050I		
a = 0.258644 - 0.783077I	8.52641 - 3.47060I	5.48937 - 0.49112I
b = 0.264260 + 0.503586I		
u = -0.806995 - 0.905050I		
a = 0.258644 + 0.783077I	8.52641 + 3.47060I	5.48937 + 0.49112I
b = 0.264260 - 0.503586I		
u = 0.446862 + 1.134250I		
a = 0.811273 - 0.121202I	8.52641 + 7.53037I	5.48937 - 6.43708I
b = -1.395410 + 0.040090I		
u = 0.446862 - 1.134250I		
a = 0.811273 + 0.121202I	8.52641 - 7.53037I	5.48937 + 6.43708I
b = -1.395410 - 0.040090I		
u = 0.021359 + 0.770389I		
a = -1.105300 - 0.679667I	0.227995 + 1.380850I	3.88238 - 0.93232I
b = 0.528085 + 0.506138I		
u = 0.021359 - 0.770389I		
a = -1.105300 + 0.679667I	0.227995 - 1.380850I	3.88238 + 0.93232I
b = 0.528085 - 0.506138I		
u = 0.528085 + 0.506138I		
a = -0.325738 - 1.327740I	0.227995 + 1.380850I	3.88238 - 0.93232I
b = 0.021359 + 0.770389I		
u = 0.528085 - 0.506138I		
a = -0.325738 + 1.327740I	0.227995 - 1.380850I	3.88238 + 0.93232I
b = 0.021359 - 0.770389I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.153431 + 1.311480I		
a = 0.695425 - 0.299890I	-4.89942 + 3.13958I	-1.44626 - 9.70357I
b = -0.66442 - 1.33987I		
u = 0.153431 - 1.311480I		
a = 0.695425 + 0.299890I	-4.89942 - 3.13958I	-1.44626 + 9.70357I
b = -0.66442 + 1.33987I		
u = -1.395410 + 0.040090I		
a = -0.340206 - 0.630399I	8.52641 + 7.53037I	5.48937 - 6.43708I
b = 0.446862 + 1.134250I		
u = -1.395410 - 0.040090I		
a = -0.340206 + 0.630399I	8.52641 - 7.53037I	5.48937 + 6.43708I
b = 0.446862 - 1.134250I		
u = -0.134013 + 1.399190I		
a = -0.647238 - 0.295359I	2.12882 - 4.24376I	2.24115 + 6.51008I
b = 0.95276 - 1.31505I		
u = -0.134013 - 1.399190I		
a = -0.647238 + 0.295359I	2.12882 + 4.24376I	2.24115 - 6.51008I
b = 0.95276 + 1.31505I		
u = 0.264260 + 0.503586I		
a = 1.75693 - 0.07092I	8.52641 - 3.47060I	5.48937 - 0.49112I
b = -0.806995 + 0.905050I		
u = 0.264260 - 0.503586I		
a = 1.75693 + 0.07092I	8.52641 + 3.47060I	5.48937 + 0.49112I
b = -0.806995 - 0.905050I		
u = -0.66442 + 1.33987I		
a = -0.667309 - 0.042265I	-4.89942 - 3.13958I	-1.44626 + 9.70357I
b = 0.153431 - 1.311480I		
u = -0.66442 - 1.33987I		
a = -0.667309 + 0.042265I	-4.89942 + 3.13958I	-1.44626 - 9.70357I
b = 0.153431 + 1.311480I		
•	· · · · · · · · · · · · · · · · · · ·	

Solutions to I_2^u	$\sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.40998 + 1.53870I		
a = 0.606362 - 0.163388I	-4.89942 + 0.92019I	0. + 2.77537I
b = -0.129901 - 1.110370I		
u = 0.40998 - 1.53870I		
a = 0.606362 + 0.163388I	-4.89942 - 0.92019I	0 2.77537I
b = -0.129901 + 1.110370I		
u = 0.95276 + 1.31505I		
a = 0.612508 + 0.063552I	2.12882 + 4.24376I	0 6.51008I
b = -0.134013 - 1.399190I		
u = 0.95276 - 1.31505I		
a = 0.612508 - 0.063552I	2.12882 - 4.24376I	0. + 6.51008I
b = -0.134013 + 1.399190I		
u = -0.29688 + 1.73262I		
a = -0.533617 - 0.197147I	2.12882 + 0.18400I	0
b = -0.039626 - 0.981491I		
u = -0.29688 - 1.73262I		
a = -0.533617 + 0.197147I	2.12882 - 0.18400I	0
b = -0.039626 + 0.981491I		

III.
$$I_3^u = \langle b+u, -u^9-u^8+\cdots+a-1, u^{10}+5u^8+\cdots+4u^2+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{9} + u^{8} + 5u^{7} + 5u^{6} + 11u^{5} + 9u^{4} + 11u^{3} + 6u^{2} + 5u + 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + u^{8} + 5u^{7} + 5u^{6} + 11u^{5} + 9u^{4} + 11u^{3} + 6u^{2} + 4u + 1 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{8} - u^{7} - 5u^{6} - 5u^{5} - 10u^{4} - 9u^{3} - 8u^{2} - 5u - 2 \\ u^{8} + 4u^{6} + u^{5} + 6u^{4} + 2u^{3} + 3u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} - 4u^{7} - u^{6} - 6u^{5} - 2u^{4} - 3u^{3} - u + 2 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9} + u^{8} + 5u^{7} + 6u^{6} + 10u^{5} + 12u^{4} + 8u^{3} + 9u^{2} + 2u + 2 \\ -u^{9} - 4u^{7} - 6u^{5} - 3u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + u^{8} + 5u^{7} + 5u^{6} + 11u^{5} + 9u^{4} + 12u^{3} + 6u^{2} + 6u + 1 \\ -u^{5} - 2u^{3} - 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{9} - 6u^{7} - u^{6} - 13u^{5} - 3u^{4} - 12u^{3} - 3u^{2} - 3u \\ u^{9} + 4u^{7} + 7u^{5} + 5u^{3} + 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{9} - 6u^{7} - u^{6} - 13u^{5} - 3u^{4} - 12u^{3} - 3u^{2} - 3u \\ u^{9} + 4u^{7} + 7u^{5} + 5u^{3} + 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^9 3u^8 23u^7 19u^6 43u^5 38u^4 34u^3 27u^2 12u + 3u^3 38u^4 34u^3 38u^4 34u^3 38u^4 34u^3 38u^4 38u^$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	$u^{10} + 5u^8 - u^7 + 10u^6 - 3u^5 + 9u^4 - 3u^3 + 4u^2 + 1$
c_2, c_6	$u^{10} + 5u^8 + u^7 + 10u^6 + 3u^5 + 9u^4 + 3u^3 + 4u^2 + 1$
c_3, c_4	$u^{10} + u^9 + 7u^8 + 6u^7 + 17u^6 + 12u^5 + 17u^4 + 8u^3 + 7u^2 + 1$
c_5, c_7	$u^{10} + 3u^7 + 3u^6 + 3u^4 + 4u^3 + u^2 + u + 1$
c_9	$u^{10} - u^9 + u^8 - 4u^7 + 3u^6 + 3u^4 - 3u^3 + 1$
c_{10}, c_{11}	$u^{10} - u^9 + 7u^8 - 6u^7 + 17u^6 - 12u^5 + 17u^4 - 8u^3 + 7u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$y^{10} + 10y^9 + \dots + 8y + 1$
$c_3, c_4, c_{10} \ c_{11}$	$y^{10} + 13y^9 + \dots + 14y + 1$
c_5, c_7	$y^{10} + 6y^8 - 3y^7 + 11y^6 - 4y^5 + 9y^4 - 4y^3 - y^2 + y + 1$
<i>c</i> ₉	$y^{10} + y^9 - y^8 - 4y^7 + 9y^6 - 4y^5 + 11y^4 - 3y^3 + 6y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.280592 + 1.135800I		
a = 1.269010 - 0.099088I	-2.18773 + 1.37103I	1.096751 - 0.038075I
b = -0.280592 - 1.135800I		
u = 0.280592 - 1.135800I		
a = 1.269010 + 0.099088I	-2.18773 - 1.37103I	1.096751 + 0.038075I
b = -0.280592 + 1.135800I		
u = -0.536137 + 0.558503I		
a = 0.240076 + 1.102590I	8.73669 - 4.86888I	6.80228 + 5.06388I
b = 0.536137 - 0.558503I		
u = -0.536137 - 0.558503I		
a = 0.240076 - 1.102590I	8.73669 + 4.86888I	6.80228 - 5.06388I
b = 0.536137 + 0.558503I		
u = -0.339392 + 1.319900I		
a = -0.628272 - 0.235688I	-4.67120 - 2.22664I	2.12135 + 1.13341I
b = 0.339392 - 1.319900I		
u = -0.339392 - 1.319900I		
a = -0.628272 + 0.235688I	-4.67120 + 2.22664I	2.12135 - 1.13341I
b = 0.339392 + 1.319900I		
u = 0.205182 + 0.502042I		
a = -0.29922 + 2.23836I	0.90716 + 2.13686I	9.07211 - 6.04607I
b = -0.205182 - 0.502042I		
u = 0.205182 - 0.502042I		
a = -0.29922 - 2.23836I	0.90716 - 2.13686I	9.07211 + 6.04607I
b = -0.205182 + 0.502042I		
u = 0.38975 + 1.44195I		
a = 0.418413 - 0.189778I	2.14990 + 2.75317I	2.40750 - 1.04370I
b = -0.38975 - 1.44195I		
u = 0.38975 - 1.44195I		
a = 0.418413 + 0.189778I	2.14990 - 2.75317I	2.40750 + 1.04370I
b = -0.38975 + 1.44195I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$(u^{10} + 5u^8 - u^7 + 10u^6 - 3u^5 + 9u^4 - 3u^3 + 4u^2 + 1)$ $\cdot (u^{21} + 7u^{19} + \dots + 2u - 1)(u^{36} + u^{35} + \dots - 88u + 121)$
c_2, c_6	$(u^{10} + 5u^8 + u^7 + 10u^6 + 3u^5 + 9u^4 + 3u^3 + 4u^2 + 1)$ $\cdot (u^{21} + 7u^{19} + \dots + 2u - 1)(u^{36} + u^{35} + \dots - 88u + 121)$
c_3, c_4	$(u^{9} + u^{8} + 6u^{7} + 5u^{6} + 11u^{5} + 7u^{4} + 6u^{3} + 2u^{2} + u + 1)^{4}$ $\cdot (u^{10} + u^{9} + 7u^{8} + 6u^{7} + 17u^{6} + 12u^{5} + 17u^{4} + 8u^{3} + 7u^{2} + 1)$ $\cdot (u^{21} - 6u^{20} + \dots + 38u - 4)$
c_5, c_7	$(u^{10} + 3u^7 + \dots + u + 1)(u^{21} - 6u^{19} + \dots - 7u - 1)$ $\cdot (u^{36} + 9u^{35} + \dots - 8u + 1)$
c_9	$(u^{2} + u + 1)^{18}(u^{10} - u^{9} + u^{8} - 4u^{7} + 3u^{6} + 3u^{4} - 3u^{3} + 1)$ $\cdot (u^{21} - 18u^{20} + \dots + 4352u - 512)$
c_{10},c_{11}	$(u^{9} + u^{8} + 6u^{7} + 5u^{6} + 11u^{5} + 7u^{4} + 6u^{3} + 2u^{2} + u + 1)^{4}$ $\cdot (u^{10} - u^{9} + 7u^{8} - 6u^{7} + 17u^{6} - 12u^{5} + 17u^{4} - 8u^{3} + 7u^{2} + 1)$ $\cdot (u^{21} - 6u^{20} + \dots + 38u - 4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$(y^{10} + 10y^9 + \dots + 8y + 1)(y^{21} + 14y^{20} + \dots + 12y^2 - 1)$ $\cdot (y^{36} + 27y^{35} + \dots + 187308y + 14641)$
c_3, c_4, c_{10} c_{11}	$(y^9 + 11y^8 + 48y^7 + 105y^6 + 121y^5 + 73y^4 + 20y^3 - 6y^2 - 3y - 1)^4 \cdot (y^{10} + 13y^9 + \dots + 14y + 1)(y^{21} + 24y^{20} + \dots + 108y - 16)$
c_5, c_7	$(y^{10} + 6y^8 - 3y^7 + 11y^6 - 4y^5 + 9y^4 - 4y^3 - y^2 + y + 1)$ $\cdot (y^{21} - 12y^{20} + \dots + 27y - 1)(y^{36} + 3y^{35} + \dots - 44y + 1)$
<i>c</i> ₉	$((y^{2} + y + 1)^{18})(y^{10} + y^{9} + \dots + 6y^{2} + 1)$ $\cdot (y^{21} + 2y^{20} + \dots + 65536y - 262144)$