Homework 2

Problem 1 (13.1.3). Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 and let θ be a root. Compute the powers of θ in $\mathbb{F}_2(\theta)$.

Proof. Note that 0+0+1=1=1+1+1 so neither 0 or 1 is a root of x^3+x+1 . Thus this polynomial is irreducible. We know that $\mathbb{F}_2(\theta) \cong \mathbb{F}_2[x]/(x^3+x+1)$. Thus we have

$$\theta^3 = -\theta - 1 = \theta + 1.$$

Then

$$\theta^4 = \theta^2 + \theta,$$

$$\theta^5 = \theta^3 + \theta^2 = \theta^2 + \theta + 1,$$

$$\theta^6 = \theta^3 + \theta^2 + \theta = \theta^2 + 1$$

$$\theta^7 = \theta^3 + \theta = 1.$$

Taken together with 0, 1, θ and θ^2 we see that these powers of θ form all 8 elements of $\mathbb{F}_2(\theta)$. Moreover, $(\mathbb{F}_2(\theta))^{\times} = \langle \theta \rangle$.

Problem 2 (13.1.5). Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.

Proof. Let $\alpha = a/b$ and take (a,b) = 1 with b > 0. There exists a polynomial $p(x) \in \mathbb{Z}[x]$ such that $p(a/b) = (a/b)^m + c_1(a/b)^{m-1} + \cdots + c_m = 0$. Multiply this equation by b^m so we have $a^m + c_1ba^{m-1} + \cdots + b^mc = 0$. Since b divides each term following a^m and it divides the right hand side we see that $b \mid a^m$. Since (a,b) = 1 we must have b = 1 so that $a/b \in \mathbb{Z}$.

Problem 3 (13.1.8). Prove that $x^5 - ax - 1 \in \mathbb{Z}[x]$ is irreducible unless a = 0, 2 or -1. The first two correspond to linear factors, the third corresponds to the factorization $(x^2 - x + 1)(x^3 + x^2 - 1)$.

Proof. From the rational root theorem we know that roots of this polynomial which lie in \mathbb{Q} can only be ± 1 . Putting these in gives -a=0 and -2+a=0 so if a=0 or a=2 then we have a linear factorization. If a=-1 then we have the above factorization so these three cases do indeed imply x^5-ax-1 is reducible. By the rational root theorem we've exhausted all the possibilities of x^5-ax-1 having a linear factor. Thus it can only factor into two polynomials of degree 2 and 3.

Suppose $x^5 - ax - 1 = (x^2 + bx + c)(x^3 + dx^2 + ex + f)$. Multiplying this out gives us the equations b + d = 0, c + bd + e = 0, cd + be + f = 0, ce + bf = -a and cf = -1. Thus b = -d and $c = \pm 1$. If c = 1 then f = -1 and we have $1 - b^2 + e = 0$, -b + be - 1 = 0 and e - b = -a. The second of these equations gives us b(e - 1) = 1 so e = 0 or e = 2. If e = 0 then b = 1 and the first equation gives 0 = 1 - 1 + 2 = 2. If e = 0 then b = -1 and by the third equation a = -1 as we had earlier.

Now we consider c=-1. Then f=1 and we now have $-1-b^2+e=0$, b+be+1=0 and b-e=-a. Thus b(e+1)=-1 so $b=\pm 1$. By the first equation 0=-1-1+e so e=2. But then by the second equation again we have b=-1/3 which is not an integer. So $c\neq -1$ and we see that x^5-ax-1 can only be factored into a quadratic and a cubic if a=-1.

Problem 4 (13.2.3). Determine the minimal polynomial over \mathbb{Q} for 1+i.

Proof. Note that $(1+i)^2 - 2(1+i) + 2 = 2i - 2 - 2i + 2 = 0$ so 1+i is a root of $x^2 - 2x + 2$. But this polynomial is irreducible over \mathbb{Q} using Eisenstein. Thus it must be the minimal polynomial for 1+i. \square

Problem 5 (13.2.4). Determine the degree over \mathbb{Q} of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Proof. Note that $(2+\sqrt{3})^2-4(2+\sqrt{3})+1=0$ so $2+\sqrt{3}$ is a root for x^2-4x+1 . Moreover this polynomial is irreducible over $\mathbb Q$ by the rational root theorem so this must be the minimal polynomial for $2+\sqrt{3}$. Therefore $\deg(2+\sqrt{3})=2$.

Note that $(1+\sqrt[3]{2}+\sqrt[3]{4})^3-3(1+\sqrt[3]{2}+\sqrt[3]{4})^2-3(1+\sqrt[3]{2}+\sqrt[3]{4})-1=0$ so $1+\sqrt[3]{2}+\sqrt[3]{4}$ is a root of x^3-3x^2-3x-1 . Furthermore by the rational root theorem this is irreducible in $\mathbb Q$ so this must be the minimal polynomial. Thus $\deg(1+\sqrt[3]{2}+\sqrt[3]{4})=3$.

Homework 2

Problem 6 (13.2.5). Let $F = \mathbb{Q}(i)$. Prove that $x^3 - 2$ and $x^3 - 3$ are irreducible over F.

Proof. There are no rational roots to either of these polynomials by the rational root theorem. Suppose we have a root of the form a+ib where $a,b\in\mathbb{Q}$. Then $(a+ib)^3-2=(a^3-3ab^2-2)+i(3a^2b-b^3)=0$. This gives the two equations $a^3-3ab^2-2=0$ and $3a^2b-b^3=0$. Clearly $a\neq 0$ otherwise we get -2=0. If b=0 then $a^3-2=0$ which we know has no solutions in \mathbb{Q} . The rational root theorem tells us that solutions to $a^3-3ab^2-2=0$ are either $a=\pm 2$ or $a=\pm 1/2$. If a=2 then $b^2=1$ so $b=\pm 1$. In either case the second equation tells us that $a^2=1/3$ which has no solutions in \mathbb{Q} . Thus $a\neq 2$. If a=-2 then $b^2=5/3$ which has no solutions in \mathbb{Q} . If a=1/2 then $b^2=-5/4$ which has no solutions in \mathbb{Q} . If a=-1/2 then $b^2=17/12$ which has no solutions in \mathbb{Q} . All possibilities have been exhausted so there are no possible roots to x^3-2 of the form a+ib.

For the second polynomial we have similar equations $a^3 - 3ab^2 - 3 = 0$ and $3a^2b - b^3 = 0$. Now $a = \pm 3$ or $\pm 1/3$. If a = 3 then $b^2 = 8/3$. If a = -3 then $b^2 = 10/3$. If a = 1/3 then $b^2 = -80/27$ and if a = -1/3 then $b^2 = 82/27$. None of these have solutions in $\mathbb Q$ so there are no roots to $x^3 - 3$ of the form a + ib. Since each of these is cubic we see that they must be irreducible over F.

Problem 7 (13.2.7). Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.

Proof. The field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ clearly contains \mathbb{Q} and the element $\sqrt{2} + \sqrt{3}$ so we must have containment $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Now note that

$$\frac{(\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3})}{2} = \sqrt{2}$$

and

$$\frac{\left(\sqrt{2} + \sqrt{3}\right)^3 - 11\left(\sqrt{2} + \sqrt{3}\right)}{-2} = \sqrt{3}.$$

Thus $\sqrt{2}$ and $\sqrt{3}$ are both contained in $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ so we must have the second inclusion as well. Since $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$ we must also have $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$. Note that $(\sqrt{2}+\sqrt{3})^4-10(\sqrt{2}+\sqrt{3})^2+1=0$ so $\sqrt{2}+\sqrt{3}$ satisfies $x^4-10x+1$. The rational root theorem tells us that this is irreducible.

Problem 8 (13.2.10). Determine the degree of the extension $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ over \mathbb{Q} .

Proof. If we write $3+2\sqrt{2}=1+2\sqrt{2}+2=(1+\sqrt{2})^2$ we see that $\sqrt{3+2\sqrt{2}}=1+\sqrt{2}$. Using this it's easy to see that $(1+\sqrt{2})^2-2(1+\sqrt{2})-1=0$ so $\sqrt{3+2\sqrt{2}}$ is a root for x^2-2x-1 . By the rational root theorem we know this is irreducible and thus $[\mathbb{Q}(\sqrt{3-2\sqrt{2}}):\mathbb{Q}]=2$.

Problem 9 (13.2.11). (a) Let $\sqrt{3+4i}$ denote the square root of the complex number 3+4i that lies in the first quadrant and let $\sqrt{3-4i}$ denote the square root of 3-4i that lies in the fourth quadrant. Prove that $[\mathbb{Q}(\sqrt{3+4i}+\sqrt{3-4i}):\mathbb{Q}]=1$.

(b) Determine the degree of the extension $\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}})$ over \mathbb{Q} .

Proof. (a) Write $3+4i=4+4i-1=(2+i)^2$ so that $\sqrt{3+4i}=2+i$. Likewise $\sqrt{3-4i}=2-i$. Summing these we get 4 so $\sqrt{3+4i}+\sqrt{3-4i}-4=0$ and this is a root of x-4. Thus $[\mathbb{Q}(\sqrt{3+4i}+\sqrt{3-4i}):\mathbb{Q}]=1$. (b) We see that

$$\left(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}\right)^4 - 4\left(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}\right)^2 - 36 = 0$$

so that $\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}$ is a root of x^4-4x^2-36 . Eisenstein will tell us that this is irreducible over \mathbb{Q} so $[\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}):\mathbb{Q}]=4$.

Homework 2

Problem 10 (13.2.13). Suppose $F = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $i = 1, 2, \dots, n$. Prove that $\sqrt[3]{2} \notin F$.

Proof. Since $\alpha_i^2 \in \mathbb{Q}$ for $i=1,2,\ldots,n$ we see that $\deg \alpha_i \leq 2$. Furthermore, since degree extensions are multiplicative we have that $[F:\mathbb{Q}]=2^k$ for some $k\leq n$. But $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ and $3\nmid 2^k$ so $\sqrt[3]{2}\notin F$. \square

Problem 11 (13.2.21). Let $K = \mathbb{Q}(\sqrt{D})$ for some squarefree integer D. Let $\alpha = a + b\sqrt{D}$ be an element of K use the basis $1, \sqrt{D}$ for K as a vector space over \mathbb{Q} and show that the matrix of the linear transformation "multiplication by α " on K considered in the previous exercises has the matrix $\begin{pmatrix} a & bD \\ b & a \end{pmatrix}$. Prove directly

that the map $a + b\sqrt{D} \mapsto \begin{pmatrix} a & bD \\ b & a \end{pmatrix}$ is an isomorphism of the field K with a subfield of the ring of 2×2 matrices with coefficients in \mathbb{Q} .

Proof. Let $\beta = c + d\sqrt{D} \in K$. Then $\alpha\beta = (ac + bdD) + (ad + bc)\sqrt{D}$. But also

$$\left(\begin{array}{cc} a & bD \\ b & a \end{array}\right) \left(\begin{array}{c} c \\ d \end{array}\right) = \left(\begin{array}{c} ac + bdD \\ bc + ad \end{array}\right)$$

so this matrix is precisely the transformation "multiplication by α ". Now note that

$$\alpha\beta = (ac + bdD) + (ad + bc)\sqrt{D} \mapsto \left(\begin{array}{cc} ac + bdD & (ad + bc)D \\ ad + bc & ac + bdD \end{array}\right) = \left(\begin{array}{cc} a & bD \\ b & a \end{array}\right) \left(\begin{array}{cc} c & dD \\ d & c \end{array}\right)$$

so this is a homomorphism. It's clearly injective because K is a field and this is not the 0 map (1 is sent to the identity matrix). Thus K is isomorphic to its image under this map and so it's image is a subfield of 2×2 matrices with coefficients in \mathbb{Q} .