עבודה מסכמת במתמטיקה בדידה 2

שחר פרץ

2024 באוקטובר 5

Combinatorics

...... (1)

(א) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש שבהן ארבעת האסים, אינם מופיעים ברצף אחד אחרי השני? **תשובה:** ראשית כל, נתבונן ב־52 הסידורים האפשריים של החפיסה כולה. עתה נתבונן בקבוצת המשלים – כמות האפשרויות לחפיסות בהן ישנם 4 אסים רצופים. נתייחס לרצף כמו קלף גדול יחודי בפני עצמו, ולכן, מכיוון שארבעת האסים יחשבו כאחד, יהיו לחפיסות בקבוצת לסדר חלק זה. לסדר הפנימי של האסים עצמם יהיה 4 אפשרויות. סה"כ מכלל הכפל $48 \cdot 8 \cdot 8$ אפשרויות בקבוצת המשלים. סה"כ:

$$\mathscr{A}nswer = 52 - 49!4!$$

(ב) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש בהן כל 4 קלפים מאותו הסוג (13 סוגים שונים) אינם מופיעים ברצף אחד אחרי השני?

תשובה: נגדיר a_i כמות האפשרויות לסידור בו i רצפים של 4 תווים. מובן כי $i \leq i \leq \frac{52}{4} = 13$ (לא ייתכנו רצפים בסדר גודל הארוך יותר מהחפיסה כולה).

כדי למצוא את a_i , נבחר את הרצף הראשון מבין 13 האפשרויות. ואת השני מבין 12 האפשרויות שנותרו, ונמשיך הלאה. באופן דומה מדי למצוא את a_i לסעיף הקודם, לכל אחד מהסדרות האלו נתייחס קקלף "גדול" יחודי אחד, לכל אחת מ־i הסדרות סדר פנימי של a_i , וסה"כ סדר כולל של ! a_i לכל אחד מהסדרויות (a_i). על הקלפים שנוציא החוצה, ו־ a_i ל"קלף גדול" כמוהו לסדרה עצמה). סה"כ:

$$a_i = i(52 - 3i)! 4!$$

בכלליות:

ומעקרון ההכלה וההדחה, אם A_i קבוצת כל הרצפים באורך 4 מסוג נתון, ומשום שאין הגבלה על הכלליות בבחירת קלף מסויים, ומעקרון ההכלה וההדחה, אם I=[n] כך ש־I=[n] קבוע בגודל I=[n] זהה בערכו לכל I=[n] כך ש־I=[n] קבוע בגודל I=[n] נקבל:

...... (2)

 $x \in \mathbb{N}$ לכל $\langle x+1,y+r \rangle$ ננוע אך ורק לנקודה $\langle x,y \rangle$ לכל אמ"מ בכל צעד מי

 $\langle n,k \rangle$ ל־ $\langle 0,0 \rangle$ ל מימים מימים מסלולים מסלולים אאלה: כמה מסלולים חוקיים קיימים מ

תשובה: יהי מסלול $\forall i \in [n]. \exists x,y \in \mathbb{N}. a_i = \langle x,y \rangle$ כאשר כאשר מר(0,0) מ־(0,0) מ־(0,0) מ־(0,0) מ־(0,0) מ־(0,0) מייני מסלול מייני מסלול מריי מסלול מייני מסלול מייני מסלול מייני מסלול מייני מסלול מייני מיי

$$\forall i \in [n-1].\pi_1(a_i) - \pi_1(a_{i+1}) = 1 \land \exists r \in \mathbb{N}.\pi_2(a_{i+1}) - \pi_2(a_i) = r$$

ולכן נוכל להגדיר מיפוי:

$$\forall i \in [n-1]. a_k \mapsto \pi_2(a_{i+1}) - \pi_2(a_i) =: r_i \in \mathbb{N}$$

ולכן: $a_n = \langle n, k \rangle$, מהגדרת המסלול, מהנת חח"ע ועל לקבוצת המסלול, תמונת המיפוי תמונת המיפוי ועל לקבוצת המסלולים החוקיים.

$$\sum_{i=1}^{n-1} r_i = \sum_{i=1}^{n-1} \pi_2(a_i) - \pi_2(a_{i+1})$$

$$= \pi_2(a_1) - \pi_2(a_2) + \pi_2(a_2) - \pi_2(a_3) + \pi_2(a_3) - \dots + \pi_2(a_i) - \pi_2(a_i) + \dots + \pi_2(a_n)$$

$$= \pi_2(a_1) + \pi_2(a_n) = 0 + k = k$$

 $\pi_2(a_n)=$ בכך, התייחסנו לכל ההגבלות – חוקיות המסלול באורך n (מובעת בהיותה חח"ע ועל לקבוצה המאפשרת זאת), והיותו נגמר ב־ $\sum r_i=k$ (הכרחי ומספיק להיות סכום $\sum r_i=k$). נקבע את גודל הסדרות התמונה המקיימות זאת. ידוע שכמות האפשרויות לסכום מספרים יהיה k (הכרחי ומספיק, ולכן סה"כ זהו פתרון הבעיה. נסכם:

$$\mathscr{A}nswer = S(k, n-1)$$

(ב) **שאלה:** כמה מסלולים חוקיים קיימים מ־ $\langle n,k \rangle \to \langle 0,0 \rangle \to \langle 0,0 \rangle$, כך שאף צעד בהם אינו מסתיים בנקודה $\langle n,k \rangle$? **תשובה:** באופן דומה לסעיף הקודם, כמות הצעדים מ־ $\langle 0,0 \rangle \to \langle 2n,2k \rangle$ תהיה $\langle 2n,2k \rangle = S(2k,2n-1)$. נחפש את קבוצת המשלים. בהינתן מסלול שעובר בין הראשית ל־ $\langle 2n,2k \rangle = S(k,n) = S(k,n)$ הוא יכלל בקבוצת המשלים אמ"מ הוא עבור ב־ $\langle n,k \rangle \to \langle 2n,2k \rangle = S(k,n)$ ואז עוד מסלול $\langle x,y \rangle \to \langle 2n,2k \rangle = S(k,n-1)$. המסלול האחרון שקול לבעיה הראשונה בעבור טרנספורמציה איזומטרית של קבוצת המשלים אלמעשה תבהיר כי פתרון שתי הבעיות הוא $\langle n,k \rangle = S(k,n-1)$, וכאשר נחבר אותם יחדיו, מכלל הכפל, גודל קבוצת המשלים הוא סה"כ $\langle x,y \rangle \to S(k,n-1)$?

 $y_1+2\leq y_2$ מקיים $\langle x_1,y_1
angle o \langle x_2,y_2
angle$ בעד צעד $\langle x_2,y_2
angle$ כך שכל אינים מכולים קיימים מכולים מכולים מכולים אינים:

$$y_1 + 2 \le y_2 \iff \pi_2(a_i) - \pi_2(a_{i+1}) \le -2 \iff \underbrace{\pi_2(a_{i+1}) - \pi_2(a_i)}_{=r_i} \ge 2$$

ואכן ננסה למצוא את כמות הסדרות $\{r_i\}_{i=1}^{n-1}$ כך ש־i=1, כך ש־i=1, לפי השקילות שהוכחה בסעיף (א). לבעיה זו קיימת הכן ננסה למצוא את כמות הסדרות i=1, עדיה על בשים עני כדורים בעיה שקולה ידועה, היא חלוקת i=1 כדורים לידורים בשכל תא לפחות 2 כדורים. אזי, ניאלץ להתחיל מלשים שני כדורים בכל תא, וסה"כ, קיבלנו: i=1 בעיה את בידורים את i=1 בעיה מחלק בין התאים. סה"כ, קיבלנו:

$$\mathscr{A}nswer = S(k-2n-2,n-1)$$

...... (3)

יהיו n כדורים ממוספרים. יש לסדרם ב־n תאים ממוספרים, כאשר בכל תא יימצא בדיוק כדור אחד. לכל $i \leq n-1$ עסור להכניס את הכדור ה־i, בעוד אין מגבלה על הכדור ה־i. כמות האפשרויות לסידורים כאלו תהיה i, בעוד אין מגבלה על הכדור ה-i. כמות האפשרויות לסידורים כאלו תהיה

 D_m בעזרת F(n) אם אלה: הביעו (א)

תשובה: נפלג למקרים.

- . אם הכדור ה־i נמצא בתא הרi, אז יש עוד n-1 תאים נותרים בהם אי־אפשר שכדור יהיה בתא המתאים לו מבחינת מספר. D_{n-1} אפשרויות.
 - . אפשרויות הכדור ה-i לא נמצא בתא הרi, אז כל n הכדורים לא נמצאים בתא המתאים להם, כלומר יש n אפשרויות. סה"כ מכלל החיבור:

$$\mathscr{A}nswer = D_n + D_{n-1}$$

(ロ)

......(4)

(א) הוכיחו באופן קומבינרטורי:

$$\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} \binom{n+r-i-1}{r} = \binom{r-1}{n-1}$$

אין לי מושג...

(ב) מצאו ביטוי ללא סכימה לאגף שמאל של המשוואה:

$$\sum_{k=2}^{n} k(k-1) \binom{n}{k} = n(n-1) \cdot 2^{n-2}$$

סיפור: מתוך n-1 איברים, קבוצה של לפחות שני איברים, ומתוכה נבחר שניים שונים ונסמנם בכחול ובירוק. כמה אפשרויות יש לכך?

אגף ימין: נבחר כדור כחול (n אופציות) ולאחריו ירוק (n-1 אופציות). עתה, בעבור n-2 האיברים הנותרים, נשייך להם את המספר אגף ימין: נבחר כדור כחול (n אופציות) ולאחריו ירוק לכך, יהיו n-1 אפשרויות. סה"כ מכלל הכפל $n(n-1)2^{n-2}$ אפשרויות. n אם נרצה להכניסם לקבוצה וn אם לאו – לכך, יהיו n אינו ווּרָים אם לאו

אגף שמאל: נניח שגודל הקבוצה הוא $2 \le k \le n$ (בהכרח גודל הקבוצה גדול מ־2 כי קיים מה כדור כחול וירוק) – לבחירה מתוך קבוצה שמאל: מאילו, נבחר אחד כחול k אפשרויות) ואחד קבוצה $\binom{n}{k}$ אופציות. לכן, מתוך k המיברים שיש לנו, נבחר k איברים לשים בקבוצה. מאילו, נבחר אחד כחול k אפשרויות) וסה"כ מכלל הכפל k הכפל k בעבור k נתון, ומכלל החיבור k אפשרויות) וסה"כ מכלל הכפל k ומני במרויות (k בעבור k נניח שמאל: מהיבור (k בעבור k ומכלל החיבור (k בעבור k בעבור k נניח שמאל: מהיבור (k בעבור k ומכלל החיבור (k בעבור k בתוך (k בעבור k בעבור

Graph Theory

......(1)

נוכיח או נפריך קיום גרף מתאים:

- (א) 3 צמתים מדרגות 1,3,3,3,4,5. נפריך קיום. נניח בשלילה שקיים גרף כזה, אזי קיים גרף בעל 5 צמתים מדרגה זוגית (ניח בשלילה שקיים גרף בעל דרגה אי זוגית.
- (ב) 6 צמתים מדרגות 5,3,3,3,5,5. נפריך קיום. נניח בשלילה קיום גרף כזה. אזי, קיים שני קודודים מדרגה 5,5,5,5,5. נפריך קיום. נניח בשלילה קיום גרף כזה. אזי, היא פחותה ב־1 מכמות v שקיים בגרף כולו ומשום זה לא יכול להכיל קשת בינו צומת לבין עצמה, הם יפנו לכל שאר הצמתים. אזי, הצומת v שקיים בגרף כולו ומשני הצמתים הללו (שדרגתן v), וסה"כ v וסה"כ v וזו סתירה.
 - (ג) 6 צמתים מדרגות 1,3,3,3,4,4 נוכיח קיום.

. אמתים שני עלים עם $n \geq 2$ עם עלים. א.ל. בכל עץ עם צ.ל. בכל עץ א

הוכחה. נניח בשלילה קיום עץ בעל 2 בעל $n\geq 2$ צמתים, שיש לו פחות משני עלים. אזי, ל־n-1 מהצמתים בו הם אינם עלים, ולכן דרגתם היא בעבור ב־ $ilde{v}$ אז הגרף אינו קשיר וזו שמקיים זאת, בעבורו $d(ilde{v})=0$ עם $d(ilde{v})\geq 2$ אז הגרף אינו קשיר וזו סתירה). ממשפט על סכום הדרגות וכמות הצמתים ביחס לכמות קשתות בגרף, נקבל:

$$2(|V| - 1) = 2|E| = \sum_{v \in V} d(v) = d(\tilde{v}) + \sum_{v \in V \setminus \{\tilde{v}\}} d(v) \ge 1 + 2(n - 1) = 2n - 1$$
$$|V| - 1 \ge \frac{2n - 1}{2} \implies n = |V| \ge n + 0.5 \implies 0 \ge 0.5 \iff 0.5$$

וזו סתירה.

V=arnothing אמ"מ G=H מתקיים ל־G שאיזומורפי ל- $H=\langle [n],E_h
angle$ אמ"מ $G=\langle V,E
angle$ אם אמ"מ

הוכחה. content...

 (3)
 (4)
 $(5) \dots \dots$
 (6)
 (7)
 (8)
 (9)
 (10)