Calcolo Numerico ed Elementi di	Prof. P.F. Antonietti	Firma leggibile dello studente	
Analisi	Prof. L. Dedè		
CdL Ingegneria Aerospaziale	Prof. M. Verani		
Appello			
26 gennaio 2018			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΈΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	1

Parte I - Pre Test

1. (1 punto) Determinare il più piccolo numero (positivo) x_{min} rappresentabile nell'insieme $\mathbb{F}(2,5,-2,5)$; riportare il risultato in base decimale.

- **2.** (2 punti) Sia $A_{\alpha} = \begin{bmatrix} \frac{6}{7}\alpha & -\frac{\sqrt{5}}{7}\alpha \\ -\frac{\sqrt{5}}{7}\alpha & \frac{2}{7}\alpha \end{bmatrix}$ una matrice dipendente da un parametro $\alpha > 0$. Si riporti il valore del numero di condizionamento spettrale di A_{α} in termini di α , ovvero $K(A_{\alpha})$.
- 3. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 3 & 4 & 4 \\ 3 & 3 & 5 \\ 6 & 4 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare il valore dell'elemento $u_{33} = (U)_{33}$ della matrice triangolare superiore U.
- 4. (1 punto) Si consideri la matrice simmetrica e definita $A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 5 \end{bmatrix}$. Quale o quali dei suoi autovalori $\{\lambda_i(A)\}_{i=1}^3$ possono essere approssimati mediante il metodo delle iterazioni QR?
- 5. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 3 & -5 \\ 0 & 2 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (2 \ 1)^T$ si riporti la prima iterata dell'autovettore (di modulo unitario) $\mathbf{y}^{(1)}$ del metodo delle potenze dirette.
- **6.** (1 punto) Si consideri la funzione $f(x) = \frac{1}{\sqrt{x}} \sqrt{x}$. Si riporti il valore della prima iterata del metodo di Newton $x^{(1)}$ ottenuta per il valore dell'iterata iniziale $x^{(0)} = \frac{1}{4}$.

(1 punto) Si consi l'iterata iniziale $x^{(i)}$ si hanno $f'(\alpha) = \frac{1}{2}$	"sufficienter	mente" vicino	ad α , il me	todo di Newt	on converge a	$d \alpha e che$
		Parte I	- Eserciz	i		
ERCIZIO 1. Si o 1. Inoltre, si consi (1 punto) Si riporti con matrice di itera	deri la soluzio la condizione	one di tale sis e necessaria e	tema linear sufficiente p	e mediante u er la converg	n metodo iter enza di un me	etodo iterativo
(0 manti) Ci consid	owi il masta da	di Jasahi nan	la galusian	a dal aistama	lineans Arr	h, si progenti
(2 punti) Si conside l'algoritmo in form		ar Jacobi per	ia soluzione	e dei sistema		b; si presenti

punti

(c) (5 punti) Si implementi il metodo di Jacobi in forma matriciale in Matlab[®] nella funzione Jacobi .m (si usi il comando "back-slash" di Matlab[®] \ laddove necessario). Si utilizzi un criterio d'arresto basato sul residuo relativo (detto anche residuo normalizzato). La struttura della funzione è:

function
$$[x,Nit] = Jacobi(A,b,x0,nmax,tol)$$
.

Si considerino come *input*: A, la matrice assegnata; b, il termine noto assegnato; x0, l'iterata iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino come *output*: x, la soluzione approssimata; Nit, il numero di iterazioni effettuate.

Si utilizzi la funzione Jacobi.m per approssimare la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ con $\mathbf{b} = (4, 4, ..., 4)^T \in \mathbb{R}^{100}$ e $A \in \mathbb{R}^{100 \times 100}$ definita come

$$A = \text{tridiag}(-4, 10, -4);$$

si consideri l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza $\mathbf{tol} = 10^{-3}$ e $\mathbf{nmax} = 1000$. Si riportino: il numero N di iterazioni effettuate, la terza componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo relativo $r_{rel}^{(N)}$.

$$N =$$
_____ $r_{rel}^{(N)} =$ _____

Infine, utilizzando opportunamente la funzione Jacobi.m, si riportino i valori della terza componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_3^{(1)}$ e $x_3^{(2)}$.

(d) (3 punti) Si riporti l'algoritmo del metodo del gradiente precondizionato per risolvere il sistema lineare generico $A\mathbf{x} = \mathbf{b}$. Inoltre, assumendo la matrice A e il vettore \mathbf{b} assegnati al punto (c), la matrice di precondizionamento P = 10 I, con $I \in \mathbb{R}^{100 \times 100}$ la matrice d'identità, e l'iterata iniziale $\mathbf{x}^{(0)} = (4, 4, \dots, 4)^T \in \mathbb{R}^{100}$, si calcoli il valore del parametro dinamico ottimale α_0 associato a $\mathbf{x}^{(0)}$ per determinare $\mathbf{x}^{(1)}$.

 $\alpha_0 =$

) maumti) Çi r	moganti il aitania	d'amagta bac	asto gullo dif	foronzo tro	tarata guasa	agiro por il	moto
	oresenti il citerio ni di punto fisso						

11 punti

$x^{(N)} - \alpha$	$\frac{x^{(N-1)}-}{(x^{(N-2)}-x^{(N-2)}-x^{(N-2)}-x^{(N-2)}-x^{(N-2)}}$	α
$\frac{(x^{(N-1)} - \alpha)^2}{(x^{(N-1)} - \alpha)^2} = \underline{\qquad}$	$(x^{(N-2)} -$	$\overline{(\alpha)^2} = \underline{\hspace{1cm}}$
Si utilizzino tali rapporti per de	erminare l'ordine di convergenz	za p del metodo delle iterazion
punto fisso applicato al punto (b sulla base delle proprietà teorich		
(1 punto) Si consideri il metodo funzione $f \in C^0([a,b])$. È possib	le interpretare tale metodo com	zione di uno zero $\alpha \in [a,b]$ di ne metodo delle iterazioni di pu
isso? Si motivi la risposta data		

Parte II - Pre Test

10 punti

1.	(2 punti) Assegnati i nodi equispaziati $x_0, x_1, \dots x_5$ nell'intervallo [0,10] e la funzione $f(x) = (2+x)^{1/4}$, si consideri l'interpolante composito lineare $\Pi_1^H(x)$ interpolante $f(x)$ ai precedenti nodi. Si riporti il valore di $\Pi_1^H(9)$.
2.	(1 punto) Sia $f(x)=2x^2$. Si approssimi $\int_1^7 f(x)dx$ con la formula semplice del trapezio. Si riporti l'approssimazione I_T ottenuta.
3.	$(2 \ punti)$ Si consideri la formula di Simpson composita per l'approssimazione dell'integrale $\int_0^2 e^x dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di $[0,2]$ tali per cui l'errore di quadratura è inferiore alla tolleranza $tol=10^{-5}$.
4.	(1 punto) Sia $f(x) = 2x^3$. Si riporti il valore approssimato di $f'(\overline{x})$ in $\overline{x} = 2$ ottenuto mediate la formula delle differenze finite centrate, ovvero $\delta_c f(\overline{x})$, usando il passo $h = 0.5$.
5.	$(1~punto)$ Si consideri il seguente problema di Cauchy: $\left\{ \begin{array}{ll} y'(t)=-3y(t) & t\in(0,\!90],\\ y(0)=3. \end{array} \right.$
	Utilizzando il metodo di Eulero Esplicito con passo di discretizzazione $h=0.1$ e $u_0=y_0=3$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.

$\begin{cases} -u''(x) + 80 u'(x) = 0 & x \in (0,1), \\ u(0) = 0, & u(1) = 4, \end{cases}$	
si consideri (senza applicarla) la sua approssimazione numerica mediante il metodo delle differenze finite centrate con passo di discretizzazione $h > 0$. Qual è la condizione sul passo di discretizzazione h che garantisce l'assenza di oscillazioni (instabilità) numeriche per la soluzione approssimata del problema?	
7. (2 punti) Si consideri il seguente problema differenziale di diffusione–reazione:	
$\begin{cases} -u''(x) + 5 u(x) = 2 & x \in (0,1), \\ u(0) = 0, & u(1) = 1. \end{cases}$	
Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione $h=1/2$ ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per $N=1$. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.	
Parte II - Esercizi	
Esercizio 1.	
(a) (2 punti) Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e $\{x_i\}_{i=0}^n$ un insieme di nodi distinti nell'intervallo $[a,b]$. Si definisca con precisione il polinomio di Lagrange interpolante $f(x)$ ai nodi $\{x_i\}_{i=0}^n$, ovvero $\Pi_n f(x)$, e se ne fornisca l'espressione.	10 p

 ${\bf 6.}\ (1\ punto)$ Dato il seguente problema differenziale di diffusione—trasporto:

(b) (3 punti) Si consideri la seguente funzione $f(x) = \frac{10}{x^2 + 2}$ definita in [a,b] = [-5,5]. Si utilizzi Matlab[®] per approssimare f(x) mediante polinomi interpolanti di Lagrange $\Pi_n f$ su nodi equispaziati di [a,b] con n=4,6,8,10. Si riportino, al variare di n, i valori delle approssimanti corrispondenti $\Pi_n f$ valutate in $\bar{x} = 9/2$ (si riporti il risultato con almeno 4 cifre decimali). per n=4 $\Pi_n f(\bar{x}) = \underline{\hspace{1cm}}$ $\Pi_n f(\bar{x}) = \underline{\hspace{1cm}}$ per n=6 $\Pi_n f(\bar{x}) = \underline{\hspace{1cm}}$ per n=8 $\Pi_n f(\bar{x}) = \underline{\hspace{1cm}}$ per n=10Si calcolino e si riportino gli errori $E_n(f) = \max_{x \in [a,b]} |f(x) - \Pi_n f(x)|$ associati alle corrispondenti approssimanti $\Pi_n f$ (al fine del calcolo dell'errore in Matlab® si valutino f(x) e $\Pi_n f(x)$ in 1000 punti con il comando linspace (-5, 5, 1000); si riporti il risultato con almeno 4 cifre decimali). $E_n(f) =$ per n=4 $per n = 6 E_n(f) = \underline{\hspace{1cm}}$ $per n = 8 E_n(f) = \underline{\hspace{1cm}}$ $per n = 10 E_n(f) = \underline{\hspace{1cm}}$ (c) (1 punto) Si interpreti e si motivi il risultato ottenuto al punto (b). (d) (1 punto) Si definiscano i nodi di Chebyshev $\{x_i^{CH}\}_{i=0}^n$ nel generico intervallo [a,b] e per $n \geq 0$.

per costruire le	approssimanti $\Pi_n^{CH} f$	zando ora i nodi di Chebyshev con $n = 4, 6, 8, 10$. Si calce	olino e si riportino gli errori	
$E_n (f) = \max_{a}$		(si riporti il risultato con aln $E_n^{CH}(f) = \underline{\hspace{1cm}}$		
		$E_n^{CH}(f) = \underline{\qquad}$		
		$E_n^{CH}(f) = \underline{\qquad}$		
		$E_n^{CH}(f) = \underline{\hspace{1cm}}$		
	ora assegnate le copp	pie di dati $(0, -10)$, $(1, 0)$, $(2, 3)$ regressione lineare $p_1(x)$ che a	30), (3, 20) e (4, 20). Si calcoli	
	$p_1(x) = _$		_	
Esercizio 2.	Si consideri il problem	a di Cauchy:		
	$\begin{cases} y'(t) \\ y(0) \end{cases}$	$= f(t,y) t \in (0,t_f],$ = y_0 ,	(1)	12 punti
– –	_	etodo di Crank-Nicolson (non i di Cauchy (1); si definisca con		
(b) (1 punto) Si di Nicolson.	iscuta sinteticamente	l'ordine di convergenza dell'e	errore del metodo di Crank-	

$y_0 = 12$ il metod $h_4 = 0.0$	2. Si utilizzino opportuni lo di Crank-Nicolson con 0125. Si riportino i valor	a di Cauchy (1) con $f(t,y) = -\left(6\pi \cos(\pi t) e^{-t} + y\right)$, t_f comandi Matlab® per approssimare tale problema me diversi passi temporali $h_1 = 0.1$, $h_2 = 0.05$, $h_3 = 0$ ri della soluzione approssimata $u_{N_{h,i}}$ corrispondente all'ati valori di h_i (si riportino almeno 4 cifre decimali).	ediant).025
J	$u_{N_{h,1}} = \underline{}$		
	$u_{N_{h,3}} = $		
	$a_{N_{h,3}}$ —	$\omega_{N_{h,4}} =$	
e si ripo	o) Sapendo che la soluzion rtino gli errori E_{h_i} associa	ne esatta del problema è $y(t) = 6 (2 - \sin(\pi t)) e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale).	
e si ripo	o) Sapendo che la soluzion rtino gli errori E_{h_i} associaticato al punto (d) (si ripo	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va	
e si ripo	o) Sapendo che la soluzion rtino gli errori E_{h_i} associaticato al punto (d) (si ripo	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \underline{\hspace{1cm}}$	
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa licato al punto (d) (si ripo $E_{h_1} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di con
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di cor
e si ripos h_i specif f) (2 punti vergenza	Sapendo che la soluzion rino gli errori E_{h_i} associa ficato al punto (d) (si ripo $E_{h_1} = $ $E_{h_3} = $ Si utilizzino i risultati da del metodo di Crank-N	ne esatta del problema è $y(t) = 6 \ (2 - \sin(\pi t)) \ e^{-t}$, si ca ti alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun va rtino almeno 4 cifre decimali in formato esponenziale). $E_{h_2} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	di co