Jill's Solutions

1. Prove that every automorphism of a tree fixes a vertex or an edge.

Proof: (by induction on the number of vertices). Let *T* be a tree on *n* vertices.

Base Step: If n = 1, every automorphisms fixes the one vertex and the statement holds. If n = 2, then each of the two automorphisms fixes the one edge and the result holds.

Inductive Step: Suppose the result hold for all trees on less than n vertices where $n \ge 3$. Let $f: V \to V$ be an automorphism of T and let L be the set of leaves of T. Observe that since f is an automorphism, f(L) = L and f(V - L) = V - L. Thus, $f|_{V - L} : (V - L) \to (V - L)$ is an automorphism of the tree T - L which by the inductive hypothesis must fix a vertex or an edge. Thus, T must fix the same vertex or edge.

2. Let *G* be a simple planar graph on *n* vertices with girth *k*. Prove that *G* has at most $(n-2)\frac{k}{k-2}$ edges.

Proof: Suppose G be a simple planar graph on n vertices with girth k. Observe that is is sufficient to demonstrate that upper bound holds for each component of G, say C. Since C is planar and connected, Euler's formula applies. That is, 2 = n - m + f where n is the number of vertices, m is the number of edges, and f is the number of faces.

Since G has girth k, we know $kf \le 2m$ or $f \le 2m/k$. Plugging into Euler's formula gives: $2 \le n - m + 2m/k$. Solving for m gives: $m \le k(n-1)/(k-2)$.

3. Let $G = (A \cup B, E)$ be a bipartite graph with partite sets A and B such that |A| = |B| and $E \neq \emptyset$. Prove that if |N(X)| > |X| for every nonempty $X \subseteq A$, then every edge of G lies on a 1-factor.

Proof: Let $ab \in E$. It is sufficient to show that $G - \{a, b\}$ has a 1-factor. Let A' = A - a, B' = B - b, and $G' = G - \{a, b\}$. Our strategy is to apply Konig's Theorem. Specifically, we need to show that for every $X' \subseteq A'$, $|N_{G'}(X')| \ge |X'|$.

Let X' be an arbitrary subset of A'. Using the fact that $X' \subset A$ and the hypothesis, we know that $|N_G(X')| > |X'|$. Moreover, $N_G(X') \subseteq B = B' \cup b$. Thus, $|N_{G'}(X')| \ge |N_G(X')| - 1 > |X'| - 1$. Since all the numbers here are integers, $|N_{G'}(X')| \ge |X'|$. and the result follows.

- 4. Let *G* be a graph on *n* vertices.
 - (a) Prove that if $\delta(G) \ge 3$, then G contains a cycle with a chord. Recall that a **chord** in a cycle is an edge between two vertices on the cycle that is not a cycle edge.

Proof: Let $P = v_0 v_1 \cdots v_k$ be a longest path in G. Since $\delta(G) \ge 3$, it follows that v_0 has two neighbors not including v_1 . Since P is a longest path, those neighbors must lie on P, say v_i and v_i where i < j. Then, edge $v_0 v_i$ is a chord in cycle $v_0 v_1 v_2 \cdots v_j v_0$.

(b) Prove that if $n \ge 4$ and $|E(G)| \ge 2n - 3$, then G contains a chord.

Proof: (by induction on *n*) Suppose $n \ge 4$ and $|E(G)| \ge 2n - 3$. Base Step: If n = 4, then *G* has at least 5 edges. Thus, $G = K_4 - e$ and the result follows. Inductive Step: Suppose the result holds for all graphs on fewer than n vertices. If $\delta(G) \ge 3$, then G has a cycle with a chord by part (a). If $\delta(G) \le 2$, then there exists some vertex x such that $d(x) \le 2$. Thus, $|E(G-x)| \ge (2n-3)-2=2n-5=2(n-1)-3$.

By the inductive hypothesis, the graph G-x has a cycle with a chord and the result follows.

5. Prove that in e very 2-coloring of the edges of K_n (for $n \ge 3$), ther is either a monochromatic hamiltonian cycle or a hamiltonian cycle with exactly two monochromatic arcs. (By "exactly two monochromatic arcs" we mean that the hamiltonian cycle can be labelled $C = v_1 v_2 \cdots v_n v_1$ such that all the edges on the path $v_1 v_2 \cdots v_i$ are one color and the remaining edges $v_i v_{i+1} \cdots v_n v_1$ are the same color.)

Proof: (induction on *n*)

Base Step: The result holds by inspection for K_3 .

Inductive Step: Suppose the result holds for all complete graphs on fewer than n vertices. Let $c: E(K_n) \to \{0,1\}$ be a 2-coloring of K_n . Let x be an arbitrary vertex of K_n . By the inductive hypothesis, the induced coloring $K_n - x$ must contain a monochromatic cycle or one with exactly two monochromatic arcs.

Suppose $K_n - x$ contains a monochromatic cycle, C. Pick an arbitrary pair of consecutive vertices on C, say y and z. Then, no matter how edges xy and xz are colored, the result will follow.

Suppose $K_n - x$ contains a cycle with exactly two monochromatic arcs, say $C = v_1 v_2 \cdots v_n v_1$ such that all the edges on the path $v_1 v_2 \cdots v_i$ are colored red and the remaining edges $v_i v_{i+1} \cdots v_n v_1$ are colored blue.

Consider the edge $e = xv_i$. If e is colored red, then no matter how edge $e^+ = xv_{i+1}$ is colored, x can be added to C and maintain two monochromatic arcs. On the other hand, if e is colored blue, then no matter how $e^- = xv_{i-1}$ is colored, x can be added to C and maintain two monochromatic arcs.

6. Let S_1, S_2, \dots, S_m be a collection of finite sets such that $2 \le |S_1| \le |S_2| \le \dots \le |S_m|$. Define a graph G with vertex set $V = S_1 \times S_2 \times \dots \times S_m$ such that m-tuples u and v are adjacent if and only of they differ in every coordinate. Determine $\chi(G)$.

Claim: $\chi(G) = |S_1|$

Let $k = |S_1|$ and a_1, a_2, \dots, a_k be the set of elements in S_1 . Define $f: V(G) \to \{a_1, a_2, \dots, a_k\}$ by

$$f(\mathbf{x})=f(x_1,x_2,\cdots,x_m)=x_1.$$

First, we show that f is a **proper** k-coloring of G.

Let $\mathbf{x}, \mathbf{y} \in V$ such that $\mathbf{x}\mathbf{y} \in E(G)$. Then, by the definition of G, $x_1 \neq y_1$. Thus, $f(\mathbf{x}) = x_1 \neq y_2 = f(\mathbf{y})$. Last, we show that G is not k-1-colorable.

It is sufficient to find a K_k . Observe that the set of vertices below form a clique on k vertices, where s_{ij} is the jth element in set S_i :

$$\{(s_{11},s_{21},s_{31},\cdots,s_{m1}),(s_{12},s_{22},s_{32},\cdots,s_{m2}),(s_{13},s_{23},s_{33},\cdots,s_{m3}),\cdots,(s_{1k},s_{2k},s_{3k},\cdots,s_{mk})\}$$