Parallel Computing on Depression Analysis

Presentator: Yanan Mao

Content

- Introduction
- Methodology
 - Transfer Learning
 - Parallel K-means clustering Algorithm
- Results
- Discussion
- References

Introduction

Depression

- Depression is not the blues, or sadness or simply down, it is also a lasting overwhelming negative.
- Depression causes feelings of sadness and/or a loss of interest in activities you once enjoyed. It can lead to a variety of emotional and physical problems and can decrease your ability of function at work and at home.

What is depression: https://www.youtube.com/watch?v=z-IR48Mb3W0

"I'm Fine" - Learning To Live With Depression: https://www.youtube.com/watch?v=IDPDEKtd2yM

How to cope with Depression: https://www.youtube.com/watch?v=8Su5VtKeXU8

Methodology

Transfer Learning

Take the knowledge that neural network have learnt from source domain, and apply that knowledge to target domain.

Underfit and Overfit

K-means

Example: K=2

Related links: https://www.youtube.com/watch?v=hDmNF9JG3lo

https://www.youtube.com/watch?v=4b5d3muPQmA

Parallel k-means

Algorithm 1: K-means

Input: Dataset X, #clusters K, and over-sampling factor l. Output: Set of prototypes $C = \{c_1, c_2, ..., c_K\}$.

- C ← select point c₁ uniformly random from X.
- 2: $\psi \leftarrow \text{compute } SSE(\mathbf{C})$.
- 3: for $O(\log(\psi))$ times do
- C' ← sample each point x ∈ X independently with probability l · d(x)²/SSE(C).
- 5: C ← C ∪ C'
- 6: For each x in C attach a weight defined as the number of points in X closer to x than any other point in C.
- Do a weighted clustering of C into K clusters.

Results

Accuracy Table

Source domain	Heart	Breast Cancer	Lung Cancer
Train Accuracy	81.76%	?	?
Test Accuracy	79.04%	?	?
# of Samples	32	?	?

Discussion

- Any question you have?
- The relationship between source domain and target domain.
- Distinguish overfitting and underfitting?
- How to find the elbow point? And why we need that?
- What are the differences between k-means and parallel k-means?
- What will you do when you feeling down. Are you feeling not well recently?

References

- J. Hämäläinen, T. Kärkkäinen and T. Rossi, "Scalable initialization methods for large-scale clustering", *arXiv:2007.11937*, 2020
- Olman V, Mao F, Wu H, Xu Y: Parallel Clustering Algorithm for Large Data Sets with applications in Bioinformatics. *IEEE/ACM Transactions on Computational Biology and Bioinformatics* 2007, in press.
- Amy Kim, Parallel k-means from scratch. 2020
- Timothy G. Dinan John F. Cryan Gilliard Lach, Harriet Schellekens. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics, 15:36–59, 2018.