ESTRUCTURAS ALGEBRAICAS

LEYES DE COMPOSICIÓN INTERNA

Sea la función $\Phi: A \times A \to A$, tal que $(x, y) \to x \Phi y = z$. O dicho de otra manera: Si $(x, y) \in A^2 \to \Phi(x, y) = x \Phi y$.

La definición de función asegura dos cosas:

- 1) Cualquiera sea el par de elementos de A, el resultado existe siempre;
- 2) El resultado será un nuevo elemento de A (Ley de Cierre).

Monoide: Es todo par ordenado (A, Φ) donde A es un conjunto, y Φ es una Ley de Composición Interna sobre A.

Propiedades:

- 1) **Conmutativa:** Para todo par $(x, y) \in A \rightarrow x \Phi y = y \Phi x$
- 2) Asociativa: Para todo x, y, $x \in A \rightarrow (x \Phi y) \Phi z = x \Phi (y \Phi z)$
- 3) Existencia de Elemento Neutro: Dado (A, Φ) , un elemento $e \in A$, es elemento neutro a izquierda si: Para todo $a \in A \rightarrow e \Phi$ a = a. Y e es elemento neutro a derecha si: Para todo a $e \in A \rightarrow a \Phi$ e = a

Si un elemento neutro lo es a izquierda y a derecha, es el Elemento Neutro.

- 4) **Elemento Regular:** Un elemento $a \in A$ es regular, si cualesquiera sean un elemento $x \in A$ e $y \in A$ entonces Si a $\Phi x = a \Phi y$ entonces x = y. Análogamente: Si $x \Phi a = y \Phi a$ entonces x = y. Por ejemplo: Si $a + x = a + y \rightarrow x = y$
- 5) **Elemento Simétrico:** Si en (A, Φ) existe un elemento e (neutro) entonces el elemento simétrico (opuesto o inverso) de a, es a' de modo tal que: a Φ a' = a' Φ a = e. Si a Φ a' = e, se dice simétrico a derecha. Si a' Φ a = e, se dice simétrico a izquierda.
- 6) **Distributiva:** Sea A un conjunto, y Φ 1 y Φ 2 dos operaciones sobre A. Φ 1 es distributiva respecto a Φ 2 si para todo a, b, c pertenecientes a A se cumple que:
 - a Φ 1 (b Φ 2 c) = (a Φ 1 b) Φ 2 (a Φ 1 c) (Φ 1 distribuye a izquierda resp. a Φ 2)
 - (b Φ 2 c) Φ 1 a = (b Φ 1 a) Φ 2 (c Φ 1 a) (Φ 1 distribuye a derecha resp. a Φ 2)
 - Por ejemplo: El producto es distributivo respecto de la suma. (No al revés)

ESTRUCTURAS:

1) Semigrupo: Una Ley de Composición Interna Φ definida sobre un conjunto no vacío A, define una estructura de Semigrupo sobre A, si esa ley es Asociativa. En ese caso A es un Semigrupo respecto a la Ley de Composición Interna.

Por ejemplo: Sea el par (N, +). N es el conjunto correspondiente a los números naturales siendo

la ley, la operación suma ordinaria. Al cumplirse que la suma de dos números naturales da por resultado otro número natural (Ley de Cierre) y que la suma ordinaria cumple con la propiedad Asociativa, se dice que (N, +) es Semigrupo.

2) Grupo: Si A es un conjunto no vacío, se define una ley de Composición Interna Φ que es Asociativa, tiene Elemento Neutro y Elemento Simétrico, entonces se dice que tiene estructura de grupo respecto a dicha ley. Es decir, la ley de composición Φ le da una estructura de grupo al conjunto A. Entonces:

(A,
$$\Phi$$
) es un monoide. (De donde se desprende que A es no vacío)
 $\forall x, y, x \in A \rightarrow (x \Phi y) \Phi z = x \Phi (y \Phi z)$ Asociativa
 $\forall x \in A : \exists e \in A / x \Phi e = e \Phi x = x$ Elem. Neutro
c. $\forall x \in A : \exists x' \in A / x \Phi x' = x' \Phi x = e$ Elem. Simétrico

Cumplidas estas tres propiedades, la estructura es un Grupo. Si además se cumple que:

d.
$$\forall x, y \in A : x \Phi y = y \Phi x$$
 Conmutativa

La estructura se denomina Grupo Abeliano (o Grupo Conmutativo)

Ejemplos:

- A) Se plantea $(Z, \Phi) / a \Phi b = a + b + 3$. Examinaremos qué estructura tiene:
 - a. Verifica Ley de Cierre, puesto que a Φ b \in Z
 - b. Verificamos **Asociatividad**: $(a \Phi b) \Phi c = (a + b + 3) + c + 3 = a + b + c + 6 \dots (1)$ $a \Phi (b \Phi c) = a + (b + c + 3) + 3 = a + b + c + 6 \dots (2)$ Se verifica la igualdad entre (1) y (2)
 - c. Existencia de **Elemento Neutro** (e) en Z respecto de Φ : a Φ e = a \rightarrow a + e + 3 = a \rightarrow e = -3 (A derecha). e Φ a = a \rightarrow e + a + 3 = a \rightarrow e = -3 (A izquierda).
 - d. Existencia de **Elemento Simétrico** (a') en Z respecto de Φ : a Φ a' = e \rightarrow a + a' + 3 = -3 \rightarrow a' = a 6 (A derecha). Sucede lo mismo a izquierda (Probar).
 - e. Se verifica Conmutatividad: $a \Phi b = a + b + 3 = b + a + 3 = b \Phi a$

Por lo tanto (Z, Φ) es **Grupo Abeliano**.

3) Subgrupo: El subconjunto no vacío H del grupo G, es un subgrupo de (G, Φ) sí y sólo sí (G, Φ) es grupo. Por ejemplo: todo grupo (G, Φ) admite como subgrupos al mismo G y al conjunto cuyo único elemento es e. Ambos se llaman **grupos triviales** de (G, Φ) . Otro ejemplo podría ser (Z, +) como subgrupo de (Q, +).

HOMOMORFISMOS

Siendo (A, B) conjuntos. Si Φ 1 es Ley de Composición Interna sobre A, y Φ 2 es Ley de Composición Interna sobre B, con (A, Φ 1) y (B, Φ 2) ambos Monoides:

Homomorfismo: f: A \rightarrow B / f(a Φ 1 b) = f(a) Φ 2 f(b); a, b \in A. Ejemplos:

- a) $f: R \to R^+ / f(x) = 2^x$. Entonces $f(x + y) = 2^{x+y} = 2^x 2^y = f(x).f(y)$
- b) f: $R^+ \rightarrow R / f(x) = \ln(x)$. Entonces $f(x \cdot y) = \ln(x) + \ln(y)$

Isomorfismo: Es todo homomorfismo biyectivo. En general la existencia de un isomorfismo en A en B implica que A y B son isomorfos respecto a las leyes de composición.

Endomorfismo: Si B A entonces a todo homomorfismo se lo llama endomorfismo.

Automorfismo: Si A = B entonces a todo isomorfismo se lo llama automorfismo.

- 4) Anillo: Sea $(A, \Phi 1, \Phi 2)$, con $A \neq \emptyset$ de modo tal que:
 - $(A, \Phi 1)$ es Grupo Abeliano (O Conmutativo)
 - $(A, \Phi 2)$ es Semigrupo
 - Φ2 es distributivo respecto de Φ1

La estructura es un Anillo si:

 $(A, \Phi 1)$ es Grupo Abeliano

$$\forall x, y, z \in A \rightarrow (x \Phi 2 y) \Phi 2 z = x \Phi 2 (y \Phi 2 z)$$
 (Asoc.)

3.
$$\forall x, y, z \in A \rightarrow x \Phi 2 (y \Phi 1 z) = (x \Phi 2 y) \Phi 1 (x \Phi 2 z)$$
 (Dist.)

- 4. Si $(A, \Phi 2)$ tiene "e", se llama Anillo con Unidad
- 5. Si Φ 2 es Conmutativa, se llama **Anillo Conmutativo**.

Ejemplos:

- 1. $(N, +, \cdot)$ No es anillo. (No tiene elemento neutro en la suma)
- 2. $(N_0, +, \cdot)$ No es anillo. (No tiene inverso en el producto)
- 3. $(Z, +, \cdot)$
 - (Z, +) Es grupo abeliano en la suma;
 - El producto es asociativo en Z;
 - El producto es distributivo respecto de la suma;
 - El producto tiene elemento neutro;
 - El producto es conmutativo

(Z, +, ·) ES ANILLO CONMUTATIVO Y CON UNIDAD

- 5) **Cuerpo:** Sea un anillo conmutativo (A, Φ 1, Φ 2). Sea el conjunto A tal que:
 - (A, Φ1) es Grupo Abeliano;
 - (A- $\{e\}$, Φ 2) es Grupo (donde e es el elemento neutro para Φ 1);
 - Φ 2 es distributiva con respecto a Φ 1,

Si para ambas operaciones es Grupo Abeliano, el Cuerpo se dice Conmutativo.

En un cuerpo existen dos simétricos: Uno respecto de la adición: llamado inverso aditivo u

opuesto; y el segundo es respecto al producto: llamado recíproco o inverso multiplicativo.

RESUMEN

Sea A un conjunto y sean dos Leyes de Composición Interna definidas sobre A: $+y\cdot$, $(A, +, \cdot)$ es un cuerpo si:

6) $\forall a, b, c \in A \rightarrow a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (DISTRIBUT.)	be lia no	lia l	c o n U ni	Cue rp o	Cue r p o C o n m
7) $\forall a \in A \rightarrow \exists e' \in A \rightarrow a \cdot e' = e' \cdot a = a \text{ (EL. SIMET.}$ MULTIPLICATIVO) 8) $\forall a \in A \rightarrow \exists a' = a^{-1} / a \cdot a^{-1} = a^{-1} \cdot a = e \text{ (INVERSO)}$ 9) $\forall a, b \in A \rightarrow a \cdot b = b \cdot a \text{ (CONMUT.)}$			d a d		u t a ti v

Axioma de Clausura: Si las operaciones Aditiva y Multiplicativa son Leyes de Composición Interna sobre A entonces si las operaciones están bien definidas y existen;

6) **Anillo o Dominio de Integridad:** Un Anillo es un Anillo o Dominio de Integridad si para cada par de elementos distintos del neutro 0 para la Ley Aditiva, entonces $a \cdot b \neq 0$ cuando a $\cdot 0$ y $b \neq 0$.

$$a \cdot b = 0$$
 si $a = 0$ ó $b = 0$

Apunte: "Estructuras Algebraicas". Jorge E. Sagula.