SECTION 3-7: DERIVATIVES OF INVERSE FUNCTIONS

1. Goal: Understand and use the rule below:

If
$$f^{-1}(x)$$
 is the inverse of $f(x)$, then

If you want to know the derivative of the inverse $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

If you want to know the derivative of the inverse $(f^{-1})'(x) = y$ (the output of x)

i) find $f^{-1}(x) = y$ (the output of x)

ii) find $f'(y)$ (the derivative of fat the output value y)

iii) take the reciprocal:

7 You were looking for ...

- 2. Fill out the rows of the chart below. Start with asterisked rows.
 - (a) $f(x) = x^3$

	f(x)	f'(x)	a-value	b = f(a)	f'(a)	point: (a, b)	slope at (a, b)	
*	$f(x) = x^3$	$f'(x) = 3x^2$	2	23=8	3.2° =12	(2,8)	12 🗶	look
	$f^{-1}(x)$	$(f')^{-1}(x)$	<i>b</i> -value	a = f(b)	f'(b)	point: (b, a)	slope at (b, a)	
	t-197= x3	1 x 3 x	8	f ⁻ (8) =2	1-12	(8,2)	拉七	

(b) $f(x) = \frac{1}{x^2}$

			<u> </u>						
		f(x)	f'(x)	<i>a</i> -value	b = f(a)	f'(a)	point: (a,b)	slope at (a, b)	
	*	મિત્ર= $\frac{1}{x^2}$ = x^{-2}	$f'(x) = -2x^3$	3	$\frac{1}{3^2} = \frac{1}{9}$	f'(3) =-2-33=3	(3,4)	-2/27	
		$f^{-1}(x)$	$(f')^{-1}(x)$	<i>b</i> -value	a = f(b)	f'(b)	point: (b, a)	slope at (b, a)	
		======================================	沙芝菜	-19	t-(1/2)	-1 (a)** =-1.27	(\frac{1}{4}, 3) = -27	-27 2	
(c)	f(x)	$(x) = \sin(x)$			VA	2.1	2		

	f(x)	f'(x)	<i>a</i> -value	b = f(a)	f'(a)	point: (a, b)	slope at (a, b)	
*	$f(x) = \sin(x)$	f'(x) = 66	H3 K	13/2	f(%) =支	(景)皇)	1/2	
	$f^{-1}(x)$	$(f')^{-1}(x)$	<i>b</i> -value	a = f(b)	f'(b)	point: (b, a)	slope at (b, a)	
	$f^{-1}(x)$ = arcsin(x)		$\sqrt{3}/2$	arcsin(皇) = 丑 3		(星,至)	2	
	= SIn ¹ (x)			2/15		you can get here without knowing		

Where does the formula

$$\frac{d}{dx}\left[f^{-1}(x)\right] = \frac{1}{f'(f^{-1}(x))}$$

come from?

Answer:
$$f(f^{-1}(x)) = x$$
 property of

So
$$f'(f'(x)) \cdot (f')(x) = 1$$

an application of the chain rule

Solve:
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Now, add the inverse functions in

3. Use the rule from (1) to find a formula for the derivative of $g(x) = \sin^{-1}(x)$.

$$\frac{1}{\alpha = \sqrt{1-x^2}}$$

$$f(x) = \sin(x)$$
, $f'(x) = \cos(x)$

$$f^{-1}(x) = \sin^{-1}(x)$$

$$f^{-1}(x) = \sin^{-1}(x)$$

 $f'(f^{-1}(x)) = \cos(\sin^{-1}(x)) = \sqrt{1-x^2} / (f^{-1})(x) = \sqrt{1-x^2}$

$$/(f^{-1})(x) = \frac{1}{\sqrt{1-x^2}}$$

4. Rules for the arccosine and arctangent functions.

$$\frac{d}{dx} \left[\sin^{-1}(x) \right] = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx} \left[\cos^{-1}(x) \right] = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx} \left[\tan^{1}(x) \right] = \frac{1}{1+x^{2}}$$

5. Find the derivatives for each function below.

(a)
$$f(x) = \cos^{-1}(\sqrt{x})$$

$$f(x) = \frac{-1}{\sqrt{1-x}} \cdot \frac{1}{2} x^{-\frac{1}{2}} = \frac{-1}{\sqrt{x}\sqrt{1-x}}$$

(b)
$$f(x) = (\tan^{-1}(x))^2$$

$$f'(x) = 2 + an'(x) \cdot \frac{1}{1+x^2} = \frac{2 + an'(x)}{1+x^2}$$

(c)
$$f(x) = x \sin^{-1}(x)$$

$$f'(x) = \sin^2(x) + x \cdot \frac{1}{\sqrt{1-x^2}} = \sin^2(x) + \frac{x}{\sqrt{1-x^2}}$$

(d)
$$f(x) = \tan^{-1}(\frac{1}{x})$$

$$f'(x) = \frac{1}{1 + (\frac{1}{x})^2} \cdot (-x^2) = \frac{-1}{\frac{1}{x^2}(1 + \frac{1}{x^2})}$$