Chapter 9

Interval Estimation

9.1 Introduction

<u>Definition 9.1.1</u>: An *Interval Estimate* of a real-valued parameter θ is any pair of functions, $L(x_1, \ldots, x_n)$ and $U(x_1, \ldots, x_n)$, of a sample that satisfy $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$. If $\mathbf{X} = \mathbf{x}$ is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made. The random interval $[L(\mathbf{X}), U(\mathbf{X})]$ is called an *Interval Estimator*.

Note: An interval estimator replaces our point estimator by an interval.

Example 9.1.2: (Interval Estimator)

Let X_1, \ldots, X_4 from a $n(\mu, 1)$. A possible interval estimator μ is $[\bar{X} - 1, \bar{X} + 1]$. This means that we will assert that μ is in this interval.

Example 9.1.3: (Continuation of Example 9.1.2)

Note that in this case $P(\bar{X} = \mu) = 0$. Now consider the interval estimator $[\bar{X} - 1, \bar{X} + 1]$. Find $P(\mu \in [\bar{X} - 1, \bar{X} + 1])$.

<u>Note</u>: What we get in return for giving up precision is a measure of "guarantee" of capturing the parameter of interest.

Definition 9.1.4: For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the **Coverage Probability** of $[L(\mathbf{X}), U(\mathbf{X})]$ is the probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the true parameter, θ . In symbols, it is denoted by either P_{θ} ($\theta \in [L(\mathbf{X}), U(\mathbf{X})]$) or P ($\theta \in [L(\mathbf{X}), U(\mathbf{X})]|\theta$).

<u>Definition 9.1.5</u>: For an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of a parameter θ , the **Confidence Coefficient** of $[L(\mathbf{X}), U(\mathbf{X})]$ is the infimum of the coverage probabilities, $\inf_{\theta} P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$.

Remark:

- 1. Interval estimators are random quantities not parameters so that the probability in P_{θ} ($\theta \in [L(\mathbf{X}), U(\mathbf{X})]$) is not a statement about the probability of θ but the probability of the functions of \mathbf{X} .
- 2. Interval estimator with a measure of confidence is usually referred to as confidence intervals.
- 3. In general, we will be working on confidence sets rather than simple intervals where no closed form is available for these sets.
- 4. A confidence set with a confidence coefficient equal to $1-\alpha$ is called $1-\alpha$ confidence set.

Example 9.1.6: (Scale Uniform Interval Estimator)

Let X_1, \ldots, X_n be a random sample from uniform $(0, \theta)$. Let $Y = X_{(n)} = \max(X_1, \ldots, X_n)$. Consider the following interval estimator for θ :

- Candidate 1: [aY, bY], $1 \le a < b$.
- Candidate 2: $[Y + c, Y + d], 0 \le c < d$.

where a,b,c,d are specified constants. Find the coverage probabilities of each interval estimators.

9.2 Methods of Finding Interval Estimators

9.2.1 Inverting a Test Statistic

Example 9.2.1: (Inverting a Normal Test)

Let X_1, \ldots, X_n be iid $n(\mu, \sigma^2)$ and consider testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. For a fixed α , a most powerful unbiased test rejects H_0 when $\{\mathbf{x}: |\bar{x}-\mu_0| > z_{\alpha/2}\sigma/\sqrt{n}\}$. Note that H_0 is accepted for sample points with $|\bar{x}-\mu_0| \leq z_{\alpha/2}\sigma/\sqrt{n}$ or, equivalently,

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Since the test has size α , it means that

$$P(H_0 \text{ is rejected } | \mu = \mu_0) = \alpha$$

or, stated in another way,

$$P(H_0 \text{ is accepted} | \mu = \mu_0) = 1 - \alpha$$

which implies

$$P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu_0 \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \middle| \mu = \mu_0\right) = 1 - \alpha$$

This probability statement is true for every μ_0 . Hence, it holds that

$$P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

The interval $\left[\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$ obtained by inverting the acceptance region of the level α test, is a $1-\alpha$ confidence interval.

Correspondence between Tests and Confidence Sets

The acceptance region of the hypothesis test is

$$A(\mu_0) = \left\{ \mathbf{x} : \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \bar{x} \le \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right\}$$

and the confidence interval is given by

$$C(\mathbf{x}) = \left\{ \mu : \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right\}$$

These sets are connected to each other by the tautology:

$$\mathbf{x} \in A(\mu_0) \iff \mu_0 \in C(\mathbf{x})$$

Theorem 9.2.2: For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each $\mathbf{x} \in \mathcal{X}$, define a set $C(\mathbf{x})$ in the parameter space by

$$C(\mathbf{x}) = \{\theta_0 : \mathbf{x} \in A(\theta_0)\}\ .$$

Then the random set $C(\mathbf{X})$ is a $1-\alpha$ confidence set. Conversely, let $C(\mathbf{X})$ be a $1-\alpha$ confidence set. For any $\theta_0 \in \Theta$, define

$$A(\theta_0) = \{ \mathbf{x} : \theta_0 \in C(\mathbf{x}) \}$$
.

Then $A(\theta_0)$ is the acceptance region of a level α test of $H_0: \theta = \theta_0$.

Note:

- 1. All of techniques we have for obtaining tests can be immediately used to construct confidence intervals.
- 2. There is no guarantee that the confidence set obtained by test inversion will be an interval.
- 3. Given $H_0: \theta = \theta_0$, the alternative hypothesis H_1 will dictate the form of the acceptance region $A(\theta_0)$, which will further determine the shape of $C(\mathbf{x})$.
- 4. In most cases, one-sided tests give one-sided intervals, two-sided tests give two-sided intervals, strange-shaped acceptance regions give strange-shaped confidence sets.
- 5. The properties of inverted tests also carry over (sometimes suitably modified) to the confidence set.
- 6. Since we can confine attention to sufficient statistics when looking for a good test, it follows that we can also confine attention to sufficient statistics when looking for good confidence sets.

Example 9.2.3: (Inverting an LRT)

Suppose we want a confidence interval for the mean λ , of an exponential(λ) population. We can obtain such an interval by inverting a level α test of $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$. Let X_1, \ldots, X_n be a random sample. For fixed λ_0 , the acceptance region of the LRT is given by

$$A(\lambda_0) = \left\{ \mathbf{x} : \left(\frac{\sum x_i}{\lambda_0} \right)^n e^{-\sum x_i/\lambda_0} \ge k^* \right\}, \tag{9.2.2}$$

where k^* is a constant chosen to satisfy $P_{\lambda_0}(\mathbf{X} \in A(\lambda_0)) = 1 - \alpha$. Inverting this acceptance region gives the $1 - \alpha$ confidence set

$$C(\mathbf{x}) = \left\{ \lambda : \left(\frac{\sum x_i}{\lambda} \right)^n e^{-\sum x_i/\lambda} \ge k^* \right\}.$$

This confidence set depends on \mathbf{x} only through $\sum x_i$. So the confidence interval can be expressed in the form

$$C\left(\sum x_i\right) = \left\{\lambda : L\left(\sum x_i\right) \le \lambda \le U\left(\sum x_i\right)\right\}$$
 (9.2.3)

where L and U are functions determined by the constraints that the set (9.2.2) has probability $1 - \alpha$ and

$$\left(\frac{\sum x_i}{L\left(\sum x_i\right)}\right)^n e^{-\sum x_i/L\left(\sum x_i\right)} = \left(\frac{\sum x_i}{U\left(\sum x_i\right)}\right)^n e^{-\sum x_i/U\left(\sum x_i\right)} \tag{9.2.4}$$

If we set

$$a = \frac{\sum x_i}{L(\sum x_i)}$$
 and $b = \frac{\sum x_i}{U(\sum x_i)}$,

then the confidence interval (9.2.3) becomes $\left\{\lambda : \frac{1}{a} \sum x_i \leq \lambda \leq \frac{1}{b} \sum x_i\right\}$, where a and b satisfy

$$P_{\lambda}\left(\frac{1}{a}\sum X_{i} \leq \lambda \leq \frac{1}{b}\sum X_{i}\right) = P\left(b \leq \frac{\sum X_{i}}{\lambda} \leq a\right)$$

and, from (9.2.4), $a^2e^{-a}=b^2e^{-b}$. Note that $\sum X_i \sim \operatorname{gamma}(n,\lambda)$ and $\sum X_i/\lambda \sim \operatorname{gamma}(n,1)$.

Example 9.2.4: (Normal One-sided Confidence Bound)

Let X_1, \ldots, X_n be a random sample a $n(\mu, \sigma^2)$ population. Consider constructing a $1-\alpha$ upper confidence bound for μ , i.e., a confidence interval of the form $C(\mathbf{x}) = (-\infty, U(\mathbf{x})]$. We will construct the one-sided confidence interval by inverting one-sided tests of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. The size α LRT of H_0 versus H_1 rejects H_0 if

$$\frac{\bar{X} - \mu_0}{S/\sqrt{n}} < -t_{n-1,\alpha}$$

and the acceptance region for this test is

$$A(\mu_0) = \left\{ \mathbf{x} : \bar{x} \ge \mu_0 - t_{n-1,\alpha} \frac{s}{\sqrt{n}} \right\}$$

and

$$\mathbf{x} \in A(\mu_0) \iff \mu_0 \in C(\mathbf{x}) = \left\{ \mu_0 : \mu_0 \le \bar{x} + t_{n-1,\alpha} \frac{s}{\sqrt{n}} \right\}.$$

By Theorem 9.2.2, the random set $C(\mathbf{X}) = (-\infty, \bar{X} + t_{n-1,\alpha}S/\sqrt{n}]$ is a $1 - \alpha$ one-sided confidence interval for μ .

Example 9.2.5: (Binomial One-sided Confidence Bound)

Observe X_1, \ldots, X_n , where $X_i \sim \text{Bernoulli}(p)$. Consider to obtain a one-sided confidence interval of the form $(L(x_1, \ldots, x_n), 1]$, where

$$P_p(p \in (L(x_1,\ldots,x_n),1]) \ge 1-\alpha.$$

9.2.2 Pivotal Quantities

Definition 9.2.6: A random variable $Q(\mathbf{X}, \theta) = Q(X_1, \dots, X_n, \theta)$ is a **Pivotal Quantity** (or pivot) if the distribution of $Q(\mathbf{X}, \theta)$ is independent of all parameters. That is, if $\mathbf{X} \sim F(\mathbf{x}|\theta)$, then $Q(\mathbf{X}, \theta)$ has the same distribution for all values of θ .

Example 9.2.7: (Location-Scale Pivots)

Let X_1, \ldots, X_n be a random sample from the indicated pdfs, and let \bar{X} and S be the sample mean and standard deviation:

- Pivot for location family with pdf $f(x \mu) : \bar{X} \mu$
- Pivot for scale family with pdf $\frac{1}{\sigma}f\left(\frac{1}{\sigma}\right)$: $\frac{\bar{X}}{\sigma}$
- Pivot for location and scale family with pdf $\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$: $\frac{\bar{X}-\mu}{S}$

<u>Note</u>: In general, *differences* are pivotal for location parameters, while *ratio* (or products) are pivotal for scale problems.

Example 9.2.8: (Gamma Pivot)

Suppose that X_1, \ldots, X_n are iid exponential(λ). Then $T = \sum_{i=1}^n X_i$ is a sufficient statistic for λ and $T \sim \operatorname{gamma}(n, \lambda)$, which is a scale family. Hence a pivot that may be used is

$$Q_1(T,\lambda) = \frac{T}{\lambda} \sim \operatorname{gamma}(n,1)$$

or

$$Q_2(T,\lambda) = \frac{T}{2\lambda} \sim \text{gamma}(n,2) = \chi_{2n}^2$$

How to find a pivot for a general pdf or pmf?

If the pdf of a statistic T can be expressed in the form

$$f(t|\theta) = g(Q(t,\theta)) \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$$

for some function g and some monotone function Q (monotone in t for each θ). Then Theorem 2.1.5 (transformation technique) can be used to show that $Q(T, \theta)$ is a pivot.

How to use a pivot to construct a confidence set?

Given a pivot $Q(\mathbf{X}, \theta)$, we find numbers a and b such that

$$P_{\theta} (a \leq Q(\mathbf{X}, \theta) \leq b) \geq 1 - \alpha$$

The acceptance region for a level α test for $H_0: \theta = \theta_0$ is given by

$$A(\theta_0) = \{ \mathbf{x} : a \le Q(\mathbf{x}, \theta_0) \le b \}$$

Using Theorem 9.2.2, we invert these tests to obtain

$$C(\mathbf{x}) = \{\theta_0 : a \le Q(\mathbf{x}, \theta_0) \le b\},\$$

and $C(\mathbf{X})$ is a $1 - \alpha$ confidence set for θ . If θ is a real-valued parameter and if, for each $\mathbf{x} \in \mathcal{X}$, $Q(\mathbf{x}, \theta)$ is a monotone function of θ , then $C(\mathbf{x})$ will be an interval.

• If $Q(\mathbf{x}, \theta)$ is an increasing function of θ , then $C(\mathbf{x})$ has the form

$$L(\mathbf{x}, a) \le \theta \le U(\mathbf{x}, b).$$

• If $Q(\mathbf{x}, \theta)$ is a decreasing function of θ (which is typical), then $C(\mathbf{x})$ has the form

$$L(\mathbf{x}, b) \le \theta \le U(\mathbf{x}, a).$$

Example 9.2.9: (Continuation of Example 9.2.8)

Recall the pivot for λ is $Q(T,\lambda)=2T/\lambda\sim\chi^2_{2n}$. Choose a and b such that

$$P_{\lambda}\left(a \leq \frac{2T}{\lambda} \leq b\right) = P_{\lambda}(a \leq Q(T, \lambda) \leq b) = P(a \leq \chi_{2n}^2 \leq b) = 1 - \alpha.$$

Inverting the set $A(\lambda) = \left\{ t : a \leq \frac{2t}{\lambda} \leq b \right\}$ gives $C(t) = \left\{ \lambda : \frac{2t}{b} \leq \lambda \leq \frac{2t}{a} \right\}$, which is a $1 - \alpha$ confidence interval.

Example 9.2.10: (Normal Pivotal Interval)

Let X_1, \ldots, X_n be a random sample from a $n(\mu, \sigma^2)$ population. If σ^2 is known, $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ is a pivot and can be used to construct a $1 - \alpha$ confidence interval for μ below:

$$\left\{\mu: \bar{x} - a\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + a\frac{\sigma}{\sqrt{n}}\right\}$$

where a satisfy

$$P\left(-a \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le a\right) = P(-a \le Z \le a) = 1 - \alpha, \quad (Z \text{ is standard normal}).$$

If σ^2 is also unknown, we can use the location-scale pivot $\frac{\bar{X} - \mu}{S/\sqrt{n}}$, which has Student's t distribution such that

$$P\left(-a \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le a\right) = P(-a \le T_{n-1} \le a).$$

Thus, if we take $a=t_{n-1,\alpha/2}$, a $1-\alpha$ confidence interval for μ can be obtained by

$$\left\{\mu: \bar{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}\right\}.$$

Moreover, if we also want an interval estimate for σ , we can utilize a pivot $\frac{(n-1)S^2}{\sigma^2}$, because $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$, to a $1-\alpha$ confidence interval

$$\left\{\sigma^2: \frac{(n-1)s^2}{b} \le \sigma^2 \le \frac{(n-1)s^2}{a}\right\}$$

where a and b satisfy

$$P\left(a \le \frac{(n-1)S^2}{\sigma^2} \le b\right) = P(a \le \chi_{n-1}^2 \le b) = 1 - \alpha.$$

One choice of a and b that will produce the required interval is $a = \chi^2_{n-1,1-\alpha/2}$ and $b = \chi^2_{n-1,\alpha/2}$.

Note: For constructing a confidence set for k parameters simultaneously, we can use the Bonferroni Inequality. In this case, we construct a $1-\frac{\alpha}{k}$ confidence interval for each individual parameter and combine them into a $1-\alpha$ confidence set for these k parameters simultaneously.

9.3 Methods of Evaluating Interval Estimators

Two Important Considerations

- 1. Size of a Confidence Set: Length of an Interval or Volume of a Set
- 2. Confidence Coefficient: Infimum of Coverage Probability

9.3.1 Size and Coverage Probability

Example 9.3.1: (Optimizing Length)

Let X_1, \ldots, X_n be iid $\mathrm{n}(\mu, \sigma^2)$, where σ is known. From the pivot method proposed in Section 9.2.2 and the fact that $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathrm{n}(0, 1)$, any a and b that satisfy

$$P(a \le Z \le b) = 1 - \alpha$$

will give the $1-\alpha$ confidence interval

$$\left\{\mu: \bar{x} - b\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} - a\frac{\sigma}{\sqrt{n}}\right\}$$

Which choice of a and b will minimize the length of the confidence interval while maintaining $1 - \alpha$ coverage?

<u>Definition</u>: A pdf f(x) is *unimodal* if there exists x^* such that f(x) is nondecreasing $x < x^*$ and f(x) is nonincreasing for $x \ge x^*$.

Theorem 9.3.2: Let f(x) be a unimodal pdf. If the interval [a, b] satisfies

- i. $\int_a^b f(x)dx = 1 \alpha,$
- ii. f(a) = f(b) > 0, and
- iii. $a \le x^* \le b$, where x^* is mode of f(x),

then [a, b] is the shortest among all intervals that satisfy (i).

Example 9.3.3: (Optimizing Expected Length)

Recall that intervals for normal distribution can be based on the pivot $\frac{\bar{X} - \mu}{S/\sqrt{n}}$. Consider the $1 - \alpha$ confidence interval of the form

$$\bar{x} - b \frac{s}{\sqrt{n}} \le \mu \le \bar{x} - a \frac{s}{\sqrt{n}}$$

The interval with $a=-t_{n-1,\alpha/2}$ and $b=t_{n-1,\alpha/2}$ is the shortest length $1-\alpha$ confidence interval. The interval length is a function of s with general form

Length(s) =
$$(b-a)\frac{S}{\sqrt{n}}$$
.

<u>Note</u>: The following example illustrates how to get the shortest pivotal interval where Theorem 9.3.2 cannot be used directly.

Example 9.3.4: (Shortest Pivotal Interval)

Let $X \sim \operatorname{gamma}(k,\beta)$. A pivotal quantity is given by $Y = \frac{X}{\beta}$ where $Y \sim \operatorname{gamma}(k,1)$. Find a and b such that

$$P(a \le Y \le b) = 1 - \alpha.$$

The interval for β is of the form

$$\frac{x}{b} \le \beta \le \frac{x}{a}$$

The length of this interval is

$$L = \left(\frac{1}{a} - \frac{1}{b}\right)x,$$

which is not proportional to b-a. Hence, we cannot use condition (ii) of Theorem 9.3.2 to find the shortest pivotal interval.