SPRINT DELIVERY – 4

Team ID	PNT2022TMID47645
Project Name	IoT Enabled
	Smart Farming Application
Date	15 November 2022

5.5 Receiving commands from IBM cloud using Python program

import
time
import
sys
import
ibmiotf.applicatio
n import
ibmiotf.device
importrandom

```
#Provide your IBM Watson Device
Credentialsorganization =
"157uf3" deviceType = "abcd"
deviceId = "7654321" authMethod
= "token" authToken =
"87654321"
# Initialize GPIO
def myCommandCallback(cmd):
                                                  print("Command received: %s" % cmd.dat
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token":
authToken}deviceCli =
ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting
device: %s" %str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the
cloud as anevent of type "greeting" 10 times deviceCli.connect()
while True:
```

```
#Get
Sensor Data
fromDHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp,
'Humid': Humid, 'Mois':
Mois}
    #print
                   defmyOnPublishCallback(
data
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor",
         data,qos=0,on_publish=myOnPublishCallback)
"ison",
                                              if not
success:
      print("Not
connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback =
myCommandCallback #Disconnect the device and
application from the cloud deviceCli.disconnect()
```

```
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
File Edit Format Run Options Window Help
                                                                                                                                                              - 0 ×
 import time
 import sys
 import ibmiotf.application
 import ibmiotf.device
 import random
 #Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
 # Initialize GPIO
def myCommandCallback(cmd):
      print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
      if status=="motoron":
   print ("motor is on")
   elif status == "motoroff":
      print ("motor is off")
else:
             print ("please send proper command")
 try:
             deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
deviceCli = ibmiotf.device.Client(deviceOptions)
                                                                                                                                                                 Ln: 22 Col: 21
```


• Observations & Results

Farming Measure Data Temperature 100 100 104 102 100 98 99 94 92 90 20.01:33 20.01:53 20.02:13 20.02:53 20.03:13 20.03:34

- Advantages & Disadvantages Advantages:
- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better

standards of

living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of

Mobile App.9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.