

Data Scientist Assignment Kaggel Toxic Comment Classification

Yonatan Faigenbaum

Table of content

Table of content	2
Assignment Definition	3
Workflow	3
Data Investigation	4
Preprocessing	7
Architecture	8
Final Optimization	11
Evaluation	11
Code Arrangement	12

Assignment Definition

- Discussing things you care about can be difficult. The threat of abuse and harassment online means that many people stop expressing themselves and give up on seeking different opinions.
- Using labeled dataset from the Wikipedia's talk page build a multi-headed model that's capable of detecting different types of toxicity like threats, obscenity, insults, and identity-based hate.
- The evaluation of the model is based on AUC score.
- <u>Current models</u> used by <u>Perspective API</u> achieve an AUC of 0.95
- For this assignment show only a general approach for the problem without optimizations

Workflow

Data Investigation

The training dataset contain -

- 159,571 samples
- Each sample can be 6 different toxic comments or non harmful Example, The comment –

FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!

Has 3 labels - toxic, obscene and an insult

- The labels are highly skewed, Only 10% of the samples is some toxic (see figure)
- The mean comments length is 68 words, The median is 36 words (see figure)
- Looking at the tf-idf per label we can see the most popular curses
- Many of the comments have spelling mistakes

```
Examples, Fuck (taking from the competition discussion board) –
```

```
'fuck', 'fucking', 'fucked', 'fuckin', 'fucka', 'fucker', 'fucks', 'fuckers', 'fck', 'fcking', 'fcked', 'fckin', 'fcker', 'fcks', 'fuk', 'fuking', 'fuked', 'fukin', 'fuker', 'fuks', 'fukers', 'fk', 'fking', 'fked', 'fkin', 'fker', 'fks',
```

- There are some non-English words
- There are ~200,000 unique words (including spelling mistakes, non-English, numbers ext.)
- To evaluate the number of words to use in the model we can plot cdf for the number of accumulated words

Example, taking the 3000 most popular words will get a coverage of 86% from all the words.

TF-IDF top words per label

Preprocessing

Preprocessing is the most important part of the work. It has a great effect on the behaver of the model.

Since text preprocessing can take a lot of time and investigation which is out of the scope of this assignment, I will describe some preprocessing techniques -

- Delete all punctuation marks I assume punctuation marks has no effect on the comment type
- Fix spelling mistakes to reduce the dictionary
- Delete digits like IPs, dates, phone numbers ext. I assume digits has no effect on the comment type
- Using word segmentations some people forget to use spacebar
- Using lemmatization and/or stemming to reduce the dictionary

Of course each action must be checked to see if the model improved

Architecture

The nature of the problem is of a time series, hence an RNN is a good starting point.

Since it's not a real time problem we can use information from the "future" and use Bidirectional layers.

The each input is a word so we need an embedded lyre at the beginning.

For this assignment I cheeked only one architecture -

- 1. Embedded layer converting a dictionary of 20,000 (we saw that even 3000 words is a nice covarage) words into a vector of size of 50.
 - The length of each comments will be maximum of 100 words
 - The initial values for the matrix were taking from *glove.6B.50d* model
- 2. Bidirectional LSTM with cell size of 50 and dropout of 0.1
- 3. Dropout layer of 0.1
- 4. Batch normalization layer
- 5. Unidirectional LSTM with cell size of 50 and dropout of 0.1
- 6. Dropout layer of 0.1
- 7. Dense layer to 50
- 8. Final layer, dense to 6 sigmoid activation functions

The training dataset was split to 60% training, 20% validation and 20% testing.

The splitting saved the ratio between no toxic at all to any toxic (1/10)

A smarter split might preserve the ratio of all 6 labels.

During the training we need to see that the model score converge, However since the training time is quite a lot I did only one epoch but it seems to converge during all the batches.

LSTM Cell

Model Summery -

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	(None, 100)	0	
embedding_1 (Embed	lding) (None, 10	0, 50) 1000000	
bidirectional_1 (Bidirectional_1)	ction (None, 100, 1	00) 40400	
dropout_1 (Dropout)	(None, 100, 10	00) 0	
batch_normalization_1 (Batch (None, 100, 100) 400			
Istm_2 (LSTM)	(None, 50)	30200	
dropout_2 (Dropout)	(None, 50)	0	
dense_1 (Dense)	(None, 50)	2550	
dense_2 (Dense)	(None, 6)	306	

Total params: 1,073,856 Trainable params: 1,073,656 Non-trainable params: 200

Final Optimization

For this assignment I didn't do any optimizations.

Some optimizations to be done -

- Change embedding layer there are more pre-trained embedded layers. Some might be more appropriate.
- Change the words dictionary size and the maximum comment length
- Change the cells to GRU
- Add 1D CNN after the embedded layer, it find some more information
- Play with all the hyper parameters

Evaluation

Since the dataset is highly skewed then a metric of accuracy is not enough (a model which will return 0a's will have accuracy of 90 %!!)

For the competition the evaluation metric was the average of all 6 AUC.

The average AUC of my model is 0.97

I checked it on the training data + the testing data.

Code Arrangement

The code is split in to 6 folders -

- 1. data contains all the datasets and glove model
- 2. docs contains some references and this report
- 3. modeling contains training file and evaluating file
- 4. plotting_utils contains all the plotting files
- 5. preprocessing contain all the preprocessing files and a spelling mistake file which I downloaded from the internet
- 6. trained_models all the saved models

There are 3 file to run the code -

- 1. data_analyze do all the dataset investigation
- 2. train_model do the training, has hyper parameters configuration
- 3. evaluate_model calculate the AUC