内部数学常数

pi	圆周率
exp(1)	自然对数的底数 e
i 或 j	虚数单位
Inf 或 inf	无穷大

2 基本数学运算符

a+b	加法
a-b	减法
a*b	矩阵乘法
a. *b	数组乘法
a/b	矩阵右除
a\b	矩阵左除
a. /b	数组右除
a. \b	数组左除
a^b	矩阵乘方
a. ^b	数组乘方
-a	负号
,	共轭转置

一般转置

3 关系运算符

==	等于
<	小于
>	大于
<=	小于或等于
>=	大于或等于
~=	不等于

4 常用内部数学函数

指数函数	exp(x)	以e为底数		
	log(x)	自然对数,即以e为底数的对数		
7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	log10(x)	常用对数,即以10为底数的对		
对数函数		数		
	log2(x)	以 2 为底数的 x 的对数		
开方函数	sqrt(x)	表示 x 的算术平方根		
绝对值函数 abs(x)	1 ()	表示实数的绝对值以及复数的		
	ans (x)	模		
三角函数	sin(x)	正弦函数		
7.7.	cos(x)	余弦函数		
(自变量的	tan(x)	正切函数		

单位为弧	cot(x)	余切函数	
度)	sec(x)	正割函数	
	csc(x)	余割函数	
	asin(x)	反正弦函数	
	acos(x)	反余弦函数	
反三角函数	atan(x)	反正切函数	
	acot(x)	反余切函数	
	asec(x)	反正割函数	
	acsc(x)	反余割函数	
	sinh(x)	双曲正弦函数	
双曲函数	cosh(x)	双曲余弦函数	
	tanh(x)	双曲正切函数	
	coth(x)	双曲余切函数	
	sech(x)	双曲正割函数	
	csch(x)	双曲余割函数	
	asinh(x)	反双曲正弦函数	
反双曲函数	acosh(x)	反双曲余弦函数	
	atanh(x)	反双曲正切函数	
	acoth(x)	反双曲余切函数	
	asech(x)	反双曲正割函数	
	acsch(x)	反双曲余割函数	
求角度函数	atan2(y,x)	以坐标原点为顶点,x轴正半轴	

		为始边,从原点到点(x,y)的		
		射线为终边的角, 其单位为弧		
		度,范围为(-π, π]		
₩r 1 \ 50, ₩r	gcd (a, b)	两个整数的最大公约数		
数论函数	lcm(a, b)	两个整数的最小公倍数		
排列组合函数	factorial(n)	阶乘函数,表示 n 的阶乘		
	real(z)	实部函数		
复数函数	imag(z)	虚部函数		
	abs(z)	求复数 z 的模		
	angle(z)	求复数 z 的辐角, 其范围是 (-π, π]		
	conj(z)	求复数 z 的共轭复数		
	ceil(x)	表示大于或等于实数 x 的最小整数		
求整函数与 截尾函数 :	floor(x)	表示小于或等于实数 x 的最大整数		
	round(x)	最接近 x 的整数		
最大、最小 函数	max([a, b, c,])	求最大数		

	min([a, b, c,])	求最小数
符号函数	sign(x)	$sign(x) = \begin{cases} 1 & , & x > 0 \\ -1 & , & x < 0 \\ 0 & , & x = 0 \end{cases}$

5 自定义函数-调用时: "[返回值列]=M 文件名(参数列)"

function 返回变量=函数名(输入变量)

注释说明语句段(此部分可有可无)

函数体语句

6. 进行函数的复合运算

$$compose(f,g)$$
 返
回值为 $f(g(y))$ 返回值
 $compose(f,g,z)$ 返回值
为 $f(g(z))$ 返回值为
 $f(g(z))$ 返回值为 $f(g(z))$

7 因式分解

syms 表达式中包含的变量

factor(表达式)

8 代数式展开

syms 表达式中包含的变量

expand(表达式)

9 合并同类项

syms 表达式中包含的变量

collect(表达式,指定的变量)

10 进行数学式化简

syms 表达式中包含的变量

simplify(表达式)

11 进行变量替换

syms 表达式和代换式中包含的所有变量

subs(表达式,要替换的变量或式子,代换式)

12 进行数学式的转换

调用 Maple 中数学式的转换命令,调用格式如下: maple('Maple 的数学式转换命令') 即:

maple('convert(表达式, form)',)将表达式转换成 form 的表示方式 maple('convert(表达式, form, x)') 指定变量为 x, 将依赖于变量 x 的函数转换成 form 的表示方式(此指令仅对 form 为 exp 与 sincos 的 转换式有用)

13 解方程

solve('方程','变元')

注:方程的等号用普通的等号: =

14 解不等式

调用 maple 中解不等式的命令即可,调用形式如下:

maple('maple 中解不等式的命令')*

具体说,包括以下五种:

maple('solve(不等式)')

```
maple('solve(不等式,变元)')
maple('solve({不等式},变元)')
maple('solve(不等式,{变元})')
maple('solve({不等式},{变元})')
```

15 解不等式组

调用 maple 中解不等式组的命令即可,调用形式如下:

```
maple('maple 中解不等式组的命令')
即: maple('solve({不等式组}, {变元组})')
```

16 画图

```
方法1:先产生横坐标 x 的取值和相应的纵坐标 y 的取值,然后执行命令: plot(x, y)

方法2: fplot('f(x)', [xmin, xmax])

fplot('f(x)', [xmin, xmax, ymin, ymax])

方法3: ezplot('f(x)', [xmin, xmax])

ezplot('f(x)', [xmin, xmax])
```

17 求极限

(1) 极限:

```
syms x
limit(f(x), x, a)
```

(2) 单侧极限:

左极限:

```
syms x
limit(f(x), x, a, 'left')
```

右极限:

```
syms x
limit(f(x), x, a, 'right')
```

18 求导数

```
diff('f(x)')
diff('f(x)','x')
```

或者:

Syms x
Diff(f(x))
 syms x
diff(f(x), x)

19 求高阶导数

```
diff('f(x)', n)
diff('f(x)', 'x', n)
```

或者:

```
syms x diff(f(x), n)
```

```
syms x
diff(f(x), x, n)
```

20 在 MATLAB 中没有直接求隐函数导数的命令,但是我们可以根据数学中求隐函数导数的方法,在中一步一步地进行推导;也可以自己编一个求隐函数导数的小程序;不过,最简便的方法是调用 Maple 中求隐函数导数的命令,调用格式如下:

maple ('implicit diff (f(x, y)=0, y, x)')*

在 MATLAB 中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。

21 求不定积分

或者:

```
syms x int(f(x))
```

syms x int(f(x), x)

22 求定积分、广义积分

或者:

```
syms x int(f(x), a, b)
```

```
syms x
int(f(x), x, a, b)
```

23 进行换元积分的计算

自身没有提供这一功能,但是可以调用 Maple 函数库中的 changevar 命令,调用方法如下:

24 进行分部积分的计算

自身没有提供这一功能,但是可以调用 Maple 函数库中的 intparts 命令,调用方法如下:

25 对数列和级数进行求和

```
syms n
symsum(f(n), n ,a ,b )
```

26 进行连乘

```
maple('product(f(n), n=a..b)')
```

27 展开级数

Taylor(
$$f(x)$$
, x , n , a)

28 进行积分变换

 ${\tt syms} \ {\tt s} \ {\tt t}$

laplace(f(t), t, s)

拉

普拉斯变换

ilaplace(F(s), s, t)

拉

普拉斯变换的逆变换

 $\text{syms}\quad t\quad \omega$

fourier(f(t), t, ω)

傅立叶变换

ifourier($F(\omega)$, ω , t)

傅

立叶变换的逆变换

 syms n z

 ztrans(f(n), n, z)
 Z

 变换

 iztrans(F(z), z, n)
 Z

 变换的逆变换

在 matlab 中,矩形法、梯形法和辛普森法求近似积分

可以用自身的命令,也可调用 Maple 的相应命令。调用方法如下:

maple('with(student)')
maple('Maple 中求定积分近似值的命令')

29 解微分方程

Dsolve('微分方程', '自变量')

dsolve('微分方程','初始条件或边界条件','自变量')

30 解微分方程组

Dsolve('微分方程组','自变量')

dsolve('微分方程组','初始条件或边界条件','自变量')