

Convolutional Networks Fincoder/Decoder ReLu BatchNorm Concat Dropout Pooline

DDPG

Block Sparse LSTM

New

There is a Cambrian explosion of neural networks.

Thousands of new networks over the past 5 years

Models are getting smarter

PROGRAMMABILITY

LATENCY

ACCURACY

SIZE

THROUGHPUT

ENERGY EFFICIENCY

RATE OF LEARNING

NEURAL NETWORK COMPLEXITY IS EXPLODING

Bigger and More Compute Intensive

RISE OF NVIDIA GPU COMPUTING

CUDA - Domain Specific Computing Architecture 10X in 5 Years

40 Years of CPU Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

TESLA PLATFORM STACK

World's Leading Data Center Platform for Accelerating HPC and Al

VOLTA TENSOR CORE

FP16 8x CUDA core 125 TFLOPs

TURING TENSOR CORE

SW at Launch

75W

TensorRT, Libraries

CUTLASS Open Source Tensor Library, CUDA

NVIDIA T4: NEXT GENERATION INFERENCE WITH TURING TENSOR CORES

Turing Tensor Cores 65 TFLOPs FP16 130 TOPs INT8 260 TOPs INT4

Programmable Acceleration at scale

Inference
Next Generation Inference With
Turing Tensor Cores for
FP16, INT8, INT4, INT1

Video & Graphics
2x User density vs P4
2x Video Decode capability vs P4

DL Training
Entry level training SKU with
Turing Tensor Cores

NVIDIA TensorRT

Deep Learning Inference Optimizer and Runtime

Optimize neural networks and Deploy in production environments

Maximize inference throughput for latency-critical services in production

Deploy faster, more responsive and memory efficient applications with INT8 and FP16 optimizations

Accelerate models trained in any framework with ONNX support and native framework integrations

Automotive

Data center

Jetson

Drive PX

Tesla

WIDELY ADOPTED

ANNOUNCING TensorRT 5

Turing Support • Inference Server • Optimizations & APIs

Free download to members of NVIDIA Developer Program soon at

developer.nvidia.com/tensorrt

TensorRT INTEGRATED WITH TensorFlow

Speed up TensorFlow inference with TensorRT optimizations

Speed up TensorFlow model inference with TensorRT with new TensorFlow APIs

Simple API to use TensorRT within TensorFlow easily

Sub-graph optimization with fallback offers flexibility of TensorFlow and optimizations of TensorRT

Optimizations for FP32, FP16 and INT8 with use of Tensor Cores automatically


```
# INT8 specific graph conversion
trt_graph = trt.calib_graph_to_infer_graph(calibGraph)
```

Available from TensorFlow 1.7

https://github.com/tensorflow/tensorflow

INEFFICIENCY LIMITS INNOVATION

Difficulties with Deploying Data Center Inference

NVIDIA TensorRT INFERENCE SERVER

Containerized Microservice for Data Center Production

Maximize real-time inference performance of GPUs

Quickly deploy and manage multiple models per GPU per node

Easily scale to heterogeneous GPUs and multi GPU nodes

Integrates with orchestration systems and auto scalers via latency and health metrics

