PURE MATHEMATICS SEMINAR

TROGONOMETRY

Pythagoras theorem

1. Solve the following equations, giving the values of θ from 0° to 360° inclusive.

a.
$$3 - 3\cos\theta = 2\sin^2\theta$$

$$b. cosec^2\theta = 3tan\theta - 1$$

c.
$$2\cot^2\theta + 8 = 7\csc\theta$$

2. Prove the following identities

i.
$$tan\theta + cot\theta = \frac{1}{sin\theta cos\theta}$$

ii.
$$sec^2\theta - cosec^2\theta = tan^2\theta - cot^2\theta$$

iii.
$$(sec\theta + tan\theta)(sec\theta - tan\theta) = 1$$

iv.
$$sec^2\theta - cosec^2\theta = \frac{sin^2\theta - cos^2\theta}{cos^4\theta sin^4\theta}$$

$$v. \frac{1-\cos^2\theta}{\sec^2\theta-1} = 1 - \sin^2\theta$$

3. Eliminate θ from the following equations

i.
$$x = acos\theta$$
, $y = bsin\theta$

ii.
$$x = atan\theta$$
, $y = bcos\theta$

iii.
$$x = asec\theta$$
, $y = b + dcos\theta$

iv.
$$x = cos\theta$$
, $y = cosec\theta - cot\theta$

The formula for $sin(A \pm B)$, $cos(A \pm B)$

1. Given that $sinA = \frac{4}{5}$ and $cosB = \frac{12}{13}$, where A is obtuse and B is acute, find the values of;

- a. sin(A + B)
- b. cos(A + B)
- c. $\cot(A+B)$
- d. sin(A B)

2. If
$$tan(A + B) = \frac{1}{7}$$
 and $tanA = 3$, find the value of $tan B$

3. If
$$sin(x - \alpha) = cos(x - \alpha)$$
, prove that $tan x$

4. Prove the following

a.
$$sin(A + B) + sin(A - B) = 2 sin A sin B$$

$$b. \cos(A+B) - \cos(A-B) = -2\sin A \sin B$$

c.
$$\tan A + \tan B = \frac{\sin(A+B)}{\cos A\cos B}$$

5. Prove that

$$\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan A \tan C - \tan B \tan C}$$

Hence prove that if A, B, C are angles of a triangle, then $\tan A + \tan B + \tan C = \tan A \tan B \tan C$

The double angle formula

- 1. Prove that $\sin 3A = 3 \sin A 4 \sin^3 A$
- 2. Prove that $\cos 3A = 4\cos^3 A 3\cos A$
- 3. Solve the following equations for the values of θ from 0° to 360°
- a. $3\cos 2\theta \sin \theta + 2 = 0$
- b. $\sin 2\theta \cos \theta + \sin^2 \theta$
- c. $3 \cot 2\theta + \cot \theta = 1$

4. Eliminate θ from the following equations

a.
$$x = \cos \theta$$
, $y = \cos 2\theta$

b.
$$x = 2 \sin \theta$$
, $y = 3 \cos 2\theta$

c.
$$x = \tan \theta$$
, $y = \tan 2\theta$

d.
$$x = 2 \sec \theta$$
, $y = \cos 2\theta$

5. Prove that

$$a. \frac{\cos 2\theta}{\cos A + \sin A} = \cos A - \sin A$$

$$b. \frac{\cos A}{\sin B} - \frac{\sin A}{\cos B} = \frac{2\cos(A+B)}{\sin 2B}$$

c.
$$\cot A - \tan A = 2 \cot 2A$$

$$d. \frac{\sin 2A}{1+\cos 2A} = \tan A = \frac{1-\cos 2A}{\sin 2A}$$

Section D: The t-Formulae

Solve the following equations for $0^{\circ} \le \theta \le 360^{\circ}$

a.
$$2\cos\theta + 3\sin\theta = -2$$

b.
$$7\cos\theta + \sin\theta - 5 = 0$$

c.
$$3\cos\theta - 4\sin\theta + 1 = 0$$

d.
$$3\cos\theta + 4\sin\theta = 2$$

Section E: the form $a\cos\theta + b\sin\theta$

- 1. Show that $\sqrt{3}\cos\theta \sin\theta$ maybe written as $2\cos(\theta + 30^\circ)$ or $2\sin(60^\circ \theta)$. find the maximum and minimum values of the expression, state the values of θ between 0° and 360° for which they occur.
- 2. Show that $3\cos\theta + 2\sin\theta$ maybe written in the form $R\cos(\theta \alpha)$; where α is acute. Find the values of R and α

GENERAL QUESTIONS

1. Solve the following equations for the values of x from 0° to 360° .

a.
$$\cos x + \cos 5x = 0$$

b.
$$\sin 3x - \sin x = 0$$

c.
$$\sin(x + 10^{\circ}) + \sin x = 0$$

d.
$$cos(2x + 10^{\circ}) + cos(2x - 10^{\circ}) = 0$$

2. Prove that
$$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$

3. Prove that
$$\frac{\sin B - \sin C}{\sin B + \sin C} = \cot \frac{B + C}{2} \tan \frac{B - C}{2}$$

4. If
$$2A + B = 45$$
, show that $\tan B = \frac{1-2 \tan A - tan^2 A}{1+2 \tan A - tan^2 A}$

5. If A, B, and C are angles of a triangle, prove that

$$\cos A + \cos B + \cos C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$