ЛАБОРАТОРНА РОБОТА №1

Верцімаха Оксана, прикладна статистика

В роботі досліджуються такі дані населення:

- •1. Величина субсидій (Т сумарне значення)
- •2. Загальний прибуток сім'ї (У середнє значення)
- •3. Оренда квартири (Р частка сімей, що проживають в орендованому житлі)

> M

	block	house
1	22	3
2	36	5
3	55	2
4	14	6
5	26	7
6	9	4
7	49	8
8	16	1
9	13	2
10	22	4

Тестова вибірка з 10 домогосподарств, обрана за допомогою простого випадкового відбору без повернення, ПВВбП

```
Data<-data.frame(test_sample$V3,test_sample$V11, test_sample$V9,
    strtoi(test_sample$V19), stringsAsFactors = F)
colnames(Data)<-c("Residents", "Income", "Subsidies", "Rent")

#Estimation of total
    (total of goverment transfer payments received by the population)
t<-N*sum(Data$Subsidies)/n1

#Estimation of mean (mean total income of a household)
m<-mean(Data$Income)

#Estimation of proportion
    (proportion of families with rented household)
p<- 1 - sum(is.na(Data$Rent))/n1</pre>
```

Отримані значення оцінок:

Tota	1 , î	Mean, \widehat{m}	Proportion, \widehat{p}
11992	280	83505.6	0.3

Estimation of variance for the total

Estimation of variance for the mean

$$Sm<-sum((Data$Income-m)^2)/(n1-1)$$

Estimation of variance for the proportion

$$Sp < -p*(1-p)*n1/(n1-1)$$

Отримані значення оцінок для дисперсій оцінок:

Total, \widehat{S}^2	Mean, \widehat{S}^2	Proportion, \widehat{S}^2	
1.380693e+12	309924528	0.23	

2. Для того, щоб оцінити розмір вибірки, необхідний для знаходження 95% довірчих інтервалів з точність в 10% для усіх параметрів дослідження одночасно, знайдемо відповідні розміри вибірки для кожного параметра. Тобто, такі n, що $P\left(\left|\frac{\bar{y}-\bar{y}_U}{\bar{y}_U}\right| \le 0.1\right) \approx 0.95$, для відповідних y.

```
alpha<-0.05
e<-0.1
z<-qnorm(1-alpha/2)
CV<-c(sqrt(St)/t, sqrt(Sm)/m, sqrt(Sp)/p)
En<-z^2*CV^2/(e^2+CV^2*z^2/N)</pre>
```

Total, n	Mean, n	Proportion, n
209	17	324

Отже, якщо ми використаємо вибірку з 324 елементів, то зможемо розраховувати на задану точність оцінок.

#ПВВбП n<-324 ind<-sample(1:N, n)</pre> # Завантажуємо дані Sample<-data.frame(full_stat\$v3[ind],full_stat\$v11[ind],</pre> full_stat\$v9[ind], strtoi(full_stat\$V19[ind]), stringsAsFactors = F) colnames(Sample)<-c("Residents", "Income", "Subsidies", "Rent")</pre> t<-N*sum(Sample\$Subsidies)/n m<-mean(Sample\$Income)</pre> tm<-sum(Sample\$Subsidies)/n</pre> p<-1 - sum(is.na(Sample\$Rent))/n</pre> $St<-(N^2)*sum((Sample$Subsidies-tm)^2)/(n-1)$ $Sm<-sum((Sample$Income-m)^2)/(n-1)$ Sp < -p*(1-p)*n/(n-1)alpha < -0.05z < -qnorm(1-alpha/2)S<-c(St,Sm,Sp) est<-c(t,m,p) val1 < -est-z*sqrt(S*(1/n-1/N))val2 < -est + z*sqrt(S*(1/n-1/N))

	$\widehat{m{ heta}}$	$\widehat{m{ heta}}$	$\widehat{m{ heta}}_+$
Total, \hat{t}	1254399.4	1390840	1527280.6
Mean, \widehat{m}	82339.286	84379.281	86419.275
Proportion, \widehat{p}	0.12896007	0.15123457	0.17350906