Interpretting Representations: Preview

We have described an L layer (Sequential) Neural Network as

- a sequence of tranformations of the input
 - ullet each transformation a layer $1 \leq l \leq (L-1)$, producing a new representation $\mathbf{y}_{(l)}$
- ullet that feed the final representation $\mathbf{y}_{(L-1)}$ to a *head* (classifier, regressor)

Layers

Is it possible to interpret each representation $\mathbf{y}_{(l)}$?

- What do the new "synthetic features" mean?
- Is there some structure among the new features?
 - e.g., does each feature encode a "concept"

We will briefly introduce the topic of Interpretation.

A deeper dive will be the subject of a later lecture.

Our goal, for the moment, is to motivate Autoencoders.

Interpretation 1: Clustering of examples

One way to try to interpet $\mathbf{y}_{(l)}$ is relative to a dataset

$$\langle \mathbf{X}, \mathbf{y} \rangle = \{ \mathbf{x^{(i)}}, y^{(i)} | 1 \le i \le m \}$$

By passing each example $\mathbf{x^{(i)}}$ through the layers to obtain $\mathbf{y}_{(l)}^{(i)}$ we create a mapping from examples to layer l representations

$$\langle \mathbf{X}, \mathbf{y}_{(l)}
angle = \{\mathbf{x^{(i)}}, \mathbf{y}_{(l)}^{(i)} \mid 1 \leq i \leq m \}$$

Let's create a scatter plot of each example's representation $\mathbf{y}_{(l)}^{(\mathbf{i})}$

- ullet In $n_{(l)}$ -dimensional space
- Labelling each point
- ullet With the target $\mathbf{y}_{(l)}$
- Or with a set of input atttributes, e.g., $(\mathbf{x}_j^{(\mathbf{i})}, \mathbf{x}_{j'}^{(\mathbf{i})})$

Perhaps clusters of examples will appear. If all points in the cluster have the same label • We might be able to identify the representation with a target or set of input features

epresentation of the MNIST digits in an intermediate layer of
coder half of an Autoencoder in a subsequent lecture
•

MNIST clustering produced by a VAE

- Each point is an example $\mathbf{x}^{(i)}$
- With coordinates chosen from two of the synthetic features in $\mathbf{y}_{(l)}$
- \bullet The color corresponds to the label $\mathbf{y^{(i)}}$ (i.e., the digit that is represented by the image)

You can see that some digits form tight clusters.

By understanding

- The commonality of examples within a cluster
- How the digit label's vary as a synthetic feature varies

we might be able to infer meaning of the synthetic features.

The first two synthetic features in $\mathbf{y}_{(l)}$ of MNIST may correspond to properties of those digits

- digits with "tops"
- digits with "curves"

Note This is not too different from trying to interpret Principal Components:

Interpretation 2: Examining the latent space

Suppose we could *invert* the representation $\mathbf{y}_{(l)}$ to obtain a value \mathbf{x} that lies in the input domain.

Then

- By perturbing individual synthetic features $\mathbf{y}_{(l),j}$ in a given representation $\mathbf{y}_{(l)}$ to obtain $\mathbf{y}'_{(l)}$
- ullet And examining the effect on the inverted value ${f x}'$
- ullet We might be able to assign meaning to the layer l feature $\mathbf{y}_{(l),j}$

Note that the invered value \mathbf{x}' is not necessarily (and probably not) a value in training set \mathbf{X} !

- It is merely a value obtained by the mathematical inversion of a function
- Especially since the perturbed \mathbf{y}' may not be the mapping of any example $\mathbf{x^{(i)}} \in \mathbf{X}$

Here are the inverted images obtained by perturbing two synthetic features in $\mathbf{y}_{(l)}$ • Horizontal axis perturbs one feature • Vertical axis perturbs a second feature

MNIST clustering produced by a VAE

Some observations (with possible intepretation)

- Does the synthetic feature on the horizontal axis control slant?
 - Examine 0's along bottom row
- Does the synthetic feature on the vertical axis control "curviness"?
 - Examine the 2's column at the right edge, from bottom to top

There is no reason to expect that the inversion of an arbitrary representation looks like a digit but it does!

Perhaps

- The mapping from inputs to representations is such that similar inputs have very similar representations
- Or we impose some constraints on the inversion to force the inverted value to look like a digit

In order for this method to work, we must be able to invert $\mathbf{y}_{(l)}$.

We will show how to do this in a later lecture.

Deja vu: have we seen this before?

These two methods of interpretation have been encountered in an earlier lecture

- ullet mapping original features $\mathbf{x^{(i)}}$ to synthetic features $\mathbf{ ilde{x}^{(i)}}$
- ullet inverting synthetic feature $ilde{\mathbf{x}}^{(\mathbf{i})}$ to obtain original feature $\mathbf{x}^{(\mathbf{i})}$

Principal Component Analysis (PCA)!

PCA is an Unsupervised Learning task that can be used for

- dimensionality reduction
- clustering

The key to it's intepretability was the simplicity of transforming and inverting

 $\mathbf{X} = U\Sigma V^T$ SVD decomposition of \mathbf{X}

 $\tilde{\mathbf{X}} = \mathbf{X}V$ tranformation to synthetic features

 $\mathbf{X} = \tilde{\mathbf{X}}V^T$ inverse tranformation to original features

Conclusion

Neural Networks have the reputation of being magical but opaque.

We hope this brief introduction to interpretation provides some hope that we can understand their inner workings.

A separate lecture will explore this topic in greater depth.

```
In [4]: print("Done")
```

Done