Sommaire Introduction Spécification Orderings Algorithmes Exemples

Unranking of labeled combinatorial classes

Katia A., Firat M.

Sorbonne Université, UFR Ingénierie Frédéric PESCHANSKI

Novembre 2019

Sommaire

- Introduction
- 2 Spécification
- Orderings
- 4 Algorithmes
- 5 Exemples

Unranking

Génération d'un objet a d'une classe combinatoire $\mathscr A$ selon :

- son rang.
- sa taille.
- une spécification de A.

Rang de a dans \mathscr{A} : nombre d'objets de même taille dans \mathscr{A} qui sont strictement plus petits que a (selon un ordre fixé).

Chaînes de caractères et arbres binaires sont des exemples de structures combinatoires.

3 Problèmes

- Génération ordonnée : itérateur générant tous les objets d'une taille donnée d'une classe combinatoire A.
- Ranking: donner le rang d'un objet a appartenant à une classe combinatoire A.
- Unranking: Générer un objet a selon une classe combinatoire
 A, une taille et un rang données.

Nous considérons, dans la suite, uniquement le cas des structures combinatoires labellisées.

Sommaire Introduction Spécification Orderings Algorithmes Exemples

Spécification

Orderings: Union

Soit $\mathscr A$ et $\mathscr B$ deux classes combinatoires et $<_{\mathscr C_n}$ l'ordre fixé pour les objets de taille n dans $\mathscr C$.

Si $\mathscr{C}=\mathscr{A}\cup\mathscr{B}$ alors les éléments de \mathscr{A} apparaissent avant ceux de \mathscr{B} dans \mathscr{C} .

$$\gamma_1 <_{\mathscr{C}_n} \gamma_2 \iff (\gamma_1 <_{\mathscr{A}_n} \gamma_2 \text{ et } \gamma_1, \gamma_2 \in \mathscr{A}) \text{ ou } (\gamma_1 <_{\mathscr{B}_n} \gamma_2 \text{ et } \gamma_1, \gamma_2 \in \mathscr{B}) \text{ ou } (\gamma_1 \in \mathscr{A} \text{ et } \gamma_2 \in \mathscr{B})$$

Orderings : Produit

Soit $\mathscr A$ et $\mathscr B$ deux classes combinatoires, $<_{\mathscr C_n}$ l'ordre fixé pour les objets de taille n dans $\mathscr C$ et $<_{\mathscr L_n}$ l'ordre numérique entre les étiquettes.

$$\gamma < (\alpha, \beta) \text{ et } \gamma' < (\alpha', \beta) \Longleftrightarrow |\alpha| < |\alpha'| \text{ ou}$$

$$(j = |\alpha| = |\alpha'| \text{et} |\alpha| <_{\mathscr{A}_n} |\alpha'|) \text{ ou}$$

$$(\alpha = \alpha' \text{et} \beta <_{\mathscr{B}_n} \beta') \text{ ou}$$

$$(\alpha = \alpha' \text{et} \beta = \beta' \text{ et } l_{\gamma} <_{\mathscr{L}_n} l_{\gamma}')$$

Union

Soit $\mathscr{A} + \mathscr{B}$ l'union, n un rang, i le i-ème élément de rang n dans l'union et count (\mathscr{A}, n) le nombre d'objets de rang n dans \mathscr{A} .

Algorithm 1 unrank($\mathscr{A} + \mathscr{B}$, n, i)

- 1: $c \leftarrow \operatorname{count}(\mathscr{A}, n)$
- 2: if i < c then
- 3: unrank(\mathscr{A} , n, i)
- 4: else
- 5: unrank(\mathscr{B} , n, i c)
- 6: end if

Produit (ordre lexicographique)

Algorithm 2 unrank($\mathscr{A} * \mathscr{B}$, n, i)

```
1: c \leftarrow 0; d \leftarrow count(\mathscr{A}, j) * count(\mathscr{B}, n - j)
```

2: while ss do

3:
$$c \leftarrow c + d; j \leftarrow j + 1$$

4:
$$d \leftarrow \binom{n}{j} * count(\mathscr{A}, j) * count(\mathscr{B}, n - j)$$

5: end while

6:
$$i' \leftarrow i - c$$

7:
$$I \leftarrow i' mod \binom{n}{i}$$

8:
$$i'' \leftarrow i' \operatorname{div}\binom{n}{i}$$
; $b \leftarrow \operatorname{count}(\mathscr{B}, n - j)$

9:
$$\alpha \leftarrow unrank(\mathscr{A}, j, i''divb)$$

10:
$$\beta \leftarrow unrank(\mathcal{B}, n - j, i'' mod b)$$

11: return
$$<(\alpha,\beta),l>$$

Sommaire Introduction Spécification Orderings Algorithmes

Produit(ordre boustrophédonique)

la taille du premier composant

Union 1/2

Soit \mathscr{A} et \mathscr{B} des structures combinatoires. \mathscr{A}_n (resp. \mathscr{B}_n) représente une chaîne de caractère composé exactement d'une lettre x (resp. y) et de n-1 lettre a (resp. b). Le i-ème élément de \mathscr{A}_n est la chaîne de caractère ayant la lettre xen i-ème position (avec $1 \le i \le n$).

```
Exemple : \mathcal{A}_4 = ["xaaa", "axaa", "aaxa", "aaax"],
\mathcal{B}_4 = ["ybbb", "bybb", "bbyb", "bbby"]
```

Union 2/2

Soit
$$\mathscr{C} = \mathscr{A} \cup \mathscr{B}$$
.
 $\mathscr{C}_4 = ["xaaa", "axaa", "aaxa", "aaxa", "ybbb", "bybb", "bbyb", "bbby"]$
unrank $(\mathscr{A} \cup \mathscr{B}, 4, 2) = \text{unrank}(\mathscr{A}, 4, 2) = "axaa"$
unrank $(\mathscr{A} \cup \mathscr{B}, 4, 7) = \text{unrank}(\mathscr{B}, 4, 3 (= 7 - 4)) = "bbyb"$