Cálculo Diferencial em ℝ

Cálculo para Engenharia

Maria Elfrida Ralha

Licenciatura em Engenharia Informática

Algumas Aplicações das Derivadas

Nota

Nesta próxima secção as funções (reais de variável real) têm domínios que são ou intervalos ou uma reunião de intervalos.

Índice

- 1 Limites: levantamento de Indeterminações
- 2 Monotonia e extremos de funções
- 3 Concavidade(s) e ponto(s) de inflexão
- 4 Aproximação polinomial de funções

Quando
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0}$$

[Teorema/Regra de L'Hôpital]

Sejam $f,g:I\longrightarrow\mathbb{R}$ funções deriváveis num intervalo aberto I exceto, eventualmente, no ponto $c \in I$ e tais que

$$\lim_{x \to c} f(x) = 0 \qquad \qquad e \qquad \qquad \lim_{x \to c} g(x) = 0.$$

Admita-se que $\forall x \in I, g'(x) \neq 0$, exceto, eventualmente, no ponto c.

Se o limite

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L, \qquad L \in \mathbb{R},$$

então o limite $\lim_{x\to c} \frac{f(x)}{\sigma(x)}$ também existe e

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Observações

Nota

- A regra/teorema de l'Hôpital
 - também é válida quando o limite do quociente $\frac{f'(x)}{g'(x)}$ é um infinitamente grande
 - estende-se aos limites no infinito
 - pode ser aplicada recursivamente
 - recorrendo a manipulações algébricas, é aplicável a outras formas de indeterminação
 - NÃO é aplicável quando os limites do numerador ou do denominador existem, mas não são iguais a zero.

• Se $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} = \frac{0}{0}$$

• [Exercício] $\lim_{x \to +\infty} \frac{x^n}{e^x}$?

• Se $\lim_{x\to a} f(x) = 0 \wedge \lim_{x\to a} g(x) = \infty$, então

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} = \frac{0}{0}$$

• [Exercício] $\lim_{x\to 2} \left(\frac{x^2-4}{x} \cdot \frac{x+1}{x^2-4x+4} \right)$?

• Se $\lim_{x \to a} f(x) = +\infty \wedge \lim_{x \to a} g(x) = -\infty$, então

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} \left[\frac{1}{\frac{1}{f(x)}} + \frac{1}{\frac{1}{g(x)}} \right] =$$

$$= \lim_{x \to a} \frac{\frac{1}{g(x)} + \frac{1}{f(x)}}{\frac{1}{f(x)} \times \frac{1}{g(x)}} = \frac{0}{0}$$

• [Exercício] $\lim_{x\to 0^+} \left(\csc x - \frac{1}{x} \right)$?

$$1^{\infty}$$
, 0^0 e ∞^0

O logaritmo pode ser usado para converter cada uma destas indeterminações...

Nota

Recordar que $\ln x^p = p \ln x$

• [Exemplo] Calcule-se, se existir, $\lim_{x\to 0^+} x^x$.

$$\lim_{x \to 0^{+}} [\ln(x^{x})] = \lim_{x \to 0^{+}} [x \ln(x)] = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} = \dots = 0$$

Donde,

$$\lim_{x \to 0^+} x^x = e^{\{\lim_{x \to 0^+} [\ln(x^x)]\}} = e^0 = 1$$

Índice

- 1 Limites: levantamento de Indeterminações
- 2 Monotonia e extremos de funções
- 3 Concavidade(s) e ponto(s) de inflexão
- 4 Aproximação polinomial de funções

Definições Uma função f, real de variável real, definida em \mathcal{D}_f , tem um **máximo absoluto**/global, num ponto $c \in \mathcal{D}_f$, quando

$$f(x) \leq f(c), \quad \forall x \in \mathcal{D}_f.$$

e tem um **mínimo absoluto**/global, num ponto $c \in \mathcal{D}_f$, quando

$$f(x) \geq f(c), \quad \forall x \in \mathcal{D}_f.$$

Obs: Máximos e Mínimos dizem-se extremos de f.

Exercícios Classifique os extremos absolutos da função f, definida por $f(x) = x^2$, sabendo que o seu domínio é \mathcal{D}_f , onde

- a) $\mathcal{D}_f=\mathbb{R}$. Sem máximo absoluto & com mínimo absoluto = 0, para imes=0.
- b) $\mathcal{D}_f = [0,2]$. Com máximo absoluto ... & com mínimo absoluto
- c) $\mathcal{D}_f =]0,2]$.Com máximo absoluto ... & Sem mínimo absoluto.
- d) $\mathcal{D}_f =]0, 2[$. Sem extremos absolutos.

• [Teorema dos extremos]

Se f é uma função real de variável real, definida e contínua em um intervalo fechado [a, b], então f atinge um valor absoluto máximo M e um valor absoluto mínimo em [a, b].

Isto é ,existem x_1 e x_2 em [a,b], com $f(x_1)=M$ e $f(x_2)=m$, e

$$m \le f(x) \le M, \quad \forall x \in [a, b]$$

Nota

Os pressupostos, no teorema, são essenciais!

Exemplo: Considere-se a função, real de variável real, definida por $f(x) = \begin{cases} x, & 0 \le x < 1 \\ 0, & x = 1 \end{cases}$

Monotonia e extremos

Seja $f:I\longrightarrow \mathbb{R}$ –com I um intervalo fechado– uma função derivável

- Já vimos que
 - se f'(x) > 0 em I, então f é crescente em I
 - se f'(x) < 0 em I, então f é decrescente em I
- [Ponto Crítico] Um ponto $x_0 \in I$ diz-se um ponto crítico de f quando $f'(x_0)$ não existe ou quando $f'(x_0) = 0$.

Teste das 1.as Derivadas

Como encontrar os extremantes de uma função?

Seja $f: I \longrightarrow \mathbb{R}$ –com I um intervalo fechado– uma função derivável

Nota (Sobre a deteção de extremantes)

[Teste da 1.ª derivada]

- Sendo x₀ um ponto crítico de f.
 - Se f' muda de sinal negativo para positivo em x_0 , então x_0 é um minimizante local de f (e $f(x_0)$ diz-se um mínimo)
 - Se f' muda de sinal positivo para negativo em x_0 , então x_0 é um maximizante local de f (e $f(x_0)$ diz-se um máximo)

Teste das 1.^{as} Derivadas: explicações...

- Quais os pontos onde uma função f, real de variável real, definida em um intervalo ou numa reunião de intervalos (disjuntos), poderá ter extremos?
 - nos pontos interiores, onde f' = 0.
 - nos pontos interiores, onde f' não está definida.
 - nas extremidades do domínio.
- Como encontrar os extremos absolutos de uma função, contínua, num intervalo fechado?
 - encontrar todos os pontos críticos de f, no intervalo.
 - avaliar f em todos os pontos críticos, bem como nas extremidades do intervalo.
 - 1 tomar o major e o menor desses valores.

[-2, 3]

Índice

- Limites: levantamento de Indeterminações
- 2 Monotonia e extremos de funções
- Concavidade(s) e ponto(s) de inflexão
- 4 Aproximação polinomial de funções

Concavidade(s) e ponto(s) de inflexão

Seja $f: I \longrightarrow \mathbb{R}$, com I um intervalo aberto.

 [Concavidade] O gráfico de f tem a concavidade voltada para cima em I quando

$$\forall x_1, x_2 \in I : x_1 < x_2$$

o gráfico de f em $[x_1, x_2]$ está abaixo do segmento de reta que une os pontos cujas coordenadas são $(x_1, f(x_1))$ a $(x_2, f(x_2))$

- No caso de f ser derivável em I, o gráfico de f tem a concavidade voltada para cima quando f' for crescente neste intervalo
- De forma análoga, o gráfico de f tem a concavidade voltada para baixo em I quando para todos os $x_1, x_2 \in I$ tais que $x_1 < x_2$ o gráfico de f em $[x_1, x_2]$ está acima do segmento de reta que une os pontos cujas coordenadas são $(x_1, f(x_1))$ a $(x_2, f(x_2))$

Teste das 2.as Derivadas

Seja $f: I \longrightarrow \mathbb{R}$, I um intervalo, e $f \in C^2(I)$.

- Se f''(x) > 0 em I, então o gráfico de f tem a concavidade voltada para cima em I
- Se f''(x) < 0 em I, então o gráfico de f tem a concavidade voltada para baixo em I

Nota

[Teste da 2.ª derivada]

- Seja x₀ um ponto crítico de f.
 - Se $f''(x_0) > 0$, então f tem um mínimo local em x_0 .
 - Se $f''(x_0) < 0$, então f tem um máximo local em x_0 .
 - Se $f''(x_0) = 0$, então nada se pode concluir.

Observações

 [Ponto de inflexão] Um ponto do domínio de uma função contínua onde o gráfico muda de concavidade chama-se ponto de inflexão.

Nota

Se $f''(x_0) = 0$, então x_0 é um ponto de inflexão.

Exercícios

- A função $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é derivável em \mathbb{R} e tem um ponto crítico em $x_0 = 0$ pois f'(0) = 0.

 Usando o teste da $2.^{\frac{a}{2}}$ derivada, f''(0) > 0, $x_0 = 0$ é um maximizante local de f.
- ② A função $g: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $g(x) = x^3$ é derivável em \mathbb{R} . Embora $x_0 = 0$ seja um ponto crítico, a função não tem aqui um extremo pois f''(0) = 0.

 $x_0 = 0$ é um ponto de inflexão da função g.

③ A função $h: \mathbb{R} \longrightarrow \mathbb{R}$, definida por h(x) = |x| não é derivável em \mathbb{R} , pois não é derivável em $x_0 = 0$. À função h não é aplicável o teste da $1.\frac{a}{2}$ derivada em $x_0 = 0$, porque a função não é derivável neste ponto. No entanto, f tem um extremo em $x_0 = 0$ pois é contínua neste ponto, é crescente em $]0, \varepsilon[$ e decrescente em $]-\varepsilon, 0[$.

Representação gráfica de funções (Esboço)

Seja $f: D \longrightarrow \mathbb{R}$ uma função real de variável real. Com vista a uma **representação gráfica da função definida** y = f(x), os passos seguintes fornecem informações úteis para fazer um esboço:

- Determinação do domínio e contradomínio;
- Análise de alguns limites apropriados;
- 3 Interseção com os eixos: x tal que f(x) = 0 e y tal que f(0) = y;
- 4 Algumas características geométricas: simetria, periodicidade, ...;
- Extremantes e intervalos de monotonia;
- Pontos de inflexão e intervalos de concavidade.

Exercícios

1 Justifique as representações gráficas das funções hiperbólicas...

2 Esboce graficamente a função definida por $\frac{2x^2}{x^2-1}$

Índice

- Limites: levantamento de Indeterminações
- 2 Monotonia e extremos de funções
- Concavidade(s) e ponto(s) de inflexão
- Aproximação polinomial de funções

Aproximação polinomial de funções

• [Polinómio de Taylor]

Seja $f:I\longrightarrow \mathbb{R}$ uma função e $a\in I$ tal que a n-ésima derivada de f existe em a. O polinómio

$$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

é chamado polinómio de Taylor de f, de ordem n, em torno do ponto a.

Exemplo

1.
$$f(x) = e^x$$
, $x \in \mathbb{R}$,

$$a = 0$$

Figura:
$$P_{1,0}(x) = 1 + x$$
 $P_{2,0}(x) = 1 + x + \frac{x^2}{2}$

Figura:
$$P_{3,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
 $P_{4,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$

$$P_{4,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

No caso de $f(x) = e^x$ demonstra-se que, para um qualquer $n \in \mathbb{N}_0$, se tem

$$P_{n,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots + \frac{x^n}{n!}$$

Observação

$$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

- **1** Os coeficientes de $P_{n,a}$ dependem das derivadas de f calculadas em a.
- ② Se f é n vezes derivável em $a \in I$ está garantida a existência das constantes

$$f(a), f'(a), f''(a), \ldots, f^{(n)}(a).$$

§ $P_{n,a}$ é um polinómio de grau não superior a n: grau $P_{n,a} \leq n$.

Teorema da Unicidade do Polinómio de Taylor

• Sejam $f,g:I\longrightarrow \mathbb{R}$ funções contínuas em $a\in I$. Dado $n\in \mathbb{N}_0$, diz-se que f e g são iguais até à ordem n em a quando

$$\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^n} = 0$$

• Quando existem $f'(a), \ldots, f^{(n)}(a), g'(a), \ldots, g^{(n)}(a)$. Então

f é igual a g até à ordem n, em a, se e só se

$$f(a) = g(a), \quad f'(a) = g'(a), \dots, f^{(n)}(a) = g^{(n)}(a)$$

Teorema (Unicidade Polinómio Taylor)

O polinómio de Taylor $P_{n,a}$ é o único polinómio de grau não superior a n cujas derivadas no ponto a (desde a ordem 0 até à ordem n) coincidem com as correspondentes derivadas de f no ponto a.

Fórmula de Taylor

• [Fórmula de Taylor]

Chamamos fórmula de Taylor de ordem n para a função f em torno do ponto a à expressão

$$f(x) = P_{n,a}(x) + R_{n,a}(x)$$
 com $\lim_{x \to a} \frac{R_{n,a}(x)}{(x-a)^n} = 0$,

onde

- $P_{n,a}$ é o Polinómio de Taylor, de f de ordem n em a
- $R_{n,a}$ diz-se resto de Taylor de f de ordem n em a.

- Consideremos, por exemplo, $f(x) = \ln(1+x), x \in]-1, +\infty[$. Neste caso tem-se que $\ln(1.1) = f(0.1)$.
- Encontremos polinómios de Taylor de f em torno de a = 0.
 - De ordem n = 1: $P_{1,0}(x) = x$
 - De ordem n = 2: $P_{2,0}(x) = x \frac{x^2}{2}$
 - De ordem n = 3: $P_{3,0}(x) = x \frac{x^2}{2} + \frac{x^3}{3}$
 - De ordem · · ·
 - Mostra-se que o Polinómio de Taylor de f, de ordem n em torno de a = 0 é

$$P_{n,0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots + (-1)^{n-1} \frac{x^n}{n}.$$

- Assim, valores aproximados para ln(1.1) são
 - De ordem n = 1: $P_{1,0}(0.1) = 0.1$
 - De ordem n = 2: $P_{2,0}(0.1) = 0.095$
 - De ordem n = 3: $P_{3,0}(0.1) = 0.0953$
 - De ordem · · ·
 - De ordem n = 10: $P_{10.0}(0.1) = 0.095310179803492$

