MPC for planning and control

From modeling and solver

Basic concept

RL

$$\min_{\substack{\{\pi_k+\}j=0\\ \{\pi_k+\}j=0\}}} \mathbf{E}_{x_k} [\sum_{j=0}^{N-1} J(x_{k+j},\pi_{k+j}) + J_N(x_{k+N})]$$
s.t.
$$x_{k+1} = Ax_k + Bu_k + Gw_k$$

$$Pr(E_x x_{k+j} \leq \mathbf{1}) \geq 1 - \epsilon, \quad j \in \mathbf{N}_{[0,N-1]}$$

$$Pr(E_u u_{k+j} \leq \mathbf{1}) \geq 1 - \epsilon, \quad j \in \mathbf{N}_{[0,N-1]}$$

$$T_f(\cdot) \leq 0$$

MPC

model predict control

LQR

Robust MPC

Stochasti c MPC

Real-Time MPC

$$\min_{\{u_{k+}\} \in \{w_{k+}\}} = \sum_{j=0}^{N-1} x_{k+j}^{\mathrm{T}} Q x_{k+j} + u_{k+j} R u_{k+j} + J_N(x_{k+N})$$

s.t.

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + Gw_k \\ x_{k+j} &\in X, \forall w_{k+j} \in W, j \in \mathbf{N}_{[0,N-1]} \\ u_{k+j} &\in U, \forall w_{k+j} \in W, j \in \mathbf{N}_{[0,N-1]} \\ x_{k+N} &\in X_N \end{aligned}$$

Problem Statement

$$u_0^* = \min_{x_k, u_k} \sum_{k=0}^{N} (x_k - x_r)^T Q(x_k - x_r) + \sum_{k=0}^{N-1} u_k^T R u_k$$

$$J = \sum_{N=1}^0 (x^TQx + u^TRu)$$

$$egin{aligned} x_{k+1} &= Ax_k + Bu_k \ x_{\min} &\leq x_k \leq x_{\max} \ u_{\min} &\leq x_k \leq u_{\max} \end{aligned}$$

We have inequality

here

Model Predictive Controller

$$\dot{x} = Ax + Bu + C$$

The Riccati Equation - Discrete Time

This is the Riccati matrix- difference equation. Solve it for $\{P(k), k \in \{0, ..., N\}\}$

$$P(k) = Q + A'P(k+1)A$$

 $-A'P(k+1)B(R+B'P(k+1)B)^{-1}B'P(k+1)A,$
 $P(N) = Q_f.$

If $N = \infty$ the steady state solution P replaces P(k). This P is the unique positive define solution found by the algebraic Riccati equation,

$$P = Q + A'PA - A'PB(R + B'PB)^{-1}B'PA.$$

The optimal control is:

$$u(k) = (-(R+B'P(k+1)B)^{-1}B'P(k+1)A)x(k), \text{ or } u(k) = (-(R+B'PB)^{-1}B'PA)x(k).$$

How LQR works?

MPC VS LQR in self-driving

Model: the same

Solve: Matrix algbra vs SQP

Constraints: MPC can deal with

inequality constraint

MPC VS RL

Dynamic programming Value function formulation

$$V(s) = \inf_a [\psi(s,a) + \gamma \mathbb{E}_{\xi}[V(g(s,a,\xi))]]$$

Q function formulation

(1)

$$Q(s,a) = \psi(s,a) + \gamma \mathbb{E}_{\xi} \Bigl[\inf_v Q(g(s,a,\xi),v) \Bigr]$$

Optimal policy (assuming all well defined)

$$egin{aligned} \pi^*(s) &= rg\min_a Q(s,a) \ &= rg\min_a \{\psi(s,a) + \gamma \mathbb{E}_{\xi}[V(g(s,a,\xi))]\} \end{aligned}$$

RobusMPC VS StochasticMPC

OSQP for MPC

https://osqp.org/docs/solver/index.html

minimize
$$\frac{1}{2}x^TPx + q^Tx$$

subject to $l \le Ax \le u$

Algorithm 1

- 1: given initial values x^0 , z^0 , y^0 and parameters $\rho > 0$, $\sigma > 0$, $\alpha \in (0,2)$
- 2: repeat

3:
$$(\tilde{x}^{k+1}, \nu^{k+1}) \leftarrow \text{solve linear system } \begin{bmatrix} P + \sigma I & A^T \\ A & -\rho^{-1}I \end{bmatrix} \begin{bmatrix} \tilde{x}^{k+1} \\ \nu^{k+1} \end{bmatrix} = \begin{bmatrix} \sigma x^k - q \\ z^k - \rho^{-1}y^k \end{bmatrix}$$

- 4: $\tilde{z}^{k+1} \leftarrow z^k + \rho^{-1}(\nu^{k+1} y^k)$
- 5: $x^{k+1} \leftarrow \alpha \tilde{x}^{k+1} + (1-\alpha)x^k$
- 6: $z^{k+1} \leftarrow \Pi \left(\alpha \tilde{z}^{k+1} + (1-\alpha)z^k + \rho^{-1}y^k \right)$
- 7: $y^{k+1} \leftarrow y^k + \rho \left(\alpha \tilde{z}^{k+1} + (1-\alpha)z^k z^{k+1}\right)$
- 8: until termination criterion is satisfied

OSQP for MPC

Argument	Description	Allowed values	Default value
rho	ADMM rho step	0 < rho	0.1
sigma	ADMM sigma step	0 < sigma	0.000001
	Maximum number of		
max_iter	iterations	$0 < max_iter (integer)$	4000
eps_abs *	Absolute tolerance	$0 \le eps_abs$	0.001
eps_rel *	Relative tolerance	$0 \le eps_rel$	0.001
eps_prim_inf *	Primal infeasibility tolerance	0 <= eps_prim_inf	0.0001
eps_dual_inf *	Dual infeasibility tolerance	$0 \le eps_dual_inf$	0.0001
	ADMM overrelaxation		
alpha *	parameter	$0 \le alpha \le 2$	1.6
linsys_solver	Linear systems solver type		qdldl
	Polishing regularization		
delta *	parameter	0 < delta	0.000001
polish *	Perform polishing	True/False	FALSE
polish_refine_iter	Refinement iterations in	0 < polish_refine_iter	
*	polish	(integer)	3
warm_start *	Perform warm starting	True/False	TRUE

MPC code geration

Toolbox: https://acado.github.io/features.html

NMPC: Numerical Optimal Control Toolbox: https://acado.github.io/features.html

Algorithmic differentiation in reverse mode: Forward Algorithmic differentiation

NMPC: Numerical Optimal Control Toolbox: CasADi for Optimization

- e direct multiple-shooting method
- **◆**Direct Single Shooting
- Hessian Approximations
- constrained Gauss-Newton method
- **♦** Sequential Quadratic Programming
- **♦** Nonlinear IP Methods
- **◆**Sequential Approaches and Sparsity Exploitation

NewSolver: https://faculty.sist.shanghaitech.edu.cn/faculty/boris/paper/AladinChapter.pdf

a) preprocessingb) problem/sensitivity setup	<pre>checkInput(), setDefaultOpts() createLocSolAndSens()</pre>
ALADIN main loop	<pre>iterateAL() parallelStep(), BFGS(), parallelStepInnerLoop(), updateParam(), regularizeH()</pre>
f) solve the coordination QP g) compute primal/dual step	<pre>createCoordQP(), solveQP(),solveQPdec() computeALstep()</pre>
h) postprocessing	<pre>displaySummary(), displayTimers()</pre>

Figure 3: Structure of run_ALADIN() in ALADIN- α .

NewSolver: https://faculty.sist.shanghaitech.edu.cn/faculty/boris/paper/AladinChapter.pdf

Algorithm 1: Basic ALADIN

Input: Initial guesses $x_i \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$, scaling matrices $\Sigma_i \in \mathbb{S}^n_{++}$ and a termination tolerance $\varepsilon > 0$.

Repeat:

1. Solve for all $i \in \{1, ..., N\}$ the decoupled NLPs

$$\min_{y_i} f_i(y_i) + \lambda^{\mathsf{T}} A_i y_i + \frac{1}{2} \|y_i - x_i\|_{\Sigma_i}^2$$
.

- 2. Set $g_i = \nabla f_i(y_i)$ and $H_i \approx \nabla^2 f_i(y_i)$.
- Solve the coupled equality constrained QP

$$\min_{\Delta y} \sum_{i=1}^{N} \left\{ \frac{1}{2} \Delta y_i^\mathsf{T} H_i \Delta y_i + g_i^\mathsf{T} \Delta y_i \right\} \quad \text{s.t.} \quad \sum_{i=1}^{N} A_i (y_i + \Delta y_i) = b \mid \lambda^+ \ .$$

4. Set $x \leftarrow x^+ = y + \Delta y$ and $\lambda \leftarrow \lambda^+$ and continue with Step 1.

Three challenges: C1

A hard, non-convex optimization problems

- Geometric constraints
- Kinematic constraints
- Dynamic constraints

coupled complicated an optimization problem

decoupled

Decoupled motion planning approaches

- 1 path planning problem: geometric path that satisfies the geometric constraints.
- 2 path following problem: taking into account all remaining constraints.

Three challenges: C2

Involve constraints that must hold during the complete motion time by through time gridding.

Drawbacks

- Constraints may be violated between the grid points,
- leads to a high number of constraints.

Piecewise_jerk_path_ planning :max iteration reached

Three challenges: C3

The environment is generally uncertainDrawbacks

TO DO: to update the motion trajectory in real time, based on the most recent world information.

Solution1

https://github.com/meco-group/omg-tools

- 1.Proposing a B-spline parameterization for the motion trajectories.
- 2.Time gridding is avoided by exploiting the properties of B-splines to guarantee constraint satisfaction at all times m by using time-varying separating hyperplanes

Solution1

https://github.com/meco-group/omg-tools

Optimization problem

micai comomanon oi b-spinic

$$s(t) = \sum_{i=1}^{n} c_i \cdot B_i(t).$$

Fig. 1: Graphical illustration of a spline as a linear combination of B-spline basis functions

Solution1

https://github.com/meco-group/omg-tools

$$a(t)^{T} v_{i}(t) - b(t) \ge 0, \quad i = 1 \dots 4$$
$$a(t)^{T} q(t) - b(t) \le -r_{\text{veh}}$$
$$||a(t)||_{2} \le 1$$
$$\forall t \in [0, T].$$

Fig. 2: Separating hyperplane theorem