Pruba HDI

Max Benjamín Austria Salazar

• El objetivo es crear un modelo de regresión adecuado para la Frecuencia, y otro para la Severidad, utilizando algunas de las variables compartidas como variables explicativas.

```
Frecuencia = rac{NumSiniestros}{UnidadesExpuestas} Severidad = rac{MontoOcurrido}{NumSiniestros}
```

Precio = Frecuencia * Severidad

- Como entregable hay que proporcionar el código para generar dichos modelos, la validación con las métricas respectivas,
- y por último, la tabla con la predicción de la Frecuencia y Severidad para cada uno de los registros.
- Hay que añadir la columna de Precio, multiplicando las predicciones de Frecuencia y Severidad respectivamente

Paquetes

```
In [445...
#Para las gráficas
library(gpplot2)
library(ggpottify)
library(ranger)
library(ggpubr)
library(lattice)

#Para el análisis
library(glmmTMB)#Otra opción es Rfast2
#library(statmod)

Attaching package: 'glmmTMB'

The following object is masked from 'package:statmod':
    tweedie
```

Cargando los datos

```
#Carga de los datos
datos <- readr::read_csv(file = "datos.csv", locale = readr::locale(encoding = "ISO-8859-
#Formateando
datos$Anio = as.factor(datos$Anio)
datos$ID = as.character(datos$ID)
datos$NombreSubdireccion = as.factor(datos$NombreSubdireccion)
datos$DescTipoVehiculo = as.factor(datos$DescTipoVehiculo)
datos$TipoPersona = as.factor(datos$TipoPersona)
datos$Edad = as.integer(datos$Edad)
datos$Sexo = as.factor(datos$Sexo)
datos$DescMarcaVehiculo = as.factor(datos$DescCarroceriaVehiculo)
datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
datos$DescUsoVehiculo = as.factor(datos$DescUsoVehiculo)
```

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Anio	ID	NombreOficina	UnidadesExpuestas	NombreSubdireccion	DescTipoVehiculo	TipoPersona
<int></int>	<chr></chr>	<chr></chr>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>
2021	40480000012367	048 Croz Promotores	0.0000000	Promotorias Guadalajara	Vehiculos Residentes	Fisica
2020	42730000831079	273 Morris	0.0000000	Noroeste	Pick Up	Fisica
2021	40100001237795	010 Queretaro	0.0000000	Centro	Vehiculos Residentes	Fisica
2019	40740000829763	074 Telemarketing Corporativo	0.1589041	Telemarketing	Pick Up	Fisica
2019	40980000054921	098 Abs Actuarios Consultores Sociedad Civil	0.3287671	Promotorias México Sur	Vehiculos Residentes	Fisica
2021	40570001238666	057 Mochis	0.9698630	Noroeste	Vehiculos Residentes	Fisica
4						•

Estadística Descriptiva

Estadística descriptiva entre las variables: MontoOcurrido, NumSiniestros, UnidadesExpuestas.

```
In [142...
col = which(colnames(datos) %in% c("MontoOcurrido", "NumSiniestros", "UnidadesExpuestas")
cor(datos[,col])
```

A matrix: 3×3 of type dbl

	UnidadesExpuestas	MontoOcurrido	NumSiniestros
UnidadesExpuestas	1.00000000	0.07868049	0.2084499
MontoOcurrido	0.07868049	1.00000000	0.3500598
NumSiniestros	0.20844989	0.35005984	1.0000000

```
In [143...
          summary(datos[,col])
                             MontoOcurrido
                                                 NumSiniestros
          UnidadesExpuestas
                 :-0.99178
          Min.
                             Min.
                                           0.0
                                                 Min.
                                                        :0.00000
                             1st Qu.:
          1st Qu.: 0.00000
                                                 1st Qu.:0.00000
                                          0.0
          Median : 0.09041
                             Median :
                                           0.0
                                                 Median :0.00000
                 : 0.25217
                                         828.6
                                                        :0.03916
                             Mean
                                                 Mean
          Mean
          3rd Qu.: 0.48219
                             3rd Qu.:
                                           0.0
                                                 3rd Qu.:0.00000
                 : 1.00274
                                     :904414.3
                             Max.
                                                 Max.
                                                        :5.00000
          Max.
```

```
options(repr.plot.width = 7, repr.plot.height = 7)
plot(datos[,col])
```


In [145... hist(datos\$UnidadesExpuestas, main ="UnidadesExpuestas", breaks = 25)

UnidadesExpuestas

Observación.

Hay valores negativos en variables que (en principio) deberían ser positivas. Por ahora voy a trabajar con el valor absoluto, pues considero que el signo debe ser por algún tema contable.

col = which(colnames(datos) %in% c("UnidadesExpuestas", "PrimaNetaPropiaSinCoaseguro"))
datos[which(datos\$UnidadesExpuestas<0), col]</pre>

A tibble: 207×2

UnidadesExpuestas PrimaNetaPropiaSinCoaseguro

<dbl>-0.076712329 -711.0069

PrimaNetaPropiaSinCoaseguro	UnidadesExpuestas
<dbl></dbl>	<dbl></dbl>
-1733.8314	-0.052054795
0.0000	-0.249315069
-1872.4415	-0.084931507
-874.9088	-0.471232878
-109.1596	-0.016438356
-698.6279	-0.504109590
-821.0379	-0.394520549
-3269.4355	-0.419178083
0.0000	-0.161643836
0.0000	-0.495890412
-502.9333	-0.169863014
0.0000	-0.161643836
-1074.9416	-0.693150686
-2457.0736	-0.753424659
0.0000	-0.084931507
-1894.0723	-0.252054795
-4008.2273	-0.257534247
-1004.2275	-0.482191782
-336.1824	-0.019178082
-4461.2622	-0.739726029
-805.2055	-0.391780823
-2715.7158	-0.005479452
-1216.5265	-0.167123288
-1813.0169	-0.410958905
0.0000	-0.082191781
-2758.6844	-0.915068495
-462.9903	-0.167123288
-1274.4028	-0.504109590
0.0000	-0.249315069
:	:
0.0000	-0.24657534
-2818.3636	-0.67123288
-610.7502	-0.10684932
-181.1018	-0.06849315
0.0000	-0.08493151
0.0000	-0.49589041
-1686.1638	-0.66849315
0.0000	-0.16164384
-2695.5949	-0.50410959
-3518.0072	-0.48219178
0.0000	-0.05205480
-3703.3999	-0.10958904
0.0000	-0.32876712
0.0000	-0.52010112

UnidadesExpuestas PrimaNetaPropiaSinCoaseguro <dbl> <dbl> -460.8016 -0.41643836 -0.88767123 -4033.5549 -0.08493151 -2638.8796 -0.91506849 -4825.5302 -0.40273973 -126.5582 0.0000 -0.16164384 0.0000 -0.16164384 -0.53424658 -1631.6256 -0.25205479 -13333.9975 0.0000 -0.16164384 -1069.8869 -0.15342466 -0.74794521 -2412.5051 -0.64109589 -2071.0505 -0.09315068 -165.6685 -0.99178082 -1825.3856 -0.08493151 -1649.8458

Limpiando los datos

-0.16164384

```
In [147...
    datos$signo = sign(datos$UnidadesExpuestas)
    datos$UnidadesExpuestas = abs(datos$UnidadesExpuestas)
```

-411.0078

Las siguientes expresiones deberían ser ciertas:

- $UnidadesExpuestas = 0 \implies NumSiniestros = 0$.
- $NumSiniestros = 0 \implies MontoOcurrido = 0$.

Por lo que, de no cumplirse, se debe corregir.

```
In [148...
col = which(colnames(datos) %in% c("MontoOcurrido", "NumSiniestros", "UnidadesExpuestas")
ind = which((datos$UnidadesExpuestas == 0) & (datos$NumSiniestros!=0))
datos[ind,col]
```

UnidadesExpuestas MontoOcurrido NumSiniestros

A tibble: 34×3

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	0.0000	1
0	0.0000	1
0	0.0000	1
0	5043.9358	2
0	20191.1836	1
0	44900.4715	1
0	211662.2741	1
0	1498.5651	1
0	714.2900	1
0	951.1667	1

UnidadesExpuestas	MontoOcurrido	NumSiniestros
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	667.1579	1
0	34698.7704	1
0	11580.8333	1
0	1541.8831	1
0	32198.2640	1
0	4343.9764	1
0	5440.3510	1
0	13319.3599	1
0	36357.8377	1
0	2962.0682	1
0	2921.6560	1
0	688.0954	1
0	0.0000	1
0	5383.2000	1
0	88954.8460	1
0	0.0000	1
0	120270.2400	1
0	0.0000	1
0	10712.6140	1
0	1142.3504	1
0	13596.7165	1
0	1508.0367	2
0	0.0000	1
0	8658.9826	1

Como son pocas observaciones que no cumplen con la regla ($UnidadesExpuestas=0 \implies NumSiniestros=0$), las voy a quitar.

```
In [149... datos = datos[-ind,]
```

La segunda regla ($NumSiniestros=0 \implies MontoOcurrido=0$), también se rompe en pocas ocasiones, por lo que también se borran las observaciones.

```
ind = which((datos$MontoOcurrido != 0) & (datos$NumSiniestros==0))
print(pasteO("Número de observaciones irregulares: ",dim(datos[ind,col])[1]))
datos[ind,col]
```

[1] "Número de observaciones irregulares: 253" A tibble: 253 × 3

NumSiniestros	MontoOcurrido	UnidadesExpuestas	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
0	4599.882	0.08493151	
0	9706.784	0.49589041	
0	1528.879	0.66849315	
0	3218.671	0.00000000	
0	20839.481	0.66575343	

UnidadesExpuestas	MontoOcurrido	NumSiniestros
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.00000000	1005.120	0
	2781.929	0
0.00000000		•
0.16438356	3908.783	0
0.33972603	89913.716	0
0.91506849	13990.996	0
0.66575343	139479.786	0
0.66575343	6286.348	0
0.58082192	7892.063	0
0.58082192	3424.601	0
0.16164384	0.004	0
0.16164384	15856.470	0
0.75068493	6242.400	0
0.08493151	61674.730	0
0.00000000	5451.937	0
0.00000000	3611.099	0
0.77534247	27027.791	0
0.00000000	9720.399	0
0.00000000	4758.256	0
0.00000000	24117.381	0
0.41917808	3319.640	0
0.00000000	3243.378	0
0.00000000	5349.000	0
0.08493151	13834.320	0
0.00000000	103239.257	0
0.41369863	8421.697	0
:	:	:
0.00000000	5.001397e+03	0
0.00000000	1.010000e-04	0
0.00000000	4.451036e+04	0
0.49589041	4.190900e+03	0
0.23287671	1.366925e+03	0
0.08493151	1.449141e+03	0
0.16164384	2.500000e+03	0
0.00000000	1.607670e+03	0
0.00000000	1.040000e-04	0
0.00000000	1.275497e+04	0
0.00000000	1.214044e+03	0
0.58082192	1.981899e+03	0
0.08493151	3.358380e+04	0
0.0000000	2.220314e+04	0
0.49589041	8.277612e+03	0
0.74794521	4.915093e+04	0
0.00000000	8.916934e+02	0

UnidadesExpuestas	MontoOcurrido	NumSiniestros
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.00000000	1.010000e-04	0
0.00000000	3.904770e+03	0
0.58630137	2.774659e+03	0
0.16164384	5.811060e+03	0
0.08493151	2.745128e+04	0
0.00000000	2.684871e+03	0
0.00000000	2.167627e+04	0
0.58082192	3.710934e+05	0
0.91780822	9.567518e+04	0
0.00000000	7.990272e+04	0
0.00000000	3.819400e+03	0
0.00000000	1.040000e-04	0
0.33150685	1.032098e+05	0

Cálculo de las variables: Frecuencia y Severidad.

```
#Cálculo de la frecuencia observada
datos$FrecObs = apply(datos[,col],1,function(x){if(x[3] == 0){0}else{x[3]/x[1]}})
ind = which(datos$FrecObs[ind], main="Frecuencia Observada", breaks = 50)
```

1747

49713

Frecuencia Observada

Sólo 1747 observaciones tienen una frecuencia mayor a cero.

Sólo 1501 observaciones tienen una severidad mayor a cero.

```
In [166... length(ind)
```

```
In [172... datos$Anio = as.factor(datos$Anio)
```

Estadística descriptiva del resto de variables.

```
In [567...
                                                          #Estadística para la Frecuencia Observada
                                                           ind = which(datos$Frec0bs>0)
                                                            img1 = ggplot(datos[ind,], aes(x = DescTipoVehiculo, y = log(FrecObs), color = DescTipoVehiculo, y = log(Fre
                                                            labs(title = "Log-Frecuencia por DescTipoVehiculo", y= "Log-Frecuencia Observada", x= "Dog-Frecuencia Observada", x= "Dog-Fre
                                                            img2 = ggplot(datos[ind,], aes(x = TipoPersona, y = log(FrecObs), color = TipoPersona)) +
                                                            labs(title = "Log-Frecuencia por TipoPersona", y= "Log-Frecuencia Observada", x = "TipoPe
                                                            datos Edadx = as.factor(as.integer(datos Edad /10)*10)
                                                            img3 = ggplot(datos[ind,], aes(x = Edadx, y = log(FrecObs), color = Edadx)) + geom_boxplor
                                                            labs(title = "Log-Frecuencia observada por Edad", y= "Log-Frecuencia Observada", x= "Eda
                                                            img4 = ggplot(datos[ind,], aes(x = Sexo, y = log(FrecObs), color = Sexo)) + geom_boxplot(
                                                            labs(title = "Log-Frecuencia observada por Sexo", y= "Log-Frecuencia Observada", x = "Sex
                                                            datos$ModeloVehiculo = as.factor(datos$ModeloVehiculo)
                                                            img5 = ggplot(datos[ind,], aes(x = ModeloVehiculo, y = log(FrecObs), color = ModeloVehiculo)
                                                            labs(title = "Log-Frecuencia observada por ModeloVehiculo", y= "Log-Frecuencia Observada"
                                                            datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
                                                            img6 = ggplot(datos[ind,], aes(x = DescUsoVehiculo, y = log(FrecObs), color = DescUsoVehiculo, y = log(FrecOb
                                                            labs(title = "Log-Frecuencia observada por DescUsoVehiculo", y= "Log-Frecuencia DescUsoVe
                                                            img7 = ggplot(datos[ind,], aes(x = DescMarcaVehiculo, y = log(FrecObs), color = DescMarcaVehiculo, y = log(Fr
                                                            labs(title = "Log-Frecuencia observada por DescMarcaVehiculo", y= "Log-Frecuencia DescMar
                                                            options( repr.plot.height = 5)
                                                           ggarrange(img1,img2, ncol = 2)
                                                            ggarrange(img3,img4, ncol = 2)
```


In [245...
 options(repr.plot.width = 7, repr.plot.height = 7)
 img5
 img6

In [568...

img7

Observación.

De los diagramas anteriores, sugieren que las mejores variables que más reflejan la variabilidad de la frecuencia pueden ser:

• DescUsoVehiculo: En especial el Transporte para Turismo y de Personal.

datos\$Edadx = as.factor(as.integer(datos\$Edad /10)*10)

• Edad: Sobre todo, en edades mayores a los 50 años.

```
ind = which(datos$SevObs>0)
img1 = ggplot(datos[ind,], aes(x = DescTipoVehiculo, y = log(SevObs), color = DescTipoVehlabs(title = "Log-Severidad por DescTipoVehiculo", y= "Log-Severidad Observada", x = "Desimg2 = ggplot(datos[ind,], aes(x = TipoPersona, y = log(SevObs), color = TipoPersona)) + clabs(title = "Log-Severidad por TipoPersona", y= "Log-Severidad Observada", x = "TipoPersona")
```

 $img3 = ggplot(datos[ind,], aes(x = Edadx, y = log(SevObs), color = Edadx)) + geom_boxplot$

```
labs(title = "Log-Severidad observada por Edad", y= "Log-Severidad Observada", x = "Edad"
img4 = ggplot(datos[ind,], aes(x = Sexo, y = log(SevObs), color = Sexo)) + geom_boxplot()
labs(title = "Log-Severidad observada por Sexo", y= "Log-Severidad Observada", x = "Sexo"

datos$ModeloVehiculo = as.factor(datos$ModeloVehiculo)
img5 = ggplot(datos[ind,], aes(x = ModeloVehiculo, y = log(SevObs), color = ModeloVehiculo
labs(title = "Log-Severidad observada por ModeloVehiculo", y= "Log-Severidad Observada", datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)

img7 = ggplot(datos[ind,], aes(x = DescMarcaVehiculo, y = log(SevObs), color = DescMarcaVeliabs(title = "Log-Severidad observada por DescMarcaVehiculo", y= "Log-Severidad DescMarcaVeliabs(title = "Log-Severidad observada por DescMarcaVehiculo", y= "Log-Severidad DescMarcaVelians(", y= "Log-Severidad observada"), ggarrange(img1,img2, ncol = 2)
ggarrange(img3,img4, ncol = 2)
```


options(repr.plot.width = 7, repr.plot.height = 7)
img5
img6

Log-Severidad observada por ModeloVehiculo

Log-Severidad observada por DescUsoVehiculo

In [564...

options(repr.plot.width = 10, repr.plot.height = 10)
img7

Observación.

De los diagramas anteriores, sugieren que las mejores variables que más reflejan la variabilidad de la severidad pueden ser:

- ModeloVehiculo: Muestra una tendencia creciente respecto del modelo.
- DescUsoVehiculo: Muestra una ligera diferencia entre los tipos de uso del vehiculo, pero parece haber diferencias marcadas entre una ambulacia y el transporte de turismo.

Quitando variables faltantes.

```
In [256...
apply(datos,2,function(x){any(is.na(x))})
```

Anio: FALSE ID: FALSE NombreOficina: FALSE UnidadesExpuestas: FALSE NombreSubdireccion: TRUE DescTipoVehiculo: FALSE TipoPersona: TRUE Edad: TRUE Sexo: TRUE DescMarcaVehiculo: FALSE DescCarroceriaVehiculo: FALSE ModeloVehiculo: FALSE DescUsoVehiculo: FALSE

PrimaNetaPropiaSinCoaseguro: FALSE MontoOcurrido: FALSE NumSiniestros: FALSE signo: FALSE

FrecObs: FALSE SevObs: FALSE Edadx: TRUE

```
In [262...
#quitanto NA de TipoPersona
nas = which(is.na(datos$TipoPersona))
print(paste0("Quitando ",length(nas)," observaciones."))
datos = datos[-nas,]
```

[1] "Quitando 84 observaciones."

```
In [264...
```

```
nas = which(is.na(datos$Edad))
print(paste0("Quitando ",length(nas)," observaciones."))
datos = datos[-nas,]
```

[1] "Quitando 20 observaciones."

```
In [267...
#quitanto NA de NombreSubdireccion
nas = which(is.na(datos$NombreSubdireccion))
print(paste0("Quitando ",length(nas)," observaciones."))
datos = datos[-nas,]
```

[1] "Quitando 1 observaciones."

Se conventiran los factores dentro de los datos dummy, ya que el paquete Rfast2 require esa representación.

```
In [269... apply(datos,2,class)
```

Anio: 'character' ID: 'character' NombreOficina: 'character' UnidadesExpuestas: 'character'

NombreSubdireccion: 'character' DescTipoVehiculo: 'character' TipoPersona: 'character' Edad: 'character'

Sexo: 'character' DescMarcaVehiculo: 'character' DescCarroceriaVehiculo: 'character' ModeloVehiculo:

'character' **DescUsoVehiculo:** 'character' **PrimaNetaPropiaSinCoaseguro:** 'character' **MontoOcurrido:**

'character' NumSiniestros: 'character' signo: 'character' FrecObs: 'character' SevObs: 'character' Edadx:

'character'

```
In [310... datos$Anio = as.integer(datos$Anio)
    datos$Edad = as.integer(datos$Edad)
    datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
In [357... DescMarcaVehiculo = model.matrix( ~ DescMarcaVehiculo - 1, datos)
    dim(DescMarcaVehiculo)
```

49608 - 57

head(DescMarcaVehiculo)

	DescMarcaVehiculoACURA	DescMarcaVehiculoALFA ROMEO	DescMarcaVehiculoAUDI	DescMarcaVehiculoBAIC	DescMar
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
4					>

```
In [358...
```

colnames(DescMarcaVehiculo)

'DescMarcaVehiculoACURA' · 'DescMarcaVehiculoALFA ROMEO' · 'DescMarcaVehiculoAUDI' ·

'DescMarcaVehiculoBAIC' · 'DescMarcaVehiculoBMW' · 'DescMarcaVehiculoBUICK' ·

'DescMarcaVehiculoCADILLAC' · 'DescMarcaVehiculoCHANGAN' · 'DescMarcaVehiculoCHEVROLET' ·

'DescMarcaVehiculoCHRYSLER' · 'DescMarcaVehiculoCLASICO' · 'DescMarcaVehiculoCUPRA' ·

'DescMarcaVehiculoDFSK' · 'DescMarcaVehiculoDODGE' · 'DescMarcaVehiculoFAW' ·

'DescMarcaVehiculoFIAT' · 'DescMarcaVehiculoFORD' · 'DescMarcaVehiculoGIANT' ·

'DescMarcaVehiculoGMC' · 'DescMarcaVehiculoHINO' · 'DescMarcaVehiculoHONDA' ·

'DescMarcaVehiculoHUMMER' · 'DescMarcaVehiculoHYUNDAI' · 'DescMarcaVehiculoINFINITI' ·

'DescMarcaVehiculoISUZU' · 'DescMarcaVehiculoJAC' · 'DescMarcaVehiculoJAGUAR' ·

'DescMarcaVehiculoJEEP' · 'DescMarcaVehiculoKIA' · 'DescMarcaVehiculoLAND ROVER' ·

```
'DescMarcaVehiculoMERCEDES BENZ' · 'DescMarcaVehiculoMERCURY' · 'DescMarcaVehiculoMG' · 'DescMarcaVehiculoMINI' · 'DescMarcaVehiculoMITSUBISHI' · 'DescMarcaVehiculoNISSAN' · 'DescMarcaVehiculoPEUGEOT' · 'DescMarcaVehiculoPIAGGIO' · 'DescMarcaVehiculoPONTIAC' · 'DescMarcaVehiculoPORSCHE' · 'DescMarcaVehiculoRAM' · 'DescMarcaVehiculoRENAULT' · 'DescMarcaVehiculoROVER' · 'DescMarcaVehiculoSAAB' · 'DescMarcaVehiculoSEAT' · 'DescMarcaVehiculoSMART' · 'DescMarcaVehiculoSPARTAK' · 'DescMarcaVehiculoSTRUDER' · 'DescMarcaVehiculoSUBARU' · 'DescMarcaVehiculoSUZUKI' · 'DescMarcaVehiculoTODAS' · 'DescMarcaVehiculoTOYOTA' · 'DescMarcaVehiculoVOLKSWAGEN' · 'DescMarcaVehiculoVOLVO'

In [571... datos$HONDA = DescMarcaVehiculo[, which(colnames(DescMarcaVehiculo) == 'DescMarcaVehiculo) == 'DescMarcaVehiculo)
```

'DescMarcaVehiculoLINCOLN' · 'DescMarcaVehiculoMASERATI' · 'DescMarcaVehiculoMAZDA' ·

```
datos$HONDA = DescMarcaVehiculo[,which(colnames(DescMarcaVehiculo) == 'DescMarcaVehiculoHotological datos$TOYOTA = DescMarcaVehiculo[,which(colnames(DescMarcaVehiculo) == 'DescMarcaVehiculo'
```

In [363...

colnames(DescMarcaVehiculo)

'DescMarcaVehiculoACURA' · 'DescMarcaVehiculoALFA ROMEO' · 'DescMarcaVehiculoAUDI' ·

'DescMarcaVehiculoBAIC' · 'DescMarcaVehiculoBMW' · 'DescMarcaVehiculoBUICK' ·

'DescMarcaVehiculoCADILLAC' · 'DescMarcaVehiculoCHANGAN' · 'DescMarcaVehiculoCHEVROLET' ·

'DescMarcaVehiculoCHRYSLER' · 'DescMarcaVehiculoCLASICO' · 'DescMarcaVehiculoCUPRA' ·

'DescMarcaVehiculoDFSK' · 'DescMarcaVehiculoDODGE' · 'DescMarcaVehiculoFAW' ·

'DescMarcaVehiculoFIAT' · 'DescMarcaVehiculoFORD' · 'DescMarcaVehiculoGIANT' ·

'DescMarcaVehiculoGMC' · 'DescMarcaVehiculoHINO' · 'DescMarcaVehiculoHONDA' ·

'DescMarcaVehiculoHUMMER' · 'DescMarcaVehiculoHYUNDAI' · 'DescMarcaVehiculoINFINITI' ·

'DescMarcaVehiculoISUZU' · 'DescMarcaVehiculoJAC' · 'DescMarcaVehiculoJAGUAR' ·

'DescMarcaVehiculoJEEP' · 'DescMarcaVehiculoKIA' · 'DescMarcaVehiculoLAND ROVER' ·

'DescMarcaVehiculoLINCOLN' · 'DescMarcaVehiculoMASERATI' · 'DescMarcaVehiculoMAZDA' ·

'DescMarcaVehiculoMERCEDES BENZ' · 'DescMarcaVehiculoMERCURY' · 'DescMarcaVehiculoMG' ·

'DescMarcaVehiculoMINI' · 'DescMarcaVehiculoMITSUBISHI' · 'DescMarcaVehiculoNISSAN' ·

'DescMarcaVehiculoPEUGEOT' · 'DescMarcaVehiculoPIAGGIO' · 'DescMarcaVehiculoPONTIAC' ·

'DescMarcaVehiculoPORSCHE' · 'DescMarcaVehiculoRAM' · 'DescMarcaVehiculoRENAULT' ·

'DescMarcaVehiculoROVER' · 'DescMarcaVehiculoSAAB' · 'DescMarcaVehiculoSEAT' ·

'DescMarcaVehiculoSMART' · 'DescMarcaVehiculoSPARTAK' · 'DescMarcaVehiculoSTRUDER' ·

'DescMarcaVehiculoSUBARU' · 'DescMarcaVehiculoSUZUKI' · 'DescMarcaVehiculoTODAS' ·

'DescMarcaVehiculoTOYOTA' · 'DescMarcaVehiculoVOLKSWAGEN' · 'DescMarcaVehiculoVOLVO'

Modelación

Decidi modelar ambas variables con un Tweedie, ya que es una familia de distribuciones que puede aproximar al modelo Gamma - Cero Inflado. Donde el modelo Gamma cero inflado podría apropiado por las siguientes razones:

- Si no ocurre el siniestro, las variables pueden tomar el valor 0 (que, además es la moda de los valores calculados).
- En principio ambas variables son positivas, siempre y cuando ocurra el siniestro.

El modelo Gamma - Cero Inflado combina una regresión Bernoulli, con una regresión Gamma. De esta forma, la gamma sólo se expresa si previamente la regresión Bernoulli no toma el valor cero.

Nota: Si bien, una opción modelarlos de esta manera, también se pudo haber intentado un modelo de Cuasiverosimilitud.

Modelo de la Frecuencia

```
'Anio' · 'ID' · 'NombreOficina' · 'UnidadesExpuestas' · 'NombreSubdireccion' · 'DescTipoVehiculo' ·
         'TipoPersona' · 'Edad' · 'Sexo' · 'DescMarcaVehiculo' · 'DescCarroceriaVehiculo' · 'ModeloVehiculo' ·
         'DescUsoVehiculo' · 'PrimaNetaPropiaSinCoaseguro' · 'MontoOcurrido' · 'NumSiniestros' · 'signo' · 'FrecObs' ·
         'SevObs' · 'Edadx'
         Separando la muestra en entrenamiento y prueba
In [313...
          set.seed(1)
          entrenamiento = sample(1:49608, (49608-10000))
          prueba = c(1:49608)[-entrenamiento]
In [621...
          regFrec = glmmTMB(FrecObs ~ log(ModeloVehiculo)*TipoPersona + log(Anio) + HONDA + TOYOTA
                            family=ziGamma(link="log"),
                              ziformula= ~ log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio
                            data= datos[entrenamiento,])
          Family: Gamma ( log )
         Formula:
         FrecObs ~ log(ModeloVehiculo) * TipoPersona + log(Anio) + HONDA +
                                                                                  TOY0TA
         Zero inflation:
         ~log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio) +
                                                                            HONDA + TOYOTA
         Data: datos[entrenamiento, ]
                        BIC logLik deviance df.resid
              AIC
          16877.2 17014.5 -8422.6 16845.2
                                                 39592
         Dispersion estimate for Gamma family (sigma^2): 0.461
         Conditional model:
                                               Estimate Std. Error z value Pr(>|z|)
         (Intercept)
                                                0.21573
                                                           0.78337
                                                                     0.275 0.783022
         log(ModeloVehiculo)
                                                0.14701
                                                        0.20254 0.726 0.467931
                                                                     2.388 0.016924 *
                                                5.05554
         TipoPersonaMoral
                                                            2.11675
                                                0.17304
                                                           0.03159
         log(Anio)
                                                                     5.478 4.31e-08 ***
         HONDA
                                               -0.27089
                                                                     -3.361 0.000777 ***
                                                           0.08060
         TOYOTA
                                                                     1.865 0.062227 .
                                                           0.06077
                                                0.11331
         log(ModeloVehiculo):TipoPersonaMoral -1.30850
                                                                     -2.427 0.015207 *
                                                           0.53905
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Zero-inflation model:
                                     Estimate Std. Error z value Pr(>|z|)
                                                 1.14689 8.194 2.52e-16 ***
                                      9.39775
         (Intercept)
         log(Edad)
                                      0.52640
                                                 0.10682 4.928 8.32e-07 ***
         TipoPersonaMoral
                                                 0.51685 2.911 0.00360 **
                                      1.50478
                                                 0.26991 -8.120 4.67e-16 ***
         log(ModeloVehiculo)
                                     -2.19160
         log(Anio)
                                      0.38369
                                                 0.04585 8.368 < 2e-16 ***
                                      0.28350
                                                 0.12048 2.353 0.01861 *
         HONDA
                                     -0.29096
                                                 0.09152 -3.179 0.00148 **
         T0Y0TA
         log(Edad):TipoPersonaMoral -0.32118
                                                 0.15145 -2.121 0.03395 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Modelo de la Severidad
In [606...
          regSevObs = glmmTMB(SevObs ~ log(ModeloVehiculo)* log(Anio) + log(Edad) + TipoPersona,
                            family=ziGamma(link="log"),
                              ziformula= ~ log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio
```

data= datos[entrenamiento,])

SevObs ~ log(ModeloVehiculo) * log(Anio) + log(Edad) + TipoPersona

Family: Gamma (log)

Formula:

Zero inflation:

In [331... colnames(datos)

```
BIC
                         logLik deviance df.resid
             AIC
         36357.9 36486.7 -18163.9 36327.9
                                            39593
        Dispersion estimate for Gamma family (sigma^2): 1.7
        Conditional model:
                                    Estimate Std. Error z value Pr(>|z|)
                                                2.4279 -4.874 1.09e-06 ***
        (Intercept)
                                    -11.8335
                                     5.9832
                                               0.6318 9.470 < 2e-16 ***
        log(ModeloVehiculo)
                                     5.2934
                                               2.1079 2.511 0.01203 *
        log(Anio)
                                     -0.2956
        log(Edad)
                                               0.1066 -2.772 0.00557 **
        TipoPersonaMoral
                                     0.5435 -2.684 0.00728 **
        log(ModeloVehiculo):log(Anio) -1.4586
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        Zero-inflation model:
                                 Estimate Std. Error z value Pr(>|z|)
                                  8.57042
                                            1.21444 7.057 1.70e-12 ***
        (Intercept)
                                  log(Edad)
                                          0.55103 2.614 0.008946 **
        TipoPersonaMoral
                                  1.44047
                                 -1.95920
        log(ModeloVehiculo)
                                          0.28541 -6.865 6.67e-12 ***
        log(Anio)
                                  0.33200
                                            0.04956 6.700 2.09e-11 ***
                                            0.13090 2.223 0.026228 *
        HONDA
                                  0.29096
                                 T0Y0TA
        log(Edad):TipoPersonaMoral -0.29122
                                            0.16178 -1.800 0.071849 .
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        Bondad de Ajuste
In [ ]:
         summary(regFrec)
 In [ ]:
         summary(regSev0bs)
In [615...
         FrecP = predict(regFrec,datos[entrenamiento,], type = "response")
         SevP = predict(regSev0bs,datos[entrenamiento,], type = "response")
In [616...
         summary(lm(datos$FrecObs[entrenamiento]~FrecP + 0))
        Call:
        lm(formula = datos$FrecObs[entrenamiento] ~ FrecP + 0)
        Residuals:
                  1Q Median 3Q
           Min
                                     Max
        -0.410 -0.107 -0.088 -0.068 33.072
        Coefficients:
              Estimate Std. Error t value Pr(>|t|)
        FrecP 0.99818 0.03674 27.17 <2e-16 ***
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        Residual standard error: 0.696 on 39607 degrees of freedom
        Multiple R-squared: 0.0183, Adjusted R-squared: 0.01827
        F-statistic: 738.3 on 1 and 39607 DF, p-value: < 2.2e-16
In [617...
         summary(lm(datos$SevObs[entrenamiento]~SevP + 0))
        Call:
        lm(formula = datos$SevObs[entrenamiento] ~ SevP + 0)
```

~log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio) + HONDA + TOYOTA

Data: datos[entrenamiento,]

```
-4824 -857 -543 -293 903089
         Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                       0.0595 16.26 <2e-16 ***
         SevP
               0.9676
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 10230 on 39607 degrees of freedom
         Multiple R-squared: 0.006633, Adjusted R-squared: 0.006608
         F-statistic: 264.5 on 1 and 39607 DF, p-value: < 2.2e-16
        Validación cruzada
In [607...
         FrecP = predict(regFrec,datos[prueba,], type = "response")
         SevP = predict(regSev0bs,datos[prueba,], type = "response")
In [609...
         summary(lm(datos$FrecObs[prueba]~FrecP + 0))
         Call:
         lm(formula = datos$FrecObs[prueba] ~ FreqP + 0)
         Residuals:
            Min
                     1Q Median
                                     30
                                            Max
         -0.2373 -0.0997 -0.0817 -0.0635 12.3131
         Coefficients:
               Estimate Std. Error t value Pr(>|t|)
         FreqP 0.93619 0.06347 14.75 <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.6014 on 9999 degrees of freedom
         Multiple R-squared: 0.0213, Adjusted R-squared: 0.0212
         F-statistic: 217.6 on 1 and 9999 DF, p-value: < 2.2e-16
In [611...
          summary(lm(datos$SevObs[prueba]~SevP + 0))
         Call:
         lm(formula = datos$SevObs[prueba] ~ SevP + 0)
         Residuals:
            Min
                   1Q Median 3Q
                                       Max
          -2981 -504 -321 -172 302617
         Coefficients:
              Estimate Std. Error t value Pr(>|t|)
         SevP 0.57983 0.07949 7.295 3.22e-13 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6804 on 9999 degrees of freedom
         Multiple R-squared: 0.005294, Adjusted R-squared: 0.005194
         F-statistic: 53.21 on 1 and 9999 DF, p-value: 3.219e-13
        Predicción de todas las observaciones
In [612...
         FreqT = predict(regFrec,datos, type = "response")
          SevT = predict(regSev0bs,datos, type = "response")
          PrimaEstimada = FreqT*SevT
          datos$Prima = Prima
```

Residuals:

Min

Exportando los resultados

1Q Median 3Q

Max

Conclusiones

Se expusieron dos modelos Gamma - Cero inflado con interacciones para la Frecuencia y Severidad.

- Se identificaron como variables correlacionadas positivamente con el siniestro a: Edad, Año, Que el vehiculo sea HONDA y Ser persona Moral (siendo la más relevante la última).
- Se identificaron como variables correlacionadas negativamente con el siniestro a: ModeloVehiculo, Que el vehiculo sea Toyota y la interacción entre ser persona moral y la edad (siendo el modelo el aspecto más relevante).
- En validación cruzada se comprobo que el modelo no tiene mucha presición (se logra explicar al rededor de un 15% de la variablilidad de la prima), pero es un modelo interpretable, por ejemplo:
- Para la parte de la regresión logistica del modelo de severidad, un incremento de un 1\% en el valor del año, esta asociado a un incremento del 139\% en el momio del evento (ya que $\exp(0.332)\sim 1.3937$.