

CSC380: Principles of Data Science

Probability Primer

Xinchen Yu

Annoucements

- Office hours will be out by end of this week
- Homework 1 out next Tuesday
- Readings before next Tuesday
 - Ch. 6 (WJ: Watkins, J., "An Introduction to the Science of Statistics: From Theory to Implementation")

Outline

- Random Events and Probability
- Axioms of Probability
- Set Theory
- Law of Total Probability

Suppose we roll two fair dice...

- What are the possible outcomes?
- > What is the *probability* of rolling **even** numbers?
- ➤ What is the *probability* of having two numbers sum to 6?
- ➤ If one die rolls 1, then what is the probability of the second die also rolling 1?

...this is a random process.

How to mathematically formulate outcomes and compute these probabilities?

Probability of a random event

 \approx

Simulate the random process n times, the fraction of times this event happens

- How large should n be?
- Simulation results vary from trails?

Background: Numpy in Python

Numpy: numerical computing package

```
import numpy as np
np.random.randint(1,1+6,size=10)
=> array([5, 4, 1, 1, 1, 5, 5, 2, 4, 6])
```

randint(low,high,size) : generate `size` random numbers in {low, low+1, ..., high-1}

Numpy array

- Replaces python's <u>list</u> in numpy.
- More numerical functionality
- It's a 'vector' in mathematics.

```
a=np.array([1,2]); b=np.array([4,5])
a+b

⇒ np.array([5,7]) // elementwise addition
np.dot(a,b)

⇒ 14 // dot product
```

Consider: What is the probability of having two numbers sum to 6?

```
import numpy as np
for n in [10,100,1_000,10_000,100_000]:
    res_dice1 = np.random.randint(1,6+1,size=n)
    res_dice2 = np.random.randint(1,6+1,size=n)
    res = [(res_dice1[i], res_dice2[i]) for i in range(len(res_dice1))]
    cnt = len(list(filter(lambda x: x[0] + x[1] == 6, res)))
    print("n=%6d, result: %.4f " % (n, cnt/n))
                                                                every time you run, you
        10, result: 0.1000
                                   10, result: 0.1000
n=
                                n=
                                                                get a different result
        100, result: 0.1200
                                        100, result: 0.1900
n=
                                n=
     1000, result: 0.1350
                                     1000, result: 0.1540
n=
                                n=
      10000, result: 0.1365
                                     10000, result: 0.1366
                                                                however, the number
n=
                                n=
     100000, result: 0.1388
                                     100000, result: 0.1371
n=
                                n=
                                                                seems to converge to
    1000000, result: 0.1385
                                    1000000, result: 0.1394
n=
                                n=
                                                                0.138-0.139
```

There seems to be a precise value that it will converge to.. what is it?

Consider: What is the probability of having two numbers sum to 6?

Each outcome is equally likely. by the **independence** (will learn this concept later) => 1/36

of outcomes that sum to 6: => 5

answer: (1/36) * 5 = 0.13888...

• Theoretical probability describes how likely an event is going to occur based on math.

 Experimental probability describes how frequently an event actually occured in an experiment.

Mathematics of Probability

- Probability is a real-world phenomenon.
- But under what mathematical framework can we formulate probability so we can solve practical problems?
 - e.g., weather prediction, predicting the election outcome
- <u>Disclaimer</u>: not all mathematics correspond to real-world phenomenon (e.g., Banach–Tarski paradox). Fortunately, we will not talk about this in our lecture ©

Consider: What is the probability of having two numbers sum to 6?

Some examples of events...

Both even numbers

9

$$E^{\text{even}} = \{(2, 2), (2, 4), \dots, (6, 4), (6, 6)\}$$

• The sum of both dice is even,

$$E^{\text{sum even}} = \{(1,1), (1,3), (1,5), \dots, (2,2), (2,4), \dots\}$$

The sum is greater than 12,

$$E^{\text{sum}>12} = \emptyset$$

We can talk about impossible outcomes

Axioms of Probability

But, what is probability, really?

(e.g., can explain the probability of seeing an event when throwing two dice)

Mathematicians have found a set of conditions that 'makes sense'.

- Probability is a map P. ⇒ i.e., takes in an event, spits out a real value
- P must map events to a real value in interval [0,1].
- P is a (valid) probability distribution if it satisfies the following axioms of probability,
 - 1. For any event E, $P(E) \ge 0$
 - 2. $P(\Omega) = 1$
 - 3. For any sequence of disjoint events E_1 , E_2 , E_3 , ...

disjoint: intersection is empty

Many properties follows (i.e., can be proved mathematically)

(I recommend that you maintain your own version of cheat sheet!)

Special case

Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:

$$P(E) = \frac{|E|}{|\Omega|} \text{Number of elements}$$
 in event set
$$\text{Number of possible}$$
 outcomes (36)

This is called <u>uniform probability distribution</u>

Q: What axiom we are using?
=> Axiom 3

(Fair) Dice Example: Probability that we roll even numbers,

$$P((2,2) \cup (2,4) \cup \ldots \cup (6,6)) = P((2,2)) + P((2,4)) + \ldots + P((6,6))$$

9 Possible outcomes, each with equal probability of occurring
$$= \frac{1}{36} + \frac{1}{36} + \ldots + \frac{1}{36} = \frac{9}{36}$$

Consider: What is the probability of having two numbers sum to 6?

Each outcome is equally likely. by the **independence** (will learn this concept later) => 1/36

of outcomes that sum to 6: => 5

answer:

(1/36) * 5 = 0.13888...

$$P(E) = \frac{|E|}{|\Omega|}$$

Two dice example: Suppose

 E_1 : First die equals 1

 E_2 : Second die equals 1

$$E_1 = \{(1,1), (1,2), \dots, (1,6)\}$$
 $E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

$$E_2 = \{(1,1), (2,1), \dots, (6,1)\}$$

Operators on events:

Operation	Value	Interpretation
$E_1 \cup E_2$	$\{(1,1),(1,2),\ldots,(1,6),(2,1),\ldots,(6,1)\}$	Any die rolls 1
$E_1 \cap E_2$	$\{(1,1)\}$	Both dice roll 1
$E_1 \setminus E_2$	$\{(1,2),(1,3),(1,4),(1,5),(1,6)\}$	Only the first die rolls 1
$\overline{E_1 \cup E_2}$	$E_2 := E_1 \cap E_2^c$ $\{(2,2), (2,3), \dots, (2,6), (3,2), \dots, (6,6)\}$ $\cup E_2^c)$	No die rolls 1

Can interpret these operations as a Venn diagram...

More results

DEMORGAN

Special case: $\neg(A \cup B) = \neg A \cap \neg B$

Notation: $\neg A := A^c$

// distributive law

 $\overline{A \cap B} \equiv \overline{A} \cup \overline{B}$

•
$$B = \Omega \cap B = (A \cup \neg A) \cap B = (A \cap B) \cup (\neg A \cap B)$$

// by distributive law

TIP: always draw a picture to visualize these identities!

Lemma: (inclusion-exclusion rule) For <u>any</u> two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Graphical Proof:

Subtract from both sides

Alternative Proof

Lemma: For any two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Alternative proof:

 $P(E_1 \cup E_2)$

 $= P(A \cup B \cup C)$

Exercise:

Quiz candidate

- Consider rolling two fair dice
- E_1 : two dice sum to 6
- E_2 : second die is even
- Compute the numerical value of $P(E_1 \cup E_2)$. Hint: Use inclusion-exclusion rule.

```
P(E_1) = 5/36

P(E_2) = 12/36

P(E_1 \cap E_2) = 2/36
```

answer: 21/36

Law of Total Probability

[Def] The set of events $\{B_i\}_{i=1}^n$ partitions outcome space $C \Leftrightarrow \bigcup_i B_i = C$ and B_1, B_2, \dots are disjoint.

Law of total probability: Let A be an event. For events B_1 , B_2 , ... that partitions Ω , we have

Q: Why is this true?

A: Axiom 3!

$$A = A \cap \Omega = A \cap (\cup_i B_i) = \cup_i (A \cap B_i)$$

 $P(A) = \sum_{i=1}^{n} P(A \cap B_i)$ Now, $\{A \cap B_i\}_{i=1}^n$ partitions A

Law of total probability: Let A be an event. For any events $B_1, B_2, ...$ that partitions Ω , we have

$$P(A) = \sum_{i} P(A \cap B_i)$$

Example Roll two fair dice. Let X be the <u>outcome of the first die</u>. Let Y be the <u>sum of both dice</u>. What is the probability that both dice sum to 6 (i.e., Y=6)? quiz candidate

$$p(Y = 6) = \sum_{x=1}^{6} p(Y = 6, X = x)$$

$$= p(Y = 6, X = 1) + p(Y = 6, X = 2) + \dots + p(Y = 6, X = 6)$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + 0 = \frac{5}{36}$$

Summary So Far

 Most of the rules we learned is basically set theory + axiom 3

So, here is a generic workflow for computing P(A).

- 1. Use set theory and slice and dice A into a manageable partition of A where P(each piece of partition) is easy to compute.
- 2. Apply Axiom 3.

Conditional Probability

- Two fair dice example:
 - Suppose I roll two dice secretly and tell you that one of the dice is 2.
 - In this situation, find the probability of two dice summing to 6.

```
import numpy as np
for n in [10,100,1000,10_000,100_000, 1_000_000]:
    res_dice1 = np.random.randint(6,size=n) + 1
    res_dice2 = np.random.randint(6,size=n) + 1
    res = [(res_dice1[i], res_dice2[i]) for i in range(len(res_dice1))]
    conditioned = list(filter(lambda x: x[0] == 2 or x[1] == 2, res))
    n_eff = len(conditioned)

cnt = len(list(filter(lambda x: x[0] + x[1] == 6, conditioned)))
    print("n=%9d, n_eff=%9d, result: %.4f " % (n, n_eff, cnt/n_eff))
```


compare: without conditioning, it was 0.138..

```
10, n_eff=
                           4, result: 0.0000
                                                            10, n_eff=
                                                                               3, result: 0.3333
n=
                                                           100, n_eff=
                                                                              32, result: 0.0625
        100, n_eff=
                          32, result: 0.2500
n=
                                                   n=
       1000, n_eff=
                         300, result: 0.1733
                                                           1000, n_eff=
                                                                             343, result: 0.2245
n=
                                                   n=
      10000, n_eff=
                                                         10000, n_eff=
                        3002, result: 0.1742
                                                                            3062, result: 0.1897
n=
     100000, n_eff=
                       30590, result: 0.1823
                                                         100000, n_eff=
                                                                           30651, result: 0.1811
n=
    1000000, n_eff=
                      305616, result: 0.1818
                                                       1000000, n_eff=
                                                                          305580, result: 0.1808
n=
```