- An *ordered* symbol table
- A self-balancing tree

Key Idea: We need a tree that is more flexible than a BST so that it can more easily balance itself.

Anatomy of a 2-3 search tree

Picture from [1]

A 2-3 tree allows Nodes to have: (a) 1 key and two links or (b) 2 keys and three links

- Maintains Order
- Guarantees that every null link is the same distance from the root
- What is the height of the tree given N nodes?

Anatomy of a 2-3 search tree

put(K):

adding to a 2-node

Picture from [1]

Insert into a 2-node

put(S):

adding to a single 3-node (the root of the tree)

Insert into a single 3-node

ure from [1]

put(Z):

adding to a 3-node

Insert into a 3-node whose parent is a 2-node

put(D):

adding to a 3-node

put(D):

adding to a 3-node

Example: insert 8, insert 2, insert 3, insert 4, insert 0, insert 6, insert 5, insert 1

get

successful search for H

H is less than M so look to the left

A C H L P S X

unsuccessful search for B

Big Idea for Deletion:

It is easy to delete a key from a 3-node (or a 4-node) at the bottom of the tree. The tricky part is deleting a 2-node. (WHY?)

on the way down

So we can transform the tree on the way down to ensure that the current node is not a 2-node. (HOW?)

Transformations for delete the minimum

11

Example: delete 3, delete 9, delete 5, delete 0, delete 1, delete 8, delete 4, delete 6, delete 7, delete 2

Analysis of **put** algorithm

- local transformations: only the specified nodes need to be examined—number of links changed is bounded by a small constant
- global properties of the tree are preserved (order, balance, height*)

*height is increased by 1 when the root splits (all null nodes still have equal depth)

Splitting a 4-node is a local transformation that preserves order and perfect balance

Splitting a temporary 4-node in a 2-3 tree (summary)

Proposition F

Search and insert operations in a 2-3 tree with N keys are guaranteed to visit at most IgN nodes.

- Consider the two "extremes": the tree is made up of all 3 nodes or the tree is made up of all 2 nodes
- All transformations (local) take constant time $\log N \le \ln \le \log_2 N$ Each operation touches nodes on a single path

Picture from [1] Typical 2-3 tree built from random keys

How might this be different if the keys are in decreasing order?

Pros

 Good guaranteed worst-case performance for basic operations

Cons

- Not "standard" trees—include two kinds of nodes
- Difficult to implement
- Implementation overhead could make it even worse to use than regular BST

References

- [1] Algorithms, Fourth Edition; Robert Sedgewick and Kevin Wayne (and associated slides)
- [2] Slides from https://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf