Álgebra Linear

Aula 11: Expansão de Cofatores

Mauro Rincon Márcia Fampa

Definição 1:

Seja $\mathbf{A} = a_{ij}$ uma matriz quadrada de ordem $n \times n$ e denotemos por \mathbf{M}_{ij} a submatriz quadrada de ordem n-1 de \mathbf{A} obtida pela eliminação da i-ésima linha e da j-ésima coluna. O determinante $det(\mathbf{M}_{ij})$ é chamado **menor relativo ou determinante menor** ao elemento a_{ij} de \mathbf{A} ; e o cofator de a_{ij} , denotado por A_{ij} , é o menor com o sinal correspondente:

$$A_{ij} = (-1)^{i+j} det(\mathbf{M}_{ij})$$

Note que A_{ij} é um número real enquanto \mathbf{M}_{ij} é uma matriz.

Exemplo 1:

Seja
$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 1 \\ -2 & 6 & 3 \\ 1 & 2 & -1 \end{bmatrix}.$$

Considere a submatriz \mathbf{M}_{23} obtida pela eliminação da segunda linha e terceira coluna de \mathbf{A} . Então a matriz de ordem 2, \mathbf{M}_{23} é dada por:

$$\mathbf{M}_{23} = \begin{bmatrix} 2 & -4 \\ 1 & 2 \end{bmatrix}$$
 e $det(\mathbf{M}_{23}) = 8$

Logo
$$\mathbf{A}_{23} = (-1)^{2+3} det(\mathbf{M}_{23}) = (-1) \cdot 8 = -8$$

<u>Teorema 1</u>: (**Fórmula de Laplace**)

O determinante da matriz $\mathbf{A} = a_{ij}$ é igual à soma dos produtos obtidos pela multiplicação dos elementos de qualquer linha (coluna) por seus respectivos cofatores, ou seja:

$$|\mathbf{A}| = det(\mathbf{A}) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij},$$

$$i = 1, 2 \dots n$$

$$|\mathbf{A}| = det(\mathbf{A}) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij},$$

 $j = 1, 2 \dots n$

Demonstração:

Sem perda de generalidade, consideraremos uma matriz quadrada **A** de ordem 3, dada por

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Da definição de determinante, temos que:

$$det(\mathbf{A}) = \{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}\} - \{a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31}\}$$

Fatorando os termos a_{11} , a_{12} e a_{13} , obtemos

$$det(\mathbf{A}) = a_{11} (a_{22}a_{33} - a_{23}a_{32}) + a_{12} (a_{23}a_{31} - a_{21}a_{33}) + a_{13} (a_{21}a_{32} - a_{22}a_{31}) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

pois os cofatores A_{11} , A_{12} e A_{13} são dados por:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = (a_{22}a_{33} - a_{23}a_{32})$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = -(a_{21}a_{33} - a_{23}a_{31})$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = (a_{21}a_{32} - a_{22}a_{31})$$

Na demonstração o determinante foi desenvolvido fazendo a expansão do determinante em cofatores para a primeira linha, mas o mesmo resultado permanece válido fazendo a expansão do determinante em cofatores para a 2^a e 3^a linha e para 1^a, 2^a e 3^a coluna.

9.2 - Redução de Ordem

Exemplo 2: Calcule o determinante da matriz A:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 0 & 5 \\ 2 & 3 & 1 & -2 \\ 0 & 2 & -1 & 3 \\ 3 & 1 & 0 & 2 \end{bmatrix}$$

9.3 - Cálculo do Determinante introduzindo zeros

Exemplo 3:

Calcule o determinante da matriz

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 0 & 5 \\ 2 & 3 & 1 & -2 \\ 0 & 2 & -1 & 3 \\ 3 & 1 & 0 & 2 \end{bmatrix}$$

$$L_3 \leftarrow L_3 + L_2$$
, que significa

$$3^a linha \leftarrow 3^a linha + 2^a linha$$

9.3 - Cálculo do Determinante introduzindo zeros

Após as operações obtemos a seguinte matriz A^1 ,

$$\mathbf{A}^{1} = \begin{bmatrix} 1 & -2 & 0 & 5 \\ 2 & 3 & 1 & -2 \\ 2 & 5 & 0 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$$

Usando agora a expansão de cofatores na terceira coluna temos:

$$det(\mathbf{A}) = det(\mathbf{A}^{1}) = 1.(-1)^{2+3} \begin{vmatrix} 1 & -2 & 5 \\ 2 & 5 & 1 \\ 3 & 1 & 2 \end{vmatrix}$$

9.3 - Cálculo do Determinante introduzindo zeros

Na matriz A^1 , vamos introduzir zeros na primeira coluna, fazendo as operações:

$$L_2 \leftarrow L_2 - 2.L_1$$
$$L_3 \leftarrow L_3 - 3.L_1$$

Temos agora a seguinte matriz A^2 ,

$$det(\mathbf{A}) = det(\mathbf{A}^{1}) = det(\mathbf{A}^{2}) = (-1)^{5} \begin{vmatrix} 1 & -2 & 5 \\ 0 & 9 & -9 \\ 0 & 7 & -13 \end{vmatrix}$$

$$= ((-1)^5) \, 1.(-1)^{1+1} \begin{vmatrix} 9 & -9 \\ 7 & -13 \end{vmatrix} = -1.1.(-54) = 54$$
cederj

Exercícios

Fazer os exercícios de 1 a 19 das páginas 95 e 96 do livro texto.