Lemma 1: For any numbers a and k, P(n): $k(x-a)^n = kx^n + g(x)$ where g(x) is some polynomial of degree n-1. Proof. (Induction).

Suppose n = 1. Then $k(x - a)^1 = kx - a = kx^1 + g(x)$ where g(x) = -a.

Now suppose $n \in \mathbb{N}$ and P(n). Hence $k(x-a)^n = kx^n + g(x)$. Observe that $k(x-a)^{n+1} = k(x-a)^n(x-a) = (kx^n + g(x))(x-a) = kx^{n+1} + xg(x) - akx^n - ag(x)$. Note that, since g(x) is degree n-1, g(x)*x is degree n. Also $-akx^n$ and -ag(x) are degree n and n-1, respectively. Then $k(x-a)^{n+1} = kx^{n+1} + h(x)$ where $h(x) = xg(x) - akx^n - ag(x)$ and h is degree n. Thus P(n+1). Therefore, it follows by induction that for any numbers a and k, $k(x-a)^n = kx^n + g(x)$ where g(x) is degree n-1.

(a) Prove that P(n): For any polynomial function f, and any number a, there is a polynomial function g and a number b such that f(x) = (x - a)g(x) + b.

Proof. (Induction).

Suppose n = 1. Then $f(x) = a_1x + a_0$ for some numbers a_1, a_0 . Note that $a_1x + a_0 = a_1x - a_1a + a_1a + a_0 = (x - a)(a_1) + a_1a + a_0 = (x - a)g(x) + b$ where $g(x) = a_1$ and $b = (a * a_1 + a_0)$. Thus P(1).

Now suppose $n \in \mathbb{N}$ and P(n). Hence g(x) = (x-a)h(x) + b for any polynomial g of degree n. Let f be a polynomial of degree n+1, such that $f(x) = kx^{n+1} + g(x)$. By Lemma 1, there exists a polynomial h of degree n for which $kx^{n+1} + g(x) = k(x-a)^{n+1} - h(x) + g(x)$. Then -h(x) + g(x) is a polynomial of degree n, hence -h(x) + g(x) = (x-a)l(x) + b for any polynomial l of degree n. Then $f(x) = k(x-a)^{n+1} + (x-a)l(x) + b = (x-a)(k(x-a)^n + l(x)) + b$. Since $k(x-a)^n + l(x)$ is a polynomial of degree n, we get P(n+1).

Therefore, it follows by induction that for any polynomial function f, and any number a, there is a polynomial function g and a number b such that f(x) = (x - a)g(x) + b.