Logic

Problem 1

Let F be the set of well-formed formulas with propositional variables from Prop. Define a relation, $R \subseteq F \times F$ by $(\varphi, \psi) \in R$ if $\varphi \models \psi$. Prove or give a counter-example to disprove:

- (a) *R* is a partial order.
- (b) $R \cup R^{\leftarrow}$ is an equivalence relation.
- (c) $R \cap R^{\leftarrow}$ is an equivalence relation.

Problem 2

Prove that $\neg N$ follows logically from $H \land \neg R$ and $(H \land N) \rightarrow R$.

Problem 3

Consider the formulae $\phi_1 = (r \to p)$ and $\phi_2 = (p \to (q \lor \neg r))$. Transform the formula $\phi = (\neg q \to (\phi_1 \land \phi_2))$ into

- (a) DNF, and
- (b) **CNF**.

Simplify the result as much as possible.

Problem 4

Let $(T, \land, \lor, ', 0, 1)$ be a Boolean Algebra. Define $\oplus : T \times T \to T$ as follows:

$$x \oplus y = (x \wedge y') \vee (x' \wedge y)$$

- (a) Prove using the laws of Boolean Algebra that for all $x \in T$, $x \oplus 1 = x'$.
- (b) Prove using the laws of Boolean Algebra that $x \wedge (y \oplus z) = (x \wedge y) \oplus (x \wedge z)$.
- (c) Find a Boolean Algebra (and x, y, z) which demonstrates that $x \oplus (y \land z) \neq (x \oplus y) \land (x \oplus z)$

Problem 5^{\dagger} (20T2)

Prove, or give a counterexample to disprove, for all propositional formulas φ, ψ, θ :

- (a) $((\varphi \land \psi) \rightarrow \theta) \equiv (\varphi \rightarrow (\psi \rightarrow \theta))$
- (b) $((\varphi \leftrightarrow \psi) \land (\psi \leftrightarrow \theta)) \equiv (\varphi \leftrightarrow \theta)$
 - [†] indicates a previous exam question
 - * indicates a difficult/advanced question.

- (c) $(\varphi \wedge \psi) \models (\varphi \leftrightarrow \psi)$
- (d) $(\varphi \to \psi), (\neg \varphi \to \theta) \models (\psi \lor \theta)$
- (e) $(\varphi \to (\psi \to \theta)) \models ((\varphi \to \psi) \to \theta)$