Chapter 3 Nonlinear Finite Element Analysis

Nonlinear Structural Problems

- What is a nonlinear structural problem?
 - Everything except for linear structural problems
 - Need to understand linear problems first
- What is linearity?

$$A(\alpha u + \beta w) = \alpha A(u) + \beta A(w)$$

What is a linear structural problem?

- Linearity is an approximation
- Assumptions:
 - Infinitesimal strain (<0.2%)
 - Infinitesimal displacement
 - Small rotation
 - Linear stress-strain relation

$$F = \sigma A_0 = A_0 E \varepsilon = \frac{A_0 E}{L_0} \delta L$$

Observations in linear problems

Which one will happen?

· Will this happen?

What types of nonlinearity exist?

Geometrical

Material

Through BCs

It can be at every stage of analysis!

Linear vs. Nonlinear Problems

- · Linear Problem:
 - Infinitesimal deformation: $\varepsilon_{ij} = \frac{1}{2} \left| \frac{\partial u_i}{\partial x_j} + \frac{v_j}{\partial x_j} \right|$
 - Linear stress-strain relation: $\sigma = \mathcal{D} : \epsilon$
 - Constant displacement BCs
 - Constant applied forces
- · Nonlinear Problem:
 - Everything except for linear problems!
 - Geometric nonlinearity: nonlinear strain-displacement relation
 - Material nonlinearity: nonlinear constitutive relation
 - Kinematic nonlinearity: Non-constant displacement BCs, contact
 - Force nonlinearity: follow-up loads

Undeformed coord.

Constant

Nonlinearities in Structural Problems

· More than one nonlinearity can exist at the same time

Geometric Nonlinearity

Relations among kinematic quantities (i.e., displacement, rotation and strains) are nonlinear

Displacement-strain relation

- Linear:
$$\varepsilon(x) = \frac{du}{dx}$$

- Linear:
$$\varepsilon(x) = \frac{du}{dx}$$
- Nonlinear:
$$E(x) = \frac{du}{dx} + \frac{1}{2} \left(\frac{du}{dx}\right)^2$$

When du/dx is small

$$\left(\frac{du}{dx}\right)^2 \ll \frac{du}{dx}$$

H.O.T. can be ignored

$$\varepsilon(x) \approx \mathsf{E}(x)$$

Geometric Nonlinearity cont.

- Displacement-strain relation^{0.35}
 - E has a higher-order term
 - $(du/dx) \ll 1 \rightarrow \varepsilon(x) \sim E(x)$.

- Domain of integration
 - Undeformed domain Ω_0
 - Deformed domain Ω_{x}

$$W_{int}(\mathbf{u}, \overline{\mathbf{u}}) = \int_{\Omega} \varepsilon(\overline{\mathbf{u}}) : \sigma(\mathbf{u}) d\Omega$$

Deformed domain is unknown

Material Nonlinearity

- Linear (elastic) material $\{\sigma\} = [D]\{\epsilon\}$
 - Only for infinitesimal deformation
- Nonlinear (elastic) material

More generally, $\{\sigma\} = \{\mathbf{f}(\varepsilon)\}\$

- [D] is not a constant but depends on deformation
- Stress by differentiating strain energy density $U \rightarrow \sigma = \frac{dU}{dt}$
- Linear material:

$$U = \frac{1}{2} E \epsilon^2$$

$$U = \frac{1}{2} E \epsilon^2 \qquad \sigma = \frac{dU}{d\epsilon} = E \epsilon$$

- Stress is a function of strain (deformation): potential, path independent

Linear and nonlinear elastic spring models

Material Nonlinearity cont.

- Elasto-plastic material (energy dissipation occurs)
 - Friction plate only support stress up to $\sigma_{\!_{\boldsymbol{y}}}$
 - Stress cannot be determined from deformation alone
 - History of loading path is required: path-dependent

Elasto-plastic spring model

- Visco-elastic material
 - Time-dependent behavior
 - Creep, relaxation

Visco-elastic spring model

Boundary and Force Nonlinearities

- Nonlinear displacement BC (kinematic nonlinearity)
 - Contact problems, displacement dependent conditions

Nonlinear force BC (Kinetic nonlinearity)

Mild vs. Rough Nonlinearity

Mild Nonlinear Problems

- Continuous, history-independent nonlinear relations between stress and strain
- Nonlinear elasticity, Geometric nonlinearity, and deformationdependent loads

Rough Nonlinear Problems

- Equality and/or inequality constraints in constitutive relations
- History-dependent nonlinear relations between stress and strain
- Elastoplasticity and contact problems

Nonlinear Finite Element Equations

· Equilibrium between internal and external forces

- Kinetic and kinematic nonlinearities
 - Appears on the boundary
 - Handled by displacements and forces (global, explicit)
 - Relatively easy to understand (Not easy to implement though)
- Material & geometric nonlinearities
 - Appears in the domain
 - Depends on stresses and strains (local, implicit)

Solution Procedure

We can only solve for linear problems ...

Example 1 - Nonlinear Springs

- Spring constants
 - $k_1 = 50 + 500u$ $k_2 = 100 + 200u$

Governing equation

$$\begin{cases} 300u_1^2 + 400u_1u_2 - 200u_2^2 + 150u_1 - 100u_2 = 0 & P_1 \\ 200u_1^2 - 400u_1u_2 + 200u_2^2 - 100u_1 + 100u_2 = 100 & P_2 \end{cases}$$

- Solution is in the intersection between two zero contours
- Multiple solutions may exist

- No solution exists in a certain situation

Solution Procedure

· Linear Problems

$$K \cdot d = f$$
 or $p(d) = f$

- Stiffness matrix K is constant

$$p(d_1 + d_2) = p(d_1) + p(d_2)$$
$$p(\alpha d) = \alpha p(d) = \alpha f$$

- If the load is doubled, displacement is doubled, too
- Superposition is possible
- · Nonlinear Problems

$$p(d) = f$$
, $p(2d) \neq 2f$

- How to find d for a given f?

Incremental Solution Procedure

Newton-Raphson Method

- Most popular method
- Assume dⁱ at i-th iteration is known
- · Looking for di+1 from first-order Taylor series expansion

$$p(d^{i+1}) \approx p(d^i) + K_T^i(d^i) \cdot \Delta d^i = f$$

- $K_T^i(d^i) \equiv \left(\frac{\partial p}{\partial d}\right)^i$: Jacobian matrix or Tangent stiffness matrix
- · Solve for incremental solution

$$\mathbf{K}_{\mathsf{T}}^{\mathsf{i}} \Delta \mathbf{d}^{\mathsf{i}} = \mathbf{f} - \mathbf{p}(\mathbf{d}^{\mathsf{i}})$$

Update solution

$$\mathbf{d}^{i+1} = \mathbf{d}^i + \Delta \mathbf{d}^i$$

N-R Method cont.

- Observations:
 - Second-order convergence near the solution (Fastest method!)
 - Tangent stiffness $K_T^i(\boldsymbol{d}^i)$ is not constant

$$\lim_{n\to\infty} \frac{\left| u_{\text{exact}} - u_{n+1} \right|}{\left| u_{\text{exact}} - u_{n} \right|^{2}} = 0$$

- The matrix equation solves for incremental displacement $\Delta \mathbf{d}^{i}$
- RHS is not a force but a residual force $r^i = f p(d^i)$
- Iteration stops when conv < tolerance

$$conv = \frac{\left\| \mathbf{r}^{i+1} \right\|_{2}}{1 + \left\| \mathbf{f} \right\|_{2}} \qquad Or, \qquad conv = \frac{\left\| \Delta \mathbf{d}^{i+1} \right\|_{2}}{1 + \left\| \Delta \mathbf{d}^{0} \right\|_{2}}$$

N-R Algorithm

- 1. Set tolerance = 0.001, k = 0, max_iter = 20, and initial estimate d^k = d_0
- 2. Calculate residual $r^k = f p(d^k)$
- 3. Calculate conv. If conv < tolerance, stop
- 4. If k > max_iter, stop with error message
- 5. Calculate Jacobian matrix K_T^k at u^k
- 6. If the determinant of K_T^k is zero, stop with error messg.
- 7. Calculate solution increment Δd^k
- 8. Update solution by $d^{k+1} = d^k + \Delta d^k$
- 9. Set $d^{k} = d^{k+1}$
- 10. Go to Step 2

Example 2 - N-R Method

$$\mathbf{p}(\mathbf{d}) = \begin{cases} d_1 + d_2 \\ d_1^2 + d_2^2 \end{cases} = \begin{cases} 3 \\ 9 \end{cases} \equiv \mathbf{f} \quad \mathbf{d}^0 = \begin{cases} 1 \\ 5 \end{cases} \quad \mathbf{p}(\mathbf{d}^0) = \begin{cases} 6 \\ 26 \end{cases}$$

$$\mathbf{K}_{\mathsf{T}} = \frac{\partial \mathbf{p}}{\partial \mathbf{d}} = \begin{bmatrix} 1 & 1 \\ 2\mathsf{d}_1 & 2\mathsf{d}_2 \end{bmatrix}$$

$$\mathbf{K}_{\mathsf{T}} = \frac{\partial \mathbf{p}}{\partial \mathbf{d}} = \begin{bmatrix} 1 & 1 \\ 2d_1 & 2d_2 \end{bmatrix} \qquad \mathbf{r}^{\mathsf{O}} = \mathbf{f} - \mathbf{p}(\mathbf{d}^{\mathsf{O}}) = \begin{bmatrix} -3 \\ -17 \end{bmatrix}$$

Iteration 1

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} \Delta d_1^0 \\ \Delta d_2^0 \end{bmatrix} = \begin{bmatrix} -3 \\ -17 \end{bmatrix} \qquad \qquad \begin{bmatrix} \Delta d_1^0 \\ \Delta d_2^0 \end{bmatrix} = \begin{bmatrix} -1.625 \\ -1.375 \end{bmatrix}$$

$$\mathbf{d}^{1} = \mathbf{d}^{0} + \Delta \mathbf{d}^{0} = \begin{cases} -0.625 \\ 3.625 \end{cases}$$

$$\mathbf{r}^1 = \mathbf{f} - \mathbf{P}(\mathbf{d}^1) = \left\{ \begin{array}{c} 0 \\ -4.531 \end{array} \right\}$$

Example 2 - N-R Method cont.

Iteration 2

$$\begin{bmatrix} 1 & 1 \\ -1.25 & 7.25 \end{bmatrix} \begin{bmatrix} \Delta d_1^1 \\ \Delta d_2^1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4.531 \end{bmatrix} \qquad \Box \qquad \begin{bmatrix} \Delta d_1^1 \\ \Delta d_2^1 \end{bmatrix} = \begin{bmatrix} 0.533 \\ -0.533 \end{bmatrix}$$

$$\mathbf{d}^2 = \mathbf{d}^1 + \Delta \mathbf{d}^1 = \begin{cases} -0.092 \\ 3.092 \end{cases}$$

$$\mathbf{d}^{2} = \mathbf{d}^{1} + \Delta \mathbf{d}^{1} = \begin{cases} -0.092 \\ 3.092 \end{cases} \qquad \mathbf{r}^{2} = \mathbf{f} - \mathbf{p}(\mathbf{d}^{2}) = \begin{cases} 0 \\ -0.568 \end{cases}$$

Iteration 3

$$\begin{bmatrix} 1 & 1 \\ -0.184 & 6.184 \end{bmatrix} \begin{bmatrix} \Delta d_1^2 \\ \Delta d_2^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.568 \end{bmatrix} \qquad \qquad \begin{bmatrix} \Delta d_1^2 \\ \Delta d_2^2 \end{bmatrix} = \begin{bmatrix} 0.089 \\ -0.089 \end{bmatrix}$$

$$\left| \begin{array}{c} \Delta d_1^2 \\ \Delta d_2^2 \end{array} \right| = \left\{ \begin{array}{c} 0.089 \\ -0.089 \end{array} \right\}$$

$$\mathbf{d}^3 = \mathbf{d}^2 + \Delta \mathbf{d}^2 = \begin{cases} -0.003 \\ 3.003 \end{cases}$$

$$r^3 = f - p(d^3) = \begin{cases} 0 \\ -0.016 \end{cases}$$

Example 2 - N-R Method cont.

Iteration 4

$$\begin{bmatrix} 1 & 1 \\ -0.005 & 6.005 \end{bmatrix} \begin{bmatrix} \Delta d_1^3 \\ \Delta d_2^3 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.016 \end{bmatrix} \qquad \qquad \qquad \qquad \begin{bmatrix} \Delta d_1^3 \\ \Delta d_2^3 \end{bmatrix} = \begin{bmatrix} 0.003 \\ -0.003 \end{bmatrix}$$

$$\mathbf{d}^4 = \mathbf{d}^3 + \Delta \mathbf{d}^3 = \begin{cases} -0.000 \\ 3.000 \end{cases}$$

$$\mathbf{r}^4 = \mathbf{f} - \mathbf{p}(\mathbf{d}^4) = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\}$$

Residual

-			•	•	
- 1 -	70	n	1		n
	ヒ	ı	וג	ıv	•

Iteration k	r ^k	
0	17.263	
1	4.531	
2	0.016	
3	0.0	

Quadratic convergence

When N-R Method Does Not Converge?

- Difficulties
 - Convergence is not always guaranteed
 - Automatic load step control and/or line search techniques are often used
 - Difficult/expensive to calculate $K_T^i(d^i)$

When N-R Method Does Not Converge? cont.

- Convergence difficulty occurs when
 - Jacobian matrix is not positive-definite

P.D. Jacobian: in order to increase displ., force must be increased

- Bifurcation & snap-through require a special algorithm
- Cracking of not reinforced concrete

Modified N-R Method

- Constructing $K_T^i(d^i)$ and solving $K_T^i \Delta d^i = r^i$ is expensive
- Computational Costs (Let the matrix size be $N \times N$)
 - L-U factorization ~ N³
 - Forward/backward substitution ~ N
- Use L-U factorized K_Tⁱ(dⁱ) repeatedly
- More iteration is required, but each iteration is fast
- More stable than N-R method
- Hybrid N-R method

Example 3 - Modified N-R Method

· Solve the same problem using modified N-R method

$$\mathbf{p}(\mathbf{d}) \equiv \left\{ \begin{array}{c} d_1 + d_2 \\ d_1^2 + d_2^2 \end{array} \right\} = \left\{ \begin{array}{c} 3 \\ 9 \end{array} \right\} \equiv \mathbf{f} \qquad \mathbf{d}^0 = \left\{ \begin{array}{c} 1 \\ 5 \end{array} \right\} \qquad \mathbf{P}(\mathbf{d}^0) = \left\{ \begin{array}{c} 6 \\ 26 \end{array} \right\}$$

$$\mathbf{K}_{\mathsf{T}} = \frac{\partial \mathbf{p}}{\partial \mathbf{d}} = \begin{bmatrix} 1 & 1 \\ 2d_1 & 2d_2 \end{bmatrix} \qquad \mathbf{r}^0 = \mathbf{f} - \mathbf{p}(\mathbf{d}^0) = \begin{bmatrix} -3 \\ -17 \end{bmatrix}$$

· Iteration 1

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} \Delta d_1^0 \\ \Delta d_2^0 \end{bmatrix} = \begin{bmatrix} -3 \\ -17 \end{bmatrix} \qquad \qquad \begin{bmatrix} \Delta d_1^0 \\ \Delta d_2^0 \end{bmatrix} = \begin{bmatrix} -1.625 \\ -1.375 \end{bmatrix}$$

$$\mathbf{d}^{1} = \mathbf{d}^{0} + \Delta \mathbf{d}^{0} = \begin{cases} -0.625 \\ 3.625 \end{cases} \qquad \mathbf{r}^{1} = \mathbf{f} - \mathbf{p}(\mathbf{d}^{1}) = \begin{cases} 0 \\ -4.531 \end{cases}$$

Example 3 - Modified N-R Method cont.

Iteration 2

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} \Delta d_1^1 \\ \Delta d_2^1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4.531 \end{bmatrix} \qquad \qquad \begin{bmatrix} \Delta d_1^1 \\ \Delta d_2^1 \end{bmatrix} = \begin{bmatrix} 0.566 \\ -0.566 \end{bmatrix}$$

$$\mathbf{d}^2 = \mathbf{d}^1 + \Delta \mathbf{d}^1 = \begin{cases} -0.059 \\ 3.059 \end{cases}$$

$$\mathbf{d}^{2} = \mathbf{d}^{1} + \Delta \mathbf{d}^{1} = \begin{cases} -0.059 \\ 3.059 \end{cases} \qquad \mathbf{r}^{2} = \mathbf{f} - \mathbf{p}(\mathbf{d}^{2}) = \begin{cases} 0 \\ -0.358 \end{cases}$$

Residual

Iteration k	r ^k	
0	17.263	
1	4.5310	
2	0.3584	
3	0.0831	
4	0.0204	
5	0.0051	
6	0.0013	
7	0.0003	

NR implementation in Solid Mechanics

Incremental Force Method

- N-R method converges fast if the initial estimate is close to the solution
- Solid mechanics: initial estimate = undeformed shape
- Convergence difficulty occurs when the applied load is large (deformation is large)
- IFM: apply loads in increments. Use the solution from the previous increment as an initial estimate
- Commercial programs
 call it "Load Increment"
 or "Time Increment"

Incremental Force Method cont.

- · Load increment does not have to be uniform
 - Critical part has smaller increment size
- Solutions in the intermediate load increments
 - History of the response can provide insight into the problem
 - Estimating the bifurcation point or the critical load
 - Load increments greatly affect the accuracy in path-dependent problems

Load Increment implementation

- Use "Time" to represent load level
 - In a static problem, "Time" means a pseudo-time
 - Required Starting time, (T_{start}) , Ending time (T_{end}) and increment
 - Load is gradually increased from zero at T_{start} and full load at T_{end}
 - Load magnitude at load increment Tⁿ:

$$f^{n} = \frac{T^{n} - T_{start}}{T_{end} - T_{start}} f \qquad T^{n} = n \times \Delta T \leq T_{end}$$

- Automatic time stepping
 - Increase/decrease next load increment based on the number of convergence iteration at the current load
 - User provide initial load increment, minimum increment, and maximum increment
 - Bisection of load increment when not converged

Force Control vs. Displacement Control

- Force control: gradually increase applied forces and find equilibrium configuration
- · Displ. control: gradually increase prescribed displacements
 - Applied load can be calculated as a reaction
 - More stable than force control.
 - Useful for softening, contact, snap-through, etc.

Nonlinear Solution Steps

- 1. Initialization: $d^0 = 0$; i = 0
- 2. Residual Calculation $r^i = f p(d^i)$
- 3. Convergence Check (If converged, stop)
- 4. Linearization
 - Calculate tangent stiffness $K_T^i(d^i)$
- 5. Incremental Solution:
 - Solve $\mathbf{K}_{T}^{i}(\mathbf{d}^{i})\Delta\mathbf{d}^{i}=\mathbf{r}^{i}$
- 6. State Determination
 - Update displacement and stress $\frac{\mathbf{d}^{i+1} = \mathbf{d}^i + \Delta \mathbf{d}^i}{\sigma^{i+1} = \sigma^i + \Delta \sigma^i}$
- 7. Go To Step 2

Nonlinear Solution Steps cont.

- State determination
 - For a given displ d^k , determine current state (strain, stress, etc)

$$\mathbf{u}^{\mathsf{k}}(\mathbf{x}) = \mathbf{N}(\mathbf{x}) \cdot \mathbf{d}^{\mathsf{k}}$$

$$\mathbf{\epsilon}^{\mathbf{k}} = \mathbf{B} \cdot \mathbf{d}^{\mathbf{k}}$$

$$\sigma^{k} = f(\varepsilon^{k})$$

- Sometimes, stress cannot be determined using strain alone
- Residual calculation (static case)
 - Applied nodal force Nodal forces due to internal stresses

Weak form:
$$\int_{\Omega} \epsilon(\overline{\mathbf{u}})^{\mathsf{T}} \sigma \, d\Omega = \int_{\Gamma_{s}} \overline{\mathbf{u}}^{\mathsf{T}} \mathbf{t} \, d\Gamma + \int_{\Omega} \overline{\mathbf{u}}^{\mathsf{T}} \mathbf{f}^{\mathsf{b}} \, d\Omega, \quad \forall \overline{\mathbf{u}} \in \mathbb{Z}$$

$$\text{Discretization:} \quad \overline{\textbf{d}}^{\mathsf{T}} \bigg(\int_{\Omega} \textbf{B}^{\mathsf{T}} \sigma \, d\Omega = \int_{\Gamma_{\!_{\hspace{-.1em}s}}} \textbf{N}^{\mathsf{T}} \textbf{t} \, d\Gamma + \int_{\Omega} \textbf{N}^{\mathsf{T}} \textbf{f}^{\mathsf{b}} \, d\Omega \bigg), \quad \forall \overline{\textbf{d}} \in \mathbb{Z}_{\mathsf{h}}$$

Residual:
$$\mathbf{r}^k = \int_{\Gamma_s} \mathbf{N}^T \mathbf{t} d\Gamma + \int_{\Omega} \mathbf{N}^T \mathbf{f}^b d\Omega - \int_{\Omega} \mathbf{B}^T \sigma^k d\Omega$$

$$\mathbf{f} \qquad \mathbf{p}(\mathbf{d})$$

Particularization to Linear Elastic Material

· Governing equation (Scalar equation)

$$\int_{\Omega} \epsilon(\overline{\mathbf{u}})^{\mathsf{T}} \sigma d\Omega = \int_{\Gamma_{s}} \overline{\mathbf{u}}^{\mathsf{T}} d\Gamma + \int_{\Omega} \overline{\mathbf{u}}^{\mathsf{T}} f^{b} d\Omega$$

$$\overline{\mathbf{u}} = \mathbf{N} \cdot \overline{\mathbf{d}}$$

$$\epsilon(\overline{\mathbf{u}}) = \mathbf{B} \cdot \overline{\mathbf{d}}$$

· Collect d

$$\overline{\mathbf{d}}^{\mathsf{T}} \left(\int_{\Omega} \mathbf{B}^{\mathsf{T}} \sigma \, d\Omega = \int_{\Gamma_{s}} \mathbf{N}^{\mathsf{T}} \mathbf{t} \, d\Gamma + \int_{\Omega} \mathbf{N}^{\mathsf{T}} \mathbf{f}^{\mathsf{b}} \, d\Omega \right)$$

$$\mathbf{p}(\mathbf{d})$$

$$\mathbf{f}$$

- Residual r = f p(d)
- · Linear elastic material

$$\sigma = D \cdot \epsilon = D \cdot B \cdot d$$

$$\mathbf{K}_{\mathsf{T}} = \frac{\partial \mathbf{p}(\mathbf{d})}{\partial \mathbf{d}} = \int_{\Omega} \mathbf{B}^{\mathsf{T}} \mathbf{D} \mathbf{B} \, \mathrm{d}\Omega$$

Example 4 - Nonlinear Bar

- Rubber bar $\sigma = E tan^{-1}(m\epsilon)$
- Discrete weak form $\bar{\mathbf{d}}^T \int_0^L \mathbf{B}^T \sigma A dx = \bar{\mathbf{d}}^T \mathbf{F}$
- Scalar equation $r = F \int_0^L \frac{\sigma A}{L} dx$ $\Rightarrow r = F - \sigma(d)A$

$$\overline{\mathbf{d}} = \begin{cases} \overline{\mathbf{d}_1} \\ \overline{\mathbf{d}_2} \end{cases}$$

$$\mathbf{F} = \left\{ \begin{matrix} \mathbf{R} \\ \mathbf{F} \end{matrix} \right\}$$

$$B = \frac{1}{L} \begin{bmatrix} -1 & 1 \end{bmatrix}$$

Example 4 - Nonlinear Bar cont.

Jacobian

$$\frac{dp}{dd} = \frac{d\sigma(d)}{dd}A = \frac{d\sigma}{d\epsilon}\frac{d\epsilon}{dd}A = \frac{1}{L}mAE\cos^2\left(\frac{\sigma}{E}\right)$$

N-R equation

$$\left[\frac{1}{L} \mathsf{m} A \mathsf{E} \cos^2\left(\frac{\sigma^{\mathsf{k}}}{\mathsf{E}}\right)\right] \Delta \mathsf{d}^{\mathsf{k}} = \mathsf{F} - \sigma^{\mathsf{k}} \mathsf{A}$$

Iteration 1

$$\frac{mAE}{L}\Delta d^{0} = F$$

Iteration 2

$$\left[\frac{\mathsf{m}\mathsf{A}\mathsf{E}}{\mathsf{L}}\mathsf{cos}^2\left(\frac{\sigma^1}{\mathsf{E}}\right)\right]\Delta\mathsf{d}^1=\mathsf{F}-\sigma^1\mathsf{A}$$

$$d^{1} = d^{0} + \Delta d^{0} = 0.025m$$

 $\epsilon^{1} = d^{1} / L = 0.025$
 $\sigma^{1} = E tan^{-1}(m\epsilon^{1}) = 78.5MPa$

$$d^{2} = d^{1} + \Delta d^{1} = 0.0357m$$

 $\epsilon^{2} = d^{2} / L = 0.0357$
 $\sigma^{2} = E tan^{-1}(m\epsilon^{2}) = 96MPa$

N-R or Modified N-R?

- · It is always recommended to use the Incremental Force Method
 - Mild nonlinear: ~10 increments
 - Rough nonlinear: 20 ~ 100 increments
 - For rough nonlinear problems, analysis results depends on increment size
- · Within an increment, N-R or modified N-R can be used
 - N-R method calculates K_T at every iteration
 - Modified N-R method calculates K_T once at every increment
 - N-R is better when: mild nonlinear problem, tight convergence criterion
 - Modified N-R is better when: computation is expensive, small increment size, and when N-R does not converge well
- · Many FE programs provide automatic stiffness update option
 - Depending on convergence criteria used, material status change, etc

Accuracy vs. Convergence

- Nonlinear solution procedure requires
 - Internal force p(d)
 - Tangent stiffness $K_T(d) = \frac{\partial p(d)}{\partial d}$
 - They are often implemented in the same routine
- Internal force p(d) needs to be accurate
 - We solve equilibrium of p(d) = f
- Tangent stiffness $K_T(d)$ contributes to convergence
 - Accurate $K_T(d)$ provides quadratic convergence near the solution
 - Approximate $K_T(d)$ requires more iteration to converge
 - Wrong $K_T(d)$ causes lack of convergence

Convergence Criteria

- · Most analysis programs provide three convergence criteria
 - Work, displacement, load (residual)
 - Work = displacement x load
 - At least two criteria needs to be converged
- Traditional convergence criterion is load (residual)
 - Equilibrium between internal and external forces p(d) = f(d)
- Use displacement criterion for load insensitive system

Solution Strategies

- Load Increment (substeps)
 - Linear analysis concerns max load
 - Nonlinear analysis depends on load path (history)
 - Applied load is gradually increased within a load step
 - Follow load path, improve accuracy, and easy to converge

- Within a load increment, an iterative method (e.g., NR method) is used to find nonlinear solution
- Bisection, linear search, stabilization, etc

Solution Strategies cont.

- · Automatic (Variable) Load Increment
 - Also called Automatic Time Stepping
 - Load increment may not be uniform
 - When convergence iteration diverges, the load increment is halved
 - If a solution converges in less than 4 iterations, increase time increment by 25%
 - If a solution converges in more than 8 iterations, decrease time increment by 25%
- Subincrement (or bisection)
 - When iterations do not converge at a given increment, analysis goes back to previously converged increment and the load increment is reduced by half
 - This process is repeated until max number of subincrements

When nonlinear analysis does not converge

- NR method assumes a constant curvature locally
- When a sign of curvature changes around the solution, NR method oscillates or diverges
- Often the residual changes sign between iterations
- Line search can help to converge

$$p(u) = u + tan^{-1}(5u)$$

$$\frac{dp}{du} = 1 + 5cos^{2}(tan^{-1}(5u))$$

49

When nonlinear analysis does not converge

- · Displacement-controlled vs. force-controlled procedure
 - Almost all linear problems are force-controlled
 - Displacement-controlled procedure is more stable for nonlinear analysis
 - Use reaction forces to calculate applied forces

