Examen Analyse

PEIP C

Janvier 2021

On prêtera une attention particulière à la rédaction. Les calculatrices sont interdites. Tout résultat sans justification sera pénalisé. Des schémas illustrant vos démonstrations sont encouragés.

Exercice 1 : questions de cours et calculs

- (1) Donner la définition formelle de la proposition : la suite de réels $(u_n)_{n\in\mathbb{N}}$ converge vers π
- (2) Rappeler l'énoncé du théorème Rolle
- (3) Calculer la somme S_n puis déterminer sa limite $\lim_{n\to\infty} S_n$:

$$S_n = \sum_{i=1}^n \frac{1}{2^{4i+1}}$$

- (4) Calculer les limites des fonctions suivantes :
 - (a) $\lim_{x \to 0} \frac{\sin(x)}{x}$ (b) $\lim_{x \to \infty} \frac{(e^x + 1)^2 (e^x 1)^2}{e^{2x}}$
- (5) Trouver une primitive de ln(x) (On pourra procéder par intégration par parties en remarquant que ln(t) = (t)' ln(t))

Exercice 2:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et $u_{n+1}=\exp(u_n)$

- (1) Soit $f(x) = e^x$. Montrer que $[0, \infty[$ est stable par f. En déduire que pour tout $n \in \mathbb{N}^*$, $u_n \geq 0$.
- (2) En considérant $g(x) = e^x 1$, montrer que $\forall n \in \mathbb{N}, u_{n+1} u_n \ge 1$.

1

- (3) En déduire par récurrence que $\forall n \in \mathbb{N}, u_n \geq n$.
- (4) La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle? Déterminer sa limite.

Exercice 3 : étude de fonctions

- (1) Soit $f: x \to \frac{1}{x^2} + 2x$ définie sur \mathbb{R}_*^+ . Étudier les variations de f, tracer sa courbe, et montrer que f admet un minimum global que l'on déterminera.
- (2) Soit $g: \mathbb{R} \to \mathbb{R}$ tel que $g(x) = x^2 \sin(\frac{1}{x})$ si $x \neq 0$ et g(0) = 0. Montrer que f est continue et dérivable sur \mathbb{R} mais que sa dérivé n'est pas continue en zéro.

Exercice 4 : inégalité de Cauchy-Schwarz

Soit $f,g\colon [a,b]\to \mathbb{R}$, deux fonctions continues. Le but de l'exercice est de démontrer l'inégalité suivante :

$$(*): \qquad \left| \int_a^b f(t)g(t) \mathrm{d}t \right| \leq \sqrt{\int_a^b f^2(t) \mathrm{d}t} \, \times \, \sqrt{\int_a^b g^2(t) \mathrm{d}t}$$

(1) Soit $P(x) = ax^2 + bx + c$ un polynôme du second degré. Montrer que P est de signe constant sur $\mathbb R$ si et seulement si $b^2 - 4ac \le 0$. On considère la fonction suivante :

$$\phi(x) = \int_{a}^{b} (f(t) + xg(t))^{2} dt$$

- (2) Justifier que ϕ est bien définie sur \mathbb{R} et est positive.
- (2) En développant $(f(t) + xg(t))^2$, montrer que ϕ est un polynôme du second degré, on exprimera ses coefficients à l'aide des quantités :

$$\int_a^b f(t)g(t)dt, \qquad \int_a^b f^2(t)dt, \qquad \int_a^b g^2(t)dt$$

(3) En considérant le discriminant du polynôme ϕ , déduire (*)

Bonus

 (\star) Soit x_1, \ldots, x_n des réels strictement positifs. Montrer que :

$$\left(\sum_{k=1}^{n} x_k\right) \left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \ge n^2$$