- 1 Considereu les paràboles $y = x^2 1$ i $y = x^2 4$.
 - a) Representeu gràficament el recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - b) Calculeu l'àrea del recinte del semiplà $y \leq 0$ limitat per les dues paràboles i l'eix d'abcisses.
 - c) Trobeu tots els nombres reals x que satisfan la desigual \tan següent:

$$\frac{x^2 - 1}{x^2 - 4} \le 0.$$

Digueu si el conjunt de solucions és fitat. En cas afirmatiu, trobeu-ne el suprem i l'ínfim.

- **2** Es vol calcular $\sqrt[3]{7}$ amb un error absolut inferior a $0.5 \cdot 10^{-3}$. (Indicació: calcular $\sqrt[3]{7}$ és equivalent a trobar el zero de la funció $f(x) = x^3 7$).
 - a) Enuncieu el teorema de Bolzano. Trobeu un interval de longitud 1 dins el qual es trobi $\sqrt[3]{7}$.
 - b) Partint de l'interval trobat a l'apartat anterior, determineu el mínim nombre d'iteracions necessàries per calcular $\sqrt[3]{7}$ pel mètode de la bisecció amb la precisió demanada.
 - c) Calculeu l'aproximació de $\sqrt[3]{7}$ amb la precisió demanada pel mètode de Newton-Raphson.
- **3** Considereu la funció $f(x) = \sqrt[3]{x+1}$.
 - a) Obteniu el polinomi de Taylor de grau 2 de la funció f(x) centrat en x = 0 i l'expressió del residu corresponent en la forma de Lagrange.
 - b) Fent ús del polinomi de l'apartat anterior calculeu un valor aproximat de $\sqrt[3]{1.02}$.
 - c) Fent ús de l'expressió del residu de l'apartat a), doneu una fita superior de l'error comès en el càlcul de l'apartat anterior.