Challenge 1 — Iowa Caucus Predictions

Jeffrey Barrera & Jacob Fenton

##	candida	ate vote_sl	nare						
##	1 huckal	oee	NaN						
##	2 romney		NaN						
##	3 thompson		NaN						
##	4 mccain		NaN						
##	5 paul		NaN						
##	6 giuliani		NaN						
##		lm 1 iorro	lm O jorro	lm 1 no+1	on ious	on no+1	our ious		
					ep_iowa		U		
					28.869357				
##	romney	27.549618	26.669361	15.000000	29.256954	15.484202	27.800000		
##	thompson	10.982824	11.977731	0.000000	11.375056	0.000000	10.600000		
##	mccain	13.112595	11.617325	16.095745	12.158672	14.271585	12.800000		
##	paul	6.902672	8.639657	3.095745	6.616153	3.515044	7.000000		
##	giuliani	5.895038	5.816867	21.648936	5.217361	21.349279	6.400000		
##	santorum	17.402961	18.837681	2.083558	19.504119	2.686278	17.000000		
##	romney	23.071206	22.911543	26.514825	23.485236	24.990564	22.000000		
##	paul	19.230738	19.240705	12.846361	19.512301	14.163681	21.333333		
##	gingrich	13.555444	12.959580	20.566038	12.022257	19.522251	14.000000		
##	perry	10.430960	9.362463	5.149596	10.616829	6.809332	10.333333		
##	bachmann	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		
##	huntsman	2.772485	3.217364	1.537736	2.727386	1.716597	2.666667		
##		lm_1_iowa	lm_2_iowa	lm_1_natl	ep_iowa	ep_natl	avg_iowa		
##	trump	29.164063	9.628023	35.583463	26.805189	33.543468	23.5		
##	cruz	24.717722	22.798427	15.629718	24.516817	16.733275	24.5		
##	rubio	15.260691	11.939531	10.335291	14.843658	10.618634	13.5		
##	bush	3.899054	4.188242	5.491312	3.401568	5.426284	3.0		
##	carson	9.054276	17.232851	8.887358	10.142133	9.751513	11.5		
##	christie	1.604235	1.658057	2.080647	1.826542	2.094138	2.0		

```
## paul
            4.442434 8.311828 0.000000 4.839894 0.000000
                                                                  6.0
## huckabee 2.624383 4.597916 1.731096 2.864345 1.604311
                                                                  3.0
## kasich
            1.807360 1.286787 2.557819 1.842860 2.653244
                                                                  1.5
## [1] "######### LINEAR #########"
##
## Call:
## lm(formula = results_train$percentage ~ ., data = as.data.frame(preds_train))
##
## Residuals:
##
     Min
             1Q Median
                                 Max
## -4.236 -1.251 0.204 1.267 3.026
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                    0.926
## (Intercept)
                1.9742
                           2.1331
                                             0.390
## lm_1_iowa
               -1.6210
                           2.5673
                                   -0.631
                                             0.551
## lm_2_iowa
                1.1982
                           1.1205
                                    1.069
                                             0.326
## lm_1_natl
                           0.8804
                1.1548
                                   1.312
                                             0.238
## ep_iowa
                0.7487
                           1.7804
                                   0.421
                                             0.689
## ep_natl
               -1.3281
                           0.9244 -1.437
                                             0.201
## avg_iowa
                                    0.566
                                             0.592
                0.7360
                           1.3005
##
## Residual standard error: 2.953 on 6 degrees of freedom
## Multiple R-squared: 0.9565, Adjusted R-squared: 0.9129
## F-statistic: 21.97 on 6 and 6 DF, p-value: 0.000772
##
                             rubio
                                         bush
##
       trump
                   cruz
                                                  carson
                                                           christie
   0.1430955 21.4375905 10.4247062 4.5617452 21.3155593 3.8215069
##
        paul
               huckabee
                            kasich
## 12.7720697 7.4503349 2.5000774
## Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations
```

per fold

```
## [1] "Training RMSE:"
## [1] 2.329601
## [1] "######### LASSO BETAS ##########"
  lm_1_iowa lm_2_iowa lm_1_natl
                                     ep_iowa
                                                ep_natl avg_iowa
## 0.0000000 1.1442176 0.0000000 0.0000000 -0.1195629 0.0000000
           sorted_preds
##
## cruz
              27.417292
              21.321157
## carson
## rubio
              14.534358
## paul
              11.360091
## trump
              8.600876
## huckabee
               6.467138
## bush
               5.447284
## christie
               2.696731
## kasich
               2.155073
```

Predictions

We predict XXX to be the winner of the 2016 Iowa Republican caucus.

Vote Share			
0			
0			
0			
0			
0			
0			
0			
0			
0			

Methodology

Key Feature: Iowa Polling Trends

We focused our attention on in-state polling leading up to the caucus, since this has historically been the best indicator of a candidates' standing in Iowa. We used polls aggregated for Iowa by pollster.com (which was later acquired by *The Huffington Post*) for 2008 and 2012. (All of the code used in this project is available at: https://github.com/jeffbarrera/iowa-caucus/). We wrote python scripts (2008; 2012/16) to standardize the data across years and add one key variable: the number of days before the Iowa Caucus is held.

Our core challenge with this polling data was how to extrapolate a predicted vote share on caucus day from the multitude of polls conducted days or weeks earlier. To predict out a trend line to caucus day, we tested a number of approaches: linear regression, lowess regression and non-parametric regression with gaussian and epanechnekov kernels.

Trendline Comparison

Comparison of different extrapolation techniques applied to Mitt Romney in 2012: actual vote share in black, simple linear regression in red, lowess in blue, gaussian in orange, and epanechnekov in purple.

We wrote scripts to test several techniques under a variety of circumstances: lowess (results), and first-order non-parametric regression with gaussian (results) and epanechnikov (results) kernels. We tested each approach with a variety of bandwidths (or f values in the case of lowess) and compared the final estimated point with the actual polling result. The most accurate estimation result in terms of overall MSE for 2008 and 2012 was

obtained using an epanechnikov kernel with a bandwidth of 13 days, which gave us an MSE of 7.29.

	Simple Linear Model	Complex Linear Model	Lowess	Gaussian	Epanechnikov
Lowest MSE	11.58	8.97	7.89	9.63	7.29

TK TRENDLINE WIDTH

One additional complication is that prior years' polling included results the day of the caucus; the most recent poll results we have access to are several days ahead of the caucus. Thus we had to interpolate from a point several days ahead of the caucus to a final result; we tested several approaches and found the best to be TK TK.

Choosing the period to interpolate over

We then applied this model to generate a predicted vote share for each candidate in the 2008, 2012, and 2016 caucuses.

Iowa Polling Average

In case our trend projections were placing too much weight on the direction of the polling, we also included a simple average of the vote shares for each candidate in the days leading up to the election. We tested from 2 to 21 days out from the caucus, and calculated the RMSE for each interval. The lowest RMSE was at 4 days in 2008 and 3 days in 2012, so we went with the rounded average of 4 days.

Features Not Included

We considered a number of additional features, but chose not to include them for various reasons:

National Polling Trends

In their "polls-plus" model, 538 uses national polling as a contrarian indicator, based on data suggesting that candidates who poll better in a particular state than they do nationally tend to do better than their statewide polls. We tried a similar approach, applying the epanechnikov technique we used to estimate statewide polling trends to national polling for each candidate. However, we ultimately decided that since our training data didn't have a comparable case of a celebrity frontrunner, including this predictor skewed our results – Trump was likely being over-penalized for his high national poll numbers.

Campaign Finance Data

Reports filed with the Federal Elections Commission give some insight into a candidates' fundraising and spending, but we chose to disregard these as not predictive of vote share for several reasons:

- This year is different! One candidate (guess who) has been the beneficiary of millions in "earned media"
 coverage that's not paid for. Because he's been so effective in winning earned media, he hasn't sought contributions in the same manner as other candidates. Thus many of the usual governing assumptions (probably) don't hold.
- Candidates' reports are filed at a significant lag. Quarterly reports covering the fourth quarter of 2015 are due Jan. 31, but do not reflect any spending or fundraising that took place in 2016. Polling data is generally much more current than that.
- The 2012 and 2008 Iowa caucuses were held Jan. 2 (two days after the end of a filing period) whereas the 2016 caucuses are held Feb. 1 (a month after the end of the most recently available candidate spending data). Thus a relationship between financial figures for 2008 and 2012 wouldn't necessarily hold true for 2016.
- The way that campaigns spend money is in flux and increasingly money spent is excluded from public accounting. Increasingly spending from a candidates' principal campaign committee is overshadowed by money spent by independent expenditure only committees (aka super PACs). In 2012, super PACs primarly spent money on media buys, but increasingly these "outside" groups are taking on tasks previously handled by candidate committees, including last-minute voter targetting and mobilization. Other money spent by non-profit groups is not publically reported at all, and anecdotal reports suggest this type of spending is rising.

Crosstabs available in polls

Most reputable polls provide results cross-tabulated by various demographic groups. Unfortunately, we were unable to find any easily available aggregation of poll crosstabs (and the inconsistent approach pollsters take would make this a considerable challenge). Nonetheless, we believe this might be a useful indicator. Were this data available in bulk we might be able to make different assumptions about the electorate. Data suggest many potential voters who say they plan to participate in caucuses do not actually do so; we believe voter subgroups' lie to pollsters at a differential rate, introducting a meaningful bias into polls.

Model

Once we had these predictors, we used a LASSO regression to determine how to weight each feature. Treating the actual vote share for each candidate in 2008 and 2012 as our training Y variable, we calculated β coefficients for each feature at different values of λ . We then used leave-one-out cross-validation to see how each model performed out-of-sample. We selected the model with the lowest out-of-sample MSE, in the hope that this would be predictive in 2016 but would also avoid overfitting to the 2008 and 2012 data. Ultimately, this approach led us to use a single predictor: .94 times the epanechnikov trendline estimate for election day. We then used this model to predict vote shares for each of the 2016 candidates. Finally, since the sum of these predictions likely would not exactly equal 100%, we scaled them proportionally to produce our estimates of vote share.

Limitations & Opportunities for Improvement

The biggest limitation of our model is that it does not include any features intended to measure voter turnout or the "ground game" — the campaigns' efforts to identify supporters and get them to show up to caucus. Historically, this has been a critical aspect of winning in Iowa: since caucuses typically have low turnout rates, effectively mobilizing supporters can have a big impact on a candidate's vote share. However, we were unable to find a good way to measure organizing operations or predict turnout, since we couldn't obtain useful campaign finance or crosstab data.

Ultimately, we had to rely on assumptions about the relationship between polling and turnout. All the polls we're aggregating are of "likely voters," and some of the polling firms also weight their responses based on estimated turnout models. We thus hope that the relationship between these polls of likely voters and the

final vote share is reasonably consistent across elections, and that the coefficients in our LASSO model will capture this relationship.

If this relationship is not consistent, however (perhaps because supporters of "outsider" candidates like Trump may be more likely to lie to pollsters about whether they will caucus), this could throw off our model. Given more time and detailed cross-tabulated data, it may be possible to explore and account for these differences, and produce more nuanced models of the relationship between a candidate's poll numbers, turnout rates, and actual vote share. This could be an interesting avenue to explore in the future.