Virtual Reality (VR) Interface for Robot Teleoperation and Environment Visualisation

Supervisors:
Dr Alan Millard
Dr Alena Denisova

Author: Alistair Foggin

Computer Science
University of York

1. Motivation

Reasons for a Virtual Reality teleoperation interface

- Enable immersive teleoperation of robots in challenging environments
- Reduce mental load of understanding sensor data
- Implement an interface that matches human mental models

2. Design/Development Process

Phases and steps followed in developing the interface

Data Collection

- Surveyed 13 robotics researchers on their work needs
- Extracted survey results into key points and themes
- Analysed results to identify related responses, tools, capabilities, and challenges using an affinity diagram
- Created personas and scenarios from responses

Design

- Researched capabilities of tools mentioned in the survey
- Identified user and system requirements based on survey results
- Followed Virtual Reality usability guidelines
- Brainstormed and sketched possible interface layouts

Development

- Started prototyping the interface
- Asked volunteers to test the prototype
- Iterated on prototype based on feedback

3. Survey Results

Summary of responses from the survey

Usability Requirements

Consistent

Easy to use

Responsive

Pre-existing Frustrations and Difficulties

Internet and Latency

Interfacing with GUI Services

Complicated Build Tools

Levels of Autonomy

Existing Tools and Sensors

Visualisation and Control

- RViz
- Foxglove
- Unity
- Formant

Simulation

- Gazebo
- CoppeliaSim
- Argos
- Unity

MATLAB

Sensors

- LiDAR
- IMU
- Camera
- Stereo Camera
- IR

4. System Overview

Collection of components required to create the interface in Unity

*SLAM Toolbox can be swapped out for Cartographer
**Gazebo is only necessary when simulating the Turtlebot3

Thy freeessary when similaring the farties of s

5. Interface Implementation

Summary of the features in the interface

Virtual Environment

- Virtual Cockpit
- Teleoperation Dashboard
- UI Control Panels

Visualisation

- 3D SLAM Map
- LiDAR
- Camera

Teleoperation

- Point and Click Navigation
- Joystick Directional Controls

6. Closing Evaluation

Details about challenges encountered and work to be expanded upon

Challenges in Development

- Network Bandwidth
- Limitations of Unity-ROS Integration
- Ensuring consistent high framerate in VR

Potential Future Work

- Improve map gesture controls
- Add more sensor visualisations
- Dynamically integrate with different robots using URDF
- Switch between multiple robots at runtime