TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT INFORMATIK
INSTITUT FÜR TECHNISCHE INFORMATIK
PROFESSUR FÜR RECHNERARCHITEKTUR
PROF. DR. WOLFGANG E. NAGEL

Proseminar "Rechnerarchitektur"

Julia - High-Performance Programmiersprache für High-Performance Computing?

Paul Gottschaldt (Mat.-Nr.: 4609055)

Hochschullehrer: Prof. Dr. Wolfgang E. Nagel

Betreuer: Martin Schroschk

Inhaltsverzeichnis

1	Einl	eitung	2
2	Einf	ihrung in die Programmiersprache Julia	
	2.1	Julia, die dynamische, stark typisierte funktionale Programmiersprache	3
	2.2	Julias Typensystem und Multimethoden	3
	2.3	Metaprogrammierung, eine Hommage an Lisp	5
	2.4	Julias JIT Compiler auf Basis von LLVM	5
	2.5	interne und externe Bibliotheken	6
3	Parallele Programmierung mit Julia		6
	3.1	Remote-Aufrufe und -Referenzen	7
	3.2	@Spawnat und @Spawn	7
	3.3	die parallele Map und For-Schleife	8
	3.4	Shared und Distributed Arrays	9
	3.5	vertiefende Themen zum parallelen Programmieren	9
	3.6	weitere hilfreiche Werkzeuge um Flaschenhälse zu erkennen	10
4	Bev	vertung der HPC-Eignung von Julia	10
5	Quellen		10
	5.1	Links	10
Li	Literatur		

Das ist eine Referenz auf Klein [Kle10]. Die Referenzliste ist in der Datei references.bib definiert.

1 Einleitung

1998 startete das Apache-Point-Observatorium in New Mexico(USA) ihr Projekt Sloan Digital Sky Survey (SDSS), welches Fotos von über 35 % aller sichtbaren Objekte unseres Himmels anfertigte und in einer Datenbank zunächst sicherte. Seit diesem Jahr wurden bereits über 500 Millionen Sterne und Galaxien fotografiert und Licht eingefangen, welches bereits Milliarden von Jahren unterwegs war und die Forscher bis weit in die Vergangenheit unseres Universums zurückblicken lässt. Die SDSS-Kamera galt als produktivste Weltraumkamera der Welt bis zu ihrer Abschaltung im November 2009. Mit etwa 200 GB reine Bilddaten pro Nacht entstand so eine Datenbank mit über 5 Millionen Bildern von jeweils 12 Megabyte - zusammengerechnet also rund 55 Terabyte¹. 2014 startete ein Team von Astronomen, Physikern, Informatikern und Statistikern das Projekt Celeste, um eben jenen Datensatz zu katalogisieren und für jeden Himmelskörper einen Eintrag anzulegen². In der ersten veröffentlichten Version von 2015 noch auf Berechnungen auf einzelne Knoten beschränkt, schaffte es das Forschungsteam um die involvierten Parteien Julia Computing, UC Berkeley, Intel, National Energy Research Scientific Computing Center (NERSC) und Lawrence Berkeley National Laboratory in der zweiten Version von 2016 bereits einen 225-fachen Geschwindigkeitsgewinn zu erzielen. Die größten Verbesserungen waren dabei der mit 8192 Intel® Xeon® Prozessoren ausgestattete Hochleistungsrechner(zu engl. High-Performance-Computer oder HPC) des Berkeley Lab's und Julia, eine High-Performance Open-Source Programmiersprache, die bis dato noch relativ unbekannt war und seit 2009 am MIT entwickelt wird. Besonders ist an Julia vorallem ihr Anspruch, eine sehr produktive (high-programming language) wie Python zu sein, dabei aber Performanz wie C zu erreichen. Im November 2017 veröffentlichte dieses Team dann die aktuelle dritte Version, mit der sie nochmals einen deutlichen Geschwindigkeitsgewinn erreichen konnten. Sie schafften es 188 Millionen Sterne und Galaxien in nur 14,6 Minuten zu katalogisieren und nutzten dafür bis zu 1,3 Millionen Threads auf den 9300 Knights Landing(KNL) Knoten des Cori Supercomputers des NERSC. Dabei erzielten sie mit Julia eine Peak-Performance von 1.54 PetaFlop/s für Berechnungen mit doppelter Genauigkeit. Damit erzielte das Celeste Projekt einen 100-fachen Performanzgewinn zu allen vorherigen Forschungsprojekten. Derzeit gibt es rund 200 Supercomputer in der Welt, welche in der Lage sind eine Peak-Performance von mehr als einem Petaflop pro Sekunde zu erreichen. Trotzdem sind so gut wie alle Anwendungen, welche eben jene Peak-Performance erreichen von wenigen Gruppen von Experten geschrieben, welche ein sehr tiefes Verständnis für alle erforderlichen Details besitzen, die benötigt werden, um solch eine Performanz zu erreichen³. Umso erstaunlicher ist an diesem Ergebnis also die Tatsache, dass das Team hinter Celeste ihre Geschwindigkeit ausschließlich unter Nutzung ihrer Kenntnisse, dem Julia-Code und dessen Threading-Model erzielen konnten.

Wie in der Abbildung 1 zur pro Thread Auslastung zu sehen, lieferte Julia 82.3 % der Performance. Damit stellt Julia unter Beweis das es sowohl für TheraByte-große Datensätze, wie auch für PetaFlop/s-schnelle Berechnungen geeignet ist. Keno Fischer, CTO von Julia Computing, sagte 2017, das Projekte wie Celeste unter Beweis stellen, das der Traum, der hinter Julia steht, wahr wird. Wissenschaftler können nun auf ihrem Rechner entwickelte Prototypen einfach von ihrem Laptop auf die größten Supercomputer ver-

https://juliacomputing.com/press/2016/11/28/celeste.html

²https://juliacomputing.com/case-studies/celeste.html

 $^{^3}$ https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/

Abbildung 1: Eine Abbildungsbeschreibung

Figure 4: Per-thread runtime performance breakdown

schieben ohne zwischen Sprachen wechseln zu müssen oder ihren Code gar komplett neu zu schreiben. Sie (Anmerkung: Entwickler von Julia Computing) sind sehr stolz darauf, dies alles geschafft zu haben und glauben sehr daran, das Julia die Entwcklung in der Forschung für viele Jahre sehr voranbringen wird. Viral Shah, CEO von Julia Computing, sagte das Forscher sich nun auf die Lösung ihrer Probleme fokussieren können und sich nicht mehr mit dem Programmieren beschäftigen müssen⁴.

2 Einführung in die Programmiersprache Julia

2.1 Julia, die dynamische, stark typisierte funktionale Programmiersprache

Julia ist eine junge, flexible, höhere Programmiersprache, die es sich selbst als Ziel gesetzt hat, die hohe Produktivität und einfache Handhabbarkeit aus Sprachen wie Python mit der Geschwindigkeit von C zu kombinieren. Auch wenn sie vorallem für wisssentschaftliches und numerisches Programmieren gestaltet worden ist, bietet sie eine sogleich performante wie auch einfach zu lernende Umgebung und versucht damit den derzeitigen Trend von mehrsprachigen Softwarelösungen in der Wissenschaft entgegen zu wirken. Mit einem Syntax der an eine Kombination aus MATLAB und Python erinnert, Lisp-ähnlichen Macros und Metaprogrammierung, einem Compiler der LLVM nutzt und einem eigenem Paketmanager der an Git erinnert, hat sich Julia viele bereits etablierte Funktionen zunutze gemacht. Zusätzlich besitzt sie die Möglichkeit C- und Python-Funktionen einfach direkt aufzurufen, was die Nutzung der Bibliotheken der beiden Sprachen direkt im Julia-Code ermöglicht. Julias gute Performanz wird vorallem durch Multimethoden für einzelne Funktionen und die automatische Generierung von effizientem typspezialisierten Code gewonnen. Dabei ist Julia sowohl dynamisch wie auch statisch typisiert. Zudem ist Julia funktional, objektorientiert und imperativ und wurde fast komplett in Julia selbst geschrieben.

2.2 Julias Typensystem und Multimethoden

In Julia gibt es keine Klassen wie es sonst für objektorientierte Sprachen üblich ist. Stattdessen trennt Julia explizit die Daten eines Objekts von dessen Methoden. Vom Nutzer angelegte Objekte wie sie aus anderen puren objektorientierten Sprachen wie C++ oder Java bekannt sind ähneln am meisten dem Composite Types. Auch bekannt unter Namen wie struct oder records stellt er eine Ansammlung von

⁴https://juliacomputing.com/press/2016/11/28/celeste.html

benannten Feldern da. Diese einzelnen Felder können wie einzelne Attribute betrachtet werden und besitzen einen Wert. Wie es der Name auch schon andeutet, ist es möglich diesen Composites ineinander zu schachteln. Zusätzlich erzeugt Julia standartmäßig für jeden Composite Type auch Konstruktoren. Auch wenn Julia dynamisch ist und damit der Typ nicht angegeben werden muss, besitzt jeder Wert einen festen Datentyp, dies gilt auch für die vom Nutzer erstellten Typen. Dabei sind alle Datentypen Laufzeittypen, das heißt den einzigen Datentyp den ein Wert besitzt, ist sein wirklicher aktueller Typ, während das Programm läuft. Auch besitzen nur Werte einen Typ, eine Variable stellt lediglich einen Namen gebunden an einen Datentyp dar. Julias Rückgrat für sein Typensystem sind die abstrakten Datentypen. Während ein Wert immer einen konkreten Datentyp besitzt, ist dieser Typ gleichzeitig in einen Graphen von abstrakten Typen eingebunden. Konkrete Typen sind die Knoten dieses Graphen und können keine Elternknoten sein. Abstrakte Typen dagegen können mehrere Kinder- und Elternknoten besitzen und bilden die Basis von Julia. Der Datentyp Int64 ist zum Beispiel Kindknoten vom abstrakten Typ Signed, welcher Kindknoten vom Typ Integer ist. Als oberster Knoten steht der Datentyp Any, welcher kein Kindknoten ist. Ein Nutzer kann seine definierten Objekte in diesen Graphen einfügen, wenn er nichts weiter spezifiziert wird das Objekt standartmäßig als Kind vom Typ Any angenommen. Als ein weiteres Feature unterstützt Julia zusätzlich auch parameterizierte Datentypen. Diese ermöglichen die generische Erstellung von vielen weiteren kombinierten Datenypen und dienen zudem unterstützend für Julias weiteres Schlüsselmerkmal die Multimethoden. Um Multimethoden zu verstehen, muss zuerst der Syntax von Methoden und Funktionen in Julia geklärt werden. Im Kontext von Julia stellen Funktionen ein Objekt dar, welches ein Tuple von Eingangswerten einem Rückgabewert zuordnet oder eine Fehler wirft. Eine einzelne Funktion fasst dabei einen Sachverhalt wie zB die Addition von Werten zusammen und besitzt unterschiedlich viele verschiedene Methoden, welche je nach Anzahl der Argumente und Typ jedes einzelnen Wertes gewählt wird. Deshalb werden Funktionen in Julia auch generisch genannt. Methoden widerrum sind nun eine explizite Implementierung einer Funktion und werden nach dem Multimethoden-Verfahren (in Englisch multiple dispatch) ausgewählt. Damit grenzt sich Julia im Sinne des objekt-orientierten Paradigmas sehr von Sprachen wie Java oder C++ ab. Während in diesen Sprachen eine Zuordnung nach dem Typ des ersten Arguments (single dispatch) implizit entschieden wird (zB etwas wie obj.meth(arg1,arg2)) werden Methoden in Julia explizit nach dem am exaktesten passenden Argumenttypen (zB etwas wie meth arg1::Int64,arg2::Number) ausgewählt. Am exaktesten passenden Typ meint hier das vom konkreten Typ des Eingabewertes aufsteigend der Typenbaum abgegangen wird, bis eine Methode gefunden wurde, die der Anzahl der Argument und deren Typen entspricht. Wird keine gefunden, so wird ein Fehler geworfen. Multimethoden kombiniert mit den Trennen der Funktionen von den Objekten, auf denen sie arbeiten und dem Typenbaum, ergibt damit eine Art Vererbung die je nach Eingabetypen einer Funktion Verhalten weiterreicht und dabei die Struktur ignoriert. Die Entwickler von Julia selbst sagen, das sie festgestellt haben, das die ledigliche Vererbung von Verhalten unter Ausgrenzung der Struktur bestimmte Schwierigkeiten der objekt-orientierten Sprachen lösen konnte ohne große Nachteile festzustellen. Dies ergibt sich daraus, das Mehrfachvererbung auf konkreten Typen zu einer Hierarchie führt, welche sich nicht gut auf die Wirklichkeit mehr abbilden lässt und auch allgemein alles viel mehr verkompliziert wie man zB am Diamant-Problem gut erkennen kann. Julia hat sich explizit dagegen entschieden, in ihr würde jeder konkrete Typ einem seperaten Blattknoten zugeordnet werden und Typen mit ähnlichen Eigenschaften unter einem abstrakten Typ zusammen gefasst werden.

2.3 Metaprogrammierung, eine Hommage an Lisp

Ein weiteres wichtiges Merkmal, das Julia ausmacht, ist seine Unterstützung für Metaprogrammierung. Wie in Lisp, representiert Julia seinen eigenen Code als Datenstruktur in sich selbst. Da dieser Code durch Objekte dargestellt wird, kann er genauso aus Julia heraus auch erstellt und manipuliert werden. Dadurch wird es möglich Code zu transformieren oder gar Code zu generieren. Julia repräsentiert zudem alle Datentypen und den Code in Strukturen, welche in Julia implementiert worden sind, wodurch auch eine sehr mächtige Rückschau (engl. Reflection) möglich ist. Ein Ausdruck wird dabei immer in ein Expr - Objekt übersetzt, welches sowohl den Typ des Ausdrucks wie auch seine Argumente beinhaltet und in Julia sehr einfach zu bearbeiten oder auszuwerten ist. Dem Datentyp Symbol wird hierbei noch eine sehr bedeutende Rolle zugedacht. Er repräsentiert alle Variablen und damit verbunden auch Zuweisungen und Funktionsaufrufe. In einer Sprache, in der alles durch Objekte intern dargestellt werden kann ist es unabdingbar einen solchen Symbol-Typ zu haben, da es sonst nicht möglich wäre Daten wie Strings von einer Variablen zu unterscheiden. Julia besitzt auch Lisp-ähnliche Macros. Dies sind Funktionen, welche einen Ausdruck als Argument nehmen, ihn manipulieren oder zusätzlichen Code hinzufügen und dann eine Ausdruck zurückgeben. Der Unterschied neben dem @- mit dem ein Macro beginnt ist vorallem der Zeitpunkt zu dem ein Macro ausgewertet wird. Es wird ausgeführt wenn der Code übersetzt wird und bieten damit die ideale Möglichkeit Funktionen zusätzlich zu manipulieren. Ein gängiges später noch sichtbares Beispiel wäre hier das @Benchmark Macro welches Performanztests ausführt und am Ende neben dem Ergebnis auch die Laufzeit, die Allokationen und den benötigten Speicher für die Funktion zurückgibt. Um die Erstellung und Manipulation von Ausdrücken zu vereinfachen gibt es zudem die Funktion, eine Variable in den Ausdruck im Nachhinein einzufügen. Dies nennt sich zu englisch splicing oder interpolating und ist auch für Macros sehr nützlich, da so auch lokale Variablen in Macros übergeben werden können, welche sonst innerhalb des Macros undefiniert werden um Hygiene, also das versehentliche Übernehmen oder Überschreiben von Variablen, zu verhindern.

2.4 Julias JIT Compiler auf Basis von LLVM

Julia Compilierungsprozess beginnt mit der Defintion einer Methode und dessen Ausführung. Auch wenn Julia dynamisch ist, so ist sie dennoch stark typisiert und macht sich den Low Level Virtual Machine (LLVM) Echtzeit (just in Time oder JIT) Compiler zu nutze, um nativen Maschinencode zur Laufzeit zu generien. Dabei besteht dieser Prozess der Generierung aus 4 Stufen und für jede Stufe bietet Julia eigene Funktionen um sich den generierten Code ausgegeben zu lassen um zum Beispiel Flaschenhälse wie ungenaue Typdefinitionen zu finden. In der ersten Phase, der sogenannten niedriger Code(code_lowered) Phase wird der Code etwas vereinfacht und gleichzeitig deutlich ausdrucksstärker gemacht um dem Compiler die nächsten Schritte deutlich zu vereinfachen. An dieser Stelle werden auch generische Funktionen eingebunden, welche für unterschiedliche Argumente unterschiedlichen niedrigeren Code erzeugen. In der nächsten Stufe wird versucht über alle Typen die im Code vorkommen eine Schlussfolgerung zu schließen und lokale Optimierungen basierend auf den ermittelten Typen zu treffen. In der dritten Phase wird dieser, an die Typen angepasste Code, dann mit dem LLVM JIT Compiler zu LLVM Code übersetzt und schlussendlich in der vierten Stufe zu nativen Maschinencode herunter compiliert. Dieser Maschinencode wird dann zwischengespeichert und erneut ausgeführt, sobald die Funktion erneut mit gleichen Argumenttypen und der gleichen Anzahl an Argumenten aufgerufen wird, wodurch sich die kostenintensive JIT- Phase ersparen lässt und eine Funktion bei erneuter Ausführung mit gleichen Parametern sehr viel schneller läuft.

2.5 interne und externe Bibliotheken

Auch wenn Julia noch eine sehr junge Sprache ist, bietet sie bereits jetzt eine sehr schnell wachsende Sammlung an verschiedensten Paketen, die verschiedenste Funktionen bereitstellen und sich einfach über Julias eingebauten Paketmanager verwalten lassen. Dieser installiert, deinstalliert und updated die Pakete deklarativ, das heißt er findet selbst heraus welche Versionen noch benötigt werden oder welche veraltet sind und gelöscht werden können. Intern nutzt der Manager das libgit2 Framework und setzt damit direkt auf git auf. Alle Pakete sind dabei einfache git Repositories und klonbar, wie es von git bekannt ist. Die Pakete müssen dabei einer gewissen Format-Konvention folgen und im Metadata.jl Repository registriert sein, damit Julia das Paket finden kann, unter der Angabe der URL für unregistrierte Pakete gibt es aber eine Möglichkeit für diese, eingebunden zu werden. Zudem wird Julias Paketmanager derzeit sehr umfangreich überarbeitet und es ist zu erwarten, das in der nächsten Version 0.7 Julias Paketverwalter um eine Funktionen erweitert und verbessert wird, da gerade die Metadata-Suche derzeit auf Windows sehr lange dauert. Neben diesem Paketmanager für eigene Julia Pakete bietet die Sprache aber auch eine sehr einfache Maske um C oder Fortran Funktionen und Werte direkt aus Julia aus aufzurufen und bietet damit ideale Möglichkeiten zur Integration in einer bereits etablierten Umgebung. Dabei funktioniert alles ganz ohne Klebstoff-Code mit einem einfachen Funktionsaufruf wie zB ccall() und da der von Julias JIT native generierte Code am Ende der Gleiche wie der native C Code ist, gibt es keinen Verlust bei der Performanz. Auch Python oder C++ über ein Paket lassen sich sehr einfach einbinden, zudem gibt es noch die Möglichkeit aus Julia heraus direkt externe Programme aufzurufen.

3 Parallele Programmierung mit Julia

Als Sprache, die parallele Programmierung als eine ihrer Kernkompetenzen sieht und sich sehr auf Performanz orientiert wundert es nicht, das Julia auch sehr viele Möglichkeiten bietet um Berechnungen zu Parallelisieren. Als zusätzlich auch selbsternannte hohe Programmiersprache bietet Julia in diesem Feld eine Fülle von sehr viele einfachen Funktionen für simple Probleme, aber gleichzeitig auch eine Tiefe der Funktionen um das letzte bisschen Performanz noch rauszukitzeln. Als ein Grundbaustein für Julias Multiprozessorhandhabung dient dabei eine eigene Implementierung einer Nachrichtenübertragung zur Kommunikation zwischen den Prozessen um diese parallel in seperaten Speicherbereichen laufen zu lassen. Diese Übertragung ist anders als bestehende Konzepte wie MPI und ist so ausgerichtet, das generell nur 1 Seite programmiert werden muss um eine Kommunikation aufzubauen und zu beenden und zusätzlich auch eher wie ein Funktionsaufruf aussieht. In Julia besitzt jeder Prozessoren eine eindeutige Kennzeichnung. Sie macht sich zudem das Meister-Arbeiter (Master-Worker) Prinzip zunutze und ernennt den Hauptprozessor zum Meister mit der Id 1. Solange es mehr Prozessoren als einen gibt, ist der Hauptprozess mit der Id gleich eins immer der Meister, ansonsten wird er allein als Arbeiter angenommen. Dadurch ergibt sich auch, dass das hinzufügen nur eines weiteren Prozessors kaum Performanzgewinn erzielen kann, da der Meisterprozessor bei parallelen Aufgaben nur verwaltet und selber nicht berechnet, außer man weist ihn dazu explizit an. Intialisiert werden können weitere Prozessoren zum einen lokal beim Starten einer Julia-Instanz mit dem Attributen julia -p n, wo bei n für die Anzahl der

Arbeiter steht, oder aber mit der Funktion addprocs(n) sowohl lokal, wie auch remote, wobei hier auch zu der externen Machine via ssh eine Verbindung aufgebaut werden muss. Mit der Funktion workers() oder nworkers() wird ein Array mit den Ids der eingebundenen Arbeiter beziehungsweise die Anzahl der Arbeiter zurückgegeben. rmprocs(id) entfernt hingegen nur den Arbeiter mit der spezifizierten Id, kann allerdings auch mit einem Array von Id's als Parameter aufgerufen werden.

3.1 Remote-Aufrufe und -Referenzen

Julias parallele Programmierung ist auf zwei primitiven Objekten aufgebaut: Remote-Referenzen (remote references) und Remote-Aufrufe (remote calls). Eine Remote-Referenz ist eine Instanz, die von jedem Prozessor aus genutzt werden kann und auf ein auf einem bestimmten Prozessor gespeicherten Objekt zeigt. Ein Remote-Aufruf ist ein Antrag (request) von einem Prozessor eine bestimmte Funktion mit bestimmten Argumenten auf einem Prozessor, der auch der gleiche wie der aufrufende sein kann, auszuführen. Remote-Referenzen gibt es in der Ausprägung Future oder als einen RemoteChannel. Ein Future ist der Rückgabewert eines Remote-Aufrufs, der direkt zurückgegeben wird, um den Prozess während seiner Ausführung nicht zu blockieren und ähnlich eines Promises aus Javascript später einen Wert zurück gibt, den man mittels eines fetch() erhalten kann oder mittels eines takes() übernehmen und dabei auch noch die Remote-Referenz löscht. Ein wichtiger Hinweis ist hier zudem, das ein einmal mit fetch() geholtes Future lokal gespeichert wird und deshalb bei einem erneuten fetch() keine weitere Kommunikation anfällt. RemoteChannel wiederum sind wiederbeschreibare Kanäle, die auch als Überbrücker zwischen Kanälen (Channel) verstanden werden können. Ein Kanal ist dabei eine Leitung zwischen Prozessen (Tasks) oder eben aber auch Prozessoren die genutzt werden um Daten auszutauschen, wobei jeweils immer einer Daten auf den Kanal legt und einer diese Daten abgreift, sobald sie verfügbar sind via put!() und take!(). Ein Kanal kann dabei immer mehrere schreibende wie auch mehrere lesende Prozesse haben. Ein RemoteChannel nimmt hier nun den Aus- oder Eingang eines Kanals auf einem vorher spezifizierten Prozessor und schickt dann die Daten weiter. Julia bietet auch 2 Funktionen an um eine Remote-Aufruf direkt auszulösen, normalerweise sind dies aber eher tiefer liegende Funktionen welche der Nutzer nicht selber benutzen muss sondern die generiert werden durch höhere Funktionsaufrufe. Remotecall(f,id,args...) gibt dabei direkt ein Future zurück, während remotecall fetch auf den Rückgabewert wartet und darauf dann direkt noch wie der Name es suggiert ein Fetch ausführt.

3.2 @Spawnat und @Spawn

Julia bietet neben dem remotecall auch noch 2 weitere Macros an um einen direkten Aufruf an einen anderen Prozessor zu starten und dafür ein Future-Referenz zu bekommen. Das Spawnat Macro akzeptiert hierbei 2 Argumente pid und expr. Es berechnet den Ausdruck des zweiten Arguments auf dem Prozessor spezifiziert mit dem ersten Argument. Damit verhält sich das Spawnat Macro sehr ähnlich zu einem remotecall(), arbeitet dabei jedoch mit einem Ausdruck statt mit einer Funktion. Um diesen Sachverhalt noch zu vereinfachen bietet Julia außerdem das @Spawn Macro an. Dieses sucht selbständig nach einem unbeschäftigten Prozessor und lagert die Berechnung der Funktion an diesen aus. Dabei verhält sich Spawn auch intelligent und erkennt, wenn Werte vorher auf einem bestimmten Prozessor ausgerechnet worden waren, und lagert die darauf aufbauende Berechnung auf eben jenen Prozessor erneut aus um sich den sonst nötigen Fetch zu ersparen. julia> r = @spawn rand(2,2) »> Future(2, 1, 4, NullableAny()) julia>

s = @spawn 1.+fetch(r) »> Future(3, 1, 5, NullableAny()) ignoriert hierbei den fetch(r), da er unnötig ist, wenn s auf den gleichen Prozessor berechnet wird wie r. Wichtig zu beachten bei einem Remote-Aufruf ist, das die aufzurufenden Funktionen dem Prozessor bekannt sind, der sie ausführen soll, gleiches gilt auch für geladene Pakete und deren Funktionen und Variablen. Mit dem Macro @everywhere kann eine Funktion direkt auf allen Prozessoren definiert werden um dieses Problem zu umgehen. Auch sollte beim Umgang mit einem direkten Remote-Aufruf vorsichtig mit lokalen Variablen umgegangen werden, um einen unnötigen Kommunikationsaufwand zu vermeiden. So würde julia> message = "This string is constructed locally"; julia> shouting_message = @spawn uppercase(message) das Kopieren der Nachricht vom Meister-Prozessor auf den berechnenden Prozessor erfordern und deutlich mehr Zeit kosten als die lokale Variable direkt im @spawn Befehl zu definieren mit julia> shouting message = @spawn uppercase("This string is not constructed locally"). Aufgepasst werden sollte zudem bei globalen Variablen, da diese nicht synchronisiert werden und sich nicht durch Berechnungen auf anderen Prozessoren beeinflussen lassen.

3.3 die parallele Map und For-Schleife

Der obere Teil der parallelen Programmierung war eine kurze Einführung in Julias Handhabung von parallelen Berechnungen im Hintergrund. Aber nur in den seltensten Fällen wird ein Entwickler in Julia wirklich in die Lage kommen, in denen er manuell eine Berechnung auslagert. Stattdessen bietet Julia 2 Funktionalitäten an um Probleme sehr einfach und gut lesbar zu parallelisieren. Die erste Variante umfasst hierbei das Macro @parallel, eine parallele For-Schleife, welche besonders optimiert ist für Probleme mit vielen voneinander unabhängieng Iterationen. Dabei ist diese For-Schleife gleichzeitig auch noch eine Reduktionsfunktion und bietet die Möglichkeit, eine Funktion mit zu übergeben, welche am Ende über allen Resultaten ausgeführt wird und dabei die Dimension des Problems um eins reduziert (auch als tensor-rank-reducing bekannt). Diese Form ist aber optional und eine parallele For-Schleife funktioniert auch ohne diese übergebene Funktion und gibt für diesen Fall einfach das Ergebnis zurück. Die Berechnung, wie häufig Kopf(n) bei M Münzwürfen auftrat, lässt sich als Beispiel sehr einfach mit @parallel Parallelisieren und nutzt zudem Die Addition als Reduktion julia> nheads = @parallel (+) for i = 1:M; Int(rand(Bool)); end. Wichtig zu beachten ist hierbei das, auch wenn sie einer normalen For-Schleife sehr ähnlich sieht, sich eine parallele For-Schleife anders verhält und die Iterationen nicht in Reihenfolge ablaufen und auch globale Variablen sich so nicht beschreibbar lassen. Ein weiterer wichtiger Hinweis an dieser Stelle ist, das der Rückgabewert einer solchen parallelen For-Schleife ohne Reduktionsfunktion ein Array von Future's ist und die Funktion ohne ein fetch() direkt weiter läuft, auch wenn noch kein Ergebnis bereit liegen am Ende der Schleife. Hilfreich hierfür ist das Macro @sync, welches vor das Macro @parallel geschrieben wird um den Prozess zu blockieren, solange wie alle Berechnungen parallel ausgeführt werden. Als zweites Werkzeug stellt Julia eine parallele Map bereit, welche besonders nützlich für große Funktionen, die einzeln auf eine Menge von Elementen angewandt werden muss, ist. pmap(i-> log(i), 1:M, batch_size) berechnet zum Beispiel den Logarithmus der Zahlen eins bis M und speichert sie erneut in einem Array ab. Da pmap vorallem für größere Funktionsaufrufe gestaltet worden ist, kann es hier teils extreme Performanzeinbuse bei dem Aufruf von kleinen Berechnungsfunktionen wie log() geben, da der Kommunikationsaufwand sehr sehr groß ist, wenn jeder Wert einzeln auf einem neuen Prozessor berechnet wird und dafür jeweils immer der Wert hin und her kopiert wird. Eine Lösung bietet die Funktion dafür aber direkt selber, in dem über das Attribut batch size die zu kopierende Datengröße festgelegt wird, die Nutzung von @parallel, das für kleine Iterationen optimiert ist, wäre hier aber genauso möglich.

3.4 Shared und Distributed Arrays

Gemeinsam genutzte Arrays(Shared Arrays) nutzen gemeinsam genutzten Speicher im System um das gleiche Array über viele Prozessoren hinweg zu verlinken. Im Gegensatz zu einem verteilten Array(Distributed Array), in dem jeder Prozess seinen eigenen lokalen Zugang zu einem eigenen Teil(chunk) des gesamten Arrays besitzt, hat jeder teilnehmende Prozess bei einem Shared Array Zugang zum gesamten Feld. Während Distributed Arrays vorallem für sehr große Felder, welche zu groß zum Rechnen auf einem einzelnen Prozessor sind, geeignet sind und bei diesen jeder Prozess seinen Teil der Daten verarbeitet, eignen sich Shared Arrays besonders für gemeinsames Rechnen, in dem darüber der Kommunikationsaufwand deutlich reduziert wird und zum Beispiel auch Iterationen über globale Arrays mit der parallelen For-Schleife möglich werden. Mit den Funktionen sdata() sowie convert() und localpart() für verteilte Felder lassen sich beide Arrays ganz einfach zu normalen Standartfeldern konvertieren bzw den lokalen Anteil des DistributedArrays in ein normales Array extrahieren.

3.5 vertiefende Themen zum parallelen Programmieren

Neben diesen doch recht einfachen anwendbaren Funktionalitäten bietet Julia auch noch eine Reihe weitere Möglichkeiten zusätzlichen Performanzgewinn zu erzielen. Die erste Möglichkeit ist dabei die manuelle Handhabung der Lebenszeit der Objekte. Auch wenn der implementierte Müllsammler (Garbage collector) selbst mit der Zeit Objekte aufräumt, so sollte gerade bei Codezeilen mit sehr vielen kleinen und auch kurzlebigen Objekten explizit die Funktion finalize() aufgerufen werden, um lokale Instanzen oder auch Remote-Referenzen oder Shared Array aus dem Speicher zu löschen, da der Remote-Knoten sehr groß sein kann und zudem gerade größere Objekte zuerst vom Garbage Collector gelöscht werden. Ein Löschen des mit fetch() geladenen Future's ist nicht notwendig, da fetch() bereits den Remote-Knoten entfernt. Eine weitere Möglichkeit bietet die eigene Konfiguration eines Clustermanagers. Dieser ist verantwortlich für das Starten der Arbeiter, das Verwalten von Events, die auf den Arbeitern auftreten, und auch für den Datentransport und der Kommunikation zwischen den Prozessoren. Dabei kann beispielsweise vom standartmäßigen TCP/IP hin zu MPI abgewichen oder verschiedene Aufgaben-Warteschlangen wie Slum oder PBS realisiert werden um eine effizientere Auslastung der Prozessoren zu erreichen. Auch stellt Julia mit dem Macro @simd die Option, dem Compiler explizit mitzuteilen, an bestimmten Stellen zu Vektorisieren. Zusätzlich gibt es auch noch verschiedenste Pakete wie zB das ParallelAccelerator-Paket von Intel welches mit dem @acc Macro ein Mittel bietet, bestimmte Teile wie in diesem Fall ressourcenkostende Arrayfunktionen noch einmal deutlich zu beschleunigen. Daneben gibt es auch noch experimentielle Möglichkeiten, welche sich derzeit noch in Entwicklung befinden, aber bereits eingeschränkt nutzbar sind. So lässt sich die Netzwerktopologie des Clusternetzwerkes in die Funktion addprocs() als Argument mitgeben um zu spezifizieren, wie der Arbeiter zu den anderen Prozessoren verbunden werden soll. Auch gibt es bereits erste Möglichkeiten für Multithreading in Julia, wobei hier vorher noch eine Umgebungsvariable außerhalb von Julia gesetzt werden muss um festzulegen, wieviele Threads gestartet werden sollen. Mit dem Macro Threads.@threads lassen sich dann Schleifen Parallelisieren, ähnlich zur @parallel-Variante nur ohne Reduktionsfunktion.

3.6 weitere hilfreiche Werkzeuge um Flaschenhälse zu erkennen

hier etwas zu BenchmarkTools, @code_warntype, profiler

4 Bewertung der HPC-Eignung von Julia

5 Quellen

5.1 Links

Links für die Einleitung:

- https://juliacomputing.com/case-studies/celeste.html am 14.05.18 um 14:52 Uhr
- https://www.heise.de/developer/meldung/Programmiersprache-Julia-profiliert-sich-beim-High-Performance-Computing-3518621.html am 14.05.18 um 14:52 Uhr
- https://github.com/jeff-regier/Celeste.jl am 14.05.18 um 14:52 Uhr
- https://www.youtube.com/watch?v=uecdcADM3hY am 14.05.18 um 14:52 Uhr
- https://juliacomputing.com/press/2016/11/28/celeste.html am 14.05.18 um 14:52 Uhr
- https://de.wikipedia.org/wiki/Sloan_Digital_Sky_Survey am 14.05.18 um 14:53 Uhr
- https://de.wikipedia.org/wiki/ApachePointObservatorium am 14.05.18 um 14:53 Uhr
- http://www.astronews.com/news/artikel/2014/01/1401-013.shtml am 14.05.18 um 14:54 Uhr
- http://www.sdss.org/dr14/imaging/ am 14.05.18 um 14:54 Uhr
- https://www.nextplatform.com/2017/11/28/julia-language-delivers-petascale-hpc-performance/ am 14.05.18 um 14:54 Uhr

Links für die Definition:

- https://julialang.org/ am 14.05.18 um 14:57 Uhr
- https://www.heise.de/developer/artikel/FunktionsorientiertundschnellDieProgrammierspracheJulia-3793160.html?seite=all am 14.05.18 um 14:58 Uhr
- https://de.wikipedia.org/wiki/Julia_Programmiersprache am 14.05.18 um 14:58 Uhr
- https://docs.julialang.org/en/stable/manual/introduction/#man-introduction1 am 14.05.18 um 14:59
 Uhr

Literatur

[Kle10] Klein, Rabbert: Black Holes and Their Relation to Hiding Eggs. In: *Theoretical Easter Physics* (2010). – (to appear)

Danksagung

Die Danksagung...

Erklärungen zum Urheberrecht

Hier soll jeder Autor die von ihm eingeholten Zustimmungen der Copyright-Besitzer angeben bzw. die in Web Press Rooms angegebenen generellen Konditionen seiner Text- und Bildübernahmen zitieren.