Jason Waseq CSE 107 Lab 6

This project aims to demonstrate the Central Limit Theorem (CLT) by simulating the rolling of a loaded die and observing how the normalized sum of these rolls converges to a standard normal distribution. Specifically, you'll define a loaded die with custom probabilities for each face, then repeatedly roll this die n=500 times, calculating a value Zn for each set of rolls. By repeating this process 20,000 times, you'll estimate the Cumulative Distribution Function (CDF) of Zn. Finally, you'll present these estimated CDF values in a table formatted like a standard normal distribution table and compare it to the actual standard normal table to illustrate the CLT.

Code in Python:

```
import numpy as np
from scipy.stats import norm
# Define the number of trials and the value of n
num_trials = 20000
n = 500
# Define the range of z values
z values = np.arange(0.00, 3.50, 0.01)
# Function to simulate rolling a loaded die
def roll loaded die(probabilities):
  return np.random.choice(range(1, 7), p=probabilities)
# Function to calculate Zn
def calculate_Zn(rolls, mu, sigma):
  Sn = np.sum(rolls)
  Zn = (Sn - n * mu) / (sigma * np.sqrt(n))
  return Zn
def main():
  # Define the probabilities for the loaded die
  probabilities = [0.1, 0.15, 0.2, 0.25, 0.15, 0.15]
  # Verify that the probabilities sum to 1
  if sum(probabilities) != 1:
     raise ValueError("Probabilities must sum to 1")
  # Calculate the mean and variance of the loaded die
  mu = np.sum([(i + 1) * p for i, p in enumerate(probabilities)])
```

```
variance = np.sum([((i + 1) - mu)**2 * p for i, p in enumerate(probabilities)])
  sigma = np.sqrt(variance)
  # Initialize a list to store the results of the trials
  Zn values = []
  # Run the simulation
  for _ in range(num_trials):
     # Roll the loaded die n times
     rolls = [roll loaded die(probabilities) for in range(n)]
     # Calculate Zn
     Zn = calculate Zn(rolls, mu, sigma)
     # Append Zn to the list of results
     Zn_values.append(Zn)
  # Calculate the experimental CDF
  experimental_cdf = []
  for z in z values:
     # Calculate the relative frequency of Zn <= z
     relative_frequency = np.sum(Zn_values <= z) / num_trials
     experimental_cdf.append(relative_frequency)
  # Reshape the experimental CDF into a table
  experimental cdf table = np.reshape(experimental cdf, (35, 10))
  # Print the experimental CDF table
  print("Experimental CDF")
  print("
                .00
                         .01
                                 .02
                                         .03
                                                  .04
                                                          .05
                                                                  .06
                                                                           .07
                                                                                   .08
                                                                                            .09")
  print("
  for i in range(35):
     row label = i/10
     print(f" {row_label:.1f} | ", end="")
     for j in range(10):
       print(f"{experimental_cdf_table[i][j]:.4f} ", end="")
     print()
if __name__ == "__main__":
  main()
```

Output:

Experimental CDF									
.00		.02	.03	.04	.05	.06	.07	.08	.09
0.0 0.5028	0.5028	0.5028	0.5151	0.5151	0.5151	0.5265	0.5265	0.5265	0.5370
0.1 0.5370	0.5370	0.5485	0.5485	0.5485	0.5594	0.5594	0.5594	0.5714	0.5714
0.2 0.5714	0.5824	0.5824	0.5824	0.5936	0.5936	0.5936	0.6056	0.6056	0.6056
0.3 0.6176	0.6176	0.6176	0.6294	0.6294	0.6294	0.6399	0.6399	0.6399	0.6508
0.4 0.6508	0.6508	0.6612	0.6612	0.6703	0.6703	0.6703	0.6818	0.6818	0.6818
0.5 0.6922	0.6922	0.6922	0.7020	0.7020	0.7020	0.7117	0.7117	0.7117	0.7221
0.6 0.7221									
0.7 0.7518	0.7616	0.7616	0.7616	0.7708	0.7708	0.7708	0.7796	0.7796	0.7796
0.8 0.7876	0.7876	0.7876	0.7965	0.7965	0.7965	0.8049	0.8049	0.8118	0.8118
0.9 0.8118	0.8204	0.8204	0.8204	0.8277	0.8277	0.8277	0.8353	0.8353	0.8353
1.0 0.8433	0.8433	0.8433	0.8510	0.8510	0.8510	0.8581	0.8581	0.8581	0.8649
1.1 0.8649									
1.2 0.8840	0.8893	0.8893	0.8893	0.8943	0.8943	0.8943	0.8991	0.8991	0.9049
1.3 0.9049	0.9049	0.9101	0.9101	0.9101	0.9150	0.9150	0.9150	0.9195	0.9195
1.4 0.9195	0.9236	0.9236	0.9236	0.9274	0.9274	0.9274	0.9315	0.9315	0.9315
1.5 0.9364	0.9364	0.9364	0.9404	0.9404	0.9404	0.9433	0.9433	0.9433	0.9464
1.6 0.9464	0.9464	0.9490	0.9490	0.9490	0.9523	0.9523	0.9523	0.9548	0.9548
1.7 0.9548	0.9577	0.9577	0.9602	0.9602	0.9602	0.9627	0.9627	0.9627	0.9646
1.8 0.9646	0.9646	0.9667	0.9667	0.9667	0.9685	0.9685	0.9685	0.9701	0.9701
1.9 0.9701	0.9717	0.9717	0.9717	0.9732	0.9732	0.9732	0.9750	0.9750	0.9750
2.0 0.9771	0.9771	0.9771	0.9789	0.9789	0.9789	0.9800	0.9800	0.9800	0.9816
2.1 0.9816									
2.2 0.9867	0.9867	0.9867	0.9877	0.9877	0.9877	0.9886	0.9886	0.9886	0.9891
2.3 0.9891									
2.4 0.9918									
2.5 0.9941									
2.6 0.9955									
2.7 0.9967									
2.8 0.9972									
2.9 0.9978									
3.0 0.9984									
3.1 0.9987									
3.2 0.9994	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	0.9995

Conjecture:

The experiment demonstrates the Central Limit Theorem (CLT) by simulating the rolling of a loaded die n times and calculating the normalized sum Zn. Despite the loaded die having a non-normal, discrete distribution, after many trials, the experimental CDF of Zn closely approximates the standard normal CDF, as predicted by the CLT. This highlights the theorem's generality: regardless of the underlying distribution of the individual random variables (the die rolls), the distribution of their normalized sum converges to a standard normal distribution as n increases.