



# On the Geodesics of Thurston's Asymmetric Metric

## Manvendra Somvanshi

Under the guidance of Prof. James Farre and Prof. Pranab Sardar

### Teichmüller Space

A pair (X, f) where X is a hyperbolic surface and  $f: S \to X$  is a homeomorphism is called a marking of S. Two markings (X, f) and (Y, g) are said to be equivalent if there is an isometry  $I: X \to Y$  such that  $If \simeq_{\text{iso}} g$ . The Teichmüller space of S is defined as the space of a hyperbolic markings on S up to the above equivalence.

$$Teich(S) = \{(X, f : S \to X) \mid f \text{ is orientation preserving}\} / \sim$$

We denote the elements of Teich(S) by  $\mathfrak{X}$ .

For example for the pair of pants, i.e. sphere with three punctures  $S_{0,3}$  the Teichmüller space is homeomorphic to  $\mathbb{R}^3_+$ .

#### Thurston Metric

In his paper, Thurston asks the following question: given a surface S with two hyperbolic structures  $f: S \to X$  and  $g: S \to Y$ , is there a homeomorphism  $\varphi: X \to Y$  compatible with the markings which realizes the least possible value of the Lipschitz constant? In other words if

$$L = \inf_{\substack{\psi: X \to Y \\ \psi f \simeq g}} \operatorname{Lip}(\psi) \tag{1}$$

then does there exist a L-Lipschitz homeomorphism  $\varphi$ . It turns out that the answer to this question is positive. The definition of the Thurston metric was motivated by this question. Let  $L: \operatorname{Teich}(S) \times \operatorname{Teich}(S) \to \mathbb{R}_+$  be defined as

$$L(\mathfrak{X}, \mathfrak{Y}) = \inf_{\substack{\psi: X \to Y \\ \psi f \simeq q}} \log(\operatorname{Lip}(\psi)) \tag{2}$$

This is called Thurston's asymmetric metric. Thurston had also defined another metric on  $\operatorname{Teich}(S)$  as follows: define  $K : \operatorname{Teich}(S) \times \operatorname{Teich}(S) \to \mathbb{R}_+$  as

$$K(\mathfrak{X}, \mathfrak{Y}) = \sup_{c \in \mathcal{S}} \log \left( \frac{\ell_{\mathfrak{Y}}(c)}{\ell_{\mathfrak{X}}(c)} \right)$$
 (3)

Thurston had showed that these two metrics are equal!





Fig. 1: Points far away in one direction, but close in the other.

#### Geodesics

What do geodesics in Thurston's metric look like?

Thurston had given an example of geodesics called *Stretch Rays*. This involved "cutting up" the surface into ideal hyperbolic triangles, constructing a pair of foliations on these polygons, and explicitly constructing Lipschitz maps which stretches along one of these foliations.

#### Arc Complex

Let  $\Sigma$  be a topological surface with boundary. The arc complex  $\mathscr{A}(\Sigma, \partial \Sigma)$  of  $\Sigma$  is a simplicial complex defined as follows:

- 1. The 0-simplexes are homotopy classes of simple essential arcs relative to the boundary.
- 2. The vertices  $(\alpha_1, \dots, \alpha_n)$  span an n-simplex if  $\underline{\alpha} = \bigcup_{i=1}^n \alpha_i$  is an arc system.

The sub-complex  $\mathscr{A}_{\infty}(\Sigma, \partial \Sigma)$  of  $\mathscr{A}(\Sigma, \partial \Sigma)$  only has simplexes whose vertices form a non-filling arc systems. The compliment of the non-filling arc complex is called the filling arc space and denoted  $\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)$ . The geometric realization space of  $\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)$ , denoted  $|\mathscr{A}_{\text{fill}}(\Sigma, \partial \Sigma)| \times \mathbb{R}^+$ , is the space of all weighted filling arc systems.



### Dual Arcs of a Surface with Boundary

Let Y be a hyperbolic surface with geodesic boundary which is homeomorphic to  $\Sigma$ . The valency of a point  $y \in Y$  is the cardinality of the set  $\{p \in \partial Y \mid d(y,p) = d(y,\partial Y)\}$ . The spine of a hyperbolic surface is defined as  $\operatorname{Sp}(Y) = \{y \in Y \mid \text{valency of } y \geq 2\}$ . This is called the spine as it is a deformation retract of Y. There is a natural deformation retract  $r: Y \to \operatorname{Sp}(Y)$  s.t. the fibers are geodesic arcs orthogonal to the boundary.

Given any two points  $y, y' \in \operatorname{Sp}_2(Y)$  which lie on the same edge e of the spine the arcs  $r^{-1}(y)$  and  $r^{-1}(y')$  are homotopic to each other relative to the boundary  $\partial Y$ . A dual arc  $\alpha_e$  is the homotopy class relative to  $\partial Y$  of fibers of r corresponding to e. There is a special representative of the class  $\alpha_e$  which is the fiber perpendicular to e as well as the boundary.







If  $\tau$  is an arc in Y transverse to the fibers of r such that  $r(\tau) \subset e$  for some edge e of  $\operatorname{Sp}(Y)$  then define a measure  $\mu_{\tau}$  on  $\tau$  by defining the measure of any sub-arc c to be length of the curve on  $\partial Y$  obtained by continuously deforming c to the boundary keeping each point of c on the same fiber of r. For an arbitrary transverse arc  $\tau$ , it can be decomposed into finitely many components.



# Weighted Filling Arc Space is Teichmuller space

Every surface can be assigned a weighted arc system by defining  $\underline{A}(Y) = \sum_{e \in \operatorname{Sp}(Y)} \mu_e(e) \alpha_e$ . Note that if Y and Y' represent the same point in  $\operatorname{Teich}(\Sigma)$  then the isometry preserves the weighted dual arc system. This means that  $\underline{A}(\square)$  can be defined as a function on  $\operatorname{Teich}(S)$ . The following theorem was proved by Luo and later, in more generality, by Calderon and Farre.

The map  $\underline{A}$ : Teich $(S) \to |\mathscr{A}_{\mathrm{fill}}(\Sigma, \partial \Sigma)| \times \mathbb{R}^+$  is a homeomorphism.

# **Dilation Rays**

Let  $\mathfrak{X} \in \text{Teich}(S)$  and  $\lambda$  be a multicurve in X. Consider the completion  $Y_1, \dots, Y_n$  of the components of  $X - \lambda$  and the corresponding points  $\mathfrak{Y}_i \in \text{Teich}(\Sigma_i)$ . Then  $\underline{A}^{-1}(e^t\underline{A}(\mathfrak{Y}_i))$  defines a curve in  $\text{Teich}(\Sigma_i)$  denoted by  $\mathfrak{Y}_i(t)$ . Then gluing all  $Y_i(t)$  together without any twisting gives a curve  $\mathfrak{X}_t^{\lambda}$  in Teich(S). This curve is called the *Dilation ray* based at X.

We have proved the following result:

If  $\mathfrak{X} \in \text{Teich}(S)$  and  $\lambda$  is a pants decomposition of S, then the dilation ray  $\mathfrak{X}_t^{\lambda}$  is a Thurston geodesic.