Introduction à la théorie des sondages - Cours 1

Gaspar Massiot gaspar.massiot@ined.fr

2024-2025

Introduction

- Note
 - Devoir Maison (TD) Coefficient 1
 - Devoir sur table (CM) Coefficient 2 : Durée 1h, Calculatrice et 1 Feuille RV autorisée
- Intervenants
 - Cours: Gaspar Massiot (gaspar.massiot@ined.fr)
 - TD: Ulysse Lebec (ulebec@mediametrie.fr) et Nicolas Salaün (nsalaun@mediametrie.fr)
 - TP: Tony Bissonnier (tbissonnier@mediametrie.fr)
- Supports de cours inspirés de ceux de Thomas Merly-Alpa, Paul Cochet (Ined), Antoine Rebecq et Martin Chevalier (Insee)

Sommaire I

- Pourquoi le sondage?
 - Concept
 - Utilisations
 - Un échantillon "représentatif" ?
 - Pondération
- Notion d'estimateur
 - Vocabulaire
 - Retour sur l'estimateur naïf
 - Les probabilités d'inclusion

ncept lisations urquoi faire une enquête? échantillon "représentatif" ndération

Chapitre 1

Pourquoi le sondage?

Pourquoi le sondage? Notion d'estimateur Concept Utilisations Pourquoi faire une enquête? Un échantillon "représentatif"?

Partie 1

Concept

Concept

Qu'est-ce que l'échantillonnage / l'estimation par sondage?

- Une population de grande taille
- Compter ou interroger est coûteux
- On sélectionne quelques individus qui répondent "pour tout le monde"

Idée cruciale : sélectionner aléatoirement ces individus.

Historique

Historiquement et conceptuellement, rien d'évident!

• Laplace (1785) : recensement par une sous-partie de la population

Historique

Historiquement et conceptuellement, rien d'évident!

- Laplace (1785) : recensement par une sous-partie de la population
- Kiaer (1895) : échantillon "représentatif"

Historique

Historiquement et conceptuellement, rien d'évident!

- Laplace (1785) : recensement par une sous-partie de la population
- Kiaer (1895) : échantillon "représentatif"
 ... puis 1925 : acceptation de l'échantillonnage aléatoire

Concept Utilisation Pourque

ourquoi faire une enquête? In échantillon "représentatif"? ondération

Historique

Historiquement et conceptuellement, rien d'évident!

- Laplace (1785) : recensement par une sous-partie de la population
- Kiaer (1895) : échantillon "représentatif"
 ... puis 1925 : acceptation de l'échantillonnage aléatoire
- Gallup (1936) : élections américaines

Élections américaines de 1936

- Duel entre Alfred Landon (Républicain) et Franklin Roosevelt (Démocrate)
- Un magazine interroge ses 2 millions de lecteurices : victoire de Landon
- Gallup fait un sondage sur 50 000 personnes : il prédit la victoire de Roosevelt

Élections américaines de 1936

Élections américaines de 2016

Nate Silver, http://fivethirtyeight.com:

Élections américaines de 2016

Élection de Donald Trump, Brexit... Pourquoi les sondages ont-ils eu tout faux?

Élections américaines de 2016

Élection de Donald Trump, Brexit... Pourquoi les sondages ont-ils eu tout faux?

- Marge d'erreur et précision : 1 000 personnes ?
- Temporalité : changement d'avis (exemple : hausse du vote Fillon à la primaire LR 2017)
- Mensonge ou camouflage des intentions (exemple : traitement du vote FN depuis 2002)
- Ne souhaitent pas répondre : à suivre dans le cours
- Enquêtes Internet ou par téléphone : meilleurs méthodes?

Concept Utilisation

Pourquoi faire une enquête?
Un échantillon "représentatif"?

Élections américaines de 2020

En 2020, une meilleure prédiction :

,

tilisations

Pourquoi faire une enquête ?
In échantillon "représentatif" ?

Et pour 2024?

Et pour 2024?

Pourquoi le sondage? Notion d'estimateur Concept
Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif'
Pondération

Partie 2

Utilisations

Statistique publique

- Enquêtes auprès des ménages : le moral des ménages, le taux de chômage
- Enquêtes auprès des entreprises ESA (Enquête Sectorielle Annuelle) : Chiffre d'affaire par secteur, chiffres d'investissement, . . .

Statistique publique

Et d'autres sujets :

- Epicov : Enquête rapide sur le covid-19 pendant les confinements (Insee-Inserm-Drees);
- Panel ELIPSS: Panel de sciences sociales (Sciences Po);
- EMP : Enquête Mobilité des Personnes (INSEE-SDES);
- Familles et Employeurs (Ined) . . .

Autres exemples

• Biologie : dénombrement d'espèces

Autres exemples

• Biologie : dénombrement d'espèces

Politique

Autres exemples

- Biologie : dénombrement d'espèces
- Politique
- Marketing

Autres exemples

- Biologie : dénombrement d'espèces
- Politique
- Marketing

Pour aller plus loin sur l'utilisation des sondages et leurs limites

BLAST, Sondages d'opinion : l'Overdose

Pourquoi le sondage? Notion d'estimateur Concept
Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif"
Pondération

Partie 3

Pourquoi faire une enquête?

Conception

Une enquête peut être coûteuse (en budget - 2 millions pour une enquête INSEE, mais aussi en temps des enquêté.e.s). Il faut donc s'assurer que le sujet est :

- Pertinent (contraintes européennes, demandes d'études, sujet actuel)
- Non couvert (autres enquêtes, autres données)
- Réalisable (pas trop complexe, légalité, anonymisation)

Questionnaire

Une fois les objectifs identifiés, il faut réaliser un questionnaire :

- Qui colle aux concepts
- Mais compréhensible par l'enquêté : ni équivoque, ni flou
- Qui permette de la comparabilité avec d'autres sources
- \Rightarrow Une étape cruciale mais difficile!

Pourquoi le sondage? Notion d'estimateur Concept
Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif"?
Pondération

Partie 4

Un échantillon "représentatif" ?

Échantillon représentatif

Un "échantillon représentatif" : "Village" de 100 habitants

- Est-ce que le concept d'échantillon représentatif est toujours pertinent?
- Si on veut connaître le secteur automobile en France, quelle est la bonne stratégie?

"Sondage" devrait toujours aller de pair avec **"objectif"** (même si les objectifs pour un même échantillon peuvent être nombreux).

Secteur automobile

Quelle est le chiffre d'affaires moyen d'une entreprise du secteur automobile?

• On a intérêt à bien interroger Renault et Peugeot.

Secteur automobile

Quelle est le chiffre d'affaires moyen d'une entreprise du secteur automobile?

- On a intérêt à bien interroger Renault et Peugeot.
- On doit aussi interroger au hasard des garages.

Secteur automobile

Quelle est le chiffre d'affaires moyen d'une entreprise du secteur automobile?

- On a intérêt à bien interroger Renault et Peugeot.
- On doit aussi interroger au hasard des garages.
- Ce n'est pas utile d'interroger trop de garages, car ils se ressemblent.

Secteur automobile

Quelle est le chiffre d'affaires moyen d'une entreprise du secteur automobile?

- On a intérêt à bien interroger Renault et Peugeot.
- On doit aussi interroger au hasard des garages.
- Ce n'est pas utile d'interroger trop de garages, car ils se ressemblent.

Renault	50 Md€
Peugeot	40 Md€
Garage 1	300 k€
Garage 2	200 k€

L'estimation naïve

Pour l'estimation du total et de la moyenne d'une variable Y, l'estimateur « na $\ddot{i}f$ » est :

- Pour le total, la somme des valeurs Y des individus de l'échantillon.
- Pour la moyenne, la moyenne des valeurs Y des individus de l'échantillon.

En général, l'estimation naïve est fausse (biaisée), surtout quand l'échantillon est choisi de façon complexe.

Secteur automobile

Quelle est le chiffre d'affaires moyen d'une entreprise du secteur automobile?

Renault	50 Md€
Peugeot	40 Md€
Garage 1	300 k€
Garage 2	200 k€

Estimateur naïf : (50 + 40 Md + 300 + 200 k) / 4 \approx 22 Md \in

Pourquoi le sondage? Notion d'estimateur Concept
Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif"
Pondération

Partie 5

Pondération

Pondérer?

Pour éviter d'utiliser l'estimateur naïf, on utilise généralement ce qu'on appelle des poids, qu'on note w (pour weight en anglais).

Le poids d'un individu correspond au nombre d'individus que l'individu de l'échantillon représente dans la population. Si l'on interroge 1 individu sur 100, le poids est alors de 100.

L'estimateur pondéré du total est alors la somme des $w_i y_i$ sur l'échantillon.

Retour sur l'exemple

Retour sur le secteur automobile. S'il n'y a qu'un Renault et qu'un Peugeot, il existe en fait près de 80 000 garages.

Les deux garages enquêtés en représentent donc 80 000 : leur poids w est de :

$$w_i = \frac{80000}{2} = 40000$$

Concept
Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif"?
Pondération

Retour sur l'exemple

Renault	Dans l'échantillon	50 Md€
Peugeot	Dans l'échantillon	40 Md€
Garage 1	Dans l'échantillon	300 k€
Garage 2	Dans l'échantillon	200 k€
Garage 3		?
		?
Garage 80 000		?

Retour sur l'exemple

On introduit la pondération :

Renault	Dans l'échantillon	1	50 Md€
Peugeot	Dans l'échantillon	1	40 Md€
Garage 1	Dans l'échantillon	40 000	300 k€
Garage 2	Dans l'échantillon	40 000	200 k€

Estimateur naïf : (50 + 40 Md + 300 + 200 k) / 4 \approx 22 Md \in

Retour sur l'exemple

On introduit la pondération :

Renault	Dans l'échantillon	1	50 Md€
Peugeot	Dans l'échantillon	1	40 Md€
Garage 1	Dans l'échantillon	40 000	300 k€
Garage 2	Dans l'échantillon	40 000	200 k€

Estimateur naïf : (50 + 40 Md + 300 + 200 k) / 4 \approx 22 Md \in Estimateur pondéré :

$$(1*50+1*40Md+40\ 000*300+40\ 000*200k)/(1+1+40\ 000+40\ 000)$$

soit environ 1,4 millions d'€

Utilisations
Pourquoi faire une enquête?
Un échantillon "représentatif"?
Pondération

À retenir

• On construit notre sondage et donc notre échantillon dans un but précis.

 On utilise les résultats obtenus en se rappelant de notre méthode de sondage, via la pondération.

/ocabulaire Retour sur l'estimateur naï .es probabilités d'inclusion

Chapitre 2

Notion d'estimateur

Vocabulaire

etour sur l'estimateur naif es probabilités d'inclusion

Partie 1

Vocabulaire

Notations - Définitions

- Population $U = \{u_1, ..., u_k, ..., u_N\}$
- L'individu $u_k \in \mathcal{U}$ est repéré sans ambiguïté par son identifiant k.
- ullet Variable d'intérêt Y, qui prend la valeur y_k pour l'individu k
- Objectif du sondage : Mesurer Φ(Y), une fonction dépendant de Y.

Notations - Définitions

Y peut être

- quantitative (exemple : revenu). Dans ce cas Φ peut être le total, la moyenne, etc.
- qualitative, c'est-à-dire prendre un nombre fini de valeurs (exemple : sexe). Dans ce cas, Φ peut être la répartition dans la population.

Vocabulaire

Retour sur l'estimateur naïf es probabilités d'inclusion

Notations - Définitions

La **base de sondage** donne les moyens d'identifier et de joindre les unités d'échantillonnage, souvent il s'agit des individus mais cela peut aussi être un *proxy*.

Notations - Définitions

- Échantillon $s \subset \mathcal{U}$
- Si $s = \mathcal{U}$, recensement
- Chaque individu $u_k, k \in s$ est interrogé, et on relève y_k
- Les $y_k, k \in s$ sont utilisés pour construire un **estimateur** $\hat{\Phi}$ de Φ

Plan de sondage - définition

On note S l'ensemble des parties de U. Le plan de sondage p est une loi de probabilité sur S i.e. :

$$orall s \in \mathcal{S}, \ p(s) \geq 0$$
 $\sum_{s \in \mathcal{S}} p(s) = 1$

Vocabulaire

Retour sur l'estimateur naïf .es probabilités d'inclusion

Plan de sondage - exemple

Soit
$$\mathcal{U} = \{1, 2, 3\}.$$
 On a alors : $\mathcal{S} =$

Vocabulaire

Retour sur l'estimateur naïf es probabilités d'inclusion

Plan de sondage - exemple

Soit
$$\mathcal{U}=\{1,2,3\}$$
. On a alors : $\mathcal{S}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Plan de sondage - exemple

Soit
$$\mathcal{U}=\{1,2,3\}$$
. On a alors : $\mathcal{S}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

On peut définir un plan de sondage p par :

$$p(\{1\}) = 0$$
 $p(\{1,2\}) = \frac{1}{2}$ $p(\{1,2,3\}) = 0$

$$p({2}) = 0$$
 $p({1,3}) = \frac{1}{3}$

$$p({3}) = 0$$
 $p({2,3}) = \frac{1}{6}$

Paramètre d'intérêt

Y est la variable d'intérêt et $\Phi(Y)$ est le paramètre d'intérêt.

Attention, Y n'est pas aléatoire!

L'aléatoire repose entièrement sur l'échantillonnage décrit par le plan de sondage p.

Vocabulaire

Retour sur l'estimateur naïf Les probabilités d'inclusion

Estimateur

Une fois l'échantillon s tiré, on **estime** $\Phi(Y)$ à l'aide d'une fonction, notée $\hat{\Phi}$, qui dépend de l'échantillon.

 $\hat{\Phi}$ est appelé un **estimateur** de $\Phi(Y)$.

Espérance

$$\mathbb{E}(\hat{\Phi}) = \sum_{s} p(s) \cdot \hat{\Phi}(s)$$

C'est la valeur moyenne de $\hat{\Phi}$ obtenue avec le plan de sondage considéré sur tous les échantillons possibles.

Biais

$$B(\hat{\Phi}) = \mathbb{E}(\hat{\Phi}) - \Phi$$

Si $B(\hat{\Phi}) = 0$, alors on parle **d'estimateur sans biais**.

Variance / Précision

$$\operatorname{Var}(\hat{\Phi}) = \sum_{s} p(s) \cdot \left[\mathbb{E}(\hat{\Phi}) - \hat{\Phi}(s) \right]^{2}$$

C'est une mesure de la dispersion des valeurs $\hat{\Phi}(s)$ autour de leur moyenne.

Variance / Précision

Quantités liées :

$$\begin{split} \sigma(\hat{\Phi}) &= \sqrt{\mathrm{Var}(\hat{\Phi})}, \text{\'ecart-type} \\ \mathcal{CV}(\hat{\Phi}) &= \frac{\sigma(\hat{\Phi})}{\mathbb{E}(\hat{\Phi})}, \text{coefficient de variation} \end{split}$$

Schéma

Erreur quadratique moyenne

$$EQM(\hat{\Phi}) = \sum_{s} p(s) \cdot \left[\Phi - \hat{\Phi}(s) \right]^{2}$$
$$= Var(\hat{\Phi}) + B(\hat{\Phi})^{2}$$

Entre deux estimateurs sans biais, celui qui a la plus petite variance est de meilleure qualité.

Construction d'un intervalle de confiance

La **vraie variance** $Var(\hat{\Phi})$ n'est pas connue (il faudrait pour cela pouvoir tirer tous les échantillons).

Il faudra donc estimer la variance à partir des données de l'échantillon. L'estimateur sera noté $\hat{V}(\hat{\Phi})$ ou $\widehat{\mathrm{Var}}(\hat{\Phi})$.

Construction d'un intervalle de confiance

Estimateurs plug-ins des quantités liées à la variance :

$$\begin{split} \hat{\sigma}(\hat{\Phi}) &= \sqrt{\widehat{\mathrm{Var}}(\hat{\Phi})}, \text{ \'ecart-type} \\ \widehat{\mathit{CV}}(\hat{\Phi}) &= \frac{\hat{\sigma}(\hat{\Phi})}{\hat{\Phi}}, \text{ coefficient de variation} \end{split}$$

Construction d'un intervalle de confiance

On fait **l'hypothèse** : $\hat{\Phi} \sim \mathcal{N}(\Phi, \operatorname{Var}(\Phi))$

L'intervalle de confiance à 95% est défini par :

$$IC_{95\%} = \left[\hat{\Phi} - 2\sigma(\hat{\Phi}); \hat{\Phi} + 2\sigma(\hat{\Phi})\right]$$

L'intervalle de confiance **estimé** est défini par :

$$\widehat{IC}_{95\%} = \left[\hat{\Phi} - 2\hat{\sigma}(\hat{\Phi}); \hat{\Phi} + 2\hat{\sigma}(\hat{\Phi})\right]$$

Vocabulaire Retour sur l'estimateur naïf Les probabilités d'inclusion

Partie 2

Retour sur l'estimateur naïf

L'estimateur naïf

Rappel : pour l'estimation du total et de la moyenne d'une variable Y, l'estimateur « naïf » s'écrit :

$$\hat{T}(Y)_{naif} = \sum_{k \in s} y_k$$

$$\hat{\bar{y}}_{naif} = \frac{1}{n} \sum_{k \in s} y_k$$

L'estimateur naïf

En général, l'estimation naïve est biaisée :

$$\mathbb{E}(\hat{\Phi}_{\textit{naif}}) = \sum_{s} p(s) \cdot \hat{\Phi}(s)
otag$$
 $eq \Phi$

 $\mathbb{E}(\hat{\Phi})$ est la valeur moyenne de $\hat{\Phi}$ obtenue avec le plan de sondage considéré sur tous les échantillons possibles.

'ocabulaire letour sur l'estimateur nai es probabilités d'inclusion

Partie 3

Les probabilités d'inclusion

Probabilité d'inclusion π_k

Pour améliorer l'estimateur naïf, il faut utiliser une pondération. On va calculer celle-ci à l'aide des **probabilités d'inclusion**.

La probabilité d'inclusion simple d'un individu k est la probabilité que cet individu soit dans l'échantillon. Ainsi, pour $k \in \mathcal{U}$,

$$\pi_k = \mathbb{P}(k \in s) = \mathbb{P}(\delta_k = 1) = \sum_{s \ni k} p(s)$$

où δ_k est l'indicatrice d'appartenance de k à S, appelée aussi variable de Cornfield.

Probabilité d'inclusion π_{kl}

La probabilité d'inclusion double de deux individus k et l est la probabilité que ces deux individu soient ensemble dans l'échantillon. Ainsi, pour $k, l \in \mathcal{U}$,

$$\pi_{kl} = \mathbb{P}(k, l \in s) = \mathbb{P}(\delta_k \delta_l = 1) = \sum_{s \ni k, l} p(s)$$

Attention : on n'a pas $\pi_{kl}=\pi_k\pi_l$ en général! On note par ailleurs $\Delta_{kl}=\pi_{kl}-\pi_k\pi_l$.

Probabilités d'inclusion π_k et π_{kl} - Propriétés

$$\mathbb{E}(\delta_k) = \pi_k \qquad \qquad \mathbb{E}(\delta_k \delta_l) = \pi_{kl}$$

$$Var(\delta_k) = \pi_k(1 - \pi_k) \quad Cov(\delta_k \delta_l) = \Delta_{kl}$$

Probabilités d'inclusion π_k et π_{kl} - Propriétés

Pour un plan à **taille fixe** *n*, on a :

$$\sum_{k,l \in \mathcal{U}} \pi_k = n$$

$$\sum_{\substack{k,l \in \mathcal{U} \\ k \neq l}} \pi_{kl} = n(n-1)$$

$$\sum_{\substack{l \in \mathcal{U} \\ k \neq l}} \pi_{kl} = \pi_k(n-1)$$