代数学 | 第7回レポート課題解答例

担当:大矢浩徳 (OYA Hironori)*

問題 1 ·

n を 3 以上の整数とし、n 次 2 面体群を

$$D_n = \{e, \sigma, \sigma^2, \dots, \sigma^{n-1}, \tau, \sigma\tau, \sigma^2\tau, \dots, \sigma^{n-1}\tau\}$$

と書く. ここで、 $\sigma^n = e, \tau^2 = e, \tau\sigma = \sigma^{-1}\tau$ である. 以下の間に答えよ:

(1) $k, \ell \in \{0, 1 \dots, n-1\}$ とする. このとき, 以下の D_n の元 (a), (b), (c), (d) を再び σ^m , あるい は $\sigma^m \tau$ $(m \in \mathbb{Z})$ の形*1で表せ.

(a)
$$\sigma^k(\sigma^\ell)(\sigma^k)^{-1}$$
 (b) $\sigma^k(\sigma^\ell\tau)(\sigma^k)^{-1}$ (c) $(\sigma^k\tau)(\sigma^\ell)(\sigma^k\tau)^{-1}$ (d) $(\sigma^k\tau)(\sigma^\ell\tau)(\sigma^k\tau)^{-1}$.

(2) σ の生成する D_n の部分群 $S = \langle \sigma \rangle$ が D_n の正規部分群であることを証明せよ.

問題1解答例.

(1)

(a)
$$\sigma^{\ell}$$

(b)
$$\sigma^{\ell+2k}\tau$$

(c)
$$\sigma^{-\ell}$$

(a)
$$\sigma^{\ell}$$
 (b) $\sigma^{\ell+2k}\tau$ (c) $\sigma^{-\ell}$ (d) $\sigma^{2k-\ell}\tau$.

(2) $*t^{*}$,

$$S = \langle \sigma \rangle = \{ \sigma^m \mid m \in \mathbb{Z} \} = \{ e, \sigma, \sigma^2, \dots, \sigma^{n-1} \}$$

であることより、S の任意の元は σ^{ℓ} 、 $\ell \in \{0,1...,n-1\}$ の形に書ける. これより、任意の $g \in D_n$ に対し、 $g\sigma^{\ell}g^{-1} \in S$ を言えばよいが、 D_n の任意の元は σ^k 、あるいは $\sigma^k\tau$ $(k \in \{0,1...,n-1\})$ の形をしているので、

$$\sigma^k(\sigma^\ell)(\sigma^k)^{-1}, (\sigma^k\tau)(\sigma^\ell)(\sigma^k\tau)^{-1} \in S$$

を示せばよい. (1) の (a), (c) より, $\sigma^k(\sigma^\ell)(\sigma^k)^{-1} = \sigma^\ell \in S$, $(\sigma^k \tau)(\sigma^\ell)(\sigma^k \tau)^{-1} = \sigma^{-\ell} \in S$ なので、示すべ きことは示された.

問題 1(1) 補足解説. 以下の事実を思い出す:

一般のn次2面体群 D_n において,

$$\tau \sigma^k = \sigma^{-k} \tau, \ \forall k \in \mathbb{Z}$$

説明は第4回レポート課題解答の問題2補足解説を参照.これと以下の命題を用いて計算すればよい.

- 命題. -

群 G の元 g_1, g_2, \ldots, g_m に対し,

$$(g_1g_2\cdots g_m)^{-1}=g_m^{-1}\cdots g_2^{-1}g_1^{-1}.$$

 * $e ext{-}mail:$ hoya@shibaura-it.ac.jp

 $^{^{*1}}$ m を必ずしも $0 \le m \le n-1$ に取る必要は無い.

問題 1(2) 補足解説. 一般に群 G の部分群 H が正規であることの必要十分条件は,

『任意の $h \in H$, $g \in G$ に対し, $ghg^{-1} \in H$ であること』

であったので、この問ではGを D_n 、HをSとして、これを証明すれば良い.

ちなみに、 D_n における S の指数 $[D_n:S]$ は Lagrange の定理より、

$$[D_n:S] = \frac{|D_n|}{|S|} = \frac{2n}{n} = 2$$

である. 実は, (2) の事実は以下の一般的な事実の結果として証明することもできる.

- 命題. -

群 G の指数 2 の部分群 H は正規部分群となる.

命題の証明. [G:H]=2 のとき, $g_0 \not\in H$ なる G の元をとると, G の左・右剰余類への分解は

$$G = H \cup g_0 H = H \cup H g_0$$

となる. ここで, $H \cap g_0H = H \cap Hg_0 = \emptyset$ であることに注意すると, $g_0H = G \setminus H = Hg_0$ であることがわかる. $(G \setminus H)$ は商空間ではなく H の G における補集合の意味.)

この議論より、各 $g \in G$ に対して、

$$\begin{cases} g \in H \text{ のとき}, gH = H = Hg \\ g \notin H \text{ のとき}, gH = G \setminus H = Hg \end{cases}$$

であることがわかる. よって、任意の $g \in G$ に対して gH = Hg となるので、H は G の正規部分群である. \square