# 1. Integrale definito come limite di una somma

### **Definizione**

Sia f(x) una funzione **continua** in [a; b].

Dividiamo l'intervallo [a; b] in n parti uguali mediante i punti:

$$a=x_0$$
 ,  $x_1=a+h$  ,  $x_2=a+2h$  , ... ,  $x_n=a+nh=b$ 

dove  $h = \frac{b-a}{n}$  è l'ampiezza di ogni intervallo della suddivisione.

In ciascun intervallo della suddivisione scegliamo un punto arbitrario:

$$\xi_1 \in [a; x_1], \quad \xi_2 \in [x_1; x_2], \quad \dots \quad , \quad \xi_n \in [x_{n-1}; b]$$

e siano

Fig.1

$$f(\xi_1), \quad f(\xi_2), \quad \dots, \quad f(\xi_n)$$

i valori che la funzione assume in corrispondenza di tali punti.

Costruiamo la somma:

$$\sigma_n = h f(\xi_1) + h f(\xi_2) + \dots + h f(\xi_n) = h \sum_{i=1}^n f(\xi_i)$$

che viene detta somma integrale generalizzata.

Osserviamo che la somma  $\sigma_n$  dipende da n e dalla scelta dei punti  $\xi_1$  ,  $\xi_2$ , ...,  $\xi_n$ .

Geometricamente  $\sigma_n$  rappresenta la somma algebrica delle aree dei rettangoli  $R_i$  di

base h e altezza  $f(\xi_i)$ , cioè se  $f(x) \geq 0$  in [a;b]  $\sigma_n$  è la somma delle aree dei rettangoli  $R_i$ , mentre se  $f(x) \leq 0$   $\sigma_n$  è l'opposto della somma delle aree dei rettangoli  $R_i$  (vedi fig. 1 e 2 ).



L. Mereu – A. Nanni Integrali indefiniti

Passando al limite quando il numero n delle divisioni tende all'infinito si ha il seguente :

### **Teorema**

Se la funzione f(x) è continua in [a;b] esiste finito il  $\lim_{n\to+\infty} \sigma_n$  e si chiama integrale definito della funzione f(x) su [a;b] e si indica:

$$\int_a^b f(x)dx = \lim_{n \to +\infty} \sigma_n.$$

Tale limite non dipende da come è stato diviso l'intervallo [a;b] in segmenti parziali né dalla scelta dei punti  $\xi_i$  in ogni segmento.

## Interpretazione geometrica

Se  $f(x) \ge 0$  in [a;b] (vedi fig. 3 ) l'integrale definito rappresenta l'area della regione finita T ( trapezoide ) di piano delimitata dall'asse x, dal grafico della funzione f e dalle rette x=a e x=b. Se f(x) non ha segno costante in [a;b] (vedi fig. 4) si ha:

$$Area(T) = \int_{a}^{b} |f(x)| dx$$



# Proprietà dell'integrale definito

Siano f(x) e g(x) funzioni continue in [a; b].

Si pone **per definizione**:

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \quad \text{se } a > b$$

Si possono dimostrare le seguenti proprietà:

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \qquad (k \in \mathbb{R})$$
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Se f(x) è continua in ogni intervallo [a;b], [a;c], [c;b] allora:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x) dx$$

Se:

$$a < b$$
 e  $f(x) \ge 0$  in  $[a; b]$  allora  $\int_a^b f(x) dx \ge 0$   $a < b$  e  $f(x) \ge g(x)$  in  $[a; b]$  allora  $\int_a^b f(x) dx \ge \int_a^b g(x) dx$ 

Inoltre

$$\left| \int_{a}^{b} f(x) \ dx \right| \le \int_{a}^{b} |f(x)| \ dx$$

#### **Esercizi**

#### (gli esercizi con asterisco sono avviati)

Determinare il segno dei seguenti integrali senza calcolarli:

\*1) 
$$\int_{-1}^{2} \frac{x^2+1}{3-x} dx$$

\*2) 
$$\int_{\frac{1}{2}}^{1} x \log x \, dx$$

3) 
$$\int_{-\pi}^{\pi} (1 - \cos x) dx$$
 \*4)  $\int_{\pi}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$ 

\*4) 
$$\int_{\pi}^{\frac{\pi}{2}} \frac{\sin x}{x} \ dx$$

\*5) 
$$\int_{-2}^{2} x^3 e^{x^2} dx$$

Determinare la relazione di uguaglianza o disuguaglianza tra le seguenti coppie di integrali senza calcolarli esplicitamente:

\*6) a) 
$$\int_0^1 e^{-x^2} dx$$
 b)  $\int_0^1 e^{-x} dx$ 

b) 
$$\int_{0}^{1} e^{-x} dx$$

7) a) 
$$\int_0^2 \frac{x|x|+2x}{x^2+5x+6} dx$$
 b)  $\int_0^2 \frac{x}{x+3} dx$ 

b) 
$$\int_0^2 \frac{x}{x+3} \, dx$$

L. Mereu – A. Nanni Integrali indefiniti

8) a) 
$$\int_{2}^{3} \sqrt{x} e^{x} dx$$
 b)  $\int_{2}^{3} e^{x} dx$ 

\*9) a) 
$$\int_{-3}^{-2} \frac{\log(4+x^2)}{\cos x+4} dx$$
 b)  $\int_{2}^{3} \frac{\log(4+x^2)}{\cos x+4} dx$ 

## Soluzioni

**\*1.S.** positivo; ( la 
$$\frac{x^2+1}{3-x} > 0$$
 in  $[-1; 3]$ );

- \*4S. negativo;  $\left(\int_{\pi}^{\frac{\pi}{2}} \frac{\sin x}{x} dx = -\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{x} dx, \frac{\sin x}{x} > 0 \text{ in } \left[\frac{\pi}{2}; \pi\right]\right)$ ;
- \*5.S. nullo ; ( la funzione integranda è dispari e l'intervallo di integrazione è simmetrico rispetto all'origine );

\*6 S. 
$$a > b$$
;  $(e^{-x^2} \ge e^{-x} \text{ per } x \in [0; 1])$ ; 7. S.  $a = b$ ; 8. S.  $a > b$ ;

\*9. S. a = b; ( la funzione integranda è pari e gli intervalli di integrazione sono simmetrici rispetto all'origine .