In [27]:

import pandas as pd

In [30]:

data =pd.read_csv("HousingData.csv")

In [31]:

data

Out[31]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	M
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	NaN	
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	
505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.88	

506 rows × 14 columns

In [32]:

data.head(2)

Out[32]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MED\
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.9	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.0

In [33]:

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): # Non-Null Count Dtype Column ----------0 CRIM 486 non-null float64 1 ΖN 486 non-null float64 2 INDUS 486 non-null float64 3 CHAS 486 non-null float64 4 float64 NOX 506 non-null 5 RM 506 non-null float64 6 float64 AGE 486 non-null 7 float64 DIS 506 non-null 8 RAD 506 non-null int64 9 TAX 506 non-null int64 10 float64 PTRATIO 506 non-null 11 В 506 non-null float64 12 float64 LSTAT 486 non-null 13 MEDV 506 non-null float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

In [34]:

data.describe()

Out[34]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000	506.000000
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519	3.795043
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513	2.105710
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000	2.100175
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000	3.207450
75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000	5.188425
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500

In [40]:

data.corr()

Out[40]:

000[-0].									
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	R/
CRIM	1.000000	-0.191178	0.401863	-0.054355	0.417130	-0.219150	0.354342	-0.374166	0.6247
ZN	-0.191178	1.000000	-0.531871	-0.037229	-0.513704	0.320800	-0.563801	0.656739	-0.3109
INDUS	0.401863	-0.531871	1.000000	0.059859	0.764866	-0.390234	0.638431	-0.711709	0.6045
CHAS	-0.054355	-0.037229	0.059859	1.000000	0.075097	0.104885	0.078831	-0.093971	0.0014
NOX	0.417130	-0.513704	0.764866	0.075097	1.000000	-0.302188	0.731548	-0.769230	0.6114
RM	-0.219150	0.320800	-0.390234	0.104885	-0.302188	1.000000	-0.247337	0.205246	-0.2098
AGE	0.354342	-0.563801	0.638431	0.078831	0.731548	-0.247337	1.000000	-0.744844	0.4583
DIS	-0.374166	0.656739	-0.711709	-0.093971	-0.769230	0.205246	-0.744844	1.000000	-0.4945
RAD	0.624765	-0.310919	0.604533	0.001468	0.611441	-0.209847	0.458349	-0.494588	1.0000
TAX	0.580595	-0.312371	0.731055	-0.032304	0.668023	-0.292048	0.509114	-0.534432	0.9102
PTRATIO	0.281110	-0.414046	0.390954	-0.111304	0.188933	-0.355501	0.269226	-0.232471	0.4647
В	-0.381411	0.171303	-0.360532	0.051264	-0.380051	0.128069	-0.275303	0.291512	-0.4444
LSTAT	0.444943	-0.414193	0.590690	-0.047424	0.582641	-0.614339	0.602891	-0.493328	0.4795
MEDV	-0.391363	0.373136	-0.481772	0.181391	-0.427321	0.695360	-0.394656	0.249929	-0.3816

```
In [56]:
```

```
from seaborn import scatterplot
```

```
In [57]:
X = data["RM"]  # Extracting as a Series
Y = data["MEDV"]  # Extracting as a Series
scatterplot(x=X, y=Y)
```

Out[57]:

<Axes: xlabel='RM', ylabel='MEDV'>


```
In [44]:
```

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_size=0.2)
```

```
In [45]:
```

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
model = lm.fit(xtrain,ytrain)
```

```
In [46]:
```

```
b1 = model.coef_
```

```
In [47]:
```

```
b0 = model.intercept_
```

In [48]:

b0

```
Out[48]:
array([-32.94106213])
In [49]:
b1
Out[49]:
array([[8.82738921]])
In [58]:
from seaborn import regplot
X = data["RM"] # Extracting as a Series
Y = data["MEDV"] # Extracting as a Series
regplot(x=X, y=Y) # Correct parameter usage
Out[58]:
<Axes: xlabel='RM', ylabel='MEDV'>
    50
    40
    30
 MEDV
   20
    10
     0
                          5
                                      6
                                                 7
                                      RM
In [51]:
pred = model.predict(xtest)
In [52]:
from sklearn.metrics import mean_absolute_error
mean_absolute_error(ytest,pred)
Out[52]:
4.600887017035727
In [53]:
from sklearn.metrics import mean_squared_error
mean_squared_error(ytest,pred)
Out[53]:
```

```
In [54]:
```

```
print(ytest)
     MEDV
374
     13.8
190
     37.0
383
     12.3
284
     32.2
129
     14.3
. .
      . . .
385
     7.2
    31.7
231
     42.3
202
     36.5
264
223 30.1
[102 rows x 1 columns]
In [55]:
print(pred)
[[ 3.58667443]
 [28.41812029]
 [15.78612633]
 [29.62747261]
 [16.81893086]
 [28.91245409]
 [26.44078511]
 [25.25791495]
 [21.92998922]
 [23.88966962]
 [23.84553268]
 [21.10021463]
 [16.64238308]
 [10.54265713]
 [22.64500774]
 [17.41919333]
 [21.27676242]
 [23.8278779]
 [23.30706194]
 [24.86950983]
 [19.67900497]
 [23.34237149]
 [19.5730763]
 [20.19982093]
 [21.08255985]
 [26.82036284]
 [19.37004635]
 [22.98044853]
 [20.0585827]
 [24.04856263]
 [24.30455692]
 [16.50997224]
 [23.65133011]
 [17.11023471]
 [19.09639728]
 [23.03341287]
```

[13.87941026]

- [23.39533583]
- [39.96434538]
- [23.92497918]
- [23.59836578]
- [14.96517913]
- [17.21616338]
- [20.26161266]
- [33.16725569]
- [26.74974373]
- [32.52285627]
- [18.94633166]
- [10.33962718]
- [21.14435158]
- [28.63880502]
- [21.74461404]
- [23.51009189]
- [36.1862228]
- [21.3738637]
- [25.80521308]
- [25.27556973]
- [36.38042536]
- [16.91603214]
- [10.36610935]
- [28.97424581]
- [19.89086231]
- [14.85042307]
- [20.10271965]
- [22.23012045]
- [18.13421186]
- [21.01194074]
- [18.37255136]
- [31.61363518]
- [34.95038831]
- [22.80390075]
- [26.54671378]
- [27.54420876]
- [28.67411458]
- [26.91746412]
- [29.76871084]
- [21.88585227]
- [40.65288174]
- [27.08518452]
- [31.73721863]
- [22.6803173]
- [19.81141581] [20.86187512]
- [21.30324458]
- [24.09269958]
- [24.18097347] [25.01074805]
- [19.38770112]
- [26.92629151]
- [20.07623748]
- [36.57462792]
- [43.89253358]
- [25.23143278]
- [28.56818591]
- [21.25910764]
- [29.0625197]

```
[18.58440871]
[13.64107075]
[32.48754672]
[34.23536978]
[30.66910454]
[25.47859968]]
```