I metodi formli dell'analisi sintattica: Linguaggi Liberi da Contesto & Proprietá di chiusura

9 maggio 2007

- Linguaggi Liberi da Contesto
 - Definizioni
 - Chiusura rispetto alle Operazioni

Grammatiche e Linguaggi Liberi da Contesto

- G = (X, V, S, P) è una grammatica libera da contesto sse: $v \longrightarrow w \in P$ dove $v \in V$.
- Il linguaggio L(G) si dice **linguaggio libero da contesto**.
- Il nome deriva dal fatto che un non terminale può essere sostituito indipendentemente dal contesto della forma di frase dove si trova.
- La sostituzione è sempre valida.
- Appartiene a questa categoria la maggior parte dei linguaggi di programmazione.

Chiusura rispetto alle Operazioni

Sia \mathcal{L} una classe di linguaggi su X.

operazione unaria △:

$$\wp(X^*) \longrightarrow \wp(X^*)$$
$$L \mapsto \triangle(L)$$

 \mathcal{L} è **chiusa** rispetto a \triangle sse

$$\forall L \in \mathcal{L} : \triangle(L) \in \mathcal{L}$$

operazione binaria □:

$$\wp(X^*) \times \wp(X^*) \longrightarrow \wp(X^*)$$

 $(L_1, L_2) \mapsto \Box(L_1, L_2)$

 \mathcal{L} è **chiusa** rispetto a \square sse

$$\forall L_1, L_2 \in \mathcal{L} : \Box(L_1, L_2) \in \mathcal{L}$$

Schema di dimostrazione.

Dati i linguaggi L_1 e L_2 generati da $G_1=(X,V_1,S_1,P_1)$ e $G_2=(X,V_2,S_2,P_2)$ assumiamo che: $V_1\cap V_2$ e $S\not\in V_1\cap V_2$

- considerare una operazione □
- costruire G date G_1 e G_2 ;
- dimostrare che se G_1 e G_2 sono di tipo i allora anche G è di tipo i;
- dimostrare che $L(G) = \square(L_1, L_2)$ quindi \mathcal{L} è chiusa rispetto all'operazione \square

Analogamente per le operazioni unarie:

- Considerata G costruire una grammatica G';
- Dimostrare che se G è di tipo i allora anche G' è di tipo i;
- dimostrare che $L(G') = \triangle(L(G))$ quindi \mathcal{L} è chiusa rispetto all'operazione \triangle

Teorema di Chiusura rispetto all'Unione (caso \mathcal{L}_2)

La classe dei linguaggi \mathcal{L}_2 , é chiusa rispetto all'unione.

Dimostrazione.

$$\mathcal{L}_2$$
 è **chiusa** rispetto a $\cup \Leftrightarrow \forall L_1, L_2 \in \mathcal{L}_2 : (L_1 \cup L_2) \in \mathcal{L}_2$

Siano date $G_1=(X,V_1,S_1,P_1)$ e $G_2=(X,V_2,S_2,P_2)$ grammatiche di tipo 2 (libere da contesto) tali che $L_1=L(G_1)$ e $L_2=L(G_2)$ Sia $G=(X_3,V_3,S_3,P_3)$ ove: $S\not\in V_1\cup V_2$ e $V_1\cap V_2=\emptyset$ Definiamo $V_3=V_1\cup V_2\cup \{S\}$ e le produzioni

$$P_3 = \{S_3 \longrightarrow S_1 | S_2\} \cup P_1 \cup P_2$$

 G_3 é libera da contesto se G_1 e G_2 lo sono. Inoltre

$$L(G_3)=L_1\cup L_2$$

 \mathcal{L}_2 é chiusa rispetto all'unione

Teorema di Chiusura rispetto al Prodotto (Caso \mathcal{L}_2)

La classe dei linguaggi \mathcal{L}_2 é chiusa rispetto al prodotto. Dimostrazione.

$$\mathcal{L}_2$$
 è **chiusa** rispetto a $\cdot \Leftrightarrow \forall L_1, L_2 \in \mathcal{L}_2 : (L_1 \cdot L_2) \in \mathcal{L}_2$

Siano date
$$G_1 = (X, V_1, S_1, P_1)$$
 e $G_2 = (X, V_2, S_2, P_2)$ grammatiche di tipo 2 (libere da contesto) tali che $L_1 = L(G_1)$ e $L_2 = L(G_2)$

costruiamo
$$G_4 = (X, V_4, S_4, P_4)$$
.

Sia
$$G = (X, V_4, S_4, P_4)$$
 con: $P_4 = \{S_4 \longrightarrow S_1 \cdot S_2\} \cup P_1 \cup P_2$
Se G_1, G_2 sono di tipo 2 anche G_4 è di tipo 2. Inoltre

$$L(G_4)=L_1\cdot L_2$$

 \mathcal{L}_2 é chiusa rispetto al prodotto

Teorema di Chiusura rispetto all'Iterazione (caso \mathcal{L}_2)

La classe dei linguaggi \mathcal{L}_3 é chiusa rispetto all'iterazione.

Dimostrazione.

$$\mathcal{L}_3$$
 è **chiusa** rispetto a $\cdot \Leftrightarrow \forall \mathcal{L}_1 \in \mathcal{L}_3 : (\mathcal{L}_1^*) \in \mathcal{L}_3$

Sia data $G_1 = (X, V_1, S_1, P_1)$ grammatica di tipo 2 (libera da contesto) tali che $L_1 = L(G_1)$

Costruiamo G_5 sia $G = (X, V_1 \cup \{S\}, S, P)$ dove:

$$P = \{S \longrightarrow \lambda, S \longrightarrow S_1 S\} \cup P_1$$

Altri Teoremi di Chiusura

La classe dei linguaggi non contestuali \mathcal{L}_2 non è chiusa rispetto

- al complemento
- all'intersezione.

si considerino i linguaggi $L_1 = \{a^nb^nc^m|n,m>0\}$ e $L_2 = \{a^nb^mc^m|n,m>0\}$ la cui intersezione è

$$L_1 \cap L_2 = \{a^n b^n c^n | n > 0\}$$

Operatore di Riflessione

- Data una parola $w = x_1 x_2 \cdots x_n$, con $x_i \in X \quad \forall i = 1, \dots, n$ dicesi **stringa riflessa** (o *riflessione*) di w la stringa $w^R = x_n x_{n-1} \cdots x_1$
- Questo definisce un operazione unaria

$$(\cdot)^R: X^* \longrightarrow X^*$$

• Un **palindromo** è una parola $w \in X^*$ tale che: $w = w^R$

Teorema. Sia w una stringa su X. Allora w è palindroma sse $\exists x \in X \cup \{\lambda\}$

$$w = \alpha x \alpha^R$$

Teorema. La classe dei linguaggi \mathcal{L}_2 è chiusa rispetto a riflessione.

Esercizi

(da risolvere tramite le proprietá di chiusura)

- ① Dimostrare che $L = \{a^n b^n c^m \mid n, m > 0\}$ è libero
- ② Dati $L_1 = \{a^n b^n \mid n \ge 0\}$ e $L_2 = \{a\}^* \cdot \{bb\}^*$, dimostrare che $L = L_1 \cap L_2$ è libero
- ① Utilizzare la proprietà di chiusura di \mathcal{L}_2 rispetto a \cup per dimostrare che i seguenti linguaggi sono liberi:
 - **1** $L = \{a^i b^j \mid i \neq j, i, j \geq 0\}$

 - **3** $L = \{a, b\}^* \setminus \{a^i b^i \mid i \geq 0\}$

Esercizio 1. Dimostrare che $L = \{a^n b^n c^m \mid n, m > 0\}$ è libero e trovare una grammatica che lo generi

L può essere scritto come prodotto di linguaggi:

$$L_1 = \{a^n b^n \mid n > 0\}$$
 è un linguaggio libero e

$$L_2 = \{c^m \mid m > 0\} = \{c\}^+ = \{c\}^* \setminus \{\lambda\}$$

linguaggio lineare (e quindi anche libero $\mathcal{L}_3 \subsetneq \mathcal{L}_2$)

 $L = L_1 \cdot L_2$ deve essere libero per la chiusura

•
$$G_1 = (X_1, V_1, S_1, P_1)$$
 con
 $X_1 = \{a, b\}$ $V_1 = \{S_1\}$ $P_1 = \{S_1 \longrightarrow aS_1b, S_1 \longrightarrow ab\}$

•
$$G_2 = (X_2, V_2, S_2, P_2)$$
 con
 $X_2 = \{c\}$ $V_2 = \{S_2\}$ $P_2 = \{S_2 \longrightarrow cS_2, S_2 \longrightarrow c\}$

Quindi:
$$G = (X, V, S, P)$$

 $X = X_1 \cup X_2 = \{a, b, c\}$ $V = V_1 \cap V_2 \cup \{S\} = \{S, S_1, S_2\}$

$$P = \{S \longrightarrow S_1 S_2\} \cup P_1 \cup P_2 = \{S \longrightarrow S_1 S_2\} \cup \\ \cup \{S_1 \longrightarrow aS_1 b, S_1 \longrightarrow ab\} \cup \{S_2 \longrightarrow cS_2, S_2 \longrightarrow c\}$$

