Simultaneous control of FDPs

Aldo Solari Statistical Inference II PhD in Economics and Statistics University of Milano-Bicocca

Post-selection inference

Examining the data to *select* interesting patterns, then carrying out *inference* about the selection with the same data

Question

How to correct for overoptimism in inference due to data-driven selection?

fMRI data

Brain activity map

Selection

Outline

- 1. Cluster-Size Inference
- 2. All-Resolutions Inference
- 3. Closed Testing
- 4. Relationship to Hommel and Benjamini-Hochberg
- 5. Conclusions

fMRI experiment

Subjects perform mental tasks in MRI scanner MRI measures oxygenated blood flow in brain (brain activity)

Brain activity map

Significance (p-value) for brain activity at each location (voxel)

Goal

Find *regions* of brain activity

Aggregation

 $Micro-inferences (voxels) \rightarrow larger-scale inferences (regions)$

Go/NoGo data

Lee, Weeda, Somerville, Insel, Krabbendam, Huizinga (2018)

 $34~\mathrm{subjects}$ performing an emotional Go/NoGo task

- Go: press button when seeing happy face
- NoGo: hold when face is not happy

225212 voxels

Cluster-size inference

Poline and Mazoyer (1993)

- A cluster is 'significant' if its size is larger than 'chance'
- Size threshold: $1-\alpha$ quantile of the null distribution of the maximum size of clusters
- Cluster-size inference controls the family wise error rate at α

Clusters

cluster \equiv contiguous voxels with p < 0.0007

Significant clusters

cluster size > 161

Cluster null hypothesis

- Cluster-size inference tests a (random) number of cluster null hypotheses
- Cluster null hypothesis: 'all the voxels in the cluster are null'
- Its rejection implies 'at least one voxel in the cluster is active'

Spatial specificity paradox

- The most we can say is that 'an activation has occurred somewhere inside the cluster'
- The larger the cluster, the weaker the finding

- 1. Cluster-Size Inference
- 2. All-Resolutions Inference
- 3. Closed Testing
- 4. Relationship to Hommel and Benjamini-Hochberg
- 5. Conclusions

$$M = \{1, ..., m\}$$
 collection of $m = |M|$ voxels $M_1 \subset M$ active voxels with $m_1 = |M_1|$

 $M_1 \subset M$ active voxels with $m_1 = |M_1|$ and $\pi_1 = m_1/m$ $M_0 = M_1 \setminus M_1$ null voxels with $m_0 = |M_0|$ and $\pi_0 = m_0/m$

$$H_i: i \in M_0$$
 voxel null hypothesis with p -value p_i , $i \in M$

$$M = \{1, \dots, m\}$$
 collection of $m = |M|$ voxels $M_1 \subset M$ active voxels with $m_1 = |M_1|$ and $\pi_1 = m_1/m$ $m_0 = M_1 \setminus M_1$ null voxels with $m_0 = |M_0|$ and $\pi_0 = m_0/m$

$$H_i$$
: $i \in M_0$ voxel null hypothesis with p -value p_i , $i \in M$

Selection

$S \subseteq M$ selected voxels

$$m_1(S) = |M_1 \cap S|$$
 number of true discoveries in the selection

$$m_1(S) = |M_1 \cap S|$$
 number of true discoveries in the selection $\pi_1(S) = m_1(S)/|S|$ true discoveries proportion in S $m_0(S) = |S| - m_1(S)$ number of false discoveries in S false discovery proportion in S , i.e. FDP(S)

All-Resolutions Inference

Goeman and Solari (2011); Rosenblatt, Finos, Weeda, Solari, Goeman (2018)

Lower confidence bound for the number of true discoveries in the selection, simultaneously valid for all possible selections

$$P(\forall S \subseteq M : \underline{m}_1(S) \le m_1(S)) \ge 1 - \alpha$$
lower bound parameter

First proposed by Genovese and Wasserman (2004)

Cluster-size inference

```
cluster
       size # active
        |S| m_1(S)
  S
 C_1
       2191 \geq 1
 C_2
       1835 \ge 1
 C_3
       1400 ≥ 1
 C_4
    698 \geq 1
 C_5 421 \geq 1
 C_6
        304 ≥ 1
 C_7 245 \geq 1
 C_8 232 \geq 1
 C_9
        187 \ge 1
```

ARI

cluster	size	# active	% active
S	S	$m_1(S)$	$\pi_1(S)$
C_1	2191	\geq 624	\geq 29 $\%$
C_2	1835	≥ 847	\geq 46 $\%$
C_3	1400	≥ 454	\geq 32 $\%$
C_4	698	\geq 0	≥ 0 %
C_5	421	\geq 25	\geq 6 %
C_6	304	≥ 33	\geq 11 $\%$
C_7	245	≥ 0	≥ 0 %
C_8	232	≥ 0	≥ 0 %
C_9	187	\geq 0	≥ 0 %

Bonferroni inference

cluster	size	# active	% active
S	S	$m_1(S)$	$\pi_1(S)$
C_1	2191	≥ 7	\geq 0.3 $\%$
C_2	1835	\geq 86	\geq 4 $\%$
C_3	1400	≥ 82	\geq 6 %
C_4	698	≥ 0	≥ 0 %
C_5	421	≥ 0	\geq 0 %
C_6	304	\geq 0	\geq 0 %
C_7	245	\geq 0	\geq 0 %
C_8	232	\geq 0	\geq 0 %
C_9	187	\geq 0	≥ 0 %

Interactive (exploratory) inference

ARI legitimates post-selection inference with full flexibility

- the user looks at the data and selects interesting S_1, S_2, \ldots
- ARI informs the user about $\underline{m}_1(S_1), \underline{m}_1(S_2), \dots$
- then the user may consider others S_1, S_2, \ldots
- ARI informs the user about $\underline{m}_1(S_1'), \underline{m}_1(S_2'), \dots$
- ..

All ARI's statements are simultaneously correct with high prob.

p < t' < t

Sub-clusters

cluster	threshold	size	# active	% active
C ₁ 1 2 3	$egin{aligned} p < t \ p < t' \ p < t' \ p < t' \end{aligned}$	2191 405 133 6	624 267 31 0	29 % 66 % 23 % o %
C ₂ 1	p < t $p < t'$	1835 963	847 826	46 % 86 %

Anatomical regions

- 1. Cluster-Size Inference
- 2. All-Resolutions Inference
- 3. Closed Testing
- 4. Relationship to Hommel and Benjamini-Hochberg
- 5. Conclusions

Closed testing

Marcus, Peritz, Gabriel (1976)

 $\tilde{\phi}_S = \min \left\{ \phi_K : S \subseteq K \subseteq M \right\}$

$$H_1, \ldots, H_m$$
 elementary hypotheses
$$H_S = \bigcap_{i \in S} H_i \quad \forall \ S \subseteq M$$
 intersection hypotheses
$$\phi_S = \mathbb{1}\{H_S \text{ rejected at level } \alpha\}$$
 local tests

closed testing adjusted tests

Closed testing guarantees familywise error rate control at α over all intersection hypotheses

Four-pixels brain

1	2
3	4

Intersection hypotheses

Rejections

Closed testing rejections

Confidence bound

Goeman and Solari (2011)

$$\bar{m}_0(S) = \max_{K \subseteq S} \left\{ |K| : \tilde{\phi}_K = 0 \right\}$$

The size of the largest subset of S for which the corresponding intersection hypothesis is not rejected by closed testing

$$\underline{m}_1(S) = |S| - \bar{m}_0(S)$$

S	$m_1(S)$	$\pi_1(S)$
{1}	≥ o	≥ 0 %
$\{2\}$	≥ 0	≥ o %
$\{3\}$	≥ 0	≥ 0 %
$\{4\}$	≥ 0	≥ 0 %
$\{1,2\}$	≥ 1	\geq 50 %
$\{1, 3\}$	\geq 1	\geq 50 %
$\{1, 4\}$	≥ 0	≥ 0 %
$\{2,3\}$	\geq 1	\geq 50 %
$\{2,4\}$	≥ 0	≥ 0 %
$\{3,4\}$	≥ 0	≥ 0 %
$\{1, 2, 3\}$	\geq 2	\geq 66.6 %
$\{1, 2, 4\}$	≥ 1	\geq 33.3 $\%$
$\{1, 3, 4\}$	≥ 1	\geq 33.3 $\%$
$\{2, 3, 4\}$	≥ 1	\geq 33.3 $\%$
$\{1, 2, 3, 4\}$	\geq 2	\geq 50 %

Closed testing bottleneck

The required number of tests is 2^m

Shortcut

Computation time can be reduced to polynomial time by specific choice of local tests

Simes test

Simes test for H_S

$$\phi_S = \mathbb{1}\left\{\bigcup_{i \in S} \left\{p_{(i:S)} \le \frac{i\alpha}{|S|}\right\}\right\}$$

where $p_{(i:S)}$ is the *i*th smallest *p*-value in $\{p_i: i \in S\}$

Assumption

Simes inequality (1986) holds for null *p*-values

$$P\left(\bigcap_{i=1}^{m_0} \left\{ \frac{p_{(i:M_0)}}{m_0} > \frac{i\alpha}{m_0} \right\} \right) \ge 1 - \alpha$$

$$m_0 = m$$
? No $\to m_0 \le \bar{m}_0 = m - 1$

Upper bound for m_0

Find the upper confidence bound for m_0

$$\bar{m}_0 = \max \left\{ 0 \le k \le m : \bigcap_{i=1}^k \left\{ p_{(m-k+i)} > \frac{i\alpha}{k} \right\} \right\}$$

Arbitrary selection

Confidence bound

Goeman, Meijer, Krebs, Solari (2019)

Theorem

$$\underline{\underline{m}}_{1}(S) = \min \left\{ 0 \le k \le |S| : \bigcap_{i=1}^{|S|-k} \left\{ p_{(k+i:S)} > \frac{i\alpha}{\overline{m}_{0}} \right\} \right\}$$

Algorithm

	Operation	Complexity
1	Sort the <i>p</i> -values	$O(m \log m)$
2	Compute \bar{m}_0	O(m)
3	For each <i>S</i> , compute $\underline{m}_1(S)$	O(S)

- \bar{m}_0 in linear time Meijer, Krebs, Goeman (2019)
- Implemented in the R package hommel
 Goeman, Meijer, Krebs

- 1. Cluster-Size Inference
- 2. All-Resolutions Inference
- 3. Closed Testing
- 4. Relationship to Hommel and Benjamini-Hochberg
- 5. Conclusions

Relationship to Hommel (FWER)

Hommel (1988)

- Reject the hypotheses with indexes in

$$R = \left\{ i \in M : p_i \le \frac{\alpha}{\overline{m}_0} \right\}$$

with familywise error rate control at α

- Voxels in *R* represent *localized activations*

$$\underline{m}_1(R) = |R| = r$$

Hommel rejections

Relationship to Benjamini-Hochberg (FDR)

Benjamini and Hochberg (1995)

Large-scale testing

Assume
$$p_1, \ldots, p_m \stackrel{i.i.d.}{\sim} F$$
 with a mixture distribution $F(u) = \pi_0 u + \pi_1 F_1(u)$

Lemma

Fix $\alpha \in (0,1)$. As the number of hypotheses $m \to \infty$

$$\underset{m \to \infty}{\text{plim}} \frac{r}{m} = 0 \qquad \underset{m \to \infty}{\text{plim}} \frac{\underline{m_1}}{m} = k > 0 \qquad \underset{m \to \infty}{\text{plim}} \frac{b}{m} = k' > 0$$

if a minimal level of signal is present

From FDR to FDP confidence

Let

$$b_q = \max\left\{1 \le i \le m : p_{(i)} \le \frac{iq}{m}\right\}$$

and $B_q = \{i \in M : p_i \le p_{(b_q)}\}$ the index set of BH rejections at level q

$$FDR(B_q) \leq q$$

Lemma

With probability $\geq 1 - \alpha$

$$FDP(B_{\tilde{q}}) \leq q$$

where

$$ilde{q} = q \cdot rac{lpha}{ar{\pi}_0}$$

- 1. Cluster-Size Inference
- 2. All-Resolutions Inference
- 3. Closed Testing
- 4. Relationship to Hommel and Benjamini-Hochberg
- 5. Conclusions

Conclusions

ARI is a flexible approach to large-scale post-selection inference

References

Multiple Testing for Exploratory Research Goeman, Solari Statistical Science 2011 26:584-597

All-Resolutions Inference for Brain Imaging Rosenblatt, Finos, Weeda, Solari, Goeman NeuroImage 2018 181:786-796

Simultaneous Control of All False Discovery Proportions in Large-Scale Multiple Hypothesis Testing
Goeman, Meijer, Krebs, Solari
Biometrika 2019 106:841-856

Hommel R package Goeman, Meijer, Krebs cran.r-project.org