This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BÖRDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 1 - AOPRT-L CDNA sequence

	ATGGCTCTATCCAAAGCTTTCACCTCCTCCTCCTCCTCCTCCTCCCTC	150	ACCGTCACCAACAAATGCACCTACACCGGGGCGCGGGGGGGG	230	TCCTGGACCCTCACCGTCGCCCCGGTGCCCGCATCTGGGGCCGAACCGGCTGCTCCTTCGACCCCTCT S W T L T V A P G T T G A R I W G R T G C S F D P S	240 250 260 270 280 290 300 310 310 310 310 310 310 310 310 31
70 -	A T	H — 6			CGACC D F	CGAC!
);ccc) 8	CGAC	220	CTTC	300 - P
	SCCTC	140 	rgcc1	~ -	rgcr S S	rccc(
9 -	L A		CGCC R F		ე ე ე	290
	70000	130	විටදිල්	210	3AAC	25
50	CACCTCCTCTTCTTCTTCTTCTTGCCCTCGCCTCGCCGCCAC	- i —	CACACCGGALLCUGUS CTACACCGTCTGGGCGCTGCGGGGGGGGGGGGCGCCTCGACCCCAACC		CCCCGGTACCACCGGTGCCGATCTGGGGCCGAACCGGCTGCTCCTTCGACCC	260 270 280 300 300
	OCTO DIA		0000 60000	200	CTGG W	280 - CTGC2
40	crer	120	CAGT	7 —	GCAT	orrigo
4 -	L P	ţ	SGCTG A A		FGCC A F	270 GTCTCC
	rccrc L	110	000 000 000 000	190	ეეე ე	, 9 9 9 9
30	CTCC	, , , , , , , , , , , , , , , , , , ,	GTCT(V W		ACCA T T	0 11 13 13 13 13 13 13 13 13 13 13 13 13
	CTCC S	0	7.0400	180	CGGT	260 - D C
50	rtcac	100	ACCTA	P 2	3000 A	ACCG(
	AGCTT		41602 0 0	170 	CGTCC V	250
0	GGCTCTATCCAAAGCTT' A L S K A F	06	ACAA K	1 	TCAC	ATTG
10	CTAT(L S	•	ACCA.	a 0	ACCC T L	240 CGGCC GH
	GGCT	. — 80 — 80	ACCGTCACCAAATGCACCTACACCGGAACCCGGGGGGGGG	160 170 170 170	TCCTGGACCCTCACCGTCG S W T L T V A	240 250 sccacgccattgccaga H G H C Q T
	AT M	& —	AC T	័ ភ្ជ	S S	ဗ ဗ

390	ATG M		cro		ე ე	0	ACT T	700 	
380	GCAGAATTCGCCCTGAACCAGTACGCCGGCCAGGACTTCTACGACTCCCTCGTCGACGGCTTCAACATCCCCATG A E F A L N Q Y A G Q D F Y D I S L V D G F N I P M	460	CGCGGAG A E	540	AAGCACCCGGGGGGGGTGTAACACCGTGTTCAAGACCAATGAGTACTGCTGCACTTCGGGAGGCTGTGGG	620	CCCACGGACTATTCCAAGTTTTCAAGCAGAGGTGCCTGATGACGCTAACGGATGACGCTACCAGCACT P T D Y S K F F K Q R C P D A Y S Y P K D D A T S T	630 640 650 700 680 690 700 	770 - CC
	G F N	450	CAGTGCCC	530	ACTTCGGG T S G	610	SGATGACG D D A	690 :AGATGTTG) CTACTTGA
370	TCGTCGAC V D		TATCAACGGI I N G	520 	ACTGCTGC C C	600	TACCCCAAC Y P K	680 	760 GTAAGCTC
360	CATCTCCCT I S L	440	CGCGGACA A D I	·	CAATGAGT N E Y	290	GCGTACAGTT A Y S Y	670 TTGATCGA	730 740 750 760 77
350	TTCTACGA(F Y D	430	CGGTGCAC	510	TTCAAGAC F K T	S —	CCTGATGC P D A	660 	740 cggaataa
40	CCAGGAC	420	ACGACATCO D I	200	SCACCGTG T V	580	AGAGGTGC R C	6 	730 Cattaagaa
- m	TACGCCGC Y A G	10	AATTGCCP N C H	490	AACCCGTC N P C	570	TTCAAGC	650 	7. CTAGCTC
330	TGAACCAG N Q	41	CGTCCGGA S G	0	GGTGTAAC C N	560	CCAAGTT	640 - G A	720 ATTTGTAC
320	ATTCGCCCTGAA F A L N	400	CTTCTCCCGACGTC F S P T S	480	5 5 d		CACGGACTATTCCA T D Y S K	630 64 TACTTGTCCCAGTGC T C P S G	710 CAAACTATGGTTAATTTGTA
	GCAGAA A E		GACTIC D F	470	AAGGC? K A	550	CCCACC P T	f TTTACT	CAAAC1

3 / 18

Similarity of AoPRT-L to other PR-5 Group Proteins

Protein	Cellular Location	Id	Percentage Similarity or Identity to AoPRT-L	ntage r <u>Identity</u> pPRT-L
AoPRT-L	Extracellular	4.9	100	100
Osmotin	Vacuolar	7.5	86	. 77
Pobacco Osmotin-like	Vacuolar	7.5	68	77
Pobacco Thaumatin-like	Extracellular	5.2	80	80
Fomato NP24	Vacuolar	7.8	78	65
Fhaumatin	Cytoplasmic	12.0	9/	63
Potato Osmotin-like	6.	6.1	9/	62
Rice Thaumatin-like	ز	5.0	70	53
Wheat Thaumatin-like	Extracellular	4.5	89	49
Barley Thaumatin-like	Extracellular	4.2	<i>L</i> 9	49

WO 99/66057

4 / 18

FIG.3a

Induction of AoPRT-L following cell isolation

Time after isolation (days)

FIG.3b

Induction in etiolated seedlings by wounding

Time after wounding (davs)
Explant length 5mm

FIG.3c

Induction of AoPRT-L in whole plants by SA

Time course of induction following foliar application of 1mM SA to whole plants

- 1; Water treated
- 2; 3 days after foliar spraying with 1mM SA
- 3; 3 days after continuous root feeding with 1mM SA
- 4; 3 days after initial root feeding with 1mM SA

Time after application (days)

FIG.4

AoPRT-L Expression in Asparagus seedlings infected with *Stemphyllium versicarium*

Figures (3, 7 & 14) indicate days after symptom development

- C uninfected Asparagus
- M Infected region (day 14)
- P Pigmented region (day 14)
- A Asymptomatic region (day 14)

WO 99/66057

PCT/GB99/01949

6 / 18

FIG. 5 IPCR Strategy

Southern Analysis

•	Asp [DNA x EcoF	₹1
	Full cDNA	5' Probe	3' Probe
2.5 kb	-		
0.8 kb			÷

Primer Design

	AoPRT-L Promoter sequence: Similarities with other Defence Genes	milarities with o	other Defence Ge	nes
-472	GAATTCTTAT TGCGACCTGA CTCTCTTGTT		GTGCTGCCGA GGTGCTGTCG	GGTGCTGTCG
-422	AAATTTCTGT TGCGCACAAC	ATACTGGTCC	TTGCTTGATT	TGACAGTTCC
-372	AATAATTATT TCCATGTCAT GAGAGAAGCA CATGACTAAA GTAATTAGCT	SAGAGAAGCA	CATGACTAAA	GTAATTAGCT
-322	TAATCCCCTA AAACTCAATA	CAAACGAGAT	GACACATCCA CAGAAAAAT	CAGAAAAAAT
-272	TCTAATTAGT CTTTGCGTGT	AGAAATTGGA	AGAAATTGGA AACTGAATAC CTACATTAAT	CTACATTAAT
-222	TACAACTTT GCAAATAAAA	TATAAAGAAA	TATAAAGAAA GTTCTAACAT GAAGACTAGT	GAAGACTAGT
-172	TCTAACATGA AGACTAGTCC	ACGAACTCGT	ACCTTATTCC ACAAAGGCTT	ACAAAGGCTT
-122	AGACTTTCCA CAAATCGAGA TTATCCCATG GACTGATGGA CACCATCCAA	TTATCCCATG	GACTGATGGA	CACCATCCAA
-72	ATTATCCOTA TAAATACCTG CCCATTCCCC TCCTCCAGAC TCATCTAACT	CCCATTCCCC	TCCTCCAGAC	TCATCTAACT
-22	CAAAAACAAC ACACAACCAA TCATG	TCATG		
				FIG. 6
	Potato Wound-Induced		18 bp repeat	
	Tobacco PR-2	T.	TATA Box	
	Carrot PR-3 and PR-4	-4		

pIPCR-TA

PCR using 5' and 3' primers Clone into pJIT60 using KpnI and PstI

p22-JIT60
Clone in GUS(INT) using BamHI and EcoRI

p22-GUS(INT) JIT60

Cut with KpnI and XhoI and clone into KpnI and SalI cut pBin19

p22-GUS(INT) Bin19

FIG. 7

FIG.8

Histochemical localistion of GUS activity in untreated stems from transgenic tobacco harbouring AoPRT-L-GUS or PR-1a-GUS

FIG. 9

AoPRT-L-GUS Expression in TMV-infected Tobacco

AoPRT-L-GUS Expression in Tobacco infected with *Pseudomonas* syringae pathovar phaseolicola

Effects of wounding and JA on GUS expression in FIG. 11 transgenic plants

AoPRT-L-GUS Expression Following Water Stress

SUBSTITUTE SHEET (RULE 26)

Discs

SUBSTITUTE SHEET (RULE 26)

FIG. 14

AoPRT-L-GUS and Pr1a-Gus expression after SA or BTH induction in Brassica napus leaves

FIG. 15a AoPRT-L promoter deletions

FIG. 15b SA-responsiveness of AoPRT-L promoter deletion-GUS constructs in T0 transgenic tobacco plants

n - number of individual transformants

p - probability that activity with SA is not different to activity with control-treatment (Wilcoxon signed rank test)

SUBSTITUTE SHEET (RULE 26)

ATG Multimerised AoPRT-Lx3 SA-responsive promoter AoPRT-L-min TATA Box (-132 to -1) The -247 to -133 putative SA-reponsive region cloned into pJIT-60 GUS (INT) containing the AoPRT-L minimal promoter (-132 to -1) FIG. 15c 18bp Repeat AoPRT-L-SA (-247 to -133) Carrot PR-3 & PR-4

WO 99/66057

FIG. 16 schematic diagram of plasmid pGB24

