Experiment	L TT	- CD RV SIU	
	TO B	E FILLED BY STO	11.00
Date	1 < 100	To ade Tolking	St. Page 14
LUALE			

Pre-Tutorial (To be completed by student before attending tutorial session)

1. Design Turing machine for 1's complement of the binary numbers.

Lion:

$$\frac{1}{\sqrt{p}} - 0110$$
 $\frac{1}{\sqrt{p}} = 100$
 $\frac{1}{\sqrt{p}}$

2. Design Turing machine for 2's complement of the binary numbers. Solution:

$$\frac{1}{8} = \frac{1 - 0101}{8}$$

$$\frac{1}{9} = \frac{1}{9} = \frac{1}$$

M = (ENO, 91, 42 9, 30, 13. 80, 1, B3, S, No, B, END)

Course Title	AUTOMATA THEODY AND	
Course Code(s)	AUTOMATA THEORY AND FORMAL LANGAUGES 22CS2002A	ACADEMIC YEAR: 2023-24 185
		Page 185 of 263

A DE EILLED BY STUDENT>

Turing machine for left shift operation of the binary numbers.

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Design Turing machine for addition of two unary numbers.

2. Design Turing machine for proper subtraction of two unary numbers

AUTOMATA THEORY AND FORMAL LANGAUGES **Course Title** ACADEMIC YEAR: 2023-24

 $M = (\{ \{ \{ \{ \} \} \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \{ \} \}, \{ \}, \{ \} \}, \{ \{ \} \}, \{ \},$

Post-Tutorial (To be carried out by student after attending tutorial session)

Design Turing machine to compute n²

Solution:

BE FILLED BY STUDENT>

uring machine to compute n!

S, 96, B, 895)

Viva- Questions.

Define a computable function.

A computable function is a function for which there exists an algorithm cor which there exists an algorithm cor function the Juning machine) that can persoluce the cornect output for any valid Input in a finite number of steps. It operates within the bounds of a well defined perocedure, yielding output after processing the input.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation	
	Marks Secured:	out of <u>50</u>
	Full Name of the Evalu	ator:
	Signature of the Evalua	tor Date of
	Evaluation:	

ourse little	AUTOMATA TUES	
	AUTOMATA THEORY AND FORMAL LANGAUGES	1
Durse Codo(a)	- ONWIAL LANGAUGES	ACADEMIC YEAR: 2023-24
ourse Code(s)	22(520024	ACADEIVIIC YEAR, 2000