W08 - Examples

Simple divergence test

Simple divergence test: examples

Consider:
$$\sum_{n=1}^{\infty} \frac{n}{4n+1}$$

• This diverges by the SDT because $a_n \to \frac{1}{4}$ and not 0.

Consider:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$$

- This diverges by the SDT because $\lim_{n\to\infty} a_n = \text{DNE}$.
- We can say the terms "converge to the pattern $+1, -1, +1, -1, \ldots$," but that is not a limit value.

Positive series

p-series examples

By finding p and applying the p-series convergence properties:

We see that
$$\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$$
 converges: $p=1.1$ so $p>1$

But
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges: $p = 1/2$ so $p < 1$

Integral test - pushing the envelope of convergence

Does
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converge?

Does
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 converge?

Notice that $\ln n$ grows $very \ slowly$ with n, so $\frac{1}{n \ln n}$ is just a *little* smaller than $\frac{1}{n}$ for large n, and similarly $\frac{1}{n(\ln n)^2}$ is just a little smaller still.

Solution

- 1. \equiv The two series lead to the two functions $f(x) = \frac{1}{x \ln x}$ and $g(x) = \frac{1}{x(\ln x)^2}$.
- $2. \equiv$ Check applicability.
 - Clearly f(x) and g(x) are both continuous, positive, decreasing functions on $x \in [2,\infty]$
- 3. \Rightarrow Apply the integral test to f(x).
 - Integrate f(x):

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx \quad \gg \gg \quad \int_{u=\ln 2}^{\infty} \frac{1}{u} du$$

$$\gg \gg \quad \lim_{R \to \infty} \ln u \Big|_{\ln 1}^{R} \quad \gg \gg \quad \infty$$

 $4. \equiv \text{Conclude: } \sum_{n=2}^{\infty} \frac{1}{n \ln n} \text{ diverges.}$

5. \Rightarrow Apply the integral test to g(x).

• Integrate g(x):

$$\int_{M}^{\infty} \frac{1}{x(\ln x)^{2}} dx \quad \gg \gg \quad \int_{u=\ln M}^{\infty} \frac{1}{u^{2}} du$$

$$\gg \gg \quad \lim_{R \to \infty} -u^{-1} \Big|_{\ln M}^{R} \quad \gg \gg \quad \frac{1}{\ln M}$$

6. \equiv Conclude: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges.

Direct comparison test: rational functions

The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \, 3^n}$ converges by the DCT.

• Choose: $a_n = \frac{1}{\sqrt{n} \, 3^n}$ and $b_n = \frac{1}{3^n}$

• Check: $0 \le \frac{1}{\sqrt{n} 3^n} \le \frac{1}{3^n}$

• Observe: $\sum \frac{1}{3^n}$ is a convergent geometric series

The series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^3}$ converges by the DCT.

• Choose: $a_n = \frac{\cos^2 n}{n^3}$ and $b_n = \frac{1}{n^3}$.

• Check: $0 \le \frac{\cos^2 n}{n^3} \le \frac{1}{n^3}$

• Observe: $\sum \frac{1}{n^3}$ is a convergent *p*-series

The series $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ converges by the DCT.

• Choose: $a_n = \frac{n}{n^3+1}$ and $b_n = \frac{1}{n^2}$

• Check: $0 \le \frac{n}{n^3+1} \le \frac{1}{n^2}$ (notice that $\frac{n}{n^3+1} \le \frac{n}{n^3}$)

• Observe: $\sum \frac{1}{n^2}$ is a convergent *p*-series

The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ diverges by the DCT.

• Choose: $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n-1}$

• Check: $0 \le \frac{1}{n} \le \frac{1}{n-1}$

• Observe: $\sum \frac{1}{n}$ is a divergent *p*-series

Limit comparison test examples

The series $\sum_{n=1}^{\infty} \frac{1}{2^n-1}$ converges by the LCT.

• Choose: $a_n = \frac{1}{2^n-1}$ and $b_n = \frac{1}{2^n}$.

• Compare in the limit:

$$\lim_{n o \infty} rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n o \infty} rac{2^n}{2^n - 1} \quad \gg \gg \quad 1$$

• Observe: $\sum \frac{1}{2^n}$ is a convergent geometric series

The series $\sum_{n=1}^{\infty} \frac{2n^2+3n}{\sqrt{5+n^5}}$ diverges by the LCT.

• Choose: $a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$, $b_n = n^{-1/2}$

• Compare in the limit:

$$\lim_{n o \infty} rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n o \infty} rac{(2n^2 + 3n)\sqrt{n}}{\sqrt{5 + n^5}} \ rac{(2n^2 + 3n)\sqrt{n}}{\sqrt{5 + n^5}} \quad \stackrel{n o \infty}{ o} \quad rac{2n^{5/2}}{n^{5/2}} o 2$$

• Observe: $\sum n^{-1/2}$ is a divergent *p*-series

The series $\sum_{n=2}^{\infty} \frac{n^2}{n^4-n-1}$ converges by the LCT.

- Choose: $a_n = \frac{n^2}{n^4 n 1}$ and $b_n = n^{-2}$
- Compare in the limit:

$$\lim_{n\to\infty}\frac{a_n}{b_n}\quad \gg \gg \quad \lim_{n\to\infty}\frac{n^4}{n^4-n-1}\quad \gg \gg \quad 1$$

• Observe: $\sum_{n=2}^{\infty} n^{-2}$ is a converging *p*-series

Alternating series

Alternating series test: basic illustration

- (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges by the AST.
- Notice that $\sum \frac{1}{\sqrt{n}}$ diverges as a *p*-series with p = 1/2 < 1.
- Therefore the first series converges *conditionally*.
- (b) $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2}$ converges by the AST.
- Notice the funny notation: $\cos n\pi = (-1)^n$.
- This series converges *absolutely* because $\left|\frac{\cos n\pi}{n^2}\right| = \frac{1}{n^2}$, which is a *p*-series with p=2>1.

Approximating π

The Taylor series for $\arctan x$ is given by:

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Use this series to approximate $\pi/4$ with an error less than 0.001.

Solution

The main idea is to use $\tan \frac{\pi}{4} = 1$ and thus $\arctan 1 = \frac{\pi}{4}$. Therefore:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

and thus:

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots$$

Write E_n for the error of the approximation, meaning $E_n = S - S_n$.

By the AST error formula, we have $|E_n| < a_{n+1}$.

We desire n such that $|E_n| < 0.001$. So we find n such that $a_{n+1} < 0.001$ and this will imply:

$$\left| E_{n}
ight| < a_{n+1} < 0.001$$

The formula is $a_n = \frac{4}{2n-1}$. Plug in n+1 in place of n to find $a_{n+1} = \frac{4}{2n+1}$. Then we solve:

$$a_{n+1} = rac{4}{2n+1} < 0.001$$
\$\implies \quad \frac{4}{0.001} < 2n+1
\$\implies \quad 3999 < 2n
\$\implies \quad 2000 \leq n

So we conclude that at least 2000 terms are necessary for the approximation of π to be accurate to within 0.001.