Tema 1: El perceptrón.

<u>Índice:</u>

- La neurona biológica.
- La neurona artificial.
- Funciones de activación.
- El perceptrón como clasificador.

La neurona biológica:

- Una neurona es una célula excitable eléctricamente que se comunica con otras células a través de conexiones llamadas sinapsis.
 - Neuronas sensoriales.
 - Neuronas motoras.
 - Inter-neuronas.
- Cada neurona es una unidad sencilla de procesamiento que contiene:
 - Un soma, o cuerpo de la neurona
 - Un axón.
 - Un número de dendritas.

La neurona biológica:

- Cuando la entrada de la neurona supera un cierto umbral, se "activa" la salida.
- Se produce una reacción química que provoca un pulso de salida llamado potencial de acción que se propaga a través del axón hacia la sinapsis.

- Modelan el cerebro humano y consisten en una red de neuronas artificiales.
- Las redes neuronales artificiales y las neuronas artificiales son más sencillas que las biológicas.
 - Las redes tienen menos neuronas.
 - Las neuronas tienen menos conexiones.
- Cada neurona va a ser un nodo en la red y va a recibir un número de entradas de otras neuronas.
 - A estas entradas se les va a aplicar una función de activación que dará como salida un nivel de activación.

La neurona artificial:

- Las redes neuronales están compuestas por nodos conectados mediante enlaces direccionados:
 - Cada enlace tiene asociado un peso w_i que determina la fuerza y signo de la conexión.
 - Cada nodo va a tener una entrada "dummy" en la figura la x_0 .

La neurona artificial:

- La neurona calcula una suma ponderada de las entradas de acuerdo con los pesos $\sum_{i=0}^{n} w_i x_i$.
- Después a esta suma se le aplica una función de activación $g(\sum w_i x_i)$.

Funciones de activación:

- Las funciones de activación $g(\sum w_i \cdot x_i) = g(z)$ pueden ser:
 - Un hard tresshold o función step (perceptron):
 - Step(z) = 1 z > 0.
 - Una función logística (logistic) (perceptron sigmoide):
 - $Logistic(z) = \frac{1}{1+e^{-z}}$.
 - Una función rectificadora (ReLU):
 - $R(z) = \max(0, z)$.

Funciones de activación:

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•''

Explosiones y terremotos separables

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•''

Explosiones y terremotos separables

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•''

Explosiones y terremotos separables

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•'

Explosiones y terremotos separables

$$x_2 = 1.7x_1 - 4.9 \Rightarrow 1.7x_1 - 4.9 - x_2 = 0$$

$$g = 1 \text{ si } \mathbf{W} \cdot \mathbf{x}^{\mathsf{T}} \ge \mathbf{0}$$

$$g \le 0 \text{ si } \mathbf{W} \cdot \mathbf{x}^{\mathsf{T}} < \mathbf{0}$$

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•''

Explosiones y terremotos separables

$$x_2 = 1.7x_1 - 4.9 \Rightarrow 1.7x_1 - 4.9 - x_2 = 0$$

$$\mathbf{W} \cdot \mathbf{x}^{\mathsf{T}}$$

Explosiones y terremotos no separables

$$\begin{cases} g = 1 \text{ si } \mathbf{W} \cdot \mathbf{x}^{\mathsf{T}} \ge \mathbf{0} \\ g \le 0 \text{ si } \mathbf{W} \cdot \mathbf{x}^{\mathsf{T}} < \mathbf{0} \end{cases}$$

- <u>Clasificadores lineales</u> con hard tresshold (perceptrón):
 - Ejemplo: Terremotos 'o' y explosiones nucleares '•''

- Ejemplo: dada una neurona artificial con 2 entradas $x_1=0.7$ y $x_2=0.9$ con los pesos asociados $\omega_1=0.8$ y $\omega_2=0.4$ y una salida. ¿Cuándo va a activar la salida si aplicamos las funciones de activación step(), Logistic() y R()?
 - Función step():

•
$$Step(x \cdot W^T) = 1 \text{ si } z > 0 \Rightarrow x \cdot W^T = 0.7 \cdot 0.8 + 0.9 \cdot 0.4 = 0.92. Step(x \cdot W^T) = 1$$

Función sigmoid():

$$\sim Logistic(x \cdot W^T) = \frac{1}{1 + e^{-x \cdot W^T}} = \frac{1}{1 + e^{-0.92}} = 0.715.$$

- · Función ReLU():
 - $R(z) = \max(0, x \cdot W^{T}) = 0.92$

- Ejemplo: dada una neurona artificial con 2 entradas $x_1 = 0.7$ y $x_2 = 0.9$ con los pesos asociados $\omega_1 = 0.8$ y ω_2 =0.4 y una salida. ¿Cuándo va a activar la salida si aplicamos las funciones de activación Step(), Logistic() y R()?
 - Función *Step*():

•
$$Step(\mathbf{x} \cdot \mathbf{W}^{\mathsf{T}}) = 1 \text{ si } \mathbf{z} > 0 \Rightarrow \mathbf{x} \cdot \mathbf{W}^{\mathsf{T}} = 0.7 \cdot 0.8 + 0.9 \cdot 0.4 = 0.92 \Rightarrow Step(0.92) = 1$$

Función sigmoid()

$$\sim Logistic(x \cdot W^T) = \frac{1}{1 + e^{-x \cdot W^T}} = \frac{1}{1 + e^{-0.92}} = 0.715.$$

- · Función ReLU():
 - $R(z) = \max(0, x \cdot W^{T}) = 0.92$

- Ejemplo: dada una neurona artificial con 2 entradas $x_1 = 0.7$ y $x_2 = 0.9$ con los pesos asociados $\omega_1 = 0.8$ y ω_2 =0.4 y una salida. ¿Cuándo va a activar la salida si aplicamos las funciones de activación Step(), Logistic() y R()?
 - Función *Step*():
 - $Step(\mathbf{x} \cdot \mathbf{W}^{\mathsf{T}}) = 1 \text{ si } \mathbf{z} > 0 \Rightarrow \mathbf{x} \cdot \mathbf{W}^{\mathsf{T}} = 0.7 \cdot 0.8 + 0.9 \cdot 0.4 = 0.92 \Rightarrow Step(0.92) = 1$
 - Función *Logistic*():
 - $Logistic(\mathbf{x} \cdot \mathbf{W^T}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{W^T}}} = \frac{1}{1 + e^{-0.92}} = 0.715.$
 - · Función ReLU():
 - $R(z) = \max(0, x \cdot W^{T}) = 0.92$

- Ejemplo: dada una neurona artificial con 2 entradas $x_1 = 0.7$ y $x_2 = 0.9$ con los pesos asociados $\omega_1 = 0.8$ y ω_2 =0.4 y una salida. ¿Cuándo va a activar la salida si aplicamos las funciones de activación Step(), Logistic() y R()?
 - Función *Step*():
 - $Step(\mathbf{x} \cdot \mathbf{W}^{\mathsf{T}}) = 1 \text{ si } \mathbf{z} > 0 \Rightarrow \mathbf{x} \cdot \mathbf{W}^{\mathsf{T}} = 0.7 \cdot 0.8 + 0.9 \cdot 0.4 = 0.92 \Rightarrow Step(0.92) = 1$
 - Función *Logistic*():
 - $Logistic(\mathbf{x} \cdot \mathbf{W}^{\mathsf{T}}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{W}^{\mathsf{T}}}} = \frac{1}{1 + e^{-0.92}} = 0.715.$
 - Función R():
 - $R(z) = \max(0, \mathbf{x} \cdot \mathbf{W}^{\mathrm{T}}) = 0.92.$

Bibliografía:

- Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones. José Ramón Hilera y Victor José Martinez Hernando. Editorial Rama.
- 2. Artificial Intelligence A Modern Approach. Stuart Russell and Peter Norvig. Third Edition. Editorial Pearson.
- 3. Artificial Intelligence Illuminated. Ben Coppin. First Edition. Editorial Jones and Bartlett.