

Understanding stereo-opacity bias in MISR and CAMP2Ex P3 observations

Understanding stereo-opacity bias in MISR and CAMP2Ex P3 observations

Arka Mitra¹, Larry Di Girolamo¹, Yulan Hong¹, Yizhe Zhan^{1,2}, Kevin J. Mueller³, Dongwei Fu¹, Jesse Ray Loveridge¹, Bastiaan van Diedenhoven (RSP Team)⁴, Chris Hostetler (HSRL2 Team)⁵, Sebastian Schmidt (All-sky Camera Team)⁶, Susan C. van den Heever (Dropsonde Team)⁷

¹University of Illinois, Urbana-Champaign, Illinois, USA
²Metservice, New Zealand
³Jet Propulsion Laboratory, California Institute of Technology, California, USA
⁴NASA Langley Research Center, USA
⁵NASA's Goddard Institute for Space Studies, USA
⁶University of Colorado, Boulder, USA
⁷Colorado State University, Fort Collins, USA

Contents

- 1. Motivation and Background
- 2. Terra Record and MISR
- 3. Comparison with CATS lidar
- 4. Methodology and Findings
- 5. Stereo-Opacity and Wind-related Bias
- 6. CAMP2Ex P3 estimates of Stereo Bias
 - 7. Conclusions and Future work

1. Motivation and Background

- Stereo CTH retrieval is a purely geometric, free from radiometric calibration and forward model issues.
- Stereoscopic CTH detection in the visible to near-IR is very sensitive to low clouds (highly reflective and textured).

- Stereo CTH errors arise from primarily 3 sources :
 - a) Multi-angular radiance co-registration bias
 - Wind-related errors
 - C) Stereo-opacity bias
- This study aims to estimate these errors from satellite and CAMP2Ex retrievals.

2. Terra Record and MISR

- NASA's 20-year-long mission TERRA has on-board, the Multiangle Imaging Spectroradiometer (MISR).
- Terra has exhibited great orbital stability.
- MISR stereo CTH is an important climate record. The first stereo instrument where heights and winds were simultaneously retrieved.
- Global validation not done previously for lack of active sensor to compare against.

3. Comparison with CATS lidar

- CATS lidar operated out of the International Space Station (ISS) between 2015-2017.
- Concurrent (<5 minutes) and collocated (<1 km) cloudy data points from CATS and MISR were chosen for our study.
- CATS top-layer height = "True" CTH.
- Opacity of cloud layer is given by the *layer-integrated* attenuated backscatter (y) from CATS.

Terra MODIS CTH were also compared.

Level 2 Data

- (a) MISR TC_CLOUD v001 (1.1 km resolution)
- (b) CATS Version 2.01 Product (5 km horizontal, 60 m vertical resolution)

3. Comparison with CATS lidar

3. Comparison with CATS lidar

Key Questions:

MISR is extremely sensitive to low-level clouds.

- What is the estimated bias and precision?
- How does CTH bias vary with cloud type?

MISR retrieves low-level CTH even in the presence of high cirrus.

How thick does the cirrus have to be before stereo can detect it?

4. Methodology and Findings

Histograms are approximately Gaussian.

Bias : Deviation of peak or mode from zero.

Precision : FWHM/(2 log 2), where FWHM is the full-width at half maximum.

These statistics are not susceptible to outliers, unlike mean and SD.

4. Methodology and Findings

• MISR CTH errors:

(a) Cloud altitude:

- Low clouds (CATS CTH < 5 km): -320 ± 254 m
- High clouds (CATS CTH > 5 km): -540 ± 593 m

(b) Cloud opacity for low clouds:

- *'Optically thin' (OD < ~1) : -*320 ± 309 m
- 'Optically thick' (OD > ~1): -280 ± 257 m

• MISR is sensitive to lower layer in a 2-layered system, if upper-layer OD < ~0.4, hinting at the possibility of an "opacity threshold" required for detection.

5. Stereo-Opacity and Wind-related Bias

Only unbroken and single-layered clouds

Instrument	Overall		High (CATS CTH > 10 km)		Mid-level (10 km > CTH > 5 km)		Low (CATS CTH < 5 km)	
	Bias (m)	Precision (m)	Bias (m)	Precision (m)	Bias (m)	Precision (m)	Bias (m)	Precision (m)
MISR	-282	373	-305	396	-373	401	-237	302

MISR overall CTH bias : -282 m.

Contributors:

■ Radiance Co-registration error : -28 m

Wind-driven bias (based on wind-height biases reported in Horvath 2013, compared to METEOSAT motion vectors):

> Low clouds: -144 m High clouds: -72 m

Stereo-Opacity Bias (limits estimated by first assuming biases to be free from winddriven bias, and then including wind-driven bias)*:

Low clouds: -65 to -209 m **High clouds**: -205 to -277 m

^{*} First estimate of a stereo-opacity CTH bias

6. CAMP2Ex P3 estimates of Stereo Bias

(a) Stereo-Opacity Bias – Redo similar analysis using RSP & HSRL (Dongwei Fu) ~ -104 m.

(b) Wind-driven bias – Stereo reconstruction using all-sky camera (Jesse Ray Loveridge)

Wind estimates will be obtained from dropsondes and mini-reanalysis.

Near-surface retrievals can be used to inform co-registration errors.

7. Conclusions and Future Work

MISR vs CATS CTH Comparison

- First robust quasi-global validation of MISR Stereo CTH.
- MISR bias (-282 m) and precision (373 m) are robust for decadal climate analysis.
- First estimate of stereo-opacity CTH bias (-65 to -277 m).
- Independent estimates of global wind-driven stereo CTH bias (-72 to -144 m), first against a lidar.

Future work:

- Independent validation of findings against CAMP2Ex P3 observations, free from geo-collocation issues.
- Radiative transfer simulation investigation into the physical nature of "opacity threshold" for stereo detection of a cloud layer.

