THE CHICKEN & THE DRAGON

Tying up some loose ends from lost weeks ago

Where are we again? (lquichar.p70) CIMM 5.4: Inite rank PIOTR 5.3 ranka 15.2 rank 1+ sep. clas

dinction Thu 11.7 ky denur on 9.164

Lemma 4.8 Jalois extus

Proposition Lemma 4.8: (K,V) separately tame of char(K)=>70 and rank 1, k(x) immediate & transcendental, K(x) " c E Galors of degree p. Then FOEE such that E=K(O)" Proof Structure. · we can find θ ∈ E s +. $E = K(x)^n(\theta)$, $\theta^p - \theta = f(x) \in K(x)$. (using that here K[x] c K(x) is dense, 10.1 from KV). · then, appr(x, K) is transcendental. (Lemma 4.6) • We can assume $\theta^P - \theta = g(Z)$, where (i) $Z = \frac{X-C}{d}$, v(z) = 0, $C \in K$, $d \in K^*$, (ii) $i + g(z) = a_n z^n + ... + a_n z + a_0 \in K[Z]$, then 4170 either a = 0 or v(a,) < 0, and whenever plz, ai=0, (ii) (v(ai)), 70, it non-reno, are dishirch. (Lemma 4.2) · as g(z) & K[O], K(g(z)) h c K(O), • then $K(z)^n = K(g(z))^n$ (Lemma 47), so $K(X)^n = K(Z)^n = K(g(Z))^n$ C K(8)"

· we deduce $E = K(x)^{h}(\theta) = K(x, \theta)^{h}$ = K(8) h Lemma 10.1 (KV). Krank 1, K(x) immediate, then K[x] in k(x)" Proof. Enough to Mon K[x] c K(x). For this, we show: Yf(X) € KIX], YXEVK, 3g(X) € K[X] s. that As $K \subset K(X)$ is immediate, there is $C \in K$ with V(c) = v(f(x))& V(c-f(X)) 7 V(c), So $v(1-\frac{f(x)}{f(x)})$ 70. By rank f of VK, $\exists j \neq 0$ S.t. $j \cdot v(1-\frac{f(x)}{c}) > x + v(c)$. Thus we can compute (i.e., 7 wm'+) $V\left(\begin{array}{ccc} 1 & -1 & \frac{1}{2} & \frac{1}{$

Lemma 4.6. (KIV) separably-algebraically maximal, KcK(x) immediate transcendental ⇒ appr(x, K) is transcendental. This follows from the same result for pseudo-Cauchy sequences, using that K & Kpert is dense. Lemma 4.7. $(K,V) \subset (K(z),V)$ immediate, V(z) = 0, appr(z, K) transcendental. If $f(x) = a_n x^n + ... + a_1 x + a_0 \in K[X]$ is such that, for some is € 41, n4, ptio and min { v(a;) h = v(a;) distinct from all i=1... n others, then $K(z)^h = K(f(z)^h).$ For this, we need two things: Theorem 9.1 & Corollary 7.7.

Theorem 9.1. (KV) Assume A = appr(x, K) is an immediate approximation type over (K,V), of degree \underline{d} ; let $f(x) \in K[x] - K$ be of degree $\leq \underline{d}$, h = hx (x:f), and b = the fixed value of w(f,(c)) for c 7 x] not sure why this is useful Thom, $[K(x)^h:K(f(x))^h] \leq h_k(x:f)$ Corollary 7.7. (KV) (follows from Lemma 7.6). Ussume v(x)=0 and e71. Suppose that all monzeno coefficients C; of f have different values and that whenever peli, ci = 0. Then hk(x:f) < pe. $[K(x)_{\mu}: K(t(x))_{\mu}] < b$ $\Rightarrow [K(x)_{\mu} : K(f(x))_{\mu}] = 1$

Proof Cof Theorem 9.1). A = appr(x, K) immediate appr. type over (K, V) d = degree of /A, f & K[x]-K, h = h (x:f) • expand $f(x) = \sum_{i=1}^{n} f_i(c) (x-c)^i$, for $c \in K$ · use Lemma 5.2 to get by + h · v(x-c) < b; + i · v(x-c) whenever i + B, 1 = i = deg(f), c 1x. · choose much a c & dek st. V(d) = -V(X-C).• Set $X_0 = d.(x-c)$ so $K(x) = K(x_0)$ & $v(f_i(c)d^{-i}) + v(f_k(c)d^{-\frac{h}{2}}), i \neq h,$ 1 ≤ i ≤ deg (f) 4 (also from Lemma 52) $V(f(x) - f(c)) = V(f_{A}(c)) d^{-\frac{h}{2}}$ ves, $\left(\frac{d^{\frac{1}{2}}}{f_{k}(c)}\right) = tes_{v}(x_{o})^{\frac{1}{2}}$. • set $\hat{f}(z) = \sum_{i=0}^{\infty} f_i(c)d^{-i}Z^i$ and consider $f(z) = \frac{d^2}{d^2}(\hat{f}(z) - \hat{f}(x_0))$ Over $K(\widehat{f}(n_0)) = K(f(n))$, of which n_0 is

			a <u>3</u> 4	SUO'											
			3MD												
			261	(Ŧ	(7)) = [A (res	(20)) <u> </u>					
			103	, ,	(2)	- (7 -	ros	(210)) <u>B</u>					
		hou	11150	B	ia (a p	011 <i>01</i>	· ol	D	(Pa	701P.	1 U \			
		_	nsel			7	0000	- V	ſ			1. 7)	•		
		,,,	11301		v	G(Z) H(:	z \							
		010	r K			with									
		OVE		Ws	, , (G	(Z)		7 B	(ro	s (A)) ^½				
		L,			ľ	= ,d				, ·					
		· Sic	neg (rfc	-	(Z)	7	, ~3v 4	han	-1)) (T)	[~.)	- n			
		M	n Q	1 63	' _V (F	(2)	, - 1	·	run	u	107		1		
		_	v (a	\A .	V (f(7	1147								
						h : 1			μį						
							C (7)	(/))	L					177	
			>	Å -	•										