

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТ	РАКУЛЬТЕТ «Информатика и системы управления»		
КАФЕДРА	. «Программное обеспечение ЭВМ и информационные технологии»		

Отчет по лабораторной работе № 1 по курсу «Математическая статистика»

Тема	а Гистограмма и эмпирическая функция распределения		
Студент Виноградов А. О.			
Группа _ ИУ7-66Б			
Оценка (баллы)			
Препо	одаватели Андреева Т. В.		

1 Постановка задачи

Цель работы: построение гистограммы и эмпирической функции распределения.

1.1 Содержание работы

- 1) Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - (a) вычисление максимального значения Mmax и минимального значения Mmin;
 - (b) размаха R выборки;
 - (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания МХ и дисперсии DX;
 - (d) группировку значений выборки в $m = [log 2 \ n] + 2$ интервала;
 - (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2) Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретическая часть

Пусть $\vec{x} = (x_1, \dots, x_n)$ — реализация случайной выборки из генеральной совокупности X.

В работе использовались следующие формулы для вычисления величин:

$$M_{max} = x_{(n)} = \max_{x_i \in \vec{x}} x_i;$$
 (2.1)

$$M_{min} = x_{(1)} = \min_{x_i \in \vec{x}} x_i; \tag{2.2}$$

$$R = M_{max} - M_{min}; (2.3)$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{N} x_i; \tag{2.4}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (x_{i} - \hat{\mu})^{2};$$
 (2.5)

где (2.1) — максимальное значение выборки, (2.2) — минимальное значение выборки, (2.3) — размах выборки, (2.4) — оценка математического ожидания, (2.5) — оценка дисперсии.

Эмпирическая плотность распределения вероятности задаётся формулой:

$$\hat{f}_X(x) = \begin{cases} \frac{m_i}{n\Delta}, x \in J_i; \\ 0, \text{иначе}, \end{cases}$$
 (2.6)

где m_i — количество значений выборки в J_i интервале интервального ряда, n — объём выборки, Δ — длина интервалов.

Гистограммой называется график эмпирической функции плотности распределения.

Эмпирическая функция распределения задаётся формулой:

$$\hat{F}_X(x) = \frac{n_x}{n},\tag{2.7}$$

где n_x — количество значений выборки строго меньше x, n — объём выборки. Задание выполнялось по варианту №2.

Таблица 2.1 — Значения параметров для выборки из индивидуального варианта

M_{min}	-2.79
M_{max}	1.8
R_{\perp}	4.59
$\hat{\mu}(\overrightarrow{x})$	-0.285917
$S^2(\overrightarrow{x})$	0.917021
m	8
Δ	0.57375

Результаты построения гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 , а также построения графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 приведены на рисунках 2.1, 2.2.

Рисунок 2.1 — Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2

Рисунок 2.2 – График эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2