PROBABILITY AND STATISTICS LAB

ETIE-254

Faculty Name: Dr. K.C. Tripathi

Submitted by: Khushi Rollno: 03114813120

Semester: 4th

Branch: ITE

Group: 2

PRACTICAL RECORD

S.No.	Experiment	Date of Submission	Teacher's Signature	Marks/ Remarks
1.	Installation of Scilab and demonstration of simple programming concepts like marix multiplication (scalar and vector), loop, conditional statements and plotting.			
2.	Program for demonstration of theoretical probability limits.			
3.	Program to plot normal distributions and exponential distributions for various parametric values.			
4.	Fitting of binomial distributions for given n and p.			
5.	Fitting of binomial distributions after computing mean and variance.			

<u>AIM</u>: Installation of Scilab and demonstration of simple programming concepts like marix multiplication (scalar and vector), loop, conditional statements and plotting.

i) Multiplication of a matrix with a scalar.

```
Startup execution:
    loading initial environment

--> A = [1 2; 8 9]
A =

    l. 2.
    8. 9.

--> 5*A
ans =

    5. 10.
    40. 45.
```

ii) Multiplication of a matrix with a matrix (Scalar Product)

```
Scilab 6.02 Console

7 * ×

--> A = [1 4; 6 9]

A =

1. 4.
6. 9.

--> B = [5 7; 2 1]

B =

5. 7.
2. 1.

--> A*B

ans =

13. 11.
48. 51.
```

iii) Multiplication of a matrix with a matrix (Vector Product)

```
Scilab 6.0.2 Console
--> A = [1 2 3; 4 5 6; 7 8 9]
A =
 1. 2. 3.
 4. 5. 6.
 7. 8. 9.
--> B = [ 2; 4; 6]
B =
 2.
 4.
--> A*B
ans =
 28.
 64.
 100.
-->
```

iv) Loop 100 times and print if the number is odd or even.

```
Code:
i=1;
while(i<=100)
disp(i)
  if modulo(i,2)==0
  then
  disp('The number is even.');
  disp('The number is odd.');
  end
i=i+1;
End
Output:
  Number is odd.
 Number is even.
  Number is odd.
 Number is even.
  Number is odd.
```

Number is even.

Number is odd.

Number is even.

Number is odd.

10.

v) Plot (2D) The Square Function

```
Code: //Plot 2d the square function
clc
x = [0 1 2 3 4 5 6 7 8 9 10];
y = [0 1 4 9 16 25 36 49 64 81 100];
plot (x,y);
title('The Square Function')
```


AIM: Program for demonstration of theoretical probability limits.

Code:

clc clear all; clf;

```
a1 = 10;
counth = 0;
for i=1:a1
  x = round(rand(1));
  if(x==1)
     counth = counth+1;
end
p(i) = counth/i;
end
<u>plot(1:a1,p)</u>
xlabel('Number of Trials');
ylabel('Probability');
title('Probability of getting head');
a1 = 100;
counth = 0;
for i=1:a1
  x=round(rand(1));
  if(x==1)
     counth = counth+1;
end
p(i) = counth/i;
end
<u>plot(1:a1,p)</u>
xlabel('Numeber of Trials');
ylabel('Probability');
title('Probability of getting head');
a1 = 1000;
counth = 0;
for i=1:a1
  x=round(rand(1));
  if(x==1)
     counth = counth+1;
```

```
end
p(i) = counth/i;
end
\underline{plot}(1:a1,p)
xlabel('Number of Trials');
ylabel('Probability');
title('Probability of getting head');
a1 = 10000;
counth = 0;
for i=1:a1
  x=round(rand(1));
  if(x==1)
     counth = counth+1;
end
p(i) = counth/i;
end
<u>plot(1:a1,p)</u>
xlabel('Number of Trials');
ylabel('Probability');
title('Probability of getting head');
```


<u>AIM:</u> Program to plot normal distributions and exponential distributions for various parametric values.

AIM: Program to plot normal distributions and exponential distributions for various parametric values.

Code for Normal Distribution:

```
clc;
clear all;
clf();
m=2;
sd=1;
vari=sd^2;
x=grand(10000,1,"nor", m,sd);
xmax = max(x);
clf();
histplot(40,x,style=2)
x = linspace(-10, max(xmax), 100)';
plot2d(x,(1/(sqrt(2*\%pi*vari))*exp((-0.5)*(x-m)^2/vari)),strf="000", style=5)
xlabel('Sample Value');
ylabel('Normal Output Values');
title('Normal Probability Distribution by Khushi (03114813120)');
legend(["Normal random sample histogram" "exact density curve"],2);
```


Code for Exponential Distribution:

```
clc
alpha=1
x=grand(10000,1,"exp",alpha)
Xmax = max(x);
histplot (40 ,x, style =2)
x = linspace (0,max(Xmax),100);
plot2d (x , alpha*exp(-alpha*x))
legend (['exponential random sample histogram' ' exact density curve' ]);
xtitle('Exponential Probability Distribution by Khushi (031148131)','Sample Values','Exponential Output Values')
```

OUTPUT:

Graphic window number 0

AIM: Fitting of binomial distributions for given n and p.

Code:

```
clc
disp('Khushi (03114813120)')
n=6;
p=1/3;
N=1458;
mprintf('Number of dice (n) = \%i \n \n',n)
mprintf('Number of times the dice are tossed is: %i \n \n',N)
mprintf('Probability of success (getting 2 or 3) on a single die is: %f
\n \n',p)
for i=0:n
x(1,i+1)=i
ans= nchoosek(n,i)*(p^i)*((1-p)^n(n-i));
prob(1,i+1)=ans
expected(1,i+1)=ans*N;
end
disp(['x' 'P(x)' 'P(x)*N'],[x' prob' expected'])
plot2d(x,prob)
xtitle('Binomial Fitting Plot by Khushi (03114813120)', 'Number of
successes', 'P(X)')
```

Scilab 6.1.1 Console ? ₹ 🗴

```
"Khushi (03114813120)"
Number of dice (n) = 6
```

Number of times the dice are tossed is: 1458

Probability of success (getting 2 or 3) on a single die is: 0.333333

```
"x" "P(x)" "P(x)*N"
```

- 0. 0.0877915 128.
- 1. 0.2633745 384.
- 2. 0.3292181 480.
- 3. 0.2194787 320.
- 4. 0.0823045 120.
- 5. 0.0164609 24.
- 6. 0.0013717 2.

-->

AIM: Fitting of binomial distributions after computing mean and variance.

Code:

```
clc
disp('khushi (03114813120)')
n=3;
x=[0 1 2 3];
f=[36 40 22 2];
a='hello';
mat1=x.*f
meu=sum(mat1)/sum(f)
p=meu/n;
N=100;
mprintf('Number of coins (n) = %i \n',n)
mprintf('Number of times the coins are tossed is: %i \n',N)
mprintf('
               \n(Table 1)')
disp('Number of Heads (x) =', x, 'Frequency (f) =',f)
mprintf('
                      \n(Table 2)')
disp(['x' 'f' 'x*f'],[x' f' mat1'],)
mprintf('Total(f)=N=\%i \mid Total(x*f)=\%i \mid n',sum(f),sum(mat1))
mprintf('
                      \n')
mprintf('Probability of success is: %f \n',p)
mprintf('Mean = np = \%f \n',n*p)
mprintf('Variance = npq = \%f \n', n*p*(1-p))
mprintf('
                 \n(Table 3)')
for i=0:3
ans= \frac{\text{nchoosek}(n,i)*(p^i)*((1-p)^i(n-i))}{n-i}
prob(1,i+1)=ans;
expected(1,i+1)=ans*N;
end
disp(['x' 'Obs Freq' 'P(x)' 'Exp Freq'],[x' prob' expected'])
mprintf('\nTotal(Observed Freq)= %i \t Total(Expected Freq)= %.0f',sum(f),sum(expected))
disp('Khushi (03114813120)')
plot(x,prob)
xtitle('Binomial Fitting Plot by Khushi (03114813120)', 'Number of successes', 'P(X)')
```


AIM: : Fitting of Poisson distributions for different values of lambda (using grand function).

Code:

AIM: Fitting of Poisson distributions after computing mean.

Code:

```
clc;
disp('Khushi (03114813120)')
x=[0,1,2,3,4];
f=[122,60,14,2,1];
m=x.*f;
u=sum(m)/sum(f);
N = sum(f)
mprintf('-----(Table 1) \n')
disp('(x) ', x, 'Observed Frequency (f) ',f);
mprintf(' \n-----(Table 2) \n')
disp(['x' 'f' 'x*f'],[x' f' m'],)
mprintf(' Total(f)=%i | Total(x*f)=%i\n \n',sum(f),sum(m))
mprintf(' Mean = %f \n',u)
mprintf('-----(Table 3)
                              \n')
for i= 0:4
thf =(N*exp(-u).*(u.^i)./gamma(i+1));
thfr(i+1)=thf;
end
disp(['x' 'Obs Freq' 'Exp Freq'],[x' f' thfr])
mprintf('\nTotal(Observed Freq)= %i \t Total(exp Freq)= %.0f',sum(f),sum(thfr))
mprintf('\n \n')
plot(x,thfr,"* black");
plot(x,f,"+ black");
xlabel('x');
ylabel('Frequency');
title("Fitting of Poisson distribution by Khushi");
```

legend (['Expected frequency' ' Observed frequency'],5)

```
----(Table 1)
 "(x) "
  0. 1. 2. 3. 4.
 "Observed Frequency (f) "
  122. 60. 14. 2. 1.
-----(Table 2)
 "x" "f" "x*f"
  ο.
       122.
            ο.
             60.
  1.
       60.
  2.
      14.
            28.
       2.
             6.
  з.
  4.
             4.
      1.
Total(f)=199 \mid Total(x*f)=98
Mean = 0.492462
----(Table 3)
 "x" "Obs Freq" "Exp Freq"
  ο.
      122.
             121.61283
             59.889738
      60.
  1.
            14.746719
  2.
      14.
      2.
             2.4207345
  4.
      1.
             0.2980301
Total(Observed Freq) = 199
                           Total(exp Freq)= 199
```


AIM: Testing Goodwill of Fit using a test based on Chi Square Distribution.

Code:

```
clear
clc
format("v",10)
disp('Khushi (03114813120)')
x=[100 200 300 0]
obs=[47 40 35 28]
mprintf('\nGiven: \n150 light bulbs \n')
mprintf('Parameter: 0.005 (Expected failure time is 200 hours)\n')
mprintf('
                                                                             \n')
mprintf('Observed Data')
disp(['X<100' '100<=X<200' '200<=X<300' 'X>300'],obs)
prev=0
for i=1:length(x)
if i\sim=length(x)
p(1,i)=1-exp(-0.005*x(i))-prev
k=1-exp(-0.005*x(i))
prev=k
else
p(i) = exp(-0.005*x(i-1))
end
end
expected=150*p
chi2=sum(((expected-obs)^2)./expected)
mprintf('
                                                                             \n')
mprintf('Expected Data')
disp(['X<100' '100<=X<200' '200<=X<300' 'X>300'], expected)
                                                                             \n')
mprintf('Degree of Freedom in this case= %i - 1 = %i', length(obs), length(obs)-1)
critical=12.838
mprintf('\nCritical value of chi squared distribution for DOF %i at 0.005\n= %f', length(obs)-1,
mprintf('\n\nChi Sqaured (X^2)= %f',chi2)
if chi2<critical then
mprintf(\n\nWe reject the hypothesis that the distribution is exponential.')
mprintf(\n\nWe accept the hypothesis that the distribution is exponential.')
end
```

```
Scilab 6.1.1 Console
                                                                                   × 5 9
 "Khushi (03114813120)"
Given:
150 light bulbs
Parameter: 0.005 (Expected failure time is 200 hours)
Observed Data
 "X<100" "100<=X<200" "200<=X<300" "X>300"
 47. 40. 35. 28.
Expected Data
 "X<100" "100<=X<200" "200<=X<300" "X>300"
  59.020401 35.797683 21.712392 33.469524
Degree of Freedom in this case= 4 - 1 = 3
Critical value of chi squared distribution for DOF 3 at 0.005
= 12.838000
Chi Sqaured (X^2) = 11.967055
We reject the hypothesis that the distribution is exponential.
```

AIM : Fitting of normal distribution when parameters are not given

Code:

```
clear
clc
x=[2,4,6,8,10];
f=[1,4,6,4,1];
m=x.*f;
u=sum(m)/sum(f);
N = sum(f)
mprintf('Khushi (003114813120)\n')
mprintf('-----(Table 1)-----\n')
disp('(x) ', x, 'Observed Frequency (f) ',f);
mprintf('----\n')
// to find standard deviation
a = f.*((x-u)^2)
b = sum(a);
sd = sqrt(b/(N));
mprintf(' Mean = %f Standard Deviation = %f \n',u,sd);
x1 = x-1;
x2 = x+1;
for i=1:5
z=[0];
z=(cdfnor("PQ",x2(i),u,sd)-cdfnor("PQ",x1(i),u,sd));
Pz(1)=z;
Exf(i)=N*z;
end
disp(['x' 'Obs Freq' 'Exp Freq'],[x' f' Exf])
mprintf(\nTotal(Observed Freq)= %i \t Total(exp Freq)= %.0f',sum(f),sum(Exf))
mprintf('\n----\n')
plot(x,f,"*r");
plot(x,Exf,"+ b");
xlabel('x');
ylabel('Frequency');
title("Normal distribution");
legend (['Expected frequency' ' Observed frequency'],5)
```

```
Khushi (003114813120)
-----(Table 1)-----
 "(x) "
  2. 4. 6. 8. 10.
 "Observed Frequency (f) "
  1. 4. 6. 4. 1.
Mean = 6.000000 Standard Deviation = 2.000000
 "x" "Obs Freq" "Exp Freq"
          0.9695606
  2.
     1.
  4. 4. 3.8676854
  6. 6. 6.1267988
      4. 3.8676854
  8.
      1.
          0.9695606
Total(Observed Freq) = 16 Total(exp Freq) = 16
```

