Image Compression

using Singular Value Decomposition and Principal Component Analysis

Ben Yuan & Yirui Zhu 21-344 May 13, 2019

Whoops...

Cannot Take Photo

There is not enough available storage to take a photo. You can manage your storage in Settings.

Done

Settings

Singular Value Decomposition (SVD)

Let $A \in C^{m \times n}$ where m, n arbitrary and A not necessarily full rank, a *singular value decomposition* of A is a factorization

$$A = U \Sigma V^T$$

$\overline{A} = \overline{U} \overline{\Sigma} V^T$

How to perform SVD

Step 1.

- Multiply both sides of the equation by A^T we get

$$A^TA = V\Sigma^2V^T$$

- Find the eigenvectors of $A^T A$

Step 2

- Find the eigenvalues of $A^T A$

- Find the square root of the eigenvalues

Step 3

- Multiply both sides of the equation by A^T we get

$$AA^T = U\Sigma^2U^T$$

- Find the eigenvectors of AA^T

Approximation of a matrix using SVD

Given $A = U\Sigma V^T$, we can write A as a linear combination

$$A = u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T + \ldots + u_i \sigma_i v_i^T + \ldots + u_n \sigma_n v_n^T + \ldots$$

Application of SVD: Image Compression

$$A = u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T + u_3 \sigma_3 v_3^T + u_4 \sigma_4 v_4^T + u_5 \sigma_5 v_5^T$$

Application of SVD: Image Compression

$$A = u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T + u_3 \sigma_3 v_3^T + u_4 \sigma_4 v_4^T + u_5 \sigma_5 v_5^T$$

n = 90

n = 10

$Approx \sum_{i=1}^k u_i \sigma_i v_i^T$

n = 10

Determine the range of k

Suppose that we want to preserve the first k terms in the linear combination, then we keep the first k rows in matrices U, Σ and V^T

$$dim(U) = m imes k, dim(\Sigma) = k imes k, dim(V^T) = k imes n$$

We want to find a k such that the total number of elements in

 $U\Sigma V^T$ is less than that in A

$$m imes k + k + k imes n < m imes n$$

$$k<rac{mn}{m+n+1}$$

Determine k with a fixed compression ratio

Let compression ratio be lpha, where $\alpha = rac{m imes k + k + k imes n}{m imes n}$

With a given lpha, we could figure out how many terms we need to keep.

$$k=lpharac{mn}{m+n+1}$$

Principal Component Analysis (PCA)

An algorithm used in machine learning and data mining to reduce high dimensional data to lower dimension data.

Ideas behind PCA

- 1. Dataset does not span the entire dimensional space
- 2. m by n matrix (m samples, n covariates)
 - \rightarrow n by n covariance matrix
- 3. Choose a subset of covariates from the dataset that explain as much of the variation in the data as possible (principal components)

Covariance Matrix

$$cov(X,Y) = rac{\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y})}{n-1}$$

e.g. covariance matrix of a dataset with 3 covariates (x, y, z)

$$egin{bmatrix} cov(x,x) & cov(x,y) & cov(x,z) \ cov(y,x) & cov(y,y) & cov(y,z) \ cov(z,x) & cov(z,y) & cov(z,z) \end{bmatrix}$$

Why More Variability?

- We DON'T WANT cases where two points are far away in 2d-space, but close to each other in 1d-space
- Pick v to maximize variability
 - → minimizes number of undesirable cases

Finding Principal Components

Compute eigenvalues of covariance matrix

→ eigenvalue with the largest absolute value indicates that data has the largest variance along its eigenvector

Algorithm

- 1. For each column x_i , set $x_i = x_i \bar{x}$
- 2. Compute the covariance matrix C of adjusted dataset matrix
- 3. Compute eigenvalues and eigenvectors of C

Eigenvalues and Explained Variance

Proportion of Explained Variance along the k-th eigenvector

$$\frac{\lambda_k}{\sum_{i=1}^n \lambda_i} \tag{1}$$

Proportion of Explained Variance along the first k eigenvectors

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{n} \lambda_i} \tag{2}$$

Determine k

Empirically, we look for the minimum k such that

$$rac{\sum_{i=1}^k \lambda_k}{\sum_{i=1}^n \lambda_i} \geq 0.99$$

Example

original

Result

original k = 93

One More Example

original n = 100

Last Example

original n = 170

Future work

- 1. Apply to Colored Images
- 2. Measure on Quality of Compressed Images
- 3. Interpretability
- 4. How to Set Proportion of Explained Variance

References

SVD:

- https://www.cmi.ac.in/~ksutar/NLA2013/imagecompression.pdf (principles)
- https://www.frankcleary.com/svdimage/ (code)

PCA:

- http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5% 88%86%E5%88%86%E6%9E%90 (principles)
- https://blog.csdn.net/u012162613/article/details/42177327 (code)
- https://www.youtube.com/watch?v=6Pv2txQVhxA (visualization)