Aufgaben zu Schaltungen mit Widerständen

Lie.

1) Wie viele Widerstandswerte lassen sich verwirklichen, wenn man zwei Widerstandselemente für Schaltungen zur Verfügung hat und

- a) die Widerstände verschieden sind?
- b) die Widerstände gleich sind?
- 2) Wie viele Widerstandswerte lassen sich realisieren, wenn man drei Widerständezur Verfügung hat und diese a) alle verschieden resp. b) alle gleich sind?
- 3) Eine Glühlampe weise bei 230 V einen Betriebswiderstand von 630 Ω auf. Wie viele dieser Lampen können parallel an eine Steckdose angeschlossen werden, wenn die Steckdose mit einer 10 A Sicherung geschützt ist?
- 4) Berechnen Sie die Ersatzwiderstände R_{AB} , R_{BC} und R_{CA} für die nebenstehende Dreiecksschaltung aus drei Widerständen.

$$R_1$$
 = 120 Ω, R_2 = 180 Ω, R_3 = 130 Ω.

- 5) Schaltet man zwei Widerstände parallel, so beträgt der Ersatzwiderstand 57.0 Ω , schaltet man sie seriell, so beträgt er 273 Ω . Wie gross sind die Einzelwiderstände?
- 6) Eine Spannungsteilerschaltung bestehe aus den Widerständen R_1 = 120 Ω und R_2 = 370 Ω . Diese sind seriell an eine 4.5 V Spannungsquelle angeschlossen.
- a) Wie gross ist der Gesamtstrom?
- b) Wie gross sind die Spannungen über den Einzelwiderständen? Nun wird parallel zu R_2 ein dritter Widerstand R_3 = 740 Ω geschaltet.
- c) Wie gross ist der Gesamtstrom jetzt?
- d) Wie gross ist der Strom durch R₃?
- e) Wie gross ist die von R₃ aufgenommene Leistung?
- f) Wie gross müsste R_3 gewählt werden, damit die von ihm aufgenommene Leistung maximal wird? (Tipp: Leistung als Funktion von R_3 auf dem Taschenrechner grafisch darstellen lassen und dann das Maximum suchen.)
- 7) Wie gross ist der Ersatzwiderstand R_{AB} dieser Kette aus gleichen Widerständen?

Lösungen:

1a) 4 b) 3 2a) 17 b) 7 3) 27 4) R_{AB} = 90.7 Ω , R_{AC} = 105 Ω , R_{BC} = 86.5 Ω 5) 192 Ω , 81.1 Ω 6a) 9.2 mA b) U_1 = 1.1 V, U_2 = 3.4 V c) 12 mA d) 4.1 mA 6e) 12 mW f) 32 mW bei 91 Ω 7) R_{AB}/R = 1.618..