INTRODUCTION TO MACHINE LEARNING

CLUSTERING

Elisa Ricci

Unsupervised learning setting: we are given data, i.e. examples, but no labels

Raw data

features

$$f_{1}, f_{2}, f_{3}, ..., f_{n}$$

 $f_{1}, f_{2}, f_{3}, ..., f_{n}$
 $f_{1}, f_{2}, f_{3}, ..., f_{n}$
 $f_{1}, f_{2}, f_{3}, ..., f_{n}$
 $f_{1}, f_{2}, f_{3}, ..., f_{n}$

No supervision: we are only given data and want to find groupings

Clustering: the process of grouping a set of objects into classes of similar objects

Which clustering algorithms can we use?

What are some of the issues for clustering?

Clustering: the process of grouping a set of objects into classes of similar objects

Which clustering algorithms can we use?

K-MEANS

Most well-known and popular clustering algorithm.

- Start with some initial cluster centroids
- Iterate:
 - Assign each example to closest centroid
 - Recalculate centers as the mean of the points in a cluster

K-MEANS

Clustering: the process of grouping a set of objects into classes of similar objects

What are some of the issues for clustering?

ISSUES FOR CLUSTERING

- Representation: how do we represent examples?
 - o features?
- Similarity/distance between examples
- Flat clustering or hierarchical
- Number of clusters
 - Fixed a priori
 - Data driven

CLUSTERING ALGORITHMS

Flat algorithms

- K-means clustering (usually start with a random partitioning and refine it iteratively)
- Spectral clustering

Hierarchical algorithms

- Bottom-up, agglomerative
- Top-down, divisive

HARD VS. SOFT CLUSTERING

- Hard clustering: Each example belongs to exactly one cluster
 - Contract K-Means
- Soft clustering: An example can belong to more than one cluster (probabilistic)
 - Makes more sense for applications like creating browsable hierarchies, e.g. you may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

PROBLEMS WITH K-MEANS

What would K-means give us here?

PROBLEMS WITH K-MEANS

k-means assumes spherical clusters!

SPHERICAL CLUSTERS

SPHERICAL CLUSTERS

SPHERICAL CLUSTERS

Iteratively learning a collection of spherical clusters

A BETTER ALGORITHM: EM CLUSTERING

Expectation Maximization (EM): assume data came from a **mixture of Gaussians** (elliptical data), assign data to cluster with a certain probability (**soft clustering**)

SOFT CLUSTERING

EM CLUSTERING

- Very similar at a high-level to K-means
 - Iterate between assigning points and recalculating cluster centers

- Two main differences between K-means and EM clustering
 - We assume elliptical clusters (instead of spherical)
 - It is a soft clustering algorithm

EM CLUSTERING

- Start with some initial cluster centers
- Iterate:
 - Soft assign points to each cluster

Calculate: $p(\theta_c | x)$

the probability of each point belonging to each cluster

Recalculate the cluster centers

Calculate new cluster parameters θ_c maximum likelihood cluster centers given the current soft clustering

Start with some initial cluster centers

Which points belong to which clusters (soft)?

It is a soft (probabilistic) assignment

What do the new centers look like?

Cluster centers get a weighted contribution from points

... after several iterations

RECAP: MIXTURE OF GAUSSIANS

How do you define a Gaussian (i.e. ellipse)?

In 1D
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

parameterized by the mean and the standard deviation

RECAP: MIXTURE OF GAUSSIANS

In 2D

Covariance determines the shape of these contours

RECAP: MIXTURE OF GAUSSIANS

In general...

$$N[x;\mu,\Sigma] = \frac{1}{(2\pi)^{d/2}} \left[\exp\left[-\frac{1}{2}(x-\mu)\right] \left[\sum_{i=1}^{n-1} (x-\mu) \right]$$

We learn the means of each cluster (i.e. the center) and the covariance matrix (i.e. how spread out it is in any given direction)

STEP 1: SOFT CLUSTER POINTS

Soft assign points to each cluster

• Calculate: $p(\theta_c|x)$

(the probability of each point belonging to each cluster)

STEP 1: SOFT CLUSTER POINTS

Soft assign points to each cluster

• Calculate: $p(\theta_c|x)$

(the probability of each point belonging to each cluster)

STEP 1: SOFT CLUSTER POINTS

Soft assign points to each cluster

• Calculate: $p(\theta_c|x)$ (the probability of each point belonging to each cluster)

STEP 2: RECALCULATE CENTERS

- Recalculate centers:
 - \circ Calculate new cluster parameters $heta_{_{oldsymbol{c}}}$
 - Maximum likelihood cluster centers given the current soft clustering

STEP 2: RECALCULATE CENTERS

- Recalculate centers:
 - \circ Calculate new cluster parameters $heta_{c}$
 - Maximum likelihood cluster centers given the current soft clustering

How do we do that?

FITTING A GAUSSIAN: IDEA

What is the "best"-fit Gaussian for this data?

Recall this is the 1-D Gaussian equation:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Maximum Likelihood Estimation (MLE) is just the mean and variance of the data!

EM CLUSTERING

- EM stands for Expectation Maximization
 - Expectation: Given the current model, figure out the expected probabilities of the data points to each cluster

$$p(\theta_c|x)$$
 What is the probability of each point belonging to each cluster?

 \circ **Maximization:** Given the probabilistic assignment of all the points, estimate a new model θ_{c}

Maximum likelihood estimation

EM CLUSTERING

- Similar to K-Means
 - Assign/cluster each point to closest center

$$p(\theta_c|x)$$
 Soft assignment

Recalculate centers as the mean of the points in a cluster

Estimate a new model θ_c

EXPECTATION MAXIMIZATION: SUMMARY

- Similar to K-Means
- Each iterations increases the likelihood of the data and is guaranteed to converge (though to a local optimum)
- Not just for clustering while K-means is just for clustering
- EM is a general purpose approach for training a model when you do not have labels

OTHER CLUSTERING ALGORITHMS

- K-means and EM-clustering are by far the most popular for clustering
- However, they cannot handle all clustering tasks
- What types of clustering problems cannot they handle?

NON-GAUSSIAN DATA

What is the problem?

Similar to classification: global decision (linear model) vs. local decision (K-NN)

Spectral clustering

SPECTRAL CLUSTERING

Group points based on links in a graph

CREATE A GRAPH

- We can create a fully connected graph or a K-nearest neighbor graph (each node is only connected to its K closest neighbors)
- We can create a graph with some notion of similarity among nodes. It is common to use a Gaussian Kernel

$$W(i,j) = \exp \frac{-|x_i - x_j|^2}{\sigma^2}$$

GRAPH PARTITIONING

Define a similarity matrix and cut the graph

GRAPH TERMINOLOGY

Degree of a node and volume of a set

$$d_i = \sum_j w_{i,j}$$

$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$

GRAPH CUT

- ullet Consider a partition of the graph into two parts A and B
- Cut(A, B): sum of the weights of the set of edges that connect the two groups
- An intuitive goal is find the partition that minimizes the cut

Cut(A, B) = 0.3

NORMALIZED CUT

Minimize

$$NCut(A, B) = Cut(A, B)/Vol(A) + Cut(A, B)/Vol(B)$$

 This problem can formalized as a discrete optimization problem and then relaxed in the continuous domain and become a generalized eigenvalue problem

SPECTRAL CLUSTERING

Ng et al. On Spectral clustering: analysis and algorithm

SPECTRAL CLUSTERING

2.5 0.5

Ng et al. On Spectral clustering: analysis and algorithm

HIERARCHICAL CLUSTERING

Gene profiles

HIERARCHICAL CLUSTERING

Produces a set of nested clusters organized as a hierarchical tree

The tree is called **dendrogram**

AGGLOMERATIVE CLUSTERING

• **Idea:** first merge very similar instances and then incrementally build larger clusters out of smaller clusters

• Algorithm:

- Initially, each instance in its own cluster
- O Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there is only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

AGGLOMERATIVE CLUSTERING

- How should we define "closest" for clusters with multiple elements?
- Different choices (closest pair, farest pair, average among all distances, etc.) creates different solutions

QUESTIONS?

