Docket No. 0083-1131-0/vdm

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Hideki HIRATA

GAU:

1733

MONTH/DAY/YEAR

SERIAL NO: 09/531,449

EXAMINER:

FILED:

March 20, 2000

FOR:

OPTICAL INFORMATION MEDIUM AND ITS FABRICATION PROCESS

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

COUNTRY

- □ Full benefit of the filing date of U.S. Application Serial Number [US App No], filed [US App Dt], is claimed pursuant to the provisions of 35 U.S.C. §120.
- □ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

APPLICATION NUMBER

JAPA	N	11-076951	March 19, 1999	Ξ	****	ţ
JAPA	N	11-148602	May 27, 1999)0 MA	င်	į
JAPA	N	11-326101	November 16, 199	9 F=	2009	4
Certifie	d copies of the corresponding	Convention Application(s)		ROOM	نق	;
	are submitted herewith			Ĭ		
	will be submitted prior to pay	ment of the Final Fee				
	were filed in prior application	n Serial No. filed				
		ational Bureau in PCT Application Numbers by the International Bureau in a timely reply the attached PCT/IB/304.		l(a) ha	ıs been	
	(A) Application Serial No.(s)	were filed in prior application Serial No	o. filed ; and			
	(B) Application Serial No.(s)					
	□ are submitted herewith	1				
	□ will be submitted prior	r to payment of the Final Fee				

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No. 24,618

Stamatios Mylonakis, Ph.D. Registration Number 42, 921

22850 Tel. (703) 413-3000

Fax. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

1063505 09/531,449

日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 3月19日

出 願 番 号 Application Number:

平成11年特許願第076951号

出 願 人 Applicant (s):

ティーディーケイ株式会社

JUN -9 2000 TC 1700 HAIL ROOM

2000年 3月 3日

特許庁長官 Commissioner, Patent Office

近 藤 隆

特平11-076951

【書類名】

特許願

【整理番号】

11P098

【提出日】

平成11年 3月19日

【あて先】

特許庁長官 殿

【国際特許分類】

G11B 7/24

【発明者】

【住所又は居所】

東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】

平田 秀樹

【特許出願人】

【識別番号】

000003067

【氏名又は名称】

ティーディーケイ株式会社

【代表者】

澤部 肇

【代理人】

【識別番号】

100082865

【弁理士】

【氏名又は名称】

石井 陽一

【電話番号】

3839-0367

【手数料の表示】

【予納台帳番号】

007146

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光情報媒体

【特許請求の範囲】

【請求項1】 支持基体上に情報記録面を有し、この情報記録面上に光透過層を有し、この光透過層を通して記録光および/または再生光が入射するように使用される光情報媒体であって、

前記光透過層が、ポリカーボネートシートと、このポリカーボネートシートを 支持基体側に接着するための粘着剤層とから構成される光情報媒体。

【請求項2】 前記粘着剤層が、透明なアクリル系樹脂から構成される請求項1の光情報媒体。

【請求項3】 前記ポリカーボネートシートが流延法により製造されたものである請求項1または2の光情報媒体。

【請求項4】 前記光透過層の厚さが30~300μmである請求項1~3 のいずれかの光情報媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、再生専用光ディスク、光記録ディスク等の光情報媒体に関する。

[0002]

【従来の技術】

近年、再生専用光ディスクや光記録ディスク等の光情報媒体では、動画情報等の膨大な情報を記録ないし保存するため、記録密度向上による媒体の高容量化が求められ、これに応えるために、高記録密度化のための研究開発が盛んに行われてきた。

[0003]

その中のひとつとして、例えばDVD(デジタルバーサタイルディスク)にみられるように、記録・再生波長を短くし、かつ、記録・再生光学系の対物レンズの開口数(NA)を大きくして、記録・再生時のレーザービームスポット径を小さくすることが提案されている。DVDをCDと比較すると、記録・再生波長を

780nmから650nmに、NAを0.45から0.6にすることにより、6~8 倍の記録容量(4.7GB/面)を達成している。

[0004]

しかし、このように高NA化すると、チルトマージンが小さくなってしまう。 チルトマージンは、光学系に対する光情報媒体の傾きの許容度であり、NAによって決定される。記録・再生波長を λ 、記録・再生光が入射する透明基体の厚さを t とすると、チルトマージンは

$$\lambda / (t \cdot NA^3)$$

に比例する。また、光情報媒体がレーザービームに対して傾くと、すなわちチルトが発生すると、波面収差(コマ収差)が発生する。基体の屈折率をn、傾き角をθとすると、波面収差係数は

 $(1/2)\cdot t\cdot \{n^2\cdot \sin\theta\cdot \cos\theta\}\cdot NA^3/(n^2-\sin^2\theta)-5/2$ で表される。これら各式から、チルトマージンを大きくし、かつコマ収差の発生を抑えるためには、基体の厚さ t を小さくすればよいことがわかる。実際、DV Dでは、基体の厚さをCD基体の厚さ(1.2mm程度)の約半分(0.6mm程度)とすることにより、チルトマージンを確保している。一方、基体の厚みムラマージンは、

 λ / NA^4

で表される。基体に厚みムラが存在すると、さらに波面収差(球面収差)が発生 する。基体の厚みムラをΔdとすると、球面収差係数は、

$$\{(n^2-1)/8n^3\} \cdot NA^4 \cdot \Delta d$$

で表される。これら各式から、NAを大きくした場合の球面収差を抑えるためには、厚みムラを小さく抑える必要があることがわかる。例えば、CDではΔtが ±100μmに対して、DVDでは±30μmに抑えられている。

[0005]

ところで、より高品位の動画像を長時間記録するために、基体をさらに薄くできる構造が提案されている。この構造は、通常の厚さの基体を剛性維持のための支持基体として用い、その表面にピットや記録層を形成し、その上に薄型の基体として厚さ 0. 1 mm程度の光透過層を設け、この光透過層を通して記録・再生光

を入射させるものである。この構造では、従来に比べ基体を著しく薄くできるため、高NA化による高記録密度達成が可能である。

[0006]

しかし、この構造に用いる光透過層を樹脂の射出成形によって形成することは、非常に困難である。そのため、このような光透過層の形成方法として、例えば特開平9-161333号公報では、紫外線硬化樹脂をスピンコートすることにより光透過層を形成する提案がなされている。また、特開平10-269624号公報では、光硬化性樹脂中にスペーサー粒子を分散させ、これを基体上に塗布した後、板材で押しつけることにより、厚さの均一な光透過層を形成する提案がなされている。また、特開平10-283683号公報では、光透過性シートを紫外線硬化型樹脂で接着する提案がなされている。

[0007]

しかし、上記各公報に記載された方法により光透過層を形成すると、光透過層を構成する樹脂の硬化に伴う収縮により、媒体に反りが生じてしまう。また、光硬化性樹脂を0.1mm程度の厚さの膜とした場合、膜厚方向において均一な硬化が難しい。そのため、光透過層が光学的に均質とならず、また、未硬化のモノマーによる媒体の信頼性低下が生じやすくなる。なお、上記特開平10-283683号公報では、紫外線硬化型樹脂を接着層として利用するため、他の方法よりは紫外線硬化型樹脂層が薄くなり、反りは小さくなる。しかし、紫外線硬化時の収縮歪みによって光透過性シートの複屈折が大きくなってしまうという問題が生じる。

[0008]

【発明が解決しようとする課題】

本発明の目的は、支持基体表面に情報記録面を有し、この情報記録面上に樹脂からなる光透過層を有する光情報媒体において、光透過層の厚さを均一にし、また、光透過層の光学的不均質さ、特に複屈折の増大を抑制し、また、光情報媒体の反り発生を抑えることである。

[0009]

【課題を解決するための手段】

このような目的は、下記(1)~(4)の本発明により達成される。

(1) 支持基体上に情報記録面を有し、この情報記録面上に光透過層を有し、この光透過層を通して記録光および/または再生光が入射するように使用される光情報媒体であって、

前記光透過層が、ポリカーボネートシートと、このポリカーボネートシートを 支持基体側に接着するための粘着剤層とから構成される光情報媒体。

- (2) 前記粘着剤層が、透明なアクリル系樹脂から構成される上記(1)の 光情報媒体。
- (3) 前記ポリカーボネートシートが流延法により製造されたものである上記(1)または(2)の光情報媒体。
- (4) 前記光透過層の厚さが30~300μmである上記(1)~(3)のいずれかの光情報媒体。

[0010]

【発明の実施の形態】

本発明の光情報媒体の構成例を、図1に示す。この光情報媒体は記録媒体であり、支持基体20上に、情報記録面として記録層4を有し、この記録層4上に光透過層2を有する。記録光および/または再生光は、光透過層2を通して入射する。本発明は、記録層の種類によらず適用できる。すなわち、例えば、相変化型記録媒体であっても、ピット形成タイプの記録媒体であっても、光磁気記録媒体であっても適用できる。なお、通常は、記録層の少なくとも一方の側に、記録層の保護や光学的効果を目的として誘電体層や反射層が設けられるが、図1では図示を省略してある。また、本発明は、図示するような記録可能タイプに限らず、再生専用タイプにも適用可能である。その場合、支持基体20と一体的に形成されるピット列が、情報記録面を構成することになる。

[0011]

図示する光情報媒体では、光透過層2を、ポリカーボネートシート201と、これを支持基体20側に接着するための粘着剤層202とから構成している。粘着剤層202は、記録・再生光に対して透明であって、かつ、ポリカーボネートシートと支持基体の表面に存在する層とを接着するために十分な粘着性をもつ物

質から構成される。

[0012]

ポリカーボネートシートの支持基体側への接着に粘着剤を用いる効果としては

- (1)紫外線硬化型接着剤と異なり硬化が不要なので、硬化時の収縮歪みがなく、媒体に反りが生じにくい、
- (2)硬化が不要で硬化時の収縮歪みがないので、ポリカーボネートシート の複屈折を大きくすることがほとんどない、
 - (3) 硬化工程が不要なので、装置が簡略化できる
- (4)粘着剤層は、ポリカーボネートシートにあらかじめコーティング膜と して形成しておけるので、膜厚分布を小さくできる

ということが挙げられる。したがって、ポリカーボネートシートと紫外線硬化型 接着剤との組み合わせによって生じる従来の問題点を、本発明により解消できる

[0013]

粘着剤層の構成材料としては、アクリル系樹脂、シリコン系樹脂、ゴム系材料などのいずれを用いてもよいが、光学特性に優れ、粘着性および耐熱性の設計マージンが広く、また、低コストであることから、好ましくはアクリル系樹脂を用いる。

[0014]

粘着剤層の形成方法は特に限定されないが、上述したように、均一な厚さとなるようにポリカーボネートシートに塗布する方法が好ましい。また、透明な膜状基材の両面に粘着剤を塗布することにより粘着シートを形成し、この粘着シートを本発明における粘着剤層として用いて、ポリカーボネートシートと支持基体側とを接着する構成とすることも好ましい。粘着剤の塗布方法は特に限定されず、例えばダイコート、ロールコート、グラビアコート、ディップコートなどから適宜選択すればよいが、膜厚分布を小さくできることから、ダイコートを利用することが好ましい。

[0015]

粘着剤層の厚さは、均一な厚さとすることが可能で、かつ、十分な接着力が得られるように適宜決定すればよいが、好ましくは5~70μm、より好ましくは10~50μmである。粘着剤層が薄すぎると、接着性が悪くなり、また、貼り合わせ歩留まりも悪くなる。一方、厚すぎると、膜厚分布が大きくなり、また、ポリカーボネートシートを薄くしなければならなくなる。

[0016]

ポリカーボネートシートの製造方法は特に限定されないが、本発明で用いるポリカーボネートシートは薄いため、通常の射出成形法により製造することは困難である。したがって、流延(ソルベントキャスト)法や溶融押し出し法など、樹脂をシート状に形成できる方法を利用することが好ましい。このうち特に好ましい方法は、流延法である。流延法は、例えば特公平3-75944号公報に記載されている。同公報には、透明性、複屈折性、可撓性、表面精度、膜厚の均一さに優れたフレキシブルディスク基板が製造できる流延法が記載されており、本発明では、ポリカーボネートシートの製造にこの流延法を利用することが好ましい。この流延法では、以下の工程によりポリカーボネートシートを製造する。

[0017]

- (1)ポリカーボネート樹脂ペレットを塩化メチレン、アクリロニトリル、 メチルアクリレート等の溶媒に溶解し、
- (2)よく攪拌、脱泡、濾過した後、表面精度の高い金型上にダイより連続的に流し、
 - (3) 乾燥炉を通して溶媒を蒸発させ、連続的にロール状に巻き取る。

[0018]

このような流延法で製造したポリカーボネートシートは、一般的な溶融押し出し法で製造したものに比べ、シートにかかるテンションが小さいので、複屈折が小さくなる。これに対し溶融押し出し法で製造したシートでは、延伸方向に複屈折の分布が生じてしまう。また、上記流延法では、溶媒の蒸発速度を適切に制御することにより、表面状態に優れた、均一な厚さのシートが製造でき、また、溶融押し出し法により製造されたシートでみられる、ダイラインによる傷が生じない。

[0019]

光透過層の厚さは、30~300 μmの範囲から選択することが好ましい。光 透過層が薄すぎると、光透過層表面に付着した塵埃による光学的な影響が大きく なる。一方、上記範囲を超える厚さの光透過層は、射出成形などの他の方法によ って形成できる。

[0020]

支持基体 2 0 は、媒体の剛性を維持するために設けられる。支持基体 2 0 の厚さは、通常、0.2~1.2 mmとすればよく、透明であっても不透明であってもよい。光記録媒体において通常設けられる案内溝は、図示するように、支持基体2 0 に設けた溝を光透過層形成時に転写することにより、形成できる。図示する案内溝 2 1 は、光入射側に向かって凹んでいる溝である。

[0021]

【実施例】

以下の手順で、表1に示す再生専用光ディスクサンプルを作製した。

サンプルNo.1

光透過層側から見たときに情報を担持するピットとなる凹凸を形成したディスク状支持基体(ポリカーボネート製、直径120mm、厚さ1.2mm)の表面に、A1合金からなる反射膜をスパッタ法により形成した。

[0022]

次いで、反射膜表面に、厚さ30μmの粘着剤層を介して厚さ70μmのポリカーボネートシートを接着し、光透過層とした。粘着剤層には、透明基材の両面にアクリル系樹脂からなる粘着剤を塗布して形成した両面粘着シートを用いた。ポリカーボネートシートには、前記特公平3-75944号公報に記載された流延法により製造したものを用いた。このポリカーボネートシートの複屈折率は、20mmであった。

[0023]

サンプルNo.2

溶融押し出し法により製造したポリカーボネートシート(厚さ70nm、複屈折率90nm)を用いたほかはサンプルNo.1と同様にして作製した。

[0024]

サンプルNo.3

反射膜表面にアクリル系紫外線硬化型接着剤(日本化薬製DVD-003)を スピンコーティングして、厚さ30μmの接着層を形成した。次いで、この接着 層上に、サンプルNo.1で用いたポリカーボネートシートを接着して光透過層と した。

[0025]

サンプルNo.4

サンプルNo.2と同じポリカーボネートシートを用いたほかはサンプルNo.3と 同様にして作製した。

[0026]

サンプルNo.5

反射膜表面に紫外線硬化型樹脂(大日本インキ製SD-301)をスピンコー ティングし、紫外線照射により硬化して、厚さ100nmの光透過層とした。

[0027]

評価

上記各サンプルについて、光透過層の厚さ分布(最大値と最小値との差)およ び反り量を測定した。結果を表1に示す。厚さ分布は、キーエンス社製のレーザ ーフォーカス変位計により測定した。反り量は、小野測器製の機械精度測定機を 用い、支持基体側から光を入射させて測定した。測定時の線速は4m/sとした。

[0028]

また、光透過層の複屈折率を、アドモンサイエンス社製回転検光子型複屈折測 定器により測定した。結果を表1に示す。なお、測定対象は、No.1~4では粘 着剤層または接着層を含むポリカーボネートシートであり、No.5では紫外線硬 化樹脂層である。

8

[0029]

【表1】

¥	サンプル No.	接着手段	ポッケーボネートシート製油	厚さ分布 (μ m)	反り量 (deg)	梅 屈折 (nm)
		粘着剤	流延法	73	0.20	20
84		************************************	容配押し出し符	4	0.22	130
က	(元数)	紫外線硬化型接着剤	新 節洗	14	0.72	40
4	(光較)	紫外線硬化型接着剤	郊騒 若っ田っ 形	18	0.75	200
ō	(光較)	紫外線硬化型橄脂	I	25	測定不能	10

[0030]

表1から本発明の効果が明らかである。すなわち、No.1とNo.3との比較およびNo.2とNo.4との比較から、粘着剤層によりポリカーボネートシートを接着することにより、光透過層厚さの均一性、反り量、複屈折のいずれもが著しく改善されることがわかる。そして、No.1とNo.2との比較から、流延法により製造したポリカーボネートシートを粘着剤層と組み合わせることにより、ポリカーボネートシートの複屈折増大をほぼ完全に抑制できることがわかる。なお、表1において反り量が測定不能と表示されているものは、反りが大きすぎて測定が不能であったものである。

[0031]

【発明の効果】

本発明では、ポリカーボネートシートを粘着剤層で支持基体に接着して光透過層を形成することにより、光透過層の厚さを均一にでき、また、ポリカーボネートシートの複屈折増大を抑制することができ、また、光情報媒体の反り発生を抑えることができる。

【図面の簡単な説明】

【図1】

本発明の光情報媒体の構成例を示す部分断面図である。

【符号の説明】

- 2 光透過層
- 201 ポリカーボネートシート
- 202 粘着剤層
- 20 支持基体
- 2 1 案内溝
- 4 記録層

【書類名】

図面

【図1】

【書類名】

要約書

【要約】

【課題】 支持基体表面に情報記録面を有し、この情報記録面上に樹脂からなる光透過層を有する光情報媒体において、光透過層の厚さを均一にし、また、光透過層の光学的不均質さ、特に複屈折の増大を抑制し、また、光情報媒体の反り発生を抑える。

【解決手段】 支持基体20上に情報記録面4を有し、この情報記録面4上に光透過層2を有し、この光透過層2を通して記録光および/または再生光が入射するように使用される光情報媒体であって、

前記光透過層2が、ポリカーボネートシート201と、このポリカーボネートシート201を支持基体側に接着するための粘着剤層202とから構成される光情報媒体。

【選択図】

図 1

出願人履歴情報

識別番号

[000003067]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都中央区日本橋1丁目13番1号

氏 名 ティーディーケイ株式会社