SDP FINAL EVALUATION

Revolutionizing Portfolio Management in the age of Generative Al

Supervised By: Dr. Binayak Panda

Group No. Q7

Name of the Student(s) with Regd. No.:

Bravish Ghosh (1941012333)

Tarique Nasar (1941012548)

(1941012585)**Pratik Gupta**

Aayush Kumar (1941012582) **Department of Computer Sc. and Engineering**

Faculty of Engineering & Technology (ITER)

Siksha 'O' Anusandhan (Deemed to be) University

Bhubaneswar, Odisha

Presentation Outline

- Introduction
 - **Motivations**
 - Uniqueness of the work
- Literature Survey
 - **Existing System**
 - Problem Identification
- Model Diagram
- Algorithms used

Bibliography

- **Experimentation and Results**
 - **System Specifications**
 - **Datasets Description**
 - Parameters used
 - Experimental outcomes (Tables and Figures)
 - Result Analysis and Validation
- Conclusion and Future Scope (Key findings)

Introduction

Overview

- Traditional portfolio management has relied on human expertise and heuristics to select assets and optimize portfolios.
- The combination of deep reinforcement learning (DRL) and generative adversarial networks (GANs) provides a robust framework for portfolio management.
- The aim of the project is to revolutionize portfolio management in the age of **Generative Al** and demonstrate the potential of DRL and GANs to improve portfolio performance and manage risk.
- This approach enables the creation of **synthetic data** that can be utilized to train an agent, resulting in improved investment decision-making.

Introduction contd..

Our work is aimed at producing stock prediction based on historical dataset

Fig:1 - Dataset Visualization

Introduction contd..

Motivations

- Traditional portfolio management relies on heuristics and human expertise, which may not be optimal or efficient.
- Suboptimal portfolio management has led to significant losses in the past, emphasizing the need for more advanced and efficient methods.
- The combination of DRL and GANs offers a more sophisticated and adaptable investment model that can generate better returns and manage risk more effectively.
- Our methodology aims to revolutionize portfolio management in the age of generative AI by demonstrating the potential of DRL and GANs to improve portfolio performance.
- By creating synthetic data that can be used to train an agent, our approach enables improved investment decision-making and better outcomes for investors.

Literature Survey

☐ Existing System

Year	Methodology	Advantages	Limitations
2023 [1]	DRL with Modern Portfolio Theory	Dynamic Asset allocation	Reliance on historical data may not capture the dynamic nature of financial markets.
2023 [2]	Predictive Auxiliary classifier GAN	Measure uncertainty in portfolio optimization and generation of synthetic data	Complexity of the model may prone to overfitting and suffer from a lack of interpretability
2023 [3]	Portfolio allocation on money Net-Flow adjusted using DRL	enhance the decision-making	complexity of the RL architecture make the implementation and training process challenging
2023 [4]	DRL Approach to Portfolio Optimization in the Australian Stock Market	minimizing transaction costs and improving overall portfolio	requires careful calibration and may vary across different DRL algorithms.
2021 [5]	DRL with Latent Feature State Space	Highly Efficient and Performance	Need of large amount of dataset and accurate feature engineering

Table:1 – Existing Systems

Literature Survey contd..

Existing System

Table: 2 - Existing Systems

Literature Survey contd..

OF ANUS PRODUCTION OF THE PROPERTY OF THE PROP

Problem Identification

- Traditional portfolio management relies on human expertise and heuristics, which can be suboptimal and lead to losses.
- Market conditions are constantly changing, making it difficult to adapt and optimize portfolio strategies in a timely manner.

Solution Approach

- Develop a GAN-based synthetic dataset by forecasting market conditions to simulate multiple investment scenarios and reduce the impact of real-time market fluctuations.
- Train a DRL model on the synthetic dataset to identify low-risk high-return investment opportunities and optimize portfolio performance by continuously adapting to evolving market conditions.

Model Diagram

Fig:2 – Model Diagram

Algorithms used in Synthetic Data Generator:

Generative Adversarial Networks (GANs)

- GAN is basically made up of two competing neural network models
- The Generator generates fake data and tries to fool the Discriminator
- The Discriminator tries to distinguish between the real data and fake data

Fig:3 - GAN Architecture

Loss function of Descriminator:

$$-\frac{1}{m}\sum_{i=1}^{m}\log D(y^{i}) - \frac{1}{m}\sum_{i=1}^{m}(1-\log D(G(x^{i})))$$

Loss function of Generator:

$$-\frac{1}{m}\sum_{i=1}^{m}(\log D(G(x^{i})))$$

x: Input for generator

y: Real price from original data

 $G(x^i)$: Generated price (fake price)

Algorithms used in Portfolio Predictor:

Actor-Critic is a Deep Reinforcement Learning Algorithm with two models

actor & critic

Fig:4 - Deep Actor-Critic Structure

Experimentation and Results

System Specifications

• **Hardware Model** : HP Pavilion Notebook 15-bc5xxx

• **RAM** : 8 GB

• **Processor** : Intel® CoreTM i5-9300H CPU @ 2.40GHz \times 8

• **OS** : Pop!_OS 22.04 LTS

Software Used : VS Code, Google Colab

Experimentation and Results Contd..

Dataset Description

The dataset contains the stock data of **FAANG** companies from 1st January 2015. It was sourced from a dataset available on **Kaggle** [11] and **Yahoo Finance** [13] that contains daily stock market data for Facebook, Amazon, Apple, Netflix, and Google.

Fig:5 – FAANG Stock OHLCV Data Visualization

Fig:6 – Box Plot & Summary Statistics

Experimentation and Results Contd..

Parameters used

- Basic Variables: Highest Price, Lowest Price, Opening Price, Closing Price, Volume
- <u>Technical Indicators</u>: Simple Moving Average (SMA), Exponential Moving Average (EMA), Moving Average
 Convergence Divergence (MACD), Relative Strength Index (RSI), Average True Range (ATR), Bollinger Bands, Raw
 Stochastic Value (RSV)

Experimentation and Results Contd..

Experimental outcomes and stocks analysis for FAANG companies

- Facebook(META)
- Amazon
- Apple
- Netflix
- Google

Fig:8 – Actual vs Synthetic stock price

Fig:9 - Facebook Stock

Fig:10 - Amazon Stock

Fig:11 - Apple Stock

Fig:12 - Netflix Stock

Fig:13 - Google Stock

Result Analysis and Validation

- ➤ Statistical parameters (mean, variance, correlation) are used to assess the caliber and fidelity of the generated synthetic datasets compared to the original historical data.
- ➤ Relevant statistical metrics like mean squared error and visualization approaches are employed to evaluate the similarity and accuracy of the generated data.
- ➤ By incorporating technical indicators from real data, it is confirmed whether the GAN model captures the patterns and characteristics of the financial performance of FAANG enterprises.
- ➤ The DRL-based portfolio management strategy achieved significantly higher cumulative returns compared to benchmark strategies, indicating its ability to identify profitable investment opportunities and optimize portfolio allocation.
- ➤ The DRL model effectively balanced risk and return, delivering favorable risk-adjusted returns with Portfolio Diversification. Its incorporation of various risk factors contributed to managing portfolio volatility and long-term performance optimization.

Result Analysis and Validation Contd..

Fig:14 – GAN Loss Plot

Result Analysis and Validation Contd...

Fig:15 – Portfolio Rewards

Conclusion (Key Findings)

- The proposed system's combined model of DRL (Deep Reinforcement Learning) and GAN (Generative Adversarial Network) outperforms existing systems in terms of performance.
- The system generates synthetic asset returns, enabling improved investment decision-making.
- The model captures complex and non-linear relationships within financial data, enhancing its ability to analyze and predict market dynamics.
- The system incorporates tail risks and extreme events that traditional models often fail to consider, thereby offering a more comprehensive risk assessment.
- By providing better risk-adjusted returns in complex financial markets, the system demonstrates its potential for enhancing investment outcomes.
 Additionally, it facilitates unbiased decision-making regardless of market conditions.

Future Scope

- Analyze news articles, social media feeds, and other textual data to extract sentiment and assess market sentiment towards FAANG companies, leveraging the use of NLP techniques.
- Conduct additional comparative analysis of the DRL and GAN's combined model with other advanced existing systems, exploring its performance across different market conditions and asset classes.
- Enhance the synthetic asset return generation capabilities of the proposed system by incorporating more sophisticated algorithms and techniques to provide even better insights for investment decisions.

Bibliography

- Jang, J., & Seong, N. (2023). Deep reinforcement learning for stock portfolio optimization by connecting with modern portfolio theory. Expert Systems with Applications, 218, 119556. https://doi.org/10.1016/j.eswa.2023.119556
- 2. Kim, J., & Lee, M. (2023). Portfolio Optimization using Predictive Auxiliary Classifier Generative Adversarial Networks with Measuring Uncertainty. ArXiv. /abs/2304.11856
- 3. Samira Khonsa, Mehdi Agha Sarram, & Razieh Sheikhpour (2023). A Profitable Portfolio Allocation Strategy Based on Money Net-Flow adjusted Deep Reinforcement Learning. https://www.ijfifsa.ir/article_170053.html
- 4. Weiye Wu, & Carol Hargreaves (2023). Deep Reinforcement Learning Approach to Portfolio Optimization in the Australian Stock Market.
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4429448
- 5. Yashaswi, K. (2021). Deep reinforcement learning for portfolio optimization using latent feature state space (lfss) module. arXiv preprint arXiv:2102.06233.
- 6. Jaydip Sen, Abhishek Dutta, & Sidra Mehtab (2021). Stock Portfolio Optimization Using a Deep Learning LSTM Model. https://ieeexplore.ieee.org/abstract/document/9641662

Bibliography Contd

- 7. Soleymani, F., & Paquet, E. (2020). Financial portfolio optimization with online deep reinforcement learning and restricted stacked autoencoder—DeepBreath. Expert Systems with Applications, 156, 113456. https://doi.org/10.1016/j.eswa.2020.113456
- 8. Yu, P., Lee, J. S., Kulyatin, I., Shi, Z., & Dasgupta, S. (2019). Model-based Deep Reinforcement Learning for Dynamic Portfolio Optimization. ArXiv. /abs/1901.08740
- 9. Hyungjun Park, Min Kyu Sim, & Dong Gu Choi (2019). An intelligent financial portfolio trading strategy using deep Q-learning.

 https://www.sciencedirect.com/science/article/abs/pii/S0957417420303973
- 10. Adrian Millea, & Abbas Edalat (2019). Using Deep Reinforcement Learning with Hierarchical Risk Parity for Portfolio Optimization. https://www.mdpi.com/2227-7072/11/1/10
- 11. Historical OHLC dataset of FAANG stocks since the IPO Kaggle
- 12. Daily News for Stock Market https://seekingalpha.com/
- 13. Stock Price data Yahoo Finance

Thankyou