WFiIS	Imię i nazwisko 1. Filip Baran 2. Miłosz Kulcz		Rok: 3	Grupa: 1	Zespół: 1
PRACOWNIA	Temat:				
JĄDROWA	Spektrometr pro	omieniowania gam	ıma z licznikiem		Nr ćw.: 3
WFiIS AGH	półprzewodnikowym HPGe				
Data wykonania:	Data oddania:	Zwrot do pop.:	Data oddania:	Data zaliczenia:	OCENA
27.10.2022	10.11.2022 10.11.2022		12.01.2023		

1 Wprowadzenie

Półprzewodnikowe detektory promieniowania wykorzystują energię rejestrowanych cząstek do przenoszenia elektronów do pasma przewodnictwa. W przypadku detekcji promieniowania gamma foton jest absorbowany przez niskie pasmo, co powoduje wyrzucenie elektronu i powstanie dziury. Następnie ta jest zapełniana przez elektron z wyższego pasma, co prowadzi do jej "wędrówki" do pasma walencyjnego. Uporządkowany ruch powstałych ładunków powoduje spadek napięcia w obwodzie licznika, który może być odpowiednio przeliczony.

Do detekcji wysokoenergetycznych kwantów gamma wykorzystuje się liczniki germanowe ze względu na ich lepsze właściwości absorbcyjne. Odmiana HPGe (high purity germanium) nie wymaga już nieustannego chłodzenia ciekłym azotem w celu uniknięcia "wyparowania" litu, którym półprzewodnik był dryfowany, ale procedura ta jest niezbędna podczas pracy urządzenia. W związku z tym układ pomiarowy będzie zawierał detektor firmy Canberra, naczynie Dewara, układ zasilający, wzmacniacz i analizator wielokanałowy oraz ołowiany bunkier do umieszczania próbek. Dane zbierane przez licznik będą analizowane w programie komputerowym Genie-2000.

Wykorzystane źródła promieniowania rozpadają się według równań (1)-(5).

$$^{60}\text{Co} \longrightarrow ^{60}\text{Ni} + e^- + \bar{\nu}_e$$
 (1)

$$^{137}\mathrm{Cs} \longrightarrow ^{137}\mathrm{Ba} + \mathrm{e}^- + \bar{\nu}_e$$
 (2)

$$^{241} \mathrm{Am} \, \longrightarrow \, ^{237} \mathrm{Np} + \, ^{4} \mathrm{He} \, \longrightarrow \, ^{237} \mathrm{Np}, ^{233} \mathrm{Pa}, ^{233} \mathrm{U}, ^{229} \mathrm{Th}, ^{225} \mathrm{Ra}, \ldots$$

...,
$$^{209}{\rm Pb},^{209}{\rm Bi} \,\longrightarrow\,^{205}{\rm Tl} + 9\,^{4}{\rm He} + 4\,{\rm e}^{-} + 4\,\bar{\nu}_{e} \quad (3)$$

22
Na \longrightarrow 22 Ne + e⁺ + ν_e (4)

$$^{133}\text{Ba} \longrightarrow ^{133}\text{Cs} + e^- + \bar{\nu}_e$$
 (5)

Wydajność energetyczną detektora możemy wyrazić za pomocą równania

$$\varepsilon(E) = \frac{N(E)}{tAp(E)} \underbrace{C_s C_c \dots}_{\approx 1}, \tag{6}$$

gdzie N(E) jest liczbą zliczeń netto w piku odpowiadającym energii $E,\,t$ czasem, p(E) prawdopodobieństwem emisji kwantów gamma o energii E na jeden rozpad nuklidu, $C_sC_c\dots$ współczynnikami poprawkowym, a A aktualną aktywnością źródła daną przez równanie

$$A = A_0 \left(\frac{1}{2}\right)^{t/T_{1/2}},\tag{7}$$

gdzie A_0 jest aktywnością początkową wyznaczoną w znanym czasie oraz $T_{1/2}$ jest czasem połowicznego rozpadu nuklidu

2 Wykonanie ćwiczenia

W detektorze umieszczano kolejno różne źródła promieniotwórcze w postaci pastylek 241 Am, 133 Ba, 60 Co, 137 Cs i 22 Na, jedną nieznaną próbkę wzorcową oraz jedną naturalną. Pomiaru dokonywano każdorazowo przez $100\,\mathrm{s}$ a następnie zapisywano plik z danymi i rozpoczynano analizę otrzymanego widma.

Kolejnym krokiem było przeprowadzenie kalibracji energetycznej spektrometru na podstawie uzyskanych pików źródeł wzorcowych oraz wyznaczenie jego rozdzielczości. Później można było przejść do próby identyfikacji nieznanej próbki wzorcowej oraz naturalnej.

3 Analiza danych

Dane odczytane dla pastylek źródeł wzorcowych zamieszczono w tabeli 1. Pozwoliły one na kalibrację energetyczną spektrometru przez dopasowanie prostej regresji dla zależności energii pików, odczytanej z tablic, od numeru kanału spektrometru, widocznej na rysunku 1. Otrzymane widma źródeł wzorcowych są widoczne na rysunkach 4-8.

TAB. 1: Zebrane dane pomiarowe dla znanych źródeł.

nuklid	60(Co	137Cs	$^{241}\mathrm{Am}$	22	Na
centroid	3465	3933	1961	188	1518	3763
E [keV]	1173,347	$1332,\!521$	661,81	58,79	511,14	1274,70
$E_{\text{teo.}} [\text{keV}]$	1173	1333	662	60	511	1275
area	1205	1108	61865	57498	30081	6020
FWHM [keV]	1,916	2,131	1,451	0,858	2,524	1,987

nuklid	¹³³ Ba					
centroid	169	253	830	907	1064	1145
$E_{\text{teo.}} [\text{keV}]$	53	81	276	303	356	384
area	825	35027	4892	12054	36901	5581
FWHM [keV]	1,019	1,031	1,285	1,305	1,418	1,437

Rys. 1: Energia piku głównego przypadająca na dany kanał detektora wraz z krzywą kalibracyjną o równaniu umieszczonym na wykresie.

Na podstawie zebranych danych można także wyznaczyć rozdzielczość energetyczną detektora widoczną na rysunku 2. Porównując ją z deklarowaną przez producenta wynoszącą $2\,\mathrm{keV}$ dla $^{60}\mathrm{Co}$ (pik $1333\,\mathrm{keV}$) można stwierdzić, że licznik nie jest urządzeniem najnowszym z uwagi na pogorszenie rozdzielczości o 6,55%.

Rys. 2: Energetyczna zdolność rozdzielcza detektora.

Rys. 3: Zależność logarytmu naturalnego wydajności detektora od logarytmu naturalnego energii.

Dane potrzebne do wyliczenia wydajności detektora zebrano w tabeli 3.

Tab. 2

Pik	A [kBq]	$ \epsilon(E)$
¹³³ Ba 356 keV	1,18	25,17 %
137 Cs 662 keV	8,16	4,46 %
22 Na 1275 keV	0,24	200 %

Zależność logarytmu wydajności od logarytmu energii nie przypomina liniowej, co zostało uwidocznione na rysunku 3.

TAB. 3: Zestawienie liczby zliczeń N(E) piku o energii E po czasie t dla odpowiednich nuklidów. Dodatkowo podano prawdopodobieństwo emisji kwantów gamma p(E), czas połowicznego rozpadu $T_{1/2}$ oraz aktywność źródła A_0 na dzień podany w kolumnie obok.

nuklid	E [keV]	N(E)	t [s]	p(E)	A_0 [kBq]	$T_{1/2}$ [y]	kiedy A_0	A_k	$ \epsilon(E) $
¹³³ Ba	356	36901	200	0,62	124	10	01/05/1976	1,16	255,9
$^{137}\mathrm{Cs}$	662	61865	200	0,85	$38,\!5$	30	01/05/1976	8,11	44,8
²² Na	1275	6020	200	1	$455,\!8$	2,6	02/04/2003	0,23	132,8

Pomiar nieznanej próbki wzorcowej wykazał piki dla energii $122.5\,\mathrm{keV},\,245.9\,\mathrm{keV},\,345.3\,\mathrm{keV}$ oraz $1408\,\mathrm{keV}$. Korzystając z serwisu internetowego [1] przy nastawieniu tolerancji energii równej $3\,\mathrm{keV}$ oraz czasu połowicznego rozpadu powyżej $100\,\mathrm{dni},\,\mathrm{z}$ uwagi na długoletnie przechowywanie próbek w pracowni, określono nuklid odpowiadający ostatniemu pikowi jako $^{152}\mathrm{Eu}.$

Widmo źródła naturalnego widoczne jest na rysunku 10, a zestawienie energii jego pików oraz rozpoznanych nuklidów znajduje się w tabeli 4.

TAB. 4: Energie pików widma naturalnego źródła promieniowania wraz z dopasowanymi nuklidami szeregów $^{232}{\rm Th}$ i $^{238}{\rm U}.$

E [keV]	szereg ²²⁸ Th	szereg $^{238}\mathrm{U}$
74	$^{228}\mathrm{Th}$	
89	996	
130	$^{228}\mathrm{Th}$	
$ \begin{array}{c c} 209 \\ 238 \end{array} $	²¹² Pb	
$\frac{236}{270}$	ΓD	
277	²⁰⁸ Tl	
300	²¹² Pb	
338		

E [keV]	szereg ²²⁸ Th	szereg $^{238}\mathrm{U}$
338 352 464		²¹⁸ Pb
510 583 610	²⁰⁸ Tl ²⁰⁸ Tl	²¹⁴ Bi
726 910 968		

Brakuje piku radu 226

Rys. 4: 241 Am.

Rys. 5: 133 Ba.

Rys. 6: 60 Co.

Rys. 7: $^{22}{\rm Na}.$ Zauważalny jest pik sumacyjny dla energii 511 keV + 1275 keV = 1786 keV.

Rys. 8: 137 Cs.

Rys. 9: Przybliżony wykres widma $^{137}\mathrm{Cs}$ by uwidocznić pik rozproszenia wstecznego dla energii około 200 keV, który wybija się z kontinuum comptonowskiego.

Rys. 10: Widmo promieniowania źródła naturalnego.

Literatura

- [1] http://nucleardata.nuclear.lu.se/toi/Gamma.asp?sql=&Min=1406&Max=1410&HlifeMin=8640000&tMinStr=100+d. Dostęp: 9 listopada 2022 r.
- [2] B. Dziunikowski, S. Kalita. Ćwiczenia laboratoryjne z jądrowych metod pomiarowych. Wydawnictwa AGH, Kraków, 1995.