获得的答案

Cook - Levin theorem:

SAT is NP - Complete. This theorem restates that $SAT \in P$ iff P = NP.

- \bullet In the proof of the Cook-Levin theorem, a window size to be a $\,2\times3$ rectangle of cells.
- $\bullet \text{ If we had used } 2 \times 2 \text{ windows that we can only use } 2 \times 2 \text{ sub windows of the ones, obtained by deleting the leftmost or the rightmost column.}$
- Legal window 2×3 is as follows.

а	q_1	b
q_2	а	c

- In the window of figure (head move left), the right two columns allow the head to move left.
- \bullet The left two columns allow the head to move left into a state q_2 , but this state is no longer restricted by what symbol was scanned by the head.
- So if there is some state q_2 into which it is possible to move while moving left, this window allows switching into this state on any left move.
- This will allow typically many tableaux (and so many satisfying assignments) that do not correspond to computations of our nondeterministic Turing machine.