No.	Author	Year	Title	Venue
	Dezfuli, H et		A "Systems/Case-Based" approach to system	
1	al.	2012	safety	ESREL and PSAM
	Cassano, V et		A (Proto) logical basis for the notion of a	
2	al.	2016	structured argument in a safety case	ICFEM
	Denney, E et			
3	al.	2013	A formal basis for safety case patterns	SAFECOMP
	Wang, R et		A framework for assessing safety	
4	al.	2016	argumentation confidence	SERENE
	Hawkins, R		A framework for determining the sufficiency	
5	et al.	2012	of software safety assurance	SSCS
	_		A framework for synthesis of safety	
	Despotou, G	2047	justification for digitally enabled healthcare	B:-7:-111111
6	et al.	2017	services	Digital Health
_		2046	A Framework to Support Generation and	1500 5147
7	Lin, C et al.	2016	Maintenance of an Assurance Case	ISSREW
			A knowledge integration approach of safety-	
		2014	critical software development and operation	450
8	Yamamoto, S	2014	based on the method architecture	KES
9	Dirch Lotal	2014	A layered model for structuring automotive safety arguments	EDCC
-	Birch, J et al.	2014		EDCC
10	Viger, T et al.	2021	A Lean Approach to Building Valid Model- Based Safety Arguments	MODELS
10		2021		WIODELS
11	Denney, E et al.	2012	A lightweight methodology for safety case assembly	SAFECOMP
11	ai.	2012	A method to formally evaluate safety case	SAI LCOIVIF
	Björnander,		arguments against a system architecture	
12	S et al.	2012	model	ISSREW
			A method to generate reusable safety case	
			argument-fragments from compositional	
13	Šljivo, I et al.	2017	safety analysis	JSS
	Guiochet, J		A model for safety case confidence	
14	et al.	2015	assessment	SAFECOMP
			A model-driven safety certification method for	
15	Gallina, B	2014	process compliance	ISSREW
	Larrucea, A		A modular safety case for an IEC-61508	
16	et al.	2015	compliant generic COTS multicore processor	CIT
	Larrucea, A		A modular safety case for an IEC-61508	
17	et al.	2015	compliant generic hypervisor	DSD
			A pattern-based approach towards the guided	
	Khalil, M et		reuse of safety mechanisms in the automotive	
18	al.	2014	domain	IMBSA

19 al. 2021 A probabilistic model of belief in safety cases A Qualitative Counterpart of Belief Functions with Application to Uncertainty Propagation 20 Y et al. 2022 in Safety Cases A safety argument strategy for PCA closed- 21 Feng, L et al. 2014 loop systems: A preliminary proposal MCPS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO 22 al. 2019 26262 ICSRS Ayoub, A et 23 al. 2012 development approach A safety-argument based method to predict 24 Liu, Q et al. 2012 system failure PHM	Journal
Idmessaoud, 2014 with Application to Uncertainty Propagation in Safety Cases A safety argument strategy for PCA closed-loop systems: A preliminary proposal MCPS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO 2019 26262 A Safety case pattern for model-based development approach A Safety-argument based method to predict system failure PHM	
20 Y et al. 2022 in Safety Cases BELIEF A safety argument strategy for PCA closed- loop systems: A preliminary proposal MCPS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO 22 al. 2019 26262 ICSRS Ayoub, A et A safety case pattern for model-based development approach NFM A safety-argument based method to predict system failure PHM	
A safety argument strategy for PCA closed- loop systems: A preliminary proposal MCPS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO al. 2019 26262 ICSRS Ayoub, A et A safety case pattern for model-based development approach A safety-argument strategy for PCA closed- MCPS ICSRS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO ICSRS A safety case pattern for model-based development approach A safety-argument based method to predict system failure PHM	
21 Feng, L et al. 2014 loop systems: A preliminary proposal MCPS A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO 22 al. 2019 26262 ICSRS Ayoub, A et A safety case pattern for model-based development approach NFM A safety-argument based method to predict system failure PHM	
A Safety Argumentation for Fail-Operational Automotive Systems in Compliance with ISO 22 al. 2019 26262 ICSRS Ayoub, A et A safety case pattern for model-based development approach A safety-argument based method to predict system failure PHM	
Schmid, T et 2019 Automotive Systems in Compliance with ISO 2019 26262 ICSRS Ayoub, A et 2012 development approach NFM A safety-argument based method to predict system failure PHM	
22 al. 2019 26262 ICSRS Ayoub, A et A safety case pattern for model-based development approach NFM A safety-argument based method to predict system failure PHM	
Ayoub, A et 23 al. A safety case pattern for model-based development approach A safety-argument based method to predict system failure PHM	
23 al. 2012 development approach NFM A safety-argument based method to predict 24 Liu, Q et al. 2012 system failure PHM	
A safety-argument based method to predict 24 Liu, Q et al. 2012 system failure PHM	
24 Liu, Q et al. 2012 system failure PHM	
Menon, C et A safety-case approach to the ethics of	
25 al. 2020 autonomous vehicles Safety and Rel	iability
A Structured Argument for Assuring Safety of	
26 Birch, J et al. 2020 the Intended Functionality (SOTIF) WAISE	
A systematic approach and tool support for	
27 Luo, Y et al. 2017 GSN-based safety case assessment JSA	
Ayoub, A et A systematic approach to justifying sufficient	
28 al. 2012 confidence in software safety arguments SAFECOMP	
A V-model framework for the certification	
Vorapojpisut, against the Annex R of IEC 60335-1: Class B	
29 S 2016 appliances ICIT	
Denney, E et AdvoCATE: An assurance case automation	
30 al. 2012 toolset SASSUR	
Myklebust, T Agile safety case and DevOps for the	
31 et al. 2020 automotive industry ESREL and PSA	AM
Myklebust, T	
32 et al. 2022 Agile safety case for vehicle trial operations PSAM	
An analysis of safety evidence management	
de la Vara, J with the Structured Assurance Case	
33 et al. 2017 Metamodel [Article] CSI	
An Assurance Case Pattern for the	
Interpretability of Machine Learning in Safety-	
34 Ward, F et al. 2020 Critical Systems DECSoS	
Yamamoto, S An evaluation of argument patterns to reduce	
35 et al. 2013 pitfalls of applying assurance case ASSURE	
An evidential reasoning approach for	
36 Nair, S et al. 2016 assessing confidence in safety evidence ISSRE	
Matsuno, Y An implementation of GSN community	
37 et al. 2013 standard ASSURE	

	Larrucea, X		Analyzing a ROS based architecture for its	
38	et al.	2018	cross reuse in ISO26262 settings	MEDI
			Applying Safety Case Pattern to Generate	
39	Lin, C et al.	2015	Assurance Cases for Safety-Critical Systems	HASE
	Gleirscher, M	2017	Arguing from hazard analysis in safety cases: A	
40	et al.	2017	modular argument pattern	HASE
41	Cârlan, C et	2017	Arguing on software-level verification techniques appropriateness	SAFFCONAD
41	al.	2017	techniques appropriateriess	SAFECOMP
42	Hocking, A et al.	2014	Arguing software compliance with ISO 26262	ISSREW
72	Grigorova, S	2014	Argument Evaluation in the Context of	ISSILEV
43	et al.	2014	Assurance Case Confidence Modeling	ISSREW
	Denney, E et		ARgument-based airworthiness assurance of	
44	al.	2015	small UAS	DASC
			Argument-based approach to computer	
45	Yuan, T et al.	2012	system safety engineering	IJCCBS
			Argument-Driven Safety Engineering of a	
4.6	5	2020	Generic Infusion Pump with Digital	U. 40C A
46	Reich, J et al.	2020	Dependability Identities	IMBSA
47	de la Vara, J et al.	2019	Assessment of the Quality of Safety Cases: A Research Preview	REFSQ
47		2019		REFOU
48	Picardi, C et al.	2020	Assurance argument patterns and processes for machine learning in safety-related systems	SafeAl
	Y. Zhang et	2020	Assurance case considerations for	- Carer II
49	al.	2018	interoperable medical systems	ASSURE
			Assurance Case to Structure COTS Hardware	
	Schwierz, A		Component Assurance for Safety-Critical	
50	et al.	2018	Avionics	DASC
	Asaadi, E et	2022	Assured Integration of Machine Learning-	BASS
51	al.	2020	based Autonomy on Aviation Platforms	DASC
52	Denney, E et al.	2014	Assuring ground-based detect and avoid for UAS operations	DASC
J2	Conmy, P et	2014	Assuring safety for component based	DAGE
53	al.	2014	software engineering	HASE
			Automated evidence analysis of safety	
			arguments using digital dependability	
54	Reich, J et al.	2019	identities	SAFECOMP
	Hartsell, C et		Automated Method for Assurance Case	
55	al.	2021	Construction from System Design Models	ICSRS
	Armengaud,	204.4	Automated safety case compilation for	FDTC
56	E Câulaus Cat	2014	product-based argumentation	ERTS
57	Cârlan, C et al.	2022	Automating Safety Argument Change Impact Analysis for Machine Learning Components	PRDC
37	aı.	2022	Analysis for Machine Learning Components	FNDC

58	Denney, E et al.	2014	Automating the assembly of aviation safety cases	TOR
	Macher, G et			
59	al.	2014	Automotive safety case pattern	EuroPLoP
	Idmessaoud,		Belief Functions for Safety Arguments	
60	Y et al.	2020	Confidence Estimation: A Comparative Study	SUM
61	Williams, B et al.	2014	Building the safety case for UAS operations in support of natural disaster response	Integration, and Operations Conference
01	et al.	2014	Can Product-Specific Assurance Case	Conference
	Wassyng, A		Templates Be Used as Medical Device	
62	et al.	2015	Standards?	IEEE Design & Test
			Checkable Safety Cases: Enabling Automated	
63	Carlan, C et	2020	Consistency Checks between Safety Work	ICCDEVA
63	al.	2020	Products Combining CCN and CTRA for Cofety	ISSREW
64	Hirata, C et al.	2019	Combining GSN and STPA for Safety Arguments	ASSURE
04	Denney, E et	2013	Aiguments	ASSURE
65	al.	2016	Composition of safety argument patterns	SAFECOMP
			Computer-assisted safety argument review - A	
66	Yuan, T et al.	2015	dialectics approach	Argument and Computation
			Confidence Arguments for Evidence of	
67	Burton, S et	2010	Performance in Machine Learning for Highly	WAISE
67	al. Wang, R et	2019	Automated Driving Functions Confidence assessment framework for safety	WAISE
68	al.	2017	arguments	SAFECOMP
	Groza, A et		Consistency checking of safety arguments in	
69	al.	2014	the Goal Structuring Notation standard	ICCP
	Nešić, D et		Constructing product-line safety cases from	
70	al.	2019	contract-based specifications	SAC
71	Day Ashal	2012	Constructing safety assurance cases for	ACCLIDE
71	Ray, A et al.	2013	medical devices	ASSURE
72	Warg, F et al.	2019	Continuous deployment for dependable systems with continuous assurance cases	ISSREW
'-	Juarez	2013	Systems with continuous assurance cases	10011211
	Dominguez,		Creating safety assurance cases for rebreather	
73	A et al.	2013	systems	ASSURE
	Chowdhury,		Criteria to Systematically Evaluate (Safety)	
74	T et al.	2019	Assurance Cases	ISSRE
	Beyene, T et		CyberGSN: A Semi-formal Language for	
75	al.	2021	Specifying Safety Cases	DSN-W
76	Jaradat, O et	2016	Dariving Higgsphical Safaty Contracts	DDDC
76	al.	2016	Deriving Hierarchical Safety Contracts	PRDC

			Deriving reusable process-based arguments	
	Gallina, B et	2045	from process models in the context of railway	454
77	al.	2015	safety standards	ADA
78	Gallina, B et al.	2016	Deriving safety case fragments for assessing MBASafe's compliance with EN 50128	CCIS
78	ai.	2010	Deriving Safety Contracts to Support	CCIS
79	Sljivo, I et al.	2015	Architecture Design of Safety Critical Systems	HASE
	Gallina, B et		Deriving verification-related means of	-
80	al.	2016	compliance for a model-based testing process	DASC
			Developing a safety case for electronic	
81	Jia, Y et al.	2019	prescribing	STHI
			Developing the Safety Case for MediPi: An	
82	Carr, A et al.	2017	Open-Source Platform for Self Management	SHTI
83	Luo, Y et al.	2016	Development of a safety case editor with assessment features	WASA
03	Luo, i et al.	2010	Development of a Template Safety Case for	**AJA
	Clothier, R et		Unmanned Aircraft Operations over Populous	
84	al.	2015	Areas	SAE Technical papers
	Wang, R et		D-S Theory for argument confidence	
85	al.	2016	assessment	BELIEF
0.0	Muram, F et	2020	Dynamic Reconfiguration of Safety-Critical	222
86	al.	2020	Production Systems	PRDC
87	Denney, E et al.	2015	Dynamic Safety Cases for Through-Life Safety Assurance	ICSE
67	Diemert, S et	2013	Eliminative argumentation for arguing system	ICSL
88	al.	2020	safety - A practitioner's experience	SYSCON
	Gallina, B et		Enabling cross-domain reuse of tool	
89	al.	2014	qualification certification artefacts	DEVVARTS
			Engineering of Runtime Safety Monitors for	
			Cyber-Physical Systems with Digital	
90	Reich, J et al.	2020	Dependability Identities	SAFECOMP
01	Mumtaz, M	2010	ENGINEERING SAFETY CASE ARGUMENTS	INIAC
91	et al.	2019	USING GSN STANDARDS	JNAS
92	Cârlan, C et al.	2020	Enhancing state-of-the-art safety case patterns to support change impact analysis	ESREL and PSAM
32	Denney, E et	2020	Evidence arguments for using formal methods	LONEL and I SAIVI
93	al.	2013	in software certification	ISSREW
	Cârlan, C et		ExplicitCase: Integrated model-based	
94	al.	2017	development of system and safety cases	ASSURE
			ExplicitCase: Tool-Support for Creating and	
	Cârlan, C et	2015	Maintaining Assurance Arguments Integrated	ICCD FILE
95	al.	2019	with System Models	ISSREW
06	Prokhorova,	2015	Facilitating construction of safety cases from	ICT
96	Y et al.	2015	formal models in Event-B	IST

	Jaradat, O et			
97	al.	2016	Facilitating the Maintenance of Safety Cases	ICRESH-ARMS
			FASTEN.Safe: A Model-Driven Engineering	
00	Cârlan, C et	2020	Tool to Experiment with Checkable Assurance	CAFECONAD
98	al.	2020	Cases.	SAFECOMP
00	Denney, E et	2015	Formal Foundations for Hierarchical Safety	LIACE
99	al.	2015	Cases	HASE
100	Iliasov, A et	2022	Formal verification of railway interlocking and	Safety-critical symposium
100	al.	2022	its safety case	SCS
101	Laibinis, L et	2015	From requirements engineering to safety	SETTA
101	al.	2015	assurance: Refinement approach	SETTA
	Maria dha a 17			
102	Woodham, K et al.	2010	FUEL FAD model based system safety analysis	Integration, and Operations Conference
102	et al.	2018	FUELEAP model-based system safety analysis	Conterence
103	Zeng, F et al.	2013	General development framework and its application method for software safety case	Journal of Software
103		2013		Journal of Software
104	Annable, N et al.	2022	Generating Assurance Cases Using Workflow+ Models	SAFECOMP
104	et al.	2022		SAFECOMP
105	Sljivo, I et al.	2014	Generation of safety case argument-	SAFECOMP
105	-	2014	fragments from safety contracts	SAFECOIVIP
106	Zapata, D et al.	2018	Geohazard management approach within safety case	IPC
100	ai.	2016	Graphical safety assurance case using Goal	IFC
			Structuring Notation (GSN)–challenges,	
	Chelouati, M		opportunities and a framework for	Reliability Engineering and
107	et al.	2022	autonomous trains	System Safety
	Nicolas, C et		GSN support of mixed-criticality systems	
108	al.	2017	certification	DECSoS
	Denney, E et		Heterogeneous aviation safety cases:	
109	al.	2012	Integrating the formal and the non-formal	ICECCS
	Denney, E et			
110	al.	2013	Hierarchical safety cases	NFM
	Murphy, K et			
111	al.	2012	How reliable is my safety case?	HAZARDS
	Hoang, Q et		Human-robot interactions: Model-based risk	
112	al.	2012	analysis and safety case construction	ERTS
	Dardar, R et		Industrial experiences of building a safety case	
113	al.	2012	in compliance with ISO 26262	ISSREW
	Cârlan, C et		Integrated Formal Methods for Constructing	
114	al.	2016	Assurance Cases	ISSREW
	Vierhauser,		Interlocking Safety Cases for Unmanned	
115	M et al.	2021	Autonomous Systems in Shared Airspaces	TSE

	Łukasiewicz,		Introducing agile practices into development	
116	K et al.	2018	processes of safety critical software	XP
	Despotou, G			
117	et al.	2012	Introducing safety cases for health IT	SEHC
			ISO 26262 concept phase safety argument for	
118	Ibarra, I et al.	2012	a complex item	SSCS
			IV&V Case: Empirical study of software	
	Kakimoto, K		independent verification and validation based	
119	et al.	2017	on safety case	ISSREW
			Learning from experience – how can we	
			produce a nuclear safety case to outlast the	
120	Brain, J. M	2014	station?	SSCS
	Agrawal, A et		Leveraging Artifact Trees to Evolve and Reuse	
121	al.	2019	Safety Cases	ICSE
	Prokhorova,			
122	Y et al.	2012	Linking modelling in event-B with safety cases	SERENE
	Taguchi, K et			
123	al.	2014	Linking traceability with GSN	ISSREW
124	Carlan, C	2017	Living safety arguments for open systems	ISSREW
	Sorokos, I et		Maintaining Safety Arguments via Automatic	
125	al.	2016	Allocation of Safety Requirements	IFAC
	Clothier, R et		Making a risk informed safety case for small	
126	al.	2017	unmanned aircraft system operations	ATIO
	Nevalainen,		Making Software Safety Assessable and	
127	R et al.	2013	Transparent	EuroSPI
			Measure Confidence of Assurance Cases in	
128	Lin, C et al.	2018	Safety-Critical Domains	ICSE
			Measurement sufficiency versus	
			completeness: Integrating safety cases into	
	Boring, R et		verification and validation in nuclear control	
129	al.	2017	room modernization	AISC
	Jones, P et		Medical device risk management and safety	
130	al.	2015	cases	BMIT
	Di Sandro, A		MMINT-A 2.0: Tool Support for the Lifecycle	
131	et al.	2020	of Model-Based Safety Artifacts	MODELS-C
	Hartsell, C et		Model-based design for CPS with learning-	
132	al.	2019	enabled components	DESTION
	Chouchani, N		Model-based safety engineering for	
133	et al.	2022	autonomous train map	JSS
	Retouniotis,			
134	A et al.	2017	Model-connected safety cases	IMBSA
	Denney, E et		Model-Driven Development of Safety	
135	al.	2017	Architectures	MODELS

	Wang, R et			
136	al.	2018	Modelling confidence in railway safety case	Safety Science Journal
	Larrucea, A		Modular Development and Certification of	
137	et al.	2017	Dependable Mixed-Criticality Systems	DSD
	Nešić, D et		Modular Safety Cases for Product Lines Based	
138	al.	2019	on Assume-Guarantee Contracts	ASSURE
	A		On safety assurance case for deep learning	
139	Agarwal, H et al.	2021	based image classification in highly automated driving	DATE
133	Gauerhof, L	2021		DATE
140	et al.	2021	On the Necessity of Explicit Artifact Links in Safety Assurance Cases for Machine Learning	ISSREW
140	Denney, E et	2021	Perspectives on software safety case	ISSILEV
141	al.	2012	development for unmanned aircraft	DSN
	Gallina, B et		Pioneering the creation of ISO 26262-	
142	al.	2017	compliant OSLC-based safety cases	ISSREW
	-		Presenting a traceability based approach for	
143	Katta, V et al.	2014	safety argumentation	ESREL
	Napolano, M		Preventing recurrence of industrial control	
144	et al.	2016	system accident using assurance case	ISSREW
	Chowdhury,		Principles for systematic development of an	
145	T et al.	2017	assurance case template from ISO 26262	ISSREW
	Gallina, B et		Promoting MBA in the rail sector by deriving	
146	al.	2017	process-related evidence via MDSafeCer	CSI
	Idmessaoud,		Quantifying Confidence of Safety Cases with	
147	Y et al.	2021	Belief Functions	BELIEF
			Quantifying uncertainty in safety cases using	
148	Nair, S et al.	2014	evidential reasoning	SASSUR
4.40	Di Sandro, A	2040	Querying automotive system models and	
149	et al.	2019	safety artifacts with MMINT and viatra	MODELS-C
150	Denney, E et	2014	Overving refety sees	CAFFCONAD
150	al.	2014	Querying safety cases	SAFECOMP
151	Graydon, P et al.	2014	Realistic safety cases for the timing of systems	Computer Journal
131	etai.	2014	Representation of Confidence in Assurance	Computer Journal
152	Duan, L et al.	2016	Cases Using the Beta Distribution	HASE
			Requirements Engineering for Safety-Critical	
153	Lutz, R. R	2022	Molecular Programs	RE
	-		Rethinking of strategy for safety argument	
154	Sun, L et al.	2014	development	SASSUR
			Risk informed safety case framework for	
	Guarro, S et	201-	unmanned aircraft system flight software	
155	al.	2017	certification	Aerospace Conference

			Risk-based requirements management	
456		2042	framework with applications to assurance	
156	Feng, D et al.	2013	cases	Aerospace Conference
457	Koopman, P	2010	Safety argument considerations for public	14/67/
157	et al.	2019	road testing of autonomous vehicles	WCX
150	Wang, S et	2020	Safety Argument Pattern Language of Safety- Critical Software	DSA
158	al.	2020		DSA
			Safety Assurance Case Description Method for	
450	Fujino, H et	2010	Systems Incorporating Off-Operational	INCOCE
159	al.	2019	Machine Learning and Safety Device	INCOSE
	Burton, S et		Safety Assurance of Machine Learning	
160	al.	2021	for Chassis Control Functions	SAFECOMP
	Wang, R et		Safety case confidence propagation based on	
161	al.	2019	Dempster–Shafer theory	IJAR
			Safety Case Conversion from Goal Structuring	
	Buysse, L et		Notation to Structured Assurance Case	
162	al.	2022	Metamodel	ET
	Fahreza			
	Inzaghi, M et		Safety Case Development for Risk	Earth and Environmental
163	al.	2021	Management of Offshore Pipeline	Science
			Safety case development: a process to	
	Standish, M		implement the safety three-layered	
164	et al.	2014	framework	SSCS
4.65	D : A	2045	Safety case driven development for medical	CAFFCOLAR
165	Ruiz, A et al.	2015	devices	SAFECOMP
4.00	Holmberg, J		Safety case framework to provide justifiable	
166	et al.	2012	reliability numbers for software systems	ESREL and PSAM
	Kalal Cal		Safety case impact assessment in automotive	
1.07	Kokaly, S et	2017	software systems: An improved model-based	CAFFCONAD
167	al.	2017	approach	SAFECOMP
460	Ilizástigui	2022	Safety case process in Cuba: Transition from	DCED
168	Pérez, F	2020	theory to practice	PSEP
	Ilizástigui		Safety Case regulations for major hazard	
169	Pérez, F	2017	facilities in Cuba	HAZARDS
			Safety cases and their role in ISO 26262	
170	Birch, J et al.	2013	functional safety assessment	SAFECOMP
	Mirzaei, E et		Safety cases for adaptive systems of systems:	
171	al.	2020	State of the art and current challenges	EDCC
			Safety cases for medical devices and health	
	Sujan, M et		information technology: Involving health-care	
172	al.	2013	organisations in the assurance of safety	Health Informatics Journal
	Denney, E et		Safety considerations for UAS ground-based	
173	al.	2016	detect and avoid	DASC

		ĺ	Safety evidence traceability: Problem analysis	
174	Nair, S et al.	2014	and model	REFSQ
	, , , , , , , , , , , , , , , , , , , ,		Safety qualification process for an	
	Heikkilä, E et		autonomous ship prototype - A goal-based	
175	al.	2017	safety case approach	TRANSNAV
			Safety.Lab: Model-based domain specific	
176	Ratiu, D et al.	2015	tooling for safety argumentation.	ASSURE
	,		Scenario- and Model-Based Systems	
			Engineering Procedure for the SOTIF-	
	Meyer, M et		Compliant Design of Automated Driving	
177	al.	2022	Functions	IV
	Aiello, M et			
178	al.	2014	SCT: A safety case toolkit	ISSREW
			SMIRK: A machine learning-based pedestrian	
	Socha, K et		automatic emergency braking system with a	
179	al.	2022	complete safety case	Software Impacts
			Software safety certification framework based	
180	Zeng, F et al.	2012	on safety case	CSSS
			Structuring the Safety Argumentation for	
	Schwalbe, G		Deep Neural Network Based Perception in	
181	et al.	2020	Automotive Applications	WAISE
			Support for safety case generation via model	
182	Lin, C et al.	2017	transformation	SIGBED
	Górski, J et		Supporting assurance by evidence-based	ERCIM/EWICS/Cyberphysical
183	al.	2012	argument services	Systems
	de Oliveira, A		Supporting the automated generation of	
184	et al.	2015	modular product line safety cases	DepCoS-RELCOMEX
	Bagheri, H et		Synthesis of Assurance Cases for Software	
185	al.	2020	Certification	ICSE
	Chowdhury,		Systematic Evaluation of (Safety) Assurance	
186	T et al.	2020	Cases	SAFECOMP
	Jaradat, O et		Systematic maintenance of safety cases to	
187	al.	2016	reduce risk	ASSURE
			Tackling Uncertainty in Safety Assurance for	
	Matsuno, Y		Machine Learning: Continuous Argument	
188	et al.	2019	Engineering with Attributed Tests	WAISE
	Stålhane, T			
189	et al.	2016	The agile safety case	ASSURE
	Cassano, V et		The definition and assessment of a safety	
190	al.	2014	argument	ISSREW
			The Development of Safety Cases for an	
			Autonomous Vehicle: A Comparative Study on	
191	Yang, J et al.	2017	Different Methods	ICVS
	<u> </u>	·	ı	1

			The development of safety cases for	
	Sujan, M et		healthcare services: Practical experiences,	
192	al.	2015	opportunities and challenges	RESS
193	Ellor, G	2021	The e-SafetyCase - Electronic or Effortless?	CCPS 2021
			The ForeMoSt approach to building valid	
194	Viger, T et al.	2022	model-based safety arguments	SoSym
			The Missing Link: Developing a Safety Case for	
195	Salay, R et al.	2022	Perception Components in Automated Driving	WCX
	Denney, E et		The role of safety architectures in aviation	Relaibility Engineering and
196	al.	2019	safety cases	System safety
	Standish, M		The safety three-layer framework: a case	
197	et al.	2014	study	SSCS
100	Denney, E et	2212		
198	al.	2018	Tool support for assurance case development	ASE
100	Duit Astal	2012	Towards a case-based reasoning approach for	CACCLIB
199	Ruiz, A et al.	2012	safety assurance reuse	SASSUR
200	Craudon D I	2014	Towards a clearer understanding of context	SAFFCONAD
200	Graydon, P. J	2014	and its role in assurance argument confidence	SAFECOMP
201	Denney, E et al.	2015	Towards a formal basis for modular safety cases	SAFECOMP
201	McDermid, J	2013	Towards a framework for safety assurance of	JAI LCOIVII
202	et al.	2019	autonomous systems	CEUR
202	et all	2013	Towards a safety case for hardware fault	CEON
	Geissler, F et		tolerance in convolutional neural networks	
203	al.	2021	using activation range supervision	CEUR
			Towards a safety case for runtime risk and	
	Eastwood, R		uncertainty management in safety-critical	
204	et al.	2013	systems	CSC
			Towards an ISO 26262-compliant OSLC-based	
205	Gallina, B et	2017	tool chain enabling continuous self-	QUATIC
203	al.	2017	assessment Towards building a safety case for marine	QUATIC
			unmanned surface vehicles: A bayesian	
206	Brito, M. P	2017	perspective	ESREL
	Shahin, R et		Towards Certified Analysis of Software	
207	al.	2021	Product Line Safety Cases	SAFECOMP
	Alajrami, S et		Towards cloud-based enactment of safety-	
208	al.	2016	related processes	SAFECOMP
	Javed, M et		Towards dynamic safety assurance for	
209	al.	2021	Industry 4.0	JSA
	Gallina, B et		Towards Enabling Reuse in the Context of	
210	al.	2015	Safety-Critical Product Lines	PLEASE

	Wardziński,		Towards safety case integration with hazard	
211	A et al.	2016	analysis for medical devices	ASSURE
	Idmessaoud,		Uncertainty Elicitation and Propagation	
212	Y et al.	2022	in GSN Models of Assurance Cases	SAFECOMP
	Mjeda, A et		Uncertainty Entangled; Modelling Safety	
213	al.	2020	Assurance Cases for Autonomous Systems	ETAPS
	Wardziński,		Uniform model interface for assurance case	
214	A et al.	2017	integration with system models	ASSURE
	Pissoort, D et		Use of the Goal Structuring Notation (GSN) as	
215	al.	2019	Generic Notation for an 'EMC Assurance Case'	EMC
			Using complementary risk acceptance criteria	
			to structure assurance cases for safety-critical	
216	Kläs, M et al.	2021	Al components	CEUR
			Using D-S evidence theory to evaluation of	
217	Zeng, F et al.	2013	confidence in safety case	JTAIT
	Jaradat, O et		Using Safety Contracts to Guide the	
218	al.	2017	Maintenance of Systems and Safety Cases	EDCC
	Jaradat, O et		Using safety contracts to verify design	
219	al.	2018	assumptions during runtime	ICRST
	Jaradat, O et		Using sensitivity analysis to facilitate the	
220	al.	2015	maintenance of safety cases	ICRST
	Ferrell, U et		Validation of Assurance Case for Dynamic	
221	al.	2022	Systems	DASC
222	Brain, J	2012	Visual representation of safety cases	Measurement and Control
	_		What is acceptably safe for reinforcement	
223	Bragg, J et al.	2018	learning	WAISE
			A new approach to assessment of confidence	
224	X. Zhao et al.	2012	in assurance cases	SASSUR