

Ejercicio 2.23

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	3
3.	Objetivo	4
4.	Hipótesis y supuestos	4
5.	Definición de variables	4
3.	Modelo de programación lineal6.1. Funcional6.2. Restricciones	5 5
7.	Solución por software	6
3.	Solución óptima	8

1. Enunciado

Una empresa fabrica y vende Etolones, Krakos y Sultos. Los fabrica a partir de 3 recursos básicos; Horas Hombre (HH), Horas Máquina (HM) y Materia Prima (MP).

A continuación se indican los consumos unitarios de cada recurso para los tres productos (en lugar de mostrar los números los indicamos con letras):

Producto	НН	HM	MP
Etolones	E ₁	E_2	E_3
Krakos	K ₁	K ₂	K_3
Sultos	S_1	S_2	S_3

Se dispone de 2500 HH, 1000 HM y 5000 kg de MP por mes, siendo el costo por unidad de recurso de \$5 por HH, \$7 por HM y \$2 por kg. de MP. Si sobrara MP se la podría guardar en el depósito, las HH y las HM no se pueden atesorar de un mes para el otro.

Los precios de venta de los productos son de \$100, \$150 y \$200 por unidad para los Etolones, Krakos y Sultos respectivamente. Asimismo es posible vender los recursos no utilizados a \$4 la HH, \$8 la HM y a \$2 el kg de MP.

La caja inicial del mes es de \$30.000 y se quiere que, a fin de mes, la caja sea, como mínimo, de \$45.000. Si existe un sobrante de dinero se coloca en un banco a interés al $0.5\,\%$ mensual y si falta dinero se puede tomar prestado pagando el $1\,\%$ mensual. El préstamo máximo que se puede obtener es de \$20.000. Ambos intereses se cobran o pagan por adelantado.

2. Análisis de la situación problemática

- Se puede ver que es un problema de producción con tres productos
- Nos hablan de condición final para caja, y nos dicen que podemos pedir dinero si hace falta, y que podemos ponerlo en un banco si tenemos sobrante, una condición débil.
- Nos dan los costos de cada producto, por lo que hay que tenerlo en cuenta si queremos maximizar la ganancia.
- \blacksquare El siguiente es un esquema representando la situación.

3. Objetivo

Determinar las cantidades de cada tipo de producto y materia prima a vender para maximizar el dinero en caja durante un mes.

4. Hipótesis y supuestos

- 1. Todo lo que se produce se vende.
- 2. Los costos y cantidades de recursos disponibles son precisos y estables.
- 3. La cantidad de recursos utilizados por cada producto es exacta.
- 4. No hay que cumplir con un stock final¹ ni se tiene un stock inicial de productos.
- 5. No hay que cumplir con pedidos específicos para cada tipo de producto.
- 6. Si se pone a la venta los recursos no utilizados, estos se van a vender sin importar la cantidad (no hay un limite mínimo o máximo).
- 7. La venta de los recursos no conlleva costo alguno.
- 8. Los productos no se estropean en la fabricación.
- 9. Se tiene el espacio suficiente en caso de guardar la materia prima en el deposito.
- 10. Guardar materia prima en el deposito no conlleva costos.
- 11. No hay intereses ni deudas pendientes al inicio del mes.
- 12. El/los banco/s no pueden negarse en caso de solicitar un préstamo o colocar dinero.
- 13. El dinero ganado va a parar a caja.

5. Definición de variables

 $*Con\ tipos\ y\ unidades$

- E: Cantidad de Etalones producidos en el mes. (unidad/mes) Continua
- K: Cantidad de Krakos producidos en el mes. (unidad/mes) Continua
- S: Cantidad de Sultos producidos en el mes. (unidad/mes) Continua
- MPU: Cantidad de materia prima usadas a fin de mes. (kg/mes) Continua
- HMU: Cantidad de horas maquinas usadas a fin de mes. (h/mes) Continua
- HHU: Cantidad de horas hombre usadas a fin de mes. (h/mes) Continua
- MPS: Cantidad de materia prima sobrantes vendidas a fin de mes. (kg/mes) Continua
- HMS: Cantidad de horas maquinas sobrantes vendidas a fin de mes. (h/mes) Continua
- HHS: Cantidad de horas hombre sobrantes vendidas a fin de mes. (h/mes) Continua
- MPA: Cantidad de materia prima almacenada a fin de mes. (kg/mes) Continua
- DEFCAJA: Cantidad de dinero faltante a fin de mes para cumplir con la caja. (\$/mes) Continua
- SOBCAJA: Cantidad de dinero en exceso a fin de mes sobre el cumplimiento de caja. (\$/mes)
 Continua

 $^{^1\}mathrm{Supuesto}\ 1$

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

6.1. Funcional

De funcional tenemos que queremos maximizar el dinero en caja.

$$max(1,005 \cdot SOBCAJA - 1,01 \cdot DEFCAJA)$$

6.2. Restricciones

Comenzamos planteando las restricciones de cuantos recursos son utilizados por cada producto.

- \blacksquare Las horas hombre usadas: $E_1 \cdot E + K_1 \cdot K + S_1 \cdot S = HHU$
- Las horas maquina usadas: $E_2 \cdot E + K_2 \cdot K + S_2 \cdot S = HMU$
- \blacksquare La materia prima usada: $E_3 \cdot E + K_3 \cdot K + S_3 \cdot S = MPU$

Ahora planteamos la cantidad total de recurso que tenemos:

- Las horas hombre: $HHU + HHS \le 2,500 \frac{h}{mes}$
- Las horas maquina: $HMU + HMS \le 1,000 \frac{h}{mes}$
- \blacksquare La materia prima: $MPU + MPS + MPA \leq 5{,}000\frac{h}{mes}$

Nos queda plantear las restricciones correspondientes a la caja:

- \blacksquare La cantidad de dinero prestado que podemos pedir: $DEFCAJA \leq 20{,}000\frac{\$}{mes}$
- \blacksquare Lo que queremos al final de mes: $30,000\frac{\$}{mes}+VENTAS-COSTOS-45,000\frac{\$}{mes}=SOBCAJA-DEFCAJA$
- $\bullet \ VENTAS = \tfrac{100\$}{unidad} \cdot E + \tfrac{150\$}{unidad} \cdot K + \tfrac{200\$}{unidad} \cdot S + \tfrac{2\$}{kg} \cdot MPS + \tfrac{8\$}{h} \cdot HMS + \tfrac{4\$}{h} \cdot HHS$
- \bullet $COSTOS = \frac{2\$}{kg} \cdot MPU + \frac{7\$}{h} \cdot HMU + \frac{5\$}{h} \cdot HHU$

7. Solución por software

Se muestra a continuación un modelo por GLPK, se asignaron valores a las constantes de la tabla.

```
var E >=0;
var K >=0;
var S >= 0;
var MPU >=0;
var HMU >=0;
var HHU >=0;
var MPS >=0;
var HMS >=0;
var HHS >=0;
var MPA >=0;
var DEFCAJA >=0;
var SOBCAJA >=0;
var VENTAS >=0;
var COSTOS >=0;
maximize z: 1.005 * SOBCAJA - 1.01 * DEFCAJA;
s.t. horasHombreUsadas: 3 * E + 4 * K + 5 * S = HHU;
s.t. horasMaquinaUsadas: 5 * E + 2 * K + 8 * S = HMU;
s.t. materiaPrimaUsadas: 4 * E + 6 * K + 7 * S = MPU;
s.t. horasHombreDisp: HHU + HHS <= 2500;</pre>
s.t. horasMaquinaDisp: HMU + HMS <= 1000;</pre>
s.t. materiaPrimaDisp: MPU + MPS + MPA <= 5000;</pre>
s.t. limPrestamo: DEFCAJA <= 20000;
s.t. ventas: VENTAS = 100 * E + 150 * K + 200 * S + 2 * MPS + 8 * HMS + 4 * HHS;
s.t. costos: COSTOS = 2 * MPU + 7 * HMU + 5 * HHU;
s.t. caja: 30000 + VENTAS - COSTOS - 45000 = SOBCAJA - DEFCAJA;
```

Los resultados:

Problem: 2
Rows: 11
Columns: 14
Non-zeros: 37
Status: OPTIMAL

Status: OPTIMAL
Objective: z = 43215 (MAXimum)

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	z	В	43215			
2	2 horasHombreUsadas					
		NS	0	-0	=	9.045
3	horasMaquina	Usada	s			
		NS	0	-0	=	45.225
4	4 materiaPrimaUsadas					
		NS	0	-0	=	4.02
5	horasHombreD	isp				
		NU	2500		2500	4.02
6	horasMaquina	Disp				
		NU	1000		1000	38.19
7	materiaPrima	-				
		NU	5000		5000	2.01
	limPrestamo	В	0		20000	
	ventas	NS	0	-0	=	1.005
	costos		0	-0	=	-1.005
		MC	15000	15000	=	1 005
11	caja	NS	15000	15000	_	-1.005
	Column name				Upper bound	
No.	_					
No.	Column name	St 	Activity	Lower bound		Marginal
No. 1 2	Column name	St NL	Activity	Lower bound		Marginal
No. 1 2 3	Column name E	St NL B	Activity 0 0 500	Lower bound 0 0		Marginal -168.84
No 1 2 3 4	Column nameE K S	St NL B NL	Activity 0 500 0	Lower bound 0 0 0		Marginal -168.84
No 1 2 3 4 5	Column name E K S MPU HMU HHU	St NL B NL B B B	Activity 0 500 0 3000	Lower bound 0 0 0 0		Marginal -168.84
No 1 2 3 4 5	Column name E K S MPU HMU	St NL B NL B	Activity 0 500 0 3000 1000	Lower bound 0 0 0 0 0 0		Marginal -168.84
No 1 2 3 4 5 6 7	Column name E K S MPU HMU HHU	St NL B NL B B B	Activity 0 500 0 3000 1000 2000	Lower bound 0 0 0 0 0 0 0 0		Marginal -168.84
No 1 2 3 4 5 6 7 8 9	Column name E K S MPU HMU HHU MPS HMS HHS	St NL B NL B B NL B B B B B B B B B B B B	Activity 0 500 0 3000 1000 2000 2000 0 500	Lower bound 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Marginal -168.84 -234.165
No 1 2 3 4 5 6 7 8 9 10	Column name E K S MPU HMU HHU MPS HMS HHS MPA	St NL B NL B B B NL B NL	Activity 0 500 0 3000 1000 2000 2000 0 500 0	Lower bound 0 0 0 0 0 0 0 0 0 0 0		Marginal -168.84 -234.165 -30.15 -2.01
No 1 2 3 4 5 6 7 8 9 10 11	Column name E K S MPU HMU HHU MPS HMS HHS MPA DEFCAJA	St NL B NL B B B NL B NL NL	Activity 0 500 0 3000 1000 2000 2000 0 500 0	Lower bound 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Marginal
No 1 2 3 4 5 6 7 8 9 10 11	Column name E K S MPU HMU HHU MPS HMS HHS DEFCAJA SOBCAJA	St NL B NL B B B NL NL B NL B	Activity 0 500 0 3000 1000 2000 2000 0 500 0 43000	Lower bound 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Marginal -168.84 -234.165 -30.15 -2.01
No 1 2 3 4 5 6 7 8 9 10 11 12 13	Column name E K S MPU HMU HHU MPS HMS HHS MPA DEFCAJA	St NL B NL B B B NL B NL NL	Activity 0 500 0 3000 1000 2000 2000 0 500 0	Lower bound 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Marginal -168.84 -234.165 -30.15 -2.01

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err = 4.55e-13 on row 5
 max.rel.err = 9.09e-17 on row 5
 High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0

```
High quality

KKT.DE: max.abs.err = 1.78e-15 on column 6
    max.rel.err = 9.82e-17 on column 9
    High quality

KKT.DB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

8. Solución óptima

Habiendo realizado el análisis, se recomienda lo siguiente para maximizar la cantidad de dinero en caja.

- Producir 500 unidades de Krakos, y 0 de Etolones y Sultos.
- Vender los 2000kg de materia prima sobrantes y las 500 horas hombre.

De esta forma, se esta cumpliendo con el objetivo propuesto de tener \$45.000 en caja, obteniendo incluso un sobrante del cual se consiguen intereses, quedando un total de \$43.215 adicionales.