Search in Games

Chen-Yu Wei

Bernstein

Computer

Turn-Based Two-Player Game

You choose one of the three bins. I choose a number from that bin. Your goal is to maximize the chosen number.

If I am

- adversarial
- random
- benign/cooperative

Turn-Based Two-Player Zero-Sum Games

Terminal state values

Example: Tic-Tac-Toe

Turn-Based Two-Player Zero-Sum Games

Calculating Minimax Values

def value(state):

```
if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
                                                             def min-value(state):
def max-value(state):
                                                                 initialize v = +\infty
   initialize v = -\infty
                                                                 for each successor of state:
   for each successor of state:
                                                                     v = min(v, value(successor))
       v = max(v, value(successor))
   return v
                                                                 return v
```

The Minimax Policy

"Policy" is mapping from state to action.

"Minimax policy" is the optimal policy against the most adversarial opponent.

■ MAX's minimax policy

MIN's minimax policy

Alpha-Beta Pruning

