1.) Gleichstrommotor

Eine Gleichstromnebenschlussmaschine hat folgende Daten:

 U_{AN} =470V, I_{AN} =2440A, R_A =10m Ω , U_{Bk} =0,8V, n_N = 540min⁻¹, Erregerleistung P_{Err} =8kW.

Der magnetische Kreis soll hier als linear angenommen werden (keine Sättigung),

Die Daten gelten für die warmgelaufene Maschine bei einer Wicklungstemperatur von **105°C!** Der Temperaturkoeffizient von Kupfer beträgt α_{20} = 3,9*10⁻³ K⁻¹. Die mechanische Reibung beträgt M_{Reib} = 100Nm.

Die Maschine läuft längere Zeit im Nennpunkt mit den oben angegebenen Werten und wird dann schnell entlastet (noch keine Kühlung).

- a) Berechnen Sie das vom Motor abgegebene Nennmoment!
- b) Berechnen Sie das Leerlaufdrehzahl für die betriebswarme Maschine!
- c) Berechnen Sie den Wirkungsgrad für den betriebswarmen Motor! Die Wicklungen kühlen nun ab auf die Umgebungstemperatur von 20°C.

Anschließenddie Maschine wieder.

d) Berechnen Sie die Leerlaufdrehzahl der Maschine mit 20°C.

2.) Transformator

Ein dreiphasiger Transformator in Schaltung **Dy5** wird symmetrisch belastet. Er hat folgende Daten: $U_{1N} = 10,5$ kV, $U_{2N} = 400$ V (\ddot{u} =26,25), $S_N = 2000$ kVA, f = 50 Hz. Magnetisierungsstrom und Eisenverluste sind zu vernachlässigen.

- a) Zeichnen Sie ein einfaches Ersatzschaltbild für den Transformator mit R_k und X_k auf der Primärseite sowie **einen idealen Überträger direkt an der Sekundärseite!**
- b) Berechnen Sie den Nennstrom I_{2N} auf der Sekundärseite!
- c) Berechnen Sie den Nennstrom in der Netzzuleitung I_{1N} auf der Primärseite!
- d) Berechnen Sie den Nennstrom in einem Strang I_{1NStr} auf der Primärseite!

Bei einem **Kurzschlussversuch** fließt bei U_{1K_verk} = 630V (verkettet) Nennstrom auf der Sekundärseite. Es wird P_k = 13,2 kW gemessen.

- e) Berechnen Sie realen Werte für R_k und X_k!
- f) Berechnen Sie die prozentualen Werte r_k und x_k !
- g) Berechnen Sie mit r_k und x_k den gesamten prozentualen Spannungsabfall u_k !
- h) Überprüfen Sie den prozentualen Wert von u_k mit dem Verhältnis aus U_{1k} verk/ U_{1N} !

Auf der Sekundärseite wird eine Kombination aus Induktivität und ohmschen Verbraucher angeschlossen. Auf der Primärseite fließt dadurch Nennstrom bei cos $\varphi = 0,7$.

i) Bestimmen Sie den komplexen Strangstrom <u>I</u>_{1Str}! Hinweis: Achten Sie auf die Vorzeichen des Imaginärteils bzw. der Phasenwinkels!

3.) Einphasen-Asynchronmaschine

Eine Einphasen-Asynchronmaschine wird am 230V/50Hz-Netz bei ihrer Nenndrehzahl von 2750min⁻¹ betrieben. Berechnen Sie:

- a) den Schlupf im Mit- und Gegensystem
- b) dir Läuferfrequenzen für Mit- und Gegensystem
- c) die Statorspannungen für Mit- und Gegensystem

4.) Asynchronmaschine

Ein Asynchronmotor in Sternschaltung hat folgende Daten:

 $R_1 = 0.75\Omega$, $X_{01} = 2.3\Omega$, $X_{u} = 30\Omega$, $R'_2 = 0.84\Omega$, $X'_{02} = 3\Omega$, $S_N = 0.042$.

Eisenverluste und mechanische Reibung sind zu vernachlässigen.

- i) Zeichnen Sie das Ersatzschaltbild!
- k) Geben Sie den im Nennpunkt aufgenommenen Statorstrom als komplexen Wert
- I) Geben Sie die zugeführte Wirkleistung P₁ an!
- m) Wie hoch sind die abgegebene mechanische Leistung P und das Drehmoment M, wenn f = 50Hz und die Polpaarzahl p=3 vorgegeben sind?
- n) Wie groß ist der Wirkungsgrad im Nennpunkt?
- o) Schätzen Sie durch eine Näherungsrechnung das elektrische Drehmoment bei einer Drehzahl von 1485min⁻¹!
- p) Berechnen Sie die komplexen Spannungsabfälle \underline{U}_{R1} und \underline{U}_{X1} und mit diesen Werten den **Betrag** des gesamten Spannungsabfalls $U_k!$
- q) Wie groß ist die Ausgangsspannung (verkettet) des Transformators?

5.) Synchronmaschine

- a) Zeichnen Sie das Ersatzschaltbild im Verbraucherzählpfeilsystem!
- b) Berechnen Sie die Strangspannung U₁!
- c) Berechnen Sie den Strom in der Netzzuleitung I_{1NetzN} bei Nenns......
- d) Berechnen Sie den Nennstrom I_{1StrN} in einem Strang der Maschine!
- e) Ermitteln Sie den Wert der Reaktanz X_d in Ω !

Die Maschine läuft mit einem Drehmoment von 100kNm motorisch belastet mit $\cos \varphi = 0.9$ untererregt am Netz.

- f) Wie groß ist die Drehzahl der Maschine?
- g) Bestimmen Sie die mechanische Leistung!
- h) Bestimmen Sie den komplexen Strangstrom <u>I</u>_{1Str!}
- i) Berechnen Sie die zugehörigen komplexen Spannungen (\underline{U}_P , \underline{U}_1*jX_d)) und komplexen Ströme (\underline{I}_1 , (\underline{I}_1/jX_d), (\underline{U}_P/jX_d))!
- j) Zeichnen Sie das Zeigerdiagramm für den angegebenen Betriebspunkt! Verwenden Sie dabei für die Stranggrößen die Maßstäbe Y_1 = 100A/cm und Y_0 =500V/cm.

6.) Drehstromleitungen

Eine Drehstromleitung [hat folgende Daten:]

L' = 0.84 mH/km, C' = 14 nF/km, [U=380kV]. Die Leitungslänge beträgt I = 600km. Die Leitung sei verlustfrei und wird mit einer Frequenz von f = 50Hz betrieben.

- a) Zeichnen Sie ein π -Ersatzschaltbild und benennen Sie die Elemente! Hinweis: bezeichnen Sie die Eingangsseite mit dem Index 1 (U₁, I₁) und die Ausgangsseite mit dem Index 2 (U₂, I₂)!
- b) Berechnen Sie den Wellenwiderstand Zw und die Winkelkonstante β!
- c) Ermitteln Sie die Werte für Längsreaktanz Xs und Quersuszeptanz Bp des π -Ersatzschaltbildes!
- d) Wie groß ist die natürliche Leistung bei Drehstromübertragung?

Am Ausgang der Leitung soll eine Leistung von 400MW bei einer Spannung von U_2 =380 kV mit dem $cos\phi_2$ = 1 zur Verfügung gestellt werden.

- e) Bestimmen Sie dazu die komplexen Werte der Eingangsspannung \underline{U}_1 und des Eingangsstromes \underline{I}_1 !
- f) Wie viel Blindleistung nimmt die Leitung am Leistungsanfang auf?

7.) Transformator

Geben Sie zu folgendem Transformatorschaltungen geeignete Maschengleichungen an und bestimmen Sie zeichnerisch die Schaltgruppen:

a) b)

