Exercises: Complexity

You may find graphing tools such as GeoGebra or Desmos useful for these exercises.

Exercises

- 1. Some of the following statements are true and some are false. Which are which?
 - (a) $\log_{10} x + 3x^2$ is $O(x^3)$
 - (b) $67x^4 + 2^x$ is $O(x^4)$
 - (c) $\frac{3}{2}2^x$ is $O(2^x)$
 - (d) $\log_{10} x + 3x^2$ is $\Theta(x^3)$
- 2. For each of the following functions of n, find the non-negative constant k such that the function is $\Theta\left(n^k\right)$, or explain why there is no such k. (In other words, find, where possible, k such that the function is $O\left(n^k\right)$ and it is not $O\left(n^j\right)$ for any j < k.) (Note that k doesn't have to be an integer in all cases.)
 - (a) $5n^3 + 20n^2 + 3n + 2$
 - (b) $6n^2 + \log_e n + 3n + 2$
 - (c) $7n + \log_3 n + 2$
 - (d) $6n^2 + \log_2 n + 2^n + 3n + 2$
 - (e) 32
 - (f) $4\log_2 n + 6\sqrt{n} + 2$
 - (g) $5\log_2 n + 2$
- 3. Use a graphing tool like GeoGebra or Desmos to plot graphs of
 - $y = \log_e x \text{ (or } \ln x),$
 - $\bullet \ y = x,$
 - $\bullet \ y = x^2,$
 - $y = 100x^2$,
 - $y = e^x$.

This will give you an idea of the relative growth rates of logarithmic, polynomial, and exponential functions.

Solutions

- 1. Some of the following statements are true and some are false. Which are which?
 - (a) True. Though it is also $O(x^2)$.
 - (b) False. The function 2^x grows much faster than this. It is $O(3^x)$ though.
 - (c) True.
 - (d) False. We definitely know the function is $O(n^3)$, but n^3 is not $O(\log_{10} x + 3x^2)$.
- 2. For each of the following functions of n, find the non-negative constant k such that the function is $\Theta\left(n^k\right)$, or explain why there is no such k. (In other words, find, where possible, k such that the function is $O\left(n^k\right)$ and it is not $O\left(n^j\right)$ for any j < k.) (Note that k doesn't have to be an integer in all cases.)
 - (a) $5n^3 + 20n^2 + 3n + 2$ is $\Theta(n^3)$: $5n^3 < 5n^3 + 20n^2 + 3n + 2 < 6n^3$ as $n \to \infty$.
 - (b) $6n^2 + \log_e n + 3n + 2$ is $\Theta(n^2)$.
 - (c) $7n + \log_3 n + 2$ is $\Theta(n)$.
 - (d) $6n^2 + \log_2 n + 2^n + 3n + 2$ is not $\Theta(n^k)$ for any k, since 2^n dominates.
 - (e) 32 is $\Theta(1) = \Theta(n^0)$.
 - (f) $4\log_2 n + 6\sqrt{n} + 2$ is $\Theta(n^{\frac{1}{2}})$.
 - (g) $5\log_2 n + 2$ is $\Theta(n)$.
- 3. Use a graphing tool like GeoGebra or Desmos to plot graphs of
 - $y = \log_e x$ (or $\ln x$),
 - $\bullet \ \ y = x,$
 - $\bullet \ y=x^2,$
 - $y = 100x^2$,
 - $\bullet \ y = e^x.$

This will give you an idea of the relative growth rates of logarithmic, polynomial, and exponential functions.