MA5106: MID-SEM EXAMINATION

SWAYAM CHUBE (200050141)

Problem 1

(a) This is Littlewood's Tauberian Theorem. I present the proof from Titchmarsh's Theory of Functions (pg. 233). The proof involves a usage of the Hardy-Littlewood Tauberian Theorem.

I use a_n to denote the series instead of c_n . We may suppose without loss of generality that the limit s = 0, which is justified by replacing a_0 by $a_0 - s$ if necessary.

In order to prove this theorem, we need to first prove Tauber's Theorem and then another lemma.

Lemma 1 (Kronecker). If $b_n \to 0$ as $n \to \infty$, then

$$\frac{\sum_{k=0}^{n} b_n}{n+1} \to 0$$

as $n \to \infty$.

Proof. Let $\varepsilon > 0$ be arbitrary. Since the series is convergent, there is a positive constant M > 0 such that $|b_n| < K$ for all $n \ge 0$. Also, there is N > 0 such that for all n > N, $|b_n| < \varepsilon/2$. Then, for any M > N,

$$\left| \frac{\sum_{n=0}^{M} b_n}{M+1} \right| \le \left| \frac{\sum_{n=0}^{N} b_n}{M+1} \right| + \left| \frac{\sum_{n=N+1}^{M} b_n}{M+1} \right|$$

$$\le \frac{(N+1)K}{M+1} + \frac{\sum_{n=N+1}^{M} |b_n|}{M+1}$$

$$\le \frac{(N+1)K}{M+1} + \frac{\varepsilon}{2}.$$

One can choose M large enough so that the right hand side is smaller than ε and the conclusion follows.

Theorem 2 (Tauber). Let $\sum_{n=0}^{\infty} a_n$ be Able summable to a limit s and suppose $a_n = o(1/n)$. Then, $\sum_{n=0}^{\infty} a_n$ converges to s.

Proof. Throughout this proof, $x \in (0,1)$. Let N > 0. Then

$$\sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{N} a_n = \underbrace{\sum_{n=N+1}^{\infty} a_n x^n}_{S_1} - \underbrace{\sum_{n=0}^{N} a_n (1 - x^n)}_{S_2}.$$

Note that

$$|S_2| \le (1-x) \sum_{n=0}^{N} n|a_n|,$$

since $1 + x + \cdots + x^{n-1} \le n$. Let $\varepsilon > 0$ be arbitrary. Then, there is a sufficiently large N such that $|na_n| < \varepsilon$ for all n > N. Therefore,

$$|S_1| = \left| \sum_{n=N+1}^{\infty} n a_n \frac{x^n}{n} \right| \le \varepsilon \sum_{n=N+1}^{\infty} \frac{x^n}{n} \le \varepsilon \sum_{n=N+1}^{\infty} \frac{x^n}{N+1} = \frac{\varepsilon x^{N+1}}{(N+1)(1-x)} < \frac{\varepsilon}{(N+1)(1-x)}.$$

Hence,

$$\left| \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{N} a_n \right| < (1-x) \sum_{n=0}^{N} n|a_n| + \frac{\varepsilon}{(N+1)(1-x)}.$$

Now, for 1 - 1/(N+1) > x > 1 - 1/N, we see that the right hand side is bounded above by

$$\frac{1}{N} \sum_{n=0}^{N} n|a_n| + \varepsilon.$$

Again, we may choose N larger so that the first term is smaller than ε . This is guaranteed by the previous lemma. Hence, for all sufficiently large N and 1-1/(N+1) > x > 1-1/N, we have that the left hand side is smaller than 2ε . Next,

$$\left| s - \sum_{n=0}^{N} a_n \right| \le \left| s - \sum_{n=0}^{\infty} a_n x^n \right| + \left| \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{N} a_n \right|.$$

Let $\varepsilon > 0$ be given and let N be large enough so that for all x > 1 - 1/N, the first term is smaller than ε and the second term is smaller than 2ε for all 1 - 1/N < x < 1 - 1/(N+1), which can be done due to the discussion above. As a result, for sufficiently large N, the left hand side of the above inequality is smaller than 3ε . Since ε was arbitrary positive, we see that $\sum_{n=0}^{\infty} a_n = s$. This completes the proof.

Next, we prove Hardy-Littlewood.

Lemma 3 (Karamata). Let $g : [0,1] \to \mathbb{R}$ and 0 < c < 1. Suppose the restrictions of g to [0,c) and [c,1] are continuous and that

$$\lim_{x \to c^{-}} g(x) \le g(c).$$

For every $\varepsilon > 0$, there are polynomials p(x) and P(x) such that $p(x) \leq g(x) \leq P(x)$ for $0 \leq x \leq 1$ and

$$||g - p||_1 \le \varepsilon, \quad ||g - P||_1 \le \varepsilon.$$

Proof. Using the definition of a limit, there is a $\delta > 0$ such that whenever $c - \delta \le x < c$, we have

$$g(c^{-}) - \varepsilon/2 \le g(x) \le g(c^{-}) + \varepsilon/2.$$

Choose δ samll enough so that

$$\delta < \frac{\varepsilon}{g(c) - g(c^-)}$$
 and $\delta < \frac{1}{2}$.

Take L to be the linear function with

$$L(c - \delta) = g(c - \delta) + \varepsilon/2$$
 $L(c) = g(c) + \varepsilon/2$.

For $c - \delta \le x < c$, we have

$$\begin{split} L(x) - g(x) &= L(x) - g(c - \delta) + g(c - \delta) - g(c^{-}) + g(c^{-}) - g(c) \\ &= L(x) - L(c - \delta) + \varepsilon/2 + g(c - \delta) - g(c^{-}) + g(c^{-}) - g(x) \\ &\leq L(c) - L(c - \delta) + \varepsilon/2 + \varepsilon/2 + \varepsilon/2 \\ &= g(c) - g(c - \delta) + 3\varepsilon/2 \\ &= g(c) - g(c^{-}) + g(c^{-}) - g(c - \delta) \\ &< \varepsilon/\delta + 2\varepsilon < 2\varepsilon/\delta. \end{split}$$

Define $\Phi: [0,1] \to \mathbb{R}$ by

$$\Phi(x) = \begin{cases} g(x) + \varepsilon/2 & 0 \le x < c - \delta \\ \max\{L(x), g(x) + \varepsilon/2\} & c - \delta \le x \le c \\ g(x) + \varepsilon/2 & c < x \le 1. \end{cases}$$

Then,

$$||g - \Phi||_1 \int_0^1 \Phi(x) - g(x) dx$$

$$= \int_0^{c-\delta} \varepsilon/2 dx + \int_{c-\delta}^c \Phi(x) - g(x) dx + \int_c^1 \varepsilon/2$$

$$\leq \varepsilon/2 + \int_{c-\delta}^c \Phi(x) - g(x) dx$$

$$< \varepsilon/2 + \delta \cdot \frac{2\varepsilon}{\delta} = \frac{5\varepsilon}{2}.$$

Since Φ is continuous, there is a polynomial P such that $\|\Phi - P\|_{\infty} < \varepsilon/2$. Consequently, $g(x) \leq P(x)$, since $\Phi(x) - g(x) \geq \varepsilon/2$. This also gives that $\|\Phi - P\|_1 \leq \varepsilon/2$ and hence, using the triangle inequality, $\|g - P\| \leq 3\varepsilon$.

Similar to the previous analysis, define the linear function l, taking the values $l(c-\delta)=g(c-\delta)-\varepsilon/2$ and $l(c)=g(c)-\varepsilon/2$. Again, it is not hard to see that $g(x)-l(x)<2\varepsilon/\delta$.

Now, define the function $\phi:[0,1]\to\mathbb{R}$ by

$$\phi(x) = \begin{cases} g(x) - \varepsilon/2 & 0 \le x < c - \delta \\ \min\{l(x), g(x) - \varepsilon/2\} & c - \delta \le x \le c \\ g(x) - \varepsilon/2 & c < x \le 1. \end{cases}$$

Using an argument similar to the previous case, there is a polynomial p such that $p \leq g$ and $||g - p||_1 \leq 3\varepsilon$. Replacing ε by $\varepsilon/3$, we have the desired conclusion.

Theorem 4 (Hardy-Littlewood). If $a_n \geq 0$ for all $n \geq 0$ and

$$\sum_{n=0}^{\infty} a_n x^n \sim \frac{1}{1-x},$$

then

$$s_n = \sum_{k=0}^n a_k \sim n.$$

Proof. For any k > 0, we have

$$(1-x)\sum_{n=0}^{\infty} a_n x^n (x^k)^n = \frac{1-x}{1-x^{k+1}} (1-x^{k+1}) \sum_{n=0}^{\infty} a_n (x^{k+1})^n$$
$$= \frac{1}{1+x+\dots+x^k} (1-x^{k+1}) \sum_{n=0}^{\infty} a_n (x^{k+1})^n.$$

The term on the right tends to 1/(k+1) as $x \to 1^-$, which is also equal to $\int_0^1 t^k dt$. Using linearity of integrals, we may conclude that given any polynomial, then

$$\lim_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} a_n x^n P(x^n) = \int_0^1 P(t) \ dt.$$

Now, define $g:[0,1]\to\mathbb{R}$ by

$$g(t) = \begin{cases} 0 & 0 \le t < e^{-1} \\ t^{-1} & e^{-1} \le t \le 1. \end{cases}$$

Let $\varepsilon > 0$. Using Karamata's Lemma, there are polynomials p(x) and P(x) such that $p(x) \leq g(x) \leq P(x)$ on [0,1] and $||g-p||_1 \leq \varepsilon$ and $||g-P||_1 \leq \varepsilon$. We now have

$$\lim_{x \to 1^{-}} \sup (1 - x) \sum_{n=0}^{\infty} a_n x^n g(x^n) \le \lim_{x \to 1^{-}} \sup_{n=0}^{\infty} \sum_{n=0}^{\infty} a_n x^n P(x^n)$$
$$= \int_0^1 P(t) \, dt < \int_0^1 g(t) \, dt + \varepsilon.$$

Similarly, we may argue that

$$\liminf_{x \to 1^{-}} (1 - x) \sum_{n=0}^{\infty} a_n x^n g(x^n) > \int_0^1 g(t) \ dt - \varepsilon.$$

Taking $\varepsilon \to 0$, we see that

$$1 = \int_0^1 g(t) \ dt = \lim_{x \to 1^-} (1 - x) \sum_{n=0}^\infty a_n x^n g(x^n).$$

For any positive integer N, the evaluation at $x = e^{-1/N}$ is

$$\sum_{n=0}^{\infty} a_n x^n g(x^n) = \sum_{n=0}^{\infty} a_n e^{-n/N} g(e^{-n/N}) = \sum_{n=0}^{N} a_n e^{-n/N} e^{n/N} = s_N.$$

We have obtained that

$$1 = \lim_{N \to \infty} (1 - e^{-1/N}) s_N$$

and hence,

$$s_N \sim \frac{1}{1 - e^{-1/N}},$$

and the conclusion follows since

$$\lim_{N \to \infty} N\left(1 - e^{-1/N}\right) = 1.$$

Lemma 5. If f(x) is a C^2 function on (0,1) and $\lim_{x\to 1} f(x) = 0$ and there is C > 0 such that $|(1-x)^2 f''(x)| \le C$ on (0,1), then

$$\lim_{x \to 1} (1 - x)f'(x) = 0.$$

Proof. Let $x' = x + \delta(1-x)$ where $0 < \delta < 1/2$. Then, using Taylor's Theorem,

$$f(x') = f(x) + \delta(1-x)f'(x) + \frac{1}{2}\delta^2(1-x)^2f''(\xi)$$

for some $\xi \in (x, x')$. Hence,

$$(1-x)f'(x) = \frac{f(x') - f(x)}{\delta} - \frac{\delta}{2}(1-x)^2 f''(\xi) = (1-x)f'(\zeta) - \frac{\delta}{2}(1-x)^2 f''(\xi)$$

for some $\zeta \in (x, x')$, due to the Mean Value Theorem. Due to the conditions in the statement of the lemma, it is not hard to see that the right hand side is $O(\delta)$ and hence, the conclusion of the theorem follows by taking δ as small as desired.

Let

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

on (-1,1). According to the condition, we have $\lim_{x\to 1^-} f(x) = 0$. Further,

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = O\left(\sum_{n=2}^{\infty} (n-1)x^{n-2}\right) = O\left(\frac{1}{(1-x)^2}\right).$$

Hence, due to the Lemma, f'(x) is $o\left(\frac{1}{1-x}\right)$. Let c>0 be a positive constant such that $|na_n| \leq c$ for all $n \geq 0$. Then,

$$\sum_{n=1}^{\infty} \left(1 - \frac{na_n}{c} \right) = \frac{1}{1-x} - \frac{f'(x)}{c} \sim \frac{1}{1-x}.$$

Due to Hardy-Littlewood, we must have

$$\sum_{k=1}^{n} 1 - \frac{ka_k}{c} \sim n,$$

whence

$$\sum_{k=1}^{n} k a_k = o(n).$$

Let w_n denote the left hand side of the above. Then,

$$f(x) - a_0 = \sum_{n=1}^{\infty} \frac{w_n - w_{n-1}}{n} x^n = \sum_{n=1}^{\infty} w_n \left(\frac{x^n}{n} - \frac{x^{n+1}}{n+1} \right)$$
$$= \sum_{n=1}^{\infty} w_n \left(\frac{x^n - x^{n+1}}{n+1} + \frac{x^n}{n(n+1)} \right)$$
$$= (1-x) \sum_{n=1}^{\infty} \frac{w_n}{n+1} x^n + \sum_{n=1}^{\infty} \frac{w_n}{n(n+1)} x^n.$$

Since $w_n = o(n)$, the first term on the right goes to 0 as $x \to 1$. But since $f(x) \to 0$ as $x \to 1$, we must have

$$\sum_{n=1}^{\infty} \frac{w_n}{n(n+1)} x^n \to -a_0$$

as $x \to 1$. Now, note that $\frac{w_n}{n(n+1)} = o(1/n)$. Therefore, due to Tauber's Theorem,

$$\sum_{n=1}^{\infty} \frac{w_n}{n(n+1)} = -a_0.$$

We get

$$\lim_{N \to \infty} \sum_{n=1}^{\infty} \frac{w_n}{n(n+1)} = \lim_{N \to \infty} \sum_{n=1}^{N} w_n \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{w_n - w_{n-1}}{n} - \frac{w_N}{N+1}$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} a_n - \lim_{N \to \infty} \frac{w_N}{N+1}$$

$$= \sum_{n=1}^{N} a_n.$$

This shows that $\sum_{n=0}^{\infty} a_n = 0$ thereby completing the proof.

(b) This follows from (a). To see this, we shall show that if a sequence if Cesàro summable to s, then it is Abel summable to s. We may without loss of generality suppose that s = 0, this can be done by simply replacing c_0 by $c_0 - s$.

s=0, this can be done by simply replacing c_0 by c_0-s . Let $s_N:=\sum_{n=0}^N c_n$ and $\sigma_N:=\frac{1}{N}\sum_{n=0}^{N-1} s_n$. For the sake of simplicity, set $s_{-1}=0$ and $\sigma_0=0$.

We have

$$\sum_{n=0}^{N} c_n x^n = \sum_{n=0}^{N} (s_n - s_{n-1}) x^n = s_N x^N + \sum_{n=0}^{N-1} (x^n - x^{n+1}) s_n = s_N x^N + (1-x) \sum_{n=0}^{N-1} s_n x^n.$$

Now, note that $s_n = (n+1)\sigma_{n+1} - n\sigma_n$. Therefore,

$$\lim_{n \to \infty} s_n x^n = \lim_{n \to \infty} (n+1)\sigma_{n+1} x^n - n\sigma_n x^n = 0$$

since Cesàro summability implies that σ_n 's are bounded and $nx^n \to 0$ as $n \to \infty$ when |x| < 1. Hence,

$$\sum_{n=0}^{\infty} c_n x^n = (1-x) \sum_{n=0}^{\infty} s_n x^n.$$

Let $t_n = \sum_{k=0}^n s_n$ with the convention that $t_{-1} = 0$. Then,

$$\sum_{n=0}^{N} s_n x^n = t_N x^N + \sum_{n=0}^{N-1} t_n (x^n - x^{n+1}) = t_N x^N + (1-x) \sum_{n=0}^{N-1} t_n x^n.$$

Note that $t_n = (n+1)\sigma_{n+1}$ and hence, $t_n x^n = (n+1)\sigma_{n+1} x^n$, which goes to 0 as $n \to \infty$ since σ_n 's form a bounded sequence and $(n+1)x^n \to 0$ as $n \to \infty$. As a consequence,

$$\sum_{n=0}^{\infty} s_n x^n = (1-x) \sum_{n=0}^{\infty} t_n x^n = (1-x) \sum_{n=0}^{\infty} (n+1) \sigma_{n+1} x^n.$$

Consequently,

$$\sum_{n=0}^{\infty} c_n x^n = (1-x)^2 \sum_{n=0}^{\infty} (n+1)\sigma_{n+1} x^n.$$

Let M > 0 be such that $|\sigma_n| \le M$ for all $n \ge 0$. Let $M > \varepsilon > 0$ be arbitrary. Then, there is an N > 0 such that for all n > N, $|\sigma_n| < \varepsilon$. Hence, for x > 0,

$$\left| \sum_{n=0}^{\infty} c_n x^n \right| \le (1-x)^2 \left| \sum_{n=0}^{N} (n+1)\sigma_{n+1} x^n \right| + (1-x)^2 \left| \sum_{n=N+1}^{\infty} (n+1)\sigma_{n+1} x^n \right|$$

$$\le (1-x)^2 M \left| \sum_{n=0}^{N} (n+1)x^n \right| + (1-x)^2 \varepsilon \left| \sum_{n=N+1}^{\infty} (n+1)x^n \right|$$

$$\le (1-x)^2 (M-\varepsilon) \sum_{n=0}^{N} (n+1)x^n + (1-x)^2 \varepsilon \sum_{n=0}^{\infty} (n+1)x^n$$

$$= (1-x)^2 (M-\varepsilon) \sum_{n=0}^{N} (n+1)x^n + \varepsilon.$$

Note that in the limit $x \to 1^-$, the right hand side tends to ε^+ . Hence, we may choose $\delta > 0$ such that for all $1 - \delta < x < 1$, the first term on the right hand side is smaller than ε whence the left hand side is smaller than 2ε . This shows that the series is Abel summable to 0, which is what we intended to prove.

To finish (b), we simply invoke (a).

Problem 2

Note that

$$|\widehat{f}(k) - \widehat{f}_m(k)| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} (f(x) - f_m(x)) e^{-ikx} dx \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - f_m(x)| dx = ||f - f_m||_1.$$

But since $f_m \to f$ in L^1 , we see that the right hand side goes to 0 as $m \to \infty$. Therefore,

$$\lim_{m \to \infty} \widehat{f_m}(k) = f(k)$$

for all $k \geq 1$.

Problem 3

(a) From Homework 1, we know

$$\widehat{f}(n) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) - f(x + \pi/n) \right] e^{-inx} dx.$$

Using Hölder continuity, there is M > 0 such that

$$|f(x) - f(x + \pi/n)| \le \frac{M\pi^{\alpha}}{|n|^{\alpha}},$$

for all $x \in \mathbb{R}$. Hence,

$$|\widehat{f}(n)| \le \frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{M\pi^{\alpha}}{|n|^{\alpha}} dx = \mathcal{O}\left(\frac{1}{|n|^{\alpha}}\right).$$

(b) Since $\sum_{m=0}^{\infty} 2^{-m\alpha}$ converges, due to the Weierstrass M-test, the series for f(x) converges absolutely on \mathbb{R} . Therefore, the Fourier coefficients can be computed by

$$\widehat{f}(n) = \sum_{m=0}^{\infty} 2^{-m\alpha} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(2^m - n)x} dx$$
$$= \begin{cases} 2^{-m\alpha} (= n^{-\alpha}) & n = 2^m \\ 0 & \text{otherwise.} \end{cases}$$

Let $h \in \mathbb{R}$. Then,

$$|f(x+h) - f(x)| = \left| \sum_{m=0}^{\infty} 2^{-m\alpha} \left(e^{i2^m(x+h)} - e^{i2^m} \right) \right|$$

$$\leq \sum_{m=0}^{\infty} 2^{-m\alpha} |e^{i2^m(x+h)} - e^{i2^m}|$$

$$\leq \sum_{2^m < 1/|h|} 2^{-m\alpha} |e^{i2^m(x+h)} - e^{i2^m}| + \sum_{2^m > 1/|h|} 2^{-m\alpha} |e^{i2^m(x+h)} - e^{i2^m}|.$$

Trivially note that $|e^{i\theta} - 1| \le \theta$ and $|e^{i\theta} - e^{i\varphi}| \le 2$. Using the first inequality for the first term in the above sum and the second inequality for the second, we have

$$|f(x+h) - f(x)| \le \sum_{2^m \le 1/|h|} 2^{-m\alpha} \cdot 2^m |h| + \sum_{2^m > 1/|h|} 2^{-m\alpha} \cdot 2.$$

Let N be the smallest non-negative integer such that $2^N > 1/|h|$. Then, the second term in the above sum is

$$\frac{2^{-N\alpha}}{1 - 2^{-\alpha}} = \mathcal{O}(|h|^{\alpha}).$$

If |h| > 1, then the first term is zero. Hence, suppose $|h| \le 1$. The first term is

$$\sum_{m=0}^{N-1} \left(2^m |h|\right)^{1-\alpha} |h|^{\alpha} \le |h|^{\alpha} \sum_{m=0}^{N-1} \left(2^{m-N+1}\right)^{1-\alpha} = |h|^{\alpha} \sum_{m=0}^{N-1} 2^{-m(1-\alpha)} \le \frac{|h|^{\alpha}}{1-2^{\alpha-1}},$$

which shows that the first term is also $\mathcal{O}(|h|^{\alpha})$ thereby showing that f is of class $C^{0,\alpha}(S^1)$.

(c) I will essentially prove Bernstein's Theorem, that if $f \in C^{0,\alpha}(S^1)$ with $\alpha > 1/2$, then the Fourier series of f converges to f absolutely. First, note that there is K > 0 such that $|f(x) - f(y)| \le K|x - y|^{\alpha}$ for all $x, y \in \mathbb{R}$.

Let $h \in \mathbb{R}$. Consider the function $g_h : \mathbb{R} \to \mathbb{R}$ given by $g_h(x) = f(x+h) - f(x-h)$. Note that

$$\widehat{g}_h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+h)e^{-inx} dx - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-h)e^{-inx} dx$$
$$= (e^{inh} - e^{-inh})\widehat{f}(n) = 2i\sin(nh)\widehat{f}(n).$$

Using Parseval's Theorem,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |g_h(x)|^2 = \sum_{n \in \mathbb{Z}} 4\sin^2(nh) |\widehat{f}(n)|^2.$$

But note that $|g_h(x)| \leq K(2h)^{\alpha}$. Hence,

$$\sum_{n\in\mathbb{Z}}\sin^2(nh)|\widehat{f}(n)|^2 \le \frac{K^2(2h)^{2\alpha}}{4}.$$

Let p be a positive integer and choose $h = \pi/2^{p+1}$. Then, for all $2^{p-1} < |n| \le 2^p$, we have $|\sin(nh)| > 1/\sqrt{2}$. Hence,

$$\frac{1}{2} \sum_{2^{p-1} < |n| < 2^p} |\widehat{f}(n)|^2 \le \sum_{n \in \mathbb{Z}} \sin^2(nh) |\widehat{f}(n)|^2 \le \frac{K^2 (\pi/2^p)^{2\alpha}}{4} \le \frac{K^2 \pi^{2\alpha}}{2^{2+2\alpha p}},$$

that is,

$$\sum_{2^{p-1} < |n| \le 2^p} |\widehat{f}(n)|^2 \le \frac{K^2 \pi^{2\alpha}}{2^{2\alpha p + 1}}.$$

Using the Cauchy Schwarz Inequality, we have

$$\frac{1}{2^{p-1}} \left(\sum_{2^{p-1} < |n| \le 2^p} |\widehat{f}(n)| \right)^2 \le \sum_{2^{p-1} < |n| \le 2^p} |\widehat{f}(n)|^2 \le \frac{K^2 \pi^{2\alpha}}{2^{2\alpha p + 1}},$$

whence

$$\sum_{2^{p-1} < |n| \le 2^p} |\widehat{f}(n)| \le \frac{K\pi^{\alpha}}{2^{(\alpha - 1/2)p + 1}}$$

Hence,

$$\sum_{n \in \mathbb{Z}} |\widehat{f}(n)| \le |\widehat{f}(0)| + \sum_{p=1}^{\infty} \frac{K\pi^{\alpha}}{2^{(\alpha - 1/2)p + 1}},$$

which converges since $\alpha > 1/2$. As a result, the Fourier series of f converges to f absolutely (we have seen this in class).

Problem 4

Consider the function $f:(-\pi,\pi]\to\mathbb{C}$ given by

$$f(x) = \begin{cases} e^{i\alpha x} & x \in (-\pi, \pi) \\ 0 & \text{otherwise.} \end{cases}$$

The Fourier coefficients are

$$a_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(\alpha - n)x} dx = \frac{1}{2\pi i(\alpha - n)} \left(e^{i(\alpha - n)x} - e^{-i(\alpha - n)x} \right)$$
$$= \frac{\sin((\alpha - n)\pi)}{\pi(\alpha - n)} = (-1)^{n} \frac{\sin(\alpha \pi)}{\pi(\alpha - n)}.$$

Note that f has a jump discontinuity at $\pi \sim -\pi$ on the circle, where

$$\lim_{x \to \pi^{-}} f(x) = e^{i\alpha\pi} \quad \text{and} \quad \lim_{x \to -\pi^{+}} f(x) = e^{-i\alpha\pi}.$$

Therefore, the Fourier series of f at π converges to

$$\frac{1}{2}\left(f(\pi^{-}) + f(-\pi^{+})\right) = \cos(\pi\alpha).$$

This means

$$\cos(\pi\alpha) = \sum_{n=-\infty}^{\infty} \frac{(-1)^n e^{in\pi} \sin(\pi\alpha)}{\pi(\alpha-n)} = \sum_{n=-\infty}^{\infty} \frac{\sin(\pi\alpha)}{\pi(\alpha-n)}.$$

Therefore,

$$\frac{\pi}{\tan(\pi\alpha)} = \frac{1}{\alpha} + \sum_{n=1}^{\infty} \left(\frac{1}{\alpha - n} + \frac{1}{\alpha + n} \right) = \frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{2\alpha}{\alpha^2 - n^2}.$$

Thus,

$$\frac{1}{2\alpha^2} - \sum_{n=1}^{\infty} \frac{1}{n^2 - \alpha^2} = \frac{\pi}{2\alpha(\tan(\pi\alpha))}.$$

This proves (a).

To see (b), we evaluate the Fourier series at 0. Note that the function is differentiable in a neighborhood around 0 and hence,

$$1 = f(0) = \sum_{n = -\infty}^{\infty} (-1)^n \frac{\sin(\pi \alpha)}{\pi(\alpha - n)}$$

$$= \frac{\sin(\pi \alpha)}{\pi} \left[\frac{1}{\alpha} + \sum_{n = 1}^{\infty} (-1)^n \left(\frac{1}{\alpha - n} + \frac{1}{\alpha + n} \right) \right]$$

$$= \frac{\sin(\pi \alpha)}{\pi} \left[\frac{1}{\alpha} + \sum_{n = 1}^{\infty} (-1)^{n-1} \frac{2\alpha}{n^2 - \alpha^2} \right]$$

$$= \frac{2\alpha \sin(\pi \alpha)}{\pi} \left[\frac{1}{2\alpha^2} + \sum_{n = 1}^{\infty} \frac{(-1)^{n-1}}{n^2 - \alpha^2} \right].$$

This proves (b).

Finally, we move on to (c). We have

$$\int_0^\infty \frac{t^{\alpha - 1}}{1 + t} dt = \int_0^1 \frac{t^{\alpha - 1}}{1 + t} dt + \int_1^\infty \frac{t^{\alpha - 1}}{1 + t} dt$$
$$= \int_0^1 \frac{t^{\alpha - 1}}{1 + t} dt + \int_0^1 \frac{u^{-\alpha}}{1 + u} du$$

where we have performed the substitution t = 1/u in the second integral. We shall evaluate both integrals using the power series expansion of 1/(1+t). To justify this, we invoke the dominated convergence theorem. For 0 < r < 1, note that the series

$$(1) \qquad \sum_{n=0}^{\infty} (-1)^n t^n$$

converges absolutely on [0, r]. Define

$$A(r) := \int_0^r \frac{t^{\alpha - 1}}{1 + t} dt + \int_0^r \frac{t^{-\alpha}}{1 + t} dt.$$

Using absolute convergence, we may interchange the integral and the summation to obtain

$$A(r) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{\alpha + n} r^{\alpha + n} + \sum_{n=0}^{\infty} (-1)^n \frac{1}{n + 1 - \alpha} r^{n + 1 - \alpha}.$$

Using Abel's Theorem,

$$A(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha + n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n + 1 - \alpha}$$

$$= \frac{1}{\alpha} + \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{n - \alpha} - \frac{1}{n + \alpha} \right)$$

$$= \frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} (2\alpha)}{n^2 - \alpha^2}$$

$$= \frac{\pi}{\sin(\pi\alpha)}.$$

This completes the proof of (c).

Problem 5

First, suppose $m \geq n \geq 1$. Then, using integration by parts,

$$\int_{-1}^{1} \mathcal{L}_n(x) \mathcal{L}_m(x) \ dx = \left[\mathcal{L}_n(x) \frac{d^{m-1}}{dx^{m-1}} (x^2 - 1)^m \right]_{-1}^{1} - \int_{-1}^{1} \frac{d^{n+1}}{dx^{n+1}} (x^2 - 1)^n \frac{d^{m-1}}{dx^{m-1}} (x^2 - 1)^m \ dx.$$

Note that $\frac{d^{m-1}}{dx^{m-1}}(x^2-1)^m$ vanishes at -1 and 1, since x^2-1 has multiplicity m at both -1 and 1. Hence, the first term in the above equation vanishes and we are left with

$$\int_{-1}^{1} \mathcal{L}_n(x) \mathcal{L}_m(x) \ dx = -\int_{-1}^{1} \frac{d^{n+1}}{dx^{n+1}} (x^2 - 1)^n \frac{d^{m-1}}{dx^{m-1}} (x^2 - 1)^m \ dx.$$

We may keep repeating the step above to obtain

$$\int_{-1}^{1} \mathcal{L}_n(x) \mathcal{L}_m(x) \ dx = (-1)^l \int_{-1}^{1} \frac{d^{n+l}}{dx^{n+l}} (x^2 - 1)^n \frac{d^{m-l}}{dx^{m-l}} (x^2 - 1)^m \ dx.$$

for all $0 \le l \le n$.

Choosing l = n, we obtain

$$\langle \mathcal{L}_n, \mathcal{L}_m \rangle = (-1)^n \int_{-1}^1 \frac{d^{2n}}{dx^{2n}} (x^2 - 1)^n \frac{d^{m-n}}{dx^{m-n}} (x^2 - 1)^m dx.$$

But $(x^2-1)^n$ is a 2n-degree monic polynomial in x. Hence,

$$\frac{d^{2n}}{dx^{2n}}(x^2-1)^n = (2n)!.$$

We get

$$\langle \mathcal{L}_n, \mathcal{L}_m \rangle = (-1)^n \int_{-1}^1 (2n)! \frac{d^{m-n}}{dx^{m-n}} (x^2 - 1)^m dx.$$

If m > n, then

$$\langle \mathcal{L}_n, \mathcal{L}_m \rangle = (-1)^n (2n)! \left[\frac{d^{m-n-1}}{dx^{m-n-1}} (x^2 - 1)^m \right]_{-1}^1 = 0,$$

since $(x^2 - 1)$ has multiplicity m at -1 and 1.

Now, suppose m = n. Then,

$$\langle \mathcal{L}_n, \mathcal{L}_n \rangle = (-1)^n (2n)! \int_{-1}^1 (x^2 - 1)^n dx = (2n)! \int_{-1}^1 (1 - x^2)^n dx.$$

It remains to compute

$$\int_{-1}^{1} (1 - x^{2})^{n} dx = 2 \int_{0}^{1} (1 - x^{2})^{n} dx$$

$$= 2 \int_{0}^{1} (1 - (1 - y)^{2})^{n} dy$$

$$= 2 \int_{0}^{1} (2y - y^{2})^{n} dy$$

$$= 2 \int_{0}^{1} y^{n} (2 - y)^{n} dy$$

$$= \int_{0}^{1} y^{n} (2 - y)^{n} dy + \int_{1}^{2} y^{n} (2 - y)^{n} dy$$

$$= \int_{0}^{2} y^{n} (2 - y)^{n} dy.$$

Make the substitution y = 2z to obtain

$$\int_{-1}^{1} (1 - x^2)^n dx = \int_{0}^{2} 2^{2n+1} z^n (1 - z)^n dz = 2^{2n+1} B(n+1, n+1) = 2^{2n+1} \frac{n! n!}{(2n+1)!}$$

where we have used the standard value of the Beta Function. This gives us

$$\langle \mathcal{L}_n, \mathcal{L}_n \rangle = \frac{(n!)^2 2^{2n+1}}{2n+1}.$$

It remains to deal with the case $m \ge n = 0$. Note that $\mathcal{L}_0(x) = 1$, the constant function. Therefore,

$$\langle \mathcal{L}_0, \mathcal{L}_m \rangle = \int_{-1}^1 \mathcal{L}_m(x) \ dx.$$

If m=0, the right hand side is 2. If m>0, then the right hand side is

$$\int_{-1}^{1} \mathcal{L}_m(x) \ dx = \left[\frac{d^{m-1}}{dx^{m-1}} (x^2 - 1)^m \right]_{-1}^{1} = 0,$$

since $(x^2-1)^m$ has multiplicity m at -1 and 1. This proves (a) and (b).

Finally, we come to (c). First, we contend that the Lagrange polynomials are linearly independent (in the \mathbb{C} -vector space $\mathbb{C}[x]$). Indeed, if

$$\sum_{i=0}^{\infty} a_i \mathcal{L}_i = 0$$

where $a_i = 0$ almost everywhere. Then,

$$0 = \langle 0, \mathcal{L}_i \rangle = a_i \|\mathcal{L}_i\|_2^2,$$

whence each $a_i = 0$.

Further, note that $\deg \mathcal{L}_n = n$ and the \mathbb{C} vector space spanned by $\{\mathcal{L}_0, \ldots, \mathcal{L}_n\}$ is a subspace of the vector space of polynomials of degree $\leq n$. But the latter has \mathbb{C} -dimension n+1 and hence, $\{\mathcal{L}_0, \ldots, \mathcal{L}_n\}$ spans the latter. That is, every polynomial in $\mathbb{C}[x]$ can be uniquely written as a linear combination of the \mathcal{L}_i 's.

Let $S_N(f)$ denote the partial sum

$$S_N(f) := \sum_{n=0}^{N} \frac{\langle f, \mathcal{L}_n \rangle}{\|\mathcal{L}_n\|_2^2}$$

Let $\varepsilon > 0$ be given. By Weierstrass' Approximation Theorem, there is a polynomial $p(x) \in \mathbb{C}[x]$ such that $||f - p||_{\infty} < \varepsilon$. Let $N = \deg p$ and let $c_0, \ldots, c_N \in \mathbb{C}$ be such that

$$p = \sum_{n=0}^{N} c_n \mathcal{L}_n.$$

and set $c_n = 0$ for all n > N. Further, let $a_n = \frac{\langle f, \mathcal{L}_n \rangle}{\|\mathcal{L}_n\|_2^2}$. Now, for any $M \geq N$, we have

$$f - \sum_{n=0}^{M} c_n \mathcal{L}_n = (f - S_M(f)) + \sum_{n=0}^{M} b_n \mathcal{L}_n$$

where $b_n = a_n - c_n$. Using Pythagoras' Theorem,

$$\varepsilon^{2} \ge \|f - \sum_{n=0}^{M} c_{n} \mathcal{L}_{n}\|_{2}^{2} = \|f - S_{M}(f)\|_{2}^{2} + \left\|\sum_{n=0}^{M} b_{n} \mathcal{L}_{n}\right\|_{2}^{2} \ge \|f - S_{M}(f)\|_{2}^{2}$$

This shows that $S_M(f) \to f$ in $L^2[-1,1]$, thereby completing the proof.