[Total	No	of Prin	ted Pages	. 1
I IOIUI.	1 V O.	OIIIIIII	ieu i uges	. 1

Roll No	

BE-201 (GS)

B.E. I & II Semester Examination, June 2020

Grading System (GS)

Engineering Physics

Time: Three Hours

Maximum Marks: 70

Note: i) Answer any five questions.

- ii) All questions carry equal marks.
- 1. Find out the relationship between group velocity (v_g) and wave velocity (v_p) .
- 2. State Heisenberg's Uncertainty Principle. Prove that $\Delta x. \Delta p \ge \frac{\hbar}{2}$.

OR

Derive energy Eigen values and wave function for a particle trapped in a one dimensional square potential well.

- 3. Write a note on:
 - a) Michelson's interferometer.
 - b) Newton's rings.
- 4. Write the construction and working of He-Ne laser with diagram.
- 5. Explain in detail the following process.
 - a) Spontaneous and stimulated Emission.
 - b) Population inversion.

OR

Obtain energy level expression for particle trapped in infinitely deep square well potential.

6. Derive an expression for time independent Schrodinger wave equation to particle trap in a one dimensional square potential well.

OR

What is double refraction? Explain principle, construction and working of Nicol prism.

7. What is a carbon-dioxide (CO₂) laser? Explain its setup along with vibrational modes of CO₂ molecule.

OR

Describe five applications of Laser in our daily life.

- 8. Write short note (any two)
 - a) Brewster's law
 - b) Diffraction
 - c) Einstein's A and B Co-efficients
 - d) Semi-Empirical Mass

BE-201 (GS)