MAT 108 HW 2

Hardy Jones 999397426 Professor Bandyopadhyay Spring 2015

§1.2 6 (a) This statement is true since both sides of the bi-conditional have the same truth values.

Triangles have three sides and squares have four sides.

(b) This statement is true since both sides of the bi-conditional have the same truth values.

$$7 + 5 = 12$$
 and $1 + 1 = 2$.

(d) This statement is true since both sides of the bi-conditional have the same truth values.

parallelograms have four sides and 27 is not prime..

- 10 (a) (f has a relative minimum at $x_0 \wedge f$ is differentiable at $x_0 \implies f'(x_0) = 0$
 - (b) n is prime \implies $(n = 2 \lor n \text{ is odd})$
 - (c) R is irreflexive \implies (R is symmetric $\land R$ is transitive)
 - (d) det $\mathbf{B} = 0 \implies (\mathbf{B} \text{ is square } \wedge \text{ not invertible})$
 - (f) $(2n < 4 \lor n > 4) \implies 2 < n 6$
 - (g) $6 \ge n 3 \implies (n > 4 \lor n > 10)$
 - (h) x is Cauchy $\implies x$ is convergent.
- 15 (a) (f has a relative minimum at $x_0 \wedge f$ is differentiable at x_0) $\Longrightarrow f'(x_0) = 0$
 - Converse:

 $f'(x_0) = 0 \implies (f \text{ has a relative minimum at } x_0 \land f \text{ is differentiable at } x_0)$

This sentence is false since $f'(x_0) = 0$ can be true, but f may have a relative maximum at x_0 .

• Contrapositive:

 $(\sim f'(x_0) = 0) \implies (\sim (f \text{ has a relative minimum at } x_0 \wedge f \text{ is differentiable at } x_0))$

 $f'(x_0) \neq 0 \Longrightarrow (\sim f \text{ has a relative minimum at } x_0 \lor \sim f \text{ is differentiable at } x_0)$

 $f'(x_0) \neq 0 \implies (f \text{ does not have a relative minimum at } x_0 \vee f \text{ is not differentiable at } x_0)$

Since the original statement is true, and the contrapositive has the same truth value, this sentence is also true.

(b) n is prime \implies $(n = 2 \lor n \text{ is odd})$

• Converse:

 $(n = 2 \lor n \text{ is odd}) \implies n \text{ is prime}$

This sentence is false. If n = 9 then n is odd, but n is not prime.

• Contrapositive:

$$(\sim (n=2 \lor n \text{ is odd})) \implies (\sim n \text{ is prime})$$

$$(\sim n = 2 \lor \sim n \text{ is odd}) \implies n \text{ is not prime}$$

$$(n \neq 2 \lor n \text{ is not odd}) \implies n \text{ is not prime}$$

Since the original statement is true, and the contrapositive has the same truth value, this sentence is also true.

(f) $(2n < 4 \lor n > 4) \implies 2 < n - 6$

• Converse:

$$2 < n - 6 \implies (2n < 4 \lor n > 4)$$

This sentence is true.

We can see this by simplifying both sides a bit:

$$8 < n \implies (n < 2 \lor 4 < n)$$

If n is greater than 8, it is also greater than 4. So if the antecedent is true, the whole sentence is true.

• Contrapositive:

$$(\sim 2 < n-6) \implies (\sim (2n < 4 \lor n > 4))$$

$$2 \ge n - 6 \implies (\sim 2n < 4 \land \sim n > 4)$$

$$2 \ge n - 6 \implies (2n \ge 4 \land n \le 4)$$

This sentence is false.

We can see this by simplifying both sides a bit:

$$8 \ge n \implies (n \ge 2 \land 4 \ge n)$$

If n is 0, then the antecedent is true, but 0 is not greater than or equal to 2 so the consequent is false.

(g)
$$6 \ge n - 3 \implies (n > 4 \lor n > 10)$$

• Converse:

$$(n > 4 \lor n > 10) \implies 6 \ge n - 3$$

This sentence is false.

We can see this by simplifying both sides a bit:

$$(n > 4 \lor n > 10) \implies 9 \ge n$$

If n is 100, then the antecedent is true, but 100 is not less than or equal to 9 so the consequent is false.

• Contrapositive:

$$(\sim (n > 4 \lor n > 10)) \implies (\sim 6 \ge n - 3)$$

$$(\sim n > 4 \land \sim n > 10) \implies (6 < n - 3)$$

$$(n \le 4 \land n \le 10) \implies (6 < n - 3)$$

This sentence is false.

We can see this by simplifying both sides a bit:

$$(n \le 4 \land n \le 10) \implies (9 < n)$$

If n is 0, then the antecedent is true, but 0 is not greater than 9 so the consequent is false.

16 (a) We can use a truth table to enumerate all possibilities.

P	Q	$P \implies Q$	$(P \Longrightarrow Q) \Longrightarrow Q$	$[(P \implies Q) \implies Q] \implies P$
T	Т	${ m T}$	T	T
${\rm T}$	F	${ m F}$	m T	${ m T}$
\mathbf{F}	Т	${ m T}$	m T	\mathbf{F}
F	F	${ m T}$	F	${ m T}$

Since the truth value of final column is neither all true nor all false, this is neither a tautology nor a contradiction.

(b) We can use a truth table to enumerate all possibilities.

P	Q	$P \lor Q$	$P \wedge (P \vee Q)$	$P \iff P \land (P \lor Q)$
Т	Т	Т	Τ	T
\mathbf{T}	F	Τ	${ m T}$	T
F	$\mid T \mid$	Τ	${ m F}$	T
F	F	F	${ m F}$	T

Since the truth value of final column is all true, this is a tautology.

(c) We can use a truth table to enumerate all possibilities.

P	Q	$P \implies Q$	$\sim Q$	$P \land \sim Q$	$P \implies Q \iff P \land \sim Q$
T	Т	${ m T}$	F	F	F
${ m T}$	F	${ m F}$	Τ	Τ	F
F	Т	${ m T}$	F	F	F
F	F	${ m T}$	Т	F	F

Since the truth value of final column is all false, this is a contradiction.

§1.3 1 (b)

- (d)
- (e)
- (i)
- (1)

5

6

- 8 (c)
 - (d)
 - (e)
 - (f)
 - (k)
 - (1)
- 9 (a)
 - (c)
 - (g)
- 10 (i)
 - (j)

- (k)
- 11 (b)
- 12 (a)

 - (b) (c)
 - (d)