Provas Prova por Contradição

Teoria da Computação Prof^a. Jerusa Marchi

Considere a seguinte asserção

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Por se tratar de uma prova do tipo "se e somente se", precisamos considerar a ida e a volta da implicação. Chamemos de L a premissa $\overline{A \cup B}$ e de R o consequente $\overline{A} \cap \overline{B}$. Provar a afirmação acima consiste em provar que (i) $L \subseteq R$ e (ii) $R \subseteq L$.

Para construir uma prova por contradição, assumimos que há em (i) um elemento x em L que não está R, ou seja, tentamos provar que $L \not\subseteq R$ e que há em (ii) um elemento x em R que não está em L, ou seja, que $R \not\subseteq L$.

Primeiro vamos provar a direção (i). Suponha para fins da contradição que $L \not\subseteq R$, ou seja, há um elemento x em $\overline{A \cup B}$ tal que $x \not\in \overline{A} \cap \overline{B}$. Se $x \in \overline{A \cup B}$, pela definição de complemento, $x \not\in A \cup B$, ou seja, $x \not\in A$ e $x \not\in B$, pela definição de união. Se $x \not\in A$ e $x \not\in B$, x é, portanto, um elemento de \overline{A} e de \overline{B} , novamente pela definição de complemento. Se $x \in \overline{A}$ e $x \in \overline{B}$, pela definição de interseção, $x \in \overline{A} \cap \overline{B}$. Contradição.

Prova para a direção (ii). Suponha para fins da contradição que $R \not\subseteq L$, ou seja, há um elemento $x \in \overline{A} \cap \overline{B}$, tal que $x \not\in \overline{A} \cup \overline{B}$. Se $x \in \overline{A} \cap \overline{B}$, pela definição de complemento, $x \not\in A$ e $x \not\in \overline{B}$. Ainda pela definição de complemento, $x \in \overline{A}$ e $x \in \overline{B}$. Se $x \in \overline{A}$ e $x \in \overline{B}$ então $x \in \overline{A} \cup \overline{B}$. Contradição.