

УНИВЕРСИТЕТ ИТМО

Системы ввода/вывода

Лекция 3. Контроллерные сети. Проводные линии связи

Быковский С.В. e-mail: sergei_bykovskii@itmo.ru

Санкт-Петербург

Контроллерные сети

Темы раздела

- Понятие контроллерных сетей
- Пирамида автоматизации
- Стандарты CAN, LIN, FlexRay

Контроллерные сети

Контроллерная сеть — сеть передачи данных, связывающая в единую коммуникационную инфраструктуру процессоры, контроллеры ввода/вывода, датчики и исполнительные механизмы для решения задач автоматизации/контроля технологических, химических или физических процессов.

«Синонимы»: промышленная сеть, полевая шина (от англ. fieldbus)

Области применения

- Автономные системы управления в автомобильной индустрии, самолетостроении, космической отрасли.
- Автоматизация технологических процессов на производстве.
- Приложения «умный дом».

ERP (Enterprise Resource Planning) - системы планирования и управления ресурсами предприятия (трудовыми и техническими).

SCADA (Supervisory Control And Data Acquisition) — системы диспетчерского управления и сбора данных. MES (Manufacturing Execution Systems) — системы оперативного управления производственными процессами.

Контроллерные сети. Стандарт CAN

CAN (Controller Area Network) – стандарт для построения промышленных контроллерных сетей.

Стандарт CAN был разработан в 1983 г. компанией Bosch для автомобильной промышленности. Первые приемопередатчики появились в 1987 г. Стандартизирован в 1993 г. (ISO 11898).

Примеры контроллерных сетей CAN:

- 1. Системы автоматизации технологических процессов на производстве (управление хим. процессами в фарм. индустрии, управлении конвейерной линией сборки автомобилей и т.п.)
- 2. Бортовая вычислительная сеть автомобиля
- 3. Бортовая вычислительная система космического аппарата
- 4. Вычислительная система морских судов
- 5. Системы «умный дом»
- 6. и т.п.

Каноническая схема подключения устройств к шине CAN

Характеристики интерфейса CAN

- Стандарт: ISO 11898
- Проводной последовательный асинхронный интерфейс
- Полудуплексная передача данных
- Кол-во линий данных: 1 дифференциальная линия
- Макс. скорость передачи данных: до 1Мбит/с (до 40 м.)
- Расстояние передачи данных: до 1 км. (50 Кбит/с)
- Топология: общая шина

Стек протоколов CAN

Название уровня	Описание
Прикладной	Стандартом CAN не установлен. Определен стандартами , CANopen, DeviceNet, SDS, Kingdom и др.
Канальный	Формирование пакетов данных, обнаружение и сигнализация об ошибках
Физический	Определяет набор физических сигналов интерфейса. Поддержка надежной передачи на уровне байтов (кодирование, контрольная сумма, синхронизация)

Физический уровень CAN

Сигнальная линия	Направление	Описание
CAN_L	двунаправлен	Сигналы линии данных
CAN_H	ный	
GND	-	Общий провод (земля)

Формат пакета данных CAN

Принципы передачи данных CAN

- У устройств нет адресов
- Передача данных осуществляется специальными сообщениями, фреймами
- Каждое устройство сети может начать передачу данных
- При одновременном доступе к среде передачи данных нескольких устройств данные не теряются, что обеспечивается алгоритмом разрешения коллизий
- Все устройства сети могут принимать все сообщения, передаваемые по сети
- Для повышения надежности используется бит-стаффинг (5 одинаковых бит дополняются 6-ым инверсным).

Арбитраж шины CAN

Канальный уровень CAN

Типы фреймов канального уровня:

- **DATA FRAME** (фрейм данных) данные от передатчика к приемнику;
- **REMOTE FRAME** (фрейм вызова) передается одним из устройств для того, чтобы получить от другого устройства данные в формате DATA FRAME с тем же идентификатором, что и в REMOTE FRAME;
- **ERROR FRAME** (фрейм ошибок) передается любым устройством, обнаружившим ошибку на шине;
- **OVERLOAD FRAME** (фрейм перегрузки) используется для запроса дополнительной задержки между предыдущими и последующими данными.

Прикладной уровень CAN

- Прикладной уровень определяет протокол передачи сообщений между компонентами программного обеспечения устройств сети CAN.
- Прикладной уровень CAN не стандартизирован.
- «Популярные» реализации прикладного уровня:
 - CANopen
 - DeviceNet

Пример использования сети CAN

Сети LIN и FlexRay

LIN (Local Interconnect Network)

- ISO 17987
- Управление системами, где нет необходимости в высокой надежности
- Взаимодействие между системами со скорости реакции человека.
- Используется однопроводная двунаправленная шина.
- Максимальная скорость 20 Кбит/с

FlexRay

- ISO 17458
- Предназначен для надежной высокоскоростной передачи данных
- Взаимодействие между системами в реальном времени.
- Максимальная скорость 10 Мбит/с

Проводные линии связи

Темы лекции

- Передача аналоговых и цифровых сигналов
- Типы кабелей
- Особенности проектирования разъемов
- Защита проводных линий

Понятие аналогового сигнала

Аналоговый (непрерывный) сигнал — непрерывное изменение во времени физической величины (напряжение, ток, температура, амплитуда звука и т.п.)

Передача аналогового сигнала

- 1. Одиночный проводник
- 2. Дифференциальная пара
- 3. Оптоволокно

VGA-кабель

VGA-кабель – пример кабеля, в котором аналоговые сигналы передаются по одиночным проводникам

VGA-кабель (распиновка)

	Название	Обозначения
	1.Красный	Красный видео (75 Ом, 0.7 В)
	2.Зеленый	Зеленый видео (75 Ом, 0.7 В)
	3.Синий	Синий видео (75 Ом, 0.7 В)
	4.RES	Не используется
	5.GND	Земля
	6.RGND	Земля красного
	7.GGND	Земля зеленого
	8.BGND	Земля синего
	9.+5V	Дополнительные +5В от видео карты
	10.SGND	Синхронизация Земли
	11.ID0	ID монитора Бит 0 (опционально)
	12.SDA	I2C двунаправленная линия данных
13.HSYNC or CSYNC Горизонтальная синхронизация (или композитная синхрониз		Горизонтальная синхронизация (или композитная синхронизация)
	14.VSYNC	Вертикальная синхронизация
	15.SCL	Тактовая частота 15 SCL I2C в DDC2, Monitor ID3 в DDC1

Коаксиальный кабель

- 1. Проводник
- 2. Изоляция
- 3. Экран
- 4. Внешняя изоляция

Дифференциальная пара

Витая пара

Оптоволокно

Передача цифровых сигналов

Типы кабелей:

- 1. Одиночный проводник
- 2. Дифференциальная пара
- 3. Оптоволокно

Стандарты однополярных сигналов

- 1. TTL
- 2. CMOS
- 3. LVCMOS

TTL-выход (на биполярных транзисторах)

CMOS — выход (на полевых транзисторах)

Стандарты дифференциальных сигналов

Дифференциальные пары на плате

PECL/LVPECL

PECL/LVPECL

- Состоит из дифференциальной пары, которая управляет парой эмиттерных повторителей
- Выход эмиттерных повторителей должен работать в активном регионе, с текущим непрерывно постоянным током
- Интерфейс PECL подходит как для +5.0V, так и для +3.3V напряжений питания. Когда напряжение питания +3.3V, такой интерфейс обычно называют LVPECL.

LVDS

 Схема LVDS-передатчика представляет собой сбалансированный источник тока, положительные и отрицательные сигналы которого сдвинуты на 180° и совместно создают выходное дифференциальное напряжение.

CML

• CML - логические схемы на переключателях тока. Ключи типичного выходного каскада нагружены на резисторы 50 Ом и подтянуты к V_{CC} .

VML

VML - логические схемы на переключателях напряжения.

Схемы сопряжения дифференциальных пар

Сопряжение с постоянной составляющей

Сопряжение с переменной составляющей

https://kit-e.ru/fpga/sopryazhenie-shem-differenczialnoj-logiki-raznyh-tipov/

Индустриальные разъемы

https://www.youtube.com/watch?v=h-7xghu3O-A

USB type C

В чем недостатки?

DVI разъем

Защита проводных линий

Защита от статического напряжения

Для защиты от электростатики используют специальные TVS-диоды

Гальваническая развязка

Гальваническая развязка — это метод передачи электрического сигнала между частями системы без электрического контакта

Виды гальванической развязки:

- Оптическая
- Индуктивная
- Емкостная

Цепи с гальванической развязкой можно подключать и отключать без отключения питания (механизм Plug & Play)

Оптическая развязка

- Используется для низкоскоростных каналах передачи данных
- Можно передавать сигнал, но не энергию
- Нечувствительна к уровню электромагнитных помех

Индуктивная развязка

- Используется в высокоскоростных каналах данных
- Можно передавать как сигнал, так и энергию
- Зависи от уровня электромагнитных помех

Емкостная развязка

- Подходит для высокоскоростных линий
- Обычно используется внутри вычислительной системы

Спасибо за внимание!

sergei_bykovskii@itmo.ru