

characterization of almost convex functions

 ${\bf Canonical\ name} \quad {\bf Characterization Of Almost Convex Functions}$

Date of creation 2013-03-22 15:21:07 Last modified on 2013-03-22 15:21:07

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075) Entry type Theorem Classification msc 26A51 A real function f is almost convex iff it is monotonic or there exists $p \in \mathbb{R}$ such that f is nonincreasing on the half-line $(-\infty, p)$ and nondecreasing on the half-line $(p, +\infty)$

Proof:

The proof is based on some simple observations about the values of an almost convex function. Suppose that a < b and $f(a) \le f(b)$. Then for any c > b, it must be the case that $f(b) \le f(c)$. This follows from the fact that, by definition of almost convex, either $f(b) \le f(a)$ or $f(b) \le f(c)$. Since the first option is excluded by assumption, the second option must be true.

Furthermore, with a, b as above, f is nondecreasing in the half-line $[b, \infty)$. By the result of the last paragraph, it suffices to show that f is non-decreasing in the open half-line (c, ∞) . This is tantamount to showing that, if c < d < e, then $f(d) \leq f(e)$. From the conclusion of last paragraph, we already know that $f(c) \leq f(d)$. Applying the result shown in the last paragraph to this conclusion, we further conclude that $f(d) \leq f(e)$, as desired.

By replacing " \leq " by " \geq " in the above two paragraphs suitably, we also can likewise that, if a < b and $f(a) \geq f(b)$, then f is nonincreasing on the half-line $(-\infty, a]$.

Now assume that f is almost convex but not monotonic. By the hypothesis of nonmomotonicity, there must exist a < b < c such that it is the case that neither $f(a) \le f(b) \le f(c)$ nor $f(a) \ge f(b) \ge f(c)$. Furthermore, by almost-convexity, it follows that $f(b) \le f(a)$ and $f(b) \le f(c)$. This, in turn, implies that f is nonincreasing on $(-\infty, a]$ and nondecreasing on $[c, +\infty)$.

Let L be the set of all real numbers q such that f is nondecreasing on the interval $(q, +\infty)$. This set is not empty because $c \in L$. It is a proper subset of the real line because, for instance, $q \notin L$ whenever q < a. This follows from the observation that f cannot be nondecreasing on $(q, +\infty)$ because f(a) > f(b). Also, L must be a proper subset of the real line, because, if it were not, f would be nondecreasing on the whole real line, which is contrary to assumption.

Note that, if r < q and $q \notin L$, then $r \notin L$ as well. This is an expression of the fact that, if a function is not monotonic on a set, it is not monotonic on a superset, which is the contrapositive of the assertion that a the resticition of a function which is monotonic on a set to a subset is still monotonic. Since there exists a real number r such that $r \notin L$, this means that r is a lower bound for L. Since L is bounded from below and not empty, it follows that L has a greatest lower bound, which we shall call p.

By construction, f is non-decreasing on the half-line $(p, +\infty)$. We will

now show that f is nonincreasing on the half-line $(-\infty, p)$. Suppose that q < p. Then, by the choice of p, the function f is not nondecreasing on the half-line $(q, +\infty)$. This means that there must exist a, b such that q < a < b and f(a) > f(b). By the result demonstrated above, it follows that f is non-increasing on $(-\infty, a)$, hence, since q < a, in particular, f is nononicreasing on $(-\infty, q)$. Since f is nonincreasing on $(-\infty, q)$ for all q, it is the case that f is nonincreasing on $(-\infty, p)$.