What is this Why are we learning How do we plan to course about ? this course ? Learn this course ?

Signals, Systems and Networks

- → What is a signal?
- → Measuring signals using
- Energy/Power
- Classification of signals
- → Useful signals:
 - → Unit step: u(t) → Unit impulse: S(t)
 - $\frac{du}{dt} = \delta(t)$
 - -> Complex exponential: e
- Signal Operations:
 - -> Shifting
 - -> Inversion
 - -> Scaling
 - -> Separating even and odd part

- → What is a system? How is it represented and characterized?
- Jwo goals of learning systems: Analysis and Design
- Classification of systems:
 - -> Linear vs Non linear
 - -> Jime invariant vs Variant
 - -> Causal vs Non causal -> Invertible vs Noninvertible
 - → BIBO stable vs BIBO unstable
- Jime domain analysis of LTIC systems:
 - -> Representing LTIC systems using
 - linear DEs: Q(D)y = P(D)x-> m < n for practical systems
 - → Jotal system response =
 - Zero-input (yzi) + Zero-state (yzs) > Zero-input response:
 - → Solve Q(D)y = 0
 - Distinct roots, repeated roots, and complex roots
 - Zero-state response: -> Understanding the impulse
 - response h(t)
 - \rightarrow Convolution integral $x_1(t) * x_2(t)$
 - and its properties -> Computing convolution properly
 - → Jotal system response =
 - Natural + Fonced
- System Stability: → Asymptotic/Internal/ZI:
 - Characteristic roots
- → BIBO/External/ZS 9s h(t) absolutely integrable?

 - -> Fourier Series Representation:
 - -> Helps us split x(t) into simpler functions, which makes computing $y_{zs}(t) = \chi(t) * h(t) easier$
 - -> Generalized Fourier Series using a set of orthogonal signals
 - -> Trigonometric Fouries Series:
 - > Set of Harmonic Sinusoids
 - -> Trigonometric Fourier Series expansion and computing
 - the coefficients > x(t) and the Fourier series expansion have the same To
 - -> Dirichlet Conditions
- -> Compact Trigonometric Fouries Series and computing the coefficients
 - -> Converting Fourier Series expansions from one form to another
 - -> Parseval's Theorem
 - -> Properties of Fourier Series
 - Limitations of Fourier Series
 - Fourier Transform:
 - Motivation and deriving the Fourier Transform/Integral and its Inverse
 - -> Properties of Fourier Transform
 - Using Fourier Transform to find. the LTIC System response
 - -> Parseval's Theorem
- → Application of Fourier Transform in modulation and demodulation
- -> Laplace Transform: → Laplace Transform as an

 - -> Properties of Laplace Transform
 - Using Laplace Transform to find. the LTIC System response
- Applications of Laplace Transform in solving Differential Equations and Electrical Circuits

- What is Network Analysis 9
- > Kirchhoff's Current Law & Generalized Nodal Analysis
- → Kirchhoff's Voltage Law & Generalized Mesh Analysis
- Supernode and Supermesh
- -> Network Theorems:
 - -> Superposition
 - → Thevenin's
 - > Norton's
 - -> Maximum Power Transfer
 - > Millman's
 - -> Reciprocity
 - Substitution -> Compensation
 - Jellegen's

-> Network Functions:

- Transform (driving-point) Impedance & Admittance
- Transfer Impedance &
- Admittance
- Voltage transfer function Current transfer function
- Poles and Zeros Stability criterion?
- → Jwo Port Networks:
 - Impedance Parameters
 - -> Admittance Parameters
 - Transmission Parameters -> Hybrid Parameters
 - -> Interrelationship between
 - parameters
 - Interconnection of Two-post networks
 - -> Cascade

-> Parallel

- Passive and Active Filters
 - Jow-Pass
 - High Pass
 - Band Pass
 - -> Band Stop