Séries numériques

Remarque: Fiche à travailler en ligne, seule la page 1 est téléchargeable. I. Définitions Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{R} ou \mathbb{C} . On lui associe une nouvelle suite $(U_n)_{n\in\mathbb{N}}$ en posant

$$U_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^{k=n} u_k$$

Le couple $((u_n), (U_n))$ est appelé la **série de terme général** u_n . On notera $\sum u_n$ la série $((u_n), (U_n))$. Le nombre u_n est le n-ième terme et le nombre U_n est la n-ième somme partielle de la série $\sum u_n$. On convient que si la suite (u_n) est définie seulement pour n supérieur à un entier m, on pose $u_0 = u_1 = \cdots = u_{m-1} = 0$, de sorte que $U_n = u_m + \cdots + u_n$ pour $n \ge m$.

L'étude de la série $\sum u_n$ est l'étude de la suite $(U_n)_{n\in\mathbb{N}}$. On dira donc que la série $\sum u_n$ est convergente si et seulement si la suite (U_n) est convergente et on dira que la série $\sum u_n$ est divergente si et seulement si la suite (U_n) est divergente.

Si la série $\sum u_n$ est convergente, on appelle **somme** de cette série le nombre

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} (u_0 + \dots + u_n)$$

et, pour chaque entier $n \in \mathbb{N}$, on appelle **reste de rang** n de la série le nombre

$$R_n = \sum_{k=n+1}^{+\infty} u_k = \sum_{n=0}^{+\infty} u_n - U_n$$

Il arrive que pour une série convergente, on note

$$\sum_{n=0}^{+\infty} u_n = u_0 + u_1 + \dots + u_n + \dots$$

On dit qu'une série $\sum u_n$ est absolument convergente si et seulement si la série $\sum |u_n|$ est convergente. Une série qui est convergente, mais qui n'est pas absolument convergente, est une série semi-convergente.

Une série $\sum u_n$ est à **termes positifs** si et seulement si u_n est un nombre réel positif pour tout $n \in \mathbb{N}$. Une série **alternée** est une série $\sum u_n$ dont tous les termes sont réels et telle que $u_n u_{n+1} < 0$ pour tout $n \in \mathbb{N}$. Soient $\sum u_n$ et $\sum v_n$ deux séries. On appelle **produit de Cauchy** de ces séries et on note $\sum u_n \star \sum v_n$ la série $\sum w_n$ où w_n est défini pour chaque n par

$$w_n = u_0 v_n + u_1 v_{n-1} + \dots + u_n v_0 = \sum_{k=0}^n u_k v_{n-k}$$

II. Propriétés générales

On ne change pas la nature d'une série si on modifie un nombre **fini** de ses termes. Si elle était divergente, elle reste divergente; si elle était convergente, elle reste convergente, mais sa somme peut changer.

Si $\sum u_n$ et $\sum v_n$ sont des séries convergentes et si λ et μ sont des nombres complexes, alors la série $\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n)$ est convergente et on a

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$$

Soient $\sum x_n$ et $\sum y_n$ des séries réelles. La série complexe $\sum (x_n + iy_n)$ est convergente si et seulement si les séries $\sum x_n$ et $\sum y_n$ sont convergentes.