COMS3007 Machine Learning TEST 11 April 2019

This is a closed book test. You may use a calculator.

Time: Two Hours

Question 1. (6 marks)

For each of the following scenarios, state whether the problem is a supervised learning problem, unsupervised learning problem, or reinforcement learning problem. Give a one line justification in each case. 1/2 per answer, 1/2 for justification

- (a) Predicting the outcome of an election. SL predict a party
- (b) Estimating tomorrow's Bitcoin price. SL predict a continuous value
- (c) An autonomous car learning to drive. RL learning a behaviour with sparse feedback
- (d) Dividing patients arriving at a hospital into 5 different categories. UL no set categories
- (e) Translating documents from Zulu to English. SL given mapping between docs
- (f) Segmenting drivers based on their driving styles and behaviours. UL no set categories

Question 2. (4 marks)

Explain the difference between overfitting and underfitting. When might each of these occur? Overfitting - model captures noise in training data (or doesn't generalise well to testing data) (1) when model has too many parameters/is too flexible (1). Underfitting - model isn't able to capture structure in data (1) when model is too inflexible (1).

Question 3. (3 marks)

- (a) What do we use training data for? To learn the model parameters.
- (b) What do we use testing data for? To report the model quality.
- (c) What do we use validation data for? To learn the model hyperparameters.

Question 4. (3 marks)

- (a) What does it mean for data to be linearly separable? Classes can be divided by a straight line (1)
- (b) In classification, what is the difference between a generative model and a discriminative model? Generative model: model the distribution of the data, or class conditional modelling, or model p(x|y)p(y) (1). Discriminative model: model the separation between the classes, or model p(y|x) directly (1)

Question 5. (3 marks)

Bayes' rule is given by $P(y|x) = \frac{P(x|y)P(y)}{P(x)}$.

- (a) Which probability in this equation is the prior? P(y)
- (b) Which probability in this equation is the posterior? P(y|x)
- (c) What is the naïve Bayes assumption? That features are independent given the class, or P(x|c) = P(x1|c)P(x2|c)

Question 6. (11 marks)

Consider the training data in Table 1. We now want to classify a new datapoint: (B, C)

Table 1. Classification dataset

class	X	Y	Y	X	X	X	Y	Y
feature 1	A	A	В	В	A	A	В	A
feature 2	С	D	D	С	С	D	С	С

- (a) Compute P(X) and P(Y). (2) By counting: P(X) = P(Y) = 4/8. With any of these results, it doesn't matter if these are simplified.
- (b) Compute P(B|X), P(B|Y), P(C|X), P(C|Y). (4) By counting: P(B|X) = 1/4, P(B|Y) = 2/4, P(C|X) = 3/4, P(C|Y) = 2/4. One mark for each.
- (c) Use Naïve Bayes (with Bayes' rule given in the previous question), and the answers in (a) and (b) to compute P(X|B,C) and P(Y|B,C). (4) **First:** P(B,C|X) = P(B|X)P(C|X) = 0.25 * 0.75 = 0.1875 (1) P(B,C|Y) = P(B|Y)P(C|Y) = 0.5 * 0.5 = 0.25 (1). **Then:** P(X|B,C) = P(B,C|X)P(X)/(0.1875 * 0.5 + 0.25 * 0.5) = 0.1875 * 0.5/0.21875 = 0.4286 (1) and P(Y|B,C) = P(B,C|Y)P(Y)/0.21875 = 0.25 * 0.5/0.21875 = 0.5714 (1)
- (d) What class is (B, C) most likely to be? (1) By comparing the posteriors, it's Y

Question 7. (9 marks)

We now want to use a decision tree to build a classifier for the same data. Recall that for a feature F and dataset D we define the gain as:

$$Gain(D, F) = H(D) - \frac{1}{|D|} \sum_{f \in values of F} |D_f| H(D_f).$$

Entropy H(p) of a distribution p is $H(p) = -\sum_{i=1}^{n} p_i \log_2(p_i)$, where p_i is the probability of class i.

- (a) Compute the entropy of the full dataset H(D). (1) **Entropy** = -0.5log0.5 0.5log0.5 = 1
- (b) Compute Gain(D, feature1). (3) **Entropy on A:** $H(D_A) = -3/5log3/5 2/5log2/5 = 0.9710$. (1) **Entropy on B:** $H(D_B) = -1/3log1/3 2/3log2/3 = 0.9183$. (1) **Gain** = 1 5/8(0.9710) 3/8(0.9183) = 0.0488 (1)
- (c) Compute Gain(D, feature 2). (3) **Entropy on C:** $H(D_C) = -3/5log 3/5 2/5log 2/5 = 0.9710$. (1) **Entropy on D:** $H(D_D) = -1/3log 1/3 2/3log 2/3 = 0.9183$. (1) **Gain =** 1 5/8(0.9710) 3/8(0.9183) = 0.0488 (1)