Real Analysis

Arnau Mas

2019

These are notes gathered during the subject <i>Anàlisi Real</i> by Joan Orobitg between September 2019 and January 2020.	i Funcional	as taught

Measure Theory

1.1 Measure Spaces

Definition 1.1 (σ -algebra). We say a family of subsets $\mathcal{A} \subseteq \mathcal{P}(X)$ of a set X is a σ -algebra over it if

- $(i) \ \emptyset, X \in \mathcal{A},$
- (ii) \mathcal{A} is closed under countable unions, i.e. if there is a countable set $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ then $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$,
- (iii) \mathcal{A} is closed under countable intersections, i.e. if there is a countable set $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ then $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{A}$,
 - (iv) \mathcal{A} is closed under complements, i.e. if $A \in \mathcal{A}$ then $X A \in \mathcal{A}$.

 \triangle

Example 1.1. The following are all examples of σ -algebras.

- (i) For any set X, $\mathcal{P}(X)$ is a σ -algebra called the *discrete* σ -algebra. It is the finest σ -algebra since any other possible σ -algebra over X is contained in it.
- (ii) On the other hand, the coarsest σ -algebra over any set X is simply $\{\emptyset, X\}$, meaning any other possible σ -algebra contains it. It is called the *trivial* σ -algebra.
 - (iii) If A_1 and A_2 are σ -algebras over a set X then so is $A_1 \cap A_2$.
- (iv) Given a family of subsets $S \subseteq \mathcal{P}(X)$ then the σ -algebra generated by it is the intersection of all σ -algebras that contain it and it is the smallest σ -algebra that contains S. We write it $\sigma(S)$.
- (v) The Borel σ -algebra over a topological space X is the σ -algebra generated by the open sets of X, written $\mathcal{B}(X)$. Since a closed set is the complement of an open set the family of closed sets also generates the Borel σ -algebra.

 ∇

The pair formed by a set and its σ -algebra is called a measurable space.

Definition 1.2 (Measure). Let (X, A) be a measurable space. A measure is a map $\mu: A \to [0, \infty]$ such that the following are true

- (i) $\mu(\emptyset) = 0$.
- (ii) If $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ is a family of pairwise disjoint sets of finite measure then

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \sum_{i\in\mathbb{N}}\mu(A_i).$$

 \triangle

A measurable space equipped with a measure is called a *measure space*.

Example 1.2. The following are all examples of measures.

- (i) Consider a measurable space X with the discrete σ -algebra. Then, for any subset $A \subseteq X$ we define $\mu(A) = |A|$ if A is finite and $\mu(A) = \infty$ if A is infinite. This is the *counting measure*, for obvious reasons.
- (ii) On a finite measurable space X with the discrete σ -algebra we define for any subset $A \subseteq X$

$$\mu(A) = \frac{|A|}{|X|}.$$

This is a special case of a probability measure since $\mu(X) = 1$. In fact a probability is exactly a measure satisfying $\mu(X) = 1$.

(iii) On a measurable space X with any σ -algebra fix a point $x \in X$ and define $\mu(A) = 1$ if $x \in A$ and $\mu(A) = 0$ otherwise. This is called the *Dirac measure*.

 ∇

1.2 The Lebesgue measure

A question worth asking is whether any measurable space can be made into a measure space. Carathódory's extension theorem gives an affirmative answer to the question provided we give a starting point for the measure. Roughly speaking the starting point consists of specifying the measure of a collection of subsetsa, subject to some requirements, which can then be extended to a measure on the whole of the σ -algebra. In the case of \mathbb{R}^n ,