Turing Machine

eg. Decide $L=\{0^{2^n}|n\geq 0\}$, where $\Sigma=\{0\}$

- Idea:
 - 1. If there is a single 0, accept
 - 2. Sweep from left to right, crossing off every other $\boldsymbol{0}$
 - 3. If the number of 0's is odd, reject
 - 4. Return the head to the left-hand end
 - 5. Goto step 1
- $\Sigma = \{0\}, \Gamma = \{0, \sqcup, \rhd, x\}$

Def 3.2 Let $L\subseteq\{0,1\}^*$, let M be a TM. Say M decides L in time T(n) if for every $x\in\{0,1\}^*$,

- 1. M halts in T(n) steps
- 2. If $x \in L$, then M accepts x
- 3. If $x \not\in L$, then M rejects x

Def 3.3 Let $L\subseteq\{0,1\}^*$. Call L (Turing) decidable if there is a TM that decides it.

- Note that, on an input x, a TM may accept, reject or loop forever.
- In *Def 3.2*, the machine should never loop forever.

 ${\it Def 3.4}$ Let M be a TM. The set of strings that M accepts is the language recognized by M, denoted by L(M).

Def 3.5 Let $L\subseteq\{0,1\}^*$. Call L (Turing) recognizable if there is some TM that recognizes it.

- Obviously, every (Turing) decidable language is (Turing) recognizable.
- The converse is not true. eg. $L = \{ \langle M, x \rangle | M \ halts \ on \ x \}$

Def 3.6 Let $f:\{0,1\}^* \to \{0,1\}^* \cup \{undefined\}$. Say TM M computes f if for every $x \in \{0,1\}^*$ with $f(x) \neq undefined$, M halts with f(x) on its tape in at most T(|x|) steps.

An algorithm is a Turing Machine.

- ——Alan Turing
- Despite its simplicity, TM is capable of implementing any computer algorithm.

Variants of Turing Machines

Lem 3.7 If language $L\subseteq\{0,1\}^*$ is decidable in time T(n) by a TM on alphabet Γ , then it is decidable in time $O(\log |\Gamma|\cdot T(n))=O_\Gamma(T(n))$ by a TM on alphabet $\Gamma=\{0,1,\sqcup,\rhd\}$.

Proof: Encode any symbol in Γ using $k=\lceil\log_2|\Gamma|\rceil=O(\log_2|\Gamma|)$ bits. To simulate one step of M, the new TM M' will

- 1. Use k steps to read a symbol $a \in \Gamma$
- 2. Transit to next step q', and get the new symbol b (to overwrite a)
- 3. Overwrite a by b
- 4. Go left or right for k steps or stay

Def 3.8 A k-tape(O(1)-tape) TM M is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where

$$\delta: Q imes \Gamma^k o Q imes \Gamma^k imes \{L,R,S\}^k$$

Usually,the first tape is the *input tape*, the last tape is the *output tape*, and the rest are *work tapes*.

Lem 3.9 Let $L\subseteq\{0,1\}^*$. If L is decidable by a k-tape TM in time T(n), then L is decidable by a single-tape TM in time $O(k\cdot T(n)^2)$.