Comparative Glycoproteomics Analysis

Richard Shipman

2025-07-16

Contents

1. Introduction

This report details a site-specific, comparative analysis of glycopeptide data from mass spectrometry experiments. The analysis was performed on psm.tsv files generated by the FragPipe MSFragger-Glyco workflow.

The primary protein of interest is **VP8_SA11**. The goal is to compare glycosylation patterns across multiple experimental conditions, as defined by the input files.

Parameters for this analysis:

- Protein of Interest: VP8_SA11
- Signal Peptide Length (to subtract): 19
- Input Files: psm_withEndoE.tsv, psm_withoutEndo.tsv

2. Data Loading and Preprocessing

The psm.tsv files were loaded and combined. The data was then filtered for the protein of interest. Crucially, to correctly identify unoccupied sites, PSMs are grouped by their peptide backbone. Glycosite information is propagated from glycosylated peptides to their non-glycosylated counterparts. Only then are peptides lacking glycan information correctly labeled as "Unoccupied".

```
# Function to load and preprocess a single PSM file
load_and_prep_psm <- function(file_path) {
    read_tsv(file_path, show_col_types = FALSE) %>%
        # Use the filename (without extension) as the sample name
        mutate(sample = tools::file_path_sans_ext(basename(file_path))) %>%
        # Select the relevant columns, ensuring 'sample' and 'Peptide' are retained
        select(sample, Peptide, Protein, `Best Positions`, `Protein Start`, `Total Glycan Composition`) %>%
        # Rename columns for easier use
        rename_with(~str_replace_all(., " ", "_") %>% tolower())
}
# Load all files and combine them
all_psms_raw <- map_dfr(params$psm_files, load_and_prep_psm)
# Process the combined data</pre>
```

```
gpsm_data <- all_psms_raw %>%
  # Filter for the target protein
  filter(protein == params$protein_name) %>%
  # Calculate initial qlycosite position (will be NA for non-qlyco peptides)
  mutate(
   glycosite = as.numeric(str_extract(best_positions, "\\d+")) + protein_start - params$signal_peptide
 ) %>%
  # *** FIX: Correctly identify Unoccupied peptides ***
  # Group by the peptide backbone to find non-glycosylated versions of glycopeptides
  group_by(peptide, sample) %>%
  # Propagate the glycosite information from the glycosylated PSM to the non-glycosylated one
  fill(glycosite, .direction = "downup") %>%
  ungroup() %>%
  # Now that glycosites are filled, filter out any peptides that are never associated with a site
  filter(!is.na(glycosite)) %>%
  # Now, we can safely label the remaining NAs as Unoccupied
  mutate(total_glycan_composition = replace_na(total_glycan_composition, "Unoccupied % 0.0")) %>%
  # Extract glycan composition and mass
  mutate(
   glycan = str_trim(str_extract(total_glycan_composition, ".*(?=%)")),
   glycan_mass = as.numeric(str_extract(total_glycan_composition, "(?<=%)[\\d\\.]+"))</pre>
 ) %>%
  # Handle cases where mass extraction fails or is zero for unoccupied
  mutate(glycan_mass = if_else(is.na(glycan_mass) | glycan == "Unoccupied", 0.0, glycan_mass))
cat("Data loaded and preprocessed.\n")
```

Data loaded and preprocessed.

```
cat("Total PSMs for", params$protein_name, ":", nrow(gpsm_data), "\n")
## Total PSMs for VP8_SA11 : 318
```

Glycoforms are defined as unique combinations of glycan structures at specific glycosites. total glycan composition column contains the glycan structure and its mass, which is used to identify and categorize glycoforms.

Glycoform subcategories are defined based on the monosaccharide composition of the glycan structures. The categorization is done using a set of rules that classify glycans into broader categories (e.g., High Mannose, Hybrid, Complex) and specific subcategories (e.g., M5, M6, E, H).

3. Glycoform Categorization

Each identified glycan was classified into a broader category and a more specific subcategory based on its monosaccharide composition. This allows for both high-level and detailed comparisons of glycan types.

```
# Function to categorize glycoforms and subcategories based on composition string
categorize_glycoform <- function(glycan_str) {</pre>
```

```
# Helper to extract counts, returns 0 if pattern not found
  get_count <- function(pattern) {</pre>
    match <- str_match(glycan_str, pattern)</pre>
    if (is.na(match[1, 2])) 0 else as.numeric(match[1, 2])
  }
 hexnac <- get_count("HexNAc\\((\\d+)\\)")</pre>
  h_hex <- get_count("Hex\\((\\d+)\\)")
  fuc <- get_count("Fuc\\((\\d+)\\)") + get_count("dHex\\((\\d+)\\)") # Combine Fuc and dHex
  neuac <- get count("NeuAc\\((\\d+)\\)")</pre>
  # Apply categorization rules
  category <- case_when(</pre>
    str detect(glycan str, "Unoccupied") ~ "Unoccupied",
    hexnac == 1 & h_hex == 0 & neuac == 0 ~ "EndoE Truncated",
    hexnac == 2 & h_hex >= 5 ~ "High Mannose",
    hexnac == 2 & h_hex >= 2 & h_hex < 5 & fuc == 0 ~ "Hybrid",
    hexnac == 2 \& h_hex >= 2 \& h_hex < 5 \& fuc >= 1 ~ "Hybrid (Fucosylated)",
    (hexnac >= 3 & h_hex >= 2) | (hexnac >= 2 & h_hex >= 3) | neuac >= 1 ~ "Complex",
    TRUE ~ "Other" # Default case
  )
  # Apply subcategory rules
  subcategory <- case_when(</pre>
    category == "Unoccupied" ~ "UO",
    category == "EndoE Truncated" & fuc == 0 ~ "E",
    category == "EndoE Truncated" & fuc == 1 ~ "E F1",
    category == "High Mannose" & h_hex == 5 ~ "M5",
    category == "High Mannose" & h_hex == 6 ~ "M6",
    category == "High Mannose" & h_hex == 7 ~ "M7",
    category == "High Mannose" & h hex == 8 ~ "M8",
    category == "High Mannose" & h_hex == 9 ~ "M9",
    category == "High Mannose" & h_hex == 10 ~ "M10",
    category == "Hybrid" ~ "H",
    category == "Hybrid (Fucosylated)" ~ "FH",
    category == "Other" ~ "O",
    TRUE ~ NA_character_
 return(tibble(glycoform_category = category, glycoform_subcategory = subcategory))
# Apply the categorization to the data
gpsm data <- gpsm data %>%
 mutate(purrr::map_df(total_glycan_composition, categorize_glycoform))
# Define a consistent order for categories for all plots
category_order <- c('Unoccupied', 'EndoE Truncated', 'Hybrid', 'Hybrid (Fucosylated)',</pre>
                    'High Mannose',
                    'Complex', 'Other')
# Define a consistent order for subcategories
subcategory_order <- c('UO', 'E', 'E F1', 'H', 'FH',</pre>
```

```
'M5', 'M6', 'M7', 'M8', 'M9', 'M10', 'O')
# Filter the order to only include categories present in the data
category_order_filtered <- intersect(category_order, unique(gpsm_data$glycoform_category))</pre>
# Create a consistent color map using a new palette
num colors <- length(category order filtered)</pre>
color palette <- brewer.pal(max(3, num colors), name = "Spectral")</pre>
category colors <- setNames(color palette[1:num colors], category order filtered)</pre>
# Display a summary table of category counts
gpsm_data %>%
  # Convert to factor with the specified level order
  mutate(glycoform_category = factor(glycoform_category, levels = category_order)) %>%
  # Count the occurrences
  count(sample, glycoform_category, .drop = FALSE) %>%
  # Pivot to wide format
  pivot_wider(names_from = sample, values_from = n, values_fill = 0) %>%
  # Arrange the final table according to the specified order
  arrange(glycoform_category) %>%
  knitr::kable(caption = "PSM Counts per Glycoform Category")
```

Table 1: PSM Counts per Glycoform Category

glycoform_category	psm_withEndoE	psm_withoutEndo
Unoccupied	46	17
EndoE Truncated	35	3
Hybrid	1	17
Hybrid (Fucosylated)	1	65
High Mannose	32	75
Complex	0	7
Other	19	0

4. Comparative Analysis of Glycosite Occupancy and Diversity

Occupancy Heatmaps The following heatmaps show the percentage of glycoforms at each site for each sample. This provides a high-level overview of glycan diversity and site occupancy. Darker colors indicate higher relative abundance. The grid now shows all categories and sites, even those with 0% abundance, for consistent comparison.

```
# Calculate percentage for heatmaps and other plots
plot_data <- gpsm_data %>%
    count(sample, glycosite, glycoform_category, glycoform_subcategory, name = "psm_count") %>%
    group_by(sample, glycosite) %>%
    mutate(percentage = psm_count / sum(psm_count) * 100) %>%
    ungroup()
```

```
# Get all unique sites across all samples to ensure they are all plotted
all_sites_in_data <- sort(unique(gpsm_data$glycosite))</pre>
# Generate a heatmap for each sample
for (s in unique(plot_data$sample)) {
  # Aggregate data for the main category heatmap
 heatmap_cat_data <- plot_data %>%
   filter(sample == s) %>%
   group_by(sample, glycosite, glycoform_category) %>%
    summarise(percentage = sum(percentage), .groups = 'drop') %>%
    ungroup() %>%
   tidyr::complete(glycosite = all_sites_in_data,
                    glycoform_category = category_order_filtered,
                    fill = list(percentage = 0, sample = s))
  p <- heatmap_cat_data %>%
   ggplot(aes(x = glycoform_category, y = as.factor(glycosite), fill = percentage)) +
    geom_tile(color = "gray80") +
   geom_text(data = . ",>" filter(percentage > 0), aes(label = round(percentage, 1)), color = "black",
    scale_fill_distiller(palette = "Spectral", name = "Percentage (%)", limits = c(0, 100)) +
    # Use limits to enforce order and presence of all categories/sites
   scale_x_discrete(limits = category_order_filtered, drop = FALSE, guide = guide_axis(angle = 45)) +
   scale_y_discrete(limits = rev(as.character(all_sites_in_data)), drop = FALSE) +
   labs(
     title = paste("Glycoform Occupancy for Sample:", s),
     x = "Glycoform Category",
     y = "Glycosite"
 print(p)
```


Comparative Pie Charts per Site To compare the relative abundance of glycoform categories more directly, the following plots show a pie chart for each sample at each glycosite. Labels are placed to avoid overlap for better readability.

```
# Aggregate data for pie charts
pie plot data <- plot data %>%
  group_by(sample, glycosite, glycoform_category) %>%
  summarise(percentage = sum(percentage), .groups = 'drop') %>%
  filter(percentage > 1)
ggplot(pie_plot_data, aes(x = 1, y = percentage, fill = glycoform_category)) +
  geom_col(width = 1, color = "white") +
  geom_text(aes(label = paste0(round(percentage), "%")),
            position = position_stack(vjust = 0.5),
            color = "black",
            size = 3.5,
            fontface = "bold") +
  coord_polar("y", start = 0) +
  facet_grid(glycosite ~ sample, labeller = labeller(glycosite =
     function(x) paste("Site", x))) +
  scale_fill_manual(values = category_colors, name = "Glycoform Category") +
  labs(
   title = "Comparative Glycoform Distribution at Each Site"
  ) +
 theme void() +
```

```
theme(
  plot.title = element_text(face = "bold", hjust = 0.5, size = 16),
  strip.text = element_text(face = "bold"),
  legend.position = "bottom"
)
```


Venn Diagram of Unique Glycopeptides The Venn diagram below illustrates the overlap of unique glycopeptides between the two sample conditions. A glycopeptide is defined as a unique combination of a peptide backbone and its attached glycan. This helps to visualize the number of shared and condition-specific

glycopeptides.

```
# Create a unique identifier for each glycopeptide (peptide + glycan)
# We filter out "Unoccupied" as it does not represent a glycopeptide.
venn_data <- gpsm_data %>%
 filter(glycoform category != "Unoccupied") %>%
 mutate(glycopeptide id = paste(peptide, glycan, sep = " "))
# Get unique qlycopeptides for the 'withEndoE' sample
with_endo_e_peptides <- venn_data %>%
 filter(sample == "psm_withEndoE") %>%
 distinct(glycopeptide_id) %>%
 pull(glycopeptide_id)
# Get unique glycopeptides for the 'withoutEndo' sample
without_endo_peptides <- venn_data %>%
  filter(sample == "psm_withoutEndo") %>%
 distinct(glycopeptide id) %>%
 pull(glycopeptide_id)
# Create a list for the Venn diagram function
# The names of the list elements will be the labels on the diagram
venn_list <- list(</pre>
  `With EndoE` = with_endo_e_peptides,
  `Without EndoE` = without_endo_peptides
# Disable the log file generation that VennDiagram creates by default
futile.logger::flog.threshold(futile.logger::ERROR, name = "VennDiagramLogger")
```

NULL

```
# Generate the Venn diagram. The plot is drawn directly to the output device.
grid.newpage()
venn.plot <- venn.diagram(</pre>
 x = venn list,
 filename = NULL, # This ensures it plots to the R device instead of a file
 output = TRUE,
 imagetype = "png",
 # Main title
 main = "Comparison of Unique Glycopeptides",
 main.cex = 1.5,
 main.fontface = "bold",
  # Circles
 lwd = 2,
 lty = 'blank',
 fill = c("#66C2A5", "#FC8D62"), # FIX: Provide a vector of 2 colors
  # Numbers inside circles
  cex = 1.5.
  fontface = "bold",
  # Set names (Category names)
  cat.cex = 1.2,
 cat.fontface = "bold",
```

```
cat.default.pos = "outer",
  cat.dist = c(0.055, 0.055),
  cat.pos = c(-20, 20)
)
grid.draw(venn.plot)
```

Comparison of Unique Glycopeptides

5. Site-Specific Microheterogeneity Analysis

The following plots provide a more detailed, site-by-site view of the specific glycan structures and categories identified, allowing for a deep dive into the microheterogeneity at each location.

Category-Level PSM Counts This plot shows the absolute number of PSMs for each glycoform category at each site. This is useful for comparing raw counts rather than percentages. The bars are set to a fixed width for easier comparison across facets.

```
# Aggregate data to the category level
category_plot_data <- plot_data %>%
  group_by(sample, glycosite, glycoform_category) %>%
  summarise(psm_count = sum(psm_count), .groups = 'drop') %>%
```

```
ungroup() %>%
  # Ensure all categories and samples are present for correct bar alignment
  tidyr::complete(nesting(glycosite, glycoform_category), sample, fill = list(psm_count = 0))
ggplot(category_plot_data, aes(x = glycoform_category, y = psm_count, fill = sample)) +
  # Use position_dodge(preserve = "total") to keep bar widths consistent
  geom_col(position = position_dodge(preserve = "total"), color = "black", linewidth = 0.5) +
  facet_wrap(~glycosite, ncol = 3, scales = "free_y", labeller = labeller(glycosite =
      function(x) paste("Site", x))) +
  scale_fill_brewer(palette = "Spectral", name = "Sample") +
  \# Enforce the new category order on the x-axis
  scale_x_discrete(limits = category_order) +
  labs(
   title = "Comparative PSM Counts per Category at Each Site",
   x = "Glycoform Category",
   y = "Total PSM Count"
  ) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```


Subcategory-Level PSM Counts This plot shows the absolute number of PSMs for each glycoform **subcategory** at each site. This is useful for comparing the abundance of specific glycan structures (e.g., M5 vs. M9). The bars are set to a fixed width for easier comparison across facets.

```
# Data is already prepared in 'plot_data'
subcategory_plot_data <- plot_data %>%
  filter(!is.na(glycoform_subcategory)) %>%
  ungroup() %>%
  # Ensure all subcategories and samples are present for correct bar alignment
  tidyr::complete(nesting(glycosite, glycoform_subcategory), sample, fill = list(psm_count = 0))
if(nrow(subcategory_plot_data) > 0) {
  ggplot(subcategory_plot_data, aes(x = glycoform_subcategory, y = psm_count, fill = sample)) +
    # Use position_dodge(preserve = "total") to keep bar widths consistent
   geom_col(position = position_dodge(preserve = "total"), color = "black", linewidth = 0.5) +
    facet_wrap(~glycosite, ncol = 3, scales = "free_y", labeller = labeller(glycosite =
        function(x) paste("Site", x))) +
    scale fill brewer(palette = "Spectral", name = "Sample") +
    # Enforce the new subcategory order on the x-axis
    scale_x_discrete(limits = subcategory_order) +
   labs(
      title = "Comparative PSM Counts per Subcategory at Each Site",
     x = "Glycoform Subcategory",
      y = "Total PSM Count"
   ) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1))
} else {
  cat("No subcategory data available to plot.")
```

Comparative PSM Counts per Subcategory at Each Site

6. Conclusion

This report provides a comprehensive, comparative analysis of glycopeptide data. The visualizations highlight key differences in site occupancy, glycoform diversity, and specific glycan abundance between the analyzed samples.

Appendix: Processed PSM Data Table

The following table contains the relevant processed data for all PSMs used in this analysis. You can search, sort, and filter the table to explore the data.

Table 2: Summary of Processed PSMs

Sample	Peptide	Total Glycan Glycosite Composition	Glycoform Category	Glycoform Subcategory
		IGSTKSQNV B2 NP E &NAc(1) % 203.0794	EndoE	E
psiii_with	EUGORDESDEIGE	IGSTRSQN V DENFIDENTIAC(1) /0 203.0794	Truncated	Ľ
nsm with	EndEWDLSDEIGE	IGSTKSQNV B2 NP CHRAQ FGY% 0.0	Unoccupied	UO
		IGSTKSQNVB2NPCHRAQRQY% 0.0	Unoccupied	UO
		IGSTKSQNVB2NPCAPaccupied % 0.0	Unoccupied	UO
		IGSTKSQNVB2NPCARCcupied % 0.0	Unoccupied	UO
		IGSTKSQNV B2 NP C ARCcupied % 0.0	Unoccupied	UO
		IGSTKSQNVB2NPB2NAc(2)Hex(8) %	High Mannose	M8
psii_witii		1702.5814	mgm wamnose	1410
psm with	End b vDLSDEIQE	IGSTKSQNVB2NPBARNAc(2)Hex(8) %	High Mannose	M8
		1702.5814	3	-
psm with	End & DLSDEIQE	IGSTKSQNV B2 NP H ANAc(2)Hex(2)Fuc(1)	Hybrid	FH
	•	% 876.3223	(Fucosylated)	
psm with	End & DLSDEIQE	IGSTKSQNV B2 NP IGÆTNAQ(IIQIY ex(1) %	Other	O
	•	365.1322		
psm with	End & DLSDEIQE	IGSTKSQNV B2 NP LEARINAQ/IIG Y 203.0794	EndoE	E
	•		Truncated	
psm with	out Enalo LSDEIQE	IGSTKSQNV B2 NP E ENNAc(2)Hex(3)Fuc(1)	Hybrid	$_{ m FH}$
	•	% 1038.3751	(Fucosylated)	
psm with	out Enal OLSDEIQE	IGSTKSQNV B2 NP E ENAc(2)Hex(3)Fuc(1)	Hybrid	FH
- –	•	% 1038.3751	(Fucosylated)	
psm_with	out Enal OLSDEIQE	IGSTKSQNV B2 NP E ENAc(2)Hex(3)Fuc(1)	Hybrid	$_{ m FH}$
		% 1038.3751	(Fucosylated)	
psm_with	out Enal OLSDEIQE	IGSTKSQNV B2 NP E $Ac(2)Hex(3)Fuc(1)$	Hybrid	FH
	•	% 1038.3751	(Fucosylated)	
psm_with	End MELAPTTPGV	VIVEGTNNT PR WHexNAc(1)Fuc(1) %	EndoE	E F1
		349.1373	Truncated	
psm_with	End MELAPTTPGV	VIVEGTNNT DR $WHexNAc(1)Hex(1)$ %	Other	O
		365.1322		
psm_with	End MELAPTTPGV	VIVEGTNNT PR WUnoccupied % 0.0	Unoccupied	UO
psm_with	End MELAPTTPGV	VIVEGTNNT DR WH $\exp(1)$ H $\exp(1)$ %	Other	O
		365.1322		
psm_with	End MELAPTTPGV	VIVEGTNNT PR WUnoccupied % 0.0	Unoccupied	UO
psm_with	End MELAPTTPGV	VIVEGTNNT PR WUnoccupied % 0.0	Unoccupied	UO
		VIVEGTNNT PR WUnoccupied % 0.0	Unoccupied	UO

Sample	Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_with	nout A nRI6TPGVIVEGTNN	TDRW97	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_with	Endlo ATILIEPNVQSENR	ΓY 116	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_with	Endlo#TILIEPNVQSENR	ΓY 116	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_with	Endlo#TILIEPNVQSENR	ΓY 116	HexNAc(1) % 203.0794	EndoE Truncated	E
psm with	End & TILIEPNVQSENR	ΓY 116	Unoccupied $\%$ 0.0	Unoccupied	UO
$_{ m osm}^{-}$ with	End le A TILIEPNVQSENR		Unoccupied % 0.0	Unoccupied	UO
	End ka TILIEPNVQSENR		Unoccupied % 0.0	Unoccupied	UO
	Endo A TILIEPNVQSENR		Unoccupied % 0.0	Unoccupied	UO
	Endo A TILIEPNVQSENR		Unoccupied % 0.0	Unoccupied	UO
	nout Enro VQSENRTY	116	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
osm_with	nout EER NVQSENRTY	116	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
psm_with	nout EnP NVQSENRTY	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_with	nout EnP NVQSENRTY	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EEEP NVQSENRTY	116	HexNAc(2)Hex(2)Fuc(1) % 876.3223	Hybrid (Fucosylated)	FH
osm_with	nout EnRN VQSENRTY	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout Ently VQSENRTY	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	out AffdL IEPNVQSENRT	Y 116	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
osm_with	out AffdL IEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EnPo VQSENRTYTIF	116	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
osm_with	nout EnR NVQSENRTYTIF	116	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_with	nout FrRN VQSENRTYTIF	116	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
osm_with	nout EnR NVQSENRTYTIF	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EnRN VQSENRTYTIF	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EnPN VQSENRTYTIF	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EnRN VQSENRTYTIF	116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_with	nout EnAG BILIEPNVQSENR	ΓY 116	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_with	nout EnAG EILIEPNVQSENR	ΓY 116	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
$ m psm_with$	nout EnAG ILIEPNVQSENR	ΓY 116	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7

Sample	Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_withou	t E MOLLIEPNVQSENRT	Y 116	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withou	t E MANILIEPNVQSENRT	Y 116	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withou	t E MOLLIEPNVQSENRT	Y 116	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
psm_withou	t E MGILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t E MOLLIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t EaM BILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t EaM BILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t EaM BILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t EaAT OILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withou	t EaM BILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
psm_withou	t E:A:I OILIEPNVQSENRT	Y 116	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withEr	nd &H GIQEQLTVSNTSQ	DQW32	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm withEr	nd EF FGIQEQLTVSNTSQ	DOW32	Unoccupied % 0.0	Unoccupied	UO
	adbifGIQEQLTVSNTSQ		HexNAc(1)Hex(1) % 365.1322	Other	O
psm_withEn	nd bH GIQEQLTVSNTSQ	DQW32	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withEn	nd bH GIQEQLTVSNTSQ	DQW32	$\frac{\text{HexNAc}(1)\text{Hex}(1)}{365.1322}$	Other	O
psm_withEr	nd &H GIQEQLTVSNTSQ	DQW32	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withEn	nd bH GIQEQLTVSNTSQ	DQW32	$\frac{\text{HexNAc}(1)\text{Hex}(1)}{365.1322}$	Other	О
psm_withEr	nd bH GIQEQLTVSNTSQ	DQW32	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withEr	nd bH GIQEQLTVSNTSQ	DQW32	HexNAc(1) % 203.0794	EndoE Truncated	E
psm withEr	nd EF FGIQEQLTVSNTSQ	DQW32	Unoccupied % 0.0	Unoccupied	UO
	ndbefgiqeqltvsntsq		Unoccupied % 0.0	Unoccupied	UO
_	ndEESNTSQDQW	132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm withEr	nd @E QEQLTVSNTSQDQ	W 132	Hex(1) % 162.0528	Other	O
	nd 6E QEQLTVSNTSQDQ		HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withEr	nd 6E QEQLTVSNTSQDQ	W 132	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withEr	nd 6E QEQLTVSNTSQDQ	W 132	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm withEr	nd GE QEQLTVSNTSQDQ	W 132	HexNAc(2)Hex(7) %	High Mannose	M7

Sample	Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_withE	End 6F QEQLTVSNTSQDQ	W 132	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_withH	End GE QEQLTVSNTSQDQ	W 132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withE	End 6F QEQLTVSNTSQDQ	W 132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withF	End 6F QEQLTVSNTSQDQ	W 132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withH	End GE QEQLTVSNTSQDQ	W 132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withH	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm_withE	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1) % 203.0794	EndoE Truncated	E
osm withF	End 6E QEQLTVSNTSQDQ	W 132	Unoccupied % 0.0	Unoccupied	UO
	End 6E QEQLTVSNTSQDQ		HexNAc(1)Fuc(1) $\%$	EndoE	E F1
	, -,— · · · · · · · · · · · · · · · ·		349.1373	Truncated	_
psm_withE	End GE QEQLTVSNTSQDQ	W 132	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withE	End 6E QEQLTVSNTSQDQ	W 132	Unoccupied $\%$ 0.0	Unoccupied	UO
osm_withE	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm_withE	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm_withE	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm_withE	End 6E QEQLTVSNTSQDQ	W 132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm_withE	$\operatorname{End}_{\mathbf{G}}\mathbf{F}_{\mathbf{Q}}$ $\operatorname{EQLTVSNTSQDQ}$	W 132	Unoccupied $\%$ 0.0	Unoccupied	UO
	End 6E QEQLTVSNTSQDQ		HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
$_{ m osm_withE}$	End 6E QEQLTVSNTSQDQ	W 132	Unoccupied $\%$ 0.0	Unoccupied	UO
	End 6E QEQLTVSNTSQDQ		Unoccupied % 0.0	Unoccupied	UO
	End 5F GIQEQLTVSNTSQ		HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withH	End bF FGIQEQLTVSNTSQ	DQW32	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_witho	out ENAS NTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_witho	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
psm_witho	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
psm_witho	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
psm_witho	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
$psm_without$	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_witho	out EHQ EQLTVSNTSQDQ	W 132	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8

Sample	Peptide (Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withoutl	CHQEQLTVSNTSQDQW	132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withoutl	CHQEQLTVSNTSQDQW	132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withoutl	CHQEQLTVSNTSQDQW	132	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withoutl	EHQ EQLTVSNTSQDQW	132	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_withoutl	EHQ EQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
$psm_without I$	CHQ EQLTVSNTSQDQW	132	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
$psm_withoutl$	CHQ EQLTVSNTSQDQW	132	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
$psm_without I$	CHQ EQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
$psm_withoutl$	CHQEQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
$psm_withoutl$	CHQEQLTVSNTSQDQW	132	HexNAc(3)Hex(3)Fuc(1) % 1241.4545	Complex	NA
$psm_withoutl$	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
$psm_withoutl$	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withoutl	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
$psm_withoutl$	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withoutl	СНФ EQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_withoutl	€HQ EQLTVSNTSQDQW	132	% 1038.3751 HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH

Sample I	Peptide Gl	ycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(2)Fuc(1) % 876.3223	Hybrid (Fucosylated)	FH
osm_without K	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_without	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(2)Fuc(1) % 876.3223	Hybrid (Fucosylated)	FH
osm_without K	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without k	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(2)Fuc(1) % 876.3223	Hybrid (Fucosylated)	FH
osm_without K	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
osm_without	EHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_without	CHQEQLTVSNTSQDQW	132	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_withEnd	E IDVVKTTANGSIGQY	149	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
osm_withEnd	E IDVVKTTANGSIGQY	149	Unoccupied % 0.0	Unoccupied	UO
	E IDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	E IDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied % 0.0	Unoccupied	UO
	E IDVVKTTANGSIGQY	149	Unoccupied % 0.0	Unoccupied	UO
	EIDVVKTTANGSIGQY	149	Unoccupied % 0.0	Unoccupied	UO
osm withEnd	EIDVVKTTANGSIGQY	149	Unoccupied $\%$ 0.0	Unoccupied	UO

Sample Peptide	Glycosit	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
osm_withEnd kE IDVVKTTANGSIG	QY 149	Unoccupied % 0.0	Unoccupied	UO
osm_without EnW VKTTANGSIGQY	149	$\operatorname{HexNAc}(2)\operatorname{Hex}(3)\operatorname{Fuc}(1)$	Hybrid	FH
osm_without FinW WKTTANGSIGQY	149	% 1038.3751 HexNAc(1) % 203.0794	(Fucosylated) EndoE Truncated	Е
osm_without EDW XKTTANGSIGQY	149	Unoccupied % 0.0	Unoccupied	UO
osm_without EnW OKTTANGSIGQY		Unoccupied % 0.0	Unoccupied	UO
osm_without EnW OKTTANGSIGQY		Unoccupied % 0.0	Unoccupied	UO
osm_without K R I DVVKTTANGSIG		HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
osm_without KrHo VVKTTANGSIG	QY 149	$\frac{\text{HexNAc}(2)\text{Hex}(6)}{1378.4757}$	High Mannose	M6
osm_without K rRIOVVKTTANGSIG	QY 149	$\frac{\text{HexNAc}(2)\text{Hex}(5)}{1216.4229}$	High Mannose	M5
osm_without K rRDVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K rRDVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K rRDVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K radoVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K iFldDVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K fF Id DVVKTTANGSIG	QY 149	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without K fF I dOVVKTTANGSIG	QY 149	HexNAc(1) % 203.0794	EndoE Truncated	E
osm_without KANO VVKTTANGSIG	QY 149	Unoccupied $\%$ 0.0	Unoccupied	UO
osm_without KiRIO VVKTTANGSIG		HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without KrMO VVKTTANGSIG	QYGP49	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without KrMO VVKTTANGSIG	QYGP49	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_withEnd ® VNMTAFCDFY	198	$\frac{\text{HexNAc}(1)\text{Hex}(1)}{365.1322}$	Other	О
osm_withEndSETNYDSVNMTAFC	DF 198	Unoccupied % 0.0	Unoccupied	UO
osm_withEndSTNYDSVNMTAFC		Unoccupied % 0.0	Unoccupied	UO
osm_withEndSETNYDSVNMTAFC		HexNAc(1)Hex(1) % 365.1322	Other	O
osm_withEnd &E VNMTAFCDFY	198	Unoccupied % 0.0	Unoccupied	UO
osm_withEnd o£ VNMTAFCDFY	198	Unoccupied % 0.0	Unoccupied	UO
osm_withEnd6/ETNYDSVNMTAF	198	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm_withEnd6/ETNYDSVNMTAF	198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm_withEndSTNYDSVNMTAF	198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm withEndSETNYDSVNMTAF	198	Unoccupied % 0.0	Unoccupied	UO
	-00			~ ~

Sample	Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_withE	End ®E TNYDSVNMTAFC	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withE	End ®E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
psm_withF	End ETNYDSVNMTAF	198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm_withE	End &E TNYDSVNMTAFC	DF 198	HexNAc(1) % 203.0794	EndoE Truncated	E
$ m osm_with F$	End ®E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
sm_withE	End &E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(2)\text{Hex}(6)}{1378.4757}$	High Mannose	M6
osm_withE	End &E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(2)\text{Hex}(6)}{1378.4757}$	High Mannose	M6
osm_withE	End &E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(1)\text{Hex}(1)}{365.1322}$	Other	O
osm_withE	EndSETNYDSVNMTAFC	DF 198	$ \text{HexNAc}(2)\text{Hex}(5) \% \\ 1216.4229 $	High Mannose	M5
osm_withE	EndSETNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(2)\text{Hex}(9)}{1864.6342}$	High Mannose	M9
osm_withE	EndSETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_withE	EndSETNYDSVNMTAFC	DF 198	HexNAc(1)Hex(1) % 365.1322	Other	O
osm_withE	End &E TNYDSVNMTAFC	DF 198	HexNAc(1) % 203.0794	EndoE Truncated	E
sm withE	EndSETNYDSVNMTAF	198	Unoccupied $\%$ 0.0	Unoccupied	UO
	End &E TNYDSVNMTAFC		HexNAc(1)Hex(1) % 365.1322	Other	O
sm withE	EndSETNYDSVNMTAFC	DF 198	Unoccupied $\%$ 0.0	Unoccupied	UO
	EndSETNYDSVNMTAFC		Unoccupied % 0.0	Unoccupied	UO
	End ®E TNYDSVNMTAFC		HexNAc(1)Hex(1) % 365.1322	Other	O
$ m sm_with E$	End &E TNYDSVNMTAFC	DF 198	$\frac{\text{HexNAc}(1)\text{Hex}(1)}{365.1322}$	Other	О
osm_withE	End ©E VNMTAFCDFY	198	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm_withE	End ©E VNMTAFCDFY	198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm_withE	End ©E TNYDSVNMTAFC	DF 198	HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
osm_withE	End ©E TNYDSVNMTAFC	DF 198	HexNAc(1)Hex(1) % 365.1322	Other	O
sm_withE	End SE TNYDSVNMTAFC	DF 198	HexNAc(1)Hex(1) % 365.1322	Other	O
$ m osm_withE$	EndSETNYDSVNMTAFC	DF 198	HexNAc(1)Hex(1) % 365.1322	Other	O
$_{ m csm_withE}$	End log VNMTAFCDFY	198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm_withF	EndSETNYDSVNMTAFC	DF 198	HexNAc(1)Hex(1) % 365.1322	Other	O

Sample	Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_withI	End Ø SVNMTAFCDFY	198	HexNAc(1) % 203.0794	EndoE Truncated	Е
psm withI	End ©E VNMTAFCDFY	198	Unoccupied $\%$ 0.0	Unoccupied	UO
$_{ m psm}$ with	End ©E VNMTAFCDFY	198	Unoccupied % 0.0	Unoccupied	UO
psm_withI	EndSETNYDSVNMTAFC		HexNAc(1)Fuc(1) % 349.1373	EndoE Truncated	E F1
psm_withI	End ETNYDSVNMTAFC	DF 198	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withI	EndSETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(10) % 2026.6870	High Mannose	M10
osm_withI	End ETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_withI	End ETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_withI	End ®E TNYDSVNMTAFC	DF 198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_withI	End ©E TNYDSVNMTAFC	DF 198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
${ m psm_with I}$	End ETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withI	End SETNYDSVNMTAF C	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
$ m psm_with I$	EndSETNYDSVNMTAFC	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withI	End SETNYDSVNMTAF C	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withI	End SETNYDSVNMTAF C	DF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withI	End SETNYDSVNMTA FC	DF 198	HexNAc(1) % 203.0794	EndoE Truncated	E
psm_withI	End SETNYDSVNMTAF C	DF 198	HexNAc(1) % 203.0794	EndoE Truncated	E
osm withF	End ® VNMTAFCDFY	198	Unoccupied $\%$ 0.0	Unoccupied	UO
_	EndSETNYDSVNMTAFC		HexNAc(1)Hex(1) % 365.1322	Other	O
psm_witho	out EXM NMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_witho	out Bitdl NYDSVNMTAF	198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_witho	out Birde NYDSVNMTAF	198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_witho	out ISTAI ONYDSVNMTAF	198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_witho	out ISTAI ONYDSVNMTAF	198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
$psm_with c$	out Birde NYDSVNMTAF	198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_witho	out ISTAI ONYDSVNMTAF	198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_witho	out B ifdENYDSVNMTAF	198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7

Sample Peptide	Glycosite	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_without B ffdfoNYDSVNMTAF	198	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
psm_without E TRANYDSVNMTAF	198	$\frac{\text{HexNAc}(2)\text{Hex}(5)}{1216.4229}$	High Mannose	M5
psm_without B ill l ONYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without B ill l ONYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without E ###NYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without B ffdbNYDSVNMTAF	198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
psm_without B ffdleNYDSVNMTAF	198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
psm_without E iTdbNYDSVNMTAF	198	Unoccupied % 0.0	Unoccupied	UO
psm_without BirdleNYDSVNMTAF	198	Unoccupied % 0.0	Unoccupied	UO
osm_without BirdbNYDSVNMTAF	198	Unoccupied % 0.0	Unoccupied	UO
osm_without S ifdleNYDSVNMTAF	198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_without B ildENYDSVNMTAF	198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
osm_without E TTTENYDSVNMTAF	198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_without E ffdENYDSVNMTAF	198	$ \text{HexNAc}(2)\text{Hex}(7) \% \\ 1540.5285 $	High Mannose	M7
psm_without B ffdbNYDSVNMTAF	198	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
psm_withoutBildleNYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without Bildlo NYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without B ffdleNYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without B ffdleNYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without B ffdleNYDSVNMTAF	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
psm_without E ffdENYDSVNMTAFCI	OF 198	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_without E ffdENYDSVNMTAFCI	OF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_without B ildleNYDSVNMTAFCI	OF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_without E ffdENYDSVNMTAFCI	OF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_without E ffdENYDSVNMTAFCI	OF 198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_without E ffdENYDSVNMTAFCI	OF 198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_without B ffd b NYDSVNMTAFCI	OF 198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7

Sample Peptide	Glycosit	Total Glycan e Composition	Glycoform Category	Glycoform Subcategory
psm_without E ifdENYDSVNMTAFC	CDF 198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_without Bifdle NYDSVNMTAFC	CDF 198	HexNAc(2)Hex(7) % 1540.5285	High Mannose	M7
psm_without BiTdb NYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(6)}{1378.4757}$	High Mannose	M6
osm_without B ffdbNYDSVNMTAFC	CDF 198	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
osm_without B FFEENYDSVNMTAFC	CDF 198	HexNAc(2)Hex(4)% 1054.3701	Hybrid	Н
osm_without B FFEENYDSVNMTAFC	CDF 198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without B ifdbNYDSVNMTAFC	CDF 198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_withoutBTABNYDSVNMTAFC	CDF 198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_without B ffdbNYDSVNMTAFC	CDF 198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_without B ildloNYDSVNMTAF	198	Unoccupied $\%$ 0.0	Unoccupied	UO
sm_without B ildloNYDSVNMTAF	198	Unoccupied % 0.0	Unoccupied	UO
sm_without PoSt ONMTAFCDFY	198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
sm_without E SNONMTAFCDFY	198	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
osm_without B ifdleNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
osm_without B ifdENYDSVNMTAFC	CDF 198	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
osm_without E MONMTAFCDFY	198	HexNAc(2)Hex(3)Fuc(1) % 1038.3751	Hybrid (Fucosylated)	FH
osm_without B ifdENYDSVNMTAFC	CDF 198	HexNAc(2)Hex(10) % 2026.6870	High Mannose	M10
osm_without B FFGENYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(10)}{2026.6870}$	High Mannose	M10
osm_without E DSMONMTAFCDFY	198	HexNAc(2)Hex(3) % 892.3172	Hybrid	Н
osm_without B FFFBNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
osm_without B FFFBNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
osm_without B FFFBNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
osm_without B FFFBNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
osm_without B FFBNYDSVNMTAFC	CDF 198	HexNAc(2)Hex(6) % 1378.4757	High Mannose	M6
osm_without B ffdbNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(8)}{1702.5814}$	High Mannose	M8
osm_withoutBTTTDNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7
osm_without E ffdbNYDSVNMTAFC	CDF 198	$\frac{\text{HexNAc}(2)\text{Hex}(6)}{1378.4757}$	High Mannose	M6

C1-	D4:1-	Classa	_:1	Total Glycan	Glycoform	Glycoform
Sample	Peptide	Glycosite Composition			Category	Subcategory
psm_withou	ıt B TTTTTTNYDSVNMT	AFCDF 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt B ifdleNYDSVNMT	AFCDF 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt Bi rdleNYDSVNMT	AFCDF 19	8	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
psm_withou	ıt B TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	AFCDF 19	8	$\frac{\text{HexNAc}(2)\text{Hex}(4)}{1054.3701}$	Hybrid	Н
psm_withou	ıt B TTTTTNYDSVNMT	AFCDF 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt BT ÖÖNYDSVNMT	AFCDF 19	8	HexNAc(2)Hex(3) % 892.3172	Hybrid	H
psm_withou	ıt B TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	AFCDF 19	8	HexNAc(2)Hex(4) % 1054.3701	Hybrid	Н
psm_withou	ıt Bi rdleNYDSVNMT	AFCDF 19	8	HexNAc(2)Hex(5) % 1216.4229	High Mannose	M5
psm_withou	ıt E ASANMTAFCDF	Y 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt E ASMONMTAFCDF	Y 19	8	Unoccupied % 0.0	Unoccupied	UO
psm_withou	ıt E ASMONMTAFCDF	Y 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt E ASMONMTAFCDF	Y 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt E ASMONMTAFCDF	Y 19	8	Unoccupied $\%$ 0.0	Unoccupied	UO
psm_withou	ıt Bi rdleNYDSVNMT	AFCDF 19	8	HexNAc(2)Hex(9) % 1864.6342	High Mannose	M9
psm_withou	ıt ıSıTdl öNYDSVNMT	AFCDF 19	8	HexNAc(2)Hex(8) % 1702.5814	High Mannose	M8
psm_withou	ıt B TTTTTNYDSVNMT	AFCDF 19	8	$\frac{\text{HexNAc}(2)\text{Hex}(7)}{1540.5285}$	High Mannose	M7