Group 1

Controlled Environment Monitors

Design Document

Contents

Design Process	5
Interpreters	6
Summarized Input from the Interpreters	6
Agricultural Side	6
Technological Side	6
Product Goals	7
Function: What do we need?	7
Estimated Cost	7
Expected Volume of production	7
Design Specifications	8
Conceptual Designs	10
Enclosure	10
Evaluation of the conceptual designs	12
Flow Charts	13
Evaluation of the Flow Charts	15
Circuit Block Diagrams	16
Evaluation of The Circuit Block Diagrams	17
Manufacture	18
Sensor Unit Manufacture	
Sensor Unit Enclosure	
Top Cover	20
Bottom Cover	22
Battery Cover	24
Battery Lock	26
Sensor Unit PCB Manufacture	27
Bill of Materials for PCB	27
Bill of Materials - Non-PCB Components	27
Circuit Schematics	28
Hierarchical view	28
Battery Level Sensor	29
Power Regulator	29
Processor	29
Circuit Layout	30
Display Unit Manufacture	38
Display Unit Enclosure	

Components	
Top Cover	
Bottom Cover	41
Battery Cover	43
Display Unit PCB Manufacture	45
Bill of Materials	45
External Component Bill of Materials	45
Circuit Schematics	47
Hierarchical View	47
Alarm Unit	48
Battery Indicator	48
RF communication	48
Power regulator	49
Processor	49
Circuit Layout	50
Testing	56
Sensor Unit PCB Testing	57
Display Unit PCB Testing	60
Assembly	63
Sensor Unit Assembly	64
Assembly Steps	64
Display Unit Assembly	65
Assembly Steps	65
Processor Code	66
Sensor Unit Code	72
LCD CODE	73
Usage	
Basics	
Product View	76
Overview	
Key Features	
Getting Started	77
Location	
Setting up	
Installing the sensor unit	
Installing the display unit	78

Battery Performance	78
Getting to know your product	79
Sensor Unit	79
Display Unit	80
Using the product	82
Sensor Unit	82
Display Unit	82
Servicing	84
Display Unit	85
Tools	85
Warning	85
Disassembly and Repair	86
Replacing the Battery	86
Part Location	86
Procedure	86
Opening the Display Unit	86
Closing the Display Unit	87
Replacing the LCD	87
Part Location	87
Procedure	87
Replacing the Keypad	87
Part Location	87
Procedure	87
Replacing the Buzzer	88
Part Location	88
Procedure	88
Replacing the SD Card Reader	88
Part Location	88
Procedure	88
Replacing the Switch / LEDs	89
Part Location	89
Procedure	89
Replacing Printed Circuit Board	89
Part Location Procedure	89
Sensor Unit	90
Parts and Procedures	90

Tools	90
Warning	90
Disassembly and Repair	91
Replacing the Battery	91
Part Location	91
Procedure	91
Accessing Internal Components	91
Replacing the Humidity Sensor / Light Sensor	92
Part Location	92
Procedure	92
Replacing the Switch / LED	92
Part Location	92
Procedure	92
Replacing Printed Circuit Board	93
Part Location	93
Procedure	93
Exploded Views	94
Exploded View	95
Datasheets	96

Group 1

Controlled Environment Monitors

Design Process

Interpreters

- 1. Mr. Buddhika Dassanayake (Curator University of Wayamba)
- 2. Prof. J.A.K.S. Jayasinghe (Senior Professor ENTC, University of Moratuwa)
- 3. Prof. Gamini Pushpakumara (Dean Faculty of Agriculture, University of Peradeinya) (Department of Crop Sciences)
- 4. Dasun Tharinda (Communication Consultant)
- 5. AdaFruit (Suppliers Waterproof Temperature and RH Sensor Modules)

Summarized Input from the Interpreters

Agricultural Side

Mr. Buddhika Dassanayake

- Temperature and relative humidity are the main factors to be controlled/monitored
- Propagators are used to keep the temperature above the outside temperature
 - No standard temperatures have been published for different plants grown in propagators

 - High temperature (Around 45 °C) is an issue in the dry zone as it has high probability that the plants may be burnt
 - Need two thresholds: High and low temperature thresholds to maintain the plants in the optimum range of temperature
- Propagators are designed to maintain around 100% relative humidity
 - A lower threshold should be set (around 80%) to detect whether the RF goes below that
- No fertilizer is added to the plants in a propagator

Prof. Gamini Pushpakumara

- Light is also an important parameter
- No need to monitor the soil moisture level or soil temperature, because if the air humidity and temperature is sufficient, the soil conditions will also be ideal.
- Currently there are systems to control the light systems, using sensors and automatic openings.
- The type of covering depends on the plant being grown.
- The CO₂ level does not need to be monitored during the time the plant is in the propagator.

Technological Side

Prof. J A K S Jayasinghe

- With the set up used in the dry zone areas, need portability for the product
 - Battery powered sensors, display unit and alarm unit
- The thresholds (RH and the temperature) needs to be set manually by the farmer
- Either 3 sensors per propagator or a sensor per propagator should be installed and as per the installation plan the temperature values and RH values should be displayed in the display
- Wireless Communication between the modules need to there
- Modular Design is required
- Waterproofed sensors/ a mechanism to easily remove and install the sensors should be there
- An Alarm and a light should be used to alert the farmer about any of the factors exceeding the thresholds
- Mechanism to record the data sampled on hourly basis for the two weeks' time of the plant in the propagator should be present
- Better if the scalability is there even for a bigger greenhouse for monitoring and controlling system

Mr Dasun Tharinda

- Near field communication for sensors All sensors need to communicate only with the display unit
- Far field communication / storage needed only for the central display unit

Product Goals

Function: What do we need?

A product to read the temperature and the humidity inside an outdoor propagator and display on a LCD screen and store the data on a SD card on an hourly basis. Further, based on two separate thresholds, an alarm should be triggered when those thresholds are exceeded.

The product comprises of three main components:

- 1. **Sensor Unit**: A unit with humidity, temperature and light sensor that is battery powered and transmits the data to the Display Unit
- 2. **Display Unit**: A battery powered unit with display, removable storage, a key pad and communicating capabilities with the sensors
- 3. **Alarm Unit**: A unit with a light and a buzzer that will be triggered when the temperature and/or humidity goes beyond the corresponding thresholds

Estimated Cost

The cost of the product will be approximately 2500 including 3 sensor units, main display unit and alarming unit. The profit will be a 20% margin of this. (Selling price = LKR 3000)

Expected Volume of production

5000 products per annum for 5 years. 100 units to be produced during the initial trial period of 6 months

Design Specifications

Performance:

- 1. Sensing and displaying the temperature with an accuracy around \pm 2 °C and humidity with an accuracy \pm 3% and light level inside the propagator at the corresponding locations of the propagator
- 2. Storing the temperature, humidity and light data hourly during the day on a SD card that can be removed
- 3. Alarming the farmer when the temperature exceeds its threshold or humidity, or light goes below the threshold to take necessary actions.
- 4. Battery powered with the ability to operate a minimum of 1-day duration by one battery
- 5. Three Sensor units being enough to accurately represent the temperature, humidity and light level distribution of the propagator

Impact from the environment

- 1. The sensor units should be waterproofed
- 2. Anti-rusting
- 3. Should not interact with any chemicals used for the plants in the propagator as fertilizer
- 4. Should be able to operate at a moderate range of temperature from 10°C to 60°C
- 5. Damages from the farmers due to the negligence when using the sensors and Display Unit
- 6. RF communication between the Display Unit and the sensors should not be susceptible to the interference

Impact on the environment

- 1. Device is made of non-toxic materials
- 2. Micro particles occur from the wearing and tearing will not alter the controlled environmental factors inside the propagator
- 3. No poisonous by-products
- 4. Minimum wastage during the production

Lifetime

- 1. The Display Unit and the alarming unit should last a minimum of 2 years while the sensors are to last a minimum of 1 years.
- 2. The product should ideally last the duration of three cultivations of plants

Maintenance

- 1. The batteries should be replaced when the indicators display a charge of 5%
- 2. Modular components. Burned out or broken parts are easily replaceable
- 3. Zero Day to Day maintenance
- 4. It should not require a maintenance for more than 2 weeks
- 5. One technical person who is aware about the product will be needed to maintain the product

Production Cost

- 1. Maximum cost per sensing unit LKR 530: Max cost of sensing units per product LKR 1650
- 2. Maximum cost per Display Unit LKR 850

Package, Size and Weight

- 1. One package will include 3 sensor units, a Display Unit and an alarming unit
 - Sensor Units: 3 x 1.5 x 2 inches 200g
 - Display Unit: 5 x 6 x 3 inches 500g
- 2. No packaging needed post installation

Appearance and Finish

- 1. Able to input thresholds manually using the keypad
- 2. The temperature, humidity and light values for each sensor in a propagator should be displayed separately on the LCD screen
- 3. The battery level is indicated using few levels with three different colors of LEDs (eg:- Red 2% to 20%, Green 20% to 100%)

Types of material

- 1. Plastic
- 2. Acrylic
- 3. Wood

Reliability/ Accuracy

1. 6 sigma Standard failure rate 1 in a million

Safety

- 1. Surge Protection
- 2. Waterproofed sensor and Display Units
- 3. Accurate Battery Level indicator

Installation

- 1. Can be installed during or after the construction of the propagator
- 2. Can be scaled down to smaller propagators that read values using one sensor unit only
- 3. Extendable even to the mass scale Green House production
- 4. Do not require expertise knowledge for installation
- 5. Installation cost is free of charge
- 6. Less than 1-man hours to set up the product per propagator

Operations

- 1. Autonomous in sensing and displaying the temperature and humidity values inside the propagator
- 2. Saving the logs in the main frame is manual i.e. the SD card need to be removed and read manually in the computer to save the data in the main frame
- 3. The LCD screen will be switched off automatically after 5 min and can be switched on using a button

Reuse

1. Modular design that makes it easily removable for use elsewhere

Disposal

- 1. E waste centers
- 2. None of the components are classified as hazardous waste

Recycling

1. 80% recyclable

Conceptual Designs

Enclosure

Conceptual Design 01

Conceptual Design 02 – Display Module

Conceptual Design 03

Evaluation of the conceptual designs

in wiring

Enclosure

01

Advantages

The sensor units and Display Units are

Wireless communication hence less bulky

portable (both are battery powered)

The data can be erroneous due to certain interferences caused by other frequencies

Disadvantages

- Batteries need to be replaced on a daily basis/ more bulky and expensive batteries need to used
- Communication Latency can be high
- If multiple propagators are located nearby, occurrence of errors can be high due to interferences
- Can input the threshold values manually using the key pad of the Display Unit
- Can detect the battery charge level using the indicator
- The Display Unit can be installed further from the propagator due to wireless communication
- Installation and maintenance is easy
- Wire Connections between the sensors, alarm and the display unit hence the latency is less
- Less susceptible to the interferences
- More accurate performance in temperature and humidity reading and displaying and alarming
- Bulky as more wires need to be installed
- The Display Unit needs to be located very close to the propagator
- External power should be given which makes the portability an issue
- No SD card slot hence the computer to store the values should be closer to the propagator
- More electronic components (for example, a step-down transformer, rectifier) is needed as external power is being used
- Costly installation
- All in one unit Less manufacturing cost
- Sensor unit, Display Unit and alarm should be installed within the propagator
- Can read and store the temperature and humidity values directly from the unit on to a computer using the USB cable
- The damages that can occur due to the negligence of farmers can occur frequently
- High cost to be undertaken to safeguard them against the chemicals, water and fire
- No SD card slot hence the computer to store the values should be closer to the propagator
- Not a modular design If a part is burnt the whole product needs to be replaced.
- More electronic components (for example, a step-down transformer, rectifier) is needed as external power is being used

Conclusion:

Since our product is to sense the temperature, humidity and light level in an outdoor propagator, and that the pros outweighs the cons, we choose the Conceptual Design (01.) as our design to proceed the project.

02

Flow Charts

Flow Chart 01

Flow Chart 02

Flow Chart 3

Evaluation of the Flow Charts

Flow Chart	Advantages	Disadvantages
01	 Considers the temperature and the humidity at each point of the propagator (from 3 sensors installed) Better accuracy in detecting the temperature and humidity exceeding the thresholds Display showing the temperature and humidity for each sensor in the propagator 	Logics should be evaluated for each sensor in the propagator hence computationally heavy
02	 Computationally easy A single value represents the temperature, humidity and light level of the propagator 	 The alarm get triggered when the average exceeds the threshold – For longer propagators, assuming the temperature and humidity distribution is uniform might be erroneous 2 of the sensors are redundant – this type of algorithm can be run using one sensor Less Accurate
03	 Computationally easy Battery can be conserved Can get pointwise readings for the temperature, light, and humidity Display showing the temperature, humidity and light for each sensor. Can use the sensors for separate propagators if they are small enough 	Have to manually push buttons to get readings from all the sensors

Conclusion:

Based on the information gathered from the interpreter, it would be great if we can read and display the temperature and humidity at three different points in the propagator. This helps the farmer to locate the region at which the temperature has risen above the threshold and rectify it at that region. Hence the most appropriate flow chart is the Flow Chart 03.

Apart from the main functionality, the product will sample the temperature, humidity and light level values at each point hourly and store it in a SD card for further purposes.

Circuit Block Diagrams

Circuit Block Diagram 1

Circuit Block Diagram 2

Circuit Block Diagram 3

Evaluation of The Circuit Block Diagrams

Circuit Black Diagram	Advantages	Disadvantages
01	 Does not need power drawn externally. Highly Modular due to lack of data lines between sensor and display modules. Alarm coupled with sensor automatically indicates where the conditions have been violated. 	 Battery needs to be changed occasionally Usage of RF to communicate has risk of data loss Alarm hidden by the propagator cover
02	 Does not need power drawn externally. Highly Modular due to lack of data lines between sensor and display modules. Alarm integrated into the display module. Increases modularity, simplicity and portability Alarm externally visible to the user 	 Battery needs to be changed occasionally Usage of RF to communicate has risk of data loss
03	 Battery changes are not necessary Alarm coupled with sensor automatically indicates where the conditions have been violated. 	 Power needs to be drawn from an external source Data and power lines reduce the modularity and portability Lines may get damaged due to water and other weather conditions, affecting power and data transmission Alarm hidden by the propagator cover

Conclusion

Considering that both portability and modularity are very important considerations when designing the system, Design 2 had the best options. Therefore, considering all advantages and disadvantages, Circuit diagram Design 2 was selected for the preliminary design.

Group 1

Controlled Environment Monitors

Manufacture

Sensor Unit Manufacture Sensor Unit Enclosure

Sensor Unit

Components

The Sensor Unit Enclosure consists of 4 components that are to be manufactured by injection molding. All units are to be molded using hard plastic

Components to be molded are:

- 1. Top Cover
- 2. Bottom Cover
- 3. Battery Cover
- 4. Battery Lock

Top Cover

Draft Analysis of Top Cover

Top Cover Mold Components

Cavity

Exploded View of Mold

Bottom Cover

Draft Analysis of Bottom Cover

Bottom Cover Mold Components

Exploded View of Mold

Battery Cover

Draft Analysis of Battery Cover

Battery Cover Mold Components

Exploded View of Mold

Battery Lock

Draft Analysis of Battery Lock

Sensor Unit PCB Manufacture

Bill of Materials for PCB

SYM_NAME	COMP_DEVICE_TYPE	COMP_VALUE COMP_TO	OL COMP_CLAS	S REFDES
RESISTOR	CAP NP_RESISTOR_0.33UF	0.33uF	IC	C11
RESISTOR	CAP NP_RESISTOR_0.1UF	0.1uF	IC	C12
RESISTOR	CAP NP_RESISTOR_22PF	22pF	IC	C13
RESISTOR	CAP NP_RESISTOR_22PF	22pF	IC	C14
RESISTOR	DIODE ZENER_0_RESISTOR_1N4735A	1N4735A	IC	D1
JACK	HEADER 2_JACK_HEADER 2	HEADER 2	IC	J1
CONN2	HEADER 2_CONN2_HEADER 2	HEADER 2	IC	J2
CONN2	HEADER 2_CONN2_HEADER 2	HEADER 2	IC	Ј3
CONN4	HEADER 4_CONN4_HEADER 4	HEADER 4	IC	J4
CONN3	HEADER 3_CONN3_HEADER 3	HEADER 3	IC	J5
CONN3	HEADER 3_CONN3_HEADER 3	HEADER 3	IC	J6
CONN3	HEADER 3_CONN3_TRANSMITTER	Transmitter	IC	J7
REGULATOR	R LM7805CTNOPB_0_REGULATOR_LM780	5 LM7805CTNOPB	IC	Q11
BC547	2N3904TFR_BC547_BC547A	BC547A	IC	Q12
BC547	2N3904TFR_BC547_BC547A	BC547A	IC	Q13
RESISTOR	RESISTOR_RESISTOR_7.5K	7.5K	IC	R11
RESISTOR	RESISTOR_RESISTOR_39K	39K	IC	R12
RESISTOR	RESISTOR_RESISTOR_680	680	IC	R13
RESISTOR	RESISTOR_RESISTOR_30K	30K	IC	R14
RESISTOR	RESISTOR_RESISTOR	RESISTOR	IC	R15
RESISTOR	RESISTOR_RESISTOR_10K	10k	IC	R16
RESISTOR	SW PUSHBUTTON_0_RESISTOR_RESET	RESET	IC	SW1
SCREWCON		RESET	IC	SW2
ICSOCKET	ATMEGA32A- PU_0_ICSOCKET_ATMEGA3	ATMEGA32A-PU	IC	U1
RESISTOR	CRYSTAL_RESISTOR_16MHZ	16MHz	IC	Y1

Bill of Materials - Non-PCB Components

COMPONENT NAME	MANUFACTURER	QUANTITY
ATMEGA32A	MICROCHIP	1
DHT11	ADAFRUIT	1
TEMT6000	ADAFRUIT	1
SOIL MOISTURE SENSOR	ADAFRUIT	1
ROCKER SWITCH	NTE ELECTRONICS	1
433 MHZ TRANSMITTER	ADAFRUIT	1
LED GREEN	GENERIC	1

Circuit Schematics

Hierarchical view

Battery Level Sensor

Power Regulator

Processor

Circuit Layout

Sensor Unit Bottom

Silkscreen

Sensor Unit Top

INSert 7 pages

Display Unit Manufacture

Display Unit Enclosure

Display Unit

Components

The display unit enclosure consists of 3 components that are manufactured by injection molding. All units are to be molded using hard plastic.

- 1. Top Cover
- 2. Bottom Cover
- 3. Battery Cover

Top Cover

Draft Analysis of Top Cover

Mold Components of Top Cover

Cavity Core

Exploded view of mold

Bottom Cover

Draft Analysis of Bottom Cover

Mold Components

Exploded view of Mold

Battery Cover

Draft Analysis of Battery Cover

Mold Components of Battery Cover

Exploded view of Mold

Display Unit PCB Manufacture Bill of Materials

SYM_NAME	COMP_DEVICE_TYPE	COMP_VALUE	COMP_TOL	COMP_CLASS	REFDES
RESISTOR	C_RESISTOR_0.33UF	0.33uF		IC	C1
RESISTOR	C_RESISTOR_0.33UF	0.33uF		IC	C2
RESISTOR	C_RESISTOR_22PF	22pF		IC	С3
RESISTOR	C_RESISTOR_22PF	22pF		IC	C4
RESISTOR	1N4740A_RESISTOR_1N4740A	1N4740A		IC	D1
JACK	HEADER 2_JACK_HEADER 2	HEADER 2		IC	J1
CONN16	HEADER 16_CONN16_LCD	LCD		IC	J2
CON6	HEADER 6_CON6_HEADER 6	HEADER 6		IC	Ј3
CONN2	HEADER 2_CONN2_HEADER 2	HEADER 2		IC	J4
CONN2	HEADER 2_CONN2_HEADER 2	HEADER 2		IC	J5
CONN8	HEADER 8_CONN8_HEADER 8	HEADER 8		IC	Ј6
CONN2	HEADER 2_CONN2_HEADER 2	HEADER 2		IC	J7
OPTO	CONN MOD 6-4_J_OPTO_CONN MOD 6-	CONN MOD 6-4_J		IC	Ј8
CONN2	CON2_CONN2_CON2	CON2		IC	Ј9
CONN4	HEADER 4_CONN4_HEADER 4	HEADER 4		IC	J10
BC547	BC547A_BC547_BC547A	BC547A		IC	Q1
BC547	BC547A_BC547_BC547A	BC547A		IC	Q2
TRIMPOT	POT_TRIMPOT_1K	1K		IC	R1
RESISTOR	R_RESISTOR_1K	1k		IC	R2
RESISTOR	R_RESISTOR_1K	1k		IC	R3
RESISTOR	R_RESISTOR_680	680		IC	R4
RESISTOR	R_RESISTOR_680	680		IC	R5
RESISTOR	R_RESISTOR_30K	30K		IC	R6
RESISTOR	R_RESISTOR_39K	39K		IC	R7
RESISTOR	R_RESISTOR_7.5K	7.5K		IC	R8
RESISTOR	R_RESISTOR_10K	10K		IC	R9
RESISTOR	SW_PB_SPST_RESISTOR_SW_PB_SPST	SW_PB_SPST		IC	SW1
REGULATOR	LM7805C_0_REGULATOR_LM7805C	LM7805C		IC	U1
ICSOCKET	ATMEGA32A-PU_ICSOCKET_ATMEGA32A	ATMEGA32A-PU		IC	U2
CRYSTAL	CRYSTAL_CRYSTAL_CRYSTAL	CRYSTAL		IC	Y1

External Component Bill of Materials

Component Name Manufacturer Quantity

ATMega32A	Microchip	1
Rocker Switch	NTE Electronics	1
433 MHz Receiver	AdaFruit	1
SD Card Reader	Kingston	1
16x2 LCD	XIAMEN AMOTEC	1
4x4 Keypad	XIAMEN AMOTEC	1

Circuit Schematics

Hierarchical View

Alarm Unit

Battery Indicator

RF communication

Power regulator

Processor

Circuit Layout

Display Unit Bottom

Silkscreen

Display Unit Top

INSert 5 pages

Group 1

Controlled Environment Monitors

Testing

Sensor Unit PCB Testing

```
Testprep General Analysis ...
          number of nets
          number of nets tested
                                                                   3
          number of nets not tested number of nets flagged with NO_TEST
          number of nets testable (tested + not
                                                                 5.79 percent
          itage of all nets tested
          ntage of testable nets tested
                                                                 6.67 percent
          requiring more than one testprobe:
    Required
  Actual Net
Name
6
6
                              N07080
          number of testprobes on TOP
                                                                   00 percent)
          number of testprobes on BOTTOM side
number of testprobes on pins
number of testprobes on vias
                                                                   ).00 percent)
WARNING: There are
                                  6 testprobes
with no assigned probe type. Minimum pad size
for probing
  Nets currently under test for TOP side ...
                                          | QUANTITY | Number | Type
                                                                                           Pad Size
                                                                                                                               Reference
                                                                                                                Location
Total number of testpoints on TOP side =
  Nets currently under test for BOTTOM side ...
                                          QUANTITY | Number | Type
                                                                                           Pad Size
                                                                                                              Location
                                                                                                                               Reference
Designation
                                                                                              P6 | (-44,0000 -33,0000) | N05812
5 | (-38,0000 -10,0000) | N05812-A
5 | (-43,2700 -2,0000) | N05812
5 | (-39,0000 15,0836) | N05812
        812
                                                        ia
ia
                                                           1 | Via
N06064
                                                                                                 0.6096 \quad (-40.7300 - 2.0000)
                                          N06064
N06072
                                                            1 | Via
                                                                                              0.6096 (-40.7300 9.0000)
                                          N06072
Total number of testpoints on BOTTOM side =
ı
```

Nets currently not tested	
I	
Ī	
Net Name	QUANTITY
 N01461	I I
 N01481	I I
 N01545	
 N01565	I I
 N01577	
 N01607	
 N03368	
 N03420	· <u>-</u>
 N06627	 6
Í	
N06779 	II
N07080 	6
N07092	6
N07402	I I
 N07414	1 1
 N09349	
Total number of nets not curre	ently tested =
Nets currently with NO_TEST pr	roperty
Net Name	QUANTITY
N05864 	i
Total number of nets with NO_T	ΓEST property =

Test Report for Sensor Unit

Testpoints on the Top Side

Tespoint	Delivered Innut (V)	Expected Output (V)
responit	Delivered Iliput (v)	Expected Output (v)

Testpoints on the Bottom Side						
Testpoint	Input (V)	Expected Output(V)				
NO6072	4.65±7.5%	4.65±7%				
NO6064	4.65±7.5%	4.65±7.5%				
NO5812	4.65±7.5%	4.65±7.5%				

Test Report for Power

Voltage Supplied by the Battery	8±15%
Regulated Voltage	4.65±7.5%
Expected Current out from Regulator	3A

Display Unit PCB Testing

```
Testprep General Analysis ...
          mber of nets
          mber of nets tested
mber of nets not tested
mber of nets flagged with NO_TEST property
          mber of nets testable (tested + not tested)
          ge of all nets tested
ge of testable nets tested
                                                              ...ercent
          uiring more than one testprobe:
          mber of testprobes on TOP side
mber of testprobes on BOTTOM side
mber of testprobes on pins
mber of testprobes on vias
                                                                             3 ( 13.04
20 ( 86.96
WARNING: There are
                                   23 testprobes with no assigned probe type. Minimum pad size for probing \dots 0 \text{ MM}
 Nets currently under test for TOP side \dots
                                           | QUANTITY | Number | Type
                                                                                             | Pad Size |
| Net Name
                                                                                                                  Location
                                                                                                                              | Reference Designation
                                                                                                (23.0000 13.9680)
                                                                                                (30.0000 13.9680)
                                                  | 1 | Via
                                                                                            0.6096 | <u>(21.7688 17.6298)</u> | N00686
| N00686
Total number of testpoints on TOP side =
                                                        3
  Nets currently under test for BOTTOM side \dots
                                            | QUANTITY | Number | Type
                                                                                             | Pad Size |
                                                                                                                  Location | Reference Designation
                                                                                                (-21.8797 18.8797)
                                                                                                [ (1.0000 35.0000)
                                                                                                (29.0000 -14.0000)
                                                   | 1 | Via
                                                                                            0.6096 | <u>(-1.0000 29.0000)</u> | N00391
N00391
                                                                                                (1.0000 33.0000)
                                                                                                (-20.0000 0.0000)
N01074
                                                                                             0.6096 | <u>(-9.2603 5.3187)</u> | N01074
N01110
                                                                                                0.6096 | <u>(-8.7983 7.3967)</u> | N01110
N01146
                                                                                                0.6096 | (-8.1003 11.0000) | N01146
N01180
                                                                                            | 0.6096 | <u>(-7.0000 14.0000)</u> | N01180
                                                      | 1 | Via
                                                                                            0.6096 | <u>(-12.0000 -32.0000)</u> | N01995
```

N02035		I	1	Via	1	C	0.6096 <u>(-12.0000 -29.8100)</u> N02035
 N02075	 	I	1	Via	I	C).6096 <u>(-12.0000 -27.2700)</u> N02075
 N02113		I	1	Via	I	C).6096 <u>(-12.0000 -25.0000)</u> N02113
 N02151		I	1	Via	l	C	0.6096 <u>(-12.0000 -23.0000)</u> N02151
 N02192 	 	I	1	Via	1		0.6096 <u>(-12.0000 -20.0000)</u> N02192
 N02230		I	1	Via	1	0	0.6096 <u>(-15.0000 -17.0000)</u> N02230
N03383		I	1	Via	l	0	0.6096 <u>(27.0000 -9.0000)</u> N03383
 N03418		Ι	1	Via	l		0.6096 <u>(27.0000 -11.0000)</u> N03418
N06708	 	I	1	Via	l	c	0.6096 <u>(-21.1271 28.1429)</u> N06708
Total number of testpoints on BOTTOM side	= 20						
 Nets currently not tested							
1	QUANTITY	I					
 N00181	≔ -						
	1						
N00255 	 						
N00282 	 						
N00339	 						
N00522 	1						
N00636	T .						
N00688	1						
N00715							
 N00717	 						
 N00827	 						
 N00890	 						
 N01521	· 						
 N01957	· - -1						
	. I						
	· - -						
N03028 	. '						
N03460 	 						
N03495 	 						
i	1						
I control of the cont	1						
Total number of nets not currently tested		21					
Net Name	QUANTITY	 					

Total number of nets with NO_TEST property = 0

Test Report for Display Unit

Testpoints on the Top Side

restpoints on the reporter							
Testpoint	Delivered Input (V)	Expected Output(V)					
N00391	4.65±7.5%	4±0.5%					
N00588	4.65±7.5%	4±0.5%					
N01074	4.65±7.5%	4±0.5%					
N01110	4.65±7.5%	4±0.5%					
N01146	4.65±7.5%	4±0.5%					
N01180	4.65±7.5%	4.65±7.5%					
N01995	4.65±7.5%	4.65±7.5%					
N02035	4.65±7.5%	4.65±7.5%					
N02075	4.65±7.5%	4.65±7.5%					
N02113	4.65±7.5%	4.65±7.5%					
N02151	4.65±7.5%	4.65±7.5%					
N02192	4.65±7.5%	4.65±7.5%					
N02230	4.65±7.5%	4.65±7.5%					
N03383	4.65±7.5%	4.65±7.5%					
N03418	4.65±7.5%	4.65±7.5%					
N06708	4.65±7.5%	4±0.5%					
GND	0	0					

Nets on The Bottom Side						
Testpoint	Input (V)		Expected Out	put(V)		
GND		0		0		
N00686	4.65±7.5%		4.65±7.5%			

Test Report for Power

Voltage Supplied by the Battery	8±15%
Regulated Voltage	4.65±7.5%
Expected Current out from	
Regulator	1A

Group 1

Controlled Environment Monitors

Assembly

Sensor Unit Assembly

Assembly Steps

- 1. Connect the LCD's to the corresponding headers on the PCB (Refer Circuit Diagram).
- 2. Insert and secure the LCD's into corresponding sockets
- 3. Mount the Fully soldered and tested PCB on the corresponding mounting holes
- 4. Insert screws and secure the PCB
- 5. Insert the Temperature, RH, Light and Soil Moisture Sensors into their corresponding sockets and secure.
- 6. Connect the above sensors using their corresponding polarized headers (See Circuit Diagrams for more information)
- 7. Insert the rocker switch and secure the battery connector in their corresponding positions.
- 8. Connect the rocker switch and battery connector to the corresponding places on the PCB
- 9. Insert the Battery Cover into the Battery Cover slot
- 10. Screw the Battery Lock into position, and rotate clockwise to secure the battery cover
- 11. Fit the top cover into position and secure the sides with screws.

Display Unit Assembly

Assembly Steps

- 1. Connect the LCD's to the corresponding headers on the PCB (Refer Circuit Diagram).
- 2. Insert and secure the LCD's into corresponding sockets
- 3. Mount the Fully soldered and tested PCB on the corresponding mounting holes
- 4. Insert screws and secure the PCB
- 5. Connect the SD card Reader to the corresponding connector on the PCB and insert the SD card reader into its corresponding position and secure.
- 6. Insert the rocker switch and secure the battery connector in their corresponding positions.
- 7. Connect the rocker switch and battery connector to the corresponding places on the PCB.
- 8. Insert the Battery Cover into the Battery Cover slot, and screw into position.
- 9. Secure the LCD Screen to the inside of the Top Cover.
- 10. Secure the Keypad to its slot on the top cover, while taking its connector in through the front slot.
- 11. Connect both LCD and Keypad to the PCB in their correct positions.
- 12. Fit the top cover into position and secure the sides with locking screws.

Processor Code

```
[FILE NAME]: <Configuration Files.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <Contains configuration files for LCD Unit>
----*/
#ifndef MICRO_CONFIG_H_
#define MICRO_CONFIG_H_
#ifndef F_CPU
#define F_CPU 1000000UL //8MHz Clock frequency
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <string.h>
#include "std_types.h"
#include "common_macros.h"
#include "lcd.h"
#include "keypad.h"
#include "IntEEPROM.h"
#include "password.h"
#endif
/* MICRO_CONFIG_H_ */
 [FILE NAME]: <EEPROMCODE.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <EEPROM>
 ______
----*/
#include "IntEEPROM.h"
void eepromWriteByte(unsigned short a_addr, unsigned char a_data)
{
      /* Wait for completion of previous write */
      while (EECR & (1 << EEWE))
      /* Set up address and data registers */
      EEAR = a_addr;
      EEDR = a_data;
      /* Write logical one to EEMWE */
      EECR |= (1 << EEMWE);</pre>
      /* Start EEPROM write by setting EEWE */
      EECR |= (1 << EEWE);</pre>
}
unsigned char eepromReadByte(unsigned short a_addr)
{
```

```
/* Wait for completion of previous write */
       while (EECR & (1 << EEWE))</pre>
       /* Set up address register */
       EEAR = a_addr;
       /* Start EEPROM read by writing EERE */
       EECR |= (1 << EERE);</pre>
       /* Return data from data register */
       return EEDR;
}
 [FILE NAME]: <KEYPAD CODE.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <Contains the main function of the program>
#include "keypad.h"
uint8 KeyPad_getPressedKey(void){
       uint8 col,row;
       while(1)
       {
              for(col=0;col<N col;col++) /* loop for columns */</pre>
                      * each time only one of the column pins will be output and
                      * the rest will be input pins include the row pins
                     KEYPAD PORT DIR = (0b00010000<<col);</pre>
                      * clear the output pin column in this trace and enable the internal
                      ^{st} pull up resistors for the rows pins
                     KEYPAD_PORT_OUT = (\sim(0b00010000 < < col));
                     for(row=0;row<N_row;row++) /* loop for rows */</pre>
                            if(BIT_IS_CLEAR(KEYPAD_PORT_IN,row)) /* if the switch is
press in this row */
                             {
                                    #if (N_col == 3)
                                           return
KeyPad_4x3_adjustKeyNumber((row*N_col)+col+1);
                                    \#elif(N_col == 4)
                                           return
KeyPad_4x4_adjustKeyNumber((row*N_col)+col+1);
                             }
                     }
              }
       }
}
#if (N_col == 3)
uint8 KeyPad_4x3_adjustKeyNumber(uint8 button_number)
{
       switch(button_number)
```

```
{
              case 10: return '*'; // ASCII Code of =
                             break;
              case 11: return 0;
                             break;
              case 12: return '#'; // ASCII Code of +
                             break;
              default: return button_number;
       }
}
#elif (N_col == 4)
uint8 KeyPad_4x4_adjustKeyNumber(uint8 button_number)
{
       switch(button_number)
       {
              case 1: return 7;
                            break;
              case 2: return 8;
                            break;
              case 3: return 9;
                            break;
              case 4: return '%'; // ASCII Code of %
                            break;
              case 5: return 4;
                            break;
              case 6: return 5;
                            break;
              case 7: return 6;
                            break;
              case 8: return '*'; /* ASCII Code of '*' */
                            break;
              case 9: return 1;
                            break;
              case 10: return 2;
                            break;
              case 11: return 3;
                            break;
              case 12: return '-'; /* ASCII Code of '-' */
                            break;
              case 13: return 13; /* ASCII of Enter */
                            break;
              case 14: return 0;
                            break;
              case 15: return '='; /* ASCII Code of '=' */
                            break;
              case 16: return '+'; /* ASCII Code of '+' */
                            break;
              default: return button_number;
       }
}
#endif
```

```
[FILE NAME]: <UART.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <UART CODE>
#include "uart.h"
extern volatile uint8 g_choice;
void UART_init(void) {
      UCSRA = (1 << U2X); /* U2X = 1 for double transmission speed */</pre>
      * RXCIE = 1 Enable USART RX Complete Interrupt Enable
      * TXCIE = 0 Disable USART Tx Complete Interrupt Enable
       * UDRIE = 0 Disable USART Data Register Empty Interrupt Enable
       * RXEN = 1 Receiver Enable
       * RXEN = 1 Transmitter Enable
       * UCSZ2 = 0 For 8-bit data mode
       * RXB8 & TXB8 not used for 8-bit data mode
       UCSRB = (1 << RXEN) | (1 << TXEN) | (1 << RXCIE);
      * URSEL = 1 The URSEL must be one when writing the UCSRC
       * UMSEL = 0 Asynchronous Operation
       * UPM1:0 = 00 Disable parity bit
       * USBS = 0 One stop bit
      * UCSZ1:0 = 11 For 8-bit data mode
       * UCPOL = 0 Used with the Synchronous operation only
      UCSRC = (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1);
      /* baud rate=9600 & Fosc=8MHz --> UBBR=( Fosc / (8 * baud rate) ) - 1 = 103 */
      UBRRH = 0;
      UBRRL = 103;
}
void UART_sendByte(const uint8 data) {
      /* UDRE flag is set when the Tx buffer (UDR) is empty and ready for
      * transmitting a new byte so wait until this flag is set to one */
      while (BIT_IS_CLEAR(UCSRA, UDRE)) {
      /* Put the required data in the UDR register and it also clear the UDRE flag as
      * the UDR register is not empty now */
      UDR = data;
      /*********************** Another Method *****************
      UDR = data;
      while(BIT IS CLEAR(UCSRA,TXC)){} // Wait until the transimission is complete
TXC = 1
       SET_BIT(UCSRA,TXC); // Clear the TXC flag
}
uint8 UART_recieveByte(void) {
      /* RXC flag is set when the UART receive data so wait until this
       * flag is set to one */
      while (BIT_IS_CLEAR(UCSRA, RXC)) {
      /* Read the received data from the Rx buffer (UDR) and the RXC flag
```

```
will be cleared after read this data */
     return UDR;
}
void UART_sendString(const uint8 *Str) {
     uint8 i = 0;
     while (Str[i] != '\0') {
          UART_sendByte(Str[i]);
          i++;
     while(*Str != '\0')
      UART_sendByte(*Str);
      Str++;
      }
void UART_receiveString(uint8 *Str) {
     uint8 i = 0;
     Str[i] = UART_recieveByte();
     while (Str[i] != '#') {
          Str[i] = UART_recieveByte();
     Str[i] = '\0';
}
/* ------
[FILE NAME]: <Main Control Unit.c>
[AUTHOR(S)]: <T.T.N Bahavan>
[DATE CREATED]: <6/19/2019>
[DESCRIPTION]: <Contains the main function of the program>
----*/
#ifndef STD_TYPES_H_
#define STD_TYPES_H_
typedef unsigned char uint8;
typedef signed char sint8;
typedef unsigned short uint16;
typedef signed short sint16;
typedef unsigned long uint32;
typedef signed long sint32;
#endif /* STD_TYPE_H_ */
```

```
[FILE NAME]: <ADC Unit for sensors.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <ADC Conversion>
----*/
#include "atmega-adc.h"
void (*_adc_handler)(uint8_t pin, uint16_t);
volatile uint8_t _adc_pin_qty;
uint16_t adc_read(uint8_t prescaler, uint8_t vref, uint8_t pin) {
      #ifdef MUX5
      if (pin > 7) {
             ADCSRB |= _BV(MUX5);
             ADMUX = vref | (pin - 8);
             } else {
             ADCSRB &= ~( BV(MUX5));
             ADMUX = vref | pin;
      }
      #else
      ADMUX = vref | pin;
      #endif
      ADCSRA = BV(ADEN) | BV(ADSC) | prescaler;
      while(!(ADCSRA & _BV(ADIF)));
      return (ADCL | (ADCH<<8));</pre>
}
void
       adc_start(uint8_t
                          prescaler, uint8_t vref,
                                                           uint8_t
                                                                       pin_qty,
                                                                                 void
(*handler)(uint8_t, uint16_t)) {
      _adc_handler = handler;
      _adc_pin_qty = pin_qty;
      ADMUX = vref;
      #ifdef MUX5
      ADCSRB &= ~(_BV(MUX5));
      ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIE) | prescaler;
}
void adc_stop() {
      ADCSRA = 0;
#ifdef ENABLE_ADC_INT
ISR(ADC_vect) {
      static uint8_t cur_pin = 0;
      _adc_handler(cur_pin, ADCL | (ADCH<<8));</pre>
      cur_pin++;
      if (cur_pin >= _adc_pin_qty)
      cur_pin = 0;
      #ifdef MUX5
      if (cur_pin > 7) {
             ADCSRB |= _BV(MUX5);
             ADMUX = (ADMUX & 0xe0) | (cur_pin - 8);
             } else {
```

```
ADCSRB &= ~(_BV(MUX5));
            ADMUX = (ADMUX & 0xe0) | cur_pin;
      }
      #else
      ADMUX = (ADMUX & 0xe0) | cur_pin;
      #endif
      ADCSRA |= _BV(ADSC);
}
#endif
Sensor Unit Code
 [FILE NAME]: <Sensor UNIT.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <Contains the code in the sensor unit>
#include "micro_config.h"
#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include "atmega-adc.h"
#include <stdint.h>
uint8 flag = 0;
uint8 val; /*to read the value from EEPROM in it*/
uint8 TEMP[6];
uint8 HUMID[6];
uint8 SOILMOISTURE[6];
uint8 LIGHTLEVEL[6];
uint8 COMPOSITEDATA[24];
int main(void)
{
      UART_init(); /* initialize UART */
      sei();
   while (1)
      TEMP[6]=adc_read(128, aref, 0);
      HUMID[6]=adc_read(128, aref, 1);
      SOILMOISTURE[6]=adc_read(128, aref, 2);
      LIGHTLEVEL[6]=adc_read(128, aref, 3);
      COMPOSITEDATA
MakeComposite(TEMP[6],HUMID[6],SOILMOISTURE[6],LIGHTLEVEL[6],COMPOSITEDATA[24]);
      UART_sendString(COMPOSITEDATA) {
}
```

```
LCD CODE
 [FILE NAME]: <Sensor UNIT.c>
 [AUTHOR(S)]: <T.T.N Bahavan>
 [DATE CREATED]: <6/19/2019>
 [DESCRIPTION]: <Contains the code in the sensor unit>
 ______
#include "micro_config.h"
#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>
#include "atmega-adc.h"
#include <stdint.h>
*/
uint8 flag = 0;
uint8 val; /*to read the value from EEPROM in it*/
uint8 TEMP[6];
                 //DETERMINED BY UART DATA
uint8 HUMID[6];
uint8 SOILMOISTURE[6];
uint8 LIGHTLEVEL[6];
uint8 MAXTEMP[6];
                    //SET BY THE USER ACCORDING TO SPECIFICATIONS REQUIRED
uint8 MINHUMID[6];
uint8 MINSOILMOISTURE[6];
uint8 MAXLIGHTLEVEL[6];
int main(void)
      UART_init(); /* initialize UART */
      LCD_init();
      sei();
      if !(UART_RECEIVED){
            LCD_DISPLAY(0,0,"Waiting");
      }
      else {
   while (1)
   {//Display the stuff
          //If button press start the other program
          LCD_clearScreen();
          LCD_displayStringRowColumn(0, 0, "Temp : "+TEMP);
            LCD_displayStringRowColumn(0, 0, "Temp : "+HUMID);
LCD_displayStringRowColumn(0, 0, "Temp : "+SOILMOISTURE);
          LCD_displayStringRowColumn(0, 0, "Temp : "+LIGHTLEVEL);
          inputChoise1 = KeyPad getPressedKey();
          //Start changing the data
          if (inputChoise1 == '+')
          {
                //Display Choices
                LCD_clearScreen();
```

```
LCD_displayStringRowColumn(0, 0, "- : Change Temp");
LCD_displayStringRowColumn(1, 0, "+ : Change RH");
   LCD_displayStringRowColumn(0, 5, "- : Change Soil Moisture");
   LCD_displayStringRowColumn(1, 5, "+ : Change Light Level");
invotChaise2
                   inputChoise2 = KeyPad_getPressedKey();
                   if (inputChoise2 == '+')
                        LCD_clearScreen();
                             LCD_displayStringRowColumn(0, 0, "RH");
                             getValue(RH);
                             }else{
                             LCD_clearScreen();
                             LCD_displayStringRowColumn(0, 0, "Temp");
                             getValue(Temp);
                                 LCD_displayStringRowColumn(0, 0, "Soil Moisture");
                                 getValue(RH);
                                 }else{
                                 LCD_clearScreen();
                                 LCD_displayStringRowColumn(0, 0, "Light Level");
                                 getValue(Temp);
                   }
         }}
   }
}
```

Group 1

Controlled Environment Monitors

Usage

Basics Product View

Overview

Controlled Environment Monitors are designed to raise an alarm when surrounding parameters exceed pre-set thresholds. Unlike household sensors CEM is designed to work off the grid. This makes it suitable to be used for monitoring closed agricultural environments like propagators and green houses.

Key Features

- Wireless transmission between sensor unit and display.
- Possibility of using micro SD cards
- Battery level indicator displays the battery levels
- Buzzer is loud enough to indicate the threshold exceeding status.

Getting Started

Location

You need to place the sensor units inside of the control environment that need to be monitored. The display unit should be placed outside of the control environment as required by the user within 3m radius. Otherwise the interferences may cause errors in the values read inside the control environment.

Setting up

Both the sensor unit and the display unit work with DC power. **DO NOT CONNECT ANY AC POWER ADAPTERS TO THE UNITS.** Recommended battery voltage is 9V but can use up to 12V.

Installing the sensor unit

1. Turn the battery lever down and remove the battery cover form the back of the sensor unit and insert either rechargeable or non-rechargeable rectangular shaped 9V battery. Please ensure that the battery is properly connected to the correct terminals.

- 2. Slide the battery cover back into the place and turn the lever and lock the battery cover
- 3. When the battery voltage is above 6.8V, the green LED will be on
- 4. When the red LED turns on, need to replace the battery with a fully charged battery
- 5. No in-product battery charging capability is provided

Installing the display unit

- 1. Turn the battery cover counter clock-wise in the back of the display unit and insert a rectangular 9V battery
- 2. Turn the battery cover clock wise into the place
- 3. When the battery voltage is above 6.8V, the green LED will be on
- 4. When the red LED is on, battery should be replaced with a fully charged battery
- 5. No in-product battery charging capability is provided

Battery Performance

With the fully functions activated, a *full-charged battery can last min. of 2 days*. When the LEDs change to red, should replace the battery. Otherwise the units will not be functioning as required.

Now the product is ready to measure the environment conditions and function at its full capacity.

Getting to know your product

Sensor Unit

A: RH and temperature sensor

Measures the relative humidity of the air inside the environment you are monitoring and the temperature of it.

B: Battery Level Indicator LEDs

Green and red LEDs are set up here. Green LED is on when the battery voltage is higher than 6.8V and red when its lower than 6.8V. Both will be turned off when the battery level drops to 4V.

C: Battery Lever

D: Battery Cover

E: Switch

Turn on and off the entire sensor unit after the battery is being correctly installed as per section 1

F: Light Intensity sensor

This measures the light intensity inside the controlled environment.

Apart from these in-built parts of the sensor unit, the soil moisture sensor will be separately attached to the sensor unit through a connector.

Display Unit

A: Battery Level Indicator LEDs

Green and red LEDs are set up here. Green LED is on when the battery voltage is higher than 6.8V and red when its lower than 6.8V. Both will be turned off when the battery level drops to 4V.

B: Switch

C: Keypad

Can be used to set the threshold values manually, to enter the inputs to display the environment condition values one by one on the LCD display and turn on the LCD screen

D: LCD Screen

Shows the requested values from the key pad.

E: Battery Cover

F: Buzzer

This is internally triggered to alarm the users that the conditions inside the controlled environment has gone to a undesired state

G: Micro SD Card slot

Use to insert the micro SD card through here and get the values saved.

Using the product

Sensor Unit

- 1. Switch the sensor unit on/off using the switch in the side of the sensor unit
- 2. Replace the battery when the red LED lights up
- 3. If the two LEDs are switched off first try replacing the battery. If it does not light up the Green LED, contact an agent from our company.

Display Unit

- 1. Switch the display unit on/off using the switch on the side of the display unit
- 2. Setting the Thresholds
 - Press any key to begin
 - Select the Sensor (1,2 or 3)
 - Select the reading for which the threshold needs to be changed
 - Press A to set the limit
 - Input the new limit
 - Limit is set
- 3. Setting the Alarm On/Off
- Alarm On

There is no option given to set the alarm inside manually. It gets On once at least one of the environmental conditions exceed the set threshold values.

Alarm Off

Once the alarm is triggered, it will keep on with some refreshing periods until the condition is being rectified or manually switching the alarm off. Once the alarm is set off, the unit will wait 1 min and check the condition inside the controlled environment and if the condition persists again the alarm will be triggered.

Press A to turn of the alarm.

Press B to change the threshold immediately (See above for instructions)

4. Getting the data on to the Micro SD card

Insert the Micro SD card to the Micro SD card slot

The values received from the sensor units will be written in the SD card periodically with a period of 10mins.

- 5. Displaying the values received on the LCD screen
 - Selecting the sensor unit out of the three sensor units connected
 - Press any key to begin
 - Select the Sensor (1,2 or 3)
 - Selecting the environmental condition to be displayed
 - Select the corresponding number for the value
 - 1: Temperature
 - 2: Relative Humidity
 - 3: Soil Moisture Level
 - 4: Light

Group 1

Controlled Environment Monitors

Servicing

Display Unit

Tools

- Clean non-marring work surface
- #2 Phillips screwdriver (magnetized)
- Needle nose pliers
- Soft cloth (to protect removed parts from scratches)
- Screw tray
- Razor knife
- Glue Gun
- Rubbing Alcohol and Cotton Swabs (for removing Hot glue)

Warning

In this manual, graphics or photos are intended to help illustrate procedures or information only, and may show different levels of disassembly, board colours, configurations than your device.

Disassembly and Repair

Replacing the Battery

Part Location

Procedure

- 1. Turn off the Display unit
- 2. Place the Display unit with the LCD screen face down.
- 3. Rotate the battery cover

- 4. Disconnect the battery connector and remove the battery
- 5. Insert new battery (9V Alkaline recommended)

Opening the Display Unit

- 1. Remove the Battery (see Replacing Battery)
- 2. Remove the screw on each side
- 3. Pry open* the top case by holding from the edges*Warning: DO NOT pull apart the top cover without removing the connectors
- 4. Disconnect the Keypad connector and LCD connector from the PCB

Closing the Display Unit

- 1. Connect the Keypad Connector and LCD connector
- 2. Align the Top cover and press down until it snaps
- 3. Insert the screws on each side.

Replacing the LCD

Part Location

Procedure

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Press firmly on the LCD and pop it out
- 3. Pop in the new display
- 4. Close the Display Unit (See Closing the Display Unit)

Replacing the Keypad

Part Location

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Use the Razor Knife to peel off the Keypad
- 3. Pull out the keypad and Ribbon

- 4. Insert the new keypad ribbon through the slot in the top cover
- 5. Apply Glue to the bottom of the keypad and paste it
- 6. Close the Display Unit (See Closing the Display Unit)

Replacing the Buzzer

Part Location

Procedure

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Disconnect the Buzzer connector
- 3. Press firmly on the Buzzer and pop it out
- 4. Pop in the new Buzzer
- 5. Reconnect the Buzzer connector
- 6. Close the Display Unit (See Closing the Display Unit)

Replacing the SD Card Reader

Part Location

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Disconnect the SD Card Reader connector
- 3. Use Rubbing Alcohol to remove the glue holding the SD Card Reader in place

- 4. Slide out the SD card reader
- 5. Slide in the New SD Card Reader
- 6. Use a Glue Gun to fix the new SD Card Reader in place
- 7. Reconnect the SD Card Reader connector
- 8. Close the Display Unit (See Closing the Display Unit)

Replacing the Switch / LEDs

Part Location

Procedure

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Disconnect the Switch / LED connector
- 3. Press firmly on the Switch / LED and pop it out
- 4. Pop in the new Switch / LED
- 5. Reconnect the Switch / LED connector
- 6. Close the Display Unit (See Closing the Display Unit)

Replacing Printed Circuit Board

Part Location

- 1. Open up the Display unit (See Opening the Display Unit)
- 2. Disconnect the all connectors (SD Card Reader, LEDs, Buzzer, Switch)
- 3. Remove the 4 screws in the corners of the PCB
- 4. Pull out the PCB taking note of the orientation
- 5. Place new PCB in the correct orientation
- 6. Insert the screws and fix the PCB.
- 7. Reconnect all the connectors
- 8. Close the Display Unit (See Closing the Display Unit)

Sensor Unit

Parts and Procedures

Tools

- Clean non-marring work surface
- #2 Phillips screwdriver (magnetized)
- Needle nose pliers
- Soft cloth (to protect removed parts from scratches)
- Screw tray
- Putty knife (922-6761),1.5 inch (38 mm), flexible blade

Warning

In this manual, graphics or photos are intended to help illustrate procedures or information only, and may show different levels of disassembly, board colors, configurations than your device.

Disassembly and Repair

Replacing the Battery

Part Location

Procedure

- 1. Turn off the Sensor unit
- 2. Place the Sensor unit on a side
- 3. Rotate the battery cover lock

4. Slide the battery cover

- 5. Disconnect the battery connector and take out the battery
- 6. Insert new battery
- 7. Slide in the battery cover and lock it in place by rotating the battery cover lock

Accessing Internal Components

- 1. Remove the battery (See Replacing Battery)
- 2. Remove the 2 screws from each side
- 3. Pry open the top case by holding from the edges

Replacing the Humidity Sensor / Light Sensor

Part Location

Procedure

- 1. Open up the Sensor unit (See Accessing Internal Components)
- 2. Disconnect the Humidity Sensor/ Light Sensor connector
- 3. Pull out the Humidity Sensor / Light Sensor
- 4. Insert the new Humidity Sensor / Light Sensor
- 5. Reconnect the sensor connector
- 6. Close the Sensor Unit (See Closing the Sensor Unit)

Replacing the Switch / LED

Part Location

- 1. Open up the Sensor unit (See Accessing Internal Components)
- 2. Disconnect the Switch / LED connector
- 3. Press firmly on the Switch / LED and pop it out
- 4. Pop in the new Switch / LED
- 5. Reconnect the Switch / LED connector
- 6. Close the Sensor Unit (See Closing the Sensor Unit)

Replacing Printed Circuit Board

Part Location

- 1. Open up the Sensor unit (See Accessing Internal Components)
- 2. Disconnect the all connectors (Humidity Sensor, Light Sensor, LEDs, Switch)
- 3. Remove the 4 screws in the corners of the PCB
- 4. Pull out the PCB taking note of the orientation
- 5. Place new PCB in the correct orientation
- 6. Insert the screws and fix the PCB.
- 7. Reconnect all the connectors
- 8. Close the Sensor Unit (See Closing the Sensor Unit)

Exploded Views

Exploded View

Group 1

Controlled Environment Monitors

Datasheets