User-based Ranking of Facial Attractiveness

Final Presentation

Group 6
Abhineet Jain and Anurag Gupta

Problem Statement

- A personalized facial attractiveness ranking system
- Given training data of faces sorted based on the subject's personal taste, we learn how to rank novel faces for automated beauty filtering based on user preferences
- Related Work –
 Relative Ranking of Facial Attractiveness, Hani Altwaijry and Serge Belongie
 IEEE Workshop on Applications of Computer Vision (WACV), 2013

Basic Pipeline

Dataset

Two Phase
Sorting

GIST
Dense SIFT + PCA
HOG

Ranking SVM
Ranking RLS

Step I - Dataset

- 150 female faces extracted from publicly available image datasets
- Requested dataset from Color FERET, plus searched online
- Each image, cropped and oriented, ensured straight face with minimal extra features outside the face
- Resized to 256x256 pixels for uniformity

Step II - Two Phase Sorting

- Developed a portal for survey
- After login, user directed to instructions
- Phase I User placed each face in a bin ranging from 1 to 10

Showing 81 - 85 of 150 images

Step II - Two Phase Sorting

- Developed a portal for survey
- After login, user directed to instructions
- Phase I User placed each face in a bin ranging from 1 to 10
- Phase II User sorted faces in each bin according to their attractiveness
- Ground truth obtained for each user, will apply held-out estimation to determine error

Phase II - Maximum value: 10 The most beautiful face gets the maximum value. Bin number - 07

Submit, Continue

Step III - Feature Descriptors

- On each image, implement three descriptors
 - GIST
 - Dense SIFT + PCA
 - HOG

GIST

Summarizes the gradient information for different parts of image, providing rough description.

- Convolve image with 32 Gabor filters at 4 scales, 8 orientations, producing 32 feature maps
- Divide each feature map into 16 regions, take mean of feature values within each region
- Concatenate mean values of all 32 feature maps
- Result GIST descriptor of size 512 (16X32)

GIST

We have implemented GIST descriptor for each image in the dataset.

Dense SIFT + PCA

Dense Scale Invariant Feature Invariant –

- Local descriptor for all keypoints (location, scale, orientation) w.r.t. gradient feature for each pixel
- Compute a dense grid of SIFT descriptors at each pixel
 - Spatial-bin size of 3x3 pixels
 - Resulting in 241x241x128 dimensions for each image
- Apply PCA using FSVD with k=20
 - o Each 241x241 slice is projected onto a 20-dimensional vector
- Result DSIFT descriptor of size 2560 (20x128)

Histogram of Oriented Gradients

The technique counts occurrences of gradient orientation in localized portions of an image.

- Image is divided into small connected regions cells (31x31)
- For pixels within each cell (8x8 pixels), a histogram of gradient directions is compiled
- Local histograms are contrast-normalized
 - Calculate measure of intensity across a larger region block (composed of 4 cells)
 - Use this value to normalize all cells within the block
 - Results in invariance to changes in illumination and shadowing
- Result HOG descriptor of size 34596

Step IV - Learning to Rank

- On each descriptor, implement two ranking classifiers
 - Ranking SVM
 - Ranking Regularized Least Squares

Ranking SVM

• If x_i is feature vector of F_i, our goal is to learn the function:

$$g(x_i) = w^T x_i$$
subject to the constraint: $\forall F_i, F_j, i \neq j, F_i > F_j \rightarrow g(x_i) > g(x_j)$

• Given a training set of n examples $(x_1, y_1), \ldots, (x_n, y_n)$, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, the aim is to find the solution of the following optimization problem -

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b))^2.$$

 Preference matrix - pairwise preference of images (n x n) is computed and input to Ranking SVM, along with respective feature descriptors

Ranking SVM - Held-out Estimation

Ranking SVM - Held-out Average

Accuracy for each feature per user averaged over 5-fold held-out estimation

Features	User 1	User 2	User 3	User 4	User 5
GIST	80.023	79.678	79.977	79.540	78.919
DSIFT	76.345	74.206	75.103	73.126	75.379
HOG	77.103	76.758	74.873	76.873	74.850

Ranking SVM - GIST

Ranking SVM - DSIFT

Ranking SVM - HOG

Ranking RLS

Ranking cost function is based on least squares -

$$l(f(X),Y) = \frac{1}{2} \sum_{i,j=1}^{m} ((y_i - y_j) - (f(x_i) - f(x_j)))^2.$$

• Expressing it as the square of differences of r_i and $r_j \forall i, j$, we get -

$$J(\vec{a}) = (Y - K\vec{a})^{\mathrm{T}} L(Y - K\vec{a}) + \lambda \vec{a}^{\mathrm{T}} K\vec{a}.$$

where K is the linear kernel, a is the weight vector, and L is the Laplacian matrix given by

 $L_{i,j} = \begin{cases} -1 & \text{if } i \neq j \\ m-1 & \text{if } i=j \end{cases}$

Leave-Pair-Out Cross Validation is applied over trained weight vector.

Ranking RLS - Held-out Estimation

Ranking RLS - Held-out Average

Accuracy for each feature per user averaged over 5-fold held-out estimation

Features	User 1	User 2	User 3	User 4	User 5
GIST	78.575	72.046	72.138	70.712	74.207
DSIFT	46.620	50.620	46.712	48.965	48.322
HOG	71.402	69.287	66.299	63.954	68.092

Ranking RLS - GIST

Ranking RLS - DSIFT

Ranking RLS - HOG

Results - Comparison

Accuracy of each feature averaged over all users for both classifiers

Feature	Average Accuracy Ranking SVM	Average Accuracy Ranking RLS		
GIST	79.627	73.536		
DSIFT	74.832	48.248		
HOG	76.092	67.807		

Observations

- Ranking SVM gives much better accuracy than Ranking RLS
- DSIFT performs the worst and GIST performs the best with both classifiers

79.62%

Best accuracy is achieved using GIST descriptor with Ranking SVM