# Curso: Engenharia de Computação

Sistemas de Comunicações Móveis

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br



# Sistema de comunicações transdutores e sinais elétricos





# Modelo do sistema de comunicações

### Modelo do Sistema de Comunicações





# Modelo do transmissor

#### Transmissor



Transmissor



# O problema da digitalização

#### Formalizando o teorema da amostragem

- Se o sinal for contínuo no tempo, precisará ser discretizado.
- A taxa de amostragem deve ser suficiente para que possa ser reconstruído.
- Teorema de Nyquist: um sinal x(t) limitado por uma frequência  $f_{máx}$  pode ser reconstruído sem erro a partir das suas amostras se for amostrado a uma taxa  $f_A$  tal que

$$f_A > 2f_{m\acute{a}x}$$



#### ibmec.b

#### O sinal analógico e seu comportamento espectral





#### Aamostragem

Para amostrar o sinal pode-se multiplicá-lo por um sinal  $\delta_{T_A}(t)$  – onde  $\delta(t)$  representa delta de Dirac ou função impulso, ou seja, **um trem de impulsos**, o que resultaria em x(t).  $\delta_{T_A}(t)$ 







x(n)O sinal amostrado  $x(n) = \{x(0), x(1), x(2), x(3), x(4), x(5), ...\}$ discreto no tempo



8

10 11 12 13 14

#### Espectro do sinal amostrado

Pode-se demonstrar matematicamente que o sinal resultante da amostragem teria um comportamento espectral de





#### Aliasing

Uma frequência de amostragem que não respeita a taxa de Nyquist pode levar a perda de informação do sinal amostrado



# Sinais analógicos de interesse para comunicações: espectro sonoro

|            |                    |                    |                                                             |       | Es               | spectro s | onoro <sup>[1]</sup> |              |                                  |                                           |                                                                  |                       |                              |
|------------|--------------------|--------------------|-------------------------------------------------------------|-------|------------------|-----------|----------------------|--------------|----------------------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------|------------------------------|
| Espectros  | Silêncio           | Infrassom          | Som audível                                                 |       |                  |           |                      |              |                                  |                                           |                                                                  |                       |                              |
|            |                    |                    | Subgrave                                                    | Grave | Médias<br>baixas | Médios    | Médias<br>altas      | Agudo        | Ultrassom                        |                                           |                                                                  |                       | Hiper-<br>som <sup>[2]</sup> |
| Frequência | 0                  | 0.001 Hz -<br>20Hz | 20Hz                                                        | 23Hz  | 250Hz            | 640Hz     | 2,5KHz               | 20.000<br>Hz | 30.000 Hz                        | 10 <sup>5</sup> Hz                        | 10 <sup>6</sup> Hz                                               | 10 <sup>8</sup><br>Hz | 10 <sup>9</sup> Hz           |
| Descrição  | Ausência<br>de som |                    | faixa da audição humana<br>(perspetivável ao ouvido humano) |       |                  |           |                      |              | frequência<br>típica<br>do sonar | limite da audição de morcegos e golfinhos | frequência<br>típica<br>de<br>ultrassons<br>para fins<br>médicos |                       |                              |



# Sinais analógicos de interesse para comunicações: espectro do sinal de voz

- Os limites típicos do sinal de voz no domínio da frequência situam-se na faixa entre 10 Hz e 3400 Hz.
- O espectro não é limitado, pois existem componentes que se estendem além desses limites, porém com menor intensidade.
- Tipicamente, a maior energia do sinal de voz situa-se na faixa entre 500 Hz e 800 Hz.
- Para aplicações em telefonia, a frequência de amostragem adotada internacionalmente é de  $f_A$  = 8 kHz



# Sinais analógicos de interesse para comunicações: sinal de vídeo analógico

- O sinal de vídeo é gerado a partir da leitura sequencial de um quadro, da esquerda para a direita, de cima para baixo, de acordo com a intensidade luminosa de pontos (pixels)
- O sinal resultante é um sinal que varia no tempo cujas características espectrais dependem do:
  - >número de pixels e
  - da velocidade da varredura com que se monta a matriz dos pixels para a formação da imagem – normalmente definida pelas linhas do quadro



O problema da digitalização: a quantização escalar





- A função de quantização, q(x), é o valor para o qual o sinal amostrado, x(n), será aproximado.
- O sinal amostrado x(n), possui um valor pico-a-pico do sinal que pode ser calculado por  $x_{pp} = x(n)_{máx} x(n)_{mín}$
- Considerando que sejam usados L níveis de quantização, o degrau de **quantização** ( $\Delta$ ) é definido por  $\Delta = \frac{x_{pp}}{L-1}$
- A função q(x) aproxima x(n) a um dos possíveis níveis.





- O **ruído ou erro de quantização** consiste na diferença entre o sinal de entrada no quantizador e o sinal na saída d(n) = x(n) q[x(n)], onde q(x) representa a função de quantização.
- A razão sinal/ruído de quantização, em dB, é dada por  $SQNR = 10log \frac{\sum_{n} x^{2}(n)}{\sum_{n} d^{2}(n)}$



- Existem vários **algoritmos para implementar a quantização** buscando a eficiência do processo, considerando, por exemplo, a minimização do erro de ruído de quantização
- Alguns são recomendados pela ITU-T (União Internacional de Telecomunicações)



## Sinais analógicos de interesse para comunicações: espectro do sinal de voz

- Para aplicações em telefonia
  - O sinal de voz é quantizado para **256 níveis** distintos, logo exigindo um **código de 8 bits** ( $2^8 = 256$ )
  - Considerando f<sub>A</sub> e o número de bits do código, é necessário uma banda em aplicações de telefonia de 64 kHz para transmissão de sinal de voz



# Codificador de fonte - exemplo: PCM (*Pulse Code Modulation*)





#### Codificador da fonte

#### Codificador da fonte

- Processamento de símbolos para melhorar a comunicação quando a informação é digital ou pode ser aproximada na forma de símbolos discretos.
- Transforma uma mensagem digital em uma nova sequência de símbolos.



## Compressão de sinais

Na codificação da fonte se realiza a compressão de sinais, cujo objetivo fundamental é reduzir o número de bits necessários para representar adequadamente os sinais a serem transmitidos







## Compressão informação dos sinais

- Componente relevante transmitida
- Componente irrelevante reduzida por meio da quantização
- Componente não redundante transmitida
- Componente redundante, reduzida por meio de técnicas de predição e transformação do sinal



## Compressão desempenho

- O problema geral da compressão é minimizar a taxa de bits na representação digital do sinal, mantendo os níveis requeridos de:
  - 1. Qualidade do sinal reconstruído
  - 2. Complexidade da implementação
  - 3. Retardo da comunicação



### Qualidade do sinal reconstruído

- Medidas de qualidade: subjetiva (qualitativas) ou objetiva (definidas matemática e estatisticamente)
- Medidas de qualidade objetiva:
  - Erro instantâneo, e(n);
  - Erro médio (ME);
  - Erro médio quadrático (MSE); e
  - razão sinal-ruído de erro (SENR)



### Qualidade do sinal reconstruído

- Seja um sinal x(n) e o sinal processado y(n), reconstruído pelo receptor, o erro em um instante n é dado por e(n) = x(n) y(n)
- O erro médio é dado por  $ME = \frac{1}{N} \sum_{n} x(n) y(n)$
- O erro médio quadrático é dado por  $MSE = \frac{1}{N} \sum_{n} e^{2}(n)$
- A energia no sinal de erro é dada por  $E_e = \sum_n e^2(n) = \sum_n [x(n) y(n)]^2$



## Qualidade do sinal reconstruído

• A razão sinal/ruído de erro, em dB, é dada por  $SENR = 10log \frac{\sum_n x^2(n)}{\sum_n e^2(n)}$ 



#### Complexidade do algoritmo de codificação

- Número de instruções na unidade de tempo, normalmente medida em MIPS, e requisitos de espaço de armazenamento em memória requeridos para processamento do algoritmo.
- Tamanho físico, custo e consumo de potência do codificador, decodificador ou codec (codificador+decodificador)



#### Retardo da comunicação

- O retardo ou atraso decorrente do processamento pelo codec
- O impacto do atraso sobre a comunicação depende da aplicação. Algumas aplicações admitem **limites** mais rigorosos de atraso.



#### Referências

[1] Alencar, Marcelo S.; Telefonia Celular Digital; Capítulo 3; érica Saraiva;





IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC\_OFICIAL
- @@IBMEC

