The Correlated Gaussian Sparse Histogram Mechanism

Christian Janos Lebeda¹, Lukas Retschmeier²

INRIA, France ² Basic Algorithm Research Copenhagen (BARC), Copenhagen

TL;DR

Better Sparse Histograms with Gaussian noise under the add-remove neighboring relationship!

We are using correlated noise to improve accuracy by up to a factor of 2!

Preliminaries

Let $\mathbf{X}=(X_1,\cdots,X_n)$ for $X_i=\{0,1\}^d$, then the histogram $H(\mathbf{X})=\sum_{i=1}^n X_i$

Add-Remove neighboring relationship

Sensitivity Space of a function H is the set

$$\Delta_H := \{H(\mathbf{X}) - H(\mathbf{X}') \mid \mathbf{X} \sim \mathbf{X}'\}$$

k-sparse monotonic histogram

An input histogram $H(\mathbf{X})$ is k-sparse monotonic, if $|H(\mathbf{X})||_0 \le k$ for all datasets \mathbf{X} , and $|H(\mathbf{X})||_0 \le k$ for all datasets $|\mathbf{X}|$, and $|A| = \{0,1\}^d \cup \{0,-1\}^d$

The Main Algorithm

Procedure Correlated Gaussian Sparse Histogram Mechanism

Input: Parameters σ and τ , histogram $H(\mathbf{X}) \in \mathbb{N}^d$, where $\|H(\mathbf{X})\|_0 \le k$

Let
$$\tilde{H} = \{0\}^d$$
 correlated sample Sample $Z_c \sim \mathrm{N}(0,\sigma^2/\sqrt{k})$ for each $i \in [d]$ where $H(\mathbf{X})_i \neq 0$ do Sample $Z_i \sim \mathrm{N}(0,\,\sigma^2)$. if $H(\mathbf{X})_i + Z_i + Z_c > 1 + \tau$ then Set $\tilde{H}_i = H(\mathbf{X})_i + Z_i + Z_c$

Our Results

end for

Theorem 2 (Tighter Bound). Improvements similar to [WKZK 24]: Taking max over sensitivity space and a more intricate case distinction.

Additionally, we have extensions for Discrete Gaussian Noise, Aggregator Functions, and an Additional Sparsity Threshold

Numerical Evaluation. Minimal τ for k = 51914 to get $(0.35, 10^{-5})$ -DP guarantees for a noise level σ . Minimums are marked by a circle (\bullet).

Open Questions

- Tight bound like in [WKK 24]?
- Optimal ratio of correlated noise for setting where $||X_i||_0 \le k/2$ like in [JY24]?

Key References

[Google 20] Google Anonymization Team, "Delta for Thresholding", Technical

[WKZK 24] Wilkins A. and Kifer, D. and Zhang D. And Karrer B. "Exact privacy analysis of the gaussian sparse histogram mechanism", JPC 2024

[L 24] Lebeda C. "Better gaussian mechanism using correlated nosie", SOSA 25 [BW 18] Balle B. And Wang Y, "Improving the gaussian mechanism for differential privacy", PMLR 2017

[JY 24] Joseph, M and Yu, A. "Some Constructions of Private, Efficient, and Optimal K-Norm and Elliptic Gaussian Noise"

Research supported by the VILLUM foundation grant number 16582 (BARC), a Data Science Investigator Grant from Novo Nordisk Fonden (Providentia), and grant ANR-20-CE23-0015 (Project PRIDE).

