# Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών



# Εργασία στο μάθημα της Κρυπτογραφίας

Φτιάκας Σωτήριος ΑΕΜ: 3076

Μπάρμπας Γρηγόριος ΑΕΜ: 3108

## Περιεχόμενα

| Περιληψη | 2  |
|----------|----|
| Θέμα 1   | 3  |
| Θέμα 2   | 3  |
| Θέμα 3   | 3  |
| Θέμα 4   | 3  |
| Θέμα 5   | 3  |
| Θέμα 6   | 3  |
| Θέμα 7   | 3  |
| Θέμα 8   | 5  |
| Θέμα 9   | 5  |
| Θέμα 10  | 10 |
| Θέμα 11  | 10 |
| Θέμα 12  | 10 |
| Θέμα 13  | 10 |
| Θέμα 14  | 12 |
| Θέμα 15  | 12 |

| Θέμα ′ | 6 | 12 |
|--------|---|----|
| Θέμα ′ | 7 | 12 |
| Θέμα ′ | 8 | 12 |
| Θέμα ′ | 9 | 13 |
| Θέμα : | 0 | 13 |
| Θέμα : | 1 | 13 |
| Θέμα : | 2 | 13 |
| Θέμα : | 3 | 14 |
| Θέμα : | 4 | 15 |
| Θέμα : | 5 | 15 |
| Θέμα : | 6 | 15 |
| Θέμα : | 7 | 15 |
| Θέμα : | 8 | 18 |
| Θέμα : | 9 | 18 |
| Θέμα 3 | 0 | 18 |
| Θέμα 3 | 1 | 18 |

## Περίληψη

.....

Θέμα 2

Θέμα 3

Vigenere

No3\_Vigenere.ipynb

Θέμα 4

Θέμα 5

Dictionary Attack

 $No5\_DictionaryAttack.ipynb$ 

Θέμα 6

Θέμα 7

Shift Operator with XOR

m: 16-bits

 $c = m \oplus (m << 6) \oplus (m << 10)$ 

Όπου m << a είναι κύλιση προς τα αριστερά κατά a-bits.

Για μήνυμα m και κλειδί k ισχύει: Αν  $c = m \oplus k$ , τότε  $m = c \oplus k$ 

Επιπλέον, στην αρχική μας συνάρτηση κρυπτογράφησης, μπορούμε να κυλίσουμε και τα δύο μέλη ταυτόχρονα.

$$(c << 2) = (m \oplus (m << 6) \oplus (m << 10)) << 2$$

$$\Leftrightarrow$$
  $(c << 2) = (m << 2) \oplus (m << 8) \oplus (m << 12)$ 

Σημείωση: το x << i θα συμβολίζεται ως  $x_i$  για ευκολία. Συνεπώς θα έχουμε:

$$c_{0} = m_{0} \oplus m_{6} \oplus m_{10} \quad (1)$$

$$c_{2} = m_{2} \oplus m_{8} \oplus m_{12} \Rightarrow m_{8} = m_{2} \oplus m_{12} \oplus c_{2} \quad (4)$$

$$c_{4} = m_{4} \oplus m_{10} \oplus m_{14} \Rightarrow m_{10} = m_{4} \oplus m_{14} \oplus c_{4} \quad (2)$$

$$c_{6} = m_{6} \oplus m_{12} \oplus m_{0} \quad (5)$$

$$c_{8} = m_{8} \oplus m_{14} \oplus m_{2}$$

$$c_{10} = m_{10} \oplus m_{0} \oplus m_{4}$$

$$c_{12} = m_{12} \oplus m_{2} \oplus m_{6}$$

$$c_{14} = m_{14} \oplus m_{4} \oplus m_{8} \Rightarrow m_{14} \oplus m_{4} = m_{8} \oplus c_{14} \quad (3)$$

Εεκινώντας από την (1) έχουμε διαδοχικά:

$$c_0 = m_0 \oplus m_6 \oplus m_{10}$$

$$(2) \Rightarrow c_0 = m_0 \oplus m_6 \oplus m_4 \oplus m_{14} \oplus c_4$$

$$(3) \Rightarrow c_0 \oplus c_4 = m_0 \oplus m_6 \oplus m_8 \oplus c_{14}$$

$$(4) \Rightarrow c_0 \oplus c_4 \oplus c_{14} = m_0 \oplus m_6 \oplus m_2 \oplus m_{12} \oplus c_2$$

$$(5) \Rightarrow c_0 \oplus c_4 \oplus c_{14} \oplus c_2 = m_2 \oplus c_6$$

$$\Rightarrow c_0 \oplus c_4 \oplus c_{14} \oplus c_2 \oplus c_6 = m_2 \quad (6)$$

Κάνουμε κύλιση και στα δύο μέρη του (6) προς τα δεξιά και έχουμε:

$$m_0 = c_{14} \oplus c_2 \oplus c_{12} \oplus c_0 \oplus c_4$$

και άρα τελικά έχουμε:

$$m_0=c_0\oplus c_2\oplus c_4\oplus c_{12}\oplus c_{14}$$

Κώδικας σε python

## Θέμα 8

| Y/X | 0   | 1   | 2   |
|-----|-----|-----|-----|
| 0   | 1/7 | 1/7 | 1/7 |
| 1   | 0   | 1/7 | 1/7 |
| 2   | 2/7 | 0   | 0   |

### **Entropy**

Αρχικά υπολογίζουμε

$$p_{X}(X = 0) = \sum_{y} p_{X,Y}(0, y) = \frac{3}{7}$$

$$p_{X}(X = 1) = \sum_{y} p_{X,Y}(1, y) = \frac{2}{7}$$

$$p_{X}(X = 2) = \sum_{y} p_{X,Y}(2, y) = \frac{2}{7}$$

$$p_{Y}(Y = 0) = \sum_{y} p_{X,Y}(x, 0) = \frac{3}{7}$$

$$p_{Y}(Y = 1) = \sum_{y} p_{X,Y}(x, 1) = \frac{2}{7}$$

$$p_{Y}(Y = 2) = \sum_{y} p_{X,Y}(x, 2) = \frac{2}{7}$$

Ισχύει ότι:

$$H(X) = -\sum_{x} p_X(x) \log_2 p_X(x)$$

Επομένως

$$H(X) = -\frac{3}{7}\log_2\frac{3}{7} - \frac{2}{7}\log_2\frac{2}{7} - \frac{2}{7}\log_2\frac{2}{7}$$
$$= -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{2}{7}$$
$$\approx 1.5566567074628228$$

$$\Upsilon(Q) = -\frac{3}{7}\log_2\frac{3}{7} - \frac{2}{7}\log_2\frac{2}{7} - \frac{2}{7}\log_2\frac{2}{7}$$
$$= -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{2}{7}$$
$$\approx 1.5566567074628228$$

Επίσης έχουμε τον εξής τύπο

$$H(X, Y) = -\sum_{x} \sum_{y} p(x, y) \log_2 p(x, y)$$

Άρα θα έχουμε:

$$\begin{split} H(X,\Upsilon) &= -p(0,0)\log_2 p(0,0) - p(0,1)\log_2 p(0,1) - p(0,2)\log_2 p(0,2) - \\ &p(1,0)\log_2 p(1,0) - p(1,1)\log_2 p(1,1) - p(1,2)\log_2 p(1,2) - \\ &p(2,0)\log_2 p(2,0) - p(2,1)\log_2 p(2,1) - p(2,2)\log_2 p(2,2) \\ &\simeq 2.5216406363433186 \end{split}$$

Θα υπολογίσουμε την H(Y|X). Χρειαζόμαστε αρχικά τα παρακάτω,

$$p_{Y|X}(y = 0|x = 0) = \frac{p_{X,Y}(0,0)}{p_X(0)} = \frac{\frac{1}{7}}{\frac{3}{7}} = \frac{1}{3}$$

$$p_{Y|X}(y = 1|x = 0) = \frac{p_{X,Y}(0,1)}{p_X(0)} = \frac{0}{\frac{3}{7}} = 0$$

$$p_{Y|X}(y = 2|x = 0) = \frac{p_{X,Y}(0,2)}{p_X(0)} = \frac{\frac{2}{7}}{\frac{3}{7}} = \frac{2}{3}$$

$$p_{Y|X}(y = 0|x = 1) = \frac{p_{X,Y}(1,0)}{p_X(1)} = \frac{\frac{1}{7}}{\frac{2}{7}} = \frac{1}{2}$$

$$p_{Y|X}(y = 1|x = 1) = \frac{p_{X,Y}(1,1)}{p_X(1)} = \frac{\frac{1}{7}}{\frac{2}{7}} = \frac{1}{2}$$

$$p_{Y|X}(y = 2|x = 1) = \frac{p_{X,Y}(1,2)}{p_X(1)} = \frac{0}{\frac{2}{7}} = 0$$

$$p_{Y|X}(y = 0|x = 2) = \frac{p_{X,Y}(2,0)}{p_X(2)} = \frac{\frac{1}{7}}{\frac{2}{7}} = \frac{1}{2}$$

$$p_{Y|X}(y = 1|x = 2) = \frac{p_{X,Y}(2,1)}{p_X(2)} = \frac{\frac{1}{7}}{\frac{2}{7}} = \frac{1}{2}$$

$$p_{Y|X}(y = 2|x = 2) = \frac{p_{X,Y}(2,2)}{p_X(2)} = \frac{0}{\frac{2}{7}} = 0$$

Τώρα πρέπει να υπολογίσουμε τα παρακάτω:

$$\begin{split} H(Y|X=0) &= -\sum_{y} p_{Y|X}(y|x=0) \log_2 p_{Y|X}(y|x=0) \\ &= -(\frac{1}{3}\log_2\frac{1}{3} + 0 + \frac{2}{3}\log_2\frac{2}{3}) \\ &= -(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}) \\ H(Y|X=1) &= -\sum_{y} p_{Y|X}(y|x=1) \log_2 p_{Y|X}(y|x=1) \\ &= -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2} + 0) \\ &= -\log_2 2 = 1 \\ H(Y|X=2) &= -\sum_{y} p_{Y|X}(y|x=2) \log_2 p_{Y|X}(y|x=2) \\ &= -\log_2 2 = 1 \end{split}$$

Τότε θα έχουμε

$$H(Y|X) = \sum_{x} p_X x H(Y|X = x)$$

$$= p_X(0)H(Y|X = 0) + p_X(1)H(Y|X = 1) + p_x(2)H(Y|X = 2)$$

$$\simeq 0.9649839288804954$$

Γνωρίζουμε επίσης ότι από το θεώρημα της αμοιβαίας πληροφορίας έχουμε

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Άρα έχουμε

$$H(X|Y) = -(H(Y) - H(Y|X) - H(X))$$

$$\simeq 0.9649839288804954$$

Τέλος,

$$\rho = 1 - \frac{H(Y|X)}{H(X)}$$
 
$$\simeq 0.5916727785823274$$

Κώδικας σε python

No9\_Entropy.ipynb

- Θέμα 10
- Θέμα 11
- Θέμα 12

#### **Chinese Theorem**

Έχουμε το σύστημα των γραμμικών ισοδυναμιών

$$x \equiv 9 \pmod{19}$$

$$x \equiv 9 \pmod{12}$$

$$x \equiv 13 \pmod{19}$$

Έχουμε ότι ισχύει gcd(12, 17, 19) = 1, άρα δεν απαιτείται κάποια απλοποίηση.

Για την επίλυση του συστήματος χρησιμοποιούμε το Κινέζικο Θεώρημα Υπολοίπων

Έτσι έχουμε: m = 17 \* 12 \* 19 = 3876

$$M_1 = 228y_1 \equiv 1 \mod 17 \implies 7y_1 \equiv \mod 17 \implies y_1 = 5$$
  
 $M_2 = 323y_2 \equiv 1 \mod 12 \implies 11y_1 \equiv \mod 12 \implies y_1 = 11$   
 $M_3 = 204y_3 \equiv 1 \mod 19 \implies 14y_1 \equiv \mod 19 \implies y_1 = 15$ 

Τώρα πολλαπλασιάζουμε και προσθέτουμε:

$$x = 9 * 228 * 5 + 9 * 323 * 11 + 13 * 204 * 15$$
  
= 82017(1)

Παρατηρούμε ότι η (1) γράφεται,

$$x = 82017 = 621 + 3876k, k \in \mathbb{Z}$$

Για k = 0 έχουμε λύση το x = 621Κώδικας σε python

No13\_ChineseTheorem.ipynb

Θέμα 14

Θέμα 15

Θέμα 16

GPG, PGP, Send Message

Μπάρμπας Γρηγόριος:

b641ed06419f8ff4a6447cc9fb9d2295

Φτιάκας Σωτήριος:

5f816b4f295dc95721a7a34b9fd1653a

Θέμα 17

Θέμα 18

secure.zip

9e94b15ed312fa42232fd87a55db0d39

Θέμα 20

Θέμα 21

Θέμα 22

#### 3.1

Αρχικά θέλουμε να αποδείξουμε ότι οι αριθμοί της μορφής 4n+3 δεν είναι τέλεια τετράγωνα. Αρχικά για  $n \le 0$  εύκολα παρατηρούμε ότι ισχύει η παραπάνω πρόταση. Αυτό συμβαίνει καθώς για n=0 έχουμε το 3 το οποίο δεν είναι τέλειο τετράγωνο και για n<0 το 4n+3 είναι αρνητικός.

Έστω ότι,

$$4n + 3 = a^2$$
,  $n, a \in \mathbb{N}^*(1)$ 

Εφόσον  $a \in \mathbb{N}^*$ , τότε μπορούμε να πούμε ότι a = 2k + 1,  $k \in \mathbb{N}$ .

Αντικαθιστώντας το α στην (1) έχουμε:

$$4n + 3 = (2k + 1)^{2} \implies 4n + 3 = 4k^{2} + 4k + 1$$

$$\equiv 4k^{2} + 4k - 4n = 2$$

$$\equiv 2(k^{2} + k - n) = 1$$

$$\equiv k^{2} + k - n = \frac{1}{2}$$

Το οποίο είναι άτοπο καθώς  $k,n\in\mathbb{N}^*$  και άρα το  $k^2\in\mathbb{N}^*$  αλλά και όλη η παράσταση  $k^2+k-n\in\mathbb{N}$ , εφόσον είναι άθροισμα των φυσικών αριθμών  $k^2,k$  και -n.

Συνεπώς και η αρχική ισοδύναμη υπόθεση είναι άτοπη, οπότε το 4n+3 δεν είναι τέλειο τετράγωνο.

Για το δεύτερο ερώτημα παρατηρούμε ότι όλοι αριθμοί

μπορούν να γραφούν στην μορφής  $(4n+3)+10^q$ , συνεπώς αυτό το σύνολο αριθμών δεν θα έχει τέλειο τετράγωνο.

#### Θέμα 23

#### 3.4

Υπάρχουν δύο περιπτώσεις που θα χρειαστεί να εξετάσουμε.

Περίπτωση 1: Για περιττό αριθμό διαδοχικών αριθμών, αυτοί οι αριθμοί θα έχουν ως μέσο έναν ακέραιο (μεσσαίος αριθμός), οπότε το άθροισμα γράφεται ως εξής:

$$sum = average * number\_of\_consecutive\_numbers$$

$$\implies$$
 sum = integer \* odd\_number

Αυτό σημαίνει ότι το άθροισμα (sum) διαιρείται από έναν περιττό αριθμό. Αυτό όμως δεν μπορεί να είναι το σενάριο για το  $2^m$ .

Περίπτωση 2: Ένας ζυγός αριθμός διαδοχικών αριθμών έχουν ως μέσο το μέσο του αθροίσματος των δύο μεσαίων. Συνεπώς έχουμε:

$$sum = ((sum\_of\_two\_middle\_numbers) * \frac{1}{2}) * number\_of\_consecutive\_numbers$$

$$\implies$$
 sum = (sum\_of\_two\_middle\_numbers) \*  $\frac{1}{2}$  \* even\_number

⇒ 
$$sum = (sum\_of\_two\_middle\_numbers) * integer$$
  
⇒  $sum = ((k) + (k + 1)) * integer$  ,  $k \in \mathbb{Z}$   
⇒  $sum = (2k + 1) * integer$ 

Το 2k+1 είναι περιττός αριθμός, άρα το άθροισμα (sum) έχει ως παράγοντα περιττό, άρα όπως και προηγουμένως απορρίπτεται το σενάριο  $2^m$ .

- Θέμα 24
- Θέμα 25
- Θέμα 26
- Θέμα 27

#### 3.26

(i) Έστω ότι  $d_1 = \gcd(c, b)$  και  $d_2 = \gcd(ac, b)$ 

Τότε έχουμε  $c \cdot x_1 + b \cdot y_1 = d_1$ ,  $a \cdot c \cdot x_2 + b \cdot y_2 = d_2$  και  $a \cdot x + b \cdot y = 1$ , από Bezout. Αρχικά πολλαπλασιάζουμε την  $a \cdot x + b \cdot y = 1$  με το  $d_1$  και έχουμε:

$$d_1 \cdot (a \cdot x + b \cdot y) = 1 \cdot d_1$$

$$\implies a \cdot x(c \cdot x_1 + b \cdot y_1) + b \cdot d_1 \cdot y = d_1$$

$$\implies a \cdot c \cdot (x \cdot x_1) + b \cdot (a \cdot x \cdot y_1 + d_1 \cdot y) = d_1$$

Εφόσον ισχύει ότι  $d_2 = \gcd(ac, b)$ , τότε διαιρεί κάθε ακέραιο γραμμικό συνδυασμό των ac και b και άρα έχουμε  $d_2|d_1$  (1).

Στην συνέχεια θα πολλαπλασιάσουμε ομοίως το  $a \cdot x + b \cdot y = 1$  με το  $d_2$  και

έχουμε:

$$d_2 \cdot (a \cdot x + b \cdot y) = 1 \cdot d_2$$

$$\implies a \cdot x(a \cdot c \cdot x_2 + b \cdot y_2) + b \cdot d_2 \cdot y = d_2$$

$$\implies c \cdot (a^2 \cdot x \cdot x_2) + b \cdot (a \cdot x \cdot y_2 + d_2 \cdot y) = d_2$$

Ομοίως με προηγουμένως ισχύει ότι  $d_1=\gcd(c,b)$ , τότε διαιρεί κάθε ακέραιο γραμμικό συνδυασμό των ac και b και άρα έχουμε  $d_1|d_2$  (2). Από (1) και (2) έχουμε ότι  $d_1=d_2$ , μη αρνητικά.

Αφού

$$(1) \implies |d_1| \leqslant |d_2|$$

$$(2) \implies |d_2| \le |d_1|$$

(ii) Έστω d κοινός διαρέτης των a+b και a-b, τότε ο d διαιρεί και το άθροισμα και την διαφορά τους.

$$d|(a+b)$$

$$d|(a-b)$$

$$d|(a+b) + (a+b) = 2 \cdot a$$

$$d|(a+b) - (a-b) = 2 \cdot b$$

Τότε έχουμε ότι:

$$d|\gcd(2a, 2b) = 2\gcd(a, b)$$

Όμως από αρχικά δεδομένα έχουμε ότι  $\gcd(a,b)=1$  άρα τότε ισχύει:

d|2

Συνεπώς το  $d \in \{1, 2\}$ 

Εαν a,b περιττοί τότε έχουμε το εξής:

$$a = 2k_1 + 1$$
  $k_1 \in \mathbb{Z}$ 

$$b = 2k_2 + 1 \quad k_2 \in \mathbb{Z}$$

Άρα θα ισχύει και το εξής:

$$a + b = 2k_1 + 1 + 2k_2 + 1 = 2k_1 + 2k_2 + 2 = 2 \cdot (k_1 + k_2 + 1)$$
 (even)

$$a - b = 2k_1 + 1 - 2k_2 + 1 = 2k_1 - 2k_2 = 2 \cdot (k_1 - k_2)$$
 (even)

Εφόσον και τα δύο είναι ζυγοί αριθμοί τότε οι διαιρέτες τους θα είναι ζυγοί. Όπως αποδείξαμε προηγούμενος όμως, αν d διαιρέτης, τότε  $d \in \{1, 2\}$  Συμπερασματικά έχουμε ότι d = 2.

(iii) Έστω  $d = \gcd(a, b)$  τότε  $d = a \cdot x + b \cdot y$ ,  $x, y \in \mathbb{Z}$  Aν  $i = \gcd(2^a - 1, 2^b - 1)$  τότε

$$2^a \equiv 1 \mod i$$

$$2^b \equiv 1 \mod i$$

Συνεπώς έχουμε

$$2^d = 2^{a \cdot x + b \cdot y} = (2^a)^x \cdot (2^b)^y \equiv 1 \mod i$$

Οπότε  $p|2^d-1$ . Από την άλλη μεριά αν d|a, τότε  $2^d-1|2^q-1$ , οπότε το  $2^d-1$  αποτελεί κοινό παράγοντα. Έτσι αποδείξαμε ότι

$$gcd(2^a - 1, 2^b - 1) = 2^{gcd(a,b)} - 1$$

Όμως από αρχικά δεδομένα d=1, άρα και η προηγούμενη σχέση γράφεται:

$$\gcd(2^a - 1, 2^b - 1) = 1$$

- (iv) Παρατηρούμε ότι αν αντικαταστήσουμε τα  $M_p, M_q$  έχουμε την παραπάνω σχέση.
- Θέμα 28
- Θέμα 29
- Θέμα 30

#### 3.70

Υπόθεση:

N > 2

 $N = p_1 p_2 \dots p_k$ 

 $p_i - 1|N - 1\forall j$ 

Απόδειξη:

Έστω gcd(a, N) = 1.

Από το θεώρημα του Fermat,  $\forall j$ , έχουμε  $a^{p_j} \equiv 1 \mod p_j$ .

Εφόσον  $p_j - 1|N - 1$ ,και άρα  $a^{N-1} \equiv 1 \mod p_j$ .

Δηλαδή το  $a^{N-1}-1$  είναι πολλαπλάσιο κάθε  $p_{j}$ .

Συνεπώς  $a^{N-1} \equiv 1 \mod N$ .

#### 3.74

Παρατηρούμε ότι  $561(=3\cdot11\cdot17)$  είναι αριθμός Carmichael. Θα βρούμε όλους του αριθμούς Carmichael μέχρι N(=3000).

Πρόταση 1: Έστω  $n=p\cdot u$  όπου p είναι πρώτος. Τότε αν και μόνο αν p-1|u-1 θα ισχύει και p-1|n-1.

$$(n-1) - (u-1) = n - u = p \cdot u - u = (p-1) \cdot u$$

Πρόταση 2: Έστω ένας αριθμός Carmichael έχει τουλάχιστον τρεις πρώτους παράγοντες. Για την απόδειξη αυτής της πρότασης εφαρμόζουμε την εξής λογική:

Έστω ότι ο n έχει δύο πρώτους παράγοντες  $n=p\cdot q$  όπου p,q πρώτοι και p>q. Τότε p-1>q-1, άρα το p-1 δεν διαιρεί το q-1. Από την πρόταση (1) το p-1 δεν διαιρεί το n-1. Συνεπώς το n δεν είναι αριθμός Carmichael.

Πρόταση 3: Ας υποθέσουμε ότι ο n είναι Carmicael και ότι το p και το q είναι πρώτοι παράγοντες του n. Τότε  $q \not\equiv 1 \mod p$ .

Έστω ότι το  $q \equiv 1 \mod p$ , έτσι ισχύει ότι p|q-1. Τότε q-1|n-1 καθώς θα ισχύει και ότι p|n-1. Όμως αυτό είναι άτοπο καθώς ισχύει ότι p|n.

Εύρεση αριθμών Carmichael: Έστω αριθμός n με τρεις πρώτους παράγοντες  $n=p\cdot q\cdot r$ , με p< q< r. Από τα προηγούμενα καταλαβαίνουμε ότι χρειαζόμαστε τριπλέτες (p,q,r) για τις οποίες θα ισχύουν τα εξής:

(i) 
$$p-1|q\cdot r-1$$
 (or  $q\cdot r\equiv 1 \mod (p-1)$ )  
(ii)  $q-1|p\cdot r-1$   
(iii)  $r-1|p\cdot q-1$ 

Δοθεί ένα ζευγάρι πρώτον αριθμών (p,q) με p < q, η ακόλουθη διαδικασία θα εντωπίσει όλους τους πρώτους r > q τέτοιοι ώστε το  $p \cdot q \cdot r$  να είναι αριθμός Carmichael.

Έστω οι ζυγοί διαρέτες (αν υπάρχουν) d του  $p \cdot q - 1$  με  $p < d < p \cdot q - 1$  και ελέγχουμε αν d + 1(=r) είναι πρώτος, εξαιρούμε το  $d = p \cdot q - 1$  καθώς θα μας έδινε  $r = p \cdot q$ . Τότε έχουμε εξασφαλίσει το (iii) και ελέγχουμε λοιπόν αν ισχύουν τα (ii) και (ii).

Το κάνουμε για όλα τα ζευγάρια πρώτων (p,q), όπου  $p \cdot q \cdot r < 3000$ , για πρώτους r > q. Όμως λόγω του (3) αφήνουμε εκτός τους συνδυασμούς για τους οποίους ισχύει:  $q \equiv 1 \mod p$   $(\pi.\chi(3,7))$ .

Καταγράφουμε μόνο τις τιμές του d όπου το r είναι πρώτος. Όπως παρατηρούμε και στον πίνακα από κάτω δεν υπάρχει μικρότερος Carmichael με τρείς παράγοντες από τον 561.

| (p, q)   | $p \cdot q - 1$ | d  | r  | (i) | (ii) | Carmichael                   |
|----------|-----------------|----|----|-----|------|------------------------------|
| (3, 5)   | 14              | _  | _  |     |      |                              |
| (3, 11)  | 32              | 16 | 17 | yes | yes  | $3 \cdot 11 \cdot 17 = 561$  |
| (3, 17)  | 50              | _  | _  |     |      |                              |
| (3, 23)  | 68              | _  | _  |     |      |                              |
| (5, 7)   | 34              | -  | -  |     |      |                              |
| (5, 13)  | 64              | 16 | 17 | yes | yes  | $5 \cdot 13 \cdot 17 = 1105$ |
| (5, 17)  | 84              | 28 | 29 | yes | yes  | $5 \cdot 17 \cdot 29 = 2465$ |
|          |                 | 42 | 43 | no  |      |                              |
| (5, 19)  | 94              | _  | _  |     |      |                              |
| (7, 11)  | 76              | _  | -  |     |      |                              |
| (7, 13)  | 90              | 18 | 19 | yes | yes  | $7 \cdot 13 \cdot 19 = 1729$ |
|          |                 | 30 | 31 | yes | yes  | $7 \cdot 13 \cdot 31 = 2821$ |
| (7, 17)  | 118             | -  | -  |     |      |                              |
| (11, 13) | 142             | _  | _  |     |      |                              |

Το δεύτερο ερώτημα επιλύθηκε με βοήθεια κώδικα.

Κώδικας σε python

 $No 31\_Smaller\_Carmichael\_4\_Factors.ipynb$ 

## Αναφορές