Московский физико-технический институт (национальный исследовательский университет) Физтех-школа физики и исследований им.Ландау

Лабораторная работа №2.1.1 (Лабораторный практикум по общей физике)

Измерение удельной теплоёмкости воздуха при постоянном давлении

Работу выполнил: Климанов Даниил, группа Б02-115

г. Долгопрудный, 2022

Цель работы: 1) измерение повышения температуры воздуха в результате подвода тепл при стационарном течении через стеклянную трубу; 2) вычисление по результатам измерений теплоёмкости воздуха при постоянном давлении.

Оборудование: телоизолировання трубка; электронагреватель; источник питания постоянного тока Б5-70; термопара; амперметр; вольтметр; универсальный цифровой вольтметр В7-23; газовый счётчик; секундомер.

1 Теоретическое введение:

Теплоёмкость определяется как частное $C = \frac{\triangle Q}{\triangle T}$. Полная работа над молем газа при протекании по трубке выражается как $A = P_2 V_2 - P_1 V_1$, где $P_1, 2$ - давление в начале и конце трубы, $V_1, 2$ - объём моля газа при входе и выходе из трубы соответственно. Изменение внутренней энергии представим как $\triangle U = U_2 - U_1$. По первому началу термодинамики:

$$\begin{cases}
Q = \triangle U + A = (U_2 + P_2 V_2) - (U_1 + P_1 V_1) = \triangle H \\
H = U + PV = \nu C_v T + \nu R T = \nu C_p T
\end{cases}
\Rightarrow Q = C_p \triangle T \tag{1}$$

, где H - энтальпия газа. Тогда для удельной теплоёмкости верно следующее:

$$c_p = \frac{Q}{m\triangle T} = \frac{UI - N}{m\triangle T} \tag{2}$$

, где UI - мощность нагревателя, N - мощность тепловых потерь, m - масса воздуха, проходящего через установку в единицу времени, $\triangle T$ - перепад температур воздуха.

2 Экспериментальная установка:

Чтобы обеспечить большую точность измерений, требуется, чтобы как можно меньшая доля тепла уходила на нагревание калориметра. Поэтому в работе через установку осуществляется прокачка и нагревание воздуха, чтобы в процессе измерений масса нагретого воздуха была сравнима с массой калориметра. Измеряются количество тепла, переданное нагревателем, масса протекающего воздуха и изменение его температуры. Измерения выполнялись при следующих условиях:

Температура, °С	P_{atm} , Πa	β , мк $B/^{\circ}C$	μ , г/моль	Влажность, %
22.4 ± 0.1	99610	40,7	29	75

, где $\beta = \frac{\varepsilon}{\triangle T}$, ε - падение напряжения на нагревательном элементе. В процессе вычислений универсальная газовая постоянная R принималась равной 8, 31 Дж/моль·К.

3 Выполнение измерений:

Измерения были сделаны для трёх различных расходов воздуха. Для каждого из значений было взято 5 точек, соответствующих разным напряжениям U. Таблицы с полученными данными приведены ниже:

3.1 Первый расход:

Чтобы измерить расход воздуха, мы засекали время, за которое газовый счётчик пропускает 1,5 л воздуха:

№	1	2	3	4	5
Время, с	7,42	7,33	7,15	7,59	7,28

Table 1: Время протекания 1,5л через ГС при первом расходе

Следовательно, расход Q_1 и его погрешность могут быть оценены как:

$$\begin{cases} Q_1 = 1, 5/7, 35 = 0.2 \\ \triangle Q_1 = \frac{V}{\triangle T^2} \cdot \sigma(\triangle T) = 0,004 \end{cases} \Rightarrow \begin{cases} m = \frac{\mu PV}{RT} \approx \frac{29 \cdot 996100 \cdot Q_1}{8,31 \cdot 297,4} = 0,234 \\ \sigma m = \frac{\mu P_{atm}}{RT} \cdot \sqrt{(\sigma Q)^2 + (\frac{Q}{T})^2 (\sigma T)^2} \approx 0,005 \end{cases}$$
(3)

$\mathcal{N}_{ar{o}}$	Напряжение U , В	Tок I , м A	ε , мк B
1	3,214	93,5	46
2	3,795	110,5	65
3	4,4	128,2	86
4	4,997	145,5	111
5	5,615	163,6	142

3.2 Второй расход:

Второе и третье измерения проводились в полной аналогии с первым.

$N_{\overline{0}}$	1	2	3	4	5
Время, с	17,54	16,8	17,3	17	17,36

Table 2: Время протекания 1,5л через ГС при втором расходе

Расход Q_2 и его погрешность могут быть оценены как:

$$\begin{cases} Q_2 = 0,087 \\ \triangle Q_2 = 0,002 \end{cases} \Rightarrow \begin{cases} m = \frac{\mu PQ}{RT} \approx \frac{29 \cdot 99610 \cdot Q_2}{8,31 \cdot 297,4} = 0,102 \\ \sigma m = \frac{\mu P_{atm}}{RT} \cdot \sqrt{(\sigma Q)^2 + (\frac{Q}{T})^2 (\sigma T)^2} \approx 0,003 \end{cases}$$
(4)

No	Напряжение U , В	Tок I , м A	ε , MKB
1	3,25	94,3	91
2	3,803	110,6	135
3	4,397	127,9	182
4	5,004	145,6	242
5	5,605	163,1	298

3.3 Третий расход:

$N_{\overline{0}}$	1	2	3	4	5
Время, с	11,19	10,56	11,0	10,73	11,0

Table 3: Время протекания 1,5л через ГС при втором расходе

Расход Q_2 и его погрешность могут быть оценены как:

$$\begin{cases} Q_3 = 0,138 \\ \triangle Q_3 = 0,003 \end{cases} \Rightarrow \begin{cases} m = \frac{\mu PV}{RT} \approx \frac{29 \cdot 99610 \cdot Q_3}{8,31 \cdot 297,4} = 0,161 \\ \sigma m = \frac{\mu P_{atm}}{RT} \cdot \sqrt{(\sigma Q)^2 + (\frac{Q}{T})^2 (\sigma T)^2} \approx 0,004 \end{cases}$$
 (5)

No	Напряжение U , В	Tок I , м A	ε , MKB
1	3,25	94,3	91
2	3,803	110,6	135
3	4,397	127,9	182
4	5,004	145,6	242
5	5,605	163,1	298

4 Обработка измерений:

Построим график $IU(\triangle T)$ для каждого из расходов воздуха. Поскольку $c_p=\frac{IU-N}{m\triangle T}$, то свободный коэффициент аппроксимирующей прямой \approx мощность теплопотерь при данном расходе воздуха(первичная оценка). После того, как c_p найдена, построим график $N(\triangle T)=IU-c_p\cdot m\cdot \triangle T$.

4.1 Первый расход:

Из графика получаем следующие данные:

$$\begin{cases}
c_p = 1, 126 \pm 0,010 \\
N \approx 0,003 \pm 0,002
\end{cases}$$
(6)

Зависимость тепловых потерь от перепада температур на термопаре практически совпадает с прямой пропорциональностью:

$$N_1(\Delta T) \approx \alpha_1 \Delta T, \alpha_1 = (0, 263 \pm 0, 003) \tag{7}$$

4.2 Второй расход:

В данном случае удельная теплоёмкость c_p и мощность тепловых потерь N принимают следующие значения:

$$\begin{cases}
c_p = 1, 17 \pm 0, 02 \\
N \approx 0, 031 \pm 0, 004
\end{cases}$$
(8)

Figure 1: Зависимость мощности IU на нагревателе от $m\cdot \triangle T$ при первом расходе воздуха.

Figure 2: Тепловые потери в зависимости от перепада температур
(первый расход). Строим график $N(\triangle T)=IU-c_p\cdot m\cdot \triangle T.$

Figure 3: Зависимость мощности IU на нагревателе от $m\cdot \Delta T$ при втором расходе воздуха.

Тепловые потери, как и в первом случае, оказались пропорциональны температуре.

$$N_2(\Delta T) \approx \alpha_2 \Delta T, \alpha_2 = (0, 119 \pm 0, 002) \tag{9}$$

4.3 Третий расход:

$$\begin{cases}
c_p = 1, 11 \pm 0, 01 \\
N \approx 0, 021 \pm 0, 002
\end{cases}$$
(10)

Тепловые потери пропорциональны температуре:

$$N_3(\Delta T) \approx \alpha_3 \Delta T, \alpha_3 = (0, 179 \pm 0, 002) \tag{11}$$

Figure 4: Тепловые потери в зависимости от перепада температур(второй расход). Строим график $N(\triangle T) = IU - c_p \cdot m \cdot \triangle T$.

Figure 5: Зависимость мощности IU на нагревателе от $m\cdot \triangle T$ при третьем расходе воздуха.

Figure 6: Тепловые потери в зависимости от перепада температур (третий расход). Строим график $N(\triangle T) = IU - c_p \cdot m \cdot \triangle T$.

Figure 7: Сравнительный график $IU(m\triangle T)$ для всех расходов воздуха.

5 Итоги

Значения удельных теплоёмкостей, полученные в ходе опыта(в Дж/г-К):

$$\begin{cases}
1)c_p = 1,126 \pm 0,010 \\
2)c_p = 1,17 \pm 0,02 \\
3)c_p = 1,11 \pm 0,01
\end{cases}$$
(12)

Итоговое значение удельных теплоёмкостей воздуха несколько выше, чем значение удельной теплоёмкости сухого воздуха из [1] (примерно на 20-30%). Это можно объяснить тем, что влажность исследуемого воздуха имела значение 75%, следовательно, в воздухе присутствовало относительно большое количество частичек воды (по сравнению с "сухим" воздухом), что увеличивает теплоёмкость. Как побочный результат эксперимента, было проверено предположение о пропорциональности тепловых потерь разности температур на входе и выходе из установки.

References

[1] Под редакцией проф. А.Д. Гладуна - Лабораторный практикум по общей физике. Термодинамика. Том 1