МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 1383	 Федорова О.В
Преподаватель	Ефремов М.А

Санкт-Петербург

2022

Цель работы.

Научиться обрабатывать целые числа, создавать ветвления на языке ассемблера

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным

значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра

индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться

студентом самостоятельно и задаваться в процессе исполнения программы в режиме

отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k,

позволяющие проверить различные маршруты выполнения программы, а также различные

знаки параметров а и b.

Вариант 1.

$$f1 = <$$

$$-(4*i+3)$$
, a>b

$$f2 = <$$

$$f3 = <$$

Таблица 1. Примеры

Номер 1.	Введенные данные а = -3	Вывод I1 = 7 = 0007
	b = 2	i2 = -4 = FFFC
	i = 1	res = -4 = FFFC
2.	k = 0 $a = 2$	I1 = 17 = 0011
	b = -2	i2 = 1 = 0001
	i = -1	res = 17 = 0011
3.	k = 1 $a = 2$	I1 = -5 = FFFB
	b=2	i2 = -28 = FFE4
	i = -3	res = -5 = FFFB
	k = 1	

4.	a = 2	I1 = 10 = 000A
	b = 2	i2 = 2 = 0002
	i = 2	res = 10 = 000A
5.	k = 1 $a = 2$	I1 = 10 = 000A
	b = 2	i2 = 2 = 0002
	i = 2	res = 2 = 0002
	k = 0	
6.	a = 2	I1 = -5 = FFFB
	b = 2	i2 = -28 = FFE4
	i = -3	res = -28 = FFE4
	k = 0	
7.	a = 0	I1 = 13 = 000D
	b = 1	i2 = 8 = 0008
	i = 3	res = 8 = 0008
	k = 0	
8.	a = 2	I1 = 14 = 000D
	b = 1	i2 = -7 = FFF9
	i = 1	res = 14 = 000D
	k = 1	
9.	a = 2	I1 = 14 = 000D
	b = 1	i2 = -7 = FFF9
	i = 1	res = -7 = FFF9
10	k = 0	11 15 0011
10.	a = 2	I1 = 17 = 0011
	b = 1	i2 = 1 = 0001

i = -1

k = 0

res = 1 = 0001

Примечания:

Для меньшего количества кода использовался побитовый сдвиг влево(умножение на 2, shl cx,1)

Вывод:

Были изучены арифметические операции над целыми числами на языке ассемблер.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

lbb3.asm

ind EQU 2

n1 EQU 500

n2 EQU -50

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

DATA SEGMENT

a DW 2

b DW 1

i DW -1

k DW 0

i1 DW?

i2 DW?

res DW?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

```
;/ min(i1,i2), ĐżŃ ∳ Đž k=0
f3 = <
    ;\ max(i1,i2), Đż\acute{N} \dagger Đž k/=0
Main PROC FAR
  push DS
  sub AX,AX
  push AX
  mov AX,DATA
  mov DS,AX
  mov cx,a
f1:
  cmp cx,b
  jle fl_b
f1_a:
  mov ax, i
  ;add ax, i
  shl ax,1
  mov dx,ax
  mov ax, 15
  sub ax, dx
  mov i1, ax
  push i1
  jmp f2_a
f1_b:
  mov ax, i
  shl ax,1
```

add ax, i

```
;add ax, i
  ;add ax, i
  add ax, 4
  mov i1, ax
  push i1
  jmp f2_b
f2_a:
  mov ax, i
  add ax, i
  ;add ax, i
  ;add ax,i
  shl ax, 1
  add ax, 3
  mov dx,ax
  mov ax, 0
  sub ax, dx
  mov i2, ax
  push i2
  jmp f3
f2_b:
  mov ax, i
  ;add ax, i
  shl ax, 1
  add ax, i
  shl ax, 1
```

```
sub ax, 10
  mov i2, ax
  push i2
f3:
  pop ax;i2
  pop dx;i1
  mov cx, k
  cmp cx,0
  jcxz f3_null
  cmp ax,dx
  jl res_sec
  mov res, ax
  jmp print
f3_null:
  cmp ax,dx
  jg res_sec
  mov res, ax
  jmp print
res_sec:
  mov res, dx
print:
  push res
  pop dx
  add dl,10h
  int 21h
  ret
Main ENDP
CODE ENDS
END Main
```

приложение в

ФАЙЛ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

#Microsoft (R) Macro Assembler Version 5.10

11/13/22 17:48:3

Page 1-1

ind EQU 2

LAB3.ASM(1): warning A4001: Extra characters on line

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018	AStack ENDS

0000 DATA SEGMENT

0000 0002 a DW 2

0002 0001 b DW 1

0004 FFFF i DW -1

0006 0000 k DW 0

0008 0000 i1 DW?

000A 0000 i2 DW?

000C 0000 res DW?

000E DATA ENDS

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

;/ 15-2*i , ĐżŃ ₱ Đž a>b

0000 Main PROC FAR 0000 1E push DS 0001 2B C0 sub AX,AX 0003 50 push AX 0004 B8 ---- R mov AX,DATA mov DS,AX 0007 8E D8 0009 8B 0E 0000 R mov cx,a 000D f1: 000D 3B 0E 0002 R cmp cx,b jle fl b 0011 7E 16 0013 f1_a: mov ax, i 0013 A1 0004 R ;add ax, i 0016 D1 E0 shl ax,1 0018 8B D0 mov dx,ax 001A B8 000F mov ax, 15

001D 2B C2 sub ax, dx 001F A3 0008 R mov i1, ax

0022 FF 36 0008 R push i1

#Microsoft (R) Macro Assembler Version 5.10

11/13/22 17:48:3

Page 1-2

0026 EB 17 90 jmp f2 a

0029 fl_b:

0029 A1 0004 R mov ax, i

002C D1 E0 shl ax,1

002E 03 06 0004 R add ax, i

;add ax, i

;add ax, i

0032 05 0004 add ax, 4

0035 A3 0008 R mov i1, ax

0038 FF 36 0008 R push i1

003C EB 1E 90 jmp f2_b

003F f2_a:

003F A1 0004 R mov ax, i

0042 03 06 0004 R add ax, i

;add ax, i

;add ax,i

0046 D1 E0 shl ax, 1

0048 05 0003 add ax, 3

004B 8B D0 mov dx,ax

004D B8 0000 mov ax, 0

0050 2B C2 sub ax, dx

0052 A3 000A R	mov i2, ax
0055 FF 36 000A R	push i2
0059 EB 16 90	jmp f3
005C	f2_b:
005C A1 0004 R	mov ax, i
	;add ax, i
	;add ax, i
	;add ax, i
	;add ax, i
	;add ax, i
005F D1 E0	shl ax, 1
0061 03 06 0004 R	add ax, i
0065 D1 E0	shl ax, 1
0067 2D 000A	sub ax, 10
006A A3 000A R	mov i2, ax
006D FF 36 000A R	push i2
0071	f3:
0071 58	pop ax;i2
0072 5A	pop dx;i1
0073 8B 0E 0006 R	mov cx, k
0077 83 F9 00	cmp cx,0
007A E3 0A	jexz f3_null
007C 3B C2	cmp ax,dx
007E 7C 10	jl res_sec
0080 A3 000C R	mov res, ax
0083 EB 0F 90	jmp print
0086	f3_null:
0086 3B C2	cmp ax,dx
0088 7F 06	jg res_sec

008A A3 000C R mov res, ax

008D EB 05 90 jmp print

one of the original of the ori

0090 89 16 000C R mov res, dx

#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3

Page 1-3

print:

0094 FF 36 000C R push res

0098 5A pop dx

0099 80 C2 10 add dl,10h

009C CD 21 int 21h

009E CB ret

009F Main ENDP

009F CODE ENDS

END Main

Symbols-1

Segments and Groups:

N a m e	Length		Align	oine Class	
ASTACK					STACK
DATA					NONE F
DAIII	OOOL	17111	ı	11011	L
Symbols:					
N a m e	Туре	Value	e Attr		
A	L WC	ORD	0000	DATA	A
В	L WC	ORD	0002	DATA	A
F1	LNE	AR	000D	COD	Е
F1_A	LNE	AR	0013	COD	Е
F1_B	LNE	AR	0029	COD	Е
F2_A	LNE	AR	003F	COD	Е
F2_B	LNE	AR	005C	COD	Е
F3	LNE	AR	0071	COD	Е
F3_NULL		L NE	AR	0086	CODE
I	L WC	ORD	0004	DATA	A

I1 L WORD 0008 DATA
I2 L WORD 000A DATA

K L WORD 0006 DATA

MAIN F PROC 0000 CODE Length = 009F

N1..... NUMBER 01F4

N2 NUMBER -0032

PRINT L NEAR 0094 CODE

RES L WORD 000C DATA

RES_SEC L NEAR 0090 CODE

@CPU TEXT 0101h

@FILENAME TEXT LAB3

@VERSION TEXT 510

#Microsoft (R) Macro Assembler Version 5.10 11/13/22 17:48:3

Symbols-2

114 Total Lines

27 Symbols

48008 + 459252 Bytes symbol space free

1 Warning Errors

0 Severe Errors