Data Mining & Analytics

INFO 254 / INFO 154 School of Information / Spring 2019

Prof. Zach Pardos

What will be learned in class?

What will be learned in class?

Common sense in data mining and machine learning

Zachary A. Pardos Assistant Professor

Graduate School of Education School of Information

Research -> zachpardos.com

Areas of study (Big Data in Education)

- Knowledge representation
- Engineering personalized, adaptive affordances

Courses taught

- Digital Learning Environments (EDU Online Fall/Summer)
- Machine Learning in Education (EDU/INFO Fall)
- Data Mining & Analytics (INFO Spring)

Research Lab: github.com/CAHLR

Computational Approaches to Human Learning (CAHL)

Training

PhD in Computer Science (WPI)

Postdoc at MIT CS AI Lab

Survey results

Bonus question: Piazza or bCourses?

Class Preparation Guidance

Python and regression experience Already experienced with high foundational ML models Python, regression, and some Class appropriateness ML Have taken INFO 251 or CS 189 Python experience but no experience with regression Have taken INFO 251 AND CS 189 No experience with python low Under preparation Over preparation

Overview of topics covered in class

- First half of the semester
 - Foundational models
 - Culminates in prediction competition & midterm
- Second half of the semester
 - Representation learning approaches (neural networks)
 - Culminates in final project presentation (info 154) and paper (info 254)

Tools

- Python/pandas
- Python/numpy
- Python/scikit-learn
- Python/keras

Example Final Projects

from Data Mining and Analytics '16 & '17

Predicting Basketball Player Salaries

Zubair Marediya, Naya Olmer, Nadar Azari, Boris Lo Info 290T | Data Mining and Analytics | Spring 2016

Goals

- Predicting basketball players contract values using historical contracts and player statistics.
- Comparing predicted contract values with actual contract values to identify which players are undervalued and overvalued.

Data

- Player Salaries
- Player Statistics (Minutes, Field Goals, Three Pointers, Rebounds, etc.)

Features

- Games Played
- Team
- Minutes
- Field Goals
- Field Goal Attempts
- Three Pointers
- Three Point Attempts
- Free Throws
- Free Throw Attempts
- Plus/Minus
- Year
- Salary Cap

- Offensive Rebounds
- Defensive Rebounds
- Total Rebounds
- Assists
- Steals
- Blocks
- Turnovers
- Fouls
- Points
- Age
- Salary
- Percentage of Salary Cap

Outcome

Predicted player salaries with an RMSE of only \$2.9 million dollars.

40% of players found over-valued.

60% of players found under-valued.

Example 1: Stephen Curry (2014-2015)

- During the 2014-2015 NBA season, Stephen Curry was named league MVP.
- During this season, Stephen Curry made \$10,629,214.
- The ML model predicts that Curry should have earned \$12,696,622 for his work in 2014-2015, meaning that Curry far exceeded his team's projected value.

Example 2: James Harden (2014-2015)

- During the 2014-2015 season, James Harden was the MVP runner up.
- During the season, Harden made \$14,728,884.
- The ML model predicts Harden should have made \$14,441,376, almost exactly what he actually made. This mean that he met the Rockets' expectations.

[Eudae] Sensing Mood From Fitbit Data

Info 290T Final Project, Spring 2016 April Dawn Kester, Audrey Leung, Heidi Huang, Laura Montini, Yiwen Tang

Goal

Predicting a person's mood from their Fitbit data using machine learning.

Data

- 18 Participants
- 2 Weeks
- 4 Mood Surveys per day
- Fitbit device continuously tracking

Mood Features

- Arousal Dimension
- Arousal Dimension Slider
- Pleasure Dimension
- Pleasure Dimension Slider

Activity Features

- Steps
- Distance
- Floors
- Minutes Asleep
- Heart Rate

Outcome

Achieved **80% accuracy** in predicting mood based on Fitbit data.

Best results on aggregate, discrete data

45% 62% 80% 80%

Baseline Accuracy (Majority Class = Neutral) Random Forest

Neural Network

Logistic Regression

• NYCe TAXI!

Anand Anubhav Sindhuja

Motivation

Predicting tips for NYC taxi drivers based on the features and characteristics of the taxi rides.

Maximize tip benefits for taxi

drivers

 A generic algorithm that can be extended to any city

Unique Fields

- medallion hack license
- vendor id

Trip Fields

- pickup datetime dropoff datetime
- trip time
- trip distance
- pickup latitude pickup longitude
- dropoff latitude
- dropoff longitude
- passenger count

Fare Fields

- fare amount tip_amount
- tolls amount total amount
- ∘ mta tax
- payment type

Outcome

- 98% accuracy on Tip vs. No Tip
- 81% accuracy on Tip Class
- 68% accuracy on Tip Percentage

Example Final Project: Maximizing Taxi Tips INFERENCES

- - Card Payments have higher tip

Tip varies directly with fare

- Routes with tolls yield less tip
- Tip directly varies with the cost of living index

Example Final Project: Song representation learning

Song2Vec

By Kartik Gupta, Vishnu Murthy, Elias Orellana & Samridh Saluja,

Example Final Project: Song representation learning

Summary Statistics

Total No. of	Total No. of	Total No. of
Artists	Stations	Plays
54,592	3,535	8,477,970

Unique ArtistMeanMedianMaxNo. of Stations2291033No. of Plays1564084,587

Top 5 Artists Played on Most # of Stations

Top 5 Artists Played based on Most # of Plays

Visualization of the Data - Unique Songs

Genre-based clusters

Rap/contemporary

- 1) Jay-Z Run This Town feat. Rihanna & Kanye West
- 2) 2Pac Hit 'Em Up
- 3) Dr. Dre Xxplosive
- 4) Young Money Bedrock (Ft Lloyd)
- 5) Chris Brown No Bull

Visualization of the Data - Unique Songs

Sanity Check

Same genre

Same sound

Record label

```
model.most similar(positive=['Drake'])
[('Lil Wayne', 0.9860175848007202),
 ('T-Pain', 0.9685032367706299),
 ('DJ Khaled', 0.9681740999221802),
 ('Fabolous', 0.9598538279533386),
 ('Big Sean', 0.9577240347862244),
 ('Cee-Lo', 0.9560977220535278),
 ('diddy dirty money', 0.9537268877029419),
 ('Nicki Minaj', 0.9485852718353271),
 ('J Cole', 0.9462763071060181),
 ('Mindless Behavior', 0.9460246562957764)]
```

Example Final Project: Song representation learning

Findings

Artist Specific

Daddy Yankee Reggaeton

Drake Hip Hop

Reily (Reyli) Latin Pop 0.80

DMA '17 Class Final Project Titles (1 of 2)

Exploring Online Political Climates

Using Machine Learning to Predict Asthma Risk

Anomaly Detection in time-series data (Water Usage)

Predicting Reasons for Medical Non-adherence

Representation Learning and ML on Materials Data Set

Boston Airbnb Neighborhood Price Analytics

The Effects of Climate Change on East Coast Hurricanes

Sequence to Sequence Approach to Finding Relevant answers in MOOC forums

DMA '17 Class Final Project Titles (2 of 2)

Indoor Localization

Asmi, Artificial Social Media Intern

song2vec

Generating Semantic Descriptions for Images

Computer Vision Classification of Cervix Types

How Does Temperature Affect Carbon Dioxide Release

Sentiment Analysis: Emotion in Text

Ipredict

Fake News

Structure of the class

Tuesdays: Concepts introduced, quiz answers reviewed

Thursdays: Quiz (10m), software tutorial, lab begins

Grading:

- Homeworks/Labs 30%
- Midterm 25%
- Quizzes 10%
- Final Project 35%

Local optimization vs. Strategic goals

- Local optimization
 - Increasing accuracy (hyper parameter tuning, feature selection, ensembling)
- Strategic goals
 - Who does the predictive analysis benefit and why is it needed instead of descriptive stats?

Strategy comes first!

General ML approach to classification:

- 1. Create features of the post (p_n)
- 2. Create features of the reader/user (u_n)
- 3. Choose outcome to optimize (Y)
- 4. Learn historical relationship between features and outcome

features of post		features of user		outcome	
	p ₁	p _n	u ₁	u _n	Y

$$f(p_1,...p_n,u_1,...u_n) = Y$$

Comment

highlighting

ucberkeleyofficial Happy #MLKDay, everyone! 💥 #FiatLux Dr. King spoke on Sproul Plaza on May 17, 1967, to a crowd of 7,000.

4,492 likes

Photo copyright Ron Riesterer/Photoshelter) #ucberkeley #martinlutherking #sproulplaza #crowd

view all 14 comments

das_the_shef incredible

catstanton i love this school (,:

General ML approach to sentiment classification

- 1. Create word frequency featureset
- 2. Hand code sentiment of a sample of comments
- 3. Learn the influence (weights) of each word wrt the code

fr	requency of each w	ent	outcome	
W ₁	W ₂		W _n	Y

$$f(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_n) = \mathbf{Y}$$

Consider visiting:

[?]

3.3 Terminal velocity: Answers

▶ 4. First steps into heat and

▶ 5. Newton's law of cooling

mass transfer

AskOski.berkeley.edu

Overview of topics covered in class

- First half of the semester
 - Foundational models
 - Culminates in prediction competition & midterm
- Second half of the semester
 - Representation learning approaches (neural networks)
 - Culminates in final project presentation (info190) and paper (info254)

Tools

- Python/pandas
- Python/numpy
- Python/scikit-learn
- Python/keras

Data Preprocessing

- "Garbage in, garbage out"
- Majority of data miners spend 60% or more of their time on data cleaning and preparation) * http://www.kdnuggets.com/polls/2003/data preparation.htm

- Data Cleaning (missing values, noisy data)
- Data Reduction (PCA, Regression and Binning)
- Data Transformation (Aggregation, Smoothing)

Decision Trees

 Decision Trees (DTs) are a non-parametric supervised learning method used for classification. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from features.

- Decision Tree Induction
- Attribute Selection Measures Information Gain, Gain Ratio, Gini Index
- Tree Pruning

Clustering

 Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (by some measure) to each other than to those in other groups.
 This is a popular form of unsupervised learning.

- K-means Clustering
- Spectral Clustering
- Cluster Quality (Elbow method, Silhouette Coefficient)

Error Metrics

Metrics for evaluating classifier performance

- Confusion matrix
- Accuracy
- AUC
- Specificity
- Precision and Recall

Neural Networks

 Artificial neural networks are a series of nodes (w/activations) and edges (w/weights) that can learn arbitrary functions and were loosely inspired by the neural structure of the brain.

- Multi-perceptron FFNN
- Back propagation
- Recurrent Neural Networks

Cross-validation and Classifier Enhancement

An evaluation to improve reliability of performance

- Hold out strategies
- Generalization
- Statistical significance

Ensemble Learning

 Ensemble learning is the combination of predictors that often results in better performance than the individual predictors could achieve alone

- Bagging
- Boosting (Adaboost)
- Random forests

Representation Learning

 New approach to ML: Instead of hand engineering features, learn them from the raw data

- Skip-grams
- RNNs ("deep" learning)
- Dimensionality reduction
- Visualization (cluster analysis)

Berkeley Course Representation

Word2Vec

Representation Learning

Male-Female

Verb tense

Italy

Germany

Vietnam

China

Canada

Madrid

Berlin

Moscow

Tokyo

Beijing

Mikolov, T., & Dean, J. (2013)

Word2Vec Representation Learning

KING[vec] - MAN[vec] + WOMAN[vec] ≈ QUEEN[vec]

Finding implicit bias in language

Bolukbasi (2016); Caliskan (2017)

Advanced Clustering

- Graph theoretic form of clustering
- Can capture geometric patterns instead of only spherical gaussians (k-means)

[see you Tuesday]

Questions?

INFO 254 / INFO 154 School of Information / Spring 2019

Prof. Zach Pardos