SAS绘图

示例SASHELP.CARS

MAKE	HORSEPOWER	LENGTH	INVOICE
Acura	265	189	\$33,337
Audi	170	179	\$23,508
BMW	225	180	\$33,873
Buick	275	193	\$34,357

直方图

```
libname t "temp";
ods path(prepend) t.template(update);

SAS Connection established. Subprocess id is 19646
```

```
PROC SORT DATA = SASHELP.CARS OUT = C NODUPKEY;
BY MAKE;
RUN;
PROC PRINT DATA = C;
RUN;
```

The SAS System

Obs	Make	Model	Туре	Origin	DriveTrain	MSRP	Invoice	EngineSize	Cylinders	Horsepower	MPG_Cit
1	Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6	265	1
2	Audi	A4 1.8T 4dr	Sedan	Europe	Front	\$25,940	\$23,508	1.8	4	170	2
3	BMW	X3 3.0i	SUV	Europe	All	\$37,000	\$33,873	3.0	6	225	1
4	Buick	Rainier	SUV	USA	All	\$37,895	\$34,357	4.2	6	275	1
5	Cadillac	Escalade	SUV	USA	Front	\$52,795	\$48,377	5.3	8	295	1
6	Chevrolet	Suburban 1500 LT	SUV	USA	Front	\$42,735	\$37,422	5.3	8	295	1
7	Chrysler	PT Cruiser 4dr	Sedan	USA	Front	\$17,985	\$16,919	2.4	4	150	2
8	Dodge	Durango	SUV	USA	All	\$32,235	\$29,472	4.7	8	230	1

		SLT									
9	Ford	Excursion 6.8 XLT	SUV	USA	All	\$41,475	\$36,494	6.8	10	310	1
10	GMC	Envoy XUV SLE	SUV	USA	Front	\$31,890	\$28,922	4.2	6	275	1
11	Honda	Civic Hybrid 4dr manual (gas/electric)	Hybrid	Asia	Front	\$20,140	\$18,451	1.4	4	93	4
12	Hummer	H2	SUV	USA	All	\$49,995	\$45,815	6.0	8	316	1
13	Hyundai	Santa Fe GLS	SUV	Asia	Front	\$21,589	\$20,201	2.7	6	173	2
14	Infiniti	G35 4dr	Sedan	Asia	Rear	\$28,495	\$26,157	3.5	6	260	1
15	Isuzu	Ascender S	SUV	Asia	All	\$31,849	\$29,977	4.2	6	275	1
16	Jaguar	X-Type 2.5 4dr	Sedan	Europe	All	\$29,995	\$27,355	2.5	6	192	1
17	Jeep	Grand Cherokee Laredo	SUV	USA	Front	\$27,905	\$25,686	4.0	6	195	1
18	Kia	Sorento LX	SUV	Asia	Front	\$19,635	\$18,630	3.5	6	192	1
19	Land Rover	Range Rover HSE	SUV	Europe	All	\$72,250	\$65,807	4.4	8	282	1
20	Lexus	GX 470	SUV	Asia	All	\$45,700	\$39,838	4.7	8	235	1
21	Lincoln	Navigator Luxury	SUV	USA	All	\$52,775	\$46,360	5.4	8	300	1
22	MINI	Cooper	Sedan	Europe	Front	\$16,999	\$15,437	1.6	4	115	2
23	Mazda	Tribute DX 2.0	SUV	Asia	All	\$21,087	\$19,742	2.0	4	130	2
24	Mercedes- Benz	G500	SUV	Europe	All	\$76,870	\$71,540	5.0	8	292	1
25	Mercury	Mountaineer	SUV	USA	Front	\$29,995	\$27,317	4.0	6	210	1
26	Mitsubishi	Endeavor XLS	SUV	Asia	All	\$30,492	\$28,330	3.8	6	215	1
27	Nissan	Pathfinder Armada SE	SUV	Asia	Front	\$33,840	\$30,815	5.6	8	305	1
28	Oldsmobile	Alero GX 2dr	Sedan	USA	Front	\$18,825	\$17,642	2.2	4	140	2
29	Pontiac	Aztekt	SUV	USA	Front	\$21,595	\$19,810	3.4	6	185	1
30	Porsche	Cayenne S	SUV	Europe	All	\$56,665	\$49,865	4.5	8	340	1
31	Saab	9-3 Arc Sport 4dr	Sedan	Europe	Front	\$30,860	\$29,269	2.0	4	210	2
32	Saturn	VUE	SUV	USA	All	\$20,585	\$19,238	2.2	4	143	2
33	Scion	xA 4dr hatch	Sedan	Asia	Front	\$12,965	\$12,340	1.5	4	108	3
34	Subaru	Impreza 2.5 RS 4dr	Sedan	Asia	All	\$19,945	\$18,399	2.5	4	165	2
35	Suzuki	XL-7 EX	SUV	Asia	Front	\$23,699	\$22,307	2.7	6	185	1
36	Toyota	Prius 4dr (gas/electric)	Hybrid	Asia	Front	\$20,510	\$18,926	1.5	4	110	Ę
37	Volkswagen	Touareg V6	SUV	Europe	All	\$35,515	\$32,243	3.2	6	220	1
38	Volvo	XC90 T6	SUV	Europe	All	\$41,250	\$38,851	2.9	6	268	1

PROC UNIVARIATE DATA = SASHELP.CARS; VAR HORSEPOWER; RUN;

The SAS System

The UNIVARIATE Procedure Variable: Horsepower

	Moments										
N	428	Sum Weights	428								
Mean	215.885514	Sum Observations	92399								
Std Deviation	71.8360316	Variance	5160.41543								
Skewness	0.93033074	Kurtosis	1.55215863								
Uncorrected SS	22151103	Corrected SS	2203497.39								
Coeff Variation	33.2750587	Std Error Mean	3.47232565								

Basic Statistical Measures									
Location Variability									
Mean	215.8855	Std Deviation	71.83603						
Median	210.0000	Variance	5160						
Mode	200.0000	Range	427.00000						
		Interquartile Range	90.00000						

Tests for Location: Mu0=0								
Test		Statistic p Value						
Student's t	t	62.17318	Pr > t	<.0001				
Sign	М	214	Pr >= M	<.0001				
Signed Rank	s	45903	Pr >= S	<.0001				

Quantiles (Definitio	n 5)
Level	Quantile
100% Max	500
99%	477
95%	340
90%	302
75% Q3	255
50% Median	210
25% Q1	165
10%	130
5%	115
1%	103
0% Min	73

Extreme Observations									
Lowes	st	Highe	st						
Value	Obs	Value	Obs						
73	151	477	335						
93	150	493	263						
100	405	493	271						
103	171	493	272						
103	170	500	115						

```
PROC UNIVARIATE DATA = SASHELP.CARS NOPRINT;
HISTOGRAM HORSEPOWER

/
MIDPOINTS = 100 TO 500 BY 20;
RUN;
```

The SAS System

The UNIVARIATE Procedure

The SAS System

The SAS System

The UNIVARIATE Procedure Fitted Normal Distribution for Horsepower

Parameters for Normal Distribution							
Parameter	Estimate						
Mean	Mu	215.8855					
Std Dev	Sigma	71.83603					

Goodness-of-Fit Tests for Normal Distribution									
Test	Statistic p Value								
Kolmogorov-Smirnov	D	0.09051574	Pr > D	<0.010					
Cramer-von Mises	W-Sq	0.58980554	Pr > W-Sq	<0.005					
Anderson-Darling	A-Sq	3.68580519	Pr > A-Sq	<0.005					

Quantiles for Normal Distribution								
	Qua	antile						
Percent	Observed	Estimated						
1.0	103.000	48.7699						
5.0	115.000	97.7258						
10.0	130.000	123.8239						
25.0	165.000	167.4328						
50.0	210.000	215.8855						
75.0	255.000	264.3382						
90.0	302.000	307.9471						
95.0	340.000	334.0453						
99.0	477.000	383.0011						

```
PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

VBAR LENGTH;

TITLE 'LENGTHS OF BMW';

RUN;

QUIT;
```



```
PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

VBAR LENGTH /GROUP = TYPE;

TITLE 'LENGTHS OF BMW BY TYPES';

RUN;

QUIT;
```



```
PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

VBAR LENGTH /GROUP = TYPE GROUPDISPLAY = CLUSTER;

TITLE 'CLUSTER OF BMW BY TYPES';

RUN;

QUIT;
```



```
PROC TEMPLATE;
 DEFINE STATGRAPH PIE0;
   BEGINGRAPH;
    LAYOUT REGION;
      PIECHART CATEGORY = type /
        DATALABELLOCATION = OUTSIDE
       CATEGORYDIRECTION = CLOCKWISE
        START = 180 NAME = 'pie';
      DISCRETELEGEND 'pie' /
        TITLE = 'BMW Types';
     ENDLAYOUT;
   ENDGRAPH;
 END;
RUN;
   DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')))
   TEMPLATE = PIE0;
RUN;
```

CLUSTER OF BMW BY TYPES


```
PROC TEMPLATE;
 DEFINE STATGRAPH PIE1;
   BEGINGRAPH;
     LAYOUT REGION;
      PIECHART CATEGORY = type /
        DATALABELLOCATION = INSIDE
        DATALABELCONTENT=ALL
        CATEGORYDIRECTION = CLOCKWISE
        DATASKIN= SHEEN
        START = 180 NAME = 'pie';
       DISCRETELEGEND 'pie' /
        TITLE = 'BMW Types';
     ENDLAYOUT;
   ENDGRAPH;
 END;
RUN;
PROC SGRENDER
   DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')))
   TEMPLATE = PIE1;
```

CLUSTER OF BMW BY TYPES


```
PROC TEMPLATE;
 DEFINE STATGRAPH PIE2;
   BEGINGRAPH;
     LAYOUT REGION;
      PIECHART CATEGORY = type / Group = make
        DATALABELLOCATION = INSIDE
        DATALABELCONTENT=ALL
        CATEGORYDIRECTION = CLOCKWISE
        DATASKIN= SHEEN
        START = 180 NAME = 'pie';
      DISCRETELEGEND 'pie' /
       TITLE = 'Audi/BMW Types';
     ENDLAYOUT;
   ENDGRAPH;
 END;
RUN;
PROC SGRENDER
   DATA = SASHELP.CARS(WHERE = (MAKE IN ('Audi', 'BMW')))
   TEMPLATE = PIE2;
RUN;
```

CLUSTER OF BMW BY TYPES


```
PROC SGSCATTER

DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

PLOT HORSEPOWER * INVOICE

/ DATALABEL = MAKE GROUP = TYPE GRID;

TITLE 'HORSEPOWER VS. INVOICE FOR BMW MAKERS BY TYPES';

RUN;
```



```
PROC SGSCATTER DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

COMPARE Y = INVOICE X = (HORSEPOWER LENGTH)

/GROUP = TYPE ELLIPSE = (ALPHA = 0.05 TYPE = PREDICTED);

TITLE

'AVERAGE INVOICE VS. HORSEPOWER FOR BMW BY LENGTH';

TITLE2

'-- WITH 95% PREDICTION ELLIPSE --'

;

FORMAT
INVOICE DOLLAR6.0;

RUN;
```



```
PROC SGSCATTER DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

MATRIX HORSEPOWER INVOICE LENGTH

/ GROUP = TYPE;

TITLE 'HORSEPOWER VS. INVOICE VS. LENGTH FOR BMW MAKERS BY TYPES';

RUN;
```



```
PROC SGPLOT DATA = SASHELP.CARS(WHERE = (MAKE IN ('BMW')));

VBOX HORSEPOWER

/ CATEGORY = TYPE;

TITLE 'HORSEPOWER OF BMW BY TYPES';

RUN;
```



```
PROC SGPANEL DATA = SASHELP.CARS(WHERE = (MAKE IN ('Audi', 'BMW')));

PANELBY MAKE;

VBOX HORSEPOWER / CATEGORY = TYPE;

TITLE 'HORSEPOWER OF Audi/BMW BY TYPES';

RUN;
```



```
PROC SGPANEL DATA = SASHELP.CARS(WHERE = (MAKE IN ('Audi', 'BMW')));

PANELBY MAKE / COLUMNS = 1 NOVARNAME;

VBOX HORSEPOWER / CATEGORY = TYPE;

TITLE 'HORSEPOWER OF Audi/BMW BY TYPES';

RUN;
```



```
Visualizing Longitudinal Data with Dropouts
 tumor data
 template
data Tumor;
  infile datalines missover;
  input ID Time Dead Dose P1-P15;
 label ID='Subject ID';
  datalines:
1 47 1 1.0 0 5 6 8 10 10 10 10
2 71 1 1.0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3 81 0 1.0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
48101.00000000000000000
5 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 65 1 1.0 0 0 0 1 1 1 1 1 1 1 1 1 1
 7 71 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 69 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 67 1 1.0 0 0 1 1 2 2 2 2 3 3 3 3 3 3
10 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 37 1 1.0 9 9 9
12 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 77 0 1.0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
14 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 54 0 2.5 0 1 1 1 2 2 2 2 2 2 2 2
17 53 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0
18 38 0 2.5 5 13 14
19 54 0 2.5 2 6 6 6 6 6 6 6 6 6 6
20 51 1 2.5 15 15 15 16 16 17 17 17 17 17 17
21 47 1 2.5 13 20 20 20 20 20 20 20
22 27 1 2.5 22
23 41 1 2.5 6 13 13 13
24 49 1 2.5 0 3 3 3 3 3 3 3 3
25\ 53\ 0\ 2.5\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1
26 50 1 2.5 0 0 2 3 4 6 6 6 6
27 37 1 2.5 3 15 15
28 49 1 2.5 2 3 3 3 3 4 4 4 4
29 46 1 2.5 4 6 7 9 9 9 9
30 48 0 2.5 15 26 26 26 26 26 26 26
31 54 0 10.0 12 14 15 15 15 15 15 15 15 15 15 15
32 37 1 10.0 12 16 17
33 53 1 10.0 3 6 6 6 6 6 6 6 6 6 6
```

HORSEPOWER OF Audi/BMW BY TYPES

34 45 1 10.0 4 12 15 20 20 20

37 39 0 10.0 7 8 8 38 27 1 10 0 17

41 28 0 10.0 8 42 34 1 10.0 11 18

40 43 1 10.0 14 18 20 20 20

43 45 1 10.0 10 12 16 16 16 16 44 37 1 10.0 0 1 1 45 43 1 10.0 9 19 19 19 19

proc print data = tumor;

35 53 0 10.0 6 10 13 13 13 15 15 15 15 15 15 20 36 49 1 10.0 0 2 2 2 2 2 2 2 2 2

39 49 1 10.0 0 6 9 14 14 14 14 14 14

Obs	ID	Time	Dead	Dose	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15
1	1	47	1	1.0	0	5	6	8	10	10	10	10							
2	2	71	1	1.0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
3	3	81	0	1.0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	4	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	5	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	6	65	1	1.0	0	0	0	1	1	1	1	1	1	1	1	1	1		

7	7	71	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	69	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9	9	67	1	1.0	0	0	1	1	2	2	2	2	3	3	3	3	3	3	
10	10	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	11	37	1	1.0	9	9	9												
12	12	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	13	77	0	1.0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
14	14	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	15	81	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	16	54	0	2.5	0	1	1	1	2	2	2	2	2	2	2	2			
17	17	53	0	2.5	0	0	0	0	0	0	0	0	0	0	0	0			
18	18	38	0	2.5	5	13	14												
19	19	54	0	2.5	2	6	6	6	6	6	6	6	6	6	6	6			
20	20	51	1	2.5	15	15	15	16	16	17	17	17	17	17	17				
21	21	47	1	2.5	13	20	20	20	20	20	20	20							
22	22	27	1	2.5	22														
23	23	41	1	2.5	6	13	13	13											
24	24	49	1	2.5	0	3	3	3	3	3	3	3	3						
25	25	53	0	2.5	0	0	1	1	1	1	1	1	1	1	1	1			
26	26	50	1	2.5	0	0	2	3	4	6	6	6	6	6					
27	27	37	1	2.5	3	15	15												
28	28	49	1	2.5	2	3	3	3	3	4	4	4	4						
29	29	46	1	2.5	4	6	7	9	9	9	9								
30	30	48	0	2.5	15	26	26	26	26	26	26	26							
31	31	54	0	10.0	12	14	15	15	15	15	15	15	15	15	15	15			
32	32	37	1	10.0	12	16	17												
33	33	53	1	10.0	3	6	6	6	6	6	6	6	6	6	6	6			
34	34	45	1	10.0	4	12	15	20	20	20									
35	35	53	0	10.0	6	10	13	13	13	15	15	15	15	15	15	20			
36	36	49	1	10.0	0	2	2	2	2	2	2	2	2						
37	37	39	0	10.0	7	8	8												
38	38	27	1	10.0	17														
39	39	49	1	10.0	0	6	9	14	14	14	14	14	14						
40	40	43	1	10.0	14	18	20	20	20										
41	41	28	0	10.0	8														
42	42	34	1	10.0	11	18													
43	43	45	1	10.0	10	12	16	16	16	16									
44	44	37	1	10.0	0	1	1												
45	45	43	1	10.0	9	19	19	19	19										
		l	I.													I.			

```
data tumor1;
set tumor;
array p[10];
do droptime=1 to dim(p);
if missing(p[droptime]) then leave;
end;
droptime =droptime-1;
```

```
do MeasureTime =1 to dim(p);
Npap =p[MeasureTime];
output;
end:
keep ID MeasureTime Npap droptime;
proc means data=tumor1 nway noprint;
class DropTime MeasureTime;
var Npap;
output out =meanout mean=mean_Npap;
run;
proc template;
define statgraph scatterplot;
\label{eq:dynamic_X__Y__VMCG__MSIZE__LMCG_;} \label{eq:dynamic_X__YMCG__MSIZE__LMCG_;}
begingraph;
entrytitle "Figure 1. Triangle plot about (non)informative dropout.";
layout overlay;
scatterplot x=_X_ y=_Y_ /name="sca" markercolorgradient=_VMCG_
                                                                        markerattrs=(symbol=squarefilled size=_MSIZE_);
discretelegend "sca";
continuouslegend "sca"/ orient=vertical halign=right title=_LMCG_;
endlayout;
endgraph;
end:
run;
ods graphics on/width=1000 height=1000;
proc sgrender data =meanout template=scatterplot;
dynamic _X_='MeasureTime' _Y_='DropTime' _VMCG_='mean_Npap'
_MSIZE_='30pt' _LMCG_='Npap';
Label MeasureTime="Measurement Time" DropTime="Dropout Time";
run;
```

HORSEPOWER OF Audi/BMW BY TYPES

