3000788 Intro to Comp Molec Biol

Lecture 1: Course introduction and logistics

August 17, 2023

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

About instructor

$$\begin{split} & + A \sum_{s=0} \sum_{t=0} \sum_{m=0}^{s} s \cdot B^{t} \cdot \mathbf{1}_{m=s < t} \cdot p_{s}^{t-s} \\ & + A \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \sum_{m=0}^{d-1} s \cdot B^{t} \cdot \mathbf{1}_{m < s \le t} \cdot \mathbf{1}_{r > m} \cdot \begin{pmatrix} t & s + k - 1 \\ k & 1 \end{pmatrix} \cdot p_{s}^{t-s} (1 - p_{s})^{k} \\ & + A \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \sum_{m=0}^{d-1} s \cdot B^{t} \cdot \mathbf{1}_{m < s \le t} \cdot \mathbf{1}_{r > m} \cdot \begin{pmatrix} t & s + k - 1 \\ k & 1 \end{pmatrix} \cdot p_{s}^{t-s} (1 - p_{s})^{k+1} \end{split}$$

$$\sum_{i=0}^{\infty}\sum_{t=0}^{\infty}\sum_{s=0}^{d-1}s\cdot B^t\cdot \mathbf{1}_{m\geq s=t}=\sum_{t=0}^{d-1}\sum_{t=0}^{m}t\cdot B^t$$

Credit: "Here to Help" from xkcd comic, reprinted under Creative Commons License

- BS in Mathematics
- PhD in Computational Biology

Keywords

- Biological Networks
- Proteomics / Mass Spectrometry
- Molecular Evolution

About you

Please introduce yourself

- Name & nickname
- Graduate program & year
- Undergraduate background
- Research interest
- Thesis advisor & topic (if you already picked)

About this course

- Survey broad topics in computational molecular biology
- Always ask "Why?"
- Theory and practice
- Standard & customized bioinformatics workflow
- Python programming
- Machine learning & data science

Course structure

Module	Date	Topics	Assignment
1	9 Aug - 16 Aug	Introduction & statistics	Problem set 1
2	23 Aug - 6 Sep	DNA sequencing & applications	Problem set 2
3	8 Sep - 22 Sep	Transcriptomics	Problem set 3-4
4	27 Sep - 25 Oct	Advanced topics - Single-cell data - Proteomics - Chromatin organization - Biological networks	Problem set 5-7
5	27 Oct - 15 Nov	Python skills for statistical analysis and visualization	Problem set 8-9
6	17 Nov - 24 Nov	Machine learning & applications	Problem set 10
7	29 Nov	Systems biology	
8	1 Dec	Final	Presentation

Grading criteria

- Problem set [8% x 10 problem sets]
 - Can work with each other
 - Write your own answer
- Final presentation [10%]
 - Present one article in computational biology
 - One with older approach and one with newer approach
 - Compare & discuss
- In-class activity [10%]
 - Hands-on practice
 - Discussion

Companion courses from MIT (7.36, 6.047)

FOUNDATIONS OF COMPUTATIONAL AND SYSTEMS BIOLOGY

Lecture 1: Introduction to Computational and Systems Biology

Lecture 2: Local Alignment (BLAST) and Statistics

Lecture 3: Global Alignment of Protein Sequences (NW, SW, PAM, BLOSUM)

Lecture 4: Comparative Genomic Analysis of Gene Regulation

Kaggle's programming

What is computational biology?

Biology-inspired motif analysis

How to identify the motif?

Experiment can isolate DNA sites with bound protein Gibbs Sampling to identify similar patterns

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTT
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA
GGATGGAtCTGATGCCGTTTGACGACCTA
AAGGAaGCAACcCCAGGAGCGCCTTTGCTGG
AGATTATAATGTCGGTCCtTGgAACTTC
CAACTGAGATCATGCTGCATGCCAtTTTCAAC
TACATGATCTTTTGATGgcACTTGGATGAGGGAATGATGC

An Introduction to Bioinformatics Algorithm by Jones and Pevzner

Capturing co-evolution with mutual information

Using graph theory to study biological networks

Proteins involved in many interactions might be important

Proteins that connect other proteins might be important

Node = Protein

Edge = Protein-protein interaction

Images from wikipedia

Electrical circuit model for biological signal flows

To determine how information flows between two nodes

Apply Kirchoff's laws to calculate the current through the circuit

Course objectives

Knowledge enables communication

Module 1: Statistics

- P-values help distinguish biological pattern from random chance
 - Differential test of gene expression
 - Enrichment of biological function terms among differentially expressed genes
- How were they calculated?
 - Null hypothesis
 - Correction for multiple testing
- Which test to use?
 - Paired and unpaired *t*-tests
 - What about Mann-Whitney U? Wilcoxon rank-sum? Sign test?
 - Likelihood ratio test & maximum likelihood principle
 - Permutation test

Module 2: DNA sequencing & applications

- What do you think kickstarted modern-day computational biology?
- First draft of human genome, 26 June 2000
 - BLAST sequence alignment
- Gene structure annotation
 - Exome sequencing
 - Oligo nucleotide microarray

Improvements in DNA sequencing

Genome data on NCBI

Plotted with data from https://www.ncbi.nlm.nih.gov/genbank/statistics/

Combining short read and long read data

Short Reads

Long Reads

Power of long-read techniques

- How long is long?
- More than A/T/C/G sequencing
- Resolving isoforms and haplotypes
- Resolving repetitive genomic regions
- No DNA amplification

DNA sequencing applications

- Bisulfite-seq
 - DNA methylation
- ChIP-seq, DamID-seq
 - Histone modification, DNA-binding protein
- DNAse-seq, MNase-seq, ATAC-seq
 - DNA accessibility
- 3C, 4C, 5C, Hi-C, ChIA-PET
 - Chromatin folding structure

Hi-C: Chromatin folding structure

Lieberman-Aiden et al. Science 2009

DNA sequencing QC

Important file formats

```
12345678901234 5678901234567890123456789012345
Coor
ref
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001/1
              TTAGATAAAGGATA*CTG
             aaaAGATAA*GGATA
+r002
+r003
           gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                              CAGCGGCAT
```

The corresponding SAM format is:1

```
QHD VN:1.5 SD:coordinate
@SQ SN:ref LN:45
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002
       0 ref 9 30 3S6M1P1I4M * 0
                                     O AAAAGATAAGGATA
       0 ref 9 30 5S6M
                                    O GCCTAAGCTAA
                                                         * SA:Z:ref,29,-,6H5M,17,0;
r003
r004
       0 ref 16 30 6M14N5M
                                    O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                                        * SA:Z:ref,9,+,5S6M,30,1;
                                    O TAGGC
                              = 7 -39 CAGCGGCAT
r001 147 ref 37 30 9M
                                                        * NM:i:1
```

GATK variant calling pipelines

Basic Local Alignment Search Tool (BLAST)

- How does it work?
 - How should we adjust its parameters?
- What questions can it answer?
 - Functional annotation
 - Taxonomy annotation
 - A start for evolutionary analysis
- Variants of BLAST
 - MEGABLAST
 - PSI-BLAST

Phylogenetics

- Evolution is informative
- So many parameters and models
 - How to properly analyze?
 - Which tools to use?

Guo et al. Clin Infect Dis (2020)

Module 3: Transcriptomics

- Microarray vs RNA-seq vs Nanostring
 - Different data models and computational analyses
- Pseudoalignment of RNA-seq
 - kallisto, salmon
- StringTie's hybrid alignment and *de novo* assembly pipeline
- Pairing RNA-seq processing and differential expression analysis tools
 - HTSeq-count with DESeq2
 - salmon with sleuth

Functional enrichment analysis

- Overrepresentation analysis
 - Frequent functional terms
 - Hypergeometric distribution
- Gene set enrichment analysis (GSEA)
 - Random walk model
- Gene-gene network topology
 - Frequent functional terms
 - Nearby gene on network

Subramanian et al. PNAS. 102:15545-15550 (2005)

Module 4: Advanced topics

Shalek and Benson. Science Trans Med. 9:eaan4730 (2017)

Hwang et al. Exp & Mol Med 50:96 (2018)

Power of single-cell data

Hwang et al. Exp & Mol Med 50:96 (2018)

Power of single-cell data

Source: Moon et al. Nature Biotechnology 37:1482-92 (2019)

Proteomics & mass spectrometry

Chromatin organization

Epigenetics and gene expression regulation

Biological networks

- Topological properties of networks
 - Relationship to biology
- Applications in biomedicine
- Visualization and analysis with CytoScape

Source: Ramage et al. Mol Cell (2015)

Module 5: Python skills

- Kaggle's programming courses
- In-class practice & problem sets
 - Handling of tabular data
 - Statistical analyses
 - Visualizations
- We will spend 8 sessions on top of Kaggle's courses to get a solid foundation

Module 6: Machine learning

- Unsupervised learning
 - PCA, PCoA, t-SNE, UMAP
 - Clustering techniques
- Supervised learning
 - Predict cancer subtype
 - Identify potential biomarker genes
- (a touch of) Deep learning
 - AlphaFold

A taste of dynamics modeling in Systems Biology

La Manno et al. Nature 2018

- Gene upregulation first produce unspliced RNA
- Followed by processing into mature RNA and proteins

RNA velocity model

- Model RNA synthesis as differential equations
- Simulation can be performed to analyze the dynamics of the system
 - Try various parameter values

La Manno et al. Nature 2018

Any questions?

See you next week on August 21st