

# MS-C1350 Partial differential equations Chapter 4.1-4.5 Laplace equation

#### Riikka Korte

Department of Mathematics and Systems Analysis
Aalto University
riikka.korte@aalto.fi

October 22, 2024

#### Lecture 7

- Laplace equation and Poisson equation
- Harmonic function
- Gauss-Green theorem and Green's identities.
- Dirichlet and Neumann boundary value problems
- Uniqueness of solutions
- Compatibility condition for Neumann problems
- Fundamental solution and a solution to Poisson equation
- How to solve Poisson equation with correct boundary values.

Now we concentrate on Laplace equation

$$\Delta u = 0$$

and the Poisson equation

$$-\Delta u = f.$$

- Boundary value problems for these equations appear frequently in natural sciences and engineering.
- Physically, solutions of the Poisson equation correspond to steady states for evolutions in time such as heat flow or wave motion, with f corresponding to external driving forces such as heat sources or wave generators.

Now we concentrate on Laplace equation

$$\Delta u = 0$$

and the Poisson equation

$$-\Delta u = f$$
.

- Boundary value problems for these equations appear frequently in natural sciences and engineering.
- Physically, solutions of the Poisson equation correspond to steady states for evolutions in time such as heat flow or wave motion, with f corresponding to external driving forces such as heat sources or wave generators.

Now we concentrate on Laplace equation

$$\Delta u = 0$$

and the Poisson equation

$$-\Delta u = f.$$

- Boundary value problems for these equations appear frequently in natural sciences and engineering.
- Physically, solutions of the Poisson equation correspond to steady states for evolutions in time such as heat flow or wave motion, with f corresponding to external driving forces such as heat sources or wave generators.

- We will derive representation formulas and study general properties of solutions to the Laplace (and Poisson) equation.
- ► The topics include:
  - fundamental solutions
  - Green's functions
  - mean value property
  - Harnack's inequality, and
  - maximum principle.

#### Definition

A function  $u \in C^2(\Omega)$ , which satisfies  $\Delta u = 0$  in  $\Omega$ , is called a harmonic function in  $\Omega$ .



- We will derive representation formulas and study general properties of solutions to the Laplace (and Poisson) equation.
- ► The topics include:
  - fundamental solutions
  - Green's functions
  - mean value property
  - Harnack's inequality, and
  - maximum principle.

#### Definition

A function  $u \in C^2(\Omega)$ , which satisfies  $\Delta u = 0$  in  $\Omega$ , is called a harmonic function in  $\Omega$ .



- We will derive representation formulas and study general properties of solutions to the Laplace (and Poisson) equation.
- The topics include:
  - fundamental solutions
  - Green's functions
  - mean value property
  - Harnack's inequality, and
  - maximum principle.

#### Definition

A function  $u \in C^2(\Omega)$ , which satisfies  $\Delta u = 0$  in  $\Omega$ , is called a harmonic function in  $\Omega$ .



- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open
- ▶ We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_a^b f'(t)dt = f(b) - f(a)$$

- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open.
- We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open.
- We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open.
- We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open.
- We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

- We need certain integral formulas to be able to study the Laplacian.
- We assume that  $\Omega \subset \mathbb{R}^n$  is bounded and open.
- We also assume that  $\partial\Omega$  is smooth (i.e. it can be locally represented as a graph of a smooth function).
- ightharpoonup Closure of  $\Omega$ :

$$\overline{\Omega} = \Omega \cup \partial \Omega.$$

- We say that  $u \in C^1(\overline{\Omega})$ , if  $u \in C^1(\Omega)$  is such that u and all partial derivatives  $\frac{\partial u}{\partial x_j}$ ,  $j=1,\ldots,n$ , can be extended continuously up to the boundary  $\partial\Omega$ .
- We start with Gauss-Green theorem, which is a generalization of

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

Theorem (Gauss-Green theorem)

Assume that  $u \in C^1(\overline{\Omega})$ . Then

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x) dx = \int_{\partial \Omega} u(x) \nu_j(x) dS(x), \quad j = 1, \dots, n,$$

where dS denotes the surface measure on  $\partial\Omega$ . Here  $\nu(x)=(\nu_1(x),\dots,\nu_n(x))$  is the outward pointing unit normal vector on  $\partial\Omega$ .

Or equivalently

Theorem (Divergence theorem)

$$\int_{\Omega} \operatorname{div} F(x) \, dx = \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x)$$

where  $F = (F_1, \dots, F_n)$  is a vector field.



Theorem (Gauss-Green theorem)

Assume that  $u \in C^1(\overline{\Omega})$ . Then

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x) dx = \int_{\partial \Omega} u(x) \nu_j(x) dS(x), \quad j = 1, \dots, n,$$

where dS denotes the surface measure on  $\partial\Omega$ . Here  $\nu(x)=(\nu_1(x),\dots,\nu_n(x))$  is the outward pointing unit normal vector on  $\partial\Omega$ .

Or equivalently

Theorem (Divergence theorem)

$$\int_{\Omega} \operatorname{div} F(x) \, dx = \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x),$$

where  $F = (F_1, \dots, F_n)$  is a vector field.



Reason: Gauss-Green ⇒ Divergence.

Recall, that

$$\operatorname{div} F(x) = \sum_{j=1}^{n} \frac{\partial F_j}{\partial x_j}(x)$$

$$\begin{split} \int_{\Omega} \operatorname{div} F(x) \, dx &= \int_{\Omega} \sum_{j=1}^n \frac{\partial F_j}{\partial x_j}(x) \, dx = \sum_{j=1}^n \int_{\Omega} \frac{\partial F_j}{\partial x_j}(x) \, dx \\ &= \sum_{j=1}^n \int_{\partial \Omega} F_j(x) \nu_j(x) \, dS(x) = \int_{\partial \Omega} \sum_{j=1}^n F_j(x) \nu_j(x) \, dS(x) \\ &= \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x). \end{split}$$



Reason: Gauss-Green ⇒ Divergence.

Recall, that

$$\operatorname{div} F(x) = \sum_{j=1}^{n} \frac{\partial F_j}{\partial x_j}(x)$$

$$\begin{split} \int_{\Omega} \operatorname{div} F(x) \, dx &= \int_{\Omega} \sum_{j=1}^n \frac{\partial F_j}{\partial x_j}(x) \, dx = \sum_{j=1}^n \int_{\Omega} \frac{\partial F_j}{\partial x_j}(x) \, dx \\ &= \sum_{j=1}^n \int_{\partial \Omega} F_j(x) \nu_j(x) \, dS(x) = \int_{\partial \Omega} \sum_{j=1}^n F_j(x) \nu_j(x) \, dS(x) \\ &= \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x). \end{split}$$



Reason: Gauss-Green ⇒ Divergence.

Recall, that

$$\operatorname{div} F(x) = \sum_{j=1}^{n} \frac{\partial F_j}{\partial x_j}(x)$$

$$\begin{split} \int_{\Omega} \operatorname{div} F(x) \, dx &= \int_{\Omega} \sum_{j=1}^n \frac{\partial F_j}{\partial x_j}(x) \, dx = \sum_{j=1}^n \int_{\Omega} \frac{\partial F_j}{\partial x_j}(x) \, dx \\ &= \sum_{j=1}^n \int_{\partial \Omega} F_j(x) \nu_j(x) \, dS(x) = \int_{\partial \Omega} \sum_{j=1}^n F_j(x) \nu_j(x) \, dS(x) \\ &= \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x). \end{split}$$





Reason: Gauss-Green ⇒ Divergence.

Recall, that

$$\operatorname{div} F(x) = \sum_{j=1}^{n} \frac{\partial F_j}{\partial x_j}(x)$$

$$\begin{split} \int_{\Omega} \operatorname{div} F(x) \, dx &= \int_{\Omega} \sum_{j=1}^n \frac{\partial F_j}{\partial x_j}(x) \, dx = \sum_{j=1}^n \int_{\Omega} \frac{\partial F_j}{\partial x_j}(x) \, dx \\ &= \sum_{j=1}^n \int_{\partial \Omega} F_j(x) \nu_j(x) \, dS(x) = \int_{\partial \Omega} \sum_{j=1}^n F_j(x) \nu_j(x) \, dS(x) \\ &= \int_{\partial \Omega} F(x) \cdot \nu(x) \, dS(x). \end{split}$$

- The Gauss-Green theorem gives information about the divergence of a vector field inside the domain by its values on the boundary of the domain.
- More precisely, the integral of the divergence of a vector field over a domain is equal to the total flow through the boundary.
- ► This is useful in boundary value problems for PDEs.

#### Theorem (Integration by parts)

Assume that  $u, v \in C^1(\overline{\Omega})$ . Then for  $j = 1, \dots, n$ 

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x)v(x) dx = -\int_{\Omega} \frac{\partial v}{\partial x_j}(x)u(x) dx + \int_{\partial \Omega} u(x)v(x)\nu_j(x) dS(x).$$



- The Gauss-Green theorem gives information about the divergence of a vector field inside the domain by its values on the boundary of the domain.
- More precisely, the integral of the divergence of a vector field over a domain is equal to the total flow through the boundary.
- ► This is useful in boundary value problems for PDEs.

### Theorem (Integration by parts)

Assume that  $u, v \in C^1(\overline{\Omega})$ . Then for  $j = 1, \dots, n$ ,

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x)v(x) dx = -\int_{\Omega} \frac{\partial v}{\partial x_j}(x)u(x) dx + \int_{\partial \Omega} u(x)v(x)\nu_j(x) dS(x)$$



- ► The Gauss-Green theorem gives information about the divergence of a vector field inside the domain by its values on the boundary of the domain.
- More precisely, the integral of the divergence of a vector field over a domain is equal to the total flow through the boundary.
- This is useful in boundary value problems for PDEs.

Theorem (Integration by parts)

Assume that  $u, v \in C^1(\overline{\Omega})$ . Then for  $j = 1, \dots, n$ ,

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x)v(x) dx = -\int_{\Omega} \frac{\partial v}{\partial x_j}(x)u(x) dx + \int_{\partial\Omega} u(x)v(x)\nu_j(x) dS(x)$$



- The Gauss-Green theorem gives information about the divergence of a vector field inside the domain by its values on the boundary of the domain.
- More precisely, the integral of the divergence of a vector field over a domain is equal to the total flow through the boundary.
- This is useful in boundary value problems for PDEs.

#### Theorem (Integration by parts)

Assume that  $u, v \in C^1(\overline{\Omega})$ . Then for  $j = 1, \dots, n$ ,

$$\int_{\Omega} \frac{\partial u}{\partial x_j}(x)v(x) dx = -\int_{\Omega} \frac{\partial v}{\partial x_j}(x)u(x) dx + \int_{\partial\Omega} u(x)v(x)\nu_j(x) dS(x).$$



#### 4.1 Green's identities

#### **Theorem**

1. Green's first identity:

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = - \int_{\Omega} u(x) \Delta v(x) \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu}(x) u(x) \, dS(x),$$

2. Green's second identity:

$$\int_{\Omega} \left( u(x) \Delta v(x) - v(x) \Delta u(x) \right) dx = \int_{\partial \Omega} \left( u(x) \frac{\partial v}{\partial \nu}(x) - v(x) \frac{\partial u}{\partial \nu}(x) \right) dS(x),$$

3. Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

Check the proofs from the lecture notes. (1) follows from the integration by parts formula, (2) and (3) follows from (1).

#### 4.1 Green's identities

#### **Theorem**

1. Green's first identity:

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = - \int_{\Omega} u(x) \Delta v(x) \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu}(x) u(x) \, dS(x),$$

2. Green's second identity:

$$\int_{\Omega} \left( u(x) \Delta v(x) - v(x) \Delta u(x) \right) dx = \int_{\partial \Omega} \left( u(x) \frac{\partial v}{\partial \nu}(x) - v(x) \frac{\partial u}{\partial \nu}(x) \right) dS(x),$$

3. Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

Check the proofs from the lecture notes. (1) follows from the integration by parts formula, (2) and (3) follows from (1).

Suppose u is harmonic and apply Green's first identity

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = -\int_{\Omega} u(x) \Delta v(x) \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu}(x) u(x) \, dS(x),$$

with v = u.

▶ We obtain

$$0 \le \int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$
$$= \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) u(x) dS(x) = \frac{1}{2} \int_{\partial \Omega} \frac{\partial u^2}{\partial \nu}(x) dS(x)$$

Suppose u is harmonic and apply Green's first identity

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = -\int_{\Omega} u(x) \Delta v(x) \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu}(x) u(x) \, dS(x),$$

with v = u.

We obtain

$$0 \le \int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$
  
=  $\int_{\partial\Omega} \frac{\partial u}{\partial \nu}(x) u(x) dS(x) = \frac{1}{2} \int_{\partial\Omega} \frac{\partial u^2}{\partial \nu}(x) dS(x)$ 

Suppose u is harmonic and apply Green's first identity

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = -\int_{\Omega} u(x) \Delta v(x) \, dx + \int_{\partial \Omega} \frac{\partial v}{\partial \nu}(x) u(x) \, dS(x),$$

with v = u.

▶ We obtain

$$0 \le \int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$
$$= \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) u(x) dS(x) = \frac{1}{2} \int_{\partial \Omega} \frac{\partial u^2}{\partial \nu}(x) dS(x)$$

Consider Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

- ► It tells that the integral of the Laplacian is equal to the total flow through the boundary.
- ▶ If u is harmonic in  $\Omega$ , then

$$\int_{\partial V} \frac{\partial u}{\partial \nu}(x) \, dS(x) = 0$$

- ightharpoonup This means that the total flow is zero through the boundary of any subdomain V.
- Physically this means that there are not heat sources or electric charges in the domain.

Consider Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

- ► It tells that the integral of the Laplacian is equal to the total flow through the boundary.
- ▶ If u is harmonic in  $\Omega$ , then

$$\int_{\partial V} \frac{\partial u}{\partial \nu}(x) \, dS(x) = 0$$

- ► This means that the total flow is zero through the boundary of any subdomain *V*.
- Physically this means that there are not heat sources or electric charges in the domain.

Consider Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

- ► It tells that the integral of the Laplacian is equal to the total flow through the boundary.
- ▶ If u is harmonic in  $\Omega$ , then

$$\int_{\partial V} \frac{\partial u}{\partial \nu}(x) \, dS(x) = 0$$

- ► This means that the total flow is zero through the boundary of any subdomain *V*.
- Physically this means that there are not heat sources or electric charges in the domain.



Consider Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

- ► It tells that the integral of the Laplacian is equal to the total flow through the boundary.
- ▶ If u is harmonic in  $\Omega$ , then

$$\int_{\partial V} \frac{\partial u}{\partial \nu}(x) \, dS(x) = 0$$

- ► This means that the total flow is zero through the boundary of any subdomain V.
- Physically this means that there are not heat sources or electric charges in the domain.



Consider Green's third identity:

$$\int_{\Omega} \Delta u(x) \, dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \, dS(x).$$

- ► It tells that the integral of the Laplacian is equal to the total flow through the boundary.
- ▶ If u is harmonic in  $\Omega$ , then

$$\int_{\partial V} \frac{\partial u}{\partial \nu}(x) \, dS(x) = 0$$

- ► This means that the total flow is zero through the boundary of any subdomain *V*.
- Physically this means that there are not heat sources or electric charges in the domain.

### 4.2 PDEs and physics

- ▶ In a typical case, u is a function that denotes the density of some quantity in steady state.
- Examples: temperature, chemical concentration or electrostatic potential.
- ▶ The total flow through the boundary  $\partial V$  is zero

$$\int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0,$$

where  $F = (F_1, ..., F)$  is the flux density and  $\nu$  is the unit outer normal of  $\partial V$ .

By the Gauss-Green theorem we have

$$\int_{V} \operatorname{div} F(x) \, dx = \int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0.$$

ightharpoonup Since this holds for every subdomain V of  $\Omega$ , we have

$$\operatorname{div} F(x) = 0 \quad \text{for every} \quad x \in \Omega.$$



### 4.2 PDEs and physics

- ▶ In a typical case, u is a function that denotes the density of some quantity in steady state.
- Examples: temperature, chemical concentration or electrostatic potential.
- ▶ The total flow through the boundary  $\partial V$  is zero

$$\int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0,$$

where  $F = (F_1, ..., F)$  is the flux density and  $\nu$  is the unit outer normal of  $\partial V$ .

By the Gauss-Green theorem we have

$$\int_V \operatorname{div} F(x) \, dx = \int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0.$$

ightharpoonup Since this holds for every subdomain V of  $\Omega$ , we have

$$\operatorname{div} F(x) = 0 \quad \text{for every} \quad x \in \Omega.$$



- ▶ In a typical case, u is a function that denotes the density of some quantity in steady state.
- Examples: temperature, chemical concentration or electrostatic potential.
- ▶ The total flow through the boundary  $\partial V$  is zero

$$\int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0,$$

where  $F = (F_1, \dots, F)$  is the flux density and  $\nu$  is the unit outer normal of  $\partial V$ .

By the Gauss-Green theorem we have

$$\int_{V} \operatorname{div} F(x) \, dx = \int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0.$$

Since this holds for every subdomain V of  $\Omega$ , we have

$$\operatorname{div} F(x) = 0 \quad \text{for every} \quad x \in \Omega$$



- ▶ In a typical case, u is a function that denotes the density of some quantity in steady state.
- Examples: temperature, chemical concentration or electrostatic potential.
- ▶ The total flow through the boundary  $\partial V$  is zero

$$\int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0,$$

where  $F = (F_1, \dots, F)$  is the flux density and  $\nu$  is the unit outer normal of  $\partial V$ .

By the Gauss-Green theorem we have

$$\int_V \operatorname{div} F(x) \, dx = \int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0.$$

Since this holds for every subdomain V of  $\Omega$ , we have  $\operatorname{div} F(x) = 0 \quad \text{for every} \quad x \in \Omega.$ 



- ▶ In a typical case, u is a function that denotes the density of some quantity in steady state.
- Examples: temperature, chemical concentration or electrostatic potential.
- ▶ The total flow through the boundary  $\partial V$  is zero

$$\int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0,$$

where  $F = (F_1, \dots, F)$  is the flux density and  $\nu$  is the unit outer normal of  $\partial V$ .

By the Gauss-Green theorem we have

$$\int_V \operatorname{div} F(x) \, dx = \int_{\partial V} F(x) \cdot \nu(x) \, dS(x) = 0.$$

lacktriangle Since this holds for every subdomain V of  $\Omega$ , we have

$$\operatorname{div} F(x) = 0 \quad \text{for every} \quad x \in \Omega.$$



It is physically reasonable to assume that the flux F is proportional to the gradient  $\nabla u$  but in the opposite direction, since the flow is from regions of high temperature to regions of low temperature or high concentration to low concentration. Thus

$$F(x) = -a\nabla u(x), \quad a > 0.$$

This gives

$${\rm div}\, F(x)=-a{\rm div}\, \nabla u(x)=-a\Delta u(x)=0\quad {\rm for\ every}\quad x\in\Omega$$
 which implies  $\Delta u=0$  in  $\Omega.$ 



It is physically reasonable to assume that the flux F is proportional to the gradient  $\nabla u$  but in the opposite direction, since the flow is from regions of high temperature to regions of low temperature or high concentration to low concentration. Thus

$$F(x) = -a\nabla u(x), \quad a > 0.$$

This gives

$${\rm div}\, F(x)=-a{\rm div}\, \nabla u(x)=-a\Delta u(x)=0\quad {\rm for\ every}\quad x\in\Omega,$$
 which implies  $\Delta u=0$  in  $\Omega.$ 



- We consider two types of boundary conditions:
- **▶** Dirichlet problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega. \end{cases}$$

- ► Temperature: Boundary values g describe e.g. the temperature distribution on  $\partial\Omega$ .
- ► Electrostatistics: g specifies the values of the potential u on  $\partial \Omega$ , which induces the electric field  $E = -\nabla u$  in  $\Omega$ .

- We consider two types of boundary conditions:
- **▶** Dirichlet problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

- ► Temperature: Boundary values g describe e.g. the temperature distribution on  $\partial\Omega$ .
- ► Electrostatistics: g specifies the values of the potential u on  $\partial \Omega$ , which induces the electric field  $E = -\nabla u$  in  $\Omega$ .

- We consider two types of boundary conditions:
- **▶** Dirichlet problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

- ▶ Temperature: Boundary values g describe e.g. the temperature distribution on  $\partial\Omega$ .
- ► Electrostatistics: g specifies the values of the potential u on  $\partial \Omega$ , which induces the electric field  $E = -\nabla u$  in  $\Omega$ .

- We consider two types of boundary conditions:
- **▶** Dirichlet problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial \Omega. \end{cases}$$

- ► Temperature: Boundary values g describe e.g. the temperature distribution on  $\partial\Omega$ .
- ▶ Electrostatistics: g specifies the values of the potential u on  $\partial \Omega$ , which induces the electric field  $E = -\nabla u$  in  $\Omega$ .

#### Neumann problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on } \partial \Omega. \end{cases}$$

- Physically the Neumann problem describes the steady state temperature distribution in  $\Omega$  when the heat flow through  $\partial\Omega$  is given by the normal derivative  $\frac{\partial u}{\partial\nu}=h$ .
- For example, if the surface of the body  $\partial\Omega$  is insulated, the function h in the Neumann boundary condition is zero.

Neumann problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on } \partial \Omega. \end{cases}$$

- Physically the Neumann problem describes the steady state temperature distribution in  $\Omega$  when the heat flow through  $\partial\Omega$  is given by the normal derivative  $\frac{\partial u}{\partial\nu} = h$ .
- ► For example, if the surface of the body  $\partial\Omega$  is insulated, the function h in the Neumann boundary condition is zero.

#### Neumann problem

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on } \partial \Omega. \end{cases}$$

- Physically the Neumann problem describes the steady state temperature distribution in  $\Omega$  when the heat flow through  $\partial\Omega$  is given by the normal derivative  $\frac{\partial u}{\partial\nu}=h$ .
- For example, if the surface of the body  $\partial\Omega$  is insulated, the function h in the Neumann boundary condition is zero.

- ▶ Step 1: If u is harmonic in  $\Omega$  and u = 0 on  $\partial\Omega$ , then u = 0 in  $\Omega$ .
- Proof: By Green's first identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \underbrace{u(x)}_{=0} dS(x) = 0$$

- This implies that  $|\nabla u(x)| = 0$  and thus u(x) = c.
- ▶ Boundary condition implies that c = 0.
- ▶ **Step 2**: If u and v are harmonic (or satisfy Poisson equation with same f) and have the same boundary values g, then w = u v is a harmonic function with zero boundary values and thus w = 0 in  $\Omega$ .

- ▶ Step 1: If u is harmonic in  $\Omega$  and u = 0 on  $\partial\Omega$ , then u = 0 in  $\Omega$ .
- Proof: By Green's first identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \underbrace{u(x)}_{=0} dS(x) = 0.$$

- This implies that  $|\nabla u(x)| = 0$  and thus u(x) = c.
- ▶ Boundary condition implies that c = 0.
- ▶ **Step 2**: If u and v are harmonic (or satisfy Poisson equation with same f) and have the same boundary values g, then w = u v is a harmonic function with zero boundary values and thus w = 0 in  $\Omega$ .

- ▶ Step 1: If u is harmonic in  $\Omega$  and u = 0 on  $\partial\Omega$ , then u = 0 in  $\Omega$ .
- Proof: By Green's first identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \underbrace{u(x)}_{=0} dS(x) = 0.$$

- ► This implies that  $|\nabla u(x)| = 0$  and thus u(x) = c.
- ▶ Boundary condition implies that c = 0.
- Step 2: If u and v are harmonic (or satisfy Poisson equation with same f) and have the same boundary values g, then w = u v is a harmonic function with zero boundary values and thus w = 0 in  $\Omega$ .

- Step 1: If u is harmonic in  $\Omega$  and u=0 on  $\partial\Omega$ , then u=0 in  $\Omega$ .
- Proof: By Green's first identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \underbrace{u(x)}_{=0} dS(x) = 0.$$

- ▶ This implies that  $|\nabla u(x)| = 0$  and thus u(x) = c.
- ▶ Boundary condition implies that c = 0.
- Step 2: If u and v are harmonic (or satisfy Poisson equation with same f) and have the same boundary values g, then w = u v is a harmonic function with zero boundary values and thus w = 0 in  $\Omega$ .

- Step 1: If u is harmonic in  $\Omega$  and u=0 on  $\partial\Omega$ , then u=0 in  $\Omega$ .
- Proof: By Green's first identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \frac{\partial u}{\partial \nu}(x) \underbrace{u(x)}_{=0} dS(x) = 0.$$

- This implies that  $|\nabla u(x)| = 0$  and thus u(x) = c.
- ▶ Boundary condition implies that c = 0.
- ▶ Step 2: If u and v are harmonic (or satisfy Poisson equation with same f) and have the same boundary values g, then w=u-v is a harmonic function with zero boundary values and thus w=0 in  $\Omega$ .

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  NOT UNIQUE
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0$$

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  NOT UNIQUE
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0$$

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  **NOT UNIQUE**
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0$$

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  **NOT UNIQUE**
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0$$

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  **NOT UNIQUE**
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0.$$

$$\begin{cases} \Delta u = 0 & \text{in} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = h & \text{on} \quad \partial \Omega. \end{cases}$$

- ▶ If u is a solution to the Neumann problem, then also u(x) + c is a solution.  $\Rightarrow$  **NOT UNIQUE**
- ▶ **BUT**: If u is a harmonic function in  $\Omega$  and  $\frac{\partial u}{\partial \nu} = 0$  on  $\partial \Omega$ , then u = c in  $\Omega$ . Proof: By Green's 1st identity

$$\int_{\Omega} |\nabla u(x)|^2 dx = \int_{\Omega} \nabla u(x) \cdot \nabla u(x) dx$$

$$= -\int_{\Omega} u(x) \underbrace{\Delta u(x)}_{=0} dx + \int_{\partial \Omega} \underbrace{\frac{\partial u}{\partial \nu}(x)}_{=0} u(x) dS(x) = 0.$$

# 4.3 Compatibility condition for Neumann problems

 Green's third identity gives the following compatibility condition of the Neumann problem

$$0 = \int_{\Omega} \underbrace{\Delta u}_{=0} dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} dS = \int_{\partial \Omega} h dS.$$

Thus if the Neumann boundary condition is given by a function h such that

$$\int_{\partial \Omega} h \, dS \neq 0,$$

then there does not exist any solutions.

Physically it means that the total heat flow though the boundary has to be zero.

# 4.3 Compatibility condition for Neumann problems

 Green's third identity gives the following compatibility condition of the Neumann problem

$$0 = \int_{\Omega} \underbrace{\Delta u}_{=0} dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} dS = \int_{\partial \Omega} h dS.$$

Thus if the Neumann boundary condition is given by a function h such that

$$\int_{\partial \Omega} h \, dS \neq 0,$$

then there does not exist any solutions.

Physically it means that the total heat flow though the boundary has to be zero.

# 4.3 Compatibility condition for Neumann problems

 Green's third identity gives the following compatibility condition of the Neumann problem

$$0 = \int_{\Omega} \underbrace{\Delta u}_{=0} dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} dS = \int_{\partial \Omega} h dS.$$

Thus if the Neumann boundary condition is given by a function h such that

$$\int_{\partial \Omega} h \, dS \neq 0,$$

then there does not exist any solutions.

Physically it means that the total heat flow though the boundary has to be zero.

# 4.3 Dirichlet and Neumann problems for Poisson equation

- ▶ We discuss Dirichlet and Neumann problems for the Poisson equation  $-\Delta u = f$ , but it is enough to consider boundary value problems, where either the equation is homogeneous ( $\Delta u = 0$ ) or the boundary condition is homogeneous (g = 0 or h = 0).
- ▶ For example, to solve

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega, \end{cases}$$

we may write  $u = u_1 + u_2$  with

$$\begin{cases} -\Delta u_1 = f & \text{in } \Omega, \\ u_1 = 0 & \text{on } \partial \Omega, \end{cases} \quad \text{and} \begin{cases} -\Delta u_2 = 0 & \text{in } \Omega, \\ u_2 = g & \text{on } \partial \Omega. \end{cases}$$

▶ Then  $u = u_1 + u_2$  is the solution to the original problem.



# 4.3 Dirichlet and Neumann problems for Poisson equation

- We discuss Dirichlet and Neumann problems for the Poisson equation  $-\Delta u = f$ , but it is enough to consider boundary value problems, where either the equation is homogeneous ( $\Delta u = 0$ ) or the boundary condition is homogeneous (g = 0 or h = 0).
- ▶ For example, to solve

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases}$$

we may write  $u = u_1 + u_2$  with

$$\begin{cases} -\Delta u_1 = f & \text{in } \Omega, \\ u_1 = 0 & \text{on } \partial \Omega, \end{cases} \quad \text{and} \begin{cases} -\Delta u_2 = 0 & \text{in } \Omega, \\ u_2 = g & \text{on } \partial \Omega. \end{cases}$$

▶ Then  $u = u_1 + u_2$  is the solution to the original problem.



# 4.3 Dirichlet and Neumann problems for Poisson equation

- ▶ We discuss Dirichlet and Neumann problems for the Poisson equation  $-\Delta u = f$ , but it is enough to consider boundary value problems, where either the equation is homogeneous ( $\Delta u = 0$ ) or the boundary condition is homogeneous (g = 0 or h = 0).
- For example, to solve

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases}$$

we may write  $u = u_1 + u_2$  with

$$\begin{cases} -\Delta u_1 = f & \text{in } \Omega, \\ u_1 = 0 & \text{on } \partial \Omega, \end{cases} \quad \text{and} \begin{cases} -\Delta u_2 = 0 & \text{in } \Omega, \\ u_2 = g & \text{on } \partial \Omega. \end{cases}$$

▶ Then  $u = u_1 + u_2$  is the solution to the original problem.



Fundamental solution u is a solution to a (linear) partial differential equation L is a function that satisfies:

$$Lu = \delta$$
,

- Now we are interested in the fundamental solution of the Laplace equation in the whole  $\mathbb{R}^n$ .
- As the equation is linear, any linear combination, or integral, of fundamental solution will be a solution to the Laplace (Poisson) equation as well.
- We will be able to represent all other solutions as integrals (or convolutions) with the fundamental solution.
- We look for a radial solution that has a singularity at the origin.

$$u(x) = v(|x|) = v(r(x)).$$



Fundamental solution u is a solution to a (linear) partial differential equation L is a function that satisfies:

$$Lu = \delta$$
,

- Now we are interested in the fundamental solution of the Laplace equation in the whole  $\mathbb{R}^n$ .
- As the equation is linear, any linear combination, or integral, of fundamental solution will be a solution to the Laplace (Poisson) equation as well.
- We will be able to represent all other solutions as integrals (or convolutions) with the fundamental solution.
- We look for a radial solution that has a singularity at the origin.

$$u(x) = v(|x|) = v(r(x)).$$



Fundamental solution u is a solution to a (linear) partial differential equation L is a function that satisfies:

$$Lu = \delta$$
,

- Now we are interested in the fundamental solution of the Laplace equation in the whole  $\mathbb{R}^n$ .
- As the equation is linear, any linear combination, or integral, of fundamental solution will be a solution to the Laplace (Poisson) equation as well.
- We will be able to represent all other solutions as integrals (or convolutions) with the fundamental solution.
- We look for a radial solution that has a singularity at the origin.

$$u(x) = v(|x|) = v(r(x)).$$



Fundamental solution u is a solution to a (linear) partial differential equation L is a function that satisfies:

$$Lu = \delta$$
,

- Now we are interested in the fundamental solution of the Laplace equation in the whole  $\mathbb{R}^n$ .
- As the equation is linear, any linear combination, or integral, of fundamental solution will be a solution to the Laplace (Poisson) equation as well.
- We will be able to represent all other solutions as integrals (or convolutions) with the fundamental solution.
- We look for a radial solution that has a singularity at the origin.

$$u(x) = v(|x|) = v(r(x)).$$



Fundamental solution u is a solution to a (linear) partial differential equation L is a function that satisfies:

$$Lu = \delta$$
,

- Now we are interested in the fundamental solution of the Laplace equation in the whole  $\mathbb{R}^n$ .
- As the equation is linear, any linear combination, or integral, of fundamental solution will be a solution to the Laplace (Poisson) equation as well.
- We will be able to represent all other solutions as integrals (or convolutions) with the fundamental solution.
- We look for a radial solution that has a singularity at the origin.

$$u(x) = v(|x|) = v(r(x)).$$



- Step 1: Find the Laplace equation for the radial functions using the chain rule.
- For a radial function

$$\Delta u(x) = 0, \quad x \neq 0 \quad \Longleftrightarrow \quad v''(r) + \frac{n-1}{r}v'(r) = 0, \quad r > 0.$$

- Note: This is an ODE as it is allowed to depend only on one variable r.
- ► Solving this, we obtain

$$v(r) = \begin{cases} a \ln r + b, & n = 2\\ \frac{c}{r^{n-2}} + d, & n \ge 3, \end{cases}$$

where a, b, c, d are constants.

- Step 1: Find the Laplace equation for the radial functions using the chain rule.
- For a radial function

$$\Delta u(x) = 0, \quad x \neq 0 \quad \Longleftrightarrow \quad v''(r) + \frac{n-1}{r}v'(r) = 0, \quad r > 0.$$

- Note: This is an ODE as it is allowed to depend only on one variable *r*.
- Solving this, we obtain

$$v(r) = \begin{cases} a \ln r + b, & n = 2\\ \frac{c}{r^{n-2}} + d, & n \ge 3, \end{cases}$$

where a, b, c, d are constants.

- Step 1: Find the Laplace equation for the radial functions using the chain rule.
- For a radial function

$$\Delta u(x) = 0, \quad x \neq 0 \quad \Longleftrightarrow \quad v''(r) + \frac{n-1}{r}v'(r) = 0, \quad r > 0.$$

- Note: This is an ODE as it is allowed to depend only on one variable r.
- Solving this, we obtain

$$v(r) = \begin{cases} a \ln r + b, & n = 2, \\ \frac{c}{r^{n-2}} + d, & n \ge 3, \end{cases}$$

where a, b, c, d are constants.

- Step 1: Find the Laplace equation for the radial functions using the chain rule.
- For a radial function

$$\Delta u(x) = 0, \quad x \neq 0 \quad \Longleftrightarrow \quad v''(r) + \frac{n-1}{r}v'(r) = 0, \quad r > 0.$$

- Note: This is an ODE as it is allowed to depend only on one variable r.
- Solving this, we obtain

$$v(r) = \begin{cases} a \ln r + b, & n = 2, \\ \frac{c}{r^{n-2}} + d, & n \ge 3, \end{cases}$$

where a, b, c, d are constants.

The function  $\Phi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ ,

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \ln|x|, & n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}, & n \ge 3, \end{cases}$$

is called the fundamental solution of the Laplace equation. Here we denote the volume of the unit ball in  $\mathbb{R}^n$  by  $\alpha(n) = |B(0,1)|$ .

▶ Physically the fundamental solution is the potential induced by a unit point mass at  $\overline{0}$ . Constants are chosen so that

$$-\int_{\partial B(0,r)} \frac{\partial \Phi}{\partial \nu}(x) \, dS(x) = 1 \quad \text{for every} \quad r > 0,$$

 $ightharpoonup \Phi$  is harmonic in  $\mathbb{R}^n \setminus \{0\}$ .

The function  $\Phi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ ,

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \ln|x|, & n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}, & n \ge 3, \end{cases}$$

is called the fundamental solution of the Laplace equation. Here we denote the volume of the unit ball in  $\mathbb{R}^n$  by  $\alpha(n) = |B(0,1)|$ .

▶ Physically the fundamental solution is the potential induced by a unit point mass at  $\overline{0}$ . Constants are chosen so that

$$-\int_{\partial B(0,r)} \frac{\partial \Phi}{\partial \nu}(x) \, dS(x) = 1 \quad \text{for every} \quad r > 0,$$

 $ightharpoonup \Phi$  is harmonic in  $\mathbb{R}^n \setminus \{0\}$ .

The function  $\Phi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ ,

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \ln|x|, & n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}, & n \ge 3, \end{cases}$$

is called the fundamental solution of the Laplace equation. Here we denote the volume of the unit ball in  $\mathbb{R}^n$  by  $\alpha(n) = |B(0,1)|$ .

▶ Physically the fundamental solution is the potential induced by a unit point mass at  $\overline{0}$ . Constants are chosen so that

$$-\int_{\partial B(0,r)} \frac{\partial \Phi}{\partial \nu}(x) \, dS(x) = 1 \quad \text{for every} \quad r > 0,$$

 $ightharpoonup \Phi$  is harmonic in  $\mathbb{R}^n \setminus \{0\}$ .

#### Theorem

Let  $f \in C_0^{\infty}(\mathbb{R}^n)$  and define

$$u(x) = (f * \Phi)(x) = \int_{\mathbb{R}^n} f(y)\Phi(x - y) \, dy,$$

where  $\Phi$  is the fundamental solution of the Laplace equation. Then  $u \in C^2(\mathbb{R}^n)$  and  $-\Delta u = f$  in  $\mathbb{R}^n$ .

- The problem does not have a unique solution, since we can add a function v with  $\Delta v = 0$ .
- Physically: f describes a charge density and u is the potential of the electric field induced by f.

#### **Theorem**

Let  $f \in C_0^{\infty}(\mathbb{R}^n)$  and define

$$u(x) = (f * \Phi)(x) = \int_{\mathbb{R}^n} f(y)\Phi(x - y) \, dy,$$

where  $\Phi$  is the fundamental solution of the Laplace equation. Then  $u \in C^2(\mathbb{R}^n)$  and  $-\Delta u = f$  in  $\mathbb{R}^n$ .

- The problem does not have a unique solution, since we can add a function v with  $\Delta v = 0$ .
- Physically: f describes a charge density and u is the potential of the electric field induced by f.

#### **Theorem**

Let  $f \in C_0^{\infty}(\mathbb{R}^n)$  and define

$$u(x) = (f * \Phi)(x) = \int_{\mathbb{R}^n} f(y)\Phi(x - y) \, dy,$$

where  $\Phi$  is the fundamental solution of the Laplace equation. Then  $u \in C^2(\mathbb{R}^n)$  and  $-\Delta u = f$  in  $\mathbb{R}^n$ .

- The problem does not have a unique solution, since we can add a function v with  $\Delta v = 0$ .
- Physically: f describes a charge density and u is the potential of the electric field induced by f.

- ► The theorem gives a solution u in the whole space without a specification of the boundary values.
- ▶ Consider an open and bounded set  $\Omega \subset \mathbb{R}^n$ .
- $\blacktriangleright$  Let v be a solution of the Dirichlet problem

$$\begin{cases} \Delta v = 0 & \text{in } \Omega, \\ v = -u & \text{on } \partial \Omega. \end{cases}$$

Then w = u + v is a solution to the problem

$$\begin{cases} -\Delta w = f & \text{in } \Omega \\ w = 0 & \text{on } \partial \Omega. \end{cases}$$

▶ This observation will be useful later.

- ► The theorem gives a solution u in the whole space without a specification of the boundary values.
- ▶ Consider an open and bounded set  $\Omega \subset \mathbb{R}^n$ .
- $\blacktriangleright$  Let v be a solution of the Dirichlet problem

$$\begin{cases} \Delta v = 0 & \text{in} \quad \Omega, \\ v = -u & \text{on} \quad \partial \Omega. \end{cases}$$

Then w = u + v is a solution to the problem

$$\begin{cases} -\Delta w = f & \text{in } \Omega \\ w = 0 & \text{on } \partial \Omega. \end{cases}$$

▶ This observation will be useful later.

- ► The theorem gives a solution u in the whole space without a specification of the boundary values.
- ▶ Consider an open and bounded set  $\Omega \subset \mathbb{R}^n$ .
- Let v be a solution of the Dirichlet problem

$$\begin{cases} \Delta v = 0 & \text{in } \Omega, \\ v = -u & \text{on } \partial \Omega. \end{cases}$$

Then w = u + v is a solution to the problem

$$\begin{cases} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \partial \Omega. \end{cases}$$

► This observation will be useful later.

- ► The theorem gives a solution u in the whole space without a specification of the boundary values.
- ▶ Consider an open and bounded set  $\Omega \subset \mathbb{R}^n$ .
- ▶ Let *v* be a solution of the Dirichlet problem

$$\begin{cases} \Delta v = 0 & \text{in} \quad \Omega, \\ v = -u & \text{on} \quad \partial \Omega. \end{cases}$$

Then w = u + v is a solution to the problem

$$\begin{cases} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \partial \Omega. \end{cases}$$

This observation will be useful later.