AI 701 Bayesian machine learning, Fall 2021

Homework assignment 1

1. (15 points) Suppose we toss a coin n times. Let X be a random variable denoting the number of heads among n coin tosses. We simply assume that X follows the binomial distribution with parameter θ ,

$$\mathbb{P}(X = x | \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n - x}. \tag{1}$$

(a) (5 points) We assume that θ itself is a random variable following the beta distribution with Probability Density Function (PDF) with parameters a, b > 0,

$$f(\theta; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{\{0 \le \theta \le 1\}},$$
 (2)

where $\Gamma(t)=\int_0^\infty z^{t-1}e^{-z}\mathrm{d}z$ is the gamma function. Compute the marginal likelihood of x under this prior setting. That is, compute

$$\mathbb{P}(X=x;a,b) = \int_0^1 \mathbb{P}(X=x|\theta) f(\theta;a,b) d\theta.$$
 (3)

Solution:

$$\mathbb{P}(X=x;a,b) = \int_0^1 \mathbb{P}(X=x|\theta) f(\theta;a,b) d\theta$$

$$= \int_0^1 \binom{n}{x} \theta^x (1-\theta)^{n-x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} d\theta$$

$$= \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 \theta^{a+x-1} (1-\theta)^{b+n-x-1} d\theta$$

$$= \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+x)\Gamma(b+n-x)}{\Gamma(a+b+n)}.$$
(S.1)

(b) (10 points) Assume we toss the coin n = 10 times and see x = 9 heads. To see if the coin is fair, we compare two prior distributions for θ :

$$\mathcal{M}_1: \mathbb{P}(\theta) = \delta_{1/2}(\theta), \quad \mathcal{M}_2: f(\theta; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{\{0 \le \theta \le 1\}}. \tag{4}$$

Set a = b = 1 and compute the Bayes factor

$$\frac{\mathbb{P}(X = x | \mathcal{M}_1)}{\mathbb{P}(X = x | \mathcal{M}_2)}.$$
 (5)

(Hint) Use the fact that $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{N}$.

Solution:

$$\mathbb{P}(X = 9|\mathcal{M}_1) = \int_0^1 \mathbb{P}(X = 9|\theta) \delta_{1/2}(\theta) d\theta
= \binom{10}{9} (1/2)^9 (1/2)^1
= \frac{10}{1024} = \frac{5}{512},$$
(S.2)
$$\mathbb{P}(X = 9|\mathcal{M}_2) = \int_0^1 \mathbb{P}(X = 9|\theta) f(\theta; a, b) d\theta
= \binom{10}{9} \frac{\Gamma(2)}{\Gamma(1)\Gamma(1)} \frac{\Gamma(10)\Gamma(2)}{\Gamma(12)}
= \binom{10}{9} \frac{1!}{0! \times 0!} \frac{9! \times 1!}{11!}
= \frac{10}{110} = \frac{1}{11}.$$
(S.3)

Hence, the Bayes factor is

$$\frac{\mathbb{P}(X=9|\mathcal{M}_1)}{\mathbb{P}(X=9|\mathcal{M}_2)} = \frac{10/1024}{10/110} = \frac{110}{1024} = \frac{55}{512} \quad (\approx 0.1074). \tag{S.4}$$

- 2. (15 points) Let E be a set and A be a collection of subsets of E. The σ -algebra generated by A, denoted by $\sigma(A)$, is the intersection of all σ -algebras containing A, or equivalently, the smallest σ -algebra containing A.
 - (a) (5 points) Let $E = \{1, 2, 3, 4\}$ and $A = \{\{1\}, \{2\}\}$. Find $\sigma(A)$.

Solution:

$$\sigma(A) = \{\{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \emptyset\}. \tag{S.5}$$

- (b) (10 points) Let E be a set and A, C be collections of subsets of E. Prove the followings.
 - 1. $A \subset C \implies \sigma(A) \subset \sigma(C)$.
 - 2. $A \subset \sigma(C)$, $C \subset \sigma(A) \implies \sigma(A) = \sigma(C)$.
 - 3. $A \subset C \subset \sigma(A) \implies \sigma(A) = \sigma(C)$.

Solution:

- 1. $A \subset C \subset \sigma(C)$, meaning that $\sigma(C)$ is a σ -algebra containing A. Since $\sigma(A)$ is the intersection of all σ -algebras containing A, $\sigma(A) \subset \sigma(C)$.
- 2. Since $A \subset \sigma(\mathcal{C})$ and $\sigma(A)$ is the smallest σ -algebra containing A, $\sigma(A) \subset \sigma(\mathcal{C})$. Similarly, we have $\sigma(C) \subset \sigma(A)$. Hence $\sigma(A) = \sigma(\mathcal{C})$.
- 3. $A \subset C$ implies $A \subset \sigma(C)$. Hence, by Item 2, we have $\sigma(A) = \sigma(C)$.

3. (25 points) Let X be a \mathbb{R} -valued random variable. The Moment Generating Function (MGF) of X is defined as

$$M_X(t) = \mathbb{E}[e^{tX}]. \tag{6}$$

An important property of MGF is that it uniquely determines a distribution of a random variable. That is, given two \mathbb{R} -valued random variables X and Y (assume that there exist MGF for both X and Y),

$$\forall t, M_X(t) = M_Y(t) \implies \forall x, F_X(x) = F_Y(x). \tag{7}$$

One can also show that, if $(X_n)_{n\geq 1}$ is a sequence of random variables whose MGF $M_{X_n}(t)$ converges to the MGF of a random variable X, then $(X_n)_{n\geq 1}$ converges in distribution to X.

(a) (5 points) Compute the MGF of a standard normal random variable X with PDF,

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$
 (8)

Solution:

$$M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2} + tx\right) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-t)^2}{2} + \frac{t^2}{2}\right) dx$$

$$= \exp\left(\frac{t^2}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-t)^2}{2}\right) dx$$

$$= e^{t^2/2}.$$
(S.6)

(b) (5 points) For $n \in \mathbb{N}$, let X_1, \ldots, X_n be i.i.d. \mathbb{R} -valued random variables, and let $M_{X_1}(t)$ be the MGF of X_1 . Derive the MGF of $Y_n := c(X_1 + \cdots + X_n)$.

Solution:

$$M_{Y_n}(t) = \mathbb{E}\left[\exp\left(ct\sum_{i=1}^n X_i\right)\right] = \prod_{i=1}^n \mathbb{E}[e^{ctX_i}] = \{M_{X_1}(ct)\}^n.$$
 (S.7)

(c) (15 points) Let X be a \mathbb{R} -valued random variable with mean μ and variance σ^2 . For $n \in \mathbb{N}$, define

$$Y_i := \frac{X_i - \mu}{\sigma}, \quad Z_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i.$$
 (9)

Show that Z_n converges in distribution to a standard normal distribution as $n \to \infty$.

(Hint) Show that the MGF of Z_n converges to the MGF of a standard normal distribution as $n \to \infty$. Use the Taylor's theorem to analyze the limit.

Solution: Using the result above, we have

$$M_{Z_n}(t) = \{M_{Y_1}(t/\sqrt{n})\}^n.$$
 (S.8)

By Taylor's theorem (expanding around t = 0),

$$M_{Y_1}(t/\sqrt{n}) = M_{Y_1}(0) + \frac{M'_{Y_1}(0)}{\sqrt{n}}t + \frac{M''_{Y_1}(0)}{2n}t^2 + R_n,$$
(S.9)

with $R_n/(t^2/n) \to 0$ as $n \to \infty$. Since

$$M_{Y_1}(0) = 1, \quad M'_{Y_1}(0) = \mathbb{E}[Y_1] = 0, \quad M''_{Y_1}(0) = \mathbb{E}[Y_1^2] = 1,$$
 (S.10)

we have

$$M_{Y_1}(t/\sqrt{n}) = 1 + \frac{t^2}{2n} + R_n = 1 + \frac{t^2}{2n} \left(1 + 2R_n/(t^2/n) \right).$$
 (S.11)

Using this, we see that

$$\lim_{n \to \infty} M_{Z_n}(t) = \lim_{n \to \infty} \left\{ M_{Y_1}(t/\sqrt{n}) \right\}^n$$

$$= \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} \left(1 + 2R_n/(t^2/n) \right) \right\}^n$$

$$= e^{\frac{t^2}{2}}.$$
(S.12)

That is, $M_{Z_n}(t)$ converges to the MGF of a standard normal distribution as $n \to \infty$. Hence we see that Z_n converges in distribution to a standard normal distribution.

4. (25 points) Let X be a random variable with finite mean μ and variance σ^2 . Let X_1, \ldots, X_n be i.i.d. copies of X, and consider the following estimator of σ :

$$\hat{\sigma}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2, \quad \bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i.$$
 (10)

(a) (10 points) Show that $\hat{\sigma}_n^2$ is consistent; that is, show that $\hat{\sigma}_n^2 \stackrel{\mathrm{P}}{\to} \sigma^2$ as $n \to \infty$.

Solution:

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 2X_i \bar{X}_n + \bar{X}_n^2)$$

$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2.$$
(S.13)

By the weak law of large numbers, $\frac{1}{n}X_i^2 \stackrel{\mathrm{p}}{\to} \mathbb{E}[X^2]$ and $\bar{X}_n \stackrel{\mathrm{p}}{\to} \mu$. By the basic property of convergence in probability, we have

$$\hat{\sigma}_n^2 \stackrel{\mathbf{p}}{\to} \mathbb{E}[X^2] - \mu^2 = \sigma^2. \tag{S.14}$$

(b) (10 points) Show that $\hat{\sigma}_n^2$ is biased; that is, show that $\mathbb{E}[\hat{\sigma}_n^2] \neq \sigma^2$.

Solution:

$$\mathbb{E}[\hat{\sigma}_{n}^{2}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right] - \mathbb{E}[\bar{X}_{n}^{2}]$$

$$= \sigma^{2} + \mu^{2} - \frac{1}{n^{2}}\mathbb{E}\left[\sum_{i,j}X_{i}X_{j}\right]$$

$$= \sigma^{2} + \mu^{2} - \frac{1}{n^{2}}(n(\sigma^{2} + \mu^{2}) + (n^{2} - n)\mu^{2})$$

$$= \frac{n-1}{n}\sigma^{2} \neq \sigma^{2}.$$
(S.15)

(c) (5 points) Propose a simple fix to make $\hat{\sigma}_n^2$ unbiased.

Solution: We can set

$$\tilde{\sigma}_n^2 := \frac{n}{n-1} \hat{\sigma}_n^2. \tag{S.16}$$

Then it is easy to see that $\mathbb{E}[\tilde{\sigma}_n^2] = \sigma^2$.

5. (20 points) Let X be a \mathbb{R} -valued random variable. Show that $X_n \stackrel{\mathrm{d}}{\to} c$ where c is a constant implies $X_n \stackrel{\mathrm{p}}{\to} c$.

Solution: We need to show that $X_n \stackrel{p}{\to} c$, i.e., for any $\varepsilon > 0$,

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n > c + \varepsilon) + \mathbb{P}(X_n < c - \varepsilon) \to 0, \tag{S.17}$$

as $n \to \infty$.

1. Note that

$$\mathbb{P}(X_n > c + \varepsilon) = 1 - \mathbb{P}(X_n \le c + \varepsilon) = 1 - F_{X_n}(c + \varepsilon). \tag{S.18}$$

Since $X_n \stackrel{\mathrm{d}}{\to} c$, we have $F_{X_n}(c+\varepsilon) \to 1$, so $\mathbb{P}(X_n > c+\varepsilon) \to 0$.

2. Also,

$$\mathbb{P}(X_n < c - \varepsilon) \le \mathbb{P}(X_n \le c - \varepsilon/2) = F_{X_n}(c - \varepsilon/2). \tag{S.19}$$

Again, since $X_n \stackrel{\mathrm{d}}{\to} c$, we have $F_{X_n}(c-\varepsilon/2) \to 0$, and thus $\mathbb{P}(X_n < c - \varepsilon) \to 0$.

Combining these two, we get $\mathbb{P}(|X_n - c| > \varepsilon) \to 0$ as desired.