Started on	Wednesday, 29 May 2024, 8:00 PM
State	Finished
Completed on	Wednesday, 29 May 2024, 8:25 PM
Time taken	25 mins 19 secs
Marks	5.00/5.00
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	

What is
$$\int_0^2 \frac{dx}{x^2+4}$$
 equal to?

- \square a. $\frac{\pi}{8}$ \checkmark
- b. None of these
- \Box c. $\frac{\pi}{4}$
- \Box d. $\frac{\pi}{2}$

Your answer is correct.

The correct answer is: $\frac{\pi}{8}$

Question 2

Correct

Mark 1.00 out of 1.00

Evaluate the following: $\int \frac{e^x(x+1)}{\cos^2(xe^x)} dx$

- $^{\square}$ a. $\cos(xe^x) + c$
- \Box b. $sec(xe^x)tan(xe^x) + c$
- $^{\circ}$ $\tan(xe^x) + c^{\checkmark}$
- $^{\square}$ d. None of these

Your answer is correct.

The correct answer is: $tan(xe^x) + c$

Question 3

Correct

Mark 1.00 out of 1.00

What is $\int e^x (1 + \ln x + x \ln x) dx$ equal to?

- $a. xe^x \ln x + c \checkmark$
- □ b. None of these
- \Box c. $x+e^x \ln x + c$
- \Box d. $x^2e^x \ln x + c$

Your answer is correct.

The correct answer is: $xe^x \ln x + c$

Question $\bf 4$

Correct

Mark 1.00 out of 1.00

The value of the integral $\int \frac{1}{1-\sin x} dx$ is

- \square a. $\sec x \tan x + c$
- \Box b. $x + \cos x + c$
- \Box c $\sec x + \tan x + c \checkmark$
- \Box d. 1 + sin x + c

Your answer is correct.

The correct answer is: $\sec x + \tan x + c$

Question 5

Correct

Mark 1.00 out of 1.00

The value of the integral $\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$ is

a.
$$\sin x - 2(\sin x)^{-1} - 6\tan^{-1}(\sin x) + c$$

$$\sin x - 2(\sin x)^{-1} + 5\tan^{-1}(\sin x) + c$$

$$\sin x - 2(\sin x)^{-1} + c$$

Your answer is correct.

The correct answer is:
$$\sin x - 2(\sin x)^{-1} - 6\tan^{-1}(\sin x) + c$$