## From ML-A to ML-B

Theory gets tighter

Yevgeny Seldin

# The same "Classical" Supervised Learning



- With the same assumptions
- Primary quantity of interest L(h) unknown
- Known:  $\hat{L}(h, S)$
- Major question: what can we say about L(h) based on  $\widehat{L}(h,S)$ ?

### $S = \{(X_1, Y_1), ..., (X_n, Y_n)\}$

## ML-A, a quick reminder

• What can we say about  $L(\hat{h}_S^*)$ ?



$$\mathbb{P}(L(\hat{h}_{S}^{*}) \geq \hat{L}(\hat{h}_{S}^{*}, S) + \varepsilon) \leq \mathbb{P}(\exists h \in \mathcal{H} : L(h) \geq \hat{L}(h, S) + \varepsilon)$$

$$\leq \sum_{h \in \mathcal{H}} \mathbb{P}(L(h) \geq \hat{L}(h, S) + \varepsilon)$$

$$\leq \sum_{h \in \mathcal{H}} e^{-2n\varepsilon^{2}} = \underbrace{M}_{\text{Selection}} \times \underbrace{e^{-2n\varepsilon^{2}}}_{\text{Concentration}} = \varepsilon$$

$$\text{Selection}_{\text{(Union bound)}} \text{(Hoeffding)}$$

- Occam's razor (countable  $\mathcal{H}$ ):  $\mathbb{P}\left(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h,S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \leq \delta$ 
  - Based on bounding  $\mathbb{P}(\exists h \in \mathcal{H}: L(h) \geq \hat{L}(h,S) + \varepsilon_h)$

• 
$$\varepsilon_h = \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}$$

## From ML-A to ML-B

• We are in the same setting



- With the same assumptions:
  - $\{(X_1, Y_1), ..., (X_n, Y_n)\}$  are i.i.d.
  - New data points come from the same distribution
- We will:
  - Derive tighter and practically useful bounds
  - Learn how to control selection from uncountable  ${\cal H}$

## ML-A vs. ML-B

#### ML-A

- Concentration
  - Hoeffding's inequality

• 
$$\mathbb{P}\left(p \ge \hat{p}_n + \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \le \delta$$

- "Slow rate"
- Selection
  - Occam's razor
    - Selection from countable  ${\cal H}$
    - Tool: union bound

#### ML-B

- Concentration
  - kl-inequality

• 
$$\mathbb{P}\left(p \ge \hat{p}_n + \sqrt{\frac{2\hat{p}_n \ln\frac{1}{\delta}}{n}} + \frac{2\ln\frac{1}{\delta}}{n}\right) \le \delta$$

- "Fast rate"
- Bernstein's inequalities "fast rate" based on small variance
- Selection
  - VC analysis
    - Selection from uncountable  ${\cal H}$
    - Tools: bound on effective selection (which is countable) + a union bound
  - PAC-Bayesian analysis
    - Selection from uncountable  ${\cal H}$
    - Tools: active avoidance of selection (by randomization) + change of measure inequality (a continuous substitute to the union bound; union bound is a special case when the selection is discrete)

# Weighted Majority Votes

### • ML-A:

- Random Forests majority vote of decision trees
- Majority vote often performs better than individual classifiers
  - Cancellation of errors effect

### • ML-B:

- PAC-Bayesian analysis of generalization power of the weighted majority vote
- PAC-Bayesian weight tuning for weighted majority votes
- Boosting targeted construction of ensembles with anticorrelated errors