BEST AVAILABLE COPY

6) Int. Cl.: F02 b, 75/18

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Deutsche Kl.: 46 a, 75/18

(1) (1) (2) (3) (4) (4)	Offenlegu	Aktenzeichen: P 21 22 523.0 Anmeldetag: 6. Mai 1971 Offenlegungstag: 16. November 1972
	Ausstellungspriorität:	_
99 99 99 19	Unionspriorität Datum: Land: Aktenzeichen:	— · · · · · · · · · · · · · · · · · · ·
®	Bezelchnung:	Verbrennungsmotor mit einer verbesserten Verbrennung des Gasgemisches und einem geringeren Gehalt an schädlichen Gasen und Kohlenwasserstoffen im Abgas
6 1	Zusatz zu:	 .
· · ·	Ausscheidung aus:	<u> </u>
10	Anmelder:	Pezzi, Umberto, Ben Slimane (Marokko)
	Vertreter gem. § 16 PatG:	Späth, H., DiplPhys. Dr. rer. nat., Patentanwalt, 8200 Rosenheim
®	Als Erfinder benannt:	Erfinder ist der Anmelder

Prüfungsantrag gemäß § 28b PatG ist gestellt .

Anmelder: Umberto Pezzi

Bezeichnung: "Verbrennungsmotor mit einer verbesserten Verbrennung des Gasgemisches und einem geringeren
Gehalt an schädlichen Gasen und Kohlenwasserstoffen im Abgas."

Die vorliegende Erfindung betrifft einen Ver=
brennungsmotor mit einer verbesserten Verbrennung des Gas=
gemisches. Insbesondere bezieht sie sich auf einen sowohl
nach dem Otto- als auch nach dem Dieselverfahren arbeiten=
den neuen Verbrennungsmotor, sei es ein Zweitakter sei es ein
Viertakter, der durch eine verbesserte Verbrennung des Gas=
gemisches und eine bessere Annäherung des wirklichen Arbeits=
zyklus an den theoretischen gekennzeichnet ist.

Es ist bekannt, dass man bei Verbrennungsmotoren trotz der zahlreichen Verbesserungen, die bisher in den ver=
schiedenen Zufuhrsystemen durchgeführt worden sind - immer
noch sehr weit von den für eine vollkommene Verbrennung er=
forderlichen optimalen Bedingungen entfernt ist. Daraus folgt
ein grösserer Kraftstoffverbrauch, und ausserdem beträgt der
Gehalt an Kohlenoxyd und an unverbrannten Kohlenwasserstoffen
mehr als 1% bzw. 0,20% im Auspuffgas von Kraftfahrzeugen mit
Viertaktmotor, wobei bei Zweitaktmotoren diese Anteile noch
grösser sind.

Bekannt ist auch, dass das Kohlenoxyd und die unverbrannten Kohlenwasserstoffe nicht nur einen unausgenützten
Teil des Gasgemisches darstellen. sondern auch gesundheitsbehädlich sind. Insbesondere wirkt sich das Kohlenoxyd aufgrund seiner Reaktion mit dem Hämoglobin sehr giftig aus, während den Kohlenwasserstoffen, insbesondere den Benzolkohlenwasserstoffen, normalerweise eine krebserregende Wirkung zugeschrießben wird. Andererseits sind die zahlreichen bisher zur Beseiben wird. Andererseits sind die zahlreichen bisher zur Beseiben wird dieser schädlichen Gase vorgeschlagenen Systeme (wie Nachverbrennung, Rücklauf der Auspuffgase usw.) - wobei gleichzeitig auch ein verminderter Kraftstoffverbrauch angestrebt wird noch nicht ausreichend verbessert, und sie verlangen zahlreiche Abänderungen der Antriebsmaschinen sowie zusätzliche Vorrichtungen, die umständlich und teuer sind.

Man hat nun gefunden, dass der Hauptgrund für diese mangelhafte Verbrennung hauptsächlich in der äusserst begrenz=

ten Mindestzeit liegt, die für die Verwirklichung der op= timalen Mischungs- und Verbrennungsbedingungen zur Verfül= gung steht. Dies ist deutlich erkennbar wenn man bedenkt, dass ein mit 5000 U/min arbeitender Motor beim Verbrennungs= hub einen Bogen von 30° um den oberen Totpunkt in weniger als einer Millisekunde durchläuft. Daraus ergibt sich eine beträchtliche Raumveränderung während des Verbrennungshubs, wogegen die Verbrennung bei Ottomotoren theoretisch bei gleichbleibendem Raumstattfinden sollte. Ausserdem kann die Vollendung der Verbrennung nicht innerhalb der obenerwähnten beschränkten Zeitraume erfolgen, sodass man bei Ottomotoren,um ein regel= mässiges Arbeiten zu erreichen, bei hohen Drehzahlen eine 30-35° betragende Zündvorverstellung vornehmen muss, während man zur Ausnutzung der ganzen Verbrennungsmittelladung (Sauer= stoff), die den Zylindern zugeführt worden ist, und zur Errei= chung der höchstmöglichen Leistung gezwungen ist, den Zylin= dern ein reiches Gemisch zuzuführen, wobei der Verbrauch gesteigert wird.

Der vorliegenden Erfindung liegt die Aufgabe zu= grunde, einen neuen Verbrennungsmotor zu schaffen, der den Zustand des Gasgemisches verbessert und daher ein wirtschaft= licheres Dosieren des Kraftstoffes erlaubt.

Eine weitere Aufgabe der Erfindung besteht darin, einen Motor zu schaffen, bei dem die Nutzzeit für eine bessere Verbrennung verlängert wird, sodass eine wesentliche Vermin= derung des Gehaltes an Kohlenoxyd und unverbrannten Kohlen= wasserstoffen im Abgas von Verbrennungsmotoren erreicht wird.

Die der vorliegenden Erfindung zugrundeliegende Aufgabe wird durch einen mit wenigstens einem Zylinder und einem mit der Antriebswelle verbundenen Kolben versehenen Verbrennungsmotor gelöst, der dadurch gekennzeichnet ist, dass der Hubraum jedes Zylinders auf ein Paar nebeneinanderliegen= de Zylinder verteilt ist, die eine gemeinsame Verbrennungs= kammer besitzen und deren Kolben mit der Antriebswelle derart verbunden sind, dass während eines gewissen Drehbogens der Welle die Kolben die entsprechenden oberen Totpunkte in auf= einanderfolgenden Zeiten erreichen, wobei der Raum der Ver= brennungskammer nahezu gleich bleibt.

Weitere Zwecke, Vorteile und Eigenschaften des erfindungsgemässen Verbrennungsmotors werden dem Fachmann aufgrund der folgenden ausführlichen Beschreibung einiger Ausführungsformen verständlich, die als Beispiele und keines= wegs einschränkend aufgeführt werden, unter Bezugnahme auf die beigefügten Zeichnungen.

Es zeigen:

Figur 1 eine schematische Schnittansicht eines nach dem Zweitaktverfahren arbeitenden Motors gemäss vorlie= gender Erfindung; und

Figur 2 eine schematische Schnittansicht eines nach dem Viertaktverfahren arbeitenden Motors gemäss vorlie= gender Erfindung.

Es ist selbstverständlich, dass ausser den beiden in den beigefügten Zeichnungen gezeigten und im folgenden beschriebenen Ausführungsformen andere Konstruktionsvarianten des erfindungsgemässen Motors möglich sind, und zwar je nach dem dem Motor eigenen Kreisprozess und der Art und Anwendung des Motors selbst.

In Figur 1 wird eine entlang einer zur Motorachse senkrecht verlaufenden Ebene genommene Schnittansicht einer möglichen Ausführungsform eines erfindungsgemässen Motors mit Zweitaktverfahren dargestellt. Gemäss dem grundlegenden Merkmal der Erfindung, wurde der Hubraum des Zylinders in zwei parallele Zylinder aufgeteilt, die eine gemeinsame Ver=brennungskammer besitzen, wobei derjenige dem Kolben 1 und dem Pleuel 2 zugeordnete Zylinder der Auslasszylinder und derjenige dem Kolben 3 und dem Pleuel 4 zugeordnete Zylinder der Einlasszylinder ist. Die beiden Kolben sorgen somit für die Öffnung und Schliessung der Auslass- bzw. Einlassöffnungen. In Figur 1 sind der Kolben 1 und das Pleuel 2 des Auslass=zylinders mit Vollinie und der Kolben 3 und der Pleuel 4 des Einlasszylinders mit Strichlinie eingezeichnet.

Es ist klar, dass die Stellung der Antriebswelle, wenn sich der Kolben 1 am oberen Totpunkt befindet, wobei diese Stellung in der Figur mit P₁ bezeichnet ist, nicht mit der angenommenen Stellung P₂ in dem Augenblick übereinstimmt, in dem sich der Kolben 4 an seinem oberen Totpunkt befindet. Zwischen

den beiden Totpunkten durchlauft die Antriebswelle den Drehwinkel &, währenddessen der Raum der Verbrennungskammer 5,
die den beiden Zylindern gemeinsam ist, praktisch gleich
bleibt. Nachdem der Kolben 1 seinen oberen Totpunkt erreicht
hat und seinen Abwärtshub mit nachfolgendem Zunehmen des
Verbrennungskammerraumes beginnt, ist der Kolben 3 tatsächlich
noch im Begriff bis zu seinem oberen Totpunkt zu steigen, wobei
er eine Verminderung des Raumes des ihm zustehenden Teiles der
Verbrennungskammer bewirkt. Man hat somit beim Durchlaufen des
Drehwinkels & der Antriebswelle zwei Änderungen des Gesamtraumes
der Verbrennungskammer 5 mit entgegengesetztem Vorzeichen,
iedoch im absoluten Wert fast gleich ,weshalb der Raum
der Verbrennungskammer während der gesamten Zeit in der die
Antriebswelle den Winkel & durchläuft, praktisch konstant bleibt.

In Figur 1 ist eine Ausführung dargestellt, in der die Achsen der beiden gekuppelten Zylinder parallel oder leicht geneigt mit Bezug auf die durch die Antriebsachse verlaufende mittlere Längsebene liegen. Es ist auch eine Variante dieser Ausführung vorgesehen, nach welcher _______ die gekuppelten Zylinder, die eine einzige gemeinsame Verbrennungskammer au£= weisen, auf der Längsebene des Motors aufgerichtet angeordnet sind. In diesem Fall wird die Massnahme getroffen, die Kurbel= zapfen, auf welche die Pleuel der gekuppelten Zylinder einwir= ken, versetzt vorzusehen, so das man die gewünschte Versetzung der Totpunkte der entsprechenden Kolben erhält.

Mit beiden obenaufgeführten Lösungen erreicht man ausser der Versetzung der Totpunkte der Kolben der gekuppelten Zylinder den Vorteil, dass sowohl die Öffnung als auch die Schliessung der Auslassöffnungen gegenüber der Öffnung und Schliessung der Einlassöffnungen vorgestellt sind. Hierbei wird der Verlust an frischem Gemisch, der bei den herkömmli= chen Motoren durch die Auslassöffnungen intritt, offensicht= lich vermindert. Dies wurde in Figur 1 als Funktion des Dreh= winkels der Antriebswelle 6 durch Eintragen der beiden Bögen S und A, die den Auslass- bzw. Einlasshub zeigen, dargestellt, wobei deren Anfangspunkte AS und AA bzw. Endpunkte CS und CA um einen Winkel B bzw. versetzt sind. Die Maßnahme, den

Verschluss der Auslassöffnungen (bei CS) etwas vorzeitig (Winkel Y) gegenüber dem Verschluss der Einlassöffnungen (bei CA) vorzusehen, ermöglicht neue und äusserst vorteil= hafte Arbeits- und Spülbedingung. Man hat tatsächlich weit geringere Verluste beim Auslassen und erreicht eine bessere Füllung aufgrund des Ruhedrucks des Zufuhrstromes des Gemisches in den beiden gekoppelten Zylindern.

Im Fall von Viertaktern kann die Erfindung neben den beiden beschriebenen Ausführungen für Zweitakter, natür=lich mit den nötigen Abänderungen, eine weitere in Figur 2 dargestellte Ausführungsform annehmen.

Nach dieser Variante ist der Hubraum jedes Zylinders in wei Zylinder aufgekeilt, die zueinander parallele oder um einen kleinen Winkel geneigte Achsen besitzen, wobei die Ebene dieser Achsen senkrecht zur Motorachse liegt. Die Verbrennungskammer 5 ist auf der Mittellinie der beiden gekuppel= ten Zylinder vorgesehen, und das Kurbelgetriebe besteht aus einem dem Kolben 1' zugeordneten Hauptpleuel 2' und aus einem dem Kolben 3' zugeordneten Nebenpleuel 4', der auf einem Bolzen 7 angelenkt ist, der an dem Ende des Hauptpleuels befestigt ist. Wie in Figur 2 gezeigt, durchläuft der Gelenkbolzen 7 des Neben= pleuels 4º eine Ellipse während der Pleuelfuss eine volle Drehung um die Motorachse vollbringt. Es ist weiterhin klar, dass der Hub des Kolbens 3' grösser ist als der des Kolbens 1' und dass die beiden oberen Totpunkte nicht zusammenfal= len, d.h. die heiden Kolben 1' und 3' erreichen nicht in demselben Augenblick ihren oberen Totpunkt. Bei der Ausführung gemäss Figur 2 besteht - ausschliesslich als nicht einschränkendes Beispiel gegeben - eine Versetzung der zwei Totpunkte um ca. 26°. Im allgemeinen hat der Versetzungswinkel Werte zwischen 10 und 35°. Wie schon zuvor gesagt, bleibt bei Zweitaktern der Raum der Verbrennungskammer, während die Antriebs= welle 6 diese Umdrehung vollbringt, praktisch unverändert, wodurch eine bessere Mischung und eine vollkommenere Verbren= nung des Gasgemisches begünstigt werden.

Daraus folgt, dass man ____ während des Verbrennungs= hubs dem idealen Arbeitszyklus, nach welchem diese Umwandlung bei konstantem Raum stattfinden sollte, sehr nahe kommen kann, was einen Zustand darstellt, der bei den herkömmlichen Motoren bei weitem nicht erreicht wird. Durch diese Massnahme
ist auch die notwendige Zündverstellung von weit geringerem
Wert gegenüber den Winkelwerten, die bei den herkömmlichen
Motoren verlangt werden, und weniger veränderlich in Ab=
hängigkeit vom Drehzahlbereich des Motors, wobei bei hohen
Drehzahlen der Voreilungswinkel,um eine gerade befriedigende
Verbrennung zu erreichen, beträchtlich sein musste.

Mögliche weitere Ergänzungen und/oder Änderungen können von Fachleuten an den obenbeschriebenen und darge= stellten Ausführungsbeispielen des erfindungsgemässen Motors vorgenommen werden, wobei im Rahmen der Erfindung geblieben wird. Die Aufteilung des Hubraums in zwei gekoppelte Zylinder kann tatsächlich auf jede vom konstruktiven und technologi= schen Standpunkt mögliche Art und Weise erfolgen und am vorteilhaftesten unter Berücksichtigung des Verfahrens, des Typs und der Verwendung des Motors.

2122523

PATENTANSPRÜCHE

- 1. Verbrennungsmotor mit wenigstens einem Zylinder und einem mit der Antriebswelle verbundenen Kolben, dadurch gekennzeichnet, dass der Hubraum jedes Zylinders auf ein Paar nebeneinanderliegende Zylinder verteilt ist, die eine gemeinsame Verbrennungskammer (5) besitzen und deren Kolben (1,3) mit der Antriebswelle/derart verbunden sind, dass während eines gewissen Drehbogens der Welle die Kolben die entsprechenden oberen Totpunkte in aufeinanderfolgenden Zeiten erereichen, wobei der Raum der Verbrennungskammer nahezu gleich bleibt.
- 2. Verbrennungsmotor nach Anspruch 1, dadurch ge= kennzeichnet, dass die Achsen jedes Zylinderpaares auf Längs= ebenen liegen, die symmetrisch zu der durch die Motorachse verlaufende Mittelebene sind, wobei die Achsen jedes Zylinder= paares zueinander parallel oder leicht geneigt sind.
- 5. Verbrennungsmotor nach Anspruch 1, dadurch ge= kennzeichnet, dass die Achsen jedes dieser Zylinderpaare auf der Längsebene des Motors oder leicht geneigt mit Bezug auf diese liegen und dass die Kurbelzapfen der beiden Kolben jedes Zylinderpaares zueinander versetzt sind, sodass die oberen Totpunkte von den entsprechenden Kolben in aufeinanderfolgen= den Zeiten erreicht werden.
- 4. Verbrennungsmotor nach Anspruch 1, mit Viertakt= verfahren, dadurch gekennzeichnet, dass die Achsen der beiden Zylinder jedes Zylinderpaares parallel oder leicht geneigt zueinander vorgesehen sind, wobei die Ebene dieser Achsen senkrecht zur Motorachse liegt.
- 5. Viertaktverbrennungsmotor nach Anspruch 4, dadurch gekennzeichnet, dass der Kolben/eines ersten Zylinders jedes der Zylinderpaare mit einem Hauptpleuel (2) verbunden ist, dessen Fuss auf einen Kurbelzapfen der Antriebswelle (6) einwirkt und daß der Kolben des gekoppelten Zylinders mit einem Neben= pleuel/erbunden ist, das auf einem mit dem Fuss des Haupt= pleuels fest verbundenen Bolzen (7) angelenkt ist.
- 6. Verbrennungsmotor nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die oberen

11

8

2122523

Totpunkte der Kolben (1, 3) jedes Zylinderpaares mit einer Versetzung im Bereich von Werten zwischen 10 und 35°, als Drehwinkel der Antriebswelle gerechnet, erreicht werden.

7. Verbrennungsmotor nach Anspruch 2 oder 3, mit Zweitaktverfahren, dadurch gekennzeichnet, dass in jedem der genannten Zylinderpaare die Auslassöffnungen in jenem Zylinder vorgesehen sind, der dem Kolben zugeordnet ist, welcher seinen oberen Totpunkt früher erreicht, und dass die Einlassöffnungen in jenem zweiten Zylinder vorgesehen sind, der dem Kolben zugeordnet ist, welcher seinen oberen Totpunkt später erreicht; weshalb sowohl die Öffnung als auch die Schliessung der Auslassöffnungen vor der Öffnung und Schliessung der Einlassöffnungen erfolgen.

Fig. 1

209847/0442 46 a 75-18 AT: 06.05.1971 OT: 16.11.1972

Fig. 2

209847/0442

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.