Higgs bundles twisted by a vector bundle

Guillermo Gallego

Universidad Complutense de Madrid

26 September 2019

Let X be a compact Riemann surface of genus g.

Let X be a compact Riemann surface of genus g.

• Smooth classification: rank and degree (1st Chern class).

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$.

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Components of fixed degree $\operatorname{Pic}^d(X)$ are isomorphic to the **Jacobian**

$$J(X) = \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}.$$

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Components of fixed degree $\operatorname{Pic}^d(X)$ are isomorphic to the **Jacobian**

$$J(X) = \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}.$$

• g = 0, Grothendieck (1957).

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Components of fixed degree $\operatorname{Pic}^d(X)$ are isomorphic to the **Jacobian**

$$J(X) = \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}.$$

- g = 0, Grothendieck (1957).
- g = 1, Atiyah (1957).

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Components of fixed degree $\operatorname{Pic}^d(X)$ are isomorphic to the **Jacobian**

$$J(X) = \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}.$$

- g = 0, Grothendieck (1957).
- g = 1, Atiyah (1957).
- $g \ge 2$?

Let X be a compact Riemann surface of genus g.

- Smooth classification: rank and degree (1st Chern class).
- Line bundles: Picard group, $\operatorname{Pic}(X) = H^1(X, \mathcal{O}_X^*)$. Components of fixed degree $\operatorname{Pic}^d(X)$ are isomorphic to the **Jacobian**

$$J(X) = \frac{H^1(X, \mathcal{O}_X)}{H^1(X, \mathbb{Z})}.$$

- g = 0, Grothendieck (1957).
- g = 1, Atiyah (1957).
- $g \ge 2$?

For now on, assume $g \geq 2$.

Stable vector bundles

Definition

A holomorphic vector bundle $E \to X$ is **stable** if for every proper holomorphic subbundle $E' \subset E$.

$$\frac{\deg E'}{\mathrm{rk}E'}<\frac{\deg E}{\mathrm{rk}E}.$$

Stable vector bundles

Definition

A holomorphic vector bundle $E \to X$ is **stable** if for every proper holomorphic subbundle $E' \subset E$.

$$\frac{\deg E'}{\mathrm{rk}E'}<\frac{\deg E}{\mathrm{rk}E}.$$

• Notion of stability arising from Mumford's GIT.

Stable vector bundles

Definition

A holomorphic vector bundle $E \to X$ is **stable** if for every proper holomorphic subbundle $E' \subset E$.

$$\frac{\deg E'}{\mathrm{rk}E'} < \frac{\deg E}{\mathrm{rk}E}.$$

- Notion of stability arising from Mumford's GIT.
- Moduli space of stable vector bundles: $\mathcal{N}(n,d)$

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X.

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on $\mathbb E$

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on $\mathbb E$ is an operator

$$\bar{\partial}_E:\Omega^{p,q}(X,\mathbb{E})\longrightarrow\Omega^{p,q+1}(X,\mathbb{E})$$

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on $\mathbb E$ is an operator

$$\bar{\partial}_E:\Omega^{p,q}(X,\mathbb{E})\longrightarrow\Omega^{p,q+1}(X,\mathbb{E})$$

which satisfies

$$\bar{\partial}_E(\alpha\psi) = (\bar{\partial}\alpha)\psi + (-1)^p\alpha \wedge \bar{\partial}_E\psi.$$

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on $\mathbb E$ is an operator

$$\bar{\partial}_E: \Omega^{p,q}(X,\mathbb{E}) \longrightarrow \Omega^{p,q+1}(X,\mathbb{E})$$

which satisfies

$$\bar{\partial}_E(\alpha\psi) = (\bar{\partial}\alpha)\psi + (-1)^p\alpha \wedge \bar{\partial}_E\psi.$$

• $\bar{\partial}_E^2 = 0$ is the integrability condition for the PDE $\bar{\partial}_E s = 0$.

Definition

Let \mathbb{E} be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on \mathbb{E} is an operator

$$\bar{\partial}_E:\Omega^{p,q}(X,\mathbb{E})\longrightarrow\Omega^{p,q+1}(X,\mathbb{E})$$

which satisfies

$$\bar{\partial}_E(\alpha\psi) = (\bar{\partial}\alpha)\psi + (-1)^p\alpha \wedge \bar{\partial}_E\psi.$$

- $\bar{\partial}_E^2 = 0$ is the integrability condition for the PDE $\bar{\partial}_E s = 0$.
- The solutions of $\bar{\partial}_E s = 0$ are holomorphic vector functions (locally free sheaf over \mathcal{O}_X).

Definition

Let $\mathbb E$ be a smooth vector bundle of rank n and degree d over X. A **holomorphic structure** on $\mathbb E$ is an operator

$$\bar{\partial}_E: \Omega^{p,q}(X,\mathbb{E}) \longrightarrow \Omega^{p,q+1}(X,\mathbb{E})$$

which satisfies

$$\bar{\partial}_E(\alpha\psi) = (\bar{\partial}\alpha)\psi + (-1)^p\alpha \wedge \bar{\partial}_E\psi.$$

- $\bar{\partial}_E^2 = 0$ is the integrability condition for the PDE $\bar{\partial}_E s = 0$.
- The solutions of $\bar{\partial}_E s = 0$ are holomorphic vector functions (locally free sheaf over \mathcal{O}_X).
- $E = (\mathbb{E}, \bar{\partial}_E)$ is a holomorphic vector bundle.

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

 $h\text{-unitary connections}\longleftrightarrow \mathsf{Holomorphic}$ structures on $\mathbb E$ $\nabla \longmapsto \nabla^{0,1}$

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

$$h\text{-unitary connections}\longleftrightarrow \mathsf{Holomorphic}$$
 structures on $\mathbb E$
$$\nabla \longmapsto \nabla^{0,1}$$

• \mathcal{A} set of irreducible h-unitary connections on (\mathbb{E}, h) .

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

 $h\text{-unitary connections}\longleftrightarrow \mathsf{Holomorphic}$ structures on $\mathbb E$ $\nabla\longmapsto \nabla^{0,1}$

- \mathcal{A} set of irreducible h-unitary connections on (\mathbb{E}, h) .
- ullet group of unitary gauge transformations of $\mathbb E.$

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

 $h\text{-unitary connections}\longleftrightarrow \mathsf{Holomorphic}$ structures on $\mathbb E$ $\nabla\longmapsto \nabla^{0,1}$

- \mathcal{A} set of irreducible h-unitary connections on (\mathbb{E}, h) .
- ullet group of unitary gauge transformations of $\mathbb E.$
- ullet $\mathcal G$ acts on $\mathcal A$ by conjugation with momentum map

$$\mu: \mathcal{A} \longrightarrow \mathrm{Lie}(\mathcal{G})$$

$$\nabla \longmapsto F_{\nabla} - 2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_X.$$

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

 $h\text{-unitary connections}\longleftrightarrow \operatorname{Holomorphic}$ structures on $\mathbb E$ $\nabla\longmapsto \nabla^{0,1}$

- \mathcal{A} set of irreducible h-unitary connections on (\mathbb{E}, h) .
- ullet group of unitary gauge transformations of $\mathbb E.$
- ullet $\mathcal G$ acts on $\mathcal A$ by conjugation with momentum map

$$\mu: \mathcal{A} \longrightarrow \mathrm{Lie}(\mathcal{G})$$

$$\nabla \longmapsto F_{\nabla} - 2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_{X}.$$

• Symplectic quotient: $\mathcal{A}/\!\!/\mathcal{G} = \mu^{-1}(0)/\mathcal{G}$.

Theorem (Donaldson's version of Narasimhan-Seshadri)

An irreducible h-unitary connection ∇ satisfies

$$F_{\nabla} = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_X$$

if and only if $(\mathbb{E}, \nabla^{0,1})$ is stable.

Theorem (Donaldson's version of Narasimhan-Seshadri)

An irreducible h-unitary connection ∇ satisfies

$$F_{\nabla} = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_X$$

if and only if $(\mathbb{E}, \nabla^{0,1})$ is stable.

Consequence:

$$\mathcal{N}(n,d)\longleftrightarrow \mathcal{A}/\!\!/\mathcal{G}.$$

• $T_{[E]}^* \mathcal{N}(n,d) \cong H^0(X, \operatorname{End} E \otimes K_X).$

- $T_{[E]}^* \mathcal{N}(n,d) \cong H^0(X, \operatorname{End} E \otimes K_X).$
- $(E, \varphi) \in T^*\mathcal{N}(n, d)$, $\varphi : E \to E \otimes K_X$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

- $T_{[E]}^* \mathcal{N}(n,d) \cong H^0(X, \operatorname{End} E \otimes K_X).$
- $(E, \varphi) \in T^*\mathcal{N}(n, d)$, $\varphi : E \to E \otimes K_X$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

- $T_{[E]}^* \mathcal{N}(n,d) \cong H^0(X, \operatorname{End} E \otimes K_X).$
- $(E, \varphi) \in T^*\mathcal{N}(n, d)$, $\varphi : E \to E \otimes K_X$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

$$\varphi:\mathbb{C}^n\to\mathbb{C}^n$$
 endomorphism

$$\varphi:\mathbb{C}^n\to\mathbb{C}^n$$
 endomorphism :

• $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ eigenvalues of φ ,

$$\varphi:\mathbb{C}^n \to \mathbb{C}^n$$
 endomorphism :

- $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ eigenvalues of φ ,
- $v_1, \ldots, v_n \in \mathbb{C}^n$ eigenvectors of φ .

$$\varphi:\mathbb{C}^n \to \mathbb{C}^n$$
 endomorphism :

- $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ eigenvalues of φ ,
- $v_1, \ldots, v_n \in \mathbb{C}^n$ eigenvectors of φ .

 $E \to X$ holomorphic vector bundle.

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

• $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,
- $v_1(x), \dots, v_n(x) \in \mathbb{C}^n$ eigenvectors of $\varphi_x : E_x \to E_x$.

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,
- $v_1(x), \dots, v_n(x) \in \mathbb{C}^n$ eigenvectors of $\varphi_x : E_x \to E_x$.
- Spectral curve:

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset X \times \mathbb{C}.$$

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,
- $v_1(x), \dots, v_n(x) \in \mathbb{C}^n$ eigenvectors of $\varphi_x : E_x \to E_x$.
- Spectral curve:

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset X \times \mathbb{C}.$$

• $S_{\varphi} \stackrel{\pi}{\longrightarrow} X$ ramified cover.

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,
- $v_1(x), \dots, v_n(x) \in \mathbb{C}^n$ eigenvectors of $\varphi_x : E_x \to E_x$.
- Spectral curve:

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset X \times \mathbb{C}.$$

• $S_{\varphi} \stackrel{\pi}{\longrightarrow} X$ ramified cover.

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E$ vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in \mathbb{C}$ eigenvalues of $\varphi_x : E_x \to E_x$,
- $v_1(x), \dots, v_n(x) \in \mathbb{C}^n$ eigenvectors of $\varphi_x : E_x \to E_x$.
- Spectral curve:

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset X \times \mathbb{C}.$$

• $S_{\varphi} \stackrel{\pi}{\longrightarrow} X$ ramified cover.

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E \otimes L \text{ twisted } \text{vector}$ bundle endomorphism

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E \otimes L$ **twisted** vector bundle endomorphism :

• $\lambda_1(x), \dots, \lambda_n(x) \in L_x$ eigenvalues of $\varphi_x : E_x \to E_x \otimes L_x$,

 $E\to X$ holomorphic vector bundle. $\varphi:E\to E\otimes L \text{ twisted } \text{vector}$ bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in L_x$ eigenvalues of $\varphi_x : E_x \to E_x \otimes L_x$,
- $v_1(x), \ldots, v_n(x) \in E_x$ eigenvectors of $\varphi_x : E_x \to E_x \otimes L_x$.

E o X holomorphic vector bundle. $\varphi: E o E \otimes L$ **twisted** vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in L_x$ eigenvalues of $\varphi_x : E_x \to E_x \otimes L_x$,
- $v_1(x), \ldots, v_n(x) \in E_x$ eigenvectors of $\varphi_x : E_x \to E_x \otimes L_x$.
- Spectral curve (locally):

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset L.$$

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E \otimes L$ **twisted** vector bundle endomorphism :

• $\lambda_1(x), \ldots, \lambda_n(x) \in L_x$

eigenvalues of
$$\varphi_x: E_x \to E_x \otimes L_x$$
.

•
$$v_1(x), \dots, v_n(x) \in E_x$$
 eigenvectors of

 $\varphi_x: E_x \to E_x \otimes L_x.$

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset L.$$

 $E \to X$ holomorphic vector bundle. $\varphi: E \to E \otimes L$ **twisted** vector

bundle endomorphism :

•
$$\lambda_1(x), \ldots, \lambda_n(x) \in L_x$$

eigenvalues of $\varphi_x : E_x \to E_x \otimes L_x$,

- $v_1(x), \ldots, v_n(x) \in E_x$ eigenvectors of $\varphi_x : E_x \to E_x \otimes L_x$.
- Spectral curve (locally):

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset L.$$

• $S_{\omega} \xrightarrow{\pi} X$ ramified cover.

 $E\to X$ holomorphic vector bundle. $\varphi:E\to E\otimes L$ twisted vector bundle endomorphism :

- $\lambda_1(x), \dots, \lambda_n(x) \in L_x$ eigenvalues of $\varphi_x : E_x \to E_x \otimes L_x$.
- $v_1(x), \ldots, v_n(x) \in E_x$ eigenvectors of $\varphi_x : E_x \to E_x \otimes L_x$.
- Spectral curve (locally):

$$S_{\varphi} = \{(x, \lambda_i(x)), i = 1, \dots, n\} \subset L.$$

• $S_{\omega} \xrightarrow{\pi} X$ ramified cover.

Theorem

Let $b \in \bigoplus_{i=1}^n H^0(X, L^i)$ such that the spectral curve S_b is irreducible and smooth.

Theorem

Let $b \in \bigoplus_{i=1}^n H^0(X, L^i)$ such that the spectral curve S_b is irreducible and smooth. There is a bijective correspondence

$$\operatorname{Pic}^{\delta}(S_b) \longleftrightarrow \{[(E,\varphi)]|P_{\varphi}(T) = P_b(T), \operatorname{rk} E = n, \deg E = d\}$$

 $[L] \longmapsto [(\pi_* L, \pi_* \lambda)].$

Theorem

Let $b \in \bigoplus_{i=1}^n H^0(X, L^i)$ such that the spectral curve S_b is irreducible and smooth. There is a bijective correspondence

$$\operatorname{Pic}^{\delta}(S_b) \longleftrightarrow \{[(E,\varphi)]|P_{\varphi}(T) = P_b(T), \operatorname{rk} E = n, \deg E = d\}$$

 $[L] \longmapsto [(\pi_*L, \pi_*\lambda)].$

with

$$\delta = d + \frac{n(n-1)}{2}d.$$

Theorem

Let $b \in \bigoplus_{i=1}^n H^0(X, L^i)$ such that the spectral curve S_b is irreducible and smooth. There is a bijective correspondence

$$\operatorname{Pic}^{\delta}(S_b) \longleftrightarrow \{[(E,\varphi)]|P_{\varphi}(T) = P_b(T), \operatorname{rk} E = n, \deg E = d\}$$

 $[L] \longmapsto [(\pi_*L, \pi_*\lambda)].$

with

$$\delta = d + \frac{n(n-1)}{2}d.$$

• Hitchin (1987) for $L = K_X$.

Theorem

Let $b \in \bigoplus_{i=1}^n H^0(X, L^i)$ such that the spectral curve S_b is irreducible and smooth. There is a bijective correspondence

$$\operatorname{Pic}^{\delta}(S_b) \longleftrightarrow \{[(E,\varphi)]|P_{\varphi}(T) = P_b(T), \operatorname{rk} E = n, \deg E = d\}$$

 $[L] \longmapsto [(\pi_*L, \pi_*\lambda)].$

with

$$\delta = d + \frac{n(n-1)}{2}d.$$

- Hitchin (1987) for $L = K_X$.
- ullet Beauville, Narasimhan and Ramanan (1989) for general L.

• $(E, \varphi) \in T^*\mathcal{N}(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

• Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

• $(E, \varphi) \in T^*\mathcal{N}(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

• Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

• The fibres are open (stability) subsets of tori, $H^{-1}(b) \subset \operatorname{Pic}^{\delta}(S_b) \cong J(S_b)$.

• $(E, \varphi) \in T^*\mathcal{N}(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

• Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

- The fibres are open (stability) subsets of tori, $H^{-1}(b) \subset \operatorname{Pic}^{\delta}(S_b) \cong J(S_b)$.
- What about the remaining points of the Jacobian?

• $(E, \varphi) \in T^*\mathcal{N}(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

Hitchin fibration:

$$H: T^*\mathcal{N}(n,d) \longrightarrow \mathcal{B} := \bigoplus_{i=1}^n H^0(X, K_X^i)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

- The fibres are open (stability) subsets of tori, $H^{-1}(b) \subset \operatorname{Pic}^{\delta}(S_b) \cong J(S_b)$.
- What about the remaining points of the Jacobian? Wider notion of stability for pairs (E, φ) .

Definition

A **Higgs bundle** is a pair (E,φ) where $E\to X$ is a holomorphic vector bundle and the **Higgs field** $\varphi:E\to E\otimes K_X$ is a K_X -twisted endomorphism.

Definition

A **Higgs bundle** is a pair (E, φ) where $E \to X$ is a holomorphic vector bundle and the **Higgs** field $\varphi : E \to E \otimes K_X$ is a K_X -twisted endomorphism.

A Higgs bundle (E,φ) is **stable** if for every proper holomorphic subbundle $E'\subset E$ such that $\varphi(E')\subset E'\otimes K_X$

$$\frac{\deg E'}{\mathrm{rk}E'}<\frac{\deg E}{\mathrm{rk}E}.$$

Definition

A **Higgs bundle** is a pair (E, φ) where $E \to X$ is a holomorphic vector bundle and the **Higgs** field $\varphi : E \to E \otimes K_X$ is a K_X -twisted endomorphism.

A Higgs bundle (E,φ) is **stable** if for every proper holomorphic subbundle $E'\subset E$ such that $\varphi(E')\subset E'\otimes K_X$

$$\frac{\deg E'}{\mathrm{rk}E'} < \frac{\deg E}{\mathrm{rk}E}.$$

• Moduli space of stable Higgs bundles: $\mathcal{M}(n,d)$

Definition

A **Higgs bundle** is a pair (E, φ) where $E \to X$ is a holomorphic vector bundle and the **Higgs** field $\varphi : E \to E \otimes K_X$ is a K_X -twisted endomorphism.

A Higgs bundle (E,φ) is **stable** if for every proper holomorphic subbundle $E'\subset E$ such that $\varphi(E')\subset E'\otimes K_X$

$$\frac{\deg E'}{\mathrm{rk}E'} < \frac{\deg E}{\mathrm{rk}E}.$$

- Moduli space of stable Higgs bundles: $\mathcal{M}(n,d)$
- Hitchin (1987), Simpson (1988), Nitsure (1991)

Definition

A **Higgs bundle** is a pair (E, φ) where $E \to X$ is a holomorphic vector bundle and the **Higgs** field $\varphi : E \to E \otimes K_X$ is a K_X -twisted endomorphism.

A Higgs bundle (E,φ) is **stable** if for every proper holomorphic subbundle $E'\subset E$ such that $\varphi(E')\subset E'\otimes K_X$

$$\frac{\deg E'}{\mathrm{rk}E'} < \frac{\deg E}{\mathrm{rk}E}.$$

- Moduli space of stable Higgs bundles: $\mathcal{M}(n,d)$
- Hitchin (1987), Simpson (1988), Nitsure (1991)
- ullet The Hitchin fibration extends to a proper map $H:\mathcal{M}(n,d) o\mathcal{B}.$

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

• Hitchin's equations: $(\nabla, \varphi) \in \mathcal{A} \times \Omega^{1,0}(X, \operatorname{End} \mathbb{E})$.

$$\begin{cases} F_{\nabla} + [\varphi, \varphi^{\dagger}] = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_X \\ \nabla^{0,1} \varphi = 0. \end{cases}$$

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X.

• Hitchin's equations: $(\nabla, \varphi) \in \mathcal{A} \times \Omega^{1,0}(X, \operatorname{End} \mathbb{E})$.

$$\begin{cases} F_{\nabla} + [\varphi, \varphi^{\dagger}] = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_{X} \\ \nabla^{0,1} \varphi = 0. \end{cases}$$

• Hitchin-Kobayashi correspondence:

Irreducible solutions of Hitchin's equations \longleftrightarrow Stable Higgs bundles

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$ with

$$\varphi \wedge \varphi = 0 \text{ in } \operatorname{End} E \otimes \Lambda^2 V.$$

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$ with

$$\varphi \wedge \varphi = 0 \text{ in } \operatorname{End} E \otimes \Lambda^2 V.$$

• The condition $\varphi \wedge \varphi = 0$ means that the components of φ commute, $[\varphi_i, \varphi_j] = 0$.

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$ with

$$\varphi \wedge \varphi = 0$$
 in $\operatorname{End} E \otimes \Lambda^2 V$.

- The condition $\varphi \wedge \varphi = 0$ means that the components of φ commute, $[\varphi_i, \varphi_j] = 0$.
- Same stability condition than that for (classical) Higgs bundles.

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$ with

$$\varphi \wedge \varphi = 0 \text{ in } \operatorname{End} E \otimes \Lambda^2 V.$$

- The condition $\varphi \wedge \varphi = 0$ means that the components of φ commute, $[\varphi_i, \varphi_j] = 0$.
- Same stability condition than that for (classical) Higgs bundles.
- Moduli space: $\mathcal{M}_V(n,d)$.

Higgs bundles twisted by a vector bundle

Definition

Let $V \to X$ be a rank r holomorphic vector bundle. A V-twisted Higgs bundle is a pair (E,φ) , where $E \to X$ is a holomorphic vector bundle and $\varphi: E \to E \otimes V$ with

$$\varphi \wedge \varphi = 0 \text{ in } \operatorname{End} E \otimes \Lambda^2 V.$$

- The condition $\varphi \wedge \varphi = 0$ means that the components of φ commute, $[\varphi_i, \varphi_j] = 0$.
- Same stability condition than that for (classical) Higgs bundles.
- Moduli space: $\mathcal{M}_V(n,d)$.
- \bullet Studied by D. Xie and K. Yonekura in the context of $\mathcal{N}=1$ supersymmetric gauge theories.

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X. Fix h_V Hermitian metric on the holomorphic vector bundle $V \to X.$

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X. Fix h_V Hermitian metric on the holomorphic vector bundle $V \to X.$

• Generalized Hitchin's equations: $(\nabla, \varphi) \in \mathcal{A} \times \Omega^0(X, \operatorname{End} \mathbb{E} \otimes V)$

$$\begin{cases} F_{\nabla} + [\varphi, \varphi^{\dagger}]_{h, h_{V}} \omega_{X} = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_{X} \\ (\nabla^{0, 1} \otimes \mathbf{1}_{V} + \mathbf{1}_{\text{End } \mathbb{E}} \otimes \nabla_{V}^{0, 1}) \varphi = 0 \\ \varphi \wedge \varphi = 0. \end{cases}$$

The gauge-theoretic point of view

 (\mathbb{E},h) smooth complex Hermitian vector bundle of rank n and degree d over X. Fix h_V Hermitian metric on the holomorphic vector bundle $V \to X$.

• Generalized Hitchin's equations: $(\nabla, \varphi) \in \mathcal{A} \times \Omega^0(X, \operatorname{End} \mathbb{E} \otimes V)$

$$\begin{cases} F_{\nabla} + [\varphi, \varphi^{\dagger}]_{h, h_{V}} \omega_{X} = -2\pi i \frac{d}{n} \mathbf{1}_{\mathbb{E}} \omega_{X} \\ (\nabla^{0, 1} \otimes \mathbf{1}_{V} + \mathbf{1}_{\text{End } \mathbb{E}} \otimes \nabla_{V}^{0, 1}) \varphi = 0 \\ \varphi \wedge \varphi = 0. \end{cases}$$

Hitchin–Kobayashi correspondence:

Irreducible solutions of generalized Hitchin's equations \longleftrightarrow Stable V-twisted Higgs bundles

• $(E, \varphi) \in \mathcal{M}_V(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

• $(E, \varphi) \in \mathcal{M}_V(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

• Hitchin fibration:

$$H_V: \mathcal{M}_V(n,d) \longrightarrow \bigoplus_{i=1}^n H^0(X, \operatorname{Sym}^i V)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

• $(E, \varphi) \in \mathcal{M}_V(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

Hitchin fibration:

$$H_V: \mathcal{M}_V(n,d) \longrightarrow \bigoplus_{i=1}^n H^0(X, \operatorname{Sym}^i V)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

Not surjective!!

• $(E, \varphi) \in \mathcal{M}_V(n, d)$, characteristic polynomial:

$$P_{\varphi}(T) = \det(T - \varphi) = T^n + \sum_{i=1}^n \sigma_i(\varphi) T^{n-i}.$$

Hitchin fibration:

$$H_V: \mathcal{M}_V(n,d) \longrightarrow \bigoplus_{i=1}^n H^0(X, \operatorname{Sym}^i V)$$

 $(E,\varphi) \longmapsto (\sigma_1(\varphi), \dots, \sigma_n(\varphi))$

• Not surjective!! $\mathcal{B}_V = \mathrm{im} H_V$

• The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.

- The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.
- The number of equations is bigger than the dimension.

- The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.
- The number of equations is bigger than the dimension. However. . .

- The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.
- The number of equations is bigger than the dimension. However. . .
- Main idea: Since the components of φ commute, generically they can be diagonalized simoultaneously and can be written as polynomials of one of them.

- The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.
- The number of equations is bigger than the dimension. However. . .
- Main idea: Since the components of φ commute, generically they can be diagonalized simoultaneously and can be written as polynomials of one of them.

Theorem

Take $b \in \mathcal{B}_V$ such that the spectral curve S_b is integral and smooth.

- The spectral curve can be defined analogously in V, as the solutions of $P_{\varphi}(T)$.
- The number of equations is bigger than the dimension. However. . .
- Main idea: Since the components of φ commute, generically they can be diagonalized simoultaneously and can be written as polynomials of one of them.

Theorem

Take $b \in \mathcal{B}_V$ such that the spectral curve S_b is integral and smooth. Then there is a bijective correspondence

$$\operatorname{Pic}(S_b) \longleftrightarrow \{[(E,\varphi)] | S_{\varphi} = S_b\}.$$

Open questions:

• Complete the Hitchin-Kobayashi correspondence.

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- ullet Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.
- Conditions for the curve to be smooth.

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.
- Conditions for the curve to be smooth.
- Study the ramification divisor.

Open questions:

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.
- Conditions for the curve to be smooth.
- Study the ramification divisor.

Further directions:

Open questions:

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.
- Conditions for the curve to be smooth.
- Study the ramification divisor.

Further directions:

• Study the case $V = L_1 \oplus L_2$ with $L_1 \otimes L_2 = K_X$ (V is Calabi–Yau).

Open questions:

- Complete the Hitchin-Kobayashi correspondence.
- GIT construction of the moduli space.
- Computation of the dimension of $\mathcal{M}_V(n,d)$ using deformation theory.
- Genus of the spectral curve and relationship between the degrees.
- Conditions for the curve to be smooth.
- Study the ramification divisor.

Further directions:

- Study the case $V = L_1 \oplus L_2$ with $L_1 \otimes L_2 = K_X$ (V is Calabi–Yau).
- Donaldson-Thomas invariants.

Bibliography

A. Beauville, M. S. Narasimhan, and S. Ramanan.

Spectral curves and the generalised theta divisor.

J. reine angew. Math, 398(169-179):3, 1989.

N. Hitchin.

The self-duality equations on a Riemann surface.

Proceedings of the London Mathematical Society, 3(1):59–126, 1987.

N. Hitchin.

Stable bundles and integrable systems.

Duke mathematical journal, 54(1):91–114, 1987.

D. Xie and K. Yonekura.

Generalized Hitchin system, spectral curve and $\mathcal{N}=1$ dynamics.

Journal of High Energy Physics, 2014(1):1, 2014.

