Advanced Regression

ASSIGNMENT- FINAL SUBMISSION

<u>GitHub - subrahmanyeswaraokrv/Advanced-Regression-Assignment</u>

KRV SUBRAHMANYESWARAO | UPGRAD AND IIITB AI&ML | OCT-2023

QUESTION 1

1.What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Optimal Value of alpha for Ridge

- Ridge 0.3
- Lasso 0.0001

Double the values of alpha

- Ridge 0.6
- Lasso 0.0002

Lets analyze the model with these alpha values

In [122]:

```
# Ridge regression
ridge = Ridge(alpha=0.6)
ridge.fit(X_train, y_train)
print(ridge.coef )
[ 0.09953354  0.05619525  0.07278613  0.13441889  0.05627912  0.29137694
             0.1774726
                                                           0.06268812
 0.06224036 -0.09935608 -0.08113491 -0.05822534 -0.14280582 0.08082369
 -0.12792776 -0.12003386 -0.12095389 -0.09473805 -0.26225613 0.031477
 -0.04160321 -0.0376924
                        0.01143726 -0.04215807 -0.08500809 0.07335669
 -0.04160321 0.06271915 0.05740394 0.0463302
                                               0.08707393 -0.11467856
 0.09710922 0.07150643 0.04693881 0.09908806 0.0642639
                                                           0.06318014
 0.04693881 0.06379198 -0.06213756 -0.05934919 0.0800697 -0.11101574
 -0.12232067 0.09177435]
                                                                    In [124]:
#Printing the values of R2, RSS, MSE for train and test
y_pred_train = ridge.predict(X_train)
y pred test = ridge.predict(X test)
metric4=[]
r2 train lr = r2 score(y train,y pred train )
print("r2_train:")
print(r2 train lr)
metric4.append(r2_train_lr)
r2 test lr = r2 score(y test, y pred test)
print("r2_test:")
print(r2_test_lr)
metric4.append(r2_test_lr)
```

```
rss1_lr = np.sum(np.square(y_train-y_pred_train))
print("RSS train:")
print(rss1_lr)
metric4.append(rss1_lr)
rss2_lr = np.sum(np.square(y_test - y_pred_test))
print("RSS test:")
print(rss2_lr)
metric4.append(rss2_lr)
mse_train_lr = mean_squared_error(y_train,y_pred_train)
print("MSE_train:")
print(mse train lr)
metric4.append(mse_train_lr)
mse_test_lr = mean_squared_error(y_test , y_pred_test)
print("MSE test:")
print(mse test lr)
metric4.append(mse_test_lr)
r2_train:
0.9063878384815918
r2 test:
0.8706105658030794
RSS train:
13.010979044960635
RSS test:
8.553367497353891
MSE train:
0.013413380458722304
MSE_test:
0.020560979560946855
                                                                          In [125]:
ridge_df = pd.DataFrame({'Features':X_train.columns,
'Coefficient':ridge.coef_.round(4)})
ridge_df.reset_index(drop=True, inplace=True)
ridge_df
                                                                         Out[125]:
                 Features Coefficient
               OverallQual
  o
                              0.0995
               OverallCond
                              0.0562
```

	Features	Coefficient
2	TotalBsmtSF	0.0728
3	GrLivArea	0.1344
4	GarageCars	0.0563
5	MSZoning_FV	0.2914
6	MSZoning_RH	0.1775
7	MSZoning_RL	0.2483
8	MSZoning_RM	0.1329
9	LotConfig_FR3	-0.0502
10	Condition1_Norm	0.0615
11	Condition1_RRAn	0.0627
12	Condition1_RRNn	0.0622
13	BldgType_Duplex	-0.0994
14	BldgType_Twnhs	-0.0811
15	HouseStyle_1.5Unf	-0.0582

	Features	Coefficient
16	HouseStyle_2.5Unf	-0.1428
17	HouseStyle_SFoyer	0.0808
18	RoofStyle_Gable	-0.1279
19	RoofStyle_Gambrel	-0.1200
20	RoofStyle_Hip	-0.1210
21	RoofStyle_Mansard	-0.0947
22	Exteriorist_BrkComm	-0.2623
23	Exteriorist_BrkFace	0.0315
24	Exteriorist_CBlock	-0.0416
25	Exteriorist_CemntBd	-0.0377
26	Exteriorist_ImStucc	0.0114
27	Exteriorist_Stone	-0.0422
28	Exteriorist_Wd Sdng	-0.0850
29	Exterior2nd_AsphShn	0.0734

Exterior2nd_CBlock -0.0416 30 $Exterior {\tt 2nd_CmentBd}$ 0.0627 31 Exterior2nd_Other 32 0.0574 Exterior2nd_Wd Sdng 0.0463 33 Foundation_PConc 0.0871 34 Foundation_Wood -0.1147 35 36 SaleType_CWD 0.0971 SaleType_Con 0.0715 **37** 38 $SaleType_New$ 0.0469 SaleType_Oth 0.0991 39 SaleCondition_AdjLand 0.0643 40 $Sale Condition_Normal$ 0.0632 41 SaleCondition_Partial 0.0469 42 $Neighborhood_Craw for$ 43 0.0638

Coefficient

Features

Features	Coefficient	
Neighborhood_Edwards	-0.0621	
Neighborhood_MeadowV	-0.0593	
Neighborhood_NridgHt	0.0801	
Neighborhood_OldTown	-0.1110	
Neighborhood_SWISU	-0.1223	

In [126]:
#feature reduction - taking top 10 features from ridge
model_param = list(ridge.coef_)
model_param.insert(0,ridge.intercept_)
cols = X_train[ridge_df.Features]

ridge_coef = pd.DataFrame(list(zip(cols,model_param)))
ridge_coef.columns = ['Featuere','Coef']
ridge_coef.sort_values(by='Coef',ascending=False).head(10)

0.0918

Out[126]:

	Featuere	Coef
o	OverallQual	11.770827
6	MSZoning_RH	0.291377
8	MSZoning_RM	0.248272

44

45

46

47

48

49

Neighborhood_Veenker

```
MSZoning_RL
  7
                           0.177473
               GarageCars
  4
                           0.134419
            LotConfig_FR<sub>3</sub>
                           0.132896
  9
              OverallCond
                          0.099534
  1
     SaleCondition_AdjLand
                          0.099088
             SaleType_Con
 37
                           0.097109
         Foundation_Wood
                          0.087074
 35
      Here we have got Zoning, Condition1, Saletype condition, Exterios
                                                                               In [127]:
# Lasso Regression:
lm = Lasso(alpha=0.002)
lm.fit(X_train,y_train)
#r2 train
y_train_pred = lm.predict(X_train)
print(r2_score(y_true=y_train,y_pred=y_train_pred))
#r2 test
y_test_pred = lm.predict(X_test)
print(r2_score(y_true=y_test,y_pred=y_test_pred))
0.8879357191712136
0.8605144673838798
                                                                               In [128]:
# prnitng R2, RSS, MSE of test train when we double the alpha value for Lasso
y_pred_train = lm.predict(X_train)
y_pred_test = lm.predict(X_test)
```

Coef

Featuere

```
metric5=[]
r2_train_lr = r2_score(y_train,y_pred_train )
print("r2_train:")
print(r2_train_lr)
metric5.append(r2_train_lr)
r2_test_lr = r2_score(y_test, y_pred_test)
print("r2_test:")
print(r2_test_lr)
metric5.append(r2_test_lr)
rss1_lr = np.sum(np.square(y_train-y_pred_train))
print("RSS_train:")
print(rss1_lr)
metric5.append(rss1_lr)
rss2_lr = np.sum(np.square(y_test - y_pred_test))
print("RSS_test:")
print(rss2_lr)
metric5.append(rss2_lr)
mse_train_lr = mean_squared_error(y_train,y_pred_train)
print("MSE_train:")
print(mse_train_lr)
metric5.append(mse_train_lr)
mse_test_lr = mean_squared_error(y_test , y_pred_test)
print("MSE_test:")
print(mse_test_lr)
metric5.append(mse_test_lr)
r2_train:
0.8879357191712136
r2_test:
0.8605144673838798
RSS train:
15.575604557162212
RSS_test:
9.220776243708254
MSE train:
0.01605732428573424
MSE_test:
0.022165327508914073
                                                                         In [129]:
# Put the shortlisted Features and coefficienst in a dataframe
lasso_df = pd.DataFrame({'Features':X_train.columns,
'Coefficient':lm.coef_.round(4)})
lasso_df = lasso_df[lasso_df['Coefficient'] != 0.00]
lasso_df.reset_index(drop=True, inplace=True)
```

	Features	Coefficient
o	OverallQual	0.1193
1	OverallCond	0.0575
2	TotalBsmtSF	0.0772
3	GrLivArea	0.1236
4	GarageCars	0.0616
5	MSZoning_FV	0.0738
6	MSZoning_RL	0.0851
7	MSZoning_RM	-0.0423
8	Condition1_Norm	0.0378
9	BldgType_Duplex	-0.0150
10	Exteriorist_Wd Sdng	-0.0317
11	Foundation_PConc	0.0842
12	SaleType_New	0.0478

Features Coefficient

13	SaleCondition_Normal	0.0268				
14	SaleCondition_Partial	0.0031				
15	Neighborhood_Crawfor	0.0111				
16	Neighborhood_Edwards	-0.0275				
17	Neighborhood_NridgHt	0.0136				
18	Neighborhood_OldTown	-0.0770				
•	here we have got 19 features					
# Do	an RFE to minimise the	e features to 15	In [132]:			
X_tr	ain_lasso = X_train[la	sso_df.Features]				
<pre>lm = LinearRegression() lm.fit(X_train_lasso, y_train)</pre>						
# ru	nning RFE					
<pre>rfe = RFE(lm, n_features_to_select=15) rfe = rfe.fit(X_train_lasso, y_train)</pre>						
			In [133]:			
<pre># Method to get the coefficient values lasso_coeff_dict = dict(pd.Series(lm.coef_, index = X_train_lasso.columns))</pre>						
# Assign top 10 features to a temp dataframe for further display in the bar plot						
<pre>df = pd.DataFrame(list(zip(X_train_lasso.columns, rfe.support_, rfe.ranking_)), columns=['Features', 'rfe_support', 'rfe_ranking']) df = df.loc[df['rfe_support'] == True] df.reset_index(drop=True, inplace=True)</pre>						

```
df['Coefficient'] = df['Features'].apply(find)
df = df.sort_values(by=['Coefficient'], ascending=False)
df = df.head(10)
df
```

Out[133]:

	Features	rfe_support	rfe_ranking	Coefficient
4	MSZoning_FV	True	1	0.222373
5	MSZoning_RL	True	1	0.183704
2	GrLivArea	True	1	0.129387
0	OverallQual	True	1	0.102871
8	Foundation_PConc	True	1	0.084897
1	TotalBsmtSF	True	1	0.077818
11	Neighborhood_Crawfor	True	1	0.074205
13	Neighborhood_NridgHt	True	1	0.065437
9	SaleCondition_Normal	True	1	0.059463
3	GarageCars	True	1	0.059166

COMPARING THE RIDGE AND LASSO AFTER DOUBLE THE VLAUES OF ALPHA

In [134]:

#Comparing results of Ridge and Lasso

Out[134]:

	Metric	Ridge regression	Lasso regression
o	R2 Score Train	0.906388	o.88 7 936
1	R2Score Test	0.870611	0.860514
2	RSS Train	13.010979	15.575605
3	RSS Test	8.553367	9.220776
4	MSE Train	0.013413	0.016057
5	MSE Test	0.020561	0.022165

Here Lasso given the very close result of R2 score for both test and train. The most important feature after double the value of alpha is

- MSZoning_FV
- MSZoning_RL
- GrLivArea
- OverallQual
- TotalBsmtSF
- Neighborhood_Crawfor
- Foundation_PConc
- Neighborhood_NridgHt
- SaleCondition_Normal
- GarageCars

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans: Based on the alpha/Lambda values I have got, Ridge regression does not zero any
of the co efficient, Lasso zeroed one or two coefficients in the selected features, Lasso is
better option and it also helps in the some of the feature elimination.

QUESTION 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables.

Which are the five most important predictor variables now?

```
In [136]:
houseLasso = houseNew
houseLasso = houseLasso.drop(["MSZoning_FV", "GrLivArea", "MSZoning_RL",
"OverallQual", "Foundation_PConc"], axis=1)
                                                                          In [137]:
df_train, df_test = train_test_split(houseLasso, train_size=0.7,test_size =
0.3, random state=100)
                                                                          In [138]:
num_col =['MSSubClass','LotArea','OverallCond',
          'TotalBsmtSF','1stFlrSF','2ndFlrSF',
         'BsmtFullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
         'Fireplaces', 'GarageCars',
          'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch',
        1
scaler = StandardScaler()
df train[num col] = scaler.fit transform(df train[num col])
df_test[num_col] = scaler.transform(df_test[num_col])
                                                                          In [139]:
X trainLS = df train
y_trainLS = df_train.pop('SalePrice')
X_testLS = df_test
y_testLS = df_test.pop('SalePrice')
                                                                          In [141]:
# linear regression
lm = LinearRegression()
lm.fit(X_train, y_train)
# running RFE
```

Out[142]:

	Variable	rfe_support	rfe_ranking	
0	TotalBsmtSF	True	1	
1	ıstFlrSF	True	1	
2	2ndFlrSF	True	1	
3	KitchenQual	True	1	
4	BldgType_Duplex	True	1	
5	HouseStyle_1.5Unf	True	1	
6	HouseStyle_1Story	True	1	

True

HouseStyle_2.5Fin

7

8 RoofStyle_Gable True RoofStyle_Gambrel True 9 1 RoofStyle_Hip True 10 1 RoofStyle_Mansard True 11 1 Exterior1st_BrkComm 12 True Exteriorist_BrkFace True 13 Exteriorist_CemntBd True 14 1 Exterior2nd_AsphShn True 1 15 16 $Exterior {\tt 2nd_CmentBd}$ True Exterior2nd_HdBoard True 17 18 $Exterior {\tt 2nd_ImStucc}$ True 1 $Exterior {\tt 2nd_MetalSd}$ True 1 19 Exterior2nd_Other True 20 Exterior2nd_Plywood 21 True

Variable rfe_support rfe_ranking

22	Exterior2nd_Stucco	True	1
23	Exterior2nd_VinylSd	True	1
24	Exterior2nd_Wd Sdng	True	1
25	GarageType_Attchd	True	1
26	GarageType_Basment	True	1
27	GarageType_BuiltIn	True	1
28	GarageType_Detchd	True	1
29	SaleType_CWD	True	1
30	SaleType_Con	True	1
31	SaleType_ConLI	True	1
32	SaleType_New	True	1
33	SaleType_Oth	True	1
34	SaleCondition_AdjLand	True	1
35	SaleCondition_Normal	True	1

Variable rfe_support rfe_ranking

SaleCondition_Partial True 36 True Neighborhood_Blueste **37** 1 Neighborhood_BrDale 38 True 1 Neighborhood_BrkSide True 39 1 $Neighborhood_ClearCr$ True 40 Neighborhood_Edwards True 41 Neighborhood_IDOTRR True 42 1 Neighborhood_MeadowV True 1 43 Neighborhood_NAmes True 44 1 Neighborhood_NoRidge True 45 Neighborhood_NridgHt True 46 1 Neighborhood_OldTown True 47 1 Neighborhood_SWISU 48 True Neighborhood_Sawyer True

49

Variable

rfe_support rfe_ranking

```
In [143]:
# Assign the 50 columns to X_train_rfe
X_trainLS_rfe = X_trainLS[col]
# Associate the new 50 columns to X_train and X_test for further analysis
X_trainLS = X_trainLS_rfe[X_trainLS_rfe.columns]
X_testLS = X_testLS[X_trainLS.columns]
PERFORM LASSO TO NEW MODEL AFTER DROPPING THE FIVE IMP FEATURES
                                                                        In [144]:
# Lasso Regression:
lm = Lasso(alpha=0.001)
lm.fit(X_trainLS,y_trainLS)
y_train_predLS = lm.predict(X_trainLS)
print(r2_score(y_true=y_trainLS,y_pred=y_train_predLS))
y_test_predLS = lm.predict(X_testLS)
print(r2_score(y_true=y_testLS,y_pred=y_test_predLS))
0.8508069159169048
0.831327471195756
                                                                        In [145]:
#printing R2, RSS, MSE results
r2_train_lr = r2_score(y_trainLS ,y_train_predLS )
print(r2_train_lr)
r2_test_lr = r2_score(y_testLS, y_test_predLS)
print(r2_test_lr)
rss1_lr = np.sum(np.square(y_trainLS-y_train_predLS))
print(rss1_lr)
rss2_lr = np.sum(np.square(y_testLS - y_test_predLS))
print(rss2_lr)
mse_train_lr = mean_squared_error(y_trainLS,y_train_predLS)
print(mse_train_lr)
mse_test_lr = mean_squared_error(y_testLS , y_test_predLS)
print(mse_test_lr)
0.8508069159169048
```

```
20.736067399495816
11.150200435802233
0.021377389071645173
0.026803366432216907
                                                                              In [146]:
model_param = list(lm.coef_)
model_param.insert(0,lm.intercept_)
cols = df_train.columns
cols.insert(0,'const')
lasso_coef = pd.DataFrame(list(zip(cols,model_param)))
lasso_coef.columns = ['Featuere','Coef']
lasso_coef.sort_values(by='Coef',ascending=False).head(10)
#(["MSZoning_FV", "GrLivArea", "MSZoning_RL", "OverallQual",
"Foundation_PConc"]#
                                                                             Out[146]:
             Featuere
                          Coef
  o
           MSSubClass
                       11.576299
           OverallCond
                       0.139090
  4
             LotShape
  3
                        0.134275
              LotArea
  2
                        0.125079
 26
               MoSold
                        0.122311
     BuiltOrRemodelAge
                        0.114759
           LotFrontage
                       0.085939
  1
         LotConfig_FR2
                       0.067728
 36
```

0.831327471195756

Featuere Coef

- 47 BldgType_2fmCon o.o63315
- **37** LotConfig_FR₃ 0.060795

After removing the five most important fetaure that we have got prior "MSZoning_FV", "GrLivArea", "MSZoning_RL", "OverallQual", "Foundation_PConc" I have got the other important fetaures to predict the sales price with Overall condition, Lot area, shape, Condition1, IsRemodeled.