Funktionalanalysis - Übungsblatt 0

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: keine, nicht bewertetes Präsenzübungsblatt

Sei $(V, \|\cdot\|)$ normierter Raum mit der zugehörigen Familie der offenen Mengen \mathcal{T} . In Lemma 1.5 der Vorlesung wurde behauptet, dass \mathcal{T} eine Topologie definiert. Dies geschieht vermöge der induzierten Metrik $d(x, y) := \|x - y\|$ und der folgenden Übungsaufgabe.

Aufgabe 0.1

Sei (V, d) ein metrischer Raum und definiere $\mathcal{T} \subset \mathcal{P}(V)$ (Potenzmenge von V) durch

$$U \in \mathcal{T} \quad :\Leftrightarrow \quad \forall \ x \in U \ \exists \ \varepsilon > 0 \ \text{mit} \ B_{\varepsilon}(x) \subset U.$$

Beweisen Sie, dass \mathcal{T} eine Topologie auf V definiert. Zeigen Sie weiterhin, dass (V, \mathcal{T}) hausdorff'sch ist, d.h. alle Punkte $x, y \in V, x \neq y$ besitzen disjunkte offene Umgebungen

$$\forall x, y \in V, x \neq y \exists U_x, U_y \in \mathcal{T} \text{ mit } x \in U_x, y \in U_y, U_x \cap U_y = \emptyset.$$

Aufgabe 0.2

Sei (V,d) ein metrischer Raum und $M\subset V$ eine Menge. Zeigen Sie, dass der Abschluss \overline{M} gegeben ist durch

$$\{v \in V : \text{ für alle } \varepsilon > 0 \text{ existiert ein } w \in M \text{ mit } d(v, w) < \varepsilon\}.$$

Aufgabe 0.3

Sei V ein Vektorraum und $\|\cdot\|$, $|[\cdot]|$ zwei Normen auf V. Zeigen Sie, dass $\|\cdot\|$, $|[\cdot]|$ genau dann äquivalent sind, wenn für jede Folge $(v_n)_n$ in V gilt:

$$\lim_{n \to \infty} ||v_n|| = 0 \qquad \iff \qquad \lim_{n \to \infty} |[v_n]| = 0.$$

Hinweis: Sie dürfen Lemma 1.12 verwenden.

Aufgabe 0.4

Sei (V, d) ein vollständig metrischer Raum und $M \subset V$. Zeigen Sie, dass M genau dann abgeschlossen ist, wenn $(M, d \mid_{M \times M})$ ebenfalls vollständig ist.