

Proves d'accés a la universitat

Tecnologia industrial

Sèrie 1

Qualificació	TR
Exercici 1	
Exercici 2	
Exercici 3	
Exercici 4	
Exercici 5	
Exercici 6	
Suma de notes parcials	
Qualificació final	

Etiqueta de l'alumne/a	Ubicació del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE dels sis exercicis següents. Cada exercici val 2,5 punts. En el cas que respongueu a més exercicis, només es valoraran els quatre primers.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de l'exercici corresponent.

Exercici 1

Indiqueu la resposta correcta de cada qüestió. **Responeu en la taula de la pàgina 3**. En el cas que no indiqueu les respostes a la taula, les qüestions es consideraran no contestades.

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: –0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Un rentaplats ha consumit 0,9 kW h d'energia elèctrica per a escalfar 11 L d'aigua des d'una temperatura ambient $T_{\rm amb}$ = 10 °C a una temperatura T = 70 °C. La calor específica de l'aigua és $c_{\rm e}$ = 4,18 J/(g °C). El rendiment del rentaplats és

- *a*) 11,74 %.
- **b**) 27,59 %.
- c) 76,63 %.
- d) 85,15 %.

Qüestió 2

Un vehicle utilitza gasoil de poder calorífic p_c = 44,8 MJ/kg i densitat 0,85 kg/L. El motor té un rendiment del 32 %. Quin és el consum específic d'aquest motor dièsel?

- a) 251,1 g/(kW h)
- **b**) 69,75 g/(kW h)
- c) $80,36 \, \text{g/(kW h)}$
- d) 3,982 g/(kW h)

Qüestió 3

El diàmetre interior d'un cilindre hidràulic de doble efecte és de 60 mm, i el diàmetre de la tija és de 25 mm. Si s'alimenta amb un cabal d'oli de 9.3×10^{-3} m³/min, quina és la seva velocitat de retrocés?

- **b**) 3,980 mm/s
- c) 54,82 mm/s
- d) 66,34 mm/s

Qüestió 4

La gestió de residus té associada una generació d'emissions a l'atmosfera de gasos amb efecte d'hivernacle (GEH) a causa de l'ús de combustibles fòssils, la combustió dels residus i la formació de metà per la fermentació de la matèria orgànica. L'Oficina Catalana del Canvi Climàtic (OCCC) ha estimat un factor d'emissió, expressat en g CO_{2eq} per kilogram de residu generat, que inclou totes les emissions directes i indirectes del procés complet de gestió. La taula següent recull els factors d'emissió per a cada tipus de fracció de residu.

Fracció de residu	Vidre	Envasos	Paper	Matèria orgànica	Resta
Factor d'emissió (g CO _{2eq} /kg residu)	30,50	120,09	56,41	349,78	574,51

FONT: Oficina Catalana del Canvi Climàtic.

Una família que anualment generava 525 kg d'envasos, en un any ha aconseguit reduir aquesta quantitat un 60 %. Quina reducció en emissions de GEH ha obtingut respecte a l'any anterior?

- a) $25,22 \text{ kg CO}_{2_{eq}}$
- **b**) $37,83 \text{ kg CO}_{2_{eq}}$
- c) 63,05 kg CO_{2eq}
- **d**) $88,27 \text{ kg CO}_{2eq}$

Qüestió 5

Les mesures nominals de la peça d'acer de la figura són $a=90 \,\mathrm{mm}$ i $b=120 \,\mathrm{mm}$. Es fan mesuraments d'aquestes cotes amb un peu de rei i s'obtenen uns valors de 88,8 mm i 120,1 mm, respectivament. L'error relatiu del gruix de la peça és

- a) 0,9584%.
- **b**) 0,4333 %.
- c) 4,333 %.
- *d*) 0,1301%.

Taula de respostes:

Espai de resposta per a l'alumne/a				
Qüestió 1	a 🗌	<i>b</i> 🗌	<i>c</i> _	$d \square$
Qüestió 2	a 🗌	<i>b</i> \Box	<i>c</i> _	<i>d</i> [
Qüestió 3	а	b 🗌	<i>c</i> _	d [
Qüestió 4	а	b 🗌	<i>c</i> _	d 🗌
Qüestió 5	а	b 🗌	<i>c</i> _	d 🔲

Espai per al corrector/a	
Puntuació de la qüestió 1	
Puntuació de la qüestió 2	
Puntuació de la qüestió 3	
Puntuació de la qüestió 4	
Puntuació de la qüestió 5	
Total de l'exercici 1	

[2,5 punts en total]

En la defensa d'un projecte acadèmic, el tribunal que valora si el treball és apte o no apte està format per quatre membres: president, secretari, vocal 1 i vocal 2. La decisió es pren per majoria i, en cas d'empat, preval el vot de qualitat del president.

Responeu a les questions que hi ha a continuació utilitzant les variables d'estat següents:

$$\begin{aligned} & \text{vocal 1: } v_1 = \begin{cases} 1\text{: vot favorable} \\ 0\text{: vot en contra} \end{cases}; \text{vocal 2: } v_2 = \begin{cases} 1\text{: vot favorable} \\ 0\text{: vot en contra} \end{cases}; \text{secretari: } s = \begin{cases} 1\text{: vot favorable} \\ 0\text{: vot en contra} \end{cases}; \\ & \text{president: } p = \begin{cases} 1\text{: vot favorable} \\ 0\text{: vot en contra} \end{cases}; \text{decisió: } d = \begin{cases} 1\text{: treball apte} \\ 0\text{: treball no apte} \end{cases}. \end{aligned}$$

a) Elaboreu la taula de veritat del sistema.[1 punt]

	;		I	
v_1	v_2	s	p	d
	1	 	 	
	! ! !	 	 	
	 	 	! !	
	-	 		
	!	 	 	
	! ! !	 	 	
	: !			
	-	<u> </u>	 	
	! !	 	 	
	: 	!		
		! ! !	 	
	! !	! !	 	
	1	i i	 	
	i i	i i	i i	
	! !	! ! !	! ! !	
	 - 	 		
		<u> </u>		
	! !	! ! ! !	 	
	1			
	 	! ! ! !	! ! !	
	! !	! !	 	
	! !	 	: 	

<i>b</i>)	Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
c)	Dibuixeu el diagrama de portes lògiques equivalent. [0,5 punts]

[2,5 punts en total]

Una pantalla de projecció té una massa m=2 kg a la part inferior per a mantenir-la sempre tibada. Un motor reductor de rendiment $\eta_{\text{mot}}=0.9$ és l'encarregat de recollir la pantalla en el corró de diàmetre d=250 mm, que es troba articulat amb el sostre al punt P.

El punt inferior de la pantalla es desplaça verticalment des d'una altura $h_1 = 0.3$ m fins a $h_2 = 2$ m en t = 8 s, a velocitat constant. Si la massa de la resta d'elements és negligible, determineu:

 ${\it a}$) La potència elèctrica mitjana $P_{\rm elèctr}$ consumida pel motor reductor.

[1 punt]

b) La velocitat angular de l'eix de sortida del motor reductor $\omega_{\rm mot}$ i el parell aplicat per aquest al tambor $\Gamma_{\rm mot}$.

[1 punt]

<i>c</i>)	L'increment percentual, <i>Inc</i> , de la potència elèctrica si es volgués fer pujar la pantalla amb la meitat del temps. [0,5 punts]

[2,5 punts en total]

Un establiment turístic es planteja posar una estufa de pèllets o de gasoil per a cobrir una demanda energètica anual $E_{\rm cons}=15\,000\,{\rm kW}$ h. L'estufa de pèllets té un rendiment $\eta_{\rm pèl}=0.94$ i la instal·lació necessita una inversió inicial $c_{\rm inv_pèl}=7\,000\,{\rm e}$. Pel que fa a la instal·lació de l'estufa de gasoil, l'estufa té un rendiment $\eta_{\rm gas}=0.82$ i la instal·lació necessita una inversió inicial $c_{\rm inv_gas}=2\,000\,{\rm e}$. En ambdós casos el cost del manteniment anual s'estima en $c_{\rm mant_pèl}=c_{\rm mant_gas}=400\,{\rm e}$. El poder calorífic del pèl·let és $p_{c_pèl}=4.8\,{\rm kW}$ h/kg i el seu preu $c_{\rm pèl}=0.4\,{\rm e}/{\rm kg}$. El poder calorífic del gasoil és $p_{c_gas}=44.8\,{\rm MJ/kg}$, la seva densitat $\rho=0.85\,{\rm kg/L}$ i el seu preu $c_{\rm gas}=1.3\,{\rm e}/{\rm L}$.

Determineu:

a) El cost energètic, en €/(kW h), d'utilitzar cadascun dels combustibles, $ce_{pèl}$ i ce_{gas} . [1 punt]

b) La massa de combustible necessària anualment per a satisfer la demanda energètica amb l'estufa de pèl·lets, $m_{\text{pèl}}$.

[0,5 punts]

[2,5 punts en total]

La figura mostra un esquema simplificat d'una grua per a elevar caixes de fruita.

La barra OBC, de longitud 2l = 4 m (essent B el seu punt mitjà), es troba articulada al terra al punt O. A l'extrem C s'hi pengen 3 caixes de fruita de 25 kg cadascuna (m = 75 kg). La massa de la resta d'elements és negligible.

La barra es mou mitjançant un cilindre hidràulic de diàmetre interior $d_{\text{int}} = 40 \text{ mm}$, que es troba articulat a P i a B. Els punts O i P es troben sobre la mateixa vertical a una distància l=2 m.

El cilindre permet modificar la coordenada φ , que pren valors entre 0° < φ < 65°.

a) Dibuixeu el diagrama de cos lliure de la barra OBC. [0,5 punts]

<i>b</i>)	Trobeu la relacio entre les coordenades φ 1 α . [0,5 punts]
	bent que el cilindre hidràulic manté el sistema en equilibri i que φ = 30°, determineu La força, F_c , que fa el cilindre hidràulic. [1 punt]
d)	La pressió relativa $p_{\rm int}$ a l'interior del cilindre. [0,5 punts]

[2,5 punts en total]

Una espremedora domèstica per a fer suc de taronja està formada per un motor elèctric de corrent continu d'imants permanents i un reductor d'engranatges, la sortida del qual fa girar la peça en forma de con que permet extreure suc de les taronges. El parell del motor és donat per l'expressió

$$\Gamma_{\text{mot}} = (0.08U - 0.01\omega) \text{ N m},$$

en què U = 24 V és la tensió d'alimentació del motor i ω és la seva velocitat angular (en rad/s). La sortida del motor està connectada a l'entrada del reductor. Aquest està format per un pinyó de $z_p = 9$ dents que engrana amb una roda dentada de $z_r = 62$ dents.

a) Determineu la relació de transmissió $\tau = \omega_{\text{sortida}}/\omega_{\text{entrada}}$ del reductor. [0,5 punts]

b) Dibuixeu, indicant les escales, la corba característica parell-velocitat del motor i determineu-ne la velocitat de gir màxima, $n_{\text{màx}}$.

[0,5 punts]

En règim nominal, el motor gira a $n_{\rm mot}=1\,000\,{\rm min^{-1}}$ i té un rendiment $\eta=0,55$. Per a aquesta situació, determineu:

c) La intensitat *I* que circula pel motor. [1 punt]

d) La velocitat angular $\omega_{\rm con}$ de la peça en forma de con que extreu el suc de les taronges. [0,5 punts]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

Etiqueta de l'alumne/a	

Proves d'accés a la universitat

Tecnologia industrial

Sèrie 5

Qualificació	TR
Exercici 1	
Exercici 2	
Exercici 3	
Exercici 4	
Exercici 5	
Exercici 6	
Suma de notes parcials	
Qualificació final	

Etiqueta de l'alumne/a	Ubicació del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE dels sis exercicis següents. Cada exercici val 2,5 punts. En el cas que respongueu a més exercicis, només es valoraran els quatre primers.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de l'exercici corresponent.

Exercici 1

Indiqueu la resposta correcta de cada qüestió. **Responeu en la taula de la pàgina 3**. En el cas que no indiqueu les respostes a la taula, les qüestions es consideraran no contestades.

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: –0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

La figura mostra la corba tensió-deformació obtinguda en un assaig de tracció. Quant val, aproximadament, el límit elàstic d'aquest material?

- **b**) 200 MPa
- c) 265 MPa
- d) 250 MPa

Qüestió 2

Un cotxe emet 121 g de CO₂ per kilòmetre recorregut. Disposa d'un dipòsit amb 60 litres de combustible i el consum mixt és de 4,6 L cada 100 km. Quina és la petjada de diòxid de carboni que haurà emès a l'atmosfera quan hagi utilitzat el 90 % del combustible disponible?

- a) 142 kg CO₂
- **b**) 157,8 kg CO₂
- c) 30,06 kg CO₂
- **d)** $1,420 \text{ kg CO}_2$

Qüestió 3

Un motor d'inducció trifàsic hexapolar es connecta a 230 V i 50 Hz. L'eix del motor gira a 940 $\rm min^{-1}$. Determineu el lliscament en tant per u.

- a) 468.1×10^{-3}
- **b**) 63.83×10^{-3}
- *c*) 0,06
- **d**) 0,88

Qüestió 4

En un circuit elèctric, es connecten en paral·lel una resistència de $20\,\Omega$ i una altra de $30\,\Omega$. Totes dues tenen una tolerància del $\pm\,5\,\%$. Entre quins valors es troba la resistència equivalent?

- a) 11,40 Ω i 12,60 Ω
- **b)** $47,50 \Omega i 52,50 \Omega$
- c) $49,50 \Omega i 50,50 \Omega$
- *d*) 11,85 Ω i 12,09 Ω

Qüestió 5

Es disposa d'un cilindre d'efecte simple que treballa a 0,7 MPa. El diàmetre de l'èmbol és de 40 mm i el diàmetre de la tija és de 25 mm. Quina força teòrica fa el cilindre en el procés d'avanç?

- *a*) 536,0 N
- **b**) 343,6 N
- *c*) 123,7 N
- *d*) 879,6 N

Taula de respostes:

Espai de resposta per a l'alumne/a				
Qüestió 1	a 🗌	$b \square$	<i>c</i> _	$d \square$
Qüestió 2	a 🗌	$b \square$	<i>c</i> _	$d \square$
Qüestió 3	a 🗌	$b \square$	<i>c</i> _	$d \square$
Qüestió 4	a 🗌	$b \square$	<i>c</i> _	$d \square$
Qüestió 5	а	<i>b</i>	<i>c</i>	d 🗌

Espai per al corrector/a	
Puntuació de la qüestió 1	
Puntuació de la qüestió 2	
Puntuació de la qüestió 3	
Puntuació de la qüestió 4	
Puntuació de la qüestió 5	
Total de l'exercici 1	

[2,5 punts en total]

Un semàfor té un circuit de control d'errors que activa una alarma si els tres llums estan apagats o si com a mínim dos estan encesos a la vegada, tret que siguin el verd i el groc. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

llum verd:
$$v = \begin{cases} 1 \text{: encès} \\ 0 \text{: apagat} \end{cases}$$
; llum groc: $g = \begin{cases} 1 \text{: encès} \\ 0 \text{: apagat} \end{cases}$; llum roig: $r = \begin{cases} 1 \text{: encès} \\ 0 \text{: apagat} \end{cases}$; alarma: $a = \begin{cases} 1 \text{: activada} \\ 0 \text{: desactivada} \end{cases}$.

a) Escriviu la taula de veritat del sistema.[1 punt]

V	g	r	a

<i>b</i>)	Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
c)	Dibuixeu l'esquema de portes lògiques equivalent. [0,5 punts]

[2,5 punts en total]

Es volen installar petits aerogeneradors en una zona rural per a donar subministrament a una casa aïllada amb una demanda anual de $E_{\rm casa}=500\,{\rm kW}$ h. En aquests aerogeneradors, el rotor es connecta directament al generador elèctric sense necessitat d'un multiplicador. El rendiment del generador és $\eta_{\rm gen}=1/3$. S'obté energia 14 hores al dia durant 250 dies l'any. Les gràfiques següents mostren la potència elèctrica generada $P_{\rm útil}$ d'un aerogenerador en funció de la velocitat del vent v i la potència a l'eix del rotor $P_{\rm rotor}$ en funció de la velocitat de gir n de les pales.

Per al cas estudiat, s'estima que la velocitat del vent al punt d'instal·lació és de v = 4 m/s. Per a aquestes condicions, determineu:

a) La potència a l'eix del rotor P_{rotor} . [0,5 punts]

b) La velocitat angular de les pales ω i el parell a l'eix del rotor Γ. [1 punt]

[0,5 punts]	
d) La quantitat q d'aerogeneradors que caldria instal·lar per a donar servei a l'habitat q	ge.
[0,5 punts]	

[2,5 punts en total]

Una planta escalfa aigua utilitzant diàriament $m_{\rm b}=40$ tones de biomassa amb un poder calorífic pc=4 kW h/kg, i produeix $E_{\rm útil}=345,6\times10^9$ J. La instal·lació eleva la temperatura de l'aigua $\Delta T=40$ °C. La calor específica de l'aigua és $c_{\rm e}=4,18$ J/(g K). Determineu:

a) El rendiment de la planta η . [1 punt]

b) La quantitat d'aigua m_a escalfada cada dia. [0,5 punts]

c)	El cabal mitjà diari q d'aigua calenta produït.
	[1 punt]

[2,5 punts en total]

Un habitatge disposa d'una caldera alimentada amb gasoil que utilitza $V_{\rm gasoil}=1\,000\,{\rm L}$ de gasoil anuals per a subministrar aigua calenta sanitària i aigua per al circuit de calefacció. El rendiment de la caldera és $\eta_{\rm gasoil}=0,89$, el poder calorífic del gasoil és $pc_{\rm gasoil}=44,8\,{\rm MJ/kg}$ i la seva densitat és $\rho_{\rm gasoil}=0,85\,{\rm kg/L}$. S'estima que el factor d'emissions del gasoil $FE_{\rm gasoil}$ és de $2,79\,{\rm kg}$ de ${\rm CO}_2$ per litre de combustible.

Per tal de reduir les emissions de CO_2 , els propietaris es plantegen canviar aquesta caldera per una de gas natural que subministri la mateixa energia. El rendiment de la nova caldera és $\eta_{\rm GN} = 0.94$ i el poder calorífic del gas natural és $pc_{\rm GN} = 11.7$ kW h/m³. S'estima que el factor d'emissions d'aquest combustible és $FE_{\rm GN} = 0.203$ kg_{CO2}/(kW h). Determineu:

a) L'energia anual subministrada per la caldera de gasoil $E_{\rm subm}$. [0,5 punts]

b) L'energia anual que consumiria la caldera de gas natural $E_{\text{cons_GN}}$ i el volum d'aquest combustible V_{GN} .

[1 punt]

[2,5 punts en total]

Una persona asseguda en una cadira de rodes elèctrica avança a una velocitat constant $v=4\,\mathrm{km/h}$ per un pendent ascendent del 10 %. La massa del conjunt format per la persona i la cadira és $m=240\,\mathrm{kg}$. La cadira té dues rodes motrius de diàmetre $d=300\,\mathrm{mm}$ amb un motor reductor independent cadascuna. En la situació d'estudi, la cadira avança en línia recta, els dos motors consumeixen la mateixa potència i les rodes no llisquen. El rendiment dels motors reductors és $\eta=0.79$ i la fricció amb l'aire es considera negligible. Determineu:

a) La potència mecànica a l'eix de cada roda $P_{\rm mec}$. [1 punt]

c) La potència elèctrica total consumida $P_{\rm cons}$. [0,5 punts]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

Etiqueta de l'alumne/a	

