Musterlösung der Abschlussklausur Moderne Netzstrukturen

18. Februar 2015

Name:
Vorname:
Matrikelnummer:
Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund und prüfungsfähig fühle. Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als angetreten gilt und bewertet wird.
Unterschrift:

- Tragen Sie auf allen Blättern (einschließlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein.
- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren *Lichtbildausweis* und Ihren *Studentenausweis* bereit.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen.
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit beträgt 90 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

Bewertung:

Aufgabe:	1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Note
Maximale Punkte:	7	6	6	6	9	10	4	8	4	6	6	10	8	90	
Erreichte Punkte:															

A C 1	- 1 \
Aufgabe	
Auigabe	·
0	,

Punkte:

Maximale Punkte: 5+2=7

a) Es existieren unterschiedliche Netzwerktopologien (Bus, Ring, Stern, vollständig vermascht, teilweise vermascht, Baum und Zelle).

Schreiben Sie in der folgenden Tabelle in jede Zeile <u>eine</u> Netzwerktopologie, die zur jeweiligen Aussage passt.

Aussage	Topologie
Mobiltelefone (GSM-Standard) verwenden diese Topologie	Zelle
Diese Topologie enthält einen Single Point of Failure	Bus, Stern oder
	Zelle
Thin Ethernet und Thick Ethernet verwenden diese Topologie	Bus
WLAN mit Access Point verwendet diese Topologie	Zelle
WLAN ohne Access Point verwendet diese Topologie	Masche
Token Ring (logisch) verwendet diese Topologie	Ring
Ein Kabelausfall führt zum kompletten Netzwerkausfall	Ring oder Bus
Diese Topologie enthält keine zentrale Komponente	Bus, Ring oder
	Masche
Moderne Ethernet-Standards verwenden diese Topologie	Stern
Token Ring (physisch) verwendet diese Topologie	Stern

Für jede korrekte Antwort gibt 0,5 Punkte. Für jede falsche Antwort gibt es 0 Punkte.

b) Warum ist das hybride Referenzmodell verglichen mit dem TCP/IP-Referenzmodell näher an der Realität?

Das hybride Referenzmodell unterscheidet die Bitübertragungsschicht und Sicherungsschicht, denn deren Aufgabenbereiche sind vollkommen unterschiedlich. Das TCP/IP-Referenzmodell fasst die Bitübertragungsschicht und Sicherungsschicht zu einer Schicht zusammen.

Name:	Vorname:	Matr.Nr.:
ranic.	vornanic.	1/1/1/1/1/1/1

${f Aufgabe\ 2}$

Punkte:

Maximale Punkte: 6

Stellen Sie sich vor, die NASA hätte es geschafft, ein Raumschiff zum Planeten Mars zu schicken. Zwischen dem Planeten Erde und dem Raumschiff gibt es eine Punkt-zu-Punkt-Verbindung mit einer Datendurchsatzrate von 256 kbps (Kilobit pro Sekunde).

Die Entfernung zwischen Erde und Mars schwankt zwischen ca. 55.000.000 km und ca. 400.000.000 km. Für die weiteren Berechnungen verwenden Sie ausschließlich den Wert 55.000.000 km, welcher der kürzesten Entfernung zwischen Erde und Mars entspricht.

Die Signalausbreitungsgeschwindigkeit entspricht der Lichtgeschwindigkeit (299.792.458 m/s).

a) Berechnen Sie die Umlaufzeit = Round Trip Time (RTT) der Verbindung. RTT = (2 * Distanz) / Signalausbreitungsgeschwindigkeit

$$\mbox{Umlaufzeit} = \mbox{RTT} = \frac{2*55.000.000.000\,\mbox{m}}{299.792.458\,\mbox{m}} = 366,920504718s$$

b) Berechnen Sie das Bandbreite-Verzögerung-Produkt für die Verbindung, um herauszufinden, was die maximale Anzahl an Bits ist, die sich zwischen Sender und Empfänger in der Leitung befinden können.

Signalausbreitungsgeschwindigkeit = $299.792.458 \,\mathrm{m/s}$ Distanz = $55.000.000.000 \,\mathrm{m}$ Übertragungsverzögerung = $0 \,\mathrm{s}$ Wartezeit = $0 \,\mathrm{s}$

$$Ausbreitungsverz\"{o}gerung = \frac{55.000.000.000\,\mathrm{m}}{299.792.458\,\frac{\mathrm{m}}{\mathrm{s}}} = 183,460252359\,\mathrm{s}$$

 $Bandbreite-Verzögerung-Produkt=256.000\,\frac{\mathrm{Bit}}{\mathrm{s}}\times183,460252359\,\mathrm{s}=46.965.824\,\mathrm{Bit}$

Name:	Vorname:	Matr.Nr.:
Aufgab	e 3)	Punkte:
Maximale Punkte	e: 1+1+1+1+1=6	
		Protokolle der Sicherungsschicht? ogische Netzwerkadressen
,	otokoll verwendet Ethernet fü $solution\ Protocol\ (ARP)$	r die Auflösung der Adressen?
, -	ngt einen Rahmen mit der Zie erkgeräte im gleichen physisch	eladresse FF-FF-FF-FF-FF? nen Netz.
,	.C-Spoofing? emäßige Ändern der MAC-Ad	dresse.
,	zwei Netzwerkgeräte, die die er-2-Switch, Router oder Laye	Kollisionsdomäne unterteilen. er-3-Switch.
,	zwei Netzwerkgeräte, die die Layer-3-Switch.	Broadcast-Domäne unterteilen.

Aufgabe 4)

Punkte:

Maximale Punkte: 5+1=6

a) Zeichnen Sie alle Kollisionsdomänen in die abgebildete Netzwerktopologie.

b) Zeichnen Sie alle Broadcast-Domänen in die abgebildete Netzwerktopologie.

Hinweis: Im Nachhinein war dieses Beispiel unglücklich gewählt, weil die große Broadcast-Domäne mit zwei Schnittstellen des L3-Switches verbunden ist und dabei eine Schleife entsteht. In der Praxis sollte man eine solche Verkabelung vermeiden.

c) Wie viele logische Subnetze sind für diese Netzwerktopologie nötig? Es sind 2 logische Subnetze nötig.

Nam	e:	Vorname:	Matr.Nr.:		
\mathbf{A} ı	ufgabe 5)		Punkte:		
Maxi	imale Punkte: 1+1+1+	-1+2+1+2=9			
a)	Was ist ein autonome Jedes AS besteht aus	· ·	ı logischen Netzen, die		
	_	Organisation (z.E einer Universität)	3. einem Internet Service Provider, einem Un- betrieben und verwaltet werden. wenden.		
b)	Das Open Shortest Pa ⊠ Intra-AS-Routing	ath First (OSPF) \Box Inter-AS	ist ein Protokoll fürRouting		
c)	Das Border Gateway ☐ Intra-AS-Routing	Protocol (BGP) i ⊠ Inter-AS			
d)	Das Routing Information	tion Protocol (RII \Box Inter-AS	P) ist ein Protokoll fürRouting		
e)	Bei RIP kommunizier einen Vorteil und e Vorteil: Geringe Belas	einen Nachteil d			
			ich Aktualisierungen nur langsam verbreiten.		
f)	Bei RIP hängen die Wegkosten (Metrik) ausschließlich von der Anzahl der Router (Hops) ab, die auf dem Weg zum Zielnetz hängen, passiert werden müssen. Nennen sie einen Nachteil dieser Vorgehensweise.				
			mit dem geringsten Hopcount die einzelnen adurchsatzrate haben.		
g)	Bei OSPF kommunizi einen Nachteil diese		miteinander. Nennen sie einen Vorteil und		
	Vorteil: Schnelle Kon	vergenz.			
	Nachteil: Netzwerk w	$ird geflutet \Longrightarrow h$	ohe Belastung für das Netzwerk.		

Name:	Vorname:	Matr.Nr.:

Aufgabe 6)

Punkte:

Maximale Punkte: 1+1+1+1+1+1+1+1+2=10

a) Nennen Sie ein Beispiel, wo es sinnvoll ist, TCP zu verwenden.

TCP ist dort sinnvoll, wo Zeit nicht das wichtigste Kriterium ist, sondern eine fehlerfreie Übertragung. Beispiele sind: Übertragung von Web-Seiten, Email-Kommunikation, Dateiübertragungen via FTP und die Fernsteuerung von Computern via Telnet oder SSH.

b) Nennen Sie ein Beispiel, wo es sinnvoll ist, UDP zu verwenden.

Es ist dort sinnvoll, wo Verzögerungen vermieden werden sollen oder wo Nachrichten als nicht so wichtig angesehen werden. Beispiele sind Videotelefonie oder die Übertragung von Diagnose- und Fehlermeldungen via ICMP.

c) Was ist ein Socket?

Ein Socket besteht aus einer Portnummer und einer IP-Adresse.

- d) Was gibt die Seq-Nummer in einem TCP-Segment an?

 Es enthält die Folgenummer (Sequenznummer) des aktuellen Segments.
- e) Was gibt die Ack-Nummer in einem TCP-Segment an? Es enthält die Folgenummer des nächsten erwarteten Segments.
- f) Warum verwaltet der Sender bei TCP zwei Schiebefenster und nicht nur ein einziges? Weil es zwei mögliche Ursachen für Überlastungen gibt. Die Empfängerkapazität und die Netzkapazität.
- g) Was ist die Phase Slow Start bei TCP?

 Die exponentielle Wachstumsphase des Überlastungsfensters.
- h) Was ist die Phase Congestion Avoidance bei TCP?

 Die lineare Wachstumsphase des Überlastungsfensters.
- i) Beschreiben Sie die Funktionsweise einer Denial of Service-Attacke via SYN-Flood. Ein Client sendet viele Verbindungsanfragen (SYN), antwortet aber nicht auf die Bestätigungen (SYN ACK) des Servers mit ACK. Das Fluten des Servers mit Verbindungsanfragen füllt dessen Tabelle mit den TCP-Verbindungen im Netzwerkstack.

Name:	Vorname:	Matr.Nr.:
Aufgabe 7)		Punkte:
Maximale Punkte: 0,5+1+	-1+0,5+1=4	
Welches Netzwerkgerät bz	w. welche Netzwerkg	eräte in Computernetzen
a) übertragen Signale ü Hochfrequenzbereich <i>Modem</i>	·	indem sie diese auf eine Trägerfrequenz im
		en logischen Adressbereichen?
Router und Layer-3-	Switch	
c) verbinden physische (Nennen Sie zwei Ge		
Bridge und Layer-2-	Switch	
d) verbinden drahtlose	Netzwerkgeräte im Ir	nfrastruktur-Modus?
Access Point		
Als alternative Lösur akzeptiert.	ng wurde die Antwort	"WLAN-Router" auch als korrekte Lösung
e) erweitern die Reichw (Nennen Sie zwei Ge		
Repeater und Hub (Multiport Repeater)	

Name: Vorname: Matr.Nr.:

Aufgabe 8)

Punkte:

Maximale Punkte: 4+4=8

a) Fehlererkennung via CRC: Prüfen Sie, ob der empfangene Rahmen korrekt übertragen wurde.

Empfangener Rahmen: 1011010110100 Generatorpolynom: 100101

```
1011010110100
100101||||||
-----vv||||
100001||||
100101|||
-----vv||
100101||
100101||
00 => Der Rahmen wurde korrekt übertragen
```

b) Berechnen Sie den zu übertragenen Rahmen

Nutzdaten: 11010011 Generatorpolynom: 100101

Das Generatorpolynom hat 6 Stellen \implies fünf 0-Bits an die Nutzdaten anhängen

```
1101001100000

100101|||||||
-----v|||||

100101|||||

100101|||

110100|||

100101||

100101||

100101||

-----vv

11100 = Rest = Prüfsumme
```

Zu übertragender Rahmen: 11010011111100

Name: Vorname: Matr.Nr.:	
--------------------------	--

Aufgabe 9)

Punkte:

Maximale Punkte: 4

Berechnen Sie die erste und letzte Hostadresse, die Netzadresse und die Broadcast-Adresse des Subnetzes.

IP-Adresse:	153.213.11.213	10011001.11010101.00001011.11010101
Netzmaske	255.255.255.224	11111111.11111111.11111111.11100000
Netzadresse?	153.213.11.192	10011001.11010101.00001011.11000000
Erste Hostadresse?	153.213.11.193	10011001.11010101.00001011.11000001
Letzte Hostadresse?	153.213.11.222	10011001.11010101.00001011.11011110
Broadcast-Adresse?	153.213.11.223	10011001.11010101.00001011.11011111

binäre Darstellung	dezimale Darstellung
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Name: Vorname: Matr.Nr.:

Aufgabe 10)

Punkte:

Maximale Punkte: 3+3=6

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die Subnetznummern von Sender und Empfänger und geben Sie an, ob das IP-Paket während der Übertragung das Subnetz verlässt oder nicht.

a)

Die IP-Adressen sind Klasse B-Adressen.

Sender:10110011.11110001.01010000.11010101179.241.80.213Netzmaske:11111111.1111111.11111000.00000000255.255.248.0

Subnetz-ID: XXXXX

Empfänger: 10110011.11110001.01010101.11100101 179.241.85.229
Netzmaske: 11111111.1111111.11111000.00000000 255.255.248.0

Subnetz-ID: XXXXX

Subnetznummer des Senders? 1010 => 10 Subnetznummer des Empfängers? 1010 => 10 Verlässt das IP-Paket das Subnetz [ja/nein]? nein

b)

Die IP-Adressen sind Klasse B-Adressen.

 Sender:
 10110110.10010001.00001011.11010001
 182.145.11.209

 Netzmaske:
 11111111.1111111.1111111.11100000
 255.255.255.224

Subnetz-ID: XXXXXXXX.XXX

Empfänger: 10110110.10010001.00001011.11100001 182.145.11.225 Netzmaske: 11111111.11111111.111100000 255.255.254

Subnetz-ID: XXXXXXXX.XXX

Subnetznummer des Senders? 1011110 => 94 Subnetznummer des Empfängers? 1011111 => 95 Verlässt das IP-Paket das Subnetz [ja/nein]? ja

Name:	Vorname:	Matr.Nr.:

Aufgabe 11)

Punkte:

Maximale Punkte: 6

Der folgende Signalverlauf ist mit NRZI und 4B5B kodiert. Geben sie die Nutzdaten an.

Bezeichnung	4B	5B	Funktion
0	0000	11110	0 hexadezimal
1	0001	01001	1 hexadezimal
2	0010	10100	2 hexadezimal
3	0011	10101	3 hexadezimal
4	0100	01010	4 hexadezimal
5	0101	01011	5 hexadezimal
6	0110	01110	6 hexadezimal
7	0111	01111	7 hexadezimal
8	1000	10010	8 hexadezimal
9	1001	10011	9 hexadezimal
A	1010	10110	A hexadezimal
В	1011	10111	B hexadezimal
С	1100	11010	C hexadezimal
D	1101	11011	D hexadezimal
Е	1110	11100	E hexadezimal
F	1111	11101	F hexadezimal

Name: Vorname: Matr.	Nr.:
----------------------	------

Aufgabe 12)

Punkte:

Maximale Punkte: 10

Kodieren Sie die Bitfolge mit 5B6B und NRZ und zeichnen Sie den Signalverlauf.

Bitfolge: 00001 01011 11000 01110 10011

5B	6B	6B	6B	5B	6B	6B	6B
	neutral	positiv	negativ		neutral	positiv	negativ
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

Name	e: 	vorname:	Matr.Nr.:
${f A}$ ι	ufgabe	13)	Punkte:
Maxi	male Punkte: 1+	-1+1+1+1+2+1=8	
a)	Was ist ein Spa	nnbaum?	
	-	n (Spanning Tree) ist ein reisfrei ist, weil Kanten en	Teilgraph des Graphen, der alle Knote tfernt wurden.
b)	Welches Zugriffs	sverfahren verwendet Ethe	ernet?
		sches Zugriffsverfahren inistisches Zugriffsverfahre	en
c)	Welches Zugriffs	sverfahren verwendet WLA	AN?
		sches Zugriffsverfahren inistisches Zugriffsverfahre	en
d)		ichtig, dass die Übertragur Kollision im Netzwerk auftr	ng eines Rahmens noch nicht abgeschlosser: citt?
		nde Netzwerkgerät eventue n eine erfolgreiche Übertra	ell schon mit den Aussenden des Rahmen gung glaubt.
e)			tragung eines Rahmens noch nicht abge Ethernet-Netzwerk auftritt?
	sein, dass die Ü RTT (Round T	bertragungsdauer für eine rip Time) nicht unterschri	tlänge haben. Diese muss so dimensionier n Rahmen minimaler Länge die maximal tten wird. So ist garantiert, dass sich ein bevor dieser mit dem Senden fertig ist.
f)	Welche beiden	speziellen Eigenschaften d	es Übertragungsmediums von Funknetze

Fading (abnehmende Signalstärke) und Hidden-Terminal (versteckte Endgeräte).

g) Warum sind Gateways in der Vermittlungsschicht von Computernetzen heutzutage

Moderne Computernetze arbeiten fast ausschließlich mit dem Internet Protocol (IP). Darum ist eine Protokollumsetzung auf der Vermittlungsschicht meist nicht nötig.

verursachen unerkannte Kollisionen beim Empfänger?

selten nötig?