4.8.1.Алгоритм апроксимації опуклої оболонки

Мал.3.23. Апроксимація опуклої оболонки.

Основна ідея алгоритму. Полягає в тому, щоб виділити із заданої множини S точок деяку підмножину S*, опукла оболонка якої являє собою апроксимацію опуклої оболонки заданої множини .

<u>Побудова</u>. 1. Визначаються чотири екстремальні точки: $q_1 = \min_y \min_x S$, $q_2 = \max_y \min_x S$, $g_1 = \min_y \max_x S$, $g_2 = \max_y \max_x S$. Вибираємо точки які мають мінімальну та максимальну x-кординати: x_{max} , x_{min} . Вертикальна смуга між ними розбивається на k смуг рівної ширини. (Ці k смуг утворюють послідовність "комірок", по яким будуть розподілятись N точок множини S.)

- 2.В кожній із цих k смуг визначаються точки з максимальними y-координатами: $S_i^* = \{P_{\min y}^i, P_{\max y}^i\}$ (2k точок).
- 3. Множини точок з екстремальними координатами 1-ої та κ ої смуг такі (максимум 4 точки): $S_1^* = \{P_{\min y}^1, P_{\max y}^1, q_1, q_2\}, S_i^* = \{P_{\min y}^k, P_{\max y}^k, q_1, q_2\}.$ Сформована множина містить не більш ніж 2k+4 точок і позначимо її через S^* . 4. Будується опукла оболонка множини S^* , яка є апроксимацією оболонки заданої множини S одним із відомих методів (наприклад, методом Грехема).

Реалізація методу.

- 1.Вказані k смуг відображаються в масиві із (k+2) елементів(0-й та (k+1) —й елементи містять дві точки із екстремальними значеннями x-координати: відповідно (x_{min}, x_{max})).
- 2.Смуга (номер смуги i) у яку потрапляє деяка точка p, визначається співвідношенням: $i = \lfloor (x(p) x_{min})/\Delta \rfloor$, де $\Delta = (x_{max} x_{min})/k$.
 - 3. Мінімум та максимум у кожній смузі можна визначати паралельно.
- 4. Для побудови упорядкованої множини точок порівнюємо у кожній смузі значення x координати двох точок множини S^* , які належать цій смузі. Повний час роботи алгоритму рівний $\theta(N+k)$.

Питання: Як далеко від наближеної опуклої оболонки може бути точка із S, яка розташована за її межами ? Відповідь на це дає наступна теорема.

Теорема. Довільна точка $p \in S$, яка не потрапила в середину наближеної опуклої оболонки, розташована на відстані, не більшій ніж $\Delta = (x_{max} - x_{min}) / k$.

Доведення. Розглянемо смугу. яка містить точку p. Так, як точка p розташована за межами наближеної оболонки, то вона не може мати ні найбільшу ні найменшу y-координату серед точок, які потрапили у цю ж смугу. $\Rightarrow y_{min} \le y(p) \le y_{max}$. Якщо u це точка перетину горизонтальної прямої, яка проходить через точку p, з ребром наближеної оболонки, то довжина відрізка pu обмежує зверху відстань від точки p до оболонки. Довжина відрізку pu сама обмежена зверху шириною смуги ($\Delta = (x_{max} - x_{min}) / k$).

Мал. 3.24. Аналіз алгоритму апроксимації.

Побудова опуклої оболонки простого многокутника

Шукатимемо алгоритми, оцінка яких у гіршому випадку, менша O(NlogN).

Алгоритм Лі. Нехай p_1 — сама ліва вершина заданого простого многокутника P, а $(p_1, p_2, ..., p_N)$ — впорядкована циклічна послідовність його вершин (за вершиною p_N йде p_1). Нехай внутрішня частина P залишається праворучу при обході його границі в указаному порядку (множина вершин многокутника орієнтована проти годинникової стрілки). Нехай p_M — сама права вершина. p_1 та p_M граничні точки опуклої оболонки многокутника P. Вони розбивають послідовність вершин многокутника на два ланцюги: один від p_1 до p_M , другий — від p_M до p_1 . Достатньо дослідити побудову опуклої оболонки для ланцюга $(p_1, p_2, ..., p_M)$, яку будемо називати верхньою оболонкою.

Мал.3.25. Верхня опукла оболонка простого многокутника.

Нехай $(q_1, q_2, ..., q_R)$ — підпослідовність $(p_1, p_2, ..., p_M)$, в якій $q_1 = p_1$ та $q_R = p_M$ — шукана опукла оболонка многокутника. Кожне ребро q_iq_{i+1} є "кришкою" "кармана" K_i , де карман K_i — це ланцюг послідовності $(p_1, p_2, ..., p_M)$, першою та останньою вершинами якої є q_i та q_{i+1} відповідно.

Алгоритм проходить ланцюг та послідовно будує кришки усіх карманів. Критичною будемо називати вершину, яка з останньою знайденою вершиною типу q утворює карман. Кроком просунення будемо називати перехід від однієї критичної вершини до іншої (мал.3.26). Наприклад, на третьому кроці критичною точкою є p_4 . Наступною критичною точкою буде p_7 . При цьому критична точка p_4 не належить опуклій оболонці.

Припустимо, що границя многокутника переглядається від вершини p_1 до p_s ($s \le M$) і вершина $p_s = q_i$ є критичною. Позначимо через u вершину границі P, яка передує q_i . В залежності від положення u відносно орієнтованого відрізка

 $q_M q_i$ мають місце два випадки:

1.Вершина **и** знаходиться праворуч $q_M q_i$ або на ньому. У цьому випадку у вертикальній смузі, визначеній вершинами q_M і q_i , досліджуються три області (1,2,3), які визначаються: прямою, що проходить через точки q_{i-1} та q_i ; променем, який є продовженням відрізку $q_i u$ та частиною границі многокутника P, яка відповідає карману K_{i-1} .

Мал. 3.27 (1)

2. Вершина **и** знаходиться ліворуч від $q_M q_i$. У цьому випадку додається до розгляду четверта область (4).

Мал. 3.27 (2)

Позначимо через v вершину, яка слідує за q_i на границі многокутника P. Ця вершина v може бути в одній із областей. В областях 2 та 3 вершина v буде критичною, в інших — ні. Розглянемо випадки розташування вершини v в кожній із цих областей (мал. 3.28).

Область 1. Границя многокутника заходить у карман (Мал. 3.28 (а)). Рухаємось по границі до тих пір, поки не досягнемо першого ребра границі, одна з вершин w якого знаходиться зовні кармана (в області 2). Так, як P, карман та його кришка утворюють прості многокутники, то згідно теореми про Жорданову криву, границя многокутника P обов'язково перетинає кришку кармана. Переходимо до обробки w, а значить до наступного випадку.

Область 2. v в області 2 ϵ критичною (Мал. 3.28 (б)). Шукається опорна пряма з вершини v до ланцюга ($q_1,q_2,...,q_{i-1}$). Якщо ця пряма містить q_r (r < i), то вершини ($q_{r+1},q_{r+2},...,q_i$) вилучаються, а v береться як нова q_{r+1} . v - вершина опуклої оболонки, так як вона зовнішня відносно оболонки ($q_1,q_2,...,q_M$).

Мал. 3.28 (б)

Область 3. Вершина $v \in \text{критичною i вибирається як q}_{i+1}$ (Мал. 3.28 (в)).

Мал. 3.28 (в)

Область 4. У цьому випадку границя многокутника заходить всередину опуклої оболонки. Як і в першому випадку рухаємось по границі многокутника до тих пір, доки не досягнемо першого ребра, яке має властивості: одна з його вершин є зовнішньою до області 4 або співпадає з $q_{\rm M}$. В останньому випадку процедура завершується. У першому ж випадку вершина v міститься в області 3 або 2 і обробляється відповідно. (Мал. 3.28 (д)).

Алгоритм

```
procedure ОПУКЛА ОБОЛОНКА ПРОСТОГО МНОГОКУТНИКА
           (p_1, ..., p_M)
begin P \Leftarrow (p_2, ..., p_M);
      Q \Leftarrow q_0;
      0 \Leftarrow p_1
      while (P \neq \emptyset) do
         begin v \leftarrow P:
               if ((q_{i-1}q_iv) - правий поворот)
                  (* області Ç, , ¬*) then
                  if (uq_1v) - правий поворот (*області, ^*) then
                      if (q_Mq_iv) - правий поворот
                        (* область *) then Q \leftarrow v
                      else (* область ¬ *)
                           while (ПЕРЕДНІЙ(Р) знаходиться
                                 зліва від q_M q_i або на ньому) do
                                 ВИШТОВХНУТИ Р
                  else (* область 6 *)
                       while (ПЕРЕДНІЙ(Р) знаходиться зліва
                             від q_iq_{i-1} або на ньому) do
                             ВИШТОВХНУТИ Р
             else (* область z *)
                  begin while ((q_{i-1}q_iv) - лівий поворот)
                  do ВИШТОВХНУТИ Q;
                      Q \leftarrow v
                  end
        end
end.
```

Аналіз складності алгоритму ОПУКЛА_ОБОЛОНКА_ПРОСТОГО_ МНОГОКУТНИКА простий. Після ініціалізації кожна вершина відвідується рівно один раз, перш ніж вона буде прийнята, або виштовхнута. Обробка кожної вершини многокутника здійснюється за постійний час. При побудові опорної прямої в циклі *while* на кожну операцію вилучення витрачається постійний час. Враховуючи, що послідовністі $(p_1, ..., p_M)$ і $(q_1, ..., q_R)$ містять O(M) елементів, то маємо наступну теорему:

Теорема. Опукла оболонка простого многокутника з N вершинами може бути побудована за оптимальний час $\theta(N)$ при використанні пам'яті об'ємом $\theta(N)$.