Repaso Formas Cuadráticas

Recordemos que toda matriz simétrica está asociada a una forma cuadrática y vice-versa por medio de la relación

$$\vec{x}^{\mathsf{T}} A \vec{x} = \langle A \vec{x} | \vec{x} \rangle.$$

En una forma cuadrática, el término mixto ó cruzado es el término xy.

Práctica

Consideremos la siguientes formas cuadráticas junto con las matrices a su lado. Asocie las formas cuadráticas con su matriz correspondiente.

Eliminación del Término Mixto

Observación. De las formas cuadráticas anteriores sólo una no tenía término mixto. ¿Qué caracteriza a la matriz asociada a esa forma?

Eliminemos el término mixto con un ejemplo.

Ejemplo 1. Si $Q(x,y) = x^2 + 6xy + y^2$, entonces $Q = \vec{x}^\mathsf{T} A \vec{x}$ con $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$. Vamos a diagonalizar A:

- 1. Los autovalores de A se obtienen con $\lambda = m \pm \sqrt{m^2 - p}, m = (a+d)/2, p = \det A.$ En este caso $\lambda = 1 \pm \sqrt{1^2 - (-8)}$. Obtenemos $\lambda_1 = 4 \text{ y } \lambda_2 = -2.$
- 2. El espacio invariante asociado a λ_1 es $E_{\lambda_1} = \ker(A - 4I) = \ker\begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} = \ker\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ La ecuación asociada es x-y=0 por lo que el autovector $\vec{v}_1 = (1,1)$ está asociado a $\lambda_1 = 4$.
- 3. El espacio invariante asociado a λ_2 es $E_{\lambda_2} = \ker(A - (-2)I) = \ker\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} = \ker\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$ La ecuación asociada es x+y=0 por lo que el autovector $\vec{v}_2 = (1, -1)$ está asociado a $\lambda_2 = -2$.
- 4. Así $P = [id]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ y $D = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix}$. De forma que $A = PDP^{-1}$

Sin embargo, buscamos una característica que es que Prespete orientación y medidas. Esto significa dos cosas:

- \blacksquare Respeta orientación cuando detP > 0.
- Respeta medida cuando $\det P = 1$.

En este caso det(P) = -2. Para obtener lo pedido hacemos lo siguiente:

- Intercambiamos las columnas de P para cambiar
- \blacksquare Normalizamos las columnas de P.

Obtenemos así $P = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$. Lo que hemos

hecho fue intercambiar los autovectores de orden y los reescalamos para que tuvieran norma 1. De la misma forma que antes $A = PDP^{-1}$ sólo que ahora D = diag(-2,4).

Con esto, ¿podemos decir que la forma sin término mixto es $-2x^2 + 4y^2$? Sí y no, jdebemos cambiar variables! El cambio de variables es según la MCB

$$\vec{x} = [\operatorname{id}]_{\mathcal{C}}^{\mathcal{B}} \vec{u} \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

De esta forma obtenemos

De esta forma obtenemos
$$\left(\frac{u+v}{\sqrt{2}}\right)^2 + 6\left(\frac{u+v}{\sqrt{2}}\right)\left(\frac{v-u}{\sqrt{2}}\right) + \left(\frac{v-u}{\sqrt{2}}\right)^2$$
y simplificando obtenemos $-2u^2 + 4v^2$.

En resumen para eliminar el término mixto se debe diagonalizar y cerciorarse que la MCB respete medidas. Esto pues cuando det = 1 se respeta la orientación.

Curvas Cuadráticas

Definición. Una curva cuadrática es una ecuación de la forma

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

que se puede representar de la forma

$$\vec{x}^{\mathsf{T}} A \vec{x} + \langle \vec{b} | \vec{x} \rangle + f = 0.$$

La forma normal de una curva cuadrática se obtiene cambiando variables con $\vec{x} = P\vec{u}$ donde $P = [id]_{\mathcal{C}}^{\mathcal{B}} y \mathcal{B}$ es la base de autovectores de A.

Ejemplo 2. Consideremos la curva dada por la ecuación $Q(x,y) = 3x^2 + y^2 - 2\sqrt{3} - 12x - 12\sqrt{3}y = 0$

y encontremos su forma normal. Extraemos su forma vectorial con

$$A = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} -12 \\ -12\sqrt{3} \end{pmatrix},$$

y así $Q(\vec{x}) = \vec{x}^{\mathsf{T}} A \vec{x} + \langle \vec{b} \mid \vec{x} \rangle$. Para encontrar su forma normal diagonalizamos A:

1. Los autovalores de A se obtienen con $\lambda = m \pm \sqrt{m^2 - p}, m = (a+d)/2, p = \det A.$ En este caso $\lambda = 2 \pm \sqrt{2^2 - (0)}$. Obtenemos $\lambda_1 = 0$ $v \lambda_2 = 4.$

2. El espacio invariante asociado a λ_1 es E_{λ_1} $\ker(A) = \ker\begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} = \ker\begin{pmatrix} -\sqrt{3} & 1 \\ 0 & 0 \end{pmatrix}.$

La ecuación asociada es $-\sqrt{3}x+y=0$ por lo que el autovector $\vec{v}_1 = (1,\sqrt{3})$ está asociado a $\lambda_1 = 0$.

3. El espacio invariante asociado a λ_2 es E_{λ_2} $\ker(A-4I) = \ker\begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & -3 \end{pmatrix} = \ker\begin{pmatrix} 1 & \sqrt{3} \\ 0 & 0 \end{pmatrix}.$

La ecuación asociada es $x + \sqrt{3}y = 0$ por lo que el autovector $\vec{v}_2 = (-\sqrt{3},1)$ está asociado a $\lambda_2 = 4$. 4. La matriz P con columnas \vec{v}_1 , \vec{v}_2 es

$$P = \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \Rightarrow \det P = 4.$$

Como es positivo, nada más normalizamos las $\overline{\text{columnas de } P}$ para obtener

$$P = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \Rightarrow \det P = 1$$

 $P = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \Rightarrow \det P = 1.$ 5. El cambio de variables entonces es $\vec{x} = P\vec{u}$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} (u - \sqrt{3}v)/2 \\ (\sqrt{3}u + v)/2 \end{pmatrix}.$ Sustituyendo en la ecuación obtenemos $\vec{u}^{\mathsf{T}} P^{\mathsf{T}} A P \vec{u} + \langle \vec{b} | P \vec{u} \rangle = 0 \Rightarrow \vec{u}^{\mathsf{T}} D \vec{u} + \langle P^{\mathsf{T}} \vec{b} | \vec{u} \rangle = 0$ donde $P^{\mathsf{T}}\vec{b} = (-24,0)$. Por lo tanto la forma normal de Q es

$$Q(u,v) = 4v^2 + 24u = 0 \Rightarrow v^2 = 6u.$$

Observación. Aquí hemos utilizado una propiedad del producto punto que no conocíamos:

$$\langle A\vec{x} | \vec{y} \rangle = \langle \vec{x} | A^{\mathsf{T}} \vec{y} \rangle$$

Geometricamente la ecuación que representa esta curva es una parábola horizontal centrada en el origen. Sin embargo eso es en base \mathcal{B} de autovectores, es decir, en coordenadas (u,v). Vale que

- El eje u es $gen(\vec{v}_1)$ y el v es $gen(\vec{v}_2)$.
- El ángulo de rotación entre los ejes es el ángulo entre el eje x y el eje u ó el eje y y el v. Esto se obtiene midiendo el ángulo entre el vector \hat{i} y \vec{v}_1 por ejemplo.

En este caso el ángulo es $\arccos(1/2) = \pi/3$.

Práctica

Encuentre la forma normal de la curva dada por $3\sqrt{2}x^2+3\sqrt{2}y^2+2\sqrt{2}xy-4x-12+2\sqrt{2}=0$. Seguidamente indique

- 1. Los ejes del nuevo sistema de coordenadas.
- 2. El ángulo de rotación entre los sistemas.

Formas Normales de Curvas Cuadráticas

Enumeramos los tipos de curvas cuadráticas en dos dimensiones:

1. $(y-s)^2 = c(x-r)$ es una parábola horizontal centrada en (r,s). Su eje de simetría es el eje y=s.

Si cambiamos el cuadrado obtenemos

$$(x-r)^2 = c(y-s)$$

y esto es una parábola vertical centrada en (r,s)con eje de simetría x = r.

2. La elipse centrada en (r,s) se describe con

$$\frac{(x-r)^2}{c^2} + \frac{(y-s)^2}{d^2} = 1.$$

Cuando d=c se obtiene un círculo de radio c.

3. La ecuación

$$\frac{(x-r)^2}{c^2} - \frac{(y-s)^2}{d^2} = 1$$

describe una hipérbola horizontal con vértices $(r\pm c,s)$ y ejes x=r, y=s. En cambio si cambiamos el signo obtenemos una hipérbola vertical dada por

$$\frac{(y-s)^2}{d^2} - \frac{(x-r)^2}{c^2} = 1.$$

Los vértices aquí son $(r,s\pm d)$.

Práctica

Basado en lo anterior, clasifique la curva del ejercicio anterior.

A manera de práctica, para esta parte se recomiendan los ejercicios de C. Fonseca o los del último capítulo del libro de J. Sánchez.