

High Voltage Power MOSFETs

N-Channel Enhancement Mode
Avalanche Rated, High dv/dt

Preliminary Data Sheet

IXTA/IXTP 3N120
IXTA/IXTP 3N110

V_{DSS}	I_{D25}	R_{DS(on)}
1200 V	3 A	4.5 Ω
1100 V	3 A	4.0 Ω

Symbol	Test Conditions	Maximum Ratings		
V_{DSS}	T _J = 25°C to 150°C	3N120	1200	V
		3N110	1100	V
V_{DGR}	T _J = 25°C to 150°C; R _{GS} = 1 MΩ	3N120	1200	V
		3N110	1100	V
V_{GS}	Continuous		±20	V
V_{GSM}	Transient		±30	V
I_{D25}	T _C = 25°C		3	A
I_{DM}	T _C = 25°C, pulse width limited by T _{JM}		12	A
I_{AR}	T _C = 25°C		3	A
E_{AR}	T _C = 25°C		20	mJ
E_{AS}			700	mJ
dv/dt	I _S ≤ I _{DM} , di/dt ≤ 100 A/μs, V _{DD} ≤ V _{DSS} , T _J ≤ 150°C, R _G = 2 Ω		5	V/ns
P_D	T _C = 25°C		150	W
T_J		-55 to +150		°C
T_{JM}		150		°C
T_{stg}		-55 to +150		°C
T_L	1.6 mm (0.063 in) from case for 10 s		300	°C
M_d	Mounting torque (TO-220)		1.13/10	Nm/lb.in.
Weight	TO-220		4	g
	TO-263		2	g

TO-220 (IXTP)

TO-263 (IXTA)

G = Gate D = Drain
S = Source TAB = Drain

Features

- International standard packages
- Low R_{DS(on)}
- Rated for unclamped Inductive load Switching (UIS)
- Molding epoxies meet UL 94 V-0 flammability classification

Advantages

- Easy to mount
- Space savings
- High power density

Symbol	Test Conditions	Characteristic Values		
		(T _J = 25°C, unless otherwise specified)	min.	typ.
V_{DSS}	V _{GS} = 0 V, I _D = 1 mA	3N120	1200	V
		3N110	1100	V
V_{GS(th)}	V _{DS} = V _{GS} , I _D = 250 μA		2.5	4.5 V
I_{GSS}	V _{GS} = ±20 V _{DC} , V _{DS} = 0			±100 nA
I_{DSS}	V _{DS} = 0.8 V _{DSS} V _{GS} = 0 V	T _J = 25°C T _J = 125°C		25 μA 1 mA
R_{DS(on)}	V _{GS} = 10 V, I _D = 0.5 I _{D25} Note 1	3N120 3N110		4.5 Ω 4.0 Ω

Symbol	Test Conditions	Characteristic Values			
		($T_J = 25^\circ\text{C}$, unless otherwise specified)	min.	typ.	max.
g_{fs}	$V_{DS} = 10 \text{ V}; I_D = 0.5 \cdot I_{D25}$, Note 1	1.5	2.2	S	
C_{iss} C_{oss} C_{rss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	1050	1300	pF	
		100	125	pF	
		25	50	pF	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_D = 0.5 \cdot I_{D25}$ $R_G = 4.7 \Omega$ (External),	17		ns	
		15		ns	
		32		ns	
		18		ns	
$Q_{g(on)}$ Q_{gs} Q_{gd}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_D = 0.5 \cdot I_{D25}$	39		nC	
		9		nC	
		22		nC	
R_{thJC}			0.8	K/W	
R_{thCK}	(TO-220)	0.25		K/W	

Source-Drain Diode

Characteristic Values
($T_J = 25^\circ\text{C}$, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.
I_s	$V_{GS} = 0 \text{ V}$		3	A
I_{SM}	Repetitive; pulse width limited by T_{JM}		12	A
V_{SD}	$I_F = I_S, V_{GS} = 0 \text{ V}$, Note 1		1.5	V
t_{rr}	$I_F = I_S, -di/dt = 100 \text{ A}/\mu\text{s}, V_R = 100 \text{ V}$	700		ns

Notes: 1. Pulse test, $t \leq 300 \mu\text{s}$, duty cycle $d \leq 2 \%$

TO-220 (IXTP) Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
c	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
e	.100	BSC	2.54	BSC
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
ØP	.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-220 AB.

TO-263 (IXTA) Outline

Dim.	Millimeter Min.	Max.	Inches Min.	Max.
A	4.06	4.83	.160	.190
A1	2.03	2.79	.080	.110
b	0.51	0.99	.020	.039
b2	1.14	1.40	.045	.055
c	0.46	0.74	.018	.029
c2	1.14	1.40	.045	.055
D	8.64	9.65	.340	.380
D1	7.11	8.13	.280	.320
E	9.65	10.29	.380	.405
E1	6.86	8.13	.270	.320
e	2.54	BSC	.100	BSC
L	14.61	15.88	.575	.625
L1	2.29	2.79	.090	.110
L2	1.02	1.40	.040	.055
L3	1.27	1.78	.050	.070
L4	0	0.38	0	.015
R	0.46	0.74	.018	.029

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents: 4,835,592 4,881,106
4,850,072 4,931,844

5,017,508 5,049,961 5,187,117 5,486,715
5,034,796 5,063,307 5,237,481 5,381,025

Fig. 1 Output Characteristics @ $T_J = 25^\circ\text{C}$

Fig. 2 Output Characteristics @ $T_J = 125^\circ\text{C}$

Fig. 3 $R_{DS(\text{ON})}$ vs. Drain Current

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 5 Drain Current vs. Case Temperature

Fig. 6 Drain Current vs Gate Source Voltage

Fig. 7 Gate Charge Characteristic Curve

Fig. 8 Capacitance Curves

Fig. 9 Drain Current vs Drain to Source Voltage

Fig. 10 Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered by one or more of the following U.S. patents: 4,835,592 4,881,106 5,017,508 5,049,961 5,187,117 5,486,715
4,850,072 4,931,844 5,034,796 5,063,307 5,237,481 5,381,025