ecteurs d

Hypothèse. On suppose que chaque point du plan correspond à la donnée de deux réels x et y qui représentent sa position. Les deux réels x et y sont appelés coordonnées canoniques du point.

Définition. Pour tous $x, y \in \mathbb{R}$, on note (x; y) le point du plan de coordonnées canoniques x et y. **Définition.** Pour tous $x, y \in \mathbb{R}$, on définit un nouvel objet noté $\binom{x}{y}$ et appelé vecteur du plan de coordonnées canoniques x et y.

Définition. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan.

 \vec{u} représente la translation « se déplacer de x unités vers la droite/gauche et de y unités vers le haut/bas ». On représente le vecteur \vec{u} par une flèche qui va à droite/gauche de x unités et en haut/bas de y unités. Visuellement, deux vecteurs sont égaux s'ils pointent dans la même direction, et ont la même longueur.

Pour tout point $M = (x_M; y_M)$ on note parfois $M + \vec{u} = (x_M + x; y_M + y)$

 $M + \vec{u}$ est le <u>point</u> obtenu en appliquant la translation représentée par \vec{u} au point M. La flèche représentée par \vec{u} relie toujours un point M à son translaté $M + \vec{u}$, pour tout *M*. La position précise de la flèche n'a pas d'importance.

Exemple. $\vec{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ représente la translation « se déplacer de 3 unités à droite et 2 unités vers le bas ». Sur l'image ci-contre, $A + \vec{u} = (1;4) + {3 \choose -2} = (4;2) = B$. De même $C + \vec{u} = D$. Les deux flèches représentent le même vecteur \vec{u} .

Définition. Pour tous $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ v' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$. Additionner des vecteurs, c'est appliquer des translations successivement.

Exemple.
$$\binom{2}{5} + \binom{-1}{4} = \binom{1}{4}$$
.

Définition. Pour tout $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}, \ -\vec{u} = -\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}.$

Le vecteur opposé a la même longueur mais pointe dans la direction opposée.

Définition. Pour tous $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$
 donc soustraire un vecteur, c'est additionner son opposé.
Exemples. $-\binom{1}{-1} = \binom{-1}{1}$ $\binom{2}{-5} - \binom{-1}{4} = \binom{3}{-9}$

Définition. Pour tout $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et tout réel k, $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k sans changer de sens. Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens

Exemple. $3\binom{2}{4} = \binom{2}{4}$

Propriétés algébriques. Pour tous vecteurs $\vec{u}, \vec{v}, \vec{w}$ et tous réels k et k':

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

•
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 • $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ • $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ • $k(k'\vec{u}) = (kk')\vec{u}$

•
$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

•
$$k(k'\vec{u}) = (kk')\vec{u}$$

•
$$\vec{u} + (-\vec{u}) = \vec{0}$$

$$\vec{u} + \vec{0} = \vec{u}$$

•
$$(k + k')\vec{u} = k\vec{u} + k'\vec{u}$$

•
$$0\vec{u} = \vec{0}$$

Définition. Etant donnés deux points $A = (x_A; y_A)$ et $B = (x_B; y_B)$ on note $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Le vecteur \overrightarrow{AB} représente la translation qui déplace notamment le point A au point B, car $A + \overrightarrow{AB} = B$. La flèche représentant le vecteur \overrightarrow{AB} est donc souvent tracée du point A au point B.

Exemple. Si
$$A = (-1, 2)$$
 et $B = (0, -4)$, alors $\overrightarrow{AB} = \begin{pmatrix} 1 \\ -6 \end{pmatrix}$.

Propriété. $\overrightarrow{AB} = \overrightarrow{CD}$ ssi \overrightarrow{ABDC} est un parallélogramme. (Attention à l'ordre des lettres).

Propriété. Pour tous points A, B on a $-\overrightarrow{AB} = \overrightarrow{BA}$.

Propriété. Pour tout point A, on a $\overrightarrow{AA} = \overrightarrow{0}$

Propriétés. Soit un vecteur \vec{u} .

Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{AB}$ pour un certain point B.

Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{CA}$ pour un certain point C.

Propriété. Relation de Chasles.

Soit A, B, C trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Attention, $AB + BC \ge AC$. **Exemple.** $\overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FD} = \overrightarrow{DF} + \overrightarrow{FD} = \overrightarrow{DD} = \overrightarrow{0}$.

Définition. M est le milieu d'un segment AB ssi $\overline{AM} = \overline{MB}$ ssi $\overline{AM} = \frac{1}{2}\overline{AB}$ ssi $\overline{AM} = \frac{x_A + x_B}{2}$ et $\overline{AM} = \frac{y_A + y_B}{2}$

Exemple. Si A = (3; 5) et B = (9; -1) alors le milieu de [AB] est le point $M = \left(\frac{3+9}{2}; \frac{5+(-1)}{2}\right) = (6; 2)$

Définition. La longueur d'un vecteur $\vec{u} = {x \choose y}$, notée $\|\vec{u}\|$ et lue « norme de \vec{u} » est $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Définition. La longueur d'un segment $AB = \|\overrightarrow{AB}\| = \|\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Exemple. Soit $\vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, alors $||\vec{u}|| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Remarque. A ce stade, on peut techniquement définir, la longueur d'une courbe, puis l'angle géométrique entre deux vecteurs comme la longueur de l'arc du cercle de rayon 1 qu'ils délimitent.

Définition. Deux vecteurs non nuls sont colinéaires, s'ils forment un angle nul ou plat.

Définition. Deux vecteurs non nuls sont orthogonaux, s'ils forment un angle droit.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ désigne la donnée d'un point 0 et de vecteurs $\vec{\imath}$ et $\vec{\jmath}$ non colinéaires.

Définition. On note $\mathbf{R_0} = \left((0;0); \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$ le **repère canonique**. Jusqu'ici, on a seulement utilisé R_0 .

Remarque. Quand on change de repère R, les coordonnées d'un vecteur ou d'un point changent.

Cependant, les définitions et formules précédentes restent valables, si on les écrit dans un <u>même</u> repère *R*.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthogonal** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 dans R_0 .

Propriété. Les longueurs, aires et angles géom. ne changent pas si on change de repère orthonormé.

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un réel k tel que $\vec{u} = k\vec{v}$. **Exemple.** $\binom{3}{2}$ et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$. (ou ce qui revient au même $\binom{3}{2} = -\frac{1}{3}\binom{-9}{-6}$)

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_R$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}_R$ est $\det(\vec{u}; \vec{v}) = xy' - x'y$. **Exemple.** Si $\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, alors $\det(\vec{u}; \vec{v}) = (3)(-1) - (1)(2) = -3 - 2 = -5$.

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} vaut $|\det(\vec{u}; \vec{v})|$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repère R)

Exemple. $\det \begin{pmatrix} 3 \\ 2 \end{pmatrix}; \begin{pmatrix} -9 \\ -6 \end{pmatrix} = (3)(-6) - (2)(-9) = 18 - (-18) = 0 \text{ donc } \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \begin{pmatrix} -9 \\ -6 \end{pmatrix} \text{ sont bien colinéaires.}$

Propriété. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1,3), B = (2,6) et C = (3,9) sont-ils alignés ?

 $\det(\overrightarrow{AB};\overrightarrow{AC}) = \det\left(\binom{2-1}{6-3};\binom{3-1}{9-3}\right) = \det\left(\binom{1}{3};\binom{2}{6}\right) = 1 \times 6 - 2 \times 3 = 0. \text{ Donc } A,B \text{ et } C \text{ sont alignés.}$