

Continuous Assessment Test (CAT) - II- APRIL 2024

Programme	:	B.Tech	Semester	1:	Winter 2023-2024	
Course Code & Course Title	:	BPHY101L Engineering Physics	Class Number	:	CH2023240500428 CH2023240500437 CH2023240500462 CH2023240500457	
Faculty	:	Dr. Gopinath Mudhana Dr. Suprabh Prakash Dr. M.C. Ramkumar Dr. Shalini M G	Slot	:	B2+TB2	
Duration	:	90 minutes				
General Instructions:			Max. Mark	50		

- Write only your registration number on the question paper in the box provided and do not
- Only non-programmable calculator without storage is permitted

Section A - Answer all questions (2×15=30)

Q. No	Sub Sec.	Questions	
	a)	Using a non-relativistic approach, calculate the de Broglie wavelengths for an electron moving at 10% of the speed of light and for a tennis ball weighing 55g served at a velocity of 35 m/s.	Mark 6
1.	b)	Explain the significance of double peaks in Compton's experiment	
	c)	Draw the wave function Ψ versus position of electron in third excited state and also plot the maximum probability and minimum probability positions of the electron in that state of a 1D infinite potential box with width L.	6
2.	a)	Find the maximum percentage change in the wavelength when X-rays of frequency 5.0x10 ²⁰ Hz is Compton scattered from a target. Can the Compton Effect occur when visible light is directed at a cesium target instead of X-rays; which effect would be more predominant in this scenario?	7
	b)	 (i) Why laser light emission is not occurring naturally? Discuss in detail with necessary diagrams. (ii) A diode laser emits light of wavelength 528 nm and output power of 3mW, calculate the number of photons emitted per second. 	5+3

Section B - A	Answer any tw	o questions	$(2 \times 10 = 20)$
---------------	---------------	-------------	----------------------

3.	a)	An electron is confined in a one-dimensional box of length L=50nm and it is measured to be somewhere between $x = 0.55$ L and $x = 0.56$ L. Calculate the uncertainty in its velocity.	
	b)	X-rays of wavelength 5.0 pm are scattered from an electron. (i) At what angle, relative to the direction of the incoming rays, the wavelength of scattered X-ray will be the largest? (ii) What will be the energy of the X-rays scattered in this direction? (iii) What is the maximum energy imparted to the target by such X-rays?	5
4.	a)	How do you prove the particle nature of radiation based on your understanding of this subject? Use only concentral energy is	5
	b)	Consider an electron of energy 0.8 eV hits an infinite potential barrier of height 4 eV and width 0.25 nm. What is the probability of electron tunnelling through the barrier?	5
5.	a)	A copper ball of 8 mm diameter is broken in to very small diameter 8 nm pieces, Explain the possible change in any of their five properties the copper nanoparticles compared to its bulk form.	
	b)	An electron is confined in a one-dimensional infinite potential well of	

***********All the best ********