Due date: Friday, 10/05

Chapter 5: 1bd, 3bd, 4, 6, 17, 18, 27.

Additional suggested exercises: 29, 31, 32, 33.

1. Write the following permutations in cycle notation.

(a)
$$(1 \ 2 \ 3 \ 4 \ 5)$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 5 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 4 & 2
\end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{pmatrix}$$

3. Express the following permutations as products of transpositions and identify them as even or odd. (Only (b) and (d) are required.)

(a)
$$(14356)$$

(c)
$$(1426)(142)$$

- **4.** Find $(a_1, a_2, \ldots, a_n)^{-1}$.
- **6.** Find all of the subgroups in A_4 . What is the order of each subgroup?
- 17. Prove that S_n is nonabelian for $n \geq 3$.
- **18.** Prove that A_n is nonabelian for $n \geq 4$.
- **27.** Let G be a group and define a map $\lambda_g: G \to G$ by $\lambda_g(a) = ga$. Prove that λ_g is a permutation of G.

Additional suggested exercises: 29, 31, 32, 33.

29. Recall that the *center* of a group G is

$$Z(G) = \{g \in G : gx = xg \text{ for all } x \in G\}.$$

Find the center of D_8 . What about the center of D_{10} ? What is the center of D_n ?

- **31.** For α and β in S_n , define $\alpha \sim \beta$ if there exists an $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is an equivalence relation on S_n .
- **32.** Let $\sigma \in S_X$. If $\sigma^n(x) = y$, we will say that $x \sim y$.
 - (a) Show that \sim is an equivalence relation on X.
 - (b) If $\sigma \in A_n$ and $\tau \in S_n$, show that $\tau^{-1}\sigma\tau \in A_n$.
 - (c) Define the *orbit* of $x \in X$ under $\sigma \in S_X$ to be the set

$$\mathcal{O}_{x,\sigma} = \{y : x \sim y\}.$$

Compute the orbits of α, β, γ where

$$\alpha = (1254)$$

$$\beta = (123)(45)$$

$$\gamma = (13)(25).$$

- (d) If $\mathcal{O}_{x,\sigma} \cap \mathcal{O}_{y,\sigma} \neq \emptyset$, prove that $\mathcal{O}_{x,\sigma} = \mathcal{O}_{y,\sigma}$. The orbits under a permutation σ are the equivalence classes corresponding to the equivalence relation \sim .
- (e) A subgroup H of S_X is transitive if for every $x, y \in X$, there exists a $\sigma \in H$ such that $\sigma(x) = y$. Prove that $\langle \sigma \rangle$ is transitive if and only if $\mathcal{O}_{x,\sigma} = X$ for some $x \in X$.
- **33.** Let $\alpha \in S_n$ for $n \geq 3$. If $\alpha\beta = \beta\alpha$ for all $\beta \in S_n$, prove that α must be the identity permutation; hence, the center of S_n is the trivial subgroup.