Introduction to Project 5: MRI Measurements of Perfusion

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Review: magnetic susceptibility contrast agents

- Large magnetic moment
 - Gadolinium (7 unpaired electrons)
- Increase relaxation rate of neighboring water molecules
 - T₁ relaxation (M_z)
 - $-T_2$ relaxation (M_{xy})
- When confined to vessels, concentrated magnetic moments shift the field around the vessels

Magnetic field surrounding a vessel

Normal blood

Blood with contrast agent

Capillary networks

Buxton, 2002

Dependence of relaxation rate on tissue contrast agent concentration

• Relaxation rate is the inverse of the time constant

$$R_2^* = \frac{1}{T_2^*}$$

$$R_2^*$$
 (with contrast) = R_2^* (without contrast) + ΔR_2^*

• Tissue relaxation due to contrast agent

$$\Delta R_2^* = k \cdot C_T(t)$$

• Signal intensity prior to contrast agent injection

$$S_0 = A \cdot e^{-T_E \cdot R_2^* \text{(no contrast)}}$$

• Signal intensity with contrast agent

$$S = A \cdot e^{-T_E \cdot R_2^* (\text{contrast})}$$

$$= A \cdot e^{-T_E \cdot R_2^* (\text{no contrast})} \cdot e^{-T_E \cdot \Delta R_2^*}$$

$$= S_0 \cdot e^{-T_E \cdot \Delta R_2^*}$$

Image analysis

- Find signal time course in a region of interest (ROI)
- Identify the baseline (pre-contrast R₂*)
- Convert signal changes to R₂* changes

$$\Delta R_2^* = -\frac{\ln(S/S_0)}{TE}$$

Sorensen, 2000

Image analysis

- Find signal time course in a region of interest (ROI)
- Convert signal changes to R₂* changes
- Identify the baseline (pre-contrast R₂*)
- Integrate the changes in R₂*

$$CBV = \frac{\int_0^\infty C_T(t)dt}{\int_0^\infty C_A(t)dt} = c \cdot \int \Delta R_2^*(t)dt$$

Same for all voxels

Project 5 Goals

- Measure image intensity changes in an ischemic region of interest (ROI) in the brain of a stroke patient
- Estimate the mean cerebral blood volume (relative CBV= rCBV) in the ROI

$$\Delta R_2^* = -\frac{\ln(S/S_0)}{TE}$$

$$rCBV = \int \Delta R_2^*(t)dt$$

– Is this significantly different from healthy tissue?

Problem #1: data visualization

- How good are the data?
 - Contrast
 - Noise
 - Artifacts
- Check the image time course visually
- Show images in a movie

Making movies

Problem #2: what is a normal rCBV?

- We need to compare rCBV in the stroke region to a normal rCBV
 - Where can we get this?

Sorensen, 2000

Problem #2: what is a normal rCBV?

- We need to compare rCBV in the stroke region to a normal rCBV
 - Where can we get this?
- Compare to a similar region in the opposite hemisphere