Steam Assisted Gravity Drainage

May 18, 2016

Lewis Li, Daniel Brito

1 Reservoir Parameters

In this notebook, we will analyze the recovery and production rates in a steam assisted gravity drainage (SAGD) project. The analysis uses the data from Butler, 1991. The reservoir parameters are specified below:

Symbol	Units	Value	Description
$\overline{T_r}$	С	15	Reservoir temperature
T_s	C	188	Steam temperature
m_{exp}	m	3.4	Kinematic viscosity exponent
$\mu_{Bitumen,188}$	cs	7.8	Bitumen kinematic viscosity @ 188C
$r_{thickness}$	m	20	Reservoir thickness
α	$\frac{m^2}{D}$	0.07	Thermal diffusivity
ϕ	%	0.33	Porosity
S_o	%	0.75	Initial oil saturation
S_{or}	%	0.13	Residual oil saturation
K_{eff}	D	0.4	Effective permeability for oil flow
D_{well}	m	2.5	Distance between reservoir's base and producers
W	m	75	Spacing between wells
T_{total}	years	7	Evaluation period
g	$\frac{m}{s^2}$	9.81	Accelerationb due to gravity

```
In [1]: % Reservoir temperature (C)
    Tr = 15;
    % Steam temperature (C)
    Ts = 188;
    % Kinematic viscosity exponent (m)
    m_exp = 3.4;
    % Bitumen kinematic viscosity @ 188C (cs)
    mu_Bitumen188 = 7.8;
    % Reservoir thickness (m)
    resThickness = 20;
    % Thermal diffusivity (m^2/D)
```

```
alpha = 0.07;
% Porosity
phi = 0.33;
% Initial oil saturation
S \circ = 0.75;
% Residual oil saturation
S_{or} = 0.13;
% Effective permeability for oil flow (Darcy)
K = 0.4;
% Distance between reservoir's base and producers (m)
baseWellDistance = 2.5;
% Spacing between wells (m)
w = 75;
% Evaluation period (years)
TotalTime = 7;
% Gravity (m/s^2)
q = 9.81;
%% Conversion Factors
DarcyToM2 = 9.869233e-13;
SecondsToDays = 24 * 60 * 60;
DaysToSeconds = SecondsToDays;
YearsToDays = 365;
centistokesToM2S= 1e-6;
```

1.1 Computing Depletion Rates

We will first compute the depletion rates, which depends on the position of the interface. We will express time as a dimensionless unit T^* :

$$T^* = \frac{t}{w} \sqrt{\frac{kg\alpha}{2\phi\Delta S_o m\nu_o(T_s)h}}$$

To simplify the problem of solving for the interface position numerically, we approximate the dimensionless production rate using a polynomial:

$$q* = \sqrt{3/2} - T^{*2}\sqrt{\frac{2}{3}}$$

We will compute this over the entire time period of the project (7 years) discretized into 100 time steps.

```
In [3]: n = 100;
```

```
%Time discretization (s)
t = linspace(0,TotalTime*YearsToDays*SecondsToDays,n);
%Time discretization (years)
tYears = t./(YearsToDays*SecondsToDays);

tStar = tStarConstant*t;
qStar = sqrt(3/2) - sqrt(2/3)*tStar.^2;
```

Likewise, the production is given by:

$$q = \frac{2 \times q^*}{F}$$

where F is a dimensionless factor given by:

$$F = \sqrt{\frac{m\nu_s}{kg\alpha\phi h\Delta S_o}}$$

The recovery is then estimated as:

$$Rev = \int q^* dt^*$$

In this case, we can analytically integrate our expression for q^* to obtain:

$$Rev = \sqrt{\frac{3}{2}}T^* - \frac{1}{3}T^{*3}\sqrt{\frac{2}{3}}$$

```
In [5]: Recovery = sqrt(3/2)*tStar - tStar.^3*sqrt(2/3)/3;

DepletionResults = [tYears' tStar' qStar' Recovery' q'];
ColumnNames = {'Time, years', 't*', 'q*', 'Recovery', 'q,m^3/(m day)'};

DepletionResults = [ColumnNames; num2cell(DepletionResults)];
display(DepletionResults)
```

DepletionResults =

'Tim∈	, years'	't*'	'q*'	'R	ecovery'	'q,m	^3/(m day)'
[0]	[0]	[1.2247]	[0]	[0.1377]
[0.0707]	[0.0108]	[1.2246]	[0.0132]	[0.1377]
[0.1414]	[0.0216]	[1.2244]	[0.0265]	[0.1377]
[0.2121]	[0.0324]	[1.2239]	[0.0397]	[0.1376]
[0.2828]	[0.0432]	[1.2232]	[0.0529]	[0.1376]
[0.3535]	[0.0540]	[1.2224]	[0.0661]	[0.1375]

[0.4242]	[0.0649]	[1.2213]	[0.0794]	[0.1374]
Γ	0.4949]	[0.0757]	[1.2201]	Γ	0.0925]	ſ	0.1372]
Г	0.5657]	[0.0865]	[1.2186]	L	0.1057]	L .	0.1371]
L				L		L	
L	0.6364]	[0.0973]	[1.2170]	[0.1189]	L	0.1369]
[0.7071]	[0.1081]	[1.2152]	[0.1320]	[0.1367]
[0.7778]	[0.1189]	[1.2132]	[0.1452]	[0.1364]
Γ	0.8485]	[0.1297]	[1.2110]	ſ	0.1583]	Γ	0.1362]
	0.9192]	[0.1405]	[1.2086]	ſ	0.1713]	L r	0.1359]
L	=			-	=	L	
L	0.9899]	[0.1513]	[1.2060]	[0.1844]	L	0.1356]
[1.0606]	[0.1621]	[1.2033]	[0.1974]	[0.1353]
[1.1313]	[0.1729]	[1.2003]	[0.2104]	[0.1350]
Γ	1.2020]	[0.1837]	[1.1972]	1	0.2234]	ſ	0.1346]
ſ	1.2727]	[0.1946]	[1.1938]	ſ	0.2363]	Ĺ	0.1343]
L		= = =		-		L	
L	1.3434]	[0.2054]	[1.1903]	[0.2492]	L	0.1339]
[1.4141]	[0.2162]	[1.1866]	[0.2620]	[0.1335]
[1.4848]	[0.2270]	[1.1827]	[0.2748]	[0.1330]
[1.5556]	[0.2378]	[1.1786]	[0.2876]	[0.1326]
Γ	1.6263]	[0.2486]	[1.1743]	Γ	0.3003]	Γ	0.1321]
ſ	1.6970]	[0.2594]	[1.1698]	ſ	0.3130]	L .	0.1316]
L	=		= =	-	=	L	
L	1.7677]	[0.2702]	[1.1651]	[0.3256]	L	0.1310]
[1.8384]	[0.2810]	[1.1603]	[0.3381]	[0.1305]
[1.9091]	[0.2918]	[1.1552]	[0.3507]	[0.1299]
[1.9798]	[0.3026]	[1.1500]	[0.3631]	[0.1293]
Γ	2.0505]	[0.3135]	[1.1445]	1	0.3755]	Γ	0.1287]
Γ	2.1212]	[0.3243]	[1.1389]	ſ	0.3879]	Ĺ	0.1281]
Г	2.1919]			L L		L F	
L		[0.3351]	[1.1331]	L	0.4001]	L	0.1274]
L	2.2626]	[0.3459]	[1.1271]	[0.4124]	L	0.1268]
[2.3333]	[0.3567]	[1.1209]	[0.4245]	[0.1261]
[2.4040]	[0.3675]	[1.1145]	[0.4366]	[0.1253]
[2.4747]	[0.3783]	[1.1079]	Γ	0.4486]	1	0.1246]
[2.5455]	[0.3891]	[1.1011]	[0.4605]	ſ	0.1238]
Г	2.6162]	[0.3999]	[1.0942]	-	0.4724]	r r	0.1231]
L		= = =	= =	[L	
L	2.6869]	[0.4107]	[1.0870]	L	0.4842]	L	0.1223]
[2.7576]	[0.4215]	[1.0797]	[0.4959]	[0.1214]
[2.8283]	[0.4324]	[1.0721]	[0.5075]	[0.1206]
[2.8990]	[0.4432]	[1.0644]	[0.5191]	1	0.1197]
-	2.9697]	[0.4540]	[1.0565]	[0.5305]	ſ	0.1188]
Γ	3.0404]	[0.4648]	[1.0484]	_	0.5419]	r r	0.1179]
L				[L	
L	3.1111]	[0.4756]	[1.0401]	[0.5532]	L	0.1170]
[3.1818]	[0.4864]	[1.0316]	[0.5644]	[0.1160]
[3.2525]	[0.4972]	[1.0229]	[0.5755]	[0.1150]
[3.3232]	[0.5080]	[1.0140]	[0.5865]	[0.1140]
-	3.3939]	[0.5188]	[1.0050]	[0.5974]	-	0.1130]
L .	3.4646]	[0.5296]	[0.9957]	[0.6082]	L ,	0.1120]
L F				_		L r	
L	3.5354]	[0.5404]	[0.9863]	[0.6189]	L	0.1109]
L	3.6061]	[0.5512]	[0.9766]	[0.6295]	L	0.1098]
[3.6768]	[0.5621]	[0.9668]	[0.6401]	[0.1087]
[3.7475]	[0.5729]	[0.9568]	[0.6504]	[0.1076]

Г	3.8182]	[0.5837]	[0.9466]	ſ	0.6607]	ſ	0.1065]
ſ	3.8889]	[0.5945]	[0.9362]	[0.6709]	L r	0.1053]
ſ	3.95961	[0.6053]	[0.9256]	[0.6810]	[0.1041]
ſ	4.0303]	[0.6161]	[0.9148]	L	0.6909]	r L	0.1029]
L F	4.1010]	[0.6269]	[0.9148]	ſ	0.7007]	L L	0.1023
L	4.1717]	[0.6377]	[0.8927]	-	=	L	0.1017]
L	=			[0.7105]	L	
L	4.2424]	[0.6485]	[0.8813]	[0.7200]	[0.0991]
L	4.3131]	[0.6593]	[0.8698]	[0.7295]	L	-
L	4.3838]	[0.6701]	[0.8581]	[0.7388]	L	0.0965]
L	4.4545]	[0.6810]	[0.8461]	[0.7481]	L	0.0952]
Ĺ	4.5253]	[0.6918]	[0.8340]	[0.7571]	L	0.0938]
Ĺ	4.5960]	[0.7026]	[0.8217]	Ĺ	0.7661]	L	0.0924]
l	4.6667]	[0.7134]	[0.8092]	[0.7749]	L	0.0910]
Ĺ	4.7374]	[0.7242]	[0.7965]	[0.7836]	L	0.0896]
[4.8081]	[0.7350]	[0.7837]	[0.7921]	[0.0881]
[4.8788]	[0.7458]	[0.7706]	[0.8005]	[0.0867]
[4.9495]	[0.7566]	[0.7573]	[0.8088]	[0.0852]
[5.0202]	[0.7674]	[0.7439]	[0.8169]	[0.0837]
[5.0909]	[0.7782]	[0.7302]	[0.8249]	[0.0821]
[5.1616]	[0.7890]	[0.7164]	[0.8327]	[0.0806]
[5.2323]	[0.7999]	[0.7024]	[0.8403]	[0.0790]
[5.3030]	[0.8107]	[0.6882]	[0.8479]	[0.0774]
[5.3737]	[0.8215]	[0.6738]	[0.8552]	[0.0758]
[5.4444]	[0.8323]	[0.6592]	[0.8624]	[0.0741]
[5.5152]	[0.8431]	[0.6444]	[0.8695]	[0.0725]
[5.5859]	[0.8539]	[0.6294]	[0.8764]	[0.0708]
[5.6566]	[0.8647]	[0.6142]	[0.8831]	[0.0691]
[5.7273]	[0.8755]	[0.5989]	[0.8896]	[0.0674]
[5.7980]	[0.8863]	[0.5833]	[0.8960]	[0.0656]
[5.8687]	[0.8971]	[0.5676]	[0.9022]	[0.0638]
[5.9394]	[0.9079]	[0.5517]	[0.9083]	[0.0620]
[6.0101]	[0.9187]	[0.5355]	[0.9142]	[0.0602]
[6.0808]	[0.9296]	[0.5192]	[0.9199]	[0.0584]
[6.1515]	[0.9404]	[0.5027]	[0.9254]	[0.0565]
[6.2222]	[0.9512]	[0.4860]	[0.9307]	[0.0547]
[6.2929]	[0.9620]	[0.4691]	[0.9359]	[0.0528]
[6.3636]	[0.9728]	[0.4521]	[0.9409]	[0.0508]
[6.4343]	[0.9836]	[0.4348]	[0.9457]	[0.0489]
[6.5051]	[0.9944]	[0.4174]	[0.9503]	ſ	0.0469]
[6.5758]	[1.0052]	[0.3997]	[0.9547]	ſ	0.0450]
[6.6465]	[1.0160]	[0.3819]	[0.9589]	ſ	0.0429]
[6.7172]	[1.0268]	[0.3638]	[0.9629]	[0.0409]
[6.7879]	[1.0376]	[0.3456]	[0.9668]	[0.0389]
[6.8586]	[1.0485]	[0.3272]	[0.9704]	[0.0368]
[6.9293]	[1.0593]	[0.3086]	[0.9738]	[0.0347]
[7]	[1.0701]	[0.2898]	[0.9771]	[0.0326]
-		2		L	- 3	-	1

1.2 Rates From Rising Steam

We next compute the rates for the rising steam chamber using:

$$q_{cum} = 2.25 \left(\frac{kg\alpha}{m\nu_s}\right)^{\frac{2}{3}} (\phi \Delta S_o)^{\frac{1}{3}} t^{\frac{4}{3}}$$
$$q = 3 \left(\frac{kg\alpha}{m\nu_s}\right)^{\frac{2}{3}} (\phi \Delta S_o)^{\frac{1}{3}} t^{\frac{1}{3}}$$

and recovery is given by:

[

1.2020]

1.2727]

$$Rev = \frac{q_{cum}}{h\phi\Delta S_o(spacing)}$$

```
In [6]: Coef1 = (((K_eff * DarcyToM2)*g*alpha/(SecondsToDays))/...
            ( m_exp * mu_Bitumen188*centistokesToM2S ) )^(2/3);
       Coef2 = (phi * (S_o - S_or))^(1/3);
       qCumRise = 2.25 * Coef1 * Coef2 * t.^ (4/3) * Seconds To Days;
        qRise = 3*Coef1*Coef2*t.^(1/3)*SecondsToDays;
       RecoveryRise = qCumRise./(h*phi*(S_o - S_or)*w*SecondsToDays);
        SteamResults = [tYears' qRise' RecoveryRise'];
       ColumnNames = {'Time, years', 'q,m^3/(m day)', 'Recovery',};
       EndIndex = sum(RecoveryRise<=1)+1;</pre>
       Results = [ColumnNames; num2cell(SteamResults)];
       display(Results(1:EndIndex,:))
'Time, years'
                'q,m^3/(m day)'
                                    'Recovery'
                                  0]
    [
                                        [
                                                0]
    [
         0.07071
                            0.0481]
                                        [ 0.0035]
         0.1414]
                            0.0606]
                                        [ 0.0087]
    [
         0.2121]
                            0.06941
                                       [ 0.0150]
         0.2828]
                                        [ 0.0220]
                            0.0763]
         0.35351
                            0.08221
                                        [ 0.0296]
         0.4242]
                            0.08741
                                      [ 0.0378]
         0.4949]
                            0.0920]
                                       [ 0.0464]
    [
         0.5657]
                            0.0962]
                                        [0.0555]
                            0.1000]
                                        [0.0649]
         0.6364]
         0.7071]
                            0.1036]
                                      [ 0.0747]
         0.7778]
                            0.1069]
                                        [ 0.0848]
         0.8485]
                            0.1101]
                                        [0.0952]
                                       [0.1060]
         0.9192]
                            0.1131]
         0.9899]
                            0.1159]
                                       [0.1170]
    [
         1.0606]
                            0.1186]
                                        [0.1282]
         1.13131
                            0.1212]
                                        [0.1397]
```

[0.1515]

[0.1635]

0.1236]

0.1260]

-	4 0 4 0 4 3	-	0 10003	-	0 4555
[1.3434]	[0.1283]	[0.1757]
[1.4141]	[0.1305]	[0.1882]
[1.4848]	[0.1327]	[0.2008]
ſ	1.5556]	ſ	0.1347]	ſ	0.2137]
-	1.6263]	-	0.1368]	_	0.2267]
[-	[[_
[1.6970]	[0.1387]	[0.2400]
[1.7677]	[0.1406]	[0.2534]
[1.8384]	[0.1425]	[0.2670]
[1.9091]	Γ	0.1443]	[0.2808]
[1.9798]	Γ	0.1460]	[0.2947]
_	2.0505]	-	0.1477]	ſ	0.3088]
[[_	_
[2.1212]	[0.1494]	[0.3231]
[2.1919]	[0.1511]	[0.3375]
[2.2626]	[0.1527]	[0.3521]
[2.3333]	[0.1542]	[0.3669]
[2.4040]	[0.1558]	[0.3818]
[2.4747]	ſ	0.1573]	[0.3968]
[2.5455]	[0.1588]	[0.4120]
	2.6162]	-			0.4274]
[=	[0.1602]	[-
[2.6869]	[0.1617]	[0.4428]
[2.7576]	[0.1631]	[0.4584]
[2.8283]	[0.1645]	[0.4742]
[2.8990]	[0.1658]	[0.4900]
[2.9697]	ſ	0.1672]	[0.5060]
[3.0404]	[0.1685]	[0.5222]
[3.1111]	[0.1698]	[0.5384]
-		-			
[3.1818]	[0.1710]	[0.5548]
[3.2525]	[0.1723]	[0.5713]
[3.3232]	[0.1735]	[0.5879]
[3.3939]	[0.1748]	[0.6047]
[3.4646]	[0.1760]	[0.6215]
[3.5354]	[0.1772]	[0.6385]
[3.6061]	ſ	0.1783]	[0.6556]
-	3.6768]	Г	0.1795]	[0.6728]
[=	[_	
[3.7475]	[0.1806]	[0.6901]
[3.8182]	[0.1818]	[0.7075]
[3.8889]	[0.1829]	[0.7250]
[3.9596]	[0.1840]	[0.7426]
[4.0303]	[0.1851]	[0.7604]
[4.1010]	[0.1861]	ſ	0.7782]
[4.1717]	[0.1872]	[0.7961]
	4.2424]	_	0.1883]	[0.7301]
[[
[4.3131]	[0.1893]	[0.8323]
[4.3838]	[0.1903]	[0.8506]
[4.4545]	[0.1913]	[0.8689]
[4.5253]	[0.1924]	[0.8873]
[4.5960]	[0.1934]	[0.9059]
[4.6667]	[0.1943]	[0.9245]
-	-	-	-		,

```
[ 4.7374] [ 0.1953] [ 0.9432]
[ 4.8081] [ 0.1963] [ 0.9621]
[ 4.8788] [ 0.1972] [ 0.9810]
[ 4.9495] [ 0.1982] [ 1.0000]
```

1.3 Computing the time changeover point

The time changeover is the intersection point of both curves.

```
In [7]: warning('off', 'all')
        addpath('../matlab')
        [RecoveryIntersection,qIntersection] = ...
            intersections (Recovery', q, RecoveryRise', qRise, 1);
        % Determine time step where intersect occurs for depletion
        RecoveryRow = sum(Recovery<=RecoveryIntersection);</pre>
        % Determine time step where intersect occurs for depletion
        RecoveryRiseRow = sum(RecoveryRise<=RecoveryIntersection);</pre>
        timeCalcDepletion = YearsToDays * tYears(RecoveryRow-1);
        timeCalcSteam = YearsToDays * tYears(RecoveryRiseRow-1);
        deltaTime = timeCalcSteam - timeCalcDepletion;
        display(['The changeover point occurs at ' num2str(qIntersection) ...
            ' and recovery of ' num2str(RecoveryIntersection)]);
        display(['Corresponds to ' num2str(timeCalcSteam) ...
            ' days production from steam']);
        display(['Corresponds to ' num2str(timeCalcDepletion) ...
            ' days production from depletion']);
        display(['Yields a difference of ' num2str(deltaTime) ' days']);
The changeover point occurs at 0.13488 and recovery of 0.21457
Corresponds to 541.9697 days production from steam
Corresponds to 387.1212 days production from depletion
Yields a difference of 154.8485 days
```

1.4 Computing the Response Rates

We can now plot production rate versus recovery and visualize where the crossover point occurs.

```
timeSteam = (0:StepSize:1.5) *ChangeOverTime*YearsToDays*DaysToSeconds;
qCumSteam = (2.25 * Coef1 * Coef2 * (timeSteam).^(4/3)) * DaysToSeconds;
qSteam = (3 * Coef1 * Coef2 * (timeSteam).^(1/3)) * DaysToSeconds;
RecoverySteam = qCumSteam \cdot / (h*phi*(S_o - S_or)*w*DaysToSeconds);
% Set up time for depeletion (including time correction)
StepSize = 0.05;
timeDepletion = (0:(ChangeOverTime*StepSize):(TotalTime+2) - ...
    deltaTime/YearsToDays) * YearsToDays*DaysToSeconds;
tStarDepletion = tStarConstant * timeDepletion;
qStarDepletion = sqrt(1.5) - (tStarDepletion.^2) *sqrt(2/3);
q = 2 * qStarDepletion * (DaysToSeconds) / ( FFactor );
recoveryFactor = sqrt(3/2)*tStarDepletion - ...
    (1/3) * (tStarDepletion.^3) * sqrt(2/3);
figure;
FontSize = 15;
hold on;
plot (RecoverySteam, qSteam);
plot(recoveryFactor,q);
axis tight;
ylabel('Production rate, m^3/day','Fontsize', FontSize) % label left y-axi
xlabel('Recovery, fraction','Fontsize', FontSize) % label right y-axis
legend('Steam', 'Depletion');
set(gca, 'FontSize', FontSize);
```


We will next plot the production from steam up to the changeover point, then the remaining rates are calculated from depletion after adjusting the time.

```
In [14]: %plot inline -s 2000,1000
```

```
% Convert time from seconds to years and remove time correction
timeSteamYears = (1/(YearsToDays*DaysToSeconds)) * timeSteam;
timeDepletionYears = (1/(YearsToDays*DaysToSeconds)) * ...
    timeDepletion + deltaTime/YearsToDays;
% Find when steam time ends and depeletion starts
SteamEndTime = sum(timeSteamYears<=ChangeOverTime);</pre>
DepletionStartTime = find(timeDepletionYears>=ChangeOverTime, 1);
qTotal = [(qSteam(:,1:SteamEndTime))';(q(:,DepletionStartTime:end))'];
timeTotal = [(timeSteamYears(:,1:SteamEndTime))'; ...
    (timeDepletionYears(:,DepletionStartTime:end))'];
qStarTotal = [ zeros(SteamEndTime, 1); ...
    (qStarDepletion(:,DepletionStartTime:end))'];
tStarTotal = [ zeros(SteamEndTime, 1); ...
    (tStarDepletion(:,DepletionStartTime:end))'];
RecoveryTotal = [ (RecoverySteam(:,1:SteamEndTime))'; ...
    (recoveryFactor(:,DepletionStartTime:end))'];
figure
[haxes, hline1, hline2] = plotyy(timeTotal, qTotal, timeTotal, ...
    RecoveryTotal, 'plot', 'plot');
ylabel(haxes(1), 'Production rate, m^3/day', 'Fontsize', ...
    FontSize) % label left y-axis
ylabel(haxes(2), 'Recovery, fraction', 'Fontsize', ...
    FontSize) % label right y-axis
xlabel(haxes(2),'Time (years)', 'Fontsize', ...
    FontSize) % label x-axis
Nticks = 5;
FontSize = 12;
set (haxes, 'XLim', [0 TotalTime])
set(haxes(1), 'YLim', [0 max(qTotal)]);
set(haxes(1), 'ytick', linspace(0, max(qTotal), Nticks));
set (haxes(2), 'YLim', [0 max(RecoveryTotal)]);
set(haxes(2), 'ytick', linspace(0, max(RecoveryTotal), Nticks));
set(gcf, 'color', 'w');
set (haxes(1), 'FontSize', FontSize);
set (haxes(2), 'FontSize', FontSize);
```


Finally, we disply the full result.

```
In [15]: TotalResults = [timeTotal qTotal tStarTotal qStarTotal RecoveryTotal];
    ColumnNames = {'Time, years', 'q,m^3/(m day)','t*','q*','Recovery'};
    TotalResults = [ColumnNames; num2cell(TotalResults)];

EndIndex = sum(timeTotal<=TotalTime)+1;</pre>
```

display(TotalResults(1:EndIndex,:))

'Time,	years'	'q,m^3/(m	day)'	't*'	' (] *'	'Recov	very'
[0]	[0]	[0]	[0] [0]
[0.3712]	[0.0836]	[0]	[0] [0.0316]
[0.7424]	[0.1053]	[0]	[0] [0.0797]
[1.1136]	[0.1205]	[0]	[0] [0.1368]
[1.4848]	[0.1327]	[0]	[0] [0.2008]
[1.5379]	[0.1351]	[0.1	702]	[1.2011] [0.2072]
[1.6121]	[0.1347]	[0.1	816]	[1.1978] [0.2208]
[1.6864]	[0.1343]	[0.1	929]	[1.1944] [0.2343]
[1.7606]	[0.1339]	[0.2	2043]	[1.1907] [0.2479]
[1.8348]	[0.1335]	[0.2	2156]	[1.1868] [0.2614]
[1.9091]	[0.1330]	[0.2	2270]	[1.1827] [0.2748]
[1.9833]	[0.1325]	[0.2	2383]	[1.1784] [0.2882]
[2.0576]	[0.1320]	[0.2	2497]	[1.1738] [0.3016]
[2.1318]	[0.1315]	[0.2	2610]	[1.1691] [0.3149]
[2.2061]	[0.1309]	[0.2	2724]	[1.1642] [0.3281]
[2.2803]	[0.1304]	[0.2	2837]	[1.1590] [0.3413]
[2.3545]	[0.1297]	[0.2	2951]	[1.1537] [0.3544]
[2.4288]	[0.1291]	[0.3	3064]	[1.1481] [0.3675]
[2.5030]	[0.1285]	[0.3	3178]	[1.1423] [0.3805]
[2.5773]	[0.1278]	[0.3	3291]	[1.1363] [0.3934]

-	0 65451	-	0 10511			_	
L	2.6515]	Ĺ	0.1271]	[0.3405]	[1.1301]	[0.4063]
[2.7258]	[0.1264]	[0.3518]	[1.1237]	[0.4190]
Γ	2.8000]	Γ	0.1256]	[0.3632]	[1.1171]	Γ	0.4318]
Г	2.8742]	ſ	0.1249]	[0.3745]	[1.1102]	Г	0.4444]
Г	2.9485]	Г	0.1241]	[0.3859]	[1.1032]	Г	_
L	-	L	-	= =		L	0.4570]
L	3.0227]	L	0.1233]	[0.3972]	[1.0959]	L	0.4694]
[3.0970]	[0.1224]	[0.4086]	[1.0884]	[0.4818]
[3.1712]	[0.1216]	[0.4199]	[1.0808]	[0.4941]
Γ	3.2455]	Γ	0.1207]	[0.4313]	[1.0729]	Γ	0.5064]
L	3.3197]	Γ	0.1198]	[0.4426]	[1.0648]	L	0.5185]
L	3.39391	L F				L	_
L	-	L	0.1188]	[0.4540]	[1.0565]	L	0.5305]
L	3.4682]	L	0.1179]	[0.4653]	[1.0480]	L	0.5425]
[3.5424]	[0.1169]	[0.4767]	[1.0392]	[0.5543]
[3.6167]	[0.1159]	[0.4880]	[1.0303]	[0.5661]
[3.6909]	[0.1148]	[0.4994]	[1.0211]	[0.5777]
Γ	3.7652]	Γ	0.1138]	[0.5107]	[1.0118]	Γ	0.5892]
ſ	3.83941	Γ	0.1127]	[0.5221]	[1.0022]	Г	0.6007]
Г	3.9136]	Г	0.1116]	[0.5334]	[0.9924]	L	0.6120]
L		L				L	_
L	3.9879]	L	0.1105]	[0.5448]	[0.9824]	L	0.6232]
[4.0621]	[0.1093]	[0.5561]	[0.9722]	[0.6343]
[4.1364]	[0.1082]	[0.5675]	[0.9618]	[0.6453]
[4.2106]	[0.1070]	[0.5788]	[0.9512]	[0.6561]
Γ	4.2848]	ſ	0.1058]	[0.5902]	[0.9404]	Γ	0.6669]
٦	4.3591]	Γ	0.1045]	[0.6015]	[0.9293]	ſ	0.6775]
Г	4.4333]	Г	0.1033]	[0.6129]	[0.9181]	L	0.6879]
L		L				L	
L	4.5076]	L	0.1020]	[0.6242]	[0.9066]	L	0.6983]
[4.5818]	[0.1007]	[0.6356]	[0.8949]	[0.7085]
[4.6561]	[0.0993]	[0.6469]	[0.8830]	[0.7186]
[4.7303]	[0.0980]	[0.6583]	[0.8710]	[0.7286]
Γ	4.8045]	ſ	0.0966]	[0.6696]	[0.8587]	Γ	0.7384]
Γ	4.8788]	ſ	0.0952]	[0.6810]	[0.8461]	ſ	0.7481]
L	4.9530]	Γ	0.0937]	[0.6923]	[0.8334]	L	0.7576]
L	=	L	-	[0.7037]	[0.8205]	L	0.7670]
L	5.0273]	L	0.0923]			L	_
L	5.1015]	[0.0908]	[0.7150]	[0.8073]	L	0.7762]
[5.1758]	[0.0893]	[0.7264]	[0.7940]	[0.7853]
[5.2500]	[0.0878]	[0.7377]	[0.7804]	[0.7942]
[5.3242]	[0.0862]	[0.7491]	[0.7666]	[0.8030]
Γ	5.3985]	Γ	0.0846]	[0.7604]	[0.7526]	[0.8116]
L	5.4727]	ſ	0.0831]	[0.7717]	[0.7384]	ſ	0.8201]
Г		Г				Г	
L	5.5470]	L	0.0814]	[0.7831]	[0.7240]	L	0.8284]
L	5.6212]	L	0.0798]	[0.7944]	[0.7094]	L	0.8365]
[5.6955]	[0.0781]	[0.8058]	[0.6946]	[0.8445]
[5.7697]	[0.0764]	[0.8171]	[0.6795]	[0.8523]
[5.8439]	[0.0747]	[0.8285]	[0.6643]	[0.8599]
[5.9182]	[0.0730]	[0.8398]	[0.6488]	[0.8674]
[5.9924]	Γ	0.0712]	[0.8512]	[0.6332]	[0.8746]
[6.0667]	[0.0694]	[0.8625]	[0.6173]	[0.8817]
L	6.1409]	L F				L T	
L	0.1409]	L	0.0676]	[0.8739]	[0.6012]	L	0.8887]

[6.2152]	[0.0658]	[0.8852]	[0.5849]	[0.8954]
[6.2894]	[0.0639]	[0.8966]	[0.5684]	[0.9019]
[6.3636]	[0.0620]	[0.9079]	[0.5517]	[0.9083]
[6.4379]	[0.0601]	[0.9193]	[0.5347]	[0.9145]
[6.5121]	[0.0582]	[0.9306]	[0.5176]	[0.9204]
[6.5864]	[0.0563]	[0.9420]	[0.5002]	[0.9262]
[6.6606]	[0.0543]	[0.9533]	[0.4827]	[0.9318]
[6.7348]	[0.0523]	[0.9647]	[0.4649]	[0.9372]
[6.8091]	[0.0503]	[0.9760]	[0.4469]	[0.9423]
[6.8833]	[0.0482]	[0.9874]	[0.4287]	[0.9473]
[6.9576]	[0.0461]	[0.9987]	[0.4103]	[0.9521]

In []: