

Larutan Penyangga

Muatan

TKA Kimia disusun berdasarkan materi kimia esensial pada Kurikulum 2013 dan Kurikulum Merdeka. Muatan tersebut terdiri dari empat elemen kimia, yaitu:

• Kimia Analitik: larutan, kesetimbangan larutan, asam-basa, pH, dan koloid;

Elemen/ Materi

3. Kimia Analitik

Sub-elemen/Submateri

Kesetimbangan dalam *larutan* berair

Kompetensi

Menganalisis konsep, sifat dan **pH larutan penyangga** serta penerapannya dalam kehidupan sehari-hari.

Batasan/Catatan

_

Materi

Larutan penyangga (buffer)

Larutan penyangga (buffer/dapar) adalah larutan yang dapat mempertahankan pH. Pada batas-batas tertentu, pengenceran, penambahan H⁺ (asam), atau penambahan OH⁻ (basa) relatif tidak merubah pH larutan penyangga (perubahan pH sangat kecil). Hal ini disebabkan karena H⁺ dan OH⁻ yang ditambahkan ditangkap oleh partikel-partikel zat terlarut. Terdapat dua jenis larutan penyangga sebagai berikut:

Buffer/ Penyangga Asam

Larutan mengandung asam lemah dan basa konjugasinya dimana basa konjugasi disediakan oleh garam.

Contoh: CH₃COOH dan CH₃COO⁻, dimana CH₃COO⁻ disediakan dari garamnya (misal: CH₃COONa atau (CH₃COO)₂Ca)

Bila sedikit asam atau basa ditambahkan ke dalam larutan buffer asam, maka ion H⁺ dari asam dan ion OH⁻ dari basa akan ditangkap oleh partikel zat terlarut menurut reaksi sebagai berikut:

 $CH_3COO^- + H^+ \rightarrow CH_3COOH$

 $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$

Konsentrasi H⁺/ [H⁺) untuk larutan Buffer Asam:

$$[H^+] = Ka \frac{mol \ asam \ lemah}{mol \ basa \ konjugasinya}$$

Karena basa konjugasi berasal dari ionisasi garamnya, maka dapat dirumuskan juga dengan:

$$[H^+] = Ka \frac{mol \ asam \ lemah}{mol \ garamnya \ x \ a}$$

Catatan:

Ka = tetapan ionisasi asam lemah

 $mol = M \times volum$

a = jumlah ion basa konjugasinya/ asam lemah dari garamnya contoh:

CH₃COOH + CH₃COONa, CH₃COONa \rightarrow CH₃COO⁻ + Na⁺, maka a = 1 CH₃COOH + (CH₃COO)₂Ca, (CH₃COO)₂Ca \rightarrow 2CH₃COO⁻ + Ca²⁺, maka a = 2

Jika volum larutan sama, bisa ditulis:

Atau

$$[H^+] = Ka \frac{[asam \ lemah]}{[garamnya] \ x \ a}$$

Jika dijadikan pH, maka rumusnya menjadi:

$$pH = -\log \left(Ka \frac{[asam \, lemah]}{[basa \, konjugasinya]} \right)$$

Buffer/ Penyangga Basa

Larutan mengandung basa lemah dan asam konjugasinya dimana asam konjugasi disediakan oleh garam. Contoh: NH_4OH (NH_3) dan NH_4^+ , dimana NH_4^+ disediakan dari garamnya (misal: NH_4CI atau (NH_4)₂ SO_4) Bila sedikit asam atau basa ditambahkan ke dalam larutan buffer basa, maka ion H^+ dari asam dan ion OH^- dari basa akan ditangkap oleh partikel zat terlarut menurut reaksi sebagai berikut:

 $NH_3 + H^+ \rightarrow NH_4^+$

 $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$

Konsentrasi OH⁻/[OH⁻] untuk larutan Buffer Basa:

$$[OH^-] = Kb \frac{mol\ basa\ lemah}{mol\ asam\ konjugasinya}$$

Karena basa konjugasi berasal dari ionisasi garamnya, maka dapat dirumuskan juga dengan:

$$[OH^-] = Kb \frac{mol\ basa\ lemah}{mol\ garamnya\ x\ b}$$

Catatan:

Kb = tetapan ionisasi basa lemah

 $mol = M \times volum$

b = jumlah ion asam konjugasinya/ basa lemah dari garamnya

contoh:

 $NH_3 + NH_4CI$, $NH_4CI \rightarrow NH_4^+ + CI^-$, maka b = 1 $NH_3 + (NH_4)_2SO_4$, $(NH_4)_2SO_4 \rightarrow 2NH_4^+ + SO_4^{2-}$, maka b = 2

Jika volum larutan sama, bisa ditulis:

[OH] = Kb.
$$\frac{[basa\ lemah]}{[asam\ konjugasinya]}$$

Atau

$$[OH^-] = Kb. \frac{[basa\ lemah]}{[garamnya]\ x\ b}$$

Jika dijadikan pH, maka rumusnya menjadi:

$$pOH = pKb - log (Kb \frac{[basa\ lemah]}{[asam\ konjugasinya]})$$

Untuk **mereaksikan Asam + Basa** anda harus menghitung mol H⁺ dan mol OH⁻ nya dulu, kemudian tentukan :

- Jika sisa lemah (asam/basa) → Larutan Penyangga / Buffer
- Jika tak ada sisa → Hidrolisis/ garam
- Jika sisa Kuat (asam/basa) → Asam/ basa kuat

Larutan Penyangga terbentuk dari = (asam atau basa lemah) + garamnya atau asam + basa sisa asam/basa lemah. Larutan penyangga mempunyai sifat : pH nya konstan jika ditambah sedikit asam/basa/ air (diencerkan) BIASANYA: selisih 0,1-0,2 dari pH awal

Rumus:

Larutan	Jenis	Rumus	Keterangan	
Asam Lemah + Garamnya	Penyangga asam	$[H^+] = Ka \frac{mol \ asam}{mol \ garam \ x \ a}$	Ka = Tetapan asam a = jml asam lemah pd garamnya	
Basa Lemah + Garamnya		$[OH^{-}] = Kb \frac{\text{mol basa}}{\text{mol garam x b}}$	Kb = Tetapan basa b = jml basa lemah pd garamnya	
_	Sisa Asam Lemah (Penyangga Asam)	$[H^+] = Ka \frac{mol H^+ - molOH^-}{mol OH^-}$	mol H ⁺ = Ma x Va x Jml H ⁺ mol OH ⁻ = Mb x Vb x Jml OH ⁻	
Asam + Basa	Sisa Basa Lemah (Penyangga Basa)	$[OH^{-}] = Kb \frac{mol OH^{-} - mol H^{+}}{mol H^{+}}$	mol H ⁺ = Ma x Va x Jml H ⁺ mol OH ⁻ = Mb x Vb x Jml OH ⁻	

Catatan:

mol H⁺ = M_{asam} x Volume Asam x Valensi Asam mol OH⁻ = M_{basa} x Volume Basa x Valensi Basa

Pembuatan Larutan Penyangga

Larutan penyangga dapat dibuat dengan dua cara yakni cara langsung dan tidak langsung yang dijelaskan di bawah ini.

Cara Langsung

Asam lemah dicampur dengan garamnya, misal: CH₃COOH + CH₃COONa Basa lemah dicampur dengan garamnya, misal: NH₄OH + NH₄CI

Cara Tidak Langsung

Asam lemah dicampur dengan basa kuat, misal: CH₃COOH + NaOH Basa lemah dicampur dengan asam kuat, misal: NH₄OH + HCl Syarat: pada akhir reaksi larutan yang lemah harus bersisa!

Pengaruh penambahan asam, basa atau air (pengenceran)

Prinsip dasarnya, Asam jika ditambah basa akan bereaksi membentuk garam. Jika Asam ditambah asam, asamnya akan bertambah karena tidak bereaksi. Karena Penyangga terdapat garam, maka asam yang ditambahkan bereaksi dengan garam membentuk asam lemahnya. Jika Penyangga Basa ditambah Asam, maka Asam yang ditambahkan bereaksi dengan Basa membentuk garam. Sebaliknya jika ditambah dengan Basa, maka basa tidak bereaksi dengan basa. Tetapi bereaksi dengan garamnya/ asam konjugasinya membentuk basa lemahnya.

Penyangga Asam ditambah sedikit Asam atau Basa Penyangga Asam ditambah Basa

Jika Penyangga Asam ditambah dengan Basa, maka asam akan bereaksi dengan basa membentuk garam. Sehingga asam lemahnya berkurang, dan garamnya bertambah. Dapat dirumuskan:

$$[H^+] = Ka \frac{mol \ asam \ lemah - mol \ basa}{(mol \ garamnya \ x \ a) + mol \ basa}$$

Penyangga Asam ditambah Asam

Jika Penyangga Asam ditambah dengan Asam, maka garam akan bereaksi dengan asam membentuk asam. Sehingga asam lemahnya bertambah, dan garamnya berkurang. Dapat dirumuskan:

[H⁺] = Ka
$$\frac{mol\ asam\ lemah\ +\ mol\ asam}{(mol\ garamnya\ x\ a)\ -\ mol\ asam}$$

Penyangga Basa ditambah sedikit Asam atau Basa

Penyangga Basa ditambah Asam

Jika Penyangga Basa ditambah dengan Asam, maka Basa akan bereaksi dengan asam membentuk garam. Sehingga basa lemahnya berkurang, dan garamnya bertambah. Dapat dirumuskan:

[OH⁻] = Kb
$$\frac{mol\ basa\ lemah - mol\ asam}{(mol\ garamnya\ x\ a) + mol\ asam}$$

Penyangga Basa ditambah Basa

Jika Penyangga Basa ditambah dengan Basa, maka garam akan bereaksi dengan basa membentuk basa. Sehingga basa lemahnya bertambah, dan garamnya berkurang. Dapat dirumuskan:

[OH⁻] = Kb
$$\frac{mol\ basa\ lemah + mol\ basa}{(mol\ garamnya\ x\ a) - mol\ basa}$$

Penyangga Asam/ Basa ditambah sedikit air (Pengenceran)

Pada pengenceran mmol (mol) zat terlarut tidak berubah, walaupun volume larutan sendiri bertambah besar. Oleh karena itu, bila larutan penyangga diencerkan, maka mmol (mol) asam (basa) lemah dan mmol (mol) garamnya tidak berubah. Dengan demikian larutan penyangga bersifat dapat mempertahankan pH.

Larutan Penyangga dalam kebidupan sehari-bari

Buffer intrasel dan ekstrasel memiliki peran yang sangat penting dalam tubuh manusia dan masing-masing memiliki contoh yang berbeda.

Contoh buffer ekstrasel:

- 1. **Buffer Karbonat**: Berfungsi untuk menjaga pH darah agar tetap stabil.
- 2. **Buffer Asam Amino**: Membantu mengatur pH di dalam tubuh dengan cara berinteraksi dengan ion hidrogen.
- 3. **Buffer Ginjal**: Berperan dalam mempertahankan keseimbangan asam-basa melalui proses ekskresi.
- Buffer di Mulut: Membantu menjaga pH di dalam rongga mulut untuk kesehatan gigi dan gusi.

Sementara itu, buffer **intrasel** memiliki jumlah yang lebih terbatas daripada buffer ekstrasel. Salah satu contohnya adalah **Penyangga Fosfat** yang terdapat dalam cairan sel darah merah atau hemoglobin. Buffer fosfat ini memiliki jumlah yang lebih banyak dibandingkan dengan buffer yang ada di ginjal dan urine.

1. Larutan penyangga dalam darah

Derajat keasaman (pH) darah dalam tubuh manusia berkisar 7,35 – 7,45 atau rata-rata 7,4. Agar pH darah dalam kisaran tersebut maka terdapat beberapa larutan penyangga, yaitu:

Penyangga hemoglobin

Hemoglobin (Hb_4O_8) merupakan asam lemah dengan Ka = 2,4 x 10^{-7} , yang dapat mengalami reaksi disosiasi:

 $Hb_4O_8 + H_2O \rightleftharpoons H^+ + Hb_4O_8^-$

Gas CO₂ yang merupakan hasil metabolisme dapat larut dalam darah dengan membentuk reaksi kesetimbangan berikut:

 $CO_2(g) + H_2O(I) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

Ion H^+ yang terbentuk tersebut dapat mempengaruhi pH darah. Oleh karena itu, diperlukan adanya mekanisme untuk mengatasi hal tersebut. Dalam hal ini $Hb_4O_8^-$ setelah melepaskan oksigen terbentuk Hb_4^- yang segera bereaksi dengan CO_2 .

 $CO_2 + H_2O + Hb_4^- \rightleftharpoons HCO_3^- + Hb_4$

Dengan demikian tidak ada ion H⁺ yang dibebaskan ke dalam darah dan pH tetap berkisar 7,35 - 7,45.

Penyangga karbonat H₂CO₃/ HCO₃⁻ (Penyangga Ekstra Sel)

Penyangga karbonat adalah penyangga dalam cairan luar sel (darah). Sistem ini bereaksi dengan asam dan basa sebagai berikut:

 $H_2CO_3(aq) + OH^-(aq) \rightleftharpoons HCO_3^-(aq) + H_2O(I)$

 $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2CO_3(aq)$

Perbandingan ion HCO_3^- terhadap H_2CO_3 yang diperlukan untuk menjaga pH darah = 7,4 adalah 20 : 1. Ion bikarbonat relatif jauh lebih banyak karena hasil-hasil metabolisme yang diterima oleh darah lebih banyak bersifat asam.

Contoh: asam laktat, asam fosfat, dan asam sulfat.

Penyangga fosfat H₂PO₄⁻/HPO₄²⁻ (Penyangga Intra Sel)

Penyangga fosfat penting untuk mempertahankan pH darah, terutama di dalam sel. Sistem penyangga ini bersifat dominan karena memiliki pKa = 7,2 yang mendekati pH darah = 7,4.

2. Larutan penyangga dalam ludah

Larutan penyangga dalam ludah $H_2PO_4^-/HPO_4^{2-}$ yang berfungsi menjaga mulut pada pH sekitar 6,8. Sistem penyangga ini berperan dalam penetralan asam-asam yang terbentuk dari fermentasi sisa-sisa makanan.

3. Larutan penyangga dalam air laut

Air pada permukaan laut memiliki pH 8,1-8,4. Dalam air laut terdapat kesetimbangan:

 $CO_2(g) \rightleftharpoons CO_2(aq)$

 $CO_2(aq) + H_2O(I) \rightleftharpoons H_2CO_3(aq)$

 $H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$

 $HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$

Jika ada penambahan basa (ion OH⁻) dalam air laut, maka ion tersebut dinetralkan oleh ion H⁺. Jika ada penambahan asam (ion H⁺), maka ion tersebut diikat oleh ion HCO₃⁻. Jika tumbuhan air menggunakan CO₂ untuk fotosintesis maka pH akan naik, sebaliknya jika hewan laut bernafas

melepaskan CO₂ maka pH akan turun. Hal ini dapat diatasi oleh ion HCO₃⁻ dengan mekanisme:

 $HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$

 $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2O(I) + CO_2(g)$

Tipe Ujian Nasional

1. UN-SMA-14-Type 1-10

Perhatikan kurva perubahan harga pH pada titrasi CH₃COOH dengan NaOH berikut!

Daerah kurva yang merupakan larutan penyangga adalah

A. X

B. Y

C. Z

D. V

E. W

2. UN 2019 Type A

Sebanyak 100 mL larutan $CH_3COOH\ 0,10\ M\ (K_a=1,8\times10^{-5})$ dicampur dengan 100 mL larutan $CH_3COOK\ 0,20\ M$. Nilai pH yang dihasilkan adalah

A. $5 - \log 3.6$

B. $5 - \log 1.8$

C. $6 - \log 9$

D. $6 + \log 9$

E. 8 + log 9

3. UN 2019 Type A

Seorang siswa membuat larutan penyangga dengan pH = 9 dari zat yang tersedia yaitu larutan NH $_3$ 1 M (Kb = 1×10^{-5}) dan kristal garam NH $_4$ Cl (Mr = 53,5). Adapun tahapannya sebagai berikut.

- 1. mengambil 1 L larutan NH₃
- 2. menimbang 5,35 gram NH₄Cl dan mencampurkan ke larutan NH₃
- 3. mengaduk hingga semua kristal larut

Setelah diukur ternyata pH larutan yang terbentuk tidak sesuai. Tahapan yang menyimpang dari proses tersebut adalah

- A. konsentrasi NH₃ yang digunakan terlalu kecil
- B. percampuran harus dipanaskan terlebih dahulu
- C. larutan NH₃ yang digunakan terlalu sedikit
- D. massa NH₄Cl yang ditimbang seharusnya 0,53 gram
- E. larutan NH₃ yang digunakan seharusnya 100 mL

4. UN 2018 Type A

Diketahui campuran larutan penyangga sebagai berikut.

No.	Larutan asam	Larutan garam	Ka/Kb
(1)	50 mL Larutan CH₃COOH 0,1 M	50 mL Larutan CH₃COONa 0,1 M	10-5

(2)	50 mL Larutan CH₃COOH 0,1 M	100 L Larutan CH₃COONa 0,1 M	10-5
(3)	50 mL Larutan CH₃COOH 0,2 M	50 mL Larutan CH₃COONa 0,1 M	10-5

Urutan harga pH dimulai dari yang terkecil adalah

- A. (1) (2) (3)
- B. (1) (3) (2)
- C. (2) (1) (3)
- D. (3) (1) (2)
- E. (3) (2) (1)

5. UN 2016 T-1-11

Larutan penyangga berperan dalam menjaga kestabilan pH dalam cairan inti sel, ekstra sel, dan berbagai sistem lainnya. Berikut adalah daftar spesi kimia yang dapat membentuk larutan penyangga:

- (1) HPO₄²⁻
- (2) H₂CO₃
- (3) H₂C₂O₄
- (4) CO_3^{2-}
- (5) $H_2PO_4^-$

Pasangan spesi kimia yang dapat membentuk larutan penyangga adalah

- A. (1) dan (2)
- B. (1) dan (5)
- C. (2) dan (3)
- D. (2) dan (5)
- E. (3) dan (4)

6. UN-SMA-13-Type 1-13

Perhatikan data uji pH beberapa larutan!

Lawitan	mll Assol	pH Setelah Penambah			
Larutan	pH Awal	Sedikit Asam	Sedikit Basa		
Р	3,0	1,0	4,0		
Q	5,0	4,9	5,1		
R	8,0	7,9	8,1		
S	9,0	8,5	10,5		
T	10,0	8,5	11,0		

Larutan yang merupakan larutan penyangga adalah

- A. P dan Q
- B. Q dan R
- C. R dan S
- D. R dan T
- E. S dan T

7. UN-SMA-10-P27-11

Perhatikan data percobaan berikut:

Larutan Penyangga

Persiapan TKA Kimia - 2025

Larutan	I	Ш	Ш	IV	V
pH Awal	4	5	7	8	10
Ditambah sedikit	2,50	2 00	4 50	7,80	5
asam	2,50	3,90	4,50	7,60	5
Ditambah sedikit	6,60	6,10	10	8,10	12
basa	0,00	6,10	10	8,10	12
Ditambah sedikit	5,2	5,9	6,5	7,60	8,5
air	3,2	3,9	0,5	7,60	0,5

Dari data tersebut yang termasuk larutan penyangga adalah

- A.
- B. II
- C. III
- D. IV
- E. V

8. UN-SMA 12-B67-13

Sekelompok siswa membuat 5 larutan yang berbeda, dengan data sebagai berikut:

No. Tabung Reaksi	Rumus Molekul Larutan	Konsentrasi (M)	Volume (mL)
1.	HCN	0,10	100
2.	NaOH	0,10	100
3.	CH₃COOH	0,20	100
4.	NH₃	0,10	100
5.	HCl	0,05	100

Pasangan larutan yang dapat membentuk larutan penyangga adalah

- A. 1 dan 2
- B. 1 dan 5
- C. 2 dan 3
- D. 2 dan 4
- E. 3 dan 5

9. UN-SMA-2015-1-11

Berikut ini beberapa jenis ion/senyawa:

- (1). H₂CO₃
- (2). H₂SO₄
- (3). H_2PO_4
- (4). HCO₃
- (5). HPO_4^{2-}

Pasangan ion/senyawa yang berguna sebagai penyangga pada ekstra sel darah adalah

- A. (1) dan (2)
- B. (1) dan (4)
- C. (2) dan (3)
- D. (2) dan (5)
- E. (3) dan (4)

10. UN-SMA-14-Type 1-11

Beberapa campuran penyangga berikut ini:

- (1) NH₃ (aq) dengan (NH₄)₂SO₄
- (2) H₂CO₃ dengan HCO₃
- (3) HF dengan NaF
- (4) H₂PO₄⁻ dengan HPO₄²⁻
- (5) H₂CO₃ dengan NaHCO₃

Komponen larutan penyangga dalam cairan intra sel pada makhluk hidup adalah

- A. (1)
- B. (2)
- C. (3)
- D. (4)
- E. (5)

11. UN-SMA-12-C79-13

Terdapat beberapa larutan:

- (1) 20mL NaOH 0,1 M;
- (2) 20 mL CH₃COOH 0,2 M;
- (3) 20 mL Ca(OH)₂ 0,5 M;
- (4) 20mL HCl 0,1 M; dan
- (5) 20 mL H₂SO₄ 0,1 M.

Campuran yang menghasilkan larutan penyangga adalah

- A. (1) dan (2)
- B. (1) dan (4)
- C. (2) dan (4)
- D. (3) dan (4)
- E. (4) dan (5)

12. EBTANAS-03-28

Beberapa campuran:

- 1. 100 mL HCl 0,1 M dengan 50 mL NaOH 0,1 M
- 2. 100 mL CH₃COOH 0,1 M dengan 50 mL CH₃COOH 0,1 M
- 3. 100 mL H₂CO₃ 0,1 M dengan 100 mL NaOH 0,1 M
- 4. 100 mL CH₃COOH 0,1 M dengan 30 mL NaOH 0,1 M
- 5. 100 mL NH₄OH 0,1 M dengan 50 mL HCl 0,1 M

Campuran yang membentuk penyangga yang bersifat asam adalah ...

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

13. UAS-05-25

Jika diketahui Kb $NH_4OH = 10^{-5}$, harga pH campuran antara 100 mL larutan $NH_4OH 0,2$ M dan 100 mL larutan HCl 0,1 M adalah

- A. 5
- B. 5 + log 2
- C.9 log 2
- D. 9
- E. 9 + log 2

14. UNAS-04-23

pH larutan dari campuran 100 ml larutan NH_4OH 0,1 M dengan 100 ml larutan NH_4Cl 0,1 M (Kb NH_4OH = 10^{-5}) adalah ...

- A. 5
- B. 6
- C. 7
- D. 8
- E. 9

15. EBTANAS-01-34

Larutan 20 mL HCOOH 0,3 M (Ka = 2×10^{-5}) dicampurkan dengan 40 mL larutan KOH 0,1 M. Harga pH larutan yang terjadi adalah ...

- A. 1
- B. 3
- C. 5
- D. 8
- E. 10

16. EBTANAS-98-27

Sebanyak 20 ml larutan NH $_3$ 0,30 M (Kb = 10^{-5}) dicampur dengan 40 ml larutan HCl 0,10 M. pH campuran adalah ... (log 5 = 0,699 , log 2 = 0.301)

- A. 1
- B. 3
- C. 4,301
- D. 7
- E. 8,699

17. EBTANAS-96-22

Campuran larutan NH₄Cl 0,01 M dan NH₄OH 0,01 M (Kb = 1×10^{-5}) mempunyai pH = 9. Volume NH₄OH dan NH₄Cl yang dicampur masing-masing adalah ...

- A. 1 ml dan 10 ml
- B. 100 ml dan 200 ml
- C. 100 ml dan 50 ml
- D. 50 ml dan 100 ml
- E. 100 ml dan 100 ml

Tipe SBMPTN

1. Skalu/1977

Penambahan sedikit air ke dalam larutan penyangga akan menyebabkan...

- A. perubahan pH larutan
- B. perubahan pKa larutan asam
- C. tidak ada perubahan pH maupun pKa
- D. perubahan pKa tetapi pH tetap
- E. perubahan pH tetapi pKa tetap

2. SNMPTN/2010 W -III/538

Campuran zat-zat berikut yang dapat menghasilkan larutan penyangga adalah

- (1) NH₃ dan NH₄Cl
- (2) Na₂HPO₄ dan NaH₂PO₄
- (3) CH₃COOH dan CH₃COONa
- (4) CH₃COONa dan NaOH

3. PP I 1983

Larutan penyangga (buffer) dapat dibuat dengan mencampurkan larutan-larutan ...

- A. asam nitrat dengan Na-asetat
- B. asam nitrat dengan Na-nitrat
- C. asam fosfat dengan Na-asetat
- D. asam asetat dengan Na-asetat
- E. asam asetat dengan Na-nitrat

4. PP I 1979

Campuran yang membentuk larutan penyangga ialah...

- (1) 100 ml asam asetat 0,1 M dan 100 ml NaOH 0,1 M
- (2) 100 ml asam asetat 0,2 M dan 100 ml NaOH 0,1 M
- (3) 100 ml NH4OH 0,1 M dan 100 ml HCl 0,1 M
- (4) 100 ml Mn4OH 0,1 M dan 100 ml HCl 0,05 M

5. SBMPTN/2016/213

pH larutan yang mengandung 0,25 M $HC_2H_3O_2$ (Ka = 10^{-5}) dan 0,75 M $NaC_2H_3O_2$ adalah

- A. $5 + \log 3$
- B. 5 log 3
- C. $9 + \log 3$
- D. 9 log 3
- E. 6

6. SBMPTN/2014/514

Suatu larutan buffer dibuat dengan cara mencampurkan 0,6 mol asam asetat dan 0,2 mol NaOH dalam 500 mL larutan (Ka $CH_3COOH = 5 \times 10^{-5}$). pH larutan tersebut adalah

- A. 2
- B. 3
- C. 4
- D. 5
- E. 6

7. SKALU 1978

Campuran yang terdiri atas 10 ml 0,1 N asam asetat dan 5 ml 0,1 N Na-hidroksida mempunyai pH yang ...

- A. lebih besar dari 7
- B. sama dengan 7
- C. sama dengan pKa
- D. lebih besar dari pKa
- E. lebih kecil dari pKa

8. SPMB/2005/Regioanl II

Diketahui: Ka asam laktat = 10^{-4} . Perbandingan [asam laktat] dan [Na laktat] agar dihasilkan pH larutan = 4 adalah...

- A. 1:1
- B. 1:2
- C. 1:3
- D. 2:3
- E. 3:2

9. SBMPTN/2017/121

Asam hipobromit (HOBr) adalah asam lemah dengan Ka = 10^{-9} . Perbandingan $\frac{[HOBr]}{[OBr]}$ dalam larutan NaOBr pada pH = 10 adalah

- A. 10⁻⁵
- B. 10⁻⁴
- C. 10⁻²
- D. 10⁻¹
- E. 10

10. SBMPTN/2013/130

Sebanyak 1 mmol garam NaNO₂ dilarutkan ke dalam 100 mL larutan buffer pH = 8. Konsentrasi HNO₂ (Ka = 5.0×10^{-5}) dalam larutan tersebut adalah...

- A. $2 \times 10^{-10} \text{ M}$
- B. $2 \times 10^{-7} \text{ M}$
- C. $2 \times 10^{-6} M$
- D. 5 x 10⁻⁵ M
- E. 7 x 10⁻⁴ M

11. SBMPTN 2019

Perhatikan ilustrasi campuran larutan asam basa berikut!

Ket: \bullet = 0,1 mol basa lemah NH₃ (Kb = 10⁻⁵)

O = 0,1 mol asam kuat HX

Campuran larutan asam-basa yang termasuk larutan penyangga adalah ...

- A. A
- B. B
- C. C
- D. A dan C
- E. A dan B

12. SBMPTN 2019

Perhatikan ilustrasi campuran larutan asam basa berikut!

Ket: \bullet = 0,1 mol basa lemah NH₃ (Kb = 10⁻⁵)

O = 0,1 mol asam kuat HX

Derajat keasaman (pH) pada wadah A adalah

- A. 6 log 2
- B. 8 log 2
- C. $8 + \log 2$
- D. $9 + \log 2$
- E. 10 + log 2

13. SBMPTN/2016/235

Sebanyak 50 mL larutan KOH dicampurkan dengan 450 mL larutan asam asetat (Ka = 2×10^{-5}). Kedua larutan itu memiliki konsentrasi yang sama. pH larutan yang terbentuk adalah...

- A. 5 2 log 2
- B. $5 + 2 \log 2$
- C. 5 2 log 3
- D. $5 + 3 \log 2$
- E. 5 4 log 2

14. SBMPTN-2022

Suatu asam lemah monoprotik (HA) mempunyai $Ka = 3 \times 10^{-5}$. Perbandingan volume larutan HA 0,1 M terhadap larutan NaOH 0,1 M yang harus dicampurkan agar diperoleh larutan buffer dengan pH = 5 adalah...

- A. 2:3
- B. 3:1
- C. 3:4
- D. 4:3
- E. 5:2

15. SBMPTN-2022

Amonium hidroksida (NH₄OH) mempunyai pKb = 5. Perbandingan volume larutan NH₄OH 0,1 M terhadap larutan HCl 0,1 M yang harus dicampurkan agar diperoleh larutan buffer dengan pH = 9 adalah...

A. 1:1

B. 1:2

C. 1:3

D. 2:1

E. 2:3

16. SBMPTN/2016/221

Sebanyak 29 mL larutan 0,1 M CH_3COOH (Ka = 4,6 x 10^{-5}) dicampurkan dengan 8 mL larutan 0,05 M NaOH dan diencerkan dengan air hingga volumenya menjadi 100 mL, pH larutan yang terbentuk adalah...

A. 3

B. 4

C. 5

D. 6

E. 8

17. SNMPTN/2010/W-I/546

Perhatikan tabel berikut!

Asam	Nilai Ka
H ₃ PO ₄	7,2 x 10 ⁻³
H ₂ PO ₄ -	6,3 x 10 ⁻⁸
HPO ₄ ² -	4,2 x 10 ⁻¹³

Berdasarkan data di atas, jika perbandingan konsentrasi asam dan basa konjugasi 1 : 1 pasangan yang paling cocok untuk membuat larutan penyangga dengan pH sekitar 7 adalah

A. $K_3PO_4 + K_2HPO_4$

B. $K_3PO_4 + KH_2PO_4$

C. $H_3PO_4 + KH_2PO_4$

D. $K_2HPO_4 + KH_2PO_4$

E. $H_3PO_4 + K_2HPO_4$

18. SBMPTN/2015/546, 533, 509, 508, 513, 538

Sejumlah 200 mL larutan HCN 0,30 M (Ka = 5×10^{-10}) dicampurkan dengan 100 mL larutan KOH 0,30 M. Ke dalam campuran tersebut ditambahkan 0,8 g NaOH padat (Mr = 40). Pada 25°C, pH larutan yang terbentuk adalah

A. 2

B. 4

C. 10 - log 5

D. 10

E. 12

19. SBMPTN-2021

Sebanyak 50 mL asam lemah HB 0,2 M dicampurkan dengan 50 mL asam kuat HC 0,1 M ke dalam campuran tersebut ditambahkan 75 mL NaOH 0,1 M. Larutan yang terbentuk memiliki pH sebesar

Persiapan TKA Kimia - 2025

A. pH = pKa - log 3

B. pH = pKa - log 2.

C. pH = pKa

D. pH = pKa + log 2.

E. pH = pKa + log 3

20. SBMPTN-2021

Sebanyak 50 mL NH $_3$ 0,2 M (Kb = 10^{-5}) direaksikan dengan 50 mL HCl 0,1 M. Agar pH campuran menjadi 10 maka ke dalam campuran harus ditambahkan NaOH sebanyak...

A. 11/45 mmol.

B. 45/11 mmol.

C. 11 mmol.

D. 45 mmol.

E. 4,5 mmol.

21. SBMPTN 2019

Sebanyak 25 ml larutan metilamina (CH_3NH_2) 0,04M ($Kb = 4 \times 10^{-4}$) dititrasi dengan larutan HCl 0,02 M. pH larutan setelah dititrasi dengan 25 ml HCl adalah

A. 6 - log 2

B. $6 + \log 2$

C. 8 - log 2

D. $8 + \log 2$

E. $10 + 2 \log 2$

Tipe TKA

Stimulus: Peran Penyangga pH dalam Tubuh Manusia dan Industri Makanan

Pernahkah Anda bertanya-tanya mengapa pH darah kita selalu stabil di kisaran 7,35 hingga 7,45 meskipun kita mengonsumsi berbagai jenis makanan? Hal ini berkat adanya **larutan penyangga** di dalam darah. Larutan penyangga adalah campuran dari asam lemah dan basa konjugasinya, atau basa lemah dan asam konjugasinya, yang mampu mempertahankan pH ketika sejumlah kecil asam atau basa ditambahkan.

Sistem penyangga utama dalam darah adalah campuran asam karbonat (H2CO3) dan ion bikarbonat (HCO3–). Ketika kita berolahraga berat, metabolisme tubuh menghasilkan asam laktat yang dapat menurunkan pH darah. Secara otomatis, ion HCO3– akan bereaksi dengan asam tersebut untuk menetralkannya, mencegah pH darah turun drastis. Sebaliknya, jika pH darah cenderung naik, H2CO3 akan melepaskan ion H+ untuk menyeimbangkannya.

Prinsip yang sama juga digunakan dalam industri. Dalam pembuatan keju, larutan penyangga sering digunakan untuk menjaga pH tetap stabil selama proses fermentasi, yang sangat penting untuk rasa dan tekstur akhir produk. Misalnya, larutan penyangga yang dibuat dari **asam asetat**

(CH3COOH) dan natrium asetat (CH3COONa) sering digunakan. Larutan penyangga ini dapat dibuat dengan berbagai konsentrasi, seperti campuran 50 mL CH₃COOH 0,1 M dengan 50 mL CH₃COONa 0,1 M atau bahkan 50 mL CH₃COOH 0,5 M dengan 50 mL CH₃COONa 0,5 M untuk kapasitas yang lebih besar.

Soal Pilihan Ganda Soal Tunggal (HOTS)

- 1. Seorang petani hidroponik mendapati bahwa pH larutan nutrisinya terus-menerus turun, padahal ia sudah menambahkan larutan basa secara rutin. Setelah diperiksa, ternyata pH larutan tersebut tetap kembali ke kisaran awal setelah beberapa saat. Kondisi ini menunjukkan bahwa larutan nutrisi tersebut...
 - A. Bersifat sangat asam dan tidak dapat dipertahankan pH-nya.
 - B. Tidak memiliki larutan penyangga, sehingga pH-nya tidak stabil.
 - C. Berada dalam kondisi jenuh sehingga tidak dapat menerima zat lain.
 - D. Memiliki sistem larutan penyangga yang mempertahankan pH.
 - E. Telah mengalami hidrolisis sempurna dari garam yang terkandung.
- 2. Ketika darah mengalami asidosis (pH di bawah 7,35), tubuh akan memproduksi ion bikarbonat (HCO₃⁻) untuk menetralkan kelebihan ion H⁺. Berdasarkan reaksi kesetimbangan:

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

Proses ini dapat dijelaskan sebagai...

- A. Pergeseran kesetimbangan ke arah kanan untuk meningkatkan ion H+.
- B. Penurunan konsentrasi H₂CO₃ untuk menaikkan pH.
- C. Pergeseran kesetimbangan ke arah kiri untuk mengurangi ion H+.
- D. Peningkatan konsentrasi HCO₃⁻ untuk menurunkan pH.
- E. Terbentuknya H₂CO₃ yang bersifat asam kuat.

Soal Pilihan Ganda Soal Grup (HOTS)

- Pilihlah satu urutan yang benar dari larutan-larutan penyangga berikut berdasarkan kapasitasnya dalam menahan perubahan pH, dari yang paling rendah ke paling tinggi!
 - (1) Campuran 50 mL CH₃COOH 0,1 M dan 50 mL CH₃COONa 0,1 M
 - (2) Campuran 50 mL CH₃COOH 0,1 M dan 50 mL CH₃COONa 0,01 M
 - (3) Campuran 50 mL CH₃COOH 0,5 M dan 50 mL CH₃COONa 0,5 M
 - A. (1) (2) (3)
 - B. (2) (1) (3)
 - C. (3) (1) (2)
 - D. (2) (3) (1)
 - E. (1) (3) (2)

- 4. Suatu larutan penyangga dibuat dari campuran NH₃ dan NH₄Cl. Pilihlah **satu pernyataan yang paling tepat** untuk menjelaskan fungsi komponen penyangga ini!
 - A. Ketika larutan ditambah asam, NH₄⁺ akan bereaksi untuk mempertahankan pH.
 - B. Ketika larutan ditambah basa, NH₃ akan bereaksi untuk mempertahankan pH.
 - C. Ketika larutan ditambah asam, NH₃ akan bereaksi untuk mempertahankan pH.
 - D. NH₃ berfungsi sebagai asam konjugasi dan NH₄⁺ sebagai basa lemah.
 - E. Larutan ini hanya efektif untuk menahan penambahan asam.
- 5. Perhatikan pernyataan-pernyataan berikut mengenai larutan penyangga:
 - (1) Larutan penyangga dapat menahan perubahan pH jika ditambahkan asam atau basa dalam jumlah sedikit.
 - (2) Larutan penyangga memiliki komponen berupa asam kuat dan basa kuat.
 - (3) Larutan penyangga bisa dibuat dari asam lemah dan garamnya.

Pilihlah satu kombinasi yang paling tepat untuk mendefinisikan larutan penyangga!

- A. (1) dan (2)
- B. (1) dan (3)
- C. (2) dan (3)
- D. (1) saja
- E. (3) saja

Soal Pilihan Ganda Kompleks MCMA (HOTS)

6.	Suati	a larutan penyangga dibuat dengan mencampurkan 500 mL larutan CH₃COOH 0,1 M
	(Ka=	10 ⁻⁵) dengan 500 mL larutan NaOH 0,05 M. Pilihlah dua pernyataan yang benar yang
	men	ggambarkan sifat larutan yang dihasilkan!
		pH larutan adalah 5.
		Rasio mol asam lemah terhadap basa konjugasinya adalah 1:1.
		pH larutan adalah 5 - log 1,5.
		Larutan ini tidak dapat menahan perubahan pH karena asam lemahnya tidak bersisa.
		Larutan ini mengandung CH₃COOH dan CH₃COONa.
7.	Larut	an penyangga darah, yang terdiri dari pasangan asam basa konjugasi H ₂ CO ₃ / HCO ₃ ⁻ ,
/.		iliki pH normal 7,4. Pilihlah dua pernyataan yang benar yang menjelaskan mekanisme
	kerja	
		Ketika pH darah turun (misalnya menjadi 7,2), ion H ⁺ akan bereaksi dengan HCO3
		Ketika pH darah naik (misalnya menjadi 7,6), H2CO3 akan terurai dan melepaskan ion
		H+.
		Larutan ini hanya efektif menahan penambahan asam.
		pH larutan penyangga ini bergantung pada rasio konsentrasi [H2CO3]/[HCO3-].
		pH = pKa+log([H2CO3]/[HCO3-]).

Soal Pilihan Ganda Kompleks Kategori (HOTS)

8. Sebuah larutan penyangga dibuat dengan mencampurkan 100 mL larutan asam format (HCOOH) 0,2 M dengan 100 mL larutan natrium format (HCOONa) 0,2 M. Diketahui Ka asam format = 1.8×10^{-4} .

Tentukan **Benar** atau **Salah** untuk setiap pernyataan berikut!

Pernyataan		Salah
pH larutan penyangga ini adalah 4.		
pH larutan penyangga akan sedikit menurun jika ditambah 1 mL larutan HCl 1 M.		
Konsentrasi ion H+ dalam larutan ini sama dengan nilai Ka-nya.		

9. Seorang siswa membuat larutan penyangga dengan mencampurkan larutan NH_3 dan HCl. Reaksi yang terjadi adalah $NH_3 + HCl \rightarrow NH_4Cl$.

Tentukan Benar atau Salah untuk setiap pernyataan berikut!

Pernyataan	Benar	Salah
Jika mol NH₃ yang dicampurkan lebih besar dari mol HCl, maka akan		
terbentuk larutan penyangga.		
Larutan penyangga yang terbentuk bersifat basa.		
Jika mol NH₃ dan HCl sama, maka akan terbentuk larutan penyangga		
asam.		

- 10. Pasangan asam lemah dan basa konjugasi berikut dapat membentuk larutan penyangga:
 - o CH₃COOH/CH₃COO⁻
 - \circ H₂PO₄ $^{-}$ /HPO₄²⁻

Tentukan **Benar** atau **Salah** untuk setiap pernyataan berikut!

Pernyataan	Benar	Salah
A. H ₂ PO ₄ ⁻ adalah asam, dan HPO ₄ ²⁻ adalah basa konjugasinya.		
B. CH₃COO⁻ akan menetralkan penambahan basa.		
C. Sistem penyangga ini hanya dapat mempertahankan pH di bawah 7.		