Análise Matemática I

17 de Janeiro de 2002

Civ. e Ter.

- Perguntas 2, 3, e 4 - 90 minutos 1° Exame - Todas as Perguntas - 3 horas

Apresente os cálculos

1. Calcule os limites das sucessões com os seguintes termos gerais:

a)
$$\frac{n^n}{n^n+1}$$
. (1)
b) $\frac{(n+1)^6(n+2)^7}{(n+2)^{13}}$. (1)

c)
$$\frac{13^{3n}}{n!}$$
. (1)

2. Calcule os dois limites e as duas derivadas seguintes:

a)
$$\lim_{x \to \frac{\pi}{2}} \frac{2x - \pi}{\cos x}$$
. (1)
b) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}$. (0.5)
c) $\frac{d}{dx} e^{e^x}$. (1)
d) $\frac{d}{dx} \arctan(\ln x)$. (1)

b)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$
. (0.5)

$$\mathbf{c}) \frac{d}{dx} e^{e^x}. \tag{1}$$

$$\mathbf{d}$$
) $\frac{dt}{dx} \arctan(\ln x)$. (1)

3. Determine a natureza das séries; indique o valor das duas primeiras somas.

a)
$$\sum_{n=0}^{\infty} \pi^{-n}$$
. (0.5)

b)
$$\sum_{n=0}^{\infty} \frac{\pi^n}{n!}$$
. (0.5)

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
. (0.5)

$$\mathbf{d}) \sum_{n=1}^{\infty} \frac{1-\frac{\pi}{n}}{n}^{n}. \tag{0.5}$$

$$\mathbf{e}) \sum_{n=1}^{\infty} \frac{\dot{\pi}^n n!}{n^n}. \tag{1}$$

- **4.** Esboce o gráfico da função $x \mapsto x^2 e^x$. Sobre o mesmo plano cartesiano, (3.5)esboce a recta tangente ao gráfico no maior dos pontos de inflexão da função e escreva uma equação dessa recta.
- 5. Os gráficos de $x \mapsto x^2 e^x$ e de $x \mapsto e\sqrt{x}$ intersectam-se em (0,0) e em (2)(1,e). Usando o Teorema de Rolle, mostre que existe $c \in]0,1[$ tal que os dois gráficos têm tangentes paralelas em (c, c^2e^c) e $(c, e\sqrt{c})$. Explicite as hipóteses do Teorema de Rolle.
- 6. Escreva as fórmulas de Mac-Laurin de segunda ordem de (2)

$$x \mapsto \sin(\pi x)$$

com resto de Lagrange e com resto de Peano. Escreva também a série de Mac-Laurin da função.

7. Considere $f:[0,1] \to \mathbb{R}$ e seja $s:=\sup_{[0,1]} f \in \overline{\mathbb{R}}.$

- a) Suponha que $s < +\infty$. Prove que para cada $n \in \mathbb{N}_1$ existe $x_n \in [0,1]$ (0.5)
- tal que $f(x_n) > s \frac{1}{n}$. Conclua que existe (x_n) tal que $f(x_n) \to s$. **b)** Suponha agora que $s = +\infty$. Prove que para cada $n \in \mathbb{N}_1$ existe $x_n \in$ (0.5)[0,1] tal que $f(x_n) > n$. Conclua que existe (x_n) tal que $f(x_n) \to s$.
- c) Justifique que a sucessão (x_n) tem uma subsucessão (x_{n_k}) convergente. (1)
- d) Suponha agora que f é contínua. Relacione o limite de $(f(x_{n_k}))$ com o (0.5)limite de (x_{n_k}) .
- e) Prove o Teorema de Weierstrass. (0.5)