CSCI 3104: Algorithms Spring 2022 Recitation #3 - Graph Notation

A Graph is a set of vertices V connected to one another by edges E. We usually write this as the graph G = (V, E), and edges as $e = (v_i, v_j)$, for vertices v_i and v_j in V. We generally refer to the number of vertices as n = |V| and the number of edges as m = |E|.

If a graph is *directed*, then we distinguish between the edges (v_i, v_j) and (v_j, v_i) , and there can be an edge to v_j from v_i but not an edge from v_i to v_j .

Problem 1

Draw the undirected, unweighted graph with vertices $V = \{1, 2, 3, 4\}$ and edges $E = \{(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)\}.$

Problem 2

Determine whether each of the following graphs are bipartite. Justify your answer. (You may use, without proof, the fact that a graph G is bipartite if and only if G does not have any cycles of odd length.)

- (a) A tree is a graph T(V, E) that is connected and acyclic (that is, T does not contain any cycles).
- (b) For which values of $n \geq 3$ is the cycle graph C_n bipartite?
- (c) For which values of $n \geq 4$ is the wheel graph W_n bipartite?
- (d) For which values of $n \geq 1$ is the complete graph K_n bipartite?

Problem 3

Consider the hypercube graph of dimension d, denoted Q_d . The vertex set of Q_d the set of strings $\{0,1\}^d$ (i.e., the set of binary strings of length d). Two vertices v_1, v_2 are adjacent if and only if they differ in precisely one position (e.g. the vertices $\{0,0\}$ and $\{0,1\}$ are adjacent in Q_2 , but $\{0,0\}$ and $\{1,1\}$ are not). Answer the following:

(a) How many vertices belong to Q_d ?

- (b) How many edges belong to Q_d ?
- (c) Suppose that a string $\omega \in \{0,1\}^d$ has exactly i digits that are 1's. Explain why ω 's neighbors in Q_d only have either exactly (i+1) or exactly (i-1) digits that are 1's.
- (d) Prove that the graph Q_d is bipartite by giving an explicit bipartition of $\{0,1\}^d$. [Hint: Use part (c) to construct your bipartition.]

Do the following.

- (a) Let $d \ge 1$. Show how to construct Q_d using two copies of Q_{d-1} .
- (b) A Hamiltonian cycle in a graph G is a cycle graph that includes every vertex of G. Prove by induction that Q_d has a Hamiltonian cycle for all $d \geq 2$. [Hint: Use part (a) in the inductive step.]

Problem 5

Suppose we have n couples at a party. Each person shakes hands with everyone else, with the exception of their partner. Note that a person does not shake hands with themselves. How many handshakes occurred at this party?

Definition 227 (Bipartite Graph). A bipartite graph G(V, E) has a vertex set $V = X \dot{\cup} Y$, with edge set $E \subseteq \{xy : x \in X, y \in Y\}$. That is, no two vertices in the same part of V are adjacent. So no two vertices in X are adjacent, and no two vertices in Y are adjacent.

Example 228. A common class of bipartite graphs include even-cycles C_{2n} . The complete bipartite graph is another common example. We denote the complete bipartite graph as $K_{m,n}$ which has vertex partitions $X \dot{\cup} Y$ where |X| = m and |Y| = n. The edge set $E(K_{m,n}) = \{xy : x \in X, y \in Y\}$. The graph $K_{3,3}$ is pictured below.

Definition 219 (Complete Graph). The complete graph, denoted K_n , has the vertex set $V = \{1, 2, ..., n\}$ and edge set E which consists of all two-element subsets of V. That is, K_n has all possible edges between vertices.

Example 220. The complete graph on five vertices K_5 is pictured below.

Definition 223 (Cycle Graph). Let $n \geq 3$. The cycle graph, denoted C_n , has the vertex set $V = \{1, 2, ..., n\}$ and the edge set $E = \{\{i, i+1\} : 1 \leq i \leq n-1\} \cup \{\{1, n\}\}$.

Example 224. Intuitively, C_n can be thought of as the regular n-gon. So C_3 is a triangle, C_4 is a quadrilateral, and C_5 is a pentagon. The graph C_6 is pictured below.

Definition 225 (Wheel Graph). Let $n \geq 4$. The wheel graph, denoted W_n , is constructed by joining a vertex n to each vertex of C_{n-1} . So we take $C_{n-1} \dot{\cup} n$ and add the edges vn for each $v \in [n-1]$.

Example 226. The wheel graph on seven vertices W_7 is pictured below.

Quoted from. Michaeles note.

Draw the undirected, unweighted graph with vertices $V = \{1, 2, 3, 4\}$ and edges $E = \{(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)\}.$

Problem 2

Determine whether each of the following graphs are bipartite. Justify your answer. (You may use, without proof, the fact that a graph G is bipartite if and only if G does not have any cycles of odd length.)

- (a) A tree is a graph T(V, E) that is connected and acyclic (that is, T does not contain any cycles).
- (b) For which values of $n \geq 3$ is the cycle graph C_n bipartite?
- (c) For which values of $n \geq 4$ is the wheel graph W_n bipartite?
- (d) For which values of $n \geq 1$ is the complete graph K_n bipartite?

Curly brackets Problem 3

Consider the hypercube graph of dimension d, denoted Q_d . The vertex set of Q_d the set of strings $\{0,1\}^d$ (i.e., the set of binary strings of length d). Two vertices v_1, v_2 are adjacent if and only if they differ in precisely one position (e.g. the vertices $\{0,0\}$ and $\{0,1\}$ are adjacent in Q_2 , but $\{0,0\}$ and $\{1,1\}$ are not). Answer the following:

(a) How many vertices belong to Q_d ?

round brackets

- (b) How many edges belong to Q_d ?
- (c) Suppose that a string $\omega \in \{0,1\}^d$ has exactly i digits that are 1's. Explain why ω 's neighbors in Q_d only have either exactly (i+1) or exactly (i-1) digits that are 1's.

Suppose
$$\bar{z} > 1$$
 here.

(d) Prove that the graph Q_d is bipartite by giving an explicit bipartition of $\{0,1\}^d$. [Hint: Use part (c) to construct your bipartition.

Do the following.

- (a) Let $d \geq 1$. Show how to construct Q_d using two copies of Q_{d-1} .
- (b) A Hamiltonian cycle in a graph G is a cycle graph that includes every vertex of G. Prove by induction that Q_d has a Hamiltonian cycle for all $d \geq 2$. [Hint: Use part (a) in the inductive step.]

Suppose we have n couples at a party. Each person shakes hands with everyone else, with the exception of their partner. Note that a person does not shake hands with themselves. How many handshakes occurred at this party?