I have been tasked with analyzing and improving the decision science behind bidding on contracts consisting of \$3.00, \$35.00, \$50.00, and \$75.00,

Using the Expected Revenue, Expected (loan) Conversions, and Winning or Losing Bids... here is my analysis.

As you can see this is a general summation of revenue increase with respect to the Successful Bid Price. At first glance the \$35 fixed price is the most lucrative.

Now that we are only looking at bids that were successful. We still have 16,026 total bids to analyze in one set. So let's group them into BidPrice buckets and try and take a closer look into what's happening.

<mark>3.0</mark>			<mark>35.0</mark>		- 1-
Expec	ctedConversion	n ExpectedRevenue			n ExpectedRevenue
290	0.168	196.40	9	0.356	271.49
816	0.109	270.61	10	0.319	184.64
1083	0.137	235.76	12	0.463	82.80
2384	0.190	340.58	13	0.243	158.96
			20	0.396	414.24
3073	0.140	234.48			
•••		····	53899	0.472	92.00
53729	0.236	126.08	53901	0.592	95.84
53770	0.203	179.28	53914	0.383	194.64
53812	0.346	95.36	53924	0.555	113.60
53920	0.202	107.68	53943	0.246	221.68
53926	0.360	88.24	000 10	0.210	221.00
[913 rows x 2 columns]			[8975 rows x 2 columns]		

50.0

г ,	10 .	E , ID	<mark>75.0</mark>		
-		ExpectedRevenue	Expected	dConversion	ExpectedRevenue
349	0.206	474.43	14	0.158	614.01
396	0.238	456.97	15	0.337	613.61
442	0.313	385.91	21	0.173	676.15
549	0.279	408.15	38	0.598	532.30
566	0.370	365.06	43	0.543	323.65
•••	•••				
53461	0.422	352.12	53912	0.563	307.12
53485	0.349	374.14	53916	0.376	411.62
53511	0.169	572.05	53922	0.464	433.31
53835	0.276	414.24	53936	0.267	544.99
53911	0.433	313.45	53946	0.297	538.02

[695 rows x 2 columns]

[5443 rows x 2 columns]

Note*

Now we have a nice sampling that shows we are far more successful bidding at the \$35 and \$75 price marker. Or at least in this sample. Let's look closer by taking the mean() of each outcome, then using that to find the profit margin with a fixed size of 20

At \$3.0

ExpectedConversion 0.301
ExpectedRevenue \$153.089
NetRevenue(20leads): \$861
** 93.5% profit margin

At \$35.0

ExpectedConversion 0.349
ExpectedRevenue \$261.681
NetRevenue(20leads): \$1,126
** 61.7% profit margin

At \$50.0

ExpectedConversion 0.286
ExpectedRevenue \$447.308
NetRevenue(20leads): \$1,236
** 60.9% profit margin

At \$75.0

ExpectedConversion 0.374
ExpectedRevenue \$545.888
NetRevenue(20leads): \$2,583
** 63.2% profit margin

Here again we have some very telling leads into which way we should go given a finite try at bidding these contacts. One thing we can see clearly is that we are spending the most at the \$35.00 bid price which actually has the lowest reward (profit) at the current ExpectedConversion rates!

This quick chart allows us to take into account a reshuffling and prioritize at the slightly higher margins. Furthermore, because of the negligible cost of the \$3.00 price, we probably not ever pass it up if the opportunity arises. In this case net revenue is not the correct benchmark but rather the profit margin

Graph for 0.301*153*x, 0.349*261*x, 0.286*447.3*x, 0.374*2583*x

No hard and fast rules here as there is much more variability in this universe to account for, but the priority of bidding should be \$75, \$3, \$50, \$35

(quick google graph shows just how close the margins are for at least a few thousand winning bids.)

Of course this leaves out a large amount of variables in this universe that need exploring.

So let's see what happens we attempt regression analysis on only successful bids, first this needs organized into a sample dataframe. Here is an example of a random sampled dataframe with n=30.

	BidPrice	AcceptedBid	ExpectedConversion	ExpectedRevenue
47303	35.0	1.0	0.639	160.32
42421	75.0	1.0	0.338	463.07
39813	75.0	1.0	0.234	642.31
52438	75.0	1.0	0.342	535.31
22211	35.0	1.0	0.316	148.80
30495	75.0	1.0	0.359	790.37
10362	35.0	1.0	0.569	277.01
28407	75.0	1.0	0.329	548.27
16906	35.0	1.0	0.382	189.44
14314	75.0	1.0	0.220	579.17
38834	35.0	1.0	0.341	252.96
13893	75.0	1.0	0.423	396.89
51299	35.0	1.0	0.241	373.99
19035	35.0	1.0	0.215	338.25
9335	3.0	1.0	0.212	197.12
22385	75.0	1.0	0.328	484.28
20365	75.0	1.0	0.263	561.32
27007	35.0	1.0	0.391	166.08
25926	35.0	1.0	0.105	373.70
1711	35.0	1.0	0.239	369.65
51351	75.0	1.0	0.458	542.37
25653	35.0	1.0	0.432	231.68
26705	75.0	1.0	0.133	678.61
15263	75.0	1.0	0.402	431.63
24052	35.0	1.0	0.326	196.24
17327	35.0	1.0	0.222	328.44
7843	35.0	1.0	0.276	214.00
48528	35.0	1.0	0.588	209.44
14607	35.0	1.0	0.471	81.68
37817	75.0	1.0	0.501	772.06
BidPrice		4		
AcceptedBid		1		
ExpectedConversion				
Expect	edRevenue	7619		

Now we can split the dataframe into a test set and a training set. Adding in some columns for purview and potential training features.

[16026	rows x 3	columns]			
	BidPrice	ExpectedConversion	ExpectedRevenue	ExpectedNetRevenue	PotentialMargin(%)
290	3.0	0.168	196.40	32.995	1.527
816	3.0	0.109	270.61	29.496	1.109
1083	3.0	0.137	235.76	32.299	1.272
2384	3.0	0.190	340.58	64.710	0.881
3073	3.0	0.140	234.48	32.827	1.279
53912	75.0	0.563	307.12	172.909	24.420
53916	75.0	0.376	411.62	154.769	18.221
53922	75.0	0.464	433.31	201.056	17.309
53936	75.0	0.267	544.99	145.512	13.762
53946	75.0	0.297	538.02	159.792	13.940

Now with our nicely organized dataset that assumes all bids were successful we can train a linear regression model and make a prediction. Here's one that is training with one of the main coefficients being PotentialMargin.

Hypothesis: Potential Margin percentage affects the Total Expected Revenue Result:

Not so great.... It appears that we are regularly missing by 50% much of the time.

Hypothesis: Bid Price is greater factor in Total Expected Revenue Result:

This seems like it's moving quicker into the right direction even with the overfitting problem (notice the 55.771 repeats etc.)

One thing is very clear, more work is needed because of the abundance of missing features, not even considering the failed bids as missed potential revenue. However, this leads me to believe that BidPrice is actually a very important indicator of long-term growth in bottom line.

Thanks for the opportunity to work on this and I look forward to continuing it!

Respectfully,

Ted Morrison theodorejmorrison@gmail.com 708-490-9553