矩阵分析及其应用

孔贺

南科大,自动化与智能制造学院

kongh@sustech.edu.cn

课程结构

- 一. 线性代数基本知识回顾(2个学时)
- 二. 线性空间与线性映射(10个学时)
- 三. λ-矩阵与 Jordan 标准型(8 个学时)
- 四. 内积空间与矩阵分解(20个学时)
- 五. 范数及其他(8 个学时)

- 第一章: 线性代数知识回顾
- ② 第二章:线性空间与线性映射
- ③ 第三章: λ-矩阵与 Jordan 标准型
 - 3.1 λ-矩阵与标准型
 - 3.2 数域上矩阵的特征矩阵
 - 3.3 复数域上矩阵的 Jordan 标准型
 - 3.4 复数域上矩阵的特征结构
 - 3.5 若当标准型的应用

3.1 λ-**矩阵与标准型**

定义:以多项式为元素的矩阵称为多项式矩阵,也叫 λ -矩阵。更确切地讲,假设 $a_{ij}(\lambda)$,其中 $i=1,\cdots,m;\;j=1,\cdots,n$,为数域 F 上的多项式,称以 $a_{ij}(\lambda)$ 为元素的 $m\times n$ 矩阵

$$A(\lambda) = \begin{bmatrix} a_{11}(\lambda) & a_{12}(\lambda) & \cdots & a_{1n}(\lambda) \\ a_{21}(\lambda) & a_{22}(\lambda) & \cdots & a_{2n}(\lambda) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(\lambda) & a_{m2}(\lambda) & \cdots & a_{mn}(\lambda) \end{bmatrix}$$

为多项式矩阵或者 λ -矩阵; 记为 $A(\lambda) \in \mathbb{F}^{m \times n}[\lambda]$.

λ-矩阵的解读:映射的观点;以矩阵为"系数"的多项式。

几点说明

• 定义: 假设给定非零 λ -矩阵 $A(\lambda) \in \mathbb{F}^{m \times n}[\lambda]$ 的矩阵表示如下

$$A(\lambda) = A_0 + A_1\lambda + \dots + A_d\lambda^d$$

其中, $A_i \in \mathbf{F}^{m \times n}$, $i = 0, 1, \dots, d$, $A_d \neq 0$ 。则我们称 $A(\lambda)$ 的次数为 d, 记为 $\deg(A(\lambda)) = d$ 。

- 按照以上定义,零次 λ -矩阵就是普通数域上的非零矩阵 $A(\lambda) = A_0 \neq 0$ 。
- $A(\lambda)$ 的次数其实为所有元素 $a_{ij}(\lambda)$ 的最高次数。
- $A(\lambda)$ 的**秩**指的是不为零的子行列式的最大阶数(回忆:子行列式的 定义)。
- $A(\lambda)$ 做为 λ -矩阵的秩与 $A(\lambda)|_{\lambda=c}$ 的秩,可能不一致。

λ -矩阵的逆

• 定义: 称 $U(\lambda) \in \mathbb{F}^{n \times n}[\lambda]$ 为单位模阵(或幺模阵),若存在多项式 矩阵 $V(\lambda) \in \mathbb{F}^{n \times n}[\lambda]$ 使得

$$U(\lambda)V(\lambda) = V(\lambda)U(\lambda) = I$$

换言之,多项式方阵为单位模阵,若有多项式矩阵为其逆;也称其 在"多项式矩阵的范围内"可逆。

• 定理: 多项式矩阵 $U(\lambda) \in \mathbf{F}^{n \times n}[\lambda]$ 为单位模阵,当且仅当其行列式 $det(A(\lambda)) \in \mathbf{F}[\lambda]$ 为非零常值多项式。

两点说明:

- (1) 引入单位模阵概念的理由和必要性?
- •(2) 多项式矩阵满秩,那么其一定可逆吗?

λ -矩阵的初等行(列)变换

- 1. 互换矩阵的某两行。
- 2. 将某行乘以非零常数。
- 3. 将某行乘以一个多项式, 加到另一个行上。

说明:

- 和通常数域上的矩阵的初等变换类似,多项式矩阵的初等行列变换 可以用左乘或者右乘初等矩阵来实现。
- 可以验证,以上三种变换所对应的初等矩阵均为单位模阵。
- 第2条,为什么不是"将某行乘以非零多项式"?

问题:

一个 λ-矩阵可以通过初等行列变换,最简化成什么样子?

λ -矩阵的等价

- 定义: 两个多项式矩阵 $A(\lambda), B(\lambda) \in \mathbb{F}^{m \times n}[\lambda]$ 称为等价的,如果 $A(\lambda)$ 可以经过有限次的初等变换化成 $B(\lambda)$,记为 $A(\lambda) \sim B(\lambda)$ 。
- 引理:记 $\partial(f[\lambda])$ 为多项式 $f[\lambda]$ 的次数。设 λ -矩阵 $A(\lambda)$ 的左上角元素 $a_{11}(\lambda) \neq 0$,且 $A(\lambda)$ 中至少有一个元素不能被它整除,那么一定可以找到一个与 $A(\lambda)$ 等价的多项式矩阵 $B(\lambda)$,且有 $b_{11}(\lambda) \neq 0$,

$$\partial(b_{11}(\lambda)) < \partial(a_{11}(\lambda))$$

• 证明: 分三种不同的情况

$$\left[\begin{array}{cccc} a_{11}(\lambda) & \cdots & a_{1j}(\lambda) & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{i1}(\lambda) & \vdots & a_{ij}(\lambda) & \vdots \\ \vdots & \vdots & \cdots & \ddots \end{array}\right]$$

λ -矩阵的 Smith 标准型

定理: 任意非零的 λ -矩阵 $A(\lambda) \in \mathbf{F}^{m \times n}[\lambda]$ 都等价于一个"对角形"矩阵,即

$$A(\lambda) \sim \left[egin{array}{cccc} d_1(\lambda) & & & & & & \\ & \ddots & & & 0 & & \\ & & d_r(\lambda) & & & \\ & 0 & & 0^{(m-r)\times(n-r)} \end{array}
ight]$$

其中

- $r \ge 1$ (其实际上为 $A(\lambda)$ 的秩);
- 约定: $d_i(\lambda)$, $i = 1, \dots, r$, 是<mark>首项系数</mark>为 1 的多项式;
- $d_{i+1}(\lambda)$ 能被 $d_i(\lambda)$ 整除,记为 $d_i(\lambda) \mid d_{i+1}(\lambda)$ 。

我们称以上的对角形矩阵为 λ -矩阵 $A(\lambda)$ 的 Smith 标准型,称 $d_i(\lambda)$, $i=1,\cdots,r$,为 $A(\lambda)$ 的不变因子。

任意给定 λ -矩阵 $A(\lambda)$ 的 Smith 标准型唯一吗?

- 定义: 给定 $A(\lambda) \in \mathbb{F}^{m \times n}[\lambda]$,我们称 $A(\lambda)$ 的所有 k 阶子行列式的最高公因式(这里依然约定其首项系数为 1)为 $A(\lambda)$ 的k **阶行列式** 因子,记为 $D_k(\lambda)$ 。
- 定理 1: 初等变换不改变 λ -矩阵的 k 阶行列式因子。
- 因此: 给定任意 λ-矩阵 A(λ) 的 Smith 标准形

$$A(\lambda) \sim \begin{bmatrix} d_1(\lambda) & & & & \\ & \ddots & & & 0 \\ & & d_r(\lambda) & & \\ & & 0 & & 0^{(m-r)\times(n-r)} \end{bmatrix}$$

我们有

$$D_k(\lambda) = d_1(\lambda)d_2(\lambda)\cdots d_k(\lambda)$$

- 定理 2: λ-矩阵的 Smith 标准型是唯一的。
- 定理 3: 任意 λ -矩阵 $A(\lambda)$ 和 $B(\lambda)$ 等价的充分必要条件是其有相同的不变因子。
- 推论 1: n 阶 λ-矩阵可逆的充分必要条件是其等价于单位矩阵,即其 Smith 标准型为单位矩阵。
- 推论 2: n 阶 λ-矩阵可逆的充分必要条件是其可以表示为有限个初等矩阵的乘积。
- 例子: 用行列式因子求 λ-矩阵的不变因子和 Smith 标准型

$$\left[\begin{array}{ccc} \lambda(\lambda+1) & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & (\lambda+1)^2 \end{array}\right]$$

λ -矩阵的初等因子

定义: 给定 λ -矩阵 $A(\lambda)$ 及其不变因子 $d_i(\lambda)$ 。在复数域 $\mathbb C$ 内, $d_i(\lambda)$ 总可以分解为互不相同的一次因式方幂的乘积,即

$$d_1(\lambda) = (\lambda - \lambda_1)^{k_{11}} \cdots (\lambda - \lambda_t)^{k_{1t}}$$

$$\vdots$$

$$d_r(\lambda) = (\lambda - \lambda_1)^{k_{r1}} \cdots (\lambda - \lambda_t)^{k_{rt}}$$

其中, $\lambda_1, \dots, \lambda_t$ 为 $d_r(\lambda)$ 的全部相异的零点, 也即 k_{r1}, \dots, k_{rt} 无一为零。因为

$$d_i(\lambda) \mid d_{i+1}(\lambda)$$
 其中, $i=1,\cdots,r-1$

所以有

$$k_{1j} \leq k_{2j} \leq \cdots \leq k_{rj}$$
 其中, $j = 1, \cdots, t$

我们将

$$\begin{cases} (\lambda - \lambda_1)^{k_{11}}, \cdots, (\lambda - \lambda_t)^{k_{1t}} \\ \vdots \\ (\lambda - \lambda_1)^{k_{r1}}, \cdots, (\lambda - \lambda_t)^{k_{rt}} \end{cases}$$

中不是常数的因子的全体称为 $A(\lambda)$ 的**初等因子**。

- 初等因子举例。
- 给定 λ -矩阵 $A(\lambda)$ 和 $B(\lambda)$,若二者等价,则它们有相同的不变因子,从而有相同的初等因子;但是反过来则不一定成立。例如:

$$A(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^2 \end{bmatrix}, \ B(\lambda) = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• 定理: 给定 λ -矩阵 $A(\lambda)$ 和 $B(\lambda)$,二者等价的充要条件是它们的秩相等且拥有相同的初等因子。

3.2 数域上矩阵的特征矩阵

• 定义: 给定 $A \in \mathbf{F}^{n \times n}$,称多项式矩阵

$$\lambda I_n - A = \begin{bmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{bmatrix} \in \mathbf{F}^{n \times n}[\lambda]$$

为 *A* 的**特征矩阵**。

• 定理: 两个矩阵 $A, B \in \mathbb{F}^{n \times n}$ 相似, 当且仅当它们的特征矩阵 $\lambda I_n - A, \lambda I_n - B \in \mathbb{F}^{n \times n}[\lambda]$ 作为 λ -矩阵等价, 即

$$A \simeq B \leftrightarrow \lambda I_n - A \sim \lambda I_n - B$$

引入 λ-矩阵的好处?

如何证明?

• 引理 1: 给定非零 λ -矩阵 $S(\lambda) \in \mathbf{F}^{m \times m}[\lambda]$, $T(\lambda)$, $W(\lambda) \in \mathbf{F}^{m \times n}[\lambda]$, 且有 $S(\lambda) T(\lambda) = W(\lambda)$ 。若

$$S(\lambda) = S_0 + S_1 \lambda + \dots + S_d \lambda^d$$

其中 S_d 非奇异,则有

$$\deg(S(\lambda)) + \deg(T(\lambda)) = \deg(W(\lambda))$$

• 引理 2: 给定

$$S(\lambda) = S_0 + S_1 \lambda + \dots + S_q \lambda^q \in \mathbf{F}^{m \times m}[\lambda]$$

和 $T(\lambda) \in \mathbf{F}^{m \times n}[\lambda]$ 。假设 S_q 非奇异,且 $q \ge 1$,则存在唯一的 λ -矩阵 $Q_L(\lambda), R_L(\lambda) \in \mathbf{F}^{m \times n}[\lambda]$ 使得

$$T(\lambda) = S(\lambda)Q_L(\lambda) + R_L(\lambda)$$

且 RL 满足

$$R_L(\lambda) = 0$$
 或 $\deg(R_L(\lambda)) < \deg(S(\lambda))$

● 说明: 有关下标 "L"

• 证明: 基于以上, 可以证明前面所说的定理。

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (~)

特征矩阵的 Smith 标准型

定理: 给定 $A \in \mathbb{F}^{n \times n}$, 以及其所对应的 λ -矩阵 $\lambda I_n - A$ 。则我们有

- (1) λI_n A 的 n 阶行列式因子, 也即特征多项式 |λI_n A|, 为 n
 次多项式; 因此 λI_n A 作为 λ-矩阵的秩为 n。
- (2) 假设 *λI_n* − *A* 的 Smith 标准型为

$$\left[\begin{array}{ccc}d_1(\lambda)&&\\&\ddots&\\&&d_n(\lambda)\end{array}\right]$$

则

$$d_1(\lambda) \cdots d_n(\lambda) = |\lambda I_n - A|, \ \partial(d_1(\lambda)) + \cdots + \partial(d_n(\lambda)) = n$$

推论:考虑 $\lambda I_n - A$ 的 Smith 标准型。假设不变因子中 $d_i(\lambda)$, $i = 1, \dots, n$, 中的非常数项的个数为 p, 分别记为

$$h_1(\lambda), h_2(\lambda), \cdots, h_p(\lambda)$$

且其次数分别为 n_1, n_2, \dots, n_p 。 那么 $d_i(\lambda)$, $i = 1, \dots, n$, 中恰有

$$n-p = (n_1-1) + (n_2-1) + \cdots + (n_p-1)$$

为 1。

基于以上推论可知,通过一系列的初等变换,我们能将特征矩阵 $\lambda I_n - A$ 的 Smith 标准型化为如下特殊的块对角形式

数域上矩阵相似的各种刻画

定理: 给定两个矩阵 $A, B \in \mathbb{F}^{n \times n}$, 那么下列条件等价

- (1) A 与 B 相似
- (2) $\lambda I_n A$ 与 $\lambda I_n B$ 作为多项式矩阵等价
- (3) $\lambda I_n A$ 与 $\lambda I_n B$ 作为多项式矩阵有相同的 Smith 标准型
- \bullet (4) $\lambda I_n A$ 与 $\lambda I_n B$ 作为多项式矩阵有相同的各阶行列式因子
- (5) $\lambda I_n A$ 与 $\lambda I_n B$ 作为多项式矩阵有相同的不变因子
- (6) $\lambda I_n A$ 与 $\lambda I_n B$ 作为多项式矩阵有相同的初等因子

上述定理的应用:试证明,任意矩阵与其转置相似。

3.3 复数域上矩阵的 Jordan 标准型

- 考虑复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$ 。
- 回顾: 多项式在复数域上的质因式必为一次的,即 λc ; 多项式矩阵的初等因子。
- 回顾:特征矩阵 $\lambda I_n A$ 的 Smith 标准型可化为如下块对角形式

$$\lambda I_n - A \sim \left[\begin{array}{ccc} H_1(\lambda) & & \\ & \ddots & \\ & & H_p(\lambda) \end{array} \right]$$

其中

$$H_i(\lambda) = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & h_i(\lambda) \end{bmatrix}_{n_i \times n_i}$$

引理: 给定

$$H_i(\lambda) = \left[egin{array}{cccc} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & \\ & & & h_i(\lambda) \end{array}
ight]_{n_i imes n_i}$$

其中 $h_i(\lambda) = (\lambda - c_i^1)^{r_i^1} \cdots (\lambda - c_i^k)^{r_i^k}, r_i^1 + \cdots + r_i^k = n_i$ 。 令

$$J_{t_i^j}(\lambda) = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & (\lambda - c_i^j)^{t_i^j} \end{bmatrix}_{t_i^j \times t_i^j}$$

 $j = 1, \dots, k$,则我们有

$$H_i(\lambda) = \left[egin{array}{cccc} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & h_i(\lambda) \end{array}
ight] \sim \left[egin{array}{cccc} J_{r_i^1}(\lambda) & & & & \\ & & \ddots & & \\ & & & J_{r_i^k}(\lambda) \end{array}
ight]$$

定理: 考虑复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$, 假设其特征矩阵 $\lambda I_n - A$ 的初等 因子组为 $(\lambda - c_1)^{m_1}, \cdots, (\lambda - c_q)^{m_q}$ 。则我们有

$$\lambda I_n - A \sim \left[\begin{array}{cc} H_1(\lambda) & & \\ & \ddots & \\ & & H_p(\lambda) \end{array} \right] \sim J(\lambda) = \left[\begin{array}{cc} J_1(\lambda) & & \\ & \ddots & \\ & & J_q(\lambda) \end{array} \right]$$

其中, $i=1,\cdots,q$,

问题:给定复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$,以及其特征矩阵 $\lambda I_n - A$ 所对应的化简型 $J(\lambda)$,找到尽可能简单的复数域上的矩阵 $J \in \mathbb{C}^{n \times n}$,使得

$$\lambda I_n - J \sim J(\lambda)$$

或者等同的,找到 $J_i \in \mathbb{C}^{m_i \times m_i}$ 使得

$$\lambda I_{m_i} - J_i \sim J_i(\lambda)$$

其中

引理:令

$$J_i = \left[\begin{array}{cccc} c_i & 1 & & & \\ & \ddots & \ddots & & \\ & & c_i & 1 \\ & & & c_i \end{array} \right]_{m_i \times m_i}$$

则有

$$\lambda I_{m_i} - J_i \sim J_i(\lambda)$$

我们称 J_i 为若当块 (或 Jordan 块)。若 $m_i=1$,我们称 J_i 为一阶若当块。

• 定理:考虑复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$,假设其特征矩阵 $\lambda I_n - A$ 的初等因子组为 $(\lambda - c_1)^{m_1}, \dots, (\lambda - c_a)^{m_a}$ 。则我们有

$$A \simeq J = \left[egin{array}{ccc} J_1 & & & \ & \ddots & & \ & & J_q \end{array}
ight]$$

其中

J 一般被称为矩阵 A 的若当标准型。

• 推论:考虑复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$,其可以被对角化的充要条件是其特征矩阵 $\lambda I_n - A$ 的初等因子都是一次因式。

3.4 复数域上矩阵的特征结构

考虑复数域上的矩阵 $A \in \mathbb{C}^{n \times n}$,假设存在可逆矩阵 $P \in \mathbb{C}^{n \times n}$ 使得

$$P^{-1}AP = J \leftrightarrow AP = PJ$$

其中 J 为 A 的若当标准型。可以将 A 视为 \mathbb{C}^n 上的线性变换

$$A: x \mapsto Ax$$

则当入口基和出口基都取为可逆矩阵 P 的列向量组时,以上线性变换在该入口基和出口基的表示为 J。

考虑矩阵 P 与相应若当标准型相应的分块

$$AP = PJ$$

$$\leftrightarrow A \begin{bmatrix} P_1 & \cdots & P_q \end{bmatrix} = \begin{bmatrix} P_1 & \cdots & P_q \end{bmatrix} \begin{bmatrix} J_1 & \cdots & J_q \end{bmatrix}$$

$$\leftrightarrow A \begin{bmatrix} p_1 & \cdots & p_{m_1} & p_{m_1+1} & \cdots & p_{m_1+m_2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_1 & \cdots & P_{m_1+\cdots m_{q-1}+1} & \cdots & P_n \end{bmatrix}$$

$$= \begin{bmatrix} P_1 & \cdots & P_q \end{bmatrix} \begin{bmatrix} J_1 & \cdots & \vdots \\ J_q & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ J_q \end{bmatrix}$$

因此每个子空间 $im(P_i)$ 都是 A 的不变子空间,且有

$$im(P_1) \oplus im(P_2) \cdots \oplus im(P_q) = \mathbf{C}^n$$

不失一般性,考虑第一个若当块,则我们有

$$A \begin{bmatrix} p_{1} & \cdots & p_{m_{1}} \end{bmatrix} = \begin{bmatrix} p_{1} & \cdots & p_{m_{1}} \end{bmatrix} \begin{bmatrix} c_{1} & 1 & & & \\ & \ddots & \ddots & & \\ & & c_{1} & 1 & \\ & & & c_{1} & 1 \end{bmatrix}_{m_{1} \times m_{1}}$$

$$(A - c_{1}I_{n})p_{1} = 0$$

$$(A - c_{1}I_{n})p_{2} = p_{1}$$

$$\vdots$$

$$(A - c_{1}I_{n})p_{m_{1}} = p_{m_{1}-1}$$

也即对任意 p_i , 其中 $1 \le i \le m_1$, 我们都有

$$(A - c_1 I_n)^{i-1} p_i = p_1$$

$$(A - c_1 I_n)^i p_i = 0$$

• 定义: 我们称满足条件

$$(A - \mu I_n)^k p = 0$$
$$(A - \mu I_n)^{k-1} p \neq 0$$

的向量 p 是矩阵 A 的相应于特征值 μ 的指标为 k 的广义特征向量。 通常意义上的特征向量是指标为 1 的广义特征向量。

• 根据以上定义, p_i 其实是 A 的相应于特征值 c_1 的指标为 i 的广义 特征向量,其中 $1 \le i \le m_1$ 。向量组

$$p_1, \cdots, p_{m_1}$$

一般被称为矩阵 A 的相应于特征值 c_1 的一个长度为 m_1 的广义特征向量链。

- 几点观察
 - (1) 相同特征值所可能对应的多个特征向量的线性无关性
 - (2) 关于不同特征值对应的特征向量的线性无关性

"再看"特征值的代数重数与几何重数

考虑复数域上的矩阵 $A \in \mathbf{C}^{n \times n}$,及其一个特征值 $\mu \in \mathbf{C}$,即 $|\mu I_n - A| = 0$ 。

- A 的特征值 μ 的**代数重数**是指因式 $\lambda \mu$ 在特征多项式 $|\lambda I_n A|$ 的质因式分解中出现的次数,也就是 μ 做为多项式 $|\lambda I_n A|$ 的根的重数。
- A 的特征值 μ 的**几何重数**指的是

μ对应的线性无关的特征向量的个数

- = 方程 $(\mu I_n A)x = 0$ 解空间的维数
- $= \dim(\ker(\mu I_n A))$
- $= n rank(\mu I_n A)$
- = A的 Joran 标准型中对角线上为 μ 的 Joran 块的个数
- 代数重数与几何重数的关系?

3.5 若当标准型的应用

- 说明: 若当标准型及变换矩阵的计算
- 例 1: 求解常系数微分方程组

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

• 例 2. 给定数域上的矩阵 $A \in \mathbb{F}^{n \times n}$,求解

 A^{99}