

Block ciphers

More attacks on block ciphers

Attacks on the implementation

1. Side channel attacks:

Measure time to do enc/dec, measure power for enc/dec

[Kocher, Jaffe, Jun, 1998]

2. Fault attacks:

- Computing errors in the last round expose the secret key k
- ⇒ do not even implement crypto primitives yourself ...

Linear and differential attacks [BS'89,M'93]

Given many inp/out pairs, can recover key in time less than 2^{56} .

Linear cryptanalysis (overview): let c = DES(k, m)

Suppose for random k,m:

$$\Pr\left[\begin{array}{c} m[i_1] \oplus \cdots \oplus m[i_r] \\ \text{subset of} \\ \text{subset of} \\ \text{subset of} \\ \text{subset of} \\ \text{cipher leve bies} \end{array}\right] = k[l_1] \oplus \cdots \oplus k[l_u] \\ = \frac{1}{2} + \epsilon$$

For some ϵ . For DES, this exists with $\epsilon = 1/2^{21} \approx 0.0000000477$

Linear attacks

$$\text{Pr} \Big[\ m[i_1] \oplus \cdots \oplus m[i_r] \ \oplus \ c[j_j] \oplus \cdots \oplus c[j_v] \ = \ k[l_1] \oplus \cdots \oplus k[l_u] \ \Big] = \frac{1}{2} + \epsilon$$

Thm: given $1/\epsilon^2$ random (m, c=DES(k, m)) pairs then

$$k[l_1,...,l_u] = MAJ \left[m[i_1,...,i_r] \bigoplus c[j_i,...,j_v] \right]$$

with prob. ≥ 97.7%

⇒ with $1/\epsilon^2$ inp/out pairs can find $k[l_1,...,l_u]$ in time $\approx 1/\epsilon^2$.

Linear attacks

For DES, $\epsilon = 1/2^{21} \Rightarrow$ with 2^{42} inp/out pairs can find $k[l_1,...,l_{11}]$ in time 2^{42}

Roughly speaking: can find 14 key "bits" this way in time 2⁴²

Brute force remaining 56–14=42 bits in time 2⁴²

Total attack time $\approx 2^{43}$ (<< 2^{56}) with 2^{42} random inp/out pairs

Lesson

A tiny bit of linearly in S_5 lead to a 2^{42} time attack.

⇒ don't design ciphers yourself !!

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x \in X$ s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover '96]: time = $O(|X|^{1/2})$

Can quantum algorithms be built: unknown

Quantum exhaustive search

Given m, c=E(k,m) define

$$f(k) = \begin{cases} 1 & \text{if } E(k,m) = c \\ 0 & \text{otherwise} \end{cases}$$

Grover \Rightarrow quantum computer can find k in time O($|K|^{1/2}$)

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$

quantum computer ⇒ 256-bits key ciphers (e.g. AES-256)

End of Segment