There are the motor (mass M_1), the steel shaft (mass M_2 , length 21) and the ball (mass M_3). The angular velocity of the shaft equal to ω . The initial position of the shaft is horizontal.

You should write conditions for each body, make force analysis, and provide equations.

- 1. The motor is not fixed, no friction. It's needed to find a distance along the ground if the motor swing a shaft from 0 to α degree.
- 2. The motor is fixed. Find a reaction force among x axis.
- 3. The motor is not fixed, high friction. You need to find a min ω , when motor get off the ground.

Quiz 8, Task 1

Research Object:

System, consists of motor "1", shaft "2", ball "3"

Motion:

Motor "1" - translatory, shaft "2" - rotational, ball "3" - curvelinear

Conditions:

Initial Shifting for each body:

 x_2 $x_2 + 3x + l cos(wt)$ x_3 $x_3 + 3x + 2l cos(wt)$ Force Analysis:

N (2) Ra, (3) Ffr

 α_1 $\alpha_2 + l\cos(\omega t)$ γ_1 $\gamma_3 + 2 l\cos(\omega t)$ γ_3 $\gamma_3 + 2 l\sin(\omega t)$ γ_3 $\gamma_3 + 2 l\sin(\omega t)$

Forward dynamics

Solution:

ODIULIUII. (1) $m \bar{a}_c = Z m g + N = > \varkappa$: $n \dot{\varkappa} = 0 = \sum_{c} m \chi_{c} = E m \chi_{c}$

(2) $m\bar{a}_c = 2m\bar{g} + N + k_x = \alpha : 2m(2i) = k_x$

Inverse dynamics

take derivative and substitute