- 1 37. (New) The storage device of claim 34, wherein the controller circuit includes a
- 2 register, wherein bits stored in the register have a first state for indicating that the storage
- device is receiving data through the IDE interface and have a second state for indicating
- 4 that the storage device is not receiving data through the IDE interface.
- 1 38. (New) The storage device of claim 34, wherein the storage medium is different
- 2 than a storage medium of the separate storage device.
- 1 39. (New) The storage device of claim 38, wherein the storage medium of the storage
- device has a significantly slower transfer rate in comparison to a transfer rate of the
- 3 storage medium of the separate storage device.
- 1 40. (New) A storage device, comprising:
- 2 a buffer;
- 3 a storage medium; and
- a controller circuit coupled to the memory buffer and the storage medium, the
- 5 storage device and a separate storage device to couple to a host computer through a same
- 6 Intelligent Drive Electronics (IDE) interface, the controller circuit to read data from the
- 7 storage medium and to store the data in the buffer simultaneously at least in part with the
- 8 separate storage device transmitting and/of receiving data on the same IDE interface, the
- 9 controller circuit to transmit the data from the buffer through the same IDE interface.
- 1 41. (New) The storage device of claim 40, wherein the separate storage device is a
- 2 disk drive.

003057.P003DC3 - 4 - Patent

- 1 42. (New) The storage device of claim 40, further comprising a formatting circuit to
- 2 format the data being stored in the storage medium.
- 1 43. (New) The storage device of claim 40, wherein the controller circuit includes a
- 2 register, wherein bits stored in the register have a first state for indicating that the storage
- device is receiving data through the IDE interface and have a second state for indicating
- 4 that the storage device is not receiving data through the IDE interface.
- 1 44. (New) The storage device of claim 40, wherein the storage medium is different
- 2 than a storage medium of the separate storage device.
- 1 45. (New) The storage device of claim 44, wherein the storage medium of the storage
- device has a significantly slower transfer rate in comparison to a transfer rate of the
- 3 storage medium of the separate storage device.
- 1 46. (New) A storage device comprising:
- a buffer to couple to a host computer through an Intelligent Drive Electronics
- 3 (IDE) interface, the IDE interface also being coupled to a separate storage device,
- 4 wherein the host computer can communicate data through the IDE interface with only
- one of the storage device or the separate storage device at any given time;
- a storage medium coupled to the buffer;
- a first circuit to transfer data between the storage medium and the buffer
- 8 responsive to commands from the host computer;
- a second circuit to transfer data between the buffer and the host computer over the
- 10 IDE interface; and

003057.P003DC3 -\5 - Patent

11	a third circuit to release the IDE interface for use with the separate storage device

- while the data is being transferred between the storage medium and the buffer.
- 1 47. (New) The storage device of claim 46, further including:
- a fourth circuit to generate interrupt signals for transmission to the host computer
- 3 over an interrupt line shared with the separate storage device.
- 1 48. (New) The storage device of claim 46, wherein the separate storage device is a
- disk drive.
- 1 49. (New) The storage device of claim 46, wherein the storage medium is different
- 2 than a storage medium of the separate storage device.
- 1 50. (New) The storage device of claim 49, wherein the storage medium of the storage
- device has a significantly slower transfer rate in comparison to a transfer rate of the
- 3 storage medium of the separate storage device.
- 1 51. (New) A computer system comprising:
- 2 a host computer;
- an interface coupled to the host computer, wherein only one device can
- 4 communicate with the host computer over the interface at any given time
- 5 a first storage device coupled to the interface;
- a second storage device coupled to the interface using the same pin out and pin
- 7 description as the first storage device and including:
- 8 a storage medium;
- a buffer coupled between the interface and the storage medium; and

62

10		control circuitry to release the interface for use with the first storage
11	device while	data is being transferred between the storage medium and the buffer.
1	52. (New)	The computer system of claim 51, wherein the second storage device is a
2	data archival	device.
1 2	53. (New) interface.	The computer system of claim 51, wherein the interface is an IDE
1	54. (New)	The computer system of claim 51, wherein the first storage device is a
2	hard drive.	
1	55. (New)	The computer system of claim 54, wherein the disk drive includes:
2	a disk	storage medium; and
3	contro	ol circuitry to release the interface for use with the second storage device
4	after the data	has been transferred between the disk storage medium and the host
5	computer.	
1	56. (New)	The computer system of claim 51, wherein the first storage device and the
2	second storag	ge device share a terminal in the interface for sending interrupt signals.
1	57. (New)	A method comprising:
2	transı	mitting from a host computer over a single Intelligent Drive Electronics
3	(IDE) interfa	ce, to which a first storage device and a second storage device are coupled, a
4	first comman	d to the second storage device, wherein data can be transmitted between the
5	host compute	er and only one of the first storage device and the second storage device at
6	any given tin	ne; and

003057.P003DC3

- 7 releasing the IDE interface for use with the first storage device while the second
- 8 storage device is accessing a tape medium in the second storage device responsive to the
- 9 first command.
- 1 58. (New) The method of claim 57, further including:
- 2 transmitting data between the host computer and the first storage device over the
- 3 single IDE interface while the second storage device is accessing the tape medium in the
- 4 second storage device responsive to the first command.
- 1 59. (New) The method of claim 57, further including:
- 2 transmitting from the host computer over the single IDE interface a second
- 3 command to the first storage device, wherein the second command is a read or write
- 4 command; and
- 5 releasing the single IDE interface for use with the second storage device only
 - after the first storage device has completed execution of the second command.
- 1 60. (New) The method of claim 59, further including:
- 2 the single IDE interface receiving an interrupt signal over an interrupt line shared
- 3 by the first storage device and the second storage device; and
- 4 the host computer responding to the interrupt signal based on which of the first
- 5 storage device and the second storage device currently control the single IDE interface.
- 1 61. (New) The method of claim 57, further including:
- 2 transmitting from the host computer over the single IDE interface a second
- 3 command to the first storage device, wherein the second command is a read or write
- 4 command; and

62

4

- releasing the single IDE interface for use with the second storage device only
- 6 after the first storage device has completed accessing a disk storage medium in the first
- 7 storage device responsive to the second command.
- 1 62. (New) The method of claim 57, further including:
- 2 the single IDE interface receiving an interrupt signal over an interrupt line shared
- 3 by the first storage device and the second storage device; and
- 4 the host computer responding to the interrupt signal based on which of the first
- 5 storage device and the second storage device currently control the single IDE interface.
- 1 63. (New) The method of claim 57, wherein:
- 2 the first command is a read command; and
- 3 the method further includes transmitting the data from the buffer in the second
- 4 storage device to the host computer over the single IDE interface after releasing the
- 5 single IDE interface.
- 1 64. (New) The method of claim 57, wherein the tape medium of the second storage
- device has a significantly slower transfer rate in comparison to a transfer rate of a storage
- 3 medium of the first storage device.
- 1 65. (New) The method of claim 5/7, wherein the second storage device is a data
- 2 archival device.

1 (New) A method comprising:

transmitting, from a host computer over a signal Intelligent Drive Electronics

3 (IDE) interface to which a first storage device and a second storage device are coupled, a

PD

6

4	command wherein data can be transmitted between the host computer and only one of the
5	first storage device and the second storage device at any given time;
6	transmitting data between the host computer and a buffer in the second storage
7	device over the signal IDE interface responsive to the command;
\sum_{8}^{7}	transmitting data between the buffer and a storage medium in the second storage
9	device responsive to the command; and
10	transmitting data between the host computer and the first storage device over the
11	single IDE interface simultaneous with at least part of the transmitting of data between
12	the buffer and the storage medium.
	, 1
	67. (New) The method of claim 66, wherein the command is a write command and
3	the transmitting of data between the host computer and the buffer in the second storage
3	device is performed before the transmitting of data between the buffer and the storage
4	medium in the second storage device.
/	
1	68. (New) The method of claim 66, wherein the command is a read command and the
2	transmitting of data between the host computer and the buffer in the second storage
3	device is performed after the transmitting of data between the buffer and the storage
4	medium in the second storage device.
<u>31</u> \	(69. (New) The method of claim 66, further including:
7	transmitting, from the host computer over the signal IDE interface, a second
3	command to the first storage device, wherein the second command is a read or write
4	command; and
5	releasing the single IDE interface for use with the first storage device only after
6	the second storage device has completed execution of the second command.
	<i>'</i>

Patent - 10 -003057.P003DC3

1	70/2	79. (New) The method of claim 69, further including:
O.	2/	the single IDE interface receiving an interrupt signal over an interrupt line shared
	3(by the first storage device and the second storage device; and
	4	the host computer responding to the interrupt signal based on which of the first
	5	storage device and the second storage device currently control the interface.
	1	71. (New) The method of claim 66, further including:
	2	the single IDE interface receiving an interrupt signal over an interrupt line shared
	3	by the first storage device and the second storage device; and
	4	the host computer responding to the interrupt signal based on which of the first
	5	storage device and the second storage device currently control the interface.
,	1	72. (New) The method of claim 66, wherein:
	2	the transmitting, from the host computer over the single IDE interface, of the
	3	command to the second storage device includes:
	4	setting an indicator to indicate that the single IDE interface is busy;
	5	transmitting, from the host computer over the single IDE interface to the
	6	second storage device, a write command; and
	7	the transmitting of data between the host computer and the first storage device
	8	includes:
	9	setting the indicator to indicate that the single IDE interface is no longer
1	10	busy,
	11	transmitting data between the host computer and the first storage device
	12	over the single IDE interface, and
	13	writing at least some of the data from the buffer to the storage medium in
	14	the second storage device subsequent to the setting of the indicator to indicate that the

- 11 -

003057.P003DC3

- single IDE interface is no longer busy and concurrently with the transmitting of data
- between the host computer and the first storage device over the single IDE interface.
- 1 73. (New) The method of claim 66, wherein the storage medium of the second
- 2 storage device has a significantly slower transfer rate in comparison to a transfer rate of a
- 3 storage medium of the first storage device.

1 74. (New) The method of claim 66, wherein the second storage device is a data

2 archival device.

003057.P003DC3

Patent

- 12 -