Learner's Space 2025 Information Theory and Coding Assignment 1

Suketu Patni

June 15, 2025

- 1. Find the entropy of a random variable which has a geometric distribution of parameter $p \in (0, 1]$. Express it in terms of $H_2(p)$. [2 marks]
- 2. a. Find the entropy of a random variable which has a Poisson distribution of parameter $\lambda > 0$. Express it in terms of $f(\lambda)$, where

$$f(\lambda) = \sum_{k=2}^{\infty} \frac{\lambda^k \ln(k!)}{k!}$$

[3 marks]

- b. Prove that the resultant entropy is finite by proving that $f(\lambda)$ converges for all $\lambda \in \mathbb{R}^+$. (Hint: use the ratio test (read it up if you are unaware of it!)) [2 marks]
- 3. A discrete random variable can have infinite entropy. Work through the below steps to show an example for the same.
 - a. Use the condensation test (you know what to do if you don't know about it!) and the fact that

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

converges iff $\alpha > 1$ to show that that the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\beta}}$$

converges iff $\beta > 1$. [2 marks]

b. Put

$$\gamma = \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

which exists by the previous part. Show that the random variable X with $\operatorname{supp} X = \mathbb{N}$ and

$$P(X = n) = \frac{1}{\gamma(n+1)(\ln(n+1))^2}$$

has infinite entropy. [4 marks]

- 4. (just for fun) Solve exercise 2.39 of Mackay's book on information theory programmatically. You need only submit the final numerical answer upto 5 digits after the decimal point. [1 mark]
- 5. **Typical Sets**: They are a very common construct in information theoretic arguments and form one of the most important applications of the AEP. Let X be a random variable with finite image \mathcal{X} . The AEP states that for i.i.d random variables X_1, X_2, \ldots, X_n all distributed as X,

$$-\frac{1}{n}\log_2\left(p(X_1, X_2, \dots, X_n)\right) \xrightarrow{a.s.} H(X)$$

So we see that $p(X_1, X_2, ..., X_n)$ starts to approach $2^{-nH(X)}$. The typical set $A_{\epsilon,n}$ is the subset of \mathcal{X}^n with probability "very close" to $2^{-nH(X)}$. More precisely,

$$A_{\epsilon,n} = \left\{ (x_1, x_2, \dots, x_n) \in \mathcal{X}^n : p(x_1, x_2, \dots, x_n) \in \left[2^{-n(H(X) + \epsilon)}, 2^{-n(H(X) - \epsilon)} \right] \right\}$$

where $p(\cdot, \cdot, \dots, \cdot)$ is of course the joint pmf of X_1, X_2, \dots, X_n . Prove that

- (a) $P(A_{\epsilon,n}) > 1 \epsilon \ \forall n > N$ for some $N \in \mathbb{N}$. [2 marks]
- (b) $|A_{\epsilon,n}| \in [(1-\epsilon)2^{n(H(X)-\epsilon)}, 2^{n(H(X)+\epsilon)}] \ \forall n > M \text{ for some } M \in \mathbb{N}.$ [4 marks]