office: Delta 856 ext: 62340

email:ychuang@ee.nthu.edu.tw

EE214000 Electromagnetics, Fall 2020

Your name: <u>王昱淳</u> ID: <u>107060013</u> Jan. 3rd, 2021

EE214000 Electromagnetics, Fall, 2020 Quiz #17-1, Open books, notes (20 points), due 11 pm, Wednesday, Jan. 6th, 2021 (submission through iLMS)

Late submission won't be accepted!

1. Describe how a cordless charger charges a cell phone, Apple watch, toothbrush etc.? To explain, draw a circuit including two parts, the charger and the appliance. (3+3 points)

*Images extracted from MOMO and Amazon websites.

2. Write down the 4 Maxwell's Equations, in both differential and integral forms. Also, list the Lorentz Equation and Equation of continuity. Define all the symbols in the expressions. (6 points)

expressions. (o pomes)		
	Differential form	Integral form
Farady's induction law	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{d\Phi}{dt}$
Gauss law	D.D=6	€ 17· d3 = Q
Ampere's circuital law	マベドー ヨウナナブ	$\oint_{C} \vec{H} \cdot d\vec{l} = I + \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$
Magnetic Gauss law	V. B = D	∮ _S B̄·ds̄ = 0
Loventz force equation: $\vec{F} = g\vec{E} + g\vec{U} \times \vec{B}$ Equation of continuity: $\nabla \cdot \vec{J} + \frac{\partial P}{\partial t} = 0$		
E: electric field intensity		H = magnetic field intensity
B: magnetic flux intensity J: current density		
D= magnetic flux I: current		
D: electric flux density (electric displacement) Q: charge density		F: force q: charge U: velocity
Q: total charge		

email:ychuang@ee.nthu.edu.tw

3. Explain why a time-varying magnetic field can't exist in a perfect conductor? (3 points)

A time-varying
$$\vec{E}=0$$
 in a perfect conductor for the same reason as that for a static $\vec{E}=0 \Rightarrow \vec{D}=0$ where $\vec{E}=0 \Rightarrow \vec{D}=0$ with $\vec{E}=0 \Rightarrow \vec{D}=0$ with

4. Explain why $\vec{A}(R,t) = \frac{\mu}{4\pi} \int_{V'} \frac{\vec{J}(t - \sqrt{\mu \varepsilon}R)}{R} dv'$, and

 $V(R,t) = \frac{1}{4\pi\varepsilon} \int_{V'} \frac{\rho(t-\sqrt{\mu\varepsilon}R)}{R} dv'$ describe the *retarded* electromagnetic potentials. In other words, if at time t' your power supply induces time-varying charge $\rho(t')$ and $\vec{J}(t')$ in an antenna, when do you expect that someone would measure \vec{A} and \vec{V} at a distance R from the antenna? (5 points)

Observe the equation $t'=t-R_{NE}$ R=Vesistance t'=surce time L=ticld time L=ticld