

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Teoria della dualità

Sommario

- Sistemi di disequazioni compatibili
- Teoremi dell'alternativa:
 - Il Teorema di Gale
 - Il Lemma di Fàrkas
- Teoria della dualità nella PL
- Teorema forte della dualità
- Il problema duale
 - Dualità debole
 - Reciprocità
- Corollari
 - Condizioni di complementarità
- Regole per la costruzione del problema duale

Sistemi di disequazioni compatibili

Per il <u>Teorema di Fourier</u> un sistema di disequazioni lineari
 Ax ≤ b con

$$\mathbf{x} \in \mathrm{IR}^n$$
, $\mathbf{A} \in \mathrm{IR}^{m'n}$, $\mathbf{b} \in \mathrm{IR}^m$

è compatibile se e solo se un opportuno sistema $\mathbf{A}'\mathbf{x} \leq \mathbf{b}'$, ottenuto tramite combinazioni coniche delle disequazioni date, con

$$\mathbf{A}' = [\mathbf{0}, \mathbf{A}^{\circ}] \in \mathrm{IR}^{p'n}, \mathbf{b}' \in \mathrm{IR}^p,$$

è a sua volta compatibile.

Teoremi dell'alternativa

• Iterando il Teorema di Fourier n volte, si ha che $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ è compatibile se e solo se esistono opportune combinazioni coniche delle sue disequazioni che diano luogo a un sistema $\mathbf{A}^{(n)}\mathbf{x} \leq \mathbf{b}^{(n)}$ compatibile, dove

$$\mathbf{A}^{(n)} = [\mathbf{0}, ..., \mathbf{0}] \in \mathbb{R}^{q \times n}, \ \mathbf{b}^{(n)} \in \mathbb{R}^q$$

- Ma [0, ..., 0]**x** \leq **b**⁽ⁿ⁾ è compatibile se e solo se **b**⁽ⁿ⁾ \geq **0**.
- Quindi perché $Ax \le b$ sia incompatibile deve essere possibile combinare con un vettore $y \ge 0$
 - le righe di A in modo da ottenere la riga 0
 - le componenti di **b** in modo da ottenere un numero $b_i^{(n)} < 0$

Il Teorema di Gale

Quanto detto si sintetizza nel seguente

Teorema (Gale): Il sistema $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ è compatibile se e solo se il sistema $\mathbf{y} \geq \mathbf{0}$, $\mathbf{y}\mathbf{A} = \mathbf{0}$, $\mathbf{y}\mathbf{b} < 0$ è incompatibile.

- Il Teorema di Gale è detto primo teorema della alternativa, in quanto esprime la compatibilità di un sistema in termini dell'incompatibilità di un altro sistema.
- Il sistema $Ax \le b$ viene detto sistema primale, il sistema $y \ge 0$, yA = 0, yb < 0 viene detto sistema duale.
- Per un sistema nella forma $Ax \ge b$, il sistema duale assume la forma $y \ge 0$, yA = 0, yb > 0.

Il Lemma di Fàrkas

Il Teorema di Gale non è l'unico teorema dell'alternativa:

<u>Teorema</u> (Fàrkas): Il sistema (primale standard) $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$ è compatibile se e solo se il sistema

$$yA \ge 0, yb < 0$$

(o, equivalentemente, il sistema $yA \le 0$, yb > 0) è incompatibile.

<u>Dim.</u>: Ax = b, $x \ge 0 \Leftrightarrow Ax \le b$, $-Ax \le -b$, $-x \le 0$ compatibile sse (Gale):

$$z\begin{bmatrix} A \\ -A \end{bmatrix} = 0, \quad z \ge 0, \quad z\begin{bmatrix} b \\ -b \end{bmatrix} < 0.$$

Posto $\mathbf{z} = [\mathbf{u}, \mathbf{v}, \mathbf{w}]$, scrivere $\mathbf{u}\mathbf{A} - \mathbf{v}\mathbf{A} - \mathbf{w} = \mathbf{0}$ con $\mathbf{w} \ge \mathbf{0}$ significa $(\mathbf{u} - \mathbf{v})\mathbf{A} \ge \mathbf{0}$. Ponendo $\mathbf{y} = (\mathbf{u} - \mathbf{v})$ si ottiene la tesi. (Si noti che \mathbf{y} non è vincolato in segno).

Commento

- I teoremi dell'alternativa forniscono un importante strumento per la soluzione del problema di decidere se un poliedro è o non è vuoto
- Essi permettono di trasformare un problema quantificato universalmente (∀) in uno quantificato esistenzialmente (∃).
 Infatti un poliedro Ax ≤ b è vuoto se per ogni x ∈ IRⁿ esiste una riga i per cui a_ix > b_i.
 - I teoremi dell'alternativa consentono di eludere la necessità di una verifica per ogni \mathbf{x} determinando in un altro poliedro (duale di $\mathbf{A}\mathbf{x} \leq \mathbf{b}$) l'esistenza di un \mathbf{y} che verifichi $\mathbf{y}\mathbf{b} < 0$.
- La possibilità o impossibilità di questa operazione spesso determina la differenza tra un problema "facile" e uno "difficile". Su di essa si basa la stessa definizione della classe NP.

Teoria della dualità nella PL

• Consideriamo un problema di PL in forma standard:

P) min
$$\mathbf{cx}$$

 $\mathbf{Ax} = \mathbf{b}$
 $\mathbf{x} > \mathbf{0}$

<u>Teorema</u> (dualità forte): Una soluzione ammissibile **x*** del problema P è ottima se e solo se esiste una **y*** appartenente a

$$D = \{ \mathbf{y} \in \mathbf{IR}^m : \mathbf{yA} \le \mathbf{c} \}$$

per la quale si abbia $y*b \ge cx*$.

Dualità forte

Dimostrazione:

Sia data \mathbf{x}^* ammissibile per il problema P e supponiamo $\mathbf{y}^*\mathbf{b} \ge \mathbf{c}\mathbf{x}^*$ per qualche $\mathbf{y}^* \in D$.

Quindi il sistema

$$yA \le c$$
 $-yb \le -cx^*$ ovvero $y[A, -b] \le [c, -cx^*]$ risulta compatibile.

Applicando a tale sistema il Teorema di Gale si ha che il sistema

$$[\mathbf{A}, -\mathbf{b}][\frac{\mathbf{x}}{\lambda}] = \mathbf{0}, \quad [\frac{\mathbf{x}}{\lambda}] \ge \mathbf{0}, \quad [\mathbf{c}, -\mathbf{c}\mathbf{x}^*][\frac{\mathbf{x}}{\lambda}] < \mathbf{0}$$

è necessariamente incompatibile.

Dualità forte

Segue dimostrazione:

In altri termini nessuna \mathbf{x} , $\lambda \geq \mathbf{0}$ soddisfa

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{b}, \quad \mathbf{c}\mathbf{x} < \lambda \mathbf{c}\mathbf{x}^*$$

ciò in particolare vale per $\lambda = 1$, dal che si deduce che non esiste \mathbf{x} ammissibile per P per cui

$$\mathbf{c}\mathbf{x} < \mathbf{c}\mathbf{x}^*$$

Quindi **x*** è ottima per P.

Dualità forte

Segue dimostrazione:

Viceversa, se il sistema duale $\mathbf{y}[\mathbf{A}, -\mathbf{b}] \leq [\mathbf{c}, -\mathbf{c}\mathbf{x}^*]$ è incompatibile, allora il primale $\mathbf{A}\mathbf{x} = \lambda\mathbf{b}$, $\mathbf{c}\mathbf{x} < \lambda\mathbf{c}\mathbf{x}^*$ ammette una soluzione \mathbf{x}° , $\lambda^\circ \geq 0$.

- Se $\lambda^{\circ} > 0$, $\mathbf{x}^{\circ} / \lambda^{\circ}$ è P-ammissibile e migliore di \mathbf{x}^{*} .
- Se $\lambda^{\circ} = 0$, si ha $\mathbf{A}\mathbf{x}^{\circ} = \mathbf{0}$, $\mathbf{x}^{\circ} \ge 0$ e $\mathbf{c}\mathbf{x}^{\circ} < 0$, quindi $\mathbf{x}^{*} + \mathbf{x}^{\circ}$ è P-ammissibile e migliore di \mathbf{x}^{*} .

Quindi **x*** non è ottima.

Fine dimostrazione

Il problema duale

• Il teorema precedente giustifica l'introduzione del problema

$$\mathbf{D)} \qquad \mathbf{max} \qquad \mathbf{yb} \\ \mathbf{yA} \leq \mathbf{c}$$

- Tale problema è detto duale del problema P.
 A sua volta, P viene detto problema primale.
- Il duale di un problema di PL (in forma standard) è un problema di PL (in forma generale).
- Il problema duale ha
 - una variabile per ogni vincolo del primale,
 - un vincolo per ogni variabile del primale.

Proprietà del duale

Teorema (reciprocità): Il problema P è il duale del problema D.

Teorema (dualità debole o dominanza): Per ogni coppia di soluzioni $\mathbf{x} \in P$, $\mathbf{y} \in D$ si ha $\mathbf{yb} \leq \mathbf{cx}$.

<u>Dimostrazione</u>: La reciprocità si ottiene riscrivendo D in forma standard mediante l'aggiunta di slack non negative, e scrivendo quindi il duale del problema ottenuto.

Per la dominanza basta combinare le colonne di $yA \le c$ (vincoli di D) con le componenti di x. Poiché la combinazione è conica, la diseguaglianza si conserva:

$$yAx \le cx$$

La tesi si ha applicando la proprietà associativa ($y(Ax) \le cx$) e osservando che Ax = b.

Alcuni corollari

Corollario 1: $\mathbf{x}^* \in P$ e $\mathbf{y}^* \in D$ sono ottime se e solo se $\mathbf{y}^*\mathbf{b} = \mathbf{c}\mathbf{x}^*$

<u>Dim.</u>: si ottiene combinando dualità debole e dualità forte.

Corollario 2 (ortogonalità o complementarità): $\mathbf{x}^* \in P$ e $\mathbf{y}^* \in D$ sono ottime se e solo se

$$(\mathbf{c} - \mathbf{y} \cdot \mathbf{A}) \cdot \mathbf{x}^* = \mathbf{y}^* \cdot (\mathbf{A} \mathbf{x}^* - \mathbf{b}) = 0$$

<u>Dim.</u>: il corollario dice che all'ottimo le slack duali (primali) sono ortogonali alla soluzione primale (duale).

La prima condizione si riscrive $\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{A}\mathbf{x}^*$, e poiché $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ essa coincide con il corollario precedente.

La seconda è verificata $\forall y^*$, in quanto $\mathbf{A}\mathbf{x}^* = \mathbf{b}$.

Esempio (Corollario 2)

Alcuni corollari

Corollario 3: Se il problema P (il problema D) è illimitato inferiormente (superiormente) allora il problema D (il problema P) non ammette soluzione.

<u>Dim.</u>: E' conseguenza diretta del teorema di dualità debole.

Ad esempio, supponiamo per assurdo che P sia illimitato inferiormente (cioè che comunque si fissi $\mathbf{x} \in P$ esista un $\mathbf{x}^{\circ} \in P$ tale che $\mathbf{c}\mathbf{x}^{\circ} < \mathbf{c}\mathbf{x}$) e che tuttavia D non sia vuoto (cioè che esista un $\mathbf{y}^{\circ} \in D$).

Ciò contraddice evidentemente la dualità debole, secondo la quale si ha $\mathbf{y}^{\circ}\mathbf{b} \leq \mathbf{c}\mathbf{x}$, $\forall \mathbf{x} \in P$, e quindi non può aversi $\mathbf{c}\mathbf{x} \to -\infty$. (Con ragionamento analogo si opera se D è illimitato).

Esempio (Corollario 3)

Problema primale

P) min $-4x_1 - 3x_2 - x_3$ $x_1 + 3x_2 - 2x_3 = 6$ $x_1, x_2, x_3 \ge 0$

Problema duale

D) max 6y

Riassumendo

	P illimitato	$P = \emptyset$	P ammette ottimo finito
D illimitato	impossibile	•	impossibile
$D = \emptyset$		2	impossibile
D ammette ottimo finito	impossibile	impossibile	

Regole per la costruzione del duale

- Regola 1: Scrivere il primale in forma di min con vincoli di ≥ e/o di =. Il duale sarà allora in forma di max con vincoli di = e/o di ≤.
- Regola 2: Generare una variabile duale y_i per ogni vincolo primale: y_i sarà
 - ≥ 0 se il vincolo primale è di \geq (vincolo lasco)
 - non vincolata in segno se il vincolo primale è di = (vincolo stretto)
- Regola 3: La funzione obiettivo duale si ottiene combinando le y_i con il termine noto primale **b**. Il termine noto duale coincide con il vettore di costo primale **c**.
- Regola 4: Generare un vincolo duale per ogni variabile primale x_j : il vincolo sarà
 - $\operatorname{di} \leq (\operatorname{vincolo lasco}) \operatorname{se} x_i \grave{e} \geq 0$
 - $di = (vincolo stretto) se x_i è non vincolata in segno$

$$4x_1 + 3x_2 + x_3$$

$$x_1 + 3x_2 - 2x_3 = 6$$

$$x_1, x_2, x_3 \ge 0$$

Problema primale

P) max

 $4x_1 + 3x_2 + x_3$ $x_1 + 3x_2 - 2x_3 = 6$ $x_1, x_2, x_3 \ge 0$

Quanto vale l'ottimo primale? Qual è il problema duale?

 x_2