```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data_file = '/content/credit_risk_dataset.csv'
data = pd.read_csv(data_file)
data.head()
 😇 person_age person_income person_home_ownership person_emp_length loan_intent loan_grade loan_amnt loan_int_rate loan_status loan_percent_income cb_person_default_on_file cb_person_cred_hist_length
                             9600
                                         MORTGAGE
                                    RENT
RENT
                23
                          65500
               24
                          54400
 Next steps: Generate code with data View recommended plots New interactive sheet
data.info()
class 'pandas.core.frame.DataFrame'>
RangeIndex: 32581 entries, 0 to 32580
Data columns (total 12 columns):

# Column Non-Null Count Dtype
    data.duplicated().sum()
<del>_</del>___ 165
data.info()
print(data.isnull().sum())
```

123.0 PERSONAL 5.0 EDUCATION

1.0 MEDICAL
4.0 MEDICAL
8.0 MEDICAL

16.02

12.87

15 23

14.27

0.57

0.53

0.55

B 1000 C 5500 C 35000

3

```
person (ast.) isolit)

person age
person income
person income
person eme jength

87
loan intent

loan grade

loan grade

loan intent

loan intent

ecception income
check person default on file
check person cred hist length

dtype: int64
```

missing_columns = ['person_emp_length', 'loan_int_rate']

data[missing_columns] = data[missing_columns].fillna(data[missing_columns].median())

print(data.isnull().sum())

categorical_features = ['person_home_ownership', 'loan_intent', 'loan_grade', 'cb_person_default_on_file']

label_encoders = {}
for feature in categorical_features:
 le = LabelEncoder()
 data[feature] = le.fit_transform(data[feature])
 label_encoders[feature] = le

for feature, le in label_encoders.items():
 print(f"Feature: {feature}")
 print("Original Categories:", le.classes_)
 print("Encoded Values:", data[feature].unique())
 print()

Feature: person_home_ownership
Original Categories: ['MDRTGAGE' 'OTHER' 'OWN' 'RENT']
Encoded Values: [3 2 0 1] Feature: loan_intent
Original Categories: ['DEBICONSOLIDATION' 'EDUCATION' 'HOMEIMPROVEMENT' 'MEDICAL' 'PERSONAL'
'VENTINE!']
Encoded Values: [4 1 3 5 2 0]

Feature: loan_grade Original Categories: ['A' 'B' 'C' 'D' 'E' 'F' 'G'] Encoded Values: [3 1 2 0 4 5 6]

Feature: cb_person_default_on_file Original Categories: ['N' 'Y'] Encoded Values: [1 0]

Define target and feature columns
target = 'loan_status'
features = data.drop(target, axis=1).columns.tolist()

Identify categorical and numerical features
numerical_features = list(set(features) - set(categorical_features))

Summary statistics for numerical features numerical_summary = data[numerical_features].describe().T print("Summary Statistics for Numerical Features:") print(numerical_summary)

Summary statistics for categorical features (including label-encoded ones) categorical_summary = data[categorical_features].describe().T print("\nSummary Statistics for Categorical Features:") print(categorical_summary)

→ Summary Statistics for Numerical Features

	count	mean	std	min	\
loan_int_rate	32416.0	11.014662	3.083050	5.42	
person_income	32416.0	66091.640826	62015.580269	4000.00	
loan_percent_income	32416.0	0.170250	0.106812	0.00	
loan_amnt	32416.0	9593.845632	6322.730241	500.00	
cb_person_cred_hist_length	32416.0	5.811297	4.059030	2.00	
person_emp_length	32416.0	4.768880	4.090411	0.00	
person_age	32416.0	27.747008	6.354100	20.00	

for i, col in enumerate(categorical_features): plt.subplot(i, len(categorical_features), i+1) sns.countplot(xecd), data-data, hue-tanget) plt.title(f'Distribution of {col} by {target}') plt.xlabel(col) plt.ylabel('Count')

plt.tight_layout()
plt.show()


```
sns.violinplot(x='loan_grade', y='loan_int_rate', hue='loan_status', data-data, split=True)
plt.title('Interest Rate Distribution Across Loan Grades and Loan Status')
plt.xiabel('Loan Grade')
plt.yiabel('Interest Rate')
plt.yiabel('Interest Rate')
 ⊋÷
                                                                                Interest Rate Distribution Across Loan Grades and Loan Status
                    25
                    20
              Interest Rate
 plt.figure(figsize=(12, 8))
 for i, col in enumerate(['loan_percent_income', 'loan_amnt', 'person_age', 'loan_int_rate']):
    plt.subplot(2, 2, 1 + 1)
    sns.boxplot(cw'loan_status', yecol, data=data)
    plt.title(f'(col) vs. Loan Status')
    plt.xlabel('loan Status')
    plt.ylabel(col)
plt.tight_layout()
plt.show()
```


grade_dist = data.groupby(['loan_grade', 'loan_status']).size().unstack()
grade_dist = grade_dist.div(grade_dist.sum(axis=1), axis=0) grade_dist.plot(kind='bar', stacked=True, color=['blue', 'orange'], figsize=(18, 6))
plt.title('Default Proportion Across Loan Grades')
plt.xjabel('roan Grade')
plt.xjabel('roan Grade')
plt.yjabel('Proportion')
plt.legend(title='Loan Status', loc='upper right')
plt.show()

Calculate correlations between numerical features and the target correlations = data[numerical_features + ['loan_status']].corr()

Extract correlations of features with the target target_corr = correlations['loan_status'].drop('loan_status')

Display correlations
print(target_corr.sort_values(ascending=False))

**Plot heatmap for numerical features and target plt.figure(figsize-(10, 8)) sns.heatmap(correlations, annot=True, cmap='coolwarm', fmt='.2f', cbar=True) plt.sthue() correlation Heatmap with Loan Status') plt.show()

original_features = [# Assuming your original features are in this list
 'loan_amnt', 'person_income', 'loan_int_rate', 'loan_grade',
 'loan_percent_income', 'toperson_red_hist_length',
 'person_age', 'person_emp_length' # Adding new features
updated_features = original_features + ['effective_interest_burden', 'grade_income_ratio'] # Preparing data
X = data[updated_features]
y = data['loan_status'] # Splitting data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Standardizing the data (optional)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test) from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report

Logistic Regression logistic_model = LogisticRegression() logistic_model.fit(X_train_scaled, y_train) y_pred_logistic = logistic_model.predict(X_test_scaled)

accuracy = accuracy_score(y_test, y_pred_logistic)
classification_rep = classification_report(y_test, y_pred_logistic)

Print Results
print("Logistic Regression Results:")
print("Accuracy: (accuracy:.2f)") # Formats accuracy to two decimal places
print("Inclassification Report:\n", classification_rep)

Logistic Regression Results:

Classification Report

Classification	precision	recall	f1-score	support
0	0.86	0.95	0.90	5073
1	0.69	0.45	0.54	1411
accuracy			0.84	6484
macro avg	0.78	0.70	0.72	6484
weighted avg	0.82	0.84	0.82	6484

from sklearn.ensemble import RandomForestClassifier

Random Forest model = RandomForestClassifier()
random_forest_model.fit(X_train_scaled, y_train)
y_pred_rf = random_forest_model.predict(X_test_scaled)

Evaluate Random Forest
rf_accuracy = accuracy_score(y_test, y_pred_rf)
rf_classification_rep = classification_report(y_test, y_pred_rf)

Print Results
print("Random Forest Results:")
print(f"Accuracy: {rf_accuracy: .2f}")
print("\nClassification Report:\n", rf_classification_rep)

Classification	Report: precision	recall	f1-score	support
0	0.91	0.95	0.93	5073
1	0.79	0.66	0.72	1411
accuracy			0.89	6484
macro avg	0.85	0.80	0.82	6484
weighted avg	0.88	0.89	0.88	6484

from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report

XGBoost
xgb_model = XGBClassifier()
xgb_model.fit(X_train_scaled, y_train)
y_pred_xgb = xgb_model.predict(X_test_scaled)

Evaluate XGBoost
xgb_accuracy = accuracy_score(y_test, y_pred_xgb)
xgb_classification_rep = classification_report(y_test, y_pred_xgb)

Print Results
print("XGBoost Results:")
print(f"Accuracy: (xgb_accuracy:.2f)")
print("\nClassification Report:\n", xgb_classification_rep)

XGBoost Results: Accuracy: 0.88

Classification Report:

	precision	recall	f1-score	support
0	0.90	0.95	0.93	5073
1	0.77	0.64	0.70	1411
accuracy			0.88	6484
macro avg weighted avg	0.84 0.88	0.79 0.88	0.81 0.88	6484 6484

Use the existing Random Forest model (make sure it's trained)
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train_scaled, y_train)

Feature Importances
importances = rf_model.feature_importances_
sorted_indices = np.argsort(importances)[::-1]
features = X.columns

top_features = features[sorted_indices[:5]]