STATISTIQUES À DEUX VARIABLES E02

EXERCICE N°3 (Le corrigé)

Pour chacune des deux séries statistiques à deux variables suivantes, répondre aux questions.

Série n°1									
\boldsymbol{x}_{i}	1	2	3	4	5				
y_i	123	129	135	140	145				

Série n°2										
t_i	18	20	21	25	28	30				
N_{i}	24	44	62	100	132	14				

- 1) Déterminer les coordonnées du point moyen G
- 2) Déterminer, à l'aide de la calculatrice l'équation de Δ , la droite d'ajustement par la méthode des moindres carrés (coefficients arrondis à 10^{-3} près).
- 3) Vérifier que $G \in \Delta$.
- 4) Déterminer les coordonnées d'un autre point appartenant à Δ .

Pour la série n°1

1)

Notons
$$G(x_G; y_G)$$
.
 $x_G = \frac{1+2+3+4+5}{5} = 3$ et $y_G = \frac{123+129+135+140+145}{5} = 134,4$
Ainsi $G(3; 134,4)$

2)

$$y = 5.5x + 117.9$$

3

Un point appartient à une droite si et seulement si ses coordonnées vérifient l'équation de cette droite.

Or:
$$5.5 \times 3 + 117.9 = 134.4$$

Souvenez-vous de l'exercice n°1 de la fiche A01...

Donc $G \in \Delta$

4)

Par exemple pour x=0, $5.5\times0+117.9 = 117.9$

On en déduit que le point de coordonnées (0; 117,9) appartient à Δ .

Ici, comme on a le choix, on ne cherche pas à faire compliqué...

Pour la série n°2

1)

Notons
$$G(x_G; y_G)$$
.
 $x_G = \frac{18+20+21+25+28+30}{6} = \frac{142}{6} = \frac{71}{3} \approx 23,667$ et
$$y_G = \frac{24+44+62+100+132+14}{6} = \frac{376}{6} = \frac{188}{3} \approx 62,667$$

Ainsi

$$G\left(\frac{71}{3};\frac{188}{3}\right)$$

2)

$$y = 2,924x - 6,524$$

3)

Or:
$$2,924 \times \frac{71}{3} - 6,524 \approx 62,677$$

On peut donc admettre que $G \in \Delta$

(on vous fait travailler avec des valeurs approchées donc on acceptera ce raisonnement)

4)

Par exemple pour x=0, $2,924\times0-6,524 = -6,524$

On en déduit que le point de coordonnées (0; -6,524) appartient à Δ .