MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2018-19

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos quatro grupos utilizando folhas de capa distintas.

GRUPO I

1. [5,7] Considere as transformações lineares $T \in L(\mathbb{R}^2, \mathbb{R}^3)$, $R \in L(\mathbb{R}^3, \mathbb{R}^2)$ e $S \in L(\mathbb{R}^3, \mathbb{R}^3)$, dadas por

$$T(x,y) = (x+y,x+3y,-x+y), R(x,y,z) = (x-z,2x+y+z),$$

$$S(x,y,z) = (x+y-z,x-z,-x-y+z)$$

em relação às bases canónicas E_3 , para o espaço \mathbb{R}^3 , e E_2 , para o espaço \mathbb{R}^2 .

- **a)** Calcule o núcleo e o contradomínio de *S*. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Verifique quais das funções dadas são sobrejetivas. Justifique.
- c) Mostre que apenas a função T é injetiva e obtenha a sua função inversa.

GRUPO II

- **2.** [4,0] Considere as transformações lineares definidas na questão 1 e a base $B = \{(1,0,-1),(1,0,0),(-1,1,1)\} \subset \mathbb{R}^3$.
 - a) Recorrendo ao cálculo matricial, obtenha a matriz $S_{B,B} = m(S)_{B,B}$, representação matricial de S em relação à base B.
 - **b**) Usando preferencialmente à matriz obtida na alínea anterior, calcule a matriz $m(TRS)_{B,E_3}$, representação matricial de TRS em relação às bases B e E_3 .

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Avaliação

GRUPO III

3. [2,5] Seja a matriz real:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & a & a^2 + 3b + 2 & ab \\ 0 & 1 & a & b \\ 1 & a & a^2 + b & a + ab \end{bmatrix}$$

- a) Calcule, indicando todas as operações efetuadas, o determinante e a característica.
- **b**) Sejam $B \in C$ duas matrizes do tipo $n \times n$. Admita que C é obtida a partir de B por aplicação consecutiva das seguintes operações (OP) sobre as linhas (L) de B:

OP1:
$$L_2 - L_3 \rightarrow L_3$$
; OP2: $L_4 + 2L_1 \rightarrow L_4$; OP3: $2L_1 \rightarrow L_1$.

Relacione o determinante de C com o determinante de B. Justifique.

GRUPO IV

4. [5,8] Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$T = m(T) = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 .

- a) Calcule os valores próprios e os respetivos espaços próprios; indique, para cada um destes subespaços, uma base e a dimensão.
- **b)** Verifique, justificando, se T admite uma base de vetores próprios, U, para \mathbb{R}^3 . Em caso afirmativo, obtenha essa base e as matrizes $T_{U,U}$ e $T_{U,E}$.
- c) Identifique uma matriz que represente a transformação linear T e que seja semelhante à matriz m(T); apresente as expressões matriciais que as relacionam.
- 5. [2,0] Seja $V = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ o conjunto dos valores próprios da matriz A e admita que u é um vetor próprio associado ao valor próprio λ_k . Mostre que se α é um escalar tal que $\alpha \notin V$, então:

$$(\alpha \mathbf{I} - \mathbf{A})^{-1} \mathbf{u} = \frac{1}{\alpha - \lambda_k} \mathbf{u}.$$