ANÁLISIS DE REGRESIÓN LINEAL

Con R

Curso de nivelación Maestría en Estadística Aplicada

Facultad de Ciencias Económicas y Estadística

Introducción a R.STUDIO

• Breve descripción general del programa

Regresión simple (ejercicio 1)

- Creación del data set
- Medidas descriptivas
- Gráfico de dispersión
- Ajuste del modelo de regresión simple

• • • INTRODUCCIÓN-R.STUDIO

¿Qué es R.STUDIO?

- Es un entorno de desarrollo integrado (IDE) para el lenguaje de programación R
- Tiene una versión libre (licencia AGPL v3) y una versión comercial
- Se puede ejecutar sobre distintas plataformas (Windows, Mac, or Linux)
- También se puede ejecutar desde la web usando RStudio Server.

• • • INTRODUCCIÓN-R.STUDIO

¿Qué es R.STUDIO?

- •Instalación:
 - 1. Instalar R
 - 2. Instalar R-Studio. Descargar desde el sitio oficial

https://www.rstudio.com

última versión disponible: RStudio Desktop 1.2.1335

REGRESIÓN SIMPLE

Ejercicio 1

• • • REGRESIÓN SIMPLE

Ejercicio 1

Los productores de caña de azúcar están interesados en la relación entre la superficie de tierras cosechadas (hectáreas) y la producción total de caña de azúcar (en toneladas) de esta superficie. Para dar respuesta a la inquietud de los productores se analizó la cosecha del año 2014 de 14 departamentos productores de caña de azúcar del norte argentino y se relevaron los siguientes datos:

• • • REGRESIÓN SIMPLE

Ejercicio 1

Departamento	Sup (Ha)	Producción
1	13638	940000
2	6151	460000
3	5828	440000
4	931	65000
5	12222	830000
6	5302	380000
7	11979	860000

Denoutemente	S (11a)	Duaduasión
Departamento	Sup (Ha)	Producción
8	8175	590000
9	13679	1020000
10	8296	585000
11	13396	1020000
12	3238	200000
13	16633	1130000
14	7244	570000

Conjunto de datos

La tabla de datos se puede obtener mediante:

- ✓ El ingreso de datos mediante sentencia
- ✓ La **lectura** de ficheros de datos externos (texto, csv, Excel, etc.)

Para este ejemplo \rightarrow se ingresan los datos mediante sentencia

Objetos creados (vectores):

- ✓ dpto: contiene los números de los departamentos
- ✓ ha: contiene los valores de las superficies cosechadas (en hectáreas) de cada departamento
- ✓ produccion: contiene los valores de la producción de caña de azúcar (en toneladas) de cada departamento


```
| Ejercicio_01.R | Source on Save | Source on Save | Source on Save | Run | Source | Run | Source on Save | Run |
```

- ✓ as.factor(dpto): se considera al objeto dpto como un factor
- √ datos1: se crea este data frame con los objetos anteriores

Medidas descriptivas

1.1 Calcular las medidas descriptivas para cada variable.

summary(datos1)

> summary(datos1)

dpto ha produccion

1 :1 Min. : 931 Min. : 65000

2 :1 1st Qu.: 5909 1st Qu.: 445000

:1 Median: 8236 Median: 587500

4 :1 Mean : 9051 Mean : 649286

5 :1 3rd Qu.:13102 3rd Qu.: 920000

6 :1 Max. :16633 Max. :1130000

(Other):8

colMeans (datos1[,-1])

> colMeans(datos1[,-1])

ha produccion

9050.857 649285.714

• • • Gráfico de dispersión

1.2 ¿Cómo es la relación existente entre las hectáreas cosechadas y las toneladas de producción de azúcar?

```
plot(produccion~ha, main="Hectareas cosechadas vs
Produccion de caña de azucar", cex.main=0.8, ylab =
"Producción total", xlab="Hectareas cosechadas",
cex.lab=0.8, xlim=c(0,18000), ylim=c(50000,1200000),
 cex.axis=0.8,col="red",cex=0.75, pch=19)
```


Gráfico de dispersión

- ✓ plot (produccion~ha): gráfico de dispersión Y ~ X
- ✓ main="Hectareas": Título principal del gráfico
- ✓ cex.main=0.8: Tamaño del texto del título
- ✓ ylab = "Producción total": Título del eje Y
- ✓ xlab = "Hectareas cosechadas": Título del eje X
- ✓ cex.lab=0.8: Tamaño del texto de las etiquetas de los ejes
- ✓ xlim=c(0,18000): Valores mínimos y máximos del eje X
- √ ylim=c(0,1200000): Valores mínimos y máximos del eje Y
- ✓ cex.axis=0.8: Tamaño de los valores de los ejes
- ✓ col="red": Color de los puntos
- ✓ cex=0.95: Tamaño del texto relativo al valor. Por defecto que es 1
- ✓ pch=19 (círculo): Especifica el símbolo o caracter utilizado para representar los puntos del gráfico. Si se desea que los puntos sean representados por algún carácter específico se pone entre comillas, por ejemplo: pch="%"

Gráfico de dispersión

Modelo de regresión simple

1.3 Ajustar un modelo de regresión lineal simple y graficarlo junto a los datos

Modelo planteado

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \varepsilon_{i}$$
 $i=1,2,..,14$

$$i=1,2,...,14$$

$$\epsilon_{\rm i} \sim N(0,\sigma^2)$$

• • • Estimación del modelo

Estimación del modelo (mínimos cuadrados)

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i}$$
 $i = 1, 2, ..., 14$

$$\hat{\beta}_1 = b_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = b_0 = \overline{y} - b_1 \overline{x}$$

• • Estimación del modelo

```
modelo1 = lm(produccion ~ ha, data=datos1)
```

Paquete Im

- **Uso:** para ajustar modelos lineales.
- **Lm** (formula, data, method = "qr", etc)
 - Formula: produccion ~ ha: indica el ajuste de un modelo lineal con "produccion" como variable respuesta y "ha" como variable explicativa. Por defecto incluye ordenada al origen. En caso de querer excluirla se puede escribir: $y \sim x - 1$ ó $y \sim 0 + x$.
 - data=datos1: nombre del conjunto de datos
- modelo1: objeto resultante

• • • Estimación del modelo

modelo1

Coefficients:

(Intercept) ha 12324.901 70.376

$$\hat{y}_i = 12324,9 + 70,376 x_i$$
 $i = 1,2,...,14$

Gráfico dispersión con recta estimada

```
plot(produccion~ha,main="Hectareas cosechadas vs
Produccion de caña de azucar", cex.main=0.8, ylab =
"Producción total",xlab="Hectareas cosechadas",
cex.lab=0.8, xlim=c(0,18000),ylim=c(50000,1200000),
    cex.axis=0.8,col="red",cex=0.75, pch=19)
abline(modelo1)
```

Al gráfico solicitado con la función **plot** se le agregue la **recta estimada** con el modelo 1

• • Interpretación coeficientes

1.4 Interpretar los coeficientes de regresión estimados en términos del problema

$$\hat{y}_i = 12324,9 + 70,376 x_i$$
 $i = 1,2,...,14$

b1=70,376: A medida que la superficie de tierras cosechadas aumenta en 1 hectárea, la producción media de caña de azúcar aumenta en 70,376 toneladas.

b0=12.324,9: No tiene sentido la interpretación cuando la cantidad de superficie cosechadas es cero.

1.5 Construir el cuadro Anova.

FV	SC	gl	CM	F
Regresión (ajustada)	$SCR_{m} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$	p=1	$CMR = \frac{SCR_m}{1}$	$F = \frac{CMR}{r}$
Error	$SCE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^{2}$	n-p-1=n-2=12	$CME = \frac{SCE}{n-2}$	CME
Total (ajustado)	$SCT_m = \sum_{i=1}^n (y_i - \overline{y})^2$	n-1=13		

FV	SC	gl	CM	F
Regresión (ajustada)	SCR _m = 1360200000000	1	CMR = 1360200000000	F=980,25
Error	SCE = 16651000000	12	CME = 1387583333	1 – 300,23
Total (ajustado)	SCT _m = 1376851000000	13		

1.6 Probar la significación de la regresión utilizando la estadística F y la estadística t. Comparar los resultados.

TEST DE REGRESIÓN:
$$H_0$$
) $\beta_1 = 0$ H_1) $\beta_1 \neq 0$

$$t = \frac{b_1}{\sqrt{\hat{V}(b_1)}} \sim t_{12}$$

Regla de decisión

Rechazo H0 si $|tobs| > t_{12; 0.025}$ ó si p-value < 0.05

Estadística F

$$F = \frac{CMR}{CME} \underset{H_0}{\sim} F_{1;12}$$

Regla de decisión

Rechazo H0 si Fobs> F _{1;12;0.05} ó si p-value < 0.05

• • • Test de Regresión

Estadística F

$$F = \frac{CMR}{CME} \sim F_{1;12}$$

F= 980,2 (del cuadro Anova) $F_{1,12, 5\%} = 4,75$

¿Conclusión?

• • Test de Regresión

summary (modelo1)

• • • Test de Regresión

Estadística t

$$T = \frac{b_1}{\sqrt{\hat{V}(b_1)}} \sim t_{12}$$

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	12324.901	22649.679	0.544	0.596
ha	70.376	2.248	31.309	7.09e-13 ***

Corroborar $t^2 = F$

• • • Intervalo confianza- Betas

1.7 Construir un intervalo del 95% de confianza para β_1 e interpretar.

	2.5 %	97.5 %
(Intercept) -37024.509		61674.31
ha	65.478	75.27

	(Intercept)	ha
2.5 %	-37024.51	65.478
97.5 %	61674.31	75.273

IC β_1 ;95% \rightarrow (65,48; 75,27)

• • • Coeficiente R²

1.8 ¿Qué valor toma el coeficiente de determinación R²?

$$R^2 = \frac{SCR_m}{SCT_m} = 1 - \frac{SCE}{SCT_m} = \frac{130200000000}{\left(130200000000 + 16510000000\right)} = 0,9879$$

summary (modelo1) \$r.squared

O, como se vio anteriormente:

summary (modelo1)

Multiple R-squared: 0.9879

R²=0,9879: El 98,79% de la variación de la producción de caña de azucar se puede explicar por la relación lineal entre la superficie cosechada y la producción de caña de azúcar.

1.9 ¿Cuál será la producción media esperada de azúcar para 5302 hectáreas cosechadas? Agregar un intervalo de confianza para su estimación.

Para todos los casos

predict(modelo1, interval="conf")

• • • Intervalo de predicción

1.10 Un grupo de productores de un determinado departamento están interesados en predecir cuál será la producción de azúcar al final de este año. Esperan cosechar 7244 hectáreas. Realizar la estimación puntual y por intervalo.

Intervalo de predicción

Para todos los casos

predict(modelo1, interval="pred")

```
fit
                 lwr
                            upr
  972109.31
             885146.92
                          1059071.7
                          530408.5
  445206.11 360003.67
  422474.74 336994.39
                          507955.1
   77844.72 -15102.43
                           170791.9
  872457.25 787023.31
                           957891.2
14 522126.80 437651.57 606602.0
Warning message:
In predict.lm(modelo1, interval = "pred") :
predictions on current data refer to _future_
responses
```


Extrapolación

1.11 ¿Podemos utilizar este modelo para predecir la producción media esperada de azúcar para 20000 hectáreas cosechadas?

Residuos

Obtener el valor del residuo para la observación 1.

```
residuos<-resid(modelo1)
residuos</pre>
```

```
1<br/>-32109.3102<br/>14793.8923<br/>17525.2584<br/>-12844.7205<br/>-42457.2556<br/>-5457.1007<br/>4644.0518<br/>2353.3859<br/>45005.28510<br/>-11162.08111<br/>64921.621-40201.56313<br/>-52884.66647873.20347873.203
```

$$e_1 = y_1 - \hat{y}_1 = 940000 - (12324,9011 + 70,37574 . 13638)$$
 $e_1 = y_1 - \hat{y}_1 = 940000 - 972109,243$
 $e_1 = -32109,24$

Evaluar si los errores se distribuyen Normal

```
qqnorm(standresid, ylab="Residuos estandarizados",
xlab="Normal Scores",ylim=c(-2,2),col="red",cex=0.95,
pch=19)
qqline(standresid)
```


Los puntos se ajusta a la recta

Sugiere que los errores tienen distribución Normal

Evaluar si los errores se distribuyen Normal

ad.test(residuos)

Anderson-Darling normality test data: residuos A = 0.22207, p-value = 0.7875

- H₀) Los errores tienen distribución normal
- H₁) Los errores no tienen distribución normal

El valor p=0.7875>0.05

Evaluar si la media de los errores es igual a 0 y la variancia es constante

```
plot(standresid~predichos,ylab="Residuosestandarizados",
xlab="Predichos",ylim=c(-2,2),col="red",cex=0.95, pch=19)
abline(0,0)
abline(-2,0)
abline(2,0)
```


Los puntos caen dentro de una banda horizontal alrededor del cero

Sugiere que los errores tienen media cero y variancia constante

Evaluar si los errores están correlacionados

```
plot(standresid,ylab="Residuos estandarizados",xlab =
"Orden",col="red",cex=0.95, pch=19)
abline(0,0)
```


Si los puntos no muestran un patrón, se presentan aleatoriamente

Sugiere que los errores están correlacionados

Evaluar si los errores están correlacionados

dwtest(modelo1)

Durbin-Watson test

data: modelo1 DW = 2.2587, p-value = 0.7454

alternative hypothesis: true autocorrelation is greater than 0

H₀) Los errores no están correlacionados

H₁) Los errores están correlacionados

El valor p=0,7454>0,05

Evaluar si la relación propuesta entre X e Y es adecuada

```
plot(standresid~ha, ylab="Residuos estandarizados",
xlab="Hectarea",xlim=c(0,20000),ylim=c(-2,2),col="red",
cex=0.95,pch=19)
abline(0, 0)
```


Los puntos no muestran un patrón, se presentan aleatoriamente

Sugiere que la relación propuesta entre Y y X es correcta