Neural networks

Convolution examples

Input image 64x64x3 Kernel 5x5x3

The convolution of the kernel with the local patch in the image outputs only one value

Input depth = kernel depth

The final result of a convolution is a feature map

Feature map: 60x60x1 (with no padding)

Feature map: 64x64x1 (with padding=2)

One kernel produces one feature map of depth 1

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3 kernel 5x5x3

8 kernels of 5x5x3

Input image 64x64x3

kernel 5x5x3

Input depth = kernel depth

8 kernels of 5x5x3

First convolutional layer

Input: volume of 64x64x3

Kernels: 8 of 5x5x3 with padding=1

Output: volumen of 64x64x8

Output is a *volume* of 64x64x8

