Meeting 09-08-23

2023-08-07

1.1 Is there still as sizeable proportion of infections occuring within household?

Using the logit model which includes all the data. Recall from the previous Rmd:

- $1: Female \ to \ male, \ out-of-household \ 2: Female \ to \ male, \ same \ household \ 3: \ Male \ to \ female, \ out-of-household \ 2: Female \ to \ male, \ same \ household \ 3: Male \ to \ female, \ out-of-household \ 2: Female \ to \ male, \ same \ household \ 3: Male \ to \ female, \ out-of-household \ 3: Male \ 3: Male \ 5: Mal$
- 4: Male to female, same household

```
# Load CmdStanR fits
fit_norm <- readRDS(here::here("data", "logit_pairs_draws_ordered.rds"))</pre>
#fit_beta <- readRDS(here::here("data", "beta_pairs_draws_ordered.rds"))</pre>
# Extract rates (eta)
eta_draws <- as_draws_matrix(fit_norm$draws("eta"))</pre>
eta_sums <- rowSums(eta_draws)</pre>
eta_prop <- eta_draws / eta_sums
# Check proportion of HH vs OOH
eta_HH_prop <- rowSums(eta_prop[, c(2,4)])</pre>
summary(eta_HH_prop)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
   0.2850 0.3458 0.3593 0.3591 0.3723 0.4398
print(quantile(eta_HH_prop, c(0.025, 0.975))) # 95% CI
        2.5%
                 97.5%
## 0.3209107 0.3979944
```

Is there a specific time which we should start the modelling from (i.e a date/round for which we start counting the intervention as 'significant'?)

1.2 Does HH proportion change with community (fishing vs inland?)

First we observe a quirk with the data:

```
# Load in pairs data
filename <- here::here("data", "pairs_tsi.csv")
pairs_tsi <- read.csv(filename)
setDT(pairs_tsi)
# Check whether same household pairs are the same community</pre>
```

```
same_hh_pairs <- pairs_tsi[same_hh == 1]</pre>
source_comm <- same_hh_pairs[,.(COMM.SOURCE)]</pre>
recip_comm <- same_hh_pairs[,.(COMM.RECIPIENT)]</pre>
t(source_comm == recip_comm) # Observation 81 is false
              [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
  [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23]
                                                         TRUE
##
  COMM.SOURCE
             TRUE TRUE
                        TRUE TRUE TRUE TRUE TRUE TRUE
                                                               TRUE
##
              [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34]
##
  COMM.SOURCE
             ##
              [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45]
##
  COMM.SOURCE TRUE TRUE
                        TRUE
                              TRUE
                                   TRUE
                                         TRUE TRUE
                                                    TRUE
                                                          TRUE
                                                               TRUE
##
              [,46] [,47] [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56]
  TRUE TRUE
##
              [,57] [,58] [,59] [,60] [,61] [,62] [,63] [,64] [,65] [,66] [,67]
##
  COMM.SOURCE
             TRUE TRUE
                        TRUE
                              TRUE TRUE
                                         TRUE TRUE
                                                    TRUE
                                                          TRUE
                                                               TRUF.
##
              [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77]
                                                                    [,78]
             COMM.SOURCE
##
              [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86] [,87] [,88] [,89]
             TRUE TRUE FALSE
                              TRUE
                                    TRUE
                                         TRUE TRUE
                                                    TRUE
  COMM.SOURCE
                                                          TRUE
                                                               TRUE
##
              [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98] [,99] [,100]
  COMM.SOURCE
             [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108] [,109]
##
##
  COMM.SOURCE
               TRUE
                     TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118]
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
##
              [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127]
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,128] [,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136]
  COMM.SOURCE
               TRUE
                     TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
##
                                                            TRUE
##
              [,137] [,138] [,139] [,140] [,141] [,142] [,143] [,144] [,145]
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,146] [,147] [,148] [,149] [,150] [,151] [,152] [,153] [,154]
                                               TRUE
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                   TRUE
                                         TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,155] [,156] [,157] [,158] [,159] [,160] [,161] [,162] [,163]
                                                                   TRUE
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
              [,164] [,165] [,166] [,167] [,168] [,169] [,170] [,171] [,172]
  COMM.SOURCE
##
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,173] [,174] [,175] [,176] [,177] [,178] [,179] [,180] [,181]
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
              [,182] [,183] [,184] [,185] [,186] [,187] [,188] [,189] [,190]
                                                      TRUE
##
  COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                            TRUE
                                                                   TRUE
##
              [,191] [,192] [,193] [,194] [,195] [,196] [,197] [,198] [,199]
  COMM.SOURCE
                     TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                            TRUE
               TRUE
                            TRUE
                                                      TRUE
                                                                   TRUE
             [,200] [,201] [,202] [,203] [,204] [,205] [,206] [,207] [,208]
##
  COMM.SOURCE
               TRUE
                     TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                   TRUE
##
              [,209] [,210] [,211] [,212] [,213] [,214] [,215] [,216] [,217]
## COMM.SOURCE
               TRUE
                      TRUE
                            TRUE
                                 TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
##
              [,218] [,219]
```

COMM.SOURCE

TRUE

TRUE

The 81st entry of the same_hh data set has a source and recipient from the same household but different community! Do we ignore this data point? (Yes in this model).

We should fit the model to four groups:

- Same household, fishing (1)
- Same household, inland (2)
- Different household, fishing* (4)
- Different household, inland* (5)

But how do we decide which community if the source and recipient are not from the same community? Just from source/recipient community or add a seperate group from an inter-community transmission (3). (The model picked uses the last option, so we now have five groups)

```
# Load CmdStanR fit
fit_1_2 <- readRDS(here::here("data", "logit_pairs_draws_1-2.rds"))
print(fit_1_2, max_rows = 1000)</pre>
```

					,		_	0.5	
##	,	variable		median	sd	mad	q5		rhat
##	lp			601.49				620.25	
##	v[1,1]		0.64	0.88	0.38	0.18	0.06		1.06
##	v[2,1]		0.69	0.93	0.39	0.11	0.01		1.01
##	v[3,1]		0.72	0.96	0.36	0.06	0.03		1.01
##	v[4,1]		0.22	0.06	0.33	0.07	0.00	0.97	
##	v[5,1]		0.80	0.98	0.33	0.03	0.02		1.04
##	v[1,2]		0.72	0.87	0.31	0.18	0.11		1.01
##	v[2,2]		0.68	0.81	0.33	0.27	0.03		1.00
##	v[3,2]		0.70	0.82	0.30	0.24	0.10		1.00
##	v[4,2]		0.56	0.58	0.37	0.58	0.02		1.01
##	v[5,2]		0.70	0.82	0.30	0.25	0.11		1.01
##	alpha[1]		0.80	0.76	0.29	0.27	0.41		1.01
##	alpha[2]		0.82	0.78	0.31	0.28	0.42	1.40	1.00
##	alpha[3]		0.81	0.77	0.28	0.26	0.43		1.00
##	alpha[4]		0.99	0.94	0.35	0.34	0.49		1.01
##	alpha[5]		0.77	0.73	0.27	0.25	0.40		1.01
##	eta[1]		116.96	116.66		10.81	99.43	135.48	1.00
##	eta[2]		102.94	102.59	10.20	10.17	86.76	120.25	1.00
##	eta[3]		72.91	72.55	8.55	8.39	59.44	87.67	1.00
##	eta[4]		178.03	177.70	13.37	13.22	156.65	200.70	1.00
##	eta[5]		143.02	142.74	11.87	11.86	123.98	162.78	1.00
##	mus_1[1,1]		-0.92	-0.73	0.70	0.23	-1.49	-0.51	1.05
##	mus_1[2,1]		-1.36	-0.58	2.26	0.19	-5.32	-0.37	1.00
##	mus_1[3,1]		-1.26	-0.87	1.24	0.19	-3.45	-0.64	1.01
##	$mus_1[4,1]$		-2.75	-2.16	2.12	1.80	-6.46	-0.69	1.06
##	mus_1[5,1]		-0.67	-0.38	1.17	0.11	-2.09	-0.23	1.04
##	mus_1[1,2]		1.35	-0.30	3.30	0.68	-0.90	8.69	1.05
##	mus_1[2,2]		0.99	-0.17	2.99	0.58	-1.08	7.77	1.00
##	mus_1[3,2]		1.46	-0.02	3.27	1.22	-0.94	8.63	1.01
##	mus_1[4,2]		-0.93	-0.80	0.92	0.30	-2.48	-0.09	1.04
##	mus_1[5,2]		1.70	0.35	3.21	0.93	-0.53	8.90	1.04
##	mus_1[1,3]		6.77	5.29	6.84	7.24	-0.46	19.85	1.03
##	mus_1[2,3]		6.48	4.96	6.72	7.18	-0.44	19.39	1.00
##	mus_1[3,3]		6.93	5.29	6.61	6.43	-0.62	19.58	1.01
##	mus_1[4,3]		2.12	-0.22	5.01	0.67	-0.73	13.69	1.02

```
##
    mus 1[5,3]
                                  7.52
                                          6.34
                                                  6.68
                                                        7.57
                                                               -0.14
                                                                       20.04 1.03
##
                                 -1.61
                                         -0.88
                                                               -2.48
                                                                       -0.56 1.06
    mus_2[1,1]
                                                  2.30
                                                         0.36
    mus_2[2,1]
                                 -0.78
##
                                         -0.78
                                                  2.57
                                                         0.18
                                                                -2.96
                                                                         0.52 1.01
##
    mus_2[3,1]
                                 -0.99
                                         -0.89
                                                  2.09
                                                               -1.56
                                                                       -0.10 1.01
                                                         0.18
##
    mus_2[4,1]
                                 -0.98
                                         -0.98
                                                  2.05
                                                         0.53
                                                               -2.14
                                                                         0.33 1.03
##
                                         -0.76
                                                               -2.04
    mus 2[5,1]
                                 -0.70
                                                  2.23
                                                         0.13
                                                                       -0.36 1.04
                                 -0.62
                                         -0.53
                                                         2.42 - 11.73
##
    mus 2[1,2]
                                                  6.43
                                                                       11.44 1.04
                                         -1.07
##
    mus_2[2,2]
                                 -1.49
                                                  5.94
                                                         2.47
                                                               -9.77
                                                                         9.74 1.00
##
    mus_2[3,2]
                                 -0.41
                                         -0.89
                                                  6.41
                                                         1.65 -11.38
                                                                       11.77 1.00
##
                                         -1.04
    mus_2[4,2]
                                 -1.20
                                                  1.92
                                                         0.46
                                                               -2.53
                                                                         0.12 1.01
##
    mus_2[5,2]
                                 -1.36
                                         -2.00
                                                  6.52
                                                         2.67 -11.16
                                                                       11.38 1.01
##
                                 -0.25
                                         -0.51
    mus_2[1,3]
                                                  8.42
                                                         5.51 - 14.54
                                                                       14.87 1.02
##
    mus_2[2,3]
                                 -0.23
                                         -0.69
                                                  8.49
                                                         6.12 - 14.71
                                                                       14.75 1.00
                                         -0.71
##
                                                         5.53 - 14.71
                                                                       14.54 1.00
    mus_2[3,3]
                                 -0.15
                                                  8.37
##
    mus_2[4,3]
                                 -0.64
                                         -0.75
                                                               -9.95
                                                                         9.40 1.01
                                                  5.51
                                                         0.61
##
    mus_2[5,3]
                                 -0.39
                                         -0.69
                                                  8.89
                                                         6.94 - 15.24
                                                                       15.39 1.02
##
                                          0.83
    Sigmas [1,1,1,1]
                                  0.82
                                                  0.80
                                                         0.19
                                                                 0.14
                                                                         1.25 1.03
##
    Sigmas [2,1,1,1]
                                  1.42
                                          0.96
                                                  8.58
                                                         0.21
                                                                 0.41
                                                                         2.22 1.00
                                  1.47
                                          0.96
                                                                 0.39
##
    Sigmas [3,1,1,1]
                                                  3.83
                                                         0.32
                                                                         3.41 1.00
##
    Sigmas [4,1,1,1]
                                  2.60
                                          1.69
                                                  5.20
                                                         1.63
                                                                 0.26
                                                                         7.20 1.02
##
    Sigmas [5,1,1,1]
                                  0.94
                                          0.83
                                                  2.45
                                                         0.13
                                                                 0.40
                                                                         1.14 1.03
##
    Sigmas[1,2,1,1]
                                  1.78
                                          0.77
                                                 16.09
                                                         0.41
                                                                 0.19
                                                                         3.66 1.01
##
                                          0.71
                                                 17.92
                                                         0.49
                                                                 0.21
                                                                         6.16 1.00
    Sigmas [2,2,1,1]
                                  2.18
                                  2.70
                                          0.66
                                                 15.69
##
    Sigmas [3,2,1,1]
                                                         0.61
                                                                 0.17
                                                                         7.98 1.00
##
                                          0.64
    Sigmas[4,2,1,1]
                                  2.63
                                                  8.83
                                                         0.47
                                                                 0.18
                                                                         9.50 1.03
##
    Sigmas [5,2,1,1]
                                  1.93
                                          0.69
                                                 10.83
                                                         0.51
                                                                 0.18
                                                                         4.96 1.01
##
    Sigmas[1,3,1,1]
                                  2.18
                                          0.65
                                                 14.21
                                                                 0.16
                                                                         6.23 1.01
                                                         0.53
                                  4.89
##
    Sigmas [2,3,1,1]
                                          0.73
                                                 96.15
                                                         0.57
                                                                 0.18
                                                                         9.15 1.00
##
                                  8.42
                                          0.70 268.51
    Sigmas[3,3,1,1]
                                                         0.65
                                                                 0.17
                                                                         8.78 1.00
##
    Sigmas[4,3,1,1]
                                  3.38
                                          0.64
                                                 31.90
                                                         0.26
                                                                 0.23
                                                                         7.68 1.02
##
    Sigmas[5,3,1,1]
                                  3.72
                                          0.69
                                                 40.94
                                                         0.59
                                                                 0.17
                                                                         8.24 1.00
##
    Sigmas[1,1,2,1]
                                  0.11
                                          0.19
                                                  0.49
                                                         0.23
                                                                -0.36
                                                                         0.41 1.03
                                          0.28
##
    Sigmas [2,1,2,1]
                                  0.14
                                                  2.35
                                                         0.18
                                                                -0.72
                                                                         0.64 1.00
                                  0.26
                                          0.09
##
    Sigmas[3,1,2,1]
                                                  2.56
                                                         0.16
                                                                -0.25
                                                                         0.97 1.00
##
    Sigmas[4,1,2,1]
                                 -0.20
                                         -0.02
                                                  2.20
                                                         0.51
                                                                -1.81
                                                                         0.95 1.01
##
                                  0.03
                                          0.09
    Sigmas [5,1,2,1]
                                                  0.74
                                                         0.10
                                                               -0.46
                                                                         0.26 1.03
##
    Sigmas [1,2,2,1]
                                  0.09
                                          0.09
                                                  4.37
                                                         0.29
                                                                -0.99
                                                                         0.97 1.01
##
    Sigmas[2,2,2,1]
                                  0.28
                                          0.25
                                                  5.96
                                                         0.52
                                                               -1.90
                                                                         2.20 1.00
##
                                  0.05
                                          0.05
                                                  5.51
                                                         0.31
                                                                -1.68
                                                                         2.16 1.00
    Sigmas[3,2,2,1]
##
                                  0.01
                                          0.08
                                                               -1.34
                                                                         0.94 1.01
    Sigmas[4,2,2,1]
                                                  3.05
                                                         0.30
                                 -0.11
                                          0.02
                                                               -1.55
##
    Sigmas[5,2,2,1]
                                                  7.97
                                                         0.33
                                                                         1.64 1.01
##
    Sigmas [1,3,2,1]
                                 -0.03
                                          0.01
                                                  5.87
                                                         0.36
                                                               -1.84
                                                                         1.85 1.00
                                  0.34
##
    Sigmas [2,3,2,1]
                                          0.09
                                                 21.53
                                                         0.48
                                                               -2.43
                                                                         2.70 1.00
##
                                 -3.31
                                          0.00
                                                 86.96
                                                         0.42
                                                               -2.44
                                                                         2.50 1.00
    Sigmas [3,3,2,1]
                                 -0.30
                                          0.24
##
    Sigmas[4,3,2,1]
                                                 10.77
                                                         0.22
                                                               -1.39
                                                                         1.02 1.01
                                                 17.26
                                                               -2.40
##
                                  0.01
                                          0.02
                                                         0.39
                                                                         2.29 1.00
    Sigmas[5,3,2,1]
    Sigmas[1,1,1,2]
##
                                  0.11
                                          0.19
                                                  0.49
                                                         0.23
                                                               -0.36
                                                                         0.41 1.03
##
                                  0.14
                                          0.28
    Sigmas[2,1,1,2]
                                                  2.35
                                                         0.18
                                                               -0.72
                                                                         0.64 1.00
##
    Sigmas [3,1,1,2]
                                  0.26
                                          0.09
                                                  2.56
                                                         0.16
                                                               -0.25
                                                                         0.97 1.00
                                 -0.20
##
    Sigmas[4,1,1,2]
                                         -0.02
                                                  2.20
                                                         0.51
                                                                -1.81
                                                                         0.95 1.01
##
                                  0.03
                                          0.09
    Sigmas [5,1,1,2]
                                                  0.74
                                                         0.10
                                                               -0.46
                                                                         0.26 1.03
                                  0.09
                                          0.09
##
    Sigmas [1,2,1,2]
                                                  4.37
                                                         0.29
                                                               -0.99
                                                                         0.97 1.01
##
    Sigmas[2,2,1,2]
                                  0.28
                                          0.25
                                                  5.96
                                                         0.52
                                                               -1.90
                                                                         2.20 1.00
##
    Sigmas[3,2,1,2]
                                   0.05
                                          0.05
                                                  5.51
                                                        0.31
                                                               -1.68
                                                                         2.16 1.00
```

```
0.01
    Sigmas[4,2,1,2]
                                          0.08
                                                  3.05
                                                        0.30
                                                               -1.34
                                                                        0.94 1.01
##
                                 -0.11
                                          0.02
                                                        0.33
                                                               -1.55
                                                                        1.64 1.01
    Sigmas[5,2,1,2]
                                                  7.97
                                 -0.03
                                                                        1.85 1.00
##
    Sigmas[1,3,1,2]
                                          0.01
                                                  5.87
                                                        0.36
                                                               -1.84
                                  0.34
##
    Sigmas[2,3,1,2]
                                          0.09
                                                 21.53
                                                        0.48
                                                               -2.43
                                                                        2.70 1.00
##
    Sigmas[3,3,1,2]
                                 -3.31
                                          0.00
                                                 86.96
                                                        0.42
                                                               -2.44
                                                                        2.50 1.00
##
    Sigmas[4,3,1,2]
                                 -0.30
                                          0.24
                                                 10.77
                                                        0.22
                                                               -1.39
                                                                        1.02 1.01
##
    Sigmas[5,3,1,2]
                                  0.01
                                          0.02
                                                 17.26
                                                        0.39
                                                               -2.40
                                                                        2.29 1.00
                                  0.76
##
    Sigmas[1,1,2,2]
                                          0.81
                                                  0.67
                                                        0.35
                                                                0.19
                                                                        1.19 1.03
##
    Sigmas[2,1,2,2]
                                  1.59
                                          1.28
                                                  2.94
                                                        0.57
                                                                0.33
                                                                        3.36 1.00
##
                                          0.96
    Sigmas[3,1,2,2]
                                  1.17
                                                  2.47
                                                        0.22
                                                                0.47
                                                                        1.70 1.01
    Sigmas[4,1,2,2]
                                  1.02
                                          0.71
                                                  2.87
                                                        0.41
                                                                0.22
                                                                        2.07 1.01
##
    Sigmas[5,1,2,2]
                                  1.01
                                          0.97
                                                  0.74
                                                        0.20
                                                                0.46
                                                                        1.37 1.02
                                  1.26
##
    Sigmas[1,2,2,2]
                                          0.52
                                                  5.17
                                                        0.31
                                                                0.16
                                                                        3.64 1.02
##
                                  3.10
                                          1.37
                                                                0.21
    Sigmas[2,2,2,2]
                                                 10.10
                                                        1.45
                                                                        8.95 1.00
##
    Sigmas[3,2,2,2]
                                  2.01
                                          0.83
                                                 10.51
                                                        0.58
                                                                0.19
                                                                        5.43 1.00
##
    Sigmas[4,2,2,2]
                                  0.95
                                          0.76
                                                  2.32
                                                        0.32
                                                                0.22
                                                                        1.60 1.00
##
    Sigmas[5,2,2,2]
                                  2.13
                                          0.74
                                                 10.80
                                                        0.59
                                                                0.19
                                                                        5.90 1.00
##
    Sigmas[1,3,2,2]
                                  1.93
                                          0.63
                                                  7.24
                                                        0.53
                                                                0.17
                                                                        6.45 1.00
##
    Sigmas[2,3,2,2]
                                  3.98
                                          0.98
                                                 22.85
                                                                        9.68 1.00
                                                        0.95
                                                                0.18
##
    Sigmas[3,3,2,2]
                                  7.72
                                          0.77
                                                 97.00
                                                        0.69
                                                                0.17
                                                                        8.58 1.00
##
    Sigmas[4,3,2,2]
                                  2.80
                                          0.83
                                                 14.33
                                                        0.38
                                                                0.22
                                                                        4.48 1.01
##
    Sigmas[5,3,2,2]
                                  2.97
                                          0.73
                                                 13.53
                                                        0.65
                                                                0.18
                                                                        8.49 1.00
##
    weights[1,1]
                                  0.64
                                          0.88
                                                  0.38
                                                        0.18
                                                                0.06
                                                                        1.00 1.06
##
    weights[2,1]
                                  0.69
                                          0.93
                                                  0.39
                                                        0.11
                                                                0.01
                                                                        1.00 1.01
##
                                          0.96
                                                                0.03
    weights[3,1]
                                  0.72
                                                  0.36
                                                        0.06
                                                                        1.00 1.01
##
    weights[4,1]
                                  0.22
                                          0.06
                                                  0.33
                                                        0.07
                                                                0.00
                                                                        0.97 1.06
##
    weights[5,1]
                                  0.80
                                          0.98
                                                  0.33
                                                        0.03
                                                                0.02
                                                                        1.00 1.04
                                  0.27
                                          0.08
                                                                        0.83 1.04
##
    weights[1,2]
                                                  0.33
                                                        0.12
                                                                0.00
                                  0.19
##
    weights[2,2]
                                          0.03
                                                  0.28
                                                        0.04
                                                                0.00
                                                                        0.89 1.01
##
    weights[3,2]
                                  0.21
                                          0.03
                                                  0.30
                                                        0.04
                                                                0.00
                                                                        0.88 1.00
##
    weights [4,2]
                                  0.41
                                          0.26
                                                  0.36
                                                        0.34
                                                                0.01
                                                                        0.97 1.02
##
    weights[5,2]
                                  0.14
                                          0.01
                                                  0.25
                                                        0.02
                                                                0.00
                                                                        0.80 1.03
                                          0.00
##
    weights[1,3]
                                  0.08
                                                  0.20
                                                        0.01
                                                                0.00
                                                                        0.67 1.04
    weights[2,3]
                                  0.12
                                          0.01
                                                                0.00
                                                                        0.92 1.00
##
                                                  0.27
                                                        0.01
##
    weights[3,3]
                                  0.07
                                          0.01
                                                  0.18
                                                        0.01
                                                                0.00
                                                                        0.52 1.01
##
                                  0.37
                                          0.27
                                                  0.37
                                                        0.39
                                                                0.00
                                                                        0.96 1.02
    weights[4,3]
##
    weights [5,3]
                                  0.06
                                          0.00
                                                  0.18
                                                        0.00
                                                                0.00
                                                                        0.61 1.03
##
    cumprod_one_minus_v[1,1]
                                  0.36
                                          0.12
                                                  0.38
                                                        0.18
                                                                0.00
                                                                        0.94 1.06
##
    cumprod_one_minus_v[2,1]
                                  0.31
                                          0.07
                                                  0.39
                                                        0.11
                                                                0.00
                                                                        0.99 1.01
##
    cumprod_one_minus_v[3,1]
                                  0.28
                                          0.04
                                                  0.36
                                                        0.06
                                                                0.00
                                                                        0.97 1.01
    cumprod one minus v[4,1]
                                  0.78
                                          0.94
                                                        0.07
                                                                0.03
                                                                        1.00 1.06
                                                  0.33
##
    cumprod_one_minus_v[5,1]
                                  0.20
                                          0.02
                                                  0.33
                                                        0.03
                                                                0.00
                                                                        0.98 1.04
                                  0.08
##
    cumprod_one_minus_v[1,2]
                                          0.00
                                                  0.20
                                                        0.01
                                                                0.00
                                                                        0.67 1.04
##
    cumprod_one_minus_v[2,2]
                                  0.12
                                          0.01
                                                  0.27
                                                        0.01
                                                                0.00
                                                                        0.92 1.00
##
                                  0.07
                                          0.01
                                                                0.00
                                                                        0.52 1.01
    cumprod_one_minus_v[3,2]
                                                  0.18
                                                        0.01
                                  0.37
                                          0.27
##
    cumprod_one_minus_v[4,2]
                                                  0.37
                                                                0.00
                                                                        0.96 1.02
                                                        0.39
##
    cumprod_one_minus_v[5,2]
                                  0.06
                                          0.00
                                                  0.18
                                                        0.00
                                                                0.00
                                                                        0.61 1.03
##
    ess_bulk ess_tail
##
          411
                   1814
##
           76
                     37
##
          286
                    510
##
          259
                    337
##
           68
                    267
##
          139
                     97
```

##	435	3656
##	855	1089
##	1581	3827
##	469	636
##	847	2946
##	460	1022
##	841	1139
##	1292	2671
##	979	2017
##	622	728
##	23253	12722
##	26085	14460
##	23326	13601
##	23599	13336
##	20206	12445
##	85	44
##	295	338
##	321	352
##	58	222
##	152	110
##	113	121
##	343	640
##	331 137	524 267
## ##	171	123
##	156	116
##	404	807
##	409	510
##	381	2415
##	218	157
##	87	43
##	728	279
##	965	401
##	1603	776
##	419	133
##	3782	2801
##	6045	4948
##	4791	3930
##	876	796
##	3148	4685
##	15073	8453
##	15805	10685
##	12784	9510
##	4574	2251
##	14315	10732
##	578	590
##	3253	1025
##	1244	1109
##	244	2282
##	2217	511
##	5918	2861
##	6158	5775 6727
## ##	2316	6727 394
##	148	394

##	5502	4204
##	2527	5780
##	5918	3753
##	2795	2619
##	995	466
##	5520	4101
##	206	1547
##	1111	521
##	1540	723
##	1003	5810
##	737	493
##	960	2584
##	3494	5650
##	5855	4193
##	1730	580
##	3486	3482
##	6047	4654
##	2572	3690
##	3562	2190
##	748	201
##	4957	3510
##	206	1547
##	1111	521
##	1540	723
##	1003	5810
##	737	493
##	960	2584
##	3494	5650
##	5855	4193
##	1730	580
##	3486	3482
##	6047	4654
##	2572	3690
##	3562	2190
##	748	201
##	4957	3510
##	238	877
##	1410	750
##	3601	932
##	1872	2228
##	2558	450
##	2946	2711
##	2656	6846
##	4362	3749
##	2222	1442
##	3626	3383
##	4217	4036
##	3153	3104
##	2630	1709
##	734	203
##	4126	2761
##	76	37
##	286	510
##	259	337

```
##
           68
                     267
##
          139
                      97
##
          110
                    1253
          486
                     642
##
##
          327
                     844
                     963
##
          215
##
          210
                     649
                      79
##
          137
##
          390
                     581
          375
                     436
##
##
          296
                     897
##
          201
                     104
                      37
##
           76
##
          286
                     510
##
          259
                     337
##
           68
                     267
##
          139
                      97
##
          137
                      79
##
          390
                     581
##
          375
                     436
##
          296
                     897
##
          201
                     104
```

Now we calculate confidence intervals for the proportion of HH infections for both fishing and inland communities:

```
# Extract rates (eta)
eta_draws <- as_draws_matrix(fit_1_2$draws("eta"))</pre>
eta sums <- rowSums(eta draws)
eta_prop <- eta_draws / eta_sums
# Check proportion of HH vs OOH for both fishing and inland
eta_HH_fishing <- eta_prop[, 1] / rowSums(eta_prop[, c(1, 4)])
eta_HH_inland <- eta_prop[, 2] / rowSums(eta_prop[, c(2, 5)])
print(quantile(eta_HH_fishing, c(0.025, 0.975))) # 95% CI
##
        2.5%
                 97.5%
## 0.3409573 0.4538992
print(quantile(eta_HH_inland, c(0.025, 0.975))) # 95% CI
##
        2.5%
                 97.5%
## 0.3565298 0.4799180
```

The confidence intervals have a good amount of overlap which suggests there might not be any change in proportion of infections which are within HH between the two communities.

1.3 Is the proportion of HH transmissions larger MF or FM?

We use the same model and draws from Q1.1:

```
# Extract rates (eta)
eta_draws <- as_draws_matrix(fit_norm$draws("eta"))</pre>
eta_sums <- rowSums(eta_draws)</pre>
eta_prop <- eta_draws / eta_sums
# Check proportion of HH vs OOH for both MF and FM
eta_HH_MF <- eta_prop[, 4] / rowSums(eta_prop[, c(3, 4)])
eta_HH_FM <- eta_prop[, 2] / rowSums(eta_prop[, c(1, 2)])</pre>
print(quantile(eta_HH_MF, c(0.025, 0.975))) # 95% CI
        2.5%
                  97.5%
## 0.3183093 0.4202151
print(quantile(eta_HH_FM, c(0.025, 0.975))) # 95% CI
##
        2.5%
                  97.5%
## 0.2879586 0.4062843
Again, there is a significant overlap it seems so potentially not a huge difference.
3
We use the same fit as above. We treat "young" as being aged 15-24.
#library(parallel)
#n_cores <- detectCores() - 1</pre>
source(here::here("helper-functions", "plot_normal.R"))
## Warning: package 'ggpubr' was built under R version 4.2.3
ages \leftarrow seq(15.5, 49.5, by = 1)
draws \leftarrow seq(100, 5000, by = 100)
grid <- expand.grid(ages, ages)</pre>
final_intensities <- list() # one entry per group</pre>
eta_draws <- as_draws_matrix(fit_norm$draws("eta"))</pre>
for (group in 1:4){
  # Calculate densities for 50 iterations
  intensities <- lapply(draws, plot_normal, fit = fit_norm, chain_no = 1,</pre>
                   group_no = group, ages = ages, plot = FALSE)
  etas <- as.numeric(eta_draws[draws, group])</pre>
  for (index in 1:length(etas)){
    intensities[[index]] <- etas[index] * intensities[[index]]</pre>
  # Calculate mean density
```

```
intensity_matrix <- matrix(unlist(intensities), nrow = 50, byrow = TRUE)
final_intensity <- apply(intensity_matrix, 2, mean)
final_intensities[[group]] <- final_intensity
}</pre>
```

3.1 Are young men predominantly affected by older women through non-HH?

We want the F -> M groups for HH and non-HH respectively (so group 1 for OOH and group 2 for HH)

```
# Extract relevant intensities and combine into one data.table
intensity_FM_00H <- final_intensities[[1]]</pre>
intensity_FM_HH <- final_intensities[[2]]</pre>
recip_15_24_indices <- which(grid$Var2 < 24) # X: Source, Y: Recipient
yng_grid <- grid[recip_15_24_indices, ]</pre>
yng_grid$FM_00H <- intensity_FM_00H[recip_15_24_indices]</pre>
yng_grid$FM_HH <- intensity_FM_HH[recip_15_24_indices]</pre>
setDT(yng_grid)
# Calculate intensities among young people by age of source
yng_grid[, FM_00H_sum := sum(FM_00H), by = Var1]
yng_grid[, FM_HH_sum := sum(FM_HH), by = Var1]
# Drop unnecessary columns
#yng_grid[, c("FM_OOH", "FM_HH", "Var2") := NULL]
# Plot intensities
p <- ggplot(yng_grid, aes(x = Var1)) +</pre>
  geom_line(aes(y = FM_00H_sum, color = "Out-of-household")) +
  geom_line(aes(y = FM_HH_sum, color = "Within household")) +
  labs(x = "Age of source (Female)", y = "Relative intensity",
       title = "FM transmission HH vs non-HH intensity",
       caption = "Among young (16-24) recipients",
       color = NULL)
```

FM transmission HH vs non-HH intensity

Now repeat the analysis for $M \rightarrow F$ transmissions

```
\# Extract relevant intensities and add to previous data.table
intensity_MF_00H <- final_intensities[[3]]</pre>
intensity_MF_HH <- final_intensities[[4]]</pre>
yng_grid$MF_00H <- intensity_MF_00H[recip_15_24_indices]</pre>
yng_grid$MF_HH <- intensity_MF_HH[recip_15_24_indices]</pre>
# Calculate intensities among young people by age of source
yng_grid[, MF_00H_sum := sum(MF_00H), by = Var1]
yng_grid[, MF_HH_sum := sum(MF_HH), by = Var1]
# Drop unnecessary columns
#yng_grid[, c("MF_00H", "MF_HH", "Var2") := NULL]
# Plot intensities
p <- ggplot(yng_grid, aes(x = Var1)) +</pre>
  geom_line(aes(y = MF_00H_sum, color = "Out-of-household")) +
  geom_line(aes(y = MF_HH_sum, color = "Within household")) +
  labs(x = "Age of source (Male)", y = "Relative intensity",
       title = "MF transmission HH vs non-HH intensity",
       caption = "Among young (16-24) recipients",
       color = NULL)
p
```

MF transmission HH vs non-HH intensity

