20104016

DEENA

Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import metaletable number or mataletable number o
```

Importing Datasets

In [2]:	<pre>df=pd.read_csv("innovation_and_development_database.csv")</pre>												
Out[2]:		country	code	year	eap	eca	lac	mena	sha	sa	hi	 у	stockpatEPO
	0	Aruba	ABW	1960	0	0	1	0	0	0	0.0	 NaN	NaN
	1	Aruba	ABW	1961	0	0	1	0	0	0	0.0	 NaN	NaN
	2	Aruba	ABW	1962	0	0	1	0	0	0	0.0	 NaN	NaN
	3	Aruba	ABW	1963	0	0	1	0	0	0	0.0	 NaN	NaN
	4	Aruba	ABW	1964	0	0	1	0	0	0	0.0	 NaN	NaN
	8290	Zimbabwe	ZWE	1998	0	0	0	0	1	0	0.0	 8.290000e+09	8.0
	8291	Zimbabwe	ZWE	1999	0	0	0	0	1	0	0.0	 8.230000e+09	8.0
	8292	Zimbabwe	ZWE	2000	0	0	0	0	1	0	0.0	 7.830000e+09	8.0
	8293	Zimbabwe	ZWE	2001	0	0	0	0	1	0	0.0	 NaN	8.0
	8294	Zimbabwe	ZWE	2002	0	0	0	0	1	0	0.0	 NaN	NaN

8295 rows × 33 columns

Data Cleaning and Data Preprocessing

In [3]: df=df.fillna(1)

Out[3]:

	country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	У	stockpatEPO
0	Aruba	ABW	1960	0	0	1	0	0	0	0.0		1.000000e+00	1.0
1	Aruba	ABW	1961	0	0	1	0	0	0	0.0		1.000000e+00	1.0
2	Aruba	ABW	1962	0	0	1	0	0	0	0.0		1.000000e+00	1.0
3	Aruba	ABW	1963	0	0	1	0	0	0	0.0		1.000000e+00	1.0
4	Aruba	ABW	1964	0	0	1	0	0	0	0.0		1.000000e+00	1.0
8290	Zimbabwe	ZWE	1998	0	0	0	0	1	0	0.0		8.290000e+09	8.0
8291	Zimbabwe	ZWE	1999	0	0	0	0	1	0	0.0		8.230000e+09	8.0
8292	Zimbabwe	ZWE	2000	0	0	0	0	1	0	0.0		7.830000e+09	8.0
8293	Zimbabwe	ZWE	2001	0	0	0	0	1	0	0.0		1.000000e+00	8.0
8294	Zimbabwe	ZWE	2002	0	0	0	0	1	0	0.0		1.000000e+00	1.0

```
In [4]: 45 -- 1
```

```
In [5]: 45 info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 8295 entries, 0 to 8294
        Data columns (total 33 columns):
         #
              Column
                                Non-Null Count
                                                 Dtype
              ----
         - - -
                                -----
         0
              country
                                8295 non-null
                                                 object
         1
              code
                                8295 non-null
                                                 object
          2
              year
                                8295 non-null
                                                 int64
          3
                                8295 non-null
                                                 int64
              eap
         4
                                8295 non-null
              eca
                                                 int64
         5
              lac
                                8295 non-null
                                                 int64
         6
                                8295 non-null
                                                 int64
              mena
         7
                                8295 non-null
              sha
                                                 int64
         8
                                8295 non-null
                                                 int64
              sa
         9
              hi
                                8295 non-null
                                                 float64
         10
                                8295 non-null
                                                 float64
              pat
         11
              patepo
                                8295 non-null
                                                 float64
          12
              royal
                                8295 non-null
                                                 float64
          13
              rdexp
                                8295 non-null
                                                 float64
         14
              rdper
                                8295 non-null
                                                 float64
         15
              rdfinabro
                                8295 non-null
                                                 float64
              rdfinprod
                                8295 non-null
                                                 float64
         16
              rdperfprod
                                8295 non-null
         17
                                                 float64
          18
              rdperfhe
                                8295 non-null
                                                 float64
          19
              rdperfpub
                                8295 non-null
                                                 float64
         20
              lowrdexp
                                8295 non-null
                                                 float64
              lowrdfinprod
          21
                                8295 non-null
                                                 float64
          22
              lowrdperfprod
                                8295 non-null
                                                 float64
          23
                                8295 non-null
                                                 float64
              У
          24
              stockpatEP0
                                8295 non-null
                                                 float64
          25
              poptotal
                                8295 non-null
                                                 float64
              labor
                                8295 non-null
          26
                                                 float64
                                8295 non-null
          27
              rdexpgdp
                                                 float64
          28
              patgrantedstock
                                8295 non-null
                                                 float64
          29
                                8295 non-null
                                                 float64
              plantpatstock
          30
              designpatstock
                                8295 non-null
                                                 float64
          31
              plantpat
                                8295 non-null
                                                 float64
```

dtypes: float64(24), int64(7), object(2)

8295 non-null

float64

memory usage: 2.1+ MB

designpat

Line chart

```
In [6]: df plot lime(subplate Tana)
Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)
```

Line chart

Out[7]: <AxesSubplot:>

Bar chart

In [8]: [h-deformation]

Histogram

```
In [10]: de nlot hist()
Out[10]: <AxesSubplot:ylabel='Frequency'>
                                                               year
                                                               eap
                                                               sha
                                                               pat
                                                               patepo
                                                               royal
                                                               rdexp
                                                             rdper
                                                             rdfinabro
                                                             rdfinprod
                                                             rdperfprod
                                                               rdperfhe
                                                               rdperfpub
                8000
                                                              lowrdexp
                                                              lowrdfinprod
                7000
                                                             lowrdperfprod
                6000
                                                               stockpatEPO
                5000
             Frequency
                                                               poptotal
                                                          labor
                4000
                                                             rdexpgdp
                3000
                                                           patgrantedstock
                                                          plantpatstock
                2000

    designpatstock

                                                              plantpat
                1000

    designpat
```

4

le12

Area chart

7 of 25

Box chart

Pie chart

In [13]: h_nlot_mix(w_!docionnot!)

Out[13]: <AxesSubplot:ylabel='designpat'>

Scatter chart

```
In [14]: df nlot coatton( v-!ndovngdn! v- !natgnantodatock!)
```

Out[14]: <AxesSubplot:xlabel='rdexpgdp', ylabel='patgrantedstock'>

In [15]: [45 info/)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8295 entries, 0 to 8294
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	country	8295 non-null	object
1	code	8295 non-null	object
2	year	8295 non-null	int64
3	eap	8295 non-null	int64
4	eca	8295 non-null	int64
5	lac	8295 non-null	int64
6	mena	8295 non-null	int64
7	sha	8295 non-null	int64
8	sa	8295 non-null	int64
9	hi	8295 non-null	float64
10	pat	8295 non-null	float64
11	patepo	8295 non-null	float64
12	royal	8295 non-null	float64
13	rdexp	8295 non-null	float64
4 4	d	000511	C1 + C 4

In [16]: df doconibo()								
Out[16]:		year	eap	eca	lac	mena	sha	!
	count	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.0000
	mean	1981.203014	0.094515	0.195901	0.176974	0.098614	0.150090	0.0265
	std	12.421590	0.292561	0.396917	0.381670	0.298161	0.357182	0.1606
	min	1960.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	25%	1970.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	50%	1981.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	75%	1992.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	max	2002.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0000
	8 rows	× 31 columns	;					
In [17]:	<pre>df1=df[['year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa',</pre>							

EDA AND VISUALIZATION

In [18]: [coc mainslat/df1[0:[0]])

Out[18]: <seaborn.axisgrid.PairGrid at 0x16183092580>


```
In [19]: condictelet/df1['decignest'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[19]: <AxesSubplot:xlabel='designpat', ylabel='Density'>

In [20]: | --- | hastman(df1 -----()

Out[20]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

In [25]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[25]: Co-efficient

[25]:	coeff=pa.Datar	rame(ir.coe
[25]:		Co-efficient
	year	3.912868e-01
	eap	5.333837e+00
	eca	-5.922969e+00
	lac	-3.187443e+00
	mena	-2.360544e+00
	sha	-2.628649e+00
	sa	-2.353376e+00
	hi	-1.965513e+01
	pat	9.872656e-03
	patepo	-5.267820e-03
	royal	-3.015520e-08
	rdexp	6.506588e-10
	rdper	-1.735738e-05
	rdfinabro	-1.350879e-01
	rdfinprod	4.810888e-01
	rdperfprod	1.392027e-01
	rdperfhe	-1.862709e-02
	rdperfpub	-1.106904e-01
	lowrdexp	-6.039613e-14
	lowrdfinprod	-2.905639e-01
	lowrdperfprod	-1.879814e+00
	у	-1.845861e-11
	stockpatEPO	-3.208420e-04
	poptotal	-1.301376e-08
	labor	2.067889e-08
	rdexpgdp	-1.324317e+01
	patgrantedstock	1.005447e-04
	plantpatstock	-8.437710e-01
	designpatstock	8.631382e-02

plantpat 1.307181e+01

```
prediction =lr.predict(x_test)
In [26]:
          1+ conttanty tact anadistion
```

Out[26]: <matplotlib.collections.PathCollection at 0x161b3d09940>

ACCURACY

```
Out[27]: 0.9162096408969369
```

Out[28]: 0.9634754764411437

Ridge and Lasso

```
from aklasan linaan madal imment Didaa Lassa
In [30]: rr=Ridge(alpha=10)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_ridge.py:14
         7: LinAlgWarning: Ill-conditioned matrix (rcond=6.86535e-27): result may not
         be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
Out[30]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
Out[31]: 0.9162124778768015
```

```
In [32]: \_n_cons/v their v their
Out[32]: 0.9634750582706163
In [33]: la=Lasso(alpha=10)
Out[33]: Lasso(alpha=10)
In [34]: (34)
Out[34]: 0.9631243502492564
        Accuracy(Lasso)
Out[35]: 0.9165661481463434
        ElasticNet
In [36]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[36]: ElasticNet()
In [37]: -----
Out[37]: array([ 4.07138505e-01, 6.08336385e-01, -0.00000000e+00, 0.00000000e+00,
               0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.25164599e+00,
               1.00103255e-02, -4.76758743e-03, -3.15108699e-08, 7.17148629e-10,
              -1.63658098e-05, -4.86910773e-02, 2.68159282e-01, 1.00464920e-01,
              -7.91213036e-03, -0.00000000e+00, 0.00000000e+00, -0.00000000e+00,
              -0.00000000e+00, -2.76853805e-11, -3.73949002e-04, 7.78322034e-10,
               2.11411623e-08, -6.83653979e-01, 1.15933568e-04, -8.48042740e-01,
               8.70159523e-02, 1.28954823e+01])
In [38]: [38]
Out[38]: -811.8228637770986
In [39]: handistion on modist(v tost)
In [40]: (an assert which which)
Out[40]: 0.9162648062418464
```

Evaluation Metrics

Logistic Regression

```
In [42]: from allown linear model import Logistic Decreasion
In [43]: feature_matrix=df[['year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa',
                'hi', 'pat', 'patepo', 'royal', 'rdexp', 'rdper', 'rdfinabro',
                'rdfinprod', 'rdperfprod', 'rdperfhe', 'rdperfpub', 'lowrdexp',
                'lowrdfinprod', 'lowrdperfprod', 'y', 'stockpatEPO', 'poptotal',
                'labor', 'rdexpgdp', 'patgrantedstock', 'plantpatstock',
                'designpatstock', 'plantpat']]
         tangat vactor-df[ |dacignat|]
In [44]: \( \frac{1}{2} \)
Out[44]: (8295, 30)
Out[45]: (8295,)
In [46]: Learn proposessing import Standard Cooler
In [47]: La Ctandard Carlar () Lit transform (facture matrix)
In [48]: logr=LogisticRegression(max_iter=10000)
Out[48]: LogisticRegression(max_iter=10000)
In [49]: Laboration [[1 ] ] 4 [ C ] 0 0 10 11 12 12 14 15 16 17 10 10 20 21 22 22 24 2
In [50]: prediction=logr.predict(observation)
         [212.]
```

```
In [51]: \\
Out[51]: array([0.0000e+00, 1.0000e+00, 2.0000e+00, 3.0000e+00, 4.0000e+00,
                5.0000e+00, 6.0000e+00, 7.0000e+00, 8.0000e+00, 9.0000e+00,
                1.0000e+01, 1.1000e+01, 1.2000e+01, 1.3000e+01, 1.4000e+01,
                1.5000e+01, 1.6000e+01, 1.7000e+01, 1.8000e+01, 1.9000e+01,
                2.0000e+01, 2.1000e+01, 2.2000e+01, 2.3000e+01, 2.4000e+01,
                2.5000e+01, 2.6000e+01, 2.7000e+01, 2.8000e+01, 2.9000e+01,
                3.0000e+01, 3.2000e+01, 3.3000e+01, 3.4000e+01, 3.7000e+01,
                3.8000e+01, 3.9000e+01, 4.0000e+01, 4.1000e+01, 4.2000e+01,
                4.3000e+01, 4.4000e+01, 4.5000e+01, 4.6000e+01, 4.7000e+01,
                4.8000e+01, 4.9000e+01, 5.0000e+01, 5.4000e+01, 5.5000e+01,
                5.6000e+01, 5.7000e+01, 5.8000e+01, 5.9000e+01, 6.0000e+01,
                6.1000e+01, 6.2000e+01, 6.3000e+01, 6.4000e+01, 6.5000e+01,
                6.6000e+01, 6.7000e+01, 6.9000e+01, 7.0000e+01, 7.1000e+01,
                7.2000e+01, 7.3000e+01, 7.4000e+01, 7.6000e+01, 7.7000e+01,
                7.8000e+01, 8.0000e+01, 8.1000e+01, 8.2000e+01, 8.3000e+01,
                8.4000e+01, 8.5000e+01, 8.6000e+01, 8.7000e+01, 8.8000e+01,
                8.9000e+01, 9.0000e+01, 9.1000e+01, 9.3000e+01, 9.4000e+01,
                9.5000e+01, 9.6000e+01, 9.7000e+01, 9.8000e+01, 9.9000e+01,
                1.0000e+02, 1.0100e+02, 1.0200e+02, 1.0300e+02, 1.0500e+02,
                1.0600e+02, 1.0700e+02, 1.0900e+02, 1.1000e+02, 1.1200e+02,
                1.1300e+02, 1.1400e+02, 1.1500e+02, 1.1700e+02, 1.1800e+02,
                1.1900e+02, 1.2000e+02, 1.2100e+02, 1.2300e+02, 1.2400e+02,
                1.2500e+02, 1.2600e+02, 1.2700e+02, 1.2900e+02, 1.3200e+02,
                1.3300e+02, 1.3400e+02, 1.3600e+02, 1.3800e+02, 1.3900e+02,
                1.4200e+02, 1.4300e+02, 1.4400e+02, 1.4700e+02, 1.5000e+02,
                1.5200e+02, 1.5300e+02, 1.5600e+02, 1.5900e+02, 1.6000e+02,
                1.6200e+02, 1.6300e+02, 1.6500e+02, 1.6900e+02, 1.7200e+02,
                1.7300e+02, 1.7600e+02, 1.7900e+02, 1.8000e+02, 1.8100e+02,
                1.8200e+02, 1.8400e+02, 1.8500e+02, 1.8600e+02, 1.9000e+02,
                1.9300e+02, 1.9500e+02, 1.9600e+02, 1.9700e+02, 2.0100e+02,
                2.0200e+02, 2.0500e+02, 2.0800e+02, 2.1100e+02, 2.1200e+02,
                2.1300e+02, 2.1500e+02, 2.1600e+02, 2.2100e+02, 2.2200e+02,
                2.2700e+02, 2.2800e+02, 2.3000e+02, 2.3100e+02, 2.3400e+02,
                2.3700e+02, 2.3900e+02, 2.4000e+02, 2.4300e+02, 2.4700e+02,
                2.5000e+02, 2.5300e+02, 2.5400e+02, 2.5700e+02, 2.5800e+02,
                2.6000e+02, 2.6500e+02, 2.7500e+02, 2.8200e+02, 3.0000e+02,
                3.0600e+02, 3.2000e+02, 3.3000e+02, 3.3800e+02, 3.4100e+02,
                3.5000e+02, 3.5600e+02, 3.6800e+02, 3.6800e+02, 3.7000e+02,
                3.7200e+02, 3.8200e+02, 3.9000e+02, 3.9600e+02, 4.0100e+02,
                4.1000e+02, 4.1800e+02, 4.3800e+02, 4.3900e+02, 4.6600e+02,
                4.8200e+02, 4.8400e+02, 4.8500e+02, 5.0300e+02, 5.0500e+02,
                5.0900e+02, 5.2200e+02, 5.3900e+02, 5.4700e+02, 5.7600e+02,
                5.8800e+02, 6.2000e+02, 6.9800e+02, 7.0500e+02, 7.9500e+02,
                8.3300e+02, 8.6100e+02, 9.3600e+02, 9.4800e+02, 1.0260e+03,
                1.0370e+03, 1.0560e+03, 1.1350e+03, 1.1370e+03, 1.1490e+03,
                1.1680e+03, 1.2070e+03, 1.2940e+03, 1.3070e+03, 1.3100e+03,
                1.3640e+03, 1.4970e+03, 1.5460e+03, 2.4690e+03, 3.0520e+03,
                3.0550e+03, 3.0650e+03, 3.2780e+03, 3.4280e+03, 3.4460e+03,
                3.4750e+03, 3.5460e+03, 3.5700e+03, 3.6450e+03, 3.8830e+03,
                3.9020e+03, 5.0690e+03, 6.0130e+03, 6.0750e+03, 7.4160e+03,
                7.6970e+03, 7.7470e+03, 7.8630e+03, 8.2510e+03, 9.3250e+03,
                9.6540e+03, 9.9130e+03, 1.0346e+04, 1.1285e+04])
```

```
In [52]: logn_conn(fs_tonget_vector)
Out[52]: 0.8764315852923448
In [53]: logn_modist_nnehs(eheanvetion)[61[61]
Out[53]: 0.0
```

```
In [54]: Loan modist moba/observation
Out[54]: array([[0.00000000e+00, 6.46875839e-85, 4.18064698e-86, 4.97640492e-80,
                 8.59945817e-83, 2.37734566e-56, 3.98520696e-68, 2.90827307e-74,
                 3.93470301e-68, 7.84564082e-60, 4.43221229e-85, 6.56263221e-55,
                 1.03039805e-73, 1.08013371e-59, 1.08112169e-50, 7.94176532e-68,
                 1.81569452e-50, 2.60212594e-61, 4.31128405e-50, 7.36175743e-49,
                 3.51381920e-52, 8.03683141e-50, 4.61455481e-44, 9.29966791e-71,
                 2.15616849e-32, 1.47123590e-51, 3.22397464e-25, 1.13656197e-42,
                 3.84756439e-36, 3.92528441e-58, 2.57777087e-38, 4.08345965e-33,
                 4.43714065e-49, 1.95954619e-43, 1.45852110e-54, 1.32840786e-50,
                 1.61612437e-22, 2.16834024e-29, 1.26908838e-34, 8.98132380e-30,
                 2.17424290e-44, 4.15451744e-15, 6.05958093e-36, 3.76411606e-12,
                 1.64039866e-26, 5.78586665e-31, 1.98698848e-18, 1.60937793e-35,
                 3.86587379e-25, 7.65725299e-09, 1.68641093e-36, 7.44871984e-19,
                 9.91118520e-31, 3.27302787e-26, 4.54761528e-32, 3.46546939e-26,
                 3.43068716e-38, 2.09551086e-46, 1.47074020e-24, 5.60652672e-29,
                 4.46188339e-14, 5.23448116e-35, 4.90515430e-13, 4.19574969e-43,
                 1.88139168e-38, 5.87960896e-41, 1.68589460e-22, 1.06641334e-28,
                 4.31086801e-32, 2.11026858e-21, 1.36350787e-13, 2.68466590e-17,
                 2.06256309e-27, 4.64149327e-37, 6.11020490e-11, 1.77915082e-04,
                 1.04327068e-33, 9.27239443e-25, 1.64059124e-19, 1.41867503e-26,
                 3.45576309e-25, 3.78644588e-25, 5.53565304e-21, 1.10810312e-32,
                 4.17326226e-30, 2.85198531e-14, 1.70870740e-16, 2.37696717e-31,
                 4.57363954e-20, 1.10518235e-31, 7.04942289e-18, 7.09899878e-15,
                 6.18243195e-20, 5.14010433e-12, 1.30131822e-26, 2.75215467e-28,
                 3.56175114e-23, 1.43488680e-20, 1.49026166e-35, 2.31955497e-19,
                 2.80943383e-28, 3.26844661e-25, 1.98767004e-25, 2.90381563e-47,
                 4.16144030e-38, 2.15517707e-26, 5.16987221e-29, 3.01843396e-43,
                 2.43209628e-24, 1.67542453e-22, 1.49536949e-44, 4.37752030e-24,
                 1.19030241e-27, 1.26335802e-12, 3.25590978e-18, 1.46940286e-36,
                 6.21194731e-25, 1.02987622e-16, 2.55264374e-31, 3.08002770e-28,
                 2.73592092e-19, 1.09563396e-20, 7.28661834e-15, 8.63266119e-24,
                 6.55186889e-19, 3.67493263e-23, 5.37165816e-11, 1.42090765e-29,
                 1.96504387e-26, 3.15806890e-35, 4.67423646e-41, 1.03249746e-42,
                 2.06352084e-18, 4.80872013e-11, 2.38144854e-22, 1.44623746e-19,
                 1.12561121e-23, 1.27398771e-17, 5.88348615e-41, 9.14398660e-13,
                 2.69631717e-12, 3.53809810e-06, 1.35670563e-37, 4.00635816e-07,
                 3.66333929e-26, 3.21990721e-11, 4.34472713e-18, 3.82940747e-11,
                 4.48980290e-12, 3.70126759e-10, 3.42435599e-16, 2.23506481e-29,
                 2.06547055e-22, 1.65143853e-23, 9.99292856e-01, 1.89931562e-40,
                 9.95178307e-09, 4.04014787e-33, 6.45046777e-19, 6.39481242e-17,
                 1.65711204e-21, 1.66902668e-13, 5.85102749e-09, 3.58553149e-20,
                 7.63863608e-14, 2.16528932e-16, 2.31182283e-19, 5.19372698e-10,
                 2.85136582e-18, 2.20030544e-23, 8.40363376e-15, 1.52062520e-10,
                 2.11702071e-34, 9.43588493e-11, 2.38638165e-34, 6.84723725e-16,
                 7.27402502e-24, 1.34617982e-10, 7.45356898e-05, 2.01297770e-13,
                 6.90786546e-16, 2.47182409e-26, 4.93804370e-15, 1.42551905e-13,
                 2.26831073e-18, 4.95819552e-17, 2.54256226e-26, 3.33888563e-11,
                 1.20758731e-31, 2.15710411e-24, 4.34686023e-07, 1.48682527e-40,
                 1.80994770e-16, 1.56738491e-25, 5.46790333e-18, 3.54425763e-04,
                 1.27586197e-10, 3.05700233e-12, 1.93730817e-21, 5.51384567e-23,
                 2.69380119e-17, 3.77031259e-10, 1.01278030e-07, 5.00823656e-20,
                 9.23034863e-05, 1.50877311e-19, 3.49094704e-21, 2.04317551e-20,
                 6.66023049e-12, 2.20980382e-22, 5.86801028e-22, 8.35022702e-20,
                 5.26476071e-19, 2.53780151e-18, 6.88038395e-17, 1.31007494e-15,
```

```
3.18385328e-17, 1.42025828e-18, 3.67892414e-17, 2.01043312e-14, 6.10377056e-18, 5.68120253e-21, 2.01399099e-13, 7.29833544e-15, 3.86518040e-15, 6.63952897e-26, 9.64773366e-12, 1.62949403e-24, 9.21556898e-19, 2.45420341e-12, 5.20103815e-26, 1.31984657e-10, 6.15952510e-20, 9.20354758e-19, 5.84975126e-21, 1.31131770e-18, 8.45741933e-13, 1.03629389e-08, 1.79179668e-13, 2.82884116e-08, 1.24337025e-11, 6.93118767e-12, 2.24629133e-13, 5.49609681e-07, 6.10191031e-09, 9.96528220e-11, 3.87985456e-13, 2.53836642e-09, 1.26770832e-06, 1.24209791e-08, 3.02700348e-08, 1.53830151e-06, 2.39069364e-11, 2.79232187e-11, 2.18150800e-21, 2.44157090e-13, 1.53833366e-08, 5.51628248e-12, 1.97159115e-09]])
```

Random Forest

```
from allocus assemble imment DandomForestClassifian
In [56]: rfc=RandomForestClassifier()
         nfo fit/v thain v thain)
Out[56]: RandomForestClassifier()
         parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n_estimators':[10,20,30,40,50]
In [58]: from sklearn.model_selection import GridSearchCV
         grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="ac
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[58]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [59]: Land coarch bact co
Out[59]: 0.8825353083017569
In [60]: Info host anid sound host actimaton
```

In [62]: from sklearn.tree import plot_tree

```
plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['variab
         'variable11', 'variable12', 'variable13', 'variable14', 'variable15', 'variabl
         'variable21', 'variable22', 'variable23', 'variable24', 'variable25', 'variable' 'variable31', 'variable32', 'variable33', 'variable34', 'variable35', 'variable' 'variable41', 'variable42', 'variable43', 'variable44', 'variable45', 'variable
         'variable51', 'variable52', 'variable53', 'variable54', 'variable55', 'variabl
         'variable61', 'variable62', 'variable63', 'variable64', 'variable65', 'variable
         'variable71', 'variable72', 'variable73', 'variable74', 'variable75', 'variable75', 'variable81', 'variable82', 'variable83', 'variable84', 'variable85', 'variable
          'variable91', 'variable92', 'variable93', 'variable94', 'variable95', 'variabl
Out[62]: [Text(1906.5, 1993.2, 'stockpatEPO <= 0.5\ngini = 0.591\nsamples = 3662\nvalu</pre>
         e = [2635, 2615, 45, 37, 30, 19, 25, 11, 16, 16, 6, 5 \n10, 5, 0, 3, 5, 11, 2,
         4, 5, 3, 1, 3, 0, 0, 3, 0\n1, 1, 1, 0, 1, 3, 4, 1, 0, 2, 2, 2, 0, 0\n3, 3, 2,
         3, 5, 2, 0, 1, 1, 0, 4, 4, 5, 3  1, 2, 4, 3, 3, 2, 1, 2, 2, 2, 4, 1, 0, 1 
         2, 0, 0, 0, 1, 3, 2, 0, 2, 3, 3, 2, 0\n0, 1, 0, 3, 2, 2, 2, 3, 0, 2, 2, 1, 2,
         1 \cdot 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 2 \cdot 1, 2, 1, 1, 1, 2, 0, 2, 1, 3, 1,
         4, 0, 1\n0, 0, 1, 1, 0, 2, 2, 1, 3, 2, 0, 0, 0\n1, 1, 1, 0, 3, 1, 2, 0, 0,
         1, 2, 1, 0, 1 \setminus n0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 1, 1, 1, 1 \setminus n0, 2, 3, 2, 1, 0, 2,
         1, 4, 0, 2, 1, 0, 0\n0]\nclass = variable1'),
          Text(837.0, 1630.800000000000, 'pat <= 42.0\ngini = 0.145\nsamples = 634\nv
         0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\
         n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

Conclusion

Accuracy

Random Forest: 0.8825353083017569

Logistic Regression: 0.8764315852923448

Lasso Regression is suitable for this dataset