11.1 Our aim is to estimate the parameters of the simultaneous equations model

$$y_1 = \alpha_1 y_2 + e_1$$

 $y_2 = \alpha_2 y_1 + \beta_1 x_1 + \beta_2 x_2 + e_2$

We assume that x_1 and x_2 are exogenous and uncorrelated with the error terms e_1 and e_2 .

- a. Solve the two structural equations for the reduced-form equation for y_2 , that is, $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$. Express the reduced-form parameters in terms of the **structural parameters** and the reduced-form error in terms of the structural parameters and e_1 and e_2 . Show that y_2 is correlated with e_1 .
- b. Which equation parameters are consistently estimated using OLS? Explain.
- c. Which parameters are "identified," in the simultaneous equations sense? Explain your reasoning.
- d. To estimate the parameters of the reduced-form equation for y_2 using the method of moments (MOM), which was introduced in Section 10.3, the two moment equations are

$$N^{-1} \sum x_{i1} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

$$N^{-1} \sum x_{i2} (y_2 - \pi_1 x_{i1} - \pi_2 x_{i2}) = 0$$

Explain why these two moment conditions are a valid basis for obtaining consistent estimators of the reduced-form parameters.

- e. Are the MOM estimators in part (d) the same as the OLS estimators? Form the sum of squared errors function for $y_2 = \pi_1 x_1 + \pi_2 x_2 + v_2$ and find the first derivatives. Set these to zero and show that they are equivalent to the two equations in part (d).
- **f.** Using $\sum x_{i1}^2 = 1$, $\sum x_{i2}^2 = 1$, $\sum x_{i1}x_{i2} = 0$, $\sum x_{i1}y_{1i} = 2$, $\sum x_{i1}y_{2i} = 3$, $\sum x_{i2}y_{1i} = 3$, $\sum x_{i2}y_{2i} = 4$, and the two moment conditions in part (d) show that the MOM/OLS estimates of π_1 and π_2 are $\hat{\pi}_1 = 3$ and $\hat{\pi}_2 = 4$.
- g. The fitted value $\hat{y}_2 = \hat{\pi}_1 x_1 + \hat{\pi}_2 x_2$. Explain why we can use the moment condition $\sum \hat{y}_{i2} (y_{i1} \alpha_1 y_{i2}) = 0$ as a valid basis for consistently estimating α_1 . Obtain the IV estimate of α_1 .
- **h.** Find the 2SLS estimate of α_1 by applying OLS to $y_1 = \alpha_1 \hat{y}_2 + e_1^*$. Compare your answer to that in part (g).

Q.

$$y_{2} = (X_{2}Y_{1} + \beta_{1}X_{1} + \beta_{2}X_{2} + e_{2})$$

$$= (X_{1}X_{2} + e_{1}) + \beta_{1}X_{1} + \beta_{2}X_{2} + e_{2}$$

$$= (X_{1}X_{2} + e_{1}) + \beta_{1}X_{1} + \beta_{2}X_{2} + e_{2}$$

$$= (X_{1}X_{2} + e_{1}) + \beta_{1}X_{1} + \beta_{2}X_{2} + e_{2}$$

$$= (X_{1}X_{1} + (X_{2}X_{2} + e_{2}))$$

$$= (X_{1}X_{1} + (X_{2}X_{2} + e_{2}))$$

$$= (X_{2}X_{1} + e_{2})$$

$$= (X_{2}X_{1$$

d.
N- Z X; (Ys- Tr X; 1 - Tr X; 2) = U
=7 N Z X1 V1 =0
$E(X_1 V_{11} X) = 0$ $E(X_1 V_{12} X) = 0$
$Y_2 = \frac{\beta_1}{1 - \alpha_1 \alpha_2} X_1 + \frac{\beta_2}{1 - \alpha_1 \alpha_2} X_2 + \frac{\epsilon_2 + \alpha_2 \epsilon_1}{1 - \alpha_1 \alpha_2} = \tau_1 X_1 + \tau_2 X_2 + V_2$
E (XIK ((2 + 0.0) X)
$= \left[\left(X_{iK} \left(\frac{e_{\lambda}}{1 - d_{i}d_{\lambda}} \right) \mid X \right) + \left[\left(X_{iK} \left(\frac{d_{\lambda}e_{1}}{1 - d_{1}a_{\lambda}} \right) \mid X \right) = 0 + 0 = 0 \right]$
С.
$S(T_{U_1},T_{U_2} Y,X) = \overline{Z}(Y_2-T_{U_1}X_1-T_{U_2}X_2)^2$
$\frac{\partial S(T_{1},T_{1},X)}{\partial T_{1}} = -2 Z(Y_{2} - T_{1}X - T_{1}X_{2}) X_{1} = 0$
35 (Tr, The 141X) = -2 E (1/2-Tr)X1 - Tr X2)X2 = 0
3 The 3 -2 2 (/2 - hild - 16 R) M - 0
$\sum \left(y_1 - T_{12} X_1 - T_{12} X_2 \right) X_1 = 0 = \frac{1}{N} \sum \left(y_2 - T_{11} X_1 - T_{12} X_2 \right) X_1$
\overline{Z} $(Y_2 - T_M X_1 - T_{L_2} X_2) X_2 = 0 = \frac{1}{N} \overline{Z} (Y_2 - T_M Y_1 - T_{L_2} X_2) X_1$
Z (Yiz - Th Xi1 - The Xi2) Xi1 = 0
$\frac{Z(\lambda_{1})}{Z(\lambda_{1})} = \frac{Z(\lambda_{1})}{I(\lambda_{1})} = \frac{Z(\lambda_{1})}{I(\lambda_{2})} = 0$
$3 - \mathcal{I}_{4} - 0 = 0$
2) Tu > 3
5/1 7 1 - 1/1 .
2 (Y12 - Th X11 - Th2 X12) X12 =0
2 X13 X12 - T11 Z X11X12 - T12 Z X12 = 0
H-0-Tu=0
=> \hat{\chi}_1 = 4
g.
\overline{Z} \widehat{Y}_{i_2} $(Y_{i_1} - \alpha_i Y_{i_2}) = 0$
$\frac{1}{N} \sum_{i=1}^{N} \left(\sqrt{\lambda_{i}} \times \sqrt{\lambda_{i}} + \sqrt{\lambda_{i}} \times \sqrt{\lambda_{i}} \right) = 0$
$E\left(\left \widehat{Y}_{2}e_{1}\right X\right)=E\left(\left \mathcal{T}_{1}X_{1}+\mathcal{T}_{1}\mathcal{S}_{2}\right)\left(\left Y_{1}-\alpha_{1}Y_{2}\right \right)X\right)=0$
Ti, Po Ti, Ti, Po Ti
Z (Ti, Xi, + Ti, Xi,) (Xi, - Qi, Xi,) = 0
Z ýiz (*1-0x/iz) =0
$\overline{Z} \hat{\chi}_{2} \gamma_{i1} = \alpha_{i} \overline{Z} \hat{\chi}_{2} \gamma_{i2} = \overline{Z} \hat{\chi}_{1,1} v = \overline{Z} \hat{\chi}_{2} \gamma_{i1} $
VALSV = Z (TaX1+TaX1) Yiz = 3.3+4.4

Demand:
$$Q_i = \alpha_1 + \alpha_2 P_i + e_{di}$$
, Supply: $Q_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + e_{si}$

where Q is the quantity, P is the price, and W is the wage rate, which is assumed exogenous. Data on

TABLE 11.7		Data for Exercise 11.16	,
Q	P	W	F
4	2	2	4.
6	4	3	2,
9	3	1	3.
3	5	1	3, (
8	8	3	S.U

- Derive the algebraic form of the reduced-form equations, $Q = \theta_1 + \theta_2 W + v_2$ and $P = \pi_1 + \pi_2 W + v_1$, expressing the reduced-form parameters in terms of the structural
- Which structural parameters can you solve for from the results in part (a)? Which equation is
- The estimated reduced-form equations are $\hat{Q} = 5 + 0.5W$ and $\hat{P} = 2.4 + 1W$. Solve for the iden-
- tified structural parameters. This is the method of **indirect least squares**. **d.** Obtain the fitted values from the reduced-form equation for P, and apply 2SLS to obtain estimates

$$(X_{3} + X_{2}) P_{i} + P_{3} P_{i} + P_{4} P_{5} P_{4} P_{5} P_{4} P_{5} P_$$

$$= \left(\alpha_{1} + \alpha_{2} \frac{\beta_{1} - \alpha_{1}}{\alpha_{2} - \beta_{2}}\right) + \frac{\alpha_{2} \beta_{3}}{\alpha_{3} - \beta_{2}} W_{i} + \left(\alpha_{2} \frac{e_{si} - e_{si}}{\alpha_{2} - \beta_{2}} + e_{di}\right)$$

$$= \theta_{1} + \theta_{2} W_{i} + V_{2}$$

$$M = 2 \quad \text{endogenous} : P. R \quad \text{exogenous} : W$$

$$\hat{\chi} = \hat{\theta}_1 + \hat{\theta}_2 W = 5 + 0.5 W$$

$$\hat{\chi} = \chi_1 + \chi_2 \hat{\gamma} = 2.4 + W$$

$$\hat{\chi} = \chi_1 + \chi_2 \hat{\gamma}$$

$$5 + 0.5 W = \chi_1 + \chi_2 (2.4 + W)$$

$$\overline{Z}(\widehat{p}_{i} - \overline{p})^{2} = \overline{Z}(\widehat{p}_{i}^{2} - \overline{n})^{2} = 4$$

$$\overline{Z}(\widehat{p}_{i} - \overline{p})(\widehat{n}_{i} - \overline{n}) = 2$$

$$\widehat{N}_{2} = \frac{2}{4} = 0.5$$

$$\hat{\Omega}_1 = \hat{\Omega} - \hat{\Omega}_2 \hat{P} = 3.$$

		$CN_{t} = \alpha_{1} + \alpha_{2}(W_{1t} + W_{2t}) + \alpha_{3}P_{t} + \alpha_{4}P_{t-1} + e_{1t} $ (11.17)	
of M equations at least $M-1$ variable	oles must be omitted from each equation. on is that the number of excluded exogenous v	$I_{t} = \beta_{1} + \beta_{2} P_{t} + \beta_{3} P_{t-1} + \beta_{4} K_{t-1} + e_{2t} $ (11.18)	
	he number of included right-hand side endog	$W_{1t} = \gamma_1 + \gamma_2 E_t + \gamma_3 E_{t-1} + \gamma_4 TIM E_t + e_{3t} $ (11.19)	
	the first-stage equation, the reduced form, f	For W _{1t} , wages of	
	f 2SLS estimation of the consumption function	ion. This is not a	
	I) produce regression results that are identically designed for 2SLS estimation? In page 15.		
<i>t</i> -values be the same?			
(). M = 8 7 omit	red variable at least	total 16 Varial	bles
include	variable omits		
Consumption	6 10	=) satisfied	
1 .		6 (1.6.1	
Investment	5 11	=) Satisfied	
Waje	5 11	=> satisfied	
		-/ 30004160	
).			
RHS en	ndogenous variable	exclude exogenous	
consumption	2	5	=> satisfied
Investment	1	5	=> Satisfied
wage		5	=> satisfied
J			, 50,000,00
C. / / /			
Wit= Thit Tis (1+ Tis Wat +	Ty TX+ + Tis Time + Tb +1	1 Ty Kty + Tes Ety +	tV
d.			
Ubtain fitted values Wit	from the estimated redu	ced form equation	in (c)
	Create $W_t^* = W_{tv} + W_{st}$.		
Prand Proples a consto	nt by DLS.		
(e)		. 11	
The coefficient estimates	will be the same. The 1	t-value will not be	because
the standard errors in par	t (d) are not correct 3	25LS standard err	rors.