- 1.-INTRODUCCIÓN A LOS SISTEMAS DE ADQUISICIÓN DE DATOS.
- 2.- LA CONVERSIÓN ANALOGICO DIGITAL.
- 3.- CARACTERISTICAS DE LOS MODULOS DE ENTRADAS ANALOGICAS.
- 4.- CARACTERISTICAS E/S ANALOGICAS INTEGRADAS EN EL PLC.
- 5.- CARACTERISTICAS DEL MODULO DE E/S ANALOGICAS SM1234.
- 6.- CARACTERISTICAS DEL MODULO DE SALIDAS ANALOGICAS SB1232.
- 7.- INSTRUCCIONES SCALE_X Y NORM_X
- 8.- CONEXIÓN DE SENSORES ANALÓGICOS A LOS MÓDULOS ANALÓGICOS.

1.-INTRODUCCIÓN A LOS SISTEMAS DE ADQUISICIÓN DE DATOS.

Las módulos de E/S analógicas de un PLC trabajan con señales continuas (ininterrumpidas) que pueden tomar valores infinitos en el tiempo.

Las E/S analógicas de los PLC's pueden admitir valores de tensión o corriente.

Los controladores solo pueden procesar valores analógicos en forma de patrones de bits. Para ello, los sensores de medida que pueden conectarse al módulo analógico capturan magnitudes físicas, p. ej. presión o temperatura. Este valor analógico es medido por el módulo de entradas analógicas en forma de corriente, tensión o resistencia. Para que la CPU pueda procesar el valor de corriente o tensión capturado, un convertidor analógico-digital integrado en el módulo de entradas analógicas lo convierte en un valor entero de 16 bits. Según el tipo de medición pueden utilizarse los siguientes sensores de medida:

La figura siguiente muestra el procesamiento de señales analógicas en un PLC.

Figura 2-3 Procesamiento de valores analógicos

2.- LA CONVERSIÓN ANALOGICO DIGITAL.

La conversión A/D (ADC) tiene por objeto la transformación de señales analógicas de tensión o corriente en datos numéricos que, por lo general, se obtendrán en código binario. Esto significa que cada valor de la señal tiene que estar representado por un código diferente. El proceso general de conversión requiere mantener el valor de la señal analógica constante mientras dura la conversión. Esto es especialmente necesario para señales de variación rápida, pero puede no serlo para otras más lentas o incluso para ciertos tipos de convertidores. Para convertir una señal analógica en digital se requiere de un proceso basado en cuatro fases: **muestreo, retención, cuantificación y codificación**.

Muestreo.

Se trata de una técnica que consiste en tomar una serie de muestras de la amplitud instantánea de la señal a intervalos regulares de tiempo obteniendo de este modo una serie de pulsos modulados en amplitud (PAM).

Retención.

La tensión instantánea muestreada debe ser retenida entre dos impulsos consecutivos de muestreo para permitir que el circuito convertidor analógico-digital realice la conversión en el tiempo que precisa. Las operaciones de muestreo y retención se obtienen a partir de circuitos específicos denominados de muestreo y retención (Sample & Hold) gobernados a partir del terminal Vs/h, como se muestra en la figura.

La unidad de muestreo y retención es necesaria porque el ADC requiere una cantidad de tiempo, conocida como tiempo de conversión, para convertir la señal analógica en digital. Durante este tiempo de conversión el ADC necesita que la señal de entrada sea constante.

Cuantificación.

El proceso de cuantificación consiste en asignar una función que determina que margen de valores de la tensión de entrada deberá proporcionar un único nivel de la función de salida. Si dicha función es lineal, entonces el **intervalo de cuantificación** q es constante y vale:

$$q = \frac{V_{in\max} - V_{in\min}}{N}$$

donde, N representa el número de niveles del cuantificador.

Este proceso se puede observar en la figura 1, en ella se muestra como se realiza una cuantificación. En esta, la variable de entrada es dividida en 8 intervalos, N=8, de tamaño fijo donde la salida no cambia de valor, de esta forma cuando la variable de entrada permanece entre los valores 0 y 1/8, la salida corresponde al estado 1, si la entrada varía entre 1/8 y 1/4 la salida permanecerá en su estado 2 y así sucesivamente.

Cuantificación por "truncamiento"

Ejemplo 1: Queremos cuantificar una señal analógica de entrada cuyo margen es de 0 a 10V. Si N=8, determinar el intervalo de cuantificación, q. Determinar que valores de la entrada corresponden a cada estado de la salida.

$$q = \frac{V_{in \max} - V_{in \min}}{N} = \frac{FS}{N} = \frac{10V - 0V}{8} = 1,25V$$

Los valores de la entrada corresponden a cada estado de la salida son:

Estados	Tensiones de entrada
1	0 a 1'25V
2	1′25V a 2′5V
3	2′5V a 3′75V
4	3′75V a 5V
5	5V a 6′25V
6	6′25V a 7′5V
7	7′5V a 8′75V
8	8′75V a 10V

Tabla 1. Ejemplo de cuantificación

Codificación.

Una vez hemos realizado la cuantificación de la señal de entrada, ya la tenemos en estados discretos y tan solo queda asignar un código digital a cada estado, de este proceso se encarga la codificación. Puesto que q representa el intervalo mínimo de cuantificación, este valor debe ser asignado a la variación mínima entre dos códigos consecutivos, equivalente al valor del bit menos significativo LSB del código empleado en la codificación. Por tanto:

$$q = \frac{V_{in\,\text{max}} - V_{in\,\text{min}}}{N} = LSB$$

Cuando se aplique una codificación binaria a la salida de un cuantificador, se hace preciso que el número N de intervalos de cuantificación coincida con una potencia de dos, con el fin de obtener todas las combinaciones posibles en el código de salida formado a partir de *n* bits.

$$q = \frac{V_{in\max} - V_{in\min}}{2^n} = LSB$$

Según si el tipo de señal a codificar es unipolar o bipolar, tenemos códigos binarios unipolares o bipolares, en los unipolares los más utilizados son el código binario natural.

Para un código unipolar binario natural, la representación de los 8 primeros números es:

Números	Dígito binario
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

De esta forma, es muy sencillo relacionar esta tabla anterior con la tabla 1 del ejemplo de cuantificación, resultando una conversión de analógico a digital, ya que a un valor analógico le aplicamos una cuantificación (tabla 1) y del estado resultante en esta le aplicamos un código binario (tabla 2).

El resumen de la obtención de un código digital, en este caso binario natural, a partir de una tensión analógica es el siguiente:

Valor analógico de entrada		Estado asignado		Código digital asignado al estado
0 a 1′25V	\rightarrow	1	\rightarrow	000
1′25V a 2′5V	\rightarrow	2	\rightarrow	001
2′5V a 3′75V	\rightarrow	3	\rightarrow	010
3′75V a 5V	\rightarrow	4	\rightarrow	011
5V a 6′25V	\rightarrow	5	\rightarrow	100
6′25V a 7′5V	\rightarrow	6	\rightarrow	101
7′5V a 8′75V	\rightarrow	7	\rightarrow	110
8′75V a 10V	\rightarrow	8	\rightarrow	111

El parámetro más importante en un convertidor analógico digital es la **resolución** y se define como el mínimo cambio en la tensión de entrada que produce un cambio en la salida digital. También podemos definir la resolución como el mínimo valor de tensión de entrada que se puede apreciar a la entrada de un ADC. Se expresa en número de bits n. Por tanto la resolución de un convertidor analógico digital de n bits de salida es:

Re
$$solución = \frac{1}{2^n}$$
 Re $solución(\%) = \frac{1}{2^n} \cdot 100(\%)$

Como vemos coincide con el intervalo de cuantificación q. La resolución expresada en función de la tensión de entrada vendrá en voltios y será:

Re
$$solución(V) = \frac{FS}{2^n} = \frac{V \max - V \min}{2^n}$$

A mayor resolución, más grande es el número de niveles o divisiones de las que disponemos y por tanto más pequeño es el incremento de tensión entre un nivel y otro.

En la figura vemos la digitalización de una señal senoidal con un ADC de 3 bits.

<u>Ejemplo 2:</u> Calcular la resolución en % de un ADC de 8 bits. Si la tensión de entrada del ADC es de 0 a 10V, calcula la resolución en voltios.

Solución: Resolución en % = 0,39%. Resolución en voltios = 0,39 voltios. Ejercicio.

- Calcular la resolución en % de un ADC de 10 bits y de 11 bits.
- Si la tensión de entrada del ADC es de 0 a 10V, calcula la resolución en voltios.
- Si tenemos un sensor de temperatura de rango 0 a 100°C con salida 0 a 10V y lo conectamos al ADC, calcular la resolución en °C para cada caso.

3.- CARACTERISTICAS DE LOS MODULOS DE ENTRADAS ANALOGICAS.

- Resolución: Es uno de los parámetros más importantes y se suele expresar en bits (8, 9, 10, 11, 12, 13, 14, 16 ó 16 bits).
- ➤ Margen de entrada: Especifica los límites de tensión de entrada. Pueden ser señales unipolares (0 a 5V, 0 a 10V) o bipolares (-10V a +10V). Pueden ser señales en tensión o en corriente (4 .. 20mA, 0 .. 20mA) La configuración del margen de entrada se suele hacer por software.
- Velocidad de muestro o sampling rate: Especifica la velocidad máxima con el que la TAD realiza la toma de muestras (frecuencia de muestreo máxima). Se expresa en muestras por segundo (muestras/seg) (samples/seg). Es un parámetro a tener en cuenta cuando se quieren convertir señales de frecuencia elevada. Para señales que varían lentamente en el tiempo (como la temperatura) no es importante este parámetro.

La frecuencia de muestreo debe permitir la reconstrucción completa de la señal original a partir de las muestras tomadas, lo que determina que dicha frecuencia sea al menos, el doble de la frecuencia máxima fmax(x(t)) de la señal a muestrear x(t), condición impuesta por el **Teorema de Nyquist** y fundamento básico de la teoría de muestreo. Por ejemplo, si queremos muestrear una señal de 1KHz de frecuencia, la frecuencia de muestreo debe ser por lo menos de 2 KHz.

- Configuración de las entradas analógicas: Las entradas suelen soportar dos configuraciones básicas:
 - Entradas referidas a masa (single-ended inputs): un terminal de entrada de todos los canales está referido a la masa del sistema de adquisición y, el otro está disponible para su conexión a entradas exteriores.
 - Entradas en modo diferencial (differential inputs): en este caso no existe ningún terminal referido a masa. Los dos terminales de entrada se corresponden con los dos terminales de entrada de la tarjeta. El inconveniente es que en modo diferencial el número de entradas se reduce a la mitad.

Número de entradas analógicas: Hace referencia al número de canales de entrada disponibles en la tarjeta (4, 8, 16, 32 o más). En la captura de las señales de entrada las tarjetas pueden utilizar un único convertidor A/D compartido entre varias entradas o utilizar convertidores independientes para cada entrada analógica.

La utilización de multiplexores en los sistemas de adquisición de datos está muy difundida para lograr el tratamiento eficiente de muchas señales analógicas de baja frecuencia. Aquí la conversión de las señales de entrada se efectúa secuencialmente lo que reduce la velocidad de muestreo máxima.

Los módulos analógicos que utilizan un conversor independiente para cada canal de entrada presentan mayor coste ya que ese multiplica el hardware, pero permiten la captura y conversión simultánea de las señales de entrada, ofreciendo una frecuencia de muestreo más elevada.

La CPU 1215 dispone de dos entradas analógicas y dos salidas analógicas. Las E/S analógicas utilizan un canal de 16 bits para su representación, con lo que los valores posibles son $2^{16} = 65536$ (valor entero).

Word (INT)				Byte	Alto				Byte Bajo									
Posición bit	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0									
Peso bit	2 ¹⁵	214	214 213 212 211 210 29						2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 º		
Valor analógico	(S)		Valor digital del dato analógico (INT)															

Sin embargo, como puede haber tarjetas con rangos bipolares (+/-), se utiliza el bit de mayor peso para el signo **(S)**, por lo que los valores efectivos serían de -32768 a +32767. En el caso de señales unipolares (sólo valores positivos), los datos negativos son ignorados. Además, parte de ese rango se reserva para un margen de saturación y desborde del valor de la entrada o salida. En la práctica los valores nominales van de **-27648** a **+ 27648**.

A.7.4 Entradas y salidas analógicas

Tabla A-75 Entradas analógicas

Datos técnicos	Descripción
Número de entradas	2
Tipo	Tensión (asimétrica)
Rango total	De 0 a 10 V
Rango total (palabra de datos)	De 0 a 27648
Rango de sobreimpulso	De 10,001 a 11,759 V
Rango de sobreimpulso (palabra de datos)	De 27649 a 32511
Rango de desbordamiento	De 11,760 a 11,852 V
Rango de desbordamiento (palabra de datos)	De 32512 a 32767
Resolución	10 bits
Tensión soportada máxima	35 V DC
Filtrado	Ninguno, débil, medio o fuerte
	Consulte la tabla de Respuesta a un escalón (ms) para las entradas analógicas de la CPU (Página 1430).
Supresión de ruido	10, 50 o 60 Hz
Impedancia	≥100 KΩ
Aislamiento (de campo a lógica)	Ninguno
Precisión (25 °C / de -20 a 60 °C)	3,0%/3,5% de rango máximo
Longitud de cable (metros)	100 m, par trenzado apantallado

A.7.4.1 Respuesta a escalón de las entradas analógicas integradas en la CPU

Tabla A-76 Respuesta a un escalón (ms), 0 V a 10 V medido a 95%

Selección de filtrado (valor medio de mues-	Supresión de frecuencias (tiempo de integración)												
treo)	60 Hz	50 Hz	10 Hz										
Ninguno (1 ciclo): Sin media	50 ms	50 ms	100 ms										
Débil (4 ciclos): 4 muestreos	60 ms	70 ms	200 ms										
Medio (16 ciclos): 16 muestreos	200 ms	240 ms	1150 ms										
Fuerte (32 ciclos): 32 muestreos	400 ms	480 ms	2300 ms										
Tiempo de muestreo	4,17 ms	5 ms	25 ms										

A.7.4.2 Tiempo de muestreo para los puertos analógicos integrados en la CPU

Tabla A-77 Tiempo de muestreo para las entradas analógicas integradas en la CPU

Supresión de frecuencias (selección del tiempo de integración)	Tiempo de muestreo
60 Hz (16,6 ms)	4,17 ms
50 Hz (20 ms)	5 ms
10 Hz (100 ms)	25 ms

A.7.4.3 Rangos de medida de entradas analógicas de tensión (CPU)

Tabla A-78 Representación de entradas analógicas para tensión (CPU)

Sistema		Rango de medida de tensión	
Decimal	Hexadecimal	De 0 a 10 V	
32767	7FFF	11,852 V	Rebase por exceso
32512	7F00		
32511	7EFF	11,759 V	Rango de sobreimpulso
27649	6C01		
27648	6C00	10 V	Rango nominal
20736	5100	7,5 V	
34	22	12 mV	
0	0	0 V	
Valores negati- vos		Los valores negativos no se so- portan	

A.7.4.4 Especificaciones de salidas analógicas

Tabla A-79 Salidas analógicas

Datos técnicos	Descripción
Número de salidas	2
Tipo	Intensidad
Rango total	0 a 20 mA
Rango total (palabra de datos)	de 0 a 27.648
Rango de sobreimpulso	De 20,01 a 23,52 mA
Rango de sobreimpulso (palabra de datos)	De 27649 a 32511
Rango de desbordamiento	Ver nota al pie 1
Rango de desbordamiento (palabra de datos)	De 32512 a 32767
Resolución	10 bits
Impedancia de salida	≤500 Ω máx.
Aislamiento (de campo a lógica)	Ninguno
Precisión (25 °C / de -20 a 60 °C)	3,0%/3,5% de rango máximo

Tabla A-80 Representación de salidas analógicas para intensidad (CPU 1215C y CPU 1217C)

Sis	tema	Rango de salida de intensida	ad
Decimal	Hexadecimal	De 0 mA a 20 mA	
32767	7FFF	V. nota 1	Rebase por exceso
32512	7F00	V. nota 1	
32511	7EFF	23,52 mA	Rango de sobreimpulso
27649	6C01		
27648	6C00	20 mA	Rango nominal
20736	5100	15 mA	
34	22	0,0247 mA	
0	0	0 mA	
Valores negati- vos		Los valores negativos no se soportan	

En una situación de rebase por exceso, las salidas analógicas se comportarán según los valores de las propiedades de configuración del dispositivo. En el parámetro "Reacción a STOP de la CPU", seleccione: "Aplicar valor sustitutivo" o "Mantener último valor".

No debemos confundir estos 16 bits con la resolución de los convertidores A/D y D/A. La resolución oscilará según el tipo de tarjeta entre 15 bits más signo (+S) y 8 bits. Como es lógico, cuantos más bits de resolución tengan los convertidores, mayor definición y resolución, y mayor será la exactitud de la lectura o escritura. Por contra, también será mayor el tiempo de conversión y por lo tanto las variaciones en el proceso tardarán más en reflejarse en el PLC.

En la tabla se reproducen los valores en función de la resolución de la tarjeta. Al ser de 10 bits tendremos que las medidas se irán incrementando en valores de 32 unidades (20 hex en hexadecimal). Esto es, los 32768 valores que admite el canal irán 'saltando' (escalón) de 32 en 32 (total de 1024 valores posibles para 10 bits de resolución).

Resolución Nº de BITS	Incremento da	el Dato																		
	Decimal	Hexadecimal	Byte alto									Byte bajo								
8	128	40H	S	0	0	0	0	0	0	0	1	×	×	Х	Х	Х	X	X		
9	64	30H	s	0	0	0	0	0	0	0	0	1	×	Х	Х	Х	Х	X		
10	32	20H	S	0	0	0	0	0	0	0	0	0	1	Х	Х	Х	Х	×		
11	16	10H	S	0	0	0	0	0	0	0	0	0	0	1	Х	Х	Х	×		
12	8	8Н	S	0	0	0	0	0	0	0	0	0	0	0	1	Х	Х	X		
13	4	4H	s	0	0	0	0	0	0	0	0	0	0	0	0	1	Х	Х		
14	2	2H	S	0	0	0	0	0	0	0	0	0	0	0	0	0	1	×		
15	1	1H	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		

Para un módulo de entradas de 12 bits la resolución será: $2^{12} = 4096$. Pero nosotros veremos X cantidad de resolución, dependiendo de la tarjeta analógica.

Tarjeta 10 bits= 2^{10} =1024 (2^{10}) de resolución x 32 (2^{5}) = 32768 cantidad de resolución.

Tarjeta 12 bits= 2^{12} =4096 (2^{12}) de resolución x 8 (2^{3}) = 32768 cantidad de resolución.

Rango de los sensores unipolares. 12 bits de resolución

Cartas de 1 bit (signo) + 12 bits de resolución

RA	NGO		VALOR D	IG	IT	Ά	LI	DE	L	A	ME	D	IC	A						VALOR ANALOGICO DE LA MEDIDA			
		Decimal	Hexadeci mal																				
				S		В	yt	e.	alt	0		Byte bajo					ajo			0 10 V	4 20 mA		
Oxerflow	Máximo	32767	7FFF	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	11,85 V	22,96 mA		
	Mínimo	32520	7F08																				
Overange	Máximo	32511	7EFF	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0	0	11,75 V	22,81 mA		
	Mínimo	27656	6C08													_							
Nominal	Máximo	27648	6C00	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	10 V	20 mA		
range	Mínimo	8	8	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2,89 mX	4mA+4,62µA		
	Valor 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Van 0	4 mA		

Con una resolución de 12 bits (4096), los valores de conversión irán saltando de 8 en 8 dentro de la escala total de 32768 valores. Para un rango de entrada de 0 a 10V, el valor mínimo que podremos apreciar es de 2,89mV. Con una regla de $3 \rightarrow Si 27648$ son 10V, 8 son 2,89mV

5.- CARACTERISTICAS DEL MODULO DE E/S ANALOGICAS SM1234.

Este módulo dispone de 4 entradas analógicas y 2 salidas digitales.

Datos técnicos	SM 1234 Al 4 x 13 bits / AQ 2 x 14 bits
Referencia	6ES7234-4HE32-0XB0
Dimensiones A x A x P (mm)	45 x 100 x 75
Peso	220 gramos
Disipación de potencia	2,4 W
Consumo de corriente (bus SM)	80 mA
Consumo de corriente (24 V DC)	60 mA (sin carga)

Tabla A-156 Entradas analógicas

Modelo	SM 1234 AI 4 x 13 bits / AQ 2 x 14 bits	
Número de entradas	4	
Tipo	Tensión o intensidad (diferencial): Seleccionable en grupos de 2	
Rango	±10 V, ±5 V, ±2,5 V, de 0 a 20 mA o de 4 mA a 20 mA	
Rango total (palabra de datos)	De -27.648 a 27.648	
Rango de sobreimpulso/subimpulso	Tensión: de 32.511 a 27.649 /de 27.649 a -32512	
(palabra de datos)	Intensidad: de 32.511 a 27.649 / de 0 a -4.864	
	Consulte el apartado en que aparecen los rangos de entrada de tensión e intensidad (Página 1481).	
Rebase por exceso/defecto (palabra de datos)	Tensión: de 32.767 a 32.512 / de -32.513 a -32.768 Intensidad: de 32.767 a 32.512 / de -4.865 a -32.768	
	Consulte el apartado en que aparecen los rangos de entrada de tensión e intensidad (Página 1481).	
Resolución	12 bits + bit de signo	
Tensión/intensidad soportada máxima	±35 V / ±40 mA	
Filtrado	Ninguno, débil, medio o fuerte	
	Consulte el apartado en que aparecen los tiempos de respuesta a un escalón (Página 1480).	
Supresión de ruido	400, 60, 50 o 10 Hz	
	Consulte el apartado en que aparecen las frecuencias de muestred (Página 1480).	
Impedancia de entrada	\geq 9 M Ω (tensión) / \geq 270 Ω , < 290 Ω (intensidad)	
Aislamiento (de campo a lógica)	Ninguno	
Precisión (25 °C / de -20 a 60 °C)	±0,1% / ±0,2% de rango máximo	
Tiempo de conversión analógica-digital	625 µs (rechazo de 400 Hz)	

Tabla A-157 Salidas analógicas

Datos técnicos	SM 1234 Al 4 x 13 bits / AQ 2 x 14 bits		
Número de salidas	2		
Tipo	Tensión o intensidad		
Rango	±10 V, de 0 a 20 mA o de 4 mA a 20 mA		
Resolución	Tensión: 14 bits; intensidad: 13 bits		
Rango total (palabra de datos)	Tensión: -27648 a 27648; intensidad: de 0 a 27.648		
	Consulte el apartado en que aparecen los rangos de salida de lensión el intensidad (Página 1482).		
Precisión (25 °C / de -20 a 60 °C)	±0,3% / ±0,6% de rango máximo		
Tiempo de estabilización (95% del nuevo valor)	Tensión: 300 μs (R), 750 μs (1 uF)		
	Intensidad: 600 μs (1 mH), 2 ms (10 mH)		
Impedancia de carga	Tensión: ≥ 1000 Ω		
	Intensidad: ≤ 600 Ω		
Corriente de cortocircuito máxima en la salida	Modo de tensión: ≤ 24 mA		
	Modo de intensidad: ≥ 38,5 mA		
Reacción al cambiar de RUN a STOP	Último valor o valor sustitutivo (valor predeterminado: 0)		
Aislamiento (de campo a lógica)	Ninguno		
Aislamiento (de 24 V a salida)	Ninguno		
Longitud de cable (metros)	100 m, trenzado y apantallado		

Tabla A-163 Representación de entradas analógicas de tensión (SB y SM)

Sistema Rango de medida de tensión							
Decimal	Hexadecimal	±10 V	±5 V	±2,5 V	±1,25 V		
32767	7FFF ¹	11,851 V	5,926 V	2,963 V	1,481 V	Rebase por exceso	
32512	7F00						
32511	7EFF	11,759 V	5,879 V	2,940 V	1,470 V	Rango de sobreim-	
27649	6C01					pulso	
27648	6C00	10 V	5 V	2,5 V	1,250 V	Rango nominal	
20736	5100	7,5 V	3,75 V	1,875 V	0,938 V		
1	1	361,7 μV	180,8 μV	90,4 μV	45,2 μV		
0	0	0 V	0 V	0 V	0 V		
-1	FFFF						
-20736	AF00	-7,5 V	-3,75 V	-1,875 V	-0,938 V		
-27648	9400	-10 V	-5 V	-2,5 V	-1,250 V		
-27649	93FF					Rango de subimpulso	
-32512	8100	-11,759 V	-5,879 V	-2,940 V	-1,470 V		
-32513	80FF					Rebase por defecto	
-32768	8000	-11,851 V	-5,926 V	-2,963 V	-1,481 V		

⁷FFF puede ser devuelto por una de las siguiente razones: desbordamiento (tal como se indica en la tabla), antes de que los valores válidos estén disponibles (p. ej. justo después de un arranque) o si se detecta una rotura de hilo.

Tabla A-164 Representación de entradas analógicas de intensidad (SB y SM)

	Sistema		ntensidad	
Decimal	Hexadecimal	De 0 mA a 20 mA	De 4 mA a 20 mA	
32767	7FFF	> 23,52 mA	> 22,81 mA	Rebase por exceso
32511	7EFF	23,52 mA	22,81 mA	Rango de sobreimpulso
27649	6C01			
27648	6C00	20 mA	20 mA	Rango nominal
20736	5100	15 mA	16 mA	
1	1	723,4 nA	4 mA + 578,7 nA	
0	0	0 mA	4 mA	
-1	FFFF			Rango de subimpulso
-4864	ED00	-3,52 mA	1,185 mA	
327671	7FFF		< 1,185 mA	Rotura de hilo (4 a 20 mA)
-32768	8000	< -3,52 mA		Rebase por defecto (0 a 20 mA

El valor de rotura de hilo de 32767 (16#7FFF) se devuelve siempre, independientemente del estado de la alarma de rotura de hilo.

Tabla A-165 Representación de salidas analógicas para tensión (SB y SM)

	Sistema		Rango de salida de tensión		
Decimal	Hexadecimal	±10 V			
32767	7FFF	V. nota 1	Rebase por exceso		
32512	7F00	V. nota 1			
32511	7EFF	11,76 V	Rango de sobreimpulso		
27649	6C01				
27648	6C00	10 V	Rango nominal		
20736	5100	7,5 V			
1	1	361,7 μ V			
0	0	0 V			
-1	FFFF	-361,7 μ V			
-20736	AF00	-7,5 V			
-27648	9400	-10 V			
-27649	93FF		Rango de subimpulso		
-32512	8100	-11,76 V			
-32513	80FF	V. nota 1	Rebase por defecto		
-32768	8000	V. nota 1			

¹ En condición de rebase por exceso o defecto, las salidas analógicas adoptarán el valor sustitutivo del estado STOP.

Tabla A-166 Representación de salidas analógicas para intensidad (SB y SM)

Sistema Rango			Rango de	salida de intensidad
Decimal	Hexadecimal	De 0 mA a 20 mA	De 4 mA a 20 mA	
32767	7FFF	V. nota 1	V. nota 1	Rebase por exceso
32512	7F00	V. nota 1	V. nota 1	
32511	7EFF	23,52 mA	22,81 mA	Rango de sobreimpulso
27649	6C01			
27648	6C00	20 mA	20 mA	Rango nominal
20736	5100	15 mA	16 mA	
1	1	723,4 nA	4 mA + 578,7 nA	
0	0	0 mA	4mA	
-1	FFFF		De 4 mA a 578,7 nA	Rango de subimpulso
-6912	E500		0 mA	
-6913	E4FF			No es posible. Valor de salida limitado a 0 mA.
-32512	8100			
-32513	80FF	V. nota 1	V. nota 1	Rebase por defecto
-32768	8000	V. nota 1	V. nota 1]

¹ En condición de rebase por exceso o defecto, las salidas analógicas adoptarán el valor sustitutivo del estado STOP.

6.- CARACTERISTICAS DEL MODULO DE SALIDAS ANALOGICAS SB1232.

A.14.2 Datos técnicos de la SB 1232 de 1 salida analógica

Tabla A-215 Especificaciones generales

Datos técnicos	SB 1232 AQ 1 x 12 bits
Referencia	6ES7232-4HA30-0XB0
Dimensiones A x A x P (mm)	38 x 62 x 21
Peso	40 gramos
Disipación de potencia	1,5 W
Consumo de corriente (bus SM)	15 mA
Consumo de corriente (24 V DC)	40 mA (sin carga)

Tabla A-216 Salidas analógicas

Datos técnicos	SB 1232 AQ 1 x 12 bits
Número de salidas	1
Tipo	Tensión o intensidad
Rango	±10 V o 0 a 20 mA
Resolución	Tensión: 12 bits
	Intensidad: 11 bits
Rango total (palabra de datos)	Tensión: -27648 a 27648
Consulte los rangos de salida de tensión e intensidad (Página 1524).	Intensidad: de 0 a 27.648
Precisión (25 °C / de -20 a 60 °C)	±0,5% / ±1% de rango máximo
Tiempo de estabilización (95% del nuevo valor)	Tensión: 300 μs (R), 750 μs (1 uF)
	Intensidad: 600 μs (1 mH), 2 ms (10 mH)
Impedancia de carga	Tensión: ≥ 1000 Ω
	Intensidad: ≤ 600 Ω
Reacción al cambiar de RUN a STOP	Último valor o valor sustitutivo (valor predeterminado: 0)
Aislamiento (de campo a lógica)	Ninguno
Longitud de cable (metros)	100 m, trenzado y apantallado

Tabla A-218 Diagrama de cableado de la SB 1232 AQ 1 x 12 bits

7.- INSTRUCCIONES SCALE_X Y NORM_X

8.7.5 SCALE_X (escalar) y NORM_X (normalizar)

Tabla 8-122 Instrucciones SCALE_X y NORM_X

KOP / FUP	SCL	Descripción
SCALE_X Real to ??? - EN END MIN OUT VALUE - MAX	<pre>out :=SCALE_X(min:=_in_,</pre>	Escala el parámetro VALUE real normalizado (donde 0,0 <= VALUE <= 1,0) al tipo de datos y rango de valores especificados por los parámetros MIN y MAX: OUT = VALUE (MAX - MIN) + MIN
NORM_X ??? to Real = EN ENO = - MIN OUT = - VALUE - MAX	out :=NORM_X (min:=_in_,	Normaliza el parámetro VALUE dentro del rango de valores especificado por los parámetros MIN y MAX: OUT = (VALUE - MIN) / (MAX - MIN), donde (0,0 <= OUT <= 1,0)

¹ En KOP y FUP: haga clic en "???" y seleccione un tipo de datos en el menú desplegable.

Tabla 8-123 Tipos de datos para los parámetros

Parámetro	Tipo de datos¹	Descripción
MIN	SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal	Entrada que indica el valor mínimo del rango
VALUE	SCALE_X: Real, LReal NORM_X: SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal	Valor de entrada que se debe escalar o normalizar
MAX	SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal	Entrada que indica el valor máximo del rango
OUT	SCALE_X: SInt, Int, DInt, USInt, UInt, UDInt, Real, LReal NORM_X: Real, LReal	Valor de salida escalado o normalizado

Para SCALE_X: Los parámetros MIN, MAX y OUT deben tener el mismo tipo de datos. Para NORM_X: Los parámetros MIN, VALUE y MAX deben tener el mismo tipo de datos.

EJEMPLO DE NORMALIZACIÓN Y ESCALADO DE UNA ENTRADA ANALOGICA

Conexión de sensor de temperatura rango 0..100°C y salida 0..10V a la entrada analógica integrada 0 del PLC (AIO).

Temp (°C)	Salida sensor (V)	ADC. Valor conversion	NORM Valor Norm	SCALE °C
0	0	0	0	0
10	1	2765	0,1	10,0
20	2	5530	0,2	20,0
30	3	8295	0,3	30,0
40	4	11059	0,4	40,0
50	5	13824	0,5	50,0
60	6	16589	0,6	60,0
70	7	19354	0,7	70,0
80	8	22118	0,8	80,0
90	9	24883	0,9	90,0
100	10	27648	1	100,0

EJEMPLO DE NORMALIZACIÓN Y ESCALADO DE UN VALOR DE SALIDA ANALÓGICO

Mediante un potenciómetro que varía entre el 0..100% obtener una salida analógica de 0..20 mA

Potenciometro %	NORM Valor Norm	SCALE Valor Conv.	DAC mA
0	0	0	0
10	0,1	2765	2
20	0,2	5530	4
30	0,3	8295	6
40	0,4	11059	8
50	0,5	13824	10
60	0,6	16589	12
70	0,7	19354	14
80	0,8	22118	16
90	0,9	24883	18
100	1	27648	20

8.- CONEXIÓN DE SENSORES ANALÓGICOS A LOS MÓDULOS ANALÓGICOS.

Antes de ver las conexiones a los módulos analógicos, recordaremos los tipos de sensores:

Los sensores de 2 hilos funcionan en serie con la carga conectada. No hay conexiones independientes para el circuito de carga y el suministro de tensión de un sensor de 2 hilos. Un sensor de 2 hilos es un componente activo que requiere energía para funcionar. El sensor recibe esta energía eléctrica a través de los dos hilos de conexión. Se denominan sensores pasivos.

PT54xx (4...20 mA analogue)

- Los sensores de 3 hilos disponen de 2 conexiones para la alimentación por separado y una conexión de salida. Se denominan sensores activos.

CONEXIONES A 2 HILOS

CONEXIONES A 3 HILOS

¿TENSIÓN O CORRIENTE? La más utilizada en la industria es 0-10V. El inconveniente de este tipo de lectura es que, al ser una tensión, las distancias sin atenuación de la señal debido a caídas de tensión en el cable son relativamente cortas, por lo que la sonda debe estar cerca del cuadro eléctrico donde se encuentre el módulo analógico.

Dentro de las medidas de intensidad se suelen utilizar principalmente dos tipos: 0-20 mA. y 4-20 mA. Las medidas por intensidad es el más utilizado en la lectura analógica, ya que permite grandes distancias al ser la lectura por corriente, y a la vez es fácil reconocer la rotura del hilo, ya que por debajo de 4 mA indica el mal funcionamiento del sensor.