DATA DICTIONARY -

Variable	Type	Description
UDI	Num	Unique identifier for data
Product ID	Char	Unique Product ID based on product types
		Type of Product with 3 categories - L, M,
Type	Char	or H
Air temperature [K]	Num	Air Temperature in Kelvin
Process temperature		
[K]	Num	Process Temperature in Kelvin
		Rotational Speed – number of rotations of
Rotational speed		the machine per unit of time. Measured in
[rpm]	Num	Revolutions Per Minute
		Torque - A force that causes machinery to
Torque [Nm]	Num	turn round. Measured in Newton-Meter
		Gradual Failure of Cutting tools due to
Tool wear [min]	Num	regular operations. Measured in minutes.
		If the Machine failed or not- 0 - not fail,
Target	Char	and 1 - fail
		Failure Type with 5 categories - No
		Failure, Heat Dissipation Failure, Power
		Failure, Overstrain Failure, Tool Wear
Failure Type	Char	Failure.

INSIGHTS –

Univariate Analysis:

When the distribution of each variable is analyzed following observations were made:

- There are 6000 machines of "L" Type and 3000 machines of "M" Type and nearly 1000 machines are of "H type".
- The Air Temperature for the maximum number of machines is between 297 Kelvin to 303 Kelvin.
- The Process Temperature for the maximum number of machines is between 307 Kelvin to 313 Kelvin.
- The distribution of values of Rotational Speed is right-skewed. The maximum number of machines has Rotational Speed between 1250 to 1750 RPM.
- The value of Torque is approximately normally distributed. The maximum number of values is thus centered around the mean value.
- There are machines that might face failure due to tool wear up to 220 tool wear per minute.

Bivariate Analysis:

When the distribution of values of each variable is analyzed with respect to Target (fail or not), the following observations were made:

- Maximum number of failures occur for "L" Product Type.
- Maximum number of failures happens when Air Temperature is high.
- When either the Rotational Speed or Torque is too high or low, failure happens.

Outlier Treatment:

While checking for outliers in the data, the following observations were made:

- Outliers were present mainly for two variables, Rotational Speed and Torque.
- Maximum outliers present in these two variables corresponds to No Failure category of Failure Type.

Correlation:

While checking for correlation between the variables in the data, the following observations were made:

- There is a high positive correlation between Air Temperature and Process Temperature.
- There is a high negative correlation between Torque and Rotational Speed.

Pair-Plot:

While checking for relationship between variables with respect to Target (fail or not), the following observations were made:

• When the Torque is high and Rotational Speed is low (or vice versa), then the machine fails.

Multicollinearity:

While checking for multicollinearity, the following observations were made:

• Multicollinearity was checked using VIF. Since the VIF of the variables was not very high, the variables are independent and there is no multicollinearity in the data.

Model Building Results –

With the dependent variable as – Target:

Model Name	Accuracy
Logistic Regression	0.971
Decision Tree Classifier	0.977
Random Forest Classifier	0.985
Support Vector Classifier	0.974

With the dependent variable as – Failure Type:

Model Name	Accuracy
Logistic Regression	0.972
Decision Tree Classifier	0.971
Random Forest Classifier	0.982
Support Vector Classifier	0.972