Homework (20)

- 1. Look at Example 638 of the lecture note. It is proven that \mathbf{x}_{γ} is an eigenvector of \mathbf{Q} . Which eigenvalue is \mathbf{x}_{γ} assocaited to? Prove your claim.
- 2. Consider the problem

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{x}\|_2, \quad s.t. \quad \mathbf{A}\mathbf{x} = \mathbf{b},\tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $m \le n$, and rank $\mathbf{A} = m$. Let \mathbf{x}^* be the solution and $\mathbf{x}^*_{\gamma} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x}\|_2 + \gamma \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$.

a. Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \end{bmatrix}. \tag{2}$$

Verify that \mathbf{x}_{γ}^* converges to the solution \mathbf{x}^* of the original constrained problem as $\gamma \to \infty$.

b. Prove that $\mathbf{x}_{\gamma}^* \to \mathbf{x}^*$ as $\gamma \to \infty$ holds in general. Try not to directly apply Theorem 640. Does γ really need to approach ∞ in order to achieve the solution to (1)?

Homework (20)

c. Randomly generate $\mathbf{A} \in \mathbb{R}^{200 \times 300}$ and $\mathbf{b} \in \mathbb{R}^{200}$ and solve problem (1) numerically by the penalty method. Hand in your code and report.

3. Consider:

$$\min_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2^2, \quad s.t. \quad \|\mathbf{x}\|_? \le 1,$$

where $\|\mathbf{x}\|_{?}$ can be either the ℓ_1 norm or the ℓ_{∞} norm. Randomly generate $\mathbf{D} \in \mathbb{R}^{200 \times 300}$ and $\mathbf{y} \in \mathbb{R}^{200}$ and use Frank-Wolfe algorithm to solve it, for both ℓ_1 norm and ℓ_{∞} norm. Further compare F-W algorithm with the projected gradient descent in convergence speed (objective function value vs. iteration number). Hand in your code and report.