MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

EEM2046 – ENGINEERING MATHEMATICS IV (RE / TE)

9 MARCH 2018 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of five pages including cover page with five questions only.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Please write down all your answers in the answer Booklet provided. Show all relevant steps to obtain maximum marks.

Question 1 (30 marks)

a) Evaluate the contour integral

$$\int_C (x^2 + y) dz$$

where C is the straight line segment y = x from z = 0 to z = 1 + i.

[10 marks]

b) By using Cauchy's Integral Formula or its variant, identify the singular points and evaluate

$$\int_{\gamma} \frac{e^z}{z^2(z-2)} dz$$

where γ is the positively oriented circle of radius 1 centred at z = 0.

[10 marks]

c) Find the Laurent series of

$$f(z) = \frac{1}{z+1} + \frac{1}{z+4}$$

valid for 1 < |z| < 4 by applying substitution technique. Leave the answer in sigma notation.

[Hint:
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
 valid for $|z| < 1$]

[10 marks]

Continued...

Question 2 (15 marks)

a) Given the probability mass function

$$f_x(x) = cx^5$$
, $x = 1,2,3$.

Find the value of c.

[4 marks]

b) Let X be a random variable with the following probability mass function,

$$f_X(x) = \begin{cases} \frac{1}{21}(x+5), & x = 1,2,3\\ 0, & \text{elsewhere.} \end{cases}$$

If Y is another random variable related to X by the transformation $Y = X^2$, find $f_Y(y)$.

[5 marks]

c) The joint probability mass function of random variables X and Y is given by

$f_{XY}(x,y)$	y = 1	y = 2
x = 1	1/4	1/8
x = 2	1/4	3/8

while the marginal probability mass function of X is given by

	x = 1	x = 2	
$f_X(x)$	3/8	5/8	

Find the marginal probability mass function of Y. Are the random variables X and Y independent?

3/5

[6 marks]

Continued...

CSC

Question 3 (15 marks)

The state transition matrix of a discrete-time Markov Chain with state space {1,2,3,4} is given by

a) Draw the state transition diagram of the chain.

[4 marks]

b) Decompose the chain into equivalent classes. Determine whether each class is recurrent or transient.

[4 marks]

c) Find $P_{12}^{(4)}$, i.e. the probability of a particle to arrive at state 2 after four steps if the starting state is 1.

[7 marks]

Question 4 (20 marks)

The simplex tableau for a maximizing linear programming (LP) problem is shown below:

Iteration 0

Basic	Z	x_I	x_2	<i>X</i> 3	Sį	S-2	Solution
z	1	-3	-2	-1	0	0	0
SI	0	-1	0	2	1	0	4 .
S ₂	0	1	3	-1	0	1	5

a) Express the LP problem in its standard form, given s_1 and s_2 are the slack variables with $x_1, x_2, x_3, s_1, s_2 \ge 0$.

. [4 marks]

b) Find the optimal solution and optimal value by using simplex iteration method. [Hint: Iterations 1 and 2]

[16 marks]

Continued...

Question 5 (20 marks)

- a) Apply Kruskal's algorithm (with detailed steps) to find the minimal spanning tree of the graph below. Hence, draw the minimal spanning tree and specify its weight.

 [16 marks]
- b) Based on the concept of minimal spanning tree in part a), draw a maximal spanning tree and specify its weight. You do not need to show the steps.

[4 marks]

End of Paper