

Limites de fonctions

1 Théorie

Exercice 1

1. Montrer que toute fonction périodique et non constante n'admet pas de limite en $+\infty$.

2. Montrer que toute fonction croissante et majorée admet une limite finie en $+\infty$.

Indication ▼

Correction ▼

Vidéo

[000612]

Exercice 2

1. Démontrer que $\lim_{r\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{r} = 1$.

2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

3. Démontrer que $\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x+x^2} - 1) = \frac{1}{2}$.

Indication ▼

[000609]

2 **Calculs**

Exercice 3

Calculer lorsqu'elles existent les limites suivantes

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$

a)
$$\lim_{x\to 0} \frac{x^2+2|x|}{x}$$
 b) $\lim_{x\to -\infty} \frac{x^2+2|x|}{x}$ c) $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$

c)
$$\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$$

$$d$$
) $\lim_{x\to\pi} \frac{\sin^2 x}{1+\cos x}$

$$e) \lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$

d)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ f) $\lim_{x \to +\infty} \sqrt{x + 5} - \sqrt{x - 3}$

g)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
 h) $\lim_{x\to 1} \frac{x-1}{x^n-1}$

$$h) \lim_{x\to 1} \frac{x-1}{x^n-1}$$

Indication ▼

Correction ▼

Vidéo

[000616]

Exercice 4

Calculer, lorsqu'elles existent, les limites suivantes :

$$\lim_{x\to\alpha}\frac{x^{n+1}-\alpha^{n+1}}{x^n-\alpha^n},$$

$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)},$$

$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x},$$

$$\lim_{x \to \alpha^+} \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^2 - \alpha^2}}, \quad (\alpha > 0)$$

$$\lim_{x \to 0} xE\left(\frac{1}{x}\right),$$

$$\lim_{x \to 2} \frac{e^x - e^2}{x^2 + x - 6},$$

 $\lim_{x \to +\infty} \frac{x^4}{1 + x^{\alpha} \sin^2 x}, \text{ en fonction de } \alpha \in \mathbb{R}.$

Indication \blacktriangledown

Correction ▼

Vidéo 📕

[000628]

Exercice 5

Calculer:

$$\lim_{x \to 0} \frac{x}{2 + \sin \frac{1}{x}}, \quad \lim_{x \to +\infty} (\ln(1 + e^{-x}))^{\frac{1}{x}}, \quad \lim_{x \to 0^+} x^{\frac{1}{\ln(e^x - 1)}}.$$

Indication ▼

Correction ▼

Vidéo 📕

[000635]

Exercice 6

Trouver pour $(a,b) \in (\mathbb{R}^{+*})^2$:

$$\lim_{x\to 0^+} \left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}}.$$

Indication ▼

Correction ▼

Vidéo

[000638]

Exercice 7

Déterminer les limites suivantes, en justifiant vos calculs.

1.
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln x}$$

$$2. \lim_{x \to 0^+} 2x \ln(x + \sqrt{x})$$

3.
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 3}{x \ln x}$$

$$4. \lim_{x \to +\infty} \frac{e^{\sqrt{x}+1}}{x+2}$$

5.
$$\lim_{x \to 0^+} \frac{\ln(3x+1)}{2x}$$

6.
$$\lim_{x \to 0^+} \frac{x^x - 1}{\ln(x + 1)}$$

7.
$$\lim_{x \to -\infty} \frac{2}{x+1} \ln \left(\frac{x^3+4}{1-x^2} \right)$$

8.
$$\lim_{x \to (-1)^+} (x^2 - 1) \ln(7x^3 + 4x^2 + 3)$$

9.
$$\lim_{x \to 2^+} (x-2)^2 \ln(x^3-8)$$

10.
$$\lim_{x\to 0^+} \frac{x(x^x-1)}{\ln(x+1)}$$

- 11. $\lim_{x \to +\infty} (x \ln x x \ln(x+2))$
- 12. $\lim_{x \to +\infty} \frac{e^x e^{x^2}}{x^2 x}$
- 13. $\lim_{x\to 0^+} (1+x)^{\ln x}$
- $14. \lim_{x \to +\infty} \left(\frac{x+1}{x-3}\right)^x$
- 15. $\lim_{x \to +\infty} \left(\frac{x^3 + 5}{x^2 + 2} \right)^{\frac{x+1}{x^2 + 1}}$
- 16. $\lim_{x \to +\infty} \left(\frac{e^x + 1}{x + 2} \right)^{\frac{1}{x+1}}$
- 17. $\lim_{x \to 0^+} (\ln(1+x))^{\frac{1}{\ln x}}$
- 18. $\lim_{x \to +\infty} \frac{x^{(x^{x-1})}}{x^{(x^x)}}$
- $19. \lim_{x \to +\infty} \frac{(x+1)^x}{x^{x+1}}$
- 20. $\lim_{x \to +\infty} \frac{x\sqrt{\ln(x^2+1)}}{1+e^{x-3}}$

Correction ▼ [000623]

Indication pour l'exercice 1 ▲

- 1. Raisonner par l'absurde.
- 2. Montrer que la limite est la borne supérieure de l'ensemble des valeurs atteintes $f(\mathbb{R})$.

Indication pour l'exercice 2 ▲

Utiliser l'expression conjuguée.

Indication pour l'exercice 3 A

Réponses:

- 1. La limite à droite vaut +2, la limite à gauche -2 donc il n'y a pas de limite.
- 2. −∞
- 3. 4
- 4. 2
- 5. $\frac{1}{2}$
- 6. 0
- 7. $\frac{1}{3}$ en utilisant par exemple que $a^3 1 = (a-1)(1+a+a^2)$ pour $a = \sqrt[3]{1+x^2}$.
- 8. $\frac{1}{n}$

Indication pour l'exercice 4 ▲

- 1. Calculer d'abord la limite de $f(x) = \frac{x^k \alpha^k}{x \alpha}$.
- 2. Utiliser $\cos 2x = 2\cos^2 x 1$ et faire un changement de variable $u = \cos x$.
- 3. Utiliser l'expression conjuguée.
- 4. Diviser numérateur et dénominateur par $\sqrt{x-\alpha}$ puis utiliser l'expression conjuguée.
- 5. On a toujours $y 1 \le E(y) \le y$, poser y = 1/x.
- 6. Diviser numérateur et dénominateur par x 2.
- 7. Pour $\alpha \ge 4$ il n'y a pas de limite, pour $\alpha < 4$ la limite est $+\infty$.

Indication pour l'exercice 5 ▲

Réponses : $0, \frac{1}{e}, e$.

- 1. Borner $\sin \frac{1}{r}$.
- 2. Utiliser que $\ln(1+t) = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$.

4

3. Utiliser que $e^t - 1 = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$.

Indication pour l'exercice 6 ▲

Réponse : \sqrt{ab} .

1. Soit p > 0 la période : pour tout $x \in \mathbb{R}$, f(x+p) = f(x). Par une récurrence facile on montre :

$$\forall n \in \mathbb{N} \qquad \forall x \in \mathbb{R} \qquad f(x+np) = f(x).$$

Comme f n'est pas constante il existe $a, b \in \mathbb{R}$ tels que $f(a) \neq f(b)$. Notons $x_n = a + np$ et $y_n = b + np$. Supposons, par l'absurde, que f a une limite ℓ en $+\infty$. Comme $x_n \to +\infty$ alors $f(x_n) \to \ell$. Mais $f(x_n) = f(a + np) = f(a)$, donc $\ell = f(a)$. De même avec la suite $(y_n) : y_n \to +\infty$ donc $f(y_n) \to \ell$ et $f(y_n) = f(b + np) = f(b)$, donc $\ell = f(b)$. Comme $f(a) \neq f(b)$ nous obtenons une contradiction.

2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante et majorée par $M \in \mathbb{R}$. Notons

$$F = f(\mathbb{R}) = \{ f(x) \mid x \in \mathbb{R} \}.$$

F est un ensemble (non vide) de \mathbb{R} , notons $\ell = \sup F$. Comme $M \in \mathbb{R}$ est un majorant de F, alors $\ell < +\infty$. Soit $\varepsilon > 0$, par les propriétés du sup il existe $y_0 \in F$ tel que $\ell - \varepsilon \le y_0 \le \ell$. Comme $y_0 \in F$, il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = y_0$. Comme f est croissante alors :

$$\forall x \ge x_0$$
 $f(x) \ge f(x_0) = y_0 \ge \ell - \varepsilon$.

De plus par la définition de ℓ :

$$\forall x \in \mathbb{R} \ f(x) \le \ell.$$

Les deux propriétés précédentes s'écrivent :

$$\forall x \ge x_0 \qquad \ell - \varepsilon \le f(x) \le \ell.$$

Ce qui exprime bien que la limite de f en $+\infty$ est ℓ .

Correction de l'exercice 2 A

Généralement pour calculer des limites faisant intervenir des sommes de racines carrées, il est utile de faire intervenir "l'expression conjuguée" :

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x-y)(x+y) = x^2 - y^2$. Appliquons ceci sur un exemple :

$$\begin{split} f(x) &= \frac{\sqrt{1+x^m} - \sqrt{1-x^m}}{x^n} \\ &= \frac{(\sqrt{1+x^m} - \sqrt{1-x^m})(\sqrt{1+x^m} + \sqrt{1-x^m})}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{1+x^m - (1-x^m)}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^m}{x^n(\sqrt{1+x^m} + \sqrt{1-x^m})} \\ &= \frac{2x^{m-n}}{\sqrt{1+x^m} + \sqrt{1-x^m}} \end{split}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$. Distinguons plusieurs cas pour la limite de f en 0.

- Si m > n alors x^{m-n} , et donc f(x), tendent vers 0.
- Si m = n alors x^{m-n} et f(x) tendent vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{x^k}$ avec k = n m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont +∞. Pour k impair la limite à droite vaut +∞ et la limite à gauche vaut -∞. Conclusion pour k = n - m > 0 pair, la limite de f en 0 vaut $+\infty$ et pour k = n - m > 0 impair f n'a pas de limite en 0car les limites à droite et à gauche ne sont pas égales.

Correction de l'exercice 3

- 1. $\frac{x^2+2|x|}{x}=x+2\frac{|x|}{x}$. Si x>0 cette expression vaut x+2 donc la limite à droite en x=0 est +2. Si x<0 l'expression vaut -2 donc la limite à gauche en x=0 est -2. Les limites à droite et à gauche sont différentes donc il n'y a pas de limite en x = 0.
- 2. $\frac{x^2+2|x|}{x} = x + 2\frac{|x|}{x} = x 2$ pour x < 0. Donc la limite quand $x \to -\infty$ est $-\infty$.
- 3. $\frac{x^2-4}{x^2-3x+2} = \frac{(x-2)(x+2)}{(x-2)(x-1)} = \frac{x+2}{x-1}$, lorsque $x \to 2$ cette expression tend vers 4.
- 4. $\frac{\sin^2 x}{1+\cos x} = \frac{1-\cos^2 x}{1+\cos x} = \frac{(1-\cos x)(1+\cos x)}{1+\cos x} = 1-\cos x$. Lorsque $x \to \pi$ la limite est donc 2. 5. $\frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} = \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x} \times \frac{\sqrt{1+x}+\sqrt{1+x^2}}{\sqrt{1+x}+\sqrt{1+x^2}} = \frac{1+x-(1+x^2)}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{x-x^2}{x(\sqrt{1+x}+\sqrt{1+x^2})} = \frac{1-x}{\sqrt{1+x}+\sqrt{1+x^2}}$. Lorsque $x \to 0$ la limite vaut $\frac{1}{2}$
- 6. $\sqrt{x+5} \sqrt{x-3} = (\sqrt{x+5} \sqrt{x-3}) \times \frac{\sqrt{x+5} + \sqrt{x-3}}{\sqrt{x+5} + \sqrt{x-3}} = \frac{x+5-(x-3)}{\sqrt{x+5} + \sqrt{x-3}} = \frac{8}{\sqrt{x+5} + \sqrt{x-3}}$. Lorsque $x \to +\infty$, la
- 7. Nous avons l'égalité $a^3 1 = (a-1)(1+a+a^2)$. Pour $a = \sqrt[3]{1+x^2}$ cela donne :

$$\frac{a-1}{x^2} = \frac{a^3 - 1}{x^2(1+a+a^2)} = \frac{1+x^2 - 1}{x^2(1+a+a^2)} = \frac{1}{1+a+a^2}.$$

Lors que $x \to 0$, alors $a \to 1$ et la limite cherchée est $\frac{1}{3}$.

Autre méthode : si l'on sait que la limite d'un taux d'accroissement correspond à la dérivée nous avons une méthode moins astucieuse. Rappel (ou anticipation sur un prochain chapitre) : pour une fonction fdérivable en a alors

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

Pour la fonction $f(x) = \sqrt[3]{1+x} = (1+x)^{\frac{1}{3}}$ ayant $f'(x) = \frac{1}{3}(1+x)^{-\frac{2}{3}}$ cela donne en a = 0:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2} - 1}{x^2} = \lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \frac{1}{3}.$$

8. $\frac{x^n-1}{x-1}=1+x+x^2+\cdots+x^n$. Donc si $x\to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en 1 est $\frac{1}{n}$. La méthode avec le taux d'accroissement fonctionne aussi très bien ici. Soit $f(x) = x^n$, $f'(x) = nx^{n-1}$ et a = 1. Alors $\frac{x^n - 1}{x - 1} = \frac{f(x) - f(1)}{x - 1}$ tend vers f'(1) = n.

Correction de l'exercice 4 A

1. Montrons d'abord que la limite de

$$f(x) = \frac{x^k - \alpha^k}{x - \alpha}$$

en α est $k\alpha^{k-1}$, k étant un entier fixé. Un calcul montre que $f(x) = x^{k-1} + \alpha x^{k-2} + \alpha^2 x^{k-3} + \cdots + \alpha^{k-1}$; en effet $(x^{k-1} + \alpha x^{k-2} + \alpha^2 x^{k-3} + \dots + \alpha^{k-1})(x - \alpha) = x^k - \alpha^k$. Donc la limite en $x = \alpha$ est $k\alpha^{k-1}$. Une autre méthode consiste à dire que f(x) est la taux d'accroissement de la fonction x^k , et donc la limite de f en α est exactement la valeur de la dérivée de x^k en α , soit $k\alpha^{k-1}$. Ayant fait ceci revenons à la limite de l'exercice : comme

$$\frac{x^{n+1} - \alpha^{n+1}}{x^n - \alpha^n} = \frac{x^{n+1} - \alpha^{n+1}}{x - \alpha} \times \frac{x - \alpha}{x^n - \alpha^n}.$$

Le premier terme du produit tend vers $(n+1)\alpha^n$ et le second terme, étant l'inverse d'un taux d'accroissement, tend vers $1/(n\alpha^{n-1})$. Donc la limite cherchée est

$$\frac{(n+1)\alpha^n}{n\alpha^{n-1}} = \frac{n+1}{n}\alpha.$$

2. La fonction $f(x) = \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)}$ s'écrit aussi $f(x) = \frac{1 - \cos x}{\cos x (\cos 2x - \cos x)}$. Or $\cos 2x = 2\cos^2 x - 1$. Posons $u = \cos x$, alors

$$f(x) = \frac{1-u}{u(2u^2 - u - 1)} = \frac{1-u}{u(1-u)(-1-2u)} = \frac{1}{u(-1-2u)}$$

Lorsque x tend vers 0, $u = \cos x$ tend vers 1, et donc f(x) tend vers $-\frac{1}{3}$.

3.

$$\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} = \frac{\left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}\right)\left(\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}\right)}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}}$$

$$= \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1}$$

Quand $x \to +\infty$ alors $\frac{1}{\sqrt{x}} \to 0$ et $\frac{\sqrt{x+\sqrt{x}}}{x} = \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}} \to 0$, donc la limite recherchée est $\frac{1}{\sqrt{2}}$.

4. La fonction s'écrit

$$f(x) = \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^2 - \alpha^2}} = \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x - \alpha}\sqrt{x + \alpha}} = \frac{\frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}} - 1}{\sqrt{x + \alpha}}.$$

Notons $g(x) = \frac{\sqrt{x} - \sqrt{\alpha}}{\sqrt{x - \alpha}}$ alors à l'aide de l'expression conjuguée

$$g(x) = \frac{x - \alpha}{(\sqrt{x - \alpha})(\sqrt{x} + \sqrt{\alpha})} = \frac{\sqrt{x - \alpha}}{\sqrt{x} + \sqrt{\alpha}}.$$

Donc g(x) tend vers 0 quand $x \to \alpha^+$. Et maintenant $f(x) = \frac{g(x)-1}{\sqrt{x+\alpha}}$ tend vers $-\frac{1}{\sqrt{2\alpha}}$.

5. Pour tout réel y nous avons la double inégalité $y-1 < E(y) \le y$. Donc pour y > 0, $\frac{y-1}{y} < \frac{E(y)}{y} \le 1$. On en déduit que lorsque y tend vers $+\infty$ alors $\frac{E(y)}{y}$ tend 1. On obtient le même résultat quand y tend vers $-\infty$. En posant y = 1/x, et en faisant tendre x vers 0, alors $xE(\frac{1}{x}) = \frac{E(y)}{y}$ tend vers 1.

6. $\frac{e^x - e^2}{x^2 + x - 6} = \frac{e^x - e^2}{x - 2} \times \frac{x - 2}{x^2 + x - 6} = \frac{e^x - e^2}{x - 2} \times \frac{x - 2}{(x - 2)(x + 3)} = \frac{e^x - e^2}{x - 2} \times \frac{1}{x + 3}.$

La limite de $\frac{e^x - e^2}{x - 2}$ en 2 vaut e^2 ($\frac{e^x - e^2}{x - 2}$ est la taux d'accroissement de la fonction $x \mapsto e^x$ en la valeur x = 2), la limite voulue est $\frac{e^2}{5}$.

7. Soit $f(x) = \frac{x^4}{1+x^\alpha\sin^2x}$. Supposons $\alpha \ge 4$, alors on prouve que f n'a pas de limite en $+\infty$. En effet pour pour $u_k = 2k\pi$, $f(2k\pi) = (2k\pi)^4$ tend vers $+\infty$ lorsque k (et donc u_k) tend vers $+\infty$. Cependant pour $v_k = 2k\pi + \frac{\pi}{2}$, $f(v_k) = \frac{v_k^4}{1+v_k^\alpha}$ tend vers 0 (ou vers 1 si $\alpha = 4$) lorsque k (et donc v_k) tend vers $+\infty$. Ceci prouve que f(x) n'a pas de limite lorsque x tend vers $+\infty$.

Reste le cas α < 4. Il existe β tel que α < β < 4.

$$f(x) = \frac{x^4}{1 + x^{\alpha} \sin^2 x} = \frac{x^{4-\beta}}{\frac{1}{x^{\beta}} + \frac{x^{\alpha}}{x^{\beta}} \sin^2 x}.$$

Le numérateur tend $+\infty$ car $4-\beta>0$. $\frac{1}{x^{\beta}}$ tend vers 0 ainsi que $\frac{x^{\alpha}}{x^{\beta}}\sin^2 x$ (car $\beta>\alpha$ et $\sin^2 x$ est bornée par 1). Donc le dénominateur tend vers 0 (par valeurs positives). La limite est donc de type $+\infty/0^+$ (qui n'est pas indéterminée!) et vaut donc $+\infty$.

Correction de l'exercice 5

- 1. Comme $-1 \le \sin \frac{1}{x} \le +1$ alors $1 \le 2 + \sin \frac{1}{x} \le +3$. Donc pour x > 0, nous obtenons $\frac{x}{3} \le \frac{x}{2 + \sin \frac{1}{x}} \le x$. On obtient une inégalité similaire pour x < 0. Cela implique $\lim_{x \to 0} \frac{x}{2 + \sin \frac{1}{x}} = 0$.
- 2. Sachant que $\frac{\ln(1+t)}{t} \to 1$ lorsque $t \to 0$, on peut le reformuler ainsi $\ln(1+t) = t \cdot \mu(t)$, pour une certaine fonction μ qui vérifie $\mu(t) \to 1$ lorsque $t \to 0$. Donc $\ln(1+e^{-x}) = e^{-x}\mu(e^{-x})$. Maintenant

$$(\ln(1+e^{-x}))^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\ln(1+e^{-x})\right)\right)$$

$$= \exp\left(\frac{1}{x}\ln\left(e^{-x}\mu(e^{-x})\right)\right)$$

$$= \exp\left(\frac{1}{x}\left(-x+\ln\mu(e^{-x})\right)\right)$$

$$= \exp\left(-1+\frac{\ln\mu(e^{-x})}{x}\right)$$

 $\mu(e^{-x}) \to 1$ donc $\ln \mu(e^{-x}) \to 0$, donc $\frac{\ln \mu(e^{-x})}{x} \to 0$ lorsque $x \to +\infty$. Bilan: la limite est $\exp(-1) = \frac{1}{e}$.

3.

4. Sachant $\frac{e^x-1}{x} \to 1$ lorsque $x \to 0$, on reformule ceci en $e^x-1 = x \cdot \mu(x)$, pour une certaine fonction μ qui vérifie $\mu(x) \to 1$ lorsque $x \to 0$. Cela donne $\ln(e^x-1) = \ln(x \cdot \mu(x)) = \ln x + \ln \mu(x)$.

$$x^{\frac{1}{\ln(e^{x}-1)}} = \exp\left(\frac{1}{\ln(e^{x}-1)}\ln x\right)$$
$$= \exp\left(\frac{1}{\ln x + \ln \mu(x)}\ln x\right)$$
$$= \exp\left(\frac{1}{1 + \frac{\ln \mu(x)}{\ln x}}\right)$$

Maintenant $\mu(x) \to 1$ donc $\ln \mu(x) \to 0$, et $\ln x \to -\infty$ lorsque $x \to 0$. Donc $\frac{\ln \mu(x)}{\ln x} \to 0$. Cela donne

$$\lim_{x \to 0^+} x^{\frac{1}{\ln(e^x - 1)}} = \lim_{x \to 0^+} \exp\left(\frac{1}{1 + \frac{\ln \mu(x)}{\ln x}}\right) = \exp(1) = e.$$

Correction de l'exercice 6

Soit

$$f(x) = \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{a^x + b^x}{2}\right)\right)$$

 $a^x \to 1$, $b^x \to 1$ donc $\frac{a^x + b^x}{2} \to 1$ lorsque $x \to 0$ et nous sommes face à une forme indéterminée. Nous savons que $\lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$. Autrement dit il existe un fonction μ telle que $\ln(1+t) = t \cdot \mu(t)$ avec $\mu(t) \to 1$ lorsque $t \to 0$.

Appliquons cela à $g(x) = \ln\left(\frac{a^x + b^x}{2}\right)$. Alors

$$g(x) = \ln\left(1 + \left(\frac{a^x + b^x}{2} - 1\right)\right) = \left(\frac{a^x + b^x}{2} - 1\right) \cdot \mu(x)$$

où $\mu(x) \to 1$ lorsque $x \to 0$. (Nous écrivons pour simplifier $\mu(x)$ au lieu de $\mu(\frac{a^x + b^x}{2} - 1)$.)

Nous savons aussi que $\lim_{t\to 0} \frac{e^t-1}{t} = 1$. Autrement dit il existe un fonction v telle que $e^t-1 = t \cdot v(t)$ avec $v(t) \to 1$ lorsque $t \to 0$.

Appliquons ceci:

$$\frac{a^{x} + b^{x}}{2} - 1 = \frac{1}{2} (e^{x \ln a} + e^{x \ln b}) - 1$$

$$= \frac{1}{2} (e^{x \ln a} - 1 + e^{x \ln b} - 1)$$

$$= \frac{1}{2} (x \ln a \cdot v(x \ln a) + x \ln b \cdot v(x \ln b))$$

$$= \frac{1}{2} x (\ln a \cdot v(x \ln a) + \ln b \cdot v(x \ln b))$$

Reste à rassembler tous les éléments du puzzle :

$$f(x) = \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$$

$$= \exp\left(\frac{1}{x}\ln\left(\frac{a^x + b^x}{2}\right)\right)$$

$$= \exp\left(\frac{1}{x}g(x)\right)$$

$$= \exp\left(\frac{1}{x}\left(\frac{a^x + b^x}{2} - 1\right) \cdot \mu(x)\right)$$

$$= \exp\left(\frac{1}{x} \cdot \frac{1}{2} \cdot x(\ln a \cdot v(x\ln a) + \ln b \cdot v(x\ln b)) \cdot \mu(x)\right)$$

$$= \exp\left(\frac{1}{2}(\ln a \cdot v(x\ln a) + \ln b \cdot v(x\ln b)) \cdot \mu(x)\right)$$

Or $\mu(x) \to 1$, $\nu(x \ln a) \to 1$, $\nu(x \ln b) \to 1$ lorsque $x \to 0$. Donc

$$\lim_{x \to 0} f(x) = \exp\left(\frac{1}{2}(\ln a + \ln b)\right) = \exp\left(\frac{1}{2}\ln(ab)\right) = \sqrt{ab}.$$

Correction de l'exercice 7

- (a) −∞
- (b) 0
- (c) +∞
- (d) $+\infty$
- (e) $\frac{3}{2}$
- (f) -∞
- (g) 0
- (h) 0
- (i) 0
- (j) 0
- (k) -2
- (1) −∞
- (m) 1
- (n) e^4
- (o) 1
- (p) e
- (q) e
- (r) 0
- (s) 0
- (t) 0