List	Data Structure	Complexity	Justification
		Searching "For	According to the priority
VIP Orders	Priority Queue	enqueuing": O(N)	equation, the order with the
		Insert: O(1)	highest priority is enqueued first.
		Searching "to	We could have used a normal
		cancel": O(N)	Queue, but this would have
Normal Orders	Linked List		increased the complexity because
		Insert: O(1)	of the order cancel event, we had
			to empty the original queue to
			find the cancelled order then
			enqueue the orders once again.
			There is no priority and there is
Vegan Orders	Queue	Insert: O(1)	no order cancellation. So, orders
			are enqueued in sequence of
\#D 0 I			arrival.
VIP Cooks			At the start of the simulation,
			these lists are populated. After
			the assignment of cooks to orders
			they are moved to the in – service
Normal Cooks	Queue	Incort: O(1)	list then if any of them should have a break then he is moved to
NOTHIAI COOKS	Queue	Insert: O(1)	the Breaks' lists then after
			finishing the break he is moved to
			this list again. They are separated
			because vegan orders must be
			served from vegan cooks so, we
Vegan Cooks			can't make one queue for all free
Vegan cooks			cooks.
VIP in Break		Remove	If any cook finished his max
VIII III DI GUN		"Dequeue" :O(1)	number of orders then after we
Normal in Break	Queue	Add "Enqueue"	remove him from in – service list,
	,	:O(1)	we will enqueue him in his break
Vegan in Break			queue. We separated each cook
			because of the service criteria.
Finished Orders	Queue		To print the finished orders in
			their order (FIFO).

			We will implement a struct
In Service		Insert: O(1)	containing the in - service orders
Orders and	Linked List	Delete: O(N)	and their assigned cooks and then
Cooks			we will insert them in a linked list,
			due to different time steps and
			service time of each order.