Mixed model with LMMstar - Part 3 Estimation, statistical inference, and prediction

Brice Ozenne^{1,2}, Julie Lyng Forman² brice.ozenne@nru.dk

June 7th 2022, Method week at Karolinska Institutet

¹ Section of Biostatistics, Department of Public Health, University of Copenhagen.

 $^{^{2}}$ Neurobiology Research Unit, University Hospital of Copenhagen, Rigshospitalet.

Recap'

Hierarchical data: p (baseline) covariates X and m outcomes Y

Patient

•000

Measurement

Recap'

Hierarchical data: p (baseline) covariates **X** and m outcomes **Y**

Introduction

Measurement

Statistical model: multivariate Gaussian

$$\mathbf{Y}_i = \mathbf{X}_i \beta + \boldsymbol{\varepsilon}_i$$
, where $\boldsymbol{\varepsilon}_i = (\varepsilon_{1i}, \dots, \varepsilon_{mi}) \sim \mathcal{N}(0, \Omega(\mathbf{X}_i, \gamma))$

- $\mu(\mathbf{X}, \beta) = \mathbf{X}\beta$ modeled mean
- $\Omega(\mathbf{X}, \gamma)$ modeled residual variance-covariance.
- $\Theta = (\beta, \gamma)$ model parameters

Example: abeta study

```
eLMM.abeta <- lmm(fast ~ group*year,
repetition = ~year|id,
structure = UN(~group),
data = abetaL, control = list(optimizer = "FS"))
```


Introduction

Notation: abeta study

```
\widehat{\beta}
    coef(eLMM.abeta, effects = "mean")
    (Intercept)
                       groupHC
                                         year1 groupHC:year1
      15.574713
                    -13.961076
                                     -4.489151
                                                     3.642689
\hat{\gamma}
    coef(eLMM.abeta, effects = c("var","cor"))
  sigma:BD
               sigma:HC
                              k.1:BD
                                            k.1:HC rho(0,1):BD rho(0
11.5008923
              1.7812448
                           0.9468697
                                        0.6331572
                                                      0.7531450
ô
    sigma(eLMM.abeta)
$BD
                              $HC
  132,2705
             94.3261
                              0 3.1728327 0.6096141
   94.3261
                              1 0.6096141 1.2719508
            118.5888
```

Introduction

Part 3

How does the software estimates $\Theta = (\beta, \gamma)$? How can the user tune the corresponding optimization procedure?

• argument control in 1mm

How can we contrast the estimates $\widehat{\Theta} = (\widehat{\beta}, \widehat{\gamma})$?

 method anova (linear contrasts) and estimate (non-linear contrasts)

How can we predict new/missing outcome values, e.g. get $\widehat{\mathbb{E}}[Y_{im}|\mathbf{X}_i]$? $\widehat{\mathbb{E}}[Y_{im}|\mathbf{X}_i, Y_{1i}, \dots, Y_{(m-1)i}]$?

method prediction

General idea

Model parameters $\Theta = (\beta, \gamma)$ are estimated by maximizing an **objective function** with respect to the data

• what parameters makes the observed data most likely?

General idea

Model parameters $\Theta = (\beta, \gamma)$ are estimated by maximizing an objective function with respect to the data

• what parameters makes the observed data most likely?

Toy example: univariate linear model

$$Y_1 = \mu + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}\left(0, \sigma^2\right)$

Idea: find the maximum, i.e. when the score is 0

Idea: find the maximum, i.e. when the score is 0

• start somewhere: μ_0

Idea: find the maximum, i.e. when the score is 0

- start somewhere: μ₀
- learn from mistake: evaluate the "error" $\mathcal{S}(\mu_0)$ update to reduce the error

$$\mu_1 = \mu_0 + \alpha \mathcal{S}(\mu_0)$$
, often $\alpha = \mathcal{I}^{-1}(\mu_0)$

Idea: find the maximum, i.e. when the score is 0

- start somewhere: μ₀
- learn from mistake: evaluate the "error" $\mathcal{S}(\mu_0)$ update to reduce the error $\mu_1 = \mu_0 + \alpha \mathcal{S}(\mu_0)$, often $\alpha = \mathcal{I}^{-1}(\mu_0)$

$$ullet$$
 iterate until the error is neglectable, i.e. $\mathcal{S}(\mu_k)pprox 0$

FS optimizer

Initialization:

- ordinary least square for β
- ullet residual variance/correlation for γ

Estimation by iterating between:

- gradient descent for γ : $\gamma_{k+1} = \gamma_k + \alpha S(\gamma_k)$ (given β)
- compute the GLS estimator of β (given γ)
- check convergence and increase in log-likelihood¹

otherwise partial update (e.g. $\alpha \leftarrow \alpha/2$)

FS optimizer

Initialization:

- ordinary least square for β
- ullet residual variance/correlation for γ

Estimation by iterating between:

- gradient descent for γ : $\gamma_{k+1} = \gamma_k + \alpha S(\gamma_k)$ (given β)
- compute the GLS estimator of β (given γ)
- check convergence and increase in log-likelihood¹

 \triangle to satisfy constraints on γ , e.g. variance must be positive

• log-transform for variance, atanh transform for correlation

otherwise partial update (e.g. $\alpha \leftarrow \alpha/2$)

```
eLMM.abeta fs <- lmm(fast \sim group*year, data = abetaL,
       repetition = \simyear|id, structure = UN(\simgroup),
       control = list(optimizer = "FS", trace = 5))
```

```
Initialization:
```

```
(Intercept)
             groupHC
                             year1 groupHC:year1
                                                    si
15.5747126 -13.9610763
                         -4.5473154 3.7141668
                                                  11.5
```

```
Loop:
 iteration 1: logLik=-729.624041
          (Intercept)
                           groupHC year1 groupHC:year1
 estimate 1.557471e+01 -1.396108e+01 -4.48915269 3.64270819
 diff
         1.207923e-13 -1.207923e-13 0.05816269 -0.07145864
                  NΑ
                               NΑ
                                           NΑ
                                                        NΑ
 score
             sigma:BD sigma:HC
                                      k.1:BD k.1:HC
 estimate 1.150101e+01 1.781274e+00 0.946870688
                                              0.6331082708
 diff
         1.163441e-04 2.879615e-05 -0.003847878 -0.0009589621
         9.781768e-03 7.494316e-03 -0.684912654 -0.0648472211
 score
```

Visualization of the objective function

"FS" performs Restricted Maximum Likelihood (REML), i.e. maximizes:

$$\mathcal{L}(\Theta|\mathbf{Y},\mathbf{X}) \propto -\frac{1}{2}\log\left|\sum_{i=1}^{n}\mathbf{X}_{i}\Omega^{-1}(\mathbf{X}_{i},\gamma)\mathbf{X}_{i}^{\mathsf{T}}\right| - \frac{1}{2}\sum_{i=1}^{n}\log\left|\Omega(\mathbf{X}_{i},\gamma)\right| + (\mathbf{Y}_{i} - \mathbf{X}_{i}\beta)\Omega(\mathbf{X}_{i},\gamma)^{-1}(\mathbf{Y}_{i} - \mathbf{X}_{i}\beta)^{\mathsf{T}}$$

Other optimizers

gls:

- ightharpoonup parameter transformation ensuring positive definite Ω (Pinheiro and Bates, 1996)
- ✗ no feedback from the optimization procedure

optim optimizer (e.g. BFGS):

ullet simulateneous search over eta and γ (do not use GLS estimator)

Exercise 1

The following code returns a convergence issue:

```
eLMM.debug <- lmm(weight ~ glucagonAUC,
   data = gastricbypassL,
   repetition = ~visit|id,
   structure = "UN",
   control = list(optimizer = "FS")
   ) # line 108</pre>
```

- what is the issue?
- can you find remedies?
 - choice of the optimizer
 - number of iterations
 - starting point
 - ...

Visualization of the log-likelihood

Ill-defined model due to lack of visit effects on the mean

Contrasting estimates

The optimization procedure provides estimates, e.g. $\widehat{\beta} = (\widehat{\beta}_1, \widehat{\beta}_2)$:

Contrasting estimates

The optimization procedure provides estimates, e.g. $\widehat{\beta} = (\widehat{\beta}_1, \widehat{\beta}_2)$:

But we may be interested in different combination of coefficients:

- time evolution $\widehat{\psi}_1 = \widehat{\beta}_2$
- value at year 1 = baseline value + time evolution $\hat{\psi}_2 = \hat{\beta}_1 + \hat{\beta}_2$

Contrasting estimates

The optimization procedure provides estimates, e.g. $\widehat{\beta} = (\widehat{\beta}_1, \widehat{\beta}_2)$:

But we may be interested in different combination of coefficients:

• time evolution
$$\widehat{\psi}_1 = \widehat{\beta}_2$$

$$\hat{\psi}_2 = \hat{\beta}_1 + \hat{\beta}_2$$

$$\widehat{\psi} = C\widehat{eta}$$
 where $C = egin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ (contrast matrix)

Contrasting estimates with anova

Using a "text" formula:

```
anova(eLMM.abeta,
    effects = c("groupHC=0",
    "groupHC+groupHC:year1=0"))
```

Can be named:

Contrasting estimates with anova

Using a "text" formula:

```
anova(eLMM.abeta,
      effects = c("groupHC=0",
    "groupHC+groupHC:year1=0"))
```

Can be named:

```
eANOVA.group <- anova(eLMM.abeta,
        effects = c("baseline" = "groupHC=0",
      "follow-up" = "groupHC+groupHC:year1=0"))
```

should refer to model parameters not variables (e.g. groupHC not "group")

Quantifying uncertainty

The optimization procedure quantifies the precision of $\widehat{\beta}$

• information matrix $\widehat{\mathcal{I}}_{\widehat{\Theta}} = -\frac{\partial^2 \mathcal{L}(\widehat{\Theta}|\mathcal{O})}{\partial \Theta^2}$ \rightarrow curvature of the log-likelihood

Quantifying uncertainty

The optimization procedure quantifies the precision of $\widehat{\beta}$

- information matrix $\widehat{\mathcal{I}}_{\widehat{\Theta}} = -\frac{\partial^2 \mathcal{L}(\widehat{\Theta}|\mathcal{O})}{\partial \Theta^2}$ \rightarrow curvature of the log-likelihood
 - 9lucagonAUC -250 sigma rho(1,2)
 -500 -1e+10 -300 -1000 -1500

The variance of a linear contrast can be deduced:

$$ullet$$
 $\widehat{\Sigma}_{\widehat{\psi}} = C\widehat{\mathcal{I}}_{\widehat{\beta}}^{-1}C^{\mathsf{T}}$

Statistical tests

Univariate Wald test:

• compare the estimate to its standard error

$$\frac{\widehat{\beta}_1}{\sqrt{\Sigma_{\widehat{\beta}_1}}}$$

Multivariate Wald test (F-test):

$$\widehat{eta} \mathbf{\Sigma}_{\widehat{eta}}^{-1} \widehat{eta}^{\intercal}$$

 distance to the orgine of the vector of estimates (after normalization by the uncertainty)

(CIs/p-values not adjusted for multiple comparisons)

Wald/F-tests

```
summary(eANOVA.group, method = "none")
```

```
|| User-specified linear hypotheses ||
- Multivariate Wald test (global null hypothesis)
F-statistic df.num df.denom p.value
              2 88.908
    61.517
                            0 ***
- Univariate Wald test (individual null hypotheses)
        estimate
                            df
                                lower upper p.value
                    se
baseline -13.9611 1.2619 93.9457 -16.4667 -11.456 < 1e-05 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Standard errors: model-based
```

Distributional results

Estimates are asymptotically jointly normally distributed and so are linear contrasts $C\widehat{\beta}$.

Distributional results

Estimates are asymptotically jointly normally distributed and so are linear contrasts $C\widehat{\beta}$.

True in finite sample when the log-likelihood is (locally) quadratic (Geyer, 2013)

Adjustment for multiple comparisons

summary(eANOVA.group)

```
|| User-specified linear hypotheses ||
```

- Multivariate Wald test (global null hypothesis)

```
F-statistic df.num df.denom p.value
    61.517
               2 88.908
```

- Univariate Wald test (individual null hypotheses)

```
estimate
                  df
                      lower upper p.value
             se
baseline -13.9611 1.2619 93.9457 -16.7612 -11.1609 < 1e-05 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Standard errors: model-based

(CIs/p-values adjusted for multiple comparisons -- max-test adjust Adjusted CIs/p-values computed using 1e+05 samples.

Exercise 2

```
lmm(aix ~ time + time:treat,
    repetition = ~time:treat|id,
    structure = UN,
    data = ckdL,
    control = list(optimizer = "FS")
    ) # line 207
allocation

allocation
```

```
(Intercept) time12 time24 time12:treatB time24:treatB 23.25499 1.299417 3.475746 -2.158075 -4.069283
```

time

Compute the average time effect in group B

• how much patients differ from baseline at 12 and 24 weeks?

Static vs. dynamic predictions

Static: prediction conditional on the covariates:

•
$$\mathbb{E}[Y_{1i}|X_i] = X_{1i}\beta$$

 $\mathbb{E}[Y_{mi}|X_i] = X_{mi}\beta$

Dynamic: prediction conditional on the covariates and observed outcomes from the same cluster:

$$\mathbb{E}\left[Y_{im}|X_{i},Y_{1i}\right] = \mathbb{E}\left[Y_{im}|X_{i}\right] + \mathbb{C}ov\left(Y_{mi},Y_{1i}\right)\frac{Y_{1i} - \mathbb{E}\left[Y_{1i}|X_{i}\right]}{\mathbb{V}ar\left[Y_{1i}\right]}$$

Static vs. dynamic predictions

Static: prediction conditional on the covariates:

•
$$\mathbb{E}\left[Y_{1i}|X_i\right] = X_{1i}\beta$$

 $\mathbb{E}\left[Y_{mi}|X_i\right] = X_{mi}\beta$

Dynamic: prediction conditional on the covariates and observed outcomes from the same cluster:

$$\mathbb{E}\left[Y_{im}|X_{i},Y_{1i}\right] = \mathbb{E}\left[Y_{im}|X_{i}\right] + \mathbb{C}ov\left(Y_{mi},Y_{1i}\right) \frac{Y_{1i} - \mathbb{E}\left[Y_{1i}|X_{i}\right]}{\mathbb{V}ar\left[Y_{1i}\right]}$$

$$= X_{mi}\beta + \rho_{i}(m,1)\sigma_{mi} \underbrace{\frac{Y_{1i} - X_{1i}\beta}{\sigma_{1i}}}_{\text{normalized residual rescaled on }Y_{m}}$$

Prediction - illustration (1/2)

Consider the dataset:

```
id group year fast
3 2 BD 0 32
4 2 BD 1 NA
```

and the mixed model:

```
eLMM.abeta <- lmm(fast ~ 0+group+group:year,
    repetition = ~year|id, structure = UN(~group),
    data = abetaL, control = list(optimizer = "FS"))
eTHETA <- coef(eLMM.abeta, effects = "all")</pre>
```

```
groupBD:year1 groupHC:year1
-4.4891511 -0.8464617
```

Prediction - illustration (2/2)

Static prediction:

```
predict(eLMM.abeta, newdata = dfi[2,,drop=FALSE])
```

```
estimate se df lower upper 1 11.08556 1.215013 82.8635 8.66889 13.50223
```

Normalized residual:

```
(dfi$fast[1] - eTHETA["groupBD"])/eTHETA["sigma:BD"]
```

```
groupBD
1.428175
```

Dynamic prediction:

```
predict(eLMM.abeta, newdata = dfi,
  type = "dynamic", keep.newdata = TRUE)
```

	${\tt id}$	group	year	fast	estimate	se	df	lower	upper	
1	2	BD	0	32	NA	NA	NA	NA	NA	
2	2	BD	1	NA	22.79893	2.215132	Inf	18.45735	27.14051	

Imputation - illustration

Combined observed and predicted outcome values:

Average within group:

```
abetaA <- merge(dfi, abetaW, by = "id", sort = FALSE)
tapply(abetaA$fast.1-abetaA$fast.0, abetaA$group, mean)</pre>
```

```
BD HC -4.4891511 -0.8464617
```

Exercise 3

Consider the following model:

```
eLMM.ckd <- lmm(aix ~ 0 + time + time:treat,
repetition = ~time.treat|id, structure = UN,
data = ckdL, control = list(optimizer = "FS")
) # line 346
```

and dataset:

```
ckdL[ckdL$id==29,c(1,6,8,10,11)]
```

```
id time aix treat time.treat
1 29 0 15.5 A 0.A
52 29 12 18.0 B 12.B
103 29 24 NA B 24.B
```

What is the expected aix value for individual 29 at time 24:

- given its group membership and time?
- given its group membership, time, and the observed aix?

Conclusion

Conclusion

LMMstar implements "covariance pattern" mixed models, with focus on:

- user-friendly interface
- statistical inference
- model diagnostic

More details in the vignette of the package.

Possible improvements:

- more covariance patterns
- more robust optimizer (e.g. spherical reparametrization)
- computational speed

Bug report

Unexpected behavior of the LMMstar package can be reported to: https://github.com/bozenne/LMMstar/issues.

Note: this makes your request visible to other users,

Please include a **minimal reproducible example** ² in your report, otherwise it is likely that we will not be able to identify and solve the issue.

We do NOT provide support for other packages or R programming in general.

https://stackoverflow.com/help/minimal-reproducible-example

Comments, suggestions?

Reference I

- Geyer, C. J. (2013). Asymptotics of maximum likelihood without the IIn or clt or sample size going to infinity. In Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton, pages 1-24. Institute of Mathematical Statistics.
- Pinheiro, J. C. and Bates, D. M. (1996). Unconstrained parametrizations for variance-covariance matrices. Statistics and computing, 6(3):289–296.

Exercise 2 bis

```
lmm(fast ~ group*year,
    repetition = ~year|id,
    structure = UN(~group),
    data = abetaL,
    control = list(optimizer = "FS")
    ) # line 243
```

Investigate whether:

- the variance structure depends on time and disease status.
- the correlation structure depends on disease status.

the scale used for statistical inference matters (e.g. original vs. log/atanh), see arguments transform.sigma and transform.rho.