An Autonomous Institute under MAKAUT

BTECH/CSE/EVEN/04/R18/Backlog/CS402/2022-2023 YEAR: 2023

# Design & Analysis of Algorithms CS402

TIME ALLOTTED: 3 HOURS FULL MARKS: 70

The figures in the margin indicate full marks.

# Candidates are required to give their answers in their own words as far as practicable $\mathbf{GROUP} - \mathbf{A}$

(Multiple Choice Type Questions)

|       | 1. Answer any <i>ten</i> from the following, choosing the correct alternative of each of | question: 10: |    |                             |
|-------|------------------------------------------------------------------------------------------|---------------|----|-----------------------------|
| SL    | Question                                                                                 | Marks         | Co | Blooms<br>Taxonomy<br>Level |
| (i)   | Which of the following are characteristics of an                                         | 1             | 1  | 1                           |
|       | algorithm?                                                                               |               |    |                             |
|       | A. Algorithm should be clear                                                             |               |    |                             |
|       | B. Algorithm should be unambiguous                                                       |               |    |                             |
|       | C. Algorithms must terminate after a finite number of                                    |               |    |                             |
|       | steps                                                                                    |               |    |                             |
|       | D. All of the above                                                                      |               |    |                             |
| (ii)  | An algorithm should have well-defined inputs.                                            | 1             | 1  | 1                           |
|       | A. 0                                                                                     |               |    |                             |
|       | B. 1                                                                                     |               |    |                             |
|       | C. 0 or more                                                                             |               |    |                             |
|       | D. 1 or more                                                                             |               |    |                             |
| (iii) | An is defined as a set of well-defined instructions                                      | 1             | 1  | 1                           |
|       | used to accomplish a particular task.                                                    |               |    |                             |
|       | a. Algorithm                                                                             |               |    |                             |
|       | b. Function                                                                              |               |    |                             |
|       | c. Program                                                                               |               |    |                             |
|       | d. Procedure                                                                             |               |    |                             |
| (iv)  | of an algorithm is the amount of time required for it to                                 | 1             | 1  | 2                           |
|       | execute.                                                                                 |               |    |                             |
|       | a. Time complexity                                                                       |               |    |                             |
|       | b. Space complexity                                                                      |               |    |                             |
|       | c. Compiling time                                                                        |               |    |                             |
|       | d. Best case                                                                             |               |    |                             |
| (v)   | is not a balanced search tree.                                                           | 1             | 1  | 2                           |
|       | a. AVL tree                                                                              |               |    |                             |
|       | b. Binary tree                                                                           |               |    |                             |
|       | c. Red-black tree                                                                        |               |    |                             |
|       | d. B-tree                                                                                |               |    |                             |
| (vi)  | The two main conditions for theta notation are                                           | 1             | 2  | 2,3,4                       |
|       | and                                                                                      |               |    |                             |
|       | a. $f(n)=O(g(n)), f(n)\neq\Theta(g(n))$                                                  |               |    |                             |

An Autonomous Institute under MAKAUT

|        | GROUP - B                                                   |   |   |     |
|--------|-------------------------------------------------------------|---|---|-----|
|        | d) Queue                                                    |   |   |     |
|        | c) Stack                                                    |   |   |     |
|        | b) Linked list                                              |   |   |     |
|        | a) Array                                                    |   |   |     |
|        | implementing a hash table?                                  |   |   |     |
| (xii)  | Which of the following data structures is best suited for   | 1 | 2 | 4   |
|        | d) Kruskal's algorithm                                      |   |   |     |
|        | c) Floyd-Warshall algorithm                                 |   |   |     |
|        | b) Bellman-Ford algorithm                                   |   |   |     |
|        | a) Dijkstra's algorithm                                     |   |   |     |
|        | positive and negative edges?                                |   |   |     |
| ` /    | shortest path between all pairs of vertices in a graph with |   |   |     |
| (xi)   | Which of the following algorithms is used to find the       | 1 | 2 | 4   |
|        | d) Ford-Fulkerson algorithm                                 |   |   |     |
|        | c) Edmonds-Karp algorithm                                   |   |   |     |
|        | b) Bellman-Ford algorithm                                   |   |   |     |
|        | a) Dijkstra's algorithm                                     |   |   |     |
|        | change over time?                                           |   |   |     |
| ()     | maximum flow in a network with capacities that can          | - | - | 5   |
| (x)    | Which of the following algorithms is used to find the       | 1 | 3 | 3   |
|        | Answer: a) Longest Common Subsequence                       |   |   |     |
|        | d) Breadth First Search                                     |   |   |     |
|        | c) Depth First Search                                       |   |   |     |
|        | b) Binary Search                                            |   |   |     |
|        | a) Longest Common Subsequence                               |   |   |     |
|        | problem?                                                    |   |   | •   |
| (ix)   | Which of the following is a dynamic programming             | 1 | 2 | 3,4 |
|        | d. Insertion sort                                           |   |   |     |
|        | c. Brute force                                              |   |   |     |
|        | b. Greedy                                                   |   |   |     |
|        | a. Binary search                                            |   |   |     |
|        | between the element and the array given.                    |   |   |     |
| (viii) | The basic operation of the algorithm is the comparison      | 1 | 2 | 3,4 |
|        | d. Huffman code                                             |   |   |     |
|        | c. Kruskal's                                                |   |   |     |
|        | b. Dijkstra's                                               |   |   |     |
|        | a. Prim's                                                   |   |   |     |
| •      | shortest path problem for a tree?                           |   |   |     |
| (vii)  | Which algorithm finds the solution for the single-source    | 1 | 2 | 3,4 |
|        | d. $f(n)>O(g(n))$ , $f(n)>O(g(n))$                          |   |   |     |
|        | c. $f(n) \neq O(g(n))$ , $f(n) \geq O(g(n))$                |   |   |     |
|        | b. $f(n)>O(g(n))$ , $f(n)=\Theta(g(n))$                     |   |   |     |

An Autonomous Institute under MAKAUT

# (Short Answer Type Questions) (Answer any three of the following) $3 \times 5 = 15$

|    | SL   | Question                                                                                                                       | Marks | s Co  |    | Blooms<br>Taxonomy          |
|----|------|--------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|-----------------------------|
| 2. |      | What is Algorithm. Explain 5 characteristics of an algorithm.                                                                  | 5     | 1     |    | Level<br>1                  |
| 3. |      | Write a recursive algorithm for calculating the factorial of a number.                                                         | 5     | 1     |    | 1                           |
| 4. |      | Find optimal solution to the knapsack problem instance $n=6$ , $m=15$ , $(p1p6) = (10,5,15,7,6,18)$ , $(w1w6) = (2,3,5,7,1,4)$ | 5     | 2     |    | 2                           |
| 5. |      | Differentiate between DFS and BFS with example.                                                                                | 5     | 3     |    | 1                           |
| 6. |      | Write an algorithm for Naïve Algorithm.  GROUP - C  (Long Answer Type Questions)                                               | 5     | 4     |    | 1                           |
|    |      | (Answer any three of the following) $3 \times 15 = 45$                                                                         |       |       |    |                             |
| S  | L    | Question                                                                                                                       | ľ     | Marks | Co | Blooms<br>Taxonomy<br>Level |
| 7. | (i)  | State Master Theorem. Solve the recurrence relation using Master Theorem: $T = 2(T/2) + n^2 + 2n + 55$                         |       | 2+5   | 1  | 1                           |
|    | (ii) | ·                                                                                                                              |       | 8     | 3  | 1                           |
| 8. | (i)  | Consider the following example and solve through Dijkstra Algorithm.                                                           | ı     | 7     | 4  | 2                           |
|    | (ii) | Differentiate between 0/1 and Fractional Knapsack problem with example.                                                        |       | 4+4   | 4  | 2                           |
| 9. | (i)  | Write pseudo code for Naïve algorithm.                                                                                         |       | 5     | 4  | 1                           |
|    | (ii) | Explain Knight tour on chess board with an example.  Measure the time complexity.                                              |       | 10    | 4  | 1                           |

An Autonomous Institute under MAKAUT

Solve Maxflow Mincut theorem with the following 15 5 are examples:



Write a short note on: Dynamic Programming, Relation 5x3 5 between P, NP, and NP Hard Class, Backtracking.