Zeros of Exponential Functions

We examine the zeros of exponential and logarithmic functions.

Introduction

Zeros of Exponential Functions

As we saw previously, there are two varieties of elementary exponential functions: Increasing and Decreasing. The exponential function f given by $f(x) = b^x$ is increasing if b > 1 and decreasing if 0 < b < 1. Graphically, the two situations resemble the following.

These functions have domain $(-\infty, \infty)$ and range $(0, \infty)$. Notice that 0 is not in the range. That means the exponential function $f(x) = b^x$ has no zeros. The translated exponential functions, however, $g(x) = b^x + c$ will have a zero if c is negative.

Callout. Remember that the natural logarithm, ln(x), is the inverse of the exponential function e^x .

That means the composition $\ln(e^x) = x$ for all values of x. If we isolate the exponential on one side of our equation, we can use the logarithm to "undo" it.

Example 1. Let f be the function given by $f(x) = 4e^x - 5$. Find the zeros of f.

Learning outcomes: Author(s): Bobby Ramsey Explanation.

$$f(x) = 0$$

$$4e^{x} - 5 = 0$$

$$4e^{x} = 5$$

$$e^{x} = \frac{5}{4}$$

$$\ln(e^{x}) = \ln\left(\frac{5}{4}\right)$$

$$x = \ln\left(\frac{5}{4}\right)$$

This function has only a single zero, at $x = \ln\left(\frac{5}{4}\right)$.

The key to finding the zero in this example was being able to use the inverse function of e^x to bring down that variable. By examining the graphs of the exponentials above, you will notice that they pass the horizontal line test. That is, the exponential function $f(x) = b^x$ is a one-to-one function for any b > 0, $b \neq 1$. This means each of those exponential functions has an inverse, not just the base e exponential. These inverses are called logarithms.

Definition 1. For a constant b > 0, $b \neq 1$, the **logarithm** with base b, $\log_b(x)$, is the inverse of the exponential function b^x . The domain of $\log_b(x)$ is $(0, \infty)$ and the range of $\log_b(x)$ is $(-\infty, \infty)$.

Remember that if f and f^{-1} are inverse functions, the domain of f is the range of f^{-1} , and the range of f is the domain of f^{-1} .

That the functions given by $\log_b(x)$ and b^x are inverses means:

(a)
$$\log_b(b^x) = x$$
 for all x in $(-\infty, \infty)$

(b)
$$b^{\log_b(x)} = x$$
 for all x in $(0, \infty)$

The graphs of the exponentials b^x allow us to find the graphs of the corresponding logarithms by reflecting across the line y = x. For b > 1 we have this graph.

For 0 < b < 1 we have this graph.

Here is a link to exponential functions and logarithms plotted on the same graph in Desmos. Move the slider for the base value of b and see how the two graphs respond. Desmos link: https://www.desmos.com/calculator/q0aivjmasd.

Example 2. Let g be the function given by $g(x) = 2 \cdot 6^x - 5$. Find the zeros of

the function g.

Explanation. Be careful with the order of operations here. Remember that $2 \cdot 6^x$ is not the same as 12^x .

$$g(x) = 0$$

$$2 \cdot 6^x - 5 = 0$$

$$2 \cdot 6^x = 5$$

$$6^x = \frac{5}{2}$$

$$\log_6(6^x) = \log_6\left(\frac{5}{2}\right)$$

$$x = \log_6\left(\frac{5}{2}\right)$$

The function g has a zero at $x = \log_6\left(\frac{5}{2}\right)$.

Example 3. Let h be the function given by $h(t) = \left(\frac{1}{2}\right)^t + 3$. Find the zeros of h.

Explanation.

$$h(t) = 0$$

$$\left(\frac{1}{2}\right)^{t} + 3 = 0$$

$$\left(\frac{1}{2}\right)^{t} = -3$$

Our next step would be to take the logarithm, base $\frac{1}{2}$, of both sides to isolate the variable t, but that would mean taking the logarithm of -3. The domain of $\log_{1/2}(t)$ is $(0,\infty)$, so the logarithm of -3 does not exist. Said another way, the function $\left(\frac{1}{2}\right)^t$ has range $(0,\infty)$, so there is no value of t for which $\left(\frac{1}{2}\right)^t$ is -3.

This function has no zeros.

Notice that 0 is in the range of the logarithms. The fact that $b^0 = 1$ for all $b \neq 0$, means that for each logarithm, $\log_b(1) = 0$. Each logarithm $\log_b(x)$ has a zero at x = 1. If the function is modified, we can use the fact that $b^{\log_b(x)} = x$ for all x in $(-\infty, \infty)$ to find the zeros.

Example 4. Let f be the function given by $f(x) = 3\log_5(x) + 7$. Find the zeros of f.

Explanation.

$$f(x) = 0$$

$$3 \log_5(x) + 7 = 0$$

$$3 \log_5(x) = -7$$

$$\log_5(x) = -\frac{7}{3}$$

$$5^{\log_5(x)} = 5^{-\frac{7}{3}}$$

$$x = 5^{-\frac{7}{3}}$$

The function f has a zero at $x = 5^{-\frac{7}{3}}$.

Example 5. Let k be the function given by $k(t) = \frac{2t \log_5(t)}{3e^t + 1}$. Find the zeros of f.

Explanation. We know that a fraction is zero precisely when the numerator is zero.

$$k(t) = 0$$
$$2t \log_5(t) = 0$$

Setting these factors equal to zero we find either 2t=0, giving us the possible zero at t=0, or $\log_5(t)=0$, giving us the possible zero at t=1. Let us check them.

$$k(1) = \frac{2(1)\log_5(1)}{3e^1 + 1}$$
$$= \frac{2(0)}{3e + 1} = 0$$

However, t=0 is not in the domain of k, since the $\log_5(t)$ factor would be undefined.

The function k has a zero at x = 1.