Math 239 Lecture 15

Graham Cooper

June 10th, 2015

Counting Binary Trees

<u>Definition:</u> A binary tre is either:

- 1. an emtpy tree ϵ
- 2. a root vertex with a left branch and a right branch ech of which is a binary tree

how many binary trees have n nodes?

for 3 nodes:

Let T be the set of all binary trees of any size. For each $t \in T$, define weight functions w(t) to be the number of nodes in T. Let T(x) be the generating series fo T with respect to w. The answer to our question is $[x^n]t(x)$

For any non-empty tree t, we can decompose it into 3 parts, root node r, the left tree t_1 , the right tree t_2 . t_1 , $t_2 \in T$. This belongs to the cartesian product $r \times T \times T$

Let
$$S = \{\epsilon\} \cup \{r\} \times T \times T$$

Then each tree $t \in T$ corresponds to one element of S in a bijection.

becomes

$$T \rightleftharpoons (r, t_1, t_2)$$

 $w(r, t_1, t_2) = 1 + w(t_1) + w(t_2) = w(t)$

We can appy product lemma

$$\Phi_S(x) = 1 + x \cdot t(x) \cdot t(x)$$

Due to the bijection $t(x) = \Phi_S(x)$

$$\implies t(x) = 1 + xt(x)^2$$

$$0 = xt(X)^{2} - t(x) + 1$$

$$= 4x(xt(x)^{2} - t(x) + 1)$$

$$= 4x^{2}t(x)^{2} - 4xt(x) + 4x$$

$$= (4x^{2}t(x)^{2} - 4xt(x) + 1) - 1 + 4x$$

$$= (2xt(x) - 1)^{2} - 1 + 4x$$

so:

$$(2xt(x) - 1)^2 = 1 - 4x = ((1 - 4x)^{1/2})^2$$

from A2:

$$2xt(x) - 1 = +/-(1-4x)^{1/2}$$
$$= +/-(1-2\sum_{n\geq 0} \frac{1}{n+1} \binom{2n}{n} x^{n+1})$$

Constant term is -1 so we pick - over +, which means:

$$2xt(x) - 1 = -1 + 2\sum_{n\geq 0} \frac{1}{n+1} {2n \choose n} x^{n+1}$$

$$\implies t(x) = \sum_{n\geq 0} \frac{1}{n+1} {2n \choose n} x^n$$

So the number of binary trees into n nodes is $\frac{1}{n+!}\binom{2n}{n}$ $(n=3, \frac{1}{4}\binom{6}{3}) = \frac{1}{4}\frac{6*5*4}{3*2} = 5)$

Catalan number: $\frac{1}{n+1}\binom{2n}{n}$

Graph Theory

<u>Definition:</u> A graph G is a pair of sets (V, E) (or (V(G), E(G)) where V is a set of objects called vertices and E is a set of unordered pairs of V called edges.

Example: Define
$$G = (V,E)$$
 where $V = \{a,b,c,d\}, E = \{\{a,b\}, \{b,c\}, \{c,d\}, \{a,d\}\}$

Graphical Representation of G. See notes.

In graph theory, we mainly care about the "structure" of the graphs, e.g. what are the vertices, which pairs for edges

Terminologies:

- \bullet Two vertices u,v are adjacent if $\{u,v\}$ is an edge Example above, a is adjacent to b and d but not c
- If u is adjacent to v, then u is a neighbour of v, the set of all neighbours of u is the neighbourhood, denoted by N(v). Example: $N(a) = \{b,d\}$
- An edge, $e = \{u,v\}$ is incident with u and v, e joins u and v