

PocketBeagle walk-through

Friendly to novices and experts alike, the Beagle experience tracks mainline u-boot, Linux and Debian development, while augmenting it to enable development to start as quickly as possible. Attendees will get started interacting with the hardware via the command-line, shell scripts, Python and JavaScript. Attendees will be walked through the configuration details for the boot configuration, pin multiplexing, USB networking and other helper scripts they should get to know. Support and development processes within the BeagleBoard.org community will be covered. Exercises will pave the way for the other workshops to dive into their topic without needing to backtrack excessively on PocketBeaglespecific details.

Author and license

Author

Jason Kridner
 Co-founder BeagleBoard.org, Texas Instruments Sitara apps
 https://beagleboard.org/about

License

Creative Commons Attribution – Share Alike 4.0
 https://creativecommons.org/licenses/by-sa/4.0/

Outline

- BeagleBoard.org, PocketBeagle and BaconBits
- Developer experience
 - Command-line and shell script
 - JavaScript and Python
 - C/C++
 - C on PRUs
- Project examples
- Labs

BeagleBoard.org's objectives

- Education
 - Design and use of open source SW/HW
 - Embedded computing
- Collaboration
 - Physical computing
 - Robotics
 - Industrial/machine controls

Inspiration from early PCs

Inspiration from early PCs

 How do people learn about embedded computers with so much ground to cover?

Inspiration from early PCs

- How do people learn about embedded computers with so much ground to cover?
- Linux keeps history
- Affordable -> hackable
- Open from boot
- High-level languages
- Motivate with hardware

Vision

 Creating with electronics should be as easy as creating a web page

Vision

 Creating with electronics should be as easy as creating a web page

Appliances are better than applications

Vision

- Creating with electronics should be as easy as creating a web page
- Appliances are better than applications
- Open source software and hardware enable
 - Collaboration on the problem
 - Ability to understand and improve the fundamentals

Reality

- Boot-to-browser feels too limiting → booting to Debian distro
- Collaborative programming still complex → collaborate at the kernel
- Many possible development environments
 - command-line/ssh, Cloud9 IDE, node-red, pureData, SuperCollider, LabView, Matlab, Eclipse, Visual Studio, Scratch, Blockly
- Domain specific approaches
 - Machinekit/LinuxCNC, PLC, many IoT toolkits
 - Many rapid sensor approaches: capes, mikroBus, Grove/Grove Zero, PMOD
 - Many rapid build approaches: LEGO, printing/milling, Makeblock, Vex, various other aluminum kits

Approach

- Don't try to boil the ocean
 - We seek to engage the open source community
- Help where we can
 - Blue supports Grove cables
 - PocketBeagle supports mikroBus click pinout
 - Many "BeagleBoard Compatible" devices targeting specific application areas

Board history

Fanless open computer (BeagleBoard)

\$249

Mint tin sized with industrial peripherals (BeagleBone)

\$69

Application focused BeagleBones

\$79

\$25

PocketBeagle objectives

- Get simple
 - 4-layer PCB done in both Kicad and EAGLE
 - Every expansion header pin has a useful predefined mode
- Get flexible
 - USB to holes, no on-board pin consumption, no header soldered
 - Support for 2 mikroBus Click boards (over 300 already exist)
- Get small
 - Stick with mint-tin survival-kit theme, but go to "smalls" (35mm x 55mm)
- Get low cost
 - System-in-package approach has can lower build costs
 - Launched/sustainable at \$25

PocketBeagle key features

- Processing
 - 1-GHz ARM Cortex-A8 processor
 - 2x200-MHz programmable real-time units (PRUs)
 - ARM Cortex-M3 microcontroller for power and security
 - SGX530 graphics processor (OpenGLES)
- Memory
 - 512-MB DDR3
 - 4-KB I2C EEPROM

- Interfaces
 - USB 2.0 OTG
 - microSD
- 72 expansion header pins
 - 8 analog inputs (6@1.8V, 2@3.3V)
 - 44 digital I/Os (18 enabled)
 - 3 UARTs (2 enabled)
 - 2 I2C ports
 - 2 SPI ports
 - 2 quadrature encoders accessible
 - 2 CAN bus controllers accessible
 - USB, power/reset buttons, battery/DC

PocketBeagle top

Octavo Systems OSD3358-SM

PocketBeagle bottom

PocketBeagle bottom

PocketBeagle expansion

PocketBeagle Expansion Headers (Rev A2a)

							1 OCK	πουαξ	lie Expe		
P1											
SYS	VIN	1	2	87	:	6	AIN 3.3V	9			
USB1 V_EN GPIO	109	3	4	89	:			11	PRU1		
	VBUS	5	6	5	GPIO	CS	SPI0	TX	PRU		
	VIN	7	8	2		CLK		RX	LIADTO		
	DN	9	10	3		MISO		TX	UART2		
USB1	DP	11	12	4		MOSI		RX	PRU		
	ID	13	14	3.3V	0)(0						
	GND	15	16	GND	SYS						
	REF-	17	18	REF+	AIN 1.8V						
	0	19	20	20	GPIO			16(in)	PRU0		
AIN 1.8V	1	21	22	GND	SYS						
Ally 1.6V	2	23	24	VOUT	313						
	3	25	26	12	GPIO	SDA	- I2C2	TX	CAN0		
	4	27	28	13		SCL		RX			
7 QEP0 STRB	117	29	30	43		TX	UART0	15	PRU1		
PRU0 4 A GPIO	114	31	32	42		RX		14	11101		
1 PWM0 B	111	33	34	26				16/4/2			
PRU1 10	88	35	36	110		Α	PWM0	0	PRU0		

_	,	, to v / tea,				DO									
P2															
		PWM1	Α		50	1	2	59	!						
		PWM2	В		23	3	4	58							
	UART4 RX			GPIO	30	5	6	57	GPIO						
		UAN14	TX	GPIO I	31	7	8	60	;						
	RX		SCL		15	9	10		!						
CAN1	тх	I2C1	SDA		14	11	12	PWR BTN	SYS						
			CVC		VOUT	13	14	VIN	BAT						
			SYS	GND	15	16	TEMP	DAI							
GPIO			65	17	18	47	!	STRB	QEP2	15i	PRU0				
			GPIO	27	19	20	64	GPIO							
C		SYS	GND	21	22	46	!	IDX	QEP2	14(in)	PRU0				
51			313	3.3V	23	24	44		Α	QLFZ		14(out)			
CAN1	RX		MOSI		41	25	26	NRST	SYS						
OAIVI	TX	SPI1	MISO		40	27	28	116		IDX	QEP0	6			
PRU	eCAP	0111	CLK	GPIO	7	29	30	113	GPIO			3	DDLIC		
PRU1	16(in)		cs	1	19	31	32	112				2	PRU0		
PRU0	15(out)	QEP2	В		45	33	34	115		В	QEP0	5			
PRU1	8	AIN 3.3V	5		86	35	36	7	AIN 1.	8V					

mikroBus Click

Analog - AN

Reset - RST

SPI Chip Select - CS

SPI Clock - SCK

SPI Master Input Slave Output - MISO

SPI Master Output Slave Input - MOSI

VCC-3.3V power - +3.3V

Reference Ground - GND

PWM - PWM output

INT - Hardware Interrupt

RX - UART Receive

TX - UART Transmit

SCL - I2C Clock

SDA - I²C Data

+5V - VCC-5V power

GND - Reference Ground

Connecting mikroBus Clicks

TechLab objectives

- Designed specifically for e-ale training
- Inspired by "Bacon Cape" by Dave Anders
 - Designed for similar purpose on BeagleBone
- Migrated to PocketBeagle as "BaconBits" by Michael Welling
- Updated to have mikroBus header and made "pretty"
 - Extra button (with PRU option), light sensor rather than potentiometer
- Provides target for common embedded interfaces
 - SPI, I2C, GPIO, PWM, ADC, USB, serial
- Avoid users needing to buy several modules

TechLab features

- USB-to-Serial micro B
- USB Host A with power
- Reset button
- 2 GPIO push buttons (L and R)
- ADC light sensor
- PWM tri-color LED
- SPI 2-digit 7-segment display
- I2C accelerometer
- mikroBus header

TechLab GPIO inputs

TechLab ADC input

Light Sensor

TechLab PWM output

Multi-colored LED (Bulb)

TechLab SPI 7-segment display

TechLab I2C sensor

Accelerometer

TechLab mikroBus header

TechLab USB host

TechLab board image

Developer experience

- Customized Debian images <u>bbb.io/latest</u>
- Self-hosted tools for ARMs and PRU
- Libraries for various high-level languages
- Scripts for common tasks
- Sources for bootloader, device tree, etc.
- Servers for network-based development

Single cable development

- Power, network, develop
- You can add a network and power many other ways

Some work in progress

- Add proxy for various services (in Buster IoT images today)
- Integrate common web-based WiFi provisioning
 - SeeedStudio BealgeBone Green Wireless ships with 'wifidog' → we will unify approach
- Cross-platform distro installer app
 - See USB NETCONSOLE presentation
- Support for Grove modules and mikroBus clicks
 - Focus on device-tree overlays and kernel patches
- Integration alignment with complete domain solutions
 - Intelligent Agent Replicape/Revolve, Bela Mini, BeagleLogic, etc.
- Improved and integrated PRU examples
- Move to distro friendly approaches for customizations

Download image

Write image to microSD with Etcher

Insert microSD and boot

Connect to the USB network

Open the IDE

See labs in the Handouts

- No need to program the microSD card
 - The link is for your reference. This is already done for you.
- Do the first 4 labs
 - "Blink PocketBeagle on-board USRx LED"
 - "Read a button"
 - "Read an analog sensor"
 - "Fade an LED"
- I will interrupt with hints and discussion at intervals

USB gadgets

- Linux name for device/slave drivers
 - ie., when not host
- USB devices have "classes"
 - Mass storage
 - Camera
 - Audio
 - Printer
 - "HID" or human-interface device like mouse and keyboard
 - Communications

USB gadgets

- Default image USB gadgets
 - Virtual mass storage
 - Serves you up README.htm
 - Virtual serial
 - Provides access to console after kernel boot
 - Virtual network
 - Enables access to ssh and web servers

TI AM335x: bootrom

From: (AM335x and AMIC110 Sitara™ Processors Technical Reference Manual (Rev. P))

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf (page 5032)

SYSBOOT[15:14] = 01 = 24Mhz SYSBOOT[4:0] = 11000

- 1. SPI0
- 2. MMC0 going to use today
- 3. USB0 (node-beagle-boot)
- 4. UARTO

www.ti.com Functional Description

26.1.8.5.3 Booting Procedure

The high level flowchart of the eMMC / eSD and MMC/SD booting procedure is depicted in Figure 26-22.

TI AM335x: bootrom

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

Page: 5053

Figure 26-22. MMC/SD Booting MMC/ SD Booting Initialize the MMC / SD driver Detect card Not detected or embedde Detected Configure the card address (RCA) **MLO** No Booting file "Raw mode" found? detected? Yes Get the booting file Get raw data

TI AM335x: bootrom: raw mode:

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf (Page: 5054)

- 1. 0x0 <- (FAT Boot Sector, let's leave it blank...)
- 2. 0x20000 (128KB) <- We are going to use this location
- 3. 0x40000 (256KB) <- (2nd "backup" location)
- 4. 0x60000 (384KB) <- (3rd "backup" location)

Only 128KB in size... (hint, only 128KB of SRAM)

Das U-Boot (the Universal Boot Loader) U-Boot

Original Author: Wolfgang Denk, now maintained by Tom Rini

- https://www.denx.de/wiki/U-Boot
- http://git.denx.de/?p=u-boot.git;a=summary
- https://en.wikipedia.org/wiki/Das U-Boot

U-Boot: AM335x

Outputs two files for TI am335x targets:

- MLO = SPL (or Secondary Program Loader)
- u-boot.img (or u-boot-dtb.img) (U-Boot)

U-Boot: SPL

- 1. Initializes main memory (DDRx for am335x)
- 2. Loads full (U-Boot) into DDR memory

Or:

- 3. Initializes main memory (DDRx for am335x)
- 4. Loads Linux Kernel into DDR memory (aka: Falcon mode, faster boot mode/etc)

U-Boot:

- Network
- USB
- MMC
- File System (fat/extX)
- Shell

Sometimes you don't need a full OS, have U-Boot init and then have U-Boot load/run your application.

U-Boot:

CPU: AM335X-GP rev 2.1

I2C: ready DRAM: 512 MiB

Some drivers were not found

Reset Source: Power-on reset has occurred.

MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1

Using default environment

Board: BeagleBone Black

<ethaddr> not set. Validating first E-fuse MAC

BeagleBone Black:

Model: SeeedStudio BeagleBone Green:

U-Boot: microSD

Insert USB-microSD adapter, and type "Isblk"

Open: system.sh change: MMC=/dev/sde

```
voodoo@hestia:~/Supercon-2017-PocketBeagle$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk

—sda1 8:1 0 465.8G 0 part /
sde 8:64 1 7.4G 0 disk

—sde1 8:65 1 7.4G 0 part
```

That's our 8GB USB Flash Drive

U-Boot: Format microSD

```
sudo dd if=/dev/zero of=${MMC} bs=1M count=10

sudo sfdisk ${MMC} <<-__EOF__
4M,,L,*
__EOF__
sudo mkfs.ext4 -L rootfs ${MMC}1
```

voodoo@hestia:~/Supercon-2017-PocketBeagle\$./scripts/format_drive.sh

U-Boot: (refresh for your memory)

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf (Page: 5054)

- 1. 0x0
- 2. 0x20000 (128KB) <- We are going to use this location
- 3. 0x40000 (256KB)
- 4. 0x60000 (384KB)

sudo dd if=./deploy/MLO of=\${MMC} count=1 seek=1 bs=128k sudo dd if=./deploy/u-boot.img of=\${MMC} count=2 seek=1 bs=384k

Base Rootfs: Debian 9.x (Stretch)

Maintainer: Robert Nelson (with lots of help from all the Debian Developers and 1000's of other users)

- https://elinux.org/Beagleboard:BeagleBoneBlack Debian#2017-11-05 Debian 9 .28Stretch.29 Weekly
- https://www.debian.org/
- https://github.com/beagleboard/image-builder

Device Tree

- See kernel documentation for bindings
 - devicetree/bindings/eeprom/eeprom.txt
- Local copies enable you to extend on the fly
 - <u>/opt/source/dtb-4.14-ti</u>
 - <u>/opt/source/bb.org-overlays</u>
- Overlays loaded in u-boot, but also possible via kernel configfs

config-pin

- config-pin -i p1.36
- config-pin -q p1.36
- config-pin p1.36 pruout

show-pins.pl

perl /opt/scripts/device/bone/show-pins.pl -v

mikroBus Click usage

- See <u>bbb.io/pbmb</u>
- Supported with device-tree overlays loaded in u-boot

Enabling PRU

- 2 possible drivers: remoteproc or uio
- Enabled via device tree at boot
 - Different systems might have different defaults

Some current projects

- Bela Mini
- PocketPilot

Contributions and issues

- Cape/add-on support
 - https://github.com/beagleboard/bb.org-overlays
- Image deltas
 - https://github.com/beagleboard/image-builder
- In-system examples
 - https://github.com/beagleboard/bone101

