Corso di Laurea in Informatica

Architettura degli Elaboratori B – Laboratorio turno 2

Docente: Claudio Schifanella

Esercitazione 7: circuiti sequenziali

Latch di tipo D sincronizzato

- R = S = 1 porta allo stato non coerente con i due output a 0
- Quando R e S tornano a 0 il latch passa in modo non deterministico allo "stato 0" o allo "stato 1"
- Il latch D evita questa ambiguità: D = 1 e clock = 1 allora si ha lo "stato 1", D = 0 e clock = 1 allora "stato 0"

Flip-flop di tipo D

- Un latch è azionato dal livello nel senso che la transizione di stato avviene quando il clock è a 1(level triggered)
- Un flip-flop è azionato dal fronte nel senso che la transizione di stato avviene quando il clock passa da 0 a 1(edge triggered)
- La lunghezza dell'impulso di clock non è importante

Flip-flop di tipo D

- L'invertitore crea un piccolo ritardo alla propagazione del segnale a verso b
- Il latch D verrà attivato ad un ritardo fisso dopo il fronte di salita del clock (per l'attraversamento dell'AND)

Dato il circuito sequenziale sottoriportato, supporre che inizialmente i 3 flip-flop di tipo D memorizzino lo stato $(Q_2, Q_1, Q_0) = (0, 0, 0)$. Scrivere la configurazione in uscita dopo 1,...,5 cicli di clock.

ciclo	D_2	$D_1 = Q_0 + \overline{Q_2}$	$D_0 = \overline{Q_2}$	CK	Q_2	Q_1	Q_0
0	1	1	1	0	0	0	0
1	l			1			•
1				0			
2				1			
2				0			
3				1			
3				0			
4				1			
4				0			
5				1			

	ciclo	D_2	$D_1 = Q_0 + \overline{Q_2}$	$D_0 = \overline{Q_2}$	CK	Q_2	Q_1	Q_0	
	0	1	1	1	0	0	0	0	
	1	1		0	1	1	1	l	
	1	1]	0	0	1	l	-	
	2	1	0	O	1	1	1	0	
	2	1	0	O	0	1	1	0	
-	$\frac{2}{3}$	1	Ð	0	1	1	0	0	
	0		ω	0	1		2	0	
_	3	l					ð	0	
	4	\ t	0	0	1				
	4	\ (0	•	0	l	0	O	
_	5	+	O	0	1	l	0	0	
	_								

• Esercizio 2

Un latch di tipo SR può essere realizzato, oltre che mediante due porte NOR, utilizzando due porte NAND, come nella figura. Dire, in questo caso, per

quale coppia di input S ed R (unica coppia) il circuito mostra i due stati stabili:

S0 : Q = 0; notQ = 1 e

S1 : Q = 1; notQ = 0.

Latch SR: per quale coppia di input S ed R (unica coppia) il circuito mostra i due stati stabili:

S0 : Q = 0; notQ = 1 e

S1 : Q = 1; notQ = 0.

S	R	Q _{old}	Q _{new}	Q' _{New}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Latch SR: per quale coppia di input S ed R (unica coppia) il circuito mostra i due stati stabili:

S0 : Q = 0; notQ = 1 e

S1 : Q = 1; notQ = 0.

5	R	5 North
0	0	1
0	1	1
(0)
()	0

S	R	Q _{old}	Q _{new}	Q' _{New}
0	0	0	1	(
0	0	1	(Ţ
0	1	0	ð	1
0	1	1	0	
1	0	0	1	0
1	0	1	1	0 _
1	1	0	O	
1	1	1	1	Ð

Esercizio 3

Nel circuito sequenziale sotto riportato, supporre che inizialmente il flip-flop di tipo D sia nello stato 0. Scrivere la configurazione dello stato dopo 1, 2, 3 cicli di clock nelle ipotesi che x1=x2=1.

Inizialmente il flip-flop D e' nello stato 0. Stato dopo 1, 2, 3 cicli di clock nelle ipotesi che x1=x2=1.

ciclo	x_2	CK	$D = x_2 \overline{Q}$	Q	\overline{Q}
0	1	0	1	0	1
1	1	1			
1	1	0			
2	1	1			
2	1	0			
3	1	1			

Inizialmente il flip-flop D e' nello stato 0. Stato dopo 1, 2, 3 cicli di clock nelle ipotesi che x1=x2=1.

cicle	x_2	CK	$D = x_2 \overline{Q}$	Q	\overline{Q}
0	1	0	1~	0	1
1	1	1	0	-5	0
1	1	0	0 ~	1	O
2	1	1	, ,	90	
2	1	0	t	O	ι
3	1	1	9	l	0

Es4. Organizzazione della memoria

- memoria 4 x 3
- 8 linee di input:
 - 3 per i dati di input
 - 2 per l'indirizzσ
 - 3 per i bit di controllo:
 - CS per Chip Select
 - RD per distinguere tra read e write
 - OE per abilitare l'output
- 3 per output

Organizzazione della memoria

Registri con buffer non invertente

- Il buffer non invertente si comporta come un filo quando il controllo è alto e non lascia passare il segnale quando il controllo è basso
- L'output enable permette di connettere o disconnettere il registro dal bus di output

Esercizio 4

Dato il circuito di memoria in figura, specificare i passi necessari per memorizzare nella parola 0 (Word 0 nella figura) il valore -1 (tenere conto che si utilizza la rappresentazione in complemento a 2). In particolare si specifichino i valori di I0, I1, I2, A0 e A1 e di CS, RD e OE. Quindi indicare i passi per ottenere tale valore come output O1, O2, O3.

Esercizio 5

Dato il circuito di memoria in figura, determinare le equazioni d'ingresso D_{Δ} e D_{R} ai flip-flop, l'uscita Y, e la tabella/il diagramma di stato del circuito.

Equazioni di ingresso ai flip-flop:

$$D_A = AX + BX$$

$$D_B = \overline{A}X$$

Equazione di uscita:

$$Y = (A + B)\overline{X}$$

Stato presente		Input	Prossim	Prossimo stato	
Α	В	Х	Α	В	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Equazioni di ingresso ai flip-flop:

$$D_A = AX + BX$$

$$D_B = \overline{A}X$$

Equazione di uscita:

$$Y = (A + B)\overline{X}$$

Si consideri un flip-flop di tipo D, con clock attivato sul fronte di salita. Quali delle seguenti affermazioni sono vere?

- se il valore dell'uscita Q è uguale a 1 ed il valore D è stabilmente uguale a

 il variare dell'ingresso Ck non provoca nessun cambiamento sulle
 uscite del flip-flop;
- 2. una variazione da 0 a 1 dell'ingresso Ck provoca sempre un cambiamento sulle uscite del flip-flop;
- 3. per cambiare il valore dell'uscita Q basta far variare il valore sull'ingresso D;
- 4. se l'ingresso Ck è fisso, il valore dell'uscita Q non risente delle variazioni dell'ingresso D;
- 5. se si pone l'ingresso D ad 1 e poi si applica un impulso sull'ingresso Ck si ottiene il valore 1 sull'uscita Q;
- 6. se si applica un impulso sull'ingresso Ck e poi si pone l'ingresso D ad 1 si ottiene il valore 1 sull'uscita Q

Si consideri un flip-flop di tipo D, con clock attivato sul fronte di salita. Quali delle seguenti affermazioni sono vere?

- 1. se il valore dell'uscita Q è uguale a 1 ed il valore D è stabilmente uguale a 0, il variare dell'ingresso Ck non provoca nessun cambiamento sulle uscite del flip-flop; [4150]
- 2. una variazione da 0 a 1 dell'ingresso Ck provoca sempre un cambiamento sulle uscite del flip-flop; FALSO
- 3. per cambiare il valore dell'uscita Q basta far variare il valore sull'ingresso D; FALSO
- 4. se l'ingresso Ck è fisso, il valore dell'uscita Q non risente delle variazioni dell'ingresso D; VE□0
- 5. se si pone l'ingresso D ad 1 e poi si applica un impulso sull'ingresso Ck si ottiene il valore 1 sull'uscita Q; VE 10
- 6. se si applica un impulso sull'ingresso Ck e poi si pone l'ingresso D ad 1 si ottiene il valore 1 sull'uscita Q FAL 50