

Portal: Transparent Cross-technology Opportunistic Forwarding for Low-power Wireless Networks

Xiaolong Zheng*, Dan Xia*, Xiuzhen Guo#, Liang Liu*, Yuan He#, Huadong Ma*

*Beijing University of Posts and Telecommunications

#Tsinhua University

2020.10.14

Low-power Wireless Networks

- Duty cycling: Low Power Listening
- Opportunistic Forwarding (OF)
 - Reduce the delay and energy consumption

The node wakes up earlier and helps to forward packets

Cross-Technology Interference (CTI)

- Coexistence of heterogeneous devices
- Contention for the shared frequency resource
 - Corrupt the link diversity
 - Large delay, low PRR, low channel utilization ratio

Impacts of CTI on **OF**

- Preliminary experiments
 - -ZigBee: Implement ORW [1]
 - ✓ Channel: 26 and 23
 - ✓ Sleep interval: 2048ms

(a) End-to-end delay

CTI has a serious impact on low-power opportunistic forwarding.

Existing methods

Weeble

- Intentionally jamming the high-power CTI
- To reserve the channel for low-power devices

• ECC

- Exploit CTC to coordinate the channel usage
- Politely reserve the channel for ZigBee

Weeble [CoNEXT'12]^[2]

ECC [MobiSys'18]^[3]

 The best achievable performance of channel reserving based methods will not exceed the performance of OF running in clean environments.

Underutilized Coexisting CTI

- Friis transmission formula
 - Max Tx power: WiFi: 20dBm, ZigBee: 0dBm
 - WiFi theoretically has a $4.5 \times$ longer communication range than ZigBee.

$$P_r(d) = \frac{p_t G_t G_r \lambda^2}{(4\pi d)^2}$$

- Experiment: RSS VS. distance
 - WiFi Tx power: 5dBm
 - ZigBee Tx Power: -15dbm

Underutilized Coexisting CTI

Key insight

Leveraging CTI's superior communication capability to help the low-power
 opportunistic forwarding is better, for both low-power and high-power networks.

- ✓ For low-power networks:
 - longer opportunistic paths
 - break through the performance limit
- ✓ For high-power networks:
 - forward data out of local area faster
 - reduce the local competitors

Challenges

- Enable transparent cross-technology forwarding
 - Radio incompatibility between CTI
 - How to enable WiFi forwarders overhear the ZigBee packets
 - How to forward the packet back into ZigBee networks without affecting original OF
- Make beneficial forwarding decisions with limited information
 - In-network routing metric is NOT available for WiFi forwarders
 - Minimize the influence on WiFi's own traffic
- Forward the ACKs in the reverse direction
 - ACK is necessary to stop redundant opportunistic transmissions
 - Asymmetric communication causes ACK failures

Roadmap

- Background
- Motivation
- Design of Portal
- Evaluation
- Conclusion

Portal: Cross-technology Rebroadcasting (CTR)

- Uplink (LEGO-Fi)
 - Reuse the long preamble detection module of WiFi to detect SFD of a ZigBee packet.
 - Moving correlation of the received signal r_n and SFD template x_k

$$corr_i = \sum_{k=0}^{127} r_{i+k} x_k^*, i = 1, 2, ..., n - 127$$

- Downlink (WEBee)
 - Use the recorded ZigBee as the template to generate the
 WiFi signals that contain the interested ZigBee signals.

Portal: Cross-technology Rebroadcasting (CTR)

- Effectiveness of CTR
 - Median PRR of rebroadcasting once is 0.775, which is good enough for CTC

Portal: Forwarding Protocol

Overall Procedure

Forwarding Protocol: Estimation State

Performance gain

Delay of one wake-up $ETD_{in}(i,j) = \left(EDC_j - EDC_i\right) \cdot \left(\frac{T_s}{2} + T_x\right)$

- T_s: Sleep interval
- $T_s/2$: Expected waiting time for one wake-up
- T_{tx}: Packet transmission time
 Uplink delay Scheduling delay Downlink delay

$$ETD_{out}(i,j) = T_{tx} \cdot \frac{1}{p_{ix}} + T_{wait} + T_{re} \cdot \frac{1}{p_{xj}} + \frac{T_s}{2}$$
 Waiting delay

- T_{re} : Packet rebroadcasting time for WiFi forwarder
- P_{Xj} : PRR from X to j, P_{iX} : PRR from i to X
- T_{wait} : Scheduled waiting time of X's rebroadcast

Performance gain of X: $Gain_{\chi}(i,j) = ETD_{in}(i,j) - ETD_{out}(i,j)$

Forwarding Protocol: Estimation State

- Find the beneficial candidate set C
 - Nodes that reply ACKs to the WiFi forwarder before the local homogenous forwarder are the beneficial candidates. $Gain_x(i,j) = ETD_{in}(i,j) ETD_{out}(i,j)$
- Estimate the in-network progress
 - $ETD_{in}(i, c_m)$ is highly related to the hop distance between node i and $c_m, c_m \in C$
 - RSS-based in-network progress estimation

$$ETD_{in}(i, c_m) = ETD_{in}(i, c_{ref}) + \underline{K(c_{ref}, c_m)} \cdot \frac{T_s}{2} + \delta \cdot \frac{T_s}{2}$$
Largest RSS, baseline
Hop difference

Forwarding Protocol: Estimation State

Estimate the in-network progress

– Start from c_{ref} and group the nodes by an RSS window:

$$RSS_i - RSS_{ref} < th_{RSS}$$

-
$$th_{RSS} = 3dB$$
, c_1 is c_{ref}

Select the next-hop forwarders

- Calculate the gain of each candidate
- Select the top-2 ranked nodes as nexthop forwarders.

Table 1: Ranking of the candidate forwarders

Ranking	Node	RSS	ETD_{in}	ETD_{out}	Gain
		(dB)	(ms)	(ms)	(ms)
1	c_5	-66	1000	85	915
2	c_6	-73	1500	654	846
3	c_3	-64	1000	445	555
4	c_7	-75	1500	996	504
5	c_2	-56	500	45	455
6	c_4	-65	1000	753	247
7	c_1	-54	500	618	-118

Portal: ACK Replying

Concurrent overhearing

② Transparent forwarding

Asymmetric region: SINR at the WiFi forwarder will be too low to successfully rebroadcast the ACK!

Portal: ACK Replying

Feature-based ACK recognition

- Interval between the data packet
- Transmission period
- An 11-Byte ACK (352 μs) is transmitted 12 symbol periods (192 μs) after receiving a packet.
- Allowed error: $80\mu s$

Portal: ACK Replying

Concurrent overhearing

② Transparent forwarding

- ③ Feature-based ACK recognition
- 4 Jamming-based ACK replying

Portal: Overview

Cross-tech Rebroadcast

Roadmap

- Background
- Motivation
- Design of Portal
- Evaluation
- Conclusion

Experiment Setup

Implementation

- TelosB, TinyOS 2.1.2
- USRP N210

Compared schemes

- Portal
- ORW
- ECC-ORW: stop the WiFi when there is ZigBee transmission.

Performance in Real Environments

Setting

ZigBee: channel 23, Tx power: -22dBm, sleep interval: 1s, packet rate: 30s/packet

– WiFi: Tx power: 5dBm

Portal

- Average delay: 13.74ms, which is $304 \times$ and $125 \times$ faster than ORW and ECC-ORW
- Duty-Cycle: 2.5%, which is 70.2% and 30.6% smaller than ORW and ECC-ORW

Different Sleep Intervals

Setting

– Sleep interval: 0.5~4s

Different Packet Transmission Rates

Setting

- Packet transmission rate: 5~25s/packet

Conclusion

- Portal: a new paradigm for low-power opportunistic forwarding in CTI environments
 - Turn the enemy into friends: explicitly include the CTI devices into the forwarding process as the heterogeneous forwarder
 - Not only solve CTI problem, but also breaks through the performance limit by exploiting the superior capability of CTI devices
- Achieve 125 x faster end-to-end delay than ECC-ORW, the representative channel reserving based forwarding method.

THANKS!

Xiaolong Zheng BUPT

https://xiaolongbupt.github.io/

2020.10.14