Recommended HW

Problem 1:

a.
$$T(n) = T(i) + T(n-i-1) + 1$$

b. for all value
$$i = 0, 1, ..., n - 1$$

c.
$$T(1) = T(0) + T(0) + 1$$

d.
$$T(2) = T(0) + T(1) + 1, T(2) = T(1) + T(0) + 1$$

e.
$$T(3) = T(0) + T(2) + 1, T(3) = T(1) + T(1) + 1, T(3) = T(2) + T(0) + 1$$

f.
$$T(4) = T(0) + T(3) + 1, T(4) = T(1) + T(2) + 1, T(4) = T(2) + T(1) + 1, T(4) = T(3) + T(0) + 1$$

g. ...

h.
$$nT(n) = 2(T(0) + T(1) + ... + T(n-2) + T(n-1)) + n$$

i.
$$nT(n) = (n+1)T(n-1) + 1$$

j.
$$\frac{T(n)}{n+1}=\frac{T(n-1)}{n}+\frac{1}{n(n+1)} o \frac{1}{2}+\frac{1}{2 imes 3}+...+\frac{1}{n(n-1)}+\frac{1}{n(n+1)}$$
 where the nominator sums up to n then $T(n)=n$

Problem 2:

$$2^{2^{n+1}}$$

$2^{2^{n+1}}$	
2^{2^n}	
(n+1)!	
n!	
$n2^n$	
e^n	
2^n	
$\frac{3}{2}^n$	
log(n)!	
$n^{loglog(n)}$	$log(n)^{log(n)}$

n^3	
n^2	$4^{log(n)}$
nlog(n)	log(n!)
$2^{log(n)}$	n
$\sqrt{2}^{log(n)}$	
$2^{\sqrt{2log(n)}}$	
$log^2(n)$	
ln(n)	
$\sqrt{log(n)}$	
ln(ln(n))	
2^{log^*n}	
log^*n	$log^*(log(n))$
$log(log^*(n))$	
1	$n^{1/log(n)}$

Problem 3:

- a. $T(n) = T(n/2) + n^3$
 - a. At each node level we have $(n/2^k)^3=n^3/8k^3$ total cost at each depth k.
 - b. The tree depth is $log_2(n)+1$ (root)
 - c. In the last level we have $n^3 \sum_{k=0}^{log(n)} \frac{1}{8^k}$ nodes in total.
 - d. In total of all recursive levels we have $n^3 \cdot \frac{1}{1-1/8} = 8/7 \cdot n^3 = O(n^3)$ since the total is a decreasing geometric sequence.
- b. T(n) = 4T(n/3) + n
 - a. At each node level we have $n(4/3)^k$ total cost at each depth k.
 - b. The tree depth is $log_3n+1(root)$
 - c. In the last level we have $4^{log_3n}=n^{log_34}$ nodes in total.
 - d. In total of all recursive levels we have $\sum_{k=0}^{log_3n}(\frac{4}{3})^kn+\theta(n^{log_34})=n\cdot rac{(4/3)^{log_3n}-1}{(4/3)-1}+\theta(n^{log_34})=3n(4^{log_3n})3^{-log_3n}+\theta(n^{log_34})=3n\cdot n^{log_34}\cdot n^{-log_33}+\theta(n^{log_34})=3n^{log_34}+\theta(n^{log_34})=\theta(n^{log_34})$

e.

c.
$$T(n) = 4T(n/2) + n$$

- a. At each node level we have $n \cdot 2^k$ total cost at each depth k.
- b. The tree depth is $log_2(n)+1$ (root).
- c. In the last level we have $4^{log_2n}=n^2$ nodes in total.
- d. In total of all recursive levels we have $\sum_{k=0}^{log_2n}2^kn+ heta(n^2)=n\cdotrac{2^k-1}{2-1}+ heta(n^2)=n\cdot 2^k-1+ heta(n^2)= heta(n^2)$

d.
$$T(n) = 3T(n-1) + 1$$

- a. At each node level we have 3^k total cost at each depth k.
- b. The tree depth is $log_2(n)+1$ (root).
- c. In the last level we have 3^n nodes in total.
- d. In total of all recursive levels we have $\sum_{k=0}^n 3^k n + \theta(3^n) = n \cdot \frac{3^k-1}{3-1} + \theta(3^n) = n \cdot (3^k-1)/2 + \theta(3^n) = \theta(n \cdot 3^n)$

Problem 4:

$$T(n) = T(\alpha) + T((1-\alpha)n) + \theta(n)$$
 where $0 < \alpha < 1$.