COS30082 – Apply Machine Learning Assignment -1

Student Name: Nguyen Dinh Dung

Student ID: 104772138

Contents

Abstract	2
Resnet 50	2
Efficient Net B3	
ViT: vit_base_patch8_224	7

Abstract

This paper presents a comparative study on multi-class bird species classification using the Caltech-UCSD Birds 200 (CUB-200) dataset. Three models — ResNet-50, EfficientNet-B3, and Vision Transformer (ViT-8) — are evaluated on this fine-grained classification task. Performance is assessed using Top-1 accuracy and Average Accuracy per Class, highlighting each model's strengths and weaknesses. The results offer insights into the trade-offs between convolutional networks and transformer-based architectures for species classification with limited training data.

Resnet 50

Selecting and Configuring the Base Model:

- ResNet-50 Backbone: ResNet-50 was chosen for its deep residual learning capabilities and strong feature extraction, pre-trained on ImageNet. Its rich feature hierarchy helps handle the fine-grained classification challenges of the CUB-200 dataset.
- Transfer Learning: By leveraging pre-trained features, transfer learning reduces data requirements and accelerates training, improving accuracy — particularly helpful given the dataset's quality issues.

Fine-Tuning Strategy:

- **Selective Layer Training:** Layers before the fifth are frozen to retain general features, while later layers are fine-tuned to capture bird-specific traits.
- **Full Adaptability:** Optionally, setting *fine_tune_start* to a negative value makes all layers trainable for deeper adaptation to the dataset.

Output Layer Reconfiguration:

The original ResNet-50 output layer is replaced with a custom sequence for classifying 200 bird species. It includes:

- Linear layer reducing features to 512
- ReLU activation for non-linearity
- Dropout (rate = 0.5) to reduce overfitting
- Final linear layer mapping to 200 classes

Regularization and Overfitting Mitigation:

- **Dropout:** Applied (rate = 0.5) to promote robustness by preventing reliance on specific neurons.
- Layer Freezing: Freezing early layers preserves general features and reduces overfitting.

Training and Validation Process:

- Loss & Optimizer: Cross Entropy Loss with Adam optimizer (initial LR = 0.001).
- **Early Stopping:** Stops training if validation loss stagnates.
- **LR Scheduler:** ReduceLROnPlateau lowers learning rate by 0.1 when validation loss plateaus.

Data Handling and Augmentation:

Training images are resized, center-cropped, converted to tensors, and normalized to standardize inputs and improve generalization.

Results and Discussion:

- **Training Performance:** Training loss dropped from 1.794 to 0.0047, with accuracy rising from 52.47% to 99.86%, showing effective learning.
- Validation Performance: Validation loss reached its lowest at epoch 14 (1.4218), while accuracy improved from 46.51% to 71.18% by epoch 29, demonstrating good generalization.

Analysis:

- **Early Training:** Initial low accuracy and high loss were expected as the model began learning.
- **Mid Training:** Validation performance stabilized and improved as parameters adjusted and learning rate decreased.

• Late Training: Training accuracy neared perfection, raising overfitting concerns, but validation accuracy continued improving, showing reasonable generalization.

Efficient Net B3

Model Overview

- EfficientNet-B3: A high-capacity CNN with strong performance on image classification tasks.
- **Improved Autoencoder (U-Net Style)**: Used for denoising and preprocessing the images before feeding them into the classifier.

The design balances strong feature extraction (EfficientNet) with noise reduction (Autoencoder), aiming for robust generalization.

Autoencoder Denoising Phase

Design Choices:

- U-Net style architecture with skip connections to preserve spatial details.
- Batch normalization layers to stabilize training.
- ConvTranspose layers for upsampling (decoder) to recover image resolution.
- Pretraining phase for denoising using MSE loss, focusing on reconstructing noise-free images.

Data Handling and Augmentation

Data Pipeline:

- Custom CUB200Dataset class properly loads image paths and labels from annotation files.
- Augmentations during training include:
 - Horizontal flips and random rotations (mild geometric changes)
 - Color jitter (color variability)
 - Random resized crops (spatial variability)

Observations:

- 384×384 resolution is appropriate for EfficientNet-B3, ensuring images are not overly shrunk. (EfficientNet-B3's optimal size)
- Normalization using ImageNet means/std ensures compatibility with the EfficientNet pretrained weights.
- Including random resized crops is particularly useful for small datasets like CUB-200.

EfficientNet-B3 Classifier

Architecture Modification:

- Classifier head replaced with a new nn.Linear layer to match 200 bird species.
- Pretrained weights (weights='DEFAULT') speed up convergence.

Gradual Unfreezing Strategy:

- 4 Training Stages:
 - Stage 1: Train only classifier (all backbone frozen).
 - Stage 2: Unfreeze last feature block (high-level features).
 - Stage 3: Unfreeze another block.
 - Stage 4: Unfreeze a third block.

 Each stage has its own learning rate and schedule (decreasing as more layers are unfrozen) (Cosine Annealing).

Training Strategy

Key Elements:

 Denoising pipeline applied at both training and testing stages ensures consistency.

- Early stopping with patience=15 ensures training halts if no improvement occurs.
- Separate pretraining for autoencoder prevents unnecessary coupling between denoising and classification training.

Evaluation Metrics

Top-1 Accuracy

- Tracks overall correctness across all predictions.
- **Final Top-1 Accuracy: 73.17%** respectable for a 200-class fine-grained classification task.

Average Class Accuracy

- Tracks per-class accuracy, avoiding the dominance of common species.
- **Final Average Class Accuracy: 72.60%** this is very close to Top-1, which suggests relatively balanced performance across species.

Visualization and Monitoring

ViT: vit_base_patch8_224

Model Selection & Configuration

- ViT-Base-Patch8-224 was chosen for its ability to capture both local and global patterns using 8x8 patches — ideal for fine-grained bird species classification.
- Transfer Learning with pre-trained ImageNet-21k weights helped accelerate training and improve generalization.

Fine-Tuning & Regularization

- Full Model Fine-Tuning: All layers were trainable to adapt to the CUB-200 dataset.
- Output Layer: Replaced with a linear classifier for 200 species.
- **Augmentations:** Resize, random horizontal flip, color jitter, random rotation, and normalization.
- Regularization:
 - Label Smoothing (0.1) improved robustness.
 - Dropout within ViT blocks reduced overfitting.

Training Process

- Optimizer & Loss: AdamW with CrossEntropyLoss.
- LR Scheduling: Cosine Annealing with 3-epoch warmup.

• Early Stopping: Monitored Top-1 accuracy, stopping after 7 epochs without improvement.

Results

- Training Loss: Reduced from 3.41 to 0.87.
- Train Accuracy: Reached 99.94%.
- Top-1 Test Accuracy: Peaked at 89.87%.
- Average Per-Class Accuracy: Reached 89.60%.

Analysis

- **Strong Early Gains:** Augmentations, warmup, and transfer learning helped the model adapt quickly.
- Overfitting Mitigation: Early stopping and label smoothing controlled overfitting.
- **Generalization:** The model performed well across species, though challenging fine-grained differences still limited accuracy.