

Lenguajes Turing no-reconocibles

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Lenguajes Turing no-reconocibles

Existen

Infinitos lenguajes a reconocer

Infinitas maquinas de Turing que se pueden generar

Sabemos que

Ciertos lenguajes no son decidibles

... pero es posible que algún lenguaje sea no reconocible?

Tamaños de los infinitos - Georg Cantor

Cantor fue el matemático

Responsable de fundar la teoría de conjuntos

Un conjunto de elementos

Tiene una cardinalidad: una cantidad de elementos

Los conjuntos finitos

Se pueden "contar"

Algunos conjuntos infinitos

También se pueden contar.

Georg Cantor (1845-1918. Matemático ruso nacionalizado alemán)

Correspondencia (biyectiva)

Sean

A y B dos conjuntos

F: A → B función que mapea un elemento de A a uno de B

Diremos que

Es una correspondencia (biyectiva)

Si

todos los elementos del conjunto de A tienen una imagen distinta en el conjunto B, y a cada elemento del conjunto de B le corresponde un elemento del conjunto de A.

Correspondencia entre conjuntos infinitos

2 sets infinitos tienen el mismo tamaño

Si se puede establecer entre ellos una correspondencia bijectiva

Ejemplo

Sea N el conjuntos de los números naturales

Sea E el conjunto de los números pares

Podemos establecer las correspondencia f(n)=2N

Por lo tanto Size(N) = Size(E)

N	Е
1	2
2	4
3	6
4	8
n	2n

Conjuntos contables

Un conjunto A es contable

Si es finito o si su tamaño es igual al conjuntos de los números naturales

Números racionales

¿Son los números racionales contables?

 $Q = \{m/n \mid m,n \in \mathbb{N} \}$

Los conjuntos infinitos antes analizados

Se "intuían" de menor tamaño

Si tomo el valor n entero, existían menos elementos en esos conjuntos menores a n que en el conjunto de los enteros

Ejemplo: hay 100 numeros enteros con n=100, y solo 50 pares

Con los números racionales no es el caso

Como podemos hacer la correspondencia?

... iniciemos con un caso mas sencillo

Números enteros

Los números enteros son

Contiene a los números naturales, sus opuestos y al cero

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3 ...\}$$

Los números enteros son contables

Podemos realizar la correspondencia de la siguiente forma:

$$1 \to 0$$
, $2 \to 1$, $3 \to -1$, $4 \to 2$, $5 \to -2$, $6 \to 3$, $7 \to -3$, ...

Números racionales (regreso)

Podemos representar a todos los racionales

Q = {m/n | m,n ∈N } utilizando la siguiente tabla

Utilizando un recorrido tipo espiral

Podemos listar los números y realizar la correspondencia con los naturales

1, 2, 1/2, 3, 2/2, 1/3, 4, 3/2, 2/3, ...

Por lo tanto

Los números racionales son contables

	1	2	3	4	 n
1	1	1/2	1/3	1/4	 1/n
2	2	2/2	2/3	2/4	 2/n
3	3	3/2	3/3	3/4	 3/n
4	4	4/2	4/3	4/4	 4/n
m	m	m/2	m/3	m/4	 m/n

Números reales

¿Son los números reales contables?

Es decir, ¿podemos realizar una correspondencia con los números naturales?

Supongamos por unos instantes que sí,

Entonces puedo hacer una tabla 1 a 1 entre los elementos de ambos conjuntos

¿Están todos los números reales en la tabla?

Demostremos que siempre existirán números no listados (infinitos!)

1	1,	0	0	0	1	0	1	4	
2	3,	1	4	1	5	9	2	6	
3	0,	4	7	1	8	8	8	8	
4	1,	6	3	4	5	0	1	3	
5	2,	7	1	8	2	8	1	8	
6	7,	5	6	7	3	3	2	1	
7	8,	4	2	1	9	8	5	2	
8	9,	5	0	0	0	0	0	0	
9	5,	1	2	5	0	0	0	5	

Números reales - Diagonal

Vamos a generar un número que no	2,	1	1,	0	0	0	1	0	1	4	
se encuentra en la tabla	4	2	3,	1	4	1	5	9	2	6	
Para eso vamos a pasar por la diagonal de la	6	3	0,	4	7	1	8	8	8	8	•••
tabla	5	4	1,	6	3	4	5	0	1	3	•••
Eligiendo en cada "celda" un número diferente al encontrado	3	5	2,	7	1	8	2	8	1	8	•••
	7	6	7,	5	6	7	3	3	2	1	•••
	3	7	8,	4	2	1	9	8	5	2	
El nuevo número armado no se encuentra en			9,	5	0	0	0	0	0	0	
la tabla	•••	9	5,	1	2	5	0	0	0	5	
Si estuviese en la i-esima posición, su i-esimo											
símbolo sería diferente!											

Por lo tanto, los números reales no son contables

Conjunto de secuencias binarias infinitas

Una secuencia binarias infinita

Es una secuencia de 1 y 0 sin final: 1010111111100001111100101010...

Podemos usar el mismo criterio de la diagonal

Para mostrar que este conjunto es incontable

0
2
0
1
0
1
0
1
1
0
...

1
3
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</td

El conjunto de secuencias binarias infinitas no es contable

Conjunto de todas las TM

¿Son el conjunto de todas la TM contables o no?

Cada TM puede descripto por un String en un alfabeto

Y ser utilizado por una Universal Turing Machine como input

El alfabeto tiene "n" número finito de símbolos

Por ejemplo 256 símbolos (nuestro "cotidiano" byte)

En un string de longitud

1 → tengo n posibles TM

 $k \rightarrow n^k$ posibles TM

Conjunto de todas las TM (cont.)

Algunos de esos Strings

Representan TM válidas (y otras no)

Cualquier TM que puede representarse con el alfabeto con una longitud de K

Estará en el string nk

Puedo hacer una correspondencia con los números naturales

Primeros los string de longitud 1 (son n),

Luego los de longitud 2 ... hasta longitud ∞

Por lo tanto, el conjunto de las TM es contable

Conjunto de todos los lenguajes

Sean

Σ un alfabeto

 Σ^* el conjunto de todos los posibles strings sobre el alfabeto Σ

Podemos ver que

 Σ^* es contable

Primero el string vacio, luego los string de longitud 1, longitud 2, ...

Por ejemplo

si
$$\Sigma = \{0,1\}$$

Entonces $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$

Conjunto de todos los lenguajes (cont.)

Sean

Σ un alfabeto

 Σ^* el conjunto de todos los posibles strings sobre el alfabeto Σ

L el conjunto de todos los lenguajes sobre el alfabeto Σ

 $A \in L$ un lenguaje en el alfabeto Σ

Podemos representar A

Como una secuencia de 0 y 1

Tal que el bit i esta en 1 si el i-esimo string de Σ^* pertenece al lenguaje A

Ejemplo

A = {todos los string que terminan en 0}

$$\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \dots \}$$

$$X_A = \{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots\}$$

Conjunto de todos los lenguajes (cont.)

Se puede ver que

X_A es una secuencia binaria infinito

En L

Existen infinitos lenguajes

Podemos representar cada uno de ellos con una secuencia binaria infinita.

Existe una correspondencia

entre el conjunto de todos los lenguajes y el conjunto de todas las secuencias binarias infinitas

Por lo tanto

El conjunto de todos los lenguajes no es contable

Lenguajes no reconocibles por una TM

Como

El conjunto de todas las TM es contable

El conjunto de todos los posibles lenguajes es incontable

Y

Un lenguaje es reconocible si una TM puede reconocerlo

Entonces

Existen lenguajes no reconocibles por una Máquina de Turing

Presentación realizada en Julio de 2020