Proof. If $f: E \to F$ is injective, then it has a retraction $r: F \to E$ such that $r \circ f = \mathrm{id}_E$, and if $f: E \to F$ is surjective, then it has a section $s: F \to E$ such that $f \circ s = \mathrm{id}_F$. Now if $f: E \to F$ is injective, then we have

$$(r \circ f)^{\top} = f^{\top} \circ r^{\top} = \mathrm{id}_{E^*},$$

which implies that f^{\top} is surjective, and if f is surjective, then we have

$$(f \circ s)^{\top} = s^{\top} \circ f^{\top} = \mathrm{id}_{F^*},$$

which implies that f^{\top} is injective.

The following proposition gives a natural interpretation of the dual $(E/U)^*$ of a quotient space E/U.

Proposition 11.9. For any subspace U of a vector space E, if $p: E \to E/U$ is the canonical surjection onto E/U, then p^{\top} is injective and

$$\operatorname{Im}(p^{\top}) = U^{0} = (\operatorname{Ker}(p))^{0}.$$

Therefore, p^{\top} is a linear isomorphism between $(E/U)^*$ and U^0 .

Proof. Since p is surjective, by Proposition 11.8, the map p^{\top} is injective. Obviously, $U = \operatorname{Ker}(p)$. Observe that $\operatorname{Im}(p^{\top})$ consists of all linear forms $\psi \in E^*$ such that $\psi = \varphi \circ p$ for some $\varphi \in (E/U)^*$, and since $\operatorname{Ker}(p) = U$, we have $U \subseteq \operatorname{Ker}(\psi)$. Conversely for any linear form $\psi \in E^*$, if $U \subseteq \operatorname{Ker}(\psi)$, then ψ factors through E/U as $\psi = \overline{\psi} \circ p$ as shown in the following commutative diagram

$$E \xrightarrow{p} E/U$$

$$\downarrow_{\overline{\psi}}$$

$$K,$$

where $\overline{\psi} \colon E/U \to K$ is given by

$$\overline{\psi}(\overline{v}) = \psi(v), \quad v \in E,$$

where $\overline{v} \in E/U$ denotes the equivalence class of $v \in E$. The map $\overline{\psi}$ does not depend on the representative chosen in the equivalence class \overline{v} , since if $\overline{v'} = \overline{v}$, that is $v' - v = u \in U$, then $\psi(v') = \psi(v + u) = \psi(v) + \psi(u) = \psi(v) + 0 = \psi(v)$. Therefore, we have

$$\operatorname{Im}(p^{\top}) = \{ \varphi \circ p \mid \varphi \in (E/U)^* \}$$

= $\{ \psi \colon E \to K \mid U \subseteq \operatorname{Ker}(\psi) \}$
= U^0 .

which proves our result.