A flavorful and cark cascade for low-scale leptogenesis

In collaboration with Julia Gehrlein and Jure Zupan (25xx.xxxx)

Lore: matter-matter asymmetry

$$\eta \equiv rac{n_B - n_{ar{B}}}{n_{\gamma}}$$
 ~constant after BBN

Measured value: $\eta = (6.12 \pm 0.04) \times 10^{-10}$

Naive estimate: Consider $\eta = 0$ and compute ratio at freeze out (T_{FO} ~ 20 MeV).

$$\frac{n_B}{n_\gamma} \simeq \frac{n_{\bar{B}}}{n_\gamma} \simeq \left(\frac{m_p}{T}\right)^{3/2} e^{-m_p/T} \simeq 10^{-18}$$

Lore: matter-matter asymmetry

What about electroweak baryogenesis with SM ingredients?

Requires strong 1st order phase transition bubbles i.e. m_H < 72 GeV.

BSM required!

Many models... for example high scale (> 100 GeV) leptogenesis + sphalerons

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

1. Production of lepton asymmetry

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

1. Production of lepton asymmetry

Toy model

Consider n sterile Dirac neutrinos:

$$\mathcal{L} \supset -y_{ij}\overline{N}_i P_L N_j \phi + \text{h.c.}$$

- Lepton number is conserved
- · CPT tells us:

$$\Gamma_{\mathrm{total}}(N_i) = \Gamma_{\mathrm{total}}(\bar{N}_i)$$

— n ≥ 3 for non-trival CPV

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

1. Production of lepton asymmetry

Toy model

Consider n sterile Dirac neutrinos:

$$\mathcal{L} \supset -y_{ij}\overline{N}_i P_L N_j \phi + \text{h.c.}$$

- Lepton number is conserved
- · CPT tells us:

$$\Gamma_{\mathrm{total}}(N_i) = \Gamma_{\mathrm{total}}(\bar{N}_i)$$

$$\Delta\Gamma(N_3 \to N_2 \phi) = -\Delta\Gamma(N_3 \to N_1 \phi)$$

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

1. Production of lepton asymmetry

Toy model

Consider n sterile Dirac neutrinos:

$$\mathcal{L} \supset -y_{ij}\overline{N}_i P_L N_j \phi + \text{h.c.}$$

- Lepton number is conserved
- · CPT tells us:

$$\Gamma_{\text{total}}(N_i) = \Gamma_{\text{total}}(\bar{N}_i)$$

$$\Delta\Gamma(N_3 \to N_2 \phi) = -\Delta\Gamma(N_3 \to N_1 \phi)$$

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

- 1. Production of lepton asymmetry
- 2. Transfer to baryon asymmetry

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

Introduce dark sector:

$$\mathcal{L} \supset -\lambda \overline{N}_1 \Psi_B X - \lambda' \overline{\chi}_1 \chi_2 X + \text{h.c.}$$

Need to preferentially scatter on $N_{1,2}$ – either kinematically forbid

$$m_{N_1} + m_{\chi_1} < m_{N_2} + m_{\chi_2}$$

or introduce generation-philic flavor structure.

2. Transfer to baryon asymmetry

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

1 Introduce dark sector:

$$\mathcal{L} \supset -\lambda \overline{N}_1 \Psi_B X - \lambda' \overline{\chi}_1 \chi_2 X + \text{h.c.}$$

 Note we can arrange for baryon and lepton number conserved

	X	Ψ_B	χ_1	χ_2
	1	0	2	1
В	-1	1	1	2
spin	0	1/2	1/2	1/2

2. Transfer to baryon asymmetry

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

2. Transfer to baryon asymmetry

3. Heavy dark baryon decay

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

Neutron portal:

$$\mathcal{L} \supset -\frac{1}{\Lambda^2} \overline{\Psi}_B P_R d \, \bar{u}^c P_R d + \mathrm{h.c.}$$

$$\mathcal{L} \supset -\frac{C\Lambda_{\mathrm{QCD}}^3}{f_{\pi}\Lambda^2} \bar{\Psi}_B p \pi^- + \mathrm{h.c.} + \cdots$$

3. Heavy dark baryon decay

Our mechanism: low-scale (< 100 GeV) leptogenesis + DM scattering

$$H = \frac{\dot{a}}{a} \simeq 1.66\sqrt{g_*} \frac{T^2}{M_{\rm Pl}}$$

$$H_{\rm BBN} < \Gamma_{N_3} < H_{\rm EWPT}$$

$$H = \frac{\dot{a}}{a} \simeq 1.66\sqrt{g_*} \frac{T^2}{M_{\rm Pl}}$$

$$10^{-25} \text{ GeV} \lesssim \Gamma_{N_3} \lesssim 10^{-14} \text{ GeV}$$

$$T \sim 1 \text{ MeV} \qquad \qquad T \sim 100 \text{ GeV}$$

$$\Gamma(N_3 \to N_b \phi) \simeq \frac{|y_{b3}|^2}{8\pi} m_{N_3}$$

$$10^{-12} \lesssim |y_{b3}| \left(\frac{m_{N_3}}{10 \, \text{GeV}}\right)^{1/2} \lesssim 2 \times 10^{-7}$$

Out of equilibrium after EWPT, but before BBN

$$N_3$$
 N_b

$$10^{-12} \lesssim |y_{b3}| \left(\frac{m_{N_3}}{10 \, \text{GeV}}\right)^{1/2} \lesssim 2 \times 10^{-7}$$

• CP asymmetry need to be large enough: $Y_L \gtrsim Y_B \approx 10^{-10}$

$$N_3$$
 N_b

N_{2/1} need to live long enough to scatter

$$\Gamma_{N_{1,2}} \ll \Gamma_{\rm scatter}$$

N_{2/1} need to live long enough to scatter

$$\Gamma_{N_{1.2}} \ll \Gamma_{\rm scatter}$$

No inverse scattering

$$m_{N_2} + m_{\Psi_B} > m_{\chi_2} + m_{\chi_2}$$

No new decay channels

$$m_X + m_{\Psi_B} > m_{N_2}$$
$$m_X + m_{N_2} > m_{\Psi_B}$$

Stable DM

$$m_{\chi_1} + m_X > m_{\chi_2}$$

Correct relic abundance

$$m_{\chi_1} + m_{\chi_2} \sim 5m_p$$

Evolution of DM abundance

$$\frac{s_{\text{late}}}{s_{\text{early}}} \left(\frac{\Omega_{1,\text{early}}}{m_{\chi_1}} + \frac{\Omega_{2,\text{early}}}{m_{\chi_2}} \right) = \frac{\Omega_{1,\text{late}}}{m_{\chi_1}} + \frac{\Omega_{2,\text{late}}}{m_{\chi_2}}$$

• Induced nucleon decay $p \to \pi^+ + \cancel{E}$

• Dinucleon decay $pp \to \pi^+\pi^+$

- LHC constraints $\frac{\lambda_{udd}}{\Lambda^2} \lesssim 0.07 \; \mathrm{TeV}^{-2}$
- Neutron stars $m_{\Psi_B} \gtrsim 1.2 \; \mathrm{GeV}$

Majorana neutrinos?

Connect lepton asymmetry to smallness of neutrino masses

$$\mathcal{L}\supset -\mu_{ab}N_aN_b$$
 N_a

Need psuedo-Dirac states:

Majorana neutrinos?

Connect lepton asymmetry to smallness of neutrino masses

$$\mathcal{L}\supset -\mu_{ab}N_aN_b$$
 N_a N_b

 Oscillation period needs to be slower than the relevant time-scales in the problem

$$\Delta m_{N_3} \ll \Gamma(N_3 \to N_b \phi)$$

$$\Delta m_{N_1} \ll \Gamma_{\rm scatter}(N_1 \chi_1 \to \Psi_B \chi_2)$$

Inverse seesaw

Neutrino sector (extended inverse seesaw):

$$\lambda f \ll m_D \ll m$$
,

$$\mathcal{L}_{M} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{R}^{C}} & \overline{\mathcal{N}_{R}} & \overline{\mathcal{N}_{R}'} \end{pmatrix} \begin{pmatrix} 0 & m_{D}^{+} & 0 \\ m_{D} & \lambda \sigma^{*} & m^{\top} \\ 0 & m & \lambda' \sigma \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \mathcal{N}_{L}^{C} \\ \mathcal{N}_{L}^{'C} \end{pmatrix} + \text{h.c.}$$

Spontaneous symmetry breaking of U(1)_L at the scale f

$$\sigma \to \frac{1}{\sqrt{2}}(f + \sigma_0 + iJ)$$

Neutrinos acquire hierarchical masses:

$$m_{\nu} \simeq \frac{\mu m_D^2}{m^2}, \quad m_{N_1, N_2} \simeq m \mp \frac{\mu}{2}$$

Conclusion

Phenomenologically promising model of low-scale leptogenesis.

Conclusion

Phenomenologically promising model of low-scale leptogenesis.

BACK-UPS

Primordial abundances as predicted by the standard model of BBN (1912.01132)

The mechanism - details

1. Lepton asymmetry

Introduce SM singlets:

	\mathcal{N}_i	\mathcal{N}_i'	σ
Γ	1	-1	2
spin	1/2	1/2	0

Neutrino sector (extended inverse seesaw):

$$\mathcal{L}_{M} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{R}^{C}} & \overline{\mathcal{N}_{R}} & \overline{\mathcal{N}_{R}'} \end{pmatrix} \begin{pmatrix} 0 & m_{D}^{\dagger} & 0 \\ m_{D} & \lambda \sigma^{*} & m^{\top} \\ 0 & m & \lambda' \sigma \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \mathcal{N}_{L}^{C} \\ \mathcal{N}_{L}^{\prime C} \end{pmatrix} + \text{h.c.}$$

Evolution

 $m_{N3} = 20 \text{ GeV}$

 $m_{\chi 1} = 0.5 \text{ GeV}$

 $m_{\chi^2} = 0.3 \text{ GeV}$

 $m_{\Psi B} = 1.2 \text{ GeV}$

Evolution

 $m_{N3} = 20 \text{ GeV}$

 $m_{\chi 1} = 0.5 \text{ GeV}$

 $m_{\chi^2} = 0.3 \text{ GeV}$

 $m_{\Psi B} = 1.2 \text{ GeV}$

