

Conciliation des données du PMSI et de la base REA-RAISIN par correspondance approximative

Joris Muller, F. Séverac, S. Deboscker, P. Tran Ba Loc, F. Schneider, T. Lavigne

Médecin spécialisé en Santé Publique Assistant Hospitalo-Universitaire Service d'hygiène Hospitalière - CHU de Strasbourg

Problème initial

Base de données fusionnée
Identifiant unique
Variable 1
Variable 2
Variable 3
Variable 4
Variable 5
Variable 6

Problème initial

Base Rea-RAISIN

- Données de qualité sur les infections nosocomiales
- Mais informations manquantes
 - IGSII
 - Parcours à l'hôpital
 - Diagnostic
- Saisie manuelle
- Format variable selon l'année

Variable	2004-2006	2007-2012	2013-2014
Nom	Complet	Tronqué à 3 lettres	Absent
Prénom	Complet	Tronqué à 3 lettres	Absent
Date de naissance	Oui	Oui	Oui
Date d'entrée	Oui	Oui	Oui
Date de sortie	de sortie Oui Oui		Oui
NIP	Non	Partiellement	Oui

Solution 1: Retour aux dossiers

Rechecher l'information dans les dossier avec grille de recueil

Avantages

- Simple
- Utilise l'information a priori la plus fiable

Inconvénients

- Long et coûteux : > 600h de travail
- Non reproductible
- Saisie peut introduire de nouvelles erreurs

Solution 2 : Lier au PMSI avec correspondance approximative

Principe Lier Rea-RAISIN au PMSI PMSI: information fiable Exhaustive Avantage Reproductible Extensible Pas de clef de fusion entre les bases pour identifier le patient et le séjour Inconvénients • Algorithme à développer Pas de vrai "diagnostic", (CIM10 et GHM)

Objectif : comment lier 2 bases de données en l'absence de clef de fusion fiable ?

Inconsistance des données

	Base 1	Base 2
Prénom	Jean-Michel	JMICHEL
Nom	Muller	Meyer
Date de naissance	01/01/1980	31/12/1980
Date d'entrée	0 2 /01/2011	0 1 /02/2011

Correspondance approximative (Fuzzy finding)

Source: en.wikipedia.org

Distance de Levenshtein

CYBERNETICS AND CONTROL THEORY

BINARY CODES CAPABLE OF CORRECTING DELETIONS, INSERTIONS, AND REVERSALS

V. I Levenshtein

(Presented by Academician P. S. Novikov, January 4, 1965) Translated from Doklady Akademii Nauk SSSR, Vol. 163, No. 4, pp. 845-848, August, 1965 Original article submitted January 7, 1965

Investigations of transmission of binary information usually consider a channel model in which failures of the type $0 \to 1$ and $1 \to 0$ (which we will call reversals) are admitted. In the present paper (as in [1]) we investigate a channel model in which it is also possible to have failures of the form $0 \to \Lambda$, $1 \to \Lambda$, which are called deletions, and failures of the form $\Lambda \to 0$, $\Lambda \to 1$, which are called insertions (here Λ is the empty word). For such channels, by analogy to the combinatorial problem of constructing optimal codes capable of correcting s reversals, we will consider the problem of constructing optim

were inserted (deleted) from at least one of the words x or y to obtain z are deleted from (inserted into) the word z, then, as we can easily see, we obtain a word that can be obtained from both x and y by no more than $\max{(i_2+j_1, j_2+i_1)}$ deletions (insertions). Because x and y have the same length, $j_1-i_1=j_2-i_2$ and, consequently, $i_2+j_1=j_2+i_1=\frac{1}{2}$ ($i_1+i_2+j_1+j_2$) \leq s, which proves Lemma 1.

Codes that can correct s deletions and insertions admit another, metric, description. Consider a function $\rho(x, y)$ defined on pairs of binary words and equal to the smallest number of deletions and

Distance de Levenshtein

- 1 point si délétion
- 1 point si ajout
- 1 point remplacement

Chaine de caractères 1	Chaine de caractères 2	Distance	Explication
Marie	Mairie	1	1 Insertion
987761	98776	1	1 Suppression
17/04/1984	17/04/1948	2	2 remplacements

Score composite de distance =

Minimum

Distance de Levenshtein Nom / Nom usuel

Distance de Levenshtein Nom / Nom de naissance

Distance de Levenshtein Prénoms

Distance de Levenshtein Dates de naissances

Minimum

Distance de Levenshtein

Dates de sorties

Nombre de jours entre

Dates de sorties ×2

- Algorithme "brut de force": calcul des scores composite de distance pour tous les enregistrement d'une base face à tous de l'autre
- Matrice de 7465 *

 10 605 = 79 166 325
 de distances
 calculées (500 Mo)

Observations REA-RAISIN

_		1	2	3	4	5	6	7	8	9
<u> </u>	1	10	2	2	19	3	14	9	11	7
$\sum_{i=1}^{n}$	2	13	8	3	11	9	5	6	20	3
	3	17	0	14	5	15	7	14	22	12
SUC	4	6	19	16	4	7	14	9	19	16
ation	5	14	13	18	13	2	18	3	13	18
bserv	6	0	2	18	3	6	18	5	2	18
sq(7	6	5	19	4	2	7	1	5	19
\bigcirc	8	15	3	4	7	4	15	1	0	4
	9	16	2	16	0	4	14	14	2	16

Correspondances parfaites

Observations REA-RAISIN

_		1	2	3	4	5	6	7	8	9
	1	10	2	2	19	3	14	9	11	7
S S	2	13	8	3	11	9	5	6	20	3
	3	17	0	14	5	15	7	14	22	12
SUC	4	6	19	16	4	7	14	9	19	16
ati	5	14	13	18	13	2	18	3	13	18
oservation	6 <	-0	2	18	3	6	18	5	2	18
sq(7	6	5	19	4	2	7	1	5	19
\circ	8	15	3	4	7	4	15	1	0	4
	9	16	2	16	0	4	14	14	2	16

Correspondances parfaites

Aucune vérification nécessaire

Correspondance approximative sous seuil de tolérance

	Observations REA-RAISIN									
		1	2	3	4	5	6	7	8	9
	1	10	2	2	19	3	14	9	11	7
MS	2	13	8	3	11	9	5	6	20	3
	3	17	0	14	5	15	7	14	22	12
SUC	4	6	19	16	4	7	14	9	19	16
atic	5	14	13	18	13	2	18	3	13	18
bservations	6	0	2	18	3	6	18	5	2	18
sq(7	6	5	19	4	2	7	1	5	19
\cup	8	15	3	4	7	4	15	1	0	4
	9	16	2	16	0	4	14	14	2	16

Observations DEV DVICIVI

Correspondance approximative sous seuil de tolérance

Vérification manuelle de 10% des 1897 correspondances

Aucune erreur

Correspondance approximative au-dessus seuil de tolérance

Vérification manuelle systématique (n = 134)

14 exclus

	Observations REA-RAISIN									N
_		1	2	3	4	5	6	7	8	9
	1	10	2	2	19	3	14	9	11	7
MS	2	13	8	3	11	9	5	6	20	3
	3	17	0	14	5	15	7	14	22	12
SUC	4	6	19	16	4	7	14	9	19	16
atic	5	14	13	18	13	2	18	3	13	18
bservation	6	0	2	18	3	6	18	5	2	18
_	7	6	5	19	4	2	7	1	5	19
0	8	15	3	4	7	4	15	1	0	4
	9	16	2	16	0	4	14	14	2	16

Obcarrations DEA DAICINI

Plus d'une correspondance possible

Vérification manuelle (< 20 cas)

	Observations deal-dailin										
		1	2	3	4	ļ	5	6	7	8	9
	1	10	2	2	19		3	14	9	11	7
S	2	13	8	3	11		9	5	6	20	3
口	3	17	0	14	5	_	5	7	14	22	12
SUC	4	6	19	16	4	4	7	14	9	19	16
atic	5	14	17	18	13	6	2	18	3	13	18
oservations	6	0	2 🛮	18	3		ြ	18	5	2	18
sq.	7	√ 6	5	19	4	4	2	7	1	5	19
O_{i}	8	15	3	4	7	4	4	15	1	0	4
-	9	16	2	16	0	4	4	14	14	2	16

Observations REA-RAISINI

Résultats

Score	n	Proportion	Proportion cumulée
0	5448	72,8 %	72,8 %
< 4	1897	25,2 %	98,2 %
> 4	134	1,6 %	99,8 %
Exclus	14	0,2 %	100 %

Discussion

- Limite :
 - Incertitude
 - Algorithme non optimisé
- Avantages :
 - Logiciel libre : R (fonction adist)
 - Reproductible
 - Rapide

Conciliation des données du PMSI et de la base REA-RAISIN par correspondance approximative

Merci!

Joris Muller joris.muller@jom.link

Médecin spécialisé en Santé Publique Assistant Hospitalo-Universitaire Service d'hygiène Hospitalière - CHU de Strasbourg