${\bf Contents}$

1	01-0	01 tests	1
2	02-0	02 tests	5
3	01-2	23 tests	8
Li	ist c	of Tables	
	1	Numerical results of PRO1 scheme to the example 1.1	2
	2	Numerical results of PRO1 scheme to the example 1.2	3
	3	Numerical results of PRO1 scheme to the example 1.2	3
	4	Numerical results of PRO1 scheme to the example 1.3	4
	5	Numerical results of PRO1 scheme to the example 2.1	5
	6	Numerical results of PRO1 scheme to the example 2.2	6
	7	Numerical results of PRO1 scheme to the example 2.3	7
	8	Numerical results of PRO1 scheme to the example 3.1	8
	9	Numerical results of PRO1 scheme to the example 3.2	9
	10	Numerical results of PRO1 scheme to the example 3.3	10

1 01-01 tests

Example 1.1. In this tests we consider:

- $\psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{\rm r}=1$
- $\psi_{ll} = 0$
- $\psi_{\rm rr} = 4$
- g(x) = -24

Table 1: Numerical results of PRO1 scheme to the example 1.1.

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{E_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	3.33E-03		2.51E-03	_	2.51E-03	_	2.51E - 03	
$\mathbb{P}_3(4)$	40	4.31E-04	2.95	3.21E - 04	2.97	3.21E - 04	2.97	3.21E - 04	2.97
	80	5.46E - 05	2.98	4.04E - 05	2.99	4.04E - 05	2.99	4.04E - 05	2.99
	160	6.86E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99
	20	6.36E - 15	_	3.12E - 14	_	4.36E - 15	_	1.90E - 14	_
$\mathbb{P}_5(6)$	40	5.08E - 14	\uparrow	1.73E - 13	\uparrow	6.78E - 14	\uparrow	$2.22E{-}13$	\uparrow
11 5 (U)	80	$8.44E{-}13$	\uparrow	$3.31E{-}13$	\uparrow	8.35E - 14	\uparrow	$3.54E{-}13$	\uparrow
	160	6.92E - 12	\uparrow	$3.51E{-}12$	\uparrow	2.70E - 12	\uparrow	3.71E - 12	\uparrow
	20	4.52E - 13	_	1.16E - 13	_	7.32E - 14	_	2.85E - 14	_
$\mathbb{P}_7(8)$	40	$5.41E{-}13$	\uparrow	$1.41E{-}13$	\uparrow	$1.33E{-}13$	\uparrow	6.85E - 13	\uparrow
п 7(O)	80	$2.98E{-}12$	\uparrow	$2.01E{-}12$	\uparrow	1.99E - 12	\uparrow	$1.63E{-}12$	\uparrow
	160	$5.16E{-}11$	\uparrow	$1.09E{-}11$	\uparrow	1.87E - 11	\uparrow	$2.59E{-}11$	\uparrow

Example 1.2. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $\psi_{\mathrm{ll}} = 1$
- $\psi_{\rm rr} = e$
- $g(x) = -\exp(x)$

Table 2: Numerical results of PRO1 scheme to the example 1.2.

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E - 04		2.07E - 04		2.07E - 04	_	2.06E - 04	_
$\mathbb{P}_3(4)$	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	20	1.78E - 07		1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
$\mathbb{P}_5(6)$	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
1 5(U)	80	1.57E - 10	5.09	1.38E - 10	5.01	1.37E - 10	5.02	$1.41E{-}10$	4.99
	160	$8.64E{-}11$	0.86	$5.63E{-}11$	1.30	3.58E - 11	1.94	$1.65E{-}11$	3.09
	20	6.73E - 10	_	5.08E - 10	_	5.09E-10	_	5.09E-10	_
D_(9)	40	$1.03E{-}11$	6.03	4.40E - 12	6.85	$4.39E{-}12$	6.86	$2.08E{-}12$	7.94
$\mathbb{P}_7(8)$	80	$5.93E{-}12$	0.80	$1.93E{-}11$	\uparrow	1.83E - 12	1.26	$2.72E{-}12$	\uparrow
	160	6.87E - 11	\uparrow	2.07E - 10	\uparrow	$1.12E{-10}$	\uparrow	1.33E-10	\uparrow

Table 3: Numerical results of PRO1 scheme to the example 1.2.

		$\omega = 1 1$	1, 1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3$, 10	$\omega = 1 3$, 0.1	$\omega = 1 3,0$	0.01
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E - 04	_	2.07E - 04	_	2.07E - 04	_	2.06E-04	_	2.06E-04	_	2.06E-04	
ID (4)	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
$\mathbb{P}_3(4)$	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02						
	160	$4.90\mathrm{E}{-07}$	3.08	3.82E - 07	3.10	$3.82\mathrm{E}{-07}$	3.10	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	20	1.78E-07	_	1.48E-07	_	1.48E-07		1.48E-07	_	1.48E-07	_	1.48E-07	
ID (6)	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06	4.45E - 09	5.06
$\mathbb{P}_5(6)$	80	$1.54E{-}10$	5.12	$1.38E{-}10$	5.01	1.37E - 10	5.02	$1.41E{-}10$	4.99	$1.43E{-}10$	4.96	$1.38E{-}10$	5.02
	160	$2.18\mathrm{E}{-11}$	2.82	$5.63\mathrm{E}{-11}$	1.30	$3.58\mathrm{E}{-11}$	1.94	$1.65\mathrm{E}{-11}$	3.09	$3.42E{-}11$	2.07	$2.85\mathrm{E}{-11}$	2.27
	20	6.75E - 10	_	$5.08E{-}10$	_	5.09E - 10	_	5.09E - 10	_	5.09E - 10	_	5.09E - 10	
TD (0)	40	$8.06E{-}12$	6.39	$4.40E{-}12$	6.85	$4.39E{-}12$	6.86	$2.08E{-}12$	7.94	$2.24E{-}12$	7.83	$5.71E{-}12$	6.48
$\mathbb{P}_7(8)$	80	$1.12E{-}12$	2.85	$1.93E{-}11$	↑	$1.83E{-}12$	1.26	$2.72E{-}12$	↑	$4.55E{-}12$	\uparrow	$2.49E{-}11$	↑
	160	1.37E - 10	↑	2.07E - 10	↑	$1.12E{-10}$	↑	1.33E-10	↑	1.78E - 10	↑	$2.04E{-}10$	↑

Example 1.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + x^3(3-e) + x^2(2e-5) + x + 1$$

- $\psi_l = 0$
- $\psi_{\rm r} = 0$
- $\psi_{ll} = 0$
- $\psi_{\rm rr} = 0$
- $g(x) = \exp(x)$

Table 4: Numerical results of PRO1 scheme to the example 1.3.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E - 04		2.07E - 04	_	2.07E - 04	_	2.06E - 04	
$\mathbb{P}_3(4)$	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	20	1.78E - 07		1.48E - 07	_	1.48E - 07	_	1.48E - 07	
$\mathbb{P}_5(6)$	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
ш 5(O)	80	$1.55E{-}10$	5.11	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98
	160	5.30E - 12	4.88	4.82E - 12	4.87	4.87E - 12	4.85	4.73E - 12	4.89
	20	6.74E - 10		5.09E - 10	_	5.09E - 10	_	5.09E - 10	_
ID_(9)	40	$8.64E{-}12$	6.29	$4.11E{-}12$	6.95	$4.11E{-}12$	6.95	$4.11E{-}12$	6.95
$\mathbb{P}_7(8)$	80	6.83E - 14	6.98	2.37E - 14	7.44	$3.61E{-}14$	6.83	6.97E - 14	5.88
	160	1.57E - 13	\uparrow	$2.08E{-}13$	\uparrow	1.84E - 13	\uparrow	3.50E - 13	\uparrow

2 02-02 tests

Example 2.1. In this tests we consider:

- $\psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{\rm r} = 1$
- $M_1 = 0$
- $M_{\rm r} = -12$
- g(x) = -24

Table 5: Numerical results of PRO1 scheme to the example 2.1.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.26E-02		1.81E-02		1.81E - 02	_	1.81E - 02	_
$\mathbb{P}_3(4)$	40	5.45E - 03	2.05	4.40E - 03	2.04	4.40E - 03	2.04	4.40E - 03	2.04
	80	1.33E-03	2.04	1.08E - 03	2.03	1.08E - 03	2.03	1.08E - 03	2.03
	160	3.26E - 04	2.02	2.68E - 04	2.01	2.68E - 04	2.01	2.68E - 04	2.01
	20	1.73E - 13		$1.53E{-}13$	_	2.36E - 14	_	$1.51E{-14}$	_
$\mathbb{P}_5(6)$	40	4.75E - 13	\uparrow	$1.65E{-}13$	\uparrow	$5.11E{-13}$	\uparrow	$8.54E{-}13$	\uparrow
11 5 (U)	80	$1.45E{-}12$	\uparrow	8.49E - 13	\uparrow	$1.61E{-}12$	\uparrow	2.39E - 12	\uparrow
	160	2.05E - 11	\uparrow	8.50E - 12	\uparrow	$2.44E{-}12$	\uparrow	$3.71E{-}11$	\uparrow
	20	8.20E-13		9.55E - 13	_	1.50E - 13	_	1.97E - 12	_
ID (0)	40	$2.12E{-}12$	\uparrow	1.37E - 12	\uparrow	$6.82E{-}12$	\uparrow	$2.23E{-}12$	\uparrow
$\mathbb{P}_7(8)$	80	$2.83E{-}11$	\uparrow	2.66E - 11	\uparrow	1.86E - 11	\uparrow	3.90E - 11	\uparrow
	160	$1.16E{-}10$	\uparrow	$3.15E{-}10$	\uparrow	$1.64E{-}11$	0.18	4.77E - 10	\uparrow

Example 2.2. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $M_{\rm l} = -1$
- $M_{\rm r} = -e$
- $g(x) = -\exp(x)$

Table 6: Numerical results of PRO1 scheme to the example 2.2.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
$\mathbb{P}_3(4)$	20	1.68E - 03		1.40E - 03		1.40E - 03	_	1.40E - 03	
	40	4.13E-04	2.03	3.47E - 04	2.02	3.47E - 04	2.02	3.47E - 04	2.02
	80	1.01E-04	2.03	8.61E - 05	2.01	8.61E - 05	2.01	8.61E - 05	2.01
	160	2.50E - 05	2.02	2.14E - 05	2.01	2.14E - 05	2.01	2.14E - 05	2.01
	20	3.14E - 06		2.79E - 06		2.79E - 06	_	2.79E - 06	
$\mathbb{P}_5(6)$	40	2.40E - 07	3.71	1.79E - 07	3.96	1.79E - 07	3.96	1.79E - 07	3.96
1 5 (U)	80	1.30E - 08	4.21	1.13E - 08	3.98	1.13E - 08	3.98	1.13E - 08	3.98
	160	9.45E - 10	3.78	1.07E - 09	3.41	6.87E - 10	4.04	1.09E-09	3.37
	20	1.47E - 08		1.36E - 08	_	1.36E - 08	_	1.36E - 08	_
D_(0)	40	$6.35E{-}10$	4.53	$2.12E{-10}$	6.01	$2.13E{-}10$	6.00	$2.26E{-}10$	5.91
$\mathbb{P}_7(8)$	80	$8.54E{-}11$	2.89	$1.47E{-}10$	0.53	$2.60E{-}11$	3.04	$2.19E{-}11$	3.37
	160	1.28E-09	\uparrow	9.86E - 11	0.58	8.54E - 10	\uparrow	1.30E - 09	\uparrow

Example 2.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + \left(\frac{e-1}{6}\right)x^3 + \frac{x^2}{2} + \left(\frac{5e-8}{6}\right)x + 1$$

- $\psi_l = 0$
- $\psi_{\rm r} = 0$
- $M_{\rm l}=0$
- $M_{\rm r}=0$
- $g(x) = \exp(x)$

Table 7: Numerical results of PRO1 scheme to the example 2.3.

		$\omega = 1 1$.,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	1.68E - 03		1.40E - 03	_	1.40E - 03	_	1.40E - 03	
$\mathbb{P}_3(4)$	40	4.13E - 04	2.03	3.47E - 04	2.02	3.47E - 04	2.02	3.47E - 04	2.02
	80	1.01E-04	2.03	8.61E - 05	2.01	8.61E - 05	2.01	8.61E - 05	2.01
	160	2.50E - 05	2.02	2.14E - 05	2.01	2.14E - 05	2.01	2.14E - 05	2.01
	20	3.14E - 06		2.79E - 06	_	2.79E - 06	_	2.79E - 06	
$\mathbb{P}_5(6)$	40	2.40E - 07	3.71	1.79E - 07	3.96	1.79E - 07	3.96	1.79E - 07	3.96
1 5 (U)	80	1.30E - 08	4.21	1.13E - 08	3.98	1.13E - 08	3.98	1.13E - 08	3.98
	160	9.98E - 10	3.70	7.20E - 10	3.98	7.15E - 10	3.99	7.20E - 10	3.98
	20	1.47E - 08		1.36E - 08	_	1.36E - 08	_	1.36E - 08	_
D_(0)	40	$4.53E{-}10$	5.02	$2.20E{-}10$	5.95	$2.20E{-}10$	5.95	$2.20E{-}10$	5.95
$\mathbb{P}_7(8)$	80	5.87E - 12	6.27	$3.45E{-}12$	6.00	3.93E - 12	5.81	$3.32E{-}12$	6.05
	160	6.63E - 12	\uparrow	$1.59E{-}11$	\uparrow	2.49E - 12	0.66	8.74E - 12	\uparrow

3 01-23 tests

Example 3.1. In this tests we consider:

- $\psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{ll} = 0$
- $M_{\rm r} = -12$
- G = -24
- g(x) = 24

Table 8: Numerical results of PRO1 scheme to the example 3.1.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$
$\mathbb{P}_3(4)$	20	7.32E - 02		6.80E - 02	_	6.80E - 02	_	6.80E - 02	
	40	1.96E - 02	1.90	1.78E - 02	1.93	1.78E - 02	1.93	1.78E - 02	1.93
13(4)	80	5.03E - 03	1.96	4.57E - 03	1.97	4.57E - 03	1.97	4.57E - 03	1.97
	160	1.27E - 03	1.98	1.15E - 03	1.98	1.15E - 03	1.98	1.15E - 03	1.98
	20	5.09E - 13	_	4.73E - 13	_	7.95E - 13	_	4.41E-13	_
$\mathbb{P}_5(6)$	40	1.26E - 13	2.01	$3.44E{-}12$	\uparrow	$1.48E{-}11$	\uparrow	$1.81E{-}11$	\uparrow
1 5 (U)	80	$1.01E{-}10$	\uparrow	$1.31E{-}10$	\uparrow	$4.82E{-}11$	\uparrow	$2.18E{-}10$	\uparrow
	160	4.00E - 10	\uparrow	7.20E - 10	↑	1.49E-09	\uparrow	5.40E - 10	↑
	20	2.11E-11	_	3.95E - 12	_	3.43E - 12	_	1.48E - 11	_
m (o)	40	$1.33E{-}10$	\uparrow	$5.76E{-}11$	\uparrow	5.98E - 11	\uparrow	3.84E - 11	\uparrow
$\mathbb{P}_7(8)$	80	$6.34E{-}11$	1.07	6.60E - 11	\uparrow	$9.44E{-}11$	\uparrow	$2.71E{-}10$	\uparrow
	160	1.22E - 09	\uparrow	5.10E - 09	\uparrow	$8.10E{-}10$	\uparrow	6.20E - 09	\uparrow

Example 3.2. In this tests we consider:

•
$$\psi(x) = \exp(x)$$

•
$$\psi_l = 1$$

•
$$\psi_{\mathrm{ll}} = 1$$

•
$$M_{\rm r} = -{\rm e}$$

•
$$G = -e$$

•
$$g(x) = -\exp(x)$$

Table 9: Numerical results of PRO1 scheme to the example 3.2.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$, 10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	7.69E - 03		5.82E - 01	_	5.82E - 01	_	5.82E - 01	_
$\mathbb{P}_3(4)$	40	2.06E - 03	1.90	5.99E - 01	\uparrow	5.99E - 01	\uparrow	5.99E - 01	\uparrow
	80	5.28E - 04	1.96	6.09E - 01	\uparrow	6.09E - 01	\uparrow	6.09E - 01	\uparrow
	160	1.33E-04	1.98	6.14E - 01	\uparrow	6.14E - 01	\uparrow	6.14E - 01	\uparrow
	20	1.79E - 05		5.75E - 01	_	5.75E - 01	_	5.75E - 01	_
$\mathbb{P}_5(6)$	40	1.22E - 06	3.88	5.97E - 01	\uparrow	5.97E - 01	\uparrow	5.97E - 01	\uparrow
ш 5(O)	80	9.00E - 08	3.76	6.08E - 01	\uparrow	6.08E - 01	\uparrow	6.08E - 01	\uparrow
	160	4.67E - 09	4.27	6.14E - 01	\uparrow	6.14E - 01	\uparrow	6.14E - 01	\uparrow
	20	1.16E-07		5.75E - 01	_	5.75E - 01	_	5.75E - 01	_
D_(9)	40	2.58E - 09	5.49	5.97E - 01	\uparrow	5.97E - 01	\uparrow	5.97E - 01	\uparrow
$\mathbb{P}_7(8)$	80	1.53E-09	0.75	6.08E - 01	\uparrow	6.08E - 01	\uparrow	6.08E - 01	\uparrow
	160	1.55E-09	\uparrow	$6.14E{-01}$	\uparrow	$6.14E{-01}$	\uparrow	6.14E - 01	\uparrow

Example 3.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + x^3 \left(\frac{e-1}{6}\right) + \frac{x^2}{2} + x + 1$$

- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = 0$
- $M_{\rm r}=0$
- G = 1
- $g(x) = \exp(x)$

Table 10: Numerical results of PRO1 scheme to the example 3.3.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	7.69E - 03		6.96E - 03	_	6.96E - 03	_	6.96E - 03	
$\mathbb{P}_3(4)$	40	2.06E - 03	1.90	1.85E - 03	1.92	1.85E - 03	1.92	1.85E - 03	1.92
	80	5.28E - 04	1.96	4.75E - 04	1.96	4.75E - 04	1.96	4.75E - 04	1.96
	160	1.33E-04	1.98	1.20E - 04	1.98	1.20E - 04	1.98	1.20E-04	1.98
	20	1.79E - 05		1.42E - 05	_	1.42E - 05	_	1.42E - 05	_
$\mathbb{P}_5(6)$	40	1.22E - 06	3.88	9.97E - 07	3.84	9.97E - 07	3.84	9.97E - 07	3.84
ш 5(O)	80	8.92E - 08	3.77	6.58E - 08	3.92	6.58E - 08	3.92	6.58E - 08	3.92
	160	5.36E - 09	4.06	4.26E - 09	3.95	4.24E - 09	3.96	4.16E - 09	3.98
	20	1.16E-07		6.43E - 08	_	6.43E - 08	_	6.43E - 08	_
ID_(9)	40	2.06E-09	5.82	1.15E - 09	5.80	1.15E - 09	5.80	1.16E - 09	5.79
$\mathbb{P}_7(8)$	80	$7.63E{-}11$	4.75	7.66E - 11	3.91	$3.28E{-}11$	5.14	$5.16E{-}11$	4.49
	160	$3.12E{-}10$	\uparrow	$3.99E{-}10$	\uparrow	3.42E - 10	\uparrow	$1.08E{-}10$	\uparrow