Probabilidade e Estatística

Paulo de Souza

2022-05-13

Sumário

In	form	nações Gerais	5
	Sobi	re o Livro	5
	Uso		5
Ι	Bá	asico	7
1	Inti	rodução	9
	1.1	Conceitos Principais	9
	1.2	Testes de Hipótese	9
	1.3	Testes de Comparação Amostral	9
2	Est	atística	11
	2.1	Conceitos Básicos de Estatística	11
3	Pro	babilidade	15
	3.1	Análise Combinatória	15
	3.2	Distribuições de Probabilidade	15
II	Te	estes Amostrais	21
4	Doi	s Grupos Independentes e Paramétricos	23
	4.1	Intervalo e limite de confiança	23
	4.2	t de Student	23
	4.3	Comparação entre 2 proporções	23
5	Doi	s Grupos Independentes e Não-Paramétricos	25
	5.1	Qui-Quadrado	25
	5.2	U de Mann Whitney	25
	5.3	Prova de Fischer	29

4 SUMÁRIO

6	Doi	s grupos Pareados e Paramétricos	31
	6.1	Teste de t-Student pareado	31
7	Doi	s grupos Pareados e Não - Paramétricos	33
	7.1	Prova de MacNemar	33
	7.2	Prova de Wilcoxon	33
8	Três	s ou mais grupos Independentes e Paramétricos	35
	8.1	Teste de Tuckey	35
	8.2	ANOVA de 1 ou 2 vias	35
II	ΓI	Testes de Normalidade	37
9	Test	tes de Normalidade	39
	9.1	Shapiro-Wilk	39
	9.2	Kolmogorov - Smirnov	39
	9.3	Anderson - Darling	39
	9.4	Cramer Von-Mises	39
I	/ A	Λ CA	41
10	Aná	ilise de Concordância de Atributos	43
11	Esta	ática Kappa	45
	11.1	Teste Kappa de Cohen	45
	11.2	Teste Kappa de Fleiss	45

Informações Gerais

Sobre o Livro

Este livro, é apenas um resumo baseado em anotações do autor, com o que diz respeito ao estudo de temas referentes a **probabilidade** e **estatística**.

Uso

O livro pode ser usado pelos entusiastas nos assuntos supracitados.

6 SUMÁRIO

Parte I

Básico

Introdução

1.1 Conceitos Principais

Grupos independentes Grupos pareados Tipo paramétrico Tipo não paramétrico

1.2 Testes de Hipótese

1.2.1 Hipósete nula e alternativa

1.2.2 O significado de p-valor

1.3 Testes de Comparação Amostral

São diversos os modelos de dados que são analisados, e cada um destes tem suas características probabilisticas; quando queremos comparar grupos amostrais de nossos dados, são necessários testes para entender melhor como essa amostra se comporta.

Na Tabela abaixo são apresentados alguns dos principais testes de **Comparação entre Amostras**, cada um dos termos da tabela, assim como os métodos, serão explicados ao longo deste livro/resumo.

Tabela 1.1: Testes Para Comparação de Amostras

Quantidade	Tipo	Método de Teste		
2 grupos independentes	$param\'etricos$	Int. e lim. de confiança (1 ou 2 grupos) t de Student (1 ou 2 grupos) Comparação entre 2 proporções		
	não paramétricos	Qui-quadrado χ^2 U de Mann Whitney		
2 grupos pareados	paramétrico não paramétricos	Prova de Fischer t de Student pareado Prova de MacNemar		

Quantidade	Tipo	Método de Teste
$\geq 3 \; { m grupos} \; { m independentes}$	paramétrico	Prova de Wilcoxon ANOVA de 1 ou 2 vias
≥ 3 grupos pareados	não paramétricos paramétrico	Qui-quadrado χ^2 Kruskall Wallis ANOVA p/ medidas repetidas
≥ o grupos pareados	não paramétrico	Teste de Friedman

Na linha 1 da tabela 1.1 as abreviações ${f Int}$ e ${f lim}$ significam ${f intervalo}$ e ${f limite}$, respectivamente.

Estatística

Em probabilidade e estatística, existem diversos conceitos e axiomas que são fundamentais para o entendimento e a resolução dos problemas. Neste capítulo serão desenvolvidos os pontos que serão mais aplicados ao decorrer do livro, demais conceitos que sejam considerados extras, serão apenas indicados e referências para estes são deixadas a disposição.

2.1 Conceitos Básicos de Estatística

Entre os conceitos mais básicos da estatística, estão a **média, moda** e **mediana**, de forma direta a explicação de cada uma é dada na sequência

Média - Valor médioMediana - O valor centralModa - O valor que mais se repete

2.1.1 Média

A **média** como citado anteriormente, é o valor médio de uma sequência de dados, matematicamente isso significa a soma de todos os termos, divido pela quantidade dos termos, como apresentado na equação (2.1)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2.1}$$

Para fixar melhor este conceito, vejamos o exemplo abaixo.

Exemplo 1. Dado o seguinte registro da velocidade de 13 carros:

$$vel = [99,86,87,88,111,86,103,87,94,78,77,85,86]$$

calcular a média desses dados.

Resolução: Para calcular a média, basta sormamos todos os termos e dividirmos pela quantidade de termos, isto é

$$\bar{x} = \frac{1}{13}(99 + 86 + 87 + 111 + 86 + 103 + 87 + 94 + 78 + 77 + 85 + 86) = 89.77$$

Portanto, a média das velocidades coletadas é $\bar{x} = 89.77$

Outro conceito que usualmente aparece, é o de **média ponderada**, neste caso é associado um determinado "peso" a cada um dos termos da amostra.

2.1.2 Mediana

2.1.3 Moda

2.1.4 Variância

A Variância é um parâmetro que compara o quão distantes estão os valores de determinado grupo de dados com relação a média deste mesmo grupo. A mesma pode ser do tipo Amostral ou Populacional e a diferença fica mais explicita na equação que as definem.

Variância Amostral

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum x_{i}^{2} - n\bar{x}^{2} \right]$$
 (2.2)

Variância Populacional

$$\sigma^2 = \sum_{i=1}^{N} \frac{(x_i - \bar{\mu})^2}{N} = \frac{\sum x_i^2}{N} - \bar{\mu}^2$$
 (2.3)

2.1.4.1 Demonstração das relações de Variância

Seja a variância amostral dada pela relação inicial:

$$s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

vamos mostrar que a mesma pode ser escrita como sendo

$$s^2 = \frac{1}{n-1} \left[\sum x_i^2 - n\bar{x}^2 \right]$$

Demonstração.

$$\begin{split} s^2 &= \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1} \\ &= \frac{\sum_{i=1}^n (x_i^2 - 2x_i \bar{x} + \bar{x}^2)}{n-1} \\ &= \frac{1}{n-1} \left(\sum x_i^2 - 2 \sum x_i \bar{x} + \sum \bar{x}^2 \right) \\ &= \frac{1}{n-1} \left[\sum x_i^2 - 2 \sum x_i \left(\frac{1}{n} \sum x_i \right) + \sum \left(\frac{1}{n} \sum x_i \right)^2 \right] \\ &= \frac{1}{n-1} \left[\sum x_i^2 - \frac{2}{n} \left(\sum x_i \right)^2 + n \left(\frac{1}{n} \right)^2 \left(\sum x_i \right)^2 \right] \\ &= \frac{1}{n-1} \left[\sum x_i^2 - \frac{2n}{n^2} \left(\sum x_i \right)^2 + n \left(\frac{1}{n} \right)^2 \left(\sum x_i \right)^2 \right] \\ &= \frac{1}{n-1} \left[\sum x_i^2 + \frac{1}{n^2} (n-2n) \left(\sum x_i \right)^2 \right] \\ &= \frac{1}{n-1} \left[\sum x_i^2 + \left(\frac{1}{n} \sum x_i \right)^2 (-n) \right] \\ &= \frac{1}{n-1} \left[\sum x_i^2 - n\bar{x}^2 \right] \end{split}$$

Para a Variância Populacional segue do resultado anterior

Demonstração.

$$\begin{split} \sigma^2 &= \frac{\sum_{i=1}^{N} (x_i - \bar{\mu})^2}{N} \\ &= \frac{1}{N} \left[\sum_{i=1}^{N} x_i^2 - N \bar{\mu}^2 \right] \\ &= \frac{\sum_{i=1}^{N} x_i^2}{N} - \bar{\mu}^2 \end{split}$$

Segue agora alguns exemplos da aplicação da variância.

Os mesmos foram retirados da referência...

2.1.5 Desvio Padrão

Probabilidade

Neste capítulo serão apresentados os seguintes tópicos:

- Axiomas da Probabilidade
- Análises Combinatórias
- Distribuições de Probabilidade

3.1 Análise Combinatória

3.2 Distribuições de Probabilidade

São diversos os tipos de distribuições para análise de dados, podendo ser separado em dois grupos, o de distribuições **discretas** e o de distribuições **contínuas**; as mesmas ainda apresentam características importantes, são algumas delas:

- Função de Densidade de Probabilidade (PDF)
- Função de Densidade Acumulada (CDF)
- Função Percentil (**PPF**)
- Esperança e Variância da Distribuição ($\mathbf{E}(\mathbf{x})$ e $\mathbf{V}(\mathbf{x})$)

Na sequência são apresentadas variás dessas distribuições e suas características, além disso, é disposto implementações em *Octave* para se obter resultados de estudo. Na próxima seção, é feita uma bateria de exemplos que mostram como aquelas são utilizadas.

3.2.1 Normal

Densidade de Probabilidade

A fórmula geral para a Função Densidade de Probabilidade de uma Distribuição Normal é

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{(2\sigma^2)}}$$
(3.1)

Nos casos em que $\mu=0$ e $\sigma=1$, temos a chamada **função normal padrão**, costumeiramente representado por N(1,0). A equação anterior se reduz a:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{3.2}$$

O seguinte gráfico é referente a \mathbf{PDF} da normal padrão.

Figura 3.1: Função Densidade de Probabilidade da Normal Padrão

Densidade Acumulada

A fórmula para o cálculo da **Função Densidade Acumulada** para uma distribuição normal padrão é dado por:

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{3.3}$$

O seguinte gráfico representa os valores de CDF para uma distribuição normal padrão:

Figura 3.2: Função Densidade Acumulada da Normal Padrão

Função Percentil

Não existe uma forma fechada de se calcular a **função percentil** para a distribuição normal; no entanto sua interpretação é que dado um valor de probabilidade p obtêm-se o valor de x, isto é, ela é a inversa da \mathbf{CDF} . No gráfico a seguir é apresentada a \mathbf{PPF} da distribuição normal padrão.

Figura 3.3: Função Percentil de Probabilidade da Normal Padrão

3.2.2 Uniforme

Densidade de Probabilidade

A Distribuição Uniforme tem sua Densidade de Probabilidade dada por:

$$f(x) = \frac{1}{B - A} \qquad A \le x \le B \tag{3.4}$$

Em que A é o parâmetro locação (ou desvio) e B-A é o parâmetro de escala. O gráfico a seguir mostra o caso em que A=1 e B=3.

Figura 3.4: Função Densidade de Probabilidade da Uniforme

Na ocasião em que A=0 e B=1, temos a chamada **distribuição uniforme padrão**, e a equação anterior se reduz a:

$$f(x) = 1 \qquad 0 \le x \le 1 \tag{3.5}$$

O gráfico a seguir mostra a \mathbf{PDF} da uniforme padrão.

Figura 3.5: Função Percentil de Probabilidade da Normal Padrão

Densidade Acumulada

A Densidade Acumulada para um distribuição normal padrão, é simplesmente:

$$F(x) = x \qquad \qquad 0 \le x \le 1 \tag{3.6}$$

O gráfico a seguir apresenta a curva da CDF para a normal padrão.

Função Percentil

A fórmula da **Função Percentil** para uma distribuição uniforme padrão é bem definida, e é expressa por:

$$G(p) = p 0 \le p \le 1 (3.7)$$

O gráfico da $\ensuremath{\mathbf{PPF}}$ da uniforme padrão é apresentado a seguir:

- 3.2.3 T-de-Student
- 3.2.4 F de Fisher Snedecor
- 3.2.5 Qui Quadrado
- 3.2.6 Exponencial
- 3.2.7 Weidbull
- 3.2.8 Geométrica
- 3.2.9 Hipergeométrica
- 3.2.10 Gama
- 3.2.11 Beta
- 3.2.12 Bernoulli
- 3.2.13 Binomial

A **Distribuição Binomial** é um tipo de distribuição discreta, e uma decorrência dos ensaios de Bernoulli, quando o número de eventos *sucesso* é maior do que 1.

Densidade de Probabilidade

O cálculo referente a função Densidade de Probabilidade é dado pela função:

$$f(x; p, n) = \binom{n}{x} (p)^x (1-p)^{n-x}$$
(3.8)

Em que

- x é o número de vezes que o meu sucesso deve ocorrer, na ocasião x é um número inteiro positivo, isto é, $x=0,1,2,\cdots$;
- ullet p é a probabilidade do sucesso ocorrer uma única vez;
- n quantidade de eventos avaliados.

Sendo ainda o termo $\binom{n}{x}$ a **Combinação** C(n,x), calculada por:

$$C(n,x) = \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Densidade Acumulada

Função Percentil

3.2.14 Binomial - Negativa

3.2.15 Poisson

Densidade de Probabilidade

A **Distribuição de Poisson**, é um tipo de distribuição discreta que tem como função de probabilidade a seguinte equação

$$f(x,\lambda) = \frac{e^{-\lambda}\lambda^x}{x!} \tag{3.9}$$

Em que

- x é o número de ocorrências no estudo em questão, sendo este ainda um número inteiro não negativo, isto é, $x=0,1,2,\cdots$;
- λ é o número esperado (médio) de ocorrências no intervalo de estudo.

Densidade Acumulada

Função Percentil

3.2.16 Pareto

Parte II Testes Amostrais

Dois Grupos Independentes e Paramétricos

- 4.1 Intervalo e limite de confiança
- 4.2 t de Student
- 4.3 Comparação entre 2 proporções

Dois Grupos Independentes e Não-Paramétricos

5.1 Qui-Quadrado

5.2 U de Mann Whitney

O teste de U de Mann Whitney, também conhecido como Soma do Posto de Wilcoxon é utilizado na comparação de dois grupos amostrais que tenham preferencialmente o mesmo tamanho.

O método funciona com os seguintes passos:

- 1. Coloca-se em ordem crescente todos os dados;
- 2. Calcula-se o **posto** referente a cada um dos valores;
- 3. Atribui-se este posto a cada um dos valores na amostra original;
- 4. Soma-se o posto de cada uma das duas amostras;
- 5. Calcula-se o valor U_1 e U_2 , e toma-se $U=\min(U_1,U_2)$. Define-se as sequintes equações (5.1) e (5.2) para o cálculo de U_1 e U_2 :

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1 \tag{5.1}$$

$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2 \tag{5.2}$$

Caso a quantidade de valores coletados seja menor que 20, isto é, a soma de n_1 e n_2 sejam menores que 20, deve ser feito o comparativo do valor de $U_{calculado}$ com o valor de $U_{tabelado}$, consultar a tabela Valores Críticos U de Mann-Whitney¹.

Se a população for maior que 20, é necessário usar a **tabela z-normal**; nesta ocasião é efetuado mais um passo, que é o cálculo de z.

6. O calculo de z é dado por:

$$z = \frac{U - \mu_R}{\sigma_R} \tag{5.3}$$

 $^{^1\}mathrm{Tabela}$ de Mann Whitney

em que

$$\mu_R = \frac{n_1 \cdot n_2}{2} \qquad \qquad \sigma_R = \sqrt{\frac{n_1 \cdot n_2(n_1+n_2+1)}{12}} \label{eq:power_power}$$

Vamos resolver um exemplo, para que fique mais clara a aplicação do método.

Exemplo 2. Na investigação da eficiência de um novo remédio para asma, um grupo de 10 pacientes aleatórios são submetidos ao teste, sendo metade utilizando o novo remédio e a outra parte um placebo. Após uma semana os mesmos são questionados sobre a quantidade de crises que tiveram durante o período, os dados são apresentados na sequência.

$\overline{Placebo}$	Novo Remédio
$\overline{\gamma}$	3
5	6
6	4
4	2
12	1

Tome um nível de 5% de significancia para o teste e as seguintes hipóteses nula e alternativa

H₀: A duas populações são iguais

 H_1 : A duas populações não são iguais.

Resolução Vamos tomar como Pl a coluna do Placebo e NR a coluna do Novo Remédio, então $n_{Pl}=5$ e $n_{NR}=5$; seguindo o passo a passo do método, iremos primeiro colocar todos os dados em ordem crescente, então fazemos:

Passo 1 Colocando todos os dados em ordem crescente

Passo 2 Deve ser calculado o posto de cada valor; o posto de uma amostra é dado de acordo com a posição na qual os dados de mesmo valor estão localizados na sequência crescente e a quantidade dos mesmos. Por exemplo, na ocasião o primeiro valor repetido é o número 4, o mesmo está localizado na posição 4 e 5 (sendo então duas repetições) da lista ordenada, então o posto do valor 4 será

$$posto_4 = \frac{4+5}{2} = 4.5$$

o mesmo procedimento é feito para o valor 6, que se encontra na posição 7 e 8, logo:

$$posto_6 = \frac{7+8}{2} = 7.5$$

os demais valores irão assumir os postos de suas posições, sendo assim:

# ordem	1	2	3	4	4	5	6	6	7	12
# postos	1	2	3	4.5	4.5	6	7.5	7.5	9	10

Passo 3 Agora deve-se atribuir o valor dos postos encontrados, em cada uma das amostras originais

$\overline{Placebo}$	Posto Pl	Novo Remédio	Posto NR
$\overline{\gamma}$	9	3	3
5	6	6	7.5
6	7.5	4	4.5
4	4.5	2	2
12	10	1	1

Passo 4 Agora somaremos o posto de cada uma das amostras

$$R_{Pl} = 9 + 6 + 7.5 + 4.5 + 10 = 37R_{NR} = 3 + 7.5 + 4.5 + 2 + 1 = 18$$

Passo 5 Iremos calcular o valor de U, o que segue:

 $Primeiro\ U_{Pl}$

$$\begin{split} U_{Pl} &= n_{Pl} \cdot n_{NR} + \frac{n_{Pl}(n_{Pl}+1)}{2} - R_{Pl} & \therefore \\ U_{Pl} &= 5 \cdot 5 + \frac{5(5+1)}{2} - 37 & \Rightarrow & U_{Pl} = 3 \end{split}$$

e agora U_{NR}

$$U_{NR} = n_{Pl} \cdot n_{NR} + \frac{n_{NR}(n_{NR}+1)}{2} - R_{NR} \qquad \quad : \label{eq:UNR}$$

$$U_{NR} = 5 \cdot 5 + \frac{5(5+1)}{2} - 18 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} U_{NR} = 22$$

Com ambos os valores calculados, tomaremos o menor, sendo assim U=3, como a amostra só tem 10 valores, podemos então olhar a tabela de valor critíco U de Mann Whitney, uma parte da mesma é apresentada na figura a sequir

										n	l.								
n ₂	α	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	.05		0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
3	.01		0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
4	.05		0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	14
4	.01			0	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	.05	0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
3	.01			0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	.05	1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
0	.01		0	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	.05	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
/	.01		0	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	.05	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
0	.01		1	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	.05	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
9	.01	0	1	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	.05	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
10	.01	0	2	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42

Figura 5.1: Parte da Tabela de Valores Críticos de U

Como nosso $n_1=5,\ n_2=5$ e $\alpha=5\%,\ temos\ U_{tabelado}=2;\ sendo\ o\ U\ calculado\ maior\ que\ o\ tabelado,\ 2<3,$ então a hipótese nula é aceita.

OBS: O exercício foi retirado e adaptado do site Mann-Whitney

Para automatizar o problema foi criada uma função em Octave na qual é apresentada na sequência

```
function testeU_MannWhitney(A,B)
display('Dados fornecidos')
display(A)
display(B)
nA = length(A);
                  %quantidade de observacoes em A
nB = length(B);
                  %quantidade de observacoes em B
                  %quantidade de observacoes totais
n = nA+nB;
C = [A,B];
                  %vetor auxiliar
C_cres = sort(C); %vetor auxiliar em ordem crescente
%Pesos em A
for k=1:nA
 mA = find(C_cres == A(k));
 pesoA(k) = sum(mA)/length(mA);
end
RA = sum(pesoA);
%Pesos em B
for k=1:nB
 mB = find(C_cres == B(k));
 pesoB(k) = sum(mB)/length(mB);
end
RB = sum(pesoB);
for k=1:nA
  if k == 1
    fprintf('Valor A rankA\n')
  fprintf(\frac{1}{7}.2f \frac{10.2f}{n}, A(k), pesoA(k))
  if k==nA
    fprintf('nA = \%4.2f RA = \%5.2f\n\n',nA,RA)
  end
end
for k=1:nB
  if k == 1
    fprintf('Valor B
                              rankB\n')
  fprintf(\frac{1}{7}.2f \frac{10.2f \cdot n}{9}, B(k), pesoB(k))
  if k==nB
    fprintf('nB = \%4.2f RB = \%5.2f\n\n',nB,RB)
  end
end
%Estatistica para o teste de Mann Whitney
UA = nA*nB + 0.5*(nA*(nA+1))-RA;
UB = nA*nB + 0.5*(nB*(nB+1))-RB;
```

```
fprintf('UA = %.2f UB = %.2f\n',UA,UB)
U = min(UA,UB);

%Para n>20 usa-se a tabela da distribuicao normal
if n>20
    display('Use a Tabela normal')
    mu_r = nA*nB/2;
    sig_r = sqrt((nA*nB)*(nA+nB+1)/12);
    z = (U-mu_r)/sig_r

%Para n<=20 usa-se a tabela de Valores Criticos de Mann-Whitney
else
    display('Use a Tabela de Mann-Whitney')
    fprintf('Sendo o valor calculado de U = %.2f\n',U)
end</pre>
```

Para o nosso exemplo então podemos definir Pl = [7 5 6 4 12], NR = [3 6 4 2 1] e usar o comando testeU_MannWhitney(Pl,NR), o resultado obtido é apresentado na sequência

```
## Dados fornecidos
## A =
##
##
       7
            5
                 6
                       4
                          12
##
## B =
##
##
                  2
          6
              4
                      1
##
## Valor A
                      rankA
##
      7.00
                      9.00
##
      5.00
                      6.00
      6.00
                      7.50
##
##
      4.00
                     4.50
##
     12.00
                     10.00
## nA = 5.00
                RA = 37.00
##
## Valor B
                      rankB
##
                      3.00
      3.00
                      7.50
##
      6.00
##
      4.00
                      4.50
##
      2.00
                     2.00
##
      1.00
                     1.00
## nB = 5.00
                 RB = 18.00
##
## UA = 3.00 UB = 22.00
## Use a Tabela de Mann-Whitney
## Sendo o valor calculado de U = 3.00
```

5.3 Prova de Fischer

Dois grupos Pareados e Paramétricos

6.1 Teste de t-Student pareado

Dois grupos Pareados e Não -Paramétricos

- 7.1 Prova de MacNemar
- 7.2 Prova de Wilcoxon

Três ou mais grupos Independentes e Paramétricos

- 8.1 Teste de Tuckey
- 8.2 ANOVA de 1 ou 2 vias

Parte III Testes de Normalidade

Testes de Normalidade

- 9.1 Shapiro-Wilk
- 9.2 Kolmogorov Smirnov
- 9.3 Anderson Darling
- 9.4 Cramer Von-Mises

Parte IV

ACA

Análise de Concordância de Atributos

Estática Kappa

- 11.1 Teste Kappa de Cohen
- 11.2 Teste Kappa de Fleiss