Санкт-Петербургский Национально Исследовательский Университет информационных технологий, механики и оптики Кафедра систем управления и информатики

Электромеханические системы

Отчет по лабораторной работе №1 Исследование математической модели электромеханического объекта управления

Вариант №8

Работу выполнили:

Зенкин А.М.

Карпов К.В.

Группа: Р3335

Преподаватель:

Чежин М.С.

Санкт-Петербург 2017

Содержание

1.	Цель работы	2
2.	Варианты параметров	2
3.	Ход выполнения работы 3.1. Изучить математические модели ЭМО и для полученного варианта задания рассчитать их параметры:	2
	вого положения вала нагрузки:	2 5 7 8
4	Вывол	10

1. Цель работы

Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

2. Варианты параметров

$$U_n=110[B], n_0=2500[rot/min], I_n=12[A], M_n=6.8[H*m], R=0.5[Om], T_{ya}=9[ms], J_d=0.0015[kg*m^2], T_y=5[ms], i_p=40, J_m=1.2[kg*m^2]$$

3. Ход выполнения работы

- 3.1. Изучить математические модели ЭМО и для полученного варианта задания рассчитать их параметры:
- 3.2. Составить схему моделирования ЭМО и получить графики переходных процессов напряжения, подаваемого на двигатель, тока якоря, скорости и углового положения вала нагрузки:

Рисунок 3.1. схема моделирования ЭМО

Рисунок 3.2. график моделирования a(t)

Рисунок 3.3. график моделирования I(t)

Рисунок 3.4. график моделирования $\omega(t)$

Рисунок 3.5. график моделирования U(t)

3.3. Исследовать влияние момента сопротивления на вид переходных процессов:

Рисунок 3.6. графики моделирования a(t)

Рисунок 3.7. графики моделирования I(t)

$$tn_1 = 0.17 \text{ s}, I = 26 \text{ A}; tn_2 = 0.18 \text{ s}, I = 19 \text{ A}; tn_3 = 0.19 \text{ s}, I = 12.5 \text{ A};$$

Рисунок 3.8. графики моделирования $\omega(t)$

 $tn_1=0.18$ s, $\omega=2.5$ rad/s; $tn_2=0.17$ s, $\omega=2$ rad/s; $tn_3=0.15$ s, $\omega=1.6$ rad/s;

Рисунок 3.9. графики моделирования U(t)

3.4. Исследовать влияние момента инерции нагрузки на вид переходных процессов

Рисунок 3.10. графики моделирования I(t)

$$tn_1 = 0.2 \text{ s}, I = 0 \text{ A}; tn_2 = 0.13 \text{ s}, I = 0 \text{ A};$$

Рисунок 3.11. графики моделирования $\omega(t)$

$$tn_2 = 0.7 \text{ s}, \, \omega = 3.3 \text{ rad/s}; \, tn_3 = 0.15 \text{ s}, \, \omega = 3.3 \text{ rad/s};$$

3.5. Собрать схему моделирования приближенной модели ЭМО и получить график переходного процесса скорости вращения нагрузки при моменте сопротивления = 0:

Рисунок 3.12. моделирование упрощенной схемы ЭМО

Рисунок 3.13. график моделирования $\omega(t)$ упрощенной модели

Рисунок 3.14. график моделирования $\omega(t)$

4. Вывод

В данной лабораторной работе было проведено изучение математической модели и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.