

AMENDMENTS TO THE CLAIMS

Please amend the claims as indicated below. The language being added is underlined ("__") and the language being deleted contains a strikethrough ("—").

LISTING OF CLAIMS

1. (Currently Amended) A method for implementing smart DSL for LDSL systems, the method comprising:

presenting a number of spectral masks that are available on the LDSL systems;
and

selecting from the number of spectral masks an upstream mask and a downstream mask ~~wherein the upstream mask and the downstream mask exhibit complimentary features based on pre-defined optimization criteria such that for a given transmit power, channel capacity is maximized in both upstream and downstream directions while spectral compatibility is maintained between upstream and downstream channels as well as with neighboring services.~~

2. (Original) The method of claim 1 wherein selecting the upstream mask and the downstream mask is performed during a modem start up period.

3. (Original) The method of claim 1 wherein selecting the upstream mask and the downstream mask is performed manually.

4. (Original) The method of claim 1 wherein selecting the upstream mask and the downstream mask is performed automatically.

5. (Original) The method of claim 1 wherein the number of spectral masks further comprises a number of upstream masks (U1, U2, U3, . . . , Un) and a number of downstream masks (D1, D2, D3, . . . , Dn).

6. (Original) The method of claim 5 wherein one of the number of upstream masks is defined by the following relations, wherein f is a frequency band in kHz and U1 is the value of the mask in dBm/Hz:

for $0 < f \leq 4$, then $U1 = -97.5$, with max power in the 0-4 kHz band of +15 dBm;

for $4 < f \leq 25.875$, then $U1 = -92.5 + 23.43 \times \log_2(f/4)$;

for $25.875 < f \leq 60.375$, then $U1 = -29.0$;

for $60.375 < f \leq 90.5$, then $U1 = -34.5 - 95 \times \log_2(f/60.375)$;

for $90.5 < f \leq 1221$, then $U1 = -90$;

for $1221 < f \leq 1630$, then $U1 = -99.5$ peak, with max power in the [f, f+1 MHz] window of $(-90 - 48 \times \log_2(f/1221)) + 60$ dBm; and

for $1630 < f \leq 11040$, then $U1 = -99.5$ peak, with max power in the [f, f+1 MHz] window of -50 dBm.

7. (Original) The method of claim 5 wherein one of the number of downstream masks is defined by the following relations, wherein f is a frequency band in kHz and D1

is the value of the mask in dBm/Hz:

for $0 < f \leq 4$, then $D1 = -97.5$, with max power in the in 0-4 kHz band of +15 dBm;

for $4 < f \leq 25.875$, then $D1 = -92.5 + 20.79 \times \log_2(f/4)$;

for $25.875 < f \leq 81$, then $D1 = -36.5$;

for $81 < f \leq 92.1$, then $D1 = -36.5 - 70 \times \log_2(f/81)$;

for $92.1 < f \leq 121.4$, then $D1 = -49.5$;

for $121.4 < f \leq 138$, then $D1 = -49.5 + 70 \times \log_2(f/121.4)$;

for $138 < f \leq 353.625$, then $D1 = -36.5 + 0.0139 \times (f - 138)$;

for $353.625 < f \leq 569.25$, then $D1 = -33.5$;

for $569.25 < f \leq 1622.5$, then $D1 = -33.5 - 36 \times \log_2(f/569.25)$;

for $1622.5 < f \leq 3093$, then $D1 = -90$;

for $3093 < f \leq 4545$, then $D1 = -90$ peak, with maximum power in the $[f, f+1 \text{ MHz}]$ window of $(-36.5 - 36 \times \log_2(f/1104) + 60) \text{ dBm}$; and

for $4545 < f \leq 11040$, then $D1 = -90$ peak, with maximum power in the $[f, f+1 \text{ MHz}]$ window of -50 dBm.

8. (Original) The method of claim 5 wherein one of the number of upstream masks is defined by the following relations, wherein f is a frequency band in kHz and U2 is the value of the mask in dBm/Hz:

for $0 < f \leq 4$, then $U2 = -97.5$, with max power in the in 0-4 kHz band of +15 dBm;

for $4 < f \leq 25.875$, then $U2 = -92.5 - 22.5 \times \log_2(f/4)$;

for $25.875 < f \leq 86.25$, then $U2 = -30.9$;

for $86.25 < f \leq 138.6$, then $U2 = -34.5 - 95 \times \log_2(f/86.25)$;

for $138.6 < f \leq 1221$, then $U2 = -99.5$;

for $1221 < f \leq 1630$, then $U2 = -99.5$ peak, with max power in the $[f, f+1 \text{ MHz}]$

window of $(-90 - 48 \times \log_2(f/1221) + 60)$ dBm; and

for $1630 < f \leq 11040$, then $U2 = -99.5$ peak, with max power in the $[f, f+1 \text{ MHz}]$

window of -50 dBm.

9. (Original) The method of claim 5 wherein one of the number of downstream masks is defined by the following peak values, wherein f is a frequency in kHz and $D2$ is the peak value of the mask in dBm/Hz:

for $f=0.0$, then $D2=-98.0$;

for $f=3.99$, then $D2=-98.00$;

for $f=4.0$, then $D2=-92.5$;

for $f=80.0$, then $D2=-72.5$;

for $f=120.74$, then $D2=-47.50$;

for $f=120.75$, then $D2=-37.80$;

for $f=138.0$, then $D2=-36.8$;

for $f=276.0$, then $D2=-33.5$;

for $f=677.0625$, then $D2=-33.5$;

for $f=956.0$, then $D2=-62.0$;

for $f=1800.0$, then $D2=-62.0$;

for $f=2290.0$, then $D2=-90.0$;

for f=3093.0, then D2=-90.0;
for f=4545.0, then D2=-110.0; and
for f=12000.0, then D2=-110.0.

10. (Original) The method of claim 5 wherein one of the number of upstream masks is defined by the following peak values, wherein f is a frequency in kHz and U3 is the peak value of the mask in dBm/Hz:

for f=0, then U3=-101.5;
for f=4, then U3=-101.5;
for f=4, then U3=-96;
for f=25.875, then U3=-36.30;
for f=103.5, then U3=-36.30;
for f=164.1, then U3=-99.5;
for f=1221, then U3=-99.5;
for f=1630, then U3=-113.5; and
for f=12000, then U3=-113.5.

11. (Original) The method of claim 5 wherein one of the number of downstream masks is defined by the following peak values, wherein f is a frequency in kHz and D3 is the peak value of the mask in dBm/Hz:

for f=0, then D3=-101.5;
for f=4, then D3=-101.5;
for f=4, then D3=-96;

for f=80, then D3=-76;
for f=138, then D3=-47.5;
for f=138, then D3=-40;
for f=276, then D3=-37;
for f=552, then D3=-37;
for f=956, then D3=-65.5;
for f=1800, then D3=-65.5;
for f=2290, then D3=-93.5;
for f=3093, then D3=-93.5; for f=4545, then D3=-113.5; and
for f=12000, then D3=-113.5.