ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN 2º PARCIAL. JUNIO 2006

- 1. El circuito de la figura se denomina amplificador de puente. La resistencia $R(1+\delta)$ es un sensor resistivo cuya resistencia varía en función de una magnitud física (por ej. temperatura, humedad, luz, etc).
 - a. Considerando el amplificador operacional ideal y con δ << 1, demuestre que la tensión de salida v_o es proporcional a δ .
 - b. Calcule la contribución en la tensión de salida de la tensión de offset, $V_{\rm OS}$ del amplificador operacional.

- 2. Se desea un diseñar un filtro antialiasing de Butterworth con ganancia unidad. El ancho de banda necesario de esta señal es de 1 kHz (atenuación máxima del 5 %) y se precisa atenuar un 90% su contribución a la frecuencia de muestreo. Calcule y diseño dicho filtro.
- 3. Dado el circuito de la figura, determinar la frecuencia de oscilación si $R_1=R_2=22$ $k\Omega$, $R_3=33$ $k\Omega$ y C=3,3 nF. En el comparador, $L_+=|L_-|=15$ V.

