Balancing Long-Term Reinforcement and Short-Term Inhibition

Christian Lebiere (cl@cmu.edu)
Carnegie Mellon University
Bradley Best (bjbest@adcogsys.com)
Adaptive Cognitive Systems

Outline

- Rational analysis of memory
- Computational implementation
- Long-term impact of short-term effects
- Revisiting the environment
- Combining reinforcement and inhibition
- Internal dynamics mirror environment

Rational Analysis of Memory

- Human memory has adapted through evolution to the structure of its environment (Anderson & Schooler, 1991)
 - Frequency effects
 - Recency effects
 - Spacing effects
- Even apparent failures serve a functional role
 - Forgetting as a way of managing scale of memory demands
- Given resource constraints on long-term memory, optimal behavior is making most available the memories that are most likely to be needed

Power Law of Memory

Retention and practice functions for range of measures

Power Law of the Environment

Need Odds follow power law in human environments: NYT headlines, CHILDES speech db, email addresses

Computational Implementation

- Delay and Practice are roughly additive effects
- Activation as log odds modulates recall and latency

$$\frac{\text{Pr}\,ob}{1-\text{Pr}\,ob} = Odds = a\sum_{k=1}^{n} t_{k}^{-d}$$

$$A_i = B + \ln \left(\sum_{1}^{n} t_k^{-d} \right)$$

In The Short Run

- "A power function implies that the performance measure will go to infinity as time goes to zero." p.398
- "Power functions for forgetting tend to be obtained when we use measures that do not have upper bounds or do not approach their upper bounds." p.398
- "Power functions seem to describe memory performance from a few seconds to years." p.398
- What are the long-term implications if performance measures grow arbitrarily large under a few seconds?

Winner-Take-All Dynamics

- Reinforcement leads to feedback loop
- Strong conditions on retrieval can help...
- But they detract from the use of activation

- Need partial matching and under-constrained retrievals
- Can be controlled by modeler with tags or finsts
- Metacognitive knowledge hard to specify at high-level
- Need robust, general models of open-ended behavior

Back to the Environment

- Language as preeminent sequential structured envt
- Short-term depression in need odds at small lags
- Consistent across very different text corpuses

Words and Groups

- The pattern holds for highest frequency words
- Additive effect is observed at all levels of frequency
- Peak in odds boost consistent ~lag 5-10 for all groups

Access to Arithmetic Facts

- As in original analysis, effect must hold across domains
- Arithmetic domain generated from validated model
- Pattern holds including peak and size of inhibition
- Apply to other environments, e.g. web, physical spaces

Activation Inhibition

$$B_i = \log \sum_{j=1}^{n} t_j^{-d} - \log \left(1 + \left(\frac{t_n}{t_s} \right)^{-d_s} \right)$$

- Parameters:
 - Inhibition scale t_s controls period to peak reinforcement
 - Inhibition decay t_d specifies magnitude of inhibition effect
- Additive term integrates with other terms of activation equation: noise, spreading association, partial matching

Emergent Robustness

- Soft inhibition differs from pathological behavior of the default version and from the hard and fixed round-robin of the finst version
- Running the retrieval mechanism unsupervised leads to the gradual emergence of an internal power law distribution internally

Discussion

- Biological implementation of short-term inhibition
 - Short-term depotentiation?
- Architectural implications of short-term inhibition
 - Working memory and refraction
- Contribution of other cognitive factors in task
 - Grammatical rules, base-10 systems
 - Could have evolved in response to cognitive limitations
- Integrate combination of environmental, neural and behavioral constraints in cognitive architectures