Amplitudes of the f(t) functions, at selected center-of-mass energies, is shown on Figure ??. Greatest modulations of $t\bar{t}$ cross sections are expected in the benchmark scenarios $c_{XY} = c_{YX}$ and $c_{XX} = -c_{YY}$. The sensitivity is higher when probing components in the ecliptic plane.

At Tevatron, $t\bar{t}$ production was initiated mainly by $q\bar{q}$ annihilation while at the LHC, gg fusion is dominant. We compare the f(t) amplitude, between samples generated at the same center-of-mass energy $\sqrt{s}=1.96$ TeV for DØ and CMS. We find similar amplitudes between DØ and CMS at $\sqrt{s}=1.96$ TeV for the benchmarks $c_{XX}=-c_{YY}\neq 0$ and $c_{XY}=c_{YX}\neq 0$. However, at the same energy and production mechanism, the LHC position induces worst expected sensitivity to $c_{XZ}=c_{ZX}\neq 0$ and $c_{YZ}=c_{ZY}\neq 0$ benchmarks. We scanned the latitude and azimuth of poential experiments on earth and found that both ATLAS or CMS sit in a dip for the projected sensitivity on those SME coefficients.

We compute the projected precision on the SME coefficients with HISTFACTORY [?], using the Asimov dataset, for the above mentioned collider and SME coefficient benchmarks. Histograms for LIV signal, SM $t\bar{t}$ production and single top background are provided, with bins of one sidereal hour. Systematic uncertainties are rounded from [?]: 2% is attributed to the luminosity, 4% on the inclusive measurement of $t\bar{t}$ production, and 2% on single top production. These projections are shown on Table 1.

TABLE 1 – Comparison of f(t) amplitudes in $t\bar{t}$ signature in p-p collisions at CMS position at 1.96, 7, 8, 13, 14, 27 and 100 TeV.

$\sqrt{s} \text{ (TeV)}$	1.96	13	14	27	100
$\frac{\Delta c_{LXX}/\Delta c_{LXY}}{\Delta c_{LXZ}/\Delta c_{LYZ}}$			2×10^{-5} 9×10^{-5}		
$\frac{\Delta c_{RXX}/\Delta c_{RXY}}{\Delta c_{RXZ}/\Delta c_{RYZ}}$			9×10^{-5} 3×10^{-4}		
$\frac{\Delta d_{XX}/\Delta d_{XY}}{\Delta d_{dXZ}/\Delta d_{YZ}}$			$2 \times 10^{-5} \\ 7 \times 10^{-5}$		

