```
In [615]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import sqlite3
    import numpy as np
    import csv
    import json
```

Importing the Box Office Mojo csv

In [616]: BOM_data = pd.read_csv('bom.movie_gross.csv')

In [617]: BOM_data.head()

Out[617]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010

In []: Importing the Rotten Tomato movie infromation csv

In [618]: RT_info = pd.read_csv('rt.movie_info.tsv', sep='\t')

In [619]: RT_info.head()

Out[619]:

	id	synopsis	rating	genre	director	writer	theater_date	dvd_date	currency	box_office	runtime	studio
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	Sep 25, 2001	NaN	NaN	104 minutes	NaN
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	Jan 1, 2013	\$	600,000	108 minutes	Entertainment One
2	5	Illeana Douglas delivers a superb performance	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	Apr 18, 2000	NaN	NaN	116 minutes	NaN
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	Aug 27, 1997	NaN	NaN	128 minutes	NaN
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	NaN	NaN	NaN	200 minutes	NaN

In [620]: RT_info

Out[620]:

•	id	synopsis	rating	genre	director	writer	theater_date	dvd_date	currency	box_office	runtime	
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	Sep 25, 2001	NaN	NaN	104 minutes	
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	Jan 1, 2013	\$	600,000	108 minutes	Ente
2	5	Illeana Douglas delivers a superb performance	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	Apr 18, 2000	NaN	NaN	116 minutes	
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	Aug 27, 1997	NaN	NaN	128 minutes	
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	NaN	NaN	NaN	200 minutes	
1555	1996	Forget terrorists or hijackers there's a ha	R	Action and Adventure Horror Mystery and Suspense	NaN	NaN	Aug 18, 2006	Jan 2, 2007	\$	33,886,034	106 minutes	
1556	1997	The popular Saturday Night Live sketch was exp	PG	Comedy Science Fiction and Fantasy	Steve Barron	Terry Turner Tom Davis Dan Aykroyd Bonnie Turner	Jul 23, 1993	Apr 17, 2001	NaN	NaN	88 minutes	F
1557	1998	Based on a novel by Richard Powell, when the I	G	Classics Comedy Drama Musical and Performing Arts	Gordon Douglas	NaN	Jan 1, 1962	May 11, 2004	NaN	NaN	111 minutes	
1558	1999	The Sandlot is a coming- of-age story about a g	PG	Comedy Drama Kids and Family Sports and Fitness	David Mickey Evans	David Mickey Evans Robert Gunter	Apr 1, 1993	Jan 29, 2002	NaN	NaN	101 minutes	
1559	2000	Suspended from the force, Paris cop Hubert is	R	Action and Adventure Art House and Internation	NaN	Luc Besson	Sep 27, 2001	Feb 11, 2003	NaN	NaN	94 minutes	

1560 rows × 12 columns

Importing the Rotten Tomato movie reviews csv

In [622]: RT_reviews = pd.read_csv('rt.reviews.tsv', sep='\t', encoding='unicode_escape')

In [623]: RT_reviews.head()

Out[623]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017

Importing The Movie Database csv

In [625]: TMDB_data = pd.read_csv('tmdb.movies.csv')

In [626]: TMDB_data

Out[626]:

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186
26512	26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13	Laboratory Conditions	0.0	1
26513	26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01	_EXHIBIT_84xxx_	0.0	1
26514	26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01	The Last One	0.0	1
26515	26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22	Trailer Made	0.0	1
26516	26516	[53, 27]	309885	en	The Church	0.600	2018-10-05	The Church	0.0	1

26517 rows × 10 columns

Importing The Numbers movie budgets csv

In [627]: MB_data = pd.read_csv('tn.movie_budgets.csv')

In [628]: MB_data

0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5777	78	Dec 31, 2018	Red 11	\$7,000	\$0	\$0
5778	79	Apr 2, 1999	Following	\$6,000	\$48,482	\$240,495
5779	80	Jul 13, 2005	Return to the Land of Wonders	\$5,000	\$1,338	\$1,338
5780	81	Sep 29, 2015	A Plague So Pleasant	\$1,400	\$0	\$0
5781	82	Aug 5, 2005	My Date With Drew	\$1,100	\$181,041	\$181,041

5782 rows × 6 columns

```
In [630]: | conn = sqlite3.connect('im.db')
          cursor = conn.cursor()
```

Checking all the available tables, including the csv's that were converted to SQL tables

```
In [631]: query = ("""

SELECT name
    FROM sqlite_master
WHERE type='table'

""")

tables = pd.read_sql(query , conn)
print(tables)
```

```
name
          movie_basics
0
1
              directors
2
              known_for
             movie_akas
4
        movie_ratings
persons
6
7
             principals
                writers
8
9
              BOM_table
             TMDB_table
          MB_table
TMDB_table_R
10
11
12
        combined_table
13
14
               FC_table
IM_FC
               PG_table
15
16
               WS_table
17
              g_table
PID_table
18
              ROI_table
FIN_table
19
20
21
            FINAL_table
22
23
           ROI_table_2
FINAL_tb
24
              FLT_table
25
26
27
             PRIN_table
          DIR_table
TEMP_2_table
28
29
     Final_data_table
      Final_PRN_table
         FINAL_table_1
```

```
In [632]: query = ("""
           SELECT *
           FROM movie_basics
          """)
          df = pd.read_sql(query , conn)
          print(df)
                    movie_id
                                                              primary_title \
           0
                   tt0063540
                                                                  Sunghursh
                   tt0066787
           1
                                           One Day Before the Rainy Season
           2
                   tt0069049
                                                 The Other Side of the Wind
           3
                   tt0069204
                                                            Sabse Bada Sukh
                   tt0100275
                                                   The Wandering Soap Opera
           4
           146139
                   tt9916538
                                                        Kuambil Lagi Hatiku
                   tt9916622
                               Rodolpho Teóphilo - O Legado de um Pioneiro
           146140
           146141
                   tt9916706
                                                            Dankyavar Danka
           146142
                   tt9916730
                                                                      6 Gunn
                   tt9916754
                                            Chico Albuquerque - Revelações
           146143
                                                 original_title start_year
Sunghursh 2013
          0
           1
                                                 Ashad Ka Ek Din
                                                                         2019
           2
3
                                     The Other Side of the Wind
                                                                         2018
                                                 Sabse Bada Sukh
                                                                         2018
           4
                                          La Telenovela Errante
                                                                         2017
                                                                         2019
           146139
                                            Kuambil Lagi Hatiku
           146140
                   Rodolpho Teóphilo - O Legado de um Pioneiro
                                                                         2015
           146141
                                                 Dankyavar Danka
                                                                         2013
           146142
                                                          6 Gunn
                                                                         2017
           146143
                                 Chico Albuquerque - Revelações
                                                                         2013
                   runtime_minutes
                                                    genres
           0
                              175.0
                                       Action, Crime, Drama
           1
                                          Biography, Drama
                              114.0
           2
                              122.0
                                                     Drama
           3
                                              Comedy, Drama
                                NaN
           4
                                     Comedy, Drama, Fantasy
                               80.0
          146139
                              123.0
                                                     Drama
           146140
                                NaN
                                              Documentary
           146141
                                NaN
                                                    Comedy
           146142
                              116.0
                                                      None
                                              Documentary
           146143
                                NaN
```

```
In [674]: query = ("""
          SELECT *
          FROM directors
          """)
          df = pd.read_sql(query , conn)
          print(df)
                   movie_id
                              person_id
          0
                  tt0285252
                              nm0899854
                  tt0462036
                              nm1940585
          1
          2
                  tt0835418
                              nm0151540
          3
                  tt0835418
                              nm0151540
                              nm0089502
                  tt0878654
          4
          291169 tt8999974
                             nm10122357
                  tt9001390
                             nm6711477
          291170
          291171 tt9001494
                             nm10123242
          291172 tt9001494
                             nm10123248
          291173 tt9004986
                              nm4993825
          [291174 rows x 2 columns]
In [675]: query = ("""
          SELECT name
          FROM sqlite_master
          WHERE type='table' AND name='TMDB_table'
          """)
          table_exists = pd.read_sql(query, conn)
          if table_exists.empty:
              TMDB_data.to_sql("TMDB_table", conn, index=False)
              print("Table 'TMDB_table' already exists, skipping creation.")
```

Table 'TMDB_table' already exists, skipping creation.

```
In [673]: query = ("""
           SELECT *
           FROM TMDB_table
           df = pd.read_sql(query, conn)
           print(df)
                                          genre_ids
                   Unnamed: 0
                                                           id original_language
                               [12, 14, 10751]
[14, 12, 16, 10751]
[12, 28, 878]
           0
                            0
                                                       12444
           1
                                                       10191
                                                                              en
           2
3
                                                       10138
                            2
                                                                              en
                                    [16, 35, 10751]
                            3
                                                          862
                                                                              en
           4
                            4
                                      [28, 878, 12]
                                                       27205
                                                                              en
                                                                             . . .
                                                       488143
           26512
                        26512
                                            [27, 18]
                                                                              en
                                       [18, 53]
[14, 28, 12]
           26513
                        26513
                                                       485975
                                                                              en
           26514
                        26514
                                                      381231
                                                                              en
           26515
                        26515
                                    [10751, 12, 28]
                                                      366854
           26516
                        26516
                                            [53, 27]
                                                      309885
                                                                              en
                                                                    popularity release_date \
                                                   original_title
           0
                  Harry Potter and the Deathly Hallows: Part 1
                                                                         33.533
                                                                                  2010-11-19
                                                                                  2010-03-26
                                        How to Train Your Dragon
           1
                                                                         28.734
           2
                                                       Iron Man 2
                                                                         28.515
                                                                                   2010-05-07
           3
                                                         Toy Story
                                                                                  1995-11-22
                                                                         28.005
                                                                                  2010-07-16
           4
                                                         Inception
                                                                         27.920
           26512
                                           Laboratory Conditions
                                                                          0.600
                                                                                   2018-10-13
                                                                                  2018-05-01
           26513
                                                  _EXHIBIT_84xxx_
                                                                          0.600
           26514
                                                     The Last One
                                                                          0.600
                                                                                  2018-10-01
                                                     Trailer Made
                                                                          0.600
           26515
                                                                                  2018-06-22
                                                                                  2018-10-05
           26516
                                                       The Church
                                                                          0.600
                                                             title vote_average
                                                                                   vote_count
                  Harry Potter and the Deathly Hallows: Part 1
           0
                                                                                         10788
                                                                              7.7
           1
                                        How to Train Your Dragon
                                                                              7.7
                                                                                          7610
           2
                                                                                         12368
                                                       Iron Man 2
                                                                              6.8
           3
                                                         Toy Story
                                                                              7.9
                                                                                         10174
           4
                                                         Inception
                                                                              8.3
                                                                                         22186
                                           Laboratory Conditions
           26512
                                                                              0.0
                                                                                             1
           26513
                                                  _EXHIBIT_84xxx_
                                                                              0.0
                                                                                             1
           26514
                                                     The Last One
                                                                              0.0
                                                                                             1
                                                     Trailer Made
           26515
                                                                              0.0
                                                                                             1
           26516
                                                       The Church
                                                                              0.0
                                                                                             1
           [26517 rows x 10 columns]
In [638]: TMDB_data.drop('Unnamed: 0', axis = 1, inplace = True)
In [639]: TMDB_data
Out[639]:
```

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186
26512	[27, 18]	488143	en	Laboratory Conditions	0.600	2018-10-13	Laboratory Conditions	0.0	1
26513	[18, 53]	485975	en	_EXHIBIT_84xxx_	0.600	2018-05-01	_EXHIBIT_84xxx_	0.0	1
26514	[14, 28, 12]	381231	en	The Last One	0.600	2018-10-01	The Last One	0.0	1
26515	[10751, 12, 28]	366854	en	Trailer Made	0.600	2018-06-22	Trailer Made	0.0	1
26516	[53, 27]	309885	en	The Church	0.600	2018-10-05	The Church	0.0	1

26517 rows × 9 columns

```
In [640]: query = ("""
    SELECT name
    FROM sqlite_master
    WHERE type='table' AND name='TMDB_table_R'
    """")

    table_exists = pd.read_sql(query, conn)

if table_exists.empty:
    TMDB_data.to_sql("TMDB_table_R", conn, index=False)
else:
    print("Table 'TMDB_table_R' already exists, skipping creation.")
```

Table 'TMDB_table_R' already exists, skipping creation.

```
In [641]: query = ("""
           SELECT *
           FROM TMDB_table_R
           JOIN BOM_table
           USING (title)
           """)
           combined_df = pd.read_sql(query, conn)
           print(combined_df)
           2699
                       0.600
                               2018-04-13
                                                             The Judge
                                                                                  7.5
           2700
                       0.600
                               2018-08-08
                                                                                  6.0
                                                               Flowers
           2701
                       0.600
                               2018-11-09
                                                          Last Letter
                                                                                  6.0
           2702
                       0.600
                               2018-11-25
                                                                                  0.0
                                                                  Eden
                 vote_count studio
                                      domestic_gross foreign_gross
                                                                      year
           0
                               P/DW
                                         217600000.0
                                                          277300000
                                                                      2010
                        7610
                                         312400000.0
                       12368
                               Par.
                                                           311500000
                                                                      2010
           1
           2
                       22186
                                 WB
                                         292600000.0
                                                           535700000
                                                                      2010
           3
                        8340
                                         415000000.0
                                                           652000000
                                  BV
                                                                      2010
                                         251500000.0
                                                           291600000
           4
                       10057
                               Uni.
                                                                      2010
           2698
                                 0RF
                                          45100000.0
                                                            53200000
                                                                      2015
                           1
           2699
                                                            37300000
                                                                      2014
                                          47100000.0
                           2
                                 WB
           2700
                           1
                               MBox
                                             61600.0
                                                                None
                                                                       2015
           2701
                           1
                                            181000.0
                                                                None
                                                                      2018
                                  CL
           2702
                           1
                                  \mathsf{B}\mathsf{G}
                                             65500.0
                                                                None
                                                                      2015
```

[2703 rows x 13 columns]

In [642]: combined_df

Out[642]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count	studio	domestic_gross	foreigr
0	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610	P/DW	217600000.0	277
1	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	Par.	312400000.0	311
2	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186	WB	292600000.0	535
3	[16, 10751, 35]	10193	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	7.7	8340	BV	415000000.0	652
4	[16, 10751, 35]	20352	en	Despicable Me	23.673	2010-07-09	Despicable Me	7.2	10057	Uni.	251500000.0	291
2698	0	501956	en	Spotlight	0.600	2018-01-28	Spotlight	10.0	1	ORF	45100000.0	53
2699	[99, 99]	474464	en	The Judge	0.600	2018-04-13	The Judge	7.5	2	WB	47100000.0	37
2700	[18, 10751]	574534	fr	Des fleurs	0.600	2018-08-08	Flowers	6.0	1	MBox	61600.0	
2701	[10749, 18]	551634	zh	你好,之华	0.600	2018-11-09	Last Letter	6.0	1	CL	181000.0	
2702	0	561861	en	Eden	0.600	2018-11-25	Eden	0.0	1	BG	65500.0	

2703 rows × 13 columns

Table 'combined_table' already exists, skipping creation.

```
In [645]: query = ("""

SELECT *
FROM combined_table AS c
JOIN MB_table AS m
ON c.title = m.movie
""")

combined_df_final = pd.read_sql(query, conn)
print(combined_df_final)
```

```
id original_language \
                 genre_ids
0
      [14, 12, 16, 10751]
                              10191
             [12, 28, 878]
[28, 878, 12]
1
                              10138
                                                      en
2
                              27205
                                                      en
3
           [16, 10751, 35]
                              10193
           [16, 10751, 35]
4
                              20352
                                                      en
1390
           [18, 35, 10749]
[28, 12, 16]
                             499722
1391
                             332718
                                                      en
1392
                             501956
                                                      en
1393
                   [99, 99]
                             474464
                                                      en
1394
                             561861
                         []
                                                      en
                   original_title
                                     popularity release_date
0
        How to Train Your Dragon
                                         28.734
                                                   2010-03-26
                                                   2010-05-07
1
                        Iron Man 2
                                         28.515
2
                                         27.920
                                                   2010-07-16
                         Inception
3
                                                   2010-06-17
                       Toy Story 3
                                         24.445
4
                    Despicable Me
                                         23.673
                                                   2010-07-09
                                          6.359
                                                   2018-04-30
1390
             Amoureux de ma femme
1391
      Bilal: A New Breed of Hero
                                          2.707
                                                   2018-02-02
                                                   2018-01-28
1392
                         Spotlight
                                          0.600
1393
                         The Judge
                                          0.600
                                                   2018-04-13
1394
                              Eden
                                          0.600
                                                   2018-11-25
                             title
                                    vote_average
                                                    vote_count studio \
0
         How to Train Your Dragon
                                               7.7
                                                           7610
                                                                   P/DW
1
                        Iron Man 2
                                               6.8
                                                          12368
                                                                   Par.
2
                                               8.3
                                                          22186
                                                                     WR
                         Inception
3
                       Toy Story 3
                                               7.7
                                                           8340
                                                                     BV
4
                    Despicable Me
                                               7.2
                                                          10057
                                                                   Uni.
1390
                  The Other Woman
                                               4.9
                                                             60
                                                                    IFC
      Bilal: A New Breed of Hero
1391
                                                             54
                                                                     ۷E
                                               6.8
                         Spotlight
                                                                    0RF
1392
                                              10.0
                                                              1
1393
                         The Judge
                                               7.5
                                                              2
                                                                     WB
1394
                                               0.0
                                                              1
                              Eden
                                                                     BG
     domestic_gross foreign_gross
                                      year
                                              id
                                                  release_date
        217600000.0
                                                  Mar 26, 2010
0
                          277300000
                                      2010
                                              30
         312400000.0
1
                          311500000
                                      2010
                                              15
                                                   May 7, 2010
2
         292600000.0
                          535700000
                                      2010
                                                  Jul 16, 2010
                                              38
        415000000.0
                                                  Jun 18, 2010
3
                          652000000
                                      2010
                                              47
         251500000.0
4
                          291600000
                                      2010
                                              50
                                                   Jul 9, 2010
             25400.0
1390
                             427000
                                      2011
                                                  Apr 25, 2014
1391
            491000.0
                            1700000
                                      2018
                                             100
                                                   Feb 2, 2018
1392
          45100000.0
                           53200000
                                      2015
                                              34
                                                   Nov 6, 2015
          47100000.0
                                      2014
1393
                           37300000
                                              41
                                                  Oct 10, 2014
1394
             65500.0
                               None
                                      2015
                                              66
                                                  Jan 19, 2016
                             movie production_budget domestic_gross
0
         How to Train Your Dragon
                                         $165,000,000
                                                          $217,581,232
                                         $170,000,000
$160,000,000
                                                          $312,433,331
$292,576,195
1
                        Iron Man 2
2
                         Inception
3
                       Toy Story 3
                                         $200,000,000
                                                          $415,004,880
4
                    Despicable Me
                                          $69,000,000
                                                          $251,513,985
                                                           $83,911,193
1390
                  The Other Woman
                                          $40,000,000
1391
      Bilal: A New Breed of Hero
                                          $30,000,000
                                                              $490,973
1392
                         Spotlight
                                          $20,000,000
                                                           $45,055,776
1393
                         The Judge
                                           $50,000,000
                                                           $47,119,388
1394
                              Eden
                                            $2,300,000
                                                                     $0
     worldwide_gross
0
         $494,870,992
1
         $621,156,389
2
         $835,524,642
3
      $1,068,879,522
4
         $543,464,573
         $195,111,193
1390
1391
             $648,599
1392
          $92,088,460
1393
          $76,119,388
1394
[1395 rows x 19 columns]
```

In [646]: temp_combined_df = combined_df_final.drop("id", axis=1)

In [647]: temp_combined_df

Out[647]:

	genre_ids	original_language	original_title	popularity	release_date	title	vote_average	vote_count	studio	domestic_gross	foreign_gross
0	[14, 12, 16, 10751]	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610	P/DW	217600000.0	277300000
1	[12, 28, 878]	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	Par.	312400000.0	311500000
2	[28, 878, 12]	en	Inception	27.920	2010-07-16	Inception	8.3	22186	WB	292600000.0	535700000
3	[16, 10751, 35]	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	7.7	8340	BV	415000000.0	652000000
4	[16, 10751, 35]	en	Despicable Me	23.673	2010-07-09	Despicable Me	7.2	10057	Uni.	251500000.0	291600000
1390	[18, 35, 10749]	fr	Amoureux de ma femme	6.359	2018-04-30	The Other Woman	4.9	60	IFC	25400.0	427000
1391	[28, 12, 16]	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	6.8	54	VE	491000.0	1700000
1392	0	en	Spotlight	0.600	2018-01-28	Spotlight	10.0	1	ORF	45100000.0	53200000
1393	[99, 99]	en	The Judge	0.600	2018-04-13	The Judge	7.5	2	WB	47100000.0	37300000
1394	0	en	Eden	0.600	2018-11-25	Eden	0.0	1	BG	65500.0	None

1395 rows × 17 columns

Decided to drop genre_ids, original_title and title. I wanted to have doemstic,foreign and worldwide gross. I then decided to drop the first domestic_gross and foreign gross column, include the remaining domestic and worldwide gross and calculate the forieng gross using these remaining columns.

In [648]: temp_combined_df.drop("genre_ids", axis=1, inplace=True)

/opt/anaconda3/envs/learn—env/lib/python3.8/site—packages/pandas/core/frame.py:4163: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return super().drop(

In [649]: temp_combined_df

Out[649]:

	original_language	original_title	popularity	release_date	title	vote_average	vote_count	studio	domestic_gross	foreign_gross	year	relea
0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610	P/DW	217600000.0	277300000	2010	Mar :
1	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	Par.	312400000.0	311500000	2010	May
2	en	Inception	27.920	2010-07-16	Inception	8.3	22186	WB	292600000.0	535700000	2010	Jul
3	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	7.7	8340	BV	415000000.0	652000000	2010	Jun
4	en	Despicable Me	23.673	2010-07-09	Despicable Me	7.2	10057	Uni.	251500000.0	291600000	2010	Ju
1390	fr	Amoureux de ma femme	6.359	2018-04-30	The Other Woman	4.9	60	IFC	25400.0	427000	2011	Apr:
1391	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	6.8	54	VE	491000.0	1700000	2018	Feb
1392	en	Spotlight	0.600	2018-01-28	Spotlight	10.0	1	ORF	45100000.0	53200000	2015	Nov
1393	en	The Judge	0.600	2018-04-13	The Judge	7.5	2	WB	47100000.0	37300000	2014	Oct
1394	en	Eden	0.600	2018-11-25	Eden	0.0	1	BG	65500.0	None	2015	Jan

1395 rows × 16 columns

In [650]: print(temp_combined_df.columns)

This line removes the column at index 8

In [651]: temp_combined_df = temp_combined_df.iloc[:, [i for i in range(temp_combined_df.shape[1]) if i != 8]]

In [652]: temp_combined_df

Out[652]:

	original_language	original_title	popularity	release_date	title	vote_average	vote_count	studio	foreign_gross	year	release_date	moı
0	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610	P/DW	277300000	2010	Mar 26, 2010	How Train Yo Drag
1	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	Par.	311500000	2010	May 7, 2010	Iron Mar
2	en	Inception	27.920	2010-07-16	Inception	8.3	22186	WB	535700000	2010	Jul 16, 2010	Incepti
3	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	7.7	8340	BV	652000000	2010	Jun 18, 2010	Toy Sto
4	en	Despicable Me	23.673	2010-07-09	Despicable Me	7.2	10057	Uni.	291600000	2010	Jul 9, 2010	Despical
		•••	***	•••	***		•••				***	
1390	fr	Amoureux de ma femme	6.359	2018-04-30	The Other Woman	4.9	60	IFC	427000	2011	Apr 25, 2014	The Oth Wom
1391	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	6.8	54	VE	1700000	2018	Feb 2, 2018	Bilal New Bre of He
1392	en	Spotlight	0.600	2018-01-28	Spotlight	10.0	1	ORF	53200000	2015	Nov 6, 2015	Spotliç
1393	en	The Judge	0.600	2018-04-13	The Judge	7.5	2	WB	37300000	2014	Oct 10, 2014	The Jud
1394	en	Eden	0.600	2018-11-25	Eden	0.0	1	BG	None	2015	Jan 19, 2016	Ed

1395 rows × 15 columns

temp_combined_df_2 = temp_combined_df.iloc[;, [i for i in range(temp_combined_df_2.shape[1]) if i!= 9]] temp_combined_df_2

```
In [653]: temp_combined_df.drop("original_title", axis =1, inplace = True)
```

/opt/anaconda3/envs/learn-env/lib/python3.8/site-packages/pandas/core/frame.py:4163: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return super().drop(

```
In [654]: temp_combined_df.drop("title", axis =1, inplace = True)
```

In [655]: temp_combined_df

Out[655]:

	original_language	popularity	release_date	vote_average	vote_count	studio	foreign_gross	year	release_date	movie	production_budget	d
0	en	28.734	2010-03-26	7.7	7610	P/DW	277300000	2010	Mar 26, 2010	How to Train Your Dragon	\$165,000,000	_
1	en	28.515	2010-05-07	6.8	12368	Par.	311500000	2010	May 7, 2010	Iron Man 2	\$170,000,000	
2	en	27.920	2010-07-16	8.3	22186	WB	535700000	2010	Jul 16, 2010	Inception	\$160,000,000	
3	en	24.445	2010-06-17	7.7	8340	BV	652000000	2010	Jun 18, 2010	Toy Story 3	\$200,000,000	
4	en	23.673	2010-07-09	7.2	10057	Uni.	291600000	2010	Jul 9, 2010	Despicable Me	\$69,000,000	
1390	fr	6.359	2018-04-30	4.9	60	IFC	427000	2011	Apr 25, 2014	The Other Woman	\$40,000,000	
1391	en	2.707	2018-02-02	6.8	54	VE	1700000	2018	Feb 2, 2018	Bilal: A New Breed of Hero	\$30,000,000	
1392	en	0.600	2018-01-28	10.0	1	ORF	53200000	2015	Nov 6, 2015	Spotlight	\$20,000,000	
1393	en	0.600	2018-04-13	7.5	2	WB	37300000	2014	Oct 10, 2014	The Judge	\$50,000,000	
1394	en	0.600	2018-11-25	0.0	1	BG	None	2015	Jan 19, 2016	Eden	\$2,300,000	

1395 rows × 13 columns

```
In [656]: query = ("""
    SELECT name
    FROM sqlite_master
    WHERE type='table' AND name='FC_table'
    """)

    table_exists = pd.read_sql(query, conn)

if table_exists.empty:
    TMDB_data.to_sql("FC_table", conn, index=False)
    else:
        print("Table 'FC_table' already exists, skipping creation.")
```

Table 'FC_table' already exists, skipping creation.

Sorting movies based on populairty

```
In [657]: query = ("""

SELECT movie, popularity
FROM FC_table
ORDER BY popularity DESC
""")
pd.read_sql(query, conn)
```

Out[657]:

	movie	popularity
0	Avengers: Infinity War	80.773
1	John Wick	78.123
2	The Hobbit: The Battle of the Five Armies	53.783
3	Guardians of the Galaxy	49.606
4	Blade Runner 2049	48.571
1390	Mandy	0.600
1391	Paranoia	0.600
1392	Spotlight	0.600
1393	The Judge	0.600
1394	Eden	0.600

1395 rows × 2 columns

```
In [46]: temp_combined_df.to_csv("CC_table.csv", index = False)
```

```
In [659]: query = ("""
    SELECT COUNT(original_language), original_language
    FROM FC_table
    GROUP BY original_language
    """)
    pd.read_sql(query, conn)
```

Out[659]:

	COUNT(original_language)	original_language
0	2	ar
1	1	da
2	1	de
3	1	el
4	1344	en
5	4	es
6	1	fa
7	11	fr
8	1	he
9	7	hi
10	1	hu

```
In [661]: query = ("""
    SELECT *
    FROM movie_akas
""")
    pd.read_sql(query, conn)
```

Out[661]:

	movie_id	ordering	title	region	language	types	attributes	is_original_title
0	tt0369610	10	Джурасик свят	BG	bg	None	None	0.0
1	tt0369610	11	Jurashikku warudo	JP	None	imdbDisplay	None	0.0
2	tt0369610	12	Jurassic World: O Mundo dos Dinossauros	BR	None	imdbDisplay	None	0.0
3	tt0369610	13	O Mundo dos Dinossauros	BR	None	None	short title	0.0
4	tt0369610	14	Jurassic World	FR	None	imdbDisplay	None	0.0
331698	tt9827784	2	Sayonara kuchibiru	None	None	original	None	1.0
331699	tt9827784	3	Farewell Song	XWW	en	imdbDisplay	None	0.0
331700	tt9880178	1	La atención	None	None	original	None	1.0
331701	tt9880178	2	La atención	ES	None	None	None	0.0
331702	tt9880178	3	The Attention	XWW	en	imdbDisplay	None	0.0

331703 rows × 8 columns

OperationalError: table IM_FC already exists

```
In [676]: query = ("""

SELECT *
FROM IM_FC

""")
pd.read_sql(query, conn)
```

Out[676]:

	movie_id	ordering	title	region	language	types	attributes	is_original_title	original_language	popularity	release_date	vote_avera
0	tt0369610	14	Jurassic World	FR	None	imdbDisplay	None	0.0	en	20.709	2015-06-12	(
1	tt0369610	15	Jurassic World	GR	None	imdbDisplay	None	0.0	en	20.709	2015-06-12	•
2	tt0369610	16	Jurassic World	IT	None	imdbDisplay	None	0.0	en	20.709	2015-06-12	•
3	tt0369610	20	Jurassic World	SE	None	imdbDisplay	None	0.0	en	20.709	2015-06-12	•
4	tt0369610	29	Jurassic World	US	None	None	None	0.0	en	20.709	2015-06-12	(
7725	tt5462602	17	The Big Sick	US	None	imdbDisplay	None	0.0	en	12.322	2017-06-23	:
7726	tt5462602	3	The Big Sick	None	None	original	None	1.0	en	12.322	2017-06-23	:
7727	tt5462602	8	The Big Sick	FR	None	imdbDisplay	None	0.0	en	12.322	2017-06-23	:
7728	tt7098772	1	Unstoppable	HR	None	None	None	0.0	en	0.600	2013-09-24	
7729	tt7098772	1	Unstoppable	HR	None	None	None	0.0	en	14.010	2010-11-12	(

7730 rows × 18 columns

```
In [664]: query = ("""

SELECT *
FROM IM_FC
WHERE region = 'US'

""")
movie_df = pd.read_sql(query, conn)
```

In [665]: movie_df

Out[665]:

	movie_id	ordering	title	region	language	types	attributes	is_original_title	original_language	popularity	release_date	vote_average
0	tt0369610	29	Jurassic World	US	None	None	None	0.0	en	20.709	2015-06-12	6.6
1	tt0401729	2	John Carter	US	None	None	None	0.0	en	18.549	2012-03-09	6.1
2	tt1194173	9	The Bourne Legacy	US	None	None	None	0.0	en	18.050	2012-08-10	6.1
3	tt1219289	9	Limitless	US	None	None	None	0.0	en	19.453	2011-03-08	7.1
4	tt1235522	11	Broken City	US	None	None	None	0.0	en	13.646	2013-01-18	5.9
1441	tt5902440	1	Project X	US	None	None	None	0.0	en	9.715	2012-03-02	6.4
1442	tt3348730	23	Jigsaw	US	None	imdbDisplay	None	0.0	en	17.398	2017-10-27	6.1
1443	tt3862762	3	Lockout	US	None	None	DVD box title	0.0	en	11.273	2012-04-13	5.9
1444	tt4651520	25	Bad Moms	US	None	imdbDisplay	None	0.0	en	14.332	2016-07-29	6.5
1445	tt5462602	17	The Big Sick	US	None	imdbDisplay	None	0.0	en	12.322	2017-06-23	7.4

1446 rows × 18 columns

The populairity index on IMDB should be view as important becasue it shows how well liked and the lonegevity of a movie outside of just its pure gross numbers. This is important because recently it's all about creating a 'univserse' around a movie, which means that people are trying to creating alternative froms of renvenue that are losely connected to a movie, such as tv shows, merchandise, spin-off movies, and books.

```
In [677]: query = ("""

SELECT DISTINCT(title), popularity, production_budget, domestic_gross, worldwide_gross
FROM IM_FC
WHERE region = 'US'
ORDER BY popularity DESC
LIMIT 20
""")
pd.read_sql(query, conn)
```

Out[677]:

	title	popularity	production_budget	domestic_gross	worldwide_gross
0	Avengers: Infinity War	80.773	\$300,000,000	\$678,815,482	\$2,048,134,200
1	John Wick	78.123	\$30,000,000	\$43,037,835	\$76,235,001
2	The Hobbit: The Battle of the Five Armies	53.783	\$250,000,000	\$255,119,788	\$945,577,621
3	Guardians of the Galaxy	49.606	\$170,000,000	\$333,172,112	\$770,867,516
4	Blade Runner 2049	48.571	\$185,000,000	\$92,054,159	\$259,357,408
5	Fantastic Beasts: The Crimes of Grindelwald	48.508	\$200,000,000	\$159,555,901	\$652,220,086
6	Spider-Man: Homecoming	46.775	\$175,000,000	\$334,201,140	\$880,166,350
7	Ant-Man and the Wasp	44.729	\$130,000,000	\$216,648,740	\$623,144,660
8	Avengers: Age of Ultron	44.383	\$330,600,000	\$459,005,868	\$1,403,013,963
9	Black Panther	44.140	\$200,000,000	\$700,059,566	\$1,348,258,224
10	Thor: Ragnarok	43.450	\$180,000,000	\$315,058,289	\$846,980,024
11	Bumblebee	43.078	\$102,000,000	\$127,195,589	\$465,195,589
12	X-Men: Days of Future Past	41.867	\$200,000,000	\$233,921,534	\$747,862,775
13	Mortal Engines	40.095	\$100,000,000	\$15,951,040	\$85,287,417
14	Robin Hood	39.975	\$210,000,000	\$105,487,148	\$322,459,006
15	Robin Hood	39.975	\$99,000,000	\$30,824,628	\$84,747,441
16	X-Men: Apocalypse	39.293	\$178,000,000	\$155,442,489	\$542,537,546
17	Captain America: Civil War	39.137	\$250,000,000	\$408,084,349	\$1,140,069,413
18	Deadpool 2	38.894	\$110,000,000	\$324,591,735	\$786,680,557
19	Thor	38.068	\$150,000,000	\$181,030,624	\$449,326,618

The vast majoirty of the top 20 movies, based off TMDB's popularity index, are all part of a universe. These universe incldue MCU, the Hobbit universe and X-men unverse.

```
In [678]: query = ("""
                  SELECT *
                  FROM IM_FC
                  WHERE region = 'US' AND vote_count > 50
                  ORDER By vote_average DESC
                  LIMIT 20
                  """)
                  pd.read_sql(query, conn)
bDisplay
                              0.0
                                                       20.101
                                                                2017-11-17
                                                                                     8.2
                                                                                               3959
                                                                                                       LGF
                                                                                                              Wonder
                                                                                                                             $20,000,000
                                                                                                                                            $132,422,809
                                                                                                                                                             $304,6
            None
                              0.0
                                                                                    8.2
                                                                                                                                                             $304,60
bDisplay
             None
                                                en
                                                       20.101
                                                                2017-11-17
                                                                                               3959
                                                                                                      LGF
                                                                                                              Wonder
                                                                                                                             $20,000,000
                                                                                                                                            $132,422,809
                                                                                                                Three
                                                                                                            Billboards
bDisplay
                              0.0
                                                       17.808
                                                                2017-11-10
                                                                                    8.2
                                                                                               5432
                                                                                                      FoxS
                                                                                                                             $12,000,000
                                                                                                                                             $54,513,740
                                                                                                                                                             $160,19
             None
                                                en
                                                                                                              Outside
                                                                                                              Ebbing,
                                                                                                              Missouri
                                                                                                                Three
                                                                                                             Billboards
                              0.0
bDisplay
             None
                                                en
                                                       17.808
                                                                2017-11-10
                                                                                    8.2
                                                                                               5432
                                                                                                      FoxS
                                                                                                              Outside
                                                                                                                             $12,000,000
                                                                                                                                             $54,513,740
                                                                                                                                                             $160,19
                                                                                                              Ebbing,
                                                                                                              Missouri
                                                                                                             The Hate
                              0.0
                                                                                                                             $23,000,000
bDisplay
             None
                                                       19.135
                                                                2018-10-19
                                                                                    8.2
                                                                                                636
                                                                                                       Fox
                                                                                                                                             $29,719,483
                                                                                                                                                              $35,0
                                                en
                                                                                                               U Give
                                                                                                                Love,
                                                                                                                             $10,000,000
                              0.0
                                                                2018-03-16
                                                                                                                                             $40,826,341
                                                                                                                                                              $65,52
  None
             None
                                                en
                                                       15.608
                                                                                    8.2
                                                                                               3165
                                                                                                       Fox
                                                                                                                Simon
                                                                                                               Shutter
  None
             None
                              0.0
                                                       18.060
                                                                2010-02-18
                                                                                    8.1
                                                                                              12625
                                                                                                       Par.
                                                                                                                             $80,000,000
                                                                                                                                            $128,012,934
                                                                                                                                                             $299,40
                                                en
                                                                                                                Island
    In [668]: query = ("""
                  SELECT *
```

FROM movie_basics

pd.read_sql(query, conn)

Out[668]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy, Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy, Drama, Fantasy

146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	Drama
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Documentary
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	Comedy
146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	None
146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	Documentary

146144 rows × 6 columns

```
In [60]: query = ("""
                CREATE TABLE PG_table AS
                SELECT m.*, f.*
                FROM movie_basics as m
                JOIN FC_table as f
                ON m.primary_title = f.movie
                cursor.execute(query)
                conn.commit()
                cursor.close()
                OperationalError
                                                                    Traceback (most recent call last)
                <ipython-input-60-0eba2bd25795> in <module>
                       8
                       9 """)
                   -> 10 cursor.execute(query)
                      11 conn.commit()
                      12 cursor.close()
                OperationalError: table PG_table already exists
   In [669]: query = ("""
                SELECT *
                FROM PG_table
                .....)
                pd.read_sql(query, conn)
114.0
                                                 19.3/3
                                                          2014-09-19
                                                                                        COOI
                                                                                               unı.
                                                                                                     Among the
                                                                                                                      ⊅∠ö,∪∪∪,∪∪∪
                                                                                                                                     $∠0,017,083
                                                                                                     Tombstones
                                                                                                        Jurassic
         Action, Adventure, Sci-Fi
                                                                                      14056
                                                                                                                     $215,000,000
                                                                                                                                    $652,270,625
124.0
                                                 20.709
                                                         2015-06-12
                                                                              6.6
                                                                                               Uni.
                                                                                                                                                   $1,648,8
                                          en
                                                                                                          World
                                                                                                       The Rum
119.0
               Comedy, Drama
                                          en
                                                 12.011
                                                          2011-10-27
                                                                              5.7
                                                                                        652
                                                                                                FD
                                                                                                                      $45,000,000
                                                                                                                                     $13,109,815
                                                                                                                                                     $21,54
                                                                                                          Diary
                                                                                                     The Girl on
 NaN
          Horror, Mystery, Thriller
                                                 11.927
                                                          2016-10-07
                                                                              6.3
                                                                                       3479
                                                                                             Strand
                                                                                                                      $45,000,000
                                                                                                                                     $75,395,035
                                                                                                                                                    $174,2
                                          en
                                                                                                       the Train
                                                                                                       The First
 90.0
                      Drama
                                          en
                                                 11.250
                                                          2012-10-19
                                                                              7.0
                                                                                        1426
                                                                                              Gold.
                                                                                                                       $2,000,000
                                                                                                                                         $17,061
                                                                                                                                                         $
                                                                                                          Time
 NaN
                 Action, Drama
                                          en
                                                 10.993
                                                          2015-12-18
                                                                              5.9
                                                                                        922
                                                                                               Uni.
                                                                                                         Sisters
                                                                                                                      $30,000,000
                                                                                                                                     $87,044,645
                                                                                                                                                    $106,00
                 Documentary
                                                  0.600
                                                          2013-09-24
                                                                              1.6
                                                                                          4
                                                                                                    Unstoppable
                                                                                                                      $95,000,000
                                                                                                                                     $81,562,942
                                                                                                                                                    $165,72
 84.0
                                                                                               Fox
                                          en
                                                 14.010
                                                         2010-11-12
                                                                                       1913
                                                                                                                      $95,000,000
                                                                                                                                     $81,562,942
                                                                                                                                                    $165,72
 84.0
                 Documentary
                                          en
                                                                              6.4
                                                                                               Fox Unstoppable
```

```
In [670]: query = ("""
            SELECT *
            FROM movie_basics
            .....)
            pd.read_sql(query, conn)
                 o tt0063540
                                                      Sunghursh
                                                                                        Sunghursh
                                                                                                      2013
                                                                                                                     175.0
                                                                                                                             Action,Crime,Drama
                 1 tt0066787
                                     One Day Before the Rainy Season
                                                                                    Ashad Ka Ek Din
                                                                                                      2019
                                                                                                                     114.0
                                                                                                                                Biography,Drama
                 2 tt0069049
                                          The Other Side of the Wind
                                                                            The Other Side of the Wind
                                                                                                      2018
                                                                                                                     122.0
                                                                                                                                       Drama
                 3 tt0069204
                                                 Sabse Bada Sukh
                                                                                   Sabse Bada Sukh
                                                                                                      2018
                                                                                                                      NaN
                                                                                                                                 Comedy, Drama
                    tt0100275
                                         The Wandering Soap Opera
                                                                                La Telenovela Errante
                                                                                                      2017
                                                                                                                      80.0 Comedy, Drama, Fantasy
             146139 tt9916538
                                               Kuambil Lagi Hatiku
                                                                                 Kuambil Lagi Hatiku
                                                                                                      2019
                                                                                                                     123.0
                                                                                                                                       Drama
                                  Rodolpho Teóphilo - O Legado de um
                                                                    Rodolpho Teóphilo - O Legado de um
             146140 tt9916622
                                                                                                      2015
                                                                                                                      NaN
                                                                                                                                   Documentary
             146141 tt9916706
                                                 Dankyavar Danka
                                                                                   Dankyavar Danka
                                                                                                      2013
                                                                                                                      NaN
                                                                                                                                      Comedy
             146142 tt9916730
                                                                                                                     116.0
                                                        6 Gunn
                                                                                           6 Gunn
                                                                                                      2017
                                                                                                                                        None
             146143 tt9916754
                                     Chico Albuquerque - Revelações
                                                                        Chico Albuquerque - Revelações
                                                                                                      2013
                                                                                                                      NaN
                                                                                                                                   Documentary
            Created a genre based table, which has been commented out about becasue the table creation can only be done
In [117]: #query = ("""
            #CREATE TABLE g_table AS
            #SELECT m.genres, p.*
            #FROM movie basics AS m
            #JOIN PG_table AS p
            #USING(movie_id)
            #""")
            #b
            OperationalError
                                                             Traceback (most recent call last)
            <ipython-input-117-0dad8afb3648> in <module>
                   8 """)
                   9
               -> 10 conn.execute(query)
                  11 conn.commit()
            OperationalError: table g_table already exists
In [326]: query = ("""
            SELECT *
            FROM g_table
            .....)
            gen_df =pd.read_sql(query, conn)
  In [ ]: Filtered out unnecessary columns
In [166]: query = ("""
            SELECT DISTINCT(movie),
            movie_id, start_year, runtime_minutes, genres, popularity, release_date, vote_average, vote_count, studio, prod
            FROM PG_table
            """)
            PG_df = pd.read_sql(query, conn)
```

In [168]: PG_df

Out[168]:

```
movie_id start_year runtime_minutes
                                                                                          genres popularity release_date vote_average
                                                                                                                                                    studio
                          movie
                                                                                                                                         vote_count
                                                                                                                                                            product
                  0 On the Road tt0337692
                                                 2012
                                                                  124.0 Adventure, Drama, Romance
                                                                                                      8.919
                                                                                                               2012-12-21
                                                                                                                                    5.6
                                                                                                                                                518
                                                                                                                                                        IFC
                       The Secret
                                 tt0359950
                                                 2013
                                                                         Adventure, Comedy, Drama
                                                                                                               2013-12-25
                          Life of
                                                                  114.0
                                                                                                      10.743
                                                                                                                                    7.1
                                                                                                                                               4859
                                                                                                                                                       Fox
                      Walter Mitty
                          A Walk
                      Among the
                                 tt0365907
                                                 2014
                                                                  114.0
                                                                               Action,Crime,Drama
                                                                                                      19.373
                                                                                                               2014-09-19
                                                                                                                                    6.3
                                                                                                                                               1685
                                                                                                                                                       Uni.
                      Tombstones
                         Jurassic
                  3
                                  tt0369610
                                                 2015
                                                                  124.0
                                                                            Action, Adventure, Sci-Fi
                                                                                                     20.709
                                                                                                               2015-06-12
                                                                                                                                    6.6
                                                                                                                                              14056
                                                                                                                                                       Uni.
                          World
                        The Rum
                                 tt0376136
                                                 2011
                                                                  119.0
                                                                                   Comedy, Drama
                                                                                                      12.011
                                                                                                               2011-10-27
                                                                                                                                                652
                                                                                                                                                        FD
                           Diary
                       The Girl on
               1896
                                 tt9799088
                                                 2018
                                                                   NaN
                                                                             Horror, Mystery, Thriller
                                                                                                      11.927
                                                                                                               2016-10-07
                                                                                                                                    6.3
                                                                                                                                               3479 Strand
                         the Train
                        The First
                                 tt9827712
                                                                                                               2012-10-19
               1897
                                                 2018
                                                                   90.0
                                                                                           Drama
                                                                                                      11.250
                                                                                                                                    7.0
                                                                                                                                               1426
                                                                                                                                                      Gold.
                            Time
                                                 2019
                                                                                     Action, Drama
               1898
                          Sisters tt9851050
                                                                   NaN
                                                                                                      10.993
                                                                                                               2015-12-18
                                                                                                                                    5.9
                                                                                                                                                922
                                                                                                                                                       Uni.
               1899 Unstoppable tt9906218
                                                 2019
                                                                   84.0
                                                                                     Documentary
                                                                                                      0.600
                                                                                                               2013-09-24
                                                                                                                                    1.6
                                                                                                                                                  4
                                                                                                                                                        Fox
               1900 Unstoppable tt9906218
                                                 2019
                                                                   84.0
                                                                                     Documentary
                                                                                                      14.010
                                                                                                               2010-11-12
                                                                                                                                    6.4
                                                                                                                                               1913
                                                                                                                                                       Fox
              1901 rows × 13 columns
In [169]: len(PG_df['production_budget'])
Out[169]: 1901
In [170]: PG_df.iloc[0][-3]
Out[170]: '$25,000,000'
              Got rid of all non-numeric characters and converted the gross and budget columns to floats
In [171]: PG_df["production_budget"] = (
                   PG_df["production_budget"]
                   .str.replace("$", "", regex=False)
.str.replace(",", "", regex=False)
                   .astype(float)
In [172]: PG_df["domestic_gross"] = (
                  PG_df["domestic_gross"]
.str.replace("$", "", regex=False)
.str.replace(",", "", regex=False)
                   .astype(float)
              )
In [173]: PG_df["worldwide_gross"] = (
                   PG_df["worldwide_gross"]
                   .str.replace("$", "", regex=False)
.str.replace(",", "", regex=False)
                   .astype(float)
```

In [174]: PG_df

Out[174]:

ar	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_
12	124.0	Adventure, Drama, Romance	8.919	2012-12-21	5.6	518	IFC	25000000.0	720828.0	9.31330
13	114.0	Adventure,Comedy,Drama	10.743	2013-12-25	7.1	4859	Fox	91000000.0	58236838.0	1.87861
14	114.0	Action,Crime,Drama	19.373	2014-09-19	6.3	1685	Uni.	28000000.0	26017685.0	6.21085
15	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	215000000.0	652270625.0	1.64885
11	119.0	Comedy, Drama	12.011	2011-10-27	5.7	652	FD	45000000.0	13109815.0	2.15447
18	NaN	Horror, Mystery, Thriller	11.927	2016-10-07	6.3	3479	Strand	45000000.0	75395035.0	1.74278
18	90.0	Drama	11.250	2012-10-19	7.0	1426	Gold.	2000000.0	17061.0	1.70610
19	NaN	Action,Drama	10.993	2015-12-18	5.9	922	Uni.	30000000.0	87044645.0	1.06030
19	84.0	Documentary	0.600	2013-09-24	1.6	4	Fox	95000000.0	81562942.0	1.65720
19	84.0	Documentary	14.010	2010-11-12	6.4	1913	Fox	95000000.0	81562942.0	1.65720

In [207]: PG_df['ROI'] = (PG_df['worldwide_gross']/PG_df['production_budget'])*100

In [209]: PG_df Among the แบงธวยบา Tombstones ZU 14 114.0 Action,∪rime,∪rama 2014-09-19 COOI UIII. Jurassic 3 tt0369610 2015 124.0 Action, Adventure, Sci-Fi 20.709 2015-06-12 6.6 14056 Uni. World The Rum tt0376136 2011 119.0 5.7 FD Comedy, Drama 12.011 2011-10-27 652 Diary The Girl on 1896 tt9799088 2018 NaN Horror, Mystery, Thriller 11.927 2016-10-07 6.3 3479 Strand the Train The First 1897 tt9827712 2018 90.0 Drama 11.250 2012-10-19 7.0 1426 Gold. Time 2019 Action,Drama 1898 Sisters tt9851050 NaN 2015-12-18 10.993 5.9 922 Uni. 2019 84.0 2013-09-24 **1899** Unstoppable tt9906218 Documentary 0.600 1.6 4 Fox 1900 Unstoppable tt9906218 2019 84.0 2010-11-12 1913 Documentary 14.010 6.4 Fox

1901 rows × 14 columns

In [467]: PG_df.to_csv("L_data_project_2.csv")

In [210]: sns.scatterplot(data=PG_df, x='production_budget', y = 'worldwide_gross')

Out[210]: <AxesSubplot:xlabel='production_budget', ylabel='worldwide_gross'>


```
In [212]: top_budget_threshold = PG_df['production_budget'].quantile(0.8)
          top_gross_threshold = PG_df['worldwide_gross'].quantile(0.8)
          print(top_budget_threshold)
          print(top_gross_threshold)
          65000000.0
          203127894.0
In [213]: query = ("""
```

SELECT * FROM WS_table) pd.read_sql(query, conn)

Out[213]:

ar	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_
12	124.0	Adventure, Drama, Romance	8.919	2012-12-21	5.6	518	IFC	25000000.0	720828.0	9.31330
13	114.0	Adventure,Comedy,Drama	10.743	2013-12-25	7.1	4859	Fox	91000000.0	58236838.0	1.87861
14	114.0	Action,Crime,Drama	19.373	2014-09-19	6.3	1685	Uni.	28000000.0	26017685.0	6.21085
15	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	215000000.0	652270625.0	1.64885
11	119.0	Comedy, Drama	12.011	2011-10-27	5.7	652	FD	45000000.0	13109815.0	2.15447
18	NaN	Horror, Mystery, Thriller	11.927	2016-10-07	6.3	3479	Strand	45000000.0	75395035.0	1.74278
18	90.0	Drama	11.250	2012-10-19	7.0	1426	Gold.	2000000.0	17061.0	1.70610
19	NaN	Action,Drama	10.993	2015-12-18	5.9	922	Uni.	30000000.0	87044645.0	1.06030
19	84.0	Documentary	0.600	2013-09-24	1.6	4	Fox	95000000.0	81562942.0	1.65720
19	84.0	Documentary	14.010	2010-11-12	6.4	1913	Fox	95000000.0	81562942.0	1.65720

```
In [214]: query = ("""
             SELECT studio, AVG(worldwide_gross) AS avg_gross_per_movie, popularity,runtime_minutes, movie
             FROM WS_table
             \mathsf{GROUP}\ \mathsf{B}\overline{\mathsf{Y}}\ \mathsf{studio}
             ORDER BY avg_gross_per_movie DESC
             LIMIT 10
             """)
             WS_df = pd.read_sql(query, conn)
```

Showing top average gross per movie by studio

```
In [215]: sns.scatterplot(data=WS_df, x='studio', y = 'avg_gross_per_movie') ###hue='studio')
```

Out[215]: <AxesSubplot:xlabel='studio', ylabel='avg_gross_per_movie'>


```
In [216]: query = ("""

SELECT DISTINCT(genres), popularity
FROM g_table
GROUP BY genres
HAVING popularity > 20
ORDER BY popularity DESC
LIMIT 25

""")
gen_df =pd.read_sql(query, conn)
```

```
In [671]: query = ("""

SELECT *
FROM g_table
WHERE movie = 'Split'

""")
pd.read_sql(query, conn)
```

Out[671]:

	genres	movie_id	primary_title	original_title	start_year	runtime_minutes	genres:1	original_language	popularity	relea
0	Comedy,Romance,Sport	tt2660118	Split	Split	2016	90.0	Comedy,Romance,Sport	en	0.906	201
1	Comedy,Romance,Sport	tt2660118	Split	Split	2016	90.0	Comedy,Romance,Sport	en	2.029	201
2	Comedy,Romance,Sport	tt2660118	Split	Split	2016	90.0	Comedy,Romance,Sport	en	2.454	201
3	Comedy,Romance,Sport	tt2660118	Split	Split	2016	90.0	Comedy,Romance,Sport	en	25.783	201
4	Drama,Fantasy	tt3315656	Split	Split	2016	127.0	Drama,Fantasy	en	0.906	201
5	Drama,Fantasy	tt3315656	Split	Split	2016	127.0	Drama,Fantasy	en	2.029	201
6	Drama,Fantasy	tt3315656	Split	Split	2016	127.0	Drama,Fantasy	en	2.454	201
7	Drama,Fantasy	tt3315656	Split	Split	2016	127.0	Drama,Fantasy	en	25.783	201
8	Crime	tt3604256	Split	Split	2016	NaN	Crime	en	0.906	201
9	Crime	tt3604256	Split	Split	2016	NaN	Crime	en	2.029	201
10	Crime	tt3604256	Split	Split	2016	NaN	Crime	en	2.454	201
11	Crime	tt3604256	Split	Split	2016	NaN	Crime	en	25.783	201
12	Horror, Thriller	tt4972582	Split	Split	2016	117.0	Horror, Thriller	en	0.906	201
13	Horror,Thriller	tt4972582	Split	Split	2016	117.0	Horror, Thriller	en	2.029	201
14	Horror, Thriller	tt4972582	Split	Split	2016	117.0	Horror, Thriller	en	2.454	201
15	Horror, Thriller	tt4972582	Split	Split	2016	117.0	Horror, Thriller	en	25.783	201
16	Drama	tt5495666	Split	Split	2016	80.0	Drama	en	0.906	201
17	Drama	tt5495666	Split	Split	2016	80.0	Drama	en	2.029	201
18	Drama	tt5495666	Split	Split	2016	80.0	Drama	en	2.454	201
19	Drama	tt5495666	Split	Split	2016	80.0	Drama	en	25.783	201
20	Action,Drama,Sport	tt6147768	Split	Split	2016	123.0	Action,Drama,Sport	en	0.906	201
21	Action,Drama,Sport	tt6147768	Split	Split	2016	123.0	Action,Drama,Sport	en	2.029	201
22	Action,Drama,Sport	tt6147768	Split	Split	2016	123.0	Action,Drama,Sport	en	2.454	201
23	Action, Drama, Sport	tt6147768	Split	Split	2016	123.0	Action, Drama, Sport	en	25.783	201

```
In [219]: query = ("""
SELECT *
FROM principals
""")
pd.read_sql(query, conn)
```

Out[219]:

	movie_id	ordering	person_id	category	job	characters
0	tt0111414	1	nm0246005	actor	None	["The Man"]
1	tt0111414	2	nm0398271	director	None	None
2	tt0111414	3	nm3739909	producer	producer	None
3	tt0323808	10	nm0059247	editor	None	None
4	tt0323808	1	nm3579312	actress	None	["Beth Boothby"]
1028181	tt9692684	1	nm0186469	actor	None	["Ebenezer Scrooge"]
1028182	tt9692684	2	nm4929530	self	None	["Herself","Regan"]
1028183	tt9692684	3	nm10441594	director	None	None
1028184	tt9692684	4	nm6009913	writer	writer	None
1028185	tt9692684	5	nm10441595	producer	producer	None

1028186 rows × 6 columns

```
In [220]: query = ("""

SELECT p.movie_id, p.person_id, p.category, p.characters, g.movie, g.popularity, g.studio, g.vote_average, g.ge
FROM principals as p
JOIN g_table as g
USING(movie_id)
""")

PID_df = pd.read_sql(query, conn)
```

In [221]: PID_df

0	tt0475290	nm0005683	cinematographer	None	Hail, Caesar!	12.312	Uni.	5.9	Comedy,Drama,Music
1	tt0475290	nm0000982	actor	["Eddie Mannix"]	Hail, Caesar!	12.312	Uni.	5.9	Comedy, Drama, Music
2	tt0475290	nm0000123	actor	["Baird Whitlock"]	Hail, Caesar!	12.312	Uni.	5.9	Comedy, Drama, Music
3	tt0475290	nm2403277	actor	["Hobie Doyle"]	Hail, Caesar!	12.312	Uni.	5.9	Comedy,Drama,Music
4	tt0475290	nm0000146	actor	["Laurence Laurentz"]	Hail, Caesar!	12.312	Uni.	5.9	Comedy,Drama,Music
	•••	•••			***	***		•••	
18947	tt9151364	nm0000636	writer	None	The Tempest	6.300	Mira.	5.8	Drama
18948	tt9151364	nm1034863	producer	None	The Tempest	6.300	Mira.	5.8	Drama
18949	tt9151364	nm0745729	editor	None	The Tempest	6.300	Mira.	5.8	Drama
18950	tt9151364	nm0564805	actor	["Stephano"]	The Tempest	6.300	Mira.	5.8	Drama
18951	tt8991250	nm10118085	director	None	The Tree of Life	11.569	FoxS	6.6	Documentary

18952 rows × 9 columns

```
In [230]: PG_df.to_sql("ROI_table_2", conn, index=False)
```

```
In [231]: query = ("""

SELECT *
FROM ROI_table_2

""")
pd.read_sql(query,conn)
```

Out[231]:

minutes	genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_gross	
124.0	Adventure, Drama, Romance	8.919	2012-12-21	5.6	518	IFC	25000000.0	720828.0	9.313302e+06	37.2
114.0	Adventure,Comedy,Drama	10.743	2013-12-25	7.1	4859	Fox	91000000.0	58236838.0	1.878612e+08	206.4
114.0	Action,Crime,Drama	19.373	2014-09-19	6.3	1685	Uni.	28000000.0	26017685.0	6.210859e+07	221.8
124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	215000000.0	652270625.0	1.648855e+09	766.9
119.0	Comedy,Drama	12.011	2011-10-27	5.7	652	FD	45000000.0	13109815.0	2.154473e+07	47.8
NaN	Horror, Mystery, Thriller	11.927	2016-10-07	6.3	3479	Strand	45000000.0	75395035.0	1.742782e+08	387.2
90.0	Drama	11.250	2012-10-19	7.0	1426	Gold.	2000000.0	17061.0	1.706100e+04	8.0
NaN	Action,Drama	10.993	2015-12-18	5.9	922	Uni.	30000000.0	87044645.0	1.060307e+08	353.4
84.0	Documentary	0.600	2013-09-24	1.6	4	Fox	95000000.0	81562942.0	1.657209e+08	174.4
84.0	Documentary	14.010	2010-11-12	6.4	1913	Fox	95000000.0	81562942.0	1.657209e+08	174.4

```
In [232]: query = ("""

SELECT p.person_id, p.category, p.characters, r.*
FROM PID_table as p
JOIN ROI_table_2 as r
USING(movie_id)

""")
pd.read_sql(query,conn)
```

Out[232]:

ime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_gross	
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
60.0	Documentary	11.569	2011-05-27	6.6	1730	FoxS	35000000.0	13305665.0	61721826.0	176.3

```
In [234]: query = ("""

SELECT p.person_id, p.category, p.characters, r.*
FROM PID_table as p
JOIN ROI_table_2 as r
USING(movie_id)

""")

FINAL_df = pd.read_sql(query,conn)
```

```
In [235]: FINAL_df.to_sql("FINAL_tb", conn, index=False)
```

```
In [236]: query = ("""

SELECT *
FROM FINAL_tb

""")
pd.read_sql(query,conn)
```

Out[236]:

ime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_gross	
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.€
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
106.0	Comedy,Drama,Music	12.312	2016-02-05	5.9	2328	Uni.	22000000.0	30080225.0	64160680.0	291.6
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
NaN	Drama	6.300	2010-12-10	5.8	52	Mira.	20000000.0	277943.0	277943.0	1.3
60.0	Documentary	11.569	2011-05-27	6.6	1730	FoxS	35000000.0	13305665.0	61721826.0	176.3

Retrieves the top 100 movies with the highest ROI

```
0
                     Avengers: Infinity War
                                           682.711400
                                                           80.773
1
                               John Wick
                                           254.116670
                                                           78.123
2 The Hobbit: The Battle of the Five Armies
                                           378.231048
                                                           53.783
                   Guardians of the Galaxy
                                           453.451480
                                                           49.606
3
4
                       Blade Runner 2049
                                           140.193194
                                                           48.571
                             Prometheus
                                           321.958612
                                                           24.980
95
96
                             Tomb Raider
                                           303.863890
                                                           24.968
97
                               Inside Out
                                           488.134853
                                                           24.797
                                 Get Out 5107.359020
                                                           24.739
98
                          Alien: Covenant 245.898193
                                                           24.651
99
```

100 rows × 3 columns

```
In [293]: sns.scatterplot(data=POP_R_df, x = 'popularity', y = 'ROI')
```

Out[293]: <AxesSubplot:xlabel='popularity', ylabel='R0I'>

```
5000 - 4000 - 2000 - 2000 - 25 30 35 40 45 50 55
```

Out[294]:

	movie	ROI	popularity
0	Insidious	6658.059067	16.197
1	Split	5579.296120	25.783
2	Get Out	5107.359020	24.739
3	Chernobyl Diaries	4241.172100	14.658
4	Annabelle	3951.737231	13.989
95	Before Midnight	775.064333	11.765
96	The Lazarus Effect	767.186200	10.157
97	Jurassic World	766.909239	20.709
98	Don Jon	750.337800	12.780
99	About Time	744.243150	14.133

100 rows × 3 columns

```
In [295]: sns.histplot(data=POP_R_df, x = 'popularity', y = 'ROI')
```

```
Out[295]: <AxesSubplot:xlabel='popularity', ylabel='R0I'>
```


Created a heatmap broken down into 5 ROI bins and 10 popualirty bins

```
In [318]: GEN_df['popularity_bin'] = pd.qcut(GEN_df['popularity'], q=10, labels=False, duplicates='drop')
GEN_df['ROI_bin'] = pd.qcut(GEN_df['ROI'], q=5, labels=False, duplicates='drop')
heatmap_data = GEN_df.groupby(['popularity_bin', 'ROI_bin']).size().unstack()
sns.heatmap(heatmap_data, cmap="coolwarm", annot=True)
```

Out[318]: <AxesSubplot:xlabel='ROI_bin', ylabel='popularity_bin'>

In []: Created a heatmap broken down into tenths

```
In [328]: PG_df['popularity_bin'] = pd.qcut(PG_df['popularity'], q=10, labels=False, duplicates='drop')
PG_df['ROI_bin'] = pd.qcut(PG_df['ROI'], q=10, labels=False, duplicates='drop')
heatmap_data_2 = PG_df.groupby(['popularity_bin', 'ROI_bin']).size().unstack()
sns.heatmap(heatmap_data_2, cmap="coolwarm", annot=True)
print(GEN_df['production_budget'].nunique())
```

5

In [516]: PG_df

Out[516]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	product
0	On the Road	tt0337692	2012	124.0	Adventure,Drama,Romance	8.919	2012-12-21	5.6	518	IFC	
1	The Secret Life of Walter Mitty	tt0359950	2013	114.0	Adventure,Comedy,Drama	10.743	2013-12-25	7.1	4859	Fox	
2	A Walk Among the Tombstones	tt0365907	2014	114.0	Action,Crime,Drama	19.373	2014-09-19	6.3	1685	Uni.	
3	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	2
4	The Rum Diary	tt0376136	2011	119.0	Comedy,Drama	12.011	2011-10-27	5.7	652	FD	
	•••		•••	•••			•••		•••		
1896	The Girl on the Train	tt9799088	2018	NaN	Horror, Mystery, Thriller	11.927	2016-10-07	6.3	3479	Strand	
1897	The First Time	tt9827712	2018	90.0	Drama	11.250	2012-10-19	7.0	1426	Gold.	
1898	Sisters	tt9851050	2019	NaN	Action,Drama	10.993	2015-12-18	5.9	922	Uni.	
1899	Unstoppable	tt9906218	2019	84.0	Documentary	0.600	2013-09-24	1.6	4	Fox	
1900	Unstoppable	tt9906218	2019	84.0	Documentary	14.010	2010-11-12	6.4	1913	Fox	

1901 rows × 19 columns

Created a heatmap broken down of 5 bins for each catageory only looking at data the top half of popularity ROI

```
In [347]:
    roi_median = PG_df['ROI'].median()
    popularity_median = PG_df['popularity'].median()

filtered_df = PG_df.loc[(PG_df['ROI'] > roi_median) & (PG_df['popularity'] > popularity_median)].copy()

filtered_df['popularity_bin'] = pd.qcut(filtered_df['popularity'], q=5, labels=False, duplicates='drop')

filtered_df['ROI_bin'] = pd.qcut(filtered_df['ROI'], q=5, labels=False, duplicates='drop')

heatmap_data_2 = filtered_df.groupby(['popularity_bin', 'ROI_bin']).size().unstack()

plt.xlabel("ROI Bins)") # Change X-axis label
    plt.ylabel("Popularity Bins)") # Change Y-axis label
    plt.title("Distribution of Movies by ROI and Popularity") # Change Title

sns.heatmap(heatmap_data_2, cmap="coolwarm", annot=True, )
```

Out[347]: <AxesSubplot:title={'center':'Distribution of Movies by ROI and Popularity'}, xlabel='ROI_bin', ylabel='popula
 rity_bin'>

In [517]: filtered_df

Out[517]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	product
3	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	2
6	Tangled	tt0398286	2010	100.0	Adventure, Animation, Comedy	21.511	2010-11-24	7.5	6407	BV	2
11	Real Steel	tt0433035	2011	127.0	Action,Drama,Family	14.811	2011-10-06	6.8	4566	BV	1
13	Toy Story 3	tt0435761	2010	103.0	Adventure, Animation, Comedy	24.445	2010-06-17	7.7	8340	BV	2
14	Lincoln	tt0443272	2012	150.0	Biography, Drama, History	12.693	2012-11-16	6.8	2261	BV	
1887	Neighbors	tt9392532	2018	90.0	Comedy,Drama	14.979	2014-05-09	6.2	4536	Uni.	
1892	Neighbors	tt9702034	2012	NaN	Drama	14.979	2014-05-09	6.2	4536	Uni.	
1893	Into the Woods	tt9703646	2018	NaN	Fantasy, Horror	13.726	2014-12-25	5.7	2880	BV	
1896	The Girl on the Train	tt9799088	2018	NaN	Horror, Mystery, Thriller	11.927	2016-10-07	6.3	3479	Strand	
1898	Sisters	tt9851050	2019	NaN	Action,Drama	10.993	2015-12-18	5.9	922	Uni.	

620 rows × 18 columns

Created a data frame looking at the top 70% of ROI and 80% of popularity

In [336]: roi_40th = filtered_df['ROI'].quantile(0.4)
popularity_60th = filtered_df['popularity'].quantile(0.6)

 $filtered_df_2 = filtered_df.loc[(filtered_df['ROI'] >= roi_40th) \& (filtered_df['popularity'] >= popularity_60t filtered_df_2$

Out[336]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	р
3	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	
13	Toy Story 3	tt0435761	2010	103.0	Adventure, Animation, Comedy	24.445	2010-06-17	7.7	8340	BV	
18	Wonder Woman	tt0451279	2017	141.0	Action,Adventure,Fantasy	31.618	2017-06-02	7.3	12566	WB	
33	Ant-Man	tt0478970	2015	117.0	Action,Adventure,Comedy	32.715	2015-07-17	7.1	11949	BV	
65	Interstellar	tt0816692	2014	169.0	Adventure, Drama, Sci-Fi	28.440	2014-11-05	8.2	18597	Par.	
1781	A Simple Favor	tt7040874	2018	117.0	Comedy,Crime,Drama	21.121	2018-09-14	6.6	1756	LGF	
1792	Arrival	tt7325124	2012	NaN	Documentary	25.442	2016-11-11	7.4	10387	Par.	
1795	BlacKkKlansman	tt7349662	2018	135.0	Biography,Crime,Drama	25.101	2018-07-30	7.6	3138	Focus	
1821	Hereditary	tt7784604	2018	127.0	Drama, Horror, Mystery	26.185	2018-06-08	7.0	2491	A24	
1840	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	

149 rows × 18 columns

Created a data frame looking at the top 60% of ROI and 70% of popularity

Out[514]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	production
6	Tangled	tt0398286	2010	100.0	Adventure, Animation, Comedy	21.511	2010-11-24	7.5	6407	BV	26
11	Real Steel	tt0433035	2011	127.0	Action,Drama,Family	14.811	2011-10-06	6.8	4566	BV	11
18	Wonder Woman	tt0451279	2017	141.0	Action,Adventure,Fantasy	31.618	2017-06-02	7.3	12566	WB	15
21	The Equalizer	tt0455944	2014	132.0	Action,Crime,Thriller	28.942	2014-09-26	7.2	4989	Sony	5
25	Ex Machina	tt0470752	2014	108.0	Drama, Mystery, Sci-Fi	18.485	2015-04-10	7.6	8026	A24	1
					•••						
1128	Whiplash	tt2582802	2014	106.0	Drama, Music	28.784	2014-10-10	8.4	7908	SPC	
1133	Lights Out	tt2611518	2013	NaN	Drama	12.408	2016-07-22	6.3	2220	WB (NL)	
1135	Rio	tt2614250	2012	90.0	Documentary	14.695	2011-04-15	6.6	3730	Fox	g
1138	Ted 2	tt2637276	2015	115.0	Comedy	17.684	2015-06-26	6.1	4227	Uni.	6
1144	Split	tt2660118	2016	90.0	Comedy,Romance,Sport	25.783	2016-09-26	7.2	10375	Uni.	

155 rows × 18 columns

Revenue from streaming services is not included in domestic and global gross revenue.

```
In [348]: filtered_df_2.to_sql('FLT_table', conn, index=False)
```

In [469]: | filtered_df_2.to_csv('70X80_percentile.csv')

```
In [358]: query = ("""

SELECT COUNT(studio), studio
FROM FLT_table
GROUP BY studio
ORDER BY COUNT(studio) DESC
""")
pd.read_sql(query, conn)
```

Out[358]:

	COUNT(studio)	studio
0	33	BV
1	25	Uni.
2	21	Fox
3	13	WB
4	11	Par.
5	7	Wein.
6	7	LGF
7	6	WB (NL)
8	5	Sony
9	4	FoxS
10	3	Rela.
11	3	BH Tilt
12	2	P/DW
13	1	TriS
14	1	Sum.
15	1	SPC
16	1	SGem
17	1	RTWC
18	1	ORF
19	1	MGM
20	1	Focus
21	1	A24

```
In [470]: query = ("""

SELECT *
FROM FLT_table

""")
pd.read_sql(query, conn)
```

Out[470]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	pro
0	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci-Fi	20.709	2015-06-12	6.6	14056	Uni.	_
1	Toy Story 3	tt0435761	2010	103.0	Adventure, Animation, Comedy	24.445	2010-06-17	7.7	8340	BV	
2	Wonder Woman	tt0451279	2017	141.0	Action,Adventure,Fantasy	31.618	2017-06-02	7.3	12566	WB	
3	Ant-Man	tt0478970	2015	117.0	Action,Adventure,Comedy	32.715	2015-07-17	7.1	11949	BV	
4	Interstellar	tt0816692	2014	169.0	Adventure, Drama, Sci-Fi	28.440	2014-11-05	8.2	18597	Par.	
144	A Simple Favor	tt7040874	2018	117.0	Comedy,Crime,Drama	21.121	2018-09-14	6.6	1756	LGF	
145	Arrival	tt7325124	2012	NaN	Documentary	25.442	2016-11-11	7.4	10387	Par.	
146	BlacKkKlansman	tt7349662	2018	135.0	Biography,Crime,Drama	25.101	2018-07-30	7.6	3138	Focus	
147	Hereditary	tt7784604	2018	127.0	Drama,Horror,Mystery	26.185	2018-06-08	7.0	2491	A24	
148	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	

149 rows × 18 columns

```
In [360]: query = ("""

SELECT DISTINCT(movie)
FROM FLT_table
WHERE studio = 'BV'

""")
pd.read_sql(query, conn)
```

Out[360]:

	movie
0	Toy Story 3
1	Ant-Man
2	Coco
3	Doctor Strange
4	Iron Man 3
5	Frozen
6	Monsters University
7	Maleficent
8	Inside Out
9	Black Panther
10	Captain America: The Winter Soldier
11	Thor: The Dark World
12	Guardians of the Galaxy
13	Big Hero 6
14	Avengers: Age of Ultron
15	Zootopia
16	Captain America: Civil War
17	Thor: Ragnarok
18	Incredibles 2
19	Rogue One: A Star Wars Story
20	Avengers: Infinity War
21	Ant-Man and the Wasp

```
In [361]: query = ("""

SELECT DISTINCT(movie)
FROM FLT_table
WHERE studio = 'WB'
""")
pd.read_sql(query, conn)
```

Out[361]:

	movie
0	Wonder Woman
1	The Dark Knight Rises
2	Inception
3	The Hangover Part II
4	Gravity
5	Aquaman
6	Sherlock Holmes: A Game of Shadows
7	Ready Player One
8	American Sniper
9	Crazy Rich Asians
10	Sully

```
In [364]: query = ("""
             SELECT f.* , p.person_id, p.category, p.job, p.characters
             FROM FLT_table as f
             JOIN principals as p
            USING(movie_id)
             .....
             PRIN_df =pd.read_sql(query, conn)
In [365]: PRIN_df.to_sql('PRIN_table', conn, index=False)
In [367]: | query = ("""
             SELECT *
             FROM PRIN_table
             ....)
             pd.read_sql(query, conn)
Out[367]:
                       movie_id start_year runtime_minutes
                                                                        genres popularity release_date vote_average vote_count studio ... worldwide_gross
               Jurassic
                                                            Action, Adventure, Sci-
                       tt0369610
                                                      124.0
            O
                                      2015
                                                                                  20.709
                                                                                           2015-06-12
                                                                                                               6.6
                                                                                                                        14056
                                                                                                                                 Uni. ...
                                                                                                                                             1.648855e+09
                 World
               Jurassic
                                                            Action, Adventure, Sci-
                       tt0369610
                                      2015
                                                      124.0
                                                                                  20.709
                                                                                           2015-06-12
                                                                                                               6.6
                                                                                                                        14056
                                                                                                                                 Uni. ...
                                                                                                                                             1.648855e+09
                 World
                                                                            Fi
               Jurassic
                                                            Action, Adventure, Sci-
                       tt0369610
                                      2015
                                                      124.0
                                                                                  20.709
                                                                                           2015-06-12
                                                                                                               6.6
                                                                                                                        14056
                                                                                                                                 Uni. ...
                                                                                                                                             1.648855e+09
                 World
                                                            Action, Adventure, Sci-
               Jurassic
            3
                       tt0369610
                                      2015
                                                      124.0
                                                                                  20.709
                                                                                           2015-06-12
                                                                                                               6.6
                                                                                                                        14056
                                                                                                                                 Uni.
                                                                                                                                             1.648855e+09
                 World
               Jurassic
                                                            Action, Adventure, Sci-
                       tt0369610
                                                                                                                                 Uni. ...
                                                                                                                                             1.648855e+09
                                      2015
                                                      124.0
                                                                                  20.709
                                                                                           2015-06-12
                                                                                                               6.6
                                                                                                                        14056
                 World
                 Inside
            97
                       tt8269544
                                      2018
                                                       NaN
                                                                         None
                                                                                  24.797
                                                                                           2015-06-19
                                                                                                               8.0
                                                                                                                        12691
                                                                                                                                  BV
                                                                                                                                             8.542360e+08
                   Out
                 Inside
                       tt8269544
            98
                                      2018
                                                       NaN
                                                                         None
                                                                                  24.797
                                                                                           2015-06-19
                                                                                                               8.0
                                                                                                                        12691
                                                                                                                                  BV ...
                                                                                                                                            8.542360e+08
                   Out
                 Inside
                       tt8269544
                                                                                                                                  BV ...
                                                                                                                                             8.542360e+08
            99
                                      2018
                                                       NaN
                                                                         None
                                                                                  24.797
                                                                                           2015-06-19
                                                                                                               8.0
                                                                                                                        12691
                   Out
                 Inside
                       tt8269544
                                      2018
                                                       NaN
                                                                                  24.797
                                                                                           2015-06-19
                                                                                                               8.0
                                                                                                                        12691
                                                                                                                                  BV
                                                                                                                                            8.542360e+08
            )0
                                                                         None
                   Out
                 Inside
                       tt8269544
                                      2018
                                                       NaN
                                                                                  24.797
                                                                                           2015-06-19
                                                                                                               8.0
                                                                                                                        12691
                                                                                                                                  BV ...
                                                                                                                                            8.542360e+08
            )1
                                                                         None
                   Out
            2 rows × 22 columns
In [373]: query = ("""
             SELECT p.*, per.primary_name, per.primary_profession
             FROM PRIN_table as p
             JOIN persons as per
            USING(person_id)
             """)
            DIR_df = pd.read_sql(query, conn)
In [374]: DIR_df.to_sql('DIR_table', conn, index=False)
```

```
In [375]: query = (""" 
SELECT *
            FROM DIR_table
            """)
            pd.read_sql(query, conn)
```

Out[375]:

	movie	movie_id	start_year	runtime_minutes	genres	popularity	release_date	vote_average	vote_count	studio	 worldwide_gr
0	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci- Fi	20.709	2015-06-12	6.6	14056	Uni.	
1	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci- Fi	20.709	2015-06-12	6.6	14056	Uni.	
2	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci- Fi	20.709	2015-06-12	6.6	14056	Uni.	
3	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci- Fi	20.709	2015-06-12	6.6	14056	Uni.	
4	Jurassic World	tt0369610	2015	124.0	Action,Adventure,Sci- Fi	20.709	2015-06-12	6.6	14056	Uni.	
1397	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	
1398	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	
1399	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	
1400	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	
1401	Inside Out	tt8269544	2018	NaN	None	24.797	2015-06-19	8.0	12691	BV	

1402 rows × 24 columns

In [445]: query = (""" SELECT COUNT(primary_name), primary_name, popularity_bin FROM DIR_table GROUP BY primary_name HAVING popularity_bin = 4
ORDER BY COUNT(primary_name) DESC pd.read_sql(query, conn)

Out[445]:

	COUNT(primary_name)	primary_name	popularity_bin
0	11	Jason Blum	4
1	10	Stan Lee	4
2	8	Jack Kirby	4
3	7	Robert Downey Jr.	4
4	5	Leonardo DiCaprio	4
627	1	Adam Sandler	4
628	1	Adam McKay	4
629	1	Adam Green	4
630	1	Adam Driver	4
631	1	Aarif Rahman	4

632 rows × 3 columns

```
BP.notebook - Jupyter Notebook
In [422]: query = ("""
            SELECT DISTINCT(movie), popularity, production_budget, ROI
            FROM FLT_table
            WHERE popularity < 70 AND ROI < 4000
            ORDER BY popularity DESC
            .....
            slides_df=pd.read_sql(query, conn)
In [423]: sns.scatterplot(data=slides_df, x = 'popularity', y = 'production_budget')
Out[423]: <AxesSubplot:xlabel='popularity', ylabel='production_budget'>
               3.0
               2.5
             budget
               2.0
             production
               1.5
               1.0
               0.5
               0.0
                                                               55
                                              40
                                                    45
                                        35
                                                          50
                                      popularity
In [425]:
            plt.figure(figsize=(10,6))
            sns.scatterplot(x="popularity", y="ROI", hue = 'popularity', color = "blue",data=slides_df, )
            plt.xlabel("Popularity Category", fontsize=12)
plt.ylabel("ROI", fontsize=12)
            plt.title("Production Budget Distribution: Most vs. Least Popular Movies", fontsize=14)
            plt.show()
                            Production Budget Distribution: Most vs. Least Popular Movies
               3000
                                                                                              24
                                                                                              32
                                                                                              40
               2500
                                                                                              48
               2000
             8
               1500
               1000
                500
In [434]: print(PG_df.columns)
                                     # Verify column names
            Index(['movie', 'movie_id', 'start_year', 'runtime_minutes', 'genres',
                     'popularity', 'release_date', 'vote_average', 'vote_count', 'studio', 'production_budget', 'domestic_gross', 'worldwide_gross', 'ROI',
                     'worldwide_gross_bin', 'production_budget_bin', 'popularity_bin',
                    'ROI_bin'],
                   dtype='object')
```

```
BP.notebook - Jupyter Notebook
In [460]: query = ("""
           SELECT DISTINCT(movie), popularity, production_budget, ROI
           FROM FLT_table
           ORDER BY popularity ASC
           LIMIT 25
           .....)
           least_df=pd.read_sql(query, conn)
           least_df["Category"] = "Least Popular"
In [461]: query = ("""
SELECT DISTINCT(movie), popularity, production_budget, ROI
           FROM FLT_table
           ORDER BY popularity DESC
           LIMIT 25
           most_df=pd.read_sql(query, conn)
           most_df["Category"] = "Most Popular"
In [462]: df_combined = pd.concat([least_df, most_df])
In [463]: sns.barplot(x="movie", y="production_budget", hue="Category", data=df_combined, palette=["red", "blue"])
Out[463]: <AxesSubplot:xlabel='movie', ylabel='production_budget'>
                                                      Category
                                                      Least Popular
                  3.0
                                                      Most Popular
                  2.5
                  2.0
                luction
                  1.5
                  1.0
                  0.5
                  0.0
```

```
In [465]: df_combined.to_csv("Project_2_data.csv")
In [475]: query = ("""
          SELECT f.*, d.person_id, d.category, d.job, d.characters, d.primary_name, d.primary_profession
          FROM FLT_table as f
          JOIN DIR_table as d
          USING (movie_id)
          ....)
          TEMP_2_df=pd.read_sql(query, conn)
In [476]: TEMP_2_df.to_sql("TEMP_2_table", conn, index=False)
```

```
In [480]: query = ("""

SELECT *
FROM TEMP_2_table

""")
pd.read_sql(query, conn)
```

Out[480]:

e_gross_bin	production_budget_bin	popularity_bin	ROI_bin	person_id	category	job	characters	primary_name	primary
9	9	3	3	nm0000341	writer	based on the characters created by	None	Michael Crichton	writer,prod
9	9	3	3	nm0189777	producer	producer	None	Patrick Crowley	producer,assistant_director,producti
9	9	3	3	nm0339460	actress	None	["Karen"]	Judy Greer	actress,produce
9	9	3	3	nm0397171	actress	None	["Claire"]	Bryce Dallas Howard	actress,d
9	9	3	3	nm0415425	writer	screenplay by	None	Rick Jaffa	writer,pr
		•••					•••		
9	9	4	2	nm4944310	producer	producer	None	David Neilson	miscellaneous,location_manageme
9	9	4	2	nm4976347	actress	None	["Annette"]	Keira Lucchesi	
9	9	4	2	nm6745863	actor	None	["Jimmy"]	Gerard Miller	
9	9	4	2	nm7069953	editor	None	None	Alexander Peacock	cinematographer,ea
9	9	4	2	nm7604997	actor	None	["Colette"]	Erin Watson	

In []: Finding which people have the highest contributions to horror movies

```
In [495]: query = ("""

SELECT COUNT(primary_name), primary_name, movie category, person_id
FROM TEMP_2_table
WHERE genres LIKE '%Horror%'
GROUP BY primary_name
ORDER BY COUNT(primary_name) DESC
LIMIT 25
```

Out[495]:

	COUNT(primary_name)	primary_name	category	person_id
0	8	Jason Blum	The Purge	nm0089658
1	5	Michael Bay	The Purge	nm0000881
2	5	Brad Fuller	The Purge	nm0298181
3	5	Andrew Form	The Purge	nm0286320
4	4	James DeMonaco	The Purge	nm0218621
5	3	Sébastien K. Lemercier	The Purge	nm1085924
6	2	Toby Oliver	Get Out	nm0002947
7	2	Peter Safran	The Conjuring	nm0755911
8	2	James Wan	The Conjuring	nm1490123
9	2	Frank Grillo	The Purge: Anarchy	nm0342029
10	1	Zach Gilford	The Purge: Anarchy	nm1472917
11	1	Zach Fitzpatrick	The Revenant	nm6053523
12	1	Y'lan Noel	The First Purge	nm5002057
13	1	West Dylan Thordson	Split	nm3602603
14	1	Vera Farmiga	The Conjuring	nm0267812
15	1	Tony DeRosa-Grund	The Conjuring	nm0220533
16	1	Toni Collette	Hereditary	nm0001057
17	1	Todd Garner	The Possession of Hannah Grace	nm0307776
18	1	Tobin Bell	Jigsaw	nm0068551
19	1	Timur Bekmambetov	Unfriended: Dark Web	nm0067457
20	1	Steve Riven	Coco	nm9061888
21	1	Steve Harris	The First Purge	nm0004996
22	1	Stephen Susco	Unfriended: Dark Web	nm0839812
23	1	Stephanie Nogueras	Unfriended: Dark Web	nm5453200
24	1	Shay Mitchell	The Possession of Hannah Grace	nm3762213

```
In [508]: query = ("""

SELECT *
FROM TEMP_2_table
WHERE genres LIKE '%Horror%'

""")
HRR_df=pd.read_sql(query, conn)
```

```
In [509]: HRR_df.to_csv("HRR_table.csv")
```

```
In [499]: query = ("""

SELECT primary_name, category, movie
FROM TEMP_2_table
WHERE genres LIKE '%Horror%' AND primary_name = 'Jason Blum'

""")
pd.read_sql(query, conn)
```

Out[499]:

	primary_name	category	movie
0	Jason Blum	producer	The Purge
1	Jason Blum	producer	The Purge: Anarchy
2	Jason Blum	producer	The Purge: Election Year
3	Jason Blum	producer	Unfriended: Dark Web
4	Jason Blum	producer	Split
5	Jason Blum	producer	Get Out
6	Jason Blum	producer	Happy Death Day
7	Jason Blum	producer	The First Purge

```
In [500]: query = ("""
```

```
SELECT primary_name, category, movie
FROM TEMP_2_table
WHERE genres LIKE '%Horror%' AND primary_name = 'Michael Bay'
""")
pd.read_sql(query, conn)
```

Out[500]:

	primary_name	category	movie
0	Michael Bay	producer	The Purge
1	Michael Bay	producer	The Purge: Anarchy
2	Michael Bay	producer	The Purge: Election Year
3	Michael Bay	producer	The First Purge
4	Michael Bay	producer	A Quiet Place

Out[504]:

	collaborator	category	movie	collaborations
0	Andrew Form	producer	The Purge	5
1	Brad Fuller	producer	The Purge	5
2	Jason Blum	producer	The Purge	4
3	James DeMonaco	director	The Purge	3
4	Sébastien K. Lemercier	producer	The Purge	3
5	Don Murphy	producer	Transformers: Age of Extinction	2
6	Frank Grillo	actor	The Purge: Anarchy	2
7	Lorenzo di Bonaventura	producer	Transformers: Age of Extinction	2
8	Tom DeSanto	producer	Transformers: Age of Extinction	2
9	Adelaide Kane	actress	The Purge	1
10	Bryan Woods	writer	A Quiet Place	1
11	Carmen Ejogo	actress	The Purge: Anarchy	1
12	Christina Hodson	writer	Bumblebee	1
13	Ehren Kruger	writer	Transformers: Age of Extinction	1
14	Elizabeth Mitchell	actress	The Purge: Election Year	1
15	Emily Blunt	actress	A Quiet Place	1
16	Ethan Hawke	actor	The Purge	1
17	Gerard McMurray	director	The First Purge	1
18	Gijs Determeijer	producer	A Quiet Place	1
19	Gijs Kerbosch	producer	A Quiet Place	1
20	Hailee Steinfeld	actress	Bumblebee	1
21	lan Bryce	producer	Transformers: Age of Extinction	1
22	Jack Reynor	actor	Transformers: Age of Extinction	1
23	James DeMonaco	writer	The First Purge	1
24	Jason Drucker	actor	Bumblebee	1
25	John Cena	actor	Bumblebee	1
26	John Krasinski	actor	A Quiet Place	1
27	Joivan Wade	actor	The First Purge	1
28	Jorge Lendeborg Jr.	actor	Bumblebee	1
29	Joseph Julian Soria	actor	The Purge: Election Year	1
30	Kiele Sanchez	actress	The Purge: Anarchy	1
31	Lena Headey	actress	The Purge	1
32	Lex Scott Davis	actress	The First Purge	1
33	Marco Beltrami	composer	A Quiet Place	1
34	Mark Wahlberg	actor	Transformers: Age of Extinction	1
35	Max Burkholder	actor	The Purge	1
36	Millicent Simmonds	actress	A Quiet Place	1
37	Mykelti Williamson	actor	The Purge: Election Year	1
38	Nicola Peltz	actress	Transformers: Age of Extinction	1
39	Noah Jupe	actor	A Quiet Place	1
40	Olivia van Leeuwen	producer	A Quiet Place	1
41	Roel Oude Nijhuis	producer	A Quiet Place	1
42	Saskia Kievits	editor	A Quiet Place	1
43	Scott Beck	writer	A Quiet Place	1
43	Sjoerd Oostrik	director	A Quiet Place	1
	Stanley Tucci		Transformers: Age of Extinction	1
45	Stanley lucci	actor actor		1
46			The First Purge	
47		cinematographer	A Quiet Place	1
48	Travis Knight	director	Bumblebee	1
49	Y'lan Noel	actor	The First Purge	1

	collaborator	category	movie	collaborations
50	Zach Gilford	actor	The Purge: Anarchy	1

```
In [505]: query = ("""
              SELECT DISTINCT t1.primary_name AS collaborator, t1.category, t1.movie, COUNT(*) AS collaborations FROM TEMP_2_table t1
JOIN TEMP_2_table t2
ON t1.movie = t2.movie
              WHERE t2.primary_name = 'Jason Blum'
AND t1.primary_name <> 'Jason Blum'
              GROUP BY t1.primary_name, t1.category
              ORDER BY collaborations DESC """)
              pd.read_sql(query, conn)
```

Out[505]:

	collaborator	category	movie	collaborations
0	Andrew Form	producer	The Purge	4
1	Brad Fuller	producer	The Purge	4
2	Michael Bay	producer	The Purge	4
3	James DeMonaco	director	The Purge	3
4	Sébastien K. Lemercier	producer	The Purge	3
122	Virginie Dubois	producer	Split	1
123	West Dylan Thordson	composer	Split	1
124	Whitney Lafleur	actor	Split	1
125	Y'lan Noel	actor	The First Purge	1
126	Zach Gilford	actor	The Purge: Anarchy	1

127 rows × 4 columns

```
In [506]: query = ("""

SELECT DISTINCT t1.primary_name AS collaborator, t1.category, t1.movie, COUNT(*) AS collaborations
FROM TEMP_2_table t1
    JOIN TEMP_2_table t2
    ON t1.movie = t2.movie
    WHERE t2.primary_name = 'Sébastien K. Lemercier'
    AND t1.primary_name <> 'Sébastien K. Lemercier'
    GROUP BY t1.primary_name, t1.category
    ORDER BY collaborations DESC
"""")
    pd.read_sql(query, conn)
```

Out[506]:

	collaborator	category	movie	collaborations
0	Andrew Form	producer	The Purge	3
1	Brad Fuller	producer	The Purge	3
2	James DeMonaco	director	The Purge	3
3	Jason Blum	producer	The Purge	3
4	Michael Bay	producer	The Purge	3
5	Frank Grillo	actor	The Purge: Anarchy	2
6	Adelaide Kane	actress	The Purge	1
7	Carmen Ejogo	actress	The Purge: Anarchy	1
8	Elizabeth Mitchell	actress	The Purge: Election Year	1
9	Ethan Hawke	actor	The Purge	1
10	Joseph Julian Soria	actor	The Purge: Election Year	1
11	Kiele Sanchez	actress	The Purge: Anarchy	1
12	Lena Headey	actress	The Purge	1
13	Max Burkholder	actor	The Purge	1
14	Mykelti Williamson	actor	The Purge: Election Year	1
15	Zach Gilford	actor	The Purge: Anarchy	1

In [518]: filtered_df.to_sql('Final_data_table', conn , index=False)

```
In [523]: query = ("""

SELECT *
FROM Final_data_table
WHERE runtime_minutes > 100 and genres LIKE '%Horror%'
ORDER BY production_budget

""")
pd.read_sql(query,conn)
```

Out[523]:

genres	popularity	release_date	vote_average	vote_count	studio	production_budget	domestic_gross	worldwide_gross	ROI	wor
Horror, Mystery, Thriller	16.197	2011-04-01	6.9	3582	FD	1500000.0	54009150.0	99870886.0	6658.059067	
Horror, Mystery, Thriller	13.117	2012-10-12	6.8	2935	LG/S	3000000.0	48086903.0	87727807.0	2924.260233	
Drama,Horror,Mystery	17.892	2016-03-11	6.9	4629	Par.	5000000.0	72082999.0	108286422.0	2165.728440	
Horror, Mystery	10.841	2014-04-03	6.4	1747	Rela.	5000000.0	27695246.0	44115496.0	882.309920	
Horror,Thriller	25.783	2016-09-26	7.2	10375	Uni.	5000000.0	138141585.0	278964806.0	5579.296120	
Horror, Mystery, Thriller	24.739	2017-02-24	7.5	8760	Uni.	5000000.0	176040665.0	255367951.0	5107.359020	
Action,Horror,Sci-Fi	28.424	2014-07-18	6.6	3754	Uni.	9000000.0	71562550.0	111534881.0	1239.276456	
Action,Horror,Sci-Fi	18.975	2016-07-01	6.3	2900	Uni.	10000000.0	79042440.0	118514727.0	1185.147270	
Horror, Mystery, Thriller	16.017	2018-01-05	6.1	1306	Uni.	10000000.0	67745330.0	167885588.0	1678.855880	
Drama,Horror,Mystery	26.185	2018-06-08	7.0	2491	A24	10000000.0	44069456.0	70133905.0	701.339050	
Horror, Mystery, Thriller	21.245	2017-08-11	6.5	3141	WB (NL)	15000000.0	102092201.0	305384865.0	2035.899100	
Horror,Thriller	12.246	2010-02-26	6.2	1036	Over.	19000000.0	39123589.0	56445534.0	297.081758	
Horror, Mystery, Thriller	18.886	2013-07-19	7.5	5912	WB (NL)	20000000.0	137400141.0	318000141.0	1590.000705	
Drama,Horror,Mystery	13.530	2017-02-03	4.9	1785	Par.	25000000.0	27793018.0	82917283.0	331.669132	
Horror,Thriller	13.966	2017-09-08	7.2	10931	WB (NL)	35000000.0	327481748.0	697457969.0	1992.737054	
Horror	13.476	2010-09-17	7.1	2386	WB	37000000.0	92186262.0	152566881.0	412.342922	
Horror, Mystery	16.082	2011-04-11	6.2	1610	W/Dim.	4000000.0	38180928.0	95989590.0	239.973975	
Horror,Sci-Fi,Thriller	24.651	2017-05-19	5.9	4971	Fox	97000000.0	74262031.0	238521247.0	245.898193	
Action,Horror,Sci-Fi	31.397	2018-08-10	5.9	2896	WB	178000000.0	145443742.0	529530715.0	297.489166	
Action,Adventure,Horror	14.582	2013-06-21	6.7	9132	Par.	190000000.0	202359711.0	531514650.0	279.744553	

```
In [526]: query = ("""

SELECT *
FROM Final_data_table
JOIN principals as p
USING(movie_id)
WHERE runtime_minutes > 100 and genres LIKE '%Horror%'
""")
Final_PRN_df = pd.read_sql(query,conn)
```

```
In [527]: Final_PRN_df.to_sql("Final_PRN_table", conn, index=False)
```

```
In [538]: query = ("""
               SELECT *
               FROM Final_PRN_table
               JOIN persons
               USING (person_id)
               """)
               FINAL_df_1=pd.read_sql(query,conn)
In [539]: print(FINAL_df_1.columns)
               Index(['movie', 'movie_id', 'start_year', 'runtime_minutes', 'genres',
                         'movie, 'movie_id', 'start_year', 'runtime_minutes', genres',
'popularity', 'release_date', 'vote_average', 'vote_count', 'studio',
'production_budget', 'domestic_gross', 'worldwide_gross', 'ROI',
'worldwide_gross_bin', 'production_budget_bin', 'popularity_bin',
'ROI_bin', 'ordering', 'person_id', 'category', 'job', 'characters',
'primary_name', 'birth_year', 'death_year', 'primary_profession'],
                        dtype='object')
In [679]:
               low_threshold = FINAL_df_1["production_budget"].quantile(0.33)
               high_threshold = FINAL_df_1["production_budget"].quantile(0.66)
               FINAL_df_1["budget_category"] = pd.cut(
                     FINAL_df_1["production_budget"],
                     bins=[0, low_threshold, high_threshold, FINAL_df_1["production_budget"].max()],
labels=["Low Budget", "Medium Budget", "High Budget"],
                     include_lowest=True
               top_people_per_category = FINAL_df_1.groupby(["budget_category", "primary_name"]).size().reset_index(name="coun
               top_people_per_category = top_people_per_category.sort_values(["budget_category", "count"], ascending=[True, Fa
```

```
In [680]:
    top_overall_people = FINAL_df_1["primary_name"].value_counts().reset_index()
    top_overall_people.columns = ["primary_name", "count"]

plt.figure(figsize=(12,6))
    sns.barplot(
         data=top_overall_people.head(10), # Show only the top 10
         x="primary_name",
         y="count",
         palette="Blues_r"
    )

plt.xlabel("Person", fontsize=12)
    plt.ylabel("Total Appearances", fontsize=12)
    plt.title("Overall Most Frequent People Across All Budget Categories", fontsize=14)
    plt.xticks(rotation=45)
    plt.show()
```



```
In [545]: top_people_per_category = FINAL_df_1.groupby(["budget_category", "primary_name"]).size().reset_index(name="coun top_people_per_category = top_people_per_category.sort_values(["budget_category", "count"], ascending=[True, Fa]

In [682]: top_people_per_category = (
    FINAL_df_1.groupby(["budget_category", "primary_name"])
    .agg(count=("primary_name", "size"), avg_ROI=("ROI", "mean")) # Count appearances and get avg ROI
    .reset_index()
}

top_people_per_category = (
    top_people_per_category.sort_values(["budget_category", "count", "avg_ROI"], ascending=[True, False, False]
    .groupby("budget_category")
    .head(6)
}
```



```
In [558]:
           top_people_per_category = (
    FINAL_df_1.groupby(["budget_category", "primary_name"])
               .agg(count=("primary_name", "size"), avg_ROI=("ROI", "mean"))
               .reset_index()
           top_people_per_category = (
               top_people_per_category.sort_values(["budget_category", "avg_ROI"], ascending=[True, False])
               .groupby("budget_category")
               .head(10)
In [567]: FINAL_df_1.to_csv("FINAL_data_1.csv")
In [568]: FINAL_df_1.to_sql("FINAL_table_1", conn, index=False)
In [591]: query = ("""
           SELECT DISTINCT(movie), category, primary_name, ROI
           FROM FINAL_table_1
           WHERE budget_category = 'High Budget'AND category = 'producer'
           ORDER BY ROI DESC
          """)
          FIN_df_4=pd.read_sql(query,conn)
```

In [592]: FIN_df_4.to_csv("HBP.csv")

```
In [593]: query = ("""
           SELECT DISTINCT(movie), category, primary_name, ROI
           FROM FINAL_table_1
           WHERE budget_category = 'High Budget'AND category = 'producer'
           ORDER BY ROI DESC
           ·····)
           pd.read_sql(query,conn)
Out[593]:
                 movie category
                                                      ROI
                                   primary_name
                                               1992.737054
                    It producer
                               Seth Grahame-Smith
            1 The Town producer
                                Sean van Hastings
                                                412.342922
                 Rings producer
                                 Laurie MacDonald
                                                331.669132
                                                297.489166
            3 The Meg producer
                                      Belle Avery
            4 Scream 4 producer
                                     Iya Labunka
                                                239.973975
In [612]: query = ("""
           SELECT DISTINCT(movie), category, primary_name, ROI, popularity
           FROM FINAL_table_1
           WHERE budget_category = 'High Budget'AND primary_name = 'Seth Grahame-Smith'
           ORDER BY ROI DESC
           .....)
           pd.read_sql(query,conn)
Out[612]:
              movie category
                                 primary_name
                                                   ROI popularity
                  It producer Seth Grahame-Smith 1992.737054
                                                          13.966
In [614]: query = ("""
           SELECT AVG(ROI) AS avg_popularity
           FROM FINAL_table_1
           WHERE budget_category = 'High Budget';
           .....)
           pd.read_sql(query,conn)
Out[614]:
              avg_popularity
                 548.679421
In [613]: query = ("""
           SELECT AVG(popularity) AS avg_popularity
           FROM FINAL_table_1
           WHERE budget_category = 'High Budget';
           """)
           pd.read_sql(query,conn)
Out[613]:
              avg_popularity
                   18.45391
  In [ ]:
```