CA4

Laylaa Jorge Abrahams, Roche Witbooi, Chris Eason

Question 1

Suppose X $\operatorname{Np}(\mu,\Sigma)$. Show that the maximum likelihood estimator of Σ is biased, and give the bias:

1. The following shows that the MLE of Σ is biased because of the added $\frac{n-1}{n}$ term

$$E[\hat{\Sigma}_{MLE}] = E[\frac{n-1}{n}S] = \frac{n-1}{n}E[S] = \frac{n-1}{n}\Sigma$$

2. The bias of the MLE of Σ

$$Bias(\hat{\Sigma}_{MLE}) = E[\hat{\Sigma}_{MLE}] - \Sigma$$

$$Bias(\hat{\Sigma}_{MLE}) = \frac{n-1}{n} \Sigma - \Sigma$$

$$Bias(\hat{\Sigma}_{MLE}) = -\frac{1}{n}\Sigma$$

Question 2

Consider again the Egyptian skull data from CA1, given in CA1.csv . Examine the variables in period 2 for marginal and multivariate normality by creating the necessary QQ-plot(s) and chi-square plot(s). Apply any statistical test to the univariate hypotheses and report a measure of the p-value. For the multivariate test, interpret the observed squared generalized distances.

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

Chi-Squared plot

Theoretical quantiles from a Chi–Squared with P = 4 de of freedom (QCP) and Mahalanobis Distance

[1] "Proportion of points where $D^2 < critical value 53 2"$

Table 1: Shapiro Wilk Test

	P Value
MaxBreadth	0.0402877
BasHeight	0.5798685
BasLength	0.7494967
NasHeight	0.3762163
BasLength	0.7494967