Present neatly on separate paper. Justify for full credit. No Calculators.				
Name	Score	A (6 minutes) x1		
1) Determine whether the sequence converges or diverges. If it converges, find the limit.				
$a_n = n\sin(1/n)$				

2) True or False? "If a sequence is bounded, then it converges." Explain.

Present neatly on separate	_{e paper} . Justif	Y for full credit. No
	<u>Calculators.</u>	•
Name	Score	F (6 minutes) x1

1) Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = \ln(n+1) - \ln n$$

2) True or False: "If a sequence converges absolutely, then it converges." Explain.