Progettazione del Software – Formule

Modifica di software preesistente: $S_{eq} = 0.43 \, S_i + 0.06 \, S_p + S_n + 0.51 \, S_c - 0.49 \, S_d$ Progetto costituito da più parti: $S_{tot} = \sum S$ $\sigma_{tot} = \sqrt{\sum \sigma^2}$

Studio grafico: Siano $y = \log(K_d)$ e $x = \log(t_d)$ ordinata ed ascissa del grafico.

Vincoli (per individuare la **planning zone**):

$\log\left(t_{d_{MIN}}\right) \leq x \leq \log\left(t_{d_{MAX}}\right)$	$\log\left(\frac{D_{MAX}}{6}\right) + 2x \ge y \ge \log\left(\frac{D_{MIN}}{6}\right) + 2x$
$\log\left(K_{d_{MAX}}\right) \ge y \ge \log\left(K_{d_{MIN}}\right)$	$\log\left(m_{0d_{MAX}}\sqrt{\frac{e}{6}}\right) + x \ge y \ge \log\left(m_{0d_{MIN}}\sqrt{\frac{e}{6}}\right) + x$

Rette a D_{θ} ed S/E costante (per individuare **possibili punti di lavoro**):

$$y = \log\left(\frac{D_0}{6}\right) + 3x$$

$$y = \log\left[\frac{1}{6}\left(\frac{S}{E}\right)^3\right] - 4x$$

Putnam

Globale (nominale)	$C(t) = K \left(1 - e^{-\frac{t^2}{2t_d^2}} \right)$	$m(t) = K \frac{t}{t_d^2} e^{-\frac{t^2}{2t_d^2}}$	Equazione del Software
$t_d = t_0$: punto di max per $m(t)$	$m_0 = m(t_d) = \frac{K}{t_d \sqrt{e}}$	$D = \frac{K}{t_d^2} \qquad D_0 = \frac{K}{t_d^3}$	$S = E \cdot K^{\frac{1}{3}} \cdot t_d^{\frac{4}{3}}$

Sola fase di sviluppo	$C_{d}(t) = K_{d} \left(1 - e^{-\frac{t^{2}}{2t_{0d}^{2}}} \right)$	$m_d(t) = K_d \frac{t}{t_{\text{od}}^2} e^{-\frac{t^2}{2t_{\text{od}}^2}}$
t_{0d} : punto di max per $m_d(t)$	$m_{\mathrm{0d}} = m(t_{\mathrm{0d}}) = \frac{K_d}{t_{\mathrm{0d}}\sqrt{e}}$	$D = \frac{K}{t_d^2} = \frac{6K_d}{t_d^2} = \frac{K_d}{t_{0d}^2}$

Correlazioni	$C_d(t_d) = 0.95 K_d$	$K=6K_d$	$t_d = t_{0d} \sqrt{6}$

Progetto reale	t ² _\	$t - \frac{t^2}{2t^2}$
t_{0p} : punto di max per $m_p(t)$	$C_p(t) = K_p \left(1 - e^{-\frac{1}{2t_{0p}^2}} \right)$	$m_p(t) = K_p \frac{t}{t_{0p}^2} e^{-2t_{0p}}$

Per il progetto reale valgono i seguenti valori:

Dimensione [NCSS]	K_p [person·year]	$t_{\theta p}$ [year]	$m_{\theta p}$ [person]
S≤18000	K_d	t_{0d}	m_{0d}
18000 < S < 70000	$\frac{K}{\alpha^2}$	$\frac{t_d}{\alpha}$	$\frac{m_0}{\alpha}$
S≥70000	K	t_d	m_0

Dove $\alpha = 1 + 6.23 \cdot e^{-0.079 S_k}$ e S_k è S espresso in migliaia. (Ad es. S = 70000 NCSS, $S_k = 70$)

CoCoMo

Tipo	Organic	Semi-detached	Embedded
Intermediate	$K_n = 3.2 \cdot S_k^{1.05}$	$K_n = 3.0 \cdot S_k^{1.12}$	$K_n = 2.8 \cdot S_k^{1.20}$
Basic	$K_m = 2.4 \cdot S_k^{1.05}$	$K_m = 3.0 \cdot S_k^{1.12}$	$K_m = 3.6 \cdot S_k^{1.20}$

Nel caso *basic* si calcoli K_m secondo la tabella precedente. Nel caso *intermediate* con quella si calcoli K_n , e da esso K_m con la formula $K_m = K_n \cdot c$ dove c è il prodotto di tutti i cost driver c_i . Noto K_m si calcoli t_d secondo questa tabella, valida per entrambe le varianti *intermediate* e *basic*.

	Organic	Semi-detached	Embedded
t_d [month]	$t_d = 2.5 \cdot K_m^{0.38}$	$t_d = 2.5 \cdot K_m^{0.35}$	$t_d = 2.5 \cdot K_m^{0.32}$

Confronto Putnam - CoCoMo

Tipo CoCoMo	Organic	Semi-detached	Embedded
\boldsymbol{D}_{θ} [person / year ²]	≈ 27	≈ 15	≈ 8

Dopo aver opportunamente **convertito le unità di misura**, si confrontino $C_d(t_d)$ e t_d ottenuti dal metodo di Putnam rispettivamente con K_m e t_d ricavati con il metodo CoCoMo.

Significato dei simboli usati e relative unità di misura

Putnam:

I pedici *d* e *p* si riferiscono rispettivamente alle curve del solo sviluppo e dell'intero progetto. Le grandezze senza pedice sono valori nominali con significato concreto soltanto in alcuni casi.

Simbolo	Significato	Unità di misura
$C(t), C_d(t), C_p(t)$	Costo progressivo del progetto	person·year
$m(t), m_d(t), m_p(t)$	Manodopera impiegata al tempo t	person
$t_d=t_0,\ t_{0d},\ t_{0p}$	Tempo a cui si ha il picco di manodopera	year
K , K_d , K_p	Costo globale (valore del corrispondente $C(t)$ per $t\rightarrow \infty$)	person·year
m_0 , m_{0d} , m_{0p}	Picco di manodopera	person
D	Difficulty (velocità iniziale di crescita di $m(t)$)	person / year
D_{θ}	Accelerazione di $m(t)$. Caratterizza la natura del progetto.	person/year ²
$C_d(t_d)$	Costo complessivo del solo sviluppo	person·year
$S \\ (S_{eq}, S_i, S_p, S_n, S_c, S_d)$	Dimensione del progetto (equivalente, iniziale, da modificare, nuova, cambiata, tolta)	NCSS
E	Fattore ambientale	assurda!

CoCoMo:

Simbolo	Significato	Unità di misura
S_k	Dimensione del progetto (migliaia di istruzioni)	kNCSS
K_n	Costo nominale del progetto	person·month
K_m	Costo reale del progetto	person·month
t_d	Tempo di rilascio (delivery time)	month