

11. Install and configure NetApp Trident storage provisioner

NetApp Solutions

Dorian Henderson, Kevin Hoke March 01, 2021

Table of Contents

44 I4 - II I E' N - 4 A	Talabak akana na mandalah an	
Install and configure NetApp	i rident storage provisioner.	

11. Install and configure NetApp Trident storage provisioner

Trident is a storage orchestrator for containers. With Trident, microservices and containerized applications can take advantage of enterprise-class storage services provided by the full NetApp portfolio of storage systems for persistent storage mounts. Depending on an application's requirements, Trident dynamically provisions storage for ONTAP-based products such as NetApp AFF and FAS systems and Element storage systems like NetApp SolidFire and NetApp HCI.

To install Trident on the deployed user cluster and provision a persistent volume, complete the following steps:

1. Download the installation archive to the admin workstation and extract the contents. The current version of Trident is 21.01, which can be downloaded here.

```
ubuntu@gke-admin-ws-200915-151421:~$ wget
https://github.com/NetApp/trident/releases/download/v21.01.0/trident-
installer-21.01.0.tar.gz
--2021-02-17 12:40:42--
https://github.com/NetApp/trident/releases/download/v21.01.0/trident-
installer-21.01.0.tar.gz
Resolving github.com (github.com)... 140.82.121.4
Connecting to github.com (github.com) | 140.82.121.4 | :443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://github-
releases.githubusercontent.com/77179634/0a63b600-6273-11eb-98df-
3d542851f6ff?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Credential=AKIAIWNJYAX4CSVEH53A%2F20210217%2Fus-east-
1%2Fs3%2Faws4 request&X-Amz-Date=20210217T173945Z&X-Amz-Expires=300&X-
Amz-
Signature=58f26bcac7eeee64673a84d46696490acec357b97a651af42653f973b778ee
88&X-Amz-
SignedHeaders=host&actor id=0&key id=0&repo id=77179634&response-
content-disposition=attachment%3B%20filename%3Dtrident-installer-
21.01.0.tar.gz&response-content-type=application%2Foctet-stream
[following]
--2021-02-17 12:40:43-- https://github-
releases.githubusercontent.com/77179634/0a63b600-6273-11eb-98df-
3d542851f6ff?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Credential=AKIAIWNJYAX4CSVEH53A%2F20210217%2Fus-east-
1%2Fs3%2Faws4 request&X-Amz-Date=20210217T173945Z&X-Amz-Expires=300&X-
Signature=58f26bcac7eeee64673a84d46696490acec357b97a651af42653f973b778ee
88&X-Amz-
SignedHeaders=host&actor id=0&key id=0&repo id=77179634&response-
content-disposition=attachment%3B%20filename%3Dtrident-installer-
21.01.0.tar.gz&response-content-type=application%2Foctet-stream
```

2. Extract the Trident install from the downloaded bundle.

```
ubuntu@gke-admin-ws-200915-151421:~$ tar -xf trident-installer-21.01.0.tar.gz
ubuntu@gke-admin-ws-200915-151421:~$ cd trident-installer
```

3. First set the location of the user cluster's kubeconfig file as an environment variable so that you don't have to reference it, because Trident has no option to pass this file.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ export
KUBECONFIG=~/anthos-cluster01-kubeconfig
```

4. The trident-installer directory contains manifests for defining all the required resources. Using the appropriate manifests, create the TridentOrchestrator custom resource definition.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl create -f deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml customresourcedefinition.apiextensions.k8s.io/tridentorchestrators.trident.netapp.io created
```

5. If one does not exist, create a Trident namespace in your cluster using the provided manifest.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl apply -f deploy/namespace.yaml namespace/trident created
```

6. Create the resources required for the Trident operator deployment, such as a ServiceAccount for the operator, a ClusterRole and ClusterRoleBinding to the ServiceAccount, a dedicated PodSecurityPolicy, or the operator itself.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl create -f deploy/bundle.yaml serviceaccount/trident-operator created clusterrole.rbac.authorization.k8s.io/trident-operator created clusterrolebinding.rbac.authorization.k8s.io/trident-operator created deployment.apps/trident-operator created podsecuritypolicy.policy/tridentoperatorpods created
```

7. You can check the status of the operator after it's deployed with the following commands:

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl get deployment -n trident

NAME READY UP-TO-DATE AVAILABLE AGE trident-operator 1/1 1 1 54s

ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl get pods -n trident

NAME READY STATUS RESTARTS AGE trident-operator-5c8bbf6754-h957z 1/1 Running 0 68s
```

8. With the operator deployed, we can now use it to install Trident. This requires creating a TridentOrchestrator.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl create -f
deploy/crds/tridentorchestrator cr.yaml
tridentorchestrator.trident.netapp.io/trident created
ubuntu@qke-admin-ws-200915-151421:~/trident-installer$ kubectl describe
torc trident
Name:
       trident
Namespace:
Labels: <none>
Annotations: <none>
API Version: trident.netapp.io/v1
Kind: TridentOrchestrator
Metadata:
  Creation Timestamp: 2021-02-17T18:25:43Z
  Generation:
 Managed Fields:
   API Version: trident.netapp.io/v1
   Fields Type: FieldsV1
    fieldsV1:
```

```
f:spec:
        . :
        f:debug:
        f:namespace:
   Manager: kubectl
   Operation: Update
   Time:
                2021-02-17T18:25:43Z
   API Version: trident.netapp.io/v1
   Fields Type: FieldsV1
   fieldsV1:
     f:status:
        . :
        f:currentInstallationParams:
         f:IPv6:
         f:autosupportHostname:
         f:autosupportImage:
         f:autosupportProxy:
         f:autosupportSerialNumber:
         f:debug:
         f:enableNodePrep:
         f:imagePullSecrets:
         f:imageRegistry:
         f:k8sTimeout:
         f:kubeletDir:
         f:logFormat:
         f:silenceAutosupport:
         f:tridentImage:
       f:message:
       f:namespace:
       f:status:
       f:version:
   Manager:
                   trident-operator
   Operation: Update
   Time:
                   2021-02-17T18:25:43Z
 Resource Version: 14836643
 Self Link:
/apis/trident.netapp.io/v1/tridentorchestrators/trident
 UID:
                    0e5f2c3b-6ca2-4b85-8453-0382e1426160
Spec:
 Debug: true
 Namespace: trident
Status:
 Current Installation Params:
   IPv6:
   Autosupport Hostname:
```

```
Autosupport Image:
   Autosupport Proxy:
   Autosupport Serial Number:
   Debug:
   Enable Node Prep:
   Image Pull Secrets: <nil>
   Image Registry:
   k8sTimeout:
   Kubelet Dir:
   Log Format:
   Silence Autosupport:
   Trident Image:
 Message:
                           Installing Trident
 Namespace:
                           trident
 Status:
                           Installing
 Version:
Events:
 Type Reason Age From
                                                  Message
 ----
                  ----
                                                  _____
 Normal Installing 23s trident-operator.netapp.io Installing
Trident
 Normal Installed 15s trident-operator.netapp.io Trident
installed
```

9. You can verify that Trident is successfully installed by checking the pods that are running in the namespace or by using the tridentctl binary to check the installed version.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl get pod
-n trident
NAME
                           READY STATUS RESTARTS AGE
                           2/2 Running 0
2/2 Running 0
trident-csi-2cp7x
                                                 4m16s
trident-csi-2xr5h
                                                4m16s
                          2/2
trident-csi-bnwvh
                          2/2
                                Running 0
                                                4m16s
trident-csi-d6cfc6bb-lxm2p 6/6 Running 0
                                                4m16s
trident-operator-5c8bbf6754-h957z 1/1 Running 0
                                                8m55s
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ ./tridentctl -n
trident version
+----+
| SERVER VERSION | CLIENT VERSION |
+----+
| 21.01.1 | 21.01.1 |
+----+
```

10. The next step in enabling Trident integration with the NetApp HCI solution and Anthos is to create a

backend that enables communication with the storage system. NetApp has been validated for several different protocols through the Anthos-ready partner storage validation program. This allows NetApp Trident to provide support in Anthos environments for NFS through our ONTAP platforms and iSCSI from both ONTAP and Element storage utilized in NetApp HCI.

A NetApp HCI platform deploys with NetApp Element storage by default. In this guide we configure a backend for this system specifically. In addition to this, a customer can choose to connect to a remote ONTAP storage system or deploy an ONTAP Select software-defined storage system as a virtual appliance in VMware vSphere to provide additional NFS and iSCSI services. The configuration of each of these additional storage backends is beyond the scope of this guide.

11. There are sample backend files available in the downloaded installation archive in the sample-input folder. Copy the backend-solidfire.json to your working directory and edit it to provide information detailing the storage system environment. For Element-based iSCSI connections, copy and edit the backend-solidfire.json file.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ cp sample-input/backend-solidfire.json ./
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ $ vi backend-solidfire.json
```

- a. Edit the user, password, and MVIP value on the EndPoint line.
- b. Edit the SVIP value.

12. With this back-end file in place, run the following command to create your first backend.

13. With the backend created, you must next create a storage class. Just as with the backend, there is a sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy it to the working directory and make necessary edits to reflect the backend created.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ cp sample-input/storage-class-csi.yaml.templ ./storage-class-basic.yaml ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ vi storage-class-basic.yaml
```

14. The only edit that must be made to this file is to define the backendType value to the name of the storage driver from the newly created backend. Also note the name-field value, which must be referenced in a later step.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: basic-csi
provisioner: csi.trident.netapp.io
parameters:
   backendType: "solidfire-san"
```

15. Run the kubect1 command to create the storage class.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl create -f sample-input/storage-class-basic.yaml
```

16. With the storage class created, you must then create the first persistent volume claim (PVC). There is a sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well. The only edit that must be made to this file is ensuring that the storageClassName field matches the one just created.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ vi sample-
input/pvc-basic.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   name: basic
spec:
   accessModes:
    - ReadWriteOnce
resources:
   requests:
    storage: 1Gi
storageClassName: basic-csi
```

17. Create the PVC by issuing the kubect1 command. Creation can take some time depending on the size of the backing volume being created, so you can watch the process as it completes.

```
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl create -f
sample-input/pvc-basic.yaml
ubuntu@gke-admin-ws-200915-151421:~/trident-installer$ kubectl get pvc
--watch
NAME
                                                             CAPACITY
         STATUS
                   VOLUME
ACCESS MODES STORAGECLASS
                          AGE
basic
        Pending
basic
              1s
                 pvc-2azg0d2c-b13e-12e6-8d5f-5342040d22bf
basic
         Pending
basic
              5s
basic
                   pvc-2azg0d2c-b13e-12e6-8d5f-5342040d22bf
                                                             1Gi
         Bound
RWO
             basic
                            7s
```

Next: Reference videos.

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.