

INFORMÁTICA GENERAL

Practica N° 4

Ciclos

Ej. 1: Desarrollar un programa en el que se ingrese por teclado números enteros hasta que se hayan ingresado 5 números pares e informar por pantalla si alguno de ellos es también múltiplo de cuatro. Ejemplo:

```
Ingrese numero entero: 5
Ingrese numero entero: 13
Ingrese numero entero: 6
Numero Par. Total de numeros pares ingresados: 1
Ingrese numero entero: 9
Ingrese numero entero: 12
Numero Par. Tambien es multiplo de 4. Total de numeros pares ingresados: 2
Ingrese numero entero: 22
Numero Par. Total de numeros pares ingresados: 3
Ingrese numero entero: 14
Numero Par. Total de numeros pares ingresados: 4
Ingrese numero entero: 17
Ingrese numero entero: 20
Numero Par. Tambien es multiplo de 4. Total de numeros pares ingresados: 5
FIN
```

Ej. 2: Desarrollar un programa en el que se ingresen por teclado una cantidad indefinida de números enteros positivos hasta que se ingrese 0. A continuación el programa debe indicar por pantalla cuál fue el mayor y cuál el menor. Ejemplo:

Ejemplo de Salida:

```
Ingrese numeros enteros positivos (finalice con 0): 5

34

22

21

21

3

76

56

41

0

El mayor es 76 y el menor es 3.
```


INFORMÁTICA GENERAL

Practica N° 4

Ciclos

Ej. 3: Desarrollar una función **esPrimo** que reciba como parámetro un valor numérico y determine si dicho número es primo o no, retornando verdadero (True) o falso (False) respectivamente. Luego utilizar la función en un programa que solicite al usuario el ingreso de una cantidad **cant** (número natural) y que muestre por pantalla dos listados: primero un listado de los números primos comprendidos entre 1 y **cant** y luego otro listado con los primeros **cant** números primos. Ambos listados se deben imprimir por pantalla a 10 columnas, alineando como se muestra en el ejemplo. Ejemplo

Ingrese cantidad (numero natural): 57										
Primos entre 1 y 57:										
	2	3	5	7	11	13	17	19	23	29
	31	37	41	43	47	53				
Primeros 57 primos:										
	2	3	5	7	11	13	17	19	23	29
	31	37	41	43	47	53	59	61	67	71
	73	79	83	89	97	101	103	107	109	113
	127	131	137	139	149	151	157	163	167	173
	179	181	191	193	197	199	211	223	227	229
	233	239	241	251	257	263	269			

Ej. 4: Desarrollar una función booleana que reciba como parámetro un número entero positivo y retorne verdadero (True) o falso (False) según sea el número perfecto o no. Luego utilizarla en un programa que encuentre y muestre por pantalla los primeros cuatro números perfectos.

<u>Definición</u>: Un número perfecto es un entero positivo, que es igual a la suma de todos los enteros positivos (excluido él mismo) que son divisores del número. Por ejemplo, el primer número perfecto es 6, ya que los divisores de 6 son 1, 2, 3 y 1 + 2 + 3 = 6.

Ej. 5: Desarrollar una función booleana que reciba como parámetro un número entero de cuatro cifras y determine si el número cumple la condición de que la suma de las unidades y las centenas es igual a la suma de las decenas y las unidades de mil. Luego realizar un programa que encuentre e imprima un listado con todos los números de 4 cifras que cumplan la condición anteriormente citada. Por ejemplo, el número 7821 cumple esta condición ya que 1 + 8 = 2 + 7.

INFORMÁTICA GENERAL

Practica N° 4

Ciclos

Ej. 6: Desarrollar la función aBinario que recibe como parámetro un número decimal (base 10, no mayor a 1000) y retorna el número expresado en binario (base 2). Desarrollar un programa que ingrese por teclado un entero en base 10, invoque a la función aBinario y muestre por pantalla el resultado retornado por la función. Ejemplo:

Ingrese un numero decimal: 234

Numero en binario: 11101010

Ej. 7: Desarrollar un programa que permita ingresar las notas de una cantidad indefinida de alumnos. Considerar notas enteras en el rango de 1 a 10 e ignorar las notas no válidas (fuera el rango) ingresadas. La carga finaliza cuando la nota ingresada es 0. A continuación el programa deberá mostrar la cantidad de alumnos aplazados (nota menor a 4), la cantidad de alumnos aprobados (nota entre 4 y 7 inclusive) y la cantidad de alumnos que promocionan la materia (nota superior a 7). En cada caso, se mostrará el porcentaje del total de notas válidas cargadas que cada caso representa y el promedio general de todas las notas. Ejemplo:

Ingrese nota: 5
Ingrese nota: 4
Ingrese nota: 4
Ingrese nota: 11
Ingrese nota: 2
Ingrese nota: 8
Ingrese nota: 8
Ingrese nota: 2
Ingrese nota: 7
Ingrese nota: 9
Ingrese nota: 9
Ingrese nota: 0

Cantidad de aplazos: 2 (22.22%)
Cantidad de aprobados: 4 (44.44%)
Cantidad de promocionados: 3 (33.33%)
Promedio general: 5.44

INFORMÁTICA GENERAL

Practica N° 4

Ciclos

Ej. 8: La operación factorial de un número entero no negativo n (expresado como n!) es el producto que resulta de multiplicar n por todos los enteros inferiores a él hasta el uno (0! = 1 por definición). Ejemplo:

```
5! = 5 * 4 * 3 * 2 * 1 = 120

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3628800

n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1 = ...........
```

Desarrollar un programa que solicite el ingreso de un número entero, verifique si se trata de un número mayor o igual a 0 y calcule su factorial. Para el cálculo del factorial se debe desarrollar una función que reciba como parámetro el número, realice la operatoria y retorne el resultado. En caso de que el usuario ingrese un número negativo, imprimir una advertencia. Ejemplos:

```
Ingrese un número entero: 5
El factorial de 5 es: 120

Ingrese un número entero: -10
No se puede calcular el factorial de un número negativo.
```

Ej. 9: Desarrollar una función booleana que reciba como parámetro un número entero positivo (de hasta nueve cifras) y retorne verdadero (True) si es capicúa o falso (False) en caso contrario. Un número capicúa es aquel que leído de izquierda a derecha es igual que leído de derecha a izquierda. Por ejemplo 82428 es capicúa.

Desarrollar un programa que solicite un número por teclado e informe si éste es capicúa o no según el resultado retornado por la función.

<u>Ayuda</u>: Para programar la función considere invertir el número y luego compararlo con el número original, si resultan iguales, entonces es capicúa.