Динамическое программирование

Лекция 3

Идея Динамического Программирования (ДП)

Метод ДП (Р. Беллман, В.С. Михалевич, Н.З. Шор) можно трактовать как алгоритмическую версию рассуждений по индукции.

ДП эффективно применяется для оптимизации процессов, при рассмотрении которых возможно:

- выделить этапы процесса,
- на каждом этапе осуществить управление,
- полагать, что управление, действующее на последующих этапах, не оказывает влияния на величину показателя качества управления полученного на предыдущих этапах.

Задача о рюкзаке

> Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n . Как найти самый дорогой вариант?

Задача с повторениями	Задача без повторений			
$x_i \ge 0$, <i>целые</i> количество взятых предметов типа i	$x_i = egin{cases} 1 , ext{ если берем предмет типа } i \ 0 , ext{ если не берем предмет типа } i \end{cases}$			
$\sum_{i=1}^{n} c_i x_i \to max$				
$\sum\nolimits_{i=1}^{n}p_{i}x_{i}\leq W$				

Задача о рюкзаке без повторений

- ightharpoonup Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n . Каждый товар есть в единственном экземпляре. Как найти самый дорогой вариант?
- $S_k(w)$ максимальная стоимость унесённого, если разрешается уносить лишь товары 1, ..., k и общий вес должен быть не больше w, если $0 \le k \le n, w \le W$.
- ightharpoonup Требуется найти $S_n(W)$ и набор переменных на которых достигается это значение.

Задача о рюкзаке без повторений

Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n . Каждый товар есть в единственном экземпляре. Как найти самый дорогой вариант?

$$S_1(w) = \begin{cases} 0, \text{ если } p_1 > w, \\ c_1, \text{ если } p1 \le w. \end{cases}$$

$$S_k(w) = \max\{S_{k-1}(w - p_k) + c_k; S_{k-1}(w)\}, 2 \le k \le n, w \le W$$

На каждом шаге есть выбор:

- либо берем предмет типа k, но тогда для предыдущих предметов размер рюкзака должен быть меньше,
- либо не берем.

Для решения задачи необходимо заполнить таблицу размера $n \times W$, каждая ячейка таблицы заполняется за время O(1).

Задача о рюкзаке без повторений (пример)

Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса $p_1, ..., p_n$ и стоимости $c_1, ..., c_n$.

Каждый товар есть в единственном экземпляре.

Как найти самый дорогой вариант?

 $S_1(w) = \begin{cases} 0, \text{ если } p_1 > w, \\ c_1, \text{ если } p1 \le w. \end{cases}$

 $S_k(w) = \max\{S_{k-1}(w - p_k) + c_k; S_{k-1}(w)\}, 2 \le k \le n, w \le W$

Товар	Bec p_i	Стоимость $c_{_i}$
1	6	30
2	3	14
3	4	16
4	2	9

$S_k(w)$	1	2	3	4	5	6	7	8	9	10	← w
1	0	0	0	0	0	30	30	30	30	30	
2	0	0	{ 14 ,0}	{ <mark>14,</mark> 0}	{ <mark>14,</mark> 0}	{14, <mark>30</mark> }	{14, <mark>30</mark> }	{14, <mark>30</mark> }	{ <mark>44</mark> ,30}	{ 44 ,30}	
3	0	0	{0, <mark>14</mark> }	{ <mark>16</mark> ,14}	{ <mark>16</mark> ,14}	{30, <mark>30</mark> }	{30, <mark>30</mark> }	{30, <mark>30</mark> }	{30,44}	{ <mark>46</mark> ,44}	
4										{39, <mark>46</mark> }	$S_n(W)$
†											$S_n(V)$

- ightharpoonup Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n . Каждый товар есть в неограниченном количестве. Как найти самый дорогой вариант?
- $S_k(w)$ максимальная стоимость унесённого, если разрешается уносить лишь товары 1, ..., k и общий вес должен быть не больше w, если $0 \le k \le n, w \le W$.
- ightharpoonup Требуется найти $S_n(W)$ и набор переменных на которых достигается это значение.

Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n . Каждый товар есть в неограниченном количестве. Как найти самый дорогой вариант?

$$S_k(w) = \max_{0 \le x \le \left| \frac{w}{p_k} \right|} \{ S_{k-1}(w - p_k x) + c_k x \}, 2 \le k \le n, w \le W.$$

На каждом шаге есть выбор:

• Пусть x количество предметов типа k, но тогда для предыдущих предметов размер рюкзака должен быть меньше на величину $p_k x$

Для решения задачи необходимо снова заполнить таблицу размера $n \times W$, но для вычисления значения в каждой клеточке потребуется порядка O(W) операций, значит трудоемкость данного метода составит $O(nW^2)$.

Может быть можно проще?

Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса p_1, \dots, p_n и стоимости c_1, \dots, c_n .

Каждый товар есть в неограниченном количестве.

Как найти самый дорогой вариант?

 $S_k(w)$ — максимальная стоимость унесённого, если разрешается уносить лишь товары 1, ..., k и общий вес должен быть не больше w, если $0 \le k \le n, w \le W$.

$$S_k(w) = \max_{0 \le x \le \left| \frac{w}{p_k} \right|} \{ S_{k-1}(w - p_k x) + c_k x \}, 2 \le k \le n, w \le W.$$

Рассмотрим другое разбиение на подзадачи:

Пусть S(w) — максимальная стоимость унесённого, если общий вес должен быть не больше $w \le W$.

>
$$S(w) = \max_{k: p_k \le w} \{S(w - p_k) + c_k\}, w \le W.$$

Для решения задачи необходимо снова заполнить таблицу размера $1 \times W$, но для вычисления значения в каждой клеточке потребуется порядка O(n) операций, значит трудоемкость данного метода составит O(nW).

Забравшийся в магазин вор нашёл больше добычи, чем он может унести с собой. Его рюкзак выдерживает не больше W килограммов. Ему надо выбрать какие-то из n товаров веса $p_1, ..., p_n$ и стоимости $c_1, ..., c_n$.

Каждый товар есть в неограниченном количестве.

Как найти самый дорогой вариант?

$$S(w) = \max_{k: p_k \le w} \{S(w - p_k) + c_k\}, w \le W.$$

Товар	Bec p_i	Стоимость $c_{_i}$
1	6	30
2	3	14
3	4	16
4	2	9

W	1	2	3	4	5	6	7	8	9	10
S(w)	0	9	14	18	23	30	32	37	44	48

Планируется деятельность предприятия на ближайшие n лет.

Известно, что если в год t, $1 \le t \le n$, вложено x_t ресурса (x_t — целая величина), то предприятие получает доход, задаваемый производственной функцией $f_t(x_t)$. Предполагается, что доход в год t определяется только величиной ресурса x_t , использованного в этом году, и не зависит от того, сколько вложено в другие годы.

Сумма вложений за n лет не должна превысить заданную величину Y.

Требуется таким образом распределить ресурсы чтобы, не выходя за ограничение Y, максимизировать суммарный доход от деятельности предприятия за n лет.

$$f_1(x_1)+\cdots+f_n(x_n) o \max(x_n)$$
 $x_1+\cdots+x_n\leq Y,$ $x_t\geq 0$, целые, $1\leq t\leq n.$

Планируется деятельность предприятия на ближайшие n лет. Известно, что если в год t, $1 \le t \le n$, вложено x_t ресурса, то предприятие получает доход $f_t(x_t)$. Сумма вложений за n лет не должна превысить заданную величину Y.

Требуется максимизировать суммарный доход от деятельности предприятия за n лет.

Обозначим $S_k(y)$, $1 \le k \le n$, $0 \le y \le Y$ максимальный доход при планировании деятельности на k лет и распределении только y ресурсов.

Требуется найти $S_n(Y)$,

Теорема 1

Пусть $f_1, ..., f_n$ — монотонно неубывающие функции.

Тогда справедливы следующие рекуррентные соотношения:

$$S_1(y) = f_1(y), 0 \le y \le Y;$$

$$S_k(y) = \max\{S_{k-1} (y - x) + f_k(x) | 0 \le x \le y\},$$

$$2 \le k \le n, 0 \le y \le Y.$$

Доказательство. Первое равенство очевидно.

По определению $S_k(y) \ge \max\{S_{k-1}(y-x) + f_k(x) | 0 \le x \le y\}$,

Пусть теперь (x_1^*, \dots, x_k^*) — такой вектор, что $x_1^* + \dots + x_k^* \le y$ и $S_k(y) = f_1(x_1^*) + \dots + f_k(x_k^*)$.

Поскольку $S_{k-1}(y-x_k^*) \ge f_1(x_1^*) + \ldots + f_{k-1}(x_{k-1}^*)$, имеем

$$S_k(y) = f_1(x_1^*) + \dots + f_k(x_k^*) \le S_{k-1}(y - x_k^*) + f_k(x_k^*).$$

Алгоритм ДП вычисляет множество $S_k = \{S_{k(y)} | 0 \le y \le Y\}, k = 1, ..., n$ с помощью соотношений из теоремы, где на каждом шаге оптимизируется ровно одна переменная.

- ▶ Процесс вычисления $S_1, ..., S_n$ называется *прямым ходом* алгоритма.
- ► Число операций $\approx O(Y^2n)$
- ► Память $\approx O(Yn)$.

	1	2	•••	Υ
$S_1(y)$				
$S_2(y)$				
•••				
$S_n(y)$				$S_n(Y)$

- ▶ При *обратном ходе* алгоритма вычисляются значения (x_n^*, \dots, x_1^*) , с учетом того, что уже известны $S_{k(y)}$. Например, x_n^* определяется из уравнения $S_n(Y) = f_n(x_n^*) + S_{n-1}(Y x_n^*)$ и так далее.
- ▶ Число операций $\approx O(Yn)$. Память $\approx O(Yn)$.

Динамическое программирование

Лекция 4

Прямая задача распределения ресурсов

Планируется деятельность предприятия на ближайшие n лет.

Известно, что если в год t, $1 \le t \le n$, используется x_t ресурса $(x_t - \text{целая величина}, 0 \le x_t \le a_t)$, то предприятие производит продукцию, количество задается производственной функцией $f_t(x_t)$, и затраты предприятия в этот год составляют $h_t(x_t)$.

Сумма вложений за n лет не должна превысить заданный бюджет Y.

Требуется таким образом распределить ресурсы чтобы, максимизировать количество произведенной продукции за n лет, не выходя за ограничение Y по затратам.

$$f_1(x_1) + \dots + f_n(x_n) \to max$$
 $h_1(x_1) + \dots + h_n(x_n) \le Y$, $\Pi \mathbf{3PP}$
 $0 \le x_t \le a_t$, целые, $1 \le t \le n$.

$$S_1(y) = f_1(x^*)$$
, где $x^* = \max\{x \le a_1 | h_1(x) \le y\}$, $0 \le y \le Y$ $S_k(y) = \max_{\{x \le a_k | h_k(x) \le y\}} \{f_k(x) + S_{k-1}(y - h_k(x))\}$, $2 \le k \le n$, $0 \le y \le Y$.

Обратная задача распределения ресурсов

Планируется деятельность предприятия на ближайшие n лет.

Известно, что если в год t, $1 \le t \le n$, используется x_t ресурса $(x_t -$ целая величина, $0 \le x_t \le a_t)$, то предприятие $npouseo\partial um\ f_t(x_t)$ продукции, но затраты предприятия в этот год составляют $h_t(x_t)$.

Требуется таким образом распределить ресурсы чтобы, минимизировать затраты предприятия, но произвести продукции более D.

$$h_1(x_1) + \dots + h_n(x_n) \to min,$$
 $f_1(x_1) + \dots + f_n(x_n) \ge D,$ $0 \le x_t \le a_t$, целые, $1 \le t \le n.$

Обратная задача распределения ресурсов

Планируется деятельность предприятия на ближайшие n лет.

Известно, что если в год t, $1 \le t \le n$, используется x_t ресурса $(x_t -$ целая величина, $0 \le x_t \le a_t)$, то предприятие *производит* $f_t(x_t)$ продукции, но затраты предприятия в этот год составляют $h_t(x_t)$.

Требуется таким образом распределить ресурсы чтобы, минимизировать затраты предприятия, но произвести продукции более D.

 $f_t^{-1}(d) = \min\{0 \le x \le a_t | f_t(x) \ge d\}$ — минимальное количество ресурса x для производства d в год t.

 $S_k(y)$ — минимальные затраты, которые необходимо понести, для того чтобы за первые k лет произвести d.

Требуется найти $S_n(Y)$.

Рекуррентные соотношения:

$$S_1(d) = \begin{cases} \infty, & \text{если } f_1(a_1) < d, \\ h_1\left(f_1^{-1}(d)\right), & \text{если } f_1(a_1) \geq d, \end{cases} 0 \leq d \leq D,$$

$$S_k(d) = \min_{\{x \leq a_k \mid x \leq f_1^{-1}(d)\}} \{h_k(x) + S_{k-1}\big(d - f_k(x)\big)\}, 2 \leq k \leq n, 0 \leq d \leq D.$$

Лекция 4. Динамическое программирование

Теорема о связи прямой и обратной задач

Теорема 2

Пусть задано Y. Предположим, что D — наибольшее число, для которого оптимальное значение целевой функции обратной задачи ОЗРР не превосходит Y. Тогда оптимальное значение целевой функции прямой задачи ПЗРР равно D.

Доказательство.

Пусть D удовлетворяет условию теоремы и $(x_1^*, ..., x_n^*)$ — соответствующее решение задачи ОЗРР.

Значит
$$f_1(x_1^*) + \dots + f_n(x_n^*) \ge D$$
 и $h(x_1^*) + \dots + h_n(x_n^*) \le Y$.

Рассмотрим D' — оптимальное решение прямой задачи ПЗРР и (x_1', \dots, x_n') — соответствующее решение задачи ПЗРР. Заметим, что $h(x_1') + \dots + h_n(x_n') \leq Y$.

Если D' > D, то это противоречит максимальности D в условии теоремы, значит D' = D.

$$f_1(x_1) + \dots + f_n(x_n) \to \max$$
 $h_1(x_1) + \dots + h_n(x_n) \le Y$,
 $0 \le x_t \le a_t$, целые, $1 \le t \le n$.

$$h_1(x_1) + \dots + h_n(x_n) \to \min$$
 $f_1(x_1) + \dots + f_n(x_n) \ge D$, $OSPP$ $0 \le x_t \le a_t$, целые, $1 \le t \le n$.

Прямая и обратная задача о рюкзаке с повторениями

Прямая задача о рюкзаке	Обратная задача о рюкзаке
Найти вещи максимальной стоимости, суммарного веса не больше W.	Минимизировать суммарный вес вещей, суммарной стоимости больше Y
$S_k(w)$ — максимальная стоимость унесённого, если разрешается уносить лишь товары $1,, k$ и общий вес должен быть не больше w , если $0 \le k \le n, w \le W$	$S_k(y)$ — минимальный вес рюкзака, если разрешается уносить лишь товары $1, \dots, k$ и суммарная ценность будет не меньше y .
$S_1(w) = \left \frac{w}{p_1} \right c_1$ $S_k(w) = \max_{0 \le x \le \left \frac{w}{p_k} \right } \{S_{k-1}(w - p_k x) + c_k x\}.$	$S_1(y) = \left[\frac{y}{c_1}\right] x_1,$ $S_k(y) = \max_{0 \le x \le \left[\frac{y}{c_k}\right]} \{S_{k-1}(y - c_k x) + b_k x\}.$

Задача о ближайшем соседе

Задан целочисленный сегмент $Z = [\alpha, \beta]$ и неотрицательная функция f(x, y), заданная на $(x, y) \in Z \times Z$ при $x \le y$.

Для любого разбиения сегмента Z на n частей точками x_k , $1 \le k \le n$, $\alpha = x_0 \le x_1 \le \cdots \le x_n = \beta$ определим целевую функцию:

Лекция 4. Динамическое программирование

Задача о ближайшем соседе

► Например, на дороге Новосибирск-Барнаул необходимо расставить станции дорожно-ремонтного обслуживания. Для каждого отрезка дороги задана стоимость обслуживания, зависящая только от границ участка. Необходимо определить границы каждого участка, чтобы вся дорога была обслужена, и суммарная стоимость обслуживания была минимальна.

Лекция 4. Динамическое программирование

3БС с фиксированным числом интервалов

 $3\mathsf{БC}_n$ с фиксированным числом интервалов можно записать как

$$\sum_{k=1}^{n} f(x_{k-1}, x_k) \to \min_{(x_k)}$$

$$\alpha = x_0 \le x_1 \le \dots \le x_n = \beta$$

Пусть $S_k(y)$ —минимальные затраты при разбиении дороги (α, y) на k участков.

Тогда рекуррентные соотношения:

$$S_1(y) = f(\alpha, y), y = \alpha, ..., \beta$$

$$S_k(y) = \min_{\alpha \le x \le y} \{ S_{k-1}(x) + f(x, y) \}, \quad y = \alpha, ..., \beta, \quad k = 2, ..., n$$

 $T = O(nM^2) \Pi = O(nM)$, где M- длина дороги $[\alpha, \beta]$.

ЗБС с оптимизируемым числом интервалов (ЗБС*)

В этой задаче помимо оптимального разбиения должно быть найдено и оптимальное количество интервалов. Можно решить $3\mathsf{БC}_n$ для разных n. Но можно...

Пусть S(y)—минимальные затраты на обслуживание дороги (α, y) .

Тогда

рекуррентные соотношения:

$$S(\alpha) = 0,$$

$$S(y) = \min_{\alpha \le x < y} \{ S(x) + f(x, y) \}, \quad y = \alpha, ..., \beta$$

$$T = O(M^2), \Pi = O(M).$$