

Analysis und Lineare Algebra

Vorlesung im Wintersemester 2014/2015 Prof. Dr. habil. Christian Heinlein

6. Übungsblatt (10. November 2014)

Aufgabe 10: Potenzgesetze

Beweisen Sie die nachfolgenden Rechenregeln für a > 0 und $x, y \in \mathbb{R}$ unter Verwendung der folgenden Definitionen und Regeln (vgl. Kapitel 2, Definition 4 und Beispiel 8):

 $e^x := E(x)$, $\ln x$ ist die Umkehrfunktion von e^x , $a^x := e^{x \ln a}$, E(0) = 1, E(x) E(-x) = 1

- a) $a^0 = 1$
- b) $a^1 = a$
- c) $a^{-x} = \frac{1}{a^x}$
- d) $(a^x)^y = a^{xy}$

Aufgabe 11: Taylorpolynome

- a) Wie lauten die Ableitungen $f^{(k)}(x)$ der Funktion $f(x) = \cos x$? Wie lauten ihre Werte $f^{(k)}(0)$ an der Stelle 0? Wie lautet die Taylorreihe der Funktion?
- b) Gegeben sei die Funktion $f(x) = \ln(1 + x)$ für x > -1.
 - (i) Zeigen Sie durch vollständige Induktion: $f^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{(1+x)^k}$ für k = 1, 2, ...
 - (ii) Geben Sie für die Funktion f das Taylorpolynom n-ten Grades mit Entwicklungsstelle 0 an!
 - (iii) Geben Sie das zugehörige Restglied $R_n(x, \xi)$ an und zeigen Sie, dass es für $x \in [0, 1]$ gegen 0 geht!
 - (iv) Welche Reihe ergibt sich konkret für x = 1?
- c) Implementieren Sie eine Java-Methode zur Berechnung des Taylorpolynoms $\sum_{k=0}^{n} \frac{f_k}{k!} x^k$ mit $f_k = f^{(k)}(0) = k$ -te Ableitung einer gegebenen Funktion f an der Stelle 0! Als Parameter erhält die Methode ein Array mit den Werten f_k sowie die Stelle x. Achten Sie darauf, unnötige wiederholte Berechnungen zu vermeiden!

Berechnen Sie damit näherungsweise z. B. $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ für x=1 (d. h. die Eulersche Zahl e, die in Java als Konstante Math. E zur Verfügung steht) sowie sin $x=\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2\,k+1)!}$ für $x=\pi$ (Math.PI) und $x=\frac{\pi}{2}$!