

MAE307 Final Project Report, 04 Jan 2023

FEM Analysis For Model Plane Propellers

邹佳驹

Department of Mechanics and Aerospace Engineering Southern University of Science and Technology

04 Jan 2023

- Analysis Background
- Model Setting
- Static Analysis
- Modal Analysis
- Harmonic Response Analysis
- Failure Analysis
- Conclusion

A propeller is a device that relies on the rotation of the propeller blades in the air or water to convert the power of engine rotation into propulsion.

Simulation Goal

- Stress distribution and deformation
- Frequency of the propeller
- Failure and life of the propeller
- The effect of the number of blades

PROPELLER AP-PR-002 | 3D CAD Model Library | GrabCAD

M.S	Nodes	Elements	Max Deformation	Max Stress
(mm)	Nodes	Liements	(mm)	(MPa)
10	5118	2609	0.013874	2.3552
8	5405	2738	0.014101	2.3277
5	8102	4033	0.014955	2.4573
4	10618	5255	0.015074	2.5392
3	16067	8254	0.015092	2.5088
2	36066	20166	0.015102	2.5563
1	195453	124673	0.015103	2.6811
0.5	1378341	948524	0.015093	2.6165

Dlades	Max Deformation	Max Stress	Min Stress
Blades	(mm)	(MPa)	(Mpa)
2	0.015102	2.5563	0.0019905
3	0.015083	2.5582	0.0041978
4	0.015097	2.5680	0.0065274

- The root of the blade is enduring a large stress.
- And the largest deformation occur at the tip of the blade.
- Min stress increases with more blades at same rotational velocity.

	Mode	Frequency [Hz]
1	1.	103.3
2	2.	456.33
3	3.	708.94
4	4.	1531.9
5	5.	1581.3
6	6.	2976.3
7	7.	4025.
8	8.	4819.4

Modal Analysis

Mode 1

Mode 5

Mode 2

Mode 6

Mode 3

Mode 7

Mode 4

Mode 8

	Mode	Frequency [Hz]
1	1.	103.33
2	2.	103.33
3	3.	458.01
4	4.	458.3
5	5.	710.02
6	6.	710.44
7	7.	1532.
8	8.	1532.
9	9.	1581.8
10	10.	1581.9
11	11.	2977.1
12	12.	2977.9
13	13.	4044.
14	14.	4045.2
15	15.	4822.6
16	16.	4824.

Modal Analysis

B: Modal
Total Deformation 2
Type: Total Deformation
Frequency: 458.3 Hz
Unit: mm
2022/12/28/WE 22:02

313.01 Max
278.23
243.45
208.67
173.89
139.11
104.34
65.557
34.779
0 Min

Mode 2

B: Modal ANSYS R19.0 Total Deformation 5 Type: Total Deformation Frequency: 1581.9 Hz Unit: mm 2022/12/28/周三 22:04 506.16 442.89 379.62 316.35 253.08 189.81 126.54 63.27 -

Mode 4

Mode 6

Mode 8

Mode 10

Mode 12

Mode 14

Mode 16

	Mode	Frequency [Hz]
1	1.	103.32
2	2.	103.33
3	3.	103.34
4	4.	458.15
5	5.	458.16
6	6.	458.19
7	7.	709.98
8	8.	710.
9	9.	710.7
10	10.	1531.9
11	11.	1531.9
12	12.	1532.
13	13.	1581.8
14	14.	1581.8
15	15.	1581.8
16	16.	2976.9
17	17.	2977.8
18	18.	2977.8
19	19.	4044.1
20	20.	4045.1
21	21.	4045.1
22	22.	4822.6
23	23.	4822.6
24	24.	4824.8

Modal Analysis

Total Deformation 2
Types Total Deformation
Frequency:\$45.91 bit z
Unit rum
2022/12/28/8≡ 2225

281.23 Max
249.98
219.73
1167.49
1156.24
124.99
93.744
62.496
31.248
0 Min

Mode 3

Mode 6

Mode 9

Mode 12

Mode 15

Mode 18

Mode 21

Mode 24

	Mode	Frequency [Hz]
1	1.	103.32
2	2.	103.33
3	3.	103.33
4	4.	103.34
5	5.	457.94
6	6.	458.15
7	7.	458.33
8	8.	458.33
9	9.	710.02
10	10.	710.05
11	11.	710.11
12	12.	710.78
13	13.	1531.9
14	14.	1531.9
15	15.	1532.
16	16.	1532.1
17	17.	1581.8
18	18.	1581.8
19	19.	1581.9
20	20.	1581.9
21	21.	2976.6
22	22.	2977.7
23	23.	2977.9
24	24.	2977.9
25	25.	4041.7
26	26.	4045.5
27	27.	4045.5
28	28.	4047.2
29	29.	4822.7
30	30.	4822.7
31	31.	4823.1
32	32.	4825.

C: Model
Total Deformation 2
Types Tetal Deformation
Frequency 158-33 Hz
Unit: mm
2217.63 09/08/ET 1457

211.64
246.65
246.45
211.24
176.04
140.03
105.02
70.414
35.07
0 Min

C: Modal
Trail Deformation 3
Types Total Deformation
Frequency 71078 Hz
Unit Irom
2022/7 2790/WEI 167
2023
196.74
163.95
131.16
92.308
9.3579
9.209
0 Min

Mode 4

Mode 8

Mode 12

Mode 16

Mode 20

Mode 24

Mode 28

Mode 32

	Mode	Frequency [Hz]
1	1.	103.3
2	2.	456.33
3	3.	708.94
4	4.	1531.9
5	5.	1581.3
6	6.	2976.3
7	7.	4025.
8	8.	4819.4

- Symmetric structure may have asymmetric modes.
- Single blade vibration mode in one propeller is dependent of the number of blades.

Frequency Spacing	Linear
Range Minimum	0. Hz
Range Maximum	5000. Hz
Solution Intervals	500

3 blades

4 blades

• Frequency response is independent of the number of blades.

24

Loading		
Туре	Fully Reversed	
Scale Factor	1.	
Definition		
☐ Display Time	End Time	
Options		
Analysis Type	Stress Life	
Mean Stress Theory	Goodman	
Stress Component	Equivalent (von-Mises)	
Life Units		
Units Name	cycles	
1 cycle is equal to	1. cycles	

3 blades

4 blades

• The propeller shortest life increases with more blades.

Static Analysis

The root of the blade is enduring a large stress.

And the largest deformation occur at the tip of the blade.

Min stress increases with more blades at same rotational velocity.

Modal Analysis

Symmetric structure may have asymmetric modes.

Single blade vibration mode in one propeller is dependent of the number of blades.

Harmonic Response Analysis

Frequency response is independent of the number of blades.

Failure Analysis

The propeller shortest life increases with more blades.

√ Static Analysis

Reinforce the blades' root under the given rotational velocity conditions.

Hard materials are recommended to use from the middle to the tip of the blade to control deformation.

√ Modal Analysis

Modal analysis cannot be simplified because of symmetric structures.

✓ Harmonic Response Analysis

Frequency response is independent of the number of blades.

√ Failure Analysis

Where aerodynamic performance permits, multiple blades are used to increase service life.

