

MOSFET - Power, Single N-Channel, TOLL 60 V, 0.75 mΩ, 470 A

NVBLS0D7N06C

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Lowers Switching Noise/EMI
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	470	Α
Current R _{0JC} (Note 2)	Steady	T _C = 100°C	1	332	
Power Dissipation	State	T _C = 25°C	P _D	314	W
R _{θJC} (Note 2)		T _C = 100°C	1	157	
Continuous Drain		T _A = 25°C	I _D	54	Α
Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 100°C		38	
Power Dissipation		T _A = 25°C	P _D	4.2	W
R _{θJA} (Notes 1, 2)		T _A = 100°C	1	2.1	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			IS	260	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 40 A)			E _{AS}	800	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.48	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	36	

^{1.} Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
60 V	$0.75~\text{m}\Omega$ @ $10~\text{V}$	470 A	

H-PSOF8L CASE 100CU

ORDERING INFORMATION

Device	Package	Shipping [†]
NVBLS0D7N06C	H-PSOF8L (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

Table 1. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Cond	litions	Min	Тур	Max	Units
OFF CHARACTERISTICS	•			•			•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	I _D = 250 μA, \	V _{GS} = 0 V	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 661 μA, r	ef to 25°C		26.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V	T _J = 25°C			10	μΑ
			T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V ₀	_{SS} = 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D}$	= 661 μΑ	2.0	2.8	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J	I _D = 661 μA, r	ef to 25°C		9.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 80 A		0.56	0.75	mΩ
Forward Transconductance	9FS	V _{DS} = 10 V, I	D = 80 A		310		S
CHARGES & CAPACTIANCES				-			
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V}, V_{DS} = 3$	0 V, f = 10 kHz		13730		pF
Output Capacitance	C _{oss}				6912		pF
Reverse Transfer Capacitance	C _{rss}				92		pF
Total Gate Charge	Q _{G(tot)}	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 80 \text{ A}$			170		nC
Threshold Gate Charge	Q _{G(th)}				39		nC
Gate-to-Source Charge	Q_{gs}				62		nC
Gate-to-Drain Charge	Q_{gd}				16		nC
SWITCHING CHARACTERISTICS, V _{GS} = 10	V (Note 3)						
Turn-On Delay Time	t _{d(on)}	V_{GS} = 10 V, V_{DS} = 30 V, I_{D} = 80 A, R_{G} = 6 Ω			37		ns
Rise Time	t _r	I _D = 80 A, H	$G = 6 \Omega$		57		ns
Turn-Off Delay Time	t _{d(off)}				146		ns
Fall Time	t _f				105		ns
DRAIN-SOURCE DIODE CHARACTERIST	cs				-		-
Forward Diode Voltage	V_{SD}	I _S = 80 A, V _{GS} = 0 V	T _J = 25°C		0.79	1.2	V
		I _S = 80 A, V _{GS} = 0 V	T _J = 125°C		0.66		V
Reverse Recovery Time	t _{rr}	V_{GS} = 0 V, dI_S/d_t = 100 A/ μ s, I_S = 66 A			132		ns
Charge Time	t _a				64		ns
Discharge Time	t _b				68		ns
Reverse Recovery Charge	Q _{rr}				386		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On–Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics (Junction-to-Ambient)

В (2x) a ccc D2 (2x) TERMINAL 1 CORNER Α INDEX AREA <u>5</u> (DATUM A) b (8x) bbbM C A B D4 (2x) E2 (2x) ddd(M) C L2 (8x) ·L1 🙆 SECTION "A-A" TOP VIEW DETAIL "B" η(4X) Θ // aaa C SIDE VIEW D1 DETAIL "B" SCALE: 2X D5 (2x) D6 D3 (2x) (2x)L3 (DATUM A) F6 (3x)E1 E3 E4 F5 √ b2 (8x)

H-PSOF8L 11.68x9.80x2.30, 1.20P CASE 100CU **ISSUE F**

DATE 30 JUL 2024

RECOMMENDATION *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

HATCHED AREA

SCALE: 2X

- 1. PACKAGE STANDARD REFERENCE: JEDEC MO-299, ISSUE B.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 3. "e" REPRESENTS THE TERMINAL PITCH.
- 4. THIS DIMENSION INCLUDES ENCAPSULATION THICKNESS "A1", AND PACKAGE BODY THICKNESS, BUT DOES NOT INCLUDE ATTACHED FEATURES, e.g., EXTERNAL OR CHIP CAPACITORS. AN INTEGRAL HEATSLUG IS NOT CONSIDERED AS ATTACHED FEATURE. 5. A VISUAL INDEX FEATURE MUST BE LOCATED WITHIN THE
- 6. DIMENSIONS b1,L1,L2 APPLY TO PLATED TERMINALS.
- 7. THE LOCATION AND SIZE OF EJECTOR MARKS ARE OPTIONAL.
 8. THE LOCATION AND NUMBER OF FUSED LEADS ARE OPTIONAL.

DIM	MILLIMETERS			
	MIN.	NOM.	MAX.	
Α	2.20	2.30	2.40	
A1	1.70	1.80	1.90	
b	0.70	0.80	0.90	
b1	9.70	9.80	9.90	
b2	0.35	0.45	0.55	
С	0.40	0.50	0.60	
D	10.28	10.38	10.48	
D/2	5.09	5.19	5.29	
D1	10.98	11.08	11.18	
D2	3.20	3.30	3.40	
D3	2.60	2.70	2.80	
D4	4.45	4.55	4.65	
D5	3.20	3.30	3.40	
D6	0.55	0.65	0.75	
E	9.80	9.90	10.00	
E1	7.30	7.40	7.50	
E2	0.30	0.40	0.50	
E3	7.40	7.50	7.60	
E4	8.20	8.30	8.40	

DIM	MILLIMETERS			
D _{II} VI	MIN.	NOM.	MAX.	
E5	9.36	9.46	9.56	
E6	1.10	1.20	1.30	
E7	0.15	0.18	0.21	
е		1.20 BSC	;	
e/2	(0.60 BSC	;	
Н	11.58	11.68	11.78	
H/2	5.74	5.84	5.94	
H1		7.15 BSC)	
L	1.90	2.00	2.10	
L1	0.60	0.70	0.80	
L2	0.50	0.60	0.70	
L3	0.70	0.80	0.90	
θ		10° REF		
θ1	10° REF			
aaa	0.20			
bbb	0.25			
ccc	0.20			
ddd	0.20			
eee	0.10			

GENERIC MARKING DIAGRAM*

HEAT SLUG TERMINAL

Α = Assembly Location

BOTTOM VIEW

D/2

= Year

<u>/8</u>\

L (8x)

(DATUM B)

WW = Work Week

= Assembly Lot Code XXXX = Specific Device Code

AYWWZZ XXXXXXX XXXXXXX

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13813G	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	H-PSOF8L 11.68x9.80x2.30, 1.20P		PAGE 1 OF 1	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales