Value-Added Catalog of DRAGNs and Single-Component Radio Sources in VLASS

Y. A. GORDON AND CIRADA

This catalog is described in full in Gordon et al. (2023). In this document we outline the data model of the catalog, which consists of two tables. First, a Source Table gives a list of all sources (DRAGNs and single-component source) with some basic source parameters and host information where available. Second, a DRAGN INFORMATION Table provides additional data only applicable to the DRAGNs. The column definitions for these tables are given below.

TABLE 1. SOURCE TABLE (sources.fits) column definitions

Column Name	Column Description [notes]	Units
Name	Julian name of source (Jhhmmss.ss±ddmmss.s)	
RA	R.A. of the source	deg
DEC	Decl. of the source	deg
Flux	Total flux density of the source	mJy
$E_{-}Flux$	Uncertainty in Flux	mJy
LAS	Estimate of the Largest Angular Size of the source	arcsec
$E_{-}LAS$	Uncertainty in LAS	arcsec
Type	Type of source [1]	
Source_flag	Source quality flag $(> 0 \text{ is suspect})$ [2]	
AllWISE	Name of the AllWISE host ID	
$RA_AllWISE$	R.A. of the AllWISE host	deg
$DE_AllWISE$	Decl. of the AllWISE host	deg
$Sep_AllWISE$	Angular separation between radio source and AllWISE host ID	arcsec
LR	Likelihood ratio of host ID	
Rel	Probabilty that the host is correct	
Host_flag	Host ID flag $(> 0 \text{ is suspect})$ [3]	
W1mag	Vega magnitude of AllWISE host in the W1 band	mag
$E_{-}W1mag$	Uncertainty in W1mag	mag
W2mag	Vega magnitude of AllWISE host in the W1 band	mag
$E_{-}W2mag$	Uncertainty in W2mag	mag
W3mag	Vega magnitude of AllWISE host in the W1 band	mag
$E_{-}W3mag$	Uncertainty in W3mag	mag
W4mag	Vega magnitude of AllWISE host in the W1 band	mag
$E_{-}W4mag$	Uncertainty in W4mag	mag
z	Host redshift [4]	
$z_{-}err$	Uncertainty in z	
$z_{-}type$	Redshift type	
z_survey	Survey that the redshift was obtained from	

TABLE 2. DRAGN INFORMATION TABLE (dragns.fits) column definitions

Column Name	Column Description [notes]	Units
Name	Julian name of source (Jhhmmss.ss±ddmmss.s)	
RA	R.A. of the source	deg
DEC	Decl. of the source	deg
Flux	Total flux density of the source	mJy
$E_{-}Flux$	Uncertainty in Flux	mJy
$Core_prom$	Fraction of Flux associated with Core	
E_Core_prom	Uncertainty in Core_prom	
Lobe_flux_ratio	Ratio of the flux from Lobe_1 to the flux from Lobe_2	
$E_Lobe_flux_ratio$	Uncertainty in Lobe_flux_ratio	
LAS	Estimate of the Largest Angular Size of the source	arcsec
E_LAS	Uncertainty in LAS	arcsec
$Misalign_1$	Relative misalignment of Lobe_1	deg
$E_Misalign_1$	Uncertainty in Misalign_1	deg
$Misalign_2$	Relative misalignment of Lobe_2	deg
$E_Misalign_2$	Uncertainty in Misalign_2	deg
$Mean_misalign$	Mean value of Misalign_1 and Misalign_2	deg
$E_Mean_misalign$	Uncertainty in Mean_misalign	deg
Lobe_1	Component name of Lobe_1	
$Lobe_2$	Component name of Lobe_2	
Core	Component name of <i>Core</i> if identified	
RA_core	R.A. of <i>Core</i>	deg
DEC_core	Decl. of <i>Core</i>	deg
RA_median	Median R.A. of two lobes	deg
DEC_median	Median Decl. of two lobes	deg
RA_fw	Flux-weighted central R.A. of two lobes	deg
DEC_fw	Flux-weighted central Decl. of two lobes	deg
Source_flag	Source quality flag (> 0 is suspect) [2]	
AllWISE	Name of the AllWISE host ID	
$Sep_AllWISE$	Angular separation between radio source and AllWISE host ID	arcsec
LR	Likelihood ratio of host ID	
Rel	Probabilty that the host is correct	
Host_flag	Host ID flag (> 0 is suspect) [3]	

CIRADA

Column notes:

- [1] 'S': single-component, 'D': DRAGN.
- [2] 1: Type== 'D' with either $Lobe_flux_ratio < 0.1$, or $Lobe_flux_ratio > 10$, or $LAS/E_LAS < 20$,
 - 0: All other sources
- [3] 1: DRAGN where the host and radio core not co-located,
 - 0: DRAGN without a radio core or single-component source,
 - -1: DRAGN where likelihood ratio host ID has been updated to a host co-located with the radio core,
 - -2: DRAGN where likelihood ratio host ID is co-located with the radio core.
- [4] Spectroscopic redshifts are obtained from one of:
 - SDSS DR16 (Ahumada et al., 2020),
 - 6dFGS (Jones et al., 2009),
 - 2MRS (Huchra et al., 2012),
 - WiggleZ (Drinkwater et al., 2018),
 - 2dFGRS (Colless et al., 2001),
 - GAMA DR3 (Baldry et al., 2018),

Photometric redshifts are obtained from the Duncan (2022) catalog of photo-zs in the DESI imaging Legacy Surveys Data Release 8 (LS DR8, Dey et al., 2019).

References

Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, ApJS, 249, 3, doi: 10.3847/1538-4365/ab929e
Baldry, I. K., Liske, J., Brown, M. J. I., et al. 2018, MNRAS, 474, 3875, doi: 10.1093/mnras/stx3042
Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039, doi: 10.1046/j.1365-8711.2001.04902.x
Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168, doi: 10.3847/1538-3881/ab089d
Drinkwater, M. J., Byrne, Z. J., Blake, C., et al. 2018, MNRAS, 474, 4151, doi: 10.1093/mnras/stx2963
Duncan, K. J. 2022, MNRAS, 512, 3662, doi: 10.1093/mnras/stac608
Gordon, Y. A., Rudnick, L., Andernach, H., et al. 2023, submitted to ApJS, arXiv:2303.12830, doi: 10.48550/arXiv.2303.12830
Huchra, J. P., Macri, L. M., Masters, K. L., et al. 2012, ApJS, 199, 26, doi: 10.1088/0067-0049/199/2/26
Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683, doi: 10.1111/j.1365-2966.2009.
15338.x