

Assunto: Aplicações das integrais e Coordenadas Polares

Professor: Fabricio Alves Oliveira

Essa lista deverá ser resolvida de forma manuscrita e entregue no dia da segunda prova.

- (1) Encontre o volume do sólido obtido pela rotação da região limitada pelas curvas dadas em torno das retas especificadas. Esboce a região e o sólido.
- (a) $y = e^x$, y = 0, x = 0, x = 1; em torno do eixo x
- (b) $y = \frac{1}{x}, x = 1, x = 2, y = 0$; em torno do eixo x
- (c) $y = \sqrt{x-1}, x = 2, x = 5, y = 0$; em torno do eixo x
- (d) $x = \sqrt{y}, x = 0, y = 4$; em torno do eixo y
- (e) $x = y y^2$, x = 0; em torno do eixo y
- (f) $y = x^2, y = \sqrt{x}$; em torno do eixo x
- (g) $y^2 = x, x = 2y$; em torno do eixo y
- (h) $y = x^{2/3}, x = 1, y = 0$; em torno do eixo y
- (i) $y = x, y = \sqrt{x}$; em torno de y = 1
- $(j) y = x^4, y = 1; em torno de y = 2$
- (1) $y = \frac{1}{x}$, y = 0, x = 1, x = 3; em torno de y = -1
- (m) $x = y^2, x = 1$; em torno de x = 1
- (n) $y = x, y = \sqrt{x}$; em torno de x = 2
- (2) A base de um sólido S é um disco circular de raio r. Secções transversais paralelas, perpendiculares à base são quadrados. Encontre o volume de S.
- (3) A base de um sólido S é uma região elíptica limitada pela curva $9x^2 + 4y^2 = 36$. As secções transversais perpendiculares ao eixo x são triângulos isósceles retos com hipotenusa na base. Determine o volume do sólido S.
- (4) Determine o volume do sólido S, cuja base é a região limitada por $y=x^2$ e y=1. As secções transversais perpendiculares ao eixo y são triângulos equiláteros.
- (5) Determine o volume do sólido S, cuja base é a região limitada por $y = x^2$ e y = 1. As secções perpendiculares ao eixo y são quadrados.
- (6) Calcule o volume do sólido cuja base é o semicírculo $x^2 + y^2 \le r^2, y \ge 0$, e cujas secções perpendiculares ao eixo x são quadrados.
- (7) Calcule o volume da calota de uma esfera de raio r e altura h.

- (8) Use o Método das Cascas Cilíndricas para calcular o volume do sólido gerado pela rotação da região limitada pelas curvas abaixo ao redor dos eixos especificados.
- (a) $y = \frac{1}{x}, y = 0, x = 1, x = 2$; ao redor do eixo y
- (b) $y = x^2, y = 0, x = 1$; ao redor do eixo y
- (c) $y = e^{-x^2}$, y = 0, x = 0, x = 1; ao redor do eixo y
- (d) $x = 1 + y^2, x = 0, y = 1, y = 2$; ao redor do eixo x
- (e) $x = \sqrt{y}, x = 0, y = 1$; ao redor do eixo x
- (9) Calcule os comprimentos das curvas abaixo. Utilize o GeoGebra para visualizar as curvas.
- (a) $y = 1 + 6x^{3/2}, 0 < x < 1$
- (b) $y = \frac{x^2}{2} \frac{\ln x}{4}, 2 \le x \le 4$
- (10) Calcule as áreas das seguintes superfícies de revolução.
- (a) superfície de revolução obtida pelo giro de $y = x^3, 0 \le x \le 2$, em torno do eixo x.
- (b) superfície de revolução obtida pelo giro de $y = \frac{x}{2}, 0 \le x \le 4$, em torno do eixo x.
- (11) Demarcar os seguintes pontos no sistema de coordenadas polares e encontrar suas coordenadas cartesianas.

- (a) $\left(-2, \frac{2\pi}{3}\right)$ (b) $\left(3, \frac{13\pi}{4}\right)$ (c) $\left(-10, \frac{\pi}{2}\right)$
- (12) Encontrar um par de coordenadas polares dos seguintes pontos:
- (a) (1,1) (b) (-1,1) (c) (-1,-1) (d) (1,-1)
- (13) Transformar as seguintes equações para coordenadas polares:

- (a) $x^2 + y^2 = 4$ (b) x = 4 (c) y = 2(d) y + x = 0 (e) $x^2 + y^2 2x = 0$ (f) $x^2 + y^2 6y = 0$
- (14) Esboce a região R no plano polar e calcule sua área:
 - (a) R é a região delimitada pela espiral $r = \theta$ para $0 \le \theta \le \pi$.
 - (b) R é a região delimitada pelo círculo $r = 2 \operatorname{sen}(\theta)$ para $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$.
 - (c) R é a região interna ao limaçon $r = 4 + 2\cos(\theta)$.
 - (d) R é a região interna ao cardioide $r = \alpha(1 + \cos(\theta))$, sendo $\alpha > 0$.
 - (e) R é a região de uma "pétala" da rosácea de quatro "pétalas" $r = \cos(2\theta)$.
 - (f) R é a região interna ao círculo $r = 2\cos(\theta)$ e externa ao círculo r = 1.

RESPOSTAS

1)

b)
$$V = \frac{\pi}{9}$$

c)
$$V = \frac{15}{2}\pi$$

d)
$$V = 8\pi$$

e)
$$V = \frac{\pi}{20}$$

$$f) \ V = \frac{3\pi}{10}$$

g)
$$V = \frac{64}{15}\pi$$

h)
$$V = \frac{3}{4}\pi$$

j)
$$V = \frac{208}{45}\pi$$

l)
$$V = 2\pi \left(\ln 3 + \frac{1}{3} \right)$$

n)
$$V = \frac{8\pi}{15}$$

- 2) $V = \frac{16}{3}r^3$
- 3) V = 24
- 4) $V = \frac{\sqrt{3}}{2}$
- 5) V = 2
- 6) $V = \frac{4}{3}r^3$
- $7) \quad V = \pi h^2 \left(r \frac{h}{3} \right)$
- 8) a) $V = 2\pi$ b) $V = \frac{\pi}{2}$ c) $V = \pi \left(1 \frac{1}{e}\right)$ d) $V = \frac{21\pi}{2}$ e) $V = \frac{4\pi}{5}$
- 9) a) $L = \frac{2}{243} (82\sqrt{82} 1)$
 - b) $L = 6 + \frac{1}{4} \ln 2$
- 10) a) $\frac{\pi}{27} (145\sqrt{145} 1)$
 - b) $4\sqrt{5}\pi$
- 11) a) $\left(1, -\sqrt{3}\right)$ b) $\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$ c) (0, -10)
- d)(0,10)
- 12) a) $\left(\sqrt{2}, \frac{\pi}{4}\right)$ b) $\left(\sqrt{2}, \frac{3\pi}{4}\right)$ c) $\left(\sqrt{2}, \frac{5\pi}{4}\right)$
- d) $\left(\sqrt{2}, \frac{7\pi}{4}\right)$

13) a) $r = \pm 2$

- b) $rcos \theta = 4$
- c) $rsen \theta = 2$

- d) $\theta = \frac{3\pi}{4} + k\pi$, k inteiro
- e) $r = 2\cos\theta$
- f) $r = 6sen \theta$