Chapitre 5

Fonctions usuelles

5	Fonctions usuelles]
Į	5.2	Propriétés du logarithme	
Į	5.3	Propriété fondamentale du logarithme	
Į	5.4	Limites usuelles de la fonction logarithme	
Į	5.8	Propriétés de la fonction exponentielle	
Į	5.9	Propriété fondamentale de l'exponentielle	
Į	5.15	Dérivée d'une fonction puissance	
Į	5.21	Croissances comparées en $+\infty$	
Į	5.22	Croissances comparées en 0	
		5.43.2 Formule de trigonométrie hyperbolique	

5.2 Propriétés du logarithme

Par définition, ln est définie et dérvable sur \mathbb{R}_+^* et :

$$\forall x > 0, \ln'(x) = \frac{1}{x}$$

On montre par récurrence sur $n \geq 1$ que

"In est dérivable
$$n$$
 fois et $\forall n > 0, \ln^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ "

<u>Initialisation:</u>

La propriété est vraie pour n=1.

<u>Hérédité</u>:

 $\overline{\text{Si elle est}}$ vraie pour $n \geq 1$, par théorème d'opérations, $\ln^{(n)}$ est encore dérivable et :

$$\forall x > 0, ln^{(n+1)}(x) = \left[\ln^{(x)}\right](x)$$

= $(-1)^n n! x^{-n-1}$

Comme $\ln' > 0$ sur \mathbb{R}_+^* , alors \ln est strictement croissante sur \mathbb{R}_+^* .

5.3 Propriété fondamentale du logarithme

On montre seulement la propriété pour a>0 et b>0. On fixe b>0 et on considère :

$$f: \mathbb{R}_+^* \to \mathbb{R}; x \mapsto \ln(xb)$$

Par composition, $f \in \mathcal{D}^1(\mathbb{R}_+^*, \mathbb{R})$ et :

$$\forall x > 0, f'(x) = b \times \frac{1}{xb} = \frac{1}{x}$$

Donc f est une primitive de $\frac{1}{x}$ sur \mathbb{R}_+^* . On choisit $c \in \mathbb{R}$ tel que :

$$f = \ln + c$$

En particulier:

$$f(1) = \ln 1 + c$$

Soit:

$$\ln b = c$$

Ainsi:

$$\forall x > 0, \ln(xb) = \ln x + \ln b$$

On a par conséquent :

$$\forall x \in \mathbb{R}_+^*, 0 = \ln 1$$
$$= \ln(x \times \frac{1}{x})$$
$$= \ln x + \ln \frac{1}{x}$$

Donc pour a > 0 et b > 0, on a :

$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right)$$
$$= \ln a + \ln\frac{1}{b}$$
$$= \ln a - \ln b$$

5.4 Limites usuelles de la fonction logarithme

On commence par montrer que :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

On sait que ln est croissante sur $\mathbb{R}_+^*,$ donc d'après le théorème de la limite monotone :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$
 ou $\ln x \xrightarrow[x \to +\infty]{} \lambda$

Soit $n \ge 1$. On a :

$$\ln n = \int_{1}^{n} \frac{dt}{t}$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{t}$$

$$\geq \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{k+1}$$

$$= \sum_{k=1}^{n-1} \frac{1}{k+1}$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1$$

Or:

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1 \underset{n \to +\infty}{\longrightarrow} +\infty$$

Par théorème de comparaison:

$$\ln n \xrightarrow[n \to +\infty]{} +\infty$$

Donc:

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

Enfin:

$$\forall x > 0, \ln x = -\ln\left(\frac{1}{x}\right)$$

Donc par composition :

$$\ln x \underset{x \to 0^+}{\longrightarrow} -\infty$$

Par taux d'accroissement, en introduisant :

$$f: \mathbb{R}_+ \to \mathbb{R}; x \mapsto \ln(1+x)$$
$$f \in \mathcal{D}^1(\mathbb{R}_+, \mathbb{R})$$
$$\frac{\ln(x+1)}{x} = \frac{f(x) - f(0)}{x - 0} f'(0) = 1$$

5.8 Propriétés de la fonction exponentielle

D'après les résultas précédents (5.2), (5.4), on applique le théorème de la bijection dérivable. La fonction exponentielle est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \exp' x = \frac{1}{\ln' \circ \exp x}$$
$$= \exp x$$

On obtient directement que $\exp \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}_{+}^{*})$ et que $\exp^{(n)} = \exp n$ pour tout $n \in \mathbb{N}$.

5.9 Propriété fondamentale de l'exponentielle

Soit $(x,y) \in \mathbb{R}^2$. On choisit $(a,b) \in (\mathbb{R}_+^*)^2$ tel que :

$$x = \ln a$$
 et $y = \ln b$

Ainsi:

$$\exp(x + y) = \exp(\ln a + \ln b)$$

$$= \exp(\ln(ab))$$

$$= ab$$

$$= \exp x \times \exp y$$

Ainsi, $\exp 0 = \exp(0+0) = \exp^2 0$.

Donc $\exp 0 \in \{0; 1\}$

Or exp est à valeur dans \mathbb{R}_+^* , donc exp 0 = 1, donc :

$$\forall x \in \mathbb{R}_+^*, \exp 0 = \exp(x - x) = \exp x \times \exp(-x) = 1$$

5.15 Dérivée d'une fonction puissance

Soit y > 0. On pose $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto y^x = \exp(x \ln y)$. $f \in \mathcal{D}^1(\mathbb{R}, \mathbb{R})$, donc par composition :

$$\forall x \in \mathbb{R}, f'(x) = \ln y \times \exp(x \ln y)$$
$$= \ln y \times y^{x}$$

5.21 Croissances comparées en $+\infty$

1. On commence par montrer que $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$. Soit x > 1. On a :

$$0 \le \frac{\ln x}{x} = \frac{1}{x} \int_{1}^{x} \frac{dt}{t}$$

$$\le \frac{1}{x} \int_{1}^{x} \frac{dt}{\sqrt{t}}$$

$$= \frac{1}{x} \left[2\sqrt{t} \right]_{1}^{x}$$

$$= \frac{2(\sqrt{x} - 1)}{x}$$

$$= 2\left(\frac{1}{\sqrt{x}} - \frac{1}{x} \right)$$

$$\xrightarrow{x \to +\infty} 0$$

D'après le théorème d'encadrement, $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$.

Soit a > 0 et x > 0:

$$\frac{\ln x}{x^a} = \frac{1}{a} \times \frac{\ln x^a}{x^a} \underset{x \to +\infty}{\longrightarrow} 0$$

(composition et théorème d'opérations)

2. On utilise le changement de variable :

$$x = (\ln y)^{\frac{1}{a}}$$
, soit $y = e^{ax}$

Ainsi:

$$\frac{x^a}{e^x} = \frac{\ln y}{y^{\frac{1}{a}}} \underset{x \to +\infty}{\longrightarrow} \begin{cases} 0 \text{ par composition si } a > 0 \\ 0 \text{ par th\'eor\`eme d'op\'erations si } a \leq 0 \end{cases}$$

5.22 Croissances comparées en 0

On utilise la proposition (5.21.1) avec $y = \frac{1}{x}$.

5.43.2 Formule de trigonométrie hyperbolique

Soit $(a, b) \in \mathbb{R}^2$.

$$ch(a)ch(b) + sh(a)sh(b) = \frac{(e^a + e^{-a})(e^b + e^{-b})}{4} + \frac{(e^a - e^{-a})(e^b - e^{-b})}{4}$$
$$= \frac{2e^{a+b} + 2e^{-(a+b)}}{4}$$
$$= ch(a+b)$$