Portfolio 8

Rachel Wood

2023-04-26

For this portfolio, we use the Pima Indians Diabetes dataset:

library(mlbench)
data("PimaIndiansDiabetes")
head(PimaIndiansDiabetes)

##		pregnant	glucose	pressure	triceps	${\tt insulin}$	${\tt mass}$	pedigree	age	${\tt diabetes}$
##	1	6	148	72	35	0	33.6	0.627	50	pos
##	2	1	85	66	29	0	26.6	0.351	31	neg
##	3	8	183	64	0	0	23.3	0.672	32	pos
##	4	1	89	66	23	94	28.1	0.167	21	neg
##	5	0	137	40	35	168	43.1	2.288	33	pos
##	6	5	116	74	0	0	25.6	0.201	30	neg

where we model the response y_i is the diabetes variable and model it using a logistic regression:

$$\mathbb{P}_{\alpha,\beta}(Y_i = 1) = \frac{1}{1 + e^{-\alpha - \beta^T x_i}}$$

which gives the likelihood function

$$L_n(\alpha, \beta) = \prod_{i=1}^n \mathbb{P}_{\alpha, \beta}(Y_i = y_i)$$

Then the posterior is

$$\pi(\alpha, \beta|y) \propto L_n(\alpha, \beta)\pi(\alpha, \beta)$$

with the log posterior given by

$$\log \pi(\alpha, \beta | y) = \sum_{i=1}^{n} \left(y_i \log \frac{1}{1 + e^{-\alpha - \beta^T x_i}} + (1 - y_i) \log \frac{e^{-\alpha - \beta^T x_i}}{1 + e^{-\alpha - \beta^T x_i}} \right) + \pi(\alpha, \beta)$$

where $\pi(\alpha, \beta)$ is the prior.

1. Choosing a proposal distribution

Before applying the MH algorithm, we need to choose a proposal distribution Q. For this we use

$$Q(z, dz') = \mathcal{N}_{p+1}(z, c\Sigma_n)$$

for tuning parameter c > 0 and

$$\mu_n = \underset{(\alpha,\beta) \in \mathbb{R}^p}{\operatorname{arg max}} \log \pi(\alpha,\beta|y), \qquad \Sigma_n = -(\mathbf{H}_n(\mu_q))^{-1}$$

Since Σ_n can be seen as an estimate of the variance of the covariance matrix of (α, β) under the posterior. We can then use the glm() function to get this:

```
data <- PimaIndiansDiabetes
y <- as.numeric((data$diabetes))-1
X <- scale(data[,1:8])

fit <- glm(y ~ X, family = "binomial")
z_0 <- fit$coefficients
Sigma_n <- summary(fit)$cov.scaled</pre>
```

2. Implementing the MH algorithm

For the acceptance probability at each iteration, we also need a function to compute the posterior likelihood for the new and old parameter values. For this we choose a flat prior for simplicity:

```
library(mvtnorm)
post_likelihood <- function(par, X, y){

alpha <- par[1]
beta <- par[2:9]
p <- 1 - 1 / (1 + exp(alpha + beta%*%t(X)))
likelihood <- exp(sum(dbinom(y, size=1, prob=p, log=TRUE)))

return(likelihood)
}</pre>
```

Since we now have a proposal distribution and a posterior likelihood, we can now run the MH algorithm:

```
logistic_MH <- function(z_0,c, sigma_n, tmax, X, y){</pre>
  zs <- matrix(NA, nrow =tmax, ncol = length(z_0))</pre>
  z_current <- z_0
  z_current_ll <- post_likelihood(z_current, X,y)</pre>
  sigma_prime <- c * sigma_n</pre>
  accepted <- 0
  for (i in 1:tmax){
    z_new <- rmvnorm(1, z_current, sigma_prime)</pre>
    z_new_ll <- post_likelihood(z_new, X, y)</pre>
    alpha <- log(z_new_11) + dmvnorm(z_current, z_new, sigma_prime, log = TRUE) - log(z_current_11) - de
    if (runif(1) < min(1,exp(alpha))){</pre>
      z_current <- z_new</pre>
      z_current_ll <- z_new_ll</pre>
      accepted <- accepted + 1
    }
    zs[i,] <- z_current
  }
  return(list(zs = zs, acceptance_rate = accepted/tmax))
```

3. Convergence

We now run the algorithm with c=1 and test for convergence.

```
mh<- logistic_MH(z_0, 1, Sigma_n, 10000, X, y)
```

We get the acceptance rate to be:

```
mh$acceptance_rate
```

```
## [1] 0.1718
```

We then produce trace plots:

```
library(dplyr)
library(tidyr)
library(ggplot2)

colnames(mh$zs) <- c("intercept", colnames(data)[1:8])
zs_plot <- mh$zs %>%
   as_tibble() %>%
   mutate(iteration = 1:10000) %>%
   pivot_longer(cols = 1:9)

ggplot(zs_plot, aes(iteration, value)) +
   geom_line(colour = "steelblue3") +
   facet_wrap(vars(name))
```


We also produce some autocorrelation plots:

From these results, we see the acceptance ratio is quite low and the autocorrelation of our samples decreases quite slowly.

4. Modifying Q

We then try the above again with a smaller c in the hopes that this will improve our convergence:

```
mh_new<- logistic_MH(z_0, 0.75, Sigma_n, 10000, X, y)
```

The new acceptance rate is then:

```
mh_new$acceptance_rate
```

[1] 0.228

We then produce trace plots and autocorrelation plots as before:

```
library(dplyr)
library(tidyr)
library(ggplot2)

colnames(mh_new$zs) <- c("intercept", colnames(data)[1:8])
zs_plot <- mh$zs %>%
    as_tibble() %>%
    mutate(iteration = 1:10000) %>%
    pivot_longer(cols = 1:9)

ggplot(zs_plot, aes(iteration, value)) +
    geom_line(colour = "steelblue3") +
    facet_wrap(vars(name))
```



```
par(mfrow = c(3,3))
for (i in 1:9){
  acf(mh_new$zs[,i], main = colnames(data)[i])
}
```


can see from these results the acceptance rate is higher and the autocorrelation of samples decreases more quickly.

5. Marginal posterior distributions

We can now also plot the approximate marginal posteriors for each parameter using histograms:

```
ggplot(zs_plot, aes(value)) +
  geom_histogram() +
  facet_wrap(vars(name))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

