University of Arizona Mars Orbiter (UA-MO) SIE 452/552 Spring 2017 Instrument Payload Suite

Mars Orbiter High Resolution Camera (MOHiResC) Suite

This suite is a derivation of the Lunar Reconnaissance Orbiter Camera (LROC) and adapted for Mars operations. It consists in two Narrow Angle Cameras (NAC) and in a Wide Angle Camera (WAC). Instrument characteristics diagrams are reported below:

Narrow Angle Camera

Parameter	Performance NAC-L	Performance NAC-R
FOV	2.8502°	2.8412°
IFOV (nadir)	10.0042 μrad	9.9764 μrad
image scale at 50-km altitude	0.5 meter/pixel	
max. swath size at 50-km altitude	2.49×26.1 -km	2.48×26.1 -km
f/#	3.577	3.590
focal length	$699.62 \pm 0.08 \text{ mm}$	$701.57 \pm 0.09 \text{ mm}$
distortion coefficient k	0.0000181 ± 0.0000005	0.0000183 ± 0.0000005
optical center location	sample 2548 ± 8	sample 2568 ± 8
primary mirror diameter	198 mm	
system MTF (Nyquist)	0.23	
Gain	$90.5 \pm 2.6 \mathrm{e^-/DN}$	$92.5 \pm 1.5 \mathrm{e^{-}/DN}$
detector noise	$101 \pm 7 e^{-}$	$97 \pm 1 e^-$
detector full-well	$334,000 \pm 31,000 e^-$	$352,000 \pm 4100 e^{-}$
SNR (mare at 70° incidence angle)	> 42	> 42
Spectral response	400–760 nm	
radiometric accuracy*	1% relative, 10% absolute	
detector digitization	12 bit, encoded to 8 bit	
data link to SCS	LVDS, 30 Mbps	
temperature sensors	2 per electronics box, 2 per telescope	
lossless compression ratio	1.7:1	
Voltage	$28 \pm 7 \text{ V DC}$	
peak power	9.3 W	
orbit average power	6.4 W	
mass (both NACs)	16.4 kg	
volume (length x diameter)	$118 \text{ cm} \times 27 \text{ cm}$ (incl. radiator)	

Wide Angle Camera

Parameter	Visible	UV
FOV (monochrome/color)	91.9°/61.4°	59.0°
IFOV (nadir)	1.498 mrad	7.672 mrad (4×4 binning)
image scale (nadir, 50-km altitude)	74.9 m/pixel	383.5 m/pixel
image frame width monochrome	104.6-km	_
image frame width 7-band color	59.6-km	56.8-km
image format monochrome	$1024 \text{ samples} \times 14 \text{ lines}$	_
image format color (for each band)	704 samples \times 14 lines	128 samples × 4 lines (binned)
f/#	5.052	5.65
focal length	6.013 mm	4.693 mm
system MTF (Nyquist)	0.37	
Gain	$25.9 \pm 0.7 \text{ e}^-/\text{DN}$	
detector noise	$66 \pm 4 e^{-}$	
detector full-well	$46,100 \pm 3600 e^{-}$	
SNR (at 1000 DN)	> 150	
radiometric accuracy*	1% relative, 10% absolute	
detector digitization	11 bit, encoded to 8 bit	
data link to SCS	RS422, 2.5 Mbps	
temperature sensors	1	
lossless compression ratio	1.7:1	
Voltage	$28 \pm 7 \text{ V DC}$	
peak power	2.7 W	
orbit average power	2.6 W	
Mass	0.9 kg	
volume (width \times length \times height)	$15.8 \text{ cm} \times 23.2 \text{ cm} \times 32.3 \text{ cm}$ (incl. radiator)	

Additional Information

Both cameras are conductively and radiatively isolated (i.e. they radiates to space). Active thermal control is operated via radiators and heaters. Contamination control regards mainly optics. The pointing requirements in the nadir direction are assumed to be 0.01 mrad control with 0.005 mrad knowledge (3-sigma). The sun exclusion angle is assumed to be 28 degree about the telescope axis. Temperature limits are -20 to 30 deg Celsius (operational) and -30 to 40 deg Celsius (non-operational).

Mars Orbiter Thermal Emission Imaging Spectrometer (MOTEIS)

MOTEIS is an evolution of the Mars Odyssey 2001 THEMIS Instrument. The instrument characteristics are indicated below:

Quantities to be measured: Emitted radiance in 10 ~1-μm bands (9 different wavelengths)

centered between 6.8 and 14.9 μm at 100 m per pixel spatial

resolution

Solar reflected energy in 5 ~50 nm bands centered from 0.42 to

 $0.86 \mu m$ at 18 m per pixel spatial resolution

Detectors: Multi-spectral IR imager: 320 × 240 element uncooled micro-

bolometer array

Visible imager: $1,024 \times 1,024$ element silicon array

Expected performance: NE $\Delta \varepsilon$ @ 245 K & 10 μ m = 0.005.

NE Δ T @ 245 K & 10 μ m = 0.5 K.

NEΔT @ 180 K = 1 K.

SNR > 100 in visible imager at 0.25 albedo, 60° solar incidence

angle

Optical/Mechanical Design: 12-cm effective aperture f/1.6 telescope to view nadir shared by

multi-spectral IR and visible imagers. Internal calibration flag provides calibration and Sun avoidance protection functions. IR spectrometer is 10-strip filter pushbroom design with time delay integration. Visible multi-spectral imager is 5-strip filter frame-

scan design.

Fields of View: IR imager has a 4.6° (80 mrad) cross-track by 3.5° (60 mrad)

down-track FOV with a 0.25 mrad (100 m) IFOV at nadir.

Visible imager has a 2.66° (46.4 mrad) cross-track by 2.64° (46.1 mrad) down-track FOV with 0.045 mrad (18 m) IFOV in 1024×1024 pixels at nadir. The two imagers are spatially

bore-sighted.

In-Flight Calibration: Periodic views of an internal calibration flag.

Thermal Requirements: Operating range -30 °C to +30 °C. Non-operating range

−30 °C to +45 °C. No detector cooling required.

Digital Data 8-bit delta radiance in IR imager

8-bit radiance in visible imager

Data rate: IR imager has instantaneous internal rate of 1.17 Mbits/sec.

Data rate to spacecraft after real-time compression is 0.6

Mbits/sec.

Visible imager has instantaneous internal rate of up to 6.2 Mbits/sec. Data rate to spacecraft is < 1.0 Mbits/sec. 4 Mbyte RAM internal data buffer for data processing and

buffering for delayed output to spacecraft.

On-board Data Processing: IR imager: Gain and offset; time delay integration, and data

compression in electronics; data formatting using spacecraft

computer.

Visible imager: Lossless and predictive compression in firm-

ware; selective readout and pixel summing on spacecraft.

Solar Protection: Provided by calibration flag in stowed position.

Mass: 11.2 kg

Size: 29 cm by 37 cm by 55 cm Power: 14 W orbital average

Mars Orbiter High Energy Neutron Detector (MOHEND)
MOHEND is an evolution of LEND on-board NASA LRO. The physical characteristics and performances are given below.

Parameter	LEND instrument	
Mass	26.3 kg	
Power Consumption	13 W	
Size	460 x 460 x 440 mm	
Function	Collimated neutron spectrometer	
Energy range	From thermal energies up to 15 MeV	
Time resolution	Variable, > 1 s	
Spatial resolution on the surface	5 km from the 50 km orbit	
Spatial resolution inside the subsurface	1-2 m	
Working range of temperature	From -20 °C up to +50 °C	
Telemetry volume	250 Mb per day	
Warranty time	5 years	

Mars Orbiter Laser Altimeter (MOLA)

MOLA is an evolution of laser altimeters already flown on previous Mars programs. The physical characteristics and performances are reported below.

Electrical Power (28 V):

- Cruise: 21 W

Orbital Average: 23.1 W
 Orbital Peak: 33.1 W
 Electrical Regulation: 28 V +/- 2V

Data rate range: Mass: 25 Kg

Sun avoidance angle : 28 deg about telescope axis

Temperature limits ops/non=ops: -20 to 30 deg Celsius, -30 to 40 deg Celsius

Thermal I/F: Conductively and radiatively isolated from S/C.

Active thermal control: Heaters Contamination control: Optics

