DBMS Lab 3 (Solutions)

Kunal Khatri(201501011) and Karanraj Singh Saini(201501105)

1

1.a

- result $\rightarrow \Pi_{PID,PNAME,DID,DNAME} < program * department >$
- $\bullet\,$ select PID, PNAME, DID, DNAME from program as p natural join department as d

1.b

- r1 \rightarrow program as p $\bowtie_{p.PID=s.ProgID}$ student as s result $\rightarrow \Pi_{r1.StudID,r1.Name}(\sigma_{r1.PNAME='MTech(IT)'})$ and $\sigma_{r1.cpi>6.5}$ r1)
- select StudID, Name from program as p join student as s on p.PID = s.PROGID where p.PNAME = 'MTech(IT)' and s.cpi > 6.5

1.c

- r1 \rightarrow program as p $\bowtie_{p.PID=s.ProgID}$ student as s result $\rightarrow \prod_{r1.StudID,r1.Name} (\sigma_{r1.DID='EE'\ or\ r1.DID='IT'}$ r1)
- select StudID, Name from program as p join student as s on p.PID = s.PROGID where p.DID = 'EE' or p.DID = 'IT'

1.d

- r1 $\rightarrow programasp \bowtie_{p.PID=s.ProgID}$ student as s result $\rightarrow \sigma_{r1.batch=2012}$ and r.PNAME='MSc(IT)' r1
- select * from program as p join student as s on p.PID = s.PROGID where s.batch = '2012' and p.PNAME = 'MSc(IT)'

$\mathbf{2}$

2.a

- r1 \rightarrow (dept_locations * project) result $\rightarrow \pi_{pname}(\sigma_{dlocation='Houston'} \text{ r1})$
- select pname from dept_locations natural join project where dlocation
 'Houston'

2.b

- r1 \rightarrow employee as e1 $\bowtie_{e1.superssn=e2.ssn}$ employee as e2 result $\rightarrow \sigma_{e1.salary < e2.salary}$ r1
- select * from employee as e1 join employee as e2 on e1.superssn = e2.ssn where e1.salary < e2.salary

2.c

- r1 $\rightarrow \sigma_{dno=1}$ employee * department result $\rightarrow r1 \bowtie_{r1.ssn=dependent.essn}$ dependent
- select * from (select * from employee natural join department where dno=4) as deep join dependent as de on deep.ssn = de.essn

2.d

- r1 $\rightarrow \sigma_{p.name='ProductX'}$ (project as p $\bowtie_{p.dno=w.pno}$ works_on as w) r2 $\rightarrow \sigma dno = 5$ employee result $\rightarrow \sigma_{r1.hours>2}$ (r1 $\bowtie_{r1.essn=r2.ssn}$ r2)
- select * from (select * from employee as e join works_on as w on e.ssn = w.essn where w.hours > 2) as mix join project as p on mix.pno = p.pno where p.pname = 'ProductX'

3

3.a

- result $\rightarrow \sigma_{SalePrice>500~and~Category=5}$ Items
- \bullet select * from Items where SalePrice > 500 and Category = 5

3.b

- r1 \rightarrow Sales * salesDetails result $\rightarrow \sigma_{c.Name='Allen'}$ (r1 $\bowtie_{r1.CustomerNo=customer.CustNo}$ customer
- select distinct InvNo from Sales natural join SalesDetails join customer on CustomerNo = CustNo where Name = 'Allen'

3.c

- r1 $\rightarrow \sigma_{InvDate='2011-08-23'}$ (Sales * SalesDetails) r2 \rightarrow r1 $\bowtie_{r1.Itemcode=I.Code}$ Item as I result $\rightarrow \pi_{r2.Name}$ (r2 $\bowtie_{r2.CustomerNo=c.CustNo}$ customer as c)
- select issd.Name from (select * from (select * from Sales natural join SalesDetails where InvDate = '2011-08-23') as ssd join items on ItemCode = Code) as issd join customer as c on CustomerNo = CustNo where c.Name = 'John'

3.d

- r1 $\rightarrow \sigma_{I.category='c1'}$ (Items as I $\bowtie_{I.Code=sd.ItemCode}$ SalesDetails as sd) r2 $\rightarrow Sales * r1$ result $\rightarrow \pi_{c.Name}$ (r2 $\bowtie_{r2.CustomerNo=c.CustNo}$ customer as c))
- \bullet select distinct c.Name from (select * from (select * from SalesDetails as sd join items as I on sd.ItemCode= I.code where I.category = 1) as isd natural join sales) as sisd join Customer as c on sisd.CustomerNo = c.CustNo

4

4.a

- result $\rightarrow \sigma_{instructorname='PMJat'}$ and semester='Winter' and acadyear='2010' (instructor * offers * course)
- select * from instructor natural join offers natural join course where instructorname='P M Jat' and semester='Winter' and acadyear='2010'

4.b

- result $\to \pi_{studentid}$ ($\sigma_{courseno='MT101'}$ registers) $\cup \pi_{studentid}$ ($\sigma_{courseno='MT104'}$ registers)
- select studentid from registers where courseno='MT101' union select studentid from registers where courseno='MT104'

4.c

- result $\to \pi_{studentid}$ ($\sigma_{courseno='MT101'}$ registers) $-\pi_{studentid}$ ($\sigma_{courseno='MT104'}$ registers)
- select studentid from registers where courseno='MT101' except select studentid from registers where courseno='MT104'

4.d

- result $\rightarrow \pi_{studentid,name,cpi}$ ($\sigma_{courseno='MT101'}$ and acadyear='2008' student * registers) $\cap \pi_{studentid,name,cpi}$ ($\sigma_{courseno='MT104'}$ and acadyear='2008' student * registers)
- select studentid,name,cpi from student natural join registers where registers.acadyear='2008' AND courseno='MT101' intersect select studentid,name,cpi from student natural join registers where registers.acadyear='2008' AND courseno='MT104'

4.e

- r1 $\rightarrow \pi_{studentid,name,cpi}$ ($\sigma_{(grade='AA'\ or\ grade='AB')}$ and acadyear='2008' and semester='Autumn' student * registers) r2 $\rightarrow \pi_{studentid,name,cpi}$ ($\sigma_{(grade!='AA'\ or\ grade!='AB')}$ and acadyear='2008' and semester='Autumn' student * registers) result \rightarrow (r1 - r2)
- select distinct studentid, name, cpi from student as s natural join registers as r where grade in ('AA','AB') and semester='Autumn' and acadyear=2008 except select distinct studentid, name, cpi from student as s natural join registers a r where grade not in ('AA','AB') and semester='Autumn' and acadyear=2008

4.f

- result $\rightarrow \pi_{studentid}$ ($\sigma_{batch=2007}$ and progname='Btech(CS)'and studentid not in ($\pi_{studentid}$ ($\sigma_{spi<6.0}$)result) student * program)
- select distinct s.studentid from student as s natural join program as p where batch=2007 and progname='Btech(CS)' and s.studentid not in (select studentid from result where spi < 6.0)