Kryptografie und -analyse, Übung 7

HENRY HAUSTEIN

AES

(a) 10 Rundenschlüssel + 1 Schlüssel am Anfang

11 Runden - 4 Blöcke = 44 Blöcke

 w_4 : Rcon $[j = i/N_k] = \text{Rcon}[1] = [x^{j-1}, 00, 00, 00] = [01, 00, 00, 00]$

 w_8 : Rcon[j = 8/4] = Rcon[2] = $[x^{j-1}, 00, 00, 00]$ = [02, 00, 00, 00]

 w_{40} : Rcon $[j = 40/4] = \text{Rcon}[10] = [x^{j-1}, 00, 00, 00] = [36, 00, 00, 00]$. Muss noch modulo $x^8 + x^4 + x^3 + x + 1$ gerechnet werden:

$$x^9 \div (x^8 + x^4 + x^3 + x + 1) = x$$
 $R: x^5 + x^4 + x^2 + x = 00110110_2 = 36_{16}$

(b) k_0

$$\begin{array}{c|ccccc} w_0 & w_1 & w_2 & w_3 \\ \hline 2b & 28 & ab & 09 \\ \hline 7e & ae & f7 & cf \\ 15 & d2 & 15 & 4f \\ \hline 16 & a6 & 88 & 3c \\ \hline \end{array}$$

 $k_1 = w_4 w_5 w_6 w_7$ mit

- $w_4 = w_0 \oplus (\text{Rcon}[1] \oplus \text{SubWord}(\text{Rot}(w_3)))$
 - $\operatorname{Rot}(w_3) = \operatorname{cf4f3c09}$
 - SubWord(cf4f3c09) = 8a84eb01
 - $\text{Rcon}[1] \oplus 8a84eb01 = 01000000 \oplus 8a84eb01 = 8b84eb01$
 - $w_0 \oplus 8b84eb01 = 2b7e1516 \oplus 8b84eb01 = a0fafe17$
- $w_5 = w_4 \oplus w_1 = \text{a0fafe17} \oplus 28\text{aed2a6} = 8\text{b542cb1}$
- $w_6 = w_5 \oplus w_2 = 8b542cb1 \oplus abf71588 = 23a33939$
- $w_7 = w_6 \oplus w_3 = 23a33939 \oplus 09cf4f3c = 2a6c7605$
- (c) Runde 0: $m \oplus k_0$

Runde 1: Ergebnis SubBytes, Ergebnis ShiftRow, Ergebnis Mixcolumn, $\oplus k_1$

Ergebnis von MixColumn: $d_i = a(x) \otimes c_i \mod x^4 + 1$, mit $a(x) = 03x^3 + 01x^2 + 01x + 02$ das heißt

$$\begin{pmatrix} d_{0i} \\ d_{1i} \\ d_{2i} \\ d_{3i} \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} c_{0i} \\ c_{1i} \\ c_{2i} \\ c_{3i} \end{pmatrix}$$

$$d_{0,0} = 02 \cdot d4 \oplus 03 \cdot bf \oplus e3 \oplus 30 \mod x^8 + x^4 + x^3 + x + 1$$

$$= 00000010_2 \cdot 11010100 \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= x \cdot (x^7 + x^6 + x^4 + x^2) \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= x^8 + x^7 + x^5 + x^3 \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= x^7 + x^5 + x^4 + x + 1 \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= 10110011_2 \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= b3 \dots \mod x^8 + x^4 + x^3 + x + 1$$

$$= ba$$

(d) letzte Runde: Shift⁻¹, Sub⁻¹ vertauschen vorletzte Runden: $\oplus k_{r-1}$, MC^{-1} vertauschen $(k_{r-1} \to k'_{r-1})$ und Shift⁻¹, Sub⁻¹ vertauschen, ... \Rightarrow neue Reihenfolge: Sub⁻¹, Shift⁻¹, MC^{-1} , $\oplus k'_{r-1}$, Sub⁻¹, Shift⁻¹, ... \Rightarrow selbe Reihenfolge wie bei der Verschlüsselung