ΜĦ

sep

The second second	
Name	٨
Solve the following ODE	S
$y' = (1+y)e^t y(0) = 1$ $(1+1) = e^0 + 1$	4
C= (n(2)-1	

 $\frac{dy/dt}{dy/t} = (1+y)e^{t}$ $\frac{dy/t}{dy/t} = \int e^{t} dt + C$ $\frac{dy/t}{dt} = \int e^{t} dt + C$ $\frac{dy/t}{dt} = \int e^{t} dt + C$

1.
$$y' = \frac{\sin(y)}{\cos(y)} (t^2 + 1)$$

$$t^2y' + ty = t^3$$
 with $y(1) = 2$

$$ty' + y = t^{2}$$
 $(ty)' = t^{2}$
 $ty = t^{3}/3 + C$
 $y = t^{2}/3 + C/4$

2.
$$e^t y' + 2 e^t y = e^t$$
 with $y(0) = 1$

in
$$y' + 1/4y = t$$

 $y' + \rho(t)y = s(t)$
 $y' + \rho(t)y = s(t)$
 $y'(t) = e$ (n(t)
 $y'(t) = e$ = t