Universidade Federal do Rio Grande do Norte

ELE0701 - ELETRÔNICA

Circuitos com amp-ops

Rafael Cardoso Pereira

Amplificadores de diferenças

O amplificador de diferenças é aquele que responde à diferença entre os dois sinais aplicados em suas entradas. Em circuitos práticos sua saída é dada por:

$$v_o = A_d v_{Id} + A_{cm} v_{Icm}$$

- $A_d o \mathsf{Ganho}$ diferencial
- $A_{cm} o \mathsf{Ganho}$ em modo comum
- $v_{Id} = (v_2 v_1) \rightarrow \mathsf{Tens\~ao}$ de entrada diferencial
- $ullet v_{Icm} = (v_1 + v_2)/2
 ightarrow {\sf Tens\~ao}$ de entrada em modo comum

Razão de rejeição em modo comum

A razão de rejeição de modo comum CMRR é definida como:

$$CMRR = 20log \frac{|A_d|}{|A_{cm}|}$$

Quanto maior o valor de CMRR melhor será o amplificador.

Amplificador de diferenças simples

A seguir podemos ver uma tentativa de implementação de um amplificador de diferenças.

$$\frac{R_4}{R_4 + R_3} \left(1 + \frac{R_2}{R_1} \right) = \frac{R_2}{R_1}$$

Para rejeitar o ganho de modo comum devemos fazer:

$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

Considerando o circuito apenas com modo comum.

O ganho diferencial será:

$$A_d = \frac{R_2}{R_1}$$

O ganho de modo comum será:

$$A_{cm} = \left(\frac{R_4}{R_4 + R_3}\right) \left(1 - \frac{R_2 R_3}{R_1 R_4}\right)$$

Fazendo
$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$
 obtemos $A_{cm} = 0$.

A impedância diferencial vista pela entrada será:

$$R_{id} \equiv \frac{v_{id}}{i_I} = 2R_1$$

A necessidade de um alto ganho pode levar a uma baixa impedância de entrada.

Exemplo

Considere o amplificador de diferenças apresentado, para o caso em que $R_1=R_3=2~k\Omega$ e $R_2=R_4=200~k\Omega$. Encontre:

- (a) O valor do ganho diferencial A_d
- (b) A impedância de entrada diferencial R_{id} e a impedância de saída R_o
- (c) Se os resistores tem tolerância de $\pm 1\%$ encontre o cenário para o pior ganho A_{cm} e sua respectiva CMRR.

O amplificador de instrumentação

Proposto como forma de resolver o problema da baixa impedância de entrada do amplificador de diferenças.

O ganho em modo comum será idealmente zero por causa da ação diferencial do amplificador do segundo estágio

Porém, o circuito possui três desvantagens principais:

- O sinal de modo comum de entrada é amplificado no primeiro estágio e pode causar saturação dos amplificadores A_1 e A_2 .
- Os amplificadores do primeiro estágio devem ser exatamente iguais, caso contrário um sinal espúrio irá aparecer entre suas saídas.
- Para variar o ganho diferencial, dois resistores devem ser variados simultaneamente: uma tarefa difícil.

$$A_d = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right)$$

Para tentar solucionar os problemas obtidos, propomos a seguinte modificação:

Ganho diferencial:

$$A_d = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right)$$

Para resistores R_2 e R_2' diferentes:

$$A_d = \frac{R_4}{R_3} \left(1 + \frac{R_2 + R_2'}{2R_1} \right)$$

Ganho de modo comum:

$$A_{cm} = 0$$

Haverá ganho de modo comum apenas no segundo estágio.

Exemplo

Projete um amplificador de instrumentação utilizando o circuito anterior que possa prover um ganho que varia na faixa de 2 a 1000, utilizando um potenciômetro de $100\ k\Omega.$

Configuração inversora com impedâncias generalizadas

Consideremos o ganho em malha fechada utilizando impedâncias generalizadas:

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$$

O Integrador inversor

O circuito a seguir implementa um integrador inversor:

A função de transferência do circuito é dada por:

$$v_O(t) = -\frac{1}{CR} \int_0^t v_I(\tau) d\tau$$

A frequência do integrador será:

$$\omega_{int} = \frac{1}{CR}$$

Esse circuito apresenta o problema de amplificação do nível DC.

Integrador Miller

Proposto como forma de reduzir o ganho em DC.

$$v_i(t) = -\frac{R}{R_F}v_o(t) - C\frac{dv_o(t)}{dt}$$

O circuito derivador com amp-op

Um circuito derivador pode ser implementado da seguinte forma:

A função de transferência do circuito será dada por:

$$v_o(t) = -RC\frac{dv_i(t)}{dt}$$

A frequência do diferenciador será:

$$\omega_{dif} = \frac{1}{CR}$$

A implementação prática exige a utilização de um resistor pequeno em série com o capacitor para evitar a amplificação de ruídos

Exemplo

Encontre a saída produzida por um integrador Miller quando uma entrada na forma de pulsos quadrados de $1\ V$ de altura e $1\ ms$ de largura é aplicada. Use $R=10\ k\Omega$ e $C=10\ nf$ se necessário.

Características não ideais de um amp-op

Algumas características não ideais são importantes na análise de uma aplicação com amp-ops, são elas:

- Tensão de offset
- Ganho de malha aberta finito
- Largura de banda de operação
- Saturação do sinal de saída
- Slew-rate

Tensão de offset

Característica presente no terminal de saída do amp-op.

 V_{OS} é dependente da temperatura e fica na faixa de $1\ mV$ a $5\ mV$ em amp-ops de uso geral.

A tensão de offset de saída pode ser reduzida conectando-se um potenciômetro aos terminais de offset do amp-op.

Correntes de polarização de entrada

Para que o amp-op opere é necessária a aplicação de correntes de polarização em suas entradas.

$$I_B = \frac{I_{B1} + I_{B2}}{2}$$

$$I_{OS} = |I_{B1} - I_{B2}|$$

A tensão na saída será limitada:

$$V_o \simeq R_2 \cdot I_B$$

Para reduzir esse efeito uma resistência, ${\it R}_{\it 3}$, deve ser acoplada ao terminal não-inversor.

 R_3 deverá ser escolhida da forma:

$$R_3 = \frac{R_1 R_2}{R_1 + R_2}$$

 R_3 é chamado de resistor de compensação.

Dependência do ganho em frequência

O ganho em malha aberta de um amplificador operacional não é infinito. Pelo contrário, é finito e diminui com a frequência.

Operação para grandes sinais

Saturação: Um circuito amplificador utilizando amp-op pode apresentar saturação em seus níveis de tensão quando submetido a sinais de amplitude elevada.

Exemplo

Considere o circuito amplificador não-inversor a seguir. A tensão de entrada v_I é senoidal de baixa frequência e possui amplitude V_p . O amp-op foi especificado para ter tensões de saturação de $\pm 13~V$ e uma limitação de $\pm 20~mA$ na corrente de saída.

Exemplo

Considere o circuito amplificador não-inversor a seguir. A tensão de entrada v_I é senoidal de baixa frequência e possui amplitude V_p . O amp-op foi especificado para ter tensões de saturação de $\pm 13~V$ e uma limitação de $\pm 20~mA$ na corrente de saída.

- (a) Para $V_p=1$ V e $R_L=1$ $k\Omega$, especifique o sinal resultante na saída.
- (b) Para $V_p=1,5~V$ e $R_L=1~k\Omega$, especifique o sinal resultante na saída.
- (c) Qual é o máximo valor de V_p para o qual uma senoide não distorcida é obtida na saída?

Slew-rate

Outro fenômeno que pode causar distorções não lineares é o limiar de slew-rate:

$$SR = \frac{dv_o}{dt}\bigg|_{max}$$

$$v_o(t) = V(1 - e^{-\omega_t t})$$

 $\omega_t V \le SR$

Referências bibliográficas I

- Boylestad, R. and Nashelsky, L. (2004).

 Dispositivos eletrônicos e teoria de circuitos.

 PRENTICE HALL BRASIL.
- Razavi, B. (2008).

 Fundamentals of Microelectronics.

 Wiley.
- Sedra, A. S. and Smith, K. C. (2004). Microelectronic Circuits. Oxford University Press, fifth edition.