Nuri Kang

 $+82\text{-}10\text{-}7291\text{-}5265 \mid Email: n.r.kang.quantum@gmail.com, T23297@kist.re.kr$

In Nuri Kang | ☑ Nuri Kang | ⓑ Nuri Kang (0009-0008-4376-236X)

Center for Quantum Information, Korea Institute of Science and Technology (KIST CQI), Seoul, Republic of Korea

Department of Physics, Korea University, Seoul, Republic of Korea

RESEARCH INTEREST

Quantum Error Correction, Continuous Variable Systems, Quantum Foundations, Quantum Metrology

EDUCATION

• M.S. in physics, Korea university Cumulative GPA: 4.33/4.50 (37 credits)

Mar. 2023 - Feb. 2025

Seoul, Republic of Korea

• Awarded **Outstanding Graduate Freshman Scholarship** for exceptional academic performance and research potential.

• B.S. in applied physics, Kyunghee university

Mar. 2016 - Feb. 2023

Cumulative GPA: **4.18/4.50** (144 credits) | Major GPA: **4.27/4.50** (116 credits)

Suwon, Republic of Korea

- \circ Official Leave of Absence, Nov. 2017 Oct. 2019, to complete Mandatory Military Service in Korea.
- Awarded **Academic Excellence Scholarships** eight times across multiple semesters for maintaining top academic performance throughout undergraduate studies (2016-2, 2017-1, 2017-2, 2020-2, 2021-1, 2021-2, 2022-1, 2022-2).

PUBLICATIONS

[C.3]

P=In Progress, J=Journal, T=Thesis

[P.1] Linear optical fault-tolerant quantum computation with bosonic multi-head cat qubit.

N Kang, J Lee, R Alexander, SW Lee.

Manuscript in progress, to be submitted to PRX Quantum.

[P.2] All linear optical memoryless repeater with bosonic multi-head cat qubit.

N Kang, J Lee, D Lee, SW Lee.

Manuscript in progress, to be submitted to npj Quantum Information.

[P.3] Operationally hidden or lost information in quantum measurement.

J Shin, S Bagchi, N Kang, HT Lim, SW Lee.

Manuscript in progress.

[J.1] Fault-tolerant quantum computation by hybrid qubits with bosonic cat code and single photons.

J Lee, N Kang, SH Lee, H Jeong, L Jiang, SW Lee, PRX Quantum 5, 030322 (2024).

DOI: 10.1103/PRXQuantum.5.030322

News: Phys.org, The Quantum Insider, Link of other news

[J.2] Encoded-fusion-based quantum computation for high thresholds with linear optics.

W Song, N Kang, YS Kim, SW Lee, Phys. Rev. Lett, 133, 050605 (2024).

DOI: 10.1103/PhysRevLett.133.050605 News: Phys.org, Link of other news

[T.1] Linear optical quantum computing with multi-head cat qubits.

N Kang, unpublished master's dissertation, Korea University, Seoul, Republic of Korea (2024). Submitted as part of the requirements for the Master of Science degree in physics, Korea university.

CONFERENCES C=CONFERENCE

[C.1] Fault-tolerance analysis of photonic hybrid quantum computation.

N Kang, J Lee, SW Lee, 23rd Asian Quantum Information Science (AQIS) Conference (2023). Poster presentation.

[C.2] Teleportation-based error correction with stabilizer code.

<u>N Kang</u>, SW Lee, Optical Society of Korea (OSK) Optics and Photonics Congress (2022). Poster presentation, awarded Best Poster Presentation.

Toster presentation, awarded best Toster Tresentation.

N Kang, SW Lee, Optical Society of Korea (OSK) 5th Quantum Information Conference (2022).

Poster presentation, awarded Best Poster Presentation.

Teleportation-based error correction with stabilizer code.

RESEARCH EXPERIENCE

• Quantum Information Theory Group, KIST CQI [group homepage]

LINK+ Field Training Program \rightarrow Research Assistant | Advisor : **Dr. Seung-Woo Lee**

Mar. 2022 - *Present* Seoul, Republic of Korea

• Defined hybrid qubits by integrating the four-head cat qubits with dual-rail single photon qubits and developed a high-success all-linear optical hybrid fusion operation [J.1].

This work was conducted in collaboration with **Prof. Liang Jiang** at the **University of Chicago**.

- * Performed fault-tolerance threshold calculations for measurement-based quantum computing (MBQC) architecture and analyzed resource overhead using Monte Carlo simulations with the PyMatching package.
- * Designed unit resource generation schemes and conducted a detailed analysis of resource overhead.
- Developed and analyzed an encoded fusion-based quantum computing (FBQC) architecture using active (n,m)-Shor code encoded fusions [J.2].
 - * Calculated error probabilities for encoded fusion under the photon loss errors to estimate thresholds.
 - * Optimized encoded fusion parameters to achieve the highest fault-tolerance thresholds and calculated the associated overhead and thresholds.
- Developed an all-linear optical Bell measurement for general multi-head cat qubits.

These projects were led by me as the first author, including conceptualization, analysis, and manuscript preparation.

* Analyzed fault-tolerance thresholds and resource overhead in the MBQC architecture, designing unit resource generation schemes with a focus on Raussendorf-Harrington-Goyal (RHG) lattice and bias-tailoring foliated XZZX lattice as outer codes ([P.1], [T.1]).

This work was conducted in collaboration with Xanadu's architecture team.

* Developed a memoryless one-way repeater scheme and analyzed the secret key rate and resource overhead [P.2].

• Quantum Optics Group, KIST CQI [group homepage]

Dec. 2020 - Feb. 2021, Jul. 2021 - Aug. 2021

LINK+ Field Training Program, UST internship | Advisor : Dr. Hyang-Tag Lim

Suwon, Republic of Korea

- Quantum State Tomography (QST) and Quantum Process Tomography (QPT).
 - * Converted Maximum Likelihood Estimation (MLE)-based QST and QPT codes from Mathematica to Python, achieving an average runtime optimization of 40x.
 - * Implemented a linear regression-based method, achieving a speedup of 3-4 orders of magnitude over the MLE-based approach.

HONORS AND AWARDS

• Best Poster Presentation Award

Jul. 2022

Optical Society of Korea (OSK) Optics and Photonics Congress

Jeju, Republic of Korea

• Best Poster Presentation Award

Jun. 2022

Optical Society of Korea (OSK) 5th Quantum Information Conference

Seoul, Republic of Korea

• Excellent Poster Award for Undergraduate Thesis
Department of applied physics, Kyunghee university

Dec. 2021 Suwon, Republic of Korea

• Topic : Quantum Optimization – Modern Portfolio Theory

• Excellence award, Quantum Hackathon Korea - Team Leader

Jun. 2021

IonQ | Quantum Information Research Support Center | Ministry of science and ICT

Seoul, Republic of Korea

- Topic: Variational Quantum Algorithm (VQA) for portfolio optimization problem.
- Ranked TOP 3 out of 27 teams.
- Featured in the Kyunghee University campus newspaper (20. Sep. 2021) for this achievement.

ACTIVITIES

• Teaching Assistant - General Physics (English-taught)

Sep. 2023 - Dec. 2023, Mar. 2024 - Jun. 2024

Department of Physics, Korea university

Seoul, Republic of Korea

• Led practice sessions and designed as well as assessed assignments, midterm exams, and final exams.

• Military service, Republic of Korea Army - Social Service Agent

Nov. 2017 - Oct. 2019

Security screening unit, Busan high court

Busan, Republic of Korea

• Served as a social service agent, responsible for security screening at the Busan High Court.

ADDITIONAL INFORMATION

- Languages: Korean (Native), English (Fluent)
- Programming: Python, Mathematica, LabVIEW

REFERENCES

Seung-Woo Lee

Principal Researcher

Center for Quantum Information

Korea Institute of Science and Technology

Email: swleego@kist.re.kr

Dong-Hun Lee

Professor

Department of Physics

Korea University

Email: donghun@korea.ac.kr

Kwang-Jo Lee

Professor

Department of Applied Physics

Kyunghee University Email: kjlee88@khu.ac.kr