Московский физико-технический университет Φ PKT

Лабораторная работа № 3.3.3 Опыт Милликена

Работа была выполнена студентном группы Б01-108 Филькиным Андреем

г.Долгопрудный, 2022 год.

Щель работы: Определить горизонтальную составляющую магнитного поля Земли и установить количественное соотношение между единицами электрического тока в системах СИ и СГС.

Оборудование и приборы:

- плоский конденсатор в защитном кожухе
- осветлитель
- измерительный микроскоп
- выпрямитель
- электрический вольтметр
- переключатель напряжения
- секундомер
- пульвелизатор с маслом

Теоретическая справка

Идея опыта очень проста. Если элементарный заряд действительно существует, то заряд q любого тела может принимать только дискретную последовательность значения множества Ω :

$$\Omega \stackrel{def}{=} \{q | q = \pm je, j \in \mathbb{N} \text{ or } j \equiv 0\}$$

где е - заряд электрона. В опыте измерятеся предпологаемый заряд небольших капелек масла, несущих всего несколько электронных зарядов. Сравнивая эти заряды, можно убедиться, что все заряды кратны одному и тому же числу - заряду электрона е. Для измерения заряда будем исследовать движение капелек в электрическом поле. Уравнение движения капли при свободном падении

$$m\dot{v} = P - F_{\rm TP},\tag{1}$$

где m — масса капли, v — её скорость, $F_{\rm Tp}=6\pi\eta rv=kv$ — сила вязкого трения, r — радиус капли, η — коэффициент вязкости воздуха. Отсюда получаем

$$v = \frac{mg}{k} \left(1 - e^{-kt/m} \right). \tag{2}$$

Скорость установится на

$$v_{\rm ycr} = \frac{mg}{k} = \frac{2}{9} \frac{\rho}{n} gr^2,$$

где ρ – плотность масла. Установление этой скорости происходит с постоянной

$$\tau = \frac{m}{k} = \frac{2}{9} \frac{\rho}{n} r^2$$

Обозначая h путь капли, пройденный за t_0 , получаем формулу для её радуса:

$$r = \sqrt{\frac{9\eta h}{2\rho g t_0}}. (3)$$

В случае движения в электрическом поле конденсатора с разностью потенциалов V и расстоянием l между пластинами, напряжением $E=\frac{V}{l}$ получаем уравнение движения

$$m\dot{v} = \frac{qV}{l} - mg - kv,\tag{4}$$

Новое слагаемое не влияет на τ , новая установившаяся скорость

$$v'_{\text{yct}} = \frac{qV/l - mg}{k}.$$

Если t – время подъёма на высоту h, то можно получить формулу заряда капли:

$$\frac{qV}{kl} - v_{\text{ych}} = v'_{\text{ych}} = \frac{h}{t};$$

$$k = 6\pi\eta r = 6\pi\eta \sqrt{\frac{9\eta h}{2\rho gt_0}};$$

тогда отсюда можем выразить q:

$$q = 9\pi \sqrt{\frac{2\eta^3 h^3}{g\rho}} \cdot \frac{l(t_0 + t)}{V t_0^{3/2} t}$$

Описание установки

Рис. 1: Схема установки

Схема преставлена на рисунке 1. Масло разбрызгивается пульверизатором, попадает на конденсатор C через небольное отверстие, приобретая заряд засчёт трения о воздух. Напряжение подаётся с выпрямителя и измеряется вольтметром V. Ключ K позволяет менять направление поля кондексатора. При замыкании конденсатор разряжается в $R \approx 10$ МОм.Для наблюдения за каплями установлен микроскоп, в фокальной плоскости окуляра которого виден ряд горизонтальных линий с предварительно определённым расстоянием между ними. Время движения капель замеряется электронным секундомером.

Выполнение работы

1. Оценим величину напряжения V, которое нужно для подъёма капель, несущих от 1 до 5 запрядов электрона на высоту h=1 мм, задав $t_0\approx t=20$ с:

$$V = 9\pi \sqrt{\frac{(2\eta h/t)^3}{g\rho}} \cdot \frac{l}{q} \approx 200 \cdot 10^{-3} \text{ B}.$$

- 2. Влючаем осветитель. Не включая поле, слегка надавим на грушу пульверизатора и пронаблюдаем за движением облачка масляных капель.
- 3. Настроим окуляр на резкое изображение делений. Затем сфокусируем на появившихся каплях.
- 4. В начале опыта дадим каплям без поля 5-10 секунд свободно падать, чтобы крупные успели упасть на нижнюю пластину.

U, B	500	400	400	400	270	270	270	600	400	400	515	515	515
h	2	1	1	1	1	1	1	1	1	1	1	1	1
	8.7	13.82	12.25	14.35	10.96	11.4	7.57	9.9	11.28	9.57	10.12	12.7	8.75
	8.3	17.84	16.97	15.72	10.87	8.88	6.91	10.65	10.25	9.82	10.47	13.18	8.42
	8.05	16.7	13.92	12.32	9.82	10.25	6.9	11.58	9.67	9.53	10.45	8.53	8.46
	8.5	15.99	13.9	8.91	10	9.98	6.33	13.15	10.35	9.93	10.7	12.44	7.95
	8.55	16.15	13.98	15.05	11.22	14.03	7.13	9.18	11.41	9.51	9.43	11.68	8.9
	8.3	14.5				9.98							
	7.95												
	8.26												
	8.33												
	8.25												
	8.22												
t_0 , c	8.31	15.83	14.20	13.27	10.57	10.75	6.97	10.89	10.59	9.67	10.23	11.71	8.50
2	5.5	3.01	4.18	4.4	10.14	3.41	7.25	3.5	5.45	4.53	4.31	3.43	5.25
	5.42	2.36	3.42	3.95	11.77	3.68	7.17	3.33	6	4.6	4.23	3.01	5.23
	5.69	2.56	3.66	4.03	13.256	3.38	7.31	3.48	5.74	3.88	4.03	3.13	5.3
	5.35	2.2	3.8	3.97	10.36	2.86	7.59	3.4	5.43	4.23	4.4	2.61	4.95
	5.12	2.71		3.13	11.83	3.05	8.4	3.53	4.95	4.15	4.06		4.91
	5.52			3.75		4.1							
	5.18												
	5.56												
	5.33												
	5.48												
	5.95												
t, c	5.46	2.57	3.77	3.87	11.47	3.41	7.54	3.45	5.51	4.28	4.21	3.05	5.13

1. Для оценки точности «подвесим» одну каплю в поле, а затем отключим его и измерим время падения на расстояние 2-3 клеток. Оценим заряд этой капли, полагая $t=\infty$.

Полученное среднее время $t_0=23.8~{\rm c}$ для $U=180~{\rm B},$ капля проходила одно h. Тогда

$$\delta q = 9\pi \sqrt{\frac{2\eta^3 h^3}{g\rho}} \lim_{t \to \infty} \frac{l(t_0 + t)}{V t_0^{3/2} t} = 2 \cdot 10^{-22} \text{ K}$$
л

Это демонстрирует низкую погрешность метода измерения.

Обработка данных

1. Для всех капель рассчитаем значения q. Нанесём их их на числовую прямую, домножив на 10^{19} .

Как видно из распределния, большинство зарядов расположились в диапазоне 1.3-1.7. Возьмём их НОД и запишем его как итоговый элементарный заряд:

$$e = (1.6 \pm 0.2) \cdot 10^{-19} \text{ K}$$
л

2. Оценим время релаксации, взяв за t_0 время частицы с близким к e зарядом – $t_0=10.23~{
m c}$:

$$\tau = \frac{h}{gt_0} \approx 2 \cdot 10^{-6} \text{ c}$$

Также оценим расстояние, которое частица пройдёт за это время:

$$s = \frac{1}{g} \left(\frac{h}{t_0}\right)^2 \approx 4 \cdot 10^{-11} \text{ M}$$