

Nº Mec.	Nome:	P	G

Trabalho Prático nº3 pt1: Amplificadores Operacionais

Nota: Imprima este texto de modo a poder executar convenientemente o trabalho prático.

Considere os seguintes circuitos:

- 0. O circuito integrado TL082 contém os 2 OpAmp, com alimentações positiva (V_{CC}) e negativa (V_{EE}). Assuma que $V_{CC}=|V_{EE}|=15V$.
- 1. Para os circuitos A e B, determine o ganho de tensão em função das resistências R₁ e R₂.

- 2. Com R_1 =8.2 $k\Omega$, determine R_2 de forma a obter um ganho de tensão de -4 no circuito A e de 16 no circuito B.

3. Monte os circuitos na placa branca e verifique os valores de ganho obtidos com as resistências R₁ e R₂ anteriores. Utilize para o efeito um sinal de entrada sinusoidal com amplitude de 300mV e frequência de 10kHz. Registe o valor da diferença de fase entre a entrada e a saída.

Base de tempo	s/div
Vi = Ch.1	V/div
Ponta X	Acopl. =
$Vo = Ch.\overline{2}$	V/div
Ponta X	Acopl. =

4. Qual seria o ganho obtido com o circuito B eliminando R1 e substituindo R2 por um curto-circuito? Verifique experimentalmente a sua resposta.

Trabalho Prático nº3 pt2: Resposta em frequência e saturação

Os dispositivos eletrónicos não conseguem responder de forma instantânea aos estímulos de entrada que lhes são aplicados. As maiores limitações de velocidade ocorrem devido à existência de capacidades parasitas que, em conjunto com elementos resistivos, formam circuitos (internos) do tipo passa-baixo.

Uma forma de quantificar a capacidade de resposta de um amplificador consiste na medição da sua frequência de corte; esta determina a máxima frequência a que um amplificador é capaz de responder sem perda significativa de sinal.

Define-se frequência de corte de um amplificador como sendo a frequência do sinal de entrada para a qual o sinal de saída do amplificador atinge $1/\sqrt{2}$ (aproximadamente 70%) do seu valor máximo.

Um outro tipo de limitação decorre do valor finito das tensões de alimentação, já que nem o sinal de entrada nem o de saída podem ser superiores a essas tensões. Tal decorre de efeitos de saturação dos transistores internos do OpAmp.

1. Ligue a alimentação dos circuitos (±15Vdc) montados na Parte 1 do trabalho.

Considerando o circuito da figura A, comece por aplicar um sinal de entrada com 100mV de amplitude e frequência de 1kHz. Aumente moderadamente a frequência do sinal de entrada e verifique que a amplitude do sinal de saída se mantem inalterada. Registe este valor no gráfico da esquerda.

2. De seguida, aumente a frequência do sinal de entrada até verificar que a amplitude do sinal de saída começa a diminuir. Procure a frequência à qual o sinal de saída exibe 70% do valor registado na alínea anterior. Meça a diferença de fase entre a entrada e a saída. Para esta parte use o gráfico da direita.

		:			
		-			

 Base de tempo
 _______ s/div

 Vi = Ch.1
 V/div

 Ponta X
 ______ Acopl. = _____

 Vo = Ch.2
 ______ V/div

 Ponta X
 ______ Acopl. = _____

Base de tempo	s/div
Vi = Ch.1	V/div
Ponta X	Acopl. =
Vo = Ch.2	V/div
Ponta X	Acopl. =

3. Aumente o valor da resistência R2 para 330kΩ e meça o valor da nova frequência de corte. O que pode concluir sobre a relação entre frequência de corte e ganho de tensão do circuito?

4. Considere agora o circuito da figura B. Aplique um sinal de entrada com 500mV de amplitude, frequência de 1kHz e verifique que o circuito funciona correctamente. Comece por aumentar a amplitude, primeiro para 1V e, depois, para 5V. Verifique o efeito de saturação e meça o valor da saturação positiva e negativa.

Base de tempo Vi = Ch.1	s/div V/div
Ponta X	Acopl. =
Vo = Ch.2	V/div
Ponta X	Acopl. =

Trabalho Prático nº3 pt3: Gerador de Sinal com OpAmp

Monte os seguintes circuitos, respectivamente comparador com histerese e integrador. R1 é obtida com uma resistência de $2.2k\Omega$ em série com um reóstato de $10k\Omega$ e C1=10nF. R2=10K Ω e R3=2.2k Ω . Caso o *offset* de Vi2 (e/ou do OpAmp) causar problemas, coloque em paralelo com C1 uma resistência de 470kΩ.

1. Sabendo que a alimentação é de ±15Vdc, e que as tensões de saturação dos OpAmps foram medidas na parte 2, calcule a histerese do comparador.

2. Aplique em Vi1 uma onda triangular de 1kHz, com 10Vpp. Comparando Vo1 com Vi1, meça a histerese do comparador e registe no gráfico da esquerda. No gráfico da direita comprove este resultado usando o osciloscópio em modo XY.

Vi = Ch.1

V_{TL} = _____ Histerese =

3. Com R1=2.2k Ω (reóstato no mínimo = 0 Ω), calcule Vo2, quando Vi2 é uma onda quadrada de 10kHz de ± 5 V. Confirme experimentalmente.

4. Interligue os dois circuitos como se mostra na figura abaixo e verifique que acabou de construir um gerador de onda triangular e quadrada, medindo a frequência e as amplitudes dos sinais de saída. Verifique o efeito de rodar o reóstato entre o mínimo (0Ω) e o máximo $(10k\Omega)$.

		-			
		-			

Base de tempo	s/div
Vi = Ch.1	V/div
Ponta X	Acopl. =
$Vo = Ch.\overline{2}$	V/div
Ponta X	Acopl. =