Sum of geometric series again

In 12th of July, we gave you three algorithms of calculating the prefix sum of geometric series $\{ar^{n-1}\}$. The time complexity of Algorithm 3 is $O(\log n)$, but it is quite hard to use because it needs division $(\frac{a(r^n-1)}{r-1})$.

And we introduced a problem that asked you to write a program to calculate the last 9 digits of $r + r^2 + \cdots + r^n$. We are going to use that problem again.

The reason we are using this problem today is because **this problem (prefix sum** of **geometric series)** can be defined recursively! There is a neat recursive relation in the function S(r,n), which is defined as $(r+r^2+\cdots+r^n) \bmod 10^9$. To obtain the time complexity $O(\log n)$, try to use the method given in the today's lecture that calculates $r^n \bmod m$.

Given two integers r and n, please write a program that calculates the last 9 digits of $r + r^2 + \cdots + r^n$. Note that, to calculate the last 9 digits, you can always store the remainder after dividing by 1,000,000,000 for each calculation.

Input

Your input consists of an arbitrary number of lines, but no more than 100. Each line contains two integers r $(1 \le r < 10^9)$ and n $(1 \le n \le 10^{18})$. The end of input is indicated by a line containing only the value -1.

Output

For each given input line, print the last 9 digits of $r + r^2 + \cdots + r^n$. Please print **exactly** 9 digits. If the answer is shorter than 9 digits, then print zeroes in the front of the answer to make it 9 digits.

Example

Standard input	Standard output
1 5 3 10 20170712 100000000000000000 -1	000000005 000088572 109375000

Time Limit

1 second.