Homework 3 by Jingmin Sun

Feb. 5 2020

ALL REFERENCE NUMBERS ARE CORRESPONDING TO THE TEXT

1. Page 48, 1

(a) Since U is a subspace of V, then $U \subseteq V$, and the basis of U: $u_1, u_2 \cdots u_m$ are linearly independent as well. So we can get for all $v \in V$, $v = \sum_{i=1}^m a_i u_i + \sum_{j=1}^{n-m} b_j v_j$, where $n = \dim V$. And since $\dim V = \dim U = m$, n - m = 0, so $v = \sum_{i=1}^m a_i u_i$, which means $V = \operatorname{span} \{u_1, u_2 \cdots u_m\} = U$.

2. Page 48, 4

(a) Since we need p(6) = 0, it's the same as p(0) = 0, but now, we move the origin to x = 6. So, we can consider a basis of x - 6, $(x - 6)^2$, $(x - 6)^3$, $(x - 6)^4$. And for every $p \in U$, we can get $p = a(x - 6) + b(x - 6)^2 + c(x - 6)^3 + d(x - 6)^4$.

And for every $p \in U$, we can get $p = a(x-6) + b(x-6)^2 + c(x-6)^3 + d(x-6)^4$. It's obvious that p(6) = 0.

And we need to prove the independency that assume $a(x-6)+b(x-6)^2+c(x-6)^3+d(x-6)^4=0$, and we can easily get a=b=c=d=0

(b) If we consider 6 as the origin, we can see that we are absent of order 0, which is the constant term, so we claim that the basis to add is $\{1\}$. It's clear that they are linearly independent, and we can show that for all $p \in \mathcal{P}_4$, we can represent p as

$$p = e + a(x - 6) + b(x - 6)^{2} + c(x - 6)^{3} + d(x - 6)^{4}$$

You can expand and show, proof omitted.

(c) $W = \{c : c \in \mathbf{F}\}$, as in b, we show that $\mathcal{P}_4 = U + W$. And the only thing we remain to proof is that the only intersection of U and W is zero. It is obvious since they contains the polynomial basis in different orders.

3. Page 48, 9

Firstly, we can do some reformation of span $\{v_1 + w \cdots v_m + w\}$, it's obvious that

$$span\{v_1 + w \cdots v_m + w\} = span\{v_1 + w, v_2 + w - (v_1 + w), \cdots v_m + w - (v_1 + w)\}$$
$$= span\{v_1 + w, v_2 - v_1, \cdots v_m - v_1\}$$

Since $v_1, \dots v_m$ are linearly independent, so $\{v_2 - v_1, \dots v_m - v_1\}$ are linearly independent, and

$$\dim \text{span}\{v_2 - v_1, \dots v_m - v_1\} = m - 1$$

so that

$$\dim \text{span}\{v_1 + w, v_2 - v_1, \dots v_m - v_1\} \ge m - 1$$

which means

$$\dim \operatorname{span}\{v_1 + w \cdots v_m + w\} \ge m - 1$$

4. Page 48, 11

$$\dim(U \cap W) = \dim U + \dim W - \dim(U + W)$$
$$= 3 + 5 - 8 = 0$$

Therefore, since U and W are both subspace of V, so that $U \cap W$ is also a subspace, so $U \cap W = 0$, and we can get that $\mathbb{R}^8 = U \oplus W$

5. Page 48, 12

$$\begin{aligned} \dim(U+W) &\leq 9 \\ \dim(U\cap W) &= \dim U + \dim W - \dim(U+W) \\ &= 5 + 5 - \dim(U+W) \\ &\geq 10 - 9 \\ &\geq 1 \end{aligned}$$

Therefore, $U \cap W \neq \{0\}$.

6. Page 48, 13

$$\begin{aligned} \dim(U+W) &\leq 6 \\ \dim(U\cap W) &= \dim U + \dim W - \dim(U+W) \\ &= 4+4-\dim(U+W) \\ &\geq 8-6 \\ &\geq 2 \end{aligned}$$

So, the dimension of the intersection is at least 2, which means there exists at least two independent vector $a, b \in U \cap W$, since they are independent, so neither of these vectors is a scalar multiple of the other.

7. Page 48, 14

$$\dim(U_1 + \dots + U_m) = \dim U_1 + \dim(U_2 + \dots + U_m) - \dim(U_1 \cap (U_2 + \dots + U_m))$$

$$\leq \dim U_1 + \dim(U_2 + \dots + U_m)$$

$$= \dim U_1 + \dim U_2 + \dim(U_3 + \dots + U_m) - \dim(U_2 \cap (U_3 + \dots + U_m))$$

$$\leq \dim U_1 + \dim(U_2) + \dim(U_3) + \dim(U_4 \dots + U_m)$$

$$\leq \dim U_1 + \dots + \dim(U_m)$$