

Introduction to Sorting Data with R

Revolution Analytics

- 1 Sort and Ordering operations
- 2 Using which()
- 3 Review

Overview

In this lab we'll cover data processing and manipulation. The objectives are:

- Sort rows of dataframes according to column values
- Use conditional criteria to modify values of dataframes and matrices

Outline

1 Sort and Ordering operations

Using which()

3 Review

Sorting and Ordering Operations

Two distinct functions

sort() sort a vector

order() Returns the *element order* that results in a sorted vector

sort()

```
(test <- sample(letters, 10))
## [1] "g" "j" "n" "u" "e" "s" "w" "m" "l" "b"
sort(test)
## [1] "b" "e" "g" "j" "l" "m" "n" "s" "u" "w"</pre>
```


order()

```
## [1] 10 5 1 2 9 8 3 6 4 7

test[order(test)]
## [1] "b" "e" "g" "j" "l" "m" "n" "s" "u" "w"
```


Sorting direction

Reverse the sorting direction by using decreasing in either function

```
sort(test, decreasing = TRUE)

## [1] "w" "u" "s" "n" "m" "l" "j" "g" "e" "b"

order(test, decreasing = TRUE)

## [1] 7 4 6 3 8 9 2 1 5 10
```


Application of order()

- Useful for sorting something other than the values you want to sort by
- application to dataframes
- Useful when you want to break ties

Using order() to sort a data frame

```
mtcars[order(mtcars$mpg, decreasing = TRUE), ]
```

```
disp hp drat
                                             wt qsec vs am gear carb
                     33.9
                            4 71.1 65 4.22 1.835 19.90
## Toyota Corolla
## Fiat 128
                     32.4
                                    66 4.08 2.200 19.47
## Honda Civic
                     30.4
                           4 75.7 52 4.93 1.615 18.52 1
## Lotus Europa
                     30.4 4 95.1 113 3.77 1.513 16.90 1
## Fiat X1-9
                     27.3 4 79.0 66 4.08 1.935 18.90
## Porsche 914-2
                     26.0 4 120.3 91 4.43 2.140 16.70 0
```


Sort the mtcars by from the highest horsepower car to the lowest horsepower car.

Tie breaks

order() can take multiple variables

It will break ties in earlier variables by later variables

```
mtcars[order(mtcars$mpg, mtcars$hp, decreasing = TRUE), ]
```

```
##
                     mpg cyl disp hp drat
                                          wt qsec vs am gear carb
## Toyota Corolla
                    33.9
                          4 71.1 65 4.22 1.835 19.90
## Fiat 128
                    32.4
                         4 78.7 66 4.08 2.200 19.47 1 1
                         4 95.1 113 3.77 1.513 16.90
## Lotus Europa
                    30.4
                    30.4 4 75.7 52 4.93 1.615 18.52 1 1 4
## Honda Civic
                    27.3 4 79.0 66 4.08 1.935 18.90 1 1
## Fiat X1-9
## Porsche 914-2
                    26.0 4 120.3 91 4.43 2.140 16.70
```

. . .

- Sort the mtcars data set by automatic vs. manual transmission (am), and within each transmission type, sort from the most efficient to the least.
- ADVANCED: How could you have one varible sorted in a descending order, but another variable sorted in an ascending order?

Outline

Sort and Ordering operations

2 Using which()

3 Review

The function which()

Use which() to identify values in a vector or array that satisfy a list of criteria, e.g. which car in mtcars has the highest horse power:

```
which(mtcars$hp == max(mtcars$hp))
```

[1] 31

Uses of which()

We can use this piece of information to extract the name of the car:

```
rownames(mtcars)[which(mtcars$hp == max(mtcars$hp))]
## [1] "Maserati Bora"
```

Or all the information about the car:

■ Which car in mtcars has the lowest hp? Hint: use min() to find the minimum value.

Order and identify some data

- Order mtcars by the columns am, gear, and carb.
 - Explore what happens when you reorder mtcars by the same variables, but in a different order (try gear am, and carb).
 - How does changing the order of their inclusion change the output?
- Which rows in mtcars have hp > 100 but fewer than 6 cylinders (cyl)?

which() and NA values

- Can index with a logical vector
- Slightly different behavior than using which()

```
vec
              3 4 NA NA 7 8 NA 10 NA 12 13 14 15 16 NA 18 19 20 21 22 23
## [24] NA 25 26
vec%%2 == 0
       FALSE
               TRUE FALSE
                                   NA
                                         NA FALSE
                                                                       NA
         TRUE FALSE
                                         NA TRUE FALSE
                                                         TRUE FALSE
                     TRUE FALSE
                                 TRUE
                                                                     TRUE
## [23] FALSE
                 NA FALSE
                           TRUE
which(vec\%2 == 0)
```


which() vs. logical

```
letters[vec%%2 == 0]

## [1] "b" "d" NA NA "h" NA "j" NA "l" "n" "p" NA "r" "t" "v" NA "z"

letters[which(vec%%2 == 0)]

## [1] "b" "d" "h" "j" "l" "n" "p" "r" "t" "v" "z"
```

which() removes NA values in the logical vector: it only returns the indices where the logical vector is TRUE

Using which() to assign data

We've used which() up to this point to select data out of a larger data set.

Another use is to set values conditionally.

Example:

- 250 hp should be more than enough for anyone!
- So, let's treat all cars with > 250 hp as having only 250 hp

```
mtcars2 <- mtcars
mtcars2$hp[mtcars2$hp > 250] <- 250</pre>
```


Your turn:

Store cars in a cars1 dataframe, replace all distance values greater than 40 with a value of 40

Extracting Columns rather than rows

- Prior examples: which() to select and assign rows in a dataset
- We can also use which() to select and assign columns in a dataset
- Create a new data set that is just hp and mpg from the mtcars data set.

head(mtcars)

```
mpg cyl disp hp drat
                                            wt qsec vs am gear carb
                   21.0
                          6 160 110 3.90 2.620 16.46 0
## Mazda RX4
## Mazda RX4 Wag
                   21.0 6 160 110 3.90 2.875 17.02 0
## Datsun 710
                   22.8 4 108
                                 93 3.85 2.320 18.61 1 1
## Hornet 4 Drive
                   21.4 6 258 110 3.08 3.215 19.44 1 0
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0
                          6 225 105 2.76 3.460 20.22
   Walliant
                   18.1
```


Extracting Columns rather than rows

Can select both rows and columns

Extract hp and mpg for all automatic transmission cars (am == 0).

Extract mpg, wt and disp for all manual transmission cars in the mtcars data set.

Outline

Sort and Ordering operations

Using which()

3 Review

Review

- Sorting with sort() and order()
- Selecting and assigning subsets of a dataset

Thank you

Revolution Analytics is the leading commercial provider of software and support for the popular open source R statistics language.

www.revolutionanalytics.com 1.855.GET.REVO

Twitter: @RevolutionR

