Examen de Matemáticas para Ingreso a la Maestria en Ciencias de la Computación 2015 CIMAT, A.C.

(Tiempo: 3 horas 30)

Nombre:		
Fecha:		

Instrucciones:

- Justificar lo más precisamente posible todas sus respuestas (incluso cuando el problema es de elecciones múltiples).
- Hacer dos grupos de hojas con sus respuestas. El primer grupo que contenga las respuestas a las preguntas 1 a 9, y el otro para respuestas de las preguntas 10 en adelante.

Problema 1 [0.5 puntos]

Encuentre todas las soluciones de la ecuación

$$3x^4 - 5x^3 - 20x^2 = 4x^2 + 2x^4.$$

Problema 2 [0.5 puntos]

Sea x > 1. Calcule

$$\frac{d}{dx} \left[\int_1^{x^2} \left(t + \frac{1}{t} - \cos t \right) dt \right].$$

Problema 3 [0.5 puntos]

Considere un triángulo ABC que tiene como vértices los puntos

$$A = (-1,0), \quad B = (2,3), \quad C = (5,-3).$$

Encuentre la ecuación de la recta que pasa por el centroide del triángulo y que es perpendicular al lado AB del triángulo.

Problema 4 [0.5 puntos]

Dado el hecho que $5 \times 6 = 30$, ¿De cuál de las siguientes proposiciones lógicas podemos considerar este hecho como un contra-ejemplo? Explicar su respuesta.

1. El producto de dos números impares es impar.

- 2. El producto de dos números pares es par.
- 3. Si el producto de dos enteros no es múltiplo de 4, entonces esos enteros no son consecutivos.
- 4. Si el producto de dos enteros es múltiplo de 4, entonces esos enteros no son consecutivos.
- 5. Todo entero impar puede ser escrito como el producto de dos enteros impares.

Problema 5 [1.0 punto]

Se tienen números complejos $x = x_r + ix_i$ y $y = y_r + iy_i$. Dar las expresiones de las partes real e imaginaria de los siguientes números:

$$ax + by$$
, xy^2 , $\frac{x}{y}$,

donde a y b son números reales.

Problema 6 [1.0 punto]

Don Francisco tiene 67 ovejas, dispuestas en 3 prados, A, B, C. Le dice a su vecino Don Miguel: - Si tomo dos veces el número de ovejas de A, y le agrego las de B, me da C ovejas.

Don Miguel completa: - Si tomas el número de ovejas de A, y dos veces el número de ovejas de B, tienes (C+1) ovejas.

¿Cúantas ovejas hay en C?

(a)
$$20$$
 (b) 30 (c) 40 (d) 50 (e) 60 .

Problema 7 [1.0 punto]

Dada la matriz

$$A = \left[\begin{array}{cc} 1 & 6 \\ 1 & 2 \end{array} \right],$$

encontrar los valores de λ que hacen que

$$\det(A - \lambda I) = 0,$$

donde $\det(.)$ es el determinante e I es la matriz identidad.

Problema 8 [1.0 punto]

Dada $f(\cdot)$ como en la Figura siguiente. Dibuja

1.
$$f_1(x) = 2f(x-1)$$

2.
$$f_2(x) = 2 + f(x/2)$$

Problema 9 [1.0 punto]

Determinar el valor de a para el cual la integral siguiente toma su valor mínimo:

$$\int_0^1 (x^2 - a)^2 dx.$$

Problema 10 [1.0 punto]

Encuentre la solución general y = y(x) de la ecuación

$$y' + y = yxe^{x+2}.$$

Problema 11 [1.0 punto]

Dibujar en el plano real el conjunto de los puntos que satisfacen las desigualdades:

$$\begin{array}{ccc} x^2 - 2x + y^2 + 4y - 4 & \leq & 0, \\ y - x & \leq & 0, \\ y - x + 6 & \geq & 0. \end{array}$$

Problema 12 [1.0 punto]

El número 6526 es un número interesante: tiene 4 dígitos (6, 5, 2, 6) y se puede notar que todos los pares consecutivos de dígitos ("65", "52", "26") son múltiplos de 13. Ahora, consideramos otro número del mismo tipo, que llamaremos N, compuesto de 200 dígitos:

$$N = d_1 d_2 d_3 \dots d_{200}, \qquad 0 \le d_i \le 9 \quad i = 1, 2, \dots, 200.$$

Si sabemos que el primer dígito de este numerotote es $d_1 = 9$, entonces

- (a) ¿Quién debería ser el siguiente dígito d_2 ?
- (b) Una vez que d_2 es conocido, ¿cuál debería ser el tercer dígito d_3 ?
- (c) ¿Cuál es el último dígito d_{200} de N?

Problema 13 [1.5 puntos]

Encuentre la transformación lineal T tal que mapea a los vectores $v_1 = (2,1)^{\top}$, y $v_2 = (1,-3)^{\top}$ en

$$Tv_1 = \begin{pmatrix} -1\\3 \end{pmatrix}, \qquad Tv_2 = \begin{pmatrix} 10\\5 \end{pmatrix}.$$

¿Cuál es la imagen del vector promedio $\frac{1}{2}(v_1+v_2)$ bajo la transformación T? ¿Cuáles son los vectores v cumplen la condición

$$Tv = \binom{2}{1}?$$

Problema 14 [1.5 puntos]

Sea y = y(x) una función que satisface la ecuación

$$x^3 + y^3 - 12x - 8y - 16 = 0,$$

Encuentre el valor de x en el cual el eje X es tangente a la gráfica de la función y.

Problema 15 [2.0 puntos]

Se lanza un proyectil en el vacío desde un punto O (ver figura) con velocidad v_0 y ángulo de inclinación θ . La trayectoria del proyectil es descrita por la función $y(x) = \frac{-g}{2v_0^2\cos^2\theta}x^2 + x\tan\theta$ para $0 \le \theta < \frac{\pi}{2}$ y donde $g = 9.8 \ m/s^2$.

- (a) Encuentra la altura máxima (y_{max}) que alcanza el proyectil en función de θ y v_0 .
- (b) Expresa la función de alcance del proyectil (x_{alc}) en términos de θ y v_0 y calcula el valor de θ que da el máximo alcance suponiendo v_0 constante.

Problema 16 [1.0 punto]

Demostrar por inducción matemática que para cualquier entero positivo n se cumple que

$$\sum_{i=0}^{n} (i+1)2^{i} = n2^{n+1} + 1.$$

Problema 17 [1.0 punto]

Decimos que A^{-1} es la inversa de la matriz A si $AA^{-1} = A^{-1}A = I$, donde I es la matriz identidad. Pruebe que

- (a) Si A y I + A son invertible, entonces $I + A^{-1}$ es invertible y $(I + A^{-1})^{-1} = A(I + A)^{-1}$.
- (b) Si I + A es invertible, entonces $A(I + A)^{-1} = (I + A)^{-1}A$.