1. 활성화 함수가 ReLU인 이층 신경망이 dictionary

$$\{W_1: \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix}, \ b_1: [5,4,3,2,1], \ W_2: \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \ b_2: [-1,-2,0,0,0]\}$$

로 주어져 있다.

- (i) 3개의 데이터 [1,2,3,4,5], [2,3,4,5,6], [3,4,5,6,7]에 대하여 한번에 배치처리로 계산하여 소프트맥스(softmax)값을 구하시오.
- (ii) forward.py를 수정하여 검산하시오.
- 2. neuralnet_mnist_batch.py를 수정해서 가중치 행렬을 표준정규분포를 따라 랜덤하게 선택하고 편향 벡터는 제로 벡터로 놓고 정확도를 측정하시오.
- 3. neuralnet_mnist_batch.py를 수정해서 배치크기를 1,2,3,···,30으로 잡았을때 각각 걸리는 시간을 측정해서 그래프로 표시하시오.
- 4. neuralnet mnist error.py를 수정해서 다음에 답하시오.
 - (i) 신경망이 90프로 이상의 확신을 가지고 맞춘 이미지가 몇프로 인지 구하고 첫 25장의 이미지를 5×5 테이블로 출력하시오.
 - (ii) 신경망이 50프로 미만의 아리송하게 맞춘 이미지가 몇프로 인지 구하고 첫 25장의 이미지를 5×5 테이블로 출력하시오.
 - (iii) 신경망이 90프로 이상의 확신을 가지고 대답했으나 틀린 이미지가 몇프로 인지 구하고 첫 25장의 이미지를 5×5 테이블로 출력하시오. 이미지 밑 라벨 옆에 신경망이 답한 숫자도 표시하시오. 신경망이 왜 이렇게 대답했을지 설명하시오.
- 5. (i) MNIST imshow.py를 수정하여 노멀라이즈한 MNIST 테스트 데이터에 평균은 0이고 표준편차는 σ 인 정규분포를 따른 노이즈를 더해서 다음과 같이 각각 출력하시오. ($\sigma=0.1,0.2,0.5$)

(ii) neuralnet mnist.py를 수정해서 노멀라이즈한 MNIST 테스트 데이터에 평균은 0이고 표준편차는 σ 인 정규분포를 따른 노이즈를 더해서 각각 정확도를 구하시오. ($\sigma=0.1,0.2,0.5$)

6. neuralnet_mnist_batch.py에 다음 코드를 추가하면 다음과 같은 10×10 행렬이 출력이 된다.

confusion = np.zeros((10,10), dtype=int)

```
for k in range(len(x)):
    i = int(t[k])
    y = predict(network, x[k])
    j = np.argmax(y)
    confusion[i][j] += 1
print(confusion)
```

]]	962	Θ	3	2	1	3	5	1	3	0]
[Θ	1109	2	2	Θ	2	5	2	13	0]
]	13	2	952	7	7	1	15	13	19	3]
[1	1	24	937	0	20	1	11	11	4]
[1	2	6	0	921	0	12	2	3	35]
[10	1	4	34	5	793	14	5	18	8]
[16	3	5	1	10	9	910	1	3	0]
[4	8	24	5	6	0	0	958	1	22]
[5	4	6	19	10	13	14	11	888	4]
[12	6	1	9	31	7	1	16	4	922]]

- (i) 신경망이 4를 9라고 답한 횟수를 답하고 그 이유를 설명하시오.
- (ii) 대각원이 큰 숫자가 나오는 이유를 설명하시오.
- (iii) 다음 값을 출력하도록 코드를 추가하시오.

신경망이 4라고 예측한 데이터중 실제 라벨이 4인 데이터의 수 4라고 예측한 데이터의 수

(iv) 다음 값을 출력하도록 코드를 추가하시오.

라벨이 4인 데이터중 신경망이 4라고 예측한 데이터의 수 라벨이 4인 데이터의 수

(v) 다음 코드를 추가한 후 실행하면 왼쪽과 같은 이미지가 출력된다. 오른쪽 그림과 같이 틀린 조합이 빈번하면 더 밝게 나오도록 코드를 추가하거나 또는 수정하시오.

```
plt.imshow(confusion, cmap=plt.cm.gray)
plt.show()
```


