Mustafa Bhadsorawala

518-556-8271 | mb8595@nyu.edu | github.com/mustafab0 | LinkedIn

SUMMARY

Roboticist with expertise in control system design and over 3 years of experience in additive manufacturing and product development. Proficient in optimal control and state estimation, robot perception, embedded programming.

EDUCATION

New York University New York, NY

Masters in Mechatronics, Robotics and Automation; GPA: 3.8

Aug 2021 - May 2023

Courses: Advanced Mechatronics, Optimal Control and Reinforcement Learning, Robot Localization, Robot Perception

K.J Somaiya College of Engineering

Mumbai, India

Bachelor of Mechanical Engineering; GPA: 3.4

Courses: Linear Algebra, Machine Design, Fundamentals of Robotics

Aug 2013 - May 2017

SKILLS

Technical Skills: Optimal Control & State Estimation, Robot Perception, Localization, Sensor Fusion, Circuit Design, Embedded Programming, Path planning, Additive Manufacturing, PLC

Tools: C++17, Python, MATLAB, Simulink, ROS2, OpenCV, PyTorch, Nvidia Jetson, R-Pi, Linux, Solidworks

EXPERIENCE

Mechatronics, Controls and Robotics Lab

New York, NY

Research Assistant

Jan 2022 - Current

Wi-Fi based SLAM: Designed and implemented a smartphone based Indoor Localization system achieving an accuracy of ± 0.5 m

- Developed a tailored sensor fusion algorithm, merging state estimation from WiFi-RTT and IMU Extended Kalman Filter(EKF)
- Achieved 85Hz sampling on RP2040 microcontroller, concurrently running embedded EKF system and writing data using SPI

Teaching Assistant for Automatic Controls: Performed Hardware-in-loop experiments teaching classical controls concepts

- Performed system identification, linearized non-linear system response to develop PID and LQR controllers using Simulink
- Constructed plant models in MATLAB SimScape, and crafted digital twins of lab apparatus for simulation and hands-on practice **Amazon Robotics** Seattle, WA

Robotics Project Engineering Intern

Jun 2022 - August 2022

Deployed (KUKA) Robotics cells: Verified installation, performed system calibration and perception system validation

• Established new standard practice as part of continuous improvement project for validating robotic drive usage over installed expansion joints on the robotic floor, leading to a significant 56% reduction in process time

Baari Labs

Indore, India

Operations & Product Development Engineer

Oct 2019 - Jan 2021

Product Development: Managed the end-to-end process of products from design concepts through production

• Collaborated with interdisciplinary team to lead development of UV-C disinfection box project, ensuring delivery within 6 weeks ACADEMIC PROJECTS

Cross Spherical(CS) "360°" gear actuator (Electro-Mechanical System Development): Active ball joint with custom controller

- Achieved a **360° range of motion** through an innovative **differential drive mechanism**, maintaining stationary stepper motors
- Devised a comprehensive full-state feedback control loop by strategically positioning sensors and created a custom PCB using Eagle CAD to accommodate motor drivers and microcontroller components
- Deployed an optimal trajectory generator, executing inverse kinematics and embedded motor control tasks at 1Ghz
- Improved design iteration cycle speed by **programming CAD macros** to generate CS and monopole gears using input parameters iLOR Control of quadcopter (Optimal Control): Modelled an iterative LOR controller for flight control a quadcopter
- Designed a quadratic cost function to automate optimal path generation for desired trajectory by minimizing cost

NeRF based Navigation for the blind (Computer Vision): A PyTorch-based localization pipeline for guiding the visually impaired

- Attained an 18% improvement in indoor localization accuracy compared to standalone methods like Visual Odometry and VPR
- Trained a NeRF Neural Net on real-world data to create lifelike environment maps, and integrated an agent capable of navigating and capturing views within these generated environments

Training Program for UR16e (ROS2): Designed comprehensive training program for the UR16e robot with ROS2

- Established communication with ROS2 PC through TCP/IP protocol, enabling control using a joint trajectory controller
- Interfaced custom soft robotic end-effector tool with the robot and sEMG electodes to the robot control panel

Autonomous Delivery Robot (Embedded firmware/hardware): Robot delivery in urban environments

- Integrated a Raspberry Pi with a multi-core Propeller microcontroller using UART communication protocol
- Employed **Dijkstra**'s algorithm for real-time **path planning**, leveraging **robot perception** for obstacle detection

HONORS AND AWARDS

Selected in top 10 for pan-India design competition for Mechatronic Earthworm, Aakruti 2016.

Awarded Best Capstone project for affordable Bionic prosthetic arm, 2017.