Определение пола, возраста и этноса человека по фотографии и генерация лиц по заданным атрибутам с применением нейронных сетей и методов компьютерного зрения

Дипломный проект по профессии «Data Scientist»

Age:13 Ethni

Каторгин Иван Группа DSU-PROD-67

Содержание

Постановка задачи для глубокого обучения

Анализ исходных данных, 2 преобразования и очистка

Определение пола, возраста и этноса человека по

Генерация лиц по 4 заданным атрибутам

Выводы

5

Постановка задачи для глубокого обучения

Описание проекта

Исходная задача:

Актуальность задачи, её место в предметной области:

- 1. Определение заданных атрибутов (пол, возраст, этнос) человека по фотографии
- 2. Генерация лиц по заданным атрибутам

Определение заданных атрибутов (пол, возраст, этнос) по изображению лица может применяться в решении следующих задач:

- оборот товаров, имеющих возрастные ограничения
- реклама человеку релевантных товаров и услуг
- 🔍 соблюдение правил доступа несовершеннолетних лиц к информации
- поиск лиц находящихся в розыске и т.д.

Генерация лиц по заданным атрибутам может применяться в:

- маркетинге и рекламе
- разработке и дизайне
- образовании

Целевые метрики

Задача классификации (определение пола и этноса)

Метрика	Определение пола	Определение этноса	Определение возраста	Генерация лиц
Accuracy	+	+		
Precision	+			+
Recall	+			+
F1 score	+	+		
MAE			+	
RMSE			+	
FID				+

Задача регрессии (определение возраста)

$$MAE = \frac{\sum |(y_i - y_p)|}{n}$$

$$RMSE = \sqrt{\frac{\sum (y_i - y_p)^2}{n}}$$

Генерация лиц по заданным атрибутам

$$ext{FID} = \|\mu - \hat{\mu}\|^2 + ext{Tr}ig(\Sigma + \hat{\Sigma} - 2(\Sigma\hat{\Sigma})^{1/2}ig)$$

Анализ исходных данных, преобразования и очистка

Age 13 Ethnicity 0 Gender 1

Описание датасета

Название датасета	AGE, GENDER AND ETHNICITY (FACE DATA) CSV
Источник данных	https://www.kaggle.com/datasets/nipunarora8/age-gender- and-ethnicity-face-data-csv
Тип данных	Int64, object
Размер датасета	5 столбцов, 23705 строк
Размер изображений	48 x 48 пикселей

Датасет представляет собой CSVфайл с изображениями лиц, маркированными по возрасту, полу и этнической принадлежности.

Набор данных содержит 23705 строк и 5 столбцов:

- Возраст
- Этнос
- Пол
- Имя изображения
- Пиксели (массив в строку пикселей изображения)

звания этносов: 0: 'Белый'; 1: "Черный'; 2: 'Азиат'; 3: 'Индиец'; 4: 'Другой'

Разведочный анализ данных

Основные выводы по разведочному анализу данных:

- Пропуски отсутствуют
- Явных выбросов или аномалий не обнаружено
- Датасет не сбалансирован

Преобразования и очистка

Аугментация данных

```
1 # Инициализация ImageDataGenerator
2 datagen = ImageDataGenerator(
3 rotation_range=15, # случайный поворот на ±15 градусов
4 width_shift_range=0.1, # случайный сдвиг по ширине на ±10%
5 height_shift_range=0.1, # случайный сдвиг по высоте на ±10%
6 shear_range=0.1, # случайный сдвиг
7 zoom_range=0.1, # случайное увеличение/уменьшение
8 horizontal_flip=True, # случайное отражение по горизонтали
9 fill_mode='nearest' # заполнение пикселей при трансформациях
10 )
```


Определение пола, возраста и этноса человека по фотографии

Параметры моделей

Параметры

Модель	Параметры	Input Shape	Предобучение	Attention	Особенности
ResNet50	~23.5M	224x224x3	lmageNet	Нет	Базовая transfer learning модель
EfficientNetB0	~4.0M	224x224x3	Нет	Нет	Эффективная архитектура
CNN (Multi-Task)	~1.2M	48x48x1	Нет	Нет	Residual-блоки, простота
CNN + Attention	~1.3M	48x48x1	Нет	Да	Spatial + Channel Attention
SNN (EfficientNetB0)	~4.1M	48x48x1	Нет	Нет	Общие признаки + индивидуальные ветки

Гиперпараметры

Модель	Оптимизатор (LR)	Batch Size	Loss Weights (Пол/Этнос/ Возраст)	Loss Functions (Пол/Этнос/ Возраст)	Метрики (Пол/Этнос/ Возраст)	Регуляризация	Attention	Input Shape	Особенности
ResNet50	Adam (0.001)	32	1.0 / 1.5 / 0.8	BCE / SparseCE / MSE	Accuracy / Accuracy / MAE	Dropout 0.5	Нет	224x224x3	Fine-tuning, предобучение на ImageNet
EfficientNetB0	Adam (0.0005)	32	1.0 / 1.2 / 0.8	BCE / SparseCE / MAE	Accuracy / Accuracy / MAE	Dropout 0.5, L2(0.01)	Нет	224x224x3	Обучение с нуля
CNN (Multi- Task)	Adam (0.001)	32	1.0 / 1.5 / 0.8	BCE / SparseCE / MAE	Accuracy / Accuracy / MAE	Dropout 0.3	Нет	48x48x1	Residual-блоки
CNN + Attention	Adam (0.001)	32	1.0 / 1.5 / 0.8	BCE / SparseCE / MAE	Accuracy / Accuracy / MAE	Dropout 0.3	Да (Spatial + Channel)	48x48x1	Улучшенная интерпретируемость признаков
SNN (на базе EfficientNetB0)	Adam (0.001)	32	1.0 / 1.5 / 0.8	BCE / SparseCE / MAE	Accuracy / Accuracy / MAE	Dropout 0.3-0.5, L2(0.01)	Нет	48х48х1 → 3 канала	Callbacks (EarlyStopping, ReduceLR)

Итоги обучения

Метрики для предсказания пола

Модель	Accuracy	Precision	Recall	F1 score
ResNet50	83,05%	78,87%	90,72%	84,38%
EfficientNetB0	50,36%	66,39%	3,30%	6,29%
CNN	80,35%	79,25%	82,73%	80,95%
CNN + Attention	86,45%	91,23%	80,93%	85,77%
SNN	64,35%	64,74%	64,49%	64,61%

Метрики для предсказания этноса

Модель	Accuracy	F1 score
ResNet50	64,33%	64,09%
EfficientNetB0	26,19%	21,82%
CNN	62,96%	61,33%
CNN + Attention	71,93%	69,11%
SNN	38,18%	34,01

Метрики для возраста

Модель	MAE	RMSE
ResNet50	5,49	7,46
EfficientNetB0	24,37	30,91
CNN	13,14	18,09
CNN + Attention	13,14	18,09
SNN	8,68	12,58

Графики обучения модели CNN + Attention

Анализ метрик

Анализ ошибок

Визуальный анализ

Истинно: Пол: Мужчина Этнос: Другой Возраст: 50

Предсказано: Пол: Мужчина Этнос: Белый Возраст: 45 Истинно: Пол: Женщина Этнос: Черный Возраст: 32

Предсказано: Пол: Женщина Этнос: Черный Возраст: 26 Истинно: Пол: Мужчина Этнос: Черный Возраст: 46

Предсказано: Пол: Мужчина Этнос: Черный Возраст: 46 Истинно: Пол: Мужчина Этнос: Индиец Возраст: 70

Предсказано: Пол: Мужчина Этнос: Черный Возраст: 54 Истинно: Пол: Женщина Этнос: Белый Возраст: 47

Предсказано: Пол: Женщина Этнос: Белый Возраст: 34

Истинно: Пол: Мужчина Этнос: Индиец Возраст: 70

Предсказано: Пол: Мужчина Этнос: Индиец Возраст: 40

Истинно: Пол: Женщина Этнос: Индиец Возраст: 110

Предсказано: Пол: Женщина Этнос: Индиец Возраст: 102

Истинно: Пол: Мужчина Этнос: Другой Возраст: 82

Предсказано: Пол: Мужчина Этнос: Черный Возраст: 64

Истинно: Пол: Женщина Этнос: Черный Возраст: 54

Предсказано: Пол: Мужчина Этнос: Черный Возраст: 56

Истинно: Пол: Женщина Этнос: Другой Возраст: 6

Предсказано: Пол: Мужчина Этнос: Азиат Возраст: 8

Проверка работоспособности

Пол: Мужчина Этнос: Белый Возраст: 26

Пол: Женщина Этнос: Белый Возраст: 14

Пол 🗙

Пол: Мужчина Этнос: Белый Возраст: 32

Пол: Мужчина Этнос: Белый Возраст: 33

Пол 🤡

Пол: Женщина Этнос: Белый Возраст: 46

Пол: Женщина Этнос: Белый Возраст: 71

Пол 🤡 Этнос 🗸

Направления по улучшению

- Использование более современных архитектур с механизмами внимания (ConvNeX и др.)
- Использование трансформеров (ViT, Swin Transformer)
- Раздельные энкодеры для разных задач
- Более тщательная балансировка данных по всем задачам
- Раздельная оптимизация для разных задач (возможно, с разными learning rate)
- Увеличение количества эпох обучения

Генерация лиц по заданным атрибутам

Модели GAN

Параметры моделей

Модель	LATENT_DIM	BATCH_SIZE	EPOCHS	Attention	SpectralNorm	LR Generator	LR Discriminator	Оптимизатор
GAN-1	100	256	200	Нет	Нет	1e-4	1e-4	Adam
GAN-2	256	256	200	Нет	Нет	1e-4	2e-4	Adam
GAN-3	256	64	135	Self + Cross	Нет	1e-4	2e-4	Adam
GAN-4	256	32	130	Self + Cross	Нет	1e-5	2e-5	Adam
GAN-5	256	32	140	Self + Cross	Нет	1e-5	4e-5	Adam

- Модели учитывают возраст, пол и этническую принадлежность при генерации
- Многозадачный дискриминатор: помимо классификации реальное/фейковое, дискриминатор предсказывает атрибуты

Итоги обучения

GAN-3

GAN-4

Модели DCGAN

Параметры моделей

Параметр	Значение	Описание
Тип модели	Deep Convolutional GAN (DCGAN)	Состязательная сеть со сверточными слоями
Вход генератора	100-мерный вектор	Нормальное распределение N(0,1)
Выход генератора	48×48×1	Grayscale изображения в диапазоне [-1, 1]
Вход дискриминатора	48×48×1	Реальные или сгенерированные изображения
Выход дискриминатора	Скаляр [0,1]	Вероятность реальности изображения
Batch Size	32	Оптимальный баланс стабильности/скорости
Learning Rate (G)	0.0003	Быстрее обучение генератора
Learning Rate (D)	0.0001	Медленнее обучение дискриминатора
Beta1 (Adam)	0.5	Стандарт для GAN (меньше momentum)
Эпохи	50	Достаточно для сходимости
Loss Function	Binary Crossentropy	Стандарт для бинарной классификации

Две модели:

- DCGAN
- DCGAN c Attention:
 - 3 Attention слоя в

генератор

- 2 Attention слоя в

дискриминатор

Итоги обучения

Модель DCGAN (без Attention)

Модель DCGAN (c Attention)

Параметры модели

Г	lараметр	Значение	Описание
	IMG_SIZE	48x48	Размер изображения
	CHANNELS	1	Количество каналов (1 - grayscale)
Основные параметры	LATENT_DIM	256	Размерность латентного пространства
Парамотры	BATCH_SIZE	32	Размер батча для обучения
	EPOCHS	80	Количество эпох обучения
	weight_init	RandomNormal(mean=0.0, stddev=0.02)	Инициализация весов
Архитектурные	NUM_CLASSES['gender']	2	Пол: 0=мужчина, 1=женщина
параметры	NUM_CLASSES['ethnicity']	5	Этническая принадлежность: 0-4 категории
	NUM_CLASSES['age']	1	Возраст: регрессия (нормализованный 0-1)
	Входной слой	256 + 12 + 12 + 1 = 281	Объединенный вход (шум + эмбеддинги)
	Dense слой	12×12×512 = 73728 нейронов	Начальный полносвязный слой
Генератор	Reshape	(12, 12, 512)	Преобразование в пространственную структуру
	Conv2DTranspose слои	256→128→64 фильтров	Последовательность апсемплинга
	Выходной слой	(48, 48, 1)	Сгенерированное изображение
	Conv2D слои	64→128→256 фильтров	Последовательность даунсемплинга
Дискриминатор	Embedding размер	10	Размерность эмбеддингов для атрибутов
	Выходы	4	[validity, gender, ethnicity, age]
Оптимизатори	generator_optimizer	Adam(Ir=0.0001, β_1 =0.5)	Оптимизатор генератора
Оптимизаторы	discriminator_optimizer	Adam(Ir=0.0002, β_1 =0.5)	Оптимизатор дискриминатора
	Состязательная	BinaryCrossentropy	Реальный/фейковый
Функции поторі	Пол	BinaryCrossentropy	Бинарная классификация
Функции потерь	Стнос	SparseCategoricalCrossentropy	Многоклассовая классификация
	Возраст	MeanSquaredError	Регрессия
Параметры	Dropout rate	0.3	Вероятность dropout в дискриминаторе
обучения	LeakyReLU alpha	0.2	Коэффициент для LeakyReLU

Итоги обучения

Проверка работоспособности

GAN-3

GAN-4

- Модели учитывают возраст, пол и этническую принадлежность при генерации
- Многозадачный дискриминатор: помимо классификации реальное/фейковое, дискриминатор предсказывает атрибуты
- В целом модели рабочие и генерируют лица по заданным атрибутам, но являются недообученными по причине инфраструктурных ограничений

cDCGAN

Направления по улучшению

- 1. Увеличение разрешения:
- Использовать прогрессивное наращивание разрешения (ProGAN)
- Применить архитектуру StyleGAN для лучшей детализации
- 2. Улучшение стабильности обучения:
- Использовать WGAN-GP с градиентным штрафом
- Применить TTUR (Two Time-scale Update Rule)
- 3. Оптимизация гиперпараметров:
- Поиск оптимального размера скрытого пространства
- Настройка коэффициентов для разных компонентов потерь
- 4. Увеличение количества эпох обучения моделей:
- Обучить модели не менее чем на 1000-х эпохах

Выводы

Выводы

- В дипломной работе были решены две задачи:
 - 1. определение пола, возраста и этноса человека по фотографии
 - 2. генерация лиц по заданным атрибутам
- Качество выполнения задач контролировалось использованием метрик:
 Accuracy, Precision, Recall, F1 score, MAE, RMSE и FID
- В рамках решения первой задачи было построено пять различных архитектур моделей:

ResNet50

EfficientNetB0

CNN (Multi-Task)

CNN + Attention

SNN (на базе EfficientNetB0)

- Наилучшей оказалась модель простой обычной сверточной нейронной сети, созданной с нуля специально для данной задачи без предобученных моделей на основе Multi-Task Learning (MTL) (модель CNN) с добавлением Attention-слоя
- Для решения задачи генерации лиц по заданным атрибутам рассмотрены модели GAN, DCGAN и гибридная модель: условная Deep Convolutional GAN (cDCGAN) для генерации лиц по заданным атрибутам
- Даны рекомендации по дальнейшему улучшению лучших моделей

Спасибо за внимание!

Определение пола, возраста и этноса человека по фотографии и генерация лиц по заданным атрибутам с применением нейронных сетей и методов компьютерного зрения

Дипломный прфект по профессии «Data Scientist»

