Cryptography Lecture 12

Arkady Yerukhimovich

October 7, 2024

Outline

1 Lecture 11 Review

2 MAC Domain Extension (Chapters 4.3.2, 4.4)

3 Authenticated Encryption (Chapter 4.5)

Arkady Yerukhimovich

Lecture 11 Review

- Review of padding oracle attack
- The need for integrity
- MACs definition and construction

Announcements

- Exam 1 will be on Wednesday, October 16
 - It will cover material through Wednesday's lecture
 - Next Monday will be a review lecture
 - You can bring 2 sheets of 8.5×11 paper with notes

Announcements

- Exam 1 will be on Wednesday, October 16
 - It will cover material through Wednesday's lecture
 - Next Monday will be a review lecture
 - You can bring 2 sheets of 8.5×11 paper with notes
- Research project proposals due Wednesday, October 23
 - Team members' names
 - Brief project proposal what topic will you cover, and what about it will you be looking at
 - No more than 1 page total

Homework 3, problem 1.C

Problem: Is $F_k^3(x) = F_k(x)||F_k(F_k(x))|$ a secure PRF?

5/23

Arkady Yerukhimovich Cryptography October 7, 2024

Outline

Lecture 11 Review

2 MAC Domain Extension (Chapters 4.3.2, 4.4)

3 Authenticated Encryption (Chapter 4.5)

Arkady Yerukhimovich

An n-bit MAC

PRF-based MAC (Fixed Length MAC)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- $\operatorname{Mac}_k(m)$: Given $m \in \{0,1\}^n$, compute $t = F_k(m)$
- Verify_k(m, t): Compute $t' = F_k(m)$ output 1 iff t = t'
- This MAC can only authenticate messages of up to n bits
- How can we authenticate longer messages?

Arkady Yerukhimovich

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate each block separately

$$t=t_1||t_2||\cdots||t_\ell, ext{ where } t_i=\operatorname{\mathsf{Mac}}_k'(m_i)$$

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate each block separately

$$t=t_1||t_2||\cdots||t_\ell, ext{ where } t_i=\operatorname{\mathsf{Mac}}_k'(m_i)$$

Problem:

- \bullet A can reorder blocks of m
- ullet Given $m=m_1||m_2$, $t=t_1||t_2$, output $m'=m_2||m_1$ and $t'=t_2||t_1|$

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate each block together with an index indicating order

$$t = t_1 ||t_2|| \cdots ||t_\ell|$$
, where $t_i = \mathsf{Mac}'_k(i||m_i)$

(Make blocks a little shorter to accomodate)

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate each block together with an index indicating order

$$t = t_1 ||t_2|| \cdots ||t_\ell|$$
, where $t_i = \mathsf{Mac}_k'(i||m_i)$

(Make blocks a little shorter to accomodate)

Problem:

- ullet ${\cal A}$ can truncate message m
- Given $m=m_1||m_2$, $t=\mathsf{Mac}_k'(1||m_1)||\mathsf{Mac}_k'(2||m_2)$, output $m'=m_1$ and $t'=\mathsf{Mac}_k'(1||m_1)$

Arkady Yerukhimovich Cryptography October 7, 2024 9 / 23

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate message length in each block

$$t = t_1 ||t_2|| \cdots ||t_\ell|$$
, where $t_i = \mathsf{Mac}_k'(\ell ||i|| m_i)$

10/23

Arkady Yerukhimovich Cryptography October 7, 2024

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Authenticate message length in each block

$$t = t_1 ||t_2|| \cdots ||t_\ell|$$
, where $t_i = \mathsf{Mac}_k'(\ell ||i|| m_i)$

Problem:

- ullet ${\cal A}$ can mix and match tags from two different messages $m,\ m'$
- Given

$$m=m_1||m_2$$
, $t={\sf Mac}_k'(2||1||m_1)||{\sf Mac}_k'(2||2||m_2)$, and $m'=m_1'||m_2'$, $t'={\sf Mac}_k'(2||1||m_1')||{\sf Mac}_k'(2||2||m_2')$ output $\overline{m}=m_1||m_2'$ and $\overline{t}={\sf Mac}_k'(2||1||m_1)||{\sf Mac}_k'(2||2||m_2')$

Arkady Yerukhimovich Cryptography October 7, 2024 10 / 23

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_\ell$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \mathsf{Mac}_k'(r||\ell||i||m_i)$

Starting Point

- Let $m=m_1||m_2||\cdots||m_\ell$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_\ell$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \mathsf{Mac}_k'(r||\ell||i||m_i)$

Theorem: This is secure arbitrary-length MAC

Starting Point

- Let $m = m_1 ||m_2|| \cdots ||m_\ell|$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_\ell$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \operatorname{Mac}'_k(r||\ell||i||m_i)$

Theorem: This is secure arbitrary-length MAC Proof (in book):

- ullet Security of Π' means that ${\mathcal A}$ cannot make a new block with valid tag
- We've prevented the attacks we discussed
- These are (essentially) the only possible attacks

Starting Point

- Let $m=m_1||m_2||\cdots||m_\ell$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_{4\ell}$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \mathsf{Mac}_k'(r||4\ell||i||m_i)$

The Problem:

Starting Point

- Let $m=m_1||m_2||\cdots||m_\ell$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_{4\ell}$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \mathsf{Mac}_k'(r||4\ell||i||m_i)$

The Problem:

This requires

- $|t| = 4\ell n$ bits
- 4ℓ calls to PRF

Question: Can we do domain extension more efficiently?

Outline

1 Lecture 11 Review

MAC Domain Extension (Chapters 4.3.2, 4.4)

3 Authenticated Encryption (Chapter 4.5)

Arkady Yerukhimovich Cryptography October 7, 2024 13 / 23

We want to build a "secure" communication channel (between A and B):

We want to build a "secure" communication channel (between A and B):

ullet Content of message should remain confidential, even if ${\mathcal A}$ can get decryptions of some messages

We want to build a "secure" communication channel (between A and B):

- ullet Content of message should remain confidential, even if ${\mathcal A}$ can get decryptions of some messages
- ullet ${\cal A}$ cannot modify ciphertext in transit without detection

We want to build a "secure" communication channel (between A and B):

- ullet Content of message should remain confidential, even if ${\mathcal A}$ can get decryptions of some messages
- ullet ${\cal A}$ cannot modify ciphertext in transit without detection
- ullet ${\cal A}$ cannot produce new valid ciphertext on behalf of either party

14 / 23

We want to build a "secure" communication channel (between A and B):

- \bullet Content of message should remain confidential, even if ${\mathcal A}$ can get decryptions of some messages
- ullet ${\cal A}$ cannot modify ciphertext in transit without detection
- ullet ${\cal A}$ cannot produce new valid ciphertext on behalf of either party

Question

Does CCA-secure encryption achieve these properties?

We want to build a "secure" communication channel (between A and B):

- ullet Content of message should remain confidential, even if ${\mathcal A}$ can get decryptions of some messages
- ullet ${\cal A}$ cannot modify ciphertext in transit without detection
- ullet ${\cal A}$ cannot produce new valid ciphertext on behalf of either party

Question

Does CCA-secure encryption achieve these properties?

- CCA-security achieves item 1
- ullet But, it does not prevent ${\mathcal A}$ from producing valid ciphertexts unrelated to the challenge
- This violates bullet 3

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

EncForge_{A,Π}(n)

• The challenger chooses $k \leftarrow \text{Gen}(1^n)$, and gives \mathcal{A} an oracle $\text{Enc}_k(\cdot)$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{EncForge}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \operatorname{Gen}(1^n)$, and gives $\mathcal A$ an oracle $\operatorname{Enc}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs ciphertext c

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

EncForge_{A,Π}(n)

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$, and gives \mathcal{A} an oracle $\text{Enc}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs ciphertext c
- Let $m = Dec_k(c)$ and let Q be set of Enc queries made by A.

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

EncForge_{A,Π}(n)

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$, and gives \mathcal{A} an oracle $\text{Enc}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs ciphertext c
- Let $m = Dec_k(c)$ and let Q be set of Enc queries made by A.
- ullet We say that $\mathsf{MacForge}_{\mathcal{A},\Pi}(\mathit{n})=1$ (i.e., \mathcal{A} wins) if
 - $m \neq \perp$ (decryption succeeds)
 - m ∉ Q

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

EncForge_{A,Π}(n)

- The challenger chooses $k \leftarrow \operatorname{Gen}(1^n)$, and gives $\mathcal A$ an oracle $\operatorname{Enc}_k(\cdot)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs ciphertext c
- Let $m = Dec_k(c)$ and let Q be set of Enc queries made by A.
- ullet We say that MacForge $_{\mathcal{A},\Pi}(\mathit{n})=1$ (i.e., \mathcal{A} wins) if
 - $m \neq \perp$ (decryption succeeds)
 - m ∉ Q

Definition: Encryption scheme $\Pi = (Gen, Mac, Verify)$ is *unforgeable* if for all PPT \mathcal{A} it holds that

$$\mathsf{Pr}[\mathsf{EncForge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$$

Authenticated Encryption

Definition: Π is an authenticated encryption scheme if it is:

- CCA-secure
- Unforgeable

Constructing Authenticated Encryption

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Arkady Yerukhimovich Cryptography October 7, 2024 17/2

Constructing Authenticated Encryption

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

Constructing Authenticated Encryption

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

• $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_F}(m)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_F}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$
- Output (c, t)

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 1: Encrypt and Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$
- Output (c, t)

A problem:

• t may not provide confidentiality of m. In particular, if Mac is deterministic $t = \text{Mac}_{k_M}(m)$ may leak info about m

4 D > 4 B > 4 E > E > 9Q(>

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

• $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m||t)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m||t)$
- Output (c)

Pro: t no longer revealed in the clear

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 2: Authenticate then Encrypt

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $t \leftarrow \mathsf{Mac}_{k_M}(m)$
- $c \leftarrow \operatorname{Enc}_{k_F}(m||t)$
- Output (c)

Pro: *t* no longer revealed in the clear A problem:

 May allow padding oracle attack. Especially, if provide decryption error messages ("bad padding" vs. "MAC failed")

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

• $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_F}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(c)$

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

- $k_E \leftarrow \operatorname{Gen}(1^n), k_M \leftarrow \operatorname{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_E}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(c)$
- Output (c, t)

Building blocks:

- $\Pi_M = (Gen, Mac, Verify)$ is a secure MAC
- $\Pi_E = (Gen, Enc, Dec)$ is a CPA-secure encryption scheme

Try 3: Encrypt then Authenticate

- $k_E \leftarrow \text{Gen}(1^n), k_M \leftarrow \text{Gen}(1^n)$
- $c \leftarrow \operatorname{Enc}_{k_{\scriptscriptstyle E}}(m)$
- $t \leftarrow \mathsf{Mac}_{k_M}(c)$
- Output (*c*, *t*)

Use encrypt-then-authenticate

Encrypt then authenticate is best way to construct authenticated encryption

Arkady Yerukhimovich Cryptography October 7, 2024 19 / 23

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

Arkady Yerukhimovich Cryptography October 7, 2024 20 / 23

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

Proof:

9 By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

- **1** By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query
- **2** Decryption oracle is useless (so, A_r can answer Dec queries)

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

- **1** By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query
- 2 Decryption oracle is useless (so, A_r can answer Dec queries)
 - For every query Dec(c', t') made by A_c , A_r knows that either:
 - \bullet (c',t') was output by prior Enc query, or
 - $Dec(c', t') = \perp$

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

- **1** By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query
- **2** Decryption oracle is useless (so, A_r can answer Dec queries)
 - For every query Dec(c', t') made by A_c , A_r knows that either:
 - ullet (c',t') was output by prior Enc query, or
 - $Dec(c', t') = \perp$
 - \mathcal{A}_r answers \mathcal{A}_c 's Enc queries using own oracle, storing queries and answers

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

- By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query
- 2 Decryption oracle is useless (so, A_r can answer Dec queries)
 - For every query Dec(c', t') made by A_c , A_r knows that either:
 - \bullet (c', t') was output by prior Enc query, or
 - $Dec(c', t') = \perp$
 - A_r answers A_c 's Enc queries using own oracle, storing queries and answers
 - on Dec query from A_c , see if it is result of prior Enc query, if so output m, if not output \perp

Assumptions and Notation:

- Assume Mac is a strong MAC and Enc is a CPA-secure encryption scheme
- Say that C = (c, t) is valid if t is a valid tag on c

Proof:

- **9** By strong security of MAC, PPT A_c cannot generate any valid C' = (c', t') that it did not receive from $Enc(\cdot)$ oracle query
- 2 Decryption oracle is useless (so, A_r can answer Dec queries)
 - For every query Dec(c', t') made by A_c , A_r knows that either:
 - \bullet (c',t') was output by prior Enc query, or
 - $Dec(c', t') = \perp$
 - \mathcal{A}_r answers \mathcal{A}_c 's Enc queries using own oracle, storing queries and answers
 - on Dec query from \mathcal{A}_c , see if it is result of prior Enc query, if so output m, if not output \bot

• \mathcal{A}_r does not need a Dec oracle, so CPA-security implies CCA-security

Arkady Yerukhimovich

Cryptography

October 7, 2024

20 / 23

• It is tempting to use the same key k for both Enc and Mac.

Arkady Yerukhimovich Cryptography October 7, 2024 21/23

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

A bad example:

• Let $\operatorname{Enc}_k(m) = F_k(r||m)$

Arkady Yerukhimovich

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

A bad example:

- Let $\operatorname{Enc}_k(m) = F_k(r||m)$
- Let $Mac_k(c) = F_k^{-1}(c)$ (secure MAC if F_k is strong PRP)

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

A bad example:

- Let $\operatorname{Enc}_k(m) = F_k(r||m)$
- Let $Mac_k(c) = F_k^{-1}(c)$ (secure MAC if F_k is strong PRP)
- Output is $(Enc_k(m), Mac_k(Enc_k(m)))$

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

A bad example:

- Let $\operatorname{Enc}_k(m) = F_k(r||m)$
- Let $Mac_k(c) = F_k^{-1}(c)$ (secure MAC if F_k is strong PRP)
- Output is $(Enc_k(m), Mac_k(Enc_k(m)))$

The Problem:

$$(\operatorname{Enc}_k(m), \operatorname{Mac}_k(\operatorname{Enc}_k(m))) = F_k(r||m), F_k^{-1}(F_k(r||m))$$
$$= F_k(r||m), r||m$$

- It is tempting to use the same key k for both Enc and Mac.
- DO NOT DO THIS!

A bad example:

- Let $\operatorname{Enc}_k(m) = F_k(r||m)$
- Let $Mac_k(c) = F_k^{-1}(c)$ (secure MAC if F_k is strong PRP)
- Output is $(Enc_k(m), Mac_k(Enc_k(m)))$

The Problem:

$$(\operatorname{Enc}_k(m), \operatorname{Mac}_k(\operatorname{Enc}_k(m))) = F_k(r||m), F_k^{-1}(F_k(r||m))$$
$$= F_k(r||m), r||m$$

Insecure

Using the same key reveals the message

21/23

The Status of Authenticated Encryption

- Authenticated encryption has become standard for secure communication
- Special modes of operations for authenticated encryption of arbitrary length messages:
 - Galois Counter Mode (GCM) standardized by NIST

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- ullet Prevent ${\cal A}$ from interfering

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- Prevent A from interfering

Basic Idea

Use authenticated encryption to encrypt every message between ${\it A}$ and ${\it B}$.

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- Prevent A from interfering

Basic Idea

Use authenticated encryption to encrypt every message between \boldsymbol{A} and \boldsymbol{B} .

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- ullet Prevent ${\cal A}$ from interfering

Basic Idea

Use authenticated encryption to encrypt every message between A and B.

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

ullet Re-ordering attack – ${\cal A}$ swaps order of messages over the network

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- ullet Prevent ${\cal A}$ from interfering

Basic Idea

Use authenticated encryption to encrypt every message between A and B.

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

- ullet Re-ordering attack ${\cal A}$ swaps order of messages over the network
- \bullet Replay attack ${\cal A}$ resends valid ct sent before by one of the parties

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- ullet Prevent ${\cal A}$ from interfering

Basic Idea

Use authenticated encryption to encrypt every message between A and B.

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

- ullet Re-ordering attack ${\cal A}$ swaps order of messages over the network
- ullet Replay attack ${\cal A}$ resends valid ct sent before by one of the parties
- Reflection attack A sends message from A to B back to A.

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- Prevent A from interfering

Basic Idea

Use authenticated encryption to encrypt every message between A and B.

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

- \bullet Re-ordering attack ${\cal A}$ swaps order of messages over the network
- ullet Replay attack ${\cal A}$ resends valid ct sent before by one of the parties
- Reflection attack A sends message from A to B back to A.

Solution: Use a session counter and directionality bit

• $c \leftarrow \operatorname{Enc}_k(b_{A,B}||ctr_{A,B}||m)$

Suppose, A and B (sharing a key k) want to establish a secure communication session:

- Send many messages back and forth
- ullet Prevent ${\cal A}$ from interfering

Basic Idea

Use authenticated encryption to encrypt every message between ${\it A}$ and ${\it B}$.

The Problems: To ensure both parties receive only correct content, need to deal with following attacks

- ullet Re-ordering attack ${\cal A}$ swaps order of messages over the network
- ullet Replay attack ${\cal A}$ resends valid ct sent before by one of the parties
- Reflection attack A sends message from A to B back to A.

Solution: Use a session counter and directionality bit

- $c \leftarrow \operatorname{Enc}_k(b_{A,B}||ctr_{A,B}||m)$
- Requires A and B to be stateful

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 - 夕久で

23 / 23