Comentários sobre o material da disciplina

Alef

Exercício 1. Exercício 3.3 do script: Ache o conjunto de todas as subfórmulas de

$$\varphi = (p \to q \to r) \land (s \lor s \to r)$$

usando a Definição 3.2. Apresente também uma árvore sintática.

Respostas e Comentários

Primeiramente, vamos calcular as subfórmulas da fórmula φ dada, de acordo com a definição 3.2 do script:

$$\begin{split} sub(\varphi) &= \{\varphi\} \cup sub(p \rightarrow q \rightarrow r) \cup sub(s \vee s \rightarrow r) \\ &= \{\varphi\} \cup \{p \rightarrow q \rightarrow r\} \cup sub(p) \cup sub(q \rightarrow r) \cup \{s \vee s \rightarrow r\} \cup sub(s \vee s) \cup sub(r) \\ &= \{\varphi, p \rightarrow q \rightarrow r\} \cup \{p\} \cup \{q \rightarrow r\} \cup sub(q) \cup sub(r) \cup \{s \vee s \rightarrow r\} \cup \{s \vee s\} \cup sub(s) \cup sub(s) \cup \{r\} \\ &= \{\varphi, p \rightarrow q \rightarrow r, p, q \rightarrow r\} \cup \{q\} \cup \{r\} \cup \{s \vee s \rightarrow r, s \vee s\} \cup \{s\} \cup \{s\} \cup \{r\} \\ &= \{\varphi, p, q, r, s, p \rightarrow q \rightarrow r, q \rightarrow r, s \vee s \rightarrow r, s \vee s\}. \end{split}$$

Sobre a árvore sintática de uma fórmula $\varphi \in Fm$, a construção dela se dá da seguinte forma:

- Se $\varphi \in \{\top, \bot\} \cup V$, então φ não tem nós-filhos;
- Se $\varphi = \neg \psi$, para alguma fórmula $\psi \in Fm$, então φ possui somente um nó-filho, que é ψ ;
- Se $\varphi = \psi \Box \chi$, para fórmulas $\psi, \chi \in Fm$, e para algum símbolo $\Box \in \{\land, \lor, \rightarrow\}$, então φ possui dois nós-filhos, ψ e χ .

Note a construção da árvore pedida no exercício:

Note também que, conforme o script, cada nó da árvore é uma subfórmula da fórmula no nó-raiz, e cada folha é uma fórmula atômica.

Exercício 2. (Exercício da definição 3.7) Seja $v:V\longrightarrow\{0,1\}$ uma valoração. Então há somente uma extensão $v^*:Fm\longrightarrow\{0,1\}$ de acordo com a definição 3.7.

Respostas e Comentários

Queremos provar que, para uma fórmula genérica $\varphi \in Fm$, e para uma valoração genérica $v \in 2^V$, existe somente uma extensão de v que satisfaz as condições da definição. Como φ é genérica, precisamos de uma prova para todas as fórmulas, e, por isso, usaremos o **princípio de indução nas fórmulas**.

Então sejam $\varphi \in Fm$ e $v \in 2^V$. Como queremos provar a unicidade da extensão de v, suponha que há duas extensões $v_1, v_2 : Fm \longrightarrow \{0, 1\}$.

Se φ for atômica, então $\varphi \in \{\top, \bot\} \cup V$. Se $\varphi = \top$, então $v_1(\varphi) = v_2(\varphi) = 1$. Se $\varphi = \bot$, então $v_1(\varphi) = v_2(\varphi) = 0$. Se $\varphi \in V$, então, como v_1 e v_2 são extensões de v, temos que $v_1(\varphi) = v_2(\varphi) = v(\varphi)$. Então, se φ for atômica, provamos que $v_1(\varphi) = v_2(\varphi)$. Então temos a base da indução provada.

Agora que temos um caso base provado, podemos assumir que, para duas fórmulas ψ, χ , temos que $v_1(\psi) = v_2(\psi)$ e $v_1(\chi) = v_2(\chi)$, e essa é a **hipótese de indução**.

Agora, se $\varphi = \neg \psi$, então $v_1(\varphi) = v_1(\neg \psi) = \begin{cases} 1, \text{ se } v_1(\psi) = 0 \\ 0, \text{ caso contrário} \end{cases}$. Analogamente, temos também que $v_2(\varphi) = v_1(\neg \psi) = v$

 $\begin{cases} 1, \text{ se } v_2(\psi) = 0 \\ 0, \text{ caso contrário} \end{cases}$. Como $v_1(\psi) = v_2(\psi)$ por hipótese de indução, temos que $v_1(\neg \psi) = v_2(\neg \psi)$, e esse é o **passo** indutivo para o caso $v_2 = \neg \psi$.

Também podemos ver facilmente que, se $\varphi = \psi \Box \chi$ para algum símbolo $\Box \in \{\land, \lor, \rightarrow\}$, como $v_1(\psi) = v_2(\psi)$ e $v_1(\chi) = v_2(\chi)$ por hipótese de indução, segue que $v_1(\varphi) = v_1(\psi \Box \chi) = v_2(\varphi) = v_2(\psi \Box \chi)$, i.e., $v_1(\varphi) = v_2(\varphi)$. Segue que $v_1 = v_2$.

Veja que, normalmente, em prol da clareza, dividiremos explicitamente uma prova por indução em três partes: a base, a hipótese, e o passo indutivo. Tente reescrever com suas palavras a prova, preenchendo os detalhes para o caso $\varphi = \psi \Box \chi$, para $\Box \in \{\land, \lor, \to\}$.

Exercício 3. Vamos responder ao exercício 3.8 do script:

(a) Seja M um conjunto. Estabeleça uma função bijetora entre 2^M e Pow(M).

Respostas e Comentários

Primeiramente, vamos rever a noção do que é uma **função característica**. Seja X um conjunto. Para $S\subseteq X$, definimos a função característica $\chi_S:X\longrightarrow\{0,1\}$ tal que $\begin{cases} \chi_S(x)=1,\ \text{se }x\in S\\ 0,\ \text{caso contrário} \end{cases}$. Ou seja, é uma função que, dado um elemento e um subconjunto do conjunto, atribui 1 se o elemento pertence ao subconjunto, ou 0, caso contrário. Por exemplo, para o conjunto $A=\{1,2,3\}$, temos que $\chi_{\{1,2\}}(2)=1$ e $\chi_{\{1,2\}}(3)=0$. Então, nada mais natural do que atribuir cada função característica ao subconjunto associado a ela; em outras palavras, se X é um conjunto, a função

$$f: 2^X \longrightarrow Pow(X)$$
$$\chi_S \longmapsto S$$

é obviamente bijetora.

(Relembre que uma função $f:A\longrightarrow B$ é injetora se $f(a)=f(b)\Rightarrow a=b$, e é sobrejetora se para todo $y\in B$ existe $x\in A$ tal que f(x)=y.)

(b) Seja A um conjunto. O que é A^{\varnothing} ? Por que uma função f do tipo $f:A^{\varnothing}\longrightarrow B$ pode ser interpretada como uma constante $f\in B$?

Respostas e Comentários

Sabemos que, para dois conjuntos A, B, B^A é o conjunto de todas as funções de A para $B, i.e., \{f|f: A \longrightarrow B\}$. Então $A^\varnothing = \{f|f: \varnothing \longrightarrow A\}$. Relembre que uma função $F: X \longrightarrow Y$ é uma relação $F \subseteq X \times Y$ tal que para todo $x \in X$ existe um único $y \in Y$ tal que $(x,y) \in F$. Então, se $f \in A^\varnothing$, temos que $f \subseteq \varnothing \times A$.

Agora relembre que $A \times B = \{(a, b) : a \in A \in b \in B\}$. Daí $\emptyset \times A = \emptyset$, já que não há elementos para coletar no vazio. Então $f \subseteq \emptyset \times A \Rightarrow f \subseteq \emptyset \Rightarrow f = \emptyset$, e temos que $A^{\emptyset} = \{\emptyset\}$, ou seja, a única função cujo domínio é o conjunto vazio (sendo o contradomínio um conjunto qualquer) é a função vazia.

Portanto, para A, B conjuntos, uma função do tipo $f: A^{\varnothing} \longrightarrow B$ associa o único elemento de A^{\varnothing} , que é o conjunto vazio, a um único elemento em B. Portanto, é como se fosse uma constante em B.

(c) Use diagonalização de Cantor para provar que o conjunto 2^V de todas as valorações é incontável.

Respostas e Comentários

Primeiramente, vamos relembrar o seguinte: seja X um conjunto infinito. Dizemos que X é **enumerável**, ou **contável**, se existe uma bijeção $f: X \longrightarrow \mathbb{N}$. Claro que isto é equivalente a existir uma bijeção $g: \mathbb{N} \longrightarrow X$.

Mais ainda: no estudo da enumerabilidade, estamos interessados em comparar o tamanho, *i.e.*, a cardinalidade, a quantidade de elementos de um conjunto, com a quantidade de números naturais, de forma tal que possamos "contar" seus elementos, ou seja, atribuir a cada um dos elementos um número natural único. Para isso, basta que exista uma função injetora $f: X \longrightarrow \mathbb{N}$, tanto para X finito, que é o caso trivial, para X infinito, que é mais interessante. Dizemos também que essa função **enumera** X. No mais, para A, B conjuntos quaisquer, existe uma função injetora de A para B se, e somente se, $|A| \leq |B|$. Portanto, dizer que um conjunto é enumerável é o mesmo que dizer que ele tem cardinalidade menor ou igual à cardinalidade dos números naturais.

Antes de começarmos, lembre-se: uma sequência em um conjunto A é uma função $s: \mathbb{N} \longrightarrow A$. Portanto, é como se fosse um vetor infinito enumerável (a_0, a_1, a_2, \ldots) tal que todas as componentes são elementos em A (cada "casa" do vetor representa um número natural, e cada elemento a_i de A que preenche essa casa corresponde ao elemento $s(i) \in A$, para $i \in \mathbb{N}$).

Agora sobre diagonalização de Cantor: esse argumento foi inicialmente dado para demonstrar que o conjunto de todas as sequências binárias infinitas, isto é, o conjunto $2^{\mathbb{N}}$, não é contável. Para essa demonstração, suponha que o conjunto $2^{\mathbb{N}}$ de todas as sequências binárias infinitas seja contável. Então, podemos escrever $2^{\mathbb{N}} = \{s_0, s_1, s_2, \ldots\}$ de tal forma que sempre existe um número natural que corresponde univocamente a um elemento de $2^{\mathbb{N}}$. Então, podemos escrever

$$s_0 = 1111110...$$

 $s_1 = 0101110...$
 $s_2 = 0000010...$ (1)

de forma tal que todos os elementos de $2^{\mathbb{N}}$ aparecem nessa listagem.

Agora, vamos construir um elemento \boldsymbol{s} da seguinte forma:

$$s(n) = \begin{cases} 1, \text{ se } s_n(n) = 0\\ 0, \text{ caso contrário} \end{cases}.$$

Ou seja, na listagem que fizemos em (1), percorremos toda a diagonal principal da lista e escrevemos o elemento trocado na sequência que estamos construindo:

```
s_0 = 1111110...

s_1 = 0101110...

s_2 = 0000010... \Rightarrow

\vdots

\Rightarrow s = 001...
```

Agora note o seguinte: $s \in 2^{\mathbb{N}}$, pois s é uma sequência binária infinita. Contudo, apesar da suposição de que todas as sequências estão na lista, s não está na lista, pois difere de todos os elementos listados s_i em pelo menos uma casa, $s_i(i)$, isto é, na diagonal.

Portanto, a suposição de que poderíamos enumerar todos os elementos de $2^{\mathbb{N}}$ leva a uma contradição, e, portanto, estava errada, o que significa que não podemos enumerar $2^{\mathbb{N}}$.

Para provarmos que o conjunto de todas as valorações 2^V não é contável, usaremos um argumento muito similar: suponha que exista uma enumeração para 2^V . Então, podemos escrever $2^V = \{v_0, v_1, v_2, \ldots\}$. Vamos escrever uma matriz infinita com as variáveis na primeira linha e as valorações na primeira coluna, de forma tal que na posição a_{ij} consta o valor-verdade dado pela valoração v_i da variável x_j :

	x_0	x_1	x_2	
v_0	1	1	0	
v_1	0	1	1	
v_2	1	1	1	
:	:	:	:	

Agora, vamos analisar o que acontece com a valoração $v \in 2^V$ tal que:

$$v(x_i) = \begin{cases} 1, \text{ se } v_i(x_i) = 0\\ 0, \text{ caso contrário} \end{cases}.$$

Ou seja, essa valoração troca o valor verdade de uma variável para cada valoração na tabela; portanto, $v \neq v_i$, para todo $i \in \mathbb{N}$. Segue que $v \notin \{v_0, v_1, v_2, \ldots\}$, o que é uma contradição, pois supusemos que todas as valorações tinham sido enumeradas. Então a hipótese de que 2^V é enumerável estava errada, e segue que 2^V não pode ser enumerado.

Exercício 4. Vamos definir as funções restantes do exemplo 3.9 e demonstrar o lema 3.10.

Respostas e Comentários

Primeiramente, é fácil definir f_{\wedge} e f_{\rightarrow} :

$$\begin{array}{c} f_{\wedge}: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\} \\ (0,0) \longmapsto 0 \\ (0,1) \longmapsto 0 \\ (1,0) \longmapsto 0 \\ (1,1) \longmapsto 1 \end{array} \qquad \begin{array}{c} f_{\rightarrow}: \{0,1\} \times \{0,1\} \longrightarrow \{0,1\} \\ (0,0) \longmapsto 1 \\ (0,1) \longmapsto 1 \\ (1,0) \longmapsto 0 \\ (1,1) \longmapsto 1 \end{array}$$

Agora vamos demonstrar o lema 3.10 de acordo com a definição 3.7. Veja que para as variáveis e os conectivos de aridade zero, o comportamento é exatamente o esperado.

Para a negação, sabemos que

$$v(\neg \varphi) = \begin{cases} 1, \text{ se } v(\varphi) = 0\\ 0, \text{ caso contrário} \end{cases}.$$

Pelo lema, precisamos provar que

$$v(\neg \varphi) = f_{\neg}(v(\varphi)).$$

Pela definição de f_{\neg} , temos que

$$f_{\neg}(v(\varphi)) = \begin{cases} 1, \text{ se } v(\varphi) = 0, \\ 0, \text{ caso contrário} \end{cases},$$

o que significa que o lema está de acordo com a definição.

Para a conjunção,

$$f_{\wedge}(v(\varphi), v(\psi)) = \begin{cases} 1, \text{ se } v(\varphi) = v(\psi) = 1, \\ 0, \text{ caso contrário} \end{cases}.$$

Para a disjunção,

$$f_{\vee}(v(\varphi),v(\psi)) = \begin{cases} 1, \text{ se } v(\varphi) = 1 \text{ ou } v(\psi) = 1, \\ 0, \text{ caso contrário} \end{cases}.$$

Para a implicação,

$$f_{\to}(v(\varphi), v(\psi)) = \begin{cases} 1, \text{ se } v(\varphi) = 1 \text{ e } v(\psi) = 0, \\ 0, \text{ caso contrário} \end{cases}.$$

Todas essas igualdades são facilmente verificáveis e estão de acordo com a definição 3.7, o que demonstra o lema 3.10.

Exercício 5. Vamos completar a demonstração do lema 3.13.

Respostas e Comentários

Estamos no passo indutivo da prova de que, dadas uma fórmula $\varphi \in Fm$ e duas valorações $v_1, v_2 \in 2^V$, se $v_1(x) = v_2(x)$ para toda variável $x \in var(\varphi)$, então $v_1(\varphi) = v_2(\varphi)$.

Por hipótese de indução, admita que se $v_1(x) = v_2(x)$ para toda $x \in var(\psi)$, então $v_1(\psi) = v_2(\psi)$, e assuma o mesmo para χ .

Suponha agora $v_1(x) = v_2(x)$ para toda $x \in var(\varphi)$, para $\varphi = \psi \Box \chi$, para algum símbolo $\Box \in \{\land, \lor, \rightarrow\}$. Temos que $var(\varphi) = var(\psi) \cup var(\chi)$. Então segue que $v_1(a) = v_2(a)$ para toda $a \in var(\psi)$ e $v_1(b) = v_2(b)$ para toda $b \in var(\chi)$. Então, por hipótese de indução, temos que $v_1(\psi) = v_2(\psi)$ e $v_1(\chi) = v_2(\chi)$. Nesse caso, seja $f_{\Box} \in \{f_{\land}, f_{\lor}, f_{\to}\}$ alguma das funções booleanas do conjunto, e podemos escrever

$$v_1(\psi\Box\chi) = f_{\Box}(v_1(\psi), v_1(\chi)) = f_{\Box}(v_2(\psi), v_2(\chi)) = v_2(\psi\Box\chi).$$

Exercício 6. Uma fórmula φ é válida se, e somente se, $\neg \varphi$ for contraditória (página 13 do script).

Respostas e Comentários

Primeiramente, vamos lembrar que dizemos "A se, e somente se, B" quando $A \Leftrightarrow B$. Então, uma prova desse tipo, geralmente, requer uma "ida" e uma "volta". A ida demonstra $A \Rightarrow B$, e a volta demonstra $B \Rightarrow A$. Claro que se em todos os passos da prova vale a ida e a volta, então não precisa fazer separadamente. Por exemplo,

$$x - 2 = 0 \Leftrightarrow x = 2$$
.

Outro exemplo: seja $\varphi = \bot$. Então φ é uma fórmula atômica. Contudo, se ψ é uma fórmula atômica, não podemos concluir que $\psi = \bot$, pois existem outras fórmulas atômicas. Nesse caso, vale a "ida", mas não vale a "volta".

Agora a solução do exercício: suponha $\varphi \in Fm$ uma fórmula válida, e seja $v \in 2^V$. Pela definição de validez, temos que $v \vDash \varphi$. Pela definição do conectivo \neg , temos que $v \nvDash \neg \varphi$, o que é o mesmo que dizer que $\neg \varphi$ é contraditória, já que v é genérica e não satisfaz à fórmula.

Exercício 7. Exercícios do exemplo 3.15: provar cada uma das afirmações abaixo.

1. $((x \to y) \land x) \to y$ é uma tautologia.

Respostas e Comentários

Seia $v \in 2^V$.

Caso 1: $v \models x$ Nesse caso, para satisfazer a primeira implicação, precisamos ter $v \models y$. Daí, segue que a conjunção é satisfeita, bem como a última implicação.

Se $v \nvDash y$, então a conjunção não é satisfeita, o que satisfaz a última implicação, satisfazendo, então, a fórmula.

П

Caso 2: $v \nvDash x$ Nesse caos, v não satisfaz a conjunção, e, portanto, satisfaz a fórmula.

2. $(x \to y) \land y$ nem é tautologia nem contradição.

Respostas e Comentários

Precisamos encontrar uma valoração que satisfaz a fórmula e outra que não satisfaz. Então seja $v \in 2^V$.

Caso 1: $v \models y$ Nesse caso, v satisfaz a fórmula, pois satisfaz a implicação e a conjunção.

Caso 2: $v \nvDash y$ Nesse caso, v não satisfaz a fórmula, pois não satisfaz a conjunção.

Logo, a fórmula não é válida nem contraditória.

3. Se φ é contradição ou ψ é tautologia, então $\varphi \to \psi$ é válida.

Respostas e Comentários

Segue direto da definição de \rightarrow .

4. O seguinte é falso: se φ é contradição e $\varphi \to \psi$ é tautologia, então ψ é tautologia.

Respostas e Comentários

Assuma que $\varphi = \psi = \bot$. Então a hipótese de que

 φ é contraditória e $\varphi \to \psi$ é válida

é atendida, mas a conclusão de que ψ é tautologia não. Logo, a afirmação é falsa.

Exercício 8. Apresente a tabela verdade para $x \to (y \lor z) \to (y \land z)$.

Respostas e Comentários

Primeiramente, veja que $sub(x \to (y \lor z) \to (y \land z)) = \{x, y, z, (y \lor z), (y \land z), (y \lor z) \to (y \land z), x \to (y \lor z) \to (y \land z)\}$. Então, escrevemos cada subfórmula no topo da tabela, e todos os possíveis valores verdade abaixo:

x	y	z	$y \lor z$	$y \wedge z$	$(y \lor z) \to (y \land z)$	$x \to (y \lor z) \to (y \land z)$
0	0	0	0	0	1	1
0	0	1	1	0	0	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	0	1	1
1	0	1	1	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Exercício 9. Vamos provar cada afirmação do exemplo 3.17:

(i) $\Vdash \varphi \Leftrightarrow \varphi$ é válida.

Respostas e Comentários

Veja que, para toda $v \in 2^V$, $v \models \emptyset$, pois, para que $v \models \Phi$, para algum conjunto $\Phi \subseteq Fm$, precisamos que, para toda fórmula $\varphi \in \Phi$, $v \models \varphi$. Como não há fórmulas no vazio, a afirmação se sustenta por vacuidade.

Logo, escrever $\Vdash \varphi$ é o mesmo que dizer $Mod(\varphi) = 2^V$.

(ii) $\{\varphi\} \Vdash \varphi \lor \psi$

Respostas e Comentários

No geral, sempre que queremos provar que $\Phi \Vdash \varphi$, começamos com "seja $v \in 2^V$ tal que $v \models \Phi$ ". Daí, precisamos construir um raciocínio para concluirmos "segue que $v \models \varphi$ ".

Então, começaremos conforme foi sugerido: seja $v \in 2^V$ tal que $v \models \varphi$. Pela definição de \vee , segue que $v \models \varphi \vee \psi$.

(iii)
$$\{\varphi \to \psi\} \Vdash (\chi \lor \varphi) \to (\chi \lor \psi).$$

Respostas e Comentários

Seja $v \in 2^V$ tal que $v \models \{\varphi \to \psi\}$. Então, temos dois casos:

(a) $v \vDash \psi$

Nesse caso, $v \vDash (\chi \lor \psi)$, e segue que v satisfaz a fórmula à direita.

(b) $v \nvDash \varphi$

Se $v \models \chi$, então v satisfaz a fórmula à direita. Senão, v não satisfaz o antecedente da implicação, e também satisfaz a fórmula.

Segue a consequência lógica.

(iv)
$$\{\varphi, \varphi \to \psi\} \Vdash \psi$$
.

Respostas e Comentários

Seja $v \in 2^V$ tal que $v \models \varphi$ e $v \models \varphi \rightarrow \psi$. Pela definição do conectivo \rightarrow , como v satisfaz a segunda fórmula do conjunto, temos que $v \not\models \varphi$ ou $v \models \psi$. Como $v \models \varphi$ por hipótese, só podemos concluir que $v \models \psi$.

Exercício 10. Vamos provar o exercício da página 15: $\{(\varphi \wedge \psi) \to \chi, \vartheta \to \psi\} \Vdash (\varphi \wedge \vartheta) \to \chi$.

Respostas e Comentários

Para este exercício, vamos resolver por contraposição. Sejam $\Phi = \{(\varphi \land \psi) \to \chi, \vartheta \to \psi\}$ e $\xi = (\varphi \land \vartheta) \to \chi$. Precisamos provar que, para $v \in 2^V$, se $v \models \Phi$, então $v \models \xi$. Nesse caso, é equivalente provar que, se $v \not\models \xi$, então $v \not\models \Phi$

Agora seja $v \in 2^V$ tal que $v \nvDash \xi$. Então, temos que $v \vDash \varphi$, $v \vDash \vartheta$ e $v \nvDash \chi$. Vamos analisar dois casos quanto à fórmula ψ :

Caso 1: $v \models \psi$ Nesse caso, $v \nvDash (\varphi \land \psi) \rightarrow \chi$, pois satisfaz o antecedente, mas não o consequente.

Caso 2: $v \nvDash \psi$ Nesse caso, $v \nvDash \vartheta \to \psi$, pois satisfaz o antecedente, mas não o consequente.

Concluímos que se $v \nvDash \xi$, então $v \nvDash \Phi$.

Exercício 11.