

# Capstone Project Customer Segmentation

Project by Auti Rupali



## Mind Map Customer Segmentation

Use Case

Business
Understanding

Data
Data preparation
Data Cleansing
Data Clean

#### **Use Case: Customer Segmentation**

#### Use Case Summary

#### **Objective Statement:**

- Get business insight about how many product sold every month.
- Get business insight about how much customer spend their money every month.
- To reduce risk in deciding where, when, how, and to whom a product, service, or brand will be marketed.
- To increase marketing efficiency by directing effort specifically toward the designated segment in a manner consistent with that segment's characteristics.

#### **Source Data:**

Online retail dataset by UCI Machine Learning Library. Customer Segmentation

#### **Challenges:**

- Large size of data, can not maintain by excel spreadsheet.
- Need several coordination from each department.
- Demography data have a lot missing values and typo.

#### **Methodology / Analytic Technique:**

- Descriptive analysis
- Graph analysis
- Segment Analysis

#### **Business Benefit:**

- Helping Business Development Team to create product differentiation based on the characteristic for each customer.
- Know how to treat customer with specific criteria.

#### **Expected Outcome:**

- Know how many product sold every month.
- Know how much customer spend their money every month.
- Customer segmentation analysis.
- Recommendation based or customer segmentation.

# Business Understanding

- Retail is the process of selling consumer goods or services to customers through multiple channels of distribution to earn a profit.
- This case has some business question using the data:
- How many product sold every month?
- How much customer spend their money every month?
- How about Customer segmentation analysis?
- How about recommendation based on customer segmentation?

# Data Understanding

- Data of Retail Transaction from 01 December 2010 to 09 December 2011
- Source Data: Online retail dataset by UCI Machine Learning Library. Customer Segmentation
- The dataset has 8 columns and 541909 rows.
- Data Dictionary:
- ➤ InvoiceNo: Invoice number uniquely assigned to each transaction.
- > StockCode: Product (item) code.
- ➤ Description: Product (item) name.
- ➤ Quantity: The quantities of each product (item) per transaction.
- ➤ InvoiceDate: The day and time when each transaction was generated.
- ➤ UnitPrice: Product price per unit in sterling.
- > CustomerID: Customer number uniquely assigned to each customer.
- > Country: The name of the country where each customer resides.

## Data preparation

#### Code Used:

Python Version: 3.7.6

Packages: Pandas, Numpy, Matplotlib, Seaborn, Sklearn, and Feature Engine

## **Data Cleansing**

- There are about 25% of Null CustomerID in the data. We need to remove them as there is no way we can get the number of CustomerID.
- There are few records with UnitPrice<0 and Quantity<0. We need to remove them from the analysis. This could represent cancelled or returned orders.
- There is more than 90% of 'United Kingdom' customers, therefore we will restrict the data to only United Kingdom customers.

## **Exploratory Data Analysis**

How many product sold every month?





Product sold in November has highest quantity that has around 13,41% product sold from all transaction along 1 year. Therefore the business team can increase sales in this month such as promoting new products to customers in this month.

How much customer spend their money every month?

#### Montly Revenue



Revenue in November has highest amount that has 13,41% revenue from total revenue along 1 year. Therefore the business team can replicate the success of sales strategies in November to be implemented in other months

## Modeling Data: RFM Quantiles

Recency Frequency Monetary (RFM)

RFM analysis allows you to segment customers by the frequency and value of purchases and identify those customers who spend the most money.

- Recency how long it's been since a customer bought something from us.
- Frequency how often a customer buys from us.
- Monetary value the total value of purchases a customer has made.



## Modeling Data: RFM Quantiles

- RFM Quantiles
- Split the metrics into segments using quantiles.
- We will assign a score from 1 to 4 to each Recency, Frequency and Monetary respectively.
- 1 is the highest value, and 4 is the lowest value.
- A final RFM score (Overall Value) is calculated simply by combining individual RFM score numbers.

| Segment              | RFM Score |
|----------------------|-----------|
| Best Customers       | 111       |
| Loyal Customers      | F=1       |
| Big Spenders         | M=1       |
| Almost Lost          | 134       |
| Lost Customers       | 344       |
| Lost Cheap Customers | 444       |

## Modeling Data: RFM Quantiles



- K-Means clustering algorithm is an unsupervised machine learning algorithm that uses multiple iterations to segment the unlabeled data points into K different clusters in a way such that each data point belongs to only a single group that has similar properties.
- K-means gives the best result under the following conditions:
- > Data's distribution is not skewed
- > Data is standardised
- The data is highly skewed, therefore I will perform log transformations to reduce the skewness of each variable and I standardised the data.

Finding the optimal number of clusters (Finding K) using Elbow Method.















## **Evaluating Model: K-Means Clustering**

Davies Bouldin Score is a metric for evaluating clustering algorithms.

The smaller Davies Bouldin Score is The more optimal the cluster.

| K-Means Cluster | Davies Bouldin Score |
|-----------------|----------------------|
| 3               | 1.119                |
| 4               | 1.065                |
| 5               | 1.067                |

K-Means 4 clusters has lowest Davies Bouldin Score than other cluster.

Therefore the optimum cluster is 4.

## K-Means 4 Clusters

Loyal Customers : 29%
Almost Lost : 20%
Lost Cheap Customers : 30%
Best Customers : 21%



#### Interpretation of the clusters formed using k-means:

- "Cluster 0" has 29% customers. It belongs to the "Loyal Customer" segment as they Haven't purchased for some time, but used to purchase frequently (F=2) and spent a lot.
- "Cluster 1" has 20% customers. It can be interpreted as "Almost Lost". They purchase recently (R=2). However they do not purchase frequently and do not spent a lot.
- "Cluster 2" has 30% customers. It can be interpreted as "Lost Cheap Customers". Their last purchase is long ago (R=4), purchased very few (F=4) and spent little (M=4).
- "Cluster 3"has 21% customers. It belongs to the "Best Customers" segment which we saw earlier as they purchase recently (R=1), frequent buyers (F=1), and spent the most (M=1).

## Recommendation

■ Recommendation for "Best Customers" segment:

Focus on increasing customer purchases therefore it is necessary to form a cross/Up Selling Strategy.

Recommendation for "Loyal Customers" segment:

The business team must optimize the budget campaign and the time campaign for this customer segment in order to maintain their loyalty and increase their value.

■ Recommendation for "Almost Lost" segment:

This customer segment is very at risk for churn, so focus on activating customers and making repurchases by forming a Reactivation Strategy, Retention Strategy.

Recommendation for "Lost Cheap Customers" segment:

This customer segment has churned, so the focus of the campaign is to reactivate the customer by forming a Reactivation strategy.

# Thank You



autirupalivikas@gmail.com



Rupali Auti



github.com/RupaliAuti09