

Team 완전안전

목차

서론	본론		결론	참고문헌
주제 선정 배경 목적 및 필요성	순서도	분석 결과 및 해석	활용 방안	
	데이터 수집 및 전처리	다른 모델과의 성능 비교	기대효과	
	모델 학습	실시간 테스트	정책 및 사업 제언	

66

학교폭력

학교 내외에서 학생을 대상으로 발생한 폭력으로, 신체·정신 또는 재산상의 피해를 수반하는 행위

9

심리적 고통

우울증을 비롯한 정신적 질병 및 극단적 선택

육체적 고통

신체적 폭력과 가혹행위로 인한 피해

학업 집중도 저하

선행 연구에 따르면 청소년의 주의집중성향이 폭력행위와 밀접한 관련

평생의 후유증

성인이 된 이후에도 정신질환, 약물중독, 사회 부적응 등의 후유증

2023년 1차 학교폭력 실태조사

학교폭력 피해 유형

학교폭력 피해 장소 조사

복도, 계단, 운동장, 강당 등 교실 밖 장소가 <mark>30% 이상</mark> 차지

학교폭력 근절을 위한 교육부의 노력

학교폭력 근절 종합대책

대학입시에 학폭 관련 기록 의무 반영

학생부 기록 및 관리 강화

피해자 중심으로 보호조치 개선

학교폭력 예방·지원센터 운영

제4차 학교폭력 예방 및 대책 5개년 기본계획

학교내 안전 사각지대 CCTV 추가설치

CCTV 화질 개선

2024년 서울특별시 교육비 특별회계 예산안

작년대비 CCTV 관련 예산 27.4억원 증액

감소하지 않는 학교폭력

다시 증가하는 추세를 보이는 학교폭력 피해율

증가하는 CCTV 수 & 감소하지 않는 학교폭력 피해 학생 수

현재 교내 CCTV의 문제점

CCTV 관제 인력의 부족

행정안전부 기준 '직원 1인당 관제 CCTV 수' 적정 수준을 <mark>19배</mark> 이상 초과

■ 관제 직원 1인당 담당 CCTV 수

폭력행위에 대한 실시간 탐지 및 선제 조치 불가능

관제인력의 부족 등으로 인해 폭력행위의 실시간 탐지는 불가능, 사후 증거 수집용으로만 이용되고 있는 실정

CCTV....학교폭력 예방 무용지물?

10만대 CCTV, 학교폭력엔 무용지물

CCTV 학교 폭력 막기엔 역부족

지능형 CCTV: AI 기반 실시간 폭력행위 탐지모델 적용

순서도

데이터 수집

활용 데이터

AI-Hub의 실내(편의점, 매장) 사람 이상행동 데이터

8가지의 이상행동(전도, 파손, 방화, 흡연, 유기, 절도, 폭행, 이동 약자) 중 폭행 데이터 200건 사용

영상 데이터

라벨링 데이터(XML)

```
▼<track id="1245" label="Right hip" source="manual">
 v<points frame="109" outside="0" occluded="0" keyframe="1" points="1126,447" z_order="0">
     <attribute name="ID">1</attribute>
 ▼<points frame="110" outside="1" occluded="0" keyframe="1" points="1126,447" z_order="0">
    <attribute name="ID">1</attribute>
  </points>
</track>
▼<track id="1246" label="Left hip" source="manual">
 v<points frame="109" outside="0" occluded="0" keyframe="1" points="1128,456" z_order="0">
    <attribute name="ID">1</attribute>
 v<points frame="110" outside="1" occluded="0" keyframe="1" points="1128,456" z_order="0">
    <attribute name="ID">1</attribute>
  </points>
</track>
▼<track id="1247" label="Left knee" source="manual">
 v<points frame="109" outside="0" occluded="0" keyframe="1" points="1127,547" z_order="0">
    <attribute name="ID">1</attribute>
 ▼<points frame="110" outside="1" occluded="0" keyframe="1" points="1127,547" z_order="0">
    <attribute name="ID">1</attribute>
```

데이터 전처리

EDA

- 데이터 구조 파악
- XML 내에 있는 폭력 시작, 끝 프레임을 사용하여 폭력 발생 구간 설정

영상 데이터 추출

 moviepy 라이브러리를 이용해 영상 데이터에서 폭력이 발생한 구간, 폭력이 발생하지 않은 구간 각각 10초씩 추출

프레임 조정 및 라벨링

- 폭력 영상은 1, 비폭력 영상은 0으로 라벨링
- 각 영상은 30 fps으로 구성 되어 있으며,
 프레임 별로 분할 후 640x640 크기로 조정

label	coordinate
0	[[0.5294928550720215, 0.12906429171562195, 0.5
1	[[0.8016193509101868, 0.09111222624778748, 0.7
0	[[0.5931543707847595, 0.10530948638916016, 0.6
0	[[0.649429440498352, 0.023449301719665527, 0.6
0	[[0.6384149789810181, 0.11879301071166992, 0.6

데이터 전처리

객체 탐지

- YOLOv8: 실시간 객체 탐지에 사용되는 대표적인 신경망
- 높은 정확도와 빠른 속도로 다양한 객체를 실시간으로 탐지하는 데 적합
- YOLOv8을 통해 바운딩 박스를 영역으로 설정하여 객체 탐지

관절 좌표 추출

- Mediapipe: 비디오 프레임에서 33개의 관절을 추론하는 자세 추적을 위한 모델
- 실시간성, 유연성이 뛰어남
- 바운딩 박스 내 사람 관절의 좌표를 추출

데이터 증강

• Flipping을 통해 데이터를 2배로 늘려 데이터셋의 다양성을 확보하고 과적합 방지

모델 학습

GRU

- <mark>시계열 데이터</mark>를 처리하기 위한 순환 신경망 (RNN)의 일종으로 LSTM을 단순화한 구조
- 두 개의 게이트(업데이트 게이트와 리셋 게이트)를 사용하여 정보를 효율적으로 처리
- 학습 속도가 빠르고, 비교적 적은 데이터로도 효과적인 성능을 발휘

학습 결과

- 전처리한 데이터를 Epoch 300, Batch size
 8으로 설정하여 학습
 - Patience 50으로 Early stopping하여 과적합 방지
- 손실 함수: Cross-entropy로,
 Optimizer: Adam으로 설정
- Train loss: 0.29, Validation loss: 0.54

분석 결과 해석

Accuracy

• Train accuracy: 88%

• Validation accuracy: 79%

• Test accuracy 84%

모델 성능 지표

• Precision, Recall, F1 score 측정

	Precision	Recall	F1 score
비폭력	0.88	0.76	0.82
폭력	0.81	0.9	0.85

- 분류 모델의 전반적인 성능을 평가하는 지표로서 ROC curve를 확인
- AUC(ROC의 면적)이 0.96으로 좋은 성능을 보임

테스트

• AI-Hub CCTV 영상을 활용하여 모델 테스트

다른 모델과의 성능 비교

LSTM

- 시계열 데이터를 처리하기 위해 설계된 순환 신경망(RNN)의 일종
- 과거 정보를 모두 반영하는 대신 forget gate
 와 input gate를 이용하여 정보를 선별
- 필요한 정보는 많이 채택하고 불필요한 정보는
 버리는 방식을 취함으로써 장기 의존성 문제를 해결

Bidirectional LSTM

- 두 개의 LSTM을 사용하여 입력 시퀸스를 순방향과 역방향으로 처리
- 특정 상황에서는 LSTM 보다 더 뛰어난 성능

모델 비교

 본 프로젝트에서 제안한 GRU 모델과 동일한 hyperparameter를 적용시켜 학습한 LSTM, Bidirectional LSTM과 성능을 비교

	Accuracy	Precision	Recall	F1 score
LSTM	0.799	0.824	0.772	0.795
BiLSTM	0.773	0.821	0.733	0.757
GRU	0.805	0.819	0.819	0.806

실시간 테스트

활용방안: 실시간 학교폭력 알림 서비스

학교폭력 모바일 알림 서비스

실시간 학교폭력 탐지 시스템 기반 어플리케이션

- ▶ 학교폭력 발생 시, 즉각적 경고 알림 전송
- ▶ 신속한 대응을 통한 학교폭력 피해 최소화
- ▶ 학부모의 심리적 안정

데이터 통합 관리 시스템

데이터 통합 관리 시스템 구축

- ▶ 학교폭력 실시간 모니터링을 통한 데이터 수집
- ▶ 데이터 분석을 통한 학교폭력 발생 패턴 파악
- ▶ 맞춤형 방안 마련 등 대책수립 가능

협력 네트워크

실시간 협력 지원

▶ 경찰서, 소방서, 교육기관과 실시간 연계 및 긴급지원 협력 네트워크 구축

기대 효과

- 01 실시간 폭력 탐지를 통한 즉각 대응
 - ▶ 사후 증거 수집에 불과하던 기존 CCTV의 한계점 극복
 - ➡ 학교폭력 상황에 발빠른 대처
- 02 데이터 통합 관리 시스템 구축
 - ▶ 폭력 종류, 발생 시간, 장소 등 데이터 수집 및 분석 진행
 - ➡ 폭력 발생 위험 지역 · 시간대 도출을 통한 경비 강화 등 예방 조치
- 03 관제 인력 부족 문제 해결
 - ▶ 24/7 모니터링 및 폭력 탐지시 자동 알림
 - ➡ 업무 부담 경감, 인력 효율성 극대화
- 04 다른 사회문제 확대적용
 - ▶ 폭력 外 다른 범죄(흡연, 방화, 파손, 절도 등) 영상 데이터를 추가 학습
 - 다른 사회적 문제를 추가적으로 탐지 및 해결하는 모델로 확장

정책제언 : 실현을 위한 정책 과제

Q. 가장 폭력이 자주 발생하는 장소가 교실인데 교실 내 CCTV 설치는 가능한가요?

A. 현재 적극적 설치 추진 X → 관계 법령 모호 · 충돌로 인한 설치 어려움

초상권 · 인권 · 사생활 침해 명목 사회적 합의 진행

설치 추진을 위한 정책 과제

A. 법령 수정 · 명시화

- ▶ 교실 내 CCTV 설치 및 운영 관련 명확한 법적 근거 마련
- ▶ 법령 내 학교폭력 탐지를 목적으로 한 법률 명시 필요

B. 개인정보보호 지침 마련

- ▶ 개인정보 보호에 따른 CCTV 영상의 저장, 열람, 제공에 관한 명확한 지침 마련
- ▶ 폭력 탐지 시에만 열람 가능하도록 법 제정

C. 예산 및 인프라 확충

- ▶ 교실 내 CCTV 설치를 위한 예산 편성 필요
- ▶ 실시간 폭력 탐지 CCTV를 위한 예산 및 인프라 확보

D. 교육 및 홍보

▶ CCTV 설치에 관한 교육 관계자들의 동의 확보

정책제언: 실현을 위한 법령 개정안

"개인정보 보호법"

▶ 교실 내 CCTV 설치 복잡요소 개선

(현행) 개인정보보호법 제 25조

: CCTV 설치 시 정보주체의 동의를 필요로 한다.

"학교폭력 예방 및 대책에 관한 법률"

▶ 교실 내 CCTV 설치 의무화 조항 추가

(현행) 학폭법 제 20조의 7

: 국가 및 지방자치단체는 학교폭력 예방 업무를 효과적으로 수행 하기 위해 학교 내외에 설치된 CCTV를 통합 관제할 수 있다.

"4가지 법률 개정"

- ▶ CCTV 설치 근거 명확화
 - 법령 상호충돌 해소
 - 설치 어려움 해결

"학교 내 CCTV 설치 · 운영 가이드라인"

▶ CCTV 설치 및 운영에 관한 지침을 구체화

"행정절차법"

▶ 교실 내 CCTV 설치 절차 간소화

사업 제언

Business Model Canvas

- ▶ 비즈니스 모델 시각적 설계 · 분석
 - → 9가지의 핵심 요소로 구성
- ▶ 실시간 학교폭력 탐지 모델 도입을 가정한 사업 청사진 제시
- ✔ 핵심 가치 : 학교폭력 예방, 신속 대응
- ✔ 핵심 파트너 : 교육부 및 지자체 협력
- ✔ 대상 고객 : 교육청 · 초중고등학교
- ✔ 수익 구조 : 시스템 판매 · 유지보수
 계약 · 데이터 분석 서비스

Key Partnerships 핵심 파트너

- · 모델 · 플랫폼 개발 지원 정부기관
- · 대용량 영상 데이터 저장 클라우드 기업
- · 고성능 CCTV 영상 기술 제공업체
- · Al Solution 제공업체
- · 어플리케이션 서비스 / UI 개발 업체
- · 보안 시스템 회사

Key Activities 핵심 활동

- · 실시간 CCTV DB 분석을 통한 학교폭력 탐지 · 알림
- · 실시간 학교폭력 알림
- 학교폭력 확인 플랫폼

Key Resources 핵심 자원

- · 교내 가용가능 CCTV
- · YOLOv5 · MediaPipe · GRU기반 학교폭력 탐지 플랫폼 · 인프라
- 실시간 학교폭력 감지 알림 시스템

Value Propositions 가치 제안

- · AI 모델 기법으로 학교폭력 자동 감지
- · 학교폭력 조기 발견 및 실시간 신속 대응
- 학교폭력 영상분석 시간 최소화
- 효율적 모니터링
- 안전한 학습 환경 제공

Customer Relationships 고객 관계

- · 교내 학폭 맞춤형 상담 솔루션 제공
- · 서비스 시스템 사용의 정기적인 피드백
- · 사용자 커뮤니티

Channels 채 널

- · 교육 · 정책 박람회
- App 홍보 Website
- · SNS(온라인 플랫폼)
- · Al Solution 제공하는 기술 개발 채널

Customer Segments 고객 세분화

- · 교육청 · 초중고
- · 학교 폭력으로부터 안전한 환경을 요구하는 학부모
- · 학교 폭력 자동화 탐지 시스템을 원하는 교육 관계자
- 학폭 전담 조사관

Cost Structure 비용 구조

- · 학교폭력 Application 구축 · 유지보수 비용
- · CCTV DB 저장 · 자동감지 모델 개발 비용
- · Server / DB 운영 담당자 고용 급여
- · 플랫폼 홍보 · 마케팅 비용

Revenue Streams 수익 구조

- 학교폭력 자동탐지 · 예방 솔루션 판매 및 제공
- · 폭력 자동감지 모델 준정부 · 사교육기관 수출
- · 학교폭력 데이터 분석 · 보고서 제공 수익

참고 문헌

- 통계청, '한국의사회동향', 2023,
- 한국대학교육협의회, '2024년 4월 대학정보공시 분석 결과 발표', 2024-04-30
- 서울특별시교육청, '2024년도 서울특별시교육비특별회계 예산편성 기본지침', 2023-12-08
- 고은지," 서울 CCTV 관제센터 1인당 평균 958대 담당···적정수준 19배", 연합뉴스, 2022-11-09
- 류경근, 최용철, & 이덕규. (2020). GRU를 활용한 악성코드 탐지의 관한 연구. 한국정보처리학회 학술대회논문집, 27(1), 254-257.
- 이재진, 홍현지, 송재민, & 염은섭. (2021). Gated recurrent unit (GRU) 신경망을 이용한 적혈구 침강속도 예측. 한국가시화정보학회지, 19(1), 57-61
- 교육부, '2023년 1차 학교폭력 실태조사 결과 발표'
- 심태웅, 김도윤, 최종인, & 박광영. YOLOv5 기반의 폐기물 자동인식 시스템 설계
- Kwon, Y., & Kim, D. (2022). Real-Time workout posture correction using OpenCV and MediaPipe. 한국정보기술학회논문지, 20(1), 199-208
- Chen, K. Y., Shin, J., Hasan, M. A. M., Liaw, J. J., Yuichi, O., & Tomioka, Y. (2022). Fitness 10 movement types and completeness detection using a transfer-learning-based deep neural network. Sensors, 22(15), 5700.
- Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016).
- LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232.
- 정성우, 김은철, & 유준혁. (2021). CAPS: CCTV 영상을 이용한 자율형 딥러닝 기반 아동학대 감지 시스템. 제어로봇시스템학회 논문지, 27(12), 1029-1037
- 박성우, 정승민, 문재욱, & 황인준. (2022). BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법. 정보처리학회논문지. 소프트웨어 및 데이터 공학, 11(8), 339-346
- 주일택, & 최승호. (2018). 양방향 LSTM 순환신경망 기반 주가예측모델. 한국정보전자통신기술학회 논문지, 11(2), 204-208
- 제4차 학교폭력 예방 및 대책 5개년 기본계획, 교육부

