2011 IEEE Conference on Sustainable Utilization & Development in Engineering & Technology

Control of a Cable-Driven 2-DOF Joint Module with a Flexible Backbone

Presented By Tran Le Dung Introduction

Kinematic analysis

Motion control system

Experiment and Results

Conclusion

Dexterous Robotic Arms and Applications

Nuclear inspection

Aerospace application

Search and rescue

Introduction Kinematic analysis Motion control System Experiment and Results Conclusion

Motivation

Why is the cable-driven dexterous robotic arm preferred?

Advantages

- Cables and flexible backbone are light, low power consumption
- Low inertia so high velocity is achievable.
- More modules can be added to improve dexterity

Disavantages

Complicate analysis

Objective and Scope

Objective:

To implement position control on the cable-driven dexterous robotic arm

- Scope:
- 1. Formulation of the forward and inverse kinematics
- 2. PID position control based on kinematic model
- 3. Experiment and evaluation of position control performance

Cable-driven Dexterous Robotic Arm

Motion control Experiment and System Experiment and Conclusion

Introduction

Introduction

Kinematic analysis

Motion control system

Experiment and Results

Conclusion

Module Design

Forward kinematic

Inverse kinematic

Module Design

2 DOF: defined by θ and ϕ

Without torsion: $\Psi = 0$

Bonev I.A. and Ryu J., "Orientation workspace analysis of 6-dof parallel manipulators", *ASME Design Engineering Technical Conferences*, Las Vegas, Nevada, pp. 1-8, 1999.

Kinematic Analysis

The length of vector $\overline{B_{ji}P_{ji}}$, (i=1,2,3) represents the cable length l_{ji} of i^{th} cable.

$$\overrightarrow{P_{ji}B_{ji}} = \overrightarrow{P_{ji}I_j} + \overrightarrow{I_jK_j} + \overrightarrow{K_jI_{j-1}} + \overrightarrow{I_{j-1}B_{ji}}$$

$$\overline{P_{ji}B_{ji}} = \left(\mathbf{I}_{3x3} - \mathbf{R}_{(\phi_j,\theta_j)}\right) \begin{pmatrix} r\cos(j\pi - 2\pi(i-1)/3) \\ r\sin(j\pi - 2\pi(i-1)/3) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ L_j \end{pmatrix}$$

Module 1

$${}^{0}\{E_{1}\} = R(\phi_{1}; \theta_{1}) \begin{pmatrix} 0 \\ 0 \\ L_{1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ L_{1} \end{pmatrix}$$

$$LHS = \begin{pmatrix} x_{E_{1}} \\ y_{E_{1}} \\ z_{E_{1}} \end{pmatrix} \qquad RHS = \begin{pmatrix} L_{1}\cos\phi_{1}\sin\theta_{1} \\ L_{1}\sin\phi_{1}\sin\theta_{1} \\ L_{1}\cos\theta_{1} + L_{1} \end{pmatrix}$$

$$\to \phi_1 = \tan^{-1} \left(\frac{y_{I_1}}{x_{I_1}} \right) \quad \text{and} \quad \theta_1 = \cos^{-1} \left(\frac{-A+1}{A+1} \right) \quad \text{with} \quad A = \left(\frac{y_{I_{10}}}{z_{I_{10}}} \sin \phi_1 \right)^2$$

Module 2

$${}^{0}{E_{2}} = {}^{0}{T}^{4}{E_{2}}$$

$$\begin{pmatrix} x_{E_2} \\ z_{E_2} \\ z_{E_2} \\ 1 \end{pmatrix} = \begin{bmatrix} R_{(\phi_1; \theta_1)} & \begin{pmatrix} 0 \\ 0 \\ L_1 \end{pmatrix} \end{bmatrix} \cdot \begin{bmatrix} R_{(\phi_2; \theta_2)} & \begin{pmatrix} 0 \\ 0 \\ L_1 + L_2 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ L_2 \\ 1 \end{pmatrix}$$

Let
$$\begin{bmatrix} R_{(\phi_1:\theta_1)} & \begin{pmatrix} 0 \\ 0 \\ L_1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} x_{E_2} \\ z_{E_2} \\ z_{E_2} \\ 1 \end{bmatrix} - \begin{pmatrix} 0 \\ 0 \\ L_1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{bmatrix}$$
 is known

$$\rightarrow \phi_2 = \tan^{-1} \left(\frac{y_2}{x_2} \right) \text{ and } \theta_2 = \cos^{-1} \left(\frac{-B+1}{B+1} \right)$$

with
$$B = \left(\frac{y_2}{z_2} \sin \phi_2\right)^2$$

• Module nth :

Given the coordinates of all end-points of all modules find the torsion and tilt angles of all modules

$${}^{0}\{E_{n}\} = {}^{0}_{2n}T^{2n}\{E_{n}\}$$

$$\rightarrow \phi_n = \tan^{-1} \left(\frac{y_n}{x_n} \right)$$
 and $\theta_n = \cos^{-1} \left(\frac{-C+1}{C+1} \right)$

with

$$\begin{pmatrix} x_n \\ y_n \\ z_n \\ 1 \end{pmatrix} = \begin{bmatrix} R_{(\phi_{n-1}; \theta_{n-1})} & \begin{pmatrix} 0 \\ 0 \\ L_{n-2} + L_{n-1} \end{pmatrix} \dots \begin{bmatrix} R_{(\phi_2; \theta_2)} & \begin{pmatrix} 0 \\ 0 \\ L_1 + L_2 \end{pmatrix} \end{bmatrix} \begin{bmatrix} R_{(\phi_1; \theta_1)} & \begin{pmatrix} 0 \\ 0 \\ L_1 \end{pmatrix} \begin{bmatrix} x_{I_n} \\ z_{I_n} \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ L_{n-1} \\ 0 \end{pmatrix}$$

$$C = (\frac{y_n}{z_n} \sin \phi_n)^2$$

Geometrically, the three cables within a joint module are parallel:

$$P_{j1}B_{j1}//P_{j2}B_{j2}//P_{j3}B_{j3}//I_{j-1}I_{j}$$

Then titling angle θ_i can be obtained from following equation, in which $\hat{L_0}$ is backbone length:

$$\sin\left(\frac{\theta_{j}}{2}\right) = \frac{\theta_{j}(l_{j1} + l_{j2} + l_{j3})}{12L_{0}}$$

Cable 1:

$$\begin{split} l_{j1}^{\ 2} &= \left[(-1)^{j+1} r \big(1 - c_{\varphi}^{\ 2} c_{\theta} - s_{\varphi}^{\ 2} \big) + L_{j} c_{\varphi} s_{\theta} \right]^{2} \\ &+ \left[(-1)^{j+1} r \big(s_{\varphi} c_{\theta} c_{\varphi} - s_{\varphi} c_{\varphi} \big) + L_{j} s_{\varphi} s_{\theta} \right]^{2} \\ &+ \left[(-1)^{j} r s_{\theta} c_{\varphi} + L_{j} (1 + c_{\theta}) \right]^{2} \end{split}$$

By rearranging the terms, a quadratic equation is obtained:

$$Ac_{\phi}^2 + Bc_{\phi} + C = 0$$

$$A = 2r^{2}(c_{\theta} - 1), B = (-1)^{j+1} \times 4L_{j}rs_{\theta},$$
 and $C = {l_{j1}}^{2} - 2{L_{j}}^{2}(1 + c_{\theta})$

$$\therefore \phi_{j} = \cos^{-1}(\frac{-B \pm \sqrt{B^{2} - 4AC}}{2A})$$

system

For n-modules:

- There are 2 frames in one module n0, n1 and n2 based on the translation:

Frame (2n-2)
$$(O_{2n-1}X_{2n-1}Y_{2n-1}Z_{2n-1})$$
 $\xrightarrow{translating}$ Frame (2n-1) $(O_{2n-1}X_{2n-1}Y_{2n-1}Z_{2n-1})$ $\xrightarrow{rotating, tilting}$ (ϕ_n, θ_n)

Frame 2n $(O_{2n}X_{2n}Y_{2n}Z_{2n})$

- Transformation matrix from frame n2 to 10:

$${}_{2n}^{0}T = {}_{1}^{0}Q_{2}^{1}P_{3}^{2}Q_{4}^{3}P...{}_{2n-1}^{2n-2}Q_{2n}^{2n-1}P$$

- The coordinate of end-point I_n in frame 10

$$=\begin{bmatrix} R(\phi_1;\theta_1) & \begin{pmatrix} 0 \\ 0 \\ L_1 \end{bmatrix} & \begin{bmatrix} R(\phi_2;\theta_2) & \begin{pmatrix} 0 \\ 0 \\ L_1 + L_2 \end{bmatrix} & \begin{bmatrix} R(\phi_n;\theta_n) & \begin{pmatrix} 0 \\ 0 \\ L_1 + L_n \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ L_n \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ L_n \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Introduction

Kinematic analysis

Hardware setup

Motion control system

PID tuning

Experiment and Results

Lab-view program

Conclusion

Hardware Setup for one axis

Hardware Setup for one axis

Equivalent Block Model for one axis

 In continuous method: All the models of the mixed s-domain and z-domain system are all converted to the s-domain

• <u>In digital method</u>: only digital component in a motion control system is the controller. All other components after treated as continuous time will be convert to z-domain.

Introduction

Damping ratio and Settling time, overshoot → Closed-loop poles Nature frequency

<u>In continuous method</u>:

The open-loop transfer function of system:

$$L_{(S)} = (k_P + k_D s) * K_{DAC} * K_a * K_t * \frac{1}{Js} * \frac{1}{s} * K_e$$

$$L_{(S)} = (\frac{k_P + sk_D}{s^2})154.53$$

In any system: $|L(j\omega_c)|=1$ and $\angle L(j\omega_c)=\gamma-\pi$

$$K_P = k_p$$
; $K_D = k_D/T$; $K_I = T^*k_I$ (T:sampling time)

Conclusion

Damping ratio and Settling time, overshoot Closed-loop poles Nature frequency

<u>In digital method</u>:

$$G_0(z) = Z\{F(s)G(s)\} = (1-z^{-1})Z\{\frac{G(s)}{s}\} = (1-z^{-1})Z\{\frac{154.53}{s^3}\} = \frac{154.53}{2}\left(\frac{T^2(z+1)}{(z-1)^2}\right)$$

The closed-loop transfer function of the system:

$$T(z) = \frac{D(z)G_0(z)}{1 + D(z)G_0(z)}$$

The characteristic equation given by:

$$1 + D(z)G_0(z) = 0$$

Using the pole-zero mapping:

$$z = e^{sT}$$

To find D(z)

Sets of PID values for theoretical approach

	Digital	Continuous	Selected PID		
	8	Approximation	values		
	$K_{\rm p} = 128$	$K_{\rm p} = 110$	$K_{\rm p} = 128$		
Set 1	$K_{\rm D} = 1058$	$K_{\rm D} = 996$	$K_{\rm D} = 1058$		
	$K_{\rm I} = 1$	$K_{\rm I} = 1$	$K_{\rm I}=1$		
	$K_{\rm p} = 69$	$K_{\rm p} = 38$	$K_{\rm p} = 69$		
Set 2	$K_{\rm D} = 885$	$K_{\rm D} = 677$	$K_{\rm D} = 885$		
	$K_{\rm I} = 1$	$K_{\rm I} = 1$	$K_{\rm I} = 1$		
	$K_{\rm p} = 49$	$K_{\rm p} = 28$	$K_{\rm p} = 49$		
Set 3	$K_{\rm D} = 722$	$K_{\rm D} = 581$	$K_{\rm D} = 722$		
	$K_{\rm I} = 1$	$K_{\rm I} = 1$	$K_{\rm I}=1$		

Introduction

 Practical approach: Using Measurement & Automation Explorer (MAX) to adjust the PID parameters K_P K_D K_I

Finding value is $K_P = 130$, $K_D = 1200$, $K_I = 1$

With analytical approach:

 $K_P = 128, K_D = 1058, K_I = 1 (Set1)$

With practical approach:

$$K_{p} = 130, K_{D} = 1200, K_{I} = 1$$

Lab-view program

Introduction

Lab-view program

Algorithm for motion of motor: all motors operate simultaneously

Velocity profile of any 2 motors

$$\frac{\Delta L_{1} = D_{1} = V_{1}^{*}(t_{1} + t_{2})}{\Delta L_{2} = D_{2} = V_{2}^{*}(t_{1} + t_{2})}$$

$$\frac{\Delta L_{1}}{\Delta L_{2}} = \frac{V_{1}}{V_{2}}$$

$$\frac{A_{1}}{A_{2}} = \frac{V_{1} / t_{1}}{V_{2} / t_{1}} = \frac{\Delta L_{1}}{\Delta L_{2}}$$

$$\therefore \frac{A_1}{A_2} = \frac{V_1}{V_2} = \frac{\Delta L_1}{\Delta L_2}$$

Lab-view program

Introduction

Kinematic analysis

Motion control system

Experiment and Results

Conclusion

Experiment

	θ(°)	φ(°)
Set 1	30	5
	30	15
	30	25
Set 2	40	5
	40	15
	40	25
Set 3	50	5
	50	15
	50	25
Set 4	60	5
	60	15
	60	25

Motion control system

Experiment and Results

Experiment

Backbone	Set											
distance	1	2	3	4	5	6	7	8	9	10	11	12
Theoretical	118.6	118.6	118.6	117.5	117.5	117.5	116.2	116.2	116.2	114.5	114.5	114.5
value(mm)	34	34	34	78	78	78	28	28	28	92	92	92
Practical												
value(mm)	119	119	118.5	117	116	117	116	115	116.5	113	112.5	112
Error												
(%)	-0.31	-0.31	0.11	0.49	1.34	0.49	0.20	1.06	-0.23	1.39	1.83	2.26

	Set	Set	Set	Set	Set	Set	Set	Set	Set	Set	Set	Set
Cable 1	1	2	3	4	5	6	7	8	9	10	11	12
Theoretical value(mm)	92.85 05	93.63 39	95.17 69	83.50 6	84.54 13	86.58 03	74.12 74	75.40 66	77.92 61	64.78 18	66.29 53	69.27 62
Practical value(mm)	99	99	99.5	84	88.5	90.5	77.5	79.5	80.5	66	66	73
Error (%)	-6.62	-5.73	-4.54	-0.59	-4.68	-4.53	-4.55	-5.43	-3.30	-1.88	0.45	-5.38

Motion control system

Experiment and Results

Conclusion

Experiment

Cable 2	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 9	Set 10	Set 11	Set 12
Theoretical value(mm)	129.5 72	125.3 33	120.8 9	132.0 32	126.4 3	120.5 59	134.0 89	127.1 67	119.9 12	135.7 22	127.5 33	118.9 49
Practical value(mm)	128.5	126	122	130.5	126.5	123	133	130.5	122	136.5	131	127
Error												
(%)	0.83	-0.53	-0.92	1.16	-0.06	-2.02	0.81	-2.62	-1.74	-0.57	-2.72	-6.77

Cable 3	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 9	Set 10	Set 11	Set 12
Theoretical value(mm)	133.4 79	136.9 35	139.8 35	137.1 95	141.7 62	145.5 95	140.4 69	146.1 12	150.8 47	143.2 7	149.9 47	155.5 49
Practical value(mm)	133	135	136	135.5	140	141	137	144.5	147	144	146	147
Error (%)	0.36	1.41	2.74	1.24	1.24	3.16	2.47	1.10	2.55	-0.51	2.63	5.50

Motion control system

Experiment and Results

Conclusion

Results

Backbone Distance

Moving platform

Cable

Introduction

Introduction

Kinematic analysis

Motion control system

Experiment and Results

Conclusion

Conclusion

- Current design:
 - Lower cost of fabrication
 - Low weight
 - High flexibility
- Good position control error: less than 3%.
- > Application:
 - High speed operation, accuracy
 - Constrained workspace and some

Introduction

Preplacing the appearance of human

Future Works

Introduction

 Force control with position control on cable-driven mechanism as this can ensures that all cables are in tension.

 Velocity control is also one important aspect that is needed to investigate.

Video Demonstration

Introduction

	φ1(°)	θ1(°)	φ2(°)	θ2(°)
Pose 1	5	30	5	30
Pose 2	45	40	45	40
Pose 3	75	50	75	50
Pose 4	125	30	125	30
Pose 5	185	О	185	О

THANK YOU!

Q&A

