Processamento de Sinais em Tempo Discreto

Prof. Dr. Samuel Lourenço Nogueira

É um fenômeno variável que pode ser medido.

Trata-se de uma **grandeza física** que varia com o tempo, espaço, etc.

Exemplos de Grandezas e Sinais

Temperatura

Radar

Sensor inercial:

- Acelerações
- Velocidades angulares

http://blog.miotec.com.br/biofeedback-eletromiografico/http://pixabay.com/http://www.xsens.com/

Estudo, análise ou manipulação de sinais através de teorias metodológicas para extração de características ou informações.

Transformar os sinais em um formato mais apropriados para uso em aplicações específicas.

PDS = Decisão + Ferramentas

PDS = Decisão + Ferramentas

- Ferramentas:
 - Filtros digitais
 - Interpolação
 - Reamostragem
 - Extração de características
 - Transformada de Fourier / FFT
 - Análise tempo-frequência / STFT
 - Linguagens de programação
 - Etc...

Áreas de Aplicação

Processamento de sinais de áudio

Processamento de imagem

Processamento de vídeo

Comunicação sem fio

Controle de processos

Extração de características

Biosensores

Compressão de dados

Etc...

Fonte:

https://appen.com/blog/insights-from-the-international-conference-on-acoustics-speech-and-signal-processing/

Conteúdo Programático

Introdução:

- Revisão de conceito básicos
- Amostragem

Transformada de Fourier:

- Fundamentos e análises
- Transformada Discreta (DFT)
- Transformada Rápida (FFT)
- Transformada Curto Termo (STFT)

Filtros Digitais

- Filtros simples e fundamentos
- FIR (Finite Impulse Response)
- IIR (Infinite Impulse Response)

<u>Aplicações</u>

- Análises tempo-frequência
- Estudos de casos

Exemplo – Sinal de Áudio

Arquivos:

- Topico0_demo.m
- vivaldi_primavera.mat

Fontes:

Procedimentos de Avaliação

- Média: Exercícios e atividades Para Casa (EPC)
- Média: Provinhas no término de cada módulo (P)
- Projeto Final da disciplina (PF)

Nota Final =
$$0.2*EPC + 0.5*P + 0.3*PF$$

Conceitos:

Α	В	С	D	E
NF ≥ 8.5	8.5 > NF ≥ 7.0	$7.0 > NF \ge 6.0$	$6.0 > NF \ge 4.0$	NF < 4.0

Matlab / Octave

Matlab:

- Documentação: https://www.mathworks.com/help/
- Curso básico: MATLAB Onramp (necessário criar conta gratuita)

Octave:

- Documentação: https://octave.org/doc/v5.2.0/
- Sequências de vídeos introdutório no Youtube:
 - Canal "DrapsTV" Octave Tutorials (6 vídeos)
 - Canal "Paul Nissenson" Octave Tutorials (35 vídeos)
 - Canal "Escola de Engenharia" <u>Curso de Programação em Octave</u> (27 vídeos)

Exercício Para Casa I (EPCI): Revisão de Matlab/Octave - Capítulo 2 - Michael Weeks - Exercícios Tarefa Disponibilizado no <u>AVA da Disciplina</u>.

Referências Bibliográficas

Principais:

- WEEKS, M.; Processamento Digital de Sinais, utilizando Matlab® e Wavelets; 2a.ed., LTC, 2012.Processamento em tempo discreto de sinais.
- OPPENNHEIM, A.V. SHAFFER, R.W.; Processamento em Tempo Discreto de Sinais, 3a.ed., Pearson, 2013.
- PROAKIS, J. G.; MANOLAKIS, D. G.; Digital Signal Processing: Principles, algorithms, and Applications, Prentice Hall, 2006.

Complementares fixos

- https://www.mathworks.com/help/
- https://octave.org/doc/v5.2.0/

Complementares da aula

https://www.udemy.com/course/signal-processing/