Homework 9

- 1. Find all distributional solutions y to the following equations:
 - (a) xy = 0 in $\mathcal{D}'(\mathbb{R})$

[Hint: Represent any $\phi \in \mathcal{D}$ as $\phi(x) \equiv \phi(0)\eta(x) + x\psi(x)$ with η independent of ϕ .

Proof We can write

$$\phi = \phi_0 \eta + x \psi$$
,

where $\eta \in \mathcal{D}$ is any test function with $\eta(0) = 1$ and $\psi := \frac{1}{x}(\phi - \phi_0 \eta)$. Suppose T is a solution, so xT is the zero distribution. Then

$$T\phi = T(\phi_0 \eta + x\psi)$$

 $= \phi_0 T \eta + T(x\psi)$ by linearity
 $= \phi_0 T \eta + xT(\psi)$ by def. of mult. by C^{∞} f'ns
 $= \phi_0 T \eta$ by assumption
 $= (T\eta)\delta_0(\phi)$

and since $T\eta$ is an arbitrary constant with respect to ϕ , then any multiple of the Dirac delta δ_0 is a solution to (a).

(b) y' = 0 in $\mathcal{D}'((a, b))$

Proof Suppose T is a solution, so the distributional derivative DT = 0. Since

$$DT = 0 \in C^0(a, b),$$

then by Theorem 6.10

$$T = f \in C^1(a, b)$$

for some f, and 0 = DT is the classical derivative f'. Since f' = 0, then it is a constant, so T = C. Thus the solutions to (b) are constant distributions.

2. Consider the function $f(x) = |x|^{-1}$ on \mathbb{R} . Although this function is not in L^1_{loc} , it is defined as a distribution for test functions on \mathbb{R} that vanish at the origin, by

$$T_f(\phi) = \int_{\mathbb{R}} |x|^{-1} \phi(x) \, dx.$$

(a) Show that there is a distribution $T \in \mathcal{D}'(\mathbb{R})$ that agrees with T_f for functions that vanish at the origin. Give an explicit formula for one such T.

Proof Note that for all $\phi \in \mathcal{D}$, $(\phi - \phi_0) \in \mathcal{D}$ and vanishes at zero, so $T_f(\phi - \phi_0)$ is a distribution. If ϕ vanishes at 0, then

$$T_f(\phi - \phi_0) = T_f(\phi - 0) = T_f(\phi).$$

- (b) Characterize all such T's. Theorem 6.14 may be helpful here.
- **3.** Compute the following limit in $\mathcal{D}'(\mathbb{R})$.

$$\lim_{\varepsilon \to 0} \frac{\varepsilon}{\pi x^2} \sin^2 \left(\frac{x}{\varepsilon}\right)$$

Answer: The answer is the Dirac delta δ_0 . To see this, observe that $\int_{\mathbb{R}} \frac{1}{\pi x^2} \sin^2(x) dx = 1$, so

$$\lim_{\varepsilon \to 0} \left(\int_{\mathbb{R}} \frac{\varepsilon}{\pi x^2} \sin^2\left(\frac{x}{\varepsilon}\right) \phi(x) \, dx - \phi(0) \right)$$

$$= \lim_{\varepsilon \to 0} \left(\int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \phi(\varepsilon u) \, du - \phi(0) \right)$$

$$= \lim_{\varepsilon \to 0} \left(\int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \phi(\varepsilon u) \, du - \phi(0) \int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \, du \right)$$

$$= \lim_{\varepsilon \to 0} \int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \left(\phi(\varepsilon u) - \phi(0) \right) du$$

and note that $\phi \in \mathcal{D}$ and in particular, ϕ is continuous with compact support, so $||\phi(\varepsilon u) - \phi(0)||_{\infty} \le C < \infty$, so the sequence of integrands above is dominated by $\frac{C}{\pi u^2} \sin^2(u)$, so by the dominated convergence theorem we can move the limit inside the integral and find that

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \left(\phi(\varepsilon u) - \phi(0) \right) du$$
$$= \int_{\mathbb{R}} \frac{1}{\pi u^2} \sin^2(u) \left(\phi(0) - \phi(0) \right) du$$
$$= 0$$

Therefore the action of the limit is exactly that of δ_0 .