КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра математической статистики

ЧИСЛОВЫЕ РЯДЫ

Учебно-методическое пособие

Печатается по решению секции Научно-методического совета Казанского университета

 $A \ \emph{в} \ \emph{m} \ \emph{o} \ \emph{p}$ доцент А.М. Сидоров

Числовые ряды:

Учебно-методическое пособие /А.М. Сидоров.-Казань: КГУ, 2008.-45 с.

© Казанский государственный университет, 2008

Оглавление

Предисловие	4
Литература	
§1. Понятие числового ряда	
Необходимое условие сходимости ряда	
Критерий Коши сходимости ряда	
§2. Ряды с неотрицательными членами	
Мажорантный признак сравнения	
Признак сравнения в предельной форме	
Признак Даламбера	25
Радикальный признак Коши	
Интегральный признак Коши	
§3. Знакопеременные ряды	34
Признак Лейбница	
Признак Дирихле.	
Признак Абеля	

Предисловие

Учебно-методическое пособие «Числовые ряды» входит в комплекс учебно-методических пособий, предназначенных для студентов факультета вычислительной математики и кибернетики, которые учатся решать задачи по математическому анализу.

В пособии содержатся основные теоретические сведения, относящиеся к числовым рядам, даны решения типовых задач и упражнения для самостоятельного решения.

Формулы пособия, на которые имеются ссылки, имеют нумерацию вида (а.в), где а – номер параграфа, в – номер формулы в этом параграфе.

Литература

- 1. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. В 2 кн. Кн.2. Ряды, несобственные интегралы, кратные и поверхностные интегралы: Учеб. пособие для университетов, пед. вузов /Под ред. В.А.Садовничего.-М.:Высш.шк., 2000.
- 2. Демидович Б.П. Сборник задач и упражнений по математическому анализу.-М.:Наука, 1977.
- 3. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу: Интегралы. Ряды: Учеб. пособие для вузов/ Под ред. Л.Д.Кудрявцева.-М.:Наука, 1986.

§1. Понятие числового ряда

Пусть дана числовая последовательность (a_n) . Формальная сумма

$$a_1 + a_2 + \ldots + a_n + \ldots$$

называется числовым рядом или, короче, рядом. Члены последовательности (a_n) называются членами ряда, a_n называется общим или n - ым членом ряда.

Для обозначения ряда часто используется короткая форма записи: $\sum_{n=1}^{\infty} a_n$, т.е.

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$
.

В дальнейшем мы будем рассматривать только ряды, члены которых – действительные числа.

Для каждого $n \in N$ сумма

$$S_n = \sum_{k=1}^n a_k = a_1 + \dots + a_n$$

первых n членов ряда $\sum_{n=1}^{\infty} a_n$ называется n - й частичной суммой этого ряда.

Ряд $\sum_{n=1}^{\infty} a_n$ называется сходящимся, если существует конечный предел S последовательности (S_n) его частичных сумм: $S = \lim_{n \to \infty} S_n$. Число S называется суммой ряда, при этом пишут

$$\sum_{n=1}^{\infty} a_n = S.$$

Ряд $\sum_{n=1}^{\infty} a_n$ называется расходящимся, если последовательность (S_n) его частичных сумм не имеет конечного предела, т.е. либо $\lim_{n\to\infty} S_n$ не существует, либо этот предел бесконечен.

Пример 1.1. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ сходится и найти его сумму.

Решение. Общим членом данного ряда является $a_n = \frac{1}{n(n+1)}$. Поскольку

$$a_n = \frac{1}{n(n+1)} = \frac{(n+1)-n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$$

то n - ую частичную сумму S_n ряда можно записать в виде

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots$$
$$+ \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}.$$

Поэтому $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1-\frac{1}{n+1}\right) = 1$. Это означает, что ряд сходится и его сумма равна 1, т.е. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Пример 1.2. Доказать, что ряд $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$ расходится.

Решение. Имеем:

$$a_n = \ln(n+1) - \ln n$$

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (\ln(k+1) - \ln k) = \ln 2 - \ln 1 + \ln 3 - \ln 2 + \dots + \\ + \ln n - \ln(n-1) + \ln(n+1) - \ln n = \ln(n+1).$$

Поскольку $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \ln(n+1) = +\infty$, то данный ряд расходится.

Пример 1.3. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+3)}$ сходится и найти его сумму.

Решение. Разложим $a_n = \frac{1}{n(n+2)(n+3)}$ - общий член ряда на простейшие дроби следующим образом:

$$a_n = \frac{(n+3)-n}{3n(n+2)(n+3)} = \frac{1}{3n(n+2)} - \frac{1}{3(n+2)(n+3)} =$$

$$= \frac{(n+2)-n}{6n(n+2)} - \frac{(n+3)-(n+2)}{3(n+2)(n+3)} = \frac{1}{6} \left(\frac{1}{n} - \frac{1}{n+2}\right) - \frac{1}{3} \left(\frac{1}{n+2} - \frac{1}{n+3}\right).$$
Тогда $S_n = \sum_{k=1}^n a_k = \frac{1}{6} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+2}\right) - \frac{1}{3} \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k+3}\right) =$

$$= \frac{1}{6} \left(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \dots + \frac{1}{n-2} - \frac{1}{n} + \frac{1}{n-1} - \frac{1}{n+1} + \frac{1}{n} - \frac{1}{n+2}\right) -$$

$$- \frac{1}{3} \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+2} - \frac{1}{n+3}\right) =$$

$$= \frac{1}{6} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}\right) - \frac{1}{3} \left(\frac{1}{3} - \frac{1}{n+3}\right) = \frac{5}{36} - \frac{1}{6(n+1)} - \frac{1}{6(n+2)} + \frac{1}{3(n+3)}.$$

Поэтому $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(\frac{5}{36} - \frac{1}{6(n+1)} - \frac{1}{6(n+2)} + \frac{1}{3(n+3)} \right) = \frac{5}{36}$. Значит, ряд сходится и его суммой является число

$$S = \lim_{n \to \infty} S_n = \frac{5}{36}.$$

Пример 1.4. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$ сходится и найти его сумму.

Решение. Чтобы упростить выражение для n- ой частичной суммы ряда S_n , нужно разложить общий член ряда $a_n = \frac{2n+1}{n^2(n+1)^2}$ на простейшие дроби.

Это можно сделать так же, как это было сделано в примере 1.3. Но можно применить и метод неопределенных коэффициентов разложения рациональной функции на простейшие дроби, поскольку a_n является рациональной функцией переменной n. Запишем a_n в виде

$$\frac{2n+1}{n^2(n+1)^2} = \frac{A}{n^2} + \frac{B}{n} + \frac{C}{(n+1)^2} + \frac{D}{n+1},$$

где A, B, C и D- подлежащие определению коэффициенты. После приведения этого равенства к общему знаменателю и его отбрасывания получим равенство

$$2n+1 = A(n+1)^{2} + Bn(n+1)^{2} + Cn^{2} + Dn^{2}(n+1).$$

Положим в этом равенстве n=0, получим A=1; положив n=-1, получим C=-1.

Приравняв коэффициенты при n^3 и n в обеих частях равенства, получаем:

$$0 = B + D$$
, $2 = 2A + B$,

откуда B = 0, D = 0.

Таким образом,

$$a_n = \frac{2n+1}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2}.$$

Следовательно,

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) =$$

$$= 1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{9} + \dots + \frac{1}{(n-1)^2} - \frac{2}{n^2} + \frac{1}{n^2} - \frac{1}{(n+1)^2} = 1 - \frac{1}{(n+1)^2}.$$

Переходя к пределу, находим

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{(n+1)^2}\right) = 1.$$

Поэтому ряд сходится и его сумма $S = \lim_{n \to \infty} S_n = 1$.

При рассмотрении следующего примера нам понадобится

Утверждение 1.1. 1) Если |q| < 1, то $\lim_{n \to \infty} q^n = 0$. 2) Если |q| > 1, то $\lim_{n \to \infty} q^n = \infty$.

Докажем это утверждение, воспользовавшись определением предела числовой последовательности

1) При q=0 утверждение очевидно. Пусть 0<|q|<1. Тогда для $0<\varepsilon\leq 1$ неравенство $\left|q^n\right|<\varepsilon$ равносильно неравенству $n>\log_{|q|}\varepsilon$. Значит, $\left|q^n\right|<\varepsilon$ при $n>n(\varepsilon)=\left[\log_{|q|}\varepsilon\right]+1$. Напомним, что символ [a] обозначаем целую часть числа $a\in R$, т.е. наибольшее целое число, не превосходящее a. Для $\varepsilon>1$ $\left|q^n\right|<\varepsilon$ при $n>n(\varepsilon)=1$.

Значит, мы доказали, что

$$\forall \varepsilon > 0 \quad \exists n(\varepsilon) \quad \forall n > n(\varepsilon) \quad (q^n | < \varepsilon).$$

Это означает: $\lim_{n\to\infty} q^n = 0$.

2) Пусть |q| > 1. Тогда для $\varepsilon > 0$ $|q^n| > \varepsilon$ при $n > n(\varepsilon) = \lfloor \log_{|q|} \varepsilon \rfloor + 1$. Значит, $\forall \varepsilon > 0$ $\exists n(\varepsilon)$ $\forall n > n(\varepsilon)$ $(q^n| > \varepsilon)$. Поэтому $\lim_{n \to \infty} q^n = \infty$. Утверждение доказано.

Пример 1.5. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} q^{n-1} = 1 + q + \ldots + q^{n-1} + \ldots$

Решение. Составим n - ую частичную сумму ряда:

$$S_n = 1 + q + q^2 + \dots + q^{n-1}$$
 (1.1)

Умножив обе части равенства (1.1) на q, получим

$$qS_n = q + q^2 + \dots + q^{n-1} + q^n$$
 (1.2)

Почленно вычтем равенство (1.2) из равенства (1.1):

$$S_n(1-q)=1-q^n.$$

Пусть $q \neq 1$. Тогда

$$S_n = \frac{1 - q^n}{1 - q} \,. \tag{1.3}$$

Воспользовавшись утверждением 1.1 и формулой (1.3), мы получим, что

при
$$|q| < 1 \lim_{n \to \infty} q^n = 0$$
 и $\lim_{n \to \infty} S_n = \frac{1}{1 - q}$;

при
$$|q| > 1$$
 $\lim_{n \to \infty} q^n = \infty$ и $\lim_{n \to \infty} S_n = \infty$.

Осталось рассмотреть случай |q|=1.

Если q = 1, то ряд примет вид

$$1+1+1+...$$

Для него $\lim_{n\to\infty} S_n = \lim_{n\to\infty} n = \infty$.

Пусть q = -1. Тогда ряд примет вид

$$1-1+1-1+...$$

Для него $S_{2k-1} = 1$, $S_{2k} = 0$, $k \in N$.

Имеем: $\lim_{k\to\infty} S_{2k-1}=1$, $\lim_{k\to\infty} S_{2k}=0$. Таким образом, две подпоследовательности (S_{2k-1}) и (S_{2k}) последовательности (S_n) имеют различные пределы. Значит, предел последовательности (S_n) не существует.

В итоге получен следующий результат: ряд $\sum_{n=1}^{\infty}q^{n-1}$ при |q|<1 сходится и $\sum_{n=1}^{\infty}q^{n-1}=\frac{1}{1-q}$, при $|q|\geq 1$ ряд расходится. Заметим, что часто ряд $\sum_{n=1}^{\infty}q^{n-1}$

записывают в виде $\sum\limits_{n=0}^{\infty}q^{n}$. Легко видеть, что при |q|<1

$$\sum_{n=1}^{\infty} q^n = \frac{q}{1-q}.$$
 (1.4)

Теорема 1.1. 1) Если ряд $\sum\limits_{n=1}^\infty a_n$ сходится, то для любого $\lambda \in R$ сходится ряд $\sum\limits_{n=1}^\infty \lambda a_n$, называемой произведением ряда на число λ и

$$\sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n.$$

- 2) Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то для любого $\lambda \neq 0$ ряд $\sum_{n=1}^{\infty} \lambda a_n$ также расходится.
- 3) Если сходятся ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$, то сходится ряд $\sum_{n=1}^{\infty} (a_n + b_n)$, называемый суммой этих рядов и

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Теорема 1.2. Если сходится ряд $\sum_{n=1}^{\infty} a_n$, то при каждом $m \in N$ сходится ряд

$$r_m = \sum\limits_{n=m+1}^{\infty} a_n$$
 , называемый m - м остатком ряда $\sum\limits_{n=1}^{\infty} a_n$, и $\lim\limits_{m o \infty} r_m = 0$.

Если какой-нибудь остаток ряда сходится, то сходится и сам ряд.

Следствие. Отбрасывание или добавление конечного числа членов к данному ряду не влияет на его сходимость.

Пример 1.6. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{\cos \frac{2\pi n}{3}}{2^n}$.

Решение. Вычислим $\cos \frac{2\pi n}{3}$. Если n = 3k, где $k \in N$, то

$$\cos\frac{2\pi n}{3} = \cos 2\pi k = 1.$$
 Если $n = 3k + 1$, то

$$\cos\frac{2\pi n}{3} = \cos\left(\frac{2}{3}\pi + 2\pi k\right) = \cos\frac{2}{3}\pi = -\frac{1}{2}.$$
 Если $n = 3k + 2$, то

$$\cos\frac{2\pi n}{3} = \cos\left(\frac{4}{3}\pi + 2\pi k\right) = \cos\frac{4}{3}\pi = -\frac{1}{2}$$
. Значит, если $n = 3k$, то $\cos\frac{2\pi n}{3} = 1$, а

если $n \neq 3k$, то $\cos \frac{2\pi n}{3} = -\frac{1}{2}$. Ряды $\sum_{n=1}^{\infty} \frac{1}{2^{3n}} = \sum_{n=1}^{\infty} \frac{1}{8^n}$ и $\sum_{n=1}^{\infty} \frac{1}{2^n}$ сходятся (см. пример

1.5), причем по формуле (1.4) $\sum_{n=1}^{\infty} \frac{1}{8^n} = \frac{1}{7}$, $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Поэтому на основании теоремы 1.1 получаем:

$$\sum_{n=1}^{\infty} \frac{\cos \frac{2\pi n}{3}}{2^n} = -\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2} \cdot \frac{1}{2^4} - \frac{1}{2} \cdot \frac{1}{2^5} + \frac{1}{2^6} - \dots =$$

$$= \frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{2^{3n}} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{3}{2} \cdot \frac{1}{7} - \frac{1}{2} = -\frac{2}{7}.$$

В ходе вычислений члены вида $\frac{1}{2^{3n}}$ данного ряда мы представим в виде

$$\frac{1}{2^{3n}} = \frac{3}{2} \cdot \frac{1}{2^{3n}} - \frac{1}{2} \cdot \frac{1}{2^n}.$$

Упражнения.

В упражнениях 1.1 - 1.13 для каждого ряда найти его сумму S:

1.1.
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$$
. Other: $S = \frac{1}{3}$.

1.2.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$
. Other: $S = \frac{11}{18}$.

1.3.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2(2n+1)^2}$$
. Other: $S = \frac{1}{8}$.

1.4.
$$\sum_{n=1}^{\infty} \frac{1}{16n^2 - 8n - 3}$$
. Other: $S = \frac{1}{4}$.

1.5.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 + 4n - 3}$$
. Other: $S = \frac{1}{3}$.

1.6.
$$\sum_{n=1}^{\infty} \frac{3n^2 + 3n + 1}{n^3(n+1)^3}$$
. Other: $S = 1$.

1.7.
$$\sum_{n=1}^{\infty} (\sqrt[3]{n+2} - 2 \cdot \sqrt[3]{n+1} + \sqrt[3]{n}). \text{ Other: } S = 1 - \sqrt[3]{2}.$$

1.8.
$$\sum_{n=1}^{\infty} \frac{1}{(n-1)!(n+1)}$$
. Other: $S=1$.

1.9.
$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$
. Other: $S = -\ln 2$.

1.10.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$
. Other: $S = \frac{2}{3}$.

1.11.
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$$
. Other: $S = \frac{3}{2}$.

1.12.
$$\sum_{n=1}^{\infty} \left(\frac{3}{2^{n-1}} + \frac{(-1)^{n-1}}{2 \cdot 3^{n-1}} \right). \text{ Other: } S = \frac{51}{8}.$$

1.13.
$$\sum_{n=0}^{\infty} \ln^{2n} 2$$
. Other: $S = \frac{1}{1 - \ln^2 2}$.

1.14. Доказать, что ряд $\sum_{n=0}^{\infty} \ln^{\frac{n}{2}} 5$ расходится.

Необходимое условие сходимости ряда. Если ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, то

$$\lim_{n \to \infty} a_n = 0 \tag{1.5}$$

Следствие. Если условие (1.5) не выполняется, т.е. $\lim_{n\to\infty} \neq 0$, либо $\lim_{n\to\infty} a_n$ не существует, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Замечание. Условие (1.5) не является достаточным условием сходимости ряда $\sum_{n=1}^{\infty} a_n$. Действительно, ряд $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$, как установлено в примере 1.2,

расходится. В то же время в силу непрерывности логарифмической функции $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \ln \left(1+\frac{1}{n}\right) = \ln \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = \ln 1 = 0 \, .$

Пример 1.7. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{5n-1}{2n+1}$.

Решение. Имеем:
$$a_n = \frac{5n-1}{2n+1}$$
, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{5n-1}{2n+1} = \lim_{n\to\infty} \frac{5-\frac{1}{n}}{2+\frac{1}{n}} = \frac{5}{2} \neq 0$.

Необходимое условие сходимости ряда не выполняется и, следовательно, ряд расходится.

Пример 1.8. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$.

Решение. Применив первый замечательный предел, получаем:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} n \sin\frac{1}{n} = \lim_{n\to\infty} \frac{\sin\frac{1}{n}}{\frac{1}{n}} = 1 \neq 0.$$

Значит, ряд расходится.

Пример 1.9. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \cos \frac{1}{n}$.

Решение. Поскольку функция $y=\cos x$ непрерывна на R, то $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\cos\frac{1}{n}=\cos\left(\lim_{n\to\infty}\frac{1}{n}\right)=\cos 0=1\neq 0\,.$ Данный ряд расходится.

Пример 1.10. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{n^{n+\frac{1}{n}}}{\left(n+\frac{1}{n}\right)^n}$ расходится.

Решение. Найдем
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^{n+\frac{1}{n}}}{\left(n + \frac{1}{n}\right)^n} = \lim_{n \to \infty} \frac{n^{\frac{1}{n}}}{\left(1 + \frac{1}{n^2}\right)^n}$$
. С помощью

правила Лопиталя находим (см. (2.6)), что $\lim_{n\to\infty}\frac{\ln n}{n}=0$. Используя это, равенство $n=e^{\ln n}$ и непрерывность показательной функции, получаем

$$\lim_{n\to\infty} n^{\frac{1}{n}} = \lim_{n\to\infty} e^{\frac{\ln n}{n}} = e^{\frac{\lim_{n\to\infty} \ln n}{n}} = e^0 = 1.$$

Как

известно,

$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1.$$

Поэтому

$$\lim_{n\to\infty}\ln\!\left(1+\frac{1}{n^2}\right)^{n^2}=\lim_{n\to\infty}\frac{\ln\!\left(1+\frac{1}{n^2}\right)}{\frac{1}{n^2}}=1.$$
 Учтя это, как и выше имеем

$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n^2} \right)^{n^2} \right)^{\frac{1}{n}} = \lim_{n \to \infty} e^{\frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^2} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}{n} \right)^{n^2}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln \left(1 + \frac{1}$$

Наконец,

расходится.

Упражнения.

Используя необходимое условие сходимости, доказать, что каждый из следующих рядов является расходящимся:

1.15.
$$\sum_{n=1}^{\infty} \frac{7n+1}{3n-1}.$$

1.16.
$$\sum_{n=1}^{\infty} \arccos \frac{1}{n}.$$

1.17.
$$\sum_{n=1}^{\infty} n^2 \cdot \sin \frac{1}{n^2 + n + 1}$$
.

1.18.
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^n$$
.

1.19.
$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^{n^2}}{e^n}.$$

1.20.
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n+1}{n+2}.$$

1.21.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[n]{\ln n}}$$
.

Критерий Коши сходимости ряда. Для сходимости ряда $\sum_{n=1}^{\infty} a_n$ необходимо и остаточно, чтобы

$$\forall \varepsilon > 0 \ \exists n(\varepsilon) \ \forall n > n(\varepsilon) \ \forall p \in N \ \left(\left| a_{n+1} + a_{n+2} + \dots + a_{n+p} \right| < \varepsilon \right)$$
 (1.6)

Замечание. Если условие (1.6) не выполняется, т.е.

$$\exists \varepsilon > 0 \quad \forall k \in \mathbb{N} \quad \exists n > k \quad \exists p \in \mathbb{N} \quad \left(a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right) \ge \varepsilon, \tag{1.7}$$

то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Пример 1.11. Пользуясь критерием Коши, доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{\cos n^2}{n(n+1)}.$

Решение. Имеем:
$$\left|a_{n+1}+a_{n+2}+\ldots+a_{n+p}\right|=$$

$$=\left|\frac{\cos(n+1)^2}{(n+1)(n+2)}+\frac{\cos(n+2)^2}{(n+2)(n+3)}+\ldots+\frac{\cos(n+p)^2}{(n+p)(n+p+1)}\right|\leq$$

$$\leq \frac{\left|\cos(n+1)^2\right|}{(n+1)(n+2)}+\frac{\left|\cos(n+2)^2\right|}{(n+2)(n+3)}+\ldots+\frac{\left|\cos(n+p)^2\right|}{(n+p)(n+p+1)}\leq$$

$$\leq \frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+\ldots+\frac{1}{(n+p)(n+p+1)}=\sum_{k=n+1}^{n+p}\frac{1}{k(k+1)}.$$
Поскольку $\frac{1}{k(k+1)}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$, то
$$\sum_{k=n+1}^{n+p}\frac{1}{k(k+1)}=\sum_{k=n+1}^{n+p}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+2}+\ldots+$$

$$+\frac{1}{n+p}-\frac{1}{n+p+1}=\frac{1}{n+1}-\frac{1}{n+p+1}<\frac{1}{n+p}<\frac{1}{n+1}.$$

Поэтому для любых натуральных чисел n и p

$$\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| < \frac{1}{n+1}$$
 (1.8)

Пусть задано $\varepsilon > 0$. Неравенство

$$\frac{1}{n+1} < \varepsilon \tag{1.9}$$

равносильно неравенству $n > \frac{1}{\varepsilon} - 1$. Если $0 < \varepsilon \le 1$, то неравенство (1.9) справедливо при $n > n(\varepsilon) = \left\lceil \frac{1}{\varepsilon} - 1 \right\rceil + 1$.

Если $\varepsilon > 1$, то неравенство (1.9) справедливо при $n > n(\varepsilon) = 1$. Использовав неравенство (1.8), мы получили, что

$$\forall n > n(\varepsilon) \quad \forall p \in N \quad \left(\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| < \frac{1}{n+1} < \varepsilon \right),$$

т.е. выполнено условие (1.6). Значит, данный ряд сходится.

Пример 1.12. Пользуясь критерием Коши, доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится.

Решение. Пусть $\mathcal{E} = \frac{1}{\sqrt{2}}$. Для любого натурального k возьмем n = k + 1 и p = k + 1. Тогда

$$\left| a_{n+1} + a_{n+2} + \dots + a_{n+p} \right| = \frac{1}{\sqrt{k+2}} + \frac{1}{\sqrt{k+3}} + \dots + \frac{1}{\sqrt{2k+2}}$$
 (1.10)

В правой части равенства (1.10) находится сумма, состоящая из k+1 слагаемого, причем, очевидно,

$$\frac{1}{\sqrt{k+2}} > \frac{1}{\sqrt{2k+2}}, \frac{1}{\sqrt{k+3}} > \frac{1}{\sqrt{2k+2}}, \dots, \frac{1}{\sqrt{2k+1}} > \frac{1}{\sqrt{2k+2}}.$$

Поэтому заменив в (1.10) $\frac{1}{\sqrt{k+2}}$, $\frac{1}{\sqrt{k+3}}$,..., $\frac{1}{\sqrt{2k+1}}$ на $\frac{1}{\sqrt{2k+2}}$, мы получим:

$$\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| > \frac{k+1}{\sqrt{2k+2}} = \frac{\sqrt{k+1}}{\sqrt{2}} > \frac{1}{\sqrt{2}} = \varepsilon.$$

Следовательно, выполнено условие (1.7), и данный ряд расходится.

Пример 1.13. Пользуясь критерием Коши, доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{\alpha_n}{10^n}$, где $|\alpha_n| < 10$, $n \in N$.

Решение. Положив $a_n = \frac{\alpha_n}{10^n}$, воспользовавшись условием $|\alpha_n| < 10$ и формулой (1.3), получаем $|a_{n+1} + a_{n+2} + \ldots + a_{n+p}| =$

$$= \left| \frac{\alpha_{n+1}}{10^{n+1}} + \frac{\alpha_{n+2}}{10^{n+2}} + \dots + \frac{\alpha_{n+p}}{10^{n+p}} \right| \le \frac{|\alpha_{n+1}|}{10^{n+1}} + \frac{|\alpha_{n+2}|}{10^{n+2}} + \dots + \frac{\alpha_{n+p}}{10^{n+p}} < \frac{10}{10^{n+1}} + \frac{10}{10^{n+2}} + \dots + \frac{10}{10^{n+p}} = \frac{1}{10^n} \left(1 + \frac{1}{10} + \dots + \frac{1}{10^{p-1}} \right) = \frac{1}{10^n} \cdot \frac{1 - \frac{1}{10^p}}{1 - \frac{1}{10}} < \frac{10}{10^n} < \frac{2}{10^n} .$$

Значит, для всех натуральных чисел n и p

$$\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| < \frac{2}{10^n}$$
 (1.11)

Пусть ε - произвольное положительное число. Рассмотрим неравенство

$$\frac{2}{10^n} < \varepsilon, \quad n \in N \,, \tag{1.12}$$

которое равносильно неравенству $n>\lg\frac{2}{\varepsilon}$. Если $0<\varepsilon<2$, то неравенство (1.12) выполняется при $n>n(\varepsilon)=\left[\lg\frac{2}{\varepsilon}\right]+1$. Если $\varepsilon\geq 2$, то $\lg\frac{2}{\varepsilon}\leq 0$, и неравенство (1.12) справедливо при $n>n(\varepsilon)=1$. Значит, для произвольного положительного ε мы нашли такой номер $n(\varepsilon)$, что если $n>n(\varepsilon)$, а p-произвольное натуральное число, то

$$\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| < \frac{2}{10^n} < \varepsilon.$$

Таким образом, выполнено условие (1.6) и поэтому данный ряд сходится. **Упражнения.**

Пользуясь критерием Коши, доказать сходимость следующих рядов:

1.22.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}.$$
 1.23.
$$\sum_{n=1}^{\infty} \frac{\cos nx - \cos(n+1)x}{n}.$$

Пользуясь критерием Коши, доказать расходимость следующих рядов:

1.24.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$
. 1.25. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$.

§2. Ряды с неотрицательными членами.

Теорема 2.1. Пусть все члены ряда $\sum_{n=1}^{\infty} a_n$ неотрицательны: $a_n \ge 0, n \in N$.

Для того, чтобы ряд сходился, необходимо, чтобы последовательность его частичных сумм была ограничена сверху и достаточно, чтобы была ограничена сверху хотя бы одна подпоследовательность последовательности его частичных сумм.

Пример 2.1. Доказать, что если ряд $\sum\limits_{n=1}^{\infty}a_n$, где $a_n\geq 0,\ n\in N$, сходится, то ряд $\sum\limits_{n=1}^{\infty}a_n^2$ также сходится.

Решение. Пусть (S_n) - последовательность частичных сумм первого ряда, а (σ_n) - второго ряда. Согласно теореме 2.1 (необходимость) из сходимости первого ряда следует, что последовательность (S_n) ограничена сверху. Тогда ограничена сверху и последовательность (S_n^2) : $\exists M \ \forall n \in N \ (S_n^2 \leq M)$. Отсюда в силу условия $a_n \geq 0$ следует, что $\sigma_n = a_1^2 + a_2^2 + \ldots + a_n^2 \leq$ $\leq (a_1 + a_2 + \ldots + a_n)^2 = S_n^2 \leq M$ для всех $n \in N$. Поэтому ограничена сверху последовательность (σ_n) . Применив теорему 2.1 (достаточность), мы видим, что сходится ряд $\sum_{n=1}^{\infty} a_n^2$.

Пример 2.2. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1-(-1)^n}{2}}}$ расходится.

Решение. Данный ряд состоит из положительных членов: $a_n = \frac{1}{\frac{1-(-1)^n}{2}} > 0 \,, \; n \in N \,. \, \text{В силу очевидного неравенства.}$

$$S_n = 1 + 1 + \frac{1}{3} + 1 + \dots + \frac{1}{n^{\frac{1 - (-1)^n}{2}}} > \frac{n}{2}, \ n \in \mathbb{N},$$

последовательность (S_n) частичных сумм ряда не ограничена сверху. Согласно теореме 2.1 это и означает расходимость данного ряда.

Пример 2.3. Если $a_n \ge 0$ и $a_n \ge a_{n+1}, \ n \in N$, то ряд $\sum\limits_{n=1}^\infty a_n$ сходится или расходится одновременно с рядом $\sum\limits_{n=1}^\infty 2^n \cdot a_{2^n}$.

Решение. Пусть $S_n=a_1+a_2+\ldots+a_n$ и $\sigma_n=2a_2+4a_4+\ldots+2^na_{2^n}$ - частичные суммы данных рядов. Поскольку $a_n\geq a_{n+1},\ n\in N$, то

$$\begin{aligned} a_1 + a_2 & \leq 2a_1, \\ a_3 + a_4 & \leq 2a_2, \\ a_5 + a_6 + a_7 + a_8 & \leq 4a_4, \\ & \cdots \\ a_{2^n+1} + a_{2^n+2} + \cdots + a_{2^{n+1}} & \leq 2^n a_{2^n}. \end{aligned}$$

Сложив эти неравенства почленно, получим

$$a_1 + a_2 + \dots + a_{2^{n+1}} \le 2a_1 + (2a_2 + 4a_4 + \dots + 2^n \cdot a_{2^n}), \text{ r.e.}$$

 $S_{2^{n+1}} \le 2a_1 + \sigma_n.$ (2.1)

Если ряд $\sum_{n=1}^{\infty} 2^n a_{2^n}$ сходится, то по теореме 2.1 последовательность (σ_n) ограничена сверху. В силу неравенства (2.1) ограничена сверху подпоследовательность $(S_{2^{n+1}})$ последовательности (S_n) частичных сумм ряда $\sum_{n=1}^{\infty} a_n$. Согласно теореме 2.1 этот ряд сходится.

С другой стороны, справедливы неравенства

$$\begin{aligned} a_2 &\leq a_1 + a_2, \\ 2a_4 &\leq a_3 + a_4, \\ 4a_8 &\leq a_5 + a_6 + a_7 + a_8, \\ & \cdots \\ 2^n a_{2^{n+1}} &\leq a_{2^n+1} + \dots + a_{2^{n+1}} \end{aligned}$$

Сложив эти неравенства почленно, получим $a_2+2a_4+4a_8+\ldots+2^n a_{2^{n+1}} \le$, $\le a_1+a_2+\ldots+a_{2^{n+1}}$ т.е.

$$\frac{1}{2}\sigma_{n+1} \le S_{2^{n+1}} \tag{2.2}$$

Если ряд $\sum_{n=1}^{\infty} 2^n a_{2^n}$ расходится, то (теорема 2.1) последовательность (σ_n) его частичных сумм не ограничена сверху. В силу неравенства (2.2) тогда не ограничена сверху и подпоследовательность $(S_{2^{n+1}})$. Отсюда следует расходимость ряда $\sum_{n=1}^{\infty} a_n$.

Пример 2.4. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

Решение. Если $p \le 0$, то $a_n = \frac{1}{n^p} = n^{-p} \ge 1$, $n \in N$. Поэтому не выполняется необходимое условие (1.5) сходимости ряда. Следовательно, при $p \le 0$ данный ряд расходится. Пусть p > 0. Тогда $a_n > 0$ и $a_n = \frac{1}{n^p} > \frac{1}{(n+1)^p} = a_{n+1}$, $n \in N$. Согласно примеру 2.1 исследуемый ряд

сходится или расходится одновременно с рядом $\sum_{n=1}^{\infty} 2^n \frac{1}{\left(2^n\right)^p} = \sum_{n=1}^{\infty} \left(2^{1-p}\right)^n$, т.е. с рядом

$$\sum_{n=1}^{\infty} q^n \,, \tag{2.3}$$

где $q = 2^{1-p} > 0$. Если p > 1, то q < 1 и, как установлено в примере 1.5, ряд (2.3) сходится.

Если $p \le 1$, то $q \ge 1$ и ряд (2.3) расходится.

Итак, ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ сходится при p > 1 и расходится при $p \le 1$.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ называется гармоническим. Поскольку для него p=1, то этот ряд расходится.

Мажорантный признак сравнения. Пусть существует номер n_0 такой, что для всех $n \ge n_0$ справедливы неравенства $0 \le a_n \le b_n$. Тогда 1) из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$; 2) из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum_{n=1}^{\infty} b_n$.

Пример 2.5. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{7^n + n}$.

Решение. Поскольку для любого натурального числа n справедливы неравенства $0 < \frac{1}{7^n + n} < \frac{1}{7^n}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{7^n}$ сходится (см. пример 1.5), то на основании мажорантного признака сравнения данный ряд сходится.

Пример 2.6. Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{n-\sqrt{n}}{n^2-n}$.

Решение. Заметим, что при $n \ge 2$ справедливо неравенство $n + \sqrt{n} < 2n$. Поэтому $b = \frac{n - \sqrt{n}}{n^2 - n} = \frac{\left(n - \sqrt{n}\right)\left(n + \sqrt{n}\right)}{\left(n^2 - n\right)\left(n + \sqrt{n}\right)} = \frac{n^2 - n}{\left(n^2 - n\right)\left(n + \sqrt{n}\right)} = \frac{1}{n + \sqrt{n}} > \frac{1}{2n} = a_n$, $n \ge 2$. Так как гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (см. пример 2.4), то в силу теоремы 1.1 ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{2n}$ также расходится. Значит, согласно мажорантному признаку расходится и исследуемый ряд.

Пример 2.7. Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$.

Решение. Имеем: $(\ln n)^{\ln n} = e^{\ln n \cdot \ln(\ln n)} = n^{\ln(\ln n)},$ $\ln(\ln n) > 2 \Leftrightarrow \ln n > e^2 \Leftrightarrow n > e^{e^2}.$ Значит, при $n > e^{e^2}$ $0 < a_n = \frac{1}{(\ln n)^{\ln n}} = \frac{1}{n^{\ln(\ln n)}} < \frac{1}{n^2}.$ Ряд с общим членом $b_n = \frac{1}{n^2}$ сходится, как это было установлено в примере 2.4. Поэтому сходится и данный ряд.

Пример 2.8. Доказать, что сходится ряд $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \frac{n+1}{n} \right)$.

Решение. Сначала докажем, что при x > -1 справедливо неравенство $\ln(1+x) \le x$. (2.4)

Для этого рассмотрим функцию $f(x) = \ln(1+x) - x$, x > -1. Ее производная $f'(x) = -\frac{x}{x+1}$. Легко видеть, что при -1 < x < 0 f'(x) > 0, при x > 0 f'(x) < 0. Значит, f(0) = 0- наибольшее значение функции f. Поэтому при x > -1 $f(x) \le f(0)$, и неравенство (2.4) доказано. Их этого неравенства следует, что $\ln \frac{n+1}{n} = \ln \left(1 + \frac{1}{n}\right) < \frac{1}{n}$. Поэтому $a_n = \frac{1}{n} - \ln \frac{n+1}{n} > 0$, $n \in \mathbb{N}$.

Снова использовав (2.4), получаем

$$-\ln\frac{n+1}{n}=\ln\frac{n}{n+1}=\ln\left(1-\frac{1}{n+1}\right)<-\frac{1}{n+1}.$$
 Значит, $a_n=\frac{1}{n}-\ln\frac{n+1}{n}<\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}<\frac{1}{n^2},\ n\in N$. Таким образом,
$$0< a_n<\frac{1}{n^2},\ n\in N$$
 . Ряд $\sum_{n=1}^\infty\frac{1}{n^2}$, как уже отмечалось, сходится. Следовательно,

данный ряд сходится.

При исследовании рядов, общий член которых содержит логарифмическую функцию, бывает полезным

Утверждение 2.1. Пусть $p \in R$, q > 0. Тогда существует такое натуральное число n_0 , что при $n \ge n_0$

$$\ln^p n < n^q.$$
(2.5)

Для доказательства этого утверждения, покажем, что

$$\lim_{n \to \infty} \frac{\ln^p n}{n^q} = 0. \tag{2.6}$$

Если $p \le 0$, то равенство (2.6) верно, поскольку $0 < \frac{\ln^p n}{n^q} < \frac{1}{n^q}$, $n \ge 3$, а $\lim_{n \to \infty} \frac{1}{n^q} = 0$, т.к. q > 0. Пусть p > 0. Рассмотрим предел $\lim_{x \to +\infty} \frac{\ln^p x}{x^q}$. Сделав в нем замену $\ln x = t$, получим $\lim_{t \to +\infty} \frac{t^p}{e^{qt}}$. Положим k = [p] + 1. Применим правило Лопиталя k раз:

$$\lim_{x \to +\infty} \frac{\ln^p x}{x^q} = \lim_{t \to +\infty} \frac{t^p}{e^{qt}} = \lim_{t \to +\infty} \frac{pt^{p-1}}{qe^{qt}} = \dots = \lim_{t \to +\infty} \frac{p(p-1)\dots(p-k+1)\cdot t^{p-k}}{q^k \cdot e^{qt}} = 0,$$

т.к. p-k<0. Итак, равенство (2.6) доказано. Согласно определению предела числовой последовательности, для $\varepsilon=1$ найдется такой номер n_0 , что при $n\geq n_0$ справедливо неравенство $0<\frac{\ln^p n}{n^q}<1$, т.е. $\ln^p n< n^q$. Утверждение доказано.

Пример 2.9. Доказать, что ряд
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)^{\ln(\ln n)}}$$
 расходится.

Решение. Применяя неравенство (2.5), взяв в нем $\ln n$ вместо n, p=2, q=1, мы видим, что при $n \ge n_0 \, \ln^2 (\ln n) < \ln n$. Значит, при $n \ge n_0$

$$\frac{1}{(\ln n)^{\ln(\ln n)}} = \frac{1}{e^{\ln^2(\ln n)}} > \frac{1}{e^{\ln n}} = \frac{1}{n}, \text{ r.e. } 0 < \frac{1}{n} < \frac{1}{(\ln n)^{\ln(\ln n)}}, \ n \ge n_0.$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится, то расходится и исследуемый ряд.

Пример 2.10. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\ln n!}{n^{\alpha}}, \ \alpha > 0.$

Решение. При $n \ge 4$ справедливо неравенство $2^n < n! < n^n$. Поэтому $n \ln 2 < \ln n! < n \ln n$ и, следовательно,

$$\frac{\ln 2}{n^{\alpha-1}} < \frac{\ln n!}{n^{\alpha}} < \frac{\ln n}{n^{\alpha-1}}, \ n \ge 4.$$

При $\alpha \le 2$ $\alpha - 1 \le 1$, и ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha - 1}}$ расходится (см. пример 2.4). Тогда

расходится ряд $\sum_{n=1}^{\infty} \frac{\ln 2}{n^{\alpha-1}}$ (теорема 1.1). Из неравенства $0 < \frac{\ln 2}{n^{\alpha-1}} < \frac{\ln n!}{n^{\alpha}}$,

Согласно мажорантному признаку сравнения получаем, что при $\alpha \le 2$ данный ряд расходится.

Пусть $\alpha>2$. Тогда найдется число q такое, что $0< q<\alpha-2$. Применив неравенство (2.5) для этого q и p=1, получим: $\ln n < n^q$ при $n \ge n_0$. Тогда $\alpha-1-q>1$, и ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha-1-q}}$ сходится (пример 2.4). Из неравенств $0<\frac{\ln n!}{n^{\alpha}}<\frac{\ln n}{n^{\alpha-1}}<\frac{n^q}{n^{\alpha-1}}=\frac{1}{n^{\alpha-1-q}}$ согласно мажорантному признаку сравнения следует, что при $\alpha>2$ данный ряд сходится.

Пример 2.11. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{v(n)}{n^2}$, где v(n)- число цифр числа n.

Решение. Сначала получим формулу для v(n). Поскольку v(n)- число цифр числа n, то $10^{v(n)-1} \le n < 10^{v(n)}$, откуда логарифмируя, получаем: $v(n)-1 \le \lg n < v(n)$. Значит, $[\lg n]=v(n)-1$, т.е. $v(n)=[\lg n]+1$. Очевидно, что $[\lg n] \le \ln n$. Итак, получена оценка: $v(n)=[\lg n]+1 \le \ln n+1$, из которой следует, что

$$0 < \frac{v(n)}{n^2} \le \frac{\ln n}{n^2} + \frac{1}{n^2}.$$
 (2.7)

Рассуждая как при решении примера 2.10, легко установить, что сходится ряд $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$. Как уже упоминалось, сходится ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Согласно теореме 1.1 сходится ряд $\sum_{n=1}^{\infty} \left(\frac{\ln n}{n^2} + \frac{1}{n^2}\right)$. Наконец, из неравенства (2.7) следует сходимость ряда $\sum_{n=1}^{\infty} \frac{\nu(n)}{n^2}$.

Упражнения.

Используя мажорантный признак сравнения, исследовать на сходимость ряды 2.1-2.6:

2.1.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+2)(n^2+1)}}$$
. Ответ: сходится.

$$2.2 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}$$
. Ответ: расходится.

2.3.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right) \frac{1}{3^n}$$
. Ответ: сходится.

2.4.
$$\sum_{n=1}^{\infty} \frac{1}{n} \ln \left(\frac{n+1}{n} \right)$$
. Ответ: сходится.

2.5.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln \ln n}}$$
. Ответ: расходится.

2.6.
$$\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}}$$
. Ответ: сходится.

2.7. Пусть ряд $\sum_{n=1}^{\infty} a_n$, где $a_n \geq 0, \ n \in N$, сходится. Доказать, что сходится

ряд
$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$$
. Указание: применить неравенство $ab \le \frac{a^2 + b^2}{2}$.

Признак сравнения в предельной форме. Пусть даны ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$,

где $a_n > 0$, $b_n > 0$, $n \in N$, и $\lim_{n \to \infty} \frac{a_n}{b_n} = k$, $0 \le k \le +\infty$. Тогда 1) если $k < +\infty$ и

сходится ряд $\sum_{n=1}^{\infty} b_n$, то сходится ряд $\sum_{n=1}^{\infty} a_n$; 2) если k > 0 и расходится ряд

 $\sum_{n=1}^{\infty} b_n$, то расходится $\sum_{n=1}^{\infty} a_n$. Таким образом, при $0 < k < +\infty$ оба ряда одновременно сходятся или расходятся.

одновременно сходятся или расходятся. Следствие 1. Пусть $a_n>0\,,\ b_n>0\,,\ n\in N\,,\$ и $a_n\sim b_n$ при $n\to\infty\,,\$ т.е.

 $\lim_{n\to\infty}\frac{a_n}{b_n}=1$. Тогда ряды $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ сходятся или расходятся одновременно.

Следствие 2. Пусть $a_n > 0$, $n \in N$ и существуют числа p и c > 0 такие, что $a_n \sim \frac{c}{n^p}$ при $n \to \infty$. Тогда ряд $\sum_{n=1}^\infty a_n$ сходится, если p > 1 и расходится, если $p \le 1$.

Пример 2.12. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{2n \cdot \sqrt[n]{n}}$.

Решение. Пусть $a_n = \frac{1}{2n \cdot \sqrt[n]{n}} > 0$, $b_n = \frac{1}{n} > 0$, $n \in \mathbb{N}$. При решении примера 1.10 было установлено, что $\lim_{n \to \infty} \sqrt[n]{n} = 1$. Поэтому

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n}{2n\cdot\sqrt[n]{n}}=\lim_{n\to\infty}\frac{1}{2\cdot\sqrt[n]{n}}=\frac{1}{2}.\ \ \text{Поскольку ряд }\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}\frac{1}{n}\ \ \text{расходится}.$$

То согласно признаку сравнения в предельной форме данный ряд расходится.

Пример 2.13. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} 2^n \cdot arctg \frac{1}{3^n}$.

Решение. Пусть $a_n = 2^n \cdot arctg \frac{1}{3^n} > 0$, $n \in N$. Известно, что $arctg \ t \sim t$ при $t \to 0$. Кроме того, $\lim_{n \to \infty} \frac{1}{3^n} = 0$ (см. утверждение 1.1). Поэтому $arctg \ \frac{1}{3^n} \sim \frac{1}{3^n}$ при $n \to \infty$ и, следовательно, $a_n \sim b_n$ при $n \to \infty$, где $b_n = \left(\frac{2}{3}\right)^n > 0$, $n \in N$. Ряд $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$ сходится (см. пример 1.5). В силу следствия 1 данный ряд

Ряд $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ сходится (см. пример 1.5). В силу следствия 1 данный ряд сходится.

Пример 2.14. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^{2n}}{(n+a)^{n+b}(n+b)^{n+a}}$, где $a>0,\ b>0$.

Решение, Имеем:

$$a_{n} = \frac{n^{2n}}{(n+a)^{n+b}(n+b)^{n+a}} = \frac{1}{n^{a+b}\left(1+\frac{a}{n}\right)^{n+b}\left(1+\frac{b}{n}\right)^{n+a}} > 0, \ n \in \mathbb{N}.$$
 (2.8)

Поступая также, как при решении примера 1.10, получим:

$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^{n+b} = \lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^{\frac{n}{a}} = \lim_{n\to\infty} e^{\frac{a(n+b)}{n}\ln\left(1 + \frac{a}{n}\right)^{\frac{n}{a}}} = e^{\lim_{n\to\infty} a\left(1 + \frac{b}{n}\right)\lim_{n\to\infty}\ln\left(1 + \frac{a}{n}\right)^{\frac{n}{a}}} = e^{a}$$

и, аналогично, $\lim_{n\to\infty} \left(1+\frac{b}{n}\right)^{n+a} = e^b$. Поэтому (см. (2.8)) $a_n \sim \frac{e^{-a-b}}{n^{a+b}}$ при $n\to\infty$.

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^{a+b}}$ сходится при a+b>1 (см. пример 2.4). Согласно следствию 2 данный ряд сходится при a+b>1.

При исследовании рядов, члены которых содержат факториалы, иногда бывает полезной формула Стирлинга:

$$n! \sim \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n}$$
 при $n \to \infty$.

Пример 2.15. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}}$.

Решение. Применив формулу Стирлинга: $a_n = \frac{n! \, e^n}{n^{n+p}} \sim \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n} \cdot \frac{e^n}{n^{n+p}} = \frac{\sqrt{2x}}{n^{\frac{p-1}{2}}} \quad \text{при } n \to \infty \,. \ \text{Ряд } \sum_{n=1}^{\infty} \frac{1}{n^{\frac{p-1}{2}}} \quad \text{сходится при } p - \frac{1}{2} > 1 \quad \text{(см. пример 2.4). В силу следствия 2 исследуемый ряд сходится при } p > \frac{3}{2} \,.$

Упражнения.

Используя признак сравнения в предельной форме, исследовать на сходимость ряды:

2.8.
$$\sum_{n=1}^{\infty} \left(1-\cos\frac{2\pi}{n}\right)$$
. Ответ: сходится.

2.9.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \arcsin \frac{1}{\sqrt[5]{n^4}}$$
. Ответ: сходится.

2.10.
$$\sum_{n=1}^{\infty} \log_{2^n} \left(1 + \frac{3}{n} \right)$$
. Ответ: сходится.

2.11.
$$\sum_{n=1}^{\infty} n^{\alpha} \cdot \sin^2 \frac{1}{n}$$
. Ответ: сходится, если $\alpha < 1$ и расходится, если $\alpha \ge 1$.

2.12.
$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} - n \right)^{\alpha}$$
. Ответ: сходится, если $\alpha > 1$ и расходится, если $\alpha \le 1$.

2.13.
$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)^{\alpha}$$
. Ответ: сходится, если $\alpha > 1$ и расходится, если $\alpha \le 1$.

Признак Даламбера. Ряд $\sum_{n=1}^{\infty} a_n$ $a_n > 0$, $n \in N$ 1) сходится, если существуют такие q < 1 и $n_0 \in N$, что для всех $n \ge n_0$ $\frac{a_{n+1}}{a_n} \le q$, в частности, если $\overline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} < 1$; 2) расходится, если $\frac{a_{n+1}}{a_n} \ge 1$ для всех $n \ge n_0$, в частности, если $\underline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} > 1$.

Если $\underline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}\leq 1\leq \overline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}$, то ряд $\sum_{n=1}^\infty a_n$ может как сходится, так и расходится.

Следствие. Пусть $a_n>0$, $n\in N$ и существует $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$. Тогда при q<1 ряд $\sum_{n=1}^\infty a_n$ сходится, а при q>1- расходится. При q=1 ряд может как сходится, так и расходится.

Пример 2.16. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{4^n \cdot (n!)^2}{(2n)!}$.

Решение. Имеем: $a_n = \frac{4^n \cdot (n!)^2}{(2n)!} > 0$, $a_{n+1} = \frac{4^{n+1} \cdot ((n+1)!)^2}{(2n+2)!}$. Поскольку

 $\frac{a_{n+1}}{a_n} = \frac{4^{n+1} \big((n+1)! \big)^{2 \cdot} (2n)!}{\big(2n+2 \big)! 4^n \big(n! \big)^2} = \frac{2n+2}{2n+1} > 1 \quad \text{для всех} \quad n \in N \,, \quad \text{то согласно признаку}$ Даламбера ряд расходится.

Пример 2.17. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$.

Решение. Имеем: $a_n = \frac{3^n}{n^3} > 0,$ $a_{n+1} = \frac{3^{n+1}}{(n+1)^3},$

$$q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1} \cdot n^3}{\left(n+1\right)^3 \cdot 3^n} = 3 \lim_{n \to \infty} \frac{1}{\left(1+\frac{1}{n}\right)^3} = 3. \quad \text{Значит,} \quad q > 1, \quad \text{и} \quad \text{в} \quad \text{силу}$$

следствия признака Даламбера ряд расходится.

Пример 2.18. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

Решение. Имеем: $a_n = \frac{n!}{n^n} > 0$, $a_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}$,

$$q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)! \cdot n^n}{(n+1)^{n+1} n!} = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1$$
и поэтому ряд

сходится.

Пример 2.19. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot ... \cdot (3n-1)}{1 \cdot 6 \cdot 11 \cdot ... \cdot (5n-4)}$.

Решение.

Имеем:

$$a_n = \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)}{1 \cdot 6 \cdot 11 \cdot \dots \cdot (5n-4)} > 0,$$

$$a_{n+1} = \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)(3n+2)}{1 \cdot 6 \cdot 11 \cdot \dots \cdot (5n-4)(5n+1)} = a_n \frac{3n+2}{5n+1},$$

 $n \in N$. Значит,

$$q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3n+2}{5n+1} = \lim_{n \to \infty} \frac{3+\frac{2}{n}}{5+\frac{1}{n}} = \frac{3}{5}.$$
 Поскольку $q < 1$, то ряд сходится.

Пример 2.20. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3 + (-1)^n}{2^{n+1}}$.

Решение. Имеем $a_n = \frac{3 + (-1)^n}{2^{n+1}} > 0$, $a_{n+1} = \frac{3 + (-1)^{n+1}}{2^{n+2}}$, $n \in \mathbb{N}$. Пусть

 $q_n = \frac{a_{n+1}}{a_n} = \frac{3 + (-1)^{n+1}}{2(3 + (-1)^n)}$. Все члены последовательности (q_n) содержатся в

последовательностях $q_{2n} = \frac{1}{4}$ и $q_{2n-1} = 1$. Поэтому $\varliminf_{n \to \infty} q_n = \varliminf_{n \to \infty} q_{2n} = \frac{1}{4}$,

 $\overline{\lim_{n\to\infty}}q_n=\lim_{n\to\infty}q_{2n-1}=1$. Значит, $\underline{\lim_{n\to\infty}}\frac{a_{n+1}}{a_n}<1=\overline{\lim_{n\to\infty}}\frac{a_{n+1}}{a_n}$, и признак Даламбера

ответа не дает. Данный ряд можно исследовать с помощью приводимого ниже радикального признака Коши.

Упражнения.

Используя признак Даламбера, исследовать на сходимость ряды:

2.14.
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n \cdot n!}$$
. Ответ: расходится.

2.15.
$$\sum_{n=1}^{\infty} \frac{n^n}{3^n \cdot n!}$$
. Ответ: сходится.

2.16.
$$\sum_{n=1}^{\infty} \frac{5^{3n-1}}{3^{5n+1}}$$
. Ответ: сходится.

2.17.
$$\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdot \dots \cdot (3n+4)}{2 \cdot 6 \cdot 10 \cdot \dots \cdot (4n+2)}$$
. Ответ: сходится.

2.18.
$$\sum_{n=1}^{\infty} \frac{7^n \cdot (n!)^2}{n^{2n}}$$
. Ответ: сходится.

2.19.
$$\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot ... \cdot (3n)}{(n+1)!} arctg \frac{1}{2^n}$$
. Ответ: расходится.

2.20. $\sum_{n=1}^{\infty} \frac{2^n + n^2}{3^n + n}$. Ответ: сходится.

Радикальный признак Коши. Ряд $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$, $n \in N$ 1) сходится, если существуют такие q < 1 и $n_0 \in N$, что для всех $n \ge n_0$ $\sqrt[n]{a_n} \le q$, в частности, если $\overline{\lim_{n \to \infty} \sqrt[n]{a_n}} < 1$; 2) расходится, если $\sqrt[n]{a_n} \ge 1$ для всех $n \ge n_0$, в частности, если $\overline{\lim_{n \to \infty} \sqrt[n]{a_n}} > 1$.

Если $\lim_{n\to\infty} \sqrt[n]{a_n} \le 1 \le \overline{\lim}_{n\to\infty} \sqrt[n]{a_n}$, то ряд $\sum_{n=1}^{\infty} a_n$ может как сходится, так и расходится.

Следствие. Пусть $a_n \ge 0$, $n \in N$, и существует $\lim_{n \to \infty} \sqrt[n]{a_n} = q$. Тогда при q < 1 ряд $\sum_{n=1}^{\infty} a_n$ сходится, а при q > 1- расходится. При q = 1 ряд может как сходится, так и расходится.

Пример 2.21. Исследовать на сходимость ряд $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \ldots + \frac{1}{2^{2n-1}} + \frac{1}{3^{2n}} + \ldots.$

Решение. Общий член данного ряда можно записать в виде

$$a_n = \begin{cases} \frac{1}{2^{2k-1}}, \ ecnu \ n = 2k-1; \\ \frac{1}{3^{2k}}, \ ecnu \ n = 2k; \end{cases} \quad k \in \mathbb{N}.$$

Ясно, что

$$\sqrt[n]{a_n} = \begin{cases} \frac{1}{2}, \ ec\pi u \ n = 2k - 1; \\ \frac{1}{3}, \ ec\pi u \ n = 2k; \end{cases}$$
 $k \in \mathbb{N}$.

Значит, для всех $n \in N$ $\sqrt[n]{a_n} \le q$, где $q = \frac{1}{2} < 1$. Согласно радикальному признаку Коши ряд сходится.

Пример 2.22. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n}$.

Решение. Имеем:
$$a_n = \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n} > 0$$
, $n \in N$, $q = \lim_{n \to \infty} \sqrt[n]{a_n} = 1$

$$= \lim_{n \to \infty} \sqrt[n]{\frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n}} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n \cdot 3} = \frac{1}{3} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \frac{e}{3}.$$

Значит, $q = \frac{e}{3} < 1$, и согласно следствию радикального признака Коши ряд сходится.

Пример 2.23. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^3 (\sqrt{2} + (-1)^n)^n}{3^n}$.

Решение. Пусть $q_n = \sqrt[n]{a_n} = \sqrt[n]{\frac{n^3(\sqrt{2} + (-1)^n)^n}{3^n}} = \frac{\sqrt[n]{n^3}(\sqrt{2} + (-1)^n)}{3}$. Имеем:

$$\lim_{n \to \infty} q_{2n} = \lim_{n \to \infty} \frac{\sqrt[2n]{(2n)^3} (\sqrt{2} + 1)}{3} = \frac{\sqrt{2} + 1}{3},$$
T.K.

$$\lim_{n\to\infty} \sqrt[2n]{(2n)^3} = \lim_{n\to\infty} e^{\frac{\ln(2n)^3}{2n}} = e^{\frac{3}{2}\lim_{n\to\infty} \frac{\ln(2n)}{n}} = e^0 = 1$$
 и, аналогично

$$\lim_{n\to\infty}q_{2n-1}=\lim_{n\to\infty}\frac{\sqrt[2n-1]{(2n-1)^3(\sqrt{2}-1)}}{3}=\frac{\sqrt{2}-1}{3}.\quad \Piоскольку \qquad \frac{\sqrt{2}-1}{3}<\frac{\sqrt{2}+1}{3},\quad \text{то}$$

$$\overline{\lim}_{n\to\infty} q_n = \lim_{n\to\infty} q_{2n} = \frac{\sqrt{2+1}}{3} < 1$$
. Значит, ряд сходится.

Упражнения.

Используя радикальный признак Коши, исследовать на сходимость ряды:

$$2.21. \sum_{n=1}^{\infty} 2^{(-1)^n - n}$$
. Ответ: сходится.

2.22.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^n}$$
. Ответ: сходится.

2.23.
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n-1}\right)^n$$
. Ответ: сходится.

$$2.24. \sum_{n=1}^{\infty} 2^n \left(\frac{n}{n+1}\right)^{n^2}$$
. Ответ: сходится.

2.25.
$$\sum_{n=1}^{\infty} n^n \cdot \sin^n \frac{1}{2n}$$
. Ответ: сходится.

2.26.
$$\sum_{n=1}^{\infty} \frac{\left(5 - (-1)^n\right)^n}{n^3 \cdot 4^n}$$
. Ответ: расходится.

2.27.
$$\sum_{n=1}^{\infty} \frac{n+2^{\sqrt{n}}}{2^n}$$
. Ответ: сходится.

Интегральный признак Коши. Если функция f(x) неотрицательна и убывает на промежутке $[\alpha; +\infty)$, где $a \ge 1$, то ряд

$$\sum_{n=1}^{\infty} f(n)$$

и несобственный интеграл

$$\int_{\alpha}^{+\infty} f(x) dx$$

сходятся или расходятся одновременно.

Пример 2.24. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n}{2^{n^2}}$.

Решение. Рассмотрим функцию $f(x) = \frac{x}{2^{x^2}}$ при $x \ge 1$. Ясно, что f(x) > 0

и $f'(x) = \frac{2^{x^2} (1 - 2x^2 \ln 2)}{2^{2x^2}} < 0$ при $x \ge 1$, т.е. f(x) убывает на промежутке $[1; +\infty)$. Исследуем на сходимость несобственный интеграл:

$$\int_{1}^{+\infty} \frac{x}{2^{x^{2}}} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{x}{2^{x^{2}}} dx = -\frac{1}{2} \lim_{t \to +\infty} \int_{1}^{t} 2^{-x^{2}} d(-x^{2}) =$$

$$= -\frac{1}{2} \lim_{t \to +\infty} \frac{2^{-x^{2}}}{\ln 2} \Big|_{1}^{t} = -\frac{1}{2} \lim_{t \to +\infty} \left(\frac{2^{-t^{2}}}{\ln 2} - \frac{1}{2 \ln 2} \right) = \frac{1}{4 \ln 2}.$$

Значит, несобственный интеграл $\int_{1}^{+\infty} \frac{x}{2^{x^2}} dx$ сходится и согласно интегральному признаку Коши сходится и данный ряд.

Пример 2.25. Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha} n}, \ \alpha \in R$.

Решение. Пусть $f(x) = \frac{1}{x \ln^{\alpha} x}$, $x \in [2, +\infty)$. При $x > e^{-\alpha}$ справедливо неравенство $\ln x + \alpha > 0$ и, следовательно, $f'(x) = -\frac{\ln x + \alpha}{x^2 \ln^{\alpha + 1} x} < 0$. Пусть α -наибольшие из чисел: 2 и $e^{-\alpha}$. Поскольку функция f(x) положительна и убывает на промежутке $[\alpha; +\infty)$, то для исследования ряда на сходимость можно применить интегральный признак Коши. При $\alpha \neq 1$ $\int_{\alpha}^{t} \frac{dx}{x \ln^{\alpha} x} = \int_{\alpha}^{t} \frac{d(\ln x)}{\ln^{\alpha} x} \frac{\ln^{1-\alpha} x}{1-\alpha} \Big|_{\alpha}^{t} = \frac{1}{1-\alpha} \left(\ln^{1-\alpha} t - \ln^{1-\alpha} a\right)$. Если $\alpha < 1$, то

 $\lim_{t\to +\infty} \ln^{1-\alpha} t = +\infty \quad \text{и} \quad \lim_{t\to +\infty} \int_a^t \frac{dx}{x \ln^\alpha x} = +\infty. \quad \text{Если} \quad \alpha > 1, \quad \text{то} \quad \lim_{t\to +\infty} \ln^{1-\alpha} t = 0 \quad \text{и}$ $\lim_{t\to +\infty} \int_a^t \frac{dx}{x \ln^\alpha x} = \frac{\ln^{1-\alpha} a}{\alpha - 1}. \quad \text{При} \quad \alpha = 1 \quad \int_a^t \frac{dx}{x \ln x} = \int_a^t \frac{d(\ln x)}{\ln x} = \ln \ln x \Big|_a^t = \ln \ln t - \ln \ln a \quad \text{и}$ $\lim_{t\to +\infty} \int_a^t \frac{dx}{x \ln x} = \lim_{t\to +\infty} (\ln \ln t - \ln \ln a) = +\infty. \quad \text{Значит,} \quad \text{несобственный} \quad \text{интеграл}$ $\int_a^{+\infty} \frac{dx}{x \ln^\alpha x} \operatorname{сходится} \operatorname{при} \quad \alpha > 1 \quad \text{и расходится} \quad \operatorname{при} \quad \alpha \leq 1.$

Пример 2.26. Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{\ln n!}$.

Решение. Поскольку при $n \ge 2$ $n! < n^n$, то $\ln n! < n \ln n$ и, стало быть, $0 < \frac{1}{n \ln n} < \frac{1}{\ln n!}$. Ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ расходится (см. пример 2.25). Согласно мажорантному признаку сравнения данный ряд расходится.

Пример 2.27. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\alpha}}$, $\alpha \in R$.

Решение. Если $\alpha \le 0$, то $\lim_{n \to \infty} \frac{\ln n}{n^{\alpha}} = +\infty$. Поэтому не выполнено условие (1.5) и ряд расходится.

Пусть $\alpha > 0$. Рассмотрим функцию $f(x) = \frac{\ln x}{x^{\alpha}}$ на промежутке $[1; +\infty)$. Имеем: $f'(x) = \frac{x^{\alpha-1}(1-\alpha \ln x)}{x^{2\alpha}} \le 0$ при $x \ge e^{\frac{1}{\alpha}}$. Функция f(x) положительна и убывает на промежутке $\left[e^{\frac{1}{\alpha}}; +\infty\right]$. Исследуем на сходимость несобственный интеграл $\int_{\frac{1}{e^{\frac{1}{p}}}}^{+\infty} \frac{\ln x}{x^{\alpha}} dx$. Для этого найдем интеграл $\int_{\frac{1}{e^{\frac{1}{p}}}}^{\ln x} dx$. Пусть $\alpha \ne 1$.

Применим формулу интегрирования по частям $\int u dv = uv - \int v du$, положив $u = \ln x$, $dv = \frac{dx}{x^{\alpha}}$. Тогда $du = \frac{dx}{x}$, $v = \frac{1}{(1-\alpha)x^{\alpha-1}}$ и

$$\int \frac{\ln x}{x^{\alpha}} dx = \frac{1}{1-\alpha} \left(\frac{\ln x}{x^{\alpha-1}} - \int \frac{dx}{x^{\alpha}} \right) = \frac{1}{1-\alpha} \left(\frac{\ln x}{x^{\alpha-1}} - \frac{1}{(1-\alpha)x^{\alpha-1}} \right).$$

$$\int_{\frac{1}{e^{\alpha}}}^{+\infty} \frac{\ln x}{x^{\alpha}} dx = \lim_{t \to +\infty} \int_{\frac{1}{e^{\alpha}}}^{t} \frac{\ln x}{x^{\varepsilon}} dx = \frac{1}{1-\alpha} \lim_{t \to +\infty} \left(\frac{\ln x}{x^{\alpha-1}} - \frac{1}{(1-\alpha)x^{\alpha-1}} \right) \Big|_{e^{\frac{1}{\alpha}}}^{t} =$$

$$= \frac{1}{1-\alpha} \lim_{t \to +\infty} \left(\frac{\ln t}{t^{\alpha-1}} - \frac{1}{(1-\alpha)t^{\alpha-1}} - \frac{1}{\alpha e^{\frac{\alpha-1}{\alpha}}} + \frac{1}{\alpha(\alpha-1)e^{\frac{\alpha-1}{\alpha}}} \right).$$

 $\alpha e^{\frac{1-\alpha t}{\alpha}}$ $\alpha e^{\frac{1}{\alpha}}$ $\alpha (\alpha - 1)e^{\frac{1}{\alpha}}$ $\alpha = \frac{1}{\alpha}$ Если $\alpha > 1$, то $\lim_{t \to +\infty} \frac{1}{t^{\alpha - 1}} = 0$ и согласно (2.6) предел $\lim_{t \to +\infty} \int_{1}^{t} \frac{\ln x}{x^{\alpha}} dx$

существует и конечен. При $\alpha \le 1$ этот предел бесконечен. При $\alpha = 1$ имеем:

$$\int_{\frac{1}{e^{\frac{1}{\alpha}}}}^{+\infty} \frac{\ln x}{x} dx = \lim_{t \to +\infty} \int_{\frac{1}{e^{\frac{1}{\alpha}}}}^{t} \frac{\ln x}{x} dx = \lim_{t \to +\infty} \ln^2 x \Big|_{e^{\frac{1}{\alpha}}}^{t} = \lim_{t \to +\infty} \left(\ln^2 t - \frac{1}{p^2} \right) = +\infty.$$

Итак, несобственный интеграл $\int_{e^{\frac{1}{p}}}^{+\infty} \frac{\ln x}{x^{\alpha}} dx$ и, следовательно, данный ряд

сходятся при $\alpha > 1$ и расходятся при $\alpha \le 1$.

Пример 2.28. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} (n^{n^{\alpha}} - 1)$.

Решение. Пусть $a_n = n^{n^\alpha} - 1$. Если $\alpha \ge 0$, то, очевидно, $\lim_{n \to \infty} a_n \ne 0$ и ряд расходится. Пусть $\alpha < 0$. Тогда согласно (2.6) $\lim_{n \to \infty} n^\alpha \ln n = \lim_{n \to \infty} \frac{\ln n}{n^{-\alpha}} = 0$. Поэтому можно применить эквивалентность $e^t - 1 \sim t$ при $t \to 0$, взяв $t = n^\alpha \ln n$. Имеем: $a_n = n^{n^\alpha} - 1 = e^{n^\alpha \ln n} - 1 \sim n^\alpha \ln n$ при $n \to \infty$. Значит, $a_n \sim \frac{\ln n}{n^{-\alpha}}$. Использовав следствие 1 признака сравнения в предельной форме и пример 2.27, получаем, что данный ряд сходится при $\alpha < -1$.

Пример 2.29. Пусть $a_n > 0$, $n \in N$, и $\overline{\lim}_{n \to \infty} (na_n)^{\frac{1}{\ln \ln n}} < \frac{1}{e}$. Доказать, что ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Решение. Выберем число b так, что $\overline{\lim_{n\to\infty}}(na_n)^{\frac{1}{\ln \ln n}} < b < \frac{1}{e}$. Из определения верхнего предела следует, что найдется такое натуральное число n_0 , что

 $(na_n)^{\frac{1}{\ln \ln n}} < b$ при $n \ge n_0$. Значит, $0 < a_n < \frac{b^{\ln \ln n}}{n}$. Поскольку $b^{\ln \ln n} = (\ln n)^{\ln b}$, то получаем: $0 < a_n < \frac{(\ln n)^{\ln b}}{n}$. Поскольку $b < \frac{1}{e}$, то $-\ln b > 1$. Но тогда, как установлено в примере 2.25, сходится ряд $\sum_{n=2}^{\infty} \frac{(\ln n)^{\ln b}}{n} = \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{-\ln b}}$. Поэтому в силу мажорантного признака сравнения сходится ряд $\sum_{n=2}^{\infty} a_n$.

Упражнения.

Используя интегральный признак Коши, исследовать на сходимость ряды:

2.28.
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2}$$
. Ответ: расходится.

2.29.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n \ln \ln n}$$
. Ответ: расходится.

2.30.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln \ln n)^2}$$
. Ответ: сходится.

2.31.
$$\sum_{n=1}^{\infty} \left(n^{\frac{1}{n^2+1}} - 1 \right)$$
. Ответ: сходится.

2.32.
$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} \ln^{\beta} n}$$
. Ответ: ряд сходится при любом β , если $\alpha > 1$, и при $\beta > 1$, если $\alpha = 1$; ряд расходится при любом β , если $\alpha < 1$, и при $\beta \le 1$, если $\alpha = 1$.

§3. Знакопеременные ряды

Числовой ряд, членами которого являются числа разных знаков, называется знакопеременным.

Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Теорема 3.1. Абсолютно сходящийся ряд сходится.

Теорема 3.2. Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ абсолютно сходятся, то для любых чисел α и β абсолютно сходится ряд $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$.

Ряд $\sum_{n=1}^{\infty} |a_n|$ является рядом с неотрицательными членами, поэтому при исследовании ряда $\sum_{n=1}^{\infty} a_n$ на абсолютную сходимость можно применять признаки, приведенные в §2.

Пример 3.1. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin(n^2)}{n^2}$ абсолютно сходится.

Решение. Имеем: $0 < \left| \frac{\sin(n^2)}{n^2} \right| < \frac{1}{n^2}$ для всех $n \in N$. Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (см. пример 2.4), то согласно мажорантному признаку сравнения сходится ряд $\sum_{n=1}^{\infty} \left| \frac{\sin(n^2)}{n^2} \right|$. Поэтому данный ряд сходится абсолютно.

Пример 3.2. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sqrt{n} \cdot \ln n \cdot \cos n}{n^2 + 1}$ абсолютно сходится.

Решение. Применив неравенство (2.5) при p=1 и q удовлетворяющим неравенству $0 < q < \frac{1}{2}$, получим, что при $n \ge n_0$

$$\left|\frac{\sqrt{n}\ln n \cdot \cos n}{n^2 + 1}\right| \le \frac{\sqrt{n}\ln n}{n^2 + 1} < \frac{\sqrt{n} \cdot n^q}{n^2} = \frac{1}{n^{\frac{3}{2}-q}}.$$

В силу выбора числа q справедливо неравенство $\frac{3}{2}-q>1$. Но тогда сходится ряд $\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}-q}}$ и по мажорантному признаку сравнения исследуемый ряд сходится абсолютно.

Пример 3.3. Доказать, что если ряды $\sum_{n=1}^{\infty} a_n^2$ и $\sum_{n=1}^{\infty} b_n^2$ сходятся, то ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится абсолютно.

Решение. Из сходимости рядов $\sum_{n=1}^{\infty}a_n^2$ и $\sum_{n=1}^{\infty}b_n^2$ следует сходимость ряда $\sum_{n=1}^{\infty}\frac{\left(a_n^2+b_n^2\right)}{2}$. Поскольку $|a_nb_n|\leq \frac{1}{2}\left(a_n^2+b_n^2\right)$ для всех $n\in N$, то применив мажорантный признак сравнение, получаем требуемый результат.

Пример 3.4. Доказать абсолютную сходимость ряда $\sum_{n=1}^{\infty} \left(-\frac{2n}{3n+4}\right)^n$.

Решение. Рассмотрим ряд $\sum_{n=1}^{\infty} \left| \left(-\frac{2n}{3n+4} \right)^n \right| = \sum_{n=1}^{\infty} \left(\frac{2n}{3n+4} \right)^n$. Применим к этому ряду следствие радикального признака Коши: $q = \lim_{n \to \infty} \sqrt[n]{\left(\frac{2n}{3n+4} \right)^n} = \lim_{n \to \infty} \frac{2}{3+\frac{4}{n}} = \frac{2}{3} < 1$. Ряд $\sum_{n=1}^{\infty} \left| \left(-\frac{2n}{3n+4} \right)^n \right|$ сходится и,

следовательно, данный ряд сходится абсолютно.

Пусть для знакопеременного ряда $\sum_{n=1}^{\infty} a_n$, где $a_n \neq 0$, $n \in N$ существует такой номер n_0 , для всех $n \geq n_0$ $\frac{|a_{n+1}|}{|a_n|} > 1$ или $\sqrt[n]{|a_n|} \geq 1$, либо $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1$ или $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$. Тогда не выполнено условие $\lim_{n \to \infty} |a_n| = 0$, следовательно, не выполнено и условие $\lim_{n \to \infty} a_n = 0$. Поэтому ряд $\sum_{n=1}^{\infty} a_n$ расходится. Значит, признак Даламбера и радикальный признак Коши можно применять для доказательства расходимости ряда с членами любого знака.

Пример 3.5. Доказать, что ряд $\sum_{n=1}^{\infty} n! \left(-\frac{5}{n}\right)^n$ расходится.

Решение. Пусть
$$a_n = n! \left(-\frac{5}{n}\right)^n$$
, $a_n \neq 0$, $n \in N$. Имеем

$$\lim_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim_{n\to\infty}\frac{(n+1)!\cdot 5^{n+1}\cdot n^{n}}{(n+1)^{n+1}\cdot n!\cdot 5^{n}}=\lim_{n\to\infty}\frac{5n^{n}}{(n+1)^{n}}=\lim_{n\to\infty}\frac{5}{\left(1+\frac{1}{n}\right)^{n}}=\frac{5}{e}>1.$$
 Значит, ряд

расходится.

Упражнения.

Доказать, что ряды 3.1-3.6 абсолютно сходятся:

$$3.1. \sum_{n=1}^{\infty} \frac{arctg(-n)^n}{n \cdot \sqrt[3]{n}}.$$

$$3.2. \sum_{n=1}^{\infty} \frac{\sin n}{n \cdot 5^n}.$$

3.3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + \sin^2 n}.$$

3.4.
$$\sum_{n=1}^{\infty} \frac{\left(-1^n n^2\right)}{\left(2 + \frac{1}{n}\right)^n}.$$

3.5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n!)^2}{(2n)!}.$$

3.6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[5]{n}} \cdot \arcsin \frac{\pi}{4n}.$$

3.7. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n^2$ сходится, то ряд $\sum_{n=1}^{\infty} \frac{a_n}{n}$ сходится абсолютно.

3.8. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то ряд $\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right) a_n$ также абсолютно сходится.

Доказать, что ряды 3.9 и 3.10 расходятся:

$$3.9. \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 4 \cdot 7 \cdot \dots \cdot (3n-2)}{7 \cdot 9 \cdot 11 \cdot \dots \cdot (2n+5)}. \qquad 3.10. \sum_{n=1}^{\infty} (-1)^n \cdot \left(\frac{3n+1}{3n-2}\right)^{5n+2}.$$

Признак Лейбница. Пусть существует такое $n_0 \in N$, что при всех $n \ge n_0$ $a_n \ge a_{n+1} > 0 \text{ и } \lim_{n \to \infty} a_n = 0 \text{ . Тогда ряд } \sum_{n=1}^{\infty} (-1)^n a_n \text{ сходится.}$

Пример 3.5. Доказать сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{2n+1}{n(n+1)}$.

Решение. Пусть $a_n = \frac{2n+1}{n(n+1)} > 0$, $n \in N$. Последовательность (a_n) является убывающей. Действительно,

$$a_n - a_{n+1} = \frac{2n+1}{n(n+1)} - \frac{2n+3}{(n+1)(n+2)} = \frac{2}{n(n+2)} > 0, \quad n \in \mathbb{N}.$$
 Kpome того,

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n+1}{n(n+1)} = 0$. Условия признака Лейбница выполнены. Значит, ряд сходится.

Пример 3.6. Доказать сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln^2 n}{n}$.

Решение. Пусть $a_n = \frac{\ln^2 n}{n}$. Для доказательства убывания последовательности (a_n) рассмотрим функцию $f(x) = \frac{\ln^2 x}{x}$. Имеем: $f'(x) = \frac{\ln x(2 - \ln x)}{x^2} < 0$ при $x > e^2$. Поэтому функция f(x) убывает на промежутке $(e^2, +\infty)$. Значит, $a_n > a_{n+1} > 0$ при $n \ge n_0 = 8$. Согласно (2.6) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln^2 n}{n} = 0$. По признаку Лейбница ряд сходится.

Пример 3.7. Доказать сходимость ряда $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$, $a \in R$.

Решение. Преобразовать общий член данного ряда: $\sin(\pi\sqrt{n^2+a^2}) = \sin((\pi\sqrt{n^2+a^2}-\pi n)+\pi n) = (-1)^n \sin(\pi(\sqrt{n^2+a^2}-n)) =$ $= (-1)^n \sin\frac{\pi a^2}{\sqrt{n^2+a^2}+n} = (-1)^n a_n, \quad \text{где} \qquad a_n = \sin\frac{\pi a^2}{\sqrt{n^2+a^2}+n}. \quad \text{Рассмотрим}$ функцию $f(x) = \sin\frac{\pi a^2}{\sqrt{x^2+a^2}+x} \qquad \text{для} \qquad x \ge 1. \qquad \text{Имеем:}$ $f'(x) = -\cos\frac{\pi a^2}{\sqrt{x^2+a^2}+x} \cdot \frac{\pi a^2}{\sqrt{x^2+a^2}(\sqrt{x^2+a^2}+x)} < 0 \quad \text{при} \quad x \ge x_0, \quad \text{так как}$ существует такое x_0 , что при $x \ge x_0$ $0 < \frac{\pi a^2}{\sqrt{x^2+a^2}+x} < \frac{\pi}{2}$ (проверьте это).
Значит, последовательность положительных чисел (a_n) начиная с некоторого номера убывает, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \sin\frac{\pi a^2}{\sqrt{n^2+a^2}+n} = 0$. По признаку Лейбница ряд $\sum_{n\to\infty}^{\infty} (-1)^n a_n$ сходится. Следовательно сходится и данный ряд.

Упражнения.

Применяя признак Лейбница, доказать сходимость рядов:

3.11.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n + 2008}.$$
 3.12.
$$\sum_{n=4}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - 4n + 1}}.$$

3.13.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n \ln^{\alpha} n}, \ \alpha > 0.$$

признаку Дирихле ряд расходится.

Признак Д**ирихле.** Пусть для ряда $\sum_{n=1}^{\infty} a_n b_n$ выполнены условия: 1) последовательность (a_n) монотонно стремится к нулю, т.е. $a_{n+1} \leq a_n$ или $a_{n+1} \geq a_n$ для всех $n \geq n_0$ и $\lim_{n \to \infty} a_n = 0$; 2) последовательность (B_n) частичных сумм ряда $\sum_{n=1}^{\infty} b_n$ ограничена, т.е. $\exists M > 0 \ \forall n \in N \ \left(\left| B_n \right| = \left| \sum_{k=1}^n b_k \right| \leq M \right)$. Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Пример 3.8. Доказать, что сходится ряд $\sum_{n=1}^{\infty} \frac{\sin n \cdot \sin n^2}{n}$.

Решение. Пусть $a_n = \frac{1}{n}, \ b_n = \frac{\sin n \cdot \sin n^2}{n}$. Ясно, что последовательность (a_n) убывая стремится к нулю.

Применив формулу $\sin k \cdot \sin k^2 = \frac{1}{2} \left(\cos(k^2 - k) - \cos(k^2 + k) \right)$, получаем: $B_n = \sum_{k=1}^n b_k = \sum_{k=1}^n \sin k \cdot \sin k^2 = \frac{1}{2} \sum_{k=1}^n \left(\cos(k^2 - k) - \cos(k^2 + k) \right) =$ $= \frac{1}{2} \left(\cos 0 - \cos 2 + \cos 2 - \cos 6 + \dots + \cos(n^2 - n) - \cos(n^2 + n) \right) =$ $= \frac{1}{2} \left(1 - \cos(n^2 + n) \right). \quad \text{Поэтому} \quad |B_n| = \left| \frac{1}{2} \left(1 - \cos(n^2 + 4) \right) \right| < 1 \quad \text{для всех} \quad n \in \mathbb{N} . \quad \text{По}$

Пример 3.9. Доказать, что если последовательность (a_n) монотонно стремится к нулю, то ряд $\sum_{i=1}^{\infty} a_n \sin n\alpha$ сходится при любом $\alpha \in R$.

Решение. Пусть $\alpha \neq 2\pi m$, $m \in Z$. Докажем, что последовательность (B_n) частичных сумм ряда $\sum_{n=1}^{\infty} \sin n\alpha$ ограничена. Умножим обе части равенства

$$B_n = \sum_{k=1}^n \sin k \alpha$$
 на $2 \sin \frac{\alpha}{2}$ и применим формулу $2 \sin k \alpha \sin \frac{\alpha}{2} = \cos \left(k - \frac{1}{2}\right) \alpha - \cos \left(k + \frac{1}{2}\right) \alpha$. Имеем:

$$2\sin\frac{\alpha}{2}B_n = \sum_{k=1}^n 2\sin k\alpha \sin\frac{\alpha}{2} = \sum_{k=1}^n \left(\cos\left(k - \frac{1}{2}\right)\alpha - \cos\left(k + \frac{1}{2}\right)\alpha\right) =$$

$$= \cos\frac{\alpha}{2} - \cos\frac{3}{2}\alpha + \cos\frac{3}{2}\alpha - \cos\frac{5}{2}\alpha + \dots + \cos\left(n - \frac{1}{2}\right)\alpha - \cos\left(n + \frac{1}{2}\right)\alpha =$$

$$= \cos\frac{\alpha}{2} - \cos\left(n + \frac{1}{2}\right)\alpha = 2\sin\left(\frac{n+1}{2}\alpha\right)\sin\frac{n\alpha}{2}.$$
 Поскольку при $\alpha \neq 2\pi m$, $m \in \mathbb{Z}$,

$$\sin \frac{\alpha}{2} \neq 0$$
, то $B_n = \frac{\sin \left(\frac{n+1}{2}\right) \alpha \cdot \sin \frac{n\alpha}{2}}{\sin \frac{\alpha}{2}}$ и $\left|B_n\right| \leq \frac{1}{\left|\sin \frac{\alpha}{2}\right|}$ при всех $n \in N$. Значит,

по признаку Дирихле ряд $\sum_{n=1}^{\infty} a_n \sin n\alpha$ сходится при $\alpha \neq 2\pi m$, $m \in Z$. Если $\alpha = 2\pi m$, $m \in Z$, то $\sin n\alpha = \sin 2\pi m n = 0$ при всех $n \in N$ и поэтому ряд сходится. Следовательно, ряд $\sum_{n=1}^{\infty} a_n \sin n\alpha$ сходится при любом $\alpha \in R$, если последовательность (a_n) монотонно стремится к нулю.

Пример 3.10. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^{\beta}}$, $\beta > 0$, сходится при любом $\alpha \in R$.

Решение. Пусть $a_n = \frac{1}{n^{\beta}}$. Поскольку $\beta > 0$, то $a_{n+1} = \frac{1}{(n+1)^{\beta}} < \frac{1}{n^{\beta}} = a_n$ и $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n^{\beta}} = 0$. Значит, последовательность (a_n) монотонно стремится к нулю. Осталось сослаться на пример 3.9.

Пример 3.11. Доказать сходимость ряда $\sum_{n=1}^{\infty} \frac{\ln^{100} n}{n} \sin \frac{\pi n}{4}$.

Решение. Пусть $f(x) = \frac{\ln^{100} x}{x}$, $x \ge 1$. Имеем: $f'(x) = \frac{\ln^{99} x(100 - \ln x)}{x^2} < 0$ при $x > e^{100}$. Значит, последовательность $a_n = \frac{\ln^{100} n}{n}$ при $n > e^{100}$ убывает. Кроме того, $\lim_{n \to \infty} \frac{\ln^{100} n}{n} = 0$ (см. (2.6)). Согласно примеру 3.9 данный ряд сходится.

Признак Абеля. Пусть для ряда $\sum_{n=1}^{\infty} a_n b_n$ выполнены условия: 1) последовательность (a_n) монотонна и ограничена; 2) ряд $\sum_{n=1}^{\infty} b_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Пример 3.12. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{\sqrt{n}} arctgn$ сходится при любом $\alpha \in R$.

Решение. Пусть $a_n = arctgn$, $b_n = \frac{\sin n\alpha}{\sqrt{n}}$ Последовательность (a_n) , очевидно, возрастает и $0 < arctg \ n < \frac{\pi}{2}$ для всех $n \in N$. Ряд $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{\sin n\alpha}{\sqrt{n}}$ согласно примеру 3.9 сходится при любом $\alpha \in R$, т.к. последовательность $\left(\frac{1}{\sqrt{n}}\right)$ убывает и стремится к нулю, По признаку Абеля исследуемый ряд сходится при любом $\alpha \in R$.

получаем:

Пример 3.13. Доказать сходимость ряда $\sum_{n=2}^{\infty} \frac{\cos \frac{\pi n^2}{n+1}}{\ln^2 n}$.

 $\cos\frac{\pi n^2}{n+1} = \cos\left(\left(\frac{\pi n^2}{n+1} - \pi n\right) + \pi n\right) = (-1)^n \cos\left(\frac{\pi n^2}{n+1} - \pi n\right) =$ $= (-1)^n \cos\frac{\pi n}{n+1} = (-1)^n \cos\left(\pi - \frac{\pi}{n+1}\right) = (-1)^{n+1} \cos\frac{\pi}{n+1}. \quad \text{Поэтому общий член}$ данного ряда представим в виде $\frac{\cos\frac{\pi n^2}{n+1}}{\ln^2 n} = \cos\frac{\pi}{n+1} \cdot \frac{(-1)^{n+1}}{\ln^2 n}. \quad \text{Пусть}$ $f(x) = \cos\frac{\pi}{x+1}, \quad x \in [2, +\infty). \quad \text{Имеем:} \quad f'(x) = \frac{\pi}{(x+1)^2} \sin\frac{\pi}{x+1} > 0 \quad \text{на промежутке}$ $[2, +\infty). \quad \text{Поэтому последовательность} \quad a_n = \cos\frac{\pi}{n+1} \quad \text{является возрастающей и,}$ кроме того, она ограничена: $\left|\cos\frac{\pi}{n+1}\right| \le 1 \quad \text{при всех} \quad n \in \mathbb{N}. \quad \Phi$ ункция $g(x) = \frac{1}{\ln^2 x} \quad \text{убывает на промежутке} \quad [2, +\infty), \quad \text{поскольку} \quad g'(x) = -\frac{2}{x \ln^3 x} < 0$

при $x \ge 2$. Значит, последовательность $\left(\frac{1}{\ln^2 n}\right)$ убывает и, очевидно,

$$\lim_{n\to\infty}\frac{1}{\ln^2 n}=0$$
. По признаку Лейбница ряд $\sum_{n=2}^{\infty}b_n=\sum_{n=2}^{\infty}\frac{(-1)^{n+1}}{\ln^2 n}$ сходится.

Сославшись на признак Абеля, мы получили, что данный ряд сходится.

Упражнения.

Используя признаки Дирихле и Абеля, доказать сходимость рядов:

3.14. $\sum_{n=1}^\infty a_n \cos n\alpha$, если последовательность (a_n) монотонно стремится к нулю, $\alpha \neq 2\pi m$, $m \in Z$.

3.15.
$$\sum_{n=1}^{\infty} \frac{\cos n}{3n+2}.$$
3.16.
$$\sum_{n=1}^{\infty} \frac{\cos n \cdot \sin n\alpha}{n}, \ \alpha \in \mathbb{R}.$$
3.17.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} \cdot \frac{1+3n^2}{1+2n^2}.$$
3.18.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 \ln n}.$$

3.19.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \arcsin \frac{1}{\sqrt{n}} \cos \frac{1}{n^2}}{\sqrt{n}}.$$
 3.20.
$$\sum_{n=1}^{\infty} (-1)^n \arcsin \frac{1}{\sqrt{n}} \cos \frac{1}{n^2}.$$

Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если этот ряд сходится, а ряд

 $\sum_{n=1}^{\infty} |a_n|$ расходится.

Пример 3.14. Исследовать на абсолютную и условную сходимость ряд $\sum_{n=1}^{\aleph} \frac{(-1)^n}{n-\ln n}.$

Решение. Исследуем ряд на абсолютную сходимость. Рассмотрим ряд, составленный из модулей его членов: $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n - \ln n} \right| = \sum_{n=1}^{\infty} \frac{1}{n - \ln n}$. Поскольку

$$a_n=rac{1}{n-\ln n}=rac{1}{nigg(1-rac{\ln n}{n}igg)}\simrac{1}{n}$$
 при $n o\infty$, то согласно следствию 2 признака

сравнения в предельной форме ряд $\sum_{n=1}^{\infty} \frac{1}{n-\ln n}$ расходится. Поэтому исследуемый ряд не является абсолютно сходящимся.

Исследуем ряд на условную сходимость. Рассмотрим функцию $f(x) = \frac{1}{x - \ln x}$, $x \ge 1$. Эта функция убывает на промежутке $[1, +\infty)$, т.к.

 $f'(x) = -\frac{x-1}{x(x-\ln x)^2} \le 0$ при $x \ge 1$. Поэтому последовательность (a_n) является

убывающей и, очевидно, стремящейся к нулю. По признаку Лейбница данный ряд сходится, причем условно.

Пример 3.15. Исследовать на абсолютную и условную сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p+\frac{1}{n}}}, \ p \in R.$

Решение. Рассмотрим ряд $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^{p+\frac{1}{n}}} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{p+\frac{1}{n}}}$. Имеем

$$a_n = \frac{1}{n^{\frac{1}{p+\frac{1}{n}}}} = \frac{1}{n^{\frac{1}{p}} \cdot n^{\frac{1}{n}}} \sim \frac{1}{n^p}$$
 при $n \to \infty$, т.к. $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$ (см. решение примера 1.9).

Из эквивалентности $a_n \sim \frac{1}{n^p}$, во-первых, получаем согласно примеру 2.4, что данный ряд абсолютно сходится при p>1 и не сходится абсолютно при $p\leq 1$. Во-вторых, из эквивалентности следует, что при $p\leq 0$ ряд расходится, т.к. тогда не выполняется необходимое условие сходимости.

Пусть p > 0. Тогда $\lim_{n \to \infty} a_n = 0$. Докажем, что последовательность (a_n)

убывает. Пусть $f(x) = \frac{1}{x^{\frac{p+\frac{1}{x}}}} = e^{-\left(\frac{p+\frac{1}{x}}{x}\right)\ln x}$ для $x \ge 1$. Имеем:

$$f'(x) = -e^{-\left(\frac{p+\frac{1}{x}}{n}\right)\ln x} \left(\left(p + \frac{1}{x}\right) \frac{1}{x} - \frac{\ln x}{x^2} \right) = -\frac{e^{-\left(\frac{p+\frac{1}{x}}{n}\right)\ln x}}{x} \left(p - \frac{\ln x - 1}{x}\right)$$
(3.1)

С помощью правила Лопиталя находим, что $\lim_{x\to\infty}\frac{\ln x-1}{x}=\lim_{x\to\infty}\frac{1}{x}=0$. Согласно определению предела функции отсюда следует, что для p>0 найдется такое число x_0 , что при $x>x_0$ справедливо неравенство $\frac{\ln x-1}{x}< p$, т.е. $p-\frac{\ln x-1}{x}>0$. Поэтому из (3.1) получаем, что при $x>x_0$ f'(x)<0 и функция f(x) на промежутке $(x_0,+\infty)$ убывает. Значит, последовательность (a_n) убывает, начиная с некоторого номера. По признаку Лейбница при p>0 данный ряд сходится. Подведем итоги: при $p\leq 0$ ряд расходится, при $0< p\leq 1$ сходится условно, при p>1 сходится абсолютно.

Пример 3.16. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то ряды $\sum_{n=1}^{\infty} b_n$ и $\sum_{n=1}^{\infty} (a_n + b_n)$ одновременно либо абсолютно сходятся, либо условно сходятся, либо расходятся.

Решение. Пусть ряд $\sum_{n=1}^{\infty} b_n$ абсолютно сходится. Поскольку и ряд $\sum_{n=1}^{\infty} a_n$ по условию абсолютно сходится, то согласно критерию Коши сходимости ряда $\forall \varepsilon > 0$ $\exists n(\varepsilon)$ $\forall n \geq n(\varepsilon)$ $\forall p \in N$ $\left(\sum_{k=n+1}^{n+p} |a_k| < \frac{\varepsilon}{2} \right)$ и $\sum_{k=n+1}^{n+p} |b_k| < \frac{\varepsilon}{2}$. Но тогда $\sum_{k=n+1}^{n+p} |a_k| + \sum_{k=n+1}^{n+p} |b_k| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ при $n \geq n(\varepsilon)$ и всех натуральных числах p. Опять сославшись на критерий Коши, мы видим, что сходится ряд $\sum_{n=1}^{\infty} |a_n + b_n|$, т.е. ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится абсолютно.

Пусть ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится абсолютно. Тогда, как и выше, применив неравенства

$$\sum_{k=n+1}^{n+p} \left| b_k \right| = \sum_{k=n+1}^{n+p} \left| \left(a_k + b_k \right) - a_k \right| \le \sum_{k=n+1}^{n+p} \left| a_k + b_k \right| + \sum_{k=n+1}^{n+p} \left| a_k \right|$$

и критерий Коши, получаем, что ряд $\sum_{n=1}^{\infty} b_n$ сходится абсолютно.

Пусть ряд $\sum_{n=1}^{\infty}b_n$ сходится условно. По теореме 3.1 ряд $\sum_{n=1}^{\infty}a_n$ сходится, а тогда по теореме 1.1 сходится ряд $\sum_{n=1}^{\infty}(a_n+b_n)$. Если бы ряд $\sum_{n=1}^{\infty}|a_n+b_n|$ сходился, то из неравенств $|b_n| \leq |a_n+b_n| + |a_n|$, $n \in N$, и абсолютной сходимости ряда $\sum_{n=1}^{\infty}a_n$ согласно мажорантному признаку сравнения следовала бы сходимость ряда $\sum_{n=1}^{\infty}|b_n|$, что противоречит предположению об условной сходимости ряда

 $\sum_{n=1}^{\infty} b_n$. Значит, ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится условно. Также получаем, что если ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится условно, то и ряд $\sum_{n=1}^{\infty} b_n$ сходится условно.

Пусть ряд $\sum_{n=1}^{\infty}b_n$ расходится. Если бы ряд $\sum_{n=1}^{\infty}(a_n+b_n)$ сходился, то из равенства $b_n=(a_n+b_n)-a_n$, $n\in N$, и сходимости ряда $\sum_{n=1}^{\infty}a_n$ согласно теоремы 1.1 следовала бы сходимость ряда $\sum_{n=1}^{\infty}b_n$. Значит, ряд $\sum_{n=1}^{\infty}(a_n+b_n)$ расходится. Наконец, так же получаем, что из расходимости ряда $\sum_{n=1}^{\infty}(a_n+b_n)$ следует расходимость ряда $\sum_{n=1}^{\infty}b_n$.

Пример 3.17. Исследовать на абсолютную и условную сходимость ряд $\sum_{n=2}^{\infty} \frac{(-1)^n}{\left(n+(-1)^n\right)^p}, \ p \in R.$

Решение. Пусть $a_n \frac{(-1)^n}{\left(n + (-1)^n\right)^p}$. Если $p \le 0$ то a_n не стремится к нулю, и ряд расходится. Пусть p > 0. Применив формулу Маклорена $(1+t)^{-p} = 1 - pt + 0(t), \ t \to 0,$ для $t = \frac{(-1)^n}{n},$ получим:

$$a_n = \frac{(-1)^n}{n^p} \left(1 + \frac{(-1)^n}{n} \right)^{-p} = \frac{(-1)^n}{n^p} \left(1 - \frac{p(-1)^n}{n} + 0 \left(\frac{1}{n} \right) \right) = \frac{(-1)^n}{n^p} - \frac{p}{n^{p+1}} + 0 \left(\frac{1}{n^{p+1}} \right)$$

Значит,

$$a_n = \frac{(-1)^n}{n^p} - \frac{p}{n^{p+1}} + \alpha_n, \tag{3.2}$$

где

$$\left|\alpha_{n}\right| \le \frac{c}{n^{p+1}}.\tag{3.3}$$

Поскольку p>0, то сходится ряд с положительными членами $\sum_{n=1}^{\infty}\frac{p}{n^{p+1}}$, а согласно неравенству (3.3) и мажорантному признаку сравнения ряд $\sum_{n=1}^{\infty}\alpha_n$ сходится абсолютно. Ряд $\sum_{n=1}^{\infty}\frac{(-1)^n}{n^p}$ при $0< p\le 1$ сходится условно, при p>1 сходится абсолютно. Поэтому из равенства (3.2) согласно примеру 3.16 получаем, что исходный ряд $\sum_{n=2}^{\infty}a_n$ при $0< p\le 1$ сходится условно, при p>1 сходится абсолютно.

Упражнения.

Исследовать на абсолютную и условную сходимость ряды:

3.14.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n!}{n^2 + 1}$$
. Ответ: сходится условно.

3.15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)\cdot 3^n}$$
. Ответ: сходится абсолютно.

3.16.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$
. Ответ: сходится условно.

3.17.
$$\sum_{n=3}^{\infty} (-1)^n \frac{\ln n}{n \ln \ln n}$$
. Ответ: сходится условно.

3.18.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^2}$$
. Ответ: сходится абсолютно.

3.19.
$$\sum_{n=1}^{\infty} (-1)^n \ln^{\alpha} \left(1 + tg \frac{1}{n} \right), \ \alpha \in \mathbb{R}$$
. Ответ: сходится абсолютно при $\alpha > 1$, сходится условно при $0 < \alpha \le 1$, расходится при $\alpha \le 0$.

3.20.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{1}{n}\right)^{\alpha}$$
, $\alpha \in R$. Ответ: сходится абсолютно при $\alpha > \frac{1}{2}$, сходится условно при $0 < \alpha \le \frac{1}{2}$, расходится при $\alpha \le 0$.