

Titre: Modèles de Markov génératifs pour la classification séquentielle bayésienne

Mots clés: apprentissage approfondi, modèles probabilistes, données séquentielles, chaines de Markov

Résumé: Cette thèse vise à modéliser des données séquentielles à travers l'utilisation de modèles probabilistes à variables latentes et paramétrés par des architectures de type réseaux de neurones profonds. Notre objectif est de développer des modèles dynamiques capables de capturer des dynamiques temporelles complexes inhérentes aux données séquentielles tout en étant applicables dans des domaines variés tels que la classification, la prédiction et la génération de données pour n'importe quel type de données séquentielles.

Notre approche se concentre sur plusieurs problématiques liés à la modélisation de ce type de données, chacune étant détaillé dans un chapitre de ce manuscrit. Dans un premier temps, nous balayons les principes fondamentaux de l'apprentissage profond et de l'estimation bayésienne. Par la suite, nous nous focalisations sur la modélisation de données séquentielles par des modèles de Markov cachés qui constitueront le socle commun des modèles génératifs développés par la suite. Plus

précisément, notre travail s'intéresse au problème de la classification (bayésienne) séquentielle de séries temporelles dans différents contextes : supervisé (les données observées sont étiquetées) ; semisupervisé (les données sont partiellement étiquetées) ; et enfin non supervisés (aucune étiquette n'est disponible). Pour cela, la combinaison de réseaux de neurones profonds avec des modèles probabilistes markoviens vise à améliorer le pouvoir génératif des modélisations plus classiques mais pose de nombreux défis du point de vue de l'inférence bayésienne : estimation d'un grand nombre de paramètres, estimation de lois à postériori et interprétabilité de certaines variables cachées (les labels). En plus de proposer une solution pour chacun de ces problèmes, nous nous intéressons également à des approches novatrices pour relever des défis spécifiques en imagerie médicale posés par le Groupe Européen de Recherche sur les Prothèses Appliquées à la Chirurgie Vasculaire (GEPROMED).

Title: Generative Markov models for sequential Bayesian classification

Keywords: deep learning, probabilistic models, sequential data, Markov chains

Abstract: This thesis explores and models sequential data through the application of various probabilistic models with latent variables, complemented by deep neural networks. The motivation for this research is the development of dynamic models that adeptly capture the complex temporal dynamics inherent in sequential data. Designed to be versatile and adaptable, these models aim to be applicable across domains including classification, prediction, and data generation, and adaptable to diverse data types. The research focuses on several key areas, each detailed in its respective chapter. Initially, the fundamental principles of deep learning, and Bayesian estimation are introduced. Sequential data modeling is then explored, emphasizing the Markov chain models, which set the stage for the generative models discussed in subsequent chapters. In particular, the research delves into the sequential Bayesian classification of data in supervised, semi-supervised, and unsupervised contexts. The integration of deep neural networks with well-established probabilistic models is a key strategic aspect of this research, leveraging the strengths of both approaches to address complex sequential data problems more effectively. This integration leverages the capabilities of deep neural networks to capture complex nonlinear relationships, significantly improving the applicability and performance of the models.

In addition to our contributions, this thesis also proposes novel approaches to address specific challenges posed by the Groupe Européen de Recherche sur les Prothèses Appliquées à la Chirurgie Vasculaire (GEPROMED). These proposed solutions reflect the practical and possible impactful application of this research, demonstrating its potential contribution to the field of vascular surgery.

