

CS3120

Chap 7 Electronic Analysis of CMOS Logic Gates

Andy, Yu-Guang Chen

Associate Professor, Department of EE, National Central University

Adjunct Assistant Professor, Department of CS, National Tsing Hua University

andyygchen@ee.ncu.edu.tw

Andy Yu-Guang Chen

1

Outline

- ◆ 7.1 DC Characteristics of the CMOS Inverter
- ◆ 7.2 Inverter Switching Characteristics
- ♦ 7.3 Power Dissipation
- ◆ 7.4 DC Characteristics: NAND and NOR Gates
- ◆ 7.5 NAND and NOR Transient Response
- ◆ 7.6 Analysis of Complex Logic Gates
- ◆ 7.7 Gate Design for Transient Performance
- ◆ 7.8 Transmission Gates and Pass Transistors

Andy Yu-Guang Chen

Key Ideas

- ◆In the previous chapter we examined the electrical characteristics of MOSFETs
- ◆This sets the foundation for analyzing the behavior of transistors in CMOS logic circuits in this chapter
- ◆The treatment centers on the important areas of switching speed and layout design, and provides the foundation for much of modern chip design

Andy Yu-Guang Chen

7.1 DC Characteristics of CMOS INV

◆ The CMOS inverter gives the basis for calculating the electrical characteristics of logic gates

- Two types of calculations
 - DC analysis
 - determines V_{out} for a given value of V_{in}
 - Assume V_{in} changes slowly and V_{out} is allowed to stabilize before measurement provides a direct mapping of the input to the output

 - tells us the voltage ranges that define Boolean logic 0 and logic 1 values
 - > transient analysis
 - the input voltage is an explicit function of time $V_{in}(t)$
 - the response of the circuit is contained in $V_{out}(t)$
 - the delay between change in the input and the corresponding change at the output fundamental limiting factor for high-speed design
- In this section we concentrate on the DC analysis

Andy Yu-Guang Chen

- ◆ Voltage Transfer Characteristic (VTC)
- lacktriangle VTC is a plot of V_{out} as a function of V_{in}
- ◆ Voltage
 - \triangleright Output high voltage $V_{OH} = V_{DD}$
 - ightharpoonup Output low voltage $V_{OL} = 0V$
- ◆ Logic switching
 - $\gt V_{\rm L} = V_{OH} V_{OL} = V_{DD}$
 - > Full-rail output

Andy Yu-Guang Chen

.

7.1 DC Characteristics of CMOS INV

- ◆ Voltages
 - $> V_{GSn} = V_{in}$
 - $\gt V_{SGp} = V_{DD} V_{in}$
- lacktriangle Increasing V_{in}
 - downward transition in the VIC
 - turns the nFET on and the pFET is still conducting
 - ightharpoonup Mp goes into cutoff when $V_{in} = V_{DD} \left| V_{Tp} \right|$

Andy Yu-Guang Chen

- The logic 0 and 1 voltage ranges are defined by the changing slope of the VTC
- Looking for slope = -1
 - \triangleright Point a: input low voltage V_{IL}
 - ► Logic input 0 is defined as $0 \le V_{in} \le V_{IL}$
 - ➤ Point b: input high voltage V_{IH}
 - ► Logic input 1 is defined as $V_{IH} \le V_{in} \le V_{DD}$
- Voltage noise margin
 - Give a quantitative measure
 - ightharpoonup High state: $VNM_H = V_{OH} V_{IH}$
 - \triangleright Low state: $VNM_L = V_{IL} V_{OL}$
 - Midpoint voltage
 - $V_M = V_{in} = V_{out}$
 - $I_{Dn} = I_{Dp}$

transition region does not represent a Boolean quantity

Andy Yu-Guang Chen

7.1 DC Characteristics of CMOS INV

- We need to find the operating region (saturation or non-saturation) each FET before we can use the expression
- Saturation of nFET
 - > $V_{sat} = V_{GSn} V_{Tn} = V_M V_{Tn}$ (where $V_{in} = V_{GSn} = V_M$) > $V_{DSn} = V_{out} = V_M$ > $V_{DSn} > V_{sat} = V_M V_{Tn}$ Saturated Current calculation

$$I_{Dn} = \frac{\beta_n}{2} (V_M - V_{Tn})^2 = \frac{\beta_p}{2} (V_{DD} - V_M - |V_{TP}|)^2 = I_{Dp}$$

$$> \sqrt{\frac{\beta_n}{\beta_p}}(V_M - V_{Tn}) = V_{DD} - V_M - |V_{TP}|$$

 V_M is set by nFET-to-pFET ratio

$$> \frac{\beta_n}{\beta_p} = \frac{k'_n \left(\frac{W}{L}\right)_r}{k'_p \left(\frac{W}{L}\right)}$$

Mobility ratio $\frac{k'_n}{k'_p} = \frac{\mu_n}{\mu_p} = r (\approx 2 \text{ to } 3)$

Andy Yu-Guang Chen

- Symmetric interval
 - Equal '0' and '1' input voltage range
 - \triangleright By choosing $V_M = \frac{1}{2}V_{DD}$
 - \triangleright Requires $\beta_n = \beta_n$
- Design equation

$$> I_{Dn} = \frac{\beta_n}{2} (V_M - V_{Tn})^2 = \frac{\beta_p}{2} (V_{DD} - V_M - |V_{TP}|)^2 = I_{Dp}$$

$$\geqslant \frac{\beta_n}{\beta_p} = \left(\frac{\frac{1}{2}V_{DD} - |V_{Tp}|}{\frac{1}{2}V_{DD} - V_{Tn}}\right)^2$$

- PMOS size has 2 to 3 times NMOS size
- The choice of transistor size for a particular V_M

Andy Yu-Guang Chen

Example 7.1

- Consider a CMOS process with the following parameters

 - > $K'_n = 140 \mu A/V^2$ $V_{Tn} = 0.7$, > $K'_p = 60 \mu A/V^2$ $V_{Tp} = -0.7V$ > $V_{dd} = 3.0 \text{ V}$
- lacktriangle Consider the case where $\beta_n = \beta_p$
- ◆ A symmetrical design by calculating

$$V_M = \frac{1}{2}V_{DD} = 1.5V = \frac{3 - 0.7 + \sqrt{1}(0.7)}{1 + \sqrt{1}}$$

$$V_M = \frac{3-0.7+\sqrt{2.33}(0.7)}{1+\sqrt{2.33}} = 1.33V$$

Andy Yu-Guang Chen

◆ Figure 7.5 illustrates the difference that uses the two design styles

7.1 DC Characteristics of CMOS INV

- lack At physical level, the relative device sizes contained in the ratio $(\frac{\beta_n}{\beta_p})$ determine the switching point
- \blacklozenge $(\frac{\beta_n}{\beta_m})$ decrease $\biguplus V_M$ increases

Figure 7.6 Dependence of V_M on the device ratio

Andy Yu-Guang Chen

7.2 INV Switching Characteristics

- High speed digital system design is based on the ability to perform calculation very quickly
 - Logic gates introduce a minimum amount of time delay when input changes
 - Designing fast logic circuit is a more challenging (but critical) aspect of VLSI design
- Rise and fall time delays
 - Due to the parasitic resistance and capacitances

Figure 7.7 General switching waveforms

7.2 INV Switching Characteristics

◆ A simplified RC model in Fig 7.8b

$$R_n = \frac{1}{\beta_n (V_{DD} - V_{Tn})}$$

$$R_p = \frac{1}{\beta_p(V_{DD} - |V_{Tp}|)}$$

$$ightharpoonup C_{Dn} = C_{GSn} + C_{DBn} = \frac{1}{2} C_{ox} L' W_n + C_{jn} A_n + C_{jswn} P_n$$

$$ho C_{Dp} = C_{GSp} + C_{DBp} = \frac{1}{2} C_{ox} L' W_p + C_{jp} A_p + C_{jswp} P_p$$

Increase channel width of a FET increases the parasitic capacitance values

Figure 7.8 RC switch model equivalent for the CMOS inverter

Andy Yu-Guang Chen

7.2 INV Switching Characteristics

- ◆ In a logic chain, every logic gate must drive another gate, or set of gates, to be useful
- igoplus Fan-out (FO) gates act as load to the driving circuits because of their input capacitance C_{in}

$$\triangleright C_{in} = C_{GP} + C_{Gn}$$

◆ External load capacitance

$$ightharpoonup C_L = 3C_{in} = 3*(C_{Gp} + C_{Gn})$$

Andy Yu-Guang Chen

15

7.2 INV Switching Characteristics

- ◆ We may now calculate the switching times of the inverter
- lacktriangle A CMOS NOT gate is used to drive an external load capacity C_L

$$\triangleright C_{out} = C_{FET} + C_L$$

Cout is the load the gate must drive

Andy Yu-Guang Chen

Example 7.2

Apply this analysis to find capacitances in the NOT gate

Example 7.2

Andy Yu-Guang Chen

17

- $\blacklozenge C_{Dn} = 5.04 + 10.15 = 15.55 fF.$
- \bullet $C_{GDP} = \frac{1}{2} *21.6 = 10.8 \, fF$
- $\blacklozenge C_{DBP} = 1.05 * 8 * 2.1 + 0.32 * 2 * (8 + 2.1) = 24.10 fF$

Andy Yu-Guang Chen

7.2.1 Fall time Calculation

- lacktriangle Calculating output fall time t_f
 - $\triangleright V_{in}$ changes from 0 to V_{DD}
 - The nFET switch is closed and the pFET switch is open

Figure 7.12 Discharge circuit for the fall time calculation

Andy Yu-Guang Chen

19

7.2.1 Fall time Calculation

- lacktriangle The capacitor C_{out} is initially charged to V_{DD} and is discharged to 0 V.
- ◆ The fall time is traditionally defined to be the time interval
 - $V_1 = 0.9V_{DD}$ to $V_0 = 0.1V_{DD}$
- ◆ Fall time calculation
 - $ightharpoonup I = -C_{out}(dV_{out}/dt) = V_{out}/R_n$ (The current leaving the capacitor)
 - $> V_{out}(t) = V_{DD}e^{-t/\tau_n}$ (initial condition $V_{out}(0) = VDD$)
 - \triangleright time constant $\tau_n = R_n C_{out}$
 - $\succ t = \tau_n \ln \left(\frac{V_{DD}}{V_{Out}} \right)$

$$> t_f = t_y - t_x = \tau_n \ln \left(\frac{V_{DD}}{0.1 V_{DD}} \right) - \tau_n \ln \left(\frac{V_{DD}}{0.9 V_{DD}} \right) = \tau_n \ln(9)$$

• $\ln(a) - \ln(b) = \ln(\frac{a}{b})$

 $\begin{array}{l} \blacktriangleright \ t_f = t_{HL} = \ln(9) \ \tau_n \approx \ 2.2 \tau_n = 2.2 R_n C_{out} \\ \bullet \ t_{HL} : \ \text{high-to-low time} \end{array}$

Figure 7.12 Discharge circuit for the fall time calculation

Andy Yu-Guang Chen

7.2.2 Rise Time Calculation

- lack Calculating output rising time t_r
 - $\triangleright V_{in}$ changes from V_{DD} to 0
 - The pFET switch is closed and the nFET switch is open

Figure 7.13 Rise time calculation

Andy Yu-Guang Chen

21

7.2.2 rise time Calculation

- lacktriangle The capacitor C_{out} is initially 0 V and is charged to V_{DD}
- ◆ The rise time is traditionally defined to be the time interval $V_0 = 0.1 V_{DD}$ to $V_1 = 0.9 V_{DD}$
- ◆ Fall time calculation

 - ightharpoonup time constant $au_p = R_p C_{out}$
 - $t_r = t_v t_u = \tau_v \ln(9)$
 - $t_r = t_{LH} = \ln(9) \tau_p \approx 2.2 \tau_p = 2.2 R_p C_{out}$
 - t_{HL} : low-to-high time
- Maximum signal frequency

$$F_{max} = 1/(tr + tf)$$

Figure 7.13 Rise time calculation

Andy Yu-Guang Chen

Example 7.3

- ◆ Consider an inverter circuit that has FET aspect ratios
 - $\rightarrow \left(\frac{W}{L}\right)_n = 6, \left(\frac{W}{L}\right)_p = 8$
- Process

$$k'_n = 150^{\mu A}/_{V^2}, V_{Tn} = +0.70 V$$

$$k'_p = 62^{\mu A}/_{V^2}$$
, $V_{Tp} = -0.85 V$

$$V_{DD} = 3.3V$$

$$ightharpoonup C_{out} = 150 fF$$

- ◆ Compute the rise and fall time
 - $R_p = 1/[(62*10^{-6})(8)(3.3-0.85)] = 822.9\Omega$

$$\tau_p = 822.9*150*10^{-15} = 123.43$$
ps

$$t_r = 2.2 \tau_p = 271.55 \text{ps}$$

$$R_n = 427.35 \Omega$$

$$\tau_n = 64.1 \text{ ps}$$

$$t_f = 2.2 \tau_n = 141.0 \text{ps}$$

◆ Compute maximum signal frequency

$$f_{max} = \frac{1}{t_r + t_f} = \frac{1}{(271.55 + 141.0) \times 10^{-12}} = 2.45 \ GHz$$

Andy Yu-Guang Chen

23

7.2.3 Propagation Delay

◆ The propagation delay is use to estimate the reaction delay time from input to output

$$ightharpoonup t_p = \frac{(t_{pf} + t_{pr})}{2}$$

- > T_{pf} is the output fall time from the maximum level to the 50% voltage line $(\frac{V_{DD}}{2})$
- $ightharpoonup T_{pr}$ is is the output rise time from the OV to the 50% voltage line $(\frac{V_{DD}}{2})$
- \triangleright Using the exponential equations for V_{out}

•
$$t_{pf} = \ln(2) \tau_n$$

•
$$t_{pr} = \ln(2) \tau_p$$

•
$$ln(2) \approx 0.693$$

•
$$t_p \approx 0.35(\tau_n + \tau_p)$$

- ◆ Propagation delay are commonly used in basic logic simulation
 - Not provide details on rise and fall time

Andy Yu-Guang Chen

Delay Definitions

- lacktriangle t_{pdr} : rising propagation delay
 - From input to rising output crossing V_{DD}/2
- $igoplus t_{pdf}$: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- $lacktriangle t_{pd}$: average propagation delay
 - $> t_{pd} = (t_{pdr} + t_{pdf})/2$
- \blacklozenge t_r : rise time
 - From output crossing 0.1 V_{DD} to 0.9 V_{DD}
- \blacklozenge t_f : fall time
 - From output crossing 0.9 V_{DD} to 0.1 V_{DD}

5: DC and Transient Response

Andy Yu-Guang Chen

25

Simulated Inverter Delay

- ◆ Solving differential equations by hand is too hard
- ◆ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to run, may hide insight

5: DC and Transient Response

Andy Yu-Guang Chen

7.2.4 General Analysis

- We should know how to design single logic gates and then characterize the behavior of the gates when they are cascaded
- ◆ Total output capacitance
 - $\triangleright C_{out} = C_{FET} + C_L$
 - \triangleright The layout geometry establishes the value of C_{FET}
 - C_L varies with the application
- Rise and fall time
 - $\succ t_r \approx 2.2R_p(C_{FET} + C_L) = tr_0 + \alpha_p C_L$
 - $ightharpoonup t_f = 2.2R_n(C_{FET} + C_L) = tf_0 + \alpha_n C_L$
 - ightharpoonup Rise and fall time are linear functions of \mathcal{C}_L

•
$$\alpha_p = 2.2R_p = \frac{2.2}{\beta_p(V_{DD} - |V_{Tp}|)}$$

•
$$\alpha_n = 2.2R_n = \frac{2.2}{\beta_p(V_{DD} - V_{Tn})}$$

- Inversely proportional to the aspect ratios
- ▶ Under zero-load condition (C_L = 0)

•
$$t_r = t_{r0} \underset{\approx}{}_{2} {}_{2} R_p C_{FET}$$

•
$$t_f = tr_0 \approx 2.2 R_n C_{FET}$$

- Large capacitive loads may cause problems because of longer delays
- lacktriangle t_r and t_f can be reduced by using large FETs

Andy Yu-Guang Chen

27

Example 7.4

- Use the results of Example 7.3 to find the general delay equations when $C_{FET}=80fF$
- lacklost t_r is controlled by the pFET

$$R_p = 822.9\Omega$$

$$> \alpha_p = 2.2R_p = 1810.4\Omega$$

$$t_{r0} = 22R_pC_{FET} = 2.2(822.9)(80 \times 10^{-15}) = 144.9 \text{ ps}$$

$$rac{1}{2} t_r = t_{r0} + \alpha_p C_L = 144.9 + 1.810 C_L ps$$

 $igoplus t_f$ is controlled by the nFET

$$R_n = 427.35\Omega$$

$$t_{f0}$$
 2.2 $R_n C_{FET}$ = 2.2(940.2)(80 × 10⁻¹⁵) = 165.5 ps

$$t_f = t_{f0} + \alpha_n C_L = 165.5 + 0.940 C_L ps$$

ightharpoonup Assume $C_L = 150 \, fF$

$$t_r = 144.9 + 1.810(150) = 416.4 \, ps$$

$$t_f = 165.5 + 0.940(150) = 306.5 \, ps$$

Andy Yu-Guang Chen

7.2.5 Summary of Inverter

- ◆Electrical characteristic are established by
 - \triangleright The processing variables: k', V_T , and parasitic capacitances
 - ightharpoonup The transistor aspect rations $\left(\frac{W}{L}\right)_n$ and $\left(\frac{W}{L}\right)_p$
- VLSI designers do not have control over processing parameters
- ◆ Device sizing becomes the critical issue

Andy Yu-Guang Chen

21

7.3 Power Dissipation

- lacklash The current I_{DD} flowing from power supply to ground gives a dissipated power $P = V_{DD}I_{DD}$
- Current can be divided into DC and dynamic (or switching) contributions $P = P_{DC} + P_{dyn}$
- lack Ideally, the DC current is 0 when $V_{in}=0$
 - ightharpoonup Quiescent leakage current I_{DDQ}
 - > DC power at stable 0 or 1 state

• $P_{DC} = V_{DD}I_{DDQ}$

Andy Yu-Guang Chen

7.3 Power Dissipation

- ◆ Dynamic power dissipation
 - ➤ A complete cycle effectively creates a path for current to flow from the power supply to ground
 - Discharge
 - $Q_e = C_{out}V_{DD}$
 - $P_{av} = V_{DD}I_{DD} = V_{DD}\left(\frac{Q_e}{T}\right)$: average power dissipated over a single cycle T
 - $P_{sw} = C_{out}V_{DD}^2 f$
 - The dynamic power is proportional to the signal frequency

31

7.4 DC Characteristics: NAND and NOR 7.4.1 NAND Analysis

- ◆ In this section we will examine the relationship between device sizes and transitions described by the VTC
- **♦** NAND2
 - \triangleright Like-polarity FETs have the same aspect ratio: β_n and β_p

rigure 7.19 NAND2 logic circ

7.4.1 NAND Analysis

- lacktriangle Find V_M
 - Replacing the transistor pairs by their single-FET

$$ightharpoonup$$
 Recall: $I_{Dn} = \frac{\beta_n}{2} (V_M - V_{Tn})^2 = \frac{\beta_p}{2} (V_{DD} - V_M - |V_{TP}|)^2 = I_{Dp}$

$$> \frac{\beta_n/2}{2} (V_M - V_{Tn})^2 = \frac{2\beta_p}{2} (V_{DD} - V_M - |V_{TP}|)^2$$

$$> V_M = \frac{V_{DD} - |V_{TP}| + \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}} V_{Tn}}{1 + \frac{1}{2} \sqrt{\frac{\beta_n}{\beta_p}}}$$

The $\frac{1}{2}$ reduces the denominator, which is why the VTC curve is shifted toward the right

For N-input NAND gate

$$> V_M = \frac{V_{DD} - |V_{TP}| + \frac{1}{N} \sqrt{\frac{\beta_n}{\beta_p}} V_{Tn}}{1 + \frac{1}{N} \sqrt{\frac{\beta_n}{\beta_p}}}$$

Andy Yu-Guang Chen

35

7.4.2 NOR Analysis

- ◆ The NOR2 gate can be analyzed using the same techniques
 - $ightharpoonup V_{out} = V_{DD}$ requires $V_A = V_B = 0$
 - \triangleright nFET are in parallel: $2\beta_n$
 - ightharpoonup pFET are in serial: $\frac{\beta_p}{2}$

$$> \frac{2\beta_n}{2}(V_M - V_{Tn})^2 = \frac{(\beta_p/2)}{2}(V_{DD} - V_M - |V_{TP}|)^2$$

$$> V_M = \frac{V_{DD} - |V_{TP}| + 2\sqrt{\frac{\beta_n}{\beta_p}}V_{Tn}}{1 + 2\sqrt{\frac{\beta_n}{\beta_n}}}$$

Figure 7.25 NOR2 circuit

the NAND and NORgates tend have opposite behaviors with respect to the reference NOT gate VTC

Figure 7.27 NOR2 V_M calculation for simultaneous switching Andy Yu-Guang Chen

7.4 DC Characteristics: NAND and NOR

- ◆ Both the NAND and NOR gates exhibit low DC power dissipation values
 - $> P_{DC} = V_{DD}I_{DDQ}$
 - ➤ No direct current flow path from the power supply to ground when the inputs are stable logic 0 or logic 1 values
- ◆ Dynamic power is still present in the general form
 - $\triangleright P_{sw} = C_{out}V_{DD}^2 f_{gate}$
 - $\succ f_{gate}$ is different from the basic Switching frequency used for the inverter

Andy Yu-Guang Chen

37

7.5 NAND and NOR Transient Response

- ◆ Transient switching times often represent the limiting factor in designing a digital logic chain
- ◆ Examine how the FET topology and device sizing affect the operational speed of the gate

Andy Yu-Guang Chen

7.5.1 NAND2 Switching Times

- ◆ The transient calculations are based on finding RC time constants
- We will concentrate estimating the worst-case values of the switching times
 - $\triangleright C_{out} = C_{FET} + C_L$
 - $\triangleright C_{FET} = C_{Dn} + 2C_{Dp}$
 - · two pFETs are connected to the output node
 - ➤ The drawing identifies the transistors by their resistance values
 - $R_n = \frac{1}{\beta_n(V_{DD} V_{Tn})}$
 - $R_p = \frac{1}{\beta_p(V_{DD} |V_{Tp}|)}$

Figure 7.28 NAND2 circuit for transient calculations

Andy Yu-Guang Chen

39

7.5.1 NAND2 Switching Times

- lacktriangle Rising time t_r
 - If only one pFET is conducting
 - $ightharpoonup C_{out}$ charges through a pFET resistance R_p
 - $V_{out(t)} = V_{DD}[1 e^{-t/\tau_p}]$ (initial condition $V_{out}(0) = 0V$)
 - $> t_r = 2.2\tau_p = 2.2R_pC_{out} = t_0 + \alpha_0C_L$
 - $\succ t_0 = 2.2R_pC_{FET}$: zero-load value
 - $> \alpha_0 = 2.2R_p$: slope of t_r
 - Best case: both pFET are conducting
 - $R_p/2$

Figure 7.29 NAND2 subcircuits for estimating rise and fall times

Andy Yu-Guang Chen

7.5.1 NAND2 Switching Times

- lacktriangle Fall time t_f
 - Cout discharges through the series-connected nFET chain
 - > RC modeling of each device leads to the "ladder" network
 - \triangleright Consider the presence of the inter-FET capacitance \mathcal{C}_x
 - ightharpoonup In worst case, C_x will have charge that will flow through lower nFET (MnA)to ground
 - The discharge rate is limited by the current that MnA can maintain
 - $\triangleright V_{out}(t) = V_{DD}e^{-t/\tau_n}$
 - Time constant is given by the Elmore formula

•
$$\tau_n = \tau_{n1} + \tau_{n2} = C_{out} (R_n + R_n) + C_x R_n$$

$$t_f = 2.2\tau_n = 2.2[(C_{FET} + C_L)(2R_n) + C_x R_n]$$

- $\triangleright t_f = t_1 + \alpha_1 C_L$
- $\succ t_1 = 2.2R_n(2C_{FET} + C_x)$: zero-load value
- $> \alpha_1 = 4.4R_n$: slope of t_f

Figure 7.29 NAND2 subcircuits for estimating rise and fall time

- ◆ Series-connected FETs lead to longer delays in CMOS circuits

 - $\triangleright C_{eff} = 2C_{out} + C_x$

Andy Yu-Guang Chen

4

7.5.2 NOR2 Switching Times

- ◆ The analysis of the NOR2 transients proceeds in the same manner
- ◆ We will concentrate estimating the worst-case values of the switching times

$$\triangleright$$
 $C_{out} = C_{FET} + C_L$

$$\triangleright C_{FET} = 2C_{Dn} + C_{Dp}$$

- · two nFETs are connected to the output node
- > The drawing identifies the transistors by their resistance values

•
$$R_n = \frac{1}{\beta_n(V_{DD} - V_{Tn})}$$

•
$$R_p = \frac{1}{\beta_p(V_{DD} - |V_{Tp}|)}$$

Andy Yu-Guang Chen

7.5.2 NOR2 Switching Times

lacktriangle Fall time t_f

- > If only one nFET is conducting
- $ightharpoonup C_{out}$ discharges through a nFET resistance R_n
- $\triangleright V_{out}(t) = V_{DD}e^{-t/\tau_n}$ (initial condition $V_{out}(0) = VDD$)
- $\succ t_f = 2.2\tau_n = 2.2R_nC_{out} = t_1 + \alpha_1C_L$
- $\succ t_1 = 2.2R_nC_{FET}$: zero-load value
- $> \alpha_1 = 2.2R_p$: slope of t_f

Andy Yu-Guang Chen

42

7.5.2 NOR2 Switching Times

lacktriangle Rising time t_r

- $ightharpoonup \mathcal{C}_{out}$ charges through the series-connected pFET chain
 - RC modeling of each device leads to the "ladder" network
 - \triangleright Consider the presence of the inter-FET capacitance C_{ν}
 - $ightharpoonup \mathcal{C}_{
 u}$ will be charged during rising event
 - $V_{out}(t) = V_{DD}[1 e^{-t/\tau_p}]$ (initial condition $V_{out}(0) = 0V$)
 - > Time constant is given by the Elmore formula

•
$$\tau_p = \tau_{p1} + \tau_{p2} = C_{out} (R_p + R_p) + C_v R_p$$

- $rac{1}{2} t_r = 2.2 \tau_p = 2.2 [(C_{FET} + C_L)(2R_p) + C_y R_p]$
- $rackleright t_r = t_0 + \alpha_0 C_L$
- $\succ t_0 = 2.2R_v(2C_{FET} + C_v)$: zero-load value
- $> \alpha_0 = 4.4R_p$: slope of t_r

Series-connected FETs lead to longer delays in CMOS circuits

$$\triangleright \tau_n = R_n(2C_{out} + C_x)$$

$$\triangleright C_{eff} = 2C_{out} + C_x$$

Andy Yu-Guang Chen

Elmore Delay

- ON transistors look like resistors
- ◆ Pullup or pulldown network modeled as RC ladder
- ◆ Elmore delay of RC ladder

$$\begin{aligned} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + (R_1 + R_2) C_2 + ... + (R_1 + R_2 + ... + R_N) C_N \end{aligned}$$

7.5.3 Summary

- ◆ The analyses above illustrate that the NAND and NOR gates exhibit complementary characteristics at both the DC and transient levels
- General statements about NAND and NOR gates as compared to the simpler NOT circuit
 - > Rise time
 - $t_r = t_0 + \alpha_0 C_L$
 - > Fall time
 - $t_f = t_1 + \alpha_1 C_L$
 - The constant depend upon the parasitic transistor resistances and capacitances
 - ightharpoonup Adding complementary transistor pairs increases the delay time because C_{FET} is increased
- Switching delay increase with the # of fan-Ins (FIs)
- Switching delay increase with the external load

Andy Yu-Guang Chen

7.6 Analysis of Complex Gates

- ◆ The analysis techniques developed for the NAND and NOT circuits may be extended to analyze complex CMOS logic gates with AOI and OAI structure
 - > series-connected FETs
- lack Consider the function $f = \overline{x \cdot (y+z)}$

Andy Yu-Guang Chen

Chen

47

7.6 Analysis of Complex Gates

- ◆ Fall time analysis
 - Assume they are all the same size $\left(\frac{W}{L}\right)_{nx} = \left(\frac{W}{L}\right)_{ny} = \left(\frac{W}{L}\right)_{nz}$
 - \triangleright Resistance: R_n can be used
 - ➤ Worst case fall time: x = 1, but only one of the ORed inputs y or z is 1
 - 2-FET series pair
 - $C_{out} = C_{FET} + C_L$
 - $\tau_n = R_n C_n + 2R_n C_{out}$
 - $t_f = 2.2\tau_n = 2.2R_n[C_n + 2(C_{FET} + C_L)] = t_1 + \alpha_1 C_L$
 - Zero load time: $t_1 = 2.2R_n(C_n + 2C_{FET})$
 - Slop: $\alpha_1 = 2.2R_n$

Andy Yu-Guang Chen

7.6 Analysis of Complex Gates

- ◆ Rise time analysis
 - Assume they are all the same size $\left(\frac{W}{L}\right)_{px} = \left(\frac{W}{L}\right)_{py} = \left(\frac{W}{L}\right)_{pz}$
 - \triangleright Resistance: R_p can be used
 - the limiting series chain is with the y and z input p-channel transistors
 - the x-input pFET provides the fast switching, and could be decreased to half-size without affecting the result
 - > The series chain gives
 - $\tau_p = R_p C_p + 2R_p C_{out}$
 - $t_r = t_0 + \alpha_0 C_L$
 - Zero load time: $t_0 = 2.2R_p(C_p + 2C_{FET})$
 - Slop: $\alpha_0 = 2.2R_p$
- ◆ An arbitrary gate yields equations of the same form for both the rise fall times, illustrating the generality of the procedure

Andy Yu-Guang Chen

49

7.6.1 Power Dissipation

- lacktriangle Power is proportional to the activity coefficient α
 - which represents the probability that an output 0->1 transition takes places during one period.

$$\triangleright P = VddID_{DQ} + C_{out}V_{dd}^2f(P_{dyn})$$

$$P_{dyn} = \alpha C_{out} V dd^2 f$$

- ◆ For a network that consists of N gates, the total dynamic power is
 - $\triangleright P_{dyn} = \sum_{i=1}^{N} \alpha_i C_i V_i V_{DD} f$
 - α_i : activity coefficient
 - C_i : node capacitance that charges to a maximum value of V_i .
- Activity coefficients can be determined from truth tables

$$\triangleright \alpha = p_0 p_1$$

$$\sim \alpha_{NOR2} = 3/4 * 1/4 = 3/16$$

$$\sim \alpha_{NAND2} = 3/4 * 1/4 = 3/16$$

$$\sim \alpha_{NOR3} = 1/8 * 7/8 = 7/64$$

$$\Rightarrow \alpha_{XOR2} = 1/2 * 1/2 = 1/4$$

Andy Yu-Guang Chen

7.7 Gate Design for Transient Performance

- High-speed circuits are limited by the switching time of individual gates
- ◆ The aspect ratios are the critical design parameters for the DC and transient switching times
- ◆ The DC switching characteristics are often considered less important than the switching speed
- ◆ The design philosophy used to select aspect ratios varies with situation
 - > use the inverter as a reference and then attempt to design other gates that have approximately the same switching times

Andy Yu-Guang Chen

5:

7.7 Gate Design for Transient Performance

 device transconductance as being equivalent to the aspect ratio

$$\triangleright \beta = k' \left(\frac{W}{L} \right)$$

- ◆ In Fig 7.34(a)
 - both transistors drive the same capacitance, the difference is in the resistance values

$$ightharpoonup R_p = rac{1}{\beta_p(V_{DD} - |V_{Tp}|)} \qquad R_n = rac{1}{\beta_n(V_{DD} - V_{Tn})}$$

- \triangleright symmetrical inverter: $\beta_n = \beta_n$
- ightharpoonup requires the device sizes: $\left(\frac{W}{L}\right)_p = r\left(\frac{W}{L}\right)_n$
- ightharpoonup Process transconductance ratio: $r = \frac{k r_n}{k r_p}$

(a) Inverter

Andy Yu-Guang Chen

7.7 Gate Design for Transient Performance

- lacktriangle Find the device sizes $eta_{\rm P}$ and $eta_{\rm N}$ for the NAND2 gate with similar rise and fall times
 - > rise time
 - worst situation is where only one transistor contributes to the rise time
 - β_P= β_p
 - fall time
 - series-connected nFET chain: two series-connected resistors between the output
 - $R = R_N + R_N, R_N = \frac{1}{\beta_N (V_{DD} V_{Tn})}$
 - using the inverter as a reference

$$- R = R_n = 2R_N$$

$$- \frac{1}{\beta_n(V_{DD} - V_{Tn})} = \frac{2}{\beta_n(V_{DD} - V_{Tn})}$$
$$- \beta_N = 2\beta_n$$

7.7 Gate Design for Transient Performance

- lacktriangle Find the device sizes $eta_{\rm P}$ and $eta_{\rm N}$ for the NOR2 gate with similar rise and fall times
- With the similar idea

•
$$\beta_N = \beta_n$$

> rise time

•
$$\frac{1}{\beta_p(V_{DD}-|V_{Tp}|)} = \frac{2}{\beta_P(V_{DD}-|V_{Tp}|)}$$

•
$$\beta_P = 2\beta_p$$

•
$$\left(\frac{W}{L}\right)_{\rm P} = 2\left(\frac{W}{L}\right)_p$$

Andy Yu-Guang Chen

7.7 Gate Design for Transient Performance This technique can be extended to larger chains. V_{DD} V_{DD}

Andy Yu-Guang Chen

7.8 Transmission Gates & Pass Transistor

◆ Transmission gates consist of an nFET/pFET pair wired in parallel

- ◆ Even though the FETs are in parallel, one usually dominates the conduction process at any given time
 - logic 0 transmission is controlled by the nFET

$$ightharpoonup R_{TG} = \max(R_n, R_p)$$

$$\triangleright C_{in} = C_{S,n} + C_{D,p}$$

◆ large values of (W/L) decrease the resistance, but a large W implies large capacitances

Andy Yu-Guang Chen

_-

7.8 Transmission Gates & Pass Transistor

注重特定方向,另一方向不在乎,差距可達6倍

◆ Pass transistors are single FETs that pass the signal between the drain and source terminals instead of a fixed power supply value

Figure 7.38 nFET pass transistor

Andy Yu-Guang Chen

Conclusions

- ◆ DC Characteristics of CMOS Inverters and Gates
- ◆ Switching Characteristics and Propagation Delay
- **◆**Power Dissipation
- ◆Transient Response of NAND and NOR Gates
- ◆ Complex Gate Analysis and Design for Transient Performance
- ◆Transmission Gates and Pass Transistors

Andy Yu-Guang Chen

