Laboratorium 4 Efekt Rungego

Mateusz Król

21/03/2024 r.

Zadanie 1.

Wyznacz wielomiany interpolujące funkcje:

Rok	Populacja		
1900	$76\ 212\ 168$		
1910	$92\ 228\ 496$		
1920	$106\ 021\ 537$		
1930	$123\ 202\ 624$		
1940	$132\ 164\ 569$		
1950	$151\ 325\ 798$		
1960	$179\ 323\ 175$		
1970	203 302 031		
1980	$226\ 542\ 199$		

Istnieje dokładnie jeden wielomian ósmego stopnia, który interpoluje powyższe dziewięć punktów, natomiast sam wielomian może być reprezentowany na różne sposoby.

Dla każdej z macierzy Vandermonde'a powstałych na podstawie zbiorów funkcji bazowych ϕ :

$$\phi_j(t) = t^{j-1}, \text{ dla } j = 1, \dots, 9$$

$$\phi_j(t) = (t - 1900)^{j-1}, \text{ dla } j = 1, \dots, 9$$

$$\phi_j(t) = (t - 1940)^{j-1}, \text{ dla } j = 1, \dots, 9$$

$$\phi_j(t) = \left(\frac{t - 1940}{40}\right)^{j-1}, \text{ dla } j = 1, \dots, 9$$

, współczynniki uwarunkowania wynosiły:

base function	cond(V)
ϕ_1	$3.98 \cdot 10^{32}$
ϕ_2	$6.31 \cdot 10^{15}$
ϕ_3	$9.32 \cdot 10^{12}$
ϕ_4	$1.61 \cdot 10^3$

zbioru funkcj	rarunkowaną bazą wielomianów jest ta zbudowana na podstaw ji $\phi_j(t) = \left(\frac{t-1940}{40}\right)^{j-1}$.
	z tej bazy i wykorzystując schemat <i>Hornera</i> , obliczyłem wartoś nterpolacyjnego na przedziale [1900; 1990]:
figures/va	ndermore.png

Na podstawie obliczonego wielomianu interpolacyjnego, wartość dla roku 1990 wynosi ≈ 82749141 , co w stosunku do prawdziwej wartości, równej 248709873, daje błąd względny na poziomie $\approx 66.73\%$.

Wielomian interpolacyjny Lagrange'a:

figures/lagrange.png		

Wielomian interpolacyjny Newton'a:

Po zaokrągleniu danych populacji dla każdego roku w tabeli, wciąż wykorzystując najlepiej uwarunkowaną bazę funkcji ϕ , otrzymujemy następujący wielomian interpolacyjny:

figures/new_vandermore.	ong	

Wnioski

... Współczynniki są tego samego rzędu wielkości.

Źródła

- https://en.wikipedia.org/wiki/Newton_polynomial
- https://heath.cs.illinois.edu/scicomp/notes/cs450_chapt07.pdf