Clase n^o22

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

20 de Octubre 2021

Objetivo de la clase

3

► Calcular el volumen de un sólido de revolución.

Clase pasada

Ejercicio

Sean

$$R_1 = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 - 4y + 3 \ge 0 \ \land \ x \ge 0 \ \land \ y \ge 0\}$$

$$R_2 = \{(x,y) \in \mathbb{R}^2 / y \le 4 \ \land \ x + y - 5 \le 0 \ \land \ x \le 2\}$$

- a) Graficar la región $R = R_1 \cap R_2$.
- b) Calcule el volumen del sólido generado al rotar la región R alrededor del eje Y.

$$R_1 = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 - 4y + 3 \ge 0 \ \land \ x \ge 0 \ \land \ y \ge 0\}$$

Para calcular e | wolomen and
$$y=s-x$$
 so general al votar R en torno el eje y , tenemos $V_{T}=V_{1}+V_{2}+V_{3}$.

 $V_{A}=2\pi\int_{0}^{1}x\cdot 4\,dx-2\pi\int_{0}^{1}x\cdot (\sqrt{1-x^{-}}+2)\,dx$

 $V = 5 \text{ distance} \left(\int_{\rho}^{\tau} x \cdot f(x) \, dx \right)$

$$= \frac{4\pi}{3}$$

$$V_2 = 2\pi \int_0^1 x \left(-\sqrt{1-x^2}+2\right) dx$$

$$V_3 = 2\pi \int_1^2 x \cdot (s-x) dx$$

Vr = 13 TT ~3.

= 3 | T

$$V_{1} = \pi \int_{0}^{1} \left(2^{2} - \left[\sqrt{1 - (5-2)^{2}}\right]^{2}\right) dy$$

$$V_{2} = \pi \int_{0}^{1} \left(2^{2} - \left[\sqrt{1 - (5-2)^{2}}\right]^{2}\right) dy$$

$$V_{2} = \pi \int_{1}^{4} \left(2^{2} - \left[\sqrt{1 - (5 - 2)^{2}}\right]^{2} dy$$

$$V_{3} = \pi \int_{3}^{4} \left[5 - 9\right]^{2} dy$$
El volumen buscado es
$$V_{7} = V_{1} + V_{2} + V_{3} = 13\pi u^{3}$$

Ejemplo 72

Sean

Sean
$$R_1 = \left\{ (x,y) \in \mathbb{R}^2: \ y \geq \sin x \ \land \ y \leq \cos x \ \land \ 0 \leq x \leq \pi \right\},$$

b) Calcular el volumen generado al rotar R_1 con respecto al eje

c) Calcular el volumen generado al rotar R_2 en torno al eje X. \leftarrow Exc. \leftarrow

- $R_2 = \{(x, y) \in \mathbb{R}^2 : y > x^3 \land y < 0.8 \land y < \sqrt{x}\}$

a) Graficar R_1 y R_2 .

X y al eje Y.

$$R_1 = \{(x, y) \in \mathbb{R}^2 : y \ge \sin x \land y \le \cos x \land 0 \le x \le \pi\},$$

As: , el volumen genemes al voler R. Con vespects of eye \times est $V(S_{R_1}) = \pi \int_0^{\frac{\pi}{4}} \left[C_{S_1 \times 1}^{2} dx - \pi \int_0^{\frac{\pi}{4}} \left[S_{1} \times 1 \right]^{2} dx \right]$

. El sohmen generado al notar R. Con respecto al ezry es $V = 2\pi \int_0^{\frac{\pi}{4}} x \, cnx \, dx - 2\pi \int_0^{\frac{\pi}{4}} x \cdot s \cdot n \times dx$

 $= \frac{11^2 \sqrt{2}}{2} - 2 \pi.$

Ejemplo 73

Sea R la región encerrada por $f(x) = e^x$, $g(x) = e^{-x}$, x = -1 y x = 1. Encuentre el

. $x \in [0,1]$ se l'eva ara $f(x) \ge g(x)$ Lue go. el aréa ec $A = \int_{-1}^{1} g(x) - f(x) dx + \int_{0}^{1} f(x) - g(x) dx$ $= \int_{-1}^{1} e^{-x} - e^{-x} dx + \int_{0}^{1} e^{-x} - e^{-x} dx$ $= -4 + 2 = + 2 = -\frac{1}{2}$

 $= \pi \left(\frac{e^2}{2} + \frac{e^{-2}}{2} - 1 \right)$

 $V = \pi (e^2 + e^{-2} - 2)$

$$= \mathbb{I}\left(\frac{e^2}{2} + \frac{e^{-2}}{2} - 1\right)$$

$$V_{z} = \pi \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \right)$$

$$V_{z} = \pi \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \right)$$

$$V_{z} = \pi \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2} \right)$$

Ejercicio Propuesto

al eje X.

Sea
$$f(x) = \begin{cases} x^2 & \text{Si } x \in [0, 3[, \\ (x-6)^2 & \text{Si } x \in [3, 6]. \end{cases}$$

Considerando $R = \{(x, y) \in \mathbb{R}^2 / 0 \le y \le f(x)\}$. Calcule el

Volumen del sólido de revolución que se obtiene al girar R en torno

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables: trascendentes tempranas	México: Cengage Learning	2021
2	Burgos Román, Juan de	Cálculo infinitesimal de una variable	Madrid: McGraw- Hill	1994
3	Zill Dennis G.	Ecuaciones Diferenciales con Aplicaciones	Thomson	2007
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

 $Pue de \ encontrar \ bibliografía \ complementaria \ en \ el \ programa.$