Outils Logiques Groupe 3 & 4 – DM 3

Chaitanya Leena Subramaniam

On notera les formules propositionnelles par A, B, C... et les variables propositionnelles par x, y, z, ... On note V l'ensemble des variables propositionnelles et $\mathbb{B} = \{0, 1\}$ l'ensemble des valeurs de vérité.

Définition. Soit $v: V \longrightarrow \mathbb{B}$ une affectation, $x \in V$ une variable, et $b \in \mathbb{B}$ une valeur de vérité. On écrit v[b/x] pour l'affectation définie comme suit, qu'on appelle la *mise* à *jour de* v *avec* b *pour* x.

$$v[b/x] \colon V \longrightarrow \mathbb{B}$$
 $x \mapsto b$ $y \mapsto v(y)$ pour tout $y \neq x$

Exercice 0 (Substitution)

(⋆ – Vous pouvez utiliser le résultat de cet exercice sans le démontrer.)

Soit $x \in V$ une variable, B une formule et $v: V \longrightarrow \mathbb{B}$ une affectation. Soit $b = [\![B]\!]v$ dans \mathbb{B} . Montrer que :

- (1) On a [x](v[b/x]) = [x[B/x]]v dans \mathbb{B} .
- (2) Pour toute variable $y \neq x$, on a [y](v[b/x]) = [y[B/x]]v dans \mathbb{B} .
- (3) Pour toute formule A, si $\llbracket A \rrbracket (v[b/x]) = \llbracket A[B/x] \rrbracket v$, alors on a $\llbracket \neg A \rrbracket (v[b/x]) = \llbracket (\neg A)[B/x] \rrbracket v$ dans \mathbb{B} .
- (4) Pour toutes formules A_1, A_2 , si $[A_i](v[b/x]) = [A_i[B/x]]v$ pour i = 1, 2, alors on a
 - (a) $[A_1 \lor A_2](v[b/x]) = [(A_1 \lor A_2)[B/x]]v$ et
 - (b) $[A_1 \wedge A_2](v[b/x]) = [(A_1 \wedge A_2)[B/x]]v$

dans \mathbb{B}

En déduire que pour toute formule A, on a $[\![A]\!](v[b/x]) = [\![A[B/x]]\!]v$. (Indice : faire une récurrence sur la taille de la formule A).

Exercice 1 (Implication)

Soit A, B des formules propositionnelles. Introduisons la notation suivante : on écrit $A \Rightarrow B$ (dit « A implique B ») pour la formule $B \lor \neg A$. On écrit $A \Leftrightarrow B$ pour la formule $(A \Rightarrow B) \land (B \Rightarrow A)$.

- (1) Calculer la table de vérité de $x \Rightarrow y$.
- (2) Calculer la table de vérité de $x \Leftrightarrow y$.
- (3) Calculer la table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$. Qu'observez-vous?

Exercice 2 (Validité)

Lesquelles des formules suivantes sont valides? (Indice : calculer la table de vérité pour chacune.)

(1)
$$x \Rightarrow (x \lor y)$$

(3)
$$x \Rightarrow (y \Rightarrow x)$$

(5)
$$(x \Rightarrow y) \lor (y \Rightarrow x)$$

(2)
$$x \Rightarrow (x \land y)$$

$$(4) (x \Rightarrow y) \Rightarrow x$$

(6)
$$x \lor (x \Rightarrow y)$$

Montrer que si A, B sont des formules telles que $x, y \notin var(A)$ et $x, y \notin var(B)$, alors pour chacune des formules précédentes C, si C est valide, alors C[A/x][B/y] est valide. (Indice : utiliser Exercice 0).

Exercice 3 (Équivalence logique)

Deux formules A, B sont **équivalentes** (noté $A \equiv B$) si pour toute affectation $v: V \longrightarrow \mathbb{B}$, on a $[\![A]\!]v = [\![B]\!]v$ dans \mathbb{B} .

- (1) Montrer que si A et B sont équivalentes, alors pour toute formule C,
 - (a) A[C/x] et B[C/x] sont équivalentes,
 - (b) C[A/x] et C[B/x] sont équivalentes.
- (2) Montrer que A et B sont équivalentes si et seulement si $A \Leftrightarrow B$ est valide. (Indice : commencer par montrer que $x \Rightarrow x$ est valide. Puis montrer que pour $y \notin (var(A) \cup var(B)), (y \Rightarrow A)[B/y]$ est valide.)

Remarque. Les résultats de ce DM nous permettent de *simplifier* des formules par équivalence logique : on se permet de remplacer des formules par des formules équivalentes plus simples. Par exemple $(x \lor \neg x) \lor (x \lor y) \equiv (x \lor y)$.