

TMSCA HIGH SCHOOL MATHEMATICS TEST # 11 © FEBRUARY 17, 2018

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate $2.8 \div \left(\frac{5}{4}\right)^{-1} 5! + 2.3$. (A) -117.56(B) -115.46
- 2. Caroline had a rope that was 60 feet long. She cut off three pieces such that the ratio of lengths of the pieces were 2:3:12 with 40 inches of string left over. How long was the longest piece?

(C) -120.06

- (A) 6 ft. 8 in.
- (B) 10 ft.
- (C) 40 ft.
- (D) 13 ft. 4 in.

(D) -114.2

(E) 38 ft. 9 in.

(E) -118.8

3. The x-intercept of the line through point P that is perpendicular to the line shown is (x, y). Find

- 4. If -7 = 3x y, x 4y = -17 and x + ay = 0, then a = ?
 - (A) 0.25
- **(B)** -2.5
- (C) 1.5
- (\mathbf{D}) 0.4
- 5 **(E)**
- 5. A survey of 75 homes in a particular neighborhood reveals that 38 of the homes have cable but not a phone line. Sixteen of the houses have cable and phone lines. Nine have phone lines but not cable. How many houses have neither cable nor phone lines?
 - (A) 17
- (\mathbf{B}) 5
- (C) 21
- (D) 12
- **(E)** 15

- 6. Simplify: $\frac{(n+5)!}{(n-1)!} \div \frac{1}{n} \div \frac{(n+3)!}{n!}$
 - (A) $n^4 + 9n^3 + 20n^2$
- (B) $n^2 + 9n + 20$

(C) $n^3 + 5n$

(D)
$$n^2 + 8n + 15$$

(E)
$$\frac{n^2 + 9n + 20}{n^2}$$

- 7. If $\theta = 5\lambda$ and $\theta = \alpha + \varphi$, then $5\lambda = \alpha + \varphi$. This is an example of the _____ property.
 - (A) Distributive
- (B) Transitive
- (C) Commutative (D) Associative
- (E) Reflexive
- 8. 1075 inches per second is the same as ____ _____ miles per hour. (nearest mile per hour)
- (B) 5
- (C) 12
- (D) 61
- 9. If p and q are the zeros of the function $f(x) = 17x^2 + 3x 32$ then $pq^2 + p^2q =$
- (A) $-\frac{96}{289}$ (B) $\frac{48}{289}$ (C) $\frac{225}{289}$ (D) $-\frac{48}{289}$ (E) $\frac{96}{289}$
- 10. $\angle A$ and $\angle B$ are supplementary. If $m\angle A = (x^2 3x)^\circ$ and $m\angle B = (9x 7)^\circ$, find the measure of the larger angle.
 - (A) 62°
- (B) 88°
- (C) 92°
- (D) 28°
- 98° **(E)**

TMSCA 17-18 HSMA Test 11 13' (C) 515 **(D)** 647 (E) 507 (A) 633 **(B)** 819 16' 12. The four sisters Lesley, Michelle, Nora and Patty wanted to go on a road trip, but Lesley had no money. Michelle, Nora and Patty each gave Lesley one-fifth, one-sixth and one-seventh of her money respectively. If each gave Lesley the same amount, what fraction of the money did Lesley possess after the exchange? (A) $\frac{1}{6}$ (B) $\frac{2}{5}$ (C) $\frac{1}{7}$ (D) $\frac{67}{210}$ 13. Lily has 11 non-fiction books to shelve. She wants to keep her 4 math books together and her 3 grammar books together, but otherwise any order is fine. In how many different ways can Lily organize her shelf? (A) 17,280 (C) 103,680 **(B)** 8,640 **(D)** 3,456 **(E)** 34,560 14. Let $x^2 + x$ and $g(x) = x^5$. Calculate f(g(-2)). (C) 32 (A) -1,023**(B)** 1025 (D) 992 **(E)** -102515. Find the exact value of x satisfying $(3^{2x+1})(4^x) = 6^{x+2}$. (C) $\frac{\ln(12)}{\ln(6)}$ (D) $\frac{\log(3)}{\log(4)}$ (A) $\ln(2)$ (B) $\ln(6)$ 16. An operation " Ω " is defined by $a\Omega b = b^a - ab$. What is the value of $(3\Omega - 1) + (3\Omega 2)$? (C) 9 (A) 4 **(B) 6** (\mathbf{D}) 3 (\mathbf{E}) 7 17. There are two values of k for which $\begin{vmatrix} k+1 & 5 \\ 3 & 2k \end{vmatrix} = 25$. The sum of those two values is (C) 3 (E) -1(A) 1 **(B)** 17 (D) -218. Given the sequence 4, 9, 18, 31, 48, ..., k, 193, ... find k. (A) 123 (B) 121 (C) 189 (D) 156 **(E)** 152 19. Point P(-5,2) lies on the x-y plane. Point P is reflected over the line y = -x to point Q. Point Q is translated +4 units horizontally to point R. Point R is rotated 270° clockwise around the origin to point S. The coordinates of point S are (x, y). Find x + y.

 (\mathbf{D}) 4

(E) -3

(C) 1

20. The intersection of the three perpendicular bisectors of the sides in a triangle is called the

(B) 11

- 21. Which of the following functions is neither even nor odd? f(x) =_____.

- (A) $y = \sin(2x)$ (B) y = |x| + 7 (C) y = |x 2| (D) $y = 3x^5 2x$ (E)
- 22. How many distinct 4-letter arrangements can be formed using the letters in "GEOMETRY"?
 - (A) 1,680
- **(B)** 1,020
- (C) 840
- (D) 3,720
- (E) 5,160
- 23. The circle C shown has a diameter of 20 feet. How far is the chord shown from the center of the circle?

- (A) 16 ft.
- (B) 12 ft.
- (C) 9 ft.
- (D) 8 ft.
- (E) $4\sqrt{2}$ ft.

- 24. If $\frac{A}{x+3} + \frac{B}{3x-4} = \frac{17x-14}{3x^2+5x-12}$, then A+B=?
 - (A) -6
- **(B)** 7
- (C) -2
- **(D)** 10
- **-5 (E)**

- 25. Let $f(x) = 9x^3 7x^2 52$. Find f'(-2).
 - (A) 132
- (B) -152
- (C) 172
- (D) 156
- 136 **(E)**
- 26. Let the "1" at the top of Pascal's triangle be row 0. Determine the fifth number in row 23.
 - (A) 33,649
- (B) 10,626
- (C) 42,504
- (D) 100,947
- (E) 8,855
- 27. Which of the following is an equation of the tangent line of $f(x) = 2x^2 x + \frac{32}{x}$ when x = 2?
 - (A) y = x + 20
- (B) v = -x + 24
- (C) y = -x + 26 (D) y = x + 24 (E) y = -x + 20

- 28. Which of the following is the reference angle for 3105°?
 - (A) 60°
- (B) 0°
- (C) 30°
- (D) 45°
- (E) None of these
- 29. If 2+3i is one of the zeros the polynomial $f(x) = 7x^3 31x^2 + 103x 39$, then another of its zeros is:
 - (A) $\frac{2}{3}$ (B) $\frac{5}{11}$ (C) $\frac{3}{7}$ (D) $\frac{6}{13}$

- 30. Let $A = \begin{bmatrix} 7 & -9 \\ -2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 3 \\ 2 & -7 \end{bmatrix}$. Find the sum of the elements in BA.
 - (A) 55
- **(B)** 151
- (C) -30
- **(D)** 90
- **(E)** -53

- 31. Given that x y = -15 and xy = 28, find $x^3 y^3$.
 - (A) -4,635
- (B) -4,215
- (C) -3,795
- **(D)** -2,955
- -2,115**(E)**
- 32. Which of the following equations in rectangular form can be written as $r-10\sin\theta=0$ in polar form?
 - (A) $x^2 + y^2 = 25$
- (B) $x^2 + v^2 = 5$
- (C) $x^2 + y^2 10y = 0$

- (D) $x^2 10x + v^2 = 0$
- (E) $x^2 + y^2 10y + 50 = 0$

- 33. $2222_5 + 2222_6 + 2222_7 = \underline{}_8$.
 - (A) 1,170
- (B) 3,226
- (C) 1,630
- (D) 3,136
- (\mathbf{E}) 2,360

- 34. Find the sum of the digits in the ones and tens places of 7^{107} .
 - (A) 1
- **(B)** 7
- (C) 13
- (\mathbf{D}) 9
- **(E)**
- 35. The formulas that relate the coefficients of a polynomial to the sums and product of its roots are named after which of the following mathematicians?
 - (A) Franciscus Vieta
- (B) Sophie Germain
- (C) Marin Mersenne

(D) Zeno of Alea

- (E) Freda Porter
- 36. If $[(5+3i)(2-3i)] \div (2-i) = a+bi$, then a+b=?
 - (A) 9.2
- **(B)** 9.4
- (C) 0.2
- (\mathbf{D}) 0.4
- **(E)**
- 37. If $g(x) \le f(x) \le h(x)$ for all x, k in [a,b], where $x \ne k$, and $\lim_{x \to k} g(x) = L$ and $\lim_{x \to k} h(x) = L$ then $\lim_{x\to k} f(x) = L$. This theorem is known as:
 - (A) Rolle's Theorem
- (B) Sandwich Theorem (C) Fundamental Theorem of Calculus
- (D) Intermediate Value Theorem
- (E) Fundamental Theorem of Algebra
- 38. What is the angle between the minute and hour hands on a circular clock at 11:17 pm?
 - (A) 120°
- (B) 122.5°
- (C) 140.5°
- (D) 123.5°
- (E) 127.5°

- 39. Simplify: $\left(a^4 \div b^5\right)^{-3} \div b^3 \times a^9$.
 - (A) $\frac{1}{a^3b^{18}}$ (B) $\frac{a^{21}}{b^{18}}$ (C) $\frac{b^{12}}{a^3}$ (D) $\frac{a^{10}}{b^5}$ (E) $a^{10}b^5$

- 40. Let $f(x) = \begin{cases} 5x 7, & \text{if } x \le 4 \\ kx + 2, & \text{if } x > 4 \end{cases}$. Find the value of k that makes f(x) continuous on $(-\infty, \infty)$.
 - (A) 2.75
- (\mathbf{B}) 2
- (C) 3
- (D) 2.25
- (E) 3.25

- 41. Find the perimeter of triangle ABC. (nearest centimeter)
 - (A) 70 cm.
- (B) 62 cm.
- (C) 57 cm.

- (D) 59 cm.
- (E) 64 cm.

42. How	many distinct	solutio	ons exist fo	or $2\sin^2 x =$	$=2\cos x$, wh	nere 0 < 2	$x < 3\pi$?		
(A)	0	(B)	1	(C)	2	(D)	3	(E)	4
43. Let ₃	$f_0 = 0$, $f_1 = 1$,	$f_2 =$	1, $f_3 = 2$	$f_4 = 3$ b	e the terms	of the Fil	bonacci seque	nce. F	ind $f_{20} - f_{17}$.
(A)	4,181	(B)	8,362	(C)	5,778	(D)	6,765	(E)	5,168
	ch of the follow h of the apothe	_		presses the	perimeter,	P, of an	equilateral tri	angle i	n terms of the
(A)	$P=6\sqrt{3}a$	(B)	$P=3\sqrt{3}$	a (C)	$P=3\sqrt{3} a^2$	² (D)	$P=2\sqrt{3}a$	(E)	$P = 2\sqrt{3}a^2$
	repeating decin 8 in simplified			in base 8	s can be writ	tten as w	hich of the fol	lowing	fractions in
(A)	$\frac{31}{250}_8$	(B)	$\frac{113}{7778}$	(C) $\frac{1}{11}$	$\frac{6}{118} \qquad ($	$\mathbf{(D)} \frac{11}{111}$	(E)	$\frac{75}{511_8}$	
46. A po	lyhedron has 30	0 face	s and 32 vo	ertices, hov	w many edge	es does it	have?		
(A)	92	(B)	52	(C)	58	(D)	62	(E)	60
is rol	47. A contestant on a game show rolls a single, fair, standard die. The player loses \$100 if an odd number is rolled. If he rolls an even prime, he gets a \$400 payout. If he rolls a perfect number, he gets \$1000 payout. Otherwise, nothing happens. What are his expected winnings?								
(A)	\$133.33	(B)	\$250	(C)	\$350	(D)	\$183.33	(E)	\$275
48. Given $y = \ln(5x - 9)$, find the value of x for which $\frac{dy}{dx} = \frac{dx}{dy}$.									
(A)	0.8	(B)	1.6	(C)	2.5	(D)	2.8	(E)	2
49. The 1	Real value solu	tion s	et for 13 <	9+5x -8	is?				
(A)	$\left\{x \left -6 < x < 2\right.\right\}$.4}	($\mathbf{(B)} \big\{ x \big -2$	2.4 < x < 6		(C) $\{x \{x < x\}\}$	-2.4}	$\cup \{x > 6\} \}$
(D)	$\{x \mid -6 < x < -1\}$	2.4}	($\mathbf{(E)} \Big\{ x \Big \Big\{ x$	<-6 } \cup { x	> 2.4}}			
50. If $\frac{x}{x}$	$\frac{-8}{+8} + \frac{x+8}{x-8} = 2$	$+\frac{A}{x^2}$	-64 wher	e $A \in \mathbb{Z}^+$ 1	then $A = ?$				
(A)	256	(B)	64	(C)	16	(D)	32	(E	E) 0
_	htbulb compan aged together,				•	_			
(A)	22.2%	(B)	19.7%	(C)	18.7%	(D)	20.2%	(E)	19.9%
52. $9^3 + 10^3 + 11^3 + + 18^3 + 19^3 =$									
	34,804			(C)	29,241	(D)	27,216	(E)	34,075
				Copyright	© 2017 TM	ISCA			

- 53. The inequality $x+3<\frac{16}{x-3}$ is true for what percentage of the real number values on the interval [-4,6]?
 - (A) 40%
- (B) 60%
- (C) 80%
- (D) 70%
- (E) 20%
- 54. Find the area of the shaded region on the illustration shown if the dots on the grid are 5 mm, apart both horizontally and vertically.
 - (B) 375 mm^2 (C) 325 mm^2 (D) 350 mm^2 (E) 65 mm^2 (A) 57 mm^2

55. An investor invested \$1200 for 5 years. The chart below shows the percentage growth each year. What was the average yearly percentage growth for the 5-year period? (nearest hundredth percent)

Year	1	2	3	4	5
Growth %	3.7%	1.85%	-2.31%	-6.25%	0.75%

- (A) -0.51%
- (B) -0.45% (C) -2.24% (D) -2.54% (E) -1.97%

- 56. What is the constant term in the expansion of $\left(x^2 \frac{2}{r}\right)^9$?
 - (A) 64
- **(B)** 8,064
- (C) 512
- (D) 5,376
- (E) 6,720
- 57. Simplify to the nearest ten-thousandth place: $1+2.6+\frac{2.6^2}{2!}+\frac{2.6^3}{3!}+\frac{2.6^4}{4!}+...$
 - (A) 12.8035
- (B) 13.4637
- (C) 13.3919
- (D) 13.2326
- (E) 11.8134
- 58. The lengths of the sides of $\triangle PQR$ are the roots of $f(x) = x^3 11x^2 + 36x 30$. Find the area of $\triangle POR$. (nearest tenth)
 - (A) 6.7
- **(B)** 3.4
- (C) 9.0
- (D) 7.2
- $(E) \quad 3.0$

- 59. $\begin{vmatrix} 1 & \cot \theta \\ -\cot \theta & 1 \end{vmatrix} =$
 - (A) $\sin(2\theta)$ (B) $\sec^2\theta$
- (C) $\cos(2\theta)$ (D) $\csc^2\theta$
- (\mathbf{E}) 1
- 60. The line \overline{AB} passes through the point (8,1) and bounds a right triangle in the first quadrant along with the lines x = 0 and y = 0. What is the smallest possible area for such a triangle?
 - (A) 10
- **(B)** 20
- (C) 4
- **(D)** 16
- **(E)** 24

2017 – 2018 TMSCA Mathematics Test Eleven Answers

1. D	21. C	41. A
2. C	22. B	42. D
3. E	23. D	43. E
4. A	24. B	44. A
5. D	25. E	45. B
6. A	26. E	46. E
7. B	27. B	47. D
8. D	28. D	48. D
9. E	29. C	49. E
10. C	30. C	50. A
11. E	31. A	51. D
12. A	32. C	52. A
13. C	33. D	53. E
14. D	34. B	54. C
15. C	35. A	55. A
16. A	36. E	56. D
17. E	37. B	57. B
18. D	38. D	58. E
19. E	39. C	59. D
20. E	40. A	60. D

2017-2018 TMSCA Mathematics Test Eleven Select Solutions

- 9. This is the sum of the roots times the product of the roots for $\left(-\frac{3}{17}\right)\left(\frac{-32}{17}\right) = \frac{96}{289}$
- 12. Let Lesley have \$3, then the other sisters have \$4,\$5 and \$6 left after giving money to Lesley, so Lesley has $\frac{3}{18} = \frac{1}{6}$ of the money.
- 13. Treat the math and grammar books each as one item with 4 other for 6! arrangements, then there are 4! arrangements of the math books and 3! arrangements of grammar books. The total number of arrangements will (6!)(4!)(3!) = 103,680
- 14. $(2x+1)\ln 3 + x \ln 4 = (x+2)\ln 6$ for $x(2\ln 3 + \ln 4 - \ln 6) = 2\ln 6 - \ln 3$ and $x = \frac{\ln 12}{\ln 6}$
- 22. There are 7 distinct letters with 2-E's. The two possibilities are:

No repeats:
$$_{7}P_{4} = 840$$

Repeat E's:
$${}_{6}C_{2} \times \frac{4!}{2!} = 180$$

For a total of 1020.

- 23. The shortest distance from the center to the chord will form a right angle and bisect the 12'. Finish out the right triangle with a radius of 10' then $10^2 6^2 = d^2$ and d = 8'
- 26. The numbers in each row are the coefficients of a binomial expansion. The $5^{\rm th}$ term in row 23 will be $_{23}C_4=8855$

31.
$$x^3 - y^3 = (-15)[(-15)^2 + 3(28)] = -4635$$

- 32. The graph of this polar equation is a circle centered at (0.5) with a radius of 5 for $x^2 + (y-5)^2 = 25$ and $x^2 + y^2 10y = 0$
- 34. The last 2 digits form a repeating pattern 7, 49, 43, 01, 7, 49, 43, 01.... 107 divided by 4 has a remainder of 3 for the last two digits 43 and a sum of 7.

40. Solve
$$20-7=4k+2$$
 for $k=2.75$

46. Use Euler's formula F+V-2=E for 60 edges.

47.
$$\frac{1}{2}(-100) + \frac{1}{6}(400) + \frac{1}{6}(1000)$$
 for \$183.33

- 48. Take the derivative and solve either $\frac{5}{5x-9} = 1$ or $\frac{5}{5x-9} = -1$ with only one solution in the domain of the original function x = 2.8
- 51. Calculate 1-no faulty or $1-(1-0.037)^6 \approx 20.2\%$
- 54. $A = \frac{2I + P}{2} 1 = 13$ units on the grid with each square unit on the grid equal to 25 mm² for a total of 325 mm²
- 55. (1+0.037)(1+.0185)(1-0.0231)(1-0.0625)(1+0.0075) for 0.975 then take the 5th root for 0.998 and -0.051% growth.
- 60. Let the y-intercept be (0,b) and the x-intercept of (a,0) then $A = \frac{1}{2}ab$ and $\frac{b-1}{0-8} = \frac{0-1}{a-8}$ for $b = \frac{a}{a-8}$ and $A = \frac{1}{2}a\left(\frac{a}{a-8}\right)$ a minimum area of 16.