Quantum Information Science Comprehensive Lecture Note

Ruang Kuantum

September 10, 2025

Contents

1	Fro	m Clas	ssical to Quantum Information 1
	1.1	Inform	nation Theory Fundamentals
		1.1.1	Classical Information and Entropy
		1.1.2	Shannon's Theorems Review
		1.1.3	Channel Capacity and Coding
	1.2	Quant	rum Information Primitives
		1.2.1	The Qubit: Mathematical Representation
		1.2.2	Superposition Principle
		1.2.3	Quantum Measurement and Collapse
		1.2.4	No-Cloning Theorem and Implications
	1.3	Inform	nation Quantification in Quantum Systems
		1.3.1	Von Neumann Entropy
		1.3.2	Quantum Mutual Information
		1.3.3	Accessible Information and Holevo Bound
		1.3.4	Quantum Data Compression
	1.4	Quant	sum Advantage Overview
		1.4.1	Computational Supremacy
		1.4.2	Communication Advantages
		1.4.3	Sensing Beyond Classical Limits
		1.4.4	Security Through Physics
2	Ma	themat	tical Framework 3
	2.1	Linear	Algebra for Quantum Mechanics
		2.1.1	Complex Vector Spaces
		2.1.2	Hilbert Spaces and Completeness
		2.1.3	Linear Operators and Matrices
		2.1.4	Eigenvalues and Eigenvectors
	2.2	Quant	sum State Representation
		2.2.1	State Vectors and Ket Notation
		2.2.2	Density Matrices
		2.2.3	Pure vs Mixed States
		2.2.4	Bloch Sphere Representation
	2.3	Quant	sum Operations
		2.3.1	Unitary Operators
		2.3.2	Hermitian Operators and Observables
		2.3.3	Projection Operators
		2.3.4	Completely Positive Maps
	2.4		osite Systems
	. –	2.4.1	·

CONTENTS iii

		2.4.2	Partial Trace Operations	. 4
		2.4.3	Schmidt Decomposition	
		2.4.4	Purification of Mixed States	
	2.5	Distan	nce Measures and Fidelity	
		2.5.1	Trace Distance	
		2.5.2	Fidelity	
		2.5.3	Bures Metric (Generalization of Quantum Fisher Information) .	
	2.6		utational Methods	
		2.6.1	Matrix Exponentials	
		2.6.2	Numerical Techniques	
		2.6.3	Efficient Representations	
		2.6.4	Simulation Complexity	
3	0115	ntum	Mechanics and Measurement	5
Ü	3.1		um Dynamics	
	0.1	3.1.1	Schrödinger Equation	
		3.1.2	Heisenberg Picture	
		3.1.3	Interaction Picture	
		3.1.4	Time Evolution Operators	
	3.2		rement Theory	
	3.2	3.2.1	Postulates of Measurement	
		3.2.1 $3.2.2$	Projective Measurements	
		3.2.3	POVM Formalism	
		3.2.3 $3.2.4$	Weak Measurements	
	3.3	_		
	0.0	3.3.1	Quantum Systems	
		3.3.2	System-Environment Interaction	
		3.3.3	Master Equations	
	3.4	3.3.4	Quantum Trajectories	
	3.4		erence Models	
			Amplitude Damping	
		3.4.2	Phase Damping	
		3.4.3	Depolarizing Channel	
	2 5	3.4.4	General Kraus Representation	
	3.5	•	um Control	
		3.5.1	Coherent Control	
		3.5.2	Quantum Zeno Effect	
		3.5.3	Dynamical Decoupling	
	0.0	3.5.4	Optimal Control Theory	
	3.6		ss Characterization	
		3.6.1	Quantum Process Tomography	
		3.6.2	Gate Set Tomography	
		3.6.3	Randomized Benchmarking	
		3.6.4	Characterization Protocols	. 6
4	Ent	anglen	nent and Quantum Correlations	7
	4.1	Entang	glement Fundamentals	. 8
		4.1.1	Definition and Mathematical Description	. 8

iv CONTENTS

		4.1.2	Bell States and Bell Basis
		4.1.3	GHZ and W States
		4.1.4	Continuous Variable Entanglement
	4.2	Entan	glement Quantification
		4.2.1	Entropy of Entanglement
		4.2.2	Concurrence and Tangle
		4.2.3	Negativity and Logarithmic Negativity
		4.2.4	Entanglement Witnesses
	4.3	Nonlo	cality and Bell Inequalities
		4.3.1	EPR Paradox
		4.3.2	Bell's Theorem
		4.3.3	CHSH Inequality
		4.3.4	Experimental Violations
	4.4	Entan	glement Generation
		4.4.1	Gate-Based Methods
		4.4.2	Spontaneous Parametric Down-Conversion
		4.4.3	Cavity QED Methods
		4.4.4	Measurement-Induced Entanglement
	4.5	Entan	glement Manipulation
		4.5.1	Entanglement Swapping
		4.5.2	Entanglement Distillation
		4.5.3	Entanglement Concentration
		4.5.4	Local Operations and Classical Communication
	4.6	Multip	partite Entanglement
		4.6.1	Classification Schemes
		4.6.2	Genuine Multipartite Entanglement
		4.6.3	Graph States
		4.6.4	Entanglement Hierarchy
5	Qua	ntum	Circuits and Gates 9
	5.1	Quant	um Circuit Model
		5.1.1	Circuit Notation and Conventions
		5.1.2	Quantum vs Classical Circuits
		5.1.3	Reversibility Requirements
		5.1.4	Circuit Complexity Measures
	5.2	Single	-Qubit Gates
		5.2.1	Pauli Gates
		5.2.2	Hadamard Gate
		5.2.3	Phase and T Gates
		5.2.4	Rotation Gates
	5.3	Multi-	Qubit Gates
		5.3.1	CNOT and Controlled Operations
		5.3.2	Toffoli Gate
		5.3.3	SWAP and Fredkin Gates
		5.3.4	Controlled Phase Gates
	5.4	Unive	rsal Gate Sets
		5.4.1	Universality Theorems
		5.4.2	Clifford+T Gate Set

CONTENTS v

		5.4.3	Solovay-Kitaev Theorem	10
		5.4.4	Gate Decomposition Algorithms	10
	5.5	Circuit		10
		5.5.1		10
		5.5.2		10
		5.5.3	1	10
		5.5.4	1 00 11 0	10
	5.6		1	10
	0.0	5.6.1		10
		5.6.2	· ·	10
		5.6.2		10
		5.6.4	0	10
		0.0.4	Weasurement-based Circuits	IU
6	•			11
	6.1	_		12
		6.1.1		12
		6.1.2		12
		6.1.3	The state of the s	12
		6.1.4		12
	6.2	Phase	Estimation Algorithm	12
		6.2.1	Problem Statement	12
		6.2.2	Algorithm Description	12
		6.2.3	Precision and Resources	12
		6.2.4	Iterative Phase Estimation	12
	6.3	Grover		12
		6.3.1		12
		6.3.2	Amplitude Amplification	12
		6.3.3		12
		6.3.4	•	12
	6.4			12
	0.1			12
		6.4.2		12
		6.4.3		12
		6.4.4	1	12
	6.5		1 0	12
	0.5	6.5.1		12
		6.5.2		12 12
				12 12
		6.5.3	1	
	C C	6.5.4		12
	6.6	_		12
		6.6.1		12
		6.6.2		12
		6.6.3		12
		6.6.4	Error Propagation	12
7	NIS			13
	7.1	NISQ		14
		7.1.1	Hardware Limitations	14

vi *CONTENTS*

		7.1.2	Noise Models	14
		7.1.3	Connectivity Restrictions	14
		7.1.4	Coherence Time Limits	14
	7.2	Variat	ional Quantum Eigensolver (VQE)	14
		7.2.1	Algorithm Framework	14
		7.2.2	Ansatz Design	14
		7.2.3	Classical Optimization	14
		7.2.4	Applications in Quantum Chemistry	14
	7.3	Quant	sum Approximate Optimization Algorithm (QAOA)	14
		7.3.1	Combinatorial Optimization Problems	14
		7.3.2	Circuit Structure	14
		7.3.3	Parameter Optimization	14
		7.3.4	Performance Analysis	14
	7.4	Quant	sum Machine Learning	14
		7.4.1	Quantum Neural Networks	14
		7.4.2	Quantum Kernel Methods	14
		7.4.3	Quantum Feature Maps	14
		7.4.4	Hybrid Training Approaches	14
	7.5		Mitigation Techniques	14
		7.5.1	Zero-Noise Extrapolation	14
		7.5.2	Probabilistic Error Cancellation	14
		7.5.3	Symmetry Verification	14
		7.5.4	Virtual Distillation	14
	7.6		nization Strategies	14
		7.6.1	Gradient Estimation Methods	14
		7.6.2	Barren Plateau Avoidance	14
		7.6.3	Hardware-Efficient Ansätze	14
		7.6.4	Circuit Cutting Techniques	14
			0.110.110.00.00.00.00.00.00.00.00.00.00.	
8	Qua	ntum	Communication Protocols	15
	8.1	Quant	rum Teleportation	16
		8.1.1	Protocol Description	16
		8.1.2	Resource Requirements	16
		8.1.3	Fidelity Analysis	16
		8.1.4	Experimental Implementations	16
	8.2	Super	dense Coding	16
		8.2.1	Protocol Framework	16
		8.2.2	Channel Capacity Enhancement	16
		8.2.3	Practical Limitations	16
		8.2.4	Applications	16
	8.3	Quant	sum State Transfer	16
		8.3.1	Direct Transfer Methods	16
		8.3.2	Spin Chain Transfer	16
		8.3.3	Flying Qubits	16
		8.3.4	Interface Design	16
	8.4		rum Channel Capacity	16
		8.4.1	Classical Capacity	16
		8.4.2	Quantum Capacity	16

CONTENTS vii

		8.4.3	Entanglement-Assisted Capacity
		8.4.4	Private Capacity
	8.5	Advan	ced Protocols
		8.5.1	Remote State Preparation
		8.5.2	Quantum Secret Sharing
		8.5.3	Anonymous Communication
		8.5.4	Quantum Digital Signatures
	8.6	Protoc	col Security and Efficiency
		8.6.1	Security Models
		8.6.2	Resource Analysis
		8.6.3	Noise Tolerance
		8.6.4	Implementation Trade-offs
9	0112	ntum	Key Distribution Systems 17
ð	9.1		te Variable QKD Protocols
	J.1	9.1.1	BB84 Protocol
		9.1.2	B92 Protocol
		9.1.3	Six-State Protocol
		9.1.4	SARG04 Protocol
	9.2	•	glement-Based QKD
	0.2	9.2.1	E91 Protocol
		9.2.2	BBM92 Protocol
		9.2.3	Device-Independent QKD
		9.2.4	Measurement-Device-Independent QKD
	9.3	Contin	nuous Variable QKD
		9.3.1	Gaussian Modulation
		9.3.2	Discrete Modulation
		9.3.3	Homodyne Detection
		9.3.4	Heterodyne Detection
	9.4	Securi	ty Analysis
			Information-Theoretic Security
		9.4.2	Finite-Key Effects
		9.4.3	Composable Security
		9.4.4	Side-Channel Attacks
	9.5	Classic	cal Post-Processing
		9.5.1	Sifting and Basis Reconciliation
		9.5.2	Error Correction
		9.5.3	Privacy Amplification
		9.5.4	Authentication
	9.6	QKD	Systems Engineering
		9.6.1	Hardware Components
		9.6.2	System Integration
		9.6.3	Network Deployment
		9.6.4	Commercial Systems
10	Qua	ntum	Sensing and Metrology 19
			um Parameter Estimation
		•	Fisher Information 20

viii CONTENTS

		10.1.2	Quantum Fisher Information	20
		10.1.3	Cramér-Rao Bound	20
		10.1.4	Heisenberg Limit	20
	10.2	Quanti	um Interferometry	20
				20
		10.2.2	SU(1,1) Interferometer	20
				20
				20
	10.3			20
	10.0		$oldsymbol{arphi}$	20
				20
				20
			1 0	20
	10.4			20 20
	10.4		8 0	
			0 0	20
			·	20
				20
				20
	10.5		0 11	20
			0 ,	20
		10.5.2	· ·	20
		10.5.3	Clock Synchronization	20
		10.5.4	Chemical Sensing	20
	10.6	Sensor	Networks and Arrays	20
		10.6.1	Distributed Sensing	20
				20
		10.6.3	Data Fusion	20
				20
11	Qua	ntum i	Error Correction 2	21
	11.1	Error I	Models and Syndrome Extraction	22
		11.1.1	Pauli Error Models	22
		11.1.2	Syndrome Measurements	22
		11.1.3	Error Detection vs Correction	22
				22
	11.2		·	22
				22
				22
				22
			0 1	22
	11 2			22
	11.0			22 22
				22 22
				22
	11 4			22
	11.4		O .	22
				22
		11.4.2	Planar Codes	22

CONTENTS ix

		11.4.3	Anyonic Excitations	22
			v	22
	11.5			22
				22
				22
				22
				22
	11.6			22
		11.6.1	Maximum Likelihood Decoding	22
				22
				22
				22
19	0110	ntum	Hardware Platforms	23
14	•			23 24
	14.1			24 24
			•	$\frac{24}{24}$
				$\frac{24}{24}$
				$\frac{24}{24}$
	12.2			24
				 24
				24
			· · · · · · · · · · · · · · · · · · ·	24
				24
	12.3			24
				24
				24
				24
				24
	12.4	Neutra	al Atom Platforms	24
		12.4.1	Optical Lattices	24
		12.4.2	Rydberg Atoms	24
			1	24
				24
	12.5			24
		12.5.1	·	24
		12.5.2		24
			1 0 0	24
				24
	12.6		•	24
			1 0	24
				24
				24
		12.6.4	System Integration	24
13	Qua	ntum	Networks and Internet	25
	•			26
		13 1 1	Network Topologies	26

X CONTENTS

	13.1.2	Quantum Repeaters	26
	13.1.3	Quantum Routers	26
		End-to-End Connectivity	26
13.2		eal Layer	26
		Quantum Channels (Fiber, Free-Space)	26
		Wavelength Division Multiplexing	26
		Mode Conversion	26
	13.2.4	Quantum Transduction	26
13.3	Link L	Layer Protocols	26
		Entanglement Generation	26
	13.3.2	Link-Level Error Correction	26
	13.3.3	Entanglement Purification	26
	13.3.4	Multiplexing Strategies	26
13.4	Netwo	rk Layer Functions	26
		Routing Protocols	26
	13.4.2	Entanglement Swapping	26
	13.4.3	Path Selection	26
	13.4.4	Network Coding	26
13.5	Applic	eation Layer Services	26
	13.5.1	Distributed Computing	26
		Clock Synchronization	26
		Distributed Sensing	26
		Secure Multiparty Computation	26
13.6	Netwo	rk Management	26
	13.6.1	Resource Allocation	26
	13.6.2	Quality of Service	26
	13.6.3	Network Monitoring	26
		Software-Defined Quantum Networks	26

From Classical to Quantum Information

1.	1	Information	Theory	Fundamentals	S
	_				_

- 1.1.1 Classical Information and Entropy
- 1.1.2 Shannon's Theorems Review
- 1.1.3 Channel Capacity and Coding
- 1.2 Quantum Information Primitives
- 1.2.1 The Qubit: Mathematical Representation
- 1.2.2 Superposition Principle
- 1.2.3 Quantum Measurement and Collapse
- 1.2.4 No-Cloning Theorem and Implications
- 1.3 Information Quantification in Quantum Systems
- 1.3.1 Von Neumann Entropy
- 1.3.2 Quantum Mutual Information
- 1.3.3 Accessible Information and Holevo Bound
- 1.3.4 Quantum Data Compression
- 1.4 Quantum Advantage Overview
- 1.4.1 Computational Supremacy
- 1.4.2 Communication Advantages
- 1.4.3 Sensing Beyond Classical Limits
- 1.4.4 Security Through Physics

Mathematical Framework

	2.1	Linear	Algebra	for	Quantum	Mechanic
--	-----	--------	---------	-----	---------	----------

- 2.1.1 Complex Vector Spaces
- 2.1.2 Hilbert Spaces and Completeness
- 2.1.3 Linear Operators and Matrices
- 2.1.4 Eigenvalues and Eigenvectors
- 2.2 Quantum State Representation
- 2.2.1 State Vectors and Ket Notation
- 2.2.2 Density Matrices
- 2.2.3 Pure vs Mixed States
- 2.2.4 Bloch Sphere Representation
- 2.3 Quantum Operations
- 2.3.1 Unitary Operators
- 2.3.2 Hermitian Operators and Observables
- 2.3.3 Projection Operators
- 2.3.4 Completely Positive Maps
- 2.4 Composite Systems
- 2.4.1 Tensor Products
- 2.4.2 Partial Trace Operations
- 2.4.3 Schmidt Decomposition
- 2.4.4 Purification of Mixed States
- 2.5 Distance Measures and Fidelity

Quantum Mechanics and Measurement

0 1		T
3.1	(Juantum	Dynamics
•• •	Q addit dill	

- 3.1.1 Schrödinger Equation
- 3.1.2 Heisenberg Picture
- 3.1.3 Interaction Picture
- 3.1.4 Time Evolution Operators
- 3.2 Measurement Theory
- 3.2.1 Postulates of Measurement
- 3.2.2 Projective Measurements
- 3.2.3 POVM Formalism
- 3.2.4 Weak Measurements
- 3.3 Open Quantum Systems
- 3.3.1 System-Environment Interaction
- 3.3.2 Master Equations
- 3.3.3 Lindblad Form
- 3.3.4 Quantum Trajectories
- 3.4 Decoherence Models
- 3.4.1 Amplitude Damping
- 3.4.2 Phase Damping
- 3.4.3 Depolarizing Channel
- 3.4.4 General Kraus Representation
- 3.5 Quantum Control

Entanglement and Quantum Correlations

4.1 Entanglement rundamenta	4.1	Entanglement Fundamen	ıtals
-----------------------------	-----	-----------------------	-------

- 4.1.1 Definition and Mathematical Description
- 4.1.2 Bell States and Bell Basis
- 4.1.3 GHZ and W States
- 4.1.4 Continuous Variable Entanglement
- 4.2 Entanglement Quantification
- 4.2.1 Entropy of Entanglement
- 4.2.2 Concurrence and Tangle
- 4.2.3 Negativity and Logarithmic Negativity
- 4.2.4 Entanglement Witnesses
- 4.3 Nonlocality and Bell Inequalities
- 4.3.1 EPR Paradox
- 4.3.2 Bell's Theorem
- 4.3.3 CHSH Inequality
- 4.3.4 Experimental Violations
- 4.4 Entanglement Generation
- 4.4.1 Gate-Based Methods
- 4.4.2 Spontaneous Parametric Down-Conversion
- 4.4.3 Cavity QED Methods
- 4.4.4 Measurement-Induced Entanglement
- 4.5 Entanglement Manipulation

Quantum Circuits and Gates

5.1	Quantum	Circuit	Model

- 5.1.1 Circuit Notation and Conventions
- 5.1.2 Quantum vs Classical Circuits
- 5.1.3 Reversibility Requirements
- 5.1.4 Circuit Complexity Measures
- 5.2 Single-Qubit Gates
- 5.2.1 Pauli Gates
- 5.2.2 Hadamard Gate
- 5.2.3 Phase and T Gates
- 5.2.4 Rotation Gates
- 5.3 Multi-Qubit Gates
- 5.3.1 CNOT and Controlled Operations
- 5.3.2 Toffoli Gate
- 5.3.3 SWAP and Fredkin Gates
- 5.3.4 Controlled Phase Gates
- 5.4 Universal Gate Sets
- 5.4.1 Universality Theorems
- 5.4.2 Clifford+T Gate Set
- 5.4.3 Solovay-Kitaev Theorem
- 5.4.4 Gate Decomposition Algorithms
- 5.5 Circuit Optimization

Quantum Algorithms - Core Primitives

6.1 Quantum Fourier Transform	3.1	.1	Quantum	Fourier	Transform
-------------------------------	-----	----	---------	---------	-----------

- 6.1.1 Mathematical Definition
- 6.1.2 Circuit Implementation
- 6.1.3 Comparison with Classical FFT
- 6.1.4 Applications and Extensions
- 6.2 Phase Estimation Algorithm
- 6.2.1 Problem Statement
- 6.2.2 Algorithm Description
- 6.2.3 Precision and Resources
- 6.2.4 Iterative Phase Estimation
- 6.3 Grover's Search Algorithm
- 6.3.1 Oracle Model
- 6.3.2 Amplitude Amplification
- 6.3.3 Optimal Number of Iterations
- 6.3.4 Multiple Marked Items
- 6.4 Quantum Walks
- 6.4.1 Discrete Quantum Walks
- 6.4.2 Continuous Quantum Walks
- 6.4.3 Spatial Search Applications
- 6.4.4 Graph Algorithms
- 6.5 Linear Systems Algorithm (HHL)

NISQ Algorithms and Variational Methods

	7.1	NISQ	${ m Era}$	Constraint
--	-----	------	------------	------------

- 7.1.1 Hardware Limitations
- 7.1.2 Noise Models
- 7.1.3 Connectivity Restrictions
- 7.1.4 Coherence Time Limits
- 7.2 Variational Quantum Eigensolver (VQE)
- 7.2.1 Algorithm Framework
- 7.2.2 Ansatz Design
- 7.2.3 Classical Optimization
- 7.2.4 Applications in Quantum Chemistry
- 7.3 Quantum Approximate Optimization Algorithm (QAOA)
- 7.3.1 Combinatorial Optimization Problems
- 7.3.2 Circuit Structure
- 7.3.3 Parameter Optimization
- 7.3.4 Performance Analysis
- 7.4 Quantum Machine Learning
- 7.4.1 Quantum Neural Networks
- 7.4.2 Quantum Kernel Methods
- 7.4.3 Quantum Feature Maps
- 7.4.4 Hybrid Training Approaches

Quantum Communication Protocols

8.1	Quantum Teleportation
8.1.1	Protocol Description
8.1.2	Resource Requirements
8.1.3	Fidelity Analysis

- 8.1.4 Experimental Implementations
- 8.2 Superdense Coding
- 8.2.1 Protocol Framework
- 8.2.2 Channel Capacity Enhancement
- 8.2.3 Practical Limitations
- 8.2.4 Applications
- 8.3 Quantum State Transfer
- 8.3.1 Direct Transfer Methods
- 8.3.2 Spin Chain Transfer
- 8.3.3 Flying Qubits
- 8.3.4 Interface Design
- 8.4 Quantum Channel Capacity
- 8.4.1 Classical Capacity
- 8.4.2 Quantum Capacity
- 8.4.3 Entanglement-Assisted Capacity
- 8.4.4 Private Capacity
- 8.5 Advanced Protocols

Quantum Key Distribution Systems

9.1	Discrete	Variable	QKD	Protocols

- 9.1.1 BB84 Protocol
- 9.1.2 B92 Protocol
- 9.1.3 Six-State Protocol
- 9.1.4 SARG04 Protocol
- 9.2 Entanglement-Based QKD
- 9.2.1 E91 Protocol
- 9.2.2 BBM92 Protocol
- 9.2.3 Device-Independent QKD
- 9.2.4 Measurement-Device-Independent QKD
- 9.3 Continuous Variable QKD
- 9.3.1 Gaussian Modulation
- 9.3.2 Discrete Modulation
- 9.3.3 Homodyne Detection
- 9.3.4 Heterodyne Detection
- 9.4 Security Analysis
- 9.4.1 Information-Theoretic Security
- 9.4.2 Finite-Key Effects
- 9.4.3 Composable Security
- 9.4.4 Side-Channel Attacks
- 9.5 Classical Post-Processing

Quantum Sensing and Metrology

10.1	Quantum Parameter Estimation
10.1.1	Fisher Information
10.1.2	Quantum Fisher Information
10.1.3	Cramér-Rao Bound
10.1.4	Heisenberg Limit
10.2	Quantum Interferometry
10.2.1	Mach-Zehnder Interferometer
10.2.2	SU(1,1) Interferometer
10.2.3	NOON States
10.2.4	Phase Estimation Protocols
10.3	Squeezed State Sensing
10.3.1	Quadrature Squeezing
10.3.2	Spin Squeezing
10.3.3	Two-Mode Squeezing
10.3.4	Applications in Interferometry
10.4	Quantum Imaging
10.4.1	Ghost Imaging
10.4.2	Quantum Illumination
10.4.3	Sub-Wavelength Imaging

10.4.4 Quantum Microscopy

10.5

Specific Sensing Applications

Quantum Error Correction

11.1	Error	Models	and	Syndrome	Extraction
------	-------	--------	-----	----------	------------

- 11.1.1 Pauli Error Models
- 11.1.2 Syndrome Measurements
- 11.1.3 Error Detection vs Correction
- 11.1.4 Fault-Tolerant Syndrome Extraction
- 11.2 Stabilizer Codes
- 11.2.1 Stabilizer Formalism
- 11.2.2 Encoding and Decoding
- 11.2.3 Logical Operations
- 11.2.4 Code Distance and Rate
- 11.3 Specific Code Families
- 11.3.1 CSS Codes
- 11.3.2 Surface Codes
- 11.3.3 Color Codes
- 11.3.4 Quantum LDPC Codes
- 11.4 Topological Codes
- 11.4.1 Toric Code
- 11.4.2 Planar Codes
- 11.4.3 Anyonic Excitations
- 11.4.4 Topological Protection
- 11.5 Fault-Tolerant Computing

12.4.3

12.4.4

12.5

Optical Tweezers

Many-Body Physics

Solid-State Platforms

Quantum Hardware Platforms

12.1	Superconducting Qubits
12.1.1	Josephson Junctions
12.1.2	Transmon Qubits
12.1.3	Flux Qubits
12.1.4	Control and Readout
12.2	Trapped Ion Systems
12.2.1	Ion Trapping Techniques
12.2.2	Laser Cooling
12.2.3	Gate Implementation
12.2.4	Ion Shuttling
12.3	Photonic Quantum Computing
12.3.1	Linear Optical Quantum Computing
12.3.2	Measurement-Based Computing
12.3.3	Integrated Photonics
12.3.4	Photonic Interconnects
12.4	Neutral Atom Platforms
12.4.1	Optical Lattices
12.4.2	Rydberg Atoms

13.4.3 Path Selection

13.5

13.4.4 Network Coding

Quantum Networks and Internet

13.1	Quantum Network Architecture
13.1.1	Network Topologies
13.1.2	Quantum Repeaters
13.1.3	Quantum Routers
13.1.4	End-to-End Connectivity
13.2	Physical Layer
13.2.1	Quantum Channels (Fiber, Free-Space)
13.2.2	Wavelength Division Multiplexing
13.2.3	Mode Conversion
13.2.4	Quantum Transduction
13.3	Link Layer Protocols
13.3.1	Entanglement Generation
13.3.2	Link-Level Error Correction
13.3.3	Entanglement Purification
13.3.4	Multiplexing Strategies
13.4	Network Layer Functions
13.4.1	Routing Protocols
13.4.2	Entanglement Swapping

Application Layer Services