12. Ilość ciepła i ciepło właściwe.

Autor zadań od 12.1 do 12.10 - Bogusław Kusz.

12.1.

W zamkniętej butelce o objętości V_0 =500cm³ znajduje się woda mineralna o temperaturze t_0 =20°C. Po pewnym czasie słońce ogrzało butelkę do temperatury t_k =40°C. Oblicz ile energii słonecznej pochłonęła butelka. Dane: masa szkła m_{sz} =300g, ciepło właściwe szkła c_{wsz} =0,75 kJ/(kg K), ciepło właściwe wody c_w =4,18 kJ/(kg K), gęstość wody ρ =1g/cm³.

12.2.

Do styropianowego kubka z herbatą o masie m_h =100g i temperaturze t_h =80°C wrzucono kostkę lodu o masie m_L =20g i temperaturze t_L =-5°C. Cała kostka lodu uległa stopieniu. Oblicz temperaturę końcową herbaty przy założeniu, że wymianę ciepła układu z otoczeniem można zaniedbać. Dane: ciepło właściwe wody c_w =4,18 J/(g deg), ciepło właściwe lodu c_{wL} =2,09 J/(g deg), ciepło topnienia lodu q_{tL} =332 J/g.

12.3.

Hartowanie stali polega na szybkim ochłodzeniu rozgrzanego metalu. Po wrzuceniu stali o masie m_s =5kg i temperaturze t_s =800°C do wody o masie m_w =20kg i temperaturze t_w =20°C wyparowało 1% wody. Oblicz temperaturę końcową wody wraz z hartowanym elementem przy założeniu, że wymianę ciepła układu z otoczeniem można zaniedbać. Dane: ciepło właściwe wody c_w =4,18 J/(g deg), ciepło parowania wody q_{pw} =2260 J/g, właściwe stali c_{ws} =0,46 J/(g deg),

12.4.

Oszacuj cenę zagotowania wody o temperaturze t_0 =15 0 C w czajniku elektrycznym o mocy P=2000 W i pojemności 1,5 litra. Założenie: wydajność procesu η =80%, cena prądu elektrycznego za 1kWh C=0,1euro.

12.5.

Wentylator chłodzi procesor w komputerze. Wydmuchiwane z szybkością S=120 l/min powietrze ma temperaturę $t_p=35^{\circ}\mathrm{C}$. Oszacować moc wydzieloną w procesorze jeśli temperatura powietrza przy włocie wynosi $20^{\circ}\mathrm{C}$. Dane: gęstość powietrza $\rho=1,2$ kg/m³, ciepło właściwe powietrza przy stałym ciśnieniu $c_{pp}=1020$ J/(kg K).

12.6.

Oszacować koszt kąpieli pod prysznicem jeśli woda jest podgrzewana z wydajnością 90% przez przepływowy ogrzewacz elektryczny. Założenia: czas kąpieli t=20min, szybkość wypływy wody s=6 l/min, temperatura wody na wejściu podgrzewacza t_w =16 0 C, temperatura wody podczas kąpieli t_k =40 0 C, cena prądu elektrycznego c_p =0,1euro/kWh, cena wody c_w =1euro/m 3 , ciepło właściwe wody c_w =4,18 J/(g deg), gęstość wody ρ =1g/cm 3 .

12.7.

Dlaczego nie można pospawać za pomocą palnika acetylo-tlenowego pękniętej rury wodociągowej jeśli jest w niej woda?

12.8.

Naszkicować wykres zmian temperatury szklanki gorącej herbaty stojącej w pokoju o temperaturze ok. 20^{0} C.

12.9.

Dlaczego mimo wysokiej temperatury np. 28°C przy nawet przy dość słabym wietrze czujemy chłód po wyjściu z jeziora ?

12.10.

Dlaczego po dodaniu zbyt dużej ilości utwardzacza do syntetycznej żywicy (np.poliestrowej) następuje jej rozgrzanie ?

12. Rozwiązania:

12.1.R.

Ciepło pobrane przez układ jest sumą ciepła potrzebnego do ogrzania szkła i wody czyli:

$$Q = Q_{sz} + Q_{w} = m_{sz}c_{sz}(t_{k} - t_{0}) + m_{w}c_{w}(t_{k} - t_{0}) = (m_{sz}c_{sz} + \rho_{w}V_{w}c_{w})(t_{k} - t_{0}) = 46,3kJ.$$

12.2.R.

Ponieważ herbata jest zabarwioną wodą więc można założyć, że jej własności cieplne są takie same jak czystej wody. W opisanym w zadaniu procesie herbata będzie oddawać ciepło, które potrzebne jest do:

- 1. ogrzania lodu do temperatury 0^{0} C,
- 2. stopienia lodu w temperaturze 0°C
- 3. ogrzania powstałej po stopieniu wody do temperatury końcowej.

$$Q_{odd} = Q_{ogrz,lodu} + Q_{topnienia} + Q_{ogrz,wody}$$

$$czyli \quad m_w c_w (t_h - t_k) = m_L c_{wL} (0^0 C - t_L) + m_L q_{tL} + m_L c_w (t_k - 0^0 C)$$

$$m_w c_w t_h + m_w c_w t_h - m_w q_{th}$$

$$t_{k} = \frac{m_{h}c_{w}t_{h} + m_{L}c_{wL}t_{L} - m_{L}q_{tL}}{(m_{L} + m_{h})c_{w}} = 53,3^{\circ}C.$$

12.3.R.

Rozgrzany metal oddaje ciepło wodzie, przy czym część tej wody ulegnie odparowaniu. Można obliczyć ciepło:

- 1. oddane przez metal ochłodzony do temperatury końcowej t_k $Q_{oddane} = m_s c_{ws} (t_s t_k)$,
- 2. ciepło pobrane przez wodę do ogrzania do temperatury t_k $Q_{pobrane1} = m_w c_w (t_k t_w)$,
- 3. ciepło pobrane przez wodę, która następnie odparowała $Q_{pobrane2} = 0.01 \cdot m_{w} c_{w} (100^{\circ} C t_{k})$,
- 4. ciepło pobrane przez wodę na odparowanie $Q_{pobrane3} = 0.01 \cdot m_w q_{pw}$.

Przy założeniu, że układ woda-stal jest dobrze izolowany od otoczenia, bilans ciepła ma postać:

$$Q_{oddane} = Q_{pobrane1} + Q_{pobrane2} + Q_{pobrane3}.$$

Obliczona na mocy powyższego równania temperatura końcowa wynosi t_k =35 0 C.

12.4.R.

Do ogrzania masy m_w = 1,5 kg (1,5litra) wody potrzeba dostarczyć ciepło:

$$Q = m_{\scriptscriptstyle W} c_{\scriptscriptstyle W} (t_{\scriptscriptstyle k} - t_{\scriptscriptstyle p}) = 533kJ \ .$$

Uwzględniając sprawność procesu praca prądu elektrycznego wynosi:

$$W = \frac{Q}{\eta} = 666kJ .$$

Ponieważ 1kWh = 1000 W⋅3600s = 3600 kJ to cena zagotowanie wody w tych warunkach wynosi: 0,02 euro.

12.5.R.

W równowadze termodynamicznej (temperatura procesora jest stała) możemy założyć, że moc wydzielona w procesorze jest równa szybkości odprowadzenia ciepła co można zapisać w postaci:

$$P = \frac{W}{t} = \frac{Q}{t} .$$

Ciepło Q pobrane przez powietrze można opisać:

$$Q = m_p c_{pp}(t_p - t_w) = \rho V_p c_{pp}(t_p - t_w) = S t \rho c_{pp}(t_p - t_w).$$

Dlatego
$$P = \frac{Q}{t} = S \rho c_{pp} (t_p - t_w) = 2 \cdot 10^{-3} \frac{m^3}{s} \cdot 1, 2 \frac{kg}{m^3} \cdot 1020 \frac{J}{kgK} \cdot 15K = 36,8W$$
.

12.6.R.

Rozwiązując zadanie analogicznie do zadania 12.5 otrzymamy: zużycie wody V=0.12 m³, zużycie prądu W= 13376 kJ, cena kąpieli C=0,5 euro.

12.7.R.

Duże ciepło parowania, duża pojemność cieplna oraz dobre przewodnictwo cieplne wody uniemożliwiają rozgrzanie metalu rury do odpowiedniej temperatury.

12.8.R.

Ponieważ szybkość przekazywania ciepła zależy także od różnicy temperatur obiektów dlatego szybkość chłodzenia się herbaty zmniejsza się z czasem co widać na wykresie jako zmianę nachylenia krzywej chłodzenia.

12.9.R.

Wiatr i wysoka temperatura powoduje, że następuje szybkie parowanie kropel wody pokrywających ciało. Ponieważ woda ma duże ciepło parowania następuje chwilowe ochłodzenie powierzchni ciała.

12.10.R.

Dodanie utwardzacza do płynnej żywicy powoduje jej polimeryzację. Jest to proces egzotermicznego "krzepnięcia" czyli proces, w którym następuje wydzielenia ciepła. Jeśli proces polimeryzacji jest szybki to może nastąpić nawet znaczne ogrzanie żywicy.