/home/nicole/Jupyter/JG3/Data/0.5/M/7

```
In [4]:
        ;ls
        Correlation.G5.M.J.txt
        Correlation.G5.M.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        MarNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.M.J.txt
        Regression.G5.M.JC.txt
        all.ID
        alphaEstimatesJ
        alphaEstimatesJC
        epsiEstimatesJ
        epsiEstimatesJC
        genotype.ID
        meanOfSNPMAll
        meanOfSNPMG0
        meanOfSNPMG1
        meanOfSNPMG2
        meanOfSNPMG3
        meanOfSNPMG4
        meanOfSNPMG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: ;awk '{print $1}' MarNF.txt | sort -b > genotype.ID
In [7]:
        ;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
        ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [9]:
```

```
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]:
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [21]:
In [22]:
         ; join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ; join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
          200
               200 1200 GO.Genotype.ID
          200
               200 1200 G1.Genotype.ID
               200 1200 G2.Genotype.ID
          200
              200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
          8000 8000 48000 G5.Genotype.ID
```

```
;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
In [29]:
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("MarNF.txt",numSSBayes)
                                                                                  # wit
         M Mats = make MMats(df, A Mats, ped, center=true);
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no
         nothing
In [31]: | vRes
                = 0.711
                = 0.711
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2379.496077 seconds (23.03 G allocations: 723.557 GB, 7.79% gc time)
In [32]: | betaHat
Out[32]: 1-element Array{Float64,1}:
          11.0629
```

```
alphaHat
In [33]:
Out[33]: 150-element Array{Float64,1}:
          -0.0674391
           0.114097
          -0.115585
          -0.00607597
            0.0428719
            0.141048
           0.116512
          -0.0442568
            0.044936
            0.0257433
           0.0522162
          -0.0270881
           0.109706
           0.0866704
           0.217174
          -0.0924833
           0.151985
          -0.0170587
            0.0422742
           0.0299308
           0.0621071
           0.0784494
            0.0530284
           -0.00131375
            0.018738
In [34]: writedlm("alphaEstimatesC",alphaHat)
```

```
In [35]: epsiHat
Out[35]: 45917-element Array{Float64,1}:
          -1.60114
           0.671058
          -0.156926
           0.693632
          -1.03201
           0.393471
          -0.138397
          -0.290027
           0.355216
          -0.715854
          -0.493081
          -0.924177
          -0.644121
          -0.0848524
           0.385875
          -0.520384
           1.24913
          -0.0402982
          -0.133092
          -0.269177
          -0.735095
           0.00725133
          -0.25105
          -0.130155
           0.180464
In [36]: writedlm("epsiEstimatesC",epsiHat)
In [37]: using DataFrames
In [38]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [39]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with 
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.894
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.996
Out[39]: 0.8941071586352933
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 0.13855634969887431
In [41]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.791
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.956
Out[41]: 0.7910219725609188
In [42]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[42]: 1.2389120333763257
In [43]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         req3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.868
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.968
Out[43]: 0.8682567846525742
In [44]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[44]: -0.11537188499592216
In [45]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.707
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.866
Out[45]: 0.7069669266813785
```

```
In [46]: | GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[46]: -1.2613587690823433
In [47]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation =
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.995
Out[47]: 0.7634532568911347
In [48]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[48]: -0.558730817454317
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         req5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.766
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.029
Out[49]: 0.7658212480408938
In [50]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[50]: -0.03516392251675224
In [51]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.753
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.029
Out[51]: 0.7533057422988833
```

```
In [52]: | GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[52]: 0.4995528635419516
In [53]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation =
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.022
Out[53]: 0.7394707176775247
In [54]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[54]: 0.912161434114133
In [55]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.768
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 0.913
Out[55]: 0.7684841377056743
In [56]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[56]: 1.2748773095905739
In [57]: GEBVG5G1=G5GEBV-G1GEBV
Out[57]: 1.833608127044891
In [58]: GEBVG1G5=[G1GEBV;G2GEBV;G3GEBV;G4GEBV;G5GEBV]
Out[58]: 5-element Array{Float64,1}:
          -0.558731
          -0.0351639
           0.499553
           0.912161
           1.27488
```

```
In [59]: reg8 = linreg(aHat1[posAi], a[posAi])
Out[59]: 2-element Array{Float64,1}:
          11.2985
           0.912659
In [60]: VarGEBV=var(aHat1[posAi])
Out[60]: 0.39416548105376215
In [61]: VarTBV=var(a[posAi])
Out[61]: 0.555937045309398
In [62]: Cov=cov(aHat1[posAi], a[posAi])
Out[62]: 0.35973857427406264
In [63]: b=Cov/VarGEBV
Out[63]: 0.9126587475705316
In [64]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.808
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.931
Out[64]: 0.8083781519357122
In [65]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[65]: 0.26558117762620537
In [66]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
                                                              0.813
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.923
Out[66]: 0.813371708870206
```

```
In [67]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[67]: 0.5599569512470699
In [68]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.796
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.943
Out[68]: 0.796347027622983
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: 1.050329405474509
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.753
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.881
Out[70]: 0.7525729815594424
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: 1.2826624398850064
In [72]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.659
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.701
Out[72]: 0.6589306994061342
```

```
In [73]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: 1.5974191440789114
In [74]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation =
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 0.913
Out[74]: 0.7684841377056743
In [75]: | writedlm("Correlation.G5.M.C.txt",cor13)
In [76]: writedlm("Regression.G5.M.C.txt",reg13)
In [77]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[77]: 1.2748773095905739
In [78]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.691
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.887
Out[78]: 0.6907010443060919
In [79]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[79]: -1.3005110754082034
```

```
In [80]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.751
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 1.006
Out[80]: 0.7512456713375518
In [81]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[81]: -0.587415119215891
In [82]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.749
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 1.029
Out[82]: 0.7494985180539714
In [83]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[83]: -0.0629970847729384
In [84]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.742
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 1.023
Out[84]: 0.7423754575239394
In [85]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[85]: 0.47947313081520665
```

```
In [86]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
    posAi = getPos(ped,IDs)
    cor17 = cor(a[posAi],aHat1[posAi])[1,1]
    reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1'
    @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
    JCAll = cor17

    SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.730
    SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.016

Out[86]: 0.730464071370814

In [87]: GEBV = aHat1[posAi]
    mean(GEBV)

Out[87]: 0.8945907236022154

In [88]: numSSBayes

Out[88]: SSBR.NumSSBayes(54917,45917,9000,40000,39000,1000,150)
```