

## 图的实现

| Expressed as big-O             | Edge<br>List | Adj.<br>Matrix | Adj. List               |
|--------------------------------|--------------|----------------|-------------------------|
| Space                          | n+m          | $n^2$          | n+m                     |
| <pre>insertVertex(v)</pre>     | 1            | n              | 1                       |
| removeVertex(v)                | m            | n              | $\deg(v)$               |
| <pre>insertEdge(v, w, k)</pre> | 1            | 1              | 1                       |
| removeEdge(v, w)               | 1            | 1              | 1                       |
| <pre>incidentEdges(v)</pre>    | m            | n              | $\deg(v)$               |
| <pre>areAdjacent(v, w)</pre>   | m            | 1              | $\min(\deg(v),\deg(w))$ |

# 最小生成树

### Kruskal's Algorithm

| Priority Queue | Total Running Time     |
|----------------|------------------------|
| Heap           | $\mathrm{O}(m\log(m))$ |
| Sorted Array   | $\mathrm{O}(m\log(m))$ |

### Prim's Algorithm

| Priority Queue | Adj. Matrix                | Adj. List                         |
|----------------|----------------------------|-----------------------------------|
| Binary Heap    | $O(n\log(n) + n^2\log(n))$ | $\mathrm{O}(n\log(n) + m\log(n))$ |
| Fibonacci Heap | $\mathrm{O}(n\log(n)+n^2)$ | $\mathrm{O}(n\log(n)+m)$          |
| Unsorted Array | $\mathrm{O}(n^2)$          | $\mathrm{O}(n^2)$                 |

### 最短路径

#### Dijkstra



### Prim's Algorithm

| Priority Queue    | Adj. Matrix                | Adj. List                         |
|-------------------|----------------------------|-----------------------------------|
| Binary Heap       | $O(n\log(n) + n^2\log(n))$ | $\mathrm{O}(n\log(n) + m\log(n))$ |
| Fibonacci<br>Heap | $\mathrm{O}(n\log(n)+n^2)$ | $\mathrm{O}(n\log(n)+m)$          |
| Unsorted<br>Array | $\mathrm{O}(n^2)$          | $\mathrm{O}(n^2)$                 |

### Floyd-Warshall's Algorithm