Model-based Reconstruction meets Neural Networks: Non-linear Operators in BART

Moritz Blumenthal¹ Xiaoqing Wang¹² Guanxiong Luo¹ Zhengguo Tan¹ H. Christian M. Holme¹² Jonathan Tamir³ Michael Lustig⁴ Martin Uecker¹²

¹Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Germany

²German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany

³Electrical and Computer Engineering, University of Texas, Austin, TX, USA

⁴Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA

BART: Software Toolbox for Computational MRI

Purposes

- rapid prototyping
- reproducible research
- clinical translation

Availability

- Linux, MacOS X, Windows
- BSD license (free for commercial use)
- https://mrirecon.github.io/bart/

Command line tools for MRI reconstruction

- calibration methods
 - ESPIRIT, RING, ...
- compressed sensing and parallel imaging
- calibration-less parallel imaging: SAKE and ENLIVE
- **.**..

BART: Software Toolbox for Computational MRI

Purposes

- rapid prototyping
- reproducible research
- clinical translation

Availability

- Linux, MacOS X, Windows
- BSD license (free for commercial use)
- https://mrirecon.github.io/bart/

Command line tools for MRI reconstruction

- calibration methods
 - ESPIRiT, RING, ...
- compressed sensing and parallel imaging
- calibration-less parallel imaging: SAKE and ENLIVE

Non-linear Operators in BART

PART I: Non-linear Operators for Model-based Reconstruction

$$oldsymbol{x} = egin{pmatrix} x_c \ x_p \end{pmatrix} oldsymbol{\mathcal{PFC}} oldsymbol{\mathcal{PFC}} oldsymbol{\mathcal{PFC}}$$

Reconstruction

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\mathcal{PFC}(x_c, \mathcal{M}(x_p)) - \boldsymbol{y}\|^2 + \mathcal{R}(\boldsymbol{x})$$

PART II: TensorFlow-Regularizer + BART Reconstruction

1.) Train a regularizer with TensorFlow

2.) Use BART for reconstruction

BART command

```
$ bart pics
   -R TF:{<graph_path>}:... \
   <kspace> <coils> <reco>
```

Reconstruction

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x}} \left\| \mathcal{PFCx} - \mathbf{y} \right\|^2 + \frac{\mathcal{R}(\mathbf{x})}{\mathcal{R}(\mathbf{x})}$$

PART III: Neural Networks in BART

Train and apply neural networks with BART

- 1. Simple MNIST-Example
- 2. Variational Network¹ and MoDL²

BART command

Summary

- Introduction: Non-linear Operators in BART Moritz Blumenthal
- Non-linear Operators for Model-based Reconstruction Xiaoqing Wang and Zhengguo Tan
- TensorFlow-Regularizer + BART Reconstruction Guanxiong Luo
- Neural Networks in BART Moritz Blumenthal

See you at the BART software demo: **Sunday, May 16, 7pm** UTC https://www.ismrm.org/21/program-files/T-13.htm