יריעות אלגבריות – הרצאה שמינית

בהרצאה הקודמת דיברנו על פונקציות רגולריות על מרחבים פרוייקטיבים.

דוגמא

.

veronese העתקת n,d קבע מספרים

$$V: \mathbb{P}^n \to \mathbb{P}^{\binom{n+1+d}{n+1}-1}$$

ע"י

$$V([p_0:\ldots:p_n])_{x_0^{d_0}\cdots x_n^{d_n}} = p_0^{d_0}\cdots p_n^{d_n}$$

כאשר $x_0^{d_0}\cdots x_n^{d_n}$ הוא מונום מדרגה בהעתקה ב x_0,\dots,x_n ב מדרגה מונום מדרגה בהעתקה בהעתקה וווו $x_0^{d_0}\cdots x_n^{d_n}$

$$V: \mathbb{P}^1 \to \mathbb{P}^2$$

$$[t:s]\mapsto \left[t^2:ts:s^2\right]$$

בקוארדינטות אפיניות:

$$s \mapsto \left(s, s^2\right)$$

נניח כי

$$H\subset \mathbb{P}^{\binom{n+d}{n}-1}$$

ע"י מוגדרת שיר בעל–מישור כאשר H

$$(a_I)_{I\in\binom{n+d}{n}}$$

 $a_I \in \mathbb{C}$ כאשר

$$V^{-1}(H) = Z\left(\sum a_I \cdot x^I\right)$$

(לדוגמא, אם נחזור למקרה הספציפי של $V_{1,2}$, נניח כי H היא הפונקציונל המוגדר ע"י הוקטור (1,2,3), אזי

$$V_{1,2}(H) = \{ [t:s] \mid [t^2:st:s^2] \in H \} = \left\{ [t:s] \mid \left\langle \begin{pmatrix} t^2 \\ st \\ s^2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\rangle = 0 \right\} = \left\{ [t:s] \mid t^2 + 2st + 3s^2 = 0 \right\}$$

. טענה V היא איזומורפיזם לתמונה שלה.

הוכחת הטענה נשארת כתרגיל לקורא.

למה $\mathbb{P}^{n}-Z\left(f
ight)$ אזי היא יריעה אפינית הומוגני ב n+1 משתנים, אזי פולינום פולינום אפינית

$$\mathcal{O}_{\mathbb{P}^{n}}\left(\mathbb{P}^{n}-Z\left(f\right)\right)=\left\{ \frac{a\left(x\right)}{f\left(x\right)^{k}}\mid a\in\mathbb{C}\left[x_{0},\ldots,x_{n}\right]\text{ is homogenous of degree }k\cdot\deg f\right\}$$

הוכחה:

$$f=x_0$$
 ,הגבלת הכלליות, בלי בלי : $\deg f=1$ אם מתקיים ה

$$\mathbb{P}^n - Z(x_0) = \mathbb{C}^n$$

תחת ההעתקה

$$[1:t_1:\ldots:t_n] \longleftrightarrow (t_1,\ldots,t_n)$$

תחת זיהוי זה, הפולינום

$$g(t_1,\ldots,t_n)$$

נהפך ל

$$g\left(\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0}\right)$$

עבור $\deg f > 1$ נקבל ש

$$Z\left(f\right) = V_{n,d}^{-1}\left(H\right)$$

עבור על-מישור H, אזי

$$\mathbb{P}^{n} - Z\left(f\right) = V^{-1}\left(\mathbb{P}^{\binom{n+d}{n}-1} - Z\left(H\right)\right) = V^{-1}\left(V\left(\mathbb{P}^{n}\right) - Z\left(H\right)\right)$$

אבל V הוא איזומורפיזם ולכן

$$\mathbb{P}^{n}-Z\left(f\right)\cong V\left(\mathbb{P}^{n}\right)-Z\left(H\right)=V\left(\mathbb{P}^{n}\right)\cap\left(\mathbb{P}^{\binom{n+d}{n}-1}-Z\left(H\right)\right)$$

כאשר $\left(\mathbb{P}^{\binom{n+d}{n}-1}-Z\left(H
ight)
ight)$ היא קבוצה סגורה ולכן אפינית, ו $V\left(\mathbb{P}^{n}
ight)$ היא יריעה אפינית.

כעת נתקן משפט מהפעם שעברה:

משפט 0.3 כל העתקה רגולרית $\mathbb{P}^n \to \mathbb{P}^m$ נתונה ע"י קבוצה סגורה מגודל (m+1) של פולינומים הומוגנים מאותה דרגה ב x_0,\dots,x_n כלומר

$$[x_0:\ldots:x_n] \mapsto [f_0(x_0,\ldots,x_n):\ldots:f_m(x_0,\ldots,x_n)].$$

 $X\subset\mathbb{P}^n$ זה מיוחד ל פרוייקטיבית לכל נכון לכל זה לא נכון ל \mathbb{P}^n זה מיוחד ל **0.4 הערה**

$$\mathbb{P}^n$$
 הוצה סגורה $X = f^{-1}\left([0:*:\dots:*]
ight)$

$$f: \mathbb{P}^n - X \to \mathbb{C}^m$$

היא העתקה רגולרית. מההגדרה, יש קבוצה סגורה $Y\subseteq \mathbb{P}^n$ כך ש אפינית. מההגדרה, יש קבוצה להעתקה ליות, Yהיא על–משטח: fהיא על–משטח: Yהיא להעתקה הכלליות, און היא על–משטח: Y

$$\mathbb{P}^n - Y \to \mathbb{C}^m$$

 \mathbb{P}^n-Y ולכן על

$$f\left(\left[t_{0}:\ldots:t_{n}\right]\right)=\left(\frac{a_{1}\left(t\right)}{f\left(t\right)^{k_{1}}},\ldots,\frac{a_{m}\left(t\right)}{f\left(t\right)^{k_{m}}}\right)$$

כאשר

$$\deg a_i = k_i \deg f$$

 $k_i = k$, ללא הגבלת הכלליות

$$f([t_0:\ldots:t_n]) = \left[1:\frac{a_1(t)}{f(t)^{k_1}}:\ldots:\frac{a_m(t)}{f(t)^{k_m}}\right] = \left[f(t)^k:a_1(t):\ldots:a_m(t)\right]$$

מרציפות,

$$f([t_0:\ldots:t_n]) = [f(t)^k:a_1(t):\ldots:a_m(t)]$$

 \mathbb{P}^n על

הגדרה 0.5 יריעה היא אי פריקה אם כל שתי קבוצות פתוחות-זריצקי בה נחתכות.

דוגמא ללא-יריעה

$$Z(x)^c, Z(y^c) \subseteq Z(xy)$$

והן לא נחתכות.

הגדרה איא מחלקת שקילות על X היא פונקציה רציונלית על X היא מחלקת שקילות על על יריעה אי פתוחה היא פתוחה של $g:U\to\mathbb{C}$ היא פתוחה של $U\subset X$ האיא השקילות השקילות

$$(U_1,g_1) \sim (U_2,g_2)$$

אם ורק אם

$$g_1 \mid_{U_1 \cap U_2} = g_2 \mid_{U_1 \cap U_2}$$

ברמת האינטואיציה, מה שאנחנו מנסים לומר זה ש $\frac{1}{x}$ היא פונקציה רציונלית על הממשיים, למרות שהיא מוגדרת על $\mathbb{R}-\{0\}$ בלבד.

דוגמא

אם X אפינית, איך נראות הפונקציות הרציונליות על X: נבחר קבוצה סגורה מקסימלית, כלומר משהו מהצורה Z(f) ונתבונן בX-Z(f). עליו, הפונקציות הרציונליות הן כל דבר מהצורה $\frac{g(x)}{f(x)^m}$. מכיוון שזה נכון לכל X, נקבל שהפונקציות הרצינוליות על X הן שדה השברים של $\mathcal{O}_X(X)$. כלומר, נקבל התאמה

$$\operatorname{Frac}\mathcal{O}_{X}\left(x\right)\longrightarrow\operatorname{Rat}\left(X\right)$$

$$\frac{f(x)}{g(x)} \longmapsto 0 = [(X,0)]$$

- עד ע ההתאמה או חח"ע? אם יש קבוצה פתוחה עו $U\cap Z\left(g\right)=\emptyset$) על U ההתאמה או יש קבוצה חח"ע? אזי על $f\left(x\right)=0$ אזי על עו אזי פריקה, או ומכיוון ש $f\left(x\right)=0$ אזי על עו אזי על $f\left(x\right)=0$ אזי על אזי על עו אזי על איי על א
 - מדוע ההתאמה על? כי

$$\frac{f\left(x\right)}{g\left(x\right)}\longmapsto\left(Z\left(g\right)^{c},\frac{f\left(x\right)}{g\left(x\right)}\right)$$

לכן, באופן כללי, אוסף הפונקציות הרציונליות על X הוא שדה.

הגדרה 0.7 העתקה רציונלית בין שתי יריעות (פרוייקטיביות) היא מחלקת שקילות של הגדרה $(U,f:U\to Y)$ באשר ע פתוחה ב $(U,f:U\to Y)$ מכיוון שזו לא העתקה אמיתית, נסמן העתקה רציונלית ב

$$f: X \dashrightarrow Y$$
.

ל שקולה כך א פתוחות כך ע א ו ע כYו שקולה אם בי–רציונלית בי–רציונלית העתקה כזו נקראת בי–רציונלית איזומורפיזם. כאשר g כאשר כאשר ($U,g:U\to V)$

דוגמאות

- $\mathbb C$ בירציונלית ל $\mathbb P^1$ לפי העתקת ההכלה. נבחר קבוצה פתוחה ב $\mathbb C$, לדוגמא $\mathbb C$.1 עצמה. נבחר קבוצה פתוחה בתמונה, לדוגמא $\mathbb P^{-1}-\{\infty\}=\{[1:t]\}$ ואכן $t\mapsto [1:t]$
 - $\mathbb{P}^1 imes \mathbb{P}^1$ בי רציונלית ל \mathbb{C}^2 שבירציונלית ל \mathbb{C}^2 .2

הגדרה 0.8 אם

$$f: X \dashrightarrow Y$$

היא העתקה בירציונלית, ו

$$g:Y\dashrightarrow\mathbb{C}$$

 ${\it ,g}$ של pull-back את לנו של דציונלית, רציונלית, היא העתקה

$$f^*(g): X \dashrightarrow \mathbb{C}.$$

אם $f:X\dashrightarrow Y$ אם . $\left[f^{-1}\left(W\cap V\right),g\circ f
ight]$. $g:W\to C$ ו $f:U\to V$ מורפיזם בירציונלי, נקבל העתקה

$$\operatorname{Rat}(Y) \to \operatorname{Rat}(X)$$

וזהו איזומורפיזם של שדות.

טענה פירציונלית Rat (Y) ל Rat (Y) שדות של שדות בירציונלית כל איזומומורפיזם של איזומומורפיזם א בירציונלית מ $X \dashrightarrow Y$