知乎 制店

: 查看目录

▲ 上一章

▶ 下一章

■ 图书详情

▲ 返回书架

1.1 数据包分析与数据包嗅探器

1.1.1 评估数据包嗅探器

1.1.2 数据包嗅探器工作过程

1.2 网络通信原理

1.2.1 协议

1.2.2 七层 OSI 参考模型

1.2.3 OSI 参考模型中的数据…

1.2.4 数据封装

1.2.5 网络硬件

1.3 流量分类

1.3.1 广播流量

1.3.2 组播流量

1.3.3 单播流量

1.4 小结

章 监听网络线路

2.1 混杂模式

2.2 在集线器连接网络中嗅探

2.3 在交换式网络中进行嗅探

2.3.1 端口镜像

2.3.2 集线器输出

2.3.3 使用网络分流器

1.2.4 数据封装

OSI 参考模型不同层次上的协议在数据封装的帮助下进行通信传输。 议栈中的每层协议都负责在传输数据上增加一个协议头部或尾部,其中包 了使协议栈之间能够进行通信的额外信息。例如,当传输层从会话层接收 据时,它会在将数据传递到下一层之前,附上自己的头部信息数据。

数据封装过程将创建一个协议数据单元(PDU),其中包括正在发送的网络数据,以及所有增加的头部与尾部协议信息。随着网络数据沿着 OS 考模型向下流动,PDU 逐渐变化、增长,各层协议均将其头部或尾部信息添加进去,直到物理层时达到其最终形式,并发送给目标计算机。接收它机收到 PDU 后,沿着 OSI 参考模型往上处理时,逐层剥去协议头部和尾当 PDU 到达 OSI 参考模型的最上层时,将只剩下原始传输数据。

注意

OSI 参考模型使用特别的术语来描述每一层的数据。物理层叫比特,数据链路层叫帧,网络层叫数据包,传输层叫数据段。最上面的三层可以统称数据,但这些叫法实际上用得并不多,到们一般会使用报文来表示一个完整或部分 PDU,该 PDU 从多个 OSI 参考层中包含了表头和表尾息。

让我们通过一个实际的例子来理解数据的封装过程,这个例子描述了据包是如何在 OSI 参考模型中被创建、传输和接收的。作为数据包分析师你需要了解,我们经常会忽略掉会话层和表示层,所以它们将不会在这个子中出现(包括本书的其余部分)。¹¹

假设这样一个情形:我们试着在计算机上浏览 Google。在这个过程¹ 我们必须首先产生一个请求数据包,从客户端计算机传输到目标服务器上这里我们假设 TCP/IP 通信会话已经被建立,图 1-3 则展示了此案例中的数据封装处理过程。

2 3 4 ARP 缓存污染

Wireshark 数据包分析实战(第 3 版) 作者: [美]克里斯·桑德斯(Chris Sander····

8%

扫码下载知:

2.3.3 使用网络分流器

<u>4 ARP</u> 缓存污染

图 1-3 客户端和服务器之间数据封装过程图示

我们从客户端计算机的应用层开始,在我们浏览一个网站时,所使用应用层协议是 HTTP,通过此协议发出请求命令,从 Google 下载 index.html 文件。

注意

在实践中,浏览器会向网站的根目录文件发出请求,通常使用正斜杠(/)来表示。当 Wel 服务器接收到该请求时,它会根据服务器的网页根目录设定对浏览器重定向。根目录文件名通常是 index.html 或 index.php。 我们会在第 9 章讨论更多有关 HTTP 的内容。

应用层协议发送出指令后,我们就开始关心数据包是如何被发送到目地的。数据包中的应用层数据将沿着 OSI 参考模型的协议栈传递给传输层 HTTP 是一个使用 TCP(或在 TCP 协议之上)的应用层协议,因此传输 F使用 TCP 协议来确保数据包的可靠投递。一个包括序列号和其他数据的 TCP 协议头部将被创建,并添加到 PDU 中,如图 1-3 所示。该 TCP 表头含了序列号和其他信息,以确保数据包能够被正确交付。

注意

我们常说一个协议在其他协议之上,是因为 OSI 参考模型的分层设计。例如 HTTP 等应用原协议提供了一个特定的服务,并依靠 TCP 协议来保证服务的可靠交付。正如你学习到的, DNS 议架构于 UDP 之上,而 TCP 架构在 IP 之上。

在完成这项工作之后,TCP协议将数据包交给IP协议,也就是在第层上负责为数据包进行逻辑寻址的协议。IP协议创建一个包含有逻辑寻址息的头部,并将数据包传递给数据链路层上的以太网协议,然后以太网物地址会被添加并存储在以太网帧头中。现在数据包已经完全组装好并传递

Wireshark 数据包分析实战(第 3 版) 作者: [美]克里斯·桑德斯(Chris Sander····

8%

扫码下载知

▲ 上一章 ▶ 下一章

4/29/2021	
知乎 排店 ∷	查看目录
1.1 数据包分析与数据包嗅探器	
1.1.1 评估数据包嗅探器	
1.1.2 数据包嗅探器工作过程	
1.2 网络通信原理	
1.2.1 协议	
1.2.2 七层 OSI 参考模型	
1.2.3 OSI 参考模型中的数据…	
1.2.4 数据封装	
1.2.5 网络硬件	
1.3 流量分类	
1.3.1 广播流量	
1.3.2 组播流量	
1.3.3 单播流量	
1.4 小结	
章 监听网络线路	
2.1 混杂模式	
2.2 在集线器连接网络中嗅探	
2.3 在交换式网络中进行嗅探	

从中提取到所包含的物理以太网寻址信息,确定数据包是否是发往这台服 器的。一旦处理完这些信息,第2层头部与尾部的信息将被剥除,并进入 第3层的信息处理过程中。

第3层IP寻址信息会被读取,以便确认数据包被正确转发,以及数技 包并未进行分片处理。这些信息也同样被剥除,并交到下一层进行处理。

第 4 层 TCP 协议信息现在被读取,以确保数据包是按序到达的。然后 第4层报头信息被剥离,留下的只有应用层数据。这些数据会被传递到 Web 服务器应用程序。为了响应客户端发过来的这个数据包,服务器应证 发回一个 TCP 确认数据包,使客户端知道它的请求已经被接收,并可以领 待获取 index.html 文件内容了。

所有数据包都会以这个例子中描述的过程进行创建和处理,而无论使 的是哪种协议。

但同时,请牢记并非每个网络数据包都是从应用层协议产生的,所以 会进一步看到只包含第2层、第3层或第4层协议信息的数据包。

4 ARP 缓存污染

2.3.3 使用网络分流器

2.3.1 端口镜像

2.3.2 集线器输出

Wireshark 数据包分析实战(第3版)

作者:[美]克里斯·桑德斯(Chris Sander…

8%

扫码下载知: