Please first the form refer hand out yesterday.

CSCI 570 Summer 2016

Dynamic Programming III

First Tree

Second Tree


```
OPT(i,j): optimal cost of BST

on nodes i.j (inclusive)

if i==j return P[i]

if j<i return

only

// if r= optimal root of i...j

nappens

f i=jt! Min { opt[i,r-i] + opt[r+lij] +

i=r=j

running time? each element? O(n)

how many? O(n²) total:

Trecompute. O(n²)
CSCI 570 Summer 2016
```

Iterative Solution

Node * produce(i,j)

Node * n= new Node;

Node * n= new Node;

n-> key= r;

return
nullptr;
n-> right = produce(v,r-l)

return
return
nullptr;
n-> right = produce(rtlij)

Example
$$\mathcal{B} \cdot c \cdot \mathcal{D}$$

$$(B \cdot C) \cdot D$$

$$B \cdot C : 1000$$

$$(B \cdot C) \cdot D : 10000$$

$$B \text{ is } 2 \times 10$$

$$C \text{ is } 10 \times 50$$

$$D \text{ is } 50 \times 20$$

$$A = \{2, 10, 50, 20\}$$

$$M \text{ is } A_{i-1} \times A_{i}$$

Optimal BSTs Matrix Chain-Products Game Strategies Bellman-Ford All Pairs Shortest Paths

Iterative Solution

(just like optimal binary search trees)


```
OPT(i,j): most pts obtainable,

cards i...j on table

if j < i return O //no cards

if j = i return Vi

if j = i+1 return Max(Vi,Vj)

cardi = Vi + Min(opt(i+2ij), //opp. has it!...j

opt(i+1nj-1)// can give me

cardj = Vj + Min(opt(i+1,j-1), it2...j or it!...j-1

opt(i,j-2))

return Max(cardi, cardj)
```


- ▶ What is the longest, in terms of the number of edges, that a shortest path could be?
- ▶ What would it mean if a shorter path had more edges than

all positive: use DijkAras


```
OPT(i,v) //shortest v~r with &i edges

if v==T return o

elif i=0 return ~

else

stay= OPT(i-1,v)

go = Min {c(v,w) + OPT(i-1,w)}

we adju)

return Min(stay, go)
```


Iterative Solution

declare OPT[0...n-1, 1... |V|]

for i= 0 to n-1 OPT[i,T]=0

for each
$$v \in V - \{T\}$$
, OPT[0,V]=

for each $v \in V - \{T\}$

for eac

Illustration

O(n²) memory

	0	1	2	3	4	5
Т	0	0	0	0	0	0
Α	∞	-3	-3	-4		
В	∞	∞	O	-2		
С	∞	3	3	3		
D	∞	4	3	3		
Е	∞	2	0	0		

Illustration (2)

Can we use less memory?

· Keep 2 cols: current & previous or even one:

$$M[v] \cong OPT(?,v)$$
 $= Min(M[v], Min\{M[w] + C[v_iw]\})$

base...

Her: for $i=1$ to n
 $M[v] = -$

Can you produce the shortest path tree?

Can we detect negative-cost cycle(s)?

