6

6.1

An epimorphism (α, β): M₁ → M₂ with complete machines implies M₂ ≤ M₁:
 We choose α: Q₁ → Q₂ as our η: Q₁ → Q₂. We define ξ: Σ₂ → Σ₁ as a function
 which picks an arbitrary element of ξ_{a2} = {a₁|β(a₁) = a₂, a₁ ∈ Σ₁} for an arbitrary
 a₂ ∈ Σ₂ (1). There exists at least one a₁ for each a₂ because β is surjective (2).
 Since (α, β) is a state machine homomorphismus and the maschines are complete
 following holds for all a₁ ∈ Σ₁ and all q₁ ∈ Q₁ (Definition 3.37):

$$\alpha(q_1\delta_{a_1}^1) = (\alpha(q_1))\delta_{\beta(a_1)}^2 \tag{3}$$

Now we show: $\eta(q_1)\delta_{a_2}^2 \subseteq \eta(q_1\delta_{\xi(a_2)}^1)$ for all $q_1 \in Q_1$ and $a_2 \in \Sigma_2$.

$$\eta(q_1)\delta_{a_2}^2 = \alpha(q_1)\delta_{a_2}^2
= \alpha(q_1)\delta_{\beta(a_1)}^2
= \alpha(q_1\delta_{a_1}^1)
= \alpha(q_1\delta_{\xi(a_2)}^1)
= \eta(q_1\delta_{\xi(a_2)}^1)$$
(1)

2. A monomorphismus $(\alpha, \beta): M_1 \to M_2$ with complete machines implies $M_1 \leq M_2$: We choose $\beta: \Sigma_1 \to \Sigma_2$ as our $\xi: \Sigma_1 \to \Sigma_2$ (4). We define $\eta: Q_2 \to Q_1$ as the inverse function from $\alpha: Q_1 \to Q_2$ which is well defined (Lemma 2.20) (5). For each $q_2 \in Q_2$ with $\alpha^{-1}(q_2) \neq \emptyset$ there exists exactly one $q_1 = \alpha^{-1}(q_2)$ because α is injective. We show: $\eta(q_2)\delta_{a_1}^1 \subseteq \eta(q_2\delta_{\xi(a_1)}^2)$ for all $q_2 \in Q_2$ and $a_1 \in \Sigma_1$.

$$\eta(q_{2})\delta_{a_{1}}^{1} = \alpha^{-1}(q_{2})\delta_{a_{1}}^{1} \qquad (5)$$

$$=q_{1}\delta_{a_{1}}^{1}
=\alpha^{-1}(\alpha(q_{1}\delta_{a_{1}}^{1})) \qquad \text{wir sind so kluk, K. L. U. K.!} \qquad (3)$$

$$=\alpha^{-1}(\alpha(q_{1})\delta_{\beta(a_{1})}^{2})
=\alpha^{-1}(\alpha(q_{1})\delta_{\beta(a_{1})}^{2}) \qquad (4)$$

$$=\alpha^{-1}(\alpha(q_{1})\delta_{\xi(a_{1})}^{2})
=\alpha^{-1}(q_{2}\delta_{\xi(a_{1})}^{2})
=\eta(q_{2}\delta_{\xi(a_{1})}^{2})$$

6.2

For the covering relation to be a partial order it has to be *reflexive*, *antisymmetric* and *transitive*.

Proof:

Lets begin by showing that \leq is *reflexive*, for this let $M=(Q,\Sigma,\delta)$. We need to show that $M\leq M$ is true. For M to cover itself, there needs to exist a partial function $\eta:Q\to Q$ which is

- 1. surjective
- 2. $\eta(q')\delta_w = \eta(q'\delta'_w)$ for all $w \in \Sigma^*$ and all $q' \in \mathcal{D}(\eta)$
- 3. $\eta(q') = \emptyset$ if $q' \notin \mathcal{D}(\eta)$
- 4. $q\delta_w = \emptyset$ if $\delta(q, w)$ is undefined

We use id_Q for η , since, we do not need to change anything for M to cover it self. id_Q is surjective, because the identity function maps every element in Q onto the same element in Q, therefore, it hits all elements in Q. Since, $\delta_w = \delta'_w$ the second primitive holds. The third holds for the identity function, since, it can only map an element to itself and if q' is not in its domain (here Q itself) it can not map it onto anything thus $id_Q(q') = \emptyset$ if $q' \notin \mathcal{D}(\eta)$. And the fourth holds because M is complete.

Next we show that \leq is antisymmetric:

Let $M_1 = (Q, \Sigma, \delta), M_2 = (Q', \Sigma, \delta')$ be two state machines with $M_1 \leq M_2 \wedge M_2 \leq M_1$. We need to show that for this $M_1 = M_2$. Since, $M_1 \leq M_2 \wedge M_2 \leq M_1$ we know there exists two partial functions $\eta: Q' \to Q \wedge \eta': Q \to Q'$ which are surjective. Furthermore, we know that $\eta(q')\delta_w = \eta(q'\delta_w')$ for all $w \in \Sigma^*$ and all $q' \in \mathcal{D}(\eta)$ and $\eta(q)\delta_w' = \eta(q\delta_w)$ for all $w \in \Sigma^*$ and all $q \in \mathcal{D}(\eta')$, therefore, the two machines have to be isometric.

At last we show transitivity: Let $M_1=(Q_1,\Sigma,\delta), M_2=(Q_2,\Sigma,\delta_2), M_3=(Q_3,\Sigma,\delta_3)$ be state machines. Let $M_1\leq M_2\leq M_3$ with $\eta_1:Q_2\to Q_1\wedge\eta_2:Q_3\to Q_2$ such that

$$\eta_1(q_2)\delta_w^1 = \eta_1(q_2\delta_w^2) \mid \forall w \in \Sigma^*, \forall q_2 \in Q_2$$

$$(6.1)$$

$$\eta_2(q_3)\delta_w^2 = \eta_2(q_3\delta_w^3) \mid \forall w \in \Sigma^*, \forall q_3 \in Q_3$$
(6.2)

The claim is that if this holds, $M_1 \leq M_3$ also holds. For $M_1 \leq M_3$ we need to find an $\eta_3: Q_3 \to Q_1$. Our claim is that the concatenation of η_1 and η_2 will hold for η_3

$$\eta_{3}(q_{3})\delta_{w}^{1} = \eta_{1}(\eta_{2}(q_{3}))\delta_{w}^{1}
= \eta_{1}(\eta_{2}(q_{3})\delta_{w}^{2})
= \eta_{1}(\eta_{2}(q_{3}\delta_{w}^{3}))
= \eta_{3}(q_{3}\delta_{w}^{3})$$

This concludes the proof.

6.3

6.4

We show $M \leq M'$ by using the following covering (η, ξ) :

$$\eta: Q' \hookrightarrow Q; q' \mapsto \begin{cases} q_0, & \text{for } q' = r_0, \\ q_1, & \text{for } q' = r_2, \end{cases}$$
$$\xi: \Sigma \to \Sigma'; u \mapsto \begin{cases} b', & \text{for } u = a, \\ a', & \text{for } u = b, \end{cases}$$

Moreover we prove η, ξ is well defined. First, ξ is a function because all $dom(\xi) = \Sigma$ and it is right unique. η is surjective as its range hits all states of Q. Also it is right unique and therefore a partial function. Finally, we show $\eta(q')\delta_w \subseteq \eta(q'\delta'_{\xi(w)})$ for all $q' \in Q'$ and $w \in \Sigma^*$. We build an operation table to get Σ^+/\sim_M to get all relevant w.

X	q_0	q_1	
a	q_1	\perp	
b	q_0	q_1	
aa	1	\perp	
ab	q_1	\perp	same as a
bb	q_0	q_1	same as b
ba	q_1	\perp	same as a
aaa	1	\perp	same as aa
aab		\perp	same as aa
aba		\perp	same as aa
abb	q_1	\perp	same as a
bba	q_1	\perp	same as a
baa	q_1	\perp	same as aa
bab	$ q_1 $	\perp	same as a

We get $\Sigma^+/\sim_M=\{[a],[b],[aa]\}$. Since $\eta(q')=\emptyset|q'\notin\mathcal{D}(\eta)$ we only observe for r_0,r_2 as states from M'. We check for all relevant $q'\in Q'$ and $win\Sigma$:

$$\eta(r_{0})\delta_{a} = q_{0}\delta_{a} = q_{1} \subseteq \eta(r_{0}\delta'_{\xi(a)}) = \eta(r_{0}\delta'_{b'}) = \eta(r_{2}) = q_{1}
\eta(r_{0})\delta_{b} = q_{0}\delta_{b} = q_{0} \subseteq \eta(r_{0}\delta'_{\xi(b)}) = \eta(r_{0}\delta'_{a'}) = \eta(r_{0}) = q_{0}
\eta(r_{0})\delta_{aa} = q_{0}\delta_{aa} = \emptyset \subseteq \eta(r_{0}\delta'_{\xi(aa)}) = \eta(r_{2}\delta'_{b'b'}) = \eta(\emptyset) = \emptyset
\eta(r_{2})\delta_{a} = q_{1}\delta_{a} = \emptyset \subseteq \eta(r_{2}\delta'_{\xi(a)}) = \eta(r_{2}\delta'_{b'}) = \eta(r_{3}) = \emptyset
\eta(r_{2})\delta_{b} = q_{1}\delta_{b} = q_{1} \subseteq \eta(r_{2}\delta'_{\xi(b)}) = \eta(r_{2}\delta'_{a'}) = \eta(r_{2}) = q_{1}
\eta(r_{2})\delta_{aa} = q_{1}\delta_{aa} = \emptyset \subseteq \eta(r_{2}\delta'_{\xi(aa)}) = \eta(r_{2}\delta'_{b'b'}) = \eta(\emptyset) = \emptyset$$

For each combination $\eta(q')\delta_w \subseteq \eta(q'\delta'_{\xi(w)})$ holds which concludes the proof.