WiSe 2024/2025 TU Berlin 28.10.2024

2. Hausaufgabenblatt

Abgabe: 11.11.2024 (12:00 Uhr) auf ISIS (als PDF) in Gruppen mit maximal 4 Personen. Die Hausaufgabe kann nur von eingetragenen Gruppen abgegeben werden.

Hinweise:

- Sie dürfen das Internet zur Hilfe nehmen, müssen aber alle verwendeten Quellen angeben (insbesondere ChatGPT). Plagiate werden nicht toleriert und werden scharf geahndet.
- Falls nicht explizit ausgeschlossen, sind alle Antworten zu begründen. Antworten ohne Begründung erhalten **0 Punkte**.

Vorwort. Wie Sie bereits erfahren haben, müssen Sie in diesem Semester Hausaufgaben abgeben, um ein Hausaufgabenkriterium zu erfüllen. Hierbei werden Sie regelmäßig Beweise schreiben müssen. Diesen Prozess würden wir gerne für Sie und auch für die TutorInnen möglichst angenehm gestalten. Insbesondere, damit die TutorInnen Ihre Abgaben verstehen und nachvollziehen können, ist es dabei wichtig, dass Ihre Beweise lesbar, verständlich und sauber aufgeschrieben sind. Dazu einige Hinweise:

- Beweise sind deutsche Texte. Das heißt, Umformungen, Gleichungen, Definitionen und andere mathematische Konstrukte gehören in den Text eingebunden. Insbesondere ist es wichtig, in vollständigen Sätzen zu schreiben.
- Vermeiden Sie Symbole wie \implies , \forall , \land im Text: Statt "Somit gilt $x=0 \implies$ der Algorithmus terminiert" schreiben Sie zum Beispiel "Somit gilt x=0, woraus folgt, dass der Algorithmus terminiert".
- Das Ziel Ihrer Beweise ist es, die LeserInnen (in Ihrem Fall Ihre TutorInnen) von der Korrektheit derer zu überzeugen.

Aufgabe 1: Turing-Maschine

(10 Punkte)

Im Folgenden sei

$$M = (Z = \{z_0, z_1, z_2, z_3, z_4\}, \Sigma = \{1\}, \Gamma = \{1, \square\}, \delta, z_0, \square, E = \{z_4\})$$

eine Turing-Maschine. Geben Sie eine Überführungsfunktion δ an, sodass Folgendes gilt:

- Als Kopfbewegung sind nur L und R zugelassen.
- \bullet Bei leerer Eingabe macht M mindestens 12 Konfigurationsübergänge und hält in z_4 mit leerem Band.

Aufgabe 2: Turing-Berechenbarkeit

(12 Punkte)

Begründen Sie für jede der folgenden Funktionen, ob diese Turing-berechenbar ist.

begrunden Sie für jede der folgenden Funktionen, ob diese Türing-berechenbar ist.

(a)
$$f: \mathbb{N} \to \mathbb{N}$$
 mit $f(n) = \begin{cases} 0, & \text{falls in den Nachkommastellen der Kreiszahl } \pi \\ & \text{genau } n \text{ viele 9'en vorkommen,} \end{cases}$

(4 P)

(b) $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = \begin{cases} 1, & \text{falls } \frac{n}{2} > \pi, \\ 0, & \text{sonst} \end{cases}$

(4 P)

(b)
$$f: \mathbb{N} \to \mathbb{N} \text{ mit } f(n) = \begin{cases} 1, \text{ falls } \frac{n}{2} > \pi, \\ 0, \text{ sonst} \end{cases}$$
 (4 P)

(c)
$$f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \pi - 2^x$$
 (4 P)

Aufgabe 3: LOOP- und GOTO-Programme

(8 Punkte)

Gegeben seien das LOOP-Programm P_1 und das GOTO-Programm P_2 (beide mit Eingaben x_1 und x_2), wobei die modifizierte Subtraktion zweier Variablen (d.h. $x_i := x_j - x_k$ mit $x_i = \max(0, x_j - x_k)$) als elementare Operation zur Verfügung steht.

P_1 :	P_2 :	
$x_3 \coloneqq x_2 - x_1;$		$x_3 \coloneqq x_2 - x_1;$
LOOP x_3 DO	$M_1:$	IF $x_3 = 0$ THEN GOTO M_2 ;
$x_0 \coloneqq x_2 + 0;$		$x_0 \coloneqq x_2 + 0;$
$x_3 \coloneqq x_3 + 1$		GOTO M_1 ;
END	M_2 :	HALT

Begründen oder widerlegen Sie die folgenden Aussagen:

- (a) P_1 und P_2 geben bei allen Eingaben den Wert von x_2 in x_0 zurück. (2 P)
- (b) Bei allen Eingaben, für die P_1 terminiert, terminiert auch P_2 . (3 P)
- (c) Wenn $x_2 < x_1$ gilt, dann terminieren P_1 und P_2 mit dem gleichen Wert in x_0 . (3 P)