Instruction sets

- **#Computer architecture taxonomy.**
- ******Assembly language.

von Neumann architecture

- ****Memory holds data, instructions.**
- ****Central processing unit (CPU) fetches** instructions from memory.
 - Separate CPU and memory distinguishes programmable computer.
- **CPU** registers help out: program counter (PC), instruction register (IR), general-purpose registers, etc.

CPU + memory

Harvard architecture

von Neumann vs. Harvard

- #Harvard can't use self-modifying code.
- #Harvard allows two simultaneous memory fetches.
- ****Most DSPs use Harvard architecture for streaming data:**
 - greater memory bandwidth;
 - more predictable bandwidth.

RISC vs. CISC

- **#Complex instruction set computer (CISC):**
 - many addressing modes;
 - many operations.
- **Reduced** instruction set computer (RISC):

 - pipelinable instructions.

Instruction set characteristics

- #Fixed vs. variable length.
- ****Addressing modes.**
- ****Number of operands.**
- **X**Types of operands.

Programming model

- ****Programming model:** registers visible to the programmer.
- **#**Some registers are not visible (IR).

Multiple implementations

- **Successful architectures have several** implementations:
 - varying clock speeds;
 - different bus widths;
 - different cache sizes;
 - _etc.

Assembly language

- ****One-to-one with instructions (more or less).**
- ***Basic features:**
 - One instruction per line.
 - Labels provide names for addresses (usually in first column).
 - Instructions often start in later columns.
 - Columns run to end of line.

ARM assembly language example

```
ADR r4,c

LDR r0,[r4]; a comment

ADR r4,d

LDR r1,[r4]

SUB r0,r0,r1; comment
```

Pseudo-ops

- ****Some assembler directives don't correspond directly to instructions:**
 - Define current address.
 - Reserve storage.
 - Constants.