

Data Cleaning & Preparation

BC2406 UNIT 5

Based on Chew C. H. (2019) textbook: Analytics, Data Science and Al. Vol 1., Chap 5.

Objective

- To clean up the data quality issues as best as you can, with the information currently available, in order to prepare the data for:
 - More accurate reporting
 - More accurate analysis
 - More accurate models.
- Impossible to clean up perfectly unless your dataset is small and simple.
 - Iterative. May need to come back to clean further after gaining further information/insights in future.
- May have more than one way to clean.
 - Trade-offs. Different ways may have different impact in subsequent analysis or models.

Content

- Coding Missing Values in Source Data
- Missing Value vs 0 vs Null Value
- Handling (Genuine) Missing Values
- Checking & Correcting Inconsistencies

Coding of Missing Values in Source Data

children	Room	
1	2	
3	3	
2	na	
0		
0	3	
NA	4	
missing	4	
N/A	4	
m	3	
M	2	
	4	
-99	2	
4	3	
1	3	

There are 9 different ways someone had coded missing values in the two columns.

Use na.strings option to define the 9 human codes for missing value to be NA (R code for missing value).

Note: Rscript to import this dataset and correct the missing value codes provided in ADA1-5-1 lecture.R.

Missing Value vs 0 vs Null Value

- NA: Not Available
 - There exists a value but the value is unknown for now.

- 0: The value is 0 or code for some special value?
 - Affects all the statistics, analysis, reporting and models.
 - Is this a code for something that is not 0 value?
 - Should it really be 0, NA, Null or other value?

- •NULL: something that does not exists.
 - R auto-ignore this in many stats, reporting and models.

Handling (Genuine) Missing Values

- Many models (e.g. Linear reg, Logistic reg) autoignore rows with NAs.
- Handling NAs
 - Find the correct value and replace the NA.
 - Estimate NA with a value.
 - Use a model that has automatic missing value handling e.g. CART.
 - Delete rows with NA.
 - na.omit() function removes all NAs from the data frame.

To delete or not to delete observations with NAs

- Delete as a last resort, especially if a lot of rows has NA. e.g. is.employed has almost 33% NA.
- What's the reason(s) for NA?
 - Help to determine how to estimate the unknown value
 - Missing-at-random or missing systematically?
- Type of Variable: Categorical or Continuous?

Estimating NA in a Categorical Variable

- Est. by the mode of the column.
- Est. by the mode in the relevant subgroup.
- Est. using a model
 - Logistic Regression
 - CART
 - Others...
- Temporarily recode into another value for consideration in future.

Estimating NA in a Continuous Variable

- Missing at Random
 - Est. with mean
- Missing Systematically
 - Est. with mean of the relevant subgroup
 - Est with model
 - Linear Regression
 - CART
 - Others...
- Discretize the continuous variable
 - Deal with NAs according to categorical variable.

Verifying the changes after cleaning

- A good habit is to check that changes to data are executed correctly by R.
- Especially if you overwrite the data.

Handling Wrong Values

- You know the data value is wrong.
 - Gender = G,
 - Number of Children = 2.1
 - Age = 1098 years
- Handling Wrong Values?
 - Find the correct value and replace the wrong value.
 - Estimate wrong value with a better value.
 - Replace with NA and use a model that has automatic missing value handling e.g. CART.
 - Delete rows with wrong values.

Handling Inconsistencies

- When data is recorded inconsistently
 - Gender: m/M/F
 - Date format: D-M-Y and M-D-Y
- Find out cause of inconsistency
 - Data entry staff did not follow procedure
- If possible, correct the cause of the inconsistency instead of data value.
- Some inconsistencies are difficult to correct without further research/questioning.
- Some inconsistencies are harder to detect
 - Domain knowledge
 - Good documented data dictionary is very helpful.

Handling Duplicates

- The standard data set assumes each row represent one case or observation.
- However, there could be duplicate <u>cases</u> that must be de-duplicated or merged using
 - Identifying information (e.g. NRIC, Invoice Serial Num,...)
 - Definition of a case (aka row) in a dataset depends on context. Are rows 2 and 3 duplicates?

S/N	Name	ID	Date	Outcome
1	Peter Parker	1356	10 Aug 2019	Normal
2	Mary Jane	1455	9 Mar 2019	Normal
3	Mary Jane	1455	11 Aug 2019	Normal

Burden of Proof before taking an action to clean. Is the current data value wrong and can you do <u>better</u>?

- 1. Some evidence (5%)
- 2. Reasonable suspicion (10%)
- 3. Probable cause for arrest (20%)
- 4. Some credible evidence (30%)
- 5. Substantial evidence (40%)
- 6. Preponderance of the evidence (aka balance of probabilities) (51%)
- Clear and convincing evidence (80%)
- 8. Beyond reasonable doubt (91%)
- 9. Beyond a shadow of a doubt (99.9%)
- 10. Certainty (100%) [Often impossible to achieve]

Summary

- Data Cleaning is iterative can be back to clean later.
- Logical Reasoning + Trade offs
- NAs in Categorical Variables easier to treat.
- If using traditional model (e.g. Linear/Logistic Regression), then need to resolve NAs before running regression. Else Regression model will typically delete rows with NA.
- Backup most current dataset before over-writing any columns or any risky data operations. Some prefer to create new columns so as to track changes.
- Always find a way to check that changes was executed correctly as you intended, especially if changes are complex and/or irreversible. i.e. verify.