Name Surname	:		19/04/2022 09:00
			Duration: 75 min
Student Id	:	Signature:	

Akdeniz University, Engineering Faculty Computer Engineering Department CSE206 Computer Organization Midterm Exam

all name of the abbreviated terms considering the context of computer organization.
:
:
:
<i>:</i>
:
:
: application is performed serially, what is the maximum speedup? Write the formula and solution.

Q 5. (4pts) How many check bits are needed if the Hamming error correction code is used to detect single bit errors in a 1024-bit data word?

as	ssumin	g tha	it the	code	wor	d was	s creat	ed usin	g an	even j	parity	Han	mming	g Coa	e.				
W	Vhich l	bit is	incor	rect	(indi	cate t	the pos	sition)											
и	Vrite th	he co	rect	 code	wor	 d		•••••	•••••		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 •••••	 •••••	
,,	THE IT		rrect	couc	WOTE	u.													
Ιν	dicat	a who	at the	oria	inal (corr	ect) da	ta was	(8 hit	data)								
17	шсин	e wiii	ii ine	origi	inai (COTTE	ci) uu	iu was	(0 011	uuiu	,								
	ımber																		
to: siz	umber tal cac ze of to	che n ag	nemoi	ry ca _l	pacit		:										 	 	
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion?	•									 		
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion?			mpute		wwn b	below				 		
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion?	of the Id	AS co	mpute	er sho		below				 		
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion?	of the L		<i>mpute</i> 010	er sho		below						
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion? tents o	of the Id		mpute010 010	er sho		below FB						
to. siz	umber tal cac ze of ta	whe mag	is spe	ry ca _l	pacit	ezxecu.	tion? tetents c A 08	of the Land		mpute010 010	er sho		below FB						

						0FD
Address	Symbolic Name	Contents	_	Address	Symbolic Name	Contents
08AL				092R		
08AR				093L		
08BL				/ 093R		
08BR				, 094L		
08CL				/ 094R		
08CR				/ 095L		
08DL			j	095R		
08DR			<i>[</i>	096L		
08EL				096R		
08ER				097L		
08FL			;	097R		
			i	0A8L		
090L				0A8R		
			/	0A9L		
			i	0A9R		,
			!	0AAL		,
092L			<i>i</i>	0AAR		,
pseudoc	code:					

Q 11. (20pts) Write an IAS program to compute the factorial f(n)=n! using instructions from the Table 2 where the value of n is stored at the memory location **0FA**. After the execution of your program the output value f(n)

 Name Surname
 19/04/2022 09:00

 Student Id
 Signature:

 Duration: 75 min

 Table 2
 The IAS Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description
	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	$LOAD\ MQ,M(X)$	Transfer contents of memory location X to MQ
	00100001	STOR $M(X)$	Transfer contents of accumulator to memory location X
Data transfer	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator
	00000011	LOAD M(X)	Transfer absolute value of $M(X)$ to the accumulator
	00000100	LOAD - M(X)	Transfer $- M(X) $ to the accumulator
Unconditional	00001101	JUMP M(X,0:19)	Take next instruction from left half of $M(X)$
branch	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$
Conditional	00001111	JUMP + M(X.0:19)	If number in the accumulator is nonnegative, take next instruction from left half of $M(X)$
branch	00010000	JUMP + M(X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of $M(X)$
	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD M(X)	Add $ M(X) $ to AC; put the result in AC
	00000110	SUB M(X)	Subtract M(X) from AC; put the result in AC
	00001000	SUB M(X)	Subtract $ M(X) $ from AC; put the remainder in AC
Arithmetic	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in
Artimicuc	00001100	DIV M(X)	AC. put least significant bits in MO Divide AC by $M(X)$; put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2; that is, shift left one bit position
	00010101	RSH	Divide accumulator by 2; that is, shift right one position,
	00010011	MOV	Move the scalar value presented in the address field in AC
Address	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12 rightmost bits of AC
modify	00010011	STOR M(X,28:39)	Replace right address field at $M(X)$ by 12 rightmost bits of AC

Figure 1. IAS Instruction format