KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE- 638 060 EVEN SEMESTER 2022 - 23

CONTINUOUS ASSESSMENT TEST II – April 2022

Regulation 2020

	_		Roll. No
Programme	: B.Tech	Date	:
Branch	: IT	Time	:
Semester	: IV		
Code	: 20ITT42	Duration	: 1 ½ hrs
Subject	: Database Management Systems	Maximum Mark	s: 50

PART - A $(10 \times 2 = 20 \text{ Marks})$										
1.	ANSWER ALL THE QUESTIONS Differentiate between Strong entity and Weak entity sets. An entity set that does not have sufficient attributes to form a primary key is termed a weak entity set. An entity set that has a primary key is termed a strong entity set.							[CO2,K2]		
2.	List the differen			terme	a a st	rong	entity set.			[CO2,K1]
	1.Simple and Si									
	2. Composite at	· ·								
	3. Derived and		te							
3.	Check the funct D) with the following the contract of the cont	-		lation	are sa	tisfie	ed or not? Con	sider a relat	ion R (A, B, C,	[CO3,K3]
				A I	3 C	D				
				1 1	2	3				
				1 2	2 2	3				
				1 3	3 2	3				
				2 4	1 5	6				
	5 6 7 8									
Which of the following functional dependencies are satisfied or not satisfied by this relation? (a) BD →AC - Satisfied (b) A → CD - Satisfied (c) AD → BC - Not Satisfied (d) D → B - Not Satisfied										
4.	4. Identify the different types of anomaly that can arise in the given table with sample records. Consider the relation Treatment with the schema <i>Treatment</i> (<i>doctorID</i> , <i>doctorName</i> , <i>docaddress</i> , <i>patientID</i> , <i>diagnosis</i>) and functional dependencies; FDs:{(doctorID → doctorName), ((doctorID, patientID) → diagnosis)}.								[CO3,K3]	
		doctorID	doctorName	doca	ddres	S	<u>patientID</u>	diagnosis		
		D001	Mohan	Sale	m		PAT123	Fever		
		D002	Vijay	Erod	e		PAT110	Alergy		
		D003	Jenifer	Cher	nnai		PAT112	Eye		
		D002	Vijay	Erod	e		PAT121	Cold		
		D001	Mohan	Sale	m		PAT145	Pain		

The candidate key is (doctorID, patientID)

- 1. Insertion anomaly because not able to enter doctorID without patientID
- 2. Deletion anomaly because to delete the patient details, the corresponding doctor details also deleted.
- 3. Updating anomaly in docaddress attribute.

		1		
5.	Find the canonical cover for the following relation schema R and set of Functional Dependencies $R(A,B,C,D,E), F = \{AC \rightarrow E, C \rightarrow D, D \rightarrow A\}.$ $\{C \rightarrow DE, D \rightarrow A\}.$	[CO3,K3]		
6.	Define normalization.	[CO3,K2]		
	The step by step process of decomposing a complex relation into small tables.			
7.	Suppose that we decompose the schema $R = (A, B, C, D, E)$ into (A, B, C) and (A, D, E) . Show that this decomposition is a lossless-join decomposition if the following set F of functional dependencies holds: $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$. $(A, B, C) \cap (A, D, E) \rightarrow A$; It retrieve the table (A,B,C) using the FD $A \rightarrow BC$. So, this decomposition is a lossless-join decomposition.	[CO3,K3]		
8.	Make a statement about how to change from non-3NF to 3NF. Eliminate non key to key attribute FD, then it is changed from non-3NF to 3NF.	[CO3,K1]		
9.	Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. $F = \{CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG\}$ is a set of functional dependencies (FDs) so that F+ is exactly the set of FDs that hold for R. How many candidate keys does the relation R have? There are total 4 candidate keys AD, BD, ED and FD.	[CO3,K3]		
10.	Let R = ABCDE is a relational scheme with functional dependency set F = $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$. Find the attribute closures of A and E. A^+ = ABCD E^+ = E	[CO3,K3]		
	$PART - B (3 \times 10 = 30 Marks)$			
11.	i).Construct an E-R diagram for a hospital with a set of patients and a set of medical doctors. Associate with each patient a log of the various tests and examinations conducted. (5 Marks) ii).Construct appropriate tables for the above ER Diagram. (5 Marks)	[CO2,K3]		
	test_log patients doctors test_name date time result test_name specialization			
	Patient(SS#, name, insurance,date-admitted,date-checked-out) Doctor (dss#, name, specialization) Test(test_id, test-name, date, time, result, SS#) Doctor-patient (dss#, SS#) Performed_by(dss#, test_id)			
12.	i). Summarize the different RAID techniques used in the database. (5 Marks)	[CO3,K2]		
	(a) RAID 0: nonredundant striping (b) RAID 1: mirrored disks (c) RAID 5: block-interleaved distributed parity			
	(d) RAID 6: P + Q redundancy Diagram – 2Marks Explanation about each RAID level -3Marks			

ii). Explain the different types of file organization. (5 Marks)

A file is organized logically as a sequence of records. These records are mapped onto disk blocks. Files are provided as a basic construct in operating systems, so we shall assume the existence of an underlying *file system*.

Explanation about

- 1. Heap file Organization
- 2. Sequential file Organization
- 3. B+ Tree file Organization
- 4. Hash file Organization
- 5. Multi table file Organization

13. i). Find all keys for R.

Consider a relation R with attributes ABCDEFGH and functional dependencies S as follows: $S = \{A \rightarrow CD, ACF \rightarrow G, AD \rightarrow BEF, BCG \rightarrow D, CF \rightarrow AH, CH \rightarrow G, D \rightarrow B, H \rightarrow DEG\}$ (5 Marks)

LHS	Result	Decision			
A ⁺	ACDBEFGH	Result includes all the attribut of relation R. Hence, A is or candidate key.			
ACF ⁺	ACDBEFGH	ACF is a super key but not candidate key.			
AD^{+}	ACDBEFGH	AD is a super key but not candidate key.			
BCG⁺	=BCGD from BCG → D	Result docc not include all the attributes correlation R. Hence, (BCG) cannot be a candidate key.			
CF ⁺	ACDBEFGH	Result includes all the attributes of relation R. Hence, (CF) is one candidate key.			
D+	$= DB \text{ from } D \rightarrow B$	Result does not include all R. Hence, D cannot be a kc.			
H+	= HDEG from H → DEG = HDEGB from D → B	Hence, H cannot be a key.			

Super Keys: A, ACF, AD and CF :3 Marks

Candidate Keys: A, CF :1 Mark

Primary key: A :1 Mark

[CO3,K3]

14. Apply 4NF for the given Student database. Also explain about multi-valued dependencies, 5NF and 6NF with relevant examples. (10 Marks)

StudentIDAreas of InterestHobbies100OS, DBMSSinging, Painting101JAVAReading

[CO3,K3]

4 NF - 4Marks

From the table, the multivalued FDs are

F: {(StudentID→→ AreasofInterest), (StudentID→→ Hobbies)}. So the Student table is decomposed as

StudentID	AreasofInterest
100	OS
100	DBMS
101	JAVA

StudentID	Hobbies
100	Singing
100	Painting
100	Acting
101	Reading

Explanation about 5NF-3 Marks

Explanation about 6NF-3 Marks

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	7%	23%	70%	=	-	-