IN THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A method of driving an electronic device, with one frame period comprising n sub-frame periods SF_1 , SF_2 , ..., SF_n , the n sub-frame periods each comprising address periods Ta_1 , Ta_2 , ..., Ta_n and sustain periods Ts_1 , Ts_2 , ..., Ts_n , comprising the steps of:

inputting a first signal to a pixel comprising a light emitting element from a source signal line during each address period, wherein a capacitor storage line is maintained at a first potential;

turning on the light emitting element during each sustain period, wherein the capacitor storage line is maintained at the first potential;

providing a clear period Tc_m during a period from an end of the sustain period Ts_m $(1 \le m \le n-1)$ of a sub-frame period SF_m through until a start of the address period Ta_{m+1} of a sub-frame period SF_{m+1} , wherein the capacitor storage line is maintained at a second potential[[.]]_,

wherein, in the sub-frame period SF_m ($1 \le m \le n-1$), when the length of its address period is given as ta_m , the length of its sustain period as ts_m , and the length of one gate signal line selecting period as t_g (ta_m , ts_m , $t_g > 0$), and $ta_m > ts_m$ is satisfied, the length of SF_m 's clear period given as Tc_m ($Tc_m > 0$) always satisfies the following expression:

$$\underline{tc_m} \ge \underline{ta_m} - (\underline{ts_m} + \underline{t_g}).$$

2. (Currently amended) A method of driving an electronic device, with one frame period comprising n sub-frame periods SF_1 , SF_2 , ..., SF_n , the n sub-frame periods each comprising address periods Ta_1 , Ta_2 , ..., Ta_n and sustain periods Ts_1 , Ts_2 , ..., Ts_n , comprising the steps of:

inputting a first signal to a pixel comprising a light emitting element from a source signal line during an address period Ta_n of a j-th (0 < j) frame sub-frame period SF_n , wherein a capacitor storage line is maintained at a first potential;

turning on the light emitting element during a sustain period Ts_n of a j-th (0 < j) frame sub-frame period SF_n , wherein a capacitor storage line is maintained at a first potential; providing a clear period Tc_n during a period from an end of the sustain period Ts_n through until a start of the address period Ta_1 of a (j+1)-th period frame sub-frame period SF_1 , wherein the capacitor storage line is maintained at a second potential[[.]] _____

wherein, in the sub-frame period SF_n , when the length of its address period is given as ta_n , the length of its sustain period as ts_n , and the length of one gate signal line selecting period as t_g (ta_n , ts_n , $t_g > 0$), and $ta_n > ts_n$ is satisfied, the length of SF_n 's clear period given as Tc_n ($Tc_n > 0$) always satisfies the following expression:

$$tc_n \ge ta_n - (ts_n + t_e)$$
.

3. (Previously presented) A method of driving an electronic device, with one frame period comprising n sub-frame periods SF_1 , SF_2 , ..., SF_n , the n sub-frame periods each comprising address periods Ta_1 , Ta_2 , ..., Ta_n and sustain periods Ts_1 , Ts_2 , ..., Ts_n ,

wherein, in a certain sub-frame period SF_k ($1 \le k \le n$), when the length of its address period is given as ta_k , the length of its sustain period as ts_k , and the length of one gate signal line selecting period as t_g (ta_k , ts_k , $t_g > 0$), and $ta_k > ts_k$ is satisfied, the length of SF_K 's clear period given as Tc_k ($Tc_k > 0$) always satisfies the following expression:

$$tc_k \ge ta_k - (ts_k + t_g)$$
.

- 4. (Original) A method of driving an electronic device as claimed in claim 1, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 5. (Original) A method of driving an electronic device as claimed in claim 2, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 6. (Original) A method of driving an electronic device as claimed in claim 3, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 7. (Original) A method of driving an electronic device as claimed in claim 1, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 8. (Original) A method of driving an electronic device as claimed in claim 2, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 9. (Original) A method of driving an electronic device as claimed in claim 3, wherein an EL element does not emit light during the clear period irrespective of an image signal.

10. (Canceled)

11. (Canceled)

12. (Currently amended) An electronic device operated by a driving method in which: one frame period comprises n sub-frame periods SF₁, SF₂, ..., SF_n;

the n sub-frame periods each comprises address periods Ta₁, Ta₂, ..., Ta_n and sustain periods Ts₁, Ts₂, ..., Ts_n;

inputting a first signal to a pixel comprising a light emitting element from a source signal line during each address period, wherein a capacitor storage line is maintained at a first potential;

turning on the light emitting element during each sustain period, wherein the capacitor storage line is maintained at the first potential;

providing a clear period Tc_m during a period from an end of the sustain period Ts_m ($1 \le m \le n-1$) of a sub-frame period SF_m through until a start of the address period Ta_{m+1} of a sub-frame period SF_{m+1} , wherein the capacitor storage line is maintained at a second potential[[.]],

wherein, in the sub-frame period SF_m ($1 \le m \le n-1$), when the length of its address period is given as ta_m , the length of its sustain period as ts_m , and the length of one gate signal line selecting period as t_g (ta_m , ts_m , $t_g > 0$), and $ta_m > ts_m$ is satisfied, the length of SF_m 's clear period given as Tc_m ($Tc_m > 0$) always satisfies the following expression:

$$\underline{tc_m \ge ta_m - (ts_m + t_g)}.$$

13. (Currently amended) An electronic device operated by a driving method in which: one frame period comprises n sub-frame periods SF₁, SF₂, ..., SF_n;

the n sub-frame periods each comprises address periods Ta_1 , Ta_2 , ..., Ta_n and sustain (lights-on) periods Ts_1 , Ts_2 , ..., Ts_n ;

inputting a first signal to a pixel comprising a light emitting element from a source signal line during an address period Ta_n of a j-th (0 < j) frame sub-frame period SF_n , wherein a capacitor storage line is maintained at a first potential;

turning on the light emitting element during a sustain period Ts_n of a j-th (0 < j) frame subframe period SF_n , wherein a capacitor storage line is maintained at a first potential; providing a clear period Tc_n during a period from an end of the sustain period Ts_n through until a start of the address period Ta_1 of a (j+1)-th period frame sub-frame period SF_1 , wherein the capacitor storage line is maintained at a second potential[[.]].

wherein, in the sub-frame period SF_n , when the length of its address period is given as ta_n , the length of its sustain period as ts_n , and the length of one gate signal line selecting period as t_g (ta_n , ts_n , $t_g > 0$), and $ta_n > ts_n$ is satisfied, the length of SF_n 's clear period given as Tc_n ($Tc_n > 0$) always satisfies the following expression:

$$tc_n \ge ta_n - (ts_n + t_g)$$
.

14. (Previously presented) An electronic device wherein:

one frame period comprises n sub-frame periods SF₁, SF₂, ..., SF_n;

the n sub-frame periods each comprises address periods Ta₁, Ta₂, ..., Ta_n and sustain periods Ts₁, Ts₂, ..., Ts_n; and,

in a certain sub-frame period SF_k ($1 \le k \le n$), when the length of its address period is given as ta_k , the length of its sustain period as ts_k , and the length of one gate signal line selecting period as t_g (ta_k , ts_k , $t_g > 0$), and $ta_k > ts_k$ is satisfied, the length of SF_K 's clear period given as Tc_k

 $(Tc_k > 0)$ always satisfies the following expression:

$$tc_k \ge ta_k - (ts_k + t_g).$$

- 15. (Original) An electronic device as claimed in claim 12, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 16. (Original) An electronic device as claimed in claim 13, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 17. (Original) An electronic device as claimed in claim 14, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 18. (Original) An electronic device as claimed in claim 12, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 19. (Original) An electronic device as claimed in claim 13, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 20. (Original) An electronic device as claimed in claim 14, wherein an EL element does not emit light during the clear period irrespective of an image signal.

- 21. (Original) A method of driving a electronic device according to claim 1, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 22. (Original) A method of driving a electronic device according to claim 2, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 23. (Original) A method of driving a electronic device according to claim 3, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.

24. (Canceled)

- 25. (Original) An electronic device according to claim 12, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
 - 26. (Original) An electronic device according to claim 13, wherein said electronic device

is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.

27. (Original) An electronic device according to claim 14, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.