Design of Wind Energy Systems

CIP Tutorial 03 Hints for the calculation of performance curves

Prof. Dr. M. Kühn

ForWind – Wind Energy Systems

Topics

- Previous design steps
- Dimensional & non-dimensional performance curves
- Performance curves WT_Perf
- Summary

No reproduction, publication or dissemination of this material is authorized, except with written consent of the author.

Oldenburg, May 2016

Prof. Dr. Martin Kühn

CIP Tutorials

Main parameters

Rotor design

Characteristic curves
Turbine dynamics

External conditions
Load analysis

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

Previous design steps

Where did we start?

Previous design steps (1/3)

- 1. From wind to electrical power
- Selection of rated wind speed & rated power
- 3. Selection of rotor diameter
- 4. Study the impact of rated wind speed & rotor diameter on AEP

Previous design steps (2/3)

- Estimation of other parameters: rating, design tip speed ratio, rotor speed, etc.
- Selection of airfoil & optimum design point
- 7. Definition of blade geometry: twist angle & chord length

Previous design steps (3/3)

- 8. Correction of airfoil curves from 2-D to 3-D effects
- Described BEM theory corrections & estimated Prandtl tip & root loss
- 10. Estimated pitch moment

Dimensional & non-dimensional curves

Non-dimensional curves

Equations from "actuator disk" theory:

Remind @ Betz optimum: a = 1/3

Power coefficient

$$c_P = \frac{\text{rotor power}}{\text{wind power}} = \frac{P}{\frac{\rho}{2} \cdot F \cdot V_1^3} = 4a \cdot (1-a)^2$$

Remind @ Betz optimum: $c_p = 16/27$

Thrust coefficient

$$c_s = \frac{\text{thrust}}{\text{impact pressure}} = \frac{S}{\frac{\rho}{2} \cdot F \cdot V_1^2} = 4a \cdot (1 - a)$$

Remind @ Betz optimum: $c_s = 8/9$

Dimensional & non-dimensional curves

Dimensional performance curves are:

- i. used for simple control & regulation
- ii. only valid for specific turbine

Non-dimensional performance curves are:

- iii. independent from the specific turbine
- IV. can be scaled for new turbines

Performance curves – WT_Perf

- Overview
- Test case
- Wind turbine performance

WT_Perf User Guide for Version 3.05.00

A. D. Platt and M. L. Buhl Jr.

Revised November 9, 2012 for WT_Perf v3.05.00a-adp

Overview – WT_Perf

- Based on BEM theory
- Includes algorithm to account for tangential induction factor
- It can include drag in the calculation of induction factors
- It has algorithms for tip & loss correction
- It corrects for tilt & yaw rotor
- DOS executable using ASCII input file & airfoil files

WT Perf User guide

"Test"	by LVT 20th i	- file example for May 2014	DOWES CIP Tutorial 03
True	Input Configu	Echo:	Echo input parameters to
True		DimenInp:	Turbine parameters are di
True		Metric:	Turbine parameters are Me
4	Model Configu	NumSect:	Number of circumferential
13		MaxIter:	Max number of iterations
25		NSplit:	Max number of splits for
1.0e-5		ATol:	Error tolerance for induc
1.0e-5		SWTol:	Error tolerance for skewe
False False False False False True False False False False	Algorithm Con	TipLoss: HubLoss: Swirl: SkewWake: IndType: AIDrag: TIDrag: TISingularity: DAWT: Cavitation:	Use the Prandtl tip-loss Use the Prandtl hub-loss Include Swirl effects? Apply skewed-wake correct Use BEM induction algorit Use the drag term in the Use the drag term in the Use the singularity avoid Run Diffuser Augmented wa Run cavitation check? if
101325	Turbine Data	PressAtm:	Air Atmospheric Pressure,
2500		PressVapor:	Vapor Pressure of water,
1.0		CaVSF:	Cavitation safety factor
0.0		WatDepth:	Depth from water free sur
3	Turbine Data	NumBlade:	Number of blades.
35.95		RotorRad:	Rotor radius [length] .
1.2		HubRad:	Hub radius [length or div
-3.0		PreCone:	Precone angle, positive d
5.0		Tilt:	Shaft tilt [deg].
0.0		Yaw:	Yaw error [deg].

WT Perf Input file

Test case – WT_Perf (1/2)

- 1. Unpack zip folder as C:\ WT_Perf
 - If other location is used, correct paths in input files!
- 2. Explore folder; it contains:
 - WT_Perf.exe
 - WT_Perf_Users-guide.pdf
 - WT_test.wtp test input file
 - Folder with set of airfoils
 - Disclaimer & FAQ text files
- 3. In DOS prompt go to directory (see 1)
 - Run test: WT_Perf WT_test.wtp

WT Perf folder

WT Perf commands in DOS

Test case – WT_Perf (2/2)

- Review results in folder:
 - WT_test.ech echo input file
 - WT_test.oup output file
- 5. Review the results:
 - It contains requested outputs (as described "Output Configuration") from WT_test.wtp

Note: Use WT_Perf_Users_guide.pdf to know how to change inputs

WT_test

WT test

WT_Perf folder with results

5/23/2014 9:58 AM

5/23/2014 8:20 AM

OUP-Datei

WTP-Datei

WT_Perf commands in DOS

Wind turbine performance – WT_Perf (1/3)

- Comment 2-lines header for traceability: "color", user & date
- 2. Select algorithms for calculation
- 3. Update "Turbine Data" section (if some are unknown, keep default)

```
Algorithm Configuration
                     TípLoss:
                                                Use the Prandtl tip-loss model?
                                                Use the Prandtl hub-loss model?
True
                     HubLoss:
True
                     Swirl:
                                                Include Swirl effects?
                                                Apply skewed-wake correction?
True
                     SkewWake:
                                                Use BEM induction algorithm?
True
                     IndType:
                     AIDrag:
                                                Use the drag term in the axial in
False
                                                Use the drag term in the tangent
                     TIDrag:
False
                     TISingularity:
                                                Use the singularity avoidance me
False
                     DAWT:
                                                Run Diffuser Augmented Water Turk
False
                     Cavitation:
                                                Run cavitation check? if cavitat
```

\					
Turbi	ne Data				
3	NumBlade:		Numb	er of blades.	
35.95	RotorRad:		Roto	r radius [lengt	th].
1.2	HubRad:		Hub	radius [length	or div by rad
-3.0	PreCone:		Prec	one angle, pos	itive downwind
5.0	Tilt:			t tilt [deg].	
0.0	Yaw:			error [deg].	
70.0	HubHt:		Hub	height [length	or div by rad
8	NumSeg:		Numb	er of blade se	gments (entire
	ist Chord ĀFfi				
3.421875	29.36987577	5.070530343	1	FALSE	
7.765625	14.20925825	4.459489198	1	FALSE	
12.109375	6.823436492	3.384116952	1	FALSE	
16.453125	2.753876508	2.650669029	1	FALSE	
20.796875	0.230641975	2.160752278	2	FALSE	
25.140625	-1.473157945	1.815959346	2	FALSE	
29.484375	-2.69646261	1.563239845	2	FALSE	
33.828125	-3.615679163	1.370923606	2	FALSE	

Wind turbine performance – WT_Perf (2/3)

- Comment 2-lines header for traceability: "color", user & date
- 2. Select algorithms for calculation
- 3. Update "Turbine Data" section (if some are unknown, keep default)
- Enter blade geometry (from CIP-01 file "*_start_parameters.xlsx")
 - Relm center of section
 - AFfile aerodynamic profile
 - PrntElem keep as false

Note: correct RotorRad, for precone

& tilt (follow error message)

"Test" Wind created by	erf Input File turbine - file exam LVT 20th May 2014 t Configuration	ple for DoWES CIP Tutorial 03
Algorith True True True True True True False False False False	TipLoss: HubLoss: Swirl: SkewWake: IndType: AIDrag: TIDrag: TISingularity: DAWT: Cavitation:	Use the Prandtl tip-loss model? Use the Prandtl hub-loss model? Include Swirl effects? Apply skewed-wake correction? Use BEM induction algorithm? Use the drag term in the axial in Use the drag term in the tangent. Use the singularity avoidance menus of the singularity of the singularity avoidance menus of the singularity avoidance menus of the singularity of

	Tul Dille	Dala					
3		NumBlad	le:	Num	per of blades	5.	
35.95		RotorRa	ıd:	Rote	or radius [le	en	
1.2		HubRad:			radius [lend		
-3.0		PreCone	2:	Pre	cone angle, p	jο	
5.0		Tilt:	Tilt:			Shaft tilt [deg].	
0.0		Yaw:			Yaw error [deg].		
70.0		HubHt:			height []end	ıt	
8		NumSeg:		Numl	ber of blade	s	
RE Ir	n Twist	Chord AF	file PrntElem			Т	
3.42187	75	29.36987577	5.070530343	1	FALSE		
7.76562	25	14.20925825	4.459489198	1	FALSE		
12.109	375	6.823436492	3.384116952	1	FALSE		
16.4531	L25	2.753876508	2.650669029	1	FALSE		
20.7968	375	0.230641975	2.160752278	2	FALSE		
25.1406	525	-1.473157945	1.815959346	2	FALSE		
29.4843	375	-2.69646261	1.563239845	2	FALSE		
33.8281	L25	-3.615679163	1.370923606	2	FALSE		

Wind turbine performance – WT_Perf (3/3)

- 5. Update the aerodynamic data
 - NumAF 2 airfoils
 - Path to airfoils
- Define outputs requested to investigate turbine performance
- 7. Define ranges for variation of:
 - Pit(St/End/Del) pitch values
 - Omg() rotor speed
 - Spd() speed (in example given as tip speed ratio)

Note: Study results in spreadsheets

```
Aerodynamic Data
                                                                 Air density [mass/\
1.4639e-5
                                           KinVisc:
                                                                 Kinematic air visco
0.0
                                           ShearExp:
                                                                 Wind shear exponent
True
                                           UseCm:
                                                                 Are Cm data include
False
                                           UseCpmin:
                                                                 Are Cp, min data inc
                                           NumAF:
                                                                 Number of airfoil f
"C:\WT_Perf\Airfoils\NACA_63_218.dat"
"C:\wT_Perf\Airfoils\NACA_63_215.dat"
```

```
Output Configuration
False
                                                 Write parametric power to a
                     UnfPower:
                                                 Make output tab-delimited (
True
                     Tabbel:
                     ConvFlag:
                                                 For non-converging cases, (
                                                 Beep if errors occur.
True
                     Beep:
                                                 Output dimensional paramete
True
                     KFact:
False
                                                 Write out blade element dat
                     WriteBED:
                                                 Input speeds as TSRs?
True
                     InputTSR:
                     OutMaxCp:
                                                 Output conditions for the m
True
                                                 Wind-speed units (mps, fps,
                     SpdUnits:
      Combined-Case Analysis
                     NumCases:
                                                 Number of cases to run. Er
                                                 Remove following block of 1
WS or TSR
           RotSpd
                     Pitch
      Parametric Analysis (Ignored if NumCases > 0 ) -----
                     ParRow:
                                                 Row parameter
                                                 Column parameter (1-rpm, 2-
                     Parcol:
                     ParTab:
                                                 Table parameter (1-rpm, 2-
False
                     OutPwr:
                                                 Request output of rotor pow
                                                 Request output of Cp?
True
                     OutCp:
True
                     OutTrq:
                                                 Request output of shaft tor
False
                     OutFlp:
                                                 Request output of flap bend
                                                 Reduest output of rotor thr
                     OutThr:
-5, 5, 1
                     PitSt, PitEnd, PitDel:
                                                 First, last, delta blade pi
22, 24, 0.25
                                                 First, last, delta rotor sp
                     OmgSt, OmgEnd, OmgDel:
                     SpdSt, SpdEnd, SpdDel:
                                                 First, last, delta speeds.
1, 10, 0.1
```

Summary / Conclusion

- We reviewed the previous design steps
- We discussed the use of dimensional and non-dimensional performance curves
- We calculated the performance curves with help of "WT_Perf"

