CSE 2216: Data Structures and Algorithm 1 Lab

Problem Set for Linked List

1. Create and Display a Singly Linked List

Problem:

Write a program to create a singly linked list and display its elements. Allow the user to input the values for the nodes.

Example Input:

Values = [10, 20, 30, 40]

Example Output:

Linked List: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \text{NULL}$

2. Insert at the Beginning of the List

Problem:

Implement a function to insert a new node at the beginning of a singly linked list.

Example Input:

List = [20, 30, 40], Value = 10

Example Output:

Linked List: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \text{NULL}$

3. Insert at the End of the List

Problem:

Write a function to insert a new node at the end of the singly linked list.

Example Input:

List = [10, 20, 30], Value = 40

Example Output:

Linked List: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \text{NULL}$

4. Delete a Node by Value

Problem:

Write a function to delete the first node with a specific value in a singly linked list.

Example Input:

List = [10, 20, 30, 40], Value = 30

Example Output:

Linked List: $10 \rightarrow 20 \rightarrow 40 \rightarrow \text{NULL}$

5. Search for an Element in the List

Problem:

Implement a function to search for a specific value in the singly linked list and return its position. If not found, return -1.

Example Input:

List = [10, 20, 30, 40], Value = 30

Example Output:

Position: 3

6. Reverse a Singly Linked List

Problem:

Write a function to reverse the singly linked list in place.

Example Input:

List = [10, 20, 30, 40]

Example Output:

Reversed List: $40 \rightarrow 30 \rightarrow 20 \rightarrow 10 \rightarrow \text{NULL}$

7. Find the Middle Node of the List

Problem:

Implement a function to find the middle node of a singly linked list. If the list has an even number of nodes, return the second middle node.

Example Input:

List = [10, 20, 30, 40, 50]

Example Output:

Middle Node: 30

8. Detect and Remove a Cycle

Problem:

Detect if a cycle exists in a singly linked list and remove it.

Example Input:

List with Cycle: $[10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 20 \text{ (back to 20)}]$

Example Output:

Cycle Removed: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \text{NULL}$

9. Merge Two Sorted Singly Linked Lists

Problem:

Given two singly linked lists sorted in ascending order, merge them into one sorted linked list.

Example Input:

List1 = [10, 30, 50], List2 = [20, 40, 60]

Example Output:

Merged List: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow 60 \rightarrow \text{NULL}$

10. Remove Duplicates from a Sorted Singly Linked List

Problem:

Write a function to remove all duplicate elements from a sorted singly linked list.

Example Input:

List = [10, 10, 20, 30, 30, 40]

Example Output:

Modified List: $10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \text{NULL}$