

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Ejercicios 14 a 18

14. Sea A una matriz $n \times n$ con autovalores $\lambda_1, \lambda_2, \dots, \lambda_s$. Supongamos que la forma de JORDAN de $\bf A$ es diagonal por bloques, de la forma

$$\mathbf{J} = \operatorname{diag} \left[\lambda_1 \, \mathbf{I}_{g_1} \,, \lambda_2 \, \mathbf{I}_{g_2} \,, \dots \,, \lambda_s \, \mathbf{I}_{g_s} \right]$$

Demostrar que:

Cada g_i es la multiplicidad geométrica de λ_i 1.

Existen matrices $\mathbf{E}_1, \mathbf{E}_2, \dots, \mathbf{E}_s$ tales que

 $\mathbf{I} = \mathbf{E}_1 + \mathbf{E}_2 + \cdots + \mathbf{E}_s.$

 $\mathbf{A} = \lambda_1 \, \mathbf{E}_1 + \lambda_2 \, \mathbf{E}_2 + \dots + \lambda_s \, \mathbf{E}_s \, .$

C. \mathbf{E}_i es la proyección sobre nul $(\mathbf{A} - \lambda_i \mathbf{I})$ a lo largo de col $(\mathbf{A} - \lambda_i \mathbf{I})$.

D. $\mathbf{E}_i \mathbf{E}_j = \mathbf{0}$ siempre que $i \neq j$.

15. Dada una matriz cuadrada A, se define su traza como la suma de los elementos situados en la diagonal de A, es decir

Traza
$$\mathbf{A} = a_{11} + a_{22} + \dots + a_{nn}$$
.

Se pide:

 ${\bf A}$. Comprobar que Traza ${\bf AB}={\rm Traza}\,{\bf BA}$. Deducir de esta igualdad que

$$\operatorname{Traza} \mathbf{ABC} = \operatorname{Traza} \mathbf{CAB} = \operatorname{Traza} \mathbf{BCA}$$
.

 $\mathbf{A}\mathbf{B} = \operatorname{Traza}\mathbf{B}\mathbf{C}\mathbf{A}\,.$ Demostrar que, dada \mathbf{A} , no existe ninguna matriz \mathbf{X} tal que

$$AX - XA = I$$

B. Siendo

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix} \,, \qquad \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \,,$$

encontrar una matriz C tal que

$$\operatorname{Traza} \mathbf{ABC} \neq \operatorname{Traza} \mathbf{ACB}$$
.

Hallar aquellas matrices X para las que Traza ABX = Traza AXB.

- C. Demostrar que si ${\bf A}$ es $m\times n$ y ${\bf B}$ es $n\times m$ y satisfacen ${\bf AB}={\bf I}_m$ y ${\bf BA}={\bf I}_n$ entonces m=n .
- D. Demostrar que si ${\bf P}^2={\bf P}$, entonces todos los autovalores de ${\bf P}$ son 0 o 1. Deducir que rango ${\bf P}={\rm Traza}\,{\bf P}$, que a su vez coincide con el número de autovalores no-nulos de ${\bf P}$.
- 16. Sea $\bf A$ una matriz $n \times n$. Decimos que $\bf A$ es sim'etrica cuando $\bf A = \bf A^T$. Aquellas matrices cuadradas que satisfacen $\bf A^T = -\bf A$ se llaman antisim'etricas. Cuando $\bf A^H = \bf A$, decimos que $\bf A$ es herm'itica. Las matrices que verifican $\bf A^H = -\bf A$, se llaman $\bf A$ anti-herm'iticas.
 - Si \mathbf{A} es una matriz $\mathbb{R}^{n\times n}$, decimos que \mathbf{A} es $\mathit{ortogonal}$ cuando

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}=\mathbf{I}$$
,

es decir, $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$.

Finalmente, matrices unitarias son aquellas matrices $\mathbf{A} \in \mathbb{C}^{n \times n}$ tales que

$$\mathbf{A}^{\scriptscriptstyle \mathrm{H}}\mathbf{A}=\mathbf{I}$$
 ,

- o igualmente, $\mathbf{A}^{-1} = \mathbf{A}^{H}$.
 - A. Demostrar que todas estas matrices son normales, es decir,

$$\mathbf{A}^*\mathbf{A} = \mathbf{A} \mathbf{A}^*$$

Comprobar que

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

es normal y no es ni simétrica ni anti-simética. Tampoco es ortogonal.

- B. Demostrar las siguientes propiedades:
- 1. Si A es hermítica, entonces todos sus autovalores son reales.
- 2. Si \mathbf{A} es real y simétrica, entonces todos sus autovalores son reales.
- 3. Si **A** es anti-hermítica, entonces todos sus autovalores son imaginarios puros.
- 4. Si **A** es real y anti-simétrica, entonces todos sus autovalores son imaginarios puros.
- 5. Si ${\bf A}$ es unitaria, entonces todos sus autovalores tienen módulo 1 .
- 6. Si $\bf A$ es ortogonal, entonces todos sus autovalores tienen módulo 1 .

17. Los polinomios

(7)
$$L_0(t) = 1$$
, $L_n(t) = \frac{1}{2^n n!} \frac{d^{(n)}}{dt^{(n)}} (t^2 - 1)^n$, $n \ge 1$,

se llaman Polinomios de LEGENDRE.

Considérese el producto escalar

$$\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt$$

en el espacio vectorial $\mathcal{P}_n(\mathbb{R})$, de los polinomios de grado $\leq n$ con coeficientes

- A. Demostrar que $L_n(t)$ es ortogonal a todo monomio de grado < n y, en consecuencia, a todo polinomio de grado < n.
- Demostrar que

$$\mathcal{B} = \left\{ L_j(t) : 0 \le j \le n \right\}$$

es una base ortogonal de $\mathcal{P}_n(\mathbb{R})$.

- C. Comprobar que los Polinomios de Legendre, definidos en la forma (7) están sujetos a la normalización $L_n(1) = 1$.
- 1. Demostrar que el polinomio $t L_n(t)$ es ortogonal a todo $L_j(t)$ con $0 \le j \le n-2.$
 - 2. Explicar por qué $0 = \langle t L_n(t), L_n(t) \rangle$.
 - 3. De lo anterior, tenemos

$$t L_n(t) = \alpha L_{n+1}(t) + \beta L_{n-1}(t).$$

Utilizar la normalización vista en C. para obtener una relación entre $\alpha y \beta$.

- 4. Para obtener α , identificar los coeficientes del término t^{n+1} en $t L_n(t)$ y en $L_{n+1}(t)$.
- 18. En este ejercicio identificamos los $z = x + \mathrm{i}\, y \in \mathbb{C}$ con los vectores
 - A. Dados $\lambda, \mu \in \mathbb{C}$, sea $T: \mathbb{C} \longrightarrow \mathbb{C}$ definida $T(z) = \lambda \, z + \mu \, \overline{z} \, .$

$$T(z) = \lambda z + \mu \, \overline{z}$$

Estudiar si T es \mathbb{R} -lineal y si es \mathbb{C} -lineal. Demostrar:

- 1. T es biyectiva si y sólo si $|\lambda| \neq |\mu|$.
- 2. T satisface |T(z)|=|z| para todo $z\in\mathbb{C}$ si y sólo si $\lambda\,\mu=0$ y $|\lambda+\mu|=1$.
 - B. Considérese una aplicación \mathbb{R} -lineal

$$T\,:\,\mathbb{C}\longrightarrow\mathbb{C}$$

y el producto escalar estándar $\left<\cdot\,,\cdot\right>_2$ en $\mathbb{R}^2\,$ para demostrar que son equivalentes :

- 1. T conserva ángulos 3 .
- 2. Existe $a \in \mathbb{C} \setminus \{0\}$ tal que

O bien
$$T(z) = a z$$
 para todo $z \in \mathbb{C}$,

o bien
$$T(z) = a \, \overline{z}$$
 para todo $z \in \mathbb{C}$.

3. Existe s > 0 tal que

$$\left\langle T(z)\,,\,T(w)\right\rangle _{\scriptscriptstyle 2}=s\left\langle z\,,\,w\right\rangle _{\scriptscriptstyle 2}\,,\qquad\text{para todos los }z\,,w\in\mathbb{C}\,.$$

Complete Com

$$\left|z\right|\left|w\right|\left\langle T(z)\,,\,T(w)\right\rangle _{2}\,=\left|T(z)\right|\left|T(w)\right|\left\langle z\,,\,w\right\rangle _{2}\,,$$

para todos los $z\,,w\in\mathbb{C}\,.$

 $^{^3}$ Es decir, Tes inyectiva y satisface