МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

Лабораторна робота №2 «Дослідження ВАХ діодів»

> Гетманцев Олександр, група 5-А

Зміст

1.	Теоретичні відомості	. 3
	Практична частина	
3.	Висновок	8

Мета роботи: навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості p-n-переходів напівпровідникових діодів різних типів.

Метод вимірювання: 1) одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі *характериографа*; 2) побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму ІД, що відповідають певним значенням та полярності напруги UД, і подання результатів вимірів у вигляді графіка.

Теоретичні відомості

Напівпровідниковий діод (англ. *semiconductor diode*) – це напівпровідниковий прилад з одним *p-n-переходом* і двома виводами.

p-n-**перехі**д (англ. p-n junction) — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність p-типу.

Вольт-амперна характеристика (ВАХ) діода (англ. *current-voltage characteristic*) — це залежність сили струму $I\partial$ через p-n—перехід діода від величини і полярності прикладеної до діода напруги $U\partial$.

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму $I\partial$ від напруги $U\partial$.

Практична частина

Спочатку складаємо схему для моделювання ВАХ діодів.

Побудована у Multisim схема виглядає так:

Вибираємо такі параметри генератора функцій:

1. Випрямлювальний діод.

Рисунок 1. BAX випрямлювального діода

Рисунок 2. Випрямлювальний діод (характериограф)

2. Стабілітрон.

Рисунок 3. ВАХ стабілітрона

Рисунок 4. Стабілітрон (характериограф)

3. Світлодіоід.

Рисунок 5. ВАХ світлодіода

Рисунок 6. Світлодіод (характериограф)

Висновок

Виконуючи дану роботу ми навчилися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідили властивості p-n-переходів напівпровідникових діодів різних типів. Одержали зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа та побудовали ВАХ діодів шляхом вимірювання певної кількості значень сили струму І ∂ , що відповідають певним значенням та полярності напруги U ∂ , і подання результатів вимірів у вигляді графіка.