iMAP: Implicit Mapping and Positioning in Real-Time (ICCV 2021)

DAVIAN Vision Seminar / 2022.04.11 / 배광탁

Task

RGB-D SLAM with continual learning

(SLAM : Simultaneous Localization and Mapping)

Azure Kinect

iPhone 12 Pro

Input

RGB-D Image Sequences

Output

Camera Poses and 3D Scene Structure

Contribution

1. [Joint Optimisation]

- : <u>Jointly</u> optimising <u>a full 3D map and camera poses</u> by using <u>implicit neural</u> <u>scene representation</u>
- → ability of INR, memory efficient scene modeling

2. [Active Sampling]

- : <u>Incrementaly</u> training an implicit scene network in <u>real-time</u>
- → pratical techniques of INR

Preliminaries: NeRF⁽¹⁾

Task: novel view synthesis

Input: 3D point coordinates and viewing direction

Output: color and volume density

Method: training MLP with images from sparse set of views

⁽¹⁾ Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." *European conference on computer vision*. Springer, Cham, 2020.

Preliminaries : NeRF⁽¹⁾
$$\delta_i = d_{i+1} - d_i$$

$$o_i = 1 - \exp(-\rho_i \delta_i)$$

$$\omega_i = o_i \prod_{j=1}^{i-1} (1 - o_j)$$

$$\lim_{l \to \infty} \int_{i=1}^{N} u_i c_i$$
 cam. intrinsic
$$\lim_{l \to \infty} \int_{i=1}^{N} u_i c_i$$
 color rendering ray
$$\lim_{l \to \infty} \int_{i=1}^{N} u_i c_i$$
 color rendering pixel coord.
$$\lim_{l \to \infty} \int_{i=1}^{N} u_i c_i$$

⁽¹⁾ Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." *European conference on computer vision*. Springer, Cham, 2020.

IMAP

IMAP

Keyframe Selection → continual learning

Input

RGB-D Image Sequences

Active Sampling → practical INR

Keyframe Selection → continual learning

RGB-D Image Sequences
$$T=0$$
 $T=0$ $T=1$
$$P = \frac{1}{|s|} \sum_{(u,v) \in s} \mathbb{1}\left(\frac{|D[u,v] - \widehat{D}[u,v]|}{D[u,v]} < t_D\right)$$
 \vdots \vdots $T=N-1$
$$T=N-T$$
 $T=N$
$$T=N$$

Image Active Sampling → practical INR

Keyframe Active Sampling → newly explored, highly detailed, or started to forget

Registered keyframes

loss distribution across keyframes

 \rightarrow different number of samples n_i for each keyframes,

Bounded Keyframe Selection → bound joint optimisation computation

Registered keyframes

bounded window with constantly changing frames

→ W-2 randomly sampled + 1 last keyframe + 1 current live frame

Experimental Results

Dataset: Replica dataset(simulated), Azure Kinect RGB-D, TUM RGB-D dataset

Metric: Accuracy, Completion, Completion Ratio, ATE RMSE

Quantitative Results:

		room-0	room-1	room-2	office-0	office-1	office-2	office-3	office-4	Avg.
iMAP	# Keyframes Acc. [cm] Comp. [cm] Comp. Ratio [< 5cm %]	11 3.58 5.06 83.91	12 3.69 4.87 83.45	12 4.68 5.51 75.53	10 5.87 6.11 77.71	11 3.71 5.26 79.64	10 4.81 5.65 77.22	14 4.27 5.45 77.34	11 4.83 6.59 77.63	13.37 4.43 5.56 79.06
TSDF Fusion	Acc. [cm] Comp. [cm] Comp. Ratio [< 5cm %]	4.21 5.04 76.90	3.08 4.35 79.87	2.88 5.40 77.79	2.70 10.47 79.60	2.66 10.29 71.93	4.27 6.43 71.66	4.07 6.26 65.87	3.70 4.78 77.11	3.45 6.63 75.09

Table 1: Reconstruction results for 8 indoor Replica scenes. We report the highest reached completion ratio in each scene along with the corresponding accuracy and completion values at that point.

iMAP [MB]	Width = 128	Width = 256	Width = 512
	0.26	1.04	4.19
TSDF Fusion [MB]	Res. = 128	Res. = 256	Res. = 512
	8.38	67.10	536.87

Table 2: Memory consumption: for iMAP as a function of network size, and for TSDF fusion of voxel resolution.

	fr1/desk (cm)	fr2/xyz (cm)	fr3/office (cm)
iMAP	4.9	2.0	5.8
BAD-SLAM	1.7	1.1	1.73
Kintinuous	3.7	2.9	3.0
ORB-SLAM2	1.6	0.4	1.0

Table 3: ATE RMSE in cm on TUM RGB-D dataset.

Experimental Results

Qualtative Results:

Ground Truth

room-1 room-2

iMAP

(a) Chair

(b) Back of Objects

(c) Small Objects

(d) Black Chair

Experimental Results

Ablative Analysis:

Figure 12: Active sampling obtains better completion with faster accuracy convergence than pure random sampling.

Figure 13: Reaching 5cm, 2cm, 1cm and 0.75cm depth error requires around 1, 4, 20, 43 seconds respectively.

Figure 14: Evolution of reconstruction detail.