

Classification

Master AIDN: Applications Interactives et Données Numériques

Sylvie Gibet

1

1

Régression Linéaire - rappels

2

2

□ Hypothèse: $h_{\theta}(x) = \theta_0 + \theta_1 x$

□ Paramètres : θ_0 , θ_1

 $\begin{array}{c} \square \ \underline{\text{But}} \colon & \text{minimiser} \ J(\theta_0, \, \theta_1) \\ \theta_0, \, \theta_1 \end{array}$

3

3

4

□ Fonction coût: $J(\theta_0, \theta_1)$ $J(\theta_0, \theta_1, \theta_2, \dots \theta_n)$

But: minimiser $J(\theta_0, \theta_1)$ minimiser $J(\theta_0, \theta_1, \theta_2, \dots \theta_n)$ θ_0, θ_1 $\theta_0, \theta_1, \theta_2, \dots \theta_n$

□ Algorithme :

- \Box Commencer avec $\theta_0,\,\theta_1$ (initial guesses, e.g., $\theta_0\!=\!0,\,\theta_1\!\!=\!\!0$)
- $\begin{tabular}{ll} \square Changer θ_0, θ_1 pour réduire $J(\theta_0, \theta_1)$ \\ is qu'à atteindre un minimum \\ \end{tabular}$

5

5

Algorithme de minimisation du coût : descente de gradient

Algorithme:

Répéter jusqu'à convergence :

Repeat {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

until $\theta_0,\,\theta_1$ converge

Mises à jour simultanées de $\,\theta_0$ et θ_1

6

6

Régression linéaire - Résumé

- Droite qui approxime les données trouver les paramètres de la droite
 - Fonction coût quadratique entre la droite et les données
 - L'algorithme pour trouver les paramètres de la droite est un algorithme de minimisation du coût quadratique, de type descente de gradient : algorithme incrémental, qui met à jour simultanément les 2 paramètres de la droite
 - Cet algorithme converge toujours vers un minimum global (voir forme de la fonction coût)

7

Vers la classification Régression logistique

8

8

Classification

- □ Email: Spam / Not Spam?
- □ Transactions en ligne : frauduleuse (OUI/NON)?
- □ Tumeur : Maligne / Bénine ?

$$y \in \{0,1\} \quad \begin{tabular}{l} 0: Classe négative (e.g., tumeur bénine) \\ 1: Classe positive (e.g., tumeur maligne) \end{tabular}$$

$$y \in \{0,1,2,3\}_{\text{ problème multi-classes}}$$

9

9

Classification

- □ Classifieur à seuil (threshold) : output $h_{\theta}(x)$ à 0.5:
 - si $h_{\theta}(x) \ge 0.5$, prédire y = 1
 - □ si $h_{\theta}(x)$ < 0.5, prédire y = 0

10

10

Classification

- □ Classifieur à seuil (threshold) : output $h_{\theta}(x)$ à 0.5:
 - □ si $h_{\theta}(x) \ge 0.5$, prédire y = 1
 - □ si $h_{\theta}(x)$ < 0.5, prédire y = 0

11

11

Classification

- □ Classifieur à seuil (threshold) : output $h_{\theta}(x)$ à 0.5:
 - □ si $h_{\theta}(x) \ge 0.5$, prédire y = 1
 - si $h_{\theta}(x)$ < 0.5, prédire y = 0

12

12

14

Régression / Classification

Régression linéaire

y = 0 or 1 mais $h_{\theta}(x)$ peut être > 1 ou < 0!

Régression logistique

On veut que $0 \le h_{\theta}(x) \le 1$

16

16

Quelle proposition suivante est juste?

□ Si l'ensemble d'apprentissage (training set) satisfait $0 \le y^{(i)} \le 1$ pour tout exemple $(x^{(i)}, y^{(i)})$, alors la prédiction par régression linéaire satisfera aussi :

 $0 \le h_{\theta}(x) \le 1$ pour toute valeur de x.

□ S'il y a un vecteur de feature x qui prédit parfaitement y, i.e.

y = 1 quand $x \ge c$

et y = 0 quand x < c (pour une constante c),

alors la régression linéaire conduira à une erreur de classification qui vaut zéro.

Aucune des propositions précédentes n'est vraie

17

17

Quelle proposition suivante est juste?

□ Si l'ensemble d'apprentissage (training set) satisfait $0 \le y^{(i)} \le 1$ pour tout exemple $(x^{(i)}, y^{(i)})$, alors la prédiction par régression linéaire satisfera aussi :

 $0 \le h_{\theta}(x) \le 1$ pour toute valeur de x. False

□ S'il y a un vecteur de feature x qui prédit parfaitement y, i.e.

 $\hat{y} = 1$ quand $x \ge c$

et $\hat{y} = 0$ quand x < c (pour une constante c),

Alors la régression linéaire conduira à une erreur de classification qui vaut zéro.

Aucune des propositions précédentes n'est vraie

18

18

Classification

Régression linéaire

y = 0 ou 1 mais $h_{\theta}(x)$ (prédiction) peut-être > 1 ou < 0, ce qu'on ne veut pas

Classification utilisant la Régression Logistique

 $0 \le h_{\theta}(x) \le 1$

Les prédictions de la régression logistique sont toujours comprises entre 0 et 1

La régression logistique est l'algorithme de classification que l'on applique lorsque l'étiquette y a une valeur discrète.

19

19

Régression logistique

Hypothèse h

20

20

Problème

- Représentation de l'hypothèse : i.e., quelle fonction va-t-on utiliser pour représenter notre prédiction (hypothèse) dans le cadre d'un problème de classification ?
- □ Modèle de régression logistique $0 \le h_{\theta}(x) \le 1$

Hypothèse : les prédictions devraient être entre 0 et 1

21

21

Modèle de régression logistique

avec

□ Droite : $z = \theta_0 + \theta_1 x_1$

Une variable en entrée, une variable prédite en sortie

□ Généralisation :

 $z = \Theta^{T}x = \theta_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + ... + \theta_{n} x_{n}$

Plusieurs variables en entrée x_1 , x_2 , x_n , une variable prédite en sortie z

22

22

Modèle de régression logistique

■ En régression linéaire, on avait : $h_{\Theta}(x) = \Theta^T x$ avec $z = \Theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$

→ sigmoïde : non linéaire Ramène les valeurs entre 0 et 1

23

23

Modèle de régression logistique

- □ En régression linéaire, on avait : $h_{\Theta}(x) = \Theta^T x$ avec $z = \Theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$
- □ En régression logistique on transforme le problème ainsi :

$$h_{\Theta}(x) = g(\Theta^{T} x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Où g est une fonction Sigmoid Encore appelée la fonction logistique

24

24

Modèle de régression logistique

- En régression linéaire, on avait : $h_{\Theta}(x) = \Theta^T x$
- □ En régression logistique on transforme le problème ainsi :

$$h_{\Theta}(x) = g(\Theta^{T} x)$$
 $g(z) = \frac{1}{1 + e^{-z}}$
 $h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T} x}}$

Où g est une fonction Sigmoid encore appelée fonction logistique $z = \Theta^T x$

25

25

Modèle de régression logistique

g : fonction Sigmoid fonction logistique

Les valeurs de g(z) sont entre 0 et 1, et celles de $h_{\theta}(x)$ aussi

26

Modèle de régression logistique

 $h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$

g : fonction Sigmoid

fonction logistique

Finalement, on veut trouver les parameters θ qui correspondent (fit) le mieux avec nos données, ce qui constituera nos prédictions

27

Interprétation de l'hypothèse de sortie

 $h_{\theta}(x)$ = probabilité estimée que y = 1 pour l'input x

28

28

Interprétation de l'hypothèse de sortie

- $h_{\theta}(x)$ = probabilité estimée que y = 1 pour l'input x
- Exemple: si $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$

Si $h_{\theta}(x) = 0.7$ (étant donné les données x de mon patient) Alors je peux dire à mon patient qu'il y a 70% de chance que sa

tumeur soit maligne

29

29

Interprétation de l'hypothèse de sortie

- □ $h_{\theta}(x)$ = probabilité estimée que y = 1 pour l'input x
- $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$

Si $h_{\theta}(x) = 0.7$ (étant donné les données x de mon patient) Alors je peux dire à mon patient qu'il y a 70% de chance que sa tumeur soit maligne

□ Formellement: $h_{\theta}(x) = P(y = 1 \mid x; \theta)$ "probabilité que y = 1, étant donné x, paramétré par θ

30

30

Interprétation de l'hypothèse de sortie

- □ $h_{\theta}(x)$ = probabilité estimée que y = 1 pour l'input x
- Exemple : si $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$

Si $h_{\theta}(x)$ = 0.7 (étant donné les données x de mon patient) Alors je peux dire à mon patient qu'il y a 70% de chance que sa tumeur soit maligne

□ Formellement: $h_{\theta}(x) = P(y = 1 \mid x; \theta)$ "probabilité que y = 1, étant donné x, paramétré par θ "

L'hypothèse (le modèle) estime la probabilité que la sortie y soit égale à 1.

31

Interprétation de l'hypothèse de sortie

- Puisque c'est une tâche de classification, on sait que la sortie doit être discrete : y = 0 ou 1
 - □ soit dans l'ensemble d'entraînement (training set)
 - soit pour de nouveaux patients (test set)

32

32

Quelles propositions sont vraies?

Supposez que l'on veut prédire, à partir d'une donnée x sur une tumeur, si cette tumeur est maligne (y=1) ou bénigne (y=0). Notre classifieur logistique est tel que, pour notre tumeur spécifique, la sortie est donnée par :

 $h_{\theta}(x) = P(y = 1 \mid x; \theta) = 0.7$, ainsi on estime qu'il y a 70% de chance que cette tumeur soit maligne. Que devrait être notre estimation :

 $P(y = 0 \mid x; \theta)$: probabilité pour que la tumeur soit bénigne?

- $P(y = 0 | x; \theta) = 0.3$
- $P(y = 0 \mid x; \theta) = 0.7$
- $P(y = 0 \mid x; \theta) = 0.7^2$
- $P(y = 0 \mid x; \theta) = 0.3 \times 0.7$

33

33

Quelles propositions sont vraies?

$$P(y = 0 \mid x; \theta) + P(y = 1 \mid x; \theta) = 1$$

$$P(y = 0) + P(y = 1) = 1$$

□ →
$$P(y = 0 \mid x; \theta) = 1 - P(y = 1 \mid x; \theta) = 1 - 0.7 = 0.3$$

34

34

Régression logistique

Frontière de décision (boundary decision)

35

35

36

42

Frontière de décision

Prédire y = 1 quand -3 + x_1 + $x_2 \ge 0$ pour tout exemple x_1 , x_2 $\theta^T x$

ou $x_1 + x_2 \ge 3$

45

45

Frontière de décision

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \quad \theta = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

Prédire y = 1 quand -3 + x_1 + x_2 \geq 0 pour tout exemple x_1 , x_2 $\theta^T x$

ou $x_1 + x_2 \ge 3$

46

46

Frontière de décision

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
 $\theta =$

$$-3 \quad 1 \quad 1$$

 $\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$

Prédire y = 1 quand -3 + x_1 + $x_2 \ge 0$ pour tout exemple x_1 , x_2 $\theta^T x$

ou
$$x_1 + x_2 \ge -3$$

y = 0 quand $x_1 + x_2 < 3$

47

47

Frontière de décision

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \quad \theta =$$

$$-3 \quad 1 \quad 1$$

 $\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$

Frontière de décision : $x_1 + x_2 = 3$

Prédire y = 1 quand -3 + x_1 + x_2 ≥ 0 pour tout exemple x_1 , x_2

ou $x_1 + x_2 \ge -3$ y = 0 quand $x_1 + x_2 < 3$

48

48

Frontière de décision

Frontière de décision : proprité de l'hypothèse incluant les paramètres $\theta_0, \theta_1, \theta_2$ et non propriété du dataset.

On verra plus tard comment faire "fitter" les paramètres aux données d'entraînement.

49

49

Frontière de décision non linéaire

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 \theta_4 x_2^2)$$
-1 0 0 1 1

prédire y = 1 si -1 +
$$x_1^2 + x_2^2 \ge 0$$

 $x_1^2 + x_2^2 \ge 1$
prédire y = 0 si -1 + $x_1^2 + x_2^2 \le 0$
 $x_1^2 + x_2^2 \le 1$

50

50

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 \theta_4 x_2^2)$ -1 0 0 1 1

prédire y = 1 si -1 + $x_1^2 + x_2^2 \ge 0$ $x_1^2 + x_2^2 \ge 1$

prédire y = 0 si -1 + $x_1^2 + x_2^2 \le 0$

 $x_1^2 + x_2^2 \le 1$

frontière de decision : $x_1^2 + x_2^2 = 1$

51

51

Frontière de décision non linéaire

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + ...)$

52

52

□ <u>Hypothèse</u>: $h_{\theta}(x) = \theta_0 + \theta_1 x$

□ Paramètres: θ_0 , θ_1

 $\boxed{ Fonction coût : } J(\theta_0, \theta_1) = \frac{1}{2m} \cdot \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

53

53

Régression logistique

Fonction coût pour aller plus loin

54

54

Fonction coût

□ Training set : {($\mathbf{x}^{(1)}$, $\mathbf{y}^{(1)}$), ($\mathbf{x}^{(2)}$, $\mathbf{y}^{(2)}$), . . . , ($\mathbf{x}^{(m)}$, $\mathbf{y}^{(m)}$) m exemples $x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \quad \mathbf{x}_0 = \mathbf{1}, \quad y \in \{0, 1\}$

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$$

Comment choisir (fitter) les paramètres θ ?

55

55

Fonction coût

Régression logistique

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$J(\theta) = \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

56

56

Fonction coût

□ Régression logistique

$$J(\theta) = \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Or,
$$Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

n'est pas une fonction convexe car h n'est pas linéaire (sigmoide)

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

57

57

Fonction coût

□ Régression logistique

 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

$$J(\theta) = \frac{1}{m} \cdot \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

 $Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$ non convexe

minimum global: non minimum global: oui

58

(gradient descent)

58

Régression logistique

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$-\log(1 - h_{\theta}(x)) \uparrow$$

59

59

Régression logistique

60

Régression logistique-Fonction coût

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

 $-\log(h_{\theta}(x)) \qquad y = 1$ $0 \qquad 1 \qquad h_{\theta}(x)$

Coût = 0 si $h_{\theta}(x) \rightarrow 1$ et y = 1 coût minimum si bonne prédiction on prédit $(P(y=1|x;\theta) = 1)$, et y= 1

Coût -> ∞ si h_{\theta}(x) -> 0 et y = 1 mauvaise prédiction : on pénalise en mettant un coût très important on prédit (P(y=1|x; \theta) = 0), et y= 1

61

Régression logistique-Fonction coût

 $-\log(1-h_{\theta}(x))$ y = 0 0 1 $h_{\theta}(x)$

Coût = 0 si $h_{\theta}(x) \rightarrow 0$ et y = 0 coût minimum si bonne prédiction on prédit $(P(y=0|x;\theta)=0)$, et y= 0

Coût -> ∞ si h_{\theta}(x) -> 1 et y = 0 mauvaise prédiction : on pénalise en mettant un coût très important on prédit (P(y=0|x; \theta) = 1), et y= 0

62

Régression logistique

Fonction coût simplifiée et descente de gradient

63

63

Fonction coût

□ Fonction coût de la régression logistique

$$J(\theta) = \frac{1}{m} \cdot \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

□ Note: on a TOUJOURS y = 0 ou 1

64

64

Fonction coût

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x), y) = -y.\log(h_{\theta}(x)) - (1-y).\log(1-h_{\theta}(x))$$

- \Box si y = 1 : Cost(h_{\theta}(x),y) = -log(h_{\theta}(x))
- □ si y = 0 : Cost($h_{\theta}(x)$,y) = -(1-y).log($h_{\theta}(x)$)

65

65

Descente du gradient

$$Cost(h_{\theta}(x), y) = -y.\log(h_{\theta}(x)) - (1-y).\log(1-h_{\theta}(x))$$

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} \cdot \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)})) \right]$$

- □ Pourquoi cette fonction coût ?
 - □ Fonction convexe!
 - Se ramène à une estimation du maximum de vraisemblance (statistique)

66

66

Descente du gradient

$$Cost(h_{\theta}(x), y) = -y.\log(h_{\theta}(x)) - (1-y).\log(1-h_{\theta}(x))$$

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} . \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) . \log(1 - h_{\theta}(x^{(i)})) \right]$$

67

67

Descente du gradient

$$Cost(h_{\theta}(x), y) = -y.\log(h_{\theta}(x)) - (1 - y).\log(1 - h_{\theta}(x))$$

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} . \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) . \log(1 - h_{\theta}(x^{(i)})) \right]$$

 $\hfill\Box$ Pour trouver les paramètres θ automatiquement, il faut minimiser $J(\theta)$ selon θ :

$$min_{\theta} J(\theta)$$

68

68

Descente du gradient

$$Cost(h_{\theta}(x), y) = -y.\log(h_{\theta}(x)) - (1-y).\log(1-h_{\theta}(x))$$

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} \cdot \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)})) \right]$$

□ Pour trouver les paramètres θ automatiquement, il faut minimiser $J(\theta)$ selon θ :

$$min_{\theta} J(\theta)$$

Prédiction : étant donné x (nouvelle entrée), on calcule la prédiction :

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$$

69

Descente du gradient

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} \cdot \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)})) \right]$$

 \Box On veut minimiser $J(\theta)$ suivant θ

Algorithme

Repeat {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Mise à jour des paramètres θ_i

simultanément

70

69

70

Descente du gradient

$$J(\theta) = -\frac{1}{m} \cdot \left[\sum_{i=1}^{m} y^{(i)} \cdot \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)})) \right]$$

 \Box On veut minimiser $J(\theta)$ suivant θ

Repeat { $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta x^{(i)} - y^{(i)}) x_j^{(i)}$ $\theta_j = \theta_j - \sum_{i=1}^m (h_\theta (x^{(i)}) - y^{(i)}) . x^{(i)}$ }

Algorithme : identique à celui de la régression linéaire,

71

Descente du gradient

MAIS la fonction hypothèse $h_{\theta}(x)$ a changé !

Repeat {

$$\theta_{j} = \theta_{j} - \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}).x^{(i)} \quad \text{for j = 0, 1, ..., n}$$

□ Régression linéaire : $h_{\theta}(x) = \theta^{T}x$

Régression logistique :

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$$

72

72

Logistic Regression

Optimization avancée

73

73

Algorithme d'optimization

- □ Fonction coût $J(\theta)$; on veut $min_{\theta} J(\theta)$
- \Box Etant donné θ , on a du code qui calcule :

$$J(\theta)$$

$$\frac{\partial}{\partial \theta_i} J(\theta)$$

pour j = 0, 1, ..., n

Descente de gradient

Repeat {

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

74

74

Optimization algorithm

 \Box Etant donné θ , on a du code qui calcule :

 $J(\theta)$

$$\frac{\partial}{\partial \theta_j} J(\theta)$$

pour j = 0, 1, ..., n

Algorithmes d'optimization

- Gradient descent

- Conjugate gradient
- BFGS
- L-BFGS

•••

Avantages

- plus rapide que GD

Inconvénients

- plus complexe

75

75

Régression logistique

Classification multiclasse : One-versus all

76

76

Classification multiclasse

- Exemples
- □ Tag Email : Travail, Amis, Famille y=1 y=2 y=3
- Diagnostic médical : Sain, Rhume, Grippe, Autre y = 1 y = 2 y = 3
- □ Météo : Ensoleillé, nuageux, pluvieux, neigeux, venté y = 1 y = 2 y = 3 y = 4 y = 5

77

77

Classification multiclasse

- Classification binaire
- Classification multi-classe

78

78

Classification multiclasse

One-vs-all

On transforme le problème de classification en 3 problèmes de séparation binaire à 2 classes.

Class 1: △
Class 2: □
Class 3: ×

82

Classification multiclasse

One-vs-all x_2 x_2 Class 1: x_1 Class 2: x_2 Class 3: x_2 Class 3: x_1 x_2 x_2 x_2 x_3 x_4 x_4 x_5 x_5

Classification multiclasse

One-vs-all x_2 x_2 x_3 x_4 x_4 x_5 x_5 x_5 x_6 Class 1: x_7 x_8 x_8

Classification multiclasse: One-vs-all

- On entraîne un classifieur de régression logistique $h_{\theta}^{(i)}(x)$ pour chaque classe *i* afin de prédire la probabilité pour que y = i
- □ Sur une nouvelle entrée x, on effectue une prédiction, et on choisit la classe i qui maximise $h_{\theta}^{(i)}(x)$:

 $\max_{i} h_{\theta}^{(i)}(x)$

87

87

Classification multiclasse: One-vs-all

- Supposez que vous avez un problème de classification multiclasse à k classes (y appartient à {1,2, ... k}). En utilisant la méthode one-vs-all, combien de classifieurs de régression logistique aurez vous besoin d'entraîner?
 - □ k-1
 - □ k
 - □ k+1
 - Approximativement log₂(k)

88

88