	ID number:			
Recitation Time:				
Math 251	Optimization	Activity 8 - Part I		
and is worth 2% of copoints for correctness	in TWO PARTS (the second of which ourse credit and graded out of "10" poon a randomly chosen subset of the exact dates. Late activities are accepted	pints (5 points for completion, 5 ercises). See tentative calendar		
Whenever a box is pro	ovided, put your final answer for that	part of the exercise in the box.		
by fencing off sides of the la	oing to use 500 ft of fencing to make 5 a large rectangle and then 4 internal surger external rectangle). Find the discount of pens together) that maximize the are	segments across (parallel to two mensions of the larger external		

Name:

(2) A window is going to be built in the shape of semicircle atop a rectangle (this type of window is called a <i>Norman Window</i>). 24 ft of wood is going to be used to frame just the perimeter of the window. Find the dimensions (radius of the semicircle and height of the rectangle) that produce a window that lets the most light into the structure.			

(3)	second. Jackson is on the bank of a 10 and on the bank on other side of the Gabriella. Jackson will swim across the	3 ft per second and run at a speed of 4 ft per 0-ft wide river (flowing at a negligible speed) river, 200 ft downstream is Jackson's owner e river to the other bank and then run to the mount of time it will take Jackson to get to

(4) After a person eats a meal, the difference leads their recting metabolic rate (k I / br) as	-			
and their resting metabolic rate (kJ/hr) can be approximated by $M(t) = 10.22 + 177.04 = t/3$				
$M(t) = -10.28 + 175.9te^{-t/3},$				
where t is hours after the meal. Determine the time (hours after eating) at which the person's measured metabolic rate (minus their resting rate) is greatest.				