有限オートマトン

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- ① 序論: Introduction
- ② 決定性有限オートマトン: Deterministic Finite State Automata
- ③ 受理言語: Accepted Languages
- 4 非決定性有限オートマトン: Non-deterministic FA
- ⑤ 疑問: Questions

オートマトンと形式言語: Automata and Formal Languages

- オートマトン (Automaton)
 - 計算の抽象モデル
 - テープからの入力による状態遷移
 - 「計算する」とは何かを考える
 - automata は複数形
- 形式言語 (Formal Language)
 - オートマトンが受理する言語 入力を正しく処理できるか
 - 文法を数学的に分析

決定性有限オートマトン

Deterministic Finite State Automata: DFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{2.1}$$

- Q: 内部状態の有限集合
- ∑: 入力アルファベット、つまり入力記号の有限集合
- $\delta: Q \times \Sigma \to Q$: 状態遷移関数
 - ullet ある状態 q で文字 a を読むと、状態が p に遷移する
 - $\delta(q,\mathsf{a}) = p$
- $q_0 \in Q$: 初期状態
- F⊆Q: 受理状態の集合
 - $q \in F$ に到達する入力を受理する

例 2.1:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{\mathsf{a}, \mathsf{b}\}$$

$$F = \{q_2\}$$

遷移関数 δ

	a	b
$ q_0 $	q_2	q_1
q_1	q_0	q_0
q_2	q_0	q_0

動作イメージ

テープヘッドが移動して、テープ上の文字を読み取る。

$$\begin{array}{c|c} (q_0,\mathsf{ababbaa}) \vdash_M (q_2,\mathsf{babbaa}) \\ \vdash_M (q_0,\mathsf{abbaa}) \\ \vdash_M (q_2,\mathsf{bbaa}) \\ \vdash_M (q_0,\mathsf{baa}) \\ \vdash_M (q_1,\mathsf{aa}) \\ \hline \qquad & \vdash_M (q_0,\mathsf{a}) \\ \hline \qquad & \vdash_M (q_2,\epsilon) \end{array}$$
 遷移関数 δ

 q_0

 q_1

 q_2

 q_2

 q_0

 q_0

 q_1

 q_0

 q_0

例:2.1への入力 bbaba

$dash_M$ の推移的閉包と受理言語

• 入力 $w\in \Sigma^*(\Sigma^*$ は Σ の要素の 0 個以上の列) によって、初期 状態 q_0 から状態 q へ遷移し、テープに残っている文字列が w'

$$(q_0, w) \vdash_M^* (q, w') \tag{3.1}$$

入力 w を受理

$$(q_0, w) \vdash_M^* (q_F, \epsilon), \quad q_F \in F$$
 (3.2)

受理言語

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q_F, \epsilon), q_F \in F \}$$
 (3.3)

例:2.1 の場合

$$(q_0, \mathsf{aaaba}) \vdash (q_2, \mathsf{aaba}) \vdash (q_0, \mathsf{aba})$$
 $\vdash (q_2, \mathsf{ba}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$
 $(q_0, \mathsf{babaa}) \vdash (q_1, \mathsf{abaa}) \vdash (q_0, \mathsf{baa})$
 $\vdash (q_1, \mathsf{aa}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$

受理する入力の例

a, aaa, aba, baa, bba, aaaaa, aaaba, abaaa, babba, bbbaa, bbbba

例 3.1:

$$Q = \{q_0, q_1, q_2, q_3\}$$
$$\Sigma = \{\mathsf{a}, \mathsf{b}\}$$
$$F = \{q_3\}$$

遷移関数 δ

12 15 July 20 1 1		
	а	b
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

例 3.1: 動作例

$$\begin{split} (q_0,\mathsf{aaaaab}) \vdash (q_2,\mathsf{aaaab}) \vdash (q_0,\mathsf{aaab}) \vdash (q_2,\mathsf{aab}) \\ \vdash (q_0,\mathsf{ab}) \vdash (q_2,\mathsf{b}) \vdash (q_3,\epsilon) \\ (q_0,\mathsf{abbaba}) \vdash (q_2,\mathsf{bbaba}) \vdash (q_3,\mathsf{baba}) \vdash (q_2,\mathsf{aba}) \\ \vdash (q_0,\mathsf{ba}) \vdash (q_1,\mathsf{a}) \vdash (q_3,\epsilon) \end{split}$$

例 3.1: 受理する文字列例(長さ5まで)

ab ba aaab aaba abaa abbb baaa babb bbab bbba

例 3.2:

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_4\}$$

遷移関数 δ

	0	1
q_0	q_2	q_1
$ q_1 $		q_3
q_2		$ q_4 $
q_3	q_2	$ q_0 $
q_4	q_4	q_4
다는 내용 / ㅡ `소 ᆓ		

空欄に注意

例 3.2: 動作例

$$\begin{aligned} (q_0,1110101) &\vdash (q_1,110101) \vdash (q_3,10101) \vdash (q_0,0101) \\ &\vdash (q_2,101) \vdash (q_4,01) \vdash (q_4,1) \vdash (q_4,\epsilon) \\ (q_0,1101010) &\vdash (q_1,101010) \vdash (q_3,01010) \vdash (q_2,1010) \\ &\vdash (q_4,010) \vdash (q_4,10) \vdash (q_4,0) \vdash (q_4,\epsilon) \end{aligned}$$

例 3.2: 受理する文字列例(長さ5まで)

01, 010, 011, 0100, 0101, 0110, 0111, 1101, 01000, 01001, 01010, 01011, 01100, 01101, 01111, 11010, 11011, 11101

非決定性有限オートマトン

Non-deterministic Finite State Automata: NFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{4.1}$$

- Q: 内部状態の集合
- Σ: 入力アルファベット
- ullet $\delta: Q \times \Sigma \to 2^Q$: 状態遷移関数。 2^Q は、Q のべき集合、つまり Q の部分集合の族。遷移先が複数であることを許容することに注意。
- q₀ ∈ Q: 初期状態
- F ⊂ Q: 受理状態

例 4.1:

$$Q = \{q_0, q_1, q_2\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_2\}$$

遷移関数 δ

	0	1
q_0	$\{q_0\}$	$\{q_0,q_1\}$
$ q_1 $	Ø	$\{q_2\}$
q_2	$\{q_2\}$	$\{q_2\}$

動作例: 入力 1010110

入力が引き起こす状態遷移のうちで、受理状態に至る場合が一つで もあれば、その入力を受理する。

長さ5以下の受理入力

11, 011, 110, 111, 0011, 0110, 0111, 1011, 1100, 1110, 1111, 00011, 00110, 00111, 01011, 01100, 01110, 01111, 10011, 10110, 10111, 11000, 11011, 11100, 11111

例 4.2:

$$Q = \{q_0, q_1, q_2, q_2\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_3\}$$

遷移関数 δ

~~17 1~1×x ∨		
δ	0	1
q_0	$\{q_1,q_2\}$	$\{q_0\}$
q_1	Ø	$\{q_1,q_3\}$
q_2	$\{q_3\}$	$\{q_2\}$
q_3	Ø	Ø

長さ5以下の受理入力

00, 01, 010, 011, 100, 101, 0110, 0111, 1010, 1011, 1100, 1101, 01110, 01111, 10110, 10111, 11010, 11011, 11100, 11101

動作例: 入力 11011

例 4.3:

$$Q = \left\{q_0, q_1, q_2, q_3, q_4\right\}, \Sigma = \left\{\mathsf{a}, \mathsf{b}\right\}, F = \left\{q_4\right\}$$

遷移関数 δ	

		а	b
	q_0	$\{q_1,q_2\}$	$\{q_3\}$
δ	$ q_1 $	$\{q_3\}$	Ø
· U	$ q_2 $	Ø	$\{q_4\}$
	q_3	Ø	$\{q_2,q_3\}$
	q_4	$\{q_4\}$	$\{q_4\}$

動作例:入力 aabba

疑問

- オートマトンが受理する文字列の集合を記述する方法
 - 文字列パターンを記述する方法
- NFA と DFA は本質的に異なるのか
 - 受理する文字列集合は異なるのか
 - 能力は異なるか