例题 1 求

$$f(x,y) = \begin{cases} y \ln(x^2 + y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

在点 (0,0) 的偏导数。

解 由于 $\frac{f(\Delta x,0)-f(0,0)}{\Delta x}=\frac{0-0}{\Delta x}=0,$ 从而 $\frac{f(0,\Delta y)-f(0,0)}{\Delta y}=\frac{\Delta y \ln(\Delta y)^2}{\Delta y}=\ln(\Delta y)^2,$ $\frac{\partial f}{\partial x}(0,0)=0,\quad \frac{\partial f}{\partial y}(0,0)$ 不存在. \Box

例题 2 考察

$$f(x,y) = \begin{cases} 1, & \exists xy \neq 0, \\ 0, & \exists xy = 0. \end{cases}$$

在 (0,0) 处对 x,y 的偏导数,在 (0,0) 点的连续性和极限存在性。

如果偏导数在某一点的邻域内存在而且有界,则可推出函数在该点连续。

例题 3 证明函数 f(x,y) 的两个偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$ 在 (x_0,y_0) 点的某个邻域内存在且有界,则 f 在 (x_0,y_0) 点 连续。

提示: 微分中值定理

显然 $f_x(0,0) = f_y(0,0) = 0$, 但 f 在 (0,0) 点不连续, 甚至极限也不存在.

证 注意到

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

= $[f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)],$

利用一元函数的微分中值定理, 得

$$\Delta f = \frac{\partial f}{\partial x}(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 \Delta y) \Delta y,$$

其中 $0 < \theta_1, \theta_2 < 1$. 已知 $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ 在 (x_0, y_0) 的邻域内有界, 所以

$$\lim_{\substack{(\Delta x, \Delta y) \to (0,0)}} \Delta f = 0,$$

即 f(x,y) 在 (x_0,y_0) 点连续. \Box

例题 4 设 $f(x,y) = \sqrt{|xy|}$, 证明: (1) f(x,y) 在 (0,0) 点连续; (2) $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$ 都存在; (3) 从定义 出发证明 f(x,y) 在 (0,0) 点不可微.

$$\lim_{(\Delta x, \Delta y) \to (0,0)} f(x,y) = \lim_{(\Delta x, \Delta y) \to (0,0)} (f(0,0) + \Delta f) = 0 = f(0,0).$$
(2) 直接按定义计算得

§19.2 全微分

173

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = 0,$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = 0.$$

(3) 由于

$$\Delta f - f_x(0,0)\Delta x - f_y(0,0)\Delta y = |\Delta x|^{1/2}|\Delta y|^{1/2},$$

 $\mathbf{p} \Delta x = \Delta y \rightarrow 0$, 则

$$\frac{\Delta f - f_x(0,0)\Delta x - f_y(0,0)\Delta y}{r} = \frac{|\Delta x|^{1/2}|\Delta y|^{1/2}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \longrightarrow \frac{1}{\sqrt{2}} \neq 0,$$

所以 f(x,y) 在 (0,0) 点不可微. \Box

例题 5 设 f(x,y) 在 \mathbb{R}^2 上有连续偏导数,且 $f(x,x^2)\equiv 1$. (1) 若 $f_x(x,x^2)=x$,求 $f_y(x,x^2)$; (2) 若

例题 6 设 z=f(x,y) 是由方程 F(x-y,y-z)=0 确定的隐函数, 求 z_x,z_y 及 z_{xy} .

例题 7 设 $x = \cos \varphi \cos \psi, y = \cos \varphi \sin \psi, z = \sin \varphi,$ 求 $\frac{\partial^2 z}{\partial x^2}$.

解 (1) 对
$$f(x,x^2) \equiv 1$$
 两边求导得 $f_x + 2xf_y = 0$.

由条件得

$$x+2xf_y=0,$$

所以当 $x \neq 0$ 时, $f_y(x, x^2) = -\frac{1}{2}$. 由 f_y 的连续性知当 x = 0 时也有 $f_y(x, x^2) =$

(2) 令
$$F(x,y) = f(x,y) - (x^2y + y^2)$$
, 则 $F(x,y)$ 在 \mathbb{R}^2 上连续可微, 且 $F_n(x,y) = 0$.

于是 F(x,y) 只是 x 的函数, 即 $F(x,y) = \varphi(x)$, 从而

$$f(x,y) = x^2y + y^2 + \varphi(x).$$

再由 $f(x, x^2) \equiv 1$ 得 $\varphi(x) = 1 - 2x^4$, 所以

$$f(x,y) = x^2y + y^2 + 1 - 2x^4. \quad \Box$$

解 先求 z_x . 在 F(x-y,y-z)=0 两边对 x 求导, 得

$$F_1 - z_x F_2 = 0, (20.3)$$

于是得 $z_x = \frac{F_1}{F_2}$.

求 Zy. 可用公式

$$z_y = -\frac{F_y}{F_z} = -\frac{-F_1 + F_2}{-F_2} = \frac{F_2 - F_1}{F_2}.$$

求 z_{xy} . 在 (20.3) 两边对 y 求导, 得

$$-F_{11} + F_{12}(1 - z_y) - \{ [-F_{21} + F_{22}(1 - z_y)]z_x + F_2 z_{xy} \} = 0.$$
 (20.4)

将 Zz, Z_v 的表达式代入 (20.4), 得到

$$-F_{11} + F_{12} \frac{F_1}{F_2} - \left[\left(-F_{21} + F_{22} \frac{F_1}{F_2} \right) \frac{F_1}{F_2} + F_2 z_{xy} \right] = 0.$$

§20.1 一个方程的情况

191

解出 Zxy 得

$$z_{xy} = \frac{1}{F_2^3} (2F_1 F_2 F_{12} - F_2^2 F_{11} - F_1^2 F_{22}).$$

也可先在 $F-1-F_2+F_2z_y=0$ 两边对 x 求导, 然后解出 z_{xy} .

解 1 由所给方程组的前两个方程可确定 $\varphi = \varphi(x,y), \psi = \psi(x,y),$ 故 $z = \sin \varphi(x,y),$ 即 z 是以 φ 为中间变量的 x,y 的函数, 所以

$$z_x = \cos \varphi \cdot \varphi_x. \tag{20.11}$$

在前两个方程两边对x求导,得

$$1 = -\sin\varphi \cdot \varphi_x \cos\psi + \cos\varphi(-\sin\psi)\psi_x,$$

$$0 = -\sin\varphi \cdot \varphi_x \sin\psi + \cos\varphi \cos\psi \cdot \psi_x.$$

解出

$$\varphi_x = -\frac{\cos\psi}{\sin\varphi}, \quad \psi_x = -\frac{\sin\psi}{\cos\varphi},$$
(20.12)

代入 (20.11) 得

$$z_x = -\cot \varphi \cos \psi.$$

在上式两边再对 x 求导得

$$z_{xx} = \csc^2 \varphi \cdot \varphi_x \cos \psi + \cot \varphi \sin \psi \cdot \psi_x.$$

将 (20.12) 代入, 得到

$$z_{xx} = \frac{\cos^2 \varphi \sin^2 \psi - 1}{\sin^3 \varphi}. \quad \Box$$

解 2 由已知条件得 $x^2 + y^2 + z^2 = 1$, 两边对 x 求两次导数, 注意到 y 与 x 是各自独立的变量, 得

$$x + zz_x = 0, \quad 1 + z_x^2 + zz_{xx} = 0,$$

于是

$$z_{xx} = -\frac{z^2 + x^2}{z^3} = \frac{y^2 - 1}{z^3} = \frac{\cos^2 \varphi \sin^2 \psi - 1}{\sin^3 \varphi}.$$

例题 8 设

$$f(x,y) = \begin{cases} \frac{1 - e^{x(x^2 + y^2)}}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

求 f(x,y) 在 (0,0) 的 4 阶 Taylor 多项式, 并求出 $\frac{\partial^2 f}{\partial x \partial y}(0,0), \frac{\partial^4 f}{\partial x^4}(0,0)$.

解 由于
$$e^{x(x^2+y^2)} = 1 + x(x^2+y^2) + \frac{1}{2}x^2(x^2+y^2)^2 + o([x(x^2+y^2)]^2),$$

于是

$$\frac{1 - e^{x(x^2 + y^2)}}{x^2 + y^2} = -x - \frac{1}{2}x^2(x^2 + y^2) + o(x^2(x^2 + y^2))$$

力是 $\frac{1-\mathrm{e}^{x(x^2+y^2)}}{x^2+y^2} = -x - \frac{1}{2}x^2(x^2+y^2) + o(x^2(x^2+y^2)).$ 由 Taylor 展式的惟一性知 f(x,y) 的 4 阶 Taylor 展开式为 $-x - \frac{1}{2}x^4 - \frac{1}{2}x^2y^2.$

由此得

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0, \quad \frac{\partial^4 f}{\partial x^4}(0,0) = 4!(-\frac{1}{2}) = -12. \quad \Box$$