#### Aprendizaje Reforzado

#### Maestría en Data Mining, Universidad Austral

Javier Kreiner

### Programación dinámica

- Conjunto de algoritmos para calcular políticas óptimas cuando tenemos un modelo perfecto del ambiente como un proceso de decisión de Markov
- Tienen limitada utilidad práctica, pero son muy útiles teóricamente
- Programación dinámica provee una base esencial para entender los otros métodos
- La idea de PD y otros métodos es usar la función de valor para organizar la búsqueda de políticas óptimas

#### Ecuación de Bellman

$$egin{aligned} v(s) = \mathcal{R}_s + \gamma \sum_{s'} p_{s,s'} v(s') \ v = (v(s_1), \ldots, v(s_K)) \end{aligned}$$

Un sistema de K ecuaciones!

• Con matrices: 
$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

ullet Escrito en una línea:  $v=\mathcal{R}+\gamma pv$ 

#### Recordar

Ecuaciones que relacionan las probabilidades de transición y las recompensas esperadas con una política fija:

$$\mathcal{P}_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}_{ss'}^{a}$$
 $\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$ 

#### Evaluación de Política

$$\overline{v_\pi(s)} = \sum_a [\mathcal{R}^a_s + \bigvee_{s'} v_\pi(s') p^a_{s,s'}] \pi(a|s)$$

$$=\mathcal{R}^\pi_s + \bigvee_{s'} v_\pi(s') p^\pi_{s,s'}$$

Método Iterativo

$$v^{oldsymbol{k+1}}_\pi(s) = \mathcal{R}^\pi_s + \hspace{-0.1cm} \bigvee_{s'} v^{oldsymbol{k}}_\pi(s') p^\pi_{s,s'}$$

### Algoritmo de evaluación de política

#### Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathbb{S}: v \leftarrow V(s) V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta,|v-V(s)|) until \Delta < \theta
```

# Programación

## Función de Valor Óptima

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

# Optimalidad de MDP

$$\exists \ \pi_* \ / \pi_* \geq \pi \ \forall \ \pi$$
 such that

 $\forall s, a$ 

$$v_*(s) = v_{\pi_*}(s), \qquad q_*(s,a) = q_{\pi_*}(s,a)$$

$$\pi_*(s) = arg\max_a q_*(s,a)$$
 $v_*(s) = \max_a q_*(s,a)$ 

### Ecuación de optimalidad de Bellman

$$v_*(s) = \max_a [\mathcal{R}^a_s + V\!\!\!\sum_{s'} p^a_{s,s'} v_*(s')]$$

Son ecuaciones NO lineales!

¿Cómo obtener  $v_*$  y  $\pi_*$ ?

#### Evaluación y Mejora

$$oldsymbol{v_\pi(s)} = \sum_a [\mathcal{R}^a_s + \sum_{s'} oldsymbol{v_\pi(s')} p^a_{s,s'}] oldsymbol{\pi(a|s)}$$





#### Evaluation / Improvement

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*,$$

$$egin{aligned} q_{\pi_k}(s,a) &= \mathcal{R}^a_s + \gamma \sum_{s'} v_{\pi_k(s')} p^a_{s,s'} \ \pi_{k+1}(s) &= arg\max_a q_{\pi_k}(s,a) \end{aligned}$$

#### Evaluación y mejora

- Primero evaluamos la función de valor de la política actual
- Luego obtenemos la política greedy respecto de la función de valor actual
- Esta nueva política es estrictamente mejor que la anterior (si fueran iguales serían óptimas)
- Como el número de políticas es finito (conjunto de estados y acciones finitos), entonces este procedimiento debe terminar eventualmente

#### Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization  $V(s) \in \mathbb{R}$  and  $\pi(s) \in \mathcal{A}(s)$  arbitrarily for all  $s \in S$
- 2. Policy Evaluation

 $\Delta \leftarrow 0$ 

Loop for each 
$$s \in S$$
:  
 $v \leftarrow V(s)$ 

$$v \leftarrow V(s)$$
  
 $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$   
 $\Delta \leftarrow \max(\Delta,|v-V(s)|)$ 

until  $\Delta < \theta$  (a small positive number determining the accuracy of estimation)

- 3. Policy Improvement policy-stable  $\leftarrow true$ 
  - For each  $s \in S$ :

$$old\text{-}action \leftarrow \pi(s)$$
  
$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If  $old\text{-}action \neq \pi(s)$ , then  $policy\text{-}stable \leftarrow false$ If policy-stable, then stop and return  $V \approx v_*$  and  $\pi \approx \pi_*$ ; else go to 2

#### Iteración de Valor:

- Un solo paso de mejora y evaluación
- Se puede pensar como usar la ecuación de optimalidad de Bellman para el update:

$$v_s^{k+1}(s) = \max_a [\mathcal{R}_s^a + \bigvee_{s'} p_{s,s'}^a v_s^k(s')]$$

#### **Otras variantes:**

- Actualizar un sólo estado en cada iteración evaluation / improvement.
- Actualizar algunos estados en evaluation y otros en improvement.
- No actualizar los estados que sean poco probables.

#### Value Iteration, for estimating $\pi pprox \pi_*$

Algorithm parameter: a small threshold  $\theta > 0$  determining accuracy of estimation Initialize V(s), for all  $s \in S^+$ , arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each  $s \in S$ :

 $v \leftarrow V(s)$ 

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$
  
$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until  $\Delta < \theta$ 

Output a deterministic policy,  $\pi \approx \pi_*$ , such that  $\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ 

### Eficiencia de Programación Dinámica

- Complejidad polinómica en n y k, donde n es el número de estados y k el número de acciones
- Como el número de políticas determinísticas es k<sup>n</sup>, es exponencialmente mejor que búsqueda directa
- En la práctica se pueden resolver problemas con millones de estados

# Programación

# **Ejercicio**

• Problema del apostador

#### Lectura recomendada

- AlphaStar de deepmind le gana a profesionales del Starcraft 2: <a href="https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/">https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/</a>
- hilo de twitter con aplicaciones de RL: https://twitter.com/jackclarkSF/status/919584404472602624