Restanță Structuri Algebrice în Informatică 06/06/2021

Nume:	Punctaj parţial 1
Prenume:	Punctaj parțial 2

IMPORTANT!!. Punctul din oficiu este acordat pentru aflarea lui a şi b pe care, ulterior, le veți înlocui în toate enunțurile problemelor. Pe foile voastre de examen veți scrie enunțurile problemelor cu a şi b înlocuite cu valorile anterior determinate.

$$a = \dots,$$
 $b = \dots,$

unde

- (1) a este egal cu suma dintre numerele de litere ale cuvintelor care compun numele vostru de familie. (de exemplu, dacă numele de familie este Popescu-Simion atunci a=7+6=13, suma dintre 7 (nr. de litere al cuvântului Popescu) și 6 (nr. de litere al cuvântului Simion); dacă numele de familie este Moisescu atunci a=8)
- (2) b este egal cu suma dintre numerele de litere ale cuvintelor care compun prenumele vostru. (de exemplu, dacă prenumele este Andreea-Beatrice-Luminița atunci b=7+8+8=23, suma dintre 7 (nr. de litere al cuvântului Andreea), 8 (nr. de litere al cuvântului Beatrice) și 8 (nr. de litere al cuvântului Luminița).)

Problema	Punctaj	Total
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
oficiu	1	
Total	10	

Justificați toate răspunsurile!

- 1. Există permutări de ordin $a \cdot b + 1$ în grupul de permutări S_{a+b} ?
- 2. Se consideră permutarea $\sigma=(1,\ldots,b)(b+1,\ldots,b+a)$, un produs de 2 cicli disjuncți de lungime b, respectiv a, din S_{a+b} . Determinați toate permutările $\tau\in S_{a+b}$ astfel încât $\tau^2=\sigma$.
- 3. Calculați $b^{b^{a^a}} \pmod{29}$.
- 4. Spunem că un polinom cu coeficienți întregi f(X) este Eisenstein modulo p, unde p este un număr prim, dacă există $d \in \mathbb{Z}$ astfel încât f(X+d) este ireductibil conform criteriului lui Eisenstein aplicat numărului prim p. Determinați toate numerele prime p pentru care $f(X) = X^3 + b$ este Eisenstein modulo p. În plus, pentru fiecare astfel de p, precizați și un $d \in \mathbb{Z}$ ca mai sus.
- 5. Determinați numărul elementelor de ordin 24 din grupul produs direct $(\mathbb{Z}_{2^a}, +) \times (\mathbb{Z}_{3^b}, +)$.
- 6. Considerăm pe \mathbb{R} relația binară ρ dată astfel: $x\rho y$ dacă x+y=a+b. Să se arate că ρ este relație de echivalență, să se calculeze clasele de echivalență ale lui a și 2021 și să se determine un sistem complet de reprezentanți pentru această relație de echivalență. Este $f: \mathbb{R}/\rho \mapsto \mathbb{R}$, $f(\hat{x}) = 4x^2 4ax 4bx + 4 + a^2 + 2ab + b^2$ o funcție bine definită?
- 7. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$ definită astfel:

$$f(x) = \begin{cases} ax - b, & \text{dacă } x < -2, \\ 3x^2 + 6x + 3 - 2a - b, & \text{dacă } x \ge -2. \end{cases}$$

Decideţi dacă funcţia f este injectivă, surjectivă, respectiv bijectivă. Calculaţi $f^{-1}([-a-1,a+1])$ şi f([-3,0]).

- 8. Determinați toate morfismele de grupuri de la $(\mathbb{Z}_a, +)$ la $(\mathbb{Z}_b, +)$. Precizați care dintre aceste morfisme sunt injective.
- 9. Determinați un generator al idealului din $\mathbb{Q}[X]$ generat de polinoamele $X^a 1, X^b 1, X^{a+b} 1$.