Úloha č. 2 **Tranzistor jako lineární zesilovač**

Katedra / předmět: KAE/ZEK Vypracoval: Jan Kaska

Skupina: Jan Kaska, Tomáš Pretl

Datum měření: **22.2.2016**

Teoretický úvod

Bipolární tranzistor

Bipolární tranzistor je aktivní polovodičové součástka ze dvou PN přechodů, tedy tří vrstev s různým typem vodivosti. Rozlišujeme tranzistory PNP a NPN. Jednotlivé vývody jsou označeny emitor (E), báze (B) a kolektor (C). Velikost proudu mezi emitorem a kolektorem je řízena proudem mezi bází a emitorem. Rozlišujeme tři základní zapojení tranzistoru: společný emitor (SE), společný kolektor (SC) a společná báze (SB). Pro proudy v tranzistoru platí rovnice $I_E = I_B + I_C$. Přičemž proud I_B je asi tisíckrát menší než proud I_C . Obecně jsou bipolární tranzistory popsány H-parametry z nichž je nejznámější proudový zesilovací činitel $h_{21} = \frac{I_C}{I_B}$, též často uváděný v katalogu. Dané H-parametry je nutné pro každé zapojení přepočítat. Bipolární tranzistory jsou základní součástkou zesilovačů a bezkontaktních spínačů.

Zapojení se společným emitorem (SE)

Nejčastější zapojení s největším výkonovým zesílením (100 \div 2000). Přechod báze-emitor je polarizován v propustném směru a má tedy relativně malý vstupní odpor (100 Ω \div 1k Ω), naopak přechod kolektor-emitor je polarizován v závěrném směru a zapojení má velký výstupní odpor (10k Ω \div 100k Ω). Zesiluje jak napětí (10 \div 100) tak proud (10 \div 200) a otáčí vstupní signál fázově o 180°. Zapojení je využíváno jako běžný zesilovací stupeň, případně jako výkonový spínač.

Zapojení se společným kolektorem (SC)

Toto zapojení disponuje velkým vstupním odporem ($10k\Omega \div 100k\Omega$) a malým výstupním odporem ($100\Omega \div 1k\Omega$). Napěťové zesílení je vždy menší než jedna, proudové zesílení je oproti tomu velké ($100 \div 200$). Zapojení se nejčastěji využívá ke snímání signálů s velkým vnitřním odporem či k přizpůsobení výstupu zesilovače na malý zatěžovací odpor. Zapojení na rozdíl od SE neotáčí fázi. Výstupní napětí je přibližně stejné jako vstupní čehož plyne název emitorový sledovač.

Zapojení se společnou bází (SB)

Nejméně používané zapojení, má malý vstupní odpor $(10\Omega \div 100\Omega)$ a velký výstupní odpor $(100k\Omega \div 1M\Omega)$. Napěťové zesílení je velké přibližně jako v zapojení SE $(10 \div 100)$, proudové zesílení je naopak menší než 1. Zapojení se nejčastěji používá ke snímání signálů zdrojů s malým vnitřním odporem.

Úkol měření

Pro zapojení tranzistoru se společným emitorem (SE) a společným kolektorem (SC) nastavte vhodný pracovní bod a určete vstupní impedanci zesilovače $Z_{\rm IN}$, výstupní impedanci zesilovače $Z_{\rm OUT}$, napěťové zesílení $A_{\rm U}$ a proudové zesílení $A_{\rm I}$.

Schéma zapojení

Obrázek 1: Společný emitor (SE)

Obrázek 2: Společný kolektor (SC)

Naměřené a vypočítané hodnoty

Společný emitor (SE)
$$U_{CE} = 4,48 V$$
 $u_G = 975 mV$ $u_B = 11 mV$ $u_{20} = 2,44 V$ $u_2 = 1,07 V$

Společný kolektor (SC)

$$U_{CE} = 6.7 V$$

 $u_G = 980 mV$
 $u_B = 490 mV$
 $u_{20} = 0.47 V$
 $u_2 = 0.43 V$

Výpočty pro SE:

$$I_C = \frac{U_C}{R_C} = \frac{6,05}{1000} = 6,05 \, mA$$

$$i_{IN} = \frac{u_G - u_B}{R_B} = \frac{(975 - 11) \cdot 10^{-3}}{100 \cdot 10^3} = 9,64 \ \mu A$$

$$Z_{IN} = \frac{u_B}{i_{IN}} = \frac{11 \cdot 10^{-3}}{9,64 \cdot 10^{-6}} \doteq 1141,1 \,\Omega$$

$$i_D = \frac{u_B}{\frac{R_1 \cdot R_2}{R_1 + R_2}} = \frac{11 \cdot 10^{-3}}{\frac{(22 \cdot 10^3) \cdot 4590}{(22 \cdot 10^3) + 4590}} = 2,89 \,\mu A$$

$$Z_{INTR} = \frac{u_B}{i_B} = \frac{u_B}{i_{IN} - i_D} = \frac{11 \cdot 10^{-3}}{(9,64 - 2,89) \cdot 10^{-6}} = 1629,6 \,\Omega$$

$$Z_{OUT} = R_Z \cdot \frac{u_{20} - u_2}{u_2} = 820 \cdot \frac{2,44 - 1,07}{1,07} = 1049,9 \,\Omega$$

$$A_U = \frac{u_{20}}{u_B} = \frac{2,44}{11 \cdot 10^{-3}} = 221,81$$

$$A_I = \frac{i_C}{i_B} = \frac{\frac{u_{20}}{R_C}}{i_{IN} - i_D} = \frac{\frac{2,44}{1000}}{(9,64 - 2,89) \cdot 10^{-6}} = 361,48$$

Výpočty pro SC:

$$I_E = \frac{U_E}{R_E} = \frac{5.2}{1000} = 5.2 \ mA$$

$$i_{IN} = \frac{u_G - u_B}{R_B} = \frac{(980 - 490) \cdot 10^{-3}}{10 \cdot 10^3} = 49 \,\mu A$$

$$Z_{IN} = \frac{u_B}{i_{IN}} = \frac{490 \cdot 10^{-3}}{49 \cdot 10^{-6}} \doteq 10000 \,\Omega$$

$$i_D = \frac{u_B}{\frac{R_1 \cdot R_2}{R_1 + R_2}} = \frac{490 \cdot 10^{-3}}{\frac{(22 \cdot 10^3) \cdot (22 \cdot 10^3)}{(22 \cdot 10^3) + (22 \cdot 10^3)}} = 44,45 \,\mu A$$

$$Z_{INTR} = \frac{u_B}{i_B} = \frac{u_B}{i_{IN} - i_D} = \frac{490 \cdot 10^{-3}}{(49 - 44,45) \cdot 10^{-6}} = 107692,3 \,\Omega$$

$$Z_{OUT} = R_Z \cdot \frac{u_{20} - u_2}{u_2} = 220 \cdot \frac{0,47 - 0,43}{0,42} = 20,46 \,\Omega$$

$$A_U = \frac{u_{20}}{u_B} = \frac{0.47}{490 \cdot 10^{-3}} \doteq 0.96$$

$$A_I = \frac{i_E}{i_B} = \frac{\frac{u_{20}}{R_E}}{i_{IN} - i_D} = \frac{\frac{0,47}{1000}}{(49 - 44,45) \cdot 10^{-6}} \doteq 103,3$$

Společný emitor (SE) $I_C = 6,05~mA$ $Z_{IN} = 1141,1~\Omega$ $Z_{INTR} = 1629,6~\Omega$ $Z_{OUT} = 1049,9~\Omega$ $A_U = 221,81$ $A_I = 361,48$

Společný kolektor (SC) $I_E = 5.2 \ mA$ $Z_{IN} = 10000 \ \Omega$ $Z_{INTR} = 107692.3 \ \Omega$ $Z_{OUT} = 20.46 \ \Omega$ $A_U = 0.96$ $A_I = 103.3$

Závěr

V zapojení se společným emitorem byl očekáván poměrně malý až střední vstupní odpor $(100\Omega \div 1k\Omega)$, výstupní odpor by měl být oproti tomu velký $(10k\Omega \div 100k\Omega)$. Vstupní odpor teoretickým předpokladům odpovídá, výstupní odpor jsme čekali větší. Příčinou tohoto rozdílu může být trojúhelníkový signál na vstupu namísto požadovaného sinusového průběhu. Napěťové a proudové zesílení vyšlo ve stovkách, což odpovídá předpokladu.

V případě zapojení se společným kolektorem vyšel vstupní odpor velmi vysoký, odpor samotného tranzistoru je potom ve stovkách $k\Omega$, oproti tomu je výstupní odpor velice malý (desítky Ω). Napěťové zesílení dle předpokladu vyšlo menší než 1, ačkoliv se k této hodnotě blíží, proudové zesílení potom vyšlo ve stovkách.