MA111 Tutorial Sheet 4 – Final Answer Key

- 1. (a) open, path-connected, simply connected
 - (c) path-connected, simply connected
 - (d) open, path-connected
- 2. not conservative
- $3. \ 4/e$
- 4. not path-independent
- 5. $C_1(t) = (t\pi, 0)$ for $t \in [0, 1]$; $C_2(t) = (t\pi/2, 0)$ for $t \in [0, 1]$
- 6. (a) $f = ye^{xy} + K$
 - (b) $f = ye^x + x\sin(y) + K$
 - (c) $f = x^2y + xy^{-2} + K$
- 7. (a) $f(x,y,z) = x^2yz \cos(x)$; $\int_{\mathbf{c}} \mathbf{F} \cdot \mathbf{ds} = 0$

(b)
$$f(x,y) = xe^{xy}$$
; $\int_{\mathbf{c}} \mathbf{F} \cdot \mathbf{ds} = -1$

(c)
$$f(x, y, z) = xyz + z^2$$
; $\int_{\mathbf{c}} \mathbf{F} \cdot \mathbf{ds} = 77$

8.
$$\phi(x,y,z) = x^2y + xz^3$$
; $\oint_C \mathbf{v} \cdot d\underline{s} = 0$

- 9. (b) 2π
 - (c) not conservative
- 10. Hint: $\mathbf{F} = \nabla g$, where $g(r, \phi, \theta) = \int_0^r s f(s) ds$