Chapter 2: Intelligent Agent

Agents

An agent is anything that can be viewed as

- perceiving its environment through sensors and
- acting upon that environment through actuators

Agents

- Agents include humans, robots, softbots,...etc
- Human agent:
 - Sensors: eyes, ears, ...
 - Actuators: hands, legs, mouth, ...
- Robotic agent:
 - Sensors: cameras and infrared range finders
 - Actuators: various motors
- Software agent:
- Sensors: keystrokes, file contents, and network packets
- Actuators: screen, writing files, and sending network packets

Agent function and agent program

•The agent function maps from percept histories to actions:

$$\mathcal{P}^* o \mathcal{A}$$

 An agent program implements the agent function to run on a physical architecture.

Example: A Vacuum-cleaner agent

Percepts:location and contents, e.g. [A, dirty]

(Idealization: locations are discrete)

Actions: LEFT, RIGHT, SUCK, NOP

A Reflex Vacuum-Cleaner

```
function Reflex-Vacuum-Agent ([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
	:

Rationality

Rationality depends on:

- Performance measure
- Agent's (prior) knowledge
- Agent's percepts to date
- Available actions

Rational Agent Definition

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Rational Agent

- Rational agent maximizes the expected utility.
- •We take the expectation of the utility due to uncertainty in environment (stochastic and partially-observable).

Rational Agent

- •Consider the simple vacuum cleaner that cleans a square if it is dirty and moves to the other square if not. Is it rational?
 - It depends!
- Assume that there is a penalty of one point for each movement left or right, is the this simple cleaner rational?
 - No, it would perform poorly as it oscillates between right and left locations after cleaning them.
- •What if clean squares can become dirty again?
 - The agent should occasionally check and re-clean them if needed.

Rationality versus Omniscience

- •A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date.
- •Rational ≠ omniscient
- •An omniscient agent knows the actual outcomes of actions and acts accordingly.
- Rationality does not mean perfection!
- •Rationality maximizes the *expected* performance, while perfection maximizes the *actual* performance.

Learning and autonomy

- An agent can learn from what it perceives.
- •A rational agent should be autonomous—it should learn what it can to compensate for partial or incorrect prior knowledge.
- •For example, a vacuum-cleaning agent that learns to forecast where and when additional dirt will appear will do better than one that does not.

Task environment

To design a rational agent, we need to specify a task environment

a problem specification for which the agent is a solution

PEAS: to specify a task environment

- Performance measure
- Environment
- Actuators
- sensors

Performance measure:

0 ?

Environment:

0

Actuators:

0 1

Sensors:

· 5

Performance measure:

safety, speed, legal, comfortable, maximize profits

Environment:

0

Actuators:

0

Sensors:

· ?

Performance measure:

safe, fast, legal, comfortable, maximize profits

Environment:

roads, other traffic, pedestrians, customers

Actuators:

0

Sensors:

0 7

Performance measure:

safe, fast, legal, comfortable, maximize profits

Environment:

roads, other traffic, pedestrians, customers

Actuators:

steering, accelerator, brake, signal, horn

Sensors:

0 ?

Performance measure:

safe, fast, legal, comfortable, maximize profits

Environment:

roads, other traffic, pedestrians, customers

Actuators:

steering, accelerator, brake, signal, horn

Sensors:

cameras, sonar, speedometer, GPS

PEAS: Internet Shopping Agent

- Performance measure: price, quality, appropriateness, efficiency
- Environment: current and future WWW sites, vendors, shippers
- Actuators: display to user, follow URL, fill in form
- Sensors: HTML pages (text, graphics, scripts)

PEAS: Spam Filtering Agent

Performance measure: false positives, false negatives

Environment: email client or server

Actuators: mark as spam, delete,...

Sensors: emails , traffic, etc.

Task Environment Types

- •Fully observable (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time.
- Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent.
- •In a fully-observable and deterministic environment the agent need not deal with uncertainty.
- •Episodic (vs. sequential): An episodic environment means that subsequent episodes do not depend on what actions occurred in previous episodes. Such environments do not require the agent to plan ahead.

Task Environment Types

- Static (vs. dynamic): An environment which does not change while the agent is thinking is static.
- •In a static environment the agent need not worry about the passage of time while he is thinking, nor does he have to observe the world while he is thinking.
- In static environments the time it takes to compute a good strategy does not matter.
- •If the environment itself does not change with the passage of time but the agent's performance score does, then we say the environment is **semi-dynamic**.

Environment Types

Discrete (vs. continuous): : If the number of distinct percepts and actions is limited the environment is discrete, otherwise it is continuous.

Single agent (vs. multi-agent): An agent operating by itself in an environment.

 If more than one agent exists consider cooperation, coordination, competition, communication or random behavior.

What's the real world like?

Environment Types

	Crossword puzzle	Back- gammon	Part-picking Robot	Taxi
Fully-Observable	V	V	X	×
Deterministic	V	X	×	×
Episodic	X	X	✓	×
Static	V	V	×	×
Discrete	V	V	×	×
Single-Agent	V	×	V	X

- The environment type largely determines the agent design
- •The real world is partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent Structure

- Agent= Architecture+ Program
- •The job of AI is to design the agent program that implements the agent function mapping percepts to actions.

Simple reflex agent

function REFLEX_VACUUM_AGENT(percept)
returns an action
(location, status) = UPDATE_STATE(percept)
if status = DIRTY then return SUCK;
else if location = A then return RIGHT;
else if location = B then return LEFT;

Simple Reflex Agents

What is the problem of this design?

Reflex Agents with State (Model)

- Can handle partially observable environments.
- •By keeping an internal state of the world (a model of the world) defining how the world evolves. Not exactly (uncertainty/inference).

Goal-Based Agents

Goal-Based Agents

- Embed the goal info describing the agent desirable behavior.
- •These agents usually first find plans then execute them.
- Examples: Search (Ch3-5) and planning (Ch10)
- More adaptive to different environments than reflex agents.

Utility-Based Agents

How is this different from a goal-based agent?

Utility-Based Agents (cont.)

- Goals alone are not enough to generate high-quality behavior in most environments
- The utility defines performance measure.
- •Can combine multiple goals into a single utility function and can weight them according to their importance.
- •For example: The auto driver agent, which way is safer/quicker.
- Simple and complex decisions (Ch16,17)

Learning Agent

Learning Agent

- •The learning agent allows the agent to operate in initially unknown environments and it can adapt to different environments as well.
- •The components of the learning agent:
 - Learning element: it improves the agent's performance
 - Performance element: it takes in percepts and decides on actions. (Agent itself in the previous structures)
 - Critic: It gives feedback to the learning element on how the agent is doing and determines how the performance element should be modified to do better in the future
 - Problem generator. It suggests actions that will lead to new and informative experiences. (exploration)

Summary

- Agents interact with environments through actuators and sensors
 - The agent function describes what the agent does in all circumstances
 - The agent program implements the agent function
- •A rational agent maximizes expected performance
- PEAS descriptions define task environments
- Environments are categorized along several dimensions:
 - Observable? Deterministic? Episodic? Static? Discrete? Single-agent?
- Agent program types:
 - Simple reflex, model-based agents, reflex agents, goal-based agents, utility based agents, and learning agents