Basic functions and the arc space of L-monoids

These are notes for two talks in the Beyond Endoscopy Learning Seminar at Columbia, Spring 2018. Our main references are [1] and [2].

Recall that two key constructions are required in the Braverman-Kazhdan program for proving analytic continuation and functional equations for general Langlands L-function $L(s,\pi,\rho)$. One is a suitable space of Schwartz functions $S^{\rho}(G)$ at each local place, containing a distinguished function encoding the unramified local L-factor (known as the basic function \mathcal{C}_{ρ} after Sakellaridis). The other is a generalized Fourier transform (known as the Hankel transform after Ngo) preserving the Schwartz space and the basic function. With a global Poisson summation formula, one should be able to establish the desired analytic properties of $L(s,\pi,\rho)$ in a way analogous to Godement-Jacquet theory for standard L-function on GL_n . Our goal today is to discuss the basic function \mathcal{C}_{ρ} and to explain its an algebro-geometric interpretation due to Bouthier-Ngo-Sakellaridis, using the L-monoid G_{ρ} appeared in previous talks and its arc space.

[-] Contents

Satake/Langlands parameters

Basic functions

Vinberg's universal monoids

Ngo's L-monoids

Arc spaces

IC sheaves and functions

A global model

Geometric Satake

Satake/Langlands parameters

Let F be a non-archimedean local field. Let G be a split reductive group over F. Let $\hat{G}=\hat{G}(\mathbb{C})$ be its dual group. Let $\mathcal{H}=C_c^\infty(G(\mathcal{O})\backslash G(F)/G(\mathcal{O}))$ be the spherical Hecke algebra. Recall that the classical Satake transform

Sat:
$$\mathcal{H} \to \mathbb{C}[X_*(T)], \quad f \mapsto \left(t \mapsto \delta_B(t)^{1/2} \int_{N(F)} f(tn) dn\right),$$

induces an algebra isomorphism onto the W-invariants

$$\mathcal{H} \xrightarrow{\sim} \mathbb{C}[X_*(T)]^W$$
.

An unramified representation π of G(F) corresponds to a 1-dimensional character of \mathcal{H} , given by its action on the spherical vector

$$\pi(f)v = \int_{G(F)} f(g)\pi(g)vdg, \quad v \in \pi^{G(O)}.$$

Langlands noticed that $\mathbb{C}[X_*(T)]^W$ is the coordinate ring of the variety \hat{T}/W , so a 1-dimensional character $\mathbb{C}[X_*(T)]^W$ corresponds to a point $\alpha_\pi \in \hat{T}/W$, i.e., a semisimple conjugacy class in \hat{G} . In this we obtain a bijection $\pi \mapsto \alpha_\pi$ between unramified representations of G(F) and the Satake (or rather, Langlands) parameters. The Satake transform is then characterized by the identity

$$\operatorname{tr} \pi(f) = \operatorname{Sat}(f)(\alpha_{\pi}), \quad f \in \mathcal{H}.$$

Also notice that the target of the Satake isomorphism can be identified with the representation ring of \hat{G} , and thus with the \hat{G} -invariant regular functions $\mathcal{O}(\hat{G})^{\hat{G}}$ on \hat{G} (via the trace map).

Remark 1 Notice the Satake isomorphism is of combinatorial nature: both the source and the target of depends only on the root datum of G and the size of the residue field q. In fact, the Satake isomorphism can be defined over

Links

Chao Li's Homepage

Columbia University

Math Department

Basic functions

The importance of the Satake parameter is due to its key role in defining the unramified local L-factor $L(s, \pi, \rho)$. Let $\rho: \hat{G} \to \mathrm{GL}(V)$ be an irreducible representation. Recall by definition

$$L(s, \pi, \rho) = \det(1 - \rho(\alpha_{\pi})q^{-s})^{-1}$$
.

Now if we have a diagonal matrix $A = \operatorname{diag}(\alpha_1, \dots \alpha_k)$, then

$$\det(1-At)^{-1} = \prod_{i=1}^{k} (1-\alpha_i t)^{-1} = \prod_{i=1}^{k} (1+\alpha_i t + \alpha_i^2 t^2 + \dots) = 1+(\operatorname{tr} A)t + (\operatorname{tr} \operatorname{Sym}^2 A)t$$

Therefore

$$L(s,\pi,\rho) = \sum_{d \geq 0} \operatorname{tr}(\operatorname{Sym}^d \rho)(\alpha_\pi) q^{-ds}.$$

To remove the dependence on $\ \pi$, we are motivated to introduce the following definition.

Definition 1 We define $C_{\rho}^{d}(s)$ to be the inverse under the Satake transform of the function $\operatorname{tr}\operatorname{Sym}^{d}\rho\cdot q^{-ds}$ (so $C_{\rho}^{d}(s_{0})\in\mathcal{H}$ for any given $s=s_{0}$. Define the *basic function* to be

$$C_{\rho}(s) = \sum_{d>0} C_{\rho}^{d}(s).$$

When $Re(s) \gg 0$, the sum is locally finite and makes sense as a function on G(F).

Even though each \mathcal{C}_{ρ}^d is compactly supported (with support lies in the K-double cosets indexed by dominant coweights of G corresponding to weights of $\operatorname{Sym}^d \rho$), the support gets larger when d increases and \mathcal{C}_d is not longer compactly supported. Moreover, the values of \mathcal{C}_{ρ} on each K-double cosets can be written down in terms of representation theory (related to Kazhdan-Lusztig polynomials) and thus involve quite complicated combinatorial quantities.

Example 1 Take $G = \mathbb{G}_m$, and $\rho = \operatorname{Std}$. Since G = T, both the source and target of the Satake isomorphism are identified as functions on \mathbb{Z} . The Satake transform sends the characteristic function $\mathbf{1}_{\operatorname{val}=d}$ to $\operatorname{tr} \operatorname{Sym}^d \rho : t \mapsto t^d$. So $\mathcal{C}_\rho^d = \mathbf{1}_{\operatorname{val}=d}$ and the basic function is given by $\mathcal{C}_\rho = \mathbf{1}_{\mathcal{O}}$ (always viewed as a function on G(F)). This generalizes to the standard representation of $G = \operatorname{GL}_n$, in which case $\mathcal{C}_\rho^d = \mathbf{1}_{\operatorname{M}_n(\mathcal{O})_{\operatorname{val}(\det)=d}}$ (this is already a nontrivial computation) and hence $\mathcal{C}_\rho = \mathbf{1}_{\operatorname{M}_n(\mathcal{O})}$.

Example 2 Take $G = \mathbb{G}_m$, and $\rho : \mathbb{G}_m \to \mathrm{GL}_2(\mathbb{C}), t \mapsto \mathrm{diag}(t,t)$ (i.e., $\rho = \mathrm{Std} \oplus \mathrm{Std}$). Then $\mathrm{Sym}^d \rho$ has dimension d+1 given by $t \mapsto (t^d, \dots, t^d)$, whose trace is $t \mapsto (d+1)t^d$. So the corresponding basic function is given by

$$C_{\rho} = \sum_{d>0} (d+1)\mathbf{1}_{\text{val}=d} = \text{val}(\cdot) + 1.$$

This is no longer the characteristic function of any set. More generally, take $G=\mathbb{G}_m$ and $\rho=\chi_1\oplus\cdots\oplus\chi_n$ ($\chi_i\geq 0$). Then

$$C_{\rho} = \sum_{d>0} \#\{(a_1, \dots, a_n) : \sum_{i} a_i \chi_i = d, a_i \ge 0\} \cdot \mathbf{1}_{\text{val}=d}.$$

So the value of C_{ρ} encodes partition numbers, and can not have simple formula. We also see that the support of C_{ρ} is contained in the cone generated by the weights of ρ .

Example 3 Take $G = GL_2$ and $\rho = \operatorname{Sym}^k \operatorname{Std}$. Then computing \mathcal{C}_ρ amounts to decomposing $\operatorname{Sym}^d(\operatorname{Sym}^k \operatorname{Std})$ into irreducibles, again this is a difficult combinatoric problem. In fact, we have

$$\operatorname{Sym}^d\operatorname{Sym}^k\cong\bigoplus_{i=0}^{[dk/2]}(\operatorname{Sym}^{dk-2i}\otimes\det{}^{dk-i})^{\oplus N(d,k,i)}.$$

Here the multiplicity N(d, k, i) = p(d, k, i) - p(d, k, i - 1), and p(d, k, i) is the number of partitions of i into at most k parts, having largest part at most d.

I hope these examples illustrate that writing down an explicit formula for the basic function is quite hopeless in general (but see Wen-Wei Li's paper). Instead we would like to focus on finding some natural algebro-geometric object which encodes these combinatoric information. This is the main motivation to introduce the $\,L$ -monoid.

Let G be a split reductive group over a field k (later k will be the residue field of the local field F). Assume G has a nontrivial map to \mathbb{G}_m , denoted by $\det: G \to \mathbb{G}_m$. Assume $G' = \ker(\det)$ is semisimple and simply-connected. Our first goal is to construct Vinberg's universal monoid \bar{G} . It is a normal affine variety \bar{G} fitting into a commutative diagram

$$G^{+} \xrightarrow{\bar{G}} \bar{G}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{G}_m^r \longleftrightarrow \mathbb{A}^r.$$

This monoid is universal in the sense that every reductive monoid with derived group equal to G' can be obtained by base change from \bar{G} (in fact the construction of \bar{G} will only depend on G').

Let $T'\subseteq G'$ be a maximal torus of G'. Let $G^+=(T'\times G')/\Delta(Z(G'))$. Let r be the semisimple rank of G'. Let $\{\omega_1,\ldots,\omega_r\}$ be the set of fundamental weights of G' (dual to the coroots). Let ρ_i be the fundamental representation of G' associated to ω_i . We extend ρ_i from G' to G^+ by

$$\rho_i^+: G^+ = (T' \times G')/\Delta(Z(G')) \to GL(V_i), \quad (t,g) \mapsto \omega_i(w(t^{-1}))\rho_i(g).$$

Here $w \in W$ is the longest element in the Weyl group. We also extend the simple roots α_i from T' to G^+ by $\alpha_i^+: G^+ \to \mathbb{G}_m, \quad (t,g) \mapsto \alpha_i(t).$

These extensions together give a homomorphism

$$(\alpha^+, \rho^+): G^+ \to \mathbb{G}_m^r \times \prod_{i=1}^r \mathrm{GL}(V_i).$$

Definition 2 We define \bar{G} to be the closure of the image of G^+ in

$$\mathbb{A}^r \times \prod_{i=1}^r \operatorname{End}(V_i).$$

Example 4 Consider $G = \operatorname{GL}_2$. Then $G' = \operatorname{SL}_2$, $T' \cong \mathbb{G}_m$, $G^+ = (T' \times \operatorname{SL}_2)/\mu_2$. We have r = 1, $\rho_1 = \operatorname{Std}$, $w(\operatorname{diag}(t, t^{-1})) = \operatorname{diag}(t^{-1}, t)$, $\omega_1(\operatorname{diag}(t, t^{-1})) = t$, $\alpha_1(\operatorname{diag}(t, t^{-1})) = t^2$. So $(\alpha^+, \rho^+) : (\operatorname{diag}(t, t^{-1}), g) \mapsto (t^2, \operatorname{diag}(t, t) \cdot g)$.

So $\bar{G} = \{(t, g) \in \mathbb{A}^1 \times M_2 : t = \det g\}$. In other words, this is a monoid in \mathbb{A}^5 defined by the equation t = ac - bd (which is smooth).

Ngo's L-monoids

Now let $ho:\hat{G} o \mathrm{GL}(V)$ be an irreducible representation. Let $T^{\mathrm{ad}}=T'/Z(G')$ be a maximal torus in the adjoint group of G'. The highest weight of ho defines a cocharacter $\lambda_{\rho}:\mathbb{G}_m o T$, hence a cocharacter of $\lambda_{\rho,\mathrm{ad}}:\mathbb{G}_m o T^{\mathrm{ad}}$. We identify

$$T^{\mathrm{ad}} \cong \mathbb{G}_m^r$$
, $t \mapsto (\alpha_1(t), \dots, \alpha_r(t))$,

using a choice of simple roots. Then

$$\lambda_{\rho,\mathrm{ad}}: \mathbb{G}_m \to \mathbb{G}_m^r$$

can be extended to a morphism of monoids

$$\bar{\lambda}_{\rho,\mathrm{ad}}: \mathbb{A}^1 \to \mathbb{A}^r.$$

Definition 3 The L-monoid \bar{G}_{ρ} is defined by base changing the universal monoid $\bar{G} \to \mathbb{A}^r$ along $\bar{\lambda}_{\rho,\mathrm{ad}}$. So we have a commutative diagram

$$\bar{G}_{\rho}^{\times} \longrightarrow \bar{G}_{\rho}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{G}_{m} \longrightarrow \mathbb{A}^{1}.$$

Example 5 Again take $G = \operatorname{GL}_2$, $\rho = \operatorname{Sym}^n(\operatorname{Std})$. Then $\lambda_{\rho,\operatorname{ad}} : \mathbb{G}_m \to \mathbb{G}_m, t \mapsto t^n$. So we have $\bar{G}_{\rho} = \{(t,g) \in \mathbb{A}^1 \times \operatorname{M}_2 : t^n = \det g\}.$

Notice that the unit group is GL_2 when F is odd and $\mathbb{G}_m \times SL_2$ when F is even (the derived group is SL_2 in both cases). Notice that this monoid is singular at the origin when n>1, which reflects the fact that the basic function are more complicated than the n=1 case.

Remark 2 Assuming that $\mathbb{G}_m \xrightarrow{\det} \hat{G} \xrightarrow{\rho} \mathrm{GL}(V)$ is the identity map (e.g., n=1 in the previous example) ensures that the unit group of \bar{G}_{ρ} is G and we obtain a commutative diagram

The construction of \bar{G}_{ρ} can be characterized in terms of toric varieties: it is the unique reductive monoid with unit group G such that the closure of any maximal torus T in \bar{G}_{ρ} is the toric variety associated to T and the cone generated by the weights of ρ .

Arc spaces

Directly comes from the construction of \bar{G}_{ρ} one sees that $\bar{G}_{\rho}(\mathcal{O}) \cap G(F)$ is exactly supported on the K-double cosets associated dominant weights generated by the weights of ρ . So the basic function \mathcal{C}_{ρ} can be viewed as a function on $\bar{G}_{\rho}(\mathcal{O}) \cap G(F)$. Now take F = k((t)). Then we have the advantage of endowing $\bar{G}_{\rho}(\mathcal{O})$ an algebro-geometric structure over the residue field k.

Definition 4 Let X be an algebraic variety over a field k. We define its n-th jet space $\mathcal{L}_n(X)$ to be the functor sending a k-algebra R to the set $X(R[t]/t^{n+1})$. If X is affine, then $\mathcal{L}_n(X)$ is also representable by an affine X-scheme of finite type. In particular, $\mathcal{L}_n(X)(k) = X(k[t]/t^{n+1}) = \operatorname{Hom}(k[t]/t^{n+1}, X)$ consists of order- F arcs in X. When n=1 we exactly recover the tangent bundle of X. For more general F, $\mathcal{L}_n(X)$ contains information about the singularities of X.

Example 6 $\mathcal{L}_n(\mathbb{A}^1) = \mathbb{A}^{n+1}$.

Example 7 Notice that if X is defined by f(x,y)=0, then $\mathcal{L}_n(X)$ is defined by the equation $f(x+a_1t+\cdots a_nt^n,y+b_1t+\cdots b_nt^n)=0\pmod{t^n}$ with extra variables a_i,b_i . Take $X=\{xy=0\}\subseteq\mathbb{A}^2$. Then $\mathcal{L}_n(X)$ is given by

$$(x_0 + x_1t + \dots + x_nt^n)(y_0 + y_1t + \dots + y_nt^n) = 0 \pmod{t^{n+1}}.$$

One can find $\mathcal{L}_n(X)$ exactly has n+2 irreducible components, each isomorphic to \mathbb{A}^{n+1} given by the first k of the x-coordinates are o and first ℓ of the y-coordinates equal to zero, where $k+\ell=n+1$. The component with k=0 maps to the line x=0, and the component with k=n+1 maps to the other line y=0. All the rest n-1 components maps to the singularity (the origin).

Example 8 Take $X = \{x^3 + y^3 + z^3 = 0\} \subseteq \mathbb{A}^3$. Then $\mathcal{L}_n(X)$ has one irreducible component of dimension 2(m+1) which dominates X, and has one extra component of the same dimension mapping to the origin when $m \equiv 2 \pmod{3}$.

If X is smooth, then the natural map $\mathcal{L}_n(X) \to X$ is smooth and surjective. In general, if X is not smooth, then $\mathcal{L}_n(X) \to X$ may fail to be surjective, and the transition maps can be rather complicated.

Definition 5 We define the (formal) arc space to be $\mathcal{L}(X) = \varprojlim_n \mathcal{L}_n(X)$. In particular, $\mathcal{L}(X)(k) = X(k[[t]]) = X(\mathcal{O})$, which consists of (formal) arcs $\mathbb{D} \to X$ of X (here $\mathbb{D} = \operatorname{Spf} k[[t]]$ is the formal disc).

Again if X is smooth then $\mathcal{L}(X) \to X$ is formally smooth and surjective. A theorem of John Nash says that the inverse image of X_{sing} in $\mathcal{L}(X)$ has only finitely many irreducible components, each corresponds to a component in the inverse image of X_{sing} in any resolution of singularities of $Y \to X$.

Definition 6 Let $X^{\circ} \subseteq X$ be a smooth open dense subvariety. We define $\mathcal{L}^{\circ}(X) \subseteq \mathcal{L}(X)$ to be the space of non-degenerate arcs in X° . Namely for a k-algebra R, $\mathcal{L}^{\circ}(X)(R)$ consists of arcs $\phi: \mathbb{D}_R \to X$ such that inverse image $\phi^{-1}(X^{\circ})$ is open in \mathbb{D}_R and surjects to $\operatorname{Spec} R$. In particular, we have

$$\mathcal{L}^{\circ}(X)(k) = X(\mathcal{O}) \cap X^{\circ}(F).$$

If one has a ℓ -adic sheaf \mathcal{F} on $\mathcal{L}(X)$, then taking the Frobenius trace gives us a function

$$C_F : \mathcal{L}(X)(k) = X(\mathcal{O}) \to \overline{\mathbb{Q}_\ell}, \quad x \mapsto \text{Tr}(\text{Frob}_x : \mathcal{F}_x).$$

(if \mathcal{F} is a complex, then take alternating trace on the cohomology groups). Similarly, if we only have a sheaf on $\mathcal{L}^{\circ}(X)$, we can still obtain a function on $X(\mathcal{O}) \cap X^{\circ}(F)$. When specializing to $X = \bar{G}_{\rho}$ and $X^{\circ} = G$, we can obtain a function on $\bar{G}_{\rho}(\mathcal{O}) \cap G(F)$ as desired. Our next goal is then to construct a canonical sheaf on $\mathcal{L}^{\circ}(\bar{G}_{\rho})$, whose associated function gives the basic function \mathcal{C}_{ρ} .

If $\,X\,$ is a variety over $\,k\,$, there is a canonical sheaf associated to $\,X\,$, i.e., its IC sheaf which generalizes the constant sheaf and encodes the singularities of $\,X\,$.

Definition 7 Let $j: X^{\circ} \hookrightarrow X$ be a smooth open dense subvariety. We define

$$IC_X := j_{!*}\mathbb{Q}_{\ell} = \operatorname{im}(j_{!}\overline{\mathbb{Q}_{\ell}} \to Rj_{*}\overline{\mathbb{Q}_{\ell}}),$$

to be the middle extension of the constant sheaf on X° (so IC_X a complex of sheaves in the derived category of X). It is independent of the choice of X° and measures the singularities of X along the boundary. The shift $\mathrm{IC}_X[\dim X]$ serves as the dualizing sheaf for the Poincare(-Verdier) duality for singular varieties, and is a basic example of a perverse sheaf.

However, because the arc space $\mathcal{L}(X)$ is infinite type over k, there is no good theory of IC sheaves/perverse sheaves on $\mathcal{L}(X)$. Fortunately, the singularities of $\mathcal{L}(X)$ have a finite dimensional model.

Definition 8 A finite dimensional formal model of $\mathcal{L}(X)(k)$ at $x \in \mathcal{L}(X)(k)$ is a formal scheme Y_y (the subscript means taking formal completion), where Y is a finite type k-scheme and $y \in Y(k)$ a point such that $\mathcal{L}(X)_x \cong Y_y \times \mathbb{D}^{\infty}$.

Theorem 1 (Drinfeld (2002), generalizing Grinberg—Kazhdan (2000) for char k=0) Finite dimensional model exists at each point $x \in \mathcal{L}^{\circ}(X)(k)$.

Bouthier-Ngo-Sakellaridis [1] show that the stalk $IC_{Y,y}$ of the IC sheaf of Y does not depend on the choice of the finite dimensional formal model Y_y . It now makes sense to define the IC function on the non-degenerate arcs by

$$IC_{\mathcal{L}(X)}: \mathcal{L}^{\circ}(X)(k) \to \overline{\mathbb{Q}_{\ell}}, \quad x \mapsto tr(\operatorname{Frob}_{y}: IC_{Y,y}).$$

It is a numerical invariant encoding the singularities of X. By taking $X^\circ = G$ and $X = \bar{G}_\rho$, we obtain ${\rm IC}_\rho: \bar{G}_\rho(\mathcal{O}) \cap G(F) \to \overline{\mathbb{Q}_\ell}$.

Now we can state the main theorem of [1].

Theorem 2 (Bouthier-Ngo-Sakellaridis (2016)) Let ν_G be the half sum of all positive roots. Then $\mathrm{IC}_{\varrho} = \mathcal{C}_{\varrho}(-\langle \nu_G, \lambda_{\varrho} \rangle).$

Example 9 When $G = \operatorname{GL}_n$ and $\rho = \operatorname{Std}$, we have $\langle \nu_G, \lambda_\rho \rangle = (n-1)/2$. So we recover $\operatorname{tr}(\pi \otimes |\det|^s|)(\operatorname{IC}_\rho) = L(s-(n-1)/2,\pi)$.

The shift (n-1)/2 matches with the Godement-Jacquet zeta integral as well.

A global model

To prove the main theorem, we need a concrete construction of the finite dimensional model of $\mathcal{L}(X)$ at non-degenerate arcs. To do so we make use of a global smooth projective curve C/k. From now on, let $X=\bar{G}_{\rho}$ (with left and right G -actions).

Definition 9 Recall that an S-point of the quotient stack [X/G] consists of a principal G-bundle $\mathcal E$ over S together with a G-equivariant map $\phi: \mathcal E \to X$. Consider the stack $\operatorname{Map}(C, [X/G])$, whose k-points consists of maps $\phi: C \to [X/G]$, namely a principal G-bundle $\mathcal E$ over k together a G-equivariant homomorphism $\mathcal E \to X$. We now add the non-degeneracy and define M to be the open substack of $\operatorname{Map}(C, [X/G])$ such that $\phi: \mathcal E \to X$ factors through $\phi: \mathcal E|_U \to G$ for a open subset $U\subseteq C$. Then one can show that M is an algebraic space locally of finite type.

Definition 10 To relate M to $\mathcal{L}(X)$, we fix a k-point $v \in C(k)$. Define \tilde{M} to be the stack classifying a point $(\mathcal{E},\phi) \in M$ together with $\theta: \mathbb{D}_v \times G \cong \mathcal{E}_v$, a trivialization of \mathcal{E} on the formal disc \mathbb{D}_v . Then we have a canonical projection

$$\tilde{M} \rightarrow M$$
,

which is a torsor under $\mathcal{L}(G)$, hence is formally smooth. On the other hand, given a point $(\mathcal{E},\phi,\theta)\in \tilde{M}$, we obtain an arc by the composite map

$$\mathbb{D}_v \to \mathbb{D}_v \times G \xrightarrow{\theta} \mathcal{E}_v \hookrightarrow \mathcal{E} \xrightarrow{\phi} X.$$

Moreover, this arc is non-degenerate (by the non-degenerate requirement when defining $\,M\,$). Thus we obtain a morphism

$$\tilde{M} \rightarrow \mathcal{L}^{\circ}(X)$$
.

The following essentially says that there is no obstruction for deforming G -bundles while fixing the induced formal arc.

Proposition 1 Let $x \in \mathcal{L}^{\circ}(X)(k)$. Let $y \in \tilde{M}(k)$ be a point such that $\phi|_{C \setminus v}$ lies in the smooth locus of X, and such that its image in $\mathcal{L}^{\circ}(X)(k)$ is x (such y always exists by Beauville-Laszlo patching the trivial G-bundle). Then $\tilde{M}_{v} \to (\mathcal{L}^{\circ}X)_{x}$ is formally smooth.

It follows that

$$M_y \times \mathbb{D}^{\infty} \cong \tilde{M}_y \times \mathbb{D}^{\infty} \cong (\mathcal{L}^{\circ} X)_x \times \mathbb{D}^{\infty},$$

and hence M_y can serve as a finite dimensional formal model of $\mathcal{L}^{\circ}(X)$ at x . In particular, we obtain

$$IC_M(y) \cong IC_\rho(x)$$

Geometric Satake

Let $y\in M(k)$. From the fixed map $\det:G\to\mathbb{G}_m$ one naturally associates to y a line bundle on k. Using the trivialization of $\mathcal{E}|_U$ induced from $\phi:\mathcal{E}|_U\to G$, we also obtain a generic section of this line bundle, hence a divisor D on k.

Let $D=\sum n_iv_i$ and $M_D\subseteq M$ be the substack whose associated divisor is D. By the Beauville-Laszlo patching, the data of a G-bundle $\mathcal E$ and a trivialization away from D is the same as giving G-bundles $\mathcal E_i$ on the formal disc $\mathbb D_{v_i}$ together with a trivialization on the punctured formal disc $\mathbb D_{v_i}^*$. Then we obtain a map into the affine Grassmannians Gr (whose k-points are $G(F)/G(\mathcal O)$) at v_i 's,

$$M_D o \prod_{i=1}^m \operatorname{Gr}_{v_i}$$
.

Moreover, a trivialization of $\mathcal{E}|_U$ actually comes from a G-equivariant map $\mathcal{E} \to X = \bar{G}_\rho$ if and only if \mathcal{E}_i has invariant $\leq n_i \lambda_\rho$ for each i. Thus we obtain an isomorphism

$$M_D \cong \prod_{i=1}^m \operatorname{Gr}_{v_i, \leq n_i \lambda_\rho}.$$

Notice each term on the right is indeed a projective variety (a Schubert variety), which models singularity of $\mathcal{L}^{\circ}(X)(k)$ when $n_i \to \infty$. Varying D, we obtain an isomorphism

$$M(k) \cong \prod_{v \in |C|}' (\bar{G}_{\rho}(\mathcal{O}_v) \cap G(F_v))/G(\mathcal{O}_v).$$

Using this isomorphism and a fixed $v \in C(k)$, we can choose the point $y \in M(k)$ explicitly corresponding to a point $x \in \mathcal{L}^{\circ}(X)(k)$ such that $\mathrm{IC}_{\varrho}(x)$ is the v-component of $\mathrm{IC}_{M}(y)$.

Now recall the geometric Satake correspondence.

Theorem 3 (Mirkovic-Vilonen (2007)) Let K_{ρ} be the IC sheaf of the Schubert variety $\operatorname{Gr}_{\leq \lambda_{\rho}}$ shifted by its dimension $\langle 2\nu_G, \lambda_{\rho} \rangle$. Then the map $\rho \mapsto K_{\rho}$ gives an equivalence of tensor categories between the finite dimensional representations of \hat{G} and $\mathcal{L}(G)$ -equivariant perverse sheaves on Gr (the tensor structure given the convolution product).

Bouthier-Ngo-Sakellaridis show that

$$IC_{M_D} \cong \boxtimes_{i=1}^m K_{v_i, \operatorname{Sym}^{n_i}(\rho)} [-n_i \langle 2\nu_G, \lambda_\rho \rangle] (-n_i \langle \nu_G, \lambda_\rho \rangle).$$

(The symmetric power essentially comes from looking at the map $C^{n_i} \to \operatorname{Sym}^{n_i} C$). Hence by the geometric Satake we have

$$IC_M = \prod_{v \in |C|} \sum_{d \ge 0} C_{\rho,v}^d (-\langle \nu_G, \lambda_\rho \rangle).$$

The main theorem now follows by taking the v-component.

Last Update: 05/05/2018. Copyright © 2015 - 2018, Chao Li.

References

[1] Bouthier, A. and Ngô, B. C. and Sakellaridis, Y., On the formal arc space of a reductive monoid, Amer. J. Math. 138 (2016), no.1, 81--108.

 $\it functions, http://math.uchicago.edu/{\sim}ngo/takagi.pdf.$

[2] Ngo, Bao Chau, Hankel transform, Langlands functoriality and functional equation of automorphic L-