EYE-READER

BRAIN 4

Fergus Ayton, Yushang Chen, Afrin Jannat, Pooja Satish, Wancheng Liu Liu, Shaoji Jin

WHAT IS THE PROBLEM?

PROBLEM: PEOPLE WITH
LIMITED MOBILITY NEED
HELP TO DO BASIC TASKS
SUCH AS READING

GOAL: ENHANCE THE
READING EXPERIENCE FOR A
BROAD RANGE OF USERS,
MAKING IT MORE
ACCESSIBLE, CONVENIENT,
AND ENJOYABLE.

WHAT IS THE SOLUTION?

OUR PRODUCT

Figure 1-Product Schematic

DATA COLLECTION AND PROCESSING

Figure 2-Example Data Stream

CLASSIFICATION

METHODOLOGY OF PREDICTING LABEL

DATA LABELLING

Label all the signals for events and non-event

FEATURE MATRIX

Conduct a feature matrix using signals and labels

FEATURE SELECTION

Select significant features

CLASSIFIERS

Fit the feature matrix to different classifiers

EVALUATION

CROSS VALIDATION

ACCURACY VS LATENCY

SUMMARY OF RESULTS

PAGE TURN ACCURACY = 91% START/STOP ACCURACY = 80%

LIMITATIONS

- Time latency
 - Left/Right ~ 1-1.5 s
 - Blink ~ 1.5-2s
- Electrode positioning on temples
- Blink start/stop low robustness

IMPROVEMENTS

- Second brain box with muscular electrode positioning to improve blink accuracy
- More data collection to improve accuracy

A1: GROUP PRESENTATION ROLES

AFRIN: PRODUCING SLIDES, Q&A PREP

FERGUS: PRESENTING, PRODUCING SLIDES

YUSHANG: PRESENTING DEMO, SCRIPT

POOJA: PRESENTING, PRODUCING SLIDES

SHOAJI: PRODUCING SLIDES/SCRIPT

WANCHENG: PRODUCING SLIDES/SCRIPT

A2: UNDERSTANDING THE PHYSICS

MOVEMENT OF A **EACH EYE IS AN DIPOLE CAUSES A ELECTRIC DIPOLE CHANGING ELECTRIC FIELD ELECTRODES PLACED CLOSE TO EYE PICK UP CHANGING**

ELECTRIC FIELD

A3: COM PORT NOISE REDUCTION

A4: CLASSIFICATION

Data Labelling

No.
1 value_mean
2value_median
3value_standard_deviation
4value_variance
5 value_skewness
6 value_kurtosis
7value_maximum
8value_minimum
9 value_mean_abs_change
10value_mean_change
11value_autocorrelation_lag_1
12value_quantile_q_0.25
13value_quantile_q_0.75
14value_longest_strike_above_mean
15value_longest_strike_below_mean
16value_count_above_mean
17value_count_below_mean
18value_cid_ce_normalize_True
19value_first_location_of_maximum
20 value_first_location_of_minimum
21 Label

Conducting a feature matrix

Selecting significant features

A5: LIVE LATENCY EVALUATION

A6: L IVE ROBUSTNESS EVALUATION

A7: OUR MULTIDISCIPLINARY APPROACH

