#### Q1A



#### Q1B

From Q1A, the  $\emph{V}_{th}$  voltage is approximated at 0.2V.

Figure 2.1: the transistor operates in the linear and saturation region. Saturation occurs at

$$V_{DS} \ge V_{GS} - V_{th} = 0.6 - 0.2 = 0.4$$



Figure 2.2: the transistor operates in the linear and saturation region. It enters saturation when

$$V_{DS} \ge V_{GS} - V_{th} = 1.2 - 0.2 = 1.0 \text{V}$$



### Q1C



# Q2A

Figure 5.1



Figure 5.2



### Q2B

#### R0=100K



#### R0=200K





## Q4



#### Q5

Α

Given,  $V_{th}=0.2$  from graphical inspection then we can solve a system of equations for eta and n.

$$I = 0.5\beta (V_{GS} - V_{th})^n$$

$$421E - 6 = 0.5\beta(0.5 - 0.2)^n$$

$$965E - 6 = 0.5\beta(0.8 - 0.2)^n$$

Then  $\beta = 0.00356$  and n = 1.197

P

Given,  $V_{th}=0.2$  from graphical inspection then we can solve a system of equations for eta and n.

$$I = 0.5\beta (V_{GS} - V_{th})^n$$

$$282E - 6 = 0.5\beta(0.5 - 0.2)^n$$

$$624E - 6 = 0.5\beta(0.8 - 0.2)^n$$

Then  $\beta = 0.00224$  and n = 1.146

C

$$\frac{\beta_N}{\beta_P} = \frac{0.00356}{0.00224} = 1.59$$

D