XV Diffusion thermique

1 Position du problème

On considère une barre métallique homogène de longueur L et de section S, dont les parois latérales sont calorifugées.

Ses extrémités sont plongées dans deux bains liquides, dont les températures sont maintenues à des valeurs fixées T_0 et T_1 (bain thermostaté pour ce qui concerne T_0 et mélange eau-glace pour ce qui concerne T_1).

La barre est initialement à la température T_1 ; on souhaite simuler l'évolution au cours du temps du profil de température T(x,t).

La température T(x,t) vérifie l'équation différentielle $\frac{\partial^2 T}{\partial x^2} - \frac{1}{\kappa} \frac{\partial T}{\partial t} = 0$ avec κ une constante appelée diffusivité thermique (vu en spé).

On introduira la grandeur adimensionnée $\theta(x,t) = \frac{T(x,t) - T_1}{T_0 - T_1}$ qui mesure l'écart de température ramené à

l'écart maximal et qui vérifie la même équation différentielle que T(x,t).

Déterminer $\theta(x,0)$ ainsi que les conditions aux limites $\theta(0,t)$ et $\theta(L,t)$ aux extrémités.

2 Résolution numérique avec Python

Après avoir effectué une discrétisation spatiale de la tige ainsi qu'une discrétisation temporelle, montrer que : $\theta(x_i, t + \Delta t) = \theta(x_i, t) + \Delta t \times \frac{\theta(x_{i+1}, t) - 2\theta(x_i, t) + \theta(x_{i-1}, t)}{\Delta x^2}$

Déterminer les valeurs de $\theta(x_i, t_j)$ en différents points, à différents instants puis tracer les profils de température $\theta = f(x)$ à différentes dates t.

3 Courbes et commentaires

A l'oral:

- commenter les profils de température obtenus (conditions aux limites et évolution au cours du temps).
- interpréter la courbe obtenue en régime stationnaire.
- vidéo projeter le programme Python et commenter la méthode de résolution