

Supplementary Fig S1. Alignment of amino acids specific to Cs6g17570, AtMYB113 and SlMYB75. The amino acids were aligned using CLUSTAL X and analyzed with MEGA version 6 software. Completely conserved and highly conserved residues are colored black and grey, respectively. Dashes are gaps introduced to maximize alignment. The alignment was produced from three amino acid sequences from *Citrus sinensis* (Cs6g17570, *KT757348*), *Arabidopsis thaliana* (AtMYB113, *NM_105308*), *Solanum lycopersicum* (SlMYB75, *solyc10g086250*).

Supplementary Fig S2. SIMYB75 was involved in various hormones or stresses response. a-f. Leaves of one-month-old tomato plants treated with NaCL, Cold, ABA, MeJA, SA and Eth were harvested to analyse the gene expression level. Data represent means \pm SD of three biological replicates and analysed by student's t test. *, P <0.05; and **, P <0.01 (Student's t test). g, Promoter region of SIMYB75 and its putative cis-elements.

Supplementary Fig S3. Gene ontoloty (GO) enrichment analysis of the DEGs with predicted function. The go terms enriched by DEGs based on biological process, cellular component and molecular function, respectively.

Supplementary Fig S4. KEGG enrichment scatter plot of DEGs. The y-axis represents the name of pathway, and the x-axis represents the gene count. The color represents the –log (q-value) and the dot size represents the gene ratio.

Supplementary Table S1 Information of eight MYB-binding conserved cis-elements used in yeast one-hybrid experiments.

Conserved Element	Sequence	Representative sequence
MYBST1	GGATA	TGGATAA
MYBCORE	CNGTTR	TCAGTTAT
MYBPLANT	MACCWAMC	AAACCAACCC
MYBPZM	CCWACC	ACCTACCC
AMYBOX1	TAACARA	ATAACAAAT
MYB2CONSENSUSAT	YAACKG	TTAACTGA
AMYBOX2	TATCCAT	ATATCCATG
MYB1LEPR	GTTAGTT	AGTTAGTTG

Supplementary Fig S5. Analysis of promoter sequence upstream of the ATG of *LOXC*, *AADC*2 and *TPS* genes. The 1000bp promoter sequence of *LOXC* (a), 951bp promoter sequence of *AADC*2 (b) and 1046bp promoter sequence of *TPS* (c) were analysed by New Place database. MYB2AT, MYBCONSENSUSAT and MYBCORE were highlighted in yellow; MYBOX1 and MYBGAHV were highlighted in green; MYB1AT was highlighted in blue; MYBST1 was highlighted in pink; MYB1LEPR was highlighted in purple; MYBATRD22 was highlighted in cyan; AMYBOX2 was highlighted in gray; MYBPLANT and MYBPZM were highlighted in bold and red.

$Supplementary\ Table\ S2\ Primers\ sequence\ used\ in\ amplification,\ qPCR,\ yeast\ one-hybrid\ and\ dual-luciferase\ experiments.$

	Primers Sequence		
Name/ID	Forward (5'-3')	Reverse (5'-3')	
SIMYB75	GCGGCCGCATGAATACTCCTATGTGTGCATCGT	CCTGCAGGATTAAGTAGATTCCATAAGTCAATA	
q-SIMYB75	CCTCAACCTCGGAACTTCTC	TCTCCTATTGGCTTCTCACAAA	
q-SlUBI	GCCGACTACAACATCCAGAAGG	TGCAACACAGCGAGCTTAACC	
SIPAL/Solyc00g282510.2	AATTGCTTCTAGTCGTGGACAG	ACAAGGACTTGTCTCAGCTTCTG	
SlANS/Solyc08g080040.3	ACGAACAGGATTTTGCTGCT	TTTGAGCTCAGCAACTGCAT	
CHS1/Solyc09g091510.3	ACCAACAAGGTTGCTTTGCC	GAGATTCACTGGGTCCACGG	
3GT/Solyc10g083440.1	AAACAAGGCAATGACACGCC	CCCTGTTTCCTCCTCTGCTT	
LOXC/Solyc01g006540.3	GCAATGCATCATGTGTGCTA	GTAAATGTCGAATTCCCTTCG	
LOXB/Solyc01g099190.3	ACATCGTGGCATACAGGTCA	TGGATAGCCACCAGATAATTGGA	
CXE1/Solyc01g108560.4	ATGCCAATGGTGATGGTCGT	ATCGGATCCTTCCCCCAGAA	
TPS/Solyc06g060180.2	AAGATCTGGACCTGGCAAGC	TTGCGCGACTATACTGAGGC	
ACS2/Solyc01g095080.3	TGTTAGCGTATGTATTGACAACTGG	TCATAACATAACTTCACTTTTGCATTC	
ACS4/Solyc05g050010.3	CTCCTCAAATGGGGAGTACG	TTTTGTTTGCTCGCACTACG	
E4/ Solyc03g111720.3	AGGGTAACAACAGCAGTAGCA	CCCAACCTCCGTCTTCAC	
E8/ Solyc09g089580.3	GGCACCATTCAACATACCG	CTTTCACCGAAGAAGCACG	
RIN/ Solyc05g012020.3	ATGCAGCACCATCAACACAT	CTCCAAATTCAAAGCATCCA	
Bhlh150/Solyc09g065100.2	CCTCTCTTGGACGGTGTTGT	GCTTGTTGTGGCTCATTGAA	
Solyc11g017470.2	CGAAACTTCACGCCGATTCC	TTCCCACTCACTCGGTTTCG	
Solyc06g051260.3	TGAGATTCAGCAAGAGGGGT	CCGGTCCCACACATTCAAGA	
AD-SIMYB75	CGGAATTCATGAATACTCCTATGTGTGCATCGT	CGAGCTCATTAAGTAGATTCCATAAGTCAATA	
AbAi-MYBST1	CTGGATAATGGATAAG	TCGACTTATCCATTATCCATTATCCAGAGCT	
AbAi-MYBCORE	CTCAGTTATTCAGTTATCAGTTATG	TCGACATAACTGAATAACTGAATAACTGAGAGCT	
AbAi-MYBPLANT	CAAACCAACCCAAACCAACCCAAACCAACCCG	TCGACGGGTTGGTTTGGGTTTGGGTTTGAGCT	
AbAi-MYBPZM	CACCTACCCACCTACCCG	TCGACGGGTAGGTGGGTAGGTGAGCT	
AbAi-AMYBOX1	CATAACAAATATAACAAATATAACAAATG	TCGACATTTGTTATATTTGTTATATTTGTTATGAGCT	
AbAi-MYB2CONSENSUSAT	CTTAACTGATTAACTGAG	TCGACTCAGTTAATCAGTTAAGAGCT	
AbAi-AMYBOX2	CATATCCATGATATCCATGG	TCGACCATGGATATCATGGATATCATGGATATGAGCT	
AbAi-MYB1LEPR	CAGTTAGTTGAGTTAGTTGG	TCGACCAACTAACTCAACTAACTCAACTAACTGAGCT	
pGREEN62- SIMYB75	CGAGCTCATGAATACTCCTATGTGTGCATCGT	GCTCTAGATTAATTAAGTAGATTCCATAAGTCA	
pGREEN0800-LOXC	CCCTCGAGTGAAGAGTTAATATTTAGTGAAAAT	GCGTCGACTTTTATTATTTCAAACTTTAATTGA	
pGREEN0800-LOXB	GGGGTACCGTTATATTTTAATTTCATTTGTTG	GCGTCGACGATTAACTATTTAAACAGAAATATT	
pGREEN0800-LOXF	GGGGTACCTATATATATATATATATATATATA	GCGTCGACTTTTTTAAAAAAAAAAATGTTTTGT	
pGREEN0800-AADC2	GGGGTACCTAATAGTTATTGATTTTATTAATGA	GCGTCGACTCTTGGAGCTAAATTTTTTATTTTT	
pGREEN0800-CXE1	GGGGTACCCGGACTTAATATTTTAAAATAATGG	GCGTCGACTGCTAAAAGCTAAGTTGCAAAGAAG	
pGREEN0800-TPS	GGGGTACCTAATATTTTCAAGAAAAAAATTTAA	GCGTCGACTGCTCCACTCATACCTACCCTCTCT	
pGREEN0800-ACS2	GGGGTACCTTGAGAAAATACTTTCTATGAAAAT	CCCTCGAGTTTTTTTTACTAAATGAGTTTAGAA	
pGREEN0800-ACS4	GGGGTACCCAGTTAATAATTCAAAATATTTAAA	GCGTCGACTAGTCAAATCAATCAAAAAAAAAGGCC	
pGREEN0800-RIN	CCCTCGAGTGTGACTATTGATAGAATCCATTCA	GCGTCGACATTGTATGAAGAAAAAAAATGTAAA	
pGREEN0800-AP2a	GGGGTACCTTGGGTTTAAGAAACAAGAGGAGAA	GCGTCGACTTCTTTTGTCGATAGAATTAAAATG	