video game analysis

Kashish Pandey

Importing Libraries

```
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.2
## - Attaching packages -
                                                                   — tidyverse 1.3.0 —
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.5 ✓ dplyr 1.0.3
## / tidyr 1.1.2 / stringr 1.4.0
## / readr 1.4.0 / forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.2
## Warning: package 'tibble' was built under R version 4.0.2
## Warning: package 'tidyr' was built under R version 4.0.2
## Warning: package 'readr' was built under R version 4.0.2
## Warning: package 'purrr' was built under R version 4.0.2
## Warning: package 'dplyr' was built under R version 4.0.2
## Warning: package 'stringr' was built under R version 4.0.2
## Warning: package 'forcats' was built under R version 4.0.2
## -- Conflicts ----
                                                        ---- tidyverse conflicts() -
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(tree)
```

```
## Warning: package 'tree' was built under R version 4.0.2
## Registered S3 method overwritten by 'tree':
##
    method
##
    print.tree cli
library(caret)
## Warning: package 'caret' was built under R version 4.0.2
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
library(elasticnet)
## Warning: package 'elasticnet' was built under R version 4.0.2
## Loading required package: lars
## Warning: package 'lars' was built under R version 4.0.2
## Loaded lars 1.2
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.2
## corrplot 0.84 loaded
library(kernlab)
## Warning: package 'kernlab' was built under R version 4.0.2
## Attaching package: 'kernlab'
```

```
## The following object is masked from 'package:purrr':
##
## cross

## The following object is masked from 'package:ggplot2':
##
## alpha
```

EDA

na.strings is removing null/blank values within the dataset

viewing the first 5 lines of the csv file

```
head(vg_sales)
```

```
##
                           Name Platform Year of Release
                                                                  Genre Publisher
## 1
                    Wii Sports
                                     Wii
                                                     2006
                                                                 Sports Nintendo
## 2
            Super Mario Bros.
                                     NES
                                                     1985
                                                               Platform Nintendo
                                                                 Racing Nintendo
               Mario Kart Wii
                                                     2008
## 3
                                     Wii
## 4
            Wii Sports Resort
                                     Wii
                                                     2009
                                                                 Sports Nintendo
## 5 Pokemon Red/Pokemon Blue
                                      GB
                                                     1996 Role-Playing Nintendo
## 6
                        Tetris
                                      GB
                                                     1989
                                                                 Puzzle Nintendo
     NA Sales EU Sales JP Sales Other Sales Global Sales Critic Score Critic Count
##
## 1
        41.36
                  28.96
                             3.77
                                         8.45
                                                      82.53
                                                                        76
                                                                                      51
## 2
        29.08
                   3.58
                             6.81
                                         0.77
                                                      40.24
                                                                        NA
                                                                                      NA
## 3
        15.68
                  12.76
                            3.79
                                          3.29
                                                      35.52
                                                                        82
                                                                                      73
## 4
        15.61
                  10.93
                            3.28
                                          2.95
                                                      32.77
                                                                        80
                                                                                      73
## 5
        11.27
                   8.89
                           10.22
                                         1.00
                                                      31.37
                                                                        NA
                                                                                      NA
## 6
        23.20
                   2.26
                             4.22
                                         0.58
                                                      30.26
                                                                        NA
                                                                                      NA
##
     User Score User Count Developer Rating
## 1
            8.0
                             Nintendo
                        322
                                             Е
## 2
                                  <NA>
             NA
                         NA
                                         <NA>
## 3
            8.3
                        709
                             Nintendo
                                             E
            8.0
## 4
                        192
                             Nintendo
                                             Ε
## 5
             NA
                         NA
                                  <NA>
                                         <NA>
## 6
                                  <NA>
                                         <NA>
```

general summary of dataset

```
# summary(vg_sales)
```

checking number of null values within the dataset

```
colSums(is.na(vg_sales))
```

Publisher	Genre	Year_of_Release	Platform	Name	##
54	2	269	0	2	##
Global_Sales	Other_Sales	JP_Sales	EU_Sales	NA_Sales	##
0	0	0	0	0	##
Developer	User_Count	User_Score	Critic_Count	Critic_Score	##
6623	9129	9129	8582	8582	##
				Rating	##
				6769	##

dropping NA values from dataset

many missing values within this dataset

it is the combination of 2 different datasets and many of the original observations

did not match the data from the second set

```
vg_sales <- vg_sales[complete.cases(vg_sales), ]
colSums(is.na(vg_sales))</pre>
```

```
Platform Year_of_Release
##
               Name
                                                                 Genre
                                                                              Publisher
##
##
          NA_Sales
                           EU_Sales
                                             JP_Sales
                                                           Other_Sales
                                                                           Global_Sales
##
##
      Critic_Score
                       Critic_Count
                                          User_Score
                                                            User_Count
                                                                              Developer
                                                                                       0
##
            Rating
##
##
```

getting internal structure of each feature

```
str(vg_sales)
```

```
## 'data.frame':
                 6825 obs. of 16 variables:
                          "Wii Sports" "Mario Kart Wii" "Wii Sports Resort" "New Super
## $ Name
                   : chr
Mario Bros." ...
                          "Wii" "Wii" "DS" ...
##
   $ Platform
                   : chr
  $ Year_of_Release: int
                          2006 2008 2009 2006 2006 2009 2005 2007 2010 2009 ...
                          "Sports" "Racing" "Sports" "Platform" ...
##
   $ Genre
                    : chr
##
  $ Publisher
                   : chr
                          "Nintendo" "Nintendo" "Nintendo" ...
   $ NA_Sales
                   : num
                          41.4 15.7 15.6 11.3 14 ...
##
                          28.96 12.76 10.93 9.14 9.18 ...
## $ EU_Sales
                   : num
## $ JP_Sales
                          3.77 3.79 3.28 6.5 2.93 4.7 4.13 3.6 0.24 2.53 ...
                   : num
                          8.45 3.29 2.95 2.88 2.84 2.24 1.9 2.15 1.69 1.77 ...
## $ Other Sales
                   : num
                          82.5 35.5 32.8 29.8 28.9 ...
## $ Global Sales
                  : num
                          76 82 80 89 58 87 91 80 61 80 ...
## $ Critic Score
                    : int
                          51 73 73 65 41 80 64 63 45 33 ...
## $ Critic Count
                   : int
## $ User Score
                   : num
                          8 8.3 8 8.5 6.6 8.4 8.6 7.7 6.3 7.4 ...
## $ User Count
                   : int
                          322 709 192 431 129 594 464 146 106 52 ...
                          "Nintendo" "Nintendo" "Nintendo" ...
## $ Developer
                   : chr
                          "E" "E" "E" "E" ...
## $ Rating
                   : chr
```

examining outlier data for sales

```
summary(vg sales$NA Sales)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
   0.0000 0.0600 0.1500 0.3945 0.3900 41.3600
summary(vg sales$EU Sales)
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
   0.0000 0.0200 0.0600 0.2361 0.2100 28.9600
summary(vg sales$JP Sales)
     Min. 1st Qu. Median
                             Mean 3rd Qu.
## 0.00000 0.00000 0.00000 0.06416 0.01000 6.50000
summary(vg sales$Other Sales)
##
      Min.
            1st Qu.
                      Median
                                 Mean 3rd Qu.
   0.00000 0.01000 0.02000 0.08268 0.07000 10.57000
summary(vg sales$Global Sales)
```

Mean 3rd Qu.

0.0100 0.1100 0.2900 0.7776 0.7500 82.5300

Min. 1st Qu. Median

##

examining outlier data for score/count

```
summary(vg_sales$Critic_Score)
##
                               Mean 3rd Qu.
                                                Max.
      Min. 1st Qu. Median
##
     13.00
             62.00
                     72.00
                              70.27
                                      80.00
                                               98.00
summary(vg_sales$Critic_Count)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
      3.00
             14.00
                     25.00
                              28.93
                                      39.00 113.00
summary(vg_sales$User_Count)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
       4.0
              11.0
                       27.0
                              174.7
                                       89.0 10665.0
summary(vg sales$User Score)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                               Max.
     0.500
             6.500
                     7.500
                              7.186
                                      8.200
                                               9.600
```

critic score is int and user score is num

changing user score to int to keep it consistent

```
vg_sales$User_Score <- as.integer(vg_sales$User_Score)
summary(vg_sales$User_Score)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 6.000 7.000 6.737 8.000 9.000</pre>
```

putting critic score and user score on the same scale

user score was only out of 10; critic was out of 100 both are out of 100 now

```
vg_sales$User_Score <- vg_sales$User_Score * 10
```

rating variable there is only 1 occurrence of AO, K-A, and RP going to add AO, K-A, and RP into Mature rating and Everyone rating

```
vg_sales %>% count(Rating)
```

```
##
    Rating
               n
## 1
        ΑO
               1
## 2
          E 2082
## 3
      E10+ 930
## 4
      K-A
## 5
         M 1433
## 6
       RP
## 7
         т 2377
```

```
vg_sales <- vg_sales %>% mutate(Rating = ifelse(Rating == "AO", "M", Rating))
vg_sales <- vg_sales %>% mutate(Rating = ifelse(Rating == "K-A", "E", Rating))
vg_sales <- vg_sales %>% mutate(Rating = ifelse(Rating == "RP", "E", Rating))
vg_sales %>% count(Rating)
```

Data Visualization

number of games per rating teen games have the highest global sales

sales for each platform biggest sales from playstation 2 and xbox360

sales by genre action, sports, shooters are the top genres

sales in North America, Europe, Japan, Other north america had the highest overall sales from 1990-2016

`summarise()` has grouped output by 'area'. You can override using the `.groups` argu
ment.

top 10 best selling games globally wii sports is the #1 game sold globally

bar plot of global sales extremely skewed plot, need to change x axis to log axis

```
ggplot(vg_sales) + geom_histogram(aes(Global_Sales), fill = "#063970")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

fixing axis, better distribution - similar to gaussian distribution

```
ggplot(vg_sales) + geom_histogram(aes(Global_Sales), fill = "#063970") +
    scale_x_log10()
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


number of titles released each year there seems to be a peak within the data

10/12/21, 9:52 AM video game analysis

sales each yr vs number of releases more revenue when more titles are released

```
color <- c("Titles released" = "maroon4", "Global sales" = "royalblue")
vg_sales %>% group_by(Year_of_Release) %>%
summarise(vg_sales = sum(Global_Sales), count = n()) %>%
ggplot() + xlab("Year of Release") + ylab("Titles released") +
geom_line(aes(Year_of_Release, count, group = 1, color = "Titles released")) +
geom_line(aes(Year_of_Release, vg_sales, group = 1, color = "Global sales")) +
theme(axis.text.x = element_text(angle = 90), legend.position = "bottom") +
scale_color_manual(name="",values = color) + theme_minimal()
```


combining platform by company - to simplify all these platforms

```
vg_sales <- vg_sales %>% mutate(platform2 = case_when(
   Platform %in% c("Wii", "DS", "3DS", "WiiU", "GC", "GBA") ~ "Nintendo",
   Platform %in% c("X360", "XB", "XOne") ~ "XBox",
   Platform %in% c("PS3", "PS4", "PS2", "PS", "PSP", "PSV") ~ "PS",
   Platform == "PC" ~ "PC",
   Platform == "DC" ~ "Sega"
))
```

global sales each year for each platform nintendo and playstation both peaked around the same time

`summarise()` has grouped output by 'platform2'. You can override using the `.groups`
argument.

10/12/21, 9:52 AM video game analysis

sales for each developer need to change individual bar colors

sales for each gaming genre need to change individual bar colors

sales for each platform in each genre TOP TWO: xbox 360 - shooter ps3 - action

`summarise()` has grouped output by 'Platform'. You can override using the `.groups`
argument.

MODELS for results

Overall, the sales vary depending on the platform, release year, and developer

The top developers had the highest sales

publishers is categorical but has many values

```
## Selecting by vg_sales
```

developers is categorical but has many values

```
## Selecting by vg_sales
```

creating new variable for whether a game is created by a top developer/publisher - making it binary(0,1)

whether games are exclusively launched on a specific platform

```
vg_sales <- vg_sales %>% group_by(Name) %>% mutate(num_of_platforms = n()) %>% ungroup(N
ame)
```

training and testing data sets

```
set.seed(2000)
```

```
test_index <- createDataPartition(vg_sales$Global_Sales, p = 0.9, list = FALSE)
train_set <- vg_sales[-test_index, ]
test_set <- vg_sales[test_index, ]</pre>
```

including categorical data as well

```
totalData <- rbind(train_set, test_set)
for (f in 1:length(names(totalData))) {
  levels(train_set[, f]) <- levels(totalData[, f])
}</pre>
```

creating RMSE function

```
RMSE <- function(true_ratings, predicted_ratings){
   sqrt(mean((true_ratings - predicted_ratings)^2))
}</pre>
```

linear regression model

base line model

summary of linear regression model r^2: 0.5316

```
summary(model_lm)
```

```
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
##
      Min
              10 Median
                             3Q
                                    Max
## -3.5492 -0.6550 0.0338 0.7429 4.2654
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     98.1741865 24.1566937
                                           4.064 5.41e-05 ***
## Critic_Score
                     0.0224176 0.0043304
                                           5.177 3.00e-07 ***
                     -0.0077227 0.0035801 -2.157 0.031359 *
## User_Score
## GenreAdventure
                     -0.3436190 0.2611977 -1.316 0.188783
## GenreFighting
                      0.0901682 0.2012717 0.448 0.654306
## GenreMisc
                      0.4713842 0.2053026 2.296 0.021987 *
## GenrePlatform
                      0.1350117 0.2261371 0.597 0.550690
                     -0.5111645 0.4376765 -1.168 0.243268
## GenrePuzzle
                     -0.5712306 0.1746461 -3.271 0.001128 **
## GenreRacing
## GenreShooter
                     -0.1578747 0.1460226 -1.081 0.280019
## GenreSimulation
                     0.3908662 0.2308355 1.693 0.090878 .
## GenreSports
                     -0.4196574 0.1762289 -2.381 0.017534 *
                     -1.5527957 0.2499323 -6.213 9.23e-10 ***
## GenreStrategy
## Year of Release
                     ## Critic Count
                      0.0305187 0.0028713 10.629 < 2e-16 ***
## User Count
                      0.0003169 0.0001085 2.921 0.003607 **
## `RatingE10+`
                     -0.2095308 0.1479506 -1.416 0.157184
                     -0.6380651 0.1649593 -3.868 0.000121 ***
## RatingM
## RatingT
                     -0.4071647 0.1319754 -3.085 0.002120 **
## publisher topTRUE
                     0.3950275 0.0936635 4.218 2.82e-05 ***
## developer topTRUE
                     0.4678356 0.1379839 3.391 0.000739 ***
## num of platforms
                      0.0756197 0.0327896 2.306 0.021409 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.102 on 658 degrees of freedom
## Multiple R-squared: 0.4077, Adjusted R-squared: 0.3879
## F-statistic: 20.59 on 22 and 658 DF, p-value: < 2.2e-16
```

actual vs preds graph

```
ggplot(test_set) +
  geom_point(aes(log(Global_Sales), predicted_lm)) +
  geom_line(aes(log(Global_Sales), log(Global_Sales))) +
  xlab("Actual values") + ylab("Predicted values")
```

10/12/21, 9:52 AM video game analysis

residual plot (error vs predicted) errors are largest for larger values of global sales - heteroskedacity present

```
ggplot(test_set) + geom_point(aes(log(Global_Sales) - predicted_lm, Global_Sales)) +
    xlab("Error") + ylab("Global sales")
```


SVM Linear model

summary of SVM linear model

ksvm

##

```
summary(model_svm_linear)

## Length Class Mode
```

S4

SVM poly

might take several minutes to run because it is more mathematically complex (polynomial function)

SVM poly model summary

```
summary(model_svm_poly)
```

```
## Length Class Mode
## 1 ksvm S4
```

SVM radial

SVM Radial summary

```
summary(model_svm_rad)
```

```
## Length Class Mode
## 1 ksvm S4
```

L1 - lasso model

```
## Warning: model fit failed for Resample24: fraction=0.9 Error in elasticnet::enet(as.m
atrix(x), y, lambda = 0, ...):
## Some of the columns of x have zero variance
```

```
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : ## There were missing values in resampled performance measures.
```

summary of lasso

```
summary(model_11)
```

```
##
                Length Class
                                   Mode
## call
                  4
                                   call
                       -none-
## actions
                 23
                                   list
                       -none-
## allset
                 22
                       -none-
                                   numeric
## beta.pure
                506
                       -none-
                                   numeric
## vn
                 22
                       -none-
                                   character
## mu
                 1
                       -none-
                                   numeric
## normx
                 22
                       -none-
                                   numeric
## meanx
                 22
                       -none-
                                   numeric
## lambda
                 1
                       -none-
                                   numeric
## Llnorm
                 23
                       -none-
                                   numeric
## penalty
                 23
                       -none-
                                   numeric
## df
                 23
                       -none-
                                   numeric
## Cp
                 23
                       -none-
                                   numeric
## sigma2
                  1
                       -none-
                                   numeric
## xNames
                 22
                       -none-
                                   character
## problemType
                  1
                       -none-
                                   character
## tuneValue
                  1
                       data.frame list
## obsLevels
                  1
                       -none-
                                   logical
## param
                  0
                       -none-
                                   list
```

actual vs preds graph

```
ggplot(test_set) +
  geom_point(aes(log(Global_Sales), predicted_l1)) +
  geom_line(aes(log(Global_Sales), log(Global_Sales))) +
  xlab("Actual values") + ylab("Predicted values")
```

10/12/21, 9:52 AM video game analysis

error vs sales

```
ggplot(test_set) + geom_point(aes(log(Global_Sales) - predicted_l1, Global_Sales)) +
xlab("Error") + ylab("Global sales")
```


L2 - ridge model

12 model summary

```
summary(model_l2)
```

```
##
                Length Class
                                   Mode
## call
                  4
                                   call
                       -none-
## actions
                 23
                                   list
                       -none-
## allset
                 22
                       -none-
                                   numeric
## beta.pure
                506
                       -none-
                                   numeric
## vn
                 22
                       -none-
                                   character
## mu
                 1
                       -none-
                                   numeric
## normx
                 22
                       -none-
                                   numeric
## meanx
                 22
                       -none-
                                   numeric
## lambda
                 1
                       -none-
                                   numeric
## Llnorm
                 23
                       -none-
                                   numeric
## penalty
                 23
                       -none-
                                   numeric
## df
                 23
                       -none-
                                   numeric
## Cp
                 23
                       -none-
                                   numeric
## sigma2
                  1
                       -none-
                                   numeric
## xNames
                 22
                       -none-
                                   character
## problemType
                  1
                       -none-
                                   character
## tuneValue
                  1
                       data.frame list
## obsLevels
                  1
                       -none-
                                   logical
## param
                  0
                       -none-
                                   list
```

error vs preds

```
ggplot(test_set) +
  geom_point(aes(log(Global_Sales), predicted_12)) +
  geom_line(aes(log(Global_Sales), log(Global_Sales))) +
  xlab("Actual values") + ylab("Predicted values")
```

10/12/21, 9:52 AM video game analysis

error vs sales

```
ggplot(test_set) + geom_point(aes(log(Global_Sales) - predicted_12, Global_Sales)) +
xlab("Error") + ylab("Global sales")
```


random forest

this one will also take a few minutes to run

```
cntrl <- trainControl(method = "repeatedcv", number = 10,</pre>
                       repeats = 3)
tunegrid <- expand.grid(.mtry=c(1:5),</pre>
                         .min.node.size = seq(1, 5, 1),
                         .splitrule = c("extratrees", "variance"))
model_rf <- train(log(Global_Sales) ~ Critic_Score +</pre>
                    User Score + Genre +
                    Year_of_Release + Critic_Count +
                    User Count + Rating +
                    publisher top + developer top +
                    num of platforms, data = train set,
                  method = "ranger", trControl = cntrl,
                   tuneGrid = tunegrid)
# predicted and RMSE
test set$predicted rf <- predict(model rf, test set)</pre>
rmse_results <- rmse_results %>% add_row(Method = "Random Forest",
                RMSE = RMSE(log(test set$Global Sales), test set$predicted rf))
```

actual vs preds

10/12/21, 9:52 AM video game analysis

R-squared 0.35

error vs global

```
ggplot(test_set) + geom_point(aes(log(Global_Sales) - predicted_rf, Global_Sales)) +
xlab("Error") + ylab("Global sales")
```


compare the RMSE values of each model

```
rmse_results
##
                Method
                            RMSE
## 1 Linear Regression 1.165805
## 2
            SVM Linear 1.193608
## 3
        SVM Polynomial 1.173235
            SVM Radial 1.183304
## 4
## 5
              L1 Lasso 1.159685
## 6
              L2 Ridge 1.165798
         Random Forest 1.092527
```

plotting and comparing all the models RMSE's

random forest did best!

```
rmse_plot <- ggplot(rmse_results, aes(x=RMSE,y=Method, fill = Method))+geom_bar(stat="id
entity")+
    xlab("RMSE") + ylab("Model Type")
theme(text = element_text(size=10),
    legend.position="right",
    axis.text.x=element_text(angle = 90,vjust = 0.5,hjust = 1,size=8))</pre>
```

```
## List of 3
## $ text
                   :List of 11
   ..$ family
##
                     : NULL
##
   ..$ face
                    : NULL
                    : NULL
    ..$ colour
##
##
    ..$ size
                    : num 10
##
    ..$ hjust
                   : NULL
##
    ..$ vjust
                   : NULL
##
    ..$ angle
                 : NULL
    .. $ lineheight : NULL
##
    ..$ margin
                  : NULL
##
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi FALSE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
##
##
  $ axis.text.x
                   :List of 11
    ..$ family
                     : NULL
##
    ..$ face
##
                     : NULL
    ..$ colour
                   : NULL
##
    ..$ size
##
                   : num 8
##
    ..$ hjust
                   : num 1
    ..$ vjust
                   : num 0.5
##
##
    ..$ angle
                   : num 90
##
    .. $ lineheight : NULL
   ..$ margin
                     : NULL
##
##
   ..$ debug
                     : NULL
   ..$ inherit.blank: logi FALSE
##
   ..- attr(*, "class")= chr [1:2] "element text" "element"
   $ legend.position: chr "right"
##
##
   - attr(*, "class")= chr [1:2] "theme" "gg"
   - attr(*, "complete")= logi FALSE
##
   - attr(*, "validate")= logi TRUE
##
```

```
rmse_plot
```

