CAN102 Electromagnetism and Electromechanics

Lecture-2 Mathematics Background

3D Coordinate Systems & Vector Analysis

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Outline

- 3D Coordinate Systems
 - Key concepts about a Coordinate System
 - Rectangular, Cylindrical, Spherical CSs
- Vector Analysis
 - Integrals
 - Line/Surface/Volume Integrals
 - Differential Elements in Three CSs
 - Differentials
 - Gradient, Divergence, Curl and Laplacian
 - Theorems
 - Gauss's and Stokes' Theorems

1.1 Key Points

The 3D coordinate system allows us to represent a quantity in a space that contains three mutually perpendicular axes. Through the 3D coordinate system, we can now visualize points and surfaces with respect to three axes.

- Variables
- Axes and Origin
- Unit Vectors
- Position Vector

- Range of variables
- Cutting planes
- Dot and Cross products
- Conversion with other CS

1.2 Rectangular - from 2D to 3D

- Variables:
 - -x, y, z
- Planes:
 - fix $x \Rightarrow y-z$ plane; fix $y \Rightarrow x-z$ plane; fix $z \Rightarrow x-y$ plane.

–
$$\widehat{x}$$
, \widehat{y} , \widehat{z} or \widehat{a}_x , \widehat{a}_y , \widehat{a}_z

• Position vector:

$$-\overrightarrow{P} = a\widehat{x} + b\widehat{y} + c\widehat{z}$$

1.2 Rectangular - from 2D to 3D

• Range of variables:

$$-x, y, z \in \mathbb{R}$$

• Dot product:

$$-a_x \cdot a_x = a_y \cdot a_y = a_z \cdot a_z = 1$$

$$-a_x \cdot a_y = a_y \cdot a_z = a_z \cdot a_x = 0$$

$$a_i \cdot a_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

• Cross product:

$$-a_i \times a_j = a_k$$
, sequence $a_x -> a_y -> a_z -> a_x$

- \hat{x} , \hat{y} , \hat{z} are *constant* unit vectors
 - They are not changing according to values x, y and z.

1.3 From 2D Polar to 3D Cylindrical

- Variables:
 - $-\rho$, φ , z or r, φ , z
- Planes:
- fix $\rho \Rightarrow$ fix $\varphi \Rightarrow$
- Unit vectors:
 - $-\widehat{\boldsymbol{\rho}},\widehat{\boldsymbol{\varphi}},\widehat{\boldsymbol{z}}$
- Position vector

$$- \vec{P} = A_{\rho} \hat{\rho} + A_{z} \hat{z}$$

1.3 From 2D Polar to 3D Cylindrical

• Range of variables:

$$-\rho \in [0, +\infty), \varphi \in [0, 2\pi), z \in (-\infty, +\infty)$$

• Dot product:

$$-a_{\rho} \cdot a_{\rho} = a_{\varphi} \cdot a_{\varphi} = a_{z} \cdot a_{z} = 1$$

$$-a_{\rho} \cdot a_{\varphi} = a_{\varphi} \cdot a_{z} = a_{z} \cdot a_{\rho} = 0$$

$$a_{i} \cdot a_{j} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

• Cross product:

$$-a_i \times a_i = a_k$$
, sequence $a_\rho -> a_\phi -> a_z -> a_\rho$

1.3 3D Rectangular vs. Cylindrical

Conversion between the two CSs:

- Values:
$$x = \rho \cos \varphi$$

 $y = \rho \sin \varphi$
 $z = z$

- Unit vectors:

$$\widehat{\boldsymbol{x}} = \widehat{\rho}\cos\varphi - \widehat{\varphi}\sin\varphi$$

$$\widehat{\boldsymbol{y}} = \widehat{\rho}\sin\varphi + \widehat{\varphi}\cos\varphi$$

$$\widehat{\boldsymbol{z}} = \widehat{\boldsymbol{z}}$$
 and

$$\begin{bmatrix} \boldsymbol{a}_{x} \\ \boldsymbol{a}_{y} \\ \boldsymbol{a}_{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_{\rho} \\ \boldsymbol{a}_{\varphi} \\ \boldsymbol{a}_{z} \end{bmatrix}$$

$$\widehat{\boldsymbol{\rho}} = \widehat{x}\cos\varphi + \widehat{y}\sin\varphi$$

$$\widehat{\boldsymbol{\varphi}} = -\widehat{x}\sin\varphi + \widehat{y}\cos\varphi$$

$$\widehat{\boldsymbol{z}} = \widehat{\boldsymbol{z}}$$

- In Rectangular CS: \hat{x} , \hat{y} , \hat{z} are *constant* unit vectors whose magnitudes are 1 and directions unchanged
- In Cylindrical CS: \hat{z} is *constant* unit vector. But $\hat{\rho}$ and $\hat{\varphi}$ are not, their directions changed according to the value φ .

Quiz 1

• Prove

$$\frac{\partial a_{\rho}}{\partial \varphi} = a_{\varphi}, \qquad \frac{\partial a_{\varphi}}{\partial \varphi} = -a_{\rho}$$

Answer:

Orthogonal Coordinate Systems

Assume that the three families of surfaces are described by

$$u_1 = constant$$

 $u_2 = constant$
 $u_3 = constant$

- When these three surfaces are mutually **perpendicular** to one another, we have an *orthogonal coordinate system*.
 - Non-orthogonal CSs are not used because they complicate the given problems.

- Variables and range:
 - $-r \in [0, +\infty)$: distance to origin
 - $-\theta \in [0, \pi)$: angle between r and +z axis
 - $\varphi \in [0, 2\pi)$: angle between the projection of r in x-y plane and +x axis

- Planes:
- fix r => fix $\theta =>$ fix $\varphi =>$

- Unit vectors:
 - $-\hat{r}, \widehat{\theta}, \widehat{\varphi} \text{ or } a_r, a_{\theta}, a_{\varphi} \text{ (sometimes } \widehat{r} \to \widehat{R})$
- Position vector

$$-\overrightarrow{\boldsymbol{P}}=A_{r}\widehat{\boldsymbol{r}}$$

- Dot product: $a_i \cdot a_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$
- Cross product: $a_i \times a_j = a_k$, sequence $a_r \rightarrow a_\theta \rightarrow a_\theta \rightarrow a_r$

• Conversion between Rectangular and Spherical:

$$x = r\sin\theta\cos\varphi$$
$$y = r\sin\theta\sin\varphi$$
$$z = r\cos\theta$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \arctan \frac{\sqrt{x^2 + y^2}}{z}$$

$$\varphi = \arctan \frac{y}{x}$$

• In Spherical CS: \hat{r} , $\hat{\theta}$ and $\hat{\varphi}$ are all changing according to the values θ and φ .

$$\begin{cases} a_r = a_x \sin \theta \cos \varphi + a_y \sin \theta \sin \varphi + a_z \cos \theta \\ a_\theta = a_x \cos \theta \cos \varphi + a_y \cos \theta \sin \varphi - a_z \sin \theta \\ a_\varphi = -a_x \sin \varphi + a_y \cos \varphi \end{cases}$$

$$\begin{cases} a_x = a_r \sin \theta \cos \varphi + a_\theta \cos \theta \cos \varphi - a_\varphi \sin \varphi \\ a_y = a_r \sin \theta \sin \varphi + a_\theta \cos \theta \sin \varphi + a_\varphi \cos \varphi \\ a_z = a_r \cos \theta - a_\theta \sin \theta \end{cases}$$

$$\begin{bmatrix} \boldsymbol{a}_{x} \\ \boldsymbol{a}_{y} \\ \boldsymbol{a}_{z} \end{bmatrix} = \begin{bmatrix} \sin\theta \cos\varphi & \cos\theta \cos\varphi & -\sin\varphi \\ \sin\theta \sin\varphi & \cos\theta \sin\varphi & \cos\varphi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{a}_{r} \\ \boldsymbol{a}_{\theta} \\ \boldsymbol{a}_{\varphi} \end{bmatrix}$$

1. Summary of the Coordinate Systems

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[+]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r\cos\phi$ $y = r\sin\phi$ $z = z$	$\hat{\mathbf{x}} = \hat{\mathbf{r}}\cos\phi - \hat{\boldsymbol{\phi}}\sin\phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}}\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}\left[\sqrt[+]{x^2 + y^2}/z\right]$ $\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ $+ \hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ $+ \hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$	$A_R = A_x \sin \theta \cos \phi$ $+ A_y \sin \theta \sin \phi + A_z \cos \theta$ $A_\theta = A_x \cos \theta \cos \phi$ $+ A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$
Spherical to Cartesian	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_{x} = A_{R} \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_{y} = A_{R} \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{z} = A_{R} \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

1. Summary of the Coordinate Systems

	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	x,y,z	<i>r</i> ,φ, <i>z</i>	R, θ, ϕ
Vector representation, A	$\mathbf{a}_{x}A_{x}+A_{y}\ \mathbf{a}_{y}+A_{z}\ \mathbf{a}_{z}$	$\mathbf{a}_{r}A_{r}+A_{\phi}\mathbf{a}_{\phi}+A_{z}\mathbf{a}_{z}$	$\mathbf{a}_R A_R + A_\theta \ \mathbf{a}_\theta + A_\phi \ \mathbf{a}_\phi$
Magnitude of A, $ A $	$\sqrt[4]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[t]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[4]{A_R^2 + A_{\theta}^2 + A_{\phi}^2}$
Base vectors properties	$\mathbf{a}_{x} \bullet \mathbf{a}_{x} = \mathbf{a}_{y} \bullet \mathbf{a}_{y} = \mathbf{a}_{z} \bullet \mathbf{a}_{z} = 1$	$\mathbf{a}_r \bullet \mathbf{a}_r = \mathbf{a}_\phi \bullet \mathbf{a}_\phi = \mathbf{a}_z \bullet \mathbf{a}_z = 1$	$\mathbf{a}_R \bullet \mathbf{a}_R = \mathbf{a}_\theta \bullet \mathbf{a}_\theta = \mathbf{a}_\phi \bullet \mathbf{a}_\phi = 1$
	$\mathbf{a}_{x} \bullet \mathbf{a}_{y} = \mathbf{a}_{y} \bullet \mathbf{a}_{z} = \mathbf{a}_{z} \bullet \mathbf{a}_{z} = 0$	$\mathbf{a}_{r} \bullet \mathbf{a}_{\phi} = \mathbf{a}_{\phi} \bullet \mathbf{a}_{z} = \mathbf{a}_{z} \bullet \mathbf{a}_{r} = 0$	$\mathbf{a}_R \bullet \mathbf{a}_\theta = \mathbf{a}_\theta \bullet \mathbf{a}_\phi = \mathbf{a}_\phi \bullet \mathbf{a}_R = 0$
	$\mathbf{a}_{x} \times \mathbf{a}_{y} = \mathbf{a}_{z}, \mathbf{a}_{y} \times \mathbf{a}_{z} = \mathbf{a}_{x}$	$\mathbf{a}_{r} \times \mathbf{a}_{\phi} = \mathbf{a}_{z}, \mathbf{a}_{\phi} \times \mathbf{a}_{z} = \mathbf{a}_{r}$	$\mathbf{a}_R \times \mathbf{a}_\theta = \mathbf{a}_\phi, \qquad \mathbf{a}_\theta \times \mathbf{a}_\phi = \mathbf{a}_R$
	$\mathbf{a}_{z} \times \mathbf{a}_{x} = \mathbf{a}_{y}$	$\mathbf{a}_{z} \times \mathbf{a}_{r} = \mathbf{a}_{\phi}$	$\mathbf{a}_{\phi} \times \mathbf{a}_{R} = \mathbf{a}_{\theta}$
Dot product, A · B	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_{\phi} B_{\phi} + A_z B_z$	$A_R B_R + A_{\theta} B_{\theta} + A_{\phi} B_{\phi}$
Cross product, A × B	$\begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\left egin{array}{cccc} \mathbf{a}_x & \mathbf{a}_\phi & \mathbf{a}_z \ A_r & A_\varphi & A_Z \ B_r & B_\varphi & B_Z \end{array} ight $	$egin{array}{c cccc} \mathbf{a}_R & \mathbf{a}_{oldsymbol{ heta}} & \mathbf{a}_{\phi} & & & & & & & & & & & & & & & & & & &$

Quiz 2

- The geometry defined by R = 5 and $\theta = 90^{\circ}$ is a _____, and the geometry defined by $\theta = 60^{\circ}$ and $\varphi = 60^{\circ}$ is a
 - (a) A circle and a ray;
 - (b) A straight line and a spherical surface;
 - (c) A circle and a circle;
 - (d) A planar surface and a spherical surface

Quiz 3

• Express the vector in the rectangular coordinate system.

$$A = \frac{1}{\rho} \hat{\rho} + 5\sin 2\phi \hat{z}$$

2.1 Vector Analysis - Integrals

- Vector Analysis Integrals
 - Line Integral
 - Surface Integral
 - Volume Integral
- Differential Elements
 - Rectangular CS
 - Cylindrical CS
 - Spherical CS

- 1D Scalar function f(x) of single variable x:
 - ➤ Continuous, single-valued;
 - \triangleright Variable x;
 - \triangleright Limits: $a \le x \le b$.

• The integral is defined as:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{n \to \infty \\ \Delta x_{i} \to 0}} \sum_{i=1}^{n} f(x_{i}) \Delta x_{i}$$

Integral of a continuous, single-valued function (scalar function)

- 3D Scalar function $f(\vec{r})$:
 - Continuous, single-valued;
 - Variable \vec{r} ;
 - Limits: point A to B.
- Integral is defined as

$$\int_{c} f(\vec{r}) d\vec{l} = \lim_{\substack{n \to \infty \\ \Delta \vec{l}_{i} \to 0}} \sum_{i=1}^{n} f(\vec{r}_{i}) \Delta \vec{l}_{i}$$

- Example:
 - Total electric field of a chargecarrying line with uneven distribution

- $\Delta \vec{l}_i$ length vectors
- \vec{r}_i position vectors
- $f(\vec{r}_i)$ scalar function value

Scalar line integral for a vector field $\vec{F}(\vec{r})$:

$$\int_{c} \vec{F}(\vec{r}) \cdot d\vec{l} = \lim_{\substack{n \to \infty \\ \Delta \vec{l}_{i} \to 0}} \sum_{i=1}^{n} \vec{F}(\vec{r}_{i}) \Delta \vec{l}_{i}$$

- Example: Electric potential along a line
- Vector line integral for a vector field $\overline{F}(\overline{r})$:

$$\int_{c} \vec{F}(\vec{r}) \times d\vec{l} = \lim_{\substack{n \to \infty \\ \Delta \vec{l}_{i} \to 0}} \sum_{i=1}^{n} \vec{F}(\vec{r}_{i}) \times \Delta \vec{l}_{i}$$

 Example: Total magnetic field of a currentcarrying wire

Example: Work done by moving from point P_1 to P_2 along a curved path *l*.

- Force \vec{F} along dL segment: $\vec{F} \cdot d\vec{L} = F \cos\theta dL$
- So, the work dW is: $dW = \overrightarrow{F} \cdot d\overrightarrow{L} = F \cos\theta dL$
- Sum dW as P moves from P_1 to P_2 :

$$W = \int_{P_1}^{P_2} dW = \int_{P_1}^{P_2} \overrightarrow{F} \cdot d\overrightarrow{L}$$

- Close path integral: the path of integration can be around a closed curve.
 - The starting and ending points a and b coincide, so no need to give starting and ending points;
 - The path still has directions: cw or ccw;
 - All line integrals can be performed on closed curves.

$$\oint_{c} f(\vec{r})d\vec{l} \qquad \oint_{c} \vec{F}(\vec{r}) \cdot d\vec{l} \qquad \oint_{c} \vec{F}(\vec{r}) \times d\vec{l}$$

2.1.2 Surface Integral

- Divide the given surface *s* into a large number of *n* small surfaces:
 - All $\Delta s_i \rightarrow 0$ in the limit;
 - Vector surface $\Delta \vec{s}_i$
 - \triangleright Area $\triangle s_i$;
 - \triangleright Direction $\vec{a}_{ni} \perp \Delta s_i$.
- Surface integral of a scalar function:
- Scalar surface integral of a vector function:
- Vector surface integral of a vector function:

$$\iint_{S} f(\vec{r}) d\vec{s} = \lim_{\substack{n \to \infty \\ \Delta \vec{s}_i \to 0}} \sum_{i=1}^{n} f(\vec{r}_i) \Delta \vec{s}_i$$

$$\iint_{S} \vec{F}(\vec{r}) \cdot d\vec{s} = \lim_{\substack{n \to \infty \\ \Delta \vec{s}_i \to 0}} \sum_{i=1}^{n} \vec{F}(\vec{r}_i) \cdot \Delta \vec{s}_i$$

$$\iint_{S} \vec{F}(\vec{r}) \times d\vec{s} = \lim_{\substack{n \to \infty \\ \Delta \vec{s}_{i} \to 0}} \sum_{i=1}^{N} \vec{F}(\vec{r}_{i}) \times \Delta \vec{s}_{i}$$

2.1.2 Surface Integral

- Open surface
 - Bounded by a closed line (with direction)
 - Direction of the surface: Right-hand rule

- Closed surface
 - No boundary
 - Seperate the space as interior and exterior
 - Direction of the surface:

Pointing outwards, normal direction

2.1.2 Surface Integral

• Example: In a vector field \overline{B} (e.g., rate of the water flow), find the flux flowing through a surface A.

•
$$d\vec{s}$$
 – magnitude A; direction $\hat{n} \perp$ surface;

- \vec{B} magnitude B and direction of the flow;
- θ the angle between \overline{B} and \widehat{n} ;
- $d\psi$ the incremental flux through a surface area element ds (with normal \hat{n}):

$$d\psi = \overrightarrow{B} \cdot d\overrightarrow{s} = \overrightarrow{B} \cdot \widehat{n}ds$$

• Integrate the increment flux $d\psi$ over the whole area A gives:

$$\psi = \iint_{A} \vec{B} \cdot \hat{n} ds$$

2.1.3 Volume Integral

• Divide a given volume *v* into *n* small volume elements:

$$\Delta v \to 0 \text{ as } n \to \infty$$

Scalar volume integral:

$$\iiint_{v} f(\vec{r}) dv = \lim_{\substack{n \to \infty \\ \Delta v_i \to 0}} \sum_{i=1}^{n} f(\vec{r}_i) \Delta v_i$$

- Example: Overall E-field potential
- Vector volume integral:

$$\iiint_{v} \overrightarrow{F}(\overrightarrow{r}) dv = \lim_{\substack{n \to \infty \\ \Delta v_i \to 0}} \sum_{i=1}^{n} \overrightarrow{F}(\overrightarrow{r}_i) \Delta v_i$$

• Example: Overall E-field intensity

Example 1:

Total charge over a region with the charge density $\rho(\vec{r})$:

$$Q = \iiint_{v} \rho(\vec{r}) dv$$

Example 2:

Total electric field intensity at point $\overrightarrow{P}(\overrightarrow{r})$ generated by the charged region with charge density of $\rho(\overrightarrow{r}')$:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iiint_{n} \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|^2} \hat{n}_{rr'} dv'$$

2.2 Differential Elements

• Line vector $\vec{l}_{AB} = a\hat{u}_1 + b\hat{u}_2 + c\hat{u}_3$

• Surfaces Vectors:

$$\widehat{u}_1$$
 direction: $\overline{s}_{u_1} = b \times c \, \widehat{u}_1$
 \widehat{u}_2 direction: $\overline{s}_{u_2} = a \times c \, \widehat{u}_2$

 \widehat{u}_3 direction: $\overrightarrow{s}_{u_3} = a \times b \ \widehat{u}_3$

• Volume (scalar): $v = a \times b \times c$

2.2.1 In Cartesian CS

Cartesian (rectangular) CS

- $\widehat{u}_1 \leftrightarrow \widehat{x}$, $\widehat{u}_2 \leftrightarrow \widehat{y}$, $\widehat{u}_3 \leftrightarrow \widehat{z}$
- $a \leftrightarrow dx$, $b \leftrightarrow dy$, $c \leftrightarrow dz$

Differential line element:

$$d\mathbf{l} = \hat{x}dx + \hat{y}dy + \hat{z}dz$$

3 differential surface element:

$$d\mathbf{s}_{x} = \hat{x}dydz$$
$$d\mathbf{s}_{y} = \hat{y}dzdx$$

$$d\mathbf{s}_{\mathbf{z}} = \hat{\mathbf{z}}d\mathbf{x}d\mathbf{y}$$

Differential volume element:

$$dv = dxdydz$$

2.2.2 In Cylindrical CS

- Cylindrical CS $\widehat{u}_1 \leftrightarrow \widehat{\rho}$, $\widehat{u}_2 \leftrightarrow \widehat{\phi}$, $\widehat{u}_3 \leftrightarrow \widehat{z}$
 - $a \leftrightarrow d\rho$, $b \leftrightarrow \rho d\phi$, $c \leftrightarrow dz$

$$d\boldsymbol{l} = \widehat{\boldsymbol{\rho}}d\rho + \widehat{\boldsymbol{\phi}}\rho d\phi + \widehat{\boldsymbol{z}}dz$$

3 differential surface element:

$$d\mathbf{s}_{\boldsymbol{\rho}} = \widehat{\boldsymbol{\rho}} \rho d\phi dz$$

$$d\mathbf{s}_{\phi} = \widehat{\boldsymbol{\phi}} d\rho dz$$

$$d\mathbf{s}_{\mathbf{z}} = \hat{\mathbf{z}}\rho d\rho d\phi$$

Differential volume element:

$$dv = \rho d\rho d\phi dz$$

2.2.3 In Spherical CS

Spherical CS

- $\bullet \quad \widehat{u}_1 \leftrightarrow \widehat{r}, \quad \widehat{u}_2 \leftrightarrow \widehat{\boldsymbol{\theta}}, \quad \widehat{u}_3 \leftrightarrow \widehat{\boldsymbol{\phi}}$
- $a \leftrightarrow dr$
- $b \leftrightarrow rd\theta$
- $c \leftrightarrow r \sin \theta \, d\phi$

Differential line element:

$$d\boldsymbol{l} = \hat{\boldsymbol{r}}dr + \hat{\boldsymbol{\theta}}rd\theta + \hat{\boldsymbol{\phi}}r\sin\theta \,d\phi$$

3 differential surface element:

$$d\mathbf{s}_r = \hat{\mathbf{r}}r^2 \sin\theta \, d\theta d\phi$$

$$d\mathbf{s}_{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}} r \sin \theta \, d\phi dr$$

$$d\mathbf{s}_{\phi} = \widehat{\boldsymbol{\phi}} r d\theta dr$$

Differential volume element:

$$dv = r^2 \sin\theta \, dr d\theta d\phi$$

Quiz 4

1. True or False:

- Over a closed curve c, $\oint_c d\vec{l} = 0$.
- 2. Evaluate $\oiint \vec{r} \cdot d\vec{s}$ over the closed surface of the cube bounded by $0 \le x \le 1$, $0 \le y \le 1$, and $0 \le z \le 1$, where \vec{r} is the position vector of any point **on** the surface of the cube.
 - A) 0 B) -6 C) 6 D) 3

Quiz 5

Calculate the surface integral

$$\int_{S} a_{r} \cdot dS$$

– where S is the area cutted from a sphere by a cone surface with the angle θ_0 , as shown on the right.

Next ...

- Static Electric Fields
 - Coulomb's Law
 - Visualisation of Electric-field
 - Electric-fields produced by continuous charge distributions
 - using line integral, surface integral and volume integral
 - Electric flux and Flux density
 - Gauss's Law and Divergence

