

Test

Předmět	Matematický proseminář (verze 2019) Zima 2019 - Prezenční forma Matematický proseminář (verze 2019) Zima 2019 - Kombinovaná forma	Maximum za test: 100 bodů
Název testu	Závěrečný test	Celkem za test:
Jméno a příjmení		
Datum		Opravil(a):
Počet příloh		

Zadání - varianta 3

1. příklad

Množiny K, L, M znázorněte na číselné ose a určete $K \cup M$ a $L \cap K$.

1.
$$K = (-3; 6), L = \langle -5; 3 \rangle, M = (2; 8)$$

2.
$$K = \{x \in \mathbb{R} : -5 \le x < -2\}, L = \{x \in \mathbb{R} : |x| \le 2\}, M = \mathbb{R}^+$$

Vypočtěte:

4.
$$(-2^2 - 2)^2 =$$

$$5. \ \frac{3}{8} - \frac{2}{3} + \frac{12}{72} =$$

Řešte rovnice (nezapomeňte na zkoušku):

$$1.\ 2(5x - 13) - 17 = 7$$

2.
$$\frac{5-x}{3} - \frac{6-4x}{5} = 0$$

3.
$$|x + 3| = 8$$

$$4. \ 3x^2 + 6x = 9$$

5.
$$x - \sqrt{x+1} = 5$$

Řešte soustavu rovnic (nezapomeňte na zkoušku a správný zápis výsledku):

$$2x + 3y = -4$$

$$3x - 2y = 7$$

5. příklad

Řešte nerovnice:

1.
$$5 + 2x \ge 6x + 7$$

2.
$$3x^2 - 9 > 0$$

$$3. \ x^2 - 3x - 10 < 0$$

Pro následující výrazy určete podmínky, je-li to nutné, a výrazy zjednodušte.

1.
$$(-2a^3b^{-5}c^{-3}) \cdot (4a^{-4}b^2c^3) =$$

2.
$$\frac{3xy+9y-2x-6}{3xy-2y-9x+6} =$$

3.
$$\left(\frac{1}{a} + \frac{1}{b}\right)$$
: $\left(\frac{1}{a} - \frac{1}{b}\right)$ =

Doplňte věty:
1. Součet velikostí vnitřních úhlů trojúhelníku je stupňů.
2. Pro každý trojúhelník platí, že jeho těžiště leží na průsečíku
3. Osa strany trojúhelníka je
4. Obsah kruhu o poloměru <i>r</i> se vypočte ze vztahu
5. Určete počet všech průsečíků <i>n</i> navzájem různých přímek (tj. žádné dvě nejsou rovnoběžky)
6. Kolik os souměrnosti má rovnoramenný trojúhelník?
7. Objem krychle o hraně <i>a</i> vypočteme ze vztahu
8. Hranol s podstavou pravidelného pětiúhelníku má 2 podstavy a bočních stěn.
9. Uveďte všechny možnosti pro vzájemnou polohu dvou kružnic v rovině, pro každou možnost uveďte počet společných bodů.
10. Množina všech bodů roviny, které mají stejnou vzdálenost od daného bodu je/jsou

Pro uvedené funkce určete definiční obor, obor hodnot, význačné body a načrtněte graf. (Význačné body má každá funkce jiné - jedná se například o průsečík(y) s osou x, průsečík s osou y, vrchol, střed, minima, maxima a podobně.)

- 1. $f_1 : y = -2x + 3$
- 2. $f_2: y = \frac{1}{x-2} 1$
- 3. $f_3: y = x^2 + 4$
- 4. f_4 : y = |2x + 1|
- 5. $f_5: y = \sin(x + 1)$
- 6. $f_6: y = 2\cos x 2$
- 7. f_7 : $y = e^x 3$
- 8. $f_8 : y = \log_{10}(x+1)$
- 9. $f_9 : y = \text{tg}x$
- 10. f_{10} : $y = \cot gx$