Sabbir Ahmed DATE: April 29, 2018 MATH 407: HW 12

1	Let $f(x)$, $g(x)$, $g(x) \in F[x]$. Show that the following properties hold.	
	c If $g(x) \mid f(x)$, then $g(x) \cdot h(x) \mid f(x) \cdot h(x)$.	
	Pf.	
	d If $g(x) \mid f(x)$ and $f(x) \mid g(x)$, then $f(x) = kg(x)$ for some $k \in F$.	
	Pf.	
5	Over the given field \mathbb{F} , write $f(x) = q(x)(x-c) + f(c)$ for	
	b $f(x) = 2x^3 + x^2 - 4x + 3$; $c = 1$; $\mathbb{F} = \mathbb{Q}$;	
	Pf.	
	d $f(x) = x^3 + 2x + 3; c = 2; \mathbb{F} = \mathbb{Z}_5;$	
	Pf.	
0		
6	Let p be a prime number. Find all roots of $x^{p-1} - 1$ in \mathbb{Z}_p .	
	Pf.	
	Show that if c is any element of the field \mathbb{F} and $k>2$ is an odd integer, then $x+c$ is a fact of x^k+c^k .	or
	Pf.	
11	Show that the set $\mathbb{Q}(\sqrt{3})=\{a+b\sqrt{3}\mid a,b\in\mathbb{Q}\}$ is closed under addition, subtractio multiplication, and division.	n,
	Pf.	
13	Show that the set of matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, where $a, b \in \mathbb{R}$, is a field under the	he

operations of matrix addition and multiplication.

Pf.

17 Let $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ be points in the Euclidean plane \mathbb{R}^2 such that x_0, x_1, x_2 are distinct. Show the formula

$$f(x) = \frac{y_0(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + \frac{y_1(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + \frac{y_2(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

defines a polynomial f(x) such that $f(x_0) = y_0$, $f(x_1) = y_1$, and $f(x_2) = y_2$.

$$\Box$$

18 Use Lagrange's interpolation formula to find a polynomial f(x) such that f(1) = 0, f(2) = 1, and f(3) = 4.