CMPE 200 Computer Architecture & Design

Lecture 3. Processor Microarchitecture and Design (1)

Haonan Wang

Instruction Processing

Instruction Execution on CPU

- To run a software, CPU
 - Fetches instructions from memory in the right order
 - Decodes the instruction and Reads the operand values from register file
 - Executes the computation by using ALU
 - Loads/store data from/to memory
 - Writes back the computation results to register file

Instruction
Fetch

Decode & Register Identify opcode & read operands

Execute

Mem

Write Result Write to dst register

SJSU

SAN JOSÉ STATE LIMINGERSITY

Implementing a Single-Cycle CPU

- All instructions execute in a single clock cycle
 - Instructions to Implement: LW, SW; ADD, SUB, AND, OR, SLT; BEQ
 - CPI = 1
- Different instructions need different execution times
 - e.g., LW needs to access memory vs. ADD does not need to access memory
- Single-cycle CPU's clock cycle period should be set to the longest instruction's execution time

Fetch Components

Required operations

- Taking address from PC and reading instruction from memory
- Incrementing PC to point at next instruction

Components

- PC register
- Instruction Memory / Cache
- Adder to increment PC value

Fetch Data Path

Fetch Data Path

- PC value serves as address to instruction memory while also being incremented by 4 using the adder
- Instruction word is returned by memory after some delay
- New PC value is clocked into PC register at the end of clock cycle

Decode

What is the instruction and operands?

Execute

Mem

Write Result
Write to
dst register

Instruction Formats

Decode Components

- Register file is a collection of registers
- To support R-type instruction,
 - 4 Input ports: two src register ids, a dst register id and the result value
 - 2 Output ports: two operand values

Decode Data Path

R-type

- Opcode and func. field are decoded to produce control signals
- Three register ids are passed to Register file

Sign Extension Unit

- In a 'LW' or 'SW' instructions with their base register + offset format, the instruction only contains the offset as a 16-bit value
 - Example: LW \$4,-8(\$1)
 - Machine Code: 0x8c24fff8
- A 16-bit offset must be extended to 32-bits to add to the base register

Decode Data Path

I-type

- Opcode field is decoded to produce control signals
- Two register ids are passed to Register file

Execution & Write Result

Let's execute the instruction!

Execution Components

ALU is used for

- R-type instructions to operate various arithmetic operations
- LW/SW instructions to operate (base address + offset) to generate the target memory address
- Branch instructions to compare (subtract) the two operand values
- Data Memory for LW/SW instructions
- Shift-left-2 and another Adder for Branch instructions to calculate new PC value

Datapath for R-type Instructions

 ALU takes inputs from register file and performs the add, sub, and, or, slt, operations

Result is written back to dest. register **ALU Operation is determined** by a control logic according to Opcode & Funct CLK Read Reg. 1# **ADD** Read Instruc. word Reg. 2# ADD \$3,\$1,\$2 Read \$1 value Write data 1 Reg. # Res. \$2 value Read Sum Write data 2 Data **Register File** we_reg

Memory Access Datapath: LW

- Operands are read from register file while offset is sign extended
- ALU calculates target memory address
- Memory access is performed
- If LW, read data is written back to register

Memory Access Datapath: SW

- Operands are read from register file while offset is sign extended
- **ALU** calculates target memory address
- If SW, data is written to the memory

Branch Datapath: BEQ

- ALU for comparison (examine 'zero' output)
- Sign extension unit for branch offset
- Adder to add PC and offset

Conclusion Time

What are the stages of single-cycle CPU execution?

- Fetch, Decode, Execute, Memory, Writeback
 - → IF, ID, EX, MEM, WB

What are the two different ways to calculate addresses in the CPU?

ALU

- → Byte addresses, data access.
- Shift-left-2 & Adder → Label, PC.

SAN JOSÉ STATE UNIVERSITY powering SILICON VALLEY