Théorie des groupes

Table des matières

1	informations utiles	2
I	Théories des groupes	2
2	Les sous-groupes	5

1 informations utiles

Slavyana GENINSKA Jean RAIMBAUT

cours sur: http://www.math.univ-toulouse.fr/ jraimbau/Enseignement/theorie_des_groupes.html

Première partie

Théories des groupes

Exemple. Isométries préservant un triangle équilateral

Rappel 1. Isométrie du plan:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\forall x, y \in \mathbb{R}^2, d(x, y) = d(f(x), f(y))$$

Exemple. Isométries

- symétrie
- rotation
- translation
- symétrie glissée

Remarque 1. L'identité, notée Id, peut être vue comme une rotation (d'angle 0) ou comme une translation (par le vecteur nul).

Soit T, un triangle équilatéral.

$$Isom(T) = \{f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie || f(T) = T\}$$

est l'ensemble des isométries du plan sui préservent T.

Une telle application f *a forcement au moins un point fixe* :

$$Isom(T) = \{Id, r_{\frac{2\pi}{3}}, r_{-\frac{2\pi}{3}}, S_A, S_B, S_C\}$$

On peut alors faire les deux remarques suivantes :

Remarque 2. — Isom(T) est stable par composition :

$$S_A \circ S_B = r_{\frac{2\pi}{3}}$$
$$S_B \circ S_A = r_{-\frac{2\pi}{3}}$$

— Toute application $f \in Isom(T)$ admet une transformation inverse $f^{-1} \in Isom(T)$

Exemple. Le groupe symétrique :

Soit E, un ensemble de n objets, S_n est l'ensemble des bijection de E, appelé groupe symétrique.

Par exemple, le groupe symétrique S_3 avec $E = \{1, 2, 3\}$

Remarque 3. — S_3 est stable par composition

— Toute bijection admet un inverse qui est encore dans S_3

Remarque 4. Les deux exemples sont les mêmes d'un certain point de vue, il s'agit de la même structure algébrique (nous verrons plus tard qu'il s'agit d'un isomorphisme)

Définition 1. *Un groupe est un ensemble G muni d'une application (appelée loi de groupe) :*

$$*: {G \times G \rightarrow G \atop (g,h) \mapsto g * h}$$

Cette loi vérifie les propriétés suivantes :

- associativité:

$$\forall g, h, k \in G, (g * h) * k = g * (h * k)$$

— présence d'un élément neutre :

$$\exists e \in G / \forall g \in G, g * e = e * g = g$$

— existance de l'inverse (ou symétrique) :

$$\forall g \in G, \ \exists h \in G \ / \ g * h = h * g = e$$

Exemple. 1. \mathbb{R} avec la loi +, l'élément neutre est alors 0 et le symétrique est l'opposé.

- 2. \mathbb{R}^* avec la loi \cdot , l'élément neutre est alors 1 et le symétrique est l'inverse.
- 3. Soit $P \subset \mathbb{R}^2$, un polygone régulier à n cotés. On note alors I som(P), l'ensemble des isométries le concervant :

$$Isom(P) = \{ f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie \mid\mid f(P) = P \}$$

Isom(P) est alors un groupe si on le muni de la loi de composition \circ . L'élément neutre est alors l'identité : $\forall f \in Isom(P), \ f \circ Id = Id \circ f = f$.

Le symétrique est la transformation réciproque f^{-1}

Ce groupe est alors appelé groupe diédral, on le note D_n (ou D_{2n} étant donné que ce groupe possède 2n éléments).

Exemple. — $D_3 = Isom(T)$ est le groupe présenté dans l'exemple 1,

*D*₃ possède six éléments

- D₄ est l'ensemble des isométries préservant le carré.
 - $D_4 = Isom(C) = \{Id, r_{\frac{\pi}{2}}, r_{\pi}, r_{-\frac{\pi}{2}}, S_{AC}, S_{MP}, S_{BD}, S_{NQ}\}$

 D_4 possède donc 8 éléments

4. Si E est un ensemble, l'ensemble des bijections de E dans E est un groupe pour la loi · comme précédemment.

 $Si E = \{1, ..., n\}, Bi j(E)S_n$

 $Si E = \mathbb{R}$, $Bi j(\mathbb{R})$ est un groupe

- 5. \mathbb{R}^n muni de l'addition vectorielle est un groupe. Plus généralement, tout espace vectoriel E est un groupe pour l'addition
- 6. $GL_n(\mathbb{R}) = \{A \in M_{n,n}(\mathbb{R}) \mid det A \neq 0\}$ Pour la multiplication matricielle, voir l'exercice 1.

Contre-exemple. 1. $(\mathbb{N},+)$ n'est pas un groupe car aucun élément n'admet de symétrique

- 2. (\mathbb{R},\cdot) n'est pas un groupe car 0 n'admet pas de symétrique
- 3. (\mathbb{Z}^*,\cdot) n'est pas un groupe car 1 et -1 sont les seuls éléments admettant un symétrique
- 4. $(\{-1,0,1\},+)$ n'est pas un groupe car $1+1=2 \notin \{-1,0,1\}$

Remarque 5. *Le groupe* \mathbb{Z} *est* $(\mathbb{Z}, +)$.

Le groupe \mathbb{R}^* *est* (\mathbb{R}^*, \cdot) .

Le groupe \mathbb{R}^n est $(\mathbb{R}^n, +)$.

Définition 2. On dit qu'un groupe G est commutatif (ou abélien) si :

$$\forall g, h \in G, \Rightarrow g * h = h * g$$

Exemple. $(\mathbb{Z},+)$, (\mathbb{R}^*,\cdot) , (\mathbb{C}^*,\cdot) , $(\mathbb{R}^n,+)$ sont des groupes abéliens.

Contre-exemple. S_n pour $n \ge 3$, $GL_n(\mathbb{R})$ pour $n \ge 2$ ne sont pas des groupes abléliens

Exemple. *Soit* n > 0, *un entier fixé*.

 $\mathbb{Z}/n\mathbb{Z}$, l'ensemble des entiers $a \in \mathbb{Z}$ considéré modulo n:

$$\bar{a} = \{a + kn \mid k \in \mathbb{R}^n\} \in \mathbb{Z}/n\mathbb{Z}$$

Pour $a, b \in \mathbb{Z}$, $\bar{a} = \bar{b}$ si et seulement si, pour $k \in \mathbb{Z}$, a - b = kn

Exemple. Dans $\mathbb{Z}/3\mathbb{Z}$,

 $\bar{1} = \bar{4} = \bar{10} = -2 \text{ mais } \bar{1} \neq \bar{2}$

$$\mathbb{Z}/3\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}\}$$

$$\bar{0} = \{3k \mid k \in \mathbb{Z}\}$$

$$\bar{1} = \{1 + 3k \mid k \in \mathbb{Z}\}$$

$$\bar{2} = \{2 + 3k \mid k \in \mathbb{Z}\}$$

$$\bar{0} \cup \bar{1} \cup \bar{2} = \mathbb{Z}$$

On définit l'addition sur $\mathbb{Z}/n\mathbb{Z}$ telle que : $\bar{a} + \bar{b} = a + b$. On vérifie que cette définition ne dépend pas du choix des représentants.

$$\bar{a} + \bar{b} = a + \bar{k}_1 n + b + \bar{k}_2 n$$

= $a + k_1 n + b + k_2 n$
= $a + b + (\bar{k}_1 + k_2) n$
= $a + \bar{b}$

```
Remarque 6. Sur \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}
\bar{0} = \{2k \mid k \in \mathbb{Z}\}, l'ensemble des nombres pairs \bar{1} = \{1 + 2k \mid k \in \mathbb{Z}\}, l'ensemble des nombres impairs
```

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abélien.

Remarque 7. *Comment définir une multiplication sur* $\mathbb{Z}/n\mathbb{Z}$?

Notation. Un groupe est noté G

Notation. notation multiplicative Il s'agit de la notation par défaut,

"produit" du g et h : gh élément neutre : e, 1 ou 1_G l'inverse de g : g^{-1} (et jamais $\frac{1}{g}$)

Notation. notation additive Il s'agit de la notation préférée pour les groupes abéliens,

"somme" de a et b: a+b élément neutre: 0 ou 0_G l'inverse de a: -a

2 Les sous-groupes

Définition 3. *Soit G, un groupe.*

Un sous-ensemble $H \subset G$ est appelé sous-groupe de G et noté H < G si la loi sur G induit une structure de groupe sur H, c'est-à-dire:

- $\forall h_1, h_2 \in H$, $h_1h_2 \in H$ (la loi est interne)
- l'élément neutre e de G est dans H
- $\forall h \in H$, h admet un symétrique $h^{-1} \in H$ (on dit que H est stable par passage au symétrique)

Exemple. $-n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} < \mathbb{Z}$

- Le cercle unité $U = \{x \mid |z| = 1\} < \mathbb{C}^*$

Le groupe des racines n-ièmes de l'unité $U_n = \{z \in \mathbb{C} \mid z^n = 1\} < \mathbb{C}^*$

Remarque 8. $\forall n, U_n \subset U \text{ mais } \forall n, U_n \neq U$

Soit P un polygone.

Isom(P), le groupe d'isométries préservant P (rotations et symétries). Isom⁺(P), les isométries de Isom(P) qui préservent l'orientation du plan (ici,

reson (P), les isometries de Tsom(P) qui preservent i orientation au peseulement les rotation).

 $On\ a\ Isom^+(P) < Isom(P)$

- $Diff(\mathbb{R}) < Bij(\mathbb{R})$, le sous-groupe des bijections de \mathbb{R} de classe \mathscr{C}^{∞}

Proposition 1. *Soit G, un groupe.*

Un sous-ensemble H de G est un sous-groupe si et seulement si les deux consitions suivantes sont satisfaites :

$$\begin{split} & \longrightarrow H \neq \emptyset \\ & \longrightarrow \forall h_1, h_2 \in H, h_1 h_2^{-1} \in H \end{split}$$

 $\label{eq:definition} D\'{e}monstration. \ \ On suppose que \ H \ satisfait les \ deux \ points \ de \ la \ propriét\'e \ ci-dessus.$ $H \neq \emptyset$ donc $\exists h \in H$

pour vérifier que $e \in H$,

on applique la seconde propriété à h, donc $hh^{-1} = e \in H$ on vérifie ensuite que tout élément de *H* possède un inverse dans *H*,

soit $h \in H$, on applique la seconde propriété à e donc $eh^{-1} = h^{-1} \in H$ soit $h \in H$, on applique la seconde propriete à e donc e... on vérifie enfin que le produit de tout élément de H appartient à H Soient $h_1, h_2 \in H$. On applique la seconde propriété à $h_1, h_2^{-1} \in H$. Donc $h_1(h_2^{-1})^{-1} = \Box$