Semestrální zkouška ISS, řádný termín, 12.1.2017, skupina B

Login:		Příjmení a jméno	ss	Podpis:	
(čitelně!)				

Příklad 1 Určete střední výkon periodického signálu se spojitým časem s periodou $T_1 = 4$ s. Jedna perioda je dána jako

 $x(t) = \begin{cases} 2 & \text{pro } 1s \le t < 2s \\ 10 & \text{pro } 2s \le t < 3s \\ 0 & \text{pro } 3s \le t < 4s \end{cases}$

Viz A

Příklad 2 Ve 2D-signálu (obrázku) o rozměrech 256×256 pixelů má pixel x[0,0] hodnotu 2, všechny ostatní jsou nulové. Určete hodnoty všech koeficientů jeho 2D diskrétní Fourierovy transformace X[m,n]pro $m \in 0...255$ a $n \in 0...255$

> Viz A všechny X[m,n]=2

Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$.

 $x_1(t) = \begin{cases} 1 & \text{pro } -0.5 \le t \le 0.5 \\ 0 & \text{jinde} \end{cases}$

luce dvou signaru $x_2(t) = \begin{cases} 1 & \text{pro } 1 \le t \le 2 \\ 0 & \text{jinde} \end{cases}$

Označte prosím pečlivě hodnoty na obou osách.

 \mathbf{P} říklad 4 Na obrázku jsou moduly koeficientů Fourierovy řady (FR) signálu x(t). Do stejného obrázku nakreslete moduly koeficientů FR signálu y(t) = x(t+1 ms).

VizA

Příklad 5 Spektrální funkce signálu x(t) je $X(j\omega) = \begin{cases} 50 & \text{pro } -5000 \le \omega \le 5000 \\ 0 & \text{jinde} \end{cases}$

Napište a nakreslete spektrální funkci $Y(j\omega)$ signálu y(t) = x(10t). M = 10 m

0000

Příklad 6 Signál je ideálně vzorkován na vzorkovací frekvenci $F_s = 32$ kHz. Napište vztah pro impulsní odezvu ideálního rekonstrukčního filtru $h_r(t)$ a nakreslete ji.

 $h_r(t) = \dots$

Příklad 7 Systém se spojitým časem je popsán diferenciální rovnicí $\alpha \frac{dy(t)}{dt} + y(t) = x(t)$, kde x(t) je vstup a y(t) je výstup.

Napište přenosovou funkci systému H(s).

Viz A

 $H(s) = \frac{1}{2}$

Příklad 8 Přenosová funkce systému se spojitým časem má nulový bod $n_1 = 0$, dva komplexně sdružené nulové body a dva komplexně sdružené póly:

 $n_{2,3} = \pm 8000j$, $p_{1,2} = -10 \pm 4000j$.

Nakreslete přibližně modulovou frekvenční charakteristiku $|H(j\omega)|$ pro kruhové frekvence $\omega \in [0, 15000]$ rad/s.

(H(jw)) 15000 W

Příklad 9 Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce N=4:

n	0	1	2	3
$x_1[n]$	4	3	1	2
$x_2[n]$	-1	-1	0	-1
$x_1[n] \otimes x_2[n]$	-9	1-8	-6	1-7

Příklad 10 Hodnoty dvou vzorků signálu s diskrétním časem x[n] jsou: x[0] = 1, x[1] = -1, ostatní jsou nulové. Vypočtěte hodnotu Fourierovy transformace s diskrétním časem (DTFT) $\tilde{X}(e^{j\omega})$ tohoto signálu pro kruhovou frekvenci $\omega = 4\pi$ radís

 $\tilde{X}(e^{j4\pi}) = \frac{1}{2} \left(\frac{1}{2} + (-1) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

Příklad 16 Máte k disposici záznam $\Omega = 10^6$ šachových partií. Popište, jak odhadnete sdruženou pravděpodobnost toho, že v té samé partii jel v 5. tahu bílý pěšcem a v 7. tahu černý věží.

VIZ A

Příklad 17 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

	ω	1	2	3	4	5	6	7	8	9	10
E	,[7]	0.53	1.83	-2.25	0.86	0.31	-1.30	-0.43	0.34	3.57	2.76

Provedte souborový odhad distribuční funkce F(x,7) a nakreslete ji.

Vix A

4000realizacích Příklad 18 Na naměřena tabulka náhodného procesu byla (sdružený histogram) hodnot mezi časy n_1 a Spočítejte korelační koeficient $R[n_1, n_2]$. reprezentativní hodnoty Jako Pomůcka: x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	\parallel intervaly x_2						
x_1	[-20, -10]	[-10, 0]	[0, 10]	[10, 20]			
[10, 20]	0	0	0	0			
[0, 10]	0	1000	0	0			
[-10, 0]	0	0	1000	0			
[-20, -10]	0	0	0	2000			

Viz A

 $R[n_1, n_2] = \dots$

Příklad 19 V jazyce C máte v poli Xr o velikosti N/2+1 uložené hodnoty reálné složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$ a v poli Xi o stejné velikosti imaginární složky diskrétní Fourierovy transformace pro $k=0\dots\frac{N}{2}$. Napište kód pro odhad spektrální hustoty výkonu, výsledek nechť je v poli PSD o stejné velikosti.

viz A

Příklad 20 Korelační koeficienty náhodného signálu R[k] jsou: R[0] = 6, R[1] = 2, ostatní jsou nulové. Určete, zda se jedná o bílý šum a svou odpověď zdůvodněte.

viz A

Bílý šum: ANO / NE, zdůvodnění: