Quantum Software Development

Lecture 6: Quantum Interference Midterm Review

February 21, 2024

Quantum Interference

Superposition allows a computation to be performed for many input values at once. How is this useful?

Signals with the same frequency interfere with each other based on their phase.

Constructive Interference (same phase)

Destructive Interference (opposite phase)

Superposition terms with the same value interfere with each other based on their phase.

$$H|+\rangle = H\left[\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle)\right] \rightarrow ?$$

$$H\left[\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle)\right] = \frac{1}{\sqrt{2}}(H|\mathbf{0}\rangle + H|\mathbf{1}\rangle)$$

$$\rightarrow \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} (|\mathbf{0}\rangle + |\mathbf{1}\rangle) + \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle - |\mathbf{1}\rangle) \right)$$

$$=\frac{1}{2}(|\mathbf{0}\rangle+|\mathbf{1}\rangle+|\mathbf{0}\rangle-|\mathbf{1}\rangle)$$

$$=\frac{1}{2}(2\cdot|\mathbf{0}\rangle+\mathbf{0}\cdot|\mathbf{1}\rangle)=|\mathbf{0}\rangle$$

Remember:

$$H|\mathbf{0}\rangle \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle)$$

$$|\mathbf{H}|\mathbf{1}\rangle \rightarrow \frac{\mathbf{1}}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle)$$

Constructive interference on $|0\rangle$, destructive interference on $|1\rangle$

How does applying H to two qubits transform their state?

$$H^{\otimes 2}|\mathbf{00}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \otimes \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) = \frac{1}{2}(|\mathbf{00}\rangle + |\mathbf{01}\rangle + |\mathbf{10}\rangle + |\mathbf{11}\rangle)$$

$$H^{\otimes 2}|\mathbf{01}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) \otimes \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) = \frac{1}{2}\overline{(|\mathbf{00}\rangle - |\mathbf{01}\rangle + |\mathbf{10}\rangle - |\mathbf{11}\rangle)}$$

$$H^{\otimes 2}|\mathbf{10}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) \otimes \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle) = \frac{1}{2}(|\mathbf{00}\rangle + |\mathbf{01}\rangle - |\mathbf{10}\rangle - |\mathbf{11}\rangle)$$

$$H^{\otimes 2}|\mathbf{11}\rangle = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) \otimes \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle - |\mathbf{1}\rangle) = \frac{1}{2}\overline{(|\mathbf{00}\rangle - |\mathbf{01}\rangle - |\mathbf{10}\rangle + |\mathbf{11}\rangle)}$$

The i^{th} row of the j^{th} column of the Hadamard transform is given by $(-1)^{i \cdot j}$, where $i \cdot j$ is the bitwise dot product.

$$H_{12,10} = (-1)^{1100 \cdot 1010} = (-1)^{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0} = (-1)^{1} = -1$$

$$H^{\otimes 2}|\mathbf{10}\rangle = \frac{1}{\sqrt{2^2}} \Big((-1)^{00\cdot 10}|\mathbf{00}\rangle + (-1)^{01\cdot 10}|\mathbf{01}\rangle + (-1)^{10\cdot 10}|\mathbf{10}\rangle + (-1)^{11\cdot 10}|\mathbf{11}\rangle \Big)$$
$$= \frac{1}{2} \Big(|\mathbf{00}\rangle + |\mathbf{01}\rangle - |\mathbf{10}\rangle - |\mathbf{11}\rangle \Big)$$

When the input is a superposition of multiple values, the corresponding outputs add together.

$$\begin{split} H^{\otimes 2}\left(\frac{1}{\sqrt{2}}(|\mathbf{00}\rangle + |\mathbf{01}\rangle)\right) &= \frac{1}{\sqrt{2}} \cdot \frac{1}{2}(|\mathbf{00}\rangle + |\mathbf{01}\rangle + |\mathbf{10}\rangle + |\mathbf{11}\rangle) + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}(|\mathbf{00}\rangle - |\mathbf{01}\rangle + |\mathbf{10}\rangle - |\mathbf{11}\rangle) \\ &= \frac{1}{\sqrt{2}} \cdot \left(\frac{1}{2}(|\mathbf{00}\rangle + |\mathbf{00}\rangle) + \frac{1}{2}(|\mathbf{01}\rangle - |\mathbf{01}\rangle) + \frac{1}{2}(|\mathbf{10}\rangle + |\mathbf{10}\rangle) + \frac{1}{2}|\mathbf{11}\rangle - |\mathbf{11}\rangle\right) \\ &= \frac{1}{\sqrt{2}}(\mathbf{1}|\mathbf{00}\rangle + \mathbf{0}|\mathbf{01}\rangle + \mathbf{1}|\mathbf{10}\rangle + \mathbf{0}|\mathbf{11}\rangle) \\ &= \frac{1}{\sqrt{2}}(|\mathbf{00}\rangle + |\mathbf{10}\rangle) \end{split}$$

Check:

$$\begin{array}{ll} \mathsf{check:} \\ H^{\otimes 2}|0,+\rangle = H|0\rangle \otimes H|+\rangle = |+,0\rangle \\ \end{array} \qquad H^{\otimes 2} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

What is the result of applying the Hadamard transform to each of these states?

$$\frac{1}{2}(|\mathbf{00}\rangle + |\mathbf{01}\rangle + |\mathbf{10}\rangle - |\mathbf{11}\rangle)$$

$$\frac{1}{2} \left(\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right)$$

$$=\frac{1}{4}\begin{bmatrix}1+1+1-1\\1-1+1+1\\1+1-1+1\\1-1-1-1\end{bmatrix}=\frac{1}{4}\begin{bmatrix}2\\2\\2\\-2\end{bmatrix}=\frac{1}{2}\begin{bmatrix}1\\1\\1\\-1\end{bmatrix}$$

$$=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)$$

$$\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \frac{1}{\sqrt{8}} \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$=\frac{1}{2}(|000\rangle+|011\rangle+|101\rangle+|110\rangle)$$

Quantum computers process information using the principles of quantum mechanics, not digital logic.

Classical computation is a series of small decisions performed by digital logic gates.

Quantum computation is a series of small transformations to a quantum state.

A quantum state is made of components that determine the probability of a given measurement outcome.

A qubit's state is the <u>superposition</u> (sum) of its $|0\rangle$ and $|1\rangle$ components.

classical
analog
struct qubit {
 complex<double> zero;
 complex<double> one;
};

Measurement sets a qubit to $|0\rangle$ or $|1\rangle$ probabilistically.

$$|Q\rangle = |a|^2$$
 $|Q\rangle = |0\rangle$
 $|Q\rangle = |0\rangle$
 $|Q\rangle = |1\rangle$
 $|Q\rangle = |1\rangle$

$$|a|^2+|b|^2=1$$

Quantum logic gates are applied independently to each component of the quantum state – without measurement.

The CNOT gate flips the value of the target qubit if the control qubit is a $|1\rangle$.

$$|C\rangle = |0\rangle \rightarrow do \text{ nothing}$$

 $|C\rangle = |1\rangle \rightarrow flip |T\rangle$

Both branches can be computed at once; the result is an <u>entangled</u> two-qubit state.

$$|C\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle, |T\rangle = |0\rangle$$

$$|T\rangle = |0\rangle |T\rangle = |1\rangle$$

$$|C \text{ and } T \text{ always}$$

$$|T\rangle = |0\rangle + \frac{1}{\sqrt{2}}|1,1\rangle \text{ have the same}$$

$$|T\rangle = |1\rangle$$

$$|T\rangle = |T\rangle$$

$$|T\rangle$$

$$|T\rangle = |T\rangle$$

$$|T\rangle$$

$$|T$$

After a gate is applied, components corresponding to the same measurement outcome are combined.

Phase does not affect measurement but is relevant when applying a gate.

H gate Positive phase
$$H|\mathbf{0}\rangle \to \frac{1}{\sqrt{2}}|\mathbf{0}\rangle + \frac{1}{\sqrt{2}}|\mathbf{1}\rangle$$

$$H|\mathbf{1}\rangle \to \frac{1}{\sqrt{2}}|\mathbf{0}\rangle - \frac{1}{\sqrt{2}}|\mathbf{1}\rangle$$
Negative phase

Constructive and destructive <u>interference</u> can occur when combining like terms.

$$|Q\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|Q\rangle$$

$$\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) + \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right)$$

$$\frac{1}{\sqrt{2}}\left(2\cdot\frac{1}{\sqrt{2}}|0\rangle + 0\cdot\frac{1}{\sqrt{2}}|1\rangle\right) = |0\rangle$$

Exam 1 Topics

Quantum Information

Qubit, amplitude, state vector, Dirac notation, superposition, measurement, phase

Quantum Logic Gates

Gate model of quantum computation, matrix definition, common single-qubit gates

Bloch Sphere

Visualization of single-qubit states, spherical coordinates, parametrized gates

Multi-Qubit States

Tensor product of state vectors, registers, applying gates to complex superpositions

Quantum Control Logic

Entanglement, controlled operations, phase kickback, common multi-qubit gates

Quantum Communication

Superdense coding, quantum key distribution

Quantum Error Correction

Bit-flip code, Shor code, Steane code

Quantum Interference

Hadamard transform

