

TKC-Amanita 模组规格书

版本: V1.0

日期: 2022-11-7

一、产品概述

TKC-Amanita 是由太水科技(上海)科技有限公司开发的蓝牙模块。该模块核心处理器芯片是一款高集成度的低功耗蓝牙系统级芯片(SoC),芯片集成了 32 位 CPU 支持浮点与数学函数加速运算,并内置蓝牙调制解调器、

基带及模拟 RF 模块, 支持蓝牙 V2.1/V4.2/V5.1 版本。

专为物联网(IoT)、音乐、通话、移动设备、智能控制、传感收集数据传输、智能家居等各种应用而设计。

模组芯片內置 73KBSRAM, 4Mbit flash, 高达 96MHz 主频。芯片支持低功耗工作模式,出色的电池使用寿命使其适合功耗敏感的应用。射频输出功率可调节功能等特性,可以实现通信距离、通信速率和功耗之间的最佳平衡。

TKC-Amanita 模块提供丰富的外设接口,包括 UART,PWM,ADC,I2C,SPI,Q-decoder,MCPWM,LED CONTROL,DMA 等丰富的外设接口和多达 20 个可编程数字 I/O 引脚。TKC-Amanita 模块具有多种特有的硬件安全机制。硬件加密加速器支持 AES128 算法。

二、主要参数

模组型号	TKC-Amanita	
封装	邮票孔	
尺寸	22. 45*20*2(±0. 2) mm	
天线形式	板载天线	
频谱范围	2400~2483.5MHz	
工作温度	-40° °C~85°C	
存储环境	-40° °C ~125° C, <90%RH	
供电范围	供电电压 1.8V~3.6V, 供电电流>200mA	
支持接口	JART/GPIO/ADC/PWM/I2C/I2S/SPI/PDM/DMA/	
可用 IO 数量	20 个	
串口速率	默认 115200 bps	
蓝牙	BLE 5.1	
安全性	AES-128	
SPI Flash	512KB	

三、外观尺寸

1、实物图

2、尺寸图

四、管脚定义

序号	符合	I0 类型	功能
1	PA8	I/0	普通 I/O 口,可做 SPI1:SPI1 Data Out(A); IIC:IIC SDA(C);ADC4:ADC Channel 4
2	PA7	I/0	普通 I/O 口,可做 SPI1:SPI1 Clock(A); IIC_SCL_C: IIC SCL(C); ADC3: ADC Channel 3; UART1_TXC: Uart1 Data Out(C); PWMCH1H;
3	PA6	I/0	普通 I/O 口,可做 SPI1: SPI1 Data In(A); UARTO_RXA: UartO Data In(A);
4	USBODM	I/0	USBODM,可做 SPI2_DOB: SPI2 Data Out(B); IIC_SDA_A: IIC SDA(A); ADC11: ADC Channel 11; UART1_RXD: Uart1 Data In(D);
5	USB0DP	I/0	USBODP,可做 SPI2: SPI2 Clock(B); IIC_SCL_A: IIC SCL(A); ADC10: ADC Channel 10; UART1 TXD: Uart1 Data Out(D)
6	PA5	I/0	普通 I/O 口,可做 SPI2: SPI2 Data In(B); ADC2: ADC Channel 2; UARTO_TXA: UartO Data Out(A)
7	PA4	I/0	普通 I/O 口,可做 PWM1: Timer1 PWM Output; IIC_SDA_D: IIC SDA(D); UART2 RXA: Uart2 Data In(A)
8	PA3	I/O	普通 I/O 口,可做 IIC: IIC SCL(D); ADC1: ADC Channel 1; UART2_TXA: Uart2 Data Out(A)
9	+5V	POWER	电源输入: Charge Power +5V
10	BAT+	POWER	电源输入: LDO Power (VBAT+)
11	PA2	I/0	普通 I/O 口,可做 PWMO: TimerO PWM Output; Q-decoderO_0; ADCO: ADC Channel 0; UARTO_TXC: UartO Data Out(C); UART1_CTS
12	PA1	I/0	普通 I/O 口,可做 PWMO: TimerO PWM Output; Q-decoderO_O; ADCO: ADC Channel O; UARTO_TXC: UartO Data Out(C);

ANATER

13		I/0	普通 I/O 口,可做 UART2_TXB: Uart2 Data
	PA0		Out(B);
			UART2_RXB: Uart2 Data In(B)
14	PB9	I/0	普通 I/0,可做 32K_OSCI;
15	PB8	1/0	普通 I/O,可做 332K_OSCO;
16	PB7	1/0	普通 I/O 口,可做 SPI2: SPI2 Data Out(A);
	LD1		UART2_RXC: Uart2 Data In(C)
17		1/0	普通 I/O 口,可做 SPI2: SPI2 Clock(A) ;
	PB6		ADC12: ADC Channel 12;
			UART2_TXC: Uart2 Data Out(C)
18		I/0	普通 I/O 口,可做 SPI2: SPI2 Data In(A);
	PB5		UART1_RXA: Uart1 Data In(A);
			PWMCH3L;
19		I/0	普通 I/O 口,可做 Q-decoder2_0;
			SPI1_DIB: SPI1 Data In(B);
	PB4		ADC9: ADC Channel 9;
			UAR1_TXA: Uart1 Data Out(A);
			РШМСНЗН
20	GND	POWER	电源地
21	GND	POWER	电源地
22		I/0	USB1DM,可做 SPI1: SPI1 Data Out(B);
			IIC_SDA_B: IIC SDA(B);
	USB1DM		ADC6: ADC Channel 6;
			UART2_RXD: Uart2 Data In(D)
23		I/0	USB1DP, 可做 SPI1_CLKB: SPI1 Clock(B);
	USB1DP		IIC_SCL_B: IIC SCL(B);
			ADC5: ADC Channel 5;
		- /0	UART2_TXD: Uart2 Data Out(D)
24		I/0	普通 I/O 口,可做 UARTO: UartO Data In(B);
	PB3		PWMCH2L;
0.5		T /0	Q-decoder1_1
25	DD0	I/0	普通 I/O 口,可做 UARTO: UartO Data Out(B);
	PB2		PWMCH2H;
0.0		T /0	Q-decoder1_0
26	DD1	1/0	普通 I/O 口,可做 PWM2: Timer2 PWM Output;
	PB1		ADC7: ADC Channel 7;
0.7		T /0	UART1_RXB: Uart1 Data In(B)
27	PB0	1/0	普通 I/O 口,可做 UART1_TXB: Uart1 Data
		T /0	Out (B)
28	PA9	I/0	复位脚,可做 ADC8: ADC Channel 8
29	VDD33	电源输入	+3.3V 输入电源
30	NC	保留	无功能

五、原理图

六、回流焊温度曲线图

升温区 — 温度: 25~150°C 时间: 60~90s 升温斜率: 1~3°C/s

预热恒温区 — 温度: 150~200°C 时间: 60~120s

回流焊接区 — 温度: >217°C 时间: 60~90s; 峰值温度: 235~250°C 时间: 30~70s

冷却区 - 温度: 峰值温度~180°C 降温斜率-1~-5°C/s