1 第三章内积空间 1

1 第三章内积空间

1.1 1 欧氏空间

1.1.1 1.1 内积

设 V 是 \mathbb{R} 上 n 维线性空间 $f: V \times V \to \mathbb{R}$ 是对称双线性型, 使得 f 对应的二次型是正定的.

双线性: $\forall \vec{x}, \vec{y}, \vec{z} \in V, \alpha, \beta \in \mathbb{R}$,

 $f(\alpha \vec{x} + \beta \vec{y}, \vec{z}) = \alpha f(\vec{x}, \vec{z}) + \beta f(\vec{y}, \vec{z})$

 $f(\vec{x}, \alpha \vec{y} + \beta \vec{z}) = \alpha f(\vec{x}, \vec{y}) + \beta f(\vec{x}, \vec{z})$

对称: $f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{z})$

二次型: $q(\vec{x})=f(\vec{x},\vec{x})$ 正定: $\forall \vec{x} \in V \setminus \{\vec{0}\}, q(\vec{x})>0$,称 (V,f) 是一个欧氏空间, 其中 f 是 V 上的内积

注 设 $\vec{x} \in V$, 则

- (i) $\vec{x} \cdot \vec{0} = \vec{0}$
- (ii) $\vec{x} \cdot \vec{x} = \vec{0} \Leftrightarrow \vec{x} = \vec{0}$

定义 设 $\vec{x} \in V, \sqrt{\vec{x} \cdot \vec{x}},$ 称为 \vec{x} 的长度, 记为 $|\vec{x}|$

定义 设 $\vec{x}, \vec{y} \in V, |\vec{x} - \vec{y}|$ 称为 \vec{x} 与 \vec{y} 的距离.

命题 1.1 设V是欧氏空间

- (i) $\forall \vec{x} \in V, \vec{0} \cdot \vec{x} = 0$
- (ii) $\vec{x} \cdot \vec{x} = 0 \Leftrightarrow \vec{x} = \vec{0}$

注 在本节中 V 是欧氏空间, $\vec{v} \in V, L_{\vec{v}} : V \to \mathbb{R}\vec{x} \mapsto \vec{v} \cdot \vec{x}$ 是线性函数, 即 $L_{\vec{v}} \in V^*$

定义 设 $\vec{v}_1, \dots, \vec{v}_s \in V, G(\vec{v}_1, \dots, \vec{v}_s) = (\vec{v}_i \cdot \vec{v}_j)_{i=1,\dots,s,j=1,\dots,s}$ 称为 $\vec{v}_1, \dots, \vec{v}_s$ 的 Gram 矩 阵, $G(\vec{v}_1, \dots, \vec{v}_s)$ 是 s 阶实对称方阵

定理 1.1 设 $\vec{v}_1, \dots, \vec{v}_s \in V$,

 $\vec{v}_1, \dots, \vec{v}_s$ 线性无关 $\Leftrightarrow G(\vec{v}_1, \dots, \vec{v}_s)$ 满秩

1 第三章内积空间 2

1.1.2 1.2 长度 (范数) 和距离

定义 设 $\vec{x} \in V, \sqrt{\vec{x} \cdot \vec{x}}$ 称为 \vec{x} 的长度或范数, 记为 $|\vec{x}|$ 或 $||\vec{x}||$.

命题 1.2(Cauchy-Buniakowski 不等式) 设 $\vec{x}, \vec{y} \in V, |\vec{x} \cdot \vec{y}| \leq |\vec{x}||\vec{y}|;$ 等号成立 $\Leftrightarrow \vec{x}, \vec{y}$ 线性相关

定义 设 $\vec{x}, \vec{y} \in V, \vec{x}, \vec{y}$ 之间的距离定义为 $|\vec{x} - \vec{y}|$

注 $\vec{x} \in V$, 如果 $|\vec{x}| = 1$, 则称 \vec{x} 是单位向量

1.1.3 1.5 正交矩阵

定义 设 $A \in GL_n(\mathbb{R})$, 如果 $A^t = A$, 则称 A 是正交矩阵.

定理 1.3 设 V 的一组单位正交基是 $\vec{e}_1, \dots, \vec{e}_n$, 而 $\vec{e}_1, \dots, \vec{e}_n$ 是 V 的一组基且 $A \in GL_n(\mathbb{R}), (\vec{e}_1, \vec{e}_n) = (\vec{e}_1, \dots, \vec{e}_n)A$, 则 \vec{e}_1, \vec{e}_n 是单位正交基 $\Leftrightarrow A$ 是正交矩阵.

命题 1.3 设 A 是正交矩阵, 则

- (i) $det(A) = \pm 1$
- (ii) A^t 即 A^{-1} 也是正交矩阵,
- (iii) 再设 B 是正交矩阵, 则 AB 也是正交矩阵.

1.1.4 1.6 正交相似

定义 设 $A, B \in M_n(\mathbb{R})$, 如果存在 $P \in O_n(\mathbb{R})$, 使得 $B = P^{-1}AP$, 则称 B = A 正交相似,记为 $A \sim_o B$

注 如果 $A \sim_o B$, 则 $A_s B \perp A \sim_c B$

问题 给定 $A \in M_n(\mathbb{R})$, 求 A 在正交相似下的"标准型"

命题 1.4 \sim_o 是等价关系

1 第三章内积空间 3

定义 设 $U \subset V$, 子空间,U 的正交补 $U^{\perp} = \{\vec{v} \in V | \forall \vec{u} \in U, \vec{v} \perp \vec{u}\}$

命题 1.5 设 $U \subset V$, 子空间, 则

- (i) U^{\perp} 是子空间
- (ii) $V = U \bigoplus U^{\perp}$
- (iii) $(U^{\perp})^{\perp} = U$

1.2 2 正规算子与正规矩阵

1.2.1 2.1 伴随算子

定义 设 V 是 n 维欧氏空间, $A \in \mathcal{L}(V)$, 设 $A^* \in \mathcal{L}(V)$, 使得 $\forall \vec{x}, \vec{y} \in V, A(\vec{x}) \cdot \vec{y} = \vec{x} \cdot A^*(\vec{y})$, 则称 A^* 是 A 的伴随算子.

伴随算子: $\phi:V\to V^*$

 $\vec{v} \mapsto L_{\vec{v}}$

 $\phi(\vec{v}) = 0^*, L_{\vec{v}}(\vec{u}) = 0 \Leftrightarrow \vec{u} \in V, \vec{v} \cdot \vec{u} = 0 \Leftrightarrow ker(\phi) = \{\vec{0}\} \Leftrightarrow \phi \text{ 是线性同构}.$

定理 2.1 设 $A \in \mathcal{L}(V)$, 则

- (i) A 的伴随算子存在且唯一
- (ii) 设 $\vec{e_1}, \cdots, \vec{e_n}$ 是 V 的一组单位正交基, 且 A 在 $\vec{e_1}, \cdots, \vec{e_n}$ 下的矩阵是 A, 则 A 的伴随算子在 $\vec{e_1}, \cdots, \vec{e_n}$ 下的矩阵是 A^t .