Comprehensive GPR Signal Analysis via

Descriptive Statistics and Machine Learning

Himan Namdari*, Majid Moradikia*, Douglas Todd Petkie*, Radwin Askari†, Seyed Zekavat*

* Worcester Polytechnic Institute (WPI), Worcester, MA, USA

Email: {hnamdari, mmoradikia,dtpetkie, rezaz}@wpi.edu

† Michigan Tech Research Institute (MTRI), Ann Arbor, Michigan, USA

Email: {raskari}@mtu.edu

Unlocking Earth's Secrets with Ground Penetrating Radar

Subtimal farm Irrigation

Stress on Plants.

Soil Degradation.

Nutrient Leaching.

Water Wastage.

Solution

Optimal irrigation by Estimating soil moisture.

Air-coupled Ground Penetration Radar has a high potential to estimate the soil moisture in root zone.

GPR: Beyond the Agriculture Fields

Accurate soil moisture estimation plays a pivotal rule in many industries.

Forestry [2].

Civil Engineering & Construction [3].

Wildfire Assessment [4].

Planetary Exploration [5].

GPR Data collection.

Sources: https://www.afacademy.org

^{1:} Hubbard, S., Chen, J., Williams, K., Peterson, J., & Rubin, Y. (2005). Environmental and agricultural applications of GPR.

^{2:} Lorenzo Cimadevila, H., Pérez Gracia, M. D. L. V., Novo, A., & Armesto, J. (2010). Forestry applications of ground-penetrating radar. Forest Systems (formerly: Investigación agraria: sistemas y recursos forestales), 19(1), 5-17.

^{3:} Lai, Wallace Wai-Lok, Xavier Derobert, and Peter Annan. "A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis." Ndt & E International 96 (2018): 58-78. 4: Khanmohammadi, Sadegh, et al. "Prediction of wildfire rate of spread in grasslands using machine learning methods." Environmental Modelling & Software 156 (2022): 105507.

^{5:} Bristow, Charlie S., et al. "Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars." Earth and Planetary Science Letters 289.1-2 (2010): 30-42.

GPR: A Glimpse Beneath the Surface

How does GPR work?

Transmitter emits EM waves into the ground. (Top figure)

Receiver records the reflected waves [6]. (Bottom figure)

Why Soil Moisture?

Soil Moisture impacts and changes the received signal.

Signal power, speed, shape, and form.

GPR Radar

GPR Reflection Model

GPR Data Collection: Air vs. Surface Coupling

- Surface-Coupled Method
 - Soil and crop Destructive
 - Small survey area
 - Slow
- Air-Coupled Method
 - Non-Destructive
 - Altitude from the ground
 - Mega farms
 - Fast

Surface-Based

Air-Coupled

GPR Principles and Soil Moisture

Uses electromagnetic waves to detect changes in sub-surface properties.

Soil moisture content by analyzing reflected signals.

Delta (δ) is depth

Mu (μ) is permeability

Sigma (σ) is conductivity

Frequency (f)

Indirect relation between μ , σ , and f with δ Higher frequency lower depth

Higher attenuation in deeper soil.

Sources: https://www.usnews.com/ https://impulseradargpr.com/

^{9:} https://impulseradargpr.com/

Velocity, Permittivity, and Depth of Penetration

Analysing the impact of permittivity on the signal.

Permittivity of the layer was varied between 2-78.

Slower signal propagation.

Delayed reflection arrival.

Attenuated faster at higher permittivity levels

Direct relation between δ and v

Indirect relation between v and ϵ

$$D = \frac{v}{2f}$$

$$v = \frac{\epsilon}{\sqrt{\epsilon_r}}$$

v is the speed of the electromagnetic wave in the material. c is the speed of light in a vacuum, approximately 3×10^8 m/s. ε_r is the relative permittivity (or dielectric constant) of the material.

gprMax Simulator

gprMax

Open-source GPR simulator

Application

Large-scale soil data generation.

Method

Uses FDTD for accuracy.

Goal

Generated labeled data

Train ML for soil moisture prediction.

Problem Definition

GPR Data Analysis Limitations

Complex Data analysis process to extract features [12]...

GPR received signal Labeling.

Our Contribution

gprMax for data Augmentation and labeling.

Feature extraction using descriptive statistic.

Input data size reduction and improving efficiency.

Feature selection using random forest model.

higher data size reduction and more efficiency.

Our Contribution

Large-Scale Data Generation

10,000 GPR simulations

1-3 Layer Model with variation in permittivity.

Feature Extraction

Descriptive statistic (15 feature)

Feature Selection Random Forest (5 Top features)

Dimensionality Reduction

99% Training input size reduction

Machine Learning Modeling

Efficiency Enhancement

GPR Feature Types

Changes in soil properties can change the behavior of the received signal

Amplitude Patterns:

Variations in signal strength.

Waveform Shapes:

Unique forms of the GPR signals.

Anomalies:

Unexpected or unusual data points.

Time Delays:

Time taken for signals to reflect back.

Frequency Components:

Different frequency.

Texture Variations:

Subsurface variations.

GPR Data Feature Extraction Methods

Feature extraction isolates the most important information from data for analysis.

Descriptive Statistic

Signal Amplitude
Mean, std
Signal Shape
Kurtosis
Signal Anomalies
Q1-Q4

<mark>Low</mark> Moderate					
Method	Complexity	Efficiency	Resolution	Adaptability	
Wavelet Decomposition					
PCA					
Time-Frequency Analysis					
Statistical Measures					
Texture Analysis					
Descriptive Analysis					

Model Overview

- Dataset Shape: a x b
- a = Number of simulation
- b = Number of features and labels

Methodology

- 1. Generate different soil scenarios
 - a. gprMax
- 2. Analyse the impacts of
 - a. Diverse permittivity
 - b. Number of layers
 - c. Depth Impact
- 3. Utilizing the DSFX method
 - a. Extracting main features
- 4. Utilizing the RFFI method
 - a. Extracting important features.
- 5. Evaluate the method

Descriptive Statistics Features Extraction (DSFX)

Proposed Descriptive Statistical Feature extraction

In Time domain analysis

Extrating

Min, Max, Mean, Std, Q1-Q4

Skewness (SK), Kurtosis, entropy

In Frequency Domain

Min, Max, Mean, Std

Overall 15 Features

Dimension Reduction

Raw features = 1967

Extracted features = 15

Percentage Reduction 99.24%

$$sk = \frac{3(\mu - Median)}{std}$$

Random Forest Features Importance (RFFI)

Setup

gprMax, single layer, variable permittivity.

Input data

15 GPR features.

1000 simulation with labels

RF Model

Trained and ranked features.

Outcome

Top 5 features identified.

Experimental Setup and gprMax Configuration

Simulated Environment

Simulation Model Parameters	Details	
Model Type	1-3 Layer Model	
Dimension	1.5 × 1.5 × 0.002	
Propagation Time	5-8 ns	
Frequency	1.5 GHz	
Waveform	Ricker Pulse	
Permittivity Range	2-78	
Depth	0.01 - 0.1	
Number of Simulations	1000+	

Experimental Results (Soil Depth)

Analysing the impact of depth on signal.

Depth of the layer was varied between 0.01-0.1 (m).

Higher Attenuation

Slower signal propagation.

Delayed reflection arrival.

Attenuated faster at higher permittivity levels.

Signal Frequency Experimental Results

Analysing the impact of frequency on the signal.

Frequency was adjusted between 0.5 - 2.0 GHz.

With increasing frequency:

Lower Signal propagation

Faster Signal attenuation

Lower depth of penetration.

Shape of the signal

0.5 GHz harder to interpret

Impact of Frequency

Descriptive Statistic Features Analysis

Features that Increase with Permittivity:

Skewness

Standard Deviation (Std)

Third & Fourth Quartile

Features that Decrease with Permittivity:

Second Quartile Mean (Q2 Mean)

Third Quartile Mean (Q3 Mean)

Features with Unpredictable Behavior:

Minimum Value (MIN)

Maximum Value (MAX)

Random Forest Experimental Results

Top five Features:

FFT, Peak, and Q4 Mean Kurtosis, Skewness

Conclusion

Data Generation

Labeling

15 Features via Stats

Top 5 Features (RF)

NN: Minor RMSE Rise

Time Reduction

99% Data Size Cut

98% Faster Execution tTime

Feature Set	RMSE (Training)	RMSE (Test)	Execution Time (s)
Raw Feature Set	0.003	0.004	1.75
DSFX Feature Set	0.025	0.022	0.025

Q & A

