# Vision-Language-Action Models RT1, RT2, OpenVLA

### A. Buynitsky

Jan 26, 2025



990

1/21

- 1 RT1
- **2** RT2
- OpenVLA
- 4 Aloha



MLP RT1, RT2, OpenVLA Jan 26, 2025 2

- 1 RT1
- **2** RT2
- OpenVLA
- Aloha



MLP RT1, RT2, OpenVLA Jan 26, 2025 3

## FiLM Layers

FiLM adaptively influence output of neural network by applying a affine (linear) transformation to intermediate layers.

FiLM learns functions f and h based on external input  $x_i$  (i.e image) in a batch

$$\gamma_{i,c} = f_c(x_i)$$
  $\beta_{i,c} = h_c(x_i)$ 

$$\mathsf{FiLM}(F_{i,c} \mid \gamma_{i,c}, \beta_{i,c}) = \gamma_{i,c}F_{i,c} + \beta_{i,c}$$

 $F_{i,c}$  is the  $c^{th}$  feature of the  $i^{th}$  sample in the batch



# FiLM Layers

FiLM adaptively influence output of neural network by applying a affine (linear) transformation to intermediate layers.

FiLM learns functions f and h based on external input  $x_i$  (i.e image) in a batch

$$\gamma_{i,c} = f_c(x_i)$$
  $\beta_{i,c} = h_c(x_i)$ 

$$FiLM(F_{i,c} \mid \gamma_{i,c}, \beta_{i,c}) = \gamma_{i,c}F_{i,c} + \beta_{i,c}$$

 $F_{i,c}$  is the  $c^{th}$  feature of the  $i^{th}$  sample in the batch



MLP RT1, RT2, OpenVLA Jan 26, 2025 5 / 21

### TokenLearner

**Goal:** Generate  $[z_i]_{i=1}^S \in \mathbb{R}^{S \times C}$  from  $x \in \mathbb{R}^{H \times W \times C}$  by learning S functions  $A_i$  to adaptively select informative combo of pixels in  $x_t$  denoted as:

$$z_i = A_i(x)$$

Implement with weight map  $\alpha_i(x)$  and spatial global average pooling  $\rho(x)$ :

$$z_i = A_i(x) = \rho(x \odot \gamma(\alpha_i(x)))$$



# RT1 Architecture (Part 1)

Unversal Sentence Encoder:
 Encoder block of Transformer

FiLM Layers: Conditions
 EfficientNet on text
 TokenLearner: Donwsample 81
 to 8 tokens per image

- **Transformer:** Apply transformer to FiLM output



MLP RT1, RT2, OpenVLA Jan 26, 2025 7 / 21

# RT1 Architecture (Part 2)

- History: 6-image history for total of 48 tokens
- **Transformer:** decoder-only arch with 8 self-attn layers
- Action Tokenization:
   Discretize continuous actions to
   256 bins:
  - **Gripper Actions:**  $x, y, z, \rho, \phi, \theta$ , opening of gripper
  - Base Actions: x, y head angle
  - mode: control arm, control base or terminate





- **1** RT1
- **2** RT2
- OpenVLA
- Aloha



MLP RT1, RT2, OpenVLA Jan 26, 2025

# Converting VLMs to VLAs

**Goal:** Associate actions from model's existing tokenization for:

 $\mathsf{terminate}\ \Delta\mathsf{pos}_x\ \Delta\mathsf{pos}_y\ \Delta\mathsf{pos}_z\ \Delta\mathsf{rot}_x\ \Delta\mathsf{rot}_y\ \Delta\mathsf{rot}_z\ \mathsf{gripper\_extension}$ 

Possible instantiation: "1 128 91 241 5 101 127"

**PaLI-X Tokenization:** Integers up to 1000 each have unique token, so associate action bins to token corresponding to integer

**PaLM-E Tokenization:** Overwrite the 256 least frequently used tokens to represent action vocabulary.

**Co-Fine-Tuning:** Train with both robotics data "Q: what action should robot take to [task instruction]? A:" and original web data.

## RT2 Architecture

### Prefix-decoder-only LLMs:

LLM is auto-regressive: condition model on prompt (prefix  $w_{1:n}$ ) consisting of token embeddings  $w_i \in \mathcal{X} \subset \mathbf{R}^k$ :

$$p(w_{n+1:L} \mid w_{1:n}) = \prod_{l=n+1}^{L} p_{LM}(w_l \mid w_{1:l-1})$$

Train end-to-end embeddings  $\gamma: \mathcal{W} \to \mathcal{X}$ :

$$x_i = \gamma(w_i),$$

#### **Adding Images:**

ViT maps image I to tokens  $\tilde{x}_{1:m} = \tilde{\phi}_{\mathsf{ViT}}(I) \in \mathbf{R}^{m imes \tilde{k}}$ 

Project  $ilde{x}_{1:m}$  to embedding space via affine transformation  $\psi: \mathbf{R}^{ ilde{k}} o \mathbf{R}^k$ 

Robot State: (Joint angles, gripper state, etc.)

Project  $s \in \mathbf{R}^{S}$  to embedding space via affine transformation  $\psi : \mathbf{R}^{S} \to \mathbf{R}^{k}$ 

MLP RT1, RT2, OpenVLA Jan 26, 2025 11 / 21

### RT2 Architecture and Results

#### **Complete Architecture:**



#### Results:

MLP



12 / 21

- **1** RT1
- **2** RT2
- OpenVLA
- Aloha



# OpenVLA Architecture

#### **Complete Architecture:**



#### Vision Encoder:

Concatenate embeddings from SigLip and DinoV2 channelwise

## **Projection Layer**

2-layer MLP projecting to embedding dimension of llama (512)

### LLM Backbone:

Llama-2 7B

### Data and Tokenization Details

#### **Tokenizer**

- LLama tokenizer reserves 100 toeksn for fine-tuning.
- Chose to follow RT2 tokenization. Discretize each dim of robot actions seperately into one of 256 bins.
- Replace 256 least frequent tokens with action tokens.

### **Training Data**

- OpenX dataset (70 robot embeddings w/ ¿ 2M trajectories)
- Restrict datasets to contain only 1 manipulator with 3rd pov camera
- weight down / remove less diverse datasets, up-weight datasets with larger task and scene diversity

MLP RT1, RT2, OpenVLA Jan 26, 2025 15 / 21

## Training Details

- Decrease image resolution from 384  $\times$  384 to 224  $\times$  224 for  $3\times$  training speedup
- Train until accuracy passes 95% (27 epochs using fixed Ir of 2e-5)
- finetune vision encoder weights for better spatial understanding
- Train on 64 A100 GPUs for 14 days using batch size of 2048
- requires 15GB of GPU memory when loading in bfloat16

MLP RT1, RT2, OpenVLA Jan 26, 2025 16 / 21

# Fine-Tuning OpenVLA

- full finetune: updats all weights during training
- last layer only: finetunes only last layer of transformer backbone and embedding matrix
- sandwich finetunes vision encoder, embedding matrix and last layer
- **LoRA** applied to all layers of the model using varying rank  $r \in 32,64$

| Strategy        | Success Rate                                  | Train Params ( $\times 10^6$ ) | VRAM (batch 16) |
|-----------------|-----------------------------------------------|--------------------------------|-----------------|
| Full FT         | $\textbf{69.7} \pm \textbf{7.2}  \textbf{\%}$ | 7,188.1                        | 163.3 GB*       |
| Last layer only | $30.3 \pm 6.1 \%$                             | 465.1                          | 51.4 GB         |
| Frozen vision   | $47.0\pm6.9~\%$                               | 6,760.4                        | 156.2 GB*       |
| Sandwich        | $62.1 \pm 7.9 \%$                             | 914.2                          | 64.0 GB         |
| LoRA, rank=32   | $\textbf{68.2} \pm \textbf{7.5}\%$            | 97.6                           | 59.7 GB         |
| rank=64         | $\textbf{68.2} \pm \textbf{7.8}\%$            | 195.2                          | 60.5 GB         |

## Results and Quantization

#### **Overall Results:**



### Inference Speed:

### **Quantization Results:**



| Precision | Bridge Success   | VRAM    |
|-----------|------------------|---------|
| bfloat16  | $71.3 \pm 4.8\%$ | 16.8 GB |
| int8      | $58.1 \pm 5.1\%$ | 10.2 GB |
| int4      | $71.9 \pm 4.7\%$ | 7.0 GB  |

- **1** RT1
- **2** RT2
- OpenVLA
- 4 Aloha



MLP RT1, RT2, OpenVLA Jan 26, 2025 19

## Aloha

TODO



MLP RT1, RT2, OpenVLA Jan 26, 2025 20,

## Thank you!

Have a great rest of your Day!!!

MLP RT1, RT2, OpenVLA Jan 26, 2025 21