# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

## «КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени В.И.ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

#### Лабораторный практикум

## по дисциплине «СЕТИ И ТЕЛЕКОММУНИКАЦИИ»

для обучающихся по направлениям подготовки: 09.03.01 — Информатика и вычислительная техника; 09.03.04 — Программная инженерия, очной/заочной формы обучения

Квалификационный уровень - бакалавриат

Е.П. Таран. Лабораторный практикум по дисциплине «Сети и телекоммуникации».
 Симферополь: ФГАОУ ВО «Крымский федеральный университет имени В.И.
 Вернадского», 2020. – 17 стр.

Лабораторный практикум по дисциплине «Сети и телекоммуникации» содержит требования к студентам по подготовке и выполнению лабораторной работы, технические задания на выполнения лабораторных работ, теоретический материал для каждой лабораторной работы, список рекомендуемой литературы, правила оформления отчета по лабораторной работе.

Утверждено на заседании кафедры компьютерной инженерии и моделирования, протокол от 15.01.2020 г. № 5

Издается по решению Методического совета Физико-технического института ФГАОУ ВО «КФУ им. В.И. Вернадского» (протокол № 6 от 28.02.2020 г.).

#### ВВЕДЕНИЕ

Настоящий лабораторный практикум включает в себя описания лабораторных работ по дисциплине «Сети и телекоммуникации» для студентов направлений подготовки: 09.03.01 «Информатика и вычислительная техника», 09.03.04 «Программная инженерия». При выполнении лабораторных работ с использованием средств автоматизированного проектирования студенты данных направлений подготовки исследуют основные характеристики и принципы построения современных телекоммуникационных систем и сетей.

Цель данного лабораторного практикума - разработка требований и рекомендаций по выполнению лабораторных работ и представлению отчетов.

# Требования к студентам по подготовке, выполнению и отчету по лабораторным работам:

- 1. Студент приходит на лабораторное занятие, ознакомившись с теоретическим материалом по данной теме, подтвержденным конспектом в тетради, для выполнения лабораторных работ.
- 2. В начале занятия преподаватель проверяет подготовку к лабораторной работе и оценивает ее. Студенты, не знающие теорию вопроса, к выполнению работы не допускаются.
- 3. Отчет по лабораторной работе должен содержать:
  - титульную страницу (приложение 1);
  - цель лабораторной работы;
  - техническое задание;
  - математический аппарат и основные формулы по дисциплине «Сети и телекоммуникации», необходимые для выполнения технического задания и достижения цели по данной лабораторной работе;
  - руководство пользователя по разработанному программному обеспечению, необходимому для выполнения лабораторной работы;
  - результаты выполнения работы и их обоснования;
  - выводы по работе;
  - программный код разработанного программного обеспечения (в приложении).
- 4. Порядок сдачи лабораторной работы. В ходе лабораторной работы студент разрабатывает программное обеспечение, необходимое для выполнения технического задания и достижения цели работы. Сдача лабораторной работы состоит из двух частей: 1. демонстрации работы разработанного программного обеспечения с анализом полученных значений; 2. сдача отчета по лабораторной работе. Отчет должен включать все необходимые разделы (пункт 3 данных требований), должен быть сформирован в формате .pdf и выслан преподавателю не позже установленного дня в Электронной информационно-образовательной среде (ЭИОС).

## СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Гельбух С.С. Сети ЭВМ и телекоммуникации. Архитектура и организация: Учебное пособие. СПб.: Издательство «Лань», 2019. 208 с. https://e.lanbook.com/reader/book/118646/#1
- 2. Самуйлова К.Е., Шалимов И.А., Кулябова Д.С. Сети и телекоммуникации: учебник и практикум для академического бакалавриата. М.: Издательство Юрайт, 2019. 363 с. https://biblio-online.ru/viewer/seti-i-telekommunikacii-432824#page/1
- 3. Вычислительные системы, сети и телекоммуникации : учебное пособие / авт.-сост. С.В. Буцык, А.С. Крестников, А.А. Рузаков ; под общ. ред. С.В. Буцык и др. Челябинск : ЧГИК, 2016. 116 с. : ил. Библиогр. в кн. ISBN 978-5-94839-537-1 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=492739.
- 4. Современные информационные каналы и системы связи : учебник / В.А. Майстренко, А.А. Соловьев, М.Ю. Пляскин, А.И. Тихонов ; Минобрнауки России, Омский государственный технический университет, Сибирский государственный автомобильно-дорожный университет (СибАДИ), Академия военных наук Российской Федерации. Омск : Издательство ОмГТУ, 2017. 452 с. : табл., граф., схем., ил. Библиогр. в кн. ISBN 978-5-8149-2458-2 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=493441.
- 5. Душин, В.К. Теоретические основы информационных процессов и систем : учебник / В.К. Душин. 5-е изд. Москва : Издательско-торговая корпорация «Дашков и К», 2016. 348 с. : ил. Библиогр. в кн. ISBN 978-5-394-01748-3 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=453880.

#### «РАСПРЕДЕЛЕНИЕ МОЩНОСТИ ПО КАНАЛУ ПЕРЕДАЧИ ДАННЫХ»

<u>Цель работы</u>: спроектировать канала передачи данных с заданными энергетическими характеристиками.

**Техническое залание:** На вход усилителя передатчика канала подается сигнал с уровнем мощности  $p_{ex}$ . Коэффициент усиления передатчика  $S_{nep}$ . Длина канала L. Затухание в канале передачи данных  $\alpha$ . Промежуточные усилители имеют коэффициент усиления S. Коэффициент усиления приемника  $S_{np}$ . Уровень помехи в канале передачи данных  $p_{nom}$ . Величина защищенности от помех A. Выход канала имеет уровень мощности  $p_{g_{blx}}$  (таблица 1).

Необходимо разработать программное обеспечение для расчета энергетических характеристик и проектирования канала передачи данных.

Таблица 1. Энергетические характеристики канала передачи данных.

| $\mathcal{N}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $p_{ex}, \partial B$ | $S_{nep}, \partial B$ | <i>L, км</i> | $\alpha$ , $\partial E/\kappa M$ | S, дБ | $S_{np}, \partial B$ | рпом, дБ | А, дБ | $p_{вых}$ , д $B$ |
|---------------------------------------------------------------------------------------|----------------------|-----------------------|--------------|----------------------------------|-------|----------------------|----------|-------|-------------------|
| 1                                                                                     | -3                   | 10                    | 100          | 1                                | 20    | 4                    | -15      | 5     | -5                |
| 2                                                                                     | -4                   | 11                    | 120          | 1,2                              | 21    | 5                    | -16      | 4     | -6                |
| 3                                                                                     | -5                   | 12                    | 140          | 1,4                              | 22    | 6                    | -17      | 3     | -7                |
| 4                                                                                     | -6                   | 13                    | 160          | 1,6                              | 23    | 7                    | -18      | 4     | -8                |
| 5                                                                                     | -7                   | 14                    | 180          | 1,8                              | 24    | 8                    | -19      | 5     | -9                |
| 6                                                                                     | -8                   | 15                    | 200          | 2                                | 25    | 9                    | -20      | 6     | -10               |
| 7                                                                                     | -9                   | 16                    | 240          | 2,2                              | 24    | 8                    | -21      | 7     | -11               |
| 8                                                                                     | -10                  | 17                    | 280          | 2,4                              | 23    | 7                    | -22      | 6     | -10               |
| 9                                                                                     | -9                   | 18                    | 320          | 2,6                              | 22    | 6                    | -23      | 5     | -9                |
| 10                                                                                    | -8                   | 19                    | 340          | 2,8                              | 21    | 5                    | -24      | 4     | -8                |
| 11                                                                                    | -7                   | 20                    | 360          | 3                                | 20    | 6                    | -25      | 3     | -7                |
| 12                                                                                    | -6                   | 21                    | 380          | 3,2                              | 19    | 7                    | -24      | 2     | -6                |
| 13                                                                                    | -5                   | 22                    | 400          | 3,4                              | 18    | 8                    | -23      | 1     | -5                |
| 14                                                                                    | -4                   | 23                    | 410          | 3,6                              | 17    | 9                    | -22      | 2     | -6                |
| 15                                                                                    | -3                   | 24                    | 420          | 3,8                              | 16    | 10                   | -21      | 3     | -7                |
| 16                                                                                    | -2                   | 25                    | 430          | 4                                | 15    | 9                    | -20      | 4     | -8                |
| 17                                                                                    | -1                   | 24                    | 440          | 3,6                              | 14    | 8                    | -19      | 5     | -9                |
| 18                                                                                    | -2                   | 23                    | 450          | 3,2                              | 13    | 7                    | -18      | 6     | -8                |
| 19                                                                                    | -3                   | 22                    | 470          | 2,8                              | 12    | 6                    | -17      | 7     | -7                |
| 20                                                                                    | -4                   | 21                    | 500          | 2,4                              | 11    | 5                    | -16      | 6     | -6                |

#### Вопросы для подготовки:

- 1. Классификация систем электросвязи по видам передаваемых сообщений.
- 2. Обобщенная структурная схема взаимодействия телекоммуникационных систем и сетей.
- 3. Логарифмические единицы измерения.
- 4. Диаграмма энергетических уровней.

### Теория:

Канал передачи данных представляет из себя каскадное соединение пассивных и активных четырехполюсников. При прохождении сигнала по каналу передачи данных

имеют место потери энергии в пассивных четырехполюсниках и ее увеличение в активных. Для оценки изменения энергии в различных точках канала вводится понятие рабочего затухания и рабочего усиления.

Под затуханием четырехполюсника понимается

$$A_{p} = 10 \lg \frac{W_{e}}{W_{u}} = p_{e} - p_{u}, \partial B$$
 (1.1),

где  $W_{c}$  – кажущаяся мощность, которую отдал бы источник (генератор) сигнала согласованной с ним нагрузке;

 $W_{H}$  – кажущаяся мощность, выделяющаяся в нагрузке четырехполюсника в реальных условиях включения;

 $p_{c}$  – уровень передачи по мощности от генератора, дБ;

 $p_{H}$  – уровень передачи по мощности в нагрузке, дБ.

Рабочее усиление четырехполюсника определяется выражением:

$$S_{p} = 10 \lg \frac{W_{n}}{W_{p}}, \partial B$$

$$W_{p} = 10 \lg \frac{W_{n}}{W_{p}}, \partial B$$

где  $W_2$  и  $W_H$  имеют тот же смысл, что и в выражении 1.1.

При проектировании и эксплуатации оборудования телекоммуникационных систем и сетей необходимо знать величины уровней сигнала в различных точках каналов и трактов передачи. Чтобы охарактеризовать изменения энергии сигнала при его передачи, используется диаграмма уровней — график, показывающий распределение уровней передачи вдоль тракта передачи.

На рисунке 1.1 показана диаграмма уровней канала передачи, состоящего из усилителя передачи ( $VC_{nep}$ ) с усилением, равным  $S_{nep}$ , трех участков линии связи (среды распространения) длиной  $l_1$ ,  $l_2$  и  $l_3$  с затуханием, равным  $A_1$ ,  $A_2$  и  $A_3$ , двух промежуточных усилителей ( $VC_1$  и  $VC_2$ ) с усилением соответственно  $S_1$  и  $S_2$  и усилителя приема ( $VC_{np}$ ) с усилением  $S_{np}$ .



Рисунок 1.1. Диаграмма уровней и ее характерные точки.

На диаграмме уровней отмечены характерные точки канала (тракта) передачи: вход канала с уровнем  $p_{ex}$ ; уровень передачи, равный  $p_{nep} = p_{ex} + S_{nep}$ ; уровни приема на входе і-го усилителя  $p_{np(i)} = p_{nep(i-1)} - A_i$ ; выход канала (тракта) с уровнем  $p_{ebx}$  и величина

защищенности от помех на входе 
$$i$$
-го усилителя, равная 
$$A = 10 \lg \frac{W_{npi}}{W_{nomi}} = p - p_{nomi}, \partial E$$
 (1.3),

где  $W_{npi}$  — мощность сигнала на входе i-го усилителя;

 $W_{nomi}$  — мощность помехи на входе *i*-го усилителя;

 $p_{npi}$  — уровень сигнала на входе *i*-го усилителя, дБ;

 $p_{nomi}$  — уровень помехи на входе *i*-го усилителя, дБ.

Уровень сигнала на входе приемника  $p_{np}$ :

$$p_{np} = p_{\text{\tiny GBLX}} - S_{np}, \, \partial E \tag{1.4},$$

Затухание на участке длиной  $l_i(A_i)$  определяется исходя из коэффициента затухания в канале передачи  $\alpha_i$ 

$$A_i = \alpha_i \cdot l_i, \, \partial E \tag{1.5}.$$

Соотношение между уровнями сигнала на входе и выходе канала определяет его остаточное затухание, которое представляет собой рабочее затухание, определяемое при условии замыкания входа и выхода канала на активные сопротивления нагрузки, соответствующие номинальным значениям входного и выходного сопротивлений канала. Остаточное затухание равно разности между суммой всех рабочих затуханий, имеющихся в канале, и суммой всех рабочих усилений:

$$A_{r} = \sum_{i} A_{pi} - \sum_{k} S_{pk} \tag{1.6}.$$

#### Ход работы:

**Задание I**. С использованием разработанного программного обеспечения необходимо рассчитать следующие энергетические характеристики канала передачи данных:

- 1. уровень передачи ( $p_{nep}$ );
- 2. минимальный уровень сигнала на входе i-го усилителя ( $p_{npi}$ );
- 3. затухание на участке длиной  $l_i$  ( $A_i$ );
- 4. длину *i*-го участка ( $l_i$ );
- 5. уровень сигнала на входе приемника  $p_{np}$ ;
- 6. длину оконечного участка канала передачи данных;
- 7. количество промежуточных усилителей.

Задание ІІ. Построить диаграмму уровней и изобразить характерные точки.

Задание III. Сделать выводы по работе.

#### «МНОГОКАНАЛЬНЫЕ СИСТЕМЫ ПЕРЕДАЧИ»

<u>Пель работы</u>: технико-экономическое обоснование применения многоканальных систем передачи.

**Техническое задание:** протяженность магистрали между пунктами A и B – L, стоимость одного километра физической цепи  $K_u$ , стоимость оборудования систем передачи оконечных станций  $K_o$ , стоимость прокладки одного километра физической цепи  $K_\pi$ . Необходимо разработать программное обеспечение и провести расчет затрат при проектировании многоканальной системы передачи. Исходные данные приведены в таблице 2.

Таблица 2.

| No | L, км | $K_{\scriptscriptstyle R}$ , руб/км | Ки, руб/км | $K_o$ , руб |
|----|-------|-------------------------------------|------------|-------------|
| 1  | 100   | 2000                                | 3000       | 50000       |
| 2  | 120   | 2200                                | 2800       | 55000       |
| 3  | 140   | 2400                                | 2600       | 60000       |
| 4  | 160   | 2600                                | 2400       | 65000       |
| 5  | 180   | 2800                                | 2200       | 70000       |
| 6  | 200   | 3000                                | 2000       | 75000       |
| 7  | 220   | 3100                                | 1900       | 80000       |
| 8  | 240   | 3200                                | 1800       | 85000       |
| 9  | 260   | 3300                                | 1700       | 90000       |
| 10 | 280   | 3400                                | 1600       | 95000       |
| 11 | 300   | 3500                                | 1500       | 94000       |
| 12 | 320   | 1900                                | 1600       | 92000       |
| 13 | 340   | 1800                                | 1700       | 88000       |
| 14 | 360   | 1700                                | 1800       | 86000       |
| 15 | 380   | 1600                                | 1900       | 84000       |
| 16 | 400   | 1500                                | 2000       | 82000       |
| 17 | 420   | 2100                                | 2100       | 78000       |
| 18 | 440   | 2300                                | 2200       | 76000       |
| 19 | 460   | 2500                                | 2300       | 74000       |
| 20 | 480   | 2700                                | 2400       | 72000       |

#### Вопросы для полготовки:

- 1. Обобщенная структурная схема многоканальной системы передачи.
- 2. Общие и удельные капитальные вложения.
- 3. Унифицированное оборудование многоканальных систем передачи.
- 4. Методы разделения канальных сигналов.
- 5. Взаимные помехи между каналами.

#### Теория:

Основу современных телекоммуникационных систем составляют многоканальные системы передачи (МСП), позволяющие получить типовые каналы и тракты и обеспечить экономически целесообразно организованную связь на любые расстояния. Представление об эффективности использования МСП можно получить путем сравнения вариантов организации связи между пунктами А и В путем сравнения вариантов по общим или удельным капитальным вложениям.

Существуют два варианта организации N каналов между пунктами A и B:

I вариант — необходимое количество каналов N получается при использовании N физических цепей;

2 вариант — необходимое количество каналов N получается путем использования МСП и одной физической цепи.

Общие капитальные вложения определяются по формулам:

по первому варианту

$$K_1 = (K_{\pi} + NK_{\pi})L \tag{2.1}$$

и по второму варианту

$$K_2 = (K_{\pi} + K_{\mu})L + 2K_{\sigma} \tag{2.2}.$$

Удельные капитальные вложения по соответствующим вариантам  $k_1$  и  $k_2$  определяются как частное от деления общих капитальных вложений на протяженность каналов магистрали — на канало-километры NL.

Для первого варианта

$$k_1 = \frac{K_1}{NL} = \frac{K_{\pi}}{N} + K_{\pi},$$
 (2.3)

для второго варианта

$$k_2 = \frac{K_2}{NL} = \frac{K_\pi - K_{\text{II}}}{N} + \frac{2K_o}{NL}.$$
 (2.4)

Общая экономия от применения оборудования МСП будет равна

$$\Delta K = K_1 - K_2 = LK_{\mu}(N - 1) - 2K_0$$
(2.5)

и удельная экономия

$$\Delta k = \frac{\Delta K}{NL} = K_{\text{II}} \frac{N-1}{N} - \frac{2K_{\text{o}}}{NL}.$$
(2.6)

#### Хол работы:

- **Задание I.** С использованием разработанного программного обеспечения необходимо рассчитать технико-экономические характеристики телекоммуникационной системы для нескольких каналов передачи данных (N=2, 5, 10, 50, 100):
  - 1. общие капитальные вложения для двух вариантов организации N каналов ( $K_1$ ,  $K_2$ );
  - 2. удельные капитальные вложения для двух вариантов организации N каналов  $(k_1, k_2)$ ;
  - 3. общую ( $\Delta K$ ) и удельную ( $\Delta k$ ) экономию при реализации МСП.

**Задание II.** Построить графики зависимости общих капитальных вложений и удельных капитальных вложений при организации связи для N каналов.

Задание III. Сделать выводы по работе.

# «РАСЧЕТ ДИАГРАММЫ НАПРАВЛЕННОСТИ ЭЛЕМЕНТАРНОГО ИЗЛУЧАТЕЛЯ»

**Пель работы:** рассчитать характеристики элементарного излучателя.

**Техническое задание:** Задан элементарный электрический излучатель в виде диполя Герца: длина - l, амплитуда тока -  $I_m$ , частота - f. Излучатель расположен в среде с параметрами -  $\varepsilon$ ,  $\mu$ . Параметры излучателя и среды распространения волны выбираются из таблицы 3. Необходимо разработать программное обеспечение по расчету характеристик элементарного электрического излучателя.

Таблица 3. Характеристики электрического излучателя и среды расположения.

| $N_{\underline{o}}$ | <i>l,</i> м | Im, A | $\mathcal{E}$ | μ      | f, MΓų |
|---------------------|-------------|-------|---------------|--------|--------|
| 1                   | 1           | 0,01  | 1             | μ<br>1 | 1000   |
| 2                   | 0,9         | 0,02  | 2             | 2      | 950    |
| 3                   | 0,8         | 0,03  | 2             | 3      | 900    |
| 4                   | 0,7         | 0,04  | 2             | 4      | 850    |
| 5                   | 0,6         | 0,05  | 3             | 5      | 800    |
| 6                   | 0,5         | 0,06  | 4             | 6      | 750    |
| 7                   | 0,4         | 0,07  | 4             | 7      | 700    |
| 8                   | 0,3         | 0,08  | 5             | 8      | 650    |
| 9                   | 0,2         | 0,09  | 5             | 9      | 600    |
| 10                  | 0,1         | 0,1   | 1             | 10     | 550    |
| 11                  | 1           | 0,12  | 6             | 10     | 500    |
| 12                  | 1,1         | 0,14  | 7             | 9      | 450    |
| 13                  | 1,2         | 0,16  | 8             | 8      | 400    |
| 14                  | 1,3         | 0,18  | 8             | 7      | 350    |
| 15                  | 1,4         | 0,20  | 10            | 6      | 300    |
| 16                  | 1,5         | 0,22  | 10            | 5      | 250    |
| 17                  | 1,6         | 0,24  | 2             | 4      | 200    |
| 18                  | 1,7         | 0,26  | 3             | 3      | 150    |
| 19                  | 1,8         | 0,28  | 4             | 2      | 100    |
| 20                  | 1,9         | 0,30  | 5             | 1      | 95     |
| 21                  | 2           | 0,35  | 6             | 2      | 90     |
| 22                  | 2,1         | 0,40  | 7             | 3      | 85     |
| 23                  | 2,2         | 0,45  | 8             | 4      | 80     |
| 24                  | 2,3         | 0,50  | 9             | 5      | 75     |
| 25                  | 2,4         | 0,55  | 10            | 6      | 70     |
| 26                  | 2,5         | 0,60  | 9             | 7      | 65     |
| 27                  | 2,6         | 0,65  | 8             | 8      | 60     |
| 28                  | 2,7         | 0,70  | 7             | 9      | 55     |
| 29                  | 2,9         | 0,75  | 6             | 10     | 50     |
| 30                  | 3           | 0,80  | 5             | 1      | 45     |

### Вопросы для подготовки:

- 1. Что собой представляет элементарный электрический излучатель?
- 2. Какие компоненты электромагнитного поля используются для расчета элементарного электрического излучателя?
- 3. Что такое ближняя, промежуточная и дальняя зоны излучателя?
- 4. Что такое диаграмма направленности?
- 5. Как определяется вектор плотности потока мощности?

#### Теория:

Длина волны электромагнитного излучения

$$\lambda = \frac{v}{f} \tag{3.1},$$

где  $v = \frac{1}{\sqrt{\varepsilon_0 \varepsilon \mu_0 \mu}}$  - скорость распространения электромагнитной волны в среде с

параметрами  $\varepsilon$ ,  $\mu$ ;

 $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/\text{м} -$ электрическая постоянная;

 $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma \text{H/M} - \text{магнитная постоянная.}$ 

Симметричный электрический вибратор Герца излучает электромагнитное поле, три составляющие которого в сферических координатах определяются выражениями:

$$\dot{E}_{mr} = \frac{\Box_{m}}{2 \cdot \pi \cdot \omega \cdot \varepsilon_{a}} \left[ \left( \frac{1}{kr} \right)^{2} - j \left( \frac{1}{kr} \right)^{3} \right] \cdot e^{-jkr} \cdot \cos \theta \qquad (3.2),$$

$$\dot{E}_{m\theta} = \frac{\Box_{m}}{4 \cdot \pi \cdot \omega \cdot \varepsilon_{a}} \left[ \frac{1}{kr} - j \left( \frac{1}{kr} \right)^{2} - j \left( \frac{1}{kr} \right)^{3} \right] \cdot e^{-jkr} \cdot \sin \theta \qquad (3.3),$$

$$\dot{H}_{m\varphi} = j \frac{I_{m} \cdot l \cdot k^{2}}{4 \cdot \pi} \left[ \frac{1}{kr} - j \left( \frac{1}{kr} \right)^{2} \right] \cdot e^{-jkr} \cdot \sin \theta \qquad (3.4),$$

$$\dot{E}_{m\theta} = \frac{\Box_{m}}{4 \cdot \pi} \left[ \frac{1}{kr} \cdot k^{2} \right] \left[ \frac{1}{kr} \cdot k^{2} \right] \cdot e^{-jkr} \cdot \sin \theta \qquad (3.4),$$

$$\dot{E}_{m\theta} = \frac{1 \cdot l \cdot k^{3}}{4 \cdot \pi \cdot \omega \cdot \varepsilon_{a}} \frac{1}{||kr|} - j \left(\frac{1}{kr}\right)^{2} - j \left(\frac{1}{kr}\right)^{3} || \cdot e^{-jkr} \cdot \sin \theta$$
(3.3),

$$\dot{H}_{m\varphi} = j \frac{I_{m} \cdot l \cdot k^{2}}{4 \cdot \pi} \left| \frac{1}{kr} - j \right|^{2} \left| \cdot e^{-jkr} \cdot \sin \theta \right|$$
(3.4),

где  $\dot{E}_{mr}$ ,  $\dot{E}_{m\theta}$ ,  $\dot{H}_{m\phi}$  – комплексные амплитуды соответственно радиальной, меридиональной составляющих электрического поля и экваториальной составляющей магнитного поля;

 $I_m$  - амплитуда гармонического тока, который протекает в вибраторе Герца;

l — длина вибратора;

 $\omega = 2\pi f$  – круговая частота электромагнитного поля;

 $\varepsilon_a = \varepsilon_0 \cdot \varepsilon$  – абсолютная диэлектрическая проницаемость среды, которая окружает вибратор;

 $k=2\pi/\lambda$  — волновое число (коэффициент фазы) электромагнитной волны;

 $\theta$  — меридиональная угловая координата точки наблюдения поля вибратора;

r – расстояние от вибратора до точки наблюдения;

λ - длина волны поля вибратора.

Зоны излучения:

 $k \cdot r$ <1 − ближняя зона излучения;

 $1 < k \cdot r < 10$  — промежуточная зона излучения;

 $k \cdot r > 10$  — дальняя зона излучения.

В дальней зоне учитываются только две ортогональные компоненты поля:

$$\dot{E}_{m\sigma} = \frac{I_m I k}{4\pi \omega \varepsilon_n r} e^{-jkr} \cdot \sin \theta \qquad \dot{H}_{m\varphi} = j \frac{I_m I k}{4\pi r} e^{-jkr} \cdot \sin \theta$$

Здесь среднее значение вектора плотности потока мощности имеет только одну радиальную составляющую

$$\overline{\Pi}_{cop} = \frac{1}{2} \operatorname{Re} \left[ \dot{\overline{E}}_{re\theta} \dot{\overline{H}}_{rep} \right]$$

Показательная форма представления компонент электромагнитного поля в ближней зоне: 
$$\dot{E}_{mr} = 2E_0\sqrt{\left(\frac{1}{kr}\right)^4 + \left(\frac{1}{kr}\right)^6} \cdot e^{-f\left(kr + averg\frac{1}{kr}\right)} \cdot \cos\theta$$
 
$$\dot{E}_{m\theta} = E_0\sqrt{\left(\frac{1}{kr} - \left(\frac{1}{kr}\right)^3\right)^2 + \left(\frac{1}{kr}\right)^4} \cdot e^{-f\left(kr - \frac{\pi}{2} + averg\frac{kr}{k^2r^2 - 1}\right)} \cdot \sin\theta$$

$$\hat{H}_{m\varphi} = H_0 \sqrt{\left(\frac{1}{k}\right)^2 + \left(\frac{1}{kr^*}\right)^4} \cdot e^{-J\left(kr - \frac{\pi}{2} + arcog\frac{1}{kr}\right)} \cdot \sin\theta$$

$$\Gamma Д e^{E_0 = \frac{I_n l k^2}{4\pi} \sqrt{\frac{\mu_s}{\varepsilon_e}}}, \quad II_0 = \frac{I_n l k^2}{4\pi}}.$$

Мгновенные значения напряженностей в любой момент времени:

$$\begin{split} E_r &= 2E_0\sqrt{\left(\frac{1}{kr}\right)^4 + \left(\frac{1}{kr}\right)^6} \cdot \cos\left(\omega t - kr - arctg\,\frac{1}{kr}\right) \cdot \cos\theta \\ E_\theta &= E_0\sqrt{\left[\frac{1}{kr} - \left(\frac{1}{kr}\right)^3\right]^2 + \left(\frac{1}{kr}\right)^4} \cdot \cos\left(\omega t - kr + \frac{\pi}{2} - arctg\,\frac{kr}{k^2r^2 - 1}\right) \cdot \sin\theta \\ H_\phi &= H_0\sqrt{\left(\frac{1}{kr}\right)^2 + \left(\frac{1}{kr}\right)^4} \cdot \cos\left(\omega t - kr - arctg\,\frac{1}{kr}\right) \cdot \sin\theta \end{split}$$

#### Ход работы:

Задание І. С использованием разработанного программного обеспечения необходимо:

- 1. Рассчитать длину волны электромагнитного излучения λ;
- 2. Рассчитать компоненты электромагнитного поля симметричного электрического излучателя;
- 3. Определить границы ближней, промежуточной и дальней зон;
- 4. Построить диаграммы направленности по электрическому полю для ближней, промежуточной и дальней зон (по 3 диаграммы в каждой зоне для характерных расстояний г);
- 5. Определить, при каких значениях r в диапазоне 0<r<5/k диаграмма направленности по электрическому полю имеет вид горизонтальной «восьмерки» и вертикальной «восьмерки».

**Задание II.** Построить диаграммы направленности электрического излучателя по магнитному полю для 3 характерных зон; вычислить и построить зависимость мощности электрического излучателя от расстояния и выделить на графике три характерные зоны излучения.

Задание III. Сделать выводы по работе.

# «РАСЧЕТ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК МАГИСТРАЛЬНОЙ ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ»

<u>Пель работы</u>: Рассчитать волоконно-оптический канал связи и его энергетический бюджет.

**Техническое залание:** Магистральная волоконно-оптическая линия связи (ВОЛС) и приемопередающая аппаратура обладают техническими характеристики, представленными в таблице 4. Необходимо разработать программное обеспечение по расчету технических характеристик ВОЛС.

Таблица 4. Паспортные технические данные приемопередающего оборудования и волоконно-оптического канала (ВОК), используемые при расчетах дисперсии и затухания.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | БОЛ | JKOIII | 10 0111 | II ICCI | OI O IN                        | allasia ( | DON      | , nononbo              | emble lipi                | · pac . | тотил ді  | renepem            | in July.   | Aummin.              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---------|---------|--------------------------------|-----------|----------|------------------------|---------------------------|---------|-----------|--------------------|------------|----------------------|
| No.   No.  | №   |        | n       |         | $n_{_{\scriptscriptstyle HC}}$ |           | $n_{pc}$ | $P_{\mathit{вых},\!Д}$ | $P_{\phi np \; , \! eta}$ |         | $B_{0;4}$ | τ <sub>0;4</sub> , | $B_{0;16}$ | τ <sub>0; 16</sub> , |
| 1   50   1,467   1,82   21   0,26   4   +15   -20   0,02   620   420   9900   20     2   52   1,467   1,80   21   0,26   4   +15   -21   0,02   621   418   9910   21     3   54   1,467   1,79   21   0,26   4   +15   -22   0,02   622   416   9920   22     4   56   1,467   1,78   21   0,26   4   +15   -22   0,02   622   416   9920   23     5   58   1,467   1,77   21   0,26   4   +15   -23   0,02   623   414   9930   23     5   58   1,467   1,77   21   0,26   4   +16   -25   0,03   625   410   9950   25     7   62   1,467   1,75   21   0,26   4   +16   -25   0,03   625   410   9950   25     7   62   1,467   1,75   21   0,26   4   +16   -26   0,03   626   408   9960   26     8   64   1,467   1,74   21   0,26   4   +16   -27   0,03   627   406   9970   27     9   66   1,467   1,73   21   0,26   4   +16   -28   0,03   628   404   9980   28     10   68   1,467   1,72   21   0,26   4   +16   -29   0,03   629   402   9900   29     11   70   1,321   1,71   22   0,24   6   +14   -30   0,04   630   400   10000   30     12   72   1,321   1,79   22   0,24   6   +14   -29   0,04   628   396   9980   28     14   76   1,321   1,68   22   0,24   6   +14   -28   0,04   628   396   9980   28     14   76   1,321   1,68   22   0,24   6   +14   -27   0,04   627   394   9970   27     15   78   1,321   1,65   22   0,24   6   +14   -27   0,04   627   394   9970   27     15   78   1,321   1,65   22   0,24   6   +14   -27   0,04   627   394   9970   27     15   78   1,321   1,65   22   0,24   6   +14   -27   0,04   627   394   9970   27     15   78   1,321   1,65   22   0,24   6   +14   -27   0,04   627   394   9970   27     15   78   1,321   1,65   22   0,24   6   +14   -26   0,04   626   392   9960   26     16   80   1,321   1,65   22   0,24   6   +13   -22   0,05   622   384   9920   22     20   88   1,321   1,65   22   0,24   6   +13   -22   0,05   622   384   9920   22     20   88   1,321   1,65   22   0,24   6   +13   -22   0,05   622   384   9920   22     20   88   1,321   1,65   23   0,22   8   +11   -19   0,06   616   372   896 |     | KM     |         | WIKWI   |                                | дБ/км     |          | Бм                     | Бм                        | HM      | ,         |                    | ,          |                      |
| 2         52         1,467         1,80         21         0,26         4         +15         -21         0,02         621         418         9910         21           3         54         1,467         1,79         21         0,26         4         +15         -22         0,02         622         416         9920         22           4         56         1,467         1,78         21         0,26         4         +15         -23         0,02         623         414         9930         23           5         58         1,467         1,76         21         0,26         4         +15         -24         0,02         624         412         9940         24           6         60         1,467         1,75         21         0,26         4         +16         -25         0,03         625         410         9950         25           7         62         1,467         1,74         21         0,26         4         +16         -27         0,03         625         410         9970         27           9         66         1,467         1,72         21         0,26         4         +16 <td></td> <td>Мбит/с</td> <td>ĺ</td> <td>Мбит/с</td> <td>,</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |         |         |                                |           |          |                        |                           |         | Мбит/с    | ĺ                  | Мбит/с     | ,                    |
| 3         54         1,467         1,79         21         0,26         4         +15         -22         0,02         622         416         9920         22           4         56         1,467         1,78         21         0,26         4         +15         -23         0,02         623         414         9930         23           5         58         1,467         1,77         21         0,26         4         +15         -24         0,02         624         412         9940         24           6         60         1,467         1,76         21         0,26         4         +16         -25         0,03         625         410         9950         25           7         62         1,467         1,73         21         0,26         4         +16         -27         0,03         627         406         9970         27           9         66         1,467         1,73         21         0,26         4         +16         -28         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16 </td <td>1</td> <td>50</td> <td>1,467</td> <td>1,82</td> <td>21</td> <td>0,26</td> <td>4</td> <td>+15</td> <td>-20</td> <td>0,02</td> <td>620</td> <td>420</td> <td>9900</td> <td>20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   | 50     | 1,467   | 1,82    | 21                             | 0,26      | 4        | +15                    | -20                       | 0,02    | 620       | 420                | 9900       | 20                   |
| 4         56         1,467         1,78         21         0,26         4         +15         -23         0,02         623         414         9930         23           5         58         1,467         1,77         21         0,26         4         +15         -24         0,02         624         412         9940         24           6         60         1,467         1,76         21         0,26         4         +16         -25         0,03         625         410         9950         25           7         62         1,467         1,75         21         0,26         4         +16         -25         0,03         625         408         9960         26           8         64         1,467         1,73         21         0,26         4         +16         -27         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         628         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2   | 52     | 1,467   | 1,80    | 21                             | 0,26      | 4        | +15                    | -21                       | 0,02    | 621       | 418                | 9910       | 21                   |
| 5         58         1,467         1,77         21         0,26         4         +15         -24         0,02         624         412         9940         24           6         60         1,467         1,76         21         0,26         4         +16         -25         0,03         625         410         9950         25           7         62         1,467         1,75         21         0,26         4         +16         -26         0,03         625         408         9960         26           8         64         1,467         1,74         21         0,26         4         +16         -27         0,03         627         406         9970         27           9         66         1,467         1,73         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,69         22         0,24         6         +14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3   | 54     | 1,467   | 1,79    | 21                             | 0,26      | 4        | +15                    | -22                       | 0,02    | 622       | 416                | 9920       | 22                   |
| 6         60         1,467         1,76         21         0,26         4         +16         -25         0,03         625         410         9950         25           7         62         1,467         1,75         21         0,26         4         +16         -26         0,03         626         408         9960         26           8         64         1,467         1,74         21         0,26         4         +16         -27         0,03         627         406         9970         27           9         66         1,467         1,73         21         0,26         4         +16         -28         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,66         22         0,24         6         +14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4   | 56     | 1,467   | 1,78    | 21                             | 0,26      | 4        | +15                    | -23                       | 0,02    | 623       | 414                | 9930       | 23                   |
| 7         62         1,467         1,75         21         0,26         4         +16         -26         0,03         626         408         9960         26           8         64         1,467         1,74         21         0,26         4         +16         -27         0,03         627         406         9970         27           9         66         1,467         1,73         21         0,26         4         +16         -28         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,79         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,68         22         0,24         6         +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5   | 58     | 1,467   | 1,77    | 21                             | 0,26      | 4        | +15                    | -24                       | 0,02    | 624       | 412                | 9940       | 24                   |
| 8         64         1,467         1,74         21         0,26         4         +16         -27         0,03         627         406         9970         27           9         66         1,467         1,73         21         0,26         4         +16         -28         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,79         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,69         22         0,24         6         +14         -29         0,04         629         398         9990         29           15         78         1,321         1,66         22         0,24         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6   | 60     | 1,467   | 1,76    | 21                             | 0,26      | 4        | +16                    | -25                       | 0,03    | 625       | 410                | 9950       | 25                   |
| 9         66         1,467         1,73         21         0,26         4         +16         -28         0,03         628         404         9980         28           10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,69         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,69         22         0,24         6         +14         -27         0,04         628         396         9980         28           14         76         1,321         1,68         22         0,24         6         +14         -27         0,04         627         394         9970         27           15         78         1,321         1,66         22         0,24         6 <t></t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7   | 62     | 1,467   | 1,75    | 21                             | 0,26      | 4        | +16                    | -26                       | 0,03    | 626       | 408                | 9960       | 26                   |
| 10         68         1,467         1,72         21         0,26         4         +16         -29         0,03         629         402         9900         29           11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,79         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,69         22         0,24         6         +14         -28         0,04         628         396         9980         28           14         76         1,321         1,66         22         0,24         6         +14         -27         0,04         627         394         9970         27           15         78         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,66         22         0,24         6 <t< td=""><td>8</td><td>64</td><td>1,467</td><td>1,74</td><td>21</td><td>0,26</td><td>4</td><td>+16</td><td>-27</td><td>0,03</td><td>627</td><td>406</td><td>9970</td><td>27</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8   | 64     | 1,467   | 1,74    | 21                             | 0,26      | 4        | +16                    | -27                       | 0,03    | 627       | 406                | 9970       | 27                   |
| 11         70         1,321         1,71         22         0,24         6         +14         -30         0,04         630         400         10000         30           12         72         1,321         1,79         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,69         22         0,24         6         +14         -28         0,04         628         396         9980         28           14         76         1,321         1,68         22         0,24         6         +14         -27         0,04         628         396         9980         28           14         76         1,321         1,68         22         0,24         6         +14         -26         0,04         626         392         9960         26           16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,66         22         0,24         6 <t< td=""><td>9</td><td>66</td><td>1,467</td><td>1,73</td><td>21</td><td>0,26</td><td>4</td><td>+16</td><td>-28</td><td>0,03</td><td>628</td><td>404</td><td>9980</td><td>28</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9   | 66     | 1,467   | 1,73    | 21                             | 0,26      | 4        | +16                    | -28                       | 0,03    | 628       | 404                | 9980       | 28                   |
| 12         72         1,321         1,79         22         0,24         6         +14         -29         0,04         629         398         9990         29           13         74         1,321         1,69         22         0,24         6         +14         -28         0,04         628         396         9980         28           14         76         1,321         1,68         22         0,24         6         +14         -27         0,04         627         394         9970         27           15         78         1,321         1,67         22         0,24         6         +14         -26         0,04         626         392         9960         26           16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,63         23         0,24         6 <td< td=""><td>10</td><td>68</td><td>1,467</td><td>1,72</td><td>21</td><td>0,26</td><td>4</td><td>+16</td><td>-29</td><td>0,03</td><td>629</td><td>402</td><td>9900</td><td>29</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10  | 68     | 1,467   | 1,72    | 21                             | 0,26      | 4        | +16                    | -29                       | 0,03    | 629       | 402                | 9900       | 29                   |
| 13         74         1,321         1,69         22         0,24         6         +14         -28         0,04         628         396         9980         28           14         76         1,321         1,68         22         0,24         6         +14         -27         0,04         627         394         9970         27           15         78         1,321         1,67         22         0,24         6         +14         -26         0,04         626         392         9960         26           16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,64         22         0,24         6         +13         -22         0,05         623         384         9920         22           20         88         1,321         1,62         23         0,24         6 <t></t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11  | 70     | 1,321   | 1,71    | 22                             | 0,24      | 6        | +14                    | -30                       | 0,04    | 630       | 400                | 10000      | 30                   |
| 14         76         1,321         1,68         22         0,24         6         +14         -27         0,04         627         394         9970         27           15         78         1,321         1,67         22         0,24         6         +14         -26         0,04         626         392         9960         26           16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,64         22         0,24         6         +13         -23         0,05         623         386         9930         23           19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6 <td< td=""><td>12</td><td>72</td><td>1,321</td><td>1,79</td><td>22</td><td>0,24</td><td>6</td><td>+14</td><td>-29</td><td>0,04</td><td>629</td><td>398</td><td>9990</td><td>29</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12  | 72     | 1,321   | 1,79    | 22                             | 0,24      | 6        | +14                    | -29                       | 0,04    | 629       | 398                | 9990       | 29                   |
| 15         78         1,321         1,67         22         0,24         6         +14         -26         0,04         626         392         9960         26           16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,64         22         0,24         6         +13         -23         0,05         623         386         9930         23           19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8 <th< td=""><td>13</td><td>74</td><td>1,321</td><td>1,69</td><td>22</td><td>0,24</td><td>6</td><td>+14</td><td>-28</td><td>0,04</td><td>628</td><td>396</td><td>9980</td><td>28</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13  | 74     | 1,321   | 1,69    | 22                             | 0,24      | 6        | +14                    | -28                       | 0,04    | 628       | 396                | 9980       | 28                   |
| 16         80         1,321         1,66         22         0,24         6         +13         -25         0,05         625         390         9950         25           17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,64         22         0,24         6         +13         -23         0,05         623         386         9930         23           19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8 <th< td=""><td>14</td><td>76</td><td>1,321</td><td>1,68</td><td>22</td><td>0,24</td><td>6</td><td>+14</td><td>-27</td><td>0,04</td><td>627</td><td>394</td><td>9970</td><td>27</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14  | 76     | 1,321   | 1,68    | 22                             | 0,24      | 6        | +14                    | -27                       | 0,04    | 627       | 394                | 9970       | 27                   |
| 17         82         1,321         1,65         22         0,24         6         +13         -24         0,05         624         388         9940         24           18         84         1,321         1,64         22         0,24         6         +13         -23         0,05         623         386         9930         23           19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,58         23         0,22         8 <t+< td=""><td>15</td><td>78</td><td>1,321</td><td>1,67</td><td>22</td><td>0,24</td><td>6</td><td>+14</td><td>-26</td><td>0,04</td><td>626</td><td>392</td><td>9960</td><td>26</td></t+<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15  | 78     | 1,321   | 1,67    | 22                             | 0,24      | 6        | +14                    | -26                       | 0,04    | 626       | 392                | 9960       | 26                   |
| 18         84         1,321         1,64         22         0,24         6         +13         -23         0,05         623         386         9930         23           19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8 <t+< td=""><td>16</td><td>80</td><td>1,321</td><td>1,66</td><td>22</td><td>0,24</td><td>6</td><td>+13</td><td>-25</td><td>0,05</td><td>625</td><td>390</td><td>9950</td><td>25</td></t+<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16  | 80     | 1,321   | 1,66    | 22                             | 0,24      | 6        | +13                    | -25                       | 0,05    | 625       | 390                | 9950       | 25                   |
| 19         86         1,321         1,63         23         0,24         6         +13         -22         0,05         622         384         9920         22           20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         617         374         8970         18           25         98         1,667         1,56         24         0,22         8 <td< td=""><td>17</td><td>82</td><td>1,321</td><td>1,65</td><td>22</td><td>0,24</td><td>6</td><td>+13</td><td>-24</td><td>0,05</td><td>624</td><td>388</td><td>9940</td><td>24</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17  | 82     | 1,321   | 1,65    | 22                             | 0,24      | 6        | +13                    | -24                       | 0,05    | 624       | 388                | 9940       | 24                   |
| 20         88         1,321         1,62         23         0,24         6         +13         -21         0,05         621         382         9910         21           21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         618         376         8980         31           25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8 <t< td=""><td>18</td><td>84</td><td>1,321</td><td>1,64</td><td>22</td><td>0,24</td><td>6</td><td>+13</td><td>-23</td><td>0,05</td><td>623</td><td>386</td><td>9930</td><td>23</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18  | 84     | 1,321   | 1,64    | 22                             | 0,24      | 6        | +13                    | -23                       | 0,05    | 623       | 386                | 9930       | 23                   |
| 21         90         1,667         1,61         23         0,22         8         +12         -20         0,06         620         380         9900         20           22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         618         376         8980         31           25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8         +11         -17         0,07         615         370         8950         17           27         102         1,667         1,54         24         0,22         8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19  | 86     | 1,321   | 1,63    | 23                             | 0,24      | 6        | +13                    | -22                       | 0,05    | 622       | 384                | 9920       | 22                   |
| 22         92         1,667         1,60         23         0,22         8         +12         -19         0,06         619         378         8990         19           23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         617         374         8970         18           25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8         +11         -17         0,07         615         370         8950         17           27         102         1,667         1,55         24         0,22         8         +11         -18         0,07         614         368         8940         33           28         104         1,667         1,54         24         0,22         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20  | 88     | 1,321   | 1,62    | 23                             | 0,24      | 6        | +13                    | -21                       | 0,05    | 621       | 382                | 9910       | 21                   |
| 23         94         1,667         1,59         23         0,22         8         +12         -18         0,06         618         376         8980         31           24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         617         374         8970         18           25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8         +11         -17         0,07         615         370         8950         17           27         102         1,667         1,55         24         0,22         8         +11         -18         0,07         614         368         8940         33           28         104         1,667         1,54         24         0,22         8         +11         -19         0,07         613         366         8930         16           29         106         1,667         1,53         24         0,22         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21  | 90     | 1,667   | 1,61    | 23                             | 0,22      | 8        | +12                    | -20                       | 0,06    | 620       | 380                | 9900       | 20                   |
| 24         96         1,667         1,58         23         0,22         8         +12         -17         0,06         617         374         8970         18           25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8         +11         -17         0,07         615         370         8950         17           27         102         1,667         1,55         24         0,22         8         +11         -18         0,07         614         368         8940         33           28         104         1,667         1,54         24         0,22         8         +11         -19         0,07         613         366         8930         16           29         106         1,667         1,53         24         0,22         8         +11         -20         0,07         612         364         8920         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22  | 92     | 1,667   | 1,60    | _                              | 0,22      | 8        | +12                    | -19                       | 0,06    | 619       | 378                | 8990       |                      |
| 25         98         1,667         1,57         24         0,22         8         +12         -16         0,06         616         372         8960         32           26         100         1,667         1,56         24         0,22         8         +11         -17         0,07         615         370         8950         17           27         102         1,667         1,55         24         0,22         8         +11         -18         0,07         614         368         8940         33           28         104         1,667         1,54         24         0,22         8         +11         -19         0,07         613         366         8930         16           29         106         1,667         1,53         24         0,22         8         +11         -20         0,07         612         364         8920         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23  | 94     | 1,667   | 1,59    | 23                             | 0,22      | 8        | +12                    | -18                       | 0,06    | 618       | 376                | 8980       | 31                   |
| 26     100     1,667     1,56     24     0,22     8     +11     -17     0,07     615     370     8950     17       27     102     1,667     1,55     24     0,22     8     +11     -18     0,07     614     368     8940     33       28     104     1,667     1,54     24     0,22     8     +11     -19     0,07     613     366     8930     16       29     106     1,667     1,53     24     0,22     8     +11     -20     0,07     612     364     8920     34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24  | 96     | 1,667   | 1,58    | 23                             | 0,22      | 8        | +12                    | -17                       | 0,06    | 617       | 374                | 8970       | 18                   |
| 27     102     1,667     1,55     24     0,22     8     +11     -18     0,07     614     368     8940     33       28     104     1,667     1,54     24     0,22     8     +11     -19     0,07     613     366     8930     16       29     106     1,667     1,53     24     0,22     8     +11     -20     0,07     612     364     8920     34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25  | 98     | 1,667   | 1,57    | 24                             | 0,22      | 8        | +12                    | -16                       | 0,06    | 616       | 372                | 8960       | 32                   |
| 28     104     1,667     1,54     24     0,22     8     +11     -19     0,07     613     366     8930     16       29     106     1,667     1,53     24     0,22     8     +11     -20     0,07     612     364     8920     34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26  | 100    | 1,667   | 1,56    | 24                             | 0,22      | 8        | +11                    | -17                       | 0,07    | 615       | 370                | 8950       | 17                   |
| 29 106 1,667 1,53 24 0,22 8 +11 -20 0,07 612 364 8920 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27  | 102    | 1,667   | 1,55    | 24                             | 0,22      | 8        | +11                    | -18                       | 0,07    | 614       | 368                | 8940       | 33                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28  | 104    | 1,667   | 1,54    | 24                             | 0,22      | 8        | +11                    | -19                       | 0,07    | 613       | 366                | 8930       | 16                   |
| 30 108 1,667 1,52 24 0,22 8 +11 -21 0,07 611 362 8910 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29  | 106    | 1,667   | 1,53    | 24                             | 0,22      | 8        | +11                    | -20                       | 0,07    | 612       | 364                | 8920       | 34                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30  | 108    | 1,667   | 1,52    | 24                             | 0,22      | 8        | +11                    | -21                       | 0,07    | 611       | 362                | 8910       | 15                   |

Основные обозначения:

Протяженность ВОЛС - *L*;

Показатель преломления сердцевины - n;

Рабочая длина волны -  $\lambda$ ;

Количество муфт (количество сростков) -  $n_{HC}$ ;

Километрическое затухание в оптическом волокне (OB) -  $\alpha$ ;

Количество разъемных соединений -  $n_{pc}$ ;

Потери на неразъемных соединениях (сростках):  $A_{HC}$ =0,05 дБ;

Потери на разъемных соединениях:  $A_{pc}$ =0,2 дБ;

Эксплуатационный запас для аппаратуры:  $A_{33a}$ =3 дБ;

Эксплуатационный запас для кабеля:  $A_{33\kappa}=3$  дБ;

Мощность источника оптического излучения -  $P_{ebix}$ ;

Чувствительность приемника -  $P_{\phi np}$ ;

Диапазон длин волн с нулевой дисперсией: от  $\lambda_0 = 1301,5 \div 1321,5$  нм;

Максимальная величина крутизны нулевой дисперсии:  $S_0$ =0,092 пс/(нм<sup>2</sup>·км);

Максимальная ширина спектра излучения источника -  $\Delta \lambda$ ;

Коэффициент поляризационной модовой дисперсии:  $D_{PMD}$ =0,5 пс/км<sup>1/2</sup>.

Скорость передачи при STM-4 –  $B_{0;4}$ ;

Скорость передачи при STM-64 -  $B_{0;16}$ ;

Начальная длительность импульса для STM-4 -  $\tau_{0:4}$ ;

Начальная длительность импульса для STM-16 -  $\tau_{0:16}$ ;

 $A_{\tiny \it 93a}$  и  $A_{\tiny \it 93K}$  берутся из технических условий (контрактных спецификаций) для оборудования ВОЛС.

### Вопросы для полготовки:

- 1. На каких частотах работает волоконно-оптическая линия передачи?
- 2. Какие основные преимущества оптического волокна?
- 3. От чего зависит длина волны оптического излучения?
- 4. Какие основные параметры светоизлучающего диода?
- 5. Назовите основные параметры фотодиодов.
- 6. Изобразите обобщенную структурную схему передающего оптического модуля.
- 7. Изобразите обобщенную структурную схему приемного оптического модуля.

#### Теория:

#### 1. Расчет дисперсии ВОЛС

При передаче сигналов по ВОЛС используются методы импульсно-кодовой модуляции (ИКМ), в результате чего передаваемая информация представляется в виде двоичных кодов - битов 1 и 0, причем 1 соответствует высокому уровню мощности, а 0 - низкому. Модулированный сигнал передается по ОВ импульсами с длительностью  $\tau_0$  и скоростью передачи  $B_0$  бит/с. В процессе распространения вследствие дисперсии происходит «размывание» импульсов, т.е. увеличение их длительности.

Если длительность  $\tau_L$  полученных приемником импульсов превысит битовый интервал, то произойдет наложение соседних импульсов друг на друга, что вызовет межсимвольную интерференцию. Следовательно, приемник не сможет распознать отдельные импульсы, и в результате этого увеличится коэффициент битовых ошибок BER. Битовый интервал  $T_0$  связан со скоростью передачи сигналов  $B_0$  соотношением:

$$T_{0} = \frac{1}{B_{0}} \tag{4.1}$$

Таким образом, для нормального функционирования ВОЛС необходимо:

- обеспечить длительность полученного импульса  $\tau_L$ , не превышающую исходный битовый интервал;
- обеспечить полученную мощность, равную чувствительности приемника  $P_{\phi np}$  или ввести запас, превышающий  $P_{\phi np}$ .

Вот почему при проектировании ВОЛС с большей скоростью передачи важнейшими техническими характеристиками являются дисперсия и затухание ОВ.

1.1. Расчет поляризационной модовой дисперсии

Поляризационная модовая дисперсия рассчитывается из выражения

$$\tau_{PMD} = D_{PMD} \cdot \sqrt{L} ,$$

где  $D_{PMD}$  - коэффициент поляризационной модовой дисперсии,

L - протяженность ВОЛС.

#### 1.2. Расчет хроматической (волноводной) дисперсии

Предельное значение коэффициента хроматической дисперсии с диапазона длин волн нулевой дисперсии определяется из следующих выражений:  $D_{\max}(\lambda) = S_0(\lambda - \lambda^4 / \lambda^5)/4$  ,

(4.2)

где  $S_0$  - максимальная величина кругизны нулевой дисперсии;

 $\lambda$  - рабочая длина волны;

 $\lambda_{0 \min}$  — минимальная длина волны с нулевой дисперсией.

Отсюда можно рассчитать значение хроматической дисперсии:

$$\tau_{chrmax}(\lambda) = D(\lambda) \cdot \Delta \lambda \cdot L ,$$

которое определяет увеличение длительности импульса.

 $\Delta \lambda = 0.04$  нм - максимальная ширина спектра излучения источника.

С учетом поляризационной модовой дисперсией результирующая дисперсия будет определяться из следующего выражения:

$$\tau_{pes} = \sqrt{\tau_{chr}^2 + \tau_{PMD}^2} \ . \tag{4.3}$$

 $\tau_{pes} = \sqrt{\tau_{chr}^2 + \tau_{PMD}^2} \; .$  Т.к. битовый интервал  $T_0 = \frac{1}{B_0}$  получим:

для STM-4: T<sub>0:4</sub>

для STM-64: *T*<sub>0:16</sub>.

Максимально допустимая величина уширения импульсов определяется из условия, что допустимая длительность:

$$\tau = \frac{T_0}{2} \ . \tag{4.4}$$

Начальная длительность импульсов определяется из выражения:  $\tau = \frac{ }{ 0 } \quad \overline{4} \quad .$ 

$$\tau = \begin{array}{ccc}
0 & \overline{4} & .
\end{array}$$
(4.5)

Конечная длительность импульса выражается через его начальную длительность *то* соотношением:

$$\tau = \sqrt{\tau_0^2 + \tau_{pes}^2} \ . \tag{4.6}$$

#### 2. Расчет энергетического бюджета

Используя данные, затухание ВОЛС рассчитывается по формуле

$$A = A_{nc} \cdot n_{nc} + \alpha \cdot L + A_{pc} \cdot n_{pc} \tag{4.7}$$

Потери на неразъемных соединениях (сростках):  $A_{HC}$ ;

Потери на разъемных соединениях:  $A_{pc}$ ;

Количество муфт (количество сростков):  $n_{HC}$ ;

Количество разъемных соединений:  $n_{pc}$ ;

Километрическое затухание в OB:  $\alpha$ ;

Следовательно, энергетический бюджет будет:

$$A_{36} = P_{6bx} - P_{dnp} - A_{33a} - A_{33k} - A. (4.7)$$

Мощность источника оптического излучения:  $P_{eblx}$ ;

Чувствительность приемника:  $P_{\phi np}$ ;

Эксплуатационный запас для аппаратуры:  $A_{33a}=3$  дБ;

Эксплуатационный запас для кабеля:  $A_{33K}=3$  дБ.

Полученное значение затухания волоконно-оптической линии удовлетворяет требованиям по энергетическому бюджету, если значение рассчитанного энергетического бюджета ( $A_{26}$ ) получится положительным.

#### Ход работы:

**Задание I**. С использованием разработанного программного обеспечения необходимо рассчитать:

- 1. Поляризационную модовую дисперсию;
- 2. Хроматическую дисперсию;
- 3. Результирующее уширение импульса;
- 4. Конечную длительность импульсов;
- 5. Максимально возможное уширение импульса;
- 6. Энергетический бюджет волоконно-оптической линии связи.

**Задание II.** Выполнить оценку работоспособности системы с точки зрения межсимвольной интерференции и с точки зрения энергетического бюджета и при необходимости произвести перерасчет технических характеристик ВОЛС. **Задание III.** Сделать выводы по работе.



Федеральное государственное автономное образовательное учреждение высшего образования «Крымский федеральный университет имени В.И. Вернадского»

Физико-технический институт

Кафедра компьютерной инженерии и моделирования

Лабораторная работа № 1
«Распределение мощности по каналу передачи данных» по дисциплине
«Сети и телекоммуникации»

| Быполнил:       |
|-----------------|
| студент 3 курса |
| группа          |
|                 |
| (ФИО)           |
|                 |
| Проверил:       |
| Таран Е.П.      |
| «»20г.          |
| Подпись:        |