Homework 7.1 Linear Algebra Math 524 Stephen Giang

Problem 7.A.1: Suppose n is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1, ..., z_n) = (0, z_1, ..., z_{n-1})$$

Find a formula for $T^*(z_1,...,z_n)$.

Notice the following:

$$\langle T(x_1, ..., x_n), (z_1, ..., z_n) \rangle = \langle (0, x_1, ..., x_{n-1}), (z_1, ..., z_n) \rangle$$

$$= x_1 z_2 + ... + x_{n-1} z_n + x_n(0)$$

$$= \langle (x_1, ..., x_{n-1}, x_n), (z_2, ..., z_n, 0) \rangle$$

$$= \langle (x_1, ..., x_n), T^*(z_1, ..., z_n) \rangle$$

Thus $T^*(z_1,...,z_n) = (z_2,...,z_{n-1},0)$

Problem 7.A.4: Suppose $T \in \mathcal{L}(V, W)$. Prove that

(a) T is injective if and only if T^* is surjective.

(=>). Let T be injective.

Because T is injective, null $T = (\text{range}T^*)^{\perp} = \{0\}$. Because $(\text{range}T^*)^{\perp} = \{0\}$, that means $(\text{range}T^*) = W$, thus proving that T^* is surjective.

(<=) Let T^* be surjective.

Because T^* is surjective, range $T^* = W$, such that $(\operatorname{range} T^*)^{\perp} = \operatorname{null} T = \{0\}$. Because $\operatorname{null} T = \{0\}$, T is injective.

(b) T is surjective if and only if T^* is injective.

(=>). Let T be surjective.

Because T is surjective, range T = W and $(\text{range}T)^{\perp} = \text{null}T^* = \{0\}$. Because $\text{null}T^* = \{0\}$. Thus T^* is injective.

Let T^* be injective.

Because T^* is injective, null $T^* = (\text{range}T)^{\perp} = \{0\}$. Because $(\text{range}T)^{\perp} = \{0\}$, that means (rangeT) = W, thus proving that T is surjective.

Problem 7.A.6: Make $\mathcal{P}_2(\mathbb{R})$ into an inner product space by defining

$$\langle p, q \rangle = \int_0^1 p(x)q(x)$$

Define $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ by $T(a_0 + a_1x + a_2x^2) = a_1x$

(a) Show that T is not self-adjoint.

Notice that self adjoint means $\langle Tp, q \rangle = \langle p, Tq \rangle$.

Let $p = p_0 + p_1 x + p_2 x^2$ and $q = q_0 + q_1 x + q_2 x^2$

$$\langle Tp, q \rangle = \langle p_1 x, q_0 + q_1 x + q_2 x^2 \rangle \qquad \langle p, Tq \rangle = \langle p_0 + p_1 x + p_2 x^2, q_1 x \rangle$$

$$= \int_0^1 p_1 q_0 x + p_1 q_1 x^2 + p_1 q_2 x^3 \qquad = \int_0^1 q_1 p_0 x + q_1 p_1 x^2 + q_1 p_2 x^3$$

$$= p_1 \left(\frac{q_0 x^2}{2} + \frac{q_1 x^3}{3} + \frac{q_2 x^4}{4} \right) \Big|_0^1 \qquad = q_1 \left(\frac{p_0 x^2}{2} + \frac{p_1 x^3}{3} + \frac{p_2 x^4}{4} \right) \Big|_0^1$$

$$= p_1 \left(\frac{q_0}{2} + \frac{q_1}{3} + \frac{q_2}{4} \right)$$

$$= q_1 \left(\frac{p_0}{2} + \frac{p_1}{3} + \frac{p_2}{4} \right)$$

As long as $p_0, q_0 \neq 0$, and $q_i \neq p_i$ for $i = \{0, 1, 2\}$, T is not self-adjoint.

(b) The matrix of T with respect to the basis $(1, x, x^2)$ is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

This is an assumption that the basis $(1, x, x^2)$ is an orthonormal basis. Notice:

$$\langle 1 + x + x^2, 1 + x + x^2 \rangle = \int_0^1 x^4 + 2x^3 + 3x^2 + 2x + 1$$
$$= \frac{x^5}{5} + \frac{x^4}{2} + x^3 + x^2 + x \Big|_0^1$$
$$= 3.7 \neq 0$$

Because the inner product with itself is not 0, it is not an orthonormal basis, thus allowing the matrix to be equal with its conjugate transpose.

3

Problem 7.A.14: Suppose T is a normal operator on V. Suppose also that $v, w \in V$ satisfy the equations

$$||v|| = ||w|| = 2$$
 $Tv = 3v$ $Tw = 4w$

Show that ||T(v+w)|| = 10

Because $||Tv|| \neq ||Tw||$, we know that v, w are orthogonal, or form a right triangle, in which we can use the Pythagorean theorem:

$$\begin{split} \sqrt{||T(v+w)|^2}|| &= \sqrt{||Tv+Tw||^2} \\ &= \sqrt{||3v+4w||^2} \\ &= \sqrt{||3v||^2 + ||4w||^2} \\ &= \sqrt{9||v||^2 + 16||w||^2} \\ &= \sqrt{9(4) + 16(4)} = 10 \end{split}$$

Problem 7.B.2: Suppose that T is a self-adjoint operator on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of T. Prove that $T^2 - 5T + 6I = 0$.

Because T is self-adjoint, there exists an orthonormal basis $e_1, ..., e_n$ that consists of eigenvectors such that for any $i \in \{1, ..., n\}$, $(T - \lambda I)e_i = 0$, for all eigenvalues, λ , of T.

$$(T^2 - 5T + 6I)e_i = (T - 2I)(T - 3I)e_i = 0$$

Because $e_i \neq 0$, then $T^2 - 5T + 6I = 0$.

Problem 7.B.6: Prove that a normal operator on a complex inner product space is self-adjoint if and only if all its eigenvalues are real.

(=>). Let T be a complex inner product space that is self-adjoint.

By 7.13, every eigenvalue of a self-adjoint operator is real.

(<=) Let all the eigenvalues of some operator, T, be real.

Thus there exists a matrix in respect to its basis, $\mathcal{M}(T)$, with its eigenvalues on its diagonals. Thus $\mathcal{M}(T)$ equals its transpose, thus T is self-adjoint.