Béta Sugárzás Abszorbciójának Mérése

Györgyfalvai Fanni, Schäffer Bálint

May 5, 2023

$1 \quad \beta$ sugárzás abszorbciójának mérése

Ez egy updatelt verzió, mert a tegnapi csúnya lett ...

1.1 A Háttér mérése

A mérés

összeállítása a fenti ábrán látható. Mivel a szcintillációs detektor a sugárforrás nélkül is érzékelhet beütéseket, először ezt mértük le. * Mivel a mérés sztochasztikus jellegű, mindent 3 alkalommal mértünk * Az itt kapott offset értéket minden további mérési eredményből levontuk

[68]:	Α	mért	beütések
0			3
1			3
2			3

1.2 Ellenőrző mérés

Behelyeztük a Stroncium $^{90}_{38}{\rm Sr}$ sugárforrást a mérési berendezésbe, majd az előre beállított mérési paraméterekkel dolgoztunk:

- A mérés ideje: T = 20 s
- A diszkriminátor feszültség:
- Erősítés:

Ekkor a β sugárzás útjában csak az azt a detektortól elválasztó levegőréteg van

```
[69]: A mért beütések

0 54895

1 55316

2 55041
```

1.3 Alumíniumlapkák behelyezése

Ezután sorban helyeztünk be egyre vastagabb alumínium lapkákat a forrás fölé, és mértük a beütésszámokat minden esetben

[81]:	Lemez vastagság (mm)	N_1	N_2	N_3	Átlag
0	0.000	54892.0	55313.0	55038.0	55081.00
1	0.085	42087.0	41470.0	41468.0	41675.00
2	0.140	36887.0	36670.0	36590.0	36715.67
3	0.200	32033.0	32140.0	32086.0	32086.33
4	0.240	29964.0	29699.0	29922.0	29861.67
5	0.300	26309.0	26341.0	26198.0	26282.67
6	0.320	25385.0	25165.0	25225.0	25258.33
7	0.490	19662.0	19421.0	19635.0	19572.67
8	0.820	12731.0	12713.0	12657.0	12700.33
9	0.860	12222.0	12040.0	12214.0	12158.67
10	0.940	11262.0	10967.0	10985.0	11071.33
11	1.010	10376.0	10257.0	10507.0	10380.00
12	1.100	9462.0	9449.0	9567.0	9492.67
13	1.150	9149.0	8983.0	8860.0	8997.33

1.4 Fékezési röntgensugárzás

Ezután a legvastagabb ($x=1,15~\mathrm{mm}$) alumínium
lapkát benthagyva ólomlemezeket ($x_{\mathrm{ólom}}\approx 2~\mathrm{mm}$) helyeztünk az alumínium fölé, ezzel jól leárnyékolva az itt is jelen lévő fékezési sugárzást. Így is megmértük a beütésszámokat.

[96]:	Ólomkorongok	száma	N_1	N_2	N_3
0		1	18	17	17
1		2	10	10	13
2		3	11	11	9