Aproksymacja

Martyna Olszewska

Treść zadania

Dla $f(x) = e^{\cos(x)}$ (gdzie x jest z przedziału [-4 π , 4 π]) wyznaczyć jej wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując: • aproksymację średniokwadratową wielomianami algebraicznymi. Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji. Oszacować błędy przybliżenia. Graficznie zilustrować interesujące przypadki.

SPECYFIKACJE

Do obliczeń użyłam języka python, na systemie operacyjnym Ubuntu 20.04.4 LTS. Procesor komputera to Intel Core i3-4030U CPU @ 1.90GHz × 4 , RAM: 8GB. Do generowania wykresów użyłam biblioteki matplotlib, a dokładniej narzędzia pyplot. Do wyznaczenia równoodległych węzłów użyłam narzędzia linspace z biblioteki numpy. Korzystam również z biblioteki math (wartość liczby pi, funkcja cosinus, wartość liczby e oraz funkcja rozwiązująca równanie liniowe).

BADANA FUNKCJA

$$f(x) = e^{\cos(x)}$$

x jest z przedziału $[-4\pi, 4\pi]$

WYNIKI

Aby uzyskać wyniki, które następnie zebrałam w tabeli, uruchomiłam program za każdym dla innej liczby węzłów. Najpierw dla węzłów równoodległych. Wykresy były generowane na podstawie 1000 równoodległych punktów w przedziale [- 4π , 4π]. Jednorazowe uruchomienie programu dla danej liczby węzłów i stopnia wielomianu, generowało wykres funkcji aproksymowanej i aproksymuącej wraz z zaznaczonymi punktami dyskretyzacji, błąd średniokwadratowy oraz maximum z różnicy wartości obydwu funkcji w tych samych punktach.

OPIS WYKRESÓW

W dalszej części opracowania wykresy porównujące funkcje aproksymowane i aproksymujące są zbudowane z takich samych elementów. Wykres funkcji aproksymowanej jest zaznaczony kolorem fioletowym, natomiast aproksymującej kolorem niebieskim. Różowe punkty to węzły. Wykresy przedstawiający jak rozkładają się różnice między wartościami funkcji na przedziale są oznaczone kolorem różowym.

APROKSYMACJA WIELOMIANAMI JAKO FUNKCJAMI BAZOWYMI

Poniższe tabele zawierają wartości błędów uzyskanych aproksymując funkcję wyjściową wielomianami różnych stopni oraz z różną ilością punktów dyskretyzacji.

Max Stopień	Ilość punktów							
	10	15	20	25	30	35		
3	0,78586	0,70508	0,69268	0,68696	0,68368	0,68158		
5	0,66191	0,63788	0,63318	0,63184	0,63106	0,6305		
6	0,55262	0,50246	0,4981	0,49505	0,4928	0,49114		
8	0,55262	0,54347	0,49716	0,49505	0,48891	0,4863		
11		2,40899	0,25239	0,49214	0,48891	0,2396		
12		2,40899	0,02711	0,24472	0,24131	0,07699		
14		179,92163	2,20203	0,10123	0,08143	0,02718		
16		1156,9248	2358,80724	0,16042	0,02642	0.03037		
19		8034,11542	2360,22227	1,07725	4,588551	0.02378		
21			8286,8739	237,59822	4,85581	0.32116		
24			541535,446	1760,65573	2105,57759	8.98838		
27				12851,9781	63006,48332	19.8684		
30					7576,69261	247454.16165		
32					245609,3985	544.85461		
34	_		_	_		1621.20239		

Tabela 1. wartości błędu średniokwadratowego dla różnej ilości punktów dyskretyzacji

Max Stopień	Ilość punktów								
	10	15	20	25	30	35			
3	1,82939	1,63053	1,59702	1,58019	1,56936	1,56145			
5	1,74408	1,73874	1,70451	1,69442	1,68891	1,68498			
6	2,06838	1,64435	1,66255	1,6569	1,65799	1,6606			
8	2,06838	1,47365	1,58842	1,6569	1,6057	1,60533			
11	24,36067	2,29248	0,97934	1,60163	1,6057	1,03248			
12		6,16375	2,04859	1,01258	1,02682	0,614			
14		54,41593	0,33334	1,05585	0,74411	0,31591			
16		143,15323	6,99407	0,3738	0,3122	0.43248			
19		381,15782	240.33685	1,91324	0,76331	0.38913			
21			445,83098	88,73598	0,38181	3.4482			
24			3679,33095	229,60219	13,53824	19.56263			
27				644,57597	292,98866	29.53051			
30					1521,5034	3527.35261			
32					3138,80855	156.31856			
34						371.51508			

Tabela 2. Wartości maximum z różnicy odległości pomiędzy funkcjami dla różnej ilości punktów dyskretyzacji

Analizując powyższe tabele można zauważyć, że wraz ze wzrostem liczby punktów rośnie również dokładność, jednakże kiedy maksymalne stopnie są bliskie liczbie punktów to błąd znowu rośnie i staje się bardzo duży.

Można zauważyć również, że dla takiej samej funkcji bazowej ilość punktów dyskretyzacji nieznacznie zmienia błąd dla małego maksymalnego stopnia.

Kiedy maksymalny stopień wielomianu był większy od ilości punktów, błędy były bardzo duże, zatem funkcja nie aproksymuje dobrze.

GRAFICZNE PRZEDSTAWIENIE

Rys 1.Funkcje aproksymujące dla 20 punktów i maksymalny stopień odpowiednio 10 i 15

Można zauważyć, że kiedy mamy większy maksymalny stopień wielomianu to dokładność funkcji aproksymującej jest większa.

Rys 2. Funkcja aproksymująca dla 20 punktów i maksymalny stopień 18

Dla maksymalnego stopnia 18 funkcja posiada bardzo duży błąd przy końcach przedziałów, co wizualnie przypomina efekt Runge'go przy interpolacji.

Najlepsze dopasowanie uzyskałam przy pomocy 30 punktów i z maksymalnym stopniem równym 15.

Rys 3. Funkcja aproksymująca dla 30 punktów i maksymalny stopień 15

Rys 3. Funkcja aproksymująca dla 7 punktów i 6 punktów

WNIOSKI

- Dla stałej liczby punktów przybliżenie jest dokładniejsze przy rosnącej liczbie funkcji bazowych.
- Kiedy maksymalny stopień wielomianu jest większy od liczby węzłów aproksymacji to funkcja aproksymująca nie spełnia swojej roli.
- Dla liczby węzłów mniejszej niż 7 funkcja ma bardzo słabą dokładność, więc nie ma sensu używać zbyt małej liczby.
- Aby przybliżenie stało się dokładnie to musi zostać spełniona zasada, że liczba punktów musi być większa od liczby funkcji bazowych. Najlepsze wyniki uzyskałam kiedy liczba funkcja bazowych była około połowę mniejsza od liczby punktów dyskretyzacji.