Examen de seconde session - Lundi 28 juin 2021.

dur'ee: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Dans tout le sujet $(\Omega, \mathcal{F}, \mathbf{P})$ désigne un espace de probabilité.

Exercice 1.(4 pts) [Les questions sont indépendantes]

- 1. Donner la définition d'une tribu et d'une probabilité.
- 2. Montrer que si X est une variable à densité alors pour tout $x \in \mathbb{R}$, P(X = x) = 0.
- 3. Soit $c \in \mathbb{R}$ et X = c la variable aléatoire constante égale à c. Montrer que X est indépendante de toute variable aléatoire Y.
- 4. On considère une variable aléatoire N de loi uniforme sur $\{1, 2, ..., n\}$. Déterminer la loi de

$$X = \cos(N\pi)$$
.

Correction.

- 1. Cours!
- 2. Pour tout $x \in \mathbb{R}$, $P(X = x) = F(x) F(x^{-})$. Or, X admet une densité f donc la fonction $F: x \to \int_{-\infty}^{x} f(u) \ du$ est continue et on en déduit P(X = x) = 0.
- 3. Pour toutes fonctions f et g boreliennes positives, $\mathrm{E}(f(X)g(Y)) = f(c)\mathrm{E}(g(Y)) = \mathrm{E}(f(X))\mathrm{E}(g(Y))$. Donc X et Y sont indépendantes.
- 4. La variable X est à valeurs dans $\{-1, +1\}$. De plus $\{X = 1\} = \{N \ paire\}$ et $\{X = -1\} = \{N \ impaire\}$. On en déduit que si n est paire $P(X = \pm 1) = 1/2$ et si n est impaire P(X = 1) = (n 1)/2n et P(X = -1) = (n + 1)/2n.

Exercice 2. (5 pts) On considère une variable aléatoire X de densité f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \frac{1}{2(1+|x|)^2}$$

On note F la fonction de répartition de X.

1. Justifier que f est une densité.

On définit $Y = \ln(1 + |X|)$.

- 2. Montrer que Y est une variable aléatoire et exprimer sa fonction de réparation G en fonction de F.
- 3. En déduire la densité g de Y et reconnaitre sa loi.

Correction.

- 1. La fonction f est positive et $\int_{-\infty}^{+\infty} f(u)du = 2\int_0^{+\infty} \frac{1}{2(1+x)^2} = [(1+x)^{-1}]_{+\infty}^0 = 1$. On en déduit que f est une densité.
- 2. La fonction Y est la composée de la variable X avec la fonction borelienne $x \to \ln(1+|x|)$, on en déduit que Y est une variable aléatoire. On remarque que Y est à valeurs dans \mathbb{R}^+ . On en déduit que G(x) = 0 pour tout x < 0. Pour $x \ge 0$,

$$G(x) = P(\ln(1+|X|) \le x) = P(|X| \le e^x - 1) = F(e^x - 1) - F(-(e^x - 1)).$$

3. En dérivant G on obtient donc la densité de Y donnée pour $x \geq 0$ par $g(x) = e^x f(e^x - 1) + e^x f(-(e^x - 1))$. Finalement comme f est paire, $g(x) = 2e^x f(e^x - 1) = e^{-x}$. Pour x < 0 on a g(x) = 0 et finalement Y a pour densité $g: x \to e^{-x} 1_{x \geq 0}$ et on reconnait la loi exponentielle.

Exercice 3. (5 pts) Soient $(X_n)_{n\geq 1}$ des variables aléatoires indépendantes et de même loi de Bernoulli de paramètre $p\in]0,1[$. Pour $n\geq 1$, on définit l'événement

$$A_n = \{X_n \neq X_{n+1}\}.$$

- 1. Pour $n \geq 1$, calculer $P(A_n)$.
- 2. Pour $n \geq 1$, calculer $P(A_n \cap A_{n+1})$.
- 3. On suppose, dans cette question uniquement, que les $(A_n)_{n\geq 1}$ sont indépendants. En déduire la valeur de p.
- 4. Soit T la variable aléatoire à valeurs dans $\mathbb{N} \cup \{+\infty\}$ définie par

$$T(\omega) = \inf\{n > 1, \ \omega \in A_n\}$$

avec la convention inf $\emptyset = +\infty$. Déterminer pour tout $n \ge 1$, P(T = n) et en déduire $P(T = +\infty)$.

Correction.

- 1. Pour $n \ge 1$, on a $P(A_n) = P(X_n = 0, X_{n+1} = 1) + P(X_n = 1, X_{n+1} = 0)$. Comme les $(X_n)_{n \ge 1}$ sont indépendants on obtient $P(A_n) = P(X_n = 0)P(X_{n+1} = 1) + P(X_n = 1)P(X_{n+1} = 0) = 2p(1-p)$.
- 2. Pour $n \ge 1$, on a $P(A_n \cap A_{n+1}) = P(X_n = 0, X_{n+1} = 1, X_{n+2} = 0) + P(X_n = 1, X_{n+1} = 0, X_{n+2} = 1)$ et en utilisant l'indépendance $P(A_n \cap A_{n+1}) = p^2(1-p) + p(1-p)^2$.
- 3. Si les $(A_n)_{n\geq 1}$ sont indépendants alors pour $n\geq 1$, $P(A_n\cap A_{n+1})=P(A_n)P(A_{n+1})$. Le paramètre p est donc solution de $4p^2(1-p)^2=p^2(1-p)+p(1-p)^2$. On en déduit que p est à valeur dans $\{0,1,1/2\}$ et comme par hypothèse $p\in]0,1[$, on en déduit que p=1/2.
- 4. La variable T est à valeurs dans $\{1, \dots\} \cup \{+\infty\}$ et pour tout $n \geq 1$, $\{T = n\} = \{X_1 = \dots = X_n = 1, X_{n+1} = 0\} \cup \{X_1 = \dots = X_n = 0, X_{n+1} = 1\}$ et cette union est disjointe. On obtient donc

$$P(T = n) = P(X_1 = \dots = X_n = 1, X_{n+1} = 0) + P(X_1 = \dots = X_n = 0, X_{n+1} = 1)$$

et comme les (X_n) sont indépendants,

$$P(T = n) = p^{n}(1 - p) + (1 - p)^{n}p.$$

On en déduit que $P(T<+\infty)=\sum_{n\geq 1}P(T=n)=\frac{p(1-p)}{1-p}+\frac{p(1-p)}{p}=1$ et donc $P(T=+\infty)=0$.

Exercice 4.(6 pts) Soit $(X_k)_{k\geq 1}$ une suite de variables aléatoires i.i.d. centrées et telles que $c_4 := \mathrm{E}(X_1^4) < +\infty$. Pour tout $n\geq 1$, on définit

$$S_n = \sum_{k=1}^n X_k.$$

- 1. On définit $c_2 := E(X_1^2)$. Montrer que $c_2 < +\infty$.
- 2. Calculer, pour tout $n \geq 1$, $E(S_n^4)$ en fonction de c_2 et c_4 .
- 3. En déduire, pour tout $\varepsilon > 0$, une majoration de $P(|\frac{S_n}{n}| \ge \varepsilon)$ et que $(\frac{S_n}{n})_{n \ge 1}$ converge en probabilité vers 0.
- 4. Montrer que $\left(\frac{S_n}{n}\right)_{n\geq 1}$ converge presque sûrement vers 0.

Correction.

- 1. On vérifie que $E(X_1^2) = E(X_1^2 1_{|X_1| < 1}) + E(X_1^2 1_{|X_1| > 1}) \le 1 + E(X_1^4) < +\infty$.
- 2. Pour tout $n \ge 1$, en utilisant la linéarité de l'espérance,

$$E(S_n^4) = \sum_{k=1}^n E(X_k^4) + 4 \sum_{k_1 \neq k_2} E(X_{k_1}^3 X_{k_2}) + 6 \sum_{k_1 \neq k_2} E(X_{k_1}^2 X_{k_2}^2)$$

$$+ 12 \sum_{k_1, k_2, k_3} \sum_{2 \text{ à 2 } distincts} E(X_{k_1}^2 X_{k_2} X_{k_3})$$

$$+ 24 \sum_{k_1, k_2, k_3, k_4} \sum_{2 \text{ à 2 } distincts} E(X_{k_1} X_{k_2} X_{k_3} X_{k_4}).$$

Puis en utilisant que les (X_k) sont i.i.d. et centrés,

$$E(S_n^4) = \sum_{k=1}^n E(X_k^4) + 6 \sum_{k_1 \neq k_2} E(X_{k_1}^2) E(X_{k_2}^2)$$
$$= nc_4 + 6n(n-1)c_2^2.$$

3. Pour tout $\varepsilon > 0$, on obtient donc en utilisant l'inégalité de Markov

$$P(|\frac{S_n}{n}| \ge \varepsilon) = P(S_n^4 \ge \varepsilon^4 n^4) \le \frac{E(S_n^4)}{\varepsilon^4 n^4} \le \frac{nc_4 + 6n(n-1)c_2^2}{\varepsilon^4 n^4}.$$

On a donc bien que pour tout $\varepsilon > 0$, $P(|\frac{S_n}{n}| \ge \varepsilon)$ tend vers 0 quand n tend vers l'infini et donc $(\frac{S_n}{n})_{n \ge 1}$ converge en probabilité vers 0.

4. On peut même dire plus! Comme la série de terme générale $P(|\frac{S_n}{n}| > \varepsilon)$ est convergente, d'après le lemme de Borel-Cantelli, il existe un rang N (qui dépend de ω) tel que pour $n \geq N$, $|\frac{S_n}{n}| \leq \varepsilon$. On a donc prouvé que pour tout entier $p \geq 1$ presque sûrement $|\frac{S_n}{n}| \leq 1/p$ à partir d'un certain rang et on en déduit que presque sûrement pour tout entier $p \geq 1$, $|\frac{S_n}{n}| \leq 1/p$ à partir d'un certain rang. On a bien prouvé que $\left(\frac{S_n}{n}\right)_{n\geq 1}$ converge presque sûrement vers 0.