Лабораторная работа 5.1.2 Исследование эффекта Комптона

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование энергетического спектра γ -квантов, рассеянных на графите с помощью сцинтилляционного спектрометра. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

2 Теоретические сведения

Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона. Пусть электрон до соударения покоился (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma = (1-(v/c)^2)^{-1/2}$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равными $\hbar\omega_1$ и $\hbar\omega_1/c$.

Запишем для рассматриваемого процесса ЗСЭ и ЗСИ:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1},$$

$$\frac{\hbar\omega_{0}}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_{1}}{c} \cos\theta,$$

$$\gamma mv \sin\varphi = \frac{\hbar\omega_{0}}{c} \sin\theta.$$

Рис. 1: Векторная диаграмма рассеяния γ -кванта на электроне

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_{\kappa} (1 - \cos \theta), \qquad (1)$$

где

$$\Lambda_{\mathrm{K}} = \frac{h}{mc} = 2.42 \cdot 10^{-10} \; \mathrm{cm}$$

называется комптоновской длиной волны электрона.

В приведенном выводе электрон в атоме считается свободным. Для γ -квантов с энергией в несколько десятков, а тем более сотен кэВ, связь электронов в атоме, действительно, мало существенна, так как энергия их связи в легких атомах не превосходит нескольких кэВ, а для большинства электронов еще меньше.

2.1 Расчётные формулы

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos(\theta). \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — нормированная энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m — масса электрона.

Рис. 2: Схема экспериментальной установки

3 Оборудование и инструментальные погрешности

Схема экспериментальной установки отображена на рис. 2. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень. Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком, состоящим из сцинтиллятора и Φ ЭУ, работающего от высоковольтного источника напряжения. Сигнал, генерируемый Φ ЭУ, обрабатывается АЦП компьютера, и соответствующий график выводится на экран.

В работе используются:

- Источник γ -излучения $^{137}\mathrm{Cs}$ в свинцовом коллиматоре
- Фотоэлектронный умножитель на градуированном подвижном кронштейне: $\Delta=\pm 1\,^\circ$
- Компьютер с 10-разрядным АЦП: $\Delta = \pm 1$ канал

4 Результаты измерений и обработка данных

Запишем формулу (2) в удобном виде:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = 1 - \cos(\theta). \tag{3}$$

Здесь $N(\theta)$ — номер канала. Представим экспериментальные результаты в виде графика на рис. 3, откладывая по оси абсцисс $1-\cos(\theta)$, а по оси ординат — $1/N(\theta)$. Заметим, что данные плохо ложатся на прямую. Это в первую очередь может быть связано с погрешностью определения пика «на глаз», а также с недостаточной экспозицией при получении спектров.

По данным графика, уравнение прямой имеет вид

$$y = (198 \pm 5) \cdot 10^{-5} x + (129 \pm 1) \cdot 10^{-5}.$$

Отсюда

$$N_{
m Hau,I}(0) = 775 \pm 6$$

$$\frac{1}{N_{
m Hau,I}(90^\circ)} = (327 \pm 5) \cdot 10^{-5}$$

$$N_{
m Hau,I}(90^\circ) = 306 \pm 5$$

Исходя из этих данных определим энергию покоя частицы, на которой происходит комптоновское рассеяние (по всем признакам — электрон):

$$mc^2=E_{\gamma}rac{N(90^\circ)}{N(0)-N(90^\circ)}=662\cdot 10^3\cdot rac{306}{775-306}=450\pm 20$$
 кэВ

Это значение существенно не совпадает с табличным для энергии покоя электрона, что может быть связано как с неточным проведением эксперимента, так и с тем, что электрон в составе атома не является свободным, поэтому исходная формула (1) не является достаточно точной в данном случае.

Рис. 3: График зависимости $\frac{1}{N} = f(1-\cos\theta)$

4.1 Оценка погрешностей

Оценка погрешностей проводится при помощи пакета Wolfram Mathematica по общей формуле:

$$\Delta_{u(x,y,z,...)}^2 = f_x'^2 \Delta_x^2 + f_y'^2 \Delta_y^2 + f_z'^2 \Delta_z^2 + \dots,$$
(4)

где Δ_i — случайные или инструментальные погрешности величины i. В частности, при расчёте энергии покоя электрона применяется формула

$$\Delta_{mc^2} = \sqrt{\frac{E_{\gamma}^2 \left(N(90)^2 \Delta_{N(0)}^2 + N(0)^2 \Delta_{N(90)}^2 \right)}{\left(N(0) - N(90) \right)^4}}$$

Для значений $N(\theta)$ изначальную погрешность в 1 канал пришлось увеличить до 10 каналов, так как определение точки пика затруднительно. Частично можно было исправить ситуацию увеличением времени экспозиции или при помощи компьютерной аппроксимации пиков. Также в этом опыте не была учтена погрешность, вызываемая перепадами напряжения на динодах $\Phi \ni V$.

5 Вывод

По результатам работы, исследовали эффект Комптона на графитовом образце с помощью сцинтилляционного спектрометра. Выяснили зависимость энергии рассеянного γ -кванта от угла рассеяния, а также определили по порядку величины энергию покоя электрона.

А Необработанные результаты опытов

«Сырые» данные, полученные по результатам опытов, представлены в табл. 1.

Угол θ , °	$\Delta\theta$, °	Канал <i>N</i>	ΔN
0		755	
10		750	
20		742	
30		613	
40		594	
50		487	
60	± 1	423	±1
70		385	
80		346	
90		296	
100		280	
110		250	
120		238	

Таблица 1: Необработанные данные эксперимента

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 5, 1989
- [2] Фаддеев М. А., Чупрунов Е. В. Лекции по атомной физике, 2008
- [3] Ципенюк Ю. М. Квантовая микро- и макрофизика, 2006
- [4] Игошин Ф. Ф., Самарский Ю. А., Ципенюк Ю. М. ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ ФИЗИКЕ. Квантовая физика: Учеб, пособие для вузов; Под ред. Ципенюка Ю.М.