Homework 8

Math 55b Due Tuesday, 31 Mar 2009.

- 1. Let f be a compactly support smooth function on \mathbb{R}^2 . Are the relations $\int f(x,y) dx dy = \int f(y,x) dy dx$ and dx dy = -dy dx both true? How can they be reconciled?
- 2. Prove that $\nabla \cdot v$ on \mathbb{R}^3 is the limit, as the size of a cube Q goes to zero, of the flux of v through ∂Q divided by the volume of Q. (Recall the flux is given by integrating $v \cdot n$ with respect to surface area, where n is the unit normal to ∂Q .)
- 3. State and prove a similar theorem for the three components of $\nabla \times v$ on \mathbb{R}^3 .
- 4. Prove directly that $\nabla \cdot \nabla \times v = 0$ on \mathbb{R}^3 . Then explain how this is a consequence of $d^2 = 0$.
- 5. How does the Hodge star on \mathbb{R}^2 operate on the differentials coming dr and $d\theta$ coming from polar coordinates? Use your answer to compute the Laplacian of a function $f(r,\theta)$ in polar coordinates. Then, find all radially symmetric functions f(r) on \mathbb{R}^2 which are harmonic outside the origin.
- 6. Suppose α and β are forms of degree k and ℓ on \mathbb{R}^n . Prove a formula relating $\alpha\beta$ to $\beta\alpha$, and establish a 'product formula' for $d(\alpha\beta)$.
- 7. Give an example of an infinitely differentiable map $f: \mathbb{R} \to \mathbb{R}$ which is a homeomorphism but not a diffeomorphism.
- 8. For any smooth function $f: U \to \mathbb{C}$, where $U \subset \mathbb{C}$, let

$$\frac{df}{dz} = \frac{1}{2} \left(\frac{df}{dx} - i \frac{df}{dy} \right) \text{ and } \frac{df}{d\overline{z}} = \frac{1}{2} \left(\frac{df}{dx} + i \frac{df}{dy} \right).$$

(As usual z = x + iy.)

- (i) Prove that $df = (df/dz) dz + (df/d\overline{z}) d\overline{z}$.
- (ii) Prove that $(d/dz)(z^n\overline{z}^m) = nz^{n-1}\overline{z}^m$.
- (iii) Prove that if

$$\sum_{0 \le i, j \le N} a_{ij} z^i \overline{z}^j = \sum_{0 \le i, j \le N} b_{ij} z^i \overline{z}^j$$

for all $z \in \mathbb{C}$, then $a_{ij} = b_{ij}$ for $0 \le i, j \le N$.

(iv) Prove that a smooth function f(z) is analytic iff $df/d\overline{z} = 0$, in which case f'(z) = df/dz.