- 1. Let A be a set.
 - (a) Let S be a non empty set of equivalence relations on A. Show that $\bigcap S$ is an equivalence relation on A.
 - (b) Let R be a relation between A and A. Show that there is a unique equivalence relation on A, called \sim_R , such that any equivalence relation \sim on A which contains R has \sim_R as a subset $(R \subseteq \sim \implies \sim_R \subseteq \sim)$.

1. (a). Pf. Let
$$R = \bigcap S := \sum r \in US \mid \forall s \in S . r \in S \}$$

given $x . y \in A$

but by definition $\forall s \in S$. s is an equivalence relation on A.

1. Symmetry,
$$(x,y) \in \bigcap S \Leftrightarrow \forall r \in S$$
, $(x,y) \in r$
 $\Rightarrow \forall r \in S$, $(y,x) \in r$
 $\Leftrightarrow (y,x) \in \bigcap S$

2. reflexity.
$$\forall x \in S$$
, $\forall x \in A$. $(x.x) \in r$

$$\Rightarrow \forall x \in A . (x.x) \in \Lambda S$$

3. Transitivity.
$$(x,y) \in (S, (y,z) \in (S)$$

$$\Leftrightarrow \forall r \in S. ((x,y) \in r \land (y,z) \in r)$$

$$\Rightarrow \forall r \in S. (x,z) \in r$$

$$\Leftrightarrow (x,z) \in (S)$$

Pf. let
$$S_R = \{ N = A \times A \mid R = N \text{ and } N \text{ is an equivalence relation } \}$$
 claim. $N_R = \bigcap S_R$

consider the relation $A\times A$. It can be easily checked that this is an equivalence relation, since every pair of elements are equivalent. by definition $A\times A\in S_R$. So $S_R \neq \emptyset$.

Using the conclusion from L(a). $\bigcap S_R$ is an equivolence relation on A by definition $\bigcap S_R$ is unique.

since $\forall r \in S_R$. $R \subset r$, by definition $R \subset \bigcap S_R$.

we only need to show that for any equivalence relation containing R $\cap S_R = N$

this can be proved by definition of $\bigcap S_R$, that is: $(x,y) \in \bigcap S_R \iff \text{for any equivalence relation containing } R$, $(x,y) \in \cap S_R \iff \text{for any equivalence relation containing } R$, $(x,y) \in \cap S_R \iff \cap S_R = N$.

So our claim is true, that is, we can let $N_R = \bigcap S_R$

- 2. Let A and B be two sets, $f: A \to B$ a function. Define function $F: P(B) \to P(A)$ as $F(C) = f^{-1}(C)$. Show that F is an injection iff f is a surjection, F is a surjection iff f is an injection.
- Pf. If f is a surjection, I'll show that F is an injection. $\forall y \in B. \exists x \in A. f(x) = y.$

i.e. $\forall y \in B. f^{-1}(xyy) = F(xyy) \neq \phi$

Observe that by definition $\forall y_1, y_2 \text{ with } y_1 \neq y_2$. $f^{-1}(\{y_1, \}) \cap f^{-1}(\{y_2\}) = \begin{cases} x \in A \mid f(x) = y_1 \end{cases} \cap \begin{cases} x \in A \mid f(x) = y_2 \end{cases}$ $= \begin{cases} x \in A \mid f(x) = y_1 \text{ and } f(x) = y_2 \end{cases}$ $= \phi$

If C, Cz = B with C+Cs.

W.L.O.G. suppose Ci\Cz + \$\phi\$

 $F(G) \setminus F(G) = \left\{ x \in A \mid f(x) \in G \right\} \setminus \left\{ x \in A \mid f(x) \in G \right\}$ $= \left\{ x \in A \mid f(x) \in G \setminus G \right\}$ $= F(G \setminus G) \neq \emptyset$

50 F(G) = F CG).

If. F is an injection, I'll show that f is a surjection. Suppose $\exists y \in B$. $\forall x \in A$. $f(x) \neq y$ then F is not even a function, let alone an injection. Contradiction

so f is a surjection €> F is an injection.

If. f is an injection. I'll show that F is a surjection.

$$\forall D \in A$$
. $f(D) \in P(B)$ satisfies that $F(f(D)) := \begin{cases} x \in A \mid f(x) \in f(D) \end{cases} \supset D$
Since f is injective, $f^{-1}(f(D)) = D$. So $\forall D \in P(A) = f(D) \in P(B)$
So F is a surjection. S.t. $F(f(D)) = D$

If F is a surjection, I'll show that f is an injection. If f is not an injection i.e. $\exists x_1, x_2 \in A$ with $x_1 \neq x_2$ but $f(x_1) = f(x_2)$ $F^{-1}(\{\{x_1\}\}^2) := \{C \in B \mid F(C) = \{x_1\}\} = \{C \in B \mid f^{-1}(C) = \{x_2\}^2\} = \emptyset$ because whatever $C \in B$ is as long as $f(x_1) = f(x_2)$ $f^{-1}(C)$ either contains x_1 and x_2 , or contains neither. Since $\# C \in P(B)$ s.t $F(C) = \{x_1\} \in P(A)$. F is not surjective. So F is a surjection iff f is an injection.

3. Show that $\sim = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Q}\}$ is an equivalence relation on \mathbb{R} .

3. Pf. reflexity:
$$\forall x \in \mathbb{R}, x - x = 0 \in \mathbb{Q}$$

 $\Rightarrow (x, x) \in \mathbb{A}$

Symmetry: Given $x, y \in \mathbb{R}$, $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$ $\Leftrightarrow y - x \in \mathbb{Q} \Leftrightarrow y \sim x$

transitivity: Given
$$x.y.z\in\mathbb{R}$$

 $x\sim y \wedge y\sim z \Leftrightarrow x-y\in\mathbb{Q} \wedge y-z\in\mathbb{Q}$
 $\Rightarrow x-z=(x-y)+(y-z)\in\mathbb{Q}$

4. Let A and B be two sets. $C = \{(x,i) \in (A \cup B) \times \{0,1\} : x \in A \text{ if } i = 0, x \in B \text{ if } i = 1\}$. Show that there are injections $k : A \to C, j : B \to C,$ such that $C = k(A) \cup j(B)$ and $k(A) \cap j(B) = \emptyset$.

4. Pf. Let
$$k: A \rightarrow C$$
 $\hat{j}: B \rightarrow C$

$$\chi \mapsto (\chi,0) \qquad \chi \mapsto (\chi,1)$$

$$k(A) \cap \hat{j}(B) = \phi \quad \text{is obvious}.$$

$$C = \left\{ (\chi,\hat{i}) \in (AUB) \times \left\{ 0.1 \right\} \middle| \chi \in A \text{ if } \hat{i} = 0. \text{ } \chi \in B \text{ if } \hat{i} = 1 \right\}$$

$$= \left\{ (\chi,0) \middle| \chi \in A \right\} \cup \left\{ (\chi,1) \middle| \chi \in B \right\}$$

$$= k(A) \cup \hat{j}(B).$$

5. Let $f:A\to B$ be a function. Show that there is a set C, an injection $g:A\to C$, and a surjection $h:C\to B$, such that $f=h\circ g$. (Hint: You may want to use the solution for the previous problem).

5. Pf, let
$$\Delta = B \setminus f(A)$$
.

$$C := \begin{cases} (x.i) \in (AU\Delta) \times \{0,1\} & x \in A \text{ if } i = 0 \\ x \in \Delta \text{ if } i = 1 \end{cases}$$

define
$$g: A \rightarrow C$$
 $h: C \rightarrow B$
 $x \mapsto (x,0)$ $(x,0) \mapsto f(x)$
 $(y,1) \mapsto y$

Since $\forall y \in B$, either $\exists x \in A$ or not s.t. f(x) = y so h is a surjection.

g is obviously injection.