Inscribed Angles and Intercepted Arcs

Inscribed angle: an angle whose vertex lies on the circle and whose sides are chords of a circle

The measure of an inscribed angle is half the measure of its intercepted arc.

In a circle, if two inscribed angles intercept the same arc or congruent arcs, then the angles are congruent.

An angle inscribed in a semicircle is a right angle and therefore the measure is equal to 90° .

If a quadrilateral is inscribed in a circle, then its opposite angles are

Practice Exercises

A. Refer to $\odot O$ to answer the following.

- 1. Name the angle that intercept $\widehat{\mathsf{AP}}$
- 2. Name the angles that intercept \widehat{EV} .
- 3. Name the arc that is intercepted by $\angle PAE$
- 4. Name the arc that is intercepted by $\angle EVP$.

7. $m\angle EVP + m\angle PVA =$

8. If $m \angle VEP = 100^{\circ}$, then $m \angle PAV = 100^{\circ}$

B. Given $\odot S, \overline{AR} \cong \overline{RO} \cong \overline{OS} \cong \overline{SA}, m \angle AMR = 3x + 20$ and $m\angle OMR = x + 30$. Find each measure.

1. X

2. m/AMR

3. *m∠ORM*

4. *m*AM

5. m∠RNO

6. *m∠RAM*

7. *m*AR

8. *m*OM

g. *m∠ROM*

10. *m∠AMO*

Inscribed Angles and Intercepted Arcs

Inscribed angle: an angle whose vertex lies on the circle and whose sides are chords of a circle

The measure of an inscribed angle is half the measure of its intercepted arc.

In a circle, if two inscribed angles intercept the same arc or congruent arcs, then the angles are congruent.

An angle inscribed in a semicircle is a right angle and therefore the measure is equal to 90° .

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Practice Exercises

A. Refer to $\odot O$ to answer the following.

- 1. Name the angle that intercept $\widehat{\mathsf{AP}}$.
- 2. Name the angles that intercept \widehat{EV} .

3. Name the arc that is intercepted by $\angle PAE$

4. Name the arc that is intercepted by $\angle EVP$.

6. $m\angle EPA =$

and $m \angle AVP = _$

7. $m\angle EVP + m\angle PVA =$

8. If $m\angle VEP = 100^{\circ}$, then $m\angle PAV = 100^{\circ}$

Given $\odot S, \overline{AR} \cong \overline{RO} \cong \overline{OS} \cong \overline{SA}, m \angle AMR = 3x + 20$ and $m\angle OMR = x + 30$. Find each measure.

1. X

2. m/AMR

3. *m∠ORM*

4. *m*AM

5. m∠RNO

6. *m∠RAM*

7. *m*AR

8. *m*OM

g. *m∠ROM* 10. *m∠AMO*

Problem Set

A. Use the given figures to find the value of x and y.

B. \triangle GOA is inscribed in $\odot L$. If $m\angle OGA = 75^{\circ}$ and $m\widehat{AG} = 160^{\circ}$, find:

1. mÔĀ

2. mOG

3. m∠GOA

4. *m∠GAO*

Problem Set

A. Use the given figures to find the value of x and y.

B. \triangle GOA is inscribed in $\odot L$. If $m\angle OGA = 75^{\circ}$ and $m\widehat{AG} = 160^{\circ}$, find:

2. mOG

3. m∠GOA

4. *m∠GAO*

