4.5: Definite Integrals and FTC

Contents

1	Riemann Sums, Integrals		1
	1.1	Definite Integrals]
		Riemann Sums	
2	Cal	culating Riemann Sums	4

1 Riemann Sums, Integrals

1.1 Definite Integrals

- We connect a new idea with an old.
- New idea: the Definite Integral.
- Suppose $\frac{dy}{dt} = f(t)$ has the solution y = F(t), meaning that F(t) is the antiderivative of f(t).

Total Change in
$$F$$
 over interval $[a, b] \stackrel{\text{def}}{=} \int_a^b f(t) dt$

- Understand this notation as saying, $\int_a^b f(t) dt$ as the "total change in the antiderivative."
- Think: f(t) is a growth rate of something. Then the integral $\int_a^b f(t) dt$ measures the total change!
- Now, if we have the actual function F(t), then the total change could have been computed without calculus.

- Total change = F(b) F(a), final minus initial.
- This leads us to the following fact, which is a definition of the *definite* integral.

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

People often call this the *Fundamental Theorem of Calculus*; I will call it FTC (part 1).

- Ex: $\int_0^2 3t^2 dt = t^3 \Big|_0^2 = 2^3 0^3 = 8.$
- Interpretation: The antiderivative of $3t^2$ has a net change of 8 over the interval $0 \le t \le 2$.
- Ex: $\int_{-1}^{10} 3t^2 dt = t^3 \Big|_{-1}^{10} = 10^3 (-1)^3 = 1001.$
- Ex: $\int_{-\pi}^{0} \cos(x) dx = \sin(x) \Big|_{-\pi}^{0} = \sin(0) \sin(-\pi) = 0 0 = 0.$
- Interpretation: sin(t) has a net change of 0 over the interval 0. Why?

1.2 Riemann Sums

- This is a general calculation: try to catch the argument.
- Return to the differential equation $\frac{dy}{dt} = f(t)$.
- We can use Euler's method to estimate the total change. Let's use $\Delta t = 0.2$.
- After one time step:

$$y(0.2) = y(0) + f(0) \cdot 0.2$$

• After two time steps:

$$y(0.4) = y(0.2) + f(0.2) \cdot 0.2 = y(0) + f(0)0.2 + f(0.2) \cdot 0.2$$

- General features of this calculation show that to get from y(0) to y(T), you need to add a bunch of things like $f(t) \cdot \Delta t$ to y(0).
- Remember, y is the antiderivative of f(t). The net change in y is then net change $= y(T) y(0) \approx f(0)0.2 + f(0.2)0.2 + f(0.4)0.2 + \dots$

The right hand side is a bunch of outputs of f(t) multiplied by time steps Δt .

- Definition: A sum of terms of the form $f(t)\Delta t$ is called a *Riemann Sum*. The notation is tricky to get precise; I will use this notation to indicate this. A Riemann sum is of the form $\sum f(t) \Delta t$. The greek letter Sigma, Σ , is used to say "sum these values."
- Now: we have another name for the net change in the antiderivative:

$$\int_{a}^{b} f(t) dt \approx f(0)\Delta t + f(0.2)\Delta t + \dots$$

- Main upshot: the definite integral is approximated by Riemann sums. This is why we use the notation $\int f(t) dt$, because the integral sign is a special sum of values of f(t) multiplied by small changes Δt . The beautiful connection is that Euler's method justifies this connection!
- Well, we have some fixed Δt . How do we make the approximation better? Let $\Delta t \to 0$!
- Theorem (Fundamental theorem of calculus, part 0):

$$\int_{a}^{b} f(t) dt = \lim_{\Delta t \to 0} \sum f(t) \, \Delta t$$

• Bubble diagram: Definite integral connects to net change connects to Riemann sums. The first connection is the definition. The second is Euler's method.

2 Calculating Riemann Sums

- Calculating Riemann sums is a straightforward procedure. Start with a step size, Δt , compute $f(t)\Delta t$, then keep adding.
- Ex: Compute the Riemann sum of $f(x) = 3x^2$ with $\Delta x = 0.5$ with two steps starting at x = 1. Which definite integral does this approximate?
- A:

$$f(1)\Delta x + f(1.5)\Delta x = f(1)(0.5) + f(1.5)0.5 = 3(0.5) + 6.75(0.5) = 4.875.$$

- Draw picture to understand the time steps: the first one starts at x = 1, and the last interval ends at x = 2. So, we are doing a Riemann sum to approximate $\int_{1}^{2} 3x^{2} dx$.
- Ex: Compute a Riemann sum of $g(t) = \frac{1}{t}$ starting at t = 2 with $\Delta t = 1$ consisting of three steps. What integral does this approximate?
- A: The Riemann sum is

$$g(2) \cdot \Delta t + g(3) \cdot \Delta t + g(4) \cdot \Delta t = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \approx 1.083.$$

• The picture shows that the first interval starts at t=2 and the last one ends at t=5, so this Riemann sum approximates $\int_2^5 \frac{1}{t} dt$.