

TheEmpireStrikesBack SRM 678 D1 500 Pointer

Evan Ezell

University of Tennessee

October 22, 2019

The Problem

- Darth Vader wants to destroy all N planets in the galaxy.
- Darth Vader is aboard the Death Star, which has M missiles.
- Darth Vader needs to install a missile booster with strength S to use the missiles.
- Darth Vader wants to use the minimum strength booster min(S) to destroy all planets.
- Given the planets' locations and M, find min(S).

Galaxy Details

- The galaxy is in a 2D plane (first quadrant).
- Planets are located at some coordinate (x, y).
- The Death Star is always located at (0,0).

Missile Details

- Missiles can only target a planet's location.
- When a missile strikes (x, y), it destroys all planets within the bounding box specified by (0, 0) and (x, y), inclusively.
- Example: striking (30,60)

Booster Details

- The missile booster strength S may change the bounding box.
- The bounding box is now specified by (0,0) and (x + S, y + S).
- Example: striking (30,60) with booster strength S=10

Planets are at locations (10,100), (25,25), (30,60), (40,75), (70,20), (80,40), (100,50).

What happens if we strike planet at (40,75) with a missile? Booster strength S=0.

If we want to eliminate most of the planets, we can strike the outer planets of the galaxy.

We don't really care about planets within the strike of other planets.

This simplifies the problem. Now we only have planets at locations (10,100), (40,75), (100,50).

What if we are given M = 1 missile?

$$min(S) = 60$$

What if we are given M = 2 missiles?

$$min(S) = 25$$

What if we are given M = 3 missiles?

$$min(S) = 0$$

Prototype

• Class name: The Empire Strikes Back

• Method: find()

Parameters:

AX	int	determines planets' locations	
BX	int	determines planets' locations	
CX	int	determines planets' locations	
AY	int	determines planets' locations	
BY	int	determines planets' locations	
CY	int	determines planets' locations	
N	int	number of planets	
М	int	number of missiles	

Return Value: int

Constraints

- AX, BX, CX, AY, BY, CY is between 0 and 109.
- N is between 1 and 10⁵.
- M is between 1 and N.

Something to notice

- We know N is between 1 and 100,000
- Because we can only do roughly 10,000,000 operations, N^2 is too slow

Algorithm

- Find all the planets locations given N, AX, BX, CX, AY, BY, and CY.
 O(N)
- Insert the planets into a multimap keyed on x. O(Nlog(N))
- Eliminate planets that we do not care about. O(N)
- Put the remaining planets into a vector. O(N)
- Perform binary search. Given M and remaining planets, determine if S is valid. O(Nlog(maxsize(S)))

Algorithm - Determine if S is valid. is Valid(S, M, planets)

Loop:

- If *M* is equal or larger than the number of planets left, we **can** destroy them all.
- If M = 0, we **cannot** destroy them all.
- Strike first planet of vector, and eliminate planets that are also hit by missile.
- Decrement M.

This is linear in the size of planets.

Algorithm Example

- Planets are at locations (10, 100), (25, 25), (30, 60), (40, 75), (70, 20), (80, 40), (100, 50).
- M = 2

Algorithm Example - Insert the planets into a multimap

Key	Value
10	100
25	25
30	60
40	75
70	20
80	40
100	50

Algorithm Example - Eliminate planets

Key	Value
10	100
25	25
30	60
40	75
70	20
80	40
100	50

Algorithm Example - Eliminate planets

Key	Value
10	100
25	25
30	60
40	75
70	20
80	40
100	50

TheEmpireStrikesBack

Algorithm Example - Eliminate planets

Key	Value
10	100
25	25
30	60
40	75
70	20
80	40
100	50

TheEmpireStrikesBack

Algorithm Example - Binary search

- The binary search will call isValid 63 times if S can be a long long.
- Let's do a few examples of isValid.

х	у
10	100
40	75
100	50

M=2

х	у	M=1
10	100	-
40	75	
100	50	

х	у	M=0
10	100	
40	75	←
100	50	

х	у
10	100
40	75
100	50

M=2

Algorithm Example

The binary search using isValid finds the minimum $S.\ S=25$

Performance

- Frobnitzem, my Linux machine
- Intel i5 at 2.6GHz

Test Galaxy

- AX = 10, BX = 20, CX = 30
- AY = 40, BY = 50, CY = 60
- N = 1000

How did the Topcoders do?

- 255 Topcoders opened the problem.
- 119 (46%) submitted a solution.
- 99 (83%) of the submissions were correct.
- Success rate was 38%
- Best time was 8:11
- Average correct time was 29:35

TheEmpireStrikesBack SRM 678 D1 500 Pointer

Evan Ezell

University of Tennessee

October 22, 2019