Linguagem Chapel

Walter Perez Urcia

Universidade de São Paulo Instituto de Matemática e Estadística Departamento de Ciências da Computação

17 de junho de 2015

Timeline

- Introdução
- Chapel
 - Instalação e configuração
 - Tipos de dados
 - Semelhanças com outras linguagens
 - Data Parallelism
 - Task Paralleism
 - Multi-locale Paralleism
 - The Model and the Problem
 - The Integrated Approach
- 3 Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

Quantas linhas são necessários para a sua implementação?

OpenMP

```
1 #pragma omp shared( A , B , C , chunk ){
2     #pragma omp for schedule( static , chunk )
3     for( i = 0 ; i < N ; i++)
4     for( j = 0 ; j < N ; j++)
5     C[ i ][ j ] = A[ i ][ j ] + B[ i ][ j ] ;
6 }</pre>
```

CUDA

OpenMPI

```
1 MPI Comm size (MPI COMM WORLD , &npes ) ;
2 MPI Comm rank (MPI COMM WORLD , &myrank );
3 if ( mvrank == ROOT )
     for ( target = 0 ; target < npes ; i++)
5
         MPI Send( A+N*target , N , MPI INT , target , target ,
             MPI COMM WORLD ) ;
         MPI Send( B+N*target , N , MPI INT , target , target ,
6
             MPI COMM WORLD ) :
8 MPI Recv ( myA , N , MPI INT , ROOT , myrank , MPI COMM WORLD , &
       status ) :
9 MPI Recv( myB , N , MPI INT , ROOT , myrank , MPI COMM WORLD , &
       status ) :
10 \text{ for}(i = 0 ; i < N ; i++) \text{ myC}[i] = \text{myA}[i] + \text{myB}[i];
11 MPI Send( \mathsf{myC} , \mathsf{N} , \mathsf{MPI} \mathsf{INT} , \mathsf{ROOT} , \mathsf{0} , \mathsf{MPI} \mathsf{COMM} \mathsf{WORLD} ) ;
12 if ( myrank === ROOT )
for ( sender = 0 ; sender < npes ; sender++)
14
         MPI Recv( C+N*sender , N , MPI INT , sender , 0 ,
             MPI COMM WORLD , &status ) ;
```

Linhas

- OpenMP: 6
- CUDA: 9
- OpenMPI: 14

Então, quantas linhas são necessários com Chapel?

Our formalization of haplotyping.

Inputs

- A genotype matrix G.
- The rows of the matrix are individuals / taxa.
- The columns of the matrix are SNP sites / characters.
- The problem is directed: one haplotype is known.
- The input is biallelic: there are only two homozygous states (0 and 1) and one heterozygous state (2).

Outputs

- A haplotype matrix H.
- Pairs of rows in H explain the rows of G.
- The haplotypes in H form a perfect phylogeny.

We can do perfect phylogeny haplotyping efficiently, but . . .

- Data may be missing.
 - This makes the problem NP-complete . . .
 - ... even for very restricted cases.

Solutions:

- Additional assumption like the rich data hypothesis.
- 2 No perfect phylogeny is possible.
 - This can be caused by chromosomal crossing-over effects.
 - This can be caused by incorrect data.
 - This can be caused by multiple mutations at the same sites.

Solutions:

- Look for phylogenetic networks.
- Correct data.
- Find blocks where a perfect phylogeny is possible.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

perfect phylogeny

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

Walter Perez (IME - USP)

- Partition the site set into overlapping contiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Use dynamic programming for finding the partition.

Objective of the integrated approach.

- Partition the site set into noncontiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Ompute partition while computing perfect phylogenies.

no perfect phylogeny

Objective of the integrated approach.

- Partition the site set into noncontiguous blocks.
- Compute a perfect phylogeny for each block and combine them.
- Compute partition while computing perfect phylogenies.

The formal computational problem.

We are interested in the computational complexity of the function χ_{PP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect phylogeny.
 (We call this a pp-partition.)

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs *M* are already haplotype matrices.
- The inputs *M* do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

0 1 0 0

M: 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 No perfect phylogeny is possible.

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs M are already haplotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

	0	0	0	1
	0	1	0	0
	1	0	0	0
	0	1	0	0
М:	1	0	0	0
	0	1	0	1
	1	1	0	0
	0	0	1	0
	1	0	1	0

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

Walter Perez (IME - USP)

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of haplotype matrices is equivalent to finding optimal graph colorings.

Proof sketch for first direction.

- \bigcirc Let G be a graph.
- ② Build a matrix with a column for each vertex of G.
- **3** For each edge of G add four rows inducing the submatrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- The submatrix enforces that the columns lie in different perfect phylogenies.

Implications for pp-partitions of haplotype matrices.

Corollary

If $\chi_{PP}(M) = 2$ for a haplotype matrix M, we can find an optimal pp-partition in polynomial time.

Corollary

Computing χ_{PP} for haplotype matrices is

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- The inputs M are genotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

No perfect phylogeny is possible.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- The inputs M are genotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of genotype matrices is at least as hard as finding optimal colorings of 3-uniform hypergraphs.

Proof sketch.

- \bullet Let G be a 3-uniform hypergraph.
- 2 Build a matrix with a column for each vertex of G.
- **3** For each hyperedge of G add four rows inducing the submatrix $\begin{pmatrix} 2 & 2 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- The submatrix enforces that the three columns do not all lie in the same perfect phylogeny.

Implications for pp-partitions of genotype matrices.

Corollary

Even if we know $\chi_{PP}(M) = 2$ for a genotype matrix M, finding a pp-partition of any fixed size is still

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Automatic optimal pp-partitioning is hopeless, but...

- The hardness results are worst-case results for highly artificial inputs.
- Real biological data might have special properties that make the problem tractable.
- One such property is that perfect phylogenies are often perfect path phylogenies:
 - In HapMap data, in 70% of the blocks where a perfect phylogeny is possible a perfect path phylogeny is also possible.

Example of a perfect path phylogeny.

Genotype matrix

	А	Ь	C
	2	2	2
G:	0	2	0
	2	0	0
	0	2	2

Haplotype matrix

	Α	В	C
	1	0	0
	0	1	1
	0	0	0
:	0	1	0
	0	0	0
	1	0	0
	0	0	0
	0	1	1

Н

Perfect path phylogeny

The modified formal computational problem.

We are interested in the computational complexity of the function χ_{PPP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect path phylogeny.
 (We call this a ppp-partition.)

Good news about ppp-partitions of genotype matrices.

Theorem

Optimal ppp-partitions of genotype matrices can be computed in polynomial time.

Algorithm

- Build the following partial order:
 - Can one column be above the other in a phylogeny?
 - Can the columns be the two children of the root of a perfect path phylogeny?
- 2 Cover the partial order with as few compatible chain pairs as possible. For this, a maximal matching in a special graph needs to be computed.

▶ The algorithm in action

Summary

- Finding optimal pp-partitions is intractable.
- It is even intractable to find a pp-partition when just two noncontiguous blocks are known to suffice.
- For perfect path phylogenies, optimal partitions can be computed in polynomial time.

Computation of the partial order.

Genotype matrix

	, ,		_		_
	2	2	2	2	2
G:	0	1	2	1	0
	1	0	0	1	2
	0	2	2	0	0

Partial order

Partial order: →

Computation of the partial order.

Genotype matrix

	٠,		_		_
	2	2	2	2	2
G:	0	1	2	1	0
	1	0	0	1	2
	0	2	2	0	0

Partial order

Partial order: →

Compatible as children of root: —

The matching in the special graph.

The matching in the special graph.

A maximal matching in the matching graph

The matching in the special graph.

A maximal matching in the matching graph induces perfect path phylogenies.

Simple slide with three points shown all at once

- Point 1
- Point 2
- Point 3

Simple slide with three points shown in succession

• Point 1 (Click "Next Page" to see Point 2)

Simple slide with three points shown in succession

- Point 1 (Click "Next Page" to see Point 2)
- Point 2

Simple slide with three points shown in succession

- Point 1 (Click "Next Page" to see Point 2)
- Point 2
- Point 3

Slide with two columns: items and a graphic

First item

Insert graphic here

Slide with two columns: items and a graphic

- First item
- Second item

Insert graphic here

Slide with two columns: items and a graphic

- First item
- Second item
- ...

Insert graphic here