

$SuperFET^{\scriptscriptstyle{\mathsf{TM}}}$

FCP11N60/FCPF11N60

General Description

SuperFETTM is a new generation of high voltage MOSFETs from Fairchild with outstanding low on-resistance and low gate charge performance, a result of proprietary technology utilizing advanced charge balance mechanisms.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

Features

- 650V @T_i = 150°C
- Typ. Rds(on)=0.32Ω
- Ultra low gate charge (typ. Qg=40nC)
- Low effective output capacitance (typ. Coss.eff=95pF)
- 100% avalanche tested

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FCP11N60	FCPF11N60	Units
I _D	Drain Current - Continuous (T _C = 25°C)		11	11*	Α
	- Continuous (T _C = 100°C)		7	7*	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	33	33*	Α
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	340		mJ
I _{AR}	Avalanche Current	(Note 1)	11		Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	12.5		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5		V/ns
P _D	Power Dissipation (T _C = 25°C)		125	36	W
	- Derate above 25°C		1.0	0.29	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
TL	Maximum lead temperature for soldering purposes,		300		°C
	1/8" from case for 5 seconds				

^{*} Drain current limited by maximum junction termperature

Thermal Characteristics

Symbol	Parameter	FCP11N60	FCPF11N60	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1.0	3.5	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
D)/	Buris Ossans Burst days Vallans	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A, } T_J = 25^{\circ}\text{C}$				V
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_J = 150^{\circ}\text{C}$		650		V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.6		V/°C
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 11 A		700		V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
	2010 Gate Voltage Brain Gurrent	$V_{DS} = 480 \text{ V}, T_{C} = 125^{\circ}\text{C}$			10	μΑ
I_{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 5.5 A		0.32	0.38	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, I_D = 5.5 \text{ A}$ (Note 4)		9.7		S
Dynam	ic Characteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		1148	1490	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		671	870	pF
C _{rss}	Reverse Transfer Capacitance			63	82	pF
C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1.0 MHz		35		pF
C _{oss} eff.	Effective Output Capacitance	V _{DS} = 0V to 480 V, V _{GS} = 0 V		95		pF
Switchi	ing Characteristics					
t _{d(on)}	Turn-On Delay Time	V 000 V 1 44 4		34	80	ns
t _r	Turn-On Rise Time	$V_{DD} = 300 \text{ V}, I_D = 11 \text{ A},$		98	205	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 25 \Omega$		119	250	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		56	120	ns
Q _g	Total Gate Charge	V _{DS} = 480 V, I _D = 11 A,		40	52	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 480 \text{ V}, I_D = 11 \text{ A},$ $V_{GS} = 10 \text{ V}$		7.2		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		21		nC
						1
Drain-S	Source Diode Characteristics an Maximum Continuous Drain-Source Diod				11	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				33	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 11 A			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_{S} = 11 \text{ A,}$		390		ns
Q _{rr}	Reverse Recovery Charge	$dI_F / dt = 100 \text{ A/}\mu\text{s} $ (Note 4)		5.7		μС

- Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. $I_{AS} = 5.5A$, $V_{DD} = 50V$, $R_G = 25 \Omega$, Starting $T_J = 25^{\circ}C$ 3. $I_{SD} \le 11A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$ 4. Pulse Test: Pulse width $\le 300\mu s$, Duty cycle $\le 2\%$ 5. Essentially independent of operating temperature

Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

©2004 Fairchild Semiconductor Corporation Rev. B, March 2004

Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9-1. Maximum Safe Operating Area for FCP11N60

Figure 9-2. Maximum Safe Operating Area for FCPF11N60

Figure 10. Maximum Drain Current vs. Case Temperature

Typical Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FCP11N60

Figure 11-2. Transient Thermal Response Curve for FCPF11N60

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Reverse Current

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT Quiet Series™	ISOPLANAR™	POP^{TM}	Stealth™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperFET™
Bottomless™	FASTr™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FPS™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™ .	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	HiSeC™	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	I ² C TM	OCX^{TM}	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC®	SILENT SWITCHER®	UltraFET®
The Power Franchise™		OPTOPLANAR™	SMART START™	VCX TM
Programmable Active Droop™		PACMAN™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.