ФИО: Курнаев Данила Владимирович

Группа: М7О-606С-19

Дата сдачи: 18.12.2024

Тема: «Обеспечение безопасных условий труда при разработки системы эргономической оценки кабины самолета на основе теста психомоторной

бдительности, методики PVT и NASA-TLX.».

1. Организационно-экономическая часть

1.1.Введение

На современном этапе развития авиационной промышленности особое

внимание уделяется обеспечению безопасных условий труда пилотов, что имеет

важное значение для повышения эффективности их деятельности и снижения

рисков, связанных с человеческим фактором. Одним из перспективных

направлений в данной области является разработка эргономических методов

оценки условий труда в кабине самолета, которые позволяют оптимизировать

рабочее пространство пилота и улучшить взаимодействие с бортовыми

системами.

В данной дипломной работе рассматривается система эргономической

оценки кабины самолета на основе теста психомоторной бдительности (PVT) и

методики NASA-TLX. Применение этих методов позволит количественно

оценить психофизиологическую нагрузку пилотов, выявить наиболее

критические факторы, влияющие на их производительность, и предложить

рекомендации по снижению нагрузки и повышению эргономичности рабочей

среды.

1.2. Расчет времени на проведение работ

Проведем расчет времени выполнения дипломной работы, построив план-

график работ и представим его в виде таблицы:

Таблица 1.2-1 План-график работ

1

п/п	Название работ	Начало работ (дд.мм.г г)	Оконча ние работ (дд.мм.г г)	Прод олжи тельн ость (раб. дни)	Исполнители	Труд оемк ость (чел. дни)
1	Ознакомление с заданием и исходными данными	02.09.24	03.09.24	2	Программист 3 категории	2
2	Сбор теоретических данных по методам PVT и NASA-TLX	04.09.24	06.09.24	3	Программист 3 категории	3
3	Анализ научных публикаций и существующих подходов к эргономической оценке	09.09.24	13.09.24	5	Программист 3 категории	5
4	Разработка требований к системе эргономической оценки	16.09.24	18.09.24	3	Ведущий программист, Программист 3 категории	6
5	Подготовка программной среды для проведения тестов PVT	19.09.24	26.09.24	6	Ведущий программист, Программист 3 категории	12
6	Разработка интерфейса для проведения оценки по методике NASA-TLX	27.09.24	03.10.24	5	Ведущий программист, Программист 3 категории	10
7	Подготовка тестовых сценариев для проведения PVT и NASA-TLX	04.10.24	08.10.24	3	Программист 3 категории	3

	Итого		65 рабочи	их дней	117 человеко-д	ней
	проекта					
	завершение				3 категории,	
	документации и				Программист,	
14	итоговой	20.11.24	27.11.2 4		программист,	-
14	кабины самолета Оформление	28.11.24	29.11.24	2	Ведущий	4
	эргономики					
	улучшению					
	рекомендаций по				программист	
	оценки и				Ведущий	
	по результатам				3 категории,	
13	Подготовка отчета	19.11.24	27.11.24	7	Программист	14
40	эргономичности	10.11.2:	25.44.23			1.4
	факторов					
	критических					
	выявление				3 категории	
	результатов и				Программист	
	полученных				программист,	
12	Анализ	13.11.24	18.11.24	4	Ведущий	8
	системы на стенде				3 категории	
	разработанной				Программист	
	тестирования				программист,	
11	Проведение	06.11.24	12.11.24	5	Ведущий	10
	результатов					
	визуализации				- Interoprin	
	системой				3 категории	
	NASA-TLX c				Программист	
	модуля PVT и		55.11.21	,	программист,	
10	Интеграция	28.10.24	05.11.24	7	Ведущий	14
	результатов				3 категории	
	обработки				Программист,	
	доработка модуля	21.10.24	23.10.24		программист,	10
9	результатов тестов Тестирование и	21.10.24	25.10.24	5	Ведущий	10
	анализа				Программист 3 категории	
	обработки и				программист,	
8	Разработка модуля	09.10.24	18.10.24	8	Ведущий	16

Для построение сетевого графика понадобятся данные состава и последовательности работ в виде начального и конечного события. Продолжительность дней возьмем из Таблицы 1.2–1 План-график работ.

Таблица 1.2-2 Состав и последовательность работ

п/п	Название работ	Начальное событие	Конечное событие	Продол- житель- ность (раб. дни)	Исполнители
1	Ознакомление с заданием и исходными данными	1	2	2	Программист 3 категории
2	Сбор теоретических данных по методам PVT и NASA-TLX	2	3	3	Программист 3 категории
3	Анализ научных публикаций и существующих подходов к эргономической оценке	3	4	5	Программист 3 категории
4	Разработка требований к системе эргономической оценки	4	5	3	Ведущий программист, Программист 3 категории
5	Подготовка программной среды для проведения тестов PVT	5	6	6	Ведущий программист, Программист 3 категории

6	Разработка интерфейса для проведения оценки по методике NASA-TLX	6	7	5	Ведущий программист, Программист 3 категории
7	Подготовка тестовых сценариев для проведения PVT и NASA-TLX	7	8	3	Программист 3 категории
8	Разработка модуля обработки и анализа результатов тестов	8	9	8	Ведущий программист, Программист 3 категории
9	Тестирование и доработка модуля обработки результатов	9	10	5	Ведущий программист, Программист 3 категории
10	Интеграция модуля PVT и NASA-TLX с системой визуализации результатов	10	11	7	Ведущий программист, Программист 3 категории
11	Проведение тестирования разработанной системы на стенде	11	12	5	Ведущий программист, Программист 3 категории
12	Анализ полученных	12	13	4	Ведущий программист,

	результатов и выявление критических факторов эргономичности				Программист 3 категории
13	Подготовка отчета по результатам оценки и рекомендаций по улучшению эргономики кабины самолета	13	14	7	Программист 3 категории, Ведущий программист
14	Оформление итоговой документации и завершение проекта	14	15	2	Ведущий программист, Программист 3 категории,

Рисунок 1.2-1 Сетевой график

Из Таблица 1.2—1 План-график работ видно, что продолжительность работ составит 65 рабочих дней. В работе задействованы:

- ведущий программист
- программист 3 категории;

За 65 рабочих дней их трудоемкость составит 117 человеко-дней. Из них приходится:

- 65 рабочих дней на программиста 3 категории;
- 52 рабочих дней на ведущий программист;

1.3. Расчет заработной платы

Заработная плата i-го специалиста рассчитывается по следующей формуле:

$$3\Pi_i = 03\Pi_i + Д3\Pi_i$$
 (2)

где $03\Pi_i$ — основная заработная плата i-го специалиста, Д $3\Pi_i$ — дополнительная заработная плата i-го специалиста.

Основная заработная плата для специалистов считается по формуле (2). Заработная плата для специалистов разной квалификации будет отличаться.

$$03\Pi_i = \text{CYC}_i \cdot t_i (3)$$

где CYC_i — средняя ставка i-го специалиста за час работы, t_i — количество часов, отработанных i-ым специалистом.

Для расчета количества часов, отработанных i-ым специалистом, воспользуемся формулой (3):

$$t_i = N_i \cdot t_{\text{рабочего дня}}$$
 (4)

где N_i — количество рабочих дней i-го специалиста, $t_{\rm рабочего\ дня}$ — продолжительность рабочего дня.

Формула для расчета дополнительной заработной платы:

$$Д3\Pi_i = 03\Pi_i \cdot 0,2$$
 (5)

Средняя ставка сотрудников:

• ведущего программист – 1710 рублей в час,

• программиста 3 категории – 826 рублей в час,

Рассчитаем основную заработную плату каждого сотрудника:

- $03\Pi_{\text{ведущего программист}} = 1710 \frac{\text{руб}}{\text{час}} \cdot 52$ дней $\cdot 8$ часов = 711 360 рубля
- $03\Pi_{\text{программиста 3 категории}} = 826 \frac{\text{руб}}{\text{час}} \cdot 65$ дней \cdot 8 часов = 429 520 рубля

Пользуясь формулой (5), найдем ДЗП каждого сотрудника:

- Д $3\Pi_{\text{ведущего программист}} = 711\ 360\ рублей \cdot 0.2 = 142\ 272\ рублей$
- Д $3\Pi_{\text{программиста 3 категории}} = 429~520~$ рублей $\cdot~0.2 = 85~904~$ рублей

Пользуясь формулой (1), найдем ЗП каждого сотрудника:

- $3\Pi_{\text{ведущего программист}} = 711\ 360\ \text{рублей} + 142\ 272\ \text{рублей} = 853\ 632\ \text{рублей}$
- $3\Pi_{\text{программиста 3 категории}} = 429\ 520\ рублей + 85\ 904\ рублей = 515\ 424\ рублей$

Таблица 1.3–1 Общие затраты на оплату труда

Должность	ОЗП, руб.	ДЗП, руб.	3П, руб.	ФОТ, руб.
Ведущего программист	711 360	142 272	853 632	
Программиста 3	429 520	85 904	515 424	1 369 056
категории				

1.4. Расходные материалы

Таблица 1.4–1 Расходные материалы

п/п	Виды расходн материалог		Расход (кол-во)	Цена (ед.) Руб.	Общая цена
1	Канцелярский наб рабочего стола	бор для	2	500	1 000

2	Бумага для печати формата A4	2	500	1 000
	2 000 рублей			

1.5. Покупные комплектующие изделия

Расходы на ПЭВМ сотрудников в сборке представлены в таблице:

Таблица 1.4-1 Расходы на ПЭВМ сотрудников в сборке

п/п	Название ПКИ	Количество,	Цена за 1	Сумма,	
	ПЭВМ ведуще	ШТ. Го программи	<u>шт., руб.</u> стя	руб.	
1	Корпус: Corsair 4000D Airflow	1	7 000	7 000	
2	Материнская плата: ASUS ROG STRIX X570-E	1	18 000	18 000	
3	Процессор: AMD Ryzen 9 5900X	1	28 000	28 000	
4	Оперативная память: G.Skill Ripjaws 16GB DDR4	2	5 000	10 000	
5	Жесткий диск: Samsung 980 Pro 2TB NVMe	1	15 000	15 000	
6	Видеокарта: NVIDIA GeForce RTX 3080 Ti	1	70 000	70 000	
7	Блок питания: be quiet! Straight Power 11 850W	1	10 000	10 000	
8	Монитор: Dell UltraSharp U2723QE 27"	2	25 000	50 000	
9	Компьютерная мышь: Logitech MX Master 3	1	5 000	5 000	
	Итого:			213 000	
ПЭВМ программиста 3 категории					
1	Корпус: DeepCool Matrexx 55 Mesh	1	4 500	4 500	
2	Материнская плата: MSI MAG B660M Mortar	1	12 000	12 000	

3	Процессор: Intel Core i5 12600KF	- 1	20 000	20 000
4	Оперативная память Kingston Fury 16GB DDR4	: 2	4 500	9 000
5	Жесткий диск: WD Black SN770 1TB NVMe	1	8 000	8 000
6	Видеокарта: AMD Radeo RX 6800	1	45 000	45 000
7	Блок питания: Thermaltak Toughpower GF1 750W	e 1	7 000	7 000
8	Mонитор: ASUS ProAi Display PA248QV 24"	t 2	18 000	36 000
9	Компьютерная мышь: Raze DeathAdder V2	r 1	3 000	3 000
	Итого:	·	·	144 500
Колич	чество ПЭВМ, шт: 2	Сум	іма:	357 500

1.6. Электроэнергия на технологические цели

Расходы на электроэнергию рассчитываются по формуле:

$$C_{3\pi} = P \cdot T \cdot Z(1)$$

где P — суммарная мощность оборудования, T — общее время работы оборудования, Z — цена одного кВт в ч.

$$P_{\Pi ext{ЭВМ}} = 0.350 \; ext{кВТ}, T_{\Pi ext{ЭВМ1}} = 520 \; ext{ч} \, , T_{\Pi ext{ЭВМ2}} = 416 \; ext{ч}.$$

Суммарное количество часов работы специалистов ПЭВМ составляет 880 часов.

В соответствии с ПАО «Мосэнергосбыт» от 2024 года, тариф на электроэнергию для предприятий составляет 6,08 кВт \cdot ч.

Затраты на электроэнергию будут следующими: 182 126

$$C_{\text{эл}} = (P_{\text{ПЭВМ}} \cdot T_{\text{ПЭВМ}1} + P_{\text{ПЭВМ}} \cdot T_{\text{ПЭВМ}2}) \cdot Z = (0.35 \cdot 520 + 0.35 \cdot 416) \cdot 6.08$$

$$= 1992 \text{ рубля}$$

1.7.Отчисления во внебюджетные фонды

Отчисления во внебюджетные фонды представляют из себя обязательные страховые взносы, которые отчисляются в Пенсионный фонд (ПФР), Медицинский фонд (ФФОМС) и Фонд социального страхования (ФСС). Отчисления составляют 30% от ФОТ. Также 0,2% от ФОТ составляет страхование от профзаболеваний и несчастных случаев, которые тоже входят в отчисления во внебюджетные фонды.

Проведём расчёт социальных отчислений по формуле:

$$B\Phi = (30\% + 0.2\%) \times \Phi OT. (6)$$

Тогда получим:

$$B\Phi = 30,2\% \times 1369056$$
 руб = 413455 руб.

1.8. Отчисления на накладные расходы

Согласно приказу Минстроя РФ от 04.08.2020 №421/ПР п.18 накладными расходами являются общепроизводственные и общехозяйственные расходы, то есть это расходы, которые прямо не связаны с производством продукции. Они составят 30 % от суммы затрат на оплату труда, а именно 410 717 рублей.

1.9. Амортизационные отчисления

Амортизационные отчисления будем рассчитывать с помощью линейного способа по следующей формуле:

$$AO = \sum_{i=1}^{k} \frac{C_i}{T_i} \times T_p, (7)$$

где C_i — первоначальная стоимость i-го оборудования в рублях; T_i — срок полезного использования i-го оборудования в месяцах; T_p — срок работы оборудования в проекте (в данном случае 3 месяца).

Таблица 1.9-1 Описание КПИ

Оборудование	Срок полезного использования, мес	Количество, шт	Стоимость, руб
ПЭВМ ведущего программиста	36	1	213 000
ПЭВМ программиста 3 категории	36	1	144 500

$$AO = \left(\frac{213\ 000 + 144\ 500}{36}\right) \times 3\ \text{меc} = 29\ 791\ \text{рублей}$$

1.10. Смета затрат

Смета затрат представлена в Таблица 1.10-1 Смета затрат:

Таблица 1.10-1 Смета затрат

п/п	Статья расходов	Величина, руб.	Удельный вес в общей сумме затрат, %
1	Расходные материалы	2 000	0,1
2	Электроэнергия на технологические цели	1 992	0,1
3	Заработная плата	1 369 056	61,5
4	Внебюджетные фонды	413 455	18,6
5	Накладные расходы	410 717	18,4
6	Амортизационные отчисления	29 791	1,3
	Итого:	2 227 011	100,00

Из Таблица 1.10-1 Смета затрат следует, что себестоимость проведения работ составляет 2 227 011 рубля. Основная доля затрат приходится на заработную плату специалистов, которая составляет 61,5% от общей суммы. Это обусловлено необходимостью привлечения высококвалифицированных специалистов, чей труд требует достойной оплаты. Помимо этого, значительные затраты связаны с использованием качественного оборудования, что способствует повышению эффективности работ, а также обеспечивает долговечность и надежность конечного продукта.

1.11. Вывод

Разработанная система эргономической оценки кабины самолета на основе теста психомоторной бдительности (PVT) и методики NASA-TLX обладает следующими преимуществами:

- Оптимизация условий труда пилотов позволяет снизить психофизиологическую нагрузку за счет выявления и устранения эргономических недостатков в кабине самолета. Это способствует повышению производительности пилотов и сокращению времени на выполнение задач на 10–15%. Если в среднем стоимость работы экипажа составляет 3 000 000 рублей в год, улучшение условий труда позволит сэкономить 300 000–450 000 рублей ежегодно.
- Снижение рисков, связанных с человеческим фактором, достигается за счет уменьшения утомляемости и повышения концентрации пилотов на критически важных задачах. Это способствует снижению числа инцидентов и аварий на 8–12%. При страховых расходах в размере 12 000 000 рублей в год, экономия может составить 960 000–1 440 000 рублей ежегодно.

• Повышение долговечности оборудования благодаря более комфортным условиям работы пилотов, что позволяет сократить износ систем и необходимость частого обслуживания на 5–7%. Если годовые затраты на обслуживание составляют 4 000 000 рублей, экономия может достигнуть 200 000–280 000 рублей.

Таким образом, внедрение системы эргономической оценки не только способствует обеспечению безопасных условий труда, но и позволяет достичь значительного экономического эффекта за счет оптимизации времени работы, снижения числа инцидентов и уменьшения затрат на обслуживание оборудования.