- 156. La proposition fausse est : 3. $\lim_{x \to 0^+} (x - 1) = -\infty$ 5. $\lim_{x \to 0^+} \ln x = -\infty$ 1. $\lim_{x \to \infty} f(x) = -\infty$
 - 2. $\lim_{x \to \frac{1}{c}} f(x) = +\infty$ 4. $\lim_{x \to 0} (2x - 1) = -\infty$
- 157. Soit la fonction f définie sur $]0,+\infty[$ par $f(x) = x \ln x$; $f(\sqrt{e}) =$
- 2. -1/2e 3. $\sqrt{e}/2$ 4. -1/e 5. -2/e (M-2003)
- 158. Soit f la fonction définie par $f(x) = x 2 + e^{x}$ et (C) sa courbe représentative. L'asymptote à (C) a pour équation : 1. y = x + 1
- 3. y = 2x + 3 $5 \cdot y = 3x + 5$ 4. y = 2x + 12. y = x - 2(M-2003)
- 159. L'ensemble de solutions de l'équation $e^{x+2} = e^{3x}$ est : 1. $\{0\}$ 2. $\{-1\}$ 3. $\{-3\}$ 4. $\{1,2\}$ 5. $\{1/3\}$ (M-2003)
- 160. Les racines de l'équation $\left(\frac{5}{4}\right)^{x^2-3x} \left(\frac{4}{5}\right)^{3x-2} = 0$ sont
 - $1.-\sqrt{2}$ et $\sqrt{2}$ 3. -2 et 1 5. $-\sqrt{3}$ et $\sqrt{3}$ 4. -2 et 2
- 161. La limite de la fonction f définie par $f(x) = \frac{\ln(1-x)}{1-x}$ lorsque x tend vers zero est : (B-2004)
- 162. La somme des racines de l'équation exponentielle
- $\left(\frac{5}{4}\right)^{2x^2-x} \left(\frac{4}{5}\right)^{x-2} = 0$ vaut: 1.1 2.2 3. 0 4.-1 5.-2 (M-2004)
- 163. Le domaine de définition de la fonction f définie par

163. Le domaine de définition
$$f(x) = arc \cos(h)$$

 $f(x) = arc cos(ln \frac{x}{2}) est$:

1. $[0, e^2]$ 2. $[e, e^2]$ 3. $[-1, e^2]$ 4. $[e^{-2}, e^2]$ 5. $[1, e^2]$ (M-2004)

164. $\lim_{x \to \infty} (\cos x)^{\pi/2 - x} =$

56