Essentials of Analytical Geometry and Linear Algebra I, Class #4

Innopolis University, September 2022

Inverse Matrix 1

- 1. Find inverse matrices for the following matrices:

 - (b) $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix};$
- 2. Solve matrix equations:
 - (a) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} X = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix};$
 - (b) $X \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$;

Matrix Rank 2

- 1. Calculate the ranks of the following matrices:
 - (a) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix} .$

3 Changing Basis and Coordinates

1. If vectors **a** and **b** form a basis (you should check it), it is needed to find coordinates \mathbf{c} and \mathbf{d} in the basis.

$$\mathbf{a} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, \, \mathbf{b} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \, \mathbf{c} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \, \mathbf{d} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}.$$

- 2. There are to bases in R^3 :
 - $e_1 = i, \ e_2 = j, \ e_3 = k \text{ and } e_1' = i + j + k, \ e_2' = i + j, \ e_3' = i$

Find coordinates of x = 2i - 3j + k in the basis e'_1 , e'_2 , e'_3 .

3. There are 4 vectors
$$f_1$$
, f_2 , f_3 , x and the basis $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Find the coordinates of x in the basis

$$(f_1, f_2, f_3)$$
, if $f_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $f_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $f_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$