ALGORITMI - Complessità

Anno Accademico 2014-15

Appello 1 - Giugno 2015

Nome e Cognome:

Matricola:

Importante: Usare solo i fogli forniti dal docente, riportando Nome Cognome e Matricola su ogni foglio. Scrivere in modo leggibile e giustificare ogni affermazione. Risposte non giustificate saranno valutate 0. Per ogni algoritmo proposto va provata la correttezza e se necessario al problema, la complessità. Si chiede di risolvere 3 esercizi:

(i) uno a scelta tra 1 e 2, (ii) uno a scelta tra 3 e 4, (iii) uno a scelta tra 5 e 6.

Esercizio 1 - 15 punti

Sia $\mathcal{F} = \{A_1, \ldots, A_m\}$ una famiglia 3-regolare di sottinsiemi di $V = \{v_1, \ldots, v_n\}$: per ogni $i = 1, \ldots, m$, vale che $A_i \subseteq V$ ed $|A_i| = 3$ (ha esattamente tre elementi).

Diciamo che \mathcal{F} è 2-colorabile se possiamo colorare gli elementi di V di bianco o di nero in modo tale che ognuno degli insiemi di \mathcal{F} contenga sia un elemento nero che un elemento bianco.

Definiamo il seguente problema

Hypergraph 2-Colouring (HG-2Col)

Input: Un insieme $V = \{v_1, \dots, v_n\}$ e una famiglia 3-regolare $\mathcal{F} = \{A_1, \dots, A_m\}$ di sottinsiemi di V **Output**: yes se e solo \mathcal{F} è 2-colorabile.

Mostrare che HG-2Col è \mathcal{NP} -completo.

Suggerimento: Una possibile riduzione è da NAE-3-SAT. Fare attenzione a come vengono correlati i valori di verità delle variabili della formula con i colori dei corrispondenti elementi dell'insieme V nell'istanza di HG-2Col.

Esercizio 2 - 15 punti (+ bonus 5 punti)

Diciamo che un grafo G = (V, E) è ricopribile con k clique se esistono k insiemi di vertici A_1, \ldots, A_k tali che: (i) ogni A_i induce una clique, cioè i vertici in A_i sono a due a due adiacenti; (ii) gli insiemi A_1, \ldots, A_k partizionano i vertici di V, cioè $A_1 \cup A_2 \cup \cdots \cup A_k = V$ e $A_i \cap A_j = \emptyset$, per ogni $1 \le i < j \le k$. Si dimostri che il seguente problema è \mathcal{NP} -completo:

CLIQUE COVER

Input: Un grafo G = (V, E) ed un intero k

Output: yes se e solo G è ricopribile con $\leq k$ clique

Sugg.: Una possibile riduzione è da GRAPH-K-COLOURING. In tal caso può essere utile osservare che in una colorazione propria i vertici dello stesso colore costituiscono

Bonus 5 punti. Si provi che ammettendo che gli insiemi A_1, \ldots, A_k possano avere intersezione nonnulla, il problema rimane lo stesso. Ovvero, **provare che** se esiste una Clique Cover in cui per qualche A_i, A_j vale $A_i \cap A_j \neq \emptyset$ allora esiste una Clique Cover della stessa taglia senza intersezioni non-nulle.

Esercizio 3 - 15 punti

Si considerino le seguenti classi di problemi

```
\mathbf{SPACE}(\mathrm{polylog}(n)) = \cup_{c>0} \mathbf{SPACE}(\log^c n)
\mathbf{NSPACE}(\mathrm{polylog}(n)) = \cup_{c>0} \mathbf{NSPACE}(\log^c n).
```

Siano dati due problemi $\mathbb{A} \in \mathbf{SPACE}(\mathrm{polylog}(n))$ e $\mathbb{B} \in \mathbf{NSPACE}(\mathrm{polylog}(n))$. Cosa possiamo affermare circa il tempo necessario a risolvere un'istanza di tali problemi? E quale è la relazione tra le due classi di problemi? Precisamente, si chiede di rispondere ai seguenti 4 punti—Tutte le risposte vanno motivate/dimostrate!

- (i) Si fornisca una funzione f(n) tale che $\mathbb{A} \in \mathbf{TIME}(f(n))$?
- (ii) Si fornisca una funzione g(n) tale che $\mathbb{B} \in \mathbf{TIME}(g(n))$?
- (iii) Possiamo affermare che $NSPACE(polylog(n)) \subseteq SPACE(polylog(n))$?
- (iv) Possiamo affermare che $SPACE(polylog(n)) \subseteq NSPACE(polylog(n))$?

Esercizio 4 - 15 punti

- (i) Si fornisca l'enunciato del teorema di Savitch
- (ii) Sia **NSPACETIME**(f(n), g(n)) la classe di problemi di decisione che possono essere risolti nondeterministicamente da un algoritmo che usa spazio di memoria O(f(n)) ed impiega tempo O(g(n)), dove n denota la taglia dell'input.

Si dimostri che vale la seguente inclusione: $NSPACETIME(n, n) \subseteq SPACE(n \log n)$

Sugg.: può essere utile ricordare il modo in cui abbiamo dimostrato il teorema di Savitch.

Esercizio 5 - 20 punti

Si definisca MAX- $3 \le SAT$ la variante di MAX-3SAT in cui ogni clausola può avere ≤ 3 (quindi anche meno di 3) e MAX- $3 \ne SAT$ la variante di MAX-3SAT in cui ogni clausola ha esattamente 3 letterali ma non possiamo avere la stessa variabile più di una volta nella stessa clausola.

- (i) Si fornisca una L-riduzione da MAX- $3 \le SAT$ a MAX- $3 \ne SAT$.
- (ii) Sulla base del punto (i) e dei risultati di inapprossimabilità forniti a lezione—che, rispetto alla notazione di questo esercizio, sono stati dati per MAX- 3_{\neq} SAT—si dimostri il seguente lemma: Lemma 1. Se $\mathcal{NP} \neq \mathcal{P}$ allora MAX- 3^{\leq} SAT $\notin \mathcal{PTAS}$.

Sugg.: Per la riduzione si trasformino le clausole sottodimensionate aggiungendo variabili nuove.

Esercizio 6 - 20 punti

Si consideri il seguente problema di massimizzazione: Sono dati tre insiemi A, B, C della stessa dimensione |A| = |B| = |C| = n e con mutua intersezione vuota $A \cap B = A \cap C = B \cap C = \emptyset$ ed un insieme di m triple $\mathcal{T} = \{t_i = (a_i, b_i, c_i) \mid i = 1, \dots m\}$, tali che per ogni i abbiamo $a_i \in A, b_i \in B, c_i \in C$.

Lo scopo è selezionare il massimo numero di triple tali che nessuna coppia di triple contiene uno stesso elemento.

- (i) Si fornisca un algoritmo che garantisce una 3-approssimazione.
- (ii) Il problema di decidere se esiste una scelta delle triple che copre tutti gli elementi, noto come 3-DIMENSIONAL MATCHING è \mathcal{NP} -completo. Usando questo risultato e quanto studiato al corso si dimostri che non può esistere un FPTAS per il problema di massimizzazione se $\mathcal{NP} \neq \mathcal{P}$.