EEE422/6082 Computational Vision

Image Categorization

Ling Shao

Many slides from Derek Hoiem

Last classes

- Object recognition: localizing an object instance in an image
- Face recognition: matching one face image to another

Today's class: categorization

- Overview of image categorization
- Representation
 - Image histograms
- Classification
 - Important concepts in machine learning
 - What the classifiers are and when to use them

Image Categorization

Image Categorization

Part 1: Image features

General Principles of Representation

- Coverage
 - Ensure that all relevant info is captured

Image Intensity

Concision

- Minimize number of features without sacrificing coverage
- Directness
 - Ideal features are independently useful for prediction

Image Representations: Histograms

Global histogram

• Represent distribution of features - Color, texture, depth, ..

Images from Dave Kauchal

Image Representations: Histograms

Histogram: Probability or count of data in each bin

Requires lots of data

Loss of resolution to avoid empty bins

Images from Dave Kauchal

Marginal histogram

- Requires independent features More data/bin than joint histogram

Image Representations: Histograms

Clustering

Use the same cluster centers for all images

lages from Dave Kauchak

Computing histogram distance

$$histint(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))$$

Histogram intersection (assuming normalized histograms)

$$\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Chi-squared Histogram matching distance

Cars found by color histogram matching using chi-squared

Histograms: Implementation issues

- Quantization
- Grids: fast but only applicable with few dimensions
- Clustering: slower but can quantize data in higher dimensions

Few Bins

Need less data Coarser representation

Many Bins Need more data Finer representation

- Matching
 - Histogram intersection or Euclidean may be faster
 - Chi-squared often works better
 - Earth mover's distance is good for when nearby bins represent similar values

EEE422/6082 2

What kind of things do we compute histograms of?

Color

• Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

• Histograms of gradient

Visual words

Image Categorization: Bag of Words

Training

- 1. Extract keypoints and descriptors for all training images
- 2. Cluster descriptors
- 3. Quantize descriptors using cluster centers to get "visual words"
- 4. Represent each image by normalized counts of "visual words"
- 5. Train classifier on labeled examples using histogram values as features

Testing

- 1. Extract keypoints/descriptors and quantize into visual words
- 2. Compute visual word histogram
- Compute label or confidence using classifier

But what about layout?

All of these images have the same color histogram

Spatial pyramid

Compute histogram in each spatial bin

Part 2: Classifiers

Learning a classifier

 Given some set features with corresponding labels, learn a function to predict the labels from the features

Many classifiers to choose from

Which is the best one?

- SVM
- · Neural networks
- Naïve Bayes
- Bayesian network
- · Logistic regression
- Randomized Forests
- Boosted Decision Trees
- · K-nearest neighbor
- RBMs
- Etc.

No Free Lunch Theorem

The perfect classification algorithm

- · Objective function: solves what you want to solve
- Parameterization: makes assumptions that fit the problem
- Regularization: right level of regularization for amount of training data
- Training algorithm: can find parameters that maximize objective on training set
- Inference algorithm: can solve for objective function in evaluation

Generative vs. Discriminative Classifiers

Generative

- Training
 - Maximize joint likelihood of data and labels
 - Assume (or learn) probability distribution and dependency structure
 - Can impose priors
- Testing
 - P(y=1, x) / P(y=0, x) > t?
- Examples
 - Foreground/background GMM
 - Naïve Bayes classifier
 - Bayesian network

Discriminative

- Training
 - Learn to directly predict the labels from the data
 - Assume form of boundary
 - Margin maximization or parameter regularization
- Testing
 - f(x) > t; e.g., $w^Tx > t$
- Examples
 - Logistic regression
 - SVM
 - Boosted decision trees

Classifiers: Linear SVM

- Objective
- Parameterization
- Regularization
- Training
- Inference

Classifiers: Linear SVM

- Objective
- Parameterization
- Regularization
- Training
- Inference

Classifiers: Linear SVM

- Objective
- Parameterization
- Regularization
- Training
- Inference

Using SVMs

- · Good general purpose classifier
 - Generalization depends on margin, so works well with many weak features
 - No feature selection
 - Usually requires some parameter tuning
- · Choosing kernel
 - Linear: fast training/testing start here
 - RBF: related to neural networks, nearest neighbor
 - Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
 - Can learn a kernel function

Classifiers: Decision Trees

- Objective
- Parameterization
- Regularization
- Training
- Inference

Ensemble Methods: Boosting

figure from Friedman et al. 2000

K-nearest neighbor

- · Objective
- Parameterization
- Regularization
- Training
- Inference

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

Clustering (unsupervised)

What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)

Some Machine Learning References

- General
 - Tom Mitchell, Machine Learning, McGraw Hill, 1997
 - Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
- Adaboost
 - Friedman, Hastie, and Tibshirani, "Additive logistic regression: a statistical view of boosting", Annals of Statistics, 2000
- SVMs
 - http://www.support-vector.net/icml-tutorial.pdf