Estimation of Production Function 3 Applications

Yuta Toyama

Last updated: October 29, 2018

Applications

- Tons of applications using estimated production function and productivity.
- I focus on two applications:
 - ► Reallocation analysis: Olley and Pakes (1996,EMA)
 - Measurement of markup: De Loecker and Warzynski (2013, AER), De Loecker and Eckhaout (2017)
- ▶ See reading list for other selected applications.

Olley and Pakes (1996)

- Empirical question: How did the productivity evolve in telecommunication equipment industry.
- Motivation: change in the regulatory environment & technology
- They use estimates of production function to construct productivity and answer these questions.

A bit more Background

- ► AT&T has maintained an exclusive monopoly in telecommunication services.
- ▶ Western Electric (subsidiary of AT&T) supplied around 90% of AT&T's equipment purchase.
 - equipment: telephone sets, private branch exchange (PBX)
 - free from competitive pressures in the equipment market.
- ▶ 1978: Registration and certification program (by FCC)
 - allow for connection of private subscriber equipment to the telecommunication network owned by AT&T.
- ▶ January 1982: Consent Decree
 - ▶ Divestiture of AT&T's regional operating companies.
 - Regional Bell operating companies (RBOC) are free to purchase equipment from any supplier and are prohibited to produce equipment by themselves.
 - Implemented in 1984.

Decomposition of aggregate productivity in the industry

$$\Omega_{t} \equiv \sum_{i} s_{it} \omega_{it} \\
= \underbrace{N_{t}^{-1} \sum_{i} \omega_{it}}_{average \ productivity:\bar{\omega}_{t}} + \underbrace{\sum_{i} (\omega_{it} - \bar{\omega}_{t})(s_{it} - \bar{s}_{t})}_{allocation \ term:\Gamma_{t}^{OP}} \tag{1}$$

- ▶ The table in the next slide shows the deconposition result
 - ► Col 1: Ω₊
 - ightharpoonup Col 2: $\bar{\omega}_t$
 - ► Col 3: Γ^{OP}_t
 - ightharpoonup Col 4: $Corr(k_{it}, \omega_{it})$

Results from Decomposition Analysis

TABLE XI DECOMPOSITION OF PRODUCTIVITY^a (EQUATION (16))

Year	p_t	\overline{p}_t	$\Sigma_{\iota} \Delta s_{\iota\iota} \Delta p_{\iota\iota}$	$\rho(p_t, k_t)$
1974	1.00	0.90	0.01	-0.07
1975	0.72	0.66	0.06	-0.11
1976	0.77	0.69	0.07	-0.12
1977	0.75	0.72	0.03	-0.09
1978	0.92	0.80	0.12	-0.05
1979	0.95	0.84	0.12	-0.05
1980	1.12	0.84	0.28	-0.02
1981	1.11	0.76	0.35	0.02
1982	1.08	0.77	0.31	-0.01
1983	0.84	0.76	0.08	-0.07
1984	0.90	0.83	0.07	-0.09
1985	0.99	0.72	0.26	0.02
1986	0.92	0.72	0.20	0.03
1987	0.97	0.66	0.32	0.10

a See text for details.

Pavcnik (2002, REStud)

- Research Question: The effects of trade liberalization on plant productivity in Chile.
 - Implemented a trade liberalization program during 1974-1979.
 - ▶ Eliminate non-tariff barriers, reduce tariff rates (10% ad valorem in 1979)
- Important question from policy perspectives.
- Provide empirical findings consistent with Melitz (2003, EMA)
 - ▶ The model predicts that opening trade leads to
 - reallocation of resources
 - the more productive firms to enter the export market and gain the revnue,
 - and simultaneously force the least productive firms to exit.
 - the aggregate industry productivity is grown by the intra-industry reallocation
- Use OP framework to estimate plant-level productivity.
- ► Results: Trade liberalization affects both reallocation channel and average productivity.

Aggregate Productivity

▶ Aggregate $Ω_t$, average $\bar{ω}_t$, reallocation term $Γ_t^{OP}$

All	79	0.000	0.000	0.000	Import	79	0.000	0.000	
AII									
	80	-0.010	0.018	-0.027	competing	80	-0.063	0.027	-
	81	0.051	0.054	-0.003		81	0.032	0.092	-
	82	0.329	0.048	0.281		82	0.088	0.066	
	83	0.174	0.010	0.164		83	0.077	0.034	
	84	0.117	0.025	0.092		84	0.089	0.059	
	85	0.120	-0.003	0.123		85	0.095	0.061	
	86	0.193	0.066	0.127		86	0.319	0.107	
Export	79	0.000	0.000	0.000	Nontraded	79	0.000	0.000	
oriented	80	-0.059	-0.038	-0.021		80	0.044	0.021	
	81	-0.048	-0.054	0.006		81	0.101	0.047	
	82	0.591	0.040	0.551		82	0.228	0.038	
	83	0.326	0.015	0.311		83	0.127	-0.004	
	84	0.178	0.049	0.129		84	0.114	0.000	
	85	0.203	-0.011	0.214		85	0.101	-0.040	
	86	0.254	0.087	0.166		86	0.062	0.038	
	85	0.203	-0.011	0.214		85	0.101	-0.040	

Regression analysis on individual productivity

Regression in a DID framework (eq 12 in the paper)

$$\omega_{it} = \alpha_0 + \alpha_1 (time)_t + \alpha_2 (trade)_i + \alpha_3 (trade * time)_{it} + \alpha_4 Z_{it} + v_{it}$$

- (trade)_i: dummy for the trade orientation of a plant (export-oriented, import-competing).
- Note: Sample 1979-1986. Trade liberalization implemented during 1974-1979.
- ▶ Interpret as how firms in trade-oriented sector evolve in comparison with those in domestic sectors.

	(1	I)	(2)	1)		2)	(4	D.	-	r\	(6)	
	Coef.	S.E.	(6) Coef.	S.E.								
Export-oriented	0.106	0.030**	0.106	0.030**	0.112	0.031**	0.098	0.048**	0.095	0.048**	0.100	0.046**
Import-competing	0.105	0.021**	0.105	0.021**	0.103	0.021**	-0.024	0.040	-0.025	0.040	-0.007	0.039
ex_80	-0.054	0.025**	-0.053	0.025**	-0.055	0.025**	-0.071	0.026**	-0.068	0.026**	-0.071	0.026**
ex_81	-0.099	0.028**	-0.097	0.028**	-0.100	0.028**	-0.117	0.027**	-0.110	0.027**	-0.119	0.027**
ex_82	0.005	0.032	0.007	0.032	0.003	0.032	-0.054	0.028*	-0.042	0.028	-0.055	0.028*
ex_83	0.021	0.032	0.023	0.032	0.021	0.032	-0.036	0.029	-0.025	0.030	-0.038	0.029
ex_84	0.050	0.031	0.051	0.031	0.050	0.031	0.007	0.028	0.017	0.028	0.007	0.028
ex 85	0.030	0.030	0.032	0.031	0.028	0.030	-0.001	0.029	0.013	0.030	-0.003	0.029
ex_86					0.043	0.036					-0.008	0.034
m 80	0.011	0.014	0.011	0.014	0.010	0.014	0.013	0.014	0.013	0.014	0.013	0.014
IM 81	0.047	0.015**	0.047	0.015**	0.046	0.015**	0.044	0.014**	0.044	0.014**	0.044	0.014**
im 82	0.033	0.016**	0.034	0.017**	0.030	0.016*	0.024	0.015*	0.024	0.015*	0.025	0.015*
im_83	0.042	0.017**	0.043	0.017**	0.043	0.017**	0.040	0.015**	0.041	0.015**	0.042	0.015**
im_84	0.062	0.017**	0.062	0.017**	0.063	0.017**	0.059	0.015**	0.059	0.015**	0.061	0.015**
im_85	0.103	0.017**	0.104	0.017**	0.104	0.017**	0.101	0.015**	0.102	0.016**	0.101	0.015**
im_86					0.071	0.019**					0.073	0.017**
Exit indicator	-0.081	0.011**	-0.076	0.014**			-0.019	0.010**	-0.010	0.013		
Exit_export indicator			-0.021	0.036					-0.069	0.035*		
Exit_import indicator			-0.007	0.023					-0.005	0.021		
Industry indicators	yes		yes									
Plant indicators	no		no		no		yes		yes		yes	
Year indicators	yes		yes									
R ² (adjusted)	0.057		0.058		0.062		0.498		0.498		0.488	
N	22983		22983		25491		22983		22983		25491	

Note: ** and * indicate significance at a 5% and 10% level, respectively. Standard errors are corrected for heteroscedasticity. Standard errors in columns 1–3 are also adjusted for repeated observations on the same plant. Columns 1, 2, 4, and 5 do not include observations in 1986 because one cannot define exit for the last year of a panel.

Collard-Wexler and De Loecker (2014, AER)

- Research question: Effects of a new technology (minimill) on industry-level productivity in the US steel industry.
 - minimill: new technology
 - vertically integratd (VI): old technology
- Findings:
 - 1. Displacement of the older technology accounts for 1/3 of the increase in aggregate productivity.
 - 2. Average productivity for the surviving VI producers increased as well.

New Decomposition Methods

- Let *G* be the set of groups of firms.
 - ► *G* = { minimill, *VI* }.
- Within transformation

$$\Omega_t = \sum_{g} s_t(g) \left(\bar{\omega}_t(g) + \underbrace{\sum_{j \in g} (\omega_{jt} - \bar{\omega}_t(g))(s_{it}(g) - \bar{s}_t(g))}_{\Gamma_t^{OP}(g)} \right)$$
(2)

 $ightharpoonup ar{\omega}_t(g)$: average productivity in group g. $\Gamma_t^{OP}(g)$: allocation term within group g

Between decomposition

$$\Omega_t = \bar{\Omega}_t + \underbrace{\sum_{g} (s_t(g) - 1/2)(\Omega_t(g) - \bar{\Omega}_t)}_{\equiv \Gamma_t^B}$$
(3)

- $ightharpoonup \Omega_t(g)$: share-weighted productivity in group g
- $\bar{\Omega}_t = \frac{1}{2} \sum_{\sigma} \Omega_t(g)$:average aggregate productivity over two groups.
- ho $\Gamma_t^B = \sum_g (s_t(g) 1/2) (\Omega_t(g) \bar{\Omega}_t)$: allocation term between groups.

Table 7—Static Decompositions of Productivity Growth Change 1963–2002 (Percent)

Aggregate TFP $\Delta\Omega$	22.1			
Olley-Pakes decomposition:				
Unweighted average: $\Delta \overline{\omega}$	15.7 (0.71)			
Covariance: $\Delta \Gamma^{OP}$	6.4 (0.29)			
Between decomposition:				
Unweighted average: $\Delta \overline{\Omega}$	17.0 (0.77)			
Between covariance: $\Delta \Gamma^B$	5.1 (0.23)			
Within decomposition:	Minimills	Integrated		
Aggregate TFP: $\Delta \Omega(\psi)$	9.6	24.3		
Unweighted average: $\Delta \overline{\omega}(\psi)$	5.4 (0.55)	18.4 (0.83)		
Within covariance: $\Delta \Gamma^{OP}(\psi)$	4.4 (0.45)	3.7 (0.17)		

Note: The share of each component in the total aggregate productivity growth is listed in parentheses.

De Loecker and Warzynski (2013, AER)

- Measuring markup using production function.
- ▶ An alternative to using demand estimation.
- Two assumptions
 - 1. Cost minimization
 - 2. (at least) one flexible input

Cost minimization problem

$$\min_{\{x_{jt}^{\nu}\}_{\nu=1}^{V}} \sum_{v} p_{jt}^{\nu} x_{jt}^{\nu}
s.t.q_{jt} = F(x_{jt}^{1}, \dots, x_{jt}^{V}; k_{jt}, \omega_{jt})$$

- $ightharpoonup p_{it}^v$: input price of variable (flexible) inputs
- $\rightarrow x_{jt}^{v}$: input
- FOC for cost minimization:

$$\rho_{jt}^{v} = \lambda_{jt} \frac{\partial F}{\partial x_{jt}^{v}} \, \forall v = 1, \cdots, V$$

 λ_{it} : Lagrange multiplier. $\lambda_{it} = mc_{it}$.

► FOC implies

$$\frac{p_{jt}^{v}}{mc_{jt}} = \frac{\partial F}{\partial x_{jt}^{v}}$$

$$\iff \frac{\partial F}{\partial x_{jt}^{v}} \frac{x_{jt}^{v}}{q_{jt}} = \frac{p_{jt}^{v}}{mc_{jt}} \frac{x_{jt}^{v}}{q_{jt}}$$

$$= \frac{P_{jt}}{mc_{jt}} \underbrace{\frac{p_{jt}^{v} x_{jt}^{v}}{P_{jt} q_{jt}}}_{expenditure share}$$

► Thus, we have

$$\frac{P_{jt}}{mc_{jt}} = \left(\frac{\partial F}{\partial x_{jt}^{v}} \frac{x_{jt}^{v}}{q_{jt}}\right) \cdot \left(\frac{p_{jt}^{v} x_{jt}^{v}}{P_{jt} q_{jt}}\right)^{-1}$$

- Elasticity is obtained from estimation of production function.
- Expenditure share is directly observed in most micro data on production.

Rise of Market Power (De Loecker and Eckhout 2017)

- Influential and controversial paper.
- Research guestion:
 - Document the evolution of markups for the US economy since 1950.
 - The macroeconomic implications of the markup (i.e., declining labor share, wage, etc)
 - ► (I do not focus on this hare)
- ▶ Use COMPUSTAT to estimate markup of publicly traded firms in the US between 1950 and 2014.
- ▶ Substantial increase in markup from 1980 (18%) to 2014 (67%).

Figure 1: The Evolution of Average Markups (1960 - 2014). Average Markup is weighted by marketshare of sales in the sample.