ENSO Prediction Using Deep Learning

Anomaly Detection Aces Final Presentation

El Nino-Southern Oscillation (ENSO)

NCAR 2019

ONI - Defining Phases of ENSO

ONI from 2012 to 2024

Year	DJF	JFM	FMA	MAM	AMJ	МЈЈ	JJA	JAS	ASO	SON	OND	NDJ
2012	-0.9	-0.7	-0.6	-0.5	-0.3	0.0	0.2	0.4	0.4	0.3	0.1	-0.2
2013	-0.4	-0.4	-0.3	-0.3	-0.4	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2	-0.3
2014	-0.4	-0.5	-0.3	0.0	0.2	0.2	0.0	0.1	0.2	0.5	0.6	0.7
2015	0.5	0.5	0.5	0.7	0.9	1.2	1.5	1.9	2.2	2.4	2.6	2.6
2016	2.5	2.1	1.6	0.9	0.4	-0.1	-0.4	-0.5	-0.6	-0.7	-0.7	-0.6
2017	-0.3	-0.2	0.1	0.2	0.3	0.3	0.1	-0.1	-0.4	-0.7	-0.8	-1.0
2018	-0.9	-0.9	-0.7	-0.5	-0.2	0.0	0.1	0.2	0.5	0.8	0.9	0.8
2019	0.7	0.7	0.7	0.7	0.5	0.5	0.3	0.1	0.2	0.3	0.5	0.5
2020	0.5	0.5	0.4	0.2	-0.1	-0.3	-0.4	-0.6	-0.9	-1.2	-1.3	-1.2
2021	-1.0	-0.9	-0.8	-0.7	-0.5	-0.4	-0.4	-0.5	-0.7	-0.8	-1.0	-1.0
2022	-1.0	-0.9	-1.0	-1.1	-1.0	-0.9	-0.8	-0.9	-1.0	-1.0	-0.9	-0.8
2023	-0.7	-0.4	-0.1	0.2	0.5	0.8	1.1	1.3	1.6	1.8	1.9	2.0
2024	1.8	1.5	1.1	0.7	0.4	0.2						

ONI (Oceanic Nino Index) = 3 month Rolling mean of SST anomaly in NINO3.4 region

- El Nino:ONI > 0.5
- La Nina:ONI < -0.5

ENSO Using Sea Surface Temperature Anomalies Zonal Pattern

This paper uses SST anomalies zonal pattern. However, since ENSO is a very time-dependent process, I will use time lags as my input.

Geophysical Research Letters / Volume 50, Issue 20 / e2023GL105175

CNN-Based ENSO Forecasts With a Focus on SSTA Zonal Pattern and Physical Interpretation

Historically, ENSO prediction beyond 6 months is very inaccurate.

Modifying weight function of CNN

- Weight function that reduces weight of high-frequency normal events
- Significant improvement in **ENSO** predictions

CESM (Train + Val)

- Ensemble of 40 climate models from around the world
- Use for training and validation data (9 + 1 ensemble members)
- Variables
 - Sea Surface Temperature
 - Quarter degree grid
 - o 1959 to 2015
 - NetCDF file

```
sst_test_data.SST

xarray.DataArray 'SST' (ensemble_member: 10, time: 673, lat: 22, lon: 46)
```

ERA5 (Test)

- Reanalysis product (Observations + Model)
 - Proxy for observations
- Use for testing data
- Variables
 - Sea Surface Temperature
 - Eighth degree grid
 - 1959 to 2021
 - NetCDF file

era

xarray.Dataset

Dimensions: (time: 756, lat: 180, lon: 360)

Expected outcome: accurate predictions of ONI based off sea surface temperature averages in NINO3.4 region.

Input:

Sea surface temperature time lagged in three month intervals up to 2 years

Output:

Oceanic Nino Index (ONI)

Baseline MLP Model

Optimizer = adam Loss = mse Metrics = accuracy

2 Dense layers

CNN Model

Optimizer = adam Loss = mse Metrics = accuracy

- MaxPooling2D
- GlobalAveragePooli ng2D
- Dense layers
- Conv2D layers
 - relu

CNN + LSTM Model

Optimizer = adam Loss = mse Metrics = accuracy

- Time Distributed layers
- LSTM layer
- Dense layer

Evaluate model on test set

Baseline MLP Model vs CNN vs CNN+LSTM

22/22 — 8s 11ms/step - accuracy: 0.2307 - loss: 0.0247 [0.02448020689189434, 0.24368499219417572]

[26] print(CNN.evaluate(X_test, Y_test))

Discussion

- CNN and CNN + LSTM models learn patterns from SST anomalies
- CNN + LSTM validation accuracy improved more quickly than CNN
 - Temporal learning helps
- ENSO influenced by many variables

Next steps:

- Increase channels (ie more variables)
- Increase architecture complexity

Works Cited

Kim, Dong-Hoon, et al. "Improved Prediction of Extreme ENSO Events Using an Artificial Neural Network with

Weighted Loss Functions." Frontiers in Marine Science, vol. 10, 15 Jan. 2024,

https://doi.org/10.3389/fmars.2023.1309609. Accessed 16 May 2025.

Wang, Gai-Ge, et al. "ENSO Analysis and Prediction Using Deep Learning: A Review." Neurocomputing, vol. 520,

Feb. 2023, pp. 216–229, https://doi.org/10.1016/j.neucom.2022.11.078.