

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 5 – Cinématique du solide indéformable

EXERCICES D'APPLICATION

D'après ressources de Jean-Pierre Pupier.

Soit le mécanisme plan constitué par :

- solide S_0 : fixe, repère lié $\mathcal{R}_0 = (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$;
- solide S_1 : barre OP de longueur L, en liaison pivot d'axe $(O, \overrightarrow{z_0})$ par rapport à S_0 , repère lié à $\mathcal{R}_1 = (O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$;
- solide S_2 : disque de centre P et de rayon R, en liaison pivot d'axe $(P, \overrightarrow{z_0})$ par rapport à S_1 , repère lié à $\mathcal{R}_2 = (P, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_0})$.

On note:

$$-\alpha = (\overrightarrow{x_0}; \overrightarrow{x_1});$$

$$-\beta = (\overrightarrow{x_1}; \overrightarrow{x_2}).$$

Question 1

Déterminer la trajectoire du point M dans le repère \mathcal{R}_0 .

Question 2

Réaliser les figures planes permettant de passer de \mathcal{R}_0 à \mathcal{R}_1 et de \mathcal{R}_1 à \mathcal{R}_2 .

Question 3

Déterminer $\Omega(S_1/S_0)$, $\Omega(S_2/S_1)$, $\Omega(S_2/S_0)$.

Question 4

Déterminer $V(P \in S_1/S_0)$ puis $\Gamma(P \in S_1/S_0)$.

Question 5

Déterminer $\overrightarrow{V(M \in S_2/S_0)}$ puis $\overrightarrow{\Gamma(M \in S_2/S_0)}$.

Le mécanisme précédent a été en réalité complété par un cercle de centre O lié à S_0 et de rayon R (voir la figure ci-contre).

Par ailleurs on adopte L=R. De plus à t=0, $\alpha=\beta=0$.

 S_1 est un bras porte satellite et S_2 un satellite qui roule sans glisser en I sur S_0 . Cette condition se traduit par $V(I \in S_2/S_0)$.

Question 6

Déduire des questions précédentes la relation entre $\dot{\alpha}$ et $\dot{\beta}$.

Question 7

Donner l'expression de $\overline{V(M \in S_2/S_0)}$ en projection dans $\mathcal{R}_0 = (O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$.

Question 8

En déduire la trajectoire du point M par rapport à \mathcal{R}_0 .

Exercice 2 - Dérivation vectorielle

Question 1

Faire les calculs suivants : $\left[\frac{d\overrightarrow{y_1}}{dt}\right]_{\mathcal{R}_0}$, $\left[\frac{d\overrightarrow{x_0}}{dt}\right]_{\mathcal{R}_1}$, $\left[\frac{d\overrightarrow{y_1}}{dt}\right]_{\mathcal{R}_3}$, $\left[\frac{d\overrightarrow{z_2}}{dt}\right]_{\mathcal{R}_0}$, $\left[\frac{d\overrightarrow{y_3}}{dt}\right]_{\mathcal{R}_0}$, $\left[\frac{d\overrightarrow{x_3}}{dt}\right]_{\mathcal{R}_0}$

Question 2

Faire les calculs suivants: $\left[\frac{d\overrightarrow{V}}{dt}\right]_{\mathcal{R}_0}$ avec $\overrightarrow{V} = 3\cos\alpha(t)\overrightarrow{x_1}$, $\left[\frac{d\overrightarrow{U}}{dt}\right]_{\mathcal{R}_0}$ avec $\overrightarrow{U} = -7\sin\alpha(t)\overrightarrow{y_2}$, $\left[\frac{d\overrightarrow{W}}{dt}\right]_{\mathcal{R}_0}$ avec $\overrightarrow{W} = -3\alpha(t)^3\overrightarrow{y_1} + 6\sin\alpha(t)\overrightarrow{y_0}$, $\left[\frac{d\overrightarrow{S}}{dt}\right]_{\mathcal{R}_0}$ avec $\overrightarrow{S} = 4t^3\alpha(t)\cos\alpha(t)\overrightarrow{y_1}$.