有层次结构,是因为当我们从左至右扫描它时,我们会得到越来越具体的关于主机位于因 特网何处的信息(即在众多网络的哪个网络里)。类似地,当我们从下向上查看邮政地址 时,我们能够获得该地址位于何处的越来越具体的信息。

2.5.1 DNS 提供的服务

我们刚刚看到了识别主机有两种方式,通过主机名或者 IP 地址。人们喜欢便于记忆的主机名标识方式,而路由器则喜欢定长的、有着层次结构的 IP 地址。为了折衷这些不同的偏好,我们需要一种能进行主机名到 IP 地址转换的目录服务。这就是域名系统(Domain Name System, DNS)的主要任务。DNS 是:①一个由分层的 DNS 服务器(DNS server)实现的分布式数据库;②一个使得主机能够查询分布式数据库的应用层协议。DNS 服务器通常是运行 BIND(Berkeley Internet Name Domain)软件[BIND 2012]的UNIX 机器。DNS 协议运行在 UDP 之上,使用 53 号端口。

实践原则

DNS: 通过客户-服务器模式提供的重要网络功能

与HTTP、FTP和SMTP协议一样,DNS协议是应用层协议,其原因在于:①使用客户-服务器模式运行在通信的端系统之间;②在通信的端系统之间通过下面的端到端运输协议来传送DNS报文。然而,在其他意义上,DNS的作用非常不同于Web应用、文件传输应用以及电子邮件应用。与这些应用程序不同之处在于,DNS不是一个直接和用户打交道的应用。相反,DNS是为因特网上的用户应用程序以及其他软件提供一种核心功能,即将主机名转换为其背后的IP地址。我们在1.2节就提到,因特网体系结构的复杂性大多数位于网络的"边缘"。DNS通过采用了位于网络边缘的客户和服务器,实现了关键的名字到地址转换功能,它还是这种设计原理的另一个范例。

DNS 通常是由其他应用层协议所使用的,包括 HTTP、SMTP 和 FTP,将用户提供的主机名解析为 IP 地址。举一个例子,考虑当某个用户主机上的一个浏览器(即一个 HTTP 客户)请求 URL www. someschool. edu/index. html 页面时会发生什么现象。为了使用户的主机能够将一个 HTTP 请求报文发送到 Web 服务器 www. someschool. edu,该用户主机必须获得 www. someschool. edu 的 IP 地址。其做法如下。

- 同一台用户主机上运行着 DNS 应用的客户端。
- 浏览器从上述 URL 中抽取出主机名 www. someschool. edu, 并将这台主机名传给 DNS 应用的客户端。
- DNS 客户向 DNS 服务器发送一个包含主机名的请求。
- DNS 客户最终会收到一份回答报文,其中含有对应于该主机名的 IP 地址。
- 一旦浏览器接收到来自 DNS 的该 IP 地址, 它能够向位于该 IP 地址 80 端口的 HTTP 服务器进程发起一个 TCP 连接。

从这个例子中,我们可以看到 DNS 给使用它的因特网应用带来了额外的时延,有时还相当可观。幸运的是,如我们下面讨论的那样,想获得的 IP 地址通常就缓存在一个"附近的" DNS 服务器中,这有助于减少 DNS 的网络流量和 DNS 的平均时延。