Apunte Único: Álgebra Lineal Computacional - Práctica $2\,$

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 02/08/25 @ 10:56

Choose your destiny:

(click click 🖶 en el ejercicio para saltar)

- Notas teóricas
- ⊕ Ejercicios de la guía:
 - 1.
 5.
 9.
 13.
 17.
 21.
 25.

 2.
 6.
 10.
 14.
 18.
 22.
 - 3. 7. 11. 15. 19. 23.
 - 4. 8. 12. 16. 20. 24.
- © Ejercicios de Parciales
 - **1**. **2**. **3**. **4**.

Esta Guía 2 que tenés se actualizó por última vez: $\frac{02/08/25 @ 10:56}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

Transformaciones lineales

* Dados V y W dos K-espacio vectoriales, una $f:V\to W$ es transformación lineal si cumple:

•
$$f(v_1 + v_2) = f(v_1) + f(v_2) \quad \forall v, w \in V$$

•
$$f(\alpha \cdot v_1) = \alpha \cdot f(v_1) \quad \forall \alpha \in K, v \in V$$

* $f: K^n \to K^m$ si transformo:

$$f(x_1, \dots, x_n) = f\left(\sum_{k=1}^n x_i \underbrace{e_i}_{\in K^{n \times 1}}\right) \stackrel{\text{TL}}{=} \sum_{k=1}^n x_i \underbrace{f(e_i)}_{\in K^{m \times 1}} = \underbrace{\left(f(e_1) \mid \dots \mid f(e_n)\right)}_{A \in K^{m \times n}} \cdot \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} = \underbrace{A \cdot x}_{\in K^{m \times 1}}$$

* Matriz de una transformación lineal:

Dados V y W dos K-espacios vectoriales y $f: V \to W$ una t.l. Sean $B = \{v_1, \dots, v_2\}$ base de V y $B' = \{w_1, \dots, w_m\}$ se llama matriz de la transformación lineal de la base B en la base B' a aquella matriz $[f]_{BB'}$ que satisface:

$$[f]_{BB'}[v]_B = [f(v)]_{B'} \quad \forall v \in V$$

- * Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$:

$$El Nu(A) = \{x \in K^n / Ax = 0\}$$

* Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$:

La
$$\operatorname{Im}(A) = \{Ax \in K^m \text{ con } x \in K^n\} = \langle c_1(A), \dots, c_n(A) \rangle$$
. También $\operatorname{rg}(A) = \dim(\operatorname{Im}(A))$

* Propiedades de una transformación lineal:

Sea $f: V \to W$ una t.l. y $B = \{v_1, \dots, v_n\}$ un conjunto de generadores de V. Entonces $\{f(v_1), \dots, f(v_n)\}$ es un conjunto generador para la imagen de f.

- f se dice monomorfismo si es inyectiva. Si f es mono, dim(Nu(f)) = 0
- f se dice *epimorfismo* si es survectiva. Si f es epi, $\dim(\operatorname{Im}(f)) = \dim(W)$
- f se dice isomorfismo si es mono y epi. Si f es iso es inversible.

Normas:

- * En general Norma: Sea $\|\cdot\|: K^n \to \mathbb{R} \ge 0$. Entonces $\|\cdot\|$ es norma si cumpe:
 - 1) $||x|| \ge 0 \ \forall x \in K^n$
 - 2) $||x|| = 0 \Leftrightarrow x = 0$
 - 3) $\|\alpha x\| = |\alpha| \|x\| \ \forall \alpha \in K \ y \ \forall x \in K^n$
 - 4) $||x+y|| \le ||x|| + ||y|| \ \forall x, y \in K^n$ (designaldad triangular)
- ***** Ejemplos:

• Norma 2: $||x||_2 = \sqrt{\sum_{k=0}^n |x_k|^2} \quad \xrightarrow{\text{por ejemplo}} ||x||_2 = 1$

• Norma $p: \|x\|_p = \sqrt{\sum\limits_{k=0}^n |x_k|^p} \quad \xrightarrow{\text{por ejemplo}} \|x\|_p = 1$

• Norma ∞ : $\lim_{p \to \infty} \|x\|_p = \max_{1 \le i \le n} |x_i| \xrightarrow{\text{por ejemplo}} \|x\|_{\infty} = 1$

* Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible y sea $\|\cdot\|$ una norma en \mathbb{R}^n definimos el número de condición de A como:

$$cond(A) = ||A|| ||A^{-1}||$$

- $\operatorname{cond}(A) = \operatorname{cond}(A^{-1})$
- $\operatorname{cond}(A) \ge 1 \quad \forall A \in \mathbb{R}^{n \times n}$
- * Si $A \in \mathbb{R}^{n \times n}$ es inversible, $b, \Delta b \in \mathbb{R}^n, Ax = b$ y $A(x + \Delta x) = b + \Delta b$ entonces,

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \cdot \frac{\|\Delta b\|}{\|b\|}$$

valiendo la igualdad para alguna elección de b y Δb

 $Normas\ subordinadas.$

Dada una matriz $A \in K^{n \times n}$ y una norma vectoria $\|\cdot\|_n$ en K^n respectivamente, definimos la norma en el espacio de matrices de $n \times n$ como:

$$\|A\|_n = \max_{0 \neq x \in K^n} \frac{\|Ax\|_n}{\|x\|_n} = \max_{x \in K^n, \|x\|_n = 1} \|Ax\|_n.$$

Se desprenden los siguiente resultados útiles para los ejercicios de condicionamiento de matrices:

$$||Ax|| \le ||A|| \, ||x|| \quad \forall x \in \mathbb{R}^n$$

 $\mathbf{e}_{2)}$

$$\|AB\| \leq \|A\| \, \|B\| \ \, \forall A \in \mathbb{R}^{n \times n}, \ \, \forall B \in \mathbb{R}^{n \times n}$$

33)

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \quad \text{y} \quad \|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$

Aritmética de punto flotante:

* Escribir 0.25 en base 10:

Base 10 es obviamente nuestra base favorita:

$$\begin{cases} 0.25 \cdot 10 &= 2 + 0.5 \\ 0.5 \cdot 10 &= 5 + 0 \\ 0 \cdot 10 &= 0 + 0 \end{cases} \rightarrow (0.25)_{10} = (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 0 \cdot 10^{-3} + 0)_{10} = 0.25$$

Escribir 0.25 en base 2:

$$\begin{cases} 0.25 \cdot 2 &= 0 + 0.5 \\ 0.5 \cdot 2 &= 1 + 0 \\ 0 \cdot 2 &= 0 + 0 \end{cases} \rightarrow (0.25)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0)_2 = 0.01$$

Escribir 0.3 en base 2:

$$\begin{cases} 0.3 \cdot 2 &= 0 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.6 \\ 0.7 \cdot 2 &= 0 + 0.4 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 0 + 0.8 \\ 0.8$$

Para escribir al 0.3 en base 2 voy a necesitar infinitos números en la mantisa, a la máquina no le puedo pedir eso y ahí aparecen los errores de redondeo o truncamiento.

Errores:

Tengo que un *número de máquina*, número posta que la máquina representa, con la notación *mantisa*, exponente:

En base
$$10 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 10^{exp}$$
 con $0 \le a_i \le 9(a_1 \ne 0)$
En base $2 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 2^{exp}$ con $0 \le a_i \le 1(a_1 \ne 0)$

Por ejemplo si $m=3 \implies x=0, a_1a_2a_3 \cdot 2^{exp}$. Para cada valor de exp voy a tener un total de $1 \cdot 2 \cdot 2 = 4$

posibles valores de máquina. La separación entre 2 valores x_1 y x_2 consecutivos es de 2^m , por eso para órdenes grandes la separación entre un número y otro es mayor.

Si el número real, real que quiero es x = 0.3, la máquina no puede representarlo de forma exacta. Puedo acotar el error en forma absoluta como:

$$|x - x^*| \le \frac{1}{2} \frac{1}{2^m} \cdot 2^{exp}$$

Y en forma relativa como:

$$\frac{|x-x^*|}{|x|} \le 5 \cdot 2^{-m}$$

Deducción matriz de rotación 2d (ponele):

Quiero que:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \underbrace{\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0}_{1} + \underbrace{\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0}_{2} = \begin{pmatrix} u_{\theta} \\ v_{\theta} \end{pmatrix}$$

En el gráfico veo lo que quiero lograr.

Entre el gráfico y ★¹:

$$\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0 = \begin{pmatrix} u_{x\theta} \\ u_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{sohcatoa}}{\stackrel{!}{=}}} \begin{pmatrix} u_0 \cdot \cos(\theta) \\ u_0 \cdot \sin(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Entre el gráfico y \bigstar^2 :

$$\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0 = \begin{pmatrix} v_{x\theta} \\ v_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{solvators}}{\stackrel{!}{=}}} \begin{pmatrix} -v_0 \cdot \sin(\theta) \\ v_0 \cdot \cos(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

Juntando esos resultados:

$$R_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Ejercicios de la guía:

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3x_1 + \sqrt{2}x_3, x_1 - \frac{1}{2}x_2)$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

(c)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

(d)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

(a) Primero veamos que la suma es lineal. Tomemos dos vectores cualesquiera:

$$v = (x_1, y_1, z_1), \quad w = (x_2, y_2, z_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$$

Ahora veo que:

$$f(v) + f(w) = (y_1 - 3x_1 + \sqrt{2}z_1, x_1 - \frac{1}{2}y_1) + (y_2 - 3x_2 + \sqrt{2}z_2, x_2 - \frac{1}{2}y_2)$$

= $(y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$

Son iguales, la suma es lineal Veamos que el producto es lineal. Tomemos un escalar $\alpha \in \mathbb{R}$ y un vector v = (x, y, z). Entonces,

$$f(\alpha v) = f(\alpha x, \alpha y, \alpha z) = (\alpha y - 3\alpha x + \sqrt{2}\alpha z, \alpha x - \frac{1}{2}\alpha y) = \alpha (y - 3x + \sqrt{2}z, x - \frac{1}{2}y) = \alpha f(x, y, z)$$

El producto es lineal

f es una transformación lineal.

(b) Tomemos dos vectores cualesquiera y veamos la suma:

$$v = (x_1, y_1), \quad w = (x_2, y_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + y_1 + y_2, |x_1 + x_2|)$$

Ahora veamos que:

$$f(v) + f(w) = (x_1 + y_1, |x_1|) + (x_2 + y_2, |x_2|)$$

= $(x_1 + x_2 + y_1 + y_2, |x_1| + |x_2|)$

dado que $|x_1 + x_2| \neq |x_1| + |x_2|$, la suma no es lineal.

 $\implies f$ no es una transformación lineal.

(c) Veamos que vale la suma, tomo dos matrices cualesquiera A y B:

$$f(A+B) = f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}\right) = f\begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$
$$= (a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21})$$

Ahora vemos:

$$f(A) + f(B) = (a_{11}a_{22} - a_{12}a_{21}) + (b_{11}b_{22} - b_{12}b_{21}) = a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

Se ve que:

$$(a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21}) \neq a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

La suma no es lineal.

 $\implies f$ no es una transformación lineal.

(d) Veo que valga la suma: Sea A, B matrices cualesquiera:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \implies f(A+B) = \begin{pmatrix} (a_{22} + b_{22}) & 0 & (a_{12} + b_{12}) + (a_{21} + b_{21}) \\ 0 & (a_{11} + b_{11}) & (a_{22} + b_{22}) - (a_{11} + b_{11}) \end{pmatrix}$$

Ahora miro,

$$f(A) + f(B) = \left(\begin{array}{ccc} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{array} \right) + \left(\begin{array}{ccc} b_{22} & 0 & b_{12} + b_{21} \\ 0 & b_{11} & b_{22} - b_{11} \end{array} \right) = \left(\begin{array}{ccc} a_{22} + b_{22} & 0 & (a_{12} + a_{21}) + (b_{12} + b_{21}) \\ 0 & a_{11} + b_{11} & (a_{22} - a_{11}) + (b_{22} - b_{11}) \end{array} \right)$$

La suma es lineal. Ahora veo el producto:

$$f(\alpha A) = f \begin{pmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{pmatrix} = \begin{pmatrix} \alpha a_{22} & 0 & \alpha(a_{12} + a_{21}) \\ 0 & \alpha a_{11} & \alpha(a_{22} - a_{11}) \end{pmatrix} = \alpha f(A)$$

El producto y la suma son lineales,

f es transformacion lineal

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 📢

Ejercicio 2. Escribir la matriz de las siguientes transformaciones lineales en base canónica. Interpretar geométricamente cada transformación.

- (a) f(x,y) = (x,0)
- (b) f(x,y) = (x, -y)
- (c) $f(x,y) = (\frac{1}{2}(x+y), \frac{1}{2}(x+y))$
- (d) $f(x,y) = (x\cos t y\sin t, x\sin t + y\cos t)$
- (a) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,0)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Geométricamente estamos proyectando al eje x_0 .

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

🛕 Si hacés un copy paste de este código debería funcionar lo más bien 🐧

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[1,0],[0,0]])
# Genero 100 puntos aleatorios
# de distancia 1 al origen. Y otros 100 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 100) - 0.5
V_{uni} = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV_uni = M @ V_uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(b) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,-1)$$

Entonces, la matriz asociada es:

$$M = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Geométricamente estamos haciendo una reflexión respecto del eje x_0 .

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[1,0],[0,-1]])
# Genero 10 puntos aleatorios
# de distancia 1 al origen. Y otros 10 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 10) - 0.5
V_{uni} = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV_uni = M @ V_uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set title ('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(c) Para la base canónica:

$$f(1,0) = \left(\frac{1}{2}, \frac{1}{2}\right), \quad f(0,1) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Geométricamente estamos haciendo, llevando (mejores palabras serán bienvenidas) todo a la dirección (1, 1), ponele.

$$f(x_0, x_1) = \frac{1}{2}(x_0 + x_1) \cdot (1, 1) \approx \lambda \cdot (1, 1)$$

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[0.5, 0.5], [0.5, 0.5]])
# Genero 15 puntos aleatorios
# de distancia 1 al origen. También 15 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 15) - 0.5
V_{uni} = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV_uni = M @ V_uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(d) Para la base canónica:

$$f(1,0) = (\cos t, \sin t), \quad f(0,1) = (-\sin t, \cos t)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

Geométricamente estamos rotando en sentido antihorario al eje x_2 .

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:

8 Juan D Elia ♥ naD GarRaz ♥

Ejercicio 3.

- (a) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- (b) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
- (c) Sean $f,g:\mathbb{R}^3\to\mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), f(2,1,0) = (2,1,0), f(-1,0,0) = (1,2,1)$$

 $g(1,1,1) = (1,1,0), g(3,2,0) = (0,0,1), g(2,2,-1) = (3,-1,2)$

De la teoría se tiene que:

Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.

(a) Sale casi solo usando propiedades de transformación lineal:

$$\begin{cases} f(1,1) &= (-5,3) \\ f(-1,1) &= (5,2) \end{cases} \qquad F_2 + F_1 \to F_2 \qquad \begin{cases} f(1,1) &= (-5,3) \\ f(0,2) &= (0,5) \\ f(0,1) &= (-5,3) \\ f(0,1) &= (0,\frac{5}{2}) \end{cases}$$

$$F_1 - F_2 \to F_1 \qquad \begin{cases} f(1,0) &= (-5,\frac{1}{2}) \\ f(0,1) &= (0,\frac{5}{2}) \\ f(0,1) &= (0,\frac{5}{2}) \end{cases}$$

Si bien no es necesario, puedo escribir a la transformación lineal como:

$$f\left(\begin{array}{c} x\\y \end{array}\right) = \left(\begin{array}{cc} -5 & 0\\ \frac{1}{2} & \frac{5}{2} \end{array}\right) \cdot \left(\begin{array}{c} x\\y \end{array}\right) = \left(\begin{array}{c} -5x\\ \frac{1}{2}x + \frac{5}{2}y \end{array}\right)$$

Y ahora calculo lo más pancho:

$$f(5,3) = \begin{pmatrix} -25\\10 \end{pmatrix}$$
 y $f(-1,2) = \begin{pmatrix} 5\\\frac{9}{2} \end{pmatrix}$

(b) Se llega a un absurdo con algunas operaciones.

$$\begin{cases} f(1,1) &= (2,6) \\ f(-1,1) &= (2,1) \\ f(2,7) &= (5,3) \end{cases} \begin{array}{ccccc} F_2 - F_1 \to F_2 \\ F_3 - 2F_1 \to F_3 \end{array} \begin{cases} f(1,1) &= (2,6) \\ f(0,2) &= (4,7) \\ f(0,5) &= (1,-9) \end{cases} \begin{array}{ccccc} \frac{1}{2} \cdot F_2 \to F_2 \\ \frac{1}{5} \cdot F_3 \to F_3 \end{array} \begin{cases} f(1,1) &= (2,6) \\ f(0,1) &= (2,\frac{7}{2}) \\ f(0,1) &= (\frac{1}{5},\frac{-9}{5}) \end{cases}$$

Las operaciones de triangulación aplicadas en la triangulación son lineales y se usó todo el tiempo la definición de linealidad.

(c) Ataco igual que al anterior, la idea es poder compararlos con la misma base del espacio de partida V:

$$\begin{cases} f(1,0,1) &= (1,2,1) \\ f(2,1,0) &= (2,1,0) \\ f(-1,0,0) &= (1,2,1) \end{cases} \xrightarrow{\begin{subarray}{c} \end{subarray}} \begin{cases} f(1,0,0) &= (1,2,1) \\ f(0,1,0) &= (0,-3,-2) \\ f(0,0,1) &= (2,4,2) \end{cases}$$

Ahora con g:

$$\begin{cases} g(1,0,1) &= (1,2,1) \\ g(2,1,0) &= (2,1,0) \\ g(-1,0,0) &= (1,2,1) \end{cases} \xrightarrow{F_2 - 3F_1 \to F_1} \begin{cases} g(1,1,1) &= (1,1,0) \\ g(0,-1,-2) &= (-3,-3,1) \\ g(0,0,-3) &= (1,-3,2) \end{cases}$$

Podría seguir triangulando y llegar hasta que me queden ambas expresiones en la canónica de \mathbb{R}^3 , pero pajilla. Resalté en azul dos filas que me *gritan* que si:

$$(0,0,1) \xrightarrow{f} (2,4,2) \implies (0,0,-3) \xrightarrow{f} (-6,-12,-6)$$

No obstante:

$$(0,0,-3) \xrightarrow{g} (1,-3,2) \neq (0,0,0)$$

Así se concluye que:

$$f \neq g$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

que satisfaga:

$$f(1,-1,1) = (2,a,-1),$$

$$f(1,-1,2) = (a^2,-1,1),$$

$$f(1,-1,-2) = (5,-1,-7).$$

Si los vectores de la salida son linealmente independientes, la transformación lineal existe para cualquier a. Si alguno de ellos es linealmente dependiente, hay que buscar a para que no indetermine el sistema.

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Como el tercer vector es LD se puede escribir:

$$\alpha(1,-1,1) + \beta(1,-1,2) = (1,-1,-2).$$

Hallamos α y β resolviendo:

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$

Resolviendo tenemos $\alpha = 4$, $\beta = -3$.

Entonces:

$$f(1,-1,-2) = f(4(1,-1,1) - 3(1,-1,2)) = = 4(2,a,-1) - 3(a^2,-1,1) = (8 - 3a^2, 4a + 3, -7)$$

Solo es T.L si ese vector es igual al (5,-1,-7) Esto da el sistema:

$$8 - 3a^2 = 5$$
.

$$4a + 3 = -1$$
.

Resolviendo:

$$4a = -4 \Rightarrow a = -1$$
.

$$8 - 3(-1)^2 = 5 \Rightarrow 8 - 3 = 5$$
, (se cumple).

Por lo tanto, la transformación lineal existe si y solo si a = -1.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 📢

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 6. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$ definido por:

$$f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$$

y $g: \mathbb{R}^4 \to \mathbb{R}^2$ definido por:

$$g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2).$$

Calcular el núcleo y la imagen de f, de g y de $g \circ f$.

Decidir si son monomorfismos, epimorfismos o isomorfismos.

Cálculo de la imagen de f

Aplicamos f a los vectores canónicos de \mathbb{R}^3 :

$$\begin{cases} f(1,0,0) &= (1,1,0,0) \\ f(0,1,0) &= (1,0,0,0) \\ f(0,0,1) &= (0,1,0,0) \end{cases}$$

Por lo tanto, el generador de la imagen de f es:

$$Im(f) = \langle (1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0) \rangle$$

Como (1,1,0,0) LD:

$$Im(f) = \langle (1, 0, 0, 0), (0, 1, 0, 0) \rangle$$

La dimensión de la imagen es 2.

Cálculo del núcleo de f

Buscamos los coeficientes α, β, γ tales que:

$$\alpha(1,1,0,0) + \beta(1,0,0,0) + \gamma(0,1,0,0) = (0,0,0,0)$$

Esto da el sistema:

$$\left\{ \begin{array}{l} \alpha+\beta=0\\ \alpha+\gamma=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha=-\beta\\ \alpha=-\gamma \end{array} \right.$$

Reemplazo en los vectores de salida:

$$\alpha(1,0,0) - \alpha(0,1,0) - \alpha(0,0,1) = \alpha(1,-1,-1)$$

Por lo tanto, el núcleo de f es:

$$Nu(f) = \langle (1, -1, -1) \rangle$$

Entonces podemos concluir:

i) Como $\text{Im}(f) \neq \mathbb{R}^3$, no es epimorfismo.

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. ii) Como $Nu(f) \neq \{0\}$, no es monomorfismo.

Cálculo de la imagen de g

Aplicamos g a los vectores canónicos de \mathbb{R}^4 :

$$\begin{cases} g(1,0,0,0) &= (1,2) \\ g(0,1,0,0) &= (-1,-1) \\ g(0,0,1,0) &= (0,0) \\ g(0,0,0,1) &= (0,0) \end{cases}$$

Por lo tanto, el generador de la imagen de g es:

$$Im(q) = \langle (1,2), (-1,-1) \rangle$$

Los vectores son LI, así que la dimension es 2. Implica que Im g es \mathbb{R}^2 .

Cálculo del núcleo de g

Buscamos los coeficientes $\alpha, \beta, \gamma, \delta$ tales que:

$$\alpha(1,2) + \beta(-1,-1) + \gamma(0,0) + \delta(0,0) = (0,0)$$

Esto nos lleva al sistema de ecuaciones:

$$\left\{ \begin{array}{ll} \alpha-\beta=0\\ 2\alpha-\beta=0 \end{array} \right. \Leftrightarrow \left\{ \right. \alpha=\beta=0$$

Por lo tanto, el núcleo de g es:

$$0(1,0,0,0) + 0(0,1,0,0) + \gamma(0,0,1,0) + \delta(0,0,0,1) = \gamma(0,0,1,0) + \delta(0,0,0,1) \implies \text{Nu}(g) = \langle (0,0,1,0), (0,0,0,1) \rangle$$

En conclusión

- Como $\text{Im}(g) = \mathbb{R}^2$, es epimorfismo.
- Como $Nu(g) \neq \{0\}$, no es monomorfismo.
- No es isomorfismo.

Calculo $g \circ f$

$$g(f(x_1, x_2, x_3)) = g(x_1 + x_2, x_1 + x_3, 0, 0)$$

$$= (x_1 + x_2 - x_1 - x_3, 2x_1 + 2x_2 - x_1 - x_3)$$

$$= (x_2 - x_3, x_1 + 2x_2 - x_3)$$

$$= g \circ f(x_1, x_2, x_3)$$

Cálculo de la imagen de $g \circ f$

Usando los canónicos como vectores de salida:

$$\begin{cases} g(1,0,0) &= (0,1) \\ g(0,1,0) &= (1,2) \\ g(0,0,1) &= (-1,-1) \end{cases}$$

Por lo tanto, el generador de la imagen de g es:

$$\operatorname{Im}(g) = \langle (0,1), (1,2), (-1,-1) \rangle$$

Es linealmente independiente (-1, -1):

$$Im(q) = \langle (0,1), (1,2) \rangle$$

La dimension es 2. Implica que Im es \mathbb{R}^2 .

Cálculo del núcleo de $g \circ f$

Buscamos los coeficientes $\alpha, \beta, \gamma, \delta$ tales que:

$$\alpha(0,1) + \beta(1,2) + \gamma(-1,-1) = 0 \Longrightarrow \left\{ \begin{array}{lcl} \beta & = & \gamma \\ \alpha & = & -\beta \end{array} \right.$$

Por lo tanto, el núcleo de g es:

$$-\beta(1,0,0) + \beta(0,1,0) + \beta(0,0,1) = \beta(-1,1,1) \implies \text{Nu}(g) = \langle (-1,1,1,1) \rangle$$

En conclusión:

- Como $\text{Im}(g) = \mathbb{R}^2$, es epimorfismo.
- Como $Nu(g) \neq \{0\}$, no es monomorfismo.
- No es isomorfismo.

Dale las gracias y un poco de amor \heartsuit a los que contribuyeron! Gracias por tu aporte:

8 Juan D Elia \bigcirc 8 naD GarRaz \bigcirc

Aritmética de punto flotante

Ejercicio 7. Algunos experimentos: Realizar las siguientes operaciones en Python \clubsuit . En todos los casos, pensar: ¿Cuál es el resultado esperado? ¿Coincide con el obtenido? ¿A qué se debe el problema (si lo hay)? (Notamos ϵ al épsilon de la máquina. Puede obtenerse importando la librería numpy como np y ejecutando el comando np.finfo(float).eps).

- a) Tomando p = 1e34, q = 1, calcular p + q p.
- b) Tomando p = 100, q = 1e 15, calcular (p + q) + q y ((p + q) + q) + q. Comparar con p + 2q y con p + 3q respectivemente.

c)
$$0.1 + 0.2 == 0.3$$

g)
$$\frac{\epsilon}{2}$$

k)
$$(1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})) - 1$$

$$d) 0.1 + 0.3 == 0.4$$

h)
$$(1 + \frac{\epsilon}{2}) + \frac{\epsilon}{2}$$

1)
$$\sin(10^{j}\pi)$$
 para $1 \le j \le 25$.

e)
$$1e - 323$$

i)
$$1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})$$

f)
$$1e - 324$$

j)
$$((1+\frac{\epsilon}{2})+\frac{\epsilon}{2})-1$$

m)
$$\sin(\frac{\pi}{2} + \pi 10^j)$$
 para $1 \le j \le 25$.

a) El epsilon sería el número más chico tal que:

$$1+\epsilon \neq 1$$

En el ejercicio estamos haciendo una cuenta fuera del rango de precisión de la máquina:

$$\epsilon = 2.220446049250313 \cdot 10^{-16} = 0.\underbrace{2220446049250313}_{m=16} \cdot 10^{-15} \quad \blacktriangle \to \text{así } \underline{\text{noto}} \text{ la precisión}$$

Con una mantisa m de 16 números significativos, puedo hacer la cuenta:

Primero p + 1:

Segundo p + 1 - p:

Bueh:

$$\underbrace{p-1}_{p} - p \stackrel{!}{=} p - p = 0$$

⚠ Si hacés un copy paste de este código debería funcionar lo más bien ⚠

b) Acá el problema es parecido al anterior:

Comparando:

```
import numpy as np

epsilon = np.finfo(float).eps

print(f"epsilon = {epsilon}") # epsilon = 2.220446049250313e-16

p = 100
q = 1e-15

calculo1 = (p + q) + q
calculo2 = ((p + q) + q) + q
calculo3 = p + 2*q
calculo4 = p + 3*q

print(f"p = {p}\nq = {q}\")
print(f"(p + q) + q = {calculo1}\")
print(f"(p + q) + q) + q = {calculo2}\")
print(f"p + 2q = {calculo3}\")
print(f"p + 3q = {calculo4}\")
```

c) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

d) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al .

e) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número no es igual a 0

```
a = 1e-323
print(f"r: {a}\na == 0 => {a == 0}")
```

f) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número justo con ese exponente se llega al límite de qué tan pequeño puede representarse un número, porque en este caso python lo toma como 0.

```
a = 1e-324
print(f"r: {a}\na == 0 => {a == 0}")
```

g) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🥑, o mejor aún si querés subirlo en IAT_EX→ una *pull request* al 📢

h) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

i) ... hay que hacerlo! 🙃

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

j) ... hay que hacerlo! 🙃

Si querés mandá la solución → al grupo de Telegram 🤡, o mejor aún si querés subirlo en IATEX→ una *pull request* al 📢

k) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

1) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

m) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 9. Para las siguientes matrices

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 - \varepsilon & 2 + \varepsilon \\ 0 & 1 + \varepsilon & \varepsilon \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

- (a) Tomando $\varepsilon = 0.001$, resolver el sistema Ax = b mediante eliminación gaussiana sin intercambio de filas usando aritmética de punto flotante en base 10 con 3 dígitos de mantisa y sistema de redondeo.
- (b) Para $\varepsilon = 0.001$, hallar la solución exacta x del sistema y comparar con la solución del ítem anterior ¿Cómo explica la diferencia?

Voy a usar 3 dígitos de mantisa, es decir 3 números significativos:

$$3.01 = 0.301 \cdot 10^{1}$$

$$3.001 = 0.3001 \cdot 10^{1} \xrightarrow{\text{trunca}} 0.3 \cdot 10^{1} = 3$$

$$3.005 = 0.3005 \cdot 10^{1} \xrightarrow{\text{redondea}} 0.301 \cdot 10^{1} = 3.01$$

$$\varepsilon = 0.001 = 0.1 \cdot 10^{-2}$$

$$(A|b) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 - \varepsilon & 2 + \varepsilon & 0.1 \\ 0 & 1 + \varepsilon & \varepsilon & 0.1 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 0.3 & 10^{1} & 0.2 & 10^{1} & 0.1 \\ 0 & 0.1 & 10^{1} & 0.1 & 10^{-2} & 0.1 \end{pmatrix}$$

$$F_{2} - 2F_{1} \to F_{2} \qquad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 0.3 & 10^{1} & 0.2 & 10^{1} & 0.1 \\ 0 & 0.1 & 10^{1} & 0.1 & 10^{-2} & 0.1 \end{pmatrix}$$

$$F_{3} + F_{2} \to F_{3} \qquad \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0.1 \\ 0 & 0 & 0.001 & 0.1 \\ 0 & 0 & 0.001 & 0.2 \end{pmatrix}$$

Esas cuentas falopas con punto flotante:

La solución sería:

$$\begin{cases} x = 0.2 - 200 = -199.8 \stackrel{*}{=} -200 \\ y = -0.1 \\ z = 0.2 \div (0.1 \cdot 10^{-2}) = 200 \end{cases}$$

(b)
$$(A|b) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 - \varepsilon & 2 + \varepsilon & 0.1 \\ 0 & 1 + \varepsilon & \varepsilon & 0.1 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 2.999 & 2.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \end{pmatrix}$$

$$F_2 - 2F_1 \to F_2 \qquad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -1.001 & 0.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \\ 0 & 0 & 0.002 & 0.2 \end{pmatrix}$$

La solución sería:

$$\begin{cases} x = -100 \\ y = 0 \\ z = 100 \end{cases}$$

La solución exacta difiere mucho de la original. A continuación un para de cuentas hechas en Python 🕏

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np
epsilon = 0.001
# La matriz a resolver A:
A = np.array([[1, 2, 1], \setminus
                [2, 3 - epsilon, 2 + epsilon], \
                [0, 1 + epsilon, epsilon]])
b = np.array([0, 0.1, 0.1])
# Que lo resuelva python
x, y, z = np.linalg.solve(A, b) # x = -100.0000000000055

print(f"x = {x}\ny = {y}\nz = {z}") # y = -5.50397778192042e-15
                                               \# z = 100.0000000000551
# Solución mantisa 3 floating point corroboración:
X = np.array([-200, -0.1, 200])
print (f"Corroborar cuentas de punto flotante \ X = \{A \ @ X\}")
         \#A \ X = [-0.2 \quad -0.0999 \quad 0.0999]
# Solución exacta a mano corroboración:
X = np.array([-100, 0, 100])
print(f"Corroborar las cuentas horribles esas\nA X = {A @ X}")
         # A X = [0. 0.1 0.1]
```

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte: 8 naD GarRaz •

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores.

Ejercicio 10. Considerar las matrices:

$$A = \begin{pmatrix} 1 & n & 5n \\ 1 & 3n & 3n \\ 1 & n & 2n \end{pmatrix} \quad \mathbf{y} \quad \begin{pmatrix} \frac{2n}{3} \\ \frac{2n}{3} \\ \frac{n}{3} \end{pmatrix},$$

con $n \in \mathbb{N}$.

- a) Para $n = 10^4$, resolver el sistema Ax = b por eliminación gaussiana sin intercambio de filas utilizando aritmética de 4 dígitos con redondeo (en base 10).
- b) Verificar que, para todo $n \in \mathbb{N}$, la solución exacta del sistema es $x = (0, \frac{1}{9}, \frac{1}{9})$ y comparar, para $n = 10^4$, la solución aproximada con la solución exacta.

❷... hay que hacerlo! ❸

Si querés mandá la solución \rightarrow al grupo de Telegram \checkmark , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 11. Si $x \in \mathbb{R}^n$, probar que las constantes de equialencia entre las normas $\|\cdot\|_1$ y $\|\cdot\|_2$ y entre las normas $\|\cdot\|_2$ y $\|\cdot\|_\infty$ vienen dadas por:

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} \, ||x||_{\infty}$$
$$\frac{1}{\sqrt{n}} \, ||x||_1 \le ||x||_2 \le ||x||_1$$

Acá están las definiciones de las normas que se usan en el ejercicio click click el

Si x = (0, ..., 0) la desigualdad es el caso de la igualdad. Entonces si tengo un $x \in \mathbb{R}^n$ y $x \neq 0$:

$$x = (x_1, \cdots, x_n) \xrightarrow[\|\cdot\|_2]{\text{calculo}} \|x\|_2 = \sqrt{x_1^2 + \cdots + x_n^2} \stackrel{!}{=} \max_{1 \le i \le n} |x_i| \cdot \underbrace{\sqrt{\left(\frac{x_1}{x_i}\right)^2 + \cdots + \left(\frac{x_n}{x_i}\right)^2}}_{i - \text{\'esimo lugar}} \stackrel{!}{\geq} |x_i| = \|x\|_{\infty}$$

Ahí queda mostrado que:

$$||x||_{\infty} \le ||x||_2$$

Parecido:

$$||x||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2} \stackrel{!}{\leq} \sqrt{|x_i|^2 + \dots + |x_i|^2} = \sqrt{n \cdot |x_i|^2} = \sqrt{n} \cdot |x_i| = \sqrt{n} \cdot ||x||_{\infty}$$

$$|x_i| = \max\{|x_1|, \dots, |x_n|\}$$

Ahí queda mostrado que:

$$||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$$

Ahora para la relación entre $\|\cdot\|_1$ y $\|\cdot\|_2$:

Recuerdo Desigualdad de Cauchy Schwartz:

$$|x^T y| \stackrel{\bigstar^1}{\leq} ||x||_2 \cdot ||y||_2$$

Con $y = \underbrace{(1,\dots,1)}_{\mathbf{z}} \implies \|y\|_2 = \sqrt{n}$ y tomo el módulo de las coordenadas de x:

$$(|x_1|,\ldots,|x_n|) \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \stackrel{\bigstar^1}{\leq} \sqrt{n} \cdot \sqrt{|x_1|^2 + \cdots + |x_n|^2} \Leftrightarrow \underbrace{|x_1| + \cdots + |x_n|}_{\|x\|_1} \leq \sqrt{n} \cdot \underbrace{\sqrt{|x_1|^2 + \cdots + |x_n|^2}}_{\|x\|_2}$$

De donde pasando para acá y para allá queda que:

$$\frac{1}{\sqrt{n}} \left\| x \right\|_1 \le \left\| x \right\|_2$$

La última que queda también usando al desigualdad de Cauchy Schwartz:

$$|x^t \cdot y| \stackrel{\bigstar^2}{\leq} ||x||_1 \cdot ||y||_1$$

Ahora uso y = x

$$|x^t \cdot x| \overset{\bigstar^2}{\leq} \|x\|_1 \cdot \|x\|_1 \Leftrightarrow (\|x\|_2)^2 \leq (\|x\|_1)^2 \Leftrightarrow \boxed{\|x\|_2 \leq \|x\|_1}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 👣

Ejercicio 12. Para cada una de la siguientes sucesiones $\{x_n\}_{n\in\mathbb{N}}$, determinar si existe $\lim_{n\to\infty}$, y en caso afirmativo hallarlo.

a)
$$x_n = \frac{1}{n}$$
,

c)
$$x_n = (-1)^n$$
,

b)
$$x_n = \frac{n^2+1}{n^2-1}$$
,

d)
$$x_n = (-1)^n e^{-n}$$
.

a)
$$x_n = \frac{1}{n} \implies \lim_{n \to \infty} \frac{1}{n} = 0$$

b)
$$x_n = \frac{n^2+1}{n^2-1} \implies \lim_{n \to \infty} \frac{n^2+1}{n^2-1} = 1$$

c)
$$x_n = (-1)^n$$

Uso subsucesiones, para mostrar que no existe. La idea es que de existir el límite, sin importar como me acerque a ∞ todo camino debería llegar al mismo resultado.

$$\begin{cases} a_{2n} = (-1)^{2n} & \xrightarrow{n \to \infty} & 1 \\ a_{2n-1} = (-1)^{2n-1} & \xrightarrow{n \to \infty} & -1 \end{cases}$$

Calculo los límites

$$\lim_{n \to \infty} x_{a_{2n}} = 1 \quad \text{y} \quad \lim_{n \to \infty} x_{a_{2n-1}} = -1$$

Dado que los límites no coiciden el límite no existe.

d)
$$x_n = (-1)^n e^{-n} \implies \lim_{n \to \infty} (-1)^n \cdot \frac{1}{e^n} = \operatorname{acotado} \cdot 0 = 0.$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 13. Para cada una de las siguientes sucesiones de vectores $\{x_n\}_{n\in\mathbb{N}}$ en \mathbb{R}^2 , determinar si existe $\lim_{n\to\infty} x_n$, y en caso afirmativo hallarlo.

a)
$$x_n = (1 + \frac{1}{n}, 3),$$

c)
$$\boldsymbol{x}_n = \begin{cases} (\frac{1}{n}, 0) & \text{si } n \text{ es par} \\ (0, -\frac{1}{n}) & \text{si } n \text{ es impar} \end{cases}$$

b)
$$\mathbf{x}_n = ((-1)^n, e^{-n}),$$

d)
$$x_n = (\frac{1}{2^n}, 4, \sin(\pi n)).$$

a) Calculo de una:

$$x_n = (1 + \frac{1}{n}, 3) \xrightarrow{n \to \infty} (1, 3)$$

b) $\boldsymbol{x}_n = ((-1)^n, e^{-n})$, no existe ver ejercicio 12 c)

c)
$$x_n = \begin{cases} (\frac{1}{n}, 0) & \text{si } n \text{ es par} \\ (0, -\frac{1}{n}) & \text{si } n \text{ es impar} \end{cases}$$
,

$$x_n \xrightarrow[n \to \infty]{} (0,0)$$

d) $x_n = (\frac{1}{2^n}, 4, \sin(\pi n)).$

Dado que $\sin(\pi \cdot n) = 0 \quad \forall n \in \mathbb{N}$

$$x_n \xrightarrow[n \to \infty]{} (0,4,0)$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

Ejercicio 14. Dada una sucesión de vectores $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^k$ y dos normas $\|\cdot\|_a$ y $\|\cdot\|_b$ de \mathbb{R}^k , usando la equivalencia de normas, probar

$$\|\boldsymbol{x}_n\|_a \xrightarrow{n \to \infty} 0 \iff \|\boldsymbol{x}_n\|_b \xrightarrow{n \to \infty} 0.$$

En un espacio vectorial de dimension finita todas las normas son equivalentes, entonces existen $c_1, c_2 > 0$ tal que:

$$c_1 \|\boldsymbol{x}_n\|_b \le \|\boldsymbol{x}_n\|_a \le c_2 \|\boldsymbol{x}_n\|_b$$

(⇒) Reemplazo en la desigualdad tomada por límite:

$$\lim_{n \to \infty} c_1 \|\boldsymbol{x}_n\|_b \leq 0 \leq \lim_{n \to \infty} c_2 \|\boldsymbol{x}_n\|_b$$
hipótesis

sacando las constantes para afuera del límite (propiedad del límite):

$$c_1 \lim_{n \to \infty} \|\boldsymbol{x}_n\|_b \le 0 \le c_2 \lim_{n \to \infty} \|\boldsymbol{x}_n\|_b$$

como $c_1, c_2 > 0$:

$$c_1 \cdot \lim_{n \to \infty} \|\boldsymbol{x}\|_b \leq 0 \Leftrightarrow \lim_{n \to \infty} \|\boldsymbol{x}\|_b \leq 0 \qquad \text{y} \qquad c_2 \cdot \lim_{n \to \infty} \|\boldsymbol{x}\|_b \geq 0 \Leftrightarrow \lim_{n \to \infty} \|\boldsymbol{x}\|_b \geq 0$$

Por lo tanto, $\lim_{n\to\infty} \|\boldsymbol{x}_n\|_b = 0$, como queriamos ver, vale la ida

(⇐) Vuelvo a reemplazar tomando límite, pero en ese caso

$$\lim_{n \to \infty} \|\boldsymbol{x}_n\|_b = 0 \implies 0 \le \lim_{n \to \infty} \|\boldsymbol{x}_n\|_a \le 0 \stackrel{\text{propiedad}}{\Longrightarrow} \lim_{n \to \infty} \|\boldsymbol{x}_n\|_a = 0$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 😯

👸 naD GarRaz 📢

Ejercicio 15. Dada una sucesión de vectores $\{\boldsymbol{x}_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^k$ probar

$$\|\boldsymbol{x}_n\|_1 \xrightarrow[n \to \infty]{} 0 \iff (x_n)_i \xrightarrow[n \to \infty]{} 0, 1 \le i \le k$$

donde $(x_n)_i$ es la *i*-ésima coordenada de x_n .

Tener en cuenta que: $\|x_n\|_1 \xrightarrow[n \to \infty]{} 0$ es $\lim_{n \to \infty} \sum_{i=1}^n |x_i| = 0$

(i) Veo la ida:

Como $||x_n||_1 \xrightarrow[n \to \infty]{} 0$ y la norma se compone de sumar valores mayores o iguales a cero, se puede implicar que cada elemento con n tendiendo a infinito debe ser 0, es decir $(x_n)_i \xrightarrow[n \to \infty]{} 0$ para todo i.

Más formal:

Por el absurdo: asumo que existe un $(x_n)_i$ distinto de cero por la implicación se que $\lim_{n\to\infty}\sum_{i=1}^n|x_i|=0$, como solo sumo positivos es absurdo si hay algun x_i tal que: x_i no es cero

(ii) Veo la vuelta:

Si $(x_n)_i \xrightarrow[n \to \infty]{} 0$ para todo i, puedo implicar que $\|\boldsymbol{x}_n\|_1 \xrightarrow[n \to \infty]{} 0$, porque es sumar todos esos elementos. Más formal:

 $\lim_{n\to\infty}\sum_{i=1}^n|x_i|=0 \text{ con cada }x_i=0 \text{ con n tendiendo a infinito:}$

$$\lim_{n\to\infty} \sum_{i=1}^{n} 0 = 0 \text{ vale}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 😯

Ejercicio 16. Sea $A \in \mathbb{R}^{nxn}$, probar que las constantes de equivalencia entre las normas $\|.\|_1$ y $\|.\|_2$ y entre las normas $\|.\|_1$ y $\|.\|_{\infty}$ vienen dadas por:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{n} \|A\|_{\infty}$$

$$\frac{1}{\sqrt{n}}\left\|A\right\|_1 \leq \left\|A\right\|_2 \leq \sqrt{n}\left\|A\right\|_1$$

La norma matricial es fea, por lo cual voy a usar normas inducidas:

- (a) Veo los dos lados de la desigualdad
 - (i) Arranco por la parte izquierda de la desigualdad. Quiero probar que:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2$$

Norma inducida:

$$||A||_2 = \max_{x \neq 0} \left\{ \frac{||Ax||_2}{||x||_2} \right\}$$

Quiero achicar el numerador y agrandar el denominador para armar una expresión más chica. Recordar por ejercicio 11 que:

$$\sqrt{n} \|x\|_{\infty} \stackrel{\bigstar^{1}}{\geq} \|x\|_{2}, \implies \frac{1}{\sqrt{n} \cdot \|x\|_{\infty}} \stackrel{\bigstar^{2}}{\leq} \frac{1}{\|x\|_{2}}$$

$$y \quad \|x\|_{2} \stackrel{\bigstar^{3}}{\geq} \|x\|_{\infty} \implies \frac{1}{\|x\|_{2}} \stackrel{\bigstar^{4}}{\leq} \frac{1}{\|x\|_{\infty}}$$

entonces dado que $Ax \in \mathbb{R}^n$ es un vector, por norma vectorial:

$$\|Ax\|_2 \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_2}{\|x\|_2} \right\} \stackrel{\bigstar^3}{\underset{\bigstar^2}{=}} \max_{x \neq 0} \left\{ \frac{\|Ax\|_\infty}{\sqrt{n} \|x\|_\infty} \right\} = \frac{1}{\sqrt{n}} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_\infty}{\|x\|_\infty} \right\} \stackrel{\text{def}}{=} \frac{1}{\sqrt{n}} \cdot \|A\|_\infty$$

Donde se tiene en cuenta que si un conjunto A tiene sus elementos menores al de otro conjunto B en particular sus máximos también esa relación.

(ii) Veo la parte derecha de la desigualdad quiero probar que:

$$||A||_2 \le \sqrt{n} \, ||A||_{\infty}$$

Ahora como quiero ver que $||A||_2$ es mas chico que otra cosa. agrando el numerador y achico denominador para armar una expresión más grande. Nuevamente usamos el resultado del ejercicio 11:

$$\|A\|_{2} \stackrel{\mathrm{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_{2}}{\|x\|_{2}} \right\} \stackrel{\bigstar^{1}}{\leq} \max_{x \neq 0} \left\{ \frac{\sqrt{n} \, \|Ax\|_{\infty}}{\|x\|_{\infty}} \right\} = \sqrt{n} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} \right\} \stackrel{\mathrm{def}}{=} \sqrt{n} \, \|A\|_{\infty}$$

Queda demostrado.

- (b) Veo los dos lados de la desigualdad. Parecido a lo que se hizo en el anterior:
 - (i) Para ver que es más grande, tengo que armar una expresión mas chica. Achico el numerador y agrando el denominador.

Recordar por ejercicio 11 que: $||x||_2 \ge \frac{1}{\sqrt{n}} ||x||_1$ y $||x||_2 \le ||x||_1$, entonces:

$$||x||_{2} \stackrel{\star^{1}}{\geq} \frac{1}{\sqrt{n}} ||x||_{1} \iff \frac{\sqrt{n}}{||x||_{1}} \stackrel{\star^{2}}{\geq} \frac{1}{||x||_{2}}$$

$$y$$

$$||x||_{2} \stackrel{\star^{3}}{\leq} ||x||_{1} \iff \frac{1}{||x||_{1}} \stackrel{\star^{4}}{\leq} \frac{1}{||x||_{2}}$$

Usando la norma inducida:

$$\|A\|_{2} \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_{2}}{\|x\|_{2}} \right\} \stackrel{\bigstar^{1}}{=} \max_{x \neq 0} \left\{ \frac{\frac{1}{\sqrt{n}} \|Ax\|_{1}}{\|x\|_{1}} \right\} = \frac{1}{\sqrt{n}} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_{1}}{\|x\|_{1}} \right\} \stackrel{\text{def}}{=} \frac{1}{\sqrt{n}} \cdot \|A\|_{1}$$

(ii) Para ver que es más chico, tengo que armar una expresión más grande. Agrando el numerador y achico el denominador. Usando nuevamente los resultados del ejercicio 11 para normas vectoriales:

$$\|A\|_{2} \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_{2}}{\|x\|_{2}} \right\} \stackrel{\bigstar^{3}}{\leq} \max_{x \neq 0} \left\{ \|Ax\|_{1} \cdot \frac{\sqrt{n}}{\|x\|_{1}} \right\} = \sqrt{n} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_{1}}{\|x\|_{1}} \right\} \stackrel{\text{def}}{=} \sqrt{n} \cdot \|A\|_{1}$$

Queda demostrado

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 🞧

Ejercicio 17. Probar que para toda matriz $A \in \mathbb{R}^{n \times n}$

(a)
$$||A||_{\infty} = \max_{1 \le i \le n} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$$
 (b) $||A||_{1} = \max_{1 \le j \le n} \left\{ \sum_{i=1}^{n} |a_{ij}| \right\}$

(a) Definición de norma infinito:

$$\|A\|_{\infty} = \max_{\|x\|_{\infty}=1} \left\{ \|Ax\|_{\infty} \right\}$$

Veamos que:

$$\|Ax\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij} \cdot x_j| \stackrel{\text{Des. triangular}}{\leq} \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \cdot |x_j| \stackrel{\text{Por ser le máx } |x_j|}{\leq} \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \cdot \|x\|_{\infty} = \max_{1 \leq i \leq n} \|x\|_{\infty} \cdot \sum_{j=1}^{n} |a_{ij}|$$

Luego, nos queda que

$$||Ax||_{\infty} \le ||x||_{\infty} \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$$

Volvamos a $\|A\|_{\infty}$. Reemplazamos $\|Ax\|_{\infty}$ por la desigualdad que obtuvimos

$$||A||_{\infty} \le \max_{||x||_{\infty}=1} ||x||_{\infty} \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Como $||x||_{\infty} = 1$, nos queda que:

$$||A||_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Llamaremos a esta expresión de la derecha M.

$$||A||_{\infty} \leq M$$

Ahora, busquemos demostrar la igualdad encontrando un x particular. Sea $\tilde{x} = e_{\hat{i}}$ tal que $||Ax||_{\infty} = M$. Es decir, vemos que se cumple que

$$\hat{i} = \max \left\{ i \in [1, n] : \sum_{j=1}^{n} |a_{ij}| \right\}$$

Es decir, la fila cuya suma de módulos es la mayor. Además, vemos que, por ser \tilde{x} un vector canónico, se cumple que $||x||_{\infty} = 1$. Luego como sabemos que:

- $\|A\|_{\infty} \leq M$ para todo x con $\|x\|_{\infty} = 1$
- Existe un \tilde{x} tal que $||A\tilde{x}||_{\infty} = M$

$$||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = M$$

Puesto que encontramos un x que cumple la igualdad, y se que todo el resto son menores o iguales.

(b) Quiero probar la fórmula cerrada:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| = \underbrace{\max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}}_{\bigstar^1}$$

Usando normas inducidas o subordinadas voy a ponerle una cota a $||A||_1$ para cualquier $x \in K^n$ con $||x||_1 = 1$:

$$\begin{split} \|Ax\|_1 &= \left\| \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{nj} x_j \end{pmatrix} \right\|_1 & \stackrel{\text{def}}{=} |\sum_{j=1}^n a_{1j} x_j| + \dots + |\sum_{j=1}^n a_{nj} x_j| \\ & \stackrel{\text{desigualdad triangular}}{\leq} \sum_{j=1}^n |a_{1j}| \cdot |x_j| + \dots + \sum_{j=1}^n |a_{nj}| \cdot |x_j| \\ & \stackrel{!}{=} \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| \cdot |x_j| \\ & \stackrel{!!}{=} \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| \cdot |x_j| = \sum_{j=1}^n |x_j| \cdot \sum_{i=1}^n |a_{ij}| \\ & = |x_1| \cdot \sum_{i=1}^n |a_{i1}| + \dots + |x_n| \cdot \sum_{i=1}^n |a_{in}| \\ & = |x_1| \cdot \sum_{i=1}^n |a_{i1}| + \dots + |x_n| \cdot \sum_{i=1}^n |a_{in}| \\ & \stackrel{\|\text{Col}(A_1)\|_1}{\leq} \sum_{j=1}^n |x_j| \cdot \max_{1 \leq i \leq n} \left\{ \|\text{Col}(A_i)\|_1 \right\} = \|x\|_1 \cdot \max_{1 \leq i \leq n} \left\{ \|\text{Col}(A_i)\|_1 \right\} \\ & \stackrel{\|\text{HIP}}{=} \max_{1 \leq i \leq n} \left\{ \|\text{Col}(A_i)\|_1 \right\} = \bigstar^1 \end{split}$$

Después de ese parto se obtiene que:

$$||Ax||_1 \stackrel{\bigstar^1}{\leq} \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}$$

Ahora el razonamiento que sigue es algo así: Dado que la expresión que quedó

$$\max \left\{ \sum_{i=1}^{n} |a_{i1}|, \dots, \sum_{i=1}^{n} |a_{in}| \right\}$$

no depende de x, solo son sumas de los elementos por columna de A y como ya sé, la j-ésima columna de A la puedo escribir como:

$$A \cdot \hat{e}_j = A \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} = \operatorname{Col}(A)_j,$$

Es así que como ese hermoso \hat{e}_i cumple eso va a haber algún otro vector genérico que cumpla que justo nos dé el máximo del conjunto \star^1 . Para creerme esto último, me gusta pensar que Ax vive en el subespacio $\operatorname{Col}(A) = \operatorname{\underline{Im}}(A).$ pensando a A como una T.L.

Entonces si en la columna j, tengo un vector cualquiera al que llamo \tilde{x} con $\|\tilde{x}\| = 1$ y ¡Oh sorpresa \mathfrak{O} ! $A \cdot \tilde{x} \in ^{1}$ y justo es el elemento máximo \bigodot de 1 por lo tanto el más poronga entre todos los ||y|| = 1:

$$\max_{\|y\|=1} \frac{\|Ay\|}{\|y\|} \stackrel{\stackrel{\text{el}}{\uparrow}}{=} \|A\tilde{x}\|_1 = \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{ij}|, \dots, \sum_{i=1}^n |a_{in}| \right\} = \sum_{i=1}^n |a_{ij}|$$

Y por definición (la otra con $x \neq 0$) de norma inducida con norma 1: $||A||_1 = \max_{x \neq 0} \frac{||Ax||_1}{||x||_1}$, así pudiendo expresar:

$$||A||_1 = \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Pedro F. 😱

👸 naD GarRaz 🞧

Ejercicio 18. Se quiere estimar la norma 2 de una matriz $A \in \mathbb{R}^{n \times n}$ como el máximo del valor $||Ax||_2 / ||x||_2$ entre varios vectores $x \in \mathbb{R}^3$ no nulos generadosal azar. Hacer un programa quereciba una matriz A y luego

• Genere los primeros 100 términos de la siguiente sucesión:

$$s_1 = 0$$
, $s_{k+1} = \max \left\{ s_k, \frac{\|Ax_k\|_2}{\|x\|_2} \right\}$

donde los $x_k \in \mathbb{R}^3$ son vectores no nulos generados al azar en la bola unitaria: $B = \{x : ||x||_2 \le 1\}$.

• Grafique la sucesión calculada, junto con el valor exacto de la norma de la matriz.

Recordar que tanto la norma 2 puede calcularse con el comando np.linalg.norm. Tener en cuenta que los vectores generados al azar (comando np.random.rand) tienen coordenadas en el intervalor [0,1].

Ejercicio 19. Se tiene el sistema Ax = b.

(a) Sea x la solución exacta y \tilde{x} la solución obtenida numéricamente. Se llama residuo al vector: $r := b - A\tilde{x}$. Si notamos $e = x - \tilde{x}$, mostrar que:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} \le \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{x}\|} \le \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}.$$

(b) En lugar del dato exacto b, se conoce una aproximación \tilde{b} . Se tiene que \tilde{x} satisface: $A\tilde{x}=\tilde{b}$. Probar que:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})}\frac{\left\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\right\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A})\frac{\left\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\right\|}{\|\boldsymbol{b}\|}.$$

¿Cómo se puede interpretar este resultado?

Esto lo quiero mencionar acá, porque se va a usar todo el tiempo en el ejercicio:

$$||Ax|| \le ||A|| \, ||x||$$

A

y mucha gente le dice *Cauchy-Schwartz*, pero no es esa desigualdad, esto sale de la definición de *norma matricial*:

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \xrightarrow{\text{en particular para} \atop \text{un } y \text{ cualquiera}} \|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \ge \frac{\|Ay\|}{\|y\|} \Leftrightarrow \boxed{\|Ay\| \le \|A\| \|y\|}$$

a) No sé si a vos te gusta tener esas letras por todos lados, pero a mí no, reescribo las desigualdades del enunciado usando las definiciones del enunciado como:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})}\frac{\|\boldsymbol{b}-\boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A})\frac{\|\boldsymbol{b}-\boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|}.$$

Listo, menos letras feas menos ruido. Primero ataco la desigualdad de la izquierda:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})}\frac{\|\boldsymbol{b}-\boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|}$$

Sale usando que:

$$oxed{Ax = b \Leftrightarrow x = A^{-1}b \Leftrightarrow \|x\| = \|A^{-1}b\| \leq \|A^{-1}\| \, \|b\| \Leftrightarrow \|x\| \overset{\bigstar^1}{\leq} \|A^{-1}\| \, \|b\|$$

Si compraste eso que quedo en ★¹, listo solo hay que acomodar y reemplazar en la desigualdad y se prueba:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\|\boldsymbol{b} - \boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|} \stackrel{!}{=} \frac{1}{\|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\|} \frac{\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|} = \frac{1}{\|\boldsymbol{A}\|} \frac{\|\boldsymbol{A}(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{A}^{-1}\| \|\boldsymbol{b}\|} \stackrel{!}{\leq} \frac{1}{\|\boldsymbol{A}\|} \frac{\|\boldsymbol{A}\| \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{A}^{-1}\| \|\boldsymbol{b}\|} = \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{A}^{-1}\| \|\boldsymbol{b}\|} \stackrel{\bigstar}{\leq} \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|}$$

Listo el pollo, quedó que:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\|\boldsymbol{b} - \boldsymbol{A}\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|}$$

Probar la otra parte de la desigualdad es casi lo mismo, pero mirá con atención, porque marea el hecho de ir acotar en sentido contrario, pero es lo meeeeeeeeeeesmo:

$$\operatorname{cond}(A)^{\frac{\|b-A\tilde{x}\|}{\|b\|}} \stackrel{!}{=} \|A\| \|A^{-1}\| \frac{\|A(x-\tilde{x})\|}{\|Ax\|} \ge \|A\| \|A^{-1}\| \frac{\|A(x-\tilde{x})\|}{\|A\|\|x\|} = \frac{\|A^{-1}\| \|A(x-\tilde{x})\|}{\|x\|} \\ \stackrel{!}{\geq} \frac{\|A^{-1}\| \|A(x-\tilde{x})\|}{\|x\|} = \frac{\|x-\tilde{x}\|}{\|x\|}$$

Así llegando a que:

$$rac{\|oldsymbol{x} - ilde{oldsymbol{x}}\|}{\|oldsymbol{x}\|} \leq \operatorname{cond}(oldsymbol{A}) rac{\|oldsymbol{b} - oldsymbol{A} ilde{oldsymbol{x}}\|}{\|oldsymbol{b}\|}.$$

Con respecto a la interpretación:

Lo que estamos haciendo es calcular *cotas* para el *error relativo* que puede haber al resolver numéricamente Ax = b, con solución númerica del sistema \tilde{x} y solución exacta x, $\frac{\|x - \tilde{x}\|}{\|x\|}$.

Una condición grande, será una matriz, verqa, porque nos da un intervalo para el error relativo grande.

Una condición cercana a 1, será una matriz, linda, con un error relativo sin mucho espacio para delirarla.

- b) Es igual que el item anterior
 - (i) $Ax = b \Leftrightarrow x = A^{-1}b$
 - (ii) $A\tilde{x} = \tilde{b} \Leftrightarrow \tilde{x} = A^{-1}\tilde{b}$

Veo primero:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\left\| \boldsymbol{b} - \tilde{\boldsymbol{b}} \right\|}{\|\boldsymbol{b}\|} \le \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|}$$

$$\frac{1}{\operatorname{cond}(A)} \frac{\left\| \boldsymbol{b} - \tilde{\boldsymbol{b}} \right\|}{\|\boldsymbol{b}\|} = \frac{1}{\|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\|} \frac{\|\boldsymbol{A}(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{b}\|} \overset{!}{\leq} \frac{1}{\|\boldsymbol{A}\| \|\boldsymbol{A}^{-1}\|} \frac{\|\boldsymbol{A}\| \|(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{b}\|} = \frac{\|(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{A}^{-1}\| \|\boldsymbol{b}\|} \overset{!}{\leq} \frac{\|(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{A}^{-1}\boldsymbol{b}\|} = \frac{\|(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{x}\|}$$

Queda así:

$$\boxed{\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\left\|\boldsymbol{b} - \tilde{\boldsymbol{b}}\right\|}{\|\boldsymbol{b}\|} = \leq \frac{\|(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|}{\|\boldsymbol{x}\|}}$$

Por último queda ver que:

$$rac{\|oldsymbol{x} - ilde{oldsymbol{x}}\|}{\|oldsymbol{x}\|} \leq \operatorname{cond}(oldsymbol{A}) rac{\left\|oldsymbol{b} - ilde{oldsymbol{b}}
ight\|}{\|oldsymbol{b}\|}$$

$$\frac{\|x - \tilde{x}\|}{\|x\|} = \frac{\|A^{-1}(b - \tilde{b})\|}{\|x\|} \stackrel{!}{\leq} \frac{\|A^{-1}\| \|(b - \tilde{b})\|}{\|x\|} = \frac{\|A\| \|A^{-1}\| \|(b - \tilde{b})\|}{\|A\| \|x\|} = \frac{\operatorname{cond}(A) \|(b - \tilde{b})\|}{\|A\| \|x\|} \stackrel{!}{\leq} \frac{\operatorname{cond}(A) \|(b - \tilde{b})\|}{\|Ax\|} = \operatorname{cond}(A) \frac{\|b - \tilde{b}\|}{\|b\|}$$

Finalmente obteniendo:

$$oxed{ \left\|oldsymbol{x} - ilde{oldsymbol{x}} \left\|oldsymbol{x} - ilde{oldsymbol{b}}
ight\|} = \leq \operatorname{cond}(oldsymbol{A}) rac{\left\|oldsymbol{b} - ilde{oldsymbol{b}}
ight\|}{\left\|oldsymbol{b}
ight\|}$$

queda demostrado el ejercicio.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🎖 Juan D Elia 🞧

👸 naD GarRaz 📢

Ejercicio 20. Sea

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & \frac{5}{4} & \frac{3}{4} \\ 0 & \frac{3}{4} & \frac{5}{4} \end{pmatrix}$$

- (a) Calcular $\operatorname{cond}_{\infty}(A)$
- (b) Cuan chico debe ser el error relativo en los datos $\frac{\|b-\tilde{b}\|}{\|b\|}$, si se desea que el error relativo en la aproximación de la solución $\frac{\|x-\tilde{x}\|}{\|x\|}$ sea menor que 10^{-4} en $(\|.\|_{\infty})$
- (c) Realizar experimentos numéricos para verificar las estimaciones del ítem anterior. Considerar $\boldsymbol{b}=(3,2,2)^t$, que se corresponde con la solución exacta $\boldsymbol{x}=(1,1,1)^t$. Generar vectores de error aleatorios y perturbar \boldsymbol{b} , obteniendo $\tilde{\boldsymbol{b}}$. Finalmente, resolver $\boldsymbol{A}\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{b}}$ y verificar que $\|\tilde{\boldsymbol{x}}-\boldsymbol{x}\|<10^{-4}$
- (a) Para calcular cond(A) calculo la norma de A y A^{-1} :

$$||A||_{\infty} = \max\{3, 2, 2\} = 3$$

Calculamos A^{-1} :

$$\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & \frac{5}{4} & \frac{-3}{4} \\
0 & \frac{-3}{4} & \frac{5}{4}
\end{array}\right)$$

Se ve a ojo que $||A^{-1}||_{\infty} = 2$

Por lo tanto: $\operatorname{cond}_{\infty}(A) = 3.2 = 6$

(b) Quiero: $\frac{\|x-\tilde{x}\|}{\|x\|} < 10^{-4}$

Por el ejercicio 19 sabemos que $\frac{\|x-\tilde{x}\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|b-\tilde{b}\|}{\|b\|}$

Entonces quiero que $6 \cdot \frac{\left\|b-\tilde{b}\right\|}{\|b\|} < 10^4 \Leftrightarrow \frac{\left\|b-\tilde{b}\right\|}{\|b\|} < \frac{10^{-4}}{6}$

(C) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🥑, o mejor aún si querés subirlo en IAT_EX→ una *pull request* al 📢

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 🞧

♠¡Aportá con correcciones, mandando ejercicios, ★ al repo, críticas, todo sirve. La idea es que la guía esté actualizada y con el mínimo de errores. **Ejercicio 21.** Probar que si $A \in \mathbb{R}^{n \times n}$ es una matriz inversible y $\|\cdot\|$ es una norma matricial, la condición de A verifica la desigualdad:

$$\frac{1}{\operatorname{cond}(A)} \leq \inf \left\{ \frac{\|A - B\|}{\|A\|} : B \text{ es singular} \right\}.$$

Deducir que

$$\operatorname{cond}(A) \ge \sup \left\{ \frac{\|A\|}{\|A - B\|} : B \text{ es singular} \right\}.$$

Nota: En ambos casos, vale la igualdad, pero la otra desigualdad es un poco más complicada de probar. De la igualdad se puede concluir que cond(A) mide la distancia relativa de A a la matriz singular más próxima.

Si B es singular, significa que existe un $x \in \mathbb{R}^n$ tal que Bx = 0 a esto tirale un poco de X y sale que:

$$x \stackrel{!}{=} A^{-1}Ax - A^{-1}Bx = A^{-1}(A - B)x \qquad \stackrel{\text{tomo}}{\rightleftharpoons} \qquad ||x|| = ||A^{-1}(A - B)x||$$

$$\stackrel{!!}{\rightleftharpoons} \qquad ||x|| \le ||A^{-1}|| ||A - B|| ||x||$$

$$\stackrel{\vdots}{\rightleftharpoons} \qquad \frac{||x||}{||A|||A^{-1}||} \le \frac{||A - B|| ||x||}{||A||}$$

$$\Leftrightarrow \qquad \frac{1}{\operatorname{cond}(A)} \le \frac{||A - B||}{||A||}$$

Ahí quedó que los elementos del conjunto $\left\{\frac{\|A-B\|}{\|A\|}: B \text{ es singular}\right\}$, son mayores o iguales al número $\frac{1}{\operatorname{cond}(A)}$, pero faltaría ver la igualdad así aparece ahí el $\inf mo$.

La igualdad vale debería valer para alguna B singular, es decir:

$$\frac{1}{\operatorname{cond}(A)} = \frac{\|A - B\|}{\|A\|}.$$

La igualdad se asume válida porque la demostración es falopa.

Ahora habría que mostrar que:

$$\operatorname{cond}(A) \ge \sup \left\{ \frac{\|A\|}{\|A - B\|} : B \text{ es singular} \right\}.$$

a... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en LATEX o una pull request al o

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 22.

(a) Estimar la $\operatorname{cond}_{\infty}(A)$ de las siguientes matrices en función de ε (cuando $\varepsilon \to 0$).

(i)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^2 \\ 1 & 0 & 0 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 1 & 0 & 1 + \varepsilon \\ 2 & 3 & 4 \\ 1 - \varepsilon & 0 & 1 \end{pmatrix}$

- (b) Concluir que la condición de las matrices A y B del ítem anterior tienden a infinito, cualquiera sea la norma considerada.
- (a) (i) En el ejercicio 21 están las expresiones que sirven para dar una estimación de las normas. El truco está en encontrar una matriz singular con la cual podamos hacer que algo explote :

$$\operatorname{cond}_{\infty}(A) \overset{\bigstar^{1}}{\geq} \sup \left\{ \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} : B \text{ es singular} \right\}.$$

La matriz B:

$$B = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

es singular. La expresión para la cota para norma infinito queda:

$$\frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} \stackrel{!}{=} \frac{3}{\varepsilon + \varepsilon^2} \xrightarrow{\varepsilon \to 0} \infty$$

En ! el valor de la $||A||_{\infty} = \max \{3, 1 + \varepsilon + \varepsilon^2\}$ asumo que $\varepsilon < 1$.

Por lo tanto cuando $\varepsilon \to 0$ el conjunto para la B elegida, no tiene cota superior. Entonces en \bigstar^1 tenemos que:

$$\operatorname{cond}_{\infty}(A) \ge \infty \implies \lim_{\varepsilon \to 0} \operatorname{cond}_{\infty}(A) = \infty$$

(ii) Misma estrategia ahora para estimar la $\operatorname{cond}_{\infty}(B)$ con la matriz singular:

$$C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ 1 & 0 & 1 \end{pmatrix} \implies B - C = \begin{pmatrix} 0 & 0 & \varepsilon \\ 0 & 0 & 0 \\ -\varepsilon & 0 & 0 \end{pmatrix}$$

$$\operatorname{cond}_{\infty}(B) \ge \sup \left\{ \frac{\|B\|_{\infty}}{\|B - C\|_{\infty}} : C \text{ es singular} \right\} \ge \frac{9}{\varepsilon} \xrightarrow{\varepsilon \to 0} \infty \implies \lim_{\varepsilon \to 0} \operatorname{cond}_{\infty}(B) = \infty.$$

(b) ... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram extstyle o, o mejor aún si querés subirlo en LATEXo una pull request al extstyle o

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 23. Para la matriz

$$A = \left(\begin{array}{ccc} 1 & n & 5n \\ 1 & 3n & 3n \\ 1 & n & 2n \end{array}\right)$$

con $n \in \mathbb{N}$, probar que existe una constante c > 0 tal que $\operatorname{cond}_{\infty}(A) \geq cn$ para todo $n \in \mathbb{N}$, y deducir que $\operatorname{cond}_{\infty}(A) \to \infty$ cuando $n \to \infty$

Como sobra la creatividad en este repo, acá van 2 formas de resolver el ejercicio:

 $\bigotimes_{(1)}$ Es fácil calcular A_{∞} :

$$||A||_{\infty} = 6n + 1$$

Ahora voy a buscar una matriz singular B, conveniente para usar:

$$\operatorname{cond}_{\infty}(A) \ge \sup \left\{ \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} : B \text{ es singular} \right\}$$

por ejemplo:

$$B = \begin{pmatrix} 0 & n & 5n \\ 0 & 3n & 3n \\ 0 & n & 2n \end{pmatrix} \implies A - B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \implies \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} = \frac{6n + 1}{1} = 6n + 1 > 6n \quad \forall n \in \mathbb{N}$$

Y ahí quedó esa constante c:

c = 6

 $\Theta_{(2)}$ Primero voy a calcular el número de condición. Para eso tengo que ver la norma de A y A^{-1}

Para A:

La norma infinito es sumar los elementos de cada fila en módulo y quedarnos con la suma más grande. En este caso se ve a ojo que:

$$||A||_{\infty} = 1 + 6n$$

 $Para A^{-1}$:

Aca hay que calcular la inversa de A, A^{-1} , no voy a escribir todos los pasos (ninguno de hecho).

$$A^{-1} = \begin{pmatrix} \frac{-1}{2} & \frac{-1}{2} & 2\\ \frac{-1}{6n} & \frac{1}{2n} & \frac{-1}{3n}\\ \frac{1}{3n} & 0 & \frac{-1}{3n} \end{pmatrix}$$

y se ve que $\left|\frac{-1}{2}\right| + \left|\frac{-1}{2}\right| + |2|$ es la fila que más suma (el resto tiene elementos con n el denominador con n > 0)

$$||A^{-1}||_{\infty} = 3$$

Por lo tanto:

$$\operatorname{cond}(A)_{\infty} = 3(1+6n) = 3+18n$$

El enunciado pide que muestre que existe una c que cumpla $\operatorname{cond}(A)_{\infty} \geq cn$ para todo n.

Elijo c=2:

$$3 + 18n \ge 2n \Leftrightarrow 3 + 16n \ge 0 \Leftrightarrow n \ge \frac{-3}{16}$$
.

Como $n \in \mathbb{N}$ vale para todo n.

Por último deducir que $\operatorname{cond}_{\infty}(A) \to \infty$ cuando $n \to \infty$:

$$\lim_{n \to \infty} \operatorname{cond}_{\infty}(A) = \lim_{n \to \infty} 3 + 18n = \infty$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 😯

👸 naD GarRaz 😯

Ejercicio 24. Sea $D_n = \frac{1}{10}I_n$. Verificar que $\det(D_n) \to 0$ si $n \to \infty$. $\mathcal{L}D_n$ está mal condicionada? $\mathcal{L}Es$ el determinante un buen indicador de cuan cerca está una matriz de ser singular?

 D_n es la matriz identidad de $n \times n$ multiplicado por $\frac{1}{10}$, por lo tanto es la matriz de $n \times n$ que en su diagonal tiene $\frac{1}{10}$. Al ser una matriz diagonal su determinante es el producto de los elementos en su diagonal:

$$\det(D_n) = \prod_{1}^{n} \frac{1}{10} = \left(\frac{1}{10}\right)^n = \frac{1}{10^n}$$

para verificar $\det(D_n) \to 0$ si $n \to \infty$ tomo límite:

$$\lim_{n \to \infty} \frac{1}{10^n} = 0$$

La matriz está bien condicionada, se ve fácilmente que:

$$||A||_{\infty} = \frac{1}{10} \text{ y } ||A^{-1}||_{\infty} = 10,$$

ya que tiene todos 10 en la diagonal (inversa de matriz diagonal). Entonces: $\operatorname{cond}_{\infty}(A) = 1$ por lo que está perfectamente condicionada.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 🞧

Ejercicio 25. Sea $A_n \in \mathbb{R}^{n \times n}$ la matriz dada por $A_n = (a_{ij})$,

$$a_{ij} = \begin{cases} 1 & \text{si } i = 1 \text{ o } j = 1 \\ 1/i & \text{si } i = j \\ 0 & \text{en otro caso} \end{cases}$$

- a) Probar que $\operatorname{cond}_{\infty}(A_n) \geq f(n)$ para alguna función $f(n) \in O(n^2)$.
- b) Probar que $\operatorname{cond}_2(A_n) \to \infty$ cuando $n \to \infty$.
- a) Hay que encontrar una B (antes de verla, mirá el ejercicio 23. para inspirarte)

$$\operatorname{cond}_{\infty}(A) \ge \sup \left\{ \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} : B \text{ es singular} \right\}$$

El caso con n=2 se puede calcular a mano:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & \frac{1}{2} \end{pmatrix} \quad \text{y} \quad A^{-1} = \begin{pmatrix} -1 & 2 \\ 2 & -2 \end{pmatrix} \implies \text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 2 \cdot 4 = 8$$

Para $n \geq 3$:

$$b_{ij} = \begin{cases} 1 & \text{si } i = 1 \text{ o } j = 1\\ 1/i & \text{si } i = j, \ i, j < n - 1\\ 0 & \text{en otro caso} \end{cases}$$

Las últimas 2 filas son iguales, así que B es singular:

$$A - B = \begin{cases} \frac{1}{n-1} & \text{si } i = j = n - 1\\ \frac{1}{n} & \text{si } i = j = n\\ 0 & \text{en otro caso} \end{cases}$$

Entonces queda que:

$$\operatorname{cond}_{\infty}(A) \ge \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} = \frac{n}{\frac{1}{n-1}} = n^2 - n \in O(n^2)$$

b) Pispeá el ejercicio 16, ahí están las acotaciones falopa de la normas.

Entonces usando que:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \stackrel{\bigstar^1}{\leq} \|A\|_2 \leq \sqrt{n} \|A\|_{\infty}$$

sale con fritas KFC.

$$\lim_{n \to \infty} \operatorname{cond}_{2}(A) = \lim_{n \to \infty} \|A\|_{2} \cdot \|A^{-1}\|_{2}$$

$$\stackrel{\stackrel{\bullet}{\geq}}{\geq} \lim_{n \to \infty} \frac{1}{\sqrt{n}} \|A\|_{\infty} \cdot \frac{1}{\sqrt{n}} \|A^{-1}\|_{\infty}$$

$$= \lim_{n \to \infty} \frac{1}{n} \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}$$

$$\stackrel{\text{def}}{=} \lim_{n \to \infty} \underbrace{\frac{1}{n} \operatorname{cond}_{\infty}(A)}_{\in O(n)} \xrightarrow{n \to \infty} \infty$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

٥

Ejercicios de parciales:

1.

- (a) Sea $M \in \mathbb{R}^{n \times n}$ una matriz tal que existe una norma (subordinada a una norma vectorial) que cumple que ||M|| < 1. Probar que $I_n M$ es inversible, siendo I_n la matriz identidad de orden n.
- (b) Sean $\alpha, \gamma > 0, A \in \mathbb{R}^{n \times n}$ tal que $||A||_{\infty} = \alpha$ y $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ una transformación lineal tal que $\forall i, j \in \{1, \ldots, n\} : f(E_{ij}) = \gamma E_{ji}$ siendo E_{ij} la matriz canónica de $\mathbb{R}^{n \times n}$ que tiene un 1 en la coordenada (i, j).
 - i) Calcular $||f(A)||_1$.
 - ii) Probar que si $\gamma \alpha < 1$ entonces $I_n f(A)$ es inversible.
- (a) Quiero ver si la matriz $I_n M$ es inversible. Para eso puedo buscar a ver si hay algún vector x_0 tal que:

$$(I_n - M)x_0 = 0,$$

de ocurrir eso, la matriz tendría un $Nu(I_n - M) \neq \{0\}$ o columnas linealmente dependientes o sería singular como $\stackrel{\bullet}{\triangle}$ te guste decirle. Laburo un poco la expresión:

$$(I_n - M)x_0 = 0 \Leftrightarrow Mx_0 \stackrel{\stackrel{\bullet}{=}}{=} x_0.$$

Tengo de dato que ||M|| < 1 y la definición de norma subordinada dice algo como:

$$||M|| = \max_{x \neq 0} \left\{ \frac{||Mx||}{||x||} \right\}$$
, para alguna norma vectorial.

En particular agarro de ese conjunto el vector x_0 que es por hipótesis distinto de 0, sino no tiene gracia. Tengo que:

$$\frac{\|Mx_0\|}{\|x_0\|} \stackrel{!}{\leq} \|M\| < 1 \iff \|Mx_0\| < \|x_0\| \stackrel{*}{\iff} \|x_0\| \stackrel{!}{<} \|x_0\|.$$

Lo cual terminando resultando en un absurdo. Por lo tanto no puede haber un vector x_0 tal que $(I_n - M)x_0 = 0$.

$$(I_n - M)$$
 es inversible.

- (b) i) Juntemos esa info:
 - $||A||_{\infty} = \alpha$ quiere decir que la fila de A cuya sumatoria sea máxima vale α .
 - La transformación f transpone y multiplica por γ .

$$[f(A)]_{ij} = \gamma \cdot [A]_{ji} \xrightarrow{\text{o más lindo}} f(A) = \gamma \cdot A^t$$

Entonces como $||A||_1$ sería la <u>columna</u> de A cuya sumatoria sea máxima:

$$||f(A)||_1 = ||\gamma \cdot A^t||_1 = |\gamma| \cdot ||A^t||_1 \stackrel{\text{!!}}{=} \gamma \cdot ||A||_{\infty} = \gamma \cdot \alpha$$

$$\|f(A)\|_1 = \gamma \cdot \alpha$$

ii) ¿Hay que hacer lo mismo que en el ítem (a)? Sí, 😂

$$(I_n - f(A))x_0 = 0 \Leftrightarrow f(A)x_0 \stackrel{\bigstar}{=} x_0.$$

Del ítem i) sé que $||f(A)||_1 < 1$, entonces:

$$\frac{\|f(A)x_0\|_1}{\|x_0\|_1} \stackrel{!}{\leq} \|f(A)\|_1 = \gamma \cdot \|A^t\|_{\infty} = \gamma \cdot \alpha < 1 \stackrel{!}{\Leftrightarrow} \|f(A)x_0\|_1 < \|x_0\|_1 \cdot \stackrel{\bigstar^1}{\Longrightarrow} \|x_0\|_1 < \|x_0\|_1 \cdot$$

Llegando a un absurdo. Por ende a la misma conclusión de que no hay tal x_0 , que vaya al 0, igualito al ítem (a):

$$(I_n - f(A))$$
 es inversible.

Creo que la dificultad de este ejercicio está en como *uno se espanta*, primero demostrando el caso general para que luego le pregunten lo mismo en un caso particular, así haciendo que uno dude hasta de su nombre.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

6. Sean $\alpha > 0$ y $A(\alpha) \in \mathbb{R}^{4\times 4}$ un conjunto de matrices que dependen de α , dadas por:

$$A(\alpha) = \begin{pmatrix} 1 & 2 & 0 & 1\\ \alpha & \alpha^2 + 2\alpha & \alpha & 2\alpha\\ 1 & 2 & \alpha^2 - 1 & 1\\ 1 & 2 & 0 & 2 \end{pmatrix}$$

- a) Encontrar los valores de α para los cuales $A(\alpha)$ no es inversible.
- b) Probar que $\operatorname{cond}_{\infty}(A(\alpha)) \xrightarrow{\alpha \to 1} +\infty$.
- c) ¿Qué puede decir de $\lim_{\alpha \to 1} \operatorname{cond}_2(A(\alpha))$
- a) Igualar el determinante a cero:

$$A(\alpha) = \begin{vmatrix} 1 & 2 & 0 & 1 \\ \alpha & \alpha^2 + 2\alpha & \alpha & 2\alpha \\ 1 & 2 & \alpha^2 - 1 & 1 \\ 1 & 2 & 0 & 2 \end{vmatrix} = (\alpha - 2)^2 \cdot (\alpha - 1) \cdot (\alpha + 1) \stackrel{!}{=} 0 \Leftrightarrow \alpha \in \{-1, 1, 2\}$$

b) Uso el mega resultado.

$$\operatorname{cond}(A) \ge \sup \left\{ \frac{\|A\|}{\|A - B\|} : B \text{ es singular} \right\}.$$

Elijo una matriz singular B:

$$B = \begin{pmatrix} 1 & 2 & 0 & 1\\ \alpha & \alpha^2 + 2\alpha & \alpha & 2\alpha\\ 1 & 2 & 0 & 1\\ 1 & 2 & 0 & 2 \end{pmatrix}$$

Por lo tanto queda:

$$\lim_{\alpha \to 1} \frac{\|A\|_{\infty}}{\|A-B\|_{\infty}} = \lim_{\alpha \to 1} \left| \frac{6\alpha + \alpha^2}{\alpha^2 - 1} \right| = +\infty$$

c) Uso el resultado:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \stackrel{\bigstar^1}{<} \|A\|_2 \le \sqrt{n} \|A\|_{\infty}$$

Dado que $A(\alpha) \in \mathbb{R}^{4 \times 4}$

$$\begin{array}{ccc}
\operatorname{cond}_{2}(A(\alpha)) & \stackrel{\text{def}}{=} & \|A(\alpha)\|_{2} \cdot \|A(\alpha)^{-1}\|_{2} \\
& \stackrel{\stackrel{\bullet}{\geq}}{\geq} & \frac{1}{\sqrt{4}} \|A(\alpha)\|_{\infty} \cdot \frac{1}{\sqrt{4}} \|A(\alpha)^{-1}\|_{\infty} \\
& = & \frac{1}{4} \|A(\alpha)\|_{\infty} \cdot \|A(\alpha)^{-1}\|_{\infty} \\
& \stackrel{\text{def}}{=} & \frac{1}{4} \operatorname{cond}_{\infty}(A(\alpha)) \\
& \stackrel{\alpha \to 1}{\longrightarrow} & \infty
\end{array}$$

Se concluye que:

$$\operatorname{cond}_2(A(\alpha)) \xrightarrow{\alpha \to \infty} \infty$$

La cota superior también tiende a infinito. Se prueba igual pero no es necesario.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🖸

- a) Probar que $\operatorname{cond}_{\infty}(A) \to \infty$ cuando $\varepsilon \to \infty$.
- b) Probar que $\operatorname{cond}_{\infty}(A) \to \infty$ cuando $\varepsilon \to 0^+$.
- c) Probar que cond₂(A) $\to \infty$ cuando $\varepsilon \to 0^+$ y cuando $\varepsilon \to \infty$.
- a) Uso el resultado:

$$\operatorname{cond}(A) \stackrel{\bigstar^1}{\geq} \sup \left\{ \frac{\|A\|}{\|A - B\|} : B \text{ es singular} \right\}.$$

Notar que sumando la primera y segunda filas queda casi la tercerca fila, por lo tanto la B singular:

$$B = \left(\begin{array}{cccc} 7 & 2 & 5 & 3\\ 1 & -2 & 3 & 4\\ 8 & 0 & 8 & 7\\ 0 & 0 & 3 & 1 \end{array}\right)$$

Usando \star^1 para la $\|\cdot\|_{\infty}$:

$$\operatorname{cond}_{\infty}(A) \ge \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} = \frac{23}{\frac{1}{\varepsilon}} = 23\varepsilon$$

Calculando el límite:

$$\lim_{\varepsilon \to \infty} 23\varepsilon = \infty \le \operatorname{cond}_{\infty}(A) \implies \operatorname{cond}_{\infty}(A) \xrightarrow{\varepsilon \to \infty} \infty$$

b) Parecido al anterior ahora la B singular candidata:

$$B = \begin{pmatrix} 7 & 2 & 5 & 3 \\ 1 & -2 & 3 & 4 \\ 8 & \frac{1}{\epsilon} & 8 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Usando nuevamente \star^1 para la $\|\cdot\|_{\infty}$:

$$\operatorname{cond}_{\infty}(A) \ge \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} = \frac{23 + \frac{1}{\varepsilon}}{4} =$$

Calculando el límite:

$$\lim_{\varepsilon \to 0^+} \frac{23 + \frac{1}{\varepsilon}}{4} = \infty \le \operatorname{cond}_{\infty}(A) \implies \boxed{\operatorname{cond}_{\infty}(A) \xrightarrow{\varepsilon \to 0^+} \infty}$$

c) Usamos la útil y misma de siempre, sanguchinni de cotardi:

$$\frac{1}{\sqrt{n}} \left\| A \right\|_{\infty} \stackrel{\bigstar^2}{<} \left\| A \right\|_2 \leq \sqrt{n} \left\| A \right\|_{\infty}$$

Si queda acotada inferiormente por infinito, listo:

$$\begin{aligned} \operatorname{cond}_2(A) & \stackrel{\text{def}}{=} & \|A\|_2 \cdot \|A^{-1}\|_2 \\ & \stackrel{\bigstar^2}{\geq} & \frac{1}{\sqrt{4}} \|A\|_{\infty} \cdot \frac{1}{\sqrt{4}} \|A^{-1}\|_{\infty} \\ & = & \frac{1}{4} \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} \\ & \stackrel{\text{def}}{=} & \frac{1}{4} \operatorname{cond}_{\infty}(A) \xrightarrow{\varepsilon \to 0^+ \ \lor \ \varepsilon \to \infty} \infty \end{aligned}$$

Donde lo último es lo calculado en los ítems anteriores 😂.

Finiquitando:

$$\operatorname{cond}_2(A) \xrightarrow{\varepsilon \to 0^+} \infty \quad \text{y} \quad \operatorname{cond}_2(A) \xrightarrow{\varepsilon \to \infty} \infty$$

La cota superior también tiende a infinito. Se prueba igual pero no es necesario.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

4. [final 09/07/24] Sea $A_n \in \mathbb{R}^{n \times n}$ la matriz con coeficientes dados por,

$$a_{ij} = \begin{cases} n & \text{si } i = 1 \text{ o } j = 1\\ n/i & \text{si } i = j\\ 0 & \text{en otro caso} \end{cases}$$

- a) Probar que $\operatorname{cond}_{\infty}(A_n) \geq cn^2$ para alguna constante independiente de n.
- b) Probar que $\operatorname{cond}_2(A_n) \to \infty$ cuando $n \to \infty$.

Mirá el ejercicio 23. para inspiración y bueh, el ejercicio 25. que es exactamente igual a este.

a) Hay que encontrar una B (antes de verla, mirá el ejercicio 23. para inspirarte)

$$\operatorname{cond}_{\infty}(A) \ge \sup \left\{ \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} : B \text{ es singular} \right\}$$

El caso con n=2 se puede calcular a mano:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{y} \quad A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \implies \text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty} = 3 \cdot 3 = 9 \ge c \cdot 2^{\frac{2}{3}}$$

Para $n \geq 3$:

$$b_{ij} = \begin{cases} n & \text{si } i = 1 \text{ o } j = 1\\ n/i & \text{si } i = j, i, j < n - 1\\ 0 & \text{en otro caso} \end{cases}$$

Las últimas 2 filas son iguales, así que B es singular:

$$A - B = \begin{cases} \frac{n}{n-1} & \text{si } i = j = n - 1\\ 1 & \text{si } i = j = n\\ 0 & \text{en otro caso} \end{cases}$$

Entonces queda que:

$$\operatorname{cond}_{\infty}(A) \ge \frac{\|A\|_{\infty}}{\|A - B\|_{\infty}} = \frac{n^2}{\frac{n}{n-1}} = \frac{n-1}{n} \cdot n^2 \ge c \cdot n^2$$

Esto último es verdadero, en particular, para cualquier c < 1.

b) Pispeá el ejercicio 16., ahí están las acotaciones falopa de la normas.

Entonces usando que:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \stackrel{\bigstar^1}{\leq} \|A\|_2 \leq \sqrt{n} \|A\|_{\infty}$$

sale con fritas KFC.

$$\lim_{n \to \infty} \operatorname{cond}_{2}(A) = \lim_{n \to \infty} \|A\|_{2} \cdot \|A^{-1}\|_{2}$$

$$\geq \lim_{n \to \infty} \frac{1}{\sqrt{n}} \|A\|_{\infty} \cdot \frac{1}{\sqrt{n}} \|A^{-1}\|_{\infty}$$

$$= \lim_{n \to \infty} \frac{1}{n} \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}$$

$$\stackrel{\text{def}}{=} \lim_{n \to \infty} \frac{1}{n} \operatorname{cond}_{\infty}(A)$$

$$\stackrel{!}{\geq} \lim_{n \to \infty} \frac{1}{n} c \cdot n^{2}$$

$$= \lim_{n \to \infty} c \cdot n = \infty$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯