Ubungen zur Vorlesung Differentialgeometrie II

Blatt 11

Aufgabe 39. (2 Punkte)

Sei M eine differenzierbare C^{∞} -Mannigfaltigkeit und seien X, Y, Z drei C^2 -Vektorfelder. Dann gilt die Jacobiidentität

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

Aufgabe 40. (2 Punkte)

 $T(M \times N)$ ist (in natürlicher Weise) diffeomorph zu $TM \times TN$.

Aufgabe 41. (4 Punkte)

Seien (M,g) und (N,h) zwei Riemannsche Mannigfaltigkeiten. Für Vektoren X und Y definieren wir die Schnittkrümmung

$$K(X,Y):=\frac{R_{ijkl}X^iY^jX^kY^l}{|X|^2|Y|^2-\langle X,Y\rangle^2}\,.$$
 Wir betrachten die Produktmannigfaltigkeit $W=M\times N$ mit der Produktmetrik

$$G((v_1, u_1), (v_2, u_2)) = g(v_1, v_2) + h(u_1, u_2)$$

für $(v_i, u_i) \in T(M \times N) = TM \times TN$.

- (i) Wenn M und N beide positive Schnittkrümmung haben, gilt dies dann auch für W? Hinweis: Betrachte $M = N = \mathbb{S}^2$.
- (ii) Wenn M und N beide positive Ricci-Krümmung haben, gilt dies dann auch für W?

Aufgabe 42. (4 Punkte)

Sei (B_R^n, g) mit

$$g_{ij}(y) := \frac{4R^4}{(R^2 - |y|^2)^2} \delta_{ij}$$

das Poincaré-Modell des hyperbolischen Raumes.

Berechne den Riemannschen Krümmungstensor R_{ijkl} , die Ricci-Krümmung R_{ij} , die Skalarkrümmung R und die Schnittkrümmungen K(X,Y) im Poincaré-Modell des hyperbolischen Raumes.

Aufgabe 43. (4+4 Punkte)

Seien A, B topologische Räume, $C \subset B$ und $g: C \to A$ eine stetige Abbildung. Dann definieren wir die Verklebung von A und B entlang g durch

$$A \cup_a B := A \dot{\cup} B / \sim$$

wobei \sim die kleinste Äquivalenzrelation auf $A \cup B$ mit $x \sim g(x)$ für alle $x \in C$ ist.

Sei M^n eine Mannigfaltigkeit und $f: \{-1,1\} \times B_2(0) \to M^n$ eine glatte Einbettung. Definiere für $C = \{-1, 1\} \times \partial B_1(0) \subset [-1, 1] \times \partial B_1(0),$

$$N:=\left(M^n\setminus f\big(\{-1,1\}\times B_1(0)\big)\right)\cup_{f|_C} \big([-1,1]\times \partial B_1(0)\big)\,.$$

Zeige, dass N die Struktur einer glatten Mannigfaltigkeit besitzt.

Zusatz: Wir haben in der Aufgabe benutzt, dass

$$\partial \left(\mathbb{S}^0 \times D^3\right) = \mathbb{S}^0 \times \mathbb{S}^2 = \partial \left(D^1 \times \mathbb{S}^2\right)$$

gilt und $D^3 \times \mathbb{S}^0$ "herausgeschnitten" und $\mathbb{S}^2 \times D^1$ "eingeklebt". Diese Konstruktion heißt zusammenhängende Summe.

Sei $1 \leq k \leq n.$ Benutze nun bei der k-Chirurgie, dass

$$\partial \Big(\mathbb{S}^k \times D^{n-k}\Big) = \mathbb{S}^k \times \mathbb{S}^{n-k-1} = \partial \Big(D^{k+1} \times \mathbb{S}^{n-k-1}\Big)$$

gilt, schneide $\mathbb{S}^k \times D^{n-k}$ heraus und klebe $D^{k+1} \times \mathbb{S}^{n-k-1}$ ein. Definiere k-Chirurgie formal und zeige, dass der bei der k-Chirurgie aus einer glatten Mannigfaltigkeit entstehende topologische Raum wieder die Struktur einer glatten Mannigfaltigkeit besitzt.

Abgabe: Bis Donnerstag, 05.07.2018, 10.00 Uhr, in die Mappe vor Büro F 402.