

On Deep Learning

Practical Session

João Pereira

Outline

- Remarks on previous sessions
- Introduction to TensorFlow
- Computational graph: tensors and operations
- Implementing neural networks in Python with TensorFlow:
 - Fraud Detection
 - Time Series Classification
 - Time Series Forecasting

When should we use deep learning?

- For tackling complex problems
- We have **lots** of data available
- Highly scalable solutions
- High-dimensional and non-linear data: vision, speech, text, ...
- Model performance is crucial

What is TensorFlow?

- Machine learning framework
- Computes gradients
- Developed by Google Brain for internal use
- Open-sourced in 2015
- Widely used in research and industry
- Allows deployment in diverse platforms (CPUs, GPUs, and TPUs)

Computational Graph

- Numeric computation is represented as a graph
- Nodes are operations
- Edges are tensors (multi-dimensional arrays)

Colab Environment

- Similar to Jupyter Notebooks
- Runs online in Google servers
- Available for free!
- GPU and TPU support up to 12h in row (Tesla K80 GPU, 12GB of RAM)

Let's get started!

Code available on Github (7)

github.com/jpcpereira/pdeng__tutorial_deep_learning

Fraud Detection

Using autoencoders UNSUPERVISED

fraud_detection.ipynb

Open in Colab

Fraud Detection

- Highly imbalanced problem
- Scalability is key
- Inference time has to be very short (<20ms)

Transaction #	Location	Store	•••	Amount
1	Netherlands	Albert Heijn		15.75 €
• • •	•••	• • •		
N	Portugal	CR7 Museum		35.00 €

Not Fraud

Fraud

Autoencoders (Recap)

$$\mathcal{L}(\mathbf{x}; \mathbf{W}) = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$$

Fraud Detection Approach

- Train it on data with mostly normal transactions.
- Learns to reconstruct normal transactions.
- Measure the reconstruction error
- At test time, fraud transactions have high reconstruction error.

Time Series Classification

Using Recurrent Neural Networks SUPERVISED

time_series_classification.ipynb • •

Open in Colab

Training RNNs in TensorFlow

Data Format

training_data is a tensor with shape:

(BATCH_SIZE, TIMESTEPS, DIMENSIONS)

Time Series Forecasting

Using Recurrent Neural Networks (Supervised)

time_series_forecasting.ipynb

Task

- Time series forecasting can be seen as a regression task
- Very often the **order** of the observations matter.
- Let's use a Recurrent Neural Network (RNN)!

Time Series Forecasting Models

TensorFlow References

TensorFlow 2.0

Tweets by Francois Chollet (inventor of Keras)

https://twitter.com/fchollet/status/1105139360226140160

Questions?

mail@joao-pereira.pt

Thank you for your attention!