LIMITE ET CONTINUITE

I) CONTINUITE D'UNE FONCTION NUMERIQUE EN UN POINT

1) Activité et rappelles

1.1 Activités :

Activité 1 :

Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4}$$

$$\lim_{x \to 2} \frac{\sqrt{4x+1} - 3}{x^2 - 3x + 2}$$

$$\lim_{x \to 0} \frac{\sin 7x}{\tan 3x}$$

$$\lim_{x \to \frac{\pi}{c}} \frac{\sin 2x}{\cos x}$$

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4} \qquad \lim_{x \to 2} \frac{\sqrt{4x + 1} - 3}{x^2 - 3x + 2} \qquad \lim_{x \to 0} \frac{\sin 7x}{\tan 3x} \qquad \lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x} \qquad \qquad \lim_{x \to 0} \frac{2\cos^2 x + \cos x - 3}{1 - \cos^2 x}$$

Activité 2:

Considérons la fonction f définie par :

$$\begin{cases}
f(x) = \frac{3x^2 + x - 4}{\sqrt{x^2 + 3} - 2} ; si \ x \neq 1 \\
f(1) = 14
\end{cases}$$

- 1- Déterminer D_f
- 2- a) Déterminer : $\lim_{x\to 1} f(x)$.
 - b) Comparer $\lim_{x\to 1} f(x)$ et f(1)

On dit que f est continue en $x_0 = 1$

Activité 3:

Considérons la fonction *g* définie par :

$$\begin{cases} g(x) = xE\left(\frac{1}{x}\right) \; ; si \; x \neq 0 \\ g(0) = 1 \end{cases} \quad \text{(E désigne la partie entière)}$$

- 1- Déterminer D_f
- 2- Déterminer : $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to 0^-} g(x)$
- 3- g est elle continue en $x_0 = 0$?

1.2 Rappelle

Définition:

Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. On dit que la fonction f tend vers le réel l quand x tend vers a si : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon$

2 Définition et exemples

Définition:

Soit f une fonction définie sur un intervalle de centre a. On dit que la fonction f est continue en a si :

elle admet une limite finie en a et $\lim_{x\to a} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le |x - \alpha| < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

Exemples:

- Montrer en utilisant la définition que g(x) = 3x + 1 est continue en a (a un réel quelconque).
- **2** Montrer en utilisant la définition que $h(x) = x^2 + 1$ est continue en 1
- **3**Considérons la fonction *f* définie par :

$$\int f(x) = \frac{2x^3 - x - 14}{x^2 - x - 2} ; si \ x > 2$$

$$f(x) = \frac{x - 2}{2x^2 + x - 10} ; si \ x < 2$$

$$f(2) = \frac{1}{9}$$

En utilisant la notion des limites étudier la continuité de la fonction f en $x_0=2$

3- Interprétations graphiques

3.1 Activité:

Activité 1:

Considérons la fonction f définie par : $f(x) = \begin{cases} x^2 + 2x, & x < 1 \\ x^2 - 2x, & x \ge 1 \end{cases}$

- 1- Déterminer f(1) et étudier la continuité de la fonction f en $x_0=1$
- 2- Représenter graphiquement la fonction f.

Activité 2:

Considérons la fonction h définie par : $h(x) = \begin{cases} 2x + 2, & x < -1 \\ -3x + 3, & x > -1 \end{cases}$ et h(-1) = 3

- 1- a) la fonction h admet-elle une limite en $x_0=-1$
 - b) la fonction h est-elle continue en $x_0 = -1$
- 2- Représenter graphiquement la fonction h.

3.2 Interprétations

La courbe	L'interprétation
$f(x) = \begin{cases} 2x^2 + x, & x < 1 \\ -x^2 + 2, & x \ge 1 \end{cases}$	 f est définie en 1 f n'admet pas de limite en 1 f n'est pas continue en 1
$f(x) = \begin{cases} 2x^2 + x - 2, & x < 1 \\ -x^2 + 2, & x > 1 \end{cases}; f(1) = 2$	• f est définie en 1 • f admet une limite en 1 et $\lim_{x\to 1} f(x) \neq f(1)$ • f n'est pas continue en 1
$f(x) = \begin{cases} 2x^2 + x - 2, & x < 1 \\ -x^2 + 2, & x \ge 1 \end{cases}$	• f est définie en 1 • f admet une limite en 1 et $\lim_{x\to 1} f(x) = f(1)$ • f est continue en a

Exercice:

Etudier la continuité de la fonction

$$\begin{cases} f(x) = x \sin\left(\frac{3}{x}\right), & x \neq 0 \\ f(0) = 0, & x \ge 1 \end{cases}$$

4) Prolongement par continuité

Activité:

Soit la fonction h définie par $h(x) = \frac{x^3+1}{x^2+3x+2}$

- 1- Déterminer l'ensemble de définition de la fonction h.
- 2- Déterminer la limite $\lim_{x\to -1} h(x)$, h est-elle continue en $x_0=-1$?
- 3- Soit la fonction \bar{h} définie par : $\begin{cases} \bar{h}(x) = h(x) \text{ si } x \neq -1 \\ \bar{h}(-1) = 3 \end{cases}$
 - a) Déterminer $D_{\overline{h}}$
 - b) Etudier la continuité de la fonction \bar{h} en x_0 =-1

La fonction \bar{h} s'appelle un prolongement par continuité de la fonction h en -1

4- Peut-on prolonger h par continuité en a=-2

Théorème et définition :

Soit f une fonction dont l'ensemble de définition est D_f ; a un réel tel que $a \notin D_f$ et $\lim_{x \to a} f(x) = l$ (finie)

La fonction \bar{f} définie par : $\begin{cases} \bar{f}(x) = f(x); & \text{si } x \neq a \\ \bar{f}(x) = \lim_{x \to a} f(x) = l \end{cases}$ est une fonction **continue en a et** c'est **un prolongement**

de la fonction f en a.

La fonction \bar{f} s'appelle un prolongement par continuité de la fonction f en a

Exercice 1:

Définir un prolongement par continuité de la fonction $g(x) = \frac{x^4 - 1}{x^3 - 1}$ en a = 1

Exercice 2:

Soit la fonction h définie par $h(x) = \frac{x^2 + x - 6}{x - E(x)}$ (E désigne la partie entière)

Peut-on prolonger h par continuité en a = 2?

II) CONTINUITE A DROITE CONTINUITE A GAUCHE.

1) Activité et définition.

1.1 Activité.

Introduction

Dans l'exercice prrécedent où f était définie par :

$$f(x) = \frac{2x^3 - x - 14}{x^2 - x - 2} ; si x > 2$$

$$f(x) = \frac{x - 2}{2x^2 + x - 10} ; si x < 2$$

$$f(2) = \frac{1}{9}$$

On a trouvé que : $\lim_{x\to 2^-} f(x) = \frac{1}{9} = f(2)$; on dit que la fonction f est continue à gauche de 2 et $\lim_{x\to 2^+} f(x) \neq \frac{1}{9} = f(2)$ on dit que la fonction f n'est pas continue à droite de 2.

1.2 Définitions

Définition

• Soit f une fonction définie sur un intervalle de la forme [a, a + r] (où > 0)

On dit que la fonction f est continue à droite de a si : f admet une limite finie à droite de a et $\lim_{x\to a^+} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le x - \alpha < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

2 Soit f une fonction définie sur un intervalle de la forme]a-r,a] (où >0)

On dit que la fonction f est continue à gauche de a si : f admet une limite finie à gauche de a et $\lim_{x\to a^-} f(x) = f(a)$

C'est-à-dire : $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 \le \alpha - x < \alpha \Rightarrow |f(x) - f(\alpha)| < \varepsilon$

Théorème

Une fonction est continue en un point a si et seulement si elle est continue à droite et à gauche de a

Preuve: (En exercice)

Exercice 1:

Etudier la continuité de la fonction
$$\begin{cases} f(x) = \frac{3x^2 - x - 2}{|4x - 3| - 1} & \text{si } x \neq 1 \\ f(1) = \frac{5}{4} & \text{en } a = 1 \end{cases}$$

Exercice 2:

Soit la fonction
$$g$$
 définie par :
$$\begin{cases} g(x) = \frac{x^2 + x - 6}{\sqrt{2x + 12} - 4} & \text{si } x > 2 \\ g(x) = \frac{x^2 + \alpha x - \alpha + 1}{x - 2} & \text{si } x < 2 \\ g(2) = l \end{cases}$$

Existent-t-il α et l pour que g soit continue en 2 ?

III) OPERATIONS SUR LES FONCTIONS CONTINUES.

1) Continuité sur un intervalle

Définition:

Soit f une fonction dont le domaine de définition est D_f , soit]a,b[un intervalle inclus dans D_f

- On dit que f est continue sur l'ouvert a, b si elle est continue en tout point de a, b
- On dit que f est continue sur [a, b[si elle est continue sur]a, b[et à droite de a
- On dit que f est continue sur [a, b] si elle est continue sur [a, b[, à droite de a et à gauche de b

Remarque:

- Si une fonction f est continue sur [a, b] et sur [b, c] elle est continue sur [a, c]
- ✓ En général si f est continue sur un intervalle I et sur un intervalle J et si $I \cap J \neq \emptyset$ alors f est continue sur $I \cup J$.
- \checkmark f peut-être continue sur [a, b[et sur [b, c] sans qu'elle soit continue sur [a, c] Dans le graphique ci-dessous f estcontinue sur [-3,0[et continue sur [0,2] mais pas continue sur [-3,0] car elle n'est pas continue en 0

2) Opérations sur les fontions continues

2.1 Rappelles sur les opérations sur les limites finies

Propriété:

Soient f et g deux fonctions tels que : $\lim_{x \to a} f(x) = l \lim_{x \to a} g(x) = l'$ on a :

- $\lim_{x \to a} (f+g)(x) = l + l'$
- $\lim(f\times g)(x)=l\times l'$
- $\lim_{x \to a} (|f|)(x) = |l|$
- $\lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{l'} \qquad l' \neq 0$ $\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{l}{l'} \qquad l' \neq 0$

Ces propriétés sont vraies à droite et à gauche d'un réel a.

2.2 Opérations sur les fonctions continues

Grace à la propriété précédente et à la définition de la continuité on peut en déduire :

Propriété:

①Si f et g sont deux fonctions continues en a alors :

- f + g
- $f \times g$

sont des fonctions continues en a

- ② Si f et g sont deux fonctions continues en a et $g(a) \neq 0$ alors

sont des fonctions continues en a.

- ③ Si f une fonction continue en a et $f(a) \ge 0$ alors :
 - \sqrt{f} est continue en a

Remarque:

La propriété précédente reste vraie soit à droite de a, à gauche de a ou sur un intervalle I (En tenant compte des conditions)

Résultat:

Une fonction polynôme sur $\mathbb R$ est définie comme la somme des plusieurs monômes

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Et puisque la fonction $x \mapsto x^n$ est continue sur $\mathbb R$ donc la fonction $x \mapsto kx^n$ et par suite

Propriété:

Tout fonction polynôme est continue sur ${\mathbb R}$

Propriété:

Les fonctions sin et cos sont continue sur $\mathbb R$

Exemples:

 $\mathbf{\Phi} f(x) = \sqrt{x^2 + x + 3}$ est continue sur \mathbb{R} car $x \mapsto x^2 + x + 3$ étant une fonction polynôme donc elle est continue sur \mathbb{R} de plus $(\forall x \in \mathbb{R})(x^2 + x + 3 \ge 0)$ (Son discriminant Δ est négatif)

2
$$g(x) = \frac{4x^3 + x + 1}{x^2 + 2x - 3}$$
 est continue sur $] - \infty, -3[$; sur $] - 3,1[$ et sur $]1, +\infty[$.

3 La fonction tan est continue sur tous le intervalles de la forme : $\left]\frac{-\pi}{2} + k\pi\right] \frac{\pi}{2} + k\pi$ ($0 + k \in \mathbb{Z}$)

2.3 Continuité de la composition de deux fonctions.

Théorème:

Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle J tels que $f(I) \subset J$ et x_0 un élément de I.

- ① Si f est continue en x_0 et g continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 .
- ② Si f est continue I et g continue en f(I) alors gof est continue I.

Preuve: (En utilisant la définition)

Montrons que : $(\forall \varepsilon > 0)(\exists \alpha > 0)(|x - x_0| < \alpha \Rightarrow |(gof)(x) - (gof)(x_0)| < \varepsilon$

On a g est continue en $f(x_0)$ donc :

$$(\forall \varepsilon > 0)(\exists \beta > 0)(|t - f(x_0)| < \beta \Rightarrow |g(t) - g(f(x_0))| < \varepsilon (R)$$

et puisque $f(I) \subset J$ donc : $(\forall x \in I)(f(x) \in J)$ (on pose t = f(x) dans (R)) on obtient :

$$(\forall \varepsilon > 0)(\exists \beta > 0)(|f(x) - f(x_0)| < \beta \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon \quad (*)$$

Pour $\beta > 0$ ($\exists \alpha > 0$) ($|x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \beta$ (car f est continue en x_0)

$$\Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon$$
 (*) C.Q.F.D

Exemples:

 $f(x) = sin\left(\frac{1}{x^2+1}\right)$ est continue sur \mathbb{R} car :

- $x \mapsto x^2 + 1$ est continue sur \mathbb{R} et ne s'annule pas sur \mathbb{R} donc
- $x \mapsto \frac{1}{x^2 + 1}$ est continue sur \mathbb{R} et $(\forall x \in \mathbb{R}) \left(\frac{1}{x^2 + 1} \in \mathbb{R} \right)$
- sin est continue sur $\mathbb R$

 $g(x) = \sqrt{\sin^2 x + 1}$ est continue sur \mathbb{R} (justifier la réponse)

Exercice: Montrer que $h(x) = cos(\frac{1}{x})$ est continue sur $]-\infty,0[$ et sur $]0,+\infty[$

3) Limite de vou

Théorème:

Soit u une fonction définie sur un intervalle pointé de centre x_0 telle que $\lim_{x \to x_0} u(x) = l$; si v est continue en l alors $\lim_{x \to x_0} (vou)(x) = v(l)$

Preuve:

On a : $\lim_{x \to x_0} u(x) = l \in \mathbb{R}$ donc u admet un prolongement par continuité \bar{u} définie comme :

$$\begin{cases} \bar{u}(x) = u(x) ; \text{si } x \neq x_0 \\ \bar{u}(x_0) = l \end{cases}$$

La fonction \bar{u} étant continue en x_0 ; et v est continue en $l=\bar{u}(x_0)$ alors et d'après le théorème de la composition $(vo\ \bar{u})$ est continue en x_0 et par suite :

$$\lim_{x \to x_0} (vou)(x) = \lim_{x \to x_0} (vo\bar{u})(x) = (vo\bar{u})(x_0) = v(\bar{u}(x_0)) = v(l)$$

Application:

Déterminer les limites suivantes :

- 1. $\lim_{x \to 0} \cos \left(\pi \frac{\sin 4x}{3x} \right)$
- 2. $\lim_{x \to +\infty} \sin \left(\pi x \left(1 \cos \left(\frac{1}{\sqrt{x}} \right) \right) \right)$

IV) IMAGE D'UN INTERVALLE PAR UNE FONCTION CONTINUE

<u>1) Image d'un segment (intervalle fermé) :</u>

Activité:

Le graphe ci-contre est le graphe de la fonction $f(x) = x^2 + 2x$

1- Déterminer graphiquement les images des intervalles

$$I_1 = [0,1]$$
, $I_2 = [-3,-1]$; $I_3 = [-3,1]$

2- Montrer algébriquement que f([-3,1]) = [-1,3]

Théorème: (Admis)

L'image d'un segment [a,b] par une fonction continue est le segment [m,M] où :

$$m = \min_{x \in [a,b]} f(x)$$
 et $M = \max_{x \in [a,b]} f(x)$

La courbe ci-contre est la courbe de la fonction

$$f(x) = x^3 + 3x^2 + 2$$

$$f([a,b]) = [m,M]$$

continuitéiamgeintervalle.ggb

Cas particulier:

- Si f est continue croissante sur [a, b] alors f([a, b]) = [f(a), f(b)]
- Si f est continue décroissante sur [a,b] alors f([a,b])=[f(b),f(a)]

Remarque:

La continuité dans le théorème précèdent est suffisante mais pas nécessaire

Dans la figure ci-contre f n'est pas continue mais

$$f([0,2]) = [f(2), f(1)] = [-1,2]$$

2) Image d'un intervalle.

2.1 Théorème général

Théorème (admis)

L'image d'un intervalle par une fonction continue est un intervalle.

Remarque:

L'intervalle I et son image f(I) par une fonction continue n'ont pas nécessairement la même forme.

Dans le cas de la courbe ci-contre on a :

$$f(]0,2]) = [-2,1]$$

2.2 Cas d'une fonction strictement monotone :

L'intervalle I	f(I): f strictement	f(I): f strictement
	croissante	décroissante
[a,b]	[f(a),f(b)]	[f(b),f(a)]
[a, b[$[f(a), \lim_{x\to b^-} f(x)]$	$]\lim_{x\to b^{-}}f(x),f(a)]$
]a, b[$\lim_{x \to a^+} f(x)$, $\lim_{x \to b^-} f(x)$	$\lim_{x\to b^-} f(x), \lim_{x\to a^+} f(x) [$
[<i>a</i> , +∞[$[f(a), \lim_{x\to+\infty} f(x)]$	$\lim_{x\to+\infty}f(x),f(a)$
] - ∞, <i>b</i> [$\lim_{x \to -\infty} f(x), \lim_{x \to b^{-}} f(x) [$	$\lim_{x\to b^{-}} f(x), \lim_{x\to -\infty} f(x) [$
] − ∞, +∞[$\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	$\lim_{x\to+\infty} f(x), \lim_{x\to-\infty} f(x)$

Remarque

Si f n'est pas strictement monotone sur l'intervalle I, on peut utiliser les propriétés précédentes en subdivisant l'intervalle I en intervalles où f est strictement monotone et on utilise la propriété $f(I_1 \cup I_2) = f(I_1) \cup f(I_2)$.

Exercice:

- 1- Dresser le tableau de variation de la fonction $f(x) = 2x^2 3x^2$
- 2- Déterminer les images des intervalles suivants :]-1,0]; [1,2]; [-1,2[; $[0,+\infty[$

V) THEOREME DES VALEURS INTERMEDIERE – TVI.

<u>1) Le théorème :</u>

1.1 Cas général

Preuve:

Rappelons que :
$$f(I) = J \Leftrightarrow \begin{cases} (\forall x \in I)(f(x) \in J) \\ (\forall y \in J)(\exists x \in I)(f(x) = y) \end{cases}$$

Soit f une fonction continue sur un intervalle I; a et b deux éléments de I tels que : a < b.

On sait que
$$f([a,b]) = [m,M]$$
 où $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$

On a donc $f(a) \in [m, M]$ et $f(b) \in [m, M]$.

Soit λ comprise ntre f(a) et f(b) on a donc : $\lambda \in [m, M]$ et puisque

f([a,b]) = [m,M] donc λ admet au moins un antécédent c dans l'intervalle [a,b].

D'où pour tout λ compris entre f(a) et f(b) il existe au moins un $c \in [a,b]$ tel que $f(c) = \lambda$

Soit f une fonction continue sur [a, b].

Pour tout λ comprise ntre f(a) et f(b) il existe au moins un $c \in [a,b]$ tel que $f(c) = \lambda$

1.2 Cas f strictement monotone.

 $c \in [a, b]$ tel que $f(c) = \lambda$

<u>Théorème T.V.I (cas f strictement monotone)</u>

Soit f une fonction continue strictement monotone $\,\,{\rm sur}\,[a,b]$. Pour tout λ comprise ntre f(a) et f(b) il existe un et un seul

Remarque:

L'expression " Pour tout λ compris entre f(a) et f(b) il existe un et un seul $c \in [a,b]$ tel que $f(c) = \lambda$ " peut-être formulée comme :

" Pour tout λ comprise ntre f(a) et f(b) l'équation $f(x) = \lambda$ admet une solution unique dans [a,b]

Corolaire1 (T.V.I):

Soit f une fonction continue sur [a, b].

Si $f(a) \times f(b) < 0$ il existe au moins un $c \in [a, b]$ tel que f(c) = 0

Preuve:

 $f(a) \times f(b) < 0$ veut dire que f(a) et f(b) ont des signes opposés donc 0 est compris entre f(a) et f(b)On prend $\lambda = 0$ dans le théorème général des valeurs intermédiaire.

Corolaire2 (T.V.I):

Soit f une fonction continue strictement monotone sur [a,b].

Si $f(a) \times f(b) < 0$ il existe un et un seul c dans [a, b] tel que f(c) = 0

2) Applications:

Exercice 1:

- 1- Montrer que l'équation $x^3 + x 1 = 0$ admet une racine unique dans [0,1]
- 2- Montrer que l'équation $x^3 + x 1 = 0$ admet une racine unique dans \mathbb{R} .

VI) FONCTIONS COMPOSEES ET FONCTIONS RECIPROQUES.

Activité :

Soit
$$f(x) = \frac{1}{1+x^2}$$

- 1- Montrer que pour tout y dans $I=[0,+\infty[$, l'équation f(y)=x admet une solution unique dans l'intervalle J=]0,1]
- 2- Etudier la monotonie et la continuité de f sur $\mathbb R$

On dit que la fonction f admet une fonction réciproque de I =]0, 1] vers $I = [0, +\infty[$

Remarque:

$$\begin{cases} f^{-1}(x) = y \\ x \in F \end{cases} \Leftrightarrow \begin{cases} f(y) = x \\ y \in E \end{cases}$$

On a:

$$(\forall x \in F)(f \circ f^{-1}(x) = x)$$
$$(\forall x \in E)(f^{-1} \circ f(x) = x)$$

2) Théorème et applications

2.1 Le théorème

Théorème:

Soit f une fonction définie continue et strictement monotone sur un intervalle I, On a f admet une fonction réciproque f^{-1} définie de I = f(I) vers I.

Preuve:

Puisque f est continue et strictement monotone alors l'image de l'intervalle I l'intervalle J = f(I)

donc f est surjective par construction car $(\forall x \in J = f(I))(\exists y \in I)(f(y) = x)$

Montrons que f est injective de I vers f(I)

On suppose pour la démonstration que f est strictement croissante (même démonstration si f est strictement décroissante)

Soient y_1 et y_2 deux éléments distincts de I (On suppose que $y_1 > y_2$)

On a donc (puisque f est strictement croissante) $f(y_1) > f(y_2)$ donc $f(y_1) \neq f(y_2)$ et finalement f est injective donc f est une bijection de I vers f(I)

D'où f admet une fonction réciproque f^{-1} de J=f(I) vers I et on a : $\begin{cases} f^{-1}(x)=y\\ x\in I \end{cases} \Leftrightarrow \begin{cases} f(y)=x\\ y\in I \end{cases}$

2.2 Application:

Exercice 1

Soit la fonction $f(x) = 2x^2 + x + 1$ définie sur \mathbb{R} .

- 1- Déterminer J = f([0,1])
- 2- Montrer que f admet une fonction réciproque de J vers [0,1] et déterminer $f^{-1}(x)$ pour x dans J

Exercice 2:

Soit la fonction $g(x) = x - 2\sqrt{x}$ définie sur \mathbb{R} .

- 1- Montrer que g est strictement croissante sur $[1, +\infty[$ puis déterminer $J = g([1, +\infty[)$
- 2- Montrer que g admet une fonction réciproque de J vers $[1, +\infty[$ et déterminer $g^{-1}(x)$ pour x dans J

Exercice 3:

Soit la fonction $h(x) = \frac{x}{1-x^2}$ définie sur \mathbb{R} .

Montrer que h est une bijection de]-1,1[vers un intervalle J qu'il faut déterminer et déterminer $h^{-1}(x)$ pour x dans J.

2.3 Propriété de la fonction réciproque

Propriété 1 :

Si f admet une fonction réciproque f^{-1} de J=f(I) vers I alors f^{-1} à la même monotonie sur J que celle de f sur I.

Preuve:

$$\begin{split} T_{f^{-1}/J} &= \frac{f^{-1}(x_1) - f^{-1}(x_2)}{x_1 - x_2} \\ &= \frac{y_1 - y_2}{f(x_1) - f(x_2)} \\ &= \frac{1}{T_{f/I}} \ (T_{f/I} \neq 0 \ f \ \text{est strictement monotone}) \end{split}$$

Donc le taux de f^{-1} sur J à le même signe que le taux de f sur I

Et on conclut.

Propriété 2 :

Si f admet une fonction réciproque f^{-1} de J=f(I) vers I alors $C_{f^{-1}}$ et C_{f} sont symétriques par rapport à : (Δ) y=x

Rappelles:

② Dans un repère orthogonal si on a un point M(a, b) son symétrique par rapport à la droite (Δ) y = x est le point M'(b, a).

Preuve d'une propriété :

Soit f une fonction continue strictement monotone sur un intervalle I, f^{-1} sa fonction réciproque définie de I = f(I) vers I.

 C_f et $C_{f^{-1}}$ sont les courbes respectives de f et de f^{-1} .

Soit M(a, f(a)) un point de la courbe C_f son symétrique par rapport à la droite (Δ) y = x est le point M'(f(a), a).

$$\operatorname{Or}: \left\{ \begin{aligned} f(a) &= b \\ a &= f^{-1}(b) \end{aligned} \right. \operatorname{donc} M'(b, f^{-1}(b)) \operatorname{d'où} M' \in \ C_{f^{-1}} \end{aligned}$$

$f^{-1}(b) = a$ b = f(a)

Propriété:

Soit f une fonction continue strictement monotone sur un intervalle I, f^{-1} sa fonction réciproque définie de J=f(I) vers $I.C_f$ et $C_{f^{-1}}$ sont symétriques par rapport à la droite (Δ) y=x

A remarquer que la symétrie des deux courbes concerne toutes leurs composantes ; les asymptotes ; les tangentes et demi-tangentes...

3) La fonction racine $n - \epsilon me$

3.1 Définition et règles de calculs

Propriété et définition :

Soit n un élément de \mathbb{N}^* ; la fonction $u \colon x \mapsto x^n$ est une fonction continue strictement croissante sur \mathbb{R}^+ elle admet donc une fonction réciproque u^{-1} de $u(\mathbb{R}^+) = \mathbb{R}^+$ vers \mathbb{R}^+ .

La fonction réciproque u^{-1} s'appelle la fonction racine $n-\acute{e}me$ et se note $\sqrt[n]{}$

Conséquence de la définition :

- La fonction $\sqrt[n]{}$ est définie sur \mathbb{R}^+
- $(\forall x \in \mathbb{R}^+)(\sqrt[n]{x} \ge 0)$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)(\sqrt[n]{x} = y \iff y^n = x)$
- La fonction $\sqrt[n]{}$ est continue sur \mathbb{R}^+ strictement croissante.
 - $\circ \quad (\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \, (\sqrt[n]{x} = \sqrt[n]{y} \iff x = y)$
 - $\circ \quad (\forall a \in \mathbb{R}^+) \, (\sqrt[n]{x} \ge a \Longleftrightarrow x \ge a^n)$
 - $\circ \quad (\forall a \in \mathbb{R}^+) \, (\sqrt[n]{x} \le a \Longleftrightarrow 0 \le x \le a^n)$
- $(\forall x \in \mathbb{R}^+)((\sqrt[n]{x})^n = \sqrt[n]{x^n} = x$
- $(\forall x \in \mathbb{R}^+)(\forall p \in \mathbb{N})((\sqrt[n]{x})^p = \sqrt[n]{x^p}$
- $\bullet \quad \lim_{x \to +\infty} \sqrt[n]{x} = +\infty$
- Si $\lim_{x \to **} u(x) = +\infty$ alors $\lim_{x \to **} \sqrt[n]{u(x)} = +\infty$
- Si $\lim_{x \to **} u(x) = l \ge 0$ alors $\lim_{x \to **} \sqrt[n]{u(x)} = \sqrt[n]{l}$

<u>La courbe de la fonction</u> $\sqrt[n]{}$

Règle de calcul:

- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \left(\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}\right)$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \left(\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}\right)$
- $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*) \left(\sqrt[p]{\sqrt[n]{x}} = \sqrt[np]{x}\right)$ (à prouver)
- $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*)(\sqrt[n]{x} = \sqrt[np]{x^p})$ (à prouver)

Remarque:

 $\bullet \quad (\forall x \in \mathbb{R}^+)(\sqrt[2]{x} = \sqrt{x})$

• $(\forall x \in \mathbb{R}^+)(\sqrt[1]{x} = x)$

L'équation $x^n = a$

Exercices d'applications:

Exercice 1:

1. Résoudre dans \mathbb{R} : x^4 = 16

2. Résoudre dans $\mathbb{R}:(x-1)^3=-27$

Exercice 2:

1. Résoudre dans \mathbb{R} l'équation: $\sqrt[3]{x} - x = 0$

2. Résoudre dans \mathbb{R} l'équation: $\sqrt[3]{x} - 5\sqrt[6]{x} + 6 = 0$

3. Résoudre dans \mathbb{R} l'inéquation: $\sqrt{x-1} - \sqrt[3]{x-2} > 1$.

3.2 L'expression conjuguai et ses applications

Ordre 3:

On sait que $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ et $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

II en résulte : $a-b = \frac{a^3-b^3}{a^2+ab+b^2}$ et $a+b = \frac{a^3+b^3}{a^2-ab+b^2}$

Par suite:

$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+})\left(\sqrt[3]{x} - \sqrt[3]{y} = \frac{x - y}{\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}}\right)$$
$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+})\left(\sqrt[3]{x} + \sqrt[3]{y} = \frac{x + y}{\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}}\right)$$

Applications:

① Rendre le dénominateur rationnel :

$$a = \frac{3\sqrt{2}}{\sqrt[3]{2}-2}$$

$$b = \frac{1}{\sqrt[3]{4} + \sqrt[3]{2} + 1}$$

② Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{\sqrt[3]{20x^2 + 7} - 3}{x^2 + x - 2}$$

$$\lim_{x \to 4} \frac{\sqrt[3]{3x - 4} - \sqrt{x}}{x - 4}$$

D'ordre 4:

On sait que : $a^4 - b^4 = (a - b)(a^3 + a^2b + ab^2 + b^3)$

Il en résulte que : $a - b = \frac{a^4 - b^4}{a^3 + a^2b + ab^2 + b^3}$

Et par suite:

$$(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+})\left(\sqrt[4]{x} - \sqrt[4]{y} = \frac{x - y}{\sqrt[4]{x^3} + \sqrt[4]{x^2y} + \sqrt[4]{xy^2} + \sqrt[4]{y^3}}\right)$$

A remarquer qu'on ne peut pas factoriser : $a^4 + b^4$

Applications:

Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{\sqrt[4]{20x - 4} - 2}{2x^2 + x - 3}$$

$$\lim_{x \to 0} \frac{\sqrt[4]{2x+1} - 1}{\sqrt[3]{2x+8} - 2}$$

4) Puissance rationnelle :

4.1 Puissance entier

Rappelle:

Soit x un réel et n un entier naturel non nul on a : $x^n = \underbrace{x \times x \times ... \times x}_{n \text{ folso}}$ et $x^0 = 1$ ($x \neq 0$)

Pour $x \neq 0$ on a $x^{-n} = \frac{1}{x^n}$

4.2 Puissance rationnelle

Propriété :

Pour tout réel $x \ge 0$ et pour tout entier non nul q on pose : $\sqrt[q]{x} = x^{\left(\frac{1}{q}\right)}$

Preuve: (en exercice)

Définition:

Soit x un réel positif et r un rationnel ($r \in \mathbb{Q}$) ; $r = \frac{p}{q}$ où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ on pose :

$$x^{r} = x^{\left(\frac{p}{q}\right)} = \sqrt[q]{x^{p}} = \left(\sqrt[q]{x}\right)^{p}$$

Propriétés

Soit x et y deux réels positifs, r et r' des rationnels on a :

1.	$x^{r+r'}$	$= x^r \times x^{r'}$
	/	

2.
$$x^{r \times r'} = (x^r)^{r'} = (x^{r'})^r$$

3. $x^{-r'} = \frac{1}{x^{r'}} \quad (x \neq 0)$
4. $x^{r-r'} = \frac{x^r}{x^{r'}} \quad (x \neq 0)$
5. $(xy)^r = x^r y^r$

3.
$$x^{-r'} = \frac{1}{x^{r'}}$$
 $(x \neq 0)$

4.
$$x^{r-r'} = \frac{x'}{x^{r'}}$$
 $(x \neq 0)$

$$5. \quad (xy)^r = x^r y^r$$

6.
$$\left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$$

Exercice 1:

Démontrer 1 et 2

Exercice 2:

Comparer les nombres $a = \sqrt[3]{5}$ et $b = \sqrt[4]{20}$

Application aux calculs des limites.

Calculer les limites suivantes :

$$\circ \lim_{x \to +\infty} \sqrt[5]{2x^2 + 3x} - \sqrt[4]{3x^3 + x^2}$$

$$\circ \lim_{x \to +\infty} \frac{\sqrt[4]{x-1}-1}{\sqrt[3]{x+1}+x}$$

5) la fonction Arctangente :

Activité :

- 1- Déterminer $\lim_{x \to \left(\frac{-\pi}{2}\right)^+} tanx$ et $\lim_{x \to \left(\frac{\pi}{2}\right)^-} tanx$
- 2- Montrer que la restriction de la fonction $tan \, \sup \left] \frac{-\pi}{2}; \frac{\pi}{2} \right[\text{est une bijection de } \right] \frac{-\pi}{2}; \frac{\pi}{2} \left[\text{vers } \mathbb{R}. \right]$

Propriété et définition :

La restriction de la fonction $tan \, \text{sur} \, \left| \frac{-\pi}{2}; \frac{\pi}{2} \right| \, \text{est une bijection de } \left| \frac{-\pi}{2}; \frac{\pi}{2} \right| \text{vers } \mathbb{R}.$

Sa bijection réciproque s'appelle la fonction **Arctangente** , notée : artan elle est définie de $\mathbb R$ vers $\left|\frac{-\pi}{2};\frac{\pi}{2}\right|$

La courbe de la fonction arctan :

③
$$(\forall x \in \mathbb{R})(\tan(\arctan x) = x)$$
 et $(\forall x \in \left[\frac{-\pi}{2}; \frac{\pi}{2}\right])(\arctan(\tan x) = x)$

4 La fonction artan est impaire strictement croissante sur $\left|\frac{-\pi}{2};\frac{\pi}{2}\right|$

$$\frac{2Bac\ S.M}{\text{($}\ (\forall x \in \mathbb{R}^+)\left(arctan\ x + arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}\right)\ \text{et } (\forall x \in \mathbb{R}^-)\left(arctan\ x + arctan\left(\frac{1}{x}\right) = \frac{-\pi}{2}\right)\ \text{(Propriété\ à\ démontrer)}}$$

Exercice 1:

Déterminer les réels suivants:

$$a = Arctan\left(tan\left(-\frac{3\pi}{22}\right)\right)$$
; $b = Arctan\left(tan\left(\frac{144\pi}{4}\right)\right)$; $c = tan(Arctan\sqrt{123})$

Exercice 2:

Soient a et b deux réels tels que $a \in]-1,1[$ et $b \in]-1,1[$

- 1- Montrer que: $\arctan a + \arctan b = \arctan \left(\frac{a+b}{1-ab}\right)$
- 2- Etudier le cas où a > 1 et b > 1
- 3- Résoudre dans $\mathbb R$

$$arctan\left(\frac{1-\sqrt{x}}{2}\right) + arctan\left(\frac{1+\sqrt{x}}{2}\right) = \frac{\pi}{6}$$

Exercice 3:

Déterminer les limites suivantes :

1. 1-
$$\lim_{x \to \frac{\pi}{4}} \frac{Arctanx - 1}{4x - \pi}$$
 2- $\lim_{x \to +\infty} x(2arctanx - \pi)$ 3- $\lim_{x \to 0} \left(\frac{Arctan(2x^2 + x)}{\sqrt[3]{x^2 + 1} - 1}\right)$