LECTURE-16 Composition of Function, Inverse Operations

A **Function** assigns to each element of a set, exactly one element of a related set. Functions find their application in various fields like representation of the computational complexity of algorithms, counting objects, study of sequences and strings, to name a few. The third and final chapter of this part highlights the important aspects of functions.

Function - Definition

A function or mapping (Defined as $\ f:X o Y$) is a relationship from elements of one set X to

elements of another set Y (X and Y are non-empty sets). X is called Domain and Y is called Codomain of function 'f'.

Function 'f' is a relation on X and Y such that for each $x \in X$, there exists a unique $y \in Y$

such that $(x,y)\in R$. 'x' is called pre-image and 'y' is called image of function f.

A function can be one to one or many to one but not one to many.

FUNCTIONS ARE OF DIFFERENT TYPES:

ONE-TO-ONE FUNCTION:

A FUNCTION FROM A TO B IS ONE-TO-ONE OR INJECTIVE, IF FOR ALL ELEMENTS X_1, X_2 IN A SUCH THAT $F(X_1) = F(X_2)$, I.E $X_1 = X_2$.

NO ELEMENTS OF A ARE ASSIGNED TO THE SAME ELEMENT IN B AND EACH ELEMENT OF THE RANGE CORRESPONDS TO EXACTLY ONE ELEMENT IN DOMAIN.

***** ONTO FUNCTION:

A FUNCTION FROM A TO B IS ONTO OR SURJECTIVE, IF EVERY ELEMENT OF B IS THE IMAGE OF SOME ELEMENT IN A I.E ALL THE ELEMENTS OF B HAS A PRE-IMAGE IN A.

***** BIJECTIVE FUNCTION:

A FUNCTION FROM A TO B IS ONE-TO-ONE CORRESPONDENCE OR BIJECTIVE, IF F IS BOTH INJECTIVE(ONE-TO-ONE) AND SURJECTIVE(ONTO).

INVERSE OF A FUNCTION:

Inverse of a Function

The ${\sf inverse}$ of a one-to-one corresponding function f:A o B , is the function g:B o A ,

holding the following property -

$$f(x) = y \Leftrightarrow g(y) = x$$

The function f is called invertible, if its inverse function g exists.

Example

- A Function f:Z o Z, f(x)=x+5 , is invertible since it has the inverse function
 - g:Z o Z, g(x)=x-5 .
- A Function $f:Z o Z, f(x)=x^2$ is not invertiable since this is not one-to-one as

$$(-x)^2 = x^2 .$$

COMPOSITION OF FUNCTIONS:

Composition of Functions

Two functions f:A o B and g:B o C can be composed to give a composition gof .

This is a function from A to C defined by (gof)(x) = g(f(x))

Example

Let f(x)=x+2 and g(x)=2x+1 , find (fog)(x) and (gof)(x) .

Solution

$$(fog)(x) = f(g(x)) = f(2x+1) = 2x+1+2 = 2x+3$$

$$(gof)(x) = g(f(x)) = g(x+2) = 2(x+2) + 1 = 2x + 5$$

Hence, $(fog)(x) \neq (gof)(x)$

Some Facts about Composition

- If f and g are one-to-one then the function (gof) is also one-to-one.
- If f and g are onto then the function (gof) is also onto.
- Composition always holds associative property but does not hold commutative property.

QUESTIONS:

For each of the relations $\{Q, R, S, T, U, V\}$ below, determine whether the relation is a function. If the relation is a function, determine whether the function is injective and/or surjective.

- (i) $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ $Q = \{(1, a), (2, d), (3, b)\}$
- (ii) $A = \{1, 2, 3\}, B = \{a, b, c\}$ $R = \{(1, a), (2, b), (3, c)\}$
- (iii) $A = \{1, 2, 3\}, B = \{a, b, c\}$ $S = \{(1, a), (2, b), (3, b)\}$
- (iv) $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ $T = \{(1, a), (2, b), (2, c), (3, d)\}$
- (v) $A = \{1, 2, 3\}, B = \{a, b\}$ $U = \{(1, a), (2, b), (3, b)\}$
- (vi) $A = \{1, 2, 3\}, B = \{a, b\}$ $V = \{(1, a), (2, b)\}$
- (i) The relation is a function.The function is injective.The function is not surjective since c is not an element of the range.
- (ii) The relation is a function.
 The function is both injective and surjective.
- (iii) The relation is a function. The function is not injective since f(2) = f(3) but $2 \neq 3$. The function is not surjective since c is not an element of the range.
- (iv) The relation is a not a function since the relation is not uniquely defined for 2.
- (v) The relation is a function. The function is not injective since f(2) = f(3) but $2 \neq 3$. The function is surjective.
- (vi) The relation is a not a function since the relation is not defined for 2.

QUESTIONS:

The function f is defined by: $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 + 2$.

- **(i)** Give an example to show that *f* is not injective.
- (ii) Give an example to show that *f* is not surjective.
- (i) f(-1) = f(1) = 3 but $-1 \ne 1$, therefore the function is not injective.
- (ii) There is no real number, x such that f(x) = 1 therefore the function is not surjective. Or the range of the function is $y \ge 2$. The range of the function is not \mathbb{R} (the codomain) therefore the function is not surjective.

The function f is defined by: $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 - 6x$.

- (i) Give an example to show that *f* is not injective.
- (ii) Give an example to show that *f* is not surjective.
- (i) f(6) = f(0) = 0 but $6 \ne 0$, therefore the function is not injective.
- (ii) $f(x) = (x-3)^2 9$ [by completing the square] There is no real number, x such that f(x) = -10 the function is not surjective. Or the range of the function is $y \ge 2$. The range of the function is not \mathbb{R} (the codomain) therefore the function is not surjective

QUESTIONS:

For each of the functions below determine which of the properties hold, injective, surjective, bijective. Briefly explain your reasoning.

- (i) The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
- (ii) The function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = e^x$.
- (iii) The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = (x+1)x(x-1).
- (iv) The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = (x^2 9)(x^2 4)$.
- (i) This function is injective, since e^x takes on each nonnegative real value for exactly one x. However, the function is not surjective, because e^x never takes on negative values. Therefore, the function is not bijective either.
- (ii) The function e^x takes on every nonnegative value for exactly one x, so it is injective, surjective, and bijective.
- (iii) This function is surjective, since it is continuous, it tends to $+\infty$ for large positive x, and tends to $-\infty$ for large negative x. The function takes on each real value for at least one x. However, this function is not injective, since it takes on the value 0 at x = -1, x = 0 and x = 1. Therefore, the function is not bijective either.
- (iv) This function is not surjective, it tends to $+\infty$ for large positive x, and also tends to $+\infty$ for large negative x. Also this function is not injective, since it takes on the value 0 at x=3, x=-3, x=4 and x=-4. Therefore, the function is not bijective either.