DEVOIR MAISON NOVEMBRE - 1ÈRE SPÉCIALITÉ

Exercice 1. Soir $m \in \mathbb{R}$ et f_m la fonction définie sur \mathbb{R} par $f_m(x) = x^2 + 2mx + 9$ Pour chaque proposition, répondre vrai ou faux en justifiant.

- 1. $f_5(x) = (x+1)(x+9)$.
- 2. Pour tout $m \in \mathbb{R}$, la courbe de f_m passe par le point A(0;9).
- 3. Pour tout $m \in \mathbb{R}$, pour tout $x \in \mathbb{R}$, $f_m(x) \ge 0$.
- 4. Pour tout $m \in \mathbb{R}$, pour tout $x \in \mathbb{R}$, $f_{m+1}(x) \geq f_m(x)$.

Exercice 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^n - 1$ avec $n \ge 1$.

- 1. Cas particulier : n = 2. Factoriser f(x).
- 2. Cas particulier : n = 3. Montrer que $f(x) = (x 1)(ax^2 + bx + c)$, en développant et en identifiants les coefficients. On donnera les valeurs de a, b et c.
- 3. Cas particulier : n = 4.
 - a) Factoriser une première fois f(x) en utilisant une identité remarquable.
 - b) Factoriser une seconde fois f(x) afin de faire apparaître 3 facteurs.
 - c) Montrer que $f(x) = (x-1)(x^3 + x^2 + x + 1)$.
- 4. Cas général.
 - a) Calculer f(1).
 - b) En développant, montrer que l'on a $f(x) = (x-1)(x^{n-1} + x^{n-2} + \cdots + x + 1)$.