The Ninth Grade Math Competition Class Decimals Anthony Wang

1. Convert repeating decimal $0.\overline{3123}$ to fraction.

$$X = 0.31233123$$
 $10000x = 312.33123$
 $10000x = 312.33123$

$$4994 - 3123$$
 1111
 1111

2. Compute $\frac{4!+3!}{3!+2!}$. Express your answer as a decimal to the nearest hundredth.

31+31=

$$\frac{36}{2} = \frac{15}{2}$$

3. What is the 4037^{th} digit following the decimal point in the expansion of $\frac{1}{111}$?

 $\frac{1}{111} = \frac{9}{999} = 0.009$ $\frac{1}{1000} = 0.009$ $\frac{1}{1000} = 0.009$ $\frac{1}{1000} = 0.009$

4. Evaluate the infinite geometric series
$$\frac{70}{100} + \frac{7^1}{100^2} + \frac{7^2}{100^3} + \cdots$$

$$\begin{array}{c}
 7 \\
 7 \\
 \hline
 7 \\$$

$$\frac{92}{100} \times = \frac{70}{100}$$

5. Let S be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$, where a,b,c are distinct digits. Find the sum of the elements of S.

6,986/6,987 **6.** The rational number r is the largest number less than 1 whose base-7 expansion consists of two distinct digits, i.e., $r=0.\overline{AB}$. Written as a reduced fraction, $r=\frac{p}{q}$, find p+q.

BASC 7:
$$6.48_{7}$$

 $X = 6.68_{7}$
 $42 \times 65.68_{7}$

$$56x = 657$$
 = 47
 $x = 657$ = 47
 667 = 48

7. Express $0.72\overline{45}$ as a common fraction.

$$X = 0.72 \frac{3}{45}$$
 (1)

$$100 X = 72.45 \frac{45}{45}$$
 (2)

$$99 X = 71.73$$
 (2)-(1)

$$X = 71.73 =$$

8. Let p be a prime number other than 2 or 5. What is the maximum possible number of digits in the repeating block of digits in $\frac{1}{n}$?

$$\frac{1}{3} = 6.33333...$$

$$\frac{1}{7} = 6.142857...$$
 $\frac{1}{7} = 6.0969...$
 $\frac{1}{11} = 6.0969...$

$$P = 0, \overline{a_1 a_2 a_3 a_4 \dots a_K}$$

$$\frac{10^{k}-1}{a} = P$$

8. Let p be a prime number other than 2 or 5. What is the maximum possible number of digits in the repeating block of digits in $\frac{1}{p}$?

possible remi