- 1. Determine the Laplace transform and the associated region of convergence and pole-zero plot for each of the following functions of time:
- (a) $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$
- (b) $x(t) = e^{-4t}u(t) + e^{-5t}(\sin 5t)u(t)$
- (c) $x(t) = \delta(t) + u(t)$
- (d) $x(t) = te^{-2|t|}$

2. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t).$$

Let X(s) and Y(s) denote Laplace transforms of x(t) and y(t), respectively, and let H(s) denote the Laplace transform of h(t), the system impulse response.

- (a) Determine H(s) as a ratio of two polynomials in s. Sketch the pole-zero pattern of H(s).
- (b) Determine h(t) for each of the following cases:
 - 1. The system is stable.
 - 2. The system is causal.
 - 3. The system is neither stable nor causal.

- 3. Suppose we are given the following information about a causal and stable LTI system S with impulse response h(t) and a rational system function H(s):
 - 1. H(1) = 0.2.
 - 2. When the input is u(t), the output is absolutely integrable.
 - 3. When the input is tu(t), the output is not absolutely integrable.
 - 4. The signal $d^2h(t)/dt^2 + 2dh(t)/dt + 2h(t)$ is of finite duration.
 - 5. H(s) has exactly one zero at infinity.

Determine H(s) and its region of convergence.

9.36. In this problem, we consider the construction of various types of block diagram representations for a causal LTI system S with input x(t), output y(t), and system function

$$H(s) = \frac{2s^2 + 4s - 6}{s^2 + 3s + 2}.$$

To derive the direct-form block diagram representation of S, we first consider a causal LTI system S_1 that has the same input x(t) as S, but whose system function is

$$H_1(s) = \frac{1}{s^2 + 3s + 2}.$$

With the output of S_1 denoted by $y_1(t)$, the direct-form block diagram representation of S_1 is shown in Figure P9.36. The signals e(t) and f(t) indicated in the figure represent respective inputs into the two integrators.

- (a) Express y(t) (the output of S) as a linear combination of $y_1(t)$, $dy_1(t)/dt$, and $d^2y_1(t)/dt^2$.
- **(b)** How is $dy_1(t)/dt$ related to f(t)?
- (c) How is $d^2y_1(t)/dt^2$ related to e(t)?
- (d) Express y(t) as a linear combination of e(t), f(t), and $y_1(t)$.

Figure P9.36

5. Consider the system S characterized by the differential equation

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = x(t)$$

- (a) Determine the zero-state response of this system for the input $x(t) = e^{-4t} u(t)$.
- (b) Determine the zero-input response of the system for $t>0^-$, given that

$$y(0^{-}) = 1, \qquad \frac{dy(t)}{dt} \Big|_{t=0^{-}} = -2$$

(c) Determine the output of S when the input is $x(t) = e^{-4t} u(t)$ and the initial conditions are the same as those specified in part (b).