Assignment No.	1 Rishikesh B 195001307	
Name		
Registration No.		
Team No.	PNT2022TMID53102	

Question-1:

Create registration page in html with username, email, and phone number and by using POST method display it in next html page.

index.html

```
<!DOCTYPE html>
<html>
     <head>
          <meta charset="utf-8">
          <meta name="viewport" content="width=device-width, initial-</pre>
scale=1">
          <title>Registration</title>
          <link rel="stylesheet" href="{{</pre>
url for('static',filename='styles/index.css') }}">
     </head>
     <body>
          <center>
          <br><br><br>>
          <h1>Registration</h1><br>
          <form action="{{ url for('result') }}" method="post">
               <label>Name</label>
                         : <input type="text" class="name-input
name mb-3" id="name" name="name">
                         <label>Email</label>
                         : <input type="email" class="name-
input name mb-3" id="email" name="email">
```

```
<label>Mobile</label>
                          : <input type="number" class="name-
input name mb-3" id="mobile" name="mobile">
                          </t.r>
                <br><br><br>></pr>
                <input class="btn btn-outline-primary" type="submit"</pre>
value="Submit">
          </form>
          </center>
     </body>
</html>
result.html
<!DOCTYPE html>
<html>
     <head>
          <meta charset="utf-8">
          <meta name="viewport" content="width=device-width, initial-</pre>
scale=1">
          <title>Profile</title>
          <link rel="stylesheet" href="{{</pre>
url for('static',filename='styles/index.css') }}">
     </head>
     <body>
     <center>
     <br><br><br>>
     <h1>Welcome !!!</h1>
     <form action="{{ url for('result') }}" method="post">
          <h3>Name : {{ name }} <br></h3>
                <h3>Email : {{ email }} <br></h3>
```

```
<h3>Mobile : {{ mobile }} <br></h3>
                <br><br><
     </form>
     </center>
     </body>
</html>
app.py
from flask import *;
import os
app = Flask( name )
@app.route('/', methods=['GET', 'POST'])
def home():
    if request.method == 'POST':
        name = request.form["name"]
        email= request.form["email"]
       mobile = request.form["mobile"]
        return redirect (url for ('result', name=name, email=email,
mobile=mobile))
    return render template('index.html')
@app.route("/result", methods=['GET', 'POST'])
def result():
    name = request.form.get('name')
    email= request.form.get('email')
    mobile = request.form.get('mobile')
    return render template('result.html', name=name, email=email,
mobile=mobile)
if name == " main ":
    app.run(debug=True, port=2807)
```

OUTPUT:

REGISTRATION

Name : abc

Email : abc@gmail.com

Mobile: 9876543210

(Submit)

WELCOME !!!

Name: abc

Email: abc@gmail.com

Mobile: 9876543210

Question-2:

Develop a Flask program which should contain at least 5 packages used from pypi.org

```
#1. NUMPY
import numpy as np
arr = np.array([[-1, 2, 0, 4],
                 [4, -0.5, 6, 0],
                 [2.6, 0, 7, 8],
                 [3, -7, 4, 2.0]])
print("Initial Array: ")
print(arr)
Initial Array:
[[-1. 2.
             0.
                   4. ]
 [ 4. -0.5
                   0. 1
             6.
 [ 2.6 0.
                   8. 1
             7.
 [ 3.
       -7.
             4.
                   2. 11
#2. PANDAS
import pandas as pd
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
s3 = pd.Series(['a', 'b', 'c', 'd', 'e'])
Data ={'first':s1, 'second':s2, 'third':s3}
df = pd.read csv('/content/sample data/ds salaries.csv')
print(df)
     Unnamed: 0
                 work year experience level employment type
0
              0
                       2020
                                           ΜI
                                                            FT
1
              1
                       2020
                                           SE
                                                            FT
2
              2
                       2020
                                           SE
                                                            FT
3
              3
                       2020
                                           ΜI
                                                            FT
4
              4
                       2020
                                           SE
                                                            FT
602
                       2022
            602
                                           SE
                                                            FT
603
            603
                       2022
                                           SE
                                                            FT
604
            604
                       2022
                                           SE
                                                            FT
605
                       2022
                                           SE
                                                            FT
            605
606
            606
                       2022
                                           ΜI
                                                            FT
                       job title
                                   salary salary currency salary in usd
\
                  Data Scientist
0
                                   70000
                                                       EUR
                                                                     79833
1
     Machine Learning Scientist
                                                       USD
                                                                    260000
                                  260000
2
              Big Data Engineer
                                                       GBP
                                   85000
                                                                    109024
```

3	Product Data Analyst	20000	USD	20000
4	Machine Learning Engineer	150000	USD	150000
602	Data Engineer	154000	USD	154000
603	Data Engineer	126000	USD	126000
604	Data Analyst	129000	USD	129000
605	Data Analyst	150000	USD	150000
606	AI Scientist	200000	USD	200000
0 1 2	employee_residence remote_r DE JP GB	atio com 0 0 50	npany_location compai DE JP GB	ny_size L S M

S 3 HN0 HN 4 US 50 US L . . . 602 US US М 100 603 US 100 US М 604 US US Μ 0 605 US 100 US М 606 IN 100 US L

[607 rows x 12 columns]

#3. SEABORN

import seaborn as sns

sns.pairplot(df,hue="salary",height=3)

<seaborn.axisgrid.PairGrid at 0x7f32024d5650>

#4. TENSORFLOW

```
import tensorflow as tf
```

```
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10)
])

#5. PYTZ
from pytz import timezone
from datetime import datetime

format = "%Y-%m-%d %H:%M:%S %Z%z"
```

```
now_utc = datetime.now(timezone('UTC'))
print(now_utc.strftime(format))

now_asia = now_utc.astimezone(timezone('Asia/Kolkata'))
print(now_asia.strftime(format))

2022-10-07 16:36:09 UTC+0000
2022-10-07 22:06:09 IST+0530
```