Scilab Textbook Companion for Fundamentals Of Engineering Electromagnetics by S. Bhooshan¹

Created by
Dave Palak P.
B.Tech.
Others
dharamsinh desai university
College Teacher
Prof. Prarthan Mehta
Cross-Checked by
K. V. P. Pradeep

 $July\ 11,\ 2017$

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Engineering Electromagnetics

Author: S. Bhooshan

Publisher: Oxford University Press, New Delhi

Edition: 1

Year: 2012

ISBN: 0-19-807794-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Scalars and vectors	5
2	Coordinate Systems and Fields	10
3	Vector calculus	17
4	The Electric Field and Gauss Law	20
5	Energy and Potential	25
6	The Electric Field and Material Media	28
7	Laplace and Poisson Equations	35
9	Magnetic forces Inductance and Magnetisation	36
10	Time dependent fields	41
11	Electromagnetic Waves	42
12	Transmission Lines and Waveguides	47
13	Radiation from Currents	52
14	Introduction to Antennas	54
15	Radio Wave Propagation	57

List of Scilab Codes

Exa 1.1	The density of the material
Exa 1.2	Diameter of a circle
Exa 1.3	Multiplication of two complex numbers 6
Exa 1.5	Calculations with vector addtion 6
Exa 1.6	Calculations with vector addtion
Exa 1.7	Calculations with vector addition
Exa 1.8	The work done by a constant force 8
Exa 1.11	Cross products of orthogonal unit vectors 8
Exa 1.12	Cross products in rectangular coordinates 9
Exa 2.1	The pressure at height
Exa 2.4	Direction cosines
Exa 2.6	Vector equations of a straight line
Exa 2.7	Equation of a plane
Exa 2.9	Cylindrical coordinate system
Exa 2.10	Cylindrical coordinate system
Exa 2.12	Dot products between rectangular and cylindrical coor-
	dinate
Exa 3.1	The linear element
Exa 3.2	The length of the straight line
Exa 3.4	The work done
Exa 3.5	Line Integral
Exa 4.2	The charge density
Exa 4.3	Finding the total charge in the given region 20
Exa 4.5	Coulombs Law
Exa 4.6	Coulombs Law
Exa 4.7	Coulombs Law
Exa 4.8	Comparision between force of gravity and electrostatic
	attraction

Exa 4.10	Force due to electric field
Exa 4.11	Electric Field
Exa 4.12	Electric Field
Exa 4.23	Gauss Law Applied to a Charged Sphere 24
Exa 5.1	Work done to move a charge
Exa 5.2	Work done to move a charge
Exa 5.10	Motion of electron in electric field
Exa 5.11	Motion of electron in electric field
Exa 6.1	The total charge passing a plane
Exa 6.2	The total charge passing a plane
Exa 6.3	The current density
Exa 6.4	The mobile charge density
Exa 6.5	Velocity of the mobile charge
Exa 6.8	Current density in conductor
Exa 6.10	Relaxation time for conductors
Exa 6.11	The drift velocity and mobility of electrons
Exa 6.15	The conductivity of the material
Exa 6.16	The polarisation density in die electric
Exa 6.19	Boundry condition for electrostatic field
Exa 7.7	The voltage in coaxial cylinders
Exa 9.2	electron moving in a steady magnetic field 30
Exa 9.4	Force on the moving charge in steady magnetic field . 36
Exa 9.6	force on a straight wire carrying current in a magnetic
	field
Exa 9.7	force between two current carring parallel conductor . 38
Exa 9.13	inductance of a coil
Exa 9.14	Wheeler formula
Exa 9.17	Inductance per meter of a coaxial line
Exa 9.19	Inductance of single loop of wire
Exa 10.15	the diraction of travelling wave and its velocity 4
Exa 11.1	the propagation constant
Exa 11.4	Uniform Plane Wave
Exa 11.5	magnitude of the electric and magnetic field vectors . 43
Exa 11.10	the complex propagation constant
Exa 11.11	low conductivity materials
Exa 11.12	propagation constant skin depth and the wave length in high conductivity materials
Exa 11 15	maxima minima and zeros of the standing wave

Exa 11.18	The Brewster angle	46
Exa 12.2	attenuation factor and characteristic impedence	47
Exa 12.3	L and C for the physical tansmission lines	48
Exa 12.4	distance between the conductors for two wire line	48
Exa 12.20	modes that propagate in parallel plate waveguide	49
Exa 12.23	the resonent frequency for the TM modes	50
Exa 12.24	the resonant frequency for the TE modes	50
Exa 13.11	The power density radiated	52
Exa 13.14	The power received by the receiving antenna	52
Exa 13.15	The transmitted power	53
Exa 14.4	the first sidelobe level	54
Exa 14.5	The progressive phase shift and BWFN	54
Exa 14.6	Design of uniform antenna array	55
Exa 14.10	The flare angle	55
Exa 14.12	The directivity and half power beam width	56
Exa 14.14	The directivity of the horn	56
Exa 15.6	the distance for surface wave which can be used for given	
	frequency	57
Exa 15.7	the refractive index of the atmosphere	57
Exa 15.11	The plasma frequency	58
Exa 15.12	the electron density at which the wave is reflected back	58
Exa 15.13	the critical frequency	58
Exa 15.14	the electron density and height of the layer	59

Chapter 1

Scalars and vectors

Scilab code Exa 1.1 The density of the material

```
1 clc;
2 clear;
3 format('v',6);
                     //conversion from lbs to kg
4 m1=10/2.2;
5 m2=9.221;
6 M = m1 + m2;
7 v1=1.233;
8 v2=2.555;
9 V = v1 + v2;
10 c=0.12*V; //contraction
11 Vf=V-c: //final volum
                      //final volume
11 Vf = V - c;
12 D=M/Vf;
13 //format('e',9);
14 disp(abs(D), "at, the end, density(in kg/l)=");
```

Scilab code Exa 1.2 Diameter of a circle

```
1 clc;
```

```
2 clear;
3 format('v',10);
4 C=1600;
5 d=C/3.14;
6 disp(d,"diameter(in meter)=");
```

Scilab code Exa 1.3 Multiplication of two complex numbers

```
1 clc;
2 clear all;
3 format('v',11);
4 mod_a=sqrt(3^2+2^2);
5 mod_b=sqrt(15^2+3^2);
6 angle_a=atand(2/3);
7 angle_b=atand(3/15);
8 mod_ans=mod_a*mod_b;
9 angle_ans=angle_a+angle_b;
10 disp(angle_ans,"phase angle of ans(in degree)=", mod_ans,"mod of ans=");
```

Scilab code Exa 1.5 Calculations with vector addition

```
1 clc;
2 clear;
3 format('e',11);
4 mod_B=15;
5 angle_B=30;
6 mod_A=10;
7 angle_A=0;
8 Bx=mod_B*cosd(angle_B);
9 By=mod_B*sind(angle_B);
10 Ax=mod_A*cosd(angle_A);
11 Ay=mod_A*sind(angle_A);
```

```
12  Cx=Ax+Bx;
13  Cy=Ay+By;
14  mod_C=sqrt(Cx^2+Cy^2);
15  angle_C=atand(Cy/Cx);
16  disp(angle_C, "angle_C(in degree)=",mod_C, "mod_C(in newton)=");
```

Scilab code Exa 1.6 Calculations with vector addition

```
1
2 clc;
3 clear;
4 format('v',6);
5 \text{ mod}_B=20;
6 angle_B=150;
7 \mod A = 10;
8 angle_A=0;
9 Bx=mod_B*cosd(angle_B);
10 By=mod_B*sind(angle_B);
11 Ax=mod_A*cosd(angle_A);
12 Ay=mod_A*sind(angle_A);
                          //parallel to A
13 Cp = Ax + Bx;
                          //perpendicular to A
14 Cv = Ay + By;
15 disp(Cv, "perpendicular to A, Cv(in Newton)=", Cp,"
      parallel to A, Cp(in Newton)=");
```

Scilab code Exa 1.7 Calculations with vector addition

```
1 clc;
2 clear;
3 format('v',11);
4 A=[1 3 5];
5 B=[0 5 0];
```

```
6 C=A-B;
7 disp(C,"difference(in newton)=");
```

Scilab code Exa 1.8 The work done by a constant force

```
1 clc;
2 clear;
3 format('v',11);
4
5 //part a
6 F=[100*cosd(30) 100*sind(30)];
7 d=[100 0];
8 W=F.*d;
9 disp(W(1),"work done(in joule)=");
10
11 //part b
12 W=integrate('10*x*cosd(30)','x',0,100);
13 disp(W,"work done(in joule)=");
```

Scilab code Exa 1.11 Cross products of orthogonal unit vectors

```
1 clc;
2 clear;
3 format('v',11);
4 A=[2 4 0];
5 B=[1 7 0];
6 mod_A=sqrt(A(1)^2+A(2)^2+A(3)^2);
7 mod_B=sqrt(B(1)^2+B(2)^2+B(3)^2);
8 U1=A(1,2)*B(1,3)-A(1,3)*B(1,2);
9 U2=A(1,3)*B(1,1)-A(1,1)*B(1,3);
10 U3=A(1,1)*B(1,2)-A(1,2)*B(1,1);
11 U=[U1 U2 U3];
12 disp(U,"A*B=");
```

Scilab code Exa 1.12 Cross products in rectangular coordinates

```
1 clc;
2 clear;
3 format('v',11);
4 A = [4 3 0];
5 B = [3 4 0];
6 mod_A = sqrt(A(1)^2 + A(2)^2 + A(3)^2);
7 \mod_{B=sqrt}(B(1)^2+B(2)^2+B(3)^2);
8 U1=A(1,2)*B(1,3)-A(1,3)*B(1,2);
9 U2=A(1,3)*B(1,1)-A(1,1)*B(1,3);
10 U3=A(1,1)*B(1,2)-A(1,2)*B(1,1);
11 U = [U1 \ U2 \ U3];
12 disp(U,"A*B=");
                                                   //dot
13 A.B=A(1)*B(1)+A(2)*B(2)+A(3)*B(3);
      product
14 theta=acosd(A.B/(mod_A*mod_B));
                                                    //angle
      between A and B
15 mod=mod_A*mod_B*sind(theta);
16 \operatorname{disp}(\operatorname{mod}, \operatorname{mod}_{-}(A*B));
17 disp("and is perendicular to A and B both", "hence | A
      *B = |A| * |B| * \sin(theta)");
```

Chapter 2

Coordinate Systems and Fields

Scilab code Exa 2.1 The pressure at height

```
1 clc;
2 clear;
3 format('v',4)

    //formating the number display
4 h=(log(0.9))/(-0.0001193);

    //calculating the height
5 disp(h,'The height h at which the pressure is 9/10 of the pressure at the surface of the earth is (in meter):');

    displaying the height
```

Scilab code Exa 2.4 Direction cosines

```
1 clc;
2 clear;
```

```
3 format('v',11);
4 r = [2 3 4];
      //Given Position vector r
5 disp(r, 'Given the vector r=');
6 modr=sqrt(2^2+3^2+4^2);
      //Magnitude of the given vector r
7 Ax = (2/modr);
      // Coeffitient in the X direction
8 \text{ Ay=(3/modr)};
      // Coeffitient in the Y direction
9 Az=(4/modr);
      // Coeffitient in the Z direction
10 // Displaying the direction cosines and the angles
11 format('v',8)
12 disp ('The direction cosines of the given vector are
      : ');
13 disp(Ax, 'Ax=')
14 disp(Ay, 'Ay=')
15 disp(Az, 'Az=')
16
17 x = [Ax Ay Az];
18 format('v',6)
19 y = acosd(x);
20 disp(y, 'The angles that the given vector makes with
      the three vectors are (in Degree): ')
```

Scilab code Exa 2.6 Vector equations of a straight line

```
1 clc;
2 clear;
```

```
3 format('v',11);
4 r0=[1,1,1];
     //Vector ro
5 r1=[1,2,3];
     //Vector r1
6 // Displaying the given points in vectorial form
7 disp(r0, 'The given two points are: ro=');
8 disp(r1, 'r1=');
9 R=r1-r0;
10 modR = sqrt(R(1)^2 + R(2)^2 + R(3)^2);
                                                       //
      Distance between the two given points
11 unit_R=R/modR;
     //Unit vector along the vector from ro towards r1
12 p1=5*unit_R+r0;
     //Point at 5cm from ro towards r1
13 disp(p1, 'The point at distance of 5cm away from r0
     and towards r1 is:p1= ');
14 p2=-5*unit_R+r0;
15 disp(p2, 'The point at distance of 5cm away from r0
     and away from r1 is:p2='); // Point at 5cm from
      ro and away from r1
16 disp('Equation of the line passing through the given
       points: r=t(r1-r0)+r0');
17 disp('to find the intersection of this line with X-Y
       plane: z=0');
18 t = -1 * sqrt(5)/2;
19 disp(t, 'The value of the parameter t=');
      Displaying the equation of the line
20 //Computing the location of the point of
      intersection
21 x=t*unit_R(1)+r0(1);
22 \text{ y=t*unit_R(2)+r0(2)};
```

```
23 p1 = [x, y, 0];
      // Point of intersaction with X-Y plane
24 disp(p1, 'The point of intersection with X-Y plane:p1
     = ');
25 disp('to find the intersection with x-z plane:y=0');
26 t = -1 * sqrt(5);
     //The value of the parameter t
27 disp(t, 'The value of the parameter t=');
28 x=t*unit_R(1)+r0(1);
29 z=t*unit_R(3)+r0(3);
30 p2 = [x 0 z];
     //Point of intersection with X-Z plane
31 disp(p2, 'The point of intersection with X-Z plane:p2
     = ');
32 disp('to find the intersection with y-z plane:x=0');
33 disp('as we are getting 0=1, we can say that the line
       does not intersect with the Y-Z plane');
```

Scilab code Exa 2.7 Equation of a plane

```
7 R1 = r1 - r0;
     //Postion vector from ro to r1
8 R2=r2-r0;
     //Position vector from ro to r2
9 u1=R1(1,2)*R2(1,3)-R1(1,3)*R2(1,2);
10 u2=R1(1,3)*R2(1,1)-R1(1,1)*R2(1,3);
11 u3=R1(1,1)*R2(1,2)-R1(1,2)*R2(1,1);
12 R=[u1,u2,u3];
     //Vector R perpendicular to the plane
13 mod_R = sqrt((u1)^2 + (u2)^2 + (u3)^2);
                                                      //
      Magnitude of the vector R
14 unit_R=R/mod_R;
     //Unit vector along R
15 disp(unit_R, 'The unit vector perpendicular to the
      given plane is')
```

Scilab code Exa 2.9 Cylindrical coordinate system

```
1 clc;
2 clear;
3 format('v',11);
4 r=[1,1,1];

    //Given point r
5 rho=sqrt(r(1)^2+r(2)^2);

    //Computing the rho coordinate
6 phi=atan(r(2)/r(1));

    //Computing phi coordinate
```

```
7 z=r(3);
8 format('v',7)
9 c=[rho,phi,z];

    //Coordinates in the cylindrical coordinates
10 disp(c,'The equivalent cylindrical coordinates of the given point are (rho, phi, z)= ');
    // Displaying the coordinates
```

Scilab code Exa 2.10 Cylindrical coordinate system

```
1 clc;
2 clear;
3 format('v',11);
4 c = [1, 1, 1];
     //Given point
5 x=c(1)*cos(c(2));
     //Computing the X coordinate
6 y=c(1)*sin(c(2));
     //Computing the Y coordinate
7 z=c(3);
     //the Z coordinate
8 format('v',8)
9 r = [x, y, z];
10 disp(r, 'The equivalent rectangular coordinates of
     the given point are (x, y, z)=');
      Displying the coordinates
```

Scilab code Exa 2.12 Dot products between rectangular and cylindrical coordinate

```
1 clc;
2 clear;
3 format('v',11);
4 p=[1,1,1];
      //Given point
5 r=sqrt(p(1)^2+p(2)^2);
6 B = atan(p(2)/p(1));
7 z=p(3);
8 p=[r B z];
      //Given point in cylindrical coordinates
10 A = [1, 1, 1];
      //Given vector field
11
12
13 a = [\cos(B) \sin(B) 0; -1*\sin(B) \cos(B) 0; 0
      1] * [1;1;1];
                                               //Given
      vector filed in cylincdrical coordinates
14 format('v',6)
15 disp(a, 'the cylindrical components of the given
      vector filed: ')
```

Chapter 3

Vector calculus

Scilab code Exa 3.1 The linear element

```
1 clc;
2 clear;
3 format('v',11);
4 //3.1.1
5 p=[1 1 1];
6 q = [1 1 1.001];
7 delta=q-p; //as it is rectangular coordinates.
8 disp(delta, "linear element dl in rectangular
      coordinates=");
10 // 3.1.2
11 p=[1,1,1];
12 q = [1, 1.01, 1.001];
13 D = q - p;
14 R = 1;
15 delta=[D(1) R*D(2) D(3)]; //as it is cylindrical
      coordinates.
16 disp(delta," linear element dl in cylindrical
      coordinates=");
17
18 //3.1.3
```

Scilab code Exa 3.2 The length of the straight line

Scilab code Exa 3.4 The work done

```
7 work_done=-103*10/100*integrate('1/t^2','t',1,10);
8 disp(work_done(in Jule)=");
```

Scilab code Exa 3.5 Line Integral

```
1 clc;
2 clear;
3 format('v',6);
4 disp("the parametric equations of the straight line
        are:x=1-t,y=1-t,z=1-t for 0<=t<=1");
5 c1=integrate('1.5*t-1.5','t',0,1); //using
        parametric equation
6 disp(c1,"the line integral is=");</pre>
```

Chapter 4

The Electric Field and Gauss Law

Scilab code Exa 4.2 The charge density

```
1 clc;
2 clear;
3 format('v',11);
4 Q=(-1.602*10^-19)*10^6;
5 disp(Q,"Total charge (in coulomb),Q=");
6 rho=Q/0.01;
7 disp(rho,"linear charge density (in coulomb per meter)=");
```

Scilab code Exa 4.3 Finding the total charge in the given region

```
1 clc;
2 clear;
3 format('v',11);
4 I1=integrate('exp(x)','x',-5,0);
5 I2=integrate('exp(-x)','x',0,5);
```

Scilab code Exa 4.5 Coulombs Law

Scilab code Exa 4.6 Coulombs Law

Scilab code Exa 4.7 Coulombs Law

Scilab code Exa 4.8 Comparision between force of gravity and electrostatic attraction

```
1 clc;
2 clear;
3 format('v',11);
4 G=6.6726*10^-11;
5 Me=9.1094*10^-31;
6 Mp=1.6749*10^-27;
7 rb=.53*10^-10;
8 Fg=G*Me*Mp/rb^2;
9 Fc=(1.602*10^-19)^2/(4*3.14*8.85*10^-12*rb^2);
10 disp(Fg," gravitational force(in newton)=");
11 disp(Fc," electrostatic force(in newton)=");
12 disp(" times the gravitational force.",Fc/Fg," the electrostatic force is ");
```

Scilab code Exa 4.10 Force due to electric field

```
1 clc;
2 clear;
3 format('v',11);
4 E=1;
5 q1=0.001;
6 q2=1;
7 m1=0.001;
8 m2=1;
9 F1=q1*E;
10 F2=q2*E;
11 a1=F1/m1;
12 a2=F2/m2;
13 disp(F2,"F2(in newton)=",F1,"F1(in newton)=");
14 disp(a2,"a2(in m/s^2)=",a1,"a1(in m/s^2)=");
```

Scilab code Exa 4.11 Electric Field

```
1 clc;
2 clear;
3 format('v',11);
4 E=1;
5 Q=1;
6 r=[Q/(E*4*3.14*8.85*10^-12)]^(1/2);
7 disp(r,"the required distance(in meter)=");
8 q=1;
9 F=q*E;
10 disp(F,"force(in newton)=");
```

Scilab code Exa 4.12 Electric Field

```
1 clc;
2 clear;
3 format('v',11);
4 r=[1 2 3];
5 r1=[1 1 1];
6 R=r-r1;
7 q=1*10^-9;
8 mod_R=sqrt(R(1)^2+R(2)^2+R(3)^2);
9 E=q*R/(4*3.14*8.85*10^-12*mod_R^3);
10 disp(E,"E(in v/m)=");
```

Scilab code Exa 4.23 Gauss Law Applied to a Charged Sphere

Chapter 5

Energy and Potential

Scilab code Exa 5.1 Work done to move a charge

```
1 clc;
2 clear;
3 format('v',11);
4 Q=1*10^-9;
5 disp("path of the integration is along a line
      parallel to the x-axis as y and z are fixed with
      y=z=1.");
6 W=-Q*integrate('x','x',1,0);
      -1.
7 disp(W,"work done(in joule)=");
```

Scilab code Exa 5.2 Work done to move a charge

```
1 clc;
2 clear;
3 format('e',11)
4 Q=1*10^-9;
5 r0=[3 5 6];
```

```
6  r1=[0 0 0];
7  R01=r1-r0;
8  disp("The parametric eqution of the straight line
        joining these two points:")
9  disp("z=6(1-t)","y=5(1-t)","x=3(1-t)");
        //using r=r0+tR01.
10  W=1305*Q*integrate('(1-t)^3','t',0,1);
        //using parametric equation.
11  disp(W,"work done(in joule)=");
```

Scilab code Exa 5.10 Motion of electron in electric field

```
1 clc;
2 clear;
3 format('v',11);
4 \text{ vin}=2*10^7;
5 q=3*10^-6;
6 rin=[1 0 0];
7 mod_rin=sqrt(rin(1)^2+rin(2)^2+rin(3)^2);
8 Vin=q/(4*3.14*8.85*10^-12*mod_rin);
      potential at [1 0 0] due to point charge.
9 Pin=-1.6*10^-19*Vin;
      initial potential energy.
10 Kin = (9.1094*10^-31*vin^2)/2;
      initial kinetic energy considering me
      =9.1094*10^{-31} kg.
11 Etin=Pin+Kin;
      initial total energy'.
12 disp("As electron moves it slows down due to
      attraction to the charge at the origine and
      ultimately comes to rest.");
13 disp("computing rf", "hence Etin=Etf=Pf", "Kf=0","
      final kinetic enegy is zero");
14 Pf=Etin;
15 rf = -1.6*10^-19*q/(4*3.14*8.85*10^-12*Pf);
```

Scilab code Exa 5.11 Motion of electron in electric field

```
1 clc;
2 clear;
3 format('e',11);
4 vin=2*10^7;
5 q=3*10^-6;
6 rin=[1 0 0];
7 mod_rin=sqrt(rin(1)^2+rin(2)^2+rin(3)^2);
8 Vin=q/(4*3.14*8.85*10^-12*mod_rin);
     potential at [1 0 0] due to point charge.
9 Pin = -1.6*10^-19*Vin;
                                                  //
      initial potential energy.
10 disp("Hence Etin must be equal to zero", "When the
     electron reaches at infinite distance Pf=Kf=0.");
11 vin=sqrt(-Pin*2/(9.1094*10^-31));
     // considering me=9.1094*10^-31 kg.
12 disp(vin, "vin(in meter/sec)=");
13 disp("Beyond this velocity the electron escapes.");
```

Chapter 6

The Electric Field and Material Media

Scilab code Exa 6.1 The total charge passing a plane

Scilab code Exa 6.2 The total charge passing a plane

Scilab code Exa 6.3 The current density

```
1 clc;
2 clear;
3 format('e',11)
4 I=1;
5 d=1*10^-3;
6 A=(3.14*d^2/4);
7 J=I/A;
8 disp(J,"current density J(in A/m^2)=");
```

Scilab code Exa 6.4 The mobile charge density

```
1 clc;
2 clear;
3 format('e',11)
                                               //density of
4 D=10.5*10^3;
      silver.
5 m = 107.9 * 10^{-3};
                                               //atomic mass
      of silver.
                                               //charge of
6 e = -1.602*10^-19;
      electron.
                                               //Avogadro 's
7 Na=6.022*10^23;
      no.
                                               //N1=no. of
8 \text{ N1} = \text{Na/m};
      atoms per kg.
9 N2 = N1 * D;
                                               //N2=no. of
      atoms per cube meter.
                                               //rho_m=mobile
10 rho_m=N2*e;
       charge density.
11 disp(rho_m, "mobile charge density(in C/m^3)=")
```

Scilab code Exa 6.5 Velocity of the mobile charge

```
1 clc;
2 clear;
3 format('e',11)
4 rho_m=-9.39*10^9;
5 J=1.2732*10^6;
6 v=abs(J/rho_m);
7 disp(v,"magnitude of the velosity of the mobile charge carriers(in m/s)=");
```

Scilab code Exa 6.8 Current density in conductor

Scilab code Exa 6.10 Relaxation time for conductors

```
1 clc;
```

Scilab code Exa 6.11 The drift velocity and mobility of electrons

```
1
2 clc;
3 clear;
4 format('e',11);
5 I=1;
6 d=1*10^-3;
7 A = (3.14*d^2)/4;
                                     //cross section area
                                     //mobile charge
8 rho_m = 9.39 * 10^9;
      density for silver (calculated in example 6.4).
                                     //conductivity of
9 sigma=6.25*10^7;
      silver.
10 J=I/A;
11 vd=J/rho_m;
12 disp(vd, "The drift velocity(in m/s)=");
13 E=J/sigma;
14 disp(E, "The electric field(in V/m)=");
15 M=vd/E;
                                     //M≡mobility of
      electron.
16 disp(M, "The mobility of electron (in m^2/V.s) = ");
17 T = 300;
18 me=9.109*10^-31;
                                     //mass of electron.
19 K=1.38*10^-23;
```

Scilab code Exa 6.15 The conductivity of the material

Scilab code Exa 6.16 The polarisation density in die electric

```
1 clc;
2 clear;
3 format('e',11);
4 E=1;
5 epsilone_r=1.5;
```

Scilab code Exa 6.19 Boundry condition for electrostatic field

```
1 clc;
2 clear;
3 format('e',11);
4 epsilone_0=8.85*10^-12;
5 epsilone_r1=2;
6 epsilone_r2=4;
7 E1 = [-3 \ 5 \ 7];
                                  //tangential component
8 E1_tan=[-3 5 0];
      of E1.
9 E1_n = [0 \ 0 \ 7];
                                  //normal component of
     E1.
10 E2_tan=E1_tan;
                                  //as the tangential
      electric field is continous.
11 D2_tan=epsilone_r2*epsilone_0*E2_tan;
12 D1_n=epsilone_r1*epsilone_0*E1_n;
13 D2_n=D1_n;
                                 //as the normal electric
       flux density is continous.
14 D2=D2_tan+D2_n;
15 E2=D2/(4*epsilone_0);
16 disp(D2,"D2=");
17 disp(E2, "E2=");
18 Xe1=epsilone_r1-1;
                                 //Xe1=electric
      susceptibility of the region1.
                                 //Xe2=electric
19 Xe2=epsilone_r2-1;
      susceptibility of region2.
20 P2=epsilone_0*Xe2*E2;
21 disp(P2,"P2=");
```

Laplace and Poisson Equations

Scilab code Exa 7.7 The voltage in coaxial cylinders

```
1 clc;
2 clear;
3 format('v',6);
4 V1 = 60;
5 V2 = 20;
                     //in cm
6 \text{ r1=2};
                     //in cm
7 r2=6;
                     //in cm
8 r = 4;
9 disp("where A and B are constants.", "V=A*ln(r)+B","
      The potential V as a function of coordinates is
10 disp("B=85.2", "A=-36.4", "using the given data, we get
      ");
11 V = -36.4 * log(r) + 85.2;
12 disp(V, "The potential at r=4 \text{ cm}, V(\text{in volt})=");
```

Magnetic forces Inductance and Magnetisation

Scilab code Exa 9.2 electron moving in a steady magnetic field

Scilab code Exa 9.4 Force on the moving charge in steady magnetic field

```
1 clc;
```

```
2 clear;
3 format('e',11);
4 q=1*10^-9;
5 H = [1 0 0];
6 B=H*(4*3.14*10^-7);
8 // case -a
10 \quad v = [0 \quad 0 \quad 0];
11 u1=v(1,2)*B(1,3)-v(1,3)*B(1,2);
12 u2=v(1,3)*B(1,1)-v(1,1)*B(1,3);
13 u3=v(1,1)*B(1,2)-v(1,2)*B(1,1);
14 R=[u1,u2,u3];
                                           //cross product
      of v and B.
15 F=q*R;
16 disp(F, "The force on the charge (in newton)=");
17
18 // case -b
19
20 \quad v = [2 \ 3 \ 0];
21 u1=v(1,2)*B(1,3)-v(1,3)*B(1,2);
22 u2=v(1,3)*B(1,1)-v(1,1)*B(1,3);
23 u3=v(1,1)*B(1,2)-v(1,2)*B(1,1);
                                           //cross product
24 R = [u1, u2, u3];
      of v and B.
25 F=q*R;
26 disp(F, "The force on the charge(in newton)=");
```

Scilab code Exa 9.6 force on a straight wire carrying current in a magnetic field

```
//final point.
5 \text{ Bf} = [1 \ 2 \ 3];
6 B = [4 5 6];
7 I = 10;
8 l = Bf - Ai;
                                 //l=length of the wire.
9 u1=1(1,2)*B(1,3)-1(1,3)*B(1,2);
10 u2=1(1,3)*B(1,1)-1(1,1)*B(1,3);
11 u3=1(1,1)*B(1,2)-1(1,2)*B(1,1);
                                           //cross product
12 R = [u1, u2, u3];
      of 1 and B.
13 F = I * R;
14 mag_F = sqrt(F(1)^2 + F(2)^2 + F(3)^2);
15 disp(F, "The force on the wire, F(in newton)=");
16 disp(mag_F, "The magnitude of the force (in newton)=")
```

Scilab code Exa 9.7 force between two current carring parallel conductor

```
1 clc;
2 clear;
3 format('v',6);
4 rho=0.01;
                                     //rho=sepration
     between two wires.
5 I = 100;
6 H = [-I/(2*3.14*rho) 0 0]
                                     //H=The magnetic
      field produced by the wire along the Z axis, by
      placing the z-axis (current flowing along the
      positive z-axis) along one of the wires, and the
      other wire at y=0.01m.
7 B=4*3.14*10^{-7*H};
8 \text{ dir1} = [0 \ 0 \ -1]
                                       //direction of the
      velocity of the electrons.
9 u1=dir1(1,2)*B(1,3)-dir1(1,3)*B(1,2);
10 u2=dir1(1,3)*B(1,1)-dir1(1,1)*B(1,3);
11 u3=dir1(1,1)*B(1,2)-dir1(1,2)*B(1,1);
12 R = [u1, u2, u3];
                                         //cross product
```

```
of 1 and B.

13 F=I*R; //F=force per unit lenth on the other wire placed in the magnetic field of former wire.

14 F5m=5*F; //F5m=force on 5 m of the wire.

15 disp(F5m,"the force on the 5m of the wire,F5m(in newton)=");
```

Scilab code Exa 9.13 inductance of a coil

Scilab code Exa 9.14 Wheeler formula

```
1 clc;
2 clear;
3 format('e',11);
4 d=0.01/0.0254;
5 r=d/2;
//in inches.
```

Scilab code Exa 9.17 Inductance per meter of a coaxial line

```
1 clc;
2 clear;
3 format('e',11);
4 a=0.001;
5 b=0.0047;
6 L=4*3.14*10^-7*log(b/a)/(2*3.14);
7 disp(L,"The inductance per meter of the coaxial line, L(in H)=");
```

Scilab code Exa 9.19 Inductance of single loop of wire

```
1 clc;
2 clear;
3 format('e',11);
4 R=0.005;
5 a=0.001;
6 L=4*3.14*10^-7*R*(log(8*R/a)-3/2);
7 disp(L,"The inductance of the loop, L(in H)=");
```

Time dependent fields

Scilab code Exa 10.15 the direction of travelling wave and its velocity

Electromagnetic Waves

Scilab code Exa 11.1 the propagation constant

Scilab code Exa 11.4 Uniform Plane Wave

```
7 lemda=c/f;
8 k=2*%pi/lemda;
9 disp(lemda, "The wavelength(in meter)=");
10 disp(k, "The propagation constant, k(in rad/m)=");
```

Scilab code Exa 11.5 magnitude of the electric and magnetic field vectors

Scilab code Exa 11.10 the complex propagation constant

```
1 clc;
2 clear;
3 format('v',11);
4 f=1*10^6;
5 w=2*%pi*f;
6 sigma=2*10^-5;
7 epsilone_r=15;
8 epsilone_0=8.85*10^-12;
9 epsilone=epsilone_0*epsilone_r;
10 epsilone_c=epsilone*(1-%i*(sigma/(w*epsilone)));
11 Bc=w*sqrt(4*%pi*10^-7*epsilone_c);
12 disp(Bc,"Bc=");
```

Scilab code Exa 11.11 low conductivity materials

```
1 clc;
2 clear;
3 format('e',11);
4 f=10*10^9;
5 epsilone_r=2;
6 epsilone_0=8.85*10^-12;
7 epsilone=epsilone_r*epsilone_0;
8 loss_tangent=0.05;
9 epsilone_c=epsilone*(1-%i*loss_tangent);
10 w = 2 * \%pi * f;
11 B_0=w*sqrt((4*\%pi*10^-7)*epsilone);
12 B=B_0*(1+(loss_tangent^2)/8);
13 alpha=B_0/2*loss_tangent;
14 delta=1/alpha;
                            //skin depth.4
15 Z=sqrt((4*%pi*10^-7)/epsilone_c);
16 disp(B_0, "B_0=");
17 disp(B, "B=");
18 disp(alpha, "alpha=");
19 disp(delta, "skin depth(in meter)=");
20 disp(Z, "Characteristic impedence, Z(in Ohm)=");
```

 ${f Scilab\ code\ Exa\ 11.12}\ {f propagation\ constant\ skin\ depth\ and\ the\ wave\ length\ in\ high\ conductivity\ materials$

```
1 clc;
2 clear;
3 format('v',11);
4 f=1*10^6;
5 w=2*%pi*f;
```

```
6 sigma=5.814*10^7;
7 epsilone_0=8.85*10^-12;
8 epsilone=epsilone_0;
9 loss_tangent=sigma/(w*epsilone);
10 disp(loss_tangent, "loss tangent=");
11 beta1=sqrt((w*sigma*4*%pi*10^-7)/2);
                                                       //
      as loss tangent >> 1.
                                                       //
12 alpha=beta1;
      as loss tangent >> 1.
13 delta=1/alpha;
14 lemda_copper=2*%pi/beta1;
15 disp(beta1, "beta=");
16 disp(alpha, "alpha=");
17 disp(delta, "skin depth(in meter)=");
18 disp(lemda_copper, "The wave length(in meter)=");
```

Scilab code Exa 11.15 maxima minima and zeros of the standing wave

```
1 clc;
2 clear;
3 format('v',11);
4 f = 1 * 10^9;
                              //velocity of light in air.
5 c=3*10^8;
6 lemda=c/f;
7 T=1/f;
8 disp("E=-2*\sin(2*\%pi*z/0.3)", "At t=T/4, equation of
      electric field is ");
9 Zmax1 = (\%pi/2) *0.3/(2*\%pi);
10 Zmax2 = (5*\%pi/2)*0.3/(2*\%pi);
11 Zmax3 = (9*\%pi/2)*0.3/(2*\%pi);
12 Zmin1 = (3*\%pi/2)*0.3/(2*\%pi);
13 Zmin2 = (7*\%pi/2)*0.3/(2*\%pi);
14 Zmin3 = (11*\%pi/2)*0.3/(2*\%pi);
15 Zzero1=(0*%pi)*0.3/(2*%pi);
16 Zzero2 = (1*\%pi)*0.3/(2*\%pi);
```

Scilab code Exa 11.18 The Brewster angle

```
1 clc;
2 clear;
3 format('v',11);
4 epsilone_r=80;
5 theta_b=atand(sqrt(epsilone_r));
6 disp(theta_b,"the Brewster angle(in degree)=");
```

Transmission Lines and Waveguides

Scilab code Exa 12.2 attenuation factor and characteristic impedence

```
1 clc;
2 clear;
3 format('v',11);
4 R=42.9*10^-3;
5 L=0.7*10^-6;
6 C=0.1*10^-9;
7 G=24*10^-9;
8 \text{ w} = 5000;
9 gama=sqrt((R+%i*w*L)*(G+%i*w*C));
10 alpha=real(gama);
11 beta=imag(gama);
12 disp(alpha, "alpha(in Neper/m)=", beta, "beta(in rad/m)
     =");
13 vp=w/beta;
14 disp(vp, "The phase velocity(in m/s)=");
15 Z0 = sqrt((R + \%i*w*L)/(G + \%i*w*C));
16 disp(ZO, "The characteristic impedance(in Ohm)=");
```

Scilab code Exa 12.3 L and C for the physical tansmission lines

```
1 clc;
2 clear;
3 format('v',11);
4 Z = 75;
5 \text{ epsilone}_r = 2.56;
6 epsilone_0=8.85*10^-12;
7 \text{ m}_0=4*\%\text{pi}*10^-7;
                                          //The permeability
      of air.
8 a=1*10^-3;
9 b=a*exp(Z*2*%pi*sqrt(epsilone_0*epsilone_r/m_0));
10 \operatorname{disp}(b, "b(\operatorname{in meter})=");
11 C=(2*%pi*epsilone_0*epsilone_r)/log(b/a);
12 disp(C, "The capacitance(in F/m)=");
13 L=(m_0/(2*\%pi))*log(b/a);
14 disp(L,"The inductance(in H/m)=");
```

Scilab code Exa 12.4 distance between the conductors for two wire line

Scilab code Exa 12.20 modes that propagate in parallel plate waveguide

```
1 clc;
2 clear;
3 format('e',11);
4 f = 15 * 10^9;
5 w = 2 * \%pi * f;
6 a=0.03;
7 epsilone_0=8.85*10^-12;
8 \text{ m}_0=4*\%\text{pi}*10^-7;
                                          //The permeability
      of air.
9 //for TEM mode.
10 k=w*sqrt(m_0*epsilone_0);
11 beta=k;
12 disp(beta);
13 Z0=sqrt(m_0/epsilone_0);
14 lemda_g=2*%pi/beta;
15 disp(ZO, "The wave impedence(in Ohm)=");
16 disp(lemda_g, "The wavelength(in meter)=");
17 //for TE modes.
                                               // for m=1.
18 \ \text{lemda\_c10} = 2*0.03/1;
                                               // for m=2.
19 lemda_c20=2*0.03/2;
20 \ lemda_c30 = 2*0.03/3;
                                               // for m=3.
21 \ lemda = 3*10^8/f;
                                               //free space
      wavelength.
22 \operatorname{disp}(\operatorname{lemda\_c30}, \operatorname{"lemda\_c30}(\operatorname{in meter}) = ", \operatorname{lemda\_c20},"
      lemda_c20 (in meter)=",lemda_c10," lemda_c10 (in
      meter)=");
23 disp(lemda, "Free space wavelength(in meter)=");
24 disp("so, only first two modes will propagate.","
      lemda must be less then lemda_cm,");
25 beta_10 = sqrt(k^2 - (\%pi/a)^2);
26 beta_20=sqrt(k^2-(2*\%pi/a)^2);
27 lemda_g10=2*%pi/beta_10;
```

Scilab code Exa 12.23 the resonent frequency for the TM modes

```
1 clc;
2 clear;
3 format('v',11);
4 a=0.05;
5 b=0.04;
6 c=0.03;
7 m = 1;
8 n=1;
9 v = 3*10^8;
10 // \text{for p} = 0.
11 p=0;
12 fr110=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
13 disp(fr110, "fr110(in Hz)=");
14 // \text{for p} = 1.
15 p=1;
16 fr111=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
17 disp(fr111, "fr111(in Hz)=");
```

Scilab code Exa 12.24 the resonant frequency for the TE modes

```
1 clc;
2 clear;
```

```
3 format('e',11);
4 a=0.05;
5 b=0.04;
6 c=0.03;
7 v=3*10^8;
8 p=1;
9 // for m=0, n=1.
10
11 m = 0;
12 n=1;
13 fr011=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
14 disp(fr011, "fr011(in Hz)=");
15
16 // \text{for m} = 1, n = 0.
17 m=1;
18 n=0;
19 fr101=v/2*sqrt((m/a)^2+(n/b)^2+(p/c)^2);
20 disp(fr101, "fr101(in Hz)=");
```

Radiation from Currents

Scilab code Exa 13.11 The power density radiated

```
1 clc;
2 clear;
3 format('v',6);
4 Pt=10^6;
5 Ddb=23;
6 r=10^4;
7 Pisotropic=Pt/(4*%pi*r^2);
8 D=10^(Ddb/10);
9 P_main_beam=D*Pisotropic;
10 disp(P_main_beam,"The power density radiated in the diection of main beam(in W/m^2)=");
```

Scilab code Exa 13.14 The power received by the receiving antenna

```
1 clc;
2 clear all;
3 format('v',6);
4 Dt=1.64;
```

```
5 Dr=1.64;
6 Pt=1;
7 c=3*10^8;
8 f=100*10^6;
9 r=1*10^3;
10 lemda_air=c/f;
11 Aer=lemda_air*Dr/(4*%pi);
12 P=Pt*Dt/(4*%pi*r^2);
13 Pr=P*Aer;
14 Pr=Pr*10^9;....//in nW
15 disp(Pr, "The received power(in nW)=");
```

Scilab code Exa 13.15 The transmitted power

```
1 clc;
2 clear;
3 format('e',11);
4 f=10*10^9;
5 Pr=1*10^-6;
6 D=10;
7 r=5*10^3;
8 sigma=10;
9 c=3*10^8;
10 lemda=c/f;
11 Ae=lemda^2*D/(4*%pi);
12 Pt=Pr*(4*%pi*5000)^2/(D*sigma*Ae);
13 disp(Pt,"The transmitted power(in watt)=");
```

Introduction to Antennas

Scilab code Exa 14.4 the first sidelobe level

```
1 clc;
2 clear;
3 format('v',11);
4 N=4;
5 disp("E=|sin(2*theta)/(N*sin(theta/2))|","The array factor is given as");
6 Eslmax=abs(1/(4*sin(3*%pi/4)));
    // for the first sidelobe, the sidelobe maximum is at 2*theta=3*%pi/2.
7 Edb=20*log10(Eslmax);
8 disp(Eslmax,"The sidelobe level=");
9 disp(Edb,"The sidelobe level(in db)=");
```

Scilab code Exa 14.5 The progressive phase shift and BWFN

```
1 clc;
2 clear;
3 format('v',11);
```

Scilab code Exa 14.6 Design of uniform antenna array

Scilab code Exa 14.10 The flare angle

```
1 clc;
2 clear;
3 format('v',6);
4 L=5;
```

```
5 delta_0=0.25;
6 theta=2*acosd(L/(L+delta_0));
7 disp(theta,"the E plane flare angle(in degree)=");
```

Scilab code Exa 14.12 The directivity and half power beam width

Scilab code Exa 14.14 The directivity of the horn

```
1 clc;
2 clear;
3 format('v',11);
4 Ap=%pi*(3/2)^2;
5 Ae=0.6*Ap;
6 D=4*%pi*Ae;
7 disp(D,"The directivity=");
```

Radio Wave Propagation

Scilab code Exa 15.6 the distance for surface wave which can be used for given frequency

```
1 clc;
2 clear;
3 format('v',6);
4 f=10;
5 d=1.6*50/f^(1/3);
6 disp(d,"d(in km)=");
```

Scilab code Exa 15.7 the refractive index of the atmosphere

```
1 clc;
2 clear;
3 format('v',11);
4 h=1000;
5 T=300;
6 p=1000*exp(-h/8000);
7 N=77.6*p/T;
8 n=1+N*10^-6;
9 disp(n,"n=");
```

Scilab code Exa 15.11 The plasma frequency

```
1 clc;
2 clear;
3 format('e',11);
4 N=3*10^10;
5 me=9.109*10^-31;
6 e=1.6*10^-19;
7 epsilone_0=8.85*10^-12;
8 Wp=sqrt(N*e^2/(me*epsilone_0));
9 disp(Wp,"the plasma frequency(in rad/s)");
```

Scilab code Exa 15.12 the electron density at which the wave is reflected back

```
1 clc;
2 clear;
3 format('e',11);
4 phi=45;
5 f=10*10^6;
6 Ntb=(f*cosd(phi))^2/81*10^-6;
7 disp(Ntb,"The electron density(in electrons/cc)=");
```

Scilab code Exa 15.13 the critical frequency

```
1 clc;
2 clear;
3 format('e',11);
4 Nmax=2*10^12;
```

```
5 fcr=9*sqrt(Nmax);
6 disp(fcr, "the critical frequency(in Hz)=");
```

Scilab code Exa 15.14 the electron density and height of the layer