Universidade Federal de Mato Grosso - Campus de Cuiabá

Curso de Sistemas de Informação e Ciência da

Computação

Algoritmos II

Prof. Substituto: Leonair Neves Sousa Trabalho Prático

Leia com atenção as instruções abaixo.

Não serão aceitas soluções contendo estruturas não vistas em sala. Para este laboratório poderam ser utilizadas apenas:

- Operadores Aritméticos
- Operadores Relacionais
- Operadores Lógicos
- Estruturas Condicionais (if, else e switch)
- Estruturas de Repetição (while, do while e for)
- Vetores e Matrizes
- As bibliotecas stdio.h, math.h, stdlib.h, conio2.h, locale.h

A leitura e o entendimento do enunciado são partes da avaliação.

Organize seu código e comente-o adequadamente. Faça a endentação do programa.

No dia da entrega o aluno deve entregar o arquivo e a impressão do código fonte.

No arquivo fonte o aluno deve fazer um comentário usando os comandos /* */ para montar o seguinte cabeçalho:

/*************************************
Descrição do Algoritmo:
Nome da Disciplina:
Nome Professor:
Nome Aluno:
Turma:
RGA:
Data Entrega:

Utilize a seguinte amostra para realizar os testes no seu algoritmo.

CLASSIFICAÇÃO FINAL DO CAMPEONATO BRASILEIRO 2017 SÉRIE A

43-43-43-39-36-47-45-72-63-50-50-53-51-54-54-57-56-56-62-63

- 1. Inserir os elementos da amostra no vetor Amostra.
- 2. Após armazenar os elementos no vetor, ordene o vetor usando o código fonte abaixo:

3. Calcule agora as seguintes

```
informações: N= 20 K = \sqrt{20} = 4,47 = \text{arredonde para número inteiro acima 5.} AT = 72 - 36 = 36 ATC = AT/K = 36/5 = 7,2 = \text{arredonde para número inteiro acima 8.} Media \text{ Amostral} = 1037/20 = 51,85 Mediana = (51+53)/2 = 52, \text{ Para calcula a mediana a amostra precisa estar ordenada.}
```

4. Com a amostra, calcule os valores para construir a distribuição de freqüência. A distribuição de freqüência deve ser armazenada em uma matriz com o nome de distribuicao. A matriz deve ser declarada com o tipo float e o vetor com o tipo int.

CLA	SSES					FRONTEIR	A DE CLASSE
CI	CS	FI	XI	FR	FCA	FCI	FCS
36	43	5	39,5	25,00%	5	35,5	43,5
44	51	5	47,5	25,00%	10	43,5	51,5
52	59	6	55,5	30,00%	16	51,5	59,5
60	67	3	63,5	15,00%	19	59,5	67,5
68	75	1	71,5	5,00%	20	67,5	75,5

Informações pares a Calculo da distribuição da frequência:

CI – A primeira classe começa do menor numero da amostra

CS - Para achar você deve somar a CI mais o ATC e diminuir 1. 36+8 =44-1=43

FI – Para achar o FI de cada classe você deve percorrer o vetor e verificar a quantidade de amostra faz parte do intervalo. Na classe de 36 a 43 são 5 elementos.

XI – Para calcular o ponto médio é feito a media entre a CI e CS, então: (26+43)/2 = 39.5

FR- Para calcular a frequência relativa e fazer regra de 3, Então : (5*100) /20 = 25,00%

FCA – Para calcular o FCA, e somar o FI atual, mais os anteriores. Então por exemplo: o FCA da 3º classe = 6+5+5 =16

FCI – Para calcular o FCI de cada classe diminui 0,5 da CI, então: 36-0,5= 35,5

FCS – Para calcular o FCS de cada classe aumenta 0,5 da CS, então: 43+0,5= 43,5

5. Para construir o gráfico histograma.

Cada coluna deve ter uma cor diferente. Para isso use a biblioteca #include<conio2.h>.

Utilize os comandos: gotoxy(), textcolor() e textbackground().

Para cada coluna você deve usar um laço de repetição para desenhar o gráfico. Utilize a tabela ASCII para pegar o símbolo usado para desenhar o gráfico. Os símbolos que ficaram melhores para desenhar o gráfico são os de código: 176 177 ou 178.

Para isso você deve usar o printf para desenhar o símbolo escolhido. Exemplo:

176	10110000	В0	
177	10110001	B1	**************************************
178	10110010	B2	

Para desenhar o terceiro símbolo mostrado acima usa-se: printf("%c%c", 178,178); Use dois símbolos seguidos para o gráfico ficar mais grosso.

6. No Final o programa deve escrever o Vetor, a Matriz e o gráfico na tela, siga a formatação apresentada no exemplo.

Amostra

36 39 43 43 43 45 47 50 50 51 53 54 54 56 56 57 62 63 63 72

Distribuição de Freqüência

CLASSES						FRONTEIRA DE CLASS	
CI	CS	FI	XI	FR	FCA	FCI	FCS
36	43	5	39,5	25,00%	5	35,5	43,5
44	51	5	47,5	25,00%	10	43,5	51,5
52	59	6	55,5	30,00%	16	51,5	59,5
60	67	3	63,5	15,00%	19	59,5	67,5
68	75	1	71,5	5,00%	20	67,5	75,5

Histograma

