Exercícios selecionados:

1, 5, 7, 8, 11, 13, 14, 29, 30, 32, 34, 41, 48, 51

14.7 Exercícios

1. Suponha que (1, 1) seja um ponto crítico de uma função f com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre f?

(a) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$ (b) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

2. Suponha que (0, 2) seja um ponto crítico de uma função g com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre g?

(a) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 1$ (b) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 2$, $g_{yy}(0, 2) = -8$ (c) $g_{xx}(0, 2) = 4$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 9$

3–4 Utilize as curvas de nível da figura para predizer a localização dos pontos críticos de f e se f tem um ponto de sela ou um máximo ou mínimo local em cada um desses pontos. Explique seu raciocínio. Em seguida, empregue o Teste da Segunda Derivada para confirmar suas predições.

3. $f(x, y) = 4 + x^3 + y^3 - 3xy$

4. $f(x, y) = 3x - x^3 - 2y^2 + y^4$

5–18 Determine os valores máximos e mínimos locais e pontos de sela da função. Se você tiver um programa de computador para desenhar em três dimensões, trace o gráfico da função usando um ponto de vista e domínio convenientes para mostrar os aspectos importantes da função.

5. $f(x, y) = 9 - 2x + 4y - x^2 - 4y^2$

6. $f(x, y) = x^3y + 12x^2 - 8y$

7. f(x, y) = (x - y) (1 - xy)

8. $f(x, y) = xe^{-2x^2-2y^2}$

9. $f(x, y) = y^3 + 3x^2y - 6x^2 - 6y^2 + 2$

10. f(x, y) = xy(1 - x - y)

11. $f(x, y) = x^3 - 12xy + 8y^3$

12.
$$f(x, y) = xy + \frac{1}{x} + \frac{1}{y}$$

13.
$$f(x, y) = e^x \cos y$$

14.
$$f(x, y) = y \cos x$$

15.
$$f(x, y) = (x^2 + y^2)e^{y^2 - x^2}$$

16.
$$f(x, y) = e^{y}(y^2 - x^2)$$

17.
$$f(x, y) = y^2 - 2y \cos x$$
, $-1 \le x \le 7$

18.
$$f(x, y) = \sin x \sin y$$
, $-\pi < x < \pi$, $-\pi < y < \pi$

- **19.** Mostre que $f(x, y) = x^2 + 4y^2 4xy + 2$ em um número infinito de pontos críticos e que D = 0 em cada um. A seguir, mostre que f tem um mínimo local (e absoluto) em cada ponto crítico.
- **20.** Mostre que $f(x, y) = x^2 y e^{-x^2 y^2}$ tem valores máximos em $(\pm 1, 1/\sqrt{2})$ e valores máximos em $(\pm 1, -1/\sqrt{2})$. Mostre também que f tem infinitos outros pontos críticos e que D = 0 em cada um deles. Quais deles dão origem a valores máximos? E a valores mínimos? E a pontos de sela?
- **21–24** Utilize um gráfico e/ou curvas de nível para estimar os valores máximos e mínimos locais e pontos de sela da função. Em seguida, use o cálculo para determinar esses valores de modo preciso.

21.
$$f(x, y) = x^2 + y^2 + x^{-2}y^{-2}$$

22.
$$f(x, y) = xye^{-x^2-y^2}$$

23.
$$f(x, y) = \sin x + \sin y + \sin(x + y),$$

 $0 \le x \le 2\pi, 0 \le y \le 2\pi$

24.
$$f(x, y) = \sin x + \sin y + \cos(x + y),$$

 $0 \le x \le \pi/4, 0 \le y \le \pi/4$

25–28 Utilize uma ferramenta gráfica como no Exemplo 4 (ou o Método de Newton ou um determinador de raízes) para encontrar os pontos críticos de f com precisão de três casas decimais. Em seguida, classifique o ponto crítico e determine o valor mais alto e o mais baixo do gráfico, se houver.

25.
$$f(x, y) = x^4 + y^4 + 4x^2y + 2y$$

26.
$$f(x, y) = y^6 - 2y^4 + x^2 - y^2 + y$$

27.
$$f(x, y) = x^4 + y^3 - 3x^2 + y^2 + x - 2y + 1$$

28.
$$f(x, y) = 20e^{-x^2 - y^2} \sin 3x \cos 3y$$
, $|x| \le 1$, $|y| \le 1$

- **29–36** Determine os valores máximo e mínimo absolutos de f no conjunto D.
- **29.** $f(x, y) = x^2 + y^2 2x$, D é a região triangular fechada com vértices (2, 0), (0, 2) e (0, -2)
- **30.** f(x, y) = x + y xy, D é a região triangular fechada com vértices (0, 0), (0, 2) e (4, 0)

31.
$$f(x, y) = x^2 + y^2 + x^2 y + 4$$
,
 $D = \{(x, y) | |x| \le 1, |y| \le 1\}$

32.
$$f(x, y) = 4x + 6y - x^2 - y^2$$
, $D = \{(x, y) | 0 \le x \le 4, 0 \le y \le 5\}$

33.
$$f(x, y) = x^4 + y^4 - 4xy + 2$$
,
 $D = \{(x, y) | 0 \le x \le 3, 0 \le y \le 2\}$

34.
$$f(x, y) = xy^2$$
, $D = \{(x, y) | x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

35.
$$f(x, y) = 2x^3 + y^4$$
, $D = \{(x, y)|x^2 + y^2 \le 1\}$

36.
$$f(x, y) = x^3 - 3x - y^3 + 12y$$
, D é o quadrilátero cujos vértices são $(-2, 3)$, $(2, 3)$, $(2, 2)$ e $(-2, -2)$.

Para as funções de uma variável, é impossível uma função contínua ter dois pontos de máximo local e nenhum de mínimo local. Para as funções de duas variáveis, esse caso existe. Mostre que a função

$$f(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2$$

só tem dois pontos críticos, ambos de máximo local. Em seguida, utilize um computador com uma escolha conveniente de domínio e ponto de vista para ver como isso é possível.

38. Se uma função de uma variável é contínua em um intervalo e tem um único ponto crítico, então um máximo local tem de ser um máximo absoluto. Mas isso não é verdadeiro para as funções de duas variáveis. Mostre que a função

$$f(x, y) = 3xe^y - x^3 - e^{3y}$$

tem exatamente um ponto crítico, onde f tem um máximo local, porém este não é um máximo absoluto. Em seguida, utilize um computador com uma escolha conveniente de domínio e ponto de vista para ver como isso é possível.

- **39.** Determine a menor distância entre o ponto (2, 0, -3) e o plano x + y + z = 1.
- **40.** Determine o ponto do plano x 2y + 3z = 6 que está mais próximo do ponto (0, 1, 1).
- **41**. Determine os pontos do cone $z^2 = x^2 + y^2$ que estão mais próximos do ponto (4, 2, 0).
- **42.** Determine os pontos da superfície $y^2 = 9 + xz$ que estão mais próximos da origem.
- Determine três números positivos cuja soma é 100 e cujo produto é máximo.
- Encontre três números positivos cuja soma é 12 e cuja soma dos quadrados é a menor possível.
- **45.** Encontre o volume máximo de uma caixa retangular que está inscrita em uma esfera de raio *r*.
- 46. Encontre as dimensões de uma caixa com volume de 1.000 cm³ que tenha a área de sua superfície mínima.
- **47.** Determine o volume da maior caixa retangular no primeiro octante com três faces nos planos coordenados e com um vértice no plano x + 2y + 3z = 6.
- **48.** Determine as dimensões da caixa retangular de maior volume se a área total de sua superfície é dada por 64 cm².
- **49.** Determine as dimensões de uma caixa retangular de volume máximo tal que a soma dos comprimentos de suas 12 arestas seja uma constante *c*.
- **50.** A base de um aquário com volume V é feita de ardósia e os lados são de vidro. Se o preço da ardósia (por unidade de área) equivale a cinco vezes o preço do vidro, determine as dimensões do aquário para minimizar o custo do material.

- Uma caixa de papelão sem tampa deve ter um volume de 32.000 cm³. Determine as dimensões que minimizem a quantidade de papelão utilizado.
- **52.** Um prédio retangular está sendo projetado para minimizar a perda de calor. As paredes leste e oeste perdem calor a uma taxa de 10 unidades/m² por dia; as paredes norte e sul, a uma taxa de 8 unidades/m² por dia; o piso, a uma taxa de 1 unidade/m² por dia e o teto, a uma taxa de 5 unidades/m² por dia. Cada parede deve ter pelo menos 30 m de comprimento, a altura deve ser no mínimo 4 m, e o volume, exatamente 4 000 m³.
 - (a) Determine e esboce o domínio da perda de calor como uma função dos comprimentos dos lados.
 - (b) Encontre as dimensões que minimizam a perda de calor. (Analise tanto os pontos críticos como os pontos sobre a fronteira do domínio.)
 - (c) Você poderia projetar um prédio com precisamente menos perda de calor ainda se as restrições sobre os comprimentos das paredes fossem removidas?
- **53.** Se o comprimento da diagonal de uma caixa retangular deve ser *L*, qual é o maior volume possível?
- **54.** Três alelos (versões alternativas de um gene) A, B e O determinam os quatro tipos de sangue: A (AA ou AO), B (BB ou BO), O (OO) e AB. A Lei de Hardy-Weinberg afirma que a proporção de indivíduos em uma população que carregam dois alelos diferentes é

$$P = 2pq + 2pr + 2rq$$

onde p, q e r são as proporções de A, B e O na população. Use o fato de que p+q+r=1 para mostrar que P é no máximo $\frac{2}{3}$.

55. Suponha que um cientista tenha razões para acreditar que duas quantidades x e y estejam relacionadas linearmente, ou seja, y = mx + b, pelo menos aproximadamente, para algum valor de

m e de b. O cientista realiza uma experiência e coleta os dados na forma de pontos $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, e então coloca-os em um gráfico. Os pontos não estão todos alinhados, de modo que o cientista quer determinar as constantes m e b para que a reta y = mx + b "ajuste" os pontos tanto quanto possível (veja a figura).

Seja $d_i = y_i - (mx_i + b)$ o desvio vertical do ponto (x_i, y_i) da reta. O **método dos mínimos quadrados** determina m e b de modo a minimizar $\sum_{i=1}^{n} d_{i}^2$ a soma dos quadrados dos desvios. Mostre que, de acordo com esse método, a reta de melhor ajuste é obtida quando

$$m\sum_{i=1}^n x_i + bn = \sum_{i=1}^n y_i$$

$$m\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

Dessa forma, a reta é determinada ao resolver essas duas equações nas incógnitas m e b. (Veja a Seção 1.2, no Volume I, para mais discussões e aplicações do método dos quadrados mínimos.)

56. Determine uma equação do plano que passa pelo ponto (1, 2, 3) e que corta o menor volume do primeiro octante.

EXERCÍCIOS 14.7

- **1.** (a) *f* tem um mínimo local em (1, 1).
- (b) f tem um ponto de sela em (1, 1).
- **3.** Mínimo local em (1, 1), ponto de sela em (0, 0)
- **5.** Máximo $f(-1, \frac{1}{2}) = 11$
- **7.** Pontos de sela em (1, 1), (-1, -1)
- **9.** Máximo f(0, 0) = 2, mínimo f(0, 4) = -30, pontos de sela em (2, 2), (-2, 2)
- **11.** Mínimo f(2, 1) = -8, ponto de sela em (0, 0)
- **13.** Nenhum **15.** Mínimo f(0, 0) = 0, pontos de sela em $(\pm 1, 0)$
- **17.** Mínimos $f(0, 1) = f(\pi, -1) = f(2\pi, 1) = -1$, pontos de sela em $(\pi/2, 0), (3\pi/2, 0)$
- **21.** Mínimos $f(1, \pm 1) = 3, f(-1, \pm 1) = 3$
- **23.** Máximo $f(\pi/3, \pi/3) = 3\sqrt{3}/2$,

mínimo $f(5\pi/3, 5\pi/3) = -3\sqrt{3}/2$, ponto de sela em (π, π)

25. Mínimos $f(0, -0.794) \approx -1.191$,

 $f(\pm 1,592, 1,267) \approx -1,310$, pontos de sela $(\pm 0,720, 0,259)$, pontos mais baixos $(\pm 1,592, 1,267, -1,310)$

27. Máximo $f(0,170, -1,215) \approx 3,197,$

mínimos $f(-1,301, -0.549) \approx -3.145$,

 $f(1,131,0,549) \approx -0,701,$

pontos de sela (-1,301, -1,215), (0,170, 0,549) (1,131, -1,215), sem ponto mais alto ou mais baixo

- **29.** Máximo $f(0, \pm 2) = 4$, mínimo f(1, 0) = -1
- **31.** Máximo $f(\pm 1, 1) = 7$, mínimo f(0, 0) = 4
- **33.** Máximo f(3, 0) = 83, mínimo f(1, 1) = 0
- **35.** Máximo f(1, 0) = 2, mínimo f(-1, 0) = -2

37.

- **39.** $2/\sqrt{3}$ **41.** $(2, 1, \sqrt{5}), (2, 1, -\sqrt{5})$
- **43** $\frac{100}{2}$ $\frac{100}{2}$ $\frac{100}{2}$

- **45.** $8r^3/(3\sqrt{3})$
- **47.** $\frac{4}{3}$ **49.** Cub
 - **49**. Cubo, comprimento da borda *c*/12
- **51.** Base do quadrado de lado 40 cm, altura 20 cm
- **53.** $L^3/(3\sqrt{3})$