



# Categorische Data Analyse

Lieven Clement

2<sup>de</sup> bach. in de Biologie, Chemie, Biochemie en Biotechnologie en Biomedische Wetenschappen



# 8.1 Inleiding

- Tot nog toe zijn modelleren van een continue uitkomst a.d.h.v. een categorische of continue predictor.
- Nu besluitvorming voor een categorische uitkomst.
- Focus associatie tussen een categorische uitkomst en een categorische predictor.
- Gebruik van kruistabellen om associatie voor te stellen.



# 8.2 Toetsen voor een proportie

#### Saksen-studie

- Vrij gesloten populatie (weinig immigratie en emigratie)
- Waarschijnlijk dat een ongeboren kind mannelijk is?

```
boys <- 3175
n <- 6155
```

- Op 6155 ongeboren kinderen werden 3175 jongens geobserveerd.
- Verschil in de kans dat het ongeboren kind een jongen is of een meisje.

- Gegevens voorstellen als uitkomsten van een numerieke toevalsveranderlijke X
- X = 1 voor jongens en
- X = 0 voor meisjes.
- Merk op: telprobleem omdat de uitkomst een telling (nl. het aantal jongens)
- Formeel hebben we nu een populatie van ongeboren kinderen beschouwd waarin elk individu gekenmerkt wordt door een 0 of een 1.
- De uitkomst variabele is dus binair.



## Bernoulli verdeling

 Binaire data kan worden gemodelleerd a.d.h.v. een Bernoulli verdeling:

$$X_i \sim B(\pi) \text{ met}$$
  
 $B(\pi) = \pi^{X_i} (1-\pi)^{(1-X_i)},$ 

- ullet een distributie met 1 model parameter  $\pi$ 
  - Verwachte waarde van  $X_i$ :  $E[X_i] = \pi$ ,
  - De proportie van ongeboren jongens (d.i. kinderen met een 1) in de populatie.
  - Bijgevolg is  $\pi$  kans dat lukraak getrokken individu een jongen is (een observatie die 1 oplevert).
- ullet De variantie van Bernoulli data is eveneens gerelateerd aan de kans  $\pi$ .

$$\mathsf{Var}[X_i] = \pi(1-\pi).$$



#### Grafische weergave van enkele Bernoulli kansverdelingen





- In Saksenstudie worden lukraak 6155 observaties getrokken uit de populatie.
- ullet We schatten  $\pi$  als het steekproefgemiddelde :

$$\hat{\pi} = \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n},$$

pi=boys/n pi

## [1] 0.5158408

In ons voorbeeld is  $\bar{x}=3175$  / 6155=51.6%.

#### 8.2.1. Binomiale test

- Geeft feit dat 51.6% van de kinderen in de studie mannelijk zijn, voldoende overtuigingskracht om te beweren dat er meer kans is dat een ongeboren kind een jongen is dan een meisje.
- Statistiche toets voor

$$H_0: \pi = 1/2 \text{ versus } H_1: \pi \neq 1/2,$$

- Daarvoor moeten we verdeling van de
- $\bullet$  X en  $\bar{X}$
- of van de som  $S = n\bar{X}$  kennen.



- Stel  $H_0$ :  $\pi = 1/2$  is waar (voorkomen van jongens en meisjes in populatie even waarschijnlijk)
- Lukrake trekking van één individu uit de populatie, kans op een jongen

$$P(X = 1) = \pi = 1/2.$$

- Twee kinderen onafhankelijk van elkaar (en de populatie  $\approx \infty$ ):
- Kans  $\pi = 1/2$  op jongen voor zowel eerste als tweede kind (onafhankelijk van elkaar)
- Uitkomsten  $(x_1, x_2)$  voor beide kinderen hebben dan 4 mogelijke waarden: (0,0), (0,1), (1,0) en (1,1).
- Deze komen elk voor met kans  $1/4 = 1/2 \times 1/2$ .
- Toevalsveranderlijke S die som van uitkomsten weergeeft kan volgende waarden aannemen:

| $(x_1, x_2)$ | s | P(S=s) |
|--------------|---|--------|
| (0,0)        | 0 | 1/4    |
| (0,1), (1,0) | 1 | 1/2    |
| (1,1)        | 2 | 1/4    |



## Algemeen: *n* onafhankelijke observaties

- ullet Kans  $\pi$  op "succes" (uitkomst 1) voor elke observatie
- ullet Totaal aantal successen S (som van alle 1-en) kan n+1 mogelijke waarden hebben

$$S = k$$
, met  $k = 0, \ldots, n$ 

Verdeling van S?

$$P(S=k) = \binom{n}{k} \pi^{k} (1-\pi)^{n-k} (\#eq:binomk)$$
 (1)

- $1-\pi$ : kans op mislukking in 1 enkele trekking (uitkomst met 0 genoteerd) en
- binomiaalcoëfficient

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n \times (n-1) \times ... \times (n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

In R kan je de kansen van binomiale verdeling voor elke S = k
 opvragen met dbinom(k,n,p)



## Binomiale Verdeling

Een toevalsveranderlijke S een kansverdeling in Model @ref(eq:binomk):

- Binomiaal verdeelde toevalsveranderlijke met bijhorende Binomiale kansverdeling
- parameters
  - n (d.i. het aantal trekkingen of, equivalent, de maximale uitkomstwaarde)
  - $\pi$  (de kans op een 'succes' bij elke trekking).
- Kans berekenen k gebeurtenissen zich voordoen op n onafhankelijke experimenten waarbij kans op 1 zo'n gebeurtenis per experiment,  $\pi$  bedraagt.
- Voor analyse van gegevens die slechts 2 mogelijke waarden kunnen aannemen.
- Bijvoorbeeld: al dan niet besmet met HIV, wild type van een gen vs een mutant,...
- Gebruik: Proporties of risico's op een gebeurtenis van een bepaald type vergelijken tussen verschillende groepen.



# Een grafische weergave van enkele Binomiale kansverdelingen.



Figuur 1: Binomiale verdelingen.



#### Toetsstatistieken voor

$$H_0: \pi = 1/2 \text{ versus } H_1: \pi \neq 1/2$$

- $\bar{X} 1/2$  of, equivalent,
- $\Delta = n(\bar{X} \pi_0) = S s_0$ .
- Verdeling van deze laatste toetsstatistiek volgt rechtstreeks uit de Binomiale verdeling:
- We observeren s = 3175 en dus  $\delta = s s_0 = 3175 6155 \times 0.5 = 97.5$ .
- In veronderstelling dat jongens en meisjes even waarschijnlijk zijn (d.i. onder de nulhypothese  $H_0: \pi=1/2$ ), bekomen we de bijhorende tweezijdige p-waarde:

$$p = P_0[S - s_0 \ge |\delta|] + P_0[S - s_0 \le -|\delta|].$$

• Merk op dat we dit kunnen herschrijven in termen van S.

$$p = P_0 [S \ge s_0 + |\delta|] + P_0 [S \le s_0 - |\delta|].$$



Voor ons voorbeeld kunnen we deze kansen als volgt berekenen:

$$P_0[S \ge s_0 + |\delta|] = P(S \ge 6155 \times 0.5 + |3175 - 6155 \times 0.5|)$$
  
=  $P(S \ge 3175)$   
=  $P(S = 3175) + P(S = 3176) + ... + P(S = 6155)$   
= 0.0067

$$P_0[S \le s_0 - |\delta|] = P(S \le 6155 \times 0.5 - |3175 - 6155 \times 0.5|)$$

$$= P(S \le 2980)$$

$$= P(S = 0) + ... + P(S = 2980)$$

$$= 0.0067$$

• Binomiale distributie is symmetrisch als  $\pi = 1/2$ :

$$P_0[S \ge s_0 + |\delta|] = P_0[S \le s_0 - |\delta|]$$

• Dat is niet langer het geval wanneer  $\pi$  afwijkt van 0.5.



```
pi0 <- 0.5; s0 <- pi0 *n
delta <- abs(boys- s0)
delta
## [1] 97.5
sUp <- s0 + delta
sDown <- s0 -delta
c(sDown,sUp)
## [1] 2980 3175
#Leg uit!
pUp <- 1-pbinom(sUp-1,n,pi0)
pDown <- pbinom(sDown,n,pi0)
p <- pUp+pDown
c(pUp,pDown, p)
```

## [1] 0.006699883 0.006699883 0.013399766



- Als  $\pi=1/2$ , kans om door toeval minstens  $\delta=97.5$  jongens meer of minder te observeren dan het gemiddelde onder  $H_0: s_0=3077.5$ , slechts 1.34% is: **de** *p*-waarde van de binomiale test.
- Heel onwaarschijnlijk om een dergelijk groot aantal jongens te observeren als in realiteit jongens en meisjes even waarschijnlijk zijn.
- Drukt uit dat de onderstelling dat jongens en meisjes even waarschijnlijk zijn, weinig gesteund wordt door de data.







De test kan eveneens worden uitgevoerd a.d.h.v. de binomial.test functie in R.

```
binom.test(x=boys,n=n,p=pi0)
```

```
##
##
   Exact binomial test
##
## data: boys and n
## number of successes = 3175, number of trials = 6155, p-value
## 0.0134
## alternative hypothesis: true probability of success is not eq
## 95 percent confidence interval:
##
   0.5032696 0.5283969
## sample estimates:
## probability of success
##
                0.5158408
```

Op het 5% significantie-niveau besluiten we dat er gemiddeld meer kans is dat een ongeboren kind mannelijk dan vrouwelijk is.

#### 8.2.2. Betrouwbaarheidsinterval op een proportie

- Schatter van de proportie van jongens in de populatie, is steekproefgemiddelde  $\hat{\pi} = \bar{x} = 0.516$
- Standaard error is

$$SE_{\bar{x}} = \sqrt{\frac{\mathsf{Var}[X]}{n}} = \sqrt{\frac{\pi(1-\pi)}{n}}$$

- We kunnen dit schatten o.b.v. de steekproef:  $SE_{\bar{x}} = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} = 0.0064$ .
- 95% BI via centrale limietstelling:  $\hat{\pi} \pm 1.96SE_{\hat{\pi}}$ .

```
se=sqrt(pi*(1-pi)/n)
pi+c(-1,1)*qnorm(0.975)*se
```

## [1] 0.5033559 0.5283257



## Betrouwbaarheidsinterval op een proportie in kleine steekproef?

- Inverteren van de one-sample test voor proporties.
- Stop alle waarden  $\pi_0$  die niet verworpen worden door binomiale test op het 5% significantieniveau in BI
- Is geïmplementeerd in de binom.test functie.

```
BI <- binom.test(x=boys,n=n,p=pi0)$conf.int
BI
```

```
## [1] 0.5032696 0.5283969
## attr(,"conf.level")
## [1] 0.95
```

#### We verfiëren dit nu:

```
binom.test(x=boys,n=n,p=BI[1],alternative="greater")
```

```
##
##
   Exact binomial test
##
## data: boys and n
## number of successes = 3175, number of trials = 6155, p-value
## 0.025
## alternative hypothesis: true probability of success is greate
## 95 percent confidence interval:
##
   0.5052779 1.0000000
## sample estimates:
## probability of success
##
                0.5158408
```

#### binom.test(x=boys,n=n,p=BI[2],alternative="less")

```
##
##
   Exact binomial test
##
## data: boys and n
## number of successes = 3175, number of trials = 6155, p-value
## 0.025
## alternative hypothesis: true probability of success is less t
## 95 percent confidence interval:
   0.0000000 0.5263925
## sample estimates:
## probability of success
##
                0.5158408
```

- Het exacte BI is te verkiezen boven het BI dat gebaseerd is op de CLT.
- Voor Saksen-studie ligt BI o.b.v. CLT heel dicht bij exacte BI: grote steekproef (n = 6155).

#### 8.2.3. Conclusie

- Merk op dat het testen voor een proportie kan gezien worden als het equivalent van een one-sample t-test voor binaire data.
- Voor de Saksen populatie besluiten we op het 5% significantieniveau dat er meer kans is dat een ongeboren kind mannelijk dan vrouwelijk is (p=0.013). De kans dat een ongeboren kind mannelijk is, bedraagt 51.6% (95% BI [50.3,52.8]%).

## 8.3. Toets voor associatie tussen 2 kwalitatieve variabelen

## 8.3.1. Gepaarde gegevens

- 2 keer zelfde individu meten
- bijvoorbeeld, vóór en na blootstelling aan de experimentele stof
- telkens de categorische uitkomst te observeren.
- Hier enkel: gepaarde binaire uitkomsten
- Statistische analyse moet rekening houden met de paring.

# 8.3.1.1. Voorbeeld: partnerkeuze van seksueel mature vrouwelijke *Campbelli* dwerghamster (Rogovin et al. 2017)



# Voorbeeld: partnerkeuze van seksueel mature vrouwelijke Campbelli dwerghamster (Rogovin et al. 2017)

- Na 3 minuten, scheidingswand weg
- aggressief vs niet-agressief mannentje
- Elk vrouwtje onderging tweemaal de test: na verblijf in
  - vijandige omgeving (hoge populatie, weinig voedsel, veel concurrentie)
  - vriendelijkere omgeving

Tabel 2: Kruistabel van partnerkeuze bij dwerghamster.

|                                                         | vriendelijk-agressief | vriendelijk-niet-agressief | totaa          |
|---------------------------------------------------------|-----------------------|----------------------------|----------------|
| vijandig-agressief<br>vijandig-niet-agressief<br>totaal | 3 (e)<br>1 (g)        | 17 (f)<br>13 (h)<br>30     | 20<br>14<br>34 |

|                         | vriendelijk-agressief | vriendelijk-niet-agressief | totaa |
|-------------------------|-----------------------|----------------------------|-------|
| vijandig-agressief      | 3 (e)                 | 17 (f)                     | 20    |
| vijandig-niet-agressief | 1 (g)                 | 13 (h)                     | 14    |
| totaal                  | 4                     | 30                         | 34    |

- ullet  $\pi_1=P[ ext{agressief mannetje}\mid ext{verblijf vijandige omgeving}]$
- $\hat{p}i_1 = (e+f)/n$ , waarbij n = e+f+g+h.
- ullet  $\pi_0=P[ ext{agressief mannetje}\mid ext{verblijf vriendelijke omgeving}]$
- $\hat{p}i_0 = (e+g)/n$  -Absoluut riscoverschil (ARV)

$$\widehat{\mathsf{ARV}} = \hat{\pi}_1 - \hat{\pi}_0 = \frac{e+f}{n} - \frac{e+g}{n} = \frac{f-g}{n}$$

ullet Enkel beïnvloed door aantallen discordante paren f en g

Standaard error op ARV

$$\mathsf{SE}_{\widehat{\mathsf{ARV}}} = \frac{1}{n} \sqrt{f + g - \frac{(f - g)^2}{n}}$$

ullet Als er voldoende gegevens zijn, kan men een (1-lpha)100% BI op ARV

$$\left[\widehat{\mathsf{ARV}} - z_{\alpha/2}\mathsf{SE}_{\widehat{\mathsf{ARV}}}, \widehat{\mathsf{ARV}} - z_{\alpha/2}\mathsf{SE}_{\widehat{\mathsf{ARV}}}\right]$$

of

$$\left[\frac{f-g}{n}-\frac{z_{\alpha/2}}{n}\sqrt{f+g-\frac{(f-g)^2}{n}},\frac{f-g}{n}+\frac{z_{\alpha/2}}{n}\sqrt{f+g-\frac{(f-g)^2}{n}}\right]$$

```
hamster \leftarrow matrix(c(3,17,1,13),ncol=2,byrow=TRUE)
rownames(hamster) <- c("vijandig-agressief", "vijandig-niet-agre</pre>
colnames(hamster) <- c("vriendelijk-agressief", "vriendelijk-niet</pre>
f=hamster[1,2]; g=hamster[2,1]; n=sum(hamster)
riskdiff=(f-g)/n
riskdiff
## [1] 0.4705882
se=sqrt(f+g-(f-g)^2/n)/n
se
## [1] 0.09517144
bi=riskdiff+c(-1,1)*qnorm(0.975)*se
bi
```

## [1] 0.2840556 0.6571208

$$\widehat{ARV} = \frac{17 - 1}{34} = 0.471$$

of 47.1%. - De standaard error

$$\mathsf{SE}_{\widehat{\mathsf{ARV}}} = \frac{1}{34} \sqrt{17 + 1 - \frac{(17 - 1)^2}{34}} = 0.0952$$

 Een 95% betrouwbaarheidsinterval voor het absolute risicoverschil op de keuze van een agressief mannetje tussen een verblijf in een vijandige en vriendelijke omgeving is bijgevolg

$$[0.471 - 1.96 \times 0.0952, 0.471 + 1.96 \times 0.0952] = [0.284, 0.658]$$

• We hebben dus geschat dat het absolute risico met 95% kans in het interval [28.4,65.8]% ligt.



#### 8.3.1.2. McNemar test

|                         | vriendelijk-agressief | vriendelijk-niet-agressief | totaal |
|-------------------------|-----------------------|----------------------------|--------|
| vijandig-agressief      | 3 (e)                 | 17 (f)                     | 20     |
| vijandig-niet-agressief | 1 (g)                 | 13 (h)                     | 14     |
| totaal                  | 4                     | 30                         | 34     |

- Toetsen of de risico's verschillen tussen de vijandige en vriendelijke omgeving.
- Enkel de discordante paren leveren hier informatie over.
- f > g indicatie tegen  $H_0$ : partnerkeuzenietgeassocieerdmetomgeving
- Kans evalueren dat in een lukraak discordant paar, vrouwtje na verblijf in een vijandige omgeving kiest voor het agressieve mannetje.
- Deze kans wordt geschat als

$$\frac{f}{f+g}$$



$$E[f/(f+g)] \stackrel{H_0}{=} 0.5$$

$$f \stackrel{H_0}{\sim} Binom(n=f+g,\pi=0.5)$$

$$SE_{\frac{f}{f+g}} \stackrel{H_0}{=} \sqrt{(f+g) \times 0.5 \times 0.5} = \frac{\sqrt{f+g}}{2}$$

Asymptotisch one-sample z-test (o.b.v. normale verdeling)

$$z = \frac{f - (f + g)/2}{\sqrt{f + g}/2} = \frac{f - g}{\sqrt{f + g}}$$

De Normale benadering is goed als

$$f \times g/(f+g) \geq 5$$

 In kleine steekproeven is het meer aangewezen om een continuïteitscorrectie te gebruiken d.m.v. de toetsingsgrootheid

$$\frac{|f-g|-1}{\sqrt{f+g}}$$

De **Mc Nemar test** analogon van de gepaarde t-test voor binaire, kwalitatieve i.p.v. continue variabelen.

We voeren nu de analyse uit voor het hamstervoorbeeld in R:

```
correct=f*g/(f+g)
correct
## [1] 0.9444444
#continuiteitscorrectie
t = (abs(f-g)-1)/sqrt(f+g); t
## [1] 3.535534
p=(1-pnorm(t))*2; p
```

- ## [1] 0.000406952
  - Voor het dwerghamster voorbeeld observeren we dat  $f \times g/(f+g) = 0.944 < 5 \rightarrow$  continuïteitscorrectie
  - De kans dat een Normaal verdeelde toevalsveranderlijke groter is dan 3.54 of kleiner is dan -3.54 bedraagt 0.0407%: p-waarde

In R kan de analyse ook worden uitgevoerd a.d.h.v. de mcnemar.test functie

```
mcnemar.test(hamster)
```

```
##
## McNemar's Chi-squared test with continuity correction
##
## data: hamster
## McNemar's chi-squared = 12.5, df = 1, p-value = 0.000407
```

- We verwerpen bijgevolg de nulhypothese op het 5% significantieniveau en
- Besluiten dat de parternkeuze extreem significant geassocieerd is met de omgeving.
- We zien dat hier eveneens de continuïteitscorrectie werd uitgevoerd en dat we exact dezelfde p-waarde bekomen.



- Normale benadering van deze toetstatistiek niet ideaal is omdat  $f \times g/(f+g) = 0.944 < 5$ .
- Aangewezen om een exacte toets te gebruiken op basis van binomiale test

```
binom.test(x=f,n=f+g,p=0.5)
```

```
##
##
   Exact binomial test
##
## data: f and f + g
## number of successes = 17, number of trials = 18, p-value =
## 0.000145
## alternative hypothesis: true probability of success is not eq
## 95 percent confidence interval:
##
   0.7270564 0.9985944
## sample estimates:
## probability of success
##
                0.9444444
```

### 8.3.1.3. Conclusie

- Op basis van de exacte test besluiten we eveneens dat de parternkeuze extreem significant geassocieerd is met de omgeving (p < 0.001).
- De kans op de keuze van een agressief mannetje ligt 47.1% hoger als een dwerghamster vrouwtje zich in een vijandige omgeving bevindt dan wanneer ze zich in een vriendelijke omgeving bevindt (95% BI [28.4,65.7]%).

## 8.3.2. Ongepaarde gegevens

## Genetische associatie studie (zie Sectie 3.6.2)

- Genetische associatiestudie polymorfismen in het BRCA1 gen geassocieerd is met borstkanker?
- Retrospectieve case-controle studie met 800 borstkankercases en 572 controles
- R object is opgeslagen in de file brca.rda

```
load("dataset/brca.rda")
head(brca)
```

```
## cancer variant variant2
## 1 control pro/pro andere
## 2 control pro/pro andere
## 3 control pro/pro andere
## 4 control pro/pro andere
## 5 control pro/pro andere
```

| Genotype | Controles   | Cases       | Totaal    |
|----------|-------------|-------------|-----------|
| Pro/Pro  | 266 (a)     | 342 (d)     | 608 (a+d) |
| Pro/Leu  | 250 (b)     | 369 (e)     | 619 (b+e) |
| Leu/Leu  | 56 (c)      | 89 (f)      | 145 (c+f) |
| Totaal   | 572 (a+b+c) | 800 (d+e+f) | 1372 (n)  |

- In case-controle studies kiest men een vast aantal cases en controles en spoort men voor hen op welke blootstellingen ze in het verleden ondervonden hebben.
- Dergelijke studies noemt men ook retrospectief
- Onmogelijk om het risico's and riscoverschillen op borstkanker te schatten: proportie van cases en controles weerspiegelt populatie niet!

| Genotype | Controles   | Cases         | Totaal    |
|----------|-------------|---------------|-----------|
| Pro/Pro  | 266 (a)     | 342 (d)       | 608 (a+d) |
| Pro/Leu  | 250 (b)     | 369 (e)       | 619 (b+e) |
| Leu/Leu  | 56 (c)      | 89 (f)        | 145 (c+f) |
| Totaal   | 572 (a+b+c) | 800 $(d+e+f)$ | 1372 (n)  |

- Wel mogelijk om kans te schatten om allel Leu/Leu
  - cases:  $\pi_1 = f/(d+e+f) = 89/800 = 11.1\%$
  - controles: $\pi_0 = c/(a+b+c) = 56/572 = 9.8\%$
- Relatief risico op blootstelling voor cases versus controles is bijgevolg 11.1/9.8 = 1.14.
- Vrouwen met borstkanker hebben dus 14% meer kans om de allelcombinatie Leu/Leu te hebben op het BRCA1 gen dan vrouwen zonder borstkanker.
- Dit suggereert een associatie, maar drukt iet uit hoeveel hoger het risico op borstkanker is voor vrouwen met de allelcombinatie Leu/Leu dan voor andere vrouwen
- Andere risicomaat?



$$Odds = \frac{p}{1-p}$$

waarbij p de kans is op die gebeurtenis.

Transformatie van het risico, met volgende eigenschappen:

- de odds neemt waarden aan tussen nul en oneindig.
- ullet de odds is gelijk aan 1 als en slechts als de kans zelf gelijk is aan 1/2.
- de odds neemt toe als de kans toeneemt.
- populair bij gokkers: hoeveel waarschijnlijker het is om te winnen dan om te verliezen

| Genotype | Controles   | Cases       | Totaal    |
|----------|-------------|-------------|-----------|
| Pro/Pro  | 266 (a)     | 342 (d)     | 608 (a+d) |
| Pro/Leu  | 250 (b)     | 369 (e)     | 619 (b+e) |
| Leu/Leu  | 56 (c)      | 89 (f)      | 145 (c+f) |
| Totaal   | 572 (a+b+c) | 800 (d+e+f) | 1372 (n)  |

### Odds op allel Leu/Leu

- Cases:  $odds_1 = \frac{f/(d+e+f)}{(d+e)/(d+e+f)} = f/(d+e) = 89/711 = 0.125$ . Vrouwen met borstkanker hebben ongeveer 8 keer meer kans om de allelcombinatie Leu/Leu niet te hebben op het BRCA1 gen dan om het wel te hebben.
- Controles:  $odds_2 = c/(a+b) = 56/516 = 0.109$ .
- Associatie tussen blootstelling en uitkomst:

$$OR_{Leu/Leu} = \frac{\text{odds}_T}{\text{odds}_C} = \frac{f/(d+e)}{c/(a+b)} = \frac{f/(d+e)}{c/(a+b)} = 1.15$$



| Genotype | Controles   | Cases         | Totaal    |
|----------|-------------|---------------|-----------|
| Pro/Pro  | 266 (a)     | 342 (d)       | 608 (a+d) |
| Pro/Leu  | 250 (b)     | 369 (e)       | 619 (b+e) |
| Leu/Leu  | 56 (c)      | 89 (f)        | 145 (c+f) |
| Totaal   | 572 (a+b+c) | 800 $(d+e+f)$ | 1372 (n)  |

- Was de bovenstaande studie echter een volledig lukrake steekproef geweest (waarbij het aantal cases en controles niet per design werden vastgelegd),
- dan konden we daar ook de odds ratio op borstkanker berekenen voor mensen met versus zonder het allel Leu/leu.

$$OR_{case} = rac{rac{f}{c}}{rac{(d+e)}{(a+b)}} = rac{f(a+b)}{c(d+e)} = OR_{Leu/Leu} = 1.15,$$

- OR is een symmetrische maat! OR op borstkanker kan wel worden geschat!
- De odds op borstkanker is bijgevolg 15% hoger bij vrouwen met die specifieke allelcombinatie.



- Is verschil groot genoeg zodat we het effect die we in de steekproef zien kunnen veralgemenen naar de populatie toe.
- Hiertoe zullen we de kruistabel eerst herschrijven tot een 2x2 tabel

| Genotype | Controles | Cases     | Totaal     |
|----------|-----------|-----------|------------|
| andere   | 516 (a)   | 711 (c)   | 1227 (a+c) |
| Leu/Leu  | 56 (b)    | 89 (d)    | 145 (b+d)  |
| Totaal   | 572 (a+b) | 800 (c+d) | 1372 (n)   |

### 8.3.3. De Pearson Chi-kwadraat test voor ongepaarde gegevens

• Testen voor associatie tussen de categorische blootstelling (bvb. variant, X) en de categorische uitkomst (bvb. ziekte, Y).

 $H_0$  : Er is geen associatie tussen X en Y vs  $H_1$  : X en Y zijn geassocieerd

- Beschouw de rijtotalen  $n_{andere} = a + c$ ,  $n_{leu,leu} = b + d$  enerzijds en
- de kolomtotalen  $n_{contr} = a + b$  en  $n_{case} = c + d$  anderzijds.
- Zij verstrekken informatie over de marginale verdeling van de blootstelling (bvb. variant, X) en de uitkomst (bvb. ziekte, Y), maar niet over de associatie tussen die veranderlijken.
- Onder  $H_0$  zijn X en Y onafhankelijk zijn en verwacht men een proportie (b+d)/n van a+b controles met een Leu/Leu variant, of dat (a+b)(b+d)/n een Leu/Leu variant hebben
- Analoog kan men verwachte aantal  $E_{ij}$  berekenen dat onder de nulhypothese in *elke cel* van de  $2 \times 2$  tabel zou liggen.



- $E_{11}=$  het verwachte aantal onder  $H_0$  in de (1,1)-cel = 1227  $\times$  572/1372 = 511.5 ;
- $E_{12}=$  het verwachte aantal onder  $H_0$  in de (1,2)-cel = 1227  $\times$  800/1372 = 715.5 ;
- $E_{21}=$  het verwachte aantal onder  $H_0$  in de (2,1)-cel = 145  $\times$  572/1372 = 60.45 ;
- $E_{22}=$  het verwachte aantal onder  $H_0$  in de (2,2)-cel = 145 imes 800/1372 = 84.55 ;

#### Toetsstatistiek:

$$X^{2} = \frac{(|O_{11} - E_{11}| - .5)^{2}}{E_{11}} + \frac{(|O_{12} - E_{12}| - .5)^{2}}{E_{12}} + \frac{(|O_{21} - E_{21}| - .5)^{2}}{E_{21}} + \frac{(|O_{22} - E_{22}| - .5)^{2}}{E_{22}}$$

$$X^{2} \xrightarrow{H_{0}} \chi^{2}(df = 1)$$







- Een grote waarde van de toetsingsgrootheid geeft een indicatie van een afwijking van de nulhypothese.
- Concreet zal een toets op het  $\alpha 100\%$  significantieniveau de nulhypothese verwerpen zodra de geobserveerde waarde van de toetsingsgrootheid het  $100\%(1-\alpha)$ -percentiel,  $\chi^2_{1,\alpha}$ , van de  $\chi^2_1$ -verdeling overschrijdt.
- Ze kan niet verwerpen in het andere geval.
- De p-waarde voor een 2-zijdige toets is in dit geval de kans om een grotere waarde voor de toetsingsgrootheid te observeren dan de geobserveerde waarde x² als de nulhypothese waar is.
- Dit is de kans dat een  $\chi_1^2$ -verdeelde toevalsveranderlijke waarden groter dan  $x^2$  aanneemt.



```
expected <- matrix(0,nrow=2,ncol=2)</pre>
for (i in 1:2)
    for (j in 1:2)
        expected[i,i] <-
            sum(brcaTab2[i,])*sum(brcaTab2[,j])/sum(brcaTab2)
expected
            [,1] \qquad [,2]
##
## [1,] 511.5481 715.4519
## [2.] 60.4519 84.5481
x2 <- sum((abs(brcaTab2-expected) - .5)^2/expected)</pre>
1-pchisq(x2,1)
## [1] 0.481519
```



- Omdat de observaties  $O_{ij}$  in feite discrete getallen zijn, kan de toetsingsgrootheid  $X^2$  slechts discrete waarden aannemen en kan een continue verdeling zoals de  $\chi^2_1$ -verdeling slechts een benadering zijn voor haar werkelijke verdeling.
- Om de discrete verdeling beter bij de continue  $\chi^2_{1}$ -verdeling te doen aansluiten, heeft men in de uitdrukking van de toetsingsgrootheid voor elke cel telkens 0.5 afgetrokken.
- Dit wordt een *continuïteitscorrectie* genoemd.
- In dit geval gaat het om de correctie van Yates en noemt men deze toets dan ook de Pearson Chi-kwadraat toets met Yates correctie.
- Wanneer de correctie niet gebruikt wordt (d.w.z. wanneer de getallen '0.5' in de uitdrukking voor  $X^2$  door 0 vervangen worden), dan spreekt men van de *Pearson Chi-kwadraat toets*.



In R kan je deze toetsen uitvoeren door de optie correct op TRUE of FALSE te zetten:

chisq.test(brcaTab2)

## data: brcaTab2

##

##

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: brcaTab2
## X-squared = 0.49542, df = 1, p-value = 0.4815
chisq.test(brcaTab2,correct=FALSE)
##
```

## X-squared = 0.62871, df = 1, p-value = 0.4278

Pearson's Chi-squared test

- Zelfs met continuïteitscorrectie is  $\chi_1^2$  benadering slechts verantwoord als in geen enkele van de cellen het verwachte aantal onder  $H_0$  kleiner is dan 5.
- Wanneer de  $\chi^2$ -benadering niet verantwoord is, kan men een *Fisher's* exact test uitvoeren.
- De nulhypothese van deze test is eveneens dat X en Y onafhankelijk zijn, en de alternatieve hypothese dat X en Y afhankelijk zijn.
- Een nadeel van de exacte test, is dat ze conservatiever is

fisher.test(brcaTab2)

## sample estimates:

```
##
##
Fisher's Exact Test for Count Data
##
## data: brcaTab2
## p-value = 0.4764
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.7998798 1.6738449
```

# 8.3.3.1. Uitbreiding naar categorische variabelen met meerdere niveaus

- $\chi^2$ -toets kan ook als minstens 1 van de discrete variabelen X en Y meer dan 2 mogelijke waarden aanneemt
- Opnieuw: nulhypothese H<sub>0</sub>: X en Y zijn onafhankelijk (niet-geassocieerd), ten opzichte van het tweezijdig alternatief H<sub>A</sub>: X en Y zijn niet onafhankelijk (geassocieerd).
- Als de variabele voorgesteld op de rijen r mogelijke uitkomsten heeft en die op de kolommen c mogelijke uitkomsten, dan noemt men de kruistabel die X tegenover Y uitzet, een r × c tabel.
- Zoals voorheen vergelijkt men het aantal geobserveerde waarden in cel (i,j),  $O_{ij}$  genoteerd, met het aantal verwachte waarden onder de nulhypothese,  $E_{ij}$  -Opnieuw is  $E_{ij}$  product van het i-de rijtotaal met het j-de kolomtotaal gedeeld door het algemene totaal.

$$X^2 = \sum_{ij} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$



- Men kan aantonen dat ze een Chi-kwadraat verdeling volgt met  $(r-1) \times (c-1)$  vrijheidsgraden als de nulhypothese waar is.
- De continuïteitscorrectie wordt meestal niet gebruikt bij meer dan 2 rijen of kolommen.
- **Pearson**  $\chi^2$  **test** is analogon van de one-way variantie-analyse voor kwalitatieve i.p.v. continue variabelen.

```
brcaTab <- table(brca$variant,brca$cancer)
chisq.test(brcaTab)</pre>
```

```
##
## Pearson's Chi-squared test
##
## data: brcaTab
## X-squared = 2.0551, df = 2, p-value = 0.3579
```

- Om te onderzoeken of het BRCA1 gen geassocieerd is met borstkanker, berekenen we de Pearson chi-kwadraat toets voor de case-controle studie uit Tabel @ref(tab:leu3).
- De toetsingsgrootheid bedraagt nu 2.055 en volgt een Chi-kwadraat verdeling met 2 vrijheidsgraden. De kans dat zo'n  $\chi^2$  verdeelde toevalsveranderlijke extremer is dan 2.055, bedraagt 36%.
- Op het 5% significantieniveau kunnen we dus niet besluiten dat het BRCA1 gen geassocieerd is met borstkanker.



# 8.4. Logistische regressie

- Raamwerk voor het modelleren van binaire data (vb. kanker vs geen kanker): logistische regressie-modellen.
- Binaire gegevens modelleren a.d.h.v. continue en/of dummy variabelen.
- De modellen veronderstellen dat de observaties voor subject i = 1, ..., n onafhankelijk zijn en een Bernoulli verdeling volgen.
- Het logaritme van de odds wordt dan gemodelleerd d.m.v. een lineair model, ook wel lineaire predictor genoemd:

$$\begin{cases}
Y_i & \sim B(\pi_i) \\
\log \frac{\pi_i}{1-\pi_i} & = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip}
\end{cases} \tag{2}$$



## 8.4.1. Categorische predictor

- Borstkanker voorbeeld: is BRCA 1 variant geassocieerd is met het krijgen van borstkanker.
- Net zoals in de anova context, factor in het regressieraamwerk d.m.v. dummy variabelen.
- 1 dummy variable minder nodig hebben dan er groepen zijn.
- Voor het BRCA 1 voorbeeld zijn dus twee dummy variabelen nodig en kunnen we de data dus modelleren met onderstaande lineaire predictor:

$$\log \frac{\pi_i}{1-\pi_i} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$$



• Waarbij de predictoren dummy-variabelen zijn:

$$\mathbf{x}_{i1} = \left\{ egin{array}{ll} 1 & ext{ als subject } i ext{ heterozygoot is, Pro/Leu variant} \\ 0 & ext{ als subject } i ext{ homozygoot is, (Pro/Pro of Leu/Leu variant)} \end{array} 
ight. .$$

$$x_{i2} = \left\{ \begin{array}{ll} 1 & \text{ als subject } i \text{ homozygoot is in de Leucine mutatie: Leu/Leu} \\ 0 & \text{ als subject } i \text{ niet homozygoot is in de Leu/Leu variant} \end{array} \right.$$

 Homozygositeit in het wild type allel Pro/Pro wordt voor dit model de referentiegroep. Het model wordt als volgt in R gefit:

```
summary(brcaLogit)
##
## Call:
## glm(formula = cancer ~ variant, family = binomial, data = bro
##
## Deviance Residuals:
##
     Min
              10 Median
                             30
                                   Max
## -1.379 -1.286 1.017
                          1.017
                                  1.073
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
  (Intercept) 0.25131
                            0.08175 3.074 0.00211 **
## variantpro/leu 0.13802
                            0.11573 1.193 0.23302
## variantleu/leu
                 0.21197
                           0.18915 1.121 0.26243
## ---
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
## Signif. codes:
```

brcaLogit <- glm(cancer~variant,data=brca,family=binomial)</pre>

### anova(brcaLogit,test="Chisq")

```
Analysis of Deviance Table
##
  Model: binomial, link: logit
##
   Response: cancer
##
  Terms added sequentially (first to last)
##
##
##
           Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NUI.I.
                            1371
                                     1863.9
## variant 2 2.0562
                            1369
                                     1861.9 0.3577
```

De  $\chi^2$ -test op het logistische regressiemodel geeft eveneens aan dat er geen significante associatie is tussen de uitkomst (voorkomen van kanker) en de factor ( de genetische variant van het BRCA gen) (p=0.358). De p-waarde is bijna equivalent aan de p-waarde van de  $\chi^2$ -test uit de vorige sectie.

- Significante associatie? Post-hoc tests om te evalueren welke odds ratio's verschillend zijn.
- Voor het BRCA1 voorbeeld zouden we uiteraard geen post-hoc testen
- Toch illustratie zodat jullie over de code beschikken



```
library(multcomp)
posthoc=glht(brcaLogit,linfct=mcp(variant = "Tukey"))
posthocTests=summary(posthoc)
posthocTests
##
##
    Simultaneous Tests for General Linear Hypotheses
##
  Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glm(formula = cancer ~ variant, family = binomial, data
##
## Linear Hypotheses:
##
                         Estimate Std. Error z value Pr(>|z|)
## pro/leu - pro/pro == 0 0.13802 0.11573 1.193
                                                       0.449
## leu/leu - pro/pro == 0 0.21197 0.18915 1.121 0.493
## leu/leu - pro/leu == 0 0.07395 0.18922 0.391
                                                       0.917
## (Adjusted p values reported -- single-step method)
```

BI's kunnen als volgt worden teruggetransformeerd naar odds ratios:

```
OR=exp(posthocBI$confint)
OR
```

```
## Estimate lwr upr
## pro/leu - pro/pro 1.148000 0.8771158 1.502543
## leu/leu - pro/pro 1.236111 0.7962014 1.919075
## leu/leu - pro/leu 1.076752 0.6934417 1.671942
## attr(,"conf.level")
## [1] 0.95
## attr(,"calpha")
## [1] 2.325567
```

- De odds ratios die worden bekomen met het logistisch regressiemodel zijn exact gelijk aan de odds ratios die we zouden bekomen op basis van Tabel:
- vb.  $OR_{Leu/Leu-Pro/Pro} = 89 \times 266/(56 \times 342) = 1.236$ .
- Merk op dat de statistische besluitvorming bij logistische modellen beroep doet op asymptotische theorie.

### 8.4.2. Continue predictor

- Toxicologisch effect van koolstofdisulfide (CS<sub>2</sub>) op kevers.
- De centrale onderzoeksvraag is of de concentratie van CS<sub>2</sub> een effect heeft op de mortaliteit (i.e. kans op sterven) van de kevers?

**Design** - 32 onafhankelijk experimenten - Telkens 1 kever blootgesteld aan één van 8 concentraties (mg/l) van  $CS_2$  voor een gegeven periode. - De uitkomst van het experiment is: de kever sterft (y=1) of de kever overleeft (y=0).

```
load("dataset/kevers.rda")
head(kevers)
```

```
## dosis status
## 1 169.07 1
## 2 169.07 0
## 3 169.07 0
## 4 169.07 0
```

We bouwen nu een logistisch regressiemodel waarbij we de log odds modelleren in functie van de dosis  $x_i$ :

$$\log \frac{\pi_i}{1 - \pi_i} = \beta_0 + \beta_1 \times x_i.$$

keverModel<-glm(status~dosis,data=kevers,family=binomial)
summary(keverModel)</pre>

```
##
## Call:
## glm(formula = status ~ dosis, family = binomial, data = kever
##
## Deviance Residuals:
     Min
                            30
                                   Max
##
              10 Median
## -1.7943 -0.7136 0.2825 0.5177 2.1670
##
  Coefficients:
##
            Estimate Std. Error z value Pr(>|z|)
  (Intercept) -53.1928 18.0046 -2.954 0.00313 **
## dosis
```

- Intercept heeft als betekenis de log odds op mortaliteit wanneer er geen CS<sub>2</sub> gas wordt toegediend.
- Erg lage odds op sterfte  $(\pi/(1-\pi)=\exp(-53.2))$  en dus op een kans die nagenoeg nul is.
- Merk op: heel sterke extrapolatie: minimum dosis in de dataset 169.07 mg/l.
- Geschatte odds ratio voor het effect van dosis op de mortaliteitskans is exp(0.3013) = 1.35.
- Dus bij een toename van de dosis CS<sub>2</sub> met 1 mg/l, is de odds ratio voor de mortaliteit 1.35.

- We besluiten dat dit effect heel significant is (p = 0.003).
- Een toename in de CS<sub>2</sub> dosis doet de kans op sterven toenemen.



