Overall strengths

My code achieved the desired output and was overall very well organized, with descriptive comments and function docstrings. It is clear what each function does, and there is little extraneous code. I took care to make the implementation as efficient as possible, avoiding updating particles multiple times after a collision was detected.

Improving the code

- Some functionalities that I make use of a lot, such as updating particle positions to the most current time, could have their separate functions to cut down on duplicate code and save time.
- Calculating the wall collision time includes lots of if statements that could be reduced with more thought and care.

Thoughts

o I found this assignment to be much more challenging than the previous one. Overall, I thought my process of designing, writing, testing, and debugging the code was mostly solid. I first wrote the declarations for all the functions I thought I would need, then filled them in, and then went over them to make sure they were compatible. Then, I wrote the main loop and started fixing errors one by one (e.g., segmentation fault or wall collision times being incorrect). I tried utilizing a debugger, but I could not get it to stop at breakpoints (Ildb debugger in macOS), so I resorted to printing statements again, which was a bit of a pain. I need to figure out how to efficiently debug my code. Other than that I would have saved some time if I had planned out how each function was going to interact before writing them.