Cours	N°P5 :
CUUIS .	

Noyaux- masse et énergie

Introduction : Quand une bombe nucléaire explose, une énorme d'énergie a libérée, résultant de réactions de fission nucléaire en chaine.

- -Qu'est-ce qu'une réaction de fission nucléaire en chaine?
- -comment peut-elle produire une telle énergie ?
- -Quelles sont les applications et dangers de radioactivité ?

I-Équivalence entre masse et énergie

1-Relation d'Einstein

En 1905 **Albert Einstein** postulat l'équivalence entre la masse et l'énergie suivante :

	•	-			•			
« Tout corps de masse	"m"	possède une	énergie égale	e au produit	de sa masse	par le carré de	la vitesse o	de la
lumière »								

Cette relation montre que toute variation de masse......d'un système s'accompagne d'une variation d'énergie

.....

Application 1:

Calculer l'énergie de masse de protons (masse de protons $m_p = 1,6726.10^{-27} \, Kg$)

.....

2-Unités de masse et d'énergie

a-L'unité de masse atomique

En physique nucléaire, on exprime la masse d'un noyau ou d'un atome en unité de masse atomique, de symbole $\mathbf u$: L'unité de masse atomique est égale à 1/12 de la masse d'un atome de carbone $^{12}\mathcal C$

$$1u = \frac{1}{12} \cdot \frac{M\binom{12}{6}C}{N_A}$$

b- Unité d'énergie

L'unité joule est inadaptée, trop grande; on utilise plutôt l'électron-volt, **eV** : **1eV**= **1,602177.10**-19 **J** et aussi le MeV:

.....

c-L'énergie correspondant à la masse atomique.

Déterminer l'énergie de masse ${\bf E}$ pour une masse de ${\bf 1u},$ en ${\bf J}$ et en ${\bf MeV}$.

II-Énergie de liaison d'un noyau E_{ℓ} .

1-Défaut de masse du noyau ∆m.

Des mesures précises montrent que la masse **du noyau d'un atome** est toujours i**nférieure** à la somme de la masse **de ses nucléons** pris individuellement. Cette différence est appelée **défaut de masse** Δm :

tron.

Défaut de masse du noyau d'Héttum

Où m_p et m_n sont respectivement la masse d'un proton et la masse d'un neutron.

Application 2: Calculer Δm pour un noyau d'hélium; Donné		-	-	015 u
2-Énergie de liaison d'un noyau E_{P} • Energie de liaison \mathbf{E}_{ℓ} est l'énergie qu'il faut fournir à un noyau i pour le dissocier en nucléons libres et immobiles.	mmobile,	E 1 20	2n (nuclèons	sépares)
Cette énergie \mathbf{E}_{ℓ} est toujours			(noyau d?rátu	m):
3-Energie de liaison par nucléon ξ : L'énergie de liaison par nucléon d'un noyau notée ξ est : avec \mathbf{E}_{ℓ} : l'énergie de liaison en \mathbf{MeV} , et \mathbf{A} : le nombre de mas	sse, l'unité de	ξ est en M	eV/nucléon .	
<u>Remarque</u> : « Plus l'énergie de liaison par nucléon ξ est élevée	plus le noyau est	stable.» .		
Application 4: Calculer l'énergie de liaison par nucléon ξ pour	un noyau d'hélium	m	Noyaux st	ables
4- Courbe d'Aston : La courbe d'Aston représente -E ₁ /A en fonction de A, permet de comparer la stabilité des noyaux atomiques. Cette courbe permet de comparer la stabilité des différents noyaux atomiques.	0 ¹ ₁ H ²⁰ -1 ² ₁ H fusic nuclé	100 on aire	180 200	A.
 -Les noyaux stables se situent dans la région où 20 < A < 195 -Les réactions de fusion nucléaire affecteront les noyaux les plus légers (A < 20). - Les réactions de fission nucléaire affecteront les noyaux les plus lourds (A > 195). 	-5 4He -8 -9	77 Sr 139 Xr	ssion cléaire 2x	U
II-Fission et fusion nucléaires :				
1-Fission nucléaire La fission est une réaction nucléaire provoquée au cours de noyau lourd bombardé par un neutron se divise en deux noyaux	-		∷ Ba	

Exemple:

Remarque:

-La fission nucléaire est une réaction en chaîne. Elle produit des neutrons qui peuvent provoquer d'autres réactions de fission.

-La réaction en chaîne doit être contrôlé pour qu'elle ne soit pas explosive (le cas de la bombe A). Dans des réacteurs nucléaires. la fission est contrôlée.

2- Fusion nucléaire:

La fusion nucléaire est une réaction nucléaire provoquée, au cours duquel deux noyaux atomiques légers s'assemblent pour former un noyau plus lourd.

Exemple:

Remarque :

-La fusion n'est possible que si les deux noyaux possèdent une grande énergie cinétique pour vaincre les forces de répulsion électriques. : On porte alors le milieu à très haute température (10⁸K). En conséquence, la réaction de fusion est appelée <u>réaction thermonucléaire</u>.

-La fusion se produit naturellement dans les étoiles. Dans une bombe thermonucléaire (appelée bombe H), la fusion nucléaire est incontrôlée et explosive.

IV- Bilan énergétique d'une réaction nucléaire

1- Cas général d'une réaction nucléaire

On considère une transformation nucléaire quelconque :

 $A_1 X_1 + A_2 X_2 \rightarrow_{Z_3}^{A_3} X_3 + A_4 X_4$

Il y a deux façons de calculer l'énergie produit ΔE par la transformation nucléaire :

- En utilisant la variation de masse :

.....

-En utilisant les énergies de liaison des noyaux :

.....

Remarques: -Si $\Delta E < 0$ on dit que la réaction nucléaire est exoénergétique (cède l'énergie)

-Si $\Delta E > \mathbf{0}$ on dit que la réaction nucléaire est **endoénergétique** (prend l'énergie)

- L'énergie libérée d'une réaction nucléaire est : $E_{libérée} = |\Delta E|$

Diagramme d'énergie

Exemple: Diagramme d'énergie pour radioactivité α

a-fusion nucl	ons : Bhan energeuque des transformations nucleaires .
	ergie libérée au cours de cette réaction nucléaire : ${}^{2}H + {}^{3}H \longrightarrow {}^{4}He + {}^{1}n$
Données :	All
	$m({}_{1}^{2}H) = 2,0136u$, $m({}_{1}^{3}H) = 3,0155u$, $m({}_{2}^{4}He) = 4,0015u$, $m({}_{0}^{1}n) = 1,0087u$
	$1u = 931,5 MeV/c^2$
b-Fission nuc	
Calculer l'én	nergie libérée au cours de cette réaction nucléaire $^{1}_{0}$ n + $^{235}_{92}$ U $\rightarrow ^{94}_{38}$ Sr + $^{140}_{54}$ Xe + 2 $^{1}_{0}$ n
T	$m(^{235}_{92}U)=234,9935~\mu~;~m(^{94}_{38}Sr)=93,8945\mu~;~m(^{140}_{54}Xe)=139,8920\mu~m(n)=1,0087\mu~;~1\mu=931,5MeV/C$
Données:	
•••••	
•••••	
•••••	
c-Radioactiv	ité $lpha$
Calculer l'é	nergie libérée au cours de désintégration de radioactivité $\alpha: \stackrel{226}{88}Ra \longrightarrow \stackrel{222}{86}Rn + {}_{2}^{4}He$
<u>Données</u>	$m\binom{226}{88}Ra = 225,9770u$, $m\binom{222}{86}Rn = 221,9702u$, $m\binom{4}{2}He = 4,0015u$
d-Radioactiv	
Calculer l'éne	ergie produit au cours de désintégration de radioactivité Q $^-: {}^{14}C \longrightarrow {}^{14}N + {}^{0}e$
Données	$m\binom{14}{6}C$ = 13,9999 u , $m\binom{14}{7}N$ = 13,9992 u , $m\binom{0}{1}e$ = 0,00055 u
V- Applica	tions et dangers de la radioactivité
	ites une recherche sur les thèmes suivants :
	uction de l'électricité par les centrales nucléaires ;
	pplications de la radioactivité (dans la médecine; L'industrie et l'agriculture)
- Les da	angers de la radioactivité.