МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Навчально-науковий інститут електричної інженерії та інформаційних технологій

КАФЕДРА АВТОМАТИЗАЦІЇ ТА ІНФОРМАЦІЙНИХ СИСТЕМ

3BIT

З ЛАБОРАТОРНИХ РОБІТ З НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

«Моделювання систем»

Виконав студент групи <u>КН-23-1</u> Полинько Ігор Миколайович Перевірив доцент кафедри AIC Бурдільна $\mathfrak E$. В.

КРЕМЕНЧУК 2025

Лабораторна робота № 4

Тема: Моделювання випадкового процесу на основі дискретного марковського ланцюга

Мета: навчитися вирішувати задачі моделювання випадкових подій і випадкових величин за допомогою ланцюгів Маркова.

Виконання завдання лабораторної роботи:

- 1. Отримати у викладача варіант завдання.
- 2. Розробити програму, яка реалізує алгоритм моделювання потоку випадкових подій згідно із завданням на роботу і розраховує дані у форматі табл. 4.1.

Таблиця 4.1 – Покроковий розрахунок ймовірностей станів системи

	Стан системи та ймовірність стану						
Номер кроку	\mathcal{S}_1	\mathcal{S}_1		S_j		S_n	
0	1	0	0	0	0	0	
1	P_{11}	P_{12}	•••••	P_{1j}	•••••	P_{1n}	
2	P_{21}	P_{22}	•••••	P_{2j}		P_{2n}	
•••••			••••	••••	•••••	••••	
k	P_{kl}		•••••	•••••		P_{kn}	
•••••			••••	••••	•••••	•••••	
L	P_{L1}	P_{L2}	••••	P_{Ll}	••••	P_{Ln}	

- 3. Вивести результати обчислень на екранну форму і у файл.
- 4. Збережіть файл з даними.
- 5. Підготуйте звіт про виконану лабораторну роботу

Створимо таблицю станів і розрахуємо ймовірність стану за формулою:

$$p_j(k) = \sum_{i=1}^n p_i(k-1)P_{ij}$$
 (4.1)

P	p1	p2	p3	p4	p5	
p1	0,4	0,1	0,3	0,2	0	1
p2	0	0	0,1	0,4	0,5	1
p3	0,1	0,2	0,1	0,3	0,3	1
p4	0,2	0,3	0	0,3	0,2	1
p5	0,4	0,1	0,5	0	0	1
	Стан					
Номер	C	C	C	C	c	
кроку	S_1	S_2	S_3	S_4	S_5	
0	0	0	0	0	1	1
1	0,400	0,100	0,500	0,000	0,000	1
2	0,210	0,140	0,180	0,270	0,200	1
3	0,236	0,158	0,195	0,233	0,178	1
4	0,232	0,150	0,195	0,239	0,184	1
5	0,234	0,152	0,196	0,237	0,181	1
6	0,233	0,152	0,196	0,237	0,182	1
7	0,233	0,152	0,196	0,237	0,182	1
8	0,233	0,152	0,196	0,237	0,182	1
9	0,233	0,152	0,196	0,237	0,182	1
10	0,233	0,152	0,196	0,237	0,182	1

Рисунок 4.1 – Стан системи та ймовірність стану

На основі отриманих даних сформуємо графік стану системи та ймовірності стану:

Рисунок 4.2 – Граф стану системи та ймовірності стану

Висновок: на цій лабораторній роботі ми моделювали випадкові процеси на основі дискретного марковського ланцюга. Ми навчитися вирішувати задачі моделювання випадкових подій і випадкових величин за допомогою ланцюгів Маркова, створили алгоритм моделювання потоку випадкових подій згідно із завданням на роботу і відобразили стан системи та ймовірність стану у вигляді графіку. В моєму варіанті зміни у станах перестали відбуватися на шостому кроці, при перевірці у десять кроків. Початковим станом був обраний саме стан S_3 .

Контрольні питання:

1. Дайте визначення ланцюга Маркова і поясніть, чим відрізняються однорідні і неоднорідні ланцюги Маркова.

Ланцюг Маркова — це стохастичний процес, який описує зміну станів системи у дискретні моменти часу, де ймовірність переходу до наступного стану залежить лише від поточного стану, а не від попередніх (властивість Маркова).

Однорідний ланцюг — перехідні ймовірності не змінюються з часом.

Неоднорідний — ймовірності переходів залежать від номера кроку (часу).

2. Чим визначаються властивості однорідного ланцюга Маркова?

Властивості визначаються:

- матрицею перехідних ймовірностей (Р);
- початковим розподілом ймовірностей по станах;
- структурою графа станів (чи можна дістатися з одного стану в інший, чи ϵ цикли тощо).

3. Сформулюйте теорему про граничні ймовірності.

Якщо однорідний ланцюг Маркова ϵ незвідним і аперіодичним, то існує граничний розподіл ймовірностей π , до якого сходиться розподіл станів незалежно від початкового стану.

4. Поясніть, як обчислити ймовірності станів системи на к-му кроці.

Вектор ймовірностей станів на k-му кроці обчислюється як добуток початкового вектора $\pi^{(0)}$ на матрицю перехідних ймовірностей у ступені k:

5. Як, на вашу думку, довідатися значення перехідних ймовірностей для моделювання конкретної системи?

- Провести статистичний аналіз реальних даних (частот переходів між станами);
 - Застосувати експертні оцінки (якщо даних нема ϵ , але ϵ фахівці);
- Параметризація моделі припустити структуру і скоригувати за результатами симуляції.

6. Як сформулювати умови припинення в циклі моделювання?

- Досягнуто потрібної кількості кроків/ітерацій;
- Зміни в розподілі ймовірностей менші за задану похибку (наближення до стаціонарного стану);
 - Настання конкретної події або умови (наприклад, вихід із системи).

7. Наведіть приклад дискретної системи і зробіть її опис за допомогою ланцюга Маркова.

Приклад: Користувач веб-сайту. Стан системи — що він робить.

Стан 1: Головна сторінка

Стан 2: Перегляд товарів

Стан 3: Кошик

Стан 4: Покупка

Стан 5: Вихід з сайту

Матриця переходів:

	1	2	3	4	5
1	0.1	0.6	0.1	0	0.2
2	0.1	0.2	0.5	0	0.2
3	0	0.1	0.1	0.6	0.2
4	0	0	0	0	1
5	0	0	0	0	1