1.7 Обработка информации

Множество сообщений N представляет интерес только тогда, когда ему соответствует (по крайней мере одно) множество сведений I и определено соответствующее правило интерпретации $\varphi \colon N \to I$ (см. п. 1.2). Так как множеству сообщений N' тоже соответствует некоторое множество сведений I' (и правило интерпретации φ'), то любое правило обработки сообщений $\nu \colon N \to N'$ (см. п. 1.6) приводит к следующей диаграмме:

$$\begin{array}{ccc}
N \xrightarrow{\varphi} I \\
\nu \downarrow & \Downarrow \sigma \\
N' \xrightarrow{\varphi'} I'
\end{array}$$
(*)

Эта диаграмма определяет соответствие между множествами I и I'. Так как согласно диаграмме (*) каждому сообщению $n \in N$ соответствует пара сведений $i = \varphi(n) \in I$ и $i' = \varphi(\nu(n)) \in I'$, построенное соответствие между I и I' (обозначим его через σ), вообще говоря, не является отображением. В самом деле, если правило интерпретации φ не является однозначным (инъективным, когда разные переходят в разные), т. е. если существуют два различных сообщения $n_1, n_2 \in N$, $n_1 \neq n_2$, передающих одинаковую информацию $i = \varphi(n_1) = \varphi(n_2)$, то может оказаться, что $\varphi'(\nu(n_1)) \neq \varphi'(\nu(n_2))$ и, следовательно, одной информации $i \in I$ будут соответствовать (по крайней мере) две различных информации $i'_1 = \varphi'(\nu(n_1))$ и $i'_2 = \varphi'(\nu(n_2))$.

Если отображение φ обратимо, т. е. если существует отображение φ^{-1} (для нас достаточно, чтобы φ было инъективным отображением), то можно построить отображение σ , определяющее обработку информации $\sigma\colon I\to I'$ в виде $\sigma=\varphi'\circ\nu\circ\varphi^{-1}$ так, что $i'=\varphi'(\nu(\varphi^{-1}(i)))$.

Во всех случаях, когда соответствие σ является отображением, правило обработки сообщений ν называется **сохраняющим информацию**. Если правило обработки сообщений ν сохраняет информацию, то диаграмма

$$N \xrightarrow{\varphi} I$$

$$\nu \downarrow \qquad \downarrow \sigma$$

$$N' \xrightarrow{\varphi'} I'$$
(**)

коммутативна: $\nu \circ \varphi' = \varphi \circ \sigma$. Отображение σ называется в этом случае **правилом** обработки информации.

Обычно обработку информации сводят к обработке сообщений, т. е., исходя из требуемого правила обработки информации σ , пытаются определить отображения ν , φ и φ' таким образом, чтобы диаграмма (**) была коммутативной.

Если σ — обратимое (взаимно однозначное) отображение, т. е. если информация при обработке по правилу σ не теряется, то соответствующую обработку сообщений ν называют **перешифровкой**.

Пусть ν — обратимая перешифровка. Тогда по сообщению $n' = \nu(n)$ можно восстановить не только исходную информацию, но и само исходное сообщение n. Иными словами, в этом случае n' кодирует n (см. п. 1.4). Обратимая перешифровка ν называется перекодировкой.

Пусть перешифровка ν не является обратимой, т. е. пусть несколько сообщений из N кодируются одним и тем же сообщением из N'. Но так как при перешифровке информация

не теряется, это означает, что исходное множество сообщений N является избыточным: некоторые сообщения из N содержат одну и ту же информацию (дублируют друг друга). В N' таких дублирующих сообщений меньше, чем в N, так как при обработке по правилу ν некоторые из дублирующих друг друга сообщений «сливаются» в одно сообщение. Перешифровка ν , которая не является обратимой, называется **сжимающей**. Сжатию подвергается множество сообщений. То есть в результате необратимой перешифровки сообщений их количество уменьшается, а информация может либо сохраняться, либо теряться.

Пример 1.7.1. Пусть сообщения (a,b), составленные из пар целых чисел (например, в десятичной позиционной записи), передают информацию «рациональное число r, представленное дробью $\frac{a}{b}$ ». Тогда $N=\mathbb{Z}\times\mathbb{N}$ (где $\mathbb{Z}-$ множество целых чисел, $\mathbb{N}-$ множество натуральных чисел), $I=\mathbb{Q}$ ($\mathbb{Q}-$ множество рациональных чисел). Отображение $\varphi\colon N\to I$ не является обратимым, так как при любом целом n парам (a,b) и (na,nb) соответствует одно и то же рациональное число r. Пусть N'- множество пар (p,q) взаимно простых целых чисел и пусть $\nu\colon N\to N'$ переводит все (np,nq) в (p,q). Тогда $\nu-$ сжимающее отображение, а $\varphi'\colon N'\to I-$ обратимое отображение (мы считаем I'=I). Такое отображение ν называется вполне сжимающей перешифровкой, поскольку после обработки сообщений соответствие между сообщениями и информацией биективно. Здесь информация не теряется.

Если σ — необратимое отображение, т. е. если разные сведения из I отображаются в одну и ту же информацию $i' \in I'$, то соответствующую обработку сообщений называют **избирательной**. Особенно часто встречается случай, когда $I' \subset I$, а σ — тождественное отображение для всех $i' \in I'$. В этом случае производится *выбор* из данного множества сведений.

Таким образом, «обработка информации» — это, как правило, сокращение количества информации. Во всяком случае, верно утверждение: обработка информации никогда **не добавляет** информацию, она состоит в том, что **извлекает** интересную информацию из той, которая содержится в сообщении.

Лекция 4

1.8 Автоматизация обработки информации

Вернемся к рассмотрению диаграммы (**). Если заменить на ней отображение φ обратным отображением $\psi = \varphi^{-1}$, получим новую диаграмму:

$$\begin{array}{c}
N \stackrel{\psi}{\longleftarrow} I \\
\nu \downarrow \qquad \downarrow \sigma \\
N' \stackrel{\varphi'}{\longrightarrow} I'
\end{array}$$

Автоматизация обработки информации заключается в выполнении σ или $\varphi^{-1} \circ \nu \circ \varphi'$ при помощи физических устройств. Однако в программировании изучаются методы автоматического выполнения только отображения ν , т. е. обработки сообщений. Программно-аппаратная реализация отображений ψ, φ' изучается в другом разделе информатики, который называется «Искусственный интеллект» — и потому выходят за рамки нашего курса.