Отчет по лабораторной работе 3.5.1

«Изучение плазмы газового разряда в неоне »

Цель работы: изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

Теоретические сведения:

Ниже приведем некоторые формулы в системе СИ без выводов.

Связь температуры электронов и данных ВАХ (1):

$$k_{\scriptscriptstyle B}T_{\scriptscriptstyle e} = \frac{1}{2} \frac{eI_{\scriptscriptstyle ih}}{\frac{dI}{dU}\Big|_{U=0}} \tag{1}$$

 Γ де T_e — температура электронов, I_{iH} — ток насыщения, $\left. \frac{dI}{dU} \right|_{U=0}$ -наклон графика I(U) в нуле.

Концентрацию электронов можно найти из формулы (2):

$$n_e = \frac{I_{iH}\sqrt{m_e}}{0.4 \, eS \sqrt{2 \, k_B T_e}} \tag{2}$$

 $\Gamma \partial e S = \pi dl - nлощадь поверхности зонда.$

Плазменная частота колебаний электронов (3):

$$w_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{3}$$

Дебаевский радиус для случая $T_e > T_i \approx 300 K$:

$$r_D = \sqrt{\frac{k_B T}{4 \pi n e^2}} \tag{4}$$

Экспериментальная установка

Рисунок 1:Схема установки для исследования газового разряда

Данные установки:

Rб=450кОм

(R1+R2)/R2=10

d=0,2мм -диаметр проволоки зонда

l=5,2 мм -длинна зонда

Ход работы

1. Установив переключатель $\Pi 1$ в положение «Анод-I» и подготовив приборы к работе согласно техническому описанию установки, плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания разряда $U_{\tiny 328}$.

N₂	U _{заж} , В	бизаж, В
1	214	
2	217	
3	180	0,1
4	167	
5	232	

$$U_{\scriptscriptstyle 3acm}^- \!pprox \!202 \!\pm\! 0$$
,1 B

2. С помощью вольтметра V_1 и амперметра A_1 снимем BAX разряда $I_p(U_p)$, ток разряда изменяя в диапазоне от 0,5 мA до \approx 5 мA

Предел измерения амперметра $A_1 - 6$ мA на 150 делений. 1 деление = 1/25 мA.

Возрастание				Убывание					
V, B	бу, В	А, дел	А, мА	ба, мА	V, B	бу, В	А, дел	А, мА	ба, мА
21,8		51	2,04		15,8		119	4,76	
20,2		59	2,36		16,1		108	4,32	
19,1		63	2,52		16,9		95	3,8	
18,8		70	2,8		18,7		80	3,2	
19,1		75	3		18,6		70	2,8	
18,6	0,1	81	3,24	0,04	19,9	0,1	59	2,36	0,04
17,8		88	3,52		22,4		49	1,96	
16,9		96	3,84		29,8		38	1,52	
16,6		100	4		33,4		30	1,2	
16,3		105	4,2		34,5		16	0,64	
16,1		110	4,4		35,6		6	0,24	
15,9		116	4,64		51,2		0	0	

Рисунок 2: Вольт-амперная характеристика разряда

Заметим, что линия тренда похожа на степенную функцию $y=k/x^2 + b$. Посчитаем МНК для данной кривой:

$$y = \frac{k}{x^2} + b$$

$$k = \frac{\langle y \frac{1}{x^2} \rangle - \langle y \rangle \langle \frac{1}{x^2} \rangle}{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2} \approx 1187,6$$

$$b = \langle y \rangle - k \langle \frac{1}{x^2} \rangle \approx -0,33$$

$$\sigma_k = \sqrt{\frac{1}{n-1} \left(\frac{\langle y^2 \rangle - (\langle y \rangle)^2}{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2} \right) - k^2} \approx 52,4$$

$$\sigma_b = \sigma_k \sqrt{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2} \approx 0,05$$

Получаем уравнение нашей аппроксимирующей кривой:

$$y = \frac{1187,6}{x^2} - 0,33$$

Из данного графика (рис.2) по наклону касательной найдем максимальное сопротивление заряда R_{max} = $(17,54\pm0,4)*10^4$.

- 3. Уменьшив напряжение ВИП до нуля, переведем переключатель Π_1 в положение «Анод-II» и подготовим приборы Π_2 , V_2 и A_2 к работе согласно техническому описанию.
- 4. Плавно увеличивая напряжение ВИП до возникновения разряда, установим максимальное значение разрядного тока $I_p \approx 5$ мА согласно техническому описанию. Подготовив к работе источник питания, при помощи потенциометра R установим на зонде максимальное напряжение $U_2 \approx 25$ B.
- 5. С помощью мультиметров A_2 и V_2 снимем BAX двойного зонда $I_3(U_3)$ в диапазоне от -25 до +25 В при фиксированном токе разряда $I_p = 5$ мA.

От 0 до +25 В:

V, B	бу, В	А, мА	ба, мА
24,9		110,8	
23,2		110,7	
21,8		108,4	
20,4		108,2	
19,8		107,6	
18,5		105,3	
16,6		103,7	
15,7		101,7	
13,8	0,1	99,2	0,1
12,9	0,1	96,3	0,1
10,5		89,2	
8,8		82,3	

7,5	75,7	
6,0	66,7	
5,3	61,9	
4,2	53,4	
3,6	47,8	
2,9	43,5	
1,6	31,8	
0,95	23,9	
0,3	19,1	

От 0 до -25 В (поменяли полярность):

		T	
V, B	бν, В	А, мА	ба, мА
25,0		118,4	
23,7		117,2	
22,4		116,0	
20,7		114,4	
18,8	0,1	112,4	
17,1		110,1	
15,5		107,2	
14,4		105,1	
12,9		101,4	0,1
11,2		95,8	0,1
10,1		90,7	
8,7		84,0	
7,3		76,5	
6,0		67,5	
4,8		58,2	
3,8		49,1	
2,6		40,0	
1,5		30,3	
0,9		22,8	
0,1		14,1	

Рисунок 3: Вольт-амперная характеристика двойного зонда (I_p =5 мA)

Из графика (рис.3) мы можем найти $I_{iH} = (89,75\pm4,50)$ мА, $\frac{dI}{dU}\Big|_{U=0} = (8,75\pm0,38)\frac{MA}{B}$.

Найдем Те:

$$T_e = \frac{1}{2} \frac{1,6 * 10^{-19} K_{1} * 89,75 * 10^{-3} A}{8,75 * 10^{-3} \frac{A}{B} * 1,38 * 10^{-23} \frac{\cancel{\square} \cancel{m}}{K}} = 59,46 * 10^{3} K$$

$$\sigma_{T_e} = T_e * (\varepsilon_{I_{in}} + \varepsilon_{\frac{dI}{dU}}) = 59,46 * 10^3 * (\frac{4,50}{89,75} + \frac{0,38}{8,75}) \approx 5,56 * 10^3 K$$

6. Снимем зондовые характеристики при токах разряда ${\rm I}_p$ = 3 мA.

От 0 до +25 В:

V, B	бу, В	А, мА	ба, мА		
25,0		59,8			
23,8		59,2			
21,1		57,6			
19,3		56,6			
16,9		55,2			
14,7		53,7			
13,3		52,4			
11,9		51,1			
9,9	0,1	47,5	0,1		
8,2	0,1	42,9	0,1		
7,2		40			
6,1		35,9			

4,5	29,1	
3,2	22,1	
1,8	13,7	
0,9	8,3	
0,1	3,6	

От 0 до -25 В (поменяли полярность):

V, B	бу, В	А, мА	ба, мА
25,0		62,1	
23,8		61,3	
21,8		60,2	
19,4		58,8	
17,6	0,1	57,7	
15,0		55,9	
13,6		54,6	
12,0		52,5	
10,1		49,0	0,1
7,8		42,4	0,1
6,6		38,2	
4,9		30,2	
3,8		25,1	
2,6		18,4	
1,6		12,2	
0,8		7,2	
0,1		2,7	

Рисунок 4: Вольт-амперная характеристика двойного зонда (I_p =3 мA)

Из графика (рис.4) мы можем найти $I_{iH} = (45,05\pm2,82)$ мА, $\frac{dI}{dU}\Big|_{U=0} = (4,73\pm0,18)\frac{1}{OM}$.

Найдем Те:

$$T_e = \frac{1}{2} \frac{1,6 * 10^{-19} \, \text{Kn} * 45,05 * 10^{-3} \, A}{4,73 * 10^{-3} \frac{A}{B} * 1,38 * 10^{-23} \frac{\cancel{\square} \cancel{\cancel{M}}}{K}} = 55,21 * 10^3 \, K$$

$$\sigma_{T_e} = T_e * (\varepsilon_{I_{in}} + \varepsilon_{\frac{dI}{dU}}) = 55,21 * 10^3 * (\frac{2,82}{45,05} + \frac{0,18}{4,73}) \approx 5,56 * 10^3 K$$

7. Снимем зондовые характеристики при токах разряда I_p = 1,5 мA.

От 0 до +25 В:

V, B	бу, В	А, мА	ба, мА
25,0		28,0	
23,7		27,6	
21,6		26,9	
20,4		26,5	
17,8		25,8	
16,2		25,3	
15,1		24,9	
13,7		24,3	
11,4	0,1	23,0	0,1
9,6		21,4	0,1
8,3		20,0	

7,0	18,1	
5,9	16,1	
4,9	14,2	
3,7	11,5	
2,6	8,6	
1,5	4,8	
0,7	2,1	
0,1	0,4	

От 0 до -25 В (поменяли полярность):

V, B	б _v , В	А, мА	ба, мА
25,0		29,3	
23,0		28,6	
21,4		28,1	
20,3		27,8	
18,4		27,1	
17		26,6	
15,4	0,1	26,0	
14,5		25,7	
13,3		25,1	0,1
12,0		24,2	0,1
10,4		23,0	
8,8		21,0	
7,6		19,2	
5,8		16,0	
4,7		13,5	
3,6		10,6	
2,8		8,3	
1,6		5,0	
0,9		3,0	
0,5		1,7	
0,1		0,2	

Рисунок 5: Вольт-амперная характеристика двойного зонда (I_p =1,5 мA)

Из графика (рис.4) мы можем найти $I_{\text{iн}}$ = (20,46±0,89) мА, $\left. \frac{dI}{dU} \right|_{U=0}$ = (2,49±0,06) $\frac{1}{OM}$.

Найдем Те:

$$T_e = \frac{1}{2} \frac{1,6 * 10^{-19} \text{ Kn} * 20,46 * 10^{-3} \text{ A}}{2,49 * 10^{-3} \frac{A}{B} * 1,38 * 10^{-23} \frac{\cancel{\square} \cancel{\cancel{M}}}{K}} = 47,63 * 10^3 \text{ K}$$

$$\sigma_{T_e} = T_e * (\varepsilon_{I_{lu}} + \varepsilon_{\frac{dI}{dU}}) = 47,63 * 10^3 * (\frac{0,89}{20,26} + \frac{0,06}{2,49}) \approx 3,24 * 10^3 K$$

7. Построим семейство отцентрированных зондовых характеристик I(U):

$\underline{I}_p = 5 \text{ MA}$:

Концентрация электронов:

$$n_{e} = \frac{89,75*10^{-3} A \sqrt{22*1,66*10^{-27} \kappa \epsilon}}{0,4*1,6*10^{-19} Kn*3,14*0,2*5,2*10^{-6} M^{2} \sqrt{2*1,38*10^{-23} \frac{\cancel{H}\cancel{H}}{K}}*59,46*10^{3} K} = 6,40*10^{19} M^{-3}$$

$$\sigma_{n_{e}} = n_{e}*(\varepsilon_{I_{lu}} + \frac{1}{2} \varepsilon_{T_{e}}) = 6,4*10^{19} (\frac{4.50}{89.75} + \frac{1}{2} \frac{5,56}{59.46}) \approx 0,62*10^{19} M^{-3}$$

Плазменная частота колебаний электронов:

$$w_{p} = \sqrt{\frac{4*3,14*6,40*10^{19} M^{-3} (1,6*10^{-19})^{2}}{9,1*10^{-31}}} \approx 44,80*10^{13} \frac{pad}{c}$$

$$\sigma_{w_{p}} = w_{p} \frac{1}{2} \varepsilon_{n_{e}} = 44,80*10^{13} \frac{1}{2} \frac{0,62}{6,40} \approx 2,17*10^{13} \frac{pad}{c}$$

Поляризационная длина:

$$r_{de} = \sqrt{\frac{1,38*10^{-23} \frac{\cancel{\cancel{1}36}}{\cancel{K}} *59,46*10^{3} \cancel{K}}{4*3,14*6,4*10^{19} \cancel{M}^{-3} (1,6*10^{-19} \cancel{K}\cancel{I})^{2}}} \approx 19,97*10^{-2} \cancel{M}$$

$$\sigma r_{de} = r_{de} \frac{1}{2} \left(\varepsilon_{T_e} + \varepsilon_{n_e} \right) = 19,97 * 10^{-2} \frac{1}{2} \left(\frac{5,56}{59,46} + \frac{0,62}{6.4} \right) \approx 1,90 * 10^{-2} M$$

Дебаевский радиус экранирования:

$$r_{d} = \sqrt{\frac{1{,}38*10^{-23}\frac{\cancel{\cancel{13}}\cancel{\cancel{13}}}{\cancel{\cancel{13}}}*300 \, K}{4*3{,}14*6{,}4*10^{19} \, \emph{\emph{m}}^{-3} \big(1{,}6*10^{-19} \, \emph{\emph{K}}\emph{\emph{\emph{I}}}\big)^{2}}} \approx 1{,}42*10^{-2} \, \emph{\emph{\emph{M}}}$$

$$\sigma \, r_{d} = r_{d} \frac{1}{2} \big(\varepsilon_{T_{i}} + \varepsilon_{n_{e}}\big) = 1{,}42*10^{-2} \frac{1}{2} \big(0{,}01 + \frac{0{,}62}{6{,}4}\big) \approx 0{,}08*10^{-2} \, \emph{\emph{\emph{M}}}$$

 $\underline{I}_p = 3 \text{ MA}$:

Концентрация электронов:

$$n_{e} = \frac{45,05*10^{-3} A \sqrt{22*1,66*10^{-27} \kappa z}}{0,4*1,6*10^{-19} Kn*3,14*0,2*5,2*10^{-6} M^{2} \sqrt{2*1,38*10^{-23} \frac{\cancel{H}\cancel{H}}{K}*55,21*10^{3} K}} = 3,22*10^{19} M^{-3}$$

$$\sigma_{n_{e}} = n_{e} * (\varepsilon_{I_{lm}} + \frac{1}{2} \varepsilon_{T_{e}}) = 3,22*10^{19} (\frac{2,82}{45,05} + \frac{1}{2} \frac{5,56}{55,21}) \approx 1,92*10^{19} M^{-3}$$

Плазменная частота колебаний электронов:

$$w_{p} = \sqrt{\frac{4*3,14*3,22*10^{19} \, \text{m}^{-3} (1,6*10^{-19})^{2}}{9,1*10^{-31}}} \approx 31,78*10^{13} \frac{pad}{c}$$

$$\sigma_{w_{p}} = w_{p} \frac{1}{2} \varepsilon_{n_{e}} = 31,78*10^{13} \frac{1}{2} \frac{1,92}{3,22} \approx 9,47*10^{13} \frac{pad}{c}$$

Поляризационная длина:

$$r_{de} = \sqrt{\frac{1{,}38*10^{-23} \frac{\cancel{\cancel{13}}\cancel{\cancel{13}}}{\cancel{\cancel{13}}}*55{,}21*10^{3} \cancel{\cancel{13}}}{4*3{,}14*3{,}22*10^{19} \cancel{\cancel{13}}^{-3} (1{,}6*10^{-19} \cancel{\cancel{13}})^{2}}} \approx 27{,}13*10^{-2} \cancel{\cancel{13}} \times 10^{-2} \cancel{\cancel{13}} \times$$

Дебаевский радиус экранирования:

$$r_{d} = \sqrt{\frac{1,38*10^{-23} \frac{\cancel{136}}{K}*300 K}{4*3,14*3,22*10^{19} M^{-3} (1,6*10^{-19} Kn)^{2}}} \approx 1,20*10^{-2} M$$

$$\sigma r_{d} = r_{d} \frac{1}{2} (\varepsilon_{T_{i}} + \varepsilon_{n_{e}}) = 1,2*10^{-2} \frac{1}{2} (0,01 + \frac{1,92}{3,22}) \approx 0,36*10^{-2} M$$

 $I_{\rm p}$ = 1,5 MA:

Концентрация электронов:

$$n_{e} = \frac{20,46*10^{-3} A \sqrt{22*1,66*10^{-27} \kappa r}}{0,4*1,6*10^{-19} K_{1}*3,14*0,2*5,2*10^{-6} M^{2} \sqrt{2*1,38*10^{-23} \frac{\cancel{1}\cancel{2}\cancel{K}}{K}}*47,63*10^{3} K} = 1,63*10^{19} M^{-3}$$

$$\sigma_{n_e} = n_e * (\varepsilon_{I_{lin}} + \frac{1}{2} \varepsilon_{T_e}) = 1,63 * 10^{19} (\frac{0,89}{20,46} + \frac{1}{2} \frac{3,24}{47,63}) \approx 0,13 * 10^{19} \,\mathrm{m}^{-3}$$

Плазменная частота колебаний электронов:

$$w_p = \sqrt{\frac{4*3,14*1,63*10^{19} \,\text{m}^{-3} (1,6*10^{-19})^2}{9,1*10^{-31}}} \approx 22,61*10^{13} \,\frac{pad}{c}$$

$$\sigma_{w_p} = w_p \frac{1}{2} \varepsilon_{n_e} = 22,61 * 10^{13} \frac{1}{2} \frac{0,13}{1,63} \approx 0,90 * 10^{13} \frac{pad}{c}$$

Поляризационная длина:

$$r_{de} = \sqrt{\frac{1,38 * 10^{-23} \frac{\cancel{/}3 \times c}{K} * 47,63 * 10^{3} K}{4 * 3,14 * 1,63 * 10^{19} m^{-3} (1,6 * 10^{-19} Kn)^{2}}} \approx 35,41 * 10^{-2} M$$

$$\sigma r_{de} = r_{de} \frac{1}{2} (\varepsilon_{T_{e}} + \varepsilon_{n_{e}}) = 35,41 * 10^{-2} \frac{1}{2} (\frac{3,24}{47,63} + \frac{0,13}{1,63}) \approx 2,62 * 10^{-2} M$$

Дебаевский радиус экранирования:

$$r_{d} = \sqrt{\frac{1,38*10^{-23} \frac{\cancel{\cancel{13}}\cancel{\cancel{13}}}{K}*300 K}{4*3,14*1,63*10^{^{19}} \cancel{\emph{M}}^{-3} (1,6*10^{^{-19}} \cancel{\emph{K}}\cancel{\emph{I}})^{2}}} \approx 2,81*10^{^{-2}} \cancel{\emph{M}}$$

$$\sigma r_{d} = r_{d} \frac{1}{2} (\varepsilon_{T_{i}} + \varepsilon_{n_{e}}) = 2,81*10^{^{-2}} \frac{1}{2} (0,01 + \frac{0,13}{1,63}) \approx 0,13*10^{^{-2}} \cancel{\emph{M}}$$

9. Оценим по формуле $N_D = \frac{4}{3}\pi r_D^3 n_e$ среднее число ионов в дебаевской сфере и оценим степень ионизации плазмы(долю ионизованных атомов α)

 $\underline{I_p} = 5 \text{ MA}$:

$$N_D = \frac{4}{3} *3,14 * (1,42 * 10^{-2} {\it M})^3 *6,4 * 10^{19} {\it M}^{-3} \approx 8 * 10^{14} ~~$$
» 1 => плазму можно считать идеальной

$$\alpha = \frac{n_e k T_e}{P} = \frac{6.4 * 10^{19} \,\text{m}^{-3} * 1.38 * 10^{-23} \,\frac{\cancel{\mu} \cancel{m}}{K} * 300 \,\text{K}}{266.64 \,\Pi a} \approx 99 * 10^{-5}$$

 $I_p = 3 \text{ MA}$:

$$N_D = \frac{4}{3} *3,14 * (1,2*10^{-2} \textit{м})^3 *3,22*10^{19} \textit{м}^{-3} \approx 2*10^{14} \ \ \text{»} \ 1 =>$$
 плазму можно считать идеальной

$$\alpha = \frac{n_e k T_e}{P} = \frac{3,22 * 10^{19} \,\text{M}^{-3} * 1,38 * 10^{-23} \,\frac{\cancel{\text{Дэс}}}{\cancel{\text{K}}} * 300 \,\text{K}}{266,64 \,\Pi a} \approx 50 * 10^{-5}$$

 $I_p = 1.5 \text{ MA}$:

$$N_D = \frac{4}{3} * 3,14 * (2,81 * 10^{-2} \,\mathrm{M})^3 * 1,63 * 10^{19} \,\mathrm{M}^{-3} \approx 15 * 10^{14} \ \ \, > 1 =>$$
 плазму можно считать идеальной

$$\alpha = \frac{n_e k T_e}{P} = \frac{1,63 * 10^{19} \,\text{m}^{-3} * 1,38 * 10^{-23} \,\frac{\text{Дж}}{K} * 300 \,\text{K}}{266,64 \,\Pi a} \approx 25 * 10^{-5}$$

10. Построим графики $T_e(I_p)$ и $n_e(I_p)$

R _{диф} , Ом	I _p , мА	kТ _e , эВ	n_e , cm ⁻³ *10 ²⁵	$\omega_{\rm p}$, рад/с * 10^{13}	r _{de} , cm	r _d , cm	<N _D $>$,10 ¹⁴	α, 10 ⁻⁵	ı
$(17,54\pm0,4)*10^4$	5	5,12	$6,4 \pm 0,62$	$44,80 \pm 2,17$	19,97± 1,90	$1,42 \pm 0,08$	8	99	ı
	3	4,76	$3,22 \pm 1,92$	$31,78 \pm 9,47$	27,13± 9,45	1,20± 0,36	2	50	l
	1,5	4,1	$1,63 \pm 0,13$	$22,61 \pm 0,90$	35,41±2,62	$2,81\pm0,13$	15	25	ı

Вывод:

Полученные данные либо сходятся по порядку, либо отличаются на один-два порядка от табличных данных из интернета (<u>Wikipedia</u>). Вероятно, разница в показаниях могла возникнуть из-за недостаточно точного снятия данных вблизи нуля.