ELEMENTS D'ALGEBRE LINEAIRE,

A L'USAGE DES ETUDIANTS DE L'U.E. M1PY3W01

FASCICULE D'EXERCICES

A partir de Septembre 2014, le programme de cette U.E. devient le programme d'Algèbre et application à la résolution de systèmes différentiels linéaires, tel qu'enseigné jusque là , en semestre 4.

Jean-Louis Artigue, le 3 Septembre 2014

Table des matières

- LES BASES DE L'ALGEBRE LINEAIRE -		Page
-I- ESPACES VECTORIELS -	·····	3
- II - APPLICATONS LINEAIRES -	•••••	4
- III - MATRICES -	•••••	5
- IV - DETERMINANTS -	•••••	6
- V – LA DIAGONALISATION D'UNE MATRICE DIAGONALISABLE -		
-1) Pratique de la diagonalisation -	•••••	7
-2) Application à la résolution de systèmes différentiels linéaires -	•••••	8
- ANNALES -	•••••	9
DS 2011 Session 1 2011 Session 2 2011 DS 2012 Session 1 2012 Session 2 2012 DS 2013 Session 1 2013 DS 2014 Session 1 2014		10 11 12 12 14 15 16 17 186 197
Session 2 2014		21

- LES BASES DE L'ALGEBRE LINEAIRE -

- I - ESPACES VECTORIELS -

- Exercice 1 Calculs élémentaires
 - -1) Dans \mathbb{R}^2 , calculer 2.(1,-3) 5.(2,-1).
 - 2) Dans $\mathbb{R}[X]$, calculer -3.P(X) + 2.Q(X) pour P(X) = X 1 et $Q(X) = X^2 + X + 1$.
 - <u>-3)</u> Dans $F(\mathbb{R})$, calculer -5.f + 7.g pour $f = [x \rightarrow x^2 1]$ et $g = [x \rightarrow 2x^2 3]$.
- <u>- Exercice 2 -</u> Pour chacun des ensembles F suivants, donner un espace vectoriel $(E, +, \cdot)$ tel que $F \subset E$.

 $(F_{+}, +, \cdot)$ est-il sous-espace vectoriel de $(E_{+}, +, \cdot)$?

Si oui, donner une forme générale de ses éléments et une famille génératrice de F s'il en existe.

- $-1) F = \{(x, y, z) \in \mathbb{R}^3 / y = 1 \}.$
- $\underline{-2)} \qquad F = \{(x, y, z) \in \mathbb{R}^3 / x_+ y z_- = 0 \}.$
- -3) $F = \{(\alpha+\beta, \alpha-\beta, \alpha) / (\alpha, \beta) \in \mathbb{R}^2\}$.
- $\underline{-4)} \qquad F = \{(z_1, z_2) \in \mathbb{C}^2 / z_2 = \overline{z_1} \}.$
- Exercice 3 On considère les sous-espaces vectoriels (F, $_+$, $_-$) et (G, $_+$, $_-$) de (\mathbb{R}^3 , $_+$, $_-$) définis par :

$$F = Vect (\{ (1, 1, 0), (0, 1, 1) \}) et G = \{ (x, y, z) \in \mathbb{R}^3 / x_+ y_+ z_- 0 \}$$

- -1) Donner la forme générale des vecteurs de F et des vecteurs de G.
- -2) Donner une propriété caractéristique des vecteurs de F et une qui caractérise les vecteurs de G.
- -3) Déterminer les éléments de $F \cap G$. Que dire de $(F \cap G_{++}, .)$?
- <u>- Exercice 4 -</u> On considère les sous-espaces vectoriels (F, $_+$, $_\bullet$) et (G, $_+$, $_\bullet$) de (\mathbb{R}^3 , $_+$, $_\bullet$) définis par :

$$F \,{=}\, \{(x\,,\,y\,,\,z) \,{\in}\, {\rm I\!R}^{\,3} \,/\, y \,{=}\, z \,\,{=}\, 0 \,\,\} \ \, \text{et} \ \, G \,{=}\, \{(x\,,\,y\,,\,z) \,{\in}\, {\rm I\!R}^{\,3} \,/\, x \,{+}\, y \,\,{=}\, 0 \,\,\}$$

Démontrer qu'ils sont supplémentaires.

- <u>- Exercice 5 -</u> Dans chacun des cas suivants examiner si la famille constituée dans l'ordre des vecteurs de E proposés est libre ou génératrice de E . Est-elle une base de (E , ₊ , .) ?
 - -1) (1, 1, 0) et (0, 1, 1) pour $E = \mathbb{R}^3$.
 - $\underline{-2)}$ (1,1,0),(1,0,1) et (0,1,1) pour $E = \mathbb{R}^3$.
 - -3) (-6, 2) et (9, -3) pour $E = \mathbb{R}^2$.
 - $\underline{-4}$ (-1, 1, 0), (0, -2, 2) et (a, b, c) pour $E = \mathbb{R}^3$.

On répondra par une discussion suivant les valeurs des paramètres réels a , b et c.

- <u>- Exercice 6 -</u> On considère l'espace vectoriel ($\mathbb{R}_2[X]$, +, .) des polynômes de degré ≤ 2 à coefficients réels.
 - -1) Donner sa base canonique et sa dimension.
 - $\underline{-2}$) F = {P∈ $\mathbb{R}_2[X]/X.P' = P$ } (P' est le polynôme dérivé de P pour la dérivation classique).
 - <u>-a-</u> Montrer que $(F, +, \cdot)$ est un sous-espace vectoriel de $(\mathbb{R}_2[X], +, \cdot)$.
 - -b- F est-il égal à $\mathbb{R}_2[X]$? (justifier)
 - -c- Quelle est la forme générale des éléments de F?
 - <u>-d-</u> Donner une base et la dimension de $(F, +, \cdot)$.

- Exercice 7 -

- -1) Montrer que les trois applications $u = [x \rightarrow 1]$, $v = [x \rightarrow \sin(4x)]$ et $w = [x \rightarrow \cos(4x)]$ constituent une famille libre dans $F(\mathbb{R})$.
- -2) Montrer que les applications $f = [x \rightarrow \sin^2(2x)]$ et $g = [x \rightarrow \sin(2x).\cos(2x)]$ sont éléments de $\operatorname{Vect}(\{u, v, w\})$.

- II - APPLICATONS LINEAIRES -

- Exercice 1 Pour chacune des applications proposées, est-elle ou non linéaire? Justifier la réponse.
 - $\begin{array}{ccc} \underline{-1}) & f: & \mathbb{R}^2 & \to & \mathbb{R}^3 \\ & (x,y) & \to & (2x,0,x-y) \end{array}.$
- Exercice 2 Pour chacune des applications linéaires suivantes, déterminer son noyau et son image.
- Exercice 3 $\mathcal{B}_{=}$ (e_i) $_{i=1,2,3}$ étant la base canonique de \mathbb{R}^3 , on considère l'endomorphisme f de \mathbb{R}^3 , défini par f (e_1) $_{=}$ 13 e_1 + 12 e_2 + 6 e_3 , f (e_2) $_{=}$ -8 e_1 -7 e_2 -4 e_3 et f (e_3) $_{=}$ -12 e_1 -12 e_2 -5 e_3 .

Démontrer que $F = \{u \in \mathbb{R}^3 / f(u) = u \}$ et $G = \{u \in \mathbb{R}^3 / f(u) = -u \}$ sont deux sous-espaces vectoriels de $(\mathbb{R}^3, +, \cdot)$ en considérant deux applications linéaires .

Déterminer les dimensions de F et de G.

- Exercice 4 $\mathcal{B}_{=}$ (e_i) $_{i=1,2,3,4}$ étant la base canonique de \mathbb{R}^4 , on considère l'endomorphisme f de \mathbb{R}^4 , défini par f (e_1) $_{=}$ $-e_2+e_3-e_4$, f (e_2) $_{=}$ $e_1-e_2+e_3$ et f (e_3) $_{=}$ e_1+e_4 et f (e_4) $_{=}$ $e_2-e_3+e_4$.
 - -1) Déterminer f². Qu'en déduire concernant la position relative de Im (f) et Ker (f)?
 - -2) Déterminer Ker (f). En déduire Im (f).
- <u>- Exercice 5 -</u> (E , $_+$, .) est un IK-e.v. , f un endomorphisme de E tel que f^2_- f .
 - -1) Démontrer que $g = Id_E f$ vérifie $g^2 = g$.
 - -2) Démontrer que Ker (g) \equiv Im (f) \equiv {u \in E / f (u) \equiv u } .
 - $\underline{-3}$) Démontrer que $E = \text{Im}(f) \oplus \text{Ker}(f)$ et retrouver ainsi le fait que f est un projecteur de E.

- III - MATRICES -

- Exercice 1 - On considère la matrice
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
 et on définit $B = A^2 - 5A + 6I_3$.

- -1) Calculer B puis AB.
- -2) En déduire que A n'est pas inversible.
- -3) Pour n = 3, 4, 5, 6 exprimer A^n en fonction de I_3, A et A^2 .

- <u>-1)</u> Calculer les réels a et b de sorte que $A \times D = D \times A$. (a et b conservent ces valeurs dans la suite de l'exercice).
- -2) On pose N = A-D. Calculer N^2 .
- $\underline{-3)}$ Calculer A^n pour tout entier n de \mathbb{N} .
- $\begin{array}{lll} \underline{-4)} & (v_n)_{n\in I\!N} & \text{et } (w_n)_{n\in I\!N} & \text{sont deux suites réelles telles que } v_o \equiv 1 \equiv w_o \\ & \text{et } \forall n\in I\!\!N \,, v_{n+1} \equiv 2 \, v_n + w_n & \text{et } w_{n+1} \equiv 2 \, w_n \,\,. \\ & \text{En s'aidant d'une suite constante } (u_n)_{n\in I\!\!N} \,, \, \text{exprimer } v_n & \text{et } w_n & \text{en fonction de } n \,\,. \end{array}$
- Exercice 3 \mathcal{B} est la base canonique de \mathbb{R}^3 , φ est l'endomorphisme de \mathbb{R}^3 , de matrice $\mathcal{M}_{\mathsf{B}}(\varphi) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
 - -1) Déterminer Ker (ϕ) . En donner base et dimension.
 - $\underline{-2}$) Déterminer Im (φ) . En donner base et dimension.
 - -3) \forall n∈**N**, déterminer la matrice $\mathcal{M}_{\mathsf{B}}(\varphi^{\mathsf{n}})$.
- Exercice 4 On considère dans le \mathbb{R} -espace vectoriel (\mathbb{R}^3 , +, .), la base canonique \mathcal{B}_{\pm} (e_i)_{i=1,2,3} et la base \mathcal{B}'_{\pm} (ϵ_i)_{i=1,2,3} où ϵ_1 = (1,1,0), ϵ_2 = (1,0,1), ϵ_3 = (0,1,1).
 - φ est l'endomorphisme de \mathbb{R}^3 défini par $\varphi((x, y, z)) = (x 3y + 3z, 2x 4y 2z, 5x 5y z)$
 - $\underline{-1)}$ Construire les matrices de $\,\phi\,$ relativement à la base $\,\mathcal{B}\,$ puis relativement à $\,\mathcal{B}\,$ ' .
 - -2) Quelles sont les coordonnées d'un vecteur quelconque (x,y,z) de \mathbb{R}^3 par rapport à \mathcal{B}^+ ? En utilisant $\mathcal{M}_{\mathcal{B}^+}(\phi)$ en déduire les coordonnées de $\phi((x,y,z))$ par rapport à \mathcal{B}^+ . Retrouver à partir de ces coordonnées l'expression de $\phi((x,y,z))$ dans \mathbb{R}^3 .
- <u>- Exercice 5-</u> Dans $F(\mathbb{R})$, on note $u_1 = [x \rightarrow e^x]$, $u_2 = [x \rightarrow e^x]$ et $E = \text{Vect}(\{u_1, u_2\})$.
 - -1) Montrer que $\mathcal{B}_{=}$ (u_i)_{i=1,2} est une base de E.
 - $\underline{-2}$) On note $v_1 = ch$ et $v_2 = sh$. Montrer que $\mathcal{B}'_{=}(v_i)_{i=1,2}$ est également une base de E.
 - $\underline{-3}$) Ecrire la matrice P de passage de \mathcal{B} à \mathcal{B}' et calculer la matrice de passage de \mathcal{B}' à \mathcal{B} .
 - -4) Calculer les coordonnées de $f = [x \rightarrow 3.e^x 5.e^{-x}]$ par rapport à \mathcal{B} .

- -Exercice 6 $\mathcal{B}_{=}$ (e_i)_{i=1,2,3} est la base canonique de \mathbb{R}^3 . $P_{=}$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 0 & 3 \end{pmatrix}$.
 - -1) Calculer $P^3 4 P^2 + P$. En déduire que P est inversible et calculer P^{-1} .
 - -2) On pose $\varepsilon_1 = (1, 1, 1)$, $\varepsilon_2 = (1, 0, 0)$, $\varepsilon_3 = (1, 2, 3)$ et on note $\mathcal{B}' = (\varepsilon_i)_{i=1, 2, 3}$.

 Montrer que \mathcal{B}' est base de \mathbb{R}^3 ; écrire les matrices de passage de \mathcal{B} à \mathcal{B}' et de \mathcal{B}' à \mathcal{B} .
 - -3) ϕ est l'endomorphisme de \mathbb{R}^3 de matrice $\begin{pmatrix} m & 4\text{-}3m & 2m\text{-}3 \\ 0 & 5\text{-}2m & -4\text{+}2m \\ 0 & 6\text{-}3m & -5\text{+}3m \end{pmatrix}$ relativement à \mathcal{B} .
 - -4) Suivant la valeur du paramètre réel $\,$ m $\,$, discuter le rang de ϕ .

- IV - DETERMINANTS -

<u>- Exercice 1 -</u> Calculer chacun des déterminants suivants

$$\left| \begin{array}{c|c} a & b \\ c & d \end{array} \right| \; ; \left| \begin{array}{ccc} 0 & 2 & 4 \\ 1 & 1 & 2 \\ -1 & -1 & 3 \end{array} \right| \; ; \left| \begin{array}{ccc} -2 & 1 & 1 \\ 3 & -1 & -2 \\ -5 & 2 & 3 \end{array} \right| \; ; \left| \begin{array}{ccc} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{array} \right| \; ; \left| \begin{array}{ccc} a & b & c & d \\ 0 & e & f & g \\ 0 & 0 & h & i \\ 0 & 0 & 0 & k \end{array} \right|$$

- <u>- Exercice 2 -</u> Pour quelles valeurs du paramètre m les vecteurs $(1, 1, 1), (2, m, 3), (4, m^2, 9)$ forment-ils une base de \mathbb{R}^3 ?
- Exercice 3 1) Pour quelles valeurs du paramètre réel m la matrice $A_m = \begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{pmatrix}$ est-elle inversible?
 - $\underline{-2}$) On considère le cas où m=-1. Calculer l'inverse de A_{-1} de trois manières différentes :
 - <u>-a-</u> En utilisant la formule avec la comatrice (ou matrice des cofacteurs).
 - <u>-b-</u> En utilisant les opérations élémentaires sur les lignes .
 - <u>-c-</u> En vérifiant que le polynôme $P(x) = det(A_{-1} x.I_3)$ est annulateur de A_{-1} puis en obtenant I_3 comme produit de A_{-1} par une somme de matrices qui sera $(A_{-1})^{-1}$.
- - -1) Montrer que pour tout entier $n \ge 3$, on a $D_n = (2n+1) D_{n-1} n^2 D_{n-2}$.

M1PY3W01

- <u>-2)</u> Pour tout $n \ge 2$ on pose $u_n = D_n (n+1) D_{n-1}$. Exprimer u_n en fonction de n.
- <u>-3)</u> Pour $n \ge 1$, on pose $v_n = \frac{D_n}{(n+1)!}$. Exprimer v_n puis D_n en fonction de n.

- V - LA DIAGONALISATION D'UNE MATRICE DIAGONALISABLE -

-1) Pratique de la diagonalisation -

- <u>Rappels</u>: Un polynôme est "**scindé**" s'il peut se factoriser entièrement en produit de polynômes du premier degré.

Systématiquement vérifiée dans C[x], cette propriété peut ne pas l'être dans R[x] (exemple : $(x+1)(x^2+1)$).

Une matrice M de type $n \times n$ est **diagonalisable** lorsque la famille formée par recollement des bases de ses différents sous-espaces propres est une base de \mathbb{K}^n .

Ce phénomène se réalise pour les matrices qui vérifient simultanément les deux propriétés suivantes:

- 1 le polynôme caractéristique de M: $P_M(x) = \det(M x I_n)$ est scindé.
- 2 pour toute valeur propre λ de M, la dimension du sous-e.v. propre associé E_{λ} = $Ker(M-\lambda I_n)$ est égale (usuellement \leq) à l'ordre de multiplicité de λ comme racine de $P_M(x)$.

C'est en particulier toujours le cas si le polynôme caractéristique est scindé à racines simples.

- Exercice 1 \mathcal{B} désigne la base canonique de \mathbb{R}^3 . On considère la matrice $M = \begin{pmatrix} -1 & 3 & 3 \\ 2 & -1 & -2 \\ -2 & 3 & 4 \end{pmatrix}$.
 - <u>-1)</u> Calculer son polynôme caractéristique. En déduire ses valeurs propres . Pourquoi est-il certain que M est diagonalisable? Est-elle inversible?

 - -3) Ecrire la matrice $P = \mathcal{M}(\mathrm{Id}_{\mathbb{R}^3}, \mathcal{B}', \mathcal{B})$ puis calculer $P^{-1} = \mathcal{M}(\mathrm{Id}_{\mathbb{R}^3}, \mathcal{B}, \mathcal{B}')$. En déduire une expression de M en fonction de P, P^{-1} et d'une matrice diagonale Δ .
 - $\underline{-4)}$ Pour tout entier n de ${\rm I\! N}$, exprimer $\Delta^{\, n}$ puis M n en fonction de n .
- Exercice 2 Même exercice mais avec $M = \begin{pmatrix} 4 8 & 8 \\ 3 6 & 1 \\ 2 4 & 2 \end{pmatrix}$.
- Exercice 3 Suivant la valeur du paramètre réel m , discuter la diagonalisabilité de $M_m = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & m \\ 1 & 0 & m+1 \end{pmatrix}$.
- - $\underline{\text{-a-}}$ Quel rôle le vecteur (1, 1, 1) de \mathbb{R}^3 joue-t-il pour A? Quel rôle le réel S joue-t-il pour A?
 - <u>-b-</u> On suppose A semblable à une matrice diagonale : $A = P \times \Delta \times P^{-1}$ où $\Delta = \text{diag}(\lambda, \mu, \nu)$. Pourquoi A et Δ ont-elles même polynôme caractéristique ?

On observe que le polynôme caractéristique d'une matrice M de type $n \times n$ est de la forme $P_M(x) = (-1)^n x^n + (-1)^{n-1} tr(M) x^{n-1} + ... + det(M)$ où tr(M) est la "trace de M" c'est à dire la somme des termes de sa diagonale principale descendante.

En déduire en fonction des coefficients de la matrice A les expressions de la somme et du produit de ses valeurs propres (comptées autant de fois que leur ordre de multiplicité).

-2) Pourquoi la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ est-elle sûrement diagonalisable ?

Sans calcul de son polynôme caractéristique et en considérant seulement son rang et sa trace, déterminer ses valeurs propres .

-3) Diagonaliser A.

-2) Application à la résolution de systèmes différentiels linéaires -

- Exercice 1 - Système du type $X'(t) = A \times X(t) + B(t)$ où A est diagonalisable.

$$x_1$$
 , x_2 , x_3 sont trois applications de variable $\,t\,$ et de classe C^1 sur ${\rm I\!R}\,$ telles que

$$\forall t \in \mathbb{R}, \begin{cases} x_1'(t) = -x_1(t) + 3x_2(t) + 3x_3(t) + t^2 \\ x_2'(t) = 2x_1(t) - x_2(t) - 2x_3(t) + t \\ x_3'(t) = -2x_1(t) + 3x_2(t) + 4x_3(t) + 1 \end{cases}$$

Déterminer ces applications sachant que $(x_1(0), x_2(0), x_3(0)) = (1, 0, -1)$

- Exercice 2 - Système du type $X'(t) = A \times X(t) + B(t)$ où A est diagonalisable.

$$x$$
 , y , z sont trois applications de variable t et de classe C^1 sur ${\rm I\!R}$ telles que

$$\forall t \in \mathbb{R} , \begin{cases} x'_{=} 2 x - y + z + t \\ y'_{=} x + y + 2 z \\ z'_{=} x + 3 z \end{cases}$$

Déterminer la solution générale de ce système différentiel.

- Exercice 3 - Equation différentielle linéaire à coefficients constants .

On considère l'équation différentielle $y^{(3)}-2$ y" -y" +2y=24 e^{3t} notée (E). On souhaite déterminer l'ensemble des fonctions de variable t , de classe C ³ sur \mathbb{R} qui la vérifient.

- $-\underline{1)}$ Ecrire le système différentiel linéaire associé à cette équation en posant $x_1(t)=y(t)$, $x_2(t)=y'(t)$, $x_3(t)=y^{(2)}(t)$.
- -2) Résoudre ce système et en déduire les solutions de (E) .
- <u>- Exercice 4 -</u> Système du type $X''(t) = A \times X(t) + B(t)$.

Pour m paramètre réel positif, résoudre le système différentiel $\begin{cases} x'' = -2 \text{ m}^2 \text{ y} + 1 \\ y'' = 2 \text{ m}^2 \text{ x} \end{cases}$ en se ramenant à un système de deux équations différentielles du second ordre, indépendantes.

<u>- Exercice 5 -</u> Système du type $X''(t) = A \times X(t) + B(t)$.

Déterminer la solution du système

$$\begin{array}{lll} \mbox{diff\'erentiel} & x'' = -x + y + z \\ y'' = & x - y + z \\ z'' = & x + y - z \end{array} & telle \ que \left\{ \begin{array}{ll} x(0) = 0 \ , \ x'(0) = 1 \\ y(0) = 1 \ , \ y'(0) = 0 \\ x \ , \ y \ \mbox{et z sont born\'ees} \end{array} \right.$$

ANNALES

.

Exercice 1:

Soit
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x, y, z) \longrightarrow (x + z, y)$

- -1) Prouver que f est une application linéaire.
- -2) Déterminer son noyau. En donner une base et sa dimension.
- -3) Déterminer son image. En donner une base et sa dimension.

Exercice 2: Pour quelles valeurs du paramètre réel m, les vecteurs (1, 1, 1), (2, m, 3), $(4, m^2, 9)$ forment-ils une base de \mathbb{R}^3 ?

Exercice 3 : \mathcal{B} désigne la base canonique de \mathbb{R}^3 .

On considère la matrice
$$A = \begin{pmatrix} 2 & 0 & 3 \\ 2 & 1 & 2 \\ 4 & -2 & 3 \end{pmatrix}$$
.

- -1) Calculer son polynôme caractéristique. En déduire ses valeurs propres. Pourquoi est-il certain que A est diagonalisable? Est-elle inversible?
- -2) Déterminer chacun des sous-espaces propres. Proposer une base B' de R³ formée de vecteurs propres (on ne démontrera pas que c'est une base de R³). On choisira des vecteurs dont la première coordonnée par rapport à B est 1. Ils seront ordonnés dans l'ordre croissant des valeurs propres correspondantes.
- -3) Ecrire la matrice de passage de \mathcal{B} à \mathcal{B}' $P = \mathcal{M}(\mathrm{Id}_{\mathbb{R}^3}, \mathcal{B}', \mathcal{B})$ puis calculer son inverse $P^{-1} = \mathcal{M}(\mathrm{Id}_{\mathbb{R}^3}, \mathcal{B}, \mathcal{B}')$. En déduire une expression de A en fonction de P, P^{-1} et d'une matrice diagonale Δ .
- -4) x_1, x_2, x_3 sont trois applications de variable t et de classe C^1 sur \mathbb{R} telles que

$$\forall t \in \mathbb{R} \begin{cases} x_1'(t) = 2x_1(t) + 3x_3(t) + 3t + 3 \\ x_2'(t) = 2x_1(t) + x_2(t) + 2x_3(t) + 6t + 6 \\ x_3'(t) = 4x_1(t) - 2x_2(t) + 3x_3(t) \end{cases}$$

Déterminer ces applications sachant que $(x_1(0), x_2(0), x_3(0)) = (3/4, 3/2, 0)$.

?

$$\boxed{\underline{I}} \ (80/200) \quad a \in {\rm I\!R}^*_{\ +} \ . \quad A = \begin{pmatrix} 0 & a & a^2 \\ a^{-1} & 0 & a \\ a^{-2} & a^{-1} & 0 \end{pmatrix} . \ \text{On note } I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ \text{et } Id_{R3} \ \text{l'identit\'e} \ (u \to u) \ \text{de } {\rm I\!R}^3 \ .$$

- -1) Calculer det(A). A est-elle inversible ?
- <u>-2)</u> Calculer A²–2.I₃.

On rappelle que si une matrice admet un polynôme annulateur scindé à racines simples, elle est diagonalisable. Est-ce le cas de A ?

 $\begin{array}{c} \underline{-3)} \ \underline{-a\text{-}} \ B \ \ \text{est la base canonique de } \mathbb{R}^3 \ . \ \text{On note } \phi \ l'\text{endomorphisme de } \mathbb{R}^3 \ \text{canoniquement associ\'e \`a A.} \\ \text{Quelle est la matrice de } \phi + 1. \text{Id}_{\mathbb{R}^3} \ \text{par rapport \`a la base canonique de } \mathbb{R}^3 \ ? \end{array}$

Déterminer le noyau de $\varphi + 1.\text{Id}_{R3}$.

En donner une base formée de vecteurs dont la 3^{ème} coordonnée est 1. Quelle est la dimension de ce noyau ?

- <u>-b-</u> En déduire une valeur propre de A. Quelles sont les valeurs possibles de son ordre de multiplicité, en tant que racine du polynôme caractéristique de A (polynôme non calculé).
- <u>-c-</u> Quelle est la somme des valeurs propres de A (chacune comptée autant de fois que son ordre de multiplicité)

En déduire le spectre de A en précisant l'ordre de multiplicité de chaque valeur propre.

-d- Calculer l'image par φ du vecteur (a², a, 1). En déduire un autre sous-espace propre de A.

$$\underline{-4}$$
) $\underline{-a}$ On note $P = \begin{pmatrix} -a^2 & 0 & a^2 \\ 0 & -a & a \\ 1 & 1 & 1 \end{pmatrix}$. Pourquoi est-elle inversible?

Exprimer une relation liant A, P, P⁻¹ et une matrice diagonale qu'on explicitera.

<u>-b-</u> On considère le cas particulier où a = -1. Calculer la matrice P^{-1} .

$$\begin{array}{l} \underline{-5)} \ On \ considère \ le \ système \ différentiel \ \left\{ \begin{array}{l} x_1^{\ '} = & -x_2 + x_3 & +2t \\ x_2^{\ '} = & -x_1 & -x_3 + 2e^t -2t \\ x_3^{\ '} = & x_1 - x_2 & +2e^t +2t \end{array} \right. .$$

-a- En les adaptant au cas particulier rencontré, utiliser les résultats précédents pour résoudre ce système.

<u>-b-</u> Déterminer la solution particulière telle que $(x_1(0), x_2(0), x_3(0)) = (-1, 2, 3)$.

(extrait)

Exercice 1:

On définit la matrice suivante :

$$A = \left(\begin{array}{ccc} -4 & 10 & -6 \\ -1 & 1 & -1 \\ 1 & -7 & 3 \end{array} \right).$$

1. Montrer que les deux vecteurs $\xi_1 = (-4, -1, 1)$ et $\xi_2 = (10, 1, -7)$ forment une famille libre de \mathbb{R}^3 .

2. Calculer le noyau de l'application linéaire $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ canoniquement associée à la matrice A. La matrice A est-elle inversible?

Déduire des deux questions précédentes que l'image de φ est égale à Vect({ξ₁, ξ₂}).

4. Calculer le polynôme caractéristique de A. En déduire le spectre de A.

5. Trouver une base $\mathcal{B}' = (e_1, e_2, e_3)$ de vecteurs propres de A telle que les valeurs propres correspondantes soient rangées par ordre croissant, et telle que le dernier coefficient de chaque vecteur soit égal à 1. Expliciter la matrice de passage P de la base canonique vers la base \mathcal{B}' .

6. Diagonaliser A, autrement dit, exprimer la matrice A en fonction de P et d'une matrice diagonale que l'on précisera (on ne calculera pas P^{-1}).

Exercice 2:

Cet exercice est indépendant de l'exercice 1. On définit les matrices suivantes :

$$A = \begin{pmatrix} -3 & 2 & 1 \\ -4 & 3 & 2 \\ -6 & 3 & 2 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 2 & 0 & 1 \end{pmatrix} \text{ et } \Delta = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

On définit le système d'équations différentielles suivant :

(E) :
$$\begin{cases} x_1'(t) &= -3x_1(t) + 2x_2(t) + 1x_3(t) \\ x_2'(t) &= -4x_1(t) + 3x_2(t) + 2x_3(t) + 2e^{2t} \\ x_3'(t) &= -6x_1(t) + 3x_2(t) + 2x_3(t) \end{cases}$$

1. Vérifier que P est inversible et calculer son inverse. On admet qu'on a $A = P\Delta P^{-1}$.

2. Résoudre le système (E).

Déterminer la solution particulière telle que (x₁(0), x₂(0), x₃(0)) = (1, 1, 1).

<u>M1PY4W11</u> <u>DS</u> <u>10 Mars 2012</u>

Exercice 1.

On pose

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1) Calculer AB + A.
- En réécrivant cette égalité, déduire que A est inversible et donner la matrice A^{−1}.
- 3) Utiliser le résultat de la question 2 pour donner, sans presque aucun calcul complémentaire, l'ensemble des solutions (x, y, z) du système

$$(S) \begin{tabular}{llll} & 2x & + & y & - & z & = & 0 \\ & -x & + & y & + & 2z & = & 1 \\ & x & - & y & + & z & = & 1 \\ \end{tabular}$$

Exercice 2.

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie, pour (x, y, z) dans \mathbb{R}^3 par

$$f(x, y, z) = (3x - 2y + 2z, x - y + 3z).$$

- Calculer f(1, 1, 0) et f(0, 1, 1).
- b) Justifier le fait que $Im(f) = \mathbb{R}^2$.
- c) Quelle est la dimension du noyau de f?
- d) Déterminer une base de Ker(f).
- a) Montrer que B = {(1, 1, 0), (0, 1, 1), (4, 7, 1)} est une base de ℝ³.
- b) Utiliser la question 1 pour donner la matrice de f par rapport aux bases de départ \mathcal{B} et d'arrivée \mathcal{C}_2 , où \mathcal{C}_2 désigne la base canonique de \mathbb{R}^2 .

Exercice 3.

Soit E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Soit F le sous-ensemble de E défini par

$$F = \{ f \in E / f(1) = 0 \}$$

c'est-à-dire l'ensemble des applications de ℝ dans ℝ qui sont nulles en 1.

Soit g l'application de \mathbb{R} dans \mathbb{R} définie pour tout x réel par $g(x) = x^2$, et soit G le sous-espace vectoriel de E engendré par cet élément g de E.

- Montrer que F est un sous-espace vectoriel de E.
- 2) Quelle est la forme générale des éléments de G?
- 3) Déterminer $F \cap G$.
- 4) Montrer que les sous-espaces vectoriels F et G sont supplémentaires dans E. (Indication : on pourra remarquer que si f est une application de ℝ dans ℝ, f = (f − f(1)g) + f(1)g.)

Les deux parties sont indépendantes.

<u>-b-</u> En déduire que P est inversible et calculer son inverse P^{-1} .

$$\underline{\text{-c-}} \text{ Calculer la matrice } A = P \times D \times P^{-1} \quad \text{où } D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Bien que cela ne soit pas indispensable pour répondre à la question suivante, les étudiants qui le jugeraient utile pourront admettre que les vecteurs-colonnes de la matrice P définissent une base de vecteurs propres de A, respectivement associés aux termes diagonaux de D, valeurs propres de A.

 $\underline{-2}$) x_1 , x_2 et x_3 étant trois fonctions de variable t, dérivables sur \mathbb{R} , on considère le système différentiel :

$$\left\{ \begin{array}{l} x_1 = -3.x_1 & +4.x_2 & +1.x_3 & +e^t & +t \\ x_2 = -1.x_1 & +2.x_2 & +1.x_3 & +e^t & +t \\ x_3 = -4.x_1 & +4.x_2 & +2.x_3 & +e^t \end{array} \right. .$$

<u>-a-</u> Ecrire ce système sous forme matricielle.

-b- Résoudre le système par la méthode de son choix.

<u>-c-</u> Déterminer la solution telle que $(x_1(0), x_2(0), x_3(0)) = (-1, -2, 0)$.

-1) -a- Calculer son polynôme caractéristique.

<u>-b-</u> En déduire ses valeurs propres et leur ordre de multiplicité.

-c- Déterminer chacun des sous-espaces propres en donnant pour chacun d'eux une base et sa dimension.

-2) -a- Pourquoi la matrice M est-elle diagonalisable ?

<u>-b-</u> Construire une matrice inversible P et une matrice diagonale Δ (*présentant les valeurs propres de M dans l'ordre croissant de gauche à droite*) telles que $\Delta = P^{-1} \times M \times P$.

Premier exercice : [100 points]

Résoudre le système différentiel du premier ordre à coefficients constants non homogène

$$X' = AX + B$$
, où $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $A = \begin{pmatrix} -7 & 28 \\ -2 & 8 \end{pmatrix}$ et B vaut :

a)
$$e^{2t} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
. [30 points]

b)
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
. [50 points]

(c)
$$\binom{7}{2}$$
 [20 points]

Deuxième exercice : [100 points]

Chacune des questions qui vont suivre nécessite une réflexion et un calcul fort simples . L'ensemble de la solution , quant à lui , ne prend pas dix lignes .

On s' intéresse quelques instants donc au système différentiel (S)

$$X' = AX + e^{rt}u$$
, on

X est un vecteur-colonne 3×1 , A une matrice constante 3×3 diagonalisable réelle, α est un réel fixé et u un vecteur-colonne 3×1 fixé, réel et non nul.

1. Montrer que A - α I est diagonalisable . [10 points]

2. On note encore ${\bf A}$ l'endomorphisme" de ${\bf R}^3$ de matrice ${\bf A}$ dans la base canonique .

Montrer que im(A) et ker(A) sont supplémentaires . [10 points]

Montrer que $im(A - \alpha I)$ et $ker(A - \alpha I)$ sont supplémentaires . [10 points]

(Introduire les valeurs et vocteurs propres de A.)

On suppose ici que α ∉ sp(A) .

Trouver $dim(im(A - \alpha I))$. [10 points]

Donner l'unique solution particulière de (S) ayant la forme $e^{ct}v$, v constant . [10 points]

On suppose ici que α ∈ sp(A) .

Trouver une condition nécessaire et suffisante pour qu'il existe une solution particulière de (S) ayant la forme $e^{ext}v$, v constant.

a) Si cette condition est respectée , trouver *une* solution particulière de (S) ayant la forme e^{ct}v v constant . [10 points]

b) Sinon , montrer qu'il existe toujours une solution particulière de (S) ayant la forme

 $e^{ct}(t v + w)$, v et w constants. [30 points]

DS DU 23 MARS 2013

Exercice 1. Dans cet exercice, E désigne le ℝ-espace vectoriel des polynômes de degré au plus égal à 2. On note P₁, P₂, P₃ les polynômes définis par

$$P_1(X) = X(X-2)$$
 $P_2(X) = (X-1)(X-2)$ $P_3(X) = X(X-1)$

- 1) Soit α , β et γ trois nombres réels, et P le polynôme défini par $P = \alpha P_1 + \beta P_2 + \gamma P_3$. Calculer P(0), P(1) et P(2) en fonction de α , β et γ . Il est fortement conseillé d'utiliser ce résultat pour répondre aux questions 2 et 4.
- Montrer que {P₁, P₂, P₃} est une famille libre de E.
- Justifier que {P₁, P₂, P₃} est une base de E.
- 4) On pose $P(X) = X^2 7$. Déterminer les coordonnées de P dans la base $\{P_1, P_2, P_3\}$.

Exercice 2.

1) On pose
$$P = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $Q = \begin{pmatrix} -2 & 1 & 1 \\ -1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$.

- a) Calculer le produit PQ.
- b) En déduire que P est inversible et donner la matrice P⁻¹.
- 2) On pose $v_1 = (-1, 1, 0)$, $v_2 = (0, -1, 1)$, $v_3 = (1, 1, 1)$, et $\mathcal{B} = \{v_1, v_2, v_3\}$.

Justifier sans calcul que B est une base du \mathbb{R} -espace vectoriel \mathbb{R}^3 .

3) On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^3 telle que

$$f(v_1) = v_1$$
 $f(v_2) = v_2$ $f(v_3) = (0, 0, 0)$

- a) Donner une base de l'image de f et une base du noyau de f.
- b) Donner la matrice de f dans la base B. On la notera B.
- c) Exprimer la matrice de f dans la base canonique à l'aide des matrices définies précédemment. On ne demande pas d'en calculer les coefficients.

Exercice 3. On pose
$$B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $M = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}$.

- a) Calculer B² et B³.
- b) Exprimer M à l'aide des matrices I₃, B, où I₃ désigne la matrice identité de taille 3.
- c) Utiliser la formule du binôme pour exprimer M⁵ à l'aide des matrices I₃, B et B².
- d) Expliciter cette matrice M⁵.
- Soit (u_n)_{n∈N}, (v_n)_{n∈N} et (w_n)_{n∈N} trois suites de nombres réels telles que

$$u_0 = 1 \ v_0 = 0 \ w_0 = 1 \qquad et \qquad \forall n \in \mathbb{N} \qquad \left\{ \begin{array}{ll} u_{n+1} = & 3u_n \\ v_{n+1} = & u_n + 3v_n \\ w_{n+1} = & v_n + 3w_n \end{array} \right.$$

- a) En notant X_n le vecteur colonnes de composantes u_n, v_n et w_n, exprimer les conditions précédentes sous forme matricielle.
- b) Exprimer X₅ en fonction de X₀ et d'une puissance d'une matrice que l'on précisera.
- c) En utilisant le résultat de la question 1-d, déterminer u₅, v₅ et w₅.

Les deux parties sont indépendantes.

- \blacksquare I- ϕ est l'application de \blacksquare R² dans lui-même, définie par $\phi(x,y)=(x+y,2x)$.
 - -1) -a- Montrer que φ est une application linéaire.
 - <u>-b-</u> Ecrire sa matrice M par rapport à la base canonique $\mathcal{B} = (e_i)_{i=1,2}$ de \mathbb{R}^2 .
 - -c- Déterminer le noyau de φ. Quelle est sa dimension ?
 - -d- En déduire la dimension de l'image de φ . Sans calcul, qu'est Im (φ) ?
 - - <u>-b-</u> Ecrire la matrice Δ de φ par rapport à la base \mathcal{B}' .
 - <u>-c-</u> Ecrire la relation liant M et Δ , utilisant une matrice inversible P et son inverse P^{-1} qu'on explicitera.
 - -d- Calculer M 10 en utilisant Δ .
- - $\underline{-1}$ Calculer le déterminant de P . Montrer que P est inversible et calculer son inverse P^{-1} .
 - <u>-2)</u> <u>-a-</u> Vérifier le fait que le vecteur (1,-1, 1) est vecteur propre de A. Quelle valeur propre met-il en évidence ?
 - -b- Calculer le polynôme caractéristique de A.
 - <u>-c-</u> En déduire les valeurs propres de A et leurs ordres de multiplicité respectifs.

Avant toute recherche de vecteur propre, pour chaque sous-espace propre de A, dire quelles sont les valeurs possibles de sa dimension ?

Dans quel cas concernant ces dimensions, A est-elle diagonalisable?

- <u>-d-</u> Déterminer les sous-espaces propres de A et donner une base de chacun d'eux .
- $\underline{\text{-e-}}$ Ecrire une relation matricielle liant A , P , son inverse P^{-1} et une matrice diagonale Δ qu'on explicitera.
- -3) -a- Résoudre par la méthode de son choix, le système différentiel

$$\begin{cases} x_1' = -4.x_1 - 3.x_2 + 3.x_3 \\ x_2' = 3.x_1 + 2.x_2 - 3.x_3 + e^{-t} \\ x_3' = -3.x_1 - 3.x_2 + 2.x_3 + e^{-t} \end{cases}$$

où x_1, x_2 et x_3 sont trois fonctions de variable t, dérivables sur ${\rm I\!R}$.

<u>-b-</u> Déterminer la solution telle que $(x_1(0), x_2(0), x_3(0)) = (1, 1, 1)$.

Toutes les réponses doivent être argumentées.

Exercice 1. On considère les sous-espaces vectoriels de \mathbb{R}^3

$$F = Vect(\{(1,1,0),(0,1,1)\})$$
 $G = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$

- a) Quelle est la forme générale des vecteurs de F?
- b) Déterminer $F \cap G$. En donner une base.

Exercice 2. On considère le \mathbb{R} -espace vectoriel ($\mathbb{R}_3[X], +, ...$) des polynômes de degré inférieur ou égal à 3 à coefficients réels.

- 1) Quelle est sa dimension?
- 2) On considère la famille ${\mathcal A}$ composée des 3 polynômes suivants

$$P_1(X) = 1 + X^2 + X^3$$
, $P_2(X) = 1 + X + 2X^2$, $P_3(X) = 1 - X + 2X^3$

- a) A est-elle génératrice de R₃[X]? (Indication : aucun calcul n'est nécessaire).
- b) A est-elle libre?
- c) Donner une base du sous-espace vectoriel de R₃[X] engendré par A.

Exercice 3. On pose
$$A = \begin{pmatrix} -2 & 1 & -1 \\ 1 & -2 & 1 \\ -1 & 1 & -2 \end{pmatrix}$$
.

- a) Calculer la matrice A^2 , et l'exprimer à l'aide des matrices A et I_3 .
- b) En déduire que A est inversible, et exprimer A^{-1} à l'aide des matrices A et I_3 .
- c) Expliciter les coefficients de A⁻¹.
- d) En déduire la solution du système d'équations

(S)
$$\begin{cases} -2x + y - z = 1 \\ x - 2y + z = 1 \\ -x + y - 2z = 1 \end{cases}$$

Exercice 4. On considère l'application linéaire

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^2 \\ (x, y, z) & \mapsto & (x + y, y + z) \end{array} \right.$$

- Déterminer le noyau et l'image de f, et en préciser les dimensions.
- 2) On note $C = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et $C' = \{e'_1, e'_2\}$ la base canonique de \mathbb{R}^2 . Déterminer la matrice de f relative à ces bases. On la note A.
- 3) On note $\mathcal{B} = \{e_1, e_2, e_1 e_2 + e_3\}$ et $\mathcal{B}' = \{e'_1, e'_1 + e'_2\}$. En utilisant la définition de cette matrice, déterminer $Mat_{\mathcal{B}, \mathcal{B}'}(f)$.

4) On pose
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $P' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- a) Montrer que P' est inversible et calculer P'-1.
- b) Calculer le produit $P'^{-1}AP$.
- 5) a) Déterminer $Mat_{\mathcal{B},\mathcal{C}}(id_{\mathbb{R}^3})$ et $Mat_{\mathcal{B}',\mathcal{C}'}(id_{\mathbb{R}^2})$.
- b) Peut-on obtenir la matrice produit $P'^{-1}AP$ sans faire les calculs de la question 4?

1

- $\underline{-1}$ Montrer que **P** est inversible et calculer son inverse \mathbf{P}^{-1} .
- - -b- Calculer le polynôme caractéristique de B.
 - <u>-c-</u> En déduire les valeurs propres de **B** et leurs ordres de multiplicité respectifs.

Avant toute recherche de vecteur propre, pour chaque sous-espace propre de **B**, dire quelles sont les valeurs possibles de sa dimension ?

Dans quel cas concernant ces dimensions, **B** est-elle diagonalisable?

- $\underline{\textbf{-d-}}$ Au vu des résultats du $\underline{\textbf{-c-}}$ et sans plus de calcul , qu'est le sous-espace propre $\mathbf{E}_{\pmb{\alpha}}$?
- <u>-f-</u> Ecrire une relation matricielle liant \mathbf{B} , \mathbf{P} , son inverse \mathbf{P}^{-1} et une matrice diagonale $\mathbf{\Delta}$ qu'on explicitera.
- -3) -a- Résoudre par la méthode de son choix, le système différentiel

$$\begin{cases} x_1 = -x_1 + 2.x_2 + x_3 + 1 \\ x_2 = x_2 + e^t \\ x_3 = -6.x_1 + 6.x_2 + 4.x_3 - 2.e^t \end{cases}$$

où x_1, x_2 et x_3 sont trois fonctions de variable t , dérivables sur ${\rm I\!R}$.

- <u>-b-</u> Déterminer la solution telle que $(x_1(0), x_2(0), x_3(0)) = (-1, 1, -3)$.
- **III.** $\mathcal{B} = (e_i)_{i=1,2,3}$ est la base canonique de \mathbb{R}^3 .
 - - -b- Déterminer le noyau $Ker(\phi)$ et l'espace-image $Im(\phi)$.

Quelle est la situation relative de $Im(\varphi)$ et $Ker(\varphi)$?

 $\forall u \in \mathbb{R}^3$, quelle conclusion peut-on en déduire concernant le vecteur $\boldsymbol{\varphi}^2(\mathbf{u})$? (où $\boldsymbol{\varphi}^2 = \boldsymbol{\varphi} \circ \boldsymbol{\varphi}$)

 $\underline{\text{-c-}}$ Ecrire la matrice $C = \mathcal{M}_{\mathcal{B}}(\varphi)$. Vérifier matriciellement le résultat du $\underline{\text{-b-}}$.

Qu'en déduire pour C^k lorsque $k \ge 2$?

- - -a- Comparer $B\times C$, $C\times B$ et C.
 - <u>-b-</u> Montrer que $\forall k \in \mathbb{N}$, $B^k \times C = C$.
 - <u>-c-</u> On rappelle la formule du binome de Newton : $\forall n \in \mathbb{N}$, $(b+c)^n = \sum_{k=0}^n \binom{n}{k} b^{n-k} \cdot c^k$.

Pourquoi peut-on l'appliquer au calcul de $(B + C)^n$?

En déduire lorsque $n \ge 1$, une expression de ${\bf A}^n$ en fonction de ${\bf B}^n$, ${\bf C}$ et ${\bf n}$.

<u>-d-</u> A l'aide de la relation matricielle obtenue au $\overline{-I-}$ -2) -f-, exprimer B^n puis A^n en fonction de n.

page 20

Exercice 1 : Soit B la base canonique de \mathbb{R}^3 . On note ϕ l'application linéaire définie par $\phi(e_1) = e_3, \ \phi(e_2) = -e_1 + e_2 + e_3 \text{ et } \phi(e_3) = e_3.$

- 1. a) Ecrire la matrice M de ϕ dans la base B.
 - b) Déterminer le noyau de cette application.
- 2. On pose $f_1 = e_1 e_3$, $f_2 = e_1 e_2$, $f_3 = -e_1 + e_2 + e_3$. a) Montrer que les vecteurs f_1 , f_2 , f_3 forment une base de \mathbb{R}^3 . On appellera cette base
 - b) Calculer e_1, e_2, e_3 en fonction de f_1, f_2, f_3 .
- 3. a) Calculer $\phi(f_1), \phi(f_2), \phi(f_3)$ en fonction de f_1, f_2, f_3 .
 - b) En déduire la matrice M' de ϕ dans la base B'.
- 4. Quel rôle joue la matrice $Q = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ pour les bases B et B'.
 - b) Déduire des résultats de la question 2. la matrice Q^{-1}
 - c) Quelle relation lie les matrices M, M', Q et Q^{-1} ?

Exercice 2 : Soient les deux matrices $A = \begin{pmatrix} -1 & 2 & 1 \\ 2 & -1 & -1 \\ -4 & 4 & 3 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & 2 & -2 \end{pmatrix}$.

- 1. Montrer que P est inversible et calculer P^{-1} .
- Calculer le polynôme caractéristique de A.
- 3. Trouver les valeurs propres de A et leur ordre de multiplicité.
- 4. Montrer que le vecteur $V_1 = (-1, 1, 2)$ est une base de Ker(A + I)
- 5. Trouver une base de Ker(A-I). En déduire qu'il existe une matrice diagonale D que l'on explicitera, telle que $A = PDP^{-1}$
- Calculer D². En déduire A², puis l'expression de Aⁿ suivant la parité de n.
- 7. Soit $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$. Résoudre le sytème différentiel $\frac{dX}{dt} = AX$.
- 8. Déterminer la solution de ce système telle que $\lim_{t\to +\infty} (X(t)) = (0,0,0)$ pour X(0) = (-2, 2, -4).