NASA-CR-167822 19830011528

SPACE OPERATIONS CENTER

SHUTTLE INTERACTION STUDY

FINAL REVIEW

NAS9-16153

LIBRARY CURY

C69 4 90A

LANGLET RESEARCH CLITTER
LIBRARY, NASA
HAMPTON, VIRGINIA

Spice Operations and Satellite Systems Division

7

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY CONTENT

STUDY OBJECTIVE

"ANALYZE, IN A PRELIMINARY FASHION, THE IMPLICATION OF USING THE SHUTTLE WITH THE SOC, INCLUDING CONSTRAINTS THAT THE SHUTTLE WILL PLACE UPON THE SOC DESIGN. IDENTIFY ALL THE CONSIDERATIONS INVOLVED IN THE USE OF THE SHUTTLE AS A PART OF THE SOC CONCEPT."

- IMPLICATIONS TO THE SOC
- IMPLICATIONS TO THE SHUTTLE
- IMPLICATIONS TO AN OTV/MOTV

SOC GROWTH CONCEPT

5

IMPLICATIONS TO THE SPACE OPERATIONS CENTER (SOC)

1,

n

..

USE VARIABLE ALTITUDE STRATEGY

FLY HIGH ALT

- LO TRAFFIC
- HI ATMOS DENSITY

FLY LOW ALT

- HI TRAFFIC
- LOW ATMOS DENSITY

IMPLICATIONS

- SIZES PROPELLANT CAPACITY ON SOC
- UNIQUE OPERATIONAL ACTIVITIES REQUIRED TO COORDINATE LOGISTICS DELIVERY SCHEDULES & MANIFESTS WITH SOC ALTITUDE
- COMM/DATA LINK FOR SOLAR ACTIVITY DATA REQUIRED

MODULE DEPLOYMENT & TRANSPORT

IMPLICATIONS

- PIDA INTERFACE PROVISIONS
- RMS GRAPPLE DEVICE INSTALLATION

 RCS BOOM & THRUSTERS REQUIRED FOR ADEQUATE CONTROL COUPLES

8

SOC ASSEMBLY IMPLICATIONS

ASSEMBLY ALIGNMENT

ORBITER DOCKING LOCATIONS

IMPLICATIONS

- ALIGNMENT KIT REQUIRED FOR MODULE ASSEMBLY
 - MOUNTING PROVISIONS FOR

• INTERFACE PORT REQUIRED ON TUNNEL ASSEMBLY

PORT ORIENTED FOR TAIL DOWN ORBITER
 POSITION

SOC ASSEMBLY IMPLICATIONS

LIGHTS & TV CAMERAS FOR SOC ASSEMBLY & SOC OPERATIONS

1 LIGHTS AND TV CAMERA, TARGET **TARGET** (STANDARD) DOCKING LIGHTS & TV CAMERA FOR EACH BERTHING PORT IN PORT LIGHT ON DOCKING PORT (1ST FLT), ANTENNA (FIRST FLIGHT) 2 - TV CAMERAS AND 2 - LIGHTS ON DOCKING **MODULE AFT SIDES** (TILT & PAN) RMS-LIGHT AND TV CAMERA MARKER LIGHTS ON HPA (IF USED) AT ALL MAJOR (STANDARD) 6-LIGHTS **EXTREMITIES** IN CARGO BAY WALL (45 PLCS, INCLUDING ADDED LIGHT ON AFT 4 AT EACH OF 3 CARGO BAY BULKHID **DOCKING PORTS)** (TILT & PAN) (STANDARD) TV CAMERA ON AFT CARGO BAY BULKHEAD R/CM 4-LIGHTS ON R/CM CABIN (TILT & PAN) STAGE ASSY SYS LIGHT AND TV CAMERA (SAM) (TILT & PAN) ON WRIST AND ELBOW OF R/CM **MANIPULATOR**

DOCKING AND/OR BERTHING IMPLICATIONS

. STANDARD MATING INTERFACE

IMPLICATIONS

• ALL SOC MODULES TO INCORPORATE THE PASSIVE STANDARD INTERFACE PORT

FREON SUPPLY (PRI & SEC) FREON RETURN (PRI & SEC) H₂0 COOLANT SUPPLY (PRI & SEC) H20 COOLANT RETURN (PRI & SEC) H₂0 COOLANT RETURN (PRI & SEC) H20 POTABLE SUPPLY H20 WASTE RETURN O2 SUPPLY No SUPPLY ATR PRESSURE **AIR PROCESSING DUCTS ELEC. POWER-PRIMARY ELEC. POWER-SECONDARY** DATA/CONTROL G/N-RCS **ECLSS** COMM -AUDIO/VISUAL DATA-DIGITAL/ANALOG

- STANDARD MATING INTERFACES
- PASSIVE PORTS

DOCKING AND/OR BERTHING IMPLICATIONS

RUNAWAY JET CONDITION

ABORT MODE PLUME IMPINGEMENT

IMPLICATIONS

- SOC DESIGN TO INCORPORATE RUNAWAY
 JET ABORT HI-Z THRUST IMPACTS, PRESSURE,
 TEMPERATURE & CONTAMINANTS
- UNPROTECTED INSULATION (MLI) SUBJECT TO DAMAGE FROM ABORT THRUST PRESSURES

965CR4P1(ON	MASS* DEPOSITION RATE (1bm/sec)	SOC IMPINGEMENT FORCES (IN)						CONVECT: VE
		٠,	١,	١,	٠.	٠,	4	MTS (Blu/sec)
TWO ACS, 3 ENCINES TENTETION								
HABITABILITY MUDULE NO 1	3 146	981 1	۰	41 E	1 0 1	24 058 1	•	7/10 G
LOGISTICS MODULE	0 2/2	59.7	11.7	40 6	809 6	508.1	677 6	437.7
SERVICE HODULE NO (0.766	설간	- a	12.0		- <u>- 289</u> *	0	609 9
101AL	3 484	1082 6	11.7	47.6	809 0	21 260 5	+95 B	
ET BILLETION					1 1			
PARKED PLANEIRAY VEHICLE	0 154	90 h		50 B	1 • (5 185 7	0	115.2
Same	2 564	84.7.2	0	10 1	1 1	6/ 1/9 0	۰	6540 6
R/(m mobul)	0 280	60 0	41.5	13.4	1750 7	1,255 +	147.2	549 8
IGIAL	1 158	1017 6	415	19.4	1/50.7	/6 010 1	/47.9	
T LHUNZZEN" I EMPINE	1				Į ;	.)		
SOLAR ARAAT (P 5) AMGLES	0 /10	116.7	1/1 5	45 1	6018 4	1957.1	19 555 1	1659 8
h h m Amiliana i o Didd(1)Gmi	0 0 16	1.4	5.5	0 4	1 1111	55.7	110 4	45.5
RADIATORS (T BIRECTION)	0 009	-4.1	1.4	0_5	.15.1	_10_1	_ 19 0	20.6
TOTAL	0 /65	122.2	178	44.0	61/6.2	1881 8	19 853 8	l

**ASSUMED THAT THE SAM WAS UPAQUE LINTERNAL PARTS STOWAGE?

FORCE, MOMENT, HEATING SUMMARY

DOCKING AND/OR BERTHING IMPLICATIONS

RUNAWAY JET CONDITION

IMPLICATIONS

• CONTACT MODE

- SOC/ORBITER INTERFACE DESIGNED TO ACCEPT RUNAWAY JET LOADS AFTER MATING
- SOC ATTITUDE CONTROL MUST BE DESIGNED TO ACCOMMODATE THE RUN AWAY JET IMPOSED FORCES

FUEL TRANSFER IMPLICATIONS

11

ORBITER DOCKING MISALIGNMENT

SERVICING FACILITY ASSEMBLY

IMPLICATIONS

• FLIGHT SUPPORT FACILITY RELOCATED FOR CLEARANCE

 SOC PRIMARY CONTROL CENTER LOCATED IN SOC PRESSURE VOL 1

SOC FLIGHT SUPPORT FACILITY CONCEPT

1)

٠,

INITIAL ARRANGEMENT

CAPABILITIES:

- ASSEMBLY, LAUNCH, RETRIEVE EARLY GEO SATELLITE DELIVERY MISSIONS
- SERVICE SINGLE STAGE OTV
- REFUEL FROM ORBITER

GROWTH ARRANGEMENT

CAPABILITIES:

- ASSEMBLE, LAUNCH, RETRIEVE MOTV MISSIONS
- SERVICE 2 STAGE MOTY, AND OTHER SPACECRAFT SIMULTANEOUSLY
- PROPELLANT STORAGE ON SPACE BASE

IMPLICATIONS TO THE SHUTTLE

SHUTTLE SOC ASSEMBLY IMPLICATIONS

SOC MODULE DEPLOYMENT FROM ORBITER PAYLOAD BAY

SOC SUPPORTED FOR RMS REACH CAPABILITY

IMPLICATIONS

• PROVIDE INSTALLATION & CONTROLS FOR PIDA & TILT & PAN LIGHT ON AFT BHD

- PROVIDE INSTALLATION OF HPA
- PROVIDE ADAPTER

SHUTTLE BERTHING AND/OR DOCKING IMPLICATIONS

SHUTTLE CREW TRANSPORT IMPLICATIONS

Space Operations and Satellite Systems Division

21

IMPLICATIONS TO AN OTV/MOTV

OTV DOCKING/BERTHING IMPLICATIONS

OTV/MOTV DOCK TO SERVICE FIXTURE **IMPLICATIONS** & SERVICE CONTROL MODULE STD MATING **MANIPULATOR** INTERFACE GRAPPLE PIDA & SERVICE CREW FIXTURE CARRIER **MODULE** INTERFACE **PROVISIONS** > STD MATING **INTERFACE** DOCKING **PORT** MANIPULATOR GRAPPLE OTV PIDA & **SERVICE FIXTURE** INTERFACE **PROVISIONS** BERTHING **PORT GRAPPLE** POINT .

OTV SYSTEMS REPLACEMENT IMPLICATIONS

MODULAR SYSTEMS PACKAGES AS LRU'S

1

IMPLICATIONS

 ATTACH & INTERFACE PROVISIONS REQUIRED

OTV SERVICING FACILITIES IMPLICATIONS

OTV IMPLICATIONS

CONCLUSIONS — SOC

OPERATIONAL IMPLICATIONS

- ORBITAL ALTITUDE—COORDINATION WITH SOLAR ACTIVITY & LOGISTICS TRAFFIC
- AUXILIARY ATTITUDE CONTROL FOR UNTENDED SOC ASSEMBLY ARRANGEMENTS
- SOC ASSEMBLY ALIGNMENT UTILIZING TV CAMERA AND TARGET

DESIGN IMPLICATIONS

- RUNAWAY JET PLUME FORCES, HEATING, CONTAMINATES
- RUNAWAY JET FORCES WHEN DOCKED
- ATTITUDE CONTROL SYSTEM TO ACCEPT DOCKED RUNAWAY JET FORCES
- SOC CONTROL CENTER IN PRESSURE VOLUME 1

BENEFITS

- VARIABLE ALTITUDE STRATEGY SAVES LOGISTICS COSTS
- STANDARD INTERFACE APPLICABLE TO OTHER SPACE PROGRAMS
- PROPELLANT STORAGE SAVES PROPELLANT LOGISTICS & IMPROVES SHUTTLE UTILIZ.
- FLIGHT SUPPORT FACILITY CONCEPT SIMPLIFIES GROWTH CAPABILITY

CONCLUSIONS — SHUTTLE

OPERATIONAL IMPLICATIONS

- DOCKING/BERTHING CONTROL PROCEDURES
- RUNAWAY JET CONTROL PROCEDURES

DESIGN IMPLICATIONS

- DOCKING MODULE/TUNNEL ADAPTER/ PAYLOAD BAY INTERFACES
- PROVISIONS FOR 8 PASSENGERS
- ADDITIONAL LIGHTS

BENEFITS

LOGISTICS TRANSPORT—MINIMUM TURNAROUND

CONCLUSIONS—OTV

OPERATIONAL IMPLICATIONS

- DOCKING CONTROL FOR SERVICE FIXTURE MATING
- SERVICING UMBLICAL INTERFACES ARRANGEMENT

DESIGN IMPLICATIONS

- SUBSYSTEM MODULAR PACKAGE ARRANGEMENT
- STANDARD MATING INTERFACE
- PIDA INTERFACE

BENEFITS

4,

- SIMPLIFY SERVICING OPERATIONS
- SIMPLIFY MATING OPERATIONS

1.1

- ESTABLISH CONTROL ALGORITHMS FOR DETERMINATION OF OPERATIONAL FLIGHT ALTITUDES
- PERFORM SIMULATIONS TO VERIFY SOC ASSEMBLY OPERATIONS AND AIDS
- PERFORM REAL-TIME MAN-IN-THE-LOOP SIMULATIONS OF DOCKING AND BERTHING OPERATIONS
- DETERMINE THE FEASIBILITY/COMPLEXITY OF ELIMINATING SINGLE-POINT RUNAWAY JET FAILURE
- ASSESS PLUME AFFECTS TO SOC
- DETERMINE IMPLICATIONS OF RECOVERING UNUSED PROPELLANT FROM SHUTTLE EXTERNAL TANK
- FURTHER DEFINE FUEL TRANSFER SYSTEM
- DEFINE A PROPELLANT STORAGE TANK CONCEPT FOR SOC AND FOR ORBITER
- DETERMINE FLIGHT SUPPORT FLUIDS, TRANSFER, AND STORAGE CONCEPTS

DEVELOPMENT ITEMS

FURTHER DEVELOP FLIGHT SUPPORT FACILITY CONCEPT(S)

- FURTHER DEVELOP THE STANDARD MATING INTERFACE CONCEPT
- DEVELOP REMOTE ACTUATING UTILITIES CONNECTIONS
- DEVELOP DOCKING MODULE
- DEVELOP A HANDLING AND POSITIONING AID (HPA)
- DEVELOP THE PAYLOAD INSTALLATION AND DEPLOYMENT AID (PIDA)
- FURTHER DEVELOP SOC ASSEMBLY ALIGNMENT AIDS— TV CAMERA, TARGET, LIGHTS
- DEVELOP A MOBILE MANIPULATOR

DELIVERY PERFORMANCE COMPARISON

SOC LOGISTICS MODE OPTIONS

DELIVERY MODES COMPARISON

DIRECT DOCKING

RMS BERTHING

~	ORBITER CAPABILITY		
✓	PROXIMITY OPERATIONS	✓	
	RUNAWAY JET	✓	
✓	PLUME IMPINGEMENT		
✓	OPERATIONAL COMPLEXITY		
✓	DOCKING MECH DESIGN		

RECOMMEND DIRECT DOCKING FOR SOC BASELINE

RUNAWAY JET FAILURE

PROBLEM FACTORS

- CLOSING VELOCITY
- TRAJECTORY ACCURACY
- CREW RESPONSE
- DAP MODES

RUNAWAY Y JET

- FURTHER SIM ANAL REQD TO DEVELOP CREW PROCEDURES
- DESIGN SOC FOR JET FIRING WHILE DOCKED
- DESIGN SOC FOR HI-Z ABORT THRUST PLUMES

14

DESIGN SOC FOR HI-Z ABORT THRUSTING PLUME

CONTAMINATION FROM NORMAL RCS OPS SHOULD BE CONSIDERED

MOSTLY X & Y THRUSTING FOR NORMAL DOCKING

MIN IMPULSE CORRECTIONS

PLUME IMPINGEMENT GEOMETRY

SIMPLIFIED, CONSERVATIVE TECHNIQUE 2-D FLOW, AXISYMMETRIC FAR FIELD, MULTIPLE THRUSTERS = n x SINGLE THRUSTER

$$P_{n} = \begin{bmatrix} \frac{V_{L}}{R^{2}g} \times \frac{d\dot{m}}{d\Omega} \end{bmatrix} \sin^{2} B \qquad P_{T} = \begin{bmatrix} \frac{V_{L}}{R^{2}g} \times \frac{d\dot{m}}{d\Omega} \end{bmatrix} \sin B \cos B \qquad \dot{Q} = \begin{bmatrix} \frac{V_{L}}{2R^{2}Jg} \times \frac{d\dot{m}}{d\Omega} \end{bmatrix} \sin B \qquad B = FLOW \text{ INCIDENCE ANGLE}$$

RCS PLUME IMPINGEMENT SUMMARY

١,	·	٠.
----	---	----

1	MASS DEPOSITION	SOC IMPINGEMENT FORCES (16f)		SOC MOMENTS (16f-ft)			CONVECTIVE HEATING	
DESCRIPTION	RATE (Ibm/sec)	FX	Fγ	FZ	M _X	н _Y	H _Z	RATE (Btu/sec)
FWD RCS, 3 ENGINES (+Z DIRECTION)								
HABITABILITY MODULE NO. 1 LOGISTICS MODULE SERVICE MODULE NO. 1	3 146 0 272 0.266	981.1 59 7 41 2	0 -11 7 0	41 8 -60 6 -29 0	0 809.0 <u>0</u>	24,058.1 -508.2 -289.4	0 699.0 <u>0</u>	7730.0 637.7 609 9
TOTAL	3.684	1082 0	-11 7	-47 8	809.0	23,260.5	699.0	
AFT RCS, 6 ENGINES (+Z DIRECTION)								
PARKED PLANETARY VEHICLE SAM** R/CH MODULE	0 354 2 564 0 280	90 6 867 2 60 0	0 0 23 5	50 8 -70 2 <u>39 2</u>	0 0 1758 7	-5,185.7 -67,579.0 -3,255.6	0 0 <u>-747</u> 9	773 2 6540.6 569 8
TOTAL	3 198	1017 8	23 5	19 8	1758.7	-76,020 3	-747 9	
-Y THRUSTER, 1 ENGINE	ł				j			
SOLAR ARRAY (# 52° ANGLE) 4 3 m antenna (-y direction)	0 720 0 036	116 7 3.2	-171.4 -5.4	-45 1 -0 4	6018 4 123.2	-1957 3 55.2	19,554. I 220. 6	1659.8 45.9
RADIATORS (-Y DIRECTION)	0 009	2.3	-1.4	-0 5	35.1	20.3	79.0	20.6
TOTAL	0 765	122.2	-178 2	-46 0	6176.7	-1881 8	19,853.8	

*NOTES: (1) ONE ENGINE PRODUCES 870 1bf THRUST (2) MASS FLOW RATE OF ONE ENGINE—3.01 1bm/sec

(3) MASS FLUX CONTAINS APPROX 9% CO2, 17.5% CO, and 29 2% H2O

**ASSUMED THAT THE SAN WAS OPAQUE (INTERNAL PARTS STOWAGE)

PLUME PRESSURE CONTOURS FOR 9 Z-THRUSTERS FIRING

POTENTIAL FOR PLUME INDUCED CONTAMINATION

SOLAR ARRAY ≈ 1/3 STER

AVG MASS IMPINGEMENT
≈ 2 lb/sec-STER × 1/3 STER
≈ 0.7 lb/sec

TWO THRUSTERS, 80 MILLISEC $2 \times 0.08 \times 0.7 \approx 0.1$ lb/PULSE

DOCKING TRAJECTORY CONTROL

. . .

SAY 5 MINUTES PROX OPS PER DOCK 2 X & Y PULSES PER MINUTE

20 PULSES PER DOCK

25 DOCK PER YEAR

20 YEARS LIFE

 $\Sigma LB_{M} = (0.1) (20) (25) (20) = 1000 lb$

1.1

RMS BERTHING ORBITER TO SOC FEASIBLE BUT REQUIRES SOFTWARE MODS

- SPAR HI FI SIMULATIONS
- FLEXIBLE ARM DYNAMICS
- 7 SIM RUNS
 - 5 MOTION ARREST
 - 2 REPOSITION ORBITER
- NORMAL RMS MODES PRODUCE UNDAMPED OSCILLATIONS
- "MODIFIED MANUAL AUGMENTED MODE" PROVIDES STABLE CONTROL . . . FOR BOTH STOPPING & ARM MANEUVERING

SOC MASS PROPERTIES FOR BERTHING ANALYSIS

11

SOC CONFIGURATION

JSC BASELINE

NO CONSTRUCTION FIXTURE

NO OTV

NO PLANETARY VEHICLE

MASS (lb)	245,142	INERTIAL (SLUG/ft ²)
CG (in.)	$X_{SOC} = 526.68$	$I_{XX} = 10,041,413$
	$Y_{SOC} = 2.16$	$I_{YY} = 8,269,763$
	$Z_{SOC} = 44.28$	$I_{ZZ} = 10,047,094$
		$I_{XY} = +432,403$
		$I_{YZ} = -251,472$
		$I_{ZX} = -648,327$

ORBITER MASS PROPERTIES FOR BERTHING ANALYSIS

ORBITER WITH 65,000-LB PAYLOAD

MASS = 271,700 LB

C.G. (IN.)
$$X_O = 1129.5$$

 $Y_O = 0$
 $Z_O = 385.6$

١

INERTIAL (SLUG FT²)

ORBITER/SOC BERTHING GEOMETRY

11 RMS JOINT ANGLES, DEG SHOULDER YAW -108.1SHOULDER PITCH 93.9 **ELBOW PITCH** -46.1 WRIST PITCH -68.2 WRIST YAW -17.5 WRIST ROLL 25.7 SEPARATION DISTANCE 298 in. (24.8 ft) 222233)]]]]]

RMS BERTHING RESULTS SUMMARY

RUN	CASE CONDITIONS	SUMMARY RESULTS
1	•ARREST INITIAL MOTION (.1 ft/sec, .025°/sec) MOTION IN THE ARM PLANE •MAM/CONTROLLERS IN NEUTRAL (I.E., ZERO RATE COMMANDS)	PHM AUTOMATICALLY ENGAGED FEW SECONDS AFTER "RIGIDIZATION" MARGINAL STABILITY NO APPRECIABLE DAMPING (800 sec) SOC CENTRE OF MASS PEAK TO PEAK EXCURSIONS 1 5 ft
2	• SAME AS ABOVE WITH INITIAL MOTION PERPENDICULAR TO THE ARM PLANE	• UNDAMPED OSCILLATION
3	•ARREST INITIAL MOTION (.1 ft/sec, .025°/sec) MOTION IN THE ARM PLANE • MODIFIED MAM/CONTROLLERS IN NEUTRAL	STABLE CONTROL EXHIBITED, AFTER 400 SECONDS SOC CENTRE OF MASS PEAK TO PEAK EXCURSION WITHIN 1 INCH SOC ATTITUDE EXCURSION WITHIN 0.2 DEG RELATIVELY HIGH LOADS FOR SHORT PERIOD IMMEDIATELY AFTER RIGIDIZATION; LEVELS ACCEPTABLE
4	• SAME AS ABOVE WITH SOC INERTIA 10 ⁷ HIGHER THAN BASELINE; SIMULATE "STOPPING PHASE" WITH SOC ACS ACTIVE	HIGHER FREQUENCIES ARE EXHIBITED AND SLIGHTLY HIGHER LOADS, BUT STILL WITHIN ACCEPTABLE LEVELS
5	MANEUVER SOC WITH MODIFIED MAM INITIAL CONDITIONS FROM END OF RUN 3 COMMAND TOWARDS "PREBERTH" POSITION/ORIENTATION	SUITABLE STRATEGY FOR MANEUVERING THE SOC
6	USING SLIGHTLY MODIFIED OCAS MODE	OCAS QUITE SUITABLE FOR MANEUVERING THE SOC OCAS NOT SUITABLE FOR STABILIZING THE SOC; MARGINAL STABILITY IS EXHIBITED NEAR THE "PREBERTH" POSITION
7	ARREST HIGH ANGULAR MOTION (052 ft/sec, .1732º/sec) MODIFIED MAM/CONTROLLERS IN NEUTRAL	MODIFIED MAM CONFIRMED AS THE STRATEGY FOR STOPPING AND/OR STABILIZING THE SOC

Rockwell International

BERTHING ANALYSIS CONCLUSIONS

• RMS BERTHING APPEARS FEASIBLE

- STOPPING DISTANCE & ANGLES WITHIN 18 INCHES & 5 DEGREES
- HIGH RESIDUAL MOTIONS INVESTIGATED
- NO DANGER OF CONTACT
- MINOR SOFTWARE MODS REQUIRED
 - CAN ARREST RESIDUAL MOTION W/CURRENT SOFTWARE
 - CANNOT MANEUVER & STABILIZE TO MATE BERTHING PORTS
- FURTHER SIM ANALYSIS REQUIRED
 - CHECK SOC/ORBITER BODY FLEXIBILITY EFFECTS
 - EXPLORE CONTROL GAINS FOR AUTO POSITIONING MODE

DOCKING MODULE CONCEPT

DOCKING MODULE CHARACTERISTICS

SOC ASSEMBLY

SOC CAN BE ASSEMBLED WITH ORBITER PROVISIONS IN DEVELOPMENT OR PLANNED

1.4

RCS SUPPLEMENT REQUIRED FOR SOC BUILDUP

SOC-GDC BASELINE REFUEL SCHEMATIC

NOTE: LO2 TRANSFER SYSTEM SAME AS LH2 EXCEPT NO CHILLDOWN VENTING

BASELINE CRYO PROPELLANT LOSS MODEL (MOTV/SOC/ORBITER)

POTENTIAL PROPELLANT TRANSFER IMPROVEMENTS

OTV PROPELLANT STORAGE ON SOC IS RECOMMENDED

- ALLOWS ET SCAVANGING
- ELIMINATES "ROUND OFF" FLIGHTS
- YIELDS UNCOUPLED LOGISTICS OPS
- EASES FLEET MANAGEMENT
- IMPROVES SHUTTLE UTILIZATION
 KEEP SHUTTLE FULL
- PROVIDES RAPID MISSION RESPONSE
 CAPABILITY
- WIDENS OTV DESIGN OPTIONS SPACE BASING RESCUE

REFRIGERATION IS FEASIBLE

1.1

	ACCU	RACY		DEVELOPMENT	DEVELOPMENT		MISSION	FLUID	RATING
CONCEPT	1-G	0-G	RELIABILITY	STATUS	RISK	SAFETY	OPERATIONS	COMPATIBILITY	(0-10)
PVT	(FULL/ EMPTY) 0.5/3.0	(FULL/ EMPTY) 0.5/3.0	GOOD	OPERATIONAL	LOW	EXCELLENT	POOR	NO CRYO	N/A
NUCLEAR	1.0/2.ó	1.5/3.0	POOR	FIELD DEMO	MODERATE	FAIR	GOOD	ок	2
RF	2.0/2.0	2.0/3.0	GOOD	LAB DEMO	MODERATE	GOOD	GOOD	ок	4
ACOUSTIC RESONANCE	0.5/3.0	0.5/3.0	GOOD	LAB DEMO	LOW	EXCELLENT	GOOD	ок	①
ULLAGE COMPLIANCE	0.5/3.0	0.5/3 0	GOOD	LAB DEMO	LOW	EXCELLENT	FAIR	ок	6
CAPACITANCE	0.5/0.5	2.0/3.0	POOR	OPERATIONAL	LOW	GOOD	GOOD	ок	2
FIBER OPTICS (POINT SENSOR)	0.5/0.5	N/A	G000	LAB DEMO	LOW	EXCELLENT	GOOD	ОК	•

^{*}POINT SENSORS RECOMMENDED FOR OTV FOR ACCURATE GAGING & MIXTURE RATIO CONTROL AT END OF BURN

ZERO-C CRYOGENIC TANK GAUGING AND PROPELLANT POSITIONING SYSTEM

NOTE: GYROSCOPE FORCES NEGLIGIBLE

SOC HYDRAZINE RESUPPLY CONCEPT

CANDIDATE HYDRAZINE TRANSFER METHODS

- SIMPLE OPERATIONS
- REQ ADDED LINES & EQUIP ON SOC
- REQ DEDICATED ORBITER BAY INSTALLATION

- ELIM FIXED BAY LOCATION
- COMPLEX OPERATIONS
- POTENTIAL RETURN
 OF LARGE UNUSED
 FLUIDS

- ELIM BAY INSTALLATION
 & UNUSED FLUIDS
 PROBLEM
- REQ ADDED SOC LINES
 & EQUIP
- OPERATIONAL COMPLEXITY BETWEEN OPTIONS 1 & 2

- PROBABLY ELIM OPTION 1, AVOID MANIFEST CONSTRAINTS
- MORE WORK NEEDED ON FLUIDS USAGE, VARIABILITY, ETC

MISSION CHARACTERISTICS, SOC-DESTINED SHUTTLE FLIGHTS

_	DI	Δ٨	IFT A	DV	Ω.	111	NIA D	ΛΛ	1221	IONS
•	۲L	Αľ	NE 1 /	KK T	Ç.	LU	NAK	IV	122	LUND

1

- GEOSTATIONARY PLATFORM DEL & SERVICE INCL GEO RADAR
- GEOSTATIONARY SPACE STATION (MANNED) DELIVERY & SERVICE MISSIONS
- DEPT. OF DEFENSE MISSIONS
- MISC. MULTIPLE PAYLOADS
- DEBRIS REMOVAL (GEO & OTHER ORBITS
- LARGE, SPECIAL PAYLOADS DELIVERY & DEPLOYMENT

!						YE	AR O	F FL	GHT	•				
1007														
				,	NUM	BER	OF F	LIGH	ITS					
	1	1		1	1	1	1	2	1	1		1	<u> </u>	
1	1		1	1	3	6	5	8	8	11	7	4	5	
	:								5	4	4	4	5	
2	3	4	4	6	5	5	5	2	5	5	4	7	6	
2	1		2		1		1		1	1	1		1	
					1	2	2	5	2	1		[]		
					1	2	2	5	2	1				

MASS SUMMARY

TRAFFIC MODEL, SOC-DESTINED ORBITERS STANDARD SHUTTLE

DEDICATED ORBITER EQUIPMENT USAGE

4		TYPE OF			
STD EQUIPMENT ITEMS	SOC RESUPPLY LM	FLIGHT SUPT FACIL LOGISTICS	CONSTR PROJ LOGISTICS	FUEL TANKER	WEIGHT (LB)
DOCKING MODULE	Х	Х	х	×	3900
PIDA (2)	×	×	×		400
HPA (1)	×	×	×		350
SCAVENGE PLUMBING	×	×	×	x	200
SCAVENGE TANK SET	×	×	?	?	800
TANK (TANKER FLTS)) x	7500
RMS	×	×	×	!	1000
PASSENGER SEATS	X				300
SLEEP STATIONS	*	*	*	*	130
3RD CRYO TANK SET	*	*	*	*	1500
△ CAMERAS & LIGHTS	х	×	×	×	MINOR WT ITEMS
STD AIRLOCK (REQ DM REV)	*	*	*	*	950
ELECTRICAL HARNESS	*	*	*	*	(TBD)
AFD & CREW HAB EQ	*	*	*	*	(TBD)

^{*}CANDIDATE FOR WEIGHT SAVINGS

TASK 5 FLIGHT SUPPORT FACILITY

TASK 5 OBJECTIVES

- DETERMINE IMPLICATIONS TO SOC FOR SUPPORTING SPACECRAFT ASSOCIATED ACTIVITIES
 - LAUNCH

1.1

- ASSEMBLY
- SERVICING
- RECOVERY
- DETERMINE UNIQUE REQUIREMENTS IMPOSED ON SPACECRAFT TO PERMIT THESE SPACE-BASED ACTIVITIES
- DETERMINE IMPLICATIONS ON SHUTTLE FOR SUPPORTING THE SAME ACTIVITIES

DEVELOP FLIGHT SUPPORT FACILITY ARRANGEMENT

APPROACH

- SPACECRAFT SERVICING PHILOSOPHY
- ARRANGEMENT DEVELOPMENT
- IMPLICATIONS
 - SOC
 - SPACECRAFT
 - SHUTTLE

SPACECRAFT SERVICING PHILOSOPHY

- SPACECRAFT SERVICING ISSUES
- EVA AND/OR REMOTE MANIPULATOR OPERATIONS
- FACILITY GROWTH ISSUES

SPACECRAFT SERVICING ISSUES

DEVELOP VERSATILE MULTIPLE SERVICING FUNCTIONS CAPABILITY

ISSUES	CONSIDERATIONS
MAINTENANCE/SERVICING	SCHEDULED MAINTENANCEUNSCHEDULED MAINTENANCE
• LEVELS OF REPLACEABLE ITEMS	LRU COMPONENTSSUBSYSTEM ASSEMBLIES
• WAREHOUSING	SPARE PARTS, TOOLS, ETC.SPECIAL EQUIPMENT
• STORAGE (GROWTH CAPABILITY)	CREW MODULESOTV ELEMENTSPROPELLANT
• OPERATIONS	EVAMANIPULATOR

SOC MAINTENANCE/SERVICING OPERATIONS CYCLE

EVA AND/OR MANIPULATOR OPERATIONS

· · · ·

- MAN/MACHINE CAPABILITIES
- FUNCTION ALLOCATION CONCERNS
- APPLIED METHODS SELECTION PROCESS FOR LSS CONSTRUCTION
- GUIDELINES FOR MAN/MACHINE FUNCTIONAL ALLOCATION

MAN/MACHINE CAPABILITIES

HUMAN SUPERIORITY	MACHINE SUPERIORITY				
• ORIGINALITY	• PRECISE, REPETITIVE				
• RAPID REPROGRAMMING	• MINIMUM REACTION LAG				
• IMPENDING FAILURE RECOGNITION	DATA STORAGE AND RECALLSENSITIVE TO STIMULIMONITORING FUNCTIONS				
•SIGNAL DETECTION					
OVERLOAD OPERATIONS	• EXERTING LARGE AMOUNTS OF				
LOGICAL DESCRIPTION OF EVENTS	• DEDUCTIVE REASONING				
• INDUCTIVE REASONING					
HANDLING CONTINGENCIES					
• UTILIZING EQUIPMENT BEYOND LIMITS					

ALLOCATION CONSIDERATIONS

- TIME CONSTRAINTS & WORK RATES
- ACCURACY & DEXTERITY
- MASS & SIZE
- REACH & TRAVEL DISTANCES
- PHYSICAL & FUNCTIONAL INTERFACE REQUIREMENTS
- RELIABILITY, SAFETY, & CONTINGENCIES
- ENVIRONMENTAL CONSTRAINTS
- HUMAN & COST FACTORS

METHODS SELECTION PROCESS FOR LSS CONSTRUCTION

EXAMPLES OF GUIDELINES FOR MAN/MACHINE FUNCTIONAL ALLOCATIONS

GUIDELINES	RATIONALE	IMPLEMENTATION						
TRANSPORT OF LARGE MASSES								
• USE OF MANIPULATOR EXCEPT FOR COMPLEX AND CRITICAL CLEARANCES	• HIGHER TRANSPORT RATE	MOBILE MANIPULATOR ON SF RCM RMS						
• USE EVA/CHERRY PICKER FOR COMPLEX AND CRITICAL CLEARANCES	 DEPTH PERCEPTION WIDE VISION RANGE MONITORING DURING TRANSPORT 	• EVA/CHERRY PICKER MOUNTED ON MANIPULATOR						
	WORK STATION OPERATIONS							
• USE EVA FOR - DEXTEROUS OPERATIONS - INSPECTION	• DEMONSTRATED CAPABILITY • LOW DEVELOPMENT COST	• EVA/CHERRY PICKER MOUNTED ON MANIPULATOR						
• USE MANIPULATOR FOR REMOVAL/REPLACEMENT OF LRU'S	• MINIMIZES EVA • CAN BE DESIGNED FOR REMOTE HANDLING OPERATIONS	•MOBILE MANIPULATORS ON SF FOR OTV						

FACILITY GROWTH ISSUES

- SINGLE-STAGE OTV
- MULTI-STAGE OTV
- MANNED OTV
- CREW MODULE STORAGE
- FUEL STORAGE

SERVICING PHILOSOPHY SUMMARY

- MODELED AFTER AIRLINE PRACTICES
 - SCHEDULED & UNSCHEDULED MAINTENANCE SERVICING CAPABILITY
 - REPLACEMENTS ONLY WHEN NECESSARY
- MINIMIZE EVA OPERATIONS

14

- INCORPORATE WAREHOUSING FACILITIES
- PROVIDE DEDICATED MAINTENANCE POSITIONS
- PERMIT MULTI-SPACECRAFT SERVICING OPERATIONS
- INCLUDE GROWTH PROVISIONS

SERVICING FIXTURE (SF) ARRANGEMENT DEVELOPMENT

- CRITERIA AND REQUIREMENTS
- CONFIGURATION DEVELOPMENT
- ARRANGEMENT DESCRIPTION

 $\mathbf{F}_{\mathbf{k}}^{i}$

FLIGHT SUPPORT FACILITY ARRANGEMENT CRITERIA

- ACCOMMODATE BOTH TANDEM & PARALLEL TANK / STAGING OTV CONCEPTS
- MINIMIZE CONFIGURATION-INDUCED FORCES ON SOC CONTROL (DRAG, ASSYMETRY, ETC.)
- PROVIDE SERVICING FACILITIES FOR OTVS, PLANETARY VEHICLES, & SATELLITES
- PROVIDE FUEL STORAGE FACILITY (GROWTH)
- PROVIDE SERVICING CONTROL CENTER
- MAINTAIN ORBITER CLEARANCE FOR BOTH A ONE-ORBITER ARRANGEMENT & A TWO-ORBITER ARRANGEMENT
- PROVIDE RCM ACCESS & VISIBILITY TO SERVICING VEHICLES
- PROVIDE DEDICATED PORTS FOR:
 - OTV CREW MODULE
 - LOGISTICS MODULE / CRADLE
 - MOTV

١

OTV/MOTV MODEL CHARACTERISTICS

- UNMANNED OTV MISSIONS WILL OUTNUMBER MANNED MISSIONS BY 3 TO 1
- SOC STOWAGE PROVISIONS FOR MOTY CREW MODULE
- TWO-PERSON MOTY CREW COMPLEMENT
- NO AIRLOCK IN MOTY CREW MODULE
- MOTV TURNAROUND OPERATIONS WILL INCLUDE AN EVA "WALK-AROUND" INSPECTION
- MOTV/OTV RETURN TO EARTH AFTER 8 MISSIONS FOR MAJOR GROUND OVERHAUL
- MOTV/OTV WILL HAVE SELF-DIAGNOSTIC CAPABILITY WITH BUILT-IN COMPUTER SWITCHING TO REDUNDANT UNITS
- CONSIDER TANDEM AND PARALLEL TANKING/STAGING ARRANGEMENTS FOR SERVICING AT THE SOC

PARALLEL TANKS OTV/MOTV CONFIGURATION

?

TANDEM TANKS OTV/MOTV CONFIGURATION

MOTY TURNAROUND FLOW CHART

ŧ,

SERVICING ACTIVITY DATA SHEET SCOPE

- PREPARED ONLY FOR CRITICAL FUNCTIONS
- EMPHASIS ON FEATURES SIGNIFICANT TO SERVICING ACTIVITY

CONFIGURATION DEVELOPMENT

11

• ORBITER VERTICAL FIN INTERFERENCE

- ORBITER 1 VERTICAL FIN INTERFERENCE WITH ORBITER 2 RADIATOR
- CLEARANCE BETWEEN ORBITERS
- INCREASED DRAG

SOC PRESSURE VOLUMES

- 1

• CONTROLS & MONITORS ALL FLIGHT SUPPORT FACILITY FUNCTIONS

• SERVES AS BACKUP FOR SOC CONTROL

INITIAL FLIGHT SUPPORT FACILITY CONFIGURATION

SERVICE FIXTURE ARRANGEMENTS

SF TRANSLATION RAIL SYSTEM AND HANDLING BOOM REACH CAPABILITY

TRANSLATION RAIL SYSTEM WITH PIDA SUPPORTS

OTV REFUELING CONCEPT

SF STOWAGE PROVISIONS

MULTI-MISSION SPACECRAFT SUBSYSTEM MODULE

SF PACKAGING CONCEPT

FLIGHT SUPPORT FACILITY -- GROWTH CONFIGURATION

GROWTH PROVISIONS

FLIGHT SUPPORT FACILITY OPERATION

SPACE-BASED OTV SERVICING PROVISIONS

- STANDARD BERTHING PORT AT FORWARD END
- TWO PIDA ATTACH PROVISIONS ON BODY
- GRAPPLE FITTINGS TO ACCOMMODATE RMS
- EXTERNALLY MOUNTED SUBSYSTEM PACKAGES (LRU)
- ELECTRICAL UMBILICAL INTERFACE
- PROPELLANT FILL INTERFACE

OTV/MOTV IN ORBIT ASSEMBLY FROM ORBITER

TASK 5 CONCLUSIONS

- SERVICING PHILOSOPHY BASED ON AIRLINE OPERATIONS IS FEASIBLE
- IMPACT OF SPACECRAFT SERVICING CAPABILITY ON SOC IS A FLIGHT SUPPORT FACILITY THAT
 - PERFORMS MAJOR ASSEMBLY, MAINTENANCE, AND SERVICING OPERATIONS
 - INCLUDES A DEDICATED CONTROL CENTER (BACK-UP SOC CONTROL)
 - SERVICES MORE THAN ONE SPACECRAFT SIMULTANEOUSLY
 - PROVIDES FOR GROWTH CAPABILITY

11

- SPACECRAFT PROVISIONS TO PERMIT IN-SPACE SERVICING ARE NOMINAL AND FEASIBLE
- SHUTTLE PROVISIONS TO PERMIT IN-SPACE SERVICING ARE MINIMAL

٠,

CONCLUSION

- COMPLETED ANALYSIS OF THE FIVE TASKS
- IDENTIFIED A VARIABLE ALTITUDE STRATEGY FOR SOC OPERATIONS
- IDENTIFIED THE OPERATIONS NECESSARY TO DOCK OR TO BERTH SHUTTLE TO SOC
- DETERMINED PRELIMINARY REQUIREMENTS FOR A STANDARD MATING INTERFACE AND DOCKING MODULE
- IDENTIFIED EQUIPMENT REQUIRED FOR SOC BUILDUP IN ANY SEQUENCE
- IDENTIFIED PROPELLANT TRANSFER CONCEPTS AND PROPELLANT STORAGE BENEFITS
- IDENTIFIED A SPACECRAFT SERVICING CONCEPT
- DETERMINED A FLIGHT SUPPORT FACILITY CONCEPT FOR EARLY SOC OPERATIONS WITH GROWTH CAPABILITY
- IDENTIFIED IMPLICATIONS TO THE SOC, SHUTTLE, AND OTV

