202303150303

Type: #Note

Tags: Lambda Calculus

Lambda Calculus Evaluation Rules

β -reductions

The only rule that is really required to evaluate any Lambda Expression is β -reduction, which is related to the second rule of the lambda calculus syntax which is

2. $(\lambda x.\,M)$ - abstraction, here the variable x will be bound in the definition of M

 β -reduction is the rewriting of a lambda expression when one of the from $\lambda x.\,M$ is applied to another lambda term N. We replace all instances of x bound with the parameter with N which can also be written as

$$(\lambda x.\,M)N \longmapsto M[x:=N]$$

Left part of the equation $(\lambda x. M)N$ is called a Redex (Reducible Expression). While the right part of the equation M[x:=N] is called the Contractum (Contracted Term?? I think??).

An example of this can be:

$$(\lambda xy.\, xy)z \longmapsto (\lambda y.\, xy)[x:=z] \longmapsto (\lambda y.\, zy)$$

When no more β -reductions can be performed, then the lambda term is said to be in a β -normal form.

α -conversion

There is one slight problem with β -reductions, that of variable collision, which can be easily fixed using α -conversions.

lpha-conversions are just formal change of variables in a lambda expression, like

$$\lambda ab. ab \equiv_{\alpha} \lambda cb. cb$$

There two lamba term are considered to be intrinsionally equivalent. The following example will show the problem with β -reduction. It is renaming a *binding variable* and all variables *bound* to it. (see Lambda Calculus Syntax > ^BindingsOfVariables)

Let
$$N = (\lambda xy. xy)$$
 and $M = Ny$

In this case, applying a beta reduction would result in the expression $M=\lambda y.\,yy$ which is not desired,

The desired goal was, that N would take 2 inputs, and apply the first one on the second one, but the following lambda expression would ignore the first input provided by M and just take one input, applying it to itself.

This can be fixed in the follwing way

let $N=(\lambda xz.\,xz)$, which is an α -conversion of the inner lambda term, replacing y with z and now the λ expression M evaluates to $(\lambda z.\,yz)$, which was the desired result.

η -reduction

 η —reduction is a method to simplify a lambda expression by eliminating redundent inputs and modifying the defintion such that the function.

 $\lambda x.\,N\,\,x\longmapsto N$ is the simplest example of $\eta-$ reduction an example of a slightly more complex $\eta-$ reduction would be

$$\lambda mnfx. \ (n\ m(\lambda x.\ fx))\ x \longmapsto \lambda mnf. \ n\ m\ (\lambda x.\ fx) \ \longmapsto \lambda mnf. \ n\ m\ f \ \longmapsto \lambda mn. \ n\ m$$

References

Lambda Calculus Syntax