Features for Emotion Recognition

- a comparative study of feature selection methods

Ву	Andreas De Lille
Supervisors	prof. dr. ir. Joni Dambre dr. ir. Pieter Van Mierlo
Counsellor	ir. Thibault Verhoeven

Content

- Basic concepts
 - Emotion
 - valence/arousal
 - Emotion recognition with machine learning
- Features
 - EEG
 - non-EEG
- Problem Statement
- Goals
- Solution
- Results
- Next steps

Emotion

Expression

Physiological

Emotion in the brain

Emotion Classification

Emotion recognition using ML

IN: physiological signals

Machine learning

Extract Features

Out: valence/arousal

Content

- Basic concepts
 - Emotion
 - valence/arousal
 - Emotion recognition with machine learning
- Features
 - EEG
 - non-EEG
- Problem Statement
- Goals
- Solution
- Results
- Next steps

EEG

•	Delta	0 - 4
	Theta	4 - 8
\	Alpha	8 - 13
\	Beta	13-30
$ \setminus $	Gamma	30-50

Different channels

Different frequency bands

EEG features

Power of a specific channel

(A)symmetry features

- Left vs. Right
- Front vs.Back

Fractions of different wavebands

Non - EEG Features

Heart Rate

Respiration Rate

Galvanic Skin Response

Blood pressure)

Skin Temperature

Emotion recognition using ML - recap

IN: physiological signals

Machine learning

Extract Features

Out: valence/arousal

Content

- Basic concepts
 - Emotion
 - valence/arousal
 - Emotion recognition with machine learning
- Features
 - EEG
 - non-EEG
- Problem Statement
- Goals
- Solution
- Results
- Next steps

Problem: not all features are good features

Disagreement on Features

Personal Differences

Overfitting

Goal

Find good features
-> subject specific
-> cross-subject

EEG vs non-EEg vs All

Feature Selection: General Flow

IN: EEG and non-EEG features

OUT: Subset of features that can predict emotion

Feature Selection Methods

Solution

Results

Filter - Wrapper - Embedded

Results: non-EEG / EEG / ALL

All - EEG - non-EEG

Next steps

Stability of the feature selection methods

Find features that work for all persons

Questions

