Project Overview:

Goal: which factor among the 13 differences is the key or the most contributing factor to distinguish between different wines.

Dataset: Wine dataset, from UC Irvine Machine Learning Repository https://archive.ics.uci.edu/dataset/109/wine,

Data Processing:

How you loaded: I downloaded the file, convert it to csv file manually and read the csv in RUST

Cleaning: no data cleaning, since there is no missing value

Code Structure:

Key Function and Types:

Struct Wine: for basic wine type for data processing

fn mean_features: average function, takes in a wine struct and a feature name, return the average value of that feature's value of that type of wine

fn std_features: std function, takes in a wie struct and a feature name, return the standard deviation of that feature's value of that type of wine

Workflow:

Take the mean, std, and find the importance vector through (max mean - min mean)/mean std

Test:

```
(base) zyc@crc-dot1x-nat-10-239-75-211 project1 % cargo run
    Finished 'dev' profile [unoptimized + debuginfo] target(s) in 0.11s
     Running `target/debug/project1`
        alcohol average
  Class 1: 13.745
  Class 2: 12.279
  Class 3: 13.154
       _ alcohol standard deviation ___
  Class 1: 0.462
  Class 2: 0.538
  Class 3: 0.530
alcohol Score: 2.8739097
      __ malicacid average _____
  Class 1: 2.011
  Class 2: 1.933
  Class 3: 3.334
     ___ malicacid standard deviation _____
  Class 1: 0.689
```

Class 2: 1.016
Class 3: 1.088
malicacid Score: 1.5054389
ash average
Class 1: 2.456
Class 2: 2.245
Class 3: 2.437
ash standard deviation
Class 1: 0.227
Class 2: 0.315
Class 3: 0.185
ash Score: 0.8695098
alccalinity_of_ash average
Class 1: 17.037
Class 2: 20.238
Class 3: 21.417
alccalinity_of_ash standard deviation
Class 1: 2.546
Class 2: 3.350
Class 3: 2.258
alccalinity_of_ash Score: 1.6111999
magnesium average
Class 1: 106.339
Class 2: 94.549
Class 3: 99.312
magnesium standard deviation
Class 1: 10.499
Class 2: 16.753
Class 3: 10.890
magnesium Score: 0.92727745
total_phenol average
Class 1: 2.840
Class 2: 2.259
Class 3: 1.679
total_phenol standard deviation
Class 1: 0.339
Class 2: 0.545
Class 3: 0.357
total_phenol Score: 2.806958
flavanoids average
Class 1: 2.982
Class 2: 2.081
Class 3: 0.781
flavanoids standard deviation

Class 1: 0.397
Class 2: 0.706
Class 3: 0.294
flavanoids Score: 4.7273936
nonflavanoid_phenols average
Class 1: 0.290
Class 2: 0.364
Class 3: 0.447
nonflavanoid_phenols standard deviation
Class 1: 0.070
Class 2: 0.124
Class 3: 0.124
nonflavanoid_phenols Score: 1.485147
proanthocyanins average
Class 1: 1.899
Class 2: 1.630
Class 3: 1.154
proanthocyanins standard deviation
Class 1: 0.412
Class 2: 0.602
Class 3: 0.409
proanthocyanins Score: 1.5722569
color_intensity average
Class 1: 5.528
Class 2: 3.087
Class 3: 7.396
color_intensity standard deviation
Class 1: 1.239
Class 2: 0.925
Class 3: 2.311
color_intensity Score: 2.8894968
hue average
Class 1: 1.062
Class 2: 1.056
Class 3: 0.683
hue standard deviation
Class 1: 0.116
Class 2: 0.203
Class 3: 0.114
hue Score: 2.6229079
0D280_0D315_of_diluted_wines average
Class 1: 3.158
Class 2: 2.785
Class 3: 1.684

```
_ 0D280_0D315_of_diluted_wines standard deviation _____
  Class 1: 0.357
  Class 2: 0.497
  Class 3: 0.272
0D280_0D315_of_diluted_wines Score: 3.9286873
     ___ proline average __
  Class 1: 1115.712
  Class 2: 519.507
  Class 3: 629.896
     ____ proline standard deviation _____
  Class 1: 221.521
  Class 2: 157.211
  Class 3: 115.097
proline Score: 3.6219308
    (
        "alcohol",
        2.8739097,
    ),
    (
        "malicacid",
        1.5054389,
    ),
    (
        "ash",
        0.8695098,
    ),
    (
        "alccalinity_of_ash",
        1.6111999,
    ),
    (
        "magnesium",
        0.92727745,
    ),
    (
        "total_phenol",
        2.806958,
    ),
        "flavanoids",
        4.7273936,
    ),
```

```
"nonflavanoid_phenols",
         1.485147,
    ),
    (
         "proanthocyanins",
         1.5722569,
    ),
         "color_intensity",
        2.8894968,
    ),
         "hue",
         2.6229079,
    ),
    (
         "0D280_0D315_of_diluted_wines",
         3.9286873,
    ),
    (
         "proline",
        3.6219308,
    ),
]
(base) zyc@crc-dot1x-nat-10-239-75-211 project1 \%
```

Result:

We found out that, according to the importance score, Flavanoids, 0D280_0D315_of_diluted_wines, Proline are the first 3 contributor of classifying the three different type of wines accordingly.