

252R 기초 데이터 분석 및 실습

4. Mathematics (2)

October 1, 2025

정재준

Welcome To Industrial Engineering

Contents

252R 기초 데이터 분석 및 실습

- Intro
- Inner Product
- Orthogonality
- Projection
- Partial Derivatives & Gradient
- Taylor Expansion

Intro

Mathematics (2)

- 내적(inner product)과 직교(orthogonality) 개념을 이해하고, 벡터 간 유사도·길이·각도를 수치로 표현할 수 있다.
- 직교정규(orthonormal) 개념을 이해하고, Gram-Schmidt 과정을 통해 임의의 기저를 직교정규 기저로 변환할 수 있다.
- 투영(projection)의 정의와 공식을 유도하고, **부분공간으로의 투영을 최소제곱 및 선형회귀 문제와 연결** 지을 수 있다.
- 편미분(partial derivative)과 그래디언트(gradient)를 정의하고, 기하학적 의미(가장 빠른 증가 방향)를 이해할 수 있다.
- **테일러 전개(Taylor expansion)를 통해 다변수 함수를 국소적으로 근사하는 방법**을 이해하고, 이를 최적화 알고리즘(gradient descent, Newton's method)과 연결할 수 있다.

Inner Product

Mathematics (2)

Definition

$$oldsymbol{x} = (x_1, x_2, \dots, x_n), \quad oldsymbol{y} = (y_1, y_2, \dots, y_n)$$
 $oldsymbol{x}^ op oldsymbol{y} = \sum_{i=1}^n x_i y_i \,.$ $\|oldsymbol{x}\| = \sqrt{\langle x, x
angle}$

x = (1, 2, 3), y = (4, 5, 6).

 $\langle x, y \rangle = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32.$

Inner Product

Mathematics (2)

Geometrically...

$$\langle x,y\rangle = \|x\|\|y\|\cos\theta$$

$$\cos heta = rac{\langle x, y
angle}{\|x\| \|y\|}$$

Orthogonality

Mathematics (2)

Orthogonal And Orthonomal

space
$$V$$
 and a basis $\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ of V $\langle \boldsymbol{b}_i,\boldsymbol{b}_j\rangle=0$ for $i\neq j$ $\langle \boldsymbol{b}_i,\boldsymbol{b}_i\rangle=1$

For Square Matrix A

$$egin{aligned} oldsymbol{A}oldsymbol{A}^{ op} & = oldsymbol{I} = oldsymbol{A}^{ op}oldsymbol{A}, \ oldsymbol{A}oldsymbol{x}^{-1} & = oldsymbol{A}^{ op}oldsymbol{A}oldsymbol{x} = oldsymbol{A}oldsymbol{x})^{ op}(oldsymbol{A}oldsymbol{x}) = oldsymbol{x}^{ op}oldsymbol{A}^{ op}oldsymbol{A}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{T}oldsymbol{A}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{T}oldsymbol{A}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{T}oldsymbol{A}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{A}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} + oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} = oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} + oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x} + oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}oldsymbol{x}^{ op}ol$$

Projection

Mathematics (2)

Why?

- Approximation
- Expression
- Modeling

Definition

$$\operatorname{proj}_u(x) = \langle x, u
angle u$$

$$x=(3,4),\ u=rac{1}{\sqrt{2}}(1,1)$$

$$\text{proj}_u(x) = (3.5, 3.5).$$

Projection

Mathematics (2)

Find Closest Line of U to x

$$U = \operatorname{span}\{u_1, \ldots, u_k\} \subset \mathbb{R}^n$$
.

$$\min_{c} \|x - Uc\|^2$$
.

Find c* to minimize(argmin problem)

(a) Projection of $\boldsymbol{x} \in \mathbb{R}^2$ onto a subspace U with basis vector \boldsymbol{b} .

(b) Projection of a two-dimensional vector \boldsymbol{x} with $\|\boldsymbol{x}\| = 1$ onto a one-dimensional subspace spanned by \boldsymbol{b} .

$$m{x} = \sum_{m=1}^M \lambda_m m{b}_m + \sum_{j=1}^{D-M} \psi_j m{b}_j^\perp, \quad \lambda_m, \ \psi_j \in \mathbb{R}$$
 To Zero!

Projection

Mathematics (2)

Find Closest Line of U to x...

$$U = \mathrm{span}\{u_1,\ldots,u_k\} \subset \mathbb{R}^n$$
.

$$\min_{c} \|x - Uc\|^2$$
.

Find c* to minimize(argmin problem)

$$\phi(c) = \|x - Uc\|^2 = (x - Uc)^{\top}(x - Uc).$$

$$abla_c \phi(c) = -2U^ op(x-Uc) = 0$$

$$U^\top U c = U^\top x$$

$$c^\star = (U^ op U)^{-1} U^ op x$$

$$\operatorname{proj}_U(x) = P_U x, \quad P_U = U(U^ op U)^{-1} U^ op.$$

If Orthonormal?

$$P_U = UU^ op, \quad \operatorname{proj}_U(x) = \sum_{i=1}^k \langle x, u_i
angle u_i.$$

Gram-Schmidt Process

Mathematics (2)

Make Bases Orthonormal

Gram-Schmidt Process

Least Squares

Mathematics (2)

Regression = Projection!

For response y,
 Feature Matrix X,
 Parameter Set w

OLS Problem: $\min_{w} \|y - Xw\|^2$. $_{X^{\top}X\hat{w} = X^{\top}y}$.

Partial Derfferentiation

Mathematics (2)

Derivative...

$$\frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

But, How to Differentiate Multivariate Function?

- E.g. f(x,y,z,w)
 - Partial Derivate!
 - + Product, Sum, Chain Rule

$$rac{\partial f}{\partial x_i}(x_1,\ldots,x_n) = \lim_{h o 0} rac{f(x_1,\ldots,x_i+h,\ldots,x_n)-f(x_1,\ldots,x_n)}{h}$$

$$f(x,y)=x^2+xy+y^2$$

$$rac{\partial f}{\partial x}=2x+y,\quad rac{\partial f}{\partial y}=x+2y$$

Mathematics (2)

Definition

$$\nabla_{\boldsymbol{x}} f = \operatorname{grad} f = \frac{\mathrm{d}f}{\mathrm{d}\boldsymbol{x}} = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_1} & \frac{\partial f(\boldsymbol{x})}{\partial x_2} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

Geometrically...

$$f(x,y)=x^2+xy+y^2 \ rac{\partial f}{\partial x}=2x+y, \quad rac{\partial f}{\partial y}=x+2y \ .$$

$$D_u f(x) = \nabla f(x) \cdot u$$

Taylor Expansion

Mathematics (2)

Taylor Polynominal

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

 $f(x) \approx f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \cdots$

$$f(x)=e^x,\quad a=0$$
 $f(x)pprox 1+x+rac{x^2}{2}+rac{x^3}{6}+\cdots$

Taylor Expansion

Mathematics (2)

 $f:\mathbb{R}^n o\mathbb{R}$

For Multivariate Function

• Gradient Descent (1st)

$$f(x) \approx f(a) + \nabla f(a)^T (x - a)$$

Newton's Method (2nd)

$$f(x)pprox f(a)+
abla f(a)^T(x-a)+rac{1}{2}(x-a)^TH_f(a)(x-a)$$

$$f(x,y)=x^2+y^2,\quad a=(1,1)$$
 $abla f=(2x,2y) \quad \Rightarrow \quad
abla f(1,1)=(2,2)$

$$f(x,y)pprox f(1,1)+(2,2)\cdot ((x,y)-(1,1))$$
 $=2+2(x-1)+2(y-1)$

$$f(x,y)pprox 0+0+rac{1}{2}(x,y)egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}egin{bmatrix} x \ y \end{bmatrix}=x^2+y^2$$

QnA

References

252R 기초 데이터 분석 및 실습

- Mathematics for Machine Learning Book
- Tistory, Learn Again!
- Linear Algebra Book

감사합니다