

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β΄ ΛΥΚΕΙΟΥ

ΗΜΕΡΟΜΗΝΙΑ: 19/11/2023 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 2

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:.....

Θέμα Α (5Μ)

A1. Να δώσετε τον ορισμό του εσωτερικού γινομένου δύο μη μηδενικών διανυσμάτων $\vec{\alpha}$, $\vec{\beta}$. (0.5M)

A2. α) Να αποδείξετε ότι:
$$\vec{\alpha}^2 = |\vec{\alpha}|^2$$
. (1M)

β) Αν
$$\vec{\alpha} = (x_1, y_1)$$
 και $\vec{\beta} = (x_2, y_2)$, να αποδείξετε ότι: $\vec{\alpha} \cdot (\vec{\beta} + \vec{\gamma}) = \vec{\alpha} \cdot \vec{\beta} + \vec{\alpha} \cdot \vec{\gamma}$. (1M)

Α3. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ).

- 1. $\vec{\alpha} \uparrow \uparrow \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} |\vec{\alpha}| \cdot |\vec{\beta}| = 0$
- 2. Αν $\vec{\alpha} = (x_1, y_1)$ και $\vec{\beta} = (x_2, y_2)$, τότε $\vec{\alpha} \cdot \vec{\beta} = x_1 y_1 + x_2 y_2$
- 3. Αν $A(x_1,y_1)$, $B(x_2,y_2)$ και M(x,y) το μέσον του AB τότε $x_1+x_2=2x$ και $y_1+y_2=2y$
- 4. Αν $A(x_1, y_1)$, $B(x_2, y_2)$ τότε $(AB) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
- 5. Αν $\vec{\alpha} = (x, y)$, τότε $\vec{\alpha} || x'x \Leftrightarrow y = 0$

Θέμα Β (3Μ)

Σε καρτεσιανό επίπεδο Οχη δίνονται τα σημεία A(2,4), B(11,5), Γ (3,7) και ένα σημείο Δ , ώστε το \vec{AD} να είναι ίσο με το άθροισμα των \vec{AB} και $\vec{A\Gamma}$. Να υπολογίσεις τις συντεταγμένες:

B1. των διανυσμάτων
$$\vec{AB}$$
, $\vec{A\Gamma}$ (1M)

B2. του διανύσματος
$$\vec{A}$$
Δ (1M)

B3. του σημείου
$$\Delta$$
. (1M)

Θέμα Γ (4Μ)

Έστω τρία σημεία του επιπέδου A(1,2), B(κ,0), Γ (0,-κ). Αν ισχύει ότι: $|\vec{AB}+2\cdot\vec{B\Gamma}|=|\vec{A\Gamma}|$

Γ2. Για
$$\kappa = -\frac{3}{2}$$
, να αποδείξετε ότι τα σημεία A, B, Γ δεν είναι συνευθειακά (1M)

Θέμα Δ (4Μ)

Δίνεται τρίγωνο ABΓ και Δ, Ε σημεία εσωτερικά των πλευρών AB και AΓ αντίστοιχα τέτοια ώστε $\vec{AB} = \kappa \cdot \vec{A\Delta}$ και $\vec{A\Gamma} = \lambda \cdot \vec{AE}$, όπου κ και λ θετικοί πραγματικοί αριθμοί. Αν $\vec{AB} = \vec{\alpha}$ και $\vec{A\Gamma} = \vec{\beta}$, τότε:

$$\Delta 1$$
. Να εκφράσετε τα διανύσματα $\vec{\Delta E}$ και $\vec{B \Gamma}$ ως γραμμικό συνδυασμό των $\vec{\alpha}$ και $\vec{\beta}$. (2M)

$$\Delta$$
2. Αν κ=λ, να αποδείξετε ότι $\vec{B\Gamma} || \vec{\Delta E}|$ και $|\vec{B\Gamma}| = \kappa \cdot |\vec{\Delta E}|$. (1M)

Δ3. Αν κ=λ=2, να γράψετε τη σχέση που συνδέει τα διανύσματα $\vec{\Delta E}$ και $\vec{B\Gamma}$ να διατυπώσετε λεκτικά ποιό γνωστό θεώρημα της Ευκλείδειας Γεωμετρίας έχει αποδειχθεί (1M)

Θέμα Ε (4Μ)

Δίνονται τα διανύσματα $\vec{\alpha} = (x+1,2)$, $\vec{\beta} = (x,2x+1)$, $x \in R$.

- E1. Να δείξετε ότι τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ δεν είναι συγγραμμικά, για κάθε $x \in R$. (1M)
- E2. Για x=-3, να βρείτε τη γωνία που σχηματίζει το $\vec{\alpha}$ με τον άξονα x'x. (Δίνεται ότι εφ(135°) = -1) (1M)
- E3. Για x=-1, να γράψετε το διάνυσμα $\vec{\gamma} = 3\vec{i}$ ως γραμμικό συνδυασμό των $\vec{\alpha}$, $\vec{\beta}$. (1M)
- Ε4. Για x=-2, να βρείτε ένα διάνυσμα αντίρροπο του $\vec{\alpha}$ και να έχει μέτρο $\sqrt{10}$. (1M)

ΕΥΧΟΜΑΙ ΕΠΙΤΥΧΙΑ