

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter $heta_1$ and plotted its cost function to implement a gradient descent. Our formula for a single parameter was:

Repeat until convergence:

$$heta_1 := heta_1 - lpha rac{d}{d heta_1} J(heta_1)$$

Regardless of the slope's sign for $rac{d}{d heta_1}J(heta_1), heta_1$ eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of $heta_1$ increases and when it is positive, the value of θ_1 decreases.

On a side note, we should adjust our parameter lpha to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.

