In class, we wanted to show $x: C_*(*) \otimes C_*(*) \longrightarrow C_*(* \times *)$

induces an isomorphism on homology by a direct calculation of $H_*(C_*(*)\otimes C_*(*))$: 1,0,0,---

From (*(*) = 7 0 7 1 7 0 7 1 ...

From

We drew

Cq(*) \$ \$\frac{7}{2} \\
0 \rightarrow \frac{7}{2} \\
1 \rightarrow \frac{7}{2} \\
2 \rightarrow \frac{7}{2} \rightarrow \frac{7}{2} \\
2 \rightarrow \frac{7}{2} \rightarrow \frac{7}{2} \\
2 \rightarrow \frac{7}{2} \\
3 \rightarrow \frac{7}{2} \\
3 \rightarrow \frac{7}{2} \\
3 \rightarrow \f

According to the boundary formula for C*(*) (E)C*(*)

(we mislabeled some of the "inner" boundary maps).

Now, as examples, we calculate:

- in degree 1,

ber
$$\partial_1 = \langle x, y \rangle$$

in $\partial_2 = \langle x, y \rangle$
 $\int_{\alpha}^{\alpha} \int_{c}^{1}$

=> H1 = 0

- in degree 2,