Exercici 39. Calculeu totes les solucions de la congruència: $x^2 + 6x - 31 \equiv 0 \pmod{72}$.

Resolució: $x^2 + 6x - 31 \equiv 0 \pmod{72}$. Primer, veiem que 72 no és un nombre primer, però $\mathbb{Z}/72\mathbb{Z} \cong \mathbb{Z}/2^3\mathbb{Z} \times \mathbb{Z}/3^2\mathbb{Z}$, aixi que reescribim la equació com un sistema de congruències: $\begin{cases} x^2 + 6x - 31 \equiv 0 \pmod{2^3} \\ x^2 + 6x - 31 \equiv 0 \pmod{3^2} \end{cases}$ Ara tractarem cada cas per separat.

Usarem aquest algorisme, que és molt més pulit que la fòrmula quadràtica:

MÈTODE PER RESOLDRE CONGRUÈNCIES QUADRÀTIQUES

Per resoldre la congruència $ax^2 + bx + c \equiv 0 \pmod{p^n}$:

- (i) Multipliquem al congruència per $4a: 4a^2x^2 + 4abx + 4ac \equiv 0 \pmod{p^n}$
- (ii) Reescribim la expressió com $(2ax + b)^2 \equiv b^2 4ac \pmod{p^n}$
- (iii) Trobem les arrels de $b^2 4ac \pmod{p^n}$
- (iv) Per cada arrel r_i , resolem la congruència lineal $2ax + b \equiv r \pmod{p^n}$
- (v) Revisar si hi ha alguna solució que no funcioni.
 - primitive roots
 - solving quadratic congruences

Observació: Fem notar que l'algorisme que usarem és molt similar a la fòrmula quadràtica, però serà més fàcil buscar les arrels així. Usant la fòrmula quadràtica obtindriem els mateixos resultats.

```
(i) x^2 + 6x - 31 \equiv x^2 + 6x + 1 \equiv 0 \pmod{2^3}

Multipliquem per 4 la congruència: 4x^2 + (4)(6)x + 4 \equiv 0 \pmod{2^3}

Reescribim la congruència: (2x+6)^2 \equiv 6^2 - 4 \pmod{2^3}

Les arrels y^2 \equiv 6^2 - 4 \equiv 32 \equiv 0 \pmod{2^3} és una unica arrel r = 0.

Resolem la congruència lineal 2x + 6 \equiv 0 \pmod{2^3} \Longrightarrow x = 1 \ i \ x = 5. x_i = \{1, 5\}
```

(ii)
$$x^2 + 6x - 31 \equiv x^2 + 6x + 5 \equiv 0 \pmod{3^2}$$

Multipliquem per 4 la congruència: $4x^2 + (4)(6)x + (4)(5) \equiv 0 \pmod{3^2}$
Reescribim la congruència: $(2x+6)^2 \equiv 6^2 - (4)(5) \pmod{3^2}$
Les arrels $y^2 \equiv 6^2 - (4)(5) \equiv 7 \pmod{3^2}$ són $r_0 = 4$ i $r_1 = 5$.
Resolem la congruència lineal $2x + 6 \equiv r_0, r_1 \pmod{3^2} \Longrightarrow x = 8$ i $x = 4$. $y_i = \{8, 4\}$

Finalment, hem de resoldre 4 sistemes pel TXR: $r_k = \{x_i, y_j\}, i, j \in \{1, 2\}$

$$r_1 = \{1, 8\}$$
 $m = \{2^3, 3^2\}$ $x \equiv 17 \pmod{72}$
 $r_2 = \{1, 4\}$ $m = \{2^3, 3^2\}$ $x \equiv 49 \pmod{72}$
 $r_3 = \{5, 4\}$ $m = \{2^3, 3^2\}$ $x \equiv 13 \pmod{72}$

$$r_2 = \{1, 4\}$$
 $m = \{2^3, 3^2\}$ $x \equiv 49 \pmod{72}$

$$r_3 = \{5, 4\}$$
 $m = \{2^3, 3^2\}$ $x \equiv 13 \pmod{72}$

$$r_4 = \{5, 8\}$$
 $m = \{2^3, 3^2\}$ $x \equiv 53 \pmod{72}$

Aquest sistema té les arrels $x = \{13, 17, 49, 53\}.$