Rec'd PCT/PTO 02 MAY 2005 10/5335

JAPAN PATENT OFFICE

PCT/JP 03/15087

26.11.03

別紙添付の書類に記載されている事項は下記の出願書類<u>に記載されて</u>いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following appreation as AN 2004 with this Office.

WIPO PCT

出願年月日 Date of Application:

2002年11月26日

出 Application Number: 特願2002-343090

[ST. 10/C]:

[]P2002-343090]

出 Applicant(s):

人

三井化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN **COMPLIANCE WITH** RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月 7日

BEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

P0001584

【提出日】

平成14年11月26日

【あて先】

特許庁長官 殿

【国際特許分類】

G03G 9/087

【発明者】

【住所又は居所】

千葉県袖ヶ浦市長浦580番地32号三井化学株式会社

内

【氏名】

宇於崎 浩隆

【発明者】

【住所又は居所】

千葉県袖ヶ浦市長浦580番地32号三井化学株式会社

内

【氏名】

江村 祐二

【特許出願人】

【識別番号】

000005887

【住所又は居所】 東京都千代田区霞が関三丁目2番5号

【氏名又は名称】 三井化学株式会社

【代表者】

中西 宏幸

【手数料の表示】

【予納台帳番号】

005278

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 トナー用バインダー樹脂及び該樹脂を用いた静電荷現像用電子 写真トナー

【特許請求の範囲】

【請求項1】

少なくともポリエチレンテレフタレート (PET) および/またはポリブチレンテレフタレート (PBT) と多価カルボン酸と多価アルコールと水酸基および/またはカルボキシル基を有するワックス (B) とから得られるポリエステル樹脂 (A) と

ポリイソシアネート(C)

とから得られるウレタン変性ポリエステル樹脂(D)を含むトナー用バインダー 樹脂

【請求項2】

多価カルボン酸、多価アルコール由来の部位 100質量部に対し ワックス (B) 0.1~20質量部

の割合で得られる請求項1に記載のトナー用バインダー樹脂。

【請求項3】

テトラヒドロフラン (THF) 可溶分についてゲル・パーミエーションクロマトグラフィー (GPC) で評価したときに、 $Mw/Mnが4\sim100$ の分子量分布であることを特徴とする請求項1乃至2に記載のトナー用バインダー樹脂。

【請求項4】

テトラヒドロフラン (THF) 可溶分についてゲル・パーミエーションクロマトグラフィー (GPC) で評価したときに、ピーク分子量が1000~30000であり、且つガラス転移温度が40~75℃であることを特徴とする請求項1乃至3に記載のトナー用バインダー樹脂。

【請求項5】

請求項1乃至4記載のトナー用バインダー樹脂を含む静電荷現像用電子写真 トナー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、電子写真、静電印刷等において静電荷像を現像するために用いられる電子写真用トナーに関する。

[0002]

【従来の技術】

オフィスオートメーションの発展に伴い、電子写真法を利用した複写機やプリンターの需要は急激に増加しており、それらの性能に対する要求も高度化している。一般に、複写機やプリンターに於ける電子写真法は、光感光体上に静電気的潜像を形成し、ついで潜像を、トナーを用いて現像し、紙などの被定着シート上にトナー画像を転写した後、熱ロールで加熱圧着する方法(熱ロール定着方式)が行われている。この熱ロール定着方式においては、消費電力等の経済性の向上、複写速度の上昇、用紙等のカール防止等のため、より低温で定着可能な定着性の良好なトナーが要求されている。一方で、熱ロール定着方式においては、熱ロール表面とトナーが溶融状態で接触するため、トナーが熱ロール表面に付着転移し、次の被着シートにこれが再転移して汚す、所謂オフセット現象という問題が生じる。このオフセット現象を発生させないことも、重要なトナー性能への要求の一つである。さらには、複写機、プリンターの高速化に伴い、帯電部位の高性能化の要求も高まってきている。すなわちトナーに対し、より高度な耐久性が必要とされてきており、長期耐刷安定性が必要になりつつある。

[0003]

また、近年、人口の増加に伴いエネルギーの使用が拡大し資源の枯渇化に伴って、省資源・省エネルギー・資源のリサイクル等が叫ばれてきている。PETボトルについても、各自治体がリサイクルを行ない始めて、各種衣料や容器に利用され始めており、リサイクルPETの再利用の要望も高い。

[0004]

このような要求に対して、従来技術では、トナー用バインダー樹脂の分子量や 分子量分布を改良したもの等の提案がなされている。具体的には、結着樹脂を低 分子量化し、定着温度を低くしようとする試みがなされた。しかしながら、低分

子量化することにより融点は低下するが、同時に樹脂の凝集力も低下するため、 定着ロールへのオフセット現象が発生する。この問題を防ぐため、高分子量の樹 脂と低分子量の樹脂を混合使用して分子量分布を広くしたものを該バインダー樹 脂として用いる方法や、あるいは、さらにバインダー樹脂の高分子量部分を架橋 させたりすることなどが行われている。しかしながらこの方法においては、樹脂 の粘度が上昇してしまい、逆に、定着性を満足させることが困難となる。

[0005]

上記手法を用いたトナー用バインダー樹脂としては、一般に、スチレン-アク リル系樹脂(例えば、特公昭55-6895号公報(特許文献1)、特公昭63-32180号公報(特許文献2)、米国特許第5,084,368号明細書(特許 文献3)等)やポリエステル樹脂(例えば、特開昭61-284771号公報(特許文献4)、特開昭62-291668号公報(特許文献5)、特公平7-1 01318号公報(特許文献6)、米国特許第4,833,057号明細書(特 許文献7)等)やポリオール樹脂等(例えば、特開平11-189647号公報 (特許文献8)等)が主として用いていられている。

[0006]

しかしながら、これらの方法では、熱定着ロールからの熱量が十分に伝わり難 い高速複写機や小型複写機では十分な効果が得られていない。すなわち、オフセ ット現象を防止する目的で、重量平均分子量の高いものや、架橋を施したものを 使用すると樹脂の粘度が高くなり、定着性が悪化する。

[0007]

このような要求を達成するためにトナー中にパラフィンワックス、低分子量ポ リオレフィン等を離型剤として添加する方法がある。スチレン系の結着樹脂を使 用する場合には特開昭49-65232号公報(特許文献9)、特開昭50-28 8 4 0 号公報(特許文献 1 0) 、特開昭 5 0 - 8 1 3 4 2 号公報(特許文献 1 1)等の技術が開示されている。しかしながら、オフセット現象を改善する反面耐 ブロッキング性を悪化させたり、現像性が悪化したりしていた。さらに、ポリエ ステル樹脂の場合には、同上の離型剤を適用しても効果は少なく、使用量を多く すると現像剤の劣化が早いことも確認されている。

このように、充分な定着性、オフセット性を持ち、なおかつ、高画質の複写画像を提供することが可能な現像剤を提供するためには、上述の現像剤に十分な電子写真特性を付与する必要があり、現在までに、複写画像の高画質、高精細化を図るために、種々の手法が試みられてはいるものの、特に上述した欠点を全て改善することができる手段は現在までのところ得られていなかった。

【特許文献1】 特公昭55-6895号公報

【特許文献2】 特公昭63-32180号公報

【特許文献3】 米国特許第5,084,368号明細書

【特許文献4】 特開昭61-284771号公報

【特許文献5】 特開昭62-291668号公報

【特許文献6】 特公平7-101318号公報

【特許文献7】 米国特許第4,833,057号明細書

【特許文献8】 特開平11-189647号公報

【特許文献9】 特開昭49-65232号公報

【特許文献10】特開昭50-28840号公報

【特許文献11】特開昭50-81342号公報

[0009]

【発明が解決するための課題】

本発明は、従来からトナーに要望されている上記諸特性を満たす静電荷現像用 電子写真トナーを提供すべく為されたものである。

即ち、本発明の目的は、熱ロール定着方式においてオフセット防止液を塗布することなくオフセットが防止され、かつより低い定着温度で定着できる静電荷現像用電子写真トナーを提供することである。

本発明の他の目的は、帯電性、粉砕性に優れた静電荷現像用電子写真トナーを提供することである。

本発明の他の目的は、高温高湿あるいは低温低湿時においても、常に安定した高濃度の現像画像を得ることができる静電荷像現像用トナーを提供することである。

本発明の他の目的は、長期間安定した現像画像を形成することができる静電荷 像現像用トナーを提供することである。

本発明の他の目的は、優れた耐久性により $5~\mu$ m以下の微粉発生量を少量に抑えつつ、重量平均粒径を $1~0~\mu$ m以下にできる静電荷像現像用トナーを提供することである。

本発明の更に他の目的は、電子写真用トナーに用いられる新規樹脂を提供することである。

[0010]

【課題を解決するための手段】

本発明者等は、これらの課題を解決するために鋭意検討した結果、従来の技術では到達できなかった優れたトナー用バインダー樹脂を見出し、本発明を完成するに至った。

[0011]

即ち、本発明は、

(1) 少なくともポリエチレンテレフタレート (PET) および/またはポリブ チレンテレフタレート (PBT) と多価カルボン酸と多価アルコールと水酸基お よび/またはカルボキシル基を有するワックス (B) とから得られるポリエステ ル樹脂 (A) と

ポリイソシアネート(C)

とから得られるウレタン変性ポリエステル樹脂(D)を含むトナー用バインダー 樹脂

(2) 多価カルボン酸、多価アルコール由来の部位 100質量部に対し ワックス(B) 0.1~20質量部

の割合で得られるトナー用バインダー樹脂。

- (3) テトラヒドロフラン (THF) 可溶分についてゲル・パーミエーションクロマトグラフィー (GPC) で評価したときに、Mw/Mnが4~100の分子量分布であることを特徴とするトナー用バインダー樹脂。
- (4) テトラヒドロフラン (THF) 可溶分についてゲル・パーミエーションクロマトグラフィー (GPC) で評価したときに、ピーク分子量が1000~30

000であり、且つガラス転移温度が40~75℃であることを特徴とする請求 項1~4に記載のトナー用バインダー樹脂。

(5) 上記のトナー用バインダー樹脂を含む静電荷現像用電子写真トナーである

[0012]

【発明の実施の形態】

本発明のトナー用バインダー樹脂は、少なくともペTおよび/またはPBTと 多価カルボン酸と多価アルコールと水酸基および/またはカルボキシル基を有するワックス(B)とから得られるポリエステル樹脂(A)とポリイソシアネート (C)とから得られるウレタン変性ポリエステル樹脂(D)を含んでいる。以下、本発明のトナー用バインダー樹脂を構成する成分を詳細に説明する。

[0013]

(水酸基および/またはカルボキシル基を有するワックス(B))

本発明に用いられる水酸基および/またはカルボキシル基を有する低分子量ワックスとしては、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪族アミド類やセラミックワックス、ライスワックス、シュガーワックス、ウルシロウ、密鑞、カルナバワックス、キャンデリラワックス、モンタンワックス等の天然ワックス、フィッシャートロプシュワックス等の変性物が上げられる。この低分子量ワックスとしてとして市販のものを用いることができる。

[0014]

(ポリエステル樹脂(A))

本発明のポリエステル樹脂(A)は、少なくともPET、および/またはPB Tと多価カルボン酸、多価アルコール、水酸基および/またはカルボキシル基を有するワックス(B)とから、通常、重縮合反応で得られる。上記の多価カルボン酸、多価アルコールとしては、2価のカルボン酸、その酸無水物又はその低級アルキルエステルから選ばれる酸成分、ジオール、3価以上の多価アルコール成分が挙げられる。また、分子量を調整する目的でモノカルボン酸及び3価以上の

ポリカルボン酸を用いることもできる。

[0015]

ここで言う酸成分としては、具体的には例えばテレフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類、マレイン酸、フマル酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸、フタル酸、イソフタル酸、無水フタル酸などのベンゼンジカルボン酸類、これらジカルボン酸の無水物或いは低級アルキルエステルなどを挙げることができる。また、分子量を調整する目的でモノカルボン酸及び三価以上のポリカルボン酸を用いることもできる。モノカルボン酸で好ましいものとしては、オクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の脂肪族モノカルボン酸が挙げられ、分岐していても、不飽和基を有していてもよい。また、これら脂肪族モノカルボン酸は、ガラス転移点を下げる性質があるため、ガラス転移点調節のために用いることも出来る。ガラス転移点を維持する場合等は、安息香酸やナフタレンカルボン酸などの芳香族モノカルボン酸を用いてもよい。ポリカルボン酸としてはトリメリット酸、ピロメリット酸及びこれらの酸無水物などが挙げられる。

[0016]

また、アルコール成分としては、例えばエチレングリコール、1, 2-プロピレングリコール、1, 3-プロピレングリコール、1, 3-プチレングリコール、1, 3-プチレングリコール、1, 4-プチレングリコール、2, 3-ブタンジオール、ジエチレングリコール、1, 5-ペンタンジオール、トリエチレングリコール、ジプロピレングリコール、1, 5-ペンタンジオール、1, 6-ヘキサンジオール、ネオペンチルグリコール、2-エチルー1, 3-ヘキサンジオールなどのアルキルジオールや、水添ビスフェノールA、シクロヘキサンジメタノールなどの脂環式ジオール、ビスフェノールF、ビスフェノールS誘導体、例えばエチレンオキサイド、プロピレンオキサイドなどとビスフェノールF、ビスフェノールSとの反応物であるアルキレンオキサイドや、ビスヒドロキシエチルテレフタル酸やビスヒドロキシプロピルテレフタル酸、ビスヒドロキシブチルテレフタル酸などのジカルボン酸低級アルキルエステルである芳香族ジオールなどが挙げられる。また、ビスフェノールA・エチレンオキサイド

付加物、ビスフェノールA・プロピレンオキサイド付加物などのビスフェノール AアルキレンオキサイドなどのビスフェノールA誘導体が挙げられる。また、分 子量を調整する目的でモノアルコール及び三価以上のポリオールを用いることも できる。モノオールで好ましいものとしては、オクタノール、デカノール、ドデ カノール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコー ルなどの脂肪族モノアルコールなどが挙げられ、分岐していても、不飽和基を有 していてもよい。三価以上のポリオールとしては、グリセリン、2-メチルプロ パントリオール、トリメチロールプロパン、トリメチロールエタン、ソルビット 、ソルビタンなどが挙げられる。ポリイソシアネートで鎖伸長する際に十分に高 分子化させるために、少なくとも1種類以上の三価以上のポリオールを含有する ことが好ましい。この三価以上のポリオール成分は、通常全アルコール成分を基 進にして0.5モル%未満である場合にはポリインシアネートで鎖伸長した際に 高分子化しづらく、耐オフセット性や耐久性が不十分なものとなりがちであり、 また逆に20モル%を越えるとゲル化しやすくなり重縮合し難くなるため、0. 5~20モル%の量で用いることが好ましく、さらには2~20モル%がより好 ましい。

[0017]

本発明のポリエステル樹脂(A)には、PETおよび/またはPBTを用いる 。上記のPETやPBTは、分子量分布、組成、製造方法、使用する際の形態等 に制限されることはないが、重量平均分子量で30000~90000程度のも のである事が好ましい。また環境問題の面からはリサイクル品を用いることが好 ましい。リサイクル品は例えばフレーク状に加工した物が好適に用いられる。ま た、リサイクル品に制限されることはなく、工場より排出したオフスペックの繊 維クズやペレットを用いても良い。

[0018]

本発明のポリエステル樹脂(A)を得る際の重縮合反応は、窒素ガス等の不活 性ガス中での、例えば無溶剤下高温重縮合、溶液重縮合等の公知の方法により行 うことができる。反応に際しての上記の多価カルボン酸と多価アルコールの使用 割合は、前者のカルボキシル基に対する後者の水酸基の割合で0.7~1.4で

$[0\ 0\ 1\ 9\]$

PETおよび/またはPBTは、上記のアルコール存在下に解重合反応を施さ れた後に、残りの上記アルコールおよび酸成分、ワックス(B)を添加し、重縮 合反応を行う方法や、PET、PBTと上記アルコール、酸成分、ワックス(B)を一括で仕込み、解重合反応と重縮合反応を同時に行う方法を例示出来る。

[0020]

本発明においては、特にPETを用いることが好ましく、PET中のエチレン グリコール成分を含む全アルコール成分に対してPET中のエチレングリコール 成分が5~90モル%と少なくとも1種のジオール成分とからなるアルコール成 分と少なくとも1種以上の酸成分およびワックス(B)を重縮合して製造するこ とが好ましい。このとき、反応温度は200~270℃であることが好ましく、 更には220~260℃であることが好ましい。反応温度が200℃以下の場合 、PETの溶解性が悪化し反応時間が延びるため好ましくない。反応温度が 2 7 0℃以上の場合、原料の分解が激しくなるため好ましくない。

[0021]

本発明におけるワックス(B)の使用量は上記の多価カルボン酸、多価アルコ ール由来の部位100質量部に対し、0.1~20質量部が好ましく、特に、0 . 1~10質量部が好ましい。0. 1質量部未満では、低分子量ワックスの効果 がほとんど期待できず、20質量部を越えると、低分子量体ワックスの軟性分が 増加する為か、定着ロールあるいは感光体の汚れが激しくなり、好ましくない。 多価カルボン酸、多価アルコール由来の部位とは、PETおよび/またはPBT を構成するテレフタル酸由来の部位、エチレングリコール由来の部位、プチレン グリコール由来の部位は、それぞれ上記の多価カルボン酸と多価アルコールと見 なし、低分子量ワックスの使用割合が決定される。

[0022]

本発明において、上記のワックス(B)は、例えばポリエステル樹脂中のカルボキシル基や水酸基等と反応して骨格中に組み込まれると考えられる。従って、ポリエステル樹脂(A)は、ワックス(B)に由来する長鎖アルキル基を有すると考えられるため、後述する本発明のトナーの製造において、添加するワックス成分や他の添加剤の分散性が改良されるため、粉砕工程における生産性が向上する。

[0023]

(ポリイソシアネート(C))

本発明において使用されるポリイソシアネート(C)としては、例えばヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチレンジイソシアネート、ノルボルネンジイソシアネートなどのジイソシアネートなどが挙げられる。また、その他三価以上のポリイソシアネートを用いることも可能である。

[0024]

上記ポリイソシアネート(C)は、ポリエステル樹脂(A)の水酸基価1モル当量に対してイソシアネート基として0.2~2モル当量使用されることが好ましく、さらには0.5モル当量~1.5モル当量であることが好ましい。0.2モル当量未満であると耐ホットオフセット性の面で好ましくなく、2モル当量を超えると製造される樹脂中にポリイソシアネートが、モノマーのまま存在する可能性があり、安全性の面で好ましくない。

[0025]

(ウレタン変成ポリエステル (D))

本発明のウレタン変成ポリエステル(D)は上記の通り、少なくともポリエステル樹脂(A)とイソシアネート(C)とから得られる。

[0026]

本発明においては、ポリエステル樹脂(A)とポリイソシアネート(C)との 反応方法に特に制限はなく、通常の反応器で攪拌させながら行っても良く、押出 機中で溶融混練させながら反応させても良い。また、イソシアネート(C)存在

[0027]

押出機を使用した方法として、より詳細には、ポリエステル樹脂(A)を二軸 押出機に供給して混練し、更に混練搬送中の樹脂混合物にポリインシアネート(C)を注入して溶融混練する方法を挙げることが出来る。上記の方法での他の反 応器としては、単軸押出機、スタティックミキサー、プラストミル等を挙げるこ とが出来る。

[0028]

上記の反応温度の好ましい範囲は、100~200℃、更に好ましくは140 ℃以上であり、190℃以下である。100℃以下の場合、ウレタン伸長反応が 不充分となり耐オフセット性が悪化する場合があり、200℃以上の場合、樹脂 が熱により分解する場合がある。

[0029]

(トナー用バインダー樹脂)

本発明のトナー用バインダー樹脂は、上記のウレタン変成ポリエステル(D)を含んでいる。他に含まれていても良いものとしては、低温定着特性、耐オフセット性を更に改善出来るワックスが挙げられる。上記のワックスとして、ワックス(B)の他、ポリエチレン、ポリプロピレン、ポリプテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪族アミド類やセラミックワックス、ライスワックス、シュガーワックス、ウルシロウ、密鑞、カルナバワックス、キャンデリラワックス、モンタンワックス等の天然ワックス、フィッシャートロプシュワックス等の合成ワックス及びそれらの変性物が上げられる。上記ポリオレフィンワックスに相当するものの具体的商品名としては、三井化学社製ハイワックス800P、400P、200P、100P、720P、420P、320P、405MP、320MP、4051E、2203A、1140H、NL800、NP055、NP105、NP505、NP805等を例示することができる。上記ワックスの添加量は、トナー用樹脂組成物中に0~20質量%の範囲であることが好ましい。

ワックスを併用する方法としては、樹脂混合物の製造時、又は製造後、さら にはトナー組成物を製造する時点、いかなる段階でも用いることができる。

[0031]

前記樹脂とともに用いることのできる他の樹脂としては、従来静電荷像現像用 トナーのバインダー樹脂として公知のものであればいずれでもよく、例えば、ポ リスチレン、ポリーロークロルスチレン、ポリビニルトルエンなどのスチレン及 びその置換体の単重合体; スチレンー p ークロルスチレン共重合体、スチレンー ビニルトルエン共重合体、スチレン-ビニルナフタレン共重合体、スチレンーア クリル酸エステル共重合体、スチレンーメタクリル酸エステル共重合体、スチレ ンーαークロルメタクリル酸メチル共重合体、スチレンーアクリロニトリル共重 合体、スチレンービニルメチルエーテル共重合体、スチレンービニルエチルエー テル共重合体、スチレンービニルメチルケトン共重合体、スチレンープタジエン 共重合体、スチレンーイソプレン共重合体、スチレンーアクリロニトリルーイン デン共重合体などのスチレン系共重合体;ポリ塩化ビニール、フェノール樹脂、 天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタク リル樹脂、ポリ酢酸ビニール、シリコーン樹脂、上記樹脂以外のポリエステル樹 脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン 樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油系樹 脂、架橋されたスチレン系共重合体などの樹脂が挙げられる。但し、本発明の前 記樹脂の性能を発現させる範囲内での使用量であることは言うまでもない。

[0032]

本発明に用いられているトナー用バインダー樹脂のTgは40~70℃であることが好ましい。40℃未満ではトナーがブロッキングと呼ばれるトナー粒子の 凝集を起こすことがあり、70℃より高いと定着性が悪化する事がある。

[0033]

本発明に用いられているトナー用バインダー樹脂は、GPCで評価したときの M_W/M_n が、 $4\sim100$ であることが好ましく、 $6\sim60$ であるとより好ましい。4未満では耐オフセット性が不足する事がある。また、100より大きくな

ると、定着性が悪化する事がある。

[0034]

本発明に用いられているトナー用バインダー樹脂は、そのテトラヒドロフラン (THF) 可溶成分をGPCで評価したときのピーク分子量は1000~3000であることが好ましいが、1000~2000がより好ましく、更に好ましくは2000~15000である。1000未満では耐オフセット性や機械的耐久性が悪化し好ましくなく、30000より大きいと、定着性が悪化し、好ましくない。

[0035]

本発明に用いられているトナー用バインダー樹脂は、THF不溶分が、0~40質量%含まれていることが好ましい。40質量%より大きいと、定着性が悪化し、好ましくない。

[0036]

本発明に用いられているトナー用バインダー樹脂の密度は、 $1.20\sim1.2$ 7 (g/cm^3) であることが好ましい。1.20未満では機械的耐久性が悪化する事があり、1.27より大きいと粉砕性が悪化し生産性の面で好ましくない場合がある。

[0037]

(トナー)

本発明の静電荷現像用電子写真トナーは、上記のトナー用バインダー樹脂と荷電制御剤、着色剤、磁性体などとからなる。

[0038]

荷電制御剤としては、公知の荷電制御剤を単独でまたは併用して用いることができる。荷電制御剤は、トナーを所望する荷電量とするに必要な量であればよく、例えばトナー用バインダー樹脂100質量部に対して0.05~10質量部程度とするのが好ましい。正荷電制御剤としては、例えばニグロシン系染料、第4級アンモニウム塩系化合物、トリフェニルメタン系化合物、イミダゾール系化合物、ポリアミン樹脂などが挙げられる。また、負荷電制御剤としては、Cェ、Co、A1、Feなどの金属含有アゾ系染料、サリチル酸金属化合物、アルキルサ

リチル酸金属化合物、カーリックスアレーン化合物などが挙げられる。

[0039]

本発明の静電荷像現像用トナーにおいて用いることができる着色剤としては、 従来トナーの製造において用いられる公知の着色剤がいずれも使用可能であり、 これら着色剤の例としては、脂肪酸金属塩、種々のカーボンブラック、フタロシ アニン系、ローダミン系、キナクリドン系、トリアリルメタン系、アントラキノ ン系、アゾ系、ジアゾ系などの染顔料があげられる。着色剤は、単独で或いは2 種以上を同時に使用することができる。

[0040]

また、本発明の静電荷像現像用トナーにおいて用いることができる磁性体とし ては、従来磁性トナーの製造において使用されている強磁性の元素を含む合金、 化合物等何れのものであってもよい。これら磁性体の例としては、マグネタイト 、マグヘタイト、フェライト等の酸化鉄または二価金属と酸化鉄との化合物、鉄 、コバルト、ニッケルのような金属或いはこれらの金属のアルミニウム、コバル ト、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、 カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウ ムのような金属の合金、及びこれらの混合物があげられる。これらの磁性体は、 平均粒径が $0.1\sim2~\mu$ m、更には $0.1\sim0.5~\mu$ m程度のものが好ましい。

[0041]

また、磁性体のトナー中の含有量は、上記のトナー用バインダー樹脂100質 量部に対して、通常約20~200質量部、好ましくは40~150質量部であ る。また、トナーの飽和磁化としては、15~35emu/g(測定磁場 1キ ロエルステッド)が好ましい。

[0042]

本発明のトナーは、さらに必要に応じて滑剤、流動性改良剤、研磨剤、導電性 付与剤、画像剥離防止剤等のトナーの製造に当たり使用されている公知の添加剤 を内添、あるいは外添することができる。これら添加剤の例としては、滑剤とし ては、ポリフッ化ビニリデン、ステアリン酸亜鉛などが、流動性改良剤としては 、コロイダルシリカ、酸化アルミニウム、酸化チタンなどが、研磨剤としては酸

化セリウム、炭化ケイ素、チタン酸ストロンチウム、タングステンカーバイド、 炭酸カルシウムなどが、導電性付与剤としてはカーボンブラック、酸化スズなど が挙げられる。また、ポリビニリデンフルオライドなどのフッ素含有重合体の微 粉末は、流動性、研磨性、帯電安定性などの点から好ましいものである。

[0043]

本発明にかかるトナーは、従来から公知の方法を用いて製造することができる。一般的には、前述したようなトナー構成材料を、ボールミル、ヘンシェルミキサーなどの混合機により充分混合した後、熱ロールニーダー、一軸あるいは二軸のエクストルーダーなどの熱混練機を用いてよく混練し、冷却固化後、ハンマーミルなどの粉砕機などを用いて機械的に粗粉砕し、次いでジェットミルなどにより微粉砕した後、分級する方法により製造するのが好ましい。しかし、トナーの製造法はこの方法に限られるものではなく、バインダー樹脂溶液中に他のトナー構成材料を分散した後、噴霧乾燥する方法、所謂マイクロカプセル法によりトナーを製造する方法など他の方法も任意に採用することができる。

[0044]

本発明のトナーは、キャリアと混合して二成分または一. 五成分現像剤としても用いることができるし、トナー中に磁性粉を含有させた磁性一成分現像剤、もしくはキャリアや磁性粉を使用しない非磁性一成分現像剤、あるいはマイクロトーニング現像剤として用いることができる。本発明のトナーが二成分または一. 五成分現像剤として用いられる場合、キャリアとしては、従来公知のキャリアがいずれも使用できる。使用することができるキャリアとしては、例えば鉄粉、フェライト粉、ニッケル粉のような磁性粉体やガラスビーズ等、あるいはこれらの表面を樹脂などで処理したものが挙げられる。キャリア表面を被覆する樹脂としては、スチレンーアクリル酸エステル共重合体、スチレンーメタクリル酸エステル共重合体、スチレンーメタクリル酸エステル共重合体、フッ素含有樹脂、シリコン含有樹脂、ポリアミド樹脂、アイオノマー樹脂、ポリフェニレンサルファイド樹脂など、あるいはこれらの混合物が挙げられる。これらの中では、スペントトナーの形成が少ないため、フッ素含有樹脂、シリコン含有樹脂が特に好ましい。

[0045]

本発明のトナーの重量平均粒子径は、 10μ m以下であるが、 $3\sim10\mu$ mであることが現像特性の面で好ましく、さらには $5\sim10\mu$ mであることが現像特性の面で好ましい。トナーの重量平均粒子径は、 10μ mを越える場合、微細な画像を発現させることが難しくなる等、現像特性の面で好ましくない場合がある。なお、トナーの粒度分布測定は、例えばコールターカウンターを用いて測定することができる。

[0046]

【実施例】

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、以降「部」は、特に断わらない限り質量部を表す。

[0047]

本発明におけるトナー用樹脂組成物の分子量および分子量分布の測定は、GPC を用いて求めたものである。測定は、市販の単分散標準ポリスチレンを標準とし、以下の条件で行った。

[0048]

検出器 : SHODEX RI-71S

溶剤 ; テトラヒドロフラン

流速 ; 1.0 ml/分

試料 : 0.25 % THF 溶液

なお、測定の信憑性は上記の測定条件で行ったNBS706ポリスチレン試料 $(M_W=288,000,M_n=137,000,M_w/M_n=2.11)$ のM w/M_n が、2.11±0.10となることにより確認し得る。

[0049]

本発明におけるガラス転移点(Tg)は、示差走査型熱量測定法(DSC)に 従い、DSC-20(セイコー電子工業社製)によって測定した。試料約10m

gを-20 ℃から100 ℃まで10 ℃/分で昇温し、得られたカーブのベースラインと吸熱ピークの傾線の交点より T gを求める。この昇温測定の前に、一旦樹脂を200 ℃程度まで昇温し、5 分間保持した後、即座に常温(25 ℃)まで降温する操作を行い、樹脂の熱履歴を統一することが望ましい。

[0050]

また、本発明における酸価は、樹脂1gを中和するために必要な水酸化カリウムのmg数をいう。また、OH価は、樹脂1g中のOH基をエステル化するのに必要な酸無水物を中和するために必要な水酸化カリウムのmg数を指す。

[0051]

また、以下に本発明で行ったトナーの評価方法を記載する。

定着性

市販の電子写真複写機を改造した複写機にて未定着画像を作成した後、この未定着画像を市販の複写機の定着部を改造した熱ローラー定着装置を用いて定着させた。熱ロールの定着速度は300mm/secとし、熱ローラーの温度を5℃ずつ変化させてトナーの定着を行った。得られた定着画像を砂消しゴム(トンボ鉛筆社製)により、0.5kgの荷重をかけ、10回摩擦させ、この摩擦試験前後の画像濃度をマクベス式反射濃度計により測定した。各温度での画像濃度の変化率が70%以上となった最低の定着温度をもって最低定着温度とした。なお、ここに用いた熱ローラ定着装置はシリコーンオイル供給機構を有しないものである。また、環境条件は、常温常圧(温度22℃,相対湿度55%)とした。

[0052]

表示 ○ ; 最低定着温度 ≤ 170℃

△ ; 190℃ ≥ 最低定着温度 > 170℃

× ; 最低定着温度 > 190℃

[0053]

② 耐オフセット性

耐オフセット性の評価は、上記最低定着温度の測定に準ずるが、上記複写機に て未定着画像を作成した後、トナー像を転写して上述の熱ローラー定着装置によ り定着処理を行い、次いで白紙の転写紙を同様の条件下で当該熱ローラ定着装置

○ ; オフセット発生温度 ≥ 240℃

△ ; 240℃ > オフセット発生温度 ≥ 220℃

× ; 220℃ > オフセット発生温度

[0054]

③ 現像耐久性

市販の複写機(東芝製、プレシオ5560)により連続して100,000枚に わたる実写テストを行った後、画像濃度、画質が劣化し始める枚数により評価し た。

○ : 7万枚以上でも劣化しない

△ : 5~7万枚で劣化

× : 5万枚以上で劣化

[0055]

④ 耐ブロッキング性(保存性)

温度50℃、相対湿度50%の環境条件下に48時間放置後、150メッシュのふるいに5gのせ、パウダーテスター(細川粉体工学研究所)の加減抵抗機の目盛りを3にして、1分間振動を加える。振動後の150メッシュのふるいの上に残った重量を測定し、残存重量比を求めた。

○ ; 20%より小さい

△ ; 20%以上35%以下

× ; 35%より大きい

[0056]

酸化変性ポリエチレンワックスの製造例

本発明の酸化変性ポリエチレンワックスの製造は以下の方法で行った。

[0057]

メタロセン触媒で合成した $[\eta] = 0.22$ のワックス800gを攪拌機付反

応器中で、160℃の温度で溶融混合した後、攪拌しながら純酸素(市販の酸素)を1分間に6Nリットルの速度で供給して10時間反応させた。COOH基含 有量で酸価30mgKOH/g、OH基含有量として水酸基価20mgKOH/ gを含有した $[\eta] = 0.15$ のポリエチレンワックス(C-1)を得た。

[0058]

本発明のポリエステル樹脂およびウレタン変性ポリエステル樹脂の製造は以下 の方法で行った。ポリエステル樹脂A-1について具体的に例示する。A-2か 6A-6及びB-1からB-5は、表 1、表 2に示した条件以外は同様の方法で 製造した。結果を表1、表2に示す。A-3及びB-4の製造に際し、PETに はリサイクルPETを使用した。

[0059]

ポリエステル樹脂(A-1)の製造例

5リットルの四つ口フラスコに還流冷却器、水分離装置、窒素ガス導入管、温 度計及び撹拌装置を取り付け、フレーク状のリサイクルPET(重量平均分子量) :75000)をPET中のエチレングリコールユニット単位で50mol%、 アクトコールKB300(三井武田ケミカル社製)22mol%、トリエチレン グリコール20m01%、トリメチロールプロパン8m01%、テレフタル酸3 6 m o 1%、ジブチル錫オキサイド 0.5 質量%、上記酸化変性ポリエチレンワ ックス(C-1)3.0質量%を仕込み、フラスコ内に窒素を導入しながら24 0℃で解重合及び/または脱水重縮合を行った。反応生成物の酸価が所定値に達 したところでフラスコより抜き出し冷却、粉砕して樹脂A-1を得た。

[0060]

【表1】

表1

樹脂	A-1	A-2	A-3	A-4	A-5	A-6
PET (mol%)	50		25	62	50	62
PBT (mol%)	_	50	25	1	-	_
KB300 (mol%)	22	32	22	24	22	24
シ゛エチレンク゛リコール(mol%)	_		_	_	_	
トリエチレング・リコール(mol%)	20	10	20	4	20	4
トリメチロールプロハ°ン(mol%)	8	8	8	10	8	10
テレフタル酸 (mol%)	36	36	36	18	36	18
イソフタル酸 (mol%)	-	_	_	_	_	_
安息香酸 (mol%)			. –	18	_	18
イソト・テ・セニル無水コハク酸 (mol%)		_	_	10		10
WAX(Wt%)	3	9	3	5		

[0061]

【表2】

表2

樹脂 PET (mol%)	B-1	B-2	B-3	B-4	B-5
PET (mol%)	66.5	61		34	66.5
PBT (mol%)		_	67	33	-
KB300 (mol%)	28.5	26	33	28	28.5
シ゛エチレンク゛リコール(mol%)		_	_	1	_
トリエチレングリコール(mol%)	_ ·	13	-	-	_
トリメチロールプロハ°ン(mol%)	5		-	5	5
テレフタル酸 (mol%)	35.5	41	33	33	35.5
イソフタル酸 (mol%)	_	_		-	
安息香酸 (mol%)	14	6	10	20_	14
WAX(Wt%)	1	3	5	1	

[0062]

以下に実施態様について実施例1を代表例として具体的に記述する。樹脂2~5について、即ち実施例2~5についても、表3に示した条件以外は実施例1と同様な操作を行って、樹脂及びトナーを得て評価を行った。これらについて、樹脂の配合比やトリレンジインシアネート添加比、樹脂分析結果、トナー特性評価を実施例1と併せて表3に示す。

実施例1

樹脂 (A) として樹脂A-1を30質量部、樹脂 (B) として樹脂B-1を70質量部及びトリレンジイソシアネート2.0質量部とを二軸押出機で混練反応し樹脂1を得た。得られた樹脂のTgは55.9℃であり、酸価は18.6、GPCのMw/Mnは17.8、ピーク分子量は7000であった。

樹脂1を100質量部に対してカーボンブラック(MA-100・三菱化学社製)6質量部、帯電調整剤(BONTRON E-84;オリエント化学工業社製)1.5質量部へンシェルミキサーにて分散混合した後、二軸押出機・PCM-30(池貝鉄工社製)にて120℃で溶融混練して塊状のトナー組成物を得た。このトナー組成物をハンマーミルにて粗粉砕した。さらに、ジェット粉砕機(日本ニューマチック社製IDS2型)にて微粉砕し、ついで気流分級して平均粒径10μm(5μm以下3質量%、20μm以上2質量%)のトナー微粉末を得た。次いで、上記トナー100質量部に対して、疎水性シリカ(R-972、アエロジル社製)を0.5質量部となる割合で外部から添加して、これをヘンシェルミキサーにより混合してトナーを得た。このトナー粒子を用いて、定着性、耐オフセット性、現像耐久性、耐ブロッキング性を調べた。

[0063]

【表3】

#	2

200								
実施例/比較例No.		実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7
樹脂		樹脂1	樹脂2	樹脂3	樹脂4	樹脂5	樹脂1	樹脂1
樹脂A	種類	A-1	A-1	A-2	A-3	A-4	A-1	A-1
	(質量%)	30	40	30	30	100	30	30
樹脂B	種類	B-1	B-2	B-3	B-4	1	B-1_	B-1
	(質量%)	70	60	70	70	_	70	70
樹脂中のワッ	クス(C−1)	有	有	有	有	有	有	有
	トリレンジイソシアネート(質量%)		2.5	2.0	2.0	2.0	2.0	2.0
Tg(°C)		55.9	51.8	50.3	52.5	53.4	55.9	55.9
酸価 (KOHmg/g)		18.6	14.3	14.8	15.3	2	18.6	18.6
	Mw/Mn	17.8	30.9	21.9	25.8	41.5	17.8	17.8
	ピーク分子量	7000	8000	8000	7000	9000	7000	7000
ワックス	種類			_	_	-	PP	PP
	添加量	_	_	_	_	_	3	5
定着性		0	0	0	0	0	0	0
オフセット性		0	0	0	0	0	0	0
現像耐久性		0	0	0	0	Δ	Δ	Δ
耐ブロッキング性		0	0	0	0	0	0	0

[0064]

実施例 6

実施例1においてポリプロピレンワックス(ハイワックスNP105;三井化学社製)3.0質量部を加えてヘンシェルミキサーにて分散混合した後、二軸押出機・PCM-30(池貝鉄工社製)にて120℃で溶融混練して塊状のトナー組成物を得た以外は同様の方法でトナーを製造した。結果を表3に示した。

実施例7

実施例6においてポリプロピレンワックス(ハイワックスNP105;三井化学社製)を5.0質量部に変更した以外は同様の方法でトナーを製造した。結果を表3に示した。

比較例1

樹脂(A)として樹脂A-5(ワックス(C-1)含有量:0質量%)を30質量部、樹脂(B)として樹脂B-5(ワックス(C-1)含有量:0質量%)を70質量部及びトリレンジイソシアネート2.0質量部とを二軸押出機で混練反応し樹脂6を得た。得られた樹脂のTgは62.9℃であり、GPCのMw/Mnは20.9、ピーク分子量は7000であった。

樹脂 6 を 1 0 0 質量部に対してカーボンプラック(MA-1 0 0・三菱化学社製) 6 質量部、帯電調整剤(BONTRON E-84;オリエント化学工業社製) 1. 5 質量部、酸化変性ポリエチレンワックス(C-1) 3. 0 質量部へンシェルミキサーにて分散混合した後、二軸押出機・PCM-3 0(池貝鉄工社製)にて 1 2 0 ℃で溶融混練して塊状のトナー組成物を得た。このトナー組成物をハンマーミルにて粗粉砕した。さらに、ジェット粉砕機(日本ニューマチック社製 I D S 2 型)にて微粉砕し、ついで気流分級して平均粒径 $10 \mu m$ ($5 \mu m$ 以下 3 質量%、 $20 \mu m$ 以上 2 質量%)のトナー微粉末を得た。次いで、上記トナー 100 質量部に対して、疎水性シリカ(R-972、アエロジル社製)を 0.5 質量部となる割合で外部から添加して、これをヘンシェルミキサーにより混合してトナーを得た。このトナー粒子を用いて、定着性、耐オフセット性、現像耐久性、耐ブロッキング性を調べた。結果を表 4 に示した。

比較例2

比較例1において酸化変性ポリエチレンワックス(C-1)を5.0質量部に変更した以外は同様の方法でトナーを製造した。結果を表4に示した。

比較例3

比較例1においてポリプロピレンワックス(ハイワックスNP105;三井化学社製)3.0質量部を加えてヘンシェルミキサーにて分散混合した後、二軸押出機・PCM-30(池貝鉄工社製)にて120℃で溶融混練して塊状のトナー組成物を得た以外は同様の方法でトナーを製造した。結果を表4に示した。

比較例4

樹脂(A) として樹脂A-5を40質量部、樹脂(B) として樹脂B-5を60質量部及びトリレンジイソシアネート2.4質量部とを二軸押出機で混練反応し樹脂7を得た。得られた樹脂のTgは61.6℃であり、GPCのMw/Mnは32.9、ピーク分子量は8000であった。結果を表4に示した。

樹脂8を比較例1と同様の方法でトナーを製造した。

[0065]

【表4】

表4

数 4						
実施例/比較例No.		比較例1	比較例2	比較例3	比較例4	比較例5
樹脂		樹脂6	樹脂6	樹脂6	樹脂7	樹脂8
樹脂A	種類	A-5	A-5	A-5	A-5	A-6
	(質量%)	30	30	30	40	100
樹脂B	種類	B-5	B-5	B-5	B-5	
	(質量%)	70	70	70	60	
樹脂中のワック		無	無	無	無	無
トリレンジイソシアネート(質量%)		2.0	2.0	2.0	2.4	1.8
Tg(℃)		62.9	62.9	62.9	61.6	56.5
酸価 (KOHmg/g)		17.8	17.8	17.8	15.6	2.0
GPC	Mw/Mn	20.9	20.9	20.9	32.9	43.8
	ピーク分子量	7000	7000	7000	8000	9000
ワックス	種類	C-1	C-1	C-1+PP	C-1	C-1
	添加量	3	5	3+3	3	3
定着性		0	0	0	0	Δ
オフセット性		0	0	0	0	0
現像耐久性		Δ	×	×	Δ	Δ
耐ブロッキング性		Δ	×	×	Δ	Δ

[0066]

比較例 5

樹脂(A)として樹脂A-6を100質量部及びトリレンジイソシアネート1.8質量部とを二軸押出機で混練反応し樹脂8を得た。得られた樹脂のTgは59.5℃であり、GPCのMw/Mnは43.8、ピーク分子量は9000であった。

上記の樹脂8を比較例1と同様の方法でトナーを製造した。結果を表4に示した。

[0067]

【発明の効果】

この発明のトナー用樹脂組成物およびトナーは、上述のように構成されており、定着性、耐オフセット性、現像耐久性に優れている。

[0068]

したがって、この発明のトナー用樹脂組成物およびトナーによれば、複写機およびプリンターの高速化、低温定着化など、近年高まっている要求に充分に対応することができる。

【書類名】

要約書

【要約】

【課題】 低温定着性、耐オフセット性、現像耐久性、長期保存性、帯電性、粉砕性等に優れたポリエステル系トナー用バインダー樹脂およびトナーを提供する。

【解決手段】 ポリエステル樹脂成分製造時に、水酸基および/またはカルボキシル基を有するワックスを用いて得られることを特徴とするトナー用バインダー 樹脂を用いることによって、上記特性に優れたトナーが得られた。上記のワックスは、ポリエステル樹脂骨格に導入されていると考えられる。

【選択図】 なし

特願2002-343090

出願人履歴情報

識別番号

[000005887]

1. 変更年月日

1997年10月 1日

[変更理由]

名称変更

住 所 氏 名

東京都千代田区霞が関三丁目2番5号

三井化学株式会社

2. 変更年月日 [変更理由] 2003年11月 4日

住所変更

住 所

東京都港区東新橋一丁目5番2号

氏 名 三井化学株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.