Math 254A Lecture 20 Notes

Daniel Raban

May 12, 2021

1 Deriving van der Waal's Equation (Part 3)

1.1 Bound on α

Last time, we had a quantity α which depended on various factors. We bounded it by a term $\alpha(m, r, \varepsilon)$ which only depended on these 3 quantities. We will compare this to integral of $\int \varphi = \int \varphi^r$.

$$\left| \alpha(m, r, \varepsilon) - \int \varphi^r \right| = \left| (\varepsilon m)^3 \sum_{v \in \varepsilon m \mathbb{Z}^3} \varphi^r(v) - \int \varphi^r \right|$$

Let Q_v be the cube with side length εm and center v.

$$= \left| (\varepsilon m)^3 \sum_{v \in \varepsilon m \mathbb{Z}^3} \left(\varphi^n(v) - \int_{Q_v} \varphi^n \right) \right|$$

$$= \left| \sum_v \left(|Q_v| \varphi^r(v) - \int_{Q_v} \varphi^r \right) \right|$$

$$\leq \sum_v \int_{Q_v} |\varphi^r(v) - \varphi^r(x)| dx$$

$$\leq \sum_{v: Q_v \cap \overline{B_r} \neq \varnothing} (\varepsilon m)^3 \frac{\sqrt{\beta}}{2} \varepsilon m \cdot \frac{\|\nabla \varphi\|}{r^4}$$

$$= O\left(\frac{r^3}{(\varepsilon m)^3} \cdot \frac{(\varepsilon m)^4}{r^4} \right)$$

$$= O\left(\frac{\varepsilon m}{r} \right).$$

So

$$\alpha(m,r,\varepsilon) = \alpha + o\left(\frac{\varepsilon m}{v}\right)$$

for some constant α .

1.2 Maximizing the entropy term

Now consider maximizing

$$\frac{1}{(n/m^3)} \sum_{k \in \mathcal{C}_n} [H(\rho_k, 1 - \rho_k) + \gamma \rho_k^2],$$

where $\gamma = \beta \alpha(m, \varepsilon, r)/\varepsilon^3 = (\beta/\varepsilon^3)(\alpha + o(\varepsilon m/r))$. Now, we want to try to maximize this over $\rho \in \widetilde{\Omega}_n$ with $|\rho| = N_n/m^3$ (recall $N_n/n^3 \to \varepsilon^3/v$ as $n \to \infty$). We can also write this expression as

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k),$$

where $f_{\gamma}(x) = H(x, 1-x) + \gamma x^2$ for $0 \le x \le 1$. What does f_{γ} look like? Here is a picture:

There is a critical value of γ which is the largest γ for which this is still concave. Check using calculus that the critical γ equals 2.

If $\gamma \leq 2$, f_{γ} is concave, so Jensen's inequality gives

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k) \le f_{\gamma} \left(\frac{1}{|C_n|} \sum_{k} \rho_k \right)$$
$$= f_{\gamma} \left(\frac{N_n}{m^3} \right)$$

$$= f_{\gamma} \left(\frac{N_n}{m^3} \right)$$

$$\xrightarrow{n \to \infty} f_{\gamma} \left(\frac{\varepsilon^3}{v} \right).$$

We can make this close to tight by taking $\rho_k \approx \varepsilon^3/v$ for all k. What if $\gamma > 2$? Use the concave envelope F_{γ} of f_{γ} :

Then

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k) \leq \frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} F_{\gamma}(\rho_k)
\leq F_{\gamma} \left(\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} \rho_k \right)
\approx F_{\gamma} \left(\frac{\varepsilon^3}{v} \right)$$

as $n \to \infty$. This also can be brought as close as we like once $n \to \infty$ and m is large.

- If $\varepsilon^3/v \notin (a,b)$, then $F_{\gamma}(\varepsilon^3/v) = f_{\gamma}(\varepsilon^3/v)$. Then just take $\rho_k \approx \varepsilon^3/v$ for all k.
- If $a < \varepsilon^3/v < b$, then $\rho_k \approx \varepsilon^3/v$ for all k will give you

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k) = f_{\gamma}\left(\frac{\varepsilon^3}{v}\right) < F_{\gamma}\left(\frac{\varepsilon^3}{v}\right).$$

Instead, express $\varepsilon^3/v = ta + (1-t)b$. Now choose the values ρ_k so that $\rho_k \approx a$ for $\approx t|\mathcal{C}_n|$ many ks and $\rho_k \approx b$ for $\approx (1-t)|\mathcal{C}_n|$ many ks. Then

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k) \approx t f_{\gamma}(a) + (1 - t) f_{\gamma}(b) = F_{\gamma}\left(\frac{\varepsilon^3}{v}\right)$$

The conclusion is that

$$\frac{1}{|\mathcal{C}_n|} \sum_{k \in \mathcal{C}_n} f_{\gamma}(\rho_k) = F_{\gamma}\left(\frac{\varepsilon^3}{v}\right) + O\left(\frac{1}{m}\right)$$

as $n \to \infty$.

1.3 Maximizing the effective partition function

Is the maximization problem for $\log \widehat{Z}_n^r$ close to the same value? Yes!

Go back to

$$\max_{|\rho|=N_n/m^3} \left\{ W(\rho) - \frac{\beta}{n^3} \widetilde{\Phi}_n^r(\rho) \right\}.$$

Can we get this close to the same value? Yes. Since f_{γ} is strictly convex near a and b, we must have roughly a t fraction of ρ_k s close to a and roughly a (1-t) fraction of ρ_k s close to b

When is the above maximum close to the average of f_{γ} ? We had the bound via AM-GM:

$$\sum_{k} H(\rho_k, 1 - \rho_k) + \beta m^3 \sum_{k,\ell} \varphi^r(\varepsilon(k - \ell)) \rho_k \rho_\ell \le \sum_{k} H(\rho_k, 1 - \rho_k) + \beta m^3 \sum_{k,\ell} \varphi^r(\varepsilon(k - \ell)) \frac{\rho_k^2 + \rho_\ell^2}{2}.$$

The difference equals

$$\beta m^3 \sum_{k,\ell} \varphi^r(\varepsilon(k-\ell)) \frac{1}{2} (\rho_k - \rho_\ell)^2.$$

This is small if $\rho_k \approx \rho_\ell$ for most pairs (k,ℓ) where $\varphi^r(\varepsilon(k-\ell))$ is not negligible. What kinds of ρ achieve all these requirements? Choose it according to this picture:

Then we do get

$$W(\rho) - \frac{\beta}{n^3} \widetilde{\Phi}_n^r(\rho) \approx \frac{1}{|\mathcal{C}_n|} \sum_k f_{\gamma}(\rho_k) \approx F_{\gamma} \left(\frac{\varepsilon^3}{v}\right).$$

We will finish off this story next time.