

Dipartimento di Informatica

Rilevazione di disservizi nella connettività di rete

Candidato: Relatore:

Daniel Casenove Luca Deri

Motivazione

- Numero di dispositivi wireless connessi in aumento:
 - Smartphone
 - Tablet
 - Dispositivi IoT
- Cambio del mezzo trasmissivo in favore del Wi-Fi
- Nuovi paradigmi per la fruizione dei servizi:
 - Streaming
 - Cloud storage
- Necessità di monitorare reti locali per rilevare disservizi

Analisi Wi-Fi: Stato dell'Arte

- Algoritmi per l'analisi del segnale Wi-Fi:
 - Qualità del segnale: SNR
 - Topologia: non presenti in letteratura
- Cattura del traffico di rete mediante standard monitor mode e radiotap
- Strumenti «simili»:
 - Netspot: heatmap di qualità del segnale Wi-Fi
 - UniFi by Ubiquiti: soluzione proprietaria per il monitoraggio di reti
 - Kismet: limitato al numero di client per AP e potenza del segnale

Analisi Wi-Fi: Limiti delle attuali soluzioni

- 1. Focus principale sullo stato dell'access point
 - Valori di bontà del segnale
 - Suggerimenti non real-time per un'ottimizzazione della connessione
- 2. Soluzione professionali e proprietarie non interoperabili: non utilizzabili in ambito domestico e SMB
- 3. Mancanza di una visione totale della rete e dei dispositivi ad essa connessi
- Obiettivo del lavoro: fornire una soluzione per la rilevazione di disservizi in reti di tipo domestico e SMB

ArpScanner & Wi-Fi Topology Risultati del Tirocinio

- Sviluppo di uno strumento per:
 - Analisi real-time del traffico della rete
 - Ricostruzione della topologia di rete a livello II
 - Misure della qualità del segnale
 - Monitoraggio dei dispositivi connessi alla rete
 - · Identificazione dei nodi affetti da disservizi di connessione
 - Facile utilizzo e contenuto uso di risorse
 - Codice sorgente disponibile su <u>GitHub</u>
- Risultato originale:
 - Definizione di un algoritmo per la rilevazione della topologia di reti Wi-Fi totalmente passivo ed indipendente da un costruttore

ArpScanner: Caratteristiche Principali

- Monitoraggio attivo
- Effettua Arp Scan sulla rete in analisi
 - Assegna indirizzi MAC ad indirizzi IPv4
- Arp Ping
 - Calcolo del RTT dei pacchetti inviati
 - Metrica utile per dispositivi cablati e Wi-Fi
- Fornisce dati utili alla libreria WiFi-Topology

WiFi-Topology: Caratteristiche Principali

- Monitoraggio passivo
- Cattura del traffico 802.11
 - Ricostruzione della topologia della rete
 - Calcolo della potenza del segnale Wi-Fi
- Utilizzo di euristiche per determinare:
 - Access point
 - Repeater

WiFi-Topology: Rilevazione di disservizi

- Round Trip Time (RTT): < 1ms all'interno della rete
- Signal to Noise Ratio (SNR): differenza tra potenza segnale e rumore di fondo
- Rilevazione del nodo specifico affetto da disservizio
 - Topologia rilevata più misure di bontà del segnale

SNR (dB)A	Segnale	Velocità
>40	Eccellente	Massima
25-40	Molto buono	Ottima
15-25	Basso	Buona
10-15	Molto basso	Bassa
<10	Assente	Assente

Analisi ed euristiche: un nuovo algoritmo

- Cattura di frame 802.11
 - Management frames
 - Control frames
 - Data frames
- Analisi di correttezza del frame ricevuto
- Aggiunta di relazioni tra indirizzi MAC che interagiscono:
 - Talker
 - Entry point
 - Exit point
- Identificazione di access point e repeater tramite euristiche su indirizzi MAC

Esempio di utilizzo WiFi-Topology

Validazione su reti con topologia semplice

- Rete casalinga o SMB
- Dispositivi direttamente collegati ad un access point
- Analisi validata dalla conoscenza della rete

Validazione su reti con repeater

- Presenza di repeater ed altri dispositivi che annunciano reti wireless
- Ricostruzione attraverso euristiche e validazione data dalla conoscenza della topologia della rete

Validazione su reti professionali

- Corretta identificazione di più reti Wi-Fi per access point (Unipi, Area CNR di Pisa)
- Difficile da validare:
 - Alto numero di dispositivi
 - Topologia non conosciuta a priori

Analisi della performance

- Uso di memoria dipendente dal traffico
 - ~20MB per 30,000 pacchetti catturati ed analizzati
 - Generalmente ~5MB per catture live di 15 secondi
 - Cattura a line rate anche su reti con molti dispositivi
- Tempo di calcolo principalmente dovuto alla cattura
 - Cattura costante
 - Cattura programmata per una durata a scelta
- Soluzione implementabile su:
 - Router
 - Smartphone
 - SBC

Lavori futuri

- Estendere il supporto di WiFi-Topology a reti professionali
 - Analisi dei frame destinati a Wireless Distribution Systems (WDS)
- Aggiunta di euristiche riguardanti canali Wi-Fi
- Calcolo di statistiche TCP
 - Perdita pacchetti
 - Pacchetti out-of-order
 - Ritrasmissioni
- Implementazione di tecniche per il service discovery
- Database di indirizzi MAC

Conclusioni

- Definizione di un nuovo algoritmo per la rilevazione di topologie di reti Wi-Fi.
- Sviluppo ed implementazione di una soluzione open-source
 - ArpScanner
 - WiFi-Topology
- Validata correttamente su diversi tipi di reti:
 - Semplici
 - Complesse
- Rilevamento specifico di nodi affetti da disservizi
- Contenuto utilizzo di risorse

Grazie per l'attenzione

802.11 Frames

- FC:
 - Tipi di frame
 - Management frame
 - Control frame
 - Data frame
 - Sottotipi di frame
 - To DS
 - From DS
- Indirizzi MAC
- Frame body
- FCS

Indirizzi MAC

- Identificano unicamente una scheda di rete
- Suddivisi in due gruppi di ottetti:
 - OUI: Assegnato dall' IEEE
 - NIC: Scelto dal produttore
- Il primo ottetto determina:
 - Globally Assigned
 - Locally Assigned
 - Unicast
 - Multicast

