Lineare Algebra und analytische Geometrie I

6. Vektorräume.

Tutorium

Tutorium zu Algebra/Geometrie

- Dienstags von 14 bis 16 Uhr
- Seminarraum 018, August-Bebel-Straße 4

Findet schon diese Woche, also am 10.11. statt!

Sei \mathbb{K} ein Körper (denken Sie an \mathbb{R}).

Definition (Def. 6.1.)

Ein **Vektorraum** V über einem Körper \mathbb{K} ist ein Paar bestehend aus einer abelschen Gruppe V = (V, +) und einer Abbildung

$$\mathbb{K} \times V \to V$$
$$(a, \bar{v}) \mapsto a\bar{v}$$

derart, dass $\forall a, b \in \mathbb{K}$ und $\forall \bar{u}, \bar{v} \in V$ die folgenden Identitäten gelten:

$$\diamond \ a(\bar{v}+\bar{u})=(a\bar{v})+(a\bar{u}),$$

$$\diamond (a+b)\bar{v}=(a\bar{v})+(b\bar{v}),$$

$$\diamond \ a(b\bar{v}) = (ab)\bar{v},$$

$$\diamond \ 1_{\mathbb{K}} \overline{\nu} = \overline{\nu}.$$

Einen Vektorraum über einem Körper $\mathbb K$ nennt man auch $\mathbb K$ -Vektorraum.

Jeder \mathbb{K} -Vektorraum V ist eine ablesche Gruppe V = (V, +)

- V ist eine Menge mit Verknüpfung "+", d.h. die Vektoren kann man addieren;
- $\rhd (\bar{v} + \bar{u}) + \bar{w} = \bar{v} + (\bar{u} + \bar{w}), \quad \bar{v} + \bar{u} = \bar{u} + \bar{v} \quad \forall \bar{v}, \bar{u}, \bar{w} \in V;$
- \triangleright Es existiert das neutrale Element $e_{(V,+)} = \bar{0}_V = \bar{0}$, der **Nullvektor**;

Weiter kann man die Vektoren mit den **Skalaren** (Elementen des Körpers) multiplizieren, $(a, \bar{v}) \mapsto a\bar{v} \in V$. Wir werden 1 statt $1_{\mathbb{K}}$ und $a\bar{v} + b\bar{u}$ statt $(a\bar{v}) + (b\bar{u})$ ("**Punk vor Strich**") benutzen. Damit können **Vektorraumaxiome** übersichtlicher geschrieben werden:

- $\diamond \ a(\bar{v} + \bar{u}) = a\bar{v} + a\bar{u},$
- $\diamond (a+b)\bar{v}=a\bar{v}+b\bar{v},$
- $\diamond \ a(b\bar{v}) = (ab)\bar{v},$
- \diamond $1\bar{v}=\bar{v}$.

Das erste Beispiel

 $V = \mathbb{K}$ ist ein Vektorraum über \mathbb{K} .

- \bullet (\mathbb{K} , +) ist eine abelsche Gruppe (die additive Gruppe des Körpers);
- Seien $a, v \in \mathbb{K}$, dann $av \in \mathbb{K}$;
- a(v + u) = av + au (Distributivgesetz);
- (a+b)v = v(a+b) = va + vb = av + ab (Distributivgesetz und die Kommutativität der Multiplikation);
- a(bv) = (ab)v (die Assoziativität der Multiplikation);
- $1v = v (1 = e_{(\mathbb{K},\cdot)}).$

(FSU Jena)

Der Vektorraum \mathbb{K}^n

Sei zuerst n=2. Dann $V=\mathbb{K}^2=\mathbb{K}\times\mathbb{K}$. Wir setzen:

$$\langle (v_1, v_2) + (u_1, u_2) = (v_1 + u_1, v_2 + u_2),$$

$$\langle a(v_1, v_2) = (av_1, av_2).$$

Die Vektorraumaxiome gelten.

Sei n > 2. Dann $\mathbb{K}^n = \mathbb{K} \times \mathbb{K}^{n-1} = \underbrace{\mathbb{K} \times \ldots \times \mathbb{K}}_{n \text{ Stücke}}$. Die Elemente von \mathbb{K}^n sind

die *n*-Tupel $\bar{v} = (v_1, \dots, v_n)$, wo $v_i \in \mathbb{K} \ \forall i$. Die Addition ist:

$$(v_1,\ldots,v_n)+(u_1,\ldots,u_n)=(v_1+u_1,\ldots,v_n+u_n),$$

die Multiplikation mit den Skalaren: $a(v_1, \ldots, v_n) = (av_1, \ldots, av_n)$.

Die Vektoren $\bar{v} \in \mathbb{K}^n$ kann man entweder als $1 \times n$ - oder als $n \times 1$ -Matrizen ansehen.

(FSU Jena) Lineare Algebra I 9.11.2015

6/25

Die Vektoren $\bar{v} \in \mathbb{K}^n$ kann man entweder als $1 \times n$ - oder als $n \times 1$ -Matrizen ansehen.

Nehmen wir $n \times 1$, $\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$, so spricht man von **Spaltenvektoren**; nehmen

wir $1 \times n$, (v_1, v_2, \dots, v_n) , dann von **Zeilenvektoren**.

Wir werden zeigen, dass die Menge aller $m \times n$ -Matrizen über \mathbb{K} ,

$$\operatorname{Mat}_{m\times n}(\mathbb{K}) = \operatorname{Abb}(\{1,2,\ldots,m\}\times\{1,2,\ldots,n\},\mathbb{K}),$$

ein K-Vektorraum ist.

Lemma (Lemma 6.2.)

Sei V ein K-Vektorraum. Dann gelten

(i)
$$0_{\mathbb{K}}\bar{v}=\bar{0}=\bar{0}_{V}\ \forall \bar{v}\in V;$$

(ii)
$$(-1)\bar{v} = -\bar{v} \ \forall \bar{v} \in V.$$

Beweis.

(i) Sei $0=0_{\mathbb{K}}$. Dann 0+0=0 und $0\bar{\nu}=(0+0)\bar{\nu}=0\bar{\nu}+0\bar{\nu}$. Daraus

$$\bar{0} = 0\bar{v} + (-0\bar{v}) = 0\bar{v} + 0\bar{v} + (-0\bar{v}) = 0\bar{v}.$$

(ii) Nun haben wir

$$\bar{0} = 0\bar{v} = (1 + (-1))\bar{v} = \bar{v} + (-1)\bar{v}.$$

Weil das Inverse eindeutig ist (Lemma 4.8.), gilt es $(-1)\bar{v} = -\bar{v}$.

(FSU Jena) Lineare Algebra I 9.11.2015 8 / 25

Definition (Def. 6.3.)

Eine Teilmenge U eines \mathbb{K} -Vektorraums V heißt **Untervektorraum** (oder **Teilraum** oder **Unterraum**) genau dann, wenn

- $\diamond \bar{0}_V \in U$ und
- \diamond ($\bar{u}, \bar{v} \in U \land a \in \mathbb{K}$) \Rightarrow ($\bar{u} + \bar{v} \in U \land a\bar{u} \in U$) .

Sei V ein \mathbb{K} -Vektorraum und sei $U \subseteq V$ ein Untervektorraum.

Dann $U \neq \emptyset$, denn $\bar{0}_V \in U$.

Die Teilmenge U ist unter der Verknüpfung "+" abgeschlossen, $\bar{u} + \bar{v} \in U$, falls $\bar{u}, \bar{v} \in U$.

Die Verknüpfung "+" auf *U* ist kommutativ und assoziativ.

Wir haben fast gezeigt, dass (U, +) eine kommutative Gruppe ist.

9/25

Definition (Def. 6.3.)

Eine Teilmenge U eines \mathbb{K} -Vektorraums V heißt **Untervektorraum**, falls

- $\diamond \bar{0}_V \in U$ und
- \diamond ($\bar{u}, \bar{v} \in U \land a \in \mathbb{K}$) \Rightarrow ($\bar{u} + \bar{v} \in U \land a\bar{u} \in U$).

Lemma (Lemma 6.4.)

Sei V ein \mathbb{K} -Vektorraum und sei $U \subseteq V$ ein Untervektorraum. Dann ist U ein \mathbb{K} -Vektorraum bezüglich der Einschränkungen der Addition und der Multiplikation mit den Skalaren.

Beweis.

Es gilt: $(-1)\bar{u} \in U \ \forall \bar{u} \in U \ \text{und} \ (-1)\bar{u} = -\bar{u} \ \forall \bar{u} \in V$. Damit ist (U, +) eine (kommutative) Gruppe.

Unter der Multiplikation mit den Skalaren $(a, \bar{u}) \to a\bar{u}$ wird jedes Paar (a, \bar{u}) mit $\bar{u} \in U$ auf $a\bar{u} \in U$ abgebildet.

Die anderen Axiome gelten, weil die in V gelten.

(FSU Jena) Lineare Algebra I 9.11.2015 10 / 25

Nullvektorraum und andere Unterräume

Der kleinste \mathbb{K} -Vektorraum besteht aus einem Element, $\bar{0}=\bar{0}_V$. Das ist der **Nullvektorraum**, $\{\bar{0}\}$.

Merken, $\{\bar{0}\}\subseteq V$ ist ein Unterraum jedes Vektorraums V (Aufgabe 1(i): $a\bar{0}=\bar{0} \ \forall a\in \mathbb{K}$).

Beispiele (Unterräume $U \subseteq V$)

- **2** $V = \mathbb{R}^2$.
 - $U_0 = \{\bar{0}\}, U_1 = V \text{ oder }$
 - $U = U_{\overline{v}} = \{r\overline{v} \mid r \in \mathbb{R}\}, \text{ wo } \overline{v} \in \mathbb{R}^2, \overline{v} \neq \overline{0}.$
- $V = \mathbb{R}^3$.
 - $U_0 = \{\bar{0}\}, U_1 = V \text{ oder }$
 - $U = U_{\overline{v}} = \{r\overline{v} \mid r \in \mathbb{R}\}, \text{ wo } \overline{v} \in \mathbb{R}^3, \overline{v} \neq \overline{0} \text{ oder }$
 - $U = U_{\bar{v},\bar{u}} = \{a\bar{v} + b\bar{u} \mid a,b \in \mathbb{R}\}, \text{ wo } \bar{v},\bar{u} \in \mathbb{R}^3 \text{ und } \bar{v},\bar{u} \text{ nicht auf einer Geraden liegen.}$

Homogene lineare Gleichungssysteme

Ein LGS *A* mit *m* Gleichungen $\sum_{j=1}^{n} a_{ij}x_j = b_i$, $1 \le i \le m$, heißt **homogen**, falls alle b_i Null sind.

Sei A ein homogenes System mit Koeffizienten aus \mathbb{K} .

- Das n-Tupel (0,0,...,0) ist eine Lösung von A.
- Für jedes $r \in \mathbb{K}$ ist $r\bar{u} = (ru_1, ru_2, \dots, ru_n)$ eine Lösungen, falls \bar{u} eine Lösung des Systems A ist.
- $\bar{u} + \bar{v}$ ist eine Lösung, falls \bar{u} , \bar{v} Lösungen sind.

Lemma (Lemma 6.4.)

Die Menge aller Lösungen des homogenen Systems A ist ein Untervektorraum des \mathbb{K} -Vektorraums \mathbb{K}^n .

(FSU Jena) Lineare Algebra I 9.11.2015 12 / 25

Matrizen, Addition

Nun betrachten wir $m \times n$ -Matrizen mit Einträgen in \mathbb{K} . Diese Matrizen kann man addieren:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \dots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \dots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \dots & a_{mn}+b_{mn} \end{pmatrix}.$$

Abkürzen wir $A = (a_{ij})$, $B = (b_{ij})$, dann $A + B = (c_{ij})$, wo $c_{ij} = a_{ij} + b_{ij}$. Oder noch kürzer: $(A + B)_{ij} = a_{ij} + b_{ij}$.

Die Addition its kommutativ und assoziativ.

(FSU Jena) Lineare Algebra I 9.11.2015 13 / 25

Lemma (Lemma 6.5.)

Definieren wir $rA = (c_{ij})$ mit $c_{ij} = ra_{ij}$ für jede Matrix $A = (a_{ij})$ und jede $r \in \mathbb{K}$, so bekommt die Menge $\mathrm{Mat}_{m \times n}(\mathbb{K})$ eine Struktur des \mathbb{K} -Vektorraums.

Beweis.

- Die Addition its kommutativ und assoziativ.
- Die Nullmatrix (c_{ij}) mit allen $c_{ij} = 0$ ist das neutrale Element, (0_{ij}) .
- $A + C = (0_{ij})$, falls $C = (c_{ij})$ mit $c_{ij} = -a_{ij}$, $(-A)_{ij} = -a_{ij}$.
- Die Multiplikation mit den Skalaren ist gegeben.
- $(r(A+B))_{ij} = r(a_{ij} + b_{ij}) = ra_{ij} + rb_{ij} = (rA + rB)_{ij}$.
- $((r+s)A)_{ij} = (r+s)a_{ij} = ra_{ij} + sa_{ij} = (rA + sA)_{ij}.$
- r(sA) = (rs)A.
- 1A = A.

(FSU Jena) Lineare Algebra I 9.11.2015

Sei V ein \mathbb{K} -Vektorraum, $\alpha_1,\ldots,\alpha_k\in\mathbb{K}$. Ein Ausdruck der Gestalt $\overline{u}=\alpha_1\overline{v}_1+\alpha_2\overline{v}_2+\ldots+\alpha_k\overline{v}_k$ heißt **Linearkombination** der Vektoren $\overline{v}_1,\overline{v}_2,\ldots,\overline{v}_k\in V$. Hierbei sind nur endliche Summen erlaubt, damit $\overline{u}\in V$.

Beispiel

Sei
$$V=\mathbb{R}^3$$
, $\bar{v}_1=(1,0,2)$, $\bar{v}_2=(0,1,1)$, $\bar{v}_3=(-1,-2,7)$, dann sind $\bar{u}_1=(0,-1,10)=\bar{v}_1+\bar{v}_2+\bar{v}_3$, $\bar{u}_2=(1,-3,10)=2\bar{v}_1+(-1)\bar{v}_2+\bar{v}_3$, $\bar{u}_3=(4,7,-7)=2\bar{v}_1+3\bar{v}_2+(-2)\bar{v}_3$

Linearkombinationen von \bar{v}_1 , \bar{v}_2 , \bar{v}_3 .

Der Nullvektor $\bar{0}$ ist eine Linearkombination beliebiger Vektoren $\bar{v}_1, \ldots, \bar{v}_k$, $\bar{0} = 0\bar{v}_1 + \ldots + 0\bar{v}_k$.

(FSU Jena)

Noch zwei Tatsachen aus der Mengenlehre

Sei M eine Menge. Teilmengen von M kann man **vergleichen**, obwohl nicht *vollständig*. Seien N_1 , $N_2 \subseteq M$ Teilmengen. Man sagt, dass N_1 kleiner als N_2 ist, falls $N_1 \subset N_2$; mögliche Bezeichnung $N_1 < N_2$. Eigenschaften: $(N_1 < N_2 \land N_2 < N_3) \Rightarrow N_1 < N_3$;

falls $N_1 < N_2$, dann $N_2 \not< N_1$; $N \not< N$.

Beispiel

Sei
$$M=\{1,2,3,4,\}$$
. Dann $\{2,3\}<\{2,3,4\},\{3\}<\{1,3,4\},$ $\{2,3\}<\{2,3,4\}$. Aber $N_1=\{1,2,3\}$ und $N_2=\{2,3,4\}$ sind nicht vergleichbar.

Seien M und N Mengen, dann ist der Schnitt $M \cap N$ eine Menge. Sei jetzt $(M_{\alpha}, \alpha \in \mathcal{F})$ eine F eine M eine Mengen. Dann ist $\bigcap_{\alpha \in \mathcal{F}} M_{\alpha}$ eine Menge. Hier $M \in \bigcap_{\alpha \in \mathcal{F}} M_{\alpha} \Leftrightarrow M \in M_{\alpha} \ \forall \alpha \in \mathcal{F}.$

9.11.2015

16/25

Schnitt von Untervektorräumen

Sei V ein \mathbb{K} -Vektorraum und seien $U_1, U_2 \subseteq V$ Unterräume. Der Schnitt $U = U_1 \cap U_2$ ist wieder ein Unterraum.

- $\bullet \ \bar{0} \in \textit{U}_{1}, \bar{0} \in \textit{U}_{2} \ \Rightarrow \ \bar{0} \in \textit{U};$
- Falls $\bar{u}, \bar{v} \in U$, dann $\bar{u}, \bar{v} \in U_1 \Rightarrow \bar{u} + \bar{v} \in U_1$ und ebenfalls $\bar{u} + \bar{v} \in U_2$, also $\bar{u} + \bar{v} \in U$;
- Falls $\bar{u} \in U$, dann $\bar{u} \in U_1$, $\bar{u} \in U_2$ und $r\bar{u} \in U_1$, $r\bar{u} \in U_2$ für jedes $r \in \mathbb{K}$, also $r\bar{u} \in U$.

Für jede Familie (Menge, tatsächlich) (U_{α} , $\alpha \in \mathcal{F}$) von Unterräumen $U_{\alpha} \subseteq V$ ist der Schnitt $\bigcap_{\alpha \in \mathcal{F}} U_{\alpha}$ ein Unterraum von V.

Von einer Teilmenge erzeugter Untervektorraum

Sei V ein \mathbb{K} -Vektorraum und sei $T \subset V$ eine Teilmenge. Betrachten wie die Familie (Menge) \mathcal{F} aller Unterräume, die T umfassen. Dann ist

$$\langle T \rangle = \bigcap_{\alpha \in \mathcal{F}} U_{\alpha} = \bigcap_{U \subseteq V \text{ Unterrraum, } T \subseteq U} U$$

ein Unterrraum von V.

 $\langle T \rangle$ ist der kleinste Untervektorraum, der T umfasst.

Der kleinste: ist es $T\subseteq W$, wo $W\subseteq V$ ein Unterrraum ist, dann $\langle T\rangle\subseteq W$. In der Tat, falls $T\subseteq W$, dann gehört W zu der Familie \mathcal{F} , dieser Elemente wir schneiden, und $\langle T\rangle=\bigcap_{\alpha\in\mathcal{F}}U_\alpha=(\bigcap_{\alpha\in\mathcal{F}}U_\alpha)\cap W\subseteq W$.

Man sagt, dass $\langle T \rangle$ von der Teilmenge T erzeugt ist.

- $\langle T \rangle$ ist von T aufgespannt.
- $\langle T \rangle$ ist der **Spann** von T.
- $\langle T \rangle$ ist die lineare Hülle von T.

(FSU Jena) Lineare Algebra I 9.11.2015

18 / 25

Sei V ein \mathbb{K} -Vektorraum, $T\subseteq V$ eine <u>nicht leere</u> Teilmenge, $\langle T\rangle\subseteq V$ der Spann von T.

Lemma (Lemma 6.6.)

Es gilt
$$\langle T \rangle = \{a_1 \bar{v}_1 + \ldots + a_k \bar{v}_k \mid k \in \mathbb{N}, a_i \in \mathbb{K}, \bar{v}_i \in T\}.$$

Beweis.

Sei $\widehat{U}=\{a_1\bar{v}_1+\ldots+a_k\bar{v}_k\mid k\in\mathbb{N}, a_i\in\mathbb{K}, \bar{v}_i\in T\}$. Das ist eine Teilmenge von V. Wir haben: $\bar{0}=0\bar{v}_1$ mit $\bar{v}_1\in T$ gehört zu \widehat{U} . Weiter, $r(a_1\bar{v}_1+\ldots+a_k\bar{v}_k)=ra_1\bar{v}_1+\ldots+ra_k\bar{v}_k\in\widehat{U}$, falls $r\in\mathbb{K}$, $\bar{v}_i\in T$. Wenn

wir zwei lineare Kombinationen addieren: $(\sum_{i=1}^k a_i \bar{v}_i) + (\sum_{j=1}^\ell b_j \bar{u}_j)$, dann gehört

die Summe zu \widehat{U} . Zusammengefasst: \widehat{U} ist ein Untervektorraum. Weil $\exists 1 \in \mathbb{K}$, ist es $T \subseteq \widehat{U}$. Daraus $\langle T \rangle \subseteq \widehat{U}$.

Merken noch, dass $\widehat{U} \subseteq \langle T \rangle$, weil $\langle T \rangle$ ein Unterraum ist.

Bemerkung: $\langle \varnothing \rangle = \{\bar{0}\}.$

(FSU Jena) Lineare Algebra I 9.11.2015 19 / 25

Sei $T \subseteq V$ eine endliche nicht leere Teilmenge, $T = \{\bar{v}_1, \dots, \bar{v}_n\}$. Dann $\langle T \rangle = \{a_1\bar{v}_1 + \dots + a_n\bar{v}_n \mid a_i \in \mathbb{K}\}.$

Bezeichnung: $\langle T \rangle = \langle \bar{v}_1, \dots, \bar{v}_n \rangle$.

Beispiel

Sei $V=\mathbb{R}^3$, $\bar{e}_1=(1,0,0)$, $\bar{e}_2=(0,1,0)$, $\bar{e}_3=(0,0,1)$. Dann $\langle \bar{e}_1,\bar{e}_2,\bar{e}_3\rangle=V$, $(u_1,u_2,u_3)=u_1\bar{e}_1+u_2\bar{e}_2+u_3\bar{e}_3$. Merken,

$$\langle \bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{v}_1, \ldots, \bar{v}_k \rangle = V$$

für beliebige Vektoren $\bar{v}_1, \dots, \bar{v}_k \in V$.

Gehört der Vektor (3, -1, 4) zu ((1, 1, 0), (0, 1, 1))?

Definition (Def. 6.7.)

Eine Teilmenge $L\subseteq V$ eines \mathbb{K} -Vektorraums V heißt **linear unabhängig** genau dann, wenn für paarweise verschiedene Vektoren $\bar{v}_1,\ldots,\bar{v}_k\in L$ und beliebige Skalare $a_1,\ldots,a_k\in\mathbb{K}$ gilt:

$$a_1\bar{v}_1 + a_2\bar{v}_2 + \ldots + a_k\bar{v}_k = \bar{0} \Rightarrow a_1 = a_2 = \ldots = a_k = 0.$$

Eine Teilmenge $L\subseteq V$ eines \mathbb{K} -Vektorraums V heißt **linear abhängig** genau dann, wenn sie nicht linear unabhängig ist, wenn also paarweise verschiedene Vektoren $\bar{v}_1,\ldots,\bar{v}_k\in L$ und Skalare $a_1,\ldots,a_k\in\mathbb{K}$ mit

$$a_1\bar{v}_1 + a_2\bar{v}_2 + \ldots + a_k\bar{v}_k = \bar{0}, \{a_1, a_2, \ldots, a_k\} \neq \{0\}$$

existieren.

Bemerkung: Ø ist linear unabhängig.

Noch eine: Falls $\bar{0} \in L$, ist L linear abhängig.

Sei $L \subseteq V$ endlich und nicht leer, $L = \{\bar{v}_1, \dots, \bar{v}_k\}$.

L ist linear unabhängig $\Leftrightarrow \sum_{i=1}^{k} a_i \bar{v}_i \neq \bar{0}$ für alle Skalare $a_1, \ldots, a_k \in \mathbb{K}$, die nicht alle Null sind.

Beispiel

Sei $V=\mathbb{R}^3$, $\bar{e}_1=(1,0,0)$, $\bar{e}_2=(0,1,0)$, $\bar{e}_3=(0,0,1)$. Falls $a_1\bar{e}_1+a_2\bar{e}_2+a_3\bar{e}_3=\bar{0}$, dann $a_1=a_2=a_3=0$. Die Menge $\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ ist linear unabhängig.

Noch Beispiele.

- Sei |L| = 1, $L = \{\bar{v}\}$. Dann gilt: L ist linear unabhängig $\Leftrightarrow \bar{v} \neq \bar{0}$.
- ② $L = \{\bar{v}, \bar{u}\}$ ist linear abhängig $\Leftrightarrow (\bar{v} = a\bar{u} \lor \bar{u} = b\bar{v}$, wo $a, b \in \mathbb{K}$).
- ③ $L = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\} \subseteq \mathbb{R}^3$ ist linear abhängig \Leftrightarrow die Vektoren $\bar{v}_1, \bar{v}_2, \bar{v}_3$ in einer Ebene liegen.

 (FSU Jena)
 Lineare Algebra I
 9.11.2015
 22 / 25

Sei $V = \mathbb{K}^m$ und sei $L = \{\bar{v}_1, \dots, \bar{v}_k\} \subseteq V$. Wie stellen wir fest, dass L linear abhängig oder linear unabhängig ist?

Wir probieren die Gleichung $c_1\bar{v}_1 + \ldots + c_k\bar{v}_k = \bar{0}$ zu lösen. Eigentlich haben wir hier *m* Gleichungen.

Sei es
$$\bar{\mathbf{v}}_1 = \begin{pmatrix} \alpha_{11} \\ \vdots \\ \alpha_{m1} \end{pmatrix}, \dots, \bar{\mathbf{v}}_i = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{mi} \end{pmatrix}, \dots, \bar{\mathbf{v}}_k = \begin{pmatrix} \alpha_{1k} \\ \vdots \\ \alpha_{mk} \end{pmatrix}.$$

Also
$$c_1 \begin{pmatrix} \alpha_{11} \\ \vdots \\ \alpha_{m1} \end{pmatrix} + \ldots + c_i \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{mi} \end{pmatrix} + \ldots + c_k \begin{pmatrix} \alpha_{1k} \\ \vdots \\ \alpha_{mk} \end{pmatrix} = \overline{0}.$$

$$\text{Anders geschrieben} \left\{ \begin{array}{l} \alpha_{11}\textit{c}_1 + \ldots + \alpha_{1i}\textit{c}_i + \ldots + \alpha_{1k}\textit{c}_k = 0 \\ \vdots \\ \alpha_{m1}\textit{c}_1 + \ldots + \alpha_{mi}\textit{c}_i + \ldots + \alpha_{mk}\textit{c}_k = 0 \,. \end{array} \right.$$

(FSU Jena)

Die Vektoren
$$\bar{v}_1 = \begin{pmatrix} \alpha_{11} \\ \vdots \\ \alpha_{m1} \end{pmatrix}, \dots, \bar{v}_k = \begin{pmatrix} \alpha_{1k} \\ \vdots \\ \alpha_{mk} \end{pmatrix} \in \mathbb{K}^m$$
 sind linear

unabhängig ⇔ das homogene lineare Gleichungssystem

$$\begin{cases} \alpha_{11}x_1 + \ldots + \alpha_{1i}x_i + \ldots + \alpha_{1k}x_k = 0 \\ \vdots \\ \alpha_{m1}x_1 + \ldots + \alpha_{mi}x_i + \ldots + \alpha_{mk}x_k = 0 \end{cases}$$

besitzt nur eine, die triviale Lösung $(0,0,\ldots,0)$.

Wir werden sagen, dass die paarweise verschiedene Vektoren $\bar{v}_1, \ldots, \bar{v}_k$ linear unabhängig (bzw. abhängig) sind, falls die Menge $L = \{\bar{v}_1, \ldots, \bar{v}_k\}$ linear unabhängig (bzw. abhängig) ist.

 (FSU Jena)
 Lineare Algebra I
 9.11.2015
 24 / 25

Sei $L = {\bar{v}_1, \bar{v}_2, \bar{v}_3} \subset \mathbb{R}^3$ mit $\bar{v}_1 = (1, 1, 0), \bar{v}_2 = (0, 1, 1), \bar{v}_3 = (1, 0, 1).$ Ist L linear abhängig?

Angenommen: $c_1\bar{v}_1+c_2\bar{v}_2+c_3\bar{v}_3=\bar{0}$. Das Tupel (c_1,c_2,c_3) ist eine Lösung von

$$\begin{cases} x_1 + x_3 = 0 \\ x_1 + x_2 = 0 \\ x_2 + x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 + 0x_2 + x_3 = 0 \\ 0x_1 + x_2 - x_3 = 0 \\ 0x_1 + x_2 + x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 + 0x_2 + x_3 = 0 \\ 0x_1 + x_2 - x_3 = 0 \\ 0x_1 + 0x_2 + x_3 = 0. \end{cases}$$

Die einzige Lösung ist (0,0,0), d.h. L ist linear unabhängig.

 (FSU Jena)
 Lineare Algebra I
 9.11.2015
 25 / 25