

Introdução a Sistemas Inteligentes

Análise Exploratória

Parte 2

Prof^a. Suzana Mota

Porcentagem de Passageiros Sobreviventes no Titanic

Seja curioso e faça perguntas:

- Qual foi a porcentagem dos passageiros sobreviventes?
- Qual era a faixa etária dos passageiros que estavam no Titanic?
- Houveram mais crianças ou mais adultos que sobreviveram?
- O gênero influenciou na sobrevivência?
- E deixe a curiosidade fluir, para fazer outras perguntas!

Overview de dados

Fare = Tarifa (preço do bilhete)

Cabin = Cabine

```
PassengerId = ID do Passageiro
Survived = Sobreviveu (1 = Sim, 0 = Não)
Pclass = Classe do Bilhete (1ª, 2ª, 3ª Classe)
Name = Nome
Sex = Sexo
Age = Idade
SibSp = Número de Irmãos/Cônjuges a Bordo
Parch = Número de Pais/Filhos a Bordo
Ticket = Bilhete
```

Embarked = Embarcou (Porto de Embarque: C = Cherbourg, Q = Queenstown, S = Southampton)

Overview de dados

```
!pip install ydata_profiling
from ydata_profiling import ProfileReport
```

```
profile = ProfileReport(df)
profile
```

Survived Categorical	
Distinct	2
Distinct (%)	0.2%
Missing	0
Missing (%)	0.0%
Memory size	7.1 KiB

More details

Mediana x Média

O que fazer com os valores vazios?

A mediana é considerada uma medida melhor que a média em certos contextos, especialmente quando os dados contêm outliers (valores extremos) ou são assimétricos (não seguem uma distribuição simétrica).

Mediana x Média

Qual medida é mais representativa?

1.000

1.200

1.400

1.500

1.700

2.000

10.000

Média: R\$2.685

Situações:

Notas Altura

Peso

Mediana: R\$1.500

Situações:

Renda Preço com alta variação Idade

Comandos Básicos

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	P
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	S1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	

df.info()

#	Column	Non-	-Null Count	Dtype
0	PassengerId	891	non-null	int64
1	Survived	891	non-null	int64
2	Pclass	891	non-null	int64
3	Name	891	non-null	object
4	Sex	891	non-null	object
5	Age	714	non-null	float64
6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	204	non-null	object
11	Embarked	889	non-null	object
1.	C1 1 C 1 (2		104/51	1 / = 1

Comandos Básicos

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Comandos Básicos

df.describe()

Selecionando os dados

Selecionando uma coluna específica (Nome)

df['Name'].head()

	Name
0	Braund, Mr. Owen Harris
1	Cumings, Mrs. John Bradley (Florence Briggs Th
2	Heikkinen, Miss. Laina
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)
4	Allen, Mr. William Henry

Selecionando os dados

Selecionando múltiplas colunas (Nome, Idade, Sobrevivente)

df[['Name', 'Age', 'Survived']].head()

	Name	Age	Survived
0	Braund, Mr. Owen Harris	22.0	0
1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1
2	Heikkinen, Miss. Laina	26.0	1
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	1
4	Allen, Mr. William Henry	35.0	0

Filtrando os dados

Filtrando os passageiros que sobreviveram Filtro Booleano

df[df['Survived'] == 1].head()

df['S	urvived']	== 1
	Survived	
0	False	
1	True	
2	True	
3	True	
4	False	

	1927/20	252 ¥ 12	200	
Passe	ngerId	Survived	Pclass	
1	2	1	1	(
2	3	1	3	
3	4	1	1	
8	9	1	3	J

Filtrando os dados

Filtrando os passageiros que sobreviveram Query

df.query('Survived==1').head()

uı	.query('Survi	veu==1).1	leau ()	
	PassengerId	Survived	Pclass	
1	2	1	1	
2	3	1	3	
3	4	1	1	
8	9	1	3	,
9	10	1	2	

quary//Curvivad-11/ hand//

Lidando com Dados Faltantes

Verificando onde há valores faltantes

df.isnull().sum()

Passengerld Survived 0 Pclass Name Sex 0 Age SibSp Parch **Ticket** Fare 0 Cabin 687

0

Lidando com Dados Faltantes

```
df['Age'].describe()
# Substituir valores faltantes na coluna 'Age' pela mediana
df['Age'].fillna(df['Age'].median(), inplace=True)
                                                                               Age
                                                                   count 891,000000
                                                                          29.361582
                                                                   mean
# Substituir valores faltantes na coluna 'Age' pela mediana,
                                                                    std
                                                                          13.019697
sem inplace = True
                                                                    min
                                                                           0.420000
df['Age'] = df['Age'].fillna(df['Age'].median())
                                                                    25%
                                                                          22.000000
                                                                    50%
                                                                          28.000000
                                                                    75%
                                                                          35.000000
                                                                          80.000000
                                                                    max
```

Visualização de Dados

Histograma

Um histograma é um gráfico que representa a **distribuição de um conjunto de dados**, dividindo-os em intervalos (bins) e contando quantas observações caem em cada intervalo.

Bin 1: 0 a 16 anos

Bin 2: 16 a 32 anos

Bin 3: 32 a 48 anos

Bin 4: 48 a 64 anos

Bin 5: 64 a 80 anos

Histograma

```
🔏 [31] plot_histogram(df, 'Age', bins=8, title='Distribuição das Idades dos Passageiros do Titanic', xlabel='Idade', ylabel='Número de Passageiros') 💡
```


Gráfico de Barras Comparativo

Os gráficos de barras comparativos permitem que duas ou mais séries de dados sejam comparadas lado a lado para facilitar a análise e interpretação.

Boxplot

O box plot, também conhecido como diagrama de caixa, é uma representação gráfica que permite visualizar a distribuição de um conjunto de dados através de seus quartis, além de identificar a presença de outliers.

Boxplot

Gráfico de Pizza

Proporção de Sobreviventes e Não Sobreviventes no Titanic

É uma representação gráfica que mostra a proporção de diferentes categorias em um conjunto de dados.

SEMPRE UTILIZE COM OS
VALORES EM PORCENTAGEM
BEM DESCRITOS!