Pràctica 5 grup B2: Números aleatoris 1

Qüestió 5: 0) Anomena el programa randomP5.f, amb una subrutina per a cada apartat. Escriu els resultats dels apartats 1b), 1c), 2a), i 2c), dins d'un fitxer resultsP5.dat amb els textos explicatius necessaris.

1) Distribució uniforme, U(0,2)

Escriu una subrutina subuni(ndim,ncaixes), dins d'aquesta:

- a) Genera amb la funció intrínseca \mathbf{rand} una sequencia de \mathbf{ndim} valors de la variable aleatòria $x \in U(0,1)$. Fent servir un canvi de variable genera a partir dels x, una sequència de números $z \in U(0,2)$ i els escrius en un fitxer $\mathbf{mynumsP5.dat}$. Fes servir com a llavor el teu número NIUB (explicat a la prepràctica)
- b) Calcula el valor mitjà, la variància i la desviació estàndard de la variable z i compara'ls amb els valors exactes per a la distribució uniforme U(0,2) per $\mathbf{ndim} = \mathbf{12000}$.
- c) Calcula els moments centrals d'ordre superior,

$$\langle (z - \langle z \rangle)^m \rangle = \text{ amb } m = 3, \dots, 10$$
 (1.35)

per a ndim=12000 i compara'ls amb els valors exactes:

$$\langle (z - \langle z \rangle)^m \rangle = \frac{1 + (-1)^m}{2(1+m)}. \tag{1.36}$$

c) Genera un histograma amb els valors de z de ncaixes=50 caixes de la mateixa mida i fes una gràfica de l'histograma normalitzat, histo1P5.png. Estima l'error de cada barra de l'histograma fent servir la distribució binomial corresponent (explicat a classe). Escriu en un fitxer histo1P5.dat el valor central de cada y_k , el seu valor p_k i l'error estimat.

2) Mètode d'acceptació i rebuig

Escriu una subrutina subair(naccep,ncaixes).

Fent servir el mètode d'acceptació i rebuig explicat a la prepràctica considera $y \in (-\pi, \pi)$ i $\rho(y) = (1/4)\sin(|y|)$.

- a) Per a $\mathbf{naccep} = \mathbf{8000}$, calcula el valor mitjà, la variància i la desviació estàndard de la variable \mathbf{y} , i compara'ls amb els valors exactes per a la distribució $\rho(y)$, $\mathrm{Var}[y] = (\pi^2 4)/2$.
- b) Genera un histograma amb els valors de y de ncaixes=80 caixes de la mateixa mida i escriu en un fitxer el valor central de cada caixa y_C i la seva freqüència histo2P5.dat comparat amb $\rho(y)$, histo2P5.png, per a naccep=8000.
- c) Considera que la variable y es correspon amb la posició d'un àtom confinat a la regió de l'espai $y \in (-\pi,\pi)(\mu m)$ i que $\rho(y)$ és la densitat de probabilitat de trobar l'àtom a la posició y, amb unitats $(\mu m)^{-1}$. A partir de l'histograma de l'apartat 2c) calcula la probabilitat de trobar l'àtom dins $y \in (0,\pi/4)\mu m$.

Extra: Construeix la teva subrutina \mathbf{subuni} amb només un bucle, fes servir el binomi de Newton, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

Entregables: 1 codi amb 2 subrutines, 4 fitxers de dades, 2 figures