Astrofisica

Marco Militello

Indice

1 Introduzione 2

Capitolo 1

Introduzione

Spettro elettromagnetico

 $\text{Spettro corpo nero:} \begin{cases} \nu_{max} = 10^{11} Hz \\ \lambda_{max} T = 3 \times 10^6 nm \cdot K \end{cases}$ Osservazione di tutto lo spettro elettromagnetico: telescopi terrestri e telescopi spaziali a seconda della

frequenza

Tecniche di osservazione

Risoluzione angolare $\to \theta \simeq 1.22 \frac{\lambda}{D}$ con λ lunghezza d'onda e D diametro del telescopio; per l'occhio si ha una risoluzione angolare di 60 arcsec: se la dimensione dell'oggetto da osservare è minore di 60 arcsec allora l'occhio lo vede come un punto; se la distanza tra due oggetti è minone di 60 arcsec allora li vediamo sovrapposti.

Gli effetti atmosferici peggiorano la visione: per esempio l'umidità, che deve essere bassa. Tecniche interferometriche migliorano la risoluzione (esempio l'utilizzo di diversi telescopi). Oltre a misurare la posizione degli oggetti si può misurare il flusso, lo spettro e la polarizzazione

Coordinate

- Celesti: per astronomia amatoriale, non professionale Da equatore celeste divido la volta celeste in 2 emisferi
 - Nord { Declinazione: da 0° a 90° (asse di rotazione terrestre) Ascensione retta: da 0 a 24 ore
 Sud { Declinazione: da 0° a -90° (asse di rotazione terrestre) Ascensione retta: da 0 a 24 ore
- Galattiche: da piano della galassia in cui ci troviamo.
 - Latitudine: da -90° a 90° \rightarrow 0° piano della galassia
 - Longitudine: da 0° a 360° \rightarrow senso antiorario

Centro galattico è il centro della galassia

Proiezioni

• Proiezione azimutale equidistante: centro latitudine corrisponde a 90°, mentre l'esterno corrisponde a 0°; si hanno minime distorsioni, ma visualizzo solo metà volta celeste

• Proiezione di Hammer-Aitoff: rappresentazione completa della volta celeste, ma si hanno forti distorsioni ai poli. Il piano della galassia è il piano centrale orizzontale. Solitamente in astrofisica si usa questa rappresentazione

Visulizzazioni

• Ottico: a causa delle polveri il centro della galassia è molto oscurato. L'assorbimento galattico è descritto dalla funzione

$$I = I_0 e^{-\alpha r}$$

dove r è la distanza tra noi e l'oggetto osservato, mentre α è proporzionale a λ^{-1}

• Infrarosso: l'ssorbimento galattico è minore, quindi si vede molto meglio il centro della galassia (si rimuove parte delle polveri). Si possono trovare alcune bande infrarosso anche sulla terra. Anche noi emettiamo infrarosso, quindi rischio di avere rumore termico nelle mie misure: posso tenere il telescopio a basse temperature per diminuire il problema.

Dall'infrarosso in poi si usano falsi colori: associo colore in base all'intensità della radiazione.

- Microonde: porta a scoperta della radiazione di fondo cosmica
- Radio: porta a due scoperte
 - 1. Stella di neutroni, grazie ad un segnale periodico; pulsar non si vedono nell'ottico
 - 2. Quasar
- Raggi-x: si vedono solo in orbita, non a terra. Portano prima prova dell'esistenza dei buchi neri: si capta emissione di materia che cadeva nel buco nero. Il buco nero invece non emette radiazione.
- Raggi-γ: porta scoperta dei gamma-ary bursts.
 Neutrini: particelle che interagiscono per interazione debole (anche il sole li emette). Esplosione supernova è una sorgente di neutrini; l'unica prova diretta di un'esplosione di una supernova è SN1987A

Onde gravitazionali

Sono state captate da interferometri a terra nel 2015, ma predette già dalla relatività generale. Le distorsioni dello spazio-tempo si propagano come un'onda.

Le sorgenti più luminose sono le binare, 2 oggetti compatti che ruotano.