Chapitre 4 - Nombres Complexes

Table des matières

I Forme cartésienne

Définition 1. L'enesemble $\mathbb C$ des nombres complexes est l'ensemble des nombres :

$$\mathbb{C} := \{ x + iy \mid (x, y) \in \mathbb{R}^2 \},\$$

où i est un nombre spécial vérifiant $i^2 = -1$.

Remarques:

- Cette notation s'appelle la forme cartésienne ou algébrique d'un nombre complexe.
- Deux nombres complexes sont égaux si ils ont même partie réelle et même partie imaginaire.

Définition 2. Soit z = x + iy un nombre complexe. On note

$$\mathfrak{Re}(z) = x$$
 et $\mathfrak{Im}(z) = y$

On appelle respectivement ces nombres, partie réelle et partie imaginaire de z.

Remarques:

- Lorsque $\mathfrak{Im}(z) = 0$, z est un nombre **réel**.
- Lorsque $\mathfrak{Re}(z) = 0$, z est un nombre **imaginaire pur**. On note

$$i\mathbb{R} := \{iy \mid y \in \mathbb{R}\},\$$

l'ensemble des imaginaires purs.

Les calculs sur les nombres complexes généralisent naturellement ceux sur les réels avec la condition $i^2=-1$

Proposition 1. L'addition sur les nombres complexes vaut :

$$(x+iy) + (x'+iy') = (x+x') + i(y+y')$$

La multiplication sur les nombres complexes est définie par :

$$(x + iy) \times (x' + iy') = (xx' - yy') + i(xy' + x'y)$$

Exemples: Calculer $z_1 = (1+5i)(3+i)$, $z_2 = \frac{1}{i}$, $z_3 = \frac{1}{1+i}$ et $z_4 = (2-i)^2$

Proposition 2. Soit $(z, z') \in \mathbb{C}^2$ et $\lambda \in \mathbb{R}$, on a :

$$\begin{split} \mathfrak{Re}(z+z') &= \mathfrak{Re}(z) + \mathfrak{Re}(z') \quad \text{ et } \quad \mathfrak{Re}(\lambda z) = \lambda \mathfrak{Re}(z) \\ \mathfrak{Im}(z+z') &= \mathfrak{Im}(z) + \mathfrak{Im}(z') \quad \text{ et } \quad \mathfrak{Im}(\lambda z) = \lambda \mathfrak{Im}(z) \end{split}$$

Remarques:

• In général $\mathfrak{Re}(zz') \neq \mathfrak{Re}(z)\mathfrak{Re}(z')$ et $\mathfrak{Im}(zz') \neq \mathfrak{Im}(z)\mathfrak{Im}(z')$

I. 1 Interprétation graphique

A l'instar des nombres réels qui s'identifient à la droite, les nombres complexes s'identifient au plan.

Définition 3. On associe à chaque nombre complexe $z \in \mathbb{C}$ le point de \mathbb{R}^2 de coordonnées $(\mathfrak{Re}(z),\mathfrak{Im}(z))$.

Inversement, pour tout point A (ou vecteur u) de \mathbb{R}^2 , de coordonnées $A = (x_A, y_A)$ (resp $u = (x_u, y_u)$) on associe le nombre complexe $z = x_A + iy_A$ (resp. $z = x_u + iy_u$). On appelle **affixe** de A (resp. de u) ce nombre.

Figure 1 – Plan complexe et affixe

Somme : L'addition de deux vecteurs correspond à l'addition des affixes correspondantes :

Multiplication par un <u>réel</u> $\lambda > 0$ correspond à faire une homothétie de rapport λ .

I. 2 Conjugué d'un nombre complexe

Définition 4. Soit $z=x+iy,\,(x,y)\in\mathbb{R}^2$ un nombre complexe. On définit le conjugué de z par :

$$\overline{z} = x - iy.$$

${\bf Remarques:}$

- $\mathfrak{Re}(\overline{z}) = \mathfrak{Re}(z)$ et $\mathfrak{Im}(\overline{z}) = -\mathfrak{Im}(z)$
- Géométriquement cela correspond à faire une symmétrie par rapport à l'axe des abscisses :

Figure 2 – Conjugué

1. La conjugaison est **involutive** : $\forall z \in \mathbb{C}, \overline{\overline{z}} = z$. Proposition 3.

2. La conjugaison est linéaire :

$$\forall z, z' \in \mathbb{C}, \, \forall \lambda \in \mathbb{R}, \, \overline{z+z'} = \overline{z} + \overline{z'} \quad \text{et} \quad \overline{\lambda z} = \lambda \overline{z}.$$

3. La conjugaison passe au produit et au quotient

$$\forall z, z' \in \mathbb{C}, \ \overline{zz'} = \overline{z}\overline{z'},$$

$$\forall z, z' \in \mathbb{C}, z' \neq 0 \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}.$$

Proposition 4. Pour tout $z \in \mathbb{C}$ on a

$$\mathfrak{Re}(z) = \frac{1}{2}(z + \overline{z})$$

$$\mathfrak{Im}(z) = \frac{1}{2i}(z - \overline{z})$$

 \triangle Ne pas oubliez la division par i dans la partie imaginaire.

Figure 3 – Interpretation graphique $\mathfrak{Re}(z) = \frac{1}{2}(z + \overline{z})$

Figure 4 – Interpretation graphique $\mathfrak{Im}(z) = \frac{1}{2i}(z - \overline{z})$

Proposition 5.

$$(z \in \mathbb{R}) \iff (z = \overline{z})$$

$$(z \in i\mathbb{R}) \Longleftrightarrow (z = -\overline{z})$$

II Forme trigonométrique

II. 1 Module d'un nombre complexe

Définition 5. Pour tout nombre complexe z = x + iy, $(x, y) \in \mathbb{R}^2$, on définit le module de z par :

$$|z| = \sqrt{x^2 + y^2}.$$

Remarques:

- Sur R le module et valeur absolue coïncident, ce pourquoi on utilise la même notation.
- $\forall z \in \mathbb{C}, |z| \geq 0$, de plus |z| = 0 si et seulement si z = 0.
- $\forall z, z' \in \mathbb{C}^2$, |z z'| = 0 si et seulement si z = z'.
- Le module correspond à la norme du vecteur définie par le point d'affixe z. |z-z'| désigne la distance entre les points d'affixes z et z'.

Figure 5 – Interpretation graphique du module

Proposition 6.
$$\forall z, z' \in \mathbb{C}^2$$
, $|zz'| = |z||z'|$ et pour $z' \neq 0$: $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

Proposition 7. Pour tout $z \in \mathbb{C}$:

$$z\overline{z} = |z|^2$$
 et $|\overline{z}| = |z|$.

IL n'y a pas d'ordre sur $\mathbb C$ (qui généralise l'ordre sur $\mathbb R$ et qui est compatible avec les opérations de base). Pour obtenir des inégalités on doit être sur $\mathbb R$

Proposition 8. Pour tout $z \in \mathbb{C}$:

$$|\mathfrak{Re}(z)| \le |z|$$
 et $|\mathfrak{Im}(z)| \le |z|$.

Proposition 9. 1. (Inégalité triangulaire sur C.)

$$\forall z, z' \in \mathbb{C}^2, |z + z'| \le |z| + |z'|.$$

L'égalité a lieu si et seulement si il existe $\lambda \in \mathbb{R}^+$ tel que $z = \lambda z'$ ou si z' = 0.

2. Soit $(z, z') \in \mathbb{C}^2$, on a:

$$\Big||z| - |z'|\Big| \le |z - z'|$$

II. 2 Cercle trigonométrique

Définition 6. Le *cercle trigonométrique* est le cercle du plan de rayon 1 et de centre (0,0).

FIGURE 6 – Cercle trigonométrique.

Proposition 10. Dans \mathbb{R}^2 le cercle trigonométrique peut se paramétrer de la manière suivante :

$$C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

Avec les nombres complexes il peut se paramétrer de la manière suivante :

$$\mathcal{C}=\{z\in\mathbb{C}\,|\,|z|=1\}.$$

II. 3 Argument d'un nombre complexe

Définition 7. Pour un point du cercle trigonométrique on définit son argument par la longueur algébrique de l'arc entre le point 1+0i et le point z. Le sens positif est choisi de tel sorte que l'argument de i est égal à $\frac{\pi}{2}$.

Cette unité est le radian.

FIGURE 7 – Cercle trigonométrique orienté.

Définition 8. Pour nombre complexe non nul $z \in \mathbb{C}$, on définit son argument comme l'argument de $\frac{z}{|z|}$.

Remarques:

- L'argument n'est pas défini pour 0.
- L'argument n'est défini qu'à 2π près. On appelle argument principal l'unique argument dans $]-\pi,\pi]$, on le note $\arg(z)$
- Deux nombres complexes sont égaux si et seulement si ils ont le même module et le même argument principal (ou si ils sont nuls tous les deux).

Proposition 11. Pour tout $z \in \mathbb{C}^*$ et tout $\lambda \in \mathbb{R}^+$ on a

- 1. $arg(-z) = arg(z) + \pi$ [2 π]
- 2. $arg(\overline{z}) = -arg(z)$ [2 π]
- 3. $arg(\lambda z) = arg(z)$
- 4. $\arg(z) = \arg(z')$ [2 π] si et seulement si $\frac{z}{z'} \in \mathbb{R}_+^*$
- 5. $\arg(z) = \arg(z') \quad [\pi]$ si et seulement si $\frac{z}{z'} \in \mathbb{R}^*$

Exercice 1. Exprimer $\arg\left(\frac{1}{z}\right)$ en fonction de $\arg(z)$

Interprétation géométrique : Soit A et B deux points du plan d'affixes respectives z_A et z_B . On a

$$\operatorname{arg}\left(\frac{z_B}{z_A}\right) = \operatorname{arg}(z_B) - \operatorname{arg}(z_A) = \text{l'angle } OAOB$$

II. 4 Forme trigonométrique

Théorème 12. Soit $z \in \mathbb{C}^*$, alors z s'écrit de manière unique sous la forme

$$z = \rho(\cos(\theta) + i\sin(\theta)),$$

avec $\rho > 0$ et $\theta \in]-\pi,\pi]$.

Cette écriture est appelée forme trigonométrique de z.

Démonstration. $\frac{z}{|z|} \in U$, on pose $\theta = \arg(z) = \arg(\frac{z}{|z|})$, on a $\cos(\theta) = \Re(\frac{z}{|z|})$ et $\sin(\theta) = \Im(\frac{z}{|z|})$. Ainsi

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

Exemple: Mettre $z = -3 + \sqrt{3}i$ sous forme trigonométrique.

III Forme Exponentielle

III. 1 Exponentielle complexe

Définition 9. Pour tout $\theta \in \mathbb{R}$ on note

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

Remarques:

• $e^{i\theta}$ est le point du cercle trigonoùétrique d'argument θ .

FIGURE 8 – Représentation de $e^{i\theta}$.

Exemples:

$$e^{i0} = 1$$
 $e^{i\pi} = -1$ $e^{i\pi/2} = i$.

Proposition 13. 1. $\forall \theta \in \mathbb{R}, \forall k \in \mathbb{Z}, e^{i\theta + 2k\pi} = e^{i\theta}$

2.
$$\forall \theta, \theta' \in \mathbb{R}^2, e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$$

3.
$$\forall \theta \in \mathbb{R}, \ \frac{1}{e^{i\theta}} = e^{-i\theta} = \overline{e^{i\theta}}$$

4.
$$\forall \theta \in \mathbb{R}, \forall n \in \mathbb{Z}, \left(e^{i\theta}\right)^n = e^{in\theta}$$

5.
$$\forall \theta \in \mathbb{R}, |e^{i\theta}| = 1$$

6.
$$U = \{e^{i\theta}|\theta \in \mathbb{R}\} = \{e^{i\theta}|\theta \in]-pi,\pi]\}$$

 $D\'{e}monstration.$ (2)

Définition 10. Soit $\lambda \in \mathbb{R}$ et $\theta \in \mathbb{R}$ on pose :

$$e^{\lambda + i\theta} = e^{\lambda} e^{i\theta}.$$

Remarques:

• On aurait pu dire $\forall z = x + iy \in \mathbb{C}, (x, y) \in \mathbb{R}^2$ on pose

$$e^z = e^x e^{iy}$$
.

Proposition 14. Pour tout $z, z' \in \mathbb{C}$ on a

$$e^{z+z'} = e^z e^{z'}$$
 et $\frac{1}{e^z} = e^{-z}$.

Pour tout $n \in \mathbb{Z}$:

$$(e^z)^n = e^{zn}.$$

III. 2 Forme exponentielle

Théorème 15. Soit $z \in \mathbb{C}^*, \, z$ s'écrit de manière unique sous la forme

$$z = \rho e^{i\theta}$$

avec $\rho > 0$ et $\theta \in]-\pi,\pi].$ Cette écriture s'appelle la forme exponentielle de z.

Remarques:

• Soit $z = \rho e^{i\theta}$ sous forme trigonométrique. On a alors

$$\rho = |z|$$
 et $\theta = \arg(z)$.

• Multplier par un nombre de la forme $\rho e^{i\theta}$ revient géométriquement à faire une rotation d'angle θ et une homothétie de rapport ρ .

Proposition 16. Pour tout $z, z' \in \mathbb{C}^*$:

$$arg(zz') = arg(z) + arg(z')$$
 [2 π]

$$\arg(\frac{z}{z'}) = \arg(z) - \arg(z')$$
 [2 π]

IV Application des nombres complexes

IV. 1 Polynôme de degré 2

Les nombres complexes permettent de résoudre toutes les équations polynomiales du second degré.

Théorème 17. Soit $P(z) = az^2 + bz + c$ un polynome de degré 2 (ie $a \neq 0$) à coefficients réels. P posséde 2 racines (avec multiplicité) dans \mathbb{C} . Plus précisément on a la trichotomie suivante, selon le signe du discriminant $\Delta = b^2 - 4ac$:

— Si $\Delta > 0$ Alors P admet deux racines réelles distinctes :

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $r_2 = \frac{-b - \sqrt{\Delta}}{2a}$

— Si $\Delta = 0$ Alors P admet une racine réelle (double)

$$r = \frac{-b}{2a}$$

— Si $\Delta < 0$ Alors P admet deux racines complexes distinctes :

$$r_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $r_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$

Théorème 18. Soit $P(x) = ax^2 + bx + c$ un polynôme de degré 2. Soit r_1, r_2 ses racines (possiblement $r_1 = r_2$). On a alors:

$$P(x) = a(x - r_1)(x - r_2)$$

En particulier, $r_1r_2 = \frac{c}{a}$ et $r_1 + r_2 = \frac{-b}{a}$

Ces résultats se généralisent doublement :

- Aux polynômes à coefficients complexes.
- Aux polynômes de degré quelconque.

Le théorème suivant est une des bases de l'algébre moderne :

Théorème 19 (D'alembert Gauss). Soit P un polynôme de degré n à coefficients complexes. Alors P admet exactement n racines dans \mathbb{C} (à multiplicité prés).

En particulier, tout polynôme non constant admet au moins une racine dans C.

Dans le cours de BCPST, on s'intéressera à une petite généralisation, à savoir la résolution des équations polynomiales du type :

$$z^2 = a$$

avec $a \in \mathcal{B}$.

La notion de racine n'est pas bien définie dans \mathbb{C} car il n'y a pas de relation d'ordre. Dans \mathbb{R} on a choisi, par convention de prendre la racine positive, mais il n'est pas possible de faire un tel choix dans \mathbb{C} . Ainsi on ne notera jamais racine (z) avec le symbole racine.

Comment faire alors pour résoudre $z^2=a$? L'idée est de mettre a sous forme exponentielle puis de 'deviner' les solutions.

Théorème 20. Soit a un nombre complexe non nul, et $\rho \in \mathbb{R}_+$, $\theta \in \mathbb{R}$ tel que $a = \rho e^{i\theta}$. L'équation $z^2 = a$ admet alors deux solutions :

$$z_1 = \sqrt{\rho}e^{rac{i heta}{2}}$$
 et $z_2 = -\sqrt{\rho}e^{rac{i heta}{2}} = \sqrt{\rho}e^{rac{i heta+i2\pi}{2}}$

Exemples Résoudre dans C les équations suivantes :

$$-z^2 = 1 + i$$

$$- z^3 - z^2 + z - 1 = 0$$

$$-z^2 = \frac{2+2i}{1-i}$$

IV. 2 Trigonométrie

Proposition 21. $\forall \theta \in \mathbb{R}$

$$\cos(\theta) = \mathfrak{Re}(e^{i\theta})$$
 et $\sin(\theta) = \mathfrak{Im}(e^{i\theta})$.

Proposition 22 (Formule d'Euler). $\forall \theta \in \mathbb{R}$

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$).

 \triangle Ne pas oublier le i au dénominateur

Angle moitié $\forall (a, b) \in \mathbb{R}^2$,

$$e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right) = 2\cos\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}}$$

Exercice 2. Pour $\theta \notin 2\pi \mathbb{Z}$ simplifier l'expression $\frac{1-e^{i\theta}}{1-e^{i\theta}}$

Proposition 23 (Formule de Moivre). Soit $\theta \in \mathbb{R}$, et $n \in \mathbb{Z}$:

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(\theta)$$

Linéarisation La formule de Moivre permet de linéariser les formules avec sin et cos, c'est-à-dire passer de $\cos^p(\theta)\sin^q(\theta)$ à une somme contenant que des termes de la forme $\cos(n\theta)$ et $\sin(n\theta)$.

• On utilise la formule d'Euler :

$$\cos^{p}(\theta)\sin^{q}(\theta) = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{p} \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{a}.$$

- On développe avec la formule du binôme de Newton.
- On rassemble les termes de même exposant pour retrouver des sin et cos.

Exercice 3. Pour $\theta \in \mathbb{R}$, linéariser $\sin^5(\theta)$. Pour $\theta \in \mathbb{R}$, linéariser $\sin^2(\theta)\cos^3(\theta)$.

Délinéarisation Si on cherche à faire l'opération inverse, passer d'une formule avec des somme de $sin(n\theta)$ et $cos(n\theta)$ a des produits. (C'est plus rare de vouloir faire ca)

IV. 3 Suite récurrente linéaire d'ordre 2

Racine *n*-eme de l'unité (Hors Programme) V

Hors programme mais tellement classique.

Définition 11. Soit $n \in \mathbb{N}^*$. On appelle racine n-ième de l'unité, tout nombre complexe $z \in \mathbb{C}$ tel que

$$z^n = 1.$$

Exemples

- 1. Les racines secondes de 1 sont les nombres z = 1 et z = -1.
- 2. Les racines troisièmes de 1 sont les nombres z=1 et z=j et $z=j^2$.

Théorème 24. Pour tout $n \in \mathbb{N}^*$, il y a exactement n racines n-ièmes de l'unité. Elles sont données par

$$U_n = \{ \xi_k = e^{\frac{2ik\pi}{n}} \mid k \in [0, n-1] \}.$$

 $D\'{e}monstration.$

Exercice 4. Pour tout $n \ge 2$, pour tout $k \in [0, n-1]$, on pose $\xi_k = e^{\frac{2ik\pi}{n}}$,

$$\sum_{k=0}^{n-1} \xi_k = 0 \quad \text{et} \quad \prod_{k=0}^{n-1} \xi_k = (-1)^{n-1}.$$