Evaluating Multilevel Predictions fromTrading Data

⇒Sven Banisch Robin Lamarche-Perrin Eckehard Olbrich

--- Max-Planck-Institut für

Mathematik
in den Naturwissenschaften

DPG Frühjahrstagung 2016

Regensburg

Overview

- This work is an attempt to apply the theoretical ideas developed in
 - R. Lamarche-Perrin, S. Banisch and E. Olbrich, The Information Bottleneck Method for Optimal Prediction of Multilevel Agent-based Systems, accepted by ACS / MPIMIS preprint 55/2015
- in the context of trading data and studies on economic complexity
 - Hidalgo/Hausmann The building blocks of economic complexity PNAS 106 (2009) 10570–10575.
 - Tacchella et al. A new metrics for countries' fitness and products' complexity Scientific reports 2 (2012).
 - Cristelli et al. The Heterogeneous Dynamics of Economic Complexity PLoS ONE 10(2) (2015), e0117174.
- Objectives:
 - evaluation of predictive power of proposed and alternative measures
 - refined understanding of different predictability regimes (CHRISTELLI ET AL. 2015)

Predicting Multilevel Systems General Setting

$$X^0 \xrightarrow{T^t} X^t \xrightarrow{T^{\tau}} X^{t+\tau}$$

- Markovian Kernel $T(X^{t+1}|X^t)$
- Initial State $X^0 \in \Sigma$
- Current State $X^t \in \Sigma$ with Current Time $t \in \mathbb{N}$
- Future State $X^{t+\tau} \in \Sigma$ with Prediction Horizon $\tau \in \mathbb{N}$

Predicting Multilevel Systems General Setting

- Markovian Kernel $T(X^{t+1}|X^t)$
- Initial State $X^0 \in \Sigma$
- Current State $X^t \in \Sigma$ with Current Time $t \in \mathbb{N}$
- Post-measurement $\psi: \Sigma \to \mathcal{S}_{\psi}$ defined by $\Pr(\psi(X)|X)$

Predicting Multilevel Systems > General Setting

- Markovian Kernel $T(X^{t+1}|X^t)$
- Initial State $X^0 \in \Sigma$
- Current State $X^t \in \Sigma$ with Current Time $t \in \mathbb{N}$
- Future State $X^{t+\tau} \in \Sigma$ with Prediction Horizon $\tau \in \mathbb{N}$
 - Post-measurement $\psi:\Sigma o\mathcal S_\psi$ defined by $\Pr(\psi(X)|X)$
- Pre-measurement $\phi: \Sigma \to \mathcal{S}_{\phi}$ defined by $\Pr(\phi(X)|X)$

Predicting Multilevel Systems Aggregation

- Naively one might think that aggregation always means losing information and therefore the microscopic description would be the best
- However:
 - In most cases no complete microscopic model $(X^t \xrightarrow{T^{\tau}} X^{t+\tau})$ is available, thus the predictor has to be inferred from the data
 - ⇒ The microscopic state space is high-dimensional which leads to exponentially increasing data requirements and makes inference at this level often infeasible in practice

 It might be useful to explore observables on different levels of aggregation!

Individuals/Households

Firms/Production

Trading Partners

Partner B

- In recent years large amounts of data on international trade have been made available
 - export/import volumes between countries for different products (based on UN Comtrade)

data set	countries	product	time
	(regions)	classes	
BACI	>200	≈ 5000	since 1994*
TradeMap	>200	5300	since 2001
CHELEM	95	71 (147 ISIC)	since 1967

^{*}data dating back to 1980 is available at lower resolution level

- In recent years large amounts of data on international trade have been made available
 - export/import volumes between countries for different products (based on UN Comtrade)
- ** Thanks to CEPII (http://www.cepii.fr) for providing us access to the CHELEM database.

- Measures of economic complexity (HIDALGO/HAUSMANN 2009) and fitness (TACCHELLA ET AL. 2012) proposed on the basis of trade data
 - Compute performance of countries based on their embeddedness in the trade network in the spirit of PageRank
 - Aggregate information from the structure of exports of countries into a single observable
 - Predictive power for growth potential of countries
- Aim here: evaluation of predictive power and comparison to less—aggregated observables
 - CHELEM database provides various product aggregations (production chains, stages, sectors, technological levels)
 - Expect that proportion of exports within the different aggregates is also informative about future
 - »Simple« and easy to interpret; does not take network structure into account

Aggretated and less aggregated observables

Aggregated

ECI: Economic
complexity
HIDALGO/HAUSMANN
2009
Fitness: Weighted
fitness TACCHELLA
ET AL. 2012

Less aggregated

Production stages Sectors Prodcution chains

Prediction Method

- Using observables at time t ($\phi_1(X^t), \phi_2(X^t)$) to predict the GDP at time $t + \tau$ ($\psi(X^{t+\tau})$) or the respective growth rate Similar to CRISTELLI ET AL. 2015
 - Binning the data and count the number of transitions $c(\phi_1 \in b_i \land \phi_2 \in b_i \rightarrow \psi \in l_k) = c(\{b_i, b_i\} \rightarrow l_k)$
 - Predictor: (empirical) conditional probability $P(l_k|\{b_i,b_j\}) = \frac{c(\{b_i,b_j\} \to l_k))}{c(\{b_i,b_j\})}$

Evaluating Probabilistic Forcasts

- Leaving-one out cross-validation: for each observation o, train predictor $P(l_k|\{b_i,b_j\})$ using all data except o
- Probabilistic forecasts can be evaluated by scoring rules. A scoring rule evaluates an observed data point o = (i, j, k) on the test data by assigning a score S(P, k).
- For *proper* scoring rules the expected score is maximized if *P* is the *true* distribution. Proper scores are:
 - Ignorance score: $S(l_k|\{b_i,b_j\}) = \log(P(l_k|\{b_i,b_j\}))$
 - Information-theoretic interpretation
 - Problem with unobserved transitions: $S(l_k|\{b_i,b_j\}) = -\infty$ if $P(l_k|\{b_i,b_j\}) = 0$
 - Quadratic score (used in the following): $S(l_k|\{b_i,b_j\}) = 2P(l_k|\{b_i,b_j\}) \sum_{k'} P(l_{k'}|\{b_i,b_j\})^2$
- We compare predictors using their average score over all data points o.

Results > Predicting the 5-years growth rate (1D & 2D)

- The best single pre-measurement is current GDP
- Augmented with weighted fitness the score increases considerably, but also most product aggregations provide additional information.

Results > Predicting the 5-years growth rate (3D & 4D)

- Coarse information on energy production (Section I) and several other aggregates provide useful additional information.
- i.p.: consumption goods, electronics, agriculture, metal products and textiles.

Results > Heterogeneous predictability through time

Overview

- This work is an attempt to apply the theoretical ideas developed in
 - R. Lamarche-Perrin, S. Banisch and E. Olbrich, The Information Bottleneck Method for Optimal Prediction of Multilevel Agent-based Systems, accepted by ACS / MPIMIS preprint 55/2015
- in the context of trading data and studies on economic complexity
 - Hidalgo/Hausmann The building blocks of economic complexity PNAS 106 (2009) 10570–10575.
 - Tacchella et al. A new metrics for countries' fitness and products' complexity Scientific reports 2 (2012).
 - Cristelli et al. The Heterogeneous Dynamics of Economic Complexity PLoS ONE 10(2) (2015), e0117174.
- We show:
 - Among the economic complexity measures, weighted fitness (TACCHELLA ET AL. 2015) performs best.
 - Product aggregates provide interpretable complementary information.
 - Evaluation method captures heterogeneous predictability in different time periods (crisis as non-stationarity?).
- Next: information-theoretic understanding & non-homogeneous predictors & optimal binning & etcetera