PDF 7.040 Dot Product (aka Scalar Product)

The dot product of the vectors \vec{a} and \vec{b} is equal to the magnitude of \vec{a} times the magnitude of \vec{b} times the cosine of the angle between them.

In other words,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Example 1

Given the magnitude of \vec{a} is 7, the magnitude of \vec{b} is 4, and that there is an angle of 60° between \vec{a} and \vec{b} , evaluate $\vec{a} \cdot \vec{b}$.

Example 2

Given the magnitude of \vec{a} is 9, magnitude of \vec{b} is 5, and that there is an angle of 140° between \vec{a} and \vec{b} , evaluate $\vec{a} \cdot \vec{b}$.

Relationship Between Dot Product and Angle Between Vectors

Assume that neither \vec{a} nor \vec{b} have a magnitude of 0, meaning that each of the magnitudes is positive.

Next, recall the following:

- 1. $\cos \theta > 0$ if $0^0 \le \theta < 90^0$ 2. $\cos \theta = 0$ if $\theta = 90^0$ 3. $\cos \theta < 0$ if $90^0 < \theta \le 180^0$

Since $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, therefore:

- 1. $\vec{a} \cdot \vec{b}$ is positive if θ is acute
- 2. $\vec{a} \cdot \vec{b} = 0$ if $\theta = 90^{\circ}$
- 3. $\vec{a} \cdot \vec{b}$ is negative if θ is obtuse
- * A significant detail of this course is that two vectors are perpendicular if and only if the dot product is 0

Example 3

Determine the value of $\vec{a} \cdot \vec{a}$ given that $|\vec{a}| = 7$

Properties of the Dot Product

Commutative Property: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

Associative Property: $(m\vec{a}) \cdot \vec{b} = m(\vec{a} \cdot \vec{b})$ For example, $(3\vec{a}) \cdot \vec{b} = 3(\vec{a} \cdot \vec{b})$

Distributive Property (2) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

$$(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$$

Example 4

Suppose the vectors $\vec{a} + 3\vec{b}$ and $4\vec{a} - \vec{b}$ are perpendicular and suppose that $|\vec{a}| = 2|\vec{b}|$. Determine the angle between the vectors \vec{a} and \vec{b} .

Example 5

If $|\vec{x} + \vec{y}| = |\vec{x} - \vec{y}|$, then prove that the non-zero vectors \vec{x} and \vec{y} are perpendicular.