Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ» Кафедра информатики

Отчет по лабораторной работе №11 Решение краевых задач. Методы коллокаций, наименьших квадратов и Галеркин

> Выполнил: студент гр. 953501 Кореневский С. А.

Руководитель: доцент Анисимов В. Я

Содержание

1. Цель работы	3
2. Теоретические сведения	3
3. Программная реализация	6
4. Выводы	10
5 Приложение	11

Цель работы:

- изучить методы коллокаций, наименьших квадратов и Галеркина, составить алгоритмы методов и программы их реализаций, составить алгоритм решения краевых задач указанными методами, применимыми для организации вычислений на ПЭВМ;
- составить программу решения краевых задач по разработанным алгоритмам;
- выполнить тестовые примеры и проверить правильность работы программ.
- получить численное решение заданной краевой задачи.

Краткие теоретические сведения:

Будем рассматривать дифференциальное уравнение второго порядка [3].

$$y'' + p(x)y' + q(x)y = f(x),$$
(2.1)

где p(x), q(x), f(x) — заданные непрерывные на отрезке [a, b] функции.

Напомним, что задача Коши для уравнения (2.1) сводится к нахождению решения y(x), удовлетворяющего начальным условиям:

$$\begin{cases} y(a) = A \\ y'(a) = A_1. \end{cases}$$

Краевой задачей называется задача нахождения решения y(x), удовлетворяющего граничным условиям:

$$\begin{cases} y(a) = A, \\ y(b) = B. \end{cases}$$

Краевая задача отличается от задачи Коши непредсказуемостью. Ее решение может существовать, не существовать, быть единственным, может быть бесконечно много решений.

Часто вместо граничных условий используют обобщенные граничные условия:

$$\begin{cases} \alpha_1 y(a) + \beta_1 y'(a) = A, \\ \alpha_2 y(b) + \beta_2 y'(b) = B. \end{cases}$$

Граничные условия называются *однородными*, если A = B = 0.

Соответственно, краевая задача называется *однородной*, если у нее однородные граничные условия и правая часть уравнения $f(x) \equiv 0$. Следующая теорема имеет важное теоретическое значение.

Теорема. Краевая задача имеет решение, причем единственное тогда и только тогда, когда соответствующая ей однородная краевая имеет только нулевое решение (тривиальное решение однородной краевой задачи).

Способы решения краевой задачи

Поскольку достаточно хороших аналитических методов нет, то для отыскания решения краевой задачи используются приближенные методы. Приближенное решение строят в виде линейной комбинации функций [4]:

$$y_n(x) = \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_n \varphi_n(x), \qquad (2.2)$$

где $\varphi_0(x)$ удовлетворяет граничному условию, а функции $\varphi_1(x),...,\varphi_n(x)$ — линейно независимы на [a, b] и удовлетворяют однородным граничным условиям.

Такая система дважды непрерывно дифференцируемых функций $\varphi_0(x), \varphi_1(x), ..., \varphi_n(x)$ называется базисной системой. Задача сводится к выбору коэффициентов $a_1, ..., a_n$ таких, чтобы функция $y_n(x)$ удовлетворяла граничному условию и была в некотором смысле близкой к точному решению.

Подставим приближенное решение (2.2) в уравнение (2.1). Полученное выражение

$$\psi(x, a_1, ..., a_n) = y_n''(x) + p(x)y_n'(x) + q(x)y_n(x) - f(x)$$
(2.3)

называют невязкой. Очевидно, что, если бы $\psi(x, a_1, ..., a_n) \equiv 0$, то $y_n(x)$ было бы точным решением. К сожалению, так бывает очень редко. Следовательно, необходимо выбрать коэффициенты таким образом, чтобы невязка была в некотором смысле минимальной.

Метод коллокаций

На отрезке [a, b] выбираются точки $x_1,...,x_m \in [a,b]$ $(n \ge m)$, которые называются точками коллокации. Точки коллокации последовательно подставляются в невязку. Считая, что невязка должна быть равна нулю в точках коллокации, в итоге получаем систему уравнений для определения коэффициентов $a_1,...,a_n$.

$$\begin{cases} \psi(x_1, a_1, \dots, a_n) = 0, \\ \dots \\ \psi(x_m, a_1, \dots, a_n) = 0. \end{cases}$$

Обычно m=n. Получается система из n линейных уравнений с n неизвестными (коэффициентами $a_1,...,a_n$):

$$\begin{cases} \psi(x_1, a_1, ..., a_n) = 0, \\ ... \\ \psi(x_n, a_1, ..., a_n) = 0. \end{cases}$$

Решая эту систему, найдем приближенное решение $y_n(x)$. Для повышения точности расширяем систему базисных функций. В значительной степени успех в применении метода зависит от удачного выбора базисной системы.

Тестовый пример 2.1

Пусть

$$y'' + (1 + x^2)y = -1,$$
 $-1 \le x \le 1,$

$$y(-1) = 0$$
, $y(1) = 0$.

Выберем базисную систему:

$$\varphi_0(x)=0$$
,

$$\varphi_1(x) = 1 - x^2$$
,

$$\varphi_2(x) = x^2(1-x^2).$$

Поскольку $\frac{\varphi_1}{\varphi_2} = \frac{1}{x^2} \neq \text{const}$, функции $\varphi_1(x)$ и $\varphi_2(x)$ линейно независимы.

Строим приближенное решение:

$$y_2(x) = a_1(1-x^2) + a_2(x^2-x^4)$$
.

Выберем точки коллокации:

$$x_1 = -\frac{1}{2},$$
 $x_2 = 0,$ $x_3 = \frac{1}{2}.$

Получаем систему уравнений:

$$\begin{cases} \psi\left(-\frac{1}{2}, a_1, a_2\right) = \frac{17}{16}a_1 + \frac{49}{64}a_2 - 1 = 0, \\ \psi\left(0, a_1, a_2\right) = a_1 - 2a_2 - 1 = 0, \\ \psi\left(\frac{1}{2}, a_1, a_2\right) = \frac{17}{16}a_1 + \frac{49}{64}a_2 - 1 = 0. \end{cases}$$

Решая ее, получим

$$y_2(x) = 0.957(1-x^2) - 0.022(x^2 - x^4)$$
.

Метод наименьших квадратов (МНК)

1. Интегральный МНК. Как и в методе коллокаций, приближенное решение строится по базисной системе. Но для нахождения коэффициентов при базисных функциях минимизируется интеграл от квадрата невязки [5]

$$I(a_1,...,a_n) = \int_a^b \psi^2(x,a_1,...,a_n) dx.$$
 (2.4)

Для нахождения минимума интеграла $I(a_1,...,a_n)$ вычисляем первые производные от интеграла по параметрам и, приравнивая их нулю, строим систему нормальных уравнений:

$$\begin{cases} \frac{\partial I}{\partial a_1} = 2 \int_a^b \psi(x, a_1, ..., a_n) \frac{\partial \psi(x, a_1, ..., a_n)}{\partial a_1} dx = 0, \\ ... \\ \frac{\partial I}{\partial a_n} = 2 \int_a^b \psi(x, a_1, ..., a_n) \frac{\partial \psi(x, a_1, ..., a_n)}{\partial a_n} dx = 0. \end{cases}$$
(2.5)

Решая ее, находим $a_1,...,a_n$.

2. Дискретный МНК. Выбирают N > n точек и решают задачу минимизации суммы:

$$S = \sum_{i=1}^{N} \psi^{2}(x_{i}, a_{1}, ..., a_{n}) \rightarrow \min.$$

Для ее решения строится система нормальных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_1} = 0, \\ \dots \\ \frac{\partial S}{\partial a_n} = 0. \end{cases}$$

Тестовый пример 2.2

Рассмотрим краевую задачу

$$y'' + (1+x^2)y = -1,$$
 $-1 \le x \le 1,$ $y(-1) = 0,$

y(1)=0.

Выберем базисную систему:

$$\varphi_0(x) = 0,$$

 $\varphi_1(x) = 1 - x^2,$
 $\varphi_2(x) = x^2(1 - x^2).$

Применяя метод наименьших квадратов, можно найти

$$y_2(x) = 0.985(1-x^2) - 0.078(x^2 - x^4).$$

Метод Галеркина

По базисной системе вновь строим приближенное решение в виде

$$y_n(x) = \varphi_0(x) + a_1\varphi_1(x) + ... + a_n\varphi_n(x)$$
.

Рассматриваем невязку $\psi(x, a_1, ..., a_n)$ и для определения коэффициентов при базисных функциях строим систему

$$\begin{cases} \int_{a}^{b} \psi(x, a_1, ..., a_n) \varphi_1(x) dx = 0, \\ ... \\ \int_{a}^{b} \psi(x, a_1, ..., a_n) \varphi_n(x) dx = 0. \end{cases}$$

Решая данную систему, находим значение $a_1,...,a_n$.

Тестовый пример 2.3

Рассмотрим краевую задачу

$$y'' + y = x, \qquad 0 \le x \le 1,$$

$$y(0) = y(1) = 0$$
.

Возьмем

$$\varphi_0=0$$
,

$$\varphi_i(x) = x^i(1-x), \qquad i = 1, 2, ...$$

Тогда, применяя метод Галеркина, получим

$$y_1(x) = \frac{5}{18}x(x-1),$$

$$y_2(x) = \frac{71}{369}x(1-x) + \frac{7}{41}x^2(1-x).$$

Сравним значения точного решения y(x) со значениями приближенных решений $y_1(x)$ и $y_2(x)$ в отдельных точках.

x_i	y(x)	$y_1(x)$	$y_2(x)$
0,25	0,044	0,052	0,044
0,5	0,07	0,069	0,062
0,75	0,06	0,052	0,06

3. Программная реализация

Методами коллокаций, галеркина, интегральным и дискретным методами наименьших квадратов и получить численное решение краевой задачи:

$$ay'' + (1 + bx^2)y = -1,$$
 $-1 \le x \le 1.$

Исходные данные:

$$a = \sin(k), b = \cos(k),$$

где k номер варианта. Базисную систему выбрать в виде:

$$\varphi_0 = 0$$
,

$$\varphi_i(x) = x^i(1-x^2), \qquad i = 1, 2, ...$$

Граничные условия:

$$y(-1)=0,$$

y(1) = 0.

Результат работы программы:

$$k = 6$$

Точки коллокации:

Базисные функции:

2

$$-1 \times + 1$$

$$-1 x + 1 x$$

************* Метод коллокаций *************

A:

[-1.06996807 -0.76749202]]

b:

[-1. -1.]

Результат:

[0.95186944 -0.02406528]

```
**** Метод наименьших квадратов (непрерывный вариант) ****
Α:
[[ 3.04860306 6.18035923]
[ 6.18035923 31.00621981]]
 [2.410621256893236, 3.623599586287577]
Результат:
 [0.92934858 - 0.06837688]
**** Метод наименьших квадратов (дискретный вариант) ****
A:
[[ 2.14483167 -1.17880805]
[-1.17880805 4.589044 ]]
b:
 [2.069968071253056, -1.232507982186736]
Результат:
 [0.95186944 - 0.02406528]
************ Метод Галеркина **************
Α:
[[-1.45368834 -0.33218183]
```


4. Выводы

Таким образом, были изучены методы коллокаций, наименьших квадратов и Галеркина, изучены алгоритмы написания методов и программы их реализации. В результате чего, был. написан программный продукт способный корректно решать краевые задачи выше описанными методами, который был проверен на тестовых примерах.

Также, глядя на графики различных методов (Тестовый пример №2), можно установить, что с ростом количества базисных функций разница между решениями различных методов становится всё меньше, что также говорит о сходимости.

В результате решения было установлено, что метод коллокаций сходится позже остальных, представленных в данной работе, а метод Галёркина сходится медленнее МНК.

Приложение

Тестовый пример 1

```
Вариант:
k = 3
Точки коллокации:
 [0. 0.5]
Базисные функции:
   2
-1 \times + 1
   4
-1 x + 1 x
********* Метод коллокаций **********
Α:
 [[-1.
             2.
[-1.43562359 -0.8589059 ]]
b:
[-1. -1.]
Результат:
 [0.76643125 - 0.11678437]
**** Метод наименьших квадратов (непрерывный вариант) ****
 [[ 4.53739543 8.06376384]
 [ 8.06376384 32.99706566]]
 [2.9306646657601187, 3.846475332944813]
Результат:
 [0.77554924 - 0.07295711]
```

[[-1.750856 -0.43123771] [-0.43123771 -0.81015856]]

Тестовый пример 2

```
Вариант:
k = 6
Точки коллокации:
[0. 0.33333333 0.66666667]
Базисные функции:
  2
-1 \times + 1
  4 2
-1 x + 1 x
  5 3
-1 x + 1 x
********** Метод коллокаций *********
A:
[[-1. 2. 0. ]
[-1.01627948 \quad 0.77596895 \quad 1.29569335]
[-1.20736536 -2.98105127 -1.69107122]]
b:
[-1. -1. -1.]
Результат:
[0.93501466 - 0.03249267 - 0.01894776]
_____
**** Метод наименьших квадратов (непрерывный вариант) ****
A:
[[ 3.04860306 6.18035923 0. ]
[ 6.18035923 31.00621981 0.
     0. 40.35106683]]
[ 0.
b:
[2.410621256893236, 3.623599586287577, 0.0]
Результат:
[ 0.92934858 -0.06837688 0. ]
```

```
**** Метод наименьших квадратов (дискретный вариант) ****
A:
[[ 3.49055509  0.81061673  0.72495425]
 [ 0.81061673 13.48879449 6.04658781]
 [ 0.72495425 6.04658781 4.53854313]]
b:
 [3.2236448391825894, 0.2050823247939193, 0.395377865497365]
Результат:
 [0.93501466 - 0.03249267 - 0.01894776]
******** Метод Галеркина ********
A:
 [[-1.45368834 -0.33218183 0.
 [-0.33218183 -0.76513315 0.
 [ 0.
             0. -0.54910211]]
b:
 [-1.3333333333333335, -0.2666666666666666, 0.0]
Результат:
 [ 0.92981013 -0.05515296 -0.
```

Кол-во базисных функций: 3 Кол-во базисных функций: 6

