위험관리와 보수유지

copyright © 2018 한국항공대학교 소프트웨어학과 지승도교수 R.S. Pressman

Reactive Risk Management (사후 관리?)

VS.

Proactive Risk Management (사전 관리?)

Risk Management (위험 관리)

Risk 특징 → concerns future happenings

■ Risk analysis

Risk identification (위험 식별)
 Risk projection(estimation) (위험 추정)

■ Risk resolution (RMMM)

Risk mitigation (위험 완화)
 Risk monitoring (위험 감시)
 Risk management(control) (위험 통제)

Risk Identification (식별)

- Product size (PS) risks associated with the overall size of the software to be built or modified.
- Business impact (BU) risks associated with constraints imposed by management or the marketplace.
- Customer characteristics (CU)— risks associated with the sophistication of the customer and the developer's ability to communicate with the customer in a timely manner.
- Process definition (PD) risks associated with the degree to which the software process has been defined and is followed by the development organization.
- Development environment (DE) risks associated with the availability and quality of the tools to be used to build the product.
- *Technology to be built (TE)* risks associated with the complexity of the system to be built and the "newness" of the technology that is packaged by the system.
- Staff size and experience (ST) risks associated with the overall technical and project experience of the software engineers who will do the work.

Risk Due to Product Size (PS)

Attributes that affect risk:

- estimated size of the product in LOC or FP?
- estimated size of product in number of programs, files, transactions?
- percentage deviation in size of product from average for previous products?
- size of database created or used by the product?
- number of users of the product?
- number of projected changes to the requirements for the product? before delivery? after delivery?
- · amount of reused software?

Risk Due to Business Impact (BU)

Attributes that affect risk:

- · affect of this product on company revenue?
- visibility of this product by senior management?
- · reasonableness of delivery deadline?
- · number of customers who will use this product
- · interoperability constraints
- · sophistication of end users?
- amount and quality of product documentation that must be produced and delivered to the customer?
- · governmental constraints
- costs associated with late delivery?
- costs associated with a defective product?

Risks Due to the Customer (CU)

Questions that must be answered:

- Have you worked with the customer in the past?
- Does the customer have a solid idea of requirements?
- · Has the customer agreed to spend time with you?
- Is the customer willing to participate in reviews?
- Is the customer technically sophisticated?
- Is the customer willing to let your people do their job—that is, will the customer resist looking over your shoulder during technically detailed work?
- Does the customer understand the software engineering process?

Risks Due to Process Definition (DE)

Questions that must be answered:

- · Have you established a common process framework?
- Is it followed by project teams?
- · Do you have management support for software engineering
- Do you have a proactive approach to SQA?
- Do you conduct formal technical reviews?
- · Are CASE tools used for analysis, design and testing?
- Are the tools integrated with one another?
- · Have document formats been established?

Technology Risks (TE)

Questions that must be answered:

- Is the technology new to your organization?
- Are new algorithms, I/O technology required?
- Is new or unproven hardware involved?
- Does the application interface with new software?
- · Is a specialized user interface required?
- Is the application radically different?
- Are you using new software engineering methods?
- Are you using unconventional software development methods, such as formal methods, Al-based approaches, artificial neural networks?
- Are there significant performance constraints?
- Is there doubt the functionality requested is "do-able?"

Staff/People Risks (ST)

Questions that must be answered:

- Are the best people available?
- · Does staff have the right skills?
- Are enough people available?
- Are staff committed for entire duration?
- Will some people work part time?
- Do staff have the right expectations?
- · Have staff received necessary training?
- Will turnover among staff be low?

Risk Projection

- Risk projection, also called risk estimation, attempts to rate each risk in two ways
 - the likelihood or probability that the risk is real
 - the consequences of the problems associated with the risk, should it occur.
- There are four risk projection steps:
 - establish a scale that reflects the perceived likelihood of a risk
 - delineate the consequences of the risk
 - estimate the impact of the risk on the project and the product,
 - note the overall accuracy of the risk projection so that there will be no misunderstandings.

Risk Table

Risks	Category	Probability	Impact	RMMM		
				Mitigation	Monitoring	Management

Risk 영향 평가

컴포넌트 범주	/	성과	지원	비용	일정	
	1	요구사항을 충족하는 데 실패했을 때 임무 실패 초래		증가된 비용과 일정지연을 초래하는 실 패는 예상치 \$500K을 초과		
재앙적	2	기술적 성능이 달 성되지 못하는 중 대한 저하	대응하지 못하거나 지원하지 못하는 소프트웨어	중대한 재정적인 부족, 예산초과 가능성	도달할 수 없는 IOC	
74 74 74	1	요구사항을 충족하는 데 실패했을 때 임무 성공이 의심스러울 정도의 시스 템 성능이 저하됨		운영상의 지연과 증가된 비용을 초래하 는 실패는 예상치 \$100~\$500K이 소요		
결정적	2	기술적 성능에서 약간의 감소	소프트웨어 변경 에서 사소한 지연	중대한 재정적 자 원의 부족, 초과 가능성	IOC에서 저하 가능성	
	1	요구사항을 충족하는 부차적인 임무 손상		비용, 영향 및 회복가 \$1K~\$100 K소요	능한 일정이 예상치	
최저한	2	기술적 성능에서 최소에서 약간의 감소	대응적인 소프트 웨어 지원	충분한 재정적인 자원	실제적이고 달성 가능한 일정	
하찮은	1	요구사항을 충족하는 데 실패했을 때 불편함 또는 아직 가동되지 않는 영향 을 초래		사소한 비용과 일정에 는 예상치 \$1K 소요	l 영향을 주는 오류	
이용근	2	기술적 성능에서 어떤 감소도 없음	쉽게 지원가능한 소프트웨어	가능한 예산 내	초기에 쉽게 달 성가능한 IOC	

Building a Risk Table

Risks	Category	Probability	Impact	RMMM
Size estimate may be significantly low	PS	60%	2	
Larger number of users than planned	PS	30%	3	
Less reuse than planned	PS	70%		
End users resist system	BU	40%	2 3	
Delivery deadline will be tightened	BU	50%	2	
Funding will be lost	CU	40%	1	
Customer will change requirements	PS	80%	2	
Technology will not meet expectations	TE	30%	1	
Lack of training on tools	DE	80%	3	
Staff inexperienced	ST	30%	3 2 2	
Staff turnover will be high	ST	60%	2	
Σ			_	
Σ				
Σ				

Impact values:

- 1—catastrophic
- 2—critical
- 3—marginal
- 4—negligible

Building the Risk Table

- Identify the risks
- Decide the category
- Estimate the probability of occurrence
- Estimate the impact on the project on a scale of 1 to 4, where
 - 1 = catastrophic
 - = 2 = critical
 - 3 = marginal
 - 4 = negligible

RMMM

- Mitigation how can we avoid the risk?
- Monitoring what factors can we track that will enable us to determine if the risk is becoming more or less likely?
- Management what contingency plans do we have if the risk becomes a reality?
 - → e.g., "knowledge transfer mode"

Risk Mitigation, Monitoring, and Management

- For large project, 30-40 risks are identified
- Pareto 80-20 rule
 - → shows that 80% of risk are in 20% of identified risk.
 - ♣ Pareto 법칙: 이태리 경제학자 Pareto가 1900년대 만든 법칙예: "스마트폰 사용자의 20%가 전체 통화량의 80%를 쓴다."

Recording Risk Information

Project: Embedded software for XYZ system

Risk type: schedule risk Priority (1 low ... 5 critical): 4

Risk factor: Project completion will depend on tests which require hardware component under development. Hardware component

delivery may be delayed **Probability:** 60 %

Impact: Project completion will be delayed for each day that

hardware is unavailable for use in software testing

Monitoring approach:

Scheduled milestone reviews with hardware group

Contingency plan:

Modification of testing strategy to accommodate delay using

software simulation

Estimated resources: 6 additional person months beginning ...

Recording Risk Information

Risk information sheet Risk ID: P02-4-32 Date: 5/9/09 Prob: 80% Impact: high

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be integrated into the application. The remaining functionality will have to be custom developed.

Refinement/context:

Subcondition 1: Certain reusable components were developed by a third party with no knowledge of internal design standards.

Subcondition 2: The design standard for component interfaces has not been solidified and may not conform to certain existing reusable components. Subcondition 3: Certain reusable components have been implemented in a language that is not supported on the target environment.

Mitigation/monitoring:

- 1. Contact third party to determine conformance with design standards.
- 2. Press for interface standards completion; consider component structure when deciding on interface protocol.
- Check to determine number of components in subcondition 3 category; check to determine if language support can be acquired.

Management/contingency plan/trigger:

RE computed to be \$20,200. Allocate this amount within project contingency cost. Develop revised schedule assuming that 18 additional components will have to be custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive as of 7/1/09

Current status:

5/12/09: Mitigation steps initiated

Originator: D. Gagne Assigned: B. Laster

Homework #3: 위험관리

- 1. Risk Table 작성 (필요시 가정 및 상상!)
 - (1) Risk item
 - (2) Category
 - (3) Probability
 - (4) Impact
 - (5) Risk Mitigation
 - (6) Risk Monitoring
 - (7) Risk Management (Control)

Maintainability (보수유지)

- → Qualitative indication of the ease with which existing S/W can be;
- Corrected (오류 수정)
- Adapted (환경 적응)
- Enhanced (기능 강화)

프로젝트 관리 사례: 미국방성 시스템개발 방법론

SYSTEMS ENGINEERING FUNDAMENTALS

