

Introduzione alla Data Science

Nicoletta Noceti

Informazioni organizzative sul corso

Chi siamo

Nicoletta Noceti nicoletta.noceti@unige.it

Vito Paolo Pastore Vito.paolo.pastore@edu.unige.it

Se volete più informazioni potete visitare https://ml.unige.it

Regole del gioco

~24 ore di lezione

- 4 ore a settimana (martedi 11-13, mercoledi 9-11)
- Di solito 2 ore di "teoria" + 2 ore di laboratorio in Python (escluso la prima settimana)

Progetto finale

- Dettagli sui possibili progetti nelle ultime due ore di lezione
- Incontri regolari organizzati durante le 4 ore del corso per monitorare il progresso

Esame finale con due possibili modalità

- Discussione del progetto a fine corso + versione ridotta dello scritto
- Consegna del progetto una settimana prima dell'esame + versione completa dello scritto

Partiamo dalle definizioni

Partiamo da qualcosa che sapete già: un sistema informativo

Compiti

- Raccogliere i dati
- Conservare i dati raccolti, archiviandoli
- Elaborare i dati, trasformandoli in informazioni
- Distribuire l'informazione agli utilizzatori

Componenti

- Strumenti
- Procedure
- Strutture

Definizione indipendente dal grado di automazione

Cosa sono le informazioni?

- Tutto ciò che produce variazioni nel patrimonio cognitivo di un soggetto, ossia chi percepisce l'informazione
- L'informazione deve essere utile per (=comprensibile da) il percettore
- Un sistema informativo deve fornire una chiave di lettura mediante cui interpretare l'informazione che gestisce

Cos'è la data science?

Cos'è la Data Science?

Un paio di definizioni

Un campo multi-disciplinare che usa metodo scientifico, processi algoritmi e sistemi per estrarre conoscenza da dati strutturati e non strutturati

... oppure...

La Data Science è estrazione di conoscenza dai dati attraverso un processo di scoperta, formulazione di ipotesi e verifica delle ipotesi

... ma anche ...

La Data Science è arte e scienza che consiste nel trarre conoscenza dai dati

Cos'è la Data Science?

Source: https://morioh.com/p/ef484a5ec282

I molti ruoli del Data Scientist

Raccogliere
Organizzare
Pulire

dati

Visualizzare

(comunicare)

Analizzare

Derivare modelli (Matemica, Machine Learning)

Dato strutturato

Preparazione

Integrazione
Pulizia
Esplorazione
Trasformazione

Rappresentazione e Storage Sistema centralizzato o distribuito? File? DB?

Visualizzazione

Esplorazione

OLAP Analisi statistica

Predizione

Machine Learning

Data deluge e Big Data

I Big data sono enormi dataset – caratterizzati dalle 4 V, volume-varietà-velocità-variabilità – che richiedono architetture scalabili per storage, manipolazioni ed analisi efficienti

Produzione di dati digitali del mondo

HOW THE AMOUNT OF DIGITAL DATA IS INCREASING

Annual size of the global data sphere 2010–25

10²¹ bytes

(as a reference a Terabyte is 10¹² bytes)

Source: IDC Global DataSphere, November 2018

accaglobal.com/machine-learning

Think Ahead

Produzione di dati digitali del mondo

Dati

La necessità di fare ordine

- Troppi dati!! Un umano non sarebbe in grado di analizzarli in modo approfondito e affidabile
- · Tante forme di dato ottenuti da diverse fonti
- I dati possono essere mancanti, incompleti, sbagliati...
- I dati possono avere scale di misurazione diverse, bisogna renderli confrontabili

Una classificazione

- Dati strutturati o non strutturati (organizzati o non organizzati)
- Dati qualitativi o quantitativi
- I 4 livelli dei dati

Dati strutturati e non strutturati

- Dati strutturati (organizzati): sono dati tratti da osservazioni di caratteristiche, normalmente organizzati in formato tabulare (righe e colonne)
 - Esempio: osservazioni scientifiche registrate da ricercatori che vengono conservate in modo molto ordinato
- Dati non strutturati (non organizzati): dati che esistono come entità libere e che non seguono alcuna organizzazione standard o gerarchia
 - Esempi: dati che hanno una natura testuale (es. Fie log dei server, post di Twitter); sequenze genetiche (es. ACGTATTGCA)

Dati strutturati e non strutturati

- I dati strutturati sono considerati più facili da elaborare e analizzare
- Circa il 90% dei dati in circolazione è NON strutturato
- Servono tecniche di pre-analisi e pre-elaborazione (preprocessing) per dare una struttura ai dati non strutturati

Esempio: rappresentazione di un Tweet

This Wednesday morn, are you early to rise? Then look East. The Crescent Moon joins Venus & Saturn. Afloat in the dawn skies.

Abbiamo bisogno di ottenere descrizioni numeriche del testo... partiamo con il conteggio delle parole

This 1

Wednesday 1

Morn 1

•••

Esempio

Possiamo anche contare la presenza di caratteri speciali:

- ? 1
- ! 0
- & 1
- Adesso consideriamo la lunghezza del testo e la relazione con la lunghezza media dei Tweet
 - Il tweet è lungo 121 caratteri, la lunghezza media dei Tweet è di 30 caratteri
 121/30 = 4.03 → Il tweet è lungo 4.03 volte più della media, e questa può diventare una ulteriore informazione nella rappresentazione
- Altre informazioni da aggiungere alla descrizione?? Può trattarsi di informazioni derivate in modo diretto o indiretto dal testo (es. L'argomento)

Dati quantitativi e qualitativi

- Dati quantitativi: dati che possono essere descritti tramite numeri e su cui è possibile
 /ha senso eseguire operazioni matematiche
- Dati qualitativi: tutto il resto, di solito è possible descriverli usando linguaggio naturale

ESEMPIO: supponiamo di dover elaborare le osservazioni effettuate nelle caffeteria di una grande città...

Dati quantitativi e qualitativi

Caratteristiche

- Nome della caffetteria
- Fatturato
- CAP
- Numero medio di clienti mensile
- Origine del caffè

Dati quantitativi e qualitativi

Nome della caffetteria

E' esprimibile come numero? NO → QUALITATIVO

Fatturato

- E' esprimibile come numero? SI
- Ha senso eseguire operazioni su di esso? SI → QUANTITATIVO

CAP

- E' esprimibile come numero? SI
- Ha senso eseguire operazioni su di esso? NO→ QUALITATIVO

Numero medio di clienti mensile

- E' esprimibile come numero? SI
- Ha senso eseguire operazioni su di esso? SI → QUANTITATIVO

Origine del caffè

• E' esprimibile come numero? NO → QUALITATIVO

Domande che ha senso porsi su dati quantitativi (esempi)

Ci porremo queste ed altre domande quando parleremo di **esplorazione dei dati**

- Qual è il valore medio?
- Se il tempo è un fattore, questa quantità cresce o decresce con il trascorrere del tempo?
- Esiste una soglia oltre la quale il valore potrebbe diventare critico?

Domande che ha senso porsi solo su dati qualitativi (esempi)

Ci porremo queste ed altre domande quando parleremo di **esplorazione dei dati**

- Quale valore è più (o meno) frequente?
- Quanti valori univoci esistono?
- Quali sono i valori univoci?

Ancora a proposito di dati quantitativi

- Dati discreti: possono essere contati e possono assumere solo determinati valori
 - Esempio: numero di clienti di un caffè (non si possono avere frazioni di clienti)
- Dati continui: devono essere misurati e possono assumere una gamma infinita di valori
 - Esempi: peso o statura di una persona, tempo, temperatura

I 4 livelli dei dati

Una specifica caratteristica (colonna) dei dati strutturati può essere suddivisa in 4 livelli

- Nominale
- Ordinale
- Degli intervalli
- Dei rapporti

I 4 livelli dei dati

I livelli dei dati sono scale che ci consentono di misurare e classificare I dati raccolti in variabili ben definite che possano essere usate per scopi diversi di analisi e comprensione

Perchè sono importanti? Ci guidano nell'analisi (cosa ha senso fare?)

I 4 livelli dei dati

- Nominale: Utilizzato per classificare i dati in categorie o gruppi mutuamente esclusivi
- Ordinale: Utilizzato per misurare le variabili in un ordine naturale (es. una valutazione)
- Degli Intervalli: Utilizzato per misurare variabili con intervalli (es. la temperatura e il tempo)
- Dei Rapporti: Consente confronti e calcoli come rapporti, percentuali e medie

Livello nominale

Utilizzato per classificare i dati in categorie o gruppi mutuamente esclusivi

E' costituito da dati descritti unicamente per nome o categoria (talvolta da numeri) tipicamente qualitativi

Esempi:

- Nazionalità
- Classe di mammiferi
- · Città di nascita
- •

Livello nominale

Quali operazioni possiamo applicare?

- Uguaglianza. Esempio: essere un imprenditore nel campo delle tecnologie equivale ad essere nel settore tecnologico
- Appartenenza ad un insieme. Esempio: un quadrato è un rettangolo
- Calcolo della moda, una misurazione del «centro» dei dati (a cosa tendono i dati?)

La moda

Vi ricordo che... In statistica, la moda (o norma) di una distribuzione di frequenza X è la modalità (o la classe di modalità) caratterizzata dalla massima frequenza. In altre parole, è il valore che compare più frequentemente.

Esempio: consideriamo una colonna che rappresenta lo stato europeo in cui è presente una caffetteria di una nota catena

{IT, ES, UK, UK, UK, FR, IT, FR, NE, GE, GE, FR, IT, NE, NE, NE, UK, FR, ES, ES, UK, UK, NE, ES} Calcoliamo le frequenze:

IT 3

ES 4

UK 6

FR 4

NE 5

GE 2

La moda

Vi ricordo che... In statistica, la moda (o norma) di una distribuzione di frequenza X è la modalità (o la classe di modalità) caratterizzata dalla massima frequenza. In altre parole, è il valore che compare più frequentemente.

Esempio: consideriamo una colonna che rappresenta lo stato europeo in cui è presente una caffetteria di una nota catena

{IT, ES, UK, UK, UK, FR, IT, FR, NE, GE, GE, FR, IT, NE, NE, NE, UK, FR, ES, ES, UK, UK, NE, ES} Calcoliamo le frequenze:

IT 3

ES 4

UK 6

FR 4

NE 5

GE 2

Livello ordinale

Utilizzato per misurare le variabili in un ordine naturale

Dati su cui è possibile definire strategie per collocare un'osservazione prima di un'altra (ma di solito continua a non essere possibile eseguire operazioni matematiche, es. sommarli o sottrarli)

Esempi:

- indice di gradimento da 1 a 5
- Indice di soddisfazione da 1 a 10
- •

Livello ordinale

Attenzione! La distanza tra le misurazioni può non essere sempre la stessa!

Esempio:

- Se la misura è codificata con una lista di numeri, ad es. 123, sappiamo calcolare la distanza tra 2 valori consecutive, sempre 1 in questo caso
- Se la misura è codificata in classe, come ad es. "molto soddisfatto", "soddisfatto", "neutrale"non riusciamo a quantificare la distanza tra di esse in modo

Livello ordinale

Quali operazioni possiamo applicare?

- Tutte le operazioni del livello nominale
- Ordinamento
- Confronto
- Calcolo del «centro» dei dati con la mediana

La mediana

Vi ricordo che... data una distribuzione di un carattere quantitativo oppure qualitativo ordinabile, si definisce la mediana come il valore/modalità assunto dalle unità statistiche che si trovano nel mezzo della distribuzione.

Esempio: consideriamo le risposte ad un sondaggio di gradimento del luogo di lavoro in scala da 1 a 5

{5 4 3 4 5 3 2 5 3 2 1 4 5 3 4 4 5 4 2 1 4 5 4 3 2 4 4 5 4 3 2 1}

Riordiamo:

{111222223333334444444444445555555555}

La mediana

Vi ricordo che... data una distribuzione di un carattere quantitativo oppure qualitativo ordinabile, si definisce la mediana come il valore/modalità assunto dalle unità statistiche che si trovano nel mezzo della distribuzione.

Esempio: consideriamo le risposte ad un sondaggio di gardimento del luogo di lavoro in scala da 1 a 5

{5 4 3 4 5 3 2 5 3 2 1 4 5 3 4 4 5 4 2 1 4 5 4 3 2 4 4 5 4 3 2 1}

Riordiamo:

{111222223333334444444444445555555555}

La mediana è 4

Il livello degli intervalli

Utilizzato per misurare variabili con intervalli

Dati esprimibili attraverso metodi quantificabili e su cui è possibile eseguire formule matematiche (anche complesse)

Attenzione! A differenza del livello ordinale, la distanza nella scala della misurazione è la stessa (di solito) e ha un significato (es. la temperatura si misura a passi di 10 gradi)

Esempi:

- temperatura (se in Texas ci sono 37° e ad Istambul ci sono 27° significa che in Texas ci sono 10° in più)
- Guadagno mensile/annuale
- •

Il livello degli intervalli

Quali operazioni possiamo applicare?

- Tutte le operazioni del livello ordinale
- Somma
- Sottrazione
- Calcolo del «centro» dei dati con la media

La media

Vi ricordo che... la media viene calcolata sommando tutti i valori a disposizione e dividendo il risultato per il numero complessivo dei dati

Esempio: osserviamo la temperatura misurata in gradi Fahrenheit

{31 32 32 31 28 29 31 38 32 31 30 29 30 31 26}

Media: 30.37

Mediana: 31.0

Un'altra misura utile è legata a quanto le misure sono variabili

Deviazione standard

Definizione intuitiva (ma matematicamente non corretta!!!): distanza media di una punto dei dati rispetto alla sua media

Nell'esempio di prima: ~2.52

Perché è importante avere una misura della «dispersione» dei dati al livello di intervallo? Perché siamo tipicamente interessati a capire come i valori si distribuiscano nell'intervallo di interesse e la presenza di eventuali anomalie

Il livello dei rapporti

Consente confronti e calcoli come rapporti, percentuali e medie

Contiene tutti i livelli precedenti, ha senso calcolare anche moltiplicazioni e divisioni; hanno un punto iniziale naturale o uno zero naturale, ma anche una restrizione: i valori dovrebbero essere non negativi

Esempio:

- il denaro depositato in banca si colloca al livello dei rapporti. E' possibile avere «niente denaro sul conto» (zero naturale) ed è sensato dire che 200000 euro sono «il doppio» di 100000 euro
- Altezza e/o peso di una persona
- •

La misurazione del «centro» può essere fatta con la media

Una tabella riassuntiva

	Liv. Nominale	Liv. Ordinale	Liv. Degli intervalli	Liv. Dei rapporti
Possiamo definire un ordine		Si	Si	Si
Possiamo calcolare la moda	si	Si	Si	Si
Possiamo calcolare la mediana		Si	Si	Si
Possiamo calcolare la media			Si	Si
Possiamo confrontare variabili			Si	Si
Possiamo calcolare somma e differenza			Si	Si
Possiamo calcolare prodotto e rapporto				si
Esiste uno zero assoluto				si

Ancora esempi

- •Time of Day: dawn, morning, noon, afternoon, evening, night
- •Hair Color: Brown, Black, Blonde, Red, Other
- •Fahrenheit Temperature.
- •IQ (intelligence scale)
- •Type of living accommodation: House, Apartment, Trailer, Other
- Age
- •The Likert Scale: strongly disagree, disagree, neutral, agree, strongly agree
- Number of children

Ancora esempi

- •Time of Day: dawn, morning, noon, afternoon, evening, night
- •Hair Color: Brown, Black, Blonde, Red, Other
- •Fahrenheit Temperature.
- •IQ (intelligence scale)
- •Type of living accommodation: House, Apartment, Trailer, Other
- Age
- •The Likert Scale: strongly disagree, disagree, neutral, agree, strongly agree
- Number of children

	Nom.	Ord.	Int.	Rapp.
Possiamo definire un ordine		si	si	si
Possiamo calcolare la moda	si	si	si	si
Possiamo calcolare la mediana		si	Si	Si
Possiamo calcolare la media			Si	si
Possiamo confrontare variabili		-;-	si	si
Possiamo calcolare somma e differenza			si	si
Possiamo calcolare prodotto e rapporto				si
Esiste uno zero assoluto				si

Ancora esempi

- •Time of Day: dawn, morning, noon, afternoon, evening, night (ORDINALE)
- •Hair Color: Brown, Black, Blonde, Red, Other (NOMINALE)
- •Fahrenheit Temperature. (DEGLI INTERVALLI)
- •IQ (intelligence scale) (DEGLI INTERVALLI)
- •Type of living accommodation: House, Apartment, Trailer, Other (NOMINALE)
- Age (DEI RAPPORTI)
- •The Likert Scale: strongly disagree, disagree, neutral, agree, strongly agree (ORDINALE)
- Number of children (DEI RAPPORTI)

Torniamo ai passi della Data Science

Dato strutturato

Preparazione

Integrazione Pulizia Esplorazione Trasformazione

Rappresentazione e Storage Sistema centralizzato o distribuito? File? DB?

Visualizzazione

Esplorazione

OLAP Analisi statistica

Predizione

Machine Learning

THE DATA SCIENCE PROCESS

Dato strutturato

Dato non strutturato

A questo punto conosciamo alcune informazioni riguardo ai dati

Preparazione

Integrazione Pulizia Esplorazione Trasformazione

Rappresentazione e Storage Sistema centralizzato o distribuito? File? DB?

Visualizzazione

Esplorazione

OLAP Analisi statistica

Predizione

Machine Learning

THE DATA SCIENCE PROCESS

Dato strutturato

Dato non strutturato

A questo punto conosciamo alcune informazioni riguardo ai dati

Preparazione

Integrazione Pulizia Esplorazione Trasformazione

Rappresentazione e Storage Sistema centralizzato o distribuito? File? DB?

Visualizzazione

Esplorazione

OLAP Analisi statistica

Predizione

Machine Learning

Definiamo un obiettivo analitico, che ci guiderà nelle fasi successive

A questo livello possiamo essere abbastanza generici

Proseguendo nella pipeline l'obiettivo potrebbe diventare più specifico

UniGe Mal Ga