Heritability Estimation and Risk Prediction in Schizophrenia

Choi Shing Wan

A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Department of Psychiatry
University of Hong Kong
Hong Kong
September 3, 2015

Declaration

Acknowledgements

Abbreviations

GCTA Genome-wide Complex Trait Analysis. 13

GWAS Genome Wide Association Study. 7, 8

LD Linkage Disequilibrium. 8, 10, 11

 $\mathbf{LDSC}\;\;\mathrm{LD}\;\mathrm{SCore.}\;\;13$

PGS Polygenic Risk Score. 19

SCZ Schizophrenia. 15

SHREK SNP Heritability and Risk Estimation Kit. 13

SNP Single Nucleotide Polymorphism. 7–9

SVD Singular Value Decomposition. 11

tSVD Truncated Singular Value Decomposition. 11, 12

Contents

D	eclarati	ion	i
A	cknowle	edgments	iii
\mathbf{A}	bbrevia	ations	\mathbf{v}
\mathbf{C}	ontents		vii
In	troduc	tion	1
1	1.1 T	ture Review Swin Studies	5 5
		.2.1 Role of Common Variants	5 5
	1.4 R	Interved Sense Heritability	6 6 6
2		ability Estimation	7
	2.2 N	ntroduction	7 7
	2.	.2.1 Heritability Estimation	7 10 11
	2.	2.4 Extreme Phenotype Selections	12 13
	2. 2.	imulation	13 13 13
	2.4 R	.3.3 Exreme Phenotype Selections	13 13 13
3		ability of Schizophrenia	15
	3.2 H 3.	ntroduction	15 15 15 15
	3.3 B	drain development and Schizophrenia	15 15 15
	9 4 D	Nicovegion	15

4	Ieritability of Response to antipsychotic treatment	17
	.1 Introduction	17
	.2 Methodology	17
	.3 Result	
	.4 Discussion	17
5	Risk Prediction	19
	.1 Methodology	19
	5.1.1 Simulation	19
	.2 Result	
	.3 Discussion	19
6	Conclusion	21

Introduction

Some considerations

- 1. PRSice requires the phenotype to aid its selection (More information= stronger)
- 2. It seems like LDSC doesn't necessary perform badly in oligogenic situation. Rather, it is that when the trait is oligogenic, it is more likely for LDSC to behaviour in a strange way.
- 3. For each condition: extreme phenotype, quantitative trait, case control, we can have a separated review. Discuss on the benefits and challenges of each condition and the method we deal with them. So we can have two chapters (case control, quantitative trait) where extreme phenotype can be a big subsection within quantitative trait.
- 4. For each chapter, there will be this introduction (review on the method), our methodology (Calculation, implementation and also simulation), result (the simulation result). Then we can have the application (PGC, network)

Literature Review

1.1 Twin Studies

Should briefly talk about how Twin modeling was used for finding the GE contribution. Should also mention the ACE model. At the end, we can talk about the heritability estimates of SCZ and AD

1.2 Searching for Genetic Variants

1.2.1 Role of Common Variants

Genome Wide Association Study

Should talk about what is GWAS and how it is used. Should also talk about the current GWAS studies in SCZ and AD

1.2.2 Role of Rare Variants

Exome Sequencing

Similar to the GWAS. Talk about the Pros and Cons. Need to briefly mention the Denovo paper and Shaun's paper.

Whole Genome Sequencing

Very very brief description of WGS and the current status.

- 1.3 Narrow Sense Heritability
- 1.4 Risk Prediction
- 1.5 Summary

Heritability Estimation

2.1 Introduction

2.2 Methodology

The overall aims of this study is to develop a robust algorithm for the estimation of the narrow sense heritability using only the summary statistic from a Genome Wide Association Study (GWAS) study. The work in this chapter were done in collaboration with my colleagues who have kindly provide their support and knowledges to make this piece of work possible. Dr Johnny Kwan, Dr Miaxin Li and Professor Sham have helped to laid the framework of this study. Dr Timothy Mak has derived the mathematical proof for our heritability estimation method. Miss Yiming Li, Dr Johnny Kwan, Dr Miaxin Li, Dr Timothy Mak and Professor Sham have helped with the derivation of the standard error of the heritability estimation. Dr Henry Leung has provided critical suggestions on the implementation of the algorithm.

2.2.1 Heritability Estimation

The narrow-sense heritability is defined as

$$h^2 = \frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}$$

where Var(X) is the variance of the genotype and Var(Y) is the variance of the phenotype. In a GWAS, regression were performed between the Single Nucleotide Polymorphisms (SNPs) and the phenotypes, giving

$$Y = \beta X + \epsilon \tag{2.1}$$

where Y and X are the standardized phenotype and genotype respectively. ϵ is then the error term, accounting for the non-genetic elements contributing to the phenotype (e.g. Environment factors). Based on

eq. (2.1), one can then have

$$Var(Y) = Var(\beta X) + Var(\epsilon)$$

$$Var(Y) = \beta^{Var}(X)$$

$$\beta^{2} \frac{Var(X)}{Var(Y)} = 1$$
(2.2)

 β^2 is then considered as the portion of phenotype variance explained by the variance of genotype, which can also be considered as the narrow-sense heritability of the phenotype.

A challenge in calculating the heritability from GWAS data is that usually only the test-statistic or p-value were provided and one will not be able to directly calculate the heritability based on eq. (2.2). In order to estimation the heritability of a trait from the GWAS test-statistic, we first observed that when both X and Y are standardized, β^2 will be equal to the coefficient of determination (r^2) . Then, based on properties of the Pearson product-moment correlation coefficient:

$$r = \frac{t}{\sqrt{n-2+t^2}}\tag{2.3}$$

where t follows the student-t distribution and n is the number of samples. One can then obtain the r^2 by taking the square of eq. (2.3)

$$r^2 = \frac{t^2}{n - 2 + t^2} \tag{2.4}$$

It is observed that t^2 will follow the F-distribution and when n is big, t^2 will converge into χ^2 distribution.

When the effect size is small and n is big, r^2 will be approximately χ^2 distributed with mean ~ 1 . We can then approximate eq. (2.4) as

$$r^2 = \frac{\chi^2}{n} \tag{2.5}$$

and define the observed effect size of each SNP to be

$$f = \frac{\chi^2 - 1}{n} \tag{2.6}$$

When there are Linkage Disequilibrium (LD) between each individual SNPs, the situation will become more complicated as each SNPs' observed effect will contains effect coming from other SNPs in LD with it.

$$f_{observed} = f_{true} + f_{LD} (2.7)$$

To account for the LD structure, we first assume our phenotype \boldsymbol{Y} and genotype $\boldsymbol{X} = (X_1, X_2, \dots, X_m)^t$ are standardized and that

$$\boldsymbol{Y} \sim f(0,1)$$

$$\boldsymbol{X} \sim f(0, \boldsymbol{R})$$

Where \mathbf{R} is the LD matrix between SNPs.

We can then express eq. (2.1) in matrix form:

$$Y = \beta^t X + \epsilon \tag{2.8}$$

Definition of heritability will then become

$$Heritability = \frac{\text{Var}(\boldsymbol{\beta}^{t} \boldsymbol{X})}{\text{Var}(\boldsymbol{Y})}$$
$$= \text{Var}(\boldsymbol{\beta}^{t} \boldsymbol{X})$$
(2.9)

If we then assume now that $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_m)^t$ has distribution

$$eta \sim f(0, H)$$
 $m{H} = diag(m{h})$
 $m{h} = (h_1^2, h_2^2, \dots, h_m^2)^t$

where H is the variance of the true effect. It is shown that heritability can be expressed as

$$\operatorname{Var}(\boldsymbol{\beta}^{t}\boldsymbol{X}) = \operatorname{E}_{X}\operatorname{Var}_{\boldsymbol{\beta}|X}(\boldsymbol{X}^{t}\boldsymbol{\beta}) + \operatorname{Var}_{X}\operatorname{E}_{(\boldsymbol{\beta}|X)}(\boldsymbol{\beta}^{2}\boldsymbol{X})$$

$$= \operatorname{E}_{X}(\boldsymbol{X}^{t}\boldsymbol{\beta}\boldsymbol{\beta}^{T}\boldsymbol{X})$$

$$= \operatorname{E}_{X}(\boldsymbol{X}^{t}\boldsymbol{H}\boldsymbol{X})$$

$$= \operatorname{E}(\boldsymbol{X})^{t}\boldsymbol{H}\operatorname{E}(\boldsymbol{X}) + \operatorname{Tr}(\operatorname{Var}(\boldsymbol{X}\boldsymbol{H}))$$

$$= \operatorname{Tr}(\operatorname{Var}(\boldsymbol{X}\boldsymbol{H}))$$

$$= \sum_{i} h_{i}^{2}$$
(2.10)

Now if we consider the covariance between SNP i (X_i) and Y, we have

$$Cov(\boldsymbol{X}_{i}, \boldsymbol{Y}) = Cov(\boldsymbol{X}_{i}, \boldsymbol{\beta}^{t} \boldsymbol{X} + \epsilon)$$

$$= Cov(\boldsymbol{X}_{i}, \boldsymbol{\beta}^{t} \boldsymbol{X})$$

$$= \sum_{j} Cov(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}) \boldsymbol{\beta}_{j}$$

$$= \boldsymbol{R}_{i} \boldsymbol{\beta}_{j}$$
(2.11)

As both X and Y are standardized, the covariance will equal to the correlation and we can define the correlation between SNP i and Y as

$$\rho_i = \mathbf{R}_i \boldsymbol{\beta}_i \tag{2.12}$$

In reality, the observed correlation usually contains error. Therefore we define the observed correlation to be

$$\hat{\rho_i} = \rho_i + \frac{\epsilon_i}{\sqrt{n}} \tag{2.13}$$

for some error ϵ_i . The distribution of the correlation coefficient about the true correlation ρ is approximately

$$\hat{\rho_i} \sim f(\rho_i, \frac{(1 - \rho^2)^2}{n})$$

By making the assumption that ρ_i is close to 0 for all i, we have

$$E(\epsilon_i|\rho_i) \sim 0$$
 $Var(\epsilon_i|\rho_i) \sim 1$

We then define our z-statistic and χ^2 -statistic as

$$z_i = \hat{\rho}_i \sqrt{n}$$
$$\chi^2 = z_i^2$$
$$= \hat{\rho}_i^2 n$$

From eq. (2.13) and eq. (2.12), χ^2 can then be expressed as

$$\chi^2 = \hat{\rho}^2 n$$
$$= n(\mathbf{R}_i \boldsymbol{\beta}_j + \frac{\epsilon_i}{\sqrt{n}})^2$$

The expectation of χ^2 is then

$$E(\chi^2) = n(\mathbf{R}_i \boldsymbol{\beta} \boldsymbol{\beta}^t \mathbf{R}_i + 2\mathbf{R}_i \boldsymbol{\beta} \frac{\epsilon_i}{\sqrt{n}} + \frac{\epsilon_i^2}{n})$$
$$= n\mathbf{R}_i \mathbf{H} \mathbf{R}_i + 1$$

To derive least square estimates of h_i^2 , we need to find \hat{h}_i^2 which minimizes

$$\sum_{i} (\chi_{i}^{2} - E(\chi_{i}^{2}))^{2} = \sum_{i} (\chi_{i}^{2} - (n\mathbf{R}_{i}\mathbf{H}\mathbf{R}_{i} + 1))^{2}$$
$$= \sum_{i} (\chi_{i}^{2} - 1 - n\mathbf{R}_{i}\mathbf{H}\mathbf{R}_{i})^{2}$$

If we define

$$f_i = \frac{\chi_i^2 - 1}{n} \tag{2.14}$$

we got

$$\sum_{i} (\chi_{i}^{2} - E(\chi_{i}^{2}))^{2} = \sum_{i} (f_{i} - \mathbf{R}_{i} \mathbf{H} \mathbf{R}_{i})^{2}$$
$$= \mathbf{f} \mathbf{f}^{t} - 2 \mathbf{f}^{t} \mathbf{R}_{sq} \hat{\mathbf{h}} + \hat{\mathbf{h}}^{t} \mathbf{R}_{sq}^{t} \mathbf{R}_{sq} \hat{\mathbf{h}}$$
(2.15)

where $\mathbf{R}_{sq} = \mathbf{R} \circ \mathbf{R}$. By differentiating eq. (2.15) w.r.t \hat{h} and set to 0, we get

$$2R_{sq}^{t}R_{sq}\hat{h^{2}} - 2R_{sq}f = 0$$

$$R_{sq}\hat{h^{2}} = f$$
(2.16)

And the heritability is then defined as

$$Heritability = \mathbf{1}^{t} \mathbf{R}_{sq}^{-1} \mathbf{f} \tag{2.17}$$

2.2.2 Calculating the Linkage Disequilibrium matrix

To estimate the heritability, the population LD matrix is required. In reality, one can only obtain the LD matrix based on a subset of the population (e.g. the 1000 genome project[1] or the HapMap project[2]). There are therefore sampling errors among the LD elements.

Now if we consider eq. (2.17), the R_{sq} matrix is required. As the squared LD is used, a positive bias is induced into our R_{sq} matrix.

Based on Shieh [3], one can correct for bias in the Pearson correlation ρ using

$$\rho = \rho \left\{ 1 + \frac{1 - \rho^2}{2(N - 4)} \right\} \tag{2.18}$$

where N is the number of sample used in the calculation of ρ . Similarly, there exists a bias correction equation for ρ^2 :

$$\rho^2 = 1 - \frac{N-3}{N-2}(1-\rho^2)\left\{1 + \frac{2(1-\rho^2)}{N-3.3}\right\}$$
 (2.19)

Therefore, we corrected the R_{sq} based on eq. (2.19) such that the bias in estimation can be minimized.

2.2.3 Inverse of the Linkage Disequilibrium matrix

In order to obtain the heritability estimation, we will require to solve eq. (2.17). If R_{sq} is of full rank and positive semi-definite, it will be straight-forward to solve the matrix equation. However, more often than not, the LD matrix are rank-deficient and suffer from multicollinearity, making it ill-conditioned, therefore highly sensitive to changes or errors in the input. To be exact, we can view eq. (2.17) as calculating the sum of \hat{h}^2 from eq. (2.16). This will involve solving for

$$\hat{h^2} = R_{sa}^{-1} f \tag{2.20}$$

where an inverse of R_{sq} is observed.

In normal circumstances (e.g. when R_{sq} is full rank and positive semi-definite), one can easily solve eq. (2.20) using the QR decomposition or LU decomposition. However, when R_{sq} is ill-conditioned, the traditional decomposition method will fail. Even if the decomposition is successfully performed, the result tends to be a meaningless approximation to the true \hat{h}^2 .

Therefore, to obtain a meaningful solution, regularization techniques such as the Tikhonov Regularization (also known as Ridge Regression) and Truncated Singular Value Decomposition (tSVD) has to be performed[4]. There are a large variety of regularization techniques, yet the discussion of which is beyond the scope of this study. In this study, we will focus on the use of tSVD in the regularization of the LD matrix. This is because the Singular Value Decomposition (SVD) routine has been implemented in the EIGEN C++ library [eigenweb], allowing us to implement the tSVD method without much concern with regard to the detail of the algorithm.

To understand the problem of the ill-conditioned matrix and regularization method, we consider the matrix equation Ax = B where A is ill-conditioned or singular with $n \times n$ dimension. The SVD of A can be expressed as

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^t \tag{2.21}$$

where U and V are both orthogonal matrix and $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_n)$ is the diagonal matrix of the

singular values(σ_i) of matrix **A**. Based on eq. (2.21), we can get the inverse of **A** as

$$\boldsymbol{A}^{-1} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^t \tag{2.22}$$

Where $\Sigma^{-1} = \operatorname{diag}(\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \dots, \frac{1}{\sigma_n})$. Now if we consider there to be error within \boldsymbol{B} such that

$$\hat{B}_i = B_i + \epsilon_i \tag{2.23}$$

we can then represent Ax = B as

$$egin{aligned} m{A}m{x} &= \hat{m{B}} \ m{U}m{\Sigma}m{V}^tm{x} &= \hat{m{B}} \ m{x} &= m{V}m{\Sigma}^{-1}m{U}^t\hat{m{B}} \end{aligned}$$

A matrix \boldsymbol{A} is considered as ill-condition when its condition number $\kappa(\boldsymbol{A})$ is large or singular when its condition number is infinite. One can represent the condition number as $\kappa(\boldsymbol{A}) = \frac{\sigma_1}{\sigma_n}$. Therefore it can be observed that when σ_n is tiny, \boldsymbol{A} is likely to be ill-conditioned and when $\sigma_n = 0$, \boldsymbol{A} will be singular.

One can also observe from eq. (2.24) that when the singular value σ_i is small, the error ϵ_i in eq. (2.23) will be drastically magnified by a factor of $\frac{1}{\sigma_i}$. Making the system of equation highly sensitive to errors in the input.

To obtain a meaningful solution from this ill-conditioned/singular matrix \mathbf{A} , we may perform the tSVD method to obtain a pseudo inverse of \mathbf{A} . Similar to eq. (2.21), the tSVD of \mathbf{A} can be represented as

$$A^{+} = U\Sigma_{k}V^{t}$$
 and $\Sigma_{k} = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{k}, 0, \dots, 0)$ (2.25)

where Σ_k equals to replacing the smallest n-k singular value replaced by 0[5]. Alternatively, we can define

$$\sigma_i = \begin{cases} \sigma_i & \text{for } \sigma_i \ge t \\ 0 & \text{for } \sigma_i < t \end{cases}$$
 (2.26)

where t is the tolerance threshold. Any singular value σ_i less than the threshold will be replaced by 0.

By selecting an appropriate t, tSVD can effectively regularize the ill-conditioned matrix and help to find a reasonable approximation to x. A problem with tSVD however is that it only work when matrix A has a well determined numeric rank[5]. That is, tSVD work best when there is a large gap between σ_k and σ_{k+1} .

Hansen(1987)[5] stated that for a matrix to have a well-determined numeric rank, the concept of rank usually make sense in the data.

In MATLAB, NumPy and GNU Octave, this threshold is taken to be $t = \epsilon \times \max(m, n) \times \max(\Sigma)$ where ϵ is the machine epsilon (the smallest number a machine can define as non-zero). Using this tolerance threshold, we were able to solve the ill-posed eq. (2.16), therefore solving for \hat{h}^2 .

2.2.4 Extreme Phenotype Selections

eq. (2.17) can naturally be applied to the quantitative trait scenario.

2.2.5 Case Control Studies

2.3 Simulation

In order to assess the performance of the method under different scenarios, we performed a number of simulation to compare the performance of our algorithm with other existing softwares including Genome-wide Complex Trait Analysis (GCTA) and LD SCore (LDSC)

2.3.1 Quantitative Trait

2.3.2 Case Control Studies

2.3.3 Exreme Phenotype Selections

2.4 Result

The heritability estimation were implemented in SNP Heritability and Risk Estimation Kit (SHREK) and is available on https://github.com/choishingwan/shrek.

2.5 Discussion

Heritability of Schizophrenia

3.1 Introduction

3.2 Heritability Estimation

This will be a very simple section, focused on how to perform the heritability estimation on Schizophrenia (SCZ). Should also tokenize the heritability into subcategories (e.g. immune, neuron, etc)

3.2.1 Methodology

3.2.2 Result

3.3 Brain development and Schizophrenia

Here we will perform the WGCNA and brain development network. Seeing how the whether if any brain development network were enriched with SNPs that explain the variance of phenotype

3.3.1 Methodology

3.3.2 Result

3.4 Discussion

Heritability of Response to antipsychotic treatment

4.1 Introduction

Here we try to use Beatrice's data and estimate the heritability explained in drug response. Should also repeat the region-wise heritability

- 4.2 Methodology
- 4.3 Result
- 4.4 Discussion

11	DISCUSSIONHAPTER 4.	HERITA BILITY	OF RESPONSE TO	ANTIPSVCHOTIC	TREATMENT
4.4.	- DIOCCOONUMBAR FRA. 4.	прынарши	OF BESTONSE IO	ANTIPOTURO	I D.C.A I WICH

Risk Prediction

5.1 Methodology

We can define the traditional Polygenic Risk Score (PGS) as

$$\hat{Y} = diag(\beta)X \tag{5.1}$$

where X is the standardized genotype, β is the test-statistic calculated from other studies.

- 5.1.1 Simulation
- 5.2 Result
- 5.3 Discussion

Conclusion

Bibliography

- [1] Genomes Project et al. "An integrated map of genetic variation from 1,092 human genomes". In: Nature 135.V (2012), pp. -9. ISSN: 00280836. DOI: 10.1038/nature11632. arXiv: /www.pubmedcentral.nih. gov/articlerender.fc [Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29(1), 308-11. Retrieved from http:].
- [2] David M Altshuler et al. "Integrating common and rare genetic variation in diverse human populations." In: *Nature* 467.7311 (2010), pp. 52–58. ISSN: 0028-0836. DOI: 10.1038/nature09298.
- [3] G Shieh. "Estimation of the simple correlation coefficient". eng. In: Behav Res Methods 42.4 (2010), pp. 906-917. DOI: 10.3758/BRM.42.4.90642/4/906[pii]. URL: http://www.ncbi.nlm.nih.gov/pubmed/21139158.
- [4] Arnold Neumaier. "Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization". In: SIAM Review 40.3 (1998), pp. 636–666. ISSN: 0036-1445. DOI: 10.1137/S0036144597321909.
- [5] Per Christian Hansen. "The truncated SVD as a method for regularization". In: Bit 27.4 (1987), pp. 534–553. ISSN: 00063835. DOI: 10.1007/BF01937276. URL: http://portal.acm.org/citation.cfm?id=891601.

BIBLIOGRAPHY BIBLIOGRAPHY

Appendix