

Reminder

Spectral lines described by Voigtian

No analytic solution, but good approximations exist

PDF = ka * Sum(
$$V_{K\alpha}^{i}$$
) + (1-ka) * Sum($V_{K\beta}^{i}$) , ka = rel. intensity

Here I present the current status and things I've tried to estimate and improve the resolution

Data after Cleaning + Optimal Filtering

-0.0020-0.0015-0.0010-0.0005 0.0000 0.0005 0.0010 0.0015

no "afterglow"

DElight

 10^{3}

 10^{2}

10¹

10⁰

baseline_slope

Fitting the full range

- $E = p_0 + p_1 x + p_2 x^2 + p_3 x^3$, x = ample
- Resolution: 1.48 GeV
- Marginal improvement over last time (1.49 eV) coming from outlier cleaning
- Referred to as "default" hereafter

Counts [a.u.

DE[ight

200

2023 (R&D data)

Time correction

- The default has a time-dependent correction of the fitted amplitudes based on the mean of the trend
- Correction derived on K_α, but applied also to K_β

No time correction clearly adverse effect on fit (2.18 eV)

Masking the K_{β} line

- Only considering the K_a lines
- Idea: chemical composition of Κ_β source may be different and the spectra off
- Fit not converging when removing
 K_β term from PDF
- Used full PDF and just masked events in K_β region

Masking the K_{β} line

 Degraded resolution extracted compared to fit on full range

Masking the K_{β} line

- Slightly degraded resolution extracted compared to fit on full range
- Clearly, estimate off for K_{β} as no constraints at high energies

Some fits that did not converge (yet)

- Anything with RooFit
- Only considering the K_a traces + just the K_a PDF term
- Parametrizing (as polynomial) the detector resolution
 - Sigma_0 → sigma = sigma_0 + sigma_1*x
- 3rd order polynomial for $x \to E$
 - Currently a 2nd order polynomial is used

Temperature dependence

- Temperature hiding in the baseline offset
- We expect to see an amplitude dependence on the temperature, but how strong is it?

Temperature dependence

- Temperature hiding in the baseline offset
- We expect to see an amplitude dependence on the temperature, but how strong is it?
- ~ sinusodial dependence?

Temperature dependence

- Temperature hiding in the baseline offset
- We expect to see an amplitude dependence on the temperature, but how strong is it?
- ~ sinusodial dependence?

Last slide

- Removing all events with t =]129,133[
- Much improved resolution (within unc)
- Asks for closer inspection of temperature effects & correction

2023 (R&D data)

Overview

- Run 0: masking beta region
- Run 1: default
- Run 2: no time correction
- Run 3: time correction + correction offset shift
- Run 4: Beta 1 time correction for Kbeta region
- Run 5: Run 3 + Run 4
- Run 6: Run 4 + temperature correction
- Run 7: temperature correction
- Run 8: temperature selection via skim.config
- Run 9: flip sigma and aw_ij