

Painting 3D Nature in 2D:

View Synthesis of Natural Scenes from a Single Semantic Mask

Shangzhan Zhang¹, Sida Peng¹, Tianrun Chen¹, Linzhan Mou¹, Haotong Lin¹, Kaicheng Yu², Yiyi Liao¹, Xiaowei Zhou¹

Zhejiang University¹, Alibaba Group²

Problem Background

- Natural scenes are indispensable content in many applications such as film production and video games. This work focuses on a specific setting of synthesizing novel views of natural scenes given a single semantic mask, which enables us to generate 3D contents by editing 2D semantic masks.
- Given only a single semantic map as input (first row), our approach optimizes neural fields for view synthesis of natural scenes. Photorealistic images can be rendered via neural fields (the last two rows).

Challenges

- Training neural fields directly on a single semantic map is a challenging task. This is because training neural fields typically necessitates multi-view RGB image data.
- Compared to urban or indoor scenes, learning to synthesize natural scenes is a challenging and interesting task, as it is difficult to collect 3D data or posed videos of natural scenes for training.

Comparisons

For more results, please refer to our paper.

