Лабораторная работа 1.2.5 "Исследование вынужденной регулярной прецессии гироскопа"

Студент 1 курса ЛФИ Гусаров Николай

Ноябрь 2020

1. Цель лабораторной работы

Исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от велечины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, расчитанной по скорости прецессии.

2. Оборудование

Гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

3. Экспериментальная установка и начало работы

Схема экспериментальной установки

- 1) Устанавливаем ось гироскопа в горизонтальное положение, поворачивая его за рычаг С.
- 2) Включаем питание гироскопа и ждем, пока вращение ротора не стабилизируется.
- 3) Убеждаемся в том, что ротор вращается достаточно быстро: при легком постукивании по рычагу С последний не должен изменять своего положения в пространстве.
 - Причина: Он не двигается вниз из-за прецессии гироскопа, так как если мы давим вниз или вверх, то момент инерции оси гироскопа направлен по касательной. Он не двигается вбок из-за силы трения в оси ОО.
- 4) Как движется гироскоп при нажатии на рычаг? При нажатии сверху на С установка вращается против часовой стрелки (смотря сверху). Отсюда ω направлена от оси к С, потому гироскоп вращается против часовой стрелки, смотря на С.

4. Измерение угловой скорости регулярной прецессии

При подвешивании к рычагу C груза Γ начинается прецессия гироскопа, а трение в горизонтальной оси приводит к тому, что рычаг начинает медленно опускаться.

Отклоним рычаг на небольшой угол вверх и с помощью секундомера найдем угловую скорость регулярной прецессии Ω для разных значений момента сил, приложенного к рычагу C.

Nº	N, об o ротов	t, c	$\Delta\phi$, град
1	1	130	10
2	1	131	10
3	1	131	10
4	1	129	10
5	1	130	10

Масса груза 77г

Nº	N, об o ротов	t, c	$\Delta\phi$, град
1	2	144	10
2	2	143	10
3	2	142	10
4	2	144	10
5	2	142	10

Масса груза 142г

Nº	N, об o ротов	t, c	$\Delta\phi$, град
1	4	229	10
2	4	229	10
3	4	229	10
4	3	172	10
5	3	171	10

Масса груза 176г

Nº	N, об o ротов	t, c	$\Delta\phi$, град
1	3	137	10
2	3	137	10
3	3	136	10
4	3	137	10
5	3	136	10

Масса груза 220г

$N_{\overline{0}}$	N, об o ротов	t, c	$\Delta\phi$, град
1	4	149	10
2	4	150	10
3	4	150	10
4	4	150	10
5	4	149	10

Масса груза 275г

$N_{\overline{0}}$	N, об o ротов	t, c	$\Delta\phi$, град
1	3	88	10
2	3	88	10
3	3	88	10
4	3	88	10
5	3	88	10

Масса груза 343г

Усредним значения, пересчитаем данные по

$$M=m_{\scriptscriptstyle \Gamma}gl_{\scriptscriptstyle \Pi}\sinlpha$$

$$\Omega=rac{2\pi}{T}$$

$$\Omega_{
m ohyck}=rac{2\pi}{t}$$

где α – угол между вертикалью и осью собственного вращения гироскопа, $l_{\rm u}=11.9{\rm cm}$ – длина плеча C.

m, г	M , м $H \cdot$ м	T, c	$\Omega, \frac{\mathrm{pag}}{\mathrm{c}} \cdot 10^{-3}$	$\Delta\phi$, град	$\Omega_{ m onyck}, rac{ m paд}{ m c} \cdot 10^{-3}$
77	91,6	$130,0 \pm 0.3$	48,3	10	1,50
142	169,0	$72,0 \pm 0.3$	87,3	10	2,20
176	209,4	$57,3 \pm 0.3$	109,7	10	2,71
220	261,8	$45,6 \pm 0.4$	137,6	10	3,18
275	327,3	$37,3 \pm 0.4$	168,6	10	3,93
343	408,2	$29,3 \pm 0.4$	214,2	10	4,93

Зависимость угловой скорости регулярной прецессии от момента силы F

5. Измерение момента инерции ротора относительно оси симметрии I_0

Повесим ротор, извлеченный из такого же гироскопа, к концу висящей проволоки так, чтобы ось симметрии гироскопа была вертикальна, и измерим период крутильных колебаний получившегося маятника.

$$T_0 = 3,23 c$$

$$\Delta_{T_0} = 0,02 c$$

Заменим ротор гироскопа цилиндром, для которого известны данные:

$$m=1617, 8\pm 0, 1$$
 г $h=3, 9\pm 0, 1$ см $d=7, 9\pm 0, 1$ см

Где m, h и d – масса, высота и диаметр цилиндра соответственно.

$$I_{\rm II} = \frac{md^2}{8}$$

$$I_{\rm II} = (1,23\pm0,03)\cdot10^{-3}\,{\rm kg\cdot m^2}$$

И проведем аналогичное измерение для цилиндра:

$$T_{II} = 4,04 c$$

$$\Delta_{T_{II}} = 0,02 c$$

Тогда

$$I_0 = I_{\rm II} \frac{T_0^2}{T_{\rm II}^2}$$

$$I_0 = (0,82\pm0,05)\cdot 10^{-3}\,{\rm Kf}\cdot {\rm M}^2$$

6. Расчет скорости вращения ротора

По результатам 4 и 5 имеем:

$$I_z = I_0 = (0,82 \pm 0,05) \cdot 10^{-3} \, \mathrm{kf} \cdot \mathrm{m}^2$$

Из графика:

$$k = 0.522 \pm 0,005$$

Из формулы

$$\Omega = rac{mgl}{I_z \omega_0}$$
 $\omega_0 = 2336 \pm 43 \, \mathrm{pag}/c$

Имеем частоту вращения ротора

$$f = 372 \pm 7$$
 Гц

7. Момент силы трения

По скорости опускания рычага определяем момент сил трения.

$$\Omega_{
m onyck} = rac{M_{F_{
m tp}}}{I_0 \omega_0}$$

$$M_{F_{\text{\tiny TP}}} = I_0 w_0 \Omega_{\text{опуск}}$$

$\Omega_{ m onyck}, m pag/c$	$M_{F_{ ext{ iny Tp}}}, { m M} H \cdot { m M}$	$\Delta_{M_{F_{ ext{ iny Tp}}}}, \mathrm{MH} \cdot \mathrm{M}$
1,5	2,87	0,06
2,2	4,21	0,08
2,7	5,1	0,1
3,18	6,1	0,1
3,93	7,5	0,1
4,93	9,4	0,2

8. Определение частоты вращения ротора гироскопа по фигурам Лиссажу

Для этого подключим осциллограф и генератор в сеть, подадим на "Вход Y"сигнал второй обмотки статора гироскопа. Получим динамическую картину фигур Лиссажу на экране осциллографа и добъемся появления фигуры, похожей на эллипс, в таком случае, если эллипс будет неподвижен, частота вращения ротора и частота сигнала, подаваемая с генератора будут совпадать.

Из полученных на осциллографе результатов можно сделать вывод о том, что частота вращения ротора лежит в диапазоне 400 ± 2 Γ ц.

9. Заключение

Измерение частоты вращения ротора гироскопа с помощью прецессии гироскопа совпало порядком с измерением частоты вращения с помощью фигур Лиссажу.

$$f_{ ext{прец.}} = 372 \pm 7 \, \Gamma_{ ext{Ц}}$$
 $f_{ ext{Лиссажу}} = 400 \pm 2 \, \Gamma_{ ext{Ц}}$