Fundamental Theorem of Calculus

The slope of this line (derivative) is the Acceleration.

The area under this line (integral) is the change of position, or distance travelled.

Harfore

The distance covered in 6 seconds is the area under the graph between 0 < t < 6

$$V=\frac{5}{2}$$
 $S=V\cdot E$

$$x(t) = \int v(t) dt$$

$$\frac{dx(t)}{dt} = v(t)$$

$$\frac{dx(t)}{dt} = v(t)$$

Fundamental Theory of Calculus says that you can manipulate these derivatives just like any other algebra

$X(t) = \int v(t) \cdot dt$

The root cause of any movement is acceleration.

Newton's First law says that it will stay moving at the same speed/direction, until more acceleration is applied (change speed or direction)

- 1. If we know current position and velocity, the acceleration can tell us exactly how it will behave in the future
- 2. The area under the acceleration curve is velocity
- The area under velocity curve is position

Knematic Equations

$$a(t) = q \neq constant$$

v(t) = \a.dt = \a.t + Vo

 $V_0 = 0 \qquad a = 5 \text{ m/s}^2 \qquad \chi_0 = 0$ $\times (2) = ?$ $- 1(5)(2)^2 + 0(2) + 0$

$$= \frac{1}{2}(5)(2)^{2} + \frac{8(2)}{40} + 0$$

$$= \frac{1}{2} \cdot 5 \cdot 4$$

$$= \frac{1}{2} \cdot 20 = 10m$$

Volory (who time)
$$V^2 = v_0^2 + 2a(x - x_0)$$
constant a

$$t = 0 \quad a = 10 \text{ m/s}^2 \quad x_0 = 0 \quad y_0 = 0$$

$$x(t) = \frac{1}{2}a \cdot t^2 = \frac{1}{2}(10) \cdot (10)^2$$

$$= \frac{1}{2} \cdot 1000$$

$$= \frac{1}{2} \cdot 1000$$

$$= \frac{1}{2} \cdot 1000$$

$$= \frac{1}{2} \cdot 1000$$