Angga Fathan Rofiqy

G1401211006

TUGAS 1

STA1333 PENGANTAR MODEL LINEAR

1. Apakah Matriks X berikut full rank? Apakah Matriks X non singular?

$$X = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Matriks tersebut tidak full rank karena ukurannya 5x3. Sedangkan rank paling besar yang mungkin adalah 3. Sehingga Matriks X tersebut tidak mungkin full rank. Matriks X juga bukanlah matriks non singular. Karena matriks tersebut tidak memiliki determinan. Sehingga matriks X tidak mungkin memiliki invers. Maka matriks X adalah matriks singular.

2. Tentukan invers dari

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/4 & 1 & 0 & 0 \\ 1/3 & 1/3 & 1 & 0 \\ 1/2 & 1/2 & 1/2 & 1 \end{bmatrix}$$

				 	_		_	
1	0	0	0	1	0	0	0	
1/4	1	0	0	0	1	0	0	X2 4
1/3	1/3	1	0	0	0	1	0	X3 3
1/2	1/2	1/2	1	0	0	0	1	X4 2
1	0	0	0	1	0	0	0	
1	4	0	0	0	4	0	0	X2 - X1
1	1	3	0	0	0	3	0	X3 - X2
1	1	1	2	0	0	0	2	X4 - X3
1	0	0	0	1	0	0	0	
0	4	0	0	-1	4	0	0	X2 1/4
0	-3	3	0	0	-4	3	0	X3 + X2 3/4
0	0	-2	2	0	0	-3	2	X4 1/2
1	0	0	0	1	0	0	0	
0	1	0	0	- 1/4	1	0	0	
0	0	3	0	- 3/4	-1	3	0	X3 1/3
0	0	-1	1	0	0	-1 1/2	1	X4 + X3 1/3
1	0	0	0	1	0	0	0	
0	1	0	0	- 1/4	1	0	0	
0	0	1	0	- 1/4	- 1/3	1	0	
0	0	0	1	- 1/4	- 1/3	- 1/2	1	

3. Jika
$$\mathbf{y} = (y_1 \ y_2 \ y_3)'$$
 merupakan vektor acak dengan nilai tengah $\boldsymbol{\mu} = (3 \ 2 \ 1)'$. Asumsikan bahwa $\sigma_{ij} = 0$, $i \neq j$, dan $\sigma^2 = 4$, $i = 1, 2, 3$.

b. Misalkan
$$A = \begin{bmatrix} 5 & 3 & -3 \\ 4 & -2 & 1 \\ -1 & 0 & 2 \end{bmatrix}$$
, tentukan $E(\mathbf{y}'\mathbf{A}\mathbf{y})$

a)
$$\rightarrow \sigma i j = 0$$
, $i \neq j$, $\sigma^{2} = 4$, $i = 1, 7, 3$
[ogamy = $\begin{cases} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{cases}$

$$AV = \begin{cases} 5 & 3 & -3 \\ 4 & -2 & 1 \\ -1 & 0 & 2 \end{cases} \begin{cases} 4 & 0 & 0 \\ 0 & 0 & 4 \end{cases}$$

$$= \begin{cases} 20 & 12 & -12 \\ 16 & -8 & 4 \\ -4 & 0 & 0 \end{cases}$$

-• M'AM =
$$(3\ 2\ 1)$$
 $\begin{pmatrix} 5 & 3 & -3 \\ 4 & -1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

$$= \begin{pmatrix} 15 + 8 - 1 & 9 - 9 & -9 + 2 + 2 \end{pmatrix}$$
 $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

$$= \begin{pmatrix} 22 & 5 & -5 \end{pmatrix}$$
 $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 66 + 10 & -5 \end{pmatrix}$ $= 71$

X cara Panjang

4. Misal (X,Y) mempunyai joint probability density $f(x,y) = x + y, 0 \le x \le 1, 0 \le y \le 1$, definisikan $U = \begin{bmatrix} X \\ Y \end{bmatrix}$, tentukan nilai E(U)

$$E(u) = E(x) = \begin{cases} x \\ y \end{cases} = \begin{cases} E(x) \\ E(y) \end{cases}$$

$$= \begin{cases} x \\ y \end{cases} = \begin{cases} E(x) \\ E(y) \end{cases}$$

$$= \begin{cases} x \\ y \end{cases} = \begin{cases} E(x) \\ E(y) \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \end{cases} = \begin{cases} x \\ y \end{cases} = \begin{cases} x$$

5. Misalkan $\mathbf{x} = (x_1 \quad x_2)'$ menyebar $N(\mathbf{\mu}, \mathbf{\Sigma})$ dengan $\mathbf{\Sigma} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ $Q_1 = (x_1 - x_2)^2$ $Q_2 = (x_1 + x_2)^2$

a. Tunjukkan bahwa $\frac{Q_1}{2(1-\rho)} \sim \chi^2$

b. Periksa apakah Q₁ dan Q₂ saling bebas?

2.)
$$Q_{1} = (x_{1} - x_{2})^{2}$$

$$= \chi^{1} - 2x_{1} x_{2} + \chi^{2}$$

A = $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

Thisat: $P = \frac{Q_{1}}{2(1-P)}$

$$= \frac{x_{1}^{2} - 2x_{1}x_{1} + \chi^{2}_{2}}{2(1-P)}$$

$$A^{*} = \frac{1}{1(1-P)} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & P \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$= \frac{1}{2(1-P)} \begin{bmatrix} 1 - P & P - 1 \\ P - 1 & 1 - P \end{bmatrix}$$

$$-\Phi(A^*V)(A^*V) = \binom{1/h - 1/h}{1/h} \binom{1/k}{1/h} - \frac{1/h}{1/h}$$

$$= \frac{1}{2} \frac{1}{2} \binom{1}{1-1} \binom{1}{1-1} \binom{1}{1-1}$$

$$= \frac{1}{4} \binom{1+1}{1-1-1} - \frac{1}{1+1} = \frac{1}{4} \binom{2}{1-2} - \frac{2}{2} \binom{1/h - h}{1/h} \binom{1/h}{1/h} \binom$$

$$A = (x_1 - x_2)^2 = x_1^2 - 2x_1x_1 + x_2^2$$

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = A' \quad (Simetrik) V$$

AVB =
$$A \ge B = \begin{cases} 1 & -1 \\ -1 & 1 \end{cases} \begin{cases} 1 & e \\ e & 1 \end{cases} \begin{cases} 1 & e \\ 1 & 1 \end{cases}$$

$$= \begin{cases} 1-e & e-1 \\ 1-1 & 1-e \end{cases} \begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$$

$$= \begin{cases} 1-e+e-1 & 1-e+e-1 \\ e+1+e & e+e-1 \end{cases} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \quad V$$

Jody Qidon Qr Solling bobs