System Architektur v0.0.1

24.09.16 - Andrei

Überblick

- 1. mongodb konfigurieren
 - Sensordaten simulieren
- 2. statische Datenbank Schema
 - OSM Daten abholen
- 3. Parken Abfragen

mongodb

- Darein werden Sensordaten abgespeichert:
 - Sensor id
 - Timestamp
 - Parkplatz
 - isFree ist jetzt der Platz frei oder belegt? (TRUE oder FALSE)

Sensordaten simulieren

- Je nach Speicherart unterscheiden sich folgende Strategien:
 - Pro Event (aktuelle Wahl)
 - Pro Sekunde
 - Falls mehrfache Events pro Sekunde
 - Vorteil: weniger Inserts, spart Schreiben-Zeit
 - Zehntelsekunde-Events sind in Gruppen gespeichert: 0..9
 - Pro Minute
 - Sekunde-Events 0..59 sind zusammen gespeichert

Mongodb - Screenshot

Statische Datenbank – Schema (1)

Statische Datenbank – Schema (2)

Statische Datenbank – Schema (3)

Statische Datenbank – Schema (4)

OSM Daten

- Daten werden durch Abfragen an OverpassAPI geholt
 - Parkautomaten (vending = parking_tickets)
 - Parkräume (amentiy = parking)

Aktuell

- sensors Tabelle wird mit Parkautomaten-Daten befüllt
- parkingareas Tabelle wird mit Parkräume-Daten befüllt
- sensor (n): parkingarea (1) -> in OSM schwierig festzulegen!!

Parken Abfragen

- Einfache Variante: Finde die besten Parkmöglichkeiten in der Nähe von Position (lat, lon), jetzt!
- Vorgeschlagener Algorithmus:
 - Suche im Umkreis 500m
 - finde die Parkräume, die den aktuellen Standort geometrisch enthalten
 - Berechne Anteil an freien Plätzen für diese Parkräume (stand: aktuell)
 - Erstelle eine Rangliste; E.g. P1: 35% frei, P2: 24% frei, P3: 10% frei
 - Falls nicht genug Parkräume gefunden/die Raten zu niedrig sind
 - Suche im Umkreis 1000m
 - das gleiche

• ...