深宵教室 - DSE 必修模擬試題解答

2018 PAPER 1

2018 PAPER 1

- Section A1
- Section A2
- Section B

$$Q1.$$
) $\frac{a+4}{3} = \frac{b+1}{2}$, $b = ?$

* 參考課程 2.1

$$\rightarrow 2(a+4) = 3(b+1)$$

$$\rightarrow 2a + 8 = 3b + 3$$

$$\rightarrow b = \frac{2a + 5}{3}$$

* 兩邊交叉相乘分母

* 兩邊減 3 再除 3

Q2.) Simplified
$$\frac{xy^7}{(x^{-2}y^3)^4}$$
, in positive indices

* 參考課程 1.2

$$= x^{1-(-2\cdot 4)} \cdot y^{7-3\cdot 4}$$

$$= x^9 \cdot y^{-5}$$

$$=\frac{x^9}{y^5}$$

- * 指數乘係加,除係減
- * 指數負數,分母變分子,分子變分母

- Q3.) a.) Round up 265.473 (to the nearest integer)
 - b.) Round down 265.473 (to 1 d.p.)
 - c.) Round off 265.473 (to 2 sig fig.)
- * 參考課程 1.1
- a.) 266
- b.) 265.4
- c.) 270

- * 進一至整數
- * 捨去至小數後一個位
- * 四捨五入之二位有效數字

- Q4.) There are n white balls, 5 black balls and 8 red balls in the bag A ball is randomly selected from the bag. Given that the probability of the selected ball is red = 0.4. Find the value of n.
- * 參考課程 1.1 或 4.3

$$P(the selected ball is red) = \frac{8}{n+5+8} = 0.4$$

$$\rightarrow 8 = 0.4n + 5.2$$

$$\rightarrow n = 7$$

* 機率 = 紅波數量 / 波的總數

Q5.) Factorize
$$9x^3 - 18x^2y - xy^2 + 2y^3$$

* 參考課程 2.5

$$= (9x^2)(x - 2y) + y^2(x - 2y)$$

$$=(x-2y)(9x^2-y^2)$$

$$= (x - 2y)(3x + y)(3x - y)$$

* 恆等式
$$a^2 - b^2 = (a - b)(a + b)$$

Q6.) Solve
$$\frac{3-x}{2} > 2x + 7$$
 and $x + 8 \ge 0$

Hence, find greatest integer satisfy the above inequalities.

* 參考課程 1.1 及 2.3

$$\rightarrow 3 - x > 4x + 14 \text{ and } x \ge -8$$

$$\rightarrow 5x < -11 \ and \ x \ge -8$$

$$\rightarrow x < -2.2 \ and \ x \geq -8$$

$$\rightarrow -8 \le x < -2.2$$

 \therefore The greatest integer satisfy the inequalities = -3

* and 指有重疊的地方

Q7.) The marked price of good A is 30% above the cost. If a discount of 40% at the marked price, there will be \$88 lost. Find the marked price of the good A.

* 參考課程 2.3

Let the marked price of good A be \$M

Then, the cost of good A,
$$C = \frac{M}{(1+30\%)} = \frac{M}{1.3}$$

$$\therefore C - M(1 - 40\%) = 88 \to \frac{M}{13} - 0.6M = 88$$

$$\to M = 520$$

i.e. The marked price = \$520

* 百份比變化 = (新值 - 舊值) x 100% / 舊值

* 折扣後的售價

Q8.) In the following figure, AB//ED and $\angle BCD = \theta$

Find $\angle BAD$ and $\angle EFD$ in term of θ .

* 參考課程 3.1, 3.2, 3.6 及 3.7

$$\angle BAD = 180^{0} - \theta \ (opp . \angle s, cyclic quad.)$$
 $\angle ADE = \angle BAD \ (alt . \angle AB/|ED)$
 $\angle BED = \angle BAD \ (\angle s \ in \ the \ same \ segment)$
 $In \ \Delta EFD,$
 $\angle EFD + \angle FED + \angle FDE = 180^{0} \ (\angle s \ sum \ of \ \Delta)$
 $\therefore \angle EFD = 180^{0} - 2\angle BAD$
 $= 2(\theta - 90^{0})$

- * 圓內四邊形, 對角相加 = 180°
- * 平行線內錯角
- * 弓內圓周角相等
- * 三角形內角和 = 180

- Q9.) A moving ball travels from A to B with 72 km/h speed and then from B to C with 90 km/h speed. The ball travels from A to C (210 km) in 161 minutes. How long does the ball travel from A to B.
- * 參考課程 1.3 及 2.3

Let the required time to travel from A to B be x hr the required time to travel from B to C be y hr

The distance AB = 72x km, BC = 90y km, hence

$$\begin{cases} 72x + 90y = 210 & -(1) \\ 60(x + y) = 161 & -(2) \end{cases}$$

$$2x(1) - 3x(2) : 144x - 180x = 420 - 483 \rightarrow x = 1.75$$

:. The ball takes 1.75 hrs from A to B

* 距離 = 速度 x 時間

161 分鐘 = 161 / 60 小時

Q10.) The following box – and – whisker shows the distribution of the ages of a group of students in class A. Interquartile range = 21, range = 43

- a.) Find a and b
- b.) 5 more students are combined in the class A, in which 3 of them are of age 38 and the their range = 20. Will the range of the ages of class A unchange after the combination of these 5 students? Explain your answer.

* 參考課程 4.2

a.)
$$a - 27 = 21, b - 19 = 43$$

 $a = 48, b = 62$

- b.) Assume the 5 students ages are:
 - 38, 38, 38, 38, 18, which satisfy range = 20 The combinated range = $62 - 18 = 42 \neq 43$
 - :. The range will not always unchange

- * Interquatile Range = 第三及一四分位數之差
- * Range = 最大最細值之差
- *舉反例証明錯

Q11.) The following shows the result of the survey of the numbers of children in a typical family in Hong Kong. where k is a positive integer

Number of children 0 1 2 3 4 Number of families k 2 9 6 7

- a.) If mode = 2, the least and greatest value of k?
- b.) If median = 2, the least and greatest value of k?
- c.) If the mean = 2, find the value of k.

* 參考課程 4.1 及4.2

- a.) The least value = 1
 The greatest value = 8
- b.) The least value = 3
 The greatest value = 19

c.)
$$2 = \frac{2(1) + 9(2) + 6(3) + 7(4)}{k + 2 + 9 + 6 + 7} \rightarrow 2k + 48 = 66 \rightarrow k = 9$$

* 眾數 = 出現最多

*中位數 = 排序後中間的數值

* 平均值 = 數值總和/總數

- Q12.) Let $f(x) = 4x(x+1)^2 + ax + b$, where a and b are constant. Given that x-3 is a factor. and the remainder are 2b+165 for f(x) is divided by x+2 a.) Find a and b b.) Does f(x) = 0 have at least one irrational root? Explain your answer.
 - * 參考課程 1.1, 2.4 及 2.6
- a.) Given that f(3) = 0 and f(-2) = 2b + 165 $\begin{cases}
 3a + b = -192 & \text{(1)} \\
 2a + b = -173 & \text{(2)} \\
 (1) - (2) : a = -19 \rightarrow b = -135 \\
 i.e. (a, b) = (-19, -135)
 \end{cases}$
- b.) Assume $f(x) = 4(x-3)(x^2 + Ax + B)$, where A and B are constant. By compare cofficient of x and constant, A = 5, B = 11.25Hence, $f(x) = 0 \rightarrow x = 3$ or $x^2 + 5x + 11.25 = 0 - (*)$ In (*), $\Delta = 5^2 - 4(11.25) = -20 < 0$, There is no real root i.e. f(x) = 0 has no irrational root.

* 餘數定理

*消去法,用(1)式減(2)式約去 b 揾 a, 再代入(1)式揾 b

| * 用二次方程判別式

- Q13.) The following shows a trapezium with $\angle ABC = \angle AED = 90^{\circ}$ and AB//CD.
 - a.) Prove that $\triangle ABE \sim \triangle ECD$.
 - b.) Given that AB = 15cm, AE = 25cm and CE = 36cm. Is there a point F lying on AD such that EF < 23cm? Explain your answer.
 - * 參考課程 3.1, 3.2 及 3.3

a.)
$$\angle ABE = \angle ECD = 90^0$$
 (given, $AB//DC$)
$$\angle BAE = 90^0 - \angle AEB \ (\angle s \ sum \ of \ \Delta)$$

$$\angle DEC = 90^0 - \angle AEB \ (alt . \ \angle s \ on \ a \ st . \ line)$$

$$\therefore \angle BAE = \angle DEC$$

$$\angle AEB = \angle CDE \ (\angle s \ sum \ of \ \Delta)$$

 $i.e. \Delta ABE \sim \Delta CDE (AAA)$

b.) :
$$\triangle ABE \sim \triangle ECD \rightarrow \frac{DE}{AE} = \frac{EC}{AB} \rightarrow DE = 60cm$$

- * 三角形內角和 = 1800
- *直線上的角度加總 = 1800
- * 三角形內角和 = 1800

* 相似三角形邊比相等

Let the shortest distance between point E and the line AD be H

where
$$AD = \sqrt{25^2 + 60^2} = 65cm \ (pyth. theorem)$$

The area of
$$\triangle AED = \frac{1}{2}(AE)(ED) = \frac{1}{2}(AD)(H)$$

$$\rightarrow H = \frac{AE \cdot ED}{AD} \approx 23.0769cm > 23cm$$

i.e. There is no point F lying on AD such that EF < 23cm

* 畢氏定理

- Q14.) There is a right circular cylinder with full of water, base radius = 8cm, height = 64cm. There is an empty circular cone, base radius = 20cm, height = 60cm are held inverted vertically. The water is now poured into the cone.
 - a.) Find the volume of water in terms of π
 - b.) Find the depth of water inside the cone.
 - c.) Will water be overflowed if a metal sphere (radius = 14cm) immersed into the water? Explain your answer.
 - * 參考課程 3.2 及 3.9
 - a.) Let V_1 cm³ be the volume of water Then, $V_1 = 8^2(\pi)(64) = 4096\pi \text{ cm}^3$
 - a.) Let V_2 cm³ be the volume of the cone D cm be the depth of water

$$\frac{V_1}{V_2} = (\frac{D}{60})^3 \to D^3 = (60)^3 (4096\pi) (\frac{1}{3} 60 \cdot 20^2 \pi) \to D = 48$$

- * 柱體體積 = 底面積 x 高
- * 相似圖形,體積比 = (邊比)3

- :. The depth of water is 48cm
- c.) Let V_3 cm³ be the volume of the metal sphere

Then,
$$V_3 = \frac{4}{3}14^3\pi = \frac{10976\pi}{3}cm^3$$

:
$$V_1 + V_3 \approx 7754.66\pi \ cm^3$$
 and $V_2 = \frac{1}{3}(20^2)\pi(60) = 8000\pi \ cm^3$

$$\rightarrow V_1 + V_3 < V_2$$

i.e. The water will not overflow.

* 球體體積 = 4/3 x 半徑³ x π

* 當球體及水的體積加總大過容器體積水便滿溢

- Q15.) 8 digit number is formed by a permutation of 2,3,4,5,6,7,8 and 9.
 - a.) Find the number of 8 digit number can form.
 - b.) Find the number of 8 digit number that the 1^{st} and the last digit are odd can form.
- * 參考課程 4.4
- a.) The number of 8 digit number can form $= P_8^8 = 40320$
- b.) The number of 8 digit number can form = $P_2^4 \cdot P_6^6$
 - = 8640

- * 個數字個排序
- * 頭同尾 3,5,7,9 兩個數字的排序
 - * 中間 6 個位 6 個數字(沒有頭尾)的排序

- Q16.) The 3rd and the 4th term of an geometric sequence are 720 and 864 respectively.
 - a.) Find the 1st term of the sequence
 - b.) Find the greatest value of n such that the sum of the $(n + 1)^{th}$ term and $(2n + 1)^{th}$ term is less than $5x10^{14}$.
 - * 參考課程 2.7
 - a.) Let $T(n) = ar^{n-1}$, where a and r are constant

$$T(3) = 720 \rightarrow ar^2 = 720 - (1)$$

$$T(4) = 864 \rightarrow ar^3 = 864 - (2)$$

$$(2)/(1): r = 1.2 \rightarrow a = 500$$

- :. The 1^{st} term = 500
- - \therefore The greatest value of n = 75

* 等比數列 = 首項 x (公比)n-1

*(2)/(1) 揾 r 再代(1) 揾 a

Q17.) In the following, ABCD is a parallelogram. Given that AB = 60cm, $\angle ABD = 20^{\circ}$, $\angle BAD = 120^{\circ}$. Then, the figure is folded along BD such that AC = 40cm

- a.) Find AD
- b.) Find $\angle ABC$
- c.) Find the angle between the plane ABD and the plane BCD

* 參考課程 3.3, 3.4 及 3.10

a.) By sine law in $\triangle ADB$,

$$AD = \frac{60sin20^{0}}{sin(180^{0} - 120^{0} - 20^{0})}, (\angle s \ sum \ of \ \Delta)$$
$$= 31.9cm \ (to \ 3 \ sig \ fig.)$$

b.) By cosine law in $\triangle ABC$ in the 3D figure,

$$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{AB^2 + AD^2 - AC^2}{2AB \cdot AD}$$
$$= \frac{60^2 + 31.925^2 - 40^2}{2(60)(31.925)}$$

- $\rightarrow \angle ABC = 38.0^{\circ} (to \ 3 \ sig . fig.)$
- c.) Let M be the point on BD such that $AM \perp BD$ F be the point on CD such that $FM \perp BD$

- * sine law 使用
- * 三角形內角和 = **180**°

- * cosine law 使用
- * BC=AD, 平行四邊形特性

b.) In
$$\triangle ADM$$
, $AM = ADsin \angle ADM = ADsin 40^{0}$

$$DM = ADcos \angle ADM = ADcos 40^{0}$$

$$(where \angle ADM = 180^{0} - 120^{0} - 20^{0} = 40^{0})$$

$$In \triangle DMF$$
, $MF = DMtan \angle FDM = DMtan 20^{0}$

$$= ADcos 40^{0} tan 20^{0}$$

$$DF = \frac{DM}{cos \angle FDM} = \frac{ADcos 40^{0}}{cos 20^{0}}$$

∴
$$AD = CB \ (prop . of //gram)$$

$$DC = AB \ (prop . of //gram)$$

$$AC = CA \ (common)$$
∴ $\Delta ADC \cong \Delta CBA \ (SSS)$

- * 三角形內角和 = 180°
- * 平行線內錯角相等

*三邊相等,全等三角形

In $\triangle ADF$, by cosine law,

$$AF^{2} = AD^{2} + DF^{2} - 2AD \cdot DF\cos \angle ADC$$

$$= AD^{2}[1 + (\frac{\cos 40^{0}}{\cos 20^{0}}) - 2(\frac{\cos 40^{0}\cos \angle ABC}{\cos 20^{0}})]$$

$$= (0.37963549)AD^{2}$$

In $\triangle AMF$, by cosine law,

$$cos \angle AMF = \frac{AM^2 + MF^2 - AF^2}{2AM \cdot MF}$$

$$= \frac{AD^2[sin^2 40^0 + cos^2 40^0 tan^2 20^0 - 0.37963549]}{2AD^2 sin 40^0 cos 40^0 tan 20^0}$$

$$\rightarrow \angle AMF = 71.9^0 \text{ (to 3 sig. fig.)}$$

:. The angle between plane ABD and $BCD = \angle AMF = 71.9^{\circ}$

* cosine law 使用

* cosine law 使用

- Q18.) It is given that f(x) is sum of two parts, one part varies as a x^2 and one part varies as x. Given that f(2) = 60, f(3) = 99. Suppose Q is the vertex of y = f(x) while R is the vertex of y = 27 f(x).
 - a.) Find f(x).
 - b.) Find the coordinates of Q and R.
 - c.) Let S = (56,0) and P be the circumcentre of ΔQRS . Describle the geometric relationship between P,Q and R.
- * 參考課程 2.3, 2.4, 2.5, 3.2 及 3.8
 - a.) Let $f(x) = k_1 x^2 + k_2 x$, where k_1 , k_2 are real constant. Then, $\begin{cases}
 4k_1 + 2k_2 = 60 & ---- (1) \\
 9k_1 + 3k_2 = 99 & ---- (2)
 \end{cases} \rightarrow \begin{cases}
 2k_1 + k_2 = 30 & ---- (1) \\
 3k_1 + k_2 = 33 & ----- (2)
 \end{cases}$ (2) $--- (1) : k_1 = 3 \rightarrow k_2 = 24$

*部分變量

* 消去法消去 k₂ 揾 k₁,再代(1) 式搵 k₂

b.) Let
$$Q = (a, b)$$

$$f(x) = 3x^2 + 24x \equiv 3(x - a)^2 + b$$

By compare cofficient of x and constant,

$$\begin{cases} -6a = 24 & -(1) \\ 3a^2 + b = 0 & -(2) \end{cases}$$

$$a = -4, b = -48$$

$$\therefore Q = (-4, -48)$$

Assume
$$g(x) = 27 - f(x) = 27 - 3(x + 4)^2 + 48$$

= $-3(x + 4)^2 + 75$

$$\therefore R = (-4, 75)$$

c.) Let
$$P = (m, n)$$

$$where n = \frac{75 - 48}{2} = 13.5$$

* 頂點型態轉換, 可用 compare coefficient

* 外心 = 垂直中點線交點

Let the mid - pt. of QS be M

$$M = (\frac{56-4}{2}, \frac{0-48}{2}) = (26, -24)$$

: the slope of PM x the slope of QS = -1

$$\frac{13.5 + 24}{m - 26} \cdot \frac{48}{60} = -1 \rightarrow m = -4$$

The x – coordinate of P, Q and R = -4i.e. P, Q, R are collinear.

- * 兩線互相垂直, 斜率相乘 = -1

Q19.) The circle, C has center = (8,2) and radius = r.

Denote a straight line, L: kx - 5y - 21 = 0, k is constant. L is a tangent to C

- a.) Express r^2 in term of k.
- b.) L passes through D(18, 39):
 - i.) Find r.
 - ii.) Let E be the point y intercept of L, F be a point that C is the inscribed circle of ΔDEF . Is ΔDEF an obtuse — angled Δ ? Explain your answer.
- * 參考課程 3.2, 3.7 及 3.8
 - a.) The equation of C: $(x-8)^2 + (y-2)^2 = r^2$ Consider,

$$\int (x-8)^2 + (y-2)^2 = r^2 - (1)$$

$$kx - 5y - 21 = 0$$
 (2)

$$kx - 5y - 21 = 0$$
In (2): $y = \frac{1}{5}(kx - 21)$, sub into (1)

圓形公式: (x,y) 同圓心距離=半徑

* 用代入法建立二元方程

: L is the tangent of $C \rightarrow \Delta = 0$

$$\rightarrow (16 + 2.48k)^2 - 4(1 + 0.04k^2)(102.44 - r^2) = 0$$

$$\rightarrow r^2 = 102.44 - \frac{(16 + 2.48k)^2}{4(1 + 0.04k^2)}$$

bi.) Since L passes through D,

$$\rightarrow k(18) - 5(39) - 21 = 0$$

$$\rightarrow k = 12$$

Hence,
$$r^2 = 102.44 - \frac{(16 + 2.48(12))^2}{4(1 + 0.04(12)^2)} = 25 \rightarrow r = 5$$

* L是 C的切線, 只有一個相交點, 判別式=0

bii.) Let O(8, 2) be the center of C.

Then,
$$E = (0, -4.2)$$

Assume, L touch C at R, then OR = r = 5Meanwhile,

$$OE = \sqrt{(8-0)^2 + (2+4.2)^2} = \sqrt{102.44}$$

$$OD = \sqrt{(8-18)^2 + (2-39)^2} = \sqrt{1469}$$

$$sin \angle OED = \frac{OR}{OE} \ (\angle ORE = 90^{\circ}, tangent \perp radius)$$

$$sin \angle ODE = \frac{OR}{OD} \ (\angle ORD = 90^{\circ}, tangent \perp radius)$$

* 代 x=0 入 L 搵 y 值

* 距離公式 =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

* 圓切線相交點與半經互相垂直

bii.) $\angle ODF = \angle ODE$, $\angle OEF = \angle OED$ (tangent props)

$$\angle DFE = 180^{0} - \angle FDE - \angle DEF$$
 (\(\angle s \text{ sum of } \Delta\)

$$\angle DFE = 180^{0} - 2(\angle ODE - \angle OED)$$

$$= 180^{0} - 2(\sin^{-1}(\frac{OR}{OD}) - \sin^{-1}(\frac{OR}{OE}))$$

$$\approx 105.8^{0} > 90^{0}$$

 $\therefore \Delta DEF \ is \ an \ obtuse - angled \ \Delta$

- * 兩條切線構成一對全等三角形
- * 三角形內角和 = **180**°

