

KSIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EXHAUSTIVE QUESTION BANK

Academic Year	2024-2025 [Odd Semester]		
Batch	2023-2027		
Year/Semester/section	IV / III /B		
Subject Code-Title	BCS304- Data Structures and Applications		
Name of the Instructor	Mr. RAGHAVENDRACHAR S	Dept	CSE

Sl.No	Questions	K Level	
1.	Develop a following c functions with respect to singly linked list (SLL)		
	Create node () (Should define structure definition and pointer)	Applying	
	<pre>Insert_front ()</pre>		
	Insert_end ()		
	> Insert_between ()		
2.	Develop a C program to implement stack using singly linked list (SLL)	Applying	
3.	Develop a C program to implement queue using singly linked list (SLL)	Applying	
4.	Develop a c function to find the addition of given two polynomials using singly linked list (SLL)	Applying	
5.	Develop a following c functions with respect to singly linked list (SLL)		
	 Concatenation of two lists Reverse of a list Searching for a key node Display and count the number of nodes 	Applying	

6.	Construct linked list representation for the following given sparse matrix.	Applying
7.	Develop a following c functions with respect to Doubly linked list (DLL) > Create node () (Should define structure definition and pointer) > Delete_front () > Delete_end () > Delete_between ()	Applying
8.	Make use of suitable example explain the following Tree Parent Degree Level of a Tree Height of a Tree	Applying
9.	Make use of suitable example explain the following tree representations ➤ List Representation ➤ Left child right sibling representation ➤ Binary tree representation	Applying
10.	 Make use of suitable example explain the following representation of a binary tree ➤ Array Representation ➤ Linked Representation 	Applying
11.	 i. Develop a recursive c functions for the following tree traversal approaches Pre order In order Post order ii. Develop a c function for level order traversal 	Applying

12.	Construct the Binary tree for the following Sequences.	Applying
	i. Postorder: 7 5 3 2 8 4 6 1	Applying
	Inorder: 7 5 1 3 8 2 6 4	
	ii. Inorder: DBEAFC	
	Preorder: A B D E C F	
13.	Construct an expression tree for the following given expression ((6+(3-2)*5)^2+3)	Applying
14.	Identify the disadvantages of Binary Tree. Build the threaded binary tree for the following given list of elements 10, 20, 30, 40, 50	Applying
15.	 Develop the following C functions with respect to threaded binary trees ➤ To find the In order successor ➤ Inserting a node 	Applying
16.	Make use of suitable example explain the following > Graph > Adjacent Vertices > Cycle > Length of the Path > Degree of a node > Weighted graph	Applying
17.	Construct Adjacency matrix and Adjacency linked for the following given graph	Applying
18.	Construct Cost Adjacency Matrix and Cost Adjacency linked list for the following given graph 10 10 25 30 30	Applying

