Capstone Project - The Battle of Neighborhoods

Introduction

In this Project We will try to explore and find best Indian Restaurents As we know that New-york is a multicultural city where lot of immigrants lives so This project is targeted to those people how wants to eat their cultural food and for those companies who wants to recommend best restaurents to their users using this model.

We will use our data science powers to generate a few most promissing neighborhoods based on highest rating and tips. So Based on that we will suggest users some Promising Neighborhoods/Restaurents according to their food preferences

With it's diverse culture, comes diverse food items. There are many resturants in New york City, each beloning to different categories like Chinese, Indian, French etc.

So as part of this project, we will list and visualize all major parts of New York City that has great indian resturants.

Data ¶

For this project we need the following data:

Following data sources will be needed to extract/generate the required information:

- 1. we will get New-york city data from https://cocl.us/new_york_dataset which contains all borough and Neighborhood details along with their latitude and longitude.
- 2. Restaurents details we will get from Foursquare Api which will contains information like Tips,Rating which will Certainly going to help us in this Project.
- 3. Using https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm we will get all boroughs location which will in creating boundaries for choropleth map.
- 4. Using Visulizations libraries like Folium, Matplotlib we will show Visulizations of our Result.

Method

- Collect the new york city data from https://cocl.us/new_york_dataset (<a href="https://cocl.us/new_york_dataset (<a h
- Using FourSquare API we will find all venues for each neighborhood. Filter out all venues that are
- Indian Resturants.
- Find rating, tips and like count for each Indian Resturants using FourSquare API.
- Using rating for each resturant, we will sort that data.

Visualize the Ranking of neighborhoods using folium library(python)

In [206]:

```
import pandas as pd
import numpy as np
pd.set option('display.max columns', None)
pd.set option('display.max rows', None)
import requests
from bs4 import BeautifulSoup
import geocoder
import os
import folium # map rendering library
from geopy.geocoders import Nominatim # convert an address into latitude and longit
# Matplotlib and associated plotting modules
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
%matplotlib inline
print('Libraries imported.')
```

Libraries imported.

Now we define a function to get the geocodes i.e latitude and longitude of a given location using geopy.

In [207]:

```
def geo_location(address):
    # get geo location of address
    geolocator = Nominatim(user_agent="ny_explorer")
    location = geolocator.geocode(address) latitude
    = location.latitude longitude =
    location.longitude
    return latitude,longitude
```

We define a function to intract with FourSquare API and get top 100 venues within a radius of 1000 metres for a given latitude and longitude. Below function will return us the venue id, venue name and category.

In [208]:

```
def get venues(lat,lng):
    #set variables
    radius=1000
    LIMIT=100
    CLIENT ID = os.environ['CLIENT ID'] # your Foursquare ID
    CLIENT SECRET = os.environ['CLIENT SECRET'] # your Foursquare Secret
    VERSION = '20180605' # Foursquare API version
    #url to fetch data from foursquare api
    url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret
            CLIENT ID,
            CLIENT SECRET,
            VERSION,
            lat,
            lng,
            radius,
            LIMIT)
    # get all the data
    results = requests.get(url).json()
    venue data=results["response"]['groups'][0]['items']
    venue details=[]
    for row in venue data:
        try:
            venue id=row['venue']['id']
            venue name=row['venue']['name']
            venue_category=row['venue']['categories'][0]['name']
            venue details.append([venue id, venue name, venue category])
        except KeyError:
            pass
    column names=['ID','Name','Category']
    df = pd.DataFrame(venue details, columns=column names)
    return df
```

Now we will define a function to get venue details like like count , rating , tip counts for a given venue id. This will be used for ranking.

```
In [209]:
```

```
def get_venue_details(venue_id):
    CLIENT ID = os.environ['CLIENT ID'] # your Foursquare ID
    CLIENT SECRET = os.environ['CLIENT SECRET'] # your Foursquare Secret
    VERSION = '20180605' # Foursquare API version
    #url to fetch data from foursquare api
    url = 'https://api.foursquare.com/v2/venues/{}?&client_id={}&client_secret={}&v
            venue_id,
            CLIENT ID,
            CLIENT SECRET,
            VERSION)
    # get all the data
    results = requests.get(url).json()
    venue data=results['response']['venue']
    venue details=[]
    try:
        venue id=venue data['id']
        venue_name=venue_data['name']
        venue_likes=venue_data['likes']['count']
        venue rating=venue data['rating']
        venue tips=venue data['tips']['count']
        venue details.append([venue id, venue name, venue likes, venue rating, venue ti
    except KeyError:
        pass
    column names=['ID','Name','Likes','Rating','Tips'] df
    = pd.DataFrame(venue details, columns=column names)
    return df
```

Now we define a funtion to get the new york city data such as Boroughs, Neighborhoods along with their latitude and longitude.

```
In [210]:
```

```
def get_new_york_data():
    url='https://cocl.us/new york dataset'
    resp=requests.get(url).json()
    # all data is present in features label
    features=resp['features']
    # define the dataframe columns
    column_names = ['Borough', 'Neighborhood', 'Latitude', 'Longitude']
    # instantiate the dataframe
    new york data = pd.DataFrame(columns=column names)
    for data in features:
        borough = data['properties']['borough']
        neighborhood_name = data['properties']['name']
        neighborhood latlon = data['geometry']['coordinates']
        neighborhood lat = neighborhood latlon[1]
        neighborhood lon = neighborhood latlon[0]
        new york data = new york data.append({'Borough': borough,
                                           'Neighborhood': neighborhood name,
                                           'Latitude': neighborhood lat,
                                           'Longitude': neighborhood lon}, ignore in
    return new york data
```

We will call the above funtion to get the new york city data.

```
In [211]:
```

```
# get new york data
new_york_data=get_new_york_data()
```

```
In [212]:
```

```
new_york_data.head()
```

Out[212]:

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

In [213]:

```
new_york_data.shape
```

```
Out[213]:
```

(306, 4)

So there are total of 306 different Neighborhoods in New York

In [219]:

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Number of Neighborhood for each Borough in New York City')
#On x-axis
plt.xlabel('Borough', fontsize = 15)
#On y-axis
plt.ylabel('No.of Neighborhood', fontsize=15)
#giving a bar plot
new_york_data.groupby('Borough')['Neighborhood'].count().plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```


We see that Queens has highest number of neighborhoods

Now we will collect Indian resturants for each Neighborhood

```
In [230]:
```

```
# prepare neighborhood list that contains indian resturants
column names=['Borough', 'Neighborhood', 'ID','Name']
indian rest ny=pd.DataFrame(columns=column names)
for row in new york data.values.tolist():
    Borough, Neighborhood, Latitude, Longitude=row
    venues = get venues(Latitude, Longitude)
    indian resturants=venues[venues['Category']=='Indian Restaurant']
    print('(',count,'/',len(new_york_data),')','Indian Resturants in '+Neighborhood
    for resturant detail in indian resturants.values.tolist():
        id, name , category=resturant detail
        indian rest ny = indian rest ny.append({'Borough': Borough,
                                                 'Neighborhood': Neighborhood,
                                                 'ID': id,
                                                 'Name' : name
                                                }, ignore index=True)
    count+=1
( 288 / 306 ) Indian Resturants in Egbertville, Staten Island:0
(289 / 306) Indian Resturants in Roxbury, Queens:0
( 290 / 306 ) Indian Resturants in Homecrest, Brooklyn:0
( 291 \ / \ 306 ) Indian Resturants in Middle Village, Queens:0
(292 / 306) Indian Resturants in Prince's Bay, Staten Island:0
( 293 / 306 ) Indian Resturants in Lighthouse Hill, Staten Island:0
( 294 / 306 ) Indian Resturants in Richmond Valley, Staten Island:0
( 295 / 306 ) Indian Resturants in Malba, Queens:0
( 296 / 306 ) Indian Resturants in Highland Park, Brooklyn:0
( 297 / 306 ) Indian Resturants in Madison, Brooklyn:0
( 298 / 306 ) Indian Resturants in Bronxdale, Bronx:0
( 299 / 306 ) Indian Resturants in Allerton, Bronx:0
( 300 / 306 ) Indian Resturants in Kingsbridge Heights, Bronx:0
( 301 / 306 ) Indian Resturants in Erasmus, Brooklyn:1
( 302 / 306 ) Indian Resturants in Hudson Yards, Manhattan:0
( 303 / 306 ) Indian Resturants in Hammels, Queens:0
( 304 / 306 ) Indian Resturants in Bayswater, Queens:0
( 305 / 306 ) Indian Resturants in Queensbridge, Queens:2
( 306 / 306 ) Indian Resturants in Fox Hills, Staten Island:1
```

Now that we have got all the indian resturants in new york city, we will analyze it

In [232]:

```
indian_rest_ny.head()
```

Out[232]:

Name	ID	Neighborhood	Borough	
Cumin Indian Cuisine	4c04544df423a593ac83d116	Riverdale	Bronx	0
Cumin Indian Cuisine	4c04544df423a593ac83d116	Kingsbridge	Bronx	1
Curry Spot	4c0448d9310fc9b6bf1dc761	Woodlawn	Bronx	2
Melanies Roti Bar And Grill	4c194631838020a13e78e561	Parkchester	Bronx	3
Cumin Indian Cuisine	4c04544df423a593ac83d116	Spuyten Duyvil	Bronx	4

In [233]:

```
indian_rest_ny.shape
Out[233]:
(153, 4)
```

We got 153 Indian Resturants across New York City

In [234]:

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Number of Indian Resturants for each Borough in New York City')
#On x-axis
plt.xlabel('Borough', fontsize = 15)
#On y-axis
plt.ylabel('No.of Indian Resturants', fontsize=15)
#giving a bar plot
indian_rest_ny.groupby('Borough')['ID'].count().plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```


We see that Queens has the largest number of indian resturants

In [236]:

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Number of Indian Resturants for each Neighborhood in New York City')
#On x-axis
plt.xlabel('Neighborhood', fontsize = 15)
#On y-axis
plt.ylabel('No.of Indian Resturants', fontsize=15)
#giving a bar plot
indian_rest_ny.groupby('Neighborhood')['ID'].count().nlargest(5).plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```


In [238]:

```
indian_rest_ny[indian_rest_ny['Neighborhood'] == 'Floral Park']
```

Out[238]:

Name	ID	Neighborhood	Borough	
Jackson Diner	527ffc0811d2d329d5e49abd	Floral Park	Queens	103
Usha Foods & Usha Sweets	4b647b56f964a520c4b62ae3	Floral Park	Queens	104
Santoor Indian Restaurant	4b787c49f964a5209cd12ee3	Floral Park	Queens	105
Kerala Kitchen	4e4e3e22bd4101d0d7a5c2d1	Floral Park	Queens	106
Mumbai Xpress	4c0c01e0bbc676b00d6b4cd5	Floral Park	Queens	107
Flavor Of India	4c76ff35a5676dcb72671721	Floral Park	Queens	108
Sagar Chinese	4df0f39dd4c04d0392c853ea	Floral Park	Queens	109
Namaste Authenic Indian Cuisine	571af96a498e9e392d8d3786	Floral Park	Queens	110
Sunshine Grill & Restaurant	51d84192498ea979a3c4f13d	Floral Park	Queens	111

So Floral Park in Queens has the highest number of Indian Resturants with a total count of 9.

Now we will get the ranking of each resturant for further analysis.

```
column names=['Borough', 'Neighborhood', 'ID', 'Name', 'Likes', 'Rating', 'Tips']
indian rest stats ny=pd.DataFrame(columns=column names) count=1
for row in indian rest ny.values.tolist():
    Borough, Neighborhood, ID, Name=row try:
        venue details=get venue details(ID)
        print(venue details)
        id, name, likes, rating, tips=venue details.values.tolist()[0]
    except IndexError:
        print('No data available for id=',ID)
        # we will assign 0 value for these resturants as they may have been
        #recently opened or details does not exist in FourSquare Database
        id, name, likes, rating, tips=[0] *5
    print('(',count,'/',len(indian rest ny),')','processed')
    indian_rest_stats_ny = indian_rest_stats_ny.append({'Borough': Borough,
                                                 'Neighborhood': Neighborhood,
                                                 'ID': id,
                                                 'Name' : name,
                                                 'Likes' : likes,
                                                 'Rating' : rating,
                                                 'Tips' : tips
                                                }, ignore index=True)
    count+=1
                          ID Name
                                   Likes Rating Tips
   5b931ea69d7468002c3b1382 Adda
                                       71
                                              9.2
                                                     20
(149 / 153 ) processed
                                            Name Likes
                          ID
                                                          Rating Tips
   564d283d498e6e851df79d87 Great Indian Curry
                                                      3
                                                             6.7
(150 / 153 ) processed
                          ΙD
                                           Name Likes Rating Tips
   4b1b341bf964a5208af923e3 Five Star Banquet
                                                     29
                                                            7.4
( 151 / 153 ) processed
                                              Name Likes Rating Ti
                          TD
ps
0 50a287a7e4b0033f830f06db Raj's Indian Kitchen
                                                      21
                                                             7.2
( 152 / 153 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 4b65f2e3f964a5206e0a2be3
( 153 / 153 ) processed
```

prepare neighborhood list that contains indian resturants

```
In [261]:
```

```
indian_rest_stats_ny.head()
```

Out[261]:

	Borough	Neighborhood	ID	Name	Likes	Rating	Tips
0	Bronx	Riverdale	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9
1	Bronx	Kingsbridge	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9
2	Bronx	Woodlawn	4c0448d9310fc9b6bf1dc761	Curry Spot	4	7.7	10
3	Bronx	Parkchester	4c194631838020a13e78e561	Melanies Roti Bar And Grill	3	6.1	2
4	Bronx	Spuyten Duyvil	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9

In [265]:

```
indian_rest_stats_ny.shape
```

Out[265]:

(153, 7)

In [266]:

```
indian_rest_ny.shape
```

Out[266]:

(153, 4)

So we got data for all resturants Now lets save this data to a csv sheet. In case we by mistake modify it. As the number of calls to get details for venue are premium call and have limit of 500 per day, we will refer to saved data sheet csv if required

```
In [267]:
```

```
indian_rest_stats_ny.to_csv('indian_rest_stats_ny.csv', index=False)
```

Lets verify the data from saved csv file

```
In [268]:
```

```
indian_rest_stats_ny_csv=pd.read_csv('indian_rest_stats_ny.csv')
```

In [269]:

```
indian_rest_stats_ny_csv.shape
```

```
Out[269]:
```

(153, 7)

In [270]:

```
indian_rest_stats_ny_csv.head()
```

Out[270]:

	Borough	Neighborhood	ID	Name	Likes	Rating	Tips
0	Bronx	Riverdale	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9
1	Bronx	Kingsbridge	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9
2	Bronx	Woodlawn	4c0448d9310fc9b6bf1dc761	Curry Spot	4	7.7	10
3	Bronx	Parkchester	4c194631838020a13e78e561	Melanies Roti Bar And Grill	3	6.1	2
4	Bronx	Spuyten Duyvil	4c04544df423a593ac83d116	Cumin Indian Cuisine	13	6.6	9

In [277]:

```
indian_rest_stats_ny.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 7 columns):
Borough
               153 non-null object
Neighborhood 153 non-null object
ID
                153 non-null object
                153 non-null object
Name
Likes
                153 non-null object
                153 non-null float64
Rating
Tips
                153 non-null object
dtypes: float64(1), object(6)
memory usage: 8.4+ KB
```

We see that values like Likes, Tips are strig values. We would need to convert them into float for further analysis

In [279]:

```
indian_rest_stats_ny['Likes'] = indian_rest_stats_ny['Likes'].astype('float64')
```

In [280]:

```
indian_rest_stats_ny['Tips']=indian_rest_stats_ny['Tips'].astype('float64')
```

```
In [283]:
```

Name: 45, dtype: object

```
indian_rest_stats_ny.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 7 columns):
                 153 non-null object
Borough
Neighborhood
                 153 non-null object
ΙD
                 153 non-null object
Name
                 153 non-null object
Likes
                 153 non-null float64
                 153 non-null float64
Rating
Tips
                 153 non-null float64
dtypes: float64(3), object(4)
memory usage: 8.4+ KB
Now the data types looks correct
In [286]:
# Resturant with maximum Likes
indian_rest_stats_ny.iloc[indian_rest_stats_ny['Likes'].idxmax()]
Out[286]:
Borough
                                Manhattan
                                  Midtown
Neighborhood
                 49d91c12f964a520015e1fe3
Name
                    The Kati Roll Company
Likes
                                       819
Rating
                                         9
                                       257
Tips
Name: 43, dtype: object
In [287]:
# Resturant with maximum Rating
indian rest stats ny.iloc[indian rest stats ny['Rating'].idxmax()]
Out[287]:
Borough
                                Manhattan
Neighborhood
                                   Tribeca
                 4bbb9dbded7776b0e1ad3e51
ID
                         Tamarind TriBeCa
Name
                                       566
Likes
                                       9.2
Rating
                                       141
Tips
```

```
In [288]:
```

```
# Resturant with maximum Tips
indian_rest_stats_ny.iloc[indian_rest_stats_ny['Tips'].idxmax()]
```

Out[288]:

Borough Manhattan
Neighborhood Midtown
ID 49d91c12f964a520015e1fe3
Name The Kati Roll Company
Likes 819
Rating 9
Tips 257

Name: 43, dtype: object

Now lets visualize neighborhood with maximum average rating of resturants

In [374]:

```
ny_neighborhood_stats=indian_rest_stats_ny.groupby('Neighborhood',as_index=False).m
ny_neighborhood_stats.columns=['Neighborhood','Average Rating']
```

In [375]:

```
ny_neighborhood_stats.sort_values(['Average Rating'],ascending=False).head(10)
```

Out[375]:

	Neighborhood	Average Rating
0	Astoria	9.200000
71	Sunnyside	9.200000
75	Tribeca	9.200000
5	Blissville	9.200000
11	Civic Center	9.200000
47	Midtown	9.000000
48	Midtown South	9.000000
30	Gramercy	8.866667
66	Roosevelt Island	8.700000
53	North Side	8.700000

Above are the top neighborhoods with top average rating of Indian resturants

In [376]:

```
ny_borough_stats=indian_rest_stats_ny.groupby('Borough',as_index=False).mean()[['Bo
ny_borough_stats.columns=['Borough','Average Rating']
```

In [377]:

```
ny_borough_stats.sort_values(['Average Rating'],ascending=False).head()
```

Out[377]:

	Borough	Average Rating
2	Manhattan	8.414706
1	Brooklyn	7.478571
0	Bronx	6.812500
3	Queens	6.155844
4 Staten Island		5.266667

Similarly these are the average rating of Indian Resturants for each Borough

Lets visualize it

In [466]:

```
plt.figure(figsize=(9,5), dpi = 100)
# title
plt.title('Average rating of Indian Resturants for each Borough')
#On x-axis
plt.xlabel('Borough', fontsize = 15)
#On y-axis
plt.ylabel('Average Rating', fontsize=15)
#giving a bar plot
indian_rest_stats_ny.groupby('Borough').mean()['Rating'].plot(kind='bar')
#legend
plt.legend()
#displays the plot
plt.show()
```


We will consider all the neighborhoods with average rating greater or equal 9.0 to visualize on map

In [472]:

ny_neighborhood_stats=ny_neighborhood_stats[ny_neighborhood_stats['Average Rating']

In [473]:

 ${\tt ny_neighborhood_stats}$

Out[473]:

	Borough x	Neighborhood	Latitude x	Longitude x	Average	Label	Borough_y	La
	_0.0 g x			gax	Rating			
0	Queens	Astoria	40.768509	-73.915654	9.2	Astoria, Queens(9.2)	()HOODE	40
1	Queens	Blissville	40.737251	-73.932442	9.2	Blissville, Queens(9.2)	Queens	40
2	Manhattan	Civic Center	40.715229	-74.005415	9.2	Civic Center, Manhattan(9.2)	Manhattan	40
3	Manhattan	Midtown	40.754691	-73.981669	9.0	Midtown, Manhattan(9.0)		40
4	Manhattan	Midtown South	40.748510	-73.988713	9.0	Midtown South, Manhattan(9.0)	Manhattan	40
5	Queens	Sunnyside	40.740176	-73.926916	9.2	Sunnyside, Queens(9.2)	Queens	40
6	Queens	Sunnyside	40.740176	-73.926916	9.2	Sunnyside, Queens(9.2)	Staten Island	7(1)
7	Staten Island	Sunnyside	40.612760	-74.097126	9.2	Sunnyside, Staten Island(9.2)		40
8	Staten Island	Sunnyside	40.612760	-74.097126	9.2	Sunnyside, Staten Island(9.2)	hnelel	4()
9	Manhattan	Tribeca	40.721522	-74.010683	9.2	Tribeca, Manhattan(9.2)		40

We will join this dataset to original new york data to get lonitude and latitude

In [474]:

ny_neighborhood_stats=pd.merge(ny_neighborhood_stats,new_york_data, on='Neighborhoo

In [475]:

ny_neighborhood_stats=ny_neighborhood_stats[['Borough','Neighborhood','Latitude','L

In [476]:

```
ny_neighborhood_stats
```

Out[476]:

Borough		Neighborhood	Latitude	Longitude	Average Rating
0	Queens	Queens Astoria		-73.915654	9.2
1	Queens	Blissville	40.737251	-73.932442	9.2
2	Manhattan	Civic Center	40.715229	-74.005415	9.2
3	Manhattan	Midtown	40.754691	-73.981669	9.0
4	Manhattan	Midtown South	40.748510	-73.988713	9.0
5	Queens	Sunnyside	40.740176	-73.926916	9.2
6	6 Staten Island Sunnyside		40.612760	-74.097126	9.2
7	Queens Sunnyside		40.740176	-73.926916	9.2
8	Staten Island	Sunnyside	40.612760	-74.097126	9.2
9	Queens	Sunnyside	40.740176	-73.926916	9.2
10	Staten Island	Sunnyside	40.612760	-74.097126	9.2
11	Queens	Sunnyside	40.740176	-73.926916	9.2
12	Staten Island	Sunnyside	40.612760	-74.097126	9.2
13	Manhattan	Tribeca	40.721522	-74.010683	9.2

Now we will show this data on a map

In [477]:

```
# create map and display it
ny_map = folium.Map(location=geo_location('New York'), zoom_start=12)
```

In [478]:

```
In [479]:
```

```
ny_neighborhood_stats['Label']=ny_neighborhood_stats['Neighborhood']+', '+ny_neighb
```

In [480]:

```
# add pop-up text to each marker on the map
for lat, lng, label in ny_neighborhood_stats[['Latitude','Longitude','Label']].valu
    folium.Marker([lat, lng], popup=label).add_to(ny_map)
# add incidents to map
ny_map.add_child(incidents)
```

Out[480]:

Now that we have visualized the Neighborhoods. Lets Visualize Boroughs based on average Rating

In [482]:

```
ny_map = folium.Map(location=geo_location('New York'), zoom_start=12)
ny_geo = r'Borough Boundaries.geojson'

ny_map.choropleth(
    geo_data=ny_geo,
    data=ny_borough_stats,
    columns=['Borough', 'Average Rating'],
    key_on='feature.properties.boro_name',
    fill_color='YlOrRd',
    fill_opacity=0.7,
    line_opacity=0.2,
    legend_name='Average Rating'
)

# display map
# as this is huge map data , we will save it to a file
ny_map.save('borough_rating.html')
```

Conclusion

This model is useful for explore out and find best Restaurants of various cuisines. By using Foursquare we are able to explore various indian restaurants and filter out best restaurants for each Borough and Neighborhoods. This kind of model can help users to suggest restaurants and also some companies who want to use this model to recommend their users to Best Restaurants near by their place.

- Manhattan have potential Indian Resturant Market/
- Staten Island ranks last in average rating of Indian Resturants.
- Manhattan is the best place to stay if you prefer Indian Cuisine.

Limitations

- . The ranking is purely on basis of rating of resturants
- The accuracy of data depends purely depends on the data provided by FourSquare

In []:			