Analysis and Design of Algorithms

CS3230 CS3230 Week 11 (Part-1)
NP-Completeness

Diptarka Chakraborty
Ken Sung

Recap

 Reductions are a basic tool in algorithm design: using an algorithm for one problem to solve another.

• If you have a poly time reduction from A to B and you also have a poly time algorithm for B, then you get a poly time algorithm for A.

p(n)-time Reduction

Poly-time Reduction

If B has a polynomial time algorithm, then so does A!

Poly-time Reduction

Decision Problems

A **decision problem** is a function that maps an instance space *I* to the solution set {YES, NO}.

Reductions between Decision Problems

Given two decision problems A and B, a **polynomial time** reduction from A to B, denoted $A \leq_P B$, is a transformation from instances α of A to instances β of B such that:

- 1. α is a YES-instance for A if and only if β is a YES-instance for B.
- 2. The transformation takes polynomial time in the size of α .

Confusion about Running Time

 We should always count the running time in terms of the number of bits in the input.

• Strictly speaking, we should always let n be the input length in terms of number of bits.

• In algorithm design we generally consider word-RAM model. So input is stored in an array of words, and each arithmetic or logical operation (+, -, *, /, OR, AND, NOT) involving a constant number of words takes constant number of cycles (time). We count only number of instructions as running time.

NP A class of problems

and how it came into existence

How does any scientific theory/definition get developed?

Unexplained facts in a field of science

Persistent search for the truth

A collective effort for many years or decades

Similar is the history behind the development of the class NP.

Go back to 1960's

Efficient algorithm No Efficient algorithm was found till date **Shortest Path** Longest Path Travelling salesman Pro Minimum spanning Tree Hamiltonian cycle Euler tour Min Cut **Balanced Cut** Independent Set on trees Independent Set Bipartite matching 3D matching **Linear Programming Integer Programming**

It was quite surprising and even frustrating to be unable to find efficient algorithm for so many problems when their similar looking versions had very efficient algorithms.

Longest path problem

Decision version: Given a graph G, does there exist a path of length at least k.

<u>Searching</u> for a path of length at least k appears to be difficult. But what about <u>verifying</u> whether a given path is of length at least k? It is quite easy \odot .

Vertex cover

Decision version: Given a graph G, does there exist a vertex cover of size $\leq k$.

<u>Searching</u> for a subset of k vertices that is a vertex cover of G appears difficult. But what about <u>verifying</u> whether a given subset of k vertices is a vertex cover? It is quite easy G.

- Input : (I, s)
 Proposed solution
- **Behavior**: **A** can <u>verify</u> if proposed solution **s** is right or wrong.

Yes instance

I: any decision problem

How to capture the fact that s is short

A polynomial time algorithm A with output {yes,no}

- Input : (*I*, *s*)
 Proposed solution
- Behavior: There is a polynomial function p such that I is yes-instance of X if and only if there exists a string s with $|s| \le p(|I|)$ such that A outputs yes on input (I, s).

Definition (NP):

The set of all <u>decision</u> problems which have **efficient certifier**.

NP: "Non-deterministic polynomial time"

Example: HAM-CYCLE

Recall: In Ham-Cycle, given a graph G, problem is to decide whether there is a simple cycle that visits each vertex exactly once.

Certificate is the cycle itself. Verifier checks in polynomial time whether it is a cycle and visits each vertex once.

Hence, HAM-CYCLE is in NP.

Definition (NP):

The set of all <u>decision</u> problems which have **efficient certifier**.

NP: "Non-deterministic polynomial time"

Definition (P):

The set of all decision problems which have **efficient** (poly-time) algorithm.

Is there any Relation between P and NP?

Yes instance

X: any decision problem in P

I: any (input) instance of X

No instance

Let **Q** be a polynomial time algorithm for solving **X**.

Efficient certifier for X:

A polynomial time algorithm A with output {yes,no}

• Input : (I, s)
Proposed solution

• **Behavior**: On getting input (*I*, *s*), just ignore *s*, and execute the algorithm *Q* on input *I*. If the answer is yes, output yes; if the answer is no, output no.

NP versus P

Verifying a proposed solution versus finding a solution

NP Complete A class of problems

and how it came into existence

NP-complete

If **X** is not known to be in **NP**, then we say **X** is just **NP-hard**

• A problem X in NP class is NP-complete if for every $A \in NP$

$$A \leq_{P} X$$

Does any NP-complete problem exist?

It really needs

- courage to ask such a question and
- great insight to pursue its answer

Because:

- Every problem, known as well <u>unknown</u>, from class NP has be reducible to this problem.
- Such a problem would indeed be the hardest of all problems in NP.

But only such great questions in science lead to great inventions.

Does any NP-complete problem exist?

Circuit satisfiability problem:

[Cook and Levin, 1971]

A DAG with nodes corresponding to **AND**,**NOT**,**OR** gates and *n* binary inputs,

does there exist any binary input which gives output 1?

This slide is optional (meant for the student whose aim is beyond just a good grade)

Question: How can every problem from NP be reduced to circuit satisfiability?

Answer:

Consider any problem $X \in \mathbb{NP}$.

What we know is that it has an efficient certifier, say Q.

Any algorithm which outputs yes/no can be represented as a DAG

- Where internal nodes are gates.
- Leaves are binary inputs
- Output is 1/0.

So Cook & Levin essentially $\underline{\text{transform}}$ Q into the corresponding DAG. And thus $\underline{\text{simulates}}$ Q on the proposed solution.

[This is just a sketch. Interested students should study it sometime in future.]

Satisfiability (CNF-SAT)

- Literal: A Boolean variable or its negation. x_i, \bar{x}_i
- Clause: A disjunction (OR) of literals. $C_j = x_1 \vee \overline{x_2} \vee x_3$
- Conjunctive Normal Form (CNF): a formula $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$ Φ that is a conjunction (AND) of clauses
- **CNF-SAT**: Given a CNF formula Φ , does it have a satisfying truth assignment?

3-SAT

SAT where **each clause contains exactly 3 literals** corresponding to different variables.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

Satisfying assignment: $x_1 = \text{True}, x_2 = \text{True}, x_3 = \text{False}, x_4 = \text{True}$

Unsatisfying assignment: $x_1 = \text{True}, x_2 = \text{False}, x_3 = \text{False}, x_4 = \text{False}$

Circuit Satisfiability $\leq_P \text{CNF-SAT} \leq_P 3\text{-SAT}$

So 3-SAT is NP-complete

Dick Karp (1972) 1985 Turing Award

NP versus P

If any NP-complete problem is solved in polynomial time

$$\rightarrow$$
 P = NP

Millennium Prize

\$1 million dollars for resolution of P=NP or $P\neq NP$

Some Quotes

"I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (i) It is a legitimate mathematical possibility and (ii) I do not know." — Jack Edmonds (1966)

"If I had to bet now, I would bet that P is not equal to NP. I estimate the half-life of this problem at 25–50 more years, but I wouldn't bet on it being solved before 2100." — Robert Tarjan (2002)

Some Quotes

"I think that in this respect I am on the loony fringe of the mathematical community: I think (not too strongly!) that P=NP and this will be proved within twenty years. Some years ago, Charles Read and I worked on it quite bit, and we even had a celebratory dinner in a good restaurant before we found an absolutely fatal mistake. "— Béla Bollobás (2002)

How to show a problem to be NP-complete?

Let X be a problem which we wish to show to be NP-complete

- 1. Show that $X \in \mathbb{NP}$
- 2. Pick a problem A which is already known to be NP-complete

3-SAT

SAT where **each clause contains exactly 3 literals** corresponding to different variables.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

Satisfying assignment: $x_1 = \text{True}, x_2 = \text{True}, x_3 = \text{False}, x_4 = \text{True}$

Unsatisfying assignment: $x_1 = \text{True}, x_2 = \text{False}, x_3 = \text{False}, x_4 = \text{False}$

INDEPENDENT-SET

Definition: Given an undirected graph G = (V, E), a subset $X \subseteq V$ is said to be an **independent** set if

For each $u,v\in X$, $(u,v)\notin E$.

Optimization version: compute Independent set of Largest size.

Decision version: Does there exist an independent set of size >k?

$3-SAT \leq_P INDEPENDENT-SET$

Simple Exercise: To show in NP

Given an instance Φ of 3-SAT, goal is to construct an instance (G, k) of INDEPENDENT-SET so that G has an independent set of size k if and only if Φ is satisfiable.

To think: why it suffices to show for exactly k, not >k

$3-SAT \leq_P INDEPENDENT-SET$

Given an instance Φ of 3-SAT, goal is to construct an instance (G, k) of INDEPENDENT-SET so that G has an independent set of size k if and only if Φ is satisfiable.

Reduction

- G contains 3 vertices for each clause, one for each literal
- Connect 3 literals in clause in a triangle
- Connect literal to each of its negations
- Set k = number of clauses

$$(\overline{x_1} \lor x_2 \lor x_3)$$

$$\land (x_1 \lor \overline{x_2} \lor x_3)$$

$$\land (\overline{x_1} \lor x_2 \lor x_4)$$

$3-SAT \leq_{P} INDEPENDENT-SET$

Reduction

- G contains 3 vertices for each clause, one for each literal
- Connect 3 literals in clause in a triangle
- Connect literal to each of its negations
- Set k = number of clauses

$$(\overline{x_1} \lor x_2 \lor x_3)$$

$$\land (x_1 \lor \overline{x_2} \lor x_3)$$

$$\land (\overline{x_1} \lor x_2 \lor x_4)$$

Reduction clearly runs in linear time.

$3-SAT \leq_{P} INDEPENDENT-SET$

Reduction

- G contains 3 vertices for each clause, one for each literal
- Connect 3 literals in clause in a triangle
- Connect literal to each of its negations
- Set k = number of clauses

$$(\overline{x_1} \lor x_2 \lor x_3)$$

$$\land (x_1 \lor \overline{x_2} \lor x_3)$$

$$\land (\overline{x_1} \lor x_2 \lor x_4)$$

Suppose Φ is a YES-instance. Take any satisfying assignment for Φ and select a true literal from each clause. Corresponding k vertices form an independent set in G.

$3-SAT \leq_{P} INDEPENDENT-SET$

Reduction

- G contains 3 vertices for each clause, one for each literal
- Connect 3 literals in clause in a triangle
- Connect literal to each of its negations
- Set k = number of clauses

$$(\overline{x_1} \lor x_2 \lor x_3)$$

$$\land (x_1 \lor \overline{x_2} \lor x_3)$$

$$\land (\overline{x_1} \lor x_2 \lor x_4)$$

Suppose (G, k) is a YES-instance. Let S be the independent set of size k. Each of the k triangles must contain exactly one vertex in S. Set these literals to true, so all clauses satisfied.

Worst Case Analysis

• Proof shows that **some** instances of INDEPENDENT-SET are as hard to solve as the 3-SAT problem. This does **not** mean that all instances of the INDEPENDENT-SET problem are hard!

• So, if there is no poly time algorithm that solves 3-SAT on *all* instances, there is no poly time algorithm that solves INDEPENDENT-SET on *all* instances.

Status of SAT

• Fastest algorithm known for 3-SAT runs in time $\approx 1.308^n$. It is believed that there is no $2^{o(n)}$ -time algorithm for 3-SAT (**Exponential Time Hypothesis**).

 Often very convenient to reduce from 3-SAT to other problems, showing that those will also be hard if 3-SAT is hard.

Question 1

Suppose 3-SAT $\leq_P A$ for some decision problem A. Assume the exponential time hypothesis that there is no $2^{o(n)}$ -time algorithm for 3-SAT. Then, there is no $2^{o(n)}$ -time algorithm for A.

- True
- False

Question 1: Solution

False.

If the reduction runs in time n^c , then a $2^{o(n^{1/c})}$ -time algorithm for A implies a $2^{o(n)}$ -time algorithm for 3-SAT. So, by the assumption, there are no $2^{o(n^{1/c})}$ -time algorithms for A. The lower bound for A depends on the running time of the reduction.

Extent and Impact

• Garey and Johnson's book, "Computers and Intractability", includes over 300 NP-complete problems and is the #1 cited reference in computer science!

• NP-completeness is used in more than 6,000 publications per year (more than "compiler", "OS", "database").

• Main intellectual export of computer science.

More...

• There are problems that are provably harder than NP-complete problems, problems that require polynomial space, problems that require large circuits, problems that are unsolvable even with unlimited time!

Enter the world of complexity theory...

Attend Computational Complexity course!!!

Fine-grained Hardness: An emerging field

- Prove computational hardness using conjectures like...
- There is no $2^{o(n)}$ -time algorithm for 3-SAT (Exponential Time Hypothesis), or even stronger (Strong Exponential Time Hypothesis).

- We can prove more fine-grained hardness like
- LCS can not be solved in time $O(n^{2-\mathcal{E}})$ for any $\mathcal{E} > 0$
- And many more...

Attend **Advanced Algorithms** course in the next semester!!!

How to show a problem to be NP-complete?

Let X be a problem which we wish to show to be NP-complete

- 1. Show that $X \in \mathbb{NP}$
- 2. Pick a problem A which is already known to be NP-complete

Acknowledgement

- The slides are modified from
 - The slides from Prof. Kevin Wayne
 - The slides from Prof. Surender Baswana
 - The slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - The slides from Prof. Arnab Bhattacharya and Prof. Wing-Kin Sung