

Learning-to-Rank at the Speed of Sampling: Plackett-Luce Gradient Estimation With Minimal Computational Complexity

Harrie Oosterhuis

July 12, 2022

Radboud University harrie.oosterhuis@ru.nl https://twitter.com/HarrieOos

Contribution: PL-Rank-3

- A novel algorithm for estimating Plackett-Luce (PL) ranking model gradients,
- with **minimal computational complexity**: bounded by underlying sorting algorithm.

PL-Rank-2 algorithm approximates the following gradient with a **computational** complexity of $\mathcal{O}(N \cdot D \cdot K)$.

$$\frac{\delta}{\delta f} \mathcal{R}(q) \approx \frac{1}{N} \sum_{d \in \mathcal{D}} \overbrace{\left[\frac{\delta}{\delta f} f(d)\right]}^{\text{grad. w.r.t. score}} \underbrace{\sum_{i=1}^{K} \underbrace{\left(\sum_{k=\text{rank}(d,y^{(i)})+1}^{K} \theta_k \rho_{y_k^{(i)}}\right)}_{\text{rank}(d,y^{(i)})} + \underbrace{\sum_{k=1}^{K} \pi(d \mid y_{1:k-1}^{(i)}) \left(\theta_k \rho_d - \sum_{x=k}^{K} \theta_x \rho_{y_x^{(i)}}\right)}_{\text{expected direct reward minus the risk of placement}}.$$

Method: PL-Rank-3

Novel PL-Rank-3 computes the same approximation with $\mathcal{O}(N\cdot(D+K))$ given N sampled rankings.

Using the following property:

$$\sum_{k=1}^{\mathrm{rank}(d,y)} \pi(d \mid y_{1:k-1}) = e^{f(d)} \left(\sum_{k=1}^{\mathrm{rank}(d,y)} \frac{1}{\sum_{d' \in D \backslash y_{1:k-1}} e^{f(d')}} \right).$$

We define three **new vectors** of size K: PR_y , DR_y and RI_y ; which enables:

$$\frac{\delta \mathcal{R}(q)}{\delta f} = \sum_{d \in \mathcal{D}} \left[\frac{\delta}{\delta f} f(d) \right] \mathbb{E}_y \left[P R_{y,d} + e^{f(d)} \left(\rho_d D R_{y,d} - R I_{y,d} \right) \right].$$

Given a ranking y, PR_y , DR_y and RI_y are pre-computed in linear time: $\mathcal{O}(K)$.

method name	pairwise	ranking- based	metric- based	sample approximation	rank-based exposure	computational complexity	notes
Pointwise						D	not an LTR loss
SoftMax Cross-Entropy						D	
Pairwise	✓					$D^{2}*$	memory efficient
Listwise/ListMLE		✓				DK	
SoftRank	✓	?	✓			D^3	
ApproxNDCG	✓	?	✓			D^2	proven bound
LambdaRank/Loss	✓	✓	✓			$D^{2*} + D\log(D)$	proven bound
StochasticRank	?	✓	✓	✓	✓	DK	policy-gradient
PL-Rank-1/2		✓	✓	✓	✓	DK	policy-gradient
PL-Rank-3 (ours)		✓	✓	✓	✓	$D + K \log(D)$	policy-gradient

Paper, slides, video and code:

https:/harrieo.github.io/publication/2022-sigir-short