PEKING UNIVERSITY

Answer Key 12

■ 袁磊祺

December 25, 2019

P117

2 (1) 做 $f: \mathbb{R}^2 \to M$

$$f(x,y) = (x, y, \sqrt{x^2 + y^2})$$

则 f 为双射,且连续, f 的逆也连续,所以 f 是同胚。所以 M 是二维流形。

- (2) 整个锥面不是二维流形。取 A 为满足 $0 \le z < 1, B$ 为满足 -1 < z < 0 的点集。 A,B 都是开集,且不相交。若存在从锥面到二维空间的同胚 f,则 f(A),f(B) 为 R^2 中开集,且不相交,所以 $f(A) \cap \overline{f(B)} = \emptyset$,但 $f(0) \in f(A)$ 且由于连续性,所以 $f(0) \in \overline{f(B)}$. 矛盾。
- 6 证: M 是闭的。设 $\overline{B_n}$ 为半径为 n 圆心在原点的闭球, $M_n = \overline{B_n} \cap M$,则 M_n 为有限 闭集,所以是紧的。对 $\forall x \in M_n$,由于 Df 的秩是 k,所以由隐函数定理,∃开集 $V_x \subseteq M$,开集 $U_x \subseteq \Re^{n-k}$,使得 $V_x \cong U_x$, V_x 构成 M_n 的一个开覆盖,由 M_n 的紧性,存在有限子覆盖仍记作 $\{V_x\}$. $G = \bigcup_{n=1}^{\infty} \{V_x\}$ 为 M 的一个图册,所以 M 是 n-k 维流形。

P128

4 $\omega \wedge \cdot$ is a linear operation which maps 0 to 0

 \therefore Apparently M_{ω} is a linear subspace of V

 $(\dim\{M_{\omega}\} < p)$: Let the first q vectors of $\{e_1 \cdots e_n\}$ be the complete orthonormal basis of M_{ω}

For
$$\omega = \sum_{1 \le i_1 < \dots < i_p \le n} \omega_{i_1 \dots i_p} e_{i_1} \wedge \dots \wedge e_{i_p}$$
 and $e_k \in \{e_1 \dots e_q\}$

$$\delta_{i_1\cdots i_p k} = 0 \text{ for } \forall i_1\cdots i_p \in \{i_1\cdots i_p | \omega_{i_1\cdots i_p} \neq 0\}$$

 \therefore k must be a common index of all non-zero $\omega_{i_1\cdots i_p}$

$$\therefore q \leqslant p$$

 (\Rightarrow) : Under the previous setting, let q=p

 $\therefore \{1, 2, \dots, p\}$ are all common indices of all non-zero $\omega_{i_1 \dots i_p}$

$$\therefore \text{ Only } \omega_{1\cdots p} \neq 0 \Rightarrow \omega = \omega_{1\cdots p} e_1 \wedge \cdots \wedge e_p$$

$$(\Leftarrow)$$
: Let $\omega = v_1 \wedge \cdots \wedge v_q$

Apparently $\{v_1 \cdots v_p\}$ are linearly independent

$$\therefore \{v_1 \cdots v_p\}$$
 can be the basis of M_{ω}