

By: Dapeng Zhu
Todd Sifleet
Travis Nunnally
Yachun Huang

Introduction of ADC By: Dapeng Zhu

- What is ADC(Analog to Digital Converter)
- Why ADC is needed
- Application of ADC
- A/D conversion process

What is ADC

- An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete) form.
- Analog signals are directly measurable quantities.
- Digital signals only have two states. For digital computer, we refer to binary states, 0 and 1.

Why ADC is needed

- Microprocessors can only perform complex processing on digitized signals.
- When signals are in digital form they are less susceptible to the deleterious effects of additive noise.
- ADC Provides a link between the analog world of transducers and the digital world of signal processing and data handling.

Application of ADC

- ADC are used virtually everywhere where an analog signal has to be processed, stored, or transported in digital form.
- Some examples of ADC usage are digital volt meters, cell phone, thermocouples, and digital oscilloscope.
- Microcontrollers commonly use 8, 10, 12, or 16 bit ADCs, our micro controller uses an 8 or 10 bit ADC.

4

ADC process

2 steps

- Sampling and Holding (S/H)
- Quantizing and Encoding (Q/E)

Sampling and Holding

- Holding signal benefits the accuracy of the A/D conversion
- Minimum sampling rate should be at least twice the highest data frequency of the analog signal

4

Quantizing and Encoding

Resolution:

The smallest change in analog signal that will result in a change in the digital output.

$$\Delta V = \frac{V_r}{2^N}$$

V = Reference voltage range

N = Number of bits in digital output.

 2^{N} = Number of states.

 $\Delta V = Resolution$

The resolution represents the quantization error inherent in the conversion of the signal to digital form

Quantizing and Encoding

Quantizing:

Partitioning the reference signal range into a number of discrete quanta, then matching the input signal to the correct quantum.

Encoding:

Assigning a unique digital code to each quantum, then allocating the digital code to the input signal.

$$\Delta V = 1 \, V$$
 Maximum Quantization error = $\pm \frac{1}{2} \Delta V = \pm 0.5 \, V$

Accuracy of A/D Conversion

There are two ways to best improve the accuracy of A/D conversion:

- increasing the resolution which improves the accuracy in measuring the amplitude of the analog signal.
- increasing the sampling rate which increases the maximum frequency that can be measured.

Accuracy of A/D Conversion

Low Accuracy

Improved

Types of A/D Converters By: Todd Sifleet

- Dual Slope A/D Converter
- Successive Approximation A/D Converter
- Flash A/D Converter
- Delta-Sigma A/D Converter
- Other
 - Voltage-to-frequency, staircase ramp or single slope, charge balancing or redistribution, switched capacitor, tracking, and synchro or resolver

Dual Slope A/D Converter

- Fundamental components
 - Integrator
 - Electronically Controlled Switches
 - Counter
 - Clock
 - Control Logic
 - Comparator

How does it work

A dual-slope ADC (DS-ADC) integrates an unknown input voltage (V_{IN}) for a fixed amount of time (T_{INT}), then "de-integrates" (T_{DEINT}) using a known reference voltage (V_{REF}) for a variable amount of time.

The key advantage of this architecture over the single-slope is that the final conversion result is insensitive to errors in the component values. That is, any error introduced by a component value during the integrate cycle will be cancelled out during the de-integrate phase.

How Does it Work Cont.

- At t<0, S₁ is set to ground, S₂ is closed, and counter=0.
- At t=0 a conversion begins and S₂ is open, and S₁ is set so the input to the integrator is V_{in}.
- S₁ is held for T_{INT} which is a constant predetermined time interval.
- When S₁ is set the counter begins to count clock pulses, the counter resets to zero after T_{INT}
- V_{out} of integrator at $t=T_{INT}$ is $V_{IN}T_{INT}/RC$ is linearly proportional to V_{IN}
- At t=T_{INT} S₁ is set so -V_{ref} is the input to the integrator which has the voltage V_{IN}T_{INT}/RC stored in it.
- The integrator voltage then drops linearly with a slop -V_{ref}/RC.
- A compartor is used to determine when the output voltage of the integrator crosses zero
- When it is zero the digitized output value is the state of the counter.

Dual Slope A/D Converter

Pros and Cons

PROS

- Conversion result is insensitive to errors in the component values.
- Fewer adverse affects from "noise"
- High Accuracy

CONS

- Slow
- Accuracy is dependent on the use of precision external components
- Cost

Flash A/D Converter

- Fundamental Components (For N bit Flash A/D)
 - 2^N-1 Comparators
 - 2^N Resistors
 - Control Logic

How does it work

- Uses the 2^N resistors to form a ladder voltage divider, which divides the reference voltage into 2^N equal intervals.
- Uses the 2^N-1 comparators to determine in which of these 2^N voltage intervals the input voltage V_{in} lies.
- The Combinational logic then translates the information provided by the output of the comparators
- This ADC does not require a clock so the conversion time is essentially set by the settling time of the comparators and the propagation time of the combinational logic.

Flash A/D Converter

Pros and Cons

PROS

- Very Fast (Fastest)
- Very simple operational theory
- Speed is only limited by gate and comparator propagation delay

CONS

- Expensive
- Prone to produce glitches in the output
- Each additional bit of resolution requires twice the comparators.

SIGMA-DELTA A/D Converter

Main Components

- Resistors
- Capacitor
- Comparators
- Control Logic
- DAC

How does it work

- Input is over sampled, and goes to integrator.
- The integration is then compared to ground.
- Iterates and produces a serial bit stream
- Output is a serial bit stream with # of 1's proportional to V_{in}

- With this arrangement the sigma-delta modulator automatically adjusts its output to ensure that the average error at the quantizer output is zero.
- The integrator value is the sum of all past values of the error, so whenever there is a non-zero error value the integrator value just keeps building until the error is once again forced to zero.

Sigma-Delta A/D Converter Pros and Cons

PROS

- High Resolution
- No need for precision components

CONS

- Slow due to over sampling
- Only good for low bandwidth

ADC Types Comparison

Туре	Speed (relative)	Cost (relative)
Dual Slope	Slow	Med
Flash	Very Fast	High
Successive Appox	Medium – Fast	Low
Sigma-Delta	Slow	Low

Successive Approximation ADC Circuit

- •Uses a n-bit DAC to compare DAC and original analog results.
- •Uses Successive Approximation Register (SAR) supplies an approximate digital code to DAC of Vin.
- •Comparison changes digital output to bring it closer to the input value.
- •Uses Closed-Loop Feedback Conversion

Successive Approximation ADC

- 1. MSB initialized as 1
- 2. Convert digital value to analog using DAC
- 3. Compares guess to analog input
- 4. Is $V_{in} > V_{DAC}$
 - Set bit 1
 - If no, bit is 0 and test next bit

Closed-Loop

Output

Successive Approximation

Disadvantages

Advantages

- Capable of high speed and reliable
- Medium accuracy compared to other ADC types
- Good tradeoff between speed and cost
- Capable of outputting the binary number in serial (one bit at a time) format.

- Higher resolution successive approximation ADC's will be slower
- Speed limited to ~5Msps

Example

- 10 bit ADC
- Vin= 0.6 volts (from analog device)
- V_{ref}=1 volts
- Find the digital value of Vin

Bit	Voltage
9	.5
8	.25
7	.125
6	.0625
5	.03125
4	.015625
3	.0078125
2	.00390625
1	.001952125
0	.0009765625

N=2ⁿ (N of possible states) N=1024 Vmax-Vmin/N = 1 Volt/1024 = 0.0009765625V of Vref (resolution)

Successive Approximation

- MSB (bit 9)
 - Divided V_{ref} by 2
 - Compare V_{ref}/2 with V_{in}
 - If V_{in} is greater than V_{ref}/2, turn MSB on (1)
 - If V_{in} is less than V_{ref}/2, turn MSB off (0)
 - $V_{in} = 0.6V$ and V = 0.5
 - Since $V_{in}>V$, MSB = 1 (on)

Bit	Voltage
9	.5
8	.25
7	.125
6	.0625
5	.03125
4	.015625
3	.0078125
2	.00390625
1	.001952125
0	.0009765625

1									
---	--	--	--	--	--	--	--	--	--

4

Successive Approximation

- Next Calculate MSB-1 (bit 8)
 - Compare V_{in} =0.6 V to V= V_{ref} /2 + V_{ref} /4= 0.5+0.25 =0.75V
 - Since 0.6<0.75, MSB is turned off
- Calculate MSB-2 (bit 7)
 - Go back to the last voltage that caused it to be turned on (Bit 9) and add it to V_{ref}/8, and compare with V_{in}
 - Compare V_{in} with $(0.5+V_{ref}/8)=0.625$
 - Since 0.6<0.625, MSB is turned off

				\	,	
1	0	0				

4

Successive Approximation

- Calculate the state of MSB-3 (bit 6)
 - Go to the last bit that caused it to be turned on (In this case MSB-1) and add it to V_{ref}/16, and compare it to V_{in}
 - Compare V_{in} to $V = 0.5 + V_{ref}/16 = 0.5625$
 - Since 0.6>0.5625, MSB-3=1 (turned on)

MSB	MSB-1	MSB-2	MSB-3			
1	0	0	1			

Successive Approximation ADC

This process continues for all the remaining bits.

•Digital Results:

MSB	MSB-1	MSB-2	MSB-3						LSB
1	0	0	1	1	0	0	1	1	0

•Results:

$$\frac{1}{2} + \frac{1}{16} + \frac{1}{32} + \frac{1}{256} + \frac{1}{512} = .599609375 \text{ V}$$

ATD10B8CV2 on MC9SI2C

By: Yuchun Huang

ATD10B8CV2 Features

- Resolution:
 - 8/10-bit
- Conversion Time:
 - 7 µsec for 10-bit
- Successive Approximation ADC
- 8-channel analog/digital input multiplexer
 - Multiplexer: A device that can send several signals over a single line.
- External Trigger Control (Sync. ADC with external events)
- New Features of ATD10B8CV2
 - Conversion Complete Interrupt
 - Left/right justified, signed/unsigned result
 - Programmable Sample time & resolution selection

Modes & Operations

Modes

- Stop Mode
 - •All clocks halt; conversion aborts; minimum recovery delay
- Wait Mode
 - Reduced MCU power; can resume
- Freeze Mode
 - Breakpoint for debugging an application

Operations

- Setting up and Starting the A/D Conversion
- Aborting the A/D Conversion
- Resets
- Interrupts

Registers & Memory Map

- Number of Control Register is 6: 0x0000~0x0005
 - •ATDCTL2 0x0080+0x0002
 - •Power down; external trigger; interrupts
 - •ATDCTL3 0x0080+0x0003
 - •Conversion Sequence Length; FIFO for result register; behavior in Freeze mode
 - •ATDCTL4 0x0080+0x0004
 - •Resolution; conversion clock freq.; sample time
 - •ATDCTL5 0x0080+0x0005
 - •Type of conversion sequence; analog input channel selection

Registers&Memory Map

- •Number of Status Register is 2: 0x0006 / 0x000B
 - •ATDSTAT0 0x0080+0x0006
 - •Power down; external trigger; interrupts
 - •ATDSTAT1 0x0080+0x000B
 - •Conversion Sequence Length; FIFO for result register; behavior in Freeze mode
- •Number of Special/Test Register is 1: 0x0009
 - •ATDTEST1 0x0080+0x0009
 - •Power down; external trigger; interrupts
 - •Number of Conversion Result Registers is 16: 0x0010~0x001F
 - •ATDDR0H~ATDDR7L: 0x0080+0x0010~0x001F
 - •Power down; external trigger; interrupts

Registers & Memory Map

- Digital Input Enable Register # is 1: 0x000D
 - •ATDDIEN 0x0080+0x000D
 - •Power down; external trigger; interrupts
 - •ATDSTAT1 0x0080+0x000B
 - •Conversion Sequence Length; FIFO for result register; behavior in Freeze mode
- Digital Port Data Register # is 1: 0x000F
 - •PORTAD 0x0080+0x000F
 - •Power down; external trigger; interrupts
 - •Total # registers in ATD is 32: 0x0000~0x001F
 - •Including unimplemented or reserved ones:

• ATDCTL2

\$0082

A/D power down; external trigger; interrupt

Figure 8-5. ATD Control Register 2 (ATDCTL2)

Abort the
current A/D
sequence

Read: Anytime	PIN	Description
Write: Anytime	7	0-power down ATD; recovery time period 1-normal ATD functionality
Abort the current A/D sequence	6	0-normal clearing (read the CCF before reading the result register) 1-Fast Flag Clearing (automatically clear CCF after any access to result register)
	5	0-continue to run in Wait Mode; 1-Halt conversion and power down ATD during Wait Mode
	4	0-External Trigger Edge 1-Trigger Level
Not start a new sequence	3	0-Low /Falling trigger polarity 1-high/Rising trigger polarity
	2	0-Disable external trigger mode 1-external trigger mode Enabled (Channel AN7)
	1	0-ATD Sequence Complete Interrupt Request Disabled 1-ATD Sequence Complete Interrupt Request Enabled

• ATDCTL3

\$0083

Sequence Length; FIFO Result; Freeze Behavior

	7	6	5	4	3	2	1	0	
R	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0	
w		580	340						
Reset	О	0	1	О	О	О	О	0	
		= Unimplemented or Reserved							

Figure 8-6. ATD Control Register 3 (ATDCTL3)

Read: Anytime Write: Anytime

Abort the current A/D sequence

Not start a new sequence

PIN	Description
6~3	# of conversions per sequence (Table 8-4, P233) [1~8]
2	0- A/D Conversion #1-→result register #1,(fixed) 1- current conversion-→ conversion counter result register, sequentially, wrap around when reaching maximum register # *: starting a new conversion by writing to ATDCTL5 clear the conversion counter to Zero -→first conversionalways in first result register ATDDR0
1	Breakpoint Behavior (Freeze Mode) when debugging (Table 8-5, P233) [00:continue conversion;10:finish current conversion then freeze;11:freeze immediattly]
0	

• ATDCTL4

\$0084

Resolution; Sample Time

Figure 8-7. ATD Control Register 4 (ATDCTL4)

Read: Anytime Write: Anytime

Abort the current A/D sequence

Not start a new sequence

PIN	Description
7	Resolution [0:10-bit; 1:8-bit]
6~5	Second phase of Sample time (Table 8-8, P237) [00: 2 clock period; 01: 4; 10: 8; 11: 16]
4~0	A/D Clock Prescaler [PRS: 0 ~31] $ATDclock = \frac{[BusClock]}{[PRS+1]} \times 0.5$

• ATDCTL5

\$0085

Type of conversion; sampled channels

Figure 8-8. ATD Control Register 5 (ATDCTL5)

Read: Anytime Write: Anytime

Abort the current A/D sequence

Start a new sequence

PIN	Description
7	0-Result Register Justification Mode: Left X15 both signed and unsigned 1-Result Register Justification Mode: Right 0X unsigned only
6	0- Unsigned data in result register 1- Signed data in result register [2's complement]
5	0- Single Conversion Mode; Only Once 1- Continuous Conversion Mode. Scanning
4	0- Sample Only one channel [Selected by CC~CA, # by S8C~S1C in ATDCTL3] 1- Sample across several channels [first by CC~CA, increase the subseq. Channel code]
2~0	Analog Channel Input Selection Code (Table 8-12, P239) [000: AN0; 001:AN1;; 111:AN7 MULT=0: selected channel; MULT=1: first channel in sequence, then sequentially, auto-wrap]

Single Channel, 4-Conversion Sequence

Overwrite ADR's

ADR3

ADR4

ADR2

ADR1

Multi Channel, 4-Conversion Sequence

CONTINUOUS

Set MULT = 1 (for multi-channel) and SCAN = 1 (for continuous)

Overwrite ADR's

ATD10B8CV2 - Status Registers

• ATDSTAT0

\$0086

Sequence Complete Flag; Overrun; Conversion Counter

Figure 8-9. ATD Status Register 0 (ATDSTAT0)

Read: Anytime

Write: Anytime (no effect on (CC2, CC1, CC0))

Read-only

PIN	Description
7	O- Conversion Sequence not completed; 1- Conversion Sequence completed. [SCAN=1 set after each completed seq.]
5	0- No external trigger overrun error has occurred; 1- external trigger overrun error has occurred [ETrigLE=0, additional active edge while a conversion sequence is in progress]
4	0- No overrun in results; 1- An overrun in results. [result registers written before its CCF is cleared. Old data lost before reading]
3~0	Conversion counter [*: The conversion counter points to the result register that will receive the result of the current conversion; *: FIFO=0, the conversion counter is initialized to zero at the begin and end of the conversion sequence; *: FIFO=1, the register counter is not initialized. The conversion counters wraps around when its maximum value is reached.]

ATD10B8CV2-Status Registers

• ATDSTAT1

\$008B

Conversion Complete Flag

	7	6	5	4	3	2	1	0	
R	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	
w									
Reset	0	0	0	О	0	0	0	0	
Ì		l= Unimplemented or Reserved							

Figure 8-12. ATD Status Register 1 (ATDSTAT1)

Read: Anytime

Write: Anytime, no effect

PIN	Description
7~0	0- conversion # x is not completed; 1- conversion # x is completed, results available. [set at the end of each conversion in a sequence]

Read-only

ATD10B8CV2 -Result Registers

ATDDRHx/ATDDRLx

\$0090~\$009F 8 result registers, read-only

8.3.2.13.1 Left Justified Result Data

Module Base + 0x0010 = ATDDR0H, 0x0012 = ATDDR1H, 0x0014 = ATDDR2H, 0x0016 = ATDDR3H 0x0018 = ATDDR4H, 0x001A = ATDDR5H, 0x001C = ATDDR6H, 0x001E = ATDDR7H

	7	6	5	4	3	2	1	0	
	BIT 9 MSB BIT 7 MSB	BIT 8	BIT 7 BIT 5	BIT 6 BIT 4	BIT 5 BIT 3	BIT 4 BIT 2	BIT 3 BIT 1	BIT 2 BIT 0	10-bit data 8-bit data
**1									
Docot	0	0	0	0			0	0	

Figure 8-15. Left Justified, ATD Conversion Result Register, High Byte (ATDDRxH)

Module Base + 0x0011 = ATDDR0L, 0x0013 = ATDDR1L, 0x0015 = ATDDR2L, 0x0017 = ATDDR3L 0x0019 = ATDDR4L, 0x001B = ATDDR5L, 0x001D = ATDDR6L, 0x001F = ATDDR7L

_	7	6	5	4	3	2	. 1	. 0	
R W	BIT 1 U	BIT 0 U	0 0	0 0	0	0 0	0	0	10-bit data 8-bit data
Reset	0	0	0	0	0	0	0	0	_

Figure 8-16. Left Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)

8.3.2.13.2 Right Justified Result Data

Module Base + 0x0010 = ATDDR0H, 0x0012 = ATDDR1H, 0x0014 = ATDDR2H, 0x0016 = ATDDR3H 0x0018 = ATDDR4H, 0x001A = ATDDR5H, 0x001C = ATDDR6H, 0x001E = ATDDR7H

_	7	6	5	4	3	2	. 1	0	
R W	0	0	0	0	0	0	BIT 9 MSB 0	BIT 8 O	10-bit data 8-bit data
Reset	0	0	0	0	0	0	0	0	_

Figure 8-17. Right Justified, ATD Conversion Result Register, High Byte (ATDDRxH)

Module Base + 0x0011 = ATDDR0L, 0x0013 = ATDDR1L, 0x0015 = ATDDR2L, 0x0017 = ATDDR3L 0x0019 = ATDDR4L, 0x001B = ATDDR5L, 0x001D = ATDDR6L, 0x001F = ATDDR7L

	7	6	5	4	3	2	1	0	
R W	BIT 7 BIT 7 MSB	BIT 6 BIT 6	BIT 5 BIT 5	BIT 4 BIT 4	BIT 3 BIT 3	BIT 2 BIT 2	BIT 1 BIT 1	BIT 0 BIT 0	10-bit data 8-bit data
Reset	0	0	0	0	0	0	0	0	

Figure 8-18. Right Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)

4

ATD10B8CV2 -Test/Special Registers

• ATDCTL2

\$0089

Special Channel conversion

Figure 8-11. ATD Test Register 1 (ATDTEST1)

Read: Anytime, returns unpredictable values for Bit 7 and Bit 6

Write: Anytime

PIN	Description					
0	0- special channel conversion disabled;					
	1- special channel conversion selected.					
	[Note: Always write remaining bits of ATDTEST1 (Bit7 to Bit1) zero when writing SC bit. Not doing so might result in unpredictable ATD behavior;					
	*: special meaning for CC~CA in ATDCTL5]					

Table 8-15. Special Channel Select Coding

sc	СС	СВ	CA	Analog Input Channel
1	0	Х	Х	Reserved
1	1	0	0	V _{RH}
1	1	0	1	V _{RL}
1	1	1	0	(V _{RH} +V _{RL}) / 2
1	1	1	1	Reserved

ATD10B8CV2 - GPIO Registers

ATDDIEN

\$008D

Digital Input enabled flag from analog pin AN0~AN7 to PTADx registers

Figure 8-13. ATD Input Enable Register (ATDDIEN)

Read: Anytime Write: Anytime

PIN	Description
7~0	0- disable digital input buffer from analog pin ANx to PTADx registers; 1- enable digital input buffer from analog pin ANx to PTADx registers. [Note: If this bit is set while simultaneously using it as an analog port, there is potentially increased power consumption]

ATD10B8CV2 - GPIO Registers

• **PORTAD** \$008F

GPIO port data registers

	7	6	5	4	3	2	1	•
B	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
w								
Reset	1	1	1	1	1	1	1	1
Pin Function	AN7	AN6	AN5	AN4	WM3.	AN2	AN1	ANO
Ī	= Unimplemented or Reserved							

Figure 8-14. Port Data Register (PORTAD)

Read: Anytime

Write: Anytime, no effect

PIN	Description
7~0	If IENx=1, Read the logic level on ANx pin [Note: signal potentials not meeting VIL or VIH specifications will have an indeterminate value]

ATD10B8CV2 - Setting up and Starting

- Step 1:
 - Power up the ATD and define settings in ATDCTL2
 - •ADPU-→1 (power up) ; ASCIE=1 (enable interrupt)
- Step 2:
 - •Wait for the ATD recovery time before proceeding
 - •CPU loop
- Step 3:
 - •Configure number of conversion in a sequence
 - •S8C~S1C, FIFO in ATDCTL3
- Step 4:
 - •Configure resolution, sampling time and ATD clock Speed
 - •SRES8; SMP1~0; PRS4~0 in ATDCTL4
- Step 5:
 - •Configure Starting Channel, Single/Multiple Channel, SCAN and result data SIGNED?
 - •CC~CA, MULT, SCAN, DJM, DSGN in ATDCTL5

ATD10B8CV2 - Aborting the conversion

- Step 1:
 - Disable the ATD Interrupt in ATDCTL2
 - •ASCIE→0 (disable interrupt)
- Step 2:
 - •Clear SCF flag in ATDSTAT0
 - •SCF-→1
- Step 3:
 - Power down ATD
 - •ADPU=0 in ATDCTL2

SWI

Using the ATD10B8C to Read Chan. AN0

```
EOU
                       $0082
 ADCTL2
ADCTL3
                       $0083
              EQU
                       $0083
 ADCTL4
              EOU
ADCTL5
              EOU
                       $0084
                       $0086
              EOU
ADSTAT
 ADR1
              EOU
                       $1031
 ADRESULT
               RMB
              ORG
                       $2000
                                                           Turn on charge pump and
              LDAA
                       #$81
                                   ;ADPU=1,ASCIE=1
                                                           select clock source
                      ADCTL2
              STAA
              LDAA
                      #$20
                                   ;S4C=1
                                                                  Delay for charge pump to
              STAA
                      ADCTL3
                      #$09
                                   ;8-bit, /10
              LDAA
                                                                  stabilize
              STAA
                      ADCTL4
              LDY
                       #30
                                   ;delay for 105 µs
                                                                           Set ADCTL5 to start
DELAY
              DEY
                                                                           conversion
              BNE
                       DELAY
                      #$10
              T.DAA
                                   ;Left unsigned, SCAN=0,MULT=1,CHAN=000
              STAA
                       ADCTL5
                                   ; start conversion
                                                                   Wait until conv. complete
                      #ADSTAT
              \mathbf{L}\mathbf{D}\mathbf{X}
                                   ; check for complete flag
                       0,X #$80 * ;SCF is bit 7
              BRCLR
              LDAA
                       ADR1
                                   ;read chan. 0
                                                                               Read result
                                   ;store in result
              STAA
                       ADRESULT
```


A/D Conversion with the ATD10B8C

Where to look:

- Chapter 8 in Reference Manual
- Pg. 223-249 in Reference Guide

References

- Ron Bishop, "Basic Microprocessors and the 6800", Hayden Book Company Inc., 1979
- Motorola, "MC912SC Family Data Sheet", Motorola, Inc., Rev. 5, 2007.
- Motorola, "MC912SC Reference Manual", Motorola, Inc., Rev. 4, 2007.
- Motorola, "MC912SC Programming Reference Guide", Motorola, Inc., Rev. 2, 2007.
- "Analog to Digital Converters", http://en.wikipedia.org/wiki/Analog-to-digital_converter
- Thomas E.Brewer, "Experiments in Analog & Digital Electronics", Kendall/Hunt Publishing Company, 2006.
- Dr. Ume, http://www.me.gatech.edu/mechatronics_course/