

Intro. Number Theory

Arithmetic algorithms

Representing bignums

Representing an n-bit integer (e.g. n=2048) on a 64-bit machine

Note: some processors have 128-bit registers (or more) and support multiplication on them

Dan Boneh

Arithmetic

Given: two n-bit integers

Addition and subtraction: |inear time O(n)

Multiplication: naively O(n²). Karatsuba (1960): O(n^{1.585})

Basic idea: $(2^{b}x_{2}+x_{1}) \times (2^{b}y_{2}+y_{1})$ with 3 mults.

Best (asymptotic) algorithm: about O(n·log n).

Division with remainder: O(n²).

Dan Boneh

Exponentiation

Finite cyclic group G (for example $G = \mathbb{Z}_p^*$)

Goal: given g in G and x compute g^x g^x g^y g^y

The repeated squaring alg.

Dan Boneh

Running times

Given n-bit int. N:

- Addition and subtraction in Z_N: linear time T₊ = O(n)
- Modular multiplication in Z_N : naively $T_x = O(n^2)$
- Modular exponentiation in Z_N (g^x):

$$O((\log x) \cdot T_x) \le O((\log x) \cdot n^2) \le O(n^3)$$

Plan Bounds

End of Segment

.