Eliminación de producciones unitarias

Teresa Becerril Torres terebece1508@ciencias.unam.mx

13 de abril de 2023

Ejercicio 2

Demostrar que dada una gramática G_1 construida eliminado producciones ε a partir de G se tiene que si $A \Rightarrow_G^* w$ en G, entonces $A \Rightarrow_{G_1}^* w$ y $w \neq \varepsilon$ en G_1 .

Demostración por inducción sobre el número de pasos. Suponemos que $A\Rightarrow_G^* w$ y $w\neq \varepsilon.$

Base

En un paso, $\mathsf{A}\to w$ y como $w\neq \varepsilon$, la producción se incluye en G_1 . Por lo tanto $\mathsf{A}\Rightarrow_{G_1}^* w.$

Ejercicio 2

Hipótesis de Inducción

Supongamos que cada X_i es derivada en menos de n pasos y $\mathsf{X}_i \Rightarrow_{G_1}^* w_i \neq \varepsilon$, para $\forall i=1,...,k$.

Paso inductivo

En n pasos, tenemos que $\mathsf{A}\Rightarrow_G \mathsf{Y}_1\mathsf{Y}_2...\mathsf{Y}_m\Rightarrow_G^* w$ y $w=w_1w_2...w_m$. Por H.I. sabemos que $\mathsf{X}_1\mathsf{X}_2...\mathsf{X}_k$ con $k\leq m$ han sido derivadas en menos de n pasos y cada X_i representa una Y_i sin producciones ε . Por la construcción de G_1 , tenemos que $\mathsf{A}\to\mathsf{X}_1\mathsf{X}_2...\mathsf{X}_k$ por lo que $\mathsf{A}\Rightarrow_{G_1}^*\mathsf{X}_1\mathsf{X}_2...\mathsf{X}_k\Rightarrow_{G_1}^* w$ y $w=w_1w_2...w_k$. Por lo tanto $\mathsf{A}\Rightarrow_{G_1}^* w$.

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b\}$, $\Delta=\{S,\,A,\,B\}$, S es el símbolo inicial y las reglas R están dadas por:

$$\begin{split} \mathsf{S} &\to \mathsf{A} \mid \mathsf{B} \\ \mathsf{A} &\to \mathsf{Sa} \mid \mathsf{a} \\ \mathsf{B} &\to \mathsf{S} \mid \mathsf{b} \end{split}$$

Encontrar pares unitarios

- 1. En la base (S, S), (A, A) y (B, B).
- 2. Como (S,S) y $S \to A$, entonces (S,A) es par unitario.
- 3. Dado que (S, S) y $S \rightarrow B$, se tiene que (S, B) es par unitario.
- 4. Como (B,B) y $B \rightarrow S$, entonces (B,S) es par unitario.

Agregar las nuevas producciones

$$\begin{split} S &\rightarrow Sa \mid a \mid b \\ A &\rightarrow Sa \mid a \\ B &\rightarrow Sa \mid a \mid b \end{split}$$

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b\}$, $\Delta=\{S,\,X,\,Y,\,Z\}$, S es el símbolo inicial y las reglas R están dadas por:

$$\begin{split} \mathsf{S} &\to \mathsf{X}\mathsf{Y}\mathsf{Z} \\ \mathsf{X} &\to \mathsf{a}\mathsf{Y} \mid \mathsf{Z} \mid \mathsf{b} \\ \mathsf{Y} &\to \mathsf{b}\mathsf{X} \mid \mathsf{a}\mathsf{Z} \\ \mathsf{Z} &\to \mathsf{a}\mathsf{a} \mid \mathsf{b}\mathsf{Y} \mid \mathsf{Y} \end{split}$$

Encontrar pares unitarios

- 1. En la base (S, S), (X, X), (Y, Y) y (Z, Z).
- 2. Como (X, X) y $X \to Z$, entonces (X, Z) es par unitario.
- 3. Dado que (X,Z) y $Z \rightarrow Y$, se tiene que (X,Y) es par unitario.
- 4. Como (Z,Z) y $Z \rightarrow Y$, entonces (Z,Y) es par unitario.

Agregar las nuevas producciones

$$\begin{split} S &\to XYZ \\ X &\to aY \mid aa \mid bY \mid bX \mid aZ \mid b \\ Y &\to bX \mid aZ \\ Z &\to aa \mid bY \mid bX \mid aZ \end{split}$$