

Actividad 2: Administrador de tareas

2º Desarrollo de Aplicaciones Multiplataforma
Programación de servicios y procesos
Martínez Díez, Ángel Mori
20-10-2021

Introducción

En este documento vamos a investigar el administrador de tareas de Windows, cómo gestiona los procesos, buscaremos información de alguno de estos, hablaremos del árbol de procesos y servicios, de cómo hallar tanto en Windows como en Linux los procesos que están abiertos y de cómo *matarlos*.

El administrador de tareas

Es una aplicación integrada de los sistemas operativos Windows que nos proporciona información sobre los procesos y servicios que se están ejecutando en tiempo real. También permite terminar estos procesos de forma más o menos forzada.

Dispone de diferentes pestañas: procesos, rendimiento, historial de aplicaciones, inicio, usuarios, detalles y servicios.

Procesos

Tabla con información de todos los procesos que se están ejecutando en el sistema.

Rendimiento

Muestra gráficas y datos del uso de CPU, memoria, disco, Ethernet y GPU.

Historial de aplicaciones

Muestra el uso de recursos que han consumido las distintas aplicaciones en la cuenta del usuario. Es posible restablecer el historial.

• Inicio

Permite administrar las aplicaciones o el software que se inicializa con el Shell de Windows

Usuarios

Es como la pestaña de procesos, pero además diferenciando entre cada usuario activo en ese momento.

Detalles

Información detallada de cada proceso, como el nombre, el id (PID), el estado y la memoria que están usando, entre otros.

Servicios

Se puede ver el nombre, el PID, una descripción breve, el estado y el grupo del servicio.

Procesos

A continuación una captura de esta aplicación en la pestaña de procesos:

Vemos que la tabla dispone de 10 columnas por cada proceso:

1. Nombre

- Nombre del proceso.
- Los procesos similares se agrupan bajo un desplegable.
- Por ejemplo, cada pestaña de Goggle Chrome se trata como un proceso diferente y se agrupan todos estos bajo en nombre la aplicación.

2. Estado

 Indica con una hoja los procesos que están siendo suspendidos para mejorar el rendimiento del sistema

3. CPU

 Indica el porcentaje del uso total del procesador en todos sus núcleos.

4. Memoria

 Indica en MB la cantidad de memoria física en uso por los procesos activos.

5. Disco

 Indica en MB/s el uso del disco en todas las unidades físicas por los procesos activos.

2º DAM - Desarrollo de Aplicaciones Multiplataforma

- 6. Red
 - Indica en Mbps el uso de red en la red primaria por los procesos activos.
- 7. GPU
 - Indica el porcentaje del uso más elevado de entre todos los motores de GPU.
- 8. Motor de GPU
 - Indica el motor GPU que usa el proceso.
- 9. Consumo de energía
 - Indica el impacto de la CPU, el disco y la GPU en el consumo de energía.
- 10. Tendencia de consumo de energía
 - Indica el impacto de la CPU, el disco y la GPU en el consumo de energía con el tiempo.

En las columnas CPU, memoria, disco, red y GPU cada proceso muestra su propio uso mientras que arriba se puede ver el porcentaje total.

Abriendo un programa

Podemos ver que al abrir un programa como puede ser Microsoft Office Word, se añade un proceso a la tabla:

Al cerrar el programa, simplemente desaparece el proceso tal como apareció.

Investigando algunos servicios

Vamos a seleccionar algunos de los servicios que aparecen en la tabla para buscar información sobre ellos y entender un poco mejor qué tipo de procesos nos podemos encontrar en el Administrador de tareas.

1. wsappx

- AppXSvc Servicio de implementación de AppX (AppXSVC)
- Es un servicio necesario para el correcto funcionamiento del sistema operativo.
- Gestiona las aplicaciones que entran desde Windows Store.

2. System

- ntoskrnl.exe
- Es el kernel del sistema operativo Windows NT.
- Es un proceso crítico y esencial en el ciclo de cargado del programa inicial. **No debe eliminarse**.
- 3. Proceso en tiempo de ejecución del cliente-servidor
 - csrss.exe
 - Es responsable de las aplicaciones de consola, creación/eliminación de subprocesos.
 - Es un proceso esencial.
- 4. Host de servicios: UtcSvc
 - svchost.exe
 - Proceso que ejecuta trozos de programas que por sí mismos no pueden funcionar. Es un DLL.
- 5. Intel(R) Dynamic Application Loader Host Interface
 - jhi_service.exe
 - Permite a las aplicaciones acceder a Intel DAL, aplicación que permite correr pequeñas porciones de código Java en Intel.
 - No es un proceso esencial para Windows.

Árboles de procesos

Muchos procesos tienen procesos hijos, cuya ejecución depende del padre, que a su vez es quién los ha creado. La detención de la ejecución del proceso padre conlleva la detención de los procesos hijos.

Veamos un par de ejemplos:

✓ ⑤ Google Chrome (8)	0%	321,7 MB	0 MB/s	0 Mbps
Google Chrome	0%	68,3 MB	0 MB/s	0 Mbps
Google Chrome	0%	162,3 MB	0 MB/s	0 Mbps
Google Chrome	0%	8,0 MB	0 MB/s	0 Mbps
Google Chrome	0%	25,0 MB	0 MB/s	0 Mbps
Google Chrome	0%	25,3 MB	0 MB/s	0 Mbps
Google Chrome	0%	8,1 MB	0 MB/s	0 Mbps
Google Chrome	0%	17,2 MB	0 MB/s	0 Mbps
Google Chrome	0%	7,4 MB	0 MB/s	0 Mbps
▼	0%	19,2 MB	0 MB/s	0 Mbps
GitHub Desktop	0%	15,5 MB	0 MB/s	0 Mbps
GitHubDesktop.exe	0%	3,7 MB	0 MB/s	0 Mbps

Los procesos de los programas Google Chrome y GitHubDesktop Tienen procesos hijos. Cada uno de estos, consume una cantidad de recursos distinta según sus propias necesidades. La información del consumo de recursos del proceso padre.

Linux y Unix. ¿Administrador de tareas?

Hay opciones diversas de administradores de tareas para Linux/Unix, sin embargo, lo más común es que los usuarios habituados a estos sistemas operativos usen el terminal para esto.

De hecho, basta con usa un comando. Existen alternativas también, como pueden ser los comandos *top* y *ps*. El primero es para un uso interactivo.

A la hora de *matar* un proceso basta con usar el comando *kill* y el identificador del proceso (PID).

Como prácticamente cualquier comando, todos los mencionados disponen de diversas opciones para personalizar su comportamiento o forma de uso.