Part IB — Methods

Based on lectures by C.G.Caulfield Notes taken by Christopher Turnbull

Michaelmas 2017

0 Introduction IB Methods

0 Introduction

I will never say anything that is untrue deliberately... Self-adjoint ODEs

1 Fourier Series IB Methods

1 Fourier Series

1.1 Peridoidic Functions

Definition. A function f(t) is *periodic* with period T if f(t+T)=f(T)

Fig 1

Example.

 $A\sin\omega t$

A is the amplitude, ω is the frequency, $2\pi/\omega$ is the period.

Sines and cosines are beautiful because they have an orthogonality property:

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

We want to consider $\sin n\pi x/l$, $\sin m\pi x/l$, where n,m are positive integers. These functions are periodic with period 2l.

$$SS_{mn} := \int_0^{2l} \sin\left(\frac{m\pi x}{l}\right) \sin\left(\frac{n\pi x}{l}\right) dx$$
$$= \frac{1}{2} \int_0^{2l} \cos\left[\frac{(m-n)\pi x}{l}\right] dx - \frac{1}{2} \cos\left[\frac{(m+n)\pi x}{l}\right] dx$$

if $m \neq n$,

$$SS_{mn} = \frac{l}{2\pi} \left[\frac{\sin(m-n)\pi x/l}{m-n} - \frac{\sin(m+n)\pi x/l}{m+n} \right]_0^{2l} = 0$$

if m = n, then $SS_{mn} = 1$ (provided $m \neq 0, n \neq 0$). Hence

$$SS_{mn} = \begin{cases} \delta_{mn} & \text{if } m, n \neq 0\\ 0 & \text{if } m \text{ or } n = 0 \end{cases}$$

Similarly, $CC_{mn} = \int_0^{2l} \cos\left(\frac{m\pi x}{l}\right) \cos\left(\frac{n\pi x}{l}\right) dx = l\delta_{mn} \ \forall m, n \neq 0$, and 2l if m = n = 0 Finally,

$$CS_{mn} = \int_0^{2l} \cos\left(\frac{m\pi x}{l}\right) \sin\left(\frac{n\pi x}{l}\right) dx$$
$$= \frac{1}{2} \int_0^{2l} \frac{\sin((m+n)\pi x)}{l} dx + \frac{1}{2} \int_0^{2l} \frac{\sin((m-n)\pi x)}{l} dx = 0$$

¹They have a common period of 2l, not their smallest period!

! Fourier Series IB Methods

By analogy with vectors [these integrals are indeed inner products], $\sin n\pi x/l$, $\cos n\pi x/l$ are said to be orthogonal on the interval [0, 2l].

They actually constitute an *orthogonal basis*. ie. it is possible to represent an arbitrary (but sufficiently well behaved²) function in terms of an infinite series (Fourier series) formed as a sum of sins and cosines.

1.2 Definition of a Fourier Series

Any well behaved periodic function f(x) with periodic 2L can be written as a Fourier Series:

$$\frac{f(x_+) + f(x_-)}{2} = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{m\pi x}{L}\right)$$

 a_n and b_n are the Fourier Coefficients, $f(x_+)$ and $f(x_-)$ are the right limit approaching form above and the left limit approaching from below respectively

If f(x) is continuous at x_c , then the LHS is just f(x). If f(x) has a bounded discontinuity, at x_d , ie. $f(x_d^-) \neq f(x_d^+)$, but $(f(x_d^-) - f(x_d^+))$ is finite, then the FS tends to the mean value of the two limits.

Coefficient construction: Multiply rhs of (*) by $\sin m\pi x/L$, integrate over 0 to 2L, assume you can invert order or summation and integration.

$$\int_0^{2L} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{m\pi x}{L}\right) \right] \sin\frac{m\pi x}{2} dx$$

We see that

$$\frac{a_0}{2} \int_0^{2L} \sin \frac{m\pi x}{L} \, dx = 0$$

$$\sum_{n=1}^{\infty} \int_0^{2L} a_n \cos \left(\frac{n\pi x}{L}\right) \sin \left(\frac{m\pi x}{L}\right) \, dx = 0$$

$$\sum_{n=1}^{\infty} \int_0^{2L} b_n \sin \left(\frac{n\pi x}{L}\right) \sin \left(\frac{m\pi x}{L}\right) \, dx = Lb_n$$

So

LHS =
$$\int_0^{2L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx \Rightarrow b_m = \frac{1}{L} \int_0^{2L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx$$

Multiply by $\cos \frac{m\pi x}{l}$ and integrate from 0 to 2L (inc m=0)

$$\int_0^{2L} \left(\frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{m\pi x}{L} \right) \cos \frac{m\pi x}{L} dx$$

Non zero only when m = 0Therefroe

²to be definied

$$\frac{a_0}{2}2L = \int_0^{2L} f(x) \, dx \Rightarrow \frac{a_0}{2} = \frac{1}{2L} \int_0^{2L} f(x) \, dx$$
$$a_m = \frac{1}{L} \int_0^{2L} f(x) \cos\left(\frac{m\pi x}{L}\right) \, dx$$

The range of integration is one period so its also permissibel to choose \int_{-L}^{L} a paricularly nice case is when $L = \pi$.

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \, dx \qquad m \ge 0$$

$$b_m = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin mx \, dx \qquad m \ge 1$$

1.3 Dirichlet Conditions

If f(x) is a periodic function with period 2l st.

- (i) it is absolutely integrable ³
- (ii) it has a finite number of extrema (ie maxs and mins) in [0,2l]
- (iii) it has a finite number of bounded discontinuities in [0, 2l]

then the FS representation converges to f(x) for all points where f(x) is cts, and at points x_d where f(x) is discontinuous, the series coverges to the avg value of the left and right limits, ie. to $\frac{1}{2}(f(x_{d_+}) + f(x_{d_-}))$. These conditions are satisfied if the function is of 'bounded variation'

1.4 Smoothness and order of Fourier coefficients

If the p^{th} derivative is the lowest derivative which is discontinuous somewhere (inc at the endpoints), then the F.C. are $\mathcal{O}[n^{-(p+1)}]$ as $n \to \infty$, eg. if a function has a bounded discontinuity, zeroth derivative is discontinuous: coefficients are of order $\frac{1}{n}$ as $n \to \infty$

Example. The sawtooth function, f(x) = x on $-L \le x \le L$

Function is odd, so

$$a_m = \frac{1}{L} \int_L^{-L} x \cos\left(\frac{m\pi x}{L}\right) dx = 0$$

³ie. $\int_0^{2l} |f(x)| dx$ is well defined

1 Fourier Series IB Methods

$$b_{m} = \frac{1}{L} \int_{-L}^{L} x \sin\left(\frac{m\pi x}{L}\right) dx = \frac{1}{L} \left(\left[-\frac{xL}{m\pi} \cos\left(\frac{m\pi x}{L}\right) \right]_{-L}^{L} - \int_{-L}^{L} \frac{-L}{m\pi} \cos\left(\frac{m\pi x}{L}\right) dx \right)$$

$$= \frac{1}{m\pi} \left(-2L\cos(m\pi) + \left[\sin\left(\frac{m\pi x}{L}\right) \frac{L}{m\pi} \right]_{-L}^{L} \right)$$

$$= \frac{2L}{m\pi} (-1)^{m+1}$$

So

$$\frac{f(x_{+}) + f(x_{-})}{2} = \frac{2L}{\pi} \left[\sin\left(\frac{\pi x}{L}\right) - \frac{1}{2}\sin\left(\frac{2\pi x}{L}\right) + \cdots \right]$$

- (i) $f_N(x) := \sum_{n=1}^N b_n \sin\left(\frac{n\pi x}{L}\right) \to f(x)$ almost everywhere, but the convergence is non-uniform.
- (ii) Persistence overshoot @ x = L: 'Gibbs phenomenon'
- (iii) f(L) = 0 average of right and left limits
- (iv) Coefficients are $\mathcal{O}(\frac{1}{n})$ as $n \to \infty$

Example. The integral of the sawtooth function, $f(x) = \frac{1}{2}x^2$, $-L \le x \le L$

Exercise.

$$f(x) = L^2 \left[\frac{1}{6} + 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{(n\pi)^2} \cos\left(\frac{n\pi x}{L}\right) \right]$$

Note at x = 0,

$$0 = L^2 \left[\frac{1}{6} + 2 \sum_{n=1}^{\infty} \frac{(-1)^2}{(n\pi)^2} \right] \Rightarrow \frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

2 Properties of the Fourier Series

2.1 Integration and Differentiation

2.1.1 Integration: Always works!

FS. can be integrated term by term:

f(x) periodic with period 2L and has a FS (so it satisfies Dirichlet conditions)⁴:

$$\frac{f(x_+) + f(x_-)}{2} = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{m\pi x}{L}\right)$$

$$F(x) = \int_{-L}^{x} f(x') dx' = \frac{a_0(x+L)}{2} + \sum_{n=1}^{\infty} \frac{a_n L}{n\pi} \sin\left(\frac{n\pi x}{L}\right)$$
$$+ \sum_{n=1}^{\infty} \frac{b_n L}{n\pi} \left[(-1)^n - \cos\left(\frac{n\pi x}{L}\right) \right]$$
$$= \frac{a_0 L}{2} + L \sum_{n=1}^{\infty} (-1)^n \frac{b_n}{n\pi}$$
$$- L \sum_{n=1}^{\infty} \frac{b_n}{n\pi} \cos\left(\frac{n\pi x}{L}\right)$$
$$+ L \sum_{n=1}^{\infty} \left(\frac{a_n - (-1)^n a_0}{n\pi}\right) \sin\left(\frac{n\pi x}{L}\right)$$

If a_n and b_n are FC then the series involving $\frac{a_n}{n}$ and $\frac{b_n}{n}$ (multipled by cos or sin) must also converge

The Fourier series of f(x) exists, so b_n is at least of $\mathcal{O}(\frac{1}{n})$ as $n \to \infty \Rightarrow \frac{b_n}{n}$ is at least $\mathcal{O}(\frac{1}{n^2})$ as $n \to \infty$, and so by the comparison test with $\sum_{n=1}^{\infty} \frac{M}{n^2}$, the second term on the RHS converges $\Rightarrow F(x)$ has a FS.

Note: integration smooths. Proof relies on discontinuity being bdd, (f(x)) satisfies Dirichlet condition).

2.1.2 Differentiation: Doesn't always work!

Let f(x) be a periodic function with period 2, st.

$$f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ -1 & \text{if } -1 < x < 0 \end{cases}$$

Odd function $\Rightarrow a_m = 0$.

 $^{^4}$ pay attention to the limits here

$$b_{m} = -\int_{-1}^{0} \sin(m\pi x) dx + \int_{0}^{1} \sin(m\pi x) dx$$

$$= \left[\frac{\cos(m\pi x)}{m\pi}\right]_{-1}^{0} - \left[\frac{\cos(m\pi x)}{m\pi}\right]_{0}^{1}$$

$$= \frac{1}{m\pi} \left[1 - (-1)^{m} - (-1)^{m} + 1\right]$$

$$= \frac{4}{\pi x} \text{ if } m \text{ odd, or } 0 \text{ if } m \text{ even}$$

$$\frac{f(x_{+}) + f(x_{-})}{2} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n-1)\pi x)}{2n-1}$$

Apply diff rules:

$$f'(x) = 4\sum_{n=1}^{\infty} \cos((2n-1)\pi x)$$

This is clearly divergent, even though f(x) = 0 for all $x \neq 0$.

The extra factor of 2n-1 is the problem. It's related to the discontinuity, f'(x) does not satisfy the Dirichlet condition

Differentiation can be done under certain circumstances.

Example. Assume the function f(x) is continuous and is extended as a 2L-periodic function, piece-wise continuously differentiable on (0, 2L). Let $g(x) = \frac{\mathrm{d}f}{\mathrm{d}x}$ such that g(x) satisfies D.C.⁵

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{m\pi x}{L}\right)$$

$$\frac{g(x_+) + g(x_-)}{2} = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) + B_n \sin\left(\frac{n\pi x}{L}\right)$$

$$A_0 = \frac{1}{L} \int_0^{2L} g(x) \, dx = \frac{f(2L) - f(0)}{L} = 0 \quad \text{by periodicity}$$

$$A_n = \frac{1}{L} \int_0^{2L} \frac{df}{dx} \cos\left(\frac{n\pi x}{L}\right) \, dx$$

$$= \frac{1}{L} \left[f(x) \cos \left(\frac{n\pi x}{L} \right) \right]_0^{2L} + \frac{n\pi}{L^2} \int_0^{2L} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$$
$$= 0 + \frac{n\pi b_n}{L}$$

Exercise. $B_n = \frac{-n\pi a_n}{L}$

We see differentiation reduces to multiplying by $\pm \frac{n\pi}{L}$

 $^{^{5}}g(x)$ has at worst a finite number of bounded discontinuitites.

2.2 Alternate representation: complex form

Remember

$$\cos\left(\frac{n\pi x}{L}\right) = \frac{1}{2} \left(e^{\frac{in\pi x}{L}} + e^{\frac{-in\pi x}{L}}\right)$$

$$\sin\left(\frac{n\pi x}{L}\right) = \frac{1}{2i} \left(e^{\frac{in\pi x}{L}} - e^{\frac{-in\pi x}{L}}\right)$$

$$\frac{f(x_{+}) + f(x_{-})}{2} = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} \frac{a_{n}}{2} \left(e^{\frac{in\pi x}{L}} + e^{\frac{-in\pi x}{L}}\right) - \frac{b_{ni}}{2} \left(e^{\frac{in\pi x}{L}} - e^{\frac{-in\pi x}{L}}\right)$$

$$= \frac{a_{0}}{2} = \sum_{n=1}^{\infty} \left(\frac{a_{n} - ib_{n}}{2}\right) e^{\frac{in\pi x}{L}} + \sum_{n=1}^{\infty} \left(\frac{a_{n} + ib_{n}}{2}\right) e^{\frac{-in\pi x}{L}}$$

$$= \sum_{-\infty}^{\infty} c_{n} e^{\frac{i\pi nx}{L}} \quad c_{0} = \frac{a_{0}}{2}; \quad c_{n} = \frac{a_{n} - ib_{n}}{2}; \quad c_{n} = \frac{a_{n} + ib_{n}}{2}$$

Note that

$$c_m^* = c_{-m}$$

complex exponentials are orthogonal

$$\int_0^{2L} e^{\frac{in\pi x}{L}} e^{\frac{-in\pi x}{L}} dx = \int_0^{2L} \cos\left(\frac{(n-m)\pi x}{L}\right) dx + i \int_0^{2L} \underbrace{\sin(n-m)}_{0 \text{ by periodicity}} \frac{\pi x}{L} dx = 2L\delta_{nm}$$

$$c_m = \frac{1}{2L} \int_0^{2L} f(x) e^{\frac{-im\pi x}{L}} dx = \frac{1}{2L} \int_0^{2L} \sum_{-\infty}^{\infty} c_n e^{\frac{in\pi x}{L}} e^{\frac{-in\pi x}{L}} dx$$

Now assume
$$g(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi x}{L}}$$

$$c_n = \frac{1}{2L} \int_0^{2L} \frac{\mathrm{d}f}{\mathrm{d}x} e^{\frac{-in\pi x}{L}} \, \mathrm{d}x$$

$$= \frac{1}{2L} \left[f(x) e^{\frac{-in\pi x}{L}} \right]_0^{2L} + \frac{in\pi}{2L^2} \int_0^{2L} f(x) e^{\frac{-in\pi x}{L}} \, \mathrm{d}x$$

$$= \frac{in\pi}{L} c_n \quad \text{by periodicity}$$

2.3 Half-range series

Consider a functon defined only on $0 \le x \le L$.

There are two possible ways to extend it to a 2L-periodic function that can be represented as a FS. 6

⁶It would be a dumbass thing to extend it as an odd function; you'll have a discontinuity!

2.3.1 Fourier sine series: odd function

f(x) can be extended as an *odd* function f(x) = -f(-x) on $-L \le x \le L$ and then extended as a 2L-periodic function. In this case $a_n = 0$ and we can define the Fourier sine series

$$\frac{f(x_+) + f(x_-)}{2} = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) \qquad b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Example. Sawtooth function

FS describes the 2L periodic fn. Sine seires still describes the fn on [0, L]

2.3.2 Even functions: fourier cosine series

f(x) can also be extended as an even fn on $-L \le x \le L$ ie. f(x) = f(-x) and then extended as a 2L-periodic fn: $\Rightarrow b_n = 0 \ \forall n$.

Fourier cosine series:

$$\frac{f(x_{+}) + f(x_{-})}{2} = \frac{a_0}{2} \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) \qquad a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$\frac{1}{-3\pi} \frac{\pi}{-\pi} \frac{\pi}{\pi} \frac{3\pi}{3\pi}$$

2.4 Parserals Theorem

'Energy' of a periodic signal is often of interest, ie

$$E = \int_0^{2L} f^2(x) \, \mathrm{d}x$$

Consider the general case

$$f(x) = \sum_{-\infty}^{\infty} c_n e^{\frac{in\pi x}{L}}$$

where

$$g(x) = \sum_{m = -\infty}^{\infty} d_m e^{\frac{im\pi x}{L}}$$

$$\int_0^{2L} f(x)g(x) dx = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n d_m \int_0^{2L} \exp\left[\frac{i\pi x}{L}(n+m)\right] dx$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n d_m \left(2L\delta_{n[-m]}\right)$$

$$= \sum_{n=-\infty}^{\infty} c_n d_{-n} = 2L \sum_{n=-\infty}^{\infty} c_n d_n^*$$

So if g(x) = f(x)

$$\int_0^{2L} [f(x)]^2 dx = 2L \sum_{n=-\infty}^{\infty} |c_n|^2 = L \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$$

Example. Remember f(x) = x for $-L \le x \le L$

$$b_n = \frac{2L}{m\pi} (-1)^{m+1}$$

$$\int_{-L}^{L} x^2 dx = \frac{2L^3}{3} = L \sum_{m=1}^{\infty} \frac{4L^2}{m^2 \pi^2}$$
$$\Rightarrow \sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{\pi^2}{6}$$

Exercise. From the FS of $\frac{x^2}{2}$ show that

$$\sum_{m=1}^{\infty} \frac{1}{m^4} = \frac{\pi^4}{90}$$

3 Strum-Liouville Theory Motivation

3.1 Second order ODEs

$$\mathcal{L}y(x) = \alpha(x)\frac{\mathrm{d}^2}{\mathrm{d}x^2}y + \beta(x)\frac{\mathrm{d}y}{\mathrm{d}x} + \gamma(x)y = f(x)$$

 α,β,γ continuous, α non zero except perhaps at a finite number of isolated points,

f(x) is bounded, defined on $a \le x \le b$ (a or b may be $\pm \infty$). HOMOGENOUS: eg

$$\mathcal{L}y = 0$$

has two linearly independent solutions y_1,y_2 complementary function $y_c=Ay_1+By_2$

INHOMOGENEOUS OR FORCED EQUATION.

$$\mathcal{L}y = f(x)$$

F is the forcing and has a particular integral $y_p(x)$. G.S. is $y=y_c(x)+y_p(x)$ where A+B are determined in a 'PROBLEM' by applying conditions