Devoir maison 8.

À rendre le lundi 20 février 2023

Exercice

On considère l'équation suivante sur \mathbb{R}_{+}^{*} :

(E) :
$$1 - 5x = 2x^2 \ln x$$
.

1°) On pose, pour tout $x \in \mathbb{R}_+^*$, $\varphi(x) = \frac{1}{x^2} - \frac{5}{x} - 2 \ln x$.

Dresser le tableau de variations de φ .

- **2°)** En déduire que (E) admet une unique solution α dans \mathbb{R}_+^* . Justifier que $\alpha \in]0, \frac{1}{2}[$.
- 3°) On pose, pour tout x > 0,

$$f(x) = \frac{1 - x - 2x^2 \ln x}{4}.$$

- a) Montrer que f est prolongeable en une fonction continue sur $[0, +\infty[$.
- **b)** On continue à noter f la fonction prolongée. Montrer que f est de classe C^1 sur $[0, +\infty[$. Préciser f'(0).
- c) f est-elle deux fois dérivable en 0?
- d) Étudier les variations de f' sur [0,1], et prouver que pour tout $x \in [0,1]$, $|f'(x)| \leq \frac{3}{4}$. Indication: on pourra utiliser le fait (sans le prouver) que $e^{-\frac{3}{2}} \leq \frac{1}{4}$.
- e) Étudier les variations de f sur [0,1], et prouver que pour tout $x \in [0,1]$, $f(x) \in [0,1]$.
- **4**°) On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = \frac{1}{5}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$

- a) Justifier que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et qu'elle est à valeurs dans [0,1].
- **b)** Justifier que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{3}{4}|u_n \alpha|$.
- c) En déduire la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.