

UZH BIO390

Semantic web, RDF, Ontologies and Knowledge Graphs in biomedical sciences

Ahmad Aghaebrahimian

Zurich University of Applied Sciences agha@zhaw.ch

Introduction

- Ahmad Aghaebrahimian

- Research Associate at ZHAW

- Ph.D. Computer Sciences focusing on Computational Linguistics

- Area of interests: Machine Learning

Deep Neural Networks Biomedical text analytics

Natural Language Processing

Semantic Web

Email: agha@zhaw.ch

zh aw

Session Content

- Introduction
- Stack of standards (URI, XML, RDF, SPARQL, OWL, ...)
- RDF: Entities and Relationships
- Ontology
- Knowledge graphs

The linked open data

• Linked open data example

The linked open data cloud

The life sciences data cloud

Basics of the web

- Web structure:

Server vs. Client

Basics of the web

- Web structure:

Server vs. Client

- Web Components:

Uniform Resource Locator (URL): identify document

Hypertext Markup Language (HTML): access document

Hypertext Transfer Protocol (HTTP): transfer document

Basics of the web

- Web structure:

Server vs. Client

- Web Components:

Uniform Resource Locator (URL): identify document Hypertext Markup Language (HTML): access document Hypertext Transfer Protocol (HTTP): transfer document

Moving from pages to resources
 Interactive web, Web 2.0 or semantic web

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

Why?

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

Why?

- Presenting knowledge about data

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

Why?

- Presenting knowledge about data

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

Why?

- Presenting knowledge about data
- Allowing data integration from data silos

What?

Semantic Web (SW) is an extension of the World Wide Web that uses the **Resource Description Framework (RDF)** and **Web Ontology Language (OWL)**, among other standards, to make the Internet machine-readable.

Why?

- Presenting knowledge about data
- Allowing data integration from data silos
- Introduce intelligence to systems

URI:

What is a Resource?

URL → URI → IRI

Physically located → conceptually identified → conceptually identified in all languages

URI:

What is a Resource?

URL → URI → IRI

Physically located → conceptually identified → conceptually identified in all languages

XML:

Open family of languages represent **structured** data using **tags** and in **textual** format

Rules:

- Only one root <root> </root>
- Opening with closing <Gene></Gene>
- no tag begin with number or xml
- Case sensitive <Gene> != <gene>
- Order matters <Gene> <nucl> </nucl></Gene>
- Tags may have attributes <Gene inherited='true' />

OWL:

OWL provides a rich vocabulary to add semantics and context and allow reasoning and inference

Ontology

Ontology is

- A model of a domain
- A vocabulary consisting of classes and properties
- Machine-readable knowledge representation

Ontology

Ontology is

- A model of a domain
- A vocabulary consisting of classes and properties
- Machine-readable knowledge representation

How to build an ontology?

- Define a domain
- Define the classes and properties
- Extend existing ontology (RDF schema, dbpedia,...)

Ontology

Ontology is

- A model of a domain
- A vocabulary consisting of classes and properties
- Machine-readable knowledge representation

How to build an ontology?

- Define a domain
- Define the classes and properties
- Extend existing ontology (RDF schema, dbpedia,...)

• Benefits of an ontology in Biomedical research? (And why they are important)

- Data integration
- Language processing via domain vocabulary
- Defining the precise meaning of classes
- Automated processing

Ontology Continued

- Ontology as a set of:
 - Definitions
 - Terms and their synonyms
 - Relationships

Ontology Continued

- Ontology as a set of:
 - Definitions
 - Terms and their synonyms
 - Relationships
- OBO: ChEBI Access via: 'https://github.zhaw.ch/agha/D-Heath'

```
[Term]
id: CHEBI:60871
name: selenium(2+)
```

def: "The selenium ion with two positive charges." []

synonym: "Se(2+)" RELATED [UniProt:]

synonym: "selenium dication" RELATED [ChEBI:] synonym: "Se2+" RELATED [SUBMITTER:] synonym: "Se" RELATED FORMULA [ChEBI:] synonym: "[Se++]" RELATED SMILES [ChEBI:] synonym: "InChI=1S/Se/q+2" RELATED InChI [ChEBI:]

synonym: "InChiKey=MFSBVGSNNPNWMD-UHFFFAOYSA-N" RELATED InChiKey [ChEBI:]

is_a: CHEBI:60250 is_a: CHEBI:30412

[Term]

id: CHEBI:60250 name: selenium ion

def: "A selenium atom having a net electric charge." []

is_a: CHEBI:36904 is_a: CHEBI:36914

Ontology Continued

Ontology as a set of:

- Definitions
- Terms and their synonyms
- Relationships
- OBO: ChEBI Access via: 'https://github.zhaw.ch/agha/D-Heath'

```
[Term]
id: CHEBI:60871
name: selenium(2+)
```

def: "The selenium ion with two positive charges." []

synonym: "Se(2+)" RELATED [UniProt:]

synonym: "selenium dication" RELATED [ChEBI:] synonym: "Se2+" RELATED [SUBMITTER:] synonym: "Se" RELATED FORMULA [ChEBI:] synonym: "[Se++]" RELATED SMILES [ChEBI:] synonym: "InChI=1S/Se/q+2" RELATED InChI [ChEBI:]

synonym: "InChIKey=MFSBVGSNNPNWMD-UHFFFAOYSA-N" RELATED InChIKey [ChEBI:]

is_a: CHEBI:60250 is_a: CHEBI:30412

[Term]

id: CHEBI:60250 name: selenium ion

def: "A selenium atom having a net electric charge." []

is_a: CHEBI:36904 is_a: CHEBI:36914

• UMLS:

- Metathesaurus
- Semantic network
- Specialized Lexicon

RDF:

RDF is a **graph-based data model** and the set of **syntax** that allows us to write **description** about the resources on the web and to exchange them. It presents data in the **triple format** and gives it structures and unique identifiers so that data can be easily linked

RDF:

RDF is a **graph-based data model** and the set of **syntax** that allows us to write **description** about the resources on the web and to exchange them. It presents data in the **triple format** and gives it structures and unique identifiers so that data can be easily linked.

Principles:

Triple structure: (subject, predicate, object)

- subject → a URI resource
- predicate → binary type URI
- object → a URI resource or literal

Predicates are labeled

Predicates are directed

RDF is a graph model

RDF:

RDF is a **graph-based data model** and the set of **syntax** that allows us to write **description** about the resources on the web and to exchange them. It presents data in the **triple format** and gives it structures and unique identifiers so that data can be easily linked.

Principles:

Triple structure: (subject, predicate, object)

- subject → a URI resource
- predicate → binary type URI
- object → a URI resource or literal

Predicates are labeled

Predicates are directed

RDF is a graph model

RDF serialization:

XML, N-triple, Turtle, TriG, JSON-LD

The Graph data model

Storing data in form of triplets: (Subject, Predicate, Object)
 e.g. (ART, LOF, Melanoma_Tumors)
 Subject and Predicate must be in URI form

The Graph data model

- Storing data in form of triplets: (Subject, Predicate, Object)
 e.g. (ART, LOF, Melanoma_Tumors)
 Subject and Predicate must be in URI form
- Triplets follow the RDF standard.
- Triplets are easily **Expanded** and **Interlinked**.
- Triplets can be queried via **SPARQL**:

The Graph data model

- Storing data in form of triplets: (Subject, Predicate, Object)
 e.g. (ART, LOF, Melanoma_Tumors)
 Subject and Predicate must be in URI form
- Triplets follow the **RDF** standard.
- Triplets are easily **Expanded** and **Interlinked**.
- Triplets can be queried via SPARQL:

Subjects, Predicates, Objects

Named Entity

Relationship

NLP components:

- Named Entity Recognition (NER)
- Named Entity Disambiguation (NED)
- Relation Extraction (RE)

NER Evaluation:

Accuracy:

$$Accuracy = \frac{|Correct \ answers|}{|test \ data|}$$

NER Evaluation:

Accuracy:

$$Accuracy = \frac{|Correct\ answers|}{|test\ data|}$$

F1 score:

Example: Cancer Diagnostics

True labels

	Cancer	No-cancer
Cancer	TP	FP
No-cancer	FN	TN

Predicted labels

NER Evaluation:

Accuracy:

$$Accuracy = \frac{|Correct \ answers|}{|test \ data|}$$

F1 score:

Example: Cancer Diagnostics

$$Precision = \frac{|predicted\ correct\ answers|}{|all\ detected\ answers|}$$

$$Recall = \frac{|predicted\ correct\ answers|}{|all\ correct\ answers|}$$

True labels

	Cancer	No-cancer
Cancer	TP	FP
No-cancer	FN	TN

Predicted labels

zhaw

NER Evaluation:

Accuracy:

$$Accuracy = \frac{|Correct\ answers|}{|test\ data|}$$

F1 score:

Example: Cancer Diagnostics

$$Precision = \frac{|predicted\ correct\ answers|}{|all\ detected\ answers|}$$

$$Recall = \frac{|predicted\ correct\ answers|}{|all\ correct\ answers|}$$

True labels

	Cancer	No-cancer
Cancer	TP	FP
No-cancer	FN	TN

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Predicted labels

Named Entity Disambiguation (NED)

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

CHEBI:39548 lowers CHEBI:47774 and IUPAC:46823 and raises CHEBI:47775 in the blood.

Named Entity Disambiguation (NED)

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

CHEBI:39548 lowers CHEBI:47774 and IUPAC:46823 and raises CHEBI:47775 in the blood.

Problem:

- Different order
- Morphological forms
- Synonymous names
- Abbreviation

Named Entity Disambiguation (NED)

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

CHEBI:39548 lowers CHEBI:47774 and IUPAC:46823 and raises CHEBI:47775 in the blood.

Problem:

- Different order
- Morphological forms
- Synonymous names
- Abbreviation

Aghaebrahimian, A., Cieliebak, M.(2020), Named Entity Disambiguation at Scale, ANNPR, Winterthur, Switzerland

Relation Extraction (RE)

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

Relation Extraction (RE)

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

Atorvastatin lowers LDL and triglycerides and raises HDL in the blood.

Single hop RE:

Aghaebrahimian, A. and Jurcicek, F., (2016), Open-domain Factoid Question Answering via Knowledge Graph Search, NAACL, San Diego, USA

The linked open data

• Linked open data example

The linked open data

• Linked open data example

Question: How do we know that the dotted entities are the same entities.

Semantic Web tools

- RDFa:

Extracting triples from HTML pages via markups https://rdfa.info/play/

- Gleaning Resource Descriptions from Dialects of Languages (GRDDL):

Algorithms instead of markups

k rel="transformation" href="http://www.w3.org/2000/06/dc-extract/dc-extract.xsl" />

- JSON for Linked Data: JSON-LD

Attaching context to JSON files

- R2RML: Transforming tables to RDF

zn

SPARQL

W3C standard SPARQL Protocol And RDF Query Language

Lab work: https://bit.ly/3wjyHpf

Life Sciences RDF data and SPARQL Endpoints

A SPARQL endpoint gets queries and returns their results using HTTP protocol

- Generic
 - http://sparql.org/sparql.html
 - http://demo.openlinksw.com/sparql
- Specific
 - Dbpedia
 - https://dbpedia.org/sparql
 - SIB Swiss Institute of Bioinformatics
 - UniProt: http://sparql.uniprot.org
 - neXtProt: http://snorql.nextprot.org
 - EBI European Bioinformatics Institute:
 - BioSamples, BioModels, ChEMBL, Expression Atlas, Reactome, Ensembl
 - https://www.ebi.ac.uk/rdf/services/sparql
 - NCBI National Center for Biotechnology Information:
 - PubChemRDF (rdf only, no SPARQL endpoint)
 - https://pubchem.ncbi.nlm.nih.gov/rdf/
 - http://sparql-playground.sib.swiss/