Элементы нейронных сетей

Нормализация данных

 \bar{x} – выборочное среднее;

 σ – выборочное отклонение

Выбор функции активации

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$ReLU(z) = \begin{cases} 0, & z < 0, \\ z, & z \ge 0 \end{cases}$$

Выбор функции активации

$$ReLU(z) = \begin{cases} 0, & z < 0, \\ z, & z \ge 0 \end{cases}$$

Регуляризация

• L_2 -регуляризация:

$$L(y; x, \theta) + \frac{\lambda}{2} \|\theta\|^2;$$

• L_1 -регуляризация:

$$L(y; x, \theta) + \lambda |\theta|;$$

• метод ранней остановки (early stopping):

Регуляризация. Dropout

Вероятность исключения нейрона из сети: $\delta \sim Bernoulli(p)$

Нормализация по мини-батчам

Нормализация по мини-батчам

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{Var[x^{(k)}]}},$$

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

- стабилизирует обучение;
- регуляризует;
- обучение меньше зависит от начальных значений параметров.

Элементы нейронных сетей

Для улучшения сходимости обучения нейронных сетей:

- нормализация исходных данных;
- нормализация по мини-батчам.

Методы регуляризации:

- L_1 и L_2 -регуляризаторы;
- early stopping (метод ранней остановки);
- dropout (метод отключения случайных нейронов).