

EGZAMIN MATURALNY W ROKU SZKOLNYM 2018/2019

MATEMATYKA

POZIOM PODSTAWOWY

FORMUŁA OD 2015

("NOWA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

CZERWIEC 2019

Egzaminatorze!

- Oceniaj prace zdających uczciwie i z zaangażowaniem.
- Stosuj przyjęte zasady oceniania w sposób obiektywny. Pamiętaj, że każda merytorycznie poprawna odpowiedź, spełniająca warunki określone w poleceniu, musi zostać pozytywnie oceniona, nawet jeżeli nie została przewidziana w przykładowych odpowiedziach w zasadach oceniania.
- Konsultuj niejednoznaczne rozwiązania zadań z innymi egzaminatorami lub przewodniczącym zespołu egzaminatorów. W przypadku niemożności osiągnięcia wspólnego stanowiska, rozstrzygajcie na korzyść zdającego.
- Przyznając punkty, nie kieruj się emocjami.
- Informuj przewodniczącego o wszystkich nieprawidłowościach zaistniałych w trakcie oceniania, w tym podejrzeń o niesamodzielność w pisaniu pracy.

Klucz punktowania zadań zamkniętych

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	С	В	A	В	С	Α	D	D	В	A	C	Α	С	В	В	В	C	A	C	D	D	В	D	В	В

Zadanie 26. (0-2)

Rozwiąż nierówność x(7x+2) > 7x+2.

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

I etap rozwiązania (obliczenie pierwiastków trójmianu kwadratowego)

• zapisujemy nierówność w postaci $7x^2 - 5x - 2 > 0$ i obliczamy pierwiastki trójmianu $7x^2 - 5x - 2$; obliczamy wyróżnik tego trójmianu

$$\Delta = 25 + 4 \cdot 7 \cdot 2 = 25 + 56 = 81$$
 i stąd $x_1 = \frac{5 - 9}{14} = -\frac{2}{7}$ oraz $x_2 = \frac{5 + 9}{14} = 1$

albo

• zapisujemy nierówność w postaci x(7x+2)-(7x+2)>0 i po wyłączeniu wspólnego czynnika przed nawias otrzymujemy postać iloczynową

$$(7x+2)(x-1) > 0$$
,

z której wynika, że pierwiastkami trójmianu kwadratowego (7x+2)(x-1) są liczby

$$x_1 = -\frac{2}{7}$$
 oraz $x_2 = 1$.

II etap rozwiązania (zapisanie zbioru rozwiązań nierówności)

Zapisujemy zbiór rozwiązań nierówności: $\left(-\infty, -\frac{2}{7}\right) \cup \left(1, +\infty\right)$ lub $x \in \left(-\infty, -\frac{2}{7}\right) \cup \left(1, +\infty\right)$.

Schemat oceniania

- o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = -\frac{2}{7}$, $x_2 = 1$,
- o zaznaczy miejsca zerowe na wykresie funkcji $f(x) = 7x^2 5x 2$, i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

• popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego błędu zapisze zbiór rozwiązań nierówności.

• zapisze zbiór rozwiązań nierówności: $\left(-\infty, -\frac{2}{7}\right) \cup \left(1, +\infty\right)$ lub $x \in \left(-\infty, -\frac{2}{7}\right) \cup \left(1, +\infty\right)$

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi

- 1. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Akceptujemy zapisanie odpowiedzi w postaci: $x < -\frac{2}{7}$ i x > 1, $x < -\frac{2}{7}$ oraz x > 1, itp.
- 4. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = -\frac{2}{7}$, $x_2 = 1$ i zapisze $x \in \left(-\infty, \frac{2}{7}\right) \cup \left(1, +\infty\right)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 5. Jeżeli zdający podzieli obie strony nierówności przez 7x + 2 bez podania odpowiednich założeń, to otrzymuje **0 punktów** za całe rozwiązanie.
- 6. Jeżeli zdający podzieli obie strony nierówności przez 7x+2, poda odpowiednie założenia ale rozpatrzy poprawnie tylko jeden z przypadków, to otrzymuje **1 punkt** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty,1)\cup\left(-\frac{2}{7},+\infty\right)$, $(+\infty,1)\cup\left(-\frac{2}{7},-\infty\right)$, to przyznajemy **2 punkty**.

Zadanie 27. (0-2)

Wyznacz wszystkie liczby rzeczywiste x, które spełniają warunek: $\frac{3x^2 - 8x - 3}{x - 3} = x - 3.$

Rozwiązanie

Równanie $\frac{3x^2-8x-3}{x-3} = x-3$ ma sens tylko wtedy, gdy $x \ne 3$. Wtedy $x-3\ne 0$. Mnożąc obie strony równania przez x-3 otrzymujemy równanie równoważne

$$3x^2-8x-3=(x-3)^2$$
.

$$x^2 - x - 6 = 0$$
.

Wyróżnik trójmianu kwadratowego $x^2 - x - 6$ jest równy $\Delta = 1 - 4 \cdot (-6) = 25$. Zatem

$$x = \frac{1-5}{2} = -2$$
 lub $x = \frac{1+5}{2} = 3$.

Tylko liczba x = -2 spełnia warunek $x \neq 3$, więc jest jedynym rozwiązaniem równania.

Uwaga

Równanie $\frac{3x^2-8x-3}{x-3} = x-3$ możemy też zapisać w postaci równoważnej

$$\frac{(x-3)(3x+1)}{x-3} = x-3$$
.

Zatem dla $x \neq 3$ jest ono równoważne równaniu

$$3x+1=x-3$$
,

$$2x = -4$$

$$x = -2$$
.

Zatem rozwiązaniem równania jest x = -2.

Schemat oceniania

Zdający otrzymuje1 p. gdy:

• obliczy pierwiastki trójmianu $x^2 - x - 6$: $x_1 = -2$ oraz $x_2 = 3$ i na tym zakończy lub dalej popełnia błędy,

albo

• zapisze równanie w postaci: $\frac{(x-3)(3x+1)}{x-3} = x-3 \text{ lub } \frac{3(x-3)\left(x+\frac{1}{3}\right)}{x-3} = x-3$

i na tym zakończy lub dalej popełnia błędy,

Uwagi

- 1. Jeżeli zdający popełni błąd przy zapisie postaci iloczynowej trójmianu kwadratowego $3x^2-8x-3$, zapisując (x-3)(3x-1) lub $3(x-3)(x-\frac{1}{3})$ i rozwiąże równanie konsekwentnie do końca, to otrzymuje **1 punkt**.
- 2. Jeżeli zdający przy zapisie postaci iloczynowej trójmianu kwadratowego $3x^2 8x 3$ pominie współczynnik liczbowy 3, zapisując $(x-3)(x+\frac{1}{3})$, to otrzymuje **0 punktów**.

Zadanie 28. (0-2)

Dany jest trójkąt ABC. Punkt S jest środkiem boku AB tego trójkąta (zobacz rysunek). Wykaż, że odległości punktów A i B od prostej CS są równe.

Rozwiązanie

I sposób (własność środkowej trójkata)

Odcinek *CS* jest środkową trójkąta *ABC*, więc z własności środkowej trójkąta wynika, że pola trójkątów *ASC* i *BSC* są równe. Trójkąty te mają wspólny bok *CS*, więc wysokości tych trójkątów opuszczone na prostą *CS* są równe, czyli odległości punktów *A* i *B* od prostej *CS* są równe. To kończy dowód.

Uwaga

Równość pól trójkątów ASC i BSC wynika wprost z faktu, że podstawy AS i BS tych trójkątów mają równe długości, a wysokość opuszczona z wierzchołka C na prostą AB jest wspólną wysokością tych trójkątów. Możemy też zauważyć, że kąty ASC i BSC są przyległe, więc jeśli $| < ASC | = \varphi$, to $| < BSC | = 180^{\circ} - \varphi$. Wtedy otrzymujemy

$$P_{\scriptscriptstyle ASC} = \frac{1}{2} \cdot \left| AS \right| \cdot \left| CS \right| \cdot \sin \left(180^{\circ} - \varphi \right) = \frac{1}{2} \cdot \left| BS \right| \cdot \left| CS \right| \cdot \sin \varphi = P_{\scriptscriptstyle BSC} \,.$$

II sposób (przystawanie trójkątów)

Poprowadźmy przez punkty A i B proste prostopadłe do prostej CS, a punkty przecięcia tych prostych z prostą CS oznaczamy odpowiednio A' i B' jak na rysunku.

7

Zauważamy, że:

- $| \not \prec A'SA | = | \not \prec B'SB |$, jako kąty wierzchołkowe,
- |AS| = |SB|, bo punkt S jest środkiem boku AB,

• $| \angle SAA' | = | \angle SBB' |$, gdyż są to kąty naprzemianiegłe i proste AA' i BB' są równoległe.

Zatem, na podstawie cechy *kbk* przystawania trójkątów wnioskujemy, ze trójkąty SAA' i SAA' są przystające. Stąd wynika, że |AA'| = |BB'|, co kończy dowód.

III sposób (funkcje trygonometryczne)

Poprowadźmy przez punkty A i B proste prostopadłe do prostej CS, a punkty przecięcia tych prostych z prostą CS oznaczamy odpowiednio A' i B' jak na rysunku.

Ponieważ proste AA' i BB' są równoległe, więc kąty odpowiadające A'AS i B'BS są równe. Oznaczmy miarę tych katów przez α . Z definicji sinusa otrzymujemy

$$\sin \alpha = \frac{|AA'|}{|AS|} = \frac{|BB'|}{|BS|}.$$

Stąd i z równości |AS| = |SB| wynika, że |AA'| = |BB'|, co kończy dowód.

IV sposób (twierdzenie Talesa)

Poprowadźmy przez punkty A i B proste prostopadłe do prostej CS, a punkty przecięcia tych prostych z prostą CS oznaczamy odpowiednio A' i B' jak na rysunku.

Ponieważ proste AA' i BB' są równoległe, więc z twierdzenia Talesa wynika, że

$$\frac{|A'S|}{|AS|} = \frac{|B'S|}{|BS|}$$

Stąd i z równości |AS| = |SB| wynika, że |A'S| = |B'S|. Z tych dwóch równości oraz z równości $| \not \sim A'SA| = | \not \sim B'SB|$ kątów wierzchołkowych wynika (cecha bkb przystawania trójkątów), że trójkąty SAA' i SAA' są przystające. Stąd wynika, że |AA'| = |BB'|, co kończy dowód.

Uwaga

Po wykazaniu równości |AS| = |SB| i |A'S| = |B'S| możemy też wykorzystać twierdzenie Pitagorasa dla trójkątów prostokątnych SAA' i SAA'. Wtedy otrzymujemy

$$|AA'| = \sqrt{|AS|^2 + |A'S|^2} = \sqrt{|BS|^2 + |B'S|^2} = |BB'|.$$

To kończy dowód.

Schemat oceniania I, II i III sposobu rozwiązania

- zapisze, że trójkąty *ASC* i *BSC* mają równe pola albo
- zapisze, że $| \not \prec A'SA | = | \not \prec B'SB |$, |AS| = |SB| oraz uzasadni, że $| \not \prec SAA' | = | \not \prec SBB' |$ albo
 - uzasadni, że |A'S| = |B'S|

albo

• zapisze $| \ll A'AS | = | \ll B'BS |$ oraz jedną z równości $\sin \alpha = \frac{|AA'|}{|AS|}$ lub $\sin \alpha = \frac{|BB'|}{|BS|}$

i na tym poprzestanie lub dalej popełni błędy.

Uwaga

Jeżeli zdający przyjmuje, że trójkąt *ABC* jest równoramienny lub prostokątny, to otrzymuje **0 punktów**.

Zadanie 29. (0-2)

Wykaż, że dla każdej liczby a > 0 i dla każdej liczby b > 0 prawdziwa jest nierówność

$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b} .$$

Rozwiązanie (I sposób)

Ponieważ z założenia a > 0, b > 0 czyli także a + b > 0, więc obie strony nierówności możemy pomnożyć przez $a \cdot b \cdot (a + b)$, otrzymując nierówność równoważną

$$b(a+b)+a(a+b) \ge 4ab$$
.

Po otwarciu nawiasów, redukcji wyrazów podobnych i uporządkowaniu otrzymujemy nierówność

$$a^2 - 2ab + b^2 \ge 0$$
, czyli $(a-b)^2 \ge 0$.

Ponieważ kwadrat każdej liczby rzeczywistej jest liczbą nieujemną, więc dowód został zakończony.

Schemat oceniania I sposobu rozwiązania

$$a^2 - 2ab + b^2 \ge 0$$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie (II sposób)

Z założenia a > 0 i b > 0, więc a + b > 0. Zatem obie strony nierówności możemy pomnożyć przez a + b, otrzymując nierówność równoważną

$$\frac{a+b}{a} + \frac{a+b}{b} \ge 4.$$

Lewą stronę zapisujemy w równoważnej postaci

$$1 + \frac{b}{a} + \frac{a}{b} + 1 \ge 4$$
.

Zatem

$$\frac{b}{a} + \frac{a}{b} \ge 2$$
,

co kończy dowód, bo suma liczby dodatniej i jej odwrotności jest równa co najmniej 2.

Schemat oceniania II sposobu rozwiązania

$$\frac{b}{a} + \frac{a}{b} \ge 2$$

i na tym zakończy lub dalej popełni błędy.

Uwaga:

Jeżeli zdający sprawdza jedynie prawdziwość nierówności dla konkretnych liczb a i b, to za całe rozwiązanie otrzymuje $\mathbf{0}$ punktów.

Rozwiązanie (III sposób)

Z nierówności między średnią harmoniczną i średnią arytmetyczną otrzymujemy

$$\frac{a+b}{2} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

Mnożąc obie strony tej nierówności przez $\frac{2\left(\frac{1}{a} + \frac{1}{b}\right)}{a+b}$ otrzymujemy

$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b} \,.$$

To kończy dowód.

Schemat oceniania III sposobu rozwiązania

i na tym zakończy lub dalej popełni błędy.

Zadanie 30. (0-2)

W ciągu geometrycznym przez S_n oznaczamy sumę n początkowych wyrazów tego ciągu, dla liczb naturalnych $n \ge 1$. Wiadomo, że dla pewnego ciągu geometrycznego: $S_1 = 2$ i $S_2 = 12$. Wyznacz iloraz i piąty wyraz tego ciągu.

Przykładowe rozwiązania

Niech (a_n) będzie ciągiem geometrycznym o ilorazie q, takim, że $S_1=2$ i $S_2=12$. Równości te możemy zapisać w postaci

$$a_1 = 2$$
 oraz $a_1 + a_2 = 12$.

Stąd $a_2 = 10$. Wobec tego iloraz ciągu (a_n) jest równy

$$q = \frac{a_2}{a_1} = \frac{10}{2} = 5$$
,

natomiast piąty wyraz tego ciągu jest równy

$$a_5 = a_1 q^4 = 2 \cdot 5^4 = 1250$$
.

Schemat oceniania

- poprawnie wyznaczy iloraz q = 5 i na tym zakończy lub dalej popełnia błędy. albo
 - popełni błąd rachunkowy przy wyznaczaniu a₂ i konsekwentnie z tym błędem rozwiąże zadanie do końca.

Uwagi

- 1. Jeżeli zdający zapisze od razu pięć pierwszych wyrazów ciągu (a_n) : 2, 10, 50, 250, 1250 i zapisze, że iloraz ciągu jest równy 5, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający zapisze od razu pięć pierwszych wyrazów ciągu (a_n) : 2, 10, 50, 250, 1250, ale nie zapisze, że iloraz ciągu jest równy 5, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający traktuje iloraz $\frac{a_1}{a_2}$ jak iloraz rozważanego w zadaniu ciągu geometrycznego, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 4. Jeżeli zdający traktuje iloraz $\frac{S_2}{S_1}$ jak iloraz ciągu geometrycznego, to otrzymuje **0 punktów** za całe rozwiązanie.
- 5. Jeżeli zdający rozpatruje ciąg arytmetyczny zamiast ciągu geometrycznego, to otrzymuje **0 punktów** za całe rozwiązanie.

Zadanie 31. (0–2)

Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy sumę oczek równą 16.

Rozwiązanie (I sposób)

Zdarzeniami elementarnymi są trzywyrazowe ciągi, których wyrazami są liczby należące do zbioru $\{1,2,3,4,5,6\}$. Mamy do czynienia z modelem klasycznym. Zatem liczba wszystkich zdarzeń elementarnych jest równa

$$|\Omega| = 6^3 = 216$$
.

Niech A oznacza zdarzenie polegające na tym, że otrzymamy sumę oczek równą 16. Sumę taką uzyskamy tylko wtedy, gdy wypadną dwie szóstki i jedna czwórka albo dwie piątki i jedna szóstka. Zatem zdarzeniu A sprzyja następujących 6 zdarzeń elementarnych:

$$(4,6,6), (6,4,6), (6,6,4), (5,5,6), (5,6,5), (6,5,5).$$

Zatem |A| = 6, więc prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{6}{216} = \frac{1}{36}$$
.

Rozwiazanie (II sposób) "metoda drzewa"

Niech A oznacza zdarzenie polegające na tym, że otrzymamy sumę oczek równą 16. Sumę taką uzyskamy tylko wtedy, gdy wypadną dwie szóstki i jedna czwórka albo dwie piątki i jedna szóstka. Rysujemy drzewo zawierające tylko istotne gałęzie.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = 6 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$
.

Schemat oceniania

- zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 6^3 = 216$ albo
 - narysuje drzewo ilustrujące trzyetapowe doświadczenie losowe i zapisze na co najmniej jednym odcinku drzewa na każdym etapie doświadczenia prawdopodobieństwo ¹/₆

albo

• wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu *A*: (4,6,6), (6,4,6), (6,6,4), (5,5,6), (5,6,5), (6,5,5)

albo

• zapisze, że |A| = 6 i nie wypisze przy tym błędnych trójek liczb

albo

 narysuje drzewo zawierające tylko istotne gałęzie, ale wszystkie albo zawierające jeszcze inne gałęzie, przy czym wyróżni wszystkie istotne gałęzie i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający popełni błąd przy wypisywaniu zdarzeń elementarnych sprzyjających zdarzeniu *A* i wypisze o jedną trójką za mało lub o jedną za dużo, ale nie wypisze żadnej niewłaściwej i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.
- 2. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1 lub P(A) < 0, to otrzymuje za całe rozwiązanie **0 punktów**, o ile końcowy wynik nie jest skutkiem błędu w działaniach na ułamkach.
- 3. Jeżeli zdający stosuje drzewo probabilistyczne, w którym zaznacza, że rozważanemu zdarzeniu sprzyjają sytuacje, w których w pierwszym etapie doświadczenia uzyskano wynik rzutu 4, 5 lub 6, ale pominie jedną z gałęzi odpowiadających sytuacjom sprzyjającym rozważanemu zdarzeniu, to może otrzymać 1 punkt, jeśli doprowadzi rozumowanie do końca.
- 4. Jeżeli zdający zapisze tylko: $P(A) = \frac{1}{36}$, to otrzymuje **1 punkt**.
- 5. Jeżeli zdający zapisze tylko: |A| = 6, $|\Omega| = 216$, $P(A) = \frac{6}{216}$, to otrzymuje **2 punkty**.
- 6. Ponieważ $P(A) = \frac{1}{36} = 0.02(7)$, więc akceptujemy poprawne zaokrąglenia liczby $\frac{1}{36}$, o ile zaokrąglenie jest wzięte z dokładnością co najmniej 0,01.

Zadanie 32. (0-5)

Podstawą ostrosłupa ABCDS jest prostokąt o polu równym 432, a stosunek długości boków tego prostokąta jest równy 3 : 4 . Przekątne podstawy ABCD przecinają się w punkcie O. Odcinek SO jest wysokością ostrosłupa (zobacz rysunek). Kąt SAO ma miarę 60° . Oblicz objętość tego ostrosłupa.

Rozwiązanie

Niech a i b oznaczają długości krawędzi podstawy tego ostrosłupa, H – wysokość ostrosłupa. Zapisujemy zatem układ równań z niewiadomymi a i b

$$a \cdot b = 432 \text{ i } \frac{b}{a} = \frac{3}{4}.$$

Z drugiego równania otrzymujemy $b = \frac{3}{4}a$. Stąd i z pierwszego równania otrzymujemy równanie z jedną niewiadomą

$$\frac{3}{4}a^2 = 432,$$

$$a^2 = 576$$
.

więc a = 24. Zatem $b = \frac{3}{4} \cdot 24 = 18$.

Z twierdzenia Pitagorasa dla trójkata ABC otrzymujemy

$$|AC|^2 = |AB|^2 + |BC|^2$$
,
 $d^2 = 24^2 + 18^2$

Stad

$$d = \sqrt{24^2 + 18^2} = \sqrt{576 + 324} = \sqrt{900} = 30.$$

Ponieważ kąt nachylenia każdej krawędzi bocznej tego ostrosłupa do płaszczyzny jego podstawy jest równy 60° , więc trójkąt ACS jest równoboczny. Zatem wysokość ostrosłupa jest równa wysokości trójkąta równobocznego o boku długości 30. Zatem

$$H = 15\sqrt{3} .$$

Objętość ostrosłupa jest więc równa

$$V = \frac{1}{3} \cdot 432 \cdot 15\sqrt{3} = 2160\sqrt{3} \ .$$

Schemat oceniania Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania 1 p. Zdający zapisze jedną z zależności pomiędzy a i b: $a \cdot b = 432$ lub $\frac{b}{a} = \frac{3}{4}$ albo zapisze długości sąsiednich krawędzi podstawy ostrosłupa w zależności od jednej zmiennej, np. 3x, 4xi na tym zakończy lub dalej popełni błędy. Rozwiązanie, w którym jest istotny postęp 2 p. Zdający • zapisze układ równań z niewiadomymi a i b: $a \cdot b = 432$ i $\frac{b}{a} = \frac{3}{4}$ albo zapisze oraz rozwiaże równanie $3x \cdot 4x = 432$: x = 6i na tym zakończy lub dalej popełni błędy. Pokonanie zasadniczych trudności zadania...... 3 p. Zdający obliczy długości krawędzi podstawy tego ostrosłupa oraz obliczy długość d przekatnej podstawy tego ostrosłupa: a = 24, b = 18, d = 30albo obliczy x = 6, długość przekatnej podstawy d = 5x = 30 i zapisze pole podstawy ostrosłupa w zależności od x: $P_{ABCD} = 12x^2$ i na tym zakończy lub dalej popełni błędy. Rozwiązanie prawie pełne 4 p. Zdający obliczy wysokość ostrosłupa: $H = 15\sqrt{3}$ i na tym zakończy lub dalej popełni błędy. Rozwiązanie pełne 5 p. Zdający obliczy objętość ostrosłupa: $V = \frac{1}{3} \cdot 432 \cdot 15\sqrt{3} = 2160\sqrt{3}$. Uwagi 1. Jeżeli zdający popełni błędy rachunkowe albo błędy w przepisywaniu, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to maksymalnie może otrzymać 4 punkty. 2. Jeżeli zdający odgadnie długości krawędzi podstawy tego ostrosłupa i rozwiąże zadanie do końca, to maksymalnie może otrzymać 4 punkty. 3. Jeśli zdający rozpatruje inny kat (np. 45°) niż opisany w treści zadania, to za całe rozwiązanie może otrzymać maksymalnie 3 punkty. 4. Jeżeli zdający błędnie zastosuje definicje funkcji trygonometrycznych do obliczenia wysokości ostrosłupa, to maksymalnie może otrzymać 3 punkty. 5. Akceptujemy poprawne przybliżenia wielkości H i V. 6. Jeżeli zdający odgadnie długości krawędzi podstawy tego ostrosłupa i na tym poprzestanie,

7. Jeżeli zdający zakłada, że długości krawędzi podstawy tego ostrosłupa są równe 3 oraz 4

i z tym założeniem rozwiąże zadanie do końca, to otrzymuje **0 punktów**.

to otrzymuje 1 punkt.

Zadanie 33. (0-4)

Liczby rzeczywiste x i z spełniają warunek 2x + z = 1. Wyznacz takie wartości x i z, dla których wyrażenie $x^2 + z^2 + 7xz$ przyjmuje największą wartość. Podaj tę największą wartość.

Rozwiązanie

Z równości 2x+z=1 wyznaczamy jedną ze zmiennych w zależności od drugiej, np.: z=1-2x. Wtedy wyrażenie x^2+z^2+7xz możemy zapisać w postaci

$$x^{2} + (1-2x)^{2} + 7x(1-2x)$$
.

Po otwarciu nawiasów i wykonaniu redukcji wyrazów podobnych otrzymujemy

$$x^{2} + 1 - 4x + 4x^{2} + 7x - 14x^{2} = -9x^{2} + 3x + 1$$
.

Rozważmy funkcję kwadratową f określoną dla każdej liczby rzeczywistej x wzorem

$$f(x) = -9x^2 + 3x + 1$$
.

Wykresem tej funkcji jest parabola o ramionach skierowanych do dołu. Pierwsza współrzędna wierzchołka paraboli jest równa $p=\frac{-3}{-18}=\frac{1}{6}$, natomiast druga, $q=\frac{5}{4}$. Oznacza to, że dla $x=\frac{1}{6}$ funkcja f osiąga największą wartość równą $\frac{5}{4}$.

Gdy
$$x = \frac{1}{6}$$
, to $z = \frac{2}{3}$.

Zatem dla $x = \frac{1}{6}$ i $z = \frac{2}{3}$ wyrażenie $x^2 + z^2 + 7xz$ osiąga największą wartość równą $\frac{5}{4}$.

Schemat oceniania

Zdający zapisze wyrażenie $x^2 + z^2 + 7xz$ w zależności od jednej zmiennej:

$$x^{2} + (1 - 2x)^{2} + 7x(1 - 2x)$$
, $(\frac{1}{2} - \frac{1}{2}z)^{2} + z^{2} + 7(\frac{1}{2} - \frac{1}{2}z)z$

i na tym zakończy lub dalej popełni błędy.

Zdający zapisze wyrażenie x^2+z^2+7xz w postaci ogólnej trójmianu kwadratowego jednej zmiennej: $-9x^2+3x+1$ lub $-\frac{9}{4}z^2+3z+\frac{1}{4}$

i na tym zakończy lub dalej popełni błędy.

Zdający obliczy obie współrzędne wierzchołka W paraboli będącej wykresem funkcji kwadratowej

•
$$f(x) = -9x^2 + 3x + 1$$
: $p_f = \frac{1}{6}$, $q_f = \frac{5}{4}$

albo

•
$$g(z) = -\frac{9}{4}z^2 + 3z + \frac{1}{4}$$
: $p_g = \frac{2}{3}$, $q_g = \frac{5}{4}$

i na tym zakończy lub dalej popełni błędy.

Zdający poprawnie zinterpretuje obie współrzędne wierzchołka paraboli i zapisze,

że dla $x = \frac{1}{6}$ i $z = \frac{2}{3}$ wyrażenie $x^2 + z^2 + 7xz$ osiąga największą wartość równą $\frac{5}{4}$.

Uwagi

- 1. Jeżeli zdający popełni błędy rachunkowe albo błędy w przepisywaniu, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać co najwyżej **3 punkty**.
- 2. Jeżeli zdający zapisuje jedynie odpowiedź: dla $x = \frac{1}{6}$ i $z = \frac{2}{3}$ wyrażenie $x^2 + z^2 + 7xz$ osiąga największą wartość równą $\frac{5}{4}$, to otrzymuje **0 punktów**.

Zadanie 34. (0-4)

Dany jest trójkąt rozwartokątny ABC, w którym $\angle ACB$ ma miarę 120°. Ponadto wiadomo, że |BC| = 10 i $|AB| = 10\sqrt{7}$ (zobacz rysunek). Oblicz długość trzeciego boku trójkąta ABC.

Rozwiązanie

I sposób (trójkat 30-60-90)

Poprowadźmy wysokość BD trójkąta ABC i przyjmijmy oznaczenia jak na rysunku.

Wtedy kąt BCD jest przyległy do kąta ACB. Zatem $\angle BCD = 180^{\circ} - 120^{\circ} = 60^{\circ}$. To oznacza, że trójkąt prostokątny BCD jest połową trójkąta równobocznego. Stąd wynika, że

$$|CD| = \frac{1}{2}|BC|$$
 oraz $|BD| = |CD|\sqrt{3}$,

czyli

$$x = \frac{1}{2} \cdot 10 = 5$$
 oraz $h_b = 5\sqrt{3}$.

Z twierdzenia Pitagorasa dla trójkąta ABD otrzymujemy

$$|AB|^{2} = |AD|^{2} + |BD|^{2},$$

$$(10\sqrt{7})^{2} = (x+b)^{2} + h_{b}^{2},$$

$$(10\sqrt{7})^{2} = (5+b)^{2} + (5\sqrt{3})^{2},$$

$$(5+b)^{2} = 700 - 75,$$

$$(5+b)^{2} = 625.$$

Stad

$$5+b=25,$$

$$b=20.$$

Odpowiedź. Długość boku AC trójkąta ABC jest równa 20.

Uwaga do I sposobu rozwiązania

Analogiczne rozwiązanie otrzymamy, prowadząc wysokość z wierzchołka A. Przyjmijmy oznaczenia jak na rysunku.

Wtedy kąt ACF jest przyległy do kąta ACB. Zatem $\angle ACF = 180^{\circ} - 120^{\circ} = 60^{\circ}$. To oznacza, że trójkąt prostokątny ACF jest połową trójkąta równobocznego.

Stąd wynika, że $|CF| = \frac{1}{2}|AC|$ oraz $|AF| = |CF|\sqrt{3}$, czyli

$$z = \frac{1}{2}b$$
 oraz $h_a = \frac{b\sqrt{3}}{2}$.

Z twierdzenia Pitagorasa dla trójkata ABF otrzymujemy

$$|AB|^{2} = |AF|^{2} + |BF|^{2},$$

$$(10\sqrt{7})^{2} = (10+z)^{2} + h_{a}^{2},$$

$$(10\sqrt{7})^{2} = (10+\frac{b}{2})^{2} + (\frac{b\sqrt{3}}{2})^{2},$$

$$700 = 100 + 10b + \frac{1}{4}b^{2} + \frac{3}{4}b^{2},$$

$$b^{2} + 10b - 600 = 0,$$

$$(b-20)(b+30) = 0.$$

Stad

$$b = 20$$
 lub $b = -30$.

Długość boku nie może być ujemna, więc b = 20.

Odpowiedź. Długość boku AC trójkąta ABC jest równa 20.

II sposób (twierdzenie cosinusów)

Niech b oznacza długość boku AC trójkąta ABC.

Z twierdzenia cosinusów otrzymujemy

$$|AB|^{2} = |AC|^{2} + |BC|^{2} - 2 \cdot |AC| \cdot |BC| \cdot \cos 120^{\circ},$$

$$(10\sqrt{7})^2 = b^2 + 10^2 - 2 \cdot 10 \cdot b \cdot \cos 120^\circ,$$

$$(10\sqrt{7})^2 = b^2 + 10^2 - 2 \cdot 10 \cdot b \cdot \left(-\frac{1}{2}\right)$$

$$700 = b^2 + 10b + 100,$$

$$b^2 + 10b - 600 = 0,$$

$$(b - 20)(b + 30) = 0,$$

$$b = 20 \text{ lub } b = -30.$$

Zatem b = 20, gdyż długość odcinka nie może być liczbą ujemną. Odpowiedź. Długość boku AC trójkąta ABC jest równa 20.

III sposób (pole trójkata i twierdzenie Pitagorasa)

Poprowadźmy wysokość CE trójkąta ABC i niech b = |AC|, $h_c = |CE|$, y = |BE|

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |AC| \cdot |BC| \cdot \sin 120^{\circ} = \frac{1}{2} \cdot b \cdot 10 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}b$$
.

Z drugiej strony to samo pole jest równe

$$P_{ABC} = \frac{1}{2} \cdot \left| AB \right| \cdot h_c = \frac{1}{2} \cdot 10\sqrt{7} \cdot h_c = 5\sqrt{7} \cdot h_c \,.$$

Zatem

$$5\sqrt{7} \cdot h_c = \frac{5\sqrt{3}}{2}b,$$

$$h_c = \frac{\sqrt{3}}{2\sqrt{7}}b.$$
(1)

Z twierdzenia Pitagorasa dla trójkatów AEC i BEC otrzymujemy

$$|AC|^{2} = |AE|^{2} + |CE|^{2} \text{ oraz } |BC|^{2} = |BE|^{2} + |CE|^{2},$$

$$b^{2} = (10\sqrt{7} - y)^{2} + h_{c}^{2} \text{ oraz } 10^{2} = y^{2} + h_{c}^{2},$$

$$b^{2} = 700 - 20\sqrt{7}y + y^{2} + h_{c}^{2} \text{ oraz } 10^{2} = y^{2} + h_{c}^{2},$$

Stąd

$$b^2 = 700 - 20\sqrt{7}y + 100 \text{ oraz } 100 = y^2 + h_c^2,$$

 $y = \frac{800 - b^2}{20\sqrt{7}} \text{ oraz } 100 = y^2 + h_c^2.$

Stąd z i równania (1) otrzymujemy równanie z jedną niewiadomą

$$100 = \left(\frac{800 - b^2}{20\sqrt{7}}\right)^2 + \left(\frac{\sqrt{3}}{2\sqrt{7}}b\right)^2,$$

$$100 = \frac{1}{2800}b^4 - \frac{4}{7}b^2 + \frac{1600}{7} + \frac{3}{28}b^2,$$

$$b^4 - 1300b^2 + 360000 = 0,$$

$$(b^2 - 400)(b^2 - 900) = 0,$$

$$(b - 20)(b + 20)(b - 30)(b + 30) = 0.$$

Ponieważ b > 0, więc b = 20 lub b = 30. Najdłuższy bok trójkąta ABC to bok AB, więc b nie może być równe 30.

Odpowiedź. Długość boku AC trójkata ABC jest równa 20.

IV sposób (pole trójkąta i wzór Herona)

Niech b = |AC|.

Pole trójkąta ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |AC| \cdot |BC| \cdot \sin 120^{\circ} = \frac{1}{2} \cdot b \cdot 10 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}b$$
.

Z drugiej strony ze wzoru Herona możemy to samo pole zapisać w postaci

$$P_{ABC} = \sqrt{p(p-10)(p-10\sqrt{7})(p-b)},$$

gdzie
$$p = \frac{10+10\sqrt{7}+b}{2}$$
. Otrzymujemy więc równanie

$$\sqrt{\frac{10+10\sqrt{7}+b}{2} \cdot \frac{-10+10\sqrt{7}+b}{2} \cdot \frac{10-10\sqrt{7}+b}{2} \cdot \frac{10+10\sqrt{7}-b}{2}} = \frac{5\sqrt{3}}{2}b,$$

$$\frac{10+10\sqrt{7}+b}{2} \cdot \frac{-10+10\sqrt{7}+b}{2} \cdot \frac{10-10\sqrt{7}+b}{2} \cdot \frac{10+10\sqrt{7}-b}{2} = \left(\frac{5\sqrt{3}}{2}b\right)^{2},$$

$$\frac{\left(10\sqrt{7}+b\right)^{2}-100}{4} \cdot \frac{20\sqrt{7}b-600-b^{2}}{4} = \frac{75b^{2}}{4},$$

$$\left(20\sqrt{7}b+600+b^{2}\right)\left(20\sqrt{7}b-600-b^{2}\right) = 300b^{2},$$

$$-b^{4}+1600b^{2}-360000 = 300b^{2},$$

$$b^{4}-1300b^{2}+360000$$

$$\left(b^{2}-400\right)\left(b^{2}-900\right) = 0,$$

$$\left(b-20\right)\left(b+20\right)\left(b-30\right)\left(b+30\right) = 0.$$

Ponieważ b > 0, więc b = 20 lub b = 30. Najdłuższy bok trójkąta ABC to bok AB, więc b nie może być równe 30.

Odpowiedź. Długość boku AC trójkata ABC jest równa 20.

V sposób (twierdzenia Stewarta)

Niech b = |AC|. Narysujmy na zewnątrz trójkąta ABC trójkąt równoboczny ACM, a przez wierzchołek B poprowadźmy prostą równoległą do prostej AC do przecięcia z prostą AM w punkcie N, jak na rysunku.

Wtedy trójkąt BMN jest równoboczny, a jego bok ma długość b+10. Z twierdzenia Stewarta otrzymujemy

$$|BM|^{2} \cdot |AN| + |BN|^{2} \cdot |AM| = |MN| (|AB|^{2} + |AM| \cdot |AN|),$$

$$(b+10)^{2} \cdot 10 + (b+10)^{2} \cdot b = (b+10) ((10\sqrt{7})^{2} + b \cdot 10),$$

$$(b+10) \cdot 10 + (b+10) \cdot b = 700 + 10b,$$

$$b^{2} + 20b + 100 = 700 + 10b,$$

$$b^{2} + 10b - 600 = 0,$$

$$(b-20)(b+30) = 0,$$

$$b = 20 \text{ lub } b = -30.$$

Zatem b = 20, gdyż długość odcinka nie może być liczbą ujemną. Odpowiedź. Długość boku AC trójkąta ABC jest równa 20.

Schemat oceniania I, II, III, IV i V sposobu rozwiązania

• zauważy, że kąt zewnętrzny trójkąta ABC przy wierzchołu C ma miarę 60°

albo

• poprowadzi wysokość BD lub wysokość AF trójkąta ABC

albo

• zapisze równość wynikająca z twierdzenia cosinusów dla trójkąta *ABC*:

$$|AB|^2 = |AC|^2 + |BC|^2 - 2 \cdot |AC| \cdot |BC| \cdot \cos 120^\circ$$

albo

• zapisze układ równań pozwalający otrzymać równanie z jedną niewiadomą b, np.:

$$5\sqrt{7} \cdot h_c = \frac{5\sqrt{3}}{2}b$$
 i $b^2 = (10\sqrt{7} - y)^2 + h_c^2$ i $10^2 = y^2 + h_c^2$

liih

$$P_{^{\!ABC}} = \sqrt{\frac{10 + 10\sqrt{7} + b}{2} \cdot \frac{-10 + 10\sqrt{7} + b}{2} \cdot \frac{10 - 10\sqrt{7} + b}{2} \cdot \frac{10 + 10\sqrt{7} - b}{2}} \cdot \frac{10 + 10\sqrt{7} - b}{2} \cdot i \ P_{^{\!ABC}} = \frac{5\sqrt{3}}{2}b$$

albo

• narysuje trójkat równoboczny AMN

i na tym zakończy lub dalej popełnia błędy

Zdający

• obliczy długości przyprostokątnych trójkąta BCD: |CD| = 5 i $|BD| = 5\sqrt{3}$

albo

• wyznaczy długości odcinków AF i CF w zależności od b: $|AF| = \frac{b\sqrt{3}}{2}$, $|CF| = \frac{b}{2}$

albo

• zapisze równanie z jedną niewiadomą b w postaci:

$$(10\sqrt{7})^2 = b^2 + 10^2 - 2 \cdot 10 \cdot b \cdot \cos 120^\circ$$

albo

• zapisze równanie z jedną niewiadomą b w postaci:

$$100 = \left(\frac{800 - b^2}{20\sqrt{7}}\right)^2 + \left(\frac{\sqrt{3}}{2\sqrt{7}}b\right)^2$$

albo

zapisze równanie z jedną niewiadomą b w postaci:

$$\sqrt{\frac{10+10\sqrt{7}+b}{2}\cdot\frac{-10+10\sqrt{7}+b}{2}\cdot\frac{10-10\sqrt{7}+b}{2}\cdot\frac{10+10\sqrt{7}-b}{2}}=\frac{5\sqrt{3}}{2}b$$

albo

• zapisze równanie wynikające z twierdzenia Stewarta dla trójkąta *AMN*:

$$(b+10)^2 \cdot 10 + (b+10)^2 \cdot b = (b+10) \left(\left(10\sqrt{7}\right)^2 + b \cdot 10 \right)$$

i na tym zakończy lub dalej popełnia błędy

Pokonanie zasadniczych trudności zadania......3 p.

Zdający

• zapisze równanie stopnia drugiego z jedną niewiadomą b, np.:

$$(10\sqrt{7})^2 = (5+b)^2 + (5\sqrt{3})^2, (10\sqrt{7})^2 = b^2 + 10^2 - 2 \cdot 10 \cdot b \cdot (-\frac{1}{2}),$$

$$(10\sqrt{7})^2 = (10 + \frac{b}{2})^2 + (\frac{b\sqrt{3}}{2})^2, (b+10)\cdot 10 + (b+10)\cdot b = 700 + 10b$$

albo

• zapisze równanie stopnia wyższego niż 2 z jedną niewiadomą b w postaci, w której po jednej stronie równania jest 0, a po drugiej iloczyn wielomianów, z których każdy jest stopnia co najwyżej drugiego, np.: $(b^2 - 400)(b^2 - 900) = 0$.

Rozwiązanie pełne4 p.

Zdający obliczy długość boku AC trójkąta ABC: |AC| = 20.

Uwagi

- 1. Jeżeli zdający popełni błędy rachunkowe, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać za całe rozwiązanie co najwyżej **3 punkty**.
- 2. Jeżeli zdający popełni błąd polegający na pominięciu współczynnika $\frac{1}{2}$ we wzorze na pole trójkąta i konsekwentnie rozwiąże zadanie do końca, to może otrzymać za całe rozwiązanie co najwyżej **3 punkty**.
- 3. Jeżeli zdający realizuje strategię rozwiązania i jedynym błędem, który jednak nie ułatwia rozważanego zagadnienia na żadnym etapie rozwiązania, jest błąd polegający na niepoprawnym zastosowaniu
 - a) zależności między długościami boków w trójkącie 30-60-90,
 - b) twierdzenia Pitagorasa,
 - c) definicji funkcji trygonometrycznych,
 - d) wzoru redukcyjnego,
 - e) wzoru na pole trójkata z sinusem kata między bokami
 - f) wzoru Herona na pole trójkata
 - g) twierdzenia cosinusów,
 - h) twierdzenia Stewarta,
 - i) wzoru skróconego mnożenia, np. na kwadrat sumy lub różnicy, np.: $(a+b)^2 = a^2 + b^2$, albo niepoprawnym obliczeniu pierwiastka z sumy lub różnicy, np. $\sqrt{a^2 + b^2} = a + b$, to za całe rozwiazanie zdający może otrzymać co najwyżej **2 punkty**.
- 4. Jeżeli zdający przyjmuje, że trójkąt *ABC* jest równoramienny lub przyjmuje, że któryś z kątów ostrych trójkąta *ABC* jest równy 30°, 45°, 60°, to za całe rozwiązanie może otrzymać co najwyżej **1 punkt**.
- 5. Jeżeli zdający jedynie zapisze |AC| = 20, to otrzymuje **0 punktów**.