Respostes i algunes solucions dels laboratoris

Laboratori 1: Subconjunts de \mathbb{R}

Ex.1

- (a) $x \in (-\infty, -3) \cup (1, 3)$.
- (b) $x \in (-\infty, -3/2)$.

Ex.2

- (a) {1}.
- (b) $\{1, 2, 3, 4, 6\}$.
- (c) $\{2,3\}$.
- (d) $\{4,6\}$.
- (e) $\{2, 3, 4, 6\}$.
- (f) N.
- $(g) \varnothing$.
- (h) $(-\infty, 6) \cup \bigcup_{n=6}^{\infty} (n, n+1)$.
- (i) Ø.

Ex.3

- (i) A.
- (ii) B.
- (iii) $[-n, +\infty)$.
- (iv) [0, n].
- (v) C_n .
- (vi) B.

Laboratori 2: Funcions

Ex.1

- (a) Bijectiva.
- (b) NO és injectiva, SI és exhaustiva.
- (c) NO és exhaustiva, SI és injectiva.

Ex.2

- (a) $D(f) = \mathbb{R}, D(g) = (1, +\infty).$
- (b) $f^{-1}(1/2) = \{-1, 0, 1\}.$
- (c) $D(f \circ g) = (1, +\infty), D(g \circ f) = \left(-\infty, -\sqrt{\frac{3}{2}}\right) \bigcup \left(\sqrt{\frac{3}{2}}, +\infty\right).$ $(f \circ g)(x) = \left|\frac{x-3}{2(x-1)}\right|, (g \circ f)(x) = \frac{1}{\sqrt{x^2-3/2}}.$

Ex.3

- (a) $f^{-1}([0,1]) = [1 \sqrt{3}, 1 \sqrt{2}] \cup [1 + \sqrt{2}, 1 + \sqrt{3}].$ $f^{-1}([-1,0]) = [1 - \sqrt{2}, 0] \cup [2, 1 + \sqrt{2}].$
- (b) f([0,1]) = [-2,-1], f([-1,0]) = [-1,2].
- (c) NO és injectiva, NO és exhaustiva.

Laboratori 3: Funcions elementals. Límits de funcions

Ex.1

Domini: $D(f) = (-1, \frac{1}{e} - 1].$

Recorregut: $R(f) = [0, \infty)$.

Funció inversa: $f^{-1}(y) = \frac{1}{e^{e^{y^2}}} - 1 = e^{-e^{y^2}} - 1$.

Ex.2

- (a) $D(f) = [0, \infty), R(f) = [1, \infty).$
- (b) SI és injectiva, $f:D(f)\to\mathbb{R}$ NO és exhaustiva, $f:D(f)\to R(f)$ és bijectiva.

Ex.3

Imiteu la demostració de $\lim_{x\to 1} x^2 = 1$ feta a classe !!

Laboratori 4: Límits de funcions

- (a) 0.
- (b) 2/3.
- (c) $+\infty$.
- (d) $-\infty$.
- (e) -2.
- (f) 1.
- (g) -1.
- (h) $+\infty$.

Laboratori 5: Continuïtat

- 1. La única discontinuïtat de f està en x=1. Aquesta discontinuïtat no és evitable i tampoc de salt.
- 2. a > 0 i b = -1.
- 3. a > 0.

Laboratori 6: Continuïtat: Teorema de Bolzano

- 1. (a) Com que $p : \mathbb{R} \to \mathbb{R}$ és una funció contínua tal que p(0) = 1 > 0 i p(2) = -5 < 0, el teorema de Bolzano assegura que existeix $x_0 \in (0, 2)$ tal que $p(x_0) = 0$.
 - (b) $(\frac{1}{4}, \frac{1}{2})$.
- 2. (a) Les solucions de l'equació $2^x = 3x$ són els zeros de la funció $f(x) = 2^x 3x$. Ara $f: \mathbb{R} \to \mathbb{R}$ és una funció contínua que compleix que f(3) = -1 < 0 i f(4) = 4 > 0. Per tant, aplicant el teorema de Bolzano, obtenim que f té algun zero a l'interval (3,4).
 - (b) La continuïtat de f i el fet que f(0) = 1 > 0 i f(1) = -1 < 0 asseguren, pel teorema de Bolzano, que f té algun zero a l'interval (0,1). Per tant, tenint en compte (a), deduïm que l'equació $2^x = 3x$ té almenys dues solucions reals.
- 3. (a) Com que $f: [-1,1] \to \mathbb{R}$ és una funció contínua complint que f(1) = -1 < 0 < 1 = f(1), el teorema de Bolzano assegura que existeix $x_0 \in (-1,1)$ tal que $f(x_0) = 0$.
 - (b) Les solucions de l'equació $x^2+(f(x))^2=1$ són els zeros de la funció $g:[-1,1]\to\mathbb{R}$ definida per $g(x)=x^2+(f(x))^2-1$. Com que $f:[-1,1]\to\mathbb{R}$ és una funció contínua, també ho és $g:[-1,1]\to\mathbb{R}$. A més a més, $g(\pm 1)=1>0>x_0^2-1=g(x_0)$ i per tant el teorema de Bolzano implica que existeixen $x_1\in(-1,x_0)$ i $x_2\in(x_0,1)$ tals que $f(x_1)=0$ i $f(x_2)=0$.

Laboratori 7: Derivació

- 1. (a) Recta tangent: y = x; Recta normal: y = -x.
 - (b) Recta tangent: y = 1; Recta normal: x = 0.
- 2. (a) $a = 0, b \in \mathbb{R}$.
 - (b) a = b = 0.
- 3. (a) $-\frac{\sqrt{2}}{2}$.
 - (b) No existeix perquè $\lim_{x\to\pi^-}\frac{\sin x}{1+\cos x}=+\infty$ i $\lim_{x\to\pi^+}\frac{\sin x}{1+\cos x}=-\infty$.
 - (c) 0.
 - (d) 0.
 - (e) 0.
 - (f) e^4 .

Laboratori 8: Creixement

- 1. (a) f és estrictament decreixent en $(-\infty, -2]$ i en [-1, 0]. f és estrictament creixent en [-2, -1] i en $[0, +\infty)$.
 - (b) Els extrems relatius de f són:
 - x = -2 i x = 0, que són mínims relatius de f.
 - x = -1, que és màxim relatiu de f.
 - (c) f no té valor màxim en \mathbb{R} , ja que $\lim_{x \to +\infty} f(x) = +\infty$.
 - El valor mínim de f en \mathbb{R} és 3, i els mínims absoluts de f en \mathbb{R} són x=-2 i x=0.
 - El valor màxim en [-1,1] és 12, i l'únic màxim absolut de f en [-1,1] és x=1.
 - El valor mínim de f en [-1,1] és 3, i l'únic mínim absolut de f en [-1,1] és x=0.
- 2. Com que f és estrictament decreixent en $[0,\pi]$,

$$\max_{x \in [0,\pi]} f(x) = f(0) = 1 \qquad \text{i} \qquad \min_{x \in [0,\pi]} f(x) = f(\pi) = -1 - \pi.$$

Aleshores, com que f és contínua en $[0, \pi]$, deduïm (utilitzant els teoremes de Bolzano i Weierstrass) que $f([0, \pi]) = [-1 - \pi, 1]$.

- 3. f és estrictament creixent en $(0, e^{-2}]$ i en $[1, +\infty)$.
 - f és estrictament decreixent en $[e^{-2}, 1]$.
 - f no té valor màxim en $(0, +\infty)$, ja que $\lim_{x \to +\infty} f(x) = +\infty$.

El valor mínim de f en $(0, +\infty)$ és 0, i l'únic mínim absolut de f en $(0, +\infty)$ és x = 1.

4

Laboratori 8: Teorema de Rolle i aplicacions

- 1. (a) Ens demanen provar que la funció $f:(0,+\infty)\to\mathbb{R}$, definida per $f(x)=x+\log x$, té un únic zero:
 - \bullet f té almenys un zero: Observeu que f és una funció contínua que compleix

$$f(1) = 1 - \log 1 = 1 > 0.$$

A més a més, $\lim_{x\to 0^+} f(x) = -\infty$ i per tant existeix 0 < a < 1 tal que f(a) < 0. Aleshores el teorema de Bolzano assegura que f té almenys un zero a l'interval (a,1).

- f té com a molt un zero: f és una funció derivable i $f'(x) = 1 + \frac{1}{x} > 0$, per a tot x > 0. Com que f' no té cap zero, f té com a molt un zero, pel teorema de Rolle.
- (b) Ens demanen provar que la funció $g:\mathbb{R}\to\mathbb{R},$ definida per $g(x)=2^{-x}x-x,$ té un únic zero:
 - ullet f té almenys un zero: Com que f és una funció contínua complint

$$g(0) = 2^0 - 0 = 1 > 0$$
 i $g(1) = \frac{1}{2} - 1 = -\frac{1}{2} < 0$,

el teorema de Bolzano assegura que g té almenys un zero a l'interval (0,1).

- f té com a molt un zero: g és una funció derivable i $g'(x) = -(\log 2)2^{-x} 1 < 0$, per a tot x > 0. Com que g' no té cap zero, g té com a molt un zero, pel teorema de Rolle.
- 2. Primer ens demanen provar que, per cada $k \in \mathbb{R}$, la funció $f_k : \mathbb{R} \to \mathbb{R}$, definida per $f_k(x) = x^3 3x + k$, té com a molt un zero en [-1,1]. En efecte, com que f_k és derivable i $f'_k(x) = 3(x^2 1)$ només té com a zeros els punts $x = \pm 1$, f'_k no té cap zero en l'interval (-1,1), i per tant el teorema de Rolle implica que f_k té com a molt un zero en [-1,1].
 - Després ens pregunten per a quins k's f_k té exactament un zero en [-1, 1], és a dir, f_k compleix que $0 \in f_k([-1, 1])$. Com que f_k és derivable i $f'_k(x) = 3(x^2 1) \le 0$, per a tot $x \in [-1, 1]$, resulta que f_k és decreixent en [-1, 1], i per tant

$$f_k([-1,1]) = \left[\min_{x \in [-1,1]} f_k(x), \, \max_{x \in [-1,1]} f_k(x) \right] = [f_k(1), f_k(-1)] = [k-2, k+2],$$

com a conseqüència dels teoremes de Bolzano i de Weierstrass. Així doncs, $0 \in f_k([-1,1])$ si i només si $k-2 \le 0 \le k+2$, és a dir, si i només si $-2 \le k \le 2$.

En conclusió, l'equació $x^3 - 3x + k = 0$ té exactament una solució en [-1,1] si i només si $-2 \le k \le 2$.

3. La funció arctan : $\mathbb{R} \to \mathbb{R}$ és derivable i arctan' $(x) = \frac{1}{1+x^2}$, per a tot $x \in \mathbb{R}$. Per tant, el teorema del valor mitjà assegura que per a cada $a,b \in \mathbb{R}$, $0 \le a < 0 < b$, existeix $c \in (a,b)$ tal que

$$\arctan b - \arctan a = \arctan'(c) (b - a) = \frac{b - a}{1 + c^2}.$$

Observeu que $0 < 1+a^2 < 1+c^2 < 1+b^2$, ja que $0 \le a < c < b$, i per tant $\frac{1}{1+b^2} < \frac{1}{1+c^2} < \frac{1}{1+a^2}$. Multiplicant aquesta designaltat per b-a>0 obtenim que $\frac{b-a}{1+b^2} < \frac{b-a}{1+c^2} < \frac{b-a}{1+a^2}$ i això vol dir que

$$\frac{b-a}{1+b^2} < \arctan b - \arctan a < \frac{b-a}{1+a^2}.$$