Figure 1

# dsRNA Expr ssion Cassett II: "Tru " dsRNA



Figure 2



Figure 3

# Plasmid v ct r with dsRNA and antigen cass ttes



Figure 4



OR



Figure 5



### **IL10**

- 1 La lunció ACTT 175 A CACAGG LAFO CACACTC ARCHOTOST TESTERAGICATOS TOLOTOCOTO CON LO COSTO A CONTROL GALA CONTROL SON LO CAGA CONTROL SON LO CAGA CONTROL SON LO CAGA CONTROL SON LO CAGA CONTROL CAGA
- 73 A FARÉ GENERAL DE CAGE DE CAGE DE PAGARONGACITACIÓN ACOCAROCA ACOCAR DE CAGE DE CAG
- 146 DES ROTTES, CONTENTA A CONTROLATOR ROTTER AGRAPACION DE CONTROLA CONTRO

### COX2

- 1 GTE UMBGAACTCCTC TECHGCSCCTCCTTCAGCTCAGAGCCAGAGCCAGAGCCAAAAGCCTAGCGCG UMAGGTCCTTGAGGAGTC FTGGCSGAGGAAG FTGAGGTGTCGGTCTGCGGGAGTCTGTCGTTTCGGAFGGGGGC
- 74 TERRAPSECTED CONTROL OF THE TOTAL TOTAL TOTAL TOTAL TOTAL CONTROL OF THE CONTR
- 225 ATTGTACCCGGACAGGATTGTATGGAGAAAACTGGTGAACACCGGGAATTTTTGACAAGAATAAAATTATTTC
  TAACATGGGGGTGTCGTAAGATACCTGTTTTGACGAGTTGTGGGGCTTAAAAACTGTTGTTATTTTAATAAAG

#### YY1

- 1 PRINCIPAGA CARGA CORRECTORA CONTROL CONTR

- 228 CGAGGGCTCAGGGATGGCCTCGGGGGGACACGCTCTACATCGGGACGGGACGGCTCGGACATGCGGGCGAGATGGTGG
- 305 MOCTOCACGAGATOCHECTSCAGACCATCCCGCTGGAGACCATCGGGGCAACTGGTGGGCGAGGAGGAGGAGGAGCACCTCTGGTAGCTCCACCTCTGGTAGGGCCAGCTGTGGTAGGTCTGGTAGGTCTGGTAGGTCTGCTCCTCCTCCTCC

## IRF2

- 1 AACTGACGGGCTTTCATTTCCATTTCAGACACGCTAGCAAGACTTATACCTTCGGGAATTGTATTCGTAGG TTGACTGCCCGAAAGTAAAGGTAAAGTTAGGGATCGTTGTGATATCGAACGCCTTAACATAACCATCG
- 72 OF UNAAAAAGCACACTGAGAGGGCACCATOCCGGTGGAAAGGATGCGCATGCGCCGGTGGCTGGAGGAGCAGAT CACTTTTTTCGTGTGAGTCCCCGTGGTAGGGCACCTTTCCTACGCGTACGCGGGCACCGACCTCCTCGTCTA
- 146 AAAATTCAACACGATCCCGGGGCTCAAGTGGCTTAACAAGGAAAAGAAGATTTTCAGGATCCCTGGATGCAT
  TTTCAGGTTGTGCTAGGGCCCCGAGTTCACGAATTGTTCCTTTTCTTCTAAAAAGTCTAGGGGACCTACGTA
- 219 GUNGCTAGACATGGGTOGGATGTGGAAAAGATGCACCACTCTTTAGAAACCGGGCAATCCATACAGGAA
  COOCGATCTGTACCCACCCTACACCTTTTCTACGTGGTGAGAAATCTTTGGCCCGTTAGGTATGTCCTT
- 289 AGCATÇAACCAGGAGTA GATAAACCTGATCCCAAAACATGGAAGGCGAATTTCAGTGCGCCATGAATTCCTT TCGTAGTTGGTCCTCATCTATTTGGACTAGGGTTTTGTACCTTCCGCTTAAAGTCTACGGGGTACTTAAGGAA
- 362 GUCTGATATTGAAGAGTCAAGGATAAAAGCATSAAGAAATAATGCCTTCAGGGTCTACGGAATGCTG
  CGGACTATAACTTCTTCAGTTCCTTATTCGTATTTCTTCCTTTATTACGGAAGTCCCAGATGCTACGAC

# Figure 6

# **LEGEND**

:starting methionine

:complementary sequence for the hammerhead ribozyme

→ :complementary sequence for the hairpin ribozyme

Boxed sequences:target sequence for the chosen ribozyme

Bold characters: target sequences for hammerhead ribozymes

Bold and underlined characters: target sequences for both hammerhead and hairpin ribozymes