Machine learning under physical constraints Final projet

Sixin Zhang (sixin.zhang@toulouse-inp.fr)

Kaggle project: regression of molecular energy

• Problem: predict the molecular energy in 3d space based on its geometric structure.

Figure: Image from https://www.britannica.com/science/methane.

Kaggle participation link: https:

//www.kaggle.com/t/f1caef4be2ae4a82861dfd798f6b91c6

Molecule energy regression

Analyze 3d structures with physical constraints: invariant properties.

Figure 1: Different representations of the same molecule: (a) raw molecule with Cartesian coordinates and associated charges, (b) original (non-sorted) Coulomb matrix as computed by Equation 1, (c) eigenspectrum of the Coulomb matrix, (d) sorted Coulomb matrix, (e) set of randomly sorted Coulomb matrices.

From: Learning Invariant Representations of Molecules for Atomization Energy Prediction, Montavon1 et al. 2012

▶ Challenge: How to choose $\Phi(x)$?

Scattering in 3d

 Excellent performance with scattering + Multi-linear regression (T-Scat)

TABLE I. Prediction errors for molecular energies of the QM9 dataset in kcal/mol. From right to left: the scattering with linear regression, the scattering with trilinear regression, Neural Message Passing and Coulomb Matrices.

0	-				
	L-Scat	T-Scat	NMP	CM	SchNet
U_0	1.89	0.50	0.45	2.95	0.31
U	2.4	0.51	0.45	2.99	
H	1.9	0.51	0.39	2.99	
G	1.87	0.51	0.44	2.97	
μ	0.63	0.34	0.030	0.45	
α	0.52	0.16	0.092	0.43	
$\epsilon_{ m HOMO}$	4.08	1.97	0.99	3.06	
$\epsilon_{ m LUMO}$	5.39	1.76	0.87	4.22	
$\epsilon_{ m gap}$	7	2.73	1.60	5.28	
$\langle R^2 \rangle$	6.67	0.41	0.18	3.39	
zpve	0.004	0.002	0.0015	0.0048	
C_v	0.10	0.049	0.04	0.12	

From: Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties, Eickenberg et al. 2018

Solid harmonic wavelets

Let spherical harmonics on a unit sphere in 3d be $Y_{\ell}^{m}(\theta, \psi)$ for $\theta \in [0, \pi]$ and $\psi \in [0, 2\pi]$, $0 \le \ell \le L - 1$ and $-\ell \le m \le \ell$.

l:		$P_\ell^m(\cos heta)\cos(marphi)$							$ P_\ell^{ m }(\cos heta)\sin(m arphi)$					
0	s													ړZ
1	p						•	8	•				X/	∕_у
2	d					06	×	÷	\$	90				
3	f				2/6	×	×	*	¥	*	46			
4	g			40	*	×	*	÷	1	*	*	*		
5	h		36	*	*	×	*	4	10	*	*	*	3/6	
6	i	*	*	*	*	*	*	#	1	*	*	*	*	*
	m:	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6

From wikipedia: Spherical harmonics

Solid harmonic wavelets

► Construct solid harmonic wavelets from spherical harmonics,

$$\psi_{\ell}^{m}(u) \propto e^{-|u|^{2}/2} |u|^{\ell} Y_{\ell}^{m}(u/|u|).$$

lackbox Solid harmonic wavelets are constructed by dilating $\psi_\ell^{\it m}$,

$$\psi_{j,\ell}^m(u) = 2^{-3j} \psi_{\ell}^m(2^{-j}u), \quad 0 \le j \le J - 1.$$

Solid harmonic wavelet coefficients

• Order 1: $p_1 = (j, \ell)$

$$U_{p_1}x(u) = \left(\sum_{m=-\ell}^{\ell} |x \star \psi_{j,\ell}^m(u)|^2\right)^{1/2}$$

From: Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties, Eickenberg et al. 2018

Solid harmonic wavelet coefficients

• Order 2: $p_2 = (p_1, j_2)$

$$U_{p_2}x(u) = \left(\sum_{m=1}^{\ell} |U_{p_1}x \star \psi_{j_2,\ell}^m(u)|^2\right)^{1/2}$$

► Compute invariants from $U_{p_1}x$ and $U_{p_2}x$ by integrating over u with some exponent q > 0,

$$\Phi(x) = \left\{ \int |U_{p_1}x(u)|^q du, \int |U_{p_2}x(u)|^q du \right\}_{p_1,p_2}.$$

 $ightharpoonup \Phi(x)$ is invariant to translation and rotation of x in 3d.

Multi-linear regression

- **Description** Beyond Linear regression to capture interactions in $\Phi(x)$.
- \blacktriangleright General form, order (r, I)

$$f(x) = b + \sum_{i=1}^{l} (v_i \prod_{k=1}^{r} (\langle \Phi(x), w_i^{(k)} \rangle + c_i^{(k)})$$

- Linear regression case: r = l = 1.
- ▶ The parameters can be optimized with SGD.