

GURU NANAK COLLEGE OF ARTS, SCIENCE, AND COMMERCE G.T.B NAGAR, SION, MUMBAI – 400037.

PRACTICAL OF

MACHINE LEARNING

SUBMITTED

BY

AQDAS AHMED KHAN

(M.Sc I.T Part II Sem III)

ACADEMIC YEAR 2023-2024

UNDER THE GUIDANCE OF

Mr. DHANRAJ JADHAV

Guru Nanak College of Arts, Science & Commerce GTB Nagar, Mumbai – 37

Department of Information Technology

CERTIFICATE

This is to certify that Mr. KHAN AQDAS AHMED, Seat No. studying in Master of Science in Information Technology Part II Semester III has satisfactorily completed the Practical of PSIT3P3a – MACHINE LEARNING as prescribed by University of Mumbai, during the academic year 2023-24.

orescribed by University of	Mumbai, during the academic	year 2023-24 .
Signature Subject-In-Charge		Signature Head of Department
	Signature External Examiner	
College Seal:		Date:

INDEX

Sr. No.	Practical	Date	Signature
	A. Design a simple machine learning model to train the training instances and test the same using Python.		
1	B. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data sample. Read the training data from a .CSV file.		
	A. Perform Data Loading, Feature selection (Principal Component Analysis) and Feature Scoring and Ranking.		
2	B. For a given set of training data examples stored in .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.		
3	A. Write a program to implement the Naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.		
	B. Write a program to implement Decision Tree and Random forest with Prediction, Test Score and Confusion Matrix.		
4	A. For a given set training data examples stored in a .CSV file implement Least Square Regression algorithm. (Use Univariate dataset)		
4	B. For a given set training data examples stored in a .CSV file implement Logistic Regression algorithm. (Use Multivariate dataset)		
5	A. Write a program to demonstrate the workings of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tress and apply this knowledge to classify a new sample.		
	B. Write a program to implement K-Nearest Neighbour algorithm to classify the iris data set.		

6	 A. Implement the different Distance methods (Euclidean, Manhattan Distance, Minkowski Distance) with Prediction, Test Score and Confusion Matrix. B. Implement the classification model using clustering for the following techniques with K mean clustering with Prediction, Test Score and Confusion Matrix. 	
7	A. Implement the classification model using clustering for the following techniques with hierarchical clustering with Prediction, Test Score and Confusion Matrix. B. Implement the Rule based method and test the same.	
8	A. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. B. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select	
9	appropriate data set for your experimental and draw graphs. A. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	
,	B. Assuming a set of documents that need to be classified, use the Naïve Bayesian Classifier model to perform this task.	

Practical No. 1A:

Aim: Design a simple machine learning model to train the training instances and test the same using Python.

Code:

```
import numpy as np
print('Khan Aqdas Ahmed 03')
class SVM:
    def __init__(self, learning_rate = 0.001, lambda_param = 0.01, n_iters =
1000):
        self.lr = learning_rate
        self.lambda_param = lambda_param
        self.n iters = n iters
        self.w = None
        self.b = None
    def fit(self, X, y):
        n_samples, n_features = X.shape
        y_{-} = np.where(y \le 0, -1, 1)
        self.w = np.zeros(n_features)
        self.b = 0
        for _ in range(self.n_iters):
            for idx, x_i, in enumerate(X):
                condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >= 1
                if condition:
                    self.w -= self.lr * (2 * self.lambda_param * self.w)
                else:
                    self.w -= self.lr * (2 * self.lambda_param * self.w -
np.dot(x_i, y_[idx]))
                    self.b -= self.lr * y_[idx]
    def predict(self, X):
        approx = np.dot(X, self.w) - self.b
        return np.sign(approx)
if __name__ == "__main__":
    from sklearn import datasets
    import matplotlib.pyplot as plt
    X, y = datasets.make_blobs(n_samples=50, n_features=2, centers=2,
cluster_std=1.05, random_state=40)
    y = np.where(y == 0, -1, 1)
    clf = SVM()
```

```
clf.fit(X, y)
    print(clf.w, clf.b)
   def visualize_svm():
        def get_hyperplane_value(x, w, b, offset):
            return(-w[0] * x + b + offset) / w[1]
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        plt.scatter(X[:, 0], X[:, 1], marker="o", c = y)
        x0_1 = np.amin(X[:, 0])
        x0_2 = np.amax(X[:, 0])
        x1_1 = get_hyperplane_value(x0_1, clf.w, clf.b, 0)
        x1_2 = get_hyperplane_value(x0_2, clf.w, clf.b, 0)
        x1_1_m = get_hyperplane_value(x0_1, clf.w, clf.b, -1)
        x1_2_m = get_hyperplane_value(x0_2, clf.w, clf.b, -1)
        x1_1_p = get_hyperplane_value(x0_1, clf.w, clf.b, 1)
        x1_2_p = get_hyperplane_value(x0_2, clf.w, clf.b, 1)
        ax.plot([x0_1, x0_2], [x1_1, x1_2], "y--")
        ax.plot([x0_1, x0_2], [x1_1_m, x1_2_m], "k")
        ax.plot([x0_1, x0_2], [x1_1_p, x1_2_p], "k")
        x1_{min} = np.amin(X[:, 1])
        x1_max = np.amax(X[:, 1])
        ax.set_ylim([x1_min - 3, x1_max + 3])
        plt.show()
visualize_svm()
```

```
al/Prac1A.py"
Khan_Aqdas_Ahmed_03
[0.58977016 0.17946483] -0.1520000000000001
```


Practical No. 1B:

Aim: Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data sample. Read the training data from a .CSV file.

Datafile: 'data.csv'

Origin	Manufacturer	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Honda	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Honda	Green	1980	Economy	Positive

Code:

```
import csv

num_attributes = 5
a = []
print('\n')
print('Khan_Aqdas_Ahmed_03')
print('\n The Given Training Data Set \n')

with open('data.csv', 'r') as csvfile:
    reader = csv.reader(csvfile)
    for row in reader:
        a.append(row)
```

```
print(row)
print("\n The initial value of hypothesis: ")
hypothesis = ['0'] * num_attributes
print(hypothesis)
for j in range(0, num_attributes):
    hypothesis[j] = a[1][j]
print("\n The a[1] value of hypothesis: ")
print(hypothesis)
print("\n Find S: Finding a Maximally Specific Hypothesis \n")
for i in range(0, len(a)):
    if a[i][num_attributes] == 'Positive':
        for j in range(0, num_attributes):
            if a[i][j] != hypothesis[j]:
                hypothesis[j] = '?'
            else:
                hypothesis[j] = a[i][j]
    print("For Training instance No:{} the hypothesis is".format(i),
hypothesis)
print("\n The Maximally Specific Hypothesis for a given Training Examples:
\n", hypothesis)
```

```
Khan_Aqdas_Ahmed_03
The Given Training Data Set
['Origin', 'Manufracturer', 'Color', 'Decade', 'Type', 'Example Type']
['Japan', 'Honda', 'Blue', '1980', 'Economy', 'Positive']
['Japan', 'Toyota', 'Green', '1970', 'Sports', 'Negative']
['Japan', 'Honda', 'Blue', '1980', 'Economy', 'Positive']
['USA', 'Chrysler', 'Red', '1980', 'Economy', 'Negative']
['Japan', 'Honda', 'White', '1980', 'Economy', 'Positive']
['Japan', 'Honda', 'Green', '1980', 'Economy', 'Positive']
The initial value of hypothesis:
['0', '0', '0', '0', '0']
The a[1] value of hypothesis:
['Japan', 'Honda', 'Blue', '1980', 'Economy']
For Training instance No:0 the hypothesis is ['Japan', 'Honda', 'Blue', '1980', 'Economy']
For Training instance No:1 the hypothesis is ['Japan', 'Honda', 'Blue', '1980', 'Economy']
For Training instance No:2 the hypothesis is ['Japan', 'Honda', 'Blue', '?', 'Economy']
For Training instance No:3 the hypothesis is ['Japan', 'Honda', 'Blue', '?', 'Economy']
For Training instance No:5 the hypothesis is ['Japan', 'Honda', 'Blue', '?', 'Economy']
For Training instance No:5 the hypothesis is ['Japan', 'Honda', 'Blue', '?', 'Economy']
For Training instance No:5 the hypothesis is ['Japan', 'Honda', 'P', 'P', 'Economy']
For Training instance No:6 the hypothesis is ['Japan', 'Honda', '?', '?', 'Economy']
For Training instance No:6 the hypothesis is ['Japan', 'Honda', '?', '?', 'Economy']
For Maximally Specific Hypothesis for a given Training Examples:
['Japan', 'Honda', '?', '?', 'Economy']
```

Practical No. 2A:

Aim: Perform Data Loading, Feature selection (Principal Component Analysis) and Feature Scoring and Ranking.

Datafile: winequality-red.csv

Code:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from matplotlib.colors import ListedColormap
print("Khan_Aqdas_Ahmed_03")
dataset = pd.read_csv("winequality-red.csv")
X = dataset.iloc[:, 0:11].values
y = dataset.iloc[:, 11].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
explained_variance = pca.explained_variance_ratio_
classifier = LogisticRegression(random_state=0, multi_class="multinomial")
classifier.fit(X_train_pca, y_train)
y_pred = classifier.predict(X_test_pca)
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(cm)
X_set, y_set = X_train_pca, y_train
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1,
                               stop=X_set[:, 0].max() + 1, step=0.01),
```

```
np.arange(start=X_set[:, 1].min() - 1,
                               stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
             X2.ravel()]).T).reshape(X1.shape), alpha=0.75,
             cmap=ListedColormap(("red", "green", "blue", "orange", "violet",
"indigo", "yellow")))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
        color=ListedColormap(("red", "green", "blue", "orange", "violet",
"indigo", "yellow"))(i), label=str(j))
plt.title("Logistic Regression (Training Set)")
plt.xlabel("PC1")
plt.ylabel("PC2")
plt.legend()
plt.show()
X_set, y_set = X_test_pca, y_test
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1,
                               stop=X_set[:, 0].max() + 1, step=0.01),
                     np.arange(start=X_set[:, 1].min() - 1,
                               stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
             X2.ravel()]).T).reshape(X1.shape), alpha=0.75,
             cmap=ListedColormap(("red", "green", "blue", "orange", "violet",
"indigo", "yellow")))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color=ListedColormap(("red", "green", "blue", "orange",
"violet", "indigo", "yellow"))(i), label=str(j))
plt.title("Logistic Regression (Test Set)")
plt.xlabel("PC1")
plt.ylabel("PC2")
plt.legend()
plt.show()
```


Practical No. 2B:

Aim: For a given set of training data examples stored in .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Datafile: 'season_dataset.csv'

Sunny	Warm	Normal	Strong	Warm	Same
Sunny	Warm	High	Strong	Warm	Same
Sunny	Warm	High	Strong	Cool	Change

Code:

```
import csv
import numpy as np
import warnings
import matplotlib.pyplot as plt
print("Khan_Aqdas_Ahmed_03")
def g 0(n):
    return ("?",) * n
def s_0(n):
    return ('0',) * n
def more_general(h1, h2):
    more_general_parts = []
    for x, y in zip(h1, h2):
        mg = x == "?" \text{ or } (x != "0" \text{ and } (x == y \text{ or } y == "0"))
        more general parts.append(mg)
    return all(more_general_parts)
def fulfills(example, hypothesis):
    return more_general(hypothesis, example)
def min_generalizations(h, x):
    h_new = list(h)
    for i in range(len(h)):
        if not fulfills(x[i:i+1], h[i:i+1]):
            h_new[i] = '?' if h[i] != '0' else x[i]
    return [tuple(h_new)]
def min_specializations(h, domains, x):
    results = []
    for i in range(len(h)):
        if h[i] == "?":
            for val in domains[i]:
                 if x[i] != val:
                     h_{new} = h[:i] + (val,) + h[i+1:]
```

```
results.append(h_new)
        elif h[i] != "0":
            h_{new} = h[:i] + ('0',) + h[i+1:]
            results.append(h_new)
    return results
with open('season_dataset.csv') as csvFile:
    examples = [tuple(line) for line in csv.reader(csvFile)]
def get domains(examples):
    d = [set() for i in examples[0]]
    for x in examples:
        for i, xi in enumerate(x):
            d[i].add(xi)
    return [list(sorted(x)) for x in d]
def candidate_elimination(examples):
    domains = get_domains(examples)[:-1]
    G = set([g_0(len(domains))])
    S = set([s_0(len(domains))])
    for xcx in examples:
        x, cx = xcx[:-1], xcx[-1]
        if cx == 'Y':
            G = {g for g in G if fulfills(x, g)}
            S = generalize_S(x, G, S)
        else:
            S = {s for s in S if not fulfills(x, s)}
            G = specialize_G(x, domains, G, S)
    return G, S
def generalize S(x, G, S):
    S_prev = list(S)
    for s in S_prev:
        if s not in S:
            continue
        if not fulfills(x, s):
            S.remove(s)
            Splus = min_generalizations(s, x)
            S.update([h for h in Splus if any([more_general(g, h) for g in
G])])
            S.difference_update([h for h in S if any([more_general(h, h1) for
h1 in S if h != h1])])
    return S
def specialize_G(x, domains, G, S):
    G_prev = list(G)
    for g in G_prev:
        if g not in G:
            continue
        if fulfills(x, g):
```

```
G.remove(g)
            Gminus = min_specializations(g, domains, x)
            G.update([h for h in Gminus if any([more_general(h, s) for s in
S])])
            G.difference_update([h for h in G if any([more_general(g1, h) for
g1 in G if h != g1])])
    return G
G, S = candidate_elimination(examples)
print("G[4] = ", G)
print("S[4] = ", S)
class HypothesisNode(object):
    def __init__(self, h, level=0, parents=None):
        self.h = h
        self.level = level
        if parents is None:
            parents = []
        self.parents = set(parents)
    def __repr__(self):
        return "HypothesisNode({}, {}, {})".format(self.h, self.level,
self.parents)
def build_hypothesis_space(G, S):
    levels = [[HypothesisNode(x, 0) for x in G]]
    curlevel = 1
    def next_level(h, S):
        for s in S:
            for i in range(len(h)):
                if h[i] == "?" and s[i] != "?":
                    yield h[:i] + (s[i],) + h[i + 1:]
    nextLvl = {}
    while True:
        for n in levels[-1]:
            for hyp in next_level(n.h, S):
                if hyp in nextLvl:
                    nextLv1[hyp].parents.add(n)
                else:
                    nextLvl[hyp] = HypothesisNode(hyp, curlevel, [n])
        if not nextLv1:
            break
        levels.append(list(nextLvl.values()))
        curlevel += 1
        nextLvl = {}
    return levels
def draw_hypothesis_space(G, S):
    import networkx as nx
```

```
levels = build_hypothesis_space(G, S)
    g = nx.Graph()
    for nodes in levels:
        for n in nodes:
            for p in n.parents:
                g.add_edge(n.h, p.h)
    pos = \{\}
    ymin = 0.1
    ymax = 0.9
    for nodes, y in [(levels[0], ymin), (levels[-1], ymax)]:
        xvals = np.linspace(0, 1, len(nodes))
        for x, n in zip(xvals, nodes):
            pos[n.h] = [x, y]
    pos = nx.layout.fruchterman_reingold_layout(g, pos=pos, fixed=pos.keys())
    nx.draw_networkx_edges(g, pos=pos, alpha=0.25)
    nx.draw_networkx_labels(g, pos=pos)
    plt.box(True)
    plt.xticks([])
    plt.yticks([])
    plt.xlim(-1, 2)
    plt.gcf().set_size_inches((10, 10))
    plt.show()
print()
draw_hypothesis_space(G, S)
```

```
Khan_Aqdas_Ahmed_03
G[4] = {('?', '?', 'Normal', '?', 'Cool')}
S[4] = {('0', '0', '0', '0', '0')}
```

```
('?', '0', 'Normal', '0', 'Cool')

('?', '0', 'Normal', '0', 'Cool')

('?', '?', 'Normal', '0', 'Cool')

('0', '0', 'Normal', '?', 'Cool')

('?', '0', 'Normal', '?', 'Cool')

('?', '0', 'Normal', '?', 'Cool')
```

Practical No. 3A:

Aim: Write a program to implement the Naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Datafile: <u>tennisdata.csv</u>

Code:

```
import pandas as pd
from sklearn import tree
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
print("Khan_Aqdas_Ahmed_03")
data = pd.read_csv('tennisdata.csv')
print("The first 5 Values of data is:\n ", data.head())
X = data.iloc[:,:-1]
print("\nThe first 5 values of train data is: \n", X.head())
y = data.iloc[:, -1]
print("\nThe first 5 values of train output is: \n", y.head())
le_outlook = LabelEncoder()
X.Outlook = le_outlook.fit_transform(X.Outlook)
le_Temperature = LabelEncoder()
X.Temperature = le_Temperature.fit_transform(X.Temperature)
le_Humidity = LabelEncoder()
X.Humidity = le_Humidity.fit_transform(X.Humidity)
le_Windy = LabelEncoder()
X.Windy = le_Windy.fit_transform(X.Windy)
print("\nNow the train data is: \n", X.head())
le_PlayTennis = LabelEncoder()
y = le_PlayTennis.fit_transform(y)
print("\nNow the train outpur is: \n", y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
classifier = GaussianNB()
```

```
classifier.fit(X_train, y_train)
print("Accuracy is: ", accuracy_score(classifier.predict(X_test), y_test))
```

```
Khan Aqdas Ahmed 03
The first 5 Values of data is:
      Outlook Temperature Humidity Windy PlayTennis
0
                           High False
      Sunny
                   Hot
                                               No
1
                           High
      Sunny
                   Hot
                                 True
                                               No
2 Overcast
                   Hot
                           High False
                                              Yes
3
                  Mild
      Rainy
                           High False
                                              Yes
                  Cool
                         Normal False
4
      Rainy
                                              Yes
The first 5 values of train data is:
    Outlook Temperature Humidity Windy
0
                   Hot
                           High False
      Sunny
1
      Sunny
                   Hot
                           High
                                 True
2 Overcast
                           High
                                False
                   Hot
3
     Rainy
                  Mild
                           High
                                False
                                 False
4
      Rainy
                  Cool
                         Normal
The first 5 values of train output is:
0
      No
1
     No
2
    Yes
3
    Yes
4
    Yes
Name: PlayTennis, dtype: object
Now the train data is:
    Outlook Temperature Humidity Windy
0
         2
                     1
                               0
         2
1
                     1
                               0
                                      1
2
         0
                     1
                               0
                                      0
3
                     2
         1
                               0
                                      0
        1
4
                     0
                               1
                                      0
Now the train outpur is:
 [0 0 1 1 1 0 1 0 1 1 1 1 1 1 0]
```

Practical No. 3B:

Aim: Write a program to implement Decision Tree and Random forest with Prediction, Test Score and Confusion Matrix.

Datafile: HR-Employee-Attrition-All.csv

Code:

```
import pandas as pd
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score, confusion_matrix,
classification_report
from sklearn.tree import DecisionTreeClassifier
print("Khan_Aqdas_Ahmed_03")
df = pd.read_csv("HR_employee_data.csv")
df.head()
sns.countplot(x='Attrition', data=df)
df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'],
axis="columns", inplace=True)
categorical_col = []
for column in df.columns:
    if df[column].dtype == object and len(df[column].unique()) <= 50:</pre>
        categorical_col.append(column)
df['Attrition'] = df.Attrition.astype("category").cat.codes
label = LabelEncoder()
for column in categorical_col:
    df[column] = label.fit transform(df[column])
X = df.drop('Attrition', axis=1)
y = df.Attrition
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)
def print_score(clf, X_train, y_train, X_test, y_test, train=True):
    if train:
        pred = clf.predict(X_train)
        clf_report = pd.DataFrame(classification_report(y_train, pred,
output dict=True))
        print("Train Result: \n=======")
        print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
```

```
print(f"CLASSIFICATION REPORT: \n {clf_report}")
    print(f"Confusion Matrix: \n{confusion_matrix(y_train, pred)}\n")

elif train==False:
    pred = clf.predict(X_test)
        clf_report = pd.DataFrame(classification_report(y_test, pred,
output_dict=True))

    print("Test Result: \n==========="")
    print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")

    print(f"CLASSIFICATION REPORT: \n {clf_report}")
    print(f"Confusion Matrix: \n{confusion_matrix(y_test, pred)}\n")

tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)

print_score(tree_clf, X_train, y_train, X_test, y_test, train=True)
print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)
```

```
T/PIDCTT Par C-Z/PIL/PI aCCTCaT/PI aCDD+PA
Khan Aqdas Ahmed 03
Train Result:
Accuracy Score: 100.00%
CLASSIFICATION REPORT:
                         accuracy macro avg weighted avg
               0
precision
            1.0
                   1.0
                             1.0
                                        1.0
                                                     1.0
recall
            1.0
                   1.0
                             1.0
                                        1.0
                                                     1.0
f1-score
            1.0
                   1.0
                             1.0
                                        1.0
                                                     1.0
support
         853.0 176.0
                             1.0
                                     1029.0
                                                  1029.0
Confusion Matrix:
[[853 0]
 0 176
Test Result:
Accuracy Score: 77.78%
CLASSIFICATION REPORT:
                               1 accuracy
                                            macro avg weighted avg
precision
            0.887363
                       0.259740 0.777778
                                             0.573551
                                                          0.800549
recall
            0.850000
                       0.327869 0.777778
                                                          0.777778
                                             0.588934
f1-score
            0.868280
                       0.289855 0.777778
                                            0.579067
                                                          0.788271
         380.000000 61.000000 0.777778 441.000000
support
                                                        441.000000
Confusion Matrix:
[[323 57]
 [ 41 20]]
```

Practical No. 4A:

Aim: For a given set training data examples stored in a .CSV file implement Least Square Regression algorithm. (Use Univariate dataset)

Datafile: 'Sample_Salary_Data.csv'

YearsOfExperience	SalaryIn1000s
2	15
3	28
5	42
15	64
8	50
16	90
11	58
1	8
9	54

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
print("Khan_Aqdas_Ahmed_03")
plt.rcParams['figure.figsize'] = (12.0, 9.0)
data = pd.read_csv('Sample_Salary_Data.csv')
X = data.iloc[:, 0]
Y = data.iloc[:, 1]
plt.scatter(X, Y)
X_{mean} = np.mean(X)
Y_{mean} = np.mean(Y)
num = 0
den = 0
for i in range(len(X)):
    num += (X[i] - X_mean) * (Y[i] - Y_mean)
    den += (X[i] - X_mean) ** 2
m = num / den
c = Y_mean - m * X_mean
print(m, c)
Y_pred = m * X + c
plt.scatter(X, Y, color = 'blue')
plt.plot([min(X), max(X)], [min(Y_pred), max(Y_pred)], color = 'red')
```

plt.show()

Output:

Khan_Aqdas_Ahmed_03 4.44986200551978 10.834406623735049

Practical No. 4B:

Aim: For a given set training data examples stored in a .CSV file implement Logistic Regression algorithm. (Use Multivariate dataset)

Datafile: 'p4b.csv'

User ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	0
15810944	Male	35	20000	0
15668575	Female	26	43000	0
15603246	Female	27	57000	0
15804002	Male	19	76000	0
15728773	Male	27	58000	0
15598044	Female	27	84000	0
15694829	Female	32	150000	1
15600575	Male	25	33000	0
15727311	Female	35	65000	0
15570769	Female	26	80000	0
15606274	Female	26	52000	0
15746139	Male	20	86000	0
15704987	Male	32	18000	0
15628972	Male	18	82000	0
15697686	Male	29	80000	0
15733883	Male	47	25000	1
15617482	Male	45	26000	1
15704583	Male	46	28000	1

Code:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion matrix, accuracy score
from matplotlib.colors import ListedColormap
import warnings
warnings.filterwarnings('ignore')
print("Khan_Aqdas_Ahmed_03")
dataset = pd.read_csv('p4b.csv')
X = dataset.iloc[:,[2, 3]].values
y = dataset.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
print(X_train[0:10, :])
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print("Confusion Matrix: \n", cm)
print("Accuracy: ", accuracy_score(y_test, y_pred))
df = pd.DataFrame({'Real Values':y_test, 'Predicted Values':y_pred})
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1,
                               stop=X_set[:, 0].max() + 1, step=0.01),
                     np.arange(start=X_set[:, 1].min() - 1,
                               stop=X_set[:, 1].max() + 1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
```

```
I/PDCIT FOR C-Z/PIL/FLOCCICOI/FLOC4D.
Khan Aqdas Ahmed 03
[[-0.16096873 0.51211883]
  0.68411709 2.4725737
 [-1.00605455 0.68015781]
 1.10666
             -1.16827107
 [-1.14690218 -1.19627757]
 [-0.16096873 -0.27206313]
 [-0.02012109 -0.10402414]
 [ 0.68411709 -1.22428407]
 [-1.28774982 0.56813182]
 [ 2.51513636 -1.00023208]]
Confusion Matrix:
 [[3 0]
 [0 2]]
Accuracy: 1.0
```


Practical No. 5A:

Aim: Write a program to demonstrate the workings of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision trees and apply this knowledge to classify a new sample.

Code:

```
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier, export_graphviz, plot_tree
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score
import matplotlib.pyplot as plt
print("Khan_Aqdas_Ahmed_03")
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Confusion Matrix: \n", confusion_matrix(y_test, y_pred))
print("Accuracy: ", accuracy_score(y_test, y_pred))
plot_tree(clf, feature_names=iris.feature_names,
class_names=iris.target_names)
plt.show()
```

Output:

```
Khan_Aqdas_Ahmed_03
Confusion Matrix:
  [[13  0  0]
  [ 0  15  1]
  [ 0  0  9]]
Accuracy: 0.9736842105263158
```


Practical No. 5B:

Aim: Write a program to implement K-Nearest Neighbour algorithm to classify the iris data set.

Code:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make pipeline
from sklearn import datasets
from sklearn.model_selection import train_test_split, GridSearchCV
print("Khan_Aqdas_Ahmed_03")
iris = datasets.load iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42, stratify=y)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
knn = KNeighborsClassifier(n_neighbors=5, p=2, weights='uniform',
algorithm='auto')
knn.fit(X_train_std, y_train)
```

```
print("Training accuracy score: %.3f" % knn.score(X_train_std, y_train))
print("Test accuracy score: %.3f" % knn.score(X_test_std, y_test))
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42, stratify=y)
pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier())
param_grid = [{
    'kneighborsclassifier__n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10],
    'kneighborsclassifier__p': [1, 2],
    'kneighborsclassifier__weights': ['uniform', 'distance'],
    'kneighborsclassifier__algorithm': ['auto', 'ball_tree', 'kd_tree',
'brute'],
}]
gs = GridSearchCV(pipeline, param_grid=param_grid,
                  scoring='accuracy',
                  refit=True,
                  cv=10,
                  verbose=1,
                  n_jobs=2)
gs.fit(X_train, y_train)
print('Best Score: %.3f' % gs.best_score_,
      '\nBest Parameters: ', gs.best_params_)
```

```
Khan_Aqdas_Ahmed_03
Training accuracy score: 0.981
Test accuracy score: 0.911
Fitting 10 folds for each of 144 candidates, totalling 1440 fits
Best Score: 0.972
Best Parameters: {'kneighborsclassifier__algorithm': 'auto', 'kn
eighborsclassifier__n_neighbors': 5, 'kneighborsclassifier__p': 1
, 'kneighborsclassifier_weights': 'uniform'}
```

Practical No. 6A:

Aim: Implement the different Distance methods (Euclidean, Manhattan Distance, Minkowski Distance) with Prediction, Test Score and Confusion Matrix.

Code:

```
from math import sqrt
from sklearn.metrics import confusion_matrix, classification_report
print("Khan_Aqdas_Ahmed_03")
def euclidean_distance(a, b):
    return sqrt(sum((e1-e2) ** 2 for e1, e2 in zip(a, b)))
def manhattan_distance(a, b):
    return sum(abs(e1 - e2) for e1, e2 in zip(a, b))
def minkowski_distance(a, b, p):
    return sum(abs(e1 - e2) ** p for e1, e2 in zip(a, b)) ** (1/p)
actual = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
predicted = [1, 0, 0, 1, 0, 0, 0, 1, 0, 0]
dist1 = euclidean_distance(actual, predicted)
print("Euclidean Distance: ", dist1)
dist2 = manhattan_distance(actual, predicted)
print("Manhattan Distance: ", dist2)
dist3 = minkowski_distance(actual, predicted, 1)
print("Minkowski Distance wiht p = 1: ", dist3)
dist3 = minkowski_distance(actual, predicted, 2)
print("Minkowski Distance with p = 2: ", dist3)
matrix = confusion_matrix(actual, predicted, labels=[1, 0])
print("Confusion Matrix: \n", matrix)
tp, fn, fp, tn = confusion_matrix(actual, predicted, labels=[1, 0]).reshape(-
print("Outcome values: \n", tp, fn, fp, tn)
matrix = classification_report(actual, predicted, labels=[1, 0])
print("Classification report: \n", matrix)
```

Output:

```
I/POCTI FALC-Z/PIC/FLACCICAI/FLACOM: PY
Khan Aqdas Ahmed 03
Euclidean Distance: 1.7320508075688772
Manhattan Distance:
                    3
Minkowski Distance wiht p = 1: 3.0
Minkowski Distance with p = 2: 1.7320508075688772
Confusion Matrix:
 [[2 2]
 [1 5]]
Outcome values:
 2 2 1 5
Classification report:
                            recall f1-score
               precision
                                                support
                   0.67
                             0.50
                                       0.57
                                                     4
                   0.71
                             0.83
                                       0.77
                                                     6
    accuracy
                                       0.70
                                                    10
   macro avg
                   0.69
                             0.67
                                       0.67
                                                    10
weighted avg
                             0.70
                                       0.69
                   0.70
                                                    10
```

Practical No. 6B:

Aim: Implement the classification model using clustering for the following techniques with K mean clustering with Prediction, Test Score and Confusion Matrix.

Datafile: classified_data.csv

Code:

```
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
import warnings
warnings.filterwarnings('ignore')

print("Khan_Aqdas_Ahmed_03")

raw_data = pd.read_csv('Classified Data.csv', index_col=0)
print(raw_data.head())
print(raw_data.columns)

scaler = StandardScaler()
scaler.fit(raw_data.drop('TARGET CLASS', axis=1))
scaled_features = scaler.transform(raw_data.drop('TARGET CLASS', axis=1))
```

```
scaled_data = pd.DataFrame(scaled_features, columns=raw_data.drop('TARGET
CLASS', axis=1).columns)

x = scaled_data
y = raw_data['TARGET CLASS']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

model = KNeighborsClassifier(n_neighbors=1)
model.fit(x_train, y_train)
predictions = model.predict(x_test)

print(classification_report(y_test, predictions))
print(confusion_matrix(y_test, predictions))
```

```
Khan_Aqdas_Ahmed 03
       WTT
                 PTI
                           EQW
                                      SBI ...
                                                      PJF
                                                                HOE
                                                                          NXJ TARGET CLASS
 \hbox{ 0.913917 } \hbox{ 1.162073 } \hbox{ 0.567946 } \hbox{ 0.755464 } \hbox{ \dots } \hbox{ 0.643798 } \hbox{ 0.879422 } \hbox{ 1.231409} 
                                                                                          1
1 0.635632 1.003722 0.535342 0.825645 ... 1.013546 0.621552 1.492702
                                                                                          0
2 0.721360 1.201493 0.921990 0.855595 ... 1.154483
                                                           0.957877
                                                                     1.285597
                                                                                          0
  1.234204 1.386726 0.653046 0.825624
                                                1.380003
                                                           1.522692
                                                                     1.153093
                                                                                          1
                                           . . .
4 1.279491 0.949750 0.627280 0.668976 ...
                                                0.646691 1.463812 1.419167
                                                                                           1
[5 rows x 11 columns]
'EQW', 'SBI', 'LQE', 'QWG', 'FDJ', 'PJF', 'HQE', 'NXJ',
      dtype='object')
                           recall f1-score
              precision
                                               support
           0
                   0.97
                             0.87
                                       0.92
                                                   163
                             0.97
           1
                   0.86
                                       0.91
                                                   137
                                       0.91
                                                   300
    accuracy
                   0.92
                             0.92
                                       0.91
                                                   300
   macro avg
weighted avg
                   0.92
                             0.91
                                       0.91
                                                   300
[[141 22]
[ 4 133]]
```

Practical No. 7A:

Aim: Implement the classification model using clustering for the following techniques with hierarchical clustering with Prediction, Test Score and Confusion Matrix.

Datafile: abalone.csv

Code:

```
import matplotlib.pyplot as plt
import pandas as pd
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
print("Khan_Aqdas_Ahmed_03")
dataset = pd.read_csv('abalone.csv')
X = dataset.iloc[:, [3, 4]].values
dendrogram = sch.dendrogram(sch.linkage(X, method="ward"))
plt.title("Dendrogram")
plt.xlabel("Gender")
plt.ylabel("Euclidean distances")
plt.show()
hc = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
linkage='ward')
y_hc = hc.fit_predict(X)
print("Prediction Values: ", y_hc)
plt.scatter(X[y_hc==0, 0], X[y_hc==0, 1], s=100, c='red', label='Cluster 1')
plt.scatter(X[y_hc==1, 0], X[y_hc==1, 1], s=100, c='blue', label='Cluster 2')
plt.scatter(X[y_hc==2, 0], X[y_hc==2, 1], s=100, c='green', label='Cluster 3')
plt.scatter(X[y_hc==3, 0], X[y_hc==3, 1], s=100, c='cyan', label='Cluster 4')
plt.scatter(X[y_hc==4, 0], X[y_hc==4, 1], s=100, c='magenta', label='Cluster
5')
plt.title("Clusters of Customers (Hierarchical Clustering Model)")
plt.xlabel("Annual Income(k$)")
plt.ylabel("Spending Score(1-100)")
plt.show()
```

Output:

```
Khan_Aqdas_Ahmed_03
Prediction Values: [0 1 0 ... 2 2 4]
```


Practical No. 7B:

Aim: Implement the Rule based method and test the same.

Code:

```
import pandas as pd
from sklearn.metrics import accuracy_score, confusion_matrix

print("Khan_Aqdas_Ahmed_03")

# Sample data
data = {
    'Tid': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'Refund': ['yes', 'no', 'no', 'yes', 'no', 'no', 'no', 'no'],
    'Marital_Status': ['single', 'married', 'single', 'married', 'divorced',
    'married', 'divorced', 'married', 'single', 'married'],
```

```
'Taxable_Income': [125, 100, 70, 120, 65, 70, 200, 85, 75, 90],
    'Class': ['no', 'no', 'no', 'yes', 'no', 'no', 'yes', 'no', 'yes']
}
df = pd.DataFrame(data)
# Rule-based method
def rule_based_classifier(row):
    if row['Refund'] == 'yes' and row['Marital_Status'] == 'single' and
row['Taxable Income'] > 100:
        return 'yes'
    elif row['Refund'] == 'no' and row['Marital_Status'] == 'married' and
row['Taxable_Income'] <= 80:</pre>
        return 'yes'
    else:
        return 'no'
# Apply the rule-based classifier to the DataFrame
df['Prediction'] = df.apply(rule_based_classifier, axis=1)
# Evaluate the model
accuracy = accuracy_score(df['Class'], df['Prediction'])
conf_matrix = confusion_matrix(df['Class'], df['Prediction'])
print("Khan_Aqdas_Ahmed")
# Print results
print(f'Accuracy: {accuracy}')
print('Confusion Matrix:')
print(conf_matrix)
print('\nPrediction Values:')
print(df[['Tid', 'Class', 'Prediction']])
```

```
Khan Aqdas Ahmed
 Accuracy: 0.5
 Confusion Matrix:
  [[5 2]
  [3 0]]
 Prediction Values:
    Tid Class Prediction
      1
         no
                     yes
           no
 1
      2
                      no
 2
      3
           no
                      no
 3
      4
           no
                      no
 4
      5
         yes
                      no
 5
      6
          no
                     yes
 6
      7
           no
                      no
 7
      8
          yes
                      no
 8
      9
          no
                      no
     10
          yes
                      no
PS C:\Users\Anas\Desktop\Aqdas
```

Practical No. 8A:

Aim: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set.

Datafile: heart_disease_data.csv

Code:

```
import numpy as np
import pandas as pd
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianNetwork
from pgmpy.inference import VariableElimination
import warnings
warnings.filterwarnings('ignore')
print("Khan_Aqdas_Ahmed_03")
heartDisease = pd.read_csv('heart_disease_data.csv')
heartDisease = heartDisease.replace('?', np.nan)
print('Sample instances from the dataset are given below')
print(heartDisease.head())
print('\nAttributes and datatypes')
print(heartDisease.dtypes)
model = BayesianNetwork([('age', 'target'), ('sex', 'target'), ('exang',
'target'), ('cp', 'target'), ('restecg', 'target'), ('trestbps', 'target'),
('chol', 'target'), ('fbs', 'target')])
print("\nLearning CPD using maximum likelihood estimators")
model.fit(heartDisease, estimator=MaximumLikelihoodEstimator)
print("\nInferencing with Bayesian Network: ")
HeartDiseasetest_infer = VariableElimination(model)
print("\n 1. Probability of Heart Disease given evidance = restecg")
q1 = HeartDiseasetest infer.query(variables=['target'],
evidence={'restecg':1})
print(q1)
print("\n 2. Probability of Heart Disease given evidance = cp")
q2 = HeartDiseasetest_infer.query(variables=['target'], evidence={'cp':2})
print(q2)
```

Output:

```
туспонутусноповитуруснопъеле — стуровегоумнаруревисорумароросищенову втутюет гупостт тан стади
Khan_Aqdas_Ahmed_03
Sample instances from the dataset are given below
    age sex cp trestbps chol fbs ... exang oldpeak slope ca thal target

    0
    63
    1
    3
    145
    233
    1
    ...
    0
    2.3
    0
    0
    1
    1

    1
    37
    1
    2
    130
    250
    0
    ...
    0
    3.5
    0
    0
    2
    1

    2
    41
    0
    1
    130
    204
    0
    ...
    0
    1.4
    2
    0
    2
    1

    3
    56
    1
    1
    120
    236
    0
    ...
    0
    0.8
    2
    0
    2
    1

    4
    57
    0
    0
    120
    354
    0
    ...
    1
    0.6
    2
    0
    2
    1

[5 rows x 14 columns]
Attributes and datatypes
age
sex
cp into-
trestbps int64
-hol int64
int64
fbs int64
restecg int64
thalach int64
exang int64
oldpeak float64
slope int64
                  int64
                 int64
thal
target
                   int64
dtype: object
Learning CPD using maximum likelihood estimators
Inferencing with Bayesian Network:
 1. Probability of Heart Disease given evidance = restecg
| target | phi(target) |
+=======+===+
 | target(0) | 0.5000 |
+----+
 | target(1) | 0.5000
 2. Probability of Heart Disease given evidance = cp
+-----
| target | phi(target) |
+=====+
| target(0) | 0.5000 |
| target(1) | 0.5000 |
```

Practical No. 8B:

Aim: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experimental and draw graphs.

. ATTIME TIME IT D. . OLDING

Datafile: 10-dataset.csv

Code:

```
import matplotlib.pyplot as plt
import pandas as pd
```

```
import numpy as np
import warnings
warnings.filterwarnings('ignore')
print("Khan_Aqdas_Ahmed_03")
def kernel(point, xmat, k):
    m, n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j, j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights
def localWeight(point, xmat, ymat, k):
    wei = kernel(point, xmat, k)
    W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W
def localWeightRegression(xmat, ymat, k):
    m, n = np.shape(xmat)
    ypred = np.zeros(m)
    for i in range(m):
        ypred[i] = xmat[i]*localWeight(xmat[i], xmat, ymat, k)
    return ypred
data = pd.read_csv('10-dataset.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
mbill = np.mat(bill)
mtip = np.mat(tip)
m = np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T, mbill.T))
ypred = localWeightRegression(X, mtip, 0.5)
SortIndex = X[:, 1].argsort(0)
xsort = X[SortIndex][:, 0]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(bill, tip, color='orange')
ax.plot(xsort[:, 1], ypred[SortIndex], color='blue', linewidth=5)
plt.xlabel('Total User')
plt.ylabel('Tips')
plt.show()
```


Practical No. 9A:

Aim: Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.

Code:

```
import random
from math import exp
from random import seed
print("Khan_Aqdas_Ahmed_03")
def initialize_network(n_inputs, n_hidden, n_outputs):
    network = list()
    hidden_layer = [{'weights': [random.uniform(-0.5, 0.5) for i in
range(n_inputs + 1)]} for i in range(n_hidden)]
    network.append(hidden_layer)
    output_layer = [{'weights': [random.uniform(-0.5, 0.5) for i in
range(n_hidden + 1)]} for i in range(n_outputs)]
    network.append(output_layer)
    i = 1
    print("\n The initialized Neural Network:\n")
    for layer in network:
        j = 1
        for sub in layer:
            print("\n Layer[%d] Node[%d]:\n" %(i,j), sub)
            j = j+1
        i = i+1
    return network
def activate(weights, inputs):
    activation = weights[-1]
    for i in range(len(weights)-1):
        activation += weights[i] * inputs[i]
    return activation
def transfer(activation):
    return 1.0 / (1.0 + exp(-activation))
def forward_propagate(network, row):
    inputs = row
    for layer in network:
        new_inputs = []
        for neuron in layer:
             activation = activate(neuron['weights'], inputs)
             neuron['output'] = transfer(activation)
             new_inputs.append(neuron['output'])
        inputs = new_inputs
    return inputs
```

```
def transfer_derivative(output):
    return output * (1.0 - output)
def backward_propaget_error(network, expected):
    for i in reversed(range(len(network))):
        layer = network[i]
        errors = list()
        if i != len(network) - 1:
            for j in range(len(layer)):
                error = 0.0
                for neuron in network[i + 1]:
                    error += (neuron['weights'][j] * neuron['delta'])
                errors.append(error)
        else:
            for j in range(len(layer)):
                neuron = layer[j]
                errors.append(expected[j] - neuron['output'])
        for j in range(len(layer)):
            neuron = layer[j]
            neuron['delta'] = errors[j] *
transfer_derivative(neuron['output'])
def update_weights(network, row, l_rate):
    for i in range(len(network)):
        inputs = row[:-1]
        if i != 0 :
            inputs = [neuron['output'] for neuron in network[i - 1]]
        for neuron in network[i]:
            for j in range(len(inputs)):
                neuron['weights'][j] += l_rate * neuron['delta'] * inputs[j]
            neuron['weights'][-1] += l_rate * neuron['delta']
#Train
def train_network(network, train, l_rate, n_epoch, n_outputs):
    print("\n Network Training Begins:\n")
    for epoch in range(n_epoch):
        sum_error = 0
        for row in train:
            outputs = forward_propagate(network, row)
            expected = [0 for i in range(n_outputs)]
            expected[row[-1]] = 1
            sum_error += sum([(expected[i] - outputs[i]) ** 2 for i in
range(len(expected))])
            backward_propaget_error(network, expected)
            update_weights(network, row, l_rate)
        print('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, l_rate,
sum_error))
    print("\n Network Training Ends: ")
```

```
#Test
seed(2)
dataset = [[2.7810836,2.550537003,0],
           [1.465489372,2.362125076,0],
           [3.396561688,4.400293529,0],
           [1.38807019, 1.850220317, 0],
           [3.06407232,3.005305973,0],
           [7.627531214, 2.759262235, 1],
           [5.332441248, 2.088626775, 1],
           [6.922596716, 1.77106367, 1],
           [8.675418651, -0.242068655, 1],
           [7.673756466,3.508563011,1]]
print("\n The input Data Set: \n", dataset)
n_inputs = len(dataset[0]) - 1
print("\n Number of Inputs: \n", n_inputs)
n_outputs = len(set([row[-1] for row in dataset]))
print("\n Number of Outputs: \n", n_outputs)
network = initialize_network(n_inputs, 2, n_outputs)
train_network(network, dataset, 0.5, 20, n_outputs)
print("\n Final Neural Network: ")
i = 1
for layer in network:
    j = 1
    for sub in layer:
        print("\n Layer[%d] Node[%d]: \n" %(i, j), sub)
        j = j + 1
    i = i + 1
```

```
Khan Aqdas Ahmed 03
The input Data Set:
[[2.7810836, 2.550537003, 0], [1.465489372, 2.362125076, 0], [3.396561688, 4.400293529, 0], [
1.38807019, 1.850220317, 0], [3.06407232, 3.005305973, 0], [7.627531214, 2.759262235, 1], [5.3
32441248, 2.088626775, 1], [6.922596716, 1.77106367, 1], [8.675418651, -0.242068655, 1], [7.67
3756466, 3.508563011, 1]]
Number of Inputs: 2
Number of Outputs: 2
The initialized Neural Network:
Layer[1] Node[1]:
{'weights': [0.4560342718892494, 0.4478274870593494, -0.4434486322731913]}
Layer[1] Node[2]:
{'weights': [-0.41512800484107837, 0.33549887812944956, 0.2359699890685233]}
Layer[2] Node[1]:
 {'weights': [0.1697304014402209, -0.1918635424108558, 0.10594416567846243]}
Layer[2] Node[2]:
 {'weights': [0.10680173364083789, 0.08120401711200309, -0.3416171297451944]}
```

```
Network Training Begins:
>epoch=0, lrate=0.500, error=5.278
>epoch=1, lrate=0.500, error=5.122
>epoch=2, lrate=0.500, error=5.006
>epoch=3, lrate=0.500, error=4.875
>epoch=4, lrate=0.500, error=4.700
>epoch=5, lrate=0.500, error=4.466
>epoch=6, lrate=0.500, error=4.176
>epoch=7, lrate=0.500, error=3.838
>epoch=8, lrate=0.500, error=3.469
>epoch=9, lrate=0.500, error=3.089
>epoch=10, lrate=0.500, error=2.716
>epoch=11, lrate=0.500, error=2.367
>epoch=12, lrate=0.500, error=2.054
>epoch=13, lrate=0.500, error=1.780
>epoch=14, lrate=0.500, error=1.546
>epoch=15, lrate=0.500, error=1.349
>epoch=16, lrate=0.500, error=1.184
>epoch=17, lrate=0.500, error=1.045
>epoch=18, lrate=0.500, error=0.929
>epoch=19, lrate=0.500, error=0.831
Network Training Ends:
Final Neural Network:
Layer[1] Node[1]:
 {'weights': [0.8642508164347664, -0.8497601716670761, -0.8668929014392035], 'output': 0.92955
87965836384, 'delta': 0.005645382825629247}
Layer[1] Node[2]:
{'weights': [-1.2934302410111027, 1.7109363237151511, 0.7125327507327331], 'output': 0.047607
03296164143, 'delta': -0.005928559978815065}
03296164143,
Layer[2] Node[1]:
 {'weights': [-1.3098359335096292, 2.16462207144596, -0.3079052288835877], 'output': 0.1989556
395205846, 'delta': -0.03170801648036036}
Layer[2] Node[2]:
 {'weights': [1.5506793402414165, -2.11315950446121, 0.1333585709422027], 'output': 0.80950426
53312078, 'delta': 0.029375796661413225}
```

Practical No. 9B:

Aim: Assuming a set of documents that need to be classified, use the Naïve Bayesian Classifier model to perform this task.

Datafile: document.csv

Code:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score,
recall_score
print("Khan_Aqdas_Ahmed_03")
```

```
msg = pd.read_csv('document.csv', names=['message', 'label'])
print("Total Instances of Dataset: ", msg.shape[0])
msg['labelnum'] = msg.label.map({'pos': 1, 'neg': 0})
x = msg.message
y = msg.labelnum
xtrain, xtest, ytrain, ytest = train_test_split(x, y)
count v = CountVectorizer()
xtrain_dm = count_v.fit_transform(xtrain)
xtest_dm = count_v.transform(xtest)
df = pd.DataFrame(xtrain_dm.toarray(), columns =
count_v.get_feature_names_out())
print(df[0:5])
clf = MultinomialNB()
clf.fit(xtrain_dm, ytrain)
pred = clf.predict(xtest_dm)
for doc, p in zip(xtrain, pred):
    p = 'pos' if p == 1 else 'neg'
    print("%s -> %s" % (doc, p))
print("Accuracy Matrics: \n")
print("Accuracy: ", accuracy_score(ytest, pred))
print("Recall: ", recall_score(ytest, pred))
print("Precision: ", precision_score(ytest, pred))
print("Confusion Matrix: \n", confusion_matrix(ytest, pred))
```

```
1/LIDCT1 Lat r-5/LIF/LI accreat/Li acap+bh
Khan Aqdas Ahmed 03
Total Instances of Dataset: 18
  about am an awesome beers can
                                    dance
                                               very view
                                                          we
                                                             went what will
                                                                              with
                                         . . .
                         0
0
      0
         1
            0
                    0
                               0
                                       0
                                                  0
                                                       0
                                                          0
                                                                0
                                                                      0
                                                                            0
                                                                                 0
                                          . . .
      0 0 0
1
                     0
                            0
                                 0
                                        0
                                                  0
                                                       0
                                                          0
                                                                 0
                                                                      0
                                                                            0
                                                                                 0
                                          ...
      0 0 1
                               0
2
                     1
                                                          0
                                                                      0
                                                                            0
                                                                                 0
                            0
                                        0
                                                  0
                                                       0
                                                                 0
                                          . . .
                           1
                               0
         0 0
3
      1
                     0
                                       0 ...
                                                       0
                                                          0
                                                                 0
                                                                      0
                                                                            0
                                                                                 0
                                                  1
4
            0
                     0
                                       0 ...
         0
                                                  0
                                                          0
                                                                 0
                                                                      0
                                                                            0
                                                                                 0
[5 rows x 45 columns]
I am tired of this stuff -> neg
I do not like this restaurant -> neg
This is an awesome place -> pos
I feel very good about these beers -> neg
I love this sandwich -> pos
Accuracy Matrics:
Accuracy: 0.6
Recall: 0.5
Precision: 0.5
Confusion Matrix:
 [[2 1]
```