Closure under Vector Addition

sef'n: A nonempty subset S of IR" is called
closed under vector addition if whenever
if and is are vectors in S, it is also in S,
E_{X} : \mathbb{R}^{2} , $S = \frac{9}{x}, y > 20$ and $y > 0$.
S is closed under vector relation because if $\vec{v} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$,
$\vec{V} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ and $\vec{W} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$,
then 9,70, 9230, 6,70, 5270, 10
$3+\overline{u}=\begin{bmatrix}a_1+b_1\\a_2+b_2\end{bmatrix}\in S$, because
a_1+b_170 and a_2+b_270 ,
Ex: S= 3(x,y); x<13 is not closed
under jector addition
Secause [1/2] es and
$\begin{bmatrix} 2/3 \\ 0 \end{bmatrix} \in S$ but
$\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} + \begin{bmatrix} 2/3 \\ 0 \end{bmatrix} = \begin{bmatrix} 7/6 \\ 1/2 \end{bmatrix} \notin S$
because 7/6 7/1.

S= { < x, y> : x+y=2 } is not closed under addition, because $\left[\begin{array}{c} 0\\2 \end{array}\right] \in S \text{ and } \left[\begin{array}{c} 2\\0 \end{array}\right] \not \in S$ but [2] + [2] = [2] \$5 because 2+2 +2. Ex: S= {<x,y>: x+y=0{ &122 is closed under verter additions Proof; Suppose it S and is 65. —— Then we can write $\vec{\nabla} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ where $q_1 + a_2 = 0$ and $\vec{W} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, where $b_1 + b_2 = D$. So V+ W= [a, 16, 7]. Then V+WGS because $(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$ = 0 + 0 = 0So S is closed under vector addition.

closure under Scalar Multiplication

pern: A subt S of IRn is closed under scalar multiplication

if for every $\vec{v} \in S$ and every scalar c, \vec{v} is also in S.

Ex: Be cauce.

$$S = \{ \begin{bmatrix} x \\ y \end{bmatrix} : x > 0 \text{ and } y > 0 \}$$

is not closed under scalar multiplication, because [1] is in S but

 $-5\begin{bmatrix}1\\-5\end{bmatrix} = \begin{bmatrix}-5\\-5\end{bmatrix} \text{ is not in } S.$

A subset S of IPM is <u>Not</u> closed under scalar multiplication if there is some vietor VES and some scalar c such that c V is not in S

tx: NS

$$S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : y = x \text{ or } \right\}$$

is closed under scalar y-- multiplication.

If $\forall \in S$, where $\forall = \begin{bmatrix} x \\ y \end{bmatrix}$, then y = x or

y=- χ . For any scalar c, $c\vec{v} = \begin{cases} c\chi \\ cy \end{cases}$. If $y=\chi$, then $cy=c\chi$, so $c\vec{v}$ is in S. If $y=-\chi$, then $cy=-c\chi$, so $c\vec{v}$ is in S. S is not closed under vector addition the cause $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in S and $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ is in S because $y=\chi$ but the sum, $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is not in S because $3 \neq -(-1)$.