(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 August 2001 (16.08.2001)

PCT

(10) International Publication Number WO 01/59140 A1

- (51) International Patent Classification7: C12N 15/82, 9/10
- (21) International Application Number: PCT/GB01/00477
- (22) International Filing Date: 8 February 2001 (08.02.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0002814.2

9 February 2000 (09.02.2000) G

- (71) Applicant (for all designated States except US): THE UNIVERSITY OF YORK [GB/GB]; Heslington, York YO10 5DD (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BOWLES, Diana, Joy [GB/GB]; The University of York, Heslington, York YO10 5DD (GB). LI, Yi [GB/GB]; The University of York, Heslington, York YO10 5DD (GB). LIM, Eng-Kiat [MY/GB]; The University of York, Heslington, York YO10 5DD (GB).
- (74) Agent: HARRISON GODDARD FOOTE; Tower House, Merrion Way, Leeds LS2 8PA (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/59140 A1

WO 01/59140 PCT/GB01/00477

Transgenic Cells Expressing Glucosyltransferase Nucleic Acids

5

10

15

20

25

30

35

The invention relates to transgenic cells which have been transformed with glucosyltransferase (GTases) nucleic acids.

GTases are enzymes which post-translationally transfer glucosyl residues from an activated nucleotide sugar to monomeric and polymeric acceptor molecules such as other sugars, proteins, lipids and other organic substrates. These glucosylated molecules take part in diverse metabolic pathways and processes. The transfer of a glucosyl moiety can alter the acceptor's bioactivity, solubility and transport properties within the cell and throughout the plant. One family of GTases in higher plants is defined by the presence of a C-terminal consensus sequence. The GTases of this family function in the cytosol of plant cells and catalyse the transfer of glucose to small molecular weight substrates, such as phenylpropanoid derivatives, coumarins, flavonoids, other secondary metabolites and molecules known to act as plant hormones. Available evidence indicates that GTases enzymes can be highly specific, such as the maize and *Arabidopsis* GTases that glucosylate indole-3-acetic acid (IAA).

The production and use of paper has increased in the last 10 years. For example, between 1989 and 1999 the production of paper and board in the UK has increased from 4.6 to 6.6 million tonnes. Worldwide consumption has also reflected a general increase in paper usage. For example, in the UK per capita consumption of paper is over 200kg per annum. In the USA this figure is over 300kg per annum.

Wood used in the paper industry is initially particulated, typically by chipping, before conversion to a pulp which can be utilised to produce paper. The pulping process involves the removal of lignin. Lignin is a major non-carbohydrate component of wood and comprises approximately one quarter of the raw material in wood pulp. The removal of lignin is desirable since the quality of the paper produced from the pulp is largely determined by the lignin content. Many methods have been developed to efficiently and cost effectively remove lignin from wood pulp. These methods can be chemical, mechanical or biological. For example, chemical methods to pulp wood are disclosed in WO9811294, EP0957198 and WO0047812. Although chemical methods are efficient means to remove lignin from pulp it is known that chemical treatments can result in degradation of polysaccharides and is expensive. Moreover, to remove residual lignin from pulp it is necessary to use strong bleaching agents which require removal before the pulp can be converted into paper. These agents are also damaging to the environment.

15

20

25

30

35

Biological methods to remove lignin are known. There are however disadvantages associated with such methods. For example it is important to provide micro-organisms (eg bacteria and/or fungi) which only secrete ligninolytic enzymes which do not affect cellulose fibres. This method is also very time consuming (can take 3-4 weeks) and expensive due to the need to provide bioreactors. Biological treatment can also include pre-treatment of wood chips to make them more susceptible to further biological or chemical pulping.

It is therefore desirable to provide further means by which lignin can be efficiently and cost effectively removed from wood pulp which do not have the disadvantages associated with prior art methods.

For the sake of clarity reference herein to transgenic means a plant which has been genetically modified to include a nucleic acid sequence not naturally found in said plant. For example, by over-expression of monolignol glucosyltransferases in planta, plant cell wall properties may be altered through increasing the flux through biosynthetic intermediates that are obligatory for incorporation and assembly of the lignin polymer. Conversely, reduction of the monolignol glucoside pools, such as through the use of nucleic acid comprising GTase sequences in antisense configuration may lead to altered properties through reducing the flux through specific intermediates. Changes in lignin composition, such as with decreased ratios of coniferyl alcohol to sinapyl alcohol are highly desirable in paper and pulping processes, because the more highly methylated lignin (sinapyl alcohol) is more easily removed during pulping processes (Chiang et al (1988) TAPPI J. 71, 173-176).

In some applications it may be desirable to change lignin composition and increase the lignin content of a plant cell to increase the mechanical strength of wood. This would have utility in, for example the construction industry or in furniture making.

Both lignin content and the level of cross-linking of polysaccharide polymers within plant cell walls, also play an important role in determining texture and quality of raw materials through altering the cell walls and tissue mechanical properties. For example, there is considerable interest in reducing cell separation in edible tissues since this would prevent over-softening and loss of juiciness. Phenolics, such as ferulic acid, play an important role in cell adhesion since they can be esterified to cell wall polysaccharides during synthesis and oxidatively cross-linked in the wall, thereby increasing rigidity. Most non-lignified tissues contain these phenolic components and their levels can be modified by altering flux through the same metabolic pathways as those culminating in lignin. Therefore, in the same way as for the

WO 01/59140 PCT/GB01/00477

manipulation of lignin composition and content, GTase nucleic acid in sense and/or antisense configurations can be used to affect levels of ferulic acid and related phenylpropanoid derivatives that function in oxidative cross-linking. These changes in content have utility in the control of raw material quality of edible plant tissues.

Lignin and oxidative cross-linking in plant cell walls also play important roles in stress and defence responses of most plant species. For example, when non-woody tissues are challenged by pests or pathogen attack, or suffer abiotic stress such as through mechanical damage or UV radiation, the plant responds by localised and systemic alteration in cell wall and cytosolic properties, including changes in lignin content and composition and changes in cross-linking of other wall components. Therefore, it can also be anticipated that cell- or tissue-specific changes in these responses brought about by changed levels of the relevant GTase activities will have utility in protecting the plant to biotic attack and biotic/abiotic stresses.

GTases also have utility with respect to the modification of antioxidants. Reactive oxygen species are produced in all aerobic organisms during respiration and normally exist in a cell in balance with biochemical anti-oxidants. Environmental challenges, such as by pollutants, oxidants, toxicants, heavy metals and so on, can lead to excess reactive oxygen species which perturb the cellular redox balance, potentially leading to wide-ranging pathological conditions. In animals and humans, cardiovascular diseases, cancers, inflammatory and degenerative disorders are linked to events arising from oxidative damage.

Because of the current prevalence of these diseases, there is considerable interest in antioxidants, consumed in the diet or applied topically such as in UV-screens. Anti-oxidant micronutrients obtained from vegetables and fruits, teas, herbs and medicinal plants are thought to provide significant protection against health problems arising from oxidative stress. Well known anti-oxidants from plant tissues include for example: quercetin, luteolin, and the catechin, epicatechin and cyanidin groups of compounds.

25

35

Caffeic acid (3,4-dihydroxycinnamic acid) is a further example of an anti-oxidant with beneficial therapeutic properties.

Certain plant species, organs and tissues are known to have relatively high levels of one or more compounds with anti-oxidant activity. Greater accumulation of these compounds in those species, their wider distribution in crop plants and plant parts already used for food and WO 01/59140. PCT/GB01/00477

drink production, and the increased bioavailability of anti-oxidants (absorption, metabolic conversions and excretion rate) are three features considered to be highly desirable.

It will be apparent that changed levels of the relevant GTase activities capable of glucosylating anti-oxidant compounds in planta will allow the production of anti-oxidants with beneficial properties. GTase sequences can also be expressed in prokaryotes or simple eukaryotes, such as yeast, to produce enzymes for biotransformations in those cells, or as in vitro processing systems.

10 Statements of Invention

20

25

According to an aspect of the invention there is provided a transgenic cell comprising a nucleic acid molecule which encodes a polypeptide which has:

- i) glucosyltransferase activity:
- ii) is selected from the group comprising sequences of Figures 1A. 2A. 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
 - iii) nucleic acids which hybridise to the sequences represented in (ii) above; and
 - iv) nucleic acid sequences which are degenerate as a result of the genetic code to the sequences defined in (i) and (ii) above.

In a further preferred embodiment of the invention said nucleic acid molecule anneals under stringent hybridisation conditions to the sequence presented in Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

More preferably still said nucleic acid molecule is selected from Figures 7A, 8A, 9A, 10A, 15, 18, 19, 28 or 31.

Stringent hybridisation/washing conditions are well known in the art. For example, nucleic acid hybrids that are stable after washing in 0.1xSSC,0.1% SDS at 60°C. It is well known in the art that optimal hybridisation conditions can be calculated if the sequence of the nucleic acid is known. For example, hybridisation conditions can be determined by the GC content of the nucleic acid subject to hybridisation. Please see Sambrook et al (1989) Molecular Cloning; A Laboratory Approach. A common formula for calculating the stringency

conditions required to achieve hybridisation between nucleic acid molecules of a specified homology is:

$$T_m = 81.5^{\circ} \text{ C} + 16.6 \text{ Log [Na]} + 0.41[\% \text{ G} + \text{C}] -0.63 (\% \text{formamide}).$$

In a preferred embodiment of the invention said transgenic cell is a eukaryotic cell. Preferably said eukaryotic cell is a plant cell or yeast cell.

In an alternative embodiment of the invention said transgenic cell is a prokaryotic cell.

10

15

5

In a further preferred embodiment of the invention the nucleic acid molecule is selected from the group comprising: antisense sequences of the sequences of any one of Figures 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C, 10C and 11C or parts thereof, or antisense sequences of the sense sequences presented in Figures 12-32. More preferably still said antisense sequence is selected from Figure 7C or 9C

In a further preferred embodiment of the invention said nucleic acid is cDNA.

In a yet further preferred embodiment of the invention said nucleic acid is genomic DNA.

20

In yet still a further preferred embodiment of the invention said plant is a woody plant selected from: poplar; eucalyptus; Douglas fir; pine; walnut; ash; birch; oak; teak; spruce. Preferably said woody plant is a plant used typically in the paper industry, for example poplar.

25

Methods to transform woody species of plant are well known in the art. For example the transformation of poplar is disclosed in US4795855 and WO9118094. The transformation of eucalyptus is disclosed in EP1050209 and WO9725434. Each of these patents is incorporated in their entirety by reference.

30

35

In a still further preferred embodiment of the invention said plant is selected from: corn (Zea mays), canola (Brassica napus, Brassica rapa ssp.), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cerale), sorghum (Sorghum bicolor, Sorghum vulgare), sunflower (helianthus annuas), wheat (Tritium aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium hirsutum), sweet potato (Iopmoea batatus). cassava (Manihot esculenta), coffee (Cofea spp.),

coconut (Cocos nucifera), pineapple (Anana comosus), citris tree (Citrus spp.) cocoa (Theobroma cacao), tea (Camellia senensis), banana (Musa spp.), avacado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifer indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia intergrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), oats, barley, vegetables and ornamentals.

Preferably, plants of the present invention are crop plants (for example, cereals and pulses, maize, wheat, potatoes, tapioca, rice, sorghum, millet, cassava, barley, pea, and other root, tuber or seed crops. Important seed crops are oil-seed rape, sugar beet, maize, sunflower, soybean, and sorghum. Horticultural plants to which the present invention may be applied may include lettuce, endive, and vegetable brassicas including cabbage, broccoli, and cauliflower, and carnations and geraniums. The present invention may be applied in tobacco, cucurbits, carrot, strawberry, sunflower, tomato, pepper, chrysanthemum.

15

10

Grain plants that provide seeds of interest include oil-seed plants and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava been, lentils, chickpea, etc.

According to a further aspect of the invention there is provided a vector comprising the nucleic acid according to the invention operably linked to a promoter.

25

30

20

"Vector" includes, *inter alia*, any plasmid, cosmid, phage or *Agrobacterium* binary vector in double or single stranded linear or circular form which may or may not be self-transmissable or mobilizable, and which can transform a prokaryotic or eukaryotic host either by integration into the cellular genome or exist extrachromosomally (e.g. autonomous replicating plasmid with an origin of replication ie an episomal vector).

Suitable vectors can constructed, containing appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: Laboratory Manual: 2nd edition, Sambrook et al. 1989, Cold Spring Habor

Laboratory Press or Current Protocols in Molecular Biology, Second Edition. Ausubel et al. Eds., John Wiley & Sons, 1992.

Specifically included are shuttle vectors by which is meant a DNA vehicle capable, naturally or by design, of replication in two different host organisms, which may be selected from actinomycetes and related species, bacteria and eukaryotic (e.g. higher plant, mammalian, yeast or fungal cells).

5

30

A vector including nucleic acid according to the invention need not include a promoter or other regulatory sequence, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the gene.

Preferably the nucleic acid in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial, (e.g. bacterial), or plant cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of GTase genomic DNA this may contain its own promoter or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter or other regulatory elements for expression in the host cell.

By "promoter" is meant a nucleotide sequence upstream from the transcriptional initiation site and which contains all the regulatory regions required for transcription. Suitable promoters include constitutive, tissue-specific, inducible, developmental or other promoters for expression in plant cells comprised in plants depending on design. Such promoters include viral, fungal, bacterial, animal and plant-derived promoters capable of functioning in plant cells.

Constitutive promoters include, for example CaMV 35S promoter (Odell et al. (1985) Nature 313, 9810-812); rice actin (McElroy et al. (1990) Plant Cell 2: 163-171); ubiquitin (Christian et al. (1989) Plant Mol. Biol. 18 (675-689); pEMU (Last et al. (1991) Theor Appl. Genet. 81: 581-588); MAS (Velten et al. (1984) EMBO J. 3. 2723-2730); ALS promoter (U.S. Application Seriel No. 08/409,297), and the like. Other constitutive promoters include those in U.S. Patent Nos. 5,608.149; 5,608.144; 5,604.121; 5.569,597; 5,466,785; 5,399,680, 5,268,463; and 5,608,142.

Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induced gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-la promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88: 10421-10425 and McNellis et al. (1998) Plant J. 14(2): 247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen. Genet. 227: 229-237, and US Patent Nos. 5.814.618 and 5,789,156, herein incorporated by reference.

15

20

30

Where enhanced expression in particular tissues is desired, tissue-specific promoters can be utilised. Tissue-specific promoters include those described by Yamamoto et al. (1997) Plant J. 12(2): 255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7): 792-803; Hansen et al. (1997) Mol. Gen. Genet. 254(3): 337-343; Russell et al. (1997) Transgenic Res. 6(2): 157-168; Rinehart et al. (1996) Plant Physiol. 112(3): 1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2): 525-535; Canevascni et al. (1996) Plant Physiol. 112(2): 513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5): 773-778; Lam (1994) Results Probl. Cell Differ. 20: 181-196; Orozco et al. (1993) Plant Mol. Biol. 23(6): 1129-1138; Mutsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90 (20): 9586-9590; and Guevara-Garcia et al (1993) Plant J. 4(3): 495-50.

"Operably linked" means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is "under transcriptional initiation regulation" of the promoter. In a preferred aspect, the promoter is an inducible promoter or a developmentally regulated promoter.

Particular of interest in the present context are nucleic acid constructs which operate as plant vectors. Specific procedures and vectors previously used with wide success upon plants are described by Guerineau and Mullineaux (1993) (Plant transformation and expression vectors.

10

15

In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148. Suitable vectors may include plant viral-derived vectors (see e.g. EP-A-194809). If desired, selectable genetic markers may be included in the construct, such as those that confer selectable phenotypes such as resistance to antibodies or herbicides (e.g. kanamycin, hygromycin, phosphinotricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate).

According to a further aspect of the invention there is provided a method of enhancing monolignol glucoside synthesis in a plant comprising causing or allowing expression of at least one GTase nucleic acid according to the invention in a plant. Preferably the plant is a woody plant species.

According to a further aspect of the invention there is provided a method of inhibiting monolignol glucoside synthesis in a plant comprising causing or allowing expression of at least one GTase antisense nucleic acid according to the invention in a plant. Preferably the plant is a woody plant species.

Inhibition of GTase expression may, for instance, be achieved using anti-sense technology.

In using anti-sense genes or partial gene sequences to down-regulate gene expression, a nucleotide sequence is placed under the control of a promoter in a "reverse orientation" such that transcription yields RNA which is complementary to normal mRNA transcribed from the "sense" strand of the target gene. See, for example, Rothstein et al, 1987; Smith et al, (1998), Nature 334, 724-726; Zhang et al (1992) The Plant Cell 4, 1575-1588, English et al. (1996)

The Plant Cell 8, 179 188. Antisense technology is also reviewed in Bourque (1995), Plant Science 105, 125-149, and Flavell (1994) PNAS USA 91, 3490-3496.

According to a further aspect of the invention there is provided a nucleotide sequence encoding an antisense RNA molecule complementary to a sense mRNA molecule encoding for a polypeptide having a glucosyl transferase activity in the biosynthesis of at least a monolignol glucoside in lignin biosynthesis in a plant, which nucleotide sequence is under transcriptional control of a promoter and a terminator, both promoter and terminator capable of functioning in plant cells.

35 Suitable promoters and terminators are referred to hereinabove.

According to a further aspect of the invention there is provided a nucleotide sequence according to the invention comprising a transcriptional regulatory sequence, a sequence under the transcriptional control thereof which encodes an RNA which consists of a plurality of subsequences, characterised in that the RNA subsequences are antisense RNAs to mRNAs of proteins having a GTase activity in the lignin biosynthesis pathway in plant cells.

In particular, the said RNA subsequences are antisense RNAs to mRNAs of GTase having a GTase activity in the lignin biosynthesis pathway in plant cells, such as the GTase of Figs. 1-11 (C)

10

25

30

The nucleotide sequence may encode an RNA having any number of subsequences.

Preferably, the number of subsequences lies between 2 and 7 (inclusive) and more preferably lies between 2-4.

- According to a further aspect of the invention there is provided a host cell transformed with nucleic acid or a vector according to the invention, preferably a plant or a microbial cell. The microbial cell may be prokaryotic (eg *Escherchia coli*, *Bacillus subtilis*) or eukaryotic (eg *Saccharomyces cerevisiae*).
- In the transgenic plant cell the transgene may be on an extra-genomic vector or incorporated, preferably stably, into the genome. There may be more than one heterologous nucleotide sequence per haploid genome.

According to a yet further aspect of the invention there is provided a method of transforming a plant cell comprising introduction of a vector into a plant cell and causing or allowing recombination between the vector and the plant cell genome to introduce a nucleic acid according to the invention into the genome.

Plants transformed with a DNA construct of the invention may be produced by standard techniques known in the art for the genetic manipulation of plants. DNA can be introduced into plant cells using any suitable technology, such as a disarmed Ti-plasmid vector carried by Agrobacterium exploiting its natural gene transferability (EP-A-270355, EP-A-0116718, NAR 12(22):8711-87215 (1984), Townsend et al., US Patent No. 5,563,055); particle or microprojectile bombardment (US Patent No. 5,100,792, EP-A-444882, EP-A-434616; Sanford et al, US Patent No. 4,945,050; Tomes et al. (1995) "Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment". in Plant Cell, Tissue and Organ Culture:

Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. (1988) Biotechnology 6: 923-926); microinjection (WO 92/09696, WO 94/00583, EP 331083, EP 175966, Green et al. 91987) Plant Tissue and Cell Culture, Academic Press, Crossway et al. (1986) Biotechniques 4:320-334); electroporation (EP 290395, WO 8706614, Riggs et al. (1986) Proc. Natl. Acad. Sci. USA_83:5602-5606; D'Halluin et al. 91992). Plant Cell 4:1495-1505) other forms of direct DNA uptake (DE 4005152, WO 9012096, US Patent No. 4,684,611, Paszkowski et al. (1984) EMBO J. 3:2717-2722); liposome-mediated DNA uptake (e.g. Freeman et al (1984) Plant Cell Physiol, 29:1353); or the vortexing method (e.g. Kindle (1990) Proc. Nat. Acad. Sci. USA 87:1228). Physical methods for the transformation of plant cells are reviewed in Oard (1991) Biotech. Adv. 9:1-11. See generally, Weissinger et al. (1988) Ann. Rev. Genet. 22:421-477; Sanford et al. (1987) Particulate Sciences and Technology 5:27-37; Christou et al. (1988) Plant Physiol. 87:671-674; McCabe et al. (1988) Bio/Technology 6:923-926: Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182; Singh et al. (1988) Theor. Appl. Genet. 96:319-324; Datta et al. (1990) Biotechnology 8:736-740; Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85: 4305-4309; Klein et al. (1988) Biotechnology 6:559-563; Tomes, US Patent No. 5,240,855; Buising et al. US Patent Nos. 5,322, 783 and 5,324,646; Klein et al. (1988) Plant Physiol 91: 440-444; Fromm et al (1990) Biotechnology 8:833-839; Hooykaas-Von Slogteren et al. 91984). Nature (London) 311:763-764; Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349; De Wet et al. (1985) in The Experimental Manipuation of Ovule Tissues ed. Chapman et al. (Longman, New York), pp. 197-209; Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566; Li et al. (1993) Plant Cell Reports 12: 250-255 and Christou and Ford (1995) Annals of Botany 75: 407-413:Osjoda et al. (1996) Nature Biotechnology 14:745-750, all of which are herein incorporated by reference.

25

30

35

20

15

Agrobacterium transformation is widely used by those skilled in the art to transform dicotyledonous species. Recently, there has been substantial progress towards the routine production of stable, fertile transgenic plants in almost all economically relevant monocot plants (Toriyama et al. (1988) Bio/Technology 6: 1072-1074; Zhang et al. (1988) Plant Cell rep. 7379-384; Zhang et al. (1988) Theor. Appl. Genet. 76:835-840; Shimamoto et al. (1989) Nature 338:274-276; Datta et al. (1990) Bio/Technology 8: 736-740; Christou et al. (1991) Bio/Technology 9:957-962; Peng et al (1991) International Rice Research Institute, Manila, Philippines, pp.563-574; Cao et al. (1992) Plant Cell Rep. 11: 585-591; Li et al. (1993) Plant Cell Rep. 12: 250-255; Rathore et al. (1993) Plant Mol. Biol. 21:871-884; Fromm et al (1990) Bio/Technology 8:833-839; Gordon Kamm et al. (1990) Plant Cell 2:603-618; D'Halluin et al. (1992) Plant Cell 4:1495-1505; Walters et al. (1992) Plant Mol. Biol. 18:189-200; Koziel et

al. (1993). Biotechnology 11194-200: Vasil, I.K. (1994) Plant Mol. Biol. 25:925-937; Weeks et al (1993) Plant Physiol. 102:1077-1084; Somers et al. (1992) Bio/Technology 10:1589-1594; WO 92/14828. In particular, Agrobacterium mediated transformation is now emerging also as an highly efficient transformation method in monocots. (Hiei, et al. (1994) The Plant Journal 6:271-282). See also, Shimamoto, K. (1994) Current Opinion in Biotechnology 5:158-162; Vasil, et al. (1992) Bio/Technology 10:667-674; Vain, et al. (1995) Biotechnology Advances 13(4):653-671; Vasil, et al. (1996) Nature Biotechnology 14: 702).

Microprojectile bombardment, electroporation and direct DNA uptake are preferred where Agrobacterium is inefficient or ineffective. Alternatively, a combination of different techniques may be employed to enhance the efficiency of the transformation process, e.g. bombardment with Agrobacterium-coated microparticles (EP-A-486234) or microprojectile bombardment to induce wounding followed by co-cultivation with Agrobacterium (EP-A-486233).

15

20

10

5

Plants which include a plant cell according to the invention are also provided.

In addition to the regenerated plant, the present invention embraces all of the following: a clone of such a plant, seed, selfed of hybrid progeny and descendants (e.g. F1 and F2 descendants).

According to a further aspect of the invention there is provided an isolated nucleic acid molecule obtainable from *Arabidopsis thaliana* which comprises a nucleic acid sequence encoding a polypeptide having

25

- (1) GTase functionality; and
- (2) is capable of adding a glucosyl group via an O-glucosidic linkage to form
 - a glucosyl ester of at least one of:
 cinnamic acid; p-coumaric acid; caffeic acid; ferulic acid; and sinapic acid;
 and/or

30

(b) a 4-O-glucoside of at least one of: cinnamic acid; p-coumaric acid; caffeic acid; ferulic acid; sinapic acid; p-coumaryl aldehyde; coniferyl aldehyde; sinapyl aldehyde; p-coumaryl alcohol; coniferyl alcohol; and sinapyl alcohol.

15

20

25

30

35

In a further aspect of the invention there is provided a polypeptide encoded by an isolated nucleic acid molecule of the present invention wherein the said polypeptide is selected from the polypeptides of Figures 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, 10B and 11B or functional variants and/or parts thereof. Preferably the polypeptide is selected from the group of polypeptides of Figures 2B, 3B, 4B, 6B, 7B and 9B or functional variants and/or parts thereof. Preferably still the polypeptide is selected from the group of polypeptides selected from Figures 2B, 3B, 7B and 9B or functional variants and/or parts thereof. Most preferably the polypeptide is one of the polypeptides shown in Figures 2B, 3B, 7B or 9B. Polypeptides encoded by the sense nucleic acid sequences presented in Figures 12 – 32 are also provided and readily derived from these sense sequences.

Variants of sequences having substantial identity or homology with the GTase molecules of the invention may be utilized in the practices of the invention. That is, the GTase of Figures 1A-11A may be modified yet still remain functional. Generally, the GTase will comprise at least about 40%-60%, preferably about 60%-80%, more preferably about 80%-95% sequence identity with a GTase nucleotide sequence of Figures 1A-32 herein.

The activity of functional variant polypeptides may be assessed by transformation into a host capable of expressing the nucleic acid of the invention. Methodology for such transformation is described in more detail below.

In a further aspect of the invention there is disclosed a method of producing a derivative nucleic acid comprising the step of modifying any of the sequences disclosed above, particularly the coding sequence of Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

Alternatively, changes to a sequence may produce a derivative by way of one or more of addition, insertion, deletion or substitution of one or more nucleotides in the nucleic acid, leading to the addition, insertion, deletion or substitution or one or more amino acids in the encoded polypeptide.

Other desirable mutations may be random or site directed mutagenesis in order to alter the activity (e.g. specificity) or stability of the encoded polypeptide or to produce dominant negative variants which may alter the flux through lignin biosynthetic pathways to alter the amount of lignin or an intermediate in the lignin biosynthetic pathway.

The invention will now be described with reference to the following Figures and Examples which are not to be construed as limiting the invention.

- Scheme 1: The major intermediates in lignin biosynthesis pathway.
- Figure 1A: Sense nucleotide sequence of A062. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 1B: The amino acid sequence of A062;
 - Figure 1C: The antisense nucleotide sequence of A062;
 - Figure 2A Sense nucleotide sequence of A320. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 2B The amino acid sequence of A320;
 - Figure 2C: The antisense nucleotide sequence of A320;
 - Figure 3A: Sense nucleotide sequence of A41. The coding region starts from the first nucleotide and ends at the last nucleotide;
- 15 Figure 3B: The amino acid sequence of A41;
 - Figure 3C: The antisense nucleotide sequence of A41;
 - Figure 4A: Sense nucleotide sequence of A42. The coding region starts from the first nucleotide and ends at the last nucleotide:
 - Figure 4B: The amino acid sequence of A42;
- 20 Figure 4C: The antisense nucleotide sequence of A42;
 - Figure 5A: Sense nucleotide sequence of A43. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 5B: The amino acid sequence of A43;
 - Figure 5C: The antisense nucleotide sequence of A43;
- Figure 6A: Sense nucleotide sequence of A911. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 6B: The amino acid sequence of A911;
 - Figure 6C: The antisense nucleotide sequence of A911;
- Figure 7A: Sense nucleotide sequence of A119. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 7B: The amino acid sequence of A119;
 - Figure 7C: The antisense nucleotide sequence of A119;
 - Figure 8A: Sense nucleotide sequence of A233. The coding region starts from the first nucleotide and ends at the last nucleotide;
- 35 Figure 8B: The amino acid sequence of A233;
 - Figure 8C: The antisense nucleotide sequence of A233;

Figure 9A: Sense nucleotide sequence of A407. The coding region starts from the first nucleotide and ends at the last nucleotide;

- Figure 9B: The amino acid sequence of A407;
- Figure 9C: The antisense nucleotide sequence of A407;
- Figure 10A: Sense nucleotide sequence of A961. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 10B: The amino acid sequence of A961;
 - Figure 10C: The antisense nucleotide sequence of A961;
 - Figure 11A: Sense nucleotide sequence of A962. The coding region starts from the first nucleotide and ends at the last nucleotide;
 - Figure 11B: The amino acid sequence of A962;

- Figure 11C: The antisense nucleotide sequence of A962.;
- Figure 12: The sense nucleotide sequence of UGT71B5;
- Figure 13 The sense nucleotide sequence of UGT71C3;
- 15 Figure 14 The sense nucleotide sequence of UGT71C5:
 - Figure 15 The sense nucleotide sequence of UGT71D1;
 - Figure 16 The sense nucleotide sequence of UGT73B1:
 - Figure 17 The sense nucleotide sequence of UGT73B2;
 - Figure 18 The sense nucleotide sequence of UGT73B4;
- 20 Figure 19 The sense nucleotide sequence of UGT73B5;
 - Figure 20 The sense nucleotide sequence of UGT73C1;
 - Figure 21 The sense nucleotide sequence of UGT731C;
 - Figure 22 The sense nucleotide sequence of UGT73C5;
 - Figure 23 The sense nucleotide sequence of UGT73C6;
- 25 Figure 24 The sense nucleotide sequence of UGT73C7;
 - Figure 25 The sense nucleotide sequence of UGT74F2;
 - Figure 26 The sense nucleotide sequence of UGT76E1;
 - Figure 27 The sense nucleotide sequence of UGT76E11;
 - Figure 28 The sense nucleotide sequence of UGT76E12;
- 30 Figure 29 The sense nucleotide sequence of UGT76E2;
 - Figure 30 The sense nucleotide sequence of UGT78D1;
 - Figure 31 The sense nucleotide sequence of UGT89B1;
 - Figure 32 The sense nucleotide sequence of UGT72B3;

Figure 33 shows recombinant GST-UGT71C1 fusion protein purified from $E.\ coli$ using glutathione-coupled Sepharose. The protein (5 µg) was analyzed using 10% SDS-PAGE and was visualized with Coomassive staining:

Figure 34 shows three different glucose conjugates of caffeic acid, (caffeoyl-3-O-glucoside, caffeoyl-4-O-glucoside and 1-O-caffeoylglucose), obtained from the glucosyltransferase reactions containing the recombinant UGT71C1, UGT73B3 and UGT84A1 respectively. Each assay contained 1-2 μg of recombinant UGT, 1 mM caffeic acid, 5 mM UDP-glucose, 1.4 mM 2-mercaptoethanol and 50 mM TRIS-HCl, pH 7.0. The mix was incubated at 30 °C for 30 min and was analyzed by reverse-phase HPLC subsequently. Linear gradient (10-16%) of acetonitrile in H₂O at 1 ml/min over 20 min was used to separate the glucose conjugates from caffeic acid.

Figure 35A shows the pH optima of UGT71C1 glucosyltransferase activity measured over the range pH 5.5-8.0 in the reactions containing 50 mM buffer, 1 µg of UGT71C1, 1 mM caffeic acid, 5 mM UDP-glucose and 1.4 mM 2-mercaptoethanol. The mix was incubated at 30 °C for 30 min. The reaction was stopped by the addition of 20 µl of trichloroacetic acid (240 mg/ml) and was analyzed by reverse-phase HPLC subsequently. The specific enzyme activity was expressed as nanomoles of caffeic acid glucosylated per second (nkat) by 1 mg of protein in 30 min of reaction time at 30 °C. Figure 35B, the time course of UGT71C1 glucosyltransferase activity was studied by measuring the amount of caffeic acid glucosylated by 1 µg of UGT71C1 in 50 mM TRIS-HCl, pH 7.0. The reactions were carried out and analyzed as described in A;

15

20

Figure 36 shows UGT71C1 transgenic Arabidopsis thaliana plants and their ability to glucosylate caffeic acid; and

Figure 37 summarises the GTase activities of various GTase polypeptides with respect to various anti-oxidant substrates.

EXAMPLES

MATERIALS AND METHODS

5 Transformation of Woody Plant Species

The transformation of woody plant species is known in the art. See US4795855 and WO9118094; EP1050209 and WO9725434. Each of these patents are incorporated in their entirety by reference.

10

Transformation of Non-Woody Plant Species

Methods used in the transformation of plant species other than woody species are well known in the art and are extensively referenced herein.

15

20

Identification of GTase sequences

The GTase sequence identification was carried out using GCG software (Wisconsin package, version 8.1). Blasta programme was used to search *Arabidopsis* protein sequences containing a PSPG (plant secondary product UDP-glucose glucosyltransferase) signature motif (Hughes and Hughes (1994) DNA Sequence 5, 41-49) in EMBL and GenBank sequence database. The database information on the GTases described in the present invention are listed in Table 1.

25

Amplification and cloning of the GTase sequences

The GTase sequences were amplified from *Arabidopsis thaliana* Columbia genomic DNA with specific primers (Table 2), following standard methodologies (Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). 50ng of genomic DNA isolated from Arabidopsis thaliana Columbia were incubated with 1 x pfu PCR buffer (Stratagene), 250 µM dNTPS, 50 pmole primer for each end, and 5 units of pfu DNA polymerase (Stratagene) in a total of 100 µl. The PCR reactions were carried out as outlined in the programme described in Table 3.

35

30

After PCR amplification, the products were double digested by appropriate restriction enzymes listed in Table 2 (bold type). The digested DNA fragments were purified using an electro-eluction method (Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) and ligated into the corresponding cloning site on pGEX2T plasmid DNA (Pharmacia) by T4 DNA ligase (NEB)

at 16°C overnight. The resulting recombinant plasmid DNA was amplified in E. coli XL1-blue cells and was confirmed with the restriction enzymes listed in Table 2 (bold type) following the method described by Sambrook et al (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Habor Laboratory, Cold Spring Harbor, NY).

Preparation of glucosyltransferase recombinant proteins

10

15

20

25

E. coli cells carrying recombinant plasmid DNA as described above were grown at 37°C overnight on 2YT (16 g bacto tryptone, 10 g bacto-yeast extract, 5 g NaCl per litre) agar (1.8% w/v) plate which contained 50 µg/ml ampicillin. A single colony was picked into 2 ml of 2YT containing the same concentration of ampicillin. The bacterial culture was incubated at 37°C with moderate agitation for 6h. The bacterial culture was transferred into 1 L of 2YT and incubated at 20°C subsequently. 0.1 mM IPTG was added when the culture reached logarithmic growth phase (A $_{600~nm}\sim0.5$). The bacterial culture was incubated for another 24 h. The cells were collected by a centrifugation at 7,000 x g for 5 min at 4°C and resuspended in 5 ml spheroblast buffer (0.5 mM EDTA, 750 mM sucrose, 200 mM Tris, pH 8.0). Lysozyme solution was added to a final concentration of 1 mg/ml. 7-fold volume of 0.5 x spheroblast buffer was poured into the suspension immediately and the suspension was incubated for 4°C for 30 min under gentle shaking. The spheroblasts were collected by a centrifugation at 12,000 x g for 5 min at 4°C, and resuspended in 5 ml ice cold PBL buffer (140 mM NaCl, 80 mM, NA2 HPO4, 15 mM KH2PO4). 2 mM of PMSF was added into suspension immediately and the suspension was centrifuged at 12,000 x g for 20 min at 4°C in order to remove the cell debris. After the centrifugation, the supernatant was transferred to a 15 ml tube. 200 μ l of 50% (v/v) slurry of Glutathione-coupled Sepharose 4B were added into the tube and the mixture was mixed gently for 30 min at room temperature. The mixture was then centrifuged at a very slow speed (500 x g) for 1 min. the supernatant was discarded. The beads were washed with 5 ml ice cold PBS buffer three times. After each wash, a short centrifugation was applied as described above to sediment the Sepharose beads. To recover the expressed protein from Sepharose beads, 100 μl of 20 mM reduced glutathione were used to resuspend the beads. After 10 min incubation at room temperature, the beads were collected and the supernatant containing the expressed protein was collected. The elution step was repeated once, and both supernatant fractions were combined and stored at 4°C for protein assay and further studies.

15

Protein concentration assay

The protein assays were carried out by adding 10 µl of protein solution into 900 µl of distilled water and 200 µl of Bio-Rad Protein Assay Dye. The absorbance at 595 nm was read. A series of BSA (bovine serium albumin) at different concentration was used as standard. Regression line was plotted based on the coordinates of the BSA concentration against the reading at 595 nm. The concentration of protein sample was therefore estimated from the regression line after the protein assay.

10 Assay for enzyme activity

A standard glucosylation reaction was set up by mixing 2 μ g of recombinant proteins with 14 mM 2-mercaptoethanol, 5 mM UDP-glucose, 1mM of various lignin or antioxidant substrate, 100 mM Tris, pH 7.0, to a total volume of 200 μ l. The reaction was carried out at 30°C for 30 min and stopped by the addition of 20 μ l trichloroacetic acid (240 mg/ml). All the samples were stored at -20°C before the liquid chromatographic assay.

High-Performance Liquid Chromatographic

Reverse-phase HPLC (Waters Separator 2690 and Waters Tunable Absorbance Detector 486, 20 Waters Limited, Herts, UK) using a Columbus 5 μ C₁₈ column (250 \times 4.60 mm, Phenomenex). Linear gradient of acetonitrile in H₂O (all solutions contained 0.1% trifluoroacetic acid) at 1 ml/min over 20 min, was used to separate the glucose conjugates from their aglycone. The HPLC methods were described as the following: cinnamic acid, λ_{288} _{nm}, 10-55% acetonitrile; *p*-coumaric acid, λ_{311} _{nm}, 10-25% acetonitrile; caffeic acid, λ_{311} _{nm}, 10-25 16% acetonitrile; ferulic acid, λ_{311} nm, 10-35% acetonitrile; sinapic acid, λ_{306} nm, 10-40% acetonitrile; p-coumaryl aldehyde, $\lambda_{315 \text{ nm}}$, 10-46% acetonitrile; coniferyl aldehyde, $\lambda_{283 \text{ nm}}$, 10-47% acetonitrile; sinapyl aldehyde, $\lambda_{280~nm}$, 10-47% acetonitrile; p-coumaryl alcohol, $\lambda_{283~nm}$, 10-27% acetonitrile; coniferyl alcohol, $\lambda_{306~nm}$, 10-25% acetonitrile; sinapyl alcohol, $\lambda_{285~nm}$, 10-25% acetonitrile. The retention time (R_t) of the glucose conjugates analysed is listed in the 30 following: cinnamoylglucose, $R_t = 12.3$ min; p-coumaroylglucose, $R_t = 10.6$ min; caffeoylglucose, $R_t = 8.5$ min; feruloylglucose, $R_t = 10.3$ min; sinapoylglucose, $R_t = 9.7$ min; caffeoyl-4-O-glucoside, $R_t = 6.8$ min; feruloyl-4-O-glucoside, $R_t = 7.8$ min; sinapoyl-4-Oglucoside. $R_1 = 8.2$ min; coniferin. $R_1 = 8.2$ min; syringin. $R_1 = 9.1$ min.

WO 01/59140 PCT/GB01/00477

The recombinant GTases were shown to have GTase activity towards the major intermediates of the lignin biosynthesis pathway (Tables 5 and 6). It is clear from these results that the GTases display different specific activity reaction profiles relative to each other on the various lignin precursor substrates utilised.

5

Michaelis-Menten kinetics were also studied on several of the GTases against their preferred substrates (Tables 7 and 8). It is clear from these results that the GTases display different enzyme kinetics for different substrates.

10

The results (in total) indicate that certain GTases show a greater potential for use in the alteration of lignin biosynthesis in *planta* than others.

Reducing the Formation of Monolignol Glucosides In Planta

In one approach to reduce the formation of monolignol glucosides in planta, A119 and A407 are down regulated using an antisense strategy (A). Expression of the A119 and A407 antisense sequences is driven by the gene's own promoter. An alternative approach (B) is to modify the UDP-glucose binding motif through an in vitro mutagenesis method (Lim et al., 1998) such that the mutant protein is able to bind the monolignol substrates but loses its catalytic activity. Such mutant proteins are thought to compete with the functional native protein by binding specifically to monolignols, thereby reducing the formation of monolignol glucosides.

Anti-sense approach

25 Amplification and cloning of the A119 and A407 promoter sequences

Approximately 2kb of the 5' flanking sequences of A119 and A407 are amplified directly from genomic DNA by PCR. The promoter fragments are then cloned into a pBluescript plasmid vector (Sambrook et al., 1989).

30

Construct chimaeric genes of A119 and A407 promoter and their ORF region in antisense orientation.

The A119 and A407 cDNA fragments are amplified from pGEXA119 and pGEXA407 by PCR. The fragments are then ligated correspondingly into the A119 and A407 promoter constructs described in (A)-(1) with the ORF region in the antisense orientation.

Preparation of binary construct containing the A119 and A407 antisense chimaeric gene

The DNA fragments containing the A119 and A407 antisense chimaeric genes are amplified by PCR from the chimaeric constructs described in (A)-(2). The fragments are then ligated into a binary vector (Sambrook et al., 1989). The final constructs are transformed into plants subsequently.

Mutant gene approach

10

15

5

In vitro site mutagenesis to modify the UDPglucose binding motif in A119 and A407

In vitro site mutagenesis is carried by PCR to modify the sequences encoding the UDPglucose binding motif in A119 and A407 (Lim et al., 1998). The constructs pGEXA119 and pGEXA407 are used in the DNA templates in the PCR reaction.

Construct chimaeric mutant genes regulated by A119 and A407 promoters

The A119 and A407 mutant genes are amplified from the pGEXA119 and pGEXA407 mutant constructs described in (B)-(1) by PCR. The A119 and A407 mutant gene fragments are then ligated into the A119 and A407 promoter constructs described in (A)-(1) with the ORF region in the sense orientation.

Preparation of binary construct containing the chimaeric mutant genes A119 and A407

25

20

The DNA fragments containing the A119 and A407 mutant chimaeric genes are amplified by PCR from the chimaeric constructs described in (B)-(2). The fragments are then ligated into a binary vector (Sambrook et al., 1989). The final constructs are transformed into plants subsequently.

30

35

Enhancing the formation of monolignol glucosides in planta

The CaMV 35S promoter fragment is used to drive the expression of A119 and A497. DNA fragments containing A119 and A407 ORF sequences are amplified from pGEXA119 and pGEXA407 correspondingly by PCR. The DNA fragments are ligated downstream of the

CaMV 35S promoter. The constructs are used to transform plants such that the lignin content and composition is altered.

Table 1 Database information on eleven Arabidopsis GTase genes

Gene	protein_id	chromosome	Database	BAC/P1	gene name in
name			acc. no.	clone	database
A062	Gi 3935156	I	ac005106	T25N20	T25N20.20
A320	Not annotated	Ш	ab019232	MIL23	not annotated
A41	Emb CAB10326.1	IV ·	z97339	FCA4	d13780c
A42	Emb CAB10327.1	IV	z97339	FCA4	d13785c
A43	Emb CAB10328.1	ľV	z97339	FCA4	d13790c
A911	Gi 2642451	п	ac002391	T20D16	T20D16.11
A119	Not annotated	v	ab018119	MSN2	not annotated .
A233	Wrongly annotated	IV	al021961	F28A23	wrongly annotated
A407	Gi 3319344	v .	af077407	F9D12	F9D12.4
A961	Gi 3582329	II	ac005496	T27A16	T27A16.15
A962	Gi 3582341	II	ac005496	T27A16	T27A16.16

Parameters used for the search of the above *Arabidopsis* sequences and the programme used are as follows:

10 NETBLAST with the default settings:

Infile2=nr

Matrix=Blosum 62

Translate=1

Dbtranslate=1

Table 2 DNA sequences and restriction enzyme sites in primers used in amplification of 11 Arabidopsis Gtase sequences from genomic DNA.

Sequence complementary to either end of the ORFs are underlined. Restriction enzyme sites that were used in making expression constructs were in BOLD type.

primer	DNA sequence (5'→3') restr	iction enzyme sites	
A062 5'	CGGGTGATCAGGTACCATGGCGCCACCGCATTTT	Bell and KpnI	
	<u>C</u>		
A062 3'	CGGAATTCGTCGAC <u>TTACTTTACTTTTACCTCCTC</u>	EcoRI and Sall	
A320 5'	CCCCCGGGTACCATGGAGCTAGAATCTTCTCTCC	Smal and Kpnl	
A320 3'	CGGAATTCTCGAG <u>TTAAAAGCTTTTGATTGATCC</u>	EcoRI and XhoI	
A41 5'	TGGGATCCATATCAGAAATGGTGTTC	BamHI	
A41 3'	GGGAATTCC <u>TAGTATCCATTATCTTTAGTC</u>	EcoRI	
A42 5'	GGGGATCCATGGACCCGTCTCGTCATACTC	BamHI	
A42 3'	GGGAATTCCACTAGTGTTCTCCGTTGTCTTC	EcoRI	
A43 5°	GGGGATCCAATATGGAGATGGAATCGTCGTTAC	BamHI	
A43 3'	GGGAATTCC <u>TTACACGACATTATTAATGTTTG</u>	EcoRI	
A911 5'	GGGGTACCTGATCAATAATGGGCAGTAGTGAGG	KpnI and BcII	
	G	repiir mid Deli	
A9113'	CGGAATTCGTCGACGAGTTAGGCGATTGTGATAT	EcoRI and SalI	
	<u> </u>	boord and ban	
A119 5'	CGGGATCCGGTACC <u>ATGCATATCACAAAACCAC</u>	BamHI and KpnI	
	<u>AC</u>	Dam'n and Kpin	
A1193'	CGGAATTCGCTAG <u>CTAAGCACCACGTGACAAGT</u>	EcoRI and NheI	
	CC	Cook and Mier	
A233 5'	CGGGATCCGGTACCATGAGTAGTGATCCTCATCG	RomUI and Vani	
	I	BamHI and KpnI	
A233 3'	CGGGATCCGAATT <u>CTACGAGGTAAACTCTTCTAT</u>	Dom UI and Car Di	
	G	BamHI and EcoRI	
	→		

A407 5'	CGGGATCCGGTACC <u>ATGCATATCACAAAACCAC</u>	BamHI and KpnI
A407 3'	CGGAATTCGTCGACCTAAGCACCACGTCCCAAG	EcoRI and Sall
A961 5'	GGGTGATCAGGTACC <u>ATGGGGAAGCAAGAAGAT</u>	Bell and Kpnl
	<u>G</u>	
A961 3'	CGGAATTCGTCGACTACTTATAGAAACGCC	EcoRI and Sall
	<u>G</u>	
A962 5'	GAAGATCTGGTACC <u>ATGGCGAAGCAGCAAGAAG</u>	Bgill and Kpnl
A962 3'	CGGAATTCGTCGAC <u>CGATCAAAGCCCATCTATG</u>	EcoRI and Sall

Table 3 PCR programme

Stage I (1 cycle)	Stage II (40 cycles)	Stage III (1 cycle)
95°C 5 min	95°C 1 min	95°C 2 min
55°C 2 min	55°C 1 min	55°C 2 min
72°C 3 min	72°C 2 min	72°C 5 min

Table 4 The HPLC conditions

Lignin Precursors	Acetonitrile Gradient (%)	Detector	
		Wavelength	
		(nm)	
cinnamic acid	10-55	288	
p-coumaric acid	10-25	311	
caffeic acid	10-16	311	
ferulic acid	10-35	311	
sinapic acid	10-40	306	
o-coumaryl aldehyde `	10-46	315	
coniferyl aldehyde	10-47	283	
sinapyl aldehyde	10-47	280	
o-coumaryl alcohol	10-27	283	
oniferyl alcohol	10-25	306	
inapyl alcohol	10-25	285	

Table 5 Specific activity of the recombinant GTases producing glucose ester against lignin precursors

Each assay contained 0.5 m⁻ of potential substrates, 5 mM UDPG and 0.2 μg of recombinant GTases in a total volume of 200 μl. The reactions were incubated at 20 °C for 30 min and were stopped by addition of 20 μl TCA (240 mg/ml). Each reaction mix was then analysed using HPLC. The specific activity (nkat/mg) of the recombinant GTase is defined as the amount of substrate (nmole) converted to glucose ester per second by 1 mg of protein at 20 °C under the reaction conditions.

~	·	<u> </u>				•
	A41	A320	A42	A43	A911	A06
						2
Cinnamic acid	0.30	0.06	14.21	0.02	8.77	1.62
p-coumaric acid	13.53	0.05	4.69	0.03	4.31	2.54
Caffeic acid	2.61	0.05	0.62	0.01	0.77	0.26
Ferulic acid	6.64	0.54	15.63	0.04	2.88	0.08
Sinapic acid	5.35	15.58	11.97	0.05	0.15	0.1

WO 01/59140 PCT/GB01/00477

Table 6 Specific activity of the recombinant GTases producing O-glucosides against lignin precursors

The reactions were set up following the conditions described in Table 1. All the reactions, except those containing the aldehydes, were stopped by the addition of TCA. The aldehyde assay mixs were injected into HPLC immediately after the reactions were completed. The specific activity (nkat/mg) of the recombinant GTase is defined as the amount of substrate (nmole) converted to 4-O-glucoside per second by 1 mg of protein at 30 °C under the reaction conditions.

10

5

	A233	A119	A407	A961	A962
Cinnamic acid	NDª	ND	ND	ND	ND
p-coumaric acid	0.09	0.02	0.01	0.01	0.01
caffeic acid	0.48	0.13	0.07	0.07	ND
ferulic acid	0.37	14.48	0.25	ND	ND
sinapic acid	0.39	102.56	65.39	0.01	0.01
p-coumaryl aldehyde	ND	0.03	ND	0.01	0.02
Coniferyl aldehyde	ND	1.08	ND	0.16	0.34
sinapyl aldehyde	ND	4.55	ND	0.57	0.50
p-coumaryl alcohol	ND	ND	ND	ND	ND
Coniferyl alcohol	0.46	67.53	2.78	0.57	0.49
sinapyl alcohol	0.05	126.16	114.76	0.35	0.45

^aND, not detected

15

Table 7 Kinetic studies on the recombinant GTases producing glucose esters against lignin precursors

	A41		A320		A42	*	A911		A062	
	K _m	V _{max}	K _m	V _{max}	K _m	V_{max}	K _m	V_{max}	K _m	V _{max}
•	MM	nkat/mg	mM	nkat/mg	mM	nkat/m	mM	nkat/m	mM	nkat/
						g		g		mg
	1.51	_	1.80		0.72	_	. 1.05		2.36	_
		-	· 		0.49	19.42	0.05	9.06	4.33	2.87
	0.10	16.13		_	0.40	6.67	0.39	11.10	5.05	4.91
	0.06	20.24	_	·	0.20	1.67	0.23	1.18	_	·
	0.35	11.35			0.36	18.35	0.34	6.91	· .	_
	0.24	6.78	0.06	8.37	0.13	12.80	_	· <u> </u>	—	

WO 01/59140 PCT/GB01/00477

Table 8 Kinetic studies on the recombinant GTases producing O-glucosides against lignin precursors

	A119		A407	
	K _m	V_{max}	K _m	V _{max}
	mM	nkat/mg	mM	nkat/mg
UDPG	0.93		0.89	_
ferulic acid	0.25			
		18.87		
sinapic acid	0.51		0.14	75.19
		131.58		
coniferyl	0.26	·		_
alcohol		92.59		•
sinapyl alcohol	1.10		1.07	357.10
		322.58		

Table 9

¹H and ¹³C NMR spectra were recorded in deuterated methanol at 500 MHz and 125 MHz respectively. Chemical shifts are given on δ scale with TMS as internal standard. The position on the aromatic ring begins with the carbon joining the propanoic acid. d, doublet; dd, doublet of doublets; m, multiplet; J, coupling constant.

Position	Caffeic acid		Caffeoyl-3-O-glucoside	
	$\delta_{\! ext{H}}$	$\delta_{\! ext{C}}$	δ_{H}	$\delta_{\!\scriptscriptstyle m C}$
<u>C1</u>	_	128.1	_	127.6
C2	7.02 (1H, d, J = 2.0 Hz)	115.2	7.47 (1H, d , J = 2.0 Hz)	117.0
C3		146.7		146.0
C4		149.4		150.6
C5	6.77 (1H, d, J = 8.0 Hz)	116.6	6.84 (1H, d, J = 8.5 Hz)	117.8
C6	6.92 (1H, dd, J = 8.0, 2.0	122.8	7.13 (1H, dd, J = 8.5, 2.0 Hz)	125.6
	Hz)			
C7	7.53 (1H, d , J = 16.0 Hz)	146.9	7.45 (1H, d, J = 14.5 Hz)	146.6
C8	6.21 (1H, d , J = 15.5 Hz)	116.3	6.33 (1H, d, J = 14.5 Hz)	116.1
C9	<u> </u>	171.5		170.4
Glc-1			~4.86 (signal interrupted)	103.9
Glc-2	•)	74.5
Glc-3	· ·		2 40 2 50 (411)	78.0
Glc-4	•		3.40-3.50 (4H, m)	71.0
Glc-5	•		J	<i>7</i> 7.2
Glc-6			3.93 (1H, dd, J = 12.0, 2.0 Hz)	62.4
·			3.71 (1H, dd, J = 12.0, 5.5 Hz)	

Table 10

Each assay contained 1 \pm g of UGT71C1, 1 mM phenolic compound, 5 mM UDP-glucose, 1.4 mM 2-mercaptoethanol and 50 mM TRIS-HCl, pH 7.0. The mix was incubated at 30 °C for 30 min. The reaction was stopped by the addition of 20 \pm 1 of trichloroacetic acid (240 mg/ml) and was analysed by reverse-phase HPLC subsequently. The results represent the mean of three replicates \pm standard deviation.

Substrate	Specific activity
	nkat/mg
o-Coumaric acid	1.5 ± 0.2
m-Coumaric acid	1.2 ± 0.2
p-Coumaric acid	0
Caffeic acid	2.9 ± 0.8
Ferulic acid	0
Sinapic acid	.0
Esculetin	34.8 ± 4.2
Scopoletin	29.4 ± 3.9
Salicylic acid	0
4-hydroxybenzoic acid	0
3,4-dihydroxybenzoic acid	0
Eriodictyol	0
Luteolin	0.7 ± 0.1
Quercetin	1.4 ± 0.4
Catechin	0
Cyanidin	0

CLAIMS

20

- 1. A transgenic plant comprising a nucleic acid molecule which encodes a polypeptide which:
- 5 i) has GTase activity;
 - v) is selected from the group comprising: sequences of Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32.
 - vi) nucleic acids which hybridise to the sequences represented in (ii) above; and
- 10 vii) nucleic acid sequences which are degenerate as a result of the genetic code to the sequences defined in (ii) and (iii) above.
- A transgenic plant according to Claim 1 wherein the nucleic acid molecule anneals under stringent hybridisation conditions to the sequence presented in Figures 1A, 2A, 3A, 4A,
 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32.
 - 3. A transgenic plant according to Claim 1 or 2 wherein the nucleic acid molecule is selected from Figure 7A or 9A.
 - 4. A transgenic plant comprising a nucleic acid molecule wherein the nucleic acid molecule is selected from the group comprising:
 - i) antisense sequences selected from the group comprising: sequences of Figures 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C, 10C and 11C or parts thereof, or antisense sequences of the sense sequences presented in Figs 12 32;
 - ii) antisense sequences which will hybridise to the sense sequences according to any of Claims 1 -3 and which inhibit GTase activity.
- 5. A transgenic plant according to Claim 4 wherein the antisense sequence is selected from Figure 7C or 9C.
 - 6. A transgenic plant according to any of Claims 1-5 wherein the nucleic acid is cDNA.
- 7. A transgenic plant according to any of Claims 1-5 wherein the nucleic acid is genomic DNA.

- 8. A transgenic plant according to any of Claims 1-7 wherein the plant is a woody plant selected from: poplar; eucalyptus; Douglas fir; pine; walnut; ash; birch; oak; teak; spruce.
- 9. A transgenic plant according to Claim 8 wherein the woody plant is a plant used typically in the paper industry, for example poplar.
 - 10. A transgenic plant according to any of Claims 1-7 wherein the plant is a non-woody plant species.

- 11 A method for the manufacture of paper or board comprising:
- i) pulping transgenic wood material derived from a transgenic woody plant according to any of Claims 1-10; and
- ii) producing paper from said pulped transgenic wood material.

15

- 12. Paper having the characteristics of paper manufactured by the method according to Claim 11.
- 13. A product comprising the paper according to Claim 12.

20

- 14. A transgenic eukaryotic cell comprising a nucleic acid molecule which encodes a polypeptide which:
- i) has GTase activity;
- ii) is selected from the group comprising sequences of Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32;
 - iii) nucleic acids which hybridise to the sequences represented in (ii) above; and
 - iv) nucleic acid sequences which are degenerate as a result of the genetic code to the sequences defined in (ii) and (iii) above.

- 15 A transgenic eukaryotic cell according to Claim 14 wherein the nucleic acid sequences is selected from: Figures 1A, 3A, 4A, 5A, 8A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32.
- 35 16 A transgenic eukaryotic cell according to Claim 15 wherein the nucleic acid sequence is presented in Figure 1A, 3A, 4A, 5A,7A, 8A, 9A, 10A.

- 17 Use of the eukaryotic cell according to any of Claims 14 -16 for the glucosylation of: caffeic acid; luteolin; quercitin; catechin; syadinin.
- 18. A transgenic prokaryotic cell comprising a nucleic acid molecule which encodes a polypeptide which:
 - i) has GTase activity;
 - ii) is selected from the group comprising sequences of Figures 1A, 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32;
- 10 iii) nucleic acids which hybridise to the sequences represented in (ii) above; and nucleic acid sequences which are degenerate as a result of the genetic code to the sequences defined in (ii) and (iii) above.
- 19 A transgenic prokaryotic cell according to Claim 18 wherein the nucleic acid sequences 15 is selected from: Figures 1A, 3A, 4A, 5A, 8A, 10A, 11A, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32.
 - 20 A transgenic prokaryotic cell according to Claim 19 wherein the nucleic acid sequence is presented in Figure 1A, 3A, 4A, 5A,7A, 8A, 9A, 10A.
 - 21. Use of the prokaryotic cell according to any of Claims 18 20 for the glucosylation of: caffeic acid; luteolin; quercitin; catechin; syadinin.

PCT/GB01/00477

FIGURE 1A A062 SENSE NUCLEOTIDE SEQUENCE

ATGGCGCCAC CGCATTTTCT ACTGGTAACG TTTCCGGCGC AAGGTCACGT 51 GAACCCATCT CTCCGTTTTG CTCGTCGGCT CATCAAAAGA ACCGGCGCAC GTGTCACTTT CGTCACTTGT GTCTCCGTCT TCCACAACTC CATGATCGCA 101 AACCACAACA AAGTCGAAAA TCTCTCTTTC CTTACTTTCT CCGACGGTTT CGACGATGGA GGCATTTCCA CCTACGAAGA CCGTCAGAAA AGGTCGGTGA 201 ATCTCAAGGT TAACGGCGAT AAGGCACTAT CGGATTTCAT CGAAGCTACT 251 AAGAATGGTG ACTCTCCCGT GACTTGCTTG ATCTACACGA TTCTTCTCAA TTGGGCTCCA AAAGTAGCAC GTAGATTTCA ACTTCCCTCC GCTCTTCTCT 351 401 GGATCCAACC GGCTTTGGTT TTCAACATCT ATTACACTCA TTTCATGGGA AACAAGTCCG TTTTCGAGTT ACCTAATCTG TCTTCTCTGG AAATCAGAGA 451 TCTTCCATCT TTCCTCACAC CTTCCAACAC AAACAAAGGC GCATACGATG 501 CGTTTCAAGA AATGATGGAG TTTCTCATAA AAGAAACCAA ACCGAAAATT CTCATCAACA CTTTCGATTC GCTGGAACCA GAGGCCTTAA CGGCTTTCCC 601 GAATATCGAT ATGGTGGCGG TTGGTCCTTT ACTTCCCACG GAGATTTTCT 651 CAGGAAGCAC CAACAAATCA GTTAAAGATC AAAGTAGTAG TTATACACTT TGGCTAGACT CGAAAACAGA GTCCTCTGTT ATTTACGTTT CCTTTGGAAC 751 AATGGTTGAG TTGTCCAAGA AACAGATAGA GGAACTAGCG AGAGCACTCA 801 TAGAAGGGAA ACGACCGTTT TTGTGGGTTA TAACTGATAA ATCCAACAGA 851 901 GAAACGAAAA CAGAAGGAGA AGAAGAGACA GAGATTGAGA AGATAGCTGG 951 ATTCAGACAC GAGCTTGAAG AGGTTGGGAT GATTGTGTCG TGGTGTTCGC 1001 AGATAGAGGT TTTAAGTCAC CGAGCCGTAG GTTGTTTTGT GACTCATTGT 1051 GGGTGGAGCT CGACGCTGGA GAGTTTGGTT CTTGGCGTTC CGGTTGTGGC GTTTCCGATG TGGTCGGATC AACCGACGAA CGCGAAGCTA CTGGAAGAAA 1101 GTTGGAAGAC TGGTGTGAGG GTAAGAGAGA ACAAGGATGG TTTGGTGGAG AGAGGAGAGA TCAGGAGGTG TTTGGAAGCC GTGATGGAGG AGAAGTCGGT 1201 GGAGTTGAGG GAAAACGCAA AGAAATGGAA GCGTTTAGCG ATGGAAGCGG 1251 GTAGAGAAGG AGGATCTTCG GATAAGAACA TGGAGGCTTT TGTGGAGGAT ATTTGTGGAG AATCTCTTAT TCAAAACTTG TGTGAAGCAG AGGAGGTAAA 1351 **AGTAAAGTAA**

PCT/GB01/09477

FIGURE 1B A062 AMINO ACID SEQUENCE

1	MAPPHFLLVT	FPAQGHVNPS	LRFARRLIKR	TGARVTFVTC	VSVFHNSMIA
51	NHNKVENLSF	LTFSDGFDDG	GISTYEDRQK	RSVNLKVNGD	KALSDFIEAT
101	KNGDSPVTCL	IYTILLNWAP	KVARRFQLPS	ALLWIQPALV	FNIYYTHFMG
151	NKSVFELPNL	SSLEIRDLPS	FLTPSNTNKG	AYDAFQEMME	FLIKETKPKI
201	LINTFDSLEP	EALTAFPNID	MVAVGPLLPT	EIFSGSTNKS	VKDQSSSYTL
251	WLDSKTESSV	IYVSFGTMVE	LSKKQIEELA	RALIEGKRPF	LWVITDKSNR
301	ETKTEGEEET	EIEKIAGFRH	ELEEVGMIVS	WCSQIEVLSH	RAVGCFVTHC
351	GWSSTLESLV	LGVPVVAFPM	WSDQPTNAKL	LEESWKTGVR	VRENKDGLVE
101	RGEIRRCLEA	VMEEKSVELR	ENAKKWKRLA	MEAGREGGSS	DKNMEAFVED
1 5 1	TOCEST TONE	CENERUMAN	•		

FIGURE 1C A062 ANTISENSE NUCLEOTIDE SEQUENCE

1	TTACTTTACT	TTTACCTCCT	CTGCTTCACA	CAAGTTTTGA	ATAAGAGATT
51	CTCCACAAAT	ATCCTCCACA	AAAGCCTCCA	TGTTCTTATC	CGAAGATCCT
101	CCTTCTCTAC	CCGCTTCCAT	CGCTAAACGC	TTCCATTTCT	TTGCGTTTTC
151	CCTCAACTCC	ACCGACTTCT	CCTCCATCAC	GGCTTCCAAA	CACCTCCTGA
201	TCTCTCCTCT	CTCCACCAAA	CCATCCTTGT	TCTCTCTTAC	CCTCACACCA
251	GTCTTCCAAC	TTTCTTCCAG	TAGCTTCGCG	TTCGTCGGTT	GATCCGACCA
301	CATCGGAAAC	GCCACAACCG	GAACGCCAAG	AACCAAACTC	TCCAGCGTCG
351	AGCTCCACCC	ACAATGAGTC	ACAAAACAAC	CTACGGCTCG	GTGACTTAAA
401	ACCTCTATCT	GCGAACACCA	CGACACAATC	ATCCCAACCT	CTTCAAGCTC
451	GTGTCTGAAT	CCAGCTATCT	TCTCAATCTC	TGTCTCTTCT	TCTCCTTCTG
501	TTTTCGTTTC	TCTGTTGGAT	TTATCAGTTA	TAACCCACAA	AAACGGTCGT
551	TTCCCTTCTA	TGAGTGCTCT	CGCTAGTTCC	TCTATCTGTT	TCTTGGACAA
601	CTCAACCATT	GTTCCAAAGG	AAACGTAAAT	AACAGAGGAC	TCTGTTTTCG
651	AGTCTAGCCA	AAGTGTATAA	CTACTACTTT	GATCTTTAAC	TGATTTGTTG
701	GTGCTTCCTG	AGAAAATCTC	CGTGGGAAGT	AAAGGACCAA	CCGCCACCAT
751	ATCGATATTC	GGGAAAGCCG	TTAAGGCCTC	TGGTTCCAGC	GAATCGAAAG
801	TGTTGATGAG	AATTTTCGGT	TTGGTTTCTT	TTATGAGAAA	CTCCATCATT
851	TCTTGAAACG	CATCGTATGC	GCCTTTGTTT	GTGTTGGAAG	GTGTGAGGAA
901	AGATGGAAGA	TCTCTGATTT	CCAGAGAAGA	CAGATTAGGT	AACTCGAAAA
951	CGGACTTGTT	TCCCATGAAA	TGAGTGTAAT	AGATGTTGAA	AACCAAAGCC
1001	GGTTGGATCC	AGAGAAGAGC	GGAGGGAAGT	TGAAATCTAC	GTGCTACTTT.
1051	TGGAGCCCAA	TTGAGAAGAA	TCGTGTAGAT	CAAGCAAGTC	ACGGGAGAGT
1101	CACCATTCTT	AGTAGCTTCG	ATGAAATCCG	ATAGTGCCTT	ATCGCCGTTA
1151	ACCTTGAGAT	TCACCGACCT	TTTCTGACGG	TCTTCGTAGG	TGGAAATGCC
1201	TCCATCGTCG	AAACCGTCGG	AGAAAGTAAG	GAAAGAGAGA	TTTTCGACTT
1251	TGTTGTGGTT	TGCGATCATG	GAGTTGTGGA .	AGACGGAGAC	ACAAGTGACG
1301	AAAGTGACAC	GTGCGCCGGT	TCTTTTGATG	AGCCGACGAG	CAAAACGGAG
1351	AGATGGGTTC	ACGTGACCTT	GCGCCGGAAA	CGTTACCAGT	AGAAAATGCG
1401	GTGGCGCCAT				

FIGURE 2A A320 SENSE NUCLEOTIDE SEQUENCE

1	ATGGAGCTAG	AATCTTCTCC	TCCTCTACCT	CCTCATGTGA	TGCTCGTATC
51	TTTTCCAGG	CAAGGCCACG	TTAATCCACT	TCTTCGTCTT	GGTAAGCTCT
101	TAGCTTCAAA	GGGTTTGCTC	ATAACCTTCG	TCACCACTGA	GTCATGGGGC
151	AAAAAGATGO	GAATCTCCAA	CAAAATCCAA	GACCGTGTCC	TCAAACCGGT
201	TGGTAAAGGC	TATCTCCGGT	ATGATTTCTT	CGACGACGGG	CTTCCTGAAG
251	ACGACGAAGO	TAGCAGAACC	AACTTAACCA	TCCTCCGACC	ACATCTAGAG
301	CTGGTCGGCA	AAAGAGAGAT	CAAGAACCTT	GTGAAACGTT	ACAAGGAAGT
351	AACGAAACAG	CCCGTGACAT	GTCTTATCAA	CAACCCTTTC	GTCTCTTGGG
401	TCTGTGACGT	GGCAGAAGAT	CTTCAAATCC	CTTGTGCTGT	TCTTTGGGTT
451	CAATCTTGTG	CCTGCTTAGC	TGCTTATTAC	TATTACCACC	ACAACCTAGT
501	TGACTTCCCG	ACCAAAACAG	AACCCGAGAT	CGATGTCCAA	ATCTCTGGCA
551	TGCCTCTCTT	GAAACATGAC	GAGATCCCTT	CTTTCATTCA	CCCTTCAAGT
601	CCTCACTCCG	CTTTGCGAGA	AGTGATCATA	GATCAGATTA	AACGGCTTCA
651	CAAGACTTTC	TCCATTTTCA	TCGACACTTT	CAACTCATTG	GAGAAAGACA
701	TCATTGACCA	CATGTCGACG	СТСТСТСТСС	CCGGTGTTAT	CAGACCGCTA
751	GGACCACTCT	ACAAAATGGC	TAAAACCGTA	GCTTATGATG	TCGTTAAAGT
801	AAACATCTCT	GAGCCAACGG	ATCCTTGCAT	GGAGTGGTTA	GACTCGCAGC
851	CAGTTTCCTC	CGTTGTTTAC	ATCTCATTCG	GGACCGTTGC	TTACTTGAAA
901	CAAGAACAAA	TAGACGAGAT	CGCTTACGGT	GTGTTAAACG	CCGACGTTAC
951	GTTCTTGTGG	GTGATTAGAC	AACAAGAGTT	AGGTTTCAAC	AAAGAGAAA <u>C</u>
1001	ATGTTTTGCC	GGAAGAAGTT	AAAGGGAAAG	GGAAGATCGT	TGAATGGTGT
1051	TCACAAGAGA	AAGTATTATC	TCATCCTTCA	GTGGCATGTT	TCGTGACTCA
1101	CTGTGGATGG	AACTCAACGA	TGGAAGCTGT	GTCTTCCGGA	GTCCCGACGG
1151	TTTGTTTTCC	TCAATGGGGA	GATCAAGTCA	CGGACGCCGT	TTACATGATC
1201	GATGTTTGGA	AGACGGGAGT	GAGGCTAAGC	CGTGGAGAGG	CGGAGGAGAG
1251	GTTAGTGCCG	AGGGAGGAAG	TTGCGGAGAG	GTTGAGAGAG	GTTACTAAAG
1301	GAGAGAAAGC	GATCGAGTTG	AAAAAGAATG	CTTTGAAGTG	GAAGGAAGAG
. 1351	GCGGAGGCGG	CGGTTGCTCG	CGGTGGTTCG	TCGGATAGGA	ATCTTGAAAA
1401	GTTTGTGGAG	AAGTTGGGTG	CCAAACCTGT	GGGGAAAGTA	CAAAACGGGA
1451	GTCATAATCA	TGTCTTGGCT	GGATCAATCA	AAAGCTTTTA	A

PCT/GB01/00477

FIGURE 2B A320 AMINO ACID SEQUENCE

	1	MELESSPPLP	PHVMLVSFPG	QGHVNPLLRL	GKLLASKGLL	ITFVTTESWG
	51	KKMRISNKIQ	DRVLKPVGKG	YLRYDFFDDG	LPEDDEASRT	NLTILRPHLE
	101	LVGKREIKNL	VKRYKEVTKQ	PVTCLINNPF	VSWVCDVAED	LQIPCAVLWV
-	151	OSCACLAAYY	YYHHNLVDFP	TKTEPEIDVQ	ISGMPLLKHD	EIPSFIHPSS
	201	PHSALREVII	DQIKRLHKTF	SIFIDTFNSL	EKDIIDHMST	LSLPGVIRPL
	251	GPLYKMAKTV	AYDVVKVNIS	EPTDPCMEWL	DSQPVSSVVY	ISFGTVAYLK
	301	QEQIDEIAYG	VLNADVTFLW	VIRQQELGFN	KEKHVLPEEV	KGKGKIVEWC
	351	SQEKVLSHPS	VACFVTHCGW	NSTMEAVSSG	VPTVCFPQWG	DQVTDAVYMI
	401	DVWKTGVRLS	RGEAEERLVP	REEVAERLRE	VTKGEKAIEL	KKNALKWKEE
	451	AEAAVARGGS	SDRNLEKFVE	KLGAKPVGKV	QNGSHNHVLA	GSIKSF

FIGURE 2C A320 ANTISENSE NUCLEOTIDE SEQUENCE

1	TTAAAAGCTT TTGATTGATC CAGCCAAGAC ATGATTATGA CTCCCGTTTT
51	GTACTTTCCC CACAGGTTTG GCACCCAACT TCTCCACAAA CTTTTCAAGA
101	TTCCTATCCG ACGAACCACC GCGAGCAACC GCCGCCTCCG CCTCTTCCTT
151	CCACTTCAAA GCATTCTTT TCAACTCGAT CGCTTTCTCT CCTTTAGTAA
201	CCTCTCTCAA CCTCTCCGCA ACTTCCTCCC TCGGCACTAA CCTCTCCTCC
251	GCCTCTCCAC GGCTTAGCCT CACTCCCGTC TTCCAAACAT CGATCATGTA
301	AACGGCGTCC GTGACTTGAT CTCCCCATTG AGGAAAACAA ACCGTCGGGA
351	CTCCGGAAGA CACAGCTTCC ATCGTTGAGT TCCATCCACA GTGAGTCACG
401	AAACATGCCA CTGAAGGATG AGATAATACT TTCTCTTGTG AACACCATTC
451	AACGATCTTC CCTTTCCCTT TAACTTCTTC CGGCAAAACA TGTTTCTCTT
501	TGTTGAAACC TAACTCTTGT TGTCTAATCA CCCACAAGAA CGTAACGTCG
551	GCGTTTAACA CACCGTAAGC GATCTCGTCT ATTTGTTCTT GTTTCAAGTA
601	AGCAACGGTC CCGAATGAGA TGTAAACAAC GGAGGAAACT GGCTGCGAGT
651	CTAACCACTC CATGCAAGGA TCCGTTGGCT CAGAGATGTT TACTTTAACG
701	ACATCATAAG CTACGGTTTT AGCCATTTTG TAGAGTGGTC CTAGCGGTCT
751	GATAACACCG GGGAGAGAGA GCGTCGACAT GTGGTCAATG ATGTCTTTCT
801,	CCAATGAGTT GAAAGTGTCG ATGAAAATGG AGAAAGTCTT GTGAAGCCGT
851	TTAATCTGAT CTATGATCAC TTCTCGCAAA GCGGAGTGAG GACTTGAAGG
901	GTGAATGAAA GAAGGGATCT CGTCATGTTT CAAGAGAGGC ATGCCAGAGA
951	TTTGGACATC GATCTCGGGT TCTGTTTTGG TCGGGAAGTC AACTAGGTTG
1001	TGGTGGTAAT AGTAATAAGC AGCTAAGCAG GCACAAGATT GAACCCAAAG
1051	AACAGCACAA GGGATTTGAA GATCTTCTGC CACGTCACAG ACCCAAGAGA
1101	CGAAAGGGTT GTTGATAAGA CATGTCACGG GCTGTTTCGT TACTTCCTTG
1151	TAACGTTTCA CAAGGTTCTT GATCTCTCTT TTGCCGACCA GCTCTAGATG
1201	TGGTCGGAGG ATGGTTAAGT TGGTTCTGCT AGCTTCGTCG TCTTCAGGAA
1251	GCCCGTCGTC GAAGAAATCA TACCGGAGAT AGCCTTTACC AACCGGTTTG
1301	AGGACACGGT CTTGGATTTT GTTGGAGATT CGCATCTTTT TGCCCCATGA
. 1351	CTCAGTGGTG ACGAAGGTTA TGAGCAAACC CTTTGAAGCT AAGAGCTTAC
1401	CAAGACGAAG AAGTGGATTA ACGTGGCCTT GCCCTGGAAA AGATACGAGC
1451	ATCACATGAG GAGGTAGAGG AGGAGAAGAT TCTAGCTCCA T

FIGURE 3A A41 SENSE NUCLEOTIDE SEQUENCE

1	ATGGGATCCA	TATCAGAAAT	GGTGTTCGAA	ACTTGTCCAT	CTCCAAACCC
51	AATTCATGTA	ATGCTCGTCT	CGTTTCAAGG	ACAAGGCCAC	GTCAACCCTC
101	TTCTTCGTCT	CGGCAAGTTA	ATTGCTTCAA	AGGGTTTACT	CGTTACCTTC
, 151	GTTACAACGG	AGCTTTGGGG	CAAGAAAATG	AGACAAGCCA	ACAAAATCGT
201	TGACGGTGAA	CTTAAACCGG	TTGGTTCCGG	TTCAATCCGG	TTTGAGTTCT
251	TTGATGAAGA	ATGGGCAGAG	GATGATGACC	GGAGAGCTGA	TTTCTCTTTG
301	TACATTGCTC	ACCTAGAGAG	CGTTGGGATA	CGAGAAGTGT	CTAAGCTTGT
351	GAGAAGATAC	GAGGAAGCGA	ACGAGCCTGT	CTCGTGTCTT	ATCAATAACC
401	CGTTTATCCC	ATGGGTCTGC	CACGTGGCGG	AAGAGTTCAA	CATTCCTTGT
451	GCGGTTCTCT	GGGTTCAGTC	TTGTGCTTGT	ТТСТСТССТТ	ATTACCATTA
501	CCAAGATGGC	TCTGTTTCAT	TCCCTACGGA	AACAGAGCCT	GAGCTCGATG
551	TGAAGCTTCC	TTGTGTTCCT	GTCTTGAAGA	ACGACGAGAT	TCCTAGCTTT
601	CTCCATCCTT	CTTCTAGGTT	CACGGGTTTT	CGACAAGCGA	TTCTTGGGCA
651	ATTCAAGAAT	CTGAGCAAGT	CCTTCTGTGT	TCTAATCGAT	TCTTTTGACT
701	CATTGGAACA	AGAAGTTATC	GATTACATGT	CAAGTCTTTG	TCCGGTTAAA
751	ACCGTTGGAC	CGCTTTTCAA	AGTTGCTAGG	ACAGTTACTT	CTGACGTAAG
801	CGGTGACATT	TGCAAATCAA	CAGATAAATG	CCTCGAGTGG	TTAGACTCGA
851	GGCCTAAATC	GTCAGTTGTC	TACATTTCGT	TCGGGACAGT	TGCATATTTG
901	AAGCAAGAAC	AGATCGAAGA	GATCGCTCAC	GGAGTTTTGA	AGTCGGGTTT
951	ATCGTTCTTG	TGGGTGATTA	GACCTCCACC	ACACGATCTG	AAGGTCGAGA
1001	CACATGTCTT	GCCTCAAGAA	CTTAAAGAGA	GTAGTGCTAA	AGGTAAAGGG
1051	ATGATTGTGG	ATTGGTGCCC	ACAAGAGCAA	GTCTTGTCTC	ATCCTTCAGT
1101	GGCATGCTTC	GTGACTCATT	GTGGATGGAA	CTCGACAATG	GAATCTTTGT
1151	CTTCAGGTGT	TCCGGTGGTT	TGTTGTCCGC	AATGGGGAGA	TCAAGTGACT
1201	GATGCAGTGT	ATTTGATCGA	TGTTTTCAAG	ACCGGGGTTA	GACTAGGCCG
1251	TGGAGCGACC	GAGGAGAGGG	TAGTGCCAAG	GGAGGAAGTG	GCGGAGAAGC
1301	TTTTGGAAGC	GACAGTTGGG	GAGAAGGCAG	AGGAGTTGAG	AAAGAACGCT
1351	TTGAAATGGA	AGGCGGAGGC	GGAAGCAGCG	GTGGCTCCAG	GAGGTTCGTC
1401	GGATAAGAAT	TTTAGGGAGT	TTGTGGAGAA	GTTAGGTGCG	GGAGTAACGA
1451	AGACTAAAGA	TAATGGATAC	TAG		

PCT/GB01/00477.

FIGURE 3B A41 AMINO ACID SEQUENCE

1	MALEICESEN	PIHAMPASEÖ	GOGHANATTE	LGKLIASKGL	LVTFVTTELW
51	GKKMRQANKI	VDGELKPVGS	GSIRFEFFDE	EWAEDDDRRA	DFSLYIAHLE
101	SVGIREVSKL	VRRYEEANEP	VSCLINNPFI	PWVCHVAEEF	NIPCAVLWVC
151	SCACFSAYYH	YQDGSVSFPT	ETEPELDVKL	PCVPVLKNDE	IPSFLHPSSR
201	FTGFRQAILG	QFKNLSKSFC	VLIDSFDSLE	QEVIDYMSSL	CPVKTVGPLF
251	KVARTVTSDV	SGDICKSTDK	CLEWLDSRPK	SSVVYISFGT	VAYLKQEQIE
301	EIAHGVLKSG	LSFLWVIRPP	PHDLKVETHV	LPQELKESSA	KGKGMIVDWC
351	PQEQVLSHPS	VACFVTHCGW	NSTMESLSSG	VPVVCCPQWG	DQVTDAVYLI
101	DVFKTGVRLG	RGATEERVVP	REEVAEKLLE	ATVGEKAEEL	RKNALKWKAE
151	AEAAVAPGGS	SDKNFREFVE	KLGAGVTKTK	DNGY .	

FIGURE 3C A41 ANTISENSE NUCLEOTIDE SEQUENCE

	1	CTAGTATCCA	TTATCTTTAG	TCTTCGTTAC	TCCCGCACCT	AACTTCTCCA
	51	CAAACTCCCT	AAAATTCTTA	TCCGACGAAC	CTCCTGGAGC	CACCGCTGCT
	101	TCCGCCTCCG	CCTTCCATTT	CAAAGCGŤTC	TTTCTCAACT	CCTCTGCCTT
	151	CTCCCCAACT	GTCGCTTCCA	AAAGCTTCTC	CGCCACTTCC	TCCCTTGGCA
	201	CTACCCTCTC	CTCGGTCGCT	CCACGGCCTA	GTCTAACCCC	GGTCTTGAAA
	251	ACATCGATCA	AATACACTGC	ATCAGTCACT	TGATCTCCCC	ATTGCGGACA
	301	ACAAACCACC	GGAACACCTG	AAGACAAAGA	TTCCATTGTC	GAGTTCCÁTC
	351	CACAATGAGT	CACGAAGCAT	GCCACTGAAG	GATGAGACAA	GACTTGCTCT
	401	TGTGGGCACC	AATCCACAAT	CATCCCTTTA	CCTTTAGCAC	TACTCTCTTT
	451	AAGTTCTTGA	GGCAAGACAT	GTGTCTCGAC	CTTCAGATCG	TGTGGTGGAG
	501	GTCTAATCAC	CCACAAGAAC	GATAAACCCG	ACTTCAAAAC	TCCGTGAGCG
	551	ATCTCTTCGA	TCTGTTCTTG	CTTCAAATAT	GCAACTGTCC	CGAACGAAAT
	601	GTAGACAACT	GACGATTTAG	GCCTCGAGTC	TAACCACTCG	AGGCATTTAT
	651	CTGTTGATTT	GCAAATGTCA	CCGCTTACGT	CAGAAGTAAC	TGTCCTAGCA
	701	ACTTTGAAAA	GCGGTCCAAC	GGTTTTAACC	GGACAAAGAC	TTGACATGTA
	751	ATCGATAACT	TCTTGTTCCA	ATGAGTCAAA	AGAATCGATT	AGAACACAGA
	801	AGGACTTGCT	CAGATTCTTG	AATTGCCCAA	GAATCGCTTG	TCGAAAACCC
	851	GTGAACCTAG	AAGAAGGATG	GAGAAAGCTA	GGAATCTCGT	CGTTCTTCAA
	901	GACAGGAACA	CAAGGAAGCT	TCACATCGAG	CTCAGGCTCT	GTTTCCGTAG
	95i	GGAATGAAAC	AGAGCCATCT	TGGTAATGGT	AATAAGCAGA	GAAACAAGCA
1	001	CAAGACTGAA	CCCAGAGAAC	CGCACAAGGA	ATGTTGAACT	CTTCCGCCAC
1	051	GTGGCAGACC	CATGGGATAA	ACGGGTTATT	GATAAGACAC	GAGACAGGCT
1	101	CGTTCGCTTC	CTCGTATCTT	CTCACAAGCT	TAGACACTTC	TCGTATCCCA
1	151	ACGCTCTCTA	GGTGAGCAAT	GTACAAAGAG	AAATCAGCTC	TCCGGTCATC
1	201	ATCCTCTGCC	CATTCTTCAT	CAAAGAACTC	AAACCGGATT	GAACCGGAAC
L	251	CAACCGGTTT	AAGTTCACCG	TCAACGATTT	TGTTGGCTTG	TCTCATTTTC
L	301	TTGCCCCAAA	GCTCCGTTGT	AACGAAGGTA	ACGAGTAAAC	CCTTTGAAGC
L	351	AATTAACTTG	CCGAGACGAA	GAAGAGGGTT	GACGTGGCCT	TGTCCTTGAA
L	401	ACGAGACGAG	CATTACATGA	ATTGGGTTTG	GAGATGGACA	AGTTTCGAAC
L	451	ACCATTTCTG	ATATGGATCC	CAT		

FIGURE 4A A42 SENSE NUCLEOTIDE SEQUENCE

	•				
1	ATGGACCCGT	CTCGTCATAC	TCATGTGATG	CTCGTATCTT	TCCCCGGCCA
51	AGGTCACGT	AACCCTCTAC	TTCGTCTCGG	AAAGCTCATA	GCCTCTAAAG
101	GCTTACTCGT	CACCTTTGTC	ACCACAGAGA	AGCCATGGGG	CAAGAAGATG
151	CGTCAAGCCA	ACAAGATTCA	AGACGGTGTG	CTCAAACCGG	TCGGTCTAGG
201	TTTCATCCGG	TTTGAGTTCT	TCTCTGACGG	CTTCGCCGAC	GACGATGAAA
251	AAAGATTCGA	CTTCGATGCC	TTCCGACCAC	ACCTTGAAGC	TGTCGGAAAA
301	CAAGAGATCA	AGAATCTCGT	TAAGAGATAT	AACAAGGAGC	CGGTGACGTG
351	TCTCATAAAC	AACGCTTTTG	TCCCATGGGT	ATGTGATGTC	GCCGAGGAGC
401	TTCACATCC	TTCGGCTGTT	CTATGGGTCC	AGTCTTGTGC	TTGTCTCACG
451	GCTTATTACT	ATTACCACCA	CCGGTTAGTT	AAGTTCCCGA	CCAAAACCGA
501	GCCGGACATC	AGCGTTGAAA	TCCCTTGCTT	GCCATTGTTA	AAGCATGACG
551	AGATCCCAAG	CTTTCTTCAC	CCTTCGTCTC	CGTATACAGC	TTTTGGAGAT
601	ATCATTTTAG	ACCAGTTAAA	GAGATTCGAA	AACCACAAGT	CTTTCTATCT
651	TTTCATCGAC	ACTTTTCGCG	AACTAGAAAA	AGACATCATG	GACCACATGT
701	CACAACTTTG	TCCTCAAGCC	ATCATCAGTC	CTGTCGGTCC	GCTCTTCAAG
751	ATGGCTCAAA	CCTTGAGTTC	TGACGTTAAG	GGAGATATAT	CCGAGCCAGC
801	GAGTGACTGC	ATGGAATGGC	TTGACTCAAG	AGAACCATCC	TCAGTCGTTT
851	ACATCTCCTT	TGGGACTATA	GCCAACTTGA	AGCAAGAGCA	GATGGAGGAG
901	ATCGCTCATG	GCGTTTTGAG	CTCTGGCTTG	TCGGTCTTAT	GGGTGGTTCG
951	GCCTCCCATG	GAAGGGACAT	TTGTAGAACC	ACATGTTTTG	CCTCGAGAGC
1001	TCGAAGAAAA	GGGTAAAATC	GTGGAATGGT	GTCCCCAAGA	GAGAGTCTTG
1051	GCTCATCCTG	CGATTGCTTG	TTTCTTAAGT	CACTGCGGAT	GGAACTCGAC
1101	AATGGAGGCT	TTAACTGCCG	GAGTCCCCGT	TGTTTGTTTT	CCGCAATGGG
151	GAGATCAAGT	GACTGATGCG	GTGTACTTGG	CTGATGTTTT	CAAGACAGGA
201	GTGAGACTAG	GCCGCGGAGC	CGCTGAGGAG	ATGATTGTTT	CGAGGGAGGT
.251	TGTAGCAGAG	AAGCTGCTTG	AGGCCACAGT	TGGGGAAAAG	GCGGTGGAGC
301	TGAGAGAAAA	CGCTCGGAGG	TGGAAGGCGG	AGGCCGAGGC	CGCCGTGGCG
351	GACGGTGGAT	CATCTGATAT	GAACTTTAAA	GAGTTTGTGG	ACAAGTTGGT
401	TACGAAACAT	GTGACGAGAG	AAGACAACGG	AGAACACTAG	

FIGURE 4B A42 AMINO ACID SEQUENCE

1	MDPSRHTHVM	LVSFPGQGHV	NPLLRLGKLI	ASKGLLVTFV	TTEKPWGKKM
51	RQANKIQDGV	LKPVGLGFIR	FEFFSDGFAD	DDEKRFDFDA	FRPHLEAVGK
101	QEIKNLVKRY	NKEPVTCLIN	NAFVPWVCDV	AEELHIPSAV	LWVQSCACLT
151	AYYYYHHRLV	KFPTKTEPDI	SVEIPCLPLL	KHDEIPSFLH	PSSPYTAFGE
201	IILDQLKRFE	NHKSFYLFID	TFRELEKDIM	DHMSQLCPQA	IISPVGPLFK
251	MAQTLSSDVK	GDISEPASDC	MEWLDSREPS	SVVYISFGTI	ANLKQEQMEE
301	IAHGVLSSGL	SVLWVVRPPM	EGTFVEPHVL	PRELEEKGKI	VEWCPQERVL
351	AHPAIACFLS	HCGWNSTMEA	LTAGVPVVCF	PQWGDQVTDA	VYLADVFKTG
401	VRLGRGAAEE	MIVSREVVAE	KLLEATVGEK	AVELRENARR	WKAEAEAAVA
451	DGGSSDMNFK	EFVDKLVTKH	VTREDNGEH		

FIGURE 4C A42 ANTISENSE NUCLEOTIDE SEQUENCE

1	CTAGTGTTCT	CCGTTGTCTT	CTCTCGTCAC	ATGTTTCGTA	ACCAACTTGT
51	CCACAAACTC	TTTAAAGTTC	ATATCAGATG	ATCCACCGTC	CGCCACGGCG
101	GCCTCGGCCT	CCGCCTTCCA	CCTCCGAGCG	ттттстстса	GCTCCACCGC
151	CTTTTCCCCA	ACTGTGGCCT	CAAGCAGCTT	CTCTGCTACA	ACCTCCCTCG
201	AAACAATCAT	CTCCTCAGCG	GCTCCGCGGC	CTAGTCTCAC	TCCTGTCTTG
251	AAAACATCAG	CCAAGTACAC	CGCATCAGTC	ACTTGATCTC	CCCATTGCGG
301	AAAACAAACA	ACGGGGACTC	CGGCAGTTAA	AGCCTCCATT	GTCGAGTTCC
351	ATCCGCAGTG	ACTTAAGAAA	CAAGCAATCG	CAGGATGAGC	CAAGACTCTC
401	TCTTGGGGAC	ACCATTCCAC	GATTTTACCC	TTTTCTTCGA	GCTCTCGAGG
451	CAAAACATGT	GGTTCTACAA	ATGTCCCTTC	CATGGGAGGC	CGAACCACCC
501	ATAAGACCGA	CAAGCCAGAG	CTCAAAACGC	CATGAGCGAT	CTCCTCCATC
551	TGCTCTTGCT	TCAAGTTGGC	TATAGTCCCA	AAGGAGATGT	AAACGACTGA
601	GGATGGTTCT	CTTGAGTCAA	GCCATTCCAT	GCAGTCACTC	GCTGGCTCGG
651	ATATATCTCC	CTTAACGTCA	GAACTCAAGG	TTTGAGCCAT	CTTGAAGAGC
701	GGACCGACAG	GACTGATGAT	GGCTTGAGGA	CAAAGTTGTG	ACATGTGGTC
751	CATGATGTCT	TTTTCTAGTT	CGCGAAAAGT	GTCGATGAAA	AGATAGAAAG
801.	ACTTGTGGTT	TTCGAATCTC	TTTAACTGGT	CTAAAATGAT	ATCTCCAAAA
851	GCTGTATACG	GAGACGAAGG	GTGAAGAAAG	CTTGGGATCT	CGTCATGCTT
901	TAACAATGGC	AAGCAAGGGA	TTTCAACGCT	GATGTCCGGC	TCGGTTTTGG
951	TCGGGAACTT	AACTAACCGG	TGGTGGTAAT	AGTAATAAGC	CGTGAGACAA
1001	GCACAAGACT	GGACCCATAG	AACAGCCGAA	GGGATGTGAA	GCTCCTCGGC
1051	GACATCACAT	ACCCATGGGA	CAAAAGCGTT	GTTTATGAGA	CACGTCACCG
101	GCTCCTTGTT	ATATCTCTTA	ACGAGATTCT	TGATCTCTTG	TTTTCCGACA
151	GCTTCAAGGT	GTGGTCGGAA	GGCATCGAAG	TCGAATCTTT	TTTCATCGTC
201	GTCGGCGAAG	CCGTCAGAGA	AGAACTCAAA	CCGGATGAAA	CCTAGACCGA
251	CCGGTTTGAG	CACACCGTCT	TGAATCTTGT	TGGCTTGACG	CATCTTCTTG
301	CCCCATGGCT	TCTCTGTGGT	GACAAAGGTG	ACGAGTAAGC	CTTTAGAGGC
351	TATGAGCTTT	CCGAGACGAA	GTAGAGGGTT	TACGTGACCT	TGGCCGGGGA
401	AAGATACGAG	CATCACATGA	GTATGACGAG	ACGGGTCCAT	

PCT/GB01/00477

FIGURE 5A A43 SENSE NUCLEOTIDE SEQUENCE

1	ATGGAGATGG	AATCGTCGTT	ACCTCATGTG	ATGCTCGTAT	CATTCCCAGG
51	GCAAGGTCAC	ATAAGCCCTC	TTCTTCGTCT	CGGAAAGATC	ATTGCCTCTA
101	AAGGCTTAAT	CGTCACCTTT	GTAACCACAG	AGGAACCATT	GGGCAAGAAG
. 151	ATGCGTCAAG	CCAACAATAT	TCAAGACGGT	GTGCTCAAAC	CGGTCGGGCT
201	AGGTTTTCTC	CGGTTCGAGT	TCTTCGAGGA	TGGATTTGTC	TACAAAGAAG
251	ACTTTGATTT	GTTACAAAAA	TCACTTGAÄG	TTTCCGGAAA	ACGAGAGATC
301	AAGAATCTTG	TCAAGAAATA	TGAGAAGCAA	CCAGTGAGAT	GTCTCATAAA
351	TAATGCCTTT	GTTCCATGGG	TTTGTGACAT	AGCCGAGGAG	CTTCAAATCC
401	CATCAGCTGT	TCTTTGGGTC	CAGTCTTGTG	CTTGCCTCGC	CGCTTATTAC
451	TATTACCACC	ACCAGTTAGT	TAAGTTTCCG	ACCGAAACCG	AGCCGGAAAT
501	AACCGTTGAC	GTCCCTTTCA	AGCCATTAAC	ATTGAAGCAT	GACGAGATCC
551	CTAGCTTTCT	TCACCCTTCC	TCTCCGCTGT	CCTCTATAGG	AGGTACCATT
601	TTAGAGCAGA	TCAAGCGACT	TCACAAGCCT	TTCTCTGTTC	TCATCGAAAC
651	TTTTCAAGAA	CTTGAAAAAG	ATACCATTGA	CCACATGTCC	CAGCTCTGCC
701	CTCAAGTCAA	CTTCAACCCC	ATCGGTCCGC	TTTTTACTAT	GGCTAAAACC
751	ATAAGGTCTG	ACATCAAGGG	AGACATCTCC	AAGCCAGATA	GTGACTGCAT
801	AGAGTGGCTT	GACTCGAGAG	AACCATCCTC	CGTTGTTTAC	ATCTCTTTTG
851	GGACTTTGGC	TTTCTTGAAG	CAAAACCAGA	TCGACGAGAT	TGCTCACGGC
901	ATTCTCAACT	CCGGGTTGTC	CTGCTTATGG	GTTTTGCGGC	CTCCCTTAGA
951	AGGCTTAGCC	ATAGAACCGC	ATGTCTTGCC	TCTAGAGCTT	GAAGAGAAAG
1001	GGAAGATTGT	GGAATGGTGT	CAACAAGAGA	AAGTTTTGGC	TCATCCTGCG
1051	GTTGCTTGCT	TCTTAAGTCA	CTGTGGATGG	AACTCAACCA	TGGAGGCTTT
1101	AACTTCAGGA	GTTCCCGTTA	TTTGTTTCCC	GCAGTGGGGA	GATCAGGTGA
1151	CAAATGCGGT	GTACATGATT	GATGTTTTCA	AGACAGGATT	GAGACTCAGC
1201	CGTGGAGCTT	CCGATGAGAG	GATTGTTCCA	AGGGAGGAGG	TTGCTGAGCG
1251	ACTGCTTGAG	GCCACCGTTG	GAGAGAAGGC	GGTGGAGCTG	AGAGAAAACG
1301	CTCGGAGGTG	GAAGGAGGAG	GCGGAGTCTG	CCGTGGCTTA	CGGTGGAACA
1351	TCGGAAAGGA	ATTTTCAAGA	GTTTGTTGAC	AAGTTGGTTG	ATGTCAAGAC
1401	AATGACAAAC	ATTAATAATG	TCGTGTAAGT		

PCT/GB01/00477

FIGURE 5B A43 AMINO ACID SEQUENCE

1	MEMESSLPHV	MLVSFPGQGH	ISPLLRLGKI	IASKGLIVTF	VTTEEPLGKK
51	MRQANNIQDG	VLKPVGLGFL	RFEFFEDGFV	YKEDFDLLQK	SLEVSGKREI
101	KNLVKKYEKQ	PVRCLINNAF	VPWVCDIAEE	LQIPSAVLWV	QSCACLAAYY
151	YYHHQLVKFP	TETEPEITVD	VPFKPLTLKH	DEIPSFLHPS	SPLSSIGGTI
201	LEQIKRLHKP	FSVLIETFQE	LEKDTIDHMS	QLCPQVNFNP	IGPLFTMAKT
251	IRSDIKGDIS	KPDSDCIEWL	DSREPSSVVY	ISFGTLAFLK	QNQIDEIAHG
301	ILNSGLSCLW	VLRPPLEGLA	IEPHVLPLEL	EEKGKIVEWC	QQEKVLAHPA
351	VACFLSHCGW	NSTMEALTSG	VPVICFPQWG	DQVTNAVYMI	DVFKTGLRLS
401	RGASDERIVP	REEVAERLLE	ATVGEKAVEL	RENARRWKEE	AESAVAYGGT
451	SERNFOEFVD	KLVDVKTMTN	INNVV		

FIGURE 5C A43 ANTISENSE NUCLEOTIDE SEQUENCE

1	ACTTACACGA	CATTATTAAT	GTTTGTCATT	GTCTTGACAT	СААССААСТТ
51		TCTTGAAAAT			
101		CTCCTCCTTC			
.151		CAACGGTGGC			
201	TGGAACAATC	CTCTCATCGG	AAGCTCCACG	GCTGAGTCTC	AATCCTGTCT
251	TGAAAACATC	AATCATGTAC	ACCGCATTTG	TCACCTGATC	TCCCCACTGC
301	GGGAAACAAA	TAACGGGAAC	TCCTGAAGTT	AAAGCCTCCA	TGGTTGAGTT
351	CCATCCACAG	TGACTTAAGA	AGCAAGCAAC	CGCAGGATGA	GCCAAAACTT
401	TCTCTTGTTG	ACACCATTCC	ACAATCTTCC	CTTTCTCTTC	AAGCTCTAGA
451	GGCAAGACAT	GCGGTTCTAT	GGCTAAGCCT	TCTAAGGGAG	GCCGCAAAAC
501	CCATAAGCAG	GACAACCCGG	AGTTGAGAAT	GCCGTGAGCA	ATCTCGTCGA
551	TCTGGTTTTG	CTTCAAGAAA	GCCAAAGTCC	CAAAAGAGAT	GTAAACAACG
601	GAGGATGGTT	CTCTCGAGTC	AAGCCACTCT	ATGCAGTCAC	TATCTGGCTT
651	GGAGATGTCT	CCCTTGATGT	CAGACCTTAT	GGTTTTAGCC	ATAGTAAAAA
701	GCGGACCGAT	GGGGTTGAAG	TTGACTTGAG	GGCAGAGCTG	GGACATGTGG
751	TCAATGGTAT	CTTTTTCAAG	TTCTTGAAAA	GTTTCGATGA	GAACAGAGAA
801	AGGCTTGTGA	AGTCGCTTGA	TCTGCTCTAA	AATGGTACCT	CCTATAGAGG
851	ACAGCGGAGA	GGAAGGGTGA	AGAAAGCTAG	GGATCTCGTC	ATGCTTCAAT
901	GTTAATGGCT	TGAAAGGGAC	GTCAACGGTT	ATTTCCGGCT	CGGTTTCGGT
951	CGGAAACTTA	ACTAACTGGT	GGTGGTAATA	GTAATAAGCG	GCGAGGCAAG
1001	CACAAGACTG	GACCCAAAGA	ACAGCTGATG	GGATTTGAAG	CTCCTCGGCT
1051	ATGTCACAAA	CCCATGGAAC	AAAGGCATTA	TTTATGAGAC	ATCTCACTGG
1101	TTGCTTCTCA	TATTTCTTGA	CAAGATTCTT	GATCTCTCGT	TTTCCGGAAA
1151	CTTCAAGTGA	TTTTTGTAAC	AAATCAAAGT	CTTCTTTGTA	GACAAATCCA
1201	TCCTCGAAGA	ACTCGAACCG	GAGAAAACCT	AGCCCGACCG	GTTTGAGCAC
1251	ACCGTCTTGA	ATATTGTTGG	CTTGACGCAT	CTTCTTGCCC	AATGGTTCCT
1301	CTGTGGTTAC	AAAGGTGACG	ATTAAGCCTT	TAGAGGCAAT	GATCTTTCCG
1351	AGACGAAGAA	GAGGGCTTAT	GTGACCTTGC	CCTGGGAATG	ATACGAGCAT
1401	CACATGAGGT	AACGACGATT	CCATCTCCAT		

FIGURE 6A A911 SENSE NUCLEOTIDE SEQUENCE

1	ATGGGCAGTA	GTGAGGGTCA	AGAAACACAT	GTCCTAATGG	TAACACTACC
51	ATTCCAAGGT	CACATCAATC	CAATGCTCAA	ACTCGCAAAA	CATCTCTCGT
101	TATCATCAAA	GAACCTACAC	ATCAATCTCG	CCACTATTGA	GTCAGCCCGT
151	GATCTCCTCT	CCACCGTAGA	AAAACCTCGT	TATCCGGTGG	ACCTCGTGTT
201	CTTCTCCGAT	GGTCTACCTA	AAGAAGATCC	AAAGGCCCCT	GAAACTCTTT
251	TGAAGTCATT	GAATAAAGTC	GGAGCCATGA	ACTTGTCTAA	AATCATCGAA
301	GAAAAGAGAT	ACTCTTGTAT	CATCTCTTCG	CCTTTTACTC	CATGGGTTCC
351	AGCTGTTGCA	GCCTCTCATA	ACATCTCTTG	TGCAATACTT	TGGATCCAAG
401	CTTGTGGAGC	TTACTCGGTT	TATTACCGTT	ACTACATGAA	GACAAACTCT
451	TTCCCTGATC	TTGAAGATCT	GAATCAAACG	GTGGAGTTAC	CAGCTTTACC
501	ATTGTTGGAA	GTTCGAGATC	TTCCATCGTT	TATGTTACCT	TCTGGTGGTG
551	CTCACTTCTA	TAATCTAATG	GCGGAATTTG	CAGATTGTTT	GAGGTATGTG
601	AAATGGGTTT	TGGTTAATTC	ATTCTATGAA	CTCGAATCAG	AGATAATCGA
651	ATCGATGGCT	GATTTAAAAC	CTGTAATTCC	AATTGGTCCT	CTGGTTTCTC
701	CATTTCTGTT	GGGCGATGGT	GAGGAGGAAA	CCCTAGACGG	тааааасста
751	GATTTTTGTA	AATCTGATGA	TTGTTGTATG	GAGTGGCTTG	ACAAGCAAGC
801	TAGGTCTTCT	GTTGTGTACA	TATCTTTCGG	AAGTATGCTC	GAAACATTGG
851	AGAATCAGGT	CGAGACCATA	GCGAAGGCGC	TGAAGAACAG	AGGACTTCCA
901	TTTCTTTGGG	TGATAAGGCC	AAAGGAGAAA	GCCCAAAACG	TTGCTGTTTT
951	GCAGGAGATG	GTGAAAGAAG	GACAAGGGGT	TGTTCTCGAG	TGGAGTCCAC
1001	AAGAGAAGAT	TTTGAGCCAC	GAGGCAATCT	CTTGTTTTGT	CACGCATTGC
1051	GGCTGGAACT	CGACTATGGA	GACGGTGGTG	GCTGGTGTTC	CTGTGGTAGC
1101	GTACCCTAGC	TGGACGGATC	AGCCCATTGA	CGCGCGGTTG	CTTGTTGATG
1151	TGTTTGGAAT	CGGAGTAAGG	ATGAGGAATG	ACAGTGTCGA	TGGCGAGCTT
1201	AAGGTCGAAG	AAGTAGAAAG	ATGCATTGAG	GCCGTGACGG	AGGGACCCGC
1251	TGCCGTGGAT	ATAAGAAGGA	GAGCGGCGGA	GCTAAAGCGC	GTGGCGAGAT
1301	TGGCGTTGGC	ACCTGGTGGA	TCTTCGACAC	GGAATTTAGA	CTTGTTCATT
1351	AGTGATATCA	CAATCGCCTA	ACTCTTTACT	TCAACTAGTA	CAAAATGTAT
1401	GAATACAAGG	TTTGATATAA	CCACTATCAA	TTGTTAG	

FIGURE 6B A911 AMINO ACID SEQUENCE

1	MGSSEGQETH	VLMVTLPFQG	HINPMLKLAK	HLSLSSKNLH	INLATIESAR
51	DLLSTVEKPR	YPVDLVFFSD	GLPKEDPKAP	ETLLKSLNKV	GAMNĻSKIIE
101	EKRYSCIISS	PFTPWVPAVA	ASHNISCAIL	WIQACGAYSV	YYRYYMKTNS
151	FPDLEDLNQT	VELPALPLLE	VRDLPSFMLP	SGGAHFYNLM	AEFADCLRYV
201	KWVLVNSFYE	LESEIIESMA	DLKPVIPIGP	LVSPFLLGDG	EEETLDGKNL
251	DFCKSDDCCM	EWLDKQARSS	VVYISFGSML	ETLENQVETI	AKALKNRGLP
301	FLWVIRPKEK	AQNVAVLQEM	VKEGQGVVLE	WSPQEKILSH	EAISCFVTHC
351	GWNSTMETVV	AGVPVVAYPS	WTDQPIDARL	LVDVFGIGVR	MRNDSVDGEL
101	KVEEVERCIE	AVTEGPAAVD	IRRRAAELKR	VARLALAPGG	SSTRNLDLFI
151	CULLIL				

FIGURE 6C A911 ANTISENSE NUCLEOTIDE SEQUENCE

1	CTAACAATTG	ATAGTGGTTA	TATCAAACCT	TGTATTCATA	CATTTTGTAC
51	TAGTTGAAGT	AAAGAGTTAG	GCGATTGTGA	TATCACTAAT	GAACAAGTCT
101	AAATTCCGTG	TCGAAGATCC	ACCAGGTGCC	AACGCCAATC	TCGCCACGCG
151	CTTTAGCTCC	GCCGCTCTCC	TTCTTATATC	CACGGCAGCG	GGTCCCTCCG
201	TCACGGCCTC	AATGCATCTT	TCTACTTCTT	CGACCTTAAG	CTCGCCATCG
251	ACACTGTCAT	TCCTCATCCT	TACTCCGATT	ССАААСАСАТ	CAACAAGCAA
301	CCGCGCGTCA	ATGGGCTGAT	CCGTCCAGCT	AGGGTACGCT	ACCACAGGAA
351	CACCAGCCAC	CACCGTCTCC	ATAGTCGAGT	TCCAGCCGCA	ATGCGTGACA
401	AAACAAGAGA	TTGCCTCGTG	GCTCAAAATC	TTCTCTTGTG	GACTCCACTC
451	GAGAACAACC	CCTTGTCCTT	CTTTCACCAT	CTCCTGCAAA	ACAGCAACGT
501	TTTGGGCTTT	CTCCTTTGGC	CTTATCACCC	AAAGAAATGG	AAGTCCTCTG
551	TTCTTCAGCG	CCTTCGCTAT	GGTCTCGACC	TGATTCTCCA	ATGTTTCGAG
601	CATACTTCCG	AAAGATATGT	ACACAACAGA	AGACCTAGCT	TGCTTGTCAA
651	GCCACTCCAŢ	ACAACAATCA	TCAGATTTAC	AAAAATCTAG	GTTTTTACCG
701	TCTAGGGTTT	CCTCCTCACC	ATCGCCCAAC	AGAAATGGAG	AAACCAGAGG
751	ACCAATTGGA	ATTACAGGTT	TTAAATCAGC	CATCGATTCG	ATTATCTCTG
801	ATTCGAGTTC	ATAGAATGAA	TTAACCAAAA	CCCATTTCAC	ATACCTCAAA
851	CAATCTGCAA	ATTCCGCCAT	TAGATTATAG	AAGTGAGCAC	CACCAGAAGG
901	TAACATAAAC	GATGGAAGAT	CTCGAACTTC	CAACAATGGT	AAAGCTGGTA
951	ACTCCACCGT	TTGATTCAGA	TCTTCAAGAT	CAGGGAAAGA	GTTTGTCTTC
1001	ATGTAGTAAC	GGTAATAAAC	CGAGTAAGCT	CCACAAGCTT	GGATCCAAAG
1051	TATTGCACAA	GAGATGTTAT	GAGAGGCTGC	AACAGCTGGA	ACCCATGGAG
1101	TAAAAGGCGA	AGAGATGATA	CAAGAGTATC	TCTTTTCTTC	GATGATTTTA
1151	GACAAGTTCA	TGGCTCCGAC	TTTATTCAAT	GACTTCAAAA	GAGTTTCAGG
1201	GGCCTTTGGA	TCTTCTTTAG	GTAGACCATC	GGAGAAGAAC	ACGAGGTCCA
1251	CCGGATAACG	AGGTTTTTCT	ACGGTGGAGA	GGAGATCACG	GGCTGACTCA
1301	ATAGTGGCGA	GATTGATGTG	TAGGTTCTTT	GATGATAACG	AGAGATGTTT
. 1351	TGCGAGTTTG	AGCATTGGAT	TGATGTGACC	TTGGAATGGT	AGTGTTACCA
1401	TTAGGACATG	TGTTTCTTGA	CCCTCACTAC	TGCCCAT	

FIGURE 7A A119 SENSE NUCLEOTIDE SEQUENCE

1	ATGCATATCA	CAAAACCACA	CGCCGCCATG	TTTTCCAGTC	CCGGAATGGG
51	CCATGTCATC	CCGGTGATCG	AGCTTGGAAA	GCGTCTCTCC	GCTAACAACG
101	GCTTCCACGT	CACCGTCTTC	GTCCTCGAAA	CCGACGCAGC	CTCCGCTCAA
151	TCCAAGTTCC	TAAACTCAAC	CGGCGTCGAC	ATCGTCAAAC	TTCCATCGCC
201	GGACATTTAT	GGTTTAGTGG	ACCCCGACGA	CCATGTAGTG	ACCAAGATCG
251	GAGTCATTAT	GCGTGCAGCA	GTTCCAGCCC	TCCGATCCAA	GATCGCTGCC
301	ATGCATCAAA	AGCCAACGGC	TCTGATCGTT	GACTTGTTTG	GCACAGATGC
351	GTTATGTCTC	GCAAAGGAAT	TTAACATGTT	GAGTTATGTG	TTTATCCCTA
401	CCAACGCACG	TTTTCTCGGA	GTTTCGATTT	АТТАТССААА	TTTGGACAAA
451	GATATCAAGG	AAGAGCACAC	AGTGCAAAGA	AACCCACTCG	CTATACCGGG
501	GTGTGAACCG	GTTAGGTTCG	AAGATACTCT	GGATGCATAT	CTGGTTCCCG
551	ACGAACCGGT	GTACCGGGAT	TTTGTTCGTC	ATGGTCTGGC	ТТАСССАААА
601	GCCGATGGAA	TTTTGGTAAA	TACATGGGAA	GAGATGGAGC	CCAAATCATT
651	GAAGTCCCTT	CTAAACCCAA	AGCTCTTGGG	CCGGGTTGCT	CGTGTACCGG
701	TCTATCCAAT	CGGTCCCTTA	TGCAGACCGA	TACAATCATC	CGAAACCGAT
751	CACCCGGTTT	TGGATTGGTT	AAACGAACAA	CCGAACGAGT	CGGTTCTCTA
801	TATCTCCTTC	GGGAGTGGTG	GTTGTCTATC	GGCGAAACAG	TTAACTGAAT
851	TGGCGTGGGG	ACTCGAGCAG	AGCCAGCAAC	GGTTCGTATG	GGTGGTTCGA
901	CCACCGGTCG	ACGGTTCGTG	TTGTAGCGAG	TATGTCTCGG	CTAACGGTGG
951	TGGAACCGAA	GACAACACGC	CAGAGTATCT	ACCGGAAGGG	TTCGTGAGTC
1001	GTACTAGTGA	TAGAGGTTTC	GTGGTCCCCT	CATGGGCCCC	ACAAGCTGAA
1051	ATCCTGTCCC	ATCGGGCCGT	TGGTGGGTTT	TTGACCCATT	GCGGTTGGAG
1101	CTCGACGTTG	GAAAGCGTCG	TTGGCGGCGT	TCCGATGATC	GCATGGCCAC
151	TTTTTGCCGA	GCAGAATATG	AATGCGGCGT	TGCTCAGCGA	CGAACTGGGA
201	ATCGCAGTCA	GATTGGATGA	TCCAAAGGAG	GATATTTCTA	GGTGGAAGAT
251	TGAGGCGTTG	GTGAGGAAGG	TTATGACTGA	GAAGGAAGGT	GAAGCGATGA
.301	GAAGGAAAGT	GAAGAAGTTG	AGAGACTCGG	CGGAGATGTC	ACTGAGCATT
.351	GACGGTGGTG	GTTTGGCGCA	CGAGTCGCTT	TGCAGAGTCA	CCAAGGAGTG
401	TCAACGGTTT	TTGGAACGTG	TCGTGGACTT	GTCACGTGGT	GCTTAG

WO 01/59140 PCT/GB01/00477

FIGURE 7B A119 AMINO ACID SEQUENCE

Ţ	MHITKPHAAM	FSSPGMGHVI	PVIELGKRLS	ANNGFHVTVF	VLETDAASAQ
51	SKFLNSTGVD	IVKLPSPDIY	GLVDPDDHVV	TKIGVIMRAA	VPALRSKIAA
101	MHQKPTALIV	DLFGTDALCL	AKEFNMLSYV	FIPTNARFLG	VSIYYPNLDK
151	DIKEEHTVQR	NPLAIPGCEP	VRFEDTLDAY	LVPDEPVYRD	FVRHGLAYPK
201	ADGILVNTWE	EMEPKSLKSL	LNPKLLGRVA	RVPVYPIGPL	CRPIQSSET
251	HPVLDWLNEQ	PNESVLYISF	GSGGCLSAKQ	LTELAWGLEQ	SQQRFVWVVR
301	PPVDGSCCSE	YVSANGGGTE	DNTPEYLPEG	FVSRTSDRGF	VVPSWAPQAE
351	ILSHRAVGGF	LTHCGWSSTL	ESVVGGVPMI	AWPLFAEQNM	NAALLSDELG
401	IAVRLDDPKE	DISRWKIEAL	VRKVMTEKEG	EAMRRKVKKL	RDSAEMSLSI
151	DGGGLAHESL	CRVTKECQRF	LERVVDLSRG	Α	

FIGURE 7C A119 ANTISENSE NUCLEOTIDE SEQUENCE

1	CTAAGCACCA	CGTGACAAGT	CCACGACACG	TTCCAAAAAC	CGTTGACACT
51	CCTTGGTGAC	TCTGCAAAGC	GACTCGTGCG	CCAAACCACC	ACCGTCAATG
101	CTCAGTGACA	TCTCCGCCGA	GTCTCTCAAC	TTCTTCACTT	TCCTTCTCAT
. 151	CGCTTCACCT	TCCTTCTCAG	TCATAACCTT	-CCTCACCAAC	GCCTCAATCT
201	TCCACCTAGA	AATATCCTCC	TTTGGATCAT	CCAATCTGAC	TGCGATTCCC
251 ⁻	AGTTCGTCGC	TGAGCAACGC	CGCATTCATA	TTCTGCTCGG	CAAAAAGTGG
301	CCATGCGATC	ATCGGAACGC	CGCCAACGAC	GCTTTCCAAC	GTCGAGCTCC
351	AACCGCAATG	GGTCAAAAAC	CCACCAACGG	CCCGATGGGA	CAGGATTTCA
401	GCTTGTGGGG	CCCATGAGGG	GACCACGAAA	CCTCTATCAC	TAGTACGACT
451	CACGAACCCT	TCCGGTAGAT	ACTCTGGCGT	GTTGTCTTCG	GTTCCACCAC
501	CGTTAGCCGA	GACATACTCG	CTACAACACG	AACCGTCGAC	CGGTGGTCGA
551	ACCACCCATA	CGAACCGTTG	CTGGCTCTGC	TCGAGTCCCC	ACGCCAATTC
601	AGTTAACTGT	TTCGCCGATA	GACAACCACC	ACTCCCGAAG	GAGATATAGA
651	GAACCGACTC	GTTCGGTTGT	TCGTTTAACC	AATCCAAAAC	CGGGTGATCG
701	GTTTCGGATG	ATTGTATCGG	TCTGCATAAG	GGACCGATTG	GATAGACCGG
751	TACACGAGCA	ACCCGGCCCA	AGAGCTTTGG	GTTTAGAAGG	GACTTCAATG
801	ATTTGGGCTC	CATCTCTTCC	CATGTATTTA	CCAAAATTCC	ATCGGCTTTT
851	GGGTAAGCCA	GACCATGACG	AACAAAATCC	CGGTACACCG	GTTCGTCGGG
901	AACCAGATAT	GCATCCAGAG	TATCTTCGAA	CCTAACCGGT	TCACACCCCG
951	GTATAGCGAG	TGGGTTTCTT	TGCACTGTGT	GCTCTTCCTT	GATATCTTTG
1001	TCCAAATTTG	GATAATAAAT	CGAAACTCCG	AGAAAACGTG	CGTTGGTAGG
1051	GATAAACACA	TAACTCAACA	TGTTAAATTC	CTTTGCGAGA	CATAACGCAT
1101	CTGTGCCAAA	CAAGTCAACG	ATCAGAGCCG	TTGGCTTTTG	ATGCATGGCA
1151	GCGATCTTGG	ATCGGAGGGC	TGGAACTGCT	GCACGCATAA	TGACTCCGAT
1201	CTTGGTCACT	ACATGGTCGT	CGGGGTCCAC	TAAACCATAA	ATGTCCGGCG
1251	ATGGAAGTTT	GACGATGTCG	ACGCCGGTTG	AGTTTAGGAA	CTTGGATTGA
1301	GCGGAGGCTG	CGTCGGTTTC	GAGGACGAAG	ACGGTGACGT	GGAAGCCGTT
1351	GTTAGCGGAG	AGACGCTTTC	CAAGCTCGAT	CACCGGGATG	ACATGGCCCA
1401	TTCCGGGACT	GGAAAACATG	GCGGCGTGTG	GTTTTGTGAT	ATGCAT

FIGURE 8A A233 SENSE NUCLEOTIDE SEQUENCE

1	ATGAGTAGTG	ATCCTCATCG	TAAGCTCCAT	GTTGTGTTCT	TCCCTTTCAT
51	GGCTTATGGT	CACATGATAC	CAACTCTAGA	CATGGCTAAG	CTTTTCTCTA
101	GCAGAGGAGC	CAAATCTACA	ATCCTCACCA	CACCTCTCAA	CTCCAAGATC
151	TTCCAAAAAC	CCATCGAAAG	ATTCAAGAAC	CTGAATCCGA	GTTTCGAAAT
201	CGACATCCAG	ATCTTCGATT	TCCCTTGCGT	GGATCTCGGG	TTACCAGAAG
251	GATGCGAAAA	CGTCGATTTC	TTCACCTCAA	ACAACAATGA	TGATAGACAG
301	TATCTGACCT	TGAAGTTCTT	TAAGTCGACA	AGGTTTTTCA	AAGATCAGCT
351	TGAGAAGCTC	CTCGAGACAA	CGAGACCAGA	CTGTCTTATC	GCCGACATGT
401	TCTTCCCCTG	GGCTACGGAA	GCTGCTGAGA	AGTTCAATGT	GCCAAGACTT
451	GTGTTCCACG	GTACTGGCTA	CTTTTCTTTA	TGCTCTGAAT	ATTGCATCAG
501	AGTGCATAAC	CCACAAAACA	TAGTAGCTTC	AAGGTACGAG	CCATTTGTGA
551	TTCCTGATCT	CCCGGGGAAC	ATAGTGATAA	CTCAAGAACA	GATAGCAGAC
601	CGTGACGAAG	AAAGCGAGAT	GGGGAAGTTT	ATGATTGAGG	TCAAAGAATC
651	TGATGTGAAG	AGCTCAGGTG	TTATTGTAAA	CAGCTTCTAC	GAGCTTGAAC
701	CTGATTACGC	CGACTTTTAC	AAGAGTGTTG	TACTGAAGAG	AGCGTGGCAT
751	ATCGGTCCGC	TTTCGGTTTA	CAACAGAGGA	TTTGAGGAGA	AGGCTGAGAG
801.	AGGAAAGAAA	GCAAGCATTA	ATGAGGTTGA	ATGCCTCAAA	TGGCTTGACT
851	CCAAGAAACC	AGATTCAGTC	ATTTACATTT	CTTTTGGGAG	CGTGGCTTGC
901	TTCAAGAACG	AGCAGCTATT	CGAGATCGCT	GCAGGATTAG	AAACTTCTGG
951	AGCAAATTTC	ATCTGGGTTG	TTAGGAAAA	CATAGGTATT	GAAAAAGAAG
1001	AATGGTTACC	AGAAGGGTTC	GAAGAGAGGG	TGAAAGGAAA	AGGGATGATT
1051			GGTGCTCATA		
1101	•		GCTGGAACTC		
1151	CAGGGCTACC	AATGGTGACA	TGGCCTGTAG	CAGCGGAGCA	ATTCTACAAT
1201	GAGAAATTGG	TTACGCAAGT	GCTCAGAACA	GGAGTGAGCG	TGGGAGCGAA
1251	AAAGAATGTA	AGAACTACGG	GAGATTTCAT	TAGCAGAGAG	AAAGTGGTTA
1301	AAGCGGTGAG	GGAGGTGTTG	GTTGGGGAAG	AGGCGGATGA	GAGGCGGGAG
1351	AGGGCAAAGA	AGTTGGCAGA	GATGGCTAAA	GCTGCCGTGG	AAGGAGGGTC
1401	TTCTTTCAAC	GATCTAAACA	GCTTCATAGA	AGAGTTTACC	TCGTAA

WO 01/59140 PCT/GB01/00477

FIGURE 8B A233 AMINO ACID SEQUENCE

1	MSSDPHRKLH	VVFFPFMAYG	HMIPTLDMAK	LFSSRGAKST	ILTTPLNSKI
51	FQKPIERFKN	LNPSFEIDIQ	IFDFPCVDLG	LPEGCENVDF	FTSNNNDDR
101	YLTLKFFKST	RFFKDQLEKL	LETTRPDCLI	ADMFFPWATE	AAEKFNVPRI
151	VFHGTGYFSL	CSEYCIRVHN	PQNIVASRYE	PFVIPDLPGN	IVITQEQIA
201	RDEESEMGKF	MIEVKESDVK	SSGVIVNSFY	ELEPDYADFY	KSVVLKRAWI
251	IGPLSVYNRG	FEEKAERGKK	ASINEVECLK	WLDSKKPDSV	IYISFGSVA
301	FKNEQLFEIA	AGLETSGANF	IWVVRKNIGI	EKEEWLPEGF	EERVKGKGMI
351	IRGWAPQVLI	LDHQATCGFV	THCGWNSLLE	GVAAGLPMVT	WPVAAEQFYN
401	EKLVTQVLRT	GVSVGAKKNV	RTTGDFISRE	KVVKAVREVL	VGEEADERRE
451	RAKKLAEMAK	AAVEGGSSFN	DINSFIEEE	9	

FIGURE 8C A233 ANTISENSE NUCLEOTIDE SEQUENCE

1	TTACGAGGTA	AACTCTTCTA	TGAAGCTGTT	TAGATCGTTG	AAAGAAGACC
51	CTCCTTCCAC	GGCAGCTTTA	GCCATCTCTG	CCAACTTCTT	TGCCCTCTCC
101	CGCCTCTCAT	CCGCCTCTTC	CCCAACCAAC	ACCTCCCTCA	CCGCTTTAAC
151	CACTTTCTCT	CTGCTAATGA	AATCTCCCGT	AGTTCTTACA	TTCTTTTTCG
201	CTCCCACGCT	CACTCCTGTT	CTGAGCACTT	GCGTAACCAA	TTTCTCATTG
251	TAGAATTGCT	CCGCTGCTAC	AGGCCATGTC	ACCATTGGTA	GCCCTGCAGC
301	CACTCCTTCC	AGAAGCGAGT	TCCAGCCGCA	ATGGGTCACÁ	AACCCACAAG
351	TTGCTTGATG	ATCAAGTATG	AGCACCTGTG	GTGCCCATCC	TCTTATAATC
401	ATCCCTTTTC	CTTTCACCCT	CTCTTCGAAC	CCTTCTGGTA	ACCATTCTTC
451	TTTTTCAATA	CCTATGTTTT	TCCTAACAAC	CCAGATGAAA	TTTGCTCCAG
501	AAGTTTCTAA	TCCTGCAGCG	ATCTCGAATA	GCTGCTCGTT	CTTGAAGCAA
551	GCCACGCTCC	CAAAAGAAAT	GTAAATGACT	GAATCTGGTT	TCTTGGAGTC
601	AAGCCATTTG	AGGCATTCAA	CCTCATTAAT	GCTTGCTTTC	TTTCCTCTCT
651	CAGCCTTCTC	CTCAAATCCT	CTGTTGTAAA	CCGAAAGCGG	ACCGATATGC
701	CACGCTCTCT	TCAGTACAAC	ACTCTTGTAA	AAGTCGGCGT	AATCAGGTTC
751	AAGCTCGTAG	AAGCTGTTTA	CAATAACACC	TGAGCTCTTC	ACATCAGATT
801	CTTTGACCTC	AATCATAAAC	TTCCCCATCT	CGCTTTCTTC	GTCACGGTCT
851	GCTATCTGTT	CTTGAGTTAT	CACTATGTTC	CCCGGGAGAT	CAGGAATCAC
901	AAATGGCTCG	TACCTTGAAG	CTACTATGTT	TTGTGGGTTA	TGCACTCTGA
951	TGCAATATTC	AGAGCATAAA	GAAAAGTAGC	CAGTACCGTG	GAACACAAGT
1001	CTTGGCACAT	TGAACTTCTC	AGCAGCTTCC	GTAGCCCAGG	GGAAGAACAT
1051	GTCGGCGATA	AGACAGTCTG	GTCTCGTTGT	CTCGAGGAGC	TTCTCAAGCT
1101	GATCTTTGAA	AAACCTTGTC	GACTTAAAGA	ACTTCAAGGT	CAGATACTGT
1151	CTATCATCAT	TGTTGTTTGA	GGTGAAGAAA	TCGACGTTTT	CGCATCCTTC
1201	TGGTAACCCG	AGATCCACGC	AAGGGAAATC	GAAGATCTGG	ATGTCGATTT
1251	CGAAACTCGG	ATTCAGGTTC	TTGAATCTTT	CGATGGGTTT	TTGGAAGATC
1301	TTGGAGTTGA	GAGGTGTGGT	GAGGATTGŢA	GATTTGGCTC	CTCTGCTAGA
1351	GAAAAGCTTA	GCCATGTCTA	GAGTTGGTAT	CATGTGACCA	TAAGCCATGA
1401	AAGGGAAGAA	CACAACATGG	AGCTTACGAT	GAGGATCACT	ACTCAT

FIGURE 9A A407 SENSE NUCLEOTIDE SEQUENCE

1	ATGCATATCA	CAAAACCACA	CGCCGCCATG	TTTTCCAGTC	CCGGAATGGG
51	CCATGTCCTC	CCGGTGATCG	AGCTAGCTAA	GCGTCTCTCC	GCTAACCACG
101	GCTTCCACGT	CACCGTCTTC	GTCCTTGAAA	CTGACGCAGC	CTCCGTTCAG
. 151	TCCAAGCTCC	TTAACTCAAC	CGGTGTTGAC	ATCGTCAACC	TTCCATCGCC
201	CGACATTTCT	GGCTTGGTAG	ACCCCAACGC	CCATGTGGTG	ACCAAGATCG
251	GAGTCATTAT	GCGTGAAGCT	GTTCCAACCC	TCCGATCCAA	GATCGTTGCC
301	ATGCATCAAA	ACCCAACGGC	TCTGATCATT	GACTTGTTTG	GCACAGATGC
351	GTTATGTCTT	GCAGCGGAGT	TAAACATGTT	GACTTATGTC	TTTATCGCTT
401	CCAACGCGCG	TTATCTCGGA	GTTTCGATAT	ATTATCCAAC	TTTGGACGAA
451	GTTATCAAAG	AAGAGCACAC	AGTGCAACGA	AAACCGCTCA	CTATACCGGG
501	GTGTGAACCG	GTTAGATTTG	AAGATATTAT	GGATGCATAT	CTGGTTCCGG
551	ACGAACCGGT	GTACCACGAT	TTGGTTCGTC	ACTGTCTGGC	СТАСССАААА
601	GCGGATGGAA	TCTTGGTGAA	TACATGGGAA	GAGATGGAGC	CCAAATCATT
651	AAAGTCCCTT	CAAGACCCGA	AACTTTTGGG	CCGGGTCGCT	CGTGTACCGG
701	TTTATCCGGT	TGGTCCGTTA	TGCAGACCGA	TACAATCATC	CACGACCGAT
751	CACCCGGTTT	TTGATTGGTT	AAACAAACAA	CCAAACGAGT	CGGTTCTCTA
801	CATTTCCTTC	GGGAGTGGTG	GTTCTCTAAC	GGCTCAACAG	TTAACCGAAT
851	TGGCGTGGGG	GCTCGAGGAG	AGCCAGCAAC	GGTTTATATG	GGTGGTTCGA
901	CCGCCCGTTG	ACGGCTCGTC	TTGCAGTGAT	TATTTCTCGG	CTAAAGGCGG
951	TGTAACCAAA	GACAACACGC	CAGAGTATCT	ACCAGAAGGG	TTCGTGACTC
1001	GTACTTGCGA	TAGAGGTTTC	ATGATCCCAT	CATGGGCACC	GCAAGCTGAA
1051	ATCCTAGCCC	ATCAGGCCGT	TGGTGGGTTT	TTAACACATT	GTGGTTGGAG
1101	CTCGACGTTG	GAAAGCGTCC	TTTGCGGCGT	TCCAATGATA	GCGTGGCCGC
1151	TTTTCGCCGA	GCAGAATATG	AACGCGGCGT	TGCTTAGCGA	TGAACTGGGA
1201	ATCTCTGTTA	GAGTGGATGA	TCCAAAGGAG	GCGATTTCTA	GGTCGAAGAT
1251	TGAGGCGATG	GTGAGGAAGG	TTATGGCTGA	GGACGAAGGT	GAAGAGATGA
1301	GAAGGAAAGT	GAAGAAGTTG	AGAGACACGG	CGGAGATGTC	ACTTAGTATT
1351	CACGGTGGTG	GTTCGGCGCA	TGAGTCGCTT	TGCAGAGTCA	CGAAGGAGTG
1401	TCAACGGTTT	TTGGAATGTG	TCGGGGACTT	GGGACGTGGT	GCTTAG

FIGURE 9B A407 AMINO ACID SEQUENCE

1	MHITKPHAAM	FSSPGMGHVL	PVIELAKRLS	ANHGFHVTVF	VLETDAASVQ
51	SKLLNSTGVD	IVNLPSPDIS	GLVDPNAHVV	TKIGVIMREA	VPTLRSKIV
101	MHQNPTALII	DLFGTDALCL	AAELNMLTYV	FIASNARYLG	VSIYYPTLD
151	VIKEEHTVQR	KPLTIPGCEP	VRFEDIMDAY	LVPDEPVYHD	LVRHCLAYPI
201	ADGILVNTWE	EMEPKSLKSL	QDPKLLGRVA	RVPVYPVGPL	CRPIQSSTT
251	HPVFDWLNKQ	PNESVLYISF	GSGGSLTAQQ	LTELAWGLEE	SQQRFIWVVE
301	PPVDGSSCSD	YFSAKGGVTK	DNTPEYLPEG	FVTRTCDRGF	MIPSWAPQAE
351	ILAHQAVGGF	LTHCGWSSTL	ESVLCGVPMI	AWPLFAEQNM	NAALLSDELC
401	ISVRVDDPKE	AISRSKIEAM	VRKVMAEDEG	EEMRRKVKKL	RDTAEMSLS
451	HGGGSAHESL	CRVTKECQRF	LECVGDLGRG	A	

FIGURE 9C A407 ANTISENSE NUCLEOTIDE SEQUENCE

1	CTAAGCACCA CGTCCCAAGT CCCCGACACA TTCCAAAAAC CGTTGACACT
51	CCTTCGTGAC TCTGCAAAGC GACTCATGCG CCGAACCACC ACCGTGAATA
101	CTAAGTGACA TCTCCGCCGT GTCTCTCAAC TTCTTCACTT TCCTTCTCAT
. 151	CTCTTCACCT TCGTCCTCAG CCATAACCTT CCTCACCATC GCCTCAATCT
201	TCGACCTAGA AATCGCCTCC TTTGGATCAT CCACTCTAAC AGAGATTCCC
251	AGTTCATCGC TAAGCAACGC CGCGTTCATA TTCTGCTCGG CGAAAAGCGG
301	CCACGCTATC ATTGGAACGC CGCAAAGGAC GCTTTCCAAC GTCGAGCTCC
351	AACCACAATG TGTTAAAAAC CCACCAACGG CCTGATGGGC TAGGATTTCA
401	GCTTGCGGTG CCCATGATGG GATCATGAAA CCTCTATCGC AAGTACGAGT
451	CACGAACCCT TCTGGTAGAT ACTCTGGCGT GTTGTCTTTG GTTACACCGC
501	CTTTAGCCGA GAAATAATCA CTGCAAGACG AGCCGTCAAC GGGCGGTCGA
551	ACCACCCATA TAAACCGTTG CTGGCTCTCC TCGAGCCCCC ACGCCAATTC
601	GGTTAACTGT TGAGCCGTTA GAGAACCACC ACTCCCGAAG GAAATGTAGA
651	GAACCGACTC GTTTGGTTGT TTGTTTAACC AATCAAAAAC CGGGTGATCG
701	GTCGTGGATG ATTGTATCGG TCTGCATAAC GGACCAACCG GATAAACCGG
751	TACACGAGCG ACCCGGCCCA AAAGTTTCGG GTCTTGAAGG GACTTTAATG
801	ATTTGGGCTC CATCTCTCC CATGTATTCA CCAAGATTCC ATCCGCTTTT
851	GGGTAGGCCA GACAGTGACG AACCAAATCG TGGTACACCG GTTCGTCCGG
901	AACCAGATAT GCATCCATAA TATCTTCAAA TCTAACCGGT TCACACCCCG
951	GTATAGTGAG CGGTTTTCGT TGCACTGTGT GCTCTTCTTT GATAACTTCG
1001	TCCAAAGTTG GATAATATAT CGAAACTCCG AGATAACGCG CGTTGGAAGC
1051	GATAAAGACA TAAGTCAACA TGTTTAACTC CGCTGCAAGA CATAACGCAT
1101	CTGTGCCAAA CAAGTCAATG ATCAGAGCCG TTGGGTTTTG ATGCATGGCA
1151	ACGATCTTGG ATCGGAGGGT TGGAACAGCT TCACGCATAA TGACTCCGAT
1201	CTTGGTCACC ACATGGGCGT TGGGGTCTAC CAAGCCAGAA ATGTCGGGCG
1251	ATGGAAGGTT GACGATGTCA ACACCGGTTG AGTTAAGGAG CTTGGACTGA
1301	ACGGAGGCTG CGTCAGTTTC AAGGACGAAG ACGGTGACGT GGAAGCCGTG
1351	GTTAGCGGAG AGACGCTTAG CTAGCTCGAT CACCGGGAGG ACATGGCCCA
1401	TTCCGGGACT GGAAAACATG GCGGCGTGTG GTTTTGTGAT ATGCAT

FIGURE 10A A961 SENSE NUCLEOTIDE SEQUENCE

1					TCCCTTTCTC
51	CGGACACATT	r ctcgcaacaa	TCGAACTCGC	CAAACGTCTC	ATAAGTCAAG
101	ACAATCCTC	GATCCACACC	ATCACCATCO	TCTATTGGGG	ATTACCTTTT
151	ATTCCTCAAC	CTGACACAAT	CGCTTTCCTC	CGATCCCTAC	TCAAAAATGA
201	GCCTCGTATO	CGTCTCGTTA	CGTTGCCCGA	AGTCCAAGAC	CCTCCACCAA
251	TGGAACTCTT	TGTGGAATTT	GCCGAATCTT	ACATTCTTGA	ATACGTCAAG
301	AAAATGGTTC	CCATCATCAG	AGAAGCTCTC	TCCACTCTCT	TGTCTTCCCG
351	CGATGAATCG	GGTTCAGTTC	GTGTGGCTGG	ATTGGTTCTT	GACTTCTTCT
401	GCGTCCCTAT	GATCGATGTA	GGAAACGAGT	TTAATCTCCC	TTCTTACATT
451	TTCTTGACGT	GTAGCGCAGG	GTTCTTGGGT	ATGATGAAGT	ATCTTCCAGA
501	GAGACACCGC	GAAATCAAAT	CGGAATTCAA	CCGGAGCTTC	AACGAGGAGT
551	TGAATCTCAT	TCCTGGTTAT	GTCAACTCTG	TTCCTACTAA	GGTTTTGCCG
601	TCAGGTCTAT	TCATGAAAGA	GACCTACGAG	CCTTGGGTCG	AACTAGCAGA
651	GAGGTTTCCT	GAAGCTAAGG	GTATTTTGGT	TAATTCATAC	ACAGCTCTCG
701	AGCCAAACGG	TTTTAAATAT	TTCGATCGTT	GTCCGGATAA	CTACCCAACC
751	ATTTACCCAA	TCGGGCCGAT	ATTATGCTCC	AACGACCGTC	CGAATTTGGA
801	CTCATCGGAA	CGAGATCGGA	TCATAACTTG	GCTAGATGAC	CAACCCGAGT
851	CATCGGTCGT	GTTCCTCTGT	TTCGGGAGCT	TGAAGAATCT	CAGCGCTACT
901	CAGATCAACG	AGATAGCTCA	AGCCTTAGAG	ATCGTTGACT	GCAAATTCAT
951	CTGGTCGTTT	CGAACCAACC	CGAAGGAGTA	CGCGAGCCCT	TACGAGGCTC
1001	TACCACACGG	GTTCATGGAC	CGGGTCATGG	ATCAAGGCAT	TGTTTGTGGT
1051	TGGGCTCCTC	AAGTTGAAAT	CCTAGCCCAT	AAAGCTGTGG	GAGGATTCGT
1101	ATCTCATTGT	GGTTGGAACT	CGATATTGGA	GAGTTTGGGT	TTCGGCGTTC
1151	CAATCGCCAC	GTGGCCGATG	TACGCGGAAC	ААСААСТААА	CGCGTTCACG
1201	ATGGTGAAGG	AGCTTGGTTT	AGCCTTGGAG	ATGCGGTTGG	ATTACGTGTC
251	GGAAGATGGA	GATATAGTGA	AAGCTGATGA	GATCGCAGGA	ACCGTTAGAT
.301	CTTTAATGGA	CGGTGTGGAT	GTGCCGAAGA	GTAAAGTGAA	GGAGATTGCT
.351	GAGGCGGGAA	AAGAAGCTGT	GGACGGTGGA	TCTTCGTTTC	TTGCGGTTAA
401	AAGATTCATC	GGTGACTTGA	TCGACGGCGT	TTCTATAAGT	AAGTAG

FIGURE 10B A961 AMINO ACID SEQUENCE

101 KMVPIIREAL STLLSSRDES GSVRVAGLVL DFFCVPMIDV GNEFNLPSYI
151 FLTCSAGFLG MMKYLPERHR EIKSEFNR3F NEELNLIPGY VNSVPTKVLP
201 SGLFMKETYE PWVELAERFP EAKGILVNSY TALEPNGFKY FDRCPDNYPT
251 IYPIGPILCS NDRPNLDSSE RDRIITWLDD QPESSVVFLC FGSLKNLSAT

1 MGKQEDAELV IIPFPFSGHI LATIELAKRL ISQDNPRIHT ITILYWGLPF

- 301 QINEIAQALE IVDCKFIWSF RTNPKEYASP YEALPHGFMD RVMDQGIVCG
- 351 WAPQVEILAH KAVGGFVSHC GWNSILESLG FGVPIATWPM YAEQQLNAFT
- 401 MVKELGLALE MRLDYVSEDG DIVKADEIAG TVRSLMDGVD VPKSKVKEIA
- 451 EAGKEAVDGG SSFLAVKRFI GDLIDGVSIS K

FIGURE 10C A961 ANTISENSE NUCLEOTIDE SEQUENCE

1	CTACTTACTT	ATAGAAACGC	CGTCGATCAA	GTCACCGATG	AATCTTTTAA
51	CCGCAAGAAA	CGAAGATCCA	CCGTCCACAG	CTTCTTTTCC	CGCCTCAGCA
101	ATCTCCTTCA	CTTTACTCTT	CGGCACATCC	ACACCGTCCA	TTAAAGATCT
151	AACGGTTCCT	GCGATCTCAT	CAGCTTTCAC	TATATCTCCA	TCTTCCGACA
201	CGTAATCCAA	CCGCATCTCC	AAGGCTAAAC	CAAGCTCCTT	CACCATCGTG
251	AACGCGTTTA	GTTGTTGTTC	CGCGTACATC	GGCCACGTGG	CGATTGGAAC
301	GCCGAAACCC	AAACTCTCCA	ATATCGAGTT	CCAACCACAA	TGAGATACGA
351	ATCCTCCCAC	AGCTTTATGG	GCTAGGATTT	CAACTTGAGG	AGCCCAACCA
401	CAAACAATGC	CTTGATCCAT	GACCCGGTCC	ATGAACCCGT	GTGGTAGAGC
451	CTCGTAAGGG	CTCGCGTACT	CCTTCGGGTT	GGTTCGAAAC	GACCAGATGA
501	ATTTGCAGTC	AACGATCTCT	AAGGCTTGAG	CTATCTCGTT	GATCTGAGTA
551	GCGCTGAGAT	TCTTCAAGCT	CCCGAAACAG	AGGAACACGA	CCGATGACTC
601	GGGTTGGTCA	TCTAGCCAAG	TTATGATCCG	ATCTCGTTCC	GATGAGTCCA
651	AATTCGGACG	GTCGTTGGAG	CATAATATCG	GCCCGATTGG	GTAAATGGTT
701	GGGTAGTTAT	CCGGACAACG	ATCGAAATAT	TTAAAACCGT	TTGGCTCGAG
751	AGCTGTGTAT	GAATTAACCA	AAATACCCTT	AGCTTCAGGA	AACCTCTCTG
801	CTAGTTCGAC	CCAAGGCTCG	TAGGTCTCTT	TCATGAATAG	ACCTGACGGC
851	AAAACCTTAG	TAGGAACAGA	GTTGACATAA	CCAGGAATGA	GATTCAACTC
901	CTCGTTGAAG	CTCCGGTTGA	ATTCCGATTT	GATTTCGCGG	TGTCTCTCTG
951	GAAGATACTT	CATCATACCC	AAGAACCCTG	CGCTACACGT	CAAGAAAATG
1001	TAAGAAGGGA	GATTAAACTC	GTTTCCTACA	TCGATCATAG	GGACGCAGAA
1051	GAAGTCAAGA	ACCAATCCAG	CCACACGAAC	TGAACCCGAT	TCATCGCGGG
1101	AAGACAAGAG	AGTGGAGAGA	GCTTCTCTGA	TGATGGGAAC	CATTTTCTTG
1151	ACGTATTCAA	GAATGTAAGA	TTCGGCAAAT	TCCACAAAGA	GTTCCATTGG
1201	TGGAGGGTCT	TGGACTTCGG	GCAACGTAAC	GAGACGGATA	CGAGGCTCAT
1251	TTTTGACTAG	GGATCGGAGG	AAAGCGATTG	TGTCAGCTTG	AGGAATAAAA
301	GGTAATCCCC	AATAGAGGAT	GGTGATGGTG	TGGATCCGAG	GATTGTCTTG
1351	ACTTATGAGA	CGTTTGGCGA	GTTCGATTGT	TGCGAGAATG	TGTCCGGAGA
1401	AAGGGAAAGG	TATGATGACG	AGCTCTGCAT	CTTCTTGCTT	CCCCAT

FIGURE 11A A962 SENSE NUCLEOTIDE SEQUENCE

1	ATGGCGAAGC AGCAAGA	AGC	AGAGCTCATC	TTCATCCCAT	TTCCAATCCC
51	CGGACACATT CTCGCC	ACAA	TCGAACTCGC	GAAACGTCTC	ATCAGTCACC
101	AACCTAGTCG GATCCA	CACC	ATCACCATCC	TCCATTGGAG	CTTACCTTTT
. 151	CTTCCTCAAT CTGAGA	CTAT	CGCCTTCCTC	AAATCCCTAA	TCGAAACAGA
201	GTCTCGTATC CGTCTC	ATTA	CCTTACCCGA	TGTCCAAAAC	CCTCCACCAA
251	TGGAGCTATT TGTGAA	AGCT	TCCGAATCTT	ACATTCTTGA	ATACGTCAAG
301	AAAATGGTTC CTTTGG	CAG	AAACGCTCTC	TCCACTCTCT	TGTCTTCTCG
351	TGATGAATCG GATTCAC	STTC	ATGTCGCCGG	ATTAGTTCTT	GATTTCTTCT
401	GTGTCCCTTT GATCGAT	GTC	GGAAACGAGT	TTAATCTCCC	TTCTTACATC
451	TTCTTGACGT GTAGCGO	AAG	TTTCTTGGGT	ATGATGAAGT	ATCTTCTGGA
501	GAGAAACCGC GAAACCA	AAC	CGGAACTTAA	CCGGAGCTCT	GACGAGGAAA
551	CAATATCAGT TCCTGGT	TTT	GTTAACTCCG	TTCCGGTTAA	AGTTTTGCCA
601	CCGGGTTTGT TCACGAC	TGA	GTCTTACGAA	GCTTGGGTCG	AAATGGCGGA
651	AAGGTTCCCT GAAGCCA	AGG	GTATTTTGGT	CAATTCATTT	GAATCTCTAG
701	AACGTAACGC TTTTGAT	TAT	TTCGATCGTC	GTCCGGATAA	TTACCCACCC
751	GTTTACCCAA TCGGGCC	AAT	TCTATGCTCC	AACGATCGTC	CGAATTTGGA
801	TTTATCGGAA CGAGACC	GGA '	TCTTGAAATG	GCTCGATGAC	CAACCCGAGT
851	CATCTGTTGT GTTTCTC	TGC '	TTCGGGAGCT	TGAAGAGTCT	CGCTGCGTCT
901	CAGATTAAAG AGATCGC	TCA A	AGCCTTAGAG	CTCGTCGGAA	TCAGATTCCT
951	CTGGTCGATT CGAACGG	ACC (CGAAGGAGTA	CGCGAGCCCG	AACGAGATTT
1001	TACCGGACGG GTTTATG	AAC (CGAGTCATGG	GTTTGGGCCT	TGTTTGTGGT
1051	TGGGCTCCTC AAGTTGA	AAT :	TCTGGCCCAT	AAAGCAATTG	GAGGGTTCGT
1101	GTCACACTGC GGTTGGA				
1151	CAATTGCCAC GTGGCCA	ATG 7	TACGCGGAAC	AACAACTAAA	CGCGTTCACG
1201	ATTGTGAAGG AGCTTGG	rtt (GGCGTTGGAG	ATGCGGTTGG	ATTACGTGTC
1251	GGAATATGGA GAAATCG	rga A	AAGCTGATGA	AATCGCAGGA	GCCGTACGAT
1301	CTTTGATGGA CGGTGAG	GAT (GTGCCGAGGA	GGAAACTGAA	GGAGATTGCG
1351	GAGGCGGGAA AAGAGGC	rgt d	GATGGACGGT	GGATCTTCGT	TTGTTGCGGT
1401	TAAAAGATTC ATAGATGO	GC 1	TTTGA		

FIGURE 11B A962 AMINO ACID SEQUENCE

451 EAGKEAVMDG GSSFVAVKRF IDGL

1	MAKQQEAELI	FIPFPIPGHI	LATIELAKRL	ISHQPSRIHT	ITILHWSLPF
51	LPQSDTIAFL	KSLIETESRI	RLITLPDVQN	PPPMELFVKA	SESYILEYVK
101	KMVPLVRNAL	STLLSSRDES	DSVHVAGLVL	DFFCVPLIDV	GNEFNLPSYI
151	FLTCSASFLG	MMKYLLERNR	ETKPELNRSS	DEETISVPGF	VNSVPVKVLP
201	PGLFTTESYE	AWVEMAERFP	EAKGILVNSF	ESLERNAFDY	FDRRPDNYPP
251	VYPIGPILCS	NDRPNLDLSE	RDRILKWLDD	QPESSVVFLC	FGSLKSLAAS
301	QIKEIAQALE	LVGIRFLWSI	RTDPKEYASP	NEILPDGFMN	RVMGLGLVCG
351	WAPQVEILAH	KAIGGFVSHC	GWNSILESLR	FGVPIATWPM	YAEQQLNAFT
401	IVKELGLALE	MRLDYVSEYG	EIVKADEIAG	AVRSLMDGED	VPRRKLKEIA

FIGURE 11C A962 ANTISENSE NUCLEOTIDE SEQUENCE

1	TCAAAGCCCA TCTATGAATC TTTTAACCGC AACAAACGAA GATCCACCGT
51	CCATCACAGC CTCTTTTCCC GCCTCCGCAA TCTCCTTCAG TTTCCTCCTC
101	GGCACATCCT CACCGTCCAT CAAAGATCGT ACGGCTCCTG CGATTTCATC
151	AGCTTTCACG ATTTCTCCAT ATTCCGACAC GTAATCCAAC CGCATCTCCA
201	ACGCCAAACC AAGCTCCTTC ACAATCGTGA ACGCGTTTAG TTGTTGTTCC
251	GCGTACATTG GCCACGTGGC AATTGGAACT CCGAAACGCA AACTCTCCAA
301	TATCGAGTTC CAACCGCAGT GTGACACGAA CCCTCCAATT GCTTTATGGG
351	CCAGAATTTC AACTTGAGGA GCCCAACCAC AAACAAGGCC CAAACCCATG
401	ACTCGGTTCA TAAACCCGTC CGGTAAAATC TCGTTCGGGC TCGCGTACTC
451	CTTCGGGTCC GTTCGAATCG ACCAGAGGAA TCTGATTCCG ACGAGCTCTA
501	AGGCTTGAGC GATCTCTTTA ATCTGAGACG CAGCGAGACT CTTCAAGCTC
551	CCGAAGCAGA GAAACACAAC AGATGACTCG GGTTGGTCAT CGAGCCATTT
601	CAAGATCCGG TCTCGTTCCG ATAAATCCAA ATTCGGACGA TCGTTGGAGC
651	ATAGAATTGG CCCGATTGGG TAAACGGGTG GGTAATTATC CGGACGACGA
701	TCGAAATAAT CAAAAGCGTT ACGTTCTAGA GATTCAAATG AATTGACCAA
751	AATACCCTTG GCTTCAGGGA ACCTTTCCGC CATTTCGACC CAAGCTTCGT
801	AAGACTCAGT CGTGAACAAA CCCGGTGGCA AAACTTTAAC CGGAACGGAG
851	TTAACAAAC CAGGAACTGA TATTGTTTCC TCGTCAGAGC TCCGGTTAAG
.901	TTCCGGTTTG GTTTCGCGGT TTCTCTCCAG AAGATACTTC ATCATACCCA
951	AGAAACTTGC GCTACACGTC AAGAAGATGT AAGAAGGGAG ATTAAACTCG
1001	TTTCCGACAT CGATCAAAGG GACACAGAAG AAATCAAGAA CTAATCCGGC
1051	GACATGAACT GAATCCGATT CATCACGAGA AGACAAGAGA GTGGAGAGAG
1101	CGTTTCTGAC CAAAGGAACC ATTTTCTTGA CGTATTCAAG AATGTAAGAT
1151	TCGGAAGCTT TCACAAATAG CTCCATTGGT GGAGGGTTTT GGACATCGGG
1201	TAAGGTAATG AGACGGATAC GAGACTCTGT TTCGATTAGG GATTTGAGGA
1251	AGGCGATAGT GTCAGATTGA GGAAGAAAAG GTAAGCTCCA ATGGAGGATG
1301	GTGATGGTGT GGATCCGACT AGGTTGGTGA CTGATGAGAC GTTTCGCGAG
1351	TTCGATTGTG GCGAGAATGT GTCCGGGGAT TGGAAATGGG ATGAAGATGA
1401	GCTCTGCTTC TTGCTGCTTC GCCAT

PCT/GB01/00477

UGT71B5 Figure 12

WO 01/59140

ATGAAGATTGAGCTTGTTCATACCTTTGCCGGGGATTGGTCATCTCAGGCCAACCGTGAAGCTAGCG AAGCAACTCATAGGCAGCGAAAACCGTCTTTCGATCACCATAATCATCATCCCTTCAAGATTTGACGCC GGTGATGCATCCGCCTGTATCGCATCTCTCACCACGTTGTCTCAAGATGATCGCCTCCATTACGAATCC ATATCCGTCGCAAAACAACCACCAACCTCCGACCCGGATCCTGTTCCGGCTCAAGTGTACATAGAGAAA CAAAAGACGAAAGTGAGAGATGCAGTCGCGGGGAGAATCGTCGATCCAACAAGAAAGCTCGCGGGATTC GTGGTGGACATGTTCTGTTCCTCGATGATCGATGTAGCTAACGAGTTTGGAGTTCCGTGTTATATGGTA TACACATCGAACGCTACGTTTTTAGGAACCATGCTTCACGTTCAACAAATGTACGATCAAAAGAAGTAT GACGTCAGCGAGTTAGAAAACTCGGTCACCGAGTTGGAGTTTCCGTCTCTGACTCGTCCTTATCCAGTG CGGAAGATGAAGGGTATTTTGGTAAATACAGTTGCTGAGCTTGAACCTCACGCTTTGAAAATGTTCAAT ATTAATGGTGACGATCTTCCTCAAGTTTATCCTGTTGGACCAGTGTTGCATCTCGAAAACGGCAATGAC GATGATGAGAAGCAATCGGAAATTTTGCGGTGGCTCGACGAGCAACCGTCTAAATCTGTTGTGTTTCTC GGTCAGCGGTTTCTTTGGTGTCTTCGTCACGCATCGCCAAATATAAAAACAGATCGTCCCAGAGATTAC ACGAATCTTGAGGAGGGTTTTACCGGAGGGGTTCTTGGAACGGACTTTGGATAGAGGGAAAGTGATTGGA TCTATTTTAGAGAGCTTGTGGTTCGGTGTTCCAATGGTGACGTGGCCGCTATACGCGGAACAGAAGGTT AACGCGTTTGAGATGGTTGAGGAGCTGGGTTTGGCGGTGGAGATACGGAAGTACTTAAAAGGAGATTTG GACAGTGACGTTAGGAACAACGTGAAAGAGATGGCGGAGAAGTGCCACTTCGCGTTAATGGACGGTGGA TCTTCGAAGGCGGCTTTGGAAAAGTTTATTCAAGACGTGATAGAGAATATGGATTAA

UGT71C3 Figure 13

TTCGCTAAATCTCTCATCAAACGTGATGATCGCATCCACCACCATCCTCTACTGGGCTTTACCT CTCGCTCCTCAAGCCCACCTTTTCGCTAAGTCCCTCGTTGCTTCACAGCCTCGAATCCGTCTCCTTGCG TTGCCTGATGTTCAAAACCCTCCACCATTGGAACTCTTCTTTAAAGCTCCCGAAGCTTATATTCTTGAG TCCACCAAGAAAACAGTTCCTTTAGTCAGAGACGCTCTCTCCACTCTAGTTTCTTCACGTAAAGAATCC GGTTCGGTTCGTGTAGTCGGTTTATCGATTTTTTTTTGTGTTCCAATGATCGAAGTGGCAAACGAG CTTAACCTTCCTTACATCTTCCTAACGTGTAACGCTGGGTTTTTAAGTATGATGAAGTATCTCCCT GAGAGACATCGCATAACCACTTCTGAGCTAGATTTAAGCTCCGGCAACGTAGAACATCCAATTCCTGGC TACGTCTGCTCCGTGCCGACGAAGGTTTTGCCTCCAGGTCTATTCGTGAGAGAGTCCTACGAGGCTTGG GTCGAGATTGCAGAGAGTTCCCTGGAGCCAAGGGCATTTTGGTAAACTCAGTCACATGTCTTGAGCAG AATGCATTTGATTACTTCGCTCGTCTTGATGAGAACTATCCTCCGGTTTACCCGGTCGGACCGGTTCTT ${\tt AGTTTGAAGGATCGTCCCAAATCTGGACGCATCGGACCGGGATCGGATCATGAGATGGCTCGAG}$ GACCAGCCGGAGTCGTCAATTGTGTATATCTGCTTCGGAAGCCTCGGAATCATTGGCAAGCTGCAGATT GAAGAGATAGCTGAAGCCTTGGAACTCACCGGCCACAGGTTTCTTTGGTCAATACGTACAAATCCGACG GAGAAAGCGAGCCCGTACGATCTGTTGCCGGAGGGATTTCTCGATCGGACGGCCAGTAAGGGATTGGTG TGTGATTGGGCCCCGCAAGTAGAAGTTCTGGCCCATAAAGCGCTCGGAGGATTCGTGTCTCACTGCGGT TGGAACTCTGTACTGGAGAGCTTATGGTTCGGTGTTCCGATCGCCACGTGGCCAATGTACGCTGAGCAA CAGTTAAACGCATTCTCGATGGTGAAGGAGTTAGGGTTAGCCGTGGAGCTGCGTTTAGACTACGTTTCG GCGTACGGAGAGATAGTAAAAGCTGAGGAGATCGCGGGAGCCATACGATCATTGATGGACGGTGAGGAT ACGCCGAGGAAGAGAGTGAAGGAGATGCCGGAAGCGGCGAGGAATGCTTTGATGGACGGAGGATCTTCG TTTGTTGCGGTTAAACGATTTCTCGACGAGTTGATCGGCGGAGATGTTTAG

UGT71C5 Figure 14

ATGAAGACAGCAGAGCTCATATTCGTTCCTCTGCCGGAGACCGGCCATCTCTTGTCAACGATCGAGTTT GGAAAGCGTCTACTCAATCTAGACCGTCGGATTTCTATGATTACAATCCTCTCCATGAATCTTCCTTAC GCTCCTCACGCCGACGCTTCTCTTGCTTCGCTAACAGCCTCCGAGCCTGGTATCCGAATCATCAGTCTC CCGGAGATCCACGATCCACCTCCGATCAAGCTTCTTGACACTTCCTCCGAGACTTACATCCTCGATTTC ATCCATAAAAACATAGCTTGTCTCAGAAAAACCATCCAAGATTTAGTCTCATCATCATCATCTTCCGGA GGTGGTAGTCATGTCGCCGGCTTGATTCTTGATTTCTTCTGCGTTGGTTTGATCGACATCGGCCGT GAGGTAAACCTTCCTTCCTATATCTTCATGACTTCCAACTTTGGTTTCTTAGGGGTTCTACAGTATCTC CCGGAACGACAACGTTTGACTCCGTCGGAGTTCGATGAGAGCTCCGGCGAGGAAGAGTTACATATTCCG GCGTTTGTGAACCGTGTTCCCGCCAAGGTTCTGCCGCCAGGTGTTTCGATAAACTCTCTTACGGGTCT CTGGTCAAAATCGGCGAGCGATTACATGAAGCCAAGGGTATTTTGGTTAATTCATTTACCCAAGTGGAG CCTTATGCTGCTGAACATTTTTCTCAAGGACGAGATTACCCTCACGTGTATCCTGTTGGGCCGGTTCTC AACTTAACGGGCCGTACAAATCCGGGTCTAGCTTCGGCCCAATATAAAGAGATGATGAAGTGGCTTGAC GAGCAACCAGACTCGTCGGTTTTGTTCCTGTGTTTCGGGAGCATGGGAGTCTTCCCTGCACCTCAGATC ACAGAGATTGCTCACGCGCTCGAGCTTATCGGGTGCAGGTTCATCTGGGCGATCCGTACGAACATGGCG TGTAGTTGGGCTCCACAAGTGGATATCTTGGCCCACAAGGCAACAGGTGGATTCGTTTCTCACTGCGGG TGGAATTCCGTCCAAGAGAGTCTATGGTACGGTGTACCTATTGCAACGTGGCCAATGTATGCGGAGCAA CAACTGAACGCATTTGAGATGGTGAAGGAGTTGGGCTTAGCAGTGGAGATAAGGCTTGACTACGTGGCG GATGGTGATAGGGTTACTTTGGAGATCGTGTCAGCCGATGAAATAGCCACAGCCGTCCGATCATTGATG GATAGTGATAACCCCGTGAGAAAGAAGGTTATAGAAAAATCTTCAGTGGCGAGGAAAGCTGTTGGTGAT GGTGGGTCTTCTACGGTGGCCACATGTAATTTTATCAAAGATATTCTTGGGGATCACTTTTGA

UGT71D1 Figure 15

ATGCGGAATGTAGAGCTCATCTTCATCCCCACACCAACCGTTGGTCATCTTGTTCCGTTTCTTGAATTT GCTAGGCGTCTCATTGAGCAAGATGATAGGATCCGTATCACAATCCTCTTGATGAAACTACAAGGTCAG TCTCATCTAGACACTTATGTTAAATCAATTGCCTCCTCTCAACCGTTTGTTAGATTCATTGATGTCCCT GAGTTAGAGGAGAAACCTACACTTGGTAGTACACAATCTGTGGAAGCTTATGTGTATGATGTTATTGAG GTCAAGGGATTAGTTGTTGACTTTTTCTGTCTCCCTATGATTGACGTTGCTAAAGATATAAGTCTCCCT TTCTATGTGTTCTTGACTACAAATTCCGGGTTCTTAGCTATGATGCAGTATCTAGCAGATCGACATAGT AGAGATACATCGGTTTTTGTAAGAAACTCGGAAGAAATGTTGTCGATACCTGGATTTGTAAACCCTGTC CCAGCCAATGTTCTGCCGTCAGCTCTGTTTGTTGAAGATGGTTATGATGCTTACGTTAAGCTGGCCATA TTGTTTACAAAGGCCAATGGAATCCTAGTGAATAGCTCCTTTGATATTGAGCCTTACTCTGTGAATCAT TTTCTTCAAGAACAGAATTATCCTTCTGTTTATGCTGTTGGCCCCATATTTGACTTGAAAGCCCAGCCT CATCCAGAGCAGGACCTAACCCGTCGTGACGAGTTGATGAAATGGCTTGATGATCAACCCGAGGCATCG GTTGTATTCCTTTGTTTTGGGAGTATGGCAAGGTTAAGAGGTTCTCTAGTGAAGGAAATAGCTCATGGA CTTGAGCTATGTCAATATAGATTCCTCTGGTCACTCCGTAAAGAAGAGGGTGACAAAGGATGATTTGCCA GGCGTGCCAATTGTGACATGGCCAATGTATGCAGAGCAACAACTCAATGCGTTTCTGATGGTGAAGGAA CTGAAGCTAGCTGTGGAGCTGAAGCTTGATTACAGGGTACATAGTGATGAGATAGTAAACGCAAACGAG ATAGAGACCGCTATTCGTTATGTAATGGACACGGATAATAATGTTGTGAGGAAACGAGTGATGGATATC TCGCAGATGATCCAGAGAGCTACGAAGAATGGTGGATCTTCGTTTGCCGCAATTGAGAAATTCATATAT GACGTGATAGGAATTAAGCCCTAG

UGT73B1 Figure 16

ATGGGAACTCCTGTCGAAGTCTCTAAGCTCCATTTCTTGCTCTTTCCTTTCATGGCTCATGGCCATATG ATACCAACTCTAGACATGGCTAAGCTCTTTGCCACCAAAGGAGCTAAATCCACTATCCTCACTACACCT CTCAATGCCAAGCTCTTCTTCGAGAAACCCATCAAATCATTCAACCAAGACAACCCGGGACTCGAAGAC ATCACCATCCAGATCCTTAATTTCCCTTGCACAGAGCTTGGTTTGCCTGATGGCTGTGAGAATACTGAT TTCATCTTCTCCACACCTGACCTAAACGTAGGTGACTTGAGTCAAAAGTTTTTACTCGCAATGAAATAT TTCGAAGAGCCACTAGAGGAGCTCCTCGTGACAATGAGACCAGACTGTCTTGTCGGTAACATGTTCTTC CCTTGGTCCACTAAAGTTGCTGAGAAGTTCGGAGTACCGAGACTTGTGTTCCACGGCACAGGCTACTTC TCTTTATGTGCTTCTCATTGCATAAGGCTCCCTAAGAATGTGGCAACAAGTTCTGAGCCCTTTGTGATT CCTGATCTCCCGGGAGACATTTTGATTACAGAGGAACAGGTCATGGAGACAGAAGAAGAGTCTGTAATG GGGAGGTTTATGAAGGCAATAAGAGACTCAGAGAGAGATAGCTTTGGCGTGTTGGTGAACAGCTTCTAC GAGCTTGAACAGGCTTACTCAGATTATTTCAAGAGCTTTGTGGCGAAAAGAGCGTGGCATATCGGTCCG CTTTCCTTAGGAAATAGAAAGTTCGAGGAGAAAGCAGAAAGGGCAAAAAGGCAAGCATTGATGAGCAT GAATGTTTGAAATGGCTCGACTCCAAGAAATGTGATTCAGTGATTTACATGGCCTTTGGAACCATGTCT AGCTTTAAAAACGAGCAGCTGATAGAGATTGCAGCTGGTTTAGATATGTCAGGACATGATTTTGTCTGG GTGGTTAACAGAAAAGGCAGCCAAGGTACCATAGACATCACTCTCTTTGCAGCAAAATCCTCTGTTTTT GTTTTAGAGAAAAACCAATGATCTAATTAGGATTCTACTGTTTCAAACTCTAACTTTTGCGTTTGCATT ACATATAAATAGTTGAGAAGGAGAGTTGGTTACCAGAGGGGTTTGAAGAGAAGACCAAGGGAAAAGGAT TGATAATCCGAGGGTGGGCGCCACAAGTGCTGATACTTGAGCACAAAGCAATTGGCGGATTTTTGACGC ATTGTGGATGGAACTCGTTATTAGAAGGGGTGGCAGCGGGCCTGCCAATGGTGACATGGCCCGTGGGAG TTGGAGAAGAGGAGGAAACGGGCCAAGGAGTTAGCAGAAATGGCGAAAAATGCGGTGAAAGAAGGAG **TATAA**

UGT73B2 Figure 17

ATGGGTAGTGATCATCATCGAAAGCTCCACGTTATGTTCTTCCCTTTCATGGCTTATGGTCACATG ATACCAACTCTAGACATGGCTAAGCTTTTCTCTAGCAGAGGAGCCAAATCCACAATCCTCACCACATCT CTCAACTCCAAGATCCTCCAAAAACCCATCGACACATTCAAGAATCTGAATCCGGGTCTCGAAATCGAC ATCCAGATCTTCAATTTCCCTTGCGTGGAGCTGGGGTTACCAGAAGGATGTGAAAACGTTGATTTCTTC ACTTCAAACAACAATGATGATAAAAACGAGATGATCGTGAAATTCTTTTTCTCGACAAGGTTTTTCAAA GACCAGCTTGAGAAACTCCTCGGGACAACGAGACCAGACTGTCTTATCGCCGACATGTTCTTCCCCTGG GCTACTGAAGCTGCTGGGAAGTTCAATGTGCCAAGACTTGTGTTCCACGGCACTGGCTACTTCTTTTA TGCGCTGGTTATTGCATCGGAGTGCATAAACCACAGAAGAGAGTGGCTTCAAGCTCTGAGCCATTTGTG ATTCCCGAGCTCCCTGGGAACATTGTGATAACTGAAGAACAGATCATAGATGGCGATGGAGAATCCGAC ATGGGAAAGTTTATGACTGAAGTTAGGGAATCGGAAGTGAAGAGCTCAGGAGTTGTTTTGAATAGTTTC TACGAGCTAGAACATGATTACGCCGATTTTTACAAAAGTTGTGTACAAAAGAGAGCGTGGCATATCGGT GCTGAATGCCTCAAATGGCTTGACTCCAAGAAACCAAATTCAGTCATTTATGTTTCCTTTGGGAGCGTG GCTTTCTTCAAGAATGAACAGTTATTCGAGATCGCTGCAGGGTTAGAAGCTTCCGGTACAAGTTTCATT TGGGTTGTTAGGAAAACCAAAGGTATTGAAATTGACGTTTGAAGCCTATATTATATAGCTGTAATTTGG GTAGCTTTGATTTTAATCTGACACAAGATTTGGTGTGAACAGATGATAGAGAAGAATGGTTACCAGAAG GGTTCGAAGAGGGGTGAAAGGGAAAGGTATGATAATAAGAGGATGGGCACCACAGGTGCTGATACTTG ACCACCAAGCAACCGGTGGGTTTGTGACCCATTGCGGCTGGAACTCGCTTCTTGAAGGAGTGGCTGCAG GGCTACCAATGGTGACATGGCCTGTAGGAGCGGAGCAATTCTACAATGAGAAATTGGTTACGCAAGTGC TCAGAACAGGAGTGAGCGTGGGAGCGAGCAAGCATATGAAAGTTATGATGGGAGATTTCATTAGCAGAG AGAAAGTGGATAAAGCGGTGAGGGAGGTTTTTGGCTGGGGAAGCAGCAGAGGAGAGGGGGAGACGGGCAA TCATGGAAGAGTTTAGTTCATAA

UGT73B4 Figure 18

ATGAACAGAGCAAATTCATATTTTGTTCTTCCCCTTCATGGCTCATGGCCACATGATTCCACTCTTA GACATGGCCAAGCTTTTCGCTAGAAGAGGGGGCCAAATCAACTCTCCTCACAACCCCAATAAATGCTAAG $\tt ATCTTGGAGAAACCCATTGAAGCATTCAAAGTTCAAAATCCTGATCTCGAAATCGGAATCAAGATCCTC$ AATTTCCCTTGTGTAGAGCTTGGATTGCCAGAAGGATGCGAGAACCGTGACTTCATTAACTCATACCAA AAATCTGACTCATTTGACTTGTTCTTGAAGTTTCTTTTCTCTACCAAGTATATGAAACAGCAGTTGGAG AGTTTCATTGAAACAACCAAACCGAGTGCTCTTGTAGCCGATATGTTCTTCCCTTGGGCAACAGAATCC GCGGAGAAGATCGGTGTTCCAAGACTTGTGTTCCACGGCACATCATCCTTTGCCTTGTTGTTCGTAT AACATGAGGATTCATAAGCCACACAAGAAAGTCGCTTCGAGTTCTACTCCATTTGTAATCCCTGGTCTC CCTGGAGACATAGTTATTACAGAAGACCAAGCCAATGTCACCAACGAAGAAACTCCATTCGGAAAGTTT TGGAAAGAAGTCAGGGAATCAGAGACCAGTAGCTTTGGTGTTTTTGGTGAATAGCTTCTACGAGCTGGAA TCATCTTATGCTGATTTTTACCGTAGTTTTGTGGCGAAAAAAGCGTGGCATATAGGTCCACTTTCACTA TCCAACAGAGGGATTGCAGAGAAAGCCGGAAGAGGGGAAAAAGGCAAACATTGATGAGCAAGAATGCCTC AAATGGCTTGACTCTAAGACACCTGGCTCAGTAGTTTACTTGTCCTTTGGTAGCGGAACCGGCTTACCC AACGAACAGCTGTTAGAGATTGCTTTCGGCCTTGAAGGCTCTGGACAAAATTTCATTTGGGTGGTTAGC AAAAATGAAAACCAAGGTAATTTTTTTCCTCCTTAACCATTATTAATCAATGTAGTCTTTATTAGTATA TTTCCAAAAATATTAACATTTGTGTATACATTTTCCTATTGCCAAATATGCTATGATGCCATAGCAATG AGTAGATTGGTTTGTACTTTATATATTACTTTGTAGAACTTCTAACAATTATGACTTGGTGTTGGTG TGATAATACGCGGATGGGCCCCGCAAGTGCTGATACTTGACCACAAAGCAATCGGAGGATTTGTGACGC ATTGCGGATGGAACTCGACTTTGGAGGGCATTGCCGCAGGGCTGCCTATGGTGACTTGGCCGATGGGGG CAGAACAGTTCTACAACGAGAAGTTATTGACAAAAGTGTTGAGAATAGGAGTGAACGTTGGAGCTACCG AGTTGGTGAAAAAAGGAAAGTTGATTAGTAGAGCACAAGTGGAGAAGGCAGTAAGGGAAGTGATTGGTG GTGAGAAGGCAGAGGAAAGGCGGCTAAGGGCTAGGAGCTGGGCGAGATGGCTAAAGCCGCTGTGGAAG AAGGAGGGTCTTCTTATAATGATGTGAACAAGTTTATGGAAGAGCTGAATGGTAGAAAGTAG

UGT73B5 Figure 19

ATGAACAGAGAAGTCTCTGAGAGAATTCATATTTTGTTCTTCCCCTTCATGGCTCAAGGCCACATGATT AACGCTAAGATCTTCGAGAAACCTATTGAAGCATTCAAAAATCAAAACCCTGATCTCGAAATCGGAATC AAGATCTTCAATTTCCCTTGTGTAGAGCTTGGATTGCCTGAAGGATGCGAGAACGCTGACTTTATCAAC TCATACCAÃAAATCTGACTCAGGTGACTTGTTCTTGAAGTTTCTTTTCTCTACCAAGTATATGAAACAA CAGTTGGAGAGTTTCATTGAAACCAAACCAAGTGCTCTTGTTGCCGATATGTTCTTCCCTTGGGCG TGTTCGTATAACATGAGGATTCATAAGCCACACAAGAAAGTCGCTACGAGTTCTACTCCTTTTGTAATC CCTGGTCTCCCAGGAGACATAGTTATTACAGAAGACCAAGCCAATGTTGCCAAAGAAGAAACGCCAATG GGAAAGTTTATGAAAGAGGTTAGGGAATCAGAGACCAATAGCTTTGGTGTATTGGTTAATAGCTTCTAC GAGCTGGAATCAGCTTATGCTGATTTTTATCGTAGTTTTTGTGGCGAAAAGAGCTTGGCATATCGGTCCG CTTTCGCTATCTAACAGAGAGTTAGGAGAGAGAAAAGCCAGAAGAGGGAAAAAGGCTAACATTGATGAGCAA GAATGCCTAAAATGGCTGGACTCTAAGACACCTGGTTCAGTAGTTTACTTGTCCTTTGGGAGCGGAACT AATTTCACCAACGACCAGCTGTTAGAGATCGCTTTTGGTCTTGAAGGTTCTGGACAAAGTTTCATCTGG GTGGTTAGGAAAATGAAAACCAAGGTAAATTGTTTCTCCCCAGCCATTATTAACCAACATAGTAATGT TAATATTTGTGTATATATTCGTATTGCCAAATATGCTCTGATACCATGGCAAGTAATAGATTGGCTCAT GTATTTTATTTGTGATCATGTAGAATTTTCTTAACAGTTATGACTTGGTGTTGGTATGGTTGGGACAGG TGACAATGAAGAGTGGTTGCCTGAAGGGTTTAAAGAGAGGACAACAGGGAAAGGGCTAATAATACCTGG ATGGGCGCCGCAAGTGCTGATACTTGACCATAAAGCAATTGGAGGATTTGTGACTCATTGCGGATGGAA CTCGGCTATAGAGGGCATTGCCGCGGGGCTGCCTATGGTAACATGGCCAATGGGGGCAGAACAGTTCTA CAATGAGAAGCTATTGACAAAAGTGTTGAGAATAGGAGTGAACGTTGGAGCTACCGAGTTGGTGAAAAA AGGAAAGTTGATTAGTAGAGCACAAGTGGAGAAGGCAGTAAGGGAAGTGATTGGTGGTGAGAAGGCAGA GGAAAGGCGGCTATGGGCTAAGAAGCTGGGCGAGATGGCTAAAGCCGCTGTGGAAGAAGGAGGGTCCTC TTATAATGATGTGAACAAGTTTATGGAAGAGCTGAATGGTAGAAAGTAG

UGT73C1 Figure 20

ATGGCATCGGAATTTCGTCCTCTTCATTTTGTTCTCTTCCCTTTCATGGCTCAAGGCCACATGATC CCAATGGTAGATATTGCAAGGCTCCTGGCTCAGCGCGGGGTGACTATAACCATTGTCACTACACCTCAA AACGCAGGCCGGTTCAAGAACGTTCTTAGCCGGGCTATCCAATCCGGCTTGCCCATCAATCTCGTGCAA GTAAAGTTTCCATCTCAAGAATCGGGTTCACCGGAAGGACAGGAGAATTTGGACTTGCTCGATTCATTG GGGGCTTCATTAACCTTCTTCAAAGCATTTAGCCTGCTCGAGGAACCAGTCGAGAAGCTCTTGAAAGAG ATTCAACCTAGGCCAAACTGCATAATCGCTGACATGTGTTTGCCTTATACAAACAGAATTGCCAAGAAT CTTGGTATACCAAAAATCATCTTTCATGGCATGTGTTGCTTCAATCTTCTTTGTACGCACATAATGCAC CAAAACCACGAGTTCTTGGAAACTATAGAGTCTGACAAGGAATACTTCCCCATTCCTAATTTCCCTGAC AGAGTTGAGTTCACAAAATCTCAGCTTCCAATGGTATTAGTTGCTGGAGATTGGAAAGACTTCCTTGAC GGAATGACAGAAGGGGATAACACTTCTTATGGTGTGATTGTTAACACGTTTGAAGAGCTCGAGCCAGCT TATGTTAGAGACTACAAGAAGGTTAAAGCGGGTAAGATATGGAGCATCGGACCGGTTTCCTTGTGCAAC AAGTTAGGAGAAGACCAAGCTGAGAGGGGGAAACAAGGCGGACATTGATCAAGACGAGTGTATTAAATGG CTTGATTCTAAAGAAGAAGGGTCGGTGCTATATGTTTGCCTTGGAAGTATATGCAATCTTCCTCTGTCT CAGCTCAAAGAGCTCGGCTTAGGCCTCGAGGAATCCCAAAGACCTTTCATTTGGGTCATAAGAGGTTGG CTTCTCATAACAGGATGGTCGCCTCAAATGCTTATCCTTACACATCCTGCCGTTGGAGGATTCTTGACA CATTGTGGATGGAACTCTACTCTTGAAGGAATCACTTCAGGCGTTCCATTACTCACGTGGCCACTGTTT GGAGACCAATTCTGCAATGAGAAATTGGCGGTGCAGATACTAAAAGCCGGTGTGAGAGCTGGGGTTGAA GAGTCCATGAGATGGGGAGAAGAGGAGAAAATAGGAGTACTGGTGGATAAAGAAGGAGTAAAGAAGGCA GTGGAGGAATTGATGGTGATAGTAATGATGCTAAGGAGAAGAAAAAAGAGTGAAAGAGCTTGGAGAA TTAGCTCACAAGGCTGTGGAAGAAGGAGGCTCTTCTCATTCCAACATCACATTCTTGCTACAAGACATA ATGCAATTAGAACAACCCAAGAAATGA

UGT731C Figure 21

ATGGCTACGGAAAAAACCCACCAATTTCATCCTTCTCTTCACTTTGTCCTCTTCCCTTTCATGGCTCAA GGCCACATGATTCCCATGATTGATATTGCAAGACTCTTGGCTCAGCGTGGTGTGACCATAACAATTGTC ACGACACCTCACAACGCAAGGTTTAAGAATGTCCTAAACCGAGCGATCGAGTCTGGCTTGGCCATC AACATACTGCATGTGAAGTTTCCATATCAAGAGTTTGGTTTGCCAGAAGGAAAAGAGAATATAGATTCG CTCATGGAAGAGTGAAACCTAGACCTAGCTGTCTAATTTCTGATTGGTGTTTTGCCTTATACAAGCATA ATCGCCAAGAACTTCAATATACCAAAGATAGTTTTCCACGGCATGGGTTGCTTTAATCTTTTGTGTATG CATGTTCTACGCAGAAACTTAGAGATCCTAGAGAATGTAAAGTCGGATGAAGAGTATTTCTTGGTTCCT AGTTTTCCTGATAGAGTTGAATTTACAAAGCTTCAACTTCCTGTGAAAGCAAATGCAAGTGGAGATTGG AAAGAGATAATGGATGAAATGGTAAAAGCAGAATACACATCCTATGGTGTGATCGTCAACACATTTCAG GTTTCCTTGTGTAACAAGGCAGGTGCAGACAAAGCTGAGAGGGGGAAGCAAGGCCGCCATTGATCAAGAT GAGTGTCTTCAATGGCTTGATTCTAAAGAAGAAGGTTCGGTGCTCTATGTTTGCCTTGGAAGTATATGT AATCTTCCTTTGTCTCAGCTCAAGGAGCTGGGGCTAGGCCTTGAGGAATCTCGAAGATCTTTATTTGG ATCAAAGAGAGAGGACTTCTCATTAAAGGGTGGGCACCTCAAGTCCTTATCCTTTCACATCCTTCCGTT GGAGGATTCCTGACACACTGTGGATGGAACTCGACTCTCGAAGGAATCACCTCAGGCATTCCACTGATC ACTTGGCCGCTGTTTGGAGACCAATTCTGCAACCAAAAACTGGTCGTTCAAGTACTAAAAGCCGGTGTA AGTGCCGGGGTTGAAGAGTCATGAAATGGGGGAGAAGAAGATAAAATAGGAGTGTTAGTGGATAAAGAA GGAGTGAAAAAGGCTGTGGAAGAATTGATGGGTGATAGTGATGCAAAAGAGAGGAGAAGAAGAGTC ${\tt AAAGAGCTTGGAGAATTAGCTCACAAAGCTGTGGAAAAAGGAGGCTCTTCTCATTCTAACATCACACTC}$ TTGCTACAAGACATAATGCAACTAGCACAATTCAAGAATTGA

UGT73C5 Figure 22

ATGGTTTCCGAAACCAAATCTTCTCCACTTCACTTTGTTCTCTTCCCTTTCATGGCTCAAGGCCAC ATGATTCCCATGGTTGATATTGCAAGGCTCTTGGCTCAGCGTGGTGATCATAACAATTGTCACGACG CCTCACAATGCAGCGAGGTTCAAGAATGTCCTAAACCGTGCCATTGAGTCTGGCTTGCCCATCAACTTA GTGCAAGTCAAGTTTCCATATCTAGAAGCTGGTTTGCAAGAAGGACAAGAGAATATCGATTCTCTTGAC ACAATGGAGCGGATGATACCTTTCTTTAAAGCGGTTAACTTTCTCGAAGAACCAGTCCAGAAGCTCATT AAGAAGTTCAATATCCCAAAGATCCTCTTCCATGGCATGGGTTGCTTTTGTCTTCTGTGTATGCATGTT TTACGCAAGAACCGTGAGATCTTGGACAATTTAAAGTCAGATAAGGAGCTTTTCACTGTTCCTGATTTT CCTGATAGAGTTGAATTCACAAGAACGCAAGTTCCGGTAGAAACATATGTTCCAGCTGGAGACTGGAAA GATATCTTTGATGGTATGGTAGAAGCGAATGAGACATCTTATGGTGTGATCGTCAACTCATTTCAAGAG CTCGAGCCTGCTTATGCCAAAGACTACAAGGAGGTAAGGTCCGGTAAAGCATGGACCATTGGACCCGTT TCCTTGTGCAACAAGGTAGGAGCCGACAAAGCAGAGAGGGGAAACAAATCAGACATTGATCAAGATGAG TGCCTTAAATGGCTCGATTCTAAGAAACATGGCTCGGTGCTTTACGTTTGTCTTGGAAGTATCTGTAAT CTTCCTTTGTCTCAACTCAAGGAGCTGGGACTAGGCCTAGAGGAATCCCAAAGACCTTTCATTTGGGTC ATAAGAGGTTGGGAGAAGTACAAAGAGTTAGTTGAGTGGTTCTCGGAAAGCGGCTTTGAAGATAGAATC GGGTTCCTAACACACTGTGGTTGGAACTCGACTCTTGAGGGGATAACTGCTGGTCTACCGCTACTTACA TGGCCGCTATTCGCAGACCAATTCTGCAATGAGAAATTGGTCGTTGAGGTACTAAAAGCCGGTGTAAGA CTACAAGACATAATGGAACTGGCAGAACCCAATAATTGA

UGT73C6 Figure 23

ATGGCTTTCGAAAAAAACAACGAACCTTTTCCTCTTCACTTTGTTCTCTTCCCTTTCATGGCTCAAGGC CACATGATTCCCATGGTTGATATTGCAAGGCTCTTGGCTCAGCGAGGTGTGCTTATAACAATTGTCACG ACGCCTCACAATGCAGCAAGGTTCAAGAATGTCCTAAACCGTGCCATTGAGTCTGGTTTGCCCATCAAC CTAGTGCAAGTCAAGTTTCCATATCAAGAAGCTGGTCTGCAAGAAGGACAAGAAAATATGGATTTGCTT ACCACGATGGAGCAGATAACATCTTTCTTTAAAGCGGTTAACTTACTCAAAGAACCAGTCCAGAACCTT ATTGAAGAGATGAGCCCGCGACCAAGCTGTCTAATCTCTGATATGTGTTTGTCGTATACAAGCGAAATC GCCAAGAAGTTCAAAATACCAAAGATCCTCTTCCATGGCATGGGTTGCTTTTGTCTTCTGTGTGTTAAC GTTCTGCGCAAGAACCGTGAGATCTTGGACAATTTAAAGTCTGATAAGGAGTACTTCATTGTTCCTTAT TTTCCTGATAGAGTTGAATTCACAAGACCTCAAGTTCCGGTGGAAACATATGTTCCTGCAGGCTGGAAA GAGATCTTGGAGGATATGGTAGAAGCGGATAAGACATCTTATGGTGTTATAGTCAACTCATTTCAAGAG CTCGAACCTGCGTATGCCAAAGACTTCAAGGAGGCAAGGTCTGGTAAAGCATGGACCATTGGACCTGTT TCCTTGTGCAACAAGGTAGGAGACAAAGCAGAGAGGGGGAAACAAATCAGATATTGATCAAGATGAG TGCCTTGAATGGCTCGATTCTAAGGAACCGGGATCTGTGCTCTACGTTTGCCTTGGAAGTATTTGTAAT $\tt CTTCCTCTGTCTCAGCTCCTTGAGCTGGGACTAGGCCTAGAGGAATCCCAAAGACCTTTCATCTGGGTC$ ATAAGAGGTTGGGAGAAATACAAAGAGTTAGTTGAGTGGTTCTCGGAAAGCGGCTTTGAAGATAGAATC CAAGATAGAGGACTTCTCATCAAAGGATGGTCCCCTCAAATGCTTATCCTTTCACATCCTTCTGTTGGA GGGTTCTTAACGCACTGCGGATGGAACTCGACTCTTGAGGGGATAACTGCTGGTCTACCAATGCTTACA TGGCCACTATTTGCAGACCAATTCTGCAACGAGAAACTGGTCGTACAAATACTAAAAGTCGGTGTAAGT GAGCTTGGAGAATCAGCTCACAAGGCTGTGGAAGAAGGAGGCTCCTCTCATTCTAATATCACTTTCTTG CTACAAGACATAATGCAACTAGCACAGTCCAATAATTGA

UGT73C7 Figure 24

ATGTGTTCTCATGATCCTCTTCACTTCGTCGTAATACCCTTTATGGCCCAAGGCCATATGATCCCATTG GTCGACATCTCTAGGCTCTTGTCCCAGCGCCAAGGCGTGACTGTCTGCATCATCACAACTACTCAAAAT TTTCTGTCTCAACAACGGGTTTGCCAGAAGGGTGCGAGAGTTTAGATATGTTGGCTTCAATGGGCGAT ATGGTGAAGTTCTTTGATGCTGCCAACTCACTTGAGGAGCCAAGTTGAGAAAGCTATGGAAGAGATGGTT AAGATCCCCAAACTTATCTTCCATGGGTTTTCTTGTTTCAGCCTCATGTCTATACAAGTGGTTCGAGAA AGCGGGATCTTGAAAATGATAGAATCAAACGACGAGTATTTTGATTTGCCCGGCTTGCCTGACAAAGTT GAGTTCACGAAACCTCAGGTCTCTGTGTTGCAACCTGTTGAAGGAAATATGAAAGAGAGTACGGCCAAG ATTATTGAAGCTGATAATGACTCTTATGGTGTTATTGTGAACACTTTTGAAGAGTTAGAGGTTGATTAT GCAAGAGAATATAGGAAAGCAAGGGCTGGAAAAGTTTGGTGCGTTGGACCTGTTTCCTTGTGCAATAGG TTAGGGTTAGACAAAGCTAAAAGAGGAGATAAGGCTTCTATTGGTCAAGACCAATGTCTTCAATGGCTT GACTCTCAAGAAACTGGTTCAGTGCTCTACGTTTGCCTTGGAAGTCTATGTAATCTTCCCTTGGCTCAG CTCAAAGAGCTGGGACTAGGCCTTGAGGCATCTAATAAACCTTTCATATGGGTTATAAGAGAATGGGGA AAATATGGAGATTTAGCAAATTGGATGCAACAAAGCGGATTTGAAGAGCGGATCAAAGATAGAGGACTG GTGATCAAAGGTTGGGCGCCGCAAGTTTTCATCCTCTCACACGCATCCATTGGAGGGTTTTTTGACTCAC GAACAATTCTTGAATGAGAAGTTAGTTGTGCAGATACTAAAAGCAGGGTTAAAGATAGGAGTAGAGAAA TTGATGAAATATGGAAAAGAAGAGGAGATAGGAGCGATGGTGAGCAGAGAATGTGTGAGAAAAGCTGTG GCAAATAAGGCTTTGGAAAAAGGAGGATCTTCAGATTCTAATATCACATTGCTCATTCAAGATATTATG GAGCAATCACAAAATCAATTTTAA

UGT74F2 Figure 25

ATGGAGCATAAGAGAGGACATGTATTAGCAGTGCCGTACCCAACGCAAGGACACATCACACCATTCCGC CAATTCTGCAAACGACTTCACTTCAAAGGTCTCAAAACCACTCTCGCTCTCACCACTTTCGTCTTCAAC TCCATCAATCCTGACCTATCCGGTCCAATCTCCATAGCCACCATCTCCGATGGCTATGACCATGGGGGGT TTCGAGACAGCTGACTCCATCGACGACTACCTCAAAGACTTTAAAACTTCCGGCTCGAAAACCATTGCA GACATCATCCAAAAACACCAGACTAGTGATAACCCCATCACTTGTATCGTCTATGATGCTTTCCTGCCT AACTATGTTTATTATCTTTCTTACATAAACAATGGAAGCTTGCAACTTCCCATTGAGGAATTGCCTTTT CTTGAGCTCCAAGATTTGCCTTCTTCTCTCTGTTTCTGGCTCTTATCCTGCTTACTTTGAGATGGTG CTTCAACAGTTCATAAATTTCGAAAAAGCTGATTTCGTTCTCGTTAATAGCTTCCAAGAGTTGGAACTG CATGTTAGATCTCTCTATCTCTTTCTTACAATTCTTAAACCATCTCTTGTTCTTGTGCATGTACTAA CTGCTCTTTTTTTTTTACAGGAGAATGAATTGTGGTCGAAAGCTTGTCCTGTGTTGACAATTGGTCCA ACTATTCCATCAATTTACTTAGACCAACGTATCAAATCAGACACCGGCTATGATCTTAATCTCTTTGAA ${\tt TCGAAAGATGATTCCTTCTGCATTAACTGGCTCGACACAAGGCCACAAGGGTCGGTGGTGTACGTAGCA}$ TTCCTGTGGGTGGTCAGATCTTCAGAGGAGGAAAAACTCCCATCAGGGTTTCTTGAGACAGTGAATAAA $\tt TTGACTCACTGTGGCTGGAACTCAACCATGGAGGCTTTGACCTTCGGGGTTCCCATGGTGGCAATGCCC$ CAATGGACTGATCAACCGATGAACGCAAAGTACATACAAGATGTGTGGAAGGCTGGAGTTCGTGTGAAG GAGAGGAGCAAAGAAGAAGAACGTGAAGAAATGGAGAGACTTGGCTGTCAAGTCACTCAATGAA GGAGGTTCTACGGATACTAACATTGATACATTTGTATCAAGGGTTCAGAGCAAATAG

UGT76El Figure 26

ATGGAAGAACTAGGAGTGAAGAGAAGGATAGTATTGGTTCCAGCTCCAGCACAAGGTCATGTAACTCCG ATTATGCAACTCGGGAAGGCTCTTTACTCCAAGGGCTTCTCCATCACTGTTGTTCTCACACAGTATAAT CGAGTTAGCTCATCCAAGGACTTCTCTGATTTTCATTTCCTCACCATCCCAGGCAGCTTGACCGAGTCT CAATGTATTGGTCAACTATTGCAGGAGCAAGGTAATGATATCGCTTGTGTCGTCTACGATGAGTACATG TACTTCTCCCAAGCTGCAGTTAAAGAGTTTCAACTTCCTAGCGTCCTCTTCAGCACGACAAGTGCTACT CAAGATTTTTTAGCTTGTTAACTCAAACTTTAAAAGTGCATTTAGGTATATAAACCAATCCAAATGCTG TTGTTTGCTTTGCAGATCCCAAAGTGTCAGACAAGGAATTTCCAGGGTTGCATCCGCTAAGGTACAAGG ACCTGCCAACTTCAGCATTTGGGCCATTAGAGAGTATACTCAAGGTTTACAGTGAGACTGTCAACATTC GAACAGCTTCGGCAGTTATCATCAACTCAACAAGCTGTCTAGAGAGCTCATCTTTGGCATGGTTACAAA AACAACTGCAAGTTCCAGTGTATCCTATAGGCCCACTTCACATTGCAGCTTCAGCGCCCTTCTAGTTTAC TTGAAGAGGACAGGAGTTGCCTTGAGTGGTTGAACAAGCAAAAAATAGGCTCAGTGATTTACATAAGTT TGGGAAGCTTGGCTCTAATGGAAACTAAAGACATGTTGGAGATGGCTTGGGGTTTACGTAATAGCAACC AACCTTTCTTATGGGTGATCCGACCGGGTTCTATTCCCGGCTCGGAATGGACAGAGTCTTTACCGGAGG AATTCAGTAGGTTGGTTTCAGAAAGAGGTTACATTGTGAAATGGGCACCACAGATAGAAGTTCTCAGAC ATCCTGCAGTGGGAGGGTTTTGGAGTCACTGCGGATGGAACTCGACCCTAGAGAGCATCGGGGAAGGAG TGGATGAAGAAGGAGCAGAAATGAGGAAGAGAGTTATCAACTTGAAAGAGAAGCTTCAAGCCTCTGTCA AGAGTAGAGGTTCCTCATTCAGCTCATTAGACAACTTTGTCAATTCCTTAAAAATGATGAATTTCATGT AG

UGT76Ell Figure 27

ATAATGCAACTTGCAAAAACACTTCACTTGAAGGGTTTCTCAATCACAATCGCTCAGACAAAGTTCAAT TACTTTAGCCCTTCAGATGACTTCACTGATTTTCAGTTTGTCACCATTCCAGAAAGCTTACCAGAGTCT GATTTTGAGGATCTCGGGCCAATAGAGTTTCTGCATAAGCTCAACAAAGAGTGTCAGGTGAGCTTCAAA GACTGTTTGGGTCAGTTGTTGCTGCAACAAGGTAATGAGATAGCCTGTGTTGTCTACGACGAGTTCATG TACTTTGCTGAAGCTGCAGCCAAAGAGTTTAAGCTTCCAAACGTCATTTTCAGCACCACAAGTGCCACG GCTTTTGTTTGCCGCTCTGCATTCGACAAACTTTATGCAAACAGTATCCTGACTCCCTTGAAAGGTACT CTTGAATTCTCTGTCTTCTATTCTTGCTGGTTTCTATAATCTGTAACAGCATGGTTCTTGACCTTTTTG CAGAACCCAAAGGACAAAACGAGCTAGTGCCAGAGTTTCATCCCCTGAGATGCAAAGACTTTCCGG TTTCACATTGGGCATCATTAGAAAGCATGATGGAGCTGTATAGGAATACAGTTGACAAACGGACAGCTT AAATTCCAGTTTATCCTATAGGCCCTCTTCACCTGGTGGCATCAGCTTCTACGAGTCTTCTTGAAGAGA ACAAGAGCTGTATTGAATGGTTGAACAAACAAAAGAAAACTCTGTGATATTCGTAAGCTTGGGAAGCT TGTGGGTCATTCGGCCAGGGTCAGTACGTGGTTCGGAATGGATAGAGAACTTGCCTAAGGAGTTTAGTA TAGGAGGATTTTGGAGCCATTGCGGATGGAACTCGACACTAGAGAGCATCGGGGAAGGAGTTCCAATGA TTTGCAAGCCGTTTTCCAGTGATCAAATGGTGAATGCGAGATACTTGGAGTGTGTATGGAAAATTGGGA AAGGGGAGGGATGAGGAAGAGAGCTATCAGTTTGAAAGAGCCAACTTAGAGCCTCTGTTATAAGTGGAG GTTCTTCACACAACTCGCTAGAGGAGTTTGTACACTACATGAGGACTCTATGA

UGT76E12 Figure 28

ATGCAGGTTTTGGGAATGGAGGAAAAGCCTGCAAGGAGAAGCGTAGTGTTGGTTCCATTTCCAGCACAA GGACATATATCTCCAATGATGCAACTTGCCAAAACCCTTCACTTAAAGGGTTTCTCGATCACAGTTGTT CAGACTAAGTTCAATTACTTTAGCCCTTCAGATGACTTCACTCATGATTTTCAGTTCGTCACCATTCCA GAAAGCTTACCAGAGTCTGATTTCAAGAATCTCGGACCAATACAGTTTCTGTTTAAGCTCAACAAAGAG TGTAAGGTGAGCTTCAAGGACTGTTTGGGTCAGTTGGTGCTGCAACAAAGTAATGAGATCTCATGTGTC ATCTACGATGAGTTCATGTACTTTGCTGAAGCTGCAGCCAAAGAGTGTAAGCTTCCAAACATCATTTTC AGCACAACAAGTGCCACGGCTTTCGCTTGCCGCTCTGTATTTGACAAACTATATGCAAACAATGTCCAA GCTCCCTTGAAAGGTACTCTAAAACTCTCTGTTTCGTGGTTTCCGCGAGTGGCTATAAGATTGAAACAG CATTGTTTTTGACCTTTTTTGCAGAAACTAAAGGACAACAAGAAGAGGCTAGTTCCGGAGTTTTATCCCT TGAGATATAAAGACTTTCCAGTTTCACGGTTTGCATCATTAGAGAGCATAATGGAGGTGTATAGGAATA CAGTTGACAAACGGACAGCTTCCTCGGTGATAATCAACACTGCGAGCTGTCTAGAGAGCTCATCTCTGT CTTTTCTGCAACAACAACAGCTACAAATTCCAGTGTATCCTATAGGCCCTCTTCACATGGTGGCCTCAG TGATATACATAAGCATGGGAAGCATAGCTTTAATGGAAATCAACGAGATAATGGAAGTCGCGTCAGGAT TGGCTGCTAGCAACCACTTCTTATGGGTGATCCGACCAGGGTCAATACCTGGTTCCGAGTGGATAG AGTCCATGCCTGAAGAGTTTAGTAAGATGGTTTTGGACCGAGGTTACATTGTGAAATGGGCTCCACAGA GCATCGGCCAAGGAGTTCCAATGATCTGCAGGCCATTTTCGGGTGATCAAAAGGTGAACGCTAGATACT TGGAGTGTGTATGGAAAATTGGGATTCAAGTGGAGGGTGAGCTAGACAGAGGAGTGGTCGAGAGAGCTG TGAAGAGGTTAATGGTTGACGAAGAAGGAGGAGGAGATGAGGAAGAGAGCTTTCAGTTTAAAAGAGCAAC TTAGAGCCTCTGTTAAAAGTGGAGGCTCTTCACACAACTCGCTAGAAGAGTTTGTACACTTCATAAGGA **CTCTATGA**

UGT76E2 Figure 29

ATGGAGGAAAAGCAAGTGAAGGACAAGGATAGTGTTGGTTCCAGTTCCAGCTCAAGGTCATGTAACT CCGATGATGCAACTAGGAAAAGCTCTTCACTCAAAGGGTTTCTCCATCACTGTTGTTCTGACACAGTCT AATCGAGTTAGCTCTTCCAAAGACTTCTCTGATTTCCATTTCCTCACCATCCCAGGCAGCTTAACTGAG AAGCAGTGTATAGGTCAACTATTGCATGAACAATGTAATAATGATATTGCTTGTGTCGTCTACGATGAG TACATGTACTTCTCTCATGCTGCAGTAAAAGAGTTTCAACTTCCTAGTGTCGTCTTTAGCACGACAAGT GCTACTGCTTTTGTCTGTCGCTCTGTTTTGTCTAGAGTCAACGCAGAGTCGTTCTTGATCGACATGAAA GGTATTCAAGATTCTAGCTTGTTTTATCTTAATTCAAAATCCTATTTATAGAAACTAATCCAAATGATC GATGTTATCTTTTCAGATCCTGAAACACAAGACAAAGTATTTCCAGGGTTGCATCCTCTGAGGTACAAG GATCTACCAACTTCAGTATTTGGGCCAATAGAGAGTACGCTCAAGGTTTACAGTGAGACTGTGAACACT CGAACAGCTTCCGCTGTTATCATCAACTCAGCAAGCTGTTTAGAGAGCTCATCTTTGGCAAGGTTGCAA CAACAACTGCAAGTTCCGGTGTATCCTATAGGCCCACTTCATATTACAGCTTCAGCGCCTTCTAGTTTA CTAGAAGAAGACAGGAGTTGCGTTGAGTGGTTGAACAAGCAAAAATCAAATTCAGTTATTTACATAAGC TTGGGAAGCTTGGCTCTAATGGACACCAAAGACATGTTGGAGATGGCTTGGGGATTAAGTAATAGCAAC CAACCTTTCTTATGGGTGGTCAGACCGGGCTCTATTCCGGGGTCAGAATGGACAGAGTCCTTACCAGAG GAATTCAATAGGTTGGTTTCAGAAAGAGGTTACATTGTGAAATGGGCTCCGCAGATGGAAGTTCTCAGA AGAATTGGGGTTCAATTGGAGGGGAGATCTGGATAAAGAAACTGTGGAGAGAGCTGTAGAGTGGTTGCTT GTGGATGAAGAAGGGCCAATGAGGAAGAGAGAACCTCTGTT AGAAGTGGAGGTTCCTCATGCAGCTCACTAGACGACTTTGTTAATTCCATGTGA

UGT78D1 Figure 30

ATGACCAAATTCTCCGAGCCAATCAGAGACTCCCACGTGGCAGTTCTCGCGTTTTTCCCCGTTGGCGCT TTCAACACCGCAAGATCAAACGCGTCGTTGTTCTCCTCTGATCATCCCGAGAACATCAAGGTCCACGAC GTCTCTGACGGTGTTCCGGAGGGAACCATGCTCGGGAATCCACTGGAGATGGTCGAGCTGTTTCTCGAA ATGCTAACAGATGCCTTCTTCTGGTTCGCAGCGGACATAGCGGCTGAGCTGAACGCGACTTGGGTTGCC TTCTGGGCCGGCGGAGCAAACTCACTCTGTGCTCATCTCTACACTGATCTCATCAGAGAAACCATCGGT TTTATGGTTATTATTATTATCTCCTGGTAGATGTGAGTATGGAAGAGACATTAGGGTTTATACCA GGAATGGAGAATTACAGAGTTAAAGATATACCAGAGGAAGTTGTATTTGAAGATTTGGACTCTGTTTTC CCAAAGGCTTTATACCAAATGAGTCTTGCTTTACCTCGTGCCTCTGCTGTTTTCATCAGTTCCTTTGAA GAGTTAGAACCTACATTGAACTATAACCTAAGATCCAAACTTAAACGTTTCTTGAACATCGCCCCTCTC ACGTTATTATCTTCTACATCGGAGAAAGAGATGCGTGATCCTCATGGCTGCTTTGCTTGGATGGGGAAG AGATCAGCTGCTTCTGTAGCGTACATTAGCTTCGGCACCGTCATGGAACCTCCTCCTGAAGAGCTTGTG CATCTACCAAAAGGGTTTTTGGATCGGACAAGAGAGCAAGGGATAGTGGTTCCTTGGGCTCCACAAGTG GTGTCGGCAGGTGTACCGATGATCGGCAGACCGATTTTGGCGGATAATAGGCTCAACGGAAGAGCAGTG GAGGTTGTGTGGAAGGTTGGAGTGATGGATAATGGAGTCTTCACGAAAGAAGGATTTGAGAAGTGT TTGAATGATGTTTTTGTTCATGATGATGGTAAGACGATGAAGGCTAATGCCAAGAAGCTTAAAGAAAAA CTCCAAGAAGATTTCTCCATGAAAGGAAGCTCTTTAGAGAATTTCAAAATATTGTTGGACGAAATTGTG AAAGTTTAG

UGT89B1 Figure 31

ATGAAAGTGAACGAGGAAAACAACAAGCCGACAAAGACCCATGTCTTAATCTTCCCATTTCCGGCGCAA GGTCACATGATTCCCCTCCTCGACTTCACCCACCGCCTTGCTCTCCGCGGCGCGCCGCCTTAAAAATA CCACTTATCCTCCCTTTCCCTCCCACCCTTCAATCCCCTCCGGCGTCGAAAACGTCCAAGACTTACCT CCTTCAGGCTTCCCTTTAATGATCCACGCGCTTGGTAATCTCCACGCGCCGCTTATCTCTTGGATTACT CCTCGTTTCGATTTCTCCCCCCCCCCCCTGCTATCACTTGCTGCATACTCAATACTCTCTGGATCGAAATG CCCACCAAGATCAACGAAGATGACGATAACGAGATCCTCCACTTTCCCAAGATCCCGAATTGTCCAAAA TACCGTTTTGATCAGATCTCCTCTTTTACAGAAGTTACGTTCACGGAGATCCAGCTTGGGAGTTCATA AGAGACTCCTTTAGAGATAACGTGGCGAGTTGGGGACTCGTCGTGAACTCGTTCACCGCCATGGAAGGT GTTTATCTCGAACATCTTAAGCGAGAGATGGGCCATGATCGTGTATGGGCTGTAGGCCCAATTATTCCG TTATCTGGGGATAACCGTGGTGGCCCGACTTCTGTTTCTGTTGATCACGTGATGTCGTGGCTTGACGCA CGTGAGGATAACCACGTGGTGCTGCGTGCTTTGGAAGTCAAGTAGTTTTGACTAAAGAGCAGACTCTT GCACTCGCCTCTGGGCTTGAGAAAAGCGGCGTCCATTTCATATGGGCCGTAAAGGAGCCCGTTGAGAAA GACTCAACACGTGGCAACATCCTGGACGGTTTCGACGATCGCGTGGCTGGGAGAGGTCTGGTGATCAGA GGATGGGCTCCACAAGTAGCTGTGCTACGTCACCGAGCCGTTGGCCGCGTTTTTAACGCACTGTGGTTGG AACTCTGTGGTGGAGGCGGTTGTCGCCGGCGTTTTGATGCTGACGTGGCCGATGAGAGCTGACCAGTAC CCTGACCCGGACGAGTTAGCTCGAGTTTTCGCTGATTCCGTGACCGGAAATCAAACGGAGAGGATCAAA GCCGTGGAGCTGAGGAAAGCAGCGTTGGATGCGATTCAAGAACGTGGGAGCTCAGTGAATGATTTAGAT GGATTTATCCAACATGTCGTTAGTTTAGGACTAAACAAATGA

WO 01/59140 PCT/GB01/00477

72B3 ORF Figure 32

ATGAGCATAGATATTTTTCAAGAAATAAGAATAAGAAAATTCTACTCTTAATGGCGGAAGCAAACACT CCACACATAGCAATCATGCCGAGTCCCGGTATGGGTCACCTTATCCCATTCGTCGAGTTAGCAAAGCGA CTCGTTCAGCACGACTGTTTCACCGTCACAATGATCATCTCCGGTGAAACTTCGCCGTCTAAGGCACAA GTTCCCTCCACAGCGCGAATCGAAACTCGGGCCATGCTCACCATGACTCGTTCCAATCCGGCGCTCCGG GAGCTTTTTGGCTCTTTATCAACGAAGAAAAGTCTCCCGGCGGTTCTCGTCGTCGATATGTTTGGTGCG GATGCGTTCGACGTGGCCGTTGACTTCCACGTGTCACCATACATTTTCTATGCATCCAATGCAAACGTC TTGTCGTTTTTTCTTCACTTGCCGAAACTAGACAAAACGGTGTCGTGTGAGTTTAGGTACTTAACCGAA CCGCTTAAGATTCCCGGCTGTGTCCCGATAACCGGTAAGGACTTTCTTGATACGGTTCAAGACCGAAAC GACGACGCATACAAATTGCTTCTCCATAACACCAAGAGGTACAAAGAAGCTAAAGGGATTCTAGTGAAT TCCTTCGTTGATTTAGAGTCGAATGCAATAAAGGCCTTACAAGAACCGGCTCCTGATAAACCAACGGTA TACCCGATTGGGCCGCTGGTTAACACAAGTTCATCTAATGTTAACTTGGAAGACAAGTTCGGATGTTTA AGTTGGCTAGACAACCAACCATTCGGCTCGGTTCTATACATATCATTTGGAAGCGGCGGAACACTTACA TGTGAGCAGTTTAATGAGCTTGCTATTGGTCTTGCGGAGAGCGGAAAACGGTTTATTTGGGTCATACGA CCAATTGGGTTCTTAGACCGAACCAAAGAGAAAGGTTTGGTGGTTCCATCATGGGCTCCACAGGTTCAA GTAAACGGTGTACCACTCATAGCGTGGCCTTTATTCGCGGAGCAAAAGATGAATACATTGCTACTCGTG GAGGATGTTGGAGCGGCTCTAAGAATCCATGCGGGTGAAGATGGGATTGTACGGAGGGAAGAAGTGGTG AGAGTGGTGAAGGCACTGATGGAAGGTGAAGAGGGAAAAGCCATAGGAAATAAAGTGAAGGAGTTGAAA GAAGGAGTTGTTAGAGTCTTGGGTGACGATGGATTGTCCAGCAAGTCATTTGGTGAAGTTTTGTTAAAG TGGAAAACGCACCAGCGAGATATCAACCAAGAGACGTCCCACTAA

Figure 33

Figure 34

Figure 35

57/59

Figure 36

		UGT	Figure	LUTEOLIN	QUERCETIN	CATECHIN	CYANIDIN	CAFFEIC ACID		
Ì										
I		71B5	12		+			+		
[71C1	10A	+	++			,		
		71C2	11A	+				•		
		71C3	13		+		<u> </u>		ļ	
1		71C5	14		++		<u> </u>			
[7101	15		++		<u> </u>	-		
		72B3	32		+		<u> </u>	+		
		72E2	7A					+		
l		72E3	9A	+	+					
Į		73B1	16	+	-			<u> </u>		
l		73B2	17	7	++			+		
ļ		73B3	8A	7	++			<u> </u>		
١		73B4	18	7	++			<u> </u>		
١		73B5	19	+	**			ļ	ļ	
١		73C1	20	+					<u> </u>	
ı		73C3	21	7	+			<u> </u>	ļ	
ļ		73C5	22	1	+		·	l :		
		73C6	23	7	_					
1		73C7	24	-						
ı				+				ļ		
١		74F2	25	-				+		
١		75B1	1A	+						
١	٠	76E1	26	+	+				<u> </u>	
ı		76E11	27	+	+			<u></u>		
١		76E12			77		<u> </u>			
ļ		76E2	29	+	+		ļ			<u> </u>
١		7801	30				<u> </u>	+		
٠Į		84A1	4A	_			<u> </u>	-	 	
ļ		84A4	3A	+	+			+	-	
ļ		84B1	5A	+++	++			-		
ļ		8981	31	7.7		<u> </u>	<u> </u>	 		ļ
		+++	= high							
++ = more than 20% activity										1
		+ = less than 20% activity								
١			1]
		 							 	
1		L								
1										
		 	 	_			 			
Ì		<u> </u>	Ļ	L	L	L		<u></u>	<u> </u>	<u></u>

onal Application No. PCT/GB 01/00477

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/82 C12N9/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, WPI Data, PAJ, STRAND

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 967 283 A (SUNTORY LTD) 29 December 1999 (1999-12-29) the whole document	1,2,4,6, 10,14-16
X	WO 97 21816 A (ZENECA LTD ; MANNING KENNETH (GB)) 19 June 1997 (1997-06-19) the whole document	1,2,4,6, 10,14-16
X	WO 97 16559 A (PLANT GENETIC SYSTEMS NV; CANADA NAT RES COUNCIL (CA); AUDENHOVE K) 9 May 1997 (1997-05-09) the whole document	1,2,4,6, 10,14-16
X	WO 00 00626 A (CHONG JULIE ;BALTZ RACHEL (FR); BEFFA ROLAND (FR); FRITIG BERNARD) 6 January 2000 (2000-01-06) the whole document	1,2,4,6, 10,14-16

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document reterring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
17 July 2001	27/07/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Holtorf, S

Inte onal Application No PCT/GB 01/00477

(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
1	DATABASE EMBL SEQUENCE LIBRARY 'Online! 18 June 1998 (1998-06-18) JOHNSON-HOPSON, C., ET AL.: "genomic sequence for Arabidopsis thaliana BAC T25N20 from chromosome I - unpublished" XP002172235 accession no. AC005106	٠.	
1	DATABASE EMBL SEQUENCE LIBRARY 'Online! 16 November 1998 (1998-11-16) NAKAMURA, Y.: "structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 Bp covered by sixty P1 and TAC clones" XP002172236 accession no. AB019232		
1	DATABASE EMBL SEQUENCE LIBRARY 'Online! 4 July 1997 (1997-07-04) BEVAN, M., ET AL.: "EU Arabidopsis sequencing project - chromosome 4" XP002172237 Z97339	•	
\	DATABASE EMBL SEQUENCE LIBRARY 'Online! 23 February 1998 (1998-02-23) BEVAN, M., ETAL. : "EU Arabidopsis Sequencing project" XP002172238 accession no. AL021961		
4	DATABASE EMBL SEQUENCE LIBRARY 'Online! 7 October 1998 (1998-10-07) NAKAMURA, Y.: "Arabidopsis thaliana genomic DNA, chromosome 5" XP002172244 accession no. AB018119		
4	DATABASE EMBL SEQUENCE LIBRARY 'Online! 19 August 1998 (1998-08-19) LIN,X., ET AL.: "Sequence analysis of chromosoem 2 of the plant Arabidopsis thaliana" XP002172239 accession no. AC005496	·	
A	DATABASE EMBL SEQUENCE LIBRARY 'Online! 8 August 1997 (1997-08-08) LIN, X., ET AL.: "sequence analysis of chromosome 2 of the plant Arabidopsis thaliana" XP002172240 accession no. AC002391		
	-/		

Inte: onal Application No PCT/GB 01/00477

GRAHAM RICHARD ET AL: "DNA sequence of UDP glucose indole-3-acetate. beta-D-glucosyltransferase from Arabidopsis thaliana (Accession No. U81293)." PLANT PHYSIOLOGY (ROCKVILLE), vol. 113, no. 3, 1997, page 1004 XP002172231 ISSN: 0032-0889 JACKSON ROSAMOND G ET AL: "Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4350-4356, XP002172232 ISSN: 0021-9258 LIM ENG-KIAT ET AL: "Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4344-4349, XP002172233 ISSN: 0021-9258	C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		·
UDP glucose indole-3-acetate beta-D-glucosyltransferase from Arabidopsis thaliana (Accession No. U81293)." PLANT PHYSIOLOGY (ROCKVILLE), vol. 113, no. 3, 1997, page 1004 XP002172231 ISSN: 0032-0889 JACKSON ROSAMOND G ET AL: "Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4350-4356, XP002172232 ISSN: 0021-9258 LIM ENG-KIAT ET AL: "Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4344-4349, XP002172233 ISSN: 0021-9258 LI YI ET AL: "Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4338-4343, XP002172234	Category °	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4350-4356, XP002172232 ISSN: 0021-9258 LIM ENG-KIAT ET AL: "Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4344-4349, XP002172233 ISSN: 0021-9258 LI YI ET AL: "Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4338-4343, XP002172234		UDP glucose indole-3-acetate beta-D-glucosyltransferase from Arabidopsis thaliana (Accession No. U81293)." PLANT PHYSIOLOGY (ROCKVILLE), vol. 113, no. 3, 1997, page 1004 XP002172231		
glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4344-4349, XP002172233 ISSN: 0021-9258 LI YI ET AL: "Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4338-4343, XP002172234	Т	and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4350-4356, XP002172232		
the UDP-glycosyltransferase multigene family of Arabidopsis thaliana." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4338-4343, XP002172234		glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4344-4349, XP002172233		
	T	the UDP-glycosyltransferase multigene family of Arabidopsis thaliana." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 6, 9 February 2001 (2001-02-09), pages 4338-4343, XP002172234	. :	*
		*		
		* · ·	,	
			·	
			*	

in i ekna i ional seakun kepuk i

Information on patent family members

Inte onal Application No PCT/GB 01/00477

Patent document cited in search report	t	Publication Patent family date member(s)			Publication date	
EP 0967283	Α	29-12-1999	AU	8243298 A	16-02-1999	
		,	CN	1237206 T	01-12-1999	
			WO	9905287 A	04-02-1999	
WO 9721816	A	19-06-1997	AU	1106297 A	03-07-1997	
WO 9716559	A	09-05-1997	EP	0771878 A	07-05-1997	
			AU	727492 B	14-12-2000	
			AU	7496696 A	22-05-1997	
			ΕP	0858511 A	19-08-1998	
			JP	11514880 T	21-12-1999	
WO 0000626	Α	06-01-2000	FR	2780415 A	31-12-1999	
			AU	4375999 A	17-01-2000	