Bragg's Reflection of x-rays from atomic planes

Hexagonal Wurtzite Structure of ZnO.

	Expt. No Page No
3.	Scherrer's Formula:
	$t = k \lambda$
	Bees OB
	k= 0.94 - Scherreis constant
	2 - wavelength of monochromatic x- say
	0B - Bragg's diffraction angle
	B - FWHM of the peaks obtained in Intensity
	nes 20 graph.
	& depends on grain size distribution, grain shape, and
	how the feat width is defined. Generally it is given as
	k = 2 ln(2)/r ≈ 0.9394. It is correct for spherical
	crystals with cubic symmetry where the heak width
	is defined using FWHM. If we use Integral Breadth,
	then k = 0.89.
	Precautions:
	Use finite-grained powder to ensure a random
	distribution of lattice orientations. Powder less than 10 jum
	in size is freferred.
•	Very small amount of the sample limits the no. of
	crystallites that can contribute to the measurement.
4	Make the upper surface of the sample flat to so achieve
	homogenity.
•	Make sure there is no direct exposure to X- Rays.
	Teacher's Signature:

Date	
Dall	AND RESIDENCE OF THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO

Ex	ot.	No.
A. servi	200	4

Page No.

Observations:

due to Kx lines (transition from 2 to k shell), with Cu as target. Inner shell e Accelerated e strike target ie inner shell e. J.

Data for 20 vs intensity was provided for different concentration of Mn impurity in 2nd sample has been attached.

Calculations: And Result.

1	1					
Sample	hke	20	dnke	t (grain	Lattice para	meters
		(in°)	(in A°)		a(in A°)	c(in A°)
24.0	100	31.88631	2.80322	498.495	3.23689	
Zno	002	34.57750	2.59096	439.577		5.18191
	101	36.38353	2.46638	460.685		
	100	31.92750	2.79970	498.547	3.23281	
2n Mn (3%)0	002	34.59 830	2.58945	439.599		5.17889
	101	36.41287	2.46446	460.724		
					3.23826	
Zn Mn (6%) 0				4,07.380		5.186627
				398.164		
					3.23484	
7m Ma (10%)0						5.18182
~11 1 (1010) O						
	Zn0 Zn Mn (3%)0	Ino Zno 100 Zno 101 100 Zn Mn (3%)0 002 101 100 Zn Mn (6%) 0 002 101 100 Zn Mn (10%) 0 002	(in°) 100 31.88631 Zn0 002 34.57750 101 36.38353 100 31.92750 ZnMn(3%)0 002 34.59830 101 36.41287 100 31.87244 ZnMn(6%)0 002 34.54751 101 36.36989 100 31.90702 ZnMn(10%)0 002 34.57813	(in°) (in A°) 100 31.88631 2.80322 Zn0 002 34.57750 2.59096 101 36.38353 2.46638 100 31.92750 2.79970 ZnMn(3%)0 002 34.59830 2.58945 101 36.41287 2.46446 100 31.87244 2.80441 ZnMn(6%)0 002 34.54751 2.59314 101 36.36989 2.46727 100 31.90702 2.80145 ZnMn(10%)0 002 34.57813 2.59091	(in°) (in A°) size (in A) 100 31.88631 2.80322 498.495 Zn0 002 34.57750 2.59096 439.577 101 36.38353 2.46638 460.685 100 31.92750 2.79970 498.547 Zn Mn (3%)0 002 34.59830 2.58945 439.599 101 36.41287 2.46446 460.724 100 31.87244 2.80441 414.620 Zn Mn (6%)0 002 34.54751 2.59314 4207.380 101 36.36989 2.46727 998.164 100 31.90702 2.80145 434.381 Zn Mn (10%)0 002 34.57813 2.59091 423.476	(in°) (in A°) sign (in A) a (in A°) 100 31.88631 2.80322 498.495 3.23689 Zn0 002 34.57750 2.59096 439.577 101 36.38353 246638 460.685 100 31.92750 2.79970 498.547 3.23281 Zn Mn (37.)0 002 34.59830 2.58945 439.599 101 36.41287 2.46446 460.724 100 31.87244 2.80441 414.620 3.23826 Zn Mn (67.) 0 002 34.54751 2.59314 4207.380 101 36.36989 2.46727 398.164 100 31.90702 2.80145 434.381 3.23484 Zn Mn (10%) 0 002 34.57813 2.59091 423.476

~		
Date		
Dan	-	and the second second

Expt.	No.	
-------	-----	--

Page No. ___

The graphs related to Gaussian fitting & the trends of FWHM, 20, t, a and c with varying impurity concentration have been attached.

Sources of Euros:

- at feak position and the spread of function can alter our results due to fitting.
- · The Choice of function to be fitted (here Gaussian model) induces error in fitting & further measurements

Discussion

- 1. After analysing 20 vs. Mn concentration graph, an I (grainsize) v/s Mn concentration graph and c v/s we understand that we obtain maximum 20 at the maximum grainsize. This trend is observed for all the three peaks.
- 2. There is not much interpolation that we can get from a v/s Mn concentration graph, as well as c vs Mn concentration graph. This is because they do not seem to follow any particular thend.
- 3. The lattice parameters a 2 c for Zn O sample with different concentration of impurity (Mn) are very close to each other.

16/9/22

Teacher's Signature: