Graph Signal Processing - Basics on Fourier Analysis

Prof. Luis Gustavo Nonato

August 23, 2017

Given two vectors $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ in \mathbb{R}^d , the dot product (or inner product) of \mathbf{x} and \mathbf{y} is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^d x_i y_i$$

Given two vectors $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ in \mathbb{R}^d , the dot product (or inner product) of \mathbf{x} and \mathbf{y} is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^d x_iy_i$$

If **x** and **y** are in \mathbb{C}^d (complex vectors) then

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^d x_i\overline{y_i}$$

where $\overline{y_i}$ is the complex conjugate of y_i .

Given two vectors $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ in \mathbb{R}^d , the dot product (or inner product) of \mathbf{x} and \mathbf{y} is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^d x_iy_i$$

If **x** and **y** are in \mathbb{C}^d (complex vectors) then

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^d x_i\overline{y_i}$$

where $\overline{y_i}$ is the complex conjugate of y_i . The purpose of the conjugate is to ensure that the length of $\mathbf{z} \in \mathbb{C}^d$ is real and nonnegative ($\mathbf{z} = x + iy$, $\mathbf{z}\overline{\mathbf{z}} = x^2 + y^2$).

Let f and g be functions defined on the square integrable space $L^2[a,b]$ $(f:[a,b]\to\mathbb{C},\int_a^b|f(t)|^2dt<\infty)$.

Let f and g be functions defined on the square integrable space $L^2[a,b]$ ($f:[a,b]\to\mathbb{C}$, $\int_a^b|f(t)|^2dt<\infty$). The dot product of f and g is

$$\langle f, g \rangle = \int_{a}^{b} f(t)\overline{g}(t)dt$$

Let f and g be functions defined on the square integrable space $L^2[a,b]$ $(f:[a,b] \to \mathbb{C}, \int_a^b |f(t)|^2 dt < \infty)$. The dot product of f and g is

$$\langle f, g \rangle = \int_{a}^{b} f(t)\overline{g}(t)dt$$

The functions f and g are said orthogonal if $\langle f, g \rangle = 0$

Let f and g be functions defined on the square integrable space $L^2[a,b]$ ($f:[a,b]\to\mathbb{C}$, $\int_a^b|f(t)|^2dt<\infty$). The dot product of f and g is

$$\langle f, g \rangle = \int_a^b f(t) \overline{g}(t) dt$$

The functions f and g are said orthogonal if $\langle f, g \rangle = 0$ A collection of functions e_i are orthonormal if $\langle e_i, e_j \rangle = \delta_{ij}$

Let f and g be functions defined on the square integrable space $L^2[a,b]$ ($f:[a,b]\to\mathbb{C},\int_a^b|f(t)|^2dt<\infty$). The dot product of f and g is

$$\langle f, g \rangle = \int_{a}^{b} f(t)\overline{g}(t)dt$$

The functions f and g are said orthogonal if $\langle f, g \rangle = 0$ A collection of functions e_i are orthonormal if $\langle e_i, e_j \rangle = \delta_{ij}$

Suppose $\mathcal{E} = \{e_1, \dots, e_n\}$ a set of orthonormal functions basis. Then \mathcal{E} generates a subspace of $L^2[a,b]$ and any function h in this subspace can be written as (h lies in the span of \mathcal{E})

$$h = \sum_{i=1}^{n} \langle h, e_i \rangle e_i$$

Consider the Taylor expansion of the exponential function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

Consider the Taylor expansion of the exponential function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

making x = it (complex number)

$$e^{it} = 1 + (it) + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \cdots$$

Consider the Taylor expansion of the exponential function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

making x = it (complex number)

$$e^{it} = 1 + (it) + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \cdots$$

$$e^{it} = \left(1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \cdots\right) + i\left(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \cdots\right)$$

Consider the Taylor expansion of the exponential function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

making x = it (complex number)

$$e^{it} = 1 + (it) + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \cdots$$

$$e^{it} = \left(1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \cdots\right) + i\left(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \cdots\right)$$
$$e^{it} = \cos(t) + i\sin(t)$$

One-parameter family of (Fourier) basis:

$$e^{-i\lambda x}$$

$$F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{-(i\lambda t)} dt$$

Fourier Transform

$$F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{-(i\lambda t)} dt$$

Fourier Transform

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\lambda) e^{(i\lambda x)} d\lambda$$

Inverse Fourier Transform

$$F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{-(i\lambda t)} dt$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\lambda) e^{(i\lambda x)} d\lambda$$

Inverse Fourier Transform

We will adopt the notation

$$\mathcal{F}[f] = F \qquad \mathcal{F}^{-1}[F] = f$$

$$F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{-(i\lambda t)} dt$$
Fourier Transform

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\lambda) e^{(i\lambda x)} d\lambda$$

Inverse Fourier Transform

We will adopt the notation

$$\mathcal{F}[f] = F \qquad \mathcal{F}^{-1}[F] = f$$

This notation makes clear that $\mathcal{F}: L^2 \to L^2$.

$$f(x) = \cos(2\pi(3x))e^{-\pi x^2}$$

 $\mathcal{F}[f]$

 \blacksquare \mathcal{F} and its inverse are linear operators

$$\mathcal{F}[bf + cg] = b\mathcal{F}[f] + c\mathcal{F}[g]$$

lacktriangleright \mathcal{F} and its inverse are linear operators

$$\mathcal{F}[bf + cg] = b\mathcal{F}[f] + c\mathcal{F}[g]$$

■ Fourier transform of a translation

$$\mathcal{F}[f(x-c)](\lambda) = e^{-i\lambda c}\mathcal{F}[f](\lambda)$$

lacksquare \mathcal{F} and its inverse are linear operators

$$\mathcal{F}[bf + cg] = b\mathcal{F}[f] + c\mathcal{F}[g]$$

■ Fourier transform of a translation

$$\mathcal{F}[f(x-c)](\lambda) = e^{-i\lambda c}\mathcal{F}[f](\lambda)$$

■ Fourier transform of a rescaling

$$\mathcal{F}[f(cx)](\lambda) = \frac{1}{c}e^{-i\lambda c}\mathcal{F}[f](\frac{\lambda}{c})$$

The convolution of two functions f and g is defined as

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

The convolution of two functions f and g is defined as

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

■ Fourier transform of a convolution

$$\mathcal{F}[f*g] = \sqrt{2\pi}\mathcal{F}[f]\mathcal{F}[g]$$

The convolution of two functions *f* and *g* is defined as

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

■ Fourier transform of a convolution

$$\mathcal{F}[f * g] = \sqrt{2\pi} \mathcal{F}[f] \mathcal{F}[g]$$

■ Fourier transform of a product

$$\mathcal{F}[f \cdot g] = \sqrt{2\pi} \mathcal{F}[f] * \mathcal{F}[g]$$

The convolution of two functions *f* and *g* is defined as

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

■ Fourier transform of a convolution

$$\mathcal{F}[f * g] = \sqrt{2\pi} \mathcal{F}[f] \mathcal{F}[g]$$

■ Fourier transform of a product

$$\mathcal{F}[f \cdot g] = \sqrt{2\pi} \mathcal{F}[f] * \mathcal{F}[g]$$

Perseval's equation

$$\|\mathcal{F}[f]\| = \|f\|$$

Impossibility of Perfect Band-Limiting

A consequence of the Paley–Wiener theorem is that a signal f(t) has perfectly band-limited Fourier transform $\mathcal{F}[f]$, that is,

$$|\mathcal{F}[f](\lambda)| = 0 \text{ for } \lambda > B$$

if only if for any $T \in (-\infty, \infty)$, there exists a $t_0 < T$ such tthat $f(t_0) \neq 0$.

Impossibility of Perfect Band-Limiting

A consequence of the Paley–Wiener theorem is that a signal f(t) has perfectly band-limited Fourier transform $\mathcal{F}[f]$, that is,

$$|\mathcal{F}[f](\lambda)| = 0 \text{ for } \lambda > B$$

if only if for any $T \in (-\infty, \infty)$, there exists a $t_0 < T$ such tthat $f(t_0) \neq 0$.

In other words, a signal has perfectly bandlimited spectrum if and only if the signal persists for all time.

A *filter* \mathcal{L} maps a signal f into another signal $\mathcal{L}[f]$.

A *filter* \mathcal{L} maps a signal f into another signal $\mathcal{L}[f]$.

A filter is called linear if $\mathcal{L}[bf + cg[=b\mathcal{L}[f] + c\mathcal{L}[g]]$

A *filter* \mathcal{L} maps a signal f into another signal $\mathcal{L}[f]$.

A filter is called linear if $\mathcal{L}[bf + cg[=b\mathcal{L}[f] + c\mathcal{L}[g]]$

A filter is time invariant if $\mathcal{L}[f(x-c)](t) = \mathcal{L}[f(x)](t-c)$

A *filter* \mathcal{L} maps a signal f into another signal $\mathcal{L}[f]$.

A filter is called linear if $\mathcal{L}[bf + cg[=b\mathcal{L}[f] + c\mathcal{L}[g]]$

A filter is time invariant if $\mathcal{L}[f(x-c)](t) = \mathcal{L}[f(x)](t-c)$

Theorem

Let \mathcal{L} be a linear and time invariant filter.

There exists a function *h* such that

$$\mathcal{L}[f] = f * h$$

PS. *h* is called the impulse response function of the filter

A *filter* \mathcal{L} maps a signal f into another signal $\mathcal{L}[f]$.

A filter is called linear if $\mathcal{L}[bf + cg[=b\mathcal{L}[f] + c\mathcal{L}[g]]$

A filter is time invariant if $\mathcal{L}[f(x-c)](t) = \mathcal{L}[f(x)](t-c)$

Theorem

Let \mathcal{L} be a linear and time invariant filter.

There exists a function *h* such that

$$\mathcal{L}[f] = f * h$$

PS. *h* is called the impulse response function of the filter

$$\mathcal{F}[\mathcal{L}[f]] = \mathcal{F}[f] \, \mathcal{F}[h]$$

$$\mathcal{L}[f] = f * h \quad \to \mathcal{F}[\mathcal{L}[f]] = \mathcal{F}[f] \cdot \mathcal{F}[h]$$

$$\mathcal{L}[f] = f * h \longrightarrow \mathcal{F}[\mathcal{L}[f]] = \mathcal{F}[f] \cdot \mathcal{F}[h]$$

A filter can easily be understood in the frequency domain. High-, low-, and band-pass filters are easily designed.

