Typical problems

Exercise. 1. Find an equation of the tangent line to

a)
$$f(x) = \frac{2x+1}{x+2}$$
 at the point $(1,1)$ **b)** $f(x) = \frac{\sqrt{x}}{1+x^2}$ at the point $(1,\frac{1}{2})$

c)
$$f(x) = 2x \sin x$$
 at the point $\left(\frac{\pi}{2}, \pi\right)$ d) $f(x) = \sin(\sin x)$ at the point $(\pi, 0)$.

Exercise. 2. Find the intervals of increase or decrease and the local maxima and minima of the function f

a)
$$f(x) = \frac{x^2}{x-1}$$
 b) $f(x) = (1-x)e^{-x}$

c)
$$f(x) = x \ln x$$
 d) $f(x) = \frac{1}{x^2 + 2x + 2}$.

Exercise. 3. Find the intervals of concavity or convexity and infection points of the function f if

a)
$$f'(x) = x - 4\sqrt{x}$$
 b) $f'(x) = \frac{e^x}{x^2}$

c)
$$f'(x) = \frac{\ln x}{\sqrt{x}}$$
 d) $f'(x) = \frac{x^2 - 1}{x^3}$.

Exercise. 4. Find the limit using l'Hospital's Rule

a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
 b) $\lim_{x \to 0} \frac{\tan x - x}{x^3}$ c) $\lim_{x \to -\infty} xe^x$ d) $\lim_{x \to 0^+} x \ln x$ e) $\lim_{x \to 0^+} x^{\sqrt{x}}$ f) $\lim_{x \to 0^+} (1 + \sin x)$

d)
$$\lim_{x \to 0^+} x \ln x$$
 e) $\lim_{x \to 0^+} x^{\sqrt{x}}$ f) $\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x}$.

Exercise. 5. Evaluate the integral using the Substitution Rule

a)
$$\int \frac{\sin(\ln x)}{x} dx$$
 b) $\int \frac{(\ln x)^2}{x} dx$ c) $\int e^x \sqrt{1 + e^x} dx$

d)
$$\int x2^{x^2} dx$$
 e) $\int e^x \cos(e^x) dx$ f) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.

Exercise. 6. Evaluate the integral using integration by parts

a)
$$\int x \sin x \, dx$$
 b) $\int e^x \sin x \, dx$ c) $\int \arctan x \, dx$
d) $\int \ln(\sqrt[3]{x}) \, dx$ e) $\int x^4 (\ln x)^2 \, dx$ f) $\int x 2^x \, dx$.

Exercise. 7. Sketch the region enclosed by the given curves and find its area

a)
$$y = x^2$$
, $y = 2x - x^2$ b) $y = \sin x$, $y = \cos x$, $x = 0$, $x = \frac{\pi}{2}$

c)
$$y = x^3$$
, $y = x$ d) $y = \sqrt{x}$, $y = \frac{1}{2}x$, $x = 9$

e)
$$y = |x|$$
, $y = x^2 - 2$ f) $y = \frac{1}{x^2}$, $y = x$, $y = \frac{1}{8}x$.