Individual Risk, Inequality, and Monetary Policy

Edouard Challe

European University Institute & CREST

Inequalities and macroeconomics

Macro = « Growth » + « Business Cycle »

Today inequalities permeate both subfields

Growth

=> contributions of automation, innovations, rents (...) to inequalities

Business Cycles?

Towards a « new synthesis »?

- 50s & 60s: Neoclassical synthesis (Hicks, Samuelson, Solow...)
 - = neoclassical model + price inertia

- 80s & 90s: New Keynesian synthesis (Mankiw, Gali, Woodford...)
 - = RBC + nominal rigidities

- 2010s: Heterogenous-Agent New Keynesian (« HANK ») synthesis
 - = New Keynesian model + inequalities

Towards a « new synthesis »?

• 2010s: Heterogenous-Agent New Keynesian (« HANK ») synthesis

- New consensus:
 - AD fluctuations not only matter but are dominant
 - Heterogeneity does matter in the propagation of business cycles
 - Monetary policy matters for stabilization and inequalities
- Helps structure current policy debates

Towards a « new synthesis »?

- 2010s: Heterogenous-Agent New Keynesian (« HANK ») synthesis
- Stresses 3 potential amplification mechanisms (there may be more):
 - (New) Keynesian Cross
 - Precautionary-saving spiral
 - Flight to liquidity

(New) Keynesian Cross

Key: distribution of MPCs

Precautionary Saving Spiral

Key: Cyclicality of unemployment risk

Flight to Liquidity

Key: transaction costs in financial markets

A Simple Example

NK Cross logic at work in 2-agent NK models

 Precautionary-saving spiral at work in 3-agent "HANK & SaM" (e.g. Ravn & Sterk 2017, 2021; Challe 2020)

Useful, but none of these have a full cross-sectional distribution

• Next slides: tractable CARA-Normal framework (Acharya & Dogra 2020, Acharya, Challe & Dogra 2022)

FIRMS

Firm choices lead to

NKPC

$$\pi_t = \widetilde{\beta}\pi_{t+1} + \kappa \hat{y}_t$$

wage

$$\omega_t = \boldsymbol{\omega}(y_t), \quad \boldsymbol{\omega}'(y_t) > 0$$

POLICY

Monetary policy:

$$1 + i_t = (1+r)\Pi_t^{\phi_\pi}$$

Fiscal policy:

$$g_t + \frac{T_t}{P_t} = \tau_t \omega_t$$

where

- ullet g_t is real gov't spending
- ullet $au_t=oldsymbol{ au}(y_t)$ is a (potentially cyclical) proportional labor-income tax
- T_t is a lump-sum transfer (balances the budget)

Households

Mass 1 of HH solve

$$\begin{split} \max_{\{c_t^i, A_{t+1}^i\}_{t=0}^\infty} &\quad -\frac{1}{\gamma} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t e^{-\gamma c_t^i} \\ \text{subject to} &\quad P_t c_t^i + \frac{1}{1+i_t} A_{t+1}^i = A_t^i + P_t \underbrace{\left[(1-\tau_t) \, \omega_t \ell_t^i + d_t + \frac{T_t}{P_t} \right]}_{y_t^i} \\ &\quad \ell_t^i \sim \mathcal{N}(1, \pmb{\sigma}_\ell^2(y_t)) \end{split}$$

Implies that $y_t^i \sim \mathcal{N}(y_t - g_t, \sigma^2(y_t))$, where $\sigma^2(y_t) = (1 - \tau(y_t))^2 \omega(y_t)^2 \sigma_\ell^2(y_t)$

Note that HH can **borrow or lend** (to each other)

Households

CARA-Normal framework produces linear decisions rules

Conjecture & verify that

$$c_t^i = \mathcal{C}_t + \mu_t \left(a_t^i + y_t^i \right)$$

where

- $a_t^i \equiv \frac{A_t^i}{P_*}$ is real value of nominal bond holdings
- ullet $a_t^i+y_t^i$ is "cash on hand" (the relevant individual state variable)
- μ_t is the MPC (assume no HtM HHs for now; relaxed later)

$$\frac{1}{\mu_t} = 1 + \frac{1}{\mu_{t+1}(1+r_t)}$$

Aggregate Demand

The MPC μ_t affects the **pass-through** from income shocks to consumption

Since HH care about consumption risk, μ_t partly determine AD

Iterating forward

$$\mu_t^{-1} = \sum_{s=0}^{\infty} \frac{1}{\prod_{k=0}^{s-1} (1 + r_{t+k})}$$

Higher interest rates make self-insurance through the bond market harder

Aggregate Demand

Individual Euler:

$$c_t^i = -\frac{\ln \beta (1 + r_t)}{\gamma} + \mathbb{E}_t c_{t+1}^i - \frac{\gamma \mu_{t+1}^2 \sigma^2(y_{t+1})}{2}$$

Linear aggregation:

$$c_t = -\frac{\ln \beta (1 + r_t)}{\gamma} + c_{t+1} - \frac{\gamma \mu_{t+1}^2 \sigma^2(y_{t+1})}{2}$$

Mket clearing $y_t = c_t + g_t$

$$y_t = -\frac{\ln \beta (1 + r_t)}{\gamma} + y_{t+1} - \frac{\gamma \mu_{t+1}^2 \sigma^2(y_{t+1})}{2} + g_t - g_{t+1}$$

- intertemporal substitution channel (as in RANK)
- income-risk channel
- self-insurance channel

THE CYCLICALITY OF INCOME RISK

In equilibrium, y_t^i is i.i.d. with mean \overline{y}_t and variance

$$\sigma^2(y_t) = \left[\left(1 - \tau(y_t) \right) \omega(y_t) \right]^2 \sigma^2_{\ell}(y_t)$$

so cyclicality of income risk $\frac{d\sigma^2(y)}{dy}$ equals

$$2\boldsymbol{\sigma}(y)\boldsymbol{\sigma}_{\ell}(y)\left\{\underbrace{(1-\boldsymbol{\tau}(y))\,\boldsymbol{\omega}'(y)}_{\text{cyclicality of real wages}}-\underbrace{\boldsymbol{\tau}'(y)\boldsymbol{\omega}(y)}_{\text{cyclicality of taxes}}\right\}+\underbrace{\frac{\boldsymbol{\sigma}^{2}(y)}{\boldsymbol{\sigma}_{\ell}^{2}(y)}\frac{d\boldsymbol{\sigma}_{\ell}^{2}(y)}{dy}}_{\text{cyclicality of employment risk}}$$

endogenous - and depends (inter alia) on tax-transfer system

LINEARIZED DEMAND BLOCK

$$\widehat{y}_{t} = \frac{\Theta \widehat{y}_{t+1} - \frac{1}{\gamma} (i_{t} - \pi_{t+1}) - \Lambda \widehat{\mu}_{t+1} + \widehat{g}_{t} - \widehat{g}_{t+1}}{\widehat{\mu}_{t}} = \widetilde{\beta} \widehat{\mu}_{t+1} + \widetilde{\beta} (i_{t} - \pi_{t+1})$$

where

$$\mu^2 \, dm{\sigma^2(y^*)}$$

$$\Theta = 1 - rac{\gamma \mu^2}{2} rac{d m{\sigma^2(y^*)}}{dy}$$
 and $\Lambda = \gamma \mu^2 m{\sigma}^2(y^*)$

LINEARIZED DEMAND BLOCK

$$\widehat{y}_{t} = \Theta \widehat{y}_{t+1} - \frac{1}{\gamma} (i_{t} - \pi_{t+1}) - \Lambda \widehat{\mu}_{t+1} + \widehat{g}_{t} - \widehat{g}_{t+1}$$

$$\widehat{\mu}_{t} = \widetilde{\beta} \widehat{\mu}_{t+1} + \widetilde{\beta} (i_{t} - \pi_{t+1})$$

where

$$\Theta = 1 - rac{\gamma \mu^2}{2} rac{d m{\sigma^2(y^*)}}{dy}$$
 and $\Lambda = \gamma \mu^2 m{\sigma}^2(y^*)$

• RANK $(\sigma = 0)$: $\Theta = 1$, $\Lambda = 0$

LINEARIZED DEMAND BLOCK

$$\widehat{y}_{t} = \Theta \widehat{y}_{t+1} - \frac{1}{\gamma} (i_{t} - \pi_{t+1}) - \Lambda \widehat{\mu}_{t+1} + \widehat{g}_{t} - \widehat{g}_{t+1}$$

$$\widehat{\mu}_{t} = \widetilde{\beta} \widehat{\mu}_{t+1} + \widetilde{\beta} (i_{t} - \pi_{t+1})$$

where

$$\Theta = 1 - \frac{\gamma \mu^2}{2} \frac{d\sigma^2(y^*)}{dy}$$
 and $\Lambda = \gamma \mu^2 \sigma^2(y^*)$

- RANK $(\sigma = 0)$: $\Theta = 1$, $\Lambda = 0$
- Procyclical risk $\left(\frac{d\sigma^2}{du}>0\right)$: $\Theta<1$, discounted Euler eq
- Acyclical risk $\left(\frac{d\sigma^2}{dy}=0\right)$: $\Theta=1$, but still $\Lambda>0$: precautionary savings channel
- Countercyclical risk $\left(\frac{d\sigma^2}{du} < 0\right)$: $\Theta > 1$, explosive Euler eq

FULL LINEARIZED MODEL

Demand block

$$\widehat{y}_{t} = \frac{\Theta \widehat{y}_{t+1} - \frac{1}{\gamma} (i_{t} - \pi_{t+1}) - \Lambda \widehat{\mu}_{t+1} + \widehat{g}_{t} - \widehat{g}_{t+1}}{\widehat{\mu}_{t}}$$

$$\widehat{\mu}_{t} = \widetilde{\beta} \widehat{\mu}_{t+1} + \widetilde{\beta} (i_{t} - \pi_{t+1})$$

Standard Phillips curve, Taylor rule:

$$\begin{aligned}
\pi_t &= \widetilde{\beta} \pi_{t+1} + \kappa \widehat{y}_t \\
i_t &= \Phi_{\pi} \pi_t
\end{aligned}$$

where
$$\tilde{\beta} = \frac{1}{1+r}$$

Determinacy when $\Phi_{\pi} = 0$, $\pi_t = 0$ and $\widehat{g}_t = 0$

$$\widehat{y}_t = \Theta \widehat{y}_{t+1}$$

Determinacy when $\Phi_{\pi} = 0$, $\pi_t = 0$ and $\widehat{g}_t = 0$

$$\widehat{y}_{t+1} = \Theta^{-1} \widehat{y}_t$$

Does a unique bounded $\{\hat{y}_t\}$ solve this? YES (determinacy), NO (indeterminacy)

Determinacy when $\Phi_{\pi} = 0$, $\pi_t = 0$ and $\hat{g}_t = 0$

$$\widehat{y}_{t+1} = \Theta^{-1} \widehat{y}_t$$

Does a unique bounded $\{\hat{y}_t\}$ solve this? YES (determinacy), NO (indeterminacy)

- HANK acyclical risk $(\Theta = 1)/RANK$: Indeterminacy
- HANK procyclical risk ($\Theta < 1$): Determinacy
- HANK countercyclical risk $(\Theta > 1)$: Indeterminacy

AN INCOME RISK-ADJUSTED TAYLOR PRINCIPLE

Now return to full log-linear model, still assuming $\hat{g}_t = 0$ for simplicity

After some substitutions, the dynamics can be written in matrix form as follows:

$$\begin{bmatrix} \widehat{y}_{t+1} \\ \widehat{\pi}_{t+1} \\ \widehat{\mu}_{t+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{\Theta} + \frac{\kappa(\gamma^{-1} - \Lambda)}{\widetilde{\beta}\Theta} & \frac{(\gamma^{-1} - \Lambda)(\Phi_{\pi} - \widetilde{\beta}^{-1})}{\Theta} & -\frac{\Lambda}{\widetilde{\beta}\Theta} \\ -\frac{\kappa}{\widetilde{\beta}} & \frac{1}{\widetilde{\beta}} & 0 \\ -\frac{\kappa}{\widetilde{\beta}} & \frac{1}{\widetilde{\beta}} - \Phi_{\pi} & \frac{1}{\widetilde{\beta}} \end{bmatrix} \begin{bmatrix} \widehat{y}_{t} \\ \widehat{\pi}_{t} \\ \widehat{\mu}_{t} \end{bmatrix}$$

No predetermined variables \Rightarrow 3 roots outside unit circle needed for eg'm uniqueness

An income risk-adjusted Taylor principle

Acharya & Dogra (2020) show that a NSC for this is

$$\Phi_{\pi} > 1 + \frac{\gamma}{\kappa} \left[\frac{\left(1 - \tilde{\beta}\right)^2}{\left(1 - \tilde{\beta}\right) + \gamma \tilde{\beta} \Lambda} \right] \left(\Theta - 1\right)$$

where
$$\widetilde{\beta} = \frac{1}{1+r}$$

- procyclical risk ($\Theta < 1$): determinacy more likely
- acyclical risk ($\Theta = 1$): determinacy requires $\Phi_{\pi} > 1$ (as in RANK)
- countercyclical risk $(\Theta > 1)$: determinacy less likely (as HANK & SaM model)

FORWARD GUIDANCE

- Suppose Fed announces at t a rate cut at date t + k
- In RANK

$$\widehat{y}_t = -\frac{1}{\gamma} \sum_{k=0}^{\infty} (i_{t+k} - \pi_{t+k+1})$$

- ullet With fixed prices, date t+k rate cut equally as effective as date t cut
- ullet With sticky prices, date t+k rate cut more effective than date t cut

Constant prices

Figure 1. Response of Output to a 1-Quarter Drop in the Real Interest Rate 20 Quarters in the Future

Sticky prices

Figure 2. Response of Current Inflation to Forward Guidance about Interest Rates at Different Horizons Relative to Response to Equally Large Change in Current Real Interest Rate

Source: McKay et al. (2016)

FORWARD GUIDANCE

In HANK

$$\widehat{y}_{t} = -\frac{1}{\gamma} \sum_{k=0}^{\infty} \Theta^{k} (i_{t+k} - \pi_{t+k+1}) - \Lambda \sum_{k=0}^{\infty} \Theta^{k} \sum_{s=1}^{\infty} \widetilde{\beta} (i_{t+k+s} - \pi_{t+k+s+1})$$

- With fixed prices:
 - sufficiently procyclical risk ($\Theta << 1$), date t+k rate cut less effective than date t rate cut
 - acyclical risk ($\Theta = 1$), date t + k rate cut more effective (precautionary savings)
 - Lower future $r_t \Rightarrow \mu_t \downarrow$. Lower pass through of income risk into consumption risk, weakens precautionary savings motive.
 - with countercyclical risk $(\Theta > 1)$, date t + k rate cut more effective

Response to cut in i_t 5 periods in the future

FISCAL MULTIPLIERS IN LIQUIDITY TRAP

- fiscal multipliers can be very (implausibly) large in RANK at the ZLB
- Consider liquidity trap lasting T periods, $\widehat{g}_t = g > 0$ during trap, zero thereafter
- In RANK:
 - with fixed prices

$$\frac{\partial \widehat{y}_t}{\partial g} = 1, \quad 0 \le t \le T$$

and independent of duration of trap. Indeed:

$$\widehat{y}_T = \underbrace{\widehat{y}_{T+1}}_{=0} + \underbrace{\widehat{g}_T}_{=g} - \underbrace{\widehat{g}_{T+1}}_{=0}$$

$$\widehat{y}_{T-1} = \underbrace{\widehat{y}_T}_{=g} + \underbrace{\widehat{g}_{T-1}}_{=g} - \underbrace{\widehat{g}_T}_{=g}$$
...
$$\widehat{y}_0 = \widehat{y}_1 = g$$

• With sticky prices, multiplier increasing in duration of trap (due to inflation feedback loop)

FISCAL MULTIPLIERS IN LIQUIDITY TRAP

• In HANK with **fixed** prices:

$$\frac{\partial \widehat{y}_t}{\partial q} = \Theta^{T-t-1}, 0 \le t \le T$$

- with procyclical risk ($\Theta < 1$), decreasing in duration of trap
- with acyclical risk ($\Theta = 1$), independent of duration of trap
- with countercyclical risk $(\Theta > 1)$, increasing in duration of trap
- With sticky prices...

FISCAL MULTIPLIERS

 $rac{d\widehat{y}_t}{dg}$ in a 10 period liquidity trap

 $rac{d\widehat{y}_0}{dg}$ as a function of liquidity trap duration

MPC HETEROGENEITY

- Many HANK models have heterogenous MPC with (near) HtM households
- Suppose $\eta \in (0,1)$ measure of households hand to mouth with income $y_t^i = \chi y_t$
 - $\frac{dy_t^i}{dy_t} = \chi =$ cyclical sensitivity of income of constrained households
 - Average MPC is $(1 \eta) \times \mu_t + \eta \times 1 > \mu_t$
- Aggregate Euler eq becomes (abstracting from gov't spending)

$$y_t = y_{t+1} - \frac{\Xi}{\gamma} \ln[\beta(1+r_t)] - \Xi \frac{\gamma \mu_{t+1}^2 \sigma^2(y_{t+1})}{2}, \qquad \Xi = \frac{1-\eta}{1-\eta \chi}$$

Resource constraint:

$$y_t = c_t = \eta \chi y_t + (1 - \eta)c_t^u \qquad \Rightarrow \qquad y_t = \Xi c_t^u$$

 Ξ is 'static' response of GDP to consumption of unconstrained

EFFECT ON MONETARY POLICY TRANSMISSION

Kaplan et al. (2018) argue monetary transmission can be decomposed into two effects

- direct effect via unconstrained households (intertemporal substitution in consumption)
- indirect effect via constrained households (New Keynesian cross)

Consider Euler equation again

$$y_t = y_{t+1} - \frac{\Xi}{\gamma} \ln[\beta(1+r_t)] - \Xi \frac{\gamma \mu_{t+1}^2 \sigma^2(y_{t+1})}{2}, \qquad \Xi = \frac{1-\eta}{1-\eta \chi}$$

- HTM income equally cyclically sensitive ($\Xi=1$): exact offsetting of direct & indirect effects
- HTM income less cyclically sensitive ($\Xi < 1$): dampens response to interest rates
- HTM income more cyclically sensitive ($\Xi > 1$): stronger response to interest rates

OPTIMAL MONETARY POLICY

Acharya, Challe, Dogra (2019) study optimal monetary policy

• utilitarian Social Welfare function can be written as:

$$\sum_{t=0}^{\infty} \beta^t \underbrace{u(c_t,\ell_t)}_{\begin{subarray}{c} \text{welfare of rep. agent} \end{subarray}}_{\begin{subarray}{c} \text{welfare cost of inequality} \end{subarray}}$$

- In RANK $\Sigma = 1$; In HANK $\Sigma > 1$
- Evolution of Σ depends on consumption risk:

$$\ln \Sigma_t = \frac{\gamma}{2} \mu_t^2 \sigma_{y,t}^2 + \ln[1 - \vartheta + \vartheta \Sigma_{t-1}]$$

- new tradeoff monetary policy affects both σ_y^2 and μ_t^2
- optimal mp: more accomodative than RANK in recessions

LQ problem in RANK

$$\min \frac{1}{2} \sum_{t=0}^{\infty} \beta^t \left\{ (\widehat{y}_t - \widehat{y}_t^e)^2 + \frac{\varepsilon}{\kappa} \pi_t^2 \right\} \qquad s.t. \qquad \pi_t = \beta \pi_{t+1} + \kappa (\widehat{y}_t - \widehat{y}_t^e) + \frac{\varepsilon}{\Psi} \widehat{\varepsilon}_t$$

yielding the "targeting rule"

$$\frac{\widehat{y}_t - \widehat{y}_t^e}{\text{putput gap}} + \underbrace{\varepsilon \widehat{p}_t}_{\text{price level}} = 0$$

LQ problem in HANK

$$\min \frac{1}{2} \sum_{t=0}^{\infty} \beta^t \Bigg\{ \left[(1-\varpi) \underbrace{(\widehat{y}_t - \varkappa(\Omega) \widehat{y}_t^e)}_{\text{consumption risk}} + \varpi(\widehat{y}_t - \widehat{y}_t^e) \right]^2 + \frac{\varepsilon}{\kappa \Upsilon(\Omega)} \pi_t^2 \Bigg\}$$

s.t.

$$\pi_t = \beta \pi_{t+1} + \kappa (\widehat{y}_t - \widehat{y}_t^e) + \frac{\varepsilon}{\Psi} \widehat{\varepsilon}_t$$

LQ problem in HANK

$$\min \frac{1}{2} \sum_{t=0}^{\infty} \beta^t \Bigg\{ \left[(1-\varpi) \underbrace{(\widehat{y}_t - \varkappa(\Omega) \widehat{y}_t^e)}_{\text{consumption risk}} + \varpi(\widehat{y}_t - \widehat{y}_t^e) \right]^2 + \frac{\varepsilon}{\kappa \Upsilon(\Omega)} \pi_t^2 \Bigg\}$$

s.t.

$$\pi_t = \beta \pi_{t+1} + \kappa (\widehat{y}_t - \widehat{y}_t^e) + \frac{\varepsilon}{\Psi} \widehat{\varepsilon}_t$$

yielding the "targeting rule"

$$\underbrace{\left[1-\delta(\Omega)\right]\widehat{y}_t}_{\text{output stabilization}} + \delta(\Omega)\left(\widehat{y}_t-\widehat{y}_t^e\right) + \frac{\varepsilon}{\Upsilon(\Omega)}\widehat{p}_t = 0 \qquad \text{where} \qquad \delta = (1-\varpi)\varkappa + \varpi$$

where
$$\delta = (1-arpi)arkappa + arpi$$

Optimal dynamics following a negative productivity shock

Optimal dynamics following a positive markup shock

