Modelos con Coeficientes Variando

Bladimir Valerio Morales Torrez

Julio 2022

Introducción

Los modelos aditivos generalizados (modelos no paramétricos), propuestos por @Hastie_Tibshirani_1986 dan a conocer una nueva clase de modelos de regresión, extendiendo y flexibilizando el modelo de regresión clásico, reemplazando la función lineal por una función aditiva suave y no paramétricas, la cual es estimada por el algoritmo de puntuación local (local scoring algorithm).

Es así que, @Hastie_Tibshirani_1993, proponen otra generalización al modelo de regresión lineal clásico, denominados modelos de coeficientes variando (Varying-Coefficient Models VCMs), los cuales contienen regresores lineales pero permiten que sus coeficientes cambien suavemente con el valor de otras variables, que se denominan "modificadores de efecto".

Marco Teórico

El modelo

Supongamos que se tiene una variable aleatoria Y cuya distribución depende de un parámetro η que será el predictor lineal y se relaciona con la media $\mu = \mathbb{E}(Y)$ mediante la función enlace $\eta = g(\mu)$, el modelo lineal generalizado con coeficientes variando se puede representar como:

$$\eta_i = \beta_0 + x_i^1 \beta_1(t_{1_i}) + \dots + x_i^p \beta_p(t_{p_i})$$
(1)

Donde los t_1, \dots, t_p cambian los coeficientes de las covariables x^1, \dots, x^p a través de las funciones β_1, \dots, β_p . La dependencia de β_j en t_j , con $j=1,\dots,p$ implica un tipo de interacción entre t_j y x^j , donde la variable t_j puede no ser tan diferente a x^j , pero también t_j puede ser una variable especial como el tiempo.

Si se toma el modelo Gaussiano, donde $g(\mu) = \mu$ y la variable aleatoria Y tiene distribución normal con media η , el modelo (1) es de la forma

$$Y_i = \beta_0 + x_i^1 \beta_1(t_{1_i}) + \dots + x_i^p \beta_p(t_{p_i}) + \varepsilon_i$$
(2)

donde $\mathbb{E}(\varepsilon) = 0$ y $Var(\varepsilon) = \sigma^2 \# \#$