PETI TJEDAN

1. Za cijele brojeve a i b definirati relaciju "a dijeli b". (Propoziciju 1, na str. 44 ćemo raditi nakon poglavlja Binarne relacije).

Neka su a i b cijeli brojevi. Kažemo da **a dijeli b** ako je a \neq 0 i b je višekratnik od a tj. postoji k \in Z tako da je b = ka. Pišemo a | b i čitamo "a dijeli b". Broj a zovemo djeliteljem broja b, a broj b višekratnik broja a.

Primjer Ako su $a, b, c \in \mathbb{Z}$, onda iz $a \mid b$ i $a \mid c$ slijedi $a \mid (nb + mc)$ za bilo koja dva cijela broja m i n.

2. Definirati pojmove: najveća zajednička mjera i najmanji zajednički višekratnik te navesti njihova svojstva (Primjeri 2, 3 i 4 iz udžbenika).

Definicija Ako su $a, b, d \in \mathbb{Z}$ takvi da je $d \mid a \mid d \mid b$, onda d nazivamo *zajedničiki djelitelj* od $a \mid b$.

Ako je barem jedan od brojeva a i b različit od 0, onda postoji i najveći zajednički djelitelj kojeg nazivamo <u>najveća zajednička mjera (Nzm)</u> od a i b i označavamo sa M(a,b) ili Nzm(a,b).

Ako su brojevi a i b različiti od 0, onda najmanji prirodan broj čiji su a i b djelitelji nazivamo najmanji zajednički višekratnik (nzv) od a i b i označavamo sa v(a,b) ili nzv(a,b).

Svojstva su u primjeru:

Primjer:

- Nzm(a, b) > 0;
- Nzm(a,0) = a, za sve $a \in \mathbb{N}$;
- Nzm(a,b) = Nzm(b,a) = Nzm(|a|,|b|) nzv(a,b) = nzv(b,a) = nzv(|a|,|b|)
- Ako su $a, b \in \mathbb{N}$ onda je

$$Nzm(a,b) \le \min\{a,b\} \le \max\{a,b\} \le nzv(a,b);$$

• Ako je $a \in \mathbb{N}$ i $b \in \mathbb{Z}$ onda

$$a \mid b \Longrightarrow Nzm(a, b) = a.$$

Napomena: Na sličan način možemo definirati, za bilo koji konačan skup cijelih brojeva $a_1, a_2, ..., a_n$, $Nzm(a_1, a_2, ..., a_n)$ i $nzv(a_1, a_2, ..., a_n)$.

3. Ako su u jednakosti $a_1 + a_2 + ... + a_r = b_1 + b_2 + ... + b_s$ svi navedeni cijeli brojevi, osim jednoga, djeljivi nekim prirodnim brojem d, dokazati da onda i taj jedan cijeli broj mora biti djeljiv s d.

Propozicija 2 Neka su $a_1,a_2,...,a_r$ i $b_1,b_2,...,b_s$ cijeli brojevi i neka je

$$a_1 + a_2 + \dots + a_r = b_1 + b_2 + \dots + b_s$$
.

Ako su svi gornji brojevi djeljivi s $d \in \mathbb{N}$ osim jednog onda je i taj broj djeljiv s d.

Pomnožili sa cijelim brojevima (neke s 1 neke s -1) i povezali u linearnu kombinaciju.

Mogli smo izraziti bilo koji broj umjesto a₁.

4. Iskazati i dokazati teorem o dijeljenju.

Teorem 1 (o dijeljenju) Neka su dani $a \in \mathbb{Z}$ i $b \in \mathbb{N}$ onda postoje jedinstveni cijeli brojevi q i $r, 0 \le r < b$, takvi da je

$$a = bq + r$$
.

Broj q se naziva $\underline{kvocijent}$ pri dijeljenju a i b, a r ostatak.

∃! – postoji jedinstveni

Dokaz se provodi u dva koraka: prvo dokazujemo egzistenciju; postoje q i r takvi da teorem vrijedi, a onda dokazujemo jedinstvenost brojeva q i r.

4 Towardinging () CHEZ WEW)		8 3 =
7: 7! g,r & Z	, a=69+r, 0=	r<6.
+ Jm o dijeljenju: [a∈Z b∈H] T: ∃! g,r ∈ Z Dohaz: (1) ∈gzistenaja, melia su zadomi	aez. bek	upr. a=5
	lemo productió ma poli	whorever intervale y
	lemo produjelit na polu le =[kb,(k+1)b), ke	Z
Sada a E Ik la weli k Mpr. la k=9	h a e Ig]	K=2 I_=[4,6>
1g=1 gb, g+1)b / pa also p Q∈ Ig=1 gb	(g+1) b) anda p	$4 = -1 I_{-1} = [-2,0)$ $\Rightarrow \alpha = 5 \in I_2$
$gb \le a < (g+1).b$ $gb \le a < gb+b / -gb$ $0 \le a - gb < b = 7 a - gb = 6$	4 4	
$0 \leq a - gb < b = 7 a - gb = 7$	$= \gamma \Rightarrow Q = gb + L = 2$	0 < 9 < 6

B može biti i cijeli broj nego je uzet prirodan zbog jednostavnosti zapisivanja (bili bi drugačiji predznaci).

5. Iskazati i dokazati teorem koji daje Euklidov algoritam za nalaženje najveće zajedničke mjere i propoziciju na kojoj se taj algoritam zasniva.

Propozicija 4 Neka su $a, b, q, r \in \mathbb{Z}$ i a = bq + r. Onda je svaki zajednički djelitelj od a i b ujedno i zajednički djelitelj od b i r. Posebno vrijedi Nzm(a,b) = Nzm(b,r).

Teorem 2 (Euklidov algoritam za nalaženje Nzm)

Neka su dani $a \in \mathbb{Z}$ i $b \in \mathbb{N}$. Pretpostavimo da je uzastopnom primjenom Teorema1 dobiven niz jednakosti

$$a = bq_1 + r_1, \quad 0 < r_1 < b$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_k + r_k, \quad 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_kq_{k+1}.$$
(*)

Tada je $Nzm(a,b) = r_k$, tj. Nzm(a,b) jednako je posljednjem ostatku različitom od 0. Nadalje, postoje brojevi $s, t \in \mathbb{Z}$ takvi da je

$$Nzm(a,b) = r_k = sa + tb, \tag{**}$$

Za Euklidov algoritam:

DOKAZ. Iz gornjih nejednakosti vidimo da je slijed r_k opadajuć: $b > r_2 > r_3 > r_4 > \dots > 0$. Kako je slijed omeđen odozdol s nulom, te kako se radi o cijelim brojevima, onda mora postajati indeks za koji će odgovarajući r biti jednak nula, recimo $r_{k+1} = 0$, a prethodni $r_k > 0$, gdje je

$$r_{k-2} = r_{k-1}q_{k-1} + r_k \quad 0 < r_k < r_{k-1},$$

 $r_{k-1} = r_kq_k.$ (1')

Prema prethodnoj propoziciji imamo $\operatorname{Nzm}(a,b) = \operatorname{Nzm}(b,r_2)$, $\operatorname{Nzm}(b,r_2) = \operatorname{Nzm}(r_2,r_3)$, $\operatorname{Nzm}(r_2,r_3) = \operatorname{Nzm}(r_3,r_4)$,..., $\operatorname{Nzm}(r_{k-2},r_{k-1}) = \operatorname{Nzm}(r_{k-1},r_k)$. Prema tome je $\operatorname{Nzm}(a,b) = \operatorname{Nzm}(r_{k-1},r_k) = r_k$, gdje smo u zadnjoj jednakosti koristili činjenicu da $r_k \mid r_{k-1}$. Q.E.D.

Napomena

- U Euklidovom algoritmu smo pretpostavili da je
 b > 0 što nije bitno ograničenje jer je Nzm(a, b) =
 Nzm(|a|, |b|);
- ako su $a, b \in \mathbb{N}$ i a < b, onda u prvom koraku imamo $a = b \cdot 0 + a$, pa a i b zamijene mjesta.
- Primijetimo da je

$$\left\lfloor \frac{a}{b} \right\rfloor = q_1, \quad \left\lfloor \frac{b}{r_1} \right\rfloor = q_2, \quad \left\lfloor \frac{r_1}{r_2} \right\rfloor = q_3 \dots,$$

gdje je $\lfloor x \rfloor$ *najveći cijeli dio* od x, tj. $\lfloor x \rfloor = q$ gdje je q najveći cijeli broj $\leq x$.

• Brojevi $s,t\in\mathbb{Z}$ u (**) nisu jednoznačno određeni, jer je npr.

$$Nzm(a, b) = sa + tb = (s + b) a + (t - a) b$$
,

Posljedica 1 Neka su $a,b \in \mathbb{Z}$ i $d \in \mathbb{N}$ takvi da $d \mid a$ i $d \mid b$. Onda $d \mid Nzm(a,b)$.

6. Definirati pojam relativno prostih brojeva te dokazati:

Za cijele brojeve a i b kažemo da su **relativno prosti** ako je Nzm (a, b) = 1, tj. jedini zajednički djelitelj im je 1.

a) ako su a, b, $c \in Z$ takvi da su a i b relativno prosti i b|ac onda b|c,

b) ako su a, b $2 \in i$ c $\in N$ onda vrijedi Nzm (ca, cb) = c· Nzm (a, b),

DOKAZ. (i) Možemo bez gubitka općenitosti pretpostaviti da je b pozitivan. U postupku provođenja Euklidova algoritma pomnožimo sve relacije u (1) sa c. Onda a i b prelaze u ca i cb, svi r-ovi u cr, dok q-ovi ostaju isti. Dobivamo dakle Euklidov algoritam za ca i cb (primijetite da je pritom $0 \le cr_i < cr_{i-1}$). Prema Teoremu 2 je onda $\operatorname{Nzm}(ca, cb) = cr_k$. Međutim je $r_k = \operatorname{Nzm}(a, b)$, što dokazuje tvrdnju.

$$a = bq_1 + r_2 0 \le r_2 < k_3 b = r_2q_2 + r_3 0 \le r_3 < r_2, r_2 = r_3q_3 + r_4 0 \le r_4 < r_3,$$

$$\vdots (1)$$

c) ako su a, b \in Z i c \in N, c|a i c|b onda je Nzm $(\frac{a}{c}, \frac{b}{c}) = \frac{1}{c} \cdot \text{Nzm}$ (a, b).

(ii) Zbog (i) je
$$c \cdot \text{Nzm}(\frac{a}{c}, \frac{b}{c}) = \text{Nzm}(c\frac{a}{c}, c\frac{b}{c}) = \text{Nzm}(a, b)$$

7. Što su diofantske jednadžbe prvog stupnja s dvije varijable? Dokazati: diofantska jednadžba ax + by = c ima rješenje akko Nzm (a, b) | c, a, b, c ∈ Z.

Jednadžbu oblika

$$ax + by = c, (1)$$

gdje su a,b,c zadani cijeli brojevi kojoj tražimo cjelobrojna rješenja x i y nazivamo <u>Diofantska jednadžba</u> prvog stupnja s dvije varijable.

Prvi smjer:

Drugi smjer:

$$\Rightarrow \lambda \text{blex Nam(a,b)}/\alpha . \text{ Trebex } dz : (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0, y_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists x_0 \in \mathbb{Z}) + d(0x_0 + by_0 = c) \otimes \mathbb{Z} = (\exists$$

8. Spomenula, ali bez dokaza:

Teorem 4. Neka su a i b cijeli brojevi koji nisu oba jednaki 0. Onda je minimalan pozitivan broj u skupu $S := \{sa + tb : s, t \in \mathbf{Z}\}$ jednak Nzm(a, b). Drugim riječima

$$Nzm(a, b) = min\{sa + tb : s, t \in \mathbb{Z}, sa + tb > 0\}.$$