ĐÁP ÁN ĐỀ THI CHÍNH THỰC

Môn: TOÁN

Câu 1. Điều kiện xác định của hệ phương trình: $0 \le x, y \le \frac{1}{2}$. (*)

Nhận xét: Với điều kiện (*), ta có

$$\frac{1}{\sqrt{1+2x^2}} + \frac{1}{\sqrt{1+2y^2}} \le \frac{2}{\sqrt{1+2xy}}.$$

Dấu " = " xảy ra khi và chỉ khi x = y.

Chứng minh: Theo bất đẳng thức Bu-nhia-côp-xki, ta có

$$\left(\frac{1}{\sqrt{1+2x^2}} + \frac{1}{\sqrt{1+2y^2}}\right)^2 \le 2\left(\frac{1}{1+2x^2} + \frac{1}{1+2y^2}\right) \tag{1}$$

Dấu "=" xảy ra $\Leftrightarrow \sqrt{1+2x^2} = \sqrt{1+2y^2} \Leftrightarrow x = y \text{ (do } x, y \ge 0).$

Tiếp theo, ta có

$$\frac{1}{1+2x^2} + \frac{1}{1+2y^2} - \frac{2}{1+2xy} = \frac{2(y-x)^2(2xy-1)}{(1+2xy)(1+2x^2)(1+2y^2)} \le 0 \quad (do \ (*))$$

$$\frac{1}{1+2x^2} + \frac{1}{1+2y^2} \le \frac{2}{1+2xy}$$
(2)

Suy ra:

Dấu "=" xảy ra $\Leftrightarrow x = y$.

Từ (1) và (2), ta được bất đẳng thức cần chứng minh.

Dấu " = " xảy ra \Leftrightarrow đồng thời xảy ra dấu " = " $\mathring{\sigma}(1)$ và $(2) \Leftrightarrow x = y$.

Từ Nhận xét suy ra hệ phương trình đã cho tương đương với hệ phương trình

$$\begin{cases} x = y \\ \sqrt{x(1-2x)} + \sqrt{y(1-2y)} = \frac{2}{9} \end{cases} \Leftrightarrow \begin{cases} x = y = \frac{9 - \sqrt{73}}{36} \\ x = y = \frac{9 + \sqrt{73}}{36} \end{cases}$$

Vậy, hệ phương trình đã cho có tất cả 2 nghiệm là hai cặp số (x; y) vừa nêu trên.

Chú ý: Có thể chứng minh rằng với $x, y \in [0; 1/2]$, phương trình thứ nhất của hệ tương đương với phương trình x = y, bằng cách khảo sát hàm số f dưới đây trên đoạn [0; 1/2]:

$$f(x) = \frac{1}{\sqrt{1+2x^2}} + \frac{1}{\sqrt{1+2y^2}} - \frac{2}{\sqrt{1+2xy}},$$

trong đó y được coi là một điểm cố định thuộc đoạn [0; 1/2].

Câu 2. Từ định nghĩa dãy (x_n) dễ thấy $x_n > 0 \ \forall n \ge 1$. (1) Viết lại hệ thức xác định dãy (x_n) dưới dạng:

$$2x_n - x_{n-1} = \sqrt{x_{n-1}^2 + 4x_{n-1}} \quad \forall n \ge 2.$$

Từ đó suy ra: $x_{n-1} = x_n^2 - x_n x_{n-1} \quad \forall n \ge 2$.

Dẫn tới:
$$\frac{1}{x_n^2} = \frac{1}{x_{n-1}} - \frac{1}{x_n} \quad \forall n \ge 2 \quad (\text{do } x_n \ne 0 \quad \forall n \ge 2, \text{ theo (*)}).$$
 (2)

Vì thế, với mọi $n \ge 2$, ta có

$$y_n = \sum_{i=1}^n \frac{1}{x_i^2} = \frac{1}{x_1^2} + \sum_{i=2}^n \left(\frac{1}{x_{i-1}} - \frac{1}{x_i} \right) = \frac{1}{x_1^2} + \frac{1}{x_1} - \frac{1}{x_n} = 6 - \frac{1}{x_n}.$$

Từ (2) và (1) dễ dàng suy ra $\left(\frac{1}{x_n}\right)$ là một dãy giảm, bị chặn dưới bởi 0. Do đó, $\left(\frac{1}{x_n}\right)$ là dãy hội tụ và

từ (2) ta được $\lim \frac{1}{x_n} = 0$. Suy ra (y_n) là dãy hội tụ và $\lim y_n = 6$.

Câu 3. 1/ Xét tam giác AFM, ta có:

$$\widehat{AMF} = 180^{\circ} - \left(\widehat{MFA} + \widehat{FAM}\right) = 90^{\circ} - \left(\widehat{EFI} + \widehat{FAM}\right) = 90^{\circ} - \left(\widehat{ECI} + \widehat{FAM}\right)$$
$$= 90^{\circ} - \left(\frac{\widehat{C}}{2} + \frac{\widehat{A}}{2}\right) = \frac{\widehat{B}}{2} = \widehat{IBA}.$$

Lại có: $\widehat{NIM} = \widehat{AIB}$ (đối đỉnh).

Suy ra: $\Delta IMN \sim \Delta IBA$. (*)

Vì thế, hạ $IH \perp MN$, ta được:

$$\frac{MN}{BA} = \frac{IH}{ID} = \frac{IH}{IF} = \sin \widehat{EFI} = \sin \frac{\alpha}{2}.$$

Do đó: $MN = BA \cdot \sin \frac{\alpha}{2} = \text{const.}$

2/ Dễ thấy các điểm F và D đối xứng với nhau qua đường thẳng AM. Kết hợp điều này với (*), ta được: $\widehat{IMD} = \widehat{IBD}$. Do đó, tứ giác IMBD là tứ giác nội tiếp.

Suy ra $\widehat{BMA} = 90^{\circ}$, hay tam giác BMA vuông tại M. Vì thế, gọi P là trung điểm của AB, ta có $\widehat{BPM} = 2\widehat{BAM} = \widehat{BAC}$.

Do các điểm E và D đối xứng với nhau qua đường thẳng BN nên với lưu ý tới (*) ta được:

$$\widehat{MND} = 2\widehat{INM} = 2\widehat{IAB} = \widehat{BAC}$$
.

Vì thế, ta có $\widehat{BPM} = \widehat{MND}$. Suy ra, bốn điểm M, N, D, P cùng nằm trên một đường tròn. Điều đó chứng tỏ đường tròn ngoại tiếp ΔDMN luôn đi qua điểm cố định P - trung điểm của đoạn thẳng AB.

Câu 4. Với mỗi số nguyên dương n, đặt $T_n = a^n + b^n + c^n$. Theo giả thiết, $T_n \in \mathbb{Z} \ \forall n \ge 1$.

Ta sẽ chứng minh các số p = -(a+b+c), q = ab+bc+ca và r = -abc thỏa mãn điều kiện của bài toán. Thật vậy, theo định lí Vi-et đảo, các số a, b, c là 3 nghiệm của phương trình

$$x^3 + px^2 + qx + r = 0.$$

Hơn nữa, do $p = -T_1$ nên $p \in \mathbb{Z}$. Tiếp theo, ta sẽ chứng minh $q, r \in \mathbb{Z}$. Dễ thấy, ta có các biểu diễn dưới đây của T_n qua p, q, r:

$$T_1 = -p T_2 = p^2 - 2q$$
 (1)

$$T_3 = -p^3 + 3pq - 3r (2)$$

$$T_{n+3} = -pT_{n+2} - qT_{n+1} - rT_n \quad \forall n \ge 1.$$
 (3)

Do
$$T_2, p \in \mathbb{Z}$$
 nên từ (1) suy ra $2q \in \mathbb{Z}$. (4)

Từ (2) suy ra $2pT_3 = -2p^4 + 6p^2q - 6pr$.

Từ đó, với lưu ý tới (4), dễ dàng suy ra $6pr \in \mathbb{Z}$. (5)

O (3), cho n = 1 ta được: $T_4 = -pT_3 - qT_2 - rT_1 = p^4 - 4p^2q + 4pr + 2q^2$. Suy ra $3T_4 = 3p^4 - 12p^2q + 12pr + 6q^2$.

Từ đó, với lưu ý tới (4) và (5), suy ra $6q^2 \in \mathbb{Z}$. Kết hợp với (4), ta được $q \in \mathbb{Z}$.

Vì thế, từ (2) suy ra $3r \in \mathbb{Z}$. Do đó r phải có dạng: $r = \frac{m}{3}$, $m \in \mathbb{Z}$. (6)

Mặt khác, từ (3) ta có: $rT_n \in \mathbb{Z} \quad \forall n \ge 1$. Kết hợp với (6), ta được $mT_n \equiv 0 \pmod{3} \quad \forall n \ge 1$. (7)

- Nếu tồn tại n sao cho $(T_n, 3) = 1$ thì từ (7) suy ra $m \equiv 0 \pmod{3}$. Vì thế $r \in \mathbb{Z}$.
- Xét trường họp $T_n \equiv 0 \pmod{3}$ $\forall n \geq 1$. Khi đó, do $p = T_1 \equiv 0 \pmod{3}$ và $T_3 \equiv 0 \pmod{3}$ nên từ (2) dễ dàng suy ra $r \in \mathbb{Z}$.

Bài toán được chứng minh.

Chú ý: Có thể chứng minh $6q^2 \in \mathbf{Z}$ bằng cách sử dụng (1), (2) và hệ thức $2q^2 = -T_4 + T_2^2 + 4rT_1$.

Câu 5. Với mỗi $n \in \mathbb{N}^*$, kí hiệu d_n là số cần tìm theo yêu cầu của đề bài.

Xét bảng ô vuông kích thước 2 x n. Điền vào các ô vuông con của bảng, lần lượt từ trên xuống dưới, từ trái qua phải, các số từ 1 đến 2n. (Xem Hình 1).

Gọi ô thứ *n* của hàng 1 và ô thứ 1 của hàng 2 là hai ô *đặc biệt*.

Khi đó, hai số $a, b \in T$ thỏa mãn $|a - b| \in \{1; n\}$ khi và chỉ khi chúng nằm ở hai ô kề nhau hoặc ở 2 ô đặc biệt.

1	2	 <i>n</i> – 1	n
n+1	n+2	 2n-1	2 <i>n</i>

Hình 1

Vì thế, d_n chính bằng số cách chọn một số ô của bảng (kể cả số ô được chọn bằng 0) mà ở mỗi cách không có hai ô kề nhau hoặc hai ô đặc biệt được chọn.

Với mỗi $n ∈ N^*$, kí hiệu:

- $+k_n$ là số cách chọn mà ở mỗi cách không có hai ô kề nhau được chọn;
- $+ s_n$ là số cách chọn mà trong các ô được chọn ở mỗi cách có 2 ô đặc biệt và không có hai ô kề nhau.

Ta có: $d_n = k_n - s_n$.

• Trước hết, ta tính k_n .

Dễ thấy, tất cả các cách chọn ô thỏa mãn điều kiện (*) bao gồm:

- + k_{n-1} cách chọn mà ở mỗi cách không có ô nào thuộc cột thứ 1 của bảng được chọn;
- $+ 2t_{n-1}$ cách chọn mà ở mỗi cách đều có ô thuộc cột thứ 1 của bảng được chọn ;

trong đó, t_n là số cách chọn ô thỏa mãn điều kiện (*) từ bảng khuyết đơn $2 \times n$. (Xem Hình 2).

Do đó
$$k_n = k_{n-1} + 2t_{n-1}$$
.

(1)

Lại có, tất cả các cách chọn ô thỏa mãn điều kiện (*) từ bảng khuyết đơn $2 \times n$ bao gồm:

Hình 2

- $+ k_{n-1}$ cách chọn mà ở mỗi cách ô đánh dấu "x" không được chọn;
- + t_{n-1} cách chọn mà ở mỗi cách ô đánh dấu "x" đều được chọn.

Vì thế: $t_n = k_{n-1} + t_{n-1}$.

Từ đó và (1) suy ra:
$$k_n = k_{n-1} + 2(k_{n-2} + t_{n-2}) = 2k_{n-1} + k_{n-2} \quad \forall n \ge 3.$$
 (2)

Bằng cách đếm trực tiếp, ta có:
$$k_1 = 3$$
 và $k_2 = 7$. (3)

Hệ thức truy hồi (1) có phương trình đặc trưng: $x^2 - 2x - 1 = 0$.

Suy ra:
$$k_n = C_1 (1 + \sqrt{2})^n + C_2 (1 - \sqrt{2})^n \quad \forall n \ge 1.$$
 (4)

Dựa vào (3), ta tìm được: $C_1 = \frac{1 + \sqrt{2}}{2}$ và $C_2 = \frac{1 - \sqrt{2}}{2}$.

Vây
$$k_n = \frac{\left(1 + \sqrt{2}\right)^{n+1} + \left(1 - \sqrt{2}\right)^{n+1}}{2}$$
 (5)

• Tiếp theo, ta tính s_n .

Dễ thấy, $s_1 = 0$, $s_2 = s_3 = 1$ và với $n \ge 4$ ta có:

$$S_n = h_{n-2}$$

trong đó h_n là số cách chọn ô thỏa mãn điều kiện (*) từ bảng khuyết kép $2 \times n$. (Xem Hình 3).

Hình 3

Do $s_3 = 1$, đặt $h_1 = 1$. Bằng cách đếm trực tiếp, ta có $h_2 = 4$.

Xét *n* ≥ 3.

Dễ thấy, tất cả các cách chọn ô thỏa mãn điều kiện (*) từ bảng khuyết kép $2 \times n$ bao gồm:

- + k_{n-2} cách chọn mà ở mỗi cách cả 2 ô A và B đều không được chọn;
- + $2t_{n-2}$ cách chọn mà ở mỗi cách có đúng một trong 2 ô A, B được chọn;
- + h_{n-2} cách chọn mà ở mỗi cách cả 2 ô A và B cùng được chọn.

Do đó
$$h_n = k_{n-2} + 2t_{n-2} + h_{n-2} = k_{n-1} + h_{n-2}. \quad \forall n \ge 3.$$
 (6)

Từ (2) và (6) suy ra
$$2h_n - k_n = 2h_{n-2} - k_{n-2}$$
 $\forall n \ge 3$

Dẫn tới $2h_n - k_n = (-1)^n \quad \forall n \ge 1$.

Vì thế
$$s_n = h_{n-2} = \frac{k_{n-2} + (-1)^{n-2}}{2} \quad \forall n \ge 3.$$

• Vậy
$$d_1 = 3$$
, $d_2 = 6$ và $d_n = \frac{2k_n - k_{n-2} + (-1)^{n-3}}{2} \quad \forall n \ge 3$,

trong đó k_n được xác định theo (5).