Assignment 10 (Due on the week November 23-28)

- 1. Which of the following functions on \mathbb{R}^n are concave or convex?
 - (a) $f(x) = 3e^x + 5x^4 \ln x$,
 - (b) $f(x,y) = -3x^2 + 2xy y^2 + 3x 4y + 1$,
 - (c) $f(x, y, z) = 3e^x + 5y^4 \ln z$,
 - (d) $f(x, y, z) = Ax^{\alpha}y^{\beta}z^{\gamma}, \ \alpha, \beta, \gamma > 0.$
- 2. Graph each of the following sets, and indicate whether it is convex:
 - (a) $\{(x,y) \mid y = e^x\},\$
 - (b) $\{(x,y) \mid y \ge e^x\},\$
 - (c) $\{(x,y) \mid y \le 13 x^2\},\$
 - (d) $\{(x,y) \mid xy \ge 1; x > 0, y > 0\}.$

Find critical points using the first-order conditions. To check whether a critical point is the optimal solution try the Weierstrass theorem where applicable.

- 3. $z = \frac{x}{a} + \frac{y}{b}$, if $x^2 + y^2 = 1$,
- 4. $z = x^2 + 12xy + 2y^2$, if $4x^2 + y^2 = 25$,
- 5. Maximize $u(x, y, z) = xy^2z^3$ subject to x + 2y + 3z = a, where x, y, z, a > 0.