Die wundersame Welt der unendlich großen Zahlen

Glaube in der Mathematik?

Absolventenfeier des Instituts für Mathematik am 13. Oktober 2017

Gliederung

Ordinalzahlen

Z Kardinalzahlen

3 Erkenntnistheorie

Fragen sind während des gesamten Vortrags willkommen.
Bitte keinesfalls bis zum Ende aufsparen.
Vielen Dank dafür!

Ordinalzahlen

Ordinalzahlen

messen Anordnung

Kardinalzahlen messen Anzahl

David Hilbert * 1862 † 1943

Emmy Noether * 1882 † 1935

Kardinalzahlen

messen Anzahl

Kardinalzahlen

messen Anzahl

Es gibt \aleph_0 viele natürliche Zahlen: 1, 2, 3, ...

Kardinalzahlen

messen Anzahl

Es gibt \aleph_0 viele natürliche Zahlen: 1, 2, 3, ...

$$\aleph_0 + 1 = \aleph_0$$

Kardinalzahlen

messen Anzahl

Es gibt \aleph_0 viele natürliche Zahlen: 1, 2, 3, ...

$$\aleph_0 + 1 = \aleph_0$$

$$\aleph_0 \cdot \aleph_0 = \aleph_0$$

■ Es gibt \aleph_0 viele natürliche Zahlen.

■ Es gibt \aleph_0 viele natürliche Zahlen.

Es gibt auch nur \aleph_0 viele ganze Zahlen.

■ Es gibt \aleph_0 viele natürliche Zahlen.

Es gibt auch nur \aleph_0 viele ganze Zahlen.

■ Ebenso gibt es nur nur \aleph_0 viele rationale Zahlen.

■ Es gibt \aleph_0 viele natürliche Zahlen.

■ Es gibt auch nur \aleph_0 viele ganze Zahlen.

■ Ebenso gibt es nur nur \aleph_0 viele rationale Zahlen.

■ Aber es gibt mehr reelle Zahlen: ¢ viele.

Erkenntnistheorie

"Es gibt unendlich viele Primzahlen."

"Es gibt nur fünf platonische Körper."

"Der goldene Schnitt ist die irrationalste Zahl."

Die Kontinuumshypothese

Georg Cantor (* 1845, † 1918)

Gibt es eine Zwischenstufe zwischen \aleph_0 und \mathfrak{c} ?

Die Kontinuumshypothese

Georg Cantor (* 1845, † 1918)

Gibt es eine Zwischenstufe zwischen \aleph_0 und \mathfrak{c} ?

Kurt Gödel (* 1906, † 1978)

Es gibt keinen Beweis, dass es eine Zwischenstufe gibt.

Die Kontinuumshypothese

Georg Cantor (* 1845, † 1918)

Gibt es eine Zwischenstufe zwischen ℵ₀ und ¢?

Kurt Gödel (* 1906, † 1978)

Es gibt keinen Beweis, dass es eine Zwischenstufe gibt.

Paul Cohen (* 1934, † 2007)

Es gibt keinen Beweis, dass es keine Zwischenstufe gibt.

Abschluss

- \blacksquare Ordinalzahlen messen Anordnung. $\omega+1>\omega$
- Kardinalzahlen messen Anzahl. $\aleph_0 + 1 = \aleph_0$
- Es gibt mathematische Fragen, deren Antwort bewiesenermaßen dauerhaft unkennbar ist.

Abschluss

- Ordinalzahlen messen Anordnung. $\omega + 1 > \omega$
- Kardinalzahlen messen Anzahl. $\aleph_0 + 1 = \aleph_0$
- Es gibt mathematische Fragen, deren Antwort bewiesenermaßen dauerhaft unkennbar ist.

Viel Freude beim weiteren Programm!

Mathecamp vom 18. bis 26. August in Violau