	d/or q.	
(a)	Write down an expression for	
	(i) $\sin 140^\circ$;	
	(ii) $\cos 70^{\circ}$.	[2 marks]
(b)	Find an expression for $\cos 140^{\circ}$.	[3 marks]
(c)	Find an expression for tan140°.	[1 mark]

Consider $g(x) = 3\sin 2x$.

(a) Write down the period of g.

[1 mark]

.....

(b) On the diagram below, sketch the curve of g, for $0 \le x \le 2\pi$.

[3 marks]

(c) Write down the number of solutions to the equation g(x) = 2, for $0 \le x \le 2\pi$. [2 marks]

......

.....

(a)	Given that $\cos A = \frac{1}{3}$ and $0 \le A \le \frac{\pi}{2}$, find $\cos 2A$.	[3 marks
-----	--	----------

(b)	Given that $\sin B = \frac{2}{3}$ and $\frac{\pi}{2} \le B \le \pi$, find $\cos B$.	[3 marks]
-----	---	-----------

Let $f(t) = a \cos b(t-c) + d$, $t \ge 0$. Part of the graph of y = f(t) is given below.

When t = 3, there is a maximum value of 29, at M. When t = 9, there is a minimum value of 15.

- (a) (i) Find the value of a.
 - (ii) Show that $b = \frac{\pi}{6}$.
 - (iii) Find the value of d.
 - (iv) Write down a value for c.

[7 marks]

The transformation P is given by a horizontal stretch of a scale factor of $\frac{1}{2}$, followed by a translation of $\begin{pmatrix} 3 \\ -10 \end{pmatrix}$.

(b) Let M' be the image of M under P. Find the coordinates of M'.

[2 marks]

The graph of g is the image of the graph of f under P.

(c) Find g(t) in the form $g(t) = 7\cos B(t-C) + D$.

[4 marks]

(d) Give a full geometric description of the transformation that maps the graph of g to the graph of f.

[3 marks]

Solve $\cos 2x - 3\cos x - 3 - \cos^2 x = \sin^2 x$, for $0 \le x \le 2\pi$.

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •

4.	[Maximum	mark:	71

The straight line with equation $y = \frac{3}{4}x$ makes an acute angle θ with the x-axis.

(a) Write down the value of $\tan \theta$.

[1 mark]

- (b) Find the value of
 - (i) $\sin 2\theta$;

(ii) $\cos 2\theta$.

[6 marks]

	 •		 •		 •	 ٠				 ٠			•	 ٠		 	-			 	•			

.....

Let $f(x) = \cos 2x$ and $g(x) = 2x^2 - 1$.

(a) Find $f\left(\frac{\pi}{2}\right)$.

[2 marks]

(b) Find $(g \circ f) \left(\frac{\pi}{2}\right)$.

[2 marks]

(c) Given that $(g \circ f)(x)$ can be written as $\cos(kx)$, find the value of $k, k \in \mathbb{Z}$.

[3 marks]

•	•	 	 				•	•	•	•	•	•	•		 	 	•	•		•	•		•		 	٠	•	•		•	•	 •	•	•	•		 	•	٠	٠	•	-	
		 		_	_								_			 	_	_	_				_	_	 				 _			 _				_	 				_	_	

.....

......

.....

.....

Solve the equation $2\cos x = \sin 2x$, for $0 \le x \le 3\pi$.

Let $\sin \theta = \frac{2}{\sqrt{13}}$, where $\frac{\pi}{2} < \theta < \pi$.

- (a) Find $\cos \theta$. [3 marks]
- (b) Find $\tan 2\theta$. [5 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

9. [Maximum mark: 14]

The following diagram shows the graph of $f(x) = a \sin(b(x-c)) + d$, for $2 \le x \le 10$.

There is a maximum point at P(4, 12) and a minimum point at Q(8, -4).

- (a) Use the graph to write down the value of
 - (i) *a*;
 - (ii) c;
 - (iii) d. [3 marks]
- (b) Show that $b = \frac{\pi}{4}$. [2 marks]
- (c) Find f'(x). [3 marks]
- (d) At a point R, the gradient is -2π . Find the x-coordinate of R. [6 marks]

The diagram below shows part of the graph of $f(x) = a\cos(b(x-c)) - 1$, where a > 0.

The point $P\left(\frac{\pi}{4}, 2\right)$ is a maximum point and the point $Q\left(\frac{3\pi}{4}, -4\right)$ is a minimum point.

(a) Find the value of a.

[2 marks]

- (b) (i) Show that the period of f is π .
 - (ii) Hence, find the value of b.

[4 marks]

(c) Given that $0 < c < \pi$, write down the value of c.

[1 mark]

 ,	
 ,	

Let $f(x) = (\sin x + \cos x)^2$.

(a) Show that f(x) can be expressed as $1 + \sin 2x$.

[2 marks]

The graph of f is shown below for $0 \le x \le 2\pi$.

(b) Let $g(x) = 1 + \cos x$. On the same set of axes, sketch the graph of g for $0 \le x \le 2\pi$.

[2 marks]

The graph of g can be obtained from the graph of f under a horizontal stretch of scale factor p followed by a translation by the vector $\begin{pmatrix} k \\ 0 \end{pmatrix}$.

(c) Write down the value of p and a possible value of k.

[2 marks]

The following diagram shows the graph of $f(x) = a\cos(bx)$, for $0 \le x \le 4$.

There is a minimum point at P(2, -3) and a maximum point at Q(4, 3).

(a) (i) Write down the value of a.

(ii) Find the value of b.

[3 marks]

(b) Write down the gradient of the curve at P.

[1 mark]

(c) Write down the equation of the normal to the curve at P.

[2 marks]

5.

(a)	$\cos 100^{\circ}$;	[3 marks]
(b)	tan 100°;	[1 mark]
(c)	$\sin 200^{\circ}$.	[2 marks]
		• • • • • •

The diagram below shows part of the graph of a function f.

The graph has a maximum at A(1, 5) and a minimum at B(3, -1).

The function f can be written in the form $f(x) = p \sin(qx) + r$. Find the value of

(a)	p;	[2 marks]
(b)	q;	[2 marks]
(c)	r.	[2 marks]

Let $f(x) = \sin\left(x + \frac{\pi}{4}\right) + k$. The graph of f passes through the point $\left(\frac{\pi}{4}, 6\right)$.

- (a) Find the value of k. [3]
- (b) Find the minimum value of f(x). [2]

Let $g(x) = \sin x$. The graph of g is translated to the graph of f by the vector $\begin{pmatrix} p \\ q \end{pmatrix}$.

(c) Write down the value of p and of q. [2]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 5]

The following diagram shows a right-angled triangle, ABC, where $\sin A = \frac{5}{13}$.

- (a) Show that $\cos A = \frac{12}{13}$. [2]
- (b) Find $\cos 2A$. [3]

Turn over

Let $f(x) = 3\sin(\pi x)$.

(a) Write down the amplitude of f.

[1]

(b) Find the period of f.

[2]

(c) On the following grid, sketch the graph of y = f(x), for $0 \le x \le 3$.

[4]

The following diagram shows triangle $ABC. \ \ The point \ D$ lies on [BC] so that [AD] bisects $\ BAC$.

diagram not to scale

AB =
$$2\sqrt{5}$$
 cm, AC = x cm, and DÂC = θ , where $\sin \theta = \frac{2}{3}$

The area of triangle ABC is $5 \, \mathrm{cm}^2$. Find the value of x.

to scale

[Maximum mark: 8] 5.

The following diagram shows a triangle ABC and a sector BDC of a circle with centre B and radius $6\,cm.$ The points A, B and D are on the same line.

 $AB=2\sqrt{3}\ cm\,,\ BC=6\ cm\,,$ area of triangle $ABC=3\sqrt{3}\ cm^2\,,\ A\hat{B}C$ is obtuse.

[5]

(b) F	Find the exact area of the sector BDC.	[3]
-------	--	-----

Turn over

[Maximum mark: 5] 2.

Let $\sin \theta = \frac{\sqrt{5}}{3}$, where θ is acute.

(a) Find $\cos \theta$. [3]

Find $\cos 2\theta$. (b) [2]

Solve $\log_2(2\sin x) + \log_2(\cos x) = -1$, for $2\pi < x < \frac{5\pi}{2}$.

Do **not** write solutions on this page.

10. [Maximum mark: 15]

The following table shows the probability distribution of a discrete random variable $\it A$, in terms of an angle $\it \theta$.

а	1	2
P(A=a)	$\cos \theta$	$2\cos 2\theta$

(a) Show that
$$\cos \theta = \frac{3}{4}$$
. [6]

- (b) Given that $\tan \theta > 0$, find $\tan \theta$. [3]
- (c) Let $y = \frac{1}{\cos x}$, for $0 < x < \frac{\pi}{2}$. The graph of y between $x = \theta$ and $x = \frac{\pi}{4}$ is rotated 360° about the x-axis. Find the volume of the solid formed. [6]

