Indukcyjne metody analizy danych - Sprawozdanie z zajęć laboratoryjnych

April 23, 2020

Ćwiczenie 2. Indukcja drzew decyzyjnych C5.0 (C4.5) w R

Piotr Błoński 225959

Celem ćwiczenia było zapoznanie się z indukcjądrzew decyzyjnych C5.0 na platformie R. W tym celu wykorzystałem poniższe biblioteki:

```
[13]: options(warn=-1) #Wyłączenie warningów aby w sprawozdaniu niebyły drukowane library(tidyverse)
library(C50) #Drzewa decyzyjne C5.0
library(caret) #Pakiet do uczenia maszynowego
library(MLmetrics) # Pakiet zawierający metryki takie jak Fscore, Precision itp.
library(rattle) #fency plot
options(repr.plot.width=8, repr.plot.height=3)
```

[]:

Należy zbudować model klasyfikatora na zbiorach danych: iris, wine, glass, seeds. Razem ze sprawozdaniem dołączone są pliki csv zawierające te zbiory.

```
[14]: iris_data = read.csv(file = "iris.csv") #załaduj do iris_data dane Iris.
head(iris_data,3) # 3 pierwsze rekordy z datasetu
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	1	5.1	3.5	1.4	0.2	Iris-setosa
2	2	4.9	3.0	1.4	0.2	Iris-setosa
3	3	4.7	3.2	1.3	0.2	Iris-setosa

Jak widać dane Iris posiadają kolumne z klasą - Species która nas interesuje, w R jest faktorem. Absolutnie nie interesuje nas kolumna Id ponieważ od Id nie ma żadnego wpływu na to jakiego gatunku rośliną będzie dany Irys. Będzie trzeba w procesie uczenia pominąć tą kolumne.

```
[15]: wine_data = read.csv(file = "wine.csv") #załaduj do wine_data dane Wine Quality head(wine_data,3)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
2	7.8	0.88	0.00	2.6	0.098	25	67	0.9968	3.20	0.68	9.8	5
3	7.8	0.76	0.04	2.3	0.092	15	54	0.9970	3.26	0.65	9.8	5

```
[16]: glass_data = read.csv(file = "glass.csv") #zatqduj do glass_data dane Glass
head(glass_data,3)
```

	RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Туре
	<dbl></dbl>	<int></int>								
1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0	0	1
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0	0	1
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0	0	1

W danych glass i wine ostatnie kolumny niestety mają w R typ Int co powoduje błędy! Typu jak w [1]. Aby tego uniknąć w funkcji uczące będziemy przerabiać tą kolumne na factor.

```
[17]: seed_data = read.csv(file = "seeds.csv") #załaduj do seed_data dane Seeds head(seed_data,3)
```

	Area	Perimeter	compactness	length of kernel	width of kernel	asymmetry coefficient	lenght of kernel groove	Туре
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	15.26	14.84	0.8710	5.763	3.312	2.221	5.220	1
2	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	1
3	14.29	14.09	0.9050	5.291	3.337	2.699	4.825	1

W informacjach o danych Seeds, jest napisane że compactness jest zależne od Area i Perimeter jako: - compactness = $4 * pi * Area / Perimeter^2$

Dlatego też w procesie uczenia nie będziemy korzystać z tej kolumny za pomocą poniższej lini:

```
[18]: column_to_drop <- c("compactness")
seed_data <- seed_data[ , !(names(seed_data) %in% column_to_drop)]</pre>
```

W trakcie wykonywania crossvalidacji za pomocą biblioteki caret okazało się że jedyne metryki jakie nam zwraca to Accuracy i Kappa. A interesują nas Fscore, Accuracy, Precision i Recall. W tym celu zgodnie z dokumentacja biblioteki caret [2], stworzyłem własną funkcje z metrką.

```
[19]: metrics <- function(data, lev = NULL, model = NULL)
{
    f1_val <- F1_Score(y_pred = data$pred, y_true = data$obs, positive = lev[1])
    rec_val <-Recall(y_pred = data$pred, y_true = data$obs, positive = lev[1])
    sen_val = Sensitivity(y_pred = data$pred, y_true = data$obs, positive = lev[1])
    pre_val = Precision(y_pred = data$pred, y_true = data$obs, positive = lev[1])
    acc_val = Accuracy(y_pred = data$pred, y_true = data$obs)</pre>
```

```
c(fScore = f1_val,Recall = rec_val, Sensitivity = sen_val, Precision =
pre_val,Accuracy=acc_val)
}
```

1 Parametry i funkcja do badań

Funkcja ta jest używana podczas caret'owego train w celu walidacji modelu. Przy użyciu caretowej crossvalidacji powinna sie wykonywać dla wszystkich foldów i zwrócić wartość średnią. Funkcja ta wykorzystuje funkcje metryki dostępne z biblioteki MLmetrics.

Funkcja odpowiedzialna za uczenie modelu naszego drzewa decyzyjnego zwraca metryki i pomiary na modelu jako dataframe. Przymuje następujące parametry:

- 1. Params jest to string który zawiera informacje jakie parametry modelu będzie posiadało nasze drzewo decyzyjne. Ten parametr używany jest tylko i wyłącznie jako nazwa identyfikacyjna pomiaru.
- 2. dataset np iris_data dataframe którym będziemy uczyć. model_type
- 3. 'tree' lub 'rules parametr przekazywany do funkcji train w celu wybrania czy drzewo ma być rule-based czy nie. Podczas naszych badań zajmiemy się tylko zwykłymi drzewami tree.
- 4. straing_col_number kolumna startowa którą od której chcemy zacząć podawać dane. Najczęściej 1 w przypadku gdyby jednak kolumna Id była jako pierwsza (np Iris) to można ustawić np 2. Ten parametr pojawił się tylko i wyłącznie dlatego że w trakcie pisania tego skryptu dość późno nauczyłem się dropować kolumny.
- 5. last_col_number ostatnia kolumna
- 6. formula formula R np 'Species ~.' przekazywana do train. Oznacza nazwe kolumny która zawiera klase.
- 7. folds ilość foldów w crossvalidacji.
- 8. Parametry opisane pod kodem: Winnowing parametr True / False jest odpowiedzialny za to czy powinna zostać użyta feature selection.
- 9. Fuzzy pamater True / False odpowiedzialny za fuzzyThreshold.Odpowiedzialny za 'zaawansowane dzielenie danych'
- 10. NoPruning parametr True / False odpowiedzialny jest za przycinanie końcowe drzewa w celu jego uproszczenia. Nazwa parametru to w rzeczywistości noGlobablPruning więc zaznaczenia na True oznacze brak przycinania.

Opisy tych parametrów można znaleźć w https://cran.r-project.org/web/packages/C50/C50.pdf

```
[20]: TreeModel_caret <-
       →function(param_names,dataset,model_type,starting_col_number,last_col_number,formula,folds,wir
      ){
          #Selekcja danych
          test = dataset$last_col_number
          dataset[,ncol(dataset)] = as.factor(dataset[,ncol(dataset)])
          y = dataset[,(last_col_number-1)] #class column
          index = createDataPartition(y=y, p=0.7, list=FALSE)
          train.set = dataset[index,starting_col_number:last_col_number]
          test.set = dataset[-index,starting_col_number:last_col_number]
          #Ustawianie parametrów i Control
          train.control <- trainControl(#https://www.rdocumentation.org/packages/C50/</pre>
       \rightarrow versions/0.1.3/topics/C5.0Control
                         method = "cv",
                         number = folds,
                         savePredictions = "all",
                         summaryFunction = metrics)
          Control <- C5.0Control(</pre>
                         winnow = winnowing,
                         fuzzyThreshold = fuzzy,
                         noGlobalPruning = GlobalPruning)
          #uczenie
          tree <- train(</pre>
                         formula,
                         data=train.set,
                         method="C5.0",
                         control = Control,
                         tuneGrid = data.frame(trials = 1, model = c(model_type),__
       →winnow = winnowing),
                         trControl = train.control)
          #wyciąganie metryk z results
          f1 = tree$results$fScore
          rec = tree$results$Recall
          sen = tree$results$Sensitivity
          acc = tree$results$Accuracy
          prec= tree$results$Precision
          size = tree$finalModel$size
          # przygotowanie danych do zwrócenia
          research_frame <-data.frame(param_names,f1,acc,rec,prec,size)
          names(research_frame)<-c("params","f1","acc","rec","prec","Tree_size")</pre>
          return(research_frame)
      }
```

Najpierw jednak pokaże przykładowe ploty drzew decyzyjnych. Niestety wszystkich drzew nie moge umieścić w tym sprawozdaniu gdyż było by ich ponad 20.

```
[30]: options(repr.plot.width=15, repr.plot.height=10)
   in_train <- as.factor(sample(1:nrow(iris_data), size = (0.8*nrow(iris_data))))
   train_data <- iris_data[ in_train,]
   test_data <- iris_data[-in_train,]
   tree_mod_iris <- C5.0(x = train_data[, 2:5], y = train_data[,6])
   plot(tree_mod_iris)
   print(paste("Tree_size_is: ", tree_mod_iris$size))</pre>
```

[1] "Tree size is: 5"


```
[31]: in_train <- as.factor(sample(1:nrow(glass_data), size = (0.8*nrow(glass_data))))
    glass_data[,ncol(glass_data)] <- as.factor(glass_data[,ncol(glass_data)])
    train_data <- glass_data[ in_train,]
    test_data <- glass_data[-in_train,]
    tree_mod_glass <- C5.0(x = train_data[, 1:9], y = train_data[,10])
    plot(tree_mod_glass)
    print(paste("Tree_size_is: ", tree_mod_iris$size))</pre>
```

[1] "Tree size is: 5"


```
[26]: in_train <- as.factor(sample(1:nrow(wine_data), size = (0.8*nrow(wine_data))))
    wine_data[,ncol(wine_data)] <- as.factor(wine_data[,ncol(wine_data)])
    train_data <- wine_data[ in_train,]
    test_data <- wine_data[-in_train,]
    tree_mod_wine <- C5.0(x = train_data[, 1:11], y = train_data[,12])
    plot(tree_mod_wine)
    print(tree_mod_wine$size)</pre>
```

[1] 184


```
[40]: in_train <- as.factor(sample(1:nrow(seed_data), size = (0.8*nrow(seed_data))))
    seed_data[,ncol(seed_data)] <- as.factor(seed_data[,ncol(seed_data)])
    train_data <- seed_data[ in_train,]
    test_data <- seed_data[-in_train,]
    tree_mod_seed <- C5.0(x = train_data[, 1:6], y = train_data[,7])
    plot(tree_mod_seed)
    print(paste("Tree_size_is: ", tree_mod_iris$size))</pre>
```

[1] "Tree size is: 5"

2 Badania

Dla każdego z foldów (5 , 10 , 15) sprawdzić wartość metryk i każdej kombinacji parametrów (winnow,noGlobalPunning,fuzzyThreshold.

```
[41]: #Sprawdzone parametry dla danego datasetu
      research <- function(dataset,start_col,end_col,formula){</pre>
          research_dataframe<-data.frame()</pre>
          #Params = FALSE
          newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=F fuzzy=F __
       →NoPruning=F", dataset, "tree", start_col, end_col, formula, 5, FALSE, FALSE)
          research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
          #Winnowing TRUE
          newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=T fuzzy=F | I
       →NoPruning=F",dataset,"tree",start_col,end_col,formula,5,TRUE,FALSE,FALSE)
          research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
          #fuzzyThreshold TRUE
          newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=F fuzzy=T __
       →NoPruning=F",dataset,"tree",start_col,end_col,formula,5,FALSE,TRUE,FALSE)
          research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
          # pruning TRUE
```

```
newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=F fuzzy=F L
→NoPruning=T",dataset,"tree",start_col,end_col,formula,5,FALSE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
   #Winnowing True & fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=T fuzzy=T u
→NoPruning=F", dataset, "tree", start_col, end_col, formula, 5, TRUE, TRUE, FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #Winnowing True & noGlobalPrunning True
  newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=T fuzzy=F ___
→NoPruning=T",dataset,"tree",start_col,end_col,formula,5,TRUE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #noGlobalPrunning True fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=F fuzzy=T __
→NoPruning=T",dataset,"tree",start_col,end_col,formula,5,FALSE,TRUE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
   #All params true
  newMeasureDataframe = TreeModel_caret("Tree F=5 winnow=T fuzzy=T __
→NoPruning=T",dataset,"tree",start_col,end_col,formula,5,TRUE,TRUE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
   #FOLDS 10
  #Params False
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=F fuzzy=F L
→NoPruning=F",dataset,"tree",start_col,end_col,formula,10,FALSE,FALSE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #Winnowing
  →NoPruning=F",dataset,"tree",start_col,end_col,formula,10,TRUE,FALSE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #fuzzyThredshold
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=F fuzzy=T | |
→NoPruning=F",dataset,"tree",start_col,end_col,formula,10,FALSE,TRUE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #Pruning
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=F fuzzy=F L
→NoPruning=T",dataset,"tree",start_col,end_col,formula,10,FALSE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #Winnowing True & fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=T fuzzy=T | |
→NoPruning=F",dataset,"tree",start_col,end_col,formula,10,TRUE,TRUE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #Winnowing True & noGlobalPrunning True
```

```
newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=T fuzzy=F L
→NoPruning=T",dataset,"tree",start_col,end_col,formula,10,TRUE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #noGlobalPrunning True fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=F fuzzy=T | |
→NoPruning=T",dataset,"tree",start_col,end_col,formula,10,FALSE,TRUE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #All params true
  newMeasureDataframe = TreeModel_caret("Tree F=10 winnow=T fuzzy=T L
→NoPruning=T", dataset, "tree", start_col, end_col, formula, 10, TRUE, TRUE, TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #Params False
  →NoPruning=F",dataset,"tree",start_col,end_col,formula,15,FALSE,FALSE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #Winnowing
  →NoPruning=F",dataset,"tree",start_col,end_col,formula,15,TRUE,FALSE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #fuzzyThredshold
  newMeasureDataframe = TreeModel_caret("Tree F=15 winnow=F fuzzy=T | |
→NoPruning=F",dataset,"tree",start_col,end_col,formula,15,FALSE,TRUE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #Pruning
  →NoPruning=T",dataset,"tree",start_col,end_col,formula,15,FALSE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
  #Winnowing True & fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=15 winnow=T fuzzy=T | |
→NoPruning=F",dataset,"tree",start_col,end_col,formula,15,TRUE,TRUE,FALSE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
  #Winnowing True & noGlobalPrunning True
  newMeasureDataframe = TreeModel_caret("Tree F=15 winnow=T fuzzy=F __
→NoPruning=T",dataset,"tree",start_col,end_col,formula,15,TRUE,FALSE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
   #noGlobalPrunning True fuzzyThreshold True
  newMeasureDataframe = TreeModel_caret("Tree F=15 winnow=F fuzzy=T | |
→NoPruning=T",dataset,"tree",start_col,end_col,formula,15,FALSE,TRUE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)</pre>
   #All params true
  newMeasureDataframe = TreeModel_caret("Tree F=15 winnow=T fuzzy=T ___
→NoPruning=T",dataset,"tree",start_col,end_col,formula,15,TRUE,TRUE,TRUE)
  research_dataframe <- rbind(research_dataframe, newMeasureDataframe)
```

```
[42]: print('Iris')
research(iris_data,2,6,Species~.)
```

[1] "Iris"

params	f1	acc	rec	prec	Tree_size
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
Tree F=5 winnow=F fuzzy=F NoPruning=F	0.9666667	0.9337662	0.9428571	1	4
Tree F=5 winnow=T fuzzy=F NoPruning=F	0.9666667	0.9323377	0.9428571	1	4
Tree F=5 winnow=F fuzzy=T NoPruning=F	0.9692308	0.9151515	0.9428571	1	3
Tree F=5 winnow=F fuzzy=F NoPruning=T	1.0000000	0.9532035	1.0000000	1	4
Tree F=5 winnow=T fuzzy=T NoPruning=F	0.9512821	0.9437229	0.9142857	1	3
Tree F=5 winnow=T fuzzy=F NoPruning=T	1.0000000	0.9519048	1.0000000	1	4
Tree F=5 winnow=F fuzzy=T NoPruning=T	1.0000000	0.9813853	1.0000000	1	3
Tree F=5 winnow=T fuzzy=T NoPruning=T	0.9692308	0.9147186	0.9428571	1	5
Tree F=10 winnow=F fuzzy=F NoPruning=F	0.9657143	0.8936364	0.9416667	1	4
Tree F=10 winnow=T fuzzy=F NoPruning=F	1.0000000	0.9825758	1.0000000	1	4
Tree F=10 winnow=F fuzzy=T NoPruning=F	0.9657143	0.9500000	0.9416667	1	4
Tree F=10 winnow=F fuzzy=F NoPruning=T	0.9857143	0.9614646	0.9750000	1	4
Tree F=10 winnow=T fuzzy=T NoPruning=F	1.0000000	0.9553030	1.0000000	1	3
Tree F=10 winnow=T fuzzy=F NoPruning=T	1.0000000	0.9527273	1.0000000	1	3
Tree F=10 winnow=F fuzzy=T NoPruning=T	0.9400000	0.9378788	0.9250000	1	4
Tree F=10 winnow=T fuzzy=T NoPruning=T	1.0000000	0.9451515	1.0000000	1	3
Tree F=15 winnow=F fuzzy=F NoPruning=F	1.0000000	0.9805556	1.0000000	1	4
Tree F=15 winnow=T fuzzy=F NoPruning=F	1.0000000	0.9126984	1.0000000	1	3
Tree F=15 winnow=F fuzzy=T NoPruning=F	0.9777778	0.9420635	0.9666667	1	3
Tree F=15 winnow=F fuzzy=F NoPruning=T	0.9777778	0.9146825	0.9666667	1	5
Tree F=15 winnow=T fuzzy=T NoPruning=F	1.0000000	0.9146825	1.0000000	1	4
Tree F=15 winnow=T fuzzy=F NoPruning=T	0.9644444	0.9218254	0.944444	1	5
Tree F=15 winnow=F fuzzy=T NoPruning=T	0.9644444	0.9190476	0.9444444	1	5
Tree F=15 winnow=T fuzzy=T NoPruning=T	0.955556	0.9603175	0.9333333	1	3


```
[43]: print('Seeds')
research(seed_data,1,7,Type~.)
```

[1] "Seeds"

params	f1	acc	rec	prec	Tree_size
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
Tree F=5 winnow=F fuzzy=F NoPruning=F	0.8952381	0.9328736	0.9333333	0.8651515	6
Tree F=5 winnow=T fuzzy=F NoPruning=F	0.7949673	0.8793103	0.7444444	0.8564286	5
Tree F=5 winnow=F fuzzy=T NoPruning=F	0.8369196	0.8997701	0.8400000	0.8718182	8
Tree F=5 winnow=F fuzzy=F NoPruning=T	0.9089780	0.9323841	0.9272727	0.8974825	6
Tree F=5 winnow=T fuzzy=T NoPruning=F	0.8659954	0.9066667	0.8654545	0.8762393	6
Tree F=5 winnow=T fuzzy=F NoPruning=T	0.8429493	0.8926437	0.8800000	0.8174825	4
Tree F=5 winnow=F fuzzy=T NoPruning=T	0.8099640	0.8793103	0.8133333	0.8194017	6
Tree F=5 winnow=T fuzzy=T NoPruning=T	0.8624030	0.9197405	0.8377778	0.9244444	4
Tree F=10 winnow=F fuzzy=F NoPruning=F	0.8189105	0.8874405	0.8066667	0.8780952	6
Tree F=10 winnow=T fuzzy=F NoPruning=F	0.8505051	0.9079167	0.8200000	0.9130952	5
Tree F=10 winnow=F fuzzy=T NoPruning=F	0.8470202	0.8961310	0.8400000	0.8747619	8
Tree F=10 winnow=F fuzzy=F NoPruning=T	0.8394444	0.9007738	0.8350000	0.8600000	5
Tree F=10 winnow=T fuzzy=T NoPruning=F	0.8840043	0.9332143	0.8500000	0.9433333	7
Tree F=10 winnow=T fuzzy=F NoPruning=T	0.8690404	0.9132738	0.8800000	0.8780952	6
Tree F=10 winnow=F fuzzy=T NoPruning=T	0.9067677	0.9333333	0.9400000	0.8847619	8
Tree F=10 winnow=T fuzzy=T NoPruning=T	0.8971717	0.9341071	0.8833333	0.9216667	3
Tree F=15 winnow=F fuzzy=F NoPruning=F	0.8557672	0.9195960	0.8444444	0.9088889	4
Tree F=15 winnow=T fuzzy=F NoPruning=F	0.8339002	0.8625589	0.777778	0.8311111	8
Tree F=15 winnow=F fuzzy=T NoPruning=F	0.8433862	0.9045455	0.8277778	0.8922222	5
Tree F=15 winnow=F fuzzy=F NoPruning=T	0.8578307	0.9032997	0.8666667	0.875556	4
Tree F=15 winnow=T fuzzy=T NoPruning=F	0.7993197	0.8676768	0.755556	0.8214286	5
Tree F=15 winnow=T fuzzy=F NoPruning=T	0.8462585	0.8923232	0.7777778	0.8222222	6
Tree F=15 winnow=F fuzzy=T NoPruning=T	0.8710582	0.9117172	0.8833333	0.8966667	7
Tree F=15 winnow=T fuzzy=T NoPruning=T	0.8577778	0.9127946	0.8444444	0.8944444	5


```
[44]: print('Glass')
research(glass_data,1,10,Type~.)
```

[1] "Glass"

params	f1	acc	rec	prec	Tree_size
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
Tree F=5 winnow=F fuzzy=F NoPruning=F	0.7056681	0.6732518	0.7111111	0.7142918	16
Tree F=5 winnow=T fuzzy=F NoPruning=F	0.7218382	0.6626279	0.7527273	0.6981818	19
Tree F=5 winnow=F fuzzy=T NoPruning=F	0.7033024	0.6519169	0.7305556	0.6949495	18
Tree F=5 winnow=F fuzzy=F NoPruning=T	0.7254386	0.7196313	0.7333333	0.7247619	17
Tree F=5 winnow=T fuzzy=T NoPruning=F	0.6838923	0.6602966	0.7290909	0.6533333	17
Tree F=5 winnow=T fuzzy=F NoPruning=T	0.6310048	0.6149574	0.6400000	0.6339394	19
Tree F=5 winnow=F fuzzy=T NoPruning=T	0.7305993	0.6472599	0.7000000	0.7806166	24
Tree F=5 winnow=T fuzzy=T NoPruning=T	0.7264861	0.6928725	0.7800000	0.7119048	17
Tree F=10 winnow=F fuzzy=F NoPruning=F	0.7465368	0.6769643	0.7900000	0.7333333	21
Tree F=10 winnow=T fuzzy=F NoPruning=F	0.7018726	0.6861310	0.7150000	0.7108333	22
Tree F=10 winnow=F fuzzy=T NoPruning=F	0.7433117	0.7224510	0.7200000	0.7900000	20
Tree F=10 winnow=F fuzzy=F NoPruning=T	0.6261705	0.5904167	0.6450000	0.6366667	17
Tree F=10 winnow=T fuzzy=T NoPruning=F	0.6411871	0.6543568	0.6750000	0.6308333	23
Tree F=10 winnow=T fuzzy=F NoPruning=T	0.6010317	0.6504762	0.6200000	0.6573810	25
Tree F=10 winnow=F fuzzy=T NoPruning=T	0.6617466	0.6505653	0.6700000	0.7077381	20
Tree F=10 winnow=T fuzzy=T NoPruning=T	0.7967244	0.7364469	0.8150000	0.8028571	16
Tree F=15 winnow=F fuzzy=F NoPruning=F	0.8231380	0.6810774	0.7055556	0.7644444	18
Tree F=15 winnow=T fuzzy=F NoPruning=F	0.6973545	0.6756229	0.7111111	0.7811111	14
Tree F=15 winnow=F fuzzy=T NoPruning=F	0.7236508	0.7588889	0.7333333	0.745556	21
Tree F=15 winnow=F fuzzy=F NoPruning=T	0.7467196	0.7322559	0.7888889	0.7266667	19
Tree F=15 winnow=T fuzzy=T NoPruning=F	0.6753439	0.6318013	0.7000000	0.7011111	18
Tree F=15 winnow=T fuzzy=F NoPruning=T	0.7754579	0.7330303	0.7111111	0.7333333	17
Tree F=15 winnow=F fuzzy=T NoPruning=T	0.6687831	0.6848485	0.655556	0.755556	19
Tree F=15 winnow=T fuzzy=T NoPruning=T	0.7997884	0.7511448	0.8000000	0.8288889	16


```
[45]: print('Wine quality')
research(wine_data,1,12,quality~.)
```

[1] "Wine quality"

params	f1	acc	rec	prec	Tree_size
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
Tree F=5 winnow=F fuzzy=F NoPruning=F	0.555556	0.5709762	0.3000000	0.45000000	151
Tree F=5 winnow=T fuzzy=F NoPruning=F	0.2500000	0.5869451	0.1000000	0.16666667	141
Tree F=5 winnow=F fuzzy=T NoPruning=F	NaN	0.5932222	0.0000000	NaN	162
Tree F=5 winnow=F fuzzy=F NoPruning=T	NaN	0.5735400	0.0000000	0.00000000	171
Tree F=5 winnow=T fuzzy=T NoPruning=F	NaN	0.5842669	0.0000000	0.00000000	161
Tree F=5 winnow=T fuzzy=F NoPruning=T	NaN	0.5717343	0.0000000	0.00000000	157
Tree F=5 winnow=F fuzzy=T NoPruning=T	0.5833333	0.5977063	0.2000000	0.37500000	140
Tree F=5 winnow=T fuzzy=T NoPruning=T	NaN	0.5637963	0.0000000	0.00000000	145
Tree F=10 winnow=F fuzzy=F NoPruning=F	0.4000000	0.5627651	0.1666667	0.05000000	161
Tree F=10 winnow=T fuzzy=F NoPruning=F	NaN	0.5770565	0.0000000	0.00000000	133
Tree F=10 winnow=F fuzzy=T NoPruning=F	NaN	0.5931760	0.0000000	NaN	148
Tree F=10 winnow=F fuzzy=F NoPruning=T	0.4000000	0.5967947	0.1428571	0.06250000	172
Tree F=10 winnow=T fuzzy=T NoPruning=F	0.5000000	0.5799797	0.1428571	0.06666667	153
Tree F=10 winnow=T fuzzy=F NoPruning=T	NaN	0.5619818	0.0000000	0.00000000	148
Tree F=10 winnow=F fuzzy=T NoPruning=T	0.6666667	0.5635769	0.1428571	0.12500000	144
Tree F=10 winnow=T fuzzy=T NoPruning=T	NaN	0.5780310	0.0000000	0.00000000	169
Tree F=15 winnow=F fuzzy=F NoPruning=F	NaN	0.5753036	0.0000000	0.00000000	154
Tree F=15 winnow=T fuzzy=F NoPruning=F	NaN	0.5655524	0.0000000	0.00000000	175
Tree F=15 winnow=F fuzzy=T NoPruning=F	NaN	0.5648905	0.0000000	0.00000000	164
Tree F=15 winnow=F fuzzy=F NoPruning=T	NaN	0.6022920	0.0000000	0.00000000	159
Tree F=15 winnow=T fuzzy=T NoPruning=F	NaN	0.5573809	0.0000000	0.00000000	158
Tree F=15 winnow=T fuzzy=F NoPruning=T	1.0000000	0.5752726	0.1666667	0.25000000	143
Tree F=15 winnow=F fuzzy=T NoPruning=T	NaN	0.5809296	0.0000000	0.00000000	171
Tree F=15 winnow=T fuzzy=T NoPruning=T	NaN	0.5958373	0.0000000	0.00000000	182

3 Podsumowanie i wnioski

- : Badając drzewa decyzyjne dla zbiorów Glass, Seed i Wine można zauważyć że: Pomimo posiadania około 60% acc dla zbioru Wine recall posiadał dla wieru testów wartość 0 co powodowało NaN w pozostałych metrykach. Jak widać acc nie jest dobrym wyznacznikiem Najlepszymi parametrami dla zbiorów okazały się:
- Seed Tree F=5 winnow=F fuzzy=F NoPruning=T 0.9089780
- Glass Tree F=15 winnow=T fuzzy=T NoPruning=T 0.7997884
- Wine Tree F=15 winnow=T fuzzy=F NoPruning=T 1.0000000

Można zaobserwować że zwiększenie liczby foldów w kroswalidacji miało wpływ na jakość modelu.

Najmniejszymi drzewami okazały się

```
-- Tree F=10 winnow=T fuzzy=T NoPruning=T rozmiar drzewa: 3
-- Tree F=15 winnow=T fuzzy=F NoPruning=F rozmiar drzewa: 14
-- Tree F=5 winnow=F fuzzy=T NoPruning=T rozmiar drzewa: 140
(brałem pod uwagę modele które nie posiadały NaN w metrykach)
```

Prównując wersje z włączonym parametrem a wyłączonym można zauważyć że winnowing poprzed selekcje atrybutów jak i noGlobalPruning poprzez końcowe obcięcie drzewa ma wpływ na końcową wielkość.

```
[1]-https://stackoverflow.com/questions/23357855/wrong-model-type-for-regression-error-in-10-fold 50317577
```

[2]-https://cran.r-project.org/web/packages/caret/caret.pdf