STA304/1003: Summer 2014 - FORMULA SHEET for Midterm Test

Some General Results:

- 1. $SE(pt.est) = \sqrt{\hat{V}(pt.est)}$
- **2.** Approximate $100(1-\alpha)\%$ CI for a location parameter: $pt.est \pm z_{\alpha/2}SE(pt.est)$
- 3. Standard Normal Critical Values: $z_{0.005}=2.58$, $z_{0.01}=2.33$, $z_{0.025}=1.96$, $z_{0.05}=1.65$
- 4. SRS, STRS, Systematic, Two Stage Cluster point estimates are unbiased
- 5. Ratio estimates, One Stage Cluster sampling estimates are asymptotically unbiased

Simple Random Sampling:

Population Parameter	Point Estimate	Variance of Point Estimate	Estimated Variance
$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{i} - \bar{y}_{U})^{2}$	$s^2 = \frac{1}{n-1} \sum_{i \in \mathcal{S}} (y_i - \bar{y})^2$	_	_
$\bar{y}_U = \frac{1}{N} \sum_{i=1}^N y_i$	$\bar{y} = \frac{1}{n} \sum_{i \in \mathcal{S}} y_i$	$\left(1-\frac{n}{N}\right)\frac{S^2}{n}$	$\left(1-\frac{n}{N}\right)\frac{s^2}{n}$
$t = \sum_{i=1}^{N} y_i$	$\hat{t}=Nar{y}$	$N^2 \left(1 - \frac{n}{N}\right) \frac{S^2}{n}$	$N^2 \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$
$y_i = \begin{cases} 1, & with \ probability \ p \\ 0, & with \ probability \ 1-p \end{cases}$	$\hat{p}=ar{y}$	$\frac{N-n}{N-1} \frac{p(1-p)}{n}$	$\left(1 - \frac{n}{N}\right) \frac{\hat{p}(1-\hat{p})}{n-1}$

Sample size for $100(1-\alpha)\%$ CI with margin of error, e:

$$n = \frac{z_{\alpha/2}^2 S^{*2}}{e^2 + \frac{z_{\alpha/2}^2 S^{*2}}{N}} = \frac{n_0}{1 + \frac{n_0}{N}} \; ; \text{ where } n_0 = \left(\frac{z_{\alpha/2} S^*}{e}\right)^2$$

 S^* is an estimate of S: either s or $\sqrt{p^*(1-p^*)}$, where p^* maximizes $p-p^2$.