EE3206/EE3206E INTRODUCTION TO COMPUTER VISION AND IMAGE PROCESSING

Semester 1, 2013/2014

Tutorial Set F

1. Consider the descriptor

compactness =
$$\frac{(\text{perimeter})^2}{4\pi \times \text{area}}$$
.

- (a) Prove that compactness is always greater for a rectangle than for a square.
- (b) Consider an ellipse with major diameter 2a and minor diameter 2b. Show that compactness increases as the eccentricity ϵ increases ($\epsilon \geq 1$). (For an ellipse, the area is πab and the perimeter is approximately $\pi \sqrt{2(a^2 + b^2)}$.)
- 2. A 512×512 image contains several objects. Describe, step by step, a procedure that can be used to obtain the centroid of each object.

- 3. (a) Calculate the normalised central moment η_{11} and the first invariant moment ϕ_1 for the L-shaped object shown in the first figure, where f(x, y) has value 1 for the object region and 0 elsewhere.
 - (b) After digitisation, the image is as shown in the second figure. Determine η_{11} and ϕ_1 .

- 4. The basic patterns of two textures, P and Q, are shown in the figure.
 - (a) Obtain the GLCMs for the images using the displacements $\delta_1 = (0, 1)$ and $\delta_2 = (0, 2)$ for texture P, and $\delta_3 = (-1, 1)$ and $\delta_4 = (1, 1)$ for texture Q. For each GLCM, compute the descriptor "element-difference moment of order 2":

$$D = \sum_{i} \sum_{j} (i - j)^{2} c_{ij}$$

(b) Explain how local property statistics obtained using the difference operator $f(x + \Delta x, y) - f(x, y)$ may be used to differentiate between the two textures.

Texture P

Texture Q