Introduction To Quadratic Equations

Quadratic Equation

What is a quadratic equation?

Which is not a quadratic equation

1) Which of the following are quadratic equations?

i)
$$11 = -4x^2 - x^3$$

Sol:
$$11 = -4x^2 - x^3$$

$$\therefore x^3 + 4x^2 + 11 = 0$$

The given equation is not in the form of $ax^2 + bx + c = 0$

So it is not a quadratic equation.

ii)
$$(y-2)(y+2)=0$$

Sol: (y-2)(y+2)=0

$$(y)^2 - (2)^2 = 0$$

$$y^2 - 4 = 0$$

$$\therefore y^2 + 0y - 4 = 0$$

Highest index of variable is 3

term as 0y

The given equation is in the form of $ay^2 + by + c = 0$

So it is a quadratic equation in variable y

. Stating whether the given equation is a Quadratic Equation or not?

Q) Which of the following are quadratic equations?

iii)
$$z - \frac{7}{z} = 4z + 5$$

Sol:
$$z - \frac{7}{z} = 4z + 5$$

Multiplying throughout by z, we get,

$$z(z) - z \times \frac{7}{z} = z(4z) + z(5)$$

$$z^{2} - 7 = 4z^{2} + 5z$$

$$\therefore z^2 - 4z^2 - 5z - 7 = 0$$

$$\therefore -3z^2 - 5z - 7 = 0$$

The given equation is in the form of $az^2 + bz + c = 0$

iv)
$$\frac{q^2-4}{q^2} = -3$$

Sol:
$$\frac{q^2 - 4}{q^2} = -3$$

$$\therefore q^2 - 4 = -3q^2$$

$$\therefore q^2 + 3q^2 - 4 = 0$$

$$\therefore 4q^2 - 4 = 0$$

$$\therefore 4q^2 + 0q - 4 = 0$$

The given equation in the form of $aq^2 + bq + c = 0$

So it is a quadratic equation in variable q

Arrange equation such that we get

RHS = 0

Represent Middle

term as Oq

So it is a quadratic equation in variable z

Q) Which of the following are quadratic equations?

v)
$$(x + 2)^3 = 2x (x^2 - 1)$$

Sol:

$$(x + 2)^3 = 2x (x^2 - 1)$$

$$\therefore x^3 + 3x^2(2) + 3x(2)^2 + 2^3 = 2x^3 - 2x$$

$$\therefore x^3 + 6x^2 + 3x(4) + 8 = 2x^3 - 2x$$

$$x^3 + 6x^2 + 12x + 8 = 2x^3 - 2x$$

Arrange equation in such a way that we get R.H.S as 0

$$x^3 - 2x^3 + 6x^2 + 12x + 2x + 8 = 0$$

$$\therefore -x^3 + 6x^2 + 14x + 8 = 0$$

The given equation is not in the form of $ax^2 + bx + c = 0$.

So it is not a quadratic equation.

vi)
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

Sol:
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

$$\therefore \qquad \mathbf{x}^3 - 4\mathbf{x}^2 - \mathbf{x} + 1 = \mathbf{x}^3 - 3\mathbf{x}^2(2) + 3(\mathbf{x})(2)^2 - 2^3$$

$$\therefore x^3 - 4x^2 - x + 1 = x^3 - 6x^2 + 3(x)(4) - 8$$

$$x^3 - 4x^2 - x + 1 = x^3 - 6x^2 + 12x - 8$$

$$\therefore -4x^2 + 6x^2 - x - 12x + 1 + 8 = 0$$

$$2x^2 - 13x + 9 = 0$$

Arrange equation in such a $2x^2 - 13x + 9 = 0$ way that we get R.H.S as 0

The given equation is in the form of $ax^2 + bx + c = 0$.

So it is a quadratic equation in variable x.

. Stating whether the given equation is a Quadratic Equation or not?

i)
$$(x + 1)^2 = 2(x - 3)$$

Sol: $(x + 1)^2 - 2(x - 3)$
 $\therefore x^2 + 2x + 1 = 2x - 6$
 $\therefore x^2 + 1 + 6 = 0$
 $\therefore x^2 + 7 = 0$

The given equation is in the form of $ax^2 + bx + c = 0$.

So it is a quadratic equation.

 $\therefore x^2 + 0x + 7 = 0$

(ii)
$$x^2 - 2x = (-2)(3 - x)$$

Sol:
$$x^2 - 2x = (2)(3 - x)$$

$$\therefore \qquad x^2 - 2x = -6 + 2x$$

$$x^2 - 2x - 2x + 6 = 0$$

$$\therefore x^2 - 4x + 6 = 0$$

Arrange equation such that we get RHS = 0

The given equation is in the form of $ax^2 + bx + c = 0$.

So it is a quadratic equation.

(iii)
$$(x-2)(x+1) = (x-1)(x+3)$$

Sol: $(x-2)(x+1) = (x-1)(x+3)$
 $\therefore x(x+1) - 2(x+1) = x(x+3) - 1(x+3)$
 $\therefore x^2 + x - 2x - 2 = x^2 + 3x - x - 3$
 $\therefore -x-2x - 2 + 3 = 0$
 $\therefore -3x + 1 = 0$
 $\therefore 3x - 1 = 0$

dividing throughout by -1

The given equation is not in the form of $ax^2 + bx + c = 0$.

So it is not a quadratic equation.

. Stating whether the given equation is a Quadratic Equation or not?

(iv)
$$(x-3)(2x+1) = x(x+5)$$

Sol: $(x-3)(2x+1) = x(x+5)$
 $x(2x+1)-3(2x+1) = x^2+5x$

Highest index of variable is 2

$$2x^2 + x - 6x - 3 = x^2 + 5x$$

$$\therefore 2x^2 - 5x - 3 = x^2 + 5x$$

$$\therefore \frac{2x^2 - x^2}{-5x - 5x} - 3 = 0$$

i.e.
$$x^2 - 10x - 3 = 0$$

The given equation is in the form of $ax^2 + bx + c = 0$.

So it is a quadratic equation.

(v)
$$(2x-1)(x-3) = (x+5)(x-1)$$

Sol: $(2x-1)(x-3) = (x+5)(x-1)$
 $(2x-1)(x-3) = x(x-1) + 5(x-1)$

Arrange Equation such that we get RHS as 0

$$\therefore 2x^2 - 6x - x + 3 = y^2 - x + 5x - 5$$

$$\therefore$$
 $2x^2 - 7x + 3 = x^2 + 4x - 5$

$$\therefore 2x^2 - x^2 - 7x - 4x + 3 + 5 = 0$$

i.e.
$$x^2 - 11x + 8 = 0$$

The given equation is in the form of $ax^2 + bx + c = 0$.

So it is a quadratic equation.

(vi)
$$x^2 + 3x + 1 = (x - 2)^2$$

Sol: $x^2 + 3x + 1 = (x - 2)^2$
 $\therefore x^2 + 3x + 1 = x^2 - 4x + 4$
 $\therefore 3x + 4x + 1 - 4 = 0$
i.e. $7x - 3 = 0$

Arrange equation such that we get b²
RHS = 0

The given equation is not in the form of $ax^2 + bx + c = 0$.

So it is not a quadratic equation.

. Converting statements in Equation Form

Q) Express the following statements mathematically

The area of a rectangular plot is 528 m². The length of the plot is one more than twice its breadth) We need to find the length and breadth of the plot.

Sol: Let the breadth of the rectangular plot be x metres.

Is the required representation of problem mathematically

By opening r the bracket as x

Q. Represent the following situations in the form of quadratic equations:

iii) Rohan's mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan's present age.

Sol: Let Rohan's present age be x years.

	Rohan	Mother
Present age	20 yyears	(2046236) years
Age 3 years from now	(x + 3) years	x + 26 + 3 = (x + 29) years

According to given condition

$$(x + 3)(x + 29) = 360$$

$$x(x + 29) + 3(x + 29) = 360$$

$$x^{2} + 29x + 3x + 87 = 360$$

$$x^{2} + 32x + 87 = 360$$

$$x^2 + 32x + 87 = 360$$

.. Rohan's mother's age = Rohan's age + 26

$$\therefore | x^2 + 32x - 273 = 0$$

. Converting statements in Equation Form

Express the following statements mathematically

Q (ii) The product of two consecutive integers is 306. We need to find the integers.

Sol: Let first integer = x

- ∴ Second integer = (x + 1)According to given condition, x (x + 1) = 306
- $x^2 + x = 306$
- $\therefore \mathbf{x}^2 + \mathbf{x} 306 = \mathbf{0}$ Is the required representation of problem mathematically.

Two consecutive integers n 10, 10 + 1

Q. Represent the following situations in the form of quadratic equations:

iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/hr less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

Sol: Let the speed of the train be x km/hr

 \therefore The new speed of the train is (x - 8)km/hr

	Old	New
Speed	x km/hr	(x - 8) km/hr
Distance	480 km	480 km
$Time = \frac{Distance}{Speed}$	$\left(\frac{480}{x}\right)$ hrs	$\left(\frac{480}{x-8}\right)$ hrs

- Methods for solving Quadratic Equations
- Factorization Method

Methods to solve a Quadratic Equation

- 1] Factorisation Method
- 2] Completing the Square Method
- 3] Formula Method

1] Factorisation Method

Q) Salve the following quadratic equations by factorization method

Take common nmon along with from first two 3rd term sign

1st Middle no. no.
$$1 = 0$$

$$\therefore$$
 $(3x + 1)(x + 11) = 0$

$$3x + 1 = 0$$
 or $x + 11 = 0$

$$\therefore 3x = -1$$
 or $x = -11$

$$\therefore x = -\frac{1}{3} \quad \text{or} \quad x = -11$$

of factorise by splitting iddle term

Find product of 3rd no.

ns

Factorise by +33 = 34

Iactors

Product of two brackets is zero

actors we get middle no.

Give middle sign to both factors.

 \therefore The roots of the given quadratic equations are -11 and - $\frac{1}{3}$

Q) Solve the following quadratic equations by factorization method

form

From first 1 is com

From last two '15' is common a long with 3rd term sign

To factorise by splitting
$$30 \times 2$$
 $60 = 4 \times 15$ iddle term

i miadle no. a no.

Factorise by splitting middle term

 $60 \neq 19$ nd two factors of 60 in ch a way that by adding tors we get middle no. ns

(m + 2) (2m + 15) = 0m + 2 = 0 or 2m + 15 = 0

m = -2 or 2m = -15

:. m = -2 or $m = -\frac{15}{2}$

 $20 \neq 19$ nce, last sign is + ve middle sign to both + +15 = 19 tors.

with 1st no.

Find product of 3rd no.

.. The roots of the given quadratic

are -2 and $-\frac{15}{}$

Now signs to be given to both factors

Factorization Method Continued...

Q) Solve the following quadratic equations by factorization method

From fi

From last two '11' is common along with 3rd term sign

 $\therefore x^2 - 12x + 11x - 132 = 0$

$$\therefore x(x) = \frac{\text{middle no.}}{1(x-12)} = 0$$

$$(x-12)(x+11)=0$$

$$x - 12 = 0$$
 or $x + 11 = 0$

$$x = 12 \text{ or } x = -11$$

132 × 1 = 132

Standard form + 11

Factorise by splitting middle s to be term both

Find product of 3rd no. with 1st no.

Find two factors of 132 in such a way that by subtracting factors we get middle no.

Since, last sign is –
Give middle sign only to
pigger factor and
opposite sign to smaller
factor

... The roots of the given quadratic equations are 12 and - 11

Q) Solve the following quadratic equations by factorization method

From last two '3'
is common along
is co with 3rd term sign
rise as

Since, last sign is –

21 can be middle sign only to factorise as er factor.

$$8x^2 - 28x + 6x - 21 = 0$$

$$\therefore 4x (2x - 7) + 3(2x - 7) = 0$$

Take biggest no. & 2 of the smallest as one group

$$\therefore$$
 $(2x-7)(4x+3)$

$$\therefore 2x - 7 = 0 \text{ or } 4x$$
Make 2 groups of all factors

Remaining no. as other group

$$\therefore x = \frac{7}{2} \quad \text{or} \quad x = -\frac{3}{4}$$

... The roots of the given quadratic eq

To add or subtract as per last sign

21 = 168

are
$$\frac{7}{2}$$
 and $\frac{3}{4}$

Factorization Method Continued...

Q) Solve the following quadratic equations by factorization method

viii)
$$10x^2 + 3x - 4 = 0$$

Sol:
$$10x^2 + 3x - 4 = 0$$

$$\therefore 10x^2 + 8x - 5x - 4 = 0$$

$$\therefore \frac{1^{x} \text{ middle no. } 1^{x}}{2x(5x+4)-1(5x+4)} = 0$$

$$\therefore$$
 $(5x + 4)(2x - 1) = 0$

$$\therefore$$
 5x + 4 = 0 or 2x - 1 = 0

$$\therefore$$
 5x = -4 or 2x = 1

$$\therefore x = -\frac{4}{5} \text{ or } x = \frac{1}{2}$$

 \therefore The roots of the given quadratic equations are $-\frac{4}{5}$ and $\frac{1}{2}$

Factorise by splitting middle $20-2 \neq 3$ at by

 $10-4\neq 3$

te: '-' sign means or subtracting

-5

bigger factor & opposite sign to smaller factor

tors we get

Now signs to be given to both factors

+ 8

Q) Solve the following quadratic equations by factorization method

$$ix) \frac{1}{9}x^2 - \frac{2}{3}x + 1 = 0$$

Sol:
$$\frac{1}{9}x^2 - \frac{2}{3}x + 1 = 0$$

is co

To Remove '9 & 3' from denominator multiply by LCM of 9 & 3

9, we get,

'+' sign

Multipl From last two '3' is common along $= 9 \times 0$ From fi with 3rd term sign

Find two factors of 9 in

such a way that by adding ctors we get middle no. LCM of 9 & 3 is 9

Find product of 3rd no.

with 1st no.

nce, last sign is + Give middle sign to both factors.

$$\therefore x^2 - 3x - 3x + 9 = 0$$

$$\therefore x(x-3)-3(x-3)=0$$
 means adding

$$(x-3)(x-3) = 0$$

$$(x-3) = 0$$
 or $(x-3) = 0$

$$\therefore$$
 x = 3 or x = 3

The roots of the given quadratic equation is 3

Thank You