Scripting & Computer Environments An Introduction

IIIT-H

July 31, 2013

Course Specifics

- LTPC: 3-0-2-4
- Prerequisites: Little/no exposure to Unix-like systems or prior programming experience

Course Description

This course aims to provide and equip you with the necessary technical skills so as to make you reasonably comfortable with various Unix-like computing environments. Throughout, you will be exposed to some useful utilities/tools and languages to help you in the journey.

At the end of the course, you should be:

- Comfortable enough working with various unix-like computing environments.
- Able to write simple to complex scripts to automate tasks/solve problems.
- In a position to design and implement database-driven web apps.

Course Specifics:

- Shell Programming
 - Linux basics, commands and file systems, shell scripting, swiss-army-knife tools (vi, grep, sed, awk, ...)
- Web Programming
 - Intro to basic concepts of the World Wide Web (WWW) and tools used to develop web apps.
 - Client-side & server-side scripting (HTML, XHTML, CSS, Javascript, Python, ...)
- Oatabase Programming

Course Specifics:

Evaluation & Resource

• Evaluation methods ¹

2 mid exams	30%
Assignments/lab activities/quizzes/project ²	40%
Final exam	30%

• Reference materials

TBA throughout

¹Subject to change

²The heart of the course

- Check out the various policies and guidelines (e.g. attendance, computer usage, examination, etc) of the institute from here.
- Deadlines
- Code plagiarism (A or B?)

\mathbf{A}

- Sharing code verbatim: copying, retyping, submitting copy of a file.
- Coaching: helping your friend to write a code line-by-line.

\mathbf{B}

- Helping others use tools, clarify or help understand a concept.
- Helping others debug their code.

Course Specifics:

Help!

- Approach/mail the TAs or me. Don't shy away!
- Assignment-specific queries on the Courses Portal.
- Separate threads will be created for each.
- Any Qn?

The Genesis

Brainstorm:

Computer

Program

Scrip

The Genesis

Brainstorm:

Computer

• Program

Scrip

The Genesis

• Computer

Brainstorm:

• Program

Script

Computing

• Computers were 'born' for this.

- The whats?
- The whys?
 - "Necessity is ..."
 - "To make life easier." Agree/disagree
 - What else?

Brainstorm:

• Computers were 'born' for this.

- The whats?
- The whys?
 - "Necessity is ..."
 - "To make life easier." Agree/disagree?
 - What else?

Computing:

The Brain

- Nerve cells/neurons are central in human computation.
- Dendrites receive signal from other neurons via synapses.
- Signal transmission is a *chemical* process resulting in high/low electrical potential inside the cell.

Computing:

- I/O Unit
- Memory Unit (primary, secondary)
- Processing Unit (ALU, CU, registers)
- lacktriangle Interconnection Structures (control, address eta data buses)

The Winner Is...

- Organization
- Mode of processing
- Storage

- Speed
- ullet Complexity
- Control mechanism
- Resilience.

The Computer System:

Software

A set of programs, procedures, algorithms and its documentation.

- Written using programming languages
 - High-level languages e.g. C, C++, Java, scripting languages ...
 - Assembly language mnemonic-based e.g. ADD, SUB, MOV ...
 - Low-level language native language of computer circuitry
- Each language has syntactic + semantic rules.
- Otherwise, syntax, logical and/or runtime errors.

Did you know? Some famous software bugs: Mark II's Moth (1945), Mariner I space probe (1962), Y2K bug (2000)

July 31, 2013

Software (2)

The Computer System:

- Compiled vs Interpreted languages
- Application vs System software

Example

translators, operating systems, device drivers, etc

The Operating System

A set of software that *manages* computer hardware resources and *serves* other programs.

Example

Windows, Unix, Linux, OS X, Android, OSBSD, etc

- Past → Expensive hardware, 'cheap' people!
 - Goal: maximize hardware utilization.
- Now → Cheap hardware, expensive people!
 - Goal: make it easy for people to use computer.
 - Characteristics: Enormous and complex (millions of LOC)
- Future \rightarrow

- Proprietary vs Open-source
- Single-user vs Multi-user
- Single-tasking vs multi-tasking
- Distributed
- Embedded

• Real-time operating systems (RTOS)

Multi-tasking OS for apps with fixed deadlines.

e.g. industrial robots, embedded systems, engine controllers, etc.

Example

VxWorks, QNX, MontaVista Linux

Generally, coordination and control center

- Abstraction layer (i.e. hides hardware details)
- Resource Manager
 - Processor manager
 - Memory manager

- File manager
- Device manager

- User interface
- Networking & Security (e.g. access control)

Computing Trends & Environments

- Distributed Computing e.g. sensor networks, Internet
- Mobile Computing e.g. ipod, ipad, iphone, etc
- Ubiquitous/pervasive Computing
 e.g. smart homes, cars, buildings, etc

- DNA/Biomolecular computing
- Cloud Computing
- Social Computing SNS and collaborations
- Green Computing/ Green IT

"Average Google search releases 7 gm of CO2" (Google says 0.2 gm)

Next...

