

Basics of Neural Network Programming

Vectorizing Logistic Regression

deeplearning.ai

Vectorizing Logistic Regression

$$\frac{z^{(1)} = w^T x^{(1)} + b}{a^{(1)}} = \sigma(z^{(1)})$$

$$\frac{z^{(2)} = w^T x^{(2)} + b}{a^{(2)}} = \sigma(z^{(2)})$$

$$\frac{z^{(3)} = w^T x^{(3)} + b}{a^{(3)}} = \sigma(z^{(3)})$$

$$\frac{z^{(3)}$$

deeplearning.ai

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$d_{\xi}^{(i)} = a^{(i)} - y^{(i)}$$

$$d_{\xi$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for $i = 1$ to m :

 $z^{(i)} = w^T x^{(i)} + b = 0$
 $a^{(i)} = \sigma(z^{(i)}) = 0$
 $J + = -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} = 0$
 $dw_1 + = x_1^{(i)} z^{(i)} = 0$
 $dw_2 + = x_2^{(i)} z^{(i)} = 0$
 $dw_1 + = dz^{(i)}$
 $dw_2 + = dz^{(i)}$
 $dw_1 + = dz^{(i)}$
 $dw_2 + = dz^{(i)}$
 $dw_1 + = dz^{(i)}$
 $dw_2 + = dz^{(i)}$
 $dw_1 + = dz^{(i)}$