Operações com frações

Matemática

8° ano set/2021

Material inspirado no livro "Matemática 8º ano", Luiz M. Imenes, Marcelo Lellis. São Paulo, Moderna, 2010.

Revisão

As frações são usadas para expressar diferentes ideias. Um dos usos mais comuns é indicar a relação entre uma parte e um total. Por exemplo, quando, em épocas de eleições, dizemos que $\frac{1}{3}$ dos eleitores ainda não sabe em que candidatos votar, estamos nos referindo a uma parcela (uma parte) de $\frac{3}{3}$, ou então, a uma parcela do total de eleitores.

As frações também representam números, pois expressam **medidas** e indicam o **resultado da divisão** entre dois números inteiros. Por exemplo:

- Alguma tubulações têm $\frac{3}{4}$ de polegada de diâmetro.
- O **quociente** da divisão $3 \div (-2)$ pode ser indicado por $\frac{3}{-2}$, Ou então $-\frac{3}{2}$.

Os números representados por frações (inclusive os números inteiros) são conhecidos como **números racionais**. O nome "racionais" vem do latim *ratio* que significa "divisão"; esse nome decorre, portanto, do fato de as frações representarem **resultados de divisões**.

Os números racionais incluem os números inteiros porque todo número inteiro pode ser considerado um tipo especial de fração: uma fração de denominador igual a 1¹. Por exemplo:

 $^{^{1}}$ Mais genericamente, considerando as frações equivalentes, os números inteiros são aquelas frações em que o numerador é um múltiplo do denominador. Por exemplo: 53 = 53/1 = 106/2 = 212/4 = ...

010

$$-2 = \frac{-2}{1}$$

$$-53 = \frac{53}{1}$$

Exercício 1. Complete as sentenças com o número correto:

- a) _____ dias correspondem a $\frac{2}{7}$ da semana.
- **b)** _____ dias correspondem a $\frac{1}{3}$ do mês.
- c) _____ horas correspondem a $\frac{2}{3}$ de um dia.
- **d)** _____ minutos correspondem a $\frac{1}{4}$ de hora.
- **e)** _____ anos correspondem a $\frac{23}{50}$ de um século.

Exercício 2. Em quais desenhos a parte colorida corresponde a $\frac{1}{3}$ da figura?

Exercício 3. Vovô Donato comprou 3 barras de chocolate iguais. Deu uma barra para a neta, Mariana, outra para o neto, Paulo, e ficou com a terceira. Mariana partiu sua barra em duas partes iguais e comeu $\frac{1}{2}$ do total. Paulo partiu sua barra em 4 partes iguais e comeu 2 delas. Vovô Donato partiu sua bara em 8 partes e comeu 4 delas.

a) Que fração da barra de chocolate Mariana comeu? E Paulo? E o avô?

b) Alguém comeu mais que os outros?

c) Escreva quatro frações equivalentes àquela que Paulo comeu.

Exercício 4. Qual das três frações é maior: $\frac{1}{3}$, $\frac{2}{5}$ ou $\frac{2}{7}$?

Exercício 5. Complete a tabela:

Divisão	Resultado (fração)	Resultado (número misto)	Resultado (decimal)	
7 ÷ 3	7/3		2, 3333	
5 ÷ 2		$2\frac{1}{2}$		
9 ÷ 4				

Exercício 6. Seguindo o exemplo, simplifique as frações.

a) $\frac{12}{18}$ b) $\frac{14}{18}$ c) $\frac{15}{20}$ d) $\frac{36}{30}$

Exercício 7. Porcentagens são simplesmente frações de denominador 100. Assim, $50\% = \frac{50}{100} = \frac{1}{2}$. Com isso em mente, complete a tabela:

Fração simplificada		<u>1</u> 5					<u>5</u> 4
Porcentagem correspondente	1%		25%	50%	75%	113%	

Antes de continuar

A próxima seção vai falar sobre o conceito do **mínimo múltiplo comum** (mmc) entre dois números. Se você tem alguma dúvida ou precisa refrescar a memória sobre esse assunto, visite a atividade "01 - Números que geram outros números" (arco.coop.br/~jseckler/mat-8-2021/01.pdf). Se houver alguma dúvida, é fortemente recomendado refazer os exercícios 4 e 5 dessa atividade.

Adição e subtração de frações

Em algumas situações é necessário efetuar operações com frações. Por exemplo, se você está seguindo uma receita que pede $\frac{1}{3}$ de xícara de farinha. Mas você está fazendo duas receitas (ou seja, você está colocando o dobro das quantidades pedidas na receita). Nessa situação, você deverá fazer uma operação de soma de frações $(\frac{1}{3} + \frac{1}{3})$, ou então de multiplicação $(2 \cdot \frac{1}{3})$. Vamos ver alguns métodos práticos para efetuar essas operações.

A situação mais fácil para a soma e subtração é quando temos frações com o mesmo denominador, por exemplo: $\frac{2}{7} + \frac{3}{7}$.

O problema é quando as frações não estão "do jeito que a gente quer", ou seja, têm denominadores diferentes. Somar ou subtrair, nesse caso, corresponde à situação abaixo:

Não vamos conseguir encontrar o resultado somente olhando para as figuras. A solução é transformar as duas frações, obtendo **frações equivalentes** às originais mas que tenham o mesmo denominador. Veja:

$$\frac{1}{2} \qquad \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10}$$

$$\frac{1}{3}$$
 $\frac{1}{3}$ = $\frac{2}{6}$ = $\frac{3}{9}$ = $\frac{4}{15}$ = $\frac{5}{15}$

Nesse caso, vamos escolher $\frac{2}{6}$ (equivalente a $\frac{1}{3}$) e $\frac{3}{6}$ (equivalente a $\frac{1}{2}$) como frações de mesmo denominador para fazer essa conta. Escolher essa representação para as frações equivale a traçar mais listras nas nossas figuras. Veja:

Uma questão se apresenta: como escolher qual número vai ser o denominador comum? Nesse caso, escolhemos o número 6. Suponha agora que a gente quer fazer a soma $\frac{5}{12} + \frac{3}{8}$. Que número vamos usar como denominador para nossas frações equivalentes? Temos dois requisitos: esse número deve ser múltiplo de 12, para que a gente consiga facilmente chegar numa fração equivalente a $\frac{5}{12}$. Mas esse número também deve ser múltiplo de 8, para que a gente consiga chegar facilmente numa fração equivalente a $\frac{3}{8}$. Bom, mas então a gente quer um múltiplo comum ao 12 e ao 8. Uma opção comum de se fazer aqui é escolher o *menor* entre os múltiplos comuns a ao 12 e ao 8: vamos escolher o **mmc(8; 12)**.

Nosso processo prático, então, é o seguinte:

- 1. Calculamos o mmc dos denominadores
- 2. Obtemos frações equivalentes às dadas, que têm o mesmo denominador
- 3. Efetuamos a adição (ou subtração)

$$\frac{5}{12} + \frac{3}{8} = \frac{10}{24} + \frac{9}{24} = \frac{19}{24}$$

$$\frac{12}{8} = \frac{10}{24} + \frac{9}{24} = \frac{19}{24}$$

$$\frac{12}{8} = \frac{10}{24} + \frac{9}{24} = \frac{19}{24}$$

$$\frac{5}{12} = \frac{10}{24}$$

$$\frac{3}{12} = \frac{9}{24}$$

Exercício 8. Para dominar os cálculos com frações, é necessário dominar também os cálculos com números inteiros. Calcule:

$$a) - 13 + 7 - (-5)$$

b)
$$-5-6-7+8$$

$$\mathbf{c}$$
) - 13 - (12 - 22) + 4

d)
$$14 + 7 - (-5 + 8)$$

Exercício 9. Efetue as operações indicadas e simplifique o resultado sempre que possível:

a)
$$\frac{5}{36} + \frac{7}{24}$$

c)
$$\frac{1}{20} + \frac{1}{30} + \frac{1}{40}$$

b)
$$\frac{5}{36} - \frac{7}{24}$$

d)
$$\frac{1}{20} - \frac{1}{30} - \frac{1}{40}$$

Exercício 10. Na Roma antiga, há aproximadamente 2000 anos, as frações mais usadas eram as que podiam ser escritas na forma $\frac{A}{12}$, em que A representa um número natural. Por exemplo, usava-se $\frac{1}{2}$, porque

$$\frac{1}{2} = \frac{6}{12}.$$

a) Quais dessas frações estavam entre as mais usadas na Roma antiga: $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$, $\frac{1}{7}$, ou $\frac{1}{8}$?

b) Uma das vantagens dessas frações do tipo $\frac{A}{12}$ é que fica mais fácil de fazer contas de cabeça. Faça os seguintes cálculos mentais:

i)
$$\frac{1}{6} + \frac{1}{12}$$

i)
$$\frac{1}{6} + \frac{1}{12}$$
 iii) $\frac{3}{4} - \frac{1}{12}$

ii)
$$\frac{1}{4} + \frac{1}{12}$$

ii)
$$\frac{1}{4} + \frac{1}{12}$$
 iv) $\frac{2}{3} - \frac{5}{12}$

Exercício 11. As frações na forma mista, que vimos no exercício 5, nada mais são do que uma soma "disfarçada". Veja:

$$2\frac{3}{4} = 2 + \frac{3}{4} = \frac{8}{4} + \frac{3}{4} = \frac{11}{4}$$

Seguindo esse exemplo, escreva na forma de fração:

a)
$$5\frac{2}{3}$$

c)
$$4\frac{2}{5}$$

b)
$$-7\frac{3}{5}$$

d)
$$8\frac{3}{11}$$

010

Exercício 12. Observe a pilha de quadrados. Nela, cada número é a soma dos dois números que estão nos quadrados imediatamente abaixo. Descubra os números de todos os quadrados.

Exercício 13. Complete as equações que *generalizam* algebricamente a soma de frações com mesmo denominador, considerando que *a*, *b* e *d* são números inteiros e que *d* é diferente de zero:

a)
$$\frac{a}{d} + \frac{b}{d} = \dots$$

b)
$$\frac{a}{d} - \frac{b}{d} = \dots$$

Exercício 14. Vimos que, para somar frações com denominadores diferentes, precisamos escolher um número para usarmos como denominador comum. Vimos que esse número precisa ser um **múltiplo comum** aos dois denominadores originais, e por isso escolhemos o mínimo múltiplo comum. No entanto, seria possível escolher esse número de outra forma: poderíamos multiplicar um denominador pelo outro, e teremos, garantidamente, um múltiplo comum aos dois denominadores. Veja:

$$\frac{1}{6} + \frac{5}{8} = \frac{1 \cdot 8}{6 \cdot 8} + \frac{5 \cdot 6}{8 \cdot 6} = \frac{8}{48} + \frac{30}{48} = \frac{38}{48} = \frac{19}{24}$$

Considere a seguinte generalização da soma de frações, em que a, b, c, d são números inteiros e b e d são diferentes de 0, responda:

$$\frac{a}{b} + \frac{c}{d}$$

- a) O número bd é múltiplo de d?
- **b)** O número bd é múltiplo de b?
- **c)** Qual é a fração equivalente a $\frac{a}{b}$ cujo denominador é bd
- **d)** Qual é a fração equivalente a $\frac{c}{d}$ cujo denominador é bd?
- e) Complete a equação que generaliza algebricamente a soma de frações: $\frac{a}{h} + \frac{c}{d} = \dots$

Multiplicação de frações

Suponha que você quer comprar 3 quilos de carne a R\$ 22,00 o quilo. Quando você adquire um produto, para saber o valor a pagar, você multiplica a quantidade comprada pelo preço unitário. Nesse exemplo, você pagaria $3 \cdot 24$ reais, ou seja, R\$ 72, 00.

E se quiséssemos meio quilo de carne? Ou três quartos de um quilo de carne? Como a situação é equivalente à anterior, nós também vamos multiplicar os dois números:

$$\frac{3}{4} \cdot 24$$

Essa conta você já deve saber fazer: o resultado é R\$ 18,00. Note que "três quartos **de** 24" e "três quartos **vezes** 24" são a mesma coisa. De acordo com essa conclusão, é possível multiplicar quaisquer frações.

Se quisermos saber quanto é $\frac{1}{3} \cdot \frac{1}{4}$, podemos pensar que queremos saber quanto é um terço **de** um quarto. Veja:

 $\frac{1}{4}$ $\frac{1}{4}$ Dividido em terços $\frac{1}{3} \text{ de } \frac{1}{4}$

010

Pelo desenho, é possível notar que $\frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$. Usando a mesma representação, podemos descobrir o resultado de outras multiplicações:

• $\frac{2}{3} \cdot \frac{1}{4} = \frac{2}{12}$ da figura toda, o que é igual a $\frac{1}{6}$ do total;

• $\frac{2}{3} \cdot \frac{3}{4} = \frac{6}{12}$ da figura toda, o que é igual a $\frac{1}{2}$ do total.

Exercício 15. Complete:

a)
$$\frac{2}{3} \cdot \frac{2}{4}$$

b)
$$\frac{1}{3} \cdot \frac{3}{4}$$

c)
$$\frac{2}{3} \cdot \frac{3}{4}$$

Exercício 16. Para dominar os cálculos com frações, é necessário dominar também os cálculos com números inteiros. Calcule:

a)
$$-13 \cdot 7 \cdot (-5)$$

b)
$$-5 \cdot 6 - 7 \cdot 8$$

c)
$$-13 \cdot (12 - 22) + 4$$

d)
$$14 \cdot (-7) - 1(-5 \cdot 8)$$

Exercício 17. Efetue as operações e simplifique quando possível:

a)
$$\frac{7}{3} \cdot \frac{3}{7}$$

d)
$$\left(-\frac{3}{5}\right) \cdot \frac{7}{11} \cdot \frac{25}{3}$$

b)
$$(-\frac{3}{5})^3$$

e)
$$\left(-\frac{2}{3}\right) \cdot \left(-\frac{1}{2}\right) \cdot \frac{5}{4}$$

c)
$$\frac{13}{700} \cdot \frac{350}{39}$$

c)
$$\frac{13}{700} \cdot \frac{350}{39}$$
 f) $\frac{2}{7} \cdot \left(-\frac{1}{9}\right) \cdot \frac{6}{5}$

Exercício 18. Complete as equações que generalizam algebricamente a multiplicação de frações, em que a, b, c, d são números inteiros e b e d são diferentes de 0:

$$\frac{a}{b} \cdot \frac{c}{d} = \dots$$

Exercício 19. Faça as contas, inspirando-se nos exemplos ao lado.

a)
$$\frac{4}{5}$$
 · 10

b)
$$\frac{3}{7} \cdot \frac{2}{5}$$

c)
$$(\frac{2}{5})^2$$

c)
$$(\frac{3}{8})16$$

Exercício 20. Muitas vezes é útil simplificar as frações antes de fazer a multiplicação. Considere a conta abaixo:

$$\frac{3}{10} \cdot \frac{10}{11} \cdot \frac{7}{9} = \frac{3 \cdot 10 \cdot 7}{10 \cdot 11 \cdot 9}$$

Exemplos
$$\frac{3}{5} \cdot 7 = \frac{3}{5} \cdot \frac{7}{1} = \frac{21}{5}$$

$$\frac{2}{3} \cdot 12 = \frac{2}{3} \cdot \frac{12}{1} = \frac{24}{3} = 8$$

$$\frac{(\frac{3}{2})^2}{(\frac{3}{2})^2} = \frac{3}{2} \cdot \frac{3}{2} = \frac{9}{4}$$

O que fizemos: ao invés de escrever as contas até o final, simplesmente escrevemos o resultado como uma conta dividida por outra. Isso é interessante porque podemos reordenar os números de um jeito mais conveniente:

$$\frac{3}{10} \cdot \frac{10}{11} \cdot \frac{7}{9} = \frac{3 \cdot 10 \cdot 7}{10 \cdot 11 \cdot 9} = \frac{10 \cdot 7 \cdot 3}{10 \cdot 11 \cdot 9} = \frac{10}{10} \cdot \frac{7}{11} \cdot \frac{3}{9}$$

Assim, ficamos com uma multiplicação equivalente à original, mas que envolve frações muito mais simples:

$$\frac{3}{10} \cdot \frac{10}{11} \cdot \frac{7}{9} = \frac{10}{10} \cdot \frac{7}{11} \cdot \frac{3}{9} = 1 \cdot \frac{7}{11} \cdot \frac{1}{3} = \frac{7}{33}$$

Na prática, vamos querer pular algumas dessas etapas e simplesmente **simplificar** uma multiplicação antes de fazer os cálculos. Podemos pensar que estamos **cancelando** certos números que aparecem nos numeradores e nos denominadores, como no exemplo abaixo:

O(O)

Seguindo o exemplo, efetue as multiplicações, fazendo antes todos os cancelamentos possíveis:

a)
$$\frac{11}{250} \cdot \frac{2}{3} \cdot \frac{500}{11}$$

a)
$$\frac{11}{250} \cdot \frac{2}{3} \cdot \frac{500}{11}$$
 c) $\frac{600}{7} \cdot \frac{7}{1200} \cdot \frac{2}{3}$

b)
$$\frac{3}{71} \cdot \frac{142}{7} \cdot \frac{7}{9}$$
 d) $\frac{4}{15} \cdot \frac{18}{16} \cdot \frac{5}{7}$

d)
$$\frac{4}{15} \cdot \frac{18}{16} \cdot \frac{5}{7}$$

Exercício 21. Rita examinou a figura e chegou a uma conclusão:

"três metades de $\frac{2}{3}$ dão a unidade toda"

a) A conclusão de Rita precisa ser justificada para não termos dúvidas. Complete a justificativa escrevendo os algarismos corretos nos espaços em verde:

Metade de
$$\frac{2}{3}$$
 é $\frac{1}{3}$

Três dessas metades são

O total dessas três metades é , como disse maria

b) Como "três metades" correspondem a $\frac{3}{2}$, a fala de Rita pode ser escrita como uma multiplicação de frações. Escreva essa multiplicação.