

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A method of inhibiting OPN production, comprising administering an effective amount of a pyridazine derivative represented by the following formula (I) or a ~~derivative~~ salt thereof:

[Chemical Formula 2]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 2 (Original): The method of claim 1, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C<sub>1-6</sub> alkoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or a C<sub>1-6</sub> alkylthio group;

R<sup>3</sup> is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C<sub>1-3</sub> alkylene group or C<sub>3-4</sub> alkenylene group.

Claim 3 (Original): The method of claim 1, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R<sup>3</sup> is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 4 (Original): The method of claim 1, wherein the active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-

chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claim 5 (Original): An OPN production inhibitor, comprising as an active ingredient a pyridazine derivative represented by the following formula (I) or a derivative thereof:

[Chemical Formula 3]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and

C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 6 (Original): The inhibitor of claim 5, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C<sub>1-6</sub> alkoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or a C<sub>1-6</sub> alkylthio group;

R<sup>3</sup> is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C<sub>1-3</sub> alkylene group or C<sub>3-4</sub> alkenylene group.

Claim 7 (Original): The inhibitor of claim 5, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R<sup>3</sup> is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 8 (Original): The inhibitor of claim 5, wherein said active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claim 9 (Original): A preventive and therapeutic agent for a disease resulting from enhanced OPN production, comprising as an active ingredient a pyridazine derivative represented by the following formula (I) or a derivative thereof:

[Chemical Formula 4]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

$R^3$  means a hydrogen atom; a  $C_{1-6}$  alkoxy group; a halogenated  $C_{1-6}$  alkyl group; a  $C_{3-6}$  cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms,  $C_{1-6}$  alkyl groups,  $C_{1-6}$  alkoxy groups, carboxyl groups,  $C_{2-7}$  alkoxycarbonyl groups, nitro groups, amino groups,  $C_{1-6}$  alkylamino groups and  $C_{1-6}$  alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a  $C_{2-7}$  alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

$A$  means a single bond, a  $C_{1-6}$  linear or branched alkylene group, or a  $C_{2-9}$  linear or branched alkenylene group; and

$X$  means an oxygen atom or a sulfur atom, with a proviso that  $A$  is a single bond when  $R^3$  is a halogenated  $C_{1-6}$  alkyl group.

Claim 10 (Original): The preventive and therapeutic agent of claim 9, wherein in the formula ( I),

$R^1$  is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a  $C_{1-6}$  alkoxy group;

$R^2$  is a phenyl group substituted at the 4-position thereof with a  $C_{1-6}$  alkoxy group or a  $C_{1-6}$  alkylthio group;

$R^3$  is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

$A$  is a  $C_{1-3}$  alkylene group or  $C_{3-4}$  alkenylene group.

Claim 11 (Original): The preventive and therapeutic agent of claim 9, wherein in the formula ( I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R<sup>3</sup> is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 12 (Original): The preventive and therapeutic agent of claim 9, wherein said active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claims 13-16 (Canceled).

Claim 17 (Original): Use of a pyridazine derivative represented by the following formula (I) or a derivative thereof for the production of a preventive and therapeutic agent for a disease resulting from enhanced OPN production:

[Chemical Formula 6]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 18 (Original): Use of claim 17, wherein in the formula ( I),

$R^1$  is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a  $C_{1-6}$  alkoxy group;

$R^2$  is a phenyl group substituted at the 4-position thereof with a  $C_{1-6}$  alkoxy group or a  $C_{1-6}$  alkylthio group;

$R^3$  is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a  $C_{1-3}$  alkylene group or  $C_{3-4}$  alkenylene group.

Claim 19 (Original): Use of claim 17, wherein in the formula ( I),

$R^1$  is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

$R^2$  is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

$R^3$  is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 20 (Original): Use of claim 17, wherein the active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claim 21 (Original): An OPN production inhibitor composition comprising a pyridazine derivative represented by the following formula (I) or a derivative thereof and a pharmaceutically acceptable carrier:

[Chemical Formula 7]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 22 (Original): The composition of claim 21, wherein in the formula (I), R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C<sub>1-6</sub> alkoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or a C<sub>1-6</sub> alkylthio group;

R<sup>3</sup> is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C<sub>1-3</sub> alkylene group or C<sub>3-4</sub> alkenylene group.

Claim 23 (Original): The composition of claim 21, wherein in the formula (I), R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R<sup>3</sup> is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 24 (Original): The composition of claim 21, wherein the active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-

(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claim 25 (Original): A preventive and therapeutic agent composition for a disease resulting from enhanced OPN production, comprising a pyridazine derivative represented by the following formula (I) or a derivative thereof and a pharmaceutically acceptable carrier:

[Chemical Formula 8]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl

groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 26 (Original): The composition of claim 25, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C<sub>1-6</sub> alkoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or a C<sub>1-6</sub> alkylthio group;

R<sup>3</sup> is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C<sub>1-3</sub> alkylene group or C<sub>3-4</sub> alkenylene group.

Claim 27 (Original): The composition of claim 25, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a chlorine atom or a methoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a methoxy group or a methylthio group;

R<sup>3</sup> is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-pyridyl group; and

A is a methylene group, ethylene group or 2-propenylene group.

Claim 28 (Original): The composition of claim 25, wherein the active ingredient is 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a salt thereof.

Claim 29 (Original): A therapeutic method of a disease resulting from enhanced OPN production, comprising administering an effective amount of a pyridazine derivative represented by the following formula (I) or a salt thereof:

[Chemical Formula 9]



( I )

wherein:

R<sup>1</sup> means a phenyl or pyridyl group which may be substituted by 1 to 3 substituents selected from halogen atoms and C<sub>1-6</sub> alkoxy groups;

R<sup>2</sup> means a phenyl group which may be substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or C<sub>1-6</sub> alkoxythio group and may also be substituted at one or two other

positions thereof a like number of substituents selected from halogen atoms, C<sub>1-6</sub> alkoxy groups and C<sub>1-6</sub> alkoxythio groups;

R<sup>3</sup> means a hydrogen atom; a C<sub>1-6</sub> alkoxy group; a halogenated C<sub>1-6</sub> alkyl group; a C<sub>3-6</sub> cycloalkyl group; a phenyl, pyridyl or phenoxy group which may be substituted by 1 to 3 substituents selected from halogen atoms, C<sub>1-6</sub> alkyl groups, C<sub>1-6</sub> alkoxy groups, carboxyl groups, C<sub>2-7</sub> alkoxycarbonyl groups, nitro groups, amino groups, C<sub>1-6</sub> alkylamino groups and C<sub>1-6</sub> alkylthio groups; a substituted or unsubstituted piperidino, piperidyl, piperazino or morpholino group; a substituted or unsubstituted aminocarbonyl group; a C<sub>2-7</sub> alkylcarbonyl groups; or a substituted or unsubstituted piperazinocarbonyl group;

A means a single bond, a C<sub>1-6</sub> linear or branched alkylene group, or a C<sub>2-9</sub> linear or branched alkenylene group; and

X means an oxygen atom or a sulfur atom, with a proviso that A is a single bond when R<sup>3</sup> is a halogenated C<sub>1-6</sub> alkyl group.

Claim 30 (Original): The method of claim 29, wherein in the formula (I),

R<sup>1</sup> is a phenyl or pyridyl group which may be substituted at the 4-position thereof with a halogen atom selected from fluorine, chlorine or bromine or a C<sub>1-6</sub> alkoxy group;

R<sup>2</sup> is a phenyl group substituted at the 4-position thereof with a C<sub>1-6</sub> alkoxy group or a C<sub>1-6</sub> alkylthio group;

R<sup>3</sup> is a hydrogen atom or a phenyl or pyridyl group which may be substituted by halogen atom or atoms; and

A is a C<sub>1-3</sub> alkylene group or C<sub>3-4</sub> alkenylene group.

Claim 31 (Original): The method of claim 29, wherein in the formula (I),  
 $R^1$  is a phenyl or pyridyl group which may be substituted at the 4-position thereof  
with a chlorine atom or a methoxy group;  
 $R^2$  is a phenyl group substituted at the 4-position thereof with a methoxy group or a  
methylthio group;  
 $R^3$  is a hydrogen atom, phenyl group, 4-chlorophenyl group, 2-pyridyl group or 3-  
pyridyl group; and  
A is a methylene group, ethylene group or 2-propenylene group.

Claim 32 (Original): The method of claim 29, wherein the active ingredient is 5-(4-  
chlorophenyl)-6-[4-(methylthio)phenyl]-2-(2-pyridylmethyl)-2H-pyridazine-3-thione, 5-(4-  
chlorophenyl)-6-[4-(methylthio)phenyl]-2-(3-pyridylmethyl)-2H-pyridazin-3-one, 5,6-bis(4-  
methoxyphenyl)-2-(4-chlorocinnamyl)-2H-pyridazin-3-one, 2-benzyl-5-(4-chlorophenyl)-6-  
[4-(methylthio)phenyl]-2H-pyridazin-3-one, 2-(4-chlorobenzyl)-6-(4-methoxyphenyl)-5-(4-  
pyridinyl)-2H-pyridazin-3-one, 5,6-bis(4-methoxyphenyl)-2-ethyl-2H-pyridazin-3-one, or a  
salt thereof.

Claim 33 (Original): The method of claim 29, wherein said disease resulting from  
said enhanced OPN production is post-PTCA restenosis, a kidney disease, tuberculosis,  
sarcoidosis, cirrhosis, colorectal cancer, ovarian cancer, prostatic cancer, breast cancer,  
urinary calculus or myelomatous tumor.

Claim 34 (Original): The method of claim 29, wherein said disease resulting from  
said enhanced OPN production is multiple myeloma.