Instance-wise algorithm configuration with graph neural networks

Romeo Valentin[†], Claudio Ferrari, Jeremy Scheurer, Andisheh Amrollahi, Chris Wendler, Max B. Paulus

ETH zürich Team: MixedInspiringLamePuns Configuration Task: Rank 3 / 15

Too long, didn't read

- Pose instance-wise algorithm configuration as a supervised learning problem
- Facilitate data collection over a small subset of configurations using domain knowledge and greedy search
- Use GNNs and per-instance normalization to learn a powerful model for instance-wise algorithm configuration

Configuration Space & Data Collection

- Define a reduced configuration space $\Omega \ni c$ with $|\Omega| \approx 353$ as the Cartesian product of the SCIP emphasis settings for *presolving*, *heuristics*, separating and emphasis.
- Solve a small number of training instances $(\mathcal{N}\ni i \text{ with } |\mathcal{N}|=100)$ with each config $c\in\Omega$ to collect the primal-dual integral γ_{ic} .
- \bullet Choose a small subset of configs $A\subset \Omega$ to approximately optimize the (submodular) score

$$s(A) = -\sum_{i \in N} \min_{c \in A} \gamma_{ic}$$

s.t. $|A| \leq k$ using the greedy algorithm [1].

- ullet Solve all training instances with each config $c \in A$
- For item placement (above) and load balancing, we find that $s(A) \approx s(\Omega)$ for |A| = 60 and |A| = 40, respectively.
- Thus, we save more than 80% compute over collecting γ_{ic} exhaustively over entire Ω .

Model architecture

- Input: bipartite graph [2]; Output: relative performance for each config.
- We need a graph neural network operator that supports both (i) edge weights, and (ii) a bipartite structure → we use GraphConv [3].
- **3** We train a small ensemble using a simple \mathcal{L}_2 loss.

Supervised learning problem

- Label γ_{ic} is the measured primal-dual integral for an instance-config-tuple.
- Goal: Learn how configs compare for an instance.
- Instead of ranking loss, we predict performance on a *relative scale* \rightarrow leverage instance-wise normalization.

Model architecture Input representation [3] Variables 1-dim graph One pred per Node embeddings $egin{array}{c} \underline{x}_1 & \left(v_1 ight) \end{array}$ Constraints embedding $config \in \mathcal{C}$ GlobalMax $\lceil \gamma_{i,1} ceil$ x_2 v_2 Constraints Batch & Graph Convolution Pooling $\gamma_{i,2}$ $\left(c_{1} ight) \underline{x}_{1}^{\prime}$ $2 \times$ Dense $x_2 (v_2)$ x_3 v_3 Graph Convolution: Attention $\left(c_{2} ight) rac{x_{2}^{\prime }}{2}$ 1. right_hand_side $oldsymbol{x_n} \leftarrow heta_1 oldsymbol{x_n} +$ Pooling $\lfloor \gamma_{i,60} floor$ $heta_2 \sum_{m \in \mathcal{N}(n)} e_{m,n} \cdot oldsymbol{x_m}$ 1. is_binary 9. lower_bound imes 3 ensemble

Data normalization & rationale

Compute empirical $\mu_{\rm emp}^i, \sigma_{\rm emp}^i$ for each instance i, then normalize instance-wise:

$$\gamma_{ic} \leftarrow \frac{\gamma_{ic} - \mu^i}{\sigma^i}.$$

 \Rightarrow The model only needs to learn *how a config compares to the other configs, not whether an instance is easy or hard.* \rightarrow increase signal-to-noise ratio!

Code & contact information

github.com/RomeoV/ml4co-competition Contact[†]: romeo.valentin@math.ethz.ch

Improvements on c_{default}

Our model predicts configs c_{model} that improve in validation performance on the default c_{default} .

The mean (median) improvement is 12% (16%) for item placement and 5% (6%) for load balancing.

Anonymous Dataset

- Solve all instances $i \in \mathcal{D}$ with each config $c \in \Omega$ to collect the primal-dual integral γ_{ic} .
- Identify six clusters $\{cl_j\}_{j=1}^6=\mathcal{D}$ using the instances' number of constraints and variables only.
- Compute $c_j^* = \operatorname*{argmin}_{c \in \Omega} \sum_{i \in cl_j} \gamma_{ic}$ for each cluster and for the population $c_0^* = \operatorname*{argmin}_{c \in \Omega} \sum_{i \in \mathcal{D}} \gamma_{ic}$.
- For a test instance (above), choose either c_j^* where j indexes the nearest cluster or c_0^* .

References

[1] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.

2019.

An analysis of approximations for maximizing submodular set functions—i. Mathematical programming, 14(1):265-294, 1978.

[2] M. Gasse, D. Chetelat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with graph convolutional neural networks. In *Advances in Neural Information Processing Systems*, volume 32, 2019.

[3] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.

Weisfeiler and leman go neural: Higher-order graph neural networks.

Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4602–4609, Jul.