第五章 数字系统设计 Digital System Design

- 5.1 数字系统概述
- 5.1.1 信息处理单元的构成
- 5.1.2 控制单元CU的构成
- 5.1.3 数字系统设计的描述工具
- 5.1.3.1 方框图
- 5.1.3.2 定时图 (时序图、时间关系图)
- 5.1.3.3 逻辑流程图
- 5.1.3.4 ASM图
- 5.1.3.5 寄存器传送语言
- 5.2 基本数字系统设计举例
- 5.3 简易计算机设计
- 5.3.1 简易计算机结构
- 5.3.2 举例:设计一台简易计算机
- 5.4 A/D转换和D/A转换

5.2 基本数字系统设计举例

下面通过例子介绍信息处理单元和控制单元的设计方法。

例1. 试设计一个累加器,该累加器能执行如下表所列出的一组微操作。

控制变量	微操作	名称
P_1	A←A+B	加
P ₂ 这	A ← 0	清 0
P ₃ 控	$A \leftarrow \overline{A}$	取反
P ₄ 制	A←A∧B	与
· · · 变 · 量	A←A∨B	或
P ₆ 是	A←A⊕B	异或
P ₇ 互	A←ShrA	右移
P ₈ 斥	A←ShlA	左移
P_9	A←A+1	加 1
	If($A=0$)then($Z=1$)	检测 0

注: 累加器是信息处理 单元中一个特殊的寄存 器,它能执行多种微操 作功能: 加法微操作、 逐次累加并暂存累加和、 并行接收、 并行输出、 暂存、

移位

累加器的结构

累加器由**寄存器A**和组合逻辑电路组成,如下框图:

寄存器A既可作为加数寄存器,又可作为和数寄存器。 决定累加器微操作的各个控制变量是互斥的,在任何给定 时间内只有一个控制变量被选通,产生响应的微操作。

累加器的结构

为简化累加器的设计,假设:累加器由n个相同的单元组成,每个单元包含了执行各种微操作所需的逻辑电路,只要完成一个单元的各部分电路设计,就可以将它们综合成累加器的一个典型单元,然后用若干个典型单元组成一个完整的累加器(迭代设计)。

1. "加" 微操作

这部分电路的工作用状态真值表描述如下:

现态	输入		次态	输出
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	C_{i-1}	$\mathbf{A_i}^{n+1}$	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

假如寄存器A采用JK触发器,则列出的激励表如下:

1. "加" 微操作

JK 触发器的"加"微操作的激励表如下:

现态	输入	次态	激励变量	输出
$\mathbf{A_{i}}$	$\mathbf{B_i} \ \mathbf{C_{i-1}}$	$\mathbf{A_i}^{n+1}$	J_i K_i	$\mathbf{C_{i}}$
0	0 0	0	0 d	0
0	0 1	1	1 d	0
0	1 0	1	1 d	0
0	1 1	0	0 d	1
1	0 0	1	d 0	0
1	0 1	0	d 1	1
1	1 0	0	d 1	1
1	1 1	1	d 0	1

用卡诺图化简,则如下:

1. "加"微操作

JK 触发器的"加"微操作的激励表如下:

现态	输入	次态	激励变量	输出
$\mathbf{A_{i}}$	$\mathbf{B_i}$ $\mathbf{C_{i-1}}$	A_i^{n+1}	J_i K_i	C_{i}
0	0 0	0	0 d	0
0	0 1	1	1 d	0
0	1 0	1	1 d	0
0	1 1	0	0 d	1
1	0 0	1	d 0	0
1	0 1	0	d 1	1
1	1 0	0	d 1	1
1	1 1	1	d 0	1

1. "加"微操作

激励函数 Ji、 Ki和输出函数 Ci的表达式:

$$\begin{aligned} \mathbf{J_i} &= \overline{\mathbf{B_i}} \, \mathbf{C_{i-1}} + \mathbf{B_i} \, \overline{\mathbf{C_{i-1}}} \\ \mathbf{K_i} &= \overline{\mathbf{B_i}} \, \mathbf{C_{i-1}} + \mathbf{B_i} \, \overline{\mathbf{C_{i-1}}} = \mathbf{J_i} \\ \mathbf{C_i} &= \mathbf{A_i} \, \mathbf{B_i} + \mathbf{A_i} \, \mathbf{C_{i-1}} + \mathbf{B_i} \, \mathbf{C_{i-1}} \end{aligned}$$

1. "加" 微操作

激励函数 Ji、 Ki和输出函数 Ci的表达式:

$$J_{i} = \overline{B}_{i} C_{i-1} + B_{i} \overline{C}_{i-1}$$

$$K_{i} = \overline{B}_{i} C_{i-1} + B_{i} \overline{C}_{i-1} = J_{i}$$

$$C_{i} = A_{i} B_{i} + A_{i} C_{i-1} + B_{i} C_{i-1}$$

由于"加"微操作是由控制变量P₁启动的,即仅当P₁=1时激励函数才能影响触发器的状态:

$$\begin{aligned} &J_{i} = \overline{B}_{i} C_{i-1} P_{1} + B_{i} \overline{C}_{i-1} P_{1} \\ &K_{i} = \overline{B}_{i} C_{i-1} P_{1} + B_{i} \overline{C}_{i-1} P_{1} = J_{i} \\ &C_{i} = A_{i} B_{i} + A_{i} C_{i-1} + B_{i} C_{i-1} \end{aligned}$$

2. "清 0"微操作

控制变量P₂使寄存器A中所有触发器全部清 0,即仅当P₂=1时激励函数能使 JK触发器复位:

$$\mathbf{J_i} = \mathbf{0}$$

$$K_i = \frac{P_2}{P_2}$$

3. "取反"微操作

控制变量P₃使寄存器A中所有信息取反,即仅当P₃=1时激励函数能使JK触发器变反(计数):

$$J_i = P_3$$

$$K_i = P_3$$

4. "与"微操作

控制变量P₄使寄存器A_i与B_i实现**逻辑"与"运算**,并将结果存入触发器A_i,这部分电路的工作用状态真值表描述如下:

现态	输入	次态
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}
0	0	0
0	1	0
1	0	0
1	1	1

相与用了

寄存器A采用JK 触发器,则列出的激励表如下:

4. "与"微操作

现态	输入	次态	激励函数
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}	J_i K_i
0	0	0	0 d
0	1	0	0 d
1	0	0	d 1
1	1	1	d 0

5. "或"微操作

控制变量P₅使寄存器A_i与B_i实现逻辑" 或"运算,并将结果存入触发器A_i,这 部分电路的工作用状态真值表描述如下:

现态	输入	次态
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}
0	0	0
0	1	1
1	0	1
1	1	1

寄存器A采用JK 触发器,则列出的激励表如下:

5. "或"微操作

现态	输入	次态	激励函数
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}	J_i K_i
0	0	0	0 d
0	1	1	1 d
1	0	1	d 0
1	1	1	d 0

6. "异或"微操作

控制变量P₆使寄存器A_i与B_i实现**逻辑**"**异或"运算**,并将结果存入触发器A_i,这部分电路的工作用状态真值表描述如下:

现态	输入	次态
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

寄存器A采用JK 触发器,则列出的激励表如下:

6. "异或"微操作

现态	输入	次态	激励函数
$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i^{n+1}	J_i K_i
0	0	0	0 d
0	1	1	1 d
1	0	1	d 0
1	1	1	d 1

7. "右移"微操作

控制变量P₇使寄存器A内的信息右移一位,即将触发器A_{i+1}存入触发器A_i,则对JK 触发器的激励函数如下:

$$\mathbf{J_i} = \mathbf{A_{i+1} P_7}$$
$$\mathbf{K_i} = \mathbf{\overline{A_{i+1} P_7}}$$

8. "左移" 微操作

控制变量P。使寄存器A内的信息左移一位,即将触发器A_{i-1}存入触发器A_i,则对JK 触发器的激励函数如下:

$$\mathbf{J_i} = \mathbf{A_{i-1}} \frac{\mathbf{P_8}}{\mathbf{A_{i-1}}}$$
$$\mathbf{K_i} = \overline{\mathbf{A_{i-1}}} \frac{\mathbf{P_8}}{\mathbf{P_8}}$$

9. "加 1"微操作

控制变量P,使寄存器A内的数据加1,即将寄存器A的所有触发器构成同步加1 计数器,则对JK 触发器的激励函数如下:

$$J_i = K_i = Q_{i-1} \cdot Q_{i-2} \cdot \cdots \cdot Q_1 \ (i \neq 1)$$
 — 进位
传递函数
 $J_1 = K_1 = 1$ — 最低位呈计数态

9. "加1"微操作

当P9=1时,启动"加1"微操作:

$$\mathbf{J}_1 = \mathbf{K}_1 = \mathbf{P}_9 = \mathbf{E}_1$$

$$\mathbf{E}_{i+1} = \mathbf{A}_i \mathbf{E}_i$$

$$J_i = K_i = E_i$$

10. "检测 0"微操作

当寄存器A的所有触发器均为0时,输出变量Z为1。 该微操作与控制变量(时钟序列)无关。

$$Z_1 = 1$$

$$Z_{i+1} = \overline{A_i} Z_i$$

$$Z = Z_{n+1}$$

综合上述10种微操作,由于它们的控制变量是**互斥的**, 因此在**任何时刻只有一个控制变量在起作用**,故可以将所有 微操作的函数表达式"或"起来,构成一个典型单元的逻辑 表达式。

控制变量	微操作	名称	逻辑函数表达式
\mathbf{P}_1	A←A+B	加	$J_{i} = K_{i} = B_{i} \overline{C}_{i-1} \underline{P}_{1} + \overline{B}_{i} C_{i-1} \underline{P}_{1}, C_{i} = A_{i} B_{i} + A_{i} C_{i-1} + B_{i} C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = P_2$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	$J_i = A_{i-1} \frac{P_7}{P_7}, K_i = \overline{A}_{i-1} \frac{P_7}{P_7}$
P_9	A←A+1	加 1	$J_1 = K_1 = \frac{P_9}{E_1} = E_1$, $E_{i+1} = A_i E_i$, $J_i = K_i = E_i$
	If(A=0)then(Z=1)	检测 0	$Z_{1} = 1, Z_{i+1} = \overline{A}_{i} Z_{i}, Z = Z_{n+1}$

$$\begin{split} J_{i} &= (B_{i} \overline{C}_{i-1} P_{1} + \overline{B}_{i} C_{i-1} P_{1}) + (P_{3}) + (B_{i} P_{5}) + (B_{i} P_{6}) + (A_{i+1} P_{7}) + (A_{i-1} P_{8}) + E_{i} \\ K_{i} &= (B_{i} \overline{C}_{i-1} P_{1} + \overline{B}_{i} C_{i-1} P_{1}) + (P_{2}) + (P_{3}) + (\overline{B}_{i} P_{4}) + (B_{i} P_{6}) + (\overline{A}_{i+1} P_{7}) + (\overline{A}_{i-1} P_{8}) + E_{i} \\ C_{i} &= A_{i} B_{i} + A_{i} C_{i-1} + B_{i} C_{i-1} \end{split}$$

 $\mathbf{E}_{\mathbf{i}+1} = \mathbf{A}_{\mathbf{i}} \, \mathbf{E}_{\mathbf{i}}$

 $\mathbf{Z}_{i+1} = \mathbf{A}_i \, \mathbf{Z}_i$

控制变量	微操作	名称	逻辑函数表达式
\mathbf{P}_1	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = P_2$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	$J_i = A_{i-1} \frac{P_7}{P_7}, K_i = \overline{A}_{i-1} \frac{P_7}{P_7}$
P_9	A←A+1	加 1	$J_1 = K_1 = P_9 = E_1$, $E_{i+1} = A_i E_i$, $J_i = K_i = E_i$
	If(A=0)then(Z=1)	检测 0	$Z_{1} = 1$, $Z_{i+1} = \overline{A_{i}} Z_{i}$, $Z = Z_{n+1}$

累加器的一个典型单元的逻辑电路图

累加器的一个典型单元的逻辑电路图

累加器的一个典型单元的逻辑电路图

控制变量	微操作	名称	逻辑函数表达式
P_1	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = \frac{P_2}{}$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	
P_8	A←ShlA	左移	
P_9	A←A+1	加 1	
	If($A=0$)then($Z=1$)	检测 0	

控制变量	微操作	名称	逻辑函数表达式
P ₁	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = \frac{P_2}{P_2}$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i P_4$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	
P_9	A←A+1	加 1	
	If($A=0$)then($Z=1$)	检测 0	

控制变量	微操作	名称	逻辑函数表达式
P ₁	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = \frac{P_2}{}$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	$J_i = A_{i-1} P_7, K_i = \overline{A}_{i-1} P_7$
P_9	A←A+1	加 1	
	If($A=0$)then($Z=1$)	检测 0	

控制变量	微操作	名称	逻辑函数表达式
\mathbf{P}_{1}	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = P_2$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	$J_i = A_{i-1} \frac{P_7}{P_7}, K_i = \overline{A}_{i-1} \frac{P_7}{P_7}$
P_9	A←A+1	加 1	$J_1 = K_1 = P_9 = E_1, E_{i+1} = A_i E_i, J_i = K_i = E_i$
	If(A=0)then(Z=1)	检测 0	

控制变量	微操作	名称	逻辑函数表达式
P_1	A←A+B	加	$J_i = K_i = B_i \overline{C}_{i-1} P_1 + \overline{B}_i C_{i-1} P_1$, $C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$
P_2	A ← 0	清 0	$J_i = 0, K_i = \frac{P_2}{}$
P_3	A←A	取反	$J_i = P_3, K_i = P_3$
P_4	A←A∧B	与	$J_i = 0$, $K_i = \overline{B}_i \frac{P_4}{P_4}$
P_5	A←A∨B	或	$J_i = B_i \frac{P_5}{P_5}, K_i = 0$
P_6	A←A⊕B	异或	$J_i = B_i \frac{P_6}{P_6}, K_i = B_i \frac{P_6}{P_6}$
P_7	A←ShrA	右移	$J_i = A_{i+1} \frac{P_7}{P_7}, K_i = \overline{A}_{i+1} \frac{P_7}{P_7}$
P_8	A←ShlA	左移	$J_i = A_{i-1} P_7, K_i = \overline{A}_{i-1} P_7$
P_9	A←A+1	加 1	$J_1 = K_1 = \frac{P_9}{E_1} = E_1, E_{i+1} = A_i E_i, J_i = K_i = E_i$
	If(A=0)then(Z=1)	检测 0	$Z_{1} = 1, Z_{i+1} = \overline{A}_{i} Z_{i}, Z = Z_{n+1}$

例2. 试设计一个能对两个原码表示的定点二进制数相乘 的乘法器控制单元。

设:两个二进制数均为 n 位原码,其中最左位是符号位。 硬件配置:

运算规则:

积的符号 $A_s = B_s \oplus Q_s$,

积的数值由部分积和被乘数逐次累加并右移获得, 积长2m

位。

运算规则:

"移位—相加" 算法举例

算法:逐次累加被乘数——右移

二进制数相乘的"算法"的逻辑流程

图 (乘数的数值位数为k)

10111 10011	
010111 右移 10111 乘数 1000101 被乘 01000101 右	第1位为1 ,得到第1个部分积 第2位为1 数与部分积累加 移,得到第2个部分积 乘数第3位为0,直接右 移,得到第3个部分积 乘数第4位为0,直接右 移,得到第4个部分积
_10111	乘数第5位为1
110110101 0110110101	被乘数与部分积累加 右移,得到 <mark>第5个</mark> 部分积, 也是最后的结果

算法:逐次累加被乘数——右移

寄存器的微操作序列:

 T_0 : 初始状态

 $T_1: A_S \leftarrow B_S \oplus Q_S, A \leftarrow 0,$ $C \leftarrow 0, P \leftarrow k$

 $Q_1 T_2: A \leftarrow A + B, C \leftarrow C_{out}$ $P \leftarrow P-1$

 $\overline{Q}_1 T_2: P \leftarrow P-1$

 $T_3: AQ \leftarrow ShrCAQ, C \leftarrow 0$

乘法器的初始状态为T₀, 当乘法运算控制变量q_m=1 时,进入状态T₁,对进位 触发器C、寄存器A、计 数器P置初值,然后进入乘 法操作。

乘法控制器的状态真值表

现 态	输 入	现 态	输 出
y ₂ y ₁	q _m P _{zero} Q ₁	$y_2^{n+1} y_1^{n+1}$	T_0 T_1 T_2 Q_1T_2 T_3
0 0	0 d/— d	0 0	1 0 0 0 0
0 0	1 d d	0 1	1 0 0 0 0
0 1	d d d	1 0	0 1 0 0 0
1 0	d d 0	1 1	0 0 1 0 0
1 0	d d 1	1 1	0 0 1 1 0
1 1	d 0 d	1 0	0 0 0 0 1
1 1	d 1 d	0 0	0 0 0 0 1

注:
$$P_{zero} = 1$$
 当计数器P的内容为0时,否则为 $P_{zero} = 0$; $L = Q_1 T_2$

T₀: 初始状态

 $T_1: A_S \leftarrow B_S \oplus Q_S, A \leftarrow 0,$

 $C \leftarrow 0$, $P \leftarrow k$

 $\overline{Q_1} \overline{T_2}: A \leftarrow A + B, C \leftarrow C_{out}$

P←P-1

 $Q_1 T_2 : P \leftarrow P-1$

 $T_3: AQ \leftarrow ShrCAQ, C \leftarrow 0$