Weighted Graphs

Dr Timothy Kimber

February 2018

More Terminology

- Each edge in a weighted graph has an associated cost or weight
- We denote the weight of the edge $\{u, v\}$ by w(u, v)

Algorithms (580)

More Terminology

Definition (Tree)

A tree is a pair (G, r) where G is a connected, acyclic graph and r is a vertex of G, called the root.

• A nonrooted tree is a connected, acyclic graph

More Terminology

Definition (Spanning Tree)

Given a graph $G = (V, E_G)$, a tree $T = (V, E_T)$ such that $E_T \subseteq E_G$ is a spanning tree for G.

Given some network (road, phone, water \dots) a minimum spanning tree (MST) is an important attribute

• Lowest cost way to connect all points

Minimum Spanning Tree

Minimium Spanning Tree Problem

Given graph G = (V, E), find a new graph T such that T is an MST of G.

Algorithms (580) Weighted Graphs February 2018 5 / 54

Question

Given graph G = (V, E), if you were to generate potential solutions for the MST problem, and then test them:

- What would you generate?
- What constraints apply?

 Algorithms (580)
 Weighted Graphs
 February 2018
 6 / 54

An MST for G will comprise a set of edges $E_T \subseteq E$:

- E_T must contain |V| 1 edges
- \bullet E_T must be a tree

Given this E_T will connect all vertices of G

• If such a tree also has minimal weight it is an MST

So, finding an MST involves finding a set $E_T \subseteq E$

Exercise

Give a case-by-case definition of a function min_edges that returns a minimal weight set of n edges selected from array E.

- What are the inputs?
- What are the base cases?
- How many instances of this problem are there?

February 2018

A minimal weight set of n edges, chosen from E[1, ..., i] is:

```
min\_edges(Input: integer i, integer n)
min\_edges(i, n) = \begin{cases} \emptyset & \text{if } i = 0 \\ \emptyset & \text{if } n = 0 \end{cases}
min\_edges(i, n) = \begin{cases} min\_wt(\{E[i]\} \cup min\_edges(i-1, n-1), \\ min\_edges(i-1, n)) & \text{otherwise} \end{cases}
```

- (Does the problem have optimal substructure?)
- $min_edges(|E|, |V| 1)$ has $|E| \times (|V| 1)$ subproblems
- Unfortunately, min_edges might not produce MST. Why?

Algorithms (580)

Update to tree_edges and only return a set of edges that forms a tree

```
tree\_edges(Input: integer i, set E_T)
tree\_edges(i, E_T) = \begin{cases} E_T & \text{if } |E_T| = |V| - 1 \\ min\_wt(tree\_edges(i-1, \{E[i]\} \cup E_T), \\ tree\_edges(i-1, E_T)) & \text{otherwise} \end{cases}
```

- Subproblem now completes the tree (using reduced set of edges)
- If $\{E[i]\} \cup E_T$ not a tree, do not use E[i]
- If $|E_T| + (i-1) < |V| 1$, insufficient edges
- $tree_edges(|E|,\varnothing)$ still has $|E| \times (|V|-1)$ subproblems

Algorithms (580) Weighted Graphs February 2018 10 / 54

A New Strategy

Have seen that the problem involves this choice

- Add edge i
- Do not add edge i

Have assumed edge i could be any edge, but

- Maybe this time a greedy approach will actually work!
- A greedy algorithm picks the 'obvious' first step
- This is called making a greedy choice
- It leaves just one subproblem to solve

So, we identify edge g, the greedy edge, and continue with $E_{\mathcal{T}} \cup \{E[g]\}$

Algorithms (580) Weighted Graphs February 2018 11 / 54

The Greedy Choice

The Greedy Choice

What greedy choices are there when computing an MST?

Algorithms (580) Weighted Graphs February 2018 13 / 54

The Greedy Choice

- Greed is only good sometimes
- We have to show that the choice must lead to a correct solution
- (As you have seen, much easier to prove if greed is bad)

Theorem

Let G be a connected, weighted graph. If e_m is an edge of least weight in G, then e_m is in some minimum spanning tree for G.

The general method of proving that the greedy choice is OK is:

- Suppose you have an optimal solution to the problem
- 2 Show that it is still optimal when the greedy choice is included

T is some MST for *G*

- If e_m is in T, the theorem is true
- Suppose e_m is not in T

Let $e_m = \{u, v\}$, let the path from u to v in T include the edge $\{v, x\}$, and let the weights of $\{u, v\}$ and $\{v, x\}$ be w_m and w

Now construct T' by removing $\{v, x\}$ from T and adding $\{u, v\}$

- Since T is a spanning tree, T' is a spanning tree
- Since T is an MST and $w_m \leq w$, T' is an MST
- e_m is in T'
- QED

Can we keep adding the next least weight edge?

More Greed

Our greedy choice can be made more general

Theorem

Let G = (V, E) be a connected, weighted graph. Let E_T be a subset of E that is part of an MST for G, and let P be a connected component in the graph (V, E_T) . If E_{PQ} is the set of edges $\{u, v\}$ where exactly one of $\{u, v\}$ is in P, and e_m is an edge of least weight in E_{PQ} then e_m is in a minimum spanning tree for G.

The proof is similar

- Let T be the MST that contains E_T
- If e_m is in T, the theorem is true
- Suppose e_m is not in T

Let $e_m = \{u, v\}$, let the first edge on the path from u to v in T that is in E_{PQ} be $\{x, y\}$, and let the weights of $\{u, v\}$ and $\{x, y\}$ be w_m and w

Now construct T' by removing $\{x,y\}$ from T and adding $\{u,v\}$

- Since T is a spanning tree, T' is a spanning tree
- Since T is an MST and $w_m \leq w$, T' is an MST
- e_m is in T'
- QED