UNIVERSIDAD DE CONCEPCION
FACULTAD DE CIENCIAS
FISICAS Y MATEMATICAS
DEPARTAMENTO DE INGENIERIA MATEMATICA
Complemento de Cálculo

Complemento de Cálculo

(521234)

GUIA DE EJERCICIOS Nº 1

1er semestre 2002

Complemento de Cálculo

1er semestre 2002

Índice General

1	Series de Fourier	2
2	Problemas de Valor Inicial y Fenómenos de Resonancia	4
3	Polinomios Ortogonales y Problemas de Sturm-Liouville	4
4	Resolución de EDP mediante separación de variables	5

1 Series de Fourier

Ej. 1: Obtengase los desarrollos de medio rango senoidales y cosenoidales de cada una de las funciones que siguen :

(a)
$$f(x) = \begin{cases} 1 & 0 < x \le 1 \\ 0 & 1 < x \le 3 \end{cases}$$
 (b) $f(x) = x$, si $0 < x < p$ (c) $f(x) = x^2$, si $0 < x < p$ (d) $f(x) = \cos(x)$, si $0 < x < 2\pi$ (e) $f(x) = \sin(x)$, si $0 < x < 2\pi$ (f) $f(x) = e^{-ax}$, si $0 < x < 1$ (g) $f(x) = \cos(ax)$, si $0 < x < \pi$, donde a no un entero (h) $f(x) = \sin(ax)$, si $0 < x < \pi$, donde a no un entero

Ej. 2: Elegir una extensi'on periódica de funciones f y g. Escribir la expresi'on de los coeficientes de las Series de Fourier asociadas a dichas expresiones.

$$f(x) = \begin{cases} x & 0 \le x < \pi/2 \\ \pi/4 & \pi/2 \le x < \pi \end{cases} \qquad g(x) = \begin{cases} 1 & -2 < x \le 0 \\ e^{-x} & 0 \le x < 2 \end{cases}$$

Estudiar la convergencia de las Series de Fourier de las extensiones periódicas elegidas, en el intervalo de definición f y g, respectivamente.

Ej. 3: Escribiendo todos los argumentos necesarios, analice el desarrollo en Series de Fourier (a) **SF** π -períodicas, (b) **SFS** 2π -períodicas, (c) **SFC** 2π -períodicas, para la función :

$$f(x) = \cos(\frac{x}{2}),$$
 en $[0, \pi]$

Especificamente, analice los aspectos de converegencia en R y la posibilidad de derivar término a término las series obtenidas. Observación : deje sólo expresadas las definiciones de los coeficientes que definen a cada serie.

- **Ej. 4:** Dada la función f(x) = x, $\forall x \in]-\pi,\pi[$ con $f(-\pi) = f(\pi) = 0$.
- 1.- Construir la serie de Fourier de dicha función.
- 2.- A partir de la serie de Fourier obtenida, probar que $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (tener presente la igualdad de Parseval).
- 3.- Construir a partir de la serie obtenida en 1.-, la serie de Fourier de la función $g(x) = \frac{x^2}{2}$, $\forall x \in]-\pi,\pi[$. Señale los fundamentos de la convergencia de la nueva serie obtenida y grafique la función hacia la cual converge la serie en el intervalo $]-2\pi, 2\pi[.$
 - 4.- A partir de la serie de Fourier para g(x), probar que $\sum_{1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$ y $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{13\pi^4}{720}$.
 - **Ej. 5:** Dada la función $f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{2x} & \text{si } x \geq 0 \end{cases}$, para $-\pi < x \leq \pi$. 1.- Construya su serie de Fourier y dibuje su gráfico.

 - 2.- Evalue dicha serie en x=0 y $x=\pi$, y luego calcule las sumas $\sum_{1}^{\infty} \frac{1}{n^2+4}$ y $\sum_{1}^{\infty} \frac{(-1)^n}{n^2+4}$.
 - Ej. 6: Sea la función

$$f(x) = \begin{cases} \cos(x) & \text{cuando } 0 \le x \le \pi/2\\ 0 & \text{cuando } \pi/2 \le x \le \pi \end{cases}$$

- 1.- Construir una serie C(x) en términos de cosenos 2π -periódicos que aproxime f(x). Converge C(x) en media cuadrática? puntualmente? uniformemente?
- 2.- Construir una serie S(x) pero ahora en términos de senos 2π -periódicos, y responder las preguntas de convergencia del problema anterior.

guntas de convergencia dei problema anterior.
3.- Calcular
$$\sum_{n\geq 1} \frac{(-1)^n}{4n^2-1}$$
 y $\sum_{n\geq 1} \frac{1}{16n^4-8n^2+1}$.

- **Ej.** 7: Sea f(x) = x(1-x), $0 \le x \le 1$.
- 1.- Prolongando f como una función impar en el intervalo [-1,1], calcule su desarrollo en serie de fourier y deduzca el valor de $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}.$
- 2.- Extendiendo la definición de f a todo el intervalo [-1,1] y considerandola como una función 2-periódica, calcule su desarrollo en serie de fourier y deduzca el valor de la serie para x=1.

2 Problemas de Valor Inicial y Fenómenos de Resonancia

Ej. 8: Encuentre una solución particular, y la solución general para las siguientes ecuaciones:

(a)
$$y'' - y = \sum_{n=2}^{\infty} \frac{1}{n} \cos nt$$
 (b) $y'' - y = \sum_{n=2}^{\infty} \frac{1}{n} \sin nt$ (c) $y'' + y = \sum_{n=1}^{\infty} \frac{1}{n+1} \cos 2nt$ (d) $y'' + y = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin 2nt$ (e) $y'' + 2y' + y = \sum_{n=1}^{\infty} \frac{1}{n} \sin 4nt$ (f) $y'' - 2y' + y = \sum_{n=1}^{\infty} \frac{1}{n} \cos 4nt$

Ej. 9: Sea f(t) es diferenciable por partes con período 2L, y y(t) solución de $y''(t) + w^2y(t) = f(t)$.

- 1.- Si $w^2 = 12$, qué valores de L pueden llevar a la resonancia ?
- 2.- Si $f(t) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin 3n\pi t$, qué valores de w pueden llevar a la resonancia ?
- 3.- Si $f(t) = \sum_{n=1}^{\infty} \frac{1}{n+1} \cos \frac{2n\pi t}{5} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin \frac{n\pi t}{\sqrt{3}}$, qué valores de w pueden llevar a la resonancia ? cuáles son las frecuencias de f(t).
- 4.- Suponga que se sabe que el período de f(t) está entre 8π y 9π . Qué valores de w pueden llevar a la resonancia ?
 - 5.- Suponga que $4 \le w \le 5$. Para qué períodos puede f(t) causar resonancia?

3 Polinomios Ortogonales y Problemas de Sturm-Liouville

Ej. 10: Desarrollar $f(x) = 4x^4 + 2x^2 + 1$, $-1 \le x \le 1$ en términos de una serie de polinomios de Legendre.

Ej. 11: Encontrar todos los valores y funciones propias del problema de Sturm-Liouville

$$\begin{cases} 4y'' - 4y' + (1+\lambda)y = 0; \\ y(-1) + y'(-1)0, \\ y(1) + y'(1) = 0. \end{cases}$$

Determinar un producto interno en el que las funciones propias formen un conjunto ortogonal.

4

Ej. 12: Escriba en la forma divergencia (es decir como $(r(x)y'(x))' + (q(x) + \lambda p(x))y(x) = 0$) el problema de Sturm-Liouville

$$\begin{cases} x^2y'' + 3xy' + y = \lambda y, & \text{para } 1 \le x \le e^2, \\ y(1) = y(e^2) = 0. \end{cases}$$

Determine los valores propios y la familia ortonormal respectiva asociada a este problema.

Ej. 13: Sea $\{Q_n(x)\}_{n\geq 1}$, con $Q_n(x)=\sqrt{1-x^2}P_n'(x)$, para $x\in [-1,1]$, $n=1,2,\ldots$ y donde $P_n(x)$ son los polinomios de Legendre, es decir,

$$(1-x^2)P_n''(x) - 2xP_n'(x) + n(n+1)P_n(x) = 0,$$
 para $-1 \le x \le 1.$

1.- verifique que $\{Q_n(x)\}_{n\geq 1}$ son las funciones propias del siguiente problema de Sturm-Liouville

$$(1-x^2)Q_n''(x) - 2xQ_n'(x) + (\lambda_n - \frac{1}{1-x^2})Q_n(x) = 0,$$
 para $-1 \le x \le 1$,

con $\lambda_n = n(n+1)$;

2.- deduzca que la siguiente relación de ortogonalidad :

$$\int_{-1}^{1} Q_n(x)Q_m(x)dx = \begin{cases} 0, & \text{si } n \neq m \\ \frac{2n(n+1)}{2n+1}, & \text{si } n = m \end{cases}$$

Ej. 14: Los polinomios de Tchebyshev $T_n(x)$ de segunda especie son las soluciones del problema de Sturm-Liouville $(1-x^2)y''-xy'+n^2=0$, y(-1)=y(1)=0, para n=1,2,3... Haciendo el cambio de variable $\cos(w)=x$, pruebe que $T_n(x)=\sin(nw)=\sin(n\arccos x)$, y deduzca la relación de ortogonalidad:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_m(x) T_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{\pi}{2}, & m = n. \end{cases}$$

Ej. 15: Sabiendo que y''+y=0 admite 2 soluciones linealmente indenpendientes $y_1(x)=\sin(x)$ e $y_2(x)=\cos(x)$, haga el cambio de variable $y(x)=\sqrt{\pi x/2}u(x)$ para deducir que las soluciones de la ecuación de Bessel de orden 1/2 son $J_{1/2}(x)=\sqrt{\frac{2}{\pi x}}\sin(x)$ y $J_{-1/2}(x)=\sqrt{\frac{2}{\pi x}}\cos(x)$. Utilice esta información para calcular los valores propios y funciones propias del siguiente problema de Sturm-Liouville :

$$x^{2}y'' + xy' + \lambda(x^{2} - 1/4)y = 0$$

y está acotada en $(0, R)$
 $y(R) = 0$

Deduzca la relación de ortogonalidad de las funciones propias.

4 Resolución de EDP mediante separación de variables

Ej. 16: Para u = u(x, y) y u = u(x, y, z) (cuando corresponda), y para $x, y, z \in (0, 1)$, cuáles de las ecuaciones siguientes se pueden resolver por el método de separación de variables?

$$\begin{array}{ll} \text{(a)} \ a\frac{\partial^2 u}{\partial x\partial y} + bu = 0 & \text{(b)} \ x^2\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial y^2} = 0 \\ \text{(c)} \ a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x\partial y} + c\frac{\partial u}{\partial y} = 0 & \text{(d)} \ a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + c\frac{\partial^2 u}{\partial z^2} = 0 \\ \text{(e)} \ a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x\partial y} + c\frac{\partial^2 u}{\partial y^2} = 0 \\ \text{(f)} \ a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + c\frac{\partial u}{\partial x} + d\frac{\partial u}{\partial y} = 0 \end{array}$$

Ej. 17: Utilizando el método de separación de variables, resuelva el problema del potencial $\Delta \phi = 0$ en el cilindro : $\{(r, \theta, z) \mid r \leq 1 \text{ y } 0 \leq z \leq 1\}$, con $\phi = 1$ sobre las 2 bases del cilindro y $\phi = 0$ sobre el manto.

 $\mathbf{Ej.}$ 18: La ecuación que rige el movimiento de una cuerda vibratoria de longitud ℓ está dada por

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$$

en que u=u(x,t) indica el desplazamiento de un punto de la cuerda que se encuentra en la posición x y el instante t; a^2 es una constante que depende de la naturaleza de la cuerda. Resolver esta ecuación suponiendo que los extremos de la cuerda se mantienen fijos, es decir que $u(0,t)=u(\ell,t)=0$, y bajo las condiciones iniciales :

$$u(x,0) = x(\ell - x);$$
 $\frac{\partial u}{\partial t}(x,0) = 0.$

Ej. 19: Encontrar la solución de la ecuación diferencial parcial

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = x^2 \cos t - 2 \sin t, \qquad 0 < x < \pi, \qquad t > 0$$

que satisfaga las condiciones de frontera: $u(0,t)=0, u(\pi,t)=\pi^2\sin t$ y las condiciones iniciales : $u(x,0)=\pi x-x^2$. Indicación : calcule $(\partial_t-\partial_{xx})\,x^2\sin t$.

Ej. 20: Resolver el problema de valores de contorno

$$\begin{cases} u_t = u_{xx} + \sin(x), & 0 < x < \pi, & t > 0 \\ u(0,t) = 1, & t > 0 \\ u_x(\pi,t) = 2, & t > 0 \\ u(x,0) = 1 + \sin(2x), & 0 < x < \pi, \end{cases}$$

Indicación : primero encontrar la solución estacionaria U(x).

Ej. 21: Resolver el problema de Sturm-Liouville

$$\begin{cases} y'' + \lambda y = 0 \\ y'(0) = y(L) = 0 \end{cases}$$

A partir de la familia de soluciones de este problema, escribir la solución general de los siguientes problemas de valores de contorno :

$$u_{t} = u_{xx}$$
 $u_{t}(0,t) = 0$ $u_{t}(0,t) = 0$

Ej. 22: Sea u = u(x,t) solución de la ecuación de ondas :

$$(\partial_{tt} - \partial_{xx}) u = e^{-|x|}, \qquad |x| \le 1, \quad t > 0,$$

con las condiciones iniciales $u(x,0) = \partial_t u(x,0) = 0$, y las condiciones de borde u(-1,t) = u(1,t) = 0.

- 1.- Haga el cambio de variable $u(x,t) = v(x,t) + \Phi(x)$, de modo que $(\partial_{tt} \partial_{xx}) v = 0$, y $\Phi(x)$ sea solución de la ecuación $\Phi'' = -e^{-|x|}$, con $\Phi(-1) = \Phi(1) = 0$.
- 2.- Tomando en cuenta la continuidad de Φ'' en todo \mathbf{R} , verifique que Φ' y Φ siguen siendo continuas en cero, para deducir que $\Phi(x) = e^{-1} e^{-|x|} + 1 |x|$.
- 3.- Calcule u = u(x,t) en términos de una serie de fourier, y determine los coeficientes de la serie a partir de las condiciones iniciales. No es necesario que calcule las integrales correspondientes.
- **Ej. 23:** Considere las esferas concéntricas S_1 y S_2 de radio respectivamente R_1 y R_2 respectivamente $(0 < R_1 < R_2)$. Sea u el potencial en S_1 , v el potencial entre S_1 y S_2 , y u^* el potencial fuera de S_2 con valores de contorno sobre cada una de las esferas :

$$\begin{cases} \Delta u = 0, & r < R_1 \\ \Delta v = 0, & R_1 < r < R_2 \\ \Delta u^* = 0, & R_2 < r \\ u(R_1, \varphi) = v(R_1, \varphi) = f(\varphi), & 0 \le \varphi < 2\pi \\ v(R_2, \varphi) = u^*(R_2, \varphi) = g(\varphi), & 0 \le \varphi < 2\pi \end{cases}$$

Determine el valor de los potenciales u, v, y u^* , en términos de f y g usando el método de separación de variables y los polinomios de Legendre.

Ej. 24: El problema de la cadena vibrante. Una cadena de largo L y de masa $m = \rho L$ (donde ρ es la densidad de masa / unidad de longitud), cuelga verticalmente fija de uno de sus

extremos. Al vibrar libremente, la posición horizontal u(x,t), satisface la ecuación con derivadas parciales :

$$\frac{\partial}{x} \left(\rho g(L - x) \frac{\partial u}{\partial x} \right) = \rho \frac{\partial^2 u}{\partial t^2}$$

Calcule u(x,t) en términos de la función de Bessel primera especie y de orden 0, si la velocidad inicial es nula y la posición inicial está dada u(x,0)=f(x). Indicación : Pruebe que la ecuación $(L-x)X''(x)-X'(x)+\lambda X(x)=0$ es equivalente a la ecuación de Bessel de orden 0 al hacer el cambio de variable X=X(x) por X=X(w), con $L-x=\frac{w^2}{4\lambda}$.

Ej. 25: Considere la siguiente ecuación de ondas con condiciones de borde y condiciones iniciales :

$$\begin{cases} t^2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(x(1-x) \frac{\partial u}{\partial x} \right) = 0, & 0 \le x \le 1, \quad t > 1, \\ u(x,t) \text{ acotada para todo } (x,t) \in [0,1] \times [1,t_0], t_0 > 1 \text{ fijo } \\ u(x,1) = 0, & \partial_t u(x,1) = x^2, & 0 \le x \le 1. \end{cases}$$

- 1.- Utilizando el método de separación de variables, escriba u(x,t) = F(x)G(t) e identifique una E.D.O para F = F(x) y otra para G = G(t).
- 2.- Haciendo el cambio de variable $e^w = t$, verifique que la ecuación en t se reduce a la ecuación lineal de segundo orden con coeficientes constantes $G''(w) G'(w) + \lambda G(w) = 0$ y G(0) = 0. Resuelva esta ecuación, para todos los posibles valores reales de λ .
- 3.- Identifique la ecuación de Sturm-Liouville en x, y haciendo el cambio de variable z = 2x 1, determine F(x) en términos de los polinomios de Legendre $P_n(z)$. Deduza una expresión de u(x,t) en términos de una serie ortogonal.
- 4.- Utilice las condiciones iniciales para calcular todos los coeficientes de la serie, y determine u(x,t).
- **Ej. 26:** Utilizando el método de separación de variables, resuelva la siguiente ecuación del movimiento de una cuerda cuya densidad lineal es proporcional a $(1+x)^{-2}$:

$$\begin{cases} \frac{1}{(1+x)^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, & 0 \le x \le 1, \quad t > 0, \\ u(x,0) = f(x), & \partial_t u(x,0) = 0, & 0 \le x \le 1, \\ u(0,t) = u(1,t) = 0, & t > 0. \end{cases}$$

Ej. 27: Considere el problema de la densidad de neutrones N(r,t) en un reactor esférico de radio R, dado por la ecuación del calor con una fuente interna :

$$\begin{cases} \frac{\partial N}{\partial t^2} = D\left(\frac{\partial^2 N}{\partial r^2} + \frac{2}{r}\frac{\partial N}{\partial r}\right) + \gamma N, & 0 \leq r \leq R, \quad t > 0, \\ N(r,t) \text{ acotada}, \\ N(R,t) = 0, & t > 0, \\ N(r,0) = f(r), \forall r \text{ e independiente de los angulos } \theta \neq \phi. \end{cases}$$

- 1.- Utilizando el método de separación de variables, escriba N(r,t) = F(r)G(t) e identifique una E.D.O para F = F(r) y otra para G = G(t).
- 2.- Haciendo los cambios de variable $s=r\sqrt{\lambda}$ y $F=s^{-1/2}U$, verifique que la ecuación en r se reduce a una ecuación de Bessel de orden 1/2. Escriba la solución N(r,t) como una serie en términos de las funciones ortogonales de Bessel de orden 1/2 y de primera especie : $J_{1/2}(x)=\sqrt{\frac{2}{\pi x}}\sin(x)$.
 - Ej. 28: Considere la siguiente una ecuación del calor :

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{c^2}{x} \frac{\partial^2 u}{\partial x^2} = 0, & 0 \le x \le L, \quad t > 0, \\ u(0,t) = 0, & u(L,t) = 0, & \text{para } t > 0, \\ u(x,0) = f(x), & \text{para } 0 \le x \le L, \end{cases}$$

donde c y L son constantes, u = u(x, t) es la solución buscada, y f = f(x) es una función dada.

- 1.- Utilizando el método de separación de variables, escriba u(x,t) = F(x)G(t) de modo que F(x) sea solución de la ecuación $F''(x) + \lambda^2 x F(x) = 0$.
- 2.- Haciendo el cambio de variable $F(x) = \sqrt{x}U(x)$ y luego haciendo $z = \frac{2}{3}\lambda x^{3/2}$, determine F en términos de las funciones de Bessel de orden un tercio $J_{1/3}(z)$, y de orden menos un tercio $J_{-1/3}(z)$.
- 3.- Suponga que $J_{1/3}(0)=0$, y que $\lim_{x\to 0^+}\lambda^{1/3}\sqrt{x}J_{-1/3}(\frac{2}{3}\lambda x^{3/2})=1.065084$, para todo $\lambda\neq 0$ (no lo demuestre). Luego deduzca que F(x) se escribe sólo en términos de la función de Bessel de orden 1/3.

Suponga la siguiente relación de ortogonalidad (no la demuestre):

$$\int_0^L x J_{1/3}(\frac{\beta_n x}{L}) J_{1/3}(\frac{\beta_m x}{L}) dx = \begin{cases} 0 & \text{si } m \neq n \\ \frac{L^2}{2} J_{4/3}^2(\beta_n) & \text{si } m = n, \end{cases}$$

donde $J_{4/3}(z)$ es la función de Bessel de orden 4/3 y $\beta_1 = 0$, $\beta_2 = 2.902586$, $\beta_3 = 6.03274$, ..., son las raíces de la función de Bessel de orden 1/3.

4.- Utilice esta relación de ortogonalidad para calcular los coeficientes de la serie, y determine u(x,t).