Description of InputSetup

Function

INPUTSETUP is used to set up input folders and files for HIPIMS

Calling format

InputSetUp(caseFolder,Z,R) set up input files of a case. caseFolder is the location of the folder storing input and output files. Z is a matrix storing elevation value of DEM file. R is a 3*2 matrix of DEM spatial-reference information, including the coordinate of the original points of the raster and the size of the grid. Z and R could be created separately (makerefmat) or read from existing Arc ascii files via arcgridread. All other parameters of HiPIMS are default values if the input parameters are as listed above.

InputSetUp (caseFolder, Z, R, Name, Value) caseFolder is the location of the folder storing input and output files. Z is a matrix of elevation value. R is a spatial-reference matrix of DEM. Name-Value Pair Arguments are listed as Table 1.

Table 1 Name-Value pair arguments

Parameter Type	Name (Case sensitive)	Default Alternative Values	Value Format	Note
Decision Flags	h_Eta	'h' 'eta'	string	simulation with water depth (h) or water elevation (eta)
	WriteAllFiles	false true	logical	Whether to generate all the input files
Gauge coordinates	GaugeCoor	[]	2-column numeric array	Coordinates of the gauge points inside domain
Boundary conditions	IO_BoundFrame	[]	4*n numeric array	Extent of the input-output boundaries. <i>n</i> is the number of IO boundaries
	BoundType	'open' 'rigid', 'hgiven', 'Qgiven', 'hQgiven'	string or Cell of multiple strings	Type of boundaries. 'hgiven' means water depth /elevation in the bound is pre-defined; 'Qgiven' means the discharge/water velocity in the bound is pre- defined; 'hQgiven' means both depth and discharge in the bound is predefined.
	h_BC_Source	{[0 0]}	Cell of numeric 2-column arrays	Data of pre-defined water depth/elevation. The number of 2-column arrays should be the same with the number of boundaries that h/eta has been given. The first column of the array is time(s) and the second column is the water depth/elevation (m).

	hU_BC_Source	{[0 0 0]}	Cell of 2- column /3-column numeric arrays	Data of pre-defined water discharge/ water velocity. The number of numeric arrays should be the same with the number of boundaries that discharge/velocity has been given. The first column of the array is time(s) and if the array is 2-col, the second column is the discharge (m³/s) or if the array is 3-col, then the second and third column are water velocity (m/s) in x and y direction respectively.
	BoundCode (not recommended)	[2 0 0; 2 1 0]	2*3n numeric array	Not recommended unless the alternative bound types cannot fulfil your requirements. It conveys more specific information of BoundType with numeric arrays.
Initial conditions	initial_hE	0	scalar or numeric array with the same size of Z	Initial water depth/elevation. If it is a scalar, then all the grids in the domain have the same initial h/eta value.
	initial_hU	{0 0}	scalar (0) or cell of two numeric arrays with the same size of Z	Initial water velocity. Two components of the cell represent initial velocity in x and y direction respectively. If it is a scalar, then all the grids in the domain have the same initial water velocity value in both x and y direction.
	initial_hE_hU_pre (not recommended)	{0, {0 0}, 0}	cell of three numeric arrays	It is a combination of all initial conditions, including initial h, hU and precipitation. The last one (precipitation) is always 0 at current version.
Rainfall	RainMask	0	scalar or numeric array with the same size of Z	It is the serial number of rainfall source starting from 0. Grids with the same serial number will have the same rainfall from the same source.
	RainSource	[0 0; 3600 0]	numeric array or cell of 2- column numeric arrays	To give rainfall value for different region of the domain. If it is a numeric array, the first column is time(s) and the second and right forward columns are the rainfall rate(m/s), and the output rainfall source file will be a single file named 'precipitation_source_all.dat'. The

			scalar or numeric	and rainfall rate (m/s, 2 nd column) of one single rainfall source. Multiple files of rainfall source will be generated and named as 'precipitation_source_n.dat'. The number of 2-column numeric arrays should be in accordance with the number of rainfall source. It is manning coefficient. If it is a
Hydro Parameter Values	manning	0.035	array with the same size of Z	scalar, then all the grids in the domain have the same manning value.
	sewer_sink	0	scalar or numeric array with the same size of Z	It is sewer sink rate (m/s). If it is a scalar, then all the grids in the domain have the same sewer sink value.
	cumul_depth	0	scalar or numeric array with the same size of Z	It is one of the infiltration parameters. If it is a scalar, then all the grids in the domain have the same cumulative depth value.
	hydraulic_conductivity	0	scalar or numeric array with the same size of Z	It is one of the infiltration parameters. If it is a scalar, then all the grids in the domain have the same hydraulic conductivity value.
	capillary_head	0	scalar or numeric array with the same size of Z	It is one of the infiltration parameters. If it is a scalar, then all the grids in the domain have the same capillary head value.
	water_content_diff	0	scalar or numeric array with the same size of Z	It is one of the infiltration parameters. If it is a scalar, then all the grids in the domain have the same water content diff value.
	hydro_params_Value (not recommended)	{0.035, 0, 0, 0, 0, 0, 0}	scalar or numeric array with the same	It is a combination of all the six hydro parameter parameters.

Example

```
%% Example to create input files based on a peaks DEM
%% creat a DEM with Z and R
Z = peaks(500); % elevation values of DEM
gridL = 1; % length of each square grid
x11 = 0; % coordinates of the center of the upper left point
y11 = (size(Z,1)-1)*gridL;
R = makerefmat(x11,y11,gridL,-gridL); %spatial reference of DEM
mapshow(Z,R,'DisplayType','surface'); colorbar; box on;
title('DEM'); xlabel('meter towards east'); ylabel('meter towards north');
```



```
%% define boundary condition
% outline boundary
outlineBoundType = 'open';
% coordinates of the end row/col of Z
x end = x11+(size(Z,2)-1)*gridL;
y_{end} = y11+(size(Z,1)-1)*(-gridL);
% input-output boundary 1
IO Bound1 Frame = [x11-2*gridL 2*y11/5, x11+2*gridL 3*y11/5];
IO_Bound1_Type = 'Qgiven';
dischage = [0 30; 3600 300; 7200 30; 10800 30];
% input-output boundary 2
IO_Bound2_Frame = [x_end-2*gridL 2*y11/5, x end+2*gridL 3*y11/5];
IO_Bound2_Type = 'hgiven';
depth = [0 1; 3600 3; 7200 1; 10800 1];
IO BoundFrame = [IO Bound1 Frame; IO Bound2 Frame];
boundType = {outlineBoundType,IO Bound1 Type,IO Bound2 Type};
h source = depth;
Q source = dischage;
% show the IO bound frames
mapshow(Z,R,'DisplayType','surface');box on; axis off
rectangle('Position',[x11-2*gridL 2*y11/5 gridL*4 y11/5],'EdgeColor','r')
rectangle('Position',[x end-2*gridL 2*y11/5 gridL*4 y11/5],'EdgeColor','r')
```

