Problem 1 (11.34). Let μ , ν , and λ be σ -finite. Show that the Radon-Nikodym derivative $[d\nu/d\mu]$ has the following properties:

a. If $\nu \ll \mu$ and f is nonnegative measurable function, then

$$\int f \, \mathrm{d}\nu = \int f \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right] \, \mathrm{d}\mu.$$

Proof. Let $v \ll u$ and suppose f is a nonnegative measurable function over a set E. We can break this down into two cases: (i) f is a simple function or (ii) f is a non-simple, measurable function. If f is a simple function, then

$$f = \sum_{i=1}^{n} a_i \chi_{E_i}$$

for $a_i \in \mathbb{R}$. Then, using properties of simple functions and integration, we have the following:

$$\int_{E} f \, d\nu = \sum_{i=1}^{n} a_{i} \nu(E_{i})$$

$$= \sum_{i=1}^{n} a_{i} \left(\int_{E_{i}} f \, d\mu \right)$$

$$= \sum_{i=1}^{n} a_{i} \left(\int_{E_{i}} \left[\frac{d\nu}{d\mu} \right] \, d\mu \right)$$

$$= \int_{E} \sum_{i=1}^{n} a_{i} \chi_{E_{i}} \left[\frac{d\nu}{d\mu} \right] \, d\mu$$

$$= \int_{E} f \left[\frac{d\nu}{d\mu} \right] \, d\mu.$$

Turning to case (ii), suppose that f is a non-simple measurable function. Then there exists a sequence of increasing simple functions $\{\phi_n\}$ such that $\phi_n \to f$ pointwise. Using the Monotone Convergence Theorem, we have

$$\int_{E} f \, d\nu = \lim_{n \to \infty} \int_{E} \phi_n \, d\nu$$

$$= \lim_{n \to \infty} \int_{E} \phi_n \left[\frac{d\nu}{d\mu} \right] \, d\mu$$

$$= \int_{E} f \left[\frac{d\nu}{d\mu} \right] \, d\mu.$$

Having exhausted all cases, this completes the proof.

b. Not assigned.

c. If $\nu \ll \mu \ll \lambda$, then

$$\left[\frac{\mathrm{d}\nu}{\mathrm{d}\lambda}\right] = \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right] \left[\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\right].$$

Proof. Let $\nu \ll \mu \ll \lambda$, and let E any measurable set. Then, by definition,

$$\nu(E) = \int_{E} \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right] \, \mathrm{d}\mu.$$

Because $\mu \ll \lambda$, we also have that (from part (a))

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} f \left[\frac{\mathrm{d}\mu}{\mathrm{d}\lambda} \right] \, \mathrm{d}\lambda.$$

Combining these two, we have that

$$\nu(E) = \int_{E} \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right] \, \mathrm{d}\mu.$$
$$= \int_{E} \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu} \right] \left[\frac{\mathrm{d}\mu}{\mathrm{d}\lambda} \right] \, \mathrm{d}\lambda$$

and so it follows that

$$\left[\frac{\mathrm{d}\nu}{\mathrm{d}\lambda}\right] = \left[\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right] \left[\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\right]$$

which completes the proof.

Problem 2 (11.45). For $g \in L^q$, let F be the linear functional on L^p defined by

$$F(f) = \int f g \, \mathrm{d}\mu.$$

Show that $||F|| = ||g||_q$.

Proof. Let $g \in L^q$, and let F be the linear functional on L^p be defined by

$$F(f) = \int fg \,\mathrm{d}\mu.$$

From the Hölder inequality, we have

$$|F(f)| = \left| \int fg \, \mathrm{d}\mu \right|$$

$$\leq \int |fg| \, \mathrm{d}\mu$$

$$\leq ||f||_p \cdot ||g||_q.$$

So dividing over by $||f||_p$, we have

$$\frac{|F(f)|}{\|f\|_p} \le \|g\|_q$$

which, by taking the supremum of the left-hand side over all $f \in L^p$, implies that

$$\|F\| \le \|g\|_q \,.$$

To show the other inequality, for $p \in (1, \infty)$, we have three cases: (i) $p \in (1, \infty)$ and $q \in (1, \infty)$; (ii) $p = \infty$ and q = 1; or (iii) p = 1 and $q = \infty$.

First, suppose $p, q \in (1, \infty)$. Define the function f by

$$f = |g|^{q/p} \cdot \operatorname{sgn} g.$$

Then $|f|^p = |f|^q = fg$ meaning $f \in L^p$. This implies

$$||f||_p = ||g||_p^{p/q}$$

and so

$$|F(f)| = \left| \int fg \, \mathrm{d}\mu \right|$$

$$= \int |g|^q \, \mathrm{d}\mu$$

$$= ||g||_q^q$$

$$= ||g||_q ||f||_p$$

and by definition of the norm of the linear functional,

$$||F|| \ge ||g||_q.$$

Suppose $p=\infty$ and q=1 meaning $\|g\|_1$. Without loss of generality, assume $\|g\|_1$. Let $f=\operatorname{sgn} g$. Then $f\in L^\infty$ and so $\|f\|_\infty=1$ from how we defined f. So

$$|F(f)| = \left| \int fg \, \mathrm{d}\mu \right|$$

$$= \int |g| \, \mathrm{d}\mu$$

$$= ||g||_1$$

$$= ||g||_1 ||f||_{\infty}$$

and by a similar argument as in case (i),

$$||F|| \ge ||g||_q.$$

Finally, suppose p=1 but $q=\infty$, and let $\varepsilon>0$ be chosen. Define the set $E=\{x:g(x)>\|g\|_{\infty}-\varepsilon\}$ and define $f=\chi_E$. This means $f\in L^1$ and

$$||f||_1 = \int |f| \, \mathrm{d}\mu = \mu(E).$$

Also,

$$||F(f)|| = \left| \int fg \, d\mu \right|$$

$$= \left| \int_{E} g \, d\mu \right|$$

$$\leq (||g||_{\infty} - \varepsilon) \, ||f||_{1}$$

and by moving $||f||_1$ to the other side, we have that

$$||F(f)|| \ge ||g||_1$$
.

Therefore, having exhausted all possible cases, this completes the proof.