ALU HW5 (Bonus): Truncated Multipliers

Outlines

- truncated unsigned n x n multiplier (1 ulp=2ⁿ⁻¹)
 with n=8 and n=16, and output n-bit most
 significant half part
 - Verilog unsigned operator * (operator)
 ✓ true output results
 - ppb row addition without any truncation (row)
 - constant-correction truncation with accumulation of partial product rows (trunc_const_row)
 - unsigned array multiplier without truncation (array)
 - variable-correction truncated array multiplier (trunc_var_array)

Truncated Multipliers

- Design truncated multipliers using two different correction methods
 - constant correction
 - variable correction
- two implementations
 - constant-correction with row-addition (trunc_const_row)
 ✓ constant correction for CSA partial product reduction
 - variable-correction with array (trunc_var_array)
 - √ variable correction for array multiplier

Constant Correction with Row-Addition (trunc_const_row)

accumulation of all rows, including the constant

- r = n-k least significant columns are eliminated, a correction constant is added, and the product is truncated to n bits
- k=n-r is the number of reserved columns for PP compression 118

Variable Correction with Row-Addition (trunc_var_row)

 correction variables and constant are fed into the boundary cells of the array multiplier

 $a_{n-k-1}b_0$

 $a_{n-1}b_0 \ a_{n-2}b_0 \ a_{n-k}b_0$

 $a_{n-1}b_1a_{n-2}b_1 - \cdots - a_{n-k-1}b_1$

Variable Correction

* compensate for rounding of product

$$E_{rnd_avg} = -\sum_{i=r}^{r+k-1} 2^{i-1} = -(2^k - 1) \cdot 2^{r-1}$$

suitable for array multiplier

Variable Correction with Array (trunc var array)

M. J. Schule, J. E. Stine, and J. G. Jansen, "Reduced power dissipation through truncated multiplication," in IEEE Alessandro Volta Memorial International Workshop on Power Design, pp. 61-69, Mar. 1999.

Truncated Array Multipliers (variable-correction)

MFA (modified FA): AND+FA

RFA (reduced FA): FA producing carry out only

MHA (modified HA): AND+HA

Accuracy (n, k, r)

- required k for max absolution error < 1ulp = 2ⁿ-1
- e.g., for n=8, k=3 (constant) or 2 (variable)
- e.g. for n=16, k=4 (constant) or 3 (variable)

k	Constant Correction	Variable Correction						
0	n = 1	1 <= n <= 3						
1	2 <= n <= 3	4 <= n <= 7						
2	4 <= n <= 6	8 <= n <= 14						
3	7 <= n <= 11	15 <= n <= 27						
4	12 <= n <= 20	28 <= n <= 52						
5	21 <= n <= 37	53 <= n <= 101						
6	38 <= n <= 70	102 <= n <= 198						

$$E_{total} = -(2^k + r - 2) \cdot 2^r - 1$$

$$E_{tot \max} = -(2^k + r - 2) \cdot 2^r - 1$$

Summarized Comparison Table

one table for each of 8x8 and 16x16

signed mxn		Operator (signed)		row		trunc_const_row		array			trunc_var_array					
		area	mid	delay	area	mid	delay	area	mid	delay	area	mid	delay	area	mid	delay
area (um2)	CL(total)															
time (ns)	delay															
power (uW)	dynamic															
	leakage															
	total															