# NUMBER THEORY AMIN WITNO



# **Number Theory**

Outlines and Problem Sets Amin Witno <www.witno.com>

#### **Preface**

These notes are mere outlines for the course Math 313 given at Philadelphia University in the Fall 2005 semester with 33 students (and a half) for whom these have been prepared.

### Chapter 1 **Divisibility**

The Integers, Greatest Common Divisors, The Euclidean Algorithm, Linear Equation Theorem. Project 1: Extended Euclidean Algorithm

#### Chapter 2 Prime Numbers

The Infinitude of Primes, The Fundamental Theorem of Arithmetic, Prime Number Conjectures, Primes in Arithmetic Progressions, The Prime Number Theorem. Project 2: Fermat Factorization

#### Chapter 3 Congruences

Modular Arithmetic, Linear Congruence Theorem, Modular Inverses, Chinese Remainder Theorem, Wilson's Theorem. Project 3: Divisibility Tests

#### Chapter 4 Modular Exponentiation

Successive Squaring Algorithm, Fermat's Little Theorem, Euler Phi-Function, Euler's Theorem, Modular Root Extraction. Project 4: The RSA Cryptosystem

#### Chapter 5 **Primitive Roots**

Orders, Primitive Roots Modulo Primes, Primitive Root Theorem, Discrete Logarithms. Project 5: Secret Key Exchange

#### Chapter 6 Quadratic Residues

Legendre Symbol, The Law of Quadratic Reciprocity, Jacobi Symbol, Modular Square Roots. Project 6: Electronic Coin Tossing

#### Appendix Primes < 4,000; Hints and Answers

#### References

- 1. David M. Burton, Elementary Number Theory, 6<sup>th</sup> edition 2007, McGraw Hill
- 2. Joseph H. Silverman, A Friendly Introduction to Number Theory, 3<sup>rd</sup> edition 2006, Prentice Hall
- 3. Kenneth H. Rosen, Elementary Number Theory and Its Applications, 5<sup>th</sup> edition 2005, Addison Wesley
- 4. Niven, Zuckerman, and Montgomery, An Introduction to the Theory of Numbers, 5<sup>th</sup> edition 1991, Wiley

### Copyrights

©2006 Amin Witno Last Edited: 26–2–2006

# **Divisibility**

The natural numbers 1, 2, 3, ... together with their negatives and zero are called the integers. Number Theory is the study of integers. Every number represented throughout these notes will be understood an integer unless otherwise stated.

*Definition*: The number d divides m or m is divisible by d if the rational number m/d is an integer. The number d is then called a divisor of m, while m a multiple of d, and this relation can be written  $d \mid m$ , or  $d \nmid m$  if it is not true. For example  $3 \mid 18, 5 \nmid 12$ , and 2 divides all even numbers.

- **1.1 Proposition**: Properties of Divisibility
  - 1. The number 1 divides all integers.
  - 2.  $d \mid 0$  and  $d \mid d$  for any integer  $d \neq 0$ .
  - 3. If  $d \mid m$  and  $m \mid n$  then  $d \mid n$ .
  - 4. If  $d \mid m$  and  $d \mid n$  then  $d \mid am + bn$  for any integers a and b.

*Definition*: The **greatest common divisor** of two integers m and n is the largest integer which divides both. This number is denoted by gcd(m, n). For example gcd(18, 24) = 6 because 6 is the largest integer with the property  $6 \mid 18$  and  $6 \mid 24$ .

Example: Find gcd(36, 48).

*Definition*: For every real number x, the notation [x] denotes the greatest integer  $\le x$ . For example [3.14] = 3 and [2] = 2. Now with d > 0 define the **modulo operation** by  $m \mod d = m - \lfloor m/d \rfloor d$ . For example 73 mod 4 = 1. This quantity is also called the **remainder** upon dividing m by d and it lies in the range  $0 \le m \mod d \le d - 1$ .

Example: Compute 1234 mod 5, 24 mod 3, 7 mod 11.

**1.2** The Euclidean Algorithm:  $gcd(m, n) = gcd(n, m \mod n)$ 

Example: Use Euclidean Algorithm to compute gcd(12345, 67890).

**1.3 Theorem**: gcd(m, n) = am + bn for some integers a and b.

Example: Find a and b such that gcd(12345, 67890) = 12345 a + 67890 b.

- **1.4 Euclid's Lemma**: If  $d \mid mn$  and gcd(d, m) = 1 then  $d \mid n$ .
- **1.5 Linear Equation Theorem**: The linear equation mx + ny = c has a solution if and only if  $d = \gcd(m, n) \mid c$  in which case all its solutions are given by

$$(x = x_0 - k \, n/d, y = y_0 + k \, m/d)$$

for any particular solution  $(x_0, y_0)$  and any integer k.

*Example*: What are the solutions of these equations?

- 1. 17 x + 18 y = 1
- 2. 12 x + 18 y = 1
- 3. 12 x + 18 y = 6
- 4. 12 x + 18 y = 30
- **1.6 Corollary**: gcd(m, n) = 1 if and only if mx + ny = 1 has a solution.
- **1.7 Lemma**: Let S be the set of all integral linear combinations of m and n. Then
  - 1. S is equal to the set of all multiples of gcd(m, n).
  - 2. gcd(m, n) is the smallest positive element of *S*.
  - 3. gcd(m, n) = 1 if and only if S is the set of all integers.
- **1.8 Proposition**: Properties of Greatest Common Divisors
  - 1. If  $d \mid m$  and  $d \mid n$  then  $d \mid \gcd(m, n)$ .
  - 2. If k > 0 then gcd(km, kn) = k gcd(m, n).
  - 3. If gcd(m, n) = d then gcd(m/d, n/d) = 1.
  - 4. If gcd(a, m) = 1 and gcd(a, n) = 1 then gcd(a, mn) = 1.
  - 5. If  $m \mid a$  and  $n \mid a$  and gcd(m, n) = 1 then  $mn \mid a$ .

- 1. Does 3 divide 250313?
- 2. The time is now 11 o'clock in the morning. What will it be 100 hours later?
- 3. Find all solutions of gcd(n, 12) = 1 in the range  $1 \le n \le 12$ .
- 4. Compute gcd(12345, 54321).
- 5. Find a solution of 34 x + 55 y = 1.
- 6. Find all the solutions of 25 x + 65 y = 270.
- 7. I made two calls today using my MobileCom account, one call to another MobileCom line for 6 piasters per minute and another call to a FastLink number for 16 piasters per minute. The total charge was 90 piasters. For how long did I talk in each call?
- 8. Investigate true or false.
  - a) If  $m \mid n$  then  $m \le n$ .
  - b) If  $m \mid n$  and  $n \mid m$  then m = n.
  - c) If  $c \mid m$  and  $d \mid n$  then  $cd \mid mn$ .
  - d) If  $d \mid mn$  then either  $d \mid m$  or  $d \mid n$ .
  - e) If  $dn \mid mn$  then  $d \mid m$ .
- 9. Investigate true or false.
  - a) gcd(m, n) > 0
  - b) gcd(m, n) = gcd(m n, n)
  - c) gcd(n, n + 1) = 1
  - d) gcd(n, n + 2) = 2
- 10. Prove that if  $d \mid \gcd(m, n)$  then  $\gcd(m/d, n/d) = \gcd(m, n)/d$ .
- 11. Prove that  $n^2 + n$  is even.
- 12. Prove that  $n^2 + 2$  is not divisible by 4.
- 13. Prove that  $n^2 1$  is a multiple of 8 if n is odd.
- 14. Prove that  $6 \mid n^3 n$ .
- 15. Prove that  $24 \mid n^3 n$  if n is odd.
- 16. Prove that  $30 | n^5 n$ .

#### **Prime Numbers**

**Definition**: An integer p > 1 with no positive divisors except 1 and itself is called a **prime** number. An integer n > 1 which is not a prime number is called **composite**. For example 13 and 17 are primes, but 21 is composite because  $3 \mid 21$ . Throughout these notes we shall designate p to denote a prime number.

- **2.1 Proposition**: Properties of Primes
  - 1. Every integer greater than 1 has a prime divisor.
  - 2. p is a prime if and only if it has no prime divisor  $\leq \sqrt{p}$ .
  - 3.  $gcd(p, n) = p \text{ if } p \mid n$ , otherwise gcd(p, n) = 1.
  - 4. If  $p \mid mn$  then either  $p \mid m$  or  $p \mid n$ .
- **2.2 Theorem**: There are infinitely many prime numbers.
- **2.3 The Fundamental Theorem of Arithmetic**: Every integer greater than 1 is a product of prime numbers in a unique way up to reordering.
- **2.4 Corollary**: Suppose  $m = \prod p_i^{m_i}$ ,  $n = \prod p_i^{n_i}$  where the primes in each product are distinct and  $m_i$ ,  $n_i \ge 0$ . Then  $\gcd(m, n) = \prod p_i^{e_i}$  where  $e_i = \min\{m_i, n_i\}$ .

*Example*: Find  $gcd(2^4 \cdot 5^2 \cdot 7 \cdot 11^3, 2^7 \cdot 3^2 \cdot 5 \cdot 11^3)$ .

- **2.5 Conjectures**: Unsolved problems concerning prime numbers.
  - 1. There are infinitely many primes in the sequence  $\{n^2 + 1\}$ .
  - 2. Twin Primes: There are infinitely many primes in the sequence  $\{p+2\}$ .
  - 3. Mersenne Primes: There are infinitely many primes in the sequence  $\{2^p 1\}$ .
  - 4. Fermat Primes: Only finitely many primes are in the sequence  $\{2^{2^n} + 1\}$ .
  - 5. Goldbach's Conjecture: Every even number > 4 is a sum of two primes.
- **2.6 Dirichlet's Theorem on Primes in Arithmetic Progressions**: There are infinitely many primes in the sequence  $\{an + b\}$  if and only if gcd(a, b) = 1. Proof for a = 4 and b = 3.
- **2.7 The Prime Number Theorem**: Let  $\pi(x)$  denote the number of primes  $\leq x$ . Then

$$\lim_{x \to \infty} \frac{\pi(x)}{x / \log x} = 1.$$

Even more accurately,  $\pi(x)$  can be estimated by  $x / (\log x - 1)$  for large values of x. No Proof.

- 1. Factor the number 250313 into primes.
- 2. Find all the divisors of  $300 = 2^2 \cdot 3 \cdot 5^2$ .
- 3. How many positive integers divide the number  $n = 2^4 \cdot 3^2 \cdot 5 \cdot 7^3$ ?
- 4. Find all pairs of twin primes less than 100.

- 5. Find all primes in the form  $n^2 + 1$  less than 100.
- 6. Write the number 2006 as a sum of two primes in five different ways.
- 7. Find five Mersenne primes.
- 8. Find five Fermat primes.
- 9. Estimate the number of primes which are less than one million.
- 10. Estimate how many prime numbers among the ten-digit integers.
- 11. Investigate true or false.
  - a)  $n^2 + n + 41$  is prime for all n > 0.
  - b)  $n^2 81n + 1681$  is prime for all n > 0.
  - c) If  $p \mid n^2$  then  $p \mid n$ .
  - d) If p divides abc then p divides a or b or c.
- 12. The **least common multiple** of two integers is the smallest positive integer which is divisible by both. For example lcm(4, 6) = 12.
  - a) Use prime factorization to find a formula for lcm(m, n).
  - b) Find a relation between gcd(m, n) and lcm(m, n).
  - c) Illustrate your formula using m = 600 and n = 630.
- 13. Prove that if  $d^2 \mid m^2$  then  $d \mid m$ .
- 14. Prove that  $gcd(m^2, n^2) = gcd(m, n)^2$ .
- 15. Find all prime triplets: p, p + 2, p + 4, all of which are primes.
- 16. Prove that there are infinitely many primes in the sequence  $\{6n + 5\}$ .

#### Congruences

*Definition*: Two integers a and b are **congruent** modulo n > 0 if  $n \mid a - b$ , in which case we write  $a \equiv b \pmod{n}$ . Equivalently  $a \equiv b \pmod{n}$  can be defined as  $a \pmod{n} = b \pmod{n}$  and in particular  $a \equiv a \pmod{n}$  (mod n). For example  $13 \equiv 1 \equiv 4 \pmod{3}$  and all even numbers  $n \equiv 0 \pmod{2}$ . Note that congruence is an equivalence relation.

- **3.1 Proposition**: Properties of Congruences
  - 1. If  $a \equiv b \pmod{n}$  and  $c \equiv d \pmod{n}$  then  $a + c \equiv b + d \pmod{n}$ .
  - 2. If  $a \equiv b \pmod{n}$  and  $c \equiv d \pmod{n}$  then  $ac \equiv bd \pmod{n}$ .
  - 3. If  $a \equiv b \pmod{n}$  then  $f(a) \equiv f(b) \pmod{n}$  for any integral polynomial f(x).
  - 4. If  $ma \equiv mb \pmod{n}$  and gcd(m, n) = 1 then  $a \equiv b \pmod{n}$ .
  - 5. If  $ma \equiv mb \pmod{mn}$  then  $a \equiv b \pmod{n}$ .

*Definition*: Congruence modulo n is an equivalence relation over the integers with n **congruence classes** which are the classes of integers with remainders 0, 1, 2, ..., n-1 mod n. A set of n numbers form a **complete residue system** modulo n if each comes from a different congruence class modulo n. For example a complete residue system modulo n can be  $\{0, 1, 2, 3, 4, 5, 6\}$ ,  $\{1, 2, 3, 4, 5, 6, 7\}$ , or  $\{1, 2, 3, 11, 75, -1, 0\}$  etc.

*Example*: Find a complete residue system modulo 7 with only even numbers.

**3.2 Linear Congruence Theorem**: The congruence  $mx \equiv c \pmod{n}$  has a solution if and only if  $d = \gcd(m, n) \mid c$  in which case it has exactly d solutions modulo n:

$$x \equiv x_0 + k \, n/d \, (\text{mod } n)$$

for k = 0, 1, 2, ..., d-1 and for any particular solution  $x_0$ .

Example: Count how many solutions each congruence has, then find them.

- 1.  $30x \equiv 5 \pmod{40}$
- 2.  $27x \equiv 1 \pmod{209}$
- 3.  $2x \equiv 3 \pmod{1023}$
- 4.  $32x \equiv 7 \pmod{49}$

*Definition*: a and b are **inverses** of each other modulo n if  $ab \equiv 1 \pmod{n}$ .

**3.3 Modular Inverse Theorem**: The number a has an inverse modulo n if and only if gcd(a, n) = 1, in which case its inverse  $b = a^{-1}$  is unique modulo n.

*Example*: Find  $a^{-1}$  modulo n if it exists.

- 1. a = 2, n = 7
- 2. a = -5, n = 8
- 3. a = 35, n = 42
- 4. a = 27, n = 209

**3.4 Chinese Remainder Theorem**: If gcd(m, n) = 1 then the two congruences  $x \equiv c \pmod{m}$  and  $x \equiv d \pmod{n}$  have a unique common solution modulo mn.

*Example*: Find the common solution of  $x \equiv 5 \pmod{8}$  and  $x \equiv 7 \pmod{11}$ .

*Definition*: m and n are **relatively prime** if gcd(m, n) = 1. Three integers, or more, are **pairwise relatively prime** if they are relatively prime one to another.

**3.5 Chinese Remainder Theorem**: Suppose  $n_1, n_2, ..., n_k$  are pairwise relatively prime. Then the system of congruences  $x \equiv c_i \pmod{n_i}$  where i = 1, 2, ..., k has a unique solution modulo  $N = n_1 n_2 ... n_k$ . Explicitly the solution is given by

$$x \equiv \sum_{i=1}^{k} c_i \frac{N}{n_i} \left( \frac{N}{n_i} \right)^{-1} \pmod{N}$$

where each inverse is taken modulo  $n_i$ .

*Example*: Find x satisfying  $x \equiv 5 \pmod{8}$ ,  $x \equiv 7 \pmod{11}$ , and  $x \equiv 12 \pmod{15}$ .

**3.6 Lemma**: If  $a^2 \equiv 1 \pmod{p}$  then  $a \equiv \pm 1 \pmod{p}$ .

**3.7 Wilson's Theorem**: If p is prime then  $(p-1)! \equiv -1 \pmod{p}$ .

Example: Find  $k! \mod 13$  for k = 11, 12, 13, 14.

- 1. Find a complete residue system modulo 9 with only odd numbers.
- 2. Find a complete residue system modulo 5 with only prime numbers.
- 3. Find all the solutions of  $12 x \equiv 18 \pmod{54}$ .
- 4. Find the inverse of 7 modulo 12.
- 5. Which integers  $1 \le a \le 12$  have an inverse modulo 12?
- 6. Find the smallest integer x > 1 satisfying the three congruences  $x \equiv 1 \pmod{7}$ ,  $x \equiv 1 \pmod{11}$ , and  $x \equiv 1 \pmod{13}$ .
- 7. Find all solutions to the following system of four congruences:  $x \equiv 2 \pmod{5}$ ,  $x \equiv 1 \pmod{8}$ ,  $x \equiv 7 \pmod{9}$ , and  $x \equiv -3 \pmod{11}$ .
- 8. I have less than 3 dinars left in my MobileCom prepaid account. If I use it all for sending local SMSs for 3 piasters each then 1 piaster will be left. If I use it all for sending international SMSs for 7 piasters each then 3 piasters will be left. If I use it all for sending MMSs for 13 piasters each then 2 piasters will be left. How much credits exactly do I have?
- 9. Investigate true or false.
  - a) If  $a \equiv b \pmod{n}$  then  $ma \equiv mb \pmod{mn}$ .
  - b) If  $a \equiv b \pmod{n}$  and  $d \mid n$  then  $a \equiv b \pmod{d}$ .
  - c) If  $a \equiv b \pmod{n}$  then gcd(a, n) = gcd(b, n).
- 10. Prove that  $37 \mid 35! 1$ .
- 11. Prove that 37 | 34! 18.
- 12. Prove that if a is odd then  $a^2 \equiv 1 \pmod{8}$ .
- 13. Prove that if  $p \equiv 1 \pmod{3}$  then  $p \equiv 1 \pmod{6}$ .
- 14. Prove that if  $a^2 \equiv b^2 \pmod{p}$  then  $a \equiv b \pmod{p}$  or  $a \equiv -b \pmod{p}$ .
- 15. Prove that if  $a \equiv b \pmod{m}$  and  $a \equiv b \pmod{n}$  then  $a \equiv b \pmod{lcm(m, n)}$ .
- 16. Prove that the converse of Wilson's Theorem is also true.

# **Modular Exponentiation**

**4.1 Successive Squaring Algorithm**: To efficiently compute  $a^k \mod n$  for large integer k, first compute  $a^2$ ,  $a^4$ ,  $a^8$ , ... mod n up to the highest power of 2 in the binary equivalent of k.

Example: Compute 3<sup>99</sup> mod 20.

- **4.2 Lemma**: If gcd(a, n) = 1 then  $\{r_1, r_2, ..., r_n\}$  is a complete residue system modulo n if and only if  $\{ar_1, ar_2, ..., ar_n\}$  is also a complete residue system modulo n.
- **4.3 Fermat's Little Theorem**: If  $p \nmid a$  then  $a^{p-1} \equiv 1 \pmod{p}$ .

Example: Compute the following modular exponentiation.

- 1. 8<sup>40</sup> mod 41
- 2.  $8^{2345} \mod 41$
- 3.  $5^{495} \mod 239$

*Definition*: The **Euler phi-function**  $\varphi(n)$  is the number of positive integers up to n which are relatively prime to n. For example  $\varphi(10) = 4$  and  $\varphi(11) = 10$ .

*Definition*: A **reduced residue system** modulo n is a subset of a complete residue system modulo n consisting of the  $\varphi(n)$  numbers relatively prime to n. For example  $\{1, 3, 5, 7\}$  is a reduced residue system modulo 8.

**4.4 Lemma**: If gcd(a, n) = 1 then  $\{r_1, r_2, ..., r_{\varphi(n)}\}$  is a reduced residue system modulo n if and only if  $\{ar_1, ar_2, ..., ar_{\varphi(n)}\}$  is also a reduced residue system modulo n.

*Example*: Illustrate the above lemma with a = 4 and n = 9.

**4.5 Euler's Theorem**: If gcd(a, n) = 1 then  $a^{\varphi(n)} \equiv 1 \pmod{n}$ .

Example: Compute 7<sup>26</sup> mod 10.

*Remark*: As a computational corollary, when gcd(a, n) = 1 then  $a^k \mod n$  can be reduced to  $(a \mod n)^{k \mod \varphi(n)} \mod n$ . Unfortunately the theorem is not true when  $gcd(a, n) \neq 1$ , nevertheless we still have the periodicity of  $a, a^2, a^3, \dots \mod n$ .

Example: Compute the following modular exponentiation.

- 1.  $2^{26} \mod 10$
- 2. 50<sup>345</sup> mod 12
- 3. 11<sup>123</sup> mod 32
- 4. 77<sup>3456</sup> mod 900

- **4.6 Theorem**: If gcd(m, n) = 1 then  $\varphi(mn) = \varphi(m) \varphi(n)$ .
- **4.7 Proposition**: Evaluation of Euler Phi-Function
  - 1.  $\varphi(p) = p 1$
  - 2.  $\varphi(p^k) = p^k p^{k-1}$
  - 3. If  $n = \prod p_i^{n_i}$  then  $\varphi(n) = \prod p_i^{n_i-1} (p_i-1) = n \prod \left(1 \frac{1}{p_i}\right)$ .

*Example*: Find  $\varphi(61)$ ,  $\varphi(62)$ ,  $\varphi(63)$ ,  $\varphi(64)$ .

**4.8 Modular Root Extraction**: If gcd(a, n) = 1 and  $gcd(j, \varphi(n)) = 1$  then the congruence  $x^j \equiv a \pmod{n}$  has a unique root  $x \equiv a^k \pmod{n}$  where  $k \equiv j^{-1} \pmod{\varphi(n)}$ .

*Example*: Solve for x.

- 1.  $x^7 \equiv 2 \pmod{11}$
- 2.  $x^{13} \equiv 5 \pmod{32}$
- 3.  $x^{239} \equiv 23 \pmod{2005}$

- 1. Find a reduced residue system modulo 24.
- 2. Find a reduced residue system modulo 15 with only odd numbers.
- 3. Find  $\varphi(250313)$ .
- 4. Find all positive integers *n* such that  $\varphi(n) = 4$ .
- 5. Compute 5<sup>1434</sup> mod 307.
- 6. Compute 25<sup>1434</sup> mod 309.
- 7. What is the last digit if we compute the number 1234<sup>5678</sup>?
- 8. Find the last two digits of the number 123<sup>45678</sup>.
- 9. Solve the congruence  $x^{39} \equiv 5 \pmod{121}$ .
- 10. Investigate true or false.
  - a)  $2^{6600} \equiv 1 \pmod{6601}$  hence the number 6601 must be a prime.
  - b)  $2^{1762} \equiv 742 \pmod{1763}$  hence 1763 cannot be a prime number.
  - c) If  $a \equiv b \pmod{n}$  then  $a^k \equiv b^k \pmod{n}$ .
  - d) If  $j \equiv k \pmod{n}$  then  $a^j \equiv a^k \pmod{n}$ .
- 11. Prove that Fermat's Little Theorem is equivalent to the following statement:  $a^p \equiv a \pmod{p}$  for any integer a.
- 12. Prove that if  $a^k \equiv 1 \pmod{n}$  for some k > 0 then gcd(a, n) = 1.
- 13. Another property of  $\varphi(n)$  is that  $\Sigma \varphi(d) = n$  where the sum is taken over all the positive divisors d of n. Verify this property for n = 24 and n = 30.
- 14. Prove that  $\varphi(2n) = 2\varphi(n)$  if *n* is even and  $\varphi(2n) = \varphi(n)$  if *n* is odd.
- 15. Prove that if  $d \mid n$  then  $\varphi(d) \mid \varphi(n)$ .
- 16. Prove that  $\varphi(n)$  is even for all n > 2.

#### **Primitive Roots**

Definition: Suppose a and n are relatively prime. The **order** of a modulo n is the smallest positive integer k such that  $a^k \equiv 1 \pmod{n}$ . We denote this quantity by  $|a|_n$  or simply |a| when there is no ambiguity. Note that  $|a|_n \le \varphi(n)$  due to Euler's Theorem.

Example: Find  $|3|_7$ ,  $|3|_{10}$ ,  $|7|_{24}$ .

#### **5.1 Proposition**: Properties of Orders

- 1. If  $a \equiv b \pmod{n}$  then  $|a|_n = |b|_n$ .
- 2.  $a^k \equiv 1 \pmod{n}$  if and only if  $|a|_n | k$ . In particular  $|a|_n | \varphi(n)$ .
- 3.  $a^j \equiv a^k \pmod{n}$  if and only if  $j \equiv k \pmod{|a|_n}$ .
- 4.  $|a^k| = |a|$  if and only if gcd(k, |a|) = 1. 5. If gcd(|a|, |b|) = 1 then |ab| = |a| |b|.

*Definition*: If  $|a|_n = \varphi(n)$  then a is called a **primitive root** modulo n. For example 3 is a primitive root modulo 7 because  $|3|_7 = 6 = \varphi(7)$ .

Example: Find all the primitive roots modulo 8 if any.

#### **5.2 Proposition**: Properties of Primitive Roots

- 1. If a is a primitive root modulo n then  $\{a, a^2, a^3, ..., a^{\varphi(n)}\}\$  is a reduced residue system modulo *n*.
- 2. If any exists, there are exactly  $\varphi(\varphi(n))$  primitive roots modulo n.
- **5.3 Lemma**: The number of solutions of  $f(x) \equiv 0 \pmod{p}$  is at most the degree of f.
- **5.4 Corollary**: If  $d \mid p-1$  then  $x^d \equiv 1 \pmod{p}$  has exactly d solutions.
- **5.5 Theorem**: Every prime p has exactly  $\varphi(p-1)$  primitive roots.
- **5.6 Primitive Root Theorem**: Primitive roots exist only modulo 1, 2, 4,  $p^k$ , or  $2p^k$ where p is any odd prime and k > 0. No Proof

Example: Is there a primitive root modulo 4? 5? 25? 50? 100? How many?

- **5.7** Artin's Conjecture: The number 2 is a primitive root for infinitely many primes.
- **5.8 Discrete Logarithm Problem**: The congruence  $a^x \equiv b \pmod{p}$  with  $p \nmid ab$  can be solved by rewriting the congruence in exponentiations whose base is a primitive root modulo p. This can be done according to Proposition 5.2.1. The following table gives an illustration for exponentiation base 2 as a primitive root modulo 13.

| k             | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 |
|---------------|---|---|---|---|---|----|----|---|---|----|----|----|
| $2^k \mod 13$ | 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7  | 1  |

Example: Find the solutions using the above table.

- 1.  $4^x \equiv 10 \pmod{13}$
- 2.  $5^x \equiv 9 \pmod{13}$
- 3.  $10(7^x) \equiv 3 \pmod{13}$
- 4.  $5(8^x) \equiv 11 \pmod{13}$

Example: Find the solutions using the same technique as above.

- 1.  $8x \equiv 5 \pmod{13}$
- $2. \quad 3x \equiv 1 \pmod{13}$
- 3.  $x^7 \equiv 12 \pmod{13}$
- 4.  $2x^4 \equiv 5 \pmod{13}$

- 1. Find the order of 4 modulo 25.
- 2. Is 5 a primitive root modulo 29?
- 3. Find all the primitive roots of 9.
- 4. Suppose |a| = 6. Find  $|a^k|$  for k = 2, 3, 4, 5, 6.
- 5. One of the primitive roots modulo 11 is 2. Find the rest.
- 6. Is there a primitive root modulo 250313?
- 7. How many primitive roots are there modulo 1250?
- 8. Find three primes modulo which 2 is not a primitive root.
- 9. Solve the congruence  $10 (6^x) \equiv 12 \pmod{13}$ .
- 10. Investigate true or false.
  - a) |-a| = |a|.
  - b) If  $|a|_n = |b|_n$  then  $a \equiv b \pmod{n}$ .
  - c) If  $a^j \equiv a^k \pmod{n}$  then  $j \equiv k \pmod{n}$ .
  - d)  $a^k \equiv 1 \pmod{n}$  is not possible if  $gcd(a, n) \neq 1$ .
- 11. Prove that if  $|a|_n = n 1$  then *n* must be a prime.
- 12. Prove that modular inverses have equal orders.
- 13. Suppose that *p* is an odd prime. Prove that if *a* is a primitive root modulo *p* then  $a^{\frac{1}{2}(p-1)} \equiv -1 \pmod{p}$ .
- 14. Prove that 4 is not a primitive root modulo any prime.
- 15. Prove that if *a* and *b* are primitive roots modulo an odd prime *p* then *ab* is not a primitive root modulo *p*.
- 16. Prove that if a is a primitive root modulo an odd prime p then -a is also a primitive root modulo p if and only if  $p \equiv 1 \pmod{4}$ .

# **Quadratic Residues**

*Definition*: A number a which is relatively prime to n is a **quadratic residue** modulo n if the congruence  $x^2 \equiv a \pmod{n}$  has a solution. If it has no solution then a is called a **quadratic non-residue** modulo n. For example 19 is a quadratic residue modulo 5 since  $19 \equiv 2^2 \pmod{5}$  whereas 7 is a quadratic non-residue because  $x^2 \equiv 7 \pmod{5}$  has no solution.

*Definition*: Let p be an odd prime. The **Legendre symbol**  $\left(\frac{a}{p}\right)$  is defined to be +1 if a is a quadratic residue modulo p, or -1 if a is a quadratic non-residue modulo p, and 0 if  $p \mid a$ .

**6.1 Proposition**: Properties of the Legendre Symbol

1. 
$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)^{n}$$
 if  $a \equiv b \pmod{p}$ 

2. 
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$
 (Euler's Criterion)

3. 
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

**6.2 Corollary**: 
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

Example: Is –28 a quadratic residue modulo 5?

**6.3 Gauss' Lemma**: If  $A = \{a, 2a, 3a, ..., \frac{1}{2}(p-1)a\}$  with  $p \nmid a$  then  $\left(\frac{a}{p}\right) = (-1)^n$  where n is the number of integers in A whose remainders mod p are larger than p/2.

*Example*: Illustrate Gauss' Lemma with a = 5 and p = 11.

**6.4 Corollary**: Let a be odd and  $p \nmid a$ .

Corollary: Let 
$$a$$
 be odd and  $p \nmid a$ .  
1.  $\left(\frac{a}{p}\right) = (-1)^m$  where  $m = \sum_{j=1}^{\frac{1}{2}(p-1)} \left[\frac{ja}{p}\right]$  (Eisenstein's Lemma)

2. 
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

*Example*: Illustrate Eisenstein's Lemma with a = 5 and p = 11.

**6.5 The Law of Quadratic Reciprocity**: If p and q are distinct odd primes then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$$

12

i.e. 
$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$$
 if  $p$  or  $q \equiv 1 \pmod{4}$  and  $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$  if  $p \equiv q \equiv 3 \pmod{4}$ .

Example: Is 816 a quadratic residue modulo 239?

Definition: Let  $P = p_1 p_2 \dots p_k$  be the product of odd prime numbers, not necessarily distinct. Define the **Jacobi symbol**  $\left(\frac{a}{P}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \dots \left(\frac{a}{p_k}\right)$  and also  $\left(\frac{a}{1}\right) = 1$ . Note that if  $\gcd(a, P) = 1$  then  $\left(\frac{a}{P}\right) = \pm 1$  or else  $\left(\frac{a}{P}\right) = 0$ .

6.6 Proposition: Properties of the Jacobi Symbol

1. 
$$\left(\frac{a}{P}\right) = \left(\frac{b}{P}\right)^T$$
 if  $a \equiv b \pmod{P}$ 

$$2. \qquad \left(\frac{ab}{P}\right) = \left(\frac{a}{P}\right) \left(\frac{b}{P}\right)$$

3. 
$$\left(\frac{a}{PQ}\right) = \left(\frac{a}{P}\right)\left(\frac{a}{Q}\right)$$

**6.7 Generalized Law of Quadratic Reciprocity**: For odd numbers P, Q > 0:

$$1. \qquad \left(\frac{-1}{P}\right) = \left(-1\right)^{\frac{P-1}{2}}$$

2. 
$$\left(\frac{2}{P}\right) = (-1)^{\frac{P^2-1}{8}}$$

3. 
$$\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^{\left(\frac{P-1}{2}\right)\left(\frac{Q-1}{2}\right)}$$

Example: Evaluate  $\left(\frac{-42}{61}\right)$ .

**6.8 Modular Square Root**: If a is a quadratic residue modulo  $p \equiv 3 \pmod{4}$  then the congruence  $x^2 \equiv a \pmod{p}$  has exactly two solutions given by  $x \equiv \pm a^{\frac{1}{4}(p+1)} \pmod{p}$ .

Example: Find all solutions.

$$1. \quad x^2 \equiv 2 \pmod{23}$$

2. 
$$x^2 - 2x + 3 \equiv 0 \pmod{11}$$

3. 
$$x^2 \equiv 10 \pmod{21}$$

4. 
$$x^2 \equiv 31 \pmod{55}$$

- 1. Find all the quadratic residues and non-residues modulo 11.
- 2. Evaluate the Legendre symbol  $\left(\frac{7}{11}\right)$  using (a) Euler's Criterion (b) Gauss'

- Lemma (c) Eisenstein's Lemma (d) Quadratic Reciprocity Law.
- 3. Does the congruence  $x^2 \equiv 186 \pmod{557}$  have a solution?
- 4. Does the congruence  $x^2 6x \equiv (2 \mod 79)$  have a solution?
- 5. Does the congruence  $x^2 5x + 2 \equiv 0 \pmod{29}$  have a solution?
- 6. Evaluate the Jacobi symbol  $\left(\frac{218}{385}\right)$ .
- 7. Characterize the prime numbers modulo which 5 is a quadratic residue.
- 8. Find all solutions of the congruence  $x^2 \equiv 8 \pmod{31}$ .
- 9. Find all solutions of the congruence  $2x^2 + x + 2 \equiv 0 \pmod{31}$ .
- 10. Find all solutions of the congruence  $x^2 \equiv 29 \pmod{35}$ .
- 11. Investigate true or false.

  - a)  $\left(\frac{713}{1009}\right) = +1$  hence  $x^2 \equiv 713 \pmod{1009}$  has a solution. b)  $\left(\frac{2}{15}\right) = +1$  so the congruence  $x^2 \equiv 2 \pmod{15}$  has a solution. c)  $\left(\frac{7}{15}\right) = -1$  so the congruence  $x^2 \equiv 7 \pmod{15}$  has no solution.
- 12. Suppose that a is relatively prime to an odd prime p. Prove that the congruence  $x^2 \equiv a \pmod{p}$  has either exactly two solutions or none.
- 13. Prove that -1 is a square modulo an odd prime p if and only if  $p \equiv 1 \pmod{4}$ .
- 14. Prove that 2 is a square modulo an odd prime p if and only if  $p \equiv \pm 1 \pmod{8}$ .
- 15. Prove that -2 is a square modulo an odd prime p if and only if either  $p \equiv 1$  $\pmod{8}$  or  $p \equiv 3 \pmod{8}$ .
- 16. Prove that -3 is a square modulo an odd prime p if and only if  $p \equiv 1 \pmod{6}$ .

# Appendix 1 **Primes < 4,000**

| 2        | 3                | 5        | 7        | 11        | 13   | 17   | 19   | 23       | 29         |
|----------|------------------|----------|----------|-----------|------|------|------|----------|------------|
|          | 37               |          |          | 47        | 53   | 59   | 61   | 23<br>67 | 71         |
| 31<br>73 | 3 <i>1</i><br>79 | 41<br>83 | 43<br>89 | 4 7<br>97 | 101  | 103  | 107  | 109      |            |
| 127      | 131              | 137      | 139      |           | 151  |      |      |          | 113<br>173 |
|          |                  |          |          | 149       | 199  | 157  | 163  | 167      | 229        |
| 179      | 181              | 191      | 193      | 197       |      | 211  | 223  | 227      |            |
| 233      | 239              | 241      | 251      | 257       | 263  | 269  | 271  | 277      | 281        |
| 283      | 293              | 307      | 311      | 313       | 317  | 331  | 337  | 347      | 349        |
| 353      | 359              | 367      | 373      | 379       | 383  | 389  | 397  | 401      | 409        |
| 419      | 421              | 431      | 433      | 439       | 443  | 449  | 457  | 461      | 463        |
| 467      | 479              | 487      | 491      | 499       | 503  | 509  | 521  | 523      | 541        |
| 547      | 557              | 563      | 569      | 571       | 577  | 587  | 593  | 599      | 601        |
| 607      | 613              | 617      | 619      | 631       | 641  | 643  | 647  | 653      | 659        |
| 661      | 673              | 677      | 683      | 691       | 701  | 709  | 719  | 727      | 733        |
| 739      | 743              | 751      | 757      | 761       | 769  | 773  | 787  | 797      | 809        |
| 811      | 821              | 823      | 827      | 829       | 839  | 853  | 857  | 859      | 863        |
| 877      | 881              | 883      | 887      | 907       | 911  | 919  | 929  | 937      | 941        |
| 947      | 953              | 967      | 971      | 977       | 983  | 991  | 997  | 1009     | 1013       |
| 1019     | 1021             | 1031     | 1033     | 1039      | 1049 | 1051 | 1061 | 1063     | 1069       |
| 1087     | 1091             | 1093     | 1097     | 1103      | 1109 | 1117 | 1123 | 1129     | 1151       |
| 1153     | 1163             | 1171     | 1181     | 1187      | 1193 | 1201 | 1213 | 1217     | 1223       |
| 1229     | 1231             | 1237     | 1249     | 1259      | 1277 | 1279 | 1283 | 1289     | 1291       |
| 1297     | 1301             | 1303     | 1307     | 1319      | 1321 | 1327 | 1361 | 1367     | 1373       |
| 1381     | 1399             | 1409     | 1423     | 1427      | 1429 | 1433 | 1439 | 1447     | 1451       |
| 1453     | 1459             | 1471     | 1481     | 1483      | 1487 | 1489 | 1493 | 1499     | 1511       |
| 1523     | 1531             | 1543     | 1549     | 1553      | 1559 | 1567 | 1571 | 1579     | 1583       |
| 1597     | 1601             | 1607     | 1609     | 1613      | 1619 | 1621 | 1627 | 1637     | 1657       |
| 1663     | 1667             | 1669     | 1693     | 1697      | 1699 | 1709 | 1721 | 1723     | 1733       |
| 1741     | 1747             | 1753     | 1759     | 1777      | 1783 | 1787 | 1789 | 1801     | 1811       |
| 1823     | 1831             | 1847     | 1861     | 1867      | 1871 | 1873 | 1877 | 1879     | 1889       |
| 1901     | 1907             | 1913     | 1931     | 1933      | 1949 | 1951 | 1973 | 1979     | 1987       |
| 1993     | 1997             | 1999     | 2003     | 2011      | 2017 | 2027 | 2029 | 2039     | 2053       |
| 2063     | 2069             | 2081     | 2083     | 2087      | 2089 | 2099 | 2111 | 2113     | 2129       |
| 2131     | 2137             | 2141     | 2143     | 2153      | 2161 | 2179 | 2203 | 2207     | 2213       |
| 2221     | 2237             | 2239     | 2243     | 2251      | 2267 | 2269 | 2273 | 2281     | 2287       |
| 2293     | 2297             | 2309     | 2311     | 2333      | 2339 | 2341 | 2347 | 2351     | 2357       |
| 2371     | 2377             | 2381     | 2383     | 2389      | 2393 | 2399 | 2411 | 2417     | 2423       |
| 2437     | 2441             | 2447     | 2459     | 2467      | 2473 | 2477 | 2503 | 2521     | 2531       |
| 2539     | 2543             | 2549     | 2551     | 2557      | 2579 | 2591 | 2593 | 2609     | 2617       |
| 2621     | 2633             | 2647     | 2657     | 2659      | 2663 | 2671 | 2677 | 2683     | 2687       |
| 2689     | 2693             | 2699     | 2707     | 2711      | 2713 | 2719 | 2729 | 2731     | 2741       |
| 2749     | 2753             | 2767     | 2777     | 2789      | 2791 | 2797 | 2801 | 2803     | 2819       |
| 2833     | 2837             | 2843     | 2851     | 2857      | 2861 | 2879 | 2887 | 2897     | 2903       |
| 2909     | 2917             | 2927     | 2939     | 2953      | 2957 | 2963 | 2969 | 2971     | 2999       |
| 3001     | 3011             | 3019     | 3023     | 3037      | 3041 | 3049 | 3061 | 3067     | 3079       |
| 3083     | 3089             | 3109     | 3119     | 3121      | 3137 | 3163 | 3167 | 3169     | 3181       |
| 3187     | 3191             | 3203     | 3209     | 3217      | 3221 | 3229 | 3251 | 3253     | 3257       |
| 3259     | 3271             | 3299     | 3301     | 3307      | 3313 | 3319 | 3323 | 3329     | 3331       |
| 3343     | 3347             | 3359     | 3361     | 3371      | 3373 | 3389 | 3391 | 3407     | 3413       |
| 3433     | 3449             | 3457     | 3461     | 3463      | 3467 | 3469 | 3491 | 3499     | 3511       |
| 3517     | 3527             | 3529     | 3533     | 3539      | 3541 | 3547 | 3557 | 3559     | 3571       |
| 3581     | 3583             | 3593     | 3607     | 3613      | 3617 | 3623 | 3631 | 3637     | 3643       |
| 3659     | 3671             | 3673     | 3677     | 3691      | 3697 | 3701 | 3709 | 3719     | 3727       |
| 3733     | 3739             | 3761     | 3767     | 3769      | 3779 | 3793 | 3797 | 3803     | 3821       |
| 3823     | 3833             | 3847     | 3851     | 3853      | 3863 | 3877 | 3881 | 3889     | 3907       |
| 3911     | 3917             | 3919     | 3923     | 3929      | 3931 | 3943 | 3947 | 3967     | 3989       |

# Appendix 2 **Hints and Answers**

|    | Chapter 1                              | Chapter 2                         | Chapter 3                                     | Chapter 4                          | Chapter 5                                        | Chapter 6                            |  |
|----|----------------------------------------|-----------------------------------|-----------------------------------------------|------------------------------------|--------------------------------------------------|--------------------------------------|--|
| 1  | No                                     | 7 x 35759                         | 1, 3, 5, 7, 9,<br>11, 13, 15,<br>17           | 1, 5, 7, 11,<br>13, 17, 19,<br>23  | 10                                               | 1, 3, 4, 5, 9<br>& 2, 6, 7, 8,<br>10 |  |
| 2  | 111 mod 24                             | 18 total                          | 2, 3, 5, 11, 19                               | 1, 7, 11, 13,<br>17, 19, 23,<br>29 | No                                               | -1                                   |  |
| 3  | 1, 5, 7, 11                            | 120                               | $x \equiv 6 \pmod{9}$                         | 214548                             | 2 & 5                                            | No                                   |  |
| 4  | 3                                      | 8 pairs total                     | 7                                             | 5, 8, 10, 12                       | 3, 2, 3, 6, 1                                    | Yes                                  |  |
| 5  | (-21, 13)                              | 2, 5, 17, 37                      | 1, 5, 7, 11                                   | 70                                 | 2 <sup>3</sup> , 2 <sup>7</sup> , 2 <sup>9</sup> | No                                   |  |
| 6  | (3 - 13k, 3 + 5k)                      | 3 + 2003,<br>etc.                 | 1002                                          | 34                                 | No                                               | -1                                   |  |
| 7  | 7 minutes & 3 minutes                  | 3, 7, 31,<br>127, 8191            | 1537 (mod<br>3960)                            | 6                                  | 200                                              | $p \equiv \pm 1 \pmod{5}$            |  |
| 8  | FFTFT                                  | 3, 5, 17,<br>257, 65537           | 2.62 dinars                                   | 69                                 | 7, 17, 31                                        | 15 & 16                              |  |
| 9  | TTTF                                   | ≈ 7.8 x 10^4                      | ТТТ                                           | 75                                 | $x \equiv 4 \pmod{12}$                           | 22 & 24                              |  |
| 10 | Use 1.7.2                              | $\approx 4.0 \times 10^8$         | Use 3.7                                       | FTTF                               | FFFT                                             | 8, 13, 22, 27                        |  |
| 11 | Start: either n is even or odd         | FFTT                              | Use 3.7 & find inverse                        | Use 3.1.4                          | Use 4.7 & 5.1.2                                  | TFT                                  |  |
| 12 | Start:<br>either n is<br>even or odd   | lcm(m,n) x<br>gcd(m,n) =<br>mn    | Start:<br>$a \equiv 1, 3, 5,$<br>or 7 (mod 8) | Use 3.3                            | Show that $(a^-1)^k = (a^k)^-1$                  | Use<br>Problem<br>3.14               |  |
| 13 | Start: $n = 2k + 1$                    | Use 2.3                           | Start: $p = 3k + 1$                           | Check                              | Use 3.6 & 4.3                                    | Use 6.2                              |  |
| 14 | 3   one of<br>these: (n-1)<br>n (n+1)  | Use 2.4                           | Like 3.6                                      | Use 4.6 & 4.7                      | 4 = 2^2 & use Problem 13                         | Use 6.4.2                            |  |
| 15 | Use<br>Problems 13<br>& 14             | 3, 5, 7                           | See<br>Problem<br>2.12                        | Use 4.7.3                          | Use<br>Problem 13                                | Use<br>Problems 13<br>& 14           |  |
| 16 | Start: (n-2)<br>(n-1) n<br>(n+1) (n+2) | Like 2.6<br>with 6 P2P3<br>Pm + 5 | Show that $(n-1)! \equiv 0 \pmod{n}$          | Use<br>Problem 15                  | Use<br>Problem 13                                | Use 6.2 & 6.5                        |  |