Machine Learning from Data

Lecture 11: Spring 2021

Today's Lecture

- Overfitting
 - What is overfitting?
 - When does it occur?
 - Stochastic Vs. Deterministic Noise

Non-Linear Transforms

1. Original data

$$\mathbf{x}_n \in \mathcal{X}$$

2. Transform the data

$$\mathbf{z}_n = \Phi(\mathbf{x}_n) \in \mathcal{Z}$$

4. Classify in \mathcal{X} -space

$$g(\mathbf{x}) = \tilde{g}(\Phi(\mathbf{x})) = \operatorname{sign}(\tilde{\mathbf{w}}^{T}\Phi(\mathbf{x}))$$

3. Separate data in \mathcal{Z} -space

$$\tilde{g}(\mathbf{z}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}}\mathbf{z})$$

 \mathcal{X} -space is \mathbb{R}^d

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

$$y_1, y_2, \ldots, y_N$$

no weights

$$d_{\rm \scriptscriptstyle VC}=d+1$$

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\scriptscriptstyle{\mathrm{T}}} \mathbf{\Phi}(\mathbf{x}))$$

 \mathcal{Z} -space is $\mathbb{R}^{\bar{d}}$

$$\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} 1 \\ \Phi_1(\mathbf{x}) \\ \vdots \\ \Phi_{\tilde{d}}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 1 \\ z_1 \\ \vdots \\ z_{\tilde{d}} \end{bmatrix}$$

 $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N$

 y_1, y_2, \ldots, y_N

$$\tilde{\mathbf{w}} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{\tilde{d}} \end{bmatrix}$$

$$d_{\scriptscriptstyle
m VC} = d+1$$

Digits Data

Average Intensity

Linear model

$$E_{\text{in}} = 2.13\%$$

 $E_{\text{out}} = 2.38\%$

Average Intensity

3rd order polynomial model

$$E_{\text{in}} = 1.75\%$$

 $E_{\text{out}} = 1.87\%$

Humans Overfit (Superstitions)

• Fear of Friday the 13th

Illustration of Overfitting

Quadratic f

5 data points

A little noise (measurement error)

5 data points \rightarrow 4th order polynomial fit

Overfitting Example

Quadratic f

5 data points

A *little* noise (measurement error)

5 data points \rightarrow 4th order polynomial fit

Classic overfitting: simple target with excessively complex \mathcal{H} .

$$E_{\rm in} \approx 0; E_{\rm out} \gg 0$$

Define Overfitting

• Fitting the data more than is warranted.

Case Study

10th order f with noise.

50th order f with no noise.

2nd order vs. 10th order polynomial

	2nd Order	$10 \mathrm{th}$ Order
E_{in}	0.050	0.034
$E_{ m out}$	0.127	9.00

complex noiseless target

	2nd Order	10th Order
$E_{\rm in}$	0.029	10^{-5}
E_{out}	0.120	7680

 ${\mathcal H}$ should match quantity and quality of data, not f

Measure Overfitting

Overfit Measure: $E_{out}(\mathcal{H}_{10}) - E_{out}(\mathcal{H}_{2})$


```
Number of data points ↑ Overfitting ↓
Noise ↑ Overfitting ↑
Target complexity ↑ Overfitting ↑
```

Noise

Stochastic Noise

We would like to learn from O:

$$y_n = f(x_n)$$

Unfortunately, we only observe O:

$$y_n = f(x_n) + \text{`stochastic noise'}$$

Stochastic Noise: fluctuations/measurement errors we cannot model.

Stochastic Noise

source: random measurement errors

re-measure y_n stochastic noise changes.

change \mathcal{H} stochastic noise the same.

Deterministic Noise

source: learner's \mathcal{H} cannot model f

re-measure y_n deterministic noise the same.

change \mathcal{H} deterministic noise changes.

We have single \mathcal{D} and fixed \mathcal{H} so we cannot distinguish

Deterministic Noise

We would like to learn from \bigcirc :

$$y_n = h^*(x_n)$$

Unfortunately, we only observe \bigcirc :

$$y_n = f(x_n)$$
 $= h^*(x_n) + \text{`deterministic noise'}$
 \uparrow
 $_{\mathcal{H} \text{ cannot model this}}$

Deterministic Noise: the part of f we cannot model.

Bias Variance Analysis and Noise

Summary

Thanks!