

Towards onboard dynamic reconfiguration of TSN real-time network

Rafik HENIA
Thales Research & Technology

Marc BOYER
ONERA

DIVERSE Workshop @ ETFA 2024

Outline

- Context: Communication networks in aircrafts
- Introducing TSN in future aircrafts
- TSN dynamic reconfiguration Challenge
 - Challenge context
 - TAS (re-)configuration challenge
 - CBS (re-)configuration challenge
- How to contribute?

Outline

- Context: Communication networks in aircrafts
- Introducing TSN in future aircrafts
- TSN dynamic reconfiguration Challenge
 - Challenge context
 - TAS (re-)configuration challenge
 - CBS (re-)configuration challenge
- How to contribute?

Avionics context

- Avionics networks
 - ARINC 664 Part 7 (AFDX)
 - ARINC 429
 - ARINC 629
 - ARINC 825 (CAN)
 - MIL-STD-1553
 - Commercial Ethernet

• ...

Avionics context

- Avionics networks
 - ARINC 664 Part 7 (AFDX)
 - · High critical comm.
 - 4 priority levels
 - Up to 100 Mbps
 - Computers > 100
 - ARINC 429
 - ARINC 629
 - ARINC 825 (CAN)
 - MIL-STD-1553
 - Commercial Ethernet

Avionics context

- Avionics networks
 - ARINC 664 Part 7 (AFDX)
 - Duplicated to increase the fault tolerance and ensure that data transmission even in the event of a failure or disruption in the network
 - ARINC 429
 - ARINC 629
 - ARINC 825 (CAN)
 - MIL-STD-1553
 - Commercial Ethernet

Avionics context

- Avionics networks
 - ARINC 664 Part 7 (AFDX)
 - ARINC 429
 - Connecting sensors and actuators
 - Up to 100 Kbps
 - Computers < 20
 - ARINC 629
 - ARINC 825 (CAN)
 - MIL-STD-1553
 - Commercial Ethernet
 - ...

Avionics context

- Avionics networks
 - ARINC 664 Part 7 (AFDX)
 - ARINC 429
 - ARINC 629
 - ARINC 825 (CAN)
 - MIL-STD-1553
 - Commercial Ethernet
 - In-flight Entertainment & Connectivity (BE traffic)
 - Over 1 Gbps

• ...

Avionics context

Avionics networks

 A380: 100,000 different wires, totaling over 530 kilometers, one of the major contributors to the aircraft weight

Aircraft cabling

Avionics context

Avionics networks

 Challenge: reduce SWaP (Size, Weight and Power), maintenance and certification costs

Aircraft cabling

Outline

- Context: Communication networks in aircrafts
- Introducing TSN in future aircrafts
- TSN dynamic reconfiguration Challenge
 - Challenge context
 - TAS (re-)configuration challenge
 - CBS (re-)configuration challenge
- How to contribute?

TSN in future aircrafts

- TSN: the new real-time Ethernet
- Much higher bandwidth than current avionics networks
- Allows mixed criticality by hosting both
 - Critical data flows (in redundancy with legacy AFDX)
 - And non-critical data flows
- → Candidate as future avionic data backbone

Outline

- Context: Communication networks in aircrafts
- Introducing TSN in future aircrafts
- TSN dynamic reconfiguration Challenge
 - Challenge context
 - TAS (re-)configuration challenge
 - CBS (re-)configuration challenge
- How to contribute?

Challenge context

- TSN-only
- Set of real-time data flows (streams)
- Initial static configuration
- Possible faults

The challenge itself

- In case of faults
 - Computing a new configuration
 - Still ensuring real-time guarantees
 - At least for most critical flows
 - Notion of flow utility/criticality
 - In short amount of time
 - Using embedded resources
 - While maintaining service

The challenge limits

A subset of TSN

- One Time Aware Shaper queue (#7)
- A few Credit-Based-Shaper queues (#6-#2)
- Best-effort traffic

Is it really a challenge?

TAS configuration challenge

TAS: Time Aware Shaper Hard

- Basic idea: Time-Triggered schedule
 - Cyclic behavior
 - One time window = one frame
- End-to-end schedule

Harder • Alignement of windows allong the path

- TAS with TSN: queuing semantics
 - Based on gate schedule
 - Sends the head of queue

Harder

CBS

BE

Nominal TAS behavior

Loss impact

TAS re-configuration challenge

- Short configuration time (s mn)
- Incremental schedule (keep existing windows, as much as possible)
- But re-schedule based on utility
 - Ex: route of flow *f* is broken
 - No (route, schedule) is found
 - Some lower utility flows can be removed: which ones? How many?
- The coherence problem

The coherence problem

- Removing a flow: cf. loss and queueing semantics
- Adding a flow (because of re-routing)
 - Need add of dedicated time window
 - In each node along the path
- Problem: deployement of new configuration along all paths

CBS configuration challenge

• CBS: Credit-based Shaper / Based on evolution of a credit

CBS configuration challenge

- Configuration: set one slope per queue along the path
- The trivial (false) idea:
 - Let r_i the throught of flow i
 - Let F(p) be the set of flows crossing port p
 - Set $s(p) = \sum_{i \in F(p)} r_i$
- Exemple: 10 flows, same (source, dest, size, period), implicit deadline

CBS configuration challenge

Configuration main steps

- Assign a local deadline per queue (same for all flows in the queue)
- Evaluate interferences of
 - Higher priority flows
 - Gate closing (TAS interference)
- Compute a slope

CBS re-configuration challenge

Configuration main steps

- Assign a local deadline per queue (same for all flows in the queue)
- Evaluate interferences of
 - Higher priority flows
 - Gate closing (TAS interference)
- Compute a slope
- In short amount of time

Outline

- Context: Communication networks in aircrafts
- Introducing TSN in future aircrafts
- TSN dynamic reconfiguration Challenge
 - Challenge context
 - TAS (re-)configuration challenge
 - CBS (re-)configuration challenge
- How to contribute?

How to contribute?

- •github.com/ecrtsorg
 - Textual description of the challenge
 - Full Data set (topology, flows caracteristics)
 - Mailing list

Thank you! Any questions?