Improving the RL Baseline

IFT6757 - Fall 2020

By Étienne Boucher and Mélisande Teng.

Duckie control

Classical robotics methods

 work well when state information from camera feed is correct

 require careful tuning of the parameters depending on the duckie / the environment

RL approaches

- allows exploration of solutions that could not necessarily be found through classical methods or imitating existing expert behavior.
- computationally expensive
- data inefficient

Current RL Baseline: Deep Deterministic Policy Gradient agent

Recall Q learning: optimal policy π^* = take the best action as defined by Q* at each time step.

$$Q^*(s, a) = E[R_{t+1} + \gamma \max_{a'} Q^*(s', a')] \qquad a^*(s) = \underset{a}{argmax}(Q^*(s, a))$$

DDPG concurrently learns a Q-function and a policy

- off-policy algorithm.
- deep Q-learning for continuous action spaces


```
reward = collision_avoidance_penalty
+ f(speed, lane pose)
+ penalty(lane deviation)
```

Introduction to DARLA: DisentAngled Representation Learning Agent

Idea:

- 1. Learn to see (solve the perception task)
- 2. Learn to act (train RL model)
- 3. Transfer

Goal: learn a disentangled representation of the environment to be robust to domain shifts.

→ in Duckietown: different simulator maps, sim/real

Project agent observation state space to a latent state space expressed in terms of factorised data generative factors that are representative of the natural world.

Introduction to DARLA

Perceptual model:

- 1. Train DAE model to get targets in feature space
- 2. Train β -VAE model using targets from 1.

Perceptual Model: Autoencoders

Perceptual Model: DAE

Perceptual Model: VAE

Idea: a more regular, continuous latent space

- Map the input to a distribution
- Add regularization

Objective: $\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$

Perceptual Model: Beta-VAE_DAE

Objective:
$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \\ - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Increase β parameter to encourage more disentangled latent representation.

In DARLA:
$$\mathcal{L}(\theta, \phi; \mathbf{x}, \mathbf{z}, \beta) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \|J(\hat{\mathbf{x}}) - J(\mathbf{x})\|_{2}^{2} - \beta D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

J is passing the input image in DAE up to a chosen layer.

Train with perceptual similarity loss

That's where we are at!

Dataset:

- 6000 images
- random positions and orientations
- every object meshes
- every type of tile

DARLA model implemented

Have yet to see the traversals

Next steps: RL agent and transfer

- Train the RL agent on top of the perceptual model
- Try the model without further training on a real robot

References

<u>Continuous control with deep</u> <u>reinforcement learning</u>, Lillicrap et al.

<u>DARLA: Improving Zero-Shot Transfer in</u> <u>Reinforcement Learning</u>, Higgins et al.

Nice auto encoder illustrations from https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html