Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A magnetic memory cell comprising an annular magnetic layer through which extends at least one conductor that generates a magnetic field, and a laminate configured so as to include: a first magneto-sensitive layer, a magnetization direction of which is changed by the magnetic field in the annular magnetic layer; and a magnetoresistive effect revealing body disposed on a surface of the first magneto-sensitive layer so that an electric current flows in a direction perpendicular to a laminating surface of the laminate,

wherein the first magneto-sensitive layer has a thickness set in a range of not less than 0.5 nm to not more than 40 nm.

2. (Original) A magnetic memory cell comprising a plurality of storage elements each having an annular magnetic layer through which extends at least one conductor that generates a magnetic field, and a laminate configured so as to include: a first magneto-sensitive layer, a magnetization direction of which is changed by the magnetic field in the

annular magnetic layer; and a magnetoresistive effect revealing body disposed on a surface of the first magneto-sensitive layer so that an electric current flows in a direction perpendicular to a laminating surface of the laminate,

wherein the plurality of annular magnetic layers are configured so as to be arranged side by side such that directions of respective axes coincide with each other, and so as to share a predetermined portion of each with each other;

wherein the plurality of first magneto-sensitive layers are disposed on a same side with respect to a plane including the axes, and each have a thickness set in a range of not less than 0.5 nm to not more than 40 nm.

- 3. (Original) A magnetic memory cell according to claim 2, wherein the plurality of first magneto-sensitive layers are magnetized in respective directions antiparallel to each other by the magnetic fields.
- 4. (Currently Amended) A magnetic memory cell according to claim 1 any of Claims 1 to 3, wherein each first magneto-sensitive layer has a thickness set in a range of not less than 0.5 nm to not more than 30 nm.

- 5. (Currently Amended) A magnetic memory cell according to claim 1 any of Claims 1 to 4, wherein a plurality of the conductors extend through the plurality of annular magnetic layers, and the plurality of the conductors extend in parallel to each other in a region where the plurality of the conductors extend through the plurality of annular magnetic layers.
- 6. (Currently Amended) A magnetic memory cell according to claim 1 any of Claims 1 to 5, wherein the laminate comprises a second magneto-sensitive layer which can be magnetically exchange-coupled with each first magneto-sensitive layer.
- 7. (Original) A magnetic memory cell according to Claim 6, wherein the laminate comprises a non-magnetic layer, a first magnetic layer with a fixed magnetization direction deposited on one surface side of the non-magnetic layer, and a second magnetic layer deposited on the other surface side of the non-magnetic layer and functioning as the second magneto-sensitive layer,

wherein information can be detected based on the electric current flowing through the laminate.

8. (Original) A magnetic memory cell according to Claim 7, wherein the first magnetic layer is formed using a material having a larger coercive force than the second magnetic layer.

- 9. (Currently Amended) A magnetic memory device including a magnetic memory cell according to claim 1 any of Claims 1 to 8, write lines as the plurality of the conductors, and read lines that supply the electric current to the laminate.
- 10. (New) A magnetic memory cell according to claim 2, wherein each first magneto-sensitive layer has a thickness set in a range of not less than 0.5 nm to not more than 30 nm.
- 11. (New) A magnetic memory cell according to claim 2, wherein a plurality of the conductors extend through the plurality of annular magnetic layers, and the plurality of the conductors extend in parallel to each other in a region where the plurality of the conductors extend through the plurality of annular magnetic layers.
- 12. (New) A magnetic memory cell according to claim 2, wherein the laminate comprises a second magneto-sensitive layer which can be magnetically exchange-coupled with each first magneto-sensitive layer.
- 13. (New) A magnetic memory cell according to claim 12, wherein the laminate comprises a non-magnetic layer, a first magnetic layer with a fixed magnetization direction deposited on one surface side of the non-

magnetic layer, and a second magnetic layer deposited on the other surface side of the non-magnetic layer and functioning as the second magneto-sensitive layer,

wherein information can be detected based on the electric current flowing through the laminate.

- 14. (Original) A magnetic memory cell according to Claim 13, wherein the first magnetic layer is formed using a material having a larger coercive force than the second magnetic layer.
- 15. (Currently Amended) A magnetic memory device including a magnetic memory cell according to claim 2,

write lines as the plurality of the conductors, and read lines that supply the electric current to the laminate.