10/10

M525: HW3

Dominic Bair

November 21, 2022

1. Consider the following hierarchical model:

$$\tau \sim \operatorname{Gamma}(\phi, \psi)$$
$$\mu | \tau \sim \operatorname{Normal}\left(m, \frac{n}{\tau}\right)$$
$$w | \mu, \tau \sim \operatorname{Normal}\left(\mu, \frac{1}{\tau}\right)$$

where ϕ , ψ , m, and n are known values.

- (i) First we create Monte–Carlo simulation to approximate p(w) empirically. See Figure 1.
- (ii) Now we derive p(w) analytically.

$$\begin{split} p(w,\mu,\tau) &= p(w|\mu,\tau)p(\mu|\tau)p(\tau).\\ \Longrightarrow p(w) &= \int_0^\infty \int_{-\infty}^\infty p(w|\mu,\tau)p(\mu|\tau)p(\tau)\,d\mu\,d\tau\\ &= \int_0^\infty p(\tau) \int_{-\infty}^\infty p(w|\mu,\tau)p(\mu|\tau)\,d\mu\,d\tau\\ &\vdots\\ &= \frac{1}{\sqrt{2\pi(n+1)}} \frac{1}{\Gamma(\phi)\psi^\phi} \Gamma\left(\phi + \frac{1}{2}\right) \left(\frac{2\psi(n+1)}{2(n+1) + \psi(m-w)^2}\right). \end{split}$$

(iii) We now compare the histogram generated in (i) with the analytical solution for p(w) found in (ii).

Figure 1: Sampling 10000 different τ values, then feeding that sample forward through our model, we get this histogram. Notice our p(w) follows the distribution so well, it is difficult to distinguish it from the histogram.

Figure 2: A visualization of 3 dimensional random data with distribution described in 3 (i).

- 2. (i) All the variables depicted in the graphic are Ψ , M, V, U, μ_1 , μ_2 , $w_{1,1:N_1}$, and $w_{2,1:N_2}$.
 - (ii) $w_{1,1:N_1}$ and $w_{2,1:N_2}$ are random variables with known values. M, V, U, μ_1 , and μ_2 are random variables with unknown values. Ψ is a variable that is not random.
- 3. Now we implement a Monte Carlo method for estimating a multidimensional Gaussian integral.
 - (i) We, consider J random variables distributed as

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}_i \sim \text{Normal}_3 \left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) i = 1, \dots, J$$

- (ii) We take J = 1500 and generate the data. See Figure 2.
- (iii) Finally, we estimate the $P(\|\mathbf{w}\|_2 \leq 1)$ by a Monte Carlo estimation, that is taking our generated points, counting the number of them satisfying $\|\mathbf{w}\|_2 \leq 1$, then, then dividing them by J. With 1500 points, we get $P(\|\mathbf{w}\|_2 \leq 1) \approx 0.0027$. Choosing J to be 1000000, we find $P(\|\mathbf{w}\|_2 \leq 1) \approx 0.0010$. We note that

estimating the probability of such an unlikely event could be better approximated by using importance sampling.