Assignment -3 Python Programming

Assignment Date	6 October 2022
Student Name	Mr. Mohamed Faiz S
Student Roll Number	910619104045
Maximum Marks	2 Marks

Abalone Age Prediction

1. Download the dataset

#Dataset Downloaded

In [1]:

In [3]:

2. Load the Dataset

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

df = pd.read_csv('abalone.csv')

df.head()

In [4]:

Out[4]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [5]:

#Modifying the given dataset
Age=1.5+df.Rings

df["Age"]=Age

```
df=df.rename(columns = {'Whole weight':'Whole_weight','Shucked weight':
'Shucked_weight','Viscera weight': 'Viscera_weight','Shell weight':
'Shell_weight'})
df=df.drop(columns=["Rings"],axis=1)
df.head()
```

Out[5]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

In [6]:

df.tail()

Out[6]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	12.5
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	11.5
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	10.5
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	11.5
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	13.5

In [7]:

df.shape

(4177, 9)

Out[7]:

In [8]:

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4177 entries, 0 to 4176

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole_weight	4177 non-null	float64
5	Shucked_weight	4177 non-null	float64
6	Viscera_weight	4177 non-null	float64
7	Shell_weight	4177 non-null	float64
8	Age	4177 non-null	float64

dtypes: float64(8), object(1)

memory usage: 293.8+ KB

3. Perform Visualizations

Univariate Analysis

sns.countplot(x='Sex',data=df)

Out[10]:

sns.displot(df["Length"])

<seaborn.axisgrid.FacetGrid at 0x2d750617c10>

In [12]:

Out[12]:

sns.histplot(x='Height',data=df)

<AxesSubplot:xlabel='Height', ylabel='Count'>

sns.boxplot(df["Age"],color='red')

<AxesSubplot:xlabel='Age'>

In [13]:

Out[13]:

In [15]:

Out[15]:

Bivariate Analysis

sns.barplot(x=df["Height"], y=df["Whole_weight"])
<AxesSubplot:xlabel='Height', ylabel='Whole_weight'>

2.5 - 2.0 - 1.5 - 1.0 - 0.5 - 0.0 Height

plt.scatter(df['Height'], df['Age'], c='red')

In [17]:

Out[17]:

In [21]:

```
plt.xlabel('Height of abalone (mm)')
plt.ylabel('Age')
plt.show()
```



```
plt.scatter(df['Length'], df['Age'], c='green')
plt.xlabel('Length of abalone (mm)')
plt.ylabel('Age')
plt.show()
```


In [20]:

```
plt.scatter(df['Diameter'], df['Age'],c='brown')
plt.xlabel('Height of abalone (mm)')
plt.ylabel('Age')
plt.show()
```


Multi-Variate Analysis

sns.pairplot(df,hue='Sex')

<seaborn.axisgrid.PairGrid at 0x2d752e146d0>

In [24]:

Out[24]:

plt.figure(figsize=(12,8));
sns.heatmap(df.corr(), cmap="PiYG",annot=True);

4.Descriptive statistics

df.describe(include='all')

In [27]:

Out[27]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weig
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.0000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	M	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000

5. Check for Missing values and deal with them

```
In [29]:
df.isnull().sum()
                                                                         Out[29]:
Sex
                  0
Length
                  0
Diameter
Height
                  0
Whole weight
Shucked weight
Viscera weight
                  0
Shell weight
                  0
Age
dtype: int64
```

6. Find the outliers and replacing them outliers

qnt = df.quantile([0.75,0.25])
qnt

Out[32]:

		Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	12.5
0	.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	9.5

In [34]:

IQR = qnt.loc[0.75] - qnt.loc[0.25]
IQR

Out[34]:

Length	0.1650
Diameter	0.1300
Height	0.0500
Whole_weight	0.7115
Shucked_weight	0.3160
Viscera_weight	0.1595
Shell weight	0.1990

```
3.0000
Age
dtype: float64
                                                                       In [35]:
lower = qnt.loc[0.25] - 1.5 * IQR
lower
                                                                      Out[35]:
                0.20250
Length
Diameter
                0.15500
                0.04000
Height
Whole weight -0.62575
Shucked weight -0.28800
Viscera_weight -0.14575
Shell weight
               -0.16850
                5.00000
Age
dtype: float64
                                                                       In [36]:
upper = qnt.loc[0.75] + 1.5 * IQR
upper
                                                                      Out[36]:
                  0.86250
Length
Diameter
                0.67500
Height
                 0.24000
Whole weight
                 2.22025
Shucked_weight 0.97600
Viscera_weight
                 0.49225
Shell weight
                 0.62750
                 17.00000
dtype: float64
                                                                       In [37]:
df.mean()
                                                                      Out[37]:
                 0.523992
Length
Diameter
                 0.407881
Height
                  0.139516
Whole weight
                 0.828742
Shucked weight
                 0.359367
Viscera weight
                0.180594
Shell weight
                 0.238831
                 11.433684
Age
dtype: float64
                                                                       In [38]:
df['Length']=np.where(df['Length']<0.22,0.52,df['Length'])</pre>
df['Diameter']=np.where(df['Diameter']<0.155,0.407,df['Diameter'])
df['Height']=np.where(df['Height']<0.04,0.13,df['Height'])</pre>
                                                                       In [39]:
df['Height']=np.where(df['Height']>0.24,0.13,df['Height'])
```

df['Whole weight']=np.where(df['Whole weight']>2.18,0.83,df['Whole weight'])

```
df['Shucked weight']=np.where(df['Shucked weight']>0.958,0.359367,df['Shucked
weight'])
df['Viscera weight']=np.where(df['Viscera weight']>0.478,0.18,df['Viscera weight']
ght'])
                                                                           In [40]:
df['Shell weight']=np.where(df['Shell weight']>0.61,0.238831,df['Shell weight']
df['Age']=np.where(df['Age']<5.0,11.43,df['Age'])</pre>
df['Age']=np.where(df['Age']>17.0,11.43,df['Age'])
                                                                           In [41]:
figfig, axes = plt.subplots(4,2,figsize=(16, 14))
axes = np.ravel(axes)
for i, c in enumerate(col):
    hist = df[c].plot(kind = 'box', ax=axes[i],color='blue', vert=False)
    axes[i].set title(c, fontsize=15)
plt.tight layout()
plt.show()
```


7. Check for Categorical columns and perform encoding

				Shucked_weight	Viscera_weight	Shell_weight	Age	Sex_F	Sex_I	Sex_N
0 0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5	0	0	1

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age	Sex_F	Sex_I	Sex_N
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5	0	0	1
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5	0	1	0

8. Split the data into dependent and independent variables

In [46]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 11 columns):
    Column Non-Null Count Dtype
                ----
---
               4177 non-null float64
0 Length
1 Diameter
               4177 non-null float64
2 Height
               4177 non-null float64
3 Whole_weight 4177 non-null float64
4 Shucked weight 4177 non-null float64
5 Viscera weight 4177 non-null float64
   Shell_weight 4177 non-null float64
6
   Age
               4177 non-null float64
```

8 Sex F 4177 non-null uint8

Sex I 4177 non-null uint8 10 Sex M 4177 non-null uint8

dtypes: float64(8), uint8(3)

memory usage: 273.4 KB

X = x.drop(['Age'], axis = 1)

X.head()

x.info()

In [47]:

In [48]:

Out[48]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Sex_F	Sex_I	Sex_M
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	0	0	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	0	0	1
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	0	1	0

In [49]:

In [50]:

y = x['Age']

y.head()

Out[50]:

```
0   16.5
1   8.5
2   10.5
3   11.5
4   8.5
Name: Age, dtype: float64
```

9. Scale the independent variables

```
In [51]:
from sklearn.preprocessing import StandardScaler
                                                                             In [52]:
X_columns = X.select_dtypes(include=np.number).columns.tolist()
X columns
                                                                             Out[52]:
['Length',
 'Diameter',
 'Height',
 'Whole_weight',
 'Shucked weight',
 'Viscera_weight',
 'Shell weight',
 'Sex F',
 'Sex_I',
 'Sex M']
                                                                             In [53]:
scaler = StandardScaler()
                                                                             In [54]:
X[X columns] = scaler.fit transform(X[X columns])
X.head()
```

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Sex_F	Sex_l
0	- 0.663474	- 0.501673	- 1.196422	-0.643390	-0.611770	-0.732343	-0.643590	- 0.674834	0.688018
1	1.601273	- 1.572915	1.330241	-1.259765	-1.219694	-1.236126	-1.257424	- 0.674834	0.688018
2	0.006383	0.087510	- 0.125873	-0.295144	-0.456142	-0.343709	-0.183214	1.481846	0.688018
3	- 0.797445	- 0.501673	- 0.393511	-0.639118	-0.655541	-0.607596	-0.605225	- 0.674834	0.688018
4	- 1.779901	- 1.680039	- 1.597878	-1.303563	-1.268328	-1.322489	-1.372518	0.674834	1.453451

Out[54]:

10. Split the data into training and testing

```
In [55]:
X.shape, y.shape
                                                                          Out[55]:
((4177, 10), (4177,))
                                                                           In [56]:
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(X,y, test size=0.2,
random state=42)
                                                                           In [57]:
print(' x train.shape : ',x train.shape)
print(' y train.shape : ',y train.shape)
print(' x test.shape : ',x test.shape)
print(' y test.shape : ',y test.shape)
x train.shape : (3341, 10)
y train.shape : (3341,)
x test.shape : (836, 10)
 y_test.shape : (836,)
```

Build the Model, Train the Model and Test the Model

```
In [58]:
#Linear Regression
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)
lr pred = lr.predict(x test)
                                                                           In [59]:
#Random Forest
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error, make scorer
from sklearn.model selection import RandomizedSearchCV
rf = RandomForestRegressor()
param = {
    'max depth':[3,6,9,12,15],
    'n estimators' : [10,50,100,150,200]
}
rf search =
RandomizedSearchCV(rf,param distributions=param,n iter=5,scoring=make scorer(
mean squared error),
                                n jobs=-1,cv=5,verbose=3)
```

```
rf search.fit(x train, y train)
Fitting 5 folds for each of 5 candidates, totalling 25 fits
                                                                         Out[59]:
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n iter=5,
n jobs=-1,
                   param distributions={'max depth': [3, 6, 9, 12, 15],
                                         'n estimators': [10, 50, 100, 150,
                                                          2001},
                   scoring=make_scorer(mean_squared_error), verbose=3)
                                                                          In [60]:
#In a Jupyter environment, please rerun this cell to show the HTML
representation or trust the notebook.
#On GitHub, the HTML representation is unable to render, please try loading
this page with nbviewer.org.
                                                                          In [61]:
means = rf search.cv results ['mean test score']
params = rf search.cv results ['params']
for mean, param in zip(means, params):
   print("%f with: %r" % (mean, param))
    if mean == min(means):
        print('Best parameters with the minimum Mean Square Error
are:',param)
2.753132 with: {'n estimators': 50, 'max depth': 12}
2.644186 with: {'n estimators': 200, 'max depth': 6}
2.640827 with: {'n estimators': 50, 'max depth': 6}
Best parameters with the minimum Mean Square Error are: {'n estimators': 50,
'max depth': 6}
2.762468 with: {'n_estimators': 50, 'max_depth': 15}
2.739511 with: {'n estimators': 200, 'max depth': 15}
                                                                          In [62]:
rf = RandomForestRegressor(n_estimators=50, max_depth=6)
rf.fit(x train, y train)
rf pred = rf.predict(x test)
14. Measure the performance using Metrics
                                                                          In [64]:
```

```
from sklearn import metrics
RMSE1 = np.sqrt(metrics.mean_squared_error(y_test, lr_pred))
MAE = metrics.mean_absolute_error(y_test, lr_pred)
MSE = metrics.mean_squared_error(y_test, lr_pred)
R2 = metrics.r2_score(y_test,lr_pred)
print('Linear Regression :')
print('-----')
print('MAE:', MAE)
```

```
print('MSE:', MSE)
print('RMSE:', RMSE1)
print('R2 Score :',R2)
print('\n\n')
Linear Regression :
_____
MAE: 1.326777442258078
MSE: 2.9868483619389266
RMSE: 1.7282500866306725
R2 Score: 0.4466536519118789
                                                                      In [65]:
from sklearn import metrics
RMSE2 = np.sqrt(metrics.mean squared error(y test, rf pred))
MAE = metrics.mean absolute error(y test, rf pred)
MSE = metrics.mean_squared_error(y_test, rf_pred)
R2 = metrics.r2 score(y test,rf pred)
print('Random Forest Contains:')
print('----')
print('MAE:', MAE)
print('MSE:', MSE)
print('RMSE:', RMSE2)
print('R2 Score :',R2)
Random Forest Contains:
_____
MAE: 1.2369731265164512
MSE: 2.5047280907807443
RMSE: 1.5826332774148104
R2 Score: 0.5359717086248263
Compare Linear Regression and Random Forest
Random Forest got low rmse value than Linear Regression
                                                                      In [66]:
RMSE = RMSE1-RMSE2
print(RMSE)
0.14561680921586206
```

In []: