

Homework 1: Where to Go Now? Time-aware? Type-aware? or Geo-distance Location Recommender

H.P. NCKU EE

Announcement

■ 11/7 I have a business trip so.....

Location Recommendation vs. Location Prediction

- Location Recommendation
 - Recommend NEW locations (never visited before)
- Location Prediction
 - Predict the next existing locations (had ever visited)
- General considered factors
 - Current location info
 - Current time
 - User history/preference
 - Social interaction

Route Planning can be viewed as the successive applications of location recommendation.

Check-in at New Venues

- People seek to discover new locations
 - 80%-90% of visited places are new
 - 60%-80% of check-ins occur at new places

Homework1: Location Recommendation/ Prediction for Pol-Sequence data

Goal: Given users' historical and destination checkins, recommend personalized locations for users:

Motivation

- For user
 - Recommend the locations the user did not visit before
- For service provider
 - Location based services or commercials would profit by a location prediction engine.
 - Location package for finding target users
- Point of Interest (POI) : A certain location/attraction/place
- Route: The visiting location sequence of a certain day.

Challenges

- Difficult cases in real data
 - Problem 1: Unobserved nature:
 - Frequency does not work. (New POI-user)
 - data sparsity

- Problem 2: Complex user preference
 - geographical coordinates
 - category information (semantic)
 - Time-sensitive behaviors

- Problem 3: Different role in a city
 - Victors or non-visitors

Task

- Given:
 - Users' check-in records (route-based) in New York City with
 - time information (hour)
 - A list of candidate locations
 - The category information of all POIs
 - The position(geographical coordinates) of all POIs

- You need to
 - For each unknown location, guess a ranked location list
 - The list is ranked by visiting probabilities of locations

checkins_missing.txt (row: one-day trajectory)

- Uid:hour1, location_id1, hour2, location_id2, hour3, location_id3, ...
- 9448:12,3fd66200f964a520c6e61ee3,14,4d8774c140a7a35d4d4648be,18,47f39422f964a5209b
 4e1fe3,19,4393dd78f964a520782b1fe3,19,3fd66200f964a52003e71ee3
- 9448:12,4e78ec28483bc8fe840a40d9,18,?,20,4b089510f964a520da0e23e3,22,4a96f1fcf964a5
 20a82720e3
- 9448:12,4cc5efac91413704e185cc55,13,?,13,4b968e08f964a52047d434e3,17,49edce76f964a5
 20f9671fe3,18,?,23,4adfb640f964a520e57c21e3
- 9448:20,4fae5867e4b091b462a96176,21,4f54e133e4b036244ce58fc7,21,3fd66200f964a520bb e61ee3
- 9448:3,41e46880f964a520d41e1fe3
- 9448:11,4db84a97f7b15ca52ce70e7f,12,4f8ca5e0e4b0cbdd4aee48cd,14,4d30b3de2748b60c4d
 50dea0,19,431e2d80f964a52079271fe3
- 9448:21,43a52546f964a520532c1fe3,22,4aa3bf7ff964a520114420e3,23,46797032f964a520f74
 71fe3
- 9448:12,49c046f1f964a5205b551fe3,13,4c3c8d3d7f49c9b658036ce3
- 9448:12,4df01a9ce4cdfec0ed2c2b05,12,4f80a871e4b0a6d0b654f7dc

loc_id_info.txt (all locations in NYC)

Location_id latitude, longitude, location_type, country

•	3fd66200f964a52000e71ee3	40.733596	-74.003139	Jazz Club	US	
•	3fd66200f964a52000e81ee3	40.758102	-73.975734	Gym	US	
•	3fd66200f964a52000ea1ee3	40.732456	-74.003755	Indian Resta	urant	US
•	3fd66200f964a52000ec1ee3	42.345907	-71.087001	Indian Resta	urant	US
•	3fd66200f964a52000ee1ee3	39.933178	-75.159262	Sandwich Pl	ace	US
•	3fd66200f964a52000f11ee3	40.652766	-74.003092	Bowling Alle	yUS	
•	3fd66200f964a52001e51ee3	40.726961	-73.980039	Dive Bar	US	

candidate_100_places.txt

4ace6c89f964a52078d020e3 42911d00f964a520f5231fe3 49b7ed6df964a52030531fe3 42829c80f964a5206a221fe3 4af5a46af964a520b5fa21e3 43695300f964a5208c291fe3 3fd66200f964a520d7f11ee3 3fd66200f964a520def11ee3 4297b480f964a52062241fe3 4840fe6bf964a52030501fe3 49c046f1f964a5205b551fe3 40f1d480f964a5206a0a1fe3 49d60947f964a520a85c1fe3 4b992b04f964a520726635e3 4a43bcb7f964a520bba61fe3 508af9ccf13627e878935855

Location_id

43a52546f964a520532c1fe3

Effectiveness

- Hit counter
 - For each user, we retrieve the hit position (第幾次猜中)
 - Average all users

Report format (1)

- No formal format, you just can find a way to introduce your (but not limited to)
 - methodologies & thinking
 - or experimental process/framework
 - or experimental results

Report format (2) Questions

What are the physical meanings of your proposed methods? Why do you want to do that?

- If same approach results in much different performance in other cities, what are the possible reasons you think?
- Do you have other idea for solving this problem? (but no time to try)

Testing

- We will provide an opportunity to let your try your answer before 10/29 23:59pm
- Please submit your files to our server (the link will be provided later)
 - Two testing results

Policy

- 1-3 members for each team
- Testing deadline: 10/29 23:59pm
- Final Deadline: 11/12 23:59pm(submit one result)
 - Penalty: each day late -5
 - Submit your file(with your student ids) to our server (the link will be provided later)
- Submit your source code of your methods (source_code.rar)
- Submit your report (report.docx)
- Submit your answer(result.txt)
 - One user one row
 - Format(no space for each line):
 - userID1:rank1_location_id,rank2_location_id,rank3_location_id...,rank100_location_id userID2:rank1_location_id,rank2_location_id,rank3_location_id ...,rank100_location_id userID3:rank1_location_id,rank2_location_id,rank3_location_id ...,rank100_location_id

.

- Total number of rows: 100
- Ranked by visiting probabilities of locations (from high to low)
- Compress all files into a rar or zip file
- 15~20% of your final grade
- Grade: Hit count: 50%, report: 50%
 - Normalized score
- Encourage propose your own idea
 - Reporting some failing methods is ok (if it spend much time)
- Discussion but no plagiarism

Hints

- Capture personal behaviors from some perspectives (some are mutually influenced)
 - Collaborative preference
 - Distance preference
 - Temporal preference(hour)
 - Category preference (category hierarchy)
 - https://developer.foursquare.com/docs/resources/categories
 - Victors or non-visitors
- Bonus: try your methods on validation data (other location) and see the effectiveness
- Recommend unseen locations!

category hierarchy

General Location Rec Strategies

- Popularity: rank locations using # of check-ins
- Content Filtering: using venue type preference
- Social Filtering: rank locations using # of check-ins by friends
- Home Distance: geo-distance from home
- K-NN User Similarity (CF)
- Place Network (Item Similarity)
- Matrix Factorization

friend link

check-in link

A Random Walk Around The City

- collective check-in behaviors (graph structure) and personalized bias.
- RWR can be applied to users with no check-ins. (cold start)

#4								
	Foursquar	re	Gowalla					
	popularity	rwr	popularity	rwr				
n	0.235	0.222	0.175	0.144				
n	0.204	0.196	0.313	0.258				
S	0.247	0.232	0.248	0.197				
er	0.233	0.200	0.285	0.236				
on	0.264	0.262	0.311	0.244				
Angeles	0.212	0.196	0.281	0.242				
York	0.192	0.185	0.280	0.242				
	0.265	0.256	0.271	0.204				
rancisco	0.208	0.200	0.220	0.183				
A	0.238	0.218	0.264	0.226				

Visited

Mathad	APR	Precision@10	Recall@10					
Method				City	popularity	rwr	popularity	rwr
Random	0.500	0.000	0.003	Austin	0.235	0.222	0.175	0.144
Popular	0.228	0.026	0.089	Boston	0.204	0.196	0.313	0.258
				Dallas	0.247	0.232	0.248	0.197
Activity	0.228	0.025	0.087	Denver	0.233	0.200	0.285	0.236
Home	0.383	0.008	0.026	London	0.264	0.262	0.311	0.244
Casial	0.202	0.015	0.040	Los Angeles	0.212	0.196	0.281	0.242
Social	0.392	0.015	0.049	New York	0.192	0.185	0.280	0.242
kNN	0.443	0.003	0.011	Paris	0.265	0.256	0.271	0.204
PlaceNet	0.337	0.026	0.077	San Francisco	0.208	0.200	0.220	0.183
				Seattle	0.238	0.218	0.264	0.226
MF	0.281	0.004	0.014	Seoul	0.210	0.226	0.410	0.381
RW	0.217	0.028	0.094	Average	0.228	0.217	0.278	0.232
·			•	9				ı

Tutorials on Location Recommendation

- Jiliang Tang, Jie Tang, Huan Liu.
 Recommendation in Social Media. @ ACM KDD 2014.
- Huiji Gao, Jiliang Tang, and Huan Liu.
 Personalized Location Recommendation on Location-based Social Networks. @ ACM RecSys 2014.
- Yu Zheng.
 Location-based Social Networks. @ WWW 2012.

Survey Papers:

A. Noulas, S. Scellato, N. Lathia, C. Mascolo: A Random Walk around the City: New Venue Recommendation in Location-Based Social Networks. SocialCom 2012.

Jie Bao, Yu Zheng, David Wilkie, and Mohamed F. Mokbel. A Survey on Recommendations in Location-based Social Networks. Geoinformatica 2014.

Yonghong Yu and Xingguo Chen. A Survey of Point-of-Interest Recommendation in Location-Based Social Networks. AAAI Trajectory-based Behavior Analytics Workshop 2015.