Versuch 101

Das Trägheitsmoment

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 16.11.2021 Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie		3
	1.1	Das T	rägheitsmoment und Drehmoment	3
		1.1.1	Das Trägheitsmoment	3
		1.1.2	Das Drehmoment	3
	1.2	Weiter	re nützliche Formeln	4
		1.2.1	Trägheitsmoment Zylinder	4
		1.2.2	Trägheitsmoment Kugel	5
		1.2.3	Trägheitsmoment langer Stab	5
		1.2.4	Gaußsche Fehlerfortpflanzung	5
2	Dur	chführu	ıng	6
3	Aus	wertung	g	7
	3.1	Winke	elrichtgröße	7
	3.2	Eigent	trägheitsmoment	7
	3.3	Trägh	eitsmoment des Zylinders	9
		3.3.1	Theoretische Werte	10
		3.3.2	Experimentelle Werte	10
	3.4	Trägh	eitsmoment der Kugel	11
		3.4.1	Theoretische Werte	11
		3.4.2	Experimentelle Werte	11
	3.5	Maße	des Körpers	12
	3.6	Trägh	eitsmoment der Puppe in Körperhaltung 1	13
		3.6.1	Theoretische Werte	13
		3.6.2	Experimentelle Werte	14
	3.7	Trägh	eitsmoment der Puppe in Körperhaltung 2	15
		3.7.1	Theoretische Werte	15
		3.7.2	Experimentelle Werte	15
4	Disk	cussion		17
5	Mes	swerte		18

1 Theorie

1.1 Das Trägheitsmoment und Drehmoment

Bei einer geradlinigen Bewegung wird eine Änderung der Bahn durch die Kraft $\vec{F} = m \cdot \vec{a}$ bewirkt. Diese Kraft hängt von der Masse m ab. Diese Masse ist die Trägheit eines starren Körpers gegenüber der Änderung der Geschwindigkeit.

Analog dazu gibt es bei der Rotation das Drehmoment und das Trägheitsmoment. Das Trägheitsmoment gibt also (wie die Masse bei der geradlinigen Bewegung) an, wie träge ein Körper gegenüber einer Änderung der Winkelgeschwindigkeit ist. Im Folgenden werden wir das Formelzeichen I für das Trägheitsmoment, und M für das Drehmoment verwenden.

1.1.1 Das Trägheitsmoment

Allgemein wird das Gesamtträgheitsmoment eines ausgedehnten Körpers folgendermaßen bestimmt:

$$I = \sum_{i}^{n} r_i^2 \cdot m_i \tag{1}$$

 \boldsymbol{r}_i ist hierbei der Abstand der Massenelemente m_i von der Drehachse. Für infinitisimale Massen integrieren wir:

$$I = \int r^2 \mathrm{d}m \tag{2}$$

Aus den Formeln folgt bereits, dass das Trägheitsmoment I im Gegensatz zu der Masse m nicht in kg angegeben wird, sondern in kg·m².

Das Trägheitsmoment wird immer bezüglich einer Drehachse angegeben. Falls diese Achse nicht durch den Schwerpunkt des Körpers verläuft, sondern parallel mit einem Abstand a, so kann man mithilfe des Steinerschen Satzes das Trägheitsmoment bezüglich der verschobenen Achse berechnen:

$$I = I_S + m \cdot a^2 \tag{3}$$

 I_S ist das Trägheitsmoment durch den Schwerpunkt des Körpers, m die Masse des Körpers und a, wie oben erwähnt, ist der Abstand der beiden Achsen.

1.1.2 Das Drehmoment

Das Drehmoment ist das Analogon zu der Kraft bei einer geradlinigen Bewegung und wird so bestimmt:

$$\vec{M} = \vec{F} \times \vec{r} \text{ bzw. } M = F \cdot r \cdot \sin(\varphi)$$
 (4)

Wenn der Körper durch das Drehmoment aus seiner Ruhelage ausgelenkt wird, führt das bei schwingungsfähigen Systemen dazu, dass ein rücktreibendes Drehmoment (z.B. durch eine Feder) bewirkt wird und der Körper anfängt harmonisch zu schwingen. Die Schwingungdsdauer ist gegeben durch:

$$T = 2\pi \sqrt{\frac{I}{D}} \tag{5}$$

Dabei ist D die Winkelrichtgröße und I das Gesamtträgheitsmoment. Mit der Winkelrichtgröße lässt sich auch das Drehmoment beschreiben: $M = D \cdot \varphi$.

1.2 Weitere nützliche Formeln

Formel 5 ist Teil der Lösung der DGL 2-ter Ordnung (von der Bewegungsgleichung eines harmonischen Oszillators) und gilt nur für kleine Winkel, da zur Lösung die Kleinwinkelnäherung verwendet wurde. Die Formel lässt sich zudem umstellen zum Trägheitsmoment:

$$\Leftrightarrow T^2 = 4\pi^2 \cdot \frac{I}{D} \tag{6}$$

$$\Leftrightarrow I = \frac{T^2 \cdot D}{4\pi^2} \tag{7}$$

1.2.1 Trägheitsmoment Zylinder

Das Trägheitsmoment eines Zylinders mit Radius r, Höhe h und dessen Drehachse durch den Schwerpunkt und senkrecht zur Bodenfläche steht (stehend), lässt sich folgendermaßen mithilfe Formel 2 berechnen:

$$I_{Z,z} = \int r^2 dm = \iiint_V r_\perp^2 \rho(r) dV = \frac{M}{V} \int_{\frac{-h}{2}}^{\frac{h}{2}} \int_0^R \int_0^{2\pi} r^3 d\varphi dr dz$$

$$\Leftrightarrow I_{Z,z} = \frac{MR^2}{2}$$
(8)

Das Trägheitsmoment eines Zylinders mit Radius R, Höhe h und dessen Drehachse durch den Schwerpunkt und parallel zur Bodenfläche steht (liegend), lässt sich folgendermaßen: Zunächst benutzen wir die Relationen $I_{Z,x} = I_{Z,y}$ und $I_{Z,x} = \frac{1}{2} \cdot (I_{Z,x} + I_{Z,y})$. Daraus folgt:

$$\begin{split} I_{Z,x} &= \frac{1}{2} \cdot \left(\int_M (y^2 + z^2) \mathrm{d}m + \int_M (x^2 + z^2) \mathrm{d}m \right) = \frac{1}{2} \int_M (x^2 + y^2) \mathrm{d}m + \int_M z^2 \mathrm{d}m \\ \Leftrightarrow I_{Z,x} &= \frac{1}{2} I_Z, z + \int_M z^2 \mathrm{d}m \underset{(7)}{=} \frac{MR^2}{4} + \frac{M}{V} \int_{\frac{-h}{2}}^{\frac{h}{2}} \int_0^R \int_0^{2\pi} z^2 \cdot r \mathrm{d}\varphi \mathrm{d}r \mathrm{d}z \end{split}$$

$$\Leftrightarrow I_{Z,x} = \frac{MR^2}{4} + \frac{M}{R^2 \cdot \pi \cdot h} \frac{1}{2} \cdot 2\pi \cdot R^2 \cdot \frac{1}{3} \cdot \left(\frac{h^3}{2} - \frac{-h^3}{2}\right) = \frac{MR^2}{4} + \frac{M}{h} \cdot \frac{1}{3} \cdot \left(\frac{h^3}{8} + \frac{h^3}{8}\right)$$

$$\Leftrightarrow I_{Z,x} = \frac{MR^2}{4} + \frac{Mh^2}{12}$$
(9)

1.2.2 Trägheitsmoment Kugel

Das Trägheitsmoment einer Kugel mit Radius R und Höhe h lässt sich wie folgt mit Formel 2 berechnen:

$$I_{K,x=y=z} = \int r^2 \mathrm{d}m \underset{I_{K,z}}{=} \iiint_V (x^2 + y^2) \rho(r) \mathrm{d}V$$

$$\Leftrightarrow I_K = \frac{M}{V} \int_0^{2\pi} \int_0^R \int_{-1}^1 r^4 \underbrace{\sin^2(\theta)}_{1-\cos^2(\theta)} \mathrm{d}(\cos(\theta)) \mathrm{d}r \mathrm{d}\varphi = \frac{M}{\frac{3}{4}\pi R^3} \cdot 2\pi \cdot \left(\frac{1}{5}R^5\right) \cdot \frac{3}{4}$$

$$\Leftrightarrow I_K = \frac{2MR^2}{5} \tag{10}$$

1.2.3 Trägheitsmoment langer Stab

Das Trägheitsmoment eines Stabes der Masse M und der Länge a lässt sich wie folgt mit Formel 2 berechnen:

$$I_{St,z} = \int x^2 dm = \int_{\frac{-a}{2}}^{\frac{a}{2}} x^2 \rho(x) dx = \frac{M}{a} \cdot \frac{1}{3} \left(\left(\frac{a}{2} \right)^3 - \left(\frac{-a}{2} \right)^3 \right)$$

$$\Leftrightarrow I_{St,z} = \frac{M}{3a} \cdot \frac{a^3}{4}$$

$$\Leftrightarrow I_{St,z} = \frac{M \cdot a^2}{12}$$

$$(11)$$

1.2.4 Gaußsche Fehlerfortpflanzung

Um die Messunsicherheiten der abgeleiteten Messgrößen zu berechnen, wird die Gaußsche Fehlerfortpflanzung verwendet:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 (\Delta x)^2 + \left(\frac{\partial f}{\partial y}\right)^2 (\Delta y)^2 + \dots + \left(\frac{\partial f}{\partial z}\right)^2 (\Delta z)^2}$$
 (12)

2 Durchführung

Auf einer zweifach mit einem Rahmen verbundenen Drillachse werden unterschiedliche Körper befestigt. Die Drillachse ist durch eine Feder mit dem Rahmen verbunden. Um später Trägheitsmomente zu bestimmen, muss die Federkonstante und das Eigenträgheitsmoment der Drillachse bestimmt werden.

Die Federkonstante D wird durch Ansetzen einer Federwage an einem Stab, der als masselos angenommen werden kann, in einem Abstand r zur Drillachse bestimmt. Für Zehn Auslenkungen ϕ der Stange wird eine Kraft gemessen.

Das Eigenträgheitsmoment I_D wird durch Anbringen von zwei Zylindern im gleichen Abstand von der Drillachse an der Stange gemessen. Dabei wird die Stange durch Auslenkung in Schwingung gebracht und mit einer Stoppuhr die Schwingungsdauer gemessen. Im Anschluss wird das Trägheitsmoment eines Zylinders und einer Kugel bestimmt. Dies geschieht wieder durch Auslenkung der Drillachse, so dass eine Schwingungsdauer gemessen werden kann.

Nach dem gleichen Prinzip wird das Trägheitsmoment einer Holzfigur in zwei Positionen bestimmt. In der ersten Position sind die Beine der Figur ausgestreckt und in der zweiten Position sind die Arme ausgestreckt.

3 Auswertung

3.1 Winkelrichtgröße

Die Winkelrichtgröße wird durch die Formel

$$D = \frac{F \cdot r}{\varphi} \tag{13}$$

bestimmt, wobei φ in Bogenmaß angegeben wird: $\alpha_{Rad} = \frac{\alpha_{Deg}}{180^{\circ}} \cdot \pi$. Die verwendeten Werte sind in Tabelle 1 angegeben.

Tabelle 1: Messdaten zur Bestimmung der Winkelrichtgröße D

F/N	$\varphi/^{\circ}$	φ / Rad	r/m	D/Nm
0,1	30	$\frac{\pi}{6}$	0,1	0,019099
$0,\!26$	60	$\frac{6}{\pi}$	0,1	0,024828
0,41	90	$\frac{3}{\pi}$	0,1	$0,\!026101$
$0,\!56$	120	$\frac{\overline{2}}{2\pi}$	0,1	$0,\!026738$
0,72	150	$\frac{3}{5\pi}$	0,1	0,027502
0,85	180	π	0,1	0,027056
$0,\!48$	210	$\frac{7\pi}{6}$	0,2	$0,\!026192$
$0,\!55$	240	$\frac{6}{4\pi}$	0,2	$0,\!026261$
0,63	270	$\frac{3}{3\pi}$	0,2	0,026738
0,69	300	$\frac{\frac{2}{5\pi}}{3}$	0,2	0,026356

Sowohl der Mittelwert, als auch die Standardabweichung wurden mit Python bestimmt. Daraus ergibt sich der gemittelte Wert

$$D = (0.0256871 + 0.000765) \,\mathrm{Nm}.$$

3.2 Eigenträgheitsmoment

Um das Eigenträgheitsmoment der Konstruktion zu bestimmen, werden die Schwingungsdauern unter verschiedenen Abständen a zur Drehachse der beiden identischen Massen m_G unter demselben Auslenkungswinkel φ gemessen. Die beiden Gewichte besitzen die Masse $m_G=0,2611$ kg, die Höhe $h_G=0,0203$ m und den Radius $R_G=0,0225$ m, mit den Messunsicherheiten $\Delta m_G=0,0001$ kg und $\Delta R_G({\rm bzw.h_G})=0,0001$ m.

Um nun das Eigenträgheitsmoment zu errechnen wird die Tatsache verwendet, dass das Trägheitsmoment der Gewichte bestimmt und das Gesamtträgheitsmoment (I_G und I_D) gemessen werden kann. Es gilt $I_{Ges}=I_D+I_G$. Mithilfe von Formel 3 und 3.6.1 ergibt sich Folgendes:

$$I_{Ges} = I_D + 2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right) + 2 \cdot m_G \cdot a^2 \tag{14}$$

Tabelle 2: Messdaten zur Bestimmung des Eigenträgheitsmoment ${\cal I}_D$

a/m	T/s^{-1}	a^2/m^2	T^2/s^{-2}
0,050	2,92	0,003	8,53
0,075	3,19	0,006	10,18
$0,\!100$	3,92	0,010	$15,\!37$
$0,\!125$	$4,\!32$	0,016	$18,\!66$
$0,\!150$	4,88	0,023	$23,\!81$
$0,\!175$	$5,\!58$	0,031	$31,\!14$
0,200	$5,\!86$	0,040	$34,\!34$
$0,\!225$	$6,\!65$	0,051	$44,\!22$
$0,\!250$	$7,\!14$	0,063	50,98
0,275	7,74	0,076	59,91

Die Formel 14 wird nun in Formel 6 eingesetzt:

$$T^{2} = 4\pi^{2} \cdot \frac{I_{D} + 2 \cdot \left(\frac{m_{G}R_{G}^{2}}{4} + \frac{m_{G}h_{G}^{2}}{12}\right) + 2 \cdot m_{G} \cdot a^{2}}{D}$$

$$\Leftrightarrow T^{2} = \frac{8\pi^{2} \cdot m_{G}}{D} \cdot a^{2} + \frac{4\pi^{2} \cdot I_{D}}{D} + \frac{8\pi^{2} \cdot \left(\frac{m_{G}R_{G}^{2}}{4} + \frac{m_{G}h_{G}^{2}}{12}\right)}{D}$$
(15)

Formel 15 besitzt die Form y = mx + b. Wobei

$$y = T^2, \, m = \frac{8\pi^2 \cdot m_G}{D}, \, x = a^2 \, \text{und} \, b = \frac{4\pi^2 \cdot I_D}{D} + \frac{8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{D}$$

ist. Es wird nun T^2 gegen a^2 aufgetragen (Abbildung 1) und per linearer Regression m und b bestimmt.

Die lineare Regression wurde mit Python durchgeführt und ergibt für die Gerade y=mx+b die Werte

$$m = (701,1 \pm 15,8) \frac{1}{\text{s}^2\text{m}^2}$$
$$b = (7,6 \pm 0,6) \frac{1}{\text{s}^2}.$$

Die Formel für b
 wird nun nach ${\cal I}_D$ umgestellt:

$$b = \frac{4\pi^2 \cdot I_D}{D} + \frac{8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{D}$$

$$\Leftrightarrow I_D = \frac{D \cdot b - 8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{4\pi^2}$$

Abbildung 1: Messung des Eigenträgheitsmoments

$$\Leftrightarrow I_D = \frac{D \cdot b}{4\pi^2} - \left(\frac{m_G R_G^2}{2} + \frac{m_G h_G^2}{6}\right) \tag{16}$$

Die Messunsicherheit für ${\cal I}_D$ wird mithilfe der Gaußschen Fehlerfortpflanzung berechnet (Formel 12):

$$\begin{split} \Delta I_D &= \left(\left(\frac{b}{4\pi^2} \right)^2 \cdot (\Delta D)^2 + \left(\frac{D}{4\pi^2} \right)^2 \cdot (\Delta b)^2 + \left(-\frac{R_G^2}{2} - \frac{h_G^2}{6} \right)^2 \cdot (\Delta m_G)^2 \right. \\ &+ (m_G R_G)^2 \cdot (\Delta R_G)^2 + \left(\frac{m_G h_G}{3} \right)^2 \cdot (\Delta h_G)^2 \right)^{0.5} \end{split} \tag{17}$$

$$\Delta I_D = 0.417 \cdot 10^{-3} \cdot \text{kg} \cdot \text{m}^2$$

Also ergibt sich mit Formel 17 und 16 I_D folgendermaßen:

$$I_D = (4,861 \pm 0,417) \cdot 10^{-3} \cdot \text{kg} \cdot \text{m}^2$$
 (18)

3.3 Trägheitsmoment des Zylinders

Der Zylinder hat einen Radius von $R_{Zyl}=0.0494\,\mathrm{m}$ und eine Höhe von $h_{Zyl}=0.1008\,\mathrm{m}$ und eine Masse von $m_{Zyl}=0.3678\,\mathrm{kg}$. Die Messunsicherheiten der Waage beträgt $\Delta m=0.0001\,\mathrm{kg}$ und die des Nonius' $\Delta r=0.0001\,\mathrm{m}$.

3.3.1 Theoretische Werte

Das Gesamtträgheitsmoment wird durch Formel 8 bestimmt und der Fehler wird mit der Gaußschen-Fehlerfortpflanzung (12) errechnet:

$$\Delta I_{Th,Zyl} = \sqrt{\left(m_{Zyl} \cdot R_{Zyl}\right)^2 \cdot (\Delta R_{Zyl})^2 + \left(\frac{R_{Zyl}^2}{2}\right)^2 \cdot (\Delta m_{Zyl})^2}$$
(19)

$$\Delta I_{Th,Zyl} = 0.002 \cdot 10^{-3} \cdot \text{kg} \cdot \text{m}^2$$
 (20)

Daraus ergibt sich schließlich für $I_{Th,Zyl}$:

$$I_{Th,Zyl} = (0.45 \pm 0.002) \cdot 10^{-3} \,\mathrm{kg \cdot m^2}$$

3.3.2 Experimentelle Werte

Der Zylinder wird auf der Drillachse um den Winkel $\phi_{Zyl}=90^\circ$ ausgelenkt und die Zeit nach fünf Schwingungen gestoppt. Durch teilen der Zeitmessungen Z_{Zyl} durch fünf ergeben sich die Schwingungsdauern T_{Zul} . Diese sind in Tabelle 3 zu finden.

Tabelle 3: Messdaten der Schwingungsdauer des Zylinders

Z_{Zyl}/s	T_{Zyl}/s
3,94	0,79
3,75	0,75
$4,\!16$	0,83
5,78	1,16
3,69	0,74
3,97	0,79
$3,\!85$	0,77
3,84	0,77
$4,\!12$	0,82
3,88	0,78

Der Mittelwert und die Abweichung wurden wieder mit Python berechnet. Aus den Daten ergibt sich

$$T_{Zul} = (0.82 \pm 0.12) \,\mathrm{s}.$$

Mit der Gaußschen-Fehlerforpflanzung ergibt sich aus Formel 7:

$$\Delta I_{Exp,Zyl} = \sqrt{\left(\frac{TD}{2\pi^2}\right)^2 \cdot (\Delta T)^2 + \left(\frac{T^2}{4\pi^2}\right)^2 \cdot (\Delta D)^2}$$
 (21)

$$\Delta I_{Exp,Zyl} = 0.129 \cdot 10^{-3} \,\mathrm{kg \cdot m^2}.$$
 (22)

Aus Formel 7 und Formel 21 erhält man

$$I_{Exp,Zul} = (0.438 \pm 0.129) \cdot 10^{-3} \,\mathrm{kg \cdot m^2}.$$

3.4 Trägheitsmoment der Kugel

Die Kugel hat einen Radius von $R_{Kugel}=0.0726\,\mathrm{m}$ und eine Masse $m_{Kugel}=1.1727\,\mathrm{kg}$. Die Messunsicherheiten der Waage beträgt $\Delta m=0.0001\,\mathrm{kg}$ und die des Nonius' $\Delta r=0.0001\,\mathrm{m}$.

3.4.1 Theoretische Werte

Aus Formel 10 und 12 ergibt sich für die Gaußschen-Fehlerfortpflanzung:

$$\Delta I_{Th,K} = \sqrt{\left(\frac{2R_{Kugel}^2}{5}\right)^2 \cdot (\Delta m_{Kugel})^2 + \left(\frac{4MR}{5}\right)^2 \cdot (\Delta R_{Kugel})^2}$$

$$\Delta I_{Th,K} = 0,0068 \cdot 10^{-3} \,\text{kg} \cdot \text{m}^2$$
(23)

$$I_{Th,K} = (2.47 \pm 0.0068) \cdot 10^{-3} \,\mathrm{kg \cdot m^2}.$$

3.4.2 Experimentelle Werte

Die Kugel wird auf der Drillachse um $\varphi=90^\circ$ ausgelenkt und die Zeit nach drei Schwingungen gestoppt. Die Schwingungsdauern T_{Kugel} erhält man durch teilen der Zeitmessungen Z_{Kugel} durch drei. Die Zeitmessungen und berechneten Schwingungsdauern sind in Tabelle 4 zu finden.

Tabelle 4: Messdaten der Schwingungsdauer der Kugel

Z_{Kugel}/s	T_{Kugel}/s
5,94	1,98
5,71	1,90
5,62	1,87
5,47	1,82
5,63	1,88
$5,\!47$	1,82
5,75	1,92
$5,\!47$	1,82
$5,\!66$	1,89
5,57	1,86

Der Mittelwert und die Abweichug wurden mit Hilfe von Python bestimmt. Aus den Werten erhält man

$$T_{Kugel} = (1.88 \pm 0.05) \,\mathrm{s.}$$
 (24)

Aus Formel 7 und Formel 21 erhält man:

$$\Delta I_{Exp,K} = 0.140 \cdot 10^{-3} \,\mathrm{kg \cdot m^2}$$

Daraus folgt für $I_{Exp,K}$:

$$I_{Exp,K} = (2{,}2997 \pm 0{,}140) \cdot 10^{-3} \, \mathrm{kg \cdot m^2}.$$

3.5 Maße des Körpers

Der Körper wird durch sechs Zylinder angenähert. Er besteht aus einem Oberkörper, einem Kopf und jeweils zwei Armen und Beinen. Die Abmessungen lassen sich in Tabelle 5 finden. Außerdem hat der Körper eine Masse von $m_{Puppe}=0.1683\,\mathrm{kg}$ Die Standardabweichung

Tabelle 5: Maße des Körpers

$r_{Oberk\"{o}rper}/m$	r_{Beine}/m	r_{Arme}/m	r_{Kopf}/m
0,0203	0,0091	0,0063	0,0109
0,0160	0,0084	0,0071	0,0145
0,0199	0,0084	0,0066	0,0117
0,0104	0,0065	0,0073	0,0110
0,0194			
0,0167			

und die Mittelwerte wurden mit Python berechnet.

$$\begin{split} R_{Oberk\ddot{o}rper} &= (0.0171 \pm 0.0034) \, \mathrm{m} \\ R_{Beine} &= (0.0081 \pm 0.0010) \, \mathrm{m} \\ R_{Arme} &= (0.0068 \pm 0.0004) \, \mathrm{m} \\ R_{Kopf} &= (0.0120 \pm 0.0015) \, \mathrm{m} \end{split}$$

Die gemessen Höhen der Zylinder sind als

$$\begin{split} h_{Oberk\"{o}rper} &= (0{,}0991 \pm 0{,}0001)\,\mathrm{m} \\ h_{Beine} &= (0{,}1502 \pm 0{,}0001)\,\mathrm{m} \\ h_{Arme} &= (0{,}1129 \pm 0{,}0001)\,\mathrm{m} \\ h_{Kopf} &= (0{,}0519 \pm 0{,}0001)\,\mathrm{m} \end{split}$$

angegeben.

Es wird die Massendichte bestimmt, um die Massen und somit die Trägheitsmomente auszurechnen:

$$\begin{split} \rho &= \frac{M_{Ges}}{V_{Ges}} \\ V_{Ges} &= V_{Oberk\"{o}rper} + V_{Kopf} + 2 \cdot V_{Arme} + 2 \cdot V_{Beine} \\ &= \pi \cdot \left(R_{Oberk\"{o}rper}^2 \cdot h_{Oberk\"{o}rper} + R_{Kopf}^2 \cdot h_{Kopf} + 2 \cdot R_{Arme}^2 \cdot h_{Arme} + 2 \cdot R_{Beine}^2 \cdot h_{Beine} \right) \\ &= (2.09 \pm 0.38) \cdot 10^{-4} \, \mathrm{m}^3 \\ \rho &= (805,263 \pm 146,412) \, \frac{\mathrm{kg}}{\mathrm{m}^3} \end{split}$$

Daraus lässt sich nun die Masse der einzelnen Zylinder berechnen:

$$\begin{split} m_{Zyl} &= \rho \cdot V_{Zyl} \\ m_{Oberk\"{o}rper} &= \rho \cdot \pi R_{Ober\"{o}rper}^2 h_{Ober\"{o}rper} = 0,073308 \pm 0,032055 \text{kg} \\ m_{Beine} &= \rho \cdot \pi R_{Beine}^2 h_{Beine} = 0,02493 \pm 0,007644 \text{ kg} \\ m_{Arme} &= \rho \cdot \pi R_{Arme}^2 h_{Arme} = 0,013207 \pm 0,00286 \text{ kg} \\ m_{Kopf} &= \rho \cdot \pi R_{Kopf}^2 h_{Kopf} = 0,018907 \pm 0,00609 \text{ kg} \end{split}$$

3.6 Trägheitsmoment der Puppe in Körperhaltung 1

3.6.1 Theoretische Werte

Um das Gesamtträgheitsmoment zu errechnen, werden die Einzelträgheitsmomente der Zylinder berechnet:

Für den Oberkörper gilt, dass die Drehachse durch seinen Schwerpunkt verläuft. Wir können somit Formel 8 anwenden ohne den Satz von Steiner zu verwenden (Formel 3):

$$I_{Oberk\ddot{o}rper} = \frac{m_{Oberk\ddot{o}rper}R_{Oberk\ddot{o}rper}^2}{2} = (1{,}0718 \pm 0{,}6335) \cdot 10^{-5}\,\mathrm{kgm^2}$$

Für den Kopf gilt das Gleiche, wie für den Oberkörper:

$$I_{Kopf} = \frac{m_{Kopf} R_{Kopf}^2}{2} = (0.1361 \pm 0.0555) \cdot 10^{-5} \, \mathrm{kgm^2}$$

In Position 1 hängen die Arme an den Seiten des Oberkörpers herunter, das heißt die Drehachse ist um $a=R_{Oberk\"{o}rper}+R_{Arme}=0.0239\pm0.003716\,\mathrm{m}$ verschoben und wir müssen die Formeln 3 und 8 anwenden:

$$\begin{split} I_{Arme,1} &= \frac{m_{Arme} R_{Arme}^2}{2} = (0.0305 \pm 0.0075) \cdot 10^{-5} \, \mathrm{kgm^2} \\ I_{Arme,2} &= I_{Arme,1} + m_{Arme} \cdot a^2 = (0.7849 \pm 0.68889) \cdot 10^{-5} \, \mathrm{kgm^2} \end{split}$$

Bei den Beinen gilt ähnliches, nur dass diese um $a=h_{Beine}\cdot 0,5=0,01247\pm 0,00382\,\mathrm{m}$ verschoben sind und wir die Formeln und 3 verwenden:

$$\begin{split} I_{Beine,1} &= \frac{m_{Beine} R_{Beine}^2}{4} + \frac{m_{Beine} h_{Beine}^2}{12} = (0,47 \pm 0,145) \cdot 10^{-4} \, kg \cdot m^2 \\ I_{Beine,2} &= I_{Beine,1} + m_{Beine} \cdot a^2 = (0,51 \pm 0,147) \cdot 10^{-4} \, kg \cdot m^2 \end{split}$$

Das Gesamtträgheitsmoment bestimmt sich nun aus der Addition aller einzelnen Trägheitsmomente:

$$I_{Ges} = 2 \cdot I_{Beine,2} + 2 \cdot I_{Arme,2} + I_{Kopf} + I_{Oberk\"{o}rper} = (0,00013 \pm 0,000024) \ kg \cdot m^2 \eqno(25)$$

3.6.2 Experimentelle Werte

Die Puppe wird in der ersten Körperhaltung um $\phi = 90^{\circ}$ ausgelenkt und die Zeit Z_{K1} nach drei Schwingungen gemessen. Die Schwingungsdauern T_{K1} erhält man durch teilen der Zeitmessung durch drei. Die Zeitmessungen und Schwingunsdauern sind in Tabelle 6 angegeben.

Tabelle 6: Messdaten der Schwingunsdauer des Körpers in der ersten Position

Z_{K1}/s	T_{K1}/s
2,75	0,92
2,66	0,89
2,66	0,89
2,90	0,97
$3,\!16$	1,05
$2,\!56$	0,85
$2,\!47$	0,82
2,75	0,92
$2,\!53$	0,84
2,78	0,93

Mit Hilfe von Python lässt sich der Mittelwert und die Abweichung bestimmen. Aus den Messdaten erhält man

$$T_{K1} = (0.91 \pm 0.06) \,\mathrm{s}.$$

Mit Hilfe von Formel 7 und Formel 23 lässt sich das Trägheitsmoment bestimmen als

$$I_{K1} = (9.57 \pm 0.63) \cdot 10^{-6} \,\mathrm{mkg}^2.$$

3.7 Trägheitsmoment der Puppe in Körperhaltung 2

3.7.1 Theoretische Werte

Um das Gesamtträgheitsmoment zu errechnen, werden die Einzelträgheitsmomente der Zylinder berechnet:

Für den Oberkörper gilt das gleiche wie bei Position 1:

$$I_{Oberk\ddot{o}rper} = \frac{m_{Oberk\ddot{o}rper} R_{Oberk\ddot{o}rper}^2}{2} = (1,0718 \pm 0,6335) \cdot 10^{-5} \frac{\text{kg}}{\text{m}^3}$$

Für den Kopf gilt ebenfalls das Gleiche, wie für den Oberkörper:

$$I_{Kopf} = \frac{m_{Kopf} R_{Kopf}^2}{2} = (0.1361 \pm 0.0555) \cdot 10^{-5} \frac{\text{kg}}{\text{m}^3}$$

In Position 2 stehen die Arme an den Seiten des Oberkörpers ab und die Drehachse ist um $a=R_{Oberk\"{o}rper}+0,5\cdot h_{Arme}=0,07355\pm0,003401\,\mathrm{m}$ verschoben und wir müssen die Formeln 3 und 3.6.1 anwenden:

$$\begin{split} I_{Arme,1} &= fracM_{Arme}R_{Arme}^2 4 + \frac{M_{Arme}h_{Arme}^2}{12} = (1{,}4181 \pm 0{,}3071) \cdot 10^{-5} \, \frac{\text{kg}}{\text{m}^3} \\ I_{Arme,2} &= I_{Arme,1} + m_{Arme} \cdot a^2 = (8{,}563 \pm 0{,}2105) \cdot 10^{-5} \, \frac{\text{kg}}{\text{m}^3} \end{split}$$

Bei den Beinen gilt ähnliches, nur dass diese um $a=R_{Oberk\ddot{o}rper}\cdot 0.5=0.00855\pm0.0017\,\mathrm{m}$ verschoben sind und wir die Formeln 8 und 3 verwenden:

$$\begin{split} I_{Beine,1} &= \frac{M_{Beine} R_{Beine}^2}{2} = (8, 18 \pm 6, 296) \cdot 10^{-7} \, kg \cdot m^2 \\ I_{Beine,2} &= I_{Beine,1} + m_{Beine} \cdot a^2 = (1, 357 \pm 0, 147) \cdot 10^{-4} \, kg \cdot m^2 \end{split}$$

Das Gesamtträgheitsmoment bestimmt sich nun aus der Addition aller einzelnen Trägheitsmomente:

$$I_{Ges} = 2 \cdot I_{Beine,2} + 2 \cdot I_{Arme,2} + I_{Kopf} + I_{Oberk\"{o}rper} = (0{,}000288 \pm 0{,}000024) \, kg \cdot m^2 \eqno(26)$$

3.7.2 Experimentelle Werte

Die Puppe wurde in der zweiten Körperhaltung um $\phi=90^\circ$ ausgelenkt und die Zeit Z_{K2} wurde nach drei Schwingungen gestoppt. Die Schwingungsdauer T_{K2} wird durch teilen von Z_{K2} durch drei berechnet. Die Zeitmessungen und Schwingungdsdauern sind in Tabelle 7 zu finden.

Tabelle 7: Messdaten der Schwingugnsdauer des Körpers in der zweiten Position

Z_{K2}/s	T_{K2}/s
1,91	0,64
1,75	$0,\!58$
1,75	$0,\!58$
1,84	0,61
1,68	$0,\!56$
1,84	0,61
1,81	0,60
1,66	$0,\!55$
1,84	0,61
1,81	0,60

Sowohl der Mittelwert, als auch die Standarabweichung wurde mit Python bestimmt.

$$T_{K2} = (0.59 \pm 0.03) \,\mathrm{s}.$$

Mit Hilfe von Formel 7 und Formel 23 lässt sich das Trägheitsmoment bestimmen als

$$I_{K2} = (4.02 \pm 0.20) \cdot 10^{-6} \, \mathrm{kgm^2}.$$

4 Diskussion

Zuallererst fällt auf, dass die experimentellen Werte kleiner sind als die theoretischen Werte. Insgesamt sind die Abweichung von der Theorie aber geringfügig. So ist das theoretisch bestimmte Trägheitsmoment des Zylinders lediglich um 2,74% größer als das experimentell bestimmte. Für die Kugel ist das theoretische bestimmte Trägheitsmoment 7,41% größer.

Für die Puppe in der ersten Körperhaltung ist das experimentelle Trägheitsmoment um 1.258,41% größer als das theoretische Trägheitsmoment. Für die Puppe in der zweiten Körperhaltung ist das experimentelle Trägheitsmoment um 7.064,18% größer als das theoretische Trägheitsmoment.

Messfehler können durch das Wiegen der Massen, Ablesefehler der Schieblehre oder des Federkraftmessers entstanden sein. Weiterhin sind zwar die Schwingungsdauern durch das Messen mehrer Schwingungen vermutlich genauer als durch das Messen genau einer Schwingung, aber dennoch wird die Reaktionszeit beim Stoppen der Uhr für größere Messfehler gesorgt haben.

Weiterhin geht die Drehachse der Puppe nicht durch die angenommene theoretische angenommene Drehachse und die Annäherung der Puppe durch Zylinder ist auch sehr grob, so dass sich dadurch die großen Abweichungen erklären lassen.

Insgesamt lässt sich fest halten, dass die Theorie sich zumindest für geometrisch sehr einfache Körper wie eine Kugel oder einen Zylinder bestätigen lässt, aber der Satz von Steiner sich an der Holzpuppe nicht nachweisen lässt.

5 Messwerte

	Das Tragheitsmoment									
1 Wind	1 Winded und waft, Abstand									
	Genicht, Abmaße Zylinder, Hostand & Mitter									
2 (386)	Schwingungsdauer									
3. Make und Masse u. Som demer										
-S. M. 7	1125									
	No. of Contract of		1 = 1 0, N							
11 00 0 11	nan fi	Tr D	/	1						
Messu	0									
vesuch	F	7 φ		80,53	1000					
	0, M.N	200	10 cm							
1 2	0,26 N	30 60°	11							
3	0,410	900	u	9	Lebos W					
4	0,56 N	120°	11							
5	0,72 N	150°	u	100	4					
6	0,85 N	180°	Į1							
7	0,481	210°	zocm	The same	1 0					
8	0,55 N	240	u							
9 1	0,69 N	300°	4							
3	1/1/10/10/10/10/10/10/10/10/10/10/10/10/									
ACCURATION AND ADDRESS OF THE PARTY OF THE P										
ACCURATION AND ADDRESS OF THE PARTY OF THE P		200		701	POP					
ACCURATION AND ADDRESS OF THE PARTY OF THE P		1313	The state of the s	701	Ess					
ACCURATION AND ADDRESS OF THE PARTY OF THE P		23.13	in y	701	Ess					

Abbildung 2: Messdaten Teil 1

	Peauli	enauiso:0875		mo No
國門図	. [.] . [mit \$P=4	5° Dat	
Mo Tu We Th		Tin	Schwingungs	(zur mitte) Abstand a
Vesu	ch_	8,75 €	5	5 cm
1		9,575	3	2,5cm
2		11,755	3	vo cw
3		2,975	3	12,5cm
5		14,635	3	15 cm
		16,755	3	17,5cm
		17,595	3	20 cm
7 8		19,943	3	22,5cm
		21,415	3	25 cm
9	. 1	23,225	3	27,5cm
		Section 1	1	
	. 1			7 1 000
Ves such	2:	Zylindes.		7 000
	2:	Zylindes: Anzahl schwing.	I T.n	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Versuch	1	1 Anzahl	T.n 3,945	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Versuch	φ 90°	Anzahl schwing.		
Versuch	φ 90°	Anzahl schwing.	3,753	7 A
Versuch 1 2 3	φ 90° 90°	Anzahl schwing.	3,945 3,763 4,165	
Versuch A 2 3 4	90° 90° 90°	Anzahl sehwing. 5 5 5	3,945 3,753 4,165 5,785	
Versuch 1 2 3 4 5	90° 90° 90° 90°	Anzahl schwing. 5 5 5	5,946 8,768 4,268 5,788 3,698	
Versuch 1 2 3 4 5 6	90° 90° 90° 90° 90°	Anzahl schwing. 5 5 5 5	3,745 8,763 4,165 5,785 3,693 3,975	
Versuch 1 2 3 4 5 6	90° 90° 90° 90° 90° 90°	Anzahl sehwing. 5 5 5 5	3,946 3,768 4,268 5,785 3,199 3,1975 3,1855	
Versuch 1 2 3 4 5 6 7 8	90° 90° 90° 90° 90° 90° 90° 90° 90° 90°	Anzahl Schwing. 5 5 5 5	5, 84s 5, 76s 4, 16s 5, 78s 3, 19s 3, 19s 3, 18s 5, 84s	
Versuch 1 2 3 4 5 6	90° 90° 90° 90° 90° 90°	Anzahl sehwing. 5 5 5 5	3,946 3,768 4,268 5,785 3,199 3,1975 3,1855	

Abbildung 3: Messdaten Teil 2

uersuch	6	Anzah 3	I Tin	67 27
2	90°	3	1,915	
3	900	3	1,755	
4	900		1,893	
5	1 90:1	3 3 3	1,685	
G	90"	3	1,845	
2	90	3	1,815	
8	900	3	1,665	
9 1	900	30	1,845	
10	900	5 /	1,815	
10		1	4	
12		1		

Abbildung 4: Messdaten Teil 3

Abbildung 5: Messdaten Teil 4

Versu	ch 2:	huge	1	of a balancas
Versi	uch /	Q	Anzahl Schw.	T·n
1		900	3	5,943
2		200	3	51713
3			3	.51 62 8
4		90"	3	51475
5	1 9	nol	3	5,635
5 6 7	19	0°	3	514 75
	19	0°		5, 75 s 5, 47s
- 9	1 9	0'		, 66 S
	1 9	0-1	3 5	575
Versuch Versuch 1 2 3 4 5 6 7 8 4 10	90° 90° 90° 90° 90° 90° 90° 90° 90° 90°	1 .	2,766 2,66 2,66 2,66 2,66 2,66 2,66 2,66	252 263 263 263 263 263 263 263 263 263 26

Abbildung 6: Messdaten Teil 5

Abbildung 7: Messdaten Teil 6