Lecture 5 Pipelining Exercises

Q1:

The standard MIPS pipeline has 5 stages. Suppose we split each of those stages in half, resulting in a total of 10 stages. Based on what you know about pipelines, which of these is the most likely outcome of increasing the number of stages:

- A. Instruction count would stay the same, CPI would increase, cycle time would increase
- B. Instruction count would decrease, CPI would decrease, cycle time would decrease
- C. Instruction count would stay the same, CPI would increase, cycle time would decrease
- D. Instruction count would increase, CPI would decrease, cycle time would increase
- E. Instruction count, CPI, and cycle time would remain the same

Answer: C

As an example, consider a program with four instructions,

A 5-stage pipeline without any stalling:
Instr 1:
Instr 2:
Instr 3:
Instr 4:
Total number of cycles = 8, So CPI = 8 / 4 = 2
A 10-stage pipeline without any stalling:
Instr 1:
Instr 2:
Instr 3:
Instr 4:
Total number of cycles = 13, so CPI = 13 /4 = 3.25
Therefore, CPI has increased.
Q2:
Consider the following two ISAs. In both ISAs, Operand 1 is register, Oprand 2 and Oprand 3 can be register or immediate.
(1) The first is a fixed length ISA that has the following instruction encoding:
Opcode Oprand 1 (Destination) Oprand 2 (Source 1) Oprand 3 (Source 2)
An opcode is 1 byte. Each operand is 1 byte.

(2) The second is a **variable length** ISA that the following instruction encoding:

Opcode | Oprand 1 (Destination) | Oprand 2 (Source 1) | Oprand 3 (**Optional**, Source 2)

The opcode is 1 byte. Each operand (register/immediate) is 1 byte. Note that Oprand 3 is optional. If an instruction does not need the third oprand, it is not used. In other words, the third oprand is not a part of every instruction.

Consider the following assembly code sequence (please see comment about what each line of code does.)

```
ADD r3, r1, r2 // r3 = r1+r2

SLL r3, 0x2 // r3 = r3 << 2

MOV r5, 0xa // r5 = 0x0a

STW r3, (r5) //MEMORY[r5] = r3
```

What would be the code size for the given assembly language sequence, for each of the two ISAs?

- A. Fixed length ISA 18 bytes, variable length ISA 13 bytes
- B. Fixed length ISA 16 bytes, variable length ISA 12 bytes
- C. Fixed length ISA 16 bytes, variable length ISA 13 bytes
- D. Fixed length ISA 18 bytes, variable length ISA 12 bytes

Solution:

Fixed Length ISA -- 4×4 = 16 bytes Variable Length ISA -- 1×4 (ADD instruction) +3 × 3 (other instructions) = 13 bytes Answer is C