Math-3 (Sample Questions for students)

1. Evaluate $\int_C \bar{z} dz$; where <i>C</i> is the line segment from $z = 0$ to $z = 3$. (4 points)							
(a) $\frac{9}{2}$	(b) $\frac{5}{2}$	(c) $\frac{7}{2}$	(d) $\frac{1}{2}$				
2. Evaluate $\int_C \frac{1}{z-i} dz$; $C: z-i = 3$, clockwise. (4 points)							
(a) $2\pi i$	(b) $-2\pi i$	(c) 0	(d) -1				
3. The path of $z(t) = 2 \sin t + i 3 \cos t$ represents- (3 points)							
(a) Ellipse	(b) Hyperbola	(c) Circle	(d) parabola				
4. $ z-2 =4$; center of the circle is (1 point)							
(a) $(-2,0)$	(b) (2,0)	(c) (0,2)	(d)(0,1)				
5. What is the equation of the path C, passing through the points $z = 0$ to $z = 2$.							
				(2 points)			
(a) $y = 0$	(b) $x = 0$	(c) $y = 2$	(d) x + y = 2				
6. Mention whether the point (1,2) are interior, exterior or boundary of $ z-5+i =4$.							
				(2 points)			
(a) interior	(b) exterior	(c) on boun	dary (d) none			
7. Parametric representation of line segment from $z = 1 + i$ to $z = 4 - 2i$ is: (4 points)							
(a) $x = t, y$	= t + 2						
(b) $x = -t, y = -t + 2$							
(c) $x = t, y = -t + 2$.							
(d) $x = 2t, y = -2 + t$							
8. Which of the following line parallel to imaginary axis? (2 points)							
(a) $z = 1$ to	z = 1 + i						
(b) $z = 1$ to $z = 1 + 2i$							
(c) $z = 1 +$	(c) $z = 1 + i$ to $z = i$						
(d) $z = -1$	to $z = 1$.						

9. Evaluate by CRT $\oint_C \frac{dz}{(z-6)^2}$	$\frac{c}{c}$; $C: z =$	4.			(2 points)		
(a) not determined	(b) 0	(c) 2π <i>i</i>	(d) $-2\pi i$				
10. For $\oint_C \frac{2z dz}{(2z-i)^3}$, $C: z = 1$, lower half circle including the real line from -1 to $+1$; evaluate residue at singular point: (4 points)							
(a) $\frac{i}{2}$	(b) 0	(c) not deter	rmined	(d) $\frac{1}{2}$.			
11. Evaluate $\oint_C \frac{dz}{z(z-1)(z-2)}$; $C: z = r, 3 < r < 4$.					(2 points)		
(a) $2\pi i$	(b) $2\pi^2 i$	(c) 4	πί	(d) none.			
12. In which of the following improper integrals contour integral can be applied?							
					(2 points)		
a. $\int_{-\infty}^{\infty} \frac{x}{x^2 + 2x + 1} dx$							
$b. \int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 1} dx$:						
c. $\int_{-\infty}^{\infty} \frac{x^3}{\left(x^2+1\right)^2} dx$							

- 13. To evaluate improper integral the contour is considered as: (1 point)
 - a. Closed circle

d. $\int_{-\infty}^{\infty} \frac{1}{(x+1)(x-3i)} dx$.

- b. Semi-circle of radius R in lower half plane
- c. Semi-circle of radius R in upper half plane
- d. Semi-circle in upper half plane including the real line from -R to +R.

14. If
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 4)} dx = -2\pi$$
 then what is the value of
$$\int_{0}^{\infty} \frac{x^2}{x^2 + 4} dx$$
? (1 point)

- a. $-\pi$
- b. π
- π c. 4π
- d. -4π .

15. Which one is the Laurent Series expansion for $f(z) = \frac{1}{z-2}$ valid for |z| < 2.

(3 points)

a.
$$f(z) = \frac{1}{z} \left(1 + \frac{2}{z} + \frac{4}{z^2} + \frac{8}{z^3} + \dots \right)$$

b.
$$f(z) = \frac{1}{-2} \left(1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots \right)$$

c.
$$f(z) = \frac{1}{-2} \left(1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + \dots \right)$$

d.
$$f(z) = \frac{1}{z} \left(1 - \frac{2}{z} + \frac{4}{z^2} - \frac{8}{z^3} + \dots \right)$$
.

16. Which one is the Laurent Series expansion for $f(z) = \frac{1}{z-1}$ valid for |z| > 1.

(3 points)

a.
$$f(z) = \frac{1}{z} \left(1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots \right)$$

b.
$$f(z) = -(1-z+z^2-z^3+...)$$

c.
$$f(z) = \frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots \right)$$

d.
$$f(z) = -(1+z+z^2+z^3+...)$$
.

17. Which one is the Laurent Series expansion for $f(z) = \frac{1}{z(z-1)}$ valid for 0 < |z| < 1.

(3 points)

a.
$$f(z) = \frac{1}{z}(1+z+z^2+z^3+...)$$

b.
$$f(z) = -\frac{1}{z}(1+z+z^2+z^3+...)$$

c.
$$f(z) = \frac{1}{z^2} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots \right)$$

d.
$$f(z) = \frac{1}{z} (1 + z + z^2 + z^3 + ...)$$
.

18. Which one is the Z-transformation of the discrete valued function $x[n] = \delta[n-3]$ (2 points)

a.
$$X(z) = z^3$$
 b. $X(z) = \frac{1}{1 - z^{-1}}$ c. $X(z) = z^{-3}$ d. $X(z) = 3$.

19. Which one(s) is the Z-transformation of the discrete valued function $x[n] = 2^n u[n]$, for |z| > 2 where u[n] is the discrete time unit step function?

(2 points)

a.
$$X(z) = \frac{1}{1 + 2z^{-1}}$$

b.
$$X(z) = \frac{1}{1 - 2z^{-1}}$$

c.
$$X(z) = \frac{z}{z+1}$$

d.
$$X(z) = \frac{z}{z+2}$$
.

20. Which one is the inverse Z-transform of the function $X(z) = \frac{1}{1+2z^{-1}}, |z| > 2$?

(2 points)

a.
$$x[n] = 2^n u[n]$$

b.
$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$

c.
$$x[n] = (-2)^n u[n]$$

d.
$$x[n] = -(2)^n u[n]$$
.

21. Which one is the inverse Z-transform of the function $X(z) = \frac{1}{z^2}$?

(2 points)

a.
$$x[n] = \delta[n-2]$$

b.
$$x[n] = \delta[n+2]$$

c.
$$x[n] = -\delta[n+2]$$

d.
$$x[n] = -\delta[n-2]$$
.

22. If $X(z) = \frac{1}{(1-z^{-1})(1+z^{-1})}$, |z| > 1, then which one is the inverse Z-transform of this

function? (4 points)

a.
$$x[n] = \frac{1}{2}u[n] + \frac{1}{2}(-1)^n u[n]$$

b.
$$x[n] = -\frac{1}{2}u[n] + \frac{1}{2}(-1)^n u[n]$$

c.
$$x[n] = -\frac{1}{2}u[n] - \frac{1}{2}(-1)^n u[n]$$

d.
$$x[n] = \frac{1}{2}u[n] - \frac{1}{2}(-1)^n u[n]$$
.

23. Which of the following is the solution of the difference equation :

$$y[n] + y[n-1] = 0, y[-1] = -1, n \ge 0.$$
 (4 points)

- a. y[n]=1
- b. y[n] = -1
- c. $y[n] = (-1)^n$
- d. $y[n] = -(-1)^n$.

24. Which of the following is the solution of the difference equation :

$$y[n]-2y[n-1]=0, y[-1]=1, n \ge 0.$$
 (4 points)

- a. y[n] = 2
- b. y[n] = -2
- c. $y[n] = (2)^{n+1}$
- d. $y[n] = (2)^n$.

25. Which of the following is the solution of the difference equation :

$$y[n]-y[n-2]=0, y[-1]=0, y[-2]=1, n \ge 0.$$
 (4 points)

- a. $y[n] = \frac{1}{2} + \frac{1}{2}(-1)^n$
- b. $x[n] = -\frac{1}{2} + \frac{1}{2}(-1)^n$
- c. $x[n] = -\frac{1}{2} \frac{1}{2} (-1)^n$
- d. $x[n] = \frac{1}{2} \frac{1}{2}(-1)^n$