NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

Ch6. Density Functional Theory

James Lutsko

Lecture 8, 2018-2019

Density Functional Theory

- Prelude: Functionals and Functional Derivatives
- Introduction
 - Ab initio
 - Thomas-Fermi
 - Thomas-Fermi-Dirac

• 0K DFT

- Hohenberg-Kohn theoreme
- Kohn-Sham equations
- Approximations for the exchange term
- T > 0
 - Théorème fondamental du DFT

Functionals

A function maps real numbers to real numbers: $f(x_1,...,x_N)=(y_1,...,y_m)$

A functional maps functions and numbers to functions.

Notation for mapping a function to a number: F[f]=x

Notation for mapping a function and a vector $F(\mathbf{r};[f])=g(\mathbf{r})$ to a function:

Alternative notation: $F(f(\cdot)) = x$ $F(\mathbf{r}; f(\cdot)) = q(\mathbf{r})$

Functionals

A function maps real numbers to real numbers: $f(x_1,...,x_N)=(y_1,...,y_m)$

A functional maps functions and numbers to functions.

Example for mapping a function to a number: $x = F[f] = \int_0^\infty f(s) ds$

$$x = F[f] = f(s_0)$$

Example for mapping a function and a vector to a function:

$$g(\mathbf{r}) = F(\mathbf{r}; [f]) = \sqrt{f(\mathbf{r})}$$

$$g(\mathbf{r}) = F(\mathbf{r}; [f]) = \frac{\partial f(\mathbf{r})}{\partial \mathbf{r}}$$

$$g(\mathbf{r}) = F(\mathbf{r}; [f]) = \int_0^\infty f(\mathbf{r}, \mathbf{s}) d\mathbf{s}$$

Functional Derivatives

Definition:

For any 'reasonable' function $g(\mathbf{r})$, if

$$\lim_{\epsilon \to 0} \frac{F[f + \epsilon g] - F[f]}{\epsilon} = \int K(\mathbf{r}) g(\mathbf{r}) d\mathbf{r}$$

then $K(\mathbf{r})$ is the functional derivative of F with respect to f: $\frac{\delta F[f]}{\delta f(\mathbf{r})} \equiv K(\mathbf{r})$

Example:

$$F[f] = \int f(s) ds$$

$$\lim_{\epsilon \to 0} \frac{F[f + \epsilon g] - F[f]}{\epsilon} = \lim_{\epsilon \to 0} \frac{\int (f(s) + \epsilon g(s)) ds - \int f(s) ds}{\epsilon}$$
$$= \int g(s) ds$$
so
$$\frac{\delta F[f]}{\delta f(r)} = 1$$

Functional Derivatives

Definition:

For any 'reasonable' function $g(\mathbf{r})$, if

$$\lim_{\epsilon \to 0} \frac{F[f + \epsilon g] - F[f]}{\epsilon} = \int K(\mathbf{r}) g(\mathbf{r}) d\mathbf{r}$$

then $K(\mathbf{r})$ is the functional derivative of F with respect to f: $\frac{\delta F[f]}{\delta f(\mathbf{r})} \equiv K(\mathbf{r})$

There are analogies to most of the simple rules of calculus:

Chain rule:
$$\frac{\delta F[f]G[f]}{\delta f(\mathbf{r})} = \frac{\delta F[f]}{\delta f(\mathbf{r})}G[f] + F[f]\frac{\delta G[f]}{\delta f(\mathbf{r})}$$

Taylor expansion:
$$F[f+g] = F[f] + \int \frac{\delta F[f]}{\delta f(\mathbf{r})} g(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \frac{\delta^2 F[f]}{\delta f(\mathbf{r}_1) \delta f(\mathbf{r}_2)} g(\mathbf{r}_1) g(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 + \dots$$

Functional Derivatives

Alternative "Definition" (not so rigorous):

Imagine that space is discretized so that $x \rightarrow x_j = j\Delta$

Then a functional of a function f(x) becomes a vector: $f(\mathbf{r}) \rightarrow (f_1, ... f_N)$ with $f_j \equiv f(x_j)$

and a functional of f(x) becomes a function of that vector: $F[f] \rightarrow F(f_1, ..., f_N)$

The functional derivative is then: $\frac{\delta F[f]}{\delta f(\mathbf{r})} \rightarrow \frac{1}{\Delta} \frac{\partial F(f_1, ..., f_n)}{\partial f_N}$

Example:
$$F[f] = \int f(x) dx \rightarrow F(f_1, \dots, f_N) = \sum_{j=1}^{N} f_j \Delta$$

$$\frac{\delta F[f]}{\delta f(\mathbf{r})} \rightarrow \frac{1}{\Delta} \frac{\partial F(f_1, \dots, f_N)}{\partial f_I} = 1$$

Density Functional Theory

Introduction

- Ab initio
- Thomas-Fermi
- Thomas-Fermi-Dirac

• OK DFT

- Hohenberg-Kohn theoreme
- Kohn-Sham equations
- Approximations for the exchange term
- T > 0
 - Théorème fondamental du DFT

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

But: détermination de l'état fondamental d'un système d'électrons dans une champ exteriour.

Stratégie: calcul variationnel.

Devinez:
$$\Psi(\mathbf{r}_1, \sigma_1, ..., \mathbf{r}_N, \sigma_N) = \psi_1(\mathbf{r}_1, \sigma_1) ... \psi_N(\mathbf{r}_1, \sigma_N), \quad [\psi_j(\mathbf{r}, \sigma)]_{j=1}^N \text{ orthonormaux}$$

Mais, car les electrons sont fermions, il faut que la fonction d'onde est antisymmetric:

$$\Psi(\mathbf{r}_{1},\sigma_{1},...,\mathbf{r}_{N},\sigma_{N}) = \frac{1}{\sqrt{N!}} \sum_{a=1}^{N!} (-1)^{p_{a}} P_{a} \psi_{1}(\mathbf{r}_{1},\sigma_{1})... \psi_{N}(\mathbf{r}_{N},\sigma_{N})$$

$$P_{a} \in S_{N}, \quad p_{a} = parity of P_{a}$$

Slater determinant:

$$\Psi(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1},...,\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{1}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{1}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \\ \psi_{2}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{2}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{2}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \\ \vdots & \vdots & ... & \vdots \\ \psi_{N}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{N}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{N}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \end{vmatrix} \equiv det\{\psi_{1}...\psi_{N}\}$$

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

$$\Psi(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1},...,\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{1}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{1}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \\ \psi_{2}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{2}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{2}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \\ \vdots & \vdots & ... & \vdots \\ \psi_{N}(\boldsymbol{r}_{1},\boldsymbol{\sigma}_{1}) & \psi_{N}(\boldsymbol{r}_{2},\boldsymbol{\sigma}_{2}) & ... & \psi_{N}(\boldsymbol{r}_{N},\boldsymbol{\sigma}_{N}) \end{vmatrix} \equiv det\{\psi_{1}...\psi_{N}\}$$

Espérance d'operateur 1-particule: $\hat{O} = \sum_{j=1}^{N} \hat{O}_{j} = \sum_{j=1}^{N} \hat{o}(\mathbf{r}_{j})$

$$\begin{split} \langle \hat{O} \rangle_G &= \sum_{j=1}^N \langle \hat{O}_j \rangle_G \\ &= \frac{1}{N!} \sum_{j=1}^N \langle \det \{ \psi_1 ... \psi_N \} | \hat{O}_j | \det \{ \psi_1 ... \psi_N \} \rangle \\ &= \sum_{j=1}^N \langle \psi_1 ... \psi_N | \hat{O}_j | \psi_1 ... \psi_N \rangle \\ &= \sum_j \langle \psi_j | \hat{O}_j | \psi_j \rangle \end{split}$$

Espérance d'operateur 2-particule: $\hat{O} = \sum_{1 \le i < j \le N} \hat{O}_{ij} = \sum_{1 \le i < j \le N} \hat{o}(\mathbf{r}_i, \mathbf{r}_j)$

$$\begin{split} &\langle \hat{O} \rangle_{G} = \frac{1}{2} \sum_{1 \leq i < j \leq N} \left(\langle \psi_{i} \psi_{j} | \hat{O}_{ij} | \psi_{i} \psi_{j} \rangle - \langle \psi_{i} \psi_{j} | \hat{O}_{ij} | \psi_{j} \psi_{i} \rangle \right) \\ &= \frac{1}{2} \sum_{1 \leq i < j \leq N} \left(\langle \psi_{i} (\boldsymbol{r}_{1}) \psi_{j} (\boldsymbol{r}_{2}) | \hat{o} (\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) | \psi_{i} (\boldsymbol{r}_{1}) \psi_{j} (\boldsymbol{r}_{2}) \rangle - \underbrace{\langle \psi_{i} (\boldsymbol{r}_{1}) \psi_{j} (\boldsymbol{r}_{2}) | \hat{o} (\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) | \psi_{i} (\boldsymbol{r}_{1}) \rangle}_{\text{exchange term}} \right) \end{split}$$

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

$$\Psi(\mathbf{r}_{1},\sigma_{1},...,\mathbf{r}_{N},\sigma_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\mathbf{r}_{1},\sigma_{1}) & \psi_{1}(\mathbf{r}_{2},\sigma_{2}) & ... & \psi_{1}(\mathbf{r}_{N},\sigma_{N}) \\ \psi_{2}(\mathbf{r}_{1},\sigma_{1}) & \psi_{2}(\mathbf{r}_{2},\sigma_{2}) & ... & \psi_{2}(\mathbf{r}_{N},\sigma_{N}) \\ \vdots & \vdots & ... & \vdots \\ \psi_{N}(\mathbf{r}_{1},\sigma_{1}) & \psi_{N}(\mathbf{r}_{2},\sigma_{2}) & ... & \psi_{N}(\mathbf{r}_{N},\sigma_{N}) \end{vmatrix} \equiv det\{\psi_{1}...\psi_{N}\}$$

Hamiltonienne:

$$H = H_{ee} + V_{ext}$$

$$H_{ee} = T + V_{ee} = \sum_{j=1}^{N} \frac{\hbar^2}{2m} \nabla_j^2 + \frac{1}{2} \sum_{j \neq l} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_l|}$$

$$V_{ext} = \sum_{j=1}^{N} v_{ext}(\mathbf{r}_j), \quad v_{ext}(\mathbf{r}) = -\sum_{I} \frac{z_I e^2}{|\mathbf{r} - \mathbf{R}_I|}$$

Coordonnées des noyaux

$$\langle \Psi | H | \Psi \rangle = \sum_{i}^{(occ)} \langle \psi_{i} | \hat{h} | \psi_{i} \rangle + \frac{1}{2} \sum_{ij}^{(occ)} \left[\langle \psi_{i} \psi_{j} | \frac{e^{2}}{r_{12}} | \psi_{i} \psi_{j} \rangle - \langle \psi_{i} \psi_{j} | \frac{e^{2}}{r_{12}} | \psi_{j} \psi_{i} \rangle \right]$$

$$\hat{h} = \sum_{j=1}^{N} \left(\frac{\hbar^2}{2m} \nabla_j^2 + v_{ext}(\mathbf{r}_j) \right)$$

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

Minimisez avec constrantes:

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}$$

Lagrangian:

$$\langle \Psi | H | \Psi \rangle = \sum_{i}^{(occ)} \langle \psi_{i} | \hat{h} | \psi_{i} \rangle + \frac{1}{2} \sum_{ij}^{(occ)} \left[\langle \psi_{i} \psi_{j} | \frac{e^{2}}{r_{12}} | \psi_{i} \psi_{j} \rangle - \langle \psi_{i} \psi_{j} | \frac{e^{2}}{r_{12}} | \psi_{j} \psi_{i} \rangle \right] - \sum_{ij}^{(occ)} \epsilon_{ij} \left[\langle \psi_{i} | \psi_{j} \rangle - \delta_{ij} \right]$$

 $\psi \in \mathbb{C} \Rightarrow \langle \delta \psi | \text{ et } | \delta \psi \rangle \text{ independent}$

$$0\!=\!\sum_{i}^{(occ)}\langle\delta\,\psi_{i}|\hat{h}|\psi_{i}\rangle\!+\!\sum_{ij}^{(occ)}\!\left[\langle\delta\,\psi_{i}\,\psi_{j}|\frac{e^{2}}{r_{12}}|\psi_{i}\,\psi_{j}\rangle\!-\!\langle\delta\,\psi_{i}\,\psi_{j}|\frac{e^{2}}{r_{12}}|\psi_{j}\,\psi_{i}\rangle\right]\!-\!\sum_{ij}^{(occ)}\epsilon_{ij}\langle\delta\,\psi_{i}|\psi_{j}\rangle$$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\mathbf{r}) + V_{coul}(\mathbf{r}; [\{\psi\}]) + \hat{V}_{exch}(\mathbf{r}; [\{\psi\}])\right) \psi_i(\mathbf{r}, \sigma) = \sum_{j}^{(occ)} \epsilon_{ij} \psi_j(\mathbf{r}, \sigma)$$

$$V_{coul} = \sum_{j}^{(occ)} \sum_{\sigma} \int \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \psi_{j}^{*}(\mathbf{r}'; \sigma) \psi_{j}(\mathbf{r}'; \sigma) d\mathbf{r}'$$

$$\hat{V}_{exch}\psi_i(\mathbf{r};\sigma) = -\sum_{j}^{(occ)} \psi_j(\mathbf{r};\sigma) \sum_{\sigma'} \int \frac{e^2}{|\mathbf{r}-\mathbf{r}'|} \psi_j^*(\mathbf{r}';\sigma') \psi_i(\mathbf{r}';\sigma') d\mathbf{r}'$$

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

Transformation unitaire: $\epsilon_{ij} \rightarrow \epsilon_i \delta_{ij}$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{nuc}(\mathbf{r}) + V_{coul}(\mathbf{r}; [\{\psi\}]) + \hat{V}_{exch}(\mathbf{r}; [\{\psi\}])\right) \psi_i(\mathbf{r}, \sigma) = \epsilon_i \psi_i(\mathbf{r}, \sigma)$$

"Canonical Hartree-Fock equations"

Points d'interpretation

L'energie d'état fondamental

$$E_0^{HF} = \sum_{i}^{(occ)} \epsilon_i - \frac{1}{2} \sum_{ij}^{(occ)} \left(\langle \psi_i \psi_j | \frac{e^2}{r_{12}} | \psi_i \psi_j \rangle - \langle \psi_i \psi_j | \frac{e^2}{r_{12}} | \psi_j \psi_i \rangle \right)$$

L'energie d'ionisation

$$E_0^{HF}(N_e) - E_0^{HF}(N_e - 1) = \epsilon_m$$
 "Koopman's theorem"

Ab initio: Vxc for uniform electron gas

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

$$\psi_j^{(pw)}(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i \mathbf{k}_j \cdot \mathbf{r}}$$
 Spin states α, β

$$\Psi = det \{ (\psi_1^{(pw)} \alpha) (\psi_1^{(pw)} \beta) (\psi_2^{(pw)} \alpha) (\psi_2^{(pw)} \beta) ... (\psi_{N_2/2}^{(pw)} \alpha) (\psi_{N_2/2}^{(pw)} \beta) \}$$

$$\begin{split} \hat{V}_{xc} \psi_{j}^{(pw)}(\mathbf{r}) &= -\sum_{l=1}^{(occ)} \frac{1}{\sqrt{V}} e^{i \mathbf{k}_{l} \cdot \mathbf{r}} \int \frac{1}{\sqrt{V}} e^{-i \mathbf{k}_{l} \cdot \mathbf{r}'} \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} \frac{1}{\sqrt{V}} e^{i \mathbf{k}_{j} \cdot \mathbf{r}'} d\mathbf{r}' \\ &= -\frac{1}{\sqrt{V}} e^{i \mathbf{k}_{j} \cdot \mathbf{r}} \sum_{l=1}^{(occ)} \int \frac{1}{V} e^{-i (\mathbf{k}_{j} - \mathbf{k}_{l}) \cdot (\mathbf{r} - \mathbf{r}')} \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \\ &= -\psi_{j}^{(pw)}(\mathbf{r}) \sum_{\mathbf{k}_{l} < \mathbf{k}_{r}} \frac{4\pi e^{2}}{|\mathbf{k}_{j} - \mathbf{k}_{l}|} \end{split}$$

$$\hat{V}_{xc}\psi_{j}^{(pw)}(\mathbf{r}) = -\frac{2e^{2}k_{F}}{\pi}F\left(\frac{k_{j}}{k_{F}}\right)\psi_{j}^{(pw)}(\mathbf{r}), \quad F(x) = \frac{1}{2} + \frac{1-x^{2}}{4x}\ln\left|\frac{1+x}{1-x}\right|$$

$$F(0)=1$$
 $F(1)=\frac{1}{2} \Rightarrow F\left(\frac{k}{k_F}\right) \approx \frac{3}{4} \Rightarrow \hat{V}_{xc} \psi_j^{(pw)}(r) \approx -\frac{3e^2 k_F}{2\pi} \psi_j^{(pw)}(r)$

Ab initio: Vxc for uniform electron gas

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

$$\hat{V}_{xc} \psi_j^{(pw)}(\mathbf{r}) \approx -\frac{3e^2 k_F}{2\pi} \psi_j^{(pw)}(\mathbf{r})$$

$$\hat{V}_{xc}\psi_j(\mathbf{r}) \approx -\frac{3e^2k_F(n(\mathbf{r}))}{2\pi}\psi_j(\mathbf{r})$$

$$\hat{V}_{xc} \to V_{xc}(r) = -\frac{3e^2(3\pi^2 n(r))^{1/3}}{2\pi}$$

Thomas-Fermi Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

Une electron dans un boit:

$$\psi_{n_x n_y n_z}(\mathbf{r}) = A \sin\left(\frac{2\pi n_x}{L}x\right) \sin\left(\frac{2\pi n_y}{L}y\right) \sin\left(\frac{2\pi n_z}{L}z\right)$$

$$E_{n_x n_y n_z} = \frac{\hbar^2}{2m} \left(\frac{2\pi}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right) \equiv \frac{\hbar^2}{2m} k_{n_x n_y n_z}^2$$

Nombre des etats avec vecteur de l'onde k

$$N(k)dk \sim 2 \times 4\pi (n_x^2 + n_y^2 + n_z^2) = 2 \times 4\pi \left(\frac{L}{2\pi}\right)^2 k^2 \frac{dk}{\left(\frac{2\pi}{L}\right)} = 2\frac{V}{(2\pi)^3} 4\pi k^2 dk$$

 N_e electrons avec 2 electrons par etat:

$$N_e = 2\sum_{n_x, n_y, n_z} \sim 2\frac{4\pi}{3}n_{max}^3 \qquad n_{max} \sim \left(\frac{3N_e}{8\pi}\right)^{1/3}$$

$$E_F \sim \frac{\hbar^2}{2m} \left(\frac{2\pi}{L}\right)^2 n_{max}^2 \sim \frac{\hbar^2}{2m} \left(\frac{3N_e}{8\pi}\right)^{2/3} \left(\frac{2\pi}{L}\right)^2 = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N_e}{L^3}\right)^{2/3} = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N_e}{V}\right)^{2/3}$$

$$k_F = \left(\frac{3\pi^2 N_e}{V}\right)^{1/3} \Leftrightarrow \frac{N_e}{V} \equiv \rho = \frac{1}{3\pi^2} k_F^3$$

Thomas-Fermi Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

$$E_{F} \sim \frac{\hbar^{2}}{2m} \left(\frac{3\pi^{2} N_{e}}{V} \right)^{2/3} \qquad N(k) dk \sim 2 \frac{V}{(2\pi)^{3}} 4\pi k^{2} dk \qquad k_{F} = \left(\frac{3\pi^{2} N_{e}}{V} \right)^{1/3} \Leftrightarrow \frac{N_{e}}{V} \equiv \rho = \frac{1}{3\pi^{2}} k_{F}^{3}$$

 $f(E) = \frac{1}{e^{-\beta(E-\mu)} + 1} \Rightarrow_{T \Rightarrow 0} \begin{vmatrix} 1, E < \mu \\ 0, E > \mu \end{vmatrix}$ Fermi distribution:

donc, $\mu = E_E$

Dans une champ extern
$$\mu = \frac{p_F^2(\mathbf{r})}{2m} + e \Phi(\mathbf{r})$$

$$\rho(\mathbf{r}) = \frac{1}{3\pi^2} k_F^3(\mathbf{r}) = \frac{1}{3\pi^2} \hbar^{-3} p_F^3(\mathbf{r}) = \frac{1}{3\pi^2} \hbar^{-3} (2m)^{3/2} (\mu - e \Phi(\mathbf{r}))^{3/2}$$

 $\nabla^2 \Phi(\mathbf{r}) = \underbrace{-4\pi e \rho(\mathbf{r})}_{\text{electrons}} + \underbrace{4\pi Z e \delta(\mathbf{r})}_{\text{ions}}$ L'equation de Poisson:

$$\nabla^{2}(e\Phi(\mathbf{r})-\mu) \equiv \nabla^{2}V_{TF}(\mathbf{r}) = -\frac{4e^{2}}{3\pi\hbar^{3}}(2m)^{3/2}(-V_{TF}(\mathbf{r}))^{3/2}$$

Thomas-Fermi Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

$$\nabla^2 (e \Phi(\mathbf{r}) - \mu) \equiv \nabla^2 V_{TF}(\mathbf{r}) = -\frac{4e^2}{3\pi \hbar^3} (2m)^{3/2} (-V_{TF}(\mathbf{r}))^{3/2}$$

Condition à la limite : $V_{TF}(\mathbf{r}) \rightarrow_{r \rightarrow 0} -\frac{Ze^2}{r}$

Definissez
$$b = \frac{(3\pi)^{2/3}}{2^{7/3}} \frac{\hbar^2}{me^2} Z^{-1/3} = 0.885 a_0 Z^{-1/3}$$

$$x=r/b$$
 $rV_{TF}=-Ze^2\Psi$

L'equation Thomas-Fermi:
$$\frac{d^2 \Psi}{dx^2} = \frac{\Psi^{3/2}}{\sqrt{x}}, \quad \Psi(0) = 1. \quad \Psi(r) > 0$$

Deuxieme condition à la limite: $N_e = \int_0^{r_0} \rho(r) dr$

Thomas-Fermi-Dirac Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

L'idee Thomas-Fermi:

$$E = \frac{p^{2}}{2m} + V(r) \Rightarrow E_{max} = \mu = \frac{p_{F}^{2}}{2m} + V(r) \Rightarrow \rho(r) \Leftrightarrow V(r) \qquad + l'equation Poisson$$

L'idee Thomas-Fermi-Dirac:

$$E = \frac{p^2}{2m} + V(r) + V_{xc}(r) \Rightarrow E_{max} = \mu = \frac{p_F^2}{2m} + V(r) + V_{xc}(r) \Rightarrow \rho(r) \Leftrightarrow V(r)$$

+l'equation Poisson

Thomas-Fermi-Dirac Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

$$N(k)dk \sim 2\frac{V}{(2\pi)^3} 4\pi k^2 dk$$
 $\rho = \frac{1}{3\pi^2} k_F^3$

Derivation alternatif

$$E_{K} = \int d\mathbf{r} \left(\int_{0}^{k_{F}(\mathbf{r})} dk (N(k)/V) \frac{\hbar^{2} k^{2}}{2m} \right) = \int d\mathbf{r} \frac{3}{5} \frac{\hbar^{2} \pi^{2}}{2m} \left(\frac{3}{\pi} \rho(\mathbf{r}) \right)^{2/3} \rho(\mathbf{r})$$

$$E_{V} = \int d\mathbf{r} \left(-Z \frac{e^{2}}{r} \rho(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r}_{2} \rho(\mathbf{r}) \rho(\mathbf{r}_{2}) \frac{e^{2}}{|\mathbf{r} - \mathbf{r}_{2}|} - \frac{1}{2} \frac{3 e^{2} (3 \pi^{2} \rho(\mathbf{r}))^{1/3}}{2 \pi} \rho(\mathbf{r}) \right)$$

Minimizer:

$$0 = \frac{\delta E}{\delta \rho(\mathbf{r})} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{3}{\pi} \rho(\mathbf{r}) \right)^{2/3} - Z \frac{e^2}{r} + \int d\mathbf{r}_2 \rho(\mathbf{r}_2) \frac{e^2}{|\mathbf{r} - \mathbf{r}_2|} - \frac{e^2 (3\pi^2 \rho(\mathbf{r}))^{1/3}}{\pi}$$

$$0 = \frac{\hbar^2 \pi^2}{2m} \left(\frac{3}{\pi} \rho(\mathbf{r}) \right)^{2/3} + V_{coul}(\mathbf{r}) - \frac{e^2 (3\pi^2 \rho(\mathbf{r}))^{1/3}}{\pi} \qquad V_{coul}(\mathbf{r}) = -Z \frac{e^2}{r} + \int d\mathbf{r}_2 \rho(\mathbf{r}_2) \frac{e^2}{|\mathbf{r} - \mathbf{r}_2|}$$

Thomas-Fermi-Dirac Theory

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

$$0 = \frac{\hbar^{2} \pi^{2}}{2m} \left(\frac{3}{\pi} \rho(\mathbf{r}) \right)^{2/3} + V_{coul}(\mathbf{r}) - \frac{e^{2} (3\pi^{2} \rho(\mathbf{r}))^{1/3}}{\pi}$$

$$\Rightarrow a_{0} (3\rho/\pi)^{1/3} \equiv y = \frac{1}{\pi^{2}} \left(1 + \sqrt{1 - 2\pi^{2} \frac{Va_{0}}{e^{2}}} \right), \quad a_{0} \equiv \frac{\hbar^{2}}{m e^{2}}$$

$$\Rightarrow y = \frac{\sqrt{2}}{\pi} \left(\sqrt{\Psi} + \frac{1}{\pi \sqrt{2}} \right), \quad \Psi \equiv \frac{1}{2\pi^{2}} - \frac{a_{0} V}{e^{2}}$$

L'equation de Poisson:

$$\frac{d^{2}}{dr^{2}}(r\Psi) = \frac{2^{7/2}}{3a_{0}^{2}\pi}r\left(\sqrt{\Psi} + \frac{1}{\pi\sqrt{2}}\right)^{2}$$

Definissez

$$x=r/b$$

$$r \Psi = a_0 Z \Phi$$

$$b = \frac{(3\pi)^{2/3}}{2^{7/3}} \frac{\hbar^2}{me^2} Z^{-1/3} = 0.885 a_0 Z^{-1/3}$$

$$\Phi'' = x \left(\sqrt{\frac{\Phi}{x}} + \beta \right)^3, \quad \beta \equiv \sqrt{\frac{b}{a_0 Z}} \frac{1}{\pi \sqrt{2}} = 0.2118 Z^{-2/3}$$

"Thomas-Fermi-Dirac equation"

Comparison

D'apres Hans Bethe et Roman Jackiw, "Intermediate Quantum Mechanics", 1982.

Level	HF	Thomas-Fermi-Dirac
1 s	1828	1805
2s	270	263
2 p	251	245
3d	29.8	29.2
4 s	8.46	7.95

Comparison of energy levels of Ag (values in Ry). (Solution of Schrodinger equation with TFD potential. R. Latter, Phys. Rev. **99**, 510 (1955).

Density Functional Theory

- Introduction
 - Ab initio
 - Thomas-Fermi
 - Thomas-Fermi-Dirac

• OK DFT

- Hohenberg-Kohn theoreme
- Kohn-Sham equations
- Approximations for the exchange term
- T > 0
 - Théorème fondamental du DFT

P. Hohenberg et W. Kohn, Phys. Rev. B 136, 864 (1964).

N électrons dans un champ extérieur:

$$H = H_{ee} + V_{ext}$$

$$H_{ee} = T + V_{ee} = \sum_{j=1}^{N} \frac{\hbar^2}{2m} \nabla_j^2 + \frac{1}{2} \sum_{j \neq l} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_l|}$$

$$V_{ext} = \sum_{j=1}^{N} v_{ext}(\mathbf{r}_j), \quad v_{ext}(\mathbf{r}) = -\sum_{I} \frac{z_I e^2}{|\mathbf{r} - \mathbf{R}_I|}$$

Densité (de nombre) électronique locale:

$$n(\mathbf{r}) = \langle \hat{n}(\mathbf{r}) \rangle = \int \sum_{j=1}^{N} \delta(\mathbf{r} - \mathbf{r}_{j}) |\Psi(\mathbf{r}_{1}, \dots, \mathbf{r}_{N})|^{2} d\mathbf{r}_{1} \dots d\mathbf{r}_{N}$$

Hohenberg-Kohn théorème: il y a un relation un à un entre la densité de l'état fondamental et la potentiel extérieur.

P. Hohenberg et W. Kohn, Phys. Rev. B 136, 864 (1964).

N électrons dans un champ extérieur:

$$H = H_{ee} + V_{ext}$$

$$H_{ee} = T + V_{ee} = \sum_{j=1}^{N} \frac{\hbar^2}{2m} \nabla_j^2 + \frac{1}{2} \sum_{j \neq l} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_l|}$$

$$V_{ext} = \sum_{j=1}^{N} v_{ext}(\mathbf{r}_j), \quad v_{ext}(\mathbf{r}) = -\sum_{I} \frac{z_I e^2}{|\mathbf{r} - \mathbf{R}_I|}$$

Densité (de nombre) électronique locale:

$$n(\mathbf{r}) = \langle \hat{n}(\mathbf{r}) \rangle = \int \sum_{j=1}^{N} \delta(\mathbf{r} - \mathbf{r}_{j}) |\Psi(\mathbf{r}_{1}, \dots, \mathbf{r}_{N})|^{2} d \mathbf{r}_{1} \dots d \mathbf{r}_{N}$$

$$V_{ext} = \int \hat{n}(\mathbf{r}) v_{ext}(\mathbf{r}) d \mathbf{r}$$

Hohenberg-Kohn théorème: il y a un relation un à un entre la densité de l'état fondamental et la potentiel extérieur.

P. Hohenberg et W. Kohn, Phys. Rev. B 136, 864 (1964).

$$n_G(\mathbf{r}) = \langle \hat{n}(\mathbf{r}) \rangle_G = \int \sum_{j=1}^N \delta(\mathbf{r} - \mathbf{r}_j) |\Psi_G(\mathbf{r}_1, ..., \mathbf{r}_N)|^2 d\mathbf{r}_1 ... d\mathbf{r}_N$$

Hohenberg-Kohn théorème: il y a un relation un à un entre la densité de l'état fondamental et la potentiel extérieur.

Preuve:

Partie 1: la potentiel exterieur détermine la densite: trivial

$$v_{ext}(\mathbf{r}) \Rightarrow \Psi_G[v_{ext}] \Rightarrow n(\mathbf{r})$$

Partie 2: la densité détermine la potentiel

Soit
$$v_{ext}^{(a)}(\mathbf{r}) \neq v_{ext}^{(b)}(\mathbf{r}) \Rightarrow H^{(a)} = H_{ee} + V_{ext}^{(a)} \neq H^{(b)} = H_{ee} + V_{ext}^{(b)}$$

Avec les états fondamental

$$H^{(j)}\Psi_{G}^{(j)}=E_{G}^{(j)}\Psi_{G}^{(j)}, \quad j=a,b$$

P. Hohenberg et W. Kohn, Phys. Rev. B 136, 864 (1964).

$$n_G(\mathbf{r}) = \langle \hat{n}(\mathbf{r}) \rangle_G = \int \sum_{j=1}^N \delta(\mathbf{r} - \mathbf{r}_j) |\Psi_G(\mathbf{r}_1, ..., \mathbf{r}_N)|^2 d\mathbf{r}_1 ... d\mathbf{r}_N$$

Hohenberg-Kohn théorème: il y a un relation un à un entre la densité de l'etat fondamental et la potentiel extérieur.

Preuve: Partie 2: la densité détermine la potentiel

$$H^{(j)}\Psi_G^{(j)} = E_G^{(j)}\Psi_G^{(j)}, \quad j=a,b$$

$$\begin{split} E_{G}^{(a)} < \langle H^{(a)} \rangle_{Gb} = & \langle H^{(b)} + V_{ext}^{(a)} - V_{ext}^{(b)} \rangle_{Gb} = E_{G}^{(b)} + \int n_{G}^{(b)}(\mathbf{r}) \left(v_{ext}^{(a)}(\mathbf{r}) - v_{ext}^{(b)}(\mathbf{r}) \right) d\mathbf{r} \\ E_{G}^{(b)} < E_{G}^{(a)} + \int n_{G}^{(a)}(\mathbf{r}) \left(v_{ext}^{(b)}(\mathbf{r}) - v_{ext}^{(a)}(\mathbf{r}) \right) d\mathbf{r} \end{split}$$

Sommez:

$$E_{G}^{(a)} + E_{G}^{(b)} < E_{G}^{(a)} + E_{G}^{(b)} + \int \left(n_{G}^{(a)}(\mathbf{r}) - n_{G}^{(b)}(\mathbf{r}) \right) \left(v_{ext}^{(b)}(\mathbf{r}) - v_{ext}^{(a)}(\mathbf{r}) \right) d\mathbf{r}$$

$$0 < \int \left(n_{G}^{(a)}(\mathbf{r}) - n_{G}^{(b)}(\mathbf{r}) \right) \left(v_{ext}^{(b)}(\mathbf{r}) - v_{ext}^{(a)}(\mathbf{r}) \right) d\mathbf{r}$$

$$\Rightarrow$$
 $n_G^{(a)}(\mathbf{r}) \neq n_G^{(b)}(\mathbf{r})$

P. Hohenberg et W. Kohn, Phys. Rev. B 136, 864 (1964).

Hohenberg-Kohn théorème: il y a un relation un à un entre la densité de l'etat fondamental et la potentiel extérieur.

Preuve:
$$v_{ext}(\mathbf{r}) \Rightarrow n(\mathbf{r}) = n(\mathbf{r})$$

$$v_{ext}(\mathbf{r}) \Rightarrow n(\mathbf{r}) = n(\mathbf{r}, \lfloor v_{ext} \rfloor)$$

$$v_{ext}^{(a)}(\mathbf{r}) \neq v_{ext}^{(b)}(\mathbf{r}) \Rightarrow n^{(a)}(\mathbf{r}) \neq n^{(b)}(\mathbf{r})$$

Preuve:
$$v_{ext}(r) \Rightarrow n(r) = n(r, [v_{ext}])$$

 $v_{ext}^{(a)}(r) \neq v_{ext}^{(b)}(r) \Rightarrow n^{(a)}(r) \neq n^{(b)}(r)$
So
$$n^{(a)}(r) \neq n^{(b)}(r) \Rightarrow v_{ext}^{(a)}(r) \neq v_{ext}^{(b)}(r)$$
 $v_{ext}^{(a)}(r) \neq v_{ext}^{(b)}(r) \Rightarrow n^{(a)}(r) \neq n^{(b)}(r)$

relation inversible

$$n(\mathbf{r}, [v_{ext}]) \Leftrightarrow v(\mathbf{r}, [n_{ext}])$$

Conséquences:
$$\Psi_G = \Psi_G[v_{ext}] = \Psi_G[v_{ext}[n]] \Rightarrow \Psi_G[n]$$

$$E[\Psi_G] \Rightarrow E[n]$$

$$E_G \equiv E[\Psi_G] = min_{\Psi} E[\Psi] \Rightarrow E_G = min_{n(r)} E[n]$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965).

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

Developper le densite:

$$n(\mathbf{r}) = \sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})$$

(C'est la densité pour un système des électrons qui n'interact pas. C'est une conséquence de la HKT que pour toutes densité donnée, il y a un potentiel extérieur qui donne la meme densité pour un système sans interaction.)

Definnesez:

$$T_{0}[n] \equiv \sum_{i} \langle \phi_{i} | \left(-\frac{\hbar^{2}}{2m} \nabla^{2} \right) | \phi_{i} \rangle$$

$$V_{H}[n] \equiv \int n(\mathbf{r}) \frac{e^{2}}{|\mathbf{r} - \mathbf{r}'|} n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

$$T_0 = \langle \Psi_0 | \Psi_0 \rangle$$
, $\Psi_0 = \det \phi$

$$E^{KS}[n; v_{ext}] = T_0[n] + V_H[n] + \int n(\mathbf{r}) v_{ext}(\mathbf{r}) d\mathbf{r} + E_{xc}[n]$$

$$E_{xc}[n] = T[n] - T_0[n] + V_{ee}[n] - V_H[n]$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965).

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

Minimisez:

$$\left(-\frac{\hbar^{2}}{2m}\nabla^{2}+v_{ext}(\mathbf{r})+V_{coul}(\mathbf{r};[\phi])+V_{xc}(\mathbf{r};[\phi])\right)\phi_{i}(\mathbf{r})=\epsilon_{i}\phi_{i}(\mathbf{r})$$

$$V_{coul}(\mathbf{r};[\phi])\equiv\int\frac{e^{2}}{|\mathbf{r}-\mathbf{r}'|}n(\mathbf{r}')d\mathbf{r}'$$

$$V_{xc}(\mathbf{r},[\phi])\equiv\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$
"Kohn-Sham equations"

"Local density approximation" : pour un gaz d'electrons avec constante densite n l'energie d'exchange est un fonction de n

$$E_{XC}[n] \rightarrow_{n(r)=n} e_{XC}(n) N_e = \int e_{XC}(n) n dr$$

LDA:
$$E_{xc}^{(LDA)}[n] \approx \int e_{xc}(n(\mathbf{r}))n(\mathbf{r})d\mathbf{r} \Rightarrow V_{xc}^{(LDA)} = e_{xc}(n(\mathbf{r})) + \frac{\partial e_{xc}(n(\mathbf{r}))}{\partial n(\mathbf{r})}n(\mathbf{r})$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965). D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

$$\left(-\frac{\hbar^{2}}{2m}\nabla^{2}+v_{ext}(\mathbf{r})+V_{coul}(\mathbf{r};[\phi])+V_{xc}(\mathbf{r};[\phi])\right)\phi_{i}(\mathbf{r})=\epsilon_{i}\phi_{i}(\mathbf{r})$$

$$V_{coul}(\mathbf{r}; [\phi]) \equiv \int \frac{e^2}{|\mathbf{r} - \mathbf{r}'|} n(\mathbf{r}') d\mathbf{r}' \qquad V_{xc}^{(LDA)} = e_{xc}(n(\mathbf{r})) + \frac{\partial e_{xc}(n(\mathbf{r}))}{\partial n(\mathbf{r})} n(\mathbf{r})$$

Empirical fit to simulations of uniform electron gas:

$$e_{xc}(n) = -\frac{0.4582}{r_s} + \begin{cases} -0.1423/(1+1.0529\sqrt{r_s}+0.3334r_s), & r_s \ge 1\\ -0.0480+0.0311\ln r_s - 0.0116r_s + 0.0020r_s \ln r_s, & r_s \le 1 \end{cases}$$

$$\frac{4\pi}{3}(r_s a_B)^3 = \frac{1}{n}$$
, $[e_{xc}] = \text{Hartrees}$

J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).

W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965).

$$\left(-\frac{\hbar^{2}}{2m}\nabla^{2}+v_{ext}(\mathbf{r})+V_{coul}(\mathbf{r};[\phi])+V_{xc}(\mathbf{r};[\phi])\right)\phi_{i}(\mathbf{r})=\epsilon_{i}\phi_{i}(\mathbf{r})$$

$$V_{coul}(\mathbf{r};[\phi])\equiv\int\frac{e^{2}}{|\mathbf{r}-\mathbf{r}'|}n(\mathbf{r}')d\mathbf{r}' \qquad V_{xc}(\mathbf{r},[\phi])\equiv\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

$$\begin{split} E_{xc}^{(LDA)}[n] &\approx \int e_{ex}(n(\mathbf{r}))n(\mathbf{r})d\mathbf{r} \\ E_{xc}^{(WDA)}[n] &\approx \int e_{ex}(\bar{n}(\mathbf{r}))n(\mathbf{r})d\mathbf{r}, \quad \bar{n}(\mathbf{r}) = \int w(|\mathbf{r}-\mathbf{r};|)n(\mathbf{r}')d\mathbf{r}' \\ E_{xc}^{(GGA)}[n] &\approx \int e_{ex}(n(\mathbf{r});\nabla n(\mathbf{r}))n(\mathbf{r})d\mathbf{r}, \end{split}$$

Comparison

D'apres "Solid State Physics", G. Grosso & G. P. Parrravicini, Acad. Press, 2000

TABLE I. Binding energies (eV/atom) calculated by the HF, LDA, and DMC methods compared with the available experimental data. HF and DMC valence atomic energies are -99.773 and -102.121(3) eV, respectively.

	HF	LDA	DMC	Expt.
$Si_2(D_{2h})$	0.85	1.98	1.580(7)	1.61(4)
$Si_3(C_{3v})$	1.12	2.92	2.374(8)	2.45(6)
$Si_4(D_{2h})$	1.61	3.50	2.86(2)	3.01(6)
$Si_6(C_{2\nu})$	1.82	4.00	3.26(1)	3.42(4)
$Si_7(D_{5h})$	1.91	4.14	3.43(2)	3.60(4)
$Si_9(C_s)$	1.74	4.06	3.28(2)	
$Si_9(D_{h3})$	1.77	4.14	3.39(2)	
$Si_{10}(T_d)$	1.94	4.25	3.44(2)	
$Si_{10} (C_{3v})$	1.89	4.32	3.48(2)	
$Si_{13}(I_h)$	1.41	3.98	3.12(2)	* * * *
$Si_{13} (C_{3v})$	1.80	4.28	3.41(1)	
$Si_{13} - (C_{3v})$	1.88	4.43	3.56(1)	
$Si_{20}(I_h)$	1.61	4.10	3.23(3)	
$Si_{20} (C_{3v})$	1.55	4.28	3.43(3)	

1324

Jeffrey C. Grossman and Lubos Mitas, "Quantum Monte Carlo Determination of Electronic and Structural Properties of Si_n clusters ($n \sim 20$)", Phys. Rev. Lett. **74**, 1323 (1995)

Comparison

method	-E/a.u.
Thomas-Fermi	625.7
Hartree-Fock	526.818
OEP (exchange only)	526.812
LDA (exchange only)	524.517
LDA (VWN)	525.946
LDA (PW92)	525.940
LDA-SIC(PZ)	528.393
ADA	527.322
WDA	528.957
GGA (B88LYP)	527.551
experiment	527.6

Nonlocal (weighted density)

Generalized Gradient

Table 1: Ground-state energy in atomic units (1 a.u. = 1 Hartree = 2 Rydberg = 27.21eV = 627.5kcal/mol) of the Ar atom (Z = 18), obtained with some representative density functionals and related methods. The Hartree-Fock and OEP(exchange only) values are from Krieger et al. (third of Ref. [120]), ADA and WDA values are from Gunnarsson et al., Ref. [129], as reported in Ref. [5], and the LDA-SIC(PZ) value is from Perdew and Zunger, Ref. [93]. The experimental value is based on Veillard and Clementi, J. Chem. Phys. 49, 2415 (1968), and given to less significant digits than the calculated values, because of relativistic and quantum electrodynamical effects (Lamb shift) that are automatically included in the experimental result but not in the calculated values.

Klaus Capelle, "A bird's eye view of density functional theory", http://arxiv.org/abs/cond-mat/0211443 (2006).