AULA 11 SÍNTESE DE CIRCUITOS

Profa Letícia Rittner

Circuitos combinacionais

- Análise
 - Dado um circuito, descobrir qual a funcionalidade implementada por ele
- Síntese
 - Dada uma funcionalidade desejada, projetar um circuito digital que a implementa
- Ferramentas
 - Expressão booleana
 - □ Tabela verdade
 - Símbolos esquemáticos
 - Diagrama de tempo

Análise/síntese de circuitos

- É preciso converter entre as diversas representações
- Conversões mais comuns
 - Equação para circuito
 - Circuito para equação

Adaptado de Frank Vahid

Síntese de circuitos

Projeto lógica combinacional

- Descrição do problema em linguagem natural
- 2. Tabela verdade
- Equações booleanas
- Minimização das equações
- 5. Circuito com portas lógicas

Projete um circuito que acione um aviso luminoso toda vez que a chave estiver no contato e o motoristo não estiver com o cinto de segurança afivelado

s=1: cinto afivelado

k=1: chave no contato

Capturar equação Boleana

Cinto não afivelado, e chave no contato

Converter equação em circuito

 Diagrama de tempo ilustra o comportamento do circuito

Adaptado de Frank Vahid

tempo

Detectar 3 "1"s consecutivos em uma entrada de 8 bits: abcdefgh

- 000**111**01 → 1
- 10101011 → 0
- **111**10000 → 1

-

Profa Leticia Rittner

Detectar 3 "1"s consecutivos em uma entrada de 8 bits: abcdefgh

- 000**111**01 → 1
- 10101011 → 0
- **111**10000 → 1
- Passo 2: Tabela verdade
 - Muito grande: 2^8=256 linhas
- Passo 3: Expressão lógica
 - y = abc + bcd + cde + def + efg + fgh
- Passo 5: Circuito digital

- Problema: Contar o número de "1"s em uma entrada de 3 bits
 - **■** 010 → 01
 - 101 → 10
 - **■** 000 → 00

a

- Problema: Contar o número de "1"s em uma entrada de 3 bits
 - **■** 010 → 01
 - 101 → 10
 - **■** 000 → 00
 - Passo 2: Tabela verdade
 - □ Passo 3: Expressão lógica
 - y = a'bc + ab'c + abc' + abc
 - z = a'b'c + a'bc' + ab'c' + abc
 - □ Passo 4: Simplificar a expressão
 - y = a'bc + ab'c + ab(c' + c) = a'bc + ab'c + ab
 - Passo 5: Circuito digital

Inputs			(# of 1s)	Outputs	
а	b	С		У	Z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

Projeto lógica combinacional

- Descrição do problema em linguagem natural
- Tabela verdade
- Equações booleanas
- 4. Minimização das equações
- 5. Circuito com portas lógicas

Para casa

Projete um circuito com três entradas (A, B e C), cuja saída será nível ALTO apenas quando a maioria das entradas for nível ALTO.