

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Functional Analysis

Author: Adam J. Gray Student Number: 3329798

Declaration

I declare that this assessment item and has not been submitted for a	*		nere ackı	nowledged,
I certify that I have read and un	derstood the U	University F	Rules in	respect of
Student Academic Misconduct.		v		•
Adam J. Gray				Date
3329798				

Question 1

See that

$$\langle Tx, x \rangle = \overline{\langle x, Tx \rangle}$$

 ≥ 0

which means

$$\overline{\langle x, Tx \rangle} = \langle x, Tx \rangle$$
$$= \langle T^*x, x \rangle$$

so

$$\langle (T - T^*)x, x \rangle = 0$$

for all $x \in \mathcal{H}$.

We just want to show that $(T-T^*)=0$. Say $\langle Jx,x\rangle=0$ for all $x\in\mathcal{H}$ then for $x,y\in\mathcal{H}$ see that

$$\langle J(x+y), x+y \rangle = \langle Jx, y \rangle + \langle Jy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jy, y \rangle}_{=0}$$
$$= \langle Jx, y \rangle + \langle Jy, x \rangle \tag{1}$$

and see that

$$\langle J(x+iy), x+iy \rangle = \langle Jx, iy \rangle + \langle Jiy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jiy, iy \rangle}_{=0}$$
$$= -i\langle Jx, y \rangle + i\langle Jy, x \rangle \tag{2}$$

Now multiplying (1) by i and subtracting it from (2) yields

$$\langle Jx, y \rangle = 0$$

for all $x,y\in\mathcal{H}$ which implies $J\equiv 0.$ Letting $J=(T-T^*),$ yields $(T-T^*)=0$ as required.

So
$$T \equiv T^*$$
.

Question 2

Part 1

From a toeplitz operator $T = \{a_i, j\}_{i,j \in \mathbb{Z}}$ define the diagonal operator D_j as the matrix-type operator taken as then j-th diagonal of T. Ie.

$$D_{j} = \begin{pmatrix} 0 & \cdots & a_{j} & 0 & 0 & \cdots \\ 0 & \cdots & 0 & a_{j} & 0 & \cdots \\ 0 & \cdots & 0 & 0 & \ddots & \cdots \end{pmatrix}$$

If $\mathbf{x} = (x_1, x_2, ...)$ then it is clear that $D_j \mathbf{x} = (0, ..., 0, a_j x_j, 0, ...)$. Also it is clear that

$$T = \sum_{j \in \mathbb{Z}} D_j.$$

Since we have that $\sum_{j\in\mathbb{Z}}|a_j|=M<\infty$ we can write

$$\begin{split} ||T\mathbf{x}|| &= ||\sum_{j \in \mathbb{Z}} D_j \mathbf{x}|| \\ &\leq \sum_{j \in \mathbb{Z}} ||D_j \mathbf{x}|| \\ &\leq \sum_{j \in \mathbb{Z}} |a_j|||\mathbf{x}|| \\ &= ||x|| \sum_{j \in \mathbb{Z}} |a_j| \\ &= ||x||M \end{split}$$

and so T is a bounded on ℓ^2 .

Question 3

Part 1

 $x \in (\operatorname{Im} T)^{\perp}$ iff

$$\langle Ty, x \rangle = 0 \qquad \forall y \in \mathcal{H}$$

$$\Leftrightarrow \langle y, T^*x \rangle = 0 \qquad \forall y \in \mathcal{H}$$

$$\Leftrightarrow T^*x = 0$$

$$\Leftrightarrow x \in \ker T^*$$

So $(\operatorname{Im} T)^{\perp} = \ker T^*$.

Part 2

Setting $T = T^*$ in the result of part a yields

$$(\operatorname{Im} T^*)^{\perp} = \ker T^{**}$$
 $\Leftrightarrow (\operatorname{Im} T^*)^{\perp} = \ker T$

and taking orthogonal complements of both sides gets

$$(\operatorname{Im} T^*)^{\perp \perp} = (\ker T)^{\perp}$$

 $\Leftrightarrow \overline{\operatorname{Im} T^*} = (\ker T)^{\perp}.$

So $\overline{\operatorname{Im} T^*} = (\ker T)^{\perp}$.