Politecnico di Milano - Facoltà di Ingegneria dei Sistemi - A. A. 2008/2009 Corso di Laurea in Ingegneria Fisica Preappello - Analisi Matematica D (6-2-09) - Prof. I. FRAGALÀ

COGNOME E NOME: ______ N. MATRICOLA: _____

I. ANALISI COMPLESSA

1. Calcolare

$$\int_0^{+\infty} \frac{x \sin x}{x^2 + 2} \, dx \; .$$

- 2. Enunciare le condizioni di omolorfia di Cauchy-Riemann.
- 3. Dimostrare che una funzione olomorfa e limitata su tutto il piano complesso è necessariamente costante (suggerimento: utilizzare la formula di Cauchy per la derivata n-esima).

1.

$$= \frac{1}{2} \int_{\mathbb{R}} \frac{x \sin x}{x^2 + 2} dx = \frac{1}{2i} \int_{\mathbb{R}} \frac{x e^{ix}}{x^2 + 2} dx$$
$$= \frac{1}{2i} 2\pi i \operatorname{Res} \left(\frac{z e^{iz}}{z^2 + 2}, i\sqrt{2} \right) = \pi \lim_{z \to i\sqrt{2}} \frac{z e^{iz}}{z + i\sqrt{2}} = \frac{\pi}{2} e^{-\sqrt{2}}.$$

- 2. Si veda uno dei testi consigliati.
- 3. Poiché f è olomorfa su tutto il piano complesso, per ogni $z\in\mathbb{C}$ vale lo sviluppo di Taylor

$$f(z) = \sum_{n>0} \frac{f^{(n)}(0)}{n!} z^n .$$

Utilizzando la formula di Cauchy per la derivata n-esima, ovvero

$$f^{(n)}(0) = \frac{n!}{2\pi i} \int_{C_r(0)} \frac{f(z)}{z^{n+1}} dz$$

e l'ipotesi $|f(z)| \leq M \ \forall z \in \mathbb{C}$, si ha

$$|f^{(n)}(0)| \le \frac{n!}{2\pi} M \frac{2\pi r}{r^{n+1}} = \frac{n!M}{r^n} .$$

Per l'arbitrarietà di r, facendo tendere r a $+\infty$, si ottiene $f^{(n)}(0) = 0 \ \forall n > 0$. Pertanto f è costante.

II. ANALISI FUNZIONALE

Sia H(x) la funzione di Heavyside.

- 1. Sia $u: \mathbb{R} \to \mathbb{R}$ misurabile tale che $u(x) = 0 \ \forall x < 0 \ \mathrm{e} \ \int_a^b u(x) \, dx < +\infty \ \forall a, b$. Dimostrare che il prodotto di convoluzione u*H è ben definito e fornisce una primitiva di u.
- 2. Calcolare H * H.
- 3. Calcolare $(x^+) * H$, dove $(x^+) = \max\{x, 0\}$ è la parte positiva di x.
- 1. Si ha

$$u * H(x) = \int_{\mathbb{R}} u(x - y)H(y) dy = \int_0^{+\infty} u(x - y) dy = \int_{-\infty}^x u(t) dt$$
$$= \begin{cases} 0 & \text{se } x < 0 \\ \int_0^x u(t) dt & \text{se } x \ge 0 \end{cases},$$

dove si è usato il cambio di variabile x-y=t, e l'ipotesi u=0 su \mathbb{R}^- .

2. Applicando il punto 1. con u = H si ottiene

$$H * H(x) = \begin{cases} 0 & \text{se } x < 0 \\ \int_0^x 1 \, dt & \text{se } x \ge 0 \end{cases} = xH(x) .$$

3. Applicando il punto 1. con $u = (x^+)$ si ottiene

$$(x^+) * H(x) = \begin{cases} 0 & \text{se } x < 0 \\ \int_0^x t \, dt & \text{se } x \ge 0 \end{cases} = \frac{x^2}{2} H(x) .$$

III. SERIE/TRASFORMATA DI FOURIER

Si consideri l'equazione:

$$u''(x) - u(x) = \frac{1}{x^2 + 3x + 4}$$
 per q.o. $x \in \mathbb{R}$.

- 1. Stabilire se ammette soluzioni in $L^1(\mathbb{R})$, e in caso affermativo calcolarle.
- 2. Stabilire se ammette soluzioni in $L^2(\mathbb{R})$, e in caso affermativo calcolarle.
- 3. Stabilire se ammette soluzioni in $C^2(\mathbb{R})$, e in caso affermativo calcolarle.
- 1. Supponiamo $u, u' \in L^1(\mathbb{R}) \cap AC(\mathbb{R})$, e applichiamo la trasformata di Fourier. Posto $f(x) = 1/(x^2 + 3x + 4)$, si ottiene

$$(i\xi)^2 \hat{u} - \hat{u} = \hat{f} .$$

Si ricava quindi

$$\hat{u}(\xi) = -\frac{\hat{f}(\xi)}{\xi^2 + 1} \ .$$

Antitrasformando, si ha

$$u(x) = -f(x) * \frac{e^{-|x|}}{2}$$
.

Poiché $f \in L^1(\mathbb{R})$, ed anche $e^{-|x|} \in L^1(\mathbb{R})$, il loro prodotto di convoluzione è in $L^1(\mathbb{R})$. Inoltre

$$u'(x) = -f'(x) * \frac{e^{-|x|}}{2}$$
.

Poiché $f' \in L^1(\mathbb{R})$, anche $u' \in L^1(\mathbb{R})$, e quindi $u \in AC(\mathbb{R})$.

Inoltre

$$u''(x) = -f''(x) * \frac{e^{-|x|}}{2} .$$

Poiché $f'' \in L^1(\mathbb{R})$, anche $u'' \in L^1(\mathbb{R})$, e quindi $u' \in AC(\mathbb{R})$.

Dunque le ipotesi fatte a priori sono soddisfatte ed abbiamo trovato una soluzione in $L^1(\mathbb{R})$. Poiché l'integrale generale è dato da

$$\lambda_1 e^x + \lambda_2 e^{-x} - f(x) * \frac{e^{-|x|}}{2},$$

l'unica soluzione in $L^1(\mathbb{R})$ è quella trovata sopra, ovvero quella con $\lambda_1 = \lambda_2 = 0$.

2. La soluzione

$$u(x) = -f(x) * \frac{e^{-|x|}}{2}$$

è in $L^2(\mathbb{R})$, poiché $f \in L^2(\mathbb{R})$, ed $e^{-|x|} \in L^1(\mathbb{R})$ (e quindi il loro prodotto di convoluzione è in $L^2(\mathbb{R})$). Dall'espressione dell'integrale generale trovata al punto 1., si vede che tale soluzione è l'unica in $L^2(\mathbb{R})$ (non appena λ_1, λ_2 sono non nulli, l'integrale generale non appartiene a $L^2(\mathbb{R})$).

3. La soluzione

$$u(x) = -f(x) * \frac{e^{-|x|}}{2}$$

è in $C^2(\mathbb{R})$, poiché $f \in C^2(\mathbb{R})$. Dall'espressione dell'integrale generale trovata al punto 1., si vede che tutte soluzioni sono in $C^2(\mathbb{R})$ (per ogni $\lambda_1, \lambda_2 \in \mathbb{R}$).