Corso di Laurea in Ingegneria Informatica

1) Determinare il circuito equivalente di Norton fra i punti 1 e 2 del circuito in figura.

$$V_1 = 20 \text{ V};$$

 $V_2 = 40 \text{ V};$
 $R = 10 \Omega;$
 $\alpha = 0.5.$

Risultati:

- 1) $\mathbf{R}_{NO} = 2.14 \Omega$; $\mathbf{I}_{NO} = -4.67 \text{ A}$.
- 2) $i_c(t) = 6.3246\sqrt{2}\cos(1000t 1.249) \text{ A};$ S = 1414.2 VA
- 3) $\mathbf{i(t)} = [-0.5 + (1 e^{-3333t})u(t)]A;$

4)
$$\overline{T} = \begin{bmatrix} 0 & 0 \\ -0.1 & -j \end{bmatrix}$$
; $\mathbf{P} = 125 \text{ W}.$

2) Determinare l'andamento temporale della corrente $i_c(t)$ indicata in rosso in figura e la potenza apparente erogata dal generatore di corrente.

J(t) =
$$10\sqrt{2}\cos(1000t)$$
 A;
R = 10 Ω;
L = 10 mH;
C = 100 μF.

3) Determinare l'andamento temporale della corrente $\mathbf{i(t)}$ indicata in rosso in figura per $-\infty < t < +\infty$, considerando l'andamento di $\mathbf{j(t)}$ mostrato in figura, ed ipotizzando che il circuito si trovi a regime per tempi negativi.

4) Determinare la rappresentazione a parametri T della rete a due porte indicata in figura, ipotizzando che il circuito si trovi a regime periodico sinusoidale con pulsazione ω. Supponendo poi che due reti con gli stessi parametri T siano interconnesse come in figura (a destra), determinare la potenza dissipata sul resistore Rx.

$$R_x = R = 10 \Omega;$$

 $L = 10 \text{ mH};$
 $\alpha = 10 \text{ V/A};$
 $\omega = 1000 \text{ rad/s};$
 $J(t) = 5\sqrt{2} \cos(1000t) \text{ V}.$