

Laboratoire de Probabilité, Statistiques et Modélisation ${\rm May} \ 2023$

Internship report notes

Master 2 - Data Science

Alexandre CHAUSSARD

Contents

1	Introduction	2
2	Variational Auto-Encoders	3
	2.1 Framework and optimization objective	3
	2.2 Reparameterization trick	4
	2.3 Architecture	4
3	Bibliography	6

1 Introduction

This part of the paper discusses the introduction to the subject.

2 Variational Auto-Encoders

2.1 Framework and optimization objective

We are interested in another kind of latent models, this time based on variational inference results to achieve a new kind of deep latent structure: the Variational Auto-Encoder (VAE). These latent models were introduced in 2013 by Kingma, better described in a more in depth paper in 2019: [1]

Once again, we assume the observations X to be modelizable by a given distribution parameterized by θ :

$$X \sim p_{\theta}(x)$$

Determining θ holds to find one θ^* that would optimize a given objective, generally chosen as the maximum of likelihood. Indeed, if $\theta^* \in arg \max_{\theta} p_{\theta}(x)$, then such θ^* maximizes the density around the dense areas of the observations, which makes them highly likely to happen under such distribution p_{θ^*} . Hence, the maximum likelihood is a natural criterion:

$$\theta^* \in \arg\max_{\theta} p_{\theta}(x)$$

However, such modelization does not include a latent structure. As a result, we try to enforce it by rewriting the objective as follows:

$$p_{\theta}(x) = \int_{\mathcal{Z}} p(x, z) dz$$

Using Bayes decomposition, we obtain a computable objective:

$$p_{\theta}(x,z) = p_{\theta}(z)p_{\theta}(x|z)$$

Recall that the prior $p_{\theta}(z)$ and the a priori $p_{\theta}(x|z)$ are defined by the framework (ex: Bernoulli prior and Gaussian posterior gives the Gaussian mixture framework). However, the computation of the evidence $p_{\theta}(x)$ is generally intractable in practice, which also leads to a non-tractable posterior distribution: $p_{\theta}(z|x)$. As a result, not being able to compute the evidence leads to not being able to provide a gradient regarding θ , so we can not perform the backpropagation in a deep learning approach.

Note that there exist approximate inference techniques to compute the evidence and the posterior, but these are quite expensive and often yield poor convergence results.

To overcome this issue, we introduce a smart rewriting of the objective using variational inference. Indeed, let $q_{\Phi}(z|x) \approx p_{\theta}(z|x)$ to be learnt over Φ , one can write:

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\Phi}(z|x)} [\log p_{\theta}(x)]$$

$$= \mathbb{E}_{q_{\Phi}(z|x)} \left[\log \frac{p_{\theta}(x)}{q_{\Phi}(z|x)} \frac{q_{\Phi}(z|x)}{p_{\theta}(z|x)} \right]$$

$$= \mathbb{E}_{q_{\Phi}(z|x)} \left[\log \frac{p_{\theta}(x)}{q_{\Phi}(z|x)} \right] + D_{KL} \left[q_{\Phi}(z|x) || p_{\theta}(z|x) \right]$$

$$\stackrel{ELBO(q_{\phi}(z|x), p_{\theta}(x,z))}{= 0}$$

01/05/2023 3

The first term of that decomposition is generally called the Evidence Lower BOund (ELBO), as it marks a lower bound to the evidence $\log p_{\theta}(x)$ since the KL divergence is a positive quantity:

$$\log p_{\theta}(x) \ge ELBO(q_{\phi}(z|x), p_{\theta}(x, z))$$

 $q_{\Phi}(z|x)$ is an approximation of the true posterior $p_{\theta}(z|x)$ that we aim at learning in a family of distributions. For instance,

$$q_{\Phi}(.|x) \sim \mathcal{N}(\mu(x), \Sigma(x))$$

would be an approximation of the true posterior by a Gaussian distribution. Notice that the true posterior may very not likely be Gaussian, which creates a first complexity error in our model.

Despite being a lower bound on the true maximum likelihood objective, the ELBO is actually tractable. Indeed, as we continue the computation:

$$ELBO(q_{\phi}(z|x), p_{\theta}(x, z)) = \mathbb{E}_{q_{\Phi}(z|x)}[\log p_{\theta}(x, z)] - \mathbb{E}_{q_{\Phi}(z|x)}[\log q_{\Phi}(z|x)]$$

= $\mathbb{E}_{q_{\Phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}[\log q_{\Phi}(z|x)||p_{\theta}(z)]$

Another remarkable fact, is that when maximizing the ELBO, we are actually minimizing the KL divergence between the estimated and the true posterior. Hence, one can define the ELBO as a suboptimal objective to our problem that we get to maximize to obtain (Φ^*, θ^*) , the parameters of our model.

2.2 Reparameterization trick

Even though the gradient of the ELBO is well defined for θ , it is not possible to compute it relatively to Φ it requires samples from the approximation to the posterior $q_{\Phi}(z|x)$ to compute $\mathbb{E}_{q_{\Phi}(z|x)}[\log p_{\theta}(x|z)]$.

Since, sampling is not a differentiable operation, we make use of the change of variable formula, so that for a bijective transformation $z = \phi_x(\epsilon)$, we get:

$$p(z) = p(\epsilon) \det \left| \frac{\partial \epsilon}{\partial z} \right|$$

Hence, if we take ϵ a random variable of density $p(\epsilon)$ that does not depend on θ , Φ nor x, so that $z = \phi_x(\epsilon)$, for any L_1 function f,

$$\mathbb{E}_{q_{\Phi}(z|x)}[f(z)] = \mathbb{E}_{p(\epsilon)}[f(z)]$$

As a result, the samples are not obtained through q_{Φ} anymore but through $p(\epsilon)$, so that can safely perform derivation of the ELBO relatively to Φ and backpropagate our gradient through the network.

2.3 Architecture

The vanilla architecture of the VAE is described by the following illustration:

[ILLUSTRATION VAE]

The first part is generally called the encoder, as it turns a sample x into its latent representation z by modelizing the posterior $q_{\Phi}(z|x)$. The second part is then called the decoder, as it

throws a latent representation in the sample space. The latest can even serve as a generative architecture, as one can sample from the latent space through $q_{\Phi}(z|x)$, and decode it to obtain a new sample.

As we can see more clearly in that illustration, we can see that Φ and θ are trained jointly through the ELBO, both serving for one part of the VAE at a time.

The training procedure is straightforward: the entry is a sample x and the output objective is the same sample x. We aim at train the VAE for learning the data space and its latent representation by learning how to reconstruct the samples through it.

3 Bibliography

References

[1] Diederik P Kingma, Max Welling, et al. "An introduction to variational autoencoders". In: Foundations and Trends® in Machine Learning 12.4 (2019), pp. 307–392.