Bài 11: HÔI QUY - TƯƠNG QUAN

1. Mô hình hồi quy tuyến tính đơn

Mô hình hồi quy tuyến tính đơn cho các cặp dữ liệu (x_i, y_i) như sau

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

các hệ số β_0 , β_1 chưa biết và sẽ được ước lượng từ dữ liệu.

Người ta dung phương pháp bình phương bé nhất để tìm các ước lượng này. Cụ thể

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x}) \sum (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Nhịp tim tối đa của một người được cho rằng (theo kinh nghiệm) có mối quan hệ với tuổi tác theo phương trình sau

$$Max = 220 - Age$$

Người ta khảo sát nhịp tim tối đa của 15 người có độ tuổi khác nhau. Dữ liệu sau được ghi lại:

Age	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Max Rate	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178

Hãy biểu diễn dữ liệu trên và vẽ đường hồi quy đơn Max Rate theo Age trên cùng một đồ thị?

```
x <- c(18,23,25,35,65,54,34,56,72,19,23,42,18,39,37) #nhập dữ liệu
y <- c(202,186,187,180,156,169,174,172,153,199,193,174,198,183,178)
```

plot(x,y) # vẽ đồ thị

abline($lm(y \sim x)$) # vẽ đường hồi quy

```
x \leftarrow c(18,23,25,35,65,54,34,56,72,19,23,42,18,39,37) #nhập dữ liệu
y \leftarrow c(202,186,187,180,156,169,174,172,153,199,193,174,198,183,178)
plot(x,y) # vẽ đồ thị
abline(lm(y \sim x)) # vẽ đường hồi quy
lm(y ~ x) # các giá trị cơ bản của phân tích hồi quy
Call:
lm(formula = y \sim x)
Coefficients:
(Intercept)
                   X
   210.0485 -0.7977
```


Hình: Hồi quy nhịp tim tối đa (Max rate) theo tuối (Age)

```
result = lm(y \sim x)
summary(result)
Call:
lm(formula = y \sim x)
Residuals:
   Min 10 Median 30 Max
-8.9258 -2.5383 0.3879 3.1867 6.6242
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
    X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```

Nếu muốn lấy thông tin về thặng dư (residuals) ta dùng **resid**, về hệ số (coefficients) ta dùng **coef**. Ví dụ

2. Phân tích thặng dư

Ta dựa vào đồ thị biểu diễn thặng dư theo giá trị hồi quy (\hat{y}) và đồ thị Normal Q-Q.

Hãy phân tích giá trị thặng dư của mô hình hồi quy.

```
x \leftarrow c(18,23,25,35,65,54,34,56,72,19,23,42,18,39,37) #nhập dữ liệu
y \leftarrow c(202,186,187,180,156,169,174,172,153,199,193,174,198,183,178)
result = lm(y \sim x)
par(mfrow=c(1,2)) #chuấn bị vẽ hai đồ thị trên 1 cửa số
plot(result$fitted.values,resid(result),xlab ='Fitted values',
ylab ='Residuals', main = 'Residuals vs Fitted')
#đồ thị thặng dư theo giá trị hồi quy
abline(h=0,lty=3) #đường thẳng y = 0 với nét chấm
qqnorm(res) #đồ thị Normal Q-Q
qqline(res) #đường thẳng lí thuyết trên đồ thị Normal Q-Q
```


Hình: Phân tích thặng dư.

Nhìn vào đồ thị **Residuals vs Fitted** ta thấy thặng dư phân tán quanh trục Ox một cách ngẫu nhiên đồng đều. Do đó thặng dư có kì vọng 0 và phương sai không đổi.

Nhìn vào đồ thị **Normal Q-Q Plot** ta thấy thặng dư gần xấp xỉ đường thẳng. Do đó thặng dư tuân theo phân phối chuẩn.

Bài tập

Giá một căn nhà (đv: 1000 USD) phụ thuộc vào số phòng ngủ trong căn nhà đó. Giả sử rằng dữ liệu sau được ghi lại cho các căn nhà ở một thành phố.

Price	300	250	400	550	317	389	425	289	389	559
No. bedrooms	3	3	4	5	4	3	6	3	4	5

(a) Vẽ đồ thị phân tán và đường hồi quy trên cùng một hệ trục tọa độ.

```
# Bai tap 1
# a) Nhap du lieu
P <- c(300,250,400,550,317,389,425,289,389,559)
NB <- c(3,3,4,5,4,3,6,3,4,5)

# Ve bieu do phan tan
plot(NB,P)
abline(lm(P ~ NB)) # ve duong hoi quy</pre>
```

Bài tập

Giá một căn nhà (đv: 1000 USD) phụ thuộc vào số phòng ngủ trong căn nhà đó. Giả sử rằng dữ liệu sau được ghi lại cho các căn nhà ở một thành phố.

Price	300	250	400	550	317	389	425	289	389	559
No. bedrooms	3	3	4	5	4	3	6	3	4	5

(b) Kiểm định giả thuyết cho rằng khi thêm một phòng ngủ thì chi phí tăng thêm 60.000 USD với đối thuyết là chi phí cao hơn.

```
# b) Hoi quy
lm(P ~ NB)

Call:
lm(formula = P ~ NB)

Coefficients:
(Intercept) NB
94.4 73.1
```