Simulation mouvement Brownien

Exercice 1 (Temps de sortie d'une bande du mouvement Brownien). Considérons $(W_t, t \ge 0)$ un mouvement Brownien standard et pour $a \in \mathbb{R}^*$

$$\tau_a = \inf\{t > 0; \ W_t = a\}.$$

Vous avez l'an dernier dans le cours d'IPD que $\mathbb{P}(\tau_a < \infty) = 1$ mais que par contre $\mathbb{E}[\tau_a] = +\infty$. Dans cet exercise, on cherche à estimer $\mathbb{E}[\tau_a \wedge T]$ pour différentes valeurs de T et a et à la comparer à la valeur théorique

$$\mathbb{E}[\tau_a \wedge T] = T\left(1 - \frac{\Gamma(\frac{1}{2}, \frac{a^2}{2T})}{\sqrt{\pi}}\right) + \frac{a^2}{2\sqrt{\pi}}\Gamma\left(-\frac{1}{2}, \frac{a^2}{2T}\right)$$

avec la fonction Γ définie par

$$\Gamma(\alpha, x) = \int_{x}^{\infty} t^{\alpha - 1} e^{-t} dt$$

On pourra utiliser la fonction pnl_sf_gamma_inc(alpha, x) pour approcher $\Gamma(\alpha, x)$.

- 1. Simuler le mouvement Brownien sur la grille $(t_k, k = 0, ..., N)$ avec $t_k = \frac{kT}{N}$.
- 2. Estimer $\mathbb{E}[\tau_a \wedge T]$ par une méthode de Monte Carlo sur la grille précédente.
- 3. On choisit a=2. Estimer par une moyenne Monte Carlo la quantité $\mathbb{E}[\tau_a \wedge T]$ pour T=1,2,3,4,5 et différentes valeurs de N et comparer à la valeur théorique.
- 4. Que peut-on dire du biais de l'estimateur? Observer que le biais est proportionnel à $N^{-1/2}$.
- 5. Utiliser une méthode de simulation conditionnelle du mouvement brownien pour raffiner la simulation lorsque le mouvement brownien est proche de a.