Egzamin z Algebry liniowej i geometrii -- lista numerów indeksów z przypisanym numerem strony – (numery indeksów uporządkowane są rosnąco)

Nr albumu	Nr strony
386988	115
416422	98
425077	89
426092	9
432882	73
444368	24
446093	86
450734	6
450737	118
452709	125
452730	56
459308	19
462004	105
462027	109
462068	12 142
462072	
463022	61
463040	18
463041	3
463045	92
464786	77
464827	138
464829	130
464830	75
464831	102
464832	145
464833	110
464834	33
464835	129
464837	91
464838	45
464840	39
464841	43
464842	146
464843	60
464846	88
464848	69
464851	34
464852	10
464853	64
464854	123
464858	135
464859	8
464861	17
464863	71
464865	26
464866	48
464867	85
464868	126
404000	120

Nr albumu	Nr strony
464869	116
464871	42
464873	7
464874	100
464876	104
464877	94
464878	53
464880	50
464882	68
464883	122
464886	65
464887	147
464889	13
464890	16
464891	111
464892	80
464893	51
464894	59
464895	101
464896	49
464898	11
464900	55
464902	83
464903	30
464904	97
464905	25
464906	28
464909	15
464910	78
464911	76
464912	74
464913	106
464914	127
464915	96
464916	87
464917	137
464918	84
464919	124
464920	95
464921	5
464922	14
464923	35
464924	112
464925	103
464927	82
464929	54
464930	32
464931	90
404331	90

N.L Harrison	N.L A.L.
Nr albumu	Nr strony
464933	128
464934	27
464935	70
464936	58
464937	4
464939	36
464941	93
464942	47
464943	67
464945	46
464946	121
464947	140
464948	41
464949	134
464951	132
464953	31
464955	139
464956	114
464957	66
464958	72
464960	119
464961	57
464962	113
464963	120
464965	40
464966	44
464967	62
464968	99
464969	20
464970	108
464971	144
464973	2
464974	117
464975	52
464976	81
464978	136
464979	141
464980	143
464981	133
464982	37
464983	29
464986	107
464988	38
464989	22
464990	63
469065	21
469270	79
469272	131
470237	23
110201	

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

7

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

8

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

13

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

14

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

17

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_3 \\ -x_1 \\ x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

24

Zadanie 1. Oblicz wartości własne i wektory własne macierzy:

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_3 \\ -x_1 \\ x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

41

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

43

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

44

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

47

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -x_3 \\ -x_1 \\ x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

71

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

72

Zadanie 1. Oblicz wartości własne i wektory własne macierzy:

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

73

Zadanie 1. Oblicz wartości własne i wektory własne macierzy:

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

77

Zadanie 1. Oblicz rząd macierzy:

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 \\ 2x_1 \\ -x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

 $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$

$$2x_1 + x_2 + 3x_3 = 7$$

$$x_1 + x_2 + x_3 = 4$$
.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$

 $2x_1 + 6x_2 + 9x_3 = 4$
 $4x_1 + 3x_2 + 3x_3 = 11$.

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$x_1 + 2x_2 + 3x_3 = 1$$
$$2x_1 + x_2 + x_3 = 0$$
$$4x_1 + 3x_2 + x_3 = 6.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ 3x_3 \\ x_1 - x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 5x_3 \\ -x_1 \\ 2x_3 - x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1 \\ -x_2 \\ 2x_3 + 4x_2 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 5x_3\\-x_1\\2x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 13$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 6 & 4 & 9 & 13 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 - x_1\\-x_2\\2x_3 + 4x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$4x_1 + 5x_2 + 2x_3 = 1$$
$$2x_1 + 3x_2 + 4x_3 = 17$$
$$x_1 + 2x_2 + 2x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 5 & 11 & 18 \\ 5 & 3 & 7 & 9 \\ 1 & 1 & 2 & 4 \\ 10 & 6 & 11 & 19 \end{bmatrix}.$$

$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}.$$

Zadanie 1. Podaj definicję przekształcenia liniowego i sprawdź czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_3 - x_1 \\ x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + x_2 + 6x_3 = 2$$
$$2x_1 + x_2 + 3x_3 = 7$$
$$x_1 + x_2 + x_3 = 4.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 7 & 9 & 15 & 4 \\ 6 & -5 & 4 & 0 \\ 3 & 5 & 7 & 2 \\ 9 & -9 & 4 & 0 \end{bmatrix}.$$

Zadanie 5. Sprawdzić, czy wektory przestrzeni liniowej \mathbb{R}^4 :

$$\begin{bmatrix} -12\\4\\-8\\1 \end{bmatrix}, \begin{bmatrix} 9\\-3\\6\\2 \end{bmatrix}$$

są liniowo zależne.

$$A = \begin{bmatrix} 6 & 11 & 9 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3\\2x_1\\-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$6x_1 + 7x_2 + 4x_3 = -4$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 8 & 4 & 0 \\ 4 & 7 & 5 & 3 \end{bmatrix}.$$

Zadanie 2. Sprawdź, czy odwzorowanie $T \ge \mathbb{R}^3$ do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} -x_3\\-x_1\\x_3-x_2\end{bmatrix}$$

jest przekształceniem liniowym.

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 3x_3 = -10$$
$$3x_1 - x_2 + x_3 = 6$$
$$7x_1 + 3x_2 + 4x_3 = 5.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 3 & 8 & 3 & 3 \\ 2 & 5 & 1 & 2 \\ 3 & 4 & 5 & 1 \\ 2 & 4 & 2 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}.$$

Zadanie 2. Oblicz, o ile istnieje, macierz odwrotną do macierzy:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Zadanie 3. Rozwiąż metodą eliminacji Gaussa układ równań:

$$3x_1 + 8x_2 + 13x_3 = 11$$
$$2x_1 + 6x_2 + 9x_3 = 4$$
$$4x_1 + 3x_2 + 3x_3 = 11.$$

Zadanie 4. Oblicz wyznacznik macierzy:

$$B = \begin{bmatrix} 5 & 6 & 8 & 13 \\ -5 & 1 & 5 & -13 \\ 4 & 1 & 19 & 11 \\ 4 & -2 & 13 & 11 \end{bmatrix}.$$

Zadanie 5. Sprawdź, czy odwzorowanie T z \mathbb{R}^3 do \mathbb{R}^3 określone wzorem:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_3 \\ 3x_1 - 3x_2 \end{bmatrix}$$