Digital Electronics and Microprocessors

Class 16

CHHAYADEVI BHAMARE

MSI logic circuits(Chapter 9 of T1)

- □ Digital systems obtain data and information continuously operated on in some manner:
 - Decoding/encoding.
 - Multiplexing/demultiplexing,.
 - Comparison; Code conversion;
- □ These and other operations have been facilitated by the availability of numerous ICs in the MSI (medium-scale-integration) category.

- Decoders are used when an output or a group of outputs is to be activated only on the occurrence of a specific combination of input levels.
 - Often provided by outputs of a counter or a register.

□ A **decoder** accepts a set of inputs that represents a binary number—activating only the output that corresponds to the input number.

For each of these input combinations, only one of the *M* outputs will be active (HIGH); all the other outputs are LOW.

Many decoders are designed to produce active-LOW outputs, where only the selected output is LOW while all others are HIGH.

□ "*Enable*" Control

E	$I_1 I_0$	Y_3	Y_2	Y_1	Y_{0}
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

□ Expansion

□ Active-High / Active-Low

$I_1 I_0$	$Y_3 Y_2 Y_1$	Y_0 I_1 I_0	Y_3 Y_2 Y_1 Y_0	
0 0	0 0 0	1 0 0	1 1 1 0	
0 1	0 0 1	0 0 1	1 1 0 1	
1 0	0 1 0	0 1 0	1 0 1 1	
1 1	1 0 0	0 1 1	0 1 1 1	
	Y ₃ Y ₂ Y ₁ Y ₀		\overline{Y}_{3} \overline{Y}_{2} \overline{Y}_{1} \overline{Y}_{0} \overline{Y}_{0} I_{I} I_{0}	Y_2 Y_2 Y_3 Y_4

Implementation Using Decoders

- □ Each output is a minterm
- □ All minterms are produced
- □ Sum the required minterms

Example: Full Adder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Implementation Using Decoders

Seven-Segment Decoder

w x y z	abcdefg
0 0 0 0	1111110
0 0 0 1	0110000
0 0 1 0	1101101
0 0 1 1	1111001
0 1 0 0	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1 0 0 1	1111011
1 0 1 0	XXXXXXX
1 0 1 1	XXXXXXX
1 1 0 0	XXXXXXX
1 1 0 1	XXXXXXX
1 1 1 0	XXXXXXX
1111	XXXXXXX

$$b = \dots$$

$$c = \dots$$

$$d = \dots$$

- Most decoders accept an input code & produce a HIGH (or LOW) at *one* and *only one* output line.
 - A decoder identifies, recognizes, or detects a particular code.

- □ The opposite of decoding process is **encoding**.
 - Performed by a logic circuit called an encoder.

An encoder has a number of input lines, only **one** of which is activated at a given time.

Shown is an encoder with *M* inputs and *N* outputs.

Inputs are active-HIGH, which means that they are normally LOW.

It produces an *N*-bit output code, depending on which input is activated.

□ An *octal-to-binary encoder* (8-line-to-3-line encoder) accepts eight input lines, producing a three-bit output code corresponding to the

Logic circuit for an octal-to-binary (8-line-to-3-line) encoder.

Only one input should be active at one time.

□ Octal-to-Binary Encoder (8-to-3)

I_7	<i>I</i> ₆	I_5	I_4	I_3	I_2	I_1	I_{θ}	$Y_2 Y_1 Y_0$
0	0	0	0	0	0	0	1	0 0 0
0	0	0	0	0	0	1	0	0 0 1
0	0	0	0	0	1	0	0	0 1 0
0	0	0	0	1	0	0	0	0 1 1
0	0	0	1	0	0	0	0	1 0 0
0	0	1	0	0	0	0	0	1 0 1
0	1	0	0	0	0	0	0	1 1 0
1	0	0	0	0	0	0	0	1 1 1

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

$$Y_1 = I_7 + I_6 + I_3 + I_2$$

$$Y_0 = I_7 + I_5 + I_3 + I_1$$

Priority Encoder

- □ A priority encoder is an encoder circuit that includes priority function.
- □ It means if two or more inputs are equal to 1 at the same time, the input having higher subscript number, considered as a higher priority. For example if D3 is 1 regardless of the value of the other input lines the result of output is 3 which is 11.
- □ If all inputs are 0, there is no valid input. For detecting this situation we considered a third output named V. V is equal to 0 when all input are 0 and is one for rest of the situations of TT.

Priority Encoders

□ 4-Input Priority Encoder

I_3	I_2	I_1	I_{θ}	$Y_1 Y_0$	$oldsymbol{V}$
0	0	0	0	0 0	0
0	0	0	1	0 0	1
0	0	1	X	0 1	1
0	1	X	X	1 0	1
1	X	X	X	1 1	1

□ A **priority encode**r ensures that when two or more inputs are activated, the output code will correspond to the highest-numbered input.

It has nine active-LOW inputs represent decimal digits

1 through 9, producing *inverted* BCD code corresponding to the highest-numbered activated input.

Can u implement logic function using Encoders?

□ Work for you

- □ A switch encoder can be used when BCD data must be entered manually into a digital system.
 - The 10 switches might be the keyboard switches on a calculator—representing digits 0 through 9.

The switches are of the normally open type, so the encoder inputs are all normally HIGH.

BCD output is 0000.

When a key is depressed, the circuit will produce the BCD code for that digit.

The 74LS147 is a *priority* encoder, so simultaneous key depressions produce the BCD code for the *higher-numbered* key.

□ 2-to-1 MUX

□ 4-to-1 MUX

□ Quad 2-to-1 MUX

□ Quad 2-to-1 MUX

Function Implementation Using Multiplexers

□ Example

$$F(x, y) = \sum (0, 1, 3)$$

Implementation Using Multiplexers

Example

F	(χ_{\star})	ν.	7)	=	\sum_{i}	(1,	2.	6.	7)
1	$\langle \mathcal{N}, \rangle$	<i>y</i> ,	~ <i>J</i>			(⊥ ,	<i>—</i> ,	Ο,	' '

x	y	Z	$oldsymbol{F}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Implementation Using Multiplexers

Example

$$F(x, y, z) = \sum (1, 2, 6, 7)$$

x y z	$\boldsymbol{\mathit{F}}$		
$\begin{bmatrix} 0 & 0 \end{bmatrix} 0$	0		$z \longrightarrow I_0$
$\begin{bmatrix} 0 & 0 \end{bmatrix} 1$	1	F = z	$\frac{z}{z} - \frac{I_1}{I_1} = F$
0 1 0	1]	$0 \longrightarrow I_2$
0 1 1	0	F = z	$1 - \frac{I_3}{S_1 S_0}$
1 0 0	0	$\begin{bmatrix} \mathbf{r} & \mathbf{r} \end{bmatrix}$	
1 0 1	0	F = 0	\boldsymbol{x} \boldsymbol{y}
1 1 0	1	F=1	
1 1 1	1	$\int I' - I$	

Consider the following truth table that describes a function of 4 Boolean variables.

A	В	\mathbf{C}	D	F	MUX 16:1	
0	0	0	0	0	Vcc D 0 MOX 10.1	
0	0	0	1	0	$C \longrightarrow 1 G \frac{0}{1}$	
0	0	1	0	1	$\begin{cases} B \longrightarrow 2 \\ A \longrightarrow 3 \end{cases} $	
0	0	1	1	1	\$ A	
0	1	0	0	0		
0	1	0	1	1	2	
0	1	1	0	0	3 4	
0	1	1	1	1	5	— F
1	0	0	0	0	6	_
1	0	0	1	0	7 8	
1	0	1	0	1	9	
1	0	1	1	1	10	
1	1	0	0	0	11 12	
1	1	0	1	0	13	
1	1	1	0	0	14	
1	1	1	1	1		
					-	

Implementing the above function using 8:1 Mux

A	В	C	D	F	
0	0	0	0	0	0
0	0	0	1	0	
0	0	1	0	1	1
0	0	1	1	1	
0	1	0	0	0	D
0	1	0	1	1	
0	1	1	0	0	D
0	1	1	1	1	
1	0	0	0	0	0
1	0	0	1	0	
1	0	1	0	1	1
1	0	1	1	1	
1	1	0	0	0	0
1	1	0	1	0	
1	1	1	0	0	D
1	1	1	1	1	

Implementation Using Multiplexers

■ Example

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 13, 14, 15)$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c} D & \longrightarrow & I_0 \ D & \longrightarrow & I_1 \ D & \longrightarrow & I_2 \ 0 & \longrightarrow & I_3 \ D & \longrightarrow & I_5 \ 1 & \longrightarrow & I_6 \ 1 & \longrightarrow & I_7 \ \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Multiplexer Expansion

we can use the 4:1 multiplexer to implement these three operations, so it is functionally complete.

Multiplexer Applications

Parallel-to-serial converter.

Multiplexer Applications

Multiplexer used to implement a logic function described by the truth table.

