

Grundlagen der Elektrotechnik II **Schwingkreise**

Studien- und Versuchsaufgaben

Autor: Richard Grünert 11.6.2019

1 Vorbereitungsaufgaben

1.1

Spule

Der Verlustwinkel δ ist der Winkel der Spulenimpedanz \underline{Z} mit der imaginären Achse der gaußschen Zahlenebene. $\tan \delta$ wird auch Verlustfaktor d genannt.

$$\tan \delta = \frac{\omega L_s}{R_{sL}}$$

Die Güte Q der realen Induktivität ist demnach als Kehrwert des Verlustfaktors definiert:

$$Q_{Ls} = \frac{1}{\tan \delta} = \frac{R_{sL}}{\omega L_s}$$

Parallelmodell

Der Verlustwinkel δ ist der Winkel der Spulenadmittanz \underline{Y} mit der imaginären Achse der gaußschen Zahlenebene (Betrag).

$$|\tan \delta| = \frac{\frac{1}{R_{pL}}}{\frac{1}{\omega L_p}} = \frac{\omega L_p}{R_{pL}}$$

Kehrwert des Verlustfaktors:

$$Q_{Lp} = \frac{1}{\tan \delta} = \frac{R_{pL}}{\omega L_p}$$

$$Q_{Lp} = Q_{Ls} = \frac{R_{pL}}{\omega L_p} = \frac{\omega L_s}{R_{sL}}$$

Kondensator

Reihenmodell

Der Verlustwinkel δ ist der Winkel der Kondensatorimpedanz \underline{Z} mit der imaginären Achse der gaußschen Zahlenebene (Betrag).

$$|\tan \delta| = \frac{R_{sC}}{\frac{1}{\omega C_s}} = R_{sC} \cdot \omega C_s$$

Somit ist die Kondensatorgüte des Reihenmodells:

$$Q_{Cs} = \frac{1}{\tan \delta} = \frac{1}{R_{sC} \cdot \omega C_s}$$

Parallelmodell

Der Verlustwinkel δ ist der Winkel der Kondensatoradmittanz \underline{Y} mit der imaginären Achse der gaußschen Zahlenebene.

$$\tan \delta = \frac{\frac{1}{R_{pC}}}{\omega C_p} = \frac{1}{R_{pC} \cdot \omega C_p}$$

Kehrwert des Verlustfaktors:

$$Q_{Cp} = \frac{1}{\tan \delta} = R_{pC} \cdot \omega C_p$$

$$Q_{Cs} = Q_{Cp} = \frac{1}{R_{sC} \cdot \omega C_s} = R_{pC} \cdot \omega C_p$$

- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- 1.8
- 1.9
- 2 | Versuchsaufgaben