

미세먼지 유발 영향인자 확인 및 개선방안 제시

프로세스

과제 정의

분석 계획

분석항목 정의

데이터 현황

모델링

예측결과 확인

결론 및 대안제시

주요 내용

- 미세먼지 영향 인자 분석과제 수행 이유
- 과제 분석 목표
- 가설 설정
- 데이터 품질 확인
- 변수간 상관관계 분석 및 모델 수립
- 변수 설명 및 형태 확인
- 변수 선택
- 결측치 확인 및 처리
- 이상치 확인 및 처리
- 요약통계량 확인 및 표준화 필요성 검토
- 다중 선형회귀 모델링
- 의사결정나무 모델링
- 랜덤 포레스트 모델링
- 그래디언트 부스팅 모델링
- 수립한 가설에 대한 결과 확인
- 최종 의견 정리
- 미세먼지 발생량 감소 방안 제시
- 실습에 대한 고찰

미세먼지 발생량을 예측해야 하는 이유

- 2017년 OECD가 발표한 미세먼지(PM2.5) 농도 통계에서 한국이 25.14μg/㎡으로 회원국들 중 농도가 가장 높은 수준 인 것으로 조사
- OECD 회원국들의 평균으로 집계된 12.5µg/m³의 두 배가 넘는 수치이며 실제로 OECD에서는 한국의 대기오염도를 측정하며 이 결과가 국민들의 건강과 직결될 것으로 예상
- 2016년 OECD 보고서에서도 한국 대기오염 심각성을 경고
- 제대로 대처 못하는 경우 40년 뒤 **대기오염으로 인한 조기** 사망률이 가장 높은 OECD 회원국으로 한국이 전망

미세먼지 농도는 국민의 건강과 직결된 문제 따라서 해당 과제를 통해서 **어떤 인자가 미세먼지 농도에 영향을 주는지 파악**하여 미세먼지 농도를 감소시킬 수 있는 방안을 찾고자 함 분석 방향 및 목표설정

대기오염, 기상 상황, 계절 등이 미세먼지 발생량에 영향을 미침

미세먼지 발생에 영향을 미치는 요인을 분석하고 영향인자를 선정한 후 대응 방안을 수립함

미세먼지 발생량과 영향인자들의 예상 관계

목표변수		대기오염			기상정보	고려대상		
미세먼지 발생량	이산화탄소 농도	아황산가스 농도	이산화질소 농도	기온	기압	습도	오존 농도	계절성
높음	높음	높음	높음	낮음	높음	낮음	관련성 유무	겨울 ^
Ţ	Ţ	Ţ	\	\	↓	\	확인 필요	↓
낮음	낮음	낮음	낮음	높음	낮음	높음		여름

가설 설정

가설1. 대기오염이 미세먼지 발생량의 가장 주요한 영향인자이다.

4년간 월별 미세먼지, 초미세먼지 농도 (2017~2020)

2020년, 코로나 19로 인한 대기오염 감소

2020년은 코로나19로 인해 전세계적으로 대기오염이 현저히 감소함

2020년의 미세먼지 농도가 이전보다 상당히 감소한 것으로 보아 대기오염이 미세먼지 발생량의 가장 주요한 영향인자일 것으로 예측 가설 설정

가설2. 봄, 겨울철 미세먼지 발생량이 증가한다.

전반적으로 봄, 겨울철 미세먼지 발생량이 증가하는 것을 볼 수 있음

계절은 미세먼지 발생량의 영향인자일 것으로 예상됨

가설 설정

가설3. 풍속이 약할수록 미세먼지 발생량은 증가한다.

풍속이 약할수록 미세먼지 발생량이 증가함

풍속과 미세먼지 발생량 사이에 음의 상관관계가 있을 것으로 예상됨

데이터 분석 계획

데이터 품질 확인

- 결측치가 확인될 경우, 결측치가 해당 설명변수의 20% 이상 경우 해당 변수는 분석에서 제외
- 이상치가 확인될 경우, 최대한 제거하지 않고 분석함
- Scale의 차이가 크다면 정규화 진행

상관관계 분석

- 미세먼지 발생량과 대기오염 인자, 기상 상황, 계절별 상관관계가 있는지 분석
- 변수 간의 상관성 분석
- 다중공선성이 확인될 경우 모델 선정에 유의

모델 수립

- 회귀분석, Decision Tree, Random Forest, Gradient Boosting 모델을 각각 생성하여 목표변수 설명력을 확 인함
- 최적의 모델 선택

데이터 분석 과정

데이터 현황 파악

데이터 정제 및 가설 검정

모델링

결론 및 대안제시

변수 설명 및 형태

변수	변수 설명	변수 역할	변수 형태
MesDate	측정일자	제외	연속형
PM10	미세먼지 10µg/㎡	목표변수	연속형
03	오존 농도	설명변수	연속형
NO2	이산화질소 농도	설명변수	연속형
СО	일산화탄소 농도	설명변수	연속형
SO2	아황산가스 농도	설명변수	연속형
TEMP	기온(°C)	설명변수	연속형
RAIN	강수량(mm)	설명변수	연속형
WIND	풍속(m/s)	설명변수	연속형
WIND_DIR	풍향(16방위)	설명변수	연속형
HUMIDITY	습도(%)	설명변수	연속형
ATM_PRESS	현지기압(hPa)	설명변수	연속형
SNOW	적설(cm)	설명변수	연속형
CLOUD	전운량(10분위)	설명변수	연속형

- 결측치 확인 및 처리
 - 결측치 확인 결과 PM10, 03, NO2, SO2는 각각 1개의 결측치가 발생하였으며 해당 변수들 모두 시계열 데이터가 아니므로 평균치로 대체함
 - CO는 366개 중 55개의 결측치가 발생하였는데 앞서 세웠던 계획에 비추어 결측치가 해당 변수의 20% 이하이므로 제거하지 않고 변수들의 평균치로 대체

PM10	1
03	1
N02	1
CO	55
S02	1

- 이상치 확인 및 처리
 - 목표변수 PM10에서 일부 이상치가 발견됨

- 이상치 확인 및 처리
 - 설명변수 중 7개의 변수에 이상치가 존재하며 SNOW, RAIN 변수에서 이상치가 다수 발견됨
 - 해당 변수들을 살펴본 결과 기상 상황과 계절에 따라 달라지는 값으로 목표변수에 유의한 값으로 작용할 수 있기에 제거하지 않음

- 요약통계량 확인
 - 요약통계량과 변동계수 확인결과 변수의 표준화가 필요하다고 판단

	PM10	О3	NO2	СО	SO2	TEMP	RAIN	WIND	WIND_DIR	HUMIDITY	ATM_PRESS	SNOW	
 count	366.000000	366.00000	366.000000	366.000000	366.000000	366.000000	366.000000	366.000000	366.000000	366.000000	366.000000	366.000000	
mean	33.421918	0.02360	0.026814	0.517042	0.003033	13.863798	0.381639	2.225301	209.450820	60.295082	1005.848907	0.022951	
std	15.916135	0.01188	0.010257	0.140836	0.000632	9.830280	1.122127	0.723171	70.735018	14.534983	8.126823	0.222361	
 min	5.000000	0.00200	0.008000	0.300000	0.002000	-7.950000	0.000000	0.940000	50.000000	17.900000	983.800000	0.000000	
25%	22.000000	0.01425	0.019000	0.400000	0.003000	5.492500	0.000000	1.722500	160.250000	49.650000	999.400000	0.000000	
50%	31.000000	0.02300	0.025000	0.500000	0.003000	14.000000	0.000000	2.095000	221.000000	61.050000	1006.450000	0.000000	
75%	42.000000	0.03200	0.033750	0.600000	0.003000	23.070000	0.115000	2.620000	266.000000	69.950000	1011.575000	0.000000	
max	101.000000	0.06200	0.059000	1.000000	0.005000	31.720000	11.800000	5.880000	351.000000	95.000000	1025.500000	3.200000	

		_
PM10	0.476218	
03	0.503378	
N02	0.382514	
CO	0.272388	
 S02	0.208251	
TEMP	0.709061	
RAIN	2.940282	
WIND	0.324977	
WIND_DIR	0.337717	
 HUMLDLTY	0.241064	ļ
ATM_PRESS	0.008080	
SNOW	9.688587	
 CLOUD	0.589674	
dtype: floa	at 64	

<- 변동계수

- 그래프 분석(목표변수 PM10과 설명변수 간 산점도)
 - NO2, CO, SO2, ATM_PRESS 변수가 영향인자로 예상됨

- 상관관계 분석
 - PM10과 CO, SO2 변수가 선형적 관계가 있는 것으로 판단됨
 - CO와 NO2를 비롯한 다수의 설명변수 간의 선형관계가 확인되어 다중공선성 확인 및 처리가 필요함

	PM10	О3	NO2	со	SO2	TEMP	RAIN	WIND	WIND_DIR	HUMIDITY	ATM_PRESS	snow	CLOUD
PM10	1.000	-0.052	0.396	0.548	0.429	-0.310	-0.121	-0.100	0.020	-0.149	0.253	-0.020	-0.172
О3	-0.052	1.000	-0.592	-0.509	-0.234	0.516	-0.104	0.165	0.269	-0.038	-0.534	0.004	-0.119
NO2	0.396	-0.592	1.000	0.786	0.563	-0.237	0.029	-0.536	-0.408	-0.065	0.420	-0.121	0.017
со	0.548	-0.509	0.786	1.000	0.559	-0.340	0.037	-0.412	-0.319	0.057	0.385	-0.056	0.037
SO2	0.429	-0.234	0.563	0.559	1.000	-0.274	-0.129	-0.253	-0.093	-0.301	0.334	-0.103	-0.191
TEMP	-0.310	0.516	-0.237	-0.340	-0.274	1.000	0.078	-0.215	-0.050	0.404	-0.792	-0.185	0.342
RAIN	-0.121	-0.104	0.029	0.037	-0.129	0.078	1.000	0.128	-0.181	0.399	-0.237	0.019	0.360
WIND	-0.100	0.165	-0.536	-0.412	-0.253	-0.215	0.128	1.000	0.236	-0.080	-0.056	0.145	0.019
WIND_DIR	0.020	0.269	-0.408	-0.319	-0.093	-0.050	-0.181	0.236	1.000	-0.096	0.066	0.108	-0.294
HUMIDITY	-0.149	-0.038	-0.065	0.057	-0.301	0.404	0.399	-0.080	-0.096	1.000	-0.512	0.021	0.629
ATM_PRESS	0.253	-0.534	0.420	0.385	0.334	-0.792	-0.237	-0.056	0.066	-0.512	1.000	0.040	-0.431
SNOW	-0.020	0.004	-0.121	-0.056	-0.103	-0.185	0.019	0.145	0.108	0.021	0.040	1.000	0.021
CLOUD	-0.172	-0.119	0.017	0.037	-0.191	0.342	0.360	0.019	-0.294	0.629	-0.431	0.021	1.000

- 그래프 분석(목표변수 PM10과 측정일자 간 Trend Chart)
 - 측정일자에 따른 감소 구간과 증가 구간 등 추세선이 보임
 - 계절이라는 범주형 파생변수를 생성하여 계절과 미세먼지 발생량 간의 관계를 살펴봄

- 파생변수 계절과 미세먼지 발생량의 Box Plot 확인
 - Box Plot으로 계절 간 미세먼지 발생량의 차이를 봤을 때, 봄, 겨울철에 상대적으로 미세먼지 발생량이 높은 것으로 보임

```
1 df_raw['SEASON'].unique()
array(['여름', '가을', '겨울', '봄'], dtype=object)
```

* 일반적인 계절분류에 따라 봄(3, 4, 5월), 여름(6, 7, 8월), 가을(9, 10, 11월), 겨울(12, 1, 2월)로 분류함

탐색적 분석

- 계절별 미세먼지 발생량의 차이 여부 검정
 - 앞선 Box Plot을 통해 육안으로 확인한 차이의 유의성을 검정하기 위해 ANOVA를 실행
 - 유의수준 5%에서 검정 결과 p-value가 0으로 계절별 미세먼지 발생량의 차이가 있다고 할 수 있음.

One-way ANOYA

F검정통계량 : 17.838

p-value : 0.0

- 그래프 분석결과 종합
 - PM10(미세먼지 발생량)의 영향인자 : CO, NO2
 - PM10(미세먼지 발생량)과 계절 간의 상관관계 확인 : 봄, 겨울철 미세먼지 발생량 증가

- 미세먼지 발생량 예측 및 영향인자 확인
 - 모든 설명변수에 대해 VIF가 10이하이므로 설명변수간 독립이 확인

	variable	VIF
11	SNOW	1.112
6	RAIN	1.348
8	WIND_DIR	1.501
4	SO2	1.941
7	WIND	1.943
12	CLOUD	2.093
9	HUMIDITY	2.659
1	О3	2.691
3	CO	3.577
5	TEMP	4.498
10	ATM_PRESS	4.639
2	NO2	4.937
0	const	73600.335

- 1. 다중 선형회귀 분석
 - 모든 설명변수에 대한 다중 선형 회귀모델 결과
 - F검정 결과 p-value 값이 유의수준 0.05보다 작으므로 회귀모델로서 유의하며 52.7%의 설명력을 가지는데 기상 현상 예측이라는 상황에 비춰 봤을 때 변수를 조절하더라도 더 높은 설명력을 기대하기는 어려움
 - 회귀모델의 기본 가정인 잔차의 정규성과 독립성이 위배되는 것으로 보임

		OLS Regres	sion Result	S		
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Fri, ns:	PM10 OLS east Squares 05 Mar 2021 12:38:48 366 349 16 nonrobust		quared: :ic: statistic)		0.548 0.527 26.43 .23e-50 -1386.4 2807. 2873.
	coef	std err	t	P> t	[0.025	0.975]
Intercept SEASON[T.겨울] SEASON[T.봄] SEASON[T.여름] 03 N02 C0 S02 TEMP RAIN WIND WIND_DIR HUMIDITY ATM_PRESS SNOW CLOUD Month	1.5300 4.7615 11.7779 6.2809 457.0338 558.7148 62.5162 1342.9917 -0.2826 -0.9162 2.9843 0.0487 0.0393 -0.0492 -0.9422 -0.0767 -0.1609	175.416 2.774 2.447 2.607 83.267 132.486 8.028 1285.042 0.162 0.602 1.183 0.011 0.065 0.171 2.775 0.283 0.227	0.009 1.717 4.814 2.409 5.489 4.217 7.787 1.045 -1.746 -1.521 2.522 4.619 0.602 -0.288 -0.340 -0.272 -0.708	0.993 0.087 0.000 0.017 0.000 0.000 0.000 0.297 0.082 0.129 0.012 0.000 0.548 0.774 0.734 0.786 0.480	-343.476	346.536 10.217 16.590 11.409 620.802 819.287 78.306 3870.392 0.036 0.268 5.311 0.069 0.168 0.287 4.516 0.479 0.286
Omnibus: Prob(Omnibus): Skew: Kurtosis:		149.235 0.000 1.709 8.832	Durbin—Wa Jarque—Be Prob(JB): Cond. No.	era (JB):	4.	1.329 696.837 83e-152 2.31e+06

- 1. 다중 선형회귀 분석
 - 잔차분석결과 등분산성, 독립성, 정규성 모두 위배되는 것으로 보임

변수 중요도

- 변수 별 단위차이가 커 표준화하기 전 변수 중요도와 표준화 후 변수 중요도의 차이가 큼
- 표준화 전과 후 가장 차이가 많이 난 변수는 SO2와 CO이며 NO2와 O3는 중요한 영향인자로 판단됨

- 1. 다중 선형회귀분석
 - 표준화한 모든 변수들로 다중 선형 회귀모델을 생성한 결과 수정결정계수는 52.7%가 나옴
 - 표준화한 변수들의 변수 중요도 상위 5개로 다중 선형회귀 모델을 생성한 결과 수정결정계수는 45%가 나옴
- 최종 회귀식 도출결과
 - 표준화 전 모든 변수로 도출한 회귀식
 - PM10 = 433.3944 + 600.8265*O3 + 552.1572*NO2 + 61.6154*CO + 436.2575*SO2 0.6635*TEMP 1.4370*RAIN + 2.6891*WIND + 0.0382*WIND_DIR 0.0211*HUMIDITY –0.4622*ATM_PRESS 3.2925* SNOW –0.0293*CLOUD
 - 표준화 후 모든 변수로 도출한 회귀식
 - PM10 = 33.4219 + 7.1279*O3 + 5.6555*NO2 + 8.6658*CO + 0.2752*SO2 6.5130*TEMP 1.6103*RAIN + 1.9420*WIND + 2.7017*WIND_DIR 0.3064*HUMIDITY 3.7510*ATM_PRESS 0.7311* SNOW 0.0873*CLOUD
 - 표준화한 변수 중 상위 5개 변수로 도출한 회귀식
 - PM10 = 33.4219 + 8.2098*O3 + 3.7738*NO2 + 8. 2786*CO 6. 9032*TEMP 31.8342*ATM PRESS

- 2. 의사결정나무 분석
 - 최적의 파라미터: min_samples_leaf = 17, max_depth=9, min_samples_split=10
 - Training data에 대한 설명력: 46.1%, Test data에 대한 설명력 14.6%
 - 변수 중요도 순위: CO > 03 > WIND_DIR > NO2

- 3. 랜덤 포레스트 분석
 - 최적의 파라미터: min_samples_leaf = 3, min_samples_split = 4, max_depth = 7, n_estimators = 100
 - Training data에 대한 설명력: 81.0%, Test data에 대한 설명력 39.3%
 - 변수 중요도 순위: CO > 03 > WIND_DIR > CLOUD > TEMP
- 4. 그래디언트 부스팅 분석
 - 최적의 파라미터: min_samples_leaf = 4, min_samples_split = 22, max_depth = 1, learning_rate = 0.3, n_estimators = 100
 - Training data에 대한 설명력: 71.5%, Test data에 대한 설명력 38.6%
 - 변수 중요도 순위: CO > 03 > WIND_DIR > CLOUD >TEMP

랜덤 포레스트 변수 중요도

그래디언트 부스팅 변수 중요도

- 5. 모델 평가
 - 전반적으로 의사결정나무의 error가 가장 크고 나머지 모델들은 비슷한 것으로 보임
 - 앞선 test score에서 의사결정나무의 score가 가장 좋지 않았는데 그 결과와 일치하는 것으로 보임

■ 3가지 가설에 대한 결과

가설1. 대기오염이 미세먼지 발생량의 가장 주요한 영향인자이다.

- 미세먼지 발생량의 주요 영향 인자 5가지(CO, NO2, O3, WIND_DIR, CLOUD) 중 3가지가 대기오염과 관련 된 인자이다.
- 따라서 해당 가설은 맞다고 보여진다.

가설2. 봄, 겨울철 미세먼지 발생량이 증가한다.

- 계절이라는 파생변수를 생성하여 Box Plot으로 봄, 겨울철에 상대적으로 미세먼지 발생량이 높은 것을 확인
- 이 차이가 다른 계절에 비해 유의한 차이인지 검정하기 위해 ANOVA를 진행 -> 유의한 차이임이 밝혀짐
- 따라서 해당 가설 역시 옳다고 판단된다.

가설3. 풍속이 약할수록 미세먼지 발생량은 증가한다.

- 산점도와 상관계수로부터 풍속과 미세먼지 발생량이 음의 상관성이 있다는 것을 파악하였다.
- 하지만 상관계수를 유의수준 0.05에서 관찰했을 때 그 값이 유의미하다고 판단하기에 애매함이 있다.
- 따라서 해당 가설은 어느 정도는 맞다고 볼 수 있지만 더 많은 데이터로 다시 살펴보아야 할 필요성이 있다.

Correlation Analysis <u>미세먼지 발생</u>량과 풍속 상관계수: -0.100 p-value: 0.055

- 최종 의견
 - 주어진 데이터로 미세먼지 발생량과 설명변수들(대기오염, 기상상황, 계절) 간의 상관성을 알아보고 해당 변수들로 미세먼지 발생량을 예측하는 분석을 진행함
 - 모델 생성 결과 설명변수와 목표변수 간의 상관성은 알아낼 수 있었지만 주어진 데이터로 **미세먼지 발생량** 을 예측하기는 어렵다고 판단됨
 - 4가지 모델(다중선형회귀, 의사결정나무, 랜덤포레스트, 그래디언트 부스팅)에 대해 모델링 해보았지만 **미세** 먼지 발생량 예측에 대해 유의한 설명을 하는 모델을 찾지 못함
 - 그래프 분석과 모델을 통해 종합한 미세먼지 발생량에 대한 대표적인 영향인자로는 CO, NO2, O3, WIND_DIR, CLOUD 가 있음
 - 미세먼지 발생량을 예측하는 모델을 찾지는 못했지만 **초기에 설정했던 과제 수행 목적인 미세먼지 발생량에** 대한 영향인자를 찾았다는 점에서 소기의 목적은 달성했다고 볼 수 있음
 - 또한 3가지 **가설에 대한 검증 역시 원했던 방향으로 진행**되었고 두 가지 가설은 참으로 나머지 한 가지는 더 많은 데이터로 재검정이 필요할 것으로 판단
 - 결과적으로, 미세먼지 발생량을 감소시키기 위해서는 대기오염 인자에 대한 컨트롤이 필요하며 앞서 모델링한 4가지 모델들 모두 현업에서 미세먼지 발생량 예측에 적용하기는 어려울 것으로 판단됨. 또한 더 정확한 예측을 위해서는 한반도 외 전체적인 기압의 흐름, 중국발 미세먼지의 영향 등 더 많은 인자들을 활용하여 복합적인 설명이 필요함

- 대안 제시
 - 미세먼지 발생의 **주 영향인자는 대기오염 인자**들이며 이 대기오염은 다시 6가지 주요 원인들에 의해 발생함

자동차 배기가스와 난방 및 발전이 대기오염의 50% 이상을 차지하므로 이 요인들을 해결한다면 미세먼지 발생량 개선에도 연쇄적으로 영향을 줄 것으로 기대됨

- 특히 차량 배기가스의 경우, 전기차, 수소차 보급이 증가되면 미세먼지 개선 효과가 높을 것으로 예상됨
- 따라서 배기량이 많은 화물차에 대한 규제와 미래차 보조금 지급 확대 및 검토가 필요
- 난방 및 발전의 경우 화학 에너지 사용에 의한 대기오염이 심한 것으로 파악되며 신재생 에너지에 대한 투자 가 확대되어야 함

Lesion Learn

실습을 진행하기 전에는 주어진 데이터들로부터 미세먼지 발생량을 예측할 수 있을 것으로 예상했는데 첫 번째 모델을 돌려본 후 test score를 보고 제 생각이 틀렸다는 것을 알았습니다.

모델을 잘못 생성한 것은 아닌지 이상치를 제거하고 정규화를 진행했을 때와 아닌 모델을 비교해보고, 변수 개수도 조절해보았지만 test score가 0.5를 넘는 모델이 단 하나도 나오지 않아서 고민을 많이 했습니다. 고민 끝에 기상이라는 변수가 큰 데이터로 어떤 특정한 목표 값을 예측하기는 힘들다는 생각이 들었고 그것을 예측하는 모델이 선형 모델이면 더욱 어려울 것이라고 판단했습니다.

실제로 모델링을 마친 후 2021/3/4 대구에서 발생한 미세먼지 발생량과 다중 선형회귀모델로부터 도출한 식으로 미세먼지 발생량을 계산해서 비교해본 결과 실제 PM10은 43, 예측 모델로 나온 값은 85.59로 약 2배 가까이 차이가 나 해당 모델을 실제로 사용하기는 어렵다고 판단했습니다

그 후로는 분석 방향을 미세먼지 발생량 예측보다는 영향인자 판단과 가설에 대한 검정으로 잡았고 분석을 진행하면서 가설에 대한 유의미한 값들을 발견 할 수 있었습니다.

CO 변수는 모든 모델에서 중요도가 높은 변수로 나왔는데 이 결과가 결측치 55개를 평균으로 채웠기 때문인지실제로 CO변수가 영향인자인지 판단할 수 없어서 이 부분에 대한 공부가 더 필요할 것 같습니다.