

Versión: 0100

Fecha: 24/07/2025

[Versión del Producto]

Queda prohibido cualquier tipo de explotación y, en particular, la reproducción, distribución, comunicación pública y/o transformación, total o parcial, por cualquier medio, de este documento sin el previo consentimiento expreso y por escrito de UCESOFT.

Universidad Central del Ecuador

HOJA DE CONTROL

Organismo	Universidad Central del Ecua	Universidad Central del Ecuador		
Proyecto	Gemelo digita 3D 1313 CNC	Gemelo digita 3D 1313 CNC ROUTER		
Entregable	Manual de Usuario	Manual de Usuario		
Autor	Nicolalde Vanessa Nayeli,	Alquinga Cruz Cristopher Alejandro, Bermeo Morrillo Dennis Alexander, Heredia Nicolalde Vanessa Nayeli, Narváez Rodriguez Milisen Estefanía, Robayo Muñoz Carlos Vicente, Sánchez Velarde Jordan Israel.		
Versión/Edición	0100	Fecha Versión	22/07/2025	
Aprobado por	Robert Enriquez	Fecha Aprobación	24/07/2025	
		Nº Total de Páginas	12	

REGISTRO DE CAMBIOS

Versión	Causa del Cambio	Responsable del Cambio	Fecha del Cambio
0100	Versión inicial	Alquinga Cruz Cristopher Bermeo Morrillo Dennis Heredia Nicolalde Vanessa Narváez Rodriguez Milisen Robayo Muñoz Carlos Sánchez Velarde Jordan	22/07/2025

CONTROL DE DISTRIBUCIÓN

Nombre y Apellidos		
Alquinga Cruz Cristopher		
Bermeo Morrillo Dennis		
Heredia Nicolalde Vanessa		
Narváez Rodriguez Milisen		
Robayo Muñoz Carlos		
Sánchez Velarde Jordan		

INDICE

1	Cc	Contenido	3
2	DE	ESCRIPCIÓN DEL SISTEMA	4
	2.1	Objetivo	4
	2.2	Objetivos específicos	4
	2.3	Alcance	4
	2.4	Funcionalidad	4
3	MA	IAPA DEL SISTEMA	6
	3.1	Modelo Lógico	6
	3.2	Navegación	6
4	DE	ESCRIPCIÓN DEL SISTEMA	7
	4.1	Subsistema 1: Pantalla Principal	7
	4.1	.1.1 Pantallas	7
	4.2	Subsistema 2: Escena 3D	7
	4.2	.2.1 Pantallas	7
	4.3	Subsistema 3: Entrada G-code	8
	4.3	.3.1 Pantallas	8
	4.4	Mensajes de Error	8
	4.5	Ayudas Contextuales	8
5	FA	AQ	9
6	A١	NEXOS	10
7	GL	GLOSARIO	11
Q	ВII	IBLIOCRAFÍA V REFERENCIAS	12

Manual de Usuario

Universidad Central del Ecuador

1 DESCRIPCIÓN DEL SISTEMA

1.1 Objetivo

Este manual tiene como objetivo guiar al usuario en el uso del **gemelo digital 3D de la máquina 1313 CNC Router**, desarrollado en Unity. El sistema permite visualizar, comprender e interactuar con los componentes y el flujo operativo básico de la máquina, como parte de una práctica de laboratorio virtual.

1.2 Objetivos específicos

- Simular el movimiento del cabezal de una máquina 1313 CNC Router modelo, respetando el eje de coordenadas X, Y y Z.
- Ejecutar comandos G-code en tiempo real (G0, G1) e interpretarlos en una escena 3D.
- Visualizar de forma gráfica y didáctica las trayectorias de corte sobre un plano de trabajo.
- Incorporar una interfaz interactiva para cargar *archivos.gcode* o introducir texto manual.
- Integrar el simulador en una secuencia educativa con presentaciones explicativas del funcionamiento de la máquina CNC.
- Permitir la reproducción, pausa y reinicio del proceso de simulación desde controles accesibles.

1.3 Alcance

El simulador forma parte de las prácticas virtuales del área de manufactura asistida por computadora. Está enfocado en estudiantes de Ingeniería y Técnicos Industriales, facilitando el aprendizaje de programación G-code y operación visual de una máquina CNC, sin riesgo ni desgaste físico del equipo real.

1.4 Funcionalidad

El gemelo digital 3D 1313 CNC Router en Unity ofrece funcionalidades esenciales para representar de forma visual e interactiva el proceso de mecanizado por control numérico. A continuación, se detallan las principales características del sistema:

1.4.1.1 Interfaz de usuario (UI)

- Pantalla de inicio con botones para:
 - o Iniciar simulación.
 - Cargar archivo .gcode o .txt.
 - Escribir código manualmente.
- Botón de reinicio para volver al estado inicial.

1.4.1.2 Lectura e interpretación de G-code

- Reconoce comandos:
 - o **G0**: movimiento rápido sin corte.

Manual de Usuario

Universidad Central del Ecuador

- G1: movimiento de corte.
- Interpreta coordenadas X, Y, Z desde cada línea de código.
- El cabezal se desplaza suavemente mediante interpolación entre puntos.

1.4.1.3 Visualización 3D del entorno

- Modelo 3D del CNC Router 1313 sobre un plano de trabajo.
- Movimiento del cabezal visible en tiempo real.
- Cámara libre controlable con el mouse.

1.4.1.4 Entrada de código

- Entrada manual mediante textarea en la interfaz.
- Carga de archivos con extensión .gcode o .txt.
- Validación de contenido antes de simular.

1.4.1.5 Simulación de figuras

- Reproducción de movimientos línea por línea.
- Dibujado de líneas con LineRenderer.
- Simulación de figuras como:
 - o Triángulo, cuadrado, estrella, espiral, zigzag, flecha, cubo simulado.

1.4.1.6 Uso educativo

- Pensado como herramienta didáctica para prácticas técnicas.
- Apoyo visual al aprendizaje del lenguaje G-code.
- Adaptado para presentaciones o laboratorios virtuales.

Manual de Usuario

Universidad Central del Ecuador

2 MAPA DEL SISTEMA

2.1 Modelo Lógico

El simulador está compuesto por varios módulos y componentes interconectados que trabajan de forma coordinada para ejecutar la simulación CNC. Estos componentes son:

Motor Unity 3D:

Plataforma principal para la renderización gráfica, animaciones y manejo de interacción con el usuario. Proporciona el entorno 3D donde se visualiza el simulador.

Modelo 3D 1313 CNC Router:

Representación visual tridimensional de la fresadora, incluyendo el cuerpo, mesa y cabezal móvil, optimizada para rendimiento sin perder realismo.

• Controlador CNCHead:

Script encargado de traducir las coordenadas obtenidas del G-code en movimientos precisos del cabezal en la escena 3D. Controla las posiciones y velocidades de desplazamiento.

• G-code Parser:

Módulo que interpreta cada línea del código G, detectando los comandos G0 y G1, extrayendo las coordenadas X, Y y Z, y enviando instrucciones al controlador para mover el cabezal.

• LineRenderer:

Componente gráfico que dibuja líneas en tiempo real para mostrar la trayectoria seguida por el cabezal durante el proceso de corte.

• Ul educativa:

Interfaz amigable que integra botones, textos de ayuda, y controles para que el usuario pueda interactuar fácilmente con el simulador.

2.2 Navegación

Este esquema guía al usuario paso a paso, comenzando por conocer la máquina, luego ingresar el código, y finalmente observar la ejecución de la simulación

Manual de Usuario

Universidad Central del Ecuador

3 DESCRIPCIÓN DEL SISTEMA

En esta sección se describe detalladamente la *interfaz gráfica del usuario (GUI)* y las principales funcionalidades del *gemelo digital 1313 CNC Router*, organizadas por subsistemas. Cada subsistema refleja una vista o componente clave dentro del simulador. Se explican los flujos de navegación, pantallas, mensajes de error y ayudas contextuales que quían la experiencia del usuario al interactuar con la plataforma.

3.1 Subsistema 1: Pantalla Principal

Este subsistema permite al usuario interactuar con las opciones principales del simulador de forma intuitiva y directa, personalizando la experiencia desde el primer acceso.

3.1.1 Pantallas

• Botones principales:

- Iniciar simulación: comienza la animación basada en el código cargado o escrito
- Cargar archivo G-code: abre un explorador de archivos para seleccionar un .gcode o .txt.
- Texto manual: activa un campo donde el usuario puede escribir comandos G-line por línea.
- Reiniciar: detiene la simulación actual y limpia la escena para comenzar de nuevo.

Área de visualización 3D:

Ocupa la mayor parte de la pantalla, mostrando el modelo del CNC Router y el plano de trabajo donde se visualizan las trayectorias.

• Sección de ayuda o introducción:

Mensajes informativos y consejos aparecen aquí para guiar al usuario según el contexto.

3.2 Subsistema 2: Escena 3D

Este subsistema representa la visualización interactiva del entorno CNC, permitiendo al usuario observar en tiempo real la ejecución del código en el espacio tridimensional.

3.2.1 Pantallas

• Plano de trabajo:

Representa la mesa donde se realizan los cortes. Tiene dimensiones proporcionales al CNC real y una textura que simula la superficie de trabajo.

• Cabezal CNC:

Modelo 3D móvil que se desplaza en los ejes X, Y y Z, siguiendo las instrucciones del G-code.

• Líneas de travectoria:

Dibujadas en tiempo real para mostrar la ruta del cabezal, diferenciando movimientos con y sin corte.

Control de cámara:

Permite rotar, acercar y alejar la vista mediante interacción con el mouse para observar desde distintos ángulos.

Manual de Usuario

Universidad Central del Ecuador

3.3 Subsistema 3: Entrada G-code

Este subsistema facilita la entrada y validación de código G, ya sea de forma manual o a través de un archivo, asegurando que los datos sean correctos antes de iniciar la simulación.

3.3.1 Pantallas

• Textarea para entrada manual:

Campo de texto donde se pueden escribir comandos G0 y G1, con validación en tiempo real para detectar errores comunes.

• Carga de archivo:

Botón para importar archivos desde el disco duro, con extensión .gcode o .txt. El sistema verifica el formato y la validez antes de aceptar el archivo.

Validación:

Antes de iniciar la simulación, se revisa que el código sea válido, que no esté vacío y que contenga comandos soportados. En caso contrario, muestra mensajes de error específicos.

3.4 Mensajes de Error

• Archivo vacío o corrupto:

El sistema detecta cuando un archivo cargado no contiene líneas o tiene un formato no reconocido, solicitando al usuario que cargue uno válido.

• Comando G desconocido:

Si el código contiene instrucciones no soportadas (por ejemplo, G2, G3 u otros), se indica la línea exacta donde ocurrió el error para que el usuario lo corrija.

• Simulación sin código cargado:

No es posible iniciar la simulación si no se ha cargado o escrito ningún código. El sistema muestra una alerta recordando este paso previo.

3.5 Ayudas Contextuales

Tooltips:

Al colocar el cursor sobre un botón, se despliega una breve descripción de su función.

Mensajes flotantes:

Aparecen durante la ejecución para informar el estado del sistema (por ejemplo: "Simulación en pausa", "Archivo cargado correctamente").

Guía rápida:

Opción accesible desde la interfaz para consultar instrucciones básicas de uso, explicación de comandos y estructura válida de G-code.

Manual de Usuario

Universidad Central del Ecuador

4 FAQ

En esta sección se responden las preguntas más comunes que los usuarios podrían tener al utilizar el simulador del CNC Router 1313 en la plataforma. Las respuestas están orientadas a resolver dudas rápidas sobre el funcionamiento general del sistema.

- ¿Qué tipo de archivos puedo cargar en la simulación?

 Puedes cargar archivos con extensión .gcode o .txt, siempre que contengan únicamente comandos G0 y G1 válidos para el sistema.
- ¿Qué ocurre si ingreso un comando incorrecto?

 El sistema validará los comandos al momento de ingresarlos o cargarlos. Si hay errores, mostrará un mensaje indicando la línea exacta donde ocurrió el problema para facilitar su corrección.
- ¿Puedo escribir los comandos directamente sin cargar un archivo? Sí. La opción "Texto manual" permite escribir comandos uno por línea. Es útil para probar trayectorias específicas o hacer pruebas rápidas sin necesidad de un archivo externo.
- ¿Cómo reinicio la simulación?

 Usa el botón "Reiniciar" para detener cualquier ejecución en curso, limpiar el área de trabajo y dejar el sistema listo para una nueva simulación.
- ¿Qué pasa si no se ha cargado ningún código y se presiona "Iniciar simulación"?

El sistema detecta esta situación y muestra un mensaje de advertencia recordando que primero debes cargar o ingresar un código válido.

- ¿El modelo 3D es interactivo? Sí. Puedes mover la cámara para observar la escena desde diferentes ángulos utilizando el mouse, lo que facilita el análisis de las trayectorias generadas.
- ¿Puedo pausar o detener una simulación en curso?
 Actualmente solo se puede reiniciar la simulación. La funcionalidad de pausa será considerada en futuras versiones para mayor control.
- ¿La simulación es precisa con respecto a una máquina CNC real? El simulador es una representación educativa que incluye todos los aspectos técnicos avanzados de una máquina real.

Universidad Central del Ecuador

5 ANEXOS

Universidad Central del Ecuador

6 GLOSARIO

Término	Descripción
CNC	Sistema de control automatizado que utiliza comandos numéricos para manejar máquinas y herramientas.
G-code:	Lenguaje estándar para el control de máquinas CNC, que contiene instrucciones sobre movimientos, velocidades, y trayectorias.
Ejes X, Y, Z:	Coordenadas tridimensionales que indican los movimientos de la herramienta en el espacio.
Unity:	Motor de desarrollo usado para crear aplicaciones interactivas en 2D y 3D. En este proyecto, se empleó para modelar el simulador.
Vista perspectiva:	Ángulo de cámara que permite observar la escena 3D desde diferentes posiciones.
Animación Lineal:	Movimiento controlado de un objeto en línea recta, usado para representar trayectorias G1.
.txt / .gcode:	Extensiones de archivo que contienen instrucciones escritas en lenguaje G-code.

Universidad Central del Ecuador

7 BIBLIOGRAFÍA Y REFERENCIAS

Referencia	Título
[1]	Unity Technologies, <i>Unity User Manual</i> , [En línea]: https://docs.unity3d.com/Manual/index.html
[2]	Autodesk, What is G-code?, Autodesk Manufacturing Blog, 2023. [En línea]: https://www.autodesk.com
[3]	G. Koch, "G-code Reference", <i>LinuxCNC Documentation</i> , 2022. [En línea]: https://linuxcnc.org/docs/
[4]	J. Craig, <i>Introduction to Robotics: Mechanics and Control</i> , 4th ed. Pearson, 2017.
[5]	R. L. Norton, <i>Diseño de maquinaria</i> , 5.ª ed., McGraw-Hill, 2014.
[6]	D. González, "Simulación de máquinas CNC con Unity3D", <i>Revista de Tecnología y Educación</i> , vol. 8, no. 2, pp. 45–52, 2021.
[8]	Álvarez, M. (2021). Diseño de interfaces centradas en el usuario para sistemas educativos. Ediciones Alpha.