TUGAS APLIKASI KOMPUTER "Software Euler Math Toolbox"

Tugas ini disusun untuk memenuhi tugas Mata Kuliah Aplikasi Komputer

Dosen Pengampu: Drs. Sahid M.Sc. dan Thesa Adi Saputra Yusri M.Cs.

Disusun oleh: RIFFA LANNY LAIRA 22305144021 Matematika E 2022

PROGRAM STUDI MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI YOGYAKARTA
2023

DAFTAR ISI

1	Pengenalan Software Euler Math Toolbox	2
2	Penggunaan Software EMT untuk Aljabar	17
3	Penggunaan Software EMT untuk Plot 2D	32
4	Penggunaan Software EMT untuk Plot 3D	60
5	Penggunaan Software EMT untuk Plot 3D (Presentasi)	81
6	Menggunakan EMT untuk Kalkulus	99
7	Menggunakan EMT untuk Geometri	120
8	Menggunakan EMT untuk Statistika	158

BAB 1

PENGENALAN SOFTWARE EULER MATH TOOLBOX

[a4paper,10pt]article eumat

RIFFA LANNY LAIRA 22305144021 MATEMATIKA E 2022

Pendahuluan dan Pengenalan Cara Kerja EMT

Selamat datang! Ini adalah pengantar pertama ke Euler Math Toolbox (disingkat EMT atau Euler). EMT adalah sistem terintegrasi yang merupakan perpaduan kernel numerik Euler dan program komputer aljabar Maxima.

- Bagian numerik, GUI, dan komunikasi dengan Maxima telah dikembangkan oleh R. Grothmann, seorang profesor matematika di Universitas Eichstätt, Jerman. Banyak algoritma numerik dan pustaka software open source yang digunakan di dalamnya.
- Maxima adalah program open source yang matang dan sangat kaya untuk perhitungan simbolik dan aritmatika tak terbatas. Software ini dikelola oleh sekelompok pengembang di internet.
- Beberapa program lain (LaTeX, Povray, Tiny C Compiler, Python) dapat digunakan di Euler untuk memungkinkan perhitungan yang lebih cepat maupun tampilan atau grafik yang lebih baik.

Yang sedang Anda baca (jika dibaca di EMT) ini adalah berkas notebook di EMT. Notebook aslinya bawaan EMT (dalam bahasa Inggris) dapat dibuka melalui menu File, kemudian pilih "Open Tutorias and Example", lalu pilih file "00 First Steps.en". Perhatikan, file notebook EMT memiliki ekstensi ".en". Melalui notebook ini Anda akan belajar menggunakan software Euler untuk menyelesaikan berbagai masalah matematika.

Panduan ini ditulis dengan Euler dalam bentuk notebook Euler, yang berisi teks (deskriptif), baris-baris perintah, tampilan hasil perintah (numerik, ekspresi matematika, atau gambar/plot), dan gambar yang disisipkan dari file gambar.

Untuk menambah jendela EMT, Anda dapat menekan [F11]. EMT akan menampilkan jendela grafik di layar desktop Anda. Tekan [F11] lagi untuk kembali ke tata letak favorit Anda. Tata letak disimpan untuk sesi berikutnya.

Anda juga dapat menggunakan [Ctrl]+[G] untuk menyembunyikan jendela grafik. Selanjutnya Anda dapat beralih antara grafik dan teks dengan tombol [TAB].

Seperti yang Anda baca, notebook ini berisi tulisan (teks) berwarna hijau, yang dapat Anda edit dengan mengklik kanan teks atau tekan menu Edit -> Edit Comment atau tekan [F5], dan juga baris perintah EMT yang ditandai dengan ">" dan berwarna merah. Anda dapat menyisipkan baris perintah baru dengan cara menekan tiga tombol bersamaan: [Shift]+[Ctrl]+[Enter].

Komentar (Teks Uraian)

Komentar atau teks penjelasan dapat berisi beberapa "markup" dengan sintaks sebagai berikut.

```
- * Judul
- ** Sub-Judul
- latex: F (x) = \int_a^x f (t) \, dt
- mathjax: \frac{x^2-1}{x-1} = x + 1
- maxima: 'integrate(x^3,x) = integrate(x^3,x) + C
- http://www.euler-math-toolbox.de
- See: http://www.google.de | Google
- image: hati.png
```

Hasil sintaks-sintaks di atas (tanpa diawali tanda strip) adalah sebagai berikut.

Judul

Sub-Judul

$$F(x) = \int_a^x f(t) dt$$
$$\frac{x^2 - 1}{x - 1} = x + 1$$

maxima: 'integrate(x^3 ,x) = integrate(x^3 ,x) + C

http://www.euler-math-toolbox.de See: http://www.google.de | Google

image: hati.png

Gambar diambil dari folder images di tempat file notebook berada dan tidak dapat dibaca dari Web. Untuk "See:", tautan (URL)web lokal dapat digunakan.

Paragraf terdiri atas satu baris panjang di editor. Pergantian baris akan memulai baris baru. Paragraf harus dipisahkan dengan baris kosong.

```
>// baris perintah diawali dengan >, komentar (keterangan) diawali dengan //
```

Baris Perintah

Mari kita tunjukkan cara menggunakan EMT sebagai kalkulator yang sangat canggih.

EMT berorientasi pada baris perintah. Anda dapat menuliskan satu atau lebih perintah dalam satu baris perintah. Setiap perintah harus diakhiri dengan koma atau titik koma.

- Titik koma menyembunyikan output (hasil) dari perintah.
- Sebuah koma mencetak hasilnya.
- Setelah perintah terakhir, koma diasumsikan secara otomatis (boleh tidak ditulis).

Dalam contoh berikut, kita mendefinisikan variabel r yang diberi nilai 1,25. Output dari definisi ini adalah nilai variabel. Tetapi karena tanda titik koma, nilai ini tidak ditampilkan. Pada kedua perintah di belakangnya, hasil kedua perhitungan tersebut ditampilkan.

```
>r=1.25; pi*r^2, 2*pi*r
```

- 4.90873852123
- 7.85398163397

Latihan untuk Anda

- Sisipkan beberapa baris perintah baru
- Tulis perintah-perintah baru untuk melakukan suatu perhitungan yang Anda inginkan, boleh menggunakan variabel, boleh tanpa variabel.

Jawaban

```
>r=2.50; pi*r^2, 2*pi*r
```

19.6349540849 15.7079632679

>25 * 38 / 12

79.1666666667

>35^5

52521875

```
>r := 1.25 // Komentar: Menggunakan := sebagai ganti =
```

1.25

Beberapa catatan yang harus Anda perhatikan tentang penulisan sintaks perintah EMT.

- Pastikan untuk menggunakan titik desimal, bukan koma desimal untuk bilangan!
- Gunakan * untuk perkalian dan ^ untuk eksponen (pangkat).
- Seperti biasa, * dan / bersifat lebih kuat daripada + atau -.
- ^ mengikat lebih kuat dari *, sehingga pi * r ^ 2 merupakan rumus luas lingkaran.
- Jika perlu, Anda harus menambahkan tanda kurung, seperti pada 2 ^ (2 ^ 3).

Perintah r = 1.25 adalah menyimpan nilai ke variabel di EMT. Anda juga dapat menulis r = 1.25 jika mau. Anda dapat menggunakan spasi sesuka Anda.

Anda juga dapat mengakhiri baris perintah dengan komentar yang diawali dengan dua garis miring (//). Argumen atau input untuk fungsi ditulis di dalam tanda kurung.

```
>sin(45°), cos(pi), log(sqrt(E))
```

0.707106781187 -1

0.5

Seperti yang Anda lihat, fungsi trigonometri bekerja dengan radian, dan derajat dapat diubah dengan °. Jika keyboard Anda tidak memiliki karakter derajat tekan [F7], atau gunakan fungsi deg() untuk mengonversi.

EMT menyediakan banyak sekali fungsi dan operator matematika.Hampir semua fungsi matematika sudah tersedia di EMT. Anda dapat melihat daftar lengkap fungsi-fungsi matematika di EMT pada berkas Referensi (klik menu Help -> Reference)

Untuk membuat rangkaian komputasi lebih mudah, Anda dapat merujuk ke hasil sebelumnya dengan "%". Cara ini sebaiknya hanya digunakan untuk merujuk hasil perhitungan dalam baris perintah yang sama.

```
>(sqrt(5)+1)/2, %^2-%+1 // Memeriksa solusi x^2-x+1=0
```

1.61803398875 2

Latihan untuk Anda

- Buka berkas Reference dan baca fungsi-fungsi matematika yang tersedia di EMT.
- Sisipkan beberapa baris perintah baru.
- Lakukan contoh-contoh perhitungan menggunakan fungsi-fungsi matematika di EMT.

Jawaban

```
> cos(45°), sin(pi), log(sqrt(E))

0.707106781187
0
0.5

> 7km -> miles, 9inch -> " mm"

4.34959834566
228.6 mm

> (sqrt(10)+6/2), %^5-%+2 // Memeriksa solusi x^2+x+5=0

6.16227766017
8881.83783488

Satuan
```

```
>1miles // 1 mil = 1609,344 m
```

1609.344

```
>1miles // 1 mil = 1609,344 m
```

1609.344

EMT dapat mengubah unit satuan menjadi sistem standar internasional (SI). Tambahkan satuan di belakang angka untuk konversi sederhana.

Beberapa satuan yang sudah dikenal di dalam EMT adalah sebagai berikut. Semua unit diakhiri dengan tanda dolar (\$), namun boleh tidak perlu ditulis dengan mengaktifkan easyunits.

kilometer\$:=1000; km\$:=kilometer\$; cm\$:=0.01; mm\$:=0.001; minute\$:=60; min\$:=minute\$; minutes\$:=minute\$; hour\$:=60*minute\$; h\$:=hour\$; hours\$:=hour\$; day\$:=24*hour\$; days\$:=day\$; d\$:=day\$; year\$:=365.2425*day\$; years\$:=year\$; y\$:=year\$;

```
inch$:=0.0254;
in$:=inch$;
feet$:=12*inch$;
foot$:=feet$;
ft$:=feet$;
vard$:=3*feet$;
yards$:=yard$;
yd$:=yard$;
mile$:=1760*yard$;
miles$:=mile$;
kg$:=1;
sec$:=1;
ha$:=10000;
Ar$:=100;
Tagwerk$:=3408;
Acre$:=4046.8564224;
pt$:=0.376mm;
```

Untuk konversi ke dan antar unit, EMT menggunakan operator khusus, yakni ->.

```
>4km -> miles, 4inch -> " mm"
```

2.48548476895 101.6 mm

Format Tampilan Nilai

Akurasi internal untuk nilai bilangan di EMT adalah standar IEEE, sekitar 16 digit desimal. Aslinya, EMT tidak mencetak semua digit suatu bilangan. Ini untuk menghemat tempat dan agar terlihat lebih baik. Untuk mengatrtamilan satu bilangan, operator berikut dapat digunakan.

```
>pi
```

3.14159265359

```
>longest pi
```

3.141592653589793

```
>long pi
```

3.14159265359

```
>short pi
```

3.1416

```
>shortest pi
```

3.1

```
>fraction pi
```

312689/99532

```
>short 1200*1.03^10, long E, longest pi
```

```
1612.7
2.71828182846
3.141592653589793
```

Format aslinya untuk menampilkan nilai menggunakan sekitar 10 digit. Format tampilan nilai dapat diatur secara global atau hanya untuk satu nilai.

Anda dapat mengganti format tampilan bilangan untuk semua perintah selanjutnya. Untuk mengembalikan ke format aslinya dapat digunakan perintah "defformat" atau "reset".

```
>longestformat; pi, defformat; pi
```

```
3.141592653589793
3.14159265359
```

Kernel numerik EMT bekerja dengan bilangan titik mengambang (floating point) dalam presisi ganda IEEE (berbeda dengan bagian simbolik EMT). Hasil numerik dapat ditampilkan dalam bentuk pecahan.

```
>1/7+1/4, fraction %
```

0.392857142857 11/28

Perintah Multibaris

Perintah multi-baris membentang di beberapa baris yang terhubung dengan "..." di setiap akhir baris, kecuali baris terakhir. Untuk menghasilkan tanda pindah baris tersebut, gunakan tombol [Ctrl]+[Enter]. Ini akan menyambung perintah ke baris berikutnya dan menambahkan "..." di akhir baris sebelumnya. Untuk menggabungkan suatu baris ke baris sebelumnya, gunakan [Ctrl]+[Backspace].

Contoh perintah multi-baris berikut dapat dijalankan setiap kali kursor berada di salah satu barisnya. Ini juga menunjukkan bahwa ... harus berada di akhir suatu baris meskipun baris tersebut memuat komentar.

```
>a=4; b=15; c=2; // menyelesaikan a*x^2+b*x+c=0 secara manual ...
>D=sqrt(b^2/(a^2*4)-c/a); ...
>-b/(2*a) + D, ...
>-b/(2*a) - D
```

```
-0.138444501319
-3.61155549868
```

Menampilkan Daftar Variabe

Untuk menampilkan semua variabel yang sudah pernah Anda definisikan sebelumnya (dan dapat dilihat kembali nilainya), gunakan perintah "listvar".

>listvar

```
r 1.25
a 4
b 15
c 2
D 1.73655549868123
```

Perintah listvar hanya menampilkan variabel buatan pengguna. Dimungkinkan untuk menampilkan variabel lain, dengan menambahkan string termuat di dalam nama variabel yang diinginkan.

Perlu Anda perhatikan, bahwa EMT membedakan huruf besar dan huruf kecil. Jadi variabel "d" berbeda dengan variabel "D".

Contoh berikut ini menampilkan semua unit yang diakhiri dengan "m" dengan mencari semua variabel yang berisi "m\$".

>listvar m\$

D ...

```
      km$
      1000

      cm$
      0.01

      mm$
      0.001

      nm$
      1853.24496

      gram$
      0.001

      m$
      1

      hquantum$
      6.62606957e-34

      atm$
      101325
```

Untuk menghapus variabel tanpa harus memulai ulang EMT gunakan perintah "remvalue".

```
>remvalue a,b,c,D
>D

Variable D not found!
Error in:
```

Menampilkan Panduan

Untuk mendapatkan panduan tentang penggunaan perintah atau fungsi di EMT, buka jendela panduan dengan menekan [F1] dan cari fungsinya. Anda juga dapat mengklik dua kali pada fungsi yang tertulis di baris perintah atau di teks untuk membuka jendela panduan.

Coba klik dua kali pada perintah "intrandom" berikut ini!

```
>intrandom(10,6)
```

```
[4, 2, 6, 2, 4, 2, 3, 2, 2, 6]
```

Di jendela panduan, Anda dapat mengklik kata apa saja untuk menemukan referensi atau fungsi.

Misalnya, coba klik kata "random" di jendela panduan. Kata tersebut boleh ada dalam teks atau di bagian "See:" pada panduan. Anda akan menemukan penjelasan fungsi "random", untuk menghasilkan bilangan acak berdistribusi uniform antara 0,0 dan 1,0. Dari panduan untuk "random" Anda dapat menampilkan panduan untuk fungsi "normal", dll.

```
>random(10)
                                   0.445363,
                                             0.308411, 0.914541, 0.193585,
  [0.270906,
             0.704419,
                        0.217693,
 0.463387, 0.095153,
                       0.595017]
>normal(10)
                                              3.44132,
                                                        0.308178,
                                                                   -0.733427,
  [-0.495418,
             1.6463,
                       -0.390056,
                                   -1.98151,
 -0.526167, 1.10018,
                       0.108453]
                                                           Matriks dan Vektor
```

EMT merupakan suatu aplikasi matematika yang mengerti "bahasa matriks". Artinya, EMT menggunakan vektor dan matriks untuk perhitungan-perhitungan tingkat lanjut. Suatu vektor atau matriks dapat didefinisikan dengan tanda kurung siku. Elemen-elemennya dituliskan di dalam tanda kurung siku, antar elemen dalam satu baris dipisahkan oleh koma(,), antar baris dipisahkan oleh titik koma (;).

Vektor dan matriks dapat diberi nama seperti variabel biasa.

```
>v=[4,5,6,3,2,1]

[4, 5, 6, 3, 2, 1]

>A=[1,2,3;4,5,6;7,8,9]

1 2 3 4 5 6
```

Karena EMT mengerti bahasa matriks, EMT memiliki kemampuan yang sangat canggih untuk melakukan perhitungan matematis untuk masalah-masalah aljabar linier, statistika, dan optimisasi.

9

Vektor juga dapat didefinisikan dengan menggunakan rentang nilai dengan interval tertentu menggunakan tanda titik dua (:),seperti contoh berikut ini.

```
>c=1:5

[1, 2, 3, 4, 5]

>w=0:0.1:1

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
```

```
>mean(w^2)
```

0.35

Bilangan Kompleks

EMT juga dapat menggunakan bilangan kompleks. Tersedia banyak fungsi untuk bilangan kompleks di EMT. Bilangan imaginer

$$i = \sqrt{-1}$$

dituliskan dengan huruf I (huruf besar I), namun akan ditampilkan dengan huruf i (i kecil).

```
re(x): bagian riil pada bilangan kompleks x.

im(x): bagian imaginer pada bilangan kompleks x.

complex(x): mengubah bilangan riil x menjadi bilangan kompleks.

conj(x): Konjugat untuk bilangan bilangan komplkes x.

arg(x): argumen (sudut dalam radian) bilangan kompleks x.

real(x): mengubah x menjadi bilangan riil.
```

Apabila bagian imaginer x terlalu besar, hasilnya akan menampilkan pesan kesalahan.

```
>sqrt(-1) // Error!
>sqrt(complex(-1))
```

```
>z=2+3*I, re(z), im(z), conj(z), arg(z), deg(arg(z)), deg(arctan(3/2))
```

```
2+3i
2
3
2-3i
0.982793723247
56.309932474
56.309932474
```

```
>deg(arg(I)) // 90°
```

90

>sqrt(-1)

```
Floating point error!
Error in sqrt
Error in:
sqrt(-1) ...
```

```
>sqrt(complex(-1))
```

0+1i

EMT selalu menganggap semua hasil perhitungan berupa bilangan riil dan tidak akan secara otomatis mengubah ke bilangan kompleks.

Jadi akar kuadrat -1 akan menghasilkan kesalahan, tetapi akar kuadrat kompleks didefinisikan untuk bidang koordinat dengan cara seperti biasa. Untuk mengubah bilangan riil menjadi kompleks, Anda dapat menambahkan 0i atau menggunakan fungsi "complex".

```
>complex(-1), sqrt(%)
```

-1+0i 0+1i

Matematika Simbolik

EMT dapat melakukan perhitungan matematika simbolis (eksak) dengan bantuan software Maxima. Software Maxima otomatis sudah terpasang di komputer Anda ketika Anda memasang EMT. Meskipun demikian, Anda dapat juga memasang software Maxima tersendiri (yang terpisah dengan instalasi Maxima di EMT).

Pengguna Maxima yang sudah mahir harus memperhatikan bahwa terdapat sedikit perbedaan dalam sintaks antara sintaks asli Maxima dan sintaks ekspresi simbolik di EMT.

Untuk melakukan perhitungan matematika simbolis di EMT, awali perintah Maxima dengan tanda "&". Setiap ekspresi yang dimulai dengan "&" adalah ekspresi simbolis dan dikerjakan oleh Maxima.

 $> & (a+b)^2$

$$(b + a)$$

>&expand((a+b)^2), &factor(x^2+5*x+6)

$$(x + 2) (x + 3)$$

>&solve(a*x^2+b*x+c,x) // rumus abc

>&(a^2-b^2)/(a+b), &ratsimp(%) // ratsimp menyederhanakan bentuk pecahan

a - b

```
>10! // nilai faktorial (modus EMT)
```

3628800

```
>&10! //nilai faktorial (simbolik dengan Maxima)
```

3628800

Untuk menggunakan perintah Maxima secara langsung (seperti perintah pada layar Maxima) awali perintahnya dengan tanda "::" pada baris perintah EMT. Sintaks Maxima disesuaikan dengan sintaks EMT (disebut "modus kompatibilitas").

```
>factor(1000) // mencari semua faktor 1000 (EMT)
```

```
[2, 2, 2, 5, 5, 5]
```

```
>:: factor(1000) // faktorisasi prima 1000 (dengan Maxima)
```

3 3 2 5

```
>:: factor(20!)
```

Jika Anda sudah mahir menggunakan Maxima, Anda dapat menggunakan sintaks asli perintah Maxima dengan menggunakan tanda ":::" untuk mengawali setiap perintah Maxima di EMT. Perhatikan, harus ada spasi antara ":::" dan perintahnya.

```
>::: binomial(5,2); // nilai C(5,2)
```

10

```
>::: binomial(m,4); // C(m,4)=m!/(4!(m-4)!)
```

```
>::: trigexpand(cos(x+y)); // rumus cos(x+y)=cos(x) cos(y)-sin(x)sin(y)
```

$$cos(x) cos(y) - sin(x) sin(y)$$

```
>::: trigexpand(sin(x+y));
```

$$cos(x) sin(y) + sin(x) cos(y)$$

>::: trigsimp(((1-sin(x)^2)*cos(x))/cos(x)^2+tan(x)*sec(x)^2) //menyederhanakan fungsi trigsimp(((1-sin(x)^2)*cos(x))/cos(x))/cos(x)

Untuk menyimpan ekspresi simbolik ke dalam suatu variabel digunakan tanda "&=".

$$>p1 \&= (x^3+1)/(x+1)$$

>&ratsimp(p1)

$$2 \\ x - x + 1$$

Untuk mensubstitusikan suatu nilai ke dalam variabel dapat digunakan perintah "with".

>&p1 with x=3 // (3^3+1)/(3+1)

7

>&p1 with x=a+b, &ratsimp(%) //substitusi dengan variabel baru

>&diff(p1,x) //turunan p1 terhadap x

>&integrate(p1,x) // integral p1 terhadap x

Tampilan Matematika Simbolik dengan LaTeX

Anda dapat menampilkan hasil perhitunagn simbolik secara lebih bagus menggunakan LaTeX. Untuk melakukan hal ini, tambahkan tanda dolar (\$) di depan tanda & pada setiap perintah Maxima.

Perhatikan, hal ini hanya dapat menghasilkan tampilan yang diinginkan apabila komputer Anda sudah terpasang software LaTeX.

```
>$&(a+b)^2
>$&expand((a+b)^2), $&factor(x^2+5*x+6)
>$&solve(a*x^2+b*x+c,x) // rumus abc
>$&(a^2-b^2)/(a+b), $&ratsimp(%)
```

Selamat Belajar dan Berlatih!

Baik, itulah sekilas pengantar penggunaan software EMT. Masih banyak kemampuan EMT yang akan Anda pelajari dan praktikkan.

Sebagai latihan untuk memperlancar penggunaan perintah-perintah EMT yang sudah dijelaskan di atas, silakan Anda lakukan hal-hal sebagai berikut.

- Carilah soal-soal matematika dari buku-buku Matematika.
- Tambahkan beberapa baris perintah EMT pada notebook ini.
- Selesaikan soal-soal matematika tersebut dengan menggunakan EMT.

Pilih soal-soal yang sesuai dengan perintah-perintah yang sudah dijelaskan dan dicontohkan di atas.

Jawaban

image: soal2.jpg

```
> 2^3*2^5
```

256

```
>5^-7/5^-5
```

0.04

```
> (4^-3*2^4) ^-2
```

16

BAB 2

PENGGUNAAN SOFTWARE EMT UNTUK ALJABAR

[a4paper,10pt]article eumat

EMT untuk Perhitungan Aljabar

Pada notebook ini Anda belajar menggunakan EMT untuk melakukan berbagai perhitungan terkait dengan materi atau topik dalam Aljabar. Kegiatan yang harus Anda lakukan adalah sebagai berikut:

- Membaca secara cermat dan teliti notebook ini;
- Menerjemahkan teks bahasa Inggris ke bahasa Indonesia;
- Mencoba contoh-contoh perhitungan (perintah EMT) dengan cara meng-ENTER setiap perintah EMT yang ada (pindahkan kursor ke baris perintah)
- Jika perlu Anda dapat memodifikasi perintah yang ada dan memberikan keterangan/penjelasan tambahan terkait hasilnya.
- Menyisipkan baris-baris perintah baru untuk mengerjakan soal-soal Aljabar dari file PDF yang saya berikan;
- Memberi catatan hasilnya.
- Jika perlu tuliskan soalnya pada teks notebook (menggunakan format LaTeX).
- Gunakan tampilan hasil semua perhitungan yang eksak atau simbolik dengan format LaTeX. (Seperti contohcontoh pada notebook ini.)

1. Melakukan operasi bentuk-bentuk aljabar

1) Menyederhanakan bentuk aljabar:

Menyederhanakan operasi bentuk aljabar merupakan salah satu kunci menguasai aljabar dasar yaitu dengan mengubah suatu ekspresi yang kompleks menjadi ekspresi setara yang lebih sederhana atau mudah.

Contoh:

Sederhanakanlah bentuk aljabar berikut.

$$(8x^7) \times (-7x^{-5}y^2)$$

Penyelesaian:

$$>$$
\$&8*x^(7)*-7*x^(-5)*y^(2)

Langkah pertama, kelompokkan suku-suku sejenis berdasarkan variabel dan pangkatnya.

$$(8(-7))(x^7x^{-5})(y^2)$$

Langkah kedua, buat persamaan yang lebih sederhana dari tiap kelompok suku sejenis.

$$-56x^2y^2$$

2) Menjabarkan:

Contoh:

Jabarkan bentuk aljabar berikut.

$$(6x^{-2} + y^3)(-5x^4 - y^{-6})$$

Penyelesaian:

$$>$$
\$&showev('expand((6*x^(-2)+y^3)*(-5*x^4-y^(-6))))

Dengan menggunakan operasi distribusi

$$(6x^{-2} \times (-5x^4)) + (6x^{-2} \times (-y^{-6})) + (y^3 \times -(5x^4)) + (y^3 \times (-y^{-6}))$$

Sederhanakan

$$(-30x^2) + (-6x^{-2}y^{-6}) + (-5x^4y^3) + (-y^{-3})$$

Sederhanakan

$$-5x^4y^3 - \frac{1}{y^3} - \frac{6}{x^2y^6} - 30x^2$$

3) Memfaktorkan

```
>$&expand((1+x)^4), $&factor(diff(%,x)) // diff: turunan, factor: faktor
```

Sekali lagi, % mengacu pada hasil sebelumnya.

Untuk mempermudah kami menyimpan solusi ke variabel simbolik. Variabel simbolik didefinisikan dengan "&=".

```
> fx &= (x+1)/(x^4+1); && fx
```

Ekspresi simbolik dapat digunakan dalam ekspresi simbolik lainnya.

```
>$&factor(diff(fx,x))
```

Input langsung dari perintah Maxima juga tersedia. Mulai baris perintah dengan "::". Sintaks Maxima disesuaikan dengan sintaks EMT (disebut "mode kompatibilitas").

```
>&factor(20!)
```

2432902008176640000

```
>:: factor(20!)
```

Jika Anda ahli dalam Maxima, Anda mungkin ingin menggunakan sintaks asli Maxima. Anda dapat melakukan ini dengan ":::".

Contoh:

Cari nilai x yang memenuhi persamaan berikut.

$$x^2 + x = 4$$

```
>$&solve(x^2+x=4,x)
```

Cari nilai x yang memenuhi persamaan berikut.

$$x^2 + x = 1$$

```
>$&solve(x^2+x=1,x)
```

2. Melakukan perhitungan dengan operasi dan fungsi matematika

Operasi dan fungsi matematika

Contoh:

Hitunglah operasi dibawah ini.

Contoh 1.

$$(7x+8) + (5x-3) = \dots$$

>\$& (7*x+8) + (5*x-3)

Kelompokkan suku-suku sejenis berdasarkan variabel dan pangkatnya.

$$(7x + 5x) + (8 - 3)$$

Sederhanakan

$$12x + 5$$

Contoh 2.

$$(7x+8) - (5x-3) = \dots$$

>\$& (7*x+8) - (5*x-3)

Kelompokkan suku-suku sejenis berdasarkan variabel dan pangkatnya.

$$(7x - 5x) + (8 + 3)$$

Sederhanakan

$$2x + 11$$

Contoh 3.

$$(7x+8)\times(5x-3)=\dots$$

>\$&showev('expand((7*x+8)*(5*x-3)))

Dengan menggunakan operasi distribusi

$$(7x \times 5x) + (7x \times -3) + (8 \times 5x) + (8 \times -3)$$

Sederhanakan

$$(35x^2) + (-21x) + (40x) + (-24)$$

Sederhanakan

$$35x^2 + 19x - 24$$

Contoh 4.

$$(\frac{24a^{10}\times b^{-8}\times c^7}{12a^6\times b^{-3}\times c^5})^{-5}=\dots$$

$$>$$
 \$&(((24*a^10*b^(-8)*c^7)/(12*a^6*b^(-3)*c^5))^(-5))

Contoh 5.

$$\sqrt{\sin(30) \times \cos(60)} = \dots$$

>sqrt(sin(30°)*cos(60°))

0.5

>

3. Melakukan perhitungan menggunakan bilangan kompleks

Bilangan kompleks dalam matematika, adalah bilangan yang dinotasikan oleh

$$a + bi$$
,

di mana a dan b adalah bilangan riil, dan i adalah suatu bilangan imajiner di mana

$$i^2 = -1.$$

Contoh:

1. Hitunglah nilai dari

$$\sqrt{(-9)}$$

>

4. Melakukan perhitungan menggunakan fungsi buatan sendiri

Dalam EMT, fungsi adalah program yang didefinisikan dengan perintah "fungsi". Ini bisa berupa fungsi satu baris atau fungsi multibaris.

Fungsi satu baris dapat berupa numerik atau simbolik. Fungsi satu baris numerik didefinisikan oleh ":=".

```
>function f(x) := x*sqrt(x^2+1)
```

Untuk gambaran umum, kami menunjukkan semua kemungkinan definisi untuk fungsi satu baris. Suatu fungsi dapat dievaluasi sama seperti fungsi Euler bawaan lainnya.

```
>f(2)
```

```
4.472135955
```

Fungsi ini juga dapat digunakan untuk vektor, mengikuti bahasa matriks Euler, karena ekspresi yang digunakan dalam fungsi tersebut divektorkan.

```
>f(0:0.1:1)
```

```
[0, 0.100499, 0.203961, 0.313209, 0.430813, 0.559017, 0.699714, 0.854459, 1.0245, 1.21083, 1.41421]
```

Fungsi dapat diplot. Daripada ekspresi, kita hanya perlu memberikan nama fungsinya.

Berbeda dengan ekspresi simbolik atau numerik, nama fungsi harus diberikan dalam string.

```
>solve("f",1,y=1)
```

```
0.786151377757
```

Secara default, jika Anda perlu menimpa fungsi bawaan, Anda harus menambahkan kata kunci "timpa". Menimpa fungsi bawaan berbahaya dan dapat menyebabkan masalah pada fungsi lain yang bergantung pada fungsi tersebut.

Anda masih dapat memanggil fungsi bawaan sebagai "_...", jika fungsi tersebut ada di inti Euler.

```
>function overwrite \sin (x) := _{\sin (x^{\circ})} // \text{ redine sine in degrees}
>\sin (45)
```

0.707106781187

```
>forget sin; sin(pi/4)
```

```
0.707106781187
```

Ekspresi dapat diselesaikan secara numerik dan simbolis.

Untuk menyelesaikan ekspresi sederhana dari satu variabel, kita dapat menggunakan fungsi solve(). Dibutuhkan nilai awal untuk memulai pencarian. Secara internal, solve() menggunakan metode secant.

```
>$&solve(a*x^2+b*x+c=0,x)
>$&solve([a*x+b*y=c,d*x+e*y=f],[x,y])
>$&solve(x^2=2,x)
>$&solve(x^2-2,x)
>solve("x^2-2",1)
```

1.41421356237

>

6. Menyelesaikan pertidaksamaan dan sistem pertidaksamaan

Untuk menyelesaikan pertidaksamaan, EMT tidak akan dapat melakukannya, melainkan dengan bantuan Maxima, artinya secara eksak (simbolik). Perintah Maxima yang digunakan adalah fourier_elim(), yang harus dipanggil dengan perintah "load(fourier_elim)" terlebih dahulu.

```
>&load(fourier_elim)
```

```
C:/Program Files/Euler x64/maxima/share/maxima/5.35.1/share/fo\urier_elim/fourier_elim.lisp
```

Contoh soal pertidaksamaan dan penyelesaiannya:

```
>$&fourier_elim([x^2 - 1>0],[x]) // x^2-1 > 0
>$&fourier_elim([x^2 - 1<0],[x]) // x^2-1 < 0
>$&fourier_elim([x^2 - 1 # 0],[x]) // x^-1 <> 0
>$&fourier_elim([x # 6],[x])
>$&fourier_elim([x # 6],[x])
>$&fourier_elim([x < 1, x > 1],[x]) // tidak memiliki penyelesaian
>$&fourier_elim([minf < x, x < inf],[x]) // solusinya R
>$&fourier_elim([x^3 - 1 > 0],[x])
>$&fourier_elim([cos(x) < 1/2],[x])
>$&fourier_elim([y-x < 5, x - y < 7, 10 < y],[x,y]) // sistem pertidaksamaan
>$&fourier_elim([y-x < 5, x - y < 7, 10 < y],[y,x])
>$&fourier_elim((x + y < 5) and (x - y >8),[x,y])
>$&fourier_elim(((x + y < 5) and x < 1) or (x - y >8),[x,y])
>$&fourier_elim([max(x,y) > 6, x # 8, abs(y-1) > 12],[x,y])
>$&fourier_elim([(x+6)/(x-9) <= 6],[x])</pre>
```

7. Manipuasi dan perhitungan menggunakan matriks dan vektor

Dokumentasi inti EMT berisi pembahasan rinci tentang bahasa matriks Euler.

Vektor dan matriks dimasukkan dengan tanda kurung siku, elemen dipisahkan dengan koma, baris dipisahkan dengan titik koma.

1

2 4

Hasil kali matriks dilambangkan dengan titik.'

Contoh soal:

>b=[3;4]

3 4

>b' // transpose b

[3, 4]

>inv(A) //inverse A

-2 1 1.5 -0.5

>A.b //perkalian matriks

1125

>A.inv(A)

1 0 0 1

Poin utama dari bahasa matriks adalah semua fungsi dan operator bekerja elemen demi elemen.

>A.A

7 10 15 22 >A^2 //perpangkatan elemen2 A 4 1 16 >A.A.A 37 54 81 118 >power(A,3) //perpangkatan matriks 37 54 81 118 >A/A //pembagian elemen-elemen matriks yang seletak 1 1 >A/b //pembagian elemen2 A oleh elemen2 b kolom demi kolom (karena b vektor kol 0.333333 0.666667 0.75 $A\$ b // hasilkali invers A dan b, A^(-1)b -2 2.5 >inv(A).b -2 2.5 $>A\A$ //A^(-1)A 1 0 0 1 >inv(A).A

0

1

1

0

>A*A //perkalin elemen-elemen matriks seletak

1 4 9 16

Ini bukan hasil kali matriks, melainkan perkalian elemen demi elemen. Hal yang sama juga berlaku untuk vektor.

>b^2 // perpangkatan elemen-elemen matriks/vektor

9 16

Jika salah satu operan adalah vektor atau skalar, maka operan tersebut diperluas secara alami.

>2*A

2 4 6 8

Misalnya, jika operan adalah vektor kolom, elemennya diterapkan ke semua baris A.

>[1,2]*A

1 4 3 8

Jika ini adalah vektor baris, maka diterapkan ke semua kolom A.

>A*[2,3]

2 6 6 12

Kita dapat membayangkan perkalian ini seolah-olah vektor baris v telah diduplikasi untuk membentuk matriks yang berukuran sama dengan A.

>dup([1,2],2) // dup: menduplikasi/menggandakan vektor [1,2] sebanyak 2 kali (b

1 2 1 2

>A*dup([1,2],2)

1 4 3 8 Hal ini juga berlaku untuk dua vektor dimana yang satu adalah vektor baris dan yang lainnya adalah vektor kolom. Kita menghitung i*j untuk i,j dari 1 sampai 5. Caranya adalah dengan mengalikan 1:5 dengan transposenya. Bahasa matriks Euler secara otomatis menghasilkan tabel nilai.

```
>(1:5)*(1:5)' // hasilkali elemen-elemen vektor baris dan vektor kolom
                                                                               5
               1
                               2
                                               3
                                                               4
               2
                                                                             10
                               4
                                                               8
                                               6
               3
                               6
                                               9
                                                              12
                                                                             15
               4
                               8
                                              12
                                                              16
                                                                             20
                              10
                                              15
                                                              20
                                                                             25
```

Sekali lagi, ingatlah bahwa ini bukan produk matriks!

```
>(1:5).(1:5)' // hasilkali vektor baris dan vektor kolom
```

```
>sum((1:5)*(1:5)) // sama hasilnya
```

Bahkan operator seperti < atau == bekerja dengan cara yang sama.

```
>(1:10)<6 // menguji elemen-elemen yang kurang dari 6
```

```
[1, 1, 1, 1, 0, 0, 0, 0, 0]
```

Misalnya, kita dapat menghitung jumlah elemen yang memenuhi kondisi tertentu dengan fungsi sum().

```
>sum((1:10)<6) // banyak elemen yang kurang dari 6
```

Euler memiliki operator perbandingan, seperti "==", yang memeriksa kesetaraan.

Kita mendapatkan vektor 0 dan 1, dimana 1 berarti benar.

```
>t=(1:10)^2; t==25 //menguji elemen2 t yang sama dengan 25 (hanya ada 1)
```

```
[0, 0, 0, 0, 1, 0, 0, 0, 0]
```

Dari vektor tersebut, "bukan nol" memilih elemen bukan nol.

Dalam hal ini, kita mendapatkan indeks semua elemen lebih besar dari 50.

```
>nonzeros(t>50) //indeks elemen2 t yang lebih besar daripada 50
```

```
[8, 9, 10]
```

Tentu saja, kita dapat menggunakan vektor indeks ini untuk mendapatkan nilai yang sesuai dalam t.

```
>t[nonzeros(t>50)] //elemen2 t yang lebih besar daripada 50
```

```
[64, 81, 100]
```

Sebagai contoh, mari kita cari semua kuadrat bilangan 1 sampai 1000, yaitu 5 modulo 11 dan 3 modulo 13.

```
>t=1:1000; nonzeros(mod(t^2,11)==5 && mod(t^2,13)==3)
```

```
[4, 48, 95, 139, 147, 191, 238, 282, 290, 334, 381, 425, 433, 477, 524, 568, 576, 620, 667, 711, 719, 763, 810, 854, 862, 906, 953, 997]
```

EMT tidak sepenuhnya efektif untuk perhitungan bilangan bulat. Ia menggunakan floating point presisi ganda secara internal. Namun, seringkali hal ini sangat berguna.

Kita dapat memeriksa primalitasnya. Mari kita cari tahu, berapa banyak persegi ditambah 1 yang merupakan bilangan prima.

```
>t=1:1000; length(nonzeros(isprime(t^2+1)))
```

112

Fungsi nonzeros() hanya berfungsi untuk vektor. Untuk matriks, ada mnonzeros().

```
>seed(2); A=random(3,4)
```

0.765761	0.401188	0.406347	0.267829
0.13673	0.390567	0.495975	0.952814
0.548138	0.006085	0.444255	0.539246

Ini mengembalikan indeks elemen, yang bukan nol.

```
>k=mnonzeros(A<0.4) //indeks elemen2 A yang kurang dari 0,4
```

```
1 4
2 1
2 2
3 2
```

Indeks ini dapat digunakan untuk mengatur elemen ke nilai tertentu.

```
>mset(A,k,0) //mengganti elemen2 suatu matriks pada indeks tertentu
```

0.765761	0.401188	0.406347	0
0	0	0.495975	0.952814
0.548138	0	0.444255	0.539246

Fungsi mset() juga dapat mengatur elemen pada indeks ke entri beberapa matriks lainnya.

>mset(A,k,-random(size(A)))

```
      0.765761
      0.401188
      0.406347
      -0.126917

      -0.122404
      -0.691673
      0.495975
      0.952814

      0.548138
      -0.483902
      0.444255
      0.539246
```

Dan dimungkinkan untuk mendapatkan elemen dalam vektor.

```
>mget(A,k)
```

```
[0.267829, 0.13673, 0.390567, 0.006085]
```

Fungsi lain yang berguna adalah ekstrem, yang mengembalikan nilai minimal dan maksimal di setiap baris matriks dan posisinya.

```
>ex=extrema(A)
```

0.267829	4	0.765761	1
0.13673	1	0.952814	4
0.006085	2	0.548138	1

Kita dapat menggunakan ini untuk mengekstrak nilai maksimal di setiap baris.

```
>ex[,3]'
```

```
[0.765761, 0.952814, 0.548138]
```

Ini tentu saja sama dengan fungsi max().

```
>max(A)'
```

```
[0.765761, 0.952814, 0.548138]
```

Namun dengan mget(), kita dapat mengekstrak indeks dan menggunakan informasi ini untuk mengekstrak elemen pada posisi yang sama dari matriks lain.

```
>j=(1:rows(A))'|ex[,4], mget(-A,j)
```

```
1 1 4 4 3 1 [-0.765761, -0.952814, -0.548138]
```

8. Aljabar untuk menyelesaikan masalah sehari-hari

Solusi Simbolis Masalah Suku Bunga

Kita dapat menggunakan bagian simbolis dari Euler untuk mempelajari masalahnya. Pertama kita mendefinisikan fungsi onepay() kita secara simbolis.

```
>function op(K) &= K*q+R; $&op(K)
```

Sekarang kita dapat mengulanginya.

Kami melihat sebuah pola. Setelah n periode yang kita miliki

$$K_n = q^n K + R(1 + q + \dots + q^{n-1}) = q^n K + \frac{q^n - 1}{q - 1} R$$

Rumusnya adalah rumus jumlah geometri yang diketahui Maxima.

Ini agak rumit. Jumlahnya dievaluasi dengan tanda "simpsum" untuk menguranginya menjadi hasil bagi. Mari kita membuat fungsi untuk ini.

```
>function fs(K,R,P,n) &= (1+P/100)^n*K + ((1+P/100)^n-1)/(P/100)*R; $&fs(K,R,P,n)
```

Fungsinya sama dengan fungsi f kita sebelumnya. Tapi ini lebih efektif.

```
>longest f(5000,-200,3,47), longest fs(5000,-200,3,47)

Function f needs only 1 arguments (got 4)!
```

```
Use: f (x)
Error in:
longest f(5000,-200,3,47), longest fs(5000,-200,3,47) ...
```

Sekarang kita dapat menggunakannya untuk menanyakan waktu n. Kapan modal kita habis? Perkiraan awal kami adalah 30 tahun.

```
>solve("fs(5000,-330,3,x)",30)
```

```
20.5061016552
```

Jawaban ini mengatakan akan menjadi negatif setelah 21 tahun.

Kita juga dapat menggunakan sisi simbolis Euler untuk menghitung rumus pembayaran.

Asumsikan kita mendapatkan pinjaman sebesar K, dan membayar n pembayaran sebesar R (dimulai setelah tahun pertama) meninggalkan sisa hutang sebesar Kn (pada saat pembayaran terakhir). Rumusnya jelas

```
>equ &= fs(K,R,P,n)=Kn; $&equ
```

Biasanya rumus ini diberikan dalam bentuk

$$i = \frac{P}{100}$$

Kita dapat menyelesaikan nilai R secara simbolis.

```
>$&solve(equ,R)
```

Seperti yang Anda lihat dari rumusnya, fungsi ini mengembalikan kesalahan floating point untuk i=0. Euler tetap merencanakannya.

Tentu saja, kami memiliki batasan berikut.

```
>$&limit(R(5000,0,x,10),x,0)
```

Yang jelas tanpa bunga kita harus membayar kembali 10 tarif 500.

Persamaan tersebut juga dapat diselesaikan untuk n. Akan terlihat lebih bagus jika kita menerapkan beberapa penyederhanaan padanya.

```
>fn &= solve(equ,n) | ratsimp; $&fn
```

BAB3

PENGGUNAAN SOFTWARE EMT UNTUK PLOT 2D

[a4paper,10pt]article eumat

Menggambar Grafik 2D dengan EMT

Notebook ini menjelaskan tentang cara menggambar berbagaikurva dan grafik 2D dengan software EMT. EMT menyediakan fungsi plot2d() untuk menggambar berbagai kurva dan grafik dua dimensi (2D).

Plot Dasar

Ada fungsi plot yang sangat mendasar. Terdapat koordinat layar yang selalu berkisar antara 0 hingga 1024 di setiap sumbu, tidak peduli apakah layarnya berbentuk persegi atau tidak. Semut terdapat koordinat plot, yang dapat diatur dengan setplot(). Pemetaan antar koordinat bergantung pada jendela plot saat ini. Misalnya, shrinkwindow() default memberikan ruang untuk label sumbu dan judul plot.

Dalam contoh ini, kita hanya menggambar beberapa garis acak dengan berbagai warna. Untuk rincian tentang fungsi-fungsi ini, pelajari fungsi inti EMT.

```
>clg; // clear screen
>window(0,0,1024,1024); // use all of the window
>setplot(0,1,0,1); // set plot coordinates
>hold on; // start overwrite mode
>n=100; X=random(n,2); Y=random(n,2); // get random points
>colors=rgb(random(n),random(n),random(n)); // get random colors
>loop 1 to n; color(colors[#]); plot(X[#],Y[#]); end; // plot
>hold off; // end overwrite mode
>insimg; // insert to notebook
>reset;
```

Grafik perlu ditahan, karena perintah plot() akan menghapus jendela plot.

Untuk menghapus semua yang kami lakukan, kami menggunakan reset().

Untuk menampilkan gambar hasil plot di layar notebook, perintah plot2d() dapat diakhiri dengan titik dua (:). Cara lainnya adalah perintah plot2d() diakhiri dengan titik koma (;), kemudian menggunakan perintah insimg() untuk menampilkan gambar hasil plot.

Contoh lain, kita menggambar plot sebagai sisipan di plot lain. Hal ini dilakukan dengan mendefinisikan jendela plot yang lebih kecil. Perhatikan bahwa jendela ini tidak memberikan ruang untuk label sumbu di luar jendela plot. Kita harus menambahkan beberapa margin untuk ini sesuai kebutuhan. Perhatikan bahwa kita menyimpan dan memulihkan jendela penuh, dan menahan plot saat ini sementara kita memplot inset.

```
>plot2d("x^3-x");
>xw=200; yw=100; ww=300; hw=300;
>ow=window();
>window(xw,yw,xw+ww,yw+hw);
>hold on;
>barclear(xw-50,yw-10,ww+60,ww+60);
>plot2d("x^4-x",grid=6):
>hold off;
>window(ow);
```

Plot dengan banyak gambar dicapai dengan cara yang sama. Ada fungsi utilitas figure() untuk ini.

Aspek Plot

Plot default menggunakan jendela plot persegi. Anda dapat mengubahnya dengan fungsi aspek(). Jangan lupa untuk mengatur ulang aspeknya nanti. Anda juga dapat mengubah default ini di menu dengan "Set Aspect" ke rasio aspek tertentu atau ke ukuran jendela grafik saat ini.

Tapi Anda juga bisa mengubahnya untuk satu plot. Untuk ini, ukuran area plot saat ini diubah, dan jendela diatur sehingga label memiliki cukup ruang.

```
>aspect(2); // rasio panjang dan lebar 2:1
>plot2d(["sin(x)","cos(x)"],0,2pi):
>aspect(3); // rasio panjang dan lebar 2:1
>plot2d(["sin(x)","cos(x)"],0,2pi):
>aspect();
>reset;
```

Fungsi reset() mengembalikan default plot termasuk rasio aspek.

2D Plots in Euler

EMT Math Toolbox memiliki plot dalam 2D, baik untuk data maupun fungsi. EMT menggunakan fungsi plot2d. Fungsi ini dapat memplot fungsi dan data.

Dimungkinkan untuk membuat plot di Maxima menggunakan Gnuplot atau dengan Python menggunakan Math Plot Lib.

Euler dapat membuat plot 2D

- ekspresi
- fungsi, variabel, atau kurva berparameter,

- vektor nilai x-y,
- awan titik di pesawat,
- kurva implisit dengan level atau wilayah level.
- Fungsi kompleks

Gaya plot mencakup berbagai gaya untuk garis dan titik, plot batang, dan plot berbayang.

Plot Ekspresi atau Variabel

Ekspresi tunggal dalam "x" (misalnya "4*x^2") atau nama suatu fungsi (misalnya "f") menghasilkan grafik fungsi tersebut.

Berikut adalah contoh paling dasar, yang menggunakan rentang default dan menetapkan rentang y yang tepat agar sesuai dengan plot fungsinya.

Catatan: Jika Anda mengakhiri baris perintah dengan titik dua ":", plot akan dimasukkan ke dalam jendela teks. Jika tidak, tekan TAB untuk melihat plot jika jendela plot tertutup.

```
>plot2d("x^2"):
>plot2d("x^3"):
>aspect(1.5); plot2d("x^3-x"):
>a:=5.6; plot2d("exp(-a*x^2)/a"); insimg(30); // menampilkan gambar hasil plot setinggi 25
```

Dari beberapa contoh sebelumnya Anda dapat melihat bahwa aslinya gambar plot menggunakan sumbu X dengan rentang nilai dari -2 sampai dengan 2. Untuk mengubah rentang nilai X dan Y, Anda dapat menambahkan nilai-nilai batas X (dan Y) di belakang ekspresi yang digambar.

Rentang plot diatur dengan parameter yang ditetapkan sebagai berikut

- a,b: rentang x (default -2,2)
- c,d: rentang y (default: skala dengan nilai)
- r: alternatifnya radius di sekitar pusat plot
- cx,cy: koordinat pusat plot (default 0,0)

```
>plot2d("x^3-x",-1,2):
>plot2d("x^3",-2,2):
>plot2d("sin(x)",-2*pi,2*pi): // plot sin(x) pada interval [-2pi, 2pi]
>plot2d("cos(x)","sin(3*x)",xmin=0,xmax=2pi):
```

Alternatif untuk titik dua adalah perintah insimg(baris), yang menyisipkan plot yang menempati sejumlah baris teks tertentu.

Dalam opsi, plot dapat diatur agar muncul

- di jendela terpisah yang dapat diubah ukurannya,
- di jendela buku catatan.

Lebih banyak gaya dapat dicapai dengan perintah plot tertentu.

Bagaimanapun, tekan tombol tabulator untuk melihat plotnya, jika tersembunyi.

Untuk membagi jendela menjadi beberapa plot, gunakan perintah figure(). Dalam contoh, kita memplot x^1 hingga x^4 menjadi 4 bagian jendela. gambar(0) mengatur ulang jendela default.

```
>reset;
>figure(2,2); ...
>for n=1 to 4; figure(n); plot2d("x^"+n); end; ...
>figure(0):
```

Di plot2d(), ada gaya alternatif yang tersedia dengan grid=x. Untuk gambaran umum, kami menampilkan berbagai gaya kisi dalam satu gambar (lihat di bawah untuk perintah figure()). Gaya grid=0 tidak disertakan. Ini tidak menunjukkan kisi dan bingkai.

```
>figure(3,3); ...
>for k=1:9; figure(k); plot2d("x^3-x",-2,1,grid=k); end; ...
>figure(0):
```

Jika argumen pada plot2d() adalah ekspresi yang diikuti oleh empat angka, angka-angka tersebut adalah rentang x dan y untuk plot tersebut.

Alternatifnya, a, b, c, d dapat ditentukan sebagai parameter yang ditetapkan sebagai a=... dll.

Pada contoh berikut, kita mengubah gaya kisi, menambahkan label, dan menggunakan label vertikal untuk sumbu y.

```
>aspect(1.5); plot2d("sin(x)",0,2pi,-1.2,1.2,grid=3,xl="x",yl="sin(x)"):
>plot2d("sin(x)+cos(2*x)",0,4pi):
```

Gambar yang dihasilkan dengan memasukkan plot ke dalam jendela teks disimpan di direktori yang sama dengan buku catatan, secara default di subdirektori bernama "gambar". Mereka juga digunakan oleh ekspor HTML.

Anda cukup menandai gambar apa saja dan menyalinnya ke clipboard dengan Ctrl-C. Tentu saja, Anda juga dapat mengekspor grafik saat ini dengan fungsi di menu File.

Fungsi atau ekspresi di plot2d dievaluasi secara adaptif. Agar lebih cepat, nonaktifkan plot adaptif dengan <adaptive dan tentukan jumlah subinterval dengan n=... Hal ini hanya diperlukan dalam kasus yang jarang terjadi.

```
>plot2d("sign(x)*exp(-x^2)",-1,1,<adaptive,n=10000):
>plot2d("x^x",r=1.2,cx=1,cy=1):
```

Perhatikan bahwa x^x tidak ditentukan untuk x<=0. Fungsi plot2d menangkap kesalahan ini, dan mulai membuat plot segera setelah fungsinya ditentukan. Ini berfungsi untuk semua fungsi yang mengembalikan NAN di luar jangkauan definisinya.

```
>plot2d("log(x)",-0.1,2):
```

Parameter square=true (atau >square) memilih rentang y secara otomatis sehingga hasilnya adalah jendela plot persegi. Perhatikan bahwa secara default, Euler menggunakan spasi persegi di dalam jendela plot.

```
>plot2d("x^3-x",>square):
>plot2d(''integrate("sin(x)*exp(-x^2)",0,x)'',0,2): // plot integral
```

Jika Anda memerlukan lebih banyak ruang untuk label y, panggil shrinkwindow() dengan parameter lebih kecil, atau tetapkan nilai positif untuk "lebih kecil" di plot2d().

```
>plot2d("gamma(x)",1,10,yl="y-values",smaller=6,<vertical):
```

Ekspresi simbolik juga dapat digunakan karena disimpan sebagai ekspresi string sederhana.

```
>x=linspace(0,2pi,1000); plot2d(sin(5x),cos(7x)):
>a:=5.6; expr &= exp(-a*x^2)/a; // define expression
>plot2d(expr,-2,2): // plot from -2 to 2
>plot2d(expr,r=1,thickness=2): // plot in a square around (0,0)
>plot2d(&diff(expr,x),>add,style="--",color=red): // add another plot
>plot2d(&diff(expr,x,2),a=-2,b=2,c=-2,d=1): // plot in rectangle
>plot2d(&diff(expr,x),a=-2,b=2,>square): // keep plot square
>plot2d("x^2",0,1,steps=1,color=red,n=10):
>plot2d("x^2",>add,steps=2,color=blue,n=10):
```

Fungsi dalam satu Parameter

Fungsi plot yang paling penting untuk plot planar adalah plot2d(). Fungsi ini diimplementasikan dalam bahasa Euler di file "plot.e", yang dimuat di awal program.

Berikut beberapa contoh penggunaan suatu fungsi. Seperti biasa di EMT, fungsi yang berfungsi untuk fungsi atau ekspresi lain, Anda bisa meneruskan parameter tambahan (selain x) yang bukan variabel global ke fungsi dengan parameter titik koma atau dengan kumpulan panggilan.

```
>function f(x,a) := x^2/a + a \times x^2 - x; // define a function >a=0.3; plot2d("f",0,1;a): // plot with a=0.3 >plot2d("f",0,1;0.4): // plot with a=0.4 >plot2d({{"f",0.2}},0,1): // plot with a=0.2 >plot2d({{"f(x,b)",b=0.1}},0,1): // plot with 0.1 >function f(x) := x^3 - x; ... >plot2d("f",r=1):
```

Berikut ini ringkasan fungsi yang diterima

- ekspresi atau ekspresi simbolik di x
- fungsi atau fungsi simbolik dengan nama "f"
- fungsi simbolik hanya dengan nama f

Fungsi plot2d() juga menerima fungsi simbolik. Untuk fungsi simbolik, namanya saja yang berfungsi.

```
>function f(x) &= diff(x^x, x)
```

```
x
x (log(x) + 1)
```

```
>plot2d(f,0,2):
```

Tentu saja, untuk ekspresi atau ekspresi simbolik, nama variabel sudah cukup untuk memplotnya.

```
>expr &= sin(x) *exp(-x)
```

```
- x
E sin(x)
```

```
>plot2d(expr,0,3pi):
>function f(x) &= x^x;
>plot2d(f,r=1,cx=1,cy=1,color=blue,thickness=2);
>plot2d(&diff(f(x),x),>add,color=red,style="-.-"):
```

Untuk gaya garis ada berbagai pilihan.

- gaya="...". Pilih dari "-", "-", "-.", ".-.", "-.-".
- Warna: Lihat di bawah untuk warna.
- ketebalan: Defaultnya adalah 1.

Warna dapat dipilih sebagai salah satu warna default, atau sebagai warna RGB.

- 0..15: indeks warna default.
- konstanta warna: putih, hitam, merah, hijau, biru, cyan, zaitun, abu-abu muda, abu-abu, abu-abu tua, oranye, hijau muda, pirus, biru muda, oranye muda, kuning
- rgb(merah,hijau,biru): parameternya real di [0,1].

```
>plot2d("exp(-x^2)",r=2,color=red,thickness=3,style="--"):
```

Berikut adalah tampilan warna EMT yang telah ditentukan sebelumnya.

```
>aspect(2); columnsplot(ones(1,16),lab=0:15,grid=0,color=0:15):
```

Tapi Anda bisa menggunakan warna apa saja.

```
>columnsplot(ones(1,16),grid=0,color=rgb(0,0,linspace(0,1,15))):
```

Menggambar Beberapa Kurva pada bidang koordinat yang sama

Plot lebih dari satu fungsi (multiple function) ke dalam satu jendela dapat dilakukan dengan berbagai cara. Salah satu metodenya adalah menggunakan >add untuk beberapa panggilan ke plot2d secara keseluruhan, kecuali panggilan pertama. Kami telah menggunakan fitur ini pada contoh di atas.

```
>aspect(); plot2d("cos(x)",r=2,grid=6); plot2d("x",style=".",>add):
>aspect(1.5); plot2d("sin(x)",0,2pi); plot2d("cos(x)",color=blue,style="--",>add):
```

Salah satu kegunaan >add adalah untuk menambahkan titik pada kurva.

```
>plot2d("sin(x)",0,pi); plot2d(2,sin(2),>points,>add):
```

Kita tambahkan titik perpotongan dengan label (pada posisi "cl" untuk kiri tengah), dan masukkan hasilnya ke dalam buku catatan. Kami juga menambahkan judul pada plot.

```
>plot2d(["cos(x)","x"],r=1.1,cx=0.5,cy=0.5, ...
> color=[black,blue],style=["-","."], ...
> grid=1);
>x0=solve("cos(x)-x",1); ...
> plot2d(x0,x0,>points,>add,title="Intersection Demo"); ...
> label("cos(x) = x",x0,x0,pos="cl",offset=20):
```

Dalam demo berikut, kita memplot fungsi $\sin(x)=\sin(x)/x$ dan ekspansi Taylor ke-8 dan ke-16. Kami menghitung perluasan ini menggunakan Maxima melalui ekspresi simbolik.

Plot ini dilakukan dalam perintah multi-baris berikut dengan tiga panggilan ke plot2d(). Yang kedua dan ketiga memiliki kumpulan tanda >add, yang membuat plot menggunakan rentang sebelumnya.

Kami menambahkan kotak label yang menjelaskan fungsinya.

```
>$taylor(sin(x)/x,x,0,4)
>plot2d("sinc(x)",0,4pi,color=green,thickness=2); ...
> plot2d(&taylor(sin(x)/x,x,0,8),>add,color=blue,style="--"); ...
> plot2d(&taylor(sin(x)/x,x,0,16),>add,color=red,style="---"); ...
> labelbox(["sinc","T8","T16"],styles=["-","--","--"], ...
> colors=[black,blue,red]):
```

Dalam contoh berikut, kami menghasilkan Polinomial Bernstein.

$$B_i(x) = \binom{n}{i} x^i (1-x)^{n-i}$$

```
>plot2d("(1-x)^10",0,1); // plot first function
>for i=1 to 10; plot2d("bin(10,i)*x^i*(1-x)^(10-i)",>add); end;
>insimg;
```

Cara kedua adalah dengan menggunakan pasangan matriks bernilai x dan matriks bernilai y yang berukuran sama.

Kami menghasilkan matriks nilai dengan satu Polinomial Bernstein di setiap baris. Untuk ini, kita cukup menggunakan vektor kolom i. Lihat pendahuluan tentang bahasa matriks untuk mempelajari lebih detail.

```
>x=linspace(0,1,500);
>n=10; k=(0:n)'; // n is row vector, k is column vector
>y=bin(n,k)*x^k*(1-x)^(n-k); // y is a matrix then
>plot2d(x,y):
```

Perhatikan bahwa parameter warna dapat berupa vektor. Kemudian setiap warna digunakan untuk setiap baris matriks.

```
>x=linspace(0,1,200); y=x^(1:10)'; plot2d(x,y,color=1:10):
```

Metode lain adalah menggunakan vektor ekspresi (string). Anda kemudian dapat menggunakan susunan warna, susunan gaya, dan susunan ketebalan dengan panjang yang sama.

```
>plot2d(["sin(x)","cos(x)"],0,2pi,color=4:5):
>plot2d(["sin(x)","cos(x)"],0,2pi): // plot vector of expressions
```

Kita bisa mendapatkan vektor seperti itu dari Maxima menggunakan makelist() dan mxm2str().

```
>v &= makelist(binomial(10,i) \timesx^i\times(1-x)^(10-i),i,0,10) // make list
```

```
10 9 8 2 7 3

[(1-x), 10 (1-x) x, 45 (1-x) x, 120 (1-x) x,
6 4 5 5 4 6 3 7

210 (1-x) x, 252 (1-x) x, 210 (1-x) x, 120 (1-x) x,
2 8 9 10

45 (1-x) x, 10 (1-x) x, x]
```

>mxm2str(v) // get a vector of strings from the symbolic vector

```
(1-x)^10

10*(1-x)^9*x

45*(1-x)^8*x^2

120*(1-x)^7*x^3

210*(1-x)^6*x^4

252*(1-x)^5*x^5

210*(1-x)^4*x^6

120*(1-x)^3*x^7

45*(1-x)^2*x^8

10*(1-x)*x^9

x^10
```

```
>plot2d(mxm2str(v),0,1): // plot functions
```

Alternatif lain adalah dengan menggunakan bahasa matriks Euler.

Jika suatu ekspresi menghasilkan matriks fungsi, dengan satu fungsi di setiap baris, semua fungsi tersebut akan diplot ke dalam satu plot.

Untuk ini, gunakan vektor parameter dalam bentuk vektor kolom. Jika array warna ditambahkan maka akan digunakan untuk setiap baris plot.

```
>n=(1:10)'; plot2d("x^n",0,1,color=1:10):
```

Ekspresi dan fungsi satu baris dapat melihat variabel global.

Jika Anda tidak dapat menggunakan variabel global, Anda perlu menggunakan fungsi dengan parameter tambahan, dan meneruskan parameter ini sebagai parameter titik koma.

Berhati-hatilah, untuk meletakkan semua parameter yang ditetapkan di akhir perintah plot2d. Dalam contoh ini kita meneruskan a=5 ke fungsi f, yang kita plot dari -10 hingga 10.

```
>function f(x,a) := 1/a * exp(-x^2/a); ...
>plot2d("f",-10,10;5,thickness=2,title="a=5"):
```

Alternatifnya, gunakan koleksi dengan nama fungsi dan semua parameter tambahan. Daftar khusus ini disebut kumpulan panggilan, dan ini adalah cara yang lebih disukai untuk meneruskan argumen ke suatu fungsi yang kemudian diteruskan sebagai argumen ke fungsi lain.

Pada contoh berikut, kita menggunakan loop untuk memplot beberapa fungsi (lihat tutorial tentang pemrograman loop).

```
>plot2d({{"f",1}},-10,10); ...
>for a=2:10; plot2d({{"f",a}},>add); end:
```

Kita dapat mencapai hasil yang sama dengan cara berikut menggunakan bahasa matriks EMT. Setiap baris matriks f(x,a) merupakan satu fungsi. Selain itu, kita dapat mengatur warna untuk setiap baris matriks. Klik dua kali pada fungsi getspectral() untuk penjelasannya.

```
>x=-10:0.01:10; a=(1:10)'; plot2d(x,f(x,a),color=getspectral(a/10)):
```

Label Teks

Dekorasi sederhana pun bisa

- judul dengan judul = "..."
- label x dan y dengan xl="...", yl="..."
- label teks lain dengan label("...",x,y)

Perintah label akan memplot ke plot saat ini pada koordinat plot (x,y). Hal ini memerlukan argumen posisional.

```
>plot2d("x^3-x",-1,2,title="y=x^3-x",yl="y",xl="x"):
>expr := "log(x)/x"; ...
> plot2d(expr,0.5,5,title="y="+expr,xl="x",yl="y"); ...
> label("(1,0)",1,0); label("Max",E,expr(E),pos="lc"):
```

Ada juga fungsi labelbox(), yang dapat menampilkan fungsi dan teks. Dibutuhkan vektor string dan warna, satu item untuk setiap fungsi.

```
>function f(x) &= x^2*exp(-x^2); ...
>plot2d(&f(x),a=-3,b=3,c=-1,d=1); ...
>plot2d(&diff(f(x),x),>add,color=blue,style="--"); ...
>labelbox(["function","derivative"],styles=["-","--"], ...
> colors=[black,blue],w=0.4):
```

Kotak ini berlabuh di kanan atas secara default, tetapi >kiri berlabuh di kiri atas. Anda dapat memindahkannya ke tempat mana pun yang Anda suka. Posisi jangkar berada di pojok kanan atas kotak, dan angkanya merupakan pecahan dari ukuran jendela grafis. Lebarnya otomatis.

Untuk plot titik, kotak label juga berfungsi. Tambahkan parameter >points, atau vektor bendera, satu untuk setiap label.

Pada contoh berikut, hanya ada satu fungsi. Jadi kita bisa menggunakan string sebagai pengganti vektor string. Kami mengatur warna teks menjadi hitam untuk contoh ini.

```
>n=10; plot2d(0:n,bin(n,0:n),>addpoints); ...
>labelbox("Binomials",styles="[]",>points,x=0.1,y=0.1, ...
>tcolor=black,>left):
```

Gaya plot ini juga tersedia di statplot(). Seperti di plot2d() warna dapat diatur untuk setiap baris plot. Masih banyak lagi plot khusus untuk keperluan statistik (lihat tutorial tentang statistik).

```
>statplot(1:10,random(2,10),color=[red,blue]):
```

Fitur serupa adalah fungsi textbox().

Lebarnya secara default adalah lebar maksimal baris teks. Tapi itu bisa diatur oleh pengguna juga.

```
>function f(x) &= \exp(-x) * \sin(2*pi*x); ... >plot2d("f(x)",0,2pi); ... >textbox(latex("\text{Example of a damped oscillation}\ f(x)=e^{-x}\sin(2\pi x)"),w=0.85):
```

Label teks, judul, kotak label, dan teks lainnya dapat berisi string Unicode (lihat sintaks EMT untuk mengetahui lebih lanjut tentang string Unicode).

```
>plot2d("x^3-x",title=u"x → x³ - x"):
```

Label pada sumbu x dan y bisa vertikal, begitu juga dengan sumbunya.

```
>plot2d("sinc(x)",0,2pi,xl="x",yl=u"x → sinc(x)",>vertical):
```

LaTeX

Anda juga dapat memplot rumus LaTeX jika Anda telah menginstal sistem LaTeX. Saya merekomendasikan MiKTeX. Jalur ke biner "lateks" dan "dvipng" harus berada di jalur sistem, atau Anda harus mengatur LaTeX di menu opsi.

Perhatikan, penguraian LaTeX lambat. Jika Anda ingin menggunakan LaTeX dalam plot animasi, Anda harus memanggil latex() sebelum loop satu kali dan menggunakan hasilnya (gambar dalam matriks RGB).

Pada plot berikut, kami menggunakan LaTeX untuk label x dan y, label, kotak label, dan judul plot.

```
>plot2d("exp(-x)*sin(x)/x",a=0,b=2pi,c=0,d=1,grid=6,color=blue, ...
> title=latex("\text{Function $\Phi$}"), ...
> xl=latex("\phi"),yl=latex("\Phi(\phi)")); ...
>textbox( ...
> latex("\Phi(\phi) = e^{-\phi} \frac{\sin(\phi)}{\phi}"),x=0.8,y=0.5); ...
>label(latex("\Phi",color=blue),1,0.4):
```

Seringkali, kita menginginkan spasi dan label teks yang tidak konformal pada sumbu x. Kita bisa menggunakan xaxis() dan yaxis() seperti yang akan kita tunjukkan nanti.

Cara termudah adalah membuat plot kosong dengan bingkai menggunakan grid=4, lalu menambahkan grid dengan ygrid() dan xgrid(). Pada contoh berikut, kami menggunakan tiga string LaTeX untuk label pada sumbu x dengan xtick().

```
>plot2d("sinc(x)",0,2pi,grid=4,<ticks); ...
>ygrid(-2:0.5:2,grid=6); ...
>xgrid([0:2]*pi,<ticks,grid=6); ...
>xtick([0,pi,2pi],["0","\pi","2\pi"],>latex):
```

Tentu saja fungsinya juga bisa digunakan.

endfunction

```
>function map f(x) ... if x>0 then return x^4 else return x^2 endif
```

Parameter "map" membantu menggunakan fungsi untuk vektor. Untuk plot, itu tidak perlu. Tapi untuk menunjukkan vektorisasi itu berguna, kita menambahkan beberapa poin penting ke plot di x=-1, x=0 dan x=1.

Pada plot berikut, kami juga memasukkan beberapa kode LaTeX. Kami menggunakannya untuk dua label dan kotak teks. Tentu saja, Anda hanya bisa menggunakannya LaTeX jika Anda telah menginstal LaTeX dengan benar.

```
>plot2d("f",-1,1,xl="x",yl="f(x)",grid=6); ...
>plot2d([-1,0,1],f([-1,0,1]),>points,>add); ...
>label(latex("x^3"),0.72,f(0.72)); ...
>label(latex("x^2"),-0.52,f(-0.52),pos="ll"); ...
>textbox( ...
> latex("f(x)=\begin{cases} x^3 & x>0 \\ x^2 & x \le 0\end{cases}"), ...
> x=0.7,y=0.2):
```

Saat memplot suatu fungsi atau ekspresi, parameter >pengguna memungkinkan pengguna untuk memperbesar dan menggeser plot dengan tombol kursor atau mouse. Pengguna bisa

- perbesar dengan + atau -
- pindahkan plot dengan tombol kursor
- pilih jendela plot dengan mouse
- atur ulang tampilan dengan spasi
- keluar dengan kembali

Tombol spasi akan mengatur ulang plot ke jendela plot aslinya.

Saat memplot data, flag >user hanya akan menunggu penekanan tombol.

```
>plot2d({{"x^3-a*x",a=1}},>user,title="Press any key!"):
>plot2d("exp(x)*sin(x)",user=true, ...
> title="+/- or cursor keys (return to exit)"):
```

Berikut ini menunjukkan cara interaksi pengguna tingkat lanjut (lihat tutorial tentang pemrograman untuk detailnya).

Fungsi bawaan mousedrag() menunggu aktivitas mouse atau keyboard. Ini melaporkan mouse ke bawah, gerakan mouse atau mouse ke atas, dan penekanan tombol. Fungsi dragpoints() memanfaatkan ini, dan memungkinkan pengguna menyeret titik mana pun dalam plot.

Kita membutuhkan fungsi plot terlebih dahulu. Misalnya, kita melakukan interpolasi pada 5 titik dengan polinomial. Fungsi tersebut harus diplot ke dalam area plot yang tetap.

```
>function plotf(xp,yp,select) ...
```

```
d=interp(xp,yp);
plot2d("interpval(xp,d,x)";d,xp,r=2);
plot2d(xp,yp,>points,>add);
if select>0 then
    plot2d(xp[select],yp[select],color=red,>points,>add);
endif;
title("Drag one point, or press space or return!");
endfunction
```

Perhatikan parameter titik koma di plot2d (d dan xp), yang diteruskan ke evaluasi fungsi interp(). Tanpa ini, kita harus menulis fungsi plotinterp() terlebih dahulu, mengakses nilainya secara global.

Sekarang kita menghasilkan beberapa nilai acak, dan membiarkan pengguna menyeret titiknya.

```
>t=-1:0.5:1; dragpoints("plotf",t,random(size(t))-0.5):
```

Ada juga fungsi yang memplot fungsi lain bergantung pada vektor parameter, dan memungkinkan pengguna menyesuaikan parameter ini.

Pertama kita membutuhkan fungsi plot.

```
>function plotf([a,b]) := plot2d("exp(a*x)*cos(2pi*b*x)",0,2pi;a,b);
```

Kemudian kita memerlukan nama untuk parameter, nilai awal dan matriks rentang nx2, opsional garis judul. Ada penggeser interaktif, yang dapat menetapkan nilai oleh pengguna. Fungsi dragvalues() menyediakan ini.

```
>dragvalues("plotf",["a","b"],[-1,2],[[-2,2];[1,10]], ... 
> heading="Drag these values:",hcolor=black):
```

Dimungkinkan untuk membatasi nilai yang diseret menjadi bilangan bulat. Sebagai contoh, kita menulis fungsi plot, yang memplot polinomial Taylor berderajat n ke fungsi kosinus.

```
>function plotf(n) ...

plot2d("cos(x)",0,2pi,>square,grid=6);
plot2d(&"taylor(cos(x),x,0,@n)",color=blue,>add);
textbox("Taylor polynomial of degree "+n,0.1,0.02,style="t",>left);
endfunction
```

Sekarang kita izinkan derajat n bervariasi dari 0 hingga 20 dalam 20 perhentian. Hasil dragvalues() digunakan untuk memplot sketsa dengan n ini, dan untuk memasukkan plot ke dalam buku catatan.

```
>nd=dragvalues("plotf","degree",2,[0,20],20,y=0.8, ...
> heading="Drag the value:"); ...
>plotf(nd):
```

Berikut ini adalah demonstrasi sederhana dari fungsinya. Pengguna dapat menggambar jendela plot, meninggalkan jejak titik.

```
>function dragtest ...

plot2d(none,r=1,title="Drag with the mouse, or press any key!");
start=0;
repeat
   {flag,m,time}=mousedrag();
   if flag==0 then return; endif;
   if flag==2 then
      hold on; mark(m[1],m[2]); hold off;
   endif;
end
endfunction
```

>dragtest // lihat hasilnya dan cobalah lakukan!

Gaya Plot 2D

Secara default, EMT menghitung tick sumbu otomatis dan menambahkan label ke setiap tick. Ini dapat diubah dengan parameter grid. Gaya default sumbu dan label dapat diubah. Selain itu, label dan judul dapat ditambahkan secara manual. Untuk menyetel ulang ke gaya default, gunakan reset().

```
>aspect();
>figure(3,4); ...
> figure(1); plot2d("x^3-x",grid=0); ... // no grid, frame or axis
> figure(2); plot2d("x^3-x",grid=1); ... // x-y-axis
> figure(3); plot2d("x^3-x",grid=2); ... // default ticks
> figure(4); plot2d("x^3-x",grid=3); ... // x-y- axis with labels inside
> figure(5); plot2d("x^3-x",grid=4); ... // no ticks, only labels
> figure(6); plot2d("x^3-x",grid=5); ... // default, but no margin
> figure(7); plot2d("x^3-x",grid=6); ... // axes only
> figure(8); plot2d("x^3-x",grid=7); ... // axes only, ticks at axis
> figure(9); plot2d("x^3-x",grid=8); ... // axes only, finer ticks at axis
> figure(10); plot2d("x^3-x",grid=9); ... // default, small ticks inside
> figure(11); plot2d("x^3-x",grid=10); ... // no ticks, axes only
> figure(0):
```

Parameter <frame mematikan frame, dan framecolor=blue mengatur frame menjadi warna biru. Jika Anda menginginkan tanda centang Anda sendiri, Anda dapat menggunakan style=0, dan menambahkan semuanya nanti.

```
>aspect(1.5);
>plot2d("x^3-x",grid=0); // plot
>frame; xgrid([-1,0,1]); ygrid(0): // add frame and grid
```

Untuk judul plot dan label sumbu, lihat contoh berikut.

```
>plot2d("exp(x)",-1,1);
>textcolor(black); // set the text color to black
>title(latex("y=e^x")); // title above the plot
>xlabel(latex("x")); // "x" for x-axis
>ylabel(latex("y"),>vertical); // vertical "y" for y-axis
>label(latex("(0,1)"),0,1,color=blue): // label a point
```

Sumbu dapat digambar secara terpisah dengan xaxis() dan yaxis().

```
>plot2d("x^3-x",<grid,<frame);
>xaxis(0,xx=-2:1,style="->"); yaxis(0,yy=-5:5,style="->"):
```

Teks pada plot dapat diatur dengan label(). Dalam contoh berikut, "lc" berarti bagian tengah bawah. Ini menetapkan posisi label relatif terhadap koordinat plot.

```
>function f(x) &= x^3-x
```

```
3
x - x
```

```
>plot2d(f,-1,1,>square);
>x0=fmin(f,0,1); // compute point of minimum
>label("Rel. Min.",x0,f(x0),pos="lc"): // add a label there
```

Ada juga kotak teks.

```
>plot2d(&f(x),-1,1,-2,2); // function
>plot2d(&diff(f(x),x),>add,style="--",color=red); // derivative
>labelbox(["f","f'"],["-","--"],[black,red]): // label box
>plot2d(["exp(x)","1+x"],color=[black,blue],style=["-","-.-"]):
>gridstyle("->",color=gray,textcolor=gray,framecolor=gray); ...
> plot2d("x^3-x",grid=1); ...
> settitle("y=x^3-x",color=black); ...
> label("x",2,0,pos="bc",color=gray); ...
> label("y",0,6,pos="cl",color=gray); ...
> reset():
```

Untuk kontrol lebih lanjut, sumbu x dan sumbu y dapat dilakukan secara manual.

Perintah fullwindow() memperluas jendela plot karena kita tidak lagi memerlukan tempat untuk label di luar jendela plot. Gunakan shrinkwindow() atau reset() untuk menyetel ulang ke default.

```
>fullwindow; ...
> gridstyle(color=darkgray,textcolor=darkgray); ...
> plot2d(["2^x","1","2^(-x)"],a=-2,b=2,c=0,d=4,<grid,color=4:6,<frame); ...
> xaxis(0,-2:1,style="->"); xaxis(0,2,"x",<axis); ...
> yaxis(0,4,"y",style="->"); ...
> yaxis(-2,1:4,>left); ...
> yaxis(2,2^(-2:2),style=".",<left); ...
> labelbox(["2^x","1","2^-x"],colors=4:6,x=0.8,y=0.2); ...
> reset:
```

Berikut adalah contoh lain, di mana string Unicode digunakan dan sumbunya berada di luar area plot.

```
>aspect(1.5);
>plot2d(["sin(x)","cos(x)"],0,2pi,color=[red,green],<grid,<frame); ...
> xaxis(-1.1,(0:2)*pi,xt=["0",u"&pi;",u"2&pi;"],style="-",>ticks,>zero); ...
> xgrid((0:0.5:2)*pi,<ticks); ...
> yaxis(-0.1*pi,-1:0.2:1,style="-",>zero,>grid); ...
> labelbox(["sin","cos"],colors=[red,green],x=0.5,y=0.2,>left); ...
> xlabel(u"&phi;"); ylabel(u"f(&phi;)"):
```

Plotting 2D Data

Jika x dan y adalah vektor data, maka data tersebut akan digunakan sebagai koordinat x dan y pada suatu kurva. Dalam hal ini, a, b, c, dan d, atau radius r dapat ditentukan, atau jendela plot akan menyesuaikan secara otomatis dengan data. Alternatifnya, >persegi dapat diatur untuk mempertahankan rasio aspek persegi.

Merencanakan ekspresi hanyalah singkatan dari plot data. Untuk plot data, Anda memerlukan satu atau beberapa baris nilai x, dan satu atau beberapa baris nilai y. Dari rentang dan nilai x, fungsi plot2d akan menghitung data yang akan diplot, secara default dengan evaluasi fungsi yang adaptif. Untuk plot titik gunakan ">titik", untuk garis dan titik campuran gunakan ">adapoints".

Tapi Anda bisa memasukkan data secara langsung.

- Gunakan vektor baris untuk x dan y untuk satu fungsi.
- Matriks untuk x dan y diplot baris demi baris.

Berikut adalah contoh dengan satu baris untuk x dan y.

```
>x=-10:0.1:10; y=exp(-x^2)*x; plot2d(x,y):
```

Data juga dapat diplot sebagai poin. Gunakan points=true untuk ini. Plotnya berfungsi seperti poligon, tetapi hanya menggambar sudutnya saja.

```
- style="...": Pilih dari "[]", "<>", "o", ".", ".", "+", "*", "[]", "<>", "o", "..", "", "|".
```

Untuk memplot kumpulan titik, gunakan >titik. Jika warna merupakan vektor warna, masing-masing titik mendapat warna berbeda. Untuk matriks koordinat dan vektor kolom, warna diterapkan pada baris matriks. Parameter >addpoints menambahkan titik ke segmen garis untuk plot data.

```
>xdata=[1,1.5,2.5,3,4]; ydata=[3,3.1,2.8,2.9,2.7]; // data
>plot2d(xdata,ydata,a=0.5,b=4.5,c=2.5,d=3.5,style="."); // lines
>plot2d(xdata,ydata,>points,>add,style="o"): // add points
>p=polyfit(xdata,ydata,1); // get regression line
>plot2d("polyval(p,x)",>add,color=red): // add plot of line
```

Menggambar Daerah Yang Dibatasi Kurva

Plot data sebenarnya berbentuk poligon. Kita juga dapat memplot kurva atau kurva terisi.

- terisi=benar mengisi plot.
- style="...": Pilih dari "", "/", "\", "\/".
- Fillcolor : Lihat di atas untuk mengetahui warna yang tersedia.

Warna isian ditentukan oleh argumen "fillcolor", dan pada <outline opsional, mencegah menggambar batas untuk semua gaya kecuali gaya default.

```
>t=linspace(0,2pi,1000); // parameter for curve
>x=sin(t)*exp(t/pi); y=cos(t)*exp(t/pi); // x(t) and y(t)
>figure(1,2); aspect(16/9)
>figure(1); plot2d(x,y,r=10); // plot curve
>figure(2); plot2d(x,y,r=10,>filled,style="/",fillcolor=red); // fill curve
>figure(0):
```

Dalam contoh berikut kita memplot elips terisi dan dua segi enam terisi menggunakan kurva tertutup dengan 6 titik dengan gaya isian berbeda.

```
>x=linspace(0,2pi,1000); plot2d(sin(x),cos(x)*0.5,r=1,>filled,style="/"):
>t=linspace(0,2pi,6); ...
>plot2d(cos(t),sin(t),>filled,style="/",fillcolor=red,r=1.2):
>t=linspace(0,2pi,6); plot2d(cos(t),sin(t),>filled,style="#"):
```

Contoh lainnya adalah septagon yang kita buat dengan 7 titik pada lingkaran satuan.

```
>t=linspace(0,2pi,7); ...
> plot2d(cos(t),sin(t),r=1,>filled,style="/",fillcolor=red):
```

Berikut adalah himpunan nilai maksimal dari empat kondisi linier yang kurang dari atau sama dengan 3. Ini adalah A[k].v<=3 untuk semua baris A. Untuk mendapatkan sudut yang bagus, kita menggunakan n yang relatif besar.

```
>A=[2,1;1,2;-1,0;0,-1];
>function f(x,y) := max([x,y].A');
>plot2d("f",r=4,level=[0;3],color=green,n=111):
```

Poin utama dari bahasa matriks adalah memungkinkan pembuatan tabel fungsi dengan mudah.

```
>t=linspace(0,2pi,1000); x=cos(3*t); y=sin(4*t);
```

Kami sekarang memiliki nilai vektor x dan y. plot2d() dapat memplot nilai-nilai ini sebagai kurva yang menghubungkan titik-titik tersebut. Plotnya bisa diisi. Pada kasus ini ini memberikan hasil yang bagus karena aturan belitan, yang digunakan untuk isi.

```
>plot2d(x,y,<grid,<frame,>filled):
```

Vektor interval diplot terhadap nilai x sebagai wilayah terisi antara nilai interval yang lebih rendah dan lebih tinggi.

Hal ini dapat berguna untuk memplot kesalahan perhitungan. Tapi itu bisa juga dapat digunakan untuk memplot kesalahan statistik.

```
>t=0:0.1:1; ...
> plot2d(t,interval(t-random(size(t)),t+random(size(t))),style="|"); ...
> plot2d(t,t,add=true):
```

Jika x adalah vektor yang diurutkan, dan y adalah vektor interval, maka plot2d akan memplot rentang interval yang terisi pada bidang. Gaya isiannya sama dengan gaya poligon.

```
>t=-1:0.01:1; x=~t-0.01,t+0.01~; y=x^3-x; 
>plot2d(t,y):
```

Dimungkinkan untuk mengisi wilayah nilai untuk fungsi tertentu. Untuk ini, level harus berupa matriks 2xn. Baris pertama adalah batas bawah dan baris kedua berisi batas atas.

```
>expr := "2*x^2+x*y+3*y^4+y"; // define an expression f(x,y) >plot2d(expr,level=[0;1],style="-",color=blue): // 0 <= f(x,y) <= 1
```

Kita juga dapat mengisi rentang nilai seperti

$$-1 \le (x^2 + y^2)^2 - x^2 + y^2 \le 0.$$

```
>plot2d("(x^2+y^2)^2-x^2+y^2",r=1.2,level=[-1;0],style="/"):
>plot2d("cos(x)","sin(x)^3",xmin=0,xmax=2pi,>filled,style="/"):
```

Grafik Fungsi Parametrik

Nilai x tidak perlu diurutkan. (x,y) hanya menggambarkan sebuah kurva. Jika x diurutkan, kurva tersebut merupakan grafik suatu fungsi.

Dalam contoh berikut, kita memplot spiral

$$\gamma(t) = t \cdot (\cos(2\pi t), \sin(2\pi t))$$

Kita perlu menggunakan banyak titik untuk tampilan yang halus atau fungsi adaptif() untuk mengevaluasi ekspresi (lihat fungsi adaptif() untuk lebih jelasnya).

```
>t=linspace(0,1,1000); ...
>plot2d(t*cos(2*pi*t),t*sin(2*pi*t),r=1):
```

Sebagai alternatif, dimungkinkan untuk menggunakan dua ekspresi untuk kurva. Berikut ini plot kurva yang sama seperti di atas.

```
>plot2d("x*cos(2*pi*x)","x*sin(2*pi*x)",xmin=0,xmax=1,r=1):
>t=linspace(0,1,1000); r=exp(-t); x=r*cos(2pi*t); y=r*sin(2pi*t);
>plot2d(x,y,r=1):
```

Pada contoh berikutnya, kita memplot kurvanya

$$\gamma(t) = (r(t)\cos(t), r(t)\sin(t))$$

dengan

$$r(t) = 1 + \frac{\sin(3t)}{2}.$$

```
>t=linspace(0,2pi,1000); r=1+sin(3*t)/2; x=r*cos(t); y=r*sin(t); ...
>plot2d(x,y,>filled,fillcolor=red,style="/",r=1.5):
```

Menggambar Grafik Bilangan Kompleks

Serangkaian bilangan kompleks juga dapat diplot. Kemudian titik-titik grid akan dihubungkan. Jika sejumlah garis kisi ditentukan (atau vektor garis kisi 1x2) dalam argumen cgrid, hanya garis kisi tersebut yang terlihat. Matriks bilangan kompleks secara otomatis akan diplot sebagai kisi-kisi pada bidang kompleks.

Pada contoh berikut, kita memplot gambar lingkaran satuan di bawah fungsi eksponensial. Parameter cgrid menyembunyikan beberapa kurva grid.

```
>aspect(); r=linspace(0,1,50); a=linspace(0,2pi,80)'; z=r*exp(I*a);...
>plot2d(z,a=-1.25,b=1.25,c=-1.25,d=1.25,cgrid=10):
>aspect(1.25); r=linspace(0,1,50); a=linspace(0,2pi,200)'; z=r*exp(I*a);
>plot2d(exp(z),cgrid=[40,10]):
>r=linspace(0,1,10); a=linspace(0,2pi,40)'; z=r*exp(I*a);
>plot2d(exp(z),>points,>add):
```

Vektor bilangan kompleks secara otomatis diplot sebagai kurva pada bidang kompleks dengan bagian nyata dan bagian imajiner.

Dalam contoh, kita memplot lingkaran satuan dengan

$$\gamma(t) = e^{it}$$

```
>t=linspace(0,2pi,1000); ...
>plot2d(exp(I*t)+exp(4*I*t),r=2):
```

Plot Statistik

Ada banyak fungsi yang dikhususkan pada plot statistik. Salah satu plot yang sering digunakan adalah plot kolom.

Jumlah kumulatif dari nilai terdistribusi normal 0-1 menghasilkan jalan acak.

```
>plot2d(cumsum(randnormal(1,1000))):
```

Penggunaan dua baris menunjukkan jalan dalam dua dimensi.

```
>X=cumsum(randnormal(2,1000)); plot2d(X[1],X[2]):
>columnsplot(cumsum(random(10)),style="/",color=blue):
```

Itu juga dapat menampilkan string sebagai label.

```
>months=["Jan", "Feb", "Mar", "Apr", "May", "Jun", ...
> "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];
>values=[10,12,12,18,22,28,30,26,22,18,12,8];
>columnsplot(values, lab=months, color=red, style="-");
>title("Temperature"):
>k=0:10;
>plot2d(k,bin(10,k), >bar):
>plot2d(k,bin(10,k)); plot2d(k,bin(10,k), >points, >add):
>plot2d(normal(1000), normal(1000), >points, grid=6, style=".."):
>plot2d(normal(1,1000), >distribution, style="0"):
>plot2d("qnormal",0,5;2.5,0.5, >filled):
```

Untuk memplot distribusi statistik eksperimental, Anda dapat menggunakan distribution=n dengan plot2d.

```
>w=randexponential(1,1000); // exponential distribution
>plot2d(w,>distribution): // or distribution=n with n intervals
```

Atau Anda dapat menghitung distribusi dari data dan memplot hasilnya dengan >bar di plot3d, atau dengan plot kolom.

```
>w=normal(1000); // 0-1-normal distribution  
>\{x,y\}=histo(w,10,v=[-6,-4,-2,-1,0,1,2,4,6]); // interval bounds v  
>plot2d(x,y,>bar):
```

Fungsi statplot() mengatur gaya dengan string sederhana.

```
>statplot(1:10,cumsum(random(10)),"b"):
>n=10; i=0:n; ...
>plot2d(i,bin(n,i)/2^n,a=0,b=10,c=0,d=0.3); ...
>plot2d(i,bin(n,i)/2^n,points=true,style="ow",add=true,color=blue):
```

Selain itu, data dapat diplot sebagai batang. Dalam hal ini, x harus diurutkan dan satu elemen lebih panjang dari y. Batangnya akan memanjang dari x[i] hingga x[i+1] dengan nilai y[i]. Jika x berukuran sama dengan y, maka x akan diperpanjang satu elemen dengan spasi terakhir.

Gaya isian dapat digunakan seperti di atas.

```
>n=10; k=bin(n,0:n); ...
>plot2d(-0.5:n+0.5,k,bar=true,fillcolor=lightgray):
```

Data untuk plot batang (batang=1) dan histogram (histogram=1) dapat diberikan secara eksplisit dalam xv dan yv, atau dapat dihitung dari distribusi empiris dalam xv dengan >distribusi (atau distribusi=n). Histogram nilai xv akan dihitung secara otomatis dengan >histogram. Jika >even ditentukan, nilai xv akan dihitung dalam interval bilangan bulat.

```
>plot2d(normal(10000), distribution=50):
>k=0:10; m=bin(10,k); x=(0:11)-0.5; plot2d(x,m,>bar):
>columnsplot(m,k):
>plot2d(random(600) *6, histogram=6):
```

Untuk distribusi, terdapat parameter distribution=n, yang menghitung nilai secara otomatis dan mencetak distribusi relatif dengan n sub-interval.

```
>plot2d(normal(1,1000),distribution=10,style="\/"):
>plot2d(normal(1,500),distribution=20,style="\/"):
```

Dengan parameter even=true, ini akan menggunakan interval bilangan bulat.

```
>plot2d(intrandom(1,1000,10),distribution=10,even=true):
```

Perhatikan bahwa ada banyak plot statistik yang mungkin berguna. Silahkan lihat tutorial tentang statistik.

```
>columnsplot(getmultiplicities(1:6,intrandom(1,6000,6))):
>plot2d(normal(1,1000),>distribution); ...
> plot2d("qnormal(x)",color=red,thickness=2,>add):
```

Ada juga banyak plot khusus untuk statistik. Plot kotak menunjukkan kuartil distribusi ini dan banyak outlier. Menurut definisinya, outlier dalam plot kotak adalah data yang melebihi 1,5 kali rentang 50% tengah plot.

```
>M=normal(5,1000); boxplot(quartiles(M)):
```

Fungsi Implisit

Plot implisit menunjukkan penyelesaian garis level f(x,y)=level, dengan "level" dapat berupa nilai tunggal atau vektor nilai. Jika level = "auto", akan ada garis level nc, yang akan tersebar antara fungsi minimum dan maksimum secara merata. Warna yang lebih gelap atau lebih terang dapat ditambahkan dengan >hue untuk menunjukkan nilai fungsi. Untuk fungsi implisit, xv harus berupa fungsi atau ekspresi parameter x dan y, atau alternatifnya, xv dapat berupa matriks nilai.

Euler dapat menandai garis level

$$f(x,y) = c$$

dari fungsi apa pun.

Untuk menggambar himpunan f(x,y)=c untuk satu atau lebih konstanta c, Anda dapat menggunakan plot2d() dengan plot implisitnya pada bidang. Parameter c adalah level=c, dimana c dapat berupa vektor garis level. Selain itu, skema warna dapat digambar di latar belakang untuk menunjukkan nilai fungsi setiap titik dalam plot. Parameter "n" menentukan kehalusan plot.

```
>aspect(1.5);
>plot2d("x^2+y^2-x*y-x",r=1.5,level=0,contourcolor=red):
>aspect(1.5);
>plot2d("x^2+y^2-x*y-x",r=2.5,level=0,contourcolor=black):
>expr := "2*x^2+x*y+3*y^4+y"; // define an expression f(x,y)
>plot2d(expr,level=0): // Solutions of f(x,y)=0
>expr := "3*x^2+x*y+3*y^4+y"; // define an expression f(x,y)
>plot2d(expr,level=0): // Solutions of f(x,y)=0
>plot2d(expr,level=0): // Solutions of f(x,y)=0
>plot2d(expr,level=0:0.5:20,>hue,contourcolor=white,n=200): // nice
>plot2d(expr,level=0:0.5:20,>hue,contourcolor=yellow,n=200): // nice
>plot2d(expr,level=0:0.5:20,>hue,>spectral,n=200,grid=4): // nicer
```

Ini juga berfungsi untuk plot data. Namun Anda harus menentukan rentangnya untuk label sumbu.

```
>x=-2:0.05:1; y=x'; z=expr(x,y);
>plot2d(z,level=0,a=-1,b=2,c=-2,d=1,>hue):
>plot2d("x^3-y^2",>contour,>hue,>spectral):
>plot2d("x^3-y^2",level=0,contourwidth=3,>add,contourcolor=red):
>z=z+normal(size(z))*0.2;
>plot2d(z,level=0.5,a=-1,b=2,c=-2,d=1):
>plot2d(expr,level=[0:0.2:5;0.05:0.2:5.05],color=lightgray):
>plot2d("x^2+y^3+x*y",level=1,r=4,n=100):
>plot2d("x^2+y^5+x*y",level=1,r=3,n=100):
>plot2d("x^2+2*y^2-x*y",level=0:0.1:10,n=100,contourcolor=white,>hue):
```

Dimungkinkan juga untuk mengisi set

$$a \le f(x, y) \le b$$

dengan rentang level.

Dimungkinkan untuk mengisi wilayah nilai untuk fungsi tertentu. Untuk ini, level harus berupa matriks 2xn. Baris pertama adalah batas bawah dan baris kedua berisi batas atas.

```
>plot2d(expr,level=[0;1],style="-",color=blue): // 0 <= f(x,y) <= 1
```

Plot implisit juga dapat menunjukkan rentang level. Maka level harus berupa matriks interval level 2xn, di mana baris pertama berisi awal dan baris kedua berisi akhir setiap interval. Alternatifnya, vektor baris sederhana dapat digunakan untuk level, dan parameter dl memperluas nilai level ke interval.

```
>plot2d("x^4+y^4",r=1.5,level=[0;1],color=blue,style="/"):
>plot2d("x^2+y^3+x*y",level=[0,2,4;1,3,5],style="/",r=2,n=100):
>plot2d("x^2+y^3+x*y",level=-10:20,r=2,style="-",dl=0.1,n=100):
>plot2d("sin(x)*cos(y)",r=pi,>hue,>levels,n=100):
```

Dimungkinkan juga untuk menandai suatu wilayah

$$a \le f(x, y) \le b$$
.

Hal ini dilakukan dengan menambahkan level dengan dua baris.

```
>plot2d("(x^2+y^2-1)^3-x^2*y^3",r=1.3, ...
> style="#",color=red,<outline, ...
> level=[-2;0],n=100):
```

Dimungkinkan untuk menentukan level tertentu. Misalnya, kita dapat memplot solusi persamaan seperti

$$x^3 - xy + x^2y^2 = 6$$

```
>plot2d("x^3-x*y+x^2*y^2",r=6,level=1,n=100):
>function starplot1 (v, style="/", color=green, lab=none) ...
```

```
if !holding() then clg; endif;
  w=window(); window(0,0,1024,1024);
  h=holding(1);
  r=max(abs(v))*1.2;
  setplot (-r, r, -r, r);
  n=cols(v); t=linspace(0,2pi,n);
  v=v|v[1]; c=v*cos(t); s=v*sin(t);
  cl=barcolor(color); st=barstyle(style);
  loop 1 to n
   polygon([0,c[#],c[#+1]],[0,s[#],s[#+1]],1);
    if lab!=none then
      rlab=v[#]+r*0.1;
      \{col, row\}=toscreen(cos(t[#])*rlab, sin(t[#])*rlab);
      ctext(""+lab[#],col,row-textheight()/2);
    endif;
  barcolor(cl); barstyle(st);
  holding(h);
  window(w);
endfunction
```

Tidak ada tanda centang kotak atau sumbu di sini. Selain itu, kami menggunakan jendela penuh untuk plotnya.

Kami memanggil reset sebelum kami menguji plot ini untuk mengembalikan default grafis. Ini tidak perlu dilakukan jika Anda yakin plot Anda berhasil.

```
>reset; starplot1(normal(1,10)+5,color=red,lab=1:10):
```

Terkadang, Anda mungkin ingin merencanakan sesuatu yang plot2d tidak bisa lakukan, tapi hampir. Dalam fungsi berikut, kita membuat plot impuls logaritmik. plot2d dapat melakukan plot logaritmik, tetapi tidak untuk batang impuls.

```
>function logimpulseplot1 (x,y) ...
```

```
{x0,y0}=makeimpulse(x,log(y)/log(10));
plot2d(x0,y0,>bar,grid=0);
h=holding(1);
frame();
xgrid(ticks(x));
p=plot();
for i=-10 to 10;
  if i<=p[4] and i>=p[3] then
     ygrid(i,yt="10^"+i);
  endif;
end;
holding(h);
endfunction
```

Mari kita uji dengan nilai yang terdistribusi secara eksponensial.

```
>aspect(1.5); x=1:10; y=-\log(random(size(x)))*200; ... >logimpulseplot1(x,y):
```

Mari kita menganimasikan kurva 2D menggunakan plot langsung. Perintah plot(x,y) hanya memplot kurva ke dalam jendela plot. setplot(a,b,c,d) menyetel jendela ini.

Fungsi wait(0) memaksa plot muncul di jendela grafis. Jika tidak, pengundian ulang akan dilakukan dalam interval waktu yang jarang.

```
>function animliss (n,m) ...
```

```
t=linspace(0,2pi,500);
f=0;
c=framecolor(0);
l=linewidth(2);
setplot(-1,1,-1,1);
repeat
   clg;
   plot(sin(n*t),cos(m*t+f));
   wait(0);
   if testkey() then break; endif;
   f=f+0.02;
end;
framecolor(c);
linewidth(l);
endfunction
```

Tekan tombol apa saja untuk menghentikan animasi ini.

```
>animliss(2,3); // lihat hasilnya, jika sudah puas, tekan ENTER
```

Plot Logaritmik

EMT menggunakan parameter "logplot" untuk skala logaritmik.

Plot logaritma dapat diplot menggunakan skala logaritma di y dengan logplot=1, atau menggunakan skala logaritma di x dan y dengan logplot=2, atau di x dengan logplot=3.

```
- logplot=1: y-logaritma
- logplot=2: x-y-logaritma
- logplot=3: x-logaritma
```

```
>plot2d("exp(x^3-x)*x^2",1,5,logplot=1):
>plot2d("exp(x^3-x)*x^2",1,5,logplot=2):
>plot2d("exp(x+sin(x))",0,100,logplot=1):
>plot2d("exp(x+sin(x))",10,100,logplot=2):
>plot2d("gamma(x)",1,10,logplot=1):
>plot2d("log(x*(2+sin(x/100)))",10,1000,logplot=3):
```

Ini juga berfungsi dengan plot data.

```
>x=10^(1:20); y=x^2-x;
>plot2d(x,y,logplot=2):
>x=10^(1:5); y=x^2-x;
>plot2d(x,y,logplot=2):
```

Rujukan Lengkap Fungsi plot2d()

```
function plot2d (xv, yv, btest, a, b, c, d, xmin, xmax, r, n, ... logplot, grid, frame, framecolor, square, color, thickness, style, .. auto, add, user, delta, points, addpoints, pointstyle, bar, histogram, ... distribution, even, steps, own, adaptive, hue, level, contour, ... nc, filled, fillcolor, outline, title, xl, yl, maps, contourcolor, .. contourwidth, ticks, margin, clipping, cx, cy, insimg, spectral, ... cgrid, vertical, smaller, dl, niveau, levels)
```

Multipurpose plot function for plots in the plane (2D plots). This function can do plots of functions of one variables, data plots, curves in the plane, bar plots, grids of complex numbers, and implicit plots of functions of two variables.

Parameters

```
x,y: equations, functions or data vectors
a,b,c,d: Plot area (default a=-2,b=2)
r: if r is set, then a=cx-r, b=cx+r, c=cy-r, d=cy+r
```

```
r can be a vector [rx,ry] or a vector [rx1,rx2,ry1,ry2].
```

xmin,xmax : range of the parameter for curves auto : Determine y-range automatically (default) square : if true, try to keep square x-y-ranges n : number of intervals (default is adaptive)

grid: 0 = no grid and labels,

```
1 = axis only,
2 = normal grid (see below for the number of grid lines)
3 = inside axis
4 = no grid
5 = full grid including margin
6 = ticks at the frame
7 = axis only
8 = axis only, sub-ticks
```

frame : 0 = no frame

framecolor: color of the frame and the grid

margin: number between 0 and 0.4 for the margin around the plot

color: Color of curves. If this is a vector of colors,

it will be used for each row of a matrix of plots. In the case of point plots, it should be a column vector. If a row vector or a full matrix of colors is used for point plots, it will be used for each data point.

thickness: line thickness for curves

This value can be smaller than 1 for very thin lines.

style: Plot style for lines, markers, and fills.

```
For points use
"[]", "<>", ".", "..", "...",
"*", "+", "|", "-", "o"
"[]#", "<>#", "o#" (filled shapes)
"[]w", "<>w", "ow" (non-transparent)
For lines use
"-", "--", "-.", ".", ".-.", "-.-", "->"
For filled polygons or bar plots use
"#", "#0", "0", "/", "\", "\/",
"+", "|", "-", "t"
```

points : plot single points instead of line segments addpoints : if true, plots line segments and points

add: add the plot to the existing plot user: enable user interaction for functions

delta: step size for user interaction

bar : bar plot (x are the interval bounds, y the interval values)

histogram : plots the frequencies of \boldsymbol{x} in \boldsymbol{n} subintervals

distribution=n: plots the distribution of x with n subintervals

even: use intervalues for automatic histograms.

steps: plots the function as a step function (steps=1,2)

adaptive: use adaptive plots (n is the minimal number of steps) level: plot level lines of an implicit function of two variables

outline: draws boundary of level ranges.

If the level value is a 2xn matrix, ranges of levels will be drawn in the color using the given fill style. If outline is true, it

will be drawn in the contour color. Using this feature, regions of

f(x,y) between limits can be marked.

hue: add hue color to the level plot to indicate the function

value

contour: Use level plot with automatic levels

nc: number of automatic level lines

title: plot title (default "")

xl, yl : labels for the x- and y-axis

smaller: if >0, there will be more space to the left for labels.

vertical:

Turns vertical labels on or off. This changes the global variable verticallabels locally for one plot. The value 1 sets only vertical text, the value 2 uses vertical numerical labels on the y axis.

filled: fill the plot of a curve

fillcolor: fill color for bar and filled curves outline: boundary for filled polygons

logplot: set logarithmic plots

1 = logplot in y,
2 = logplot in xy,
3 = logplot in x

own:

A string, which points to an own plot routine. With >user, you get the same user interaction as in plot2d. The range will be set before each call to your function.

maps: map expressions (0 is faster), functions are always mapped.

contourcolor: color of contour lines contourwidth: width of contour lines

clipping: toggles the clipping (default is true)

title:

This can be used to describe the plot. The title will appear above the plot. Moreover, a label for the x and y axis can be added with xl="string" or yl="string". Other labels can be added with the functions label() or labelbox(). The title can be a unicode string or an image of a Latex formula.

cgrid:

Determines the number of grid lines for plots of complex grids. Should be a divisor of the the matrix size minus 1 (number of subintervals). cgrid can be a vector [cx,cy].

Overview

The function can plot

- expressions, call collections or functions of one variable,
- parametric curves,
- x data against y data,
- implicit functions,
- bar plots,
- complex grids,
- polygons.

If a function or expression for xv is given, plot2d() will compute values in the given range using the function or expression. The expression must be an expression in the variable x. The range must be defined in the parameters a and b unless the default range should be used. The y-range will be computed automatically, unless c and d are specified, or a radius r, which yields the range r.r

for x and y. For plots of functions, plot2d will use an adaptive evaluation of the function by default. To speed up the plot for complicated functions, switch this off with <adaptive, and optionally decrease the number of intervals n. Moreover, plot2d() will by default use mapping. I.e., it will compute the plot element for element. If your expression or your functions can handle a vector x, you can switch that off with <maps for faster evaluation.

Note that adaptive plots are always computed element for element. If functions or expressions for both xv and for yv are specified, plot2d() will compute a curve with the xv values as x-coordinates and the yv values as y-coordinates. In this case, a range should be defined for the parameter using xmin, xmax. Expressions contained in strings must always be expressions in the parameter variable x.

BAB 4

PENGGUNAAN SOFTWARE EMT UNTUK PLOT 3D

[a4paper,10pt]article eumat

Menggambar Plot 3D dengan EMT

Ini adalah pengenalan plot 3D di Euler. Kita memerlukan plot 3D untuk memvisualisasikan fungsi dua variabel.

Euler menggambar fungsi tersebut menggunakan algoritma pengurutan untuk menyembunyikan bagian di latar belakang. Secara umum Euler menggunakan proyeksi sentral. Defaultnya adalah dari kuadran x-y positif menuju titik asal x=y=z=0, tetapi sudut=0° dilihat dari arah sumbu y. Sudut pandang dan ketinggian dapat diubah.

Euler bisa merencanakan

- permukaan dengan garis penetasan dan level atau rentang level,
- awan titik,
- kurva parametrik,
- permukaan implisit.

Plot 3D suatu fungsi menggunakan plot3d. Cara termudah adalah dengan memplot ekspresi dalam x dan y. Parameter r mengatur rentang plot sekitar (0,0).

```
>aspect(2); plot3d("x^2+sin(y)",-5,5,0,6*pi):
>plot3d("x^2+x*sin(y)",-5,5,0,6*pi):
```

Silakan lakukan modifikasi agar gambar "talang bergelombang" tersebut tidak lurus melainkan melengkung/melingkar, baik melingkar secara mendatar maupun melingkar turun/naik (seperti papan peluncur pada kolam renang.

Temukan rumusnya.

Fungsi dua Variabel

Untuk grafik suatu fungsi, gunakan

- ekspresi sederhana dalam x dan y,
- nama fungsi dari dua variabell
- atau matriks data.

Standarnya adalah kisi-kisi kawat berisi dengan warna berbeda di kedua sisi. Perhatikan bahwa jumlah interval kisi default adalah 10, tetapi plot menggunakan jumlah default persegi panjang 40x40 untuk membuat permukaannya. Ini bisa diubah.

- n=40, n=[40,40]: jumlah garis kisi di setiap arah
- grid=10, grid=[10,10]: jumlah garis grid di setiap arah.

Kami menggunakan default n=40 dan grid=10.

```
>plot3d("x^2+y^2"):
```

Interaksi pengguna dimungkinkan dengan parameter >user. Pengguna dapat menekan tombol berikut.

- left,right,up,down: memutar sudut pandang
- +,-: memperbesar atau memperkecil
- a: menghasilkan anaglyph (lihat di bawah)
- l: tombol nyalakan sumber cahaya (lihat dibawah)
- space: reset ke default
- return: interaksi pengguna akhir dimungkinkan dengan parameter

```
>plot3d("exp(-x^2+y^2)",>user, ...
> title="Turn with the vector keys (press return to finish)"):
```

Rentang plot untuk fungsi dapat ditentukan dengan

- a,b: rentang x
- c,d: rentang y
- r : persegi simetris di sekitar (0,0).
- n : jumlah subinterval untuk plot.

Ada beberapa parameter untuk menskalakan fungsi atau mengubah tampilan grafik.

fscale: menskalakan ke nilai fungsi (defaultnya adalah <fscale).

scale: angka atau vektor 1x2 untuk menskalakan ke arah x dan y.

frame: jenis bingkai (default 1).

```
>plot3d("exp(-(x^2+y^2)/5)",r=10,n=80,fscale=4,scale=1.2,frame=3,>user):
```

Tampilan dapat diubah dengan berbagai cara.

- distance: jarak pandang ke plot.
- zoom: nilai zoom.
- angle: sudut terhadap sumbu y negatif dalam radian.
- height: ketinggian pandangan dalam radian.

Nilai default dapat diperiksa atau diubah dengan fungsi view(). Ini mengembalikan parameter dalam urutan di atas.

```
>view
```

```
[5, 2.6, 2, 0.4]
```

Jarak yang lebih dekat membutuhkan lebih sedikit zoom. Efeknya lebih seperti lensa sudut lebar. Pada contoh berikut, sudut=0 dan tinggi=0 dilihat dari sumbu y negatif. Label sumbu untuk y disembunyikan dalam kasus ini.

```
>plot3d("x^2+y",distance=3,zoom=1,angle=pi/2,height=0):
```

Plot selalu terlihat berada di tengah kubus plot. Anda dapat memindahkan bagian tengah dengan parameter tengah.

```
>plot3d("x^4+y^2",a=0,b=1,c=-1,d=1,angle=-20°,height=20°, ... 
> center=[0.4,0,0],zoom=5):
```

Plotnya diskalakan agar sesuai dengan unit kubus untuk dilihat. Jadi tidak perlu mengubah jarak atau zoom tergantung ukuran plot. Namun labelnya mengacu pada ukuran sebenarnya.

Jika Anda mematikannya dengan scale=false, Anda harus berhati-hati agar plot tetap masuk ke dalam jendela plotting, dengan mengubah jarak pandang atau zoom, dan memindahkan bagian tengah.

```
>plot3d("5*exp(-x^2-y^2)", r=2, <fscale, <scale, distance=13, height=50°, ... > center=[0,0,-2], frame=3):
```

Plot kutub juga tersedia. Parameter polar=true menggambar plot kutub. Fungsi tersebut harus tetap merupakan fungsi dari x dan y. Parameter "fscale" menskalakan fungsi dengan skalanya sendiri. Kalau tidak, fungsinya akan diskalakan agar sesuai dengan kubus.

```
>plot3d("1/(x^2+y^2+1)",r=5,>polar, ...
>fscale=2,>hue,n=100,zoom=4,>contour,color=blue):
>function f(r) := exp(-r/2)*cos(r); ...
>plot3d("f(x^2+y^2)",>polar,scale=[1,1,0.4],r=pi,frame=3,zoom=4):
```

Parameter memutar memutar fungsi di x di sekitar sumbu x.

- rotate=1: Menggunakan sumbu x
- rotate=2: Menggunakan sumbu z

```
>plot3d("x^2+1",a=-1,b=1,rotate=true,grid=5):
>plot3d("x^2+1",a=-1,b=1,rotate=2,grid=5):
>plot3d("sqrt(25-x^2)",a=0,b=5,rotate=1):
>plot3d("x*sin(x)",a=0,b=6pi,rotate=2):
```

Berikut adalah plot dengan tiga fungsi.

```
>plot3d("x", "x^2+y^2", "y", r=2, zoom=3.5, frame=3):
```

Plot Kontur

Untuk plotnya, Euler menambahkan garis grid. Sebaliknya dimungkinkan untuk menggunakan garis datar dan rona satu warna atau rona warna spektral. Euler dapat menggambar ketinggian fungsi pada plot dengan arsiran. Di semua plot 3D, Euler dapat menghasilkan anaglyph merah/cyan.

- ->hue: Mengaktifkan bayangan cahaya, bukan kabel.
- ->kontur: Membuat plot garis kontur otomatis pada plot.
- level=... (atau level): Vektor nilai garis kontur.

Standarnya adalah level="auto", yang menghitung beberapa garis level secara otomatis. Seperti yang Anda lihat di plot, level sebenarnya adalah rentang level.

Gaya default dapat diubah. Untuk plot kontur berikut, kami menggunakan grid yang lebih halus berukuran 100x100 poin, menskalakan fungsi dan plot, dan menggunakan sudut pandang yang berbeda.

```
>plot3d("exp(-x^2-y^2)",r=2,n=100,level="thin", ...
> >contour,>spectral,fscale=1,scale=1.1,angle=45°,height=20°):
>plot3d("exp(x*y)",angle=100°,>contour,color=green):
```

Bayangan defaultnya menggunakan warna abu-abu. Namun rentang warna spektral juga tersedia.

- ->spektral: Menggunakan skema spektral default
- color=...: Menggunakan warna khusus atau skema spektral

Untuk plot berikut, kami menggunakan skema spektral default dan menambah jumlah titik untuk mendapatkan tampilan yang sangat mulus.

```
>plot3d("x^2+y^2",>spectral,>contour,n=100):
```

Selain garis level otomatis, kita juga dapat menetapkan nilai garis level. Ini akan menghasilkan garis level yang tipis, bukan rentang level.

```
>plot3d("x^2-y^2",0,5,0,5,level=-1:0.1:1,color=redgreen):
```

Dalam plot berikut, kita menggunakan dua pita tingkat yang sangat luas dari -0,1 hingga 1, dan dari 0,9 hingga 1. Ini dimasukkan sebagai matriks dengan batas tingkat sebagai kolom.

Selain itu, kami melapisi grid dengan 10 interval di setiap arah.

```
>plot3d("x^2+y^3",level=[-0.1,0.9;0,1], ...
> >spectral,angle=30°,grid=10,contourcolor=gray):
```

Pada contoh berikut, kita memplot himpunan, di mana

lateks: $f(x,y) = x^y-y^x = 0$

Kami menggunakan satu garis tipis untuk garis level.

```
>plot3d("x^y-y^x",level=0,a=0,b=6,c=0,d=6,contourcolor=red,n=100):
```

Dimungkinkan untuk menampilkan bidang kontur di bawah plot. Warna dan jarak ke plot dapat ditentukan.

```
>plot3d("x^2+y^4",>cp,cpcolor=green,cpdelta=0.2):
```

Berikut beberapa gaya lainnya. Kami selalu mematikan bingkai, dan menggunakan berbagai skema warna untuk plot dan kisi.

```
>figure(2,2); ...
>expr="y^3-x^2"; ...
>figure(1); ...
> plot3d(expr,<frame,>cp,cpcolor=spectral); ...
>figure(2); ...
> plot3d(expr,<frame,>spectral,grid=10,cp=2); ...
>figure(3); ...
> plot3d(expr,<frame,>contour,color=gray,nc=5,cp=3,cpcolor=greenred); ...
>figure(4); ...
> plot3d(expr,<frame,>hue,grid=10,>transparent,>cp,cpcolor=gray); ...
>figure(0):
```

Ada beberapa skema spektral lainnya, yang diberi nomor dari 1 hingga 9. Namun Anda juga dapat menggunakan warna=nilai, di mana nilai

- spektral: untuk rentang dari biru hingga merah
- putih: untuk rentang yang lebih redup
- kuningbiru,unguhijau,birukuning,hijaumerah
- birukuning, hijauungu, kuningbiru, merahhijau

```
>figure(3,3); ...
>for i=1:9; ...
> figure(i); plot3d("x^2+y^2", spectral=i, >contour, >cp, <frame, zoom=4); ...
>end; ...
>figure(0):
```

Sumber cahaya dapat diubah dengan l dan tombol kursor selama interaksi pengguna. Itu juga dapat diatur dengan parameter.

- cahaya : arah datangnya cahaya
- amb: cahaya sekitar antara 0 dan 1

Perhatikan bahwa program ini tidak membuat perbedaan antara sisi plot. Tidak ada bayangan. Untuk ini, Anda memerlukan Povray.

```
>plot3d("-x^2-y^2", ...
> hue=true,light=[0,1,1],amb=0,user=true, ...
> title="Press l and cursor keys (return to exit)"):
```

Parameter warna mengubah warna permukaan. Warna garis level juga bisa diubah.

```
>plot3d("-x^2-y^2",color=rgb(0.2,0.2,0),hue=true,frame=false, ...
> zoom=3,contourcolor=red,level=-2:0.1:1,dl=0.01):
```

Warna 0 memberikan efek pelangi yang istimewa.

```
>plot3d("x^2/(x^2+y^2+1)",color=0,hue=true,grid=10):
```

Permukaannya juga bisa transparan.

```
>plot3d("x^2+y^2",>transparent,grid=10,wirecolor=red):
```

Plot Implisit

Ada juga plot implisit dalam tiga dimensi. Euler menghasilkan pemotongan melalui objek. Fitur plot3d mencakup plot implisit. Plot ini menunjukkan himpunan nol suatu fungsi dalam tiga variabel. Solusi dari

$$f(x, y, z) = 0$$

dapat divisualisasikan dalam potongan yang sejajar dengan bidang x-y-, x-z- dan y-z.

- implisit=1: dipotong sejajar bidang y-z
- implisit=2: dipotong sejajar dengan bidang x-z
- implisit=4: dipotong sejajar bidang x-y

Tambahkan nilai-nilai ini, jika Anda mau. Dalam contoh kita memplot

$$M = \{(x, y, z) : x^2 + y^3 + zy = 1\}$$

```
>plot3d("x^2+y^3+z*y-1", r=5, implicit=3):
>c=1; d=1;
>plot3d("((x^2+y^2-c^2)^2+(z^2-1)^2)*((y^2+z^2-c^2)^2+(x^2-1)^2)*((z^2+x^2-c^2)^2+(y^2-1)^2)*(y^2+z^2-c^2)^2+(x^2-1)^2)*((z^2+x^2-c^2)^2+(y^2-1)^2)*(y^2+z^2-c^2)^2+(y^2-1)^2)*(y^2+z^2-c^2)^2+(y^2-1)^2)*(y^2+z^2-c^2)^2+(y^2-1)^2)*(y^2+z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^2-z^2-c^2)^2+(y^
```

Merencanakan Data 3D

Sama seperti plot2d, plot3d menerima data. Untuk objek 3D, Anda perlu menyediakan matriks nilai x-, y- dan z, atau tiga fungsi atau ekspresi fx(x,y), fy(x,y), fz(x,y).

$$\gamma(t,s) = (x(t,s), y(t,s), z(t,s))$$

Karena x,y,z adalah matriks, kita asumsikan bahwa (t,s) melewati grid persegi. Hasilnya, Anda dapat memplot gambar persegi panjang di ruang angkasa.

Anda dapat menggunakan bahasa matriks Euler untuk menghasilkan koordinat secara efektif.

Dalam contoh berikut, kita menggunakan vektor nilai t dan vektor kolom nilai s untuk membuat parameter permukaan bola. Dalam gambar kita dapat menandai wilayah, dalam kasus kita wilayah kutub.

```
>t=linspace(0,2pi,180); s=linspace(-pi/2,pi/2,90)'; ...
>x=cos(s)*cos(t); y=cos(s)*sin(t); z=sin(s); ...
>plot3d(x,y,z,>hue, ...
>color=blue,<frame,grid=[10,20], ...
>values=s,contourcolor=red,level=[90°-24°;90°-22°], ...
>scale=1.4,height=50°):
```

Berikut ini contohnya yaitu grafik suatu fungsi.

```
>t=-1:0.1:1; s=(-1:0.1:1)'; plot3d(t,s,t*s,grid=10):
```

Namun, kita bisa membuat berbagai macam permukaan. Berikut adalah permukaan yang sama sebagai suatu fungsi

$$x = yz$$

```
>plot3d(t*s,t,s,angle=180°,grid=10):
```

Dengan lebih banyak usaha, kita dapat menghasilkan banyak permukaan.

Dalam contoh berikut kita membuat tampilan bayangan dari bola yang terdistorsi. Koordinat bola yang biasa adalah

$$\gamma(t,s) = (\cos(t)\cos(s), \sin(t)\sin(s), \cos(s))$$

dengan

$$0 \le t \le 2\pi, \quad \frac{-\pi}{2} \le s \le \frac{\pi}{2}.$$

Kami mendistorsi ini dengan sebuah faktor

$$d(t,s) = \frac{\cos(4t) + \cos(8s)}{4}.$$

```
>t=linspace(0,2pi,320); s=linspace(-pi/2,pi/2,160)'; ...
>d=1+0.2*(cos(4*t)+cos(8*s)); ...
>plot3d(cos(t)*cos(s)*d,sin(t)*cos(s)*d,sin(s)*d,hue=1, ...
> light=[1,0,1],frame=0,zoom=5):
```

Tentu saja, point cloud juga dimungkinkan. Untuk memplot data titik dalam ruang, kita memerlukan tiga vektor untuk koordinat titik-titik tersebut.

Gayanya sama seperti di plot2d dengan points=true;

```
>n=500; ...
> plot3d(normal(1,n),normal(1,n),normal(1,n),points=true,style="."):
```

Dimungkinkan juga untuk memplot kurva dalam 3D. Dalam hal ini, lebih mudah untuk menghitung terlebih dahulu titik-titik kurva. Untuk kurva pada bidang kita menggunakan barisan koordinat dan parameter wire=true.

```
>t=linspace(0,8pi,500); ...
>plot3d(sin(t),cos(t),t/10,>wire,zoom=3):
>t=linspace(0,4pi,1000); plot3d(cos(t),sin(t),t/2pi,>wire, ...
>linewidth=3,wirecolor=blue):
>X=cumsum(normal(3,100)); ...
> plot3d(X[1],X[2],X[3],>anaglyph,>wire):
```

EMT juga dapat membuat plot dalam mode anaglyph. Untuk melihat plot seperti itu, Anda memerlukan kacamata berwarna merah/sian.

```
> plot3d("x^2+y^3",>anaglyph,>contour,angle=30°):
```

Seringkali skema warna spektral digunakan untuk plot. Ini menekankan ketinggian fungsinya.

```
>plot3d("x^2*y^3-y",>spectral,>contour,zoom=3.2):
```

Euler juga dapat memplot permukaan yang diparameterisasi, jika parameternya adalah nilai x, y, dan z dari gambar kotak persegi panjang di ruang tersebut.

Untuk demo berikut, kami menyiapkan parameter u- dan v-, dan menghasilkan koordinat ruang dari parameter tersebut.

```
>u=linspace(-1,1,10); v=linspace(0,2*pi,50)'; ...
>X=(3+u*cos(v/2))*cos(v); Y=(3+u*cos(v/2))*sin(v); Z=u*sin(v/2); ...
>plot3d(X,Y,Z,>anaglyph,<frame,>wire,scale=2.3):
```

Berikut adalah contoh yang lebih rumit, yang megah dengan kacamata merah/cyan.

```
>u:=linspace(-pi,pi,160); v:=linspace(-pi,pi,400)'; ...
>x:=(4*(1+.25*sin(3*v))+cos(u))*cos(2*v); ...
>y:=(4*(1+.25*sin(3*v))+cos(u))*sin(2*v); ...
> z=sin(u)+2*cos(3*v); ...
>plot3d(x,y,z,frame=0,scale=1.5,hue=1,light=[1,0,-1],zoom=2.8,>anaglyph):
```

Plot Statistik

Plot batang juga dimungkinkan. Untuk itu, kita harus menyediakannya

- x: vektor baris dengan n+1 elemen
- y: vektor kolom dengan n+1 elemen
- z: matriks nilai nxn.
- z bisa lebih besar, tetapi hanya nilai nxn yang akan digunakan.

Dalam contoh ini, pertama-tama kita menghitung nilainya. Kemudian kita sesuaikan x dan y, sehingga vektor-vektornya berpusat pada nilai yang digunakan.

```
>x=-1:0.1:1; y=x'; z=x^2+y^2; ...
>xa=(x|1.1)-0.05; ya=(y_1.1)-0.05; ...
>plot3d(xa,ya,z,bar=true):
```

Dimungkinkan untuk membagi plot suatu permukaan menjadi dua bagian atau lebih.

```
>x=-1:0.1:1; y=x'; z=x+y; d=zeros(size(x)); ...
>plot3d(x,y,z,disconnect=2:2:20):
```

Jika memuat atau menghasilkan matriks data M dari file dan perlu memplotnya dalam 3D, Anda dapat menskalakan matriks ke [-1,1] dengan skala(M), atau menskalakan matriks dengan >zscale. Hal ini dapat dikombinasikan dengan faktor penskalaan individual yang diterapkan sebagai tambahan.

```
>i=1:20; j=i'; ...
>plot3d(i*j^2+100*normal(20,20),>zscale,scale=[1,1,1.5],angle=-40°,zoom=1.8):
>Z=intrandom(5,100,6); v=zeros(5,6); ...
>loop 1 to 5; v[#]=getmultiplicities(1:6,Z[#]); end; ...
>columnsplot3d(v',scols=1:5,ccols=[1:5]):
```

Permukaan Benda Putar

```
>plot2d("(x^2+y^2-1)^3-x^2*y^3",r=1.3, ...
>style="#",color=red,<outline, ...
>level=[-2;0],n=100):
>ekspresi &= (x^2+y^2-1)^3-x^2*y^3; $ekspresi
```

Kami ingin memutar kurva hati di sekitar sumbu y. Inilah ungkapan yang mendefinisikan hati:

$$f(x,y) = (x^2 + y^2 - 1)^3 - x^2 \cdot y^3$$
.

Selanjutnya kita atur

```
x = r.cos(a), \quad y = r.sin(a).
```

```
>function fr(r,a) &= ekspresi with [x=r*cos(a),y=r*sin(a)] | trigreduce; fr(r,a)
```

Hal ini memungkinkan untuk mendefinisikan fungsi numerik, yang menyelesaikan r, jika a diberikan. Dengan fungsi tersebut kita dapat memplot jantung yang diputar sebagai permukaan parametrik.

```
>function map f(a) := bisect("fr",0,2;a); ...
>t=linspace(-pi/2,pi/2,100); r=f(t); ...
>s=linspace(pi,2pi,100)'; ...
>plot3d(r*cos(t)*sin(s),r*cos(t)*cos(s),r*sin(t), ...
>>hue,<frame,color=red,zoom=4,amb=0,max=0.7,grid=12,height=50°):</pre>
```

Berikut ini adalah plot 3D dari gambar di atas yang diputar mengelilingi sumbu z. Kami mendefinisikan fungsi yang mendeskripsikan objek.

```
>function f(x,y,z) ...

r=x^2+y^2;
return (r+z^2-1)^3-r*z^3;
endfunction

>plot3d("f(x,y,z)", ...
>xmin=0,xmax=1.2,ymin=-1.2,ymax=1.2,zmin=-1.2,zmax=1.4, ...
>implicit=1,angle=-30°,zoom=2.5,n=[10,100,60],>anaglyph):
```

Plot 3D Khusus

Fungsi plot3d bagus untuk dimiliki, tetapi tidak memenuhi semua kebutuhan. Selain rutinitas yang lebih mendasar, dimungkinkan untuk mendapatkan plot berbingkai dari objek apa pun yang Anda suka.

Meskipun Euler bukan program 3D, ia dapat menggabungkan beberapa objek dasar. Kami mencoba memvisualisasikan paraboloid dan garis singgungnya.

```
>function myplot ...

y=-1:0.01:1; x=(-1:0.01:1)';
plot3d(x,y,0.2*(x-0.1)/2,<scale,<frame,>hue, ..
hues=0.5,>contour,color=orange);
h=holding(1);
plot3d(x,y,(x^2+y^2)/2,<scale,<frame,>contour,>hue);
holding(h);
endfunction
```

Sekarang framedplot() menyediakan bingkai, dan mengatur tampilan.

endfunction

```
>framedplot("myplot",[-1,1,-1,1,0,1],height=0,angle=-30°, ...
> center=[0,0,-0.7],zoom=3):
```

Dengan cara yang sama, Anda dapat memplot bidang kontur secara manual. Perhatikan bahwa plot3d() menyetel jendela ke fullwindow() secara default, tetapi plotcontourplane() berasumsi demikian.

```
>x=-1:0.02:1.1; y=x'; z=x^2-y^4;
>function myplot (x,y,z) ...

zoom(2);
wi=fullwindow();
plotcontourplane(x,y,z,level="auto",<scale);
plot3d(x,y,z,>hue,<scale,>add,color=white,level="thin");
window(wi);
reset();
```

```
>myplot (x, y, z):
```

Animasi

Euler dapat menggunakan frame untuk melakukan pra-komputasi animasi.

Salah satu fungsi yang memanfaatkan teknik ini adalah memutar. Itu dapat mengubah sudut pandang dan menggambar ulang plot 3D. Fungsi ini memanggil addpage() untuk setiap plot baru. Akhirnya ia menganimasikan plotnya.

Silakan pelajari sumber rotasi untuk melihat lebih detail.

```
>function testplot () := plot3d("x^2+y^3"); ...
>rotate("testplot"); testplot():
```

Menggambar Povray

Dengan bantuan file Euler povray.e, Euler dapat menghasilkan file Povray. Hasilnya sangat bagus untuk dilihat.

Anda perlu menginstal Povray (32bit atau 64bit) dari http://www.povray.org/, dan meletakkan sub-direktori "bin" Povray ke jalur lingkungan, atau mengatur variabel "defaultpovray" dengan jalur lengkap yang mengarah ke "pvengine.exe".

Antarmuka Povray Euler menghasilkan file Povray di direktori home pengguna, dan memanggil Povray untuk menguraikan file-file ini. Nama file default adalah current.pov, dan direktori default adalah eulerhome(), biasanya c:\Users\Username\Euler. Povray menghasilkan file PNG, yang dapat dimuat oleh Euler ke dalam notebook. Untuk membersihkan file-file ini, gunakan povclear().

Fungsi pov3d memiliki semangat yang sama dengan plot3d. Ini dapat menghasilkan grafik fungsi f(x,y), atau permukaan dengan koordinat X,Y,Z dalam matriks, termasuk garis level opsional. Fungsi ini memulai raytracer secara otomatis, dan memuat adegan ke dalam notebook Euler.

Selain pov3d(), ada banyak fungsi yang menghasilkan objek Povray. Fungsi-fungsi ini mengembalikan string, yang berisi kode Povray untuk objek. Untuk menggunakan fungsi ini, mulai file Povray dengan povstart(). Kemudian gunakan writeln(...) untuk menulis objek ke file adegan. Terakhir, akhiri file dengan povend(). Secara default, raytracer akan dimulai, dan PNG akan dimasukkan ke dalam notebook Euler.

Fungsi objek memiliki parameter yang disebut "tampilan", yang memerlukan string dengan kode Povray untuk tekstur dan penyelesaian objek. Fungsi povlook() dapat digunakan untuk menghasilkan string ini. Ini memiliki parameter untuk warna, transparansi, Phong Shading dll.

Perhatikan bahwa alam semesta Povray memiliki sistem koordinat lain. Antarmuka ini menerjemahkan semua koordinat ke sistem Povray. Jadi Anda dapat terus berpikir dalam sistem koordinat Euler dengan z menunjuk vertikal ke atas, dan sumbu x,y,z di tangan kanan.

Anda perlu memuat file povray.

```
>load povray;
```

Pastikan, direktori Povray bin ada di jalurnya. Jika tidak, edit variabel berikut sehingga berisi jalur ke povray yang dapat dieksekusi.

```
>defaultpovray="C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe"
```

```
C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe
```

Untuk kesan pertama, kami memplot fungsi sederhana. Perintah berikut menghasilkan file povray di direktori pengguna Anda, dan menjalankan Povray untuk penelusuran sinar file ini.

Jika Anda memulai perintah berikut, GUI Povray akan terbuka, menjalankan file, dan menutup secara otomatis. Karena alasan keamanan, Anda akan ditanya apakah Anda ingin mengizinkan file exe dijalankan. Anda dapat menekan batal untuk menghentikan pertanyaan lebih lanjut. Anda mungkin harus menekan OK di jendela Povray untuk mengonfirmasi dialog pengaktifan Povray.

```
>plot3d("x^2+y^2",zoom=2):
>pov3d("x^2+y^2",zoom=3);
```

Kita dapat membuat fungsinya transparan dan menambahkan penyelesaian lainnya. Kita juga dapat menambahkan garis level ke plot fungsi.

```
>pov3d("x^2+y^3",axiscolor=red,angle=-45°,>anaglyph, ...
> look=povlook(cyan,0.2),level=-1:0.5:1,zoom=3.8);
```

Terkadang perlu untuk mencegah penskalaan fungsi, dan menskalakan fungsi secara manual. Kita memplot himpunan titik pada bidang kompleks, dimana hasil kali jarak ke 1 dan -1 sama dengan 1.

```
>pov3d("((x-1)^2+y^2)*((x+1)^2+y^2)/40",r=2, ...
> angle=-120°,level=1/40,dlevel=0.005,light=[-1,1,1],height=10°,n=50, ...
> <fscale,zoom=3.8);
```

Merencanakan dengan Koordinat

Daripada menggunakan fungsi, kita bisa memplotnya dengan koordinat. Seperti di plot3d, kita memerlukan tiga matriks untuk mendefinisikan objek.

Dalam contoh ini kita memutar suatu fungsi di sekitar sumbu z.

```
>function f(x) := x^3-x+1; ...

>x=-1:0.01:1; t=linspace(0,2pi,50)'; ...

>Z=x; X=cos(t)*f(x); Y=sin(t)*f(x); ...

>pov3d(X,Y,Z,angle=40°,look=povlook(red,0.1),height=50°,axis=0,zoom=4,light=[10,5,15]);
```

Pada contoh berikut, kita memplot gelombang teredam. Kami menghasilkan gelombang dengan bahasa matriks Euler.

Kami juga menunjukkan, bagaimana objek tambahan dapat ditambahkan ke adegan pov3d. Untuk pembuatan objek, lihat contoh berikut. Perhatikan bahwa plot3d menskalakan plot, sehingga cocok dengan kubus satuan.

```
>r=linspace(0,1,80); phi=linspace(0,2pi,80)'; ...
>x=r*cos(phi); y=r*sin(phi); z=exp(-5*r)*cos(8*pi*r)/3; ...
>pov3d(x,y,z,zoom=6,axis=0,height=30°,add=povsphere([0.5,0,0.25],0.15,povlook(red)), ...
> w=500,h=300);
```

Dengan metode peneduh canggih Povray, sangat sedikit titik yang dapat menghasilkan permukaan yang sangat halus. Hanya pada batas-batas dan dalam bayangan, triknya mungkin terlihat jelas.

Untuk ini, kita perlu menjumlahkan vektor normal di setiap titik matriks.

```
>Z &= x^2*y^3
```

Persamaan permukaannya adalah [x,y,Z]. Kami menghitung dua turunan dari x dan y dan mengambil perkalian silangnya sebagai normal.

```
>dx &= diff([x,y,Z],x); dy &= diff([x,y,Z],y);
```

Kami mendefinisikan normal sebagai produk silang dari turunan ini, dan mendefinisikan fungsi koordinat.

```
>N &= crossproduct(dx,dy); NX &= N[1]; NY &= N[2]; NZ &= N[3]; N,
```

Kami hanya menggunakan 25 poin.

```
>x=-1:0.5:1; y=x';
>pov3d(x,y,Z(x,y),angle=10°, ...
> xv=NX(x,y),yv=NY(x,y),zv=NZ(x,y),<shadow);
```

Berikut ini adalah simpul Trefoil yang dilakukan oleh A. Busser di Povray. Ada versi yang lebih baik dalam contoh ini.

See: Contoh\Trefoil Knot | Simpul Trefoil

Untuk tampilan yang bagus dengan poin yang tidak terlalu banyak, kami menambahkan vektor normal di sini. Kami menggunakan Maxima untuk menghitung normalnya bagi kami. Pertama, tiga fungsi koordinat sebagai ekspresi simbolik.

```
>X &= ((4+sin(3*y))+cos(x))*cos(2*y); ...
>Y &= ((4+sin(3*y))+cos(x))*sin(2*y); ...
>Z &= sin(x)+2*cos(3*y);
```

Kemudian kedua vektor turunan ke x dan y.

```
>dx &= diff([X,Y,Z],x); dy &= diff([X,Y,Z],y);
```

Sekarang normalnya, yaitu perkalian silang kedua turunannya.

```
>dn &= crossproduct(dx,dy);
```

Kami sekarang mengevaluasi semua ini secara numerik.

```
>x:=linspace(-%pi,%pi,40); y:=linspace(-%pi,%pi,100)';
```

Vektor normal adalah evaluasi ekspresi simbolik dn[i] untuk i=1,2,3. Sintaksnya adalah &"ekspresi"(parameter). Ini adalah alternatif dari metode pada contoh sebelumnya, di mana kita mendefinisikan ekspresi simbolik NX, NY, NZ terlebih dahulu.

```
>pov3d(X(x,y),Y(x,y),Z(x,y),>anaglyph,axis=0,zoom=5,w=450,h=350, ...
> <shadow,look=povlook(blue), ...
> xv=&"dn[1]"(x,y), yv=&"dn[2]"(x,y), zv=&"dn[3]"(x,y));
```

Kami juga dapat menghasilkan grid dalam 3D.

```
>povstart(zoom=4); ...
>x=-1:0.5:1; r=1-(x+1)^2/6; ...
>t=(0°:30°:360°)'; y=r*cos(t); z=r*sin(t); ...
>writeln(povgrid(x,y,z,d=0.02,dballs=0.05)); ...
>povend();
```

Dengan povgrid(), kurva dimungkinkan.

```
>povstart(center=[0,0,1],zoom=3.6); ...
>t=linspace(0,2,1000); r=exp(-t); ...
>x=cos(2*pi*10*t)*r; y=sin(2*pi*10*t)*r; z=t; ...
>writeln(povgrid(x,y,z,povlook(red))); ...
>writeAxis(0,2,axis=3); ...
>povend();
```

Objek Povray

Di atas, kami menggunakan pov3d untuk memplot permukaan. Antarmuka povray di Euler juga dapat menghasilkan objek Povray. Objek ini disimpan sebagai string di Euler, dan perlu ditulis ke file Povray. Kami memulai output dengan povstart().

```
>povstart(zoom=4);
```

Pertama kita mendefinisikan tiga silinder, dan menyimpannya dalam string di Euler. Fungsi povx() dll. hanya mengembalikan vektor [1,0,0], yang dapat digunakan sebagai gantinya.

```
>c1=povcylinder(-povx,povx,1,povlook(red)); ...
>c2=povcylinder(-povy,povy,1,povlook(yellow)); ...
>c3=povcylinder(-povz,povz,1,povlook(blue)); ...
```

String tersebut berisi kode Povray, yang tidak perlu kita pahami pada saat itu.

```
>c2
```

```
cylinder { <0,0,-1>, <0,0,1>, 1
  texture { pigment { color rgb <0.941176,0.941176,0.392157> }  finish { ambient 0.2 }
}
```

Seperti yang Anda lihat, kami menambahkan tekstur pada objek dalam tiga warna berbeda.

Hal ini dilakukan oleh povlook(), yang mengembalikan string dengan kode Povray yang relevan. Kita dapat menggunakan warna default Euler, atau menentukan warna kita sendiri. Kita juga dapat menambahkan transparansi, atau mengubah cahaya sekitar.

```
>povlook(rgb(0.1,0.2,0.3),0.1,0.5)

texture { pigment { color rgbf <0.101961,0.2,0.301961,0.1> } }
finish { ambient 0.5 }
```

Sekarang kita mendefinisikan objek persimpangan, dan menulis hasilnya ke file.

```
>writeln(povintersection([c1,c2,c3]));
```

Persimpangan tiga silinder sulit untuk divisualisasikan jika Anda belum pernah melihatnya sebelumnya.

```
>povend;
```

Fungsi berikut menghasilkan fraktal secara rekursif.

Fungsi pertama menunjukkan bagaimana Euler menangani objek Povray sederhana. Fungsi povbox() mengembalikan string, yang berisi koordinat kotak, tekstur, dan hasil akhir.

```
>function onebox(x,y,z,d) := povbox([x,y,z],[x+d,y+d,z+d],povlook()); 
>function fractal (x,y,z,h,n) ...
```

```
if n==1 then writeln(onebox(x,y,z,h));
else
  h=h/3;
  fractal(x,y,z,h,n-1);
  fractal(x+2*h,y,z,h,n-1);
  fractal(x,y+2*h,z,h,n-1);
  fractal(x,y,z+2*h,h,n-1);
```

```
fractal(x+2*h,y+2*h,z,h,n-1);
fractal(x+2*h,y,z+2*h,h,n-1);
fractal(x,y+2*h,z+2*h,h,n-1);
fractal(x+2*h,y+2*h,z+2*h,h,n-1);
fractal(x+h,y+h,z+h,h,n-1);
endif;
endfunction
```

```
>povstart(fade=10, <shadow);
>fractal(-1,-1,-1,2,4);
>povend();
```

Perbedaan memungkinkan pemisahan satu objek dari objek lainnya. Seperti persimpangan, ada bagian dari objek CSG di Povray.

```
>povstart(light=[5,-5,5],fade=10);
```

Untuk demonstrasi ini, kami mendefinisikan objek di Povray, alih-alih menggunakan string di Euler. Definisi segera ditulis ke file.

Koordinat kotak -1 berarti [-1,-1,-1].

```
>povdefine("mycube",povbox(-1,1));
```

Kita bisa menggunakan objek ini di povobject(), yang mengembalikan string seperti biasa.

```
>c1=povobject("mycube",povlook(red));
```

Kami membuat kubus kedua, dan memutar serta menskalakannya sedikit.

```
>c2=povobject("mycube",povlook(yellow),translate=[1,1,1], ...
> rotate=xrotate(10°)+yrotate(10°), scale=1.2);
```

Lalu kita ambil selisih kedua benda tersebut.

```
>writeln(povdifference(c1,c2));
```

Sekarang tambahkan tiga sumbu.

```
>writeAxis(-1.2,1.2,axis=1); ...
>writeAxis(-1.2,1.2,axis=2); ...
>writeAxis(-1.2,1.2,axis=4); ...
>povend();
```

Fungsi Implisit

Povray dapat memplot himpunan di mana f(x,y,z)=0, seperti parameter implisit di plot3d. Namun hasilnya terlihat jauh lebih baik.

Sintaks untuk fungsinya sedikit berbeda. Anda tidak dapat menggunakan keluaran ekspresi Maxima atau Euler.

$$((x^2+y^2-c^2)^2+(z^2-1)^2)*((y^2+z^2-c^2)^2+(x^2-1)^2)*((z^2+x^2-c^2)^2+(y^2-1)^2)=d$$

```
>povstart(angle=70°, height=50°, zoom=4);
>c=0.1; d=0.1; ...
>writeln(povsurface("(pow(pow(x,2)+pow(y,2)-pow(c,2),2)+pow(pow(z,2)-1,2))*(pow(pow(y,2)+powend();)

Error : Povray error!

Error generated by error() command

povray:
    error("Povray error!");
Try "trace errors" to inspect local variables after errors.
povend:
    povray(file,w,h,aspect,exit);

>povstart(angle=25°,height=10°);
>writeln(povsurface("pow(x,2)+pow(y,2)*pow(z,2)-1",povlook(blue),povbox(-2,2,"")));
>povend();
>povstart(angle=70°,height=50°,zoom=4);
```

Buat permukaan implisit. Perhatikan sintaksis yang berbeda dalam ekspresi.

```
>writeln(povsurface("pow(x,2)*y-pow(y,3)-pow(z,2)",povlook(green))); ...
>writeAxes(); ...
>povend();
```

Objek Jaring

Dalam contoh ini, kami menunjukkan cara membuat objek mesh, dan menggambarnya dengan informasi tambahan.

Kita ingin memaksimalkan xy pada kondisi x+y=1 dan mendemonstrasikan sentuhan tangensial garis datar.

```
>povstart(angle=-10°,center=[0.5,0.5,0.5],zoom=7);
```

Kita tidak dapat menyimpan objek dalam string seperti sebelumnya, karena terlalu besar. Jadi kita mendefinisikan objek dalam file Povray menggunakan declare. Fungsi povtriangle() melakukan ini secara otomatis. Ia dapat menerima vektor normal seperti pov3d().

Berikut ini definisi objek mesh, dan segera menuliskannya ke dalam file.

```
>x=0:0.02:1; y=x'; z=x*y; vx=-y; vy=-x; vz=1; 
>mesh=povtriangles(x,y,z,"",vx,vy,vz);
```

Sekarang kita mendefinisikan dua cakram, yang akan berpotongan dengan permukaan.

```
>cl=povdisc([0.5,0.5,0],[1,1,0],2); ...
>ll=povdisc([0,0,1/4],[0,0,1],2);
```

Tulis permukaannya dikurangi kedua cakram.

```
>writeln(povdifference(mesh,povunion([cl,ll]),povlook(green)));
```

Tuliskan kedua perpotongan tersebut.

```
>writeln(povintersection([mesh,cl],povlook(red))); ...
>writeln(povintersection([mesh,ll],povlook(gray)));
```

Tulis poin maksimal.

```
>writeln(povpoint([1/2,1/2,1/4],povlook(gray),size=2*defaultpointsize));
```

Tambahkan sumbu dan selesai.

```
>writeAxes(0,1,0,1,0,1,d=0.015); ... >povend();
```

Anaglyph di Povray

Untuk menghasilkan anaglyph untuk kacamata merah/cyan, Povray harus dijalankan dua kali dari posisi kamera berbeda. Ini menghasilkan dua file Povray dan dua file PNG, yang dimuat dengan fungsi loadana-glyph().

Tentu saja, Anda memerlukan kacamata berwarna merah/cyan untuk melihat contoh berikut dengan benar. Fungsi pov3d() memiliki saklar sederhana untuk menghasilkan anaglyph.

```
>pov3d("-exp(-x^2-y^2)/2",r=2,height=45°,>anaglyph, ...
> center=[0,0,0.5],zoom=3.5);
```

Jika Anda membuat adegan dengan objek, Anda perlu memasukkan pembuatan adegan ke dalam fungsi, dan menjalankannya dua kali dengan nilai berbeda untuk parameter anaglyph.

```
>function myscene ...
```

```
s=povsphere(povc,1);
cl=povcylinder(-povz,povz,0.5);
clx=povobject(cl,rotate=xrotate(90°));
cly=povobject(cl,rotate=yrotate(90°));
c=povbox([-1,-1,0],1);
un=povunion([cl,clx,cly,c]);
obj=povdifference(s,un,povlook(red));
writeln(obj);
writeAxes();
endfunction
```

Fungsi povanaglyph() melakukan semua ini. Parameternya seperti gabungan povstart() dan povend().

```
>povanaglyph("myscene",zoom=4.5);
```

Mendefinisikan Objek sendiri

Antarmuka povray Euler berisi banyak objek. Namun Anda tidak dibatasi pada hal ini. Anda dapat membuat objek sendiri, yang menggabungkan objek lain, atau merupakan objek yang benar-benar baru.

Kami mendemonstrasikan torus. Perintah Povray untuk ini adalah "torus". Jadi kami mengembalikan string dengan perintah ini dan parameternya. Perhatikan bahwa torus selalu berpusat pada titik asal.

```
>function povdonat (r1,r2,look="") ...

return "torus {"+r1+","+r2+look+"}";
endfunction
```

Ini torus pertama kami.

```
>t1=povdonat(0.8,0.2)
```

```
torus \{0.8, 0.2\}
```

Mari kita gunakan objek ini untuk membuat torus kedua, diterjemahkan dan diputar.

```
>t2=povobject(t1,rotate=xrotate(90°),translate=[0.8,0,0])
```

```
object { torus {0.8,0.2}
  rotate 90 *x
  translate <0.8,0,0>
}
```

Sekarang kita tempatkan objek-objek tersebut ke dalam sebuah adegan. Untuk tampilannya kami menggunakan Phong Shading.

```
>povstart(center=[0.4,0,0],angle=0°,zoom=3.8,aspect=1.5); ...
>writeln(povobject(t1,povlook(green,phong=1))); ...
>writeln(povobject(t2,povlook(green,phong=1))); ...
```

>povend();

memanggil program Povray. Namun, jika terjadi kesalahan, kesalahan tersebut tidak ditampilkan. Oleh karena itu Anda harus menggunakan

```
>povend(<keluar);</pre>
```

jika ada yang tidak berhasil. Ini akan membiarkan jendela Povray terbuka.

```
>povend(h=320, w=480);
```

Berikut adalah contoh yang lebih rumit. Kami memecahkannya

$$Ax \leq b$$
, $x \geq 0$, $c.x \rightarrow Maks$.

dan menunjukkan titik-titik yang layak dan optimal dalam plot 3D.

```
>A=[10,8,4;5,6,8;6,3,2;9,5,6];
>b=[10,10,10,10]';
>c=[1,1,1];
```

Pertama, mari kita periksa, apakah contoh ini punya solusinya.

```
>x=simplex(A,b,c,>max,>check)'
```

```
[0, 1, 0.5]
```

Ya, sudah.

Selanjutnya kita mendefinisikan dua objek. Yang pertama adalah pesawat

$$a \cdot x \le b$$

```
>function oneplane (a,b,look="") ...
```

```
return povplane(a,b,look)
endfunction
```

Kemudian kita mendefinisikan perpotongan semua setengah ruang dan sebuah kubus.

```
>function adm (A, b, r, look="") ...

ol=[];
loop 1 to rows(A); ol=ol|oneplane(A[#],b[#]); end;
ol=ol|povbox([0,0,0],[r,r,r]);
return povintersection(ol,look);
endfunction
```

Sekarang kita dapat merencanakan adegannya.

```
>povstart(angle=120°,center=[0.5,0.5,0.5],zoom=3.5); ...
>writeln(adm(A,b,2,povlook(green,0.4))); ...
>writeAxes(0,1.3,0,1.6,0,1.5); ...
```

Berikut ini adalah lingkaran di sekitar optimal.

```
>writeln(povintersection([povsphere(x,0.5),povplane(c,c.x')], ...
> povlook(red,0.9)));
```

Dan kesalahan ke arah optimal.

```
>writeln(povarrow(x,c*0.5,povlook(red)));
```

Kami menambahkan teks ke layar. Teks hanyalah objek 3D. Kita perlu menempatkan dan memutarnya sesuai dengan pandangan kita.

```
>writeln(povtext("Linear Problem",[0,0.2,1.3],size=0.05,rotate=5°)); ...
>povend();
```

Lebih Banyak Contoh

Anda dapat menemukan beberapa contoh Povray di Euler di file berikut.

See: Examples/Dandelin Spheres

See: Examples/Donat Math

See: Examples/Trefoil Knot

See: Examples/Optimization by Affine Scaling

BAB 5

PENGGUNAAN SOFTWARE EMT UNTUK PLOT 3D (PRESENTASI)

[a4paper,10pt]article eumat

Menggambar Plot 3D dengan EMT

RIFFA LANNY LAIRA 22305144021 MATEMATIKA E 2022

1. Menggambar Grafik Fungsi Dua Variabel

* dalam Bentuk Ekspresi Langsung Fungsi Dua Variabel didefinisikan sebagai sebuah fungsi bernilai real dari dua variabel real, yakni fungsi f yang memadankan setiap pasangan terurut (x,y) pada suatu himpunan D dari bidang dengan bilangan real tunggal f (x,y).

Di dalam program numerik EMT, ekspresi adalah string. Jika ditandai sebagai simbolis, mereka akan mencetak melalui Maxima, jika tidak melalui EMT. Ekspresi dalam string digunakan untuk membuat plot dan banyak fungsi numerik. Untuk ini, variabel dalam ekspresi harus "x" dan "y".

Untuk grafik suatu fungsi, gunakan

- ekspresi sederhana dalam x dan y,
- nama fungsi dari dua variabel
- atau matriks data.

Grafik Fungsi Linear

Fungsi linear dua variabel biasanya dinyatakan dalam bentuk

$$f(x,y) = ax + by + c$$

>plot3d("x^2+y^2"):

>plot3d(" x^2+5*y^2 "):

Grafik Fungsi Kuadrat

Fungsi kuadrat dua variabel biasanya dinyatakan dalam bentuk

$$f(x,y) = ax^2 + by^2 + cxy + dx + ey + f$$

>plot3d(" $x^2+y^2+-x+y-4$ "):

Grafik Fungsi Akar Kuadrat

>plot3d("sqrt(x^2+y^2)"):

>plot3d("sqrt(x^2+5*y^2)"):

Grafik Fungsi Trigonometri

>plot3d("sin(x)*cos(y)"):

>aspect(1.5); plot3d($"x^2+\sin(y)", -5, 5, 0, 6*pi$):

- 1. aspect(1.5) mengatur aspek rasio pada grafik 3D.
- 2. plot3d("x^2+sin(y)",-5,5,0,6*pi) adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 3. -5,5 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 4. 0,6*pi mengatur rentang sumbu y yang akan ditampilkan pada grafik.

Grafik Fungsi Eksponensial

Fungsi eksponensial dua variabel bisa dinyatakan

$$f(x,y) = a.b^{xy}$$

>plot3d("4*5^(x*y)"):

>plot3d("-7 $^(x*y)$ "):

Grafik Fungsi Logaritma

Fungsi logaritma dua variabel bisa dinyatakan sebagai

$$f(x,y) = log_b(xy)$$

>plot3d("log(x*y)"):

>plot3d("log(4x*y)"):

>

2. Menggambar Grafik Fungsi Dua Variabel yang

* Rumusnya Disimpan dalam Variabel Ekspresi Fungsi ini dapat memplot plot 3D dengan grafik fungsi dua variabel, permukaan berparameter, kurva ruang, awan titik, penyelesaian persamaan tiga variabel. Semua plot 3D bisa ditampilkan sebagai anaglyph.

fungsi plot3d (x, y, z, xmin, xmax, ymin, ymax, n, a

Parameter

x : ekspresi dalam x dan y

x,y,z: matriks koordinat suatu permukaan

x,y,z : ekspresi dalam x dan y untuk permukaan parametrik

x,y,z: ekspresi dalam x untuk memplot kurva ruang

xmin,xmax,ymin,ymax:

```
x,y batas ekspresi
```

contoh:

ekspresi dalam string

```
>expr := "x^2+sin(y)"
```

 $x^2+\sin(y)$

plot ekspresi

>plot3d(expr,-5,5,0,6*pi):

- $1. x^2+\sin(y)$ adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. -5,5 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 3. 0,6*pi mengatur rentang sumbu y yang akan ditampilkan pada grafik.

```
>expr := "4*x^3*y"
```

4*x^3*y

>aspect(1.5); plot3d(expr):

- 1. aspect(2) mengatur aspek rasio pada grafik 3D.
- 2. plot3d(expr) adalah fungsi matematika yang digunakan untuk membuat grafik 3D.

```
>expr := "cos(x) *sin(y)"
```

cos(x)*sin(y)

>plot3d(expr):


```
>expr := "y^2-x^2"
```

y^2-x^2

>aspect(1.5); plot3d(expr,-5,5,-5,5):

- 1. aspect(1.5) mengatur aspek rasio pada grafik 3D.
- 2. plot3d(expr,-5,5,-5,5) adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 3. -5,5 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 4. -5,5 mengatur rentang sumbu y yang akan ditampilkan pada grafik.

Fungsi umum untuk plot 3D.

Fungsi plot3d (x, y, z, xmin, xmax, ymin, ymax, n, a, ..,

c, d, r, scale, fscale, frame, angle, height, zoom, distance, ..)

Rentang plot untuk fungsi dapat ditentukan dengan

- a,b: rentang x
- c,d: rentang y
- r : persegi simetris di sekitar (0,0).
- n : jumlah subinterval untuk plot.

Ada beberapa parameter untuk menskalakan fungsi atau mengubah tampilan grafik.

- fscale: menskalakan ke nilai fungsi (defaultnya adalah <fscale).
- scale: angka atau vektor 1x2 untuk menskalakan ke arah x dan y.
- frame: jenis bingkai (default 1).

Tampilan dapat diubah dengan berbagai cara.

- distance: jarak pandang ke plot.
- zoom: nilai zoom.
- angle: sudut terhadap sumbu y negatif dalam radian.
- height: ketinggian pandangan dalam radian.

Nilai default dapat diperiksa atau diubah dengan fungsi view(). Ini mengembalikan parameter dalam urutan di atas.

>view

Jarak yang lebih dekat membutuhkan lebih sedikit zoom. Efeknya lebih seperti lensa sudut lebar. contoh soal:

```
>plot3d("exp(-(x^2+y^2)/5)", r=10, n=80, fscale=4, scale=1.2, frame=3, >user):
```


- 1. $\exp(-(x^2+y^2)/5)$ adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. r=10 mengatur jarak maksimum dari pusat grafik ke tepi grafik.
- 3. n=80 mengatur jumlah titik yang digunakan untuk membuat grafik.
- 4. fscale=4 mengatur faktor skala untuk warna.
- 5. scale=1.2 mengatur faktor skala untuk ukuran grafik.
- 6. frame=3 mengatur jenis bingkai yang digunakan untuk grafik.

Pada contoh berikut, sudut=0 dan tinggi=0 dilihat dari sumbu y negatif. Label sumbu untuk y disembunyikan dalam kasus ini.

>plot3d("x^2+y", distance=3, zoom=1, angle=pi/2, height=0):

- 1. x^2+y adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. distance=3 mengatur jarak pandang dari grafik.
- 3. zoom=1 mengatur faktor perbesaran grafik.
- 4. angle=pi/2 mengatur sudut pandang grafik dalam radian.
- 5. height=0 mengatur ketinggian pandangan dari grafik.

Plot selalu terlihat berada di tengah kubus plot. Anda dapat memindahkan bagian tengah dengan parameter tengah.

```
>plot3d("x^4+y^2",a=0,b=1,c=-1,d=1,angle=-20°,height=20°, ... 
> center=[0.4,0,0],zoom=5):
```


- $1. x^4+y^2$ adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. a=0,b=1,c=-1,d=1 mengatur rentang sumbu x dan y yang akan ditampilkan pada grafik.
- 3. angle=-20° mengatur sudut pandang grafik dalam derajat.
- 4. height=20° mengatur ketinggian pandangan dari grafik dalam derajat.
- 5. center=[0.4,0,0] mengatur pusat pandangan dari grafik.
- 6. zoom=5 mengatur faktor perbesaran grafik.

Plotnya diskalakan agar sesuai dengan unit kubus untuk dilihat. Jadi tidak perlu mengubah jarak atau zoom tergantung ukuran plot. Namun labelnya mengacu pada ukuran sebenarnya.

Jika Anda mematikannya dengan scale=false, Anda harus berhati-hati agar plot tetap masuk ke dalam jendela plotting, dengan mengubah jarak pandang atau zoom, dan memindahkan bagian tengah.

```
>plot3d("5*exp(-x^2-y^2)",r=2,<fscale,<scale,distance=13,height=50°, ... center=[0,0,-2],frame=3):
```


- 1. 5*exp(-x^2-y^2) adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. r=2 mengatur jarak maksimum dari pusat grafik ke tepi grafik.
- 3. <fscale mengatur faktor skala untuk warna.
- 4. <scale mengatur faktor skala untuk ukuran grafik.
- 5. distance=13 mengatur jarak pandang dari grafik.
- 6. height=50° mengatur ketinggian pandangan dari grafik dalam derajat.
- 7. center=[0,0,-2] mengatur pusat pandangan dari grafik.
- 8. frame=3 mengatur jenis bingkai yang digunakan untuk grafik.

Plot kutub juga tersedia. Parameter polar=true menggambar plot kutub. Fungsi tersebut harus tetap merupakan fungsi dari x dan y. Parameter "fscale" menskalakan fungsi dengan skalanya sendiri. Kalau tidak, fungsinya akan diskalakan agar sesuai dengan kubus.

```
>plot3d("1/(x^2+y^2+1)",r=5,>polar, ...
>fscale=2,>hue,n=100,zoom=4,>contour,color=blue):
```


- 1. $1/(x^2+y^2+1)$ adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. r=5 mengatur jarak maksimum dari pusat grafik ke tepi grafik.
- 3. polar mengatur tampilan grafik dalam koordinat polar.
- 4. fscale=2 mengatur faktor skala untuk warna.
- 5. hue mengatur skala warna yang digunakan pada grafik.
- 6. n=100 mengatur jumlah titik yang digunakan untuk membuat grafik.
- 7. zoom=4 mengatur faktor perbesaran grafik.
- 8. contour mengatur tampilan garis kontur pada grafik.
- 9. color=blue mengatur warna garis kontur pada grafik.

```
>function f(r) := \exp(-r/2) \cdot \cos(r); \dots
>plot3d("f(x^2+y^2)",>polar,scale=[1,1,0.4],r=pi,frame=3,zoom=4):
```


- 1. function $f(r) := \exp(-r/2)^*\cos(r)$ adalah fungsi matematika yang didefinisikan sebagai $f(r) = e^*(-r/2)^*\cos(r)$.
- 2. $plot3d("f(x^2+y^2)",polar,scale=[1,1,0.4],r=pi,frame=3,zoom=4)$ adalah perintah untuk membuat grafik 3D dari fungsi $f(x^2+y^2)$.
- 3. polar mengatur tampilan grafik dalam koordinat polar.
- 4. scale=[1,1,0.4] mengatur faktor skala untuk ukuran grafik.
- 5. r=pi mengatur jarak maksimum dari pusat grafik ke tepi grafik.
- 6. frame=3 mengatur jenis bingkai yang digunakan untuk grafik.
- 7. zoom=4 mengatur faktor perbesaran grafik.

Parameter memutar memutar fungsi di x di sekitar sumbu x.

- rotate=1: Menggunakan sumbu x
- rotate=2: Menggunakan sumbu z

```
>plot3d("x^2+1",a=-1,b=1,rotate=true,grid=5):
```


- 1. x^2+1 adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. a=-1,b=1 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 3. rotate=true mengatur grafik agar dapat diputar secara interaktif.
- 4. grid=5 mengatur jumlah garis koordinat yang ditampilkan pada grafik.

- 1. x^2+1 adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. a=-1,b=1 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 3. rotate=2 mengatur grafik agar dapat diputar secara interaktif dengan menggunakan mouse.
- 4. grid=5 mengatur jumlah garis koordinat yang ditampilkan pada grafik.

>plot3d("sqrt($25-x^2$)", a=0, b=5, rotate=1):

- 1. $sqrt(25-x^2)$ adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. a=0,b=5 mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 3. rotate=1 mengatur grafik agar dapat diputar secara interaktif.

>plot3d("x*sin(x)",a=0,b=6pi,rotate=2):

- 1. x*sin(x) adalah fungsi matematika yang digunakan untuk membuat grafik 3D.
- 2. a=0,b=6pi mengatur rentang sumbu x yang akan ditampilkan pada grafik.
- 3. rotate=2 mengatur grafik agar dapat diputar secara interaktif.

Berikut adalah plot dengan tiga fungsi.

>plot3d(
$$"x"$$
, $"x^2+y^2"$, $"y"$, $r=2$, $zoom=3.5$, $frame=3$):

- 1. x adalah fungsi matematika yang digunakan untuk menentukan nilai sumbu x pada grafik.
- $2. x^2+y^2$ adalah fungsi matematika yang digunakan untuk menentukan nilai sumbu z pada grafik.
- 3. y adalah fungsi matematika yang digunakan untuk menentukan nilai sumbu y pada grafik.
- 4. r=2 mengatur jarak maksimum dari pusat grafik ke tepi grafik.
- 5. zoom=3.5 mengatur faktor perbesaran grafik.
- 6. frame=3 mengatur jenis bingkai yang digunakan untuk grafik.

BAB 6

MENGGUNAKAN EMT UNTUK KALKULUS

[a4paper,10pt]article eumat

RIFFA LANNY LAIRA 22305144021 MATEMATIKA E 2022

Kalkulus dengan EMT

Materi Kalkulus mencakup di antaranya:

- Fungsi (fungsi aljabar, trigonometri, eksponensial, logaritma, komposisi fungsi)
- Limit Fungsi,
- Turunan Fungsi,
- Integral Tak Tentu,
- Integral Tentu dan Aplikasinya,
- Barisan dan Deret (kekonvergenan barisan dan deret).

EMT (bersama Maxima) dapat digunakan untuk melakukan semua perhitungan di dalam kalkulus, baik secara numerik maupun analitik (eksak).

Definisi Fungsi

Fungsi dalam istilah matematika merupakan pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain atau variabel bebas) kepada anggota himpunan yang lain (dinamakan sebagai kodomain atau variabel terikat) yang dapat dinyatakan dengan lambang y=f(x), atau dapat menggunakan lambang g(x), P(x).

Mendefinisikan Fungsi

Terdapat beberapa cara mendefinisikan fungsi pada EMT, yakni:

- Menggunakan format nama_fungsi := rumus fungsi (untuk fungsi numerik),
- Menggunakan format nama_fungsi &= rumus fungsi (untuk fungsi simbolik, namun dapat dihitung secara numerik),
- Menggunakan format nama_fungsi &&= rumus fungsi (untuk fungsi simbolik murni, tidak dapat dihitung langsung),
- Fungsi sebagai program EMT.

Setiap format harus diawali dengan perintah function (bukan sebagai ekspresi).

Berikut adalah adalah beberapa contoh cara mendefinisikan fungsi.

```
>function f(x) := 2*x^2+exp(sin(x)) // fungsi numerik
>f(0), f(1), f(pi)
  1
  4.31977682472
  20.7392088022
>function g(x) := sqrt(x^2-3*x)/(x+1)
>g(3)
  0
>q(0)
  0
>g(10)
  0.760600024122
>f(g(5)) // komposisi fungsi
  2.20920171961
>g(f(5))
  0.950898070639
f(0:10) // nilai-nilai f(1), f(2), ..., f(10)
  [1, 4.31978, 10.4826, 19.1516, 32.4692, 50.3833, 72.7562,
```

99.929, 130.69, 163.51, 200.58]

```
>fmap(0:10) // sama dengan f(0:10), berlaku untuk semua fungsi
```

```
[1, 4.31978, 10.4826, 19.1516, 32.4692, 50.3833, 72.7562, 99.929, 130.69, 163.51, 200.58]
```

Misalkan kita akan mendefinisikan fungsi

$$f(x) = \begin{cases} x^3 & x > 0\\ x^2 & x \le 0. \end{cases}$$

Fungsi tersebut tidak dapat didefinisikan sebagai fungsi numerik secara "inline" menggunakan format :=, melainkan didefinisikan sebagai program. Perhatikan, kata "map" digunakan agar fungsi dapat menerima vektor sebagai input, dan hasilnya berupa vektor. Jika tanpa kata "map" fungsinya hanya dapat menerima input satu nilai.

```
>function map f(x) ...

if x>0 then return x^3
  else return x^2
  endif;
  endfunction
```

```
>f(1)
```

1

```
>f(-2)
```

4

```
>f(-5:5)
```

```
[25, 16, 9, 4, 1, 0, 1, 8, 27, 64, 125]
```

```
>aspect(1.5); plot2d("f(x)",-5,5):
>function f(x) &= 2*E^x // fungsi simbolik
```

2 E

```
>function g(x) &= 3*x+1
```

3 x + 1

```
>function h(x) \&= f(g(x)) // komposisi fungsi
```

 $3 \times + 1$ 2 E

Latihan

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, hitung beberapa nilainya, baik untuk satu nilai maupun vektor. Gambar grafik tersebut.

Juga, carilah fungsi beberapa (dua) variabel. Lakukan hal sama seperti di atas. Jawab:

A. FUNGSI 1 VARIABEL

1. Fungsi 1

```
>function k(x) := x*(x^5+3)^3
>k(3), k(5), k(7)

44660808
153027765760
3.3250729687e+13

>kmap(-3:3)

[4.1472e+07, 48778, -8, 0, 64, 85750, 4.46608e+07]

>plot2d("k(x)"):
```

2. Fungsi 2

```
>function m(x) := (x)^4/(3-x^2)
>m(2), m(-2), m(1)

-16
-16
0.5

>mmap(-5:-5)
```

-28.4090909091

```
>plot2d("m(x)"):
3. Fungsi 3
>function n(x) := 3*x/(x+5)+2
>n(2), n(-1), n(-3), n(4)
  2.85714285714
 1.25
  -2.5
  3.3333333333
>nmap(2:5)
 [2.85714, 3.125, 3.33333, 3.5]
>plot2d("n(x)"):
4. Fungsi 4
>function 1(x) := 3*x^3/(x^4-3)
>1(5), 1(4), 1(3)
  0.602893890675
  0.758893280632
  1.03846153846
>lmap(5:8)
  [0.602894, 0.50116, 0.429108, 0.375275]
>plot2d("1(x)",-3,3,-600,600):
5. Fungsi 5
>function j(x) := (cos(x))*sin(2*x)
>j(pi), j(0), j(pi/3)
  0
```

0.433012701892

```
>jmap(0:3pi)
 [0, 0.491295, 0.314941, 0.276619, -0.646688, -0.154318,
 -0.515201, 0.746821, 0.0418899, 0.684247]
>plot2d("j(x)"):
6. Fungsi 6
>function o(x) := x*sqrt(x+2)
> \( (3) \), \( \cdot (5) \), \( \cdot (7) \)
 6.7082039325
 13.2287565553
  21
>omap(3:12)
 [6.7082, 9.79796, 13.2288, 16.9706, 21, 25.2982, 29.8496,
 34.641, 39.6611, 44.8999]
>plot2d("o(x)"):
                                 B. FUNGSI 2 VARIABEL
1. Fungsi 1
>function a(x,y) ...
 return x^2+y^2-24
  endfunction
>a(2,1), a(5,4), a(2,4)
 -19
  17
  -4
>amap(-2:2,3:3)
 [-11, -14, -15, -14, -11]
```

```
>aspect=1.5; plot3d("a(x,y)",a=-100,b=100,c=-80,d=80,angle=35°,height=30°,r=pi,n=100):
```

2. Fungsi 2

```
>function q(x,y) ...

return y^2/(x^2/3)
endfunction

>q(4,2), q(2,3), q(4,3)

0.75
6.75
1.6875

>qmap(2:2,-2:2)

[3, 0.75, 0, 0.75, 3]

>aspect=1.5; plot3d("q(x,y)",a=-100,b=100,c=-80,d=80,angle=35°,height=30°,r=pi,n=100):
```

Menghitung Limit

Perhitungan limit pada EMT dapat dilakukan dengan menggunakan fungsi Maxima, yakni "limit". Fungsi "limit" dapat digunakan untuk menghitung limit fungsi dalam bentuk ekspresi maupun fungsi yang sudah didefinisikan sebelumnya. Nilai limit dapat dihitung pada sebarang nilai atau pada tak hingga (-inf, minf, dan inf). Limit kiri dan limit kanan juga dapat dihitung, dengan cara memberi opsi "plus" atau "minus". Hasil limit dapat berupa nilai, "und' (tak definisi), "ind" (tak tentu namun terbatas), "infinity" (kompleks tak hingga). Perhatikan beberapa contoh berikut. Perhatikan cara menampilkan perhitungan secara lengkap, tidak hanya menampilkan hasilnya saja.

```
>$showev('limit(1/(2*x-1),x,0))
>$showev('limit((x^2-3*x-10)/(x-5),x,5))
>$showev('limit(sin(x)/x,x,0))
>plot2d("sin(x)/x",-pi,pi):
>$showev('limit(sin(x^3)/x,x,0))
>$showev('limit(log(x), x, minf))
>$showev('limit((-2)^x,x, inf))
>$showev('limit(t-sqrt(2-t),t,2,minus))
>$showev('limit(t-sqrt(2-t),t,5,plus)) // Perhatikan hasilnya
>plot2d("x-sqrt(2-x)",-2,5):
>$showev('limit((x^2-9)/(2*x^2-5*x-3),x,3))
>$showev('limit((1-cos(x))/x,x,0))
>$showev('limit((x^2+abs(x))/(x^2-abs(x)),x,0))
>$showev('limit((1+1/x)^x,x,inf))
>$showev('limit((1+k/x)^x,x,inf))
```

```
>$showev('limit((1+x)^(1/x),x,0))
>$showev('limit((x/(x+k))^x,x,inf))
>$showev('limit(sin(1/x),x,0))
>$showev('limit(sin(1/x),x,inf))
>plot2d("sin(1/x)",-5,5):
```

Latihan

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, hitung nilai limit fungsi tersebut di beberapa nilai dan di tak hingga. Gambar grafik fungsi tersebut untuk mengkonfirmasi nilai-nilai limit tersebut.

Jawab:

1. Fungsi 1

$$f(x) = \frac{3x - 6}{x + 2}$$

```
>$showev('limit((3*x-6)/(x+2),x,2))
>plot2d("(3*x-6)/(x+2)",-2,3.5,-1,5):
```

2. Fungsi 2

$$f(x) = \frac{\cos 2x}{\sin x - \cos x}$$

```
>$showev('limit(cos(2*x)/(sin(x) - cos(x)), x, 0))
>plot2d("cos(2*x)/(sin(x) - cos(x))",-1,1):
```

3. Fungsi 3

$$f(x) = \frac{2x^2 - 2x + 5}{3x^2 + x - 6}$$

```
>$showev('limit(((2*x^2-2*x+5)/(3*x^2+x-6)),x,3))
>plot2d("(2*x^2-2*x+5)/(3*x^2+x-6)",-2,10,-10,5):
```

4. Fungsi 4

$$f(x) = 4x^2 - 3$$

```
>$showev('limit((4*x^2-3),x,0))
>plot2d("(4*x^2-3)"):
```

5. Fungsi 5

$$f(x) = x^{x^x}$$

```
>$showev('limit((x^(x^(x))),x,0,plus))
>plot2d("(x^(x^(x)))",-3,3,-1,7):
```

6. Fungsi 6

$$f(x) = \frac{3xtanx}{1 - \cos 4x}$$

```
>$showev('limit((3*x*tan(x))/(1-cos(4*x)),x,0))
>plot2d("(3*x*tan(x))/(1-cos(4*x))",-pi/2,2pi,0,2pi):
```

Turunan Fungsi

Definisi turunan:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Berikut adalah contoh-contoh menentukan turunan fungsi dengan menggunakan definisi turunan (limit).

```
>$showev('limit(((x+h)^n-x^n)/h,h,0)) // turunan x^n
```

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

Sebagai petunjuk, ekspansikan (x+h)^n dengan menggunakan teorema binomial. Jawab:

Akan ditunjukkan bahwa
$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = nx^{n-1}$$

Pertama, ekspansikan $(x + h)^n$, yakni:

$$(x+h)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} h^k$$

$$\Leftrightarrow (x+h)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots + \binom{n}{n} h^n$$

$$\Leftrightarrow (x+h)^n = x^n + nx^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \binom{n}{3} x^{n-3} h^3 + \dots + h^n$$

$$>$$
\$showev('limit((sin(x+h)-sin(x))/h,h,0)) // turunan sin(x)

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini. Sebagai petunjuk, ekspansikan sin(x+h) dengan menggunakan rumus jumlah dua sudut. Jawab:

Akan ditunjukkan bahwa
$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$$

Diketahui bahwa:

1).
$$\sin(x+h) = \sin x \cos h + \cos x \sin h$$
2).
$$\lim_{h \to 0} \frac{1 - \cos h}{h} = 0$$
3).
$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \left[-\sin x \cdot \frac{1 - \cos h}{h} + \cos x \cdot \frac{\sin h}{h} \right]$$

$$= (-\sin x) \left[\lim_{h \to 0} \frac{1 - \cos h}{h} + (\cos x) \lim_{h \to 0} \frac{\sin h}{h} \right]$$

$$= (-\sin x)(0) + (\cos x)(1) = \cos x. \text{ Terbukti.}$$

$$>$$
\$showev('limit((log(x+h)-log(x))/h,h,0)) // turunan log(x)

Mengapa hasilnya seperti itu? Tuliskan atau tunjukkan bahwa hasil limit tersebut benar, sehingga benar turunan fungsinya benar. Tulis penjelasan Anda di komentar ini.

Sebagai petunjuk, gunakan sifat-sifat logaritma dan hasil limit pada bagian sebelumnya di atas. Iawab:

Bukti:

Ambil
$$f(x) = a \log x$$
.

$$\lim_{h \to 0} \frac{a \log(x+h) - a \log x}{h}$$

$$= \lim_{h \to 0} \frac{a \log \frac{(x+h)}{x}}{h}$$

$$= \lim_{h \to 0} \frac{a \log(1 + \frac{h}{x})}{h}$$

$$= \lim_{h \to 0} \frac{a \log(1 + \frac{h}{x})}{h}$$

$$= \lim_{h \to 0} \frac{\frac{a}{h} \cdot a \log(1 + \frac{h}{x})}{x}$$

$$= \lim_{h \to 0} \frac{a \log(1 + \frac{h}{x})}{x}$$

$$= \lim_{h \to 0} \frac{a \log(1 + \frac{h}{x})^{\frac{x}{h}}}{x}$$

$$= \frac{\lim_{h \to 0} a \log(1 + \frac{h}{x})^{\frac{x}{h}}}{\lim_{h \to 0} x}$$

$$= \frac{1}{x \cdot e \log a}$$

$$= \frac{1}{x \cdot \ln a}$$

Menggunakan hasil di atas, maka:

$$\frac{d\,\ln x}{dx} = \frac{d^{\,e}\log x}{dx} = \frac{1}{x\cdot \ln e} = \frac{1}{x}.$$
 Terbukti.

```
>$showev('limit((1/(x+h)-1/x)/h,h,0)) // turunan 1/x >$showev('limit((E^(x+h)-E^x)/h,h,0)) // turunan f(x)=e^x
```

```
Answering "Is x an integer?" with "integer"
```

Maxima bermasalah dengan limit:

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h}.$$

Oleh karena itu diperlukan trik khusus agar hasilnya benar.

```
>$showev('limit((E^h-1)/h,h,0))
>$factor(E^(x+h)-E^x)
>$showev('limit(factor((E^(x+h)-E^x)/h),h,0)) // turunan f(x)=e^x
>function f(x) \&= x^x
```

X X

```
>\sinh((f(x+h)-f(x))/h,h,0)) // turunan f(x)=x^x
```

Di sini Maxima juga bermasalah terkait limit:

$$\lim_{h \to 0} \frac{(x+h)^{x+h} - x^x}{h}.$$

Dalam hal ini diperlukan asumsi nilai x.

```
>&assume(x>0); \frac{(f(x+h)-f(x))}{h,h,0} // turunan f(x)=x^x >&forget(x>0) // jangan lupa, lupakan asumsi untuk kembali ke semula
```

[x > 0]

>&forget(x<0)

[x < 0]

>&facts()

[]

```
>$showev('limit((asin(x+h)-asin(x))/h,h,0)) // turunan arcsin(x)
>$showev('limit((tan(x+h)-tan(x))/h,h,0)) // turunan tan(x)
>function f(x) &= sinh(x) // definisikan f(x)=sinh(x)
```

sinh(x)

```
>function df(x) &= limit((f(x+h)-f(x))/h,h,0); $df(x) // df(x) = f'(x)
```

Hasilnya adalah cosh(x), karena

$$\frac{e^x + e^{-x}}{2} = \cosh(x).$$

```
>plot2d(["f(x)","df(x)"],-pi,pi,color=[blue,red]):
```

Latihan

Bukalah buku Kalkulus. Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi). Untuk setiap fungsi, tentukan turunannya dengan menggunakan definisi turunan (limit), seperti contoh-contoh tersebut. Gambar grafik fungsi asli dan fungsi turunannya pada sumbu koordinat yang sama.

Jawab:

1. Fungsi 1

```
>function f(x) := x^2
>$showev('limit((((x+h)^2-x^2)/h),h,0)) // turunan x^2
>function df(x) &= limit((((x+h)^2-x^2)/h),h,0); $df(x)// df(x) = f'(x)$
>plot2d(["f(x)","df(x)"],-pi,pi,color=[blue,red]), label("f(x)",2,0.6), label("df(x)",2,0.6)
```

2. Fungsi 2

3. Fungsi 3

```
>function f(x) := sqrt(x) *4
>$showev('limit((sqrt(x+h) *4-sqrt(x) *4)/h,h,0)) // turunan sqrt(x) *4
>function df(x) &= limit((sqrt(x+h) *4-sqrt(x) *4)/h,h,0); $df(x)// df(x) = f'(x)$
>plot2d(["f(x)","df(x)"],-pi,pi,color=[blue,red]), label("f(x)",-2,11), label("df(x)",-2,-11)
```

4. Fungsi 4

```
>function f(x) := cos(1/x)
>$showev('limit((cos(1/(x+h))-cos(1/x))/h,h,0)) // turunan cos(1/x)
>function df(x) &= limit((cos(1/(x+h))-cos(1/x))/h,h,0); $df(x)// df(x) = f'(x)
>plot2d(["f(x)","df(x)"],-pi,pi,color=[blue,red]), label("f(x)",2,0.4), label("df(x)",1,-0.4)
```

5. Fungsi 5

```
>function f(x) := (\log(x))^5
>$showev('limit(((log(x+h))^5-(log(x))^5)/h,h,0)) // turunan (log(x))^5
>function df(x) &= limit(((log(x+h))^5-(log(x))^5)/h,h,0); $df(x)// df(x) = f'(x)$
>plot2d(["f(x)","df(x)"],-50,100,-10,50,color=[blue,red]), label("f(x)",25,35), label("df(x)",25,35), label("df(x)",25,35), label("df(x)",25,35))
```

6. Fungsi 6

```
>function f(x) := sqrt(tan(x))
>$showev('limit((sqrt(tan(x+h))-sqrt(tan(x)))/h,h,0)) // turunan exp(x)*cos(x)
>function df(x) &= limit((sqrt(tan(x+h))-sqrt(tan(x)))/h,h,0); $df(x)// df(x) = f'(x)
>plot2d(["f(x)","df(x)"],-10,10,-10,10,color=[blue,red]), label("f(x)",4.5,0), label("df(x)")
```

Integral

EMT dapat digunakan untuk menghitung integral, baik integral tak tentu maupun integral tentu. Untuk integral tak tentu (simbolik) sudah tentu EMT menggunakan Maxima, sedangkan untuk perhitungan integral tentu EMT sudah menyediakan beberapa fungsi yang mengimplementasikan algoritma kuadratur (perhitungan integral tentu menggunakan metode numerik).

Pada notebook ini akan ditunjukkan perhitungan integral tentu dengan menggunakan Teorema Dasar Kalkulus:

$$\int_a^b f(x) \ dx = F(b) - F(a), \quad \text{dengan } F'(x) = f(x).$$

Fungsi untuk menentukan integral adalah integrate. Fungsi ini dapat digunakan untuk menentukan, baik integral tentu maupun tak tentu (jika fungsinya memiliki antiderivatif). Untuk perhitungan integral tentu fungsi integrate menggunakan metode numerik (kecuali fungsinya tidak integrabel, kita tidak akan menggunakan metode ini).

```
>$showev('integrate(x^n,x))
```

Answering "Is n equal to -1?" with "no"

```
>$showev('integrate(1/(1+x),x))
>$showev('integrate(1/(1+x^2),x))
>$showev('integrate(1/sqrt(1-x^2),x))
>$showev('integrate(sin(x),x,0,pi))
>$showev('integrate(sin(x),x,a,b))
>$showev('integrate(x^n,x,a,b))
```

Answering "Is n positive, negative or zero?" with "positive"

```
>$showev('integrate(x^2*sqrt(2*x+1),x))
>$showev('integrate(x^2*sqrt(2*x+1),x,0,2))
>$ratsimp(%)
>$showev('integrate((sin(sqrt(x)+a)*E^sqrt(x))/sqrt(x),x,0,pi^2))
>$factor(%)
>function map f(x) &= E^(-x^2); $f(x)
>$showev('integrate(f(x),x))
```

Fungsi f tidak memiliki antiturunan, integralnya masih memuat integral lain.

$$erf(x) = \int \frac{e^{-x^2}}{\sqrt{\pi}} dx.$$

Kita tidak dapat menggunakan teorema Dasar kalkulus untuk menghitung integral tentu fungsi tersebut jika semua batasnya berhingga. Dalam hal ini dapat digunakan metode numerik (rumus kuadratur).

Misalkan kita akan menghitung:

maxima: 'integrate(f(x),x,0,pi)

```
>x=0:0.1:pi-0.1; plot2d(x,f(x+0.1),>bar); plot2d("f(x)",0,pi,>add):
```

Integral tentu

maxima: 'integrate(f(x),x,0,pi)

dapat dihampiri dengan jumlah luas persegi-persegi panjang di bawah kurva y=f(x) tersebut. Langkah-langkahnya adalah sebagai berikut.

```
>t &= makelist(a,a,0,pi-0.1,0.1); // t sebagai list untuk menyimpan nilai-nilai x >fx &= makelist(f(t[i]+0.1),i,1,length(t)); // simpan nilai-nilai f(x) >// jangan menggunakan x sebagai list, kecuali Anda pakar Maxima!
```

Hasilnya adalah:

maxima: 'integrate(f(x),x,0,pi) = 0.1*sum(fx[i],i,1,length(fx))

Jumlah tersebut diperoleh dari hasil kali lebar sub-subinterval (=0.1) dan jumlah nilai-nilai f(x) untuk x = 0.1, 0.2, 0.3, ..., 3.2.

```
>0.1*sum(f(x+0.1)) // cek langsung dengan perhitungan numerik EMT
```

0.836219610253

Untuk mendapatkan nilai integral tentu yang mendekati nilai sebenarnya, lebar sub-intervalnya dapat diperkecil lagi, sehingga daerah di bawah kurva tertutup semuanya, misalnya dapat digunakan lebar subinterval 0.001. (Silakan dicoba!)

Meskipun Maxima tidak dapat menghitung integral tentu fungsi tersebut untuk batas-batas yang berhingga, namun integral tersebut dapat dihitung secara eksak jika batas-batasnya tak hingga. Ini adalah salah satu keajaiban di dalam matematika, yang terbatas tidak dapat dihitung secara eksak, namun yang tak hingga malah dapat dihitung secara eksak.

```
>$showev('integrate(f(x),x,0,inf))
```

Berikut adalah contoh lain fungsi yang tidak memiliki antiderivatif, sehingga integral tentunya hanya dapat dihitung dengan metode numerik.

```
>function f(x) &= x^x; $f(x)
>$showev('integrate(f(x),x,0,1))
>x=0:0.1:1-0.01; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,1,>add):
```

Maxima gagal menghitung integral tentu tersebut secara langsung menggunakan perintah integrate. Berikut kita lakukan seperti contoh sebelumnya untuk mendapat hasil atau pendekatan nilai integral tentu tersebut.

```
>t &= makelist(a,a,0,1-0.01,0.01);
>fx &= makelist(f(t[i]+0.01),i,1,length(t));
```

Latihan

- Bukalah buku Kalkulus.
- Cari dan pilih beberapa (paling sedikit 5 fungsi berbeda tipe/bentuk/jenis) fungsi dari buku tersebut, kemudian definisikan di EMT pada baris-baris perintah berikut (jika perlu tambahkan lagi).
- Untuk setiap fungsi, tentukan anti turunannya (jika ada), hitunglah integral tentu dengan batas-batas yang menarik (Anda tentukan sendiri), seperti contoh-contoh tersebut.
- Lakukan hal yang sama untuk fungsi-fungsi yang tidak dapat diintegralkan (cari sedikitnya 3 fungsi).
- Gambar grafik fungsi dan daerah integrasinya pada sumbu koordinat yang sama.
- Gunakan integral tentu untuk mencari luas daerah yang dibatasi oleh dua kurva yang berpotongan di dua titik. (Cari dan gambar kedua kurva dan arsir (warnai) daerah yang dibatasi oleh keduanya.)
- Gunakan integral tentu untuk menghitung volume benda putar kurva y= f(x) yang diputar mengelilingi sumbu x dari x=a sampai x=b, yakni

$$V = \int_a^b \pi(f(x))^2 dx.$$

(Pilih fungsinya dan gambar kurva dan benda putar yang dihasilkan. Anda dapat mencari contoh-contoh bagaimana cara menggambar benda hasil perputaran suatu kurva.)

- Gunakan integral tentu untuk menghitung panjang kurva y=f(x) dari x=a sampai x=b dengan menggunakan rumus:

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

(Pilih fungsi dan gambar kurvanya.)

Jawab:

1. Fungsi 1

```
>function f(x) &= 5*x^2; $f(x)
>$showev('integrate(f(x),x))
>$showev('integrate(f(x),x,2,3))
>x=0.01:0.03:4; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",2,3,>add):
```

2. Fungsi 2

```
>function f(x) &= cos(2*x+5); $f(x)
>$showev('integrate(f(x),x))
>$showev('integrate(f(x),x,pi,2*pi))
>x=0:0.05:pi-0.1; plot2d(x,f(x+0.03),>bar); plot2d("f(x)",pi,2*pi,>add):
```

3. Fungsi 3

```
>function f(x) &= (sin(x))*(cos((x)))^2; $f(x)
>$showev('integrate(f(x),x))
>$showev('integrate(f(x),x,0,pi))
>x=-pi:0.04:pi; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,pi,>add):
```

4. Fungsi 4

```
>function f(x) &= (x^2*(2-x^3)^(1/2)); $f(x)

>$showev('integrate(f(x),x))

>$showev('integrate(f(x),x,0,1))

>x=-1:0.04:1; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,1,>add):
```

5. Fungsi 5

```
>function f(x) &= sqrt(24-x^2); $f(x)
>$showev('integrate(f(x),x))
>$showev('integrate(f(x),x,1,2))
>x=-2:0.04:1; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",1,2,>add):
```

6. Fungsi 6

```
>t &= makelist(a,a,0,1-0.01,0.01);
>fx &= makelist(f(t[i]+0.01),i,1,length(t));
>function f(x) &= x^2+50; $f(x)
>x=0:0.1:pi-0.01; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,pi,>add):
>0.01*sum(f(x+0.01))
```

17.051552

7. Fungsi 7

```
>t &= makelist(a,a,0,1-0.01,0.01);
>fx &= makelist(f(t[i]+0.01),i,1,length(t));
>function f(x) &= cos(x)/x; $f(x)
>x=-pi:0.07:pi-0.01; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,pi,>add):
>0.01*sum(f(x+0.01))
```

0.415163991256

8. Fungsi 8

```
>t &= makelist(a,a,0,1-0.01,0.01);
>fx &= makelist(f(t[i]+0.01),i,1,length(t));
>function f(x) &= sqrt(x^2-1); $f(x)
>x=3:0.04:pi-0.01; plot2d(x,f(x+0.01),>bar); plot2d("f(x)",0,2,>add):
>0.01*sum(f(x+0.01))
```

0.11610107668

Luas daerah dibatasi 2 kurva

1). Fungsi 1

```
>function f(x) \&= x^3; f(x)
>function g(x) \&= x; g(x)
>plot2d(["x^4","x^3"],-2,2,-1,2):
>function h(x) \&= f(x)-g(x); h(x)
>$showev('integrate(h(x),x))
>$&solve(f(x)=g(x))
>$showev('integrate(h(x),x,0,1)) // menghitung luas daerah yang dibatasi 2 kurva
```

Arsiran daerah yang dibatasi kurva f(x) dan g(x) sebagai berikut:

```
>x=-1:0.01:1; plot2d(x,f(x),>bar,>filled,style="-",fillcolor=orange,>grid); plot2d(x,g(x),
```

2). Fungsi 2

```
>function f(x) \&= x^3+1; \$f(x)
>function g(x) \&= x^2; \$g(x)
>plot2d(["-x^2+2","x^2"],-2,2,-1,2):
>function h(x) \&= f(x)-g(x); \$h(x)
>\$\&solve(f(x)=g(x))
>\$showev('integrate(h(x),x,-1,1)) // menghitung luas daerah yang dibatasi 2 kurva
```

Arsiran daerah yang dibatasi kurva f(x) dan g(x) sebagai berikut:

```
>x=-1:0.01:1; plot2d(x,f(x),>bar,>filled,style="-",fillcolor=orange,>grid); plot2d(x,g(x),
```

Volume benda putar

Menghitung volume hasil perputaran kurva

$$m(x) = x^3 + 1$$

dari x=-1 sampai x=0. Diputar terhadap sumbu-x. Jawab:

```
>function m(x) \&= x^4+3; \mbox{$m(x)$}
>$showev('integrate(pi*(m(x))^2,x,-1,0)) // Menghitung volume hasil perputaran m(x)
```

Daerah di bawah kurva yang akan dirotasi terhadap sumbu x sebagai berikut:

```
>plot2d("m(x)",-1,0,-1,2,grid=7,>filled, style="/\"):
```

Hasil perputaran m(x) terhadap sumbu x sebagai berikut:

```
>plot3d("m(x)",-1,0,-1,1,>rotate,angle=6.3,>hue,>contour,color=redgreen,height=11):
```

Menghitung panjang kurva

Menghitung panjang kurva

$$y = x^2 - x + 1$$

dari x=1 sampai x=3.

```
>function d(x) &= x^2-x+1; $d(x)
>plot2d("d(x)",-5,6): // gambar kurva d(x)
>$showev('limit((d(x+h)-d(x))/h,h,0))
>function dd(x) &= limit((d(x+h)-d(x))/h,h,0); $dd(x)
>function q(x) &= ((dd(x))^2); $q(x)
>$showev('integrate(sqrt(1+q(x)),x,1,3)) // menghitung panjang kurva
```

Jadi, panjang kurva

$$y = x^2 - x + 1$$

dari x=0 sampai x=4 adalah

$$S = \frac{asinh5 + 5sqrt(26)}{4} - \frac{asinh(1) + sqrt(2)}{4}$$

Barisan dan Deret

(Catatan: bagian ini belum lengkap. Anda dapat membaca contoh-contoh pengguanaan EMT dan Maxima untuk menghitung limit barisan, rumus jumlah parsial suatu deret, jumlah tak hingga suatu deret konvergen, dan sebagainya. Anda dapat mengeksplor contoh-contoh di EMT atau perbagai panduan penggunaan Maxima di software Maxima atau dari Internet.)

Barisan dapat didefinisikan dengan beberapa cara di dalam EMT, di antaranya:

- dengan cara yang sama seperti mendefinisikan vektor dengan elemen-elemen beraturan (menggunakan titik dua ":");
- menggunakan perintah "sequence" dan rumus barisan (suku ke -n);
- menggunakan perintah "iterate" atau "niterate";
- menggunakan fungsi Maxima "create_list" atau "makelist" untuk menghasilkan barisan simbolik;
- menggunakan fungsi biasa yang inputnya vektor atau barisan;
- menggunakan fungsi rekursif.

EMT menyediakan beberapa perintah (fungsi) terkait barisan, yakni:

- sum: menghitung jumlah semua elemen suatu barisan
- cumsum: jumlah kumulatif suatu barisan
- differences: selisih antar elemen-elemen berturutan

EMT juga dapat digunakan untuk menghitung jumlah deret berhingga maupun deret tak hingga, dengan menggunakan perintah (fungsi) "sum". Perhitungan dapat dilakukan secara numerik maupun simbolik dan eksak.

Berikut adalah beberapa contoh perhitungan barisan dan deret menggunakan EMT.

```
>1:10 // barisan sederhana
                    5, 6, 7, 8,
  [1,
            3,
                4,
                                      9,
                                          101
>1:2:30
           5,
                         11,
                                         17,
                                               19,
                                                    21,
                                                                25,
                    9,
                              13,
                                    15,
                                                          23,
                                                                     27,
                                                                           29]
>sum(1:2:30), sum(1/(1:2:30))
  225
  2.33587263431
```

```
>$'sum(k, k, 1, n) = factor(ev(sum(k, k, 1, n), simpsum=true)) // simpsum:menghitung deret >$'sum(1/(3^k+k), k, 0, inf) = factor(ev(sum(1/(3^k+k), k, 0, inf), simpsum=true))
```

Di sini masih gagal, hasilnya tidak dihitung.

```
>$'sum(1/x^2, x, 1, inf) = ev(sum(1/x^2, x, 1, inf), simpsum=true) // ev: menghitung nilai e >$'sum((-1)^(k-1)/k, k, 1, inf) = factor(ev(sum((-1)^(x-1)/x, x, 1, inf), simpsum=true))
```

Di sini masih gagal, hasilnya tidak dihitung.

```
>$'sum((-1)^k/(2*k-1), k, 1, inf) = factor(ev(sum((-1)^k/(2*k-1), k, 1, inf), simpsum=true) >$ev(sum(1/n!, n, 0, inf), simpsum=true)
```

Di sini masih gagal, hasilnya tidak dihitung, harusnya hasilnya e.

```
>&assume(abs(x)<1); \$'sum(a*x^k, k, 0, inf)=ev(sum(a*x^k, k, 0, inf),simpsum=true), &forgeting for the state of the sta
```

Deret geometri tak hingga, dengan asumsi rasional antara -1 dan 1.

Deret Taylor

Deret Taylor suatu fungsi f yang diferensiabel sampai tak hingga di sekitar x=a adalah:

$$f(x) = \sum_{k=0}^{\infty} \frac{(x-a)^k f^{(k)}(a)}{k!}.$$

```
>$'e^x =taylor(exp(x),x,0,10) // deret Taylor e^x di sekitar x=0, sampai suku ke-11 >$'log(x)=taylor(log(x),x,1,10)// deret log(x) di sekitar x=1
```

BAB 7

MENGGUNAKAN EMT UNTUK GEOMETRI

[a4paper,10pt]article eumat

Nama: RIFFA LANNY LAIRA

NIM: 22305144021

Kelas: Matematika E 2022

Visualisasi dan Perhitungan Geometri dengan EMT

Euler menyediakan beberapa fungsi untuk melakukan visualisasi dan perhitungan geometri, baik secara numerik maupun analitik (seperti biasanya tentunya, menggunakan Maxima). Fungsi-fungsi untuk visualisasi dan perhitungan geometeri tersebut disimpan di dalam file program "geometry.e", sehingga file tersebut harus dipanggil sebelum menggunakan fungsi-fungsi atau perintah-perintah untuk geometri.

>load geometry

Numerical and symbolic geometry.

Geometri

Geometri adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk. Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM).

Fungsi-fungsi Geometri

Fungsi-fungsi untuk Menggambar Objek Geometri:

defaultd:=textheight()*1.5: nilai asli untuk parameter d setPlotrange(x1, x2, y1, y2): menentukan rentang x dan y pada bidang

koordinat

```
setPlotRange(r): pusat bidang koordinat (0,0) dan batas-batas
sumbu-x dan y adalah -r sd r
  plotPoint (P, "P"): menggambar titik P dan diberi label "P"
  plotSegment (A,B, "AB", d): menggambar ruas garis AB, diberi label
"AB" sejauh d
  plotLine (g, "g", d): menggambar garis g diberi label "g" sejauh d
 plotCircle (c, "c", v, d): Menggambar lingkaran c dan diberi label "c"
 plotLabel (label, P, V, d): menuliskan label pada posisi P
Fungsi-fungsi Geometri Analitik (numerik maupun simbolik):
  turn(v, phi): memutar vektor v sejauh phi
  turnLeft(v): memutar vektor v ke kiri
  turnRight(v): memutar vektor v ke kanan
  normalize(v): normal vektor v
  crossProduct(v, w): hasil kali silang vektorv dan w.
  lineThrough(A, B): garis melalui A dan B, hasilnya [a,b,c] sdh.
ax+by=c.
  lineWithDirection(A, v): garis melalui A searah vektor v
  getLineDirection(g): vektor arah (gradien) garis g
  getNormal(g): vektor normal (tegak lurus) garis g
  getPointOnLine(g): titik pada garis g
  perpendicular(A, g): garis melalui A tegak lurus garis g
  parallel (A, g): garis melalui A sejajar garis g
  lineIntersection(g, h): titik potong garis g dan h
  projectToLine(A, g): proyeksi titik A pada garis g
  distance(A, B): jarak titik A dan B
  distanceSquared(A, B): kuadrat jarak A dan B
  quadrance(A, B): kuadrat jarak A dan B
  areaTriangle(A, B, C): luas segitiga ABC
  computeAngle(A, B, C): besar sudut <ABC</pre>
  angleBisector(A, B, C): garis bagi sudut <ABC
  circleWithCenter (A, r): lingkaran dengan pusat A dan jari-jari r
  getCircleCenter(c): pusat lingkaran c
  getCircleRadius(c): jari-jari lingkaran c
  circleThrough(A,B,C): lingkaran melalui A, B, C
 middlePerpendicular(A, B): titik tengah AB
  lineCircleIntersections(g, c): titik potong garis g dan lingkran c
  circleCircleIntersections (c1, c2): titik potong lingkaran c1 dan
```

c2

```
planeThrough(A, B, C): bidang melalui titik A, B, C
```

Fungsi-fungsi Khusus Untuk Geometri Simbolik:

```
getLineEquation (g,x,y): persamaan garis g dinyatakan dalam x dan y getHesseForm (g,x,y,A): bentuk Hesse garis g dinyatakan dalam x dan
```

y dengan titik A pada

```
sisi positif (kanan/atas) garis
quad(A,B): kuadrat jarak AB
spread(a,b,c): Spread segitiga dengan panjang sisi-sisi a,b,c, yakni
```

sin(alpha)^2 dengan

```
alpha sudut yang menghadap sisi a. crosslaw(a,b,c,sa): persamaan 3 quads dan 1 spread pada segitiga
```

dengan panjang sisi a, b, c.

```
triplespread(sa,sb,sc): persamaan 3 spread sa,sb,sc yang memebntuk
```

suatu segitiga

```
doublespread(sa): Spread sudut rangkap Spread 2*phi, dengan
```

sa=sin(phi)^2 spread a.

Contoh 1: Luas, Lingkaran Luar, Lingkaran Dalam Segitiga

Untuk menggambar objek-objek geometri, langkah pertama adalah menentukan rentang sumbu-sumbu koordinat. Semua objek geometri akan digambar pada satu bidang koordinat, sampai didefinisikan bidang koordinat yang baru.

```
>setPlotRange(-0.5,2.5,-0.5,2.5); // mendefinisikan bidang koordinat baru
```

Sekarang tetapkan tiga titik dan gambarkan.

```
>A=[1,0]; plotPoint(A,"A"); // definisi dan gambar tiga titik
>B=[0,1]; plotPoint(B,"B");
>C=[2,2]; plotPoint(C,"C");
```

Lalu tiga segmen.

```
>plotSegment(A,B,"c"); // c=AB
>plotSegment(B,C,"a"); // a=BC
>plotSegment(A,C,"b"); // b=AC
```

Fungsi geometri meliputi fungsi untuk membuat garis dan lingkaran. Format garisnya adalah [a,b,c] yang mewakili garis dengan persamaan ax+by=c.

```
>lineThrough(B,C) // garis yang melalui B dan C
```

```
[-1, 2, 2]
```

Hitung garis tegak lurus yang melalui A di BC.

```
>h=perpendicular(A,lineThrough(B,C)); // garis h tegak lurus BC melalui A
```

Dan persimpangannya dengan SM.

```
>D=lineIntersection(h,lineThrough(B,C)); // D adalah titik potong h dan BC
```

Plotkan itu.

```
>plotPoint(D,value=1); // koordinat D ditampilkan
>aspect(1); plotSegment(A,D): // tampilkan semua gambar hasil plot...()
```

Hitung luas ABC:

$$L_{\triangle ABC} = \frac{1}{2}AD.BC.$$

```
>norm(A-D) *norm(B-C) /2 // AD=norm(A-D), BC=norm(B-C)
```

1.5

Bandingkan dengan rumus determinan.

```
>areaTriangle(A,B,C) // hitung luas segitiga langusng dengan fungsi
```

1.5

Cara lain menghitung luas segitigas ABC:

```
>distance(A,D)*distance(B,C)/2
```

1.5

Sudut di C.

```
>degprint(computeAngle(B,C,A))
```

```
36°52′11.63′′
```

Sekarang lingkaran luar segitiga.

```
>c=circleThrough(A,B,C); // lingkaran luar segitiga ABC
>R=getCircleRadius(c); // jari2 lingkaran luar
>0=getCircleCenter(c); // titik pusat lingkaran c
>plotPoint(0,"0"); // gambar titik "0"
>plotCircle(c,"Lingkaran luar segitiga ABC"):
```

Tampilkan koordinat titik pusat dan jari-jari lingkaran luar.

```
>O, R
```

```
[1.16667, 1.16667]
1.17851130198
```

Sekarang akan digambar lingkaran dalam segitiga ABC. Titik pusat lingkaran dalam adalah titik potong garisgaris bagi sudut.

```
>l=angleBisector(A,C,B); // garis bagi <ACB
>g=angleBisector(C,A,B); // garis bagi <CAB
>P=lineIntersection(l,g) // titik potong kedua garis bagi sudut
```

```
[0.86038, 0.86038]
```

Tambahkan semuanya ke plot.

```
>color(5); plotLine(l); plotLine(g); color(1); // gambar kedua garis bagi sudut
>plotPoint(P,"P"); // gambar titik potongnya
>r=norm(P-projectToLine(P,lineThrough(A,B))) // jari-jari lingkaran dalam
```

```
0.509653732104
```

```
>plotCircle(circleWithCenter(P,r),"Lingkaran dalam segitiga ABC"): // gambar lingkaran dal
```

Latihan

- 1. Tentukan ketiga titik singgung lingkaran dalam dengan sisi-sisi segitiga ABC.
- 2. Gambar segitiga dengan titik-titik sudut ketiga titik singgung tersebut. Merupakan segitiga apakah itu?
- 3. Hitung luas segitiga tersebut.
- 4. Tunjukkan bahwa garis bagi sudut yang ke tiga juga melalui titik pusat lingkaran dalam.
- 5. Gambar jari-jari lingkaran dalam.
- 6. Hitung luas lingkaran luar dan luas lingkaran dalam segitiga ABC. Adakah hubungan antara luas kedua lingkaran tersebut dengan luas segitiga ABC?

Contoh 2: Geometri Simbolik

Kita dapat menghitung geometri eksak dan simbolik menggunakan Maxima.

File geometry.e menyediakan fungsi yang sama (dan lebih banyak lagi) di Maxima. Namun, sekarang kita dapat menggunakan perhitungan simbolik.

```
>A &= [1,0]; B &= [0,1]; C &= [2,2]; // menentukan tiga titik A, B, C
```

Fungsi garis dan lingkaran berfungsi sama seperti fungsi Euler, namun menyediakan komputasi simbolis.

```
>c &= lineThrough(B,C) // c=BC
```

[-1, 2, 2]

Kita bisa mendapatkan persamaan garis dengan mudah.

```
>$getLineEquation(c,x,y), $solve(%,y) | expand // persamaan garis c
>$getLineEquation(lineThrough([x1,y1],[x2,y2]),x,y), $solve(%,y) // persamaan garis melalu
>$getLineEquation(lineThrough(A,[x1,y1]),x,y) // persamaan garis melalui A dan (x1, y1)
>h &= perpendicular(A,lineThrough(B,C)) // h melalui A tegak lurus BC
```

[2, 1, 2]

```
>Q &= lineIntersection(c,h) // Q titik potong garis c=BC dan h
```

```
2 6
[-, -]
5 5
```

```
>$projectToLine(A,lineThrough(B,C)) // proyeksi A pada BC
>$distance(A,Q) // jarak AQ
>cc &= circleThrough(A,B,C); $cc // (titik pusat dan jari-jari) lingkaran melalui A, B, C
>r&=getCircleRadius(cc); $r , $float(r) // tampilkan nilai jari-jari
>$computeAngle(A,C,B) // nilai <ACB</pre>
```

```
>$solve(getLineEquation(angleBisector(A,C,B),x,y),y)[1] // persamaan garis bagi <ACB
>P &= lineIntersection(angleBisector(A,C,B),angleBisector(C,B,A)); $P // titik potong 2 ga
>P() // hasilnya sama dengan perhitungan sebelumnya
```

```
[0.86038, 0.86038]
```

Perpotongan Garis dan Lingkaran

Tentu saja, kita juga bisa memotong garis dengan lingkaran, dan lingkaran dengan lingkaran.

```
>A &:= [1,0]; c=circleWithCenter(A,4);
>B &:= [1,2]; C &:= [2,1]; l=lineThrough(B,C);
>setPlotRange(5); plotCircle(c); plotLine(l);
```

Perpotongan garis dengan lingkaran menghasilkan dua titik dan jumlah titik perpotongan.

```
>{P1,P2,f}=lineCircleIntersections(1,c);
>P1, P2, f

[4.64575, -1.64575]
[-0.645751, 3.64575]
2

>plotPoint(P1); plotPoint(P2):
```

Hal yang sama di Maxima.

```
>c &= circleWithCenter(A,4) // lingkaran dengan pusat A jari-jari 4
```

[1, 0, 4]

```
>1 &= lineThrough(B,C) // garis l melalui B dan C
```

[1, 1, 3]

```
>$lineCircleIntersections(l,c) | radcan, // titik potong lingkaran c dan garis l
```

Akan ditunjukkan bahwa sudut-sudut yang menghadap bsuusr yang sama adalah sama besar.

```
>C=A+normalize([-2,-3])*4; plotPoint(C); plotSegment(P1,C); plotSegment(P2,C);
>degprint(computeAngle(P1,C,P2))

69°17'42.68''

>C=A+normalize([-4,-3])*4; plotPoint(C); plotSegment(P1,C); plotSegment(P2,C);
>degprint(computeAngle(P1,C,P2))

69°17'42.68''

>insimg;
```

Garis Sumbu

Berikut adalah langkah-langkah menggambar garis sumbu ruas garis AB:

- 1. Gambar lingkaran dengan pusat A melalui B.
- 2. Gambar lingkaran dengan pusat B melalui A.
- 3. Tarik garis melallui kedua titik potong kedua lingkaran tersebut. Garis ini merupakan garis sumbu (melalui titik tengah dan tegak lurus) AB.

```
>A=[2,2]; B=[-1,-2];
>c1=circleWithCenter(A,distance(A,B));
>c2=circleWithCenter(B,distance(A,B));
>{P1,P2,f}=circleCircleIntersections(c1,c2);
>l=lineThrough(P1,P2);
>setPlotRange(5); plotCircle(c1); plotCircle(c2);
>plotPoint(A); plotPoint(B); plotSegment(A,B); plotLine(l):
```

Selanjutnya kita melakukan hal yang sama di Maxima dengan koordinat umum.

```
>A &= [a1,a2]; B &= [b1,b2];
>c1 &= circleWithCenter(A, distance(A, B));
>c2 &= circleWithCenter(B, distance(A, B));
>P &= circleCircleIntersections(c1,c2); P1 &= P[1]; P2 &= P[2];
```

Persamaan untuk persimpangan cukup rumit. Tapi kita bisa menyederhanakannya jika kita mencari y.

```
>g &= getLineEquation(lineThrough(P1,P2),x,y);
>$solve(g,y)
```

Ini memang sama dengan garis tengah tegak lurus, yang dihitung dengan cara yang sangat berbeda.

```
>$solve(getLineEquation(middlePerpendicular(A,B),x,y),y)
>h &=getLineEquation(lineThrough(A,B),x,y);
>$solve(h,y)
```

Perhatikan hasil kali gradien garis g dan h adalah:

$$\frac{-(b_1 - a_1)}{(b_2 - a_2)} \times \frac{(b_2 - a_2)}{(b_1 - a_1)} = -1.$$

Artinya kedua garis tegak lurus.

Contoh 3: Rumus Heron

Rumus Heron menyatakan bahwa luas segitiga dengan panjang sisi-sisi a, b dan c adalah:

$$L = \sqrt{s(s-a)(s-b)(s-c)} \quad \text{dengan } s = (a+b+c)/2,$$

atau bisa ditulis dalam bentuk lain:

$$L = \frac{1}{4}\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)}$$

Untuk membuktikan hal ini kita misalkan C(0,0), B(a,0) dan A(x,y), b=AC, c=AB. Luas segitiga ABC adalah

$$L_{\triangle ABC} = \frac{1}{2}a \times y.$$

Nilai y didapat dengan menyelesaikan sistem persamaan:

$$x^{2} + y^{2} = b^{2}$$
, $(x - a)^{2} + y^{2} = c^{2}$.

```
>setPlotRange(-1,10,-1,8); plotPoint([0,0], "C(0,0)"); plotPoint([5.5,0], "B(a,0)"); ...
> plotPoint([7.5,6], "A(x,y)");
> plotSegment([0,0],[5.5,0], "a",25); plotSegment([5.5,0],[7.5,6],"c",15); ...
> plotSegment([0,0],[7.5,6],"b",25);
> plotSegment([7.5,6],[7.5,0],"t=y",25):
> &assume(a>0); sol &= solve([x^2+y^2=b^2,(x-a)^2+y^2=c^2],[x,y])
```

Ekstrak larutan y.

```
>ysol &= y with sol[2][2]; $'y=sqrt(factor(ysol^2))
```

Kami mendapatkan rumus Heron.

```
>function H(a,b,c) &= sqrt(factor((ysol*a/2)^2)); $'H(a,b,c)=H(a,b,c)
>$'Luas=H(2,5,6) // luas segitiga dengan panjang sisi-sisi 2, 5, 6
```

Tentu saja, setiap segitiga siku-siku adalah kasus yang terkenal.

```
>H(3,4,5) //luas segitiga siku-siku dengan panjang sisi 3, 4, 5
```

6

Dan jelas juga bahwa ini adalah segitiga dengan luas maksimal dan kedua sisinya 3 dan 4.

```
>aspect (1.5); plot2d(&H(3,4,x),1,7): // Kurva luas segitiga sengan panjang sisi 3, 4, x
```

Kasus umum juga berhasil.

```
>$solve(diff(H(a,b,c)^2,c)=0,c)
```

Sekarang mari kita cari himpunan semua titik di mana b+c=d untuk suatu konstanta d. Diketahui bahwa ini adalah elips.

```
>s1 &= subst(d-c,b,sol[2]); $s1
```

Dan buatlah fungsinya.

```
>function fx(a,c,d) \&= rhs(s1[1]); $fx(a,c,d), function <math>fy(a,c,d) \&= rhs(s1[2]); $fy(a,c,d) &= rhs(s1[2]); $fy(a,c,d) &
```

Sekarang kita bisa menggambar setnya. Sisi b bervariasi dari 1 sampai 4. Diketahui bahwa kita memperoleh elips.

```
>aspect(1); plot2d(&fx(3,x,5),&fy(3,x,5),xmin=1,xmax=4,square=1):
```

Kita dapat memeriksa persamaan umum elips ini, yaitu.

$$\frac{(x-x_m)^2}{u^2} + \frac{(y-y_m)}{v^2} = 1,$$

dimana (xm,ym) adalah pusat, dan u dan v adalah setengah sumbu.

```
>$ratsimp((fx(a,c,d)-a/2)^2/u^2+fy(a,c,d)^2/v^2 with [u=d/2,v=sqrt(d^2-a^2)/2])
```

Kita melihat bahwa tinggi dan luas segitiga adalah maksimal untuk x=0. Jadi luas segitiga dengan a+b+c=d adalah maksimal jika segitiga tersebut sama sisi. Kami ingin memperolehnya secara analitis.

```
>eqns &= [diff(H(a,b,d-(a+b))^2,a)=0,diff(H(a,b,d-(a+b))^2,b)=0]; $eqns
```

Kita mendapatkan nilai minimum yang dimiliki oleh segitiga dengan salah satu sisinya 0, dan solusinya a=b=c=d/3.

```
>$solve(eqns,[a,b])
```

Ada juga metode Lagrange, yang memaksimalkan $H(a,b,c)^2$ terhadap a+b+d=d.

```
>&solve([diff(H(a,b,c)^2,a)=la,diff(H(a,b,c)^2,b)=la, ...
> diff(H(a,b,c)^2,c)=la,a+b+c=d],[a,b,c,la])
```

$$\begin{bmatrix} [a = 0, b = -, c = -, la = 0], \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} [a = -, b = 0, c = -, la = 0], [a = -, b = -, c = 0, la = 0], \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} [a = -, b = -, c = -, la = ---]] \\ 3 & 3 \end{bmatrix}$$

Kita bisa membuat plot situasinya

Pertama atur poin di Maxima.

```
>A &= at([x,y],sol[2]); $A
>B &= [0,0]; $B, C &= [a,0]; $C
```

Kemudian atur rentang plot, dan plot titik-titiknya.

```
>setPlotRange(0,5,-2,3); ...
>a=4; b=3; c=2; ...
>plotPoint(mxmeval("B"),"B"); plotPoint(mxmeval("C"),"C"); ...
>plotPoint(mxmeval("A"),"A"):
```

Plot segmennya.

```
>plotSegment(mxmeval("A"), mxmeval("C")); ...
>plotSegment(mxmeval("B"), mxmeval("C")); ...
>plotSegment(mxmeval("B"), mxmeval("A")):
```

Hitung garis tengah tegak lurus di Maxima.

```
>h &= middlePerpendicular(A,B); g &= middlePerpendicular(B,C);
```

Dan pusat lingkarannya.

```
>U &= lineIntersection(h,g);
```

Kita mendapatkan rumus jari-jari lingkaran luar.

```
>&assume(a>0,b>0,c>0); $distance(U,B) | radcan
```

Mari kita tambahkan ini ke dalam plot.

```
>plotPoint(U()); ...
>plotCircle(circleWithCenter(mxmeval("U"), mxmeval("distance(U,C)"))):
```

Dengan menggunakan geometri, kita memperoleh rumus sederhana

$$\frac{a}{\sin(\alpha)} = 2r$$

untuk radius. Kita bisa cek, apakah ini benar adanya pada Maxima. Maxima akan memfaktorkan ini hanya jika kita mengkuadratkannya.

```
>$c^2/sin(computeAngle(A,B,C))^2 | factor
```

Contoh 4: Garis Euler dan Parabola

Garis Euler adalah garis yang ditentukan dari sembarang segitiga yang tidak sama sisi. Merupakan garis tengah segitiga, dan melewati beberapa titik penting yang ditentukan dari segitiga, antara lain ortocenter, sirkumcenter, centroid, titik Exeter dan pusat lingkaran sembilan titik segitiga.

Untuk demonstrasinya, kita menghitung dan memplot garis Euler dalam sebuah segitiga.

Pertama, kita mendefinisikan sudut-sudut segitiga di Euler. Kami menggunakan definisi, yang terlihat dalam ekspresi simbolik.

```
>A::=[-1,-1]; B::=[2,0]; C::=[1,2];
```

Untuk memplot objek geometris, kita menyiapkan area plot, dan menambahkan titik ke dalamnya. Semua plot objek geometris ditambahkan ke plot saat ini.

```
>setPlotRange(3); plotPoint(A, "A"); plotPoint(B, "B"); plotPoint(C, "C");
```

Kita juga bisa menjumlahkan sisi-sisi segitiga.

```
>plotSegment(A,B,""); plotSegment(B,C,""); plotSegment(C,A,""):
```

Berikut luas segitiga menggunakan rumus determinan. Tentu saja kami harus mengambil nilai absolut dari hasil ini.

```
>$areaTriangle(A,B,C)
```

Kita dapat menghitung koefisien sisi c.

```
>c &= lineThrough(A,B)
```

$$[-1, 3, -2]$$

Dan dapatkan juga rumus untuk baris ini.

```
>$getLineEquation(c,x,y)
```

Untuk bentuk Hesse, kita perlu menentukan sebuah titik, sehingga titik tersebut berada di sisi positif dari Hesseform. Memasukkan titik akan menghasilkan jarak positif ke garis.

```
>$getHesseForm(c,x,y,C), $at(%,[x=C[1],y=C[2]])
```

Sekarang kita menghitung lingkaran luar ABC.

```
>LL &= circleThrough(A,B,C); $getCircleEquation(LL,x,y)
>O &= getCircleCenter(LL); $0
```

Plot lingkaran dan pusatnya. Cu dan U bersifat simbolis. Kami mengevaluasi ekspresi ini untuk Euler.

```
>plotCircle(LL()); plotPoint(O(),"O"):
```

Kita dapat menghitung perpotongan ketinggian di ABC (ortocenter) secara numerik dengan perintah berikut.

```
>H &= lineIntersection(perpendicular(A, lineThrough(C, B)),...
> perpendicular(B, lineThrough(A, C))); $H
```

Sekarang kita dapat menghitung garis segitiga Euler.

```
>el &= lineThrough(H,O); $getLineEquation(el,x,y)
```

Tambahkan ke plot kami.

```
>plotPoint(H(),"H"); plotLine(el(),"Garis Euler"):
```

Pusat gravitasi seharusnya berada di garis ini.

```
>M &= (A+B+C)/3; $getLineEquation(el,x,y) with [x=M[1],y=M[2]]
>plotPoint(M(),"M"): // titik berat
```

Teorinya memberitahu kita MH=2*MO. Kita perlu menyederhanakan dengan radcan untuk mencapai hal ini.

```
>$distance(M,H)/distance(M,O)|radcan
```

Fungsinya mencakup fungsi untuk sudut juga.

```
>$computeAngle(A,C,B), degprint(%())
```

```
60°15′18.43′′
```

Persamaan pusat lingkaran tidak terlalu bagus.

```
>Q &= lineIntersection(angleBisector(A,C,B),angleBisector(C,B,A))|radcan; $Q
```

Mari kita hitung juga ekspresi jari-jari lingkaran yang tertulis.

```
>r &= distance(Q,projectToLine(Q,lineThrough(A,B)))|ratsimp; $r
>LD &= circleWithCenter(Q,r); // Lingkaran dalam
```

Mari kita tambahkan ini ke dalam plot.

```
>color(5); plotCircle(LD()):
```

Parabola

Selanjutnya akan dicari persamaan tempat kedudukan titik-titik yang berjarak sama ke titik C dan ke garis AB.

```
>p &= getHesseForm(lineThrough(A,B),x,y,C)-distance([x,y],C); $p='0
```

Persamaan tersebut dapat digambar menjadi satu dengan gambar sebelumnya.

```
>plot2d(p,level=0,add=1,contourcolor=6):
```

Ini seharusnya merupakan suatu fungsi, tetapi pemecah default Maxima hanya dapat menemukan solusinya, jika kita mengkuadratkan persamaannya. Akibatnya, kami mendapatkan solusi palsu.

```
>akar &= solve(getHesseForm(lineThrough(A,B),x,y,C)^2-distance([x,y],C)^2,y)
```

```
[y = -3 x - sqrt(70) sqrt(9 - 2 x) + 26,
y = -3 x + sqrt(70) sqrt(9 - 2 x) + 26]
```

Solusi pertama adalah

maxima: akar[1]

Menambahkan solusi pertama pada plot menunjukkan, bahwa itu memang jalan yang kita cari. Teorinya memberitahu kita bahwa itu adalah parabola yang diputar.

```
>plot2d(&rhs(akar[1]),add=1):
>function g(x) &= rhs(akar[1]); $'g(x) = g(x) // fungsi yang mendefinisikan kurva di atas
>T &=[-1, g(-1)]; // ambil sebarang titik pada kurva tersebut
>dTC &= distance(T,C); $fullratsimp(dTC), $float(%) // jarak T ke C
>U &= projectToLine(T,lineThrough(A,B)); $U // proyeksi T pada garis AB
>dU2AB &= distance(T,U); $fullratsimp(dU2AB), $float(%) // jatak T ke AB
```

Ternyata jarak T ke C sama dengan jarak T ke AB. Coba Anda pilih titik T yang lain dan ulangi perhitungan perhitungan di atas untuk menunjukkan bahwa hasilnya juga sama.

Contoh 5: Trigonometri Rasional

Hal ini terinspirasi dari ceramah N.J.Wildberger. Dalam bukunya "Divine Proportions", Wildberger mengusulkan untuk mengganti gagasan klasik tentang jarak dan sudut dengan kuadran dan penyebaran. Dengan menggunakan hal ini, memang mungkin untuk menghindari fungsi trigonometri dalam banyak contoh, dan tetap "rasional".

Berikut ini, saya memperkenalkan konsep, dan memecahkan beberapa masalah. Saya menggunakan perhitungan simbolik Maxima di sini, yang menyembunyikan keunggulan utama trigonometri rasional yaitu perhitungan hanya dapat dilakukan dengan kertas dan pensil. Anda diundang untuk memeriksa hasilnya tanpa komputer.

Intinya adalah perhitungan rasional simbolik seringkali memberikan hasil yang sederhana. Sebaliknya, trigonometri klasik menghasilkan hasil trigonometri yang rumit, yang hanya mengevaluasi perkiraan numerik saja.

```
>load geometry;
```

Untuk pengenalan pertama, kami menggunakan segitiga siku-siku dengan proporsi Mesir yang terkenal 3, 4 dan 5. Perintah berikut adalah perintah Euler untuk memplot geometri bidang yang terdapat dalam file Euler "geometry.e".

```
>C&:=[0,0]; A&:=[4,0]; B&:=[0,3]; ...
>setPlotRange(-1,5,-1,5); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg(30);
```

Tentu saja,

$$\sin(w_a) = \frac{a}{c},$$

dimana wa adalah sudut di A. Cara umum untuk menghitung sudut ini adalah dengan mengambil invers dari fungsi sinus. Hasilnya adalah sudut yang tidak dapat dicerna, yang hanya dapat dicetak secara kasar.

```
>wa := arcsin(3/5); degprint(wa)
```

```
36°52′11.63′′
```

Trigonometri rasional mencoba menghindari hal ini.

Gagasan pertama tentang trigonometri rasional adalah kuadran, yang menggantikan jarak. Faktanya, itu hanyalah jarak yang dikuadratkan. Di bawah ini, a, b, dan c menyatakan kuadran sisi-sisinya.

Teorema Pythogoras menjadi a+b=c.

```
>a &= 3^2; b &= 4^2; c &= 5^2; &a+b=c
```

Pengertian trigonometri rasional yang kedua adalah penyebaran. Penyebaran mengukur pembukaan antar garis. Nilainya 0 jika garisnya sejajar, dan 1 jika garisnya persegi panjang. Ini adalah kuadrat sinus sudut antara dua garis.

Luas garis AB dan AC pada gambar di atas didefinisikan sebagai

$$s_a = \sin(\alpha)^2 = \frac{a}{c},$$

dimana a dan c adalah kuadran suatu segitiga siku-siku yang salah satu sudutnya berada di A.

```
>sa &= a/c; $sa
```

Tentu saja ini lebih mudah dihitung daripada sudutnya. Namun Anda kehilangan properti bahwa sudut dapat ditambahkan dengan mudah.

Tentu saja, kita dapat mengonversi nilai perkiraan sudut wa menjadi sprad, dan mencetaknya sebagai pecahan.

```
>fracprint(sin(wa)^2)
```

9/25

Hukum kosinus trgonometri klasik diterjemahkan menjadi "hukum silang" berikut.

$$(c+b-a)^2 = 4bc(1-s_a)$$

Di sini a, b, dan c adalah kuadran sisi-sisi segitiga, dan sa adalah jarak di sudut A. Sisi a, seperti biasa, berhadapan dengan sudut A.

Hukum-hukum ini diterapkan dalam file geometri.e yang kami muat ke Euler.

```
>$crosslaw(aa,bb,cc,saa)
```

Dalam kasus kami, kami mendapatkan

```
>$crosslaw(a,b,c,sa)
```

Mari kita gunakan hukum silang ini untuk mencari penyebaran di A. Untuk melakukannya, kita membuat hukum silang untuk kuadran a, b, dan c, dan menyelesaikannya untuk penyebaran sa yang tidak diketahui. Anda bisa melakukannya dengan tangan dengan mudah, tapi saya menggunakan Maxima. Tentu saja, kami mendapatkan hasilnya, kami sudah mendapatkannya.

```
>$crosslaw(a,b,c,x), $solve(%,x)
```

Kami sudah mengetahui hal ini. Pengertian penyebaran merupakan kasus khusus dari hukum silang. Kita juga dapat menyelesaikannya untuk persamaan umum a,b,c. Hasilnya adalah rumus yang menghitung penyebaran sudut suatu segitiga dengan mengetahui kuadran ketiga sisinya.

```
>$solve(crosslaw(aa,bb,cc,x),x)
```

Kita bisa membuat fungsi dari hasilnya. Fungsi seperti itu sudah didefinisikan dalam file geometri.e Euler.

```
>$spread(a,b,c)
```

Sebagai contoh, kita dapat menggunakannya untuk menghitung sudut segitiga dengan sisi-sisinya

$$a, \quad a, \quad \frac{4a}{7}$$

Hasilnya rasional, yang tidak mudah didapat jika kita menggunakan trigonometri klasik.

```
>$spread(a,a,4*a/7)
```

Ini adalah sudut dalam derajat.

```
>degprint(arcsin(sqrt(6/7)))
```

67°47′32.44′′

Contoh lain

Sekarang, mari kita coba contoh lebih lanjut.

Kita tentukan tiga sudut segitiga sebagai berikut.

```
>A&:=[1,2]; B&:=[4,3]; C&:=[0,4]; ...
>setPlotRange(-1,5,1,7); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```

Dengan menggunakan Pythogoras, mudah untuk menghitung jarak antara dua titik. Saya pertama kali menggunakan fungsi jarak file Euler untuk geometri. Fungsi jarak menggunakan geometri klasik.

```
>$distance(A,B)
```

Euler juga memuat fungsi kuadran antara dua titik.

Pada contoh berikut, karena c+b bukan a, maka segitiga tersebut bukan persegi panjang.

```
>c &= quad(A,B); $c, b &= quad(A,C); $b, a &= quad(B,C); $a,
```

Pertama, mari kita hitung sudut tradisional. Fungsi computeAngle menggunakan metode biasa berdasarkan perkalian titik dua vektor. Hasilnya adalah beberapa perkiraan floating point.

$$A = < 1, 2 > B = < 4, 3 >, C = < 0, 4 >$$

$$\mathbf{a} = C - B = < -4, 1 >, \mathbf{c} = A - B = < -3, -1 >, \beta = \angle ABC$$

$$\mathbf{a.c} = |\mathbf{a}|.|\mathbf{c}|\cos\beta$$

$$\cos\angle ABC = \cos\beta = \frac{\mathbf{a.c}}{|\mathbf{a}|.|\mathbf{c}|} = \frac{12 - 1}{\sqrt{17}\sqrt{10}} = \frac{11}{\sqrt{17}\sqrt{10}}$$

```
>wb &= computeAngle(A,B,C); \$wb, \$(wb/pi*180)()
```

32.4711922908

Dengan menggunakan pensil dan kertas, kita dapat melakukan hal yang sama dengan hukum silang. Kita masukkan kuadran a, b, dan c ke dalam hukum silang dan selesaikan x.

```
>$crosslaw(a,b,c,x), $solve(%,x), //(b+c-a)^=4b.c(1-x)
```

Yaitu, fungsi penyebaran yang didefinisikan dalam "geometry.e".

```
>sb &= spread(b,a,c); $sb
```

Maxima mendapatkan hasil yang sama dengan menggunakan trigonometri biasa, jika kita memaksakannya. Itu menyelesaikan suku sin(arccos(...)) menjadi hasil pecahan. Kebanyakan siswa tidak dapat melakukan hal ini.

```
>$sin(computeAngle(A,B,C))^2
```

Setelah kita mendapatkan sebaran di B, kita dapat menghitung tinggi ha pada sisi a. Ingat itu

$$s_b = \frac{h_a}{c}$$

Menurut definisi.

```
>ha &= c*sb; $ha
```

Gambar berikut dihasilkan dengan program geometri C.a.R., yang dapat menggambar kuadran dan sebaran. image: (20) Rational_Geometry_CaR.png

Menurut definisi, panjang ha adalah akar kuadrat dari kuadrannya.

```
>$sqrt(ha)
```

Sekarang kita dapat menghitung luas segitiga tersebut. Jangan lupa, bahwa kita sedang berhadapan dengan kuadran!

```
>$sqrt(ha)*sqrt(a)/2
```

Rumus determinan biasa memberikan hasil yang sama.

```
>$areaTriangle(B,A,C)
```

Formula Bangau

Sekarang, mari kita selesaikan masalah ini secara umum!

```
>&remvalue(a,b,c,sb,ha);
```

Pertama-tama kita menghitung penyebaran di B untuk sebuah segitiga dengan sisi a, b, dan c. Kemudian kita menghitung luas kuadrat ("quadrea"?), memfaktorkannya dengan Maxima, dan kita mendapatkan rumus Heron yang terkenal.

Memang benar, hal ini sulit dilakukan dengan pensil dan kertas.

```
>$spread(b^2,c^2,a^2), $factor(%*c^2*a^2/4)
```

Aturan Penyebaran Tiga Kali Lipat

Kerugian dari spread adalah bahwa mereka tidak lagi hanya menambahkan sudut yang sama. Namun, tiga spread segitiga memenuhi aturan "triple spread" berikut.

```
>&remvalue(sa,sb,sc); $triplespread(sa,sb,sc)
```

Aturan ini berlaku untuk tiga sudut mana pun yang besarnya 180°.

$$\alpha + \beta + \gamma = \pi$$

Sejak menyebarnya

$$\alpha, \pi - \alpha$$

sama, aturan penyebaran tiga kali lipat juga benar, jika

$$\alpha + \beta = \gamma$$

Karena penyebaran sudut negatifnya sama, maka aturan penyebaran tiga kali lipat juga berlaku, jika

$$\alpha + \beta + \gamma = 0$$

Misalnya, kita dapat menghitung penyebaran sudut 60°. Ini 3/4. Namun persamaan tersebut memiliki solusi kedua, dimana semua spread adalah 0.

```
>$solve(triplespread(x,x,x),x)
```

Penyebaran 90° jelas sama dengan 1. Jika dua sudut dijumlahkan menjadi 90°, penyebarannya menyelesaikan persamaan penyebaran rangkap tiga dengan a,b,1. Dengan perhitungan berikut kita mendapatkan a+b=1.

```
>$triplespread(x,y,1), $solve(%,x)
```

Karena penyebaran 180°-t sama dengan penyebaran t, rumus penyebaran tiga kali lipat juga berlaku, jika salah satu sudut adalah jumlah atau selisih dua sudut lainnya.

Sehingga kita dapat mencari penyebaran sudut dua kali lipat tersebut. Perhatikan bahwa ada dua solusi lagi. Kami menjadikan ini sebuah fungsi.

```
>$solve(triplespread(a,a,x),x), function doublespread(a) &= factor(rhs(%[1]))
```

```
-4 (a - 1) a
```

Pembagi Sudut

Inilah situasinya, kita sudah tahu.

```
>C&:=[0,0]; A&:=[4,0]; B&:=[0,3]; ...
>setPlotRange(-1,5,-1,5); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```

Mari kita hitung panjang garis bagi sudut di A. Namun kita ingin menyelesaikannya secara umum a,b,c.

```
>&remvalue(a,b,c);
```

Jadi pertama-tama kita menghitung penyebaran sudut yang dibagi dua di A, menggunakan rumus penyebaran tiga kali lipat.

Masalah dengan rumus ini muncul lagi. Ini memiliki dua solusi. Kita harus memilih yang benar. Solusi lainnya mengacu pada sudut membagi dua 180°-wa.

```
>$triplespread(x,x,a/(a+b)), $solve(%,x), sa2 &= rhs(%[1]); $sa2
```

Mari kita periksa persegi panjang Mesir.

```
>$sa2 with [a=3^2,b=4^2]
```

Kita dapat mencetak sudut dalam Euler, setelah mentransfer penyebarannya ke radian.

```
>wa2 := arcsin(sqrt(1/10)); degprint(wa2)
```

18°26′5.82′′

Titik P merupakan perpotongan garis bagi sudut dengan sumbu y.

```
>P := [0,tan(wa2)*4]
```

[0, 1.33333]

```
>plotPoint(P, "P"); plotSegment(A,P):
```

Mari kita periksa sudut dalam contoh spesifik kita.

```
>computeAngle(C,A,P), computeAngle(P,A,B)
```

0.321750554397

0.321750554397

Sekarang kita menghitung panjang garis bagi AP.

Kita menggunakan teorema sinus pada segitiga APC. Teorema ini menyatakan bahwa

$$\frac{BC}{\sin(w_a)} = \frac{AC}{\sin(w_b)} = \frac{AB}{\sin(w_c)}$$

berlaku di segitiga mana pun. Jika digabungkan, maka hal ini akan diterjemahkan ke dalam apa yang disebut dengan "hukum penyebaran"

$$\frac{a}{s_a} = \frac{b}{s_b} = \frac{c}{s_b}$$

dimana a,b,c menunjukkan qudrance.

Karena spread CPA adalah 1-sa2, kita memperolehnya bisa/1=b/(1-sa2) dan dapat menghitung bisa (kuadran dari garis bagi sudut).

```
>&factor(ratsimp(b/(1-sa2))); bisa &= %; $bisa
```

Mari kita periksa rumus ini untuk nilai-nilai Mesir kita.

```
>sqrt(mxmeval("at(bisa,[a=3^2,b=4^2])")), distance(A,P)

4.21637021356
4.21637021356
```

Kita juga bisa menghitung P menggunakan rumus spread.

```
>py&=factor(ratsimp(sa2*bisa)); $py
```

Nilainya sama dengan yang kita peroleh dengan rumus trigonometri.

```
>sqrt(mxmeval("at(py,[a=3^2,b=4^2])"))
```

1.33333333333

Sudut Akord

Lihatlah situasi berikut.

```
>setPlotRange(1.2); ...
>color(1); plotCircle(circleWithCenter([0,0],1)); ...
>A:=[cos(1),sin(1)]; B:=[cos(2),sin(2)]; C:=[cos(6),sin(6)]; ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>color(3); plotSegment(A,B,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>color(1); O:=[0,0]; plotPoint(0,"0"); ...
>plotSegment(A,O); plotSegment(B,O); plotSegment(C,O,"r"); ...
>insimg;
```

Kita dapat menggunakan Maxima untuk menyelesaikan rumus penyebaran rangkap tiga untuk sudut di pusat O untuk r. Jadi kita mendapatkan rumus jari-jari kuadrat dari perilingkaran dalam kuadran sisi-sisinya. Kali ini, Maxima menghasilkan beberapa angka nol kompleks, yang kita abaikan.

```
>&remvalue(a,b,c,r); // hapus nilai-nilai sebelumnya untuk perhitungan baru
>rabc &= rhs(solve(triplespread(spread(b,r,r),spread(a,r,r),spread(c,r,r)),r)[4]); $rabc
```

Kita dapat menjadikannya fungsi Euler.

```
>function periradius(a,b,c) &= rabc;
```

Mari kita periksa hasil untuk poin kita A,B,C.

```
>a:=quadrance(B,C); b:=quadrance(A,C); c:=quadrance(A,B);
```

Jari-jarinya memang 1.

```
>periradius(a,b,c)
```

1

Faktanya, penyebaran CBA hanya bergantung pada b dan c. Ini adalah teorema sudut tali busur.

```
>$spread(b,a,c)*rabc | ratsimp
```

Faktanya, penyebarannya adalah b/(4r), dan kita melihat bahwa sudut tali busur b adalah setengah sudut pusatnya.

```
>$doublespread(b/(4*r))-spread(b,r,r) | ratsimp
```

Contoh 6: Jarak Minimal pada Bidang

Catatan awal

Fungsi yang, ke titik M pada bidang, menetapkan jarak AM antara titik tetap A dan M, mempunyai garis datar yang cukup sederhana: lingkaran berpusat di A.

```
>&remvalue();
>A=[-1,-1];
>function d1(x,y):=sqrt((x-A[1])^2+(y-A[2])^2)
>fcontour("d1",xmin=-2,xmax=0,ymin=-2,ymax=0,hue=1, ...
>title="If you see ellipses, please set your window square"):
```

dan grafiknya juga cukup sederhana: bagian atas kerucut:

```
>plot3d("d1",xmin=-2,xmax=0,ymin=-2,ymax=0):
```

Sekarang kita lihat fungsi MA+MB dimana A dan B adalah dua titik (tetap). Merupakan "fakta yang diketahui" bahwa kurva tingkat berbentuk elips, titik fokusnya adalah A dan B; kecuali AB minimum yang konstan pada ruas [AB]:

```
>B=[1,-1];
>function d2(x,y):=d1(x,y)+sqrt((x-B[1])^2+(y-B[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
```

Grafiknya lebih menarik:

```
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
```

Pembatasan pada garis (AB) lebih terkenal:

```
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
```

Tiga poin

Kini segalanya menjadi lebih sederhana: Tidak diketahui secara luas bahwa MA+MB+MC mencapai nilai minimumnya pada satu titik pada bidang tersebut, namun untuk menentukannya tidaklah mudah:

1) Jika salah satu sudut segitiga ABC lebih dari 120° (katakanlah di A), maka sudut minimum dicapai pada titik tersebut (katakanlah AB+AC).

Contoh:

```
>C=[-4,1];
>function d3(x,y):=d2(x,y)+sqrt((x-C[1])^2+(y-C[2])^2)
>plot3d("d3",xmin=-5,xmax=3,ymin=-4,ymax=4);
>insimg;
>fcontour("d3",xmin=-4,xmax=1,ymin=-2,ymax=2,hue=1,title="The minimum is on A");
>P=(A_B_C_A)'; plot2d(P[1],P[2],add=1,color=12);
>insimg;
```

2) Tetapi jika semua sudut segitiga ABC kurang dari 120° , maka titik minimum ada di titik F di bagian dalam segitiga, yaitu satu-satunya titik yang melihat sisi-sisi ABC dengan sudut yang sama (maka masing-masing sudutnya 120°):

```
>C=[-0.5,1];
>plot3d("d3",xmin=-2,xmax=2,ymin=-2,ymax=2):
>fcontour("d3",xmin=-2,xmax=2,ymin=-2,ymax=2,hue=1,title="The Fermat point");
>P=(A_B_C_A)'; plot2d(P[1],P[2],add=1,color=12);
>insimg;
```

Merupakan kegiatan yang menarik untuk merealisasikan gambar di atas dengan perangkat lunak geometri; misalnya, saya tahu soft tertulis di Java yang memiliki instruksi "garis kontur"...

Semua hal di atas ditemukan oleh seorang hakim Perancis bernama Pierre de Fermat; dia menulis surat kepada para penggila lainnya seperti pendeta Marin Mersenne dan Blaise Pascal yang bekerja di bagian pajak penghasilan. Jadi titik unik F sehingga FA+FB+FC minimal disebut titik Fermat segitiga. Namun nampaknya beberapa tahun sebelumnya, Torriccelli dari Italia telah menemukan titik ini sebelum Fermat menemukannya! Pokoknya tradisinya adalah memperhatikan hal ini F...

Empat poin

Langkah selanjutnya adalah menambahkan poin ke-4 D dan mencoba meminimalkan MA+MB+MC+MD; katakanlah Anda seorang operator TV kabel dan ingin mencari di bidang mana Anda harus memasang antena sehingga Anda dapat memberi makan empat desa dan menggunakan kabel sesedikit mungkin!

```
>D=[1,1];
>function d4(x,y):=d3(x,y)+sqrt((x-D[1])^2+(y-D[2])^2)
>plot3d("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5):
>fcontour("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5,hue=1);
>P=(A_B_C_D)'; plot2d(P[1],P[2],points=1,add=1,color=12);
>insimg;
```

Masih ada nilai minimum dan tidak tercapai di simpul A, B, C, atau D:

```
>function f(x):=d4(x[1],x[2])
>neldermin("f",[0.2,0.2])
```

```
[0.142858, 0.142857]
```

Nampaknya dalam hal ini koordinat titik optimal bersifat rasional atau mendekati rasional... Sekarang ABCD adalah persegi, kita berharap titik optimalnya adalah pusat ABCD:

```
>C=[-1,1];

>plot3d("d4",xmin=-1,xmax=1,ymin=-1,ymax=1):

>fcontour("d4",xmin=-1.5,xmax=1.5,ymin=-1.5,ymax=1.5,hue=1);

>P=(A_B_C_D)'; plot2d(P[1],P[2],add=1,color=12,points=1);

>insimg;
```

Contoh 7: Bola Dandelin dengan Povray

Anda dapat menjalankan demonstrasi ini, jika Anda telah menginstal Povray, dan pvengine.exe di jalur program.

Pertama kita hitung jari-jari bola.

Jika diperhatikan gambar di bawah, terlihat bahwa kita membutuhkan dua lingkaran yang menyentuh dua garis yang membentuk kerucut, dan satu garis yang membentuk bidang yang memotong kerucut.

Kami menggunakan file geometry.e Euler untuk ini.

```
>load geometry;
```

Pertama dua garis membentuk kerucut.

```
>g1 &= lineThrough([0,0],[1,a])
```

[- a, 1, 0]

```
>g2 &= lineThrough([0,0],[-1,a])
```

Lalu baris ketiga.

```
>g &= lineThrough([-1,0],[1,1])
```

Kami merencanakan semuanya sejauh ini.

```
>setPlotRange(-1,1,0,2);
>color(black); plotLine(g(),"")
>a:=2; color(blue); plotLine(g1(),""), plotLine(g2(),""):
```

Sekarang kita ambil titik umum pada sumbu y.

```
>P &= [0,u]
```

[0, u]

Hitung jarak ke g1.

```
>d1 &= distance(P,projectToLine(P,g1)); $d1
```

Hitung jarak ke g.

```
>d &= distance(P,projectToLine(P,g)); $d
```

Dan tentukan pusat kedua lingkaran yang jaraknya sama.

```
>sol &= solve(d1^2=d^2,u); $sol
```

Ada dua solusi.

Kami mengevaluasi solusi simbolis, dan menemukan kedua pusat, dan kedua jarak.

```
>u := sol()

[0.333333, 1]

>dd := d()

[0.149071, 0.447214]
```

Plot lingkaran ke dalam gambar.

```
>color(red);
>plotCircle(circleWithCenter([0,u[1]],dd[1]),"");
>plotCircle(circleWithCenter([0,u[2]],dd[2]),"");
>insimg;
```

Plot dengan Povray

Selanjutnya kita plot semuanya dengan Povray. Perhatikan bahwa Anda mengubah perintah apa pun dalam urutan perintah Povray berikut, dan menjalankan kembali semua perintah dengan Shift-Return. Pertama kita memuat fungsi povray.

```
>load povray;
>defaultpovray="C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe"
```

```
C:\Program Files\POV-Ray\v3.7\bin\pvengine.exe
```

Kami mengatur adegan dengan tepat.

```
>povstart(zoom=11,center=[0,0,0.5],height=10°,angle=140°);
```

Selanjutnya kita menulis kedua bola tersebut ke file Povray.

```
>writeln(povsphere([0,0,u[1]],dd[1],povlook(red)));
>writeln(povsphere([0,0,u[2]],dd[2],povlook(red)));
```

Dan kerucutnya, transparan.

```
>writeln(povcone([0,0,0],0,[0,0,a],1,povlook(lightgray,1)));
```

Kami menghasilkan bidang yang dibatasi pada kerucut.

```
>gp=g();
>pc=povcone([0,0,0],0,[0,0,a],1,"");
>vp=[gp[1],0,gp[2]]; dp=gp[3];
>writeln(povplane(vp,dp,povlook(blue,0.5),pc));
```

Sekarang kita buat dua titik pada lingkaran, dimana bola menyentuh kerucut.

```
>function turnz(v) := return [-v[2],v[1],v[3]]
>P1=projectToLine([0,u[1]],g1()); P1=turnz([P1[1],0,P1[2]]);
>writeln(povpoint(P1,povlook(yellow)));
>P2=projectToLine([0,u[2]],g1()); P2=turnz([P2[1],0,P2[2]]);
>writeln(povpoint(P2,povlook(yellow)));
```

Lalu kita buat dua titik di mana bola menyentuh bidang. Ini adalah fokus elips.

```
>P3=projectToLine([0,u[1]],g()); P3=[P3[1],0,P3[2]];
>writeln(povpoint(P3,povlook(yellow)));
>P4=projectToLine([0,u[2]],g()); P4=[P4[1],0,P4[2]];
>writeln(povpoint(P4,povlook(yellow)));
```

Selanjutnya kita hitung perpotongan P1P2 dengan bidang.

```
>t1=scalp(vp,P1)-dp; t2=scalp(vp,P2)-dp; P5=P1+t1/(t1-t2)*(P2-P1);
>writeln(povpoint(P5,povlook(yellow)));
```

Kami menghubungkan titik-titik dengan segmen garis.

```
>writeln(povsegment(P1,P2,povlook(yellow)));
>writeln(povsegment(P5,P3,povlook(yellow)));
>writeln(povsegment(P5,P4,povlook(yellow)));
```

Sekarang kita menghasilkan pita abu-abu, dimana bola menyentuh kerucut.

```
>pcw=povcone([0,0,0],0,[0,0,a],1.01);
>pc1=povcylinder([0,0,P1[3]-defaultpointsize/2],[0,0,P1[3]+defaultpointsize/2],1);
>writeln(povintersection([pcw,pc1],povlook(gray)));
>pc2=povcylinder([0,0,P2[3]-defaultpointsize/2],[0,0,P2[3]+defaultpointsize/2],1);
>writeln(povintersection([pcw,pc2],povlook(gray)));
```

Mulai program Povray.

```
>povend();
```

Untuk mendapatkan Anaglyph ini kita perlu memasukkan semuanya ke dalam fungsi scene. Fungsi ini akan digunakan dua kali kemudian.

```
>function scene () ...
```

```
global a, u, dd, g, g1, defaultpointsize;
writeln(povsphere([0,0,u[1]],dd[1],povlook(red)));
writeln(povsphere([0,0,u[2]],dd[2],povlook(red)));
writeln(povcone([0,0,0],0,[0,0,a],1,povlook(lightgray,1)));
gp=g();
pc=povcone([0,0,0],0,[0,0,a],1,"");
vp=[gp[1], 0, gp[2]]; dp=gp[3];
writeln(povplane(vp,dp,povlook(blue,0.5),pc));
P1=projectToLine([0,u[1]],g1()); P1=turnz([P1[1],0,P1[2]]);
writeln(povpoint(P1, povlook(yellow)));
P2=projectToLine([0,u[2]],g1()); P2=turnz([P2[1],0,P2[2]]);
writeln(povpoint(P2,povlook(yellow)));
P3=projectToLine([0,u[1]],g()); P3=[P3[1],0,P3[2]];
writeln(povpoint(P3,povlook(yellow)));
P4=projectToLine([0,u[2]],g()); P4=[P4[1],0,P4[2]];
writeln(povpoint(P4, povlook(yellow)));
t1=scalp(vp,P1)-dp; t2=scalp(vp,P2)-dp; P5=P1+t1/(t1-t2)*(P2-P1);
writeln(povpoint(P5, povlook(yellow)));
writeln(povsegment(P1, P2, povlook(yellow)));
writeln(povsegment(P5,P3,povlook(yellow)));
writeln(povsegment(P5,P4,povlook(yellow)));
pcw=povcone([0,0,0],0,[0,0,a],1.01);
pcl=povcylinder([0,0,P1[3]-defaultpointsize/2],[0,0,P1[3]+defaultpointsize/2],1);
writeln(povintersection([pcw,pc1],povlook(gray)));
pc2=povcylinder([0,0,P2[3]-defaultpointsize/2],[0,0,P2[3]+defaultpointsize/2],1);
writeln(povintersection([pcw,pc2],povlook(gray)));
endfunction
```

Anda memerlukan kacamata merah/cyan untuk melihat efek berikut.

```
>povanaglyph("scene",zoom=11,center=[0,0,0.5],height=10°,angle=140°);
```

Contoh 8: Geometri Bumi

Di buku catatan ini, kami ingin melakukan beberapa perhitungan bola. Fungsi-fungsi tersebut terdapat dalam file "spherical.e" di folder contoh. Kita perlu memuat file itu terlebih dahulu.

```
>load "spherical.e";
```

Untuk memasukkan posisi geografis, kita menggunakan vektor dengan dua koordinat dalam radian (utara dan timur, nilai negatif untuk selatan dan barat). Berikut koordinat Kampus FMIPA UNY.

```
>FMIPA=[rad(-7,-46.467),rad(110,23.05)]
```

```
[-0.13569, 1.92657]
```

Anda dapat mencetak posisi ini dengan sposprint (cetak posisi bulat).

```
>sposprint(FMIPA) // posisi garis lintang dan garis bujur FMIPA UNY
```

```
S 7°46.467' E 110°23.050'
```

Mari kita tambahkan dua kota lagi, Solo dan Semarang.

```
>Solo=[rad(-7,-34.333),rad(110,49.683)]; Semarang=[rad(-6,-59.05),rad(110,24.533)]; >sposprint(Solo), sposprint(Semarang),
```

```
S 7°34.333′ E 110°49.683′
S 6°59.050′ E 110°24.533′
```

53.8945384608

Pertama kita menghitung vektor dari satu bola ke bola ideal lainnya. Vektor ini adalah [pos, jarak] dalam radian. Untuk menghitung jarak di bumi, kita kalikan dengan jari-jari bumi pada garis lintang 7°.

```
>br=svector(FMIPA,Solo); degprint(br[1]), br[2]*rearth(7°)->km // perkiraan jarak FMIPA-So
```

Ini adalah perkiraan yang bagus. Rutinitas berikut menggunakan perkiraan yang lebih baik. Pada jarak sedekat itu, hasilnya hampir sama.

```
>esdist(FMIPA,Semarang)->" km" // perkiraan jarak FMIPA-Semarang
```

```
Commands must be separated by semicolon or comma!

Found: // perkiraan jarak FMIPA-Semarang (character 32)

You can disable this in the Options menu.

Error in:

esdist(FMIPA, Semarang) -> "km" // perkiraan jarak FMIPA-Semaran ...
```

Judulnya ada fungsinya, dengan mempertimbangkan bentuk bumi yang elips. Sekali lagi, kami mencetak dengan cara yang canggih.

```
>sdegprint(esdir(FMIPA, Solo))
```

65.34°

Sudut suatu segitiga melebihi 180° pada bola.

```
>asum=sangle(Solo,FMIPA,Semarang)+sangle(FMIPA,Solo,Semarang)+sangle(FMIPA,Semarang,Solo);
```

```
180°0′10.77′′
```

Ini dapat digunakan untuk menghitung luas segitiga. Catatan: Untuk segitiga kecil, ini tidak akurat karena kesalahan pengurangan pada asum-pi.

```
>(asum-pi)*rearth(48°)^2->" km^2" // perkiraan luas segitiga FMIPA-Solo-Semarang

Commands must be separated by semicolon or comma!

Found: // perkiraan luas segitiga FMIPA-Solo-Semarang (character 32)

You can disable this in the Options menu.

Error in:

(asum-pi)*rearth(48°)^2->" km^2" // perkiraan luas segitiga FM ...
```

Ada fungsi untuk ini, yang menggunakan garis lintang rata-rata dari segitiga untuk menghitung jari-jari bumi, dan menangani kesalahan pembulatan untuk segitiga yang sangat kecil.

```
>esarea(Solo,FMIPA,Semarang)->" km^2", //perkiraan yang sama dengan fungsi esarea()
2123.64310526 km^2
```

Kita juga dapat menambahkan vektor ke posisi. Vektor berisi arah dan jarak, keduanya dalam radian. Untuk mendapatkan vektor, kita menggunakan svector. Untuk menambahkan vektor ke suatu posisi, kita menggunakan saddvector.

```
>v=svector(FMIPA,Solo); sposprint(saddvector(FMIPA,v)), sposprint(Solo),

S 7°34.333′ E 110°49.683′
S 7°34.333′ E 110°49.683′
```

Fungsi-fungsi ini mengasumsikan bola ideal. Hal yang sama terjadi di bumi.

```
>sposprint(esadd(FMIPA, esdir(FMIPA, Solo), esdist(FMIPA, Solo))), sposprint(Solo),

S 7°34.333′ E 110°49.683′
S 7°34.333′ E 110°49.683′
```

Mari kita lihat contoh yang lebih besar, Tugu Jogja dan Monas Jakarta (menggunakan Google Earth untuk mencari koordinatnya).

```
>Tugu=[-7.7833°,110.3661°]; Monas=[-6.175°,106.811944°]; 
>sposprint(Tugu), sposprint(Monas)
```

```
S 7°46.998' E 110°21.966'
S 6°10.500' E 106°48.717'
```

Menurut Google Earth, jaraknya 429,66km. Kami mendapatkan perkiraan yang bagus.

```
>esdist(Tugu, Monas) -> " km" // perkiraan jarak Tugu Jogja - Monas Jakarta
```

```
Commands must be separated by semicolon or comma!

Found: // perkiraan jarak Tugu Jogja - Monas Jakarta (character 32)

You can disable this in the Options menu.

Error in:
esdist(Tugu, Monas) -> " km" // perkiraan jarak Tugu Jogja - Mona ...
```

Judulnya sama dengan yang dihitung di Google Earth.

```
>degprint(esdir(Tugu, Monas))
```

```
294°17′2.85′′
```

Namun kita tidak lagi mendapatkan posisi sasaran yang tepat, jika kita menambahkan heading dan jarak ke posisi semula. Hal ini terjadi karena kita tidak menghitung fungsi invers secara tepat, namun melakukan perkiraan jari-jari bumi di sepanjang lintasan.

```
>sposprint(esadd(Tugu,esdir(Tugu,Monas),esdist(Tugu,Monas)))
```

```
S 6°10.500' E 106°48.717'
```

Namun kesalahannya tidak besar.

```
>sposprint(Monas),
```

```
S 6°10.500' E 106°48.717'
```

Tentu kita tidak bisa berlayar dengan tujuan yang sama dari satu tujuan ke tujuan lainnya, jika ingin mengambil jalur terpendek. Bayangkan, Anda terbang NE mulai dari titik mana saja di bumi. Kemudian Anda akan berputar ke kutub utara. Lingkaran besar tidak mengikuti arah yang konstan!

Perhitungan berikut menunjukkan bahwa kita jauh dari tujuan yang benar, jika kita menggunakan tujuan yang sama selama perjalanan.

```
>dist=esdist(Tugu, Monas); hd=esdir(Tugu, Monas);
```

Sekarang kita tambah 10 kali sepersepuluh jarak, pakai jurusan Monas, kita sampai di Tugu.

```
>p=Tugu; loop 1 to 10; p=esadd(p,hd,dist/10); end;
```

Hasilnya jauh sekali.

```
>sposprint(p), skmprint(esdist(p,Monas))
```

```
S 6°11.250′ E 106°48.372′
1.529km
```

Sebagai contoh lain, mari kita ambil dua titik di bumi yang mempunyai garis lintang yang sama.

```
>P1=[30°,10°]; P2=[30°,50°];
```

Jalur terpendek dari P1 ke P2 bukanlah lingkaran dengan garis lintang 30°, melainkan jalur yang lebih pendek yang dimulai 10° lebih jauh ke utara di P1.

```
>sdegprint(esdir(P1,P2))
```

79.69°

Namun, jika kita mengikuti pembacaan kompas ini, kita akan berputar ke kutub utara! Jadi kita harus menyesuaikan arah perjalanan kita. Untuk tujuan kasarnya, kita sesuaikan pada 1/10 dari total jarak.

```
>p=P1; dist=esdist(P1,P2); ...
> loop 1 to 10; dir=esdir(p,P2); sdegprint(dir), p=esadd(p,dir,dist/10); end;
```

79.69°

81.67°

83.71°

85.78°

87.89°

90.00°

92.12°

94.22°

96.29°

98.33°

Jaraknya tidak tepat, karena kita akan menambahkan sedikit kesalahan jika kita mengikuti arah yang sama terlalu lama.

```
>skmprint(esdist(p,P2))
```

0.203km

Kita mendapatkan perkiraan yang baik, jika kita menyesuaikan arah setiap 1/100 dari total jarak dari Tugu ke Monas.

```
>p=Tugu; dist=esdist(Tugu, Monas); ...
> loop 1 to 100; p=esadd(p,esdir(p,Monas),dist/100); end;
>skmprint(esdist(p,Monas))
```

0.000km

Untuk keperluan navigasi, kita bisa mendapatkan urutan posisi GPS sepanjang lingkaran besar menuju Monas dengan fungsi navigasi.

```
>load spherical; v=navigate(Tugu, Monas, 10); ...
> loop 1 to rows(v); sposprint(v[#]), end;

S 7°46.998' E 110°21.966'
```

```
S 7°46.998' E 110°21.966'

S 7°37.422' E 110°0.573'

S 7°27.829' E 109°39.196'

S 7°18.219' E 109°17.834'

S 7°8.592' E 108°56.488'

S 6°58.948' E 108°35.157'

S 6°49.289' E 108°13.841'

S 6°39.614' E 107°52.539'

S 6°29.924' E 107°31.251'

S 6°20.219' E 107°9.977'

S 6°10.500' E 106°48.717'
```

Kita menulis sebuah fungsi yang memplot bumi, dua posisi, dan posisi di antaranya.

```
>function testplot ...

useglobal;
plotearth;
plotpos(Tugu, "Tugu Jogja"); plotpos(Monas, "Tugu Monas");
plotposline(v);
endfunction
```

Sekarang plotkan semuanya.

```
>plot3d("testplot",angle=25, height=6,>own,>user,zoom=4):
```

Atau gunakan plot3d untuk mendapatkan tampilan anaglyph. Ini terlihat sangat bagus dengan kacamata merah/cyan.

```
>plot3d("testplot",angle=25,height=6,distance=5,own=1,anaglyph=1,zoom=4):
```

Latihan

1. Gambarlah segi-n beraturan jika diketahui titik pusat O, n, dan jarak titik pusat ke titik-titik sudut segi-n tersebut (jari-jari lingkaran luar segi-n), r.

Petunjuk:

- Besar sudut pusat yang menghadap masing-masing sisi segi-n adalah (360/n).
- Titik-titik sudut segi-n merupakan perpotongan lingkaran luar segi-n dan garis-garis yang melalui pusat dan saling membentuk sudut sebesar kelipatan (360/n).
- Untuk n ganjil, pilih salah satu titik sudut adalah di atas.
- Untuk n genap, pilih 2 titik di kanan dan kiri lurus dengan titik pusat.
- Anda dapat menggambar segi-3, 4, 5, 6, 7, dst beraturan.

```
>load geometry
```

Numerical and symbolic geometry.

```
>setPlotRange(-3.5,3.5,-3.5,3.5);
>A=[-2,-2]; plotPoint(A,"A");
>B=[2,-2]; plotPoint(B,"B");
>C=[0,3]; plotPoint(C,"C");
>plotSegment(A,B,"c");
>plotSegment(B,C,"a");
>plotSegment(A,C,"b");
>aspect(1):
>c=circleThrough(A,B,C);
>R=getCircleRadius(c);
>O=getCircleCenter(c);
>plotPoint(O,"O");
>l=angleBisector(A,C,B);
>color(2); plotLine(1); color(1);
>plotCircle(c,"Lingkaran luar segitiga ABC"):
```

2. Gambarlah suatu parabola yang melalui 3 titik yang diketahui.

Petunjuk

- Misalkan persamaan parabolanya $y = ax^2+bx+c$.
- Substitusikan koordinat titik-titik yang diketahui ke persamaan tersebut.
- Selesaikan SPL yang terbentuk untuk mendapatkan nilai-nilai a, b, c.

```
>load geometry;
>setPlotRange(5); P=[2,0]; Q=[4,0]; R=[0,-4];
>plotPoint(P, "P"); plotPoint(Q, "Q"); plotPoint(R, "R"):
>sol &= solve([a+b=-c,16*a+4*b=-c,c=-4],[a,b,c])
```

[]

```
>function y&=-x^2+5*x-4
```

```
2
- x + 5 x - 4
```

```
>plot2d("-x^2+5*x-4",-5,5,-5,5):
```

3. Gambarlah suatu segi-4 yang diketahui keempat titik sudutnya, misalnya A, B, C, D.

- Tentukan apakah segi-4 tersebut merupakan segi-4 garis singgung (sisinya-sisintya merupakan garis singgung lingkaran yang sama yakni lingkaran dalam segi-4 tersebut).

- Suatu segi-4 merupakan segi-4 garis singgung apabila keempat garis bagi sudutnya bertemu di satu titik.

- Jika segi-4 tersebut merupakan segi-4 garis singgung, gambar lingkaran dalamnya.

- Tunjukkan bahwa syarat suatu segi-4 merupakan segi-4 garis

singgung apabila hasil kali panjang sisi-sisi yang berhadapan sama.

```
>load geometry
```

Numerical and symbolic geometry.

```
>setPlotRange(-4.5, 4.5, -4.5, 4.5);
>A=[-3,-3]; plotPoint(A,"A");
>B=[3,-3]; plotPoint(B, "B");
>C=[3,3]; plotPoint(C,"C");
>D=[-3,3]; plotPoint(D,"D");
>plotSegment(A,B,"");
>plotSegment(B,C,"");
>plotSegment(C,D,"");
>plotSegment(A,D,"");
>aspect(1):
>l=angleBisector(A,B,C);
>m=angleBisector(B,C,D);
>P=lineIntersection(l,m);
>color(5); plotLine(1); plotLine(m); color(1);
>plotPoint(P,"P"):
>r=norm(P-projectToLine(P,lineThrough(A,B)));
>plotCircle(circleWithCenter(P,r), "Lingkaran dalam segiempat ABCD"):
>AB=norm(A-B) //panjang sisi AB
```

6

```
>CD=norm(C-D) //panjang sisi CD
```

6

```
>AD=norm(A-D) //panjang sisi AD
```

6

```
>BC=norm(B-C) //panjang sisi BC
```

6

```
>AB.CD
```

36

```
>AD.BC
```

36

4. Gambarlah suatu ellips jika diketahui kedua titik fokusnya, misalnya P dan Q. Ingat ellips dengan fokus P dan Q adalah tempat kedudukan titik-titik yang jumlah jarak ke P dan ke Q selalu sama (konstan).

Jawab:

Diketahui kedua titik fokus P = [-1,-1] dan Q = [1,-1]

```
>P=[-1,-1]; Q=[1,-1];
>function d1(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)
>Q=[1,-1]; function d2(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)+sqrt((x-Q[1])^2+(y-Q[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
```

5. Gambarlah suatu hiperbola jika diketahui kedua titik fokusnya, misalnya P dan Q. Ingat ellips dengan fokus P dan Q adalah tempat kedudukan titik-titik yang selisih jarak ke P dan ke Q selalu sama (konstan). Jawab :

```
>P=[-1,-1]; Q=[1,-1];
>function d1(x,y):=sqrt((x-p[1])^2+(y-p[2])^2)
>Q=[1,-1]; function d2(x,y):=sqrt((x-P[1])^2+(y-P[2])^2)+sqrt((x+Q[1])^2+(y+Q[2])^2)
>fcontour("d2",xmin=-2,xmax=2,ymin=-3,ymax=1,hue=1):
>plot3d("d2",xmin=-2,xmax=2,ymin=-3,ymax=1):
>plot2d("abs(x+1)+abs(x-1)",xmin=-3,xmax=3):
>
```

BAB8

MENGGUNAKAN EMT UNTUK STATISTIKA

[a4paper,10pt]article eumat

RIFFA LANNY LAIRA 22305144021 MATEMATIKA E 2022

Definisi Statistika

Statistika adalah sebuah ilmu yang mempelajari bagaimana cara merencanakan, mengumpulkan, menganalisis, lalu menginterpretasikan, dan akhirnya mempresentasikan data. Singkatnya, statistika adalah ilmu yang bersangkutan dengan suatu data.

Istilah statistika berbeda dengan statistik. Statistika pada umumnya bekerja dengan memakai data numerik yang di mana adalah hasil cacahan maupun hasil pengkuran yang dilakukan dengan menggunakan data kategorik yang diklasifikasikan menurut sebuah kriteria tertentu.

Statistika merupakan ilmu yang berkaitan dengan data. Statistik adalah data itu sendiri, informasinya, atau hasil penerapan algoritme statistika pada suatu data tersebut.

EMT untuk Statistika

Di buku catatan ini, kami mendemonstrasikan plot statistik utama, pengujian, dan distribusi di Euler.

Mari kita mulai dengan beberapa statistik deskriptif. Ini bukan pengantar statistik. Jadi, Anda mungkin memerlukan latar belakang untuk memahami detailnya.

Asumsikan pengukuran berikut. Kami ingin menghitung nilai rata-rata dan deviasi standar yang diukur.

```
>M=[1000,1004,998,997,1002,1001,998,1004,998,997]; ... 
>median(M), mean(M), dev(M),
```

999 999.9 2.72641400622 Kita dapat memplot plot kotak-dan-kumis untuk datanya. Dalam kasus kami, tidak ada outlier.

```
>aspect(1.75); boxplot(M):
```

Kami menghitung probabilitas suatu nilai lebih besar dari 1005, dengan asumsi nilai terukur berdistribusi normal.

Semua fungsi untuk distribusi di Euler diakhiri dengan ...dis dan menghitung distribusi probabilitas kumulatif (CPF).

normaldis(x,m,d) =
$$\int_{-\infty}^{x} \frac{1}{d\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-m}{d})^2} dt.$$

Kami mencetak hasilnya dalam % dengan akurasi 2 digit menggunakan fungsi print.

```
>print((1-normaldis(1005, mean(M), dev(M)))*100,2, unit=" %")
```

3.07 %

Untuk contoh berikutnya, kita asumsikan jumlah pria berikut dalam rentang ukuran tertentu.

```
>r=155.5:4:187.5; v=[22,71,136,169,139,71,32,8];
```

Berikut adalah alur pendistribusiannya.

```
>plot2d(r,v,a=150,b=200,c=0,d=190,bar=1,style="\/"):
```

Kita bisa memasukkan data mentah tersebut ke dalam tabel.

Tabel adalah metode untuk menyimpan data statistik. Tabel kita harus berisi tiga kolom: Awal jangkauan, akhir jangkauan, jumlah pria dalam jangkauan.

Tabel dapat dicetak dengan header. Kami menggunakan vektor string untuk mengatur header.

```
>T:=r[1:8]' | r[2:9]' | v'; writetable(T,labc=["BB","BA","Frek"])
```

BB	BA	Frek
155.5	159.5	22
159.5	163.5	71
163.5	167.5	136
167.5	171.5	169
171.5	175.5	139
175.5	179.5	71
179.5	183.5	32
183.5	187.5	8

Jika kita memerlukan nilai rata-rata dan statistik ukuran lainnya, kita perlu menghitung titik tengah rentang tersebut. Kita bisa menggunakan dua kolom pertama tabel kita untuk ini.

Sumbol "|" digunakan untuk memisahkan kolom, fungsi "writetable" digunakan untuk menulis tabel, dengan opsi "labc" untuk menentukan header kolom.

```
>(T[,1]+T[,2])/2 // the midpoint of each interval
```

157.5 161.5 165.5 169.5

173.5

177.5

181.5

185.5

Namun akan lebih mudah jika menjumlahkan rentang dengan vektor [1/2,1/2].

```
>M=fold(r,[0.5,0.5])
```

```
[157.5, 161.5, 165.5, 169.5, 173.5, 177.5, 181.5, 185.5]
```

Sekarang kita dapat menghitung mean dan deviasi sampel dengan frekuensi tertentu.

```
>{m,d}=meandev(M,v); m, d,
```

```
169.901234568
5.98912964449
```

Mari kita tambahkan distribusi nilai normal ke diagram batang di atas. Rumus distribusi normal dengan mean m dan simpangan baku d adalah:

$$y = \frac{1}{d\sqrt{2\pi}} e^{\frac{-(x-m)^2}{2d^2}}.$$

Karena nilainya antara 0 dan 1, maka untuk memplotnya pada bar plot harus dikalikan dengan 4 kali jumlah data.

```
>plot2d("qnormal(x,m,d)*sum(v)*4", ...
> xmin=min(r), xmax=max(r), thickness=3, add=1):
```

Tabel

Di direktori buku catatan ini Anda menemukan file dengan tabel. Data tersebut merupakan hasil survei. Berikut adalah empat baris pertama file tersebut. Datanya berasal dari buku online Jerman "Einführung in die Statistik mit R" oleh A. Handl.

```
>printfile("table.dat",4);
```

```
Person Sex Age Titanic Evaluation Tip Problem 1 m 30 n . 1.80 n 2 f 23 y g 1.80 n 3 f 26 y g 1.80 y
```

Tabel berisi 7 kolom angka atau token (string). Kami ingin membaca tabel dari file. Pertama, kami menggunakan terjemahan kami sendiri untuk tokennya.

Untuk ini, kami mendefinisikan kumpulan token. Fungsi strtokens() mendapatkan vektor string token dari string tertentu.

```
>mf:=["m","f"]; yn:=["y","n"]; ev:=strtokens("g vg m b vb");
```

Sekarang kita membaca tabel dengan terjemahan ini.

Argumen tok2, tok4 dll. adalah terjemahan dari kolom tabel. Argumen ini tidak ada dalam daftar parameter readtable(), jadi Anda perlu menyediakannya dengan ":=".

```
>{MT,hd}=readtable("table.dat",tok2:=mf,tok4:=yn,tok5:=ev,tok7:=yn);
>load over statistics;
```

Untuk mencetak, kita perlu menentukan kumpulan token yang sama. Kami mencetak empat baris pertama saja.

```
>writetable(MT[1:10],labc=hd,wc=5,tok2:=mf,tok4:=yn,tok5:=ev,tok7:=yn);
```

```
Person Sex Age Titanic Evaluation Tip Problem
             30
                                 . 1.8
    1
         m
                    n
    2
         f
             23
                                 g 1.8
                      У
    3
         f
             26
                                 g 1.8
                      У
                                              У
     4
             33
                                    2.8
         m
                      n
                                              n
    5
             37
                                   1.8
         m
                      n
                                              n
     6
             28
                                 g 2.8
         m
                      У
                                              У
    7
             31
                                vg 2.8
         f
                      У
                                              n
    8
         m
             23
                      n
                                    0.8
                                              n
    9
         f
             24
                                    1.8
                      У
                                vq
                                              У
   10
             26
                                    1.8
                                              n
```

Titik "." mewakili nilai-nilai, yang tidak tersedia.

Jika kita tidak ingin menentukan token yang akan diterjemahkan terlebih dahulu, kita hanya perlu menentukan, kolom mana yang berisi token dan bukan angka.

```
>ctok=[2,4,5,7]; {MT,hd,tok}=readtable("table.dat",ctok=ctok);
```

Fungsi readtable() kini mengembalikan sekumpulan token.

```
>tok
```

```
n
f
g
w
```

Tabel berisi entri dari file dengan token yang diterjemahkan ke dalam angka.

String khusus NA = "." diartikan sebagai "Tidak Tersedia", dan mendapatkan NAN (bukan angka) di tabel. Terjemahan ini dapat diubah dengan parameter NA, dan NAval.

```
>MT[1]
```

```
[1, 1, 30, 2, NAN, 1.8, 2]
```

Berikut isi tabel dengan nomor yang belum diterjemahkan.

```
>writetable(MT,wc=5)
```

```
30
                           1.8
                  2
                                   2
 1
      1
 2
      3
           23
                  4
                       5
                           1.8
                                   2
 3
      3
           26
                  4
                       5
                           1.8
                                   4
 4
      1
           33
                  2
                           2.8
                                   2
 5
      1
           37
                  2
                           1.8
                                   2
 6
      1
                       5 2.8
           28
                  4
                                   4
 7
      3
           31
                  4
                        6 2.8
                                   2
 8
      1
           23
                  2
                           0.8
                                   2
 9
      3
           24
                  4
                        6 1.8
                                   4
10
      1
                  2
                                   2
           26
                          1.8
      3
11
           23
                  4
                        6 1.8
                                   4
12
                       5
                                   2
      1
           32
                  4
                          1.8
13
      1
           29
                  4
                        6 1.8
                                   4
                        5 1.8
14
      3
           25
                  4
                                   4
15
      3
           31
                       5 0.8
                                   2
                  4
      1
           26
                       5 2.8
                                   2
16
                  4
17
      1
           37
                  2
                           3.8
                                   2
                       5
      1
                                   2
18
           38
                  4
19
      3
           29
                  2
                           3.8
                                   2
      3
                          1.8
                                   2
20
           28
                  4
                       6
      3
21
           28
                  4
                       1 2.8
                                   4
22
      3
           28
                  4
                        6 1.8
                                   4
23
      3
           38
                        5 2.8
                                   2
                  4
24
      3
           27
                  4
                        1
                           1.8
                                   4
25
      1
           27
                  2
                           2.8
                                   4
```

Untuk kenyamanan, Anda dapat memasukkan keluaran readtable() ke dalam daftar.

```
>Table={{readtable("table.dat",ctok=ctok)}};
```

Dengan menggunakan kolom token yang sama dan token yang dibaca dari file, kita dapat mencetak tabel. Kita dapat menentukan ctok, tok, dll. atau menggunakan tabel daftar.

```
>writetable(Table,ctok=ctok,wc=5);
```

Sex	Age	Titanic	Evaluation	Tip	Problem
m	_	n		_	n
f		V			n
f		=	=	1.8	У
m		n	•	2.8	n
m	37	n		1.8	n
m	28	У	q	2.8	У
f	31	=	vq	2.8	n
m	23	n	•	0.8	n
f	24	У	vg	1.8	У
m	26	n	•	1.8	n
f	23	У	vg	1.8	У
m	32	У	g	1.8	n
m	29	У	vg	1.8	У
f	25	У	g	1.8	У
f	31	У	g	0.8	n
m	26	У	g	2.8	n
m	37	n		3.8	n
m	38	У	g		n
f	29	n		3.8	n
f	28	У	vg	1.8	n
f	28	У	m	2.8	У
f	28	У	vg	1.8	У
f	38	У	g	2.8	n
f	27	У	m	1.8	У
m	27	n	•	2.8	У
	f f m m f m f m f m f m f f m f f f f f	m 30 f 23 f 26 m 33 m 37 m 28 f 31 m 26 f 23 m 32 m 29 f 25 f 31 m 26 m 37 m 38 f 29 f 28 f 28 f 28 f 28 f 28 f 28 f 2	m 30 n f 23 y f 26 y m 33 n m 37 n m 28 y f 31 y m 23 n f 24 y m 26 n f 23 y m 29 y f 25 y f 31 y m 26 y m 37 n m 38 y f 29 n f 28 y f 38 y f 27 y	m 30 n . f 23 y g f 26 y g m 33 n . m 37 n . m 28 y g f 31 y vg m 23 n . f 24 y vg m 26 n . f 23 y vg m 32 y vg f 25 y g f 25 y g f 31 y g m 37 n . m 38 y g f 28 y vg f 28 y vg f 28 y vg f 38 y g f 28 y vg f 38 y g	m 30 n . 1.8 f 23 y g 1.8 f 26 y g 1.8 m 33 n . 2.8 m 37 n . 1.8 m 28 y g 2.8 f 31 y vg 2.8 f 31 y vg 1.8 f 24 y vg 1.8 f 23 y vg 1.8 f 23 y vg 1.8 m 32 y vg 1.8 f 25 y g 1.8 f 25 y g 2.8 f 31 y g 2.8 m 36 y g 2.8 f 29 n . 3.8 f 28 y vg 1.8 f 28 y vg 1.8 f 28

Fungsi tablecol() mengembalikan nilai kolom tabel, melewatkan baris apa pun dengan nilai NAN ("." dalam file), dan indeks kolom, yang berisi nilai-nilai ini.

```
>{c,i}=tablecol(MT,[5,6]);
```

Kita bisa menggunakan ini untuk mengekstrak kolom dari tabel untuk tabel baru.

```
>j=[1,5,6]; writetable(MT[i,j],labc=hd[j],ctok=[2],tok=tok)
```

Person	Evaluation	Tip
2	g	1.8
3	g	1.8
6	g	2.8
7	vg	2.8
9	vg	1.8
11	vg	1.8
12	g	1.8
13	vg	1.8
14	g	1.8
15	g	0.8

```
2.8
16
20
                      1.8
            vg
21
                      2.8
             m
22
            vg
                      1.8
23
                      2.8
             g
24
                      1.8
```

Tentu saja, kita perlu mengekstrak tabel itu sendiri dari daftar Tabel dalam kasus ini.

```
>MT=Table[1];
```

Tentu saja, kita juga dapat menggunakannya untuk menentukan nilai rata-rata suatu kolom atau nilai statistik lainnya.

```
>mean(tablecol(MT,6))
```

2.175

Fungsi getstatistics() mengembalikan elemen dalam vektor, dan jumlahnya. Kami menerapkannya pada nilai "m" dan "f" di kolom kedua tabel kami.

```
>{xu,count}=getstatistics(tablecol(MT,2)); xu, count,
```

[1, 3] [12, 13]

Kita bisa mencetak hasilnya di tabel baru.

```
>writetable(count',labr=tok[xu])
```

m 12 f 13

Fungsi selecttable() mengembalikan tabel baru dengan nilai dalam satu kolom yang dipilih dari vektor indeks. Pertama kita mencari indeks dari dua nilai kita di tabel token.

```
>v:=indexof(tok,["g","vg"])
```

[5, 6]

Sekarang kita dapat memilih baris tabel, yang memiliki salah satu nilai v pada baris ke-5.

```
>MT1:=MT[selectrows(MT,5,v)]; i:=sortedrows(MT1,5);
```

Sekarang kita dapat mencetak tabel, dengan nilai yang diekstraksi dan diurutkan di kolom ke-5.

>writetable(MT1[i],labc=hd,ctok=ctok,tok=tok,wc=7);

Person	Sex	Age	Titanic	Evaluation	Tip	Problem
2	f	23	У	g	1.8	n
3	f	26	У	g	1.8	У
6	m	28	У	g	2.8	У
18	m	38	У	g	•	n
16	m	26	У	g	2.8	n
15	f	31	У	g	0.8	n
12	m	32	У	g	1.8	n
23	f	38	У	g	2.8	n
14	f	25	У	g	1.8	У
9	f	24	У	vg	1.8	У
7	f	31	У	vg	2.8	n
20	f	28	У	vg	1.8	n
22	f	28	У	vg	1.8	У
13	m	29	У	vg	1.8	У
11	f	23	У	vg	1.8	У

Untuk statistik selanjutnya, kami ingin menghubungkan dua kolom tabel. Jadi kita ekstrak kolom 2 dan 4 dan urutkan tabelnya.

```
>i=sortedrows(MT,[2,4]); ...
> writetable(tablecol(MT[i],[2,4])',ctok=[1,2],tok=tok)
```

```
m
            n
m
            n
            n
m
            n
            n
m
            n
            n
m
m
            У
            У
m
            У
m
            У
m
            У
f
            n
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
            У
f
```

Dengan getstatistics(), kita juga bisa menghubungkan jumlah dalam dua kolom tabel satu sama lain.

```
>MT24=tablecol(MT,[2,4]); ...
>{xu1,xu2,count}=getstatistics(MT24[1],MT24[2]); ...
>writetable(count,labr=tok[xu1],labc=tok[xu2])
```

```
\begin{array}{cccc} & & n & & y \\ m & & 7 & & 5 \\ f & & 1 & & 12 \end{array}
```

Sebuah tabel dapat ditulis ke file.

```
>filename="test.dat"; ...
>writetable(count,labr=tok[xu1],labc=tok[xu2],file=filename);
```

Kemudian kita bisa membaca tabel dari file tersebut.

```
>{MT2,hd,tok2,hdr}=readtable(filename,>clabs,>rlabs); ...
>writetable(MT2,labr=hdr,labc=hd)
```

```
m 7 5
f 1 12
```

Dan hapus file tersebut.

```
>fileremove(filename);
```

Distribusi

Dengan plot2d, ada metode yang sangat mudah untuk memplot sebaran data eksperimen.

```
>p=normal(1,1000); //1000 random normal-distributed sample p >plot2d(p,distribution=20,style="\/"); // plot the random sample p >plot2d("qnormal(x,0,1)",add=1): // add the standard normal distribution plot
```

Perlu diperhatikan perbedaan antara bar plot (sampel) dan kurva normal (distribusi sebenarnya). Masukkan kembali ketiga perintah untuk melihat hasil pengambilan sampel lainnya.

Berikut adalah perbandingan 10 simulasi dari 1000 nilai terdistribusi normal menggunakan apa yang disebut plot kotak. Plot ini menunjukkan median, kuartil 25% dan 75%, nilai minimal dan maksimal, serta outlier.

```
>p=normal(10,1000); boxplot(p):
```

Untuk menghasilkan bilangan bulat acak, Euler memiliki intrandom. Mari kita simulasikan lemparan dadu dan plot distribusinya.

Kita menggunakan fungsi getmultiplicities(v,x), yang menghitung seberapa sering elemen v muncul di x. Kemudian kita plot hasilnya menggunakan kolomplot().

```
>k=intrandom(1,6000,6); ...
>columnsplot(getmultiplicities(1:6,k)); ...
>ygrid(1000,color=red):
```

Meskipun inrandom(n,m,k) mengembalikan bilangan bulat yang terdistribusi secara seragam dari 1 hingga k, distribusi bilangan bulat lainnya dapat digunakan dengan randpint().

Dalam contoh berikut, probabilitas untuk 1,2,3 masing-masing adalah 0,4,0.1,0.5.

```
>randpint(1,1000,[0.4,0.1,0.5]); getmultiplicities(1:3,%)
```

```
[378, 102, 520]
```

Euler dapat menghasilkan nilai acak dari lebih banyak distribusi. Lihat referensinya.

Misalnya, kita mencoba distribusi eksponensial. Variabel acak kontinu X dikatakan berdistribusi eksponensial, jika PDF-nya diberikan oleh

$$f_X(x) = \lambda e^{-\lambda x}, \quad x > 0, \quad \lambda > 0,$$

dengan parameter

 $\lambda = \frac{1}{\mu}, \quad \mu$ adalah mean, dan dilambangkan dengan $X \sim \operatorname{Exponential}(\lambda).$

```
>plot2d(randexponential(1,1000,2),>distribution):
```

Untuk banyak distribusi, Euler dapat menghitung fungsi distribusi dan inversnya.

```
>plot2d("normaldis",-4,4):
```

Berikut ini adalah salah satu cara untuk memplot kuantil.

```
>plot2d("qnormal(x,1,1.5)",-4,6); ... 
>plot2d("qnormal(x,1,1.5)",a=2,b=5,>add,>filled):
```

normaldis(x,m,d) =
$$\int_{-\infty}^{x} \frac{1}{d\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{t-m}{d})^2} dt.$$

Peluang berada di kawasan hijau adalah sebagai berikut.

```
>normaldis(5,1,1.5)-normaldis(2,1,1.5)
```

0.248662156979

Ini dapat dihitung secara numerik dengan integral berikut.

$$\int_{2}^{5} \frac{1}{1.5\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-1}{1.5})^{2}} dx.$$

```
>gauss("qnormal(x,1,1.5)",2,5)
```

0.248662156979

Mari kita bandingkan distribusi binomial dengan distribusi normal yang mean dan deviasinya sama. Fungsi invbindis() menyelesaikan interpolasi linier antara nilai integer.

```
>invbindis(0.95,1000,0.5), invnormaldis(0.95,500,0.5*sqrt(1000))
```

525.516721219 526.007419394

Fungsi qdis() adalah kepadatan distribusi chi-kuadrat. Seperti biasa, Euler memetakan vektor ke fungsi ini. Dengan demikian kita mendapatkan plot semua distribusi chi-kuadrat dengan derajat 5 sampai 30 dengan mudah dengan cara berikut.

```
>plot2d("qchidis(x,(5:5:50)')",0,50):
```

Euler memiliki fungsi akurat untuk mengevaluasi distribusi. Mari kita periksa chidis() dengan integral.

Penamaannya mencoba untuk konsisten. Misalnya.,

- distribusi chi-kuadratnya adalah chidis(),
- fungsi kebalikannya adalah invchidis(),
- kepadatannya adalah qchidis().

Pelengkap distribusi (ekor atas) adalah chicdis().

```
>chidis(1.5,2), integrate("qchidis(x,2)",0,1.5)
```

0.527633447259
0.527633447259

Distribusi Diskrit

Untuk menentukan distribusi diskrit Anda sendiri, Anda dapat menggunakan metode berikut. Pertama kita atur fungsi distribusinya.

```
>wd = 0|((1:6)+[-0.01,0.01,0,0,0])/6
```

```
[0, 0.165, 0.335, 0.5, 0.666667, 0.833333, 1]
```

Artinya dengan probabilitas wd[i+1]-wd[i] kita menghasilkan nilai acak i.

Ini hampir merupakan distribusi yang seragam. Mari kita tentukan generator nomor acak untuk ini. Fungsi find(v,x) mencari nilai x pada vektor v. Fungsi ini juga berfungsi untuk vektor x.

```
>function wrongdice (n,m) := find(wd,random(n,m))
```

Kesalahannya sangat halus sehingga kita hanya melihatnya dengan banyak iterasi.

```
>columnsplot(getmultiplicities(1:6,wrongdice(1,1000000))):
```

Berikut adalah fungsi sederhana untuk memeriksa keseragaman distribusi nilai 1...K dalam v. Kita menerima hasilnya, jika untuk semua frekuensi

$$\left| f_i - \frac{1}{K} \right| < \frac{\delta}{\sqrt{n}}.$$

```
>function checkrandom (v, delta=1) ...
```

```
K=max(v); n=cols(v);
fr=getfrequencies(v,1:K);
return max(fr/n-1/K)<delta/sqrt(n);
endfunction</pre>
```

Memang fungsinya menolak distribusi seragam.

```
>checkrandom(wrongdice(1,1000000))
```

0

Dan ia menerima generator acak bawaan.

```
>checkrandom(intrandom(1,1000000,6))
```

1

Kita dapat menghitung distribusi binomial. Pertama ada binomialsum(), yang mengembalikan probabilitas i atau kurang hit dari n percobaan.

```
>bindis(410,1000,0.4)
```

```
0.751401349654
```

Fungsi Beta terbalik digunakan untuk menghitung interval kepercayaan Clopper-Pearson untuk parameter p. Tingkat defaultnya adalah alfa.

Arti dari interval ini adalah jika p berada di luar interval, hasil pengamatan 410 dalam 1000 jarang terjadi.

```
>clopperpearson(410,1000)
```

```
[0.37932, 0.441212]
```

Perintah berikut adalah cara langsung untuk mendapatkan hasil di atas. Namun untuk n yang besar, penjumlahan langsungnya tidak akurat dan lambat.

```
>p=0.4; i=0:410; n=1000; sum(bin(n,i)*p^i*(1-p)^(n-i))
```

```
0.751401349655
```

Omong-omong, invbinsum() menghitung kebalikan dari binomialsum().

```
>invbindis(0.75,1000,0.4)
```

```
409.932733047
```

Di Bridge, kami mengasumsikan 5 kartu beredar (dari 52) di dua tangan (26 kartu). Mari kita hitung probabilitas distribusi yang lebih buruk dari 3:2 (misalnya 0:5, 1:4, 4:1, atau 5:0).

```
>2*hypergeomsum(1,5,13,26)
```

0.321739130435

Ada juga simulasi distribusi multinomial.

```
>randmultinomial(10,1000,[0.4,0.1,0.5])
             381
                             100
                                             519
             376
                              91
                                             533
             417
                              80
                                             503
             440
                              94
                                             466
             406
                             112
                                             482
             408
                              94
                                             498
             395
                             107
                                             498
             399
                                             505
                              96
             428
                              87
                                             485
             400
                              99
                                             501
                                                                          Plotting Data
```

Untuk memetakan data, kami mencoba hasil pemilu Jerman sejak tahun 1990, diukur dalam jumlah kursi.

```
>BW := [ ...

>1990,662,319,239,79,8,17; ...

>1994,672,294,252,47,49,30; ...

>1998,669,245,298,43,47,36; ...

>2002,603,248,251,47,55,2; ...

>2005,614,226,222,61,51,54; ...

>2009,622,239,146,93,68,76; ...

>2013,631,311,193,0,63,64];
```

Untuk pesta, kami menggunakan rangkaian nama.

```
>P:=["CDU/CSU","SPD","FDP","Gr","Li"];
```

Mari kita cetak persentasenya dengan baik.

Pertama kita mengekstrak kolom yang diperlukan. Kolom 3 sampai 7 adalah kursi masing-masing partai, dan kolom 2 adalah jumlah kursi seluruhnya. kolom adalah tahun pemilihan.

```
>BT:=BW[,3:7]; BT:=BT/sum(BT); YT:=BW[,1]';
```

Kemudian statistiknya kita cetak dalam bentuk tabel. Kami menggunakan nama sebagai header kolom, dan tahun sebagai header untuk baris. Lebar default untuk kolom adalah wc=10, tetapi kami lebih memilih keluaran yang lebih padat. Kolom akan diperluas untuk label kolom, jika perlu.

```
>writetable(BT*100,wc=6,dc=0,>fixed,labc=P,labr=YT)
```

	CDU/CSU	SPD	FDP	Gr	Li
1990	48	36	12	1	3
1994	44	38	7	7	4
1998	37	45	6	7	5
2002	41	42	8	9	0
2005	37	36	10	8	9
2009	38	23	15	11	12
2013	49	31	0	10	10

Perkalian matriks berikut ini menjumlahkan persentase dua partai besar yang menunjukkan bahwa partai-partai kecil berhasil memperoleh suara di parlemen hingga tahun 2009.

```
>BT1:=(BT.[1;1;0;0;0])'*100
```

```
[84.29, 81.25, 81.1659, 82.7529, 72.9642, 61.8971, 79.8732]
```

Ada juga plot statistik sederhana. Kami menggunakannya untuk menampilkan garis dan titik secara bersamaan. Alternatifnya adalah memanggil plot2d dua kali dengan >add.

```
>statplot(YT,BT1,"b"):
```

Tentukan beberapa warna untuk setiap pesta.

```
>CP:=[rgb(0.5,0.5,0.5),red,yellow,green,rgb(0.8,0,0)];
```

Sekarang kita bisa memplot hasil pemilu 2009 dan perubahannya menjadi satu plot dengan menggunakan gambar. Kita dapat menambahkan vektor kolom ke setiap plot.

```
>figure(2,1); ...
>figure(1); columnsplot(BW[6,3:7],P,color=CP); ...
>figure(2); columnsplot(BW[6,3:7]-BW[5,3:7],P,color=CP); ...
>figure(0):
```

Plot data menggabungkan deretan data statistik dalam satu plot.

```
>J:=BW[,1]'; DP:=BW[,3:7]'; ...
>dataplot(YT,BT',color=CP); ...
>labelbox(P,colors=CP,styles="[]",>points,w=0.2,x=0.3,y=0.4):
```

Plot kolom 3D memperlihatkan baris data statistik dalam bentuk kolom. Kami memberikan label untuk baris dan kolom. sudut adalah sudut pandang.

```
>columnsplot3d(BT,scols=P,srows=YT, ...
> angle=30°,ccols=CP):
```

Representasi lainnya adalah plot mosaik. Perhatikan bahwa kolom plot mewakili kolom matriks di sini. Karena panjang label CDU/CSU, kami mengambil jendela yang lebih kecil dari biasanya.

```
>shrinkwindow(>smaller); ...
>mosaicplot(BT',srows=YT,scols=P,color=CP,style="#"); ...
>shrinkwindow():
```

Kita juga bisa membuat diagram lingkaran. Karena hitam dan kuning membentuk koalisi, kami menyusun ulang elemen-elemennya.

```
>i=[1,3,5,4,2]; piechart(BW[6,3:7][i],color=CP[i],lab=P[i]):
```

Ini adalah jenis plot lainnya.

```
>starplot(normal(1,10)+4,lab=1:10,>rays):
```

Beberapa plot di plot2d bagus untuk statika. Berikut adalah plot impuls dari data acak, terdistribusi secara seragam di [0,1].

```
>plot2d(makeimpulse(1:10,random(1,10)),>bar):
```

Namun untuk data yang terdistribusi secara eksponensial, kita mungkin memerlukan plot logaritmik.

```
>logimpulseplot(1:10,-log(random(1,10))*10):
```

Fungsi Columnplot() lebih mudah digunakan, karena hanya memerlukan vektor nilai. Selain itu, ia dapat mengatur labelnya ke apa pun yang kita inginkan, kami telah mendemonstrasikannya di tutorial ini. Ini adalah aplikasi lain, di mana kita menghitung karakter dalam sebuah kalimat dan membuat statistik.

```
>v=strtochar("the quick brown fox jumps over the lazy dog"); ...
>w=ascii("a"):ascii("z"); x=getmultiplicities(w,v); ...
>cw=[]; for k=w; cw=cw|char(k); end; ...
>columnsplot(x,lab=cw,width=0.05):
```

It is also possible to manually set axes.

```
>n=10; p=0.4; i=0:n; x=bin(n,i)*p^i*(1-p)^(n-i); ...
>columnsplot(x,lab=i,width=0.05,<frame,<grid); ...
>yaxis(0,0:0.1:1,style="->",>left); xaxis(0,style="."); ...
>label("p",0,0.25), label("i",11,0); ...
>textbox(["Binomial distribution","with p=0.4"]):
```

Berikut ini cara memplot frekuensi bilangan dalam suatu vektor.

Kami membuat vektor bilangan acak bilangan bulat 1 hingga 6.

```
>v:=intrandom(1,10,10)
```

```
[8, 5, 8, 8, 6, 8, 8, 3, 5, 5]
```

Kemudian ekstrak nomor unik di v.

```
>vu:=unique(v)
```

```
[3, 5, 6, 8]
```

Dan plot frekuensi dalam plot kolom.

```
>columnsplot(getmultiplicities(vu,v),lab=vu,style="/"):
```

Kami ingin mendemonstrasikan fungsi distribusi nilai empiris.

```
>x=normal(1,20);
```

Fungsi empdist(x,vs) memerlukan array nilai yang diurutkan. Jadi kita harus mengurutkan x sebelum kita dapat menggunakannya.

```
>xs=sort(x);
```

Kemudian kita plot distribusi empiris dan beberapa batang kepadatan ke dalam satu plot. Alih-alih plot batang untuk distribusi kali ini kami menggunakan plot gigi gergaji.

```
>figure(2,1); ...
>figure(1); plot2d("empdist",-4,4;xs); ...
>figure(2); plot2d(histo(x,v=-4:0.2:4,<bar)); ...
>figure(0):
```

Plot sebar mudah dilakukan di Euler dengan plot titik biasa. Grafik berikut menunjukkan bahwa X dan X+Y jelas berkorelasi positif.

```
>x=normal(1,100); plot2d(x,x+rotright(x),>points,style=".."):
```

Seringkali kita ingin membandingkan dua sampel dengan distribusi yang berbeda. Hal ini dapat dilakukan dengan plot kuantil-kuantil.

Untuk pengujiannya, kami mencoba distribusi student-t dan distribusi eksponensial.

```
>x=randt(1,1000,5); y=randnormal(1,1000,mean(x),dev(x)); ...
>plot2d("x",r=6,style="--",yl="normal",xl="student-t",>vertical); ...
>plot2d(sort(x),sort(y),>points,color=red,style="x",>add):
```

Plot tersebut dengan jelas menunjukkan bahwa nilai terdistribusi normal cenderung lebih kecil di ujung ekstrim

Jika kita mempunyai dua distribusi yang ukurannya berbeda, kita dapat memperluas distribusi yang lebih kecil atau mengecilkan distribusi yang lebih besar. Fungsi berikut ini baik untuk keduanya. Dibutuhkan nilai median dengan persentase antara 0 dan 1.

```
>function medianexpand (x,n) := median(x,p=linspace(0,1,n-1));
```

Mari kita bandingkan dua distribusi yang sama.

```
>x=random(1000); y=random(400); ...
>plot2d("x",0,1,style="--"); ...
>plot2d(sort(medianexpand(x,400)),sort(y),>points,color=red,style="x",>add):
```

Regresi dan Korelasi

Regresi linier dapat dilakukan dengan fungsi polyfit() atau berbagai fungsi fit. Sebagai permulaan kita menemukan garis regresi untuk data univariat dengan polyfit(x,y,1).

```
>x=1:10; y=[2,3,1,5,6,3,7,8,9,8]; writetable(x'|y',labc=["x","y"])
```

```
Х
              У
 1
              2
 2
              3
 3
              1
 4
              5
 5
              6
              3
 6
 7
              7
 8
              8
 9
              9
10
              8
```

Kami ingin membandingkan kecocokan yang tidak berbobot dan berbobot. Pertama koefisien kecocokan linier.

```
>p=polyfit(x,y,1)
```

```
[0.733333, 0.812121]
```

Sekarang koefisien dengan bobot yang menekankan nilai terakhir.

```
>w &= "exp(-(x-10)^2/10)"; pw=polyfit(x,y,1,w=w(x))
```

```
[4.71566, 0.38319]
```

Kami memasukkan semuanya ke dalam satu plot untuk titik dan garis regresi, dan untuk bobot yang digunakan.

```
>figure(2,1); ...
>figure(1); statplot(x,y,"b",xl="Regression"); ...
> plot2d("evalpoly(x,p)",>add,color=blue,style="--"); ...
> plot2d("evalpoly(x,pw)",5,10,>add,color=red,style="--"); ...
>figure(2); plot2d(w,1,10,>filled,style="/",fillcolor=red,xl=w); ...
>figure(0):
```

Contoh lain kita membaca survei siswa, usia mereka, usia orang tua mereka dan jumlah saudara kandung dari sebuah file.

Tabel ini berisi "m" dan "f" di kolom kedua. Kami menggunakan variabel tok2 untuk mengatur terjemahan yang tepat alih-alih membiarkan readtable() mengumpulkan terjemahannya.

```
>{MS,hd}:=readtable("table1.dat",tok2:=["m","f"]); ...
>writetable(MS,labc=hd,tok2:=["m","f"]);
```

Person	Sex	Age	Mother	Father	Siblings
1	m	29	58	61	1
2	f	26	53	54	2
3	m	24	49	55	1
4	f	25	56	63	3
5	f	25	49	53	0
6	f	23	55	55	2
7	m	23	48	54	2

8	m	27	56	58	1
9	m	25	57	59	1
10	m	24	50	54	1
11	f	26	61	65	1
12	m	24	50	52	1
13	m	29	54	56	1
14	m	28	48	51	2
15	f	23	52	52	1
16	m	24	45	57	1
17	f	24	59	63	0
18	f	23	52	55	1
19	m	24	54	61	2
20	f	23	54	55	1

Bagaimana usia bergantung satu sama lain? Kesan pertama muncul dari plot sebar berpasangan.

```
>scatterplots(tablecol(MS,3:5),hd[3:5]):
```

Jelas terlihat bahwa usia ayah dan ibu saling bergantung satu sama lain. Mari kita tentukan dan plot garis regresinya.

```
>cs:=MS[,4:5]'; ps:=polyfit(cs[1],cs[2],1)
```

```
[17.3789, 0.740964]
```

Ini jelas merupakan model yang salah. Garis regresinya adalah s=17+0,74t, dengan t adalah umur ibu dan s adalah umur ayah. Perbedaan usia mungkin sedikit bergantung pada usia, tapi tidak terlalu banyak. Sebaliknya, kami mencurigai fungsi seperti s=a+t. Maka a adalah mean dari s-t. Ini adalah perbedaan usia rata-rata antara ayah dan ibu.

```
>da:=mean(cs[2]-cs[1])
```

3.65

Mari kita plot ini menjadi satu plot sebar.

```
>plot2d(cs[1],cs[2],>points); ...
>plot2d("evalpoly(x,ps)",color=red,style=".",>add); ...
>plot2d("x+da",color=blue,>add):
```

Berikut adalah plot kotak dari dua zaman tersebut. Ini hanya menunjukkan, bahwa usianya berbeda-beda.

```
>boxplot(cs,["mothers","fathers"]):
```

Menariknya, perbedaan median tidak sebesar perbedaan mean.

```
>median(cs[2])-median(cs[1])
```

1.5

Koefisien korelasi menunjukkan korelasi positif.

```
>correl(cs[1],cs[2])
```

0.7588307236

Korelasi pangkat merupakan ukuran keteraturan yang sama pada kedua vektor. Hal ini juga cukup positif.

```
>rankcorrel(cs[1],cs[2])
```

0.758925292358

Membuat Fungsi baru

Tentu saja, bahasa EMT dapat digunakan untuk memprogram fungsi-fungsi baru. Misalnya, kita mendefinisikan fungsi skewness.

$$sk(x) = \frac{\sqrt{n} \sum_{i} (x_i - m)^3}{\left(\sum_{i} (x_i - m)^2\right)^{3/2}}$$

dimana m adalah mean dari x.

```
>function skew (x:vector) ...
```

```
m=mean(x); return sqrt(cols(x))*sum((x-m)^3)/(sum((x-m)^2))^(3/2); endfunction
```

Seperti yang Anda lihat, kita dapat dengan mudah menggunakan bahasa matriks untuk mendapatkan implementasi yang sangat singkat dan efisien. Mari kita coba fungsi ini.

```
>data=normal(20); skew(normal(10))
```

-0.198710316203

Berikut adalah fungsi lainnya, yang disebut koefisien skewness Pearson.

```
>function skew1 (x) := 3*(mean(x)-median(x))/dev(x)
>skew1(data)
```

-0.0801873249135

Simulasi Monte Carlo

Euler dapat digunakan untuk mensimulasikan kejadian acak. Kita telah melihat contoh sederhana di atas. Ini satu lagi, yang mensimulasikan 1000 kali lemparan 3 dadu, dan menanyakan pembagian jumlahnya.

```
>ds:=sum(intrandom(1000,3,6))'; fs=getmultiplicities(3:18,ds)

[5, 17, 35, 44, 75, 97, 114, 116, 143, 116, 104, 53, 40,
```

Kita bisa merencanakannya sekarang.

6]

22,

13,

```
>columnsplot(fs,lab=3:18):
```

Untuk menentukan distribusi yang diharapkan tidaklah mudah. Kami menggunakan rekursi tingkat lanjut untuk ini.

Fungsi berikut menghitung banyaknya cara bilangan k dapat direpresentasikan sebagai jumlah dari n bilangan dalam rentang 1 sampai m. Ia bekerja secara rekursif dengan cara yang jelas.

```
>function map countways (k; n, m) ...

if n==1 then return k>=1 && k<=m
  else
    sum=0;
  loop 1 to m; sum=sum+countways(k-#,n-1,m); end;
  return sum;
  end;
endfunction</pre>
```

Berikut hasil pelemparan dadu sebanyak tiga kali.

```
>countways (5:25,5,5)
              35, 70, 121, 185,
                                   255,
                                        320, 365,
                                                   381,
                                                         365,
                                                               320,
 [1, 5, 15,
 255, 185, 121,
                 70, 35, 15,
>cw=countways(3:18,3,6)
 [1,
      3, 6, 10, 15, 21,
                           25,
                                27,
                                    27, 25,
                                             21,
                                                  15, 10, 6,
                                                              3.
 1]
```

Kami menambahkan nilai yang diharapkan ke plot.

```
>plot2d(cw/6^3*1000, >add); plot2d(cw/6^3*1000, >points, >add):
```

Untuk simulasi lain, deviasi nilai rata-rata n 0-1-variabel acak terdistribusi normal adalah 1/sqrt(n).

```
>longformat; 1/sqrt(10)
```

0.316227766017

Mari kita periksa ini dengan simulasi. Kami menghasilkan 10.000 kali 10 vektor acak.

```
>M=normal(10000,10); dev(mean(M)')
```

0.319493614817

```
>plot2d(mean(M)',>distribution):
```

Median dari 10 bilangan acak berdistribusi normal 0-1 mempunyai deviasi yang lebih besar.

```
>dev(median(M)')
```

0.374460271535

Karena kita dapat dengan mudah menghasilkan jalan acak, kita dapat mensimulasikan proses Wiener. Kami mengambil 1000 langkah dari 1000 proses. Kami kemudian memplot deviasi standar dan rata-rata langkah ke-n dari proses ini bersama dengan nilai yang diharapkan berwarna merah.

```
>n=1000; m=1000; M=cumsum(normal(n,m)/sqrt(m)); ...
>t=(1:n)/n; figure(2,1); ...
>figure(1); plot2d(t,mean(M')'); plot2d(t,0,color=red,>add); ...
>figure(2); plot2d(t,dev(M')'); plot2d(t,sqrt(t),color=red,>add); ...
>figure(0):
```

Tests

Tests adalah alat penting dalam statistik. Di Euler, banyak tests yang diterapkan. Semua pengujian ini mengembalikan kesalahan yang kita terima jika kita menolak hipotesis nol.

Misalnya, kami menguji lemparan dadu untuk distribusi yang seragam. Pada 600 kali lemparan, kami mendapatkan nilai berikut, yang kami masukkan ke dalam uji chi-kuadrat.

```
>chitest([90,103,114,101,103,89],dup(100,6)')
```

0.498830517952

Uji chi-kuadrat juga memiliki mode yang menggunakan simulasi Monte Carlo untuk menguji statistiknya. Hasilnya seharusnya hampir sama. Parameter >p menafsirkan vektor y sebagai vektor probabilitas.

```
>chitest([90,103,114,101,103,89],dup(1/6,6)',>p,>montecarlo)
```

0.526

Kesalahan ini terlalu besar. Jadi kita tidak bisa menolak pemerataan. Ini tidak membuktikan bahwa dadu kita adil. Tapi kita tidak bisa menolak hipotesis kita.

Selanjutnya kita menghasilkan 1000 lemparan dadu menggunakan generator angka acak, dan melakukan tes yang sama.

```
>n=1000; t=random([1,n*6]); chitest(count(t*6,6),dup(n,6)')
```

0.528028118442

Mari kita uji nilai rata-rata 100 dengan uji-t.

```
>s=200+normal([1,100])*10; ...
>ttest(mean(s),dev(s),100,200)
```

0.0218365848476

Fungsi ttest() memerlukan nilai mean, deviasi, jumlah data, dan nilai mean yang akan diuji.

Sekarang mari kita periksa dua pengukuran untuk mean yang sama. Kami menolak hipotesis bahwa keduanya mempunyai mean yang sama, jika hasilnya <0,05.

```
>tcomparedata(normal(1,10),normal(1,10))
```

0.38722000942

Jika kita menambahkan bias pada satu distribusi, kita akan mendapatkan lebih banyak penolakan. Ulangi simulasi ini beberapa kali untuk melihat efeknya.

```
>tcomparedata(normal(1,10),normal(1,10)+2)
```

```
5.60009101758e-07
```

Pada contoh berikutnya, kita membuat 20 lemparan dadu acak sebanyak 100 kali dan menghitung yang ada di dalamnya. Rata-rata harus ada 20/6=3,3.

```
>R=random(100,20); R=sum(R*6<=1)'; mean(R)
```

3.28

Sekarang kita bandingkan jumlah satuan dengan distribusi binomial. Pertama kita plot distribusinya.

```
>plot2d(R, distribution=max(R)+1, even=1, style="\/"):
>t=count(R,21);
```

Kemudian kami menghitung nilai yang diharapkan.

```
>n=0:20; b=bin(20,n)*(1/6)^n*(5/6)^(20-n)*100;
```

Kita harus mengumpulkan beberapa angka untuk mendapatkan kategori yang cukup besar.

```
>t1=sum(t[1:2])|t[3:7]|sum(t[8:21]); ...
>b1=sum(b[1:2])|b[3:7]|sum(b[8:21]);
```

Uji chi-square menolak hipotesis bahwa distribusi kita merupakan distribusi binomial, jika hasilnya <0,05.

```
>chitest(t1,b1)
```

```
0.53921579764
```

Contoh berikut berisi hasil dua kelompok orang (misalnya laki-laki dan perempuan) yang memilih satu dari enam partai.

```
>A=[23,37,43,52,64,74;27,39,41,49,63,76]; ...
> writetable(A,wc=6,labr=["m","f"],labc=1:6)
```

```
5
                                         6
      1
             2
                   3
                           4
                                        74
     23
            37
                   43
                          52
                                 64
f
     2.7
            39
                   41
                          49
                                 63
                                        76
```

Kami ingin menguji independensi suara dari jenis kelamin. Uji tabel chi^2 melakukan hal ini. Dampaknya terlalu besar untuk menolak kemerdekaan. Jadi kita tidak bisa bilang, kalau voting tergantung jenis kelamin dari data tersebut.

```
>tabletest(A)
```

```
0.990701632326
```

Berikut ini adalah tabel yang diharapkan, jika kita mengasumsikan frekuensi pemungutan suara yang diamati.

```
>writetable(expectedtable(A),wc=6,dc=1,labr=["m","f"],labc=1:6)
```

```
1 2 3 4 5 6
m 24.9 37.9 41.9 50.3 63.3 74.7
f 25.1 38.1 42.1 50.7 63.7 75.3
```

Kita dapat menghitung koefisien kontingensi yang dikoreksi. Karena sangat mendekati 0, kami menyimpulkan bahwa pemungutan suara tidak bergantung pada jenis kelamin.

```
>contingency(A)
```

0.0427225484717

Beberapa Tes Lagi

Selanjutnya kita menggunakan analisis varians (uji F) untuk menguji tiga sampel data yang berdistribusi normal untuk nilai mean yang sama. Metode tersebut disebut ANOVA (analisis varians). Di Euler, fungsi varanalisis() digunakan.

```
>x1=[109,111,98,119,91,118,109,99,115,109,94]; mean(x1),
```

106.545454545

```
>x2=[120,124,115,139,114,110,113,120,117]; mean(x2),
```

119.111111111

```
>x3=[120,112,115,110,105,134,105,130,121,111]; mean(x3)
```

116.3

```
>varanalysis(x1,x2,x3)
```

```
0.0138048221371
```

Artinya, kami menolak hipotesis nilai mean yang sama. Kami melakukan ini dengan probabilitas kesalahan 1,3%.

Ada juga uji median, yang menolak sampel data dengan distribusi rata-rata yang berbeda, menguji median dari sampel yang disatukan.

```
>a=[56,66,68,49,61,53,45,58,54];
>b=[72,81,51,73,69,78,59,67,65,71,68,71];
>mediantest(a,b)
```

0.0241724220052

Tes kesetaraan lainnya adalah tes peringkat. Ini jauh lebih tajam daripada tes median.

```
>ranktest(a,b)
```

0.00199969612469

Pada contoh berikut, kedua distribusi mempunyai mean yang sama.

```
>ranktest(random(1,100),random(1,50) *3-1)
```

0.129608141484

Sekarang mari kita coba mensimulasikan dua perlakuan a dan b yang diterapkan pada orang yang berbeda.

```
>a=[8.0,7.4,5.9,9.4,8.6,8.2,7.6,8.1,6.2,8.9];
>b=[6.8,7.1,6.8,8.3,7.9,7.2,7.4,6.8,6.8,8.1];
```

Tes signum memutuskan, apakah a lebih baik dari b.

```
>signtest(a,b)
```

0.0546875

Ini kesalahan yang terlalu besar. Kita tidak dapat menolak bahwa a sama baiknya dengan b. Uji Wilcoxon lebih tajam dibandingkan uji ini, namun mengandalkan nilai kuantitatif perbedaannya.

```
>wilcoxon(a,b)
```

0.0296680599405

Mari kita coba dua tes lagi menggunakan rangkaian yang dihasilkan.

```
>wilcoxon(normal(1,20),normal(1,20)-1)
```

0.0068706451766

```
>wilcoxon(normal(1,20),normal(1,20))
```

0.275145971064

Angka Acak

Berikut ini adalah pengujian pembangkit bilangan acak. Euler menggunakan generator yang sangat bagus, jadi kita tidak perlu mengharapkan adanya masalah.

Pertama kita menghasilkan sepuluh juta angka acak di [0,1].

```
>n:=10000000; r:=random(1,n);
```

Selanjutnya kita hitung jarak antara dua angka yang kurang dari 0,05.

```
>a:=0.05; d:=differences(nonzeros(r<a));</pre>
```

Terakhir, kami memplot berapa kali, setiap jarak terjadi, dan membandingkannya dengan nilai yang diharapkan.

```
>m=getmultiplicities(1:100,d); plot2d(m); ...
> plot2d("n*(1-a)^(x-1)*a^2",color=red,>add):
```

Hapus datanya.

```
>remvalue n;
```

Pengantar untuk Pengguna Proyek R

Jelasnya, EMT tidak bersaing dengan R sebagai paket statistik. Namun, ada banyak prosedur dan fungsi statistik yang tersedia di EMT juga. Jadi EMT dapat memenuhi kebutuhan dasar. Bagaimanapun, EMT hadir dengan paket numerik dan sistem aljabar komputer.

Notebook ini cocok untuk Anda yang sudah familiar dengan R, namun perlu mengetahui perbedaan sintaksis EMT dan R. Kami mencoba memberikan gambaran umum tentang hal-hal yang sudah jelas dan kurang jelas yang perlu Anda ketahui.

Selain itu, kami mencari cara untuk bertukar data antara kedua sistem.

Note that this is a work in progress.

Sintaks Dasar

Hal pertama yang Anda pelajari di R adalah membuat vektor. Dalam EMT, perbedaan utamanya adalah operator : dapat mengambil ukuran langkah. Selain itu, ia mempunyai daya ikat yang rendah.

```
>n=10; 0:n/20:n-1
```

```
[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9]
```

Fungsi c() tidak ada. Dimungkinkan untuk menggunakan vektor untuk menggabungkan sesuatu.

Contoh berikut, seperti banyak contoh lainnya, berasal dari "Interoduksi ke R" yang disertakan dengan proyek R. Jika Anda membaca PDF ini, Anda akan menemukan bahwa saya mengikuti jalurnya dalam tutorial ini.

```
>x=[10.4, 5.6, 3.1, 6.4, 21.7]; [x,0,x]
```

```
[10.4, 5.6, 3.1, 6.4, 21.7, 0, 10.4, 5.6, 3.1, 6.4, 21.7]
```

Operator titik dua dengan ukuran langkah EMT digantikan oleh fungsi seq() di R. Kita dapat menulis fungsi ini di EMT.

```
>function seq(a,b,c) := a:b:c; ...
>seq(0,-0.1,-1)
```

```
[0, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9, -1]
```

Fungsi rep() dari R tidak ada di EMT. Untuk masukan vektor dapat dituliskan sebagai berikut.

```
>function rep(x:vector,n:index) := flatten(dup(x,n)); ...
>rep(x,2)
```

```
[10.4, 5.6, 3.1, 6.4, 21.7, 10.4, 5.6, 3.1, 6.4, 21.7]
```

Perhatikan bahwa "=" atau ":=" digunakan untuk tugas. Operator "->" digunakan untuk satuan dalam EMT.

```
>125km -> " miles"
```

```
77.6713990297 miles
```

Operator "<-" untuk penugasan memang menyesatkan, dan bukan ide yang baik untuk R. Berikut ini akan membandingkan a dan -4 di EMT.

```
>a=2; a<-4
```

0

Di R, "a<-4<3" berfungsi, tetapi "a<-4<-3" tidak. Saya juga memiliki ambiguitas serupa di EMT, tetapi saya mencoba menghilangkannya sedikit demi sedikit.

EMT dan R memiliki vektor bertipe boolean. Namun dalam EMT, angka 0 dan 1 digunakan untuk mewakili salah dan benar. Di R, nilai benar dan salah tetap bisa digunakan dalam aritmatika biasa seperti di EMT.

```
>x<5, %*x
```

```
[0, 0, 1, 0, 0]
[0, 0, 3.1, 0, 0]
```

EMT memunculkan kesalahan atau menghasilkan NAN tergantung pada tanda "kesalahan".

```
>errors off; 0/0, isNAN(sqrt(-1)), errors on;
```

NAN 1

Stringnya sama di R dan EMT. Keduanya berada di lokal saat ini, bukan di Unicode.

Di R ada paket untuk Unicode. Di EMT, string dapat berupa string Unicode. String unicode dapat diterjemahkan ke pengkodean lokal dan sebaliknya. Selain itu, u"..." dapat berisi entitas HTML.

```
>u"© Ren&eacut; Grothmann"
```

```
© René Grothmann
```

Berikut ini mungkin atau mungkin tidak ditampilkan dengan benar pada sistem Anda sebagai A dengan titik dan garis di atasnya. Itu tergantung pada font yang Anda gunakan.

```
>chartoutf([480])
```

Penggabungan string dilakukan dengan "+" atau "|". Ini bisa berisi angka, yang akan dicetak dalam format saat ini.

```
>"pi = "+pi
```

```
pi = 3.14159265359
```

Pengindeksan

Seringkali, ini akan berfungsi seperti di R.

Namun EMT akan menafsirkan indeks negatif dari belakang vektor, sementara R menafsirkan x[n] sebagai x tanpa elemen ke-n.

```
>x, x[1:3], x[-2]

[10.4, 5.6, 3.1, 6.4, 21.7]

[10.4, 5.6, 3.1]
```

Perilaku R dapat dicapai dalam EMT dengan drop().

```
>drop(x,2)
```

```
[10.4, 3.1, 6.4, 21.7]
```

Vektor logika tidak diperlakukan berbeda sebagai indeks di EMT, berbeda dengan R. Anda perlu mengekstrak elemen bukan nol terlebih dahulu di EMT.

```
>x, x>5, x[nonzeros(x>5)]
```

```
[10.4, 5.6, 3.1, 6.4, 21.7]
[1, 1, 0, 1, 1]
[10.4, 5.6, 6.4, 21.7]
```

Sama seperti di R, vektor indeks dapat berisi pengulangan.

```
>x[[1,2,2,1]]
```

```
[10.4, 5.6, 5.6, 10.4]
```

Namun penamaan indeks tidak dimungkinkan di EMT. Untuk paket statistik, hal ini sering kali diperlukan untuk memudahkan akses ke elemen vektor.

Untuk meniru perilaku ini, kita dapat mendefinisikan suatu fungsi sebagai berikut.

```
>function sel (v,i,s) := v[indexof(s,i)]; ...
>s=["first","second","third","fourth"]; sel(x,["first","third"],s)
```

```
Trying to overwrite protected function sel!
Error in:
function sel (v,i,s) := v[indexof(s,i)]; ... ...

Trying to overwrite protected function sel!
Error in:
function sel (v,i,s) := v[indexof(s,i)]; ... ...

[10.4, 3.1]
```

Tipe Data

EMT memiliki lebih banyak tipe data tetap daripada R. Jelasnya, di R terdapat vektor yang berkembang. Anda dapat mengatur vektor numerik kosong v dan memberikan nilai ke elemen v[17]. Hal ini tidak mungkin dilakukan di EMT.

Berikut ini agak tidak efisien.

```
>v=[]; for i=1 to 10000; v=v|i; end;
```

EMT sekarang akan membuat vektor dengan v dan i ditambahkan pada tumpukan dan menyalin vektor tersebut kembali ke variabel global v.

Semakin efisien vektor telah ditentukan sebelumnya.

```
>v=zeros(10000); for i=1 to 10000; v[i]=i; end;
```

Untuk mengubah tipe tanggal di EMT, Anda dapat menggunakan fungsi seperti kompleks().

```
>complex(1:4)
[ 1+0i , 2+0i , 3+0i , 4+0i ]
```

Konversi ke string hanya dimungkinkan untuk tipe data dasar. Format saat ini digunakan untuk penggabungan string sederhana. Tapi ada fungsi seperti print() atau frac().

Untuk vektor, Anda dapat dengan mudah menulis fungsi Anda sendiri.

if #<length(v) then s=s+","; endif;

end;

return s+"]";
endfunction

```
>function tostr (v) ...

s="[";
loop 1 to length(v);
s=s+print(v[#],2,0);
```

```
>tostr(linspace(0,1,10))
```

```
[0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00]
```

Untuk komunikasi dengan Maxima, terdapat fungsi convertmxm(), yang juga dapat digunakan untuk memformat vektor untuk keluaran.

```
>convertmxm(1:10)
```

```
[1,2,3,4,5,6,7,8,9,10]
```

Untuk Latex perintah tex dapat digunakan untuk mendapatkan perintah Latex.

```
>tex(&[1,2,3])
```

```
\left\{ 1, 2, 3 \right\}
```

Faktor dan Tabel

Dalam pengantar R ada contoh yang disebut faktor.

Berikut ini adalah daftar wilayah 30 negara bagian.

```
>austates = ["tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa", ...
>"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas", ...
>"sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa", ...
>"sa", "act", "nsw", "vic", "vic", "act"];
```

Asumsikan, kita memiliki pendapatan yang sesuai di setiap negara bagian.

```
>incomes = [60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, ... >61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46, ... >59, 46, 58, 43];
```

Sekarang, kami ingin menghitung rata-rata pendapatan di suatu wilayah. Menjadi program statistik, R memiliki faktor() dan tappy() untuk ini.

EMT dapat melakukan hal ini dengan menemukan indeks wilayah dalam daftar wilayah unik.

```
>auterr=sort(unique(austates)); f=indexofsorted(auterr,austates)
```

```
[6, 5, 4, 2, 2, 3, 8, 8, 4, 7, 2, 7, 4, 4, 5, 6, 5, 3, 8, 7, 4, 2, 2, 8, 5, 1, 2, 7, 7, 1]
```

Pada titik itu, kita dapat menulis fungsi perulangan kita sendiri untuk melakukan sesuatu hanya untuk satu faktor

Atau kita bisa meniru fungsi tapply() dengan cara berikut.

```
>function map tappl (i; f$:call, cat, x) ...

u=sort(unique(cat));
f=indexof(u,cat);
return f$(x[nonzeros(f==indexof(u,i))]);
```

Ini agak tidak efisien, karena menghitung wilayah unik untuk setiap i, tetapi berhasil.

```
>tappl(auterr, "mean", austates, incomes)
[44.5, 57.3333, 55.5, 53.6, 55, 60.5, 56, 52.25]
```

Perhatikan bahwa ini berfungsi untuk setiap vektor wilayah.

```
>tappl(["act", "nsw"], "mean", austates, incomes)
```

```
[44.5, 57.3333]
```

endfunction

Sekarang, paket statistik EMT mendefinisikan tabel seperti di R. Fungsi readtable() dan writetable() dapat digunakan untuk input dan output.

Sehingga kita bisa mencetak rata-rata pendapatan negara di daerah secara bersahabat.

```
>writetable(tappl(auterr, "mean", austates, incomes), labc=auterr, wc=7)

act nsw nt qld sa tas vic wa
44.5 57.33 55.5 53.6 55 60.5 56 52.25
```

Kita juga bisa mencoba meniru perilaku R sepenuhnya.

Faktor-faktor tersebut harus disimpan dengan jelas dalam kumpulan beserta jenis dan kategorinya (negara bagian dan teritori dalam contoh kita). Untuk EMT, kami menambahkan indeks yang telah dihitung sebelumnya.

```
>function makef (t) ...

## Factor data
## Returns a collection with data t, unique data, indices.
## See: tapply
u=sort(unique(t));
return {{t,u,indexofsorted(u,t)}};
endfunction

>statef=makef(austates);
```

Sekarang elemen ketiga dari koleksi akan berisi indeks.

```
>statef[3]
```

```
[6, 5, 4, 2, 2, 3, 8, 8, 4, 7, 2, 7, 4, 4, 5, 6, 5, 3, 8, 7, 4, 2, 2, 8, 5, 1, 2, 7, 7, 1]
```

Sekarang kita bisa meniru tapply() dengan cara berikut. Ini akan mengembalikan tabel sebagai kumpulan data tabel dan judul kolom.

```
>function tapply (t:vector,tf,f$:call) ...
```

```
## Makes a table of data and factors
## tf : output of makef()
## See: makef
uf=tf[2]; f=tf[3]; x=zeros(length(uf));
for i=1 to length(uf);
  ind=nonzeros(f==i);
  if length(ind)==0 then x[i]=NAN;
  else x[i]=f$(t[ind]);
  endif;
end;
return {{x,uf}};
endfunction
```

Kami tidak menambahkan banyak pengecekan tipe di sini. Satu-satunya tindakan pencegahan menyangkut kategori (faktor) yang tidak memiliki data. Tetapi kita harus memeriksa panjang t yang benar dan kebenaran pengumpulan tf.

Tabel ini dapat dicetak sebagai tabel dengan writetable().

```
>writetable(tapply(incomes, statef, "mean"), wc=7)

act nsw nt qld sa tas vic wa
44.5 57.33 55.5 53.6 55 60.5 56 52.25
```

Array

EMT hanya memiliki dua dimensi untuk array. Tipe datanya disebut matriks. Namun, akan mudah untuk menulis fungsi untuk dimensi yang lebih tinggi atau perpustakaan C untuk ini.

R memiliki lebih dari dua dimensi. Di R array adalah vektor dengan bidang dimensi.

Dalam EMT, vektor adalah matriks dengan satu baris. Itu dapat dibuat menjadi matriks dengan redim().

```
>shortformat; X=redim(1:20,4,5)
                       2
                                   3
                                                           5
           1
                                               4
           6
                       7
                                   8
                                               9
                                                          10
                      12
                                  13
                                              14
          11
                                                          1.5
          16
                      17
                                  18
                                              19
                                                          20
```

Ekstraksi baris dan kolom, atau sub-matriks, mirip dengan R.

```
>X[,2:3]
```

```
2 3
7 8
12 13
17 18
```

Namun, di R dimungkinkan untuk menyetel daftar indeks vektor tertentu ke suatu nilai. Hal yang sama mungkin terjadi di EMT hanya dengan satu putaran.

```
>function setmatrixvalue (M, i, j, v) ...
loop 1 to max(length(i),length(j),length(v))
    M[i{#},j{#}] = v{#};
end;
endfunction
```

Kami mendemonstrasikan ini untuk menunjukkan bahwa matriks dilewatkan dengan referensi di EMT. Jika Anda tidak ingin mengubah matriks M asli, Anda perlu menyalinnya ke dalam fungsi.

```
>setmatrixvalue(X,1:3,3:-1:1,0); X,
           1
                      2
                                  0
                                              4
                                                         5
                      0
                                              9
                                                        10
           6
                                  8
           0
                     12
                                 13
                                                        15
                                            14
          16
                     17
                                 18
                                            19
                                                        20
```

Perkalian luar dalam EMT hanya dapat dilakukan antar vektor. Ini otomatis karena bahasa matriks. Satu vektor harus berupa vektor kolom dan vektor lainnya harus berupa vektor baris.

```
>(1:5) * (1:5) '
             1
                           2
                                        3
                                                      4
                                                                   5
             2
                                                      8
                           4
                                        6
                                                                  10
             3
                           6
                                        9
                                                     12
                                                                  15
                           8
                                       12
             4
                                                     16
                                                                  20
                                       15
                                                     20
                                                                  25
```

Dalam PDF pendahuluan untuk R terdapat contoh yang menghitung distribusi ab-cd untuk a,b,c,d yang dipilih dari 0 hingga n secara acak. Solusi dalam R adalah membentuk matriks 4 dimensi dan menjalankan table() di atasnya.

Tentu saja, hal ini dapat dicapai dengan satu putaran. Tapi loop tidak efektif di EMT atau R. Di EMT, kita bisa menulis loop di C dan itu akan menjadi solusi tercepat.

Namun kita ingin meniru perilaku R. Untuk melakukannya, kita perlu meratakan perkalian ab dan membuat matriks ab-cd.

```
>a=0:6; b=a'; p=flatten(a*b); q=flatten(p-p'); ...
>u=sort(unique(q)); f=getmultiplicities(u,q); ...
>statplot(u,f,"h"):
```

Selain multiplisitas eksak, EMT dapat menghitung frekuensi dalam vektor.

```
>getfrequencies(q,-50:10:50)
```

```
[0, 23, 132, 316, 602, 801, 333, 141, 53, 0]
```

Cara paling mudah untuk memplotnya sebagai distribusi adalah sebagai berikut.

```
>plot2d(q,distribution=11):
```

Namun dimungkinkan juga untuk menghitung terlebih dahulu penghitungan dalam interval yang dipilih sebelumnya. Tentu saja, berikut ini menggunakan getfrequencies() secara internal.

Karena fungsi histo() mengembalikan frekuensi, kita perlu menskalakannya sehingga integral di bawah grafik batang adalah 1.

```
>{x,y}=histo(q,v=-55:10:55); y=y/sum(y)/differences(x); ... >plot2d(x,y,>bar,style="/"):
```

Daftar

EMT memiliki dua jenis daftar. Salah satunya adalah daftar global yang bisa berubah, dan yang lainnya adalah tipe daftar yang tidak bisa diubah. Kami tidak peduli dengan daftar global di sini.

Tipe daftar yang tidak dapat diubah disebut koleksi di EMT. Ini berperilaku seperti struktur di C, tetapi elemennya hanya diberi nomor dan tidak diberi nama.

```
>L={{"Fred", "Flintstone", 40, [1990, 1992]}}
```

```
Fred
Flintstone
40
[1990, 1992]
```

Saat ini unsur-unsur tersebut tidak memiliki nama, meskipun nama dapat ditetapkan untuk tujuan khusus. Mereka diakses dengan nomor.

```
>(L[4])[2]
```

1992

File Input dan Output (Membaca dan Menulis Data)

Anda sering kali ingin mengimpor matriks data dari sumber lain ke EMT. Tutorial ini memberi tahu Anda tentang banyak cara untuk mencapai hal ini. Fungsi sederhananya adalah writematrix() dan readmatrix(). Mari kita tunjukkan cara membaca dan menulis vektor real ke file.

```
>a=random(1,100); mean(a), dev(a),
```

```
0.49815
```

^{0.28037}

Untuk menulis data ke file, kita menggunakan fungsi writematrix().

Karena pengenalan ini kemungkinan besar ada di direktori, di mana pengguna tidak memiliki akses tulis, kami menulis data ke direktori home pengguna. Untuk buku catatan sendiri, hal ini tidak diperlukan, karena file data akan ditulis ke dalam direktori yang sama.

```
>filename="test.dat";
```

Sekarang kita menulis vektor kolom a' ke file. Ini menghasilkan satu nomor di setiap baris file.

```
>writematrix(a',filename);
```

Untuk membaca data, kami menggunakan readmatrix().

```
>a=readmatrix(filename)';
```

Dan hapus file tersebut.

```
>fileremove(filename);
>mean(a), dev(a),
```

0.49815 0.28037

Fungsi writematrix() atau writetable() dapat dikonfigurasi untuk bahasa lain.

Misalnya, jika Anda memiliki sistem Indonesia (titik desimal dengan koma), Excel Anda memerlukan nilai dengan koma desimal yang dipisahkan dengan titik koma dalam file csv (defaultnya adalah nilai yang dipisahkan koma). File berikut "test.csv" akan muncul di folder saat ini Anda.

```
>filename="test.csv"; ...
>writematrix(random(5,3),file=filename,separator=",");
```

Anda sekarang dapat membuka file ini dengan Excel bahasa Indonesia secara langsung.

```
>fileremove(filename);
```

Terkadang kita memiliki string dengan token seperti berikut.

```
>s1:="f m m f m m m f f f m m f"; ...
>s2:="f f f m m f f";
```

Untuk melakukan tokenisasi ini, kami mendefinisikan vektor token.

```
>tok:=["f","m"]
```

f m

Kemudian kita dapat menghitung berapa kali setiap token muncul dalam string, dan memasukkan hasilnya ke dalam tabel.

```
>M:=getmultiplicities(tok,strtokens(s1))_ ...
> getmultiplicities(tok,strtokens(s2));
```

Tulis tabel dengan header token.

```
>writetable(M, labc=tok, labr=1:2, wc=8)
```

f m 1 6 7 2 5 2

Untuk statika, EMT dapat membaca dan menulis tabel.

```
>file="test.dat"; open(file,"w"); ...
>writeln("A,B,C"); writematrix(random(3,3)); ...
>close();
```

Filenya terlihat seperti ini.

```
>printfile(file)
```

```
A,B,C
0.7003664386138074,0.1875530821001213,0.3262339279660414
0.5926249243193858,0.1522927283984059,0.368140583062521
0.8065535209872989,0.7265910840408142,0.7332619844597152
```

Fungsi readtable() dalam bentuknya yang paling sederhana dapat membaca ini dan mengembalikan kumpulan nilai dan baris judul.

```
>L=readtable(file,>list);
```

Koleksi ini dapat dicetak dengan writetable() ke buku catatan, atau ke file.

```
>writetable(L,wc=10,dc=5)
```

```
A B C
0.70037 0.18755 0.32623
0.59262 0.15229 0.36814
0.80655 0.72659 0.73326
```

Matriks nilai adalah elemen pertama dari L. Perhatikan bahwa mean() di EMT menghitung nilai rata-rata baris matriks.

```
>mean(L[1])

0.40472
0.37102
0.75547

File CSV
```

Pertama, mari kita menulis matriks ke dalam file. Untuk outputnya, kami membuat file di direktori kerja saat ini.

```
>file="test.csv"; ...
>M=random(3,3); writematrix(M,file);
```

Berikut isi file ini.

0

```
>printfile(file)
```

```
0.8221197733097619,0.821531098722547,0.7771240608094004
0.8482947121863489,0.3237767724883862,0.6501422353377985
0.1482301827518109,0.3297459716109594,0.6261901074210923
```

CVS ini dapat dibuka pada sistem berbahasa Inggris ke Excel dengan klik dua kali. Jika Anda mendapatkan file seperti itu di sistem Jerman, Anda perlu mengimpor data ke Excel dengan memperhatikan titik desimal. Namun titik desimal juga merupakan format default untuk EMT. Anda dapat membaca matriks dari file dengan readmatrix().

```
>readmatrix(file)

0.82212   0.82153   0.77712
0.84829   0.32378   0.65014
0.14823   0.32975   0.62619
```

Dimungkinkan untuk menulis beberapa matriks ke satu file. Perintah open() dapat membuka file untuk ditulis dengan parameter "w". Standarnya adalah "r" untuk membaca.

```
>open(file, "w"); writematrix(M); writematrix(M'); close();
```

Matriks dipisahkan oleh garis kosong. Untuk membaca matriks, buka file dan panggil readmatrix() beberapa kali.

1

Di Excel atau spreadsheet serupa, Anda dapat mengekspor matriks sebagai CSV (nilai yang dipisahkan koma). Di Excel 2007, gunakan "save as" dan "other format", lalu pilih "CSV". Pastikan tabel saat ini hanya berisi data yang ingin Anda ekspor.

Ini sebuah contoh.

```
>printfile("excel-data.csv")
```

```
0;1000;1000

1;1051,271096;1072,508181

2;1105,170918;1150,273799

3;1161,834243;1233,67806

4;1221,402758;1323,129812

5;1284,025417;1419,067549

6;1349,858808;1521,961556

7;1419,067549;1632,31622

8;1491,824698;1750,6725

9;1568,312185;1877,610579

10;1648,721271;2013,752707
```

Seperti yang Anda lihat, sistem bahasa Jerman saya menggunakan titik koma sebagai pemisah dan koma desimal. Anda dapat mengubahnya di pengaturan sistem atau di Excel, tetapi hal ini tidak diperlukan untuk membaca matriks menjadi EMT.

Cara termudah untuk membaca ini ke dalam Euler adalah readmatrix(). Semua koma diganti dengan titik dengan parameter >koma. Untuk CSV bahasa Inggris, hilangkan saja parameter ini.

```
>M=readmatrix("excel-data.csv",>comma)
```

```
0
        1000
                   1000
1
      1051.3
                 1072.5
 2
      1105.2
                 1150.3
 3
      1161.8
                 1233.7
 4
      1221.4
                 1323.1
 5
        1284
                 1419.1
 6
      1349.9
                   1522
7
      1419.1
                 1632.3
8
      1491.8
                 1750.7
9
      1568.3
                 1877.6
10
      1648.7
                 2013.8
```

Mari kita rencanakan ini.

```
>plot2d(M'[1],M'[2:3],>points,color=[red,green]'):
```

Ada cara yang lebih mendasar untuk membaca data dari suatu file. Anda dapat membuka file dan membaca angka baris demi baris. Fungsi getvectorline() akan membaca angka dari sebaris data. Secara default, ini mengharapkan titik desimal. Tapi bisa juga menggunakan koma desimal, jika Anda memanggil setdecimalot(",") sebelum Anda menggunakan fungsi ini.

Fungsi berikut adalah contohnya. Itu akan berhenti di akhir file atau baris kosong.

```
>function myload (file) ...
```

```
open(file);
M=[];
repeat
   until eof();
   v=getvectorline(3);
   if length(v)>0 then M=M_v; else break; endif;
end;
return M;
close(file);
endfunction
```

```
>myload(file)
```

```
0.82212 0.82153 0.77712
0.84829 0.32378 0.65014
0.14823 0.32975 0.62619
```

Dimungkinkan juga untuk membaca semua angka dalam file itu dengan getvector().

```
>open(file); v=getvector(10000); close(); redim(v[1:9],3,3)

0.82212    0.82153    0.77712
    0.84829    0.32378    0.65014
    0.14823    0.32975    0.62619
```

Oleh karena itu sangat mudah untuk menyimpan suatu vektor nilai, satu nilai di setiap baris dan membaca kembali vektor ini.

```
>v=random(1000); mean(v)

0.50303

>writematrix(v',file); mean(readmatrix(file)')
```

0.50303

Menggunakan Tabel

Tabel dapat digunakan untuk membaca atau menulis data numerik. Misalnya, kita menulis tabel dengan header baris dan kolom ke sebuah file.

```
>file="test.tab"; M=random(3,3); ...
>open(file,"w"); ...
>writetable(M, separator=",",labc=["one","two","three"]); ...
>close(); ...
>printfile(file)
```

```
one, two, three
0.09, 0.39, 0.86
0.39, 0.86, 0.71
0.2, 0.02, 0.83
```

Ini dapat diimpor ke Excel.

Untuk membaca file di EMT, kami menggunakan readtable().

```
>{M,headings}=readtable(file,>clabs); ...
>writetable(M,labc=headings)
```

```
one two three
0.09 0.39 0.86
0.39 0.86 0.71
0.2 0.02 0.83
```

Menganalisis Garis

Anda bahkan dapat mengevaluasi setiap baris dengan tangan. Misalkan, kita memiliki baris dengan format berikut.

```
>line="2020-11-03, Tue, 1'114.05"
```

```
2020-11-03, Tue, 1'114.05
```

Pertama, kita dapat memberi token pada garis tersebut.

```
>vt=strtokens(line)
```

```
2020-11-03
Tue
1'114.05
```

Kemudian kita dapat mengevaluasi setiap elemen garis menggunakan evaluasi yang sesuai.

```
>day(vt[1]), ...
>indexof(["mon","tue","wed","thu","fri","sat","sun"],tolower(vt[2])), ...
>strrepl(vt[3],"'","")()
```

```
7.3816e+05
2
1114
```

Dengan menggunakan ekspresi reguler, dimungkinkan untuk mengekstrak hampir semua informasi dari sebaris data.

Asumsikan kita memiliki baris berikut sebuah dokumen HTML.

```
>line="1145.455.6-4.5"
```

```
1145.455.6-4.5
```

Untuk mengekstraknya, kami menggunakan ekspresi reguler, yang mencari

```
tanda kurung tutup >,string apa pun yang tidak mengandung tanda kurung dengan
```

sub-pencocokan "(...)",

```
braket pembuka dan penutup menggunakan solusi terpendek,sekali lagi string apa pun yang tidak mengandung tanda kurung,dan tanda kurung buka <.</li>
```

Ekspresi reguler agak sulit dipelajari tetapi sangat ampuh.

```
>{pos,s,vt}=strxfind(line,">([^<>]+)<.+?>([^<>]+)<");
```

Hasilnya adalah posisi kecocokan, string yang cocok, dan vektor string untuk sub-kecocokan.

```
>for k=1:length(vt); vt[k](), end;

1145.5
5.6
```

Berikut adalah fungsi yang membaca semua item numerik antara dan .

```
>function readtd (line) ...

v=[]; cp=0;
repeat
    {pos,s,vt}=strxfind(line,"<td.*?>(.+?)",cp);
    until pos==0;
    if length(vt)>0 then v=v|vt[1]; endif;
    cp=pos+strlen(s);
end;
return v;
endfunction
```

```
>readtd(line+"non-numerical")
```

```
1145.45
5.6
-4.5
non-numerical
```

Membaca dari Web

Situs web atau file dengan URL dapat dibuka di EMT dan dapat dibaca baris demi baris.

Dalam contoh, kita membaca versi terkini dari situs EMT. Kami menggunakan ekspresi reguler untuk memindai "Versi ..." dalam sebuah judul.

```
>function readversion () ...
```

```
urlopen("http://www.euler-math-toolbox.de/Programs/Changes.html");
repeat
  until urleof();
  s=urlgetline();
  k=strfind(s,"Version ",1);
  if k>0 then substring(s,k,strfind(s,"<",k)-1), break; endif;
end;
urlclose();
endfunction</pre>
```

>readversion

Version 2022-05-18

Input dan Output Variabel

Anda dapat menulis variabel dalam bentuk definisi Euler ke file atau ke baris perintah.

```
>writevar(pi,"mypi");
```

```
mypi = 3.141592653589793;
```

Untuk pengujian, kami membuat file Euler di direktori kerja EMT.

```
>file="test.e"; ...
>writevar(random(2,2),"M",file); ...
>printfile(file,3)
```

```
M = [ ...
0.5991820585590205, 0.7960280262224293;
0.5167243983231363, 0.2996684599070898];
```

Sekarang kita dapat memuat file tersebut. Ini akan mendefinisikan matriks M.

```
>load(file); show M,
```

```
M = 0.59918 0.79603 0.51672 0.29967
```

Omong-omong, jika writevar() digunakan pada suatu variabel, definisi variabel dengan nama variabel tersebut akan dicetak.

```
>writevar(M); writevar(inch$)
```

```
M = [ ...
0.5991820585590205, 0.7960280262224293;
0.5167243983231363, 0.2996684599070898];
inch$ = 0.0254;
```

Kita juga bisa membuka file baru atau menambahkan file yang sudah ada. Dalam contoh kita menambahkan file yang dibuat sebelumnya.

```
>open(file, "a"); ...
>writevar(random(2,2), "M1"); ...
>writevar(random(3,1), "M2"); ...
>close();
>load(file); show M1; show M2;
```

```
M1 =
0.30287 0.15372
0.7504 0.75401
M2 =
0.27213
0.053211
0.70249
```

Untuk menghapus file apa pun, gunakan fileremove().

```
>fileremove(file);
```

Vektor baris dalam suatu file tidak memerlukan koma, jika setiap angka berada pada baris baru. Mari kita buat file seperti itu, tulis setiap baris satu per satu dengan writeln().

```
>open(file,"w"); writeln("M = ["); ...
>for i=1 to 5; writeln(""+random()); end; ...
>writeln("];"); close(); ...
>printfile(file)
```

```
M = [
0.344851384551
0.0807510017715
0.876519562911
0.754157709472
0.688392638934
];
```

```
>load(file); M
```

```
[0.34485, 0.080751, 0.87652, 0.75416, 0.68839]
```