CYBER SECURITY & CRYPTOGRAPHY (7)

techworldthink • March 11, 2022

17. Explain PGP cryptographic functions with diagram.

- PGP stands for Pretty Good Privacy (PGP) which is invented by Phil Zimmermann.
- PGP was designed to provide all four aspects of security, i.e., privacy, integrity, authentication, and non-repudiation in the sending of email.
- PGP uses a digital signature (a combination of hashing and public key encryption) to provide integrity, authentication, and non-repudiation. PGP uses a combination of secret key encryption and public key encryption to provide privacy. Therefore, we can say that the digital signature uses one hash function, one secret key, and two private-public key pairs.
- PGP is an open source and freely available software package for email security.
- PGP provides authentication through the use of Digital Signature.
- It provides confidentiality through the use of symmetric block encryption.
- It provides compression by using the ZIP algorithm, and EMAIL compatibility using the radix-64 encoding scheme.

Following are the steps taken by PGP to create secure e-mail at the sender site:

- The e-mail message is hashed by using a hashing function to create a digest.
- The digest is then encrypted to form a signed digest by using the sender's private key, and then signed digest is added to the original email message.
- The original message and signed digest are encrypted by using a one-time secret key created by the sender.
- The secret key is encrypted by using a receiver's public key.

• Both the encrypted secret key and the encrypted combination of message and digest are sent together.

PGP at the Sender site (A)

Computer Network PGP

Following are the steps taken to show how PGP uses hashing and a combination of three keys to generate the original message:

- The receiver receives the combination of encrypted secret key and message digest is received.
- The encrypted secret key is decrypted by using the receiver's private key to get the one-time secret key.
- The secret key is then used to decrypt the combination of message and digest.
- The digest is decrypted by using the sender's public key, and the original message is hashed by using a hash function to create a digest.
- Both the digests are compared if both of them are equal means that all the aspects of security are preserved.

PGP at the Receiver site (B)

Computer Network PGP

Disadvantages of PGP Encryption

- The Administration is difficult: The different versions of PGP complicate the administration.
- Compatibility issues: Both the sender and the receiver must have compatible versions of PGP. For example, if you encrypt an email by using PGP with one of the encryption technique, the receiver has a different version of PGP which cannot read the data.
- Complexity: PGP is a complex technique. Other security schemes use symmetric encryption that uses one key or asymmetric encryption that uses two different keys. PGP uses a hybrid approach that implements symmetric encryption with two keys. PGP is more complex, and it is less familiar than the traditional symmetric or asymmetric methods.
- No Recovery: Computer administrators face the problems of losing their passwords. In such situations, an administrator should use a special program to retrieve passwords. For example, a technician has physical access to a PC which can be used to retrieve a password. However, PGP does not offer such a special

program for recovery; encryption methods are very strong so, it does not retrieve the forgotten passwords results in lost messages or lost files.

18. Explain Secure Electronic Transaction (SET) Protocol.

Secure Electronic Transaction or SET is a system that ensures the security and integrity of electronic transactions done using credit cards in a scenario. SET is not some system that enables payment but it is a security protocol applied to those payments. It uses different encryption and hashing techniques to secure payments over the internet done through credit cards. The SET protocol was supported in development by major organizations like Visa, Mastercard, Microsoft which provided its Secure Transaction Technology (STT), and Netscape which provided the technology of Secure Socket Layer (SSL).

SET protocol restricts the revealing of credit card details to merchants thus keeping hackers and thieves at bay. The SET protocol includes Certification Authorities for making use of standard Digital Certificates like X.509 Certificate.

Before discussing SET further, let's see a general scenario of electronic transactions, which includes client, payment gateway, client financial institution, merchant, and merchant financial institution.

Requirements in SET:

The SET protocol has some requirements to meet, some of the important requirements are :

- It has to provide mutual authentication i.e., customer (or cardholder) authentication by confirming if the customer is an intended user or not, and merchant authentication.
- It has to keep the PI (Payment Information) and OI (Order Information) confidential by appropriate encryptions.
- It has to be resistive against message modifications i.e., no changes should be allowed in the content being transmitted.
- SET also needs to provide interoperability and make use of the best security mechanisms.

Participants in SET:

In the general scenario of online transactions, SET includes similar participants:

1. **Cardholder –** customer

- 2. **Issuer** customer financial institution
- 3. Merchant
- 4. **Acquirer –** Merchant financial
- 5. **Certificate authority** Authority that follows certain standards and issues certificates(like X.509V3) to all other participants.

SET functionalities:

- **Provide AuthenticationMerchant Authentication** To prevent theft, SET allows customers to check previous relationships between merchants and financial institutions. Standard X.509V3 certificates are used for this verification.
- **Customer / Cardholder Authentication** SET checks if the use of a credit card is done by an authorized user or not using X.509V3 certificates.
- Provide Message Confidentiality: Confidentiality refers to preventing
 unintended people from reading the message being transferred. SET implements
 confidentiality by using encryption techniques. Traditionally DES is used for
 encryption purposes.
- **Provide Message Integrity**: SET doesn't allow message modification with the help of signatures. Messages are protected against unauthorized modification using RSA digital signatures with SHA-1 and some using HMAC with SHA-1,