Covige du QCY bilan sur Enpenentielle et Sui

Question 1: Exponentielle Q1

Soit h la fonction définie et dérivable sur R telle que pour tout réel x, $h(x) = (2x-1)e^x$, l'expression de la sa fonction dérivée h'(x) est

- $h'(x)=(2x-1)e^x$
- $h'(x) = -e^x$
- $h'(x) = (2x+1)e^x$

$$M(n) = 2n - 1$$
 $V(n) = e^{2C}$ $V(n) = e^{2C}$

Un programme en langage Python qui retourne la somme des entiers de 1 à 100 est :

def somme(): s = 0for k in range(101): s = s + k

return s

def somme(): s = 0 for k in range(100): s = s + k return s

def somme(): s = 0 while s < 100: s = 2 * s +1 return s

def somme(): s = 0 while s < 100: s = s +1 return s

Question 3: Q3 Suites

Soit (u_n) une suite arithmétique de premier terme $u_0{=}2\,$ et de raison 0,9. On a :

$$u_{50}=47$$

 $u_{50} = -47$

 $u_{50}=100,9$

 $u_{50} = -100,9$

$$M_{50} = M_0 + (50 - 0) \times 0,5$$

$$M_{50} = 2 + 50 \times 0,5 = 2 + 45 = 47$$

Question 4: Q2 exeponentielle

Soit f la fonction définie et dérivable pour tout réel x différent de 0 telle que $f(x) = \frac{e^x}{x}$. Sélectionner la ou les affirmations vraies.

- $\Box f'(x) = e^x$
- f'(1)=0
 - $\int_{-\infty}^{\infty} f(x) \times f(-x) = \frac{-1}{x^2}$

Pour tout x ≠ 0;

 $f(x) = \frac{\mathcal{U}(x)}{\mathcal{V}(x)}$ $f(x) = \frac{\mathcal{U}(x)}{\mathcal{V}(x)} \mathcal{V}(x)$ $f(x) = \frac{\mathcal{U}(x)}{\mathcal{V}(x)} \mathcal{V}(x)$ $f(x) = \frac{\mathcal{U}(x)}{\mathcal{V}(x)} \mathcal{V}(x)$

 $\int_{-\infty}^{\infty} (m) = \frac{e^{2x} \times \pi - e^{2x} \times 1}{2^{2}}$

f)(n) = enx(n-1)

On en déduit que: f(a)-0

Question 5: Q3 Exponentielle

Pour tout réel x, $\frac{\mathrm{e}^x}{\mathrm{e}^{-x}}$ est égal à :

- \circ -1
- \circ e^{-2x}

 $(e^x)^2$

 \circ e

Pau tout rèel n,

 $\frac{e^{\chi}}{e^{\chi}} = e^{\chi} \times e^{-(-\chi)} \times t^{\chi} \times 2^{\chi}$

donc ex - (ox)

