Lecture 7

Organic Chemistry: Fundamentals and Applications (CSO201A)

Dr. Srinivas Dharavath

Assistant Professor
Department of Chemistry
Indian Institute of Technology, Kanpur
Kanpur- 208016

E-mail: srinivasd@iitk.ac.in

You will be able to name any cyclic organic molecule as per IUPAC rules

Alicyclic Compounds Contd

Alicyclic Compounds Containing Functional Groups:

(Lactums) 1. Cyclic amides (lactum): 2-azacycloalkanone

Alicyclic Compounds Containing Functional Groups:

(Lactones) 2. Cyclic esters (lactone): 2-oxacycloalkanone

Preferred IUPAC Name (PI)

7. Bicyclo Alkanes

Bicyclo alkanes:

- 1. Write prefix <u>Bicyclo</u> before <u>alkane</u> and the number of bridge carbons in brackets between the two.
- 2. Write the numbers in descending order within brackets \rightarrow "Bicyclo [x.y.z] alkane". Where, x>y>z.
- 3. If substituents present:

1st bridge head →longest bridge →medium-sized bridge →smallest bridge.

8. Spiro Compounds

Spiro Compounds:

- 1. Use prefix <u>Spiro</u> before <u>alkane</u> and number of carbons of two rings in between.
- 2. Write the number of carbons of two rings in ascending order within brackets.
- 3. If substituents: smaller ring's carbon adjacent to quaternary spiro carbon gets 1st.

9. Trivial Naming

Common/Trivial naming: (Before IUPAC Naming)

1. Naming based on their origin/source or specific property.

- 2. Formic acid→ formica (ant in latin) ✓
 - 3. CHCl₃ \rightarrow chloroform (chlorination of drinking water & swimming pools)
- 4 CH₃-CO-CH₃ → acetone
- 5. CH₃-COOH → acetic acid
- 6. $C_6H_6 \rightarrow$ benzene (gum benzoin, aromatic resin)
- 7. $CH_4 \rightarrow methane$

IUPAC Advanced-2 Course: Review

Alicyclic Compounds Containing Functional Groups: (Lactums)

1. Cyclic amides (lactum): 2-azacycloalkanone -

Alicyclic Compounds Containing Functional Groups: (Lactones)

2. Cyclic esters (lactone): 2-oxacycloalkanone

Bicyclo alkanes:

- 1. Write prefix <u>Bicyclo</u> before <u>alkane</u> and the number of bridge carbons in brackets between the two.
- 2. Write the numbers in descending order within brackets \rightarrow "Bicyclo [x.y.z] alkane". Where, x>y>z.
- 3. If substituents present:

1st bridge head →longest bridge →medium-sized bridge →smallest bridge.

Spiro Compounds:

- 1. Use prefix Spiro before alkane and number of carbons of two rings in between.
- 2. Write the number of carbons of two rings in ascending order within brackets.
- 3. If substituents: smaller ring's carbon adjacent to quaternary spiro carbon gets 1st.

Common/Trivial naming: (Before IUPAC Naming)

1. Naming based on their origin/source or specific property.

PRACTICE

PRACTICE

