Section 2: Randomization Inference

Valentine Gilbert

September 16, 2021

Overview

- Motivation
- 2 Hypothesis Testing
- Confidence Intervals
- Fisher's Tea Test

2/23

Sampling Uncertainty and Design-Based Uncertainty

Sampling Uncertainty

- We are used to thinking of variability in our estimates as coming from sampling uncertainty
- For example, if we are trying to estimate a population mean based on a random sample
 - ⇒ We observe only one of many potential sample means
- But this isn't always the most relevant source of uncertainty
- What if we have data on the population of interest and run a randomized experiment?
 Where does variability in our causal estimate come from?

Unit	Actual Sample			Alternative Sample I			Alternative Sample II			
	Y_i	Z_i	R_i	Y_i	Z_i	R_i	Y_i	Z_i	R_i	
1	✓	✓	1	?	?	0	?	?	0	
2	?	?	0	?	?	0	?	?	0	
3	?	?	0	✓	✓	1	✓	✓	1	
4	?	?	0	✓	✓	1	?	?	0	
:	:	:	:	:	:	:	:	:	:	
n	· /	· /	i 1	?	?	ò	?	?	0	

Source: Abadie et al. (2020 ECMA)

Sampling Uncertainty and Design-Based Uncertainty

Design-Based Uncertainty

- In randomized experiments, variability in our causal estimates comes from randomization, not sampling
 - We observe outcomes associated with only one of many potential randomization vectors
- Unlike with sampling uncertainty, we know the underlying probability distribution of randomization vectors
- For certain kinds of null hypotheses, we can generate the exact distribution of the test statistic under the null hypothesis
- Then we don't have to rely on asymptotic approximations!
 - \implies Can be especially useful when N is small and asymptotic approximations may be poor

TABLE I Sampling-Based Uncertainty (\checkmark Is Observed, ? Is Missing)

Unit	Actual Sample			Alternative Sample I			Alternative Sample II			
	Y_i	z_i	R_i	Y_i	Z_i	R_i	Y_i	Z_i	R_i	
1	√	✓	1	?	?	0	?	?	0	
2	?	?	0	?	?	0	?	?	0	
3	?	?	0	✓	✓	1	✓	✓	1	
4	?	?	0	✓	✓	1	?	?	0	
:	:	:	:	:	:	:	:	:	:	
n.	,	,	i	?	?	0	?	?	0	

Actual Sample			Alternative Sample I			Alternative Sample II			
$Y_{i}^{*}(1)$	$Y_{i}^{*}(0)$	X_i	$Y_{i}^{*}(1)$	$Y_i^*(0)$	X_i	$Y_i^*(1)$	$Y_i^*(0)$	X_i	
✓	?	1	✓	?	1	?	✓	0	
?	✓	0	?	✓	0	?	✓	0	
?	✓	0	✓	?	1	✓	?	1	
?	✓	0	?	✓	0	✓	?	1	
:	:	:	:	:	:	:	:	:	
					<u> </u>		<u> </u>		

Sharp and Dull Nulls

- Randomization inference allows us to test sharp null hypotheses
- A sharp null hypothesis is any hypothesis that lets us fill in counterfactual outcomes (i.e. the question marks)
- For example, the null hypothesis that the treatment effect is 0 for everyone is sharp
- The null hypothesis that the treatment effect is 5 for everyone is also sharp.
- The null hypothesis that the treatment effect is 0 for men and 5 for women is sharp
- Question: Why isn't the null hypothesis of 0 average treatment effect sharp?

id
$$D_i$$
 $Y_i(0)$ $Y_i(1)$
1 1 ? 12

9/23

Suppose you observe the following data:

• Under a sharp null of a constant treatment effect of 0, what are the unobserved potential outcomes?

Suppose you observe the following data:

• Under a sharp null of a constant treatment effect of 0, what are the unobserved potential outcomes?

Suppose you observe the following data:

• Under a sharp null of a constant treatment effect of 5, what are the unobserved potential outcomes?

Suppose you observe the following data:

• Under a sharp null of a constant treatment effect of 5, what are the unobserved potential outcomes?

Hypothesis Testing

- So a sharp null hypothesis is any hypothesis that lets us fill in unobserved potential outcomes (i.e. counterfactual outcomes)
- How does this help us test if an observed difference in means is due to a causal effect or due to chance?
- Calculate the test statistic you would have calculated under different possible randomization draws
 - With N = 4, we can do this for all possible randomization vectors
 - When N is large, we can do this for a random sample of randomization vectors
- Compare the test statistic you calculated with the observed data to the distribution of test statistics under the null
 - If the observed test statistic is very extreme, it's unlikely to be due to chance

All Potential Randomizations and Differences in Means Under $H_0: \beta_i = 0$ for all i

Question: What's the implied one-sided p-value of the observed difference in means? What about the two-sided p-value?

Notes: Each simulated treatment effect comes from first randomly assigning schools to treatment using the same randomization algorithm used for true assignment, then running a regression of the outcome on "treatment" status, including controls for strata. Exact p-value is calculated as the number of simulated effects greater in absolute value than the estimated effect.

Example: Chetty, Looney, and Kroft (2009)

FIGURE 1. DISTRIBUTION OF PLACEBO ESTIMATES: LOG QUANTITY

Notes: This figure plots the empirical distribution of placebo effects (G) for log quantity. The CDF is constructed from 4.725 estimates of δ_p using the specification in column 3 of Table 4. No parametric smoothing is applied: the CDF appears smooth because of the large number of points used to construct it. The vertical line shows the treatment effect estimate reported in Table 4.

Testing $H_0: \beta_i = c$ for all i

- How do we use randomization inference to test the null that $\beta_i = c$ for all i?
- Just like before, fill in the unobserved potential outcomes
- Then calculate an appropriate test statistic under different randomization vectors
 - e.g. $T^{dif} = |\bar{Y}_1 \bar{Y}_0 c|$
 - Question: Why does this make sense as a test statistic?
- Finally, compare the test statistic calculated under the observed randomization vector to the distribution of test statistics under the null and calculate a p-value
 - The p-value is the share of randomization vectors that give you a test statistic *at least* as extreme as the observed one

Aside: Rank Statistic for $H_0: \beta_i = c$ for all i

• Imbens and Rubin formally define an observation's rank as:

$$R_i = R_i(Y_1^{obs}, ..., Y_N^{obs}) = \sum_{j=1}^N 1_{Y_j^{obs} < Y_i^{obs}} + \frac{1}{2} \left(1 + \sum_{j=1}^N 1_{Y_j^{obs} = Y_i^{obs}} \right) - \frac{N+1}{2}$$

• The rank statistic for the null that $\beta_i = 0$ for all i is

$$T^{rank} = |\bar{R}_t - \bar{R}_c|$$

- How would we modify this rank statistic to accommodate a different null hypothesis?
- Imbens and Rubin suggest the following:
 - Calculate the implied value of $Y_i(0)$ under the null for all units in the data
 - 2 Convert those $Y_i(0)$ into ranks R_i , so each observations rank is a function of all the untreated outcomes in the data (not all observed outcomes)
 - **3** Calculate the test statistic $T = |\bar{R}_t \bar{R}_c|$

20/23

Building Confidence Intervals

- Now that we know how to test different kinds of null hypotheses, it's straightforward to construct a 95% confidence interval
- Recall that we can think of the 95% confidence interval as the set of all null hypotheses that cannot be rejected at the 5% level
- We can therefore construct a 95% confidence interval by searching over a grid of null hypotheses and retaining the ones we fail to reject (just like on problem set 2!)
 - E.g., test the null hypotheses that $\beta_i = c$ for all i for $c \in \{-0.50, -0.49, ..., 0.49, 0.50\}$

Trivia: The Lady Tasting Tea

- Randomization inference is also known as Fisher's exact test, after Ronald Fisher
- Fisher was chatting with colleagues when he offered the phycologist Muriel Bristol a cup of tea. She declined, stating that she preferred tea with the milk poured in first.
- Fisher scoffed at the notion that she could tell the difference, but she insisted she could. So Fisher and a colleague devised a test.
- They brewed 8 cups of tea, 4 of which had milk added first and 4 with tea first.
- They then presented Bristol with the cups in random order and asked her to identify which of the 8 had milk added first.
- Bristol correctly identified all 8 cups. With 70 possible ways of choosing 4 cups out of 8, the implied p-value is p = 1/70 = 0.014