

TFG del Grado en Ingeniería Informática

Análisis y predicción de datos obtenidos del funcionamiento de un AGV

Presentado por Gonzalo Burgos de la Hera en Universidad de Burgos — 1 de junio de 2023

Tutor: Bruno Baruque Zanón y Jesús Enrique Sierra García

D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

Expone:

Que el alumno D. Gonzalo Burgos de la Hera, con DNI dni, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 1 de junio de 2023

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. nombre tutor D. nombre co-tutor

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Índice general	iii
Índice de figuras	iv
Índice de tablas	\mathbf{v}
Introducción	1
Objetivos del proyecto	3
Conceptos teóricos	5
3.1. Secciones	
3.2. Referencias	
3.3. Imágenes	
3.4. Listas de items	
3.5. Tablas	7
Técnicas y herramientas	9
4.1. Sistema Gestor de Base de Datos	9
Aspectos relevantes del desarrollo del proyecto	11
Trabajos relacionados	13
Conclusiones y Líneas de trabajo futuras	15
Bibliografía	17

		_
	_	figuras
Indice	ne.	HOHRAS
HILL	uc	iiguius

|--|

Índice de tablas

3.1.	Herramientas y tecnologías utilizadas en cada parte del proyecto	7
4.1.	Comparación gestores de bases de datos	9

Introducción

Los AGV, Autonomous Guided Vehicles por sus siglas en inglés, son complejos sistemas robóticos, capaces de moverse en un entorno concreto, cuyo uso es transportar cargas pesadas en fábricas o almacenes, y que están diseñados para mejorar la eficiencia y la productividad en la logística y el transporte de materiales. Debido a sus ventajas en seguridad, flexibilidad y velocidad, esta tecnología se está convirtiendo cada vez más importante [3].

Aunque estos sistemas pueden mejorar la productividad, desajustes en su configuración u otros errores operacionales pueden producir una reducción de su rendimiento, y, en casos extremos, causar una detención de la línea de producción. Por este motivo, es necesario extraer información de los sistemas en marcha para analizar el rendimiento de las máquinas y las aplicaciones logísticas. Esta información puede usarse para predecir comportamientos futuros del sistema, realizar mantenimiento predictivo y proveer retroalimentación con el fin de diseñar mejoras continuas de las máquinas. Estas predicciones pueden ser conseguidas con el uso de algoritmos de análisis de series temporales, que permitan anticipar futuras condiciones del sistema. [1]

Algunos de estos datos obtenidos del sistema tienen una baja frecuencia de actualización, como puede ser la temperatura y voltaje de la batería, pero otros cambian cada pocos milisegundos, como la corriente eléctrica, la velocidad, la posición del vehículo, errores y estado, etc. Toda esta información proveída por el AGV debe estar relacionada con el tiempo en el que fue generada, por lo que puede ser agrupada en series temporales [2]. Cualquier tipo de base de datos puede usarse para almacenar esta información generada por los AGV, sin embargo, ya que se trata de series temporales, es preferible utilizar bases de datos para series temporales para optimizar el rendimiento del sistema.

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Conceptos teóricos

En aquellos proyectos que necesiten para su comprensión y desarrollo de unos conceptos teóricos de una determinada materia o de un determinado dominio de conocimiento, debe existir un apartado que sintetice dichos conceptos.

Algunos conceptos teóricos de L^AT_EX¹.

3.1. Secciones

Las secciones se incluyen con el comando section.

Subsecciones

Además de secciones tenemos subsecciones.

Subsubsecciones

Y subsecciones.

3.2. Referencias

Las referencias se incluyen en el texto usando cite [5]. Para citar webs, artículos o libros [4].

¹Créditos a los proyectos de Álvaro López Cantero: Configurador de Presupuestos y Roberto Izquierdo Amo: PLQuiz

3.3. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

Figura 3.1: Autómata para una expresión vacía

3.4. Listas de items

Existen tres posibilidades:

- primer item.
- segundo item.
- 1. primer item.
- 2. segundo item.

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.5. TABLAS 7

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			X	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.1: Herramientas y tecnologías utilizadas en cada parte del proyecto

3.5. Tablas

Igualmente se pueden usar los comandos específicos de LATEXo bien usar alguno de los comandos de la plantilla.

Técnicas y herramientas

4.1. Sistema Gestor de Base de Datos

A continuación, se muestra una pequeña comparación de los sistemas gestores de bases de datos planteados para su uso en este trabajo.

Gestores	SQLite	Elastcsearch	InfluxDB	MongoDB
Relacional	Si	No	No	No
SQL	Sí	No	No	Lectura
Modelo	RDBMS	Search engine	TSDBMS	Document Store
Open Source	Sí	Sí	Sí	Sí
Python	Sí	Sí	Sí	Sí
UDP	No	No	Sí	No
Visor	No	Kibana	Chronograf	Charts
Server Scrips	No	Sí	No	Sí
Docker	No	Sí	Sí	Sí
Linux	Sí	Sí	Sí	Sí
Python UDP Visor Server Scrips Docker	Sí No No No No	Sí No Kibana Sí Sí	Sí Sí Chronograf No Sí	Sí No Charts Sí Sí

Tabla 4.1: Comparación gestores de bases de datos

Otro punto importante que no se ve reflejado en la tabla, es la disponibilidad de documentación. Todos estos sistemas son bastante conocidos y utilizados en sus respectivos campos, por lo que todos disponen de documentación completa y fácil de entender.

Al final, el sistema elegido ha sido InfluxDB. Como se ve en la tabla, InfluxDB es un Sistema Gestor de Bases de Datos de Series Temporales

(Time Series Data Base Management System, o TSDBMS). En estos tipos de sistemas, el tiempo tiene una especial importancia, pues cada dato tendrá un timestamp asociado. Esto viene muy bien para un sistema dedicado a guardar logs, pues cada mensaje recibido tendrá el timestamp del momento en el que se generó.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] Bruno Baruque, Santiago Porras, Esteban Jove, and José Luis Calvo-Rolle. Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. *Energy*, 171:49–60, 2019.
- [2] Fatoumata Dama and Christine Sinoquet. Analysis and modeling to forecast in time series: a systematic review. *CoRR*, abs/2104.00164, 2021.
- [3] F Espinosa, C Santos, and JE Sierra-García. Transporte multi-agy de una carga: estado del arte y propuesta centralizada. *Revista Iberoamericana de Automática e Informática industrial*, 18(1):82–91, 2020.
- [4] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
- [5] Wikipedia. Latex wikipedia, la enciclopedia libre, 2015. [Internet; descargado 30-septiembre-2015].