Разработка алгоритмов сегментации COVID-19 на снимках компьютерной томографии Курсовой проект

Феденя Елизавета

Минск, 2021

Постановка задачи

Актуальность

• Распознавание изображений при помощи машинного обучения

• Особенности в медицинской сфере

Данные: терминология

Симптом «матового стекла» (Ground Glass)

Легочная консолидация (Consolidation)

Данные: характеристики

COVID-19 CT segmentation dataset

Базовая модель

Параметры модели

- Для реализации пользуемся библиотеками PyTorch и segmentation-models-pytorch;
- Архитектура Unet;
- Обучение до сходимости (останавливаемся, когда функция потерь перестает уменьшаться).

Метрики оценки эффективности

• Точность (ассигасу).

$$accuracy = \frac{1}{n} \sum_{i=1}^{n} (y_{true}^{i} == y_{pred}^{i})$$

Метрики оценки эффективности

- Точность (accuracy).
- IoU (Intersection over Union, пересечение на объединение). Вычисляется для отдельного класса i.

$$I_i = A^i_{pred} \cap A^i_{true}, U_i = A^i_{pred} \cup A^i_{true}$$

$$IoU(i) = \frac{|I_i|}{|U_i|}$$

Метрики оценки эффективности

- Точность (accuracy).
- IoU (Intersection over Union, пересечение на объединение). Вычисляется для отдельного класса i.
- mloU (среднее loU по всем классам).

Результаты: два класса

Epochs	50
Loss	3.7936
Accuracy	0.9960
Lungs IoU	0.9766
Background IoU	0.9953

Результаты: четыре класса

Epochs	41
Loss	9.028
Accuracy	0.9891
Ground Glass IoU	0.6709
Consolidation IoU	0.5052
Lungs Other IoU	0.9407
Background IoU	0.9946

Аугментации

Аугментации – произвольные изменения изображений. На каждой эпохе обучения модели к каждому изображению применяется новая, произвольная, аугментация.

Причины использовать аугментации:

- Помогают модели обобщаться;
- Борются с переобучением;
- Позволяют эффективно обучаться даже на небольших наборах данных.

ullet Вертикальное отражение (V^p)

- ullet Вертикальное отражение (V^p)
- \bullet Масштабирование, поворот, сдвиг ($S^p[rotate, shift, scale]$)

Original mask

 $V^{0.5}S^{1}[15, 0.1, 0.1]$

- ullet Вертикальное отражение (V^p)
- ullet Масштабирование, поворот, сдвиг ($S^p[rotate, shift, scale]$)
- Яркость и контрастность ($B^p[brightness, contrast]$)

 $B^{1}[0.3, 0.3]$

- ullet Вертикальное отражение (V^p)
- ullet Масштабирование, поворот, сдвиг ($S^p[rotate, shift, scale]$)
- Яркость и контрастность $(B^p[brightness, contrast])$
- Растяжение по сетке (G^p[distortion])

 $G^{1}[0.3]$

- ullet Вертикальное отражение (V^p)
- ullet Масштабирование, поворот, сдвиг $(S^p[rotate, shift, scale])$
- ullet Яркость и контрастность ($B^p[brightness, contrast]$)
- Растяжение по сетке $(G^p[distortion])$

Сравнение простейших аугментаций

	Е	$V^{0.5}$	$V^{0.5}S^1$	B^1	$G^{1}[0.3]$	$G^{1}[0.37]$
Epochs	41	59	76	55	63	47
Loss	9.028	9.0246	9.0352	9.0113	9.0378	9.0527
Accuracy	0.9891	0.9896	0.9900	0.9892	0.9902	0.9901
Ground Glass IoU	0.6709	0.6958	0.7208	0.6366	0.7045	0.6970
Consolidation IoU	0.5052	0.4556	0.5659	0.5645	0.4967	0.5707
Lungs Other IoU	0.9407	0.9435	0.9441	0.9406	0.9467	0.9343
Background IoU	0.9946	0.9948	0.9945	0.9948	0.9950	0.9949

Композиции аугментаций

 X^pY^q — сначала применяем X (с вероятностью p), затем Y (с вероятностью q). $Z^t=(X^p|Y^{1-p})^t$ — с вероятностью t мы применяем одну из аугментаций X, Y, причем с вероятностью p мы применяем X, а с вероятностью (1-p)-Y.

Не любая композиция дает результат лучше ее составляющих. Примеры «неудачных» композиций:

- $V^{0.5}S^{0.25}B^{0.5}G^{0.25}$
 - $V^{0.5}B^{0.7}(S^{0.5}|G^{0.5})^{0.5}$;
 - $V^{0.5}(B^{0.5}|S^{0.25}|G^{0.25})^1$;
 - $V^{0.5}B^1G^1$.

Сравнение композиций аугментаций

- $C_1 = V^{0.5}B^1(S^{0.5}|G^{0.5})^{0.5}$;
- $C_2 = V^{0.5}B^{0.5}(S^{0.5}|G^{0.5})^{0.3}$;
- $C_3 = V^{0.5}B^{0.5}(S^{0.5}|G_1^{0.5})^{0.3}$.

	Е	М	C_1	C_2	C ₃
Epochs	41	47	56	105	71
Loss	9.028	9.0113	9.0492	9.0134	9.0273
Accuracy	0.9891	0.99021	0.9896	0.99018	0.9900
Ground Glass IoU	0.6709	0.7208	0.6955	0.7086	0.7097
Consolidation IoU	0.5052	0.5707	0.5114	0.5568	0.5604
Lungs Other IoU	0.9407	0.9467	0.9415	0.9455	0.9453
Background IoU	0.9946	0.9950	0.9943	0.9952	0.9947

Архитектуры нейронных сетей сегментации изображений

Рассмотрим и сравним следующие архитектуры:

- Unet
- Unet++
- MAnet
- Oeeplab3
- Deeplab3+

Unet

- После сворачивающих слоев, понижающих размеры картинки, идут «разворачивающие» слои. Они повышают разрешение и точность ответа, а также позволяют модели обучаться на комбинациях свернутых и развернутых данных.
- U-образная структура.

Unet++

- Добавлены промежуточные сверточные слои (skip pathways), соединяющие «стенки» U-слоев.
- Используется « Deep Supervision »: к скрытым слоям добавляется скрытая функция потерь, которая позволяет увеличить влияние внутренних слоев на итоговое предсказание модели, что ускоряет ее сходимость.

MAnet

- RES-блоки: получаем комбинацию Unet и остаточных нейронных сетей, цель которых решение проблемы затухающего градиента.
- PA-блок (Position-wise Attention Block): объединяет информацию из многих локальных слоев в один, получая более глобальный взгляд на сегментируемое изображение.
- MFA-блоки (Multi-scale Fusion Attention Block): настраивают внимание модели аналогично человеческому восприятию, сместив фокус на определенную, нужную в данный момент информацию.

Deeplab3

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$.

- Не основана на Unet.
- Atrous convolution (можно перевести как "дырявая свертка"). Свертка применяется не к соседним элементам матрицы, а к отстоящим друг от друга на величину Rate.

Deeplab3

- Не основана на Unet.
- Atrous convolution (можно перевести как "дырявая свертка"). Свертка применяется не к соседним элементам матрицы, а к отстоящим друг от друга на величину Rate.
- Atrous Spacial Pyramid Pooling (блок-пирамида). Несколько дырявых сверточных слоев разных размеров применяются к одной и той же матрице из предыдущего слоя. Далее результаты работы данных слоев объединяются.

Deeplab3+

Особенности:

• Представляет собой комбинацию идей Unet и Deeplab3.

Сравнение результатов архитектур

	Unet	Unet++	MAnet	Deeplab	Deeplab+
Epochs	41	27	38	56	53
Loss	9.0280	9.1174	9.0372	9.0482	9.0268
Accuracy	0.9891	0.9864	0.9890	0.9859	0.9881
Ground Glass IoU	0.6709	0.5578	0.6774	0.6160	0.6609
Consolidation IoU	0.5052	0.0624	0.4523	0.4962	0.5204
Lungs Other IoU	0.9407	0.9233	0.9400	0.9215	0.9381
Background IoU	0.9946	0.9944	0.9947	0.9919	0.9942

Заключение

- Были исследованы методы сегментации изображений на снимках легких; задачей было найти на них патологии, вызываемые COVID-19.
- Был рассмотрен способ улучшить результаты модели при помощи аугментаций. Мы исследовали простейшие аугментации, их композиции и различия. Получили, что
 - Аугментации позволяют значительно улучшить качество сегментации;
 - Каждая простейшая аугментация имеет свои особенности;
 - Композиции аугментаций сохраняют сильные и слабые стороны своих компонентов.
- Были рассмотрены ведущие архитектуры нейронных сетей сегментации медицинских изображений. Полученные результаты достаточно интересны и специфичны для нашего исследования:
 - ▶ Более сложная Unet++ показала себя значительно хуже Unet;
 - ▶ Особенности архитектур достигаются за счет добавления специфичных блоков, таких как MFA-блоки в MAnet и пирамидные блоки в Deeplab3+.

Спасибо за внимание!