S.-T. Yau College Student Mathematics Contests 2022

Mathematical Physics

说明: Solve every problem

1 Problems

- 1. (a) A symmetry transformation in quantum mechanics is represented by a unitary or anti-unitary operator acting on a Hilbert space. The time reversal transformation Θ relates the wave function at time t to time -t. Prove: Θ is an anti-unitary operator.
 - (b) Consider state vector $|\psi\rangle$ for a quantum system. A time reversal transformation is represented by an anti-unitary operator Θ . We now consider position space wavefunction $\psi(x) = \langle x|\psi\rangle$, and $\Theta|x\rangle = |x\rangle$. Prove: the position space wave function for $\Theta|\psi\rangle$ is

$$\psi(x)^*$$

(c) A one dimensional quantum system is invariant under time reversal transformation, and so its Hamiltonian satisfies $\Theta H = H\Theta$. If an energy eigenstate $|\psi\rangle$ has no degeneracy, Prove: it is possible to take the position space energy eigenfunction to be real:

$$\psi(x)^* = \psi(x)$$

2. Consider following quantum Hamiltonian:

$$H_0 = \frac{p_1^2}{2m} + \frac{1}{2}m\omega^2 x_1^2 + \frac{p_2^2}{2m} + \frac{1}{2}m\omega^2 x_2^2$$

This is the Hamiltonian for two decoupled harmonic oscillators.

- (a) Calculate the eigenstates and eigenvalues for H_0 (an energy eigenstate could be labeled as $|n_1, n_2\rangle$).
- (b) Assume the creation and annihilation operators for two harmonic oscillators are $a_i^{\dagger}, a_i, i=1,2$. Define following operators

$$J_{+} = a_{1}^{\dagger} a_{2}, \quad J_{-} = a_{2}^{\dagger} a_{1}, \quad J_{z} = \frac{1}{2} (a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2})$$

- i. Prove that: $[J_z, J_{\pm}] = \pm J_{\pm}, \quad [J_+, J_-] = 2J_z.$
- ii. Consider one eigenvalue E_n of H_0 , (here $n_1 + n_2 = n$). Prove that: all eigenstates of E_n form an irreducible representation of su(2) Lie algebra, and compute the spin.
- (c) Consider following perturbed Hamiltonian (λ is small)

$$H = H_0 + \lambda x_1^2 p_2^2$$

Compute the first order correction to the energy for the energy level $n_1 + n_2 = 2$.

- 3. A Killing vector field $k^{\mu} \frac{\partial}{\partial x^{\mu}}$ satisfies the equation $k^{\lambda} \partial_{\lambda} g_{\mu\nu} + \partial_{\mu} k^{\lambda} g_{\lambda\nu} + \partial_{\nu} k^{\lambda} g_{\lambda\mu} = 0$.
 - (a) Prove: $D_{\mu}k_{\nu} + D_{\nu}k_{\mu} = 0$, here D_{μ} is the covariant derivative.
 - (b) For a moving particle in gravitational background with a Killing vector field, Prove: $k^{\mu}P_{\mu}$ is a conserved quantity, Here $P_{\mu} = m\frac{dx^{\nu}}{d\tau}g_{\mu\nu}$ is the momentum for the free falling particle with trajectory $x^{\nu}(\tau)$.
- 4. Consider following metric

$$ds^2 = -(1 - \frac{2M}{r})dv^2 + drdv + r^2d\Omega^2$$

Here $d\Omega^2$ is the standard metric on two sphere. Consider the hypersurface defined by S = r - 2M = 0, and a vector field $l = \tilde{f}(x)(g^{\mu\nu}\partial_{\nu}S)\frac{\partial}{\partial x^{\mu}}$, here $\tilde{f}(x)$ is a non-zero function. Prove:

- (a) l is normal to the surface S.
- (b) $l^2 = 0$ on the surface S.
- (c) $\frac{\partial}{\partial v}$ is a Killing vector field.
- 5. The energy momentum tensor for a relativistic quantum field theory is denoted as $\theta^{\mu\nu}$, which is symmetric and conserved.
 - (a) Define new current $s^{\mu} = x_{\nu} \theta^{\mu\nu}$ and $K^{\lambda\mu} = x^{2} \theta^{\lambda\mu} 2x^{\lambda} x_{\rho} \theta^{\rho\mu}$. Compute $\partial^{\mu} s_{\mu}$ and $\partial_{\mu} K^{\lambda\mu}$, and explain the condition on $\theta^{\mu\nu}$ so that these new currents are conserved.
 - (b) Consider a scalar field $\sigma(x)$ which transforms under a scale transformation as

$$\delta \sigma = x^{\lambda} \partial_{\lambda} \sigma + f^{-1}$$

we have following Lagrangian

$$L = L_s - \frac{\mu_0^2}{2} \phi^2 e^{2f\sigma} + \frac{1}{2f^2} \partial_\mu e^{f\sigma} \partial^\mu e^{f\sigma}$$

The infinitesimal scale transformation on scalar field ϕ is $\delta \phi = (1 + x_{\lambda} \partial^{\lambda}) \phi$. Here L_s is scale invariant part of the Lagrangian. Prove that: the above Lagrangian is scale invariant.

- (c) Explain why a classically scale invariant Lagrangian for a quantum field theory may fail to be scale invariant quantum mechanically.
- 6. Consider following Lagrangian for N scalar fields ϕ^a , $a = 1, \dots, N$:

$$L = \frac{1}{2} \partial_{\mu} \phi^{a} \partial^{\mu} \phi^{a} - \frac{1}{2} \mu_{0}^{2} \phi^{a} \phi^{a} - \frac{1}{8} \lambda_{0} (\phi^{a} \phi^{a})^{2}$$

Here the repeated index implies the summation over the index.

- (a) Write down the propagator and interaction vertex for this model, and write down four point Feynman diagrams up to one loop level.
- (b) Define $g_0 = \lambda_0 N$, and compute the order in g_0 and N for all the diagrams listed in last question. If we fix the coupling g_0 , and let N go to infinity, list the leading order Feynman diagrams in $\frac{1}{N}$.