Misura esterna e insiemi misurabili

Definizione .1 (Misura esterna di Lebesgue su R) $Per E \subseteq R$, la misura esterna è

```
-I_k| è la lunghezza dell'intervallo I_k.
```

Definizione .2 (Criterio di Carathéodory) Un insieme $E \subseteq R$ è Lebesgue-misurabile se, per ogni $A \subseteq R$,

 σ -algebra \mathcal{L} ; la restrizione di m a \mathcal{L} è la misura di Lebesgue m.

Osservazione .3 (Boreliani e completezza) La σ -alge \check{b} ra di Borel $\mathcal{B}(R) = \sigma(aperti)$ è contenuta in \mathcal{L} . La misura di Funzioni misurabili

Definizione .4Data una misura (X, \mathcal{F}, μ) , una funzione $f: X \to \overline{R}$ è misurabile se $\{x \in X : f(x) < a\} \in \mathcal{F}$ per ogni a Osservazione .5 (Stabilità) Indicatori $\mathbf{1}_E$ con $E \in \mathcal{F}$ sono misurabili; limiti puntuali di successioni di misurabili, non Costruzione dell'integrale di Lebesgue Sia (X, \mathcal{F}, μ) uno spazio di misura.

*Step 0: indicatori Per $E \in \mathcal{F}$, si pone $\int \mathbf{1}_E d\mu = \mu(E)$.

*Step 1: funzioni semplici non negative Una funzione semplice è $s = \sum_{i=1}^{n} a_i \mathbf{1}_{E_i}$ con $a_i \geq 0, E_i \in \mathcal{F}$ disgiunti. Defi

*Step 2: funzioni misurabili non negative Per $f \geq 0$ misurabile,

Equivalentemente: esiste $s_n \uparrow f$ con s_n semplici e $\int f = \lim_n \int s_n$. *Step 3: funzioni a valori reali Scrivi $f = f^+ - f^-$ con $f^{\pm} = \max\{\pm f, 0\}$. Diciamo $f \in L^1(\mu)$ se $\int |f| d\mu < \infty$, e

Proposizione .6 (Proprietà di base) Valgono: (i) monotonia, (ii) linearità quando definita, (iii) semi-continuità dal Teoremi di convergenza

Teorema .7 (Beppo Levi / Convergenza Monotona) $Se\ 0 \le f_n \uparrow f\ a.e.,\ allora\ \int f_n\ d\mu \uparrow \int f\ d\mu.$

Teorema .8 (Lemma di Fatou) $Se\ f_n \geq 0$, $allora\ \int \liminf_n f_n \, d\mu \leq \liminf_n \int f_n \, d\mu$.

Teorema .9 (Convergenza Dominata di Lebesgue) $Se\ f_n \to f\ a.e.\ e\ f_n \le g \in L^1,\ allora\ f \in L^1\ e\ \int f_n \to \int f.$

Teorema .10 (Tonelli e Fubini) Sia $f: X \times Y \to [0, \infty]$ misurabile. Allora

Se invece $f \in L^1(\mu \otimes \nu)$, valgono le stesse uguaglianze (Fubini) e le sezioni sono L^1 .

Proposizione .11 (Layer-cake / Cavalieri) $Se \ f \ge 0$,

Proposizione .12 (Disuguaglianze fondamentali) $Per\ 1 \le p \le \infty$: Hölder, Minkowski; Jensen su spazi di probabilit Proposizione .13 (Spazi L^p) $||f||_p = (\int |f|^p)^{1/p}$. Se $\mu(X) < \infty$ e p > q, allora $L^p \subset L^q$ e $||f||_q \le \mu(X)^{\frac{1}{q} - \frac{1}{p}} ||f||_p$.

Teorema .14 (Criterio di Lebesgue per Riemann) $f:[a,b]\to R$ è Riemann-integrabile se e solo se l'insieme dei p Esempio .15 (Dirichlet e Thomae) $1_{O\cap[0,1]}$ non è Riemann-integrabile ma è Lebesque-integrabile con integrale 0. La

Esercizio .16 (Approssimazione dal basso) Sia $f \geq 0$ misurabile su (X, \mathcal{F}, μ) . Definisci

Mostra che $s_n \uparrow f$ e che $\int f = \lim_n \int s_n$.

Per definizione degli s_n , si ha $0 \le s_n \le f$ e $s_n(x) \uparrow f(x)$ per ogni x (raffinamento della griglia a passi 2^{-n}). Per Beppo l

Esercizio .17 (DCT classico: x^n) Su ([0,1], \mathcal{B}, m), $f_n(x) = x^n$. $Calcola \int_0^1 f_n dx$ e il limite. $\int_0^1 x^n dx = \frac{1}{n+1} \to 0$. Inoltre $f_n \to 0$ a.e. su [0,1) e $|f_n| \le 1 \in L^1$, dunque per DCT $\int f_n \to 0$ coerentemente col calcolo

Esercizio .18 (Indicatori dei razionali) Mostra che $\int_0^1 \mathbf{1}_Q dx = 0$.

 $Q \cap [0,1]$ è numerabile, quindi di misura nulla. Per definizione dell'integrale su indicatori, $\int \mathbf{1}_E = \mu(E) = 0$.

Esercizio .19 (Tonelli su integrale doppio semplice) $Calcola\ I = \int_0^1 \int_0^1 \mathbf{1}_{\{x < y\}} \, dx \, dy$.

La funzione è non negativa: Tonelli permette lo scambio. Per y fissato, $\int_0^1 \mathbf{1}_{\{x < y\}} dx = y$. Quindi $I = \int_0^1 y \, dy = 1/2$. Esercizio .20 (Layer-cake per stima di integrabilità) Su R, per $\alpha > 0$ considera $f_{\alpha}(x) = \min\{1, |x|^{-\alpha}\}$. Determin Basta controllare integrabilità vicino a 0 e a ∞ . Per $|x| \le 1$, $f_{\alpha} = |x|^{-\alpha}$: integrabile su (-1, 1) se e solo se $\alpha < 1$. Per |x| Esercizio .21 (Confronto Riemann/Lebesgue) Sia $f = \mathbf{1}_{Q \cap [0,1]}$. Spiega perché non è Riemann-integrabile ma è Leb