Syntax and Semantics for FOPL

Prof. Dr. A K M Akhtar Hossain Dept. of CSE, University of Rajshahi

FOPL (Fist Order Predicate Logic)

- In first-order predicate logic (FOPL), a predicate can only refer to a single subject.
- First-order logic is also known as first-order
 predicate calculus or first-order functional calculus.
- A sentence in first-order Predicate logic is written in the form Px or P(x), where P is the predicate and x is the subject, represented as a variable.

FOPL (Fist Order Predicate Logic)

- The syntax for FOPL, like PL, is determined by the allowable symbols and rules of combination.
- The semantics of FOPL are determined by interpretations assigned to predicates, rather than propositions.

- The symbols and rules of combination permitted in FOPL are defined as follows:
- Connectives: There are five connective symbols:
 - ~(not or negation)
 - & (and or conjunction)
 - V (or or inclusive disjunction)
 - → (implication)
 - \leftrightarrow (equivalence or if and only if).

- Quantifiers: The two quantifier symbols are ∃ (existential quantification) and ∀ (universal quantification).
- Where (∃x) means for some x or there is an x.
 and (∀x) means for all x.
- When more than one variable is being quantified by the same quantifier, such as, $(\forall x)$ $(\forall y)$ $(\forall z)$, we abbreviate with a single quantifier and drop the parentheses to get $\forall xyz$.

- Constants: Constants are fixed-value terms that belong to a given domain of discourse.
- They are denoted by numbers, words, and small letters near the beginning of the alphabet.
- Examples: a, b, c, 5.256, -67, -75.65, flight-305, john, , Marina, etc.

- Variables: Variables are terms that can assume different values over a given domain.
- They are denoted by words and small letters near the end of the alphabet.
- Examples: aircraft-type, individuals, x, y, and z.

- Functions: Function symbols denote relations defined on a domain D. They map n elements (n≥0) to a single element of the domain.
- Symbols f, g, & h, and words such as father-of, or age-of, represent functions.
- An n place (n-ary) function is written as $f(t_1, t_2, t_3, ..., t_n)$ where the t_i are terms (constants, variables, or functions) defined over some domain. A 0-ary function is a constant.

- Predicates: Predicate symbols denote relations or functional mappings from the elements of a domain D to the values true or false.
- Capital letters and capitalized words such as P,
 Q, R, EQUAL, and MARRIED are used to
 represent predicates.

- Like functions, predicates may have $n \ (n \ge 0)$ terms for arguments written as $P(t_1, t_2, t_3, ..., t_n)$
- Where the terms t_i , i = 1, 2, 3, ..., n are defined over some domain.
- A 0-ary predicate is a proposition, that is, a constant predicate.

 Constants, variables, and functions are referred to as terms, and predicates are referred to as atomic formulas or atoms for short.

- Examples:
- E1: All employees earning Tk. 300000 or more per year pay taxes.
- E2: Some employees are sick today.
- E3: No employee earns more than the president.

- To represent such expressions FOPL, we must define abbreviations for the predicates and functions.
- E(x) for x is an employee.
- P(y) for y is president.
- i(x) for the income of x (lower case denotes a function).
- GE(x, y) for x is greater than or equal to y.
- S(x) for x is sick today.
- T(x) for x pays taxes.

- Using the above abbreviations, we represent E1, E2, and E3 as:
- E1: $\forall x ((E(x) \& GE(i(x), 300000)) \to T(x))$
- E2: $\exists y (E(y) \rightarrow S(y))$
- E3: $\forall xy ((E(x) \& P(y)) \rightarrow {}^{\sim}GE(i(x),i(y)))$

- An atomic formula is a wffs (well-formed formulas).
- If P and Q are wffs, then ~P, P & Q, P V Q, P
 P←→Q, ∀x P(x), and ∃x P(x) are wffs.
- wffs are formed only by applying the above rules a finite number of times.
- The above rules state that all wffs are formed from atomic formulas and the proper application of quantifiers and logical connections.

- Some examples of valid wffs are
- MAN(john)
- PILOT(father-of(bill))
- $\exists xyz((FATHER(x,y)\&FATHER(y,z)) \rightarrow GRANDFATHER(x,z))$
- $\forall x \text{ NUMBER}(x) \rightarrow (\exists y \text{ GREATER-THAN}(y,x))$

- Some examples of statements that are not wffs are:
- $\forall P P(x) \rightarrow Q(x)$
- /* Universal quantification is applied to the predicate P(x).
 This is invalid in FOPL. */
- MAN(~john)
- /*The expression is invalid since the term John, a constant, is negated. */
- father-of(Q(x))
- /* The expression is invalid due to it is function with a predicate argument. */
- MARRIED(MAN, WOMAN)
- /* The expression fails since it is predicate with two predicate arguments.*/

- When considering specific wffs, we always have in mind some domain D. If not stated explicitly, D will be understood from the context.
- The arguments predicates must be terms (constant, variables or functions). Therefore, the domain of each n-place predicate is also defined over D.

- For Example, our domain might be all entities that make up the Computer Science & Engineering Department at the University of Rajshahi.
- In this case, constants would be Professors (Dell, Cooke, Gelfond, and so on), Staff (Martha, Pat, Linda and so on), books, labs, offices and so forth.

- The functions we may choose might be advisor-of(x), lab-capacity(y), dept-gradeaverage(z), and the predicates MARRIED(x), TENURED(y), COLLABORATE(x,y) to name a few.
- When an assignment of values is given to each term and to each predicate symbol in a wffs, we say an interpretation is given to the wffs.

- If the truth values for two different wffs are the same under every interpretation, they are said to be equivalent.
- A predicate (or wffs) that has no variables is called a ground atom.

- For example, the predicate P(x) in $\forall x P(x)$, is true only if it is true for every value of x in the domain D.
- Likewise, the P(x) in $\exists x P(x)$ is **true** only if it is true for **at least one value** of x in the domain.
- If the above conditions are not satisfied, the predicate evaluates to false.

- For example, we want to evaluate the truth value of the expression E, where
- E: $\forall x ((A(a,x) \lor B(f(x))) \& C(x)) \rightarrow D(x)$
- In this expression, there are four predicates:
 A, B, C, and D.
- The predicate A is a two-place predicate, the first argument being the constant a, and the second argument, a variable x.

- The predicates B, C and D are all unary predicates where the argument of B is a function f(x), and the argument of C and D is the variable x.
- Since the whole expression E is quantified with the universal quantifier ∀x, it will evaluate to true only if it evaluates are to be true for all x in the domain D.

- Example: E: $\forall x ((A(a,x) \lor B(f(x))) \& C(x)) \rightarrow D(x)$
- Suppose E is interpreted as follows: Define the domain $D = \{1, 2\}$ and from D let the interpretation I assign the following values:
- a = 2
- X = 1

- x = 2
- f(1) = 2, f(2) = 1
- A(2,1) = true, A(2,2) = false
- B(1) = true, B(2) = false
- C(1) = true, C(2) = false
- D(1) = false, D(2) = true

- Using a table such as **Table 4.3** we can evaluates E as follows: E: $\forall x ((A(a,x) \lor B(f(x))) \& C(x)) \rightarrow D(x)$
- a) . If x = 1, A(2,1) evaluates to true,
 B(1) evaluates to True, and
 (A(2,1) V B(1)) evaluates to true.
 C(1) evaluates to true.

Therefore, the expression in the outer parentheses evaluates to true.

Hence, since D(1) evaluates to false,

Then, the expression E evaluates to false.

(b) In a similar way, if x =2, the expression can be shown to evaluate to true.

Consequently, since E is not true for all x, the expression evaluates to false.

Properties of WFFS (well-formed formulas)

- As in the case of PL, the evaluation of complex formulas in FOPL can often be facilitated through the substitution of equivalent formulas.
- Table 4.2 lists a number of equivalent expressions.
- Table 4.4 and Table 4.2 are similar, but there
 are some notable differences, particularly in
 the wffs containing quantifiers.

Table 4.2 lists some of the important laws of PL (Some Equivalence Laws)

Name of Laws	Statements
Idempotency	P V P = P
~ *	P & P = P
Associativity	(PVQ)VR = PV(QVR)
The state of the s	(P & Q) & R = P & (Q & R)
Commutativity	PVQ = QVP
	P & Q = Q & P
	$P \longleftrightarrow Q = Q \longleftrightarrow P$
Distributivity	P & (Q V R) = (P & Q)V (P & R)
	PV(Q&R) = (PVQ)&(PVR)
De Morgan's Laws	~(P V Q) = ~P & ~Q
	~(P & Q) = ~P V ~Q
Conditional Elimination	$P \rightarrow Q = ^{P}VQ$
Bi-conditional Elimination	$P \leftrightarrow Q = (p \rightarrow Q) \& (Q \rightarrow P)$

Table 4.4 Equivalent Logical Expressions

Name of the Rules	<u>Expressions</u>
Double negation	~(~F) = F
Commutativity	F & G = G & F, F V G = G V F
Associativity	(F & G) & H = F & (G & H)
	(F V G) V H = F V (G V H)
Distributivity	F V (G & H) = (F V G) & (F V H)
	F & (G V H) = (F & G) V (F & H)
De Morgan's Laws	~(F & G) = ~F V ~G
	~(F V G) = ~F & ~G
Conditional	F → G = ~F V G
Elimination	

Table 4.4 Equivalent Logical Expressions Cont...

Bi-conditional	F ↔ G = (~F V G) & (~G V F)
Elimination	
Quantifiers	$\forall x F[x] V G = \forall x (F[x] V G)$
	$\exists x F[x] V G = \exists x (F[x] V G)$
	$\forall x F[x] \& G = \forall x (F[x] \& G)$
	$\exists x F[x] \& G = \exists x (F[x] \& G)$
	\sim (\forall x) F[x] = \exists x (\sim F[x])
	\sim ($\exists x$) $F[x] = \forall x (\sim F[x])$
	$\forall x F[x] \& \forall x G[x] = \forall x (F[x] \& G[x])$
	$\exists x F[x] V \exists x G[x] = \exists x (F[x] V G[x])$

- For example, In Table 4.4 attention is called to the last four expressions which govern substitutions involving negated quantifiers and the movement of quantifiers across conjunctive and disjunctive connections.
- A wff is said to be valid if it is true under every interpretation.
- A wff that is false under every interpretation is said to be inconsistent (or unsatisfiable).

- If a wff is not valid, then it is called invalid.
- Likewise, a wff that is not inconsistent is satisfiable.
- Again, this means that a valid wff is satisfiable and an inconsistent wff is invalid, but the respective converse statements do not hold.

- Finally, we say that a wff Q is a logical consequence of the wffs P₁, P₂, P₃,, P_n if and only if whenever P₁ & P₂ & P₃ & & P_n is true under an interpretation.
- Then, Q is also true.

- Example:
- (a). P &~P is inconsistent and P V ~P is valid since the first is false under every interpretation and the second is true under every interpretation.
- (b). From the two wffs

 CLEVER(bill) and $\forall x \text{ CLEVER}(x) \rightarrow \text{SUCCEED}(x)$

 We can show that SUCCEED(bill) is a logical consequence. Thus, assume that both

CLEVER(bill) and $\forall x \text{ CLEVER}(x) \rightarrow \text{SUCCEED}(x)$ are true under an interpretation.

• Then

 $CLEVER(bill) \rightarrow SUCCEED(bill)$

Is certainly true since the wff was assumed to be true for all x, including x= bill.

• But,

```
CLEVER(bill) → SUCCEED(bill) = ~ CLEVER(bill) V SUCCEED(bill)
        [ Conditional elimination P → Q = ~P V Q]
    are equivalent and, since CLEVER(bill) is true,
        ~CLEVER(bill) is false and, therefore,
        SUCCEED(bill) must be true.
```

Thus, we conclude SUCCEED(bill) is a logical consequence of

CLEVER(bill) and $\forall x$ CLEVER(x) \rightarrow SUCCEED(x)

- One method we shall examine is called resolution.
- It requires that all statements be converted into a normalized clausal form.
- We define a clause as the disjunction of a number of literals.
- A ground clause is one in which no variables occur in the expression.
- A Horn clause is a clause with at most one positive literal.

- Clausal Conversion Procedure:
- Step 1.: Eliminate all implication and equivalency connectives (Use ~P V Q in place of P → Q and (~P V Q) & (~Q V P) in place of P↔Q).
- Step 2: Move all negations in to immediately precede an atom (use P in place of $^{\sim}(^{\sim}P)$, and DeMorgran's laws, $\exists x ^{\sim}F[x]$ in place of $^{\sim}(\forall x)$ F[x] and $\forall x ^{\sim}F[x]$ in place of $^{\sim}(\exists x)$ F[x]).

- Step 3: Rename variables, if necessary, so that all quantifiers have variable assignments; that is, rename variables so that variables bound by a different quantifier.
- For example, in the expression
- $\forall x (P(x) \rightarrow (\exists x Q(x)))$

rename the second "dummy" variable x which is bound by the existential quantifier to be a different variable, say y, to give

$$\forall x (P(x) \rightarrow (\exists y Q(y))).$$

- Step 4: Skolemize by replacing all existentially quantified variables with Skolem functions as described above, and deleting the corresponding existential quantifiers.
- Step 5: Move all universal quantifiers to left of the expression and put the expression on the right into CNF (Conjunctive Normal Form).
- [Skolemization: The process of removing all the existential quantifiers from formula.]

 Step 6: Eliminate all universal quantifiers and conjunctions since they are retained implicitly.
 The resulting expressions are clauses and the set of such expressions is said to be in clausal form.

• Example: Page No. 64, Patterson

THANKS