1 Shape Optimization of a Photo Gun

1.1 Geometry

- initial geometry in Figure 1
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV

Figure 1: Initial geometry and magnitude of electric field.

1.2 Optimization

- optimized geometry in Figure 2
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV
- cost function employs $I = \{14, \dots, 19\}$

		$(V_{\rm el} - 625) \text{ in cm}^3$	$\frac{1}{ I } \sum_{i \in I} \max_{\mathbf{x} \in \Omega_i} \ \mathbf{E}(\mathbf{x})\ _2 \text{ in } \frac{\mathbf{m}\mathbf{v}}{\mathbf{m}}$	$\max_{\mathbf{x}\in\Omega} \ \mathbf{E}(\mathbf{x})\ _2 \text{ in } \frac{\mathbf{MV}}{\mathbf{m}}$
results:	initial	2.458	7.858	9.272
	optimized	-55.532	6.625	7.318

Figure 2: Optimized geometry and electric field.

1.3 Tracking

- general settings: Q = 100 fC
- spatial distribution: generated from measurement, see Figure ?? for comparison with laser measurement
- **temporal distribution**: Gaussian with $\sigma = 5$ ps (model from thesis requires additional data about cathode in use and measurement for comparison, measurement alone could work analogous to spatial case)

Figure 3: Spatial distribution generated from measurement (2^{10} particles) and laser measurement.

Figure 4: Spatial distribution from Gaussian (σ = 400 μ m) and temporal distribution (2¹⁰ particles).

- convergence of time integrator: relative error of normalized transverse emmitance ϵ w.r.t. finest time step is shown in Figure ??
- computed with $n_x = n_y = 8$ and $n_z = 256$
- $H = 2^{-12}$ ns used later on

Figure 5: Normalized transverse emmitance and relative error in l_{∞} -norm.

- **convergence of field map**: look at convergence with number of grid points in transverse (n_x, n_y) and longitudinal (n_z) direction individually
- Figure ?? looks at convergence of n_x , n_y for $n_z = 64$
- Figure ?? looks at convergence of n_z for $n_x = n_y = 8$
- $n_x = n_y = 8$ and $n_z = 256$ used for convergence studies
- $n_x = n_y = 16$ and $n_z = 256$ used for actual simulation (actual distribution is larger by more then a factor 2, see Figure ??)

Figure 6: Normalized transverse emmitance and relative error in l_{∞} -norm for $n_z = 64$ and $n_x = n_y$ variable.

Figure 7: Normalized transverse emmitance and relative error in l_{∞} -norm for n_z variable and $n_x = n_y = 8$.

- convergence of space charge: look at convergence with number of grid cells in radial (n_r) and longitudinal (n_l) direction and number of particles (n_l) separately
- Figure ?? looks at convergence of n_r , n_I for $n_I = 2^{10}$
- $n_r = n_l = 64$ used later on
- Figure ?? looks at convergence of n_I for $n_r = n_l = 64$
- $n_I = 2^{11}$ used later on

Figure 8: Normalized transverse emmitance and relative error in l_{∞} -norm for $n_I=2^{10}$ and n_I,n_r variable.

Figure 9: Normalized transverse emmitance and relative error in l_{∞} -norm for n_I variable and $n_I = n_r = 64$.

References

[1] Markus Wagner. "Production and investigation of pulsed electron beams at the S-DALINAC". PhD thesis. Technische Universität Darmstadt, 2013.