Aggregate Method

方法: 假設有nf operations

而nfoperation的total cost 為TIN) 每f operation 的 amortized cost 為 Tini

Accounting Method

方法: 给不同的 operation 定義不同的 amortized cost

設 amortized cark 挂出 actual cark 時,我為credit , 丁用作後面 operation 2 prepayment

最终利用 total amortized cort 來估計 total actual cost

credit 永遠不為負 [確保 amortized cost 做為 actual cast 之上界付計正確性]

 $\mathfrak{L}^{\mathrm{DL}}$ 全 $\hat{\mathcal{L}}$ 为 第 λ $\hat{\mathcal{L}}$ operation $\hat{\mathcal{L}}$ amortized cost , 則: $\sum_{i=1}^{n} \hat{\mathcal{L}}_{\lambda_{i}} \geq \sum_{i=1}^{n} \hat{\mathcal{L}}_{\lambda_{i}}$

Ci 為第2个 operation 2 actual cost

.. total credit $\stackrel{A}{\nearrow}$: $\sum_{i=1}^{n} \hat{C}_{i} - \sum_{i=1}^{n} C_{i} \rightarrow 0$

D The potential method

方法: 把 credit 存在 DS 上的 華介 object 中

The pre payment & charge A DS & potential energy

設做了n个operations,而初始DS為D。 Ci 為第i个 operation 2 actual cost

define: 更(Di) 篇 potential function, 仟表 Di L 2 potential 則 amortized cart 為: Ci = Ci + 互(Di) - 互(Di)

〈若 王[Di] > 王[Din]: 作表第三个operation 會 overcharge

= £Ci+ \$[Dn) - \$[D0) (1). 王[Da] = 王[Do] (確保 amortized cost 做為 actual cast 之上界付計正確性) ⇒ n 很難提前知道

u, 重(Di) ≥ 重(Do), ∀i ⇒ 少滴足 重(Do) ≥ 重(Do)

Example 1. Stack Operations 定義 Stock S 上之 3个 operation: 1 " pop 15) : 0111 其中 stack 有ni elements 1. aggregate method.

2. push(S) : 0(1) multipop(S, k) . O(min(n, k))

· multipep 中 pop 次數曼股於 purh 次數 設共有n次 operations 則 push 至多n 次

.. 三个 operation by amortized cost 多為 Oln = O(1)

2. potential method

故 荒 Ci = OIN)

3. accounting method

actual cost \$: push (S): 1

POP (5) : 1

multipop (S, k) : min (n, k)

定義至(Di)為做完第之次operation後, S中元季个数

: stack 上, 要 pop 151 前 - 定要失 push 15)

: En Ci = O(n), to total actual cost \$ O(n)

:可確保 credit 永遠不為負(∵pop 次數-定 ≤ push 次數)

· IDD = 0 又 stock 中元事个數不為負 · IDD ≥ IDD NA

@ $multipop(S,k): \overline{\Phi}(D_{k-1})=-min(n,k) \Rightarrow C_k^*=C_k-min(n,k)=0$

0. push (5): \$\overline{\Psi}(\District{Di}{\pi}) - \overline{\Psi}(\District{Di-1}) = | \Rightarrow \hat{Ci} = Ci + | = 2 9. pop(S): $\underline{\Phi}(D_{\lambda}) - \underline{\overline{\Phi}}(D_{\lambda+1}) = -1 \Rightarrow \hat{C_{\lambda}} = C_{\lambda} - 1 = 0$

定義 amortized cost 為: push (S): 2 Pop (5) : 0

multipop (S. k) : 1

	Counter value	MI YEKEKAKAKAKI YOL	Total cost
Example 2. Incrementing a binary counter	0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	0
設有-kbit的binary counter, 含為A[0,,k-1]	1	0 0 0 0 0 0 0 1	1
	2	0 0 0 0 0 0 1 0	3
而 binary counter 上有 - operation: increment (A)	3	0 0 0 0 0 0 1 1	4
: increment A 需引p 為1的 bit, 故running time 和1个數相關	4	0 0 0 0 0 1 0 0	7
· · · · · · · · · · · · · · · · · · ·	5	0 0 0 0 0 1 0 1	8
worst care 為 O(k),若不以 amortized analysis 为抒的 詩,為 O(nk)	6	0 0 0 0 0 1 1 0	10
1旦 binary counter 初始为0,不可能每次都为01k	7	0 0 0 0 0 1 1 1	11
1= SIMPLY COUNTER PIZERY V, PV HE 9 X BITTY VIN	8	0 0 0 0 1 0 0 0	15
	9	0 0 0 0 1 0 0 1	16
a someth with I.	10	0 0 0 0 1 0 1 0	18
O. aggregate method	11	0 0 0 0 1 0 1 1	19
$fl_{ip} \otimes \mathring{\mathfrak{B}} \mathring{\beta} : \left[\frac{h}{2^{n}}\right] + \left[\frac{h}{2^{l}}\right] + \cdots + \left[\frac{h}{2^{k}}\right] < h\left(1 + \frac{l}{2} + \cdots\right) = h \cdot \frac{1}{l - \frac{1}{2}}$	12	0 0 0 0 1 1 0 0	22
= 2n	13	0 0 0 0 1 1 0 1	23
	14	0 0 0 0 1 1 1 0	25
Amortized Cort: $\frac{2n}{n} = 0(1)$	15	0 0 0 0 1 1 1 1	26
	16	0 0 0 1 0 0 0 0	31
@. acconting method:			
1.17			

Alip 1 to 0: 0

定義 amortized cost 為: flip 1 to 1:2

4 total amortized cost:
$$\sum_{k=1}^{n} \hat{C}_k = 2n = O(n)$$