How to go from partial to full retroactivity in detail

Cristina G. Fernandes, Felipe C. de Noronha

IME-USP - Brazil

LAGOS 25 - November 10-14, 2025

What is a spanning tree?

- Let G = (V, E) be a connected graph
- Spanning tree: A tree with all vertices of G

What is a spanning tree?

- Let G = (V, E) be a connected graph
- **Spanning tree:** A tree with all vertices of *G*
- Properties:
 - Connected (path between any two vertices)
 - Acyclic (no cycles)
 - ▶ Contains exactly n-1 edges for n vertices

What is a spanning tree?

- Let G = (V, E) be a connected graph
- **Spanning tree:** A tree with all vertices of *G*
- Properties:
 - Connected (path between any two vertices)
 - Acyclic (no cycles)
 - ▶ Contains exactly n-1 edges for n vertices

Minimum Spanning Tree and Forest

• Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost

Minimum Spanning Tree and Forest

- Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost
- Minimum Spanning Forest (MSF): generalization for disconnected graphs

Minimum Spanning Tree and Forest

- Minimum Spanning Tree (MST): spanning tree in a weighted graph with minimum total cost
- Minimum Spanning Forest (MSF): generalization for disconnected graphs

Incremental MSF problem

• Problem: Keep track of an MSF in a graph that grows over time

• Graph starts empty, edges are added one by one

Incremental MSF problem

- **Problem:** Keep track of an MSF in a graph that grows over time
- Graph starts empty, edges are added one by one
- Operations:
 - ▶ add_edge(u, v, w): add edge with cost w between vertices u and v
 - get_msf(): return a list with the edges of an MSF of G

Incremental MSF problem

- Problem: Keep track of an MSF in a graph that grows over time
- Graph starts empty, edges are added one by one
- Operations:
 - ▶ add_edge(u, v, w): add edge with cost w between vertices u and v
 - ▶ get_msf(): return a list with the edges of an MSF of G

• **Solution:** Frederickson (1983) using link-cut trees

• Key insight: Use link-cut trees to maintain MSF dynamically

- Key insight: Use link-cut trees to maintain MSF dynamically
- Link-cut tree operations:
 - find_max(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ link(u, v, w): $\mathcal{O}(\log n)$ amortized
 - ▶ cut(u, v): $O(\log n)$ amortized
 - ▶ is_connected(u, v): $\mathcal{O}(\log n)$ amortized

- Key insight: Use link-cut trees to maintain MSF dynamically
- Link-cut tree operations:
 - find_max(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ link(u, v, w): O(log n) amortized
 - ightharpoonup cut(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ is_connected(u, v): $\mathcal{O}(\log n)$ amortized
- Algorithm for adding edge (u, v, w):
 - Check if u and v are in connected in the same component
 - 2 If not: add edge (u, v, w) to forest
 - If yes: find the edge with maximum cost on the u-v path
 - If w < maximum cost: replace maximum cost edge with (u, v, w)

- Key insight: Use link-cut trees to maintain MSF dynamically
- Link-cut tree operations:
 - find_max(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ link(u, v, w): $\mathcal{O}(\log n)$ amortized
 - ightharpoonup cut(u, v): $\mathcal{O}(\log n)$ amortized
 - ▶ is_connected(u, v): $\mathcal{O}(\log n)$ amortized
- Algorithm for adding edge (u, v, w):
 - Check if u and v are in connected in the same component
 - 2 If not: add edge (u, v, w) to forest
 - If yes: find the edge with maximum cost on the u-v path
 - If w < maximum cost: replace maximum cost edge with (u, v, w)
- **Total cost:** Amortized $O(\log n)$ per edge addition

Incremental MSF example - Step 1

• $add_edge(g, h, 4)$: Add edge (g, h) with cost 4

• MSF: {g-h}

Incremental MSF example - Step 2

• add_edge(c, a, 1): Add edge with cost 1

• MSF: {g-h, c-a}

Incremental MSF example - Step 3 (Cycle Check)

• add_edge(c, f, 5): Add edge with cost 5

• MSF: {g-h, c-a, f-g, a-f}

Incremental MSF example - Step 3 (Result)

• add_edge(c, f, 5): Edge cost is greater than max cost (2), not added

• **MSF:** {g-h, c-a, f-g, a-f}

Incremental MSF example - Step 4

• add_edge(f, d, 7): Add edge with cost 7

• MSF: {g-h, c-a, f-g, a-f, f-d}

Incremental MSF example - Step 5 (Cycle Check)

• add_edge(a, d, 3): Add edge with cost 3

• MSF: {g-h, c-a, f-g, a-f, f-d}

Incremental MSF example - Step 5 (Result)

• add_edge(a, d, 3): Cost 3 i max cost 7, swap edges

• **MSF:** {g-h, c-a, f-g, a-f, a-d}

Incremental MSF example - Step 6 (Cycle Check)

• add_edge(d, g, 2): Add edge with cost 2

• **MSF:** {g-h, c-a, f-g, a-f, a-d}

Incremental MSF example - Step 6 (Result)

• add_edge(d, g, 2): Cost 2 i max cost 6, swap edges

• MSF: {g-h, c-a, a-f, a-d, d-g}

Incremental MSF example - Step 7 (Final Result)

• Continue adding edges...

Incremental MSF example - Step 7 (Final Result)

- Continue adding edges...
- Final MSF: Minimum spanning forest with optimal cost

• Solution: Frederickson (1983) using link-cut trees

What is retroactivity?

• Problem: Data structures usually support updates and queries

The order of updates affects the state of the data structure

What is retroactivity?

- Problem: Data structures usually support updates and queries
- The order of updates affects the state of the data structure
- Retroactivity: Manipulate the sequence of updates

What is retroactivity?

- Problem: Data structures usually support updates and queries
- The order of updates affects the state of the data structure
- Retroactivity: Manipulate the sequence of updates
- Operations:
 - Insert update at time t (possibly in the past)
 - Remove update at time t
 - Query at time t (not just present)

Partial vs Full retroactivity

Fully Retroactive

- Queries at any time t
- Insert/remove updates at any time

Partial vs Full retroactivity

Fully Retroactive

- Queries at **any** time t
- Insert/remove updates at any time

Partially Retroactive

- Queries only on current state
- Insert/remove updates at any time

Partial vs Full retroactivity

Fully Retroactive

- Queries at any time t
- Insert/remove updates at any time

Partially Retroactive

- Queries only on current state
- Insert/remove updates at any time

Semi-Retroactive

- Queries at any time t
- Insert updates at any time
- No removal of updates

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

• **Problem:** Need to support queries at any time *t*

• Solution approach: Square-root decomposition

The challenge

Challenge

How to transform partial \rightarrow full retroactivity?

- Problem: Need to support queries at any time t
- Solution approach: Square-root decomposition
- **Key insight:** Keep checkpoints with data structure states
- Implementation: Demaine, Iacono & Langerman (2007)

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- $\mathcal{O}(\sqrt{m})$ slowdown per operation
- O(m) space usage
- Requirement: Need persistent version of the data structure

Where m is the number of updates.

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- $\mathcal{O}(\sqrt{m})$ slowdown per operation
- O(m) space usage
- Requirement: Need persistent version of the data structure

Where m is the number of updates.

- **Key idea:** Square-root decomposition
- Keep \sqrt{m} checkpoints with data structure states

Demaine, Iacono & Langerman's solution

Theorem (Theorem 05)

Any partially retroactive data structure can be transformed into a fully retroactive one with:

- ullet $\mathcal{O}(\sqrt{m})$ slowdown per operation
- O(m) space usage
- Requirement: Need persistent version of the data structure

Where m is the number of updates.

- Key idea: Square-root decomposition
- Keep \sqrt{m} checkpoints with data structure states
- Query at time t:
 - Find closest checkpoint before t
 - Apply updates from checkpoint to t
 - Answer query, then rollback

• Naive approach: Keep \sqrt{m} independent copies

• Space usage: $\Theta(m\sqrt{m})$

- Naive approach: Keep \sqrt{m} independent copies
- Space usage: $\Theta(m\sqrt{m})$
- Demaine et al. solution: Use persistent data structures
- Space usage: $\mathcal{O}(m)$

- Naive approach: Keep \sqrt{m} independent copies
- Space usage: $\Theta(m\sqrt{m})$
- Demaine et al. solution: Use persistent data structures
- Space usage: $\mathcal{O}(m)$

Problem

What if we don't have or don't want to use persistent data structures?

- Naive approach: Keep \sqrt{m} independent copies
- Space usage: $\Theta(m\sqrt{m})$
- Demaine et al. solution: Use persistent data structures
- Space usage: $\mathcal{O}(m)$

Problem

What if we don't have or don't want to use persistent data structures?

Our contribution

Simple rebuilding strategy without persistent data structures

- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space usage: $\Theta(m\sqrt{m})$

Starting point

- Junior & Seabra's solution: Semi-retroactive incremental MSF
- Operations:
 - add_edge(u, v, w, t): add edge at time t
 - ightharpoonup get_msf(t): get MSF at time t

Starting point

- Junior & Seabra's solution: Semi-retroactive incremental MSF
- Operations:
 - ▶ add_edge(u, v, w, t): add edge at time t
 - ▶ get_msf(t): get MSF at time t
- Implementation: Square-root decomposition
- Checkpoints: $t_i = i\sqrt{m}$ for $i = 1, ..., \sqrt{m}$

Starting point

- Junior & Seabra's solution: Semi-retroactive incremental MSF
- Operations:
 - ▶ add_edge(u, v, w, t): add edge at time t
 - get_msf(t): get MSF at time t
- Implementation: Square-root decomposition
- Checkpoints: $t_i = i\sqrt{m}$ for $i = 1, ..., \sqrt{m}$
- Data structures: D_i contains edges before time t_i
- Time: $\mathcal{O}(\sqrt{m}\log n)$ per operation

Limitations → Key Insight

Problems with the existing static approach

• **Fixed** *m*: Requires knowing the maximum sequence length (**m**) beforehand. Meaning that it cannot handle arbitrary growth or dynamic operation counts.

Limitations → Key Insight

Problems with the existing static approach

 Fixed m: Requires knowing the maximum sequence length (m) beforehand. Meaning that it cannot handle arbitrary growth or dynamic operation counts.

Our dynamic goal and solution

Goal: Remove the **Fixed m** dependency while preserving time complexity.

- **Key Insight:** Introduce a dynamic rebuilding process to handle arbitrary growth.
- **Challenge:** Rebuilding $\sqrt{\mathbf{m}}$ checkpoints must be fast, avoiding complex persistent data structures.
- **Solution:** Reuse the existing data structures to efficiently reconstruct new checkpoints.

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D'_0, D'_1
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D'_0, D'_1
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

Key Lemma

Every update in D_i is within the first (i+2)(k+1) updates in the new sequence.

- Key idea: Reuse existing data structures during rebuilding
- **Rebuilding moments:** When $m = k^2$ (perfect square)
- Strategy:
 - Create new empty structures D'_0, D'_1
 - 2 Reuse $D_i \rightarrow D'_{i+2}$ for $i = 0, \dots, k-1$
 - **3** Apply missing updates to each D'_i

Key Lemma

Every update in D_i is within the first (i+2)(k+1) updates in the new sequence.

- Time per rebuilding: $\mathcal{O}(m \log n)$
- Amortized cost: $O(\sqrt{m} \log n)$ per operation

Rebuilding algorithm

- **1** D_0' ← NEWINCREMENTALMSF()
- $O_1' \leftarrow \text{NEWINCREMENTALMSF}()$
- **③** For i = 2 to k + 1: $D'_i \leftarrow D_{i-2}$

> reuse existing

- **9** For i = 1 to k + 1:
 - ▶ $p \leftarrow \text{KTH}(S, i(k+1))$ $\Rightarrow i(k+1)$ th item in the sequence of updates
 - ▶ $t'_i \leftarrow p$.time
 - ▶ ADDEDGES(S, t_{i-2}, t'_i, D'_i)

Rebuilding algorithm

- $D_0' \leftarrow \text{NEWINCREMENTALMSF}()$
- $O_1' \leftarrow \text{NEWINCREMENTALMSF}()$
- **③** For i = 2 to k + 1: $D'_i \leftarrow D_{i-2}$

- **4** For i = 1 to k + 1:
 - ▶ $p \leftarrow \text{KTH}(S, i(k+1))$
- $\triangleright i(k+1)$ th item in the sequence of updates

- ▶ $t_i' \leftarrow p$.time
- ▶ ADDEDGES (S, t_{i-2}, t'_i, D'_i)

Original

New

$$D_i \rightarrow D'_{i+2}$$

Results

Our contribution

- ullet General transformation: Partial o Full retroactivity
- No persistent data structures needed
- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space trade-off: $\Theta(m\sqrt{m})$ vs $\mathcal{O}(m)$

Results

Our contribution

- ullet General transformation: Partial o Full retroactivity
- No persistent data structures needed
- Same time complexity: $\mathcal{O}(\sqrt{m})$ per operation
- Space trade-off: $\Theta(m\sqrt{m})$ vs $\mathcal{O}(m)$

Semi-retroactive MSF implementation

- Operations: $add_edge(u, v, w, t)$, $get_msf(t)$
- **Time:** $\mathcal{O}(\sqrt{m}\log n)$ per operation
- Space: $\Theta(m\sqrt{m})$
- No fixed m or time range restrictions

Thank you!

Questions?