14페이지

개발 스택으로는 딥러닝과 머신러닝 프레임워크인 TensorFlow를 활용합니다. TensorFlow는 다양한 데이터 분석과 모델 개발에 강력한 기능을 제공하며, 특히 대규모 데이터 처리를 지원합니다. 이를 통해 효율적이고 정확한 AI 모델을 구현할 수 있습니다.

15페이지

CNN 모델 구성

"우리는 CNN(Convolutional Neural Network)을 기반으로 폐렴 진단 모델을 설계했습니다. 이 모델은 총 4개의 Convolution Layer와 1개의 Fully Connected Layer로 구성되어 있으며, 각 Convolution Layer 뒤에는 BatchNormalization과 MaxPooling을 적용해 특징 추출과 차원 축소를 효율 적으로 수행했습니다.

16페이지

Fully Connected Layer에서는 512개의 뉴런과 ReLU 활성화 함수를 사용하고, 마지막 출력층에서는 Sigmoid 함수를 사용하여 이진 분류를 수행하도록 설계했습니다."

17페이지

모델 컴파일

"모델 학습 시 손실 함수로는 binary_crossentropy(바이너어리 크라신트러피)를 사용하여 폐렴 여부를 이진으로 분류하도록 했습니다.

최적화 알고리즘으로는 학습률을 0.0001로 설정한 Adam Optimizer(아담 옵티마이저)를 사용했으며, 평가 지표로는 정확도를 선택하여 모델 성능을 추적했습니다."

콜백 설정

"학습 안정성을 위해 EarlyStopping과 ReduceLROnPlateau(리두스 르런 플래토우) 콜백을 적용했습니다.

EarlyStopping은 검증 손실(val_loss)의 개선이 7번 이상 일어나지 않으면 학습을 중단하며, ReduceLROnPlateau는 검증 손실이 개선되지 않을 경우 학습률을 점진적으로 낮춰 모델의 최적의 학습 속도에 접근할 수 있도록 했습니다."

모델 학습

"모델 학습은 50번의 에포크 동안 진행했으며, 각 에포크에서 학습 데이터와 검증 데이터를 사용해 학습 성능을 모니터링했습니다.

검증 데이터는 과적합을 방지하고 모델의 일반화 성능을 확인하기 위한 중 요한 요소로 사용되었습니다."

18페이지

학습 결과 시각화

"훈련 결과는 정확도와 손실의 변화를 그래프로 시각화했습니다.

오른쪽 그래프는 학습 손실과 검증 손실의 감소를 보여주며, 왼쪽 그래프는 학습 정확도와 검증 정확도의 향상을 나타냅니다.

이 그래프를 통해 모델의 학습 진행 상황과 과적합 여부를 명확히 파악할 수 있었습니다."

19페이지

모델 평가

"최종적으로 테스트 데이터셋을 사용해 모델 성능을 평가했습니다. 테스트 정확도는 약 87%로, 이는 학습 데이터와 검증 데이터에서 관찰한 성 능과 일관성을 유지하는 결과였습니다.

이를 통해 모델이 일반화 학습을 확보했음을 확인할 수 있었습니다."

20페이지

학습 초반 실행 그래프이며 훈련데이터가 불안정한 모습을 보여줍니다.

21페이지

학습 중반 실행 그래프이며 검증데이터가 불안정한 모습을 보여줍니다.

22페이지

학습 최종 과정의 실행 그래프이며 학습 중반 그래프에 비해 검증데이터가 안정된 모습을 보여줍니다.