

Gravitational-Waves Glitch Detection: A Deep Learning Approach

- Senad Beadini Master's degree in Computer Science

Gravitational Waves:

- Ripples of space-time :
 - o Ex: A huge mass that rotates, Binary Black Hole

 According Einstein's theory, gravity = curvature of space-time

Can we detect Gravitational Waves?

It is hard.. but yes!

LIGO:

Laser Interferometer Gravitational-Wave Observatory

It's able to detect the passage of gravitational waves.

It requires high-precision tools, sensitive to distances less than the length of the atomic nuclei !!!!

In 2015, LIGO/VIRGO detect the first GW from a binary black hole merger.

Reference:

- Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." *Physical review letters* 116.6 (2016): 061102.

Problems and challenges:

High sensitivity

--->

+likelihood of errors and noise

GW detectors are vulnerable to particular artifacts called glitches :

 caused by e.g. small ground motions, ringing of the test-mass suspension system at resonant frequencies, or fluctuations in the laser

These artifacts produce: false-positive results in GW search, reduce the significance of candidate gravitational-wave signals, corrupt data etc.

2 type of Glitches:

It's essential to develop automatic processes which are able to detect and recognize glitches.

Pipeline: Gravity Spy (Zevin, Michael, et al. (2017))

Figure 2: Gravity Spy system architecture, and overall data flow through the interconnected, interdisciplinary components of the project.

The aims of the project:

 We want (high accuracy) predictive models capable of recognizing glitches, to reduce human intervention as much as possible.

• We want to be able to recognize new types of glitches never seen before to help humans cluster new glitches never seen so far.

Let's go further!

Why Big Data?

- Huge amount of data, in 'observing' mode, LIGO generates terabytes of data every day! [1]
- High velocity of generated data.
- Data can be in different format. Data usually are signals that need to be interpreted and processed.
- The data of different GW detectors usually are used to study better the results (e.g. LIGO, VIRGO and KAGRA)
- A GW detector costs Billions \$. Data has been gathered by LIGO (and others) has an incalculable value from the point of view of science.

5 Vs of Big Data hold.

Dataset:

- kaggle dataset : https://www.kaggle.com/tentotheminus9/gravity-spy-gravitational-waves
- It contains :
 - o 22348 samples in the Train set
 - 4800 samples in the Validation set
 - 4720 samples in the Test set

roughly 4 GB

- There are 22 classes, 20 of them are different kind of glitches.
 - o Two of them are :
 - "No_Glitch": It contains pure signals without any glitch.
 - "None_of_the_above": It contains unknown glitch never seen so far.

2 type of Glitches in Train set:

Related work:

- [1] Zevin, Michael, et al. "Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science." *Classical and quantum gravity* 34.6 (2017): 064003
 - Great result using CNN, however they use 20 classes and low accuracy for unseen glitches
- [2] George, Daniel, Hongyu Shen, and E. A. Huerta. "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO." arXiv preprint arXiv:1706.07446 (2017).
 - Transfer learning using S-o-A models in CV (ResNet, Inception etc.) + proposed a clustering approx.
- [3] Other recent approach using generative models.

In this project: I reproduce the results of [2]

Transfer Learning:

A deep learning technique which use a trained model to solve another similar task. Basically we exploit the knowledge of a model that has already learnt in a task for another similar problem.

However the training needs to be re-computed, we have less learnable parameters though.

Which models did I use?

1) EfficientNetB0: 20,438,553 parameters

2) EfficientNetB1: 38,584,982 parameters None of them used in [2]

3) MobileNetV2 18,646,966 parameters

For each model, training: #Epochs = 50, SGD, Ir = 0.0001, momentum = 0.9

EfficientNetB0:

It's a CNN and use residual blocks.

A standard convolutional neural network

EfficientNetB0 confusion matrix test set: (the best model)

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Comparison with [2]

- They got 98.8 % accuracy with ResNet50 whereas I got 93%.
- However there are a few differences :
 - My test set is almost 3 times bigger.
 - My # epochs are half of them.
 - Limited computational power, just Colab :(

[2] George, Daniel, Hongyu Shen, and E. A. Huerta. "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO." *arXiv preprint arXiv:1706.07446* (2017).

EfficientNetB0 metrics per single class :		precision	recall	f1-score	support	
	1080Lines	1.00	0.89	0.94	200	
	1400Ripples	0.88	0.83	0.86	36	
 14 classes have both Recall and Precision >= 0.89. 	Air Compressor	0.91	0.83	0.87	36	
	Blip	0.94	0.97	0.96	1092	
	Chirp	1.00	0.90	0.95	40	
	Extremely Loud	0.94	0.97	0.95	256	
	Helix	0.92	1.00	0.96	168	
These 2 classes are crucial!!	Koi Fish	0.96	0.99	0.98	408	
	Light_Modulation	0.93	0.95	0.94	312	
	Low_Frequency_Burst	0.94	0.92	0.93	360	
	Low Frequency Lines	0.89	0.94	0.91	264	
	No Glitch	0.67	0.61	0.64	84	
	None of the Above	0.75	0.48	0.58	44	
	Paired_Doves	1.00	0.25	0.40	16	
This contains a the language	Power_Line	0.93	0.99	0.96	272	
This pair have the lowest	Repeating Blips	0.77	0.83	0.80	148	
Recall and Precision values.	Scattered_Light	0.98	0.93	0.95	268	
	Scratchy	0.96	0.90	0.93	200	
	Tomte	0.91	0.75	0.82	52	
	Violin_Mode	0.90	0.94	0.92	256	
	Wandering Line	1.00	0.57	0.73	28	
	Whistle	0.97	0.96	0.96	180	
How to deal those labels?				0.00	4.7.0.0	
1 1011 to deal tilose labele:	accuracy	0.00	0 0 4	0.93	4720	
	macro avg	0.92	0.84	0.86	4720	
	weighted avg	0.93	0.93	0.93	4720	

Clustering approach:

• Different ways. First of all we need an feature extractor since each data sample is a [479*579*3] d vector.

Exploiting the previous trained network as feature extractor.

Developing a new model in order to learn an embedding (PCA, AE, VAE)

Following the [2], I did the first.

Clustering approach : DNN

Build a feature extractor using the neural network.

In our network, each data sample is mapped into a 128 dimensional vector, there's a trade off (+dim+learnable param.)

Clustering approach:

- Once we have the feature extractor, I can use it to extract the latent features from the data.
- Then it's time to do clustering using an algorithm.
- Here I decided to exploit:
- Kmeans

Gaussian Mixture Model

Never seen by DNN

Clustering: evaluation

• Standard clustering metrics : Purity score and Silhouette score

Feature Extractor	Algorithm	Purity score	Silhouette score	
DNN	Kmeans	0.6438	0.3174	
DNN	Gaussian Mixture Model	0.6678	0.1942	

Visualization:

- In this environment would be essential visualizing clusters and data (a human has to cluster data for a double check).
- How can we visualize clusters?

There exists some methods. A solution is t-SNE, proposed by [2]:

t-SNE: t-distributed stochastic neighbor embedding

Non-linear
dim. reduction
method

Can we use PCA ? No

Linear dim.

reduction

method

[2] George, Daniel, Hongyu Shen, and E. A. Huerta. "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO." *arXiv preprint arXiv:1706.07446* (2017).

t-SNE:

- It was introduced by Van der Maaten and Hinton in [1].
- Stochastic algorithm, strong (and difficult) math theory.

Main idea: it minimizes the **Kullback–Leibler** divergence between two distribution, the first one in the high dimensional space and the second in the reduced space.

$$KL(P||Q) = \sum P_{ij} \log(P_{ij}/Q_{ij})$$

Reference:

[1] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." *Journal of machine learning research* 9.11 (2008).

Clustering: visualization with t-SNE and PCA.

t-SNE seems good, PCA no...

Comparison visualization in 2D

Visualization with t-SNE

Clustering: practice evaluation

If we have some unknown glitches ... how to deal?

None of the above samples which were predicted by the GMM as class 11

None_of_the_above samples which were predicted by the GMM as class 16

Note: here we are not interested in the labels but rather in the clustering itself.

None_of_the_above samples which were predicted by the GMM as class 5

None_of_the_above samples which were predicted by the GMM as class 17

None_of_the_above samples which were predicted by the GMM as class 0

The previous are unseen data.. if we have a single known class?

Tomte samples which were predicted by the GMM as class 18

Only 3 cluster by GMM

Clustering is actually effective by using DNN as a feature extractor.

Conclusion:

In this project:

- I tried to reproduce the result that has been obtained by [2].
- I showed how EfficientNetB0 reach a well accuracy on Gravity Spy test set even though with a small computational power. The performance is comparable with the results obtained in [2].
- I've shown how transfer learning can actually be used with clustering to recognize new glitches and support human beings in the classification. Again confirmed [2].
- I expose how visualization can be used by humans in the clustering step in the gravity spy pipeline using t-SNE algorithm.

[2] George, Daniel, Hongyu Shen, and E. A. Huerta. "Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO." *arXiv preprint arXiv:1706.07446* (2017).

Feature work:

- CNN has been overtaken by Transformers, how would these models perform on this task? I have not found any paper about Transformer applied on this application.
- There're exist other method to reduce the dimensionality of the data like Deep AutoEncoder. There are very few works in literature about it.
- Robustness of those models

Thank you for your attention