Дисциплина: Численные методы

Лабораторное задание №3

Отчет

Тема: Численные методы решения спектральных задач линейной алгебры.Метод обратных итераций.

Выполнили: студентки 3 курса 62 группы Пахомова П.В., Киселёва О.А.

Проверила: старший преподаватель Фролова О.А.

1. Постановка задачи

Метод обратных итераций определения пары с минимальным по модулю собственным значением симметричной матрицы простой структуры.

Вариант 4.

Указание. Для решения линейной системы уравнений использовать метод Халецкого решения СЛАУ с ленточными матрицами.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 ε_{λ} – точность определения собственного значения;

є_е – точность определения собственного вектора;

М – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

 λ – минимальное по модулю собственное значение;

x – собственный вектор, соответствующий собственному значению λ ;

К – число выполненных итераций;

r – мера точности полученной пары (λ , x).

Требуется написать алгоритм нахождения минимального по модулю собственного значения и собственного вектора, соответствующего минимальному собственному значению.

Если для решения системы уравнений с матрицей A применяется один из методов LU разложения матрицы A, то один раз найденное LU разложение используется в дальнейшем.

Необходимо написать тест для средней оценки точности собственных значений, собственных векторов, меры точности, числа итераций.

При записи погрешностей используются 2–3 значащие цифры, не более.

2. Теоретическая часть

Зная собственные вектора и собственные значения симметричная матрица может быть получена через перемножение матриц, вам понадобятся следующие формулы и свойства:

Симметричная матрица — это матрица, у которой транспонированная матрица равна исходной: $A = A^T$.

Если матрица P состоит из собственных векторов по столбцам, а матрица D содержит собственные значения на диагонали и нули вне диагонали, то симметричная матрица A может быть выражена как $A = PDP^{(-1)}$, где:

Р — матрица, содержащая собственные векторы по столбцам.

D — матрица, содержащая собственные значения на диагонали и нули вне диагонали.

 $P^{(-1)}$ — обратная матрица к матрице P.

Теперь приведем формулы для объяснения этого процесса:

- 1. Пусть P матрица с собственными векторами по столбцам: P = [v 1, v 2, ..., v n], где каждый v і является собственным вектором.
- 2. Пусть D диагональная матрица с собственными значениями:

$$D = [[\lambda_1, 0, ..., 0],$$

$$[0, \lambda_2, ..., 0],$$

$$...,$$

$$[0, 0, ..., \lambda_n]], где \lambda_i — собственные значения.$$

3. Тогда произведение PDP^(-1) будет иметь вид:

$$PDP^{(-1)} = [v_1, v_2, ..., v_n] * [[\lambda_1 v_1, \lambda_2 v_2, ..., \lambda_n v_n]]$$

4. Это даст нам симметричную матрицу А:

$$A = PDP^{(-1)},$$

которая будет иметь собственные векторы v_i в качестве столбцов и собственные значения λ_i на диагонали.

Таким образом, через умножение матриц P (содержащей собственные векторы), D (содержащей собственные значения на диагонали), и P^(-1) (обратной матрицы P) можно получить симметричную матрицу A.

Ниже приведено несколько методов определения собственных значений λ и собственных векторов х для симметричных матриц А \in R_{п×п}. Рассмотрение только симметричных матриц объясняется двумя причинами. Во-первых, такие матрицы очень просто устроены с точки зрения спектральной задачи (все собственные значения действительны), во-вторых, симметричные матрицы часто возникают в инженерных расчетах. Кроме того, оставим в стороне случаи кратных собственных значений или совпадения их модулей. Будем считать, что собственные значения пронумерованы в порядке возрастания их модулей.

Степенной метод (метод прямых итераций)

Степенной метод приспособлен для нахождения наибольшего по модулю собственного значения λ_n и соответствующего ему собственного вектора x_n . Пусть $x^{(0)}$ — произвольный вектор из R_n . Вычисления итерационного процесса ведутся по схеме

$$\begin{cases} v^{(k)} = x^{(k)} / ||x^{(k)}|| \\ x^{(k+1)} = A v^{(k)}, \end{cases} \quad k = 0, 1, 2, \dots$$
 (2.1.2)

с попутным вычислением чисел

$$\sigma^{(k)} = v^{(k)^T} x^{(k+1)}. \tag{2.1.3}$$

Показано что

$$\begin{cases} \sigma^{(k)} \to \lambda_n \\ \nu^{(k)} \to \pm x_n \end{cases}, k \to \infty. \tag{2.1.4}$$

Замечание 1. Во всех приведенных методах берутся евклидовы нормы Замечание 2. Если $x_1, x_2, ... x_n$ – ортонормированный базис, составленный из собственных векторов матрицы A, то вектор начального приближения $x^{(0)}$ разложим по этому базису:

$$n x(0) = \sum_{i=1}^{n} \xi_i x_i.$$

В степенном методе предполагается, что $\xi_n = -x_n^T x^{(0)} \neq 0$, т. е. что $x^{(0)}$ не ортогонален x_n .

Замечание 3. Скорость сходимости (2.1.2) зависит от отношения $\left| \frac{\lambda_{n-1}}{\lambda} \right|$

$$\sigma^{(k)} = \lambda_n \left[1 + O\left(\left| \frac{\lambda_{n-1}}{\lambda_n} \right|^{2k} \right) \right]$$

$$v^{(k)} = \left(\frac{\lambda_n}{|\lambda_n|} \right)^k \frac{\xi_n}{|\xi_n|} \left[x_n + O\left(\left| \frac{\lambda_{n-1}}{\lambda_n} \right|^k \right) \right]$$
(2.1.5)

Если $\left| \frac{\lambda_{n-1}}{\lambda_n} \right|$ отношение близко к единице, то сходимость медленная. Последовательность $\sigma^{(k)}$

всегда сходится быстрее, чем последовательность векторов $\nu^{(k)}$.

Метод обратных итераций

Если матрица A невырожденная, то наибольшее по модулю собственное значение матрицы $A^{(-1)}$ будет равно $1/\lambda_1$. Итерационная схема (2.1.2), примененная к матрице $A^{(-1)}$, имеет вид

$$\begin{cases} v^{(k)} = x^{(k)} / ||x^{(k)}|| \\ x^{(k+1)} = A^{-1} v^{(k)} \Leftrightarrow A x^{(k+1)} = v^{(k)}, & k = 0, 1, 2, \dots \end{cases}$$
 (2.3.1)

причем $\sigma^{(k)} = \nu^{(k)T} \, x^{(k+1)} \to 1/\lambda_1$, $\nu^{(k)} \to \pm x_1$ при $k \to \infty$. На каждом итерационном шаге вектор $x^{(k+1)}$ находится как решение системы линейных уравнений $Ax^{((k+1)} = \nu^{(k)}$

Замечание 1. Скорость сходимости итерационного процесса (с8) зависит от отношения $\left| \frac{\lambda_1}{\lambda_2} \right|$:

$$\alpha^{(k)} = \frac{1}{\lambda_{1}} \left[1 + O\left(\left| \frac{\lambda_{1}}{\lambda_{2}} \right|^{2k} \right) \right],$$

$$v^{(k)} = \left(\frac{\lambda_{1}}{|\lambda_{1}|} \right)^{k} \frac{\xi_{1}}{|\xi_{1}|} \left[x_{1} + O\left(\left| \frac{\lambda_{1}}{\lambda_{2}} \right|^{k} \right) \right] \rightarrow \pm x_{1}.$$

$$(2.3.2)$$

Замечание о построении тестовых матриц для решения спектральных задач. Для того чтобы составить симметричную матрицу размерности N, имеющую заранее известные собственные значения, можно поступить следующим образом.

Пусть $\Lambda = (\lambda_i)$ diag — диагональная матрица размерности $N \times N$, λ_i — собственные значения конструируемой матрицы A, ω — случайным образом сгенерированный и пронормированный вектор ($|\omega|=1$) размерности N. Образуем с помощью вектора (столбца) ω матрицу Хаусхолдера:

$$H = E - 2\omega\omega^{T}$$
.

являющуюся симметричной и ортогональной. Тогда в качестве тестируемой матрицы можно взять матрицу

$$A = H \Lambda H^T$$

у которой все собственные значения (элементы диагонали матрицы Λ) и все соответствующие им собственные векторы (столбцы матрицы H) известны.

Замечание о выходе из итерационного процесса в степенном методе (варианты 1-9).

Итерационный процесс прекращается, если:

- достигнуты требуемые точности определения собственного значения и собственного вектора;
 - число итераций превысило максимально допустимое значение.

Предполагается, что требуемая точность \mathcal{E}_{λ} для собственного значения достигнута, если модуль разности двух последовательных приближений стал меньше \mathcal{E}_{λ} . Аналогично считается, что точность \mathcal{E}_{g} для собственного вектора получена, если абсолютное значение угла между двумя векторами, являющимися последовательными приближениями собственного вектора, меньше \mathcal{E}_{g} . Если брать одинаковые значения \mathcal{E}_{λ} , \mathcal{E}_{g} , то точность для собственных значений достигается, вообще говоря, быстрее, чем для собственных векторов. Поэтому, несмотря на то, что собственное значение получено с заданной точностью, итерационный процесс продолжается до достижения заданной точности собственного вектора.

Замечание о выходном параметре r — мере точности решения спектральной задачи (варианты 1—9).

Под мерой точности понимается максимальное по модулю отклонение компоненты вектора $Ax - \lambda x$ от нуля, т. е. первая норма вектора $Ax - \lambda x$.

Замечание о средней оценке точности, о среднем числе итераций.

Как и в предыдущих заданиях, средняя оценка точности, среднее число итераций — это среднее арифметическое соответствующих значений ряда подобных испытаний. Каждый ряд испытаний состоит не менее чем из 10 испытаний.

Напомним, что в записи оценки точности используются 2–3 значащие цифры, не более.

Замечание об обязательных вычислительных экспериментах в вариантах 1–9. Результаты тестирования представляются в виде таблицы.

№ теста	Размер- ность сис- темы <i>N</i>	Диапа- зон значе- ний λ	Tоч- ность $(\varepsilon_{\lambda} = \varepsilon_{g})$	Ср. оценка точно- сти собств. значе- ний	Ср. оценка точности собств. векторов	Сред- няя ме- ра точ- ности <i>г</i>	Среднее число итераций
1							

Тестирование проводится для симметричных матриц простой структуры размерности 10, 30, 50, имеющих собственные значения в диапазонах $-2\div2$, $-50\div50$ с разностью 10^{-5} , 10^{-8} . Минимальное количество строк таблицы равно 12.

3. Алгоритм

ШАГ 1

Генерируем симметричную матрицу.

Функция GeneratorSymmetricMatrixWithEigenVectorsAndValues генерирует симметричную матрицу размера size с заданным диапазоном собственные вектора и значения.

Минимальное и максимальное значение для собственных значений передаются в lambdaMin и lambdaMax соответственно. Если они не заданы, то используются значения min и max.

Алгоритм:

- 1. Инициализировать переменные lambdaMin и lambdaMax.
- 2. Создать генератор случайных чисел.
- 3. Заполнить массив _eigenValuesData случайными значениями в пределах от lambdaMin до lambdaMax.
- 4. Заполнить массив _eigenVectorsData случайными значениями в пределах от min до max.
- 5. Вычислить симметричную матрицу _symmetricMatrix как произведение матриц eigenVectorsData и eigenValuesData.
- 6. Вычислить обратную матрицу _inverseEigenVectorsData для eigenVectorsData.
- 7. Вычислить _symmetricMatrix как произведение _symmetricMatrix, _inverseEigenVectorsData и size.

Функция multiply вычисляет произведение двух матриц matrix1 и matrix2 размера size.

Алгоритм:

- 1. Создать матрицу result размера size x size, заполненную нулями.
- 2. Для каждого і от 0 до size-1 выполнить следующее:
 - а. Для каждого j от 0 до size-1 выполнить следующее:
 - і. Для каждого k от 0 до size-1 выполнить следующее:
 - 1. Добавить в result[i][j] произведение matrix1[i][k] и matrix2[k][j].
- 3. Вернуть матрицу result.

Функция inverseMatrix вычисляет обратную матрицу A^-1 для заданной матрицы A методом Гаусса-Жордана.

Алгоритм:

- 1. Получить размер матрицы А как п.
- 2. Создать расширенную матрицу augmentedMatrix размера n x 2n, заполненную нулями.
- 3. Заполнить первые и столбцов augmentedMatrix значениями из матрицы А.
- 4. Заполнить последние и столбцов augmentedMatrix единицами на диагонали.
- 5. Для каждого і от 0 до n-1 выполнить следующее:
 - а. Получить pivot как элемент augmentedMatrix[i][i].
 - b. Для каждого j от 0 до 2n-1 выполнить следующее:
 - i. Разделить augmentedMatrix[i][j] на pivot.
 - с. Для каждого ј от 0 до n-1 выполнить следующее:
 - і. Если ј не равно і, то получить factor как элемент augmentedMatrix[j][i].
 - іі. Для каждого k от 0 до 2n-1 выполнить следующее:
- 1. Вычесть из augmentedMatrix[j][k] произведение factor на augmentedMatrix[i][k].
- 6. Создать матрицу inverse размера n x n, заполненную нулями.
- 7. Заполнить матрицу inverse элементами из последних n столбцов augmentedMatrix.
- 8. Вернуть матрицу inverse.

ШАГ 2

Передать матрицу в метод для нахождения минимального по модулю собственного значения и собственного вектора.

Входные данные:

- size размер квадратной симметричной матрицы symmetricMatrix;
- _symmetricMatrix матрица размером _size x _size, представленная в виде вектора векторов типа double, содержащая элементы матрицы;
- _givenEigenVectorsE заданная точность для собственных векторов;
- givenEigenValuesE заданная точность для собственных значений;
- _maxIterationsNumber максимальное число итераций при поиске собственных значений и векторов.

Выходные данные:

- _firstMinEigenValue первое минимальное по модулю собственное значение матрицы _symmetricMatrix;
- _eigenVectorByFirstMinEigenValue собственный вектор, соответствующий первому минимальному по модулю собственному значению матрицы symmetricMatrix;
- _IterationsNumber количество выполненных итераций алгоритма поиска собственных значений и векторов;
- resultedEigenVectorsE фактическая погрешность для собственных векторов;
- _resultedEigenValuesE фактическая погрешность для собственных значений;
- r мера точности полученной пары
- (_firstMinEigenValue,_eigenVectorByFirstMinEigenValue)

Значения _firstMinEigenValue, _eigenVectorByFirstMinEigenValue, _IterationsNumber, _resultedEigenVectorsE и _resultedEigenValuesE вычисляются внутри функции Solve(). Значение г вычисляется после выполнения функции Solve().

Алгоритм:

- 1. Инициализировать переменные х rand, k, q, qPrev, maxVecE, system.
- 2. Заполнить вектор х rand случайными числами в пределах от -10 до 10.

выполнять следующее:

- а. Нормализовать вектор x_rand с помощью функции normalizeVector.
- $V = x_rand$
- b. Решить систему линейных уравнений system для вектора v, полученного на предыдущем шаге.
- с. Если система успешно решена, то обновить x_rand как полученное решение.
- d. Сохранить прошлое значение q в qPrev. Вычислить произведение между векторами \mathbf{v}^{T} и \mathbf{x}_{T} and и сохранить его в q.
- е. Вычислить первое минимальное собственное значение как 1/q.
- f. Вычислить максимальную по модулю разность между элементами векторов v и _eigenVectorByFirstMinEigenValue и сохранить ее в maxVecE.
- g. Обновить _resultedEigenVectorsE, _resultedEigenValuesE и _eigenVectorByFirstMinEigenValue.
- h. Увеличить k на 1.
- 4. Вычислить вектор _R как произведение матрицы _symmetricMatrix и _eigenVectorByFirstMinEigenValue, вычесть из него произведение _firstMinEigenValue и вектора _eigenVectorByFirstMinEigenValue.
- 5. Вычислить максимальное значение вектора R и сохранить его в r.

Функция normalizeVector нормализует заданный вектор путем деления каждого элемента на длину вектора.

Алгоритм:

- 1. Вычислить сумму квадратов элементов вектора vector.
- 2. Вычислить длину вектора magnitude как корень из суммы квадратов элементов.
- 3. Создать новый вектор normalizedVector размера, равного размеру вектора vector.
- 4. Для каждого элемента вектора vector выполнить следующее:
 - а. Разделить элемент на длину вектора и добавить результат в normalizedVector.
- 5. Вернуть normalizedVector.

Результаты тестирования

№ Раз- λ Е Ср оценка теста мер диапа- собственно значения	го собственно		Ср. Кол-во Итераций
1 10 -2:2 1.0e-05 5.811e-06	2.466e-06	-3.919e-07	162
2 10 -2:2 1.0e-08 5.890e-09	5.121e-09	-1.505e-09	99
3 10 -50:50 1.0e-05 6.519e-07	7.751e-06	-5.556e-05	31
4 10 -50:50 1.0e-08 2.564e-09	7.328e-09	-1.974e-08	84
5 30 -2:2 1.0e-05 5.893e-06	2.391e-06	-1.076e-07	21
6 30 -2:2 1.0e-08 4.279e-09	5.406e-09	-5.363e-10	81
7 30 -50:50 1.0e-05 3.038e-06	6.852e-06	-1.844e-05	97
8 30 -50:50 1.0e-08 2.329e-09	6.063e-09	-1.000e-08	116
9 50 -2:2 1.0e-05 6.229e-06	4.982e-07	-2.907e-08	28
10 50 -2:2 1.0e-08 6.902e-09	2.375e-09	-1.614e-10	57
11 50 -50:50 1.0e-05 3.275e-06	6.561e-06	-7.576e-06	30
12 50 -50:50 1.0e-08 3.026e-09	6.843e-09	-8.250e-09	46