

					Pri	nted	Pag	ge: 1	of 2)
				Su	bjec	t Co	de:	KCS	S301	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 DATA STRUCTURE

Time: 3 Hours Total Marks: 100

1. Attempt all questions in brief.

2X1	Λ _	20
A I	. –	7.11

Attemp	of all questions in brief.	= 20
Q No	Questions	CO
(a)	Convert the infix expression (A+B) *(C-D) \$E*F to postfix. Give the answer without any spaces.	1
(b)	Rank the following typical bounds in increasing order of growth rate: $O(\log n), O(n^4), O(1), O(n^2 \log n)$	2
(c)	Draw the binary search tree that results from inserting the following numbers in sequence starting with 11: 11, 47, 81, 9, 61, 10, 12,	3
(d)	What does the following recursive function do for a given Linked List with first node as head? void fun1(struct node* head) { if(head == NULL) return; fun1(head->next); printf("%d", head->data); }	4
(e)	Define a sparse matrix. Suggest a space efficient representation for space matrices.	5
(f)	List the advantages of doubly linked list over single linked list.	1
(g)	Give example of one each stable and unstable sorting techniques.	2
(h)	Write advantages of AVL tree over Binary Search Tree (BST)	3
(i)	What is tail recursion? Explain with a suitable example.	4
(j)	Write different representations of graphs in the memory.	5

SECTION B

2. Attempt any three of the following:

10X3	=	3	0
------	---	---	---

Q No	Questions	CO
(a)	Write advantages and disadvantages of linked list over arrays. Write a 'C' function creating new linear linked list by selecting alternate elements of a linear linked list.	1
(b)	Write algorithms of insertion sort. Implement the same on the following numbers; also calculate its time complexity. 13, 16, 10, 11, 4, 12, 6, 7	2
(c)	Differentiate between DFS and BFS. Draw the breadth First Tree for the above graph.	3
(d)	Differentiate between liner and binary search algorithm. Write a recursive function to implement binary search.	4
(e)	What is the significance of maintaining threads in Binary Search Tree? Write an algorithm to insert a node in thread binary tree.	5

SECTION C

3. Attempt any *one* part of the following:

Q No	Questions	CO
(a)	Suppose a three dimensional array A is declared using A[1:10, -5:5, -10:5) (i) Find the length of each dimension and the number of elements in A (ii) Explain Row major order and Column Major Order in detail with explanation formula expression.	1

Printed Page: 2 of 2
Subject Code: KCS301
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 DATA STRUCTURE

	DATASIRCCIORE	
(a)		1
(b)	Discuss the representation of polynomial of single variable using linked list. Write 'C' functions to add two such polynomials represented by linked list.	1
Attemp	at any one part of the following: 10 X1	= 10
Q No	Questions	СО
(a)	(i) Use the merge sort algorithm to sort the following elements in ascending order.	2
()	13, 16, 10, 11, 4, 12, 6, 7.	
	What is the time and space complexity of merge sort?	
	(ii) Use quick sort algorithm to sort 15,22,30,10,15,64,1,3,9,2. Is it a stable sorting	
	algorithm? Justify.	_
(b)	(i) The keys 12, 17, 13, 2, 5, 43, 5 and 15 are inserted into an initially empty hash	2
	table of length 15 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?	
	(ii) Differentiae between linear and quadratic probing techniques.	
Attemp	t any one part of the following:	= 10
Q No	Questions	CO
(a)	Use Dijkstra's algorithm to find the shortest paths from source to all other vertices in	3
· /	the following graph.	
	1 8 2 7 3	
	4 7 2 7 9	
	11 8 4 14 4	
	8 7 6 10	0
	7 1 6 2 5	1.
(b)	Apply Prim's algorithm to find a minimum spanning tree in the following weighted	3
	graph as shown below.	
	$\frac{b}{5}$ $\frac{5}{d}$	
	2 2	
	$a \leftarrow \begin{bmatrix} 6 & 3 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$	
	10.	
	3 4	
	$\overset{\circ}{c}$ 2 $\overset{\circ}{e}$	
	0	
_	t any one part of the following:	
Q No	Questions	CO
(a)	(i) Write an iterative function to search a key in Binary Search Tree (BST).	4
(1-)	(ii) Discuss disadvantages of recursion with some suitable example.	1
(b)	(i) What is Recursion? (ii) Write a C program to calculate factorial of number using recursive and non-	4
	recursive functions.	
Attemp		1 = 10
Q No	Questions	СО
(a)	(i) Why does time complexity of search operation in B-Tree is better than Binary	5
	Search Tree (BST)?	
	(ii) Insert the following keys into an initially empty B-tree of order 5	
	a, g, f, b, k, d, h, m, j, e, s, i, r, x, c, l, n, t, u, p	
(1.)	(iii) What will be the resultant B-Tree after deleting keys j, t and d in sequence?	<u> </u>
(b)	(i) Design a method for keeping two stacks within a single linear array so that	5
	neither stack overflow until all the memory is used. (ii) Write a C program to reverse a string using stack.	
	(ii) write a C program to reverse a string using stack.	