[Info 525]Logique

CLAVIER Paul

October 1, 2013

Contents

1	Définition 1.1 Logique classique (< 1850)
2	De Morgan
3	Boole
1	Frege
5	Gentzen
3	Russel
7	Méthodes7.1Sémantique7.2Syntaxique7.3Types de logiques
8	Logique 8.1 Introduction
9	Validité d'une formule 9.1 Sémantique
10	Théorie syntaxique 10.1 Introduction

1 Définition

- Logique vient du grec Logos, qui veut dire à la fois raison et langage.
- "Étude du discours rationnel."
- "Étude de la raison dans le langage."
- "Science des conditions de vérités."

1.1 Logique classique (< 1850)

- Analyse du langage.
- Division de la grammaire: sujet attribut.
- Prédominance de la logique Aristotélicienne.
- Plusieurs périodes.

1.2 Logique moderne, symbolique axiomatique

- Mathématisation, algébrisation de la logique.
- Les relations perdent leur caractère grammatical.
- Un système d'axiomes choisis arbitrairement et soumis à des règles de déduction immédiates.
- Forme de pensée et une approche du logos différente.
- Système de réécriture , manipulation des signes sans sens.

Pas de définition unique: fonction de l'époque, du logicien, de l'objectif.

2 De Morgan

- Définit l'expression de l'induction mathématique.
- Auteur des lois de De Morgan

3 Boole

4 Frege

- Fondateur de la logique moderne et de son symbolisme.
- Publie des ouvrages

5 Gentzen

• Définit une déduction naturelle.

6 Russel

7 Méthodes

7.1 Sémantique

On va s'intéresser au sens d'une formule (table de vérité)

7.2 Syntaxique

Réécriture

$$\frac{\Gamma \vdash A, \Delta\Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta}$$

7.3 Types de logiques

- Logique des propositions (ordre 0).
- Logique des prédicats.
- Logiques déviantes.

8 Logique

8.1 Introduction

Le calcul des propositions ou des énoncés:

- des plus élémentaires (ordre 0)
- des plus fondamentaux
- des plus simples: propositions non analysée

Calcul:

- étudie les énoncés qui sont soit vrais, soit faux
- Vériconditionnel: comment les énoncés complexes deviennent vrais ou faux selon que énoncés qui le compose sont vais ou faux.

Définition : Un énoncé ou proposition est de qui est vrai ou faux

Notion simplificatrice de la vérité

On s'intéresse à la structure des propositions complexes

- indépendamment de leur contenu de signification
- $\bullet\,$ indépendamment de la langue naturelle

La logique est un langage

- Vocabulaire
- Syntaxe
- Sémantique

8.1.1 Vocabulaire

- 1. Ensemble infini dénombrable de proposition
 - désignés par une lettre minuscule
- 2. Ensemble d'opérateurs
 - négation: ¬
 - conjonction: \wedge
 - disjonction: \vee
 - implication: \rightarrow
 - équivalence: \leftrightarrow
- 3. Ensemble de séparateurs: $(,),[,],\{,\}$

8.1.2 Syntaxe

- Le vocabulaire peut donner lieu à de multiples assemblages de symboles
- Les assemblages qui font partie du langage sont appelés des formules
- Les formules sont obtenues à partir de règles de formation

Formules:

- 1. Toute proposition est une formule: formule atomique
- 2. Récurrence: Si A et B sont deux formules Alors $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$, ... sont des formules
- 3. Clôture: rien d'autre n'est une formule

Remarques:

- 1. Les parenthèses permettent de déterminer l'ordre d'application des règles
- 2. Langage objet et méta-langage
 - langage objet: objet de la théorie (langage des formules)
 - introduction de nouveaux symboles: A, B, ⇔, ⊨, ... qui permettent de parler des formules (langage de l'observateur)
- 3. L'ensemble des formules est infini dénombrable
- 4. Cet ensemble est récursif

9 Validité d'une formule

9.1 Sémantique

- La sémantique attribue une signification aux formules du langage
- Un proposition est soit vraie soit fausse

Définition: Le domaine sémantique est $\{V, F\}$

Définition: Interpréter une formule consiste à lui attribuer la valeur V ou F

Définition: On appelle assignation sur n propositions un ensemble d'interprétations de ces propositions. Elle définit un monde possible

Définition: L'interprétation est une fonction appelée fonction de vérité $\{assignations\} \longrightarrow \{V, F\}$. A partir de n propositions, il est possible de définir 2^{2^n}

Opérateur propositionnel:

- Les fonctions de vérité d'une ou de deux propositions constituent les définitions sémantiques des opérateurs propositionnels
- Ces opérateurs suffisent pour exprimer les fonctions de vérité de plus de 2 propositions

Définition: Une assignation qui rend vrai une formule est appelé un modèle pour cette formule

9.2 Validité et Consistance

Définition: Une formule est sémantiquement consistance, ou consistance, si elle admet au moins un modèle.

Définition: Une formule est dite valide si toutes ses assignations sont des modèles. Une formule valide est aussi appelée tautologie.

Théorème: Si une formule est valide (resp. inconsistante), la formule obtenue en substituant chaque occurrence d'une lettre de proposition par une formule quelconque est également valide (resp. inconsistante).

9.3 Remarque: Métalangage

- L'expression: "A est une formule valide" appartiens au métalangage, on la note: ⊨
- Le symbole ⊨ ne peut pas apparaître dans une formule du langage objet

Remarque : \rightarrow est un opérateur logique comme les autres.

10 Théorie syntaxique

10.1 Introduction

Pour connaître la validité d'un formule, on dispose de 2 méthodes:

- méthode sémantique (table de vérité)
- méthode symbolique (syntaxique): transformer, réécrire, une formule équivalente pour aboutir à une formule remarquable (tautologie)

10.2 Équivalence et remplacement

• Des formules différentes peuvent avoir la même table de vérité

Définition : 2 formules ont la même table de vérité ssi:

$$\models A \leftrightarrow B$$

Définition: Relation d'équivalence logique:

$$A \Leftrightarrow B \ ssi \models A \leftrightarrow B$$

Remarques:

- ullet \Leftrightarrow n'est pas un opérateur permettant de définir une formule
- $A \Leftrightarrow B$ est une relation du méta-langage
- \Leftrightarrow est une relation d'équivalence (réflexive, transitive, symétrique)

Théorème de remplacement : Notons $\Phi(F)$ une formule contenant la sous formule F. Si $A \Leftrightarrow B$ alors $\Phi(A) \Leftrightarrow \Phi(A/B)$ (A est remplacé par B).

Corollaire : Si $A \Leftrightarrow B$, alors si $\models \Phi(A), \models \Phi(A/B)$

Intérêt : On peut construire une chaîne d'équivalences sans passer par les tables de vérité.

10.3 Algèbre de Boole

Calcul: transformer une formule en une formule équivalente.

Équivalences fondamentales : justifiées par les tables de vérité.

Définition : 1 et 0 sont deux formules particulières. 1 désigne la classe des formules valides, 0 désigne celle des formules inconsistantes.

Notation : $F \Leftrightarrow 1 \text{ si} \models F$ $F \Leftrightarrow 0 \text{ si} \models \neg F$

 $\mathbf{Idempotence} \,:\, A \vee A \Leftrightarrow A,\, A \wedge A \Leftrightarrow A.$

Non contradiction : $A \land \neg A \Leftrightarrow 0$

Tiers exclu : $A \lor \neg A \Leftrightarrow 1$

Double négation : $\neg \neg A \Leftrightarrow A$

Éléments neutres : $A \wedge 1 \Leftrightarrow A, A \vee 0 \Leftrightarrow A$

Commutativité : $A \lor B \Leftrightarrow B \lor A$, $A \land B \Leftrightarrow B \land A$

 $\begin{tabular}{ll} {\bf R\acute{e}\acute{e}criture} & : A \leftrightarrow B \Leftrightarrow (A \land B) \lor (\neg A \land \neg B) \\ A \to B \Leftrightarrow \neg A \lor B \\ \end{tabular}$

Corollaires :

Lois d'absorption : $A \lor (A \land B) \Leftrightarrow A, A \land (A \lor B) \Leftrightarrow A$

10.4 Formes normales

 $\mathbf{R}\mathbf{\hat{o}le\ important}$: manipulation "courante" des formules mises sous formes normales.

Définition: On appelle *clause* une disjonction de termes ou chaque terme est soit une lettre de proposition, soit une négation de lettre de proposition.

Définition: Une formule est dite en forme normale conjonctive (FNC) si elle est une conjonction de clauses.

Définition: Une formule est dite en *forme normale disjonctive (FND)* si elle est une disjonction de conjonctions dont chaque terme est une lettre de proposition ou une négation de lettre de proposition.

Théorème: Pour chaque formule, il existe au moins une FNC et une FND logiquement équivalente. Elles sont appelées formes normales de cette formule.

Algorithme de normalisation:

1. Elimination des connecteurs \rightarrow et \leftrightarrow

2.