Introductory Applied Machine Learning

Naï∨e Bayes

Victor Lavrenko and Nigel Goddard School of Informatics

Overview

- Naïve Bayes classifier
- components and their function
- independence assumption
- dealing with missing data
- · Continuous example
- Discrete example
- Pros and cons

Copyright © Victor Lawrenko, 2014

Bayesian classification: components

$$P(y|x) = \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')}$$

- P(y): prior probability of each class
 - encodes how which classes are common, which are rare
 - apriori much more likely to have common cold than Avian flu
- P(x|y): class-conditional model
 - describes how likely to see observation x for class y
 - assuming it's Avian flu, do the symptoms look plausible?
- P(x): normalize probabilities across observations
- does not affect which class is most likely (arg max)

Copyright © Victor Lawrenko, 2014

Bayesian classification: normalization

Normalizer: $P(x) = \sum P(x|y')P(y')$

· an "outlier" has a low probability under every class

$$P(X=x_1 | Y=3) < P(X=x_2 | Y=3)$$

normalizer makes $P(Y=3|X=x_1)$ comparable to non-outliers

Conditional independence

- · Probabilities of going to the beach and getting a heat stroke are not independent: P(B,S) > P(B) P(S)
- May be independent if we know the weather is hot

P(B,S|H) = P(B|H) P(S|H)

· Hot weather "explains" all the dependence between beach and heatstroke

In classification:

- class value explains all the dependence between attributes

Bayesian classification

- Goal: learning function $f(x) \rightarrow y$
 - y ... one of k classes (e.g. spam/ham, digit 0-9)
 - $x = x_1...x_n$ values of attributes (numeric or categorical)
- · Probabilistic classification:
 - most probable class given observation: $\hat{y} = arg max P(y|x)$
- · Bayesian probability of a class:

Copyright © Victor Lawrenko, 2014

Naïve Bayes: a generative model

- · A complete probability distribution for each class
- defines likelihood for any point x
- P(class) via P(observation)
- $P(y|x) \propto P(x|y) P(y)$
- can "generate" synthetic observations
- · will share many properties of the original data
- · Not all probabilistic classifiers do this
 - possible to estimate P(y|x) directly
- e.g. logistic regression:

Overview

- Naïve Bayes classifier
- · Continuous example
- general concepts
- working example

- problems with Naïve Bayes

- example of failure · Discrete example normalizer P(x) - general concepts

- Pros and cons

Independence assumption

- Compute $P(x_1...x_n|y)$ for every observation $x_1...x_n$
 - class-conditional "counts", based on training data
 - problem: may not have seen every x,...x_for every y
 - digits: 2400 possible black/white patterns (20x20) spam: every possible combination of words: 2^{10,000}
 - often have observations for individual x, for every class
- idea: assume $x_4...x_n$ conditionally independent given y

 $P(x_1...x_d|y) = \prod P(x_i|x_1...x_{i-1}, y) = \prod$ chain rule (exact)

Continuous example

- · Distinguish children from adults based on size
- classes: {a,c}, attributes: height [cm], weight [kg]
- training examples: {h, w, y,}, 4 adults, 12 children
- Class probabilities: $P(a) = \frac{4}{4+12} = 0.25$; P(c) = 0.75
- · Model for adults:
 - height ~ Gaussian with mean, variance \ - weight ~ Gaussian $(\mu_{w,a}, \sigma_{w,a}^2)$
- assume height and weight independent
- Model for children: same, using $(\mu_{h,c}, \sigma_{h,c}^2), (\mu_{w,c}, \sigma_{w,c}^2)$

Copyright © Victor Lavrenko, 2014

Problems with Naïve Bayes

Overview

- · Naïve Bayes classifier
- · Continuous example
- · Discrete example
- · Pros and Cons

Copyright © Victor Lawrenko, 2014

- · dealing with missing data
- · computational cost and incremental updates

Continuous example

Discrete example: spam

Separate spam from valid email, attributes = words

)1: "send us your password"	spam	P (spam) = 4/6 P (ham) = 2/6		
D2: "send us your review"	ham	spam	ham	
D3: "review your password"	ham	2/4	1/2	password
D4: "review us"	spam	1/4	2/2	review
D5: "send your password"	spam	3/4	1/2	send
D6: "send us your account"	spam	3/4	1/2	us
		3/4	1/2	your
new email: "review us now"		1/4	0/2	account

 $P(\text{review us |spam}) = P(0,1,0,1,0,0 | \text{spam}) = (1 - \frac{2}{4})(\frac{1}{4})(1 - \frac{3}{4})(\frac{3}{4})(1 - \frac{3}{4})(1 - \frac{1}{4})$

 $P(\text{review us } | \text{ham}) = P(0,1,0,1,0,0 | \text{ham}) = (1-\frac{1}{2})(\frac{2}{2})(1-\frac{1}{2})(\frac{1}{2})(1-$

Missing data

- Suppose don't have value for some attribute X_i
 - · applicant's credit history unknown
 - · some medical test not performed on patient
 - how to compute $P(X_1=x_1 ... X_i=? ... X_d=x_d \mid y)$
- Easy with Naïve Bayes

Copyright © Victor Lawrenko, 201

- where its value is missing
- ignore attribute in instance $P(x_1...\overline{X_j}...x_d|y) = \prod_{i \neq j}^d P(x_i|y)$
- · compute likelihood based on observed attribtues
- · no need to "fill in" or explicitly model missing values
- based on conditional independence between attributes

Decision boundary

- Different means, same variance: straight line / plane
- Same mean, different variance: circle / ellipse

General case: parabolic curve

Problems with Naïve Bayes

- · Zero-frequency problem
 - any mail containing "account" is spam: P(account|ham) = 0/2
- solution: never allow zero probabilities
 - · Laplace smoothing: add a small positive number to all counts:
 - may use global statistics in place of ε: num(w) / num
- very common problem (Zipf's law: 50% words occur once)
- Assumes word independence
 - every word contributes independently to P(spam|email)
 - fooling NB: add lots of "hammy" words into spam email

Missing data (2)

- Ex: three coin tosses: Event = {X₁=H, X₂=?, X₂=T}
 - · event = head, unknown (either head or tail), tail
 - event = {H,H,T} + {H,T,T}
 - P(event) = P(H,H,T) + P(H,T,T)

General case: X_i has missing value

$$P(x_1...x_j...x_d|y) = P(x_1|y) \cdot \cdot \underbrace{P(x_j|y)} \cdot \cdot \cdot P(x_d|y)$$

$$\sum_{x_i} P(x_1...x_j...x_d|y) = \sum_{x_i} P(x_1|y) \cdot \cdot \underbrace{P(x_j|y)} \cdot \cdot \cdot P(x_d|y)$$

$$= P(x_1|y) \cdot \cdot \cdot \underbrace{\sum_{x_i} P(x_j|y)} \cdot \cdot \cdot P(x_d|y)$$

$$= P(x_1|y) \cdot \cdot \cdot \underbrace{1} \cdot \cdot \cdot P(x_d|y)$$

Copyright © Victor Lavrenko, 2014

Summary

- Naïve Bayes classifier
- $P(y|x) = \frac{P(x|y)P(y)}{\sum_{x \in X} P(x|y')P(y')}$
- explicitly handles class priors
- "normalizes" across observations: outliers comparable
- assumption: all dependence is "explained" by class label
- · Continuous example
 - unable to handle correlated data
- · Discrete example
 - fooled by repetitions
 - must deal with zero-frequency problem
- Pros:
- handles missing data
- good computational complexity
- incremental updates

Copyright © Victor Lavrenko, 2014

General structure for Naïve Bayes

- Task
 - c-class classification (c ≥ 2)
- Model structure
 - $c \times d$ independent distributions
 - continuous: Gaussian, discrete: Bernoulli
- Score function
 - class-conditional likelihood
- · Optimization / search method
- analytic solution
- Book: section 4.2

Copyright © Victor Lavrenko, 2

Computational complexity

- · One of the fastest learning methods
- O(nd+cd) training time complexity
 - · c ... number of classes
 - n ... number of instances
 - · d... number of dimensions (attributes)
 - · both learning and prediction
 - · no hidden constants (number of iterations, etc.)
- testing: O(ndc)
- O(dc) space complexity
 - · only decision trees are more compact

Copyright © Victor Lawrenko, 2014

Incremental updates

- Allows incremental updates: O(d) insertion / deletion
- · Bernoulli: store raw counts instead of probabilities
 - new example of class c:
 - n_{cd} += x_d for each d in example, n_c += 1, n += 1
 - · when need to classify:
 - $P(x_c=1 | c) = (n_{cd} + \epsilon) / (n_c + 2\epsilon)$
 - P(c) = n, / n
- Gaussian: store partial sums instead of mean/variance
 - $s_{cd} += x_d$ $s_{cd}^2 += x_d^2$
 - · when need to classify:

```
mean = s_{cd} / n variance = s_{cd}^2 / n – mean<sup>2</sup>
```

Copyright © Victor Lawrenko, 2014