Computational Finance FIN-472 Homework 4 - Solutions

October 13, 2017

Exercise 1: Let X be a one-dimensional random variable with characteristic function ϕ . This variable could be a model for the log prices of a financial asset. Define $S = \exp(X)$. Show that for $\nu, \alpha \in \mathbb{R}$

$$|\phi(\nu - i\alpha)| \le \mathbb{E}[S^{\alpha}].$$

In particular, $\phi(\nu - i\alpha)$ is well-defined if S has moments of order α .

Solution: We have

$$|\phi(\nu - i\alpha)| = |\mathbb{E}[\exp((i\nu + \alpha)X)]|$$

$$\leq \mathbb{E}[\exp(\alpha X)]$$

$$= \mathbb{E}[S^{\alpha}].$$

Exercise 2: The goal of this exercise is to show that the formula for the cumulative distribution function in terms of the Fourier Transform of the density (see (6) below) can be derived using a change in the contour of integration.

Let X be a random variable with characteristic function ϕ , cumulative distribution function F and probability density function f. Observe that

$$F(x) := Pr(X \le x) = \lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} g_{\epsilon}(y) f(y) \, dy, \tag{1}$$

where

$$g_{\epsilon}(y) = \exp(\epsilon(y - x)) 1_{\{y \le x\}},\tag{2}$$

with $1_{\{y \leq x\}}$ the indicator function. Assume that $\mathbb{E}[\exp(-\alpha X)] < \infty$ and $\alpha > 0$.

a) Derive a formula for the Fourier Transform of the function $g_{\epsilon}(y)$ in (2).

Solution: We have

$$\widehat{g_{\epsilon}}(\nu) = \int_{-\infty}^{x} \exp(\epsilon(y - x) + i\nu y) \, dy$$

$$= \exp(-\epsilon x) \int_{-\infty}^{x} \exp((\epsilon + i\nu)y) \, dy$$

$$= \frac{\exp(-\epsilon x + (\epsilon + i\nu)x)}{\epsilon + i\nu}$$

$$= \frac{\exp(i\nu x)}{\epsilon + i\nu}.$$

b) Assume that the hypotheses of Plancherel's Theorem hold and rewrite (1) as

$$F(x) := Pr(X \le x) = \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \overline{\widehat{g_{\epsilon}}(\nu)} \widehat{f}(\nu) \, d\nu. \tag{3}$$

Solution: Assuming that we can use Plancherel's formula, by (1)

$$F(x) = \lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} g_{\epsilon}(y) f(y) dy$$

$$= \frac{1}{2\pi} \lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} \overline{\widehat{g_{\epsilon}}}(\nu) \widehat{f}(\nu) d\nu$$

$$= \frac{1}{2\pi} \lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} \frac{\exp(-i\nu x)}{\epsilon - i\nu} \widehat{f}(\nu) d\nu.$$

c) Change the contour of integration in (3) to deduce

$$F(x) := Pr(X \le x) = \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \overline{\widehat{g_{\epsilon}}}(\nu + i\alpha) \widehat{f}(\nu + i\alpha) d\nu. \tag{4}$$

Why is the hypothesis $\mathbb{E}[\exp(-\alpha X)] < \infty$ important to justify this change in contour of integration?

Solution: Since $\mathbb{E}[\exp(-\alpha X)] < \infty$ the function \widehat{f} is analytic on $\{\nu : 0 < Im(\nu) < \alpha\}$ and continuous on $\{\nu : 0 \leq Im(\nu) \leq \alpha\}$. The same properties hold for $\overline{\widehat{g_{\epsilon}}}$ for any $\epsilon > 0$. Cauchy's integration theorem implies that for all R > 0

$$0 = I_1(R) + I_2(R) + I_3(R) + I_4(R), (5)$$

where

$$I_{1}(R) = \int_{-R}^{R} \overline{\widehat{g_{\epsilon}}}(\nu) \widehat{f}(\nu) d\nu,$$

$$I_{2}(R) = -\int_{-R}^{R} \overline{\widehat{g_{\epsilon}}}(\nu + i\alpha) \widehat{f}(\nu + i\alpha) d\nu,$$

$$I_{3}(R) = \int_{0}^{\alpha} \overline{\widehat{g_{\epsilon}}}(R + i\theta) \widehat{f}(R + i\theta) d\theta,$$

$$I_{4}(R) = -\int_{0}^{\alpha} \overline{\widehat{g_{\epsilon}}}(-R + i\theta) \widehat{f}(-R + i\theta) d\theta.$$

By Exercise 1 the integrand in $I_3(R)$ can be bounded by

$$\mathbb{E}[\exp(-\theta(X-x))]\frac{1}{|\epsilon+\theta-iR|} = \mathbb{E}[\exp(-\theta(X-x))]\frac{1}{\sqrt{(\epsilon+\theta)^2+R^2}}.$$

This quantity tends to 0 as R tends to infinity. We conclude

$$\lim_{R \to \infty} I_3(R) = 0.$$

A similar argument shows that

$$\lim_{R \to \infty} I_4(R) = 0.$$

		x=1	
α	L=1	L=10	L=50
0.1	0.4995	0.6338	0.6322
1	0.3618	0.6374	0.6322
10	56.8464	32.7307	0.3363

Table 1: Approximated probabilities using formula (6) for an $\exp(1)$ distribution. L denotes the truncation bound in the numerical integration. The exact value for x = 1 is 0.6321.

Hence by taking limit as $R \to \infty$ in (5) we obtain

$$\int_{-\infty}^{\infty} \overline{\widehat{g_{\epsilon}}}(\nu) \widehat{f}(\nu) d\nu = \int_{-\infty}^{\infty} \overline{\widehat{g_{\epsilon}}}(\nu + i\alpha) \widehat{f}(\nu + i\alpha) d\nu,$$

and (4) follows.

d) Take the limit in (4) and conclude that

$$F(x) = \frac{1}{\pi} \int_0^\infty Re \left(\frac{\widehat{f}(\nu + i\alpha)}{\alpha - i\nu} \exp(-ix(\nu + i\alpha)) \right) d\nu.$$
 (6)

Note: Here you have to recall the properties of the Fourier Transform for real valued functions.

Solution: We have

$$F(x) = \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \frac{\exp(-i(\nu + i\alpha)x)}{\epsilon - i(\nu + i\alpha)} \widehat{f}(\nu + i\alpha) d\nu$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\widehat{f}(\nu + i\alpha)}{\alpha - i\nu} \exp(-i(\nu + i\alpha)x)) d\nu.$$

After recalling that F(x) is a real number, formula (6) follows from the following observation: the real part of the integrand above is an even function of ν . To see this one can use a similar argument as the one used to prove Proposition 1 in the lecture notes.

e) Test this formula when X has an exponential distribution with rate $\lambda = 1$ for x = 1, $\alpha = 0.1, 1, 10$ and different truncation limits L = 1, 10, 50. You can use the numerical integration routines provided in Matlab.

Solution: In this case we have

$$F(x) = \frac{1}{\pi} \int_0^\infty Re\left(\frac{1}{(1+\alpha-i\nu)(\alpha-i\nu)} \exp(-ix(\nu+i\alpha))\right) d\nu.$$

Table 1 shows the results. For details see Matlab file hereunder.

```
1 function P=Tail_Probability(alpha,x,L)
2
3 % Uses formula (17) in Lecture notes to compute
4 % tail probabilities Pr(X\leq x) for a random variable X¬exp(1)
5 % alpha = damping factor
```

Exercise 3: Using Heston model with the following parameters

$$S_0 = 100,$$
 $V_0 = 0.0175,$ $\rho = -0.6,$ $r = 0,$ $\kappa = 1.5,$ $\theta = 0.04,$ $\sigma = 0.3$

a) Compute the price of the European call options with maturities

$$T \in \{1/12, 1/6, 1/4, 1/2, 1, 2, 3, 4\}$$

and strikes

$$K \in \{50, 80, 90, 95, 100, 105, 110, 120, 150\},\$$

using adequate numerical integration functions among the ones provided by Matlab.

Note: You can use the formula for the characteristic function of the log price given in the lecture.

b) Do the same exercise, but this time replace the previous integrand function, say ϕ_H , by $\phi_H - \phi_{BS}$, where ϕ_{BS} is the corresponding integrand function for the Black-Scholes model and then add the Black-Scholes price to the value of the integral. Does it change the results obtained in a)? *Note:* For the Black-Scholes formula take $\sigma = \sqrt{\theta}$.

Solution for a) and b): Using $\alpha = 0.01$ and the truncation level L = 50 one obtains the results presented in Table 2. For the parameter σ in the BS model we take $\sqrt{\theta}$. A possible implementation of the option pricer can be found hereunder.

```
10 % S= Initial price
  % r= risk free rate
12 % kappa, theta, sigma, rho = parameters Heston
 % V= initial vol in Heston model
 % alpha = damping factor (alpha >0)
  % L = truncation bound for the integral
  %Heston characteristic function as in (23) in Lecture Notes
  21
 b=@(nu)(kappa-li*rho*sigma.*nu);
  gamma=@(nu)(sqrt(sigma^2*(nu.^2+1i.*nu)+b(nu).^2));
  a=0 (nu) (b(nu)./gamma(nu)).*sinh(T*0.5.*gamma(nu));
  c=0 (nu) (gamma (nu) .*coth (0.5*T.*gamma (nu))+b (nu));
  d=@(nu)(kappa*theta*T.*b(nu)/sigma^2);
27
 f=@(nu)(1i*(log(S)+r*T).*nu+d(nu));
 g=@(nu)(cosh(T* 0.5.*gamma(nu))+a(nu)).^(2*kappa*theta/sigma^2);
  h=@(nu)(-(nu.^2+1i.*nu)*V./c(nu));
31
  phi=@(nu)(exp(f(nu)).*exp(h(nu))./g(nu));
33
  % Black-Scholes characteristic function
  36
37
  sigmaBS=sqrt(theta); % Vol used in BS model
38
39
  % charateristic funtion
40
  phiBS=@(nu)(exp((1i*(log(S)+(r-0.5*sigmaBS^2)*T)*nu)-...
     0.5*(sigmaBS^2)*T*(nu.^2)));
42
43
  8888888888888888888888888888
44
  %Integrands
  8888888888888888888888888888
  integrand=@(nu)(real((phi(nu-li*(alpha+1))./...
      (alpha^2+alpha-nu.^2+1i*(2*alpha+1)*nu)).*exp(-1i*log(K).*nu))); ...
48
         % Original integrand in (22)
  integrandBS=@(nu)(real((phiBS(nu-li*(alpha+1))./...
49
      (alpha^2+alpha-nu.^2+1i*(2*alpha+1)*nu)).*exp(-1i*log(K).*nu)));
50
  integrandBS=@(nu) (integrand(nu)-integrandBS(nu)); % Integrand ...
     Subtracting BS integrand
52
 8888888888888888888888888
53
 % Pricing formula
  응응응응응응응응응응응응응응응응응응응
 P=(\exp(-r*T-alpha*log(K))/pi)*integral(integrand,0, L);% Price with (22)
56
57
 Diff=(exp(-r*T-alpha*log(K))/pi)*integral(integrandBS,0, L);
 Call=blsprice(S, K, r, T, sigmaBS, 0);
 Q=Call+Diff; % Price with alternative method
61 end
```

c) Redo a) and b) with different damping factors $\alpha \in \{0.01, 0.5, 1, 1.5, 2, 5, 10\}$ and different truncation limits L = 10, 25, 50, 100 for the numerical integration. Are the results

					T				
V	Methods	1/12	1/6	1/4	1/2	1	2	3	4
50	$\phi_H - \phi_{BS}$	50.0018	50.0012 50.0012	50.0006	50.0003	50.0183	50.1814 50.1814	50.4634 50.4634	50.8092 50.8092
80	$\phi_H - \phi_{BS}$	20.0086 20.008	20.0066	20.0325 20.0325	20.2687	21.0713 21.0713	22.871 22.871	24.5422 24.5422	26.0552 26.0552
06	$\phi_H \\ \phi_{H} - \phi_{BS}$	10.0358	10.174	10.4011	11.2087	12.8022 12.8022	15.51 <i>7</i> 2 15.51 <i>7</i> 2	17.7414	19.6444 19.6444
95	$\phi_H \\ \phi_{H} - \phi_{BS}$	5.2363 5.23715	5.70314 5.70314	6.14385	7.32165	9.28805	12.3693 12.3693	14.8017	16.8504 16.8504
100	$\phi_H \\ \phi_{H} - \phi_{BS}$	1.57131	2.24418 2.24417	2.80208	4.17165	6.33063	9.62058 9.62058	12.186	14.3349 14.3349
105	$\phi_H - \phi_{BS}$	0.121837	0.477942 0.477948	0.854297 0.854297	1.97869	4.00982	7.28874 7.28874	9.89654 9.89654	12.0944 12.0944
110	$\phi_H \\ \phi_{H} - \phi_{BS}$	0.00399647 0.00371532	0.0391579	0.154807	0.761317 0.761317	2.34397	5.37316	7.92703 7.92703	10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	-0.013686 -0.0129997	-0.00354475 -0.00353755	$0.0023677\\0.00236777$	$0.0718768 \\ 0.0718768$	0.640098 0.640098	$2.69031 \\ 2.69031$	4.88156 4.88156	6.91829 6.91829
150	$\phi_H \\ \phi_H - \phi_{BS}$	-0.00356424 -0.00324074	$0.000714532 \\ 0.000717027$	$0.00107198 \\ 0.001072$	$\begin{array}{c} 0.000167906 \\ 0.000167906 \end{array}$	$0.00699855\\0.00699855$	$\begin{array}{c} 0.209023 \\ 0.209023 \end{array}$	$\begin{array}{c} 0.862132 \\ 0.862132 \end{array}$	1.86686

Table 2: European call option prices for $\alpha=0.01$ and L=50.

dependent on the value chosen for α or L?

Solution: The prices corresponding to the various values of α and L=25 are presented in Tables 3, 4, 5, 6, 7, 8 and 9.

2					T				
4	Methods	1/12	1/6	1/4	1/2	П	2	3	4
50	$\phi_H - \phi_{BS}$	50.0452	50.0284 50.0198	50.0181	50.0043	50.0174 50.0174	50.1814 50.1814	50.4634 50.4634	50.8092 50.8092
80	$\phi_H - \phi_{BS}$	20.1037 20.0413	20.0602 20.0414	20.0608	20.2689 20.2688	21.0686 21.0686	22.871 22.871	24.5422 24.5422	26.0552 26.0552
06	$\phi_H \\ \phi_{H} - \phi_{BS}$	9.84778	10.0874	10.3594	11.2085	12.8055 12.8055	15.51 <i>7</i> 2 15.51 <i>7</i> 2	17.7414	19.6444 19.6444
95	$\phi_H \\ \phi_{H} - \phi_{BS}$	5.15363 5.16194	5.62597 5.62665	6.07866	7.29414 7.29415	9.28667	12.3694 12.3694	14.8017 14.8017	16.8504 16.8504
100	$\phi_H \\ \phi_{H} - \phi_{BS}$	1.84091	2.36966	2.85979	4.16787	6.32621 6.32621	9.62066	12.186	14.3349 14.3349
105	$\phi_H \\ \phi_{H} - \phi_{BS}$	0.181017	0.565654 0.55838	0.935245 0.932788	2.01139 2.0113	4.0098	7.28866	9.89654 9.89654	12.0944 12.0944
110	$\phi_H \\ \phi_{H} - \phi_{BS}$	-0.23232	-0.0725335 -0.0529642	0.108904	0.7745	2.34888	5.37303	7.92703 7.92703	10.1205 10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	0.104143	0.0383804	0.00338739	0.0473246	0.636857	2.69044	4.88156 4.88156	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	$0.0228252\\0.0128183$	$\begin{array}{c} 0.0013249 \\ 0.00101929 \end{array}$	-0.0100293 -0.00930125	-0.0148092 -0.0147334	$0.00489141\\0.00489155$	0.209139 0.209139	$\begin{array}{c} 0.862128 \\ 0.862128 \end{array}$	1.86686

Table 3: European call option prices for $\alpha=0.01$ and L=25.

71					T				
V.	Methods	1/12	1/6	1/4	1/2	1	2	3	4
50	$\phi_H \\ \phi_H - \phi_{BS}$	50.0637 50.028	50.0397 50.0276	50.0251 50.0209	50.0051 50.005	50.0167 50.0167	$50.1814 \\ 50.1814$	50.4634 50.4634	50.8092 50.8092
80	$\phi_H - \phi_{BS}$	20.1123 20.0447	20.0637 20.0433	20.0615 20.0555	20.267	21.0679	22.8711 22.8711	24.5422 24.5422	26.0552 26.0552
06	$\phi_H - \phi_{BS}$	9.84239	10.086	10.3603	11.2108	12.8062	15.5171	17.7414	19.6444 19.6444
95	$\phi_H - \phi_{BS}$	5.1378	5.61542 5.61924	6.07156	7.29243	9.28709	12.3694 12.3694	14.8017	16.8504 16.8504
100	$\phi_H - \phi_{BS}$	1.83829	2.36578 2.34234	2.85547 2.84945	4.16478	6.3258	9.62069	12.186	14.3349 14.3349
105	$\phi_H - \phi_{BS}$	0.194524	0.57334	0.939359	2.01112 2.011	4.00914	7.28867 7.28867	9.89654 9.89654	12.0944 12.0944
110	$\phi_H - \phi_{BS}$	-0.220039	-0.063272	0.116011	0.777255	2.34879	5.37301	7.92704 7.92704	10.1205
120	$\phi_H - \phi_{BS}$	0.0898789	0.0297897	-0.00165935 -0.00147672	0.0469813	0.637442	2.69044	4.88155 4.88155	6.91829 6.91829
150	$\phi_H \\ \phi_H - \phi_{BS}$	$0.0154478 \\ 0.009861$	-0.00176134 -0.000654947	-0.0106303 -0.00945818	-0.0131979 -0.0131102	$\begin{array}{c} 0.00549715 \\ 0.00549729 \end{array}$	$\begin{array}{c} 0.209114 \\ 0.209114 \end{array}$	$\begin{array}{c} 0.862128 \\ 0.862128 \end{array}$	1.86686

Table 4: European call option prices for $\alpha=0.5$ and L=25.

71					T				
V	Methods	1/12	1/6	1/4	1/2	1	2	3	4
50	$\phi_H - \phi_{BS}$	50.0899	50.0558	50.0346	50.0058	50.0156 50.0156	50.1814 50.1814	50.4634 50.4634	50.8092 50.8092
80	$\phi_H - \phi_{BS}$	20.1211	20.067	20.0615	20.2644 20.2642	21.0671 21.0671	22.8711 22.8711	24.5422 24.5422	26.0552 26.0552
06	$\phi_H - \phi_{BS}$	9.83751 9.93492	10.0853	10.3619	11.2137	12.8069	15.5171 15.5171	17.7414 17.7414	19.6444 19.6444
95	$\phi_H - \phi_{BS}$	5.12108 5.14748	5.60434 5.61145	6.0642	7.29086	9.28765 9.28765	12.3694 12.3694	14.8017 14.8017	16.8504 16.8504
100	$\phi_H - \phi_{BS}$	1.8347	2.36109	2.85048 2.84491	4.16143	6.32545 6.32545	9.62072	12.186	14.3349 14.3349
105	$\phi_H - \phi_{BS}$	0.207567	0.580596	0.943057	2.01053 2.01039	4.00843	7.2887	9.89654 9.89654	12.0944 12.0944
110	$\phi_H - \phi_{BS}$	-0.20755	-0.0538691 -0.0393424	0.123164 0.126121	0.779889	2.34861	5.37299	7.92704 7.92704	10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	0.0768063	0.0220263	-0.00608792	0.0469325	0.638061	2.69042	4.88155 4.88155	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	0.00985449	-0.00384364 -0.00181163	-0.0107011	-0.0116042	0.00601747	0.209088	0.862129	1.86686

Table 5: European call option prices for $\alpha=1$ and L=25.

2					T				
4	Methods	1/12	1/6	1/4	1/2	П	2	3	4
50	$\phi_H \\ \phi_H - \phi_{BS}$	50.1264 50.0558	50.0778	50.0473 50.0393	50.006	50.0137 50.0137	50.1815	50.4634 50.4634	50.8092
80	$\phi_H \\ \phi_H - \phi_{BS}$	20.1298	20.0696	20.0607	20.2611 20.2609	21.0661 21.0661	22.8712 22.8712	24.5422 24.5422	26.0552 26.0552
06	$\phi_H \\ \phi_H - \phi_{BS}$	9.83338	10.0855	10.3644	11.2171	12.8076 12.8076	15.517	17.7414	19.6444 19.6444
95	$\phi_H \\ \phi_H - \phi_{BS}$	5.10384 5.13981	5.59298 5.60345	6.05677	7.28953 7.28968	9.28833	12.3694 12.3694	14.8017 14.8017	16.8504 16.8504
100	$\phi_H \\ \phi_H - \phi_{BS}$	1.83021	2.35567 2.33452	2.84493	4.1579	6.32516 6.32516	9.62076	12.186	14.3349 14.3349
105	$\phi_H \\ \phi_H - \phi_{BS}$	0.219841 0.180937	0.587237	0.946232	2.00962 2.00947	4.00767	7.28873	9.89654 9.89654	12.0944 12.0944
110	$\phi_H \\ \phi_H - \phi_{BS}$	-0.19517	-0.0445714 -0.0326668	0.130173 0.132156	0.782322	2.34833	5.37299	7.92704 7.92704	10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	$\begin{array}{c} 0.065127 \\ 0.0459196 \end{array}$	$\begin{array}{c} 0.0152097 \\ 0.0163241 \end{array}$	-0.00983697 -0.00815907	$0.0471584\\0.047268$	0.638691 0.638691	2.6904 2.6904	$\frac{4.88155}{4.88155}$	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	0.00577308 0.00566725	-0.00511846 -0.00255122	-0.0103893 -0.00887735	-0.010097	$0.00644559\\0.00644563$	0.209063 0.209063	0.86213 0.86213	1.86686 1.86686

Table 6: European call option prices for $\alpha=1.5$ and L=25.

/1					L				
٧	Methods	1/12	1/6	1/4	1/2	1	2	3	4
50	$\phi_H \\ \phi_H - \phi_{BS}$	50.1771	50.1078	50.0641 50.0535	50.005	50.0108	50.1816	50.4634	50.8092 50.8092
80	$\phi_H \\ \phi_H - \phi_{BS}$	20.1384	20.0715	20.0589	20.2568	21.0651 21.0651	22.8712 22.8712	24.5422 24.5422	26.0552 26.0552
06	$\phi_H \\ \phi_H - \phi_{BS}$	9.83009	10.0866	10.3677	11.221	12.8083	15.517 15.517	17.7414	19.6444 19.6444
95	$\phi_H \\ \phi_{H} - \phi_{BS}$	5.08612 5.13188	5.58141	6.04933	7.28847	9.28916	12.3694 12.3694	14.8017 14.8017	16.8504 16.8504
100	$\phi_H \\ \phi_{H} - \phi_{BS}$	1.82484	2.34953	2.83884 2.83465	4.15422	6.32497 6.32497	9.62079	12.186	14.3349 14.3349
105	$\phi_H \\ \phi_H - \phi_{BS}$	0.231331	0.593246	0.948868	2.00839	4.00688	7.28877	9.89654 9.89654	12.0944 12.0944
110	$\phi_H \\ \phi_{H} - \phi_{BS}$	-0.182959	-0.0354315 -0.0261402	0.136995	0.784534 0.78446	2.34796 2.34796	5.37299	7.92704 7.92704	10.1205 10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	$\begin{array}{c} 0.0547376 \\ 0.0411937 \end{array}$	0.00927193 0.0121501	-0.0129574 -0.0107633	0.0476286 0.0477423	0.639318 0.639318	2.69037 2.69037	$\frac{4.88156}{4.88156}$	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	0.00284998 0.0042457	-0.00579994 -0.00298294	-0.00982363 -0.00832697	-0.00869945 -0.00863482	0.00678959 0.00678958	0.209039 0.209039	$\begin{array}{c} 0.862131 \\ 0.862131 \end{array}$	1.86686 1.86686

Table 7: European call option prices for $\alpha=2$ and L=25.

2					T				
V	Methods	1/12	1/6	1/4	1/2		2	3	4
50	$\phi_H - \phi_{BS}$	51.2307 50.6191	50.6577 50.5197	50.2882 50.274	49.8356 49.8392	49.9265 49.9265	50.1881	50.4629	50.8092 50.8092
80	$\phi_H - \phi_{BS}$	20.1711	20.0494 20.0393	20.0092	20.2033	21.0594 21.0594	22.8718 22.8718	24.5422 24.5422	26.0552 26.0552
06	$\phi_H - \phi_{BS}$	9.83512 9.92428	10.1189	10.4118	11.2572	12.8103 12.8104	15.5167 15.5167	17.7414	19.6444 19.6444
95	$\phi_H - \phi_{BS}$	4.97322 5.0787	5.511	6.00828	7.29103	9.29692	12.3689 12.3689	14.8017 14.8017	16.8504 16.8504
100	$\phi_H - \phi_{BS}$	1.77529	2.29902	2.79239	4.13094	6.32666	9.62078 9.62078	12.1859 12.1859	14.3349 14.3349
105	$\phi_H - \phi_{BS}$	0.283542 0.213896	0.61565 0.595512	0.953162 0.948441	1.9947	4.00243	7.28911 7.28911	9.89652 9.89652	12.0944 12.0944
110	$\phi_H \\ \phi_H - \phi_{BS}$	-0.115872	0.0138251	0.172196	0.792432	2.34409	5.3732	7.92703 7.92703	10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	0.0140732	-0.0116295	-0.0213355 -0.0186406	0.0539023	0.642459	2.69014 2.69014	4.88157 4.88157	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	-0.00237647 0.000523212	-0.0044827 -0.0026443	-0.00510195 -0.00445978	$-0.00292517 \\ -0.00293568$	$\begin{array}{c} 0.00759229 \\ 0.00759231 \end{array}$	0.208964 0.208964	0.862137 0.862137	1.86686

Table 8: European call option prices for $\alpha=5$ and L=25.

					T				
V	Methods	1/12	1/6	1/4	1/2		2	3	4
50	$\phi_H - \phi_{BS}$	70.3536 68.5692	51.567	40.0187	33.0441 32.8682	50.6423 50.6427	49.6875	50.5598 50.5598	50.797
80	$\phi_H - \phi_{BS}$	19.9028 20.12	19.607 19.7856	19.5212 19.5876	19.9271 19.924	21.1322	22.8602 22.8602	24.5435 24.5435	26.0551 26.0551
06	$\phi_H - \phi_{BS}$	9.9984 9.9443	10.3262	10.6185 10.5945	11.3545 11.3555	12.7786	15.5211 15.5211	17.7409	19.6444 19.6444
95	$\phi_H \\ \phi_{H} - \phi_{BS}$	4.79114	5.42486 5.44952	5.98935 5.98425	7.35171	9.309	12.3689 12.3689	14.8015 14.8015	16.8504 16.8504
100	$\phi_H \\ \phi_{H} - \phi_{BS}$	1.64434	2.1804 2.20795	2.69593 2.70423	4.10749	6.34381 6.34381	9.61898 9.61898	12.1861 12.1861	14.3349 14.3349
105	$\phi_H \\ \phi_{H} - \phi_{BS}$	0.312979 0.246378	0.606111	0.922088 0.925973	1.95753 1.95745	4.00373	7.28844 7.28844	9.89664 9.89664	12.0943 12.0943
110	$\phi_H \\ \phi_{H} - \phi_{BS}$	-0.0376031	0.0661567	0.202944	0.785264	2.33663	5.37371	7.92702	10.1205
120	$\phi_H \\ \phi_H - \phi_{BS}$	$\begin{array}{c} -0.0059066 \\ 0.00522198 \end{array}$	-0.0153854 -0.0118154	-0.0152385 -0.0154735	$\begin{array}{c} 0.0669266 \\ 0.0669211 \end{array}$	0.643172 0.643171	2.69025 2.69025	4.88154 4.88154	6.91829 6.91829
150	$\phi_H - \phi_{BS}$	-0.000864149 -0.000131116	-0.00102618 -0.000818587	-0.00094049 -0.000986606	-0.000119254 -0.000117368	$\begin{array}{c} 0.00722352 \\ 0.00722351 \end{array}$	0.209022 0.209022	0.862129 0.862129	1.86686

Table 9: European call option prices for $\alpha=10$ and L=25.