高显经典力学习题解答

数据风暴中的避风港

二〇二五年二月二十二日

目录

第一章 变分法	1
第二章 位形空间	7
第三章 相对论时空观	9
第四章 最小作用量原理	11
第五章 对称性与守恒律	13
第六章 辅助变量	15
第七章 达朗贝尔原理	17
第八章 两体问题	19
第九章 微扰展开	21
第十章 小振动	23
第十一章 转动理论	25
第十二章 刚体	27
第十三章 哈密顿正则方程	33
第十四章 泊松括号	49
第十五章 正则变换	51
第十六章 哈密顿-雅可比理论	53
第十七章 可积系统	55

第一章 变分法

1.1 给定 f(t) 的泛函

$$S[f] = -\int dt e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$$

其中 V 是 f 的任意函数. 求 S[f] 取极值时, f(x) 的欧拉-拉格朗日方程.

参考解答 1.1 记 $L = e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$,则

$$\frac{\partial L}{\partial f} = V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - (f'(t))^2}, \qquad \frac{\partial L}{\partial f'} = \mathrm{e}^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}}$$

$$\delta S = \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} \delta f + e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \delta f' \right)$$

$$\simeq \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} - \frac{d}{dt} \left(e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \right) \right) \delta f$$

因此, Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta f} = -V \frac{\mathrm{d}V}{\mathrm{d}f} f' \mathrm{e}^{-V(f(t))} \frac{f'}{\sqrt{1 - f'^2}} + \mathrm{e}^{-V(f(t))} \frac{f'' + (1 - f')f'^2}{(1 - f'^2)^{3/2}} - V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - f'^2} = 0$$

1.2 给定
$$f(t)$$
 的泛函 $S[f] = \int dt L$, 其中 $L = (f'(t))^2 + f(t)f'(t) + \frac{1}{2}f(t)f''(t)$.

- (1) 求一阶泛函导数 $\frac{\delta S}{\delta f}$;
- (2) 将 L 改写成 $L=\tilde{L}+\frac{\mathrm{d}F}{\mathrm{d}t}$ 的形式, 要求 \tilde{L} 中不包含 f''(t), 求 \tilde{L} 和 F;
- (3) 求泛函 $\tilde{S}[f]=\int \mathrm{d}t\, \tilde{L}$ 的一阶泛函导数 $\frac{\delta \tilde{S}}{\delta f},$ 并比较其和 $\frac{\delta S}{\delta f}$ 的异同.

参考解答 1.2 (1)

$$\delta S = \int dt \, \delta L = \int dt \left(\left(f' + \frac{1}{2} f'' \right) \delta f + \left(2f' + f \right) \delta f' + \frac{1}{2} f \delta f'' \right)$$

$$\simeq \int dt \left(f' + \frac{1}{2} f'' - \frac{d}{dt} \left(2f' + f \right) + \frac{d^2}{dt^2} \left(\frac{1}{2} f \right) \right) \delta f$$

$$\frac{\delta S}{\delta f} = -f''$$

(2) 假设
$$F = \frac{1}{2}ff'$$
, 则 $\frac{dF}{dt} = \frac{1}{2}f'^2 + \frac{1}{2}ff''$, $\tilde{L} = ff' + \frac{1}{2}f'^2$ 满足题意.

$$\delta \tilde{S}[f] = \int dt \delta \tilde{L} = \int dt \left(f' \delta f + (f + f') \delta f' \right)$$

$$\simeq \int dt \left(f' - \frac{d}{dt} (f + f') \right) \delta f$$

$$\frac{\delta \tilde{S}}{\delta f} = -f''$$

注意到
$$\frac{\delta \tilde{S}}{\delta f} = \frac{\delta S}{\delta f}$$
.

1.3 给定两个函数 n(t) 和 a(t) 的泛函 $S[n,a] = \int_{t_1}^{t_2} \mathrm{d}t \, na^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2}\right)$, 其中 A,B 是 n(t) 的任意函数. 求泛函 S[n,a] 取极值时, n(t) 和 a(t) 的欧拉-拉格朗日方程.

参考解答 1.3

$$\delta S = \int \mathrm{d}t \left(a^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2} \right) + na^3 \left(\frac{\mathrm{d}A}{\mathrm{d}n} + 3 \frac{\mathrm{d}B}{\mathrm{d}n} \frac{a'^2}{n^2 a^2} - \frac{3}{2} B(n) \frac{a'^2}{n^3 a^2} \right) \right) \delta n$$

$$-\frac{\delta S}{\delta n} = -a^3 A - 3B \frac{aa'^2}{n^2} - na^3 \frac{\mathrm{d}A}{\mathrm{d}n} - 3n \frac{\mathrm{d}B}{\mathrm{d}n} \frac{aa'^2}{n^2} + \frac{3}{2} nB \frac{aa'^2}{n^3} = 0$$

$$\delta S = \int \mathrm{d}t \left(6B \frac{aa'}{n} \delta a' + \left(3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a \right)$$

$$\simeq \int \mathrm{d}t \left(-\frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) + 3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a$$

$$-\frac{\delta S}{\delta a} = \frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) - 3nAa^2 - 3B \frac{a'^2}{n} = 0$$

1.4 给定二元函数 f(t,x) 的泛函 $S[f] = \iint \mathrm{d}t \mathrm{d}x \frac{1}{2} \left[\left(\frac{\partial f(t,x)}{\partial t} \right)^2 - \left(\frac{\partial f(t,x)}{\partial x} \right)^2 - m^2 f^2(t,x) \right],$ 其中 m 是常数. 求泛函 S[f] 取极值时 f(t,x) 的欧拉-拉格朗日方程.

参考解答 1.4 泛函 S[f] 的 Lagrange 函数为 $L(t,x,f,f_t,f_x) = \frac{1}{2}(f_t^2 - f_x^2 - m^2 f^2)$, 则

$$\delta S = \iint dt dx \delta L$$

$$\simeq \iint dt dx \left[\frac{\partial L}{\partial f} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial f_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f_x} \right) \right]$$

$$= \iint dt dx \left(-m^2 f - f_{tt} + f_{xx} \right) \delta f$$

取极值有 $-\frac{\delta S}{\delta f} = 0$, 即 $f_{tt} - f_{xx} + -m^2 f = 0$

- **1.5** 考虑一条不可拉伸、质量均匀的柔软细绳, 长为 l, 质量为 m. 细绳两端点悬挂于相同高度, 水平距离为 a(a < l).
 - (1) 选择合适的坐标, 求细绳总的重力势能 V 作为细绳形状的泛函;
 - (2) 求细绳重力势能取极值时,细绳形状所满足的欧拉-拉格朗日方程.

参考解答 1.5 \qquad (1) 取细绳所在平面建立笛卡尔系,设悬点为 $\pmb{x_1}=(0,0), \pmb{x_2}=(a,0)$,竖直向下为 y 轴正方向,设细绳形状为 y=y(x) $(0\leq x\leq a)$,可知细绳线密度为 $\lambda=\frac{m}{l}$,则

$$V[y] = \int -(\lambda dL)gy$$
$$= -\frac{mg}{l} \int_0^a y\sqrt{1 + y'^2} dx$$

(2) 泛函 V[y] 的 Lagrange 函数为 $L(x,y,y') = -\frac{mg}{l}y\sqrt{1+y'^2}$, 重力势能取极值有

$$\begin{split} -\frac{\delta V}{\delta y} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial L}{\partial y'} \right) - \frac{\partial L}{\partial y} \\ &= -\frac{mg}{l} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{yy'}{\sqrt{1+y'^2}} \right) - \sqrt{1+y'^2} \right] \\ &= -\frac{mg}{l} \left(\frac{y'^2}{\sqrt{1+y'^2}} + \frac{yy''}{\sqrt{1+y'^2}} - \frac{yy'^2y''}{(1+y'^2)^{3/2}} - \sqrt{1+y'^2} \right) = 0 \end{split}$$

将最后一式化简得到: $yy'' - y'^2 - 1 = 0$, 此即著名的悬链线满足的微分方程.

- **1.6** 考虑 **3** 维欧氏空间中的任意 **2** 维曲面, 取直角坐标, 曲面方程为 z=z(x,y). 曲面上任意两固定点, 由曲面上的任一曲线连接. 曲线方程为 $x=x(\lambda), y=y(\lambda)$, 这里的 λ 是曲线的参数.
 - (1) 求曲线的长度 S 作为 $x(\lambda)$ 和 $y(\lambda)$ 的泛函 S[x,y];
 - (2) 求曲线长度 S 取极值时, $x(\lambda)$ 和 $y(\lambda)$ 的欧拉-拉格朗日方程;
 - (3) 当曲面为以下情况时, 求解 $x(\lambda)$ 和 $y(\lambda)$:
 - (3.1) 平面 z = ax + by + c (a, b, c 为常数);
 - (3.2) 球面 $z = \sqrt{R^2 x^2 y^2}$ (R 为常数);
 - (3.3) 锥面 $z = H\left(1 \frac{1}{R}\sqrt{x^2 + y^2}\right)$ (H, R 为常数).

参考解答 1.6 (1)
$$S[x,y] = \int d\lambda \sqrt{x'^2 + y'^2} = \int d\lambda L(x',y')$$

(2) 先对 $x(\lambda)$ 做变分,

$$\delta S = \int d\lambda \left(\frac{\partial L}{\partial x'} \delta x' \right) = \int d\lambda \left(\frac{x'}{\sqrt{x'^2 + y'^2}} \right) \delta x'$$
$$\simeq \int d\lambda \left(-\frac{d}{d\lambda} \frac{x'}{\sqrt{x'^2 + y'^2}} \right) \delta x$$

因此, $x(\lambda)$ 的 Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta x} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{x'}{\sqrt{x'^2 + y'^2}} \right) = \frac{x''y'^2}{(x'^2 + y'^2)^{\frac{3}{2}}} = 0$$

再对 $y(\lambda)$ 做变分, 因为 x,y 对称, 同理可得 $y(\lambda)$ 的 Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta y} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{y'}{\sqrt{x'^2 + y'^2}} \right) = \frac{y'' x'^2}{(x'^2 + y'^2)^{\frac{3}{2}}} = 0$$

(3) 由曲面方程 $z = z(x(\lambda), y(\lambda)),$

$$S[x,y] = \int d\lambda \sqrt{x'^2 + y'^2 + z'^2} = \int d\lambda \sqrt{x'^2 + y'^2 + \left(\frac{\partial z}{\partial x}x' + \frac{\partial z}{\partial y}y'\right)^2}$$
$$= \int d\lambda \sqrt{\left[1 + \left(\frac{\partial z}{\partial x}\right)^2\right]x'^2 + 2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}x'y' + \left[1 + \left(\frac{\partial z}{\partial y}\right)^2\right]y'^2}$$

(3.1) 平面 z = ax + by + c, 则曲线长度泛函为

$$S[x,y] = \int d\lambda \sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2} = \int d\lambda L(x',y'),$$

分别对 $x(\lambda)$ 和 $y(\lambda)$ 做变分, 得到

$$\delta S = \int d\lambda \left(\frac{\partial L}{\partial x'} \delta x' \right) = \int d\lambda \left(\frac{(1+a^2)x' + aby'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \right) \delta x'$$

$$\simeq \int d\lambda \left(-\frac{d}{d\lambda} \frac{(1+a^2)x' + aby'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \right) \delta x$$

$$\delta S = \int d\lambda \left(\frac{\partial L}{\partial y'} \delta y' \right) = \int d\lambda \left(\frac{(1+b^2)y' + abx'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \right) \delta y'$$

$$\simeq \int d\lambda \left(-\frac{d}{d\lambda} \frac{(1+b^2)y' + abx'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \right) \delta y$$

泛函导数取极值有

$$\begin{split} -\frac{\delta S}{\delta x} &= \frac{\mathrm{d}}{\mathrm{d}\lambda} \frac{(1+a^2)x' + aby'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \\ &= \frac{(1+a^2+b^2)y'(y'x'' - x'y'')}{((1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2)^{\frac{3}{2}}} = 0 \\ -\frac{\delta S}{\delta y} &= \frac{\mathrm{d}}{\mathrm{d}\lambda} \frac{(1+b^2)y' + abx'}{\sqrt{(1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2}} \\ &= \frac{(1+a^2+b^2)x'(x'y'' - y'x'')}{((1+a^2)x'^2 + 2abx'y' + (1+b^2)y'^2)^{\frac{3}{2}}} = 0 \end{split}$$

这两个方程本质上是一样的, 说明曲线满足 x'y'' - y'x'' = 0,

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{y'}{x'} \right) = \frac{x'y'' - y'x''}{x'^2} = 0 \implies \frac{y'}{x'} = const.$$

即曲线是平面内的直线, $x(\lambda) = \alpha\lambda + \beta$, $y(\lambda) = \gamma\lambda + \epsilon$.

(3.2) 球面 $z = \sqrt{R^2 - x^2 - y^2}$, 则曲线长度泛函为

$$S[x,y] = \int \mathrm{d}\lambda \sqrt{\frac{R^2 - y^2}{R^2 - x^2 - y^2}} x'^2 + \frac{2xy}{R^2 - x^2 - y^2} x'y' + \frac{R^2 - x^2}{R^2 - x^2 - y^2} y'^2} = \int \mathrm{d}\lambda L\left(x,y,x',y'\right),$$

$$\& \text{ \mathbb{R}}.$$

1.7 假设地球质量均匀分布, 密度为 ρ , 半径为 R. 如图 1.9 所示, 在地球内部钻一个光滑隧道, 隧道处于过球心的大圆平面内. 一个物体从 A 点静止滑入, 则最终将由 B 点滑出. 在轨道平面取极坐标 $\{r,\phi\}$, 求轨道形状 $r(\phi)$ 满足什么方程时物体穿过隧道的时间最短. (提示:地球内部距离中心 r 处质量为 m 的粒子的牛顿引力势能为 $U(r)=\frac{2}{3}\pi Gm\rho r^2$, 其中 G 为牛顿引力常数.)

参考解答 1.7 考察 A、B 与地球球心形成的平面, 以球心为极点, 设极坐标下 A 点坐标为 (R,ϕ_1) , B 点为 (R,ϕ_2) . 对于一个从 A 静止释放的粒子, 运动到 $r(\phi)$ 处速度为

$$v(r) = \sqrt{\frac{2T}{m}} = \sqrt{\frac{2\Delta U(r)}{m}} = \sqrt{\frac{4}{3}\pi G\rho(R^2 - r^2)}$$

考虑到极坐标下线元为 $\mathrm{d}s^2=\mathrm{d}r^2+(r\mathrm{d}\phi)^2$,则沿着轨道从 A 到 B 的运动总时间为 $r(\phi)$ 的泛函,表达式为

$$T[r] = \int \frac{\mathrm{d}s}{v} = \int_{\phi_1}^{\phi_2} \frac{\sqrt{r'^2 + r^2}}{\sqrt{\frac{4}{3}\pi G \rho (R^2 - r^2)}} \mathrm{d}\phi$$

该泛函的等效 Lagrange 函数为 $L(r,r')=\sqrt{\frac{r'^2+r^2}{R^2-r^2}}$, 取极值时满足欧拉-拉格朗日方程:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{\partial L}{\partial r'} \right) - \frac{\partial L}{\partial r} &= \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{r'}{L(R^2 - r^2)} \right) - \frac{r(r'^2 + R^2)}{L(R^2 - r^2)^2} \\ &= \frac{r''}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{1/2}} - \frac{r'^2 (r'' + r)}{(r'^2 + r^2)^{3/2} (R^2 - r^2)^{1/2}} - \frac{rR^2}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{3/2}} \\ &= 0 \end{split}$$

最后一式整理可得 $r(R^2 - r^2)r'' + (r^2 - 2R^2)r'^2 - R^2r^2 = 0$

- **1.8** 数学上将面积取极值的曲面称作极小曲面. 如图 **1.10** 所示, $\{x,y\}$ -平面上给定的 A 点和 B 点之间有曲线 y(x),此曲线绕 x 轴旋转而成旋转曲面.
 - (1) 求此旋转曲面面积取极小值时 y(x) 满足的微分方程;
 - (2) 求 y(x) 的解.

参考解答 1.8 待施工

- 1.9 并不是所有的微分方程都是欧拉-拉格朗日方程.
- (1) 证明 $f''(t) + 2\lambda f'(t) + \omega^2 f(t) = 0$ (λ, ω 是常数) 在 $\lambda \neq 0$ 时不是欧拉-拉格朗日方程;
- (2) 引入新变量 $q = e^{\lambda t} f$, 求 q 所满足的方程;

(3) 求 q 的方程作为欧拉-拉格朗日方程所对应的泛函 $\tilde{S}[q]$.

参考解答 1.9 (1) 假设存在泛函 $S[f] = \int L(t, f, f') dt$ 满足:

$$\frac{\delta S}{\delta f} = L_f - \frac{\mathrm{d}}{\mathrm{d}t}(L_{f'}) = f'' + 2\lambda f' + \omega^2 f$$

将此式化简可得到:

$$L_f - L_{f't} - L_{ff'}f' - L_{f'f'}f'' = f'' + 2\lambda f' + \omega^2 f$$

于是应当有 $L_{f'f'} = -1$, 进而有:

$$L(t, f, f') = -\frac{1}{2}f'^{2} + C_{1}(f, t)f' + C_{2}(f, t)$$

其中 $C_1(f,t)$, $C_2(f,t)$ 的具体形式待定, 将该解带入欧拉-拉格朗日方程化简有:

$$\frac{\partial C_2}{\partial f}(f,t) - \frac{\partial C_1}{\partial t}(f,t) = 2\lambda f' + \omega^2 f$$

在 $\lambda \neq 0$ 的情况下,上式不可能对所有 f 恒成立,因此原微分方程不是欧拉-拉格朗日方程.

(2) 将 $f(t) = e^{-\lambda t}q(t)$ 带入原方程, 容易化简得到:

$$q''(t) + (\omega^2 - \lambda^2)q(t) = 0$$

(3) 与 (1) 中讨论类似, 将所用符号对应替换即可: $(S,L,f;\lambda,\omega^2) \to (\tilde{S},\tilde{L},q;0,\omega^2-\lambda^2)$, 替换后得到:

$$\begin{cases} \tilde{L}(t,q,q') = -\frac{1}{2}q'^2 + C_1(q,t)q' + C_2(q,t) \\ \\ \frac{\partial C_2}{\partial q}(q,t) - \frac{\partial C_1}{\partial t}(q,t) = (\omega^2 - \lambda^2)q \end{cases}$$

不妨取 $C_1(q,t) = 0, C_2(q,t) = \frac{1}{2}(\omega^2 - \lambda^2)q^2$, 我们就能得到:

$$\tilde{S}[q] = \int \tilde{L}(t, q, q') dt = \int -\left(\frac{1}{2}q'^2 - \frac{1}{2}(\omega^2 - \lambda^2)q^2\right) dt$$

不难看出, 新变量 q 的 Lagrange 函数满足谐振子的形式。

第二章 位形空间

2.1 定性画出沿着操场跑道跑步时你的世界线,并分析其与跑道的关系.

参考解答 2.1 世界线在每一时刻与该时刻的位形空间交于一点, 所有这样的点的集合即在跑道上跑步的轨迹. 该路径是位形空间中的一条封闭曲线.

- **2.2** 如图**2.1**所示,两个粒子由一条无质量、不可拉伸的软绳连接,绳长为 l. 粒子 m_2 放在固定的水平面上,绳子穿过水平面上的小孔,另一端悬挂粒子 m_1 . 不考虑摩擦,假设 m_2 可以在整个水平面上运动, m_1 只在竖直方向运动.
 - (1) 分析这两个粒子和绳子构成的系统的位形和约束,给出约束方程,并分析约束是否完整、定常约束;
 - (2) 求系统的自由度.

图 2.1:

参考解答 2.2 (1) 设无约束时的广义坐标为 $\{r_1, r_2, \theta\}$, 其中 r_1 和 r_2 分别是粒子与小孔之间的距离, θ 是粒子 m_2 在平面上运动的角度. 约束方程为

$$\phi(r_1, r_2) = r_1 + r_2 - l = 0$$

注意到该约束方程是广义坐标的函数, 因此为完整约束; 且不显含时间, 因此为定常约束.

- (2) 完整约束可减少一个自由度,因此系统的自由度为 2,即最少只需两个独立的广义坐标 $\{r,\theta\}$ 即可完全描述粒子的位形. 这个系统的位形空间即 $\mathbb{R}^1 \times \mathbb{S}$.
- **2.3** 如图**2.2**所示, 质量为 M 的楔块放在水平面上, 斜角分别为 θ_1 和 θ_2 , 底边长 L. 两个质量分别为 m_1 和 m_2 的粒子, 由一根无质量、不可拉伸的软绳连接, 绳长为 l, 两个粒子分别放在楔块的两个斜面上. 不考虑摩擦,

第二章 位形空间 习题解答

(1) 分析楔块、两个粒子以及绳子组成的系统的位形与约束,给出约束方程,并分析约束是否完整、定常约束;

(2) 求系统的自由度.

图 2.2:

参考解答 2.3 (1) 设无约束时的广义坐标为 $\{x, r_1, r_2\}$, 其中 x 为楔块在水平面上的位置, r_1 和 r_2 分别是两个粒子到楔块尖端的距离. 约束方程为

$$\phi(r_1, r_2) = r_1 + r_2 - l = 0$$

注意到该约束方程是广义坐标的函数, 因此为完整约束; 且不显含时间, 因此为定常约束.

- (2) 完整约束可减少一个自由度,因此系统的自由度为 2, 即最少只需两个独立的广义坐标 $\{x,r\}$ 即可完全描述粒子的位形. 这个系统的位形空间即 $\mathbb{R}^1 \times \mathbb{R}^1$.
- **2.4** 如图**2.3**所示, $\{z,x\}$ -平面内的一条光滑轨道,轨道形状为曲线 z=z(x) (z'(x)>0),轨道不可变形. 轨道绕着 z 轴以恒定角速度 ω 旋转. 粒子 m 限制在轨道上运动.
 - (1) 分析小球的位形和约束,给出约束方程,并分析约束是否完整、定常约束;
 - (2) 求小球的自由度.

参考解答 2.4 (1) 设小球的广义坐标为 $\{x,y,z\}$, 在静止的参考系中, 约束方程为

$$\phi_1(z, x) = z - z(x) = 0,$$
 $\phi_2(t, x, y) = y - \tan(\omega t)x = 0,$

约束方程 ϕ_1 只显含广义坐标, 因此为完整约束, 定常约束; 约束方程 ϕ_2 显含 t 与广义坐标, 因此为完整约束, 非定常约束.

(2) 两个完整约束可减少两个自由度,因此小球的自由度为 1, 位形空间是嵌入在 \mathbb{R}^3 内由广义坐标 $\{x\}$ 参数化的一维流形 (曲线).

第三章 相对论时空观

3.1 考虑 2 维欧氏空间, 取一般坐标 $\{u,v\}$, 与直角坐标关系为 x=x(u,v), y=y(u,v). 求 2 维欧氏空间度规在 $\{u,v\}$ 坐标下的形式.

参考解答 3.1 由线元的定义, 我们有

$$\begin{split} \mathrm{d}s^2 &= \left(\frac{\partial x}{\partial u}\mathrm{d}u + \frac{\partial x}{\partial v}\mathrm{d}v\right)^2 + \left(\frac{\partial y}{\partial u}\mathrm{d}u + \frac{\partial y}{\partial v}\mathrm{d}v\right)^2 \\ &= \left(\frac{\partial x}{\partial u}\right)^2\mathrm{d}u^2 + \left(\frac{\partial x}{\partial v}\right)^2\mathrm{d}v^2 + \frac{\partial x}{\partial u}\frac{\partial x}{\partial v}\mathrm{d}u\mathrm{d}v + \left(\frac{\partial y}{\partial u}\right)^2\mathrm{d}u^2 + \left(\frac{\partial y}{\partial v}\right)^2\mathrm{d}v^2 + \frac{\partial y}{\partial u}\frac{\partial y}{\partial v}\mathrm{d}u\mathrm{d}v \\ &= \left(\mathrm{d}u \quad \mathrm{d}v\right) \begin{pmatrix} \left(\frac{\partial x}{\partial u}\right)^2 & \frac{\partial x}{\partial u}\frac{\partial x}{\partial v} \\ \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} & \left(\frac{\partial y}{\partial v}\right)^2 \end{pmatrix} \begin{pmatrix} \mathrm{d}u \\ \mathrm{d}v \end{pmatrix} \end{split}$$

因此, 度规在 $\{u,v\}$ 坐标下的形式为

$$g_{ij} = \begin{pmatrix} \left(\frac{\partial x}{\partial u}\right)^2 & \frac{\partial x}{\partial u}\frac{\partial x}{\partial v} \\ \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} & \left(\frac{\partial y}{\partial v}\right)^2 \end{pmatrix}$$

3.2 考虑 3 维欧氏空间, 已知球坐标与直角坐标的关系为 $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$. 求 3 维欧氏空间度规在球坐标下的形式.

参考解答 3.2 考虑
$$3$$
 维欧氏空间中的矢量 $\pmb{v}=x\hat{\pmb{x}}+y\hat{\pmb{y}}+z\hat{\pmb{z}}$,由球坐标
$$\begin{cases} x=r\sin\theta\cos\phi \\ y=r\sin\theta\sin\phi \end{cases}$$
 构造坐标 $z=r\cos\theta$

系的坐标基矢

$$\begin{split} \frac{\partial \boldsymbol{v}}{\partial r} &= \sin \theta \cos \phi \, \hat{\boldsymbol{x}} + \sin \theta \sin \phi \, \hat{\boldsymbol{y}} + \cos \theta \, \hat{\boldsymbol{z}} \\ \frac{\partial \boldsymbol{v}}{\partial \theta} &= r \cos \theta \cos \phi \, \hat{\boldsymbol{x}} + r \cos \theta \sin \phi \, \hat{\boldsymbol{y}} - r \sin \theta \, \hat{\boldsymbol{z}} \\ \frac{\partial \boldsymbol{v}}{\partial \phi} &= -r \sin \theta \sin \phi \, \hat{\boldsymbol{x}} + r \sin \theta \sin \phi \, \hat{\boldsymbol{y}} \end{split}$$

则线元可以写为

$$ds^{2} = d\mathbf{v} \cdot d\mathbf{v} = g_{ij}du^{i}du^{j}$$

$$= \left(dr \quad d\theta \quad d\phi\right) \begin{pmatrix} g_{rr} & g_{r\theta} & g_{\theta\phi} \\ g_{\theta r} & g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi r} & g_{\phi\theta} & g_{\phi\phi} \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$

其中
$$g_{ij} = g_{ji} = \frac{\partial \mathbf{v}}{\partial u^i} \cdot \frac{\partial \mathbf{v}}{\partial u^j} = \frac{\partial x}{\partial u^i} \frac{\partial x}{\partial u^j} + \frac{\partial y}{\partial u^i} \frac{\partial y}{\partial u^j} + \frac{\partial z}{\partial u^i} \frac{\partial z}{\partial u^j}.$$

由于坐标基矢正交,即非对角元为零,计算对角元得

$$g_{rr} = \left(\frac{\partial x}{\partial r}\right)^2 + \left(\frac{\partial y}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2 = (\sin\theta\cos\phi)^2 + (\sin\theta\sin\phi)^2 + (\cos\theta)^2 = 1,$$

$$g_{\theta\theta} = \left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \theta}\right)^2 + \left(\frac{\partial z}{\partial \theta}\right)^2 = (r\cos\theta\cos\phi)^2 + (r\cos\theta\sin\phi)^2 + (-r\sin\theta)^2 = r^2,$$

$$g_{\phi\phi} = \left(\frac{\partial x}{\partial \phi}\right)^2 + \left(\frac{\partial y}{\partial \phi}\right)^2 + \left(\frac{\partial z}{\partial \phi}\right)^2 = (-r\sin\theta\sin\phi)^2 + (r\sin\theta\cos\phi)^2 = r^2\sin^2\theta.$$

将 g_{ij} 代入线元, 得

$$ds^{2} = \begin{pmatrix} dr & d\theta & d\phi \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^{2} & 0 \\ 0 & 0 & r^{2} \sin^{2}\theta \end{pmatrix} \begin{pmatrix} dr \\ d\theta \\ d\phi \end{pmatrix}$$

即 3 维欧氏空间度规在球坐标下的形式为

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

3.3 如图3.1所示,2 维环面参数方程为 $\begin{cases} x=(R+r\cos\theta)\cos\phi,\\ y=(R+r\cos\theta)\sin\phi,\quad,$ 其中 R 和 r 是常数, $\{\theta,\phi\}$ $z=r\sin\theta$

为环面的坐标, 取值为 0 到 2π . 求 2 维环面的度规.

图 3.1:

第四章 最小作用量原理

第五章 对称性与守恒律

第六章 辅助变量

第六章 辅助变量 习题解答

第七章 达朗贝尔原理

第八章 两体问题

第八章 两体问题 习题解答

第九章 微扰展开

第九章 微扰展开 习题解答

第十章 小振动

10.1 已知 n 个函数 $\{u_1(t), \ldots, u_n(t)\}$ 线性无关的"充分"条件是其朗斯基行列式 (Wronskian) 非零, 定义为

$$\mathcal{W}(u_1, \dots, u_n) := \det \begin{pmatrix} u_1 & u_2 & \cdots & u_n \\ u'_1 & u'_2 & \cdots & u'_n \\ \vdots & \vdots & \ddots & \vdots \\ u_1^{(n-1)} & u_2^{(n-1)} & \cdots & u_n^{(n-1)} \end{pmatrix}$$

其中 $u^{(i)}$ 代表对 t 的 i 阶导数.

- (1) 证明 $e^{-i\omega t}$ 和其复共轭 $e^{+i\omega t}$ 是线性无关的, 即 $\mathcal{W}(e^{-i\omega t}, e^{+i\omega t}) \neq 0$;
- (2) 证明任意复函数 u(t) 及其复共轭的朗斯基行列式 $\mathcal{W}(u, u^*)$ 只有虚部, 并讨论其非零的条件.

参考解答 10.1 (1) 不难求得 $\mathcal{W}(e^{-i\omega t}, e^{+i\omega t}) = 2i\omega \neq 0$

(2) 对于任意复函数 u(t),

$$\mathcal{W}(u, u^{\star}) = \det \begin{pmatrix} u & u^{\star} \\ \dot{u} & \dot{u}^{\star} \end{pmatrix} = u\dot{u}^{\star} - (u\dot{u}^{\star})^{\star} = 2\operatorname{Im}(u\dot{u}^{\star})$$

可见其只有虚部, 非零要求 $Im(u\dot{u}^*) \neq 0$

- **10.2** 某单自由度系统,广义坐标为 q,拉格朗日量为 $L=\frac{1}{2}G(t)\dot{q}^2-\frac{1}{2}W(t)q^2$,其中 G(t) 和 W(t) 都是时间的函数.
 - (1) 若 $q_1(t)$ 和 $q_2(t)$ 为系统运动方程的任意两个线性无关的特解,证明其朗斯基行列式 $\mathcal{W}(t) = W(q_1(t), q_2(t))$ 满足形式为 $\dot{\mathcal{W}} + f(t)\mathcal{W} = 0$ 的微分方程,并给出 f(t) 的表达式;
 - (2) 根据 (1) 的结果, 分析当 G(t) 和 W(t) 满足什么条件时 \mathcal{W} 为常数.

参考解答 10.2 (1) 易求得系统运动方程为

$$G(t)\ddot{q} - \dot{G}(t)\dot{q} - W(t)q = 0$$

转化为一阶常微分方程组为:

$$\dot{\mathbf{q}} = \mathcal{A}(t)\mathbf{q}$$

第十章 小振动 习题解答

式中

$$\mathcal{A} = \begin{pmatrix} 0 & 1 \\ -W/G & -\dot{G}/G \end{pmatrix}, \mathbf{q} = \begin{pmatrix} q & \dot{q} \end{pmatrix}^T$$

现计算 \dot{W} . 由线性常微分方程的 Liouville 定理,

$$\dot{\mathcal{W}} = \operatorname{tr}(\mathcal{A})\mathcal{W}$$

则
$$f(t) = -\operatorname{tr}(A) = \frac{\dot{G}(t)}{G(t)}$$
.

(2) 由于 $\mathcal{W} \neq 0$, $\dot{\mathcal{W}} = 0$ 意味着 $\dot{G}(t) = 0$

10.3 待施工

参考解答 10.3 待施工

10.4 求习题 9.5 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义. 参考解答 10.4 待施工

10.5 求习题 9.6 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义. 参考解答 10.5 待施工

10.6 求习题 9.7 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义. 参考解答 10.6 待施工

第十一章 转动理论

第十一章 转动理论 习题解答

第十二章 刚体

- 12.1 已知方阵的矩阵对数由 $\ln(1+M) = M \frac{1}{2}M^2 + \frac{1}{3}M^3 \cdots$ 定义.
- (1) 给定同阶方阵 X,Y, 证明矩阵指数 $e^Xe^Y=e^Z$ 由所谓 Baker-Campbell-Hausdorff 公式给出,即 $Z=X+Y+\frac{1}{2}[X,Y]+\frac{1}{12}[X,[X,Y]]-\frac{1}{12}[Y,[X,Y]]+\cdots$.
- (2) 仿照(1)的推导,利用无穷小三维转动生成元的对易式求 $e^{-\psi J_3}e^{-\theta J_1}e^{-\phi J_3}=e^{\phi^1 J_1+\phi^2 J_2+\phi^3 J_3}$ 的 ϕ^1,ϕ^2,ϕ^3 ,精确到 2 阶.

参考解答 12.1 (1) 把 e^X, e^Y 展开到 3 阶即可.

$$e^{X}e^{Y} = (1 + X + \frac{1}{2}X^{2} + \frac{1}{6}X^{3})(1 + Y + \frac{1}{2}Y^{2} + \frac{1}{6}Y^{3})$$
$$= 1 + X + \frac{1}{2}X^{2} + \frac{1}{6}X^{3} + Y + \frac{1}{2}Y^{2} + \frac{1}{6}Y^{3} + XY + \frac{1}{2}X^{2}Y + \frac{1}{2}XY^{2}$$

$$\begin{split} \ln\!\left(\mathbf{e}^{X}\mathbf{e}^{Y}\right) &= X + Y + \frac{1}{2}(X^{2} + Y^{2} + 2XY) + \frac{1}{6}(X^{3} + Y^{3} + 3X^{2}Y + 3XY^{2} + Y^{3}) - \\ &\frac{1}{2}(X + Y + \frac{1}{2}(X^{2} + Y^{2} + 2XY))^{2} + \frac{1}{3}(X + Y)^{3} \\ &= X + Y + \frac{1}{2}(X^{2} + Y^{2} + 2XY) + \frac{1}{6}(X^{3} + Y^{3} + 3X^{2}Y + 3XY^{2} + Y^{3}) - \\ &\frac{1}{2}\left(X^{2} + Y^{2} + XY + YX + \frac{1}{2}\left((X + Y)(X^{2} + Y^{2} + 2XY) + (X^{2} + Y^{2} + 2XY)(X + Y)\right)\right) \\ &+ \frac{1}{3}(X^{3} + Y^{2}X + XYX + YX^{2} + X^{2}Y + Y^{3} + XY^{2} + YXY) \\ &= X + Y + \frac{1}{2}(XY - YX) - \frac{1}{4}(2X^{3} + 2Y^{3} + 2YXY + 2XYX + 3X^{2}Y + 3XY^{2} + Y^{2}X + YX^{2}) \\ &+ \frac{1}{6}(X^{3} + 3X^{2}Y + 3XY^{2} + Y^{3}) + \frac{1}{3}(X^{3} + Y^{2}X + XYX + YX^{2} + X^{2}Y + Y^{3} + XY^{2} + YXY) \\ &= X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] \end{split}$$

(2) 要求是展开到 2 阶, 那么只需要取前两项. 根据 SO(3) 生成元之间的对易关系 $[J_i,J_i]=arepsilon_{ijk}J_k$

$$e^{-\psi J_3}e^{-\theta J_1} = e^{-\psi J_3 + -\theta J_1 + \frac{1}{2}\psi\theta J_2}$$

而

$$e^{-\psi J_3}e^{-\theta J_1}e^{-\phi J_3} = e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2}e^{-\phi J_3}$$

$$= e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2 - \phi J_3 - \frac{1}{2}[\psi J_3 + \theta J_1 - \frac{1}{2}\psi\theta J_2, \phi J_3]}$$

$$= e^{-\psi J_3 - \theta J_1 + \frac{1}{2}\psi\theta J_2 - \phi J_3 - \frac{1}{2}\theta\phi J_2}$$

也就是说
$$\phi^1 = -\theta, \phi^2 = \frac{1}{2}(\psi - \phi)\theta, \phi^3 = -\psi - \phi.$$

12.2 求质量为 m 的匀质椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的相对于质心的转动惯量张量

由于

$$\int_{x_1^2 + y_1^2 + z_1^2 \le 1} (x_1^2 + y_1^2 + z_1^2) dx_1 dy_1 dz_1 = \int_{r_1^2 \le 1} r_1^2 \times r_1^2 dr_1 \times 4\pi$$

立刻得到

$$\int_{r_1^2 \le 1} x_1^2 dx_1 dy_1 dz_1 = \frac{4\pi}{15}$$

由于球的密度 $\rho = \frac{m}{\frac{4}{3}\pi abc}$ 所以计算积分

$$\int_{\frac{x^2}{2} + \frac{y^2}{12} + \frac{z^2}{2} \le 1} \rho x^2 dx dy dz = \frac{3}{4\pi} a^2 m \int_{r_1^2 \le 1} x_1^2 dx_1 dy_1 dz_1 = \frac{1}{5} m a^2$$

因此可以得到

$$I_{xx} = \frac{1}{5}m(b^2 + c^2), I_{yy} = \frac{1}{5}m(a^2 + c^2), I_{zz} = \frac{1}{5}m(a^2 + b^2)$$

非对角元都是 0.

12.3 证明刚体惯量张量三个对角元中任意一个不会大于另外两个之和.

参考解答 12.3 直接计算即可

$$I_{xx} + I_{yy} - I_{zz} = \int \rho(y^2 + z^2 + x^2 + z^2 - x^2 - y^2) d\tau$$
$$= 2 \int \rho z^2 d\tau \ge 0$$

- 12.4 考虑例 12.4 中的立方体.
 - (1) 求其相对质心基矢垂直于立方体表面的本体系中惯量张量;
 - (2) 证明以质心为原点的任意本体坐标系均为其惯量主轴,并由此说明当质心绕定点转动时,匀质立方体和匀质球不可分辨.

参考解答 12.4 由于对称性可以知道其三个对角元素均为相同的, 而非对角元均为 0, 仅计算一个即可

$$I_{xx} = \int \frac{m}{a^3} (y^2 + z^2) dx dy dz = \frac{1}{6} ma^2$$

习题解答 第十二章 刚体

由于其转动惯量张量写为

$$\begin{pmatrix} \frac{1}{6}ma^2 & 0 & 0\\ 0 & \frac{1}{6}ma^2 & 0\\ 0 & 0 & \frac{1}{6}ma^2 \end{pmatrix} = \frac{1}{6}ma^2 \cdot I$$

其中 I 是单位矩阵, 在正交变换下具有不变性

$$I' = RIR^{-1} = RR^{-1} = I,$$

因此其转动惯量张量在任何正交归一坐标系下形式不变,也易知动能与绕质心转动球相同,而动能一样运动自然一样.

12.5 求例 11.5 中圆盘相对于质心角动量在本体坐标系中分量形式

参考解答 12.5 本体坐标系下角速度为

$$\boldsymbol{\omega} = \omega \frac{R}{L} \cos \phi \, \hat{\boldsymbol{e}}_1 + \omega \frac{R}{L} \sin \phi \, \hat{\boldsymbol{e}}_2 - \omega \, \hat{\boldsymbol{e}}_3$$

由于其转动惯量张量为

$$\begin{pmatrix} \frac{1}{4}mR^2 & 0 & 0\\ 0 & \frac{1}{4}mR^2 & 0\\ 0 & 0 & \frac{1}{4}mR^2 \end{pmatrix}$$

得到其角动量

$$\boldsymbol{L} = \frac{1}{4}m\omega \frac{R^3}{L}\cos\phi\,\hat{\boldsymbol{e}}_1 + \frac{1}{4}m\omega \frac{R^3}{L}\sin\phi\,\hat{\boldsymbol{e}}_2 - \frac{1}{2}mR^2\omega\,\hat{\boldsymbol{e}}_3$$

- 12.6 如图12.1所示,一个宽为 l 高为 h 的门板绕着一边以角速度 ω 匀速旋转,建立如图的本体系 $\{\hat{e}_i\}$,
 - (1) 求门板相对于 $\mathbf{0}$ 点的角动量在 $\{\hat{e}_i\}$ 中的分量;
 - (2) 为了维持门的旋转,需要施加的相对于 O 点的扭矩.

图 12.1:

第十二章 刚体 习题解答

参考解答 12.6 先求解相对于质心的角动量, 容易计算出其本体坐标系中的惯量张量为

$$\begin{pmatrix} \frac{1}{12}mh^2 & 0 & 0\\ 0 & \frac{1}{12}m(h^2 + l^2) & 0\\ 0 & 0 & \frac{1}{12}ml^2 \end{pmatrix}$$

于是其相对于质心的角动量为

$$\boldsymbol{L}_r = \frac{1}{12} m l^2 \omega \, \hat{\boldsymbol{e}}_3$$

再考虑质心相对于 ()点的角动量

$$\boldsymbol{L}_c = m\boldsymbol{r} \times \boldsymbol{v} = \frac{1}{4}m\omega l^2 \,\hat{\boldsymbol{e}}_3 - \frac{1}{4}m\omega hl \,\hat{\boldsymbol{e}}_1$$

熟知相对于 () 点角动量等于两项之和

$$\boldsymbol{L} = \frac{1}{3}m\omega l^2\,\hat{\boldsymbol{e}}_3 - \frac{1}{4}m\omega hl\,\hat{\boldsymbol{e}}_1$$

当然可以直接计算其相对于 O 点的惯量张量.

$$I_{11} = \frac{1}{3}mh^2, I_{22} = \frac{1}{3}m(h^2 + l^2), I_{33} = \frac{1}{3}mh^2$$

以及

$$I_{13} = I_{31} = -\int \rho xz \, dx \, dz = -\frac{1}{4}mhl$$

再利用角动量公式 $L=I\omega$ 得到一样的结果. 由熟知公式

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{\mathrm{space}} = \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{\mathrm{body}} + \boldsymbol{\omega} \times$$

得到力矩

$$oldsymbol{M} = oldsymbol{\omega} imes oldsymbol{L} = rac{1}{4} mhl\omega^2$$

- 12.7 若自由刚体定点转动的角速度沿着某个主轴方向,则被称为匀速转动,
 - (1) 证明任意自由刚体都有匀速转动解;
 - (2) 设初始角速度沿着 \hat{e}_1 方向, 刚体收到小扰动, 角速度变为 $\omega_i \to \omega_i + \delta\omega_i$, 求 $\delta\omega_i$ 满足的微分方程 并写成小振动方程的形式.
 - (3) 设刚体的主轴转动惯量为 $I_1 < I_2 < I_3$,利用(2)的结果,证明刚体沿着最小和最大转动惯量对应的主轴的匀速转动是稳定的,而沿着中间转动惯量对应的主轴的转动是不稳定的.

参考解答 12.7 (1) 只需要 $\omega_1 = C, \omega_2 = \omega_3 = 0$ 或与其类似即可满足欧拉动力学方程.

(2) 由题知道角速度为

$$\boldsymbol{\omega} = (\omega_1 + \delta\omega_1)\,\hat{\boldsymbol{e}}_1 + \delta\omega_2\,\hat{\boldsymbol{e}}_2 + \delta\omega_3\,\hat{\boldsymbol{e}}_3$$

习题解答 第十二章 刚体

由自由转动时三个欧拉动力学方程

$$I_1 \dot{\delta \omega}_1 = \delta \omega_2 \delta \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\delta \omega}_2 = \delta \omega_3 (\omega_1 + \delta \omega_1) (I_3 - I_1)$$

$$I_3 \dot{\delta \omega}_3 = (\omega_1 + \delta \omega_1) \delta \omega_2 (I_1 - I_2)$$

知道, 由于 $\delta\omega_2$, $\delta\omega_3$ 都是小量, $\delta\omega_1$ 可以忽略. 因此原运动方程化为 2 元的

$$I_2 \delta \dot{\omega}_2 = \delta \omega_3 \omega_1 (I_3 - I_1) \tag{12.1}$$

$$I_3\delta\dot{\omega}_3 = \omega_1\delta\omega_2(I_1 - I_2) \tag{12.2}$$

在 (2) 两边求导后带入 (1) 得到关于 $\delta\omega_3$ 的二阶线性微分方程

$$\ddot{\delta\omega_3} + \frac{(I_2 - I_1)(I_3 - I_1)}{I_2 I_3} \omega_1^2 \delta\omega_3 = 0$$

同样可以得到

$$\delta \ddot{\omega}_2 + \frac{(I_2 - I_1)(I_3 - I_1)}{I_2 I_3} \omega_1^2 \delta \omega_2 = 0$$

其假如存在小振动解,本征频率为 $\Omega=\sqrt{\frac{(I_2-I_1)(I_3-I_1)}{I_2I_3}}\omega_1$

- (3) 假如初始绕着 2 轴旋转, 知道其本征频率为 $\Omega = \sqrt{\frac{(I_1 I_2)(I_3 I_2)}{I_1 I_3}} \omega_2$ 但是 $I_1 < I_2 < I_3$,所以根号下小于 0,对应解指数发散,即不稳定.
- 12.8 设对称陀螺相对质心的主轴转动惯量为 $I_1=I_2=\lambda I_3$, 若陀螺绕质心自由转动, 初始章动角为 θ_0 , 证明进动角速度 $\dot{\psi}$ 与自转角速度 $\dot{\varphi}$ 满足 $\dot{\psi}=(\lambda-1)\dot{\phi}\cos\theta_0$

参考解答 12.8 这题还是用欧拉动力学方程. 由于 $I_1=I_2$, 立刻得到 $\omega_3=C$ 由此得到关于 ω_1,ω_2 的方程

$$\lambda \dot{\omega_1} = \omega_2 \omega_3 (\lambda - 1)$$
$$\lambda \dot{\omega_2} = \omega_2 \omega_3 (-\lambda + 1)$$

因此解得

$$\omega_1 = A\cos\left(\frac{\lambda - 1}{\lambda}\omega_3 t + \varphi\right), \omega_1 = A\sin\left(\frac{\lambda - 1}{\lambda}\omega_3 t + \varphi\right)$$

也就是说, 有守恒量 $\omega_1^2 + \omega_2^2 = C$ 于是可以知道总角动量大小守恒, 因为

$$L^2 = \lambda^2 I_3^2 (\omega_1^2 + \omega_2^2) + I_3^2 \omega_3^2$$

正文中已经给出,z轴角动量分量 p_{ψ} 也守恒,即

$$\cos\theta = \frac{p_{\psi}}{L} = \cos\theta_0$$

为常数! 由欧拉运动学方程得到

$$\omega_1^2 + \omega_2^2 = \sin^2 \theta \dot{\phi}^2 + \dot{\theta}^2 = C'$$

即
$$\dot{\phi} = \frac{A}{\sin \theta_0}$$
 是一个常数 但是由于

$$L^{2} = \lambda^{2} I_{3}^{2} (\omega_{1}^{2} + \omega_{2}^{2}) + I_{3}^{2} \omega_{3}^{2} = \lambda^{2} I_{3}^{2} (\omega_{1}^{2} + \omega_{2}^{2}) + L^{2} \cos^{2} \theta$$

于是可以得到

$$\dot{\phi} = \frac{L}{\lambda I_3}$$

由于 $p_{\psi} = L\cos\theta = I_3(\dot{\psi} + \dot{\phi}\cos\theta_0)$ 解得

$$\dot{\psi} = \frac{L(\lambda - 1)}{I_3 \lambda} \cos \theta_0$$

即得到题给式子

$$\dot{\psi} = (\lambda - 1)\dot{\phi}\cos\theta_0$$

第十三章 哈密顿正则方程

13.1 求二元函数 $L = ax^2 + 2bxy + cy^2 + dx + ey$ 的对 x, y 的勒让德变换.

参考解答 13.1

$$H = \sum \frac{\partial L}{\partial x_i} x_i - L$$
$$= ax^2 + 2bxy + cy^2$$

13.2 考虑函数 $L=\frac{1}{2}(q^1v^2-q^2v^1)-V(q^1,q^2)$, 其中 $\{q^1,q^2\}$ 为被动变量, $\{v^1,v^2\}$ 为主动变量, V 是任意函数.

- (1) 分析 L 对 $\{v^1,v^2\}$ 的黑塞矩阵,判断其是奇异还是正规系统;
- (2) 定义新变量 $p_1 = \frac{\partial L}{\partial v^1}, p_2 \frac{\partial L}{\partial v^2}$, 求 $\{q^1, q^2, p^1, p^2\}$ 之间的约束关系.

参考解答 13.2 (1) 黑塞矩阵为

$$\left(\frac{\partial^2 L}{\partial v^i \partial v^j}\right) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}$$

显然为奇异系统。

(2)

$$p_1 = \frac{1}{2}q^1, p_2 = -\frac{1}{2}q^2$$

这就是约束关系。

13.3 考虑例 4.4 中的双摆, 求系统的哈密顿量和哈密顿正则方程.

参考解答 13.3 由正文得到

$$L = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 + m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) + m_1gl_1\cos\theta_1 + m_2g(l_1\cos\theta_1 + l_2\cos\theta_2)$$

由广义动量的定义

$$p_{1} = \frac{\partial L}{\partial \dot{\theta}_{1}} = (m_{1} + m_{2})l_{1}^{2}\dot{\theta}_{1} + m_{2}l_{1}l_{2}\dot{\theta}_{2}\cos(\theta_{1} - \theta_{2})$$

$$p_{2} = \frac{\partial L}{\partial \dot{\theta}_{2}} = m_{2}l_{2}^{2}\dot{\theta}_{2} + m_{2}l_{1}l_{2}\dot{\theta}_{1}\cos(\theta_{1} - \theta_{2})$$

解得

$$\dot{\theta}_1 = \frac{p_1 - \frac{l_1}{l_2} p_2}{m_1 l_1^2 + m_2 l_1^2 (1 - \cos^2(\theta_1 - \theta_2))}$$

$$\dot{\theta}_2 = \frac{\frac{(m_1 + m_2) l_1}{m_2 l_2} p_2 - \cos(\theta_1 - \theta_2) p_1}{m_1 l_1 + m_2 l_1 (1 - \cos^2(\theta_1 - \theta_2))}$$

代入哈密顿量表达式得到

$$\begin{split} H &= \sum_{i} p_{i} \dot{\theta}_{i} - L \\ &= \frac{1}{2} (m_{1} + m_{2}) l_{1}^{2} \dot{\theta}_{1}^{2} + \frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2} + m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos(\theta_{1} - \theta_{2}) - m_{1} g l_{1} \cos\theta_{1} - m_{2} g (l_{1} \cos\theta_{1} + l_{2} \cos\theta_{2}) \\ &= \frac{1}{2} p_{1} \dot{\theta}_{1} + \frac{1}{2} p_{2} \dot{\theta}_{2} - m_{1} g l_{1} \cos\theta_{1} - m_{2} g (l_{1} \cos\theta_{1} + l_{2} \cos\theta_{2}) \\ &= \frac{p_{1}^{2} - (\frac{l_{1}}{l_{2}} + \cos(\theta_{1} - \theta_{2})) p_{1} p_{2} + (1 + \frac{m_{1}}{m_{2}}) \frac{l_{1}}{l_{2}} p_{2}^{2}}{2 l_{1}^{2} (m_{1} + m_{2} \sin^{2}(\theta_{1} - \theta_{2}))} - m_{1} g l_{1} \cos\theta_{1} - m_{2} g (l_{1} \cos\theta_{1} + l_{2} \cos\theta_{2}) \end{split}$$

正则方程

$$\begin{split} \dot{\theta}_1 &= \frac{p_1 - (\frac{l_1}{l_2} + \cos(\theta_1 - \theta_2))p_2}{l_1^2(m_1 + m_2 \sin^2(\theta_1 - \theta_2))} \\ \dot{\theta}_2 &= \frac{-(\frac{l_1}{l_2} + \cos(\theta_1 - \theta_2))p_1 + (1 + \frac{m_1}{m_2})\frac{l_1}{l_2}p_2}{l_1^2(m_1 + m_2 \sin^2(\theta_1 - \theta_2))} \\ \dot{p}_1 &= -\frac{2p_1p_2 \sin(\theta_1 - \theta_2)l_1^2(m_1 + m_2 \sin^2(\theta_1 - \theta_2))}{4l_1^4(m_1 + m_2 \sin^2(\theta_1 - \theta_2))^4} \\ &- \frac{2m_2 \sin(\theta_1 - \theta_2) \cos(\theta_1 - \theta_2)(p_1^2 - (\frac{l_1}{l_2} + \cos(\theta_1 - \theta_2))p_1p_2 + (1 + \frac{m_1}{m_2})\frac{l_1}{l_2}p_2^2)}{4l_1^4(m_1 + m_2 \sin^2(\theta_1 - \theta_2))^4} \\ &- (m_1 + m_2)gl_1 \sin \theta_1 \\ \dot{p}_2 &= -\frac{2p_1p_2 \sin(\theta_1 - \theta_2)l_1^2(m_1 + m_2 \sin^2(\theta_1 - \theta_2))}{4l_1^4(m_1 + m_2 \sin^2(\theta_1 - \theta_2))^4} \\ &- \frac{2m_2 \sin(\theta_1 - \theta_2) \cos(\theta_1 - \theta_2)(p_1^2 - (\frac{l_1}{l_2} + \cos(\theta_1 - \theta_2))p_1p_2 + (1 + \frac{m_1}{m_2})\frac{l_1}{l_2}p_2^2)}{4l_1^4(m_1 + m_2 \sin^2(\theta_1 - \theta_2))^4} \\ &- m_2gl_2 \sin \theta_2 \end{split}$$

13.4 考虑例 4.5 中的顶端自由滑动的单摆, 求系统的哈密顿量和哈密顿正则方程.

参考解答 13.4 解得

$$p_x = m\dot{x} + ml\dot{\theta}\cos\theta$$
$$p_\theta = ml^2\dot{\theta} + m\dot{x}l\cos\theta$$

反解得到

$$\dot{x} = \frac{lp_x - p_\theta \cos \theta}{ml \sin^2 \theta}$$
$$\dot{\theta} = \frac{p_\theta - p_x l \cos \theta}{ml^2}$$

$$\begin{split} H &= \sum p_i q^i - L \\ &= \frac{1}{2} \Big(\dot{x} (\dot{x} + l\dot{\theta}\cos\theta) + l\dot{\theta} (l\dot{\theta} + \dot{x}\cos\theta) \Big) - mgl\cos\theta \\ &= \frac{1}{2} p_x \dot{x} + \frac{1}{2} p_\theta \dot{\theta} - mgl\cos\theta \\ &= \frac{1}{2} p_x \frac{lp_x - p_\theta\cos\theta}{ml\sin^2\theta} + \frac{1}{2} p_\theta \frac{p_\theta - p_x l\cos\theta}{ml^2} - mgl\cos\theta \\ &= \frac{p_x^2}{2m\sin^2(\theta)} - \frac{p_x p_\theta}{2ml}\cos\theta (\frac{1}{\sin^2\theta} + 1) + \frac{p_\theta^2}{2ml^2} \end{split}$$

哈密顿正则方程

$$\dot{x} = \frac{p_x}{m\sin^2\theta} - \frac{p_\theta}{2ml}\cos\theta(\frac{1}{\sin^2\theta} + 1)$$

$$\dot{\theta} = -\frac{p_\theta}{2ml}\cos\theta(\frac{1}{\sin^2\theta} + 1) + \frac{p_\theta}{ml^2}$$

$$\dot{p}_x = 0$$

$$\dot{p}_\theta = \frac{p_x^2}{m\sin^3\theta}\cos\theta - \frac{p_xp_\theta}{2ml}\sin\theta - \frac{p_xp_\theta\cos^2\theta}{\sin^3\theta}$$

13.5 已知系统的广义坐标为 $L = a\dot{x}^2 + b\frac{\dot{y}^2}{x} + c\dot{x}\dot{y} + fy^2\dot{x}\dot{z} + g\dot{y}^2 - k\sqrt{x^2 + y^2}$, 其中 a, b, c, d, f, g, k都是常数.

- (1) 求系统的哈密顿量和哈密顿正则方程.
- (2) 求系统的运动常数.

参考解答 13.5 (1) 系统广义动量

$$p_x = 2a\dot{x} + c\dot{y} + fy^2\dot{z}$$

$$p_y = \frac{2b\dot{y}}{x} + c\dot{x} + 2g\dot{y}$$

$$p_z = fy^2\dot{x}$$

反解得到

$$\begin{split} \dot{x} &= \frac{p_z}{fy^2} \\ \dot{y} &= \frac{p_y - \frac{cp_z}{fy^2}}{\frac{2b}{x} + 2g} \\ \dot{z} &= \frac{(p_x - \frac{2ap_z}{fy^2})(\frac{2b}{x} + 2g) - cp_y + \frac{c^2p_z}{fy^2}}{fy^2(\frac{2b}{x} + 2g)} \end{split}$$

哈密顿量

$$\begin{split} H &= \sum_{i} p_{i} \dot{x}^{i} - L \\ &= 2a\dot{x}^{2} + c\dot{y}\dot{x} + fy^{2}\dot{z}\dot{x} + \frac{2b\dot{y}^{2}}{x} + c\dot{x}\dot{y} + 2g\dot{y}^{2} + fy^{2}\dot{x}\dot{z} \\ &- (a\dot{x}^{2} + b\frac{\dot{y}^{2}}{x} + c\dot{x}\dot{y} + fy^{2}\dot{x}\dot{z} + g\dot{y}^{2} - k\sqrt{x^{2} + y^{2}}) \\ &= a\dot{x}^{2} + c\dot{x}\dot{y} + fy^{2}\dot{x}\dot{z} + g\dot{y}^{2} + \frac{b\dot{y}^{2}}{x} + k\sqrt{x^{2} + y^{2}} \\ &= a\frac{p_{z}^{2}}{f^{2}y^{4}} + c\frac{p_{z}}{fy^{2}}\frac{p_{y} - \frac{cp_{z}}{fy^{2}}}{\frac{2b}{x} + 2g} + p_{z}\frac{(p_{x} - \frac{2ap_{z}}{fy^{2}})(\frac{2b}{x} + 2g) - cp_{y} + \frac{c^{2}p_{z}}{fy^{2}}}{fy^{2}(\frac{2b}{x} + 2g)} \\ &+ g\frac{(p_{y} - \frac{cp_{z}}{fy^{2}})^{2}}{2(\frac{2b}{x} + 2g)} + k\sqrt{x^{2} + y^{2}} \\ &= -a\frac{p_{z}^{2}}{f^{2}y^{4}} + \frac{p_{x}p_{z}}{fy^{2}} + g\frac{(p_{y} - \frac{cp_{z}}{fy^{2}})^{2}}{2(\frac{2b}{x} + 2g)} + k\sqrt{x^{2} + y^{2}} \end{split}$$

由哈密顿正则方程

$$\begin{split} \dot{x} &= \frac{\partial H}{\partial p_x} = \frac{p_z}{fy^2} \\ \dot{y} &= \frac{\partial H}{\partial p_y} = \frac{g(p_y - \frac{cp_z}{fy^2})}{\frac{2b}{x} + 2g} \\ \dot{z} &= \frac{\partial H}{\partial p_z} = -\frac{2ap_z}{f^2y^4} + \frac{p_x}{fy^2} + \frac{gc(p_y - \frac{cp_z}{fy^2})}{(\frac{2b}{x} + 2g)fy^2} \\ \dot{p}_x &= -\frac{\partial H}{\partial x} = - -\frac{b(p_y - \frac{cp_z}{fy^2})^2}{4(b + gx)^2} - \frac{kx}{\sqrt{x^2 + y^2}} \\ \dot{p}_y &= -\frac{\partial H}{\partial y} = -\frac{4p_z^2}{f^2y^5} (4a - \frac{gc^2}{4(\frac{b}{x} + g)}) - \frac{2p_z}{fy^3} (p_x - \frac{gcp_y}{2(\frac{b}{x} + g)}) \\ \dot{p}_z &= 0 \end{split}$$

- (2) 可以知道 p_z, H 是守恒量。
- **13.6** 某单自由度系统的运动方程为 $\dot{q} = q^2 + qp, \dot{p} = p^2 qp$, 利用 (13.29) 判断其是否为哈密顿系统.

参考解答 13.6 由正文得到

$$u = q^2 + qp$$
$$v = p^2 - qp$$

计算得到

$$\frac{\partial u}{\partial q} = 2q + p, \frac{\partial u}{\partial p} = q$$
$$\frac{\partial v}{\partial q} = -p, \frac{\partial v}{\partial p} = 2p - q$$

明显不满足 $\frac{\partial u}{\partial q} = -\frac{\partial v}{\partial p}$, 不是哈密顿系统.

- 13.7 某单自由度系统运动方程为 $\dot{q}=p$ 和 $\dot{p}=-\omega^2q-2\lambda p$, 其中 ω 和 λ 都是常数;
 - (1) 利用 (13.29) 判断其是否为哈密顿系统;
 - (2) 引入新变量 Q=q 和 $P=p\mathrm{e}^{2\lambda t}$,求 Q 和 P 的运动方程,判断其是否为哈密顿系统并求哈密顿量.

参考解答 13.7 (1)

$$\frac{\partial u}{\partial q} = 0$$
$$\frac{\partial v}{\partial p} = -2$$

显然不是

(2) 由题设易知道 $\dot{p} + 2\lambda p = \dot{P}e^{-2\lambda t}$ 于是其运动方程写为

$$\dot{Q} = P e^{-2\lambda t}$$
$$\dot{P} = -\omega^2 Q e^{2\lambda t}$$

此时 $\frac{\partial u}{\partial Q} = \frac{\partial v}{\partial P} = 0$ 满足哈密顿系统的微分条件 由哈密顿方程得到

$$\frac{\partial H}{\partial P} = P e^{-2\lambda t}$$
$$\frac{\partial H}{\partial Q} = \omega^2 Q e^{2\lambda t}$$

于是, 由全微分条件得到

$$H = \frac{1}{2}Q^{2}e^{2\lambda t} + \frac{1}{2}P^{2}e^{-2\lambda t}$$

- **13.8** 某单自由度系统的运动方程为 $\dot{q} = aq + bp$ 和 $\dot{p} = cq + dp$
 - (1) 利用 (13.29) 判断 a, b, c, d 满足什么条件时, 系统为哈密顿系统;
 - (2) 求对应的哈密顿量.

参考解答 13.8 (1) 由正文得到

$$\frac{\partial u}{\partial q} = a$$
$$\frac{\partial v}{\partial p} = d$$

要求满足 a = -d 即可;

(2) 由上一题得到

$$\frac{\partial H}{\partial p} = aq + bp$$
$$\frac{\partial H}{\partial a} = ap - cq$$

由 H = H(q, p) 的全微分条件

$$dH = \frac{\partial H}{\partial p} dp + \frac{\partial H}{\partial q} dq$$

$$= (aq + bp)dp + (ap - cq)dq$$

$$= -cqdq + a(qdp + pdq) + apdp$$

$$= -cqdq + ad(pq) + apdp$$

积分即得到

$$H = -\frac{1}{2}cq^2 + apq + \frac{1}{2}p^2$$

- 13.9 考虑与标量场相互作用的相对论性粒子的拉格朗日量式 (4.40), 其中 $\Phi(t,\mathbf{x})=rac{V(t,\mathbf{x})}{mc^2}$.
 - (1) 求粒子的哈密顿量和正则方程;
 - (2) 求非相对论极限下哈密顿量的领头阶近似.

参考解答 13.9 由于我的习惯, 本题采用约定

$$(\eta_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

(1) 我们考虑三维形式的拉格朗日量和哈密顿量,由相对论性点粒子与标量场耦合的作用量

$$S = -\int mce^{\Phi}ds = -\int mce^{\Phi}\frac{ds}{dt}dt =$$

并且考虑到 $ds^2 = dt^2 - dx^2 - dy^2 - dz^2 = dt^2(1 - \frac{v^2}{c^2})$ 得到三维拉格朗日量

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} e^{\Phi}$$

以及广义动量

$$\boldsymbol{p} = \frac{\partial L}{\partial \boldsymbol{v}} = \frac{m \boldsymbol{v} \mathrm{e}^{\Phi}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

反解得到

$$\mathbf{v} = \frac{\mathbf{pc}}{\sqrt{m^2 c^2 e^{2\Phi} + p^2}}$$

最后得到哈密顿量

$$H = \mathbf{p} \cdot \mathbf{v} - L = \sqrt{p^2 c^2 + m^2 c^4 \mathrm{e}^{2\Phi}}$$

而前面已经得到了一个正则方程

$$\mathbf{v} = \frac{\mathbf{p}\mathbf{c}}{\sqrt{m^2c^2\mathrm{e}^{2\Phi} + p^2}}$$

因此我们只需要考虑 $\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{x}}$ 经过计算得到

$$\frac{d\mathbf{p}}{dt} = -\frac{m^2c^4e^{2\Phi}}{\sqrt{p^2c^2 + m^2c^4e^{2\Phi}}}\nabla\Phi$$

(2)

$$\begin{split} H &= mc^2 \mathrm{e}^{\Phi} \sqrt{\frac{p^2}{m^2 c^2 \mathrm{e} 2\Phi} + 1} \\ &= mc^2 \mathrm{e}^{\Phi} (1 + \frac{p^2}{2m^2 c^2 \mathrm{e} 2\Phi}) \\ &= mc^2 (1 + \frac{V}{mc^2}) (1 + \frac{p^2}{2m^2 c^2 \mathrm{e}^{2\Phi}}) \\ &= mc^2 + \frac{1}{2} mv^2 + V \end{split}$$

- 13.10 考虑电磁场中相对论性带电粒子的拉格朗日量式 (4.50).
 - (1) 求粒子的哈密顿量和哈密顿正则方程;
 - (2) 由哈密顿正则方程得到等价的关于 x 的二阶微分方程;
 - (3) 求非相对论极限下哈密顿量的领头阶近似.

参考解答 13.10 先考虑正文中提及的三维形式

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} - q\varphi + q\mathbf{v} \cdot \mathbf{A}$$

其广义动量写为

$$m{p} = rac{\partial L}{\partial m{v}} = rac{mm{v}}{\sqrt{1 - rac{v^2}{c^2}}} + qm{A}$$

反解得到

$$\mathbf{v} = \frac{\mathbf{p} - q\mathbf{A}}{\sqrt{m^2 + \frac{(\mathbf{p} - q\mathbf{A})^2}{c^2}}}$$

其哈密顿量

$$\begin{split} H &= \mathbf{v} \cdot \mathbf{p} - L \\ &= \frac{mv^2}{\sqrt{1 - \frac{v^2}{c^2}}} + q\mathbf{A} \cdot \mathbf{v} - (-mc^2\sqrt{1 - \frac{v^2}{c^2}} - q\varphi + q\mathbf{v} \cdot \mathbf{A}) \\ &= \frac{mc^2}{sqrt1 - \frac{v^2}{c^2}} + q\varphi \\ &= \sqrt{m^2c^4 + (\mathbf{p} - q\mathbf{A})^2c^2} + q\varphi \end{split}$$

其中一个正则方程就是

$$\frac{d\mathbf{x}}{dt} = \frac{\mathbf{p} - q\mathbf{A}}{\sqrt{m^2 + \frac{(\mathbf{p} - q\mathbf{A})^2}{c^2}}}$$

而另一个是

$$\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{x}} = -\frac{c\nabla(\mathbf{p} - q\mathbf{A})^2}{2\sqrt{m^2c^2 + (\mathbf{p} - q\mathbf{A})^2}} - q\nabla\varphi$$

我们来处理分母上的式子

由矢量分析公式

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{B} \cdot) \mathbf{A} + (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{B} \times (\nabla \times \mathbf{A}) + \mathbf{A} \times (\nabla \times \mathbf{B})$$

得到

$$\nabla (\mathbf{p} - q\mathbf{A})^2 = 2((\mathbf{p} - q\mathbf{A}) \cdot \nabla)(-q\mathbf{A}) + 2(\mathbf{p} - q\mathbf{A}) \times (\nabla \times (-q\mathbf{A}))$$

我们得到第二个哈密顿方程

$$\frac{d\mathbf{p}}{dt} = + \frac{((\mathbf{p} - q\mathbf{A}) \cdot \nabla)(q\mathbf{A}) + (\mathbf{p} - q\mathbf{A}) \times (\nabla \times (q\mathbf{A}))}{\sqrt{m^2c^2 + (\mathbf{p} - q\mathbf{A})^2}} - q\nabla\varphi$$

利用磁感应强度和磁势的关系 $\mathbf{B} = \nabla \times \mathbf{A}$ 以及第一个哈密顿方程,我们可以将上式写成更具有启发性的形式

$$\frac{d\mathbf{p}}{dt} = -q\nabla\varphi + q\mathbf{v} \times \mathbf{B} + q(\mathbf{v} \cdot \nabla)\mathbf{A}$$

同时,注意到

$$\frac{d\mathbf{A}}{dt} = \frac{\partial \mathbf{A}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{A}$$

以及

$$\mathbf{E} = -\nabla \varphi - \frac{\partial \mathbf{A}}{\partial t}$$

上式改写为

$$\frac{d(\mathbf{p} - q\mathbf{A})}{dt} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$

和我们在非相对论中所得到的形式十分相似.

(2) 注意到可以从第一个哈密顿方程解得到

$$\mathbf{p} - q\mathbf{A} = \frac{m\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

就是机械动量, 我们立刻得到关于 x 的二阶微分方程

$$\frac{d}{dt}\frac{m\mathbf{v}}{\sqrt{1-\frac{v^2}{c^2}}} = q\mathbf{E} + q\mathbf{v} \times \mathbf{B}$$

(3)

$$H = mc^{2}\sqrt{1 + \frac{(\mathbf{p} - q\mathbf{A})^{2}}{m^{2}c^{2}}} + q\varphi$$
$$= mc^{2}(1 + \frac{(\mathbf{p} - q\mathbf{A})^{2}}{2m^{2}c^{2}}) + q\varphi$$
$$= mc^{2} + \frac{(\mathbf{p} - q\mathbf{A})^{2}}{2m} + q\varphi$$

实际上我们可以直接从四维形式出发,我们知道相对论性点粒子的作用量写为 (由于我的度规约定这里从后面都和非相对论情况差一个符号,但是这不要紧)

$$S = \int mcds = \int mc\sqrt{u_{\mu}u^{\mu}}d\tau$$

其中 u^μ 是四维速度. 这种形式的作用量在得到哈密顿量是遇到困难, 对其变分容易知道其具有等价的形式

$$S = \int \frac{1}{2} m u_{\mu} u^{\mu} d\tau$$

加入电磁场后只是在作用量中简单加入一项

$$S_{int} = \int q u_{\mu} A^{\mu} d\tau$$

因此可以从作用量 $S = \int \mathcal{L}d au$ 得到拉格朗日量

$$\mathcal{L} = \frac{1}{2} m u_{\mu} u^{\mu} + q u_{\mu} A^{\mu}$$

而对应的广义动量

$$p_{\mu} = \frac{\partial \mathcal{L}}{\partial u^{\mu}}$$

$$= \frac{\partial}{\partial u^{\mu}} (\frac{1}{2} m u_{\nu} u^{\nu} + q u_{\nu} A^{\nu})$$

$$= m u_{\mu} + q A_{\mu}$$

于是得到

$$u_{\mu} = \frac{p_{\mu} - qA_{\mu}}{m}$$

于是对应的哈密顿量

$$\mathcal{H} = p_{\mu}u^{\mu} - \mathcal{L}$$

$$= (mu_{\mu} + qA_{\mu})u^{\mu} - (\frac{1}{2}mu_{\mu}u^{\mu} + qu_{\mu}A^{\mu})$$

$$= \frac{1}{2}mu_{\mu}u^{\mu}$$

$$= \frac{(p_{\mu} - qA_{\mu})(p^{\mu} - qA^{\mu})}{2m}$$

对应的正则方程是

$$\frac{dx_{\mu}}{d\tau} = u_{\mu} = \frac{p_{\mu} - qA_{\mu}}{m}$$

和

$$\frac{dp_{\nu}}{d\tau} = q \frac{(p_{\mu} - qA_{\mu})}{m} \frac{\partial A^{\mu}}{\partial x^{\nu}}$$

注意到

$$\frac{dA^{\mu}}{d\tau} = \frac{\partial A^{\mu}}{\partial x_{\nu}} u_{\nu}$$

上式也可写为熟知的形式

$$m\frac{du_{\mu}}{d\tau} = eF_{\mu\nu}u^{\nu}$$

- **13.11** 某单自由度系统的哈密顿量为 $H=\frac{p^2}{2m}+{\bf A}\cdot p+V({\bf x}),$ 其中 ${\bf x}$ 为坐标, ${\bf p}$ 为共轭动量, ${\bf A}$ 为外矢量场.
 - (1) 求该系统的拉格朗日量;
 - (2) 求系统的哈密顿正则方程
 - (3) 若 $\mathbf{A}(\mathbf{x}) = \mathbf{a}$ 为常矢量, $V(\mathbf{x}) = -\mathbf{f} \cdot \mathbf{x}$ 且 \mathbf{f} 也为常矢量, 求哈密顿正则方程在初始条件 $\mathbf{x}(0) = 0$, $\mathbf{p}(0) = 0$ 下的解

参考解答 13.11 (1) 由哈密顿正则方程

$$\frac{d\mathbf{x}}{dt} = \frac{\partial H}{\partial \mathbf{p}} = \frac{\mathbf{p}}{m} + \mathbf{A}$$

因此拉格朗日量

$$L = \frac{d\mathbf{x}}{dt} \cdot \mathbf{p} - H = \frac{1}{2}m(\frac{d\mathbf{x}}{dt} - \mathbf{A})^2 - V(\mathbf{x})$$

(2) 已经得到

$$\frac{d\mathbf{x}}{dt} = \frac{\partial H}{\partial \mathbf{p}} = \frac{\mathbf{p}}{m} + \mathbf{A}$$

另一个哈密顿正则方程为

$$\frac{d\mathbf{p}}{dt} = -\nabla V - \mathbf{p} \cdot \nabla \mathbf{A}$$

(3) 由第一个哈密顿方程对时间求导得到

$$\frac{d^2\mathbf{x}}{dt^2} = \frac{d\mathbf{p}}{mdt} = \frac{\mathbf{f}}{m}$$

由初始条件 $\mathbf{p}(0) = 0 = m(\frac{d\mathbf{x}}{dt}(0) - \mathbf{A})$ 解得

$$\mathbf{x} = \mathbf{a}t + \mathbf{f}\frac{t^2}{2m}$$

13.12 某单自由度拉格朗日量系统为

$$L = \frac{1}{2}\cos^2(\omega t)\dot{q}^2 - \frac{1}{2}\omega\sin(2\omega t)q\dot{q} - \frac{1}{2}\omega^2\cos(2\omega t)q^2$$

- (1) 求该系统的哈密顿量和哈密顿正则方程;
- (2) 哈密顿量 H 是否为运动常数?
- (3) 引入新的变量 $\tilde{q} = \cos(\omega t)q$, 求用新变量表达的拉格朗日量, 记为 \overline{L}
- (4) 求 \overline{L} 对应的哈密顿量 \overline{H} , 并说明其描述什么物理系统
- (5) 证明 H 和 \overline{H} 的哈密顿正则方程等价, 即可以互相导出.

参考解答 13.12 (1)

$$p = \frac{\partial L}{\partial \dot{a}} = \dot{q}\cos(\omega t) - \frac{1}{2}\omega\sin 2\omega tq$$

因此有

$$\begin{split} H &= p\dot{q} - L \\ &= \frac{1}{2}\cos^2(\omega t)\dot{q}^2 + \frac{1}{2}\omega^2q^2\cos(2\omega t) \\ &= \frac{1}{2}\cos^2(\omega t)(\frac{p}{\cos^2(\omega t)} + \omega\tan(\omega t)q)^2 + \frac{1}{2}\omega^2q^2\cos(2\omega t) \\ &= \frac{1}{2}\frac{p^2}{\cos^2\omega t} + \omega\tan\omega tqp + \frac{1}{2}\omega^2q^2\cos(2\omega t) \end{split}$$

由哈密顿正则方程

$$\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{\cos^2(\omega t)} + \omega \tan(\omega t) q$$
$$\dot{p} = -\frac{\partial H}{\partial q} = -\omega \tan(\omega t) p - \omega^2 \cos^2(\omega t) q$$

(2) 不是

(3) 由题给条件反解得到 $\dot{q} = \frac{\dot{\tilde{q}} + \omega \tilde{q} \tan(\omega t)}{\cos(\omega t)}$

注意到在坐标变换下拉格朗日量数值不变, 因此有

$$\overline{L} = \frac{1}{2}\cos^2(\omega t) \frac{(\dot{\tilde{q}} + \omega \tilde{q} \tan(\omega t))^2}{\cos^2(\omega t)} - \frac{1}{2}\omega \sin(2\omega t) \frac{\tilde{q}}{\cos(\omega t)} \frac{\dot{\tilde{q}} + \omega \tilde{q} \tan(\omega t)}{\cos(\omega t)} - \frac{1}{2}\omega^2 q^2 \cos(2\omega t)$$

$$= \frac{1}{2}(\dot{\tilde{q}} - \omega \tilde{q} \tan(\omega t))^2(\tilde{q}\dot{\tilde{q}} + \omega \tilde{q}^2 \tan(\omega t)) - \frac{1}{2}\omega^2 q^2 \cos(2\omega t)$$

$$= \frac{1}{2}\dot{\tilde{q}}^2 - \frac{1}{2}\omega^2 \tilde{q} \tan^2(\omega t) - \frac{1}{2}\omega^2 \tilde{q}^2 \frac{\cos(2\omega t)}{\cos^2(\omega t)}$$

$$= \frac{1}{2}\dot{\tilde{q}}^2 - \frac{1}{2}\omega^2 q^2$$

描述的物理系统: 谐振子. 由上式, $\tilde{p}=\hat{q}$, 用勒让德变换容易得到哈密顿量

$$H = \frac{1}{2}\tilde{p}^2 + \frac{1}{2}\omega^2 q^2$$

容易得到新的哈密顿正则方程

$$\begin{split} \dot{\tilde{q}} &= \tilde{p} \\ \dot{\tilde{p}} &= -\omega^2 \tilde{q} \end{split}$$

由于

$$\tilde{p} = \dot{\tilde{q}} = \dot{q}\cos(\omega t) - \omega\sin(\omega t)q$$

(4) 证明两者导出同样的运动方程即可

$$\dot{\tilde{p}} = \ddot{q}\cos(\omega t) - 2\omega\sin(\omega t)q - \omega^2\sin(\omega t)q$$

即

$$\ddot{q}\cos(\omega t) - 2\omega\sin(\omega t)q - \omega^2\sin(\omega t)q + \omega^2\cos(\omega t)q = 0$$

由原来的广义动量和广义速度之间的关系可以得到

$$\dot{p} = \ddot{q}\cos(\omega t) - \omega \dot{q}\sin(\omega t) - \omega^2 \sin(2\omega t)q - \frac{1}{2}\omega\sin(2\omega t)q\dot{q}$$

代入得到自洽的结果.

13.13 已知某单自由度系统的哈密顿量为

$$H = \frac{p^2}{2m} - be^{-\lambda t}pq + \frac{mb}{2}e^{-\lambda t}(\lambda + be^{-\lambda t})q^2 + \frac{k}{2}q^2$$

- (1) 求该系统的拉格朗日量 L:
- (2) 利用分部积分, 将 L 化为等价的不显含时间的形式, 记为 \overline{L} ;
- (3) 求 \overline{L} 对应的哈密顿量 \overline{H} , 并说明其描述什么物理系统;

(4) 证明 H 和 \overline{H} 的哈密顿正则方程等价, 即可以互相导出.

参考解答 13.13 (1) 由哈密顿正则方程,

$$\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m} - b e^{-\lambda t} q$$

解得

$$p = m(\dot{q} + qbe^{-\lambda t})$$

而

$$\begin{split} L &= p\dot{q} - H \\ &= (\frac{p}{m} - b\mathrm{e}^{-\lambda t}q)p - \frac{p^2}{2m} + b\mathrm{e}^{-\lambda t}pq - \frac{1}{2}mb\mathrm{e}^{-\lambda t}(\lambda + b\mathrm{e}^{-\lambda t})q^2 - \frac{1}{2}kq^2 \\ &= \frac{p^2}{2m} - \frac{1}{2}mb\mathrm{e}^{-\lambda t}(\lambda + b\mathrm{e}^{-\lambda t})q^2 - \frac{1}{2}kq^2 \\ &= \frac{1}{2}m(\dot{q} + b\mathrm{e}^{-\lambda t}q)^2 - \frac{1}{2}mb\mathrm{e}^{-\lambda t}(\lambda + b\mathrm{e}^{-\lambda t})q^2 - \frac{1}{2}kq^2 \\ &= \frac{1}{2}m\dot{q}^2 + mb\mathrm{e}^{-\lambda t}\dot{q}q - \frac{1}{2}(mb\lambda\mathrm{e}^{-\lambda t} + k)q^2 \\ &= \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2 + mb\mathrm{e}^{-\lambda t}\dot{q}q - \frac{1}{2}mb\lambda\mathrm{e}^{-\lambda t}q^2 \\ &= \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2 + \frac{d}{dt}(\frac{1}{2}mb\mathrm{e}^{-\lambda t}q^2) \\ &= \overline{L} + \frac{d}{dt}(\frac{1}{2}mb\mathrm{e}^{-\lambda t}q^2) \end{split}$$

$$\overline{L} = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2$$

$$\overline{H} = \frac{\overline{p}^2}{2m} + \frac{1}{2}kq^2$$

其中 $\bar{p} = m\dot{q}$, 描述的系统是谐振子.

(4) 只需证两者化为相同的二阶微分方程即可由原来的哈密顿正则方程,

$$\dot{p} = -\frac{\partial H}{\partial q} = be^{-\lambda t}p - mbe^{-\lambda t}(\lambda + be^{-\lambda t})q - kq$$

而前面得到

$$p = m(\dot{q} + b\mathrm{e}^{-\lambda t}q)$$

因此

$$\dot{p} = \frac{d}{dt} (m(\dot{q} + be^{-\lambda t}q))$$
$$= m\ddot{q} - \lambda mbe^{-\lambda t}q + be^{-\lambda t}\dot{q}$$

可以知道化为

$$\ddot{q} + \frac{k}{m}q = 0$$

- 13.14 某单自由度系统的拉格朗日量为 $L=\frac{1}{2}m\mathrm{e}^{\lambda t}(\dot{q}^2-\omega^2q^2)$, 其中 m,λ 都是正的常数.
 - (1) 求该系统的哈密顿量和哈密顿正则方程;
 - (2) 根据哈密顿正则方程在初始条件 $q(0) = 0, p(0) = p_0$ 下的解;
 - (3) 根据 (2) 的解, 在相平面上定性画出系统随时间演化的相轨迹, 说明其物理意义.

参考解答 13.14 (1)

$$p = \frac{\partial L}{\partial \dot{q} = m e^{\lambda t}} \dot{q}$$

因此

$$H = \frac{1}{2}e^{-\lambda t}\frac{p^2}{m} + \frac{1}{2}me^{\lambda t}\omega^2 q^2$$

正则方程

$$\dot{q} = \frac{\partial H}{\partial p} = e^{-\lambda t} \frac{p}{m}$$
$$\dot{p} = mq\omega^2 e^{\lambda t}$$

(2) 消元得到

$$\ddot{q} + \lambda \dot{q} + \omega^2 q = 0$$

代入初始条件解得

$$q = \frac{p_0}{\sqrt{\lambda^2 - 4\omega^2}} \sinh\left(\sqrt{\lambda^2 - 4\omega^2}t\right) e^{-\frac{1}{2}\lambda t}$$

- 13.15 质量为 m 的粒子在重力作用下束缚在旋转抛物面 $z=x^2+y^2$ 上运动, 选取柱坐标系 $\{r,\phi,z\}$, 不考虑摩擦
 - (1) 写出粒子的劳斯函数
 - (2) 写出劳斯函数表达的运动方程

参考解答 13.15 (1)

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2 + \dot{z}^2) - mgz + \lambda(z - r^2)$$

注意到可遗坐标为 ϕ , 且有 $p_{\phi} = mr^2\dot{\phi}$

$$\begin{split} R &= p_{\phi}\dot{\phi} - L \\ &= \frac{p_{\phi}^2}{2mr^2} - \frac{1}{2}m\dot{r}^2 - \frac{1}{2}m\dot{z}^2 + mgz - \lambda(z-r^2) \end{split}$$

(2)

$$\begin{split} \dot{p}_{\phi} &= 0 \\ m\ddot{r} &= \frac{p_{p}hi}{mr^{3}} - 2\lambda r \\ m\ddot{z} &= -g + \lambda \end{split}$$

- 13.16 考虑一维谐振子,对拉格朗日量 $L(t,\dot{q},q)$ 中广义坐标和广义速度同时做勒让德变换 $\{q,\dot{q}\} \to \{f,p\}$
 - (1) 求变换得到的 G = G(t, f, p)
 - (2) 写出用 $\{f, p\}$ 表达的运动方程,并证明其与拉格朗日方程等价.

参考解答 13.16 (1)

$$f = \frac{\partial L}{\partial q} = -\omega^2 q, p\dot{q}$$

$$G = \frac{1}{2}p^2 - \frac{f^2}{2\omega^2}$$

(2) 运动方程

$$\dot{f}+\omega^2p=0$$

$$\dot{p} = f$$

即 $\ddot{f} + \omega^2 f = 0$, 显然和拉格朗日方程导出的运动方程等价.

第十四章 泊松括号

第十五章 正则变换

第十六章 哈密顿-雅可比理论

第十七章 可积系统