Foglio 9

Esercizio 1. In \mathbb{R}^3 con il prodotto scalare standard, si consideri il sottospazio

$$W = \langle (1, 1, 1), (2, 1, 0) \rangle.$$

- a) Si trovi una base ortogonale per W.
- b) Si trovino una rappresentazione cartesiana e una base per W^{\perp} .
- c) Si trovi la proiezione ortogonale del vettore (0,0,-1) su W e su W^{\perp} .

Esercizio 2. In \mathbb{R}^4 con il prodotto scalare standard, si consideri il sottospazio

$$W: \begin{cases} x_1 + 3x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_4 = 0 \\ 2x_3 - x_4 = 0 \\ 2x_1 + 4x_2 + 3x_3 + x_4 = 0 \end{cases}$$

- a) Si trovino una base per W e una per W^{\perp} .
- b) Si trovino una base ortonormale per W e una base di W^{\perp} .

Esercizio 3. Siano $\mathbf{u}_1 = (1, 1, 0, 0), \ \mathbf{u}_2 = (0, 0, 1, 1), \ \mathbf{w}_1 = (1, -1, 0, 0), \ \mathbf{w}_2 = (0, 0, 1, -1) \in \mathbb{R}^4$ e siano $U = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle, \ W = \langle \mathbf{w}_1, \mathbf{w}_2 \rangle.$

- a) Si mostri che esiste un'unica applicazione lineare $F: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $F(\mathbf{u}) = \mathbf{0}$ per ogni $\mathbf{u} \in U$ e $F(\mathbf{w}) = \mathbf{w}$ per ogni $\mathbf{w} \in W$ e si scriva la matrice associata ad F rispetto alla base canonica.
- b) Si trovi una base di $\operatorname{Im} F$ che sia ortonormale rispetto al prodotto scalare euclideo.
- c) Si stabilisca se F è diagonalizzabile.

Esercizio 4. In \mathbb{R}^3 con il prodotto scalare euclideo, si consideri l'endomorfismo $T_{\lambda}: \mathbb{R}^3 \to \mathbb{R}^3$ definito da $T_{\lambda}(x,y,z) = (-x+y,2\lambda x-y,\lambda z)$ e sia A_{λ} la matrice associata a T_{λ} rispetto alla base canonica.

- a) Si dica per quali valori di $\lambda \in \mathbb{R}$ la matrice A_{λ} è ortogonale.
- b) Si dica per quali valori di $\lambda \in \mathbb{R}$ la matrice A_{λ} è simmetrica.
- c) Fissato $\lambda = 1$ si trovi una base ortonormale costituita da autovettori di per T_1 .

Alcune soluzioni

1)

- a) Una base ortogonale per $W \in \{(1,1,1), (1,0,-1)\}$
- b) Una rappresentazione cartesiana per W^{\perp} è $\left\{\begin{array}{l} x+y+z=0\\ 2x+y=0 \end{array}\right\}$; una base per W^{\perp} è $\{(1,-2,1)\}$.
- c) $p_{W^{\perp}}((0,0,-1)) = \frac{\langle (0,0,-1),(1,-2,1)\rangle}{\langle (1,-2,1),(1,-2,1)\rangle} (1,-2,1) = -\frac{1}{6}(1,-2,1) = (-\frac{1}{6},\frac{1}{3},-\frac{1}{6})$ e $p_{W}((0,0,-1)) = (0,0,-1) - p_{W^{\perp}}((0,0,-1)) = (\frac{1}{6},-\frac{1}{3},-\frac{5}{6}).$

2)

- a) Una base per W è $\{-3,-1,2,4\}$; una base W^{\perp} è $\{1,3,1,1),(1,1,0,1),(0,0,2,-1\}.$
- b) Una base ortonormale per W è $\{-\frac{\sqrt{30}}{10}, -\frac{\sqrt{30}}{30}, \frac{\sqrt{30}}{15}, \frac{2\sqrt{30}}{15}\}$; una base di W^{\perp} è $\{(1,3,1,1), (1,1,0,1), (0,0,2,-1)\}$.

3)

a)

$$\left(\begin{array}{cccc}
1/2 & -1/2 & 0 & 0 \\
-1/2 & 1/2 & 0 & 0 \\
0 & 0 & 1/2 & -1/2 \\
0 & 0 & -1/2 & 1/2
\end{array}\right)$$

- b) $\mathbf{w}_1, \mathbf{w}_2$ sono già ortogonali, basta dividerli per il loro modulo cioè $\sqrt{2}$.
- c) Si. \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{w}_1 , \mathbf{w}_2 sono autovettori.