1. Человек прошел по проспекту 240 м, затем повернул на перекрестке и
прошел в перпендикулярном направлении еще 70 м. Во сколько раз путь,
пройденный человеком, больше модуля его перемещения?
A. 1.24
B. 1,7
C. 1,5
D. 1,85
Answer:A

2. Тело начало двигаться вдоль оси x с постоянной скоростью 6 м/с из точки, имеющей координату $x_0 = -7$ м. Через сколько секунд координата тела окажется равной 5 м?

- A. 2 c
- B. 4 c
- C. 5 c
- D. 3 c

Answer:A

3. В течение первых 5 часов поезд двигался со средней скоростью 60 км/ч, а затем в течение 4 часов — со средней скоростью 15 км/ч. Найдите среднюю скорость (в км/ч) поезда за все время движения.

- A. 40
- B. 37.5
- C. 45
- D. 50

Answer:A

4. Автомобиль, двигаясь равноускоренно, через 10 с после начала движения достиг скорости 36 км/ч. Найдите ускорение автомобиля.

- A. 1 $\frac{M}{c^2}$
- B. 2 $\frac{M}{c^2}$
- C. 1.5 $\frac{M}{c^2}$
- D. 0.5 $\frac{M}{c^2}$

- 5. С какой скоростью двигался поезд до начала торможения, если тормозной путь он прошел за 30 с с ускорением 0.5 m/c^2 ?
- A. 15 $\frac{M}{6}$
- B. 7.5 $\frac{M}{c}$
- C. 12 $\frac{M}{c}$
- D. 12.5 $\frac{M}{c}$

- 6. При скорости 15 м/с тормозной путь автомобиля равен 1,5м. Каким будет тормозной путь при скорости 90км/ч, если торможение в обоих случаях происходит с одинаковым ускорением?
- A 4.17 M
- B 5.6 M
- C 4.7 M
- D 4.25 M

Answer:A

- 7. Тело брошено вертикально вверх с поверхности земли со скоростью 20 м/с. На какую максимальную высоту оно поднимется? $g = 10 \text{ m/c}^2$.
- A 20 M
- B 30 M
- C 10 M
- D 15 M

Answer:A

- 8. В некоторый момент времени скорость свободно падающего тела равна 6 м/с. Какой будет скорость тела через 2 с? g = 10 м/с²
- A. 26 $\frac{M}{c}$
- B. $10 \frac{M}{c}$
- C. 15 $\frac{M}{c}$
- D. 25 $\frac{\kappa}{c}$

9. С высоты 2,4 м вертикально вниз брошен мяч со скоростью 1 м/с. Чему будет равна его скорость в момент падения? g = 10 м/с ² А. $7\frac{M}{c}$ В. $10\frac{M}{c}$ С. $12\frac{M}{c}$ D. $14\frac{M}{c}$ Аnswer:A
10. Одно колесо равномерно вращается, совершая 50 оборотов в секунду. Второе колесо, равномерно вращаясь, делает 500 оборотов за 30 секунд. Во сколько раз угловая скорость первого колеса больше, чем второго? А. 3 В. 2 С. 4 D. 7 Answer:A
 11. За сколько секунд колесо, вращаясь равномерно с угловой скоростью 4π рад/с, сделает 100 оборотов? A. 50 с B. 40 с C. 25 с D. 20 с Answer: A
 12. Во сколько раз увеличится центростремительное ускорение точек обода колеса, если период обращения колеса уменьшится в 5 раз? A 25 B √5 C 5 D ³√25

13. Уравнение движения тела φ =A +Bt² +Ct³ вида,определить угловая скорость и угловое ускорение на 5 секунд. (B=2 рад/c, C=1 рад/c²).

- А. 95 pad/c, 34 pag/c²
- В. 75 рад/с, 45 рад/ c^2
- $C. 88 \, pag/c, 31 \, pag/c^2$
- D. 85 рад/с, 40 рад/ c^2

Answer:A

14. Какая физическая величина будет постоянной при равноускоренном и равнозамедленном движение?

- А. Ускорение
- В. Скорость
- С. Время
- D. Перемещение

Answer:A

15. По какой формуле определяется уголь поворота при равнопеременном движении по окружности

A.
$$\varphi = \omega_0 t \pm \frac{\beta t^2}{2}$$

B.
$$\varphi = \omega_0 \pm \frac{\beta t^2}{2}$$

C.
$$\omega_t$$
= $\omega_0 \pm \beta t$

D.
$$\omega_t$$
= ω_0 - βt^2

Answer:A

16. Скорость при равнопеременном движении вычисляется по формуле:

- A. $v_{0\pm}at$
- B. $v_0 \pm at^2$
- C. g/t
- D. $(v^2-v_0^2)/2a$.

17. По какой формуле определяется путь при равноускоренном движении?

$$A. S = v_0 t + \frac{at^2}{2}$$

B.
$$S = v_0 t^2 + \frac{at}{2}$$

C.
$$v_0 t^2 + \frac{at^2}{2}$$

$$\mathrm{D.}\; v_0 t^2 + \tfrac{gt}{2}$$

Answer:A

18. Чему равна угловаяскорость при вращательном движении?

A.
$$\omega = \frac{d\varphi}{dt}$$

B.
$$\beta = \frac{d\omega}{dt}$$

C.
$$a = \frac{dv}{dt}$$

D.
$$a = const$$

Answer:A

19. Если ускорения заданы в таком виде a_t =0 a_n ≠0 определите какое это движение ?

- А. Движение по окружности
- В. Равномерное движение
- С. Движение по кривой
- D. Равноускоренное движение

Answer:A

20. Покажите формулу связь между угловой и линейной скорости:

A.
$$v = \omega r$$

B.
$$v = \beta r$$

C.
$$\omega = \frac{d\varphi}{dt}$$

D.
$$v = at$$
.

21.Если движущая сила и сила сопротивления равны, то тело движится
А. Равномерно
В. Покоится
С. Равноускоренно
Д. Равнозамедленно
Answer:A
22. Если движущая сила больше, чем сила сопротивления, то тело будет
двигаться
А. Равноускоренно
В. Равнозамедленно
С. Прямолинейно
Д. Не будет двигаться
Answer:A
23. Если движущая сила меньше, чем сила сопротивления, то тело будет
23. Если движущая сила меньше, чем сила сопротивления, то тело будет двигаться
двигаться
двигаться А. Равнозамедленно
двигаться А. Равнозамедленно В. Равноускоренно
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно Answer:A
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно Аnswer:А 24. Когда тело движется вверх равнозамедленно, его вес становится
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно Аnswer:А 24 . Когда тело движется вверх равнозамедленно, его вес становится
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно Аnswer:A 24 . Когда тело движется вверх равнозамедленно, его вес становится силы тяжести (или его вес). А. меньше, уменьшается.
двигаться А. Равнозамедленно В. Равноускоренно С. Ускоренно Д. Равномерно Answer:A 24 . Когда тело движется вверх равнозамедленно, его вес становится силы тяжести (или его вес). А. меньше, уменьшается. В. больше, увеличивается.

25. Когда тело движется вниз равноускоренно, его вес становится силы тяжести (или его вес......) А. меньше, уменьшается. В. больше, увеличивается. С. больше, уменьшается D. меньше, увеличивается. Answer:A 26. Автомобиль весит 1 т. Во время движения на него действует сила трения, равная 0,1 его веса. Найти силу тяги, развиваемую мотором автомобиля, если автомобиль движется с постоянной скоростью: 1) в гору с уклоном в 1 м на каждые 25 м пути; 2) под гору с тем же уклоном. A. 1400 H; 600 H B. 1200 H; 700 H C. 1400 H; 800 H Д. 1200 Н; 900 Н Answer:A 27. На столе стоит тележка массой m_1 =4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением а будет двигаться тележка, если к другому концу шнура привязать гирю массой $m_2=1$ кг? A. 2 m/c^2 B. $2,5m/c^2$ C. 1.5 m/c^2 $Д. 0.5 \text{ м/c}^2$ Answer:A 28. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами $m_1=1,5$ кг и $m_2=3$ кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь. А. 5кг В. 4 кг С. 6кг **D.** 7кг Answer:A

- 29. Материальная точка массой m=2 кг движется под действием некоторой силы F согласно уравнению x=A+Bt+Ct 2 +Dt 3 , где C=1 м/с 2 , D=-0,2 м/с 3 . Найти значения этой силы в моменты времени t_1 =2 с и t_2 =5 с. В какой момент времени сила равна нулю?
- A. -0,8 H, -8 H,1,67 c
- B. -0,6H, -8 H,1,77c
- C. -0,8 H, -6 H,1,67c
- D. -0,6H, -6 H,1,56c

- 30. Какова мощность N воздушного потока сечением S=0,55 m^2 при скорости воздуха v=20 м/с и нормальных условиях? (ρ =1,29кг/ m^3)
- А. 2,8 кВт
- В. 2,7кВт
- С. 2,5кВт
- D. 2,6кВт

Answer:A

- 31. Груз массой 45кг подвешен на веревке длиной 5м, вращается с частотой равной 16 об/мин. Каков угол между веревкой и вертикалью. Чему равна сила натяжения веревки?
- A. $\alpha = 45^{\circ}$; T = 0,63κH
- B. $\alpha = 30^{\circ}$; T = 0,63κH
- C. $\alpha = 60^{\circ}$; T = 0,65kH
- Д. $\alpha = 45^{\circ}$; T = 0.45 кH

Answer:A

- 32. Тело массой 6 кг, начавшее двигаться под действием постоянной силы, прошло за первую секунду путь 15м. Определите величину силы.
- A. F = 180 H
- B. F = 185 H
- C. F = 190 H
- D. F = 195 H

33. Сила 60 H сообщает телу ускорение 0.8 m/c^2 . Какая сила сообщит этому телу ускорение 2 m/c^2 ?
A. F ₂ = 150H
B. $F_2 = 160H$
C. F ₂ = 170H
Д. F ₂ = 180H
Answer:A
34. Автомобиль массой 2 т, двигающийся со скоростью 36 км/ч,
остановился, пройдя после начала торможения путь 25 м. Определите
величину тормозящей силы
А. 4 кН
B. 7 ĸH
С. 6 кН
Д. 5 кН
Answer:A
35. С какой силой нужно действовать на тело массой 2 кг, чтобы оно
поднималось вертикально вверх с ускорением, вдвое большим ускорения
силы тяжести? g=10 м/c².
A. 60 N
B. 40 N
C. 50 N
D. 20 N

36. Прочность троса на разрыв составляет 1600 H. Какой максимальной массы груз можно поднимать этим тросом с ускорением 15 м/ c^2 ? g = 10

ANSWER: A

 M/c^2 .

A. 64 kg

B. 48 kgC. 32 kgD. 107 kg

27 1/	
37. Космонавт массой 60 кг при вертикальном взлете ракеты давит на	
опору с силой 5400 Н. Найдите ускорение ракеты. $g = 10 \text{ м/c}^2$.	
A. 80 m/s^2	
B. 70m/s ²	
C. 50m/s^2	
D. 90m/s ²	
ANSWER: A	
38. Чему равен вес стоящего в лифте человека массой 70 кг, если лифт	
опускается с ускорением, направленным вниз и равным 3 м/с ² ? $g = 10$ м/с ²	2
A. 490 N	•
B. 910 N	
C. 210 N	
D. 70 N	
ANSWER: A	
39. Тело массой 0,5 кг, падая без начальной скорости с высоты 9 м,	
приобрело вблизи поверхности земли скорость 12 м/с. Найдите среднюю	
приобрело волизи поверхности земли скороств 12 м/с. Паидите среднюю	
силу сопротивления воздуха. $g = 10 \text{ m/c}^2$.	
силу сопротивления воздуха. $g = 10 \text{ m/c}^2$.	
силу сопротивления воздуха. $g = 10 \text{ m/c}^2$. A. 1 N	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N D. 9 N	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N D. 9 N	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A	
силу сопротивления воздуха. g = 10 м/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг, находящееся на гладком горизонтальном столе, действует сила 30 H, направленная вверх под углом 30° к горизонту. С	
силу сопротивления воздуха. $g = 10 \text{ m/c}^2$. A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг, находящееся на гладком горизонтальном столе, действует сила 30 H, направленная вверх под углом 30° к горизонту. С какой силой тело давит на стол? $g = 10 \text{ m/c}^2$.	
силу сопротивления воздуха. g = 10 m/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг, находящееся на гладком горизонтальном столе, действует сила 30 H, направленная вверх под углом 30° к горизонту. С какой силой тело давит на стол? g = 10 m/c². A. 5N	
силу сопротивления воздуха. g = 10 m/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг, находящееся на гладком горизонтальном столе, действует сила 30 H, направленная вверх под углом 30° к горизонту. С какой силой тело давит на стол? g = 10 m/c². A. 5N B. 10,3N	
силу сопротивления воздуха. $g = 10 \text{ m/c}^2$. A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг , находящееся на гладком горизонтальном столе, действует сила 30 H , направленная вверх под углом $30^\circ \text{ к горизонту. C}$ какой силой тело давит на стол? $g = 10 \text{ m/c}^2$. A. 5 N B. $10,3 \text{ N}$ C. 35 N	
силу сопротивления воздуха. g = 10 m/c². A. 1 N B. 5 N C. 4 N D. 9 N ANSWER: A 40. На тело массой 2 кг, находящееся на гладком горизонтальном столе, действует сила 30 H, направленная вверх под углом 30° к горизонту. С какой силой тело давит на стол? g = 10 m/c². A. 5 N B. 10,3 N C. 35 N D. 20 N	

- A. 0,8 кg·m/s
- B. 1,6кg· m/s
- C. 3,2кg· m/s
- D. 0,4кg· m/s

ANSWER: A

- 42. Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с попадает в вагон с песком массой 10 т и застревает в нем. Найти скорость вагона, если он двигался со скоростью 36 км/ч на встречу снаряду.
- A. 4,95 m/s
- B. 20 m/s
- C. 4 m/s
- D. 9 m/s

ANSWER: A

- 43. Граната, летящая со скоростью 15 м/с, разорвалась на два осколка массами 6 и 14 кг. Скорость большего осколка возросло до 24 м/с по направлению движения. Найти скорость и направление движение меньшего осколка.
- A. -6 m/s
- B. -14,6m/s
- C. -21 m/s
- D. -1 m/s

ANSWER: A

- 44. Пуля летящая со скоростью 400 м/с, попадает в вал и проходит до остановки 0,5 м. Определить силу сопротивления вала движению пули, если ее масса 24 г.
- A. 3,8 kN
- B. 11,4 kN
- C. 7,6 kN
- D. 1,9 kN

49.Кинетическая энергия 8 Дж, а величина его импульса 4 кг⋅м/с, масса
тела равна
А. 1 кд
B. 0,5 kg
С. 2 кg
D. 3 кg
ANSWER: A
50. Мальчик подбросил футбольный мяч массой 0,4 кг с поверхности Земли
на высоту 3 м. Какой потенциальной энергией будет обладать мяч на этой
высоты? $g = 10 \text{ м/c}^2$.
A. 12 J
B. 4 J
C. 1,2 J
D. 10 J
ANSWER: A
51. Уравнение прямолинейного движения точки имеет вид $x=4t-0.05t^2$. В
каком моменте времени скорость точки равна нулю.
A. 40s
B. 20 s
C. 10 s
D. 30 s
ANSWER: A
52. Человек, стоящий на неподвижной телеге, горизонтально бросил
вперед камень массой 8 кг со скоростью 5 м/с. Какую работу совершил при
этом человек (Дж), если его масса вместе с телегой равно 160 кг?
A. 105
B. 160
C. 100
D. 153
Answer:A

53. Сплошной цилиндр массой m = 4 кг катится без скольжения по
горизонтальной поверхности. Линейная скорость ${oldsymbol w}$ оси цилиндра равна 1
м/с. Определить полную кинетическую энергию W цилиндра (Дж)?
A. 3
B.4
C. 2
D. 6
Answer:A
54.Тело массой m_1 = 7 кг ударяется о неподвижное тело массой m_2 = 3 кг.
Кинетическая энергия системы двух тел непосредственно после удара стала
W_{κ} = 3,5 Дж. Считая удар центральным и неупругим, найти кинетическую
энергию Wк₁ первого тела до удара (Дж)?
A. 5
B. 10
C. 12,5
D. 7
Answer:A
55. Определить линейную скорость ${m arphi}$ центра шара (м/с), скатившегося без
скольжения с наклонной плоскости высотой $h=3,5 \text{ m.g}=9,8 \text{ m/c}^2$
A. 7
B. 5
C. 3,5
D. 2
Answer:A
56. Определить момент инерции шара (кг·м²) относительно оси
совпадающей с касательной к его поверхности. Радиус шара R = 0,2 м и его
масса m = 2,5кг.
A. 0,14
B. 0,7
C. 0,2
D. 5
Answer:A

57. Как сказывается быстрое, близкое к скорости света, движение тела на плотности вещества этого тела?

- А. плотность возрастет.
- В. плотность уменьшается.
- С. плотность не меняется
- D. плотность меняется периодически.

Answer:A

58. Какой объект может двигаться со скоростью большей скорости «с»?(сскорость света в вакууме).

- А. Ни один из объектов, так как это принципиально невозможно.
- В. Протон в ускорителе относительно Земли.
- С. Электромагнитная волна относительно движущегося источника света.
- D. Солнечный зайчик на отдельной стене относительно стены.

Answer:A

59. Два частицы движутся навстречу друг другу со скоростями 5с/8. Какова их относительная скорость?(с-скорость света в вакууме).

- A. 0,9c
- B. 0,5c
- C. 0.6c
- D. 0.7c

Answer:A

60. В какой системе отсчёта скорость света в вакууме равна 3·10⁸ м/с?

- А. В любой инерциальной системе отсчёта.
- В. Только в системе отсчёта, связанной с Солнцем.
- С. Только в системе отсчёта, связанной с местом измерения скорости
- D. Только в системе отсчёта, связанной с Землёй

- 61. Формулы СТО необходимо использовать при описании движения.
- А. Любых тел, скорости которых близки к скорости света.
- В. Только макроскопических тел, скорости которых близки к скорости света.
- С. Только микроскопических тел, скорости которых близки к скорости света.
- D. Любых тел, скорости которых очень малы по сравнению со скоростью света.

- 62. Молот массой m_1 =5 кг ударяет небольшой кусок железа, лежащий на наковальне. Масса m_2 наковальни равна 100 кг. Массой куска железа пренебречь. Удар неупругий. Определить КПД η удара молота при данных условиях.
- A. 95 %
- B. 87%
- C. 100%
- D. 65%

Answer:A

- 63. Энергия покоящегося тела 9 10^{10} Дж. Масса этого тела равна
- А.1мг
- В. 1г
- С. 1кг
- D. 1T

Answer:A

- 64. Для наблюдателя, находящего на Земле, линейные размеры космического корабля по направлению его движения сократились в 4 раза. Как идут часы на корабле относительно хода часов наблюдателя?
- А.Медленнее в 4 раза
- В. Медленнее в 8 раз
- С. Быстрее в 8 раз
- D. Быстрее в 4 раза

65. Два элементарные частица движутся друг к другу со скоростями 0,8 с и 0,9 с. Определите скорость второй частицы относительно первой.(с-скорость света в вакууме). А. 0,99с В. с С. 0,88с D. 0,66c Answer:A
66.Определите скорость тела (м/с), если его длина в направлении скорости
уменьшилась на 40%.
A. $2,4 \cdot 10^8$ B. $4 \cdot 10^6$
C. $3.6 \cdot 10^7$
D. 6,4 · 10 ⁶
Answer:A
67. Во сколько раз масса электрона больше его масса покоя, если он
движется со скоростью 0,87с? (с-скорость света в вакууме).
A. 2
B. 2,5
C. 4
D. 5
Answer:A
68. В космическом корабле движущемся со скоростью 0,6 с прошло 16
часов, сколько часов прошло на Земле? (с-скорость света в вакууме).
A. 20
B. 27
C. 16
D. 18
ANSWER: A

69. Если на Земле прошло 70 лет, сколько лет пройдёт на космическом
звездолёте движущемся со скоростью 0,99с?
A. 10
B. 15
C. 20
D. 7
ANSWER: A
- 0
70 На сколько процентов сократится длина объекта движущегося со
скоростью 2,4·10 ⁸ m/с, относительно неподвижного наблюдателя?
A. 40
B. 20
C. 60
D. 80
ANSWER: A
71. При какой скорости масса элементарной частицы увеличится на
40%? с-скорость света в вакууме.
A. 0.7 c
B. 0.8 c
C. 0.6 c
D. 0.64 c
ANSWER: A
72. Тело массой 90 т подняли на 10 м, как при этом изменилась его
масса?
А. увеличилась на 10 ⁻¹⁰ кг
В. уменьшилась на 10 ⁻¹⁰ кг
С. не изменилась
D. уменьшилась на 5·10 ⁻¹⁰ кг
ANSWER: A

73. Как изменится масса пружины (кг) жёсткостью 4,5 кН/м, при
растяжении её на 2 мм?
A. $1 \cdot 10^{-19}$
B. $2 \cdot 10^{-20}$
C. $3 \cdot 10^{-15}$
D. 5·10 ⁻¹²
ANSWER: A
74. Во сколько раз кинетическая энергия тела, движущегося со скоростью 0,6 с меньше его энергии покоя? А. 4 В. 2 С. 3.6 D. 3 ANSWER: A
75. Шарики массами 1 кг и 2 кг движутся параллельно друг другу в одном
направлении со скоростями 4 м/с и 6 м/с соответственно. Чему равен
суммарный импульс (кг·м/с) этих двух шариков?
A 16
A. 16
B. 10
B. 10 C. 8
B. 10 C. 8 D. 6
B. 10 C. 8
B. 10 C. 8 D. 6
B. 10 C. 8 D. 6 ANSWER: A
В. 10 С. 8 D. 6 ANSWER: A
В. 10 С. 8 D. 6 ANSWER: A 76. Два одинаковых шарика массами 2 кг движутся навстречу друг другу. Скорость одного шарика 3 м/с, другого 7 м/с. Найдите величину суммарного импульса (кг·м/с) двух шариков. А. 8
В. 10 С. 8 D. 6 ANSWER: A 76. Два одинаковых шарика массами 2 кг движутся навстречу друг другу. Скорость одного шарика 3 м/с, другого 7 м/с. Найдите величину суммарного импульса (кг·м/с) двух шариков. А. 8 В. 20
В. 10 С. 8 D. 6 ANSWER: A 76. Два одинаковых шарика массами 2 кг движутся навстречу друг другу. Скорость одного шарика 3 м/с, другого 7 м/с. Найдите величину суммарного импульса (кг⋅м/с) двух шариков. А. 8 В. 20 С. 14
В. 10 С. 8 D. 6 ANSWER: A 76. Два одинаковых шарика массами 2 кг движутся навстречу друг другу. Скорость одного шарика 3 м/с, другого 7 м/с. Найдите величину суммарного импульса (кг·м/с) двух шариков. А. 8 В. 20

77. Два одинаковых шарика массами 3 кг движутся во взаимно перпендикулярных направлениях со скоростями 3 м/с и 4 м/с. Чему равна
величина полного импульса (кг·м/с) этой системы?
A. 15
B. 8
C. 5
D. 21
ANSWER: A
78. Шарик массой 0,1 кг упал на горизонтальную площадку, имея в момент падения скорость 10 м/с. Найдите изменение импульса (кг·м/с) шарика
при абсолютно неупругом ударе.
А. 1
B. 10
C. 15
D. 20
ANSWER: A
ANOWERLA
79. На вагонетку массой 800 кг, катящуюся по горизонтальному пути со
скоростью 0,2 м/с, насыпали сверху 200 кг щебня. На сколько при этом
уменьшилась скорость (в см/с) вагонетки?
A. 4
B. 12
C. 5
D. 3
ANSWER: A
80. Тело массой 1 кг равномерно вращается по окружности радиусом 1 м с
угловой скоростью 2 рад/с. Найдите модуль изменения импульса тела
(кг·м/с) при повороте радиуса-вектора, проведенного из центра
окружности к телу, на 180°.
A. 4
B. 3
C. 2
D. 0
ANSWER: A

81. Тело массой 2 кг двигалось по окружности, причем в некоторой точке
оно имело скорость 4 м/с. Пройдя четверть окружности, тело приобрело
скорость 3 м/с. Определите модуль изменения импульса тела. (кг∙м/с)
A. 10
B. 8
C. 6
D. 12
ANSWER: A
92 Ha anyong punggang suanggang sa syanggang 600 m/s. Opno panggang massy
82. Из орудия вылетает снаряд со скоростью 600 м/с. Определите массу
снаряда, если средняя сила давления пороховых газов равна 2700 кН и
снаряд движется внутри ствола 0,002 с. А. 9 кг
А. 9 кг В. 5 кг
С. 3,5 кг
D. 7кг
ANSWER: A
ANSWEIN. A
83. Шар массой 200 г, двигавшийся со скоростью 5 м/с, сталкивается
абсолютно неупруго с шаром массой 300 г, двигавшемся в том же
направлении со скоростью 4 м/с. Найдите скорость шаров после удара.
Ответ дайте в см/с.
A. 440
B. 500
C. 330
D. 250
ANSWER: A
84 Два тела, двигаясь навстречу друг другу со скоростью 3 м/с каждое,
после соударения стали двигаться вместе со скоростью 1,5 м/с. Найдите
отношение их масс.
A. 3 B. 5
B. 5 C. 2
C. 2 D. 7
ANSWER: A
ANJVVLIN. A

85. С кормы лодки массой 200 кг, движущейся со скоростью 1 м/с, прыгает мальчик в горизонтальном направлении в сторону, противоположную движению лодки. С какой скоростью (относительно земли) прыгает мальчик, если скорость лодки после его прыжка возросла до 3 м/с, а масса мальчика 50 кг?

A.7 m/c

B.3 m/c

C. 12 m/c

D.4 m/c

ANSWER: A

86.Конькобежец катил груженные сани по льду со скоростью 5 м/с, а затем толкнул их вперед и отпустил. С какой скоростью (в см/с) покатится конькобежец непосредственно после толчка, если скорость саней возросла до 8 м/с? Масса саней 90 кг, масса человека 60 кг.

A. 50

B. 120

C. 30

D. 24

Answer:A

87. Снаряд массой 50 кг, летящий под углом 30° к вертикали со скоростью 600 м/с, попадает в платформу с песком и застревает в ней. Найдите скорость (м/с) платформы после попадания снаряда. Масса платформы 950 кг. Трением между платформой и рельсами пренебречь.

A. 15

B. 12

C. 18

D. 24

Answer:A

88. Какие величины сохраняются при абсолютно упругом столкновении?

- А. Импульс и кинетическая энергия
- В. Масса и скорость
- С. Потенциальная энергия
- D. Только импульс

- 89. Какие величины сохраняются при абсолютно неупругом столкновении?
- А. Только импульс
- В. Потенциальная энергия
- С. Импульс и кинетическая энергия
- D. Масса и скорость

- 90. Тело брошено вертикально вверх со скоростью υ_0 =20 м/с. Пренебрегая сопротивлением воздуха, определите, на какой высоте hкинетическая энергия тела будет равна его потенциальной энергии.
- A. 10,2
- B. 11,2
- C. 9,7
- D. 13.6

Answer:A

- 91.Определите работу (кдЖ), совершаемую при подьеме груза массойm=50 кг по наклонной плоскости с углом наклона α =30 0 к горизонту на растояниеS=4 м, если время подьёма t=2 с, а коэффициент трения μ =0,06.
- A. 1,48
- B. 2,31
- C. 3,98
- D. 2,79

ANSWER: A

- 92. Тело массой 2 кг движется по закону $x=5+2t+t^3$ (м) определить импульс (кг·м/с) тела через 3 с.
- A. 58
- B. 87
- C. 116
- D. 29

93. Тело массой 1 кг движется по закону $x=5+t^2+t^3$ (м) определить кинетическую энергию (дж)телачерез 2 с.

A. 128

B. 56

C. 64

D. 184

Answer:A

94. В каких системах выполняется закон сохранения механической энергии

- А. В системах в которых присутствуют лишь консервативные силы
- В. В системах в которых присутствуют лишь диссипативные силы
- С. Только в инерциальных системах
- D. Только в открытых системах

Answer:A

95. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым длиной I=20 см. Определить момент инерции I системы (кг · M^2) относительно оси перпендикулярной стержню и проходяшей через центр масс.

A. $2 \cdot 10^{-4}$

B. $3,1 \cdot 10^{-4}$

C. $2.9 \cdot 10^{-4}$

D. $5 \cdot 10^{-4}$

Answer:A

96.Определить момент инерции J тонкого однородного стержня длиной I = 50 см и массой m = 360 г относительно оси, перпендикулярной стержню и проходящей: 1) через конец стержня; 2) через точку, отстоящую от конца стержня на I/6 его длины.

A. 1)
$$J_A = 3 \cdot 10^{-2} \text{kg} \cdot \text{m}^2$$
; 2) $J_B = 1.75 \cdot 10^{-2} \text{kg} \cdot \text{m}^2$.

В. 1)
$$J_A = 5 \cdot 10^{-2} \kappa \text{г} \cdot \text{м}^2$$
; 2) $J_B = 1.85 \cdot 10^{-2} \kappa \text{г} \cdot \text{м}^2$.

C. 1)
$$I_A = 2 \cdot 10^{-2} \text{kg} \cdot \text{m}^2$$
; 2) $I_B = 1.65 \cdot 10^{-2} \text{kg} \cdot \text{m}^2$.

D. 1)
$$J_A = 4 \cdot 10^{-2}$$
кг · м 2 ; 2) $J_B = 1,55 \cdot 10^{-2}$ кг · м 2 .

97. Вентилятор вращается с частотой n=600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав N = 50 оборотов, остановился. Работа A сил торможения равна 31,4 Дж. Определить: 1) момент M сил торможения; 2) момент инерции J вентилятора.

A. 1)
$$M = 0.1 H \cdot M$$
; 2) $J = 1.59 \cdot 10^{-2} \text{kg} \cdot M^2$.

B. 1)
$$M = 0.01 \, H \cdot M$$
; 2) $J = 1.89 \cdot 10^{-2} \, \text{kg} \cdot M^2$.

C. 1)
$$M = 0.3 H \cdot M$$
; 2) $J = 1.79 \cdot 10^{-2} \text{kg} \cdot \text{m}^2$.

D. 1)
$$M = 0.2 H \cdot M$$
; 2) $J = 1.69 \cdot 10^{-2} \text{kg} \cdot M^2$.

Answer:A

98. К ободу однородного сплошного диска радиусом R = 0.5 м приложена постоянная касательная сила F = 100 Н. При вращении диска на него действует момент сил трения $M_{mp} = 2$ Н·м. Определить массу m диска, если известно, что его ускорение ε постоянно и равно 16 рад/ ε^2 .

А. 24 кг

В. 30кг

С. 12кг

D. 18кг

Answer:A

99. Снаклонной плоскости, составляющей угол α=30° к горизонту, скатывается без скольжения шарик. Пренебрегая трением, определить время движения шарика по наклонной плоскости, если известно, что центр масс шарика при скатывании понизился на 30 см.

A. 0,585 c

B. 0,385 c

C. 0,685 c

D. 0,285 c

100.Тело массой m_1 = 0,25 кг, соединенное невесомой нитью посредством блока (в виде полого тонкостенного цилиндра) с телом массой m_2 = 0,2 кг, скользит по поверхности горизонтального стола. Масса блока m = 0,15 кг. Коэффициент трения μ тела о поверхность равен 0,2. Пренебрегая трением в подшипниках, определить: 1) ускорение α , с которым будут двигаться эти тела; 2) силы натжения T_1 и T_2 нити по стороны блока.

A. 1) $\alpha = 2,45 \text{ m/c}^2$; 2) $T_1=1,1 \text{ H}$; $T_2=1,47 \text{ H}$.

B. 1) $a = 5,45 \text{ m/c}^2$; 2) $T_1 = 1,21 \text{ H}$; $T_2 = 1,37 \text{ H}$.

C. 1) $a = 1,45 \text{ m/c}^2$; 2) $T_1 = 1,01 \text{ H}$; $T_2 = 1,57 \text{ H}$.

D. 1) $a = 3,45 \text{ m/c}^2$; 2) $T_1 = 1,31 \text{ H}$; $T_2 = 1,67 \text{ H}$.

Answer:A

101. Платформа, имеющая форму однородного диска, может вращаться по инерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 3 раза меньше массы платформы. Определить, как и во сколько раз изменится угловая скорость вращения платформы, если человек перейдет ближе к центру на расстояние, равное половине радиуса платформы.

A.
$$\omega_2/\omega_1=1,43$$

B.
$$\omega_2/\omega_1=1,33$$

C.
$$\omega_2/\omega_1=1,23$$

D.
$$\omega_2/\omega_1=1,53$$

102.Однородный шар массы m=4,0 кг движется поступательно по поверхности стола под действием постоянной силы F, приложенной, как показано на рисунка, где угол $\alpha = 30^\circ$. Коэффициент трения между шаром и столом μ =0,20. Найти *F* и ускорение шара.

A. F=13,1 H; a=1,2 m/c².

B. $F=13,1 \text{ H}; \alpha=1,02 \text{ m/c}^2$.

C. $F=14,1 \text{ H}; \alpha=1,2 \text{ m/c}^2$.

D. $F=11.1 \text{ H}; a=1.02 \text{ m/c}^2$.

ANSWER: A

103 Укажите формулу момента инерции однородного стержня, относительно оси, проходящей через его центр.

$$A \qquad I = \frac{1}{12} mL^2$$

$$B I = \frac{1}{5}mL^2$$

B
$$I = \frac{1}{5}mL^{2}$$
C
$$I = \frac{2}{5}mL^{2}$$
D
$$I = \frac{1}{3}mL^{2}$$

$$D I = \frac{1}{3}mL^2$$

ANSWER: A

104 Однородный шар массы *m*=5,0 кг скатывается без скольжения по наклонной плоскости, составляющей угол $\alpha = 30^{\circ}$ с горизонтом. Найти кинетическую энергию шара через t=1,6 с после начала движения.

105 Укажите формулу теоремы Штейнера?

$$A I_J = I_c + md^2$$

$$B I = \sum_{i=1}^n m_i r_i^2$$

$$C I_I = I_c + md$$

$$D I = \int_0^\infty r^2 dm$$

ANSWER: A

Укажите формулу момента инерции тонкого кольца, относительно 106 оси, проходящей через его центр.

A
$$I = mR^2$$

$$I = \frac{1}{2}mR^2$$

B
$$I = \frac{1}{2}mR^2$$
C
$$I = \frac{2}{5}mR^2$$

$$D I = \frac{2}{3}mR^2$$

ANSWER: A

Какое из приведенных ниже уравнений динамики вращательного движения дается неправильно (M - момент силы, L -момент импульса, I момент инерции, W-энергия вращательного движения):

A
$$W = I\omega^2/2$$

B
$$M = I(d\omega/dt)$$

C $dL/dt = M$

$$C dL/dt = M$$

D
$$L = I\omega$$

ANSWER: A

108 Укажите формулу однородного стержня, момент инерции относительно оси, проходящей через его край.

$$A I = \frac{1}{3}mL^2$$

$$B I = \frac{1}{5}mL^2$$

$$C I = \frac{2}{5}mL^2$$

$$D I = \frac{1}{12} mL^2$$

Человек, свободно вращающийся на круглой горизонтальной платформе, протянул руки в сторону. В данном случае: крутящий момент инерции J, угловая скорость ω, момент импульс L как меняется?

A
$$J \uparrow \omega \downarrow L = const$$

$$\mathsf{B} \qquad J \downarrow \omega \downarrow L = \downarrow$$

C
$$J \downarrow \omega \uparrow L = const$$

D
$$J \uparrow \omega \uparrow L = \uparrow$$

ANSWER: A

Укажите формулу момента инерции целостного диска относительно оси, проходящей через его центр.

$$A I = \frac{1}{2}mR^2$$

B
$$I = mR^2$$

$$C I = \frac{2}{5}mR^2$$

$$D I = \frac{2}{3}mR^2$$

$$D I = \frac{2}{3}mR^2$$

ANSWER: A

Человек сидит в центре колеса, вращающегося инерцией вокруг вертикальной оси, держа в руках стержень посередине. Если он принес стержень из горизонтального положения в вертикальное, то частота вращения...

ANSWER: A

Горизонтально расположенный тонкий однородный стержень массы 112 т подвешен за концы на двух вертикальных нитях. Найти силу натяжения одной из нитей сразу после пережигания другой нити.

A
$$T=mq/4$$

B
$$T=mq/2$$

C
$$T=mg/3$$

D
$$T=mq/6$$

113 Укажите формулу момента инерции целостного шара относительно оси, проходящей через его центр.

$$A I = \frac{2}{5}mR^2$$

$$B I = \frac{1}{2}mR^2$$

$$C I = mR^2$$

$$D I = \frac{2}{3}mR^2$$

ANSWER: A

114 Чему равна единица измерения потенциала?

- Α Вольт
- В Ватт
- C Джоуль
- D Ньютон

ANSWER: A

Чему равен потенциал поля, создаваемый точечным зарядом q? 115

$$A \qquad \phi(r) = \frac{q}{4\pi\xi_0 r}$$

B
$$A_{12} = q'(\phi_1 - \phi_2)$$

$$\begin{array}{ll} \mathsf{C} & E_l = -\frac{d\phi}{dl} \\ \mathsf{D} & E = -\nabla\phi \end{array}$$

D
$$E = -\nabla \phi$$

ANSWER: A

116. Какова формула напряжённости для бесконечно заряжённой плоскости?

$$A E = \frac{\sigma}{2\xi_0}$$

B
$$E = -\nabla \phi$$

C
$$E_l = -\frac{d\phi}{dl}$$

$$D E = \frac{\sigma}{\xi_0}$$

117 Какова формула напряжённости для двух параллельных бесконечных плоскостей?

A
$$E = \frac{\sigma}{\xi_0}$$
B $E = \frac{\sigma}{2\xi_0}$

$$C E_l = -\frac{d\phi}{dl}$$

$$D E = \frac{q}{4\pi\xi_0 r^2}$$

ANSWER: A

118 Эквипотенциальная поверхность-это.......

А Поверхность, все точки которой имеют одинаковый потенциал

В Поверхность, все точки которой имеют одинаковую кулоновскую силу

С Поверхность, все точки которой имеют одинаковую энергию

D Поверхность, все точки которой имеют одинаковый заряд

ANSWER: A

119 Как направлены линии напряжённости относительно эквипотенциальным поверхностям?

А Они направлены перпендикулярно

В Они направлены параллельно

С Они направлены по кругу

D Их вообще нет

ANSWER: A

120. На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу F, действующую на заряд со стороны индуцированного им заряда на плоскости.

A. 0,9·10⁻⁶ H

B. 0,9·10⁻⁹ H

C. 0,9·10⁻³ H

D. 0.09·10⁻⁹ H

- 121. Прямой металлический стержень диаметром d=5 см и длиной l=4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность Е поля в точке, находящейся против середины стержня на расстоянии a=1 см от его поверхности.
- A. $64,3\cdot10^3$ B/M
- B. $6,43\cdot10^3$ B/M
- C. $0,643 \cdot 10^3$ B/M
- D. $643 \cdot 10^3 \text{ B/m}$

- 122. В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток Φ_E вектора напряженности через часть сферической поверхности площадью S=20 см².
- A. 4,5 B⋅M
- B. 0,45 B⋅M
- C. 45 B⋅M
- D. 450 B·M

ANSWER: A

- 123. Точечный заряд Q=10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией W_n =10 мкДж. Найти потенциал ф этой точки поля.
- A. 1.10^3 B
- B. $0,1\cdot10^3$ B
- C. $0,01 \cdot 10^3$ B
- D. 0,001·10³ B

ANSWER: A

- 124. При какой силе тока (A) на сопротивлении 2 Ом за 3 с выделяется 54 Дж тепла?
- A. 3
- B. 6
- **C**. 9
- D. 18

- 125. Большая металлическая пластина несет равномерно распределенный по поверхности заряд (σ =10 нКл/м²). На малом расстоянии от пластины находится точечный заряд Q=100 нКл. Найти силу F, действующую на заряд (мкН). ϵ_0 =8,85·10⁻¹² Ф/м
- A. 56,5
- B. 5,65
- C. 60,5
- D. 62,5

ANSWER: A

- 126. Точечный заряд Q=1 мкКл находится на некотором расстоянии от центра бесконечно большой (равномерно распределенный заряд) пластины. Пластина действует на точечный заряд с силой F = 60 мH. Найдите плотность поверхностного заряда пластины (мкКл/м²). ϵ_0 =8,85·10⁻¹² Φ /м
- A. 1,06
- B. 3,78
- C. 4,07
- D. 6,72

ANSWER:A

- 127. Как изменится потенциальная энергия заряда при перемещении его эквипотенциальной поверхности.
- А. не изменится
- В. уменьшится
- С. увеличится
- D. зависит от величины заряда

128.Найти работу A (мкДж)поля по перемещению заряда Q = 10 нКл из точки 1 в точку 2, находящихся между двумя разноименно заряженными с поверхностной плотностью $\sigma = 0.4$ мкКл/м² бесконечными параллельными плоскостями, расстояние между которыми I = 3 см.

A. 13,6

B. 1,36

C. 7,8

D. 78

ANSWER: A

129. В однородном электростатическом поле потенциал нарастает на вверх. В какую сторону направлен вектор напряженности поля.

А. вниз

В. вправо

С. вверх

D. влево

ANSWER: A

130. Какова площадь S пластин плоского конденсатора (m^2), если к обкладкам приложена разностьпотенциалов U=90Взаряд пластин Q= 10^{-7} Кл и расстояние между ними d= $5\cdot10^{-3}$ м? ϵ_0 =8,85· 10^{-12} Ф/м;

A. 0,62

B. 1,34

C. 64,4

D. 12,7

ANSWER: A

131.Шарик заряженный до потенциала ф=800 В, имеет поверхностную плотность заряда σ =0,3·10⁻⁶Кл/м². Найти радиус шарика R(см). ϵ_0 =8,85·10⁻¹² Ф/м;

A. 2,36

B. 1,8

C. 0,3

D. 0,5

- 136. Расстояние между пластинами заряженного плоского конденсатора уменьшили в два раза. Во сколько раз изменится энергия поля в конденсаторе, если конденсатор отключен от источника напряжения?
- А. уменьшится в 2 раз
- В. увеличиться в 5 раз
- С. увеличиться в 4 раз
- D. уменьшится в 6 раз

ANSWER: A

- 137.Определить плотность тока (MA/м²) в железном проводнике длиной I=10м, если провод находится под напряжением U=6B дельное сопротивление железа ρ =9,8·10⁻⁸ Ω м
- A. 6,1
- B. 610
- C. 6100
- D. 0,61

Answer:A

- 138. Шарик заряженный до потенциала $\varphi = 792B$, и имеет поверхностную плотность заряда $\sigma = 333$ н Πa . Найти радиус r.
- A. 0.0021_M
- B. 1_M
- D. 0,3_M
- C. 0,057_M

Answer:A

- 139. К зажимам источника напряжения присоединили медную проволоку длиной I=2 м. Плотность тока в проволоке $j=10^6$ A/м². Определить напряжение U на зажимах (B). $\rho_c=1,7\cdot 10^{-8}\,\Omega$ м
- A. 34·10⁻³
- B. $3.4 \cdot 10^{-3}$
- C. 340·10⁻³
- D. 0.34·10⁻³

- A. 26,55
- B. 2,655
- C. 265
- D. 290

145. К пластинам плоского воздушного конденсатора (ϵ_1 =1) приложена разность потенциалов U₁=300 В. После отклонения конденсатора. От источника напряжения пространство между пластинами заполняется эбонитом (ϵ_2 =2,6). Какова будет разность потенциалов u₂ между пластинами после заполнения(B)?

- A. 115
- B. 135
- C. 230
- D. 235

Answer:A

146. Найти падения потенциала и на медном проводе длиной l=500 M и диаметром d=2 MM, если ток в нем I=2 M

- A. 5,4
- B. 8
- C. 0,54
- D. 15

Answer:A

147. Элемент имеющий э.д.с $\varepsilon=1.1B$ и внутреннее сопротивление $r=1\Omega$, замкнут на внешнее сопротивление $R=9\Omega$. Найти ток I в цепи,падение потенциала U во внешней цепи и падение потенциала U_r внутри элемента. С каким к.п.д η работает элемент. (1) I; 2) U; 3) U_r 4) η)

- A. 1) 0,11; 2) 0,99; 3) 0,11; 4) 0,9
- B. 1) 0,011; 2) 0,27; 3) 0,011; 4)2
- C. 1) 2; 2)0,27;3)0,3; 2; 4) 3
- D. 1) 0,11; 2)0,27; 3)3; 4)1

- 148. Элемент с э.д.с $\varepsilon = 2B$ имеет внутреннее сопротивление $r = 0.5\Omega$. Найти падение потенциала U_r внутри элемента при токе в цепи I = 0.25A. Каково внешнее сопротивление цепи R при этих условиях. (1) U_r ; 2) R)
- A. 1) 0.125; 2) 7,5
- B. 1) 0.06; 2) 0,75
- C. 1) 0,006;2) 0,75
- D. 1) 0,75;2) 0,75

- 149. Элемент с э.д.с $\varepsilon=1.6B$ имеет внутреннее сопротивление $r=0.5\Omega$. Найти к.п.д η элемента при токе в цепи I=2.4A
- A. 25 %
- B. 3 %
- C. 30%
- D. 0,2%

Answer:A

- 150. э.д.с элемента $\varepsilon=6B$, $R=1.1\Omega$, ток в цепи I=3A . Найти падение потенциала U_{ε} внутри элемента и его сопротивление r . (1) U_{ε} ; 2) r)
- A.1) 2,7; 2) 0,9
- B. 1) 5; 2) 2
- C. 1) 0,27; 2) 2
- D. 1) 3; 2) 0,9

Answer:A

- **151.** Два последовательно соединенных элемента с одинаковым э.д.с $\varepsilon=\varepsilon=2B$ и внутренними сопротивлениями $r_1=1\Omega$ и $r_2=1.5\Omega$ замкнуты на внешнее сопротивление $R=0.5\Omega$. Найти разность потенциалов U на зажимах каждого элемента. (**1**) U_1 ; **2**) U_2)
- A. 1) 0,66; 2) 0
- B. 1)75; 2) 5
- C. 1) 0,066; 2) 0
- D. 1) 3; 2) 2

156.Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление р производят пластины на стекло перед пробоем, если напряженность Е электрического поля перед пробоем равна 30 MB/м?

- A. 15930
- B. 19000
- C. 34500
- D. 22500

Answer:A

157. Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ_1 = 0,1 мкКл/м и τ_2 =0,2мКл/м. Определить силу F взаимодействия, приходящую на отрезок нити длинной 1 м. Расстояние r между нитями равно 10 см.

- A. 0,23·10⁻³
- B. 6.5·10⁵
- C. 5.10^4
- D. 1.10^3

Answer:A

158. Расстояние d между пластинами плоского конденсатора равно 1,33 м, площадь S пластин равна 20 см 2 . В пространстве между пластинами конденсатора находятся два слоя диэлектриков: слюды толщиной d_1 =0,7 мм и эбонита толщиной d_2 =0,3мм. Определить электроемкость C конденсатора. ϵ_1 =7, ϵ_2 =3, ϵ_3 =1

- A. 13,3·10⁻¹²
- B. 300·10⁻⁴
- C. 345·10⁻⁶
- D. 456·10⁻⁸

163. Конденсаторы семкостью $C_1 = 1$ мкФ, $C_2 = 2$ мкФ, $C_3 = 3$ мкФ подключены к цепи с напряжением U = 1,1кВ. Найти энергию батареи конденсаторов?

- A. 3,3
- B. 7
- C. 9
- D. 15

Answer:A

164. Определить, при какой напряженности Е среднего макроскопического поля в диэлектрике (ϵ =3) поляризованность Р достигает значения, равного 200 мкКл/м².

- A. 0,37·10⁷
- B. $4.5 \cdot 10^8$
- C. 6.10^6
- D. 3·10⁹

Answer:A

165. Электрон влетел в пространство между пластинами плоского конденсатора со скоростью υ=10Мм/с, направленной параллельно пластинам. На сколько приблизится электрон к положительно заряженной пластине за время движения внутри конденсатора(поле считать однородным), если расстояние d между пластинами равно 16 мм, разность потенциалов U=30 В и длина / пластин равна 6 см?

- A. 15·10⁻³
- B. 4·10⁻⁸
- C. 7,5·10⁻⁹
- D. 2,6·10⁻⁴

166. Протон, начальная скорость и которого равна 100 км/с, влетел в однородное электрическое поле (300 В/см) так, что вектор скорости совпал с направлением линий напряженности. Какой путь / должен пройти протон в направлении линий поля, чтобы его скорость удвоилась?

```
A. 5.10^{-3}
```

B. 3.10^2

C. 1·10⁻⁵

D. 4·10⁻⁶

Answer:A

167. Вычислить энергию W электростатическогополя металлического шара, которому сообщен заряд q=100 нКл, если диаметр d шара равен 20 см.

A. 4,5·10⁻⁴

B. $3,7\cdot10^{-6}$

C. 2,6·10⁻⁸

D. 8.5·10⁻⁷

Answer:A

168. Расстояниеимежду двумя точечными зарядами $q_1=1$ мкКл и $q_2=q_1$ равно 10 см. Определить силу F, действующую на точечный заряд q=0,1 мкКл, удаленный на $r_1=6$ см от первого и на $r_2=8$ см от второго зарядов.

A. $2,5\cdot10^{-3}$

B. 500·10²

C. 398·10⁻⁴

D. 676·10⁻⁷

Answer:A

169.Заряженная частица создает в некоторой точке в вакууме напряженность 60В/м. Какая сила (в мкН) будет действовать на заряд 5нКл, помещенный в эту точку, если всю систему поместить в керосин, диэлектрическая проницаемость которого 2?

A. 0,6

B. 0,4

C. 0,9

D. 0,8

174. По поверхности сферы радиусом 30 см распределен заряд 4 нКл. Чему
равен потенциал в центре сферы (B)? $k = 9 \cdot 10^9$ м/Ф.
A. 120
B. 150
C. 160
D. 140
ANSWER: A
175. Какую работу (в мкДж) совершает электростатическое поле при
перемещении заряда 2 нКл из одной точки поля в другую, если разность
потенциалов между ними равна 500 В?
A. 1
B. 4
C. 3
D. 2
ANSWER: A
176. Шар с каким радиусом имеет электрическую емкость 1Ф(м)?
A. 9·10 ⁹
B. 1·10 ⁹
B. 1·10 ⁹ C. 1·10 ¹⁰
B. 1·10 ⁹ C. 1·10 ¹⁰ D. 2·10 ⁹
B. 1·10 ⁹ C. 1·10 ¹⁰
B. 1·10 ⁹ C. 1·10 ¹⁰ D. 2·10 ⁹
B. $1 \cdot 10^9$ C. $1 \cdot 10^{10}$ D. $2 \cdot 10^9$ D. $2 \cdot 10^9$ ANSWER: A
B. 1·10 ⁹ C. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния между ними, величину каждого из зарядов увеличить в 2 раза?
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния между ними, величину каждого из зарядов увеличить в 2 раза? А. 32 мН
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния между ними, величину каждого из зарядов увеличить в 2 раза? А. 32 мН В. 16 мН
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния между ними, величину каждого из зарядов увеличить в 2 раза? А. 32 мН В. 16 мН С. 8 мН
В. 1·10 ⁹ С. 1·10 ¹⁰ D. 2·10 ⁹ D. 2·10 ⁹ ANSWER: A 177. Два точечных заряда взаимодействуют с силой 8 мН. Какова будет сила взаимодействия (в мН) между зарядами, если, не меняя расстояния между ними, величину каждого из зарядов увеличить в 2 раза? А. 32 мН В. 16 мН

178. Маленький шарик, подвешенный на шелковой нити, имеет заряд 49 нКл. В горизонтальном электрическом поле с напряженностью 100 кВ/м
нить отклонилась от вертикали на угол, тангенс которого 0,125. Найдите
массу (в г) шарика. $g = 10 \text{ м/c}^2$
А. 4
B. 8
C. 9
D. 18
ANSWER: A
179. Во сколько раз надо увеличить расстояние между двумя точечными
зарядами, чтобы сила взаимодействия осталась прежней при увеличении
одного из зарядов в 4 раза?
A. 2
B. 4
C. 8
D. 12
ANSWER: A
180. Найдите величину ускорения, которое приобретает частица массой
0,1 г с зарядом 4 мкКл под действием однородного электрического поля с
напряженностью 1000 B/м. Силу тяжести не учитывать. (в м/с²)
A. 40
B. 4
C. 0.4
D. 0.04
ANSWER: A

185. Два одинаковых по размеру металлических шарика несут заряды 7 мкКл и -3 мкКл. Шарики привели в соприкосновение и развели на некоторое расстояние, после чего сила их взаимодействия оказалась равна 40 Н. Определите это расстояние (в см). Коэффициент в законе Кулона $k = 9.10^9$ м/Ф.

- A. 3
- B. 6
- C. 18
- D. 12

Answer:A

186. Два одинаковых маленьких шарика массой 80 г каждый подвешены к одной точке на нитях длиной 30 см. Какой заряд (в мкКл) надо сообщить каждому шарику, чтобы нити разошлись под прямым углом друг к другу? $k = 9*10^9 \text{ м/Ф}, q = 10 \text{ м/c}^2$.

- A. 4
- B. 2
- C. 8
- D. 12

Answer:A

187. Два маленьких шарика массой 6 г каждый подвешены к одной точке на нитях длиной 13 см. Какой заряд (в нКл) надо сообщить каждому шарику, чтобы они разошлись на расстояние 24 см? $k = 9*10^9$ м/Ф, g = 10 м/с².

- A. 0.96
- B. 2
- C. 8
- D. 12

188. Шарик массой 4,5 г с зарядом 0,1 мкКл помещен в масло плотностью 800 кг/м³. Плотность материала шарика 1500 кг/м³. Определите напряженность электрического поля (в кВ/м), в которое следует поместить шарик, чтобы он находился в равновесии. $g = 10 \text{ м/c}^2$.

A.210

B. 390

C. 850

D. 120

Answer:A

189. В элементарной теории атома водорода принимают, что электрон обращается вокруг ядра по круговой орбите. Определить скорость(км/секунд) электрона, если радиус орбиты r=53пм.

A. 2180

B. 2080

C. 2880

D. 1240

Answer:A

190. Три одинаковых положительных заряда $Q_1=Q_2=Q_3=1$ нКл расположены по вершинам равностороннего треугольника. Какой отрицательный заряд Q_4 нужно поместить в центре треугольника, чтобы сила притяжения сего стороны уравновесила силы изаимного отталкивания зарядов, (в нКл) находящихся в вершинах?

A. 0.53

B. 0.25

C. 0.84

D. 0.126

191. По какой траектории будет двигаться протон, влетевший с постоянной скоростью в однородное магнитное поле под углом α к направлению силовых линий?

- А. По винтовой линии
- В. По эллипсу
- С. По окружности
- D. По прямой

Answer:A

- 192. По какой траектории будет двигаться протон, влетевший с постоянной скоростью в однородное магнитное поле перпендикулярно к направлению силовых линий?
- А. По окружности
- В. По прямой
- С. По эллипсу
- D. По винтовой линии

Answer:A

- 193. По какой траектории будет двигаться протон, влетевший с постоянной скоростью в однородное магнитное поле параллельно к направлению силовых линий?
- А. По прямой
- В. По эллипсу
- С. По окружности
- D. По винтовой линии

Answer:A

194. Какое из свойств магнитного поля выражает теорема Гаусса...

$$\iint_{S} \vec{B} dS = 0$$

- А. Отсутствие источников поля магнитных зарядов
- В. Принцип суперпозиции
- С. Причина возникновения поля токи
- D. Вихревой и силовой характер поля

195. Какая величина является силовой характеристикой магнитного поля:

- А. Вектор магнитной индукции.
- В. Сила Ампера
- С. Магнитный момент
- D. Сила Лоренца

Answer:A

196. Явление электромагнитной индукции послужило основой для создания...

- А. генератора электрического тока
- В. электромагнита
- С. транзистора
- D. электродвигателя

Answer:A

197. Силовые линии магнитного поля в середине соленоида представляют собой...

- А. параллели к оси трубки
- В. спирали
- С. перпендикуляры к оси трубки
- D. круги

Answer:A

198. ЭДС электромагнитной индукции определяется:

- А. скоростью изменения величины магнитного потока
- В. величиной магнитного потока
- С. скоростью изменения величины магнитного поля
- D. величиной магнитного поля

199. Укажите теорему Гаусса для вектора магнитной индукции

A.
$$\iint B_n dS = 0$$

B.
$$\iint B_l dl = 0$$

c.
$$\iint B_l dl = \mu_0 \sum I_i$$

D.
$$\iint B_n dS = \frac{1}{\varepsilon_0} \sum q_i$$

Answer:A

200. Укажите правильное утверждение

А. Работа по перемещению замкнутого контура с током в магнитном поле равна нулю.

В. Работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока е контуре на изменение магнитного потока, сцепленного с контуром (или на его потокосцепление).

С. Работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы, действующей на проводник на его перемещение.

D. Работа равна произведению магнитной постоянной и алгебраической суммы токов.

Answer:A

201. Распределения молекул газа по скоростям для каждого газа зависит от ... газа.

А. массы и температуры

В. давления и объема

С. объема

D. давления

- 202. Газ массой m=10г расширяется изотермически от объема V_1 до объема V_2 =2 V_1 . Работа A расширения газа равна 900 Дж. Определить наиболее вероятную скорость ϑ_s молекул газа.
- A. 510 m/c
- B. 520 m/c
- C. 530 m/c
- D. 500 m/c

- 203. Найти среднее число столкновений $\langle z \rangle$ в единицу времени молекул азота при давлениир= 10^5 Па и температуре t= 27° C. Эффективный диаметр молекулы азота d = 0,3 нм.(μ = $28\cdot10^{-3}$ кг/моль).
- A. $4.56 \cdot 10^9 \, \text{c}^{-1}$
- B. $5.23 \cdot 10^8 \, \text{c}^{-1}$
- C. $3.66 \cdot 10^9 c^{-1}$
- D. 6,86·10⁸c⁻¹

Answer:A

204. Что называется эффективным диаметром молекулы?

- А. минимальное расстояние, на которое могут сблизиться центры взаимодействующих молекул.
- В. расстояние между центрами столкнувшихся молекул
- С. средний диаметр молекулы
- D. диаметр шара, имитирующего молекулу

Answer:A

- 205. В чем заключается смысл функции распределения?
- А. определяет относительное число молекул в данном интервале скоростей, энергий, импульсов
- В. определяет относительное число молекул в единице объема
- С. вероятность обнаружения молекул в данной фазовой точке геометрического пространства скоростей, энергий, импульсов
- D. определяет число молекул обладающих данным интервалом скоростей, импульсов, энергий

- A. 3,5
- B. 4,2
- C. 4,5
- D. 2,5

207. Определите изменение энтропии ΔS при изотермическом расширении азота массой m=17r, если давление газа уменьшилось от $p_1=0,1$ МПа до $p_2=50$ кПа ($\mu=28\cdot10^{-3}$ кг/моль).

- А. 3,48 Дж/К
- В. 4,27 Дж/К
- С. 5,45 Дж/К
- D. 2,56Дж/К

Answer:A

208. Масса m=10 г кислорода (μ =32 г/моль) находится при давлении P=304 кПа и температуре t_1 =10 °C. После расширения вследствие нагревания при постоянном давлении кислород занял объем V_2 =10 л. Найти объем V_1 газа до расширения (л), температуру t_2 газа после расширения (К), плотностигаза до и после расширения (кг/м³).

- A. 2,4; 1170; 4,14; 1
- B. 2,4; 1170; 1; 4,14
- C. 2,4; 2370; 4,14; 1
- D. 2,4; 2370; 1; 4,14

ANSWER: A

209.В сосуде 1 объемом V_1 =3 л находится газ под давлением P_1 =0,2 МПа. В сосуде 2 объемом V_2 =4 л находится тот же газ под давлением P_2 =0,1 МПа. Температуры газа в обоих сосудах одинаковы. Под каким давлением Р будет находиться газ, если соединить сосуды 1 и 2 трубкой (Па)?

- A. 1,4·10⁵
- B. 10·10⁵
- C. $2,4.10^5$
- D. 2,8·10⁵

210.В сосуде объемом V=2 л находятся масса m_1 =6 г углекислого газа (CO₂, μ_1 =44 г/моль) и масса m_2 закиси азота (N₂O, μ_2 =44 г/моль) при температуре t=127 °C. Найти давление P смеси в сосуде (Па).

A. $4,15 \cdot 10^5$

B. 4,85·10⁵

C. 8,3·10⁵

D. 9,7·10⁵

ANSWER: A

211. В сосуде находится масса m_1 =10 г углекислого газа (μ =44 г/моль)и масса m_2 =15 г азота (μ =28 г/моль). Найти плотность ρ смеси при температуре t=127 °C и давлении P = 150 кПа.

A. 1,98

B. 2,5

C. 4

D. 0,98

ANSWER: A

212.В сосуде находится количество v_1 =10⁻⁷ моль кислорода (μ_1 =32 г/моль) и масса m_2 =10⁻⁶ г азота (μ_2 =28 г/моль). Температура смеси t=100 °C, давление в сосуде P=133 МПа. Найти объем V сосуда, парциальные давления P_1 и P_2 кислорода и азота и число молекул n -в единице объема сосуда.

A. 3,2; 98; 35; 2.6·10¹⁹

B. 2,3; 35; 98; 2.6·10¹⁹

C. 2,3; 98; 35; 2.6·10¹⁹

D. 3,2; 35; 98; 2.6·10¹⁹

ANSWER: A

213.Масса m=1 кг двухатомного газа находится под давлением P=80 кПа и имеет плотность ρ =4 кг/м 3 . Найти энергию теплового движения W молекул газа при этих условиях.

A. 50

B. 150

C.25

D.75

214.Какое число молекул N двухатомного газа содержит объем V=10 см³ при давлении P=5,3 кПа и температуре t=27 °C? Какой энергией теплового движения W обладают эти молекулы?

A. 1,3·10¹⁹; 0,133

B. 1,3·10¹⁹; 0,266

C. $2,3\cdot10^{19}$; 0,133

D. 2,3·10¹⁹; 0,266

ANSWER: A

215.Какое количество теплоты Q надо сообщить массе m=12 г кислорода (μ =32 г/моль), чтобы нагреть его на Δt =50 °C при P=const?

A. 545

B. 1090

C. 454

D. 245

ANSWER: A

216.При какой температуре T средняя квадратичная скорость молекул азота (μ =28 г/моль) больше их наиболее вероятной скорости на $\Delta \upsilon$ =50 м/с?

A. 83

B. 38

C. 166

D. 76

ANSWER: A

217.Масса m=6,5 г водорода (μ =2 г/моль), находящегося при температуре t=27 °C, расширяется вдвое при P=const за счет притока тепла извне. Найти работу A расширения газа; изменение Δ W внутренней энергии газа и количество теплоты Q, сообщенное газу.

A. 8,1; 20,2; 28,3

B. 8,1; 28,3; 20,2

C. 16,2; 20,2; 28,3

D. 16,2; 28,3; 20,2

218.В закрытом сосуде находится масса m_1 =20 г азота (μ =28 г/моль) и масса m_2 =32 г кислорода (μ =32 г/моль). Найти изменение Δ Wвнутренней энергии смеси газов при охлаждении ее на Δ W=28 К.

A. 1000

B. 1100

C. 900

D. 500

ANSWER: A

219.Количество v=1 кмоль многоатомного газа нагревается на $\Delta T=100$ К в условиях свободного расширения. Найти количество теплоты Q, сообщенное газу, изменение W его внутренней энергии и работу A расширения газа.

A. 3,32; 2,49; 831

B. 2,49; 3,32; 831

C. 3,32; 831; 2,49

D. 3,32; 2,49; 831

ANSWER: A

220.Масса m=10,5 г азота (μ =28 г/моль) изотермически расширяется при температуре t=-23 °C, причем его давление изменяется от P_1 =250 кПа до P_2 =100 кПа. Найти работу A, совершенную газом при расширении.

A. 714

B. 7140

C. 71.4

D. 7.14

ANSWER: A

221. Как изменится давление газа, если объем уменьшится в 2 раза, а среднеквадратическая скорость его молекул уменьшится в $\sqrt{2}$ раз

А. не изменится

В. уменьшится в 8 раз

С. увеличится в 4 раза

D. уменьшится в 4 раза

222.Средняя кинетическая энергия теплового движения молекул

- 1) зависит от температуры
- 2) не зависит от температуры
- 3) зависит от массы молекил
- 4) не зависит от массы молекул
- 5) зависит от агрегатного состояния вещества
- 6) не зависит от агрегатного состояния вещества
- А. 1, 3 и 5
- В. 1, 4 и 6
- С. 2, 3 и 5
- D. 2, 3 и 6

ANSWER: A

223.При какой температуре (К) среднеквадратическая скорость атомов гелия будет такой же, как и среднеквадратическая скорость молекул водорода при температуре 300 К?

- A. 600
- B. 400
- C. 50
- D. 600

ANSWER: A

224.Во сколько раз увеличится давление идеального газа, находящегося в закрытом сосуде при температуре 27°С, если его нагреть до 627°С?

- A. 3
- B. 1.18
- C. 2
- D. 2.21

ANSWER: A

225. Сравните средние кинетические энергии атомов гелия (M=4 г/моль) при температуре $T(E_1)$ и неона (M=20 г/моль) при температуре 2,5T (E_2)

$$A.E_2 = 2.5E_1$$

$$B.E_1 = 2.5E_2$$

$$C.E_1 = E_2$$

$$D.E_2 = 5E_1$$