



# $Task\ BOOK\ \_\ DIP\ LAB\ 2021$

# Contents

| Practi    | ce ONE                                                                                                                                                                                                   | 3    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.        | MATLAB VARIABLES                                                                                                                                                                                         | 4    |
| 2.        | MATLAB VARIABLES                                                                                                                                                                                         | 4    |
| 3.        | MATLAB - MATRIX                                                                                                                                                                                          | 4    |
| 4.        | MATLAB – MATRIX: create a sub-matrix                                                                                                                                                                     | 4    |
| 5.        | MATLAB – MATRIX: Deleting a Row or a Column in a Matrix                                                                                                                                                  | 5    |
| 6.<br>and | MATLAB – MATRIX:% In this example, let us create a 3-by-3 matrix m, then we will copy the second third rows of this matrix twice to create a 4-by-3 matrix. Create a script file with the following code |      |
| 7.        | MATLAB – MATRIX: Special Arrays in MATLAB                                                                                                                                                                | 5    |
| 8.        | MATLAB – MATRIX: Multidimensional Arrays concatenate the arrays                                                                                                                                          | 6    |
| 9.        | FUNCTIONS OF ARRY                                                                                                                                                                                        | 6    |
| 10.       | FUNCTIONS OF ARRY                                                                                                                                                                                        | 6    |
| 11.       | FUNCTIONS OF ARRY                                                                                                                                                                                        | 6    |
| 12.       | Accessing Data in Cell Arrays                                                                                                                                                                            | 7    |
| 13.       | Creating Vectors (horizontal Vectors)                                                                                                                                                                    | 7    |
| 14.       | Another example,                                                                                                                                                                                         | 7    |
| 15.       | Creating Vectors (Vertical Vectors)                                                                                                                                                                      | 7    |
| 16.       | Image Reading and show image                                                                                                                                                                             | 7    |
| 17.       | Image resizing                                                                                                                                                                                           | 7    |
| 18.       | RGB image, Size & visualizing multiple images in multiple windows                                                                                                                                        | 8    |
| 19.       | Image conversion                                                                                                                                                                                         | 8    |
| 20.       | Gray scale image & Black and white image visualizing multiple images in one window                                                                                                                       | 8    |
| 21.       | % for Loop in MATLAB                                                                                                                                                                                     | 9    |
| 22.       | 1                                                                                                                                                                                                        |      |
| 23.       | while Loop in MATLAB                                                                                                                                                                                     | 9    |
| 24.       | if Condition Statement in MATLAB                                                                                                                                                                         | 9    |
| 25.       | else if Condition Statement in MATLAB                                                                                                                                                                    | . 10 |
| 26.       | switch Condition Statement in MATLAB                                                                                                                                                                     | . 10 |
| 27.       | MATLAB: Plot practice                                                                                                                                                                                    | . 10 |
| Practi    | ce Two                                                                                                                                                                                                   |      |
| 1.        | Image Scaling (??)                                                                                                                                                                                       | . 18 |
| 2.        | Image Threshold                                                                                                                                                                                          | . 18 |
| 3.        | Image Log Transformations                                                                                                                                                                                |      |
| 4.        | Image Power?Law (Gamma) Transformations                                                                                                                                                                  | . 19 |

# Task BOOK \_ DIP LAB 2021

| 5.      | Another Contrast Stretching Function                          | 19 |
|---------|---------------------------------------------------------------|----|
| 6.      | Piece wise Linear Transformations                             | 19 |
| 7.      | Image slicing                                                 | 20 |
| Practic | ce Three                                                      | 21 |
| 1.      | Histogram generation                                          | 22 |
| 2.      | Histogram equalization                                        | 22 |
| 3.      | Local Histogram Processing                                    | 22 |
| 4.      | Add Mathematical Operations on Images                         | 23 |
| 5.      | Subtract Mathematical Operations on Images                    | 23 |
| 6.      | Multi(*)Mathematical Operations on Images                     | 24 |
| 7.      | AND Logical Operations on Images                              | 24 |
| 8.      | OR Logical Operations on Images                               | 24 |
| 9.      | Mean(Averaging) Filter                                        | 24 |
| 10.     | Median filtering                                              | 25 |
| 11.     | Second order derivative                                       | 25 |
| 12.     | % Laplacian program with respect to +ve and -ve               | 26 |
| 13.     | %%High Boost Filtering%%                                      | 26 |
| 14.     | Gradient Operators%                                           | 27 |
| 15.     | Sobal Filter vertical                                         | 28 |
| 16.     | Sobal Horizontal                                              | 28 |
| 17.     | Gaussian Filter                                               | 28 |
| PRAC    | TICE Four                                                     |    |
| 1.      | %% Program to segment the brain tumor from MRI image          | 31 |
| 2.      | %% Program to segment the hand region from the image          | 33 |
| List of | main function used in lecture 2021                            | 35 |
| 1)      | main function used in Matlab                                  |    |
| 2)      | Main Function used in Digital Image processing                | 36 |
| 3)      | List of main function used in Matlab Digital image processing | 37 |

### Practice ONE

| The lab number                   | M601                            | 实验室名称                                      |                                            | 本院实验中                   | 心                |
|----------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|-------------------------|------------------|
| Course number                    |                                 | Subject title                              | Digital I                                  | mage Processing (MA     | TLAB Programming |
| The experiment item no           | 1                               | Practical title                            |                                            | nstall MATLAB? & Ho     | w to use MATLAB? |
| (To guide the file name)         | (write)                         | (The experimental requirements)            | (Will do)                                  | (The experimental type) | (validation)     |
| (period)                         |                                 |                                            |                                            |                         |                  |
| (For professional)               |                                 |                                            | 1                                          |                         |                  |
| The purpose                      | and requiren                    | nent (fill in)                             |                                            |                         |                  |
| Purpose:                         |                                 |                                            |                                            |                         |                  |
| 3.<br>4.<br>Requiremen<br>1<br>2 | Lean fund<br>t:<br>. Each stud  | amentals of MATLAB ent must have resources | Programming<br>s(computer)<br>astalled MAT | LAB2014a version abo    |                  |
| Content:                         | nental Operat                   |                                            | Star and an                                |                         |                  |
| b) Dif                           | de compilatio                   | ws usage                                   |                                            |                         |                  |
| d) Var                           | TLAB Tools                      | s usage                                    |                                            |                         |                  |
| e) Ma<br>f) Loo                  |                                 |                                            |                                            |                         |                  |
| g) Con<br>2) Image r             | nditional state                 | ements                                     |                                            |                         |                  |
| a) RG                            | B image                         |                                            |                                            |                         |                  |
|                                  | y scale image<br>ck and white   | e                                          |                                            |                         |                  |
|                                  | ige visualizat<br>nage Operatio |                                            |                                            |                         |                  |
|                                  | ige conversio                   |                                            |                                            |                         |                  |
|                                  |                                 | ==                                         |                                            |                         |                  |
| b) Ima                           | nge resizing<br>w to find ima   |                                            |                                            |                         |                  |

### 1. MATLAB VARIABLES

```
clear all;
close all:
x = 3
          % defining x and initializing it with a value
Y = sqrt(16) % defining Y and initializing it with an expression
x1 = 7 * 8;
y = x1 * 7.89
```

### 2. MATLAB VARIABLES

```
clc
clear all;
close all;
x=3
clear x
          % it will delete x, won't display anything
         % it will delete all variables in the
clear
workspace % peacefully and unobtrusively Long Assignments Long assignments can be extended to
another line by using an ellipses (...). For example,
initial\_velocity = 0;
acceleration = 9.8;
time = 20:
final_velocity = initial_velocity + acceleration * time
```

#### 3. MATLAB - MATRIX

```
clc
clear all;
close all;
m = [1 \ 2 \ 3; 4 \ 5 \ 6; 7 \ 8 \ 9]
% Referencing the Elements of a Matrix
a = [12345; 23456; 34567; 45678];
% see the results of the follwoing
a(2,5)
v = a(:,4)
a(:,2:3)
```

# 4. MATLAB – MATRIX: create a sub-matrix

clc clear all; close all; a = [12345; 23456; 34567; 45678];sa = a(2:3,2:4)

### 5. MATLAB – MATRIX: Deleting a Row or a Column in a Matrix

```
clc clear all; close all; a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8]; a(4,:) = [] % For example, let us delete the fourth row of a a = [ 1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8]; a(:,5)=[] %, let us delete the fifth column of a ?
```

6. MATLAB − MATRIX % In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of this matrix twice to create a 4-by-3 matrix. Create a script file with the following code

```
clc
clear all;
close all;
a = [ 1 2 3; 4 5 6; 7 8 9];
new_mat = a([2,3,2,3],:)
```

### 7. MATLAB – MATRIX: Special Arrays in MATLAB

```
clear all; close all; zeros(5) %. The zeros() function creates an array5*5 of all zeros ones(4,3) %The ones() function creates an array 4*3 of all ones eye(4) % The eye() function creates an identity matrix 4*4 rand(3,5)%The rand() function creates an array3*5 of uniformly distributed random numbers on (0,1) magic(4)%The magic() function creates a magic square array. of 4*4
```

# 1. MATLAB - MATRIX : Multidimensional Arrays

```
clc clear all; close all; a = [7 9 5; 6 1 9; 4 3 2] % The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like a(:, :, 2)= [1 2 3; 4 5 6; 7 8 9] % We can also create multidimensional arrays using the ones(), zeros() or the rand() functions. For example, b = rand(4,3,2)
```

# 8. MATLAB – MATRIX: Multidimensional Arrays concatenate the arrays

clc clear all: close all; a = [9 8 7; 6 5 4; 3 2 1]; $b = [1 \ 2 \ 3; 4 \ 5 \ 6; 7 \ 8 \ 9];$ c = cat(3, a, b, [231; 478; 390])

#### 9. FUNCTIONS OF ARRY

clc clear all; close all; x = [7.1, 3.4, 7.2, 28/4, 3.6, 17, 9.4, 8.9];length(x) % length of x vector y = rand(3, 4, 5, 2);ndims(y) % no of dimensions in array y s = ['Zara', 'Nuha', 'Shamim', 'Riz', 'Shadab']; numel(s) % no of elements in s

#### **FUNCTIONS OF ARRY 10.**

clc clear all; close all;  $a = [1\ 2\ 3; 4\ 5\ 6; 7\ 8\ 9]$  % the original array a b = circshift(a,1) % circular shift first dimension values down by 1. c = circshift(a,[1-1]) % circular shift first dimension values % down by 1 % and second dimension values to the left % by 1.

#### **FUNCTIONS OF ARRY** 11.

clc clear all; close all; % Sorting Arrays v = [ 23 45 12 9 5 0 19 17] % horizontal vector sort(v) % sorting v m = [2 6 4; 5 3 9; 2 0 1] % two dimensional array % sorting m along the row sort(m, 1) % sorting m along the column sort(m, 2)

### 12. Accessing Data in Cell Arrays

clc
clear all;
close all;
c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};
% See the Result of the follwoing
c(1:2,1:2)
c{1, 2:4}

# **13.** Creating Vectors (horizontal Vectors)

clc clear all; close all;  $r = [7\ 8\ 9\ 10\ 11]$  %MATLAB will execute the above statement and return the following result ?  $r = 7\ 8\ 9\ 10\ 11$ 

### 14. Another example,

t = [2, 3, 4, 5, 6];res = r + t

# **15.** Creating Vectors (Vertical Vectors)

clc clear all; close all; c = [7; 8; 9; 10; 11]

# 16. Image Reading and show image

clc clear all; close all;

I=imread('pic.jpg'); % imread function is used to read an image . you can give full path % of the image if image is not in the same place where you save program.

% Like this imread('溫:\Users\Muhammad\Desktop\picture.jpg?;

imshow(I); % this is used to visualize the image. This is use to show one image in program.

### 17. Image resizing

clc
clear all;
close all;
I = imread('pic1.jpg');
A=imresize(I,[500 500]);
subplot(1,2,1);imshow(I);
subplot(1,2,2);imshow(A);

%used to resize the image I to 256 256 pixels

# 18. RGB image, Size & visualizing multiple images in multiple windows

```
clc clear all; close all; img = imread('pic.jpg'); [m n d]=size(img); % it will show the number of pixels in vertical and horizontal mean (column and row) and also show the dimension. Which represent the number of cloro. In RGB case it will shoe 3 which mean R G B. imgR = img(:,:,1); imgG = img(:,:,2); imgB = img(:,:,3); figure;imshow(imgR,[]); % figure;imshow() function are used to visualize multiple image in one program. Then we use. figure;imshow(imgG,[]); figure;imshow(imgB,[]); m n d
```

% Note: figure;imshow() function are used to visualize multiple image in one program in multiple window.

# 19. Image conversion

```
clc clear all; close all; I = imread('pic.jpg'); \\ figure; imshow(I,[]); title('RGB Colore Image'); % show image with title \\ X = rgb2gray(I); % this function is used to convert image from RGb to Gray figure; imshow(X,[]); title('Gray Colore Image'); % show image with title <math display="block">Y = im2bw(X); % this function is used to convert image from gray or RGB to black and white figure; imshow(Y,[]); title('Black and white Image'); % show image with title
```

# 20. Gray scale image & Black and white image visualizing multiple images in one window

```
cle clear all;
close all;
I = imread('pic.jpg');
A=imread('pic1.jpg');
X=size(I) % in the case of gray scale image it will show the dimension 1 .
subplot(1,2,1);imshow(I) %this is used to show multiple image in one window(1,2,1)
% first 1 show that image will be in one or first window
% , 2 mean will be two image in one window, next 1 mean
% this image will be in first place.
subplot(1,2,2);imshow(A)
```

# 21. % for Loop in MATLAB

```
clc clear all; close all; for x=0.0.05:1\, % X start from 0 end to 1 and increment by 0.05 if you want decrement you use -0.05 x end
```

# 22. Nested For Loop in MATLAB

```
clc clear all; close all; m=5; n=4; a = zeros(n,m); for i = 1: n \% auto increment by 1 for j = 1: n \% auto increment by 1 n \% auto increm
```

# 23. while Loop in MATLAB

```
clc clear all; close all; n = 1; y = zeros(1,10); while n <= 10 y(n) = 2*n/(n+1); n = n+1; end y n
```

# 24. if Condition Statement in MATLAB

clc clear all; close all; attn=5; grade=82; if (attn>0.9)&(grade>60) pass = 1 end



### 25. else if Condition Statement in MATLAB

```
clc
clear all;
close all;
i=5;
j=10;
if i == j
a(i,j) = 2
elseif i >= j
a(i,j) = 1
else
a(i,j) = 0
end
```

### 26. switch Condition Statement in MATLAB

```
clc
clear all;
close all;
x = 2;
y = 3;
switch x
case x==y
disp('x and y are equal');
case x>y
disp('x is greater than y');
otherwise
disp('x is less than y');
end
```

# 27. MATLAB: Plot practice

```
clear;
clc;
clc;
close all
vis_ax = 'on';
ftsz=0.85;
fig_size = 800;
fig_0 = figure('color','w','position',[0, 0, fig_size*1.414,fig_size]);
set(fig_0,'renderer','Painters')
% main
ax_header = axes('position',[0,0,1,1],'visible','off');
```

#### % make title

ax\_title = axes('position',[0,0.88,0.5,0.1],'visible','off'); text(0.01,0.15,'Matlab Plot Cheatsheet','VerticalAlignment','bottom','FontSize',ftsz\*60) text(0.02,0.01,'https://github.com/Pjer-zhang/matlabPlotCheatsheet','VerticalAlignment','bottom','FontSize',ftsz\*15,'FontName','consolas');

#### % plot colortable

 $ax\_colortable = axes('position', [0.01, 0.77, 0.35, 0.08], 'visible', vis\_ax); \\ text(1,0.98, "color", 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top', 'FontSize', ftsz*12, 'FontName', 'consolas', 'color', #A020F0') \\ text(0.01,0.98, 'Line Color', 'VerticalAlignment', 'top', 'FontSize', ftsz*12, 'color', 'k')$ 

```
\label{eq:continuity} $$\operatorname{rectangle('Position', [0.01], 0.37,0.08,0.23], FaceColor', 'y')$}$$ $$\operatorname{rectangle('Position', [0.12+0.01], 0.37,0.08,0.23], FaceColor', 'm')$}$$ $$\operatorname{rectangle('Position', [0.24+0.01], 0.37,0.08,0.23], FaceColor', 'c')$}$$$ $$\operatorname{rectangle('Position', [0.36+0.01], 0.37,0.08,0.23], FaceColor', 'r')$}$$
```

```
rectangle('Position',[0.48+0.01 ,0.37,0.08,0.23],FaceColor',g')
rectangle('Position',[0.60+0.01 ,0.37,0.08,0.23],FaceColor',b')
rectangle('Position',[0.84+0.01 ,0.37,0.08,0.23],FaceColor',b')
rectangle('Position',[0.84+0.01 ,0.37,0.08,0.23],FaceColor',b')
rectangle('Position',[0.84+0.01 ,0.37,0.08,0.23],FaceColor',b')
rectangle('Position',[0.84+0.01 ,0.37,0.08,0.23],FaceColor',b')
text(0 +0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.12+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.36+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.48+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.60+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.72+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.84+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.84+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.84+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
text(0.84+0.04, 0.07,"b",'HorizontalAlignment',center',VerticalAlignment',bottom',FontSize',ftsz*11,FontName',consolas',color',#A020F0')
xlim([0 1])
ylim([0 1])
xticks([])
box on
```

#### % marker

```
ax_marker = axes('position', [0.01, 0.68, 0.35, 0.08], 'visible', vis_ax);
text(1,0.98,"marker",'HorizontalAlignment', right', VerticalAlignment', top', FontSize', ftsz*12, FontName', consolas', 'color', #A020F0')
text (0.01, 0.98, \textit{Marker Style'}, \textit{VerticalAlignment'}, \textit{'top'}, \textit{FontSize'}, \textit{ftsz*}12, \textit{'color'}, \textit{'k'})
hold on
plot(0 +0.03,0.5, 'Marker','o','MarkerSize',8,'color','k','linewidth',1)
plot(0.07+0.03,0.5, 'Marker','+','MarkerSize',8,'color','k','linewidth',1)
plot(0.14+0.03,0.5, 'Marker,' *, 'MarkerSize', 8, 'color', k', 'linewidth,' 1) plot(0.21+0.03,0.5, 'Marker,' ', 'MarkerSize', 8, 'color', k', 'linewidth,' 1)
plot(0.28+0.03,0.5, 'Marker', 'x', 'MarkerSize', 8, 'color', 'k', 'linewidth', 1)
 plot(0.35+0.03,0.5, 'Marker', 's', 'MarkerSize', 8, 'color', 'k', 'linewidth', 1)
 plot(0.42+0.03,0.5, 'Marker','d','MarkerSize',8,'color','k','linewidth',1)
 plot(0.49+0.03,0.5, 'Marker','^','MarkerSize',8,'color','k','linewidth',1)
plot(0.56+0.03,0.5, 'Marker','v','MarkerSize',8,'color','k','linewidth',1)
plot(0.63+0.03,0.5, 'Marker','>','MarkerSize',8,'color','k','linewidth,1)
plot(0.70+0.03,0.5, 'Marker','<,','MarkerSize',8,'color','k','linewidth',1)
plot(0.77+0.03,0.5, 'Marker','p','MarkerSize',8,'color','k','linewidth',1)
plot(0.84+0.03,0.5, 'Marker','h','MarkerSize',8,'color','k','linewidth',1)
plot(0.91+0.03,0.5, 'Marker', 'none', 'MarkerSize', 8, 'color', 'k', 'linewidth', 1)
text((0.40.30, 0.07, "o"", 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', #A020F0') text((0.07+0.03, 0.07, ""+", 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', #A020F0') text((0.07+0.03, 0.07, ""+", 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', #A020F0')
                                       ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','#A020F0')
text(0.07+0.03, 0.07, + , Horizontal Alignment, center, Vertical Alignment, bottom', FontSize', ftsz*11, FontName', consolas', color', #A020F0') text(0.14+0.03, 0.07, "*" ,'Horizontal Alignment', 'center', 'Vertical Alignment', 'bottom', FontSize', ftsz*11, 'FontName', 'consolas', 'color', '#A020F0')
text(0.21+0.03, 0.07,"." ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color',#A020F0') text(0.28+0.03, 0.07,"'x" ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','#A020F0')
text(0.35+0.03, 0.07,"'s"
                                       , Horizontal Alignment', 'center', 'Vertical Alignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', '#A020F0')
text(0.42+0.03, 0.07, "d" ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','#A020F0')
text(0.49+0.03, 0.07, "\^" text(0.56+0.03, 0.07, "\v" text(0.63+0.03, 0.07, "\v"
                                       , 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', '#A020F0'), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', '#A020F0')
                                       , 'Horizontal Alignment', 'center', 'Vertical Alignment', 'bottom', 'Font Size', ftsz*11, 'Font Name', 'consolas', 'color', '\#A020F0')
text(0.70+0.03, 0.07,"'<"'
                                       ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color',#A020F0')
text(0.77+0.03, 0.07, "'p'"
text(0.84+0.03, 0.07, "'h'"
                                      ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','#A020F0')
                                      ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','#A020F0')
text(0.91+0.03, 0.07, "none", 'Horizontal Alignment', 'center', 'Vertical Alignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', #A020F0')
 xlim([0 1])
ylim([0 1])
xticks([])
yticks([])
 box on
```

#### % marker size

```
ax_markersize = axes('position',[0.01,0.59,0.35,0.08],'visible',vis_ax); text(1,0.98,"markersize",'HorizontalAlignment','right','VerticalAlignment','top','FontSize',ftsz*12,'FontName','consolas','color','#A020F0') text(0.01,0.98,'Marker Size','VerticalAlignment','top','FontSize',ftsz*12,'color','k')
```

```
hold on plot(0 +0.06,0.5, 'Marker','o', 'MarkerSize',1,'color','k','linewidth',1) plot(0.14+0.06,0.5, 'Marker','o','MarkerSize',2,'color','k','linewidth',1) plot(0.28+0.06,0.5, 'Marker','o','MarkerSize',4,'color',k','linewidth',1) plot(0.28+0.06,0.5, 'Marker','o','MarkerSize',8,'color',k','linewidth',1) plot(0.56+0.06,0.5, 'Marker','o','MarkerSize',12,'color','k','linewidth',1) plot(0.70+0.06,0.5, 'Marker','o','MarkerSize',18,'color',k','linewidth',1) plot(0.84+0.06,0.5, 'Marker','o','MarkerSize',18,'color',k','linewidth',1) text(0 +0.06, 0.07,1' ,'HorizontalAlignment','center',VerticalAlignment','bottom','FontSize',ftsz*11,FontName','consolas','color',k') text(0.14+0.06, 0.07,2' ,'HorizontalAlignment','center',VerticalAlignment','bottom','FontSize',ftsz*11,FontName','consolas','color',k') text(0.28+0.06, 0.07,4' ,'HorizontalAlignment','center',VerticalAlignment','bottom','FontSize',ftsz*11,FontName','consolas','color',k') text(0.42+0.06, 0.07,8' ,'HorizontalAlignment','center',VerticalAlignment',bottom','FontSize',ftsz*11,FontName','consolas','color',k')
```

```
text(0.56+0.06, 0.07, 12' ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','k')
text(0.70+0.06, 0.07,'16' ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','k')
text(0.84+0.06, 0.07,'18' ,'HorizontalAlignment','center','VerticalAlignment','bottom','FontSize',ftsz*11,'FontName','consolas','color','k')
xlim([0 1])
ylim([0 1])
xticks([])
box on
```

#### % line width

```
 ax\_linewidth = axes(`position', [0.01, 0.50, 0.35, 0.08], `visible', vis\_ax); \\ text(1,0.98, "linewidth", 'HorizontalAlignment', 'right', 'VerticalAlignment', 'top', FontSize', ftsz*12, 'FontName', 'consolas', 'color', '#A020F0') \\ text(0.01,0.98, 'Line Width', 'VerticalAlignment', 'top', FontSize', ftsz*12, 'color', 'k') \\ hold on \\ plott([0.05], 0.20], [0.36], 0.55], 'k', 'linewidth', 1) \\ plott([0.05+0.25, 0.20+0.25], [0.36], 0.55], 'k', 'linewidth', 3) \\ plott([0.05+0.50, 0.20+0.50], [0.36], 0.55], 'k', 'linewidth', 5) \\ plott([0.05+0.75, 0.20+0.75], [0.36], 0.55], 'k', 'linewidth', 7) \\ text(0.01, 0.7, 1', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', 'k') \\ text(0.25+0.125, 0.07, '3', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', 'k') \\ text(0.50+0.125, 0.07, '5', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', 'k') \\ text(0.75+0.125, 0.07, '7', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', ftsz*11, 'FontName', 'consolas', 'color', 'k') \\ xlim([0 1]) \\ xlicks([1]) \\ ylicks([1]) \\ box on \\ \end{tabular}
```

#### % line style

#### % 2-D plot

```
data1d=1+sin(0.4*linspace(1,15,15));
data2d=peaks(20);
ax_2d_01 = axes('position', [0.01+0.086*0, 0.28, 0.077, 0.09], 'visible', vis_ax);
plot(data1d); xticks([]);yticks([]);
text(0,1.01, 'plot(y)', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
  'FontName', 'consolas', 'FontSize', ftsz*10)
ax_2d_02 = axes('position',[0.01+0.086*1,0.28,0.077,0.09],'visible',vis_ax);
area(data1d); xticks([]);yticks([]);
text(0,1.01, 'area(y)', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
  'FontName', 'consolas', 'FontSize', ftsz*10)
ax_2d_03 = axes('position', [0.01+0.086*2, 0.28, 0.077, 0.09], 'visible', vis_ax);
stem(data1d);
xticks([]);yticks([]);
text(0,1.01, 'stem(y)', 'Units', 'normalized', 'Vertical Alignment', 'bottom',...
  'FontName', 'consolas', 'FontSize', ftsz*10)
ax_2d_04 = axes('position', [0.01+0.086*3, 0.28, 0.077, 0.09], 'visible', vis_ax);
stairs(data1d);
xticks([]);yticks([]);
text(0,1.01,'stairs(y)','Units','normalized','VerticalAlignment','bottom',...
  'FontName', 'consolas', 'FontSize', ftsz*10)
```

```
ax_2d_1 = axes(position',[0.01+0.086*0,0.15,0.077,0.09],visible',vis_ax);
                      imagesc(data2d); xticks([]);yticks([]);
                     text(0,1.01,'imagesc(Z)','Units','normalized','VerticalAlignment','bottom',...
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax_2d_2 = axes(position', [0.01+0.086*1, 0.15, 0.077, 0.09], visible', vis_ax);
                     contourf(data2d); xticks([]); yticks([]);
                     text(0,1.01,'contourf(Z)','Units','normalized','VerticalAlignment','bottom',...
'FontName','consolas','FontSize',ftsz*10)
                     ax_2d_3 = axes('position', [0.01+0.086*2, 0.15, 0.077, 0.09], 'visible', vis_ax);
                     pcolor(data2d);
                     xticks([]);yticks([]);
                     text(0,1.01, pcolor(Z)', Units', 'normalized', 'Vertical Alignment', 'bottom', \dots
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax_2d_4 = axes('position', [0.01+0.086*3, 0.15, 0.077, 0.09], 'visible', vis_ax);
                     contour(data2d);
                      xticks([]);yticks([]);
                     text(0,1.01,'contour(Z)','Units','normalized','VerticalAlignment','bottom',...
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax_2d_5 = axes('position', [0.01+0.086*0, 0.02, 0.077, 0.09], 'visible', vis_ax);
                     surf(data2d); xticks([]);yticks([]);
                     text(0,1.01, 'surf(Z)', 'Units', 'normalized', 'Vertical Alignment', 'bottom',...
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax_2d_6 = axes('position', [0.01+0.086*1, 0.02, 0.077, 0.09], 'visible', vis_ax);
                     mesh(data2d); xticks([]); yticks([]);
                     text(0,1.01,'mesh(Z)','Units','normalized','VerticalAlignment','bottom',...
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax_2d_7 = axes('position', [0.01+0.086*2, 0.02, 0.077, 0.09], 'visible', vis_ax);
                     contour3(data2d);
                     xticks([]);yticks([]);
                     text(0,1.01,\contour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cutour3(Z)',\cu
                          'FontName', 'consolas', 'FontSize', ftsz*10)
                     ax\_2d\_8 = axes('position', [0.01+0.086*3, 0.02, 0.077, 0.09], 'visible', vis\_ax);
                      waterfall(data2d);
                      xticks([]);yticks([]);
                      text(0,1.01, 'waterfall(Z)', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                         'FontName', 'consolas', 'FontSize', ftsz*10)
% axes position
                      ax_posi = axes('position',[0.48,0.5,0.2,0.2],'visible','on');
                     box on
                     plot(data1d)
                     axes(ax_header)
                      %text(0.38,0.82,'Add axes to frame','Units','normalized','VerticalAlignment','bottom',...
                            'HorizontalAlignment', 'left', 'FontSize', ftsz*14, 'color', "k")
                     text(0.73,0.825, 'ax=Axes("position", [left,bottom,width,height])', 'Units', 'normalized', 'VerticalAlignment', 'bottom',
                          'HorizontalAlignment', 'right', 'FontSize', ftsz*13, 'color', "k", "FontName", 'consolas')
                     text(0.73,0.82, Frame', 'Units', 'normalized', 'Vertical Alignment', 'top',...
                          'HorizontalAlignment', 'right', 'FontSize', ftsz*30, 'color', "#aaaaaa")
                      text(0.68,0.7,'Axes','Units','normalized','VerticalAlignment','top',.
                          'HorizontalAlignment', 'right', 'FontSize', ftsz*30, 'color', "#aaaaaa")
                     rectangle('Position',[0.38,0.4,0.35,0.42],'FaceColor','none')
                     annotation ('doublearrow', 'Position', [0.38, 0.57, 0.1, 0]) \\
                     annotation('doublearrow', 'Position', [0.6,0.4,0.0,0.1])
                     annotation('doublearrow', 'Position', [0.48, 0.7, 0.2, 0])
                     annotation('doublearrow', 'Position', [0.68, 0.5, 0.0, 0.2])
%[left bottom width height]
                      text(0.42,0.57, 'left', 'Units', 'normalized', 'Vertical Alignment', 'bottom',...
                          'HorizontalAlignment', 'center', 'FontSize', ftsz*12, 'color', "k")
                     text(0.602,0.46, 'bottom', 'Units', 'normalized', 'VerticalAlignment', 'top',...
                          'HorizontalAlignment', 'left', 'FontSize', ftsz*12, 'color', "k")
                      text(0.6,0.7, 'width', 'Units', 'normalized', 'Vertical Alignment', 'bottom', ...
                          'HorizontalAlignment', 'right', 'FontSize', ftsz*12, 'color', "k")
                     text(0.681,0.6, 'height', 'Units', 'normalized', 'VerticalAlignment', 'top',...
                          'HorizontalAlignment', 'left', 'FontSize', ftsz*12, 'color', "k")
                     xticks(∏)
                     vticks([])
```

```
xlim([0,1])
                            ylim([0,1])
                            text(0,1.01, 'shading(ax, "flat")', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                                  'FontName', 'consolas', 'FontSize', ftsz*10)
% renderer
                             ax_rder1 = axes('position', [0.38, 0.17, 0.13, 0.14], 'visible', vis_ax);
                            h1=pcolor(data2d);
                            h1.EdgeColor='none';
                            shading(ax_rder1,'flat')
                            xticks([]);yticks([]);
                            text(0,1.01, 'shading(ax, "flat")', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                                  'FontName', 'consolas', 'FontSize', ftsz*10)
                            text(0,1.21,'h=pcolor(Z);','Units','normalized','VerticalAlignment','bottom',...
                                  'FontName', 'consolas', 'FontSize', ftsz*10)
                            text (0,1.11, h. Edge Color = "none"; ', 'Units', 'normalized', 'Vertical Alignment', 'bottom', ... \\
                                  'FontName', 'consolas', 'FontSize', ftsz*10)
                            text(0,1.3, 'Renderer', 'Units', 'normalized', 'Vertical Alignment', 'bottom', 'Font Size', ftsz*15)
                            ax_rder2 = axes('position',[0.38,0.01,0.13,0.14],'visible',vis_ax);
                            h2=pcolor(data2d);
                            h2.EdgeColor='none';
                            shading(ax_rder2,'interp')
                            xticks([]);yticks([]);
                            text(0,1.01, 'shading(ax, "interp")', 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                                  'FontName', 'consolas', 'FontSize', ftsz*10)
% text position
                            ax\_txt\_posi = axes('position', [0.52, 0.015, 0.21, 0.36], 'visible', vis\_ax);
                            text (1,0.98, 'text (x,y,str)', 'Horizontal Alignment', 'right', 'Vertical Alignment', 'top', 'Font Size', 'ftsz*12, 'Font Name', 'consolas', 'color', 'k')
                            text(0.01,0.98, Text alignment', 'VerticalAlignment', 'top', 'FontSize', ftsz*12, 'color', 'k')
                            text (0.72, 0.9, "Vertical Alignment", Font Name', 'consolas', 'Horizontal Alignment', 'center', 'Font Size', ftsz*10, 'color', '#A020F0') text (0.72, 0.9, "Vertical Alignment", 'Font Name', 'consolas', 'Horizontal Alignment', 'center', 'Font Size', ftsz*10, 'color', '#A020F0') text (0.72, 0.9, "Vertical Alignment", 'consolas', 'Horizontal Alignment', 'center', 'Font Size', ftsz*20, 'color', 'Horizontal Alignment', 'center', 'Font Size', 'ftsz*20, 'color', 'Horizontal Alignment', 'center', 'Font Size', 'ftsz*20, 'color', 'Horizontal Alignment', 'center', 'Font Size', 'ftsz*20, 'color', 
                            text(0.28,0.85,"HorizontalAlignment", FontName', 'consolas', 'HorizontalAlignment', 'center', FontSize', ftsz*10, 'color', '#A020F0')
                            plot(0.28,0.15+2*0.25,'k+','markersize',12)
                            plot(0.72,0.15+2*0.25,'k+','markersize',12)
                            plot(0.28,0.15+1*0.25,'k+','markersize',12)
                           plot(0.72,0.15+1*0.25,'k+','markersize',12)
plot(0.28,0.15+0*0.25,'k+','markersize',12)
                            plot(0.72,0.15+0*0.25, k+', 'markersize', 12)
                            text(0.28,0.15+2*0.25,"left",'HorizontalAlignment','left','FontSize',ftsz*13,'color','#A020F0','fontname','consolas')
                            text(0.72,0.15+2*0.25,"middle",'VerticalAlignment','middle','FontSize',ftsz*13,'color','#A020F0','fontname','consolas')
                            text(0.28,0.15+1*0.25,"center", 'Horizontal Alignment', 'center', 'FontSize', ftsz*13, 'color', #A020F0', 'fontname', 'consolas')
                           text(0.72,0.15+1*0.25, "top", Vertical Alignment', 'top', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0*0.25, "right", 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0.25, "right', 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', '#A020F0', 'fontname', 'consolas') \\ text(0.28,0.15+0.25, "right', 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'color', 'Horizontal Alignment', 'right', 'FontSize', fisz*13, 'right', 'FontSize', 'right', 'rig
                            plot([0.5 0.5],[0.1,0.79],'k-')
                            box on
                            xticks([])
                            yticks([])
                             xlim([0,1])
                            ylim([0,1])
% the colormap
                             axes(ax_header)
                            cm_label = {'parula','jet','hsv','hot','cool','spring','summer','autumn',...
                                  'winter', 'gray', 'bone', 'copper', 'pink', 'lines', 'colorcube', 'prism', 'flag'};
                            ax_null = axes('position', [0.74, 1.01-1*0.066, 0.12, 0.02], 'visible', 'off');
                            text(0,0.78, "Colormap and grayscale", 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                                        'FontSize',ftsz*11,'color','k')
                            text(0,-0.03,"colormap(ax,name)", 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
                                        'FontName', 'consolas', 'FontSize', ftsz*12, 'color', '#A020F0')
                            for num=1:8
                                  cm_this=colormap(ax_null,cm_label{num});
                                  img\_tmp = zeros(1,size(cm\_this,1),size(cm\_this,2));
                                  img_tmp(1,:,:)=cm_this;
                                  img_cm = repmat(img_tmp,32,1,1);
```

```
gray\_cm = rgb2gray(img\_cm);
  axes('position',[0.74,1.01-(num+1)*0.066, 0.12,0.02],'visible',vis_ax);
  imshow(img_cm)
  axis normal
  axes('position',[0.74,1.01-(num+1)*0.066-0.02,0.12,0.02],'visible',vis_ax);
  imshow(gray_cm)
  axis normal
  text(0,2.01,["",cm_label{num},""],'Units','normalized','VerticalAlignment','bottom',...
     'FontName', 'consolas', 'FontSize', ftsz*12, 'color', '#A020F0')
  %set(gca,'position',[0 0 1 1])
end
for num=9:length(cm_label)
  cm_this=colormap(ax_null,cm_label{num});
  img_tmp = zeros(1,size(cm_this,1),size(cm_this,2));
  img_tmp(1,:,:)=cm_this;
  img_cm = repmat(img_tmp,32,1,1);
  gray_cm = rgb2gray(img_cm);
  axes('position',[0.87,1.01-(num-8)*0.066,0.12,0.02],'visible',vis_ax);
  imshow(img_cm)
  axis normal
  axes('position',[0.87,1.01-(num-8)*0.066-0.02,0.12,0.02],'visible',vis_ax);
  imshow(gray_cm)
  axis normal
  text (0,2.01, ["",cm\_label \{num\},""'], "Units', "normalized', "Vertical Alignment', "bottom', .... \\
     'FontName', 'consolas', 'FontSize', ftsz*12, 'color', '\#A020F0')
  %set(gca,'position',[0 0 1 1])
end
```

#### % the log scale

```
xx = 0.01 + 1000*(1 + cos(2*pi*linspace(0,1,800)));
yy = 0.01 + 1000*(1+sin(2*pi*linspace(0,1,800)));
ax\_log1 = axes('position', [0.76, 0.21, 0.10, 0.1414], 'visible', vis\_ax); \\
plot(xx,yy)
text(0,1.01,"plot(x,y)",'Units','normalized','VerticalAlignment','bottom',...
      'FontName', 'consolas', 'FontSize', ftsz*12, 'color', 'k')
text(-0.1,1.13,"Log scales", 'Units', 'normalized', 'VerticalAlignment', 'bottom',...
      'FontSize',ftsz*14,'color','k')
ax_{log2} = axes('position', [0.76, 0.02, 0.10, 0.1414], 'visible', vis_ax);
semilogx(xx,yy)
text(0,1.01,"semilogx(x,y)",'Units','normalized','VerticalAlignment','bottom',...
      'FontName', 'consolas', 'FontSize', ftsz*12, 'color', 'k')\\
grid on
ax_{log3} = axes('position', [0.89, 0.21, 0.10, 0.1414], 'visible', vis_ax);
text(0,1.01, 'semilogy(x,y)', 'Units', 'normalized', 'Vertical Alignment', 'bottom', \dots
      'FontName', 'consolas', 'FontSize', ftsz*12, 'color', 'k')
grid on
ax_{log4} = axes('position', [0.89, 0.02, 0.10, 0.1414], 'visible', vis_ax);
\log \log(xx,yy)
text(0,1.01, loglog(x,y)', 'Units', 'normalized', 'Vertical Alignment', 'bottom',...
      'FontName', 'consolas', 'FontSize', ftsz*12, 'color', 'k')
grid on
%orient(fig_0,'landscape')
%print('v0.pdf','-dpdf','-fillpage')
print('cheatsheet.png','-dpng','-r500')
```

#### $_{10^4}$ semilogy(x,y) 104 loglog(x,y) 1000 100 2000<sup>10-2 L</sup> 90 $10^{2}$ 100 $10^{-2}$ Colormap and grayscale colormap(ax,name) Semilogx(x,y) 1000 Log scales 2000 plot(x,y) 100 parula autumn spring 500 500 Frame ax=Axes('position', [left,bottom,width,height]) text(x,y,str) 'VerticalAlignment' +middle neight $+_{\mathsf{top}}$ 15 Axes bottom HorizontalAlignment Matlab Plot Cheatsheet +left' **Text alignment** width 2 J 0 Renderer h=pcolor(Z); h.EdgeColon='none'; shading(ax,'flat') shading(ax,'interp') 1.5 0.5 left https://github.com/Pjer-zhang/matlabPlotCheatsheet color marker '<' 'p' 'h''none' markersize linestyle waterfall(Z) 18 contour(Z) stairs(y) $\bigcirc$ $^{2}$ $\nabla$ <u>ά</u> ό ά \*\*\*\*\*\*\*\*\*\* Δ contour3(Z) $^{2}$ ocolor(Z) ◁ O ∞ 0 0 . Р $\Diamond$ 1 contourf(Z) S mesh(Z) area(y) × Marker Style Marker Size Line Width Line Color Line Style imagesc(Z) plot(y) surf(Z) 0

2000

# **Practice Two**

| The lab  | o number                                       | M601                                                                                          | 实验室名称                           |                                            | 本院实验中心                                                                     | 2                |
|----------|------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------------------------------------------------|------------------|
| Course   | e number                                       |                                                                                               | Subject title                   | Dig                                        | ital Image Processing<br>Programming                                       |                  |
| _        | riment item<br>no                              | 2                                                                                             | Practical title                 | Image to                                   | ransformation                                                              |                  |
|          | de the file<br>ame)                            | (write)                                                                                       | (The experimental requirements) | (Will do)                                  | (The experimental type)                                                    | (validation)     |
| (pe      | eriod)                                         |                                                                                               |                                 |                                            |                                                                            |                  |
| (For pro | ofessional)                                    |                                                                                               |                                 | •                                          |                                                                            | '                |
|          | Purpose:  •  •  Requirement                    | because it technique) Learn how Understan To get knot: Each stude Every stude                 | behind the practice is          | performing ntensity of an image (computer) | ry application (using different operation. image. (different slice contain | image processing |
|          | b) Thi<br>c) Log<br>d) Pov<br>e) Con<br>f) Pie | sformation. aling resholding g Transform wer low tran ntrast starch ace wise tran age slicing | sformation<br>ing               |                                            |                                                                            |                  |

# 1. Image Scaling (??)

```
clc;
clear all;
close all;
r=imread('pic1.jpg');
r=rgb2gray(r);
a=2;
[m n]=size(r);
for x=1:m
    for y=1:n
        s(x,y)=a*r(x,y);
    end
end
figure;imshow(r);
figure;imshow(s);
```

# 2. Image Threshold

```
clc;
clear all;
close all;
r=imread('pic1.jpg');
r=rgb2gray(r);
t=100;
[m n]=size(r);
for x=1:m
  for y=1:n
     if r(x,y)>t;
        s(x,y)=1;
     else
        s(x,y)=0;
     end
  end
end
figure;imshow(r);
figure; imshow(s);
```

# 3. Image Log Transformations

clc;
clear all;
close all;
r=imread('pic1.jpg');
r=imresize(r,[256 256]);
c=2;
[m n]=size(r);
for x=1:m



```
for y=1:n

h=double(r(x,y));

s(x,y)=c.*log10(1+h);

end

end

figure;imshow(s);
```

# 4. Image Power?Law (Gamma) Transformations

```
clc;
clear all;
close all;
r=imread('pic1.jpg');
G=rgb2gray(r);
G=im2double(G);
[m n]=size(G);
for x=1: m
    for y=1: n
        S(x,y)=G(x,y)^5;
    end
end
figure;imshow(S);
```

clc;

# 5. Another Contrast Stretching Function

```
clear all;
close all;
I=imread('pic1.jpg');
G=rgb2gray(I);
I = im2double(G);
m=0.75;
E=0.55;
g = 1./(1+(m./(I+eps)).^E);
figure,imshow(I),title('Original Image');
figure,imshow(g),title('Contrast stretched Image');
```

# 6. Piece wise Linear Transformations

clc;
clear all;
close all;
I=imread('pic1.jpg');
G=rgb2gray(I);
H = G;
[m n]=size(G);
T1= 100;
T2= 15;
for x=1:m

```
for y = 1:n

if G(x,y) < T1 && G(x,y) > T2

H(x,y) = G(x,y) + 20;

else

H(x,y) = G(x,y);

end

end

end

subplot(3,2,1:2);imhist(G)

subplot(3,2,3:4);imhist(H)

subplot(3,2,5);imshow(G)

subplot(3,2,6);imshow(H)
```

# 7. Image slicing

clc; clear all; close all; I=imread('pic1.jpg'); im=rgb2gray(I); bit1 = bitget(im, 1); bit2=bitget(im,2); bit3=bitget(im,3); bit4=bitget(im,4); bit5=bitget(im,5); bit6=bitget(im,6); bit7=bitget(im,7); bit8=bitget(im,8); figure,imshow(bit1, []) figure,imshow(bit2, []) figure,imshow(bit3, []) figure,imshow(bit4, []) figure,imshow(bit5, []) figure,imshow(bit6, []) figure,imshow(bit7, []) figure, imshow(bit8, [])



# **Practice Three**

| The lab number           | M601                                                                                                                                                                   | 实验室名称                                                                                                                                                               |             | 本院实验中心                               | 3            |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|--------------|--|--|--|--|--|
| Course number            |                                                                                                                                                                        | Subject title                                                                                                                                                       | Dig         | ital Image Processing<br>Programming |              |  |  |  |  |  |
| The experiment item no   | 3                                                                                                                                                                      | Practical title                                                                                                                                                     | Image 1     | Enhancement.                         |              |  |  |  |  |  |
| (To guide the file name) | (write)                                                                                                                                                                | (The experimental requirements)                                                                                                                                     | (Will do)   | (The experimental type)              | (validation) |  |  |  |  |  |
| (period)                 |                                                                                                                                                                        |                                                                                                                                                                     |             |                                      |              |  |  |  |  |  |
| (For professional)       |                                                                                                                                                                        |                                                                                                                                                                     |             |                                      |              |  |  |  |  |  |
| The purpose              | and requiren                                                                                                                                                           | nent (fill in)                                                                                                                                                      |             |                                      |              |  |  |  |  |  |
| Purpose:                 |                                                                                                                                                                        |                                                                                                                                                                     |             |                                      |              |  |  |  |  |  |
| Requirement              | <ul> <li>To get knowledge about the detail in an image (different slice contain).</li> <li>Requirement:</li> <li>Each student must have resources(computer)</li> </ul> |                                                                                                                                                                     |             |                                      |              |  |  |  |  |  |
| •                        |                                                                                                                                                                        | lent have lecture slide a                                                                                                                                           |             |                                      |              |  |  |  |  |  |
| Content: Image En        | Histogram Local Hist Mathemat Filtering ( Mean(Ave Median fil Second or Laplace o                                                                                      | a generation a equalization togram Processing ical/Logical Operations all include in lecture) eraging) Filter ltering der derivative perator st Filtering Operators | s on Images |                                      |              |  |  |  |  |  |

# 1. Histogram generation

```
clc;
clear all;
close all;
I=imread('pic1.jpg');
G=rgb2gray(I);
subplot(2,2,1:2);imhist(G)
subplot(3,2,5);imshow(G)
```

# 2. Histogram equalization

```
clc;
clear all;
close all;
I=imread('pic1.jpg');
G=rgb2gray(I);
H=histeq(G);
subplot(3,2,1:2);imhist(G)
subplot(3,2,3:4);imhist(H)
subplot(3,2,5);imshow(G)
subplot(3,2,6);imshow(H)
```

# 3. Local Histogram Processing

```
clc;
clear all;
close all;
I=imread('pic1.jpg');
I=rgb2gray(I);
f=double(I);
[m n]=size(f);
f1 = f;
f2 = zeros(m,n);
f3 = zeros(m,n);
M=mean2(f);
D=std2(f);
k=[0.4\ 0.02\ 0.4];
E=4.0;
for i=2:m-1
for j=2:n-1
con=0; s=0;
for i1=i-1:i+1
for j1=j-1:j+1
con=con+1;
```



```
s(con)=f(i1,j1);
end
end
Mloc=mean(s);
f2(i,j)=mean(s);
Dloc = std(s);
f3(i,j)=std(s);
if (Mloc \le k(1)*M) && (Dloc \ge k(2)*D) && (Dloc \le k(3)*D)
f1(i,j)=E*f(i,j);
else
f1(i,j)=f(i,j);
end
end
end
figure,imshow(I),title('Original Image');
figure,imshow(uint8(f2)),title('Image formed from local means');
figure,imshow(uint8(f3)),title('Image formed from local standard deviation');
figure,imshow(uint8(f1)),title('Image formed from all multiplication constants'),xlabel('Enhanced
Image');
```

### 4. Add Mathematical Operations on Images

```
clc;
        clear all;
        close all:
        I=imread('pic1.jpg')
        I=rgb2gray(I);
        J = imnoise(I, 'salt & pepper', 0.02);
        figure;imshow(J);
        K = filter2(fspecial('average',8),J)/255;
        figure;imshow(K);
5. Subtract Mathematical Operations on Images
        clc;
        clear all;
        close all;
        I=imread('pic2.jpg');
        I=imresize(I,[256 256]);
        I=rgb2gray(I);
        g=imread('pic1.jpg');
        g=imresize(g,[256 256]);
        g=rgb2gray(g);
        F=imsubtract(I,g);
        imshow(F)
```

# 6. Multi(\*)Mathematical Operations on Images

```
clc;
clear all;
close all;
I=imread('pic2.jpg');
I=imresize(I,[256 256]);
I=rgb2gray(I);
g=imread('pic1.jpg');
g=imresize(g,[256 256]);
g=rgb2gray(g);
F=g.*I;
imshow(F);
```

# 7. AND Logical Operations on Images

```
clc;
clear all;
close all;
I=imread('pic2.jpg');
I=imresize(I,[256 256]);
I=rgb2gray(I);
g=imread('pic1.jpg');
g=imresize(g,[256 256]);
g=rgb2gray(g);
C=bitand(I, g);
imshow(C);
```

# 8. OR Logical Operations on Images

```
clc;
clear all;
close all;
I=imread('pic2.jpg');
I=imresize(I,[256 256]);
I=rgb2gray(I);
g=imread('pic1.jpg');
g=imresize(g,[256 256]);
g=rgb2gray(g);
C=bitor(I, g);
imshow(C);
```

# 9. Mean(Averaging) Filter

clc;



```
clear all;
 close all;
 i=imread('pic1.jpg');
 i=im2double(i);
  g=rgb2gray(i);
g = imnoise(g,'salt & pepper',0.08);
  s=size(g);
 for x=2:s(1)-1
                  for y=2:s(2)-1
                                 b(x,y) = (g(x+1,y) + g(x-1,y) + g(x+1,y+1) + g(x,y+1) + g(x,y+1) + g(x+1,y+1) + g
  1,y+1))/9;
 end
 end
 subplot(1,3,1); imshow(i);
 subplot(1,3,2); imshow(g);
  subplot(1,3,3); imshow(b);
```

#### **10. Median filtering**

```
clc;
clear all;
close all;
I=imread('11.jpg');
I=rgb2gray(I);
[r c]=size(I);
I = imnoise(I, 'salt & pepper', 0.02);
for x=2: r-1
  for y=2: c-1
     w=I(x-1:x+1,y-1:y+1);
     g=sort(w);
     f(x,y)=median(median(g));
  end
end
imshow(I,[]);
figure;imshow(f,[]);
```

#### Second order derivative 11.

clc; close all; clear all;



```
\begin{split} & \text{I=imread('pic1.jpg');} \\ & \text{I=rgb2gray(I);} \\ & \text{I=imresize(I,[256\ 256]);} \\ & \text{I=im2double(I);} \\ & [r\ c] = \text{size(I);} \\ & \text{for } x = 2 \text{: } r - 1 \\ & \text{for } y = 2 \text{: } c - 1 \\ & \text{G(x,y)} = \text{eps}((I(x-1,y) + I(x+1,y)) - 2.*I(x,y));} \\ & \text{M(x,y)} = G(x,y) + I(x,y); \\ & \text{end} \\ & \text{end} \\ & \text{figure;imshow(I,[]);title('Orignal\ Image');} \\ & \text{figure;imshow(M,[]);title('Sharp\ Image');} \\ & \text{figure;imshow(G,[]);title('After\ Derivatie');} \\ \end{split}
```

### 12.% Laplacian program with respect to +ve and -ve

```
clc;
close all;
clear all;
I=imread('11.jpg');
I=rgb2gray(I);
I=imresize(I,[256 256]);
[r c]=size(I);
LP=[-1 -1 -1;
  -18-1;
  -1 -1 -1];
                % Laplacian with repect to +ve window
LN=[1 1 1;
  1 -8 1;
  1 1 1];
                        % Laplacian with repect to -ve window
for x=2: r-1
  for y=2: c-1
     w=I(x-1:x+1,y-1:y+1);
     gi=double(w)+double(LP);
                          % Laplacian with repect to +ve
     gp(x,y)=gi(2,2);
     g=imsubtract(double(w),double(LN));
                          % Laplacian with repect to +ve
     gn(x,y)=g(2,2);
  end
end
figure;imshow(I,[]);title('orignal image');
figure;imshow(gp,[]);title('+ve Laplacian Image');
figure;imshow(gn,[]);title('-ve Laplacian Image');
```

# 13. %%High Boost Filtering%%

```
I=imread('pic1.jpg');
I=rgb2gray(I);
I=imresize(I,[300 300]);
[r c]=size(I);
LP=[-1 -1 -1; -1 8 -1; -1 -1 -1];
LN=[1 1 1; 1 -8 1; 1 1 1];
for x=2: r-1
  for y=2: c-1
     w=I(x-1:x+1,y-1:y+1);
     gi=double(w)+double(LP);
     gp(x,y)=gi(2,2);
     g=imsubtract(double(w),double(LN));
     gn(x,y)=g(2,2);
  end
end
H=3.*I;
gni=imresize(gn, [240 210]);
gpi=imresize(gp, [240 210]);
HN=imsubtract(H,gni);
HP=double(H)+double(gpi);
figure;imshow(gp,[]);title('Plus Laplacian Image');
figure;imshow(gn,[]);title('Negative Laplacian Image');
figure;imshow(HN,[]);title('HN Image');
figure;imshow(HP,[]);title('HP Image');
```

# 14. Gradient Operators%

```
clc;
close all:
clear all;
I=imread('pic1.jpg');
I=rgb2gray(I);
I=imresize(I,[256 256]);
[r c]=size(I);
LP=[-1 -1 -1;
  000;
  -1 -1 -1;
                % Gradient with respect to Horizontal
LN=[-1\ 0\ 1;
  -101;
  -1 0 1];
                        % Gradient with respect to Vertical
for x=2: r-1
  for y=2: c-1
     w=I(x-1:x+1,y-1:y+1);
     gi=double(w)+double(LP);
     gp(x,y)=gi(2,2);
                          %Gradient with respect to Horizontal
     g=imsubtract(double(w),double(LN));
```

```
gn(x,y)=g(2,2);
                          % Gradient with respect to Vertical
  end
end
figure;imshow(I,[]);title('original image');
figure;imshow(gp,[]);title('horiz grad Image');
figure;imshow(gn,[]);title('ver grad Image');
```

#### 15. **Sobal Filter vertical**

```
clc;
close all;
clear all;
i= imread('pic1.jpg');
i = rgb2gray(i);
[r c]=size(i);
f=[-1 0 1;-2 0 2;-1 0 1];
for x=2:r-1
  for y=2:c-1
  w=i(x-1:x+1,y-1:y+1);
  m(x,y)=sum(sum(double(w).*f));
  end
end
sub
```

#### 16. **Sobal Horizontal**

```
clc;
close all;
clear all;
i= imread('pic1.jpg');
i = rgb2gray(i);
[r c]=size(i);
f=[-1 -2 -1;0 0 0;1 2 1];
for x=2:r-1
  for y=2:c-1
  w=i(x-1:x+1,y-1:y+1);
  m(x,y)=sum(sum(double(w).*f));
  end
end
subplot(1,2,1); imshow(i);
subplot(1,2,2); imshow(m);
```

#### **Gaussian Filter 17.**



# Task BOOK \_ DIP LAB 2021

clc; clear all; close all; I=imread('pic1.jpg'); I = imnoise(I,'salt & pepper',0.02); PSF = fspecial('gaussian',10,2); Blurred = imfilter(I,PSF); x=imsubtract(I,Blurred); imshow(x);figure; imshow(Blurred);title('Blurred Image');



# **PRACTICE Four**

|                          |                                                                                                                                             | T                                                                                                                                                                                                                                 |                                                                           |                                                                               |              |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|
| The lab number           | M601                                                                                                                                        | 实验室名称                                                                                                                                                                                                                             |                                                                           | 本院实验中心                                                                        | •            |
| Course number            |                                                                                                                                             | Subject title                                                                                                                                                                                                                     | Di                                                                        | gital Image Processing<br>Programming                                         |              |
| The experiment iter no   | m 4                                                                                                                                         | Practical title                                                                                                                                                                                                                   | Image So                                                                  | egmentation                                                                   |              |
| (To guide the file name) | (write)                                                                                                                                     | (The experimental requirements)                                                                                                                                                                                                   | (Will do)                                                                 | (The experimental type)                                                       | (validation) |
| (period)                 |                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                           |                                                                               |              |
| (For professional)       |                                                                                                                                             |                                                                                                                                                                                                                                   | 1                                                                         | 1                                                                             | 1            |
| Purpose:                 | <ul> <li>a common s</li> <li>Learn how t</li> <li>Understand</li> <li>To get knowent:</li> <li>Each studen</li> <li>Every studen</li> </ul> | ent (fill in)  behind the practice is to lead tep mostly in every applicate to deal with the pixels, per how we can change intensivledge about the detail in a trust have resources(control that is a slide and file which I send | cation (using informing differsity of an image (differment)  B2014a versi | image processing technic<br>erent operation.<br>ge.<br>ferent slice contain). |              |
| b) I                     | :<br>Hand region seg<br>Brain tumor seg<br>Face Recognitio                                                                                  | mentation                                                                                                                                                                                                                         |                                                                           |                                                                               |              |

### 1. %% Program to segment the brain tumor from MRI image

```
clear all;
close all:
% jpgFiles=dir('*.JPG');
%if wou want to get more picture at the same time you delete the comment '%'
% % for k=1:length(jpgFiles)
%if wou want to get more picture at the same time you delete the comment '%'
%
     Wajiha=k;
%if wou want to get more picture at the same time you delete the comment '%'
     filename=jpgFiles(k).name;
%if wou want to get more picture at the same time you delete the comment '%'
     I=imread(filename);
%if wou want to get more picture at the same time you delete the comment '%'
I=imread('12.jpg');
% if wou want to get more picture at the same time you comment it like'%'
I=imresize(I,[256 256]);
figure; imshow(I);
I=im2double(I);
[nrow ncol dim] = size(I);
if dim==3
  I = rgb2gray(I);
end
[r c]=size(I);
for x=1:r
  for y=1:c
     if I(x,y) > = 0.7;
       M(x,y)=I(x,y)^{(0.6)};
     else
       M(x,y)=I(x,y)^2;
     end
  end
end
figure; imshow(M);
se = strel(ones(5,5));
e1 = imerode(M, se);
figure; imshow(e1);
nCluster = 3;
[IDX,C,sumd,D] = kmeans(e1,nCluster);
% sums of point-to-centroid distances in the 1-by-nCluster vector
center=sort(sumd);
```

### Task BOOK \_ DIP LAB 2021

```
Sc=size(sumd,1);
for x=1:Sc
if x<Sc
threshvalue(x) = (center(x)+center(x+1))/2;
end
end
if (Sc>2) & (Sc<4)
M = median(center);
L1=M*ones(nrow,ncol);
for irow=1:nrow
for icol=1:ncol
  for iCluster = 1:nCluster
     if (e1(irow,icol) < threshvalue(Sc-2)/255)
       L1(irow,icol)=center(Sc);
     end
     if (e1(irow,icol) < threshvalue(Sc-1)/255)
       L1(irow,icol)=center(Sc-2);
     end
  end
end
end
else if Sc==2
     L1=center(Sc)*ones(nrow,ncol);
for irow=1:nrow
for icol=1:ncol
  for iCluster = 1:nCluster
     if (e1(irow,icol) < threshvalue(Sc-1)/255)
       L1(irow,icol)=center(Sc-1);
     end
  end
end
end
  end
end
figure, imshow(L1,[]);
% end %if wou want to get more picture at the same time you delete the comment '%'
```

# 2. %% Program to segment the hand region from the image

```
clear all;
close all;
% jpgFiles=dir('*.JPG');
%if wou want to get more picture at the same time you delete the comment '%'
% for k=1:length(jpgFiles)
%if wou want to get more picture at the same time you delete the comment '%'
%
       pic=k;
%if wou want to get more picture at the same time you delete the comment '%'
    filename=jpgFiles(k).name;
%if wou want to get more picture at the same time you delete the comment '%'
%
% I=imread(filename);
%if wou want to get more picture at the same time you delete the comment '%'
I=imread('65.jpg'); %if wou want to get more picture at the same time you comment it like'%'
I=imresize(I,[256 256]);
figure;imshow(I);
[nrow ncol dim] = size(I);
cform = makecform('srgb2lab');
J = applycform(I,cform);
figure; imshow(J);
K=J(:,:,3);
figure; imshow(K);
L=graythresh(J(:,:,3));
BW1=im2bw(J(:,:,3),L);
figure; imshow(BW1);
[r c]=size(BW1);
figure; imshow(BW1);
for i=1:r
for i=1:c
  if BW1(i,j)>0
    M(i,j)=I(i,j);
  end
end
end
figure; imshow(M);
M=im2bw(M);
SE=[0\ 0\ 1\ 0\ 0;
  0 1 1 1 0;
  1 1 1 1 1;
```

### Task BOOK \_ DIP LAB 2021

```
0 1 1 1 0;
 00100];
IM2=imerode(M,SE);
SE1=[1 1 1 1 1 1;
  11111;
  111111;
 111111;
  111111;
  111111];
IM2 = imdilate(IM2,SE1);
figure;imshow(IM2);
IM2=im2bw(IM2);
figure;imshow(IM2);
IM3=edge(IM2,'canny');
IM3=imresize(IM3,[256 256]);
figure;imshow(IM3);
%end %if you want to get more picture at the same time you delete the comment '%'
```



# List of main function used in lecture 2021

# 1) main function used in Matlab

| Standard Matrix and vector operations x=[1, 2, 3] 1x3 (Row) vector defined | 4]                  | x.*y Element by element multiplication<br>x./v Element by element division |                 | x-y Element by element subtraction |                                                     |                                          | inv(a) inverse of maurix<br>size(x) Rows and Columns                                             | eye(n) Identity matrix  exert (A) corte voctor from smallest to largest |                                     | lard operati                | Through $\backslash$ instead: $inv(A)b = A\backslash b$ .                                                  | Matrix and vector operations/functions | x(x>5)=0 change elemnts >5 to 0 | x(x>5) list elements >5                 | n(A))                                                      |                                                                                   | bsxium(ium, A, B) Binary operation on two arrays<br>arrayfun(fun, A1,, An) Calls function m times, gets n inputs | Ì                                    | *if arrayfun/bsxfun is passed a gpuArray, it runs on GPU. | Statistical commands                                                |                    | distract random numbers from dist |                                |     | distpdf pdf from dist               | rd                                        | *Standard functions: mean, median, var, cov(x,y), corr(x,y),                | *quantile(x,p) is not textbook version.  I (It uses interpolation for missing quantiles. | *Like most programs, histogram is not a true histogram.                               |                                                   | StructName.FieldName =                                                                                 | Sets value to struct, cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | StructName(2).FieldName Second element of structure perfield(StructName, FieldName) Gets data from |                                                            |         |                                                      |                                                                                           |                                      |
|----------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|-----------------|------------------------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--------------------|-----------------------------------|--------------------------------|-----|-------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|
| Built in functions/constants abs(x) abs(x)                                 | p1 5.1415 inf       | 1e6 10 <sup>6</sup> sums elements in x                                     | 1(x)            | prod Product of array elements     |                                                     | round/ceil/fix/floor Standard functions. | *Standard lunctions: sqrt, log, exp, max, min, bessel *Factorial(x) is only precise for $x < 21$ |                                                                         | nands                               | x=cell(a,b) a xb cell array | at(x)                                                                                                      |                                        |                                 | stromp compare strings (case sensitive) |                                                            | strncomp as stroomp, but only n first letters strfind find string within a string |                                                                                                                  | regexp Search for regular expression |                                                           | ogical operators                                                    | Short-Circuit AND. | & AND AND                         | or                             | not | == Equality comparison == not equal | isa(obj, 'class_name') is object in class | *Other logical operators: <,>,>=,<=<br>*411 above operators are elementwise | *Class indicators: isnan, isequal, ischar, isinf, isvector                               | , isempty, isscalar, iscolumn  **Short circuits (SC) only ovaluate second criteria if | first criteria is passed, it is therefore faster. | And useful fpr avoiding errors occuring in second criteria *non-SC are humand and short circuit annual | full of the case o | Venichle sensention     | variable generation<br>j:k row vector [j, j+1,,k]                                                  |                                                            | (a,b,n) | NaN(a,b) axb matrix of NaN values                    | <pre>meshgrid(x,y) 2d grid of x and y vectors [a,b]=deal(NaN(5,5)) declares a and b</pre> | global x gives x global scope        |
| Matlab Cheat Sheet                                                         | Some nifty commands |                                                                            | ans Last result | 1                                  | close(H) closes figure H whos lists data structures | q)                                       | class(obj) returns objects class<br>intf(x)=v convert doubles to Integers                        |                                                                         | dlmwrite('path',M) Writes M to path |                             | <pre>save -append filename x appends x to .mat file load filename loads all variables from .mat file</pre> | ver Lists version and toolboxes        | function                        | 36                                      | web google.com opens webaaress<br>inputdlg Inputdlalor box |                                                                                   |                                                                                                                  | Portions of matrices and vectors     | 9                                                         | x(j:end) j'th to end element of x<br>x(2:5) 2nd to 5th element of x |                    |                                   | diag(x) diagonal elements of x |     |                                     |                                           | Keyboard shortcuts                                                          | t filename                                                                               | A1t Displays notkeys F1 Help/documentation for highlighted function                   |                                                   | F10 Run code line                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shift+F5 Leave debugger | .+Page up/down                                                                                     | Ctrl+shift Moves between components Ctrl+C Interrupts code |         | Ctrl+R/T Comment/uncomment line<br>Ctrl+N New script | Ctrl+shift+d Docks window Ctrl+shift+u Undocks window                                     | Ctrl+shift+m max window/restore size |

# 2) Main Function used in Digital Image processing

| MA          | MATLAB Ouick Reference                                                                   | clear          | Remove items from the workspace                                 | fullfile     | Build full filename from parts                                  |
|-------------|------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|--------------|-----------------------------------------------------------------|
|             | Author: Jialong He                                                                       | disp           | Display text or array                                           | info         | Display contact information or toolbox Readme files             |
|             | Jialong_he@bigfoot.com                                                                   | length         | Length of vector                                                | inmem        | Functions in memory                                             |
|             | nttp://www.bigioot.com/~jiaiong_ne                                                       | load           | Retrieve variables from disk                                    | ls           | List directory on UNIX                                          |
| General     | General Purpose Commands                                                                 | memory         | Help for memory limitations                                     | matlabroot   | Get root directory of MATLAB installation                       |
| Managing    | Managing Commands and Functions                                                          | mlock          | Prevent M-file clearing                                         | mkdir        | Make new directory                                              |
| oddmath     | Add directories to MATI AR's search nath                                                 | munlock        | Allow M-file cleaning                                           | uado         | Open files based on extension                                   |
| doc         | Display HTML documentation in Help browser                                               | openvar        | Open workspace variable in Array Editor, for graphical          | pwd          | Display current directory                                       |
| docont      | Display location of help file directory for UNIX platforms                               |                | editing                                                         | tempdir      | Return the name of the system's temporary directory             |
| demosth     | Ganarata a nath etrino                                                                   | pack           | Consolidate workspace memory                                    | tempname     | Unique name for temporary file                                  |
| Sculyanu    | Denistra a para sumb                                                                     | save           | Save workspace variables on disk                                | undocheckout | undocheckout Undo previous checkout from source control system. |
| help        | Command Window                                                                           | Saveas         | Save figure or model using specified format                     | unix         | Execute a UNIX command and return the result                    |
|             | Display Help browser for access to all Math Works online                                 | size           | Array dimensions                                                | -            | Execute operating system command                                |
| neiporowser | help                                                                                     | who, whos      | List the variables in the workspace                             |              |                                                                 |
| helpdesk    | Display the Help browser Display Maille help and woulde access to Maille help for        | workspace      | Display the Workspace Browser, a GUI for managing the workspace | Starting     | Starting and Ouitting MATLAB                                    |
| helpwin     | all functions                                                                            |                |                                                                 | finish       | MATLAB termination M-file                                       |
| lasterr     | Last error message                                                                       | Controllin     | Controlling the Commond Window                                  | exit         | Terminate MATLAB                                                |
| lastwarn    | Last warning message                                                                     | Controllin     | ig the Command William                                          | motleh       | Shart MATT AR CHNIX exetems contri                              |
| license     | license                                                                                  | clc            | Clear Command Window                                            | Madao        | MATTAN AND AND AND AND AND AND AND AND AND A                    |
| leo le      | Court for enominal bottom in all haln antriae                                            | echo           | Echo M-files during execution                                   | matlabre     | MALLAD Stattup IN-1116                                          |
| TOOMION     | Detical authoring                                                                        | format         | Control the display format for output                           | quit         | Terminate MATLAB                                                |
| par uaupaun | Control MATT AD's directors seems noth                                                   | home           | Move cursor to upper left corner of Command Window              | startup      | MATLAB startup M-file                                           |
| paul        | Outside MATLAB's unecolory search pain.  Open the GUI for viewing and modifying MATLAB's | more           | Control paged output for the Command Window                     | Operator     | Operators and Special Characters                                |
|             | path                                                                                     |                |                                                                 | 500          |                                                                 |
| profile     | Start the M-file profiler, a utility for debugging and optimizing code                   | Working        | Working with Operating Environment                              |              | Minus                                                           |
| profreport  | Generate a profile report                                                                | peep           | Produce a beep sound                                            |              | Matrix multiplication                                           |
| rehash      | Refresh function and file system caches                                                  | po             | Change working directory                                        | *.           | Array multiplication                                            |
| rmpath      | Remove directories from MATLAB's search path                                             | checkin        | Check file into source control system                           | <            | Matrix power                                                    |
| support     | Open Math Works Technical Support Web Page                                               | checkout       | Check file out of source control system                         | <.           | Array power                                                     |
| type        | List file                                                                                | cmonts         | Get name of source control system, and PVCS project             | kron         | Kronecker tensor product                                        |
| Ver         | Display version information for MATLAB, Simulink, and                                    |                | Tilename                                                        | 1            | Backslash or left division                                      |
|             | toolboxes                                                                                | copyfile       | Copy me                                                         | 1            | Slash or right division                                         |
| version     | Get MATLAB version number                                                                | custom verctri | Allow custom source control system                              | / and /      | Array division, right and left                                  |
| web         | Point Help browser or Web browser at file or Web site                                    | delete         | Delete files or graphics objects                                |              | Colon                                                           |
| what        | List MATLAB-specific files in current directory                                          | diary          | Save session to a disk file                                     | 0            | Parentheses                                                     |
| whatsnew    | Display README files for MATLAB and toolboxes                                            | dir            | Display a directory listing                                     |              | Brackets                                                        |
| which       | Locate functions and files                                                               | dos            | Execute a DOS command and return the result                     | : c          | Ourly braces                                                    |
|             |                                                                                          | edit           | Edit an M-file                                                  |              | Decimal point                                                   |
|             |                                                                                          | fileparts      | Get filename parts                                              |              |                                                                 |
| Managing    | Managing Variables and the Workspace                                                     | filebrowser    | Display Current Directory browser, for viewing files            | :            | Conuntation                                                     |
|             |                                                                                          |                |                                                                 |              |                                                                 |

# 3) List of main function used in Matlab Digital image processing

### List of main function used in DIP lecture 2020

| No | Function<br>Name | Function Aim                                                           | Function Parameter                                                      |
|----|------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1  | imread           | Read image from graphics file                                          | Filename, format, value                                                 |
| 2  | imwrite          | Write image to graphics file                                           | Raw image, filename, mapping, format                                    |
| 3  | imshow           | Display image                                                          | Out of imread                                                           |
| 4  | clc              | Clear command window                                                   | N/A                                                                     |
| 5  | Close            | Remove specified figure                                                | Name, all, force, hidden                                                |
| 6  | figure           | Create figure window                                                   | Name, value                                                             |
| 7  | grayslice        | Convert grayscale image to indexed image using multilevel thresholding | Image read from imread, threshold value                                 |
| 8  | imhist           | Histogram of image data                                                | Image, mapping                                                          |
| 9  | im2bw            | Convert image to binary image                                          | Image                                                                   |
| 10 | imsharpen        | Sharpen image using unsharp masking                                    | Image, name, value                                                      |
| 11 | rgb2gray         | Converts RGB color spaced image to grayscale                           | Image                                                                   |
| 12 | imadd            | Add two images                                                         | Image1, image2                                                          |
| 13 | imabsdiff        | Absolute difference between 2 images                                   | Image1, image2                                                          |
| 14 | immultiply       | Multiply 2 images                                                      | Image1, image2                                                          |
| 15 | imdivide         | Divide one image by another                                            | Image1, image2                                                          |
| 16 | Iminfo           | Show info of image                                                     | image                                                                   |
| 17 | nlfilter         | General sliding-neighborhood operations                                | Grayscale image, [mxn] value, function                                  |
| 18 | subplot          | Create axes in tiled positions                                         | M,n,p where mxn = grid size and p is position by which axes are created |
| 19 | im2double        | Convert image to double precision                                      | Image                                                                   |
| 20 | imadjust         | Adjust image intensity values or colormap                              | Image                                                                   |

# Task BOOK \_ DIP LAB 2021

| 21 | graythresh   | Global image threshold using Otsu's method                                                                                        | Image, level                     |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 22 | imopen       | Morphologically open image                                                                                                        | Image, Strel()                   |
| 23 | Imsubtract   | Subtract image from another                                                                                                       | Image1, image2                   |
| 24 | imcomplement | Invert colors/complement the image                                                                                                | image                            |
| 25 | Bitand       | Bitwise AND logic of image                                                                                                        | Image1,image2                    |
| 26 | Bitor        | Bitwise OR logic of image                                                                                                         | Image1, image2                   |
| 27 | Bitxor       | Bitwise XOR logic of image                                                                                                        | Image1, image2                   |
| 28 | Bitcmp       | Bitwise complement of image                                                                                                       | Image1,image2                    |
| 29 | imhisteq     | Enhance contrast using histogram equalization                                                                                     | Image, value                     |
| 30 | Imnoise      | Add noise to image                                                                                                                | Image, noise type, level         |
| 31 | Imfilter     | N-D filtering of multidimensional images                                                                                          | Image, filer mean value [matrix] |
| 32 | medfilt2     | 2-D median filtering                                                                                                              | Image, filer mean value [matrix] |
| 33 | fspecial     | Gaussian lowpass filter of size hsize with standard deviation sigma                                                               | Image, sigma                     |
| 34 | ordfilt2     | replaces each element in A by the order the element in the sorted set of neighbours specified by the nonzero elements in domain . | Image, filer mean value [matrix] |
| 35 | tform        | TFORM struct T for a two-dimensional affine transformation                                                                        | Image , 2D, Axis                 |
| 36 | imadjust     | Adjust image intensity values or colormap                                                                                         | Image                            |
| 37 | graythresh   | Finding the threshold value                                                                                                       | Image, level                     |
| 38 | sobel        | detects edges in image                                                                                                            | Image, levels                    |
| 39 | meshgrid     | 2-D grid coordinates based on the coordinates                                                                                     | Image, levels, variables         |
| 40 | img_pow      | Using matlab functions on the image matrix                                                                                        | Matrix, Axis                     |
| 41 | imdilate     | Dilates the grayscale, binary, or packed binary image                                                                             | Image, value                     |
| 42 | bwperim      | Find perimeter of objects in binary image                                                                                         | Image, value                     |
| 43 | imerode      | The imerode function determines the center element of the neighborhood                                                            | Image, text                      |
| 44 | imagesc      | Display image with scaled colors                                                                                                  | Image                            |

# $Task\ BOOK\ \_\ DIP\ LAB\ 2021$

| 45 | bwmorph     | Morphological operations on binary images                                                                       | Image1, Image2                       |
|----|-------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 46 | bwskel      | This MATLAB function reduces all objects in the 2-D binary image A to 1-pixel wide curved lines                 | Image, Skeletonize Binary Image      |
| 47 | imtophat    | performs morphological top-hat filtering                                                                        | Image , binary image, filtered image |
| 48 | imadjust    | Adjust image intensity values or colormap                                                                       | Image1, Image2                       |
| 49 | imcrop      | Crop Image tool associated with the grayscale                                                                   | Image                                |
| 50 | bwhitmiss   | performs the hit-miss operation defined in terms of a single array                                              | Array , Image                        |
| 51 | imgaussfilt | This MATLAB function filters image A with a 2-D Gaussian smoothing kernel                                       | Value , Image1 ,Image2,<br>Frequency |
| 52 | imfftlog    | frequency usually comes out in linear scale from Discrete Fourier Transform.                                    | Text, Image, Level                   |
| 53 | fft2        | frequency usually comes out in linear scale from Discrete Fourier Transform.                                    | Text, Image, Level                   |
| 54 | fftshift    | This MATLAB function rearranges a Fourier transform X by shifting the zero-frequency                            | Text, Image, Level                   |
| 55 | applycform  | This MATLAB function converts the colour values in A to the colour space specified in the colour transformation | Image1, Image2                       |
| 56 | imLab       | graphical application for Scientific Image                                                                      | Image, scientific image              |
| 57 | imRGB       | RGB image to grayscale                                                                                          | Binary Image, Image                  |
| 58 | FDetect     | Face detection                                                                                                  | Image                                |
| 59 | BBsize      | Bounding Box values based on number of objects                                                                  | Image detect                         |
| 60 | IEzc        | Finding the threshold value                                                                                     | Image                                |
| 61 | Imaqhwinfo  | Know about device info                                                                                          | Image, level                         |
| 62 | fscanf      | Read formatted data from a file.                                                                                | Level, Text, Matrix                  |
| 63 | fprintf     | Performs formatted writes to screen or file.                                                                    | Level, Text, Matrix                  |
| 64 | findstr     | Finds occurrences of a string.                                                                                  | Image, mapping                       |
|    |             |                                                                                                                 |                                      |

# Task BOOK \_ DIP LAB 2021

| 65 | strcmp     | Compares strings.                          | Image, mapping           |
|----|------------|--------------------------------------------|--------------------------|
| 66 | ezplot     | Generates a plot of a symbolic expression. | Image, mapping           |
| 67 | imhist     | Display a histrogram                       | Image, mapping           |
| 68 | histeq     | Equalize image                             | Image, mapping           |
| 69 | graythresh | Finding the threshold value                | Image, level             |
| 70 | Imsharpen  | Image sharpening                           | Image, name, value       |
| 71 | clc        | Clear command window                       | N/A                      |
| 72 | Close      | Remove specified figure                    | Name, all, force, hidden |

