	<u>Se</u>	2.0	ki	OV.	٩	b.;	λ.		 >∨	LL.	۸	a	M	<u>a</u>		Di	£1	(6)	<u>9</u>	NC	٤		Ld	ev	rt'	it	NE:	3
1.		>\	W	^	٥	wg)	C	3;6	36	ek	en	C		i	۸e	26	ti.	ناد	S	•							
۵.							w						di	18	ke	5 0	W	L	Ī	Se	لهما.	ci-l	ડં.	S		Ç	X	
3.	6						lu un						8	li!	36	ek	ev	C		i	٨e	XA.	Lid	cie	3 S		go Ro	r
							7																					
۷.																												
	Ld	en	સ	لخذا	ટડ		(9	, Xu	M	(.	, ઠ)		di	Ęſ	િ	70	^C	(ء							
•		Si	W	(1	W.	\5	1	2 (3'11	٨٦	ų (છ	3 1	5	+	Ca	K	u	Ç	SiV.	V	•						
•		Ş	iv	(0	u-	V	7 =	5 (3,1	U	. 6	Ø,	J	_	9	ß	V	<u> </u>	311	NU								
•				-			7														5							
							\ = -\ :											S	W	5								
									1-	1	va	W.	u	F	αv	۸۷	5											
		N	N	4	U -	V	\=		1	AA ÷	*	34.4	9/	- 3	CO	AA	15											

Solution

Sin
$$(\frac{\pi}{2} - x) = \sin \frac{\pi}{2} \cos x - \cos \frac{\pi}{2} \sin x = \frac{\pi}{2} + \cos x - \cos \frac{\pi}{2} \sin x = \frac{\pi}{2} + \cos x - \cos \frac{\pi}{2} \sin x = \frac{\pi}{2} + \cos x - \cos x = \frac{\pi}{2} \sin x = \frac{\pi}{2} + \cos x = \frac{\pi}{2} +$$

=
$$\frac{x^2}{14x^2} + \frac{1}{14x^2} = \frac{x^2 + 1x - x^2}{14x^2}$$

Theorem (Sum of Sines and Cosines)
A $\sin x + \theta \cos x = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \sin x + \frac{1}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \sin x + \frac{1}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \sin x + \frac{1}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \sin x + \frac{1}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \sin x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}} \cos x) = \sqrt{A^2 + B^2} (\frac{A}{\sqrt{A^2 + B^2}}$

