

ENT 189 COMPUTER PROGRAMMING

LAB-4 FILES

Lecturer	:	Mam. Humairan binti Mansor	
Teaching Engineer		Mdm Sharifah Nurul Husna binti Syed	
		Hanapi	
Technician	:	Mdm. Siti Khalijah Binti Hasan @ Yusuf	
Name	:		
Matric Number	:		
Duo onom	. Maalaatus	nio En aino avin a	
Program	: Mechatronic Engineering		

ENT 189 COMPUTER PROGRAMMING

LAB-4 FILES

Lecturer : Mdm. Humairah binti Mansor
Teaching Engineer : Mdm Sharifah Nurul Husna binti Syed
Hanapi
Technician : Mdm. Siti Khalijah Binti Hasan @ Yusuf

Matric Number :

Program : Mechanical Engineering

Name

ENT 189 Lab Module 4, Semester 2, 2016-17

OBJECTIVE

At the end of this lab, students should reach the below objective:

Able to develop simple programs using FILE concepts.

TASK 1

The following program is used to create a text file named task1.dat. Use the program to write and read the following data from the file task1.dat and observe the output.

```
11667
              80.1
16756
              29.7
19731
              74.4
29876
              68.9
21746
              51.7
28391
              84.6
39102
              49.3
/* Task 1 */
#include<stdio.h>
int main(void)
       FILE *finp;
       int matno;
       float tmark;
       int index, numdata;
       finp = fopen("task1.dat", "w");
       printf("Number of Data");
       scanf("%d",&numdata);
              for(index=1;index<=numdata;index++)</pre>
                 printf("Enter Matrik Number");
                 scanf("%d",&matno);
                 printf("Enter Test Mark");
                 scanf("%f",&tmark);
                 fprintf(finp, "%d %f\n",matno,tmark);
       fclose(finp);
       finp=fopen("task1.dat", "r");
```

```
while(!foef(finp))
    {
     fscanf(finp, "%d %f\n",&matno, &tmark);
     printf("%d %.2f\n",matno,tmark);
     }
     fclose(finp);
     return 0;
}
```

TASK 2

Using a sound level meter, the noise emanated from 20 Perodua Myvi at different frequency levels are measured and shown in Table-1.

- (a) Write a program in C to write the data into a binary file named noise.dat.
- (b) Write a program that reads the data from the file noise.dat and find the car that emanates the maximum noise at 400Hz.
- (c) Also write a program that reads the data from the file noise.dat and find the cars whose noise level is less than 50 dB at 200 Hz.

Table-1 Car Noise Level (dB)

Tuble I cal Holse Bever (ab)							
Vehicle Number	50Hz	100Hz	200Hz	400Hz	800Hz		
AFK5750	48.5	50.6	53.7	55.0	58.1		
AGU3583	55.0	54.1	69.0	65.2	63.9		
BEE1526	57.1	60.4	72.1	70.0	66.7		
CFC6685	43.9	47.4	49.6	47.9	55.8		
HEW6670	50.0	62.6	62.6	61.6	61.3		
KDT1670	50.1	62.6	62.6	61.6	61.3		
KFC8421	54.3	58.0	63.7	60.0	64.0		
MAN1985	51.2	52.8	61.0	61.9	62.8		
PHD2772	51.3	55.6	58.8	59.3	59.8		
PJJ3934	48.3	51.2	55.5	58.0	57.1		
PPK9144	50.6	54.4	58.4	57.1	60.8		
RAF2210	50.3	51.0	59.6	58.3	65.6		
RGA2440	48.0	53.2	62.5	61.7	62.2		
SAA1513	54.9	58.6	59.9	61.0	64.0		
SAB3298	49.1	46.5	52.2	55.7	58.7		
TAN9645	54.3	49.9	56.2	58.5	59.6		
TCM7692	44.9	51.6	53.4	54.7	62.6		
WHY4153	49.9	60.6	64.1	63.9	65.8		
WWW1001	44.9	53.8	58.7	56.5	65.4		

TASK 3

(a) Write a text file named students.dat to store the following table.

Matric No	Height (m)	Weight (kg)
10001	1.68	80.5
10002	1.80	79.2
10003	1.56	42.4
10004	1.63	57.1
10005	1.73	67.7
10006	1.51	70.8

(b) Write a program in C to read the data from the file students.dat and calculate the Body Mass Index (BMI) value for each student.

$$BMI = Weight / Height^2$$

Print your result in the following format:

Matric No Height (m) Weight (kg) BMI

