Lequência 1001

→ Modelo de Hoore

Tabela de Excitação Saídas (2º)

Xin				
Φε Φι Φο	O L L Dz D1 Do	Yout		
0 0 0	000 1001	0		
001	011 001	0		
0 7 7	010 1001	0		
200	000 1 200	0		
200	077 007	1		

Tabela de estados/Saídas (4°)

	<u>, </u>	in		
5	0 1	5+ 1	Yout	
So	So	Sı	0	_
51	Sz	SI	0	
Sz	53	SI	0	
53	So !	54	0	
54	52	Si	2	
	į			

(1°) Podificação de estados

S	P2 Q1 P0
So	000
S1	001
Sz	011
53	010
54	100

Q+ = D (pf.D) !!

Tabela de Transiero/Saidas (30)

3	XIV	0
Φ2 Φ1Φ0	0 1 1 O2+ O1+ Q0+	Yout
00000	000000000000000000000000000000000000000	0001

Equações de excitação (5°)

 $\mathcal{P}_{o} \Rightarrow Q_{2} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}} + \overline{Q_{2}} \cdot \overline{Q_{1}} \cdot \chi_{in} + \overline{Q_{2}} \cdot \overline{Q_{1}} \cdot Q_{0} + \overline{Q_{2}} \cdot Q_{0} \cdot \chi_{in}$

Orlos 00/XIU 00	101	11	10
00	1	10	1
01		1	
22			
10 11	2		

 $\mathcal{D}_{\underline{1}} \Rightarrow \overline{\mathbb{Q}}_{\underline{2}} \cdot \mathbb{Q}_{\underline{0}} \cdot \overline{\mathbb{Y}_{in}} + \mathbb{Q}_{\underline{2}} \cdot \overline{\mathbb{Q}}_{\underline{1}} \cdot \overline{\mathbb{Q}}_{\underline{0}} \cdot \overline{\mathbb{Y}_{in}} \cdot \mathbb{D}_{\underline{0}} \Rightarrow \overline{\mathbb{Q}}_{\underline{2}} \cdot \mathbb{Q}_{\underline{1}} \cdot \overline{\mathbb{Q}}_{\underline{0}} \cdot \overline{\mathbb{Y}_{in}}$

del	Y in			1 6
Pala	∞	01	11	110
00				(1)
01				1
21				_
10 6	1)			

0-140	/Xin			
02/0	∞	07	11	10
00				
01		(1)		-
11		0	-	
10				
	1			

· Critério de risco minimo

-> Especificar estados seguintes (possivelmente o estado inicial) para precaver situações anómalas > circuitos de excitação o eondicionados e por isso o casos.

Exemplo anterior:

Se completasse mos a tabela el estados não

S.		Vii		2,1000
φ	20100		1	Yout
	101	0001		0
	110	000		0
	~	000	000	0

· Critério de custo minimo

→ Não especificar o estado seguinte. Tinas partido das innelevâncias ("dont case") pl minimizar a lógica de excitação

⇒ Diminuição de custo.

Exemplo anterior:

Se completou a tabela el estados n usados:

	43	ES 1000
ODIPO SP	DeDiDo	Yout
101	XXX XXX	y
110	XXX XXX	^
111	XXX XXX	X
,		X

lodificação de estados One-hot

Exemplo:

o estado atual

1					
S	94	Ф3	Q 2	91	ϕ_o
So	0	0	0	0	1
S ₂	٥	0	0	1	0
Sa		0	1	0	0
54		1	0	0	0
-4	1 0	5	0	0	0

lon tadores

· Módulo de um contactor

- -> Numero de estados rum cielo.
- -> m Estados --> contador de módulo-m contador de divisão-por-m

NOTA

Um contador el módulo sem potência de 2 tem estados extras q não são usados nos operações normais.

· Contador Sinario Sinezono

- → 0 bit ⊕ sig. só faz alternância se toclos os menos significativos forem s.
- → 0 bit @ sig. faz sempre alternância.
- → Nff → 2 restados + logo 2 módulos.

Exemplo:

· Contactor sincèrio uplosson de a sits

Ud	01-
	¢0 -
ein _	

- · Ud = 0 down
- . Ud = 1 → Up
- · lontagem māxim: 4
- · 22 = 4 estados
- · lontador de módulo 4

	!	φε ⁺ Φ1 ⁺	
Ud	91 Po.	D4 D0.	Decimal
Ö	0 0	1 1	3
0	0 1	0 0	٥
0	2 0	0 1	1
_ 0	2 2	7 0 -	
2	00	0 1	1
2	0 1	2 0	ک
1	1 0	1 1	3
2	1 1	0 0	6

ustado Estado
atual Seguinte
(Pn+)

Dn → entradas des f.f

Hodelo 74x163

(Contador binário up sincono)

CLR > Clear sincrono, active-low

LD ⇒ Synchronous parallel load enable, active-low (carred paralela)

ENP, ENT > entradas enable

A-D > Valor dos dados de carreg paralelo.

PA - PD => Valor das saidas de contagem (Estado atral)

Reo > Ripple counter output (pleaseata)

indica um transporte da posição do bit

a significativo e é 1 quando todos os sits de contagem são 1 e 0 ENT=1.

lada entrada D i conduzida por um Mux2:1 (10R 12 AND)

y = 0 se CLR_L = 0

y = 1 re CLR_L = 1 ⇒ 1° AND passo os dados da entrada (A, B, C, ou I) para a saida apenas se LD-L=0!

Le elre 1 e LD L = 1 , 2° AND passa a saida de uma porta (XNOR)

Executa a função

- · Uma entrado do XNOR corresponde ao bit de contagem (QA,QB,QC,QD)
- · A outra entrada é 1, que complementa o sit de contagem, se ENP=1 e ENT=1 e ainda se todos os bits de contg. de baixa ordem forem 1.

NOTA: Ver diagrama interno nos xesumos capa

· Modelo 74×163

(Pontador Free-sunning)

NOTA: Ver diagrama temporal nos susumos capa.

NOTA

- -> O cantador de módulo 16 ('163) pode son feito para contar rum módulo menor q 16 resardo entradas elr-Lou LD-L para diminuir a seg. de contagem normal
- el uma seq. de contagem de sa 15 Tem apenas 11 estados

→ A scrida RCO, que deteta o estado 15, é usada para forçar o próximo estado pls, para q o circuito conte de 5 → 15 e comece em 5 novamente, para um total de 12 estados por cido de contogem.

Modelo 74x 163 como um contador de módulo 11 eom um sequência de contagem de 0 → 10.

→ Utiliza uma ponta lógica NAND para detetar o estado 10 e força o paóximo estado a sea o

No geral para detetar o estado N numa contagem binária q conta de O -N, é necessário adicionas apenas os bits de estado que são 1 na codificação binária de N.

· Modelo 74x163 como um contador de módulo 10 de excesso 3 (Ponta de $3 \rightarrow 12$)

NOTA

→ Neste caso, O3 tem um duty eycle de 50%.

- ▶ Registo de Deslocamento (Shift Registers)
- → Registo de n'aits com a possibilidade de deslocar os seus dados de armazenamento pela posição de a sit a cada I do CLK
- 74 x 194 Universal Shift Register

- · Registo de deslocamento parallel-in, parallel-out.
- · S1 e So > entradas de Seleção
- · LIN (left-In) é a entrada de série pl os dislocamentos à esquesda.
- · RIN (Right-In) é a entrada em série p) os deslocamentos à direita.
- · A,B,C.D aperas servem para a função LOAD (corregemento paralela)

▶ Shift-Register Counters

→ Um sugisto de deslocamento pode ser combinado el lógica combinacional pl formar uma maquina de estado cujo o diagrama de estados é ciclico.

NOTA

· Ao contrario do contactor binario, um shift-Register counters não conta em up Down uma seg, binária.

Ring counter

(Pontador em anel)

→ Usado um registo de deslocamento de n'sits para

obter uma contagem com n'estados.

- · O modelo 74×194 (URD) è concetado de forma a q normalmente execute um deslocamento pla esq.
- · Od RESET está habilitado, carrega PI 0001.
- · Od. RESET ñ esta habilitado, o '194 faz um deslac pl esquenda en cada 1.
- · A entrada de série LIN esta conectada à saida "mais à esq.", logo os paéximos estados sos ooto, oto, 1000, 0001,0010,... (4 estados únicos)

MAS, tem 16 estados "recis" se desenharmos o seu diagrama de estados

Ver diagrames de esterdos temporal nos resumos capa.

· Self - connecting Ring Counter

(Contador de anel de autocorreção)

→ É projetado pla todos os estados anormais tenham transições levando-os

L. Se algo inexplicavel aconteca, o contador ou a maquina de estado deve ir para un estado "seguro".

→ n bits → n estados.

· RESET > Não é recessariamente recessário.

Idependentemente do estado inicial do zeg de desloc. ao liga, ele atinge o estado 0001 dentro de 4 1.

Logo, o zeset só é preciso, se for necessário gazantir q o contador comega sin exonomente, (etc.)

No geral, n bits $\Rightarrow n-1$ (input non gete)

1 connige um estado anonmal

dentro de n-1 1.

Johnson lounter (twisted zing)

- → n bits el o complemento da saida em serie realimentada na entrado em serie é um contador com 2×11 estados.
- → n bits ⇒ 2n 2xn estados anormais.

· O cincuito correga o valor 0001 como o paóximo estado sp. o estado atral ē oxxo