<u>Билет 7</u> Кислород. Строение, получение, свойства.

Характеристика элемента	Характеристика простого вещества		
$^{16,17,18}_{+8}O$ — кислород $_{2}(O)$ = $+8$; $_{2}(O)$ = 8 ; $_{3}(O)$ = 8 ; $_{4}(O)$ = 8 ; $_{5}(O)$ = 8 ; $_{7}(O)$ = 8 ; $_{7}(O)$ = 8 ; $_{8}(O)$ = 8 ; $_{8}(O)$ = 8 ; $_{9}(O)$ = 8 ; $_{9}($	Аллотропные модификации элемента «О» O_2 — кислород O_3 — озон O_4 — тетракислород $+8O$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow		
Распространенность элемента O_2 в воздухе, H_2O , в оксидах, в солях	Теоретические физические свойства: Летучее, легкоплавкое Реальные физические свойства: 1. Газ 2. Цвета нет 3. Вкуса нет 4. Запаха нет 5. Растворяется в воде ограниченно $M\left(O_{2}\right) = 32 \frac{c}{MOЛЬ}$ $D_{no 603 dyxy}\left(O_{2}\right) = \frac{M\left(O_{2}\right)}{M\left(603 dyxa\right)} = \frac{32}{29} > 1$ Кислород тяжелее воздуха.		

Получение кислорода:
1.
$$2 H_2 O \stackrel{\text{эл. ток}}{\to} 2 H_2 + O_2$$

2.
$$H_2O_2 \xrightarrow{MgO_2} H_2O + \frac{1}{2}O_2$$

3.
$$2 KMnO_4 \xrightarrow{T\uparrow} MnO_2 + K_2 MnO_4 + O_2$$

4.
$$KClO_3 \stackrel{T_1}{\rightarrow} KCL + \frac{1}{2}O_2$$

 $MeNO_3$: 5.

Ме - щелочь ниже Li	→	MeNO ₂ + O ₂
За Cu в ряду стандартных электронных потенциалов	→	$Me + NO_2 + O_2$
Остальные	→	$MeONO_2 + O_2$

Химические свойства кислорода:

Горение в кислороде

1. Простых веществ

Кислород окисляет большинство простых веществ и при этом образует оксиды.

Исключения:

- а) О₂ не реагирует с галогенами и благородными металлами
- b) N_2 с O_2 в обычных условиях не реагируют

$$N_2 + O_2 \stackrel{1500^{\circ}}{\rightarrow} 2 NO$$

 с) Щелочные металлы ниже Li не образуют оксиды, а образуют пероксиды

$$2 Na + O_2 \rightarrow Na_2O_2$$

 O_2 способен окислять неметаллы.

$$C+O_2 \rightarrow CO$$

$$\rightarrow CO_2$$

$$S+O_2 \rightarrow SO_2$$

$$P+O_2 \rightarrow P_2O_3$$

$$\rightarrow P_2O_5$$

О2 способен окислять металлы.

$$2Cu+O_2 \rightarrow 2CuO$$

$$2Mg+O_2 \rightarrow 2MgO$$

$$Fe+O_2 \rightarrow Fe_3O_4 \ (Fe^{+2}O \cdot Fe_2^{+3}O_3)$$

2. Доокисление оксидов в невысшей СТОК элементов

Оксиды элементов с промежуточным СТОК доокисляются в ${\rm O}_2$ до максимального.

$$P_2O_5 + O_2 \rightarrow P_2O_5$$

$$SO_2 + \frac{1}{2}O_2 \stackrel{Fe}{\rightarrow} SO_3$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

3. Горение сложных веществ

При горении сложных веществ в O_2 образуются оксиды элементов входящих в состав вещества (т.е. Те которые получаются при горении простых).

$$2PH_{3} + 2O_{2} \rightarrow P_{2}O_{5} + 3H_{2}O$$

$$CH_{4} + O_{2} \rightarrow CO_{2} + 2H_{2}O$$

$$2FeS + \frac{7}{2}O_{2} \rightarrow Fe_{2}O_{3} + 2SO_{2}$$

$$2NH_{3} + \frac{3}{2}O_{2} \rightarrow N_{2} + 3H_{2}O$$

$$2NH_{3} + 5O_{2} \stackrel{P}{\rightarrow} 2NO + 3H_{2}O$$

Хорошо горят водородные соединения и сульфиды