NP-completeness

Serge Gaspers

UNSW

Outline

Outline

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:

There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O(n^c)$, where n is the size of the input.

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:

There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O(n^c)$, where n is the size of the input.

Example

```
Polynomial: n; n^2 \log_2 n; n^3; n^{20}
Super-polynomial: n^{\log_2 n}; 2^{\sqrt{n}}; 1.001^n; 2^n; n!
```

Tractable problems

Central Question

Which computational problems have polynomial-time algorithms?

Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

 A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page:

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

Polynomial

- SHORTEST PATH: Given a graph
 G, two vertices a and b of G, and
 an integer k, does G have a simple
 a-b-path of length at most k?
- EULER TOUR: Given a graph G, does G have a cycle that traverses each edge of G exactly once?
- 2-CNF SAT: Given a propositional formula F in 2-CNF, is F satisfiable?
 A k-CNF formula is a conjunction (AND) of clauses, and each clause is a disjunction (OR) of at most k literals, which are negated or unnegated Boolean variables.

NP-complete

- LONGEST PATH: Given a graph
 G and an integer k, does G have
 a simple path of length at least k?
- HAMILTONIAN CYCLE: Given a graph G, does G have a simple cycle that visits each vertex of G?
- 3-CNF SAT: Given a propositional formula F in 3-CNF, is F satisfiable? Example:

$$(x \vee \neg y \vee z) \wedge (\neg x \vee z) \wedge (\neg y \vee \neg z).$$

Overview

What's next?

- Formally define P, NP, and NP-complete (NPC)
- (New) skill: show that a problem is NP-complete

S. Gaspers (UNSW) NP-completeness

Outline

Decision problems and Encodings

```
<Name of Decision Problem>
Input: <What constitutes an instance>
Question: <Yes/No question>
```

S. Gaspers (UNSW) NP-completeness 10

Decision problems and Encodings

```
<Name of Decision Problem>
Input: <What constitutes an instance>
Question: <Yes/No question>
```

We want to know which decision problems can be solved in polynomial time – polynomial in the size of the input n.

- Assume a "reasonable" encoding of the input
- Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polynomial time.
- Important exception: unary versus binary encoding of integers.
 - \bullet An integer x takes $\lceil \log_2 x \rceil$ bits in binary and $x = 2^{\log_2 x}$ bits in unary.

S. Gaspers (UNSW) NP-completeness 10 / 1

Formal-language framework

We can view decision problems as languages.

- Alphabet Σ : finite set of symbols. W.l.o.g., $\Sigma = \{0,1\}$
- Language L over Σ : set of strings made with symbols from Σ : $L\subseteq \Sigma^*$
- \bullet Fix an encoding of instances of a decision problem Π into Σ
- ullet Define the language $L_\Pi\subseteq \Sigma^*$ such that

 $x \in L_{\Pi} \Leftrightarrow x$ is a Yes-instance for Π

Non-deterministic Turing Machine (NTM)

- input word $x \in \Sigma^*$ placed on an infinite tape (memory)
- ullet read-write head initially placed on the first symbol of x
- computation step: if the machine is in state s and reads a, it can move into state s', writing b, and moving the head into direction $D \in \{L, R\}$ if $((s,a),(s',b,D)) \in \delta$.

- Q: finite, non-empty set of states
- \bullet $\Gamma :$ finite, non-empty set of tape symbols
- $_\in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \setminus \{b\}$: set of input symbols
- $q_0 \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta \subseteq (Q \setminus A \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$: transition relation, where L stands for a move to the left and R for a move to the right.

Accepted Language

Definition 1

A NTM accepts a word $x \in \Sigma^*$ if there exists a sequence of computation steps starting in the start state and ending in an accept state.

Definition 2

The language accepted by an NTM is the set of words it accepts.

Acceptance in polynomial time

Definition 3

A language L is accepted in polynomial time by an NTM M if

- ullet L is accepted by M, and
- \bullet there is a constant k such that for any word $x\in L$, the NTM M accepts x in $O(|x|^k)$ computation steps.

Deterministic Turing Machine

Definition 4

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition relation contains at most one tuple $((s,a),(\cdot,\cdot,\cdot))$ for each $s\in Q\setminus A$ and $a\in \Gamma.$

The transition relation δ can be viewed as a function

$$\delta: Q \setminus A \times \Gamma \to Q \times \Gamma \times \{L, R\}.$$

 \Rightarrow For a given input word $x \in \Sigma^*$, there is exactly one sequence of computation steps starting in the start state.

DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

- Random Access Machine (RAM, used for algorithms in the textbook)
- variants of Turing machines (multiple tapes, infinite only in one direction, ...)

• ...

P and NP

Definition 5 (P)

 $\mathsf{P} = \{L \subseteq \Sigma^*: \text{ there is a DTM accepting } L \text{ in polynomial time}\}$

Definition 6 (NP)

 $\mathsf{NP} = \{L \subseteq \Sigma^* : \text{ there is a NTM accepting } L \text{ in polynomial time} \}$

Definition 7 (coNP)

 $\mathsf{coNP} = \{L \subseteq \Sigma^* : \Sigma^* \setminus L \in \mathsf{NP}\}$

coP?

Theorem 8

If $L \in P$, then there is a polynomial-time DTM that halts in an accepting state on every word in L and it halts in a non-accepting state on every word not in L.

S. Gaspers (UNSW) NP-completeness 18

Theorem 8

If $L \in P$, then there is a polynomial-time DTM that halts in an accepting state on every word in L and it halts in a non-accepting state on every word not in L.

Proof sketch.

Suppose $L \in P$. By the definition of P, there is a DTM M that accepts L in polynomial time.

Idea: design a DTM M' that simulates M for $c \cdot n^k$ steps, where $c \cdot n^k$ is the running time of M and transitions to a non-accepting state if M does not halt in an accepting state.

(Note that this proof is nonconstructive: we might not know the running time of M.)

NP and certificates

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input $x \in L$.

We can encode these non-deterministic choices into a certificate $\it c$, which is a polynomial-length word.

Now, there exists a DTM, which, given x and c, verifies that $x \in L$ in polynomial time.

Thus, $L\in \mbox{NP}$ iff there is a DTM V and for each $x\in L$ there exists a polynomial-length certificate c such that V(x,c)=1, but $V(y,\cdot)=0$ for each $y\notin L$.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha : \text{var}(F) \to \{0,1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT

Input: CNF formula F

Question: Does F have a satisfying assignment?

Example: $(x \vee \neg y \vee z) \wedge (\neg x \vee z) \wedge (\neg y \vee \neg z)$.

Lemma 9

CNF- $SAT \in NP$.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha : \text{var}(F) \to \{0,1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT

Input: CNF formula F

Question: Does F have a satisfying assignment?

Example: $(x \vee \neg y \vee z) \wedge (\neg x \vee z) \wedge (\neg y \vee \neg z)$.

Lemma 9

CNF- $SAT \in NP$.

Proof.

Certificate: assignment α to the variables.

Given a certificate, it can be checked in polynomial time whether all clauses are satisfied.

Brute-force algorithms for problems in NP

Theorem 10

Every problem in NP can be solved in exponential time.

Brute-force algorithms for problems in NP

Theorem 10

Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x\in\Pi$ (i.e., every YES-instance for Π) \exists string $c\in\{0,1\}^*$, $|c|\leq p(|x|)$, such that V(x,c)=1, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $c \in \{0,1\}^*$, V(x,c)=0.

Brute-force algorithms for problems in NP

Theorem 10

Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x\in\Pi$ (i.e., every YES-instance for Π) \exists string $c\in\{0,1\}^*$, $|c|\leq p(|x|)$, such that V(x,c)=1, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $c \in \{0,1\}^*$, V(x,c)=0.

Now, we can prove there exists an exponential-time algorithm for Π with input x:

- For each string $c \in \{0,1\}^*$ with $|c| \le p(|x|)$, evaluate V(x,c) and return YES if V(x,c)=1.
- Return No.

Running time: $2^{p(|x|)} \cdot n^{O(1)} \subseteq 2^{O(2 \cdot p(|x|))} = 2^{O(p(|x|))}$, but non-constructive.

Outline

Polynomial-time reduction

Definition 11

A language L_1 is polynomial-time reducible to a language L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$,

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.

A polynomial time algorithm computing f is a reduction algorithm.

S. Gaspers (UNSW) NP-completeness 23

New polynomial-time algorithms via reductions

Lemma 12

If $L_1, L_2 \in \Sigma^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in \mathsf{P}$ implies $L_1 \in \mathsf{P}$.

NP-completeness

Definition 13 (NP-hard)

A language $L \subseteq \Sigma^*$ is NP-hard if

 $L' \leq_P L$ for every $L' \in \mathsf{NP}$.

Definition 14 (NP-complete)

A language $L\subseteq \Sigma^*$ is NP-complete (in NPC) if

- \bullet $L \in \mathsf{NP}$, and
- extstyle 2 L is NP-hard.

A first NP-complete problem

Theorem 15

CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT (Cook71; Levin73) and then CNF-SAT (Karp72).

Proving NP-completeness

Lemma 16

If L is a language such that $L' \leq_P L$ for some $L' \in \mathsf{NPC}$, then L is NP -hard. If, in addition, $L \in \mathsf{NP}$, then $L \in \mathsf{NPC}$.

Proving NP-completeness

Lemma 16

If L is a language such that $L' \leq_P L$ for some $L' \in \mathsf{NPC}$, then L is NP -hard. If, in addition, $L \in \mathsf{NP}$, then $L \in \mathsf{NPC}$.

Proof.

For all $L'' \in \mathbb{NP}$, we have $L'' \leq_P L' \leq_P L$.

By transitivity, we have $L'' \leq_P L$.

Thus, L is NP-hard.

S. Gaspers (UNSW) NP-completeness 2

Proving NP-completeness (2)

Method to prove that a language L is NP-complete:

- Prove $L \in \mathbb{NP}$
- \bigcirc Prove L is NP-hard.
 - ullet Select a known NP-complete language L'.
 - Describe an algorithm that computes a function f mapping every instance $x \in \Sigma^*$ of L' to an instance f(x) of L.
 - Prove that $x \in L' \Leftrightarrow f(x) \in L$ for all $x \in \Sigma^*$.
 - ullet Prove that the algorithm computing f runs in polynomial time.

Outline

Theorem 17

3-CNF SAT is NP-complete.

Proof.

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C = (\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k)$.

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C=(\ell_1\vee\ell_2\vee\cdots\vee\ell_k)$. Create k-3 new variables y_1,\ldots,y_{k-3} , and add the clauses $(\ell_1\vee\ell_2\vee y_1),(\neg y_1\vee\ell_3\vee y_2),(\neg y_2\vee\ell_4\vee y_3),\ldots,(\neg y_{k-3}\vee\ell_{k-1}\vee\ell_k)$.

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F' as follows. For each clause C in F:

- If C has at most 3 literals, then copy C into F'.
- Otherwise, denote $C=(\ell_1\vee\ell_2\vee\cdots\vee\ell_k)$. Create k-3 new variables y_1,\ldots,y_{k-3} , and add the clauses $(\ell_1\vee\ell_2\vee y_1),(\neg y_1\vee\ell_3\vee y_2),(\neg y_2\vee\ell_4\vee y_3),\ldots,(\neg y_{k-3}\vee\ell_{k-1}\vee\ell_k)$.

Show that F is satisfiable $\Leftrightarrow F'$ is satisfiable.

Show that F' can be computed in polynomial time (trivial; use a RAM).

Clique

A clique in a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that every two vertices of S are adjacent in G.

CLIQUE

Input: Graph G, integer k

Question: Does G have a clique of size k?

Theorem 18

CLIQUE is NP-complete.

 \bullet CLIQUE is in $\ensuremath{\mathsf{NP}}$

- CLIQUE is in NP
- Let $F = C_1 \wedge C_2 \wedge \dots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

$$\neg x \bullet$$
 $\bullet x$

$$y \bullet$$

- Let $F = C_1 \wedge C_2 \wedge \dots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_r=(\ell_1^r\vee\cdots\vee\ell_w^r)$, $1\leq r\leq k$, create w new vertices v_1^r,\ldots,v_w^r

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

- CLIQUE is in NP
- Let $F = C_1 \wedge C_2 \wedge \dots C_k$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_r=(\ell_1^r\vee\cdots\vee\ell_w^r)$, $1\leq r\leq k$, create w new vertices v_1^r,\ldots,v_w^r
- ullet Add an edge between v_i^r and v_j^s if

$$r \neq s$$
 and
$$\ell^r_i \neq \neg \ell^s_j \qquad \text{where } \neg \neg x = x.$$

Check correctness and polynomial running time

• Correctness: F has a satisfying assignment iff G has a clique of size k.

$$(\neg x \vee y \vee z) \wedge (x \vee \neg y \vee \neg z) \wedge (x \vee y)$$

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow): Let α be a sat. assignment for F. For each clause C_r , choose a literal ℓ_i^r with $\alpha(\ell_i^r)=1$, and denote by s^r the corresponding vertex in G. Now, $\{s^r:1\leq r\leq k\}$ is a clique of size k in G since $\alpha(x)\neq\alpha(\neg x)$.

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

$$(\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y)$$

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow): Let α be a sat. assignment for F. For each clause C_r , choose a literal ℓ_i^r with $\alpha(\ell_i^r)=1$, and denote by s^r the corresponding vertex in G. Now, $\{s^r:1\leq r\leq k\}$ is a clique of size k in G since $\alpha(x)\neq\alpha(\neg x)$.
- (\Leftarrow): Let S be a clique of size k in G. Then, S contains exactly one vertex $s_r \in \{v_1^r, \ldots, v_w^r\}$ for each $r \in \{1, \ldots, k\}$. Denote by l^r the corresponding literal. Now, for any r, r', it is not the case that $l_r = \neg l_{r'}$. Therefore, there is an assignment α to $\operatorname{var}(F)$ such that $\alpha(l_r) = 1$ for each $r \in \{1, \ldots, k\}$ and α satisfies F.

Vertex Cover

A vertex cover in a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that every edge of G has an endpoint in S.

Vertex Cover

Input: Graph G, integer k

Question: Does G have a vertex cover of size k?

Theorem 19

VERTEX COVER is NP-complete.

The proof is left as an exercise.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G=(V,E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

HAMILTONIAN CYCLE

Input: Graph G

Question: Does G have a Hamiltonian Cycle?

Theorem 20

HAMILTONIAN CYCLE is NP-complete.

Proof sketch.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G=(V,E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

HAMILTONIAN CYCLE

Input: Graph G

Question: Does G have a Hamiltonian Cycle?

Theorem 20

HAMILTONIAN CYCLE is NP-complete.

Proof sketch.

ullet Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G=(V,E) is a cycle visiting each vertex exactly once.

(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

HAMILTONIAN CYCLE

Input: Graph G

Question: Does G have a Hamiltonian Cycle?

Theorem 20

HAMILTONIAN CYCLE is NP-complete.

Proof sketch.

- HAMILTONIAN CYCLE is in NP: the certificate is a Hamiltonian Cycle of G.
- Let us show: Vertex Cover \leq_P Hamiltonian Cycle

S. Gaspers (UNSW) NP-completeness

Hamiltonian Cycle (2)

Theorem 21

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

• Let us show: VERTEX COVER ≤_P HAMILTONIAN CYCLE

Hamiltonian Cycle (2)

Theorem 21

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_P Hamiltonian Cycle
- Let (G = (V, E), k) be an instance for VERTEX COVER (VC).
- ullet We will construct an equivalent instance G' for Hamiltonian Cycle (HC).

Hamiltonian Cycle (2)

Theorem 21

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_P Hamiltonian Cycle
- Let (G = (V, E), k) be an instance for VERTEX COVER (VC).
- ullet We will construct an equivalent instance G' for HAMILTONIAN CYCLE (HC).
- Intuition: Non-deterministic choices
 - for VC: which vertices to select in the vertex cover
 - for HC: which route the cycle takes

Hamiltonian Cycle (3)

Theorem 22

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

• Add k vertices s_1, \ldots, s_k to G' (selector vertices)

Hamiltonian Cycle (3)

Theorem 22

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

- Add k vertices s_1, \ldots, s_k to G' (selector vertices)
- ullet Each edge of G will be represented by a gadget (subgraph) of G'
- ullet s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G' representing these edges.

Hamiltonian Cycle (3)

Theorem 22

HAMILTONIAN CYCLE is NP-complete.

Proof sketch (continued).

- Add k vertices s_1, \ldots, s_k to G' (selector vertices)
- ullet Each edge of G will be represented by a gadget (subgraph) of G'
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G' representing these edges.
- Attention: we need to allow for an edge to be covered by both endpoints

....

Hamiltonian Cycle (4)

Gadget representing the edge $\{u,v\}\in E$

Its states: 'covered by u', 'covered by u and v', 'covered by v'

Hamiltonian Cycle (5)

Outline

Further Reading

- Chapter 34, NP-Completeness, in (CormenLRS09)
- Garey and Johnson's influential reference book (GareyJ79)

References I