week $10 \mod 8 + 9$

```
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.5.3
## -- Attaching packages ----- tidyverse 1.2.1 -
## v ggplot2 3.2.1
                   v purrr
                             0.3.2
## v tibble 2.1.3
                  v dplyr
                            0.8.1
          0.8.3 v stringr 1.4.0
## v tidyr
          1.3.1
## v readr
                   v forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.5.3
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'tidyr' was built under R version 3.5.3
## Warning: package 'purrr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## Warning: package 'stringr' was built under R version 3.5.3
## Warning: package 'forcats' was built under R version 3.5.3
## -- Conflicts ----- tidyverse_conflicts() -
## x dplyr::filter() masks stats::filter()
                  masks stats::lag()
## x dplyr::lag()
library(ModelMetrics)
## Attaching package: 'ModelMetrics'
## The following object is masked from 'package:base':
##
##
      kappa
library(modelr)
## Warning: package 'modelr' was built under R version 3.5.3
##
## Attaching package: 'modelr'
## The following objects are masked from 'package: ModelMetrics':
##
      mae, mse, rmse
library(knitr)
## Warning: package 'knitr' was built under R version 3.5.3
```

NB: you need to download this zip file to your working directory for the class

```
#unzip("DontGetKicked.zip")
```

```
lemon<-read_csv("training.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_character(),
##
     RefId = col_double(),
##
     IsBadBuy = col_double(),
##
     VehYear = col_double(),
##
     VehicleAge = col_double(),
     VehOdo = col_double(),
##
##
     BYRNO = col_double(),
##
     VNZIP1 = col_double(),
     VehBCost = col_double(),
##
##
     IsOnlineSale = col_double(),
     WarrantyCost = col_double()
##
## )
## See spec(...) for full column specifications.
  1. Calculate the proportion of lemons in the training dataset using the IsBadBuy variable.
lemon%>%summarise(mean(IsBadBuy))
## # A tibble: 1 x 1
##
     `mean(IsBadBuy)`
##
                 <dbl>
                 0.123
prop.table(table(lemon$IsBadBuy))
##
                      1
## 0.8770125 0.1229875
  2. Calculate the proportion of lemons by Make.
prop.table(table(lemon$Make,lemon$IsBadBuy),margin = 1 )
##
##
                            0
##
     ACURA
                   0.72727273 0.27272727
##
     BUICK
                   0.84305556 0.15694444
##
                   0.84848485 0.15151515
     CADILLAC
##
     CHEVROLET
                   0.90253942 0.09746058
##
     CHRYSLER
                   0.87143826 0.12856174
##
     DODGE
                   0.89676270 0.10323730
##
     FORD
                   0.84590889 0.15409111
##
     GMC
                   0.88443760 0.11556240
##
                   0.89134809 0.10865191
     HONDA
##
     HUMMER
                   1.00000000 0.00000000
##
     HYUNDAI
                   0.87134180 0.12865820
     INFINITI
##
                   0.66666667 0.333333333
##
     ISUZU
                   0.93283582 0.06716418
##
     JEEP
                   0.84549878 0.15450122
##
     KIA
                   0.88244767 0.11755233
##
     LEXUS
                   0.64516129 0.35483871
##
     LINCOLN
                   0.70103093 0.29896907
```

```
##
     MAZDA
                  0.83861083 0.16138917
##
     MERCURY
                  0.83023001 0.16976999
##
     MINI
                  0.66666667 0.333333333
##
                  0.88058252 0.11941748
     MITSUBISHI
##
     NISSAN
                  0.84028777 0.15971223
##
     OLDSMOBILE
                  0.79835391 0.20164609
##
     PLYMOUTH
                  0.5000000 0.50000000
##
     PONTIAC
                  0.88093001 0.11906999
##
     SATURN
                  0.85852982 0.14147018
##
     SCION
                  0.91472868 0.08527132
##
     SUBARU
                  0.78571429 0.21428571
##
     SUZUKI
                  0.85316265 0.14683735
                  0.90034965 0.09965035
##
     TOYOTA
##
     TOYOTA SCION 1.00000000 0.00000000
##
     VOLKSWAGEN
                  0.85820896 0.14179104
##
     VOLVO
                  1.00000000 0.00000000
lemon%>%
  group_by(Make)%>%
  summarise(mean_lemon=mean(IsBadBuy))%>%
  arrange(-mean_lemon)%>%
 print(n=100)
## # A tibble: 33 x 2
##
      Make
                   mean_lemon
##
      <chr>
                        <dbl>
   1 PLYMOUTH
##
                       0.5
##
  2 LEXUS
                       0.355
##
  3 INFINITI
                       0.333
  4 MINI
##
                       0.333
##
  5 LINCOLN
                       0.299
##
  6 ACURA
                       0.273
## 7 SUBARU
                       0.214
##
   8 OLDSMOBILE
                       0.202
## 9 MERCURY
                       0.170
## 10 MAZDA
                        0.161
## 11 NISSAN
                       0.160
```

12 BUICK

13 JEEP

14 FORD

15 CADILLAC

17 VOLKSWAGEN

16 SUZUKI

18 SATURN

19 HYUNDAI

22 PONTIAC

23 KIA

24 GMC

25 HONDA

26 DODGE

27 TOYOTA

28 CHEVROLET ## 29 SCION

20 CHRYSLER

21 MITSUBISHI

0.157

0.155

0.154

0.152

0.147

0.142

0.141

0.129

0.129

0.119

0.119

0.118

0.116

0.109

0.103

0.0997 0.0975

0.0853

```
## 30 ISUZU 0.0672
## 31 HUMMER 0
## 32 TOYOTA SCION 0
## 33 VOLVO 0
```

3. Now, predict the probability of being a lemon using a linear model (lm(y~x), with covariates of your choosing from the training dataset.

```
4. Make predictions from the linear model.
lin_mod<-lm(IsBadBuy~VehicleAge+VehBCost,data=lemon)</pre>
lemon%>%add_predictions(lin_mod)->lemon
# Hint -- lower threshold to improve predicted class distribution
lemon%>%mutate(lin_mod_out=ifelse(pred>.25,1,0))->lemon
5+6. Now, predict the probability of being a lemon using a logistic regression.
logit_mod<-glm(IsBadBuy~</pre>
                VehicleAge+
                 VehBCost,
               data=lemon,
               family=binomial(link="logit"))
summary(logit_mod)
##
## Call:
## glm(formula = IsBadBuy ~ VehicleAge + VehBCost, family = binomial(link = "logit"),
       data = lemon)
##
##
## Deviance Residuals:
       Min
                 1Q
##
                      Median
                                    3Q
                                            Max
## -1.0368 -0.5387 -0.4523 -0.3705
                                         3.5062
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.525e+00 6.379e-02 -39.58
                                                <2e-16 ***
## VehicleAge
               2.569e-01 6.867e-03
                                        37.41
                                                <2e-16 ***
## VehBCost
               -9.091e-05 6.877e-06 -13.22
                                                <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 54421 on 72982 degrees of freedom
## Residual deviance: 52264
                             on 72980
                                        degrees of freedom
## AIC: 52270
## Number of Fisher Scoring iterations: 5
lemon%>%
 mutate(pred_logit=predict(logit_mod,type="response"))->lemon
## Classifying 1s and Os
```

Hint -- lower threshold to improve predicted class distribution

```
lemon%>%mutate(pred_logit_out=ifelse(pred_logit>.25,1,0))->lemon
#Confusion Matrix 7. Create confusion matrix and compare.
## Linear Model
caret::confusionMatrix(data=as.factor(as.character(lemon$pred_logit_out)),
                       reference=as.factor(as.character(lemon$IsBadBuy)),positive="1")
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
            0 61623
                     8006
##
            1 2384
                      970
##
##
                  Accuracy : 0.8576
##
                    95% CI: (0.8551, 0.8602)
##
##
       No Information Rate: 0.877
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.0969
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.10807
##
               Specificity: 0.96275
            Pos Pred Value: 0.28921
##
            Neg Pred Value: 0.88502
##
                Prevalence: 0.12299
##
##
            Detection Rate: 0.01329
##
      Detection Prevalence: 0.04596
         Balanced Accuracy: 0.53541
##
##
          'Positive' Class : 1
##
##
ModelMetrics::recall(actual=lemon$IsBadBuy,predicted=lemon$lin_mod_out)
## [1] 0.06038324
ModelMetrics::tnr(actual=lemon$IsBadBuy,predicted=lemon$lin_mod_out)
## [1] 0.9805178
## Logit Model
caret::confusionMatrix(data=as.factor(lemon$pred_logit_out),
                       reference=as.factor(lemon$IsBadBuy),
                       positive="1")
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                        1
            0 61623 8006
##
##
            1 2384
                      970
##
##
                  Accuracy : 0.8576
```

```
95% CI: (0.8551, 0.8602)
##
       No Information Rate: 0.877
##
       P-Value [Acc > NIR] : 1
##
##
##
                      Kappa: 0.0969
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.10807
               Specificity: 0.96275
##
##
            Pos Pred Value: 0.28921
            Neg Pred Value: 0.88502
##
                Prevalence: 0.12299
##
##
            Detection Rate: 0.01329
##
      Detection Prevalence: 0.04596
##
         Balanced Accuracy: 0.53541
##
##
          'Positive' Class: 1
##
ModelMetrics::recall(actual=lemon $IsBadBuy,predicted=lemon $pred_logit_out)
## [1] 0.108066
ModelMetrics::tnr(actual=lemon$IsBadBuy,predicted=lemon$lin_mod_out)
## [1] 0.9805178
  8. Plot distribution of lemon by factors.
lemon_sum<-lemon%>%
  group_by(Make)%>%
  summarize(prob_badbuy=mean(IsBadBuy))%>%
  arrange(-prob_badbuy)
gg1<-ggplot(lemon_sum,aes(y=prob_badbuy,</pre>
                           x=fct_reorder(.f=as.factor(Make),.x=prob_badbuy),
                           fill=Make))
gg1<-gg1+geom_bar(stat="identity",position="dodge")</pre>
gg1<-gg1+xlab("Make")+ylab("Pr(BadBuy)")</pre>
gg1<-gg1+theme(legend.title=element_blank(),legend.position = "none")</pre>
gg1<-gg1+coord_flip()</pre>
gg1<-gg1+geom_text(aes(label=round(prob_badbuy,2)),
                    position=position_dodge(width=.9),
                    vjust=-.25)
gg1
```


9. Create a table that shows the probability of a car being a bad buy by make.

kable(lemon_sum)

Make	prob_badbuy
PLYMOUTH	0.5000000
LEXUS	0.3548387
INFINITI	0.3333333
MINI	0.33333333
LINCOLN	0.2989691
ACURA	0.2727273
SUBARU	0.2142857
OLDSMOBILE	0.2016461
MERCURY	0.1697700
MAZDA	0.1613892
NISSAN	0.1597122
BUICK	0.1569444
JEEP	0.1545012
FORD	0.1540911
CADILLAC	0.1515152
SUZUKI	0.1468373
VOLKSWAGEN	0.1417910
SATURN	0.1414702
HYUNDAI	0.1286582
CHRYSLER	0.1285617
MITSUBISHI	0.1194175

Make	prob_badbuy
PONTIAC	0.1190700
KIA	0.1175523
GMC	0.1155624
HONDA	0.1086519
DODGE	0.1032373
TOYOTA	0.0996503
CHEVROLET	0.0974606
SCION	0.0852713
ISUZU	0.0671642
HUMMER	0.0000000
TOYOTA SCION	0.0000000
VOLVO	0.0000000

Bonus. Create a heatmap of the probability of a car being a bad buy by make and size.

