PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-100319

(43) Date of publication of application: 12.04.1994

(51)Int.CI.

C01G 55/00 B01J 23/89

(21)Application number : **04-275019**

(71)Applicant: TOYOTA CENTRAL RES & DEV

LAB INC

TOYOTA MOTOR CORP

(22)Date of filing:

18.09.1992

(72)Inventor: TSUJI RYUSUKE

SAKANO KOJI

SUGIURA MASAHIRO

UENO HIDEAKI MIZUNO TATSUJI

(54) MULTIPLE OXIDE WITH PEROVSKITE STRUCTURE AND ITS PRODUCTION (57) Abstract:

PURPOSE: To provide the subject multiple oxide high in catalytic activity and adsorptive activity etc.

CONSTITUTION: The objective multiple oxide with perovskite structure of formula M1M21-XM3O3 (M1 is La, Sr, Ce, Ba or Ca; M2 is Co or Fe; M3 is Pt or Pd; 0.005≤X≤0.2) can be obtained by the following method: an aqueous solution of (A) nitrates or acetates of the constituent metallic elements of the above multiple oxide and (B) citric acid is evaporated to dryness to form a citric acid complex which is then heated in a vacuum or an inert gas atmosphere at ≥350°C into a preliminarily baked form, which is then baked in an oxidative atmosphere, thus affording the objective multiple oxide where ≥90wt.% of the M3 metal (Pt or Pd) exist in the crystal lattice.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-100319

(43)公開日 平成6年(1994)4月12日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 1 G 55/00

B 0 1 J 23/89

A 8017-4G

M 8017-4G

審査請求 未請求 請求項の数2(全 8 頁)

(21)出顧番号

特願平4-275019

(71)出願人 000003609

株式会社豊田中央研究所

(22)出願日

平成 4年(1992) 9月18日

愛知県愛知郡長久手町大字長湫字横道41番

地の

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 辻 龍介

愛知県愛知郡長久手町大字長湫字横道41番

地の1株式会社豊田中央研究所内

(72)発明者 坂野 幸次

受知県愛知郡長久手町大字長湫字横道41番

地の1株式会社豊田中央研究所内

最終頁に続く

(54) 【発明の名称】 ペロプスカイト型構造複合酸化物およびその製造方法

(57)【要約】

【目的】 触媒活性や吸着活性等の特性が高いペロブス カイト型構造複合酸化物およびその製造方法を提供す る。

【構成】 M^1 M^2 $_{1-x}$ M^3 O 。 $(M^1$ はLa、Sr、Ce、Ba、Caであり、 M^1 はCo、Feであり、 M^3 はPt、Pdである。 $0.005 \le X \le 0.2$)で示されるペロブスカイト型構造複合酸化物の構成金属元素の硝酸塩または酢酸塩とクエン酸との水溶液を乾燥してクエン酸錯体を形成し、酸クエン酸錯体を真空中または不活性ガス中350 ℃以上で加熱して仮焼成体を形成し、その後酸仮焼成体を酸化雰囲気中で焼成することにより、上記 M^3 金属(PtまたはPd)の90%以上が結晶格子中に存在する複合酸化物を製造する。

【特許請求の範囲】

【請求項1】 M¹ M¹ 1-x M³ x O, (式中、M¹ は ランタン、ストロンチウム、セリウム、パリウム、カル シウムのうちの少なくとも1種、M' はコバルト、鉄の うちの少なくとも一方、M'は白金、パラジウムのうち の少なくとも一方であり、Xは0.005≦X≦0.2 である) で示されるペロブスカイト型構造複合酸化物に おいて、

上記式中のM'の元素は、その90%以上が結晶格子中 に存在することを特徴とするペロブスカイト型構造複合 10 化物よりなる触媒は、ある程度の排ガス中の有害物質を

【請求項2】 M¹ M¹ 1-x M¹ x O, (式中、M¹ は ランタン、ストロンチウム、セリウム、パリウム、カル シウムのうちの少なくとも1種、M' はコバルト、鉄の うちの少なくとも一方、M'は白金、パラジウムのうち の少なくとも一方であり、Xは0.005≦X≦0.2 である)で示されるペロブスカイト型構造複合酸化物を 構成する金属元素の塩とクエン酸とを溶解した水溶液を 調製する第1工程と、

上記水溶液を乾燥することにより上記金属元素とクエン 20 酸との錯体を形成する第2工程と、

上記錯体を真空中または不活性ガス中350℃以上で加 熱することにより仮焼成する第3工程と、

上記仮焼成体を酸化雰囲気で焼成することによりペロブ スカイト型構造複合酸化物を形成する第4工程とよりな るととを特徴とするペロブスカイト型構造複合酸化物の 製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、排ガス浄化用触媒、天 30 然ガス等の燃焼用触媒、あるいは窒素酸化物等の有害物 質の吸着剤等に利用することができるペロブスカイト型 構造複合酸化物およびその製造方法に関するものであ

[0002]

【従来の技術】内燃機関あるいは工場等より排出される 排ガス中に含まれる窒素酸化物、炭化水素、一酸化炭素 等の有害物質を酸化・還元等により除去する触媒、天然 ガス、合成ガス等の燃焼用触媒あるいは窒素酸化物等の 有機物質の吸着剤等には、白金、パラジウム等の貴金属 元素が有効であるとされている。

【0003】最近では、上記貴金属元素をペロブスカイ ト型構造の結晶中に含ませたものが注目されている。と のペロブスカイト型構造とは、複合酸化物に見られる結 晶形態の一形態である。

【0004】貴金属元素をこの構造の結晶格子中に含ま せると貴金属粒子が微細化して分散度が向上し、さら に、触媒活性、吸着活性に寄与する格子欠陥が適度に生 成するため、貴金属元素の触媒活性、吸着活性等の特性 が向上する。

【0005】従来、とのような特性を有するペロプスカ イト型構造複合酸化物としては、化学式M1 M11-x M '、O, (式中、M'はランタン、セリウム等の希土類 元素、M'はコバルト、鉄、アルミニウム、M'は貴金 **属元素である)で示される構造のものが提案されている** (特開昭50-83295号公報、特開平2-1690 33号公報、特開平3-131342号公報、特開平3 -200058号公報)。

【0006】例えば、とのペロブスカイト型構造複合酸 除去することができる。しかし、近年環境汚染の問題が 深刻化していることよりさらに排ガスの浄化基準が厳し くなり、従来のとの種触媒では浄化活性が不十分であ

[0007]

【発明が解決しようとする課題】そこで、本発明者ら は、その原因を解明するために、従来のペロブスカイト 型構造複合酸化物について、特に貴金属元素の結晶格子 中での存在形態を検討した。

【0008】それによると、従来のものでは、ペロブス カイト型構造の結晶格子中に含まれる貴金属元素の量が 85%以下と少ないことが判明した。貴金属元素が結晶 格子中に存在する割合が低いと、結晶格子中に入らなか った貴金属元素の粒子が微細化せず、約40Aサイズの 凝集体となる。そのため、複合酸化物中における貴金属 元素の分散度が増加せず、触媒活性等の特性が向上しな 41

【0009】本発明者らは、さらに検討を重ね、上記結 晶格子中の貴金属元素の存在形態が複合酸化物の調製と 関係すると考え、複合酸化物の製造方法についても着目

【0010】従来の複合酸化物の製造は、(a)上記べ ロブスカイト型構造の化学式を構成する金属元素の金属 単体、または酸化物、水酸化物、金属塩を出発原料とし て、これらの粉末を混合し、その後焼成する方法、ある いは(b)上記金属元素の硝酸塩の混合水溶液を触媒担 体に含浸させ、その後熱処理する方法、(c)上記金属 元素の塩(硝酸塩または酢酸塩)にクエン酸を加えた混 合溶液を用いてクエン酸錯体を形成し、その後焼成する 方法等により行われている。

【0011】(a)の粉末混合の場合、混合が不十分と なるため、構成元素が均一に分散することが困難とな る。従って、貴金属元素が結晶格子中に存在する割合が 増加せず、最高でも85%程度となる。

【0012】また、(b)の金属元素の硝酸塩の混合水 溶液を用いる場合、該水溶液中で金属イオンが不安定と なり、重い元素と軽い元素との濃度ムラや沈降が生じ る。そのため、触媒担体に含浸した後の乾燥工程で貴金 属元素の不均一化が生じ、焼成時の結晶化率が低下す 50 る。また、貴金属元素が結晶格子中に存在する割合も低 3

下してしまう。

【0013】また、(c)の金属元素のクエン酸錯体を 形成する場合、クエン酸錯体を形成して焼成するまでに クエン酸錯体を加熱分解するために真空中200~30 0℃で加熱している。しかし、この加熱が不十分である ため、出発原料である金属元素の塩(硝酸塩または酢酸 塩) が残存してしまう。そのため、結晶化前の金属イオ ンの拡散がスムーズに行われず、貴金属元素が結晶格子 中に存在する割合が低下してしまう。

【0014】とのように、従来のペロブスカイト型構造 10 の複合酸化物は、貴金属元素の結晶格子中での存在形態 に問題があり、触媒に使用した場合の触媒活性、吸着活 性等の特性が向上しない。

【0015】本発明は、上記従来技術の問題点に鑑みな されたものであり、触媒活性や吸着活性等の特性に優れ たペロブスカイト型構造複合酸化物およびその製造方法 を提供することを目的とする。

[0016]

【課題を解決するための手段】

(第1発明の構成)本発明のペロブスカイト型構造複合 20 酸化物 (第1発明とする) は、M¹ M² 1-x M³ x O₃ (式中、M¹ はランタン、ストロンチウム、セリウム、 バリウム、カルシウムのうちの少なくとも1種、M²は コバルト、鉄のうちの少なくとも一方、M'は白金、バ ラジウムのうちの少なくとも一方であり、XはO.OO 5≤X≤0.2である)で示されるペロブスカイト型構 造複合酸化物において、上記式中のM'の元素は、その 90%以上が結晶格子中に存在することを特徴とするも

【0017】(第2発明の構成)本発明のペロブスカイ 30 ト型構造複合酸化物の製造方法(第2発明とする)は、 M¹ M² 1-x M³ x O, (式中、M¹ はランタン、スト ロンチウム、セリウム、バリウム、カルシウムのうちの 少なくとも1種、M'はコバルト、鉄のうちの少なくと も一方、M' は白金、パラジウムのうちの少なくとも一 方であり、Xは0.005≦X≦0.2である)で示さ れるペロブスカイト型構造複合酸化物を構成する金属元 素の塩とクエン酸とを溶解した水溶液を調製する第1工 程と、上記水溶液を乾燥することにより上記金属元素と クエン酸との錯体を形成する第2工程と、上記錯体を真 空中または不活性ガス中350℃以上で加熱することに より仮焼成する第3工程と、上記仮焼成体を酸化雰囲気 で焼成するととによりペロブスカイト型構造複合酸化物 を形成する第4工程とよりなることを特徴とするもので ある。

[0018]

【作用】

(第1発明の作用)本第1発明では、M'M',-, M' **、〇,においてM'の元素(白金またはパラジウム)の** パラジウムの大部分は粒子が微細化(約2 Å)し、触媒 等の活性種としての分散度が向上する。また、結晶格子 中に存在しない白金またはパラジウムは粒子が約40人 サイズの凝集体となるため、触媒等の活性種とはならな い。しかし、本第1発明ではこのような白金またはパラ ジウムが少量であるためこの影響は極めて少ない。さら に、M'の元素が結晶格子中に存在しないと、M'と対 をなすM¹の元素も結晶格子中に存在しない。この結晶 格子中に存在しないM'の元素は単独に酸化物となって 不純物として混入する。この不純物は触媒等の活性種と しての機能を呈さず、しかも触媒等の活性点上に堆積し て活性を低下させる。しかし、本第1発明ではこのよう な不純物も少ない。

【0019】(第2発明の作用)本第2発明では、ペロ ブスカイト型構造複合酸化物を構成する金属元素のクエ ン酸錯体を形成する。とのクエン酸錯体は、クエン酸の カルボキシル基に金属イオンが連結するため、クエン酸 を中心に金属イオン同志が均一に接近した状態を形成す る。同時に金属イオンの濃度ムラや沈降を防止する。そ のため、ペロブスカイト型構造複合酸化物を形成する焼 成時に金属元素が結晶格子中に入りやすくなる。

[0020]焼成の前にクエン酸錯体を真空中または不 活性ガス中350℃以上で加熱することにより、金属元 素が結晶格子中に入ることを阻害するクエン酸および出 発原料である金属元素の塩からの残存物(有機物、ある いは例えば硝酸塩を使用した場合の硝酸根等)を加熱分 解によりほとんど除去するため、金属元素がスムーズに 結晶格子中に入いることができる。従って、結晶格子中 の金属元素の存在割合が増加する。

[0021]

【発明の効果】

(第1発明の効果) 本第1発明のペロブスカイト型構造 複合酸化物は、白金またはパラジウムの90%以上が金 属イオンとして結晶格子中に存在するため、白金または パラジウムの粒子が微細化し分散度が向上するとともに 結晶格子欠陥が適度に生成するため、触媒活性、吸着性 等の特性が向上する。

【0022】(第2発明の効果)本第2発明では、上記 本第1発明の特性に優れたペロブスカイト型構造複合酸 40 化物を製造することができる。

[0023]

【実施例】以下、本発明をより具体的にした具体例を説 明する。

【0024】(第1発明の具体例)本第1発明のペロブ スカイト型構造複合酸化物は、M¹ M² 1-x M³ x O, (式中、M¹ はランタン、ストロンチウム、セリウム、 バリウム、カルシウムのうちの少なくとも1種、M² は コバルト、鉄のうちの少なくとも一方、M'は白金、バ ラジウムのうちの少なくとも一方であり、XはO.OO 90%以上が結晶格子中に存在するため、該白金または $50~5 \le X \le 0.2$ である)で示され、M の白金またはパ

5

ラジウムの90%以上が結晶格子中に存在する。 【0025】本第1発明において、白金またはバラジウムはその90%以上が結晶格子中に存在する。該存在量が90%未満では、結晶格子欠陥が生成せず、触媒活性、吸着性等の特性が向上しない。

【0026】なお、白金またはパラジウムの結晶格子中の存在量を測定するには、X線回折分析法を用いる。白金またはパラジウムを含まないペロブスカイト型構造複合酸化物に白金またはパラジウムの金属粒子を混合した混合粉末を作り、適当な分析線を選んでその強度比を測 10定し、強度比と混合比との関係を示す検量線と照合して成分の混合比を求める。

【0027】また、上記式中、Xは0.005≦X≦ O. 2とする。M' M' 1-x M' x O, で示されるペロ ブスカイト型構造複合酸化物は理想格子として単純立方 格子の構造のものである。M'、M'は6個のOに囲ま れ6配位をとる。M¹は12個のOに囲まれ12配位を とる。従って、理想格子とするには、M'、M'は6配 位が保てるような原子価を持つと同時にM'とM'のイ オン半径ができるだけ近似していることが必要である。 M'とM'のイオン半径が異なる程度に応じて結晶格子 が歪んだ形になる。M' に対してイオン半径の異なるM "の量が増加するにつれて結晶形の歪みが大きくなる。 M'とM'のイオン半径の関係によって一義的に決まら ないが、XがO.2より大きくなると、歪みが大きくな り、M'が結晶格子中に入らなくなる。そのため、結晶 格子中の存在量が90%以上にはならない。一方、M' はXがO、005未満でも十分に結晶格子中に入るが、 量が少ないため実用上の触媒等の活性種としての効果が 発揮できない。

【0028】本第1発明のペロブスカイト型構造複合酸化物は、触媒活性や吸着性等の特性が向上していることより、排ガス浄化用触媒(炭化水素の浄化、窒素酸化物の浄化等)、窒素酸化物の吸着剤(窒素酸化物吸着除去)、あるいは燃焼用触媒(天然ガス、石油ガス等の気化燃料等の燃焼)等に利用することができる。

【0029】なお、触媒として使用する場合、本第1発明のペロブスカイト型構造複合酸化物をコージエライト等の耐火性無機担体上に分散担持して触媒とするのが好ましい。この分散担持する際、複合酸化物をできるだけ40高分散化して担持するため、分散媒体としてPVA(ポリピニルアルコール)やカーボンブラック等を使用するのがよい。また、分散剤や結合剤として、アルミナゾル、シリカゾル、ジルコニアゾル等が使用できる。その使用量は目的、使用状態に応じて変わるが、固形分比で3~15重量%程度がよく、触媒活性を低下させないため必要最小限を選択する。

【0030】(第2発明の具体例)本第2発明のペロブスカイト型構造複合酸化物の製造方法では、M'M'、-xM'、O, (式中、M'はランタン、ストロンチウ

ム、セリウム、バリウム、カルシウムのうちの少なくとも1種、M³はコバルト、鉄のうちの少なくとも一方、M³は白金、バラジウムのうちの少なくとも一方であり、Xは0.005≦X≦0.2である)で示されるペロブスカイト構造複合酸化物を構成する金属元素の塩とクエン酸とを溶解した水溶液を調製し(第1工程)、該水溶液を乾燥して上記金属元素のクエン酸錯体を形成し(第2工程)、該クエン酸錯体を真空中または不活性ガス中350℃以上で加熱・仮焼成し(第3工程)、その後酸化雰囲気で焼成する(第4工程)。

【0031】第1工程において、金属元素の塩とクエン酸とを溶解した水溶液を調製する。

【0032】金属元素の塩としては、硝酸塩または酢酸塩の形がよい。とれは、第3工程の仮焼成で金属元素以外の残存物を分解できるためである。例えば、塩酸塩の場合、塩素が残存して触媒活性や吸着活性等の特性に影響を与える。

【0033】例えば、上記式におけるM'の元素の硝酸 塩としては、La(NO,),・6H,O、Sr(NO 20 ,), Ce (NO,), ·6H, O, Ba (NO,) 、、Ca(NO,),・4H,O等が挙げられ、また、 M'の元素の酢酸塩としては、La(CH, COO), $\cdot 3/2 H_2 O_1 Sr_1 (CH_2 COO)_2 \cdot 1/2 H_2$ O, Ce (CH, COO), ·H, O, Ba (CH, C OO), Ca (CH, COO), ·H, O等が挙げら れる。M²の元素の硝酸塩としては、Co(NO,), ·6H, O、Fe(NO,),·9H, O等が挙げら れ、また、M²の元素の酢酸塩としては、Co(CH, COO)、・4H、O等が挙げられる。M'の元素の硝 酸塩としては、ジニトロジアンミン白金硝酸塩、ジニト ロジアンミンパラジウム硝酸塩等が挙げられる。また、 Pt(NH,)。(OH)、も上記ジニトロジアンミン 白金硝酸塩の代用として使用することができる。

【 0 0 3 4 】 これら金属元素の塩は上記式M¹ M¹ 1-x M¹ x O , を形成するような配合割合とする。

【0035】クエン酸の配合量としては、形成するM¹ M¹ 1-x M³ x O, 1モルに対して2~2.4モルの範囲とするのがよい。該配合量が2モル未満では錯体形成が困難となる場合があり、2.4モルを越えると錯体形成は十分であるが、金属元素の均一混合が困難となる場合がある。

【0036】金属元素の塩とクエン酸とを溶解した水溶液を調製する方法としては、例えば、金属元素の塩をイオン交換水に溶解し、また、別のイオン交換水にクエン酸を溶解し、この両者を混合する方法がある。

【0037】第2工程では、上記水溶液を乾燥するとと により金属元素のクエン酸錯体を形成する。

【0038】酸乾燥条件としては、クエン酸錯体が分解 しない温度範囲ですみやかに水分を除去する条件が適す 50 る。例えば、温度は室温~150℃、時間は2~12時

間の範囲内がよい。

【0039】第3工程では、上記金属元素のクエン酸錯 体を真空中または不活性ガス中350℃以上で加熱して 仮焼成する。

【0040】との仮焼成の雰囲気が酸化雰囲気では、ク エン酸錯体からのクエン酸および金属元素の塩からの残 存物(有機物、硝酸根等)の分解が促進されない。その ため、真空中または不活性ガス中とする。なお、真空中 の方が不活性ガス中よりも上記分解が促進されるので好 ましい。

【0041】加熱温度が350℃未満では、クエン酸お よび出発原料である金属元素の塩からの残存物(有機 物、硝酸根等)を加熱分解できず残存してしまう。ま た、加熱温度の上限は500℃とするのがよい。500 °Cを越えても差し支えないが、仮焼成としては500°C までで十分であり、それ以上はエネルギーのムダや仮焼 成用装置の損傷が生じるので好ましくない。

【0042】なお、加熱する際、80℃からゆっくり昇 温するのがよい。これは、130℃付近からクエン酸お よび金属元素の塩からの残存物が分解しはじめ、この範 20 囲の温度を時間をかけることにより該分解が促進するた めである。350℃以上では約2~3時間ほど保持する のがよい。

【0043】この工程により仮焼成体を形成する。

【0044】第4工程では、上記仮焼成体を焼成する。

【0045】焼成方法としては、どのような方法でもよ いが、酸化物を形成するため大気中のような酸素が存在 する酸化雰囲気とする。

【0046】また、焼成温度としては、700~950 °Cの範囲が好ましい。700°C未満の温度においてはペ 30 ロブスカイ型構造の結晶が成長しにくい。また、950 ℃を越える温度では、結晶成長が進み過ぎるため、適度 な格子欠陥を有して格子内に存在していた貴金属が結晶 格子外へ出てしまったり、比表面積が低下して活性が低 下するおそれがある。

【0047】また、焼成時間は1時間程度でも焼成体が 得られるが、長時間ほど結晶化率の高い複合酸化物が得 られる。そのため、2~5時間が好ましい。

【0048】以下、本発明の実施例を説明する。

【0049】(実施例)

実施例1

硝酸ランタン21.67g(0.05モル)をイオン交 換水50m1に溶解した。また、酢酸コバルト11.5 6g(0.045モル)をイオン交換水50m1に溶解 した。また、ジニトロジアミノ白金硝酸を21.35g (O. OO5モル)を30m1に溶解した。また、クエ ン酸25.22g(0.12モル)をイオン交換水12 0mlに溶解した。これら4種類の水溶液を混合し、約 250m1の混合水溶液を作製した(第1工程)。

がら80℃の湯浴中で約4時間かけて蒸発乾固させ、ク エン酸錯体を作製した(第2工程)。

【0051】とのクエン酸錯体を真空ポンプで減圧(1 0-1 torr以下) しながらマントルヒータにより80 ℃から400℃まで温度が急激に上昇しないようにゆっ くり昇温した。なお、130℃付近から酢酸とクエン酸 とが分解しはじめた。250~400°Cで硝酸根が分解 し黄色のガスが発生するので、この発生ガスがなくなる ことを確認してこの熱処理を完了した(約3時間)。こ 10 れにより有機物および硝酸根を除去した仮焼成体を作製 した(第3工程)。

【0052】この仮焼成体を粉末にした後、るつぼに入 れて空気雰囲気で700~950℃の温度範囲で3時間 焼成した(第4工程)。

[0053] これにより、LaCo., Pt., O, で 示される組成のペロブスカイト型構造複合酸化物を製造 した。

【0054】実施例2~5

実施例1と同様にして、LaCo。。, Pt。, O, (実 施例2)、La,, Ce,, Co,,,Pt,,,O, (実 施例3)、La。。Sr。、Fe。。,Pd。。,O。(実 施例4)、Sr., Ba., Co., Pd., SO, (実 施例5)で示される組成のペロブスカイト型構造複合酸 化物を製造した。

【0055】比較例1

LaCo。., Pto., O, で示される組成となるよう に、酸化ランタン (La, O, 、分子量326)65. 20g、炭酸コパルト (CoCO, 、分子量119)2 1. 42g、および酸化白金(PtO, ·xH, O、P t83.25%) 4.68gを乳鉢で粉砕混合した。C の混合粉末を白金るつぼに入れ、空気中950~100 0℃で約3日間焼成した。

【0056】比較例2

LaCo。, Pto., O, で示される組成となるよう に、実施例1の第1工程と同様にして硝酸ランタン、酢 酸コバルト、ジニトロジアミン白金、およびクエン酸の 均一混合水溶液約250mlを作製した。次に、実施例 1と同様にして水を蒸発乾固させ、クエン酸錯体を作製 した。このクエン酸錯体を真空中で300℃まで加熱し 40 て仮焼成体を作製した。このとき、黄色のガスがわずか に認められたのみであり、硝酸根はほとんど分解せず固 体物中に残存していた。冷却後、仮焼成体を真空炉から 取り出し、るつぼに入れて空気雰囲気で750℃、3時 間焼成した。

【0057】比較例3

LaCo。, Pt。、O, で示される組成となるように 以下の混合水溶液を作製した。まず、硝酸ランタン2 1.67g(0.05モル)をイオン交換水50mlに 溶解した。また、酢酸コバルト11.56g(0.04 【0050】との混合水溶液をエバポレータで減圧しな 50 5モル)をイオン交換水50m1に溶解した。この硝酸 9

ランタン水溶液と酢酸コバルト水溶液とを混合して100mlとし、マグネチックスターラーでかきまぜた。また、ジニトロジアンミン白金硝酸21.35g(0.05モル)をイオン交換水30mlに溶解した水溶液を上記混合水溶液に添加混合して引き続きかきまぜた。

【0058】次に、得られた混合水溶液をヒータ付きマグネチックスターラで加熱しながら混合して水を蒸発させた。なお、蒸発途中では沈殿物が生成し、不均一混合液となったが、そのまま加熱を続け蒸発乾固させた。

【0059】その後、乾固物を400℃で3時間大気中 10 で仮焼成した。このとき、黄色ガスが発生し、硝酸根が 分解消失するのが認められた。

【0060】この仮焼成体をさらに大気中で750℃、*

* 3時間焼成した。

【0061】上記実施例1~4 および比較例1~3の焼成体についてX線回折分析法により白金、バラジウムの結晶格子中の存在量を測定した。その結果を表1に示す。また、そのうち、実施例1、2、比較例1、2、およびLaCoO,(ペロブスカイト型構造の組成式でX=0となるもの)のX線回折チャートを図1に、また、実施例1、2、およびLaCoo,, Pto,, O, (ペロブスカイ型構造の組成式でX=0.3となるもの)、LaCoO,のX線回折チャートを図1に示す。

[0062]

【表1】

		仮焼成温度 (℃)	焼成温度 (℃)	PtまたはPdの結晶 格子中の割合(%)
実	l	4 5 0	7 5 0	9 0 以上
	2	400	7 5 0	"
施	3	3 5 0	700	"
	4	500	930	"
例	5	400	800	"
比	1	仮焼成なし	975	7 5
較	2	3 0 0	750	7 5
例	3	4 0 0	750	6 5

【0063】表1および図1、2より明らかなように、本実施例は白金、パラジウムの90%以上が結晶格子に存在することが分かる。

【0064】さらに、各焼成体について、以下のように 触媒性能を評価した。

【0065】焼成体を粉砕した粉末を錠剤成形機で加圧して厚さ約1mmの板状にした後、破砕して $1\sim2mm$ のペレット状にした。とのペレットについて(a)NO、浄化性能、(b)NO、吸替性能、および(c)へキサン転化性能の評価試験を行った。

【0066】(a) NOx 浄化性能: 渦流室式ディーゼルエンジン(2.451)を国内10モード試験条件で可動させ、実排ガスを発生させた。300℃に保った流通式固定床に1~2mmの上記ペレットを2g充填し、空間速度192000/時間で上記実排ガスを接触さ

せ、出口でNOx 濃度を自動車排ガス分析計((株) 堀 場製作所製)で測定した。ペレット充填前後のNOx 濃 度からNOx 浄化率を算出した。

【0067】(b) NOx 吸着性能:常圧固定床流通式 の反応器に1~2mmの上記ペレットを4 c c 充填し、200℃に保持した。この反応器にモデルガス(NOx 200ppm、Ox 10%、Nx バランス)を11/min(空間速度15000/時間)流し、出口でNOx 濃度を排ガス分析計((株)ベスト測器製)で測定した。

【0068】(c) ヘキサン転化性能:常圧固定床流通 式の反応器に上記ペレット7ccを充填した。この反応 器にモデルガス(ヘキサン(C₆ H₁₄)500ppm、 酸素(O₂)5%、窒素(N₂)バランス)を3.31 50 /min(空間速度28600/時間)流し、ペレット

と接触させた。反応の温度を150℃から350℃に昇 温する過程で適宜出ガスをサンプリングしてFID検出 器を有するガスクロマトグラフでヘキサンの定量分析を 行い、入ガスと出ガスのヘキサン量比からヘキサン浄化 率を測定した。とのヘキサン浄化率が50%に達したと

11

* [0069]上記(a) NOx 浄化性能、(b) NOx 吸着性能、および(c)ヘキサン転化性能の評価試験結 果を表2に示す。

[0070] 【表2】

きのペレット温度を求めた。

		Nox 浄化率 (%)	Noz吸着量 (Nozmg/ 試料g)	ヘキサン50% 転化温度(℃)
実	1	4 6	3.8	189
	2	5 4	5.1	162
施	3	3 9	2. 2	197
	4	3 7	2. 7	2 2 5
例	5	4 0	2.9	2 1 2
比	1	7	1. 1	2 6 2
較	2	8	1. 2	2 6 5
61	3	3	0.7	273

【0071】表2より明らかなように、本実施例の方が いずれの性能も比較例より優れていることが分かる。 【図面の簡単な説明】

【図1】本実施例および比較例におけるペロブスカイト

型構造複合酸化物のX線回折結果を示す線図 【図2】本実施例におけるペロブスカイト型構造複合酸 化物のX線回折結果を示す線図

フロントページの続き

(72)発明者 杉浦 正洽

愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内

(72)発明者 植野 秀章

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 水野 違司

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内