

Interpolation

Extranolati

Galileo Ferraris' Contest

comparing data-driven methodologies for the multi-physics simulation of traction electrical machines Awards Presentation

June 22, 2025

26 teams

Awards
Novelty
Interpolation
Extrapolatior

Awards
Novelty
Interpolation
Extrapolation

Three categories:

- Novelty: how the approach is able to provide useful design insights or novel contributions to the field, scored by Advisory Board.
- Interpolation: how the surrogate model is able to reconstruct the input-output relationship on a given motor type data-set, quantitative.
- Extrapolation: how the surrogate model trained on two data-sets is able to extrapolate its prediction on a new size of motor of the same typology assessing thus the degree of innovation of the surrogate algorithm, quantitative.

Awards Novelty Interpolation Extrapolation

- all teams procedures have been processed and ranked
- quantitative scoring is based on Pareto ranking after which a rating among peers is performed ¹
- only academic teams will receive money prizes
- award-diversity: a team can win only one prize

¹Amin Ibrahim, Azam Asilian Bidgoli, Shahryar Rahnamayan, Kalyanmoy Deb, "A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms", https://arxiv.org/abs/2411.17999_{4/23}

Novelt

Interpolation

Extrapolation

Novelty

Novel

Interpolatio

Extrapolation

Evaluation by Advisory Board

Novelty of the data-drive proposed approach *

- Is the Team using any specific preprocessing of data?
- Has the Team developed a specific method for the Contest or is it using standard libraries?
- Has the Team developed a hybrid version of different methodologies?

1 2 3 4 5 6 7 8 9 1

Ability of the approach to provide useful design insights

- Is the model "black-box" or some physics based rules are implemented?
- Is the Team using some technique to improve robustness?
- Is the Team using one single model or three different models for motor families A, B and C?

1 2 3 4 5 6 7 8 9 10

Efficient use of the training data

- Is the Team implementing any measure of the computational burden of its procedure?
- Has the Team implemented an adaptive tuning for its method parameters?
- Has the Team implemented some measures to minimize the surrogate problem size?

1 2 3 4 5 6 7 8 9 10

Novelt

Interpolatio

noveity

Interpolatio

	Novelty	Ability	Efficiency
1	5.5000	5.5000	5.0000
2	6.6667	6.6667	7.0000
3	7.3333	7.3333	6.3333
4	4.6667	5.6667	5.6667
8	5.5000	6.5000	6.0000
9	3.3333	3.6667	4.0000
11	7.0000	5.6667	7.3333
12	6.6667	5.6667	5.3333
13	7.3333	7.0000	6.3333
14	8.6667	7.0000	6.3333
15	5.6667	6.0000	5.6667
16	6.3333	6.6667	6.3333
18	7.0000	7.0000	7.0000
19	6.6667	6.6667	7.3333
20	7.3333	8.3333	7.0000
21	7.5000	6.0000	5.5000
25	7.5000	7.0000	7.0000
26	5.5000	5.5000	5.5000

Novelt

Interpolation

ranking	award	team	Name	front
1	No (ind)	20	MELSUR (Japan)	0
2	1	25	SHIME-PARFAIT (Japan)	0
3	2	14	IEML (Iran)	0
4	3	19	McGill MagNets (Canada)	0

Novelt

interpolation

Novelt

Interpolation

Extrapolation

Interpolation

Interpolation: what organizers did . . .

On *PF_{bsf}* evaluate metrics for all Teams

Internalation

Extrapolation

Interpolation: percentage error

Interpolation

Awards
Novelty
Interpolation

Inno	IGD	HV
99	0.6494	0.0150
85	0.2370	0.1307
93	0.1992	0.1772
96	0.1974	0.1728
96	0.1997	0.1692
92	0.2051	0.1720
74	0.2351	0.1299
73	0.2483	0.1227
92	0.2024	0.1697
94	0.1971	0.1652
95	0.1936	0.1728
93	0.1959	0.1732
86	0.2056	0.1663
91	0.1860	0.1683
92	0.1907	0.1698
93	0.1888	0.1750
96	0.2056	0.1729
92	0.1965	0.1716
90	0.1964	0.1637
	99 85 93 96 96 92 74 73 92 94 95 93 86 91 92 93 96	99 0.6494 85 0.2370 93 0.1992 96 0.1974 96 0.1997 92 0.2051 74 0.2351 73 0.2483 92 0.2024 94 0.1971 95 0.1936 93 0.1959 86 0.2056 91 0.1860 92 0.1907 93 0.1888 96 0.2056 92 0.1965

Interpolation

Colored at

	ranking	award	team	Name	front
	1	No (ind)	20	MELSUR (Japan)	0
	2	1	4	CREATORs (Germany)	0
	3	2	21	MLotors (India)	0
	4	3	3	CAD Lab Team (Italy)	0
-					

Novelly

Interpolation

Extrapolation

Extrapolation: regression plot

Awards Novelty Interpola

Extrapolation: percentage error

Team

Awards Novelty nterpolation

Galileo

Ferraris

Extrapolation

Novelty Interpolation

Team	Inno	IGD	HV
1	52	0.1810	0.2070
2	89	0.1612	0.2384
3	96	0.1601	0.2427
4	97	0.1521	0.2568
7	100	0.1571	0.2577
8	96	0.1511	0.2553
9	69	0.1736	0.2290
11	77	0.1631	0.2447
12	96	0.1493	0.2411
13	95	0.1757	0.2314
14	94	0.1683	0.2501
15	89	0.1544	0.2521
16	97	0.1661	0.2457
18	96	0.1538	0.2612
19	95	0.1544	0.2535
20	93	0.1558	0.2688
21	92	0.1518	0.2568
25	95	0.1554	0.2433
26	89	0.1638	0.2314

Novelty

Interpolatio

ranking	award	team	Name	front
1	1	18	ManTriS (Italy)	0
2	No (1st Int)	4	CREATORs (Germany)	0
3	2	8	ELECTA (Belgium)	0
4	3	12	GTB-ULille (France)	0

Interpolatio

interpolatic

Ranking	Team	Front
1	20	0
2	4	0
3	21	0
4	3	0
5	14	0
6	18	0
7	1	0
8	15	1
9	19	1
10	7	1
11	13	1
12	8	2
13	25	2
14	26	2
15	12	3
16	16	4
17	2	5
18	9	5
19	11	6

Ranking	Team	Front
1	18	0
2	4	0
3	8	0
4	12	0
5	7	0
6	20	0
7	21	0
8	19	1
9	15	1
10	16	1
11	3	1
12	25	
13	14	2 2
14	11	2
15	2	3
16	13	3
17	26	4
18	9	5
19	1	6

Future actions

Novelty Interpolation

- certificates will be provided to all teams taking part in the final part of the contest
- winners will be contacted for money prize by Politecnico di Torino administration
- post contest publication, authored by all contributors, showing methodologies and results . . .
- . . .

Interpolation

Extrapolation

Thank you!!!

