# Learning a Latent Space for EEGs with Computational Graphs

Radhakrishnan Thiyagarajan, Masters Candidate Dr. Sam Keene, Thesis Advisor

Department of Electrical & Computer Engineering The Cooper Union for the Advancement of Science & Art

April 4, 2018

#### Overview

- Diverse biological signals are stored in unstructured forms
  - ► Examples: EEGs, EKGs, MEGs, X-Rays, MRIs, etc.
- Difficult to perform cohort retrieval or comparisons
- Cohort retrieval task of efficiently finding a group of observations that share defining characteristics
- Picone et al. 2015 use HMMs to detect and classify signals given time-domain EEG data
  - ► Can you infer similarity from this?
- Clustering similar signals can reveal deeper information and knowledge about signals

#### Solution

Optimize a Deep Neural Network so that it can translate directly from signal to embedding such that clusters of similar signals form in the space

# BACKGROUND

- Supervised: Mapping from a set of input-output pairs
- Unsupervised: Underlying structure from a set of inputs
  - ▶ Examples: dimensionality reduction, cluster analysis
- Model as a function

$$\mathbf{y} = f(\mathbf{X})$$

- Supervised: Mapping from a set of input-output pairs
- Unsupervised: Underlying structure from a set of inputs
  - ▶ Examples: dimensionality reduction, cluster analysis
- Model as a function

$$\mathbf{y} = f(\mathbf{X} \mid \boldsymbol{\theta})$$

- Supervised: Mapping from a set of input-output pairs
- Unsupervised: Underlying structure from a set of inputs
  - ▶ Examples: dimensionality reduction, cluster analysis
- Model as a function

$$\mathbf{y} = f(\mathbf{X} \mid \boldsymbol{\theta})$$

Training

$$J(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta}))$$



- Supervised: Mapping from a set of input-output pairs
- Unsupervised: Underlying structure from a set of inputs
  - ▶ Examples: dimensionality reduction, cluster analysis
- Model as a function

$$\mathbf{y} = f(\mathbf{X} \mid \boldsymbol{\theta})$$

Training

$$J_T(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta})) = J(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta})) + \lambda P(\boldsymbol{\theta})$$



- Supervised: Mapping from a set of input-output pairs
- Unsupervised: Underlying structure from a set of inputs
  - ▶ Examples: dimensionality reduction, cluster analysis
- Model as a function

$$\mathbf{y} = f(\mathbf{X} \mid \boldsymbol{\theta})$$

Training

$$J_T(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta})) = J(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta})) + \lambda P(\boldsymbol{\theta})$$

Gradient Descent

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \eta \ \nabla_{\boldsymbol{\theta}} J_T(\mathbf{y}, f(\mathbf{X} \mid \boldsymbol{\theta}))$$



### Computational Graphs & Neural Networks



#### Fully Connected Layers



### Convolutional Layers

| 0 | 0<br>×0  | 0<br>×0                         | $0 \atop \times 1$ | 0   | 0  | 0 |
|---|----------|---------------------------------|--------------------|-----|----|---|
| 0 | 0<br>×0  | $21_{\times 1}$                 | 0<br>×0            | 0   | 0  | 0 |
| 0 | 85<br>×1 | $71_{\stackrel{\times}{\sim}0}$ | 0<br>×0            | 0   | 0  | 0 |
| 0 | 250      | 231                             | 127                | 63  | 3  | 0 |
| 0 | 250      | 252                             | 250                | 209 | 56 | 0 |
| 0 | 250      | 252                             | 250                | 250 | 83 | 0 |
| 0 | 0        | 0                               | 0                  | 0   | 0  | 0 |

|   | 0 | 0 | 1 |
|---|---|---|---|
| * | 0 | 1 | 0 |
|   | 1 | 0 | 0 |
|   |   |   |   |

| 0   | 106 | 71  | 0   | 0   |
|-----|-----|-----|-----|-----|
| 106 | 321 | 231 | 127 | 63  |
| 321 | 481 | 379 | 313 | 212 |
| 481 | 629 | 565 | 462 | 306 |
| 502 | 502 | 459 | 306 | 83  |

Image

Kernel

Feature Map



# RELATED WORKS

#### Metric Learning



#### Metric Learning



#### Metric Learning



#### Contrastive Loss

- Hadsell et al. 2006 minimize the distance between a pair of examples with same class label and penalizes the the negative pair distance
- Illustration of contrastive learning:



■ Mathematically,

$$J = \frac{1}{m} \sum_{(i,j)}^{m/2} y_{i,j} D_{i,j}^2 + (1 - y_{i,j}) [\alpha - D_{i,j}]_+^2$$

#### Triplet Loss

- Schroff et al. 2015 minimize distance between similar inputs and maximize distances between dissimilar inputs
- How do we know whether a signal is similar? With labels!
- Anchor, an instance of class a; positive, an instance of class a; negative, an instance of class b



■ Mathematically,

$$J = \sum_{(a,n,n)}^{N} D_{a,p}^{2} - D_{a,n}^{2} + \alpha$$

#### Lifted Structure Embedding

- Song et al. 2015 attempt to learn an embedding by looking at all possible pairs of related pairs in a minibatch
- Worked very well but more complicated than Triplet loss

$$\tilde{J}_{i,j} = log\left(\sum_{(i,k)\in\mathcal{N}} \exp\{\alpha - D_{i,k}\} + \sum_{(j,l)\in\mathcal{N}} \exp\{\alpha - D_{j,l}\}\right) + D_{i,j}$$
$$J = \frac{1}{2|\mathcal{P}|} \sum_{(i,j)\in\mathcal{P}} \max\left(0, \tilde{J}_{i,j}\right)^2$$



# DATA

### Electroencephalography (EEG)

- Method of measuring electrical activity in the brain
- Helps diagnose variety of diseases
- Has standard, 10-20 placement
- Montages, differences in voltages, are used in medicine
- Frequency, phase, amplitude, location all are import sources of information an an EEG
- Our data is derived from TUH EEG Corpus



### PSD of Sample from TUH EEG Corpus



#### Data Rectification

- Notch filtered at 60 Hz
- Bandpass filtered with 1 70 Hz passband
- STFT with window of 140 samples & stride of 2 samples
- Resulted in a  $71 \times 125$  matrix for each second of the EEG
- Omitted locations due to classification inconsistencies
- Split into mutually exclusive training and validation set of 85% and 15% respectively

| Code | Description                                  |              |
|------|----------------------------------------------|--------------|
| BCKG | Background noise                             |              |
| ARTF | Artifacts                                    | Noise-Like   |
| EYBL | Eyeball movement                             | J            |
| SPSW | Spikes & sharp waves                         |              |
| PLED | Periodic lateralized epileptiform discharges | Seizure-Like |
| GPED | Generalized periodic epileptiform discharges | J            |

### Resulting Matrix



### EXPERIMENTS AND RESULTS

### Experimental Design Choices

- Is deep learning appropriate for this problem?
  - ▶ Dealing with unstructured data
- Which technique can we use to train the network?
  - ➤ Triplet Loss because it's simple yet effective
  - ▶ Relatively easy to mine for triplets
- What type of network do we choose?
  - ▶ Convolutional Neural Network
  - CNNs tend to do well on images
- How do we test the results?
  - ▶ Classification using k-Nearest Neighbors
  - ▶ Visualize latent space using t-SNE in 2D
  - ➤ Compare to baseline classifier



### Intial Experiment

- Designed simple CNN and implemented in TensorFlow
- Initially converged to zero due to small values and stalling triplet selection
- Amplified inputs to prevent both mistakes and speed up learning

| Layer                                   | Input                                                                                                                                     | Kernel                                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| conv1<br>pool1<br>conv2<br>pool2<br>fc1 | $71 \times 125 \times 1$<br>$71 \times 125 \times 32$<br>$35 \times 62 \times 32$<br>$35 \times 62 \times 64$<br>$17 \times 30 \times 64$ | $4 \times 4$ $3 \times 3$ $5 \times 5$ $2 \times 2$ $N/A$ |
| fc2 output                              | 256<br>128                                                                                                                                | N/A<br>N/A                                                |

### Intial Experiment

#### Hyperparameter Optimization

- Optimized hyperparameters based on manual gridsearch
  - $\eta = 10^{-3}, \lambda_{L_2} = 10^{-4}$
  - $d = 128, \alpha = 1.0$
- Trained for 60k steps

#### Measuring Performance

- Used k-NN with k = 5 to classify signals and calculate accuracies
- Resulted in 80% accuracy

#### Error Organizing Data

Different classes were split, but sessions were not

| Layer                         | Input                                                                             | Kernel                                 |
|-------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|
| conv1<br>pool1<br>conv2       | $71 \times 125 \times 1$<br>$71 \times 125 \times 32$<br>$35 \times 62 \times 32$ | $4 \times 4$ $3 \times 3$ $5 \times 5$ |
| pool2<br>fc1<br>fc2<br>output | $35 \times 62 \times 64$<br>$17 \times 30 \times 64$<br>256<br>128                | $2 \times 2$<br>N/A<br>N/A<br>N/A      |

### Deeper Convolutional Network

- Designed network with 14 layers
- Convolutions followed by maxpool layers and fully connected layers
- Results in a 64 dimension vector representing the signal in embedding space
- Utilized same triplet loss to optimize network

| Layer    | Input                     | Kernel       |
|----------|---------------------------|--------------|
| conv1    | $71\times125\times1$      | $5 \times 5$ |
| maxpool1 | $71 \times 125 \times 32$ | $5 \times 5$ |
| conv2    | $34 \times 61 \times 32$  | $3 \times 3$ |
| maxpool2 | $34 \times 61 \times 64$  | $3 \times 3$ |
| conv3    | $16 \times 30 \times 64$  | $2 \times 2$ |
| maxpool3 | $16 \times 30 \times 128$ | $2 \times 2$ |
| conv4    | $8 \times 15 \times 128$  | $1 \times 1$ |
| maxpool4 | $8 \times 15 \times 256$  | $2 \times 2$ |
| conv5    | $4 \times 7 \times 256$   | $4 \times 4$ |
| maxpool5 | $4\times7\times1024$      | $4 \times 4$ |
| flatten  | $1\times2\times1024$      | N/A          |
| fc1      | 2048                      | N/A          |
| fc2      | 1024                      | N/A          |
| fc3      | 512                       | N/A          |
| fc4      | 256                       | N/A          |
| output   | 64                        | ,            |

### Deeper Convolutional Network

#### Hyperparameter Selection

- Optimized hyperparameters based on manual gridsearch
  - $\eta = 10^{-5}, \lambda_{L_2} = 10^{-3}$
  - $d = 64, \alpha = 0.5$
- Trained for 105k steps

#### Measuring Performance

- Same procedure with k=31
  - Resulted in 60.4% 6-class and 90.4% 2-class accuracy
  - Constructed t-SNE reduced plots

| Layer    | Input                     | Kernel       |
|----------|---------------------------|--------------|
| conv1    | $71 \times 125 \times 1$  | $5 \times 5$ |
| maxpool1 | $71 \times 125 \times 32$ | $5 \times 5$ |
| conv2    | $34 \times 61 \times 32$  | $3 \times 3$ |
| maxpool2 | $34 \times 61 \times 64$  | $3 \times 3$ |
| conv3    | $16 \times 30 \times 64$  | $2 \times 2$ |
| maxpool3 | $16 \times 30 \times 128$ | $2 \times 2$ |
| conv4    | $8\times15\times128$      | $1 \times 1$ |
| maxpool4 | $8\times15\times256$      | $2 \times 2$ |
| conv5    | $4\times7\times256$       | $4 \times 4$ |
| maxpool5 | $4\times7\times1024$      | $4 \times 4$ |
| flatten  | $1\times2\times1024$      | N/A          |
| fc1      | 2048                      | N/A          |
| fc2      | 1024                      | N/A          |
| fc3      | 512                       | N/A          |
| fc4      | 256                       | N/A          |
| output   | 64                        |              |
|          |                           |              |

#### t-SNE Plot at 5k Iterations



#### t-SNE Plot at 105k Iterations



#### Confusion Matrix for Six-Class Classification



#### t-SNE Plot with Binary Decision Boundary



### Confusion Matrix for Binary Classification



#### DCNN with Softmax Loss

- Created a DCNN classifier
- Utilized same network
- Applied cross-entropy loss
- Resulted in classification accuracy of 50.2%
- Surprising results



### Error Analysis

- Analyze where most error occurs
- Split dataset into three sectors:
  - ➤ Type A: Sessions without seizure-like signals
  - ➤ Type B: Sessions with seizure-like signals
  - ➤ Type C: Sessions with seizure-like signals considering only seizure-like signals
- Try to identify reasons why these errors occur
- Splitting them helps identify how the changes in sessions changes results

### Error Analysis: Type A (64.6% and 93.0%)







### Error Analysis: Type B (56.0% and 85.0%)





### Error Analysis: Type C (63.0% and 91.8%)





#### Possible Sources of Error

- Misclassified signals
- Very similar signals
- Loss of information due to:
  - ▶ Notch filter
  - Bandpass filter
  - ▶ Magnitude of STFT
  - ▶ Location on scalp
- However, accuracy is still high for a signal with low SNR

#### Conclusions and Future Work

- Demonstrated an end-to-end system to learn latent spaces for EEG signals
- 60.4% six-class & 90.4% binary classification accuracies
- Does better than generic DCNN classifier and provides more information on similarity
- Experiment swapping triplet loss with loss functions from Structured Feature Embeddings written Song et al. 2015
- Do an in-depth analysis between features produced by baseline and those produced by experimental network
- Attempt to incorporate physicians' notes in order to enrich embeddings produced using adaptive density discrimination
- Extend this method to other types of medical signals and enrich understanding of different pathologies



### Thank you to...

- Professor Sam Keene
- Chris Curro
- ECE Faculty
- My friends
- My parents

# QUESTIONS?