Heart stroke

December 24, 2022

```
[1]: import numpy as np
  import pandas as pd
  import seaborn as sns
  from imblearn.over_sampling import RandomOverSampler
  import matplotlib.pyplot as plt
  from sklearn.metrics import accuracy_score
  from sklearn.svm import SVC
  from sklearn.model_selection import GridSearchCV
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import StandardScaler
  from sklearn.metrics import confusion_matrix , classification_report
  import tensorflow as tf
  from tensorflow import keras
  import pickle
  %matplotlib inline
```

0.1 Reading data from file

```
[2]: df = pd.read_csv('Heart stroke.csv')
df.head(10)
```

```
[2]:
              gender
                       age
                            hypertension
                                          heart_disease ever_married \
        9046
                Male
                      67.0
                                                                 Yes
    1 51676
             Female
                      61.0
                                       0
                                                      0
                                                                 Yes
                Male 80.0
    2 31112
                                       0
                                                      1
                                                                 Yes
    3 60182 Female 49.0
                                       0
                                                      0
                                                                 Yes
        1665 Female 79.0
                                       1
                                                      0
                                                                 Yes
    5 56669
                Male 81.0
                                       0
                                                      0
                                                                 Yes
    6 53882
                Male 74.0
                                       1
                                                      1
                                                                 Yes
    7 10434 Female 69.0
                                       0
                                                      0
                                                                  No
    8 27419 Female
                      59.0
                                       0
                                                      0
                                                                 Yes
    9 60491 Female 78.0
                                       0
                                                      0
                                                                 Yes
```

\	${ t smoking_status}$	bmi	avg_glucose_level	Residence_type	work_type	
	formerly smoked	36.6	228.69	Urban	Private	0
	never smoked	NaN	202.21	Rural	Self-employed	1
	never smoked	32.5	105.92	Rural	Private	2
	smokes	34.4	171.23	Urban	Private	3

```
174.12
     4
        Self-employed
                                 Rural
                                                             24.0
                                                                       never smoked
     5
               Private
                                 Urban
                                                             29.0
                                                     186.21
                                                                    formerly smoked
     6
               Private
                                 Rural
                                                      70.09
                                                             27.4
                                                                       never smoked
     7
                                 Urban
                                                      94.39
                                                             22.8
                                                                       never smoked
               Private
     8
               Private
                                 Rural
                                                      76.15
                                                              NaN
                                                                             Unknown
     9
                                 Urban
                                                      58.57
                                                             24.2
                                                                             Unknown
               Private
        stroke
     0
              1
     1
              1
     2
              1
     3
              1
     4
              1
     5
              1
     6
              1
     7
              1
     8
             1
     9
              1
[3]:
     df.describe()
[3]:
                                                         heart_disease
                                                                         \
                       id
                                    age
                                          hypertension
             5110.000000
                            5110.000000
                                           5110.000000
                                                           5110.000000
     count
     mean
            36517.829354
                              43.226614
                                              0.097456
                                                               0.054012
     std
                              22.612647
                                                               0.226063
             21161.721625
                                              0.296607
     min
                67.000000
                               0.080000
                                              0.00000
                                                               0.000000
     25%
             17741.250000
                              25.000000
                                              0.00000
                                                               0.000000
     50%
            36932.000000
                              45.000000
                                              0.00000
                                                               0.000000
     75%
            54682.000000
                              61.000000
                                              0.00000
                                                               0.000000
            72940.000000
                              82.000000
                                              1.000000
                                                               1.000000
     max
             avg_glucose_level
                                          bmi
                                                     stroke
                   5110.000000
                                 4909.000000
                                               5110.000000
     count
                    106.147677
                                   28.893237
                                                   0.048728
     mean
     std
                     45.283560
                                    7.854067
                                                   0.215320
     min
                     55.120000
                                   10.300000
                                                   0.000000
     25%
                     77.245000
                                   23.500000
                                                   0.00000
     50%
                     91.885000
                                   28.100000
                                                   0.00000
     75%
                    114.090000
                                   33.100000
                                                   0.00000
                    271.740000
                                   97.600000
     max
                                                   1.000000
[4]:
    df.isnull().sum()
                              0
[4]: id
                              0
     gender
     age
                              0
     hypertension
                              0
```

```
heart_disease
                            0
                            0
     ever_married
     work_type
                            0
    Residence_type
                            0
     avg_glucose_level
                            0
                          201
                            0
     smoking_status
                            0
     stroke
     dtype: int64
[5]: df.drop(columns=['id'],axis=1,inplace=True)
[6]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5110 entries, 0 to 5109
    Data columns (total 11 columns):
                            Non-Null Count Dtype
         Column
         _____
                            -----
     0
         gender
                            5110 non-null
                                             object
     1
                            5110 non-null
                                             float64
         age
     2
                            5110 non-null
                                             int64
         hypertension
     3
         heart_disease
                            5110 non-null
                                             int64
     4
         ever_married
                            5110 non-null
                                             object
     5
         work_type
                            5110 non-null
                                             object
     6
         Residence_type
                            5110 non-null
                                             object
     7
         avg_glucose_level 5110 non-null
                                             float64
     8
         bmi
                            4909 non-null
                                             float64
     9
         smoking_status
                            5110 non-null
                                             object
     10 stroke
                                             int64
                             5110 non-null
    dtypes: float64(3), int64(3), object(5)
    memory usage: 439.3+ KB
[7]: #from above we can see that hypertension, heart disease, stroke have only
      \hookrightarrow classfication value so we only consider age ,bmi , glucose level as
      →numerical data
     num_df = ['age','avg_glucose_level','bmi']
```

1 Filling missing value

```
[8]: #checking for outliers with boxplot
fig, ax = plt.subplots(1, 3, figsize = (20, 5))
plt.suptitle('Checking for outliers', fontsize = 25, color = 'mediumblue')
i=0
for x in num_df:
    sns.boxplot(x = df[x], ax= ax[i], color= 'indigo', linewidth= 2)
    i = i+1
```

plt.show()

- 1.1 from here we can see that glucose and bmi have lots of outliers
- 2 dealing with avg_glucose_level and bmi column. I will apply median imputation to these columns

```
[10]: col_out = ['avg_glucose_level','bmi']
for col in col_out:
    for i in df[col]:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        lqr = q3-q1
        lower_tail = q1 - 1.5*lqr
        uper_tail = q3 + 1.5*lqr
        if i > uper_tail or i<lower_tail:
            df[col] = df[col].replace(i,np.median(df[col]))</pre>
```

Checking for outliers after imputation

\

[12]: df.describe()

[12]:		age	hypertension	heart_disease	avg_glucose_level
	count	5110.000000	5110.000000	5110.000000	5110.000000
	mean	43.226614	0.097456	0.054012	90.000564
	std	22.612647	0.296607	0.226063	18.777279
	min	0.080000	0.000000	0.000000	55.120000
	25%	25.000000	0.000000	0.000000	77.245000
	50%	45.000000	0.000000	0.000000	91.880000
	75%	61.000000	0.000000	0.000000	99.157500
	max	82.000000	1.000000	1.000000	167.410000
		bmi	stroke		

	DIIII	DOLONG
count	4789.000000	5110.000000
mean	28.274107	0.048728
std	6.793541	0.215320
min	10.300000	0.000000
25%	23.400000	0.000000
50%	27.800000	0.000000
75%	32.600000	0.000000
max	46.600000	1.000000

[13]: df.isnull().sum()

[13]:	gender	0
	age	0
	hypertension	0
	heart_disease	0
	ever_married	0
	work_type	0
	Residence_type	0
	avg_glucose_level	0
	bmi	321
	smoking_status	0

stroke 0 dtype: int64

[14]: plt.figure(figsize=(15,15))
sns.heatmap(df.isnull())

[14]: <AxesSubplot:>

2.0.1 white line against bmi indicates NAN values

[17]: <AxesSubplot:>

```
[15]: df[df.bmi.isna()]
[15]:
             gender
                            hypertension
                                           heart_disease ever_married
                                                                              work_type
                       age
      1
             Female
                     61.0
                                                         0
                                                                     Yes
                                                                          Self-employed
                                                         0
      8
             Female
                     59.0
                                        0
                                                                     Yes
                                                                                 Private
      13
               Male
                     78.0
                                        0
                                                         1
                                                                     Yes
                                                                                 Private
      19
               Male 57.0
                                        0
                                                         1
                                                                     No
                                                                                Govt_job
      21
             Female
                     52.0
                                                         0
                                                                          Self-employed
                                        1
                                                                     Yes
      5057
            Female
                     49.0
                                                                                Govt_job
                                        0
                                                         0
                                                                     Yes
      5093
            Female
                     45.0
                                        1
                                                         0
                                                                     Yes
                                                                                Govt_job
      5099
               Male
                     40.0
                                        0
                                                         0
                                                                     Yes
                                                                                 Private
                                        0
      5103 Female
                     18.0
                                                         0
                                                                      No
                                                                                 Private
      5105 Female
                    80.0
                                        1
                                                         0
                                                                     Yes
                                                                                 Private
            Residence_type
                             avg_glucose_level
                                                  bmi smoking_status
                                                                        stroke
      1
                     Rural
                                      91.882500
                                                  NaN
                                                         never smoked
                                                                              1
      8
                     Rural
                                                                              1
                                      76.150000
                                                  NaN
                                                              Unknown
      13
                     Urban
                                      91.880156
                                                  NaN
                                                              Unknown
                                                                             1
      19
                     Urban
                                      91.880010
                                                  NaN
                                                              Unknown
                                                                              1
      21
                     Urban
                                                  NaN
                                      91.880002
                                                         never smoked
                                                                              1
                     •••
      •••
                                                         •••
                                                                             0
      5057
                     Urban
                                      69.920000
                                                  {\tt NaN}
                                                        never smoked
      5093
                     Rural
                                      95.020000
                                                  NaN
                                                               smokes
                                                                             0
      5099
                     Rural
                                                  NaN
                                                               smokes
                                                                             0
                                      83.940000
                                                                             0
      5103
                     Urban
                                      82.850000
                                                  NaN
                                                              Unknown
      5105
                     Urban
                                      83.750000
                                                 {\tt NaN}
                                                         never smoked
                                                                             0
      [321 rows x 11 columns]
[16]: df['bmi'].fillna(df["bmi"].mean(), inplace=True)
      sns.heatmap(df.isnull())
```


3 EDA

Visualising the Distribution of Numerical features based on target variable

4 from this we can conclude that as ages increases chances of heart stroke also increases

4.0.1 very less value of stroke patient which need to be handle during spliting of dataset

[20]: <AxesSubplot:xlabel='smoking_status', ylabel='count'>

Visualising the classification dataset


```
[21]: df.gender[df['gender']=='Other'].count()
[21]: 1
[22]: df[df['gender']=='Other'].index[0]
[22]: 3116
```

here we can see that only one value with other gender. we simply drop this value to improve our model accuracy

```
[23]: df.drop(df[df['gender']=='Other'].index,axis = 0,inplace=True)
[24]: df.gender[df['gender']=='Other'].count()
[24]: 0
[25]:
      df.shape
[25]: (5109, 11)
[26]: fig, ax = plt.subplots(3, 2, figsize = (20, 20))
      plt.suptitle('Visualising the classification⊔

→features',color='mediumblue',fontsize=25)
      sns.countplot(x=df['gender'],ax=ax[0,0],palette='nipy_spectral')
      sns.countplot(x=df['hypertension'],ax=ax[0,1],palette='gist_yarg')
      sns.countplot(x=df['heart_disease'],ax=ax[1,0],palette='PuRd')
      sns.countplot(x=df['work_type'],ax=ax[1,1],palette='Blues_r')
      sns.countplot(x=df['Residence_type'],ax=ax[2,0],palette='bone')
      sns.countplot(x=df['smoking_status'],ax=ax[2,1],palette='mako_r')
[26]: <AxesSubplot:xlabel='smoking_status', ylabel='count'>
```

Visualising the classification features

[27]: <AxesSubplot:xlabel='smoking_status', ylabel='count'>

Visualising the classification columns on target variable


```
[28]: #getting unique value for classifiaction features

for col in df:
    if col not in num_df:
        print(f'{col} : {df[col].unique()}')
```

```
gender : ['Male' 'Female']
hypertension : [0 1]
heart_disease : [1 0]
ever_married : ['Yes' 'No']
work_type : ['Private' 'Self-employed' 'Govt_job' 'children' 'Never_worked']
Residence_type : ['Urban' 'Rural']
smoking_status : ['formerly smoked' 'never smoked' 'smokes' 'Unknown']
stroke : [1 0]
```

4.1 Creating a correlation matrix to understand the faeature between various column

```
[29]: plt.figure(figsize=(15,15))
heatmap = sns.heatmap(df.corr(),annot=True,cmap="icefire_r");
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12);
```


4.1.1 Encoding

```
[30]: #replacing male = 1, Yes =1, Urban = 1

df['gender'].replace({'Male':1,'Female':0},inplace=True)
    df.replace({'Yes':1,'No':0},inplace=True)
    df['Residence_type'].replace({'Urban':1,'Rural':0},inplace=True)

[31]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

Int64Index: 5109 entries, 0 to 5109 Data columns (total 11 columns): # Column Non-Null Count Dtype _____ 5109 non-null int64 0 gender 1 5109 non-null float64 age 2 hypertension 5109 non-null int64 5109 non-null 3 heart_disease int64 4 ever_married 5109 non-null int64 5109 non-null 5 work_type object 5109 non-null 6 Residence_type int647 avg_glucose_level 5109 non-null float64 8 float64 bmi 5109 non-null 9 5109 non-null object smoking_status int64 10 stroke 5109 non-null dtypes: float64(3), int64(6), object(2) memory usage: 479.0+ KB [32]: #Doing one hot encoding for work_type, smoking_Status df_encoded = pd.get_dummies(df,drop_first=True) [33]: df encoded [33]: Residence_type gender hypertension heart_disease ever_married age 67.0 0 1 0 1 1 1 1 0 61.0 0 0 0 1 0 2 1 80.0 1 1 0 3 0 49.0 0 0 1 1 4 79.0 0 1 0 1 0 5105 0 80.0 1 0 1 1 5106 0 81.0 0 0 1 1 5107 0 35.0 0 0 0 1 5108 1 51.0 0 0 1 0 5109 44.0 1 avg_glucose_level stroke work_type_Never_worked bmi 0 91.885000 36.600000 1 0 1 28.274107 1 0 91.882500 2 0 105.920000 32.500000 1 3 91.881250 34.400000 1 0 4 91.880625 24.000000 1 0 5105 83.750000 28.274107 0 0 5106 125.200000 40.000000 0 0

0

0

0

0

5107

5108

82.990000

91.880000 25.600000

30.600000

```
5109
               85.280000 26.200000
                                                                       0
                                             0
      work_type_Private work_type_Self-employed work_type_children
0
                        0
                                                   1
                                                                         0
1
2
                        1
                                                   0
                                                                         0
3
                        1
                                                   0
                                                                         0
4
                        0
                                                    1
                                                                         0
5105
                                                   0
                                                                         0
5106
                                                                         0
                        0
                                                    1
5107
                        0
                                                                         0
                                                    1
5108
                        1
                                                    0
                                                                         0
5109
                        0
                                                    0
                                                                         0
      smoking_status_formerly smoked smoking_status_never smoked
0
                                      1
                                                                      0
                                      0
1
                                                                      1
2
                                      0
                                                                      1
3
                                      0
                                                                      0
4
                                      0
                                                                      1
5105
                                      0
                                                                      1
5106
                                      0
                                                                      1
5107
                                      0
                                                                      1
5108
                                      1
                                                                      0
5109
                                      0
      smoking_status_smokes
0
1
                            0
2
                            0
3
                            1
4
                            0
5105
                            0
5106
                            0
5107
                            0
5108
                            0
5109
```

[5109 rows x 16 columns]

4.2 Scaling

```
[34]: scaler = StandardScaler()
      df_encoded[num_df]=scaler.fit_transform(df_encoded[num_df])
[35]:
     df_encoded.describe()
[35]:
                                                        heart_disease
                                                                         ever married
                  gender
                                     age
                                          hypertension
             5109.000000
                           5.109000e+03
                                           5109.000000
                                                           5109.000000
                                                                          5109.000000
      count
      mean
                 0.413975
                           3.077275e-16
                                              0.097475
                                                              0.054022
                                                                             0.656293
                 0.492592
                           1.000098e+00
                                                              0.226084
                                                                             0.474991
      std
                                              0.296633
      min
                 0.000000 -1.908332e+00
                                              0.000000
                                                              0.000000
                                                                             0.000000
      25%
                 0.000000 -8.062312e-01
                                              0.00000
                                                              0.00000
                                                                             0.000000
      50%
                 0.000000
                           7.827984e-02
                                              0.000000
                                                              0.00000
                                                                             1.000000
      75%
                 1.000000
                           7.858887e-01
                                              0.000000
                                                              0.00000
                                                                             1.000000
                                              1.000000
      max
                 1.000000
                           1.714625e+00
                                                              1.000000
                                                                             1.000000
             Residence_type
                              avg_glucose_level
                                                            bmi
                                                                      stroke
                5109.000000
                                   5.109000e+03
                                                                 5109.000000
      count
                                                  5.109000e+03
                   0.508123
                                  -5.001219e-16
                                                  1.075237e-16
                                                                    0.048738
      mean
      std
                   0.499983
                                    1.000098e+00
                                                  1.000098e+00
                                                                    0.215340
                   0.000000
                                  -1.858506e+00 -2.733403e+00
                                                                    0.00000
      min
                                  -6.795556e-01 -6.805289e-01
      25%
                   0.000000
                                                                    0.000000
                                    1.007264e-01 -1.748375e-04
      50%
                    1.000000
                                                                    0.00000
      75%
                    1.000000
                                   4.882025e-01
                                                  5.968151e-01
                                                                    0.000000
      max
                    1.000000
                                   4.126321e+00
                                                  2.786548e+00
                                                                    1.000000
                                       work_type_Private
                                                           work_type_Self-employed
             work_type_Never_worked
                         5109.000000
                                             5109.000000
                                                                        5109.000000
      count
                            0.004306
                                                0.572323
                                                                           0.160305
      mean
      std
                            0.065486
                                                0.494790
                                                                           0.366925
      min
                            0.000000
                                                0.00000
                                                                           0.00000
      25%
                            0.00000
                                                0.00000
                                                                           0.00000
      50%
                            0.000000
                                                1.000000
                                                                           0.000000
      75%
                            0.00000
                                                1.000000
                                                                           0.00000
                            1.000000
                                                1.000000
                                                                           1.000000
      max
             work type children
                                  smoking status formerly smoked
      count
                     5109.000000
                                                       5109.000000
      mean
                        0.134469
                                                          0.173028
      std
                        0.341188
                                                          0.378308
      min
                        0.000000
                                                          0.000000
      25%
                        0.00000
                                                          0.00000
      50%
                        0.000000
                                                          0.000000
      75%
                        0.000000
                                                          0.000000
                                                          1.000000
      max
                        1.000000
```

	<pre>smoking_status_never smoked</pre>	smoking_status_smokes
count	5109.000000	5109.000000
mean	0.370327	0.154433
std	0.482939	0.361399
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	0.000000
75%	1.000000	0.000000
max	1.000000	1.000000

4.3 data splitting

```
[36]: #Doing over sampling for minority classes
sampling_strategy = 0.6
oversample = RandomOverSampler(sampling_strategy=sampling_strategy)
X=df_encoded.drop(['stroke'],axis=1)
y=df_encoded['stroke']
X_over, y_over = oversample.fit_resample(X, y)
[37]: grg_countplot(x = x_over_polette= |vinter|)
```

```
[37]: sns.countplot(x = y_over, palette= 'winter')
plt.xlabel('Stroke');
```


4.3.1 Splitting into train and test set

Train data set size is (6220, 15) and test size is (1556, 15)

5 ANN

```
[40]: model = keras.Sequential([
          keras.layers.Dense(30,input_shape = (15,),activation = 'relu'),
          keras.layers.Dense(25,activation = 'relu'),
          keras.layers.Dense(20,activation = 'relu'),
          keras.layers.Dense(15,activation = 'relu'),
          keras.layers.Dense(1,activation = 'sigmoid')
])
model.compile(optimizer = 'adam',
          loss = 'binary_crossentropy',
          metrics = ['accuracy'])
```

```
[41]: model.fit(X_train,y_train,epochs=250)
```

```
Epoch 1/250
195/195 [============ ] - 1s 884us/step - loss: 0.5338 -
accuracy: 0.7386
Epoch 2/250
195/195 [============ ] - Os 2ms/step - loss: 0.4424 -
accuracy: 0.7805
Epoch 3/250
accuracy: 0.7912
Epoch 4/250
195/195 [=======
                ========] - Os 1ms/step - loss: 0.4075 -
accuracy: 0.7958
Epoch 5/250
accuracy: 0.8092
Epoch 6/250
195/195 [============= ] - Os 968us/step - loss: 0.3717 -
accuracy: 0.8207
Epoch 7/250
accuracy: 0.8257
Epoch 8/250
195/195 [============= ] - 0s 862us/step - loss: 0.3391 -
```

```
accuracy: 0.8383
Epoch 9/250
195/195 [============ ] - Os 2ms/step - loss: 0.3281 -
accuracy: 0.8502
Epoch 10/250
195/195 [============= ] - Os 859us/step - loss: 0.3157 -
accuracy: 0.8519
Epoch 11/250
accuracy: 0.8627
Epoch 12/250
accuracy: 0.8715
Epoch 13/250
accuracy: 0.8720
Epoch 14/250
195/195 [============] - Os 864us/step - loss: 0.2730 -
accuracy: 0.8814
Epoch 15/250
195/195 [============ ] - 0s 920us/step - loss: 0.2618 -
accuracy: 0.8876
Epoch 16/250
accuracy: 0.8915
Epoch 17/250
195/195 [============ ] - 0s 920us/step - loss: 0.2455 -
accuracy: 0.8973
Epoch 18/250
accuracy: 0.9026
Epoch 19/250
195/195 [============ ] - Os 1ms/step - loss: 0.2290 -
accuracy: 0.9085
Epoch 20/250
accuracy: 0.9095
Epoch 21/250
195/195 [============= ] - 0s 936us/step - loss: 0.2163 -
accuracy: 0.9130
Epoch 22/250
195/195 [============] - Os 879us/step - loss: 0.2133 -
accuracy: 0.9154
Epoch 23/250
195/195 [============ ] - 0s 895us/step - loss: 0.2027 -
accuracy: 0.9212
Epoch 24/250
195/195 [============ ] - 0s 874us/step - loss: 0.1990 -
```

```
accuracy: 0.9198
Epoch 25/250
195/195 [============] - Os 869us/step - loss: 0.1948 -
accuracy: 0.9233
Epoch 26/250
195/195 [============= ] - 0s 915us/step - loss: 0.1862 -
accuracy: 0.9302
Epoch 27/250
accuracy: 0.9296
Epoch 28/250
195/195 [============= ] - 0s 874us/step - loss: 0.1758 -
accuracy: 0.9330
Epoch 29/250
195/195 [============ ] - Os 910us/step - loss: 0.1772 -
accuracy: 0.9317
Epoch 30/250
195/195 [============] - Os 889us/step - loss: 0.1712 -
accuracy: 0.9323
Epoch 31/250
195/195 [============ ] - Os 910us/step - loss: 0.1702 -
accuracy: 0.9336
Epoch 32/250
195/195 [============= ] - 0s 932us/step - loss: 0.1657 -
accuracy: 0.9362
Epoch 33/250
195/195 [============ ] - 0s 884us/step - loss: 0.1558 -
accuracy: 0.9434
Epoch 34/250
accuracy: 0.9447
Epoch 35/250
195/195 [============ ] - Os 892us/step - loss: 0.1512 -
accuracy: 0.9412
Epoch 36/250
accuracy: 0.9431
Epoch 37/250
195/195 [============= ] - Os 977us/step - loss: 0.1459 -
accuracy: 0.9458
Epoch 38/250
195/195 [============] - Os 910us/step - loss: 0.1432 -
accuracy: 0.9481
Epoch 39/250
195/195 [============ ] - 0s 913us/step - loss: 0.1414 -
accuracy: 0.9479
Epoch 40/250
195/195 [============ ] - 0s 922us/step - loss: 0.1436 -
```

```
accuracy: 0.9473
Epoch 41/250
195/195 [============ ] - Os 920us/step - loss: 0.1358 -
accuracy: 0.9495
Epoch 42/250
195/195 [============ ] - 0s 898us/step - loss: 0.1299 -
accuracy: 0.9531
Epoch 43/250
195/195 [============ ] - 0s 920us/step - loss: 0.1347 -
accuracy: 0.9502
Epoch 44/250
195/195 [============ ] - Os 959us/step - loss: 0.1225 -
accuracy: 0.9564
Epoch 45/250
195/195 [============ ] - 0s 956us/step - loss: 0.1378 -
accuracy: 0.9473
Epoch 46/250
195/195 [============ ] - Os 910us/step - loss: 0.1318 -
accuracy: 0.9523
Epoch 47/250
195/195 [============= ] - 0s 879us/step - loss: 0.1235 -
accuracy: 0.9543
Epoch 48/250
195/195 [============= ] - 0s 997us/step - loss: 0.1189 -
accuracy: 0.9576
Epoch 49/250
195/195 [============] - Os 946us/step - loss: 0.1198 -
accuracy: 0.9569
Epoch 50/250
195/195 [============ ] - Os 910us/step - loss: 0.1190 -
accuracy: 0.9584
Epoch 51/250
195/195 [============ ] - Os 941us/step - loss: 0.1132 -
accuracy: 0.9592
Epoch 52/250
accuracy: 0.9613
Epoch 53/250
accuracy: 0.9566
Epoch 54/250
195/195 [============ ] - Os 1ms/step - loss: 0.1141 -
accuracy: 0.9605
Epoch 55/250
accuracy: 0.9635
Epoch 56/250
```

```
accuracy: 0.9633
Epoch 57/250
195/195 [============ ] - Os 1ms/step - loss: 0.1031 -
accuracy: 0.9653
Epoch 58/250
accuracy: 0.9622
Epoch 59/250
accuracy: 0.9643
Epoch 60/250
accuracy: 0.9646
Epoch 61/250
accuracy: 0.9645
Epoch 62/250
195/195 [============ ] - Os 1ms/step - loss: 0.0947 -
accuracy: 0.9683
Epoch 63/250
195/195 [============ ] - Os 910us/step - loss: 0.0997 -
accuracy: 0.9650
Epoch 64/250
accuracy: 0.9712
Epoch 65/250
195/195 [============ ] - 0s 876us/step - loss: 0.1000 -
accuracy: 0.9675
Epoch 66/250
195/195 [============ ] - 0s 879us/step - loss: 0.1013 -
accuracy: 0.9641
Epoch 67/250
195/195 [============] - Os 951us/step - loss: 0.0946 -
accuracy: 0.9667
Epoch 68/250
accuracy: 0.9704
Epoch 69/250
accuracy: 0.9664
Epoch 70/250
195/195 [============] - Os 856us/step - loss: 0.0866 -
accuracy: 0.9715
Epoch 71/250
195/195 [============ ] - 0s 874us/step - loss: 0.0810 -
accuracy: 0.9736
Epoch 72/250
195/195 [============ ] - 0s 848us/step - loss: 0.0886 -
```

```
accuracy: 0.9717
Epoch 73/250
195/195 [============ ] - Os 1ms/step - loss: 0.0806 -
accuracy: 0.9752
Epoch 74/250
195/195 [============ ] - 0s 915us/step - loss: 0.0803 -
accuracy: 0.9757
Epoch 75/250
accuracy: 0.9690
Epoch 76/250
195/195 [============] - Os 853us/step - loss: 0.1019 -
accuracy: 0.9641
Epoch 77/250
195/195 [============ ] - 0s 868us/step - loss: 0.0878 -
accuracy: 0.9699
Epoch 78/250
195/195 [============= ] - Os 853us/step - loss: 0.0828 -
accuracy: 0.9744
Epoch 79/250
195/195 [============ ] - 0s 864us/step - loss: 0.0761 -
accuracy: 0.9762
Epoch 80/250
195/195 [============= ] - 0s 856us/step - loss: 0.0810 -
accuracy: 0.9757
Epoch 81/250
195/195 [============] - Os 874us/step - loss: 0.0728 -
accuracy: 0.9793
Epoch 82/250
195/195 [============ ] - 0s 874us/step - loss: 0.0788 -
accuracy: 0.9762
Epoch 83/250
195/195 [============] - Os 874us/step - loss: 0.0834 -
accuracy: 0.9748
Epoch 84/250
accuracy: 0.9765
Epoch 85/250
accuracy: 0.9767
Epoch 86/250
195/195 [============] - Os 869us/step - loss: 0.0712 -
accuracy: 0.9794
Epoch 87/250
accuracy: 0.9799
Epoch 88/250
195/195 [============ ] - 0s 869us/step - loss: 0.0895 -
```

```
accuracy: 0.9696
Epoch 89/250
195/195 [============] - Os 853us/step - loss: 0.0948 -
accuracy: 0.9693
Epoch 90/250
195/195 [============ ] - 0s 874us/step - loss: 0.0775 -
accuracy: 0.9764
Epoch 91/250
accuracy: 0.9759
Epoch 92/250
195/195 [=========== ] - Os 884us/step - loss: 0.0637 -
accuracy: 0.9807
Epoch 93/250
195/195 [============ ] - 0s 879us/step - loss: 0.0766 -
accuracy: 0.9754
Epoch 94/250
195/195 [============] - Os 843us/step - loss: 0.0712 -
accuracy: 0.9764
Epoch 95/250
195/195 [============ ] - 0s 848us/step - loss: 0.0710 -
accuracy: 0.9778
Epoch 96/250
195/195 [============= ] - 0s 905us/step - loss: 0.0568 -
accuracy: 0.9852
Epoch 97/250
195/195 [============ ] - 0s 879us/step - loss: 0.0630 -
accuracy: 0.9797
Epoch 98/250
195/195 [============ ] - 0s 890us/step - loss: 0.0595 -
accuracy: 0.9817
Epoch 99/250
195/195 [============ ] - 0s 889us/step - loss: 0.0660 -
accuracy: 0.9797
Epoch 100/250
accuracy: 0.9732
Epoch 101/250
accuracy: 0.9834
Epoch 102/250
195/195 [============] - Os 879us/step - loss: 0.0544 -
accuracy: 0.9838
Epoch 103/250
195/195 [============ ] - 0s 874us/step - loss: 0.0576 -
accuracy: 0.9826
Epoch 104/250
195/195 [============ ] - 0s 884us/step - loss: 0.0646 -
```

```
accuracy: 0.9794
Epoch 105/250
195/195 [============] - Os 853us/step - loss: 0.0653 -
accuracy: 0.9796
Epoch 106/250
accuracy: 0.9844
Epoch 107/250
accuracy: 0.9812
Epoch 108/250
accuracy: 0.9748
Epoch 109/250
195/195 [============ ] - 0s 944us/step - loss: 0.0775 -
accuracy: 0.9765
Epoch 110/250
195/195 [============] - Os 905us/step - loss: 0.0572 -
accuracy: 0.9854
Epoch 111/250
195/195 [============ ] - 0s 864us/step - loss: 0.0483 -
accuracy: 0.9854
Epoch 112/250
accuracy: 0.9841
Epoch 113/250
195/195 [============ ] - 0s 848us/step - loss: 0.0755 -
accuracy: 0.9773
Epoch 114/250
195/195 [============ ] - 0s 915us/step - loss: 0.0540 -
accuracy: 0.9831
Epoch 115/250
195/195 [============ ] - 0s 889us/step - loss: 0.0501 -
accuracy: 0.9847
Epoch 116/250
accuracy: 0.9862
Epoch 117/250
accuracy: 0.9757
Epoch 118/250
195/195 [============] - Os 848us/step - loss: 0.0817 -
accuracy: 0.9748
Epoch 119/250
195/195 [============ ] - 0s 920us/step - loss: 0.0594 -
accuracy: 0.9804
Epoch 120/250
195/195 [============ ] - 0s 884us/step - loss: 0.0491 -
```

```
accuracy: 0.9838
Epoch 121/250
195/195 [============ ] - Os 843us/step - loss: 0.0444 -
accuracy: 0.9873
Epoch 122/250
195/195 [============ ] - Os 930us/step - loss: 0.0551 -
accuracy: 0.9820
Epoch 123/250
accuracy: 0.9875
Epoch 124/250
accuracy: 0.9878
Epoch 125/250
accuracy: 0.9868
Epoch 126/250
195/195 [=========== ] - Os 864us/step - loss: 0.0719 -
accuracy: 0.9770
Epoch 127/250
195/195 [============ ] - 0s 859us/step - loss: 0.0493 -
accuracy: 0.9849
Epoch 128/250
accuracy: 0.9859
Epoch 129/250
195/195 [============ ] - 0s 864us/step - loss: 0.0594 -
accuracy: 0.9801
Epoch 130/250
195/195 [============ ] - 0s 828us/step - loss: 0.0470 -
accuracy: 0.9857
Epoch 131/250
195/195 [============ ] - 0s 958us/step - loss: 0.0467 -
accuracy: 0.9854
Epoch 132/250
accuracy: 0.9887
Epoch 133/250
accuracy: 0.9855
Epoch 134/250
195/195 [============] - Os 937us/step - loss: 0.0449 -
accuracy: 0.9867
Epoch 135/250
accuracy: 0.9875
Epoch 136/250
195/195 [============ ] - 0s 874us/step - loss: 0.0455 -
```

```
accuracy: 0.9857
Epoch 137/250
195/195 [============ ] - 0s 920us/step - loss: 0.0421 -
accuracy: 0.9873
Epoch 138/250
accuracy: 0.9777
Epoch 139/250
accuracy: 0.9876
Epoch 140/250
accuracy: 0.9905
Epoch 141/250
accuracy: 0.9857
Epoch 142/250
195/195 [============ ] - Os 1ms/step - loss: 0.0362 -
accuracy: 0.9892
Epoch 143/250
accuracy: 0.9871
Epoch 144/250
accuracy: 0.9863
Epoch 145/250
accuracy: 0.9899
Epoch 146/250
accuracy: 0.9785
Epoch 147/250
195/195 [============ ] - Os 1ms/step - loss: 0.0582 -
accuracy: 0.9818
Epoch 148/250
accuracy: 0.9865
Epoch 149/250
accuracy: 0.9879
Epoch 150/250
195/195 [============ ] - Os 1ms/step - loss: 0.0552 -
accuracy: 0.9817
Epoch 151/250
195/195 [============ ] - 0s 925us/step - loss: 0.0347 -
accuracy: 0.9900
Epoch 152/250
195/195 [============ ] - 0s 931us/step - loss: 0.0392 -
```

```
accuracy: 0.9879
Epoch 153/250
195/195 [============] - Os 925us/step - loss: 0.0356 -
accuracy: 0.9886
Epoch 154/250
accuracy: 0.9905
Epoch 155/250
accuracy: 0.9871
Epoch 156/250
195/195 [============= ] - Os 855us/step - loss: 0.0364 -
accuracy: 0.9891
Epoch 157/250
accuracy: 0.9859
Epoch 158/250
195/195 [============ ] - Os 843us/step - loss: 0.0442 -
accuracy: 0.9855
Epoch 159/250
195/195 [============ ] - 0s 853us/step - loss: 0.0326 -
accuracy: 0.9899
Epoch 160/250
accuracy: 0.9870
Epoch 161/250
195/195 [============== ] - Os 848us/step - loss: 0.0324 -
accuracy: 0.9899
Epoch 162/250
195/195 [============ ] - 0s 879us/step - loss: 0.0507 -
accuracy: 0.9842
Epoch 163/250
195/195 [============ ] - Os 910us/step - loss: 0.0300 -
accuracy: 0.9910
Epoch 164/250
accuracy: 0.9928
Epoch 165/250
accuracy: 0.9823
Epoch 166/250
195/195 [============] - Os 850us/step - loss: 0.0766 -
accuracy: 0.9780
Epoch 167/250
195/195 [============ ] - 0s 838us/step - loss: 0.0348 -
accuracy: 0.9887
Epoch 168/250
195/195 [============ ] - 0s 853us/step - loss: 0.0301 -
```

```
accuracy: 0.9902
Epoch 169/250
195/195 [============ ] - 0s 878us/step - loss: 0.0326 -
accuracy: 0.9897
Epoch 170/250
accuracy: 0.9891
Epoch 171/250
accuracy: 0.9905
Epoch 172/250
195/195 [============= ] - Os 864us/step - loss: 0.0575 -
accuracy: 0.9799
Epoch 173/250
accuracy: 0.9892
Epoch 174/250
195/195 [============= ] - Os 859us/step - loss: 0.0558 -
accuracy: 0.9838
Epoch 175/250
195/195 [============ ] - 0s 886us/step - loss: 0.0400 -
accuracy: 0.9871
Epoch 176/250
accuracy: 0.9873
Epoch 177/250
195/195 [============ ] - 0s 838us/step - loss: 0.0284 -
accuracy: 0.9910
Epoch 178/250
accuracy: 0.9905
Epoch 179/250
195/195 [============] - Os 843us/step - loss: 0.0273 -
accuracy: 0.9908
Epoch 180/250
accuracy: 0.9941
Epoch 181/250
accuracy: 0.9886
Epoch 182/250
195/195 [============ ] - Os 1ms/step - loss: 0.0336 -
accuracy: 0.9887
Epoch 183/250
195/195 [============ ] - 0s 963us/step - loss: 0.0439 -
accuracy: 0.9859
Epoch 184/250
195/195 [============ ] - 0s 985us/step - loss: 0.0631 -
```

```
accuracy: 0.9794
Epoch 185/250
195/195 [============] - Os 848us/step - loss: 0.0513 -
accuracy: 0.9838
Epoch 186/250
195/195 [============ ] - Os 900us/step - loss: 0.0379 -
accuracy: 0.9876
Epoch 187/250
accuracy: 0.9921
Epoch 188/250
accuracy: 0.9915
Epoch 189/250
accuracy: 0.9939
Epoch 190/250
195/195 [============] - Os 848us/step - loss: 0.0206 -
accuracy: 0.9941
Epoch 191/250
195/195 [============ ] - 0s 843us/step - loss: 0.0295 -
accuracy: 0.9915
Epoch 192/250
accuracy: 0.9855
Epoch 193/250
195/195 [============ ] - 0s 833us/step - loss: 0.0331 -
accuracy: 0.9900
Epoch 194/250
195/195 [============ ] - 0s 885us/step - loss: 0.0352 -
accuracy: 0.9892
Epoch 195/250
195/195 [============ ] - 0s 853us/step - loss: 0.0549 -
accuracy: 0.9828
Epoch 196/250
195/195 [=============== ] - 0s 881us/step - loss: 0.0338 -
accuracy: 0.9900
Epoch 197/250
accuracy: 0.9915
Epoch 198/250
195/195 [============] - Os 910us/step - loss: 0.0239 -
accuracy: 0.9926
Epoch 199/250
195/195 [============ ] - 0s 972us/step - loss: 0.0249 -
accuracy: 0.9918
Epoch 200/250
195/195 [============ ] - 0s 859us/step - loss: 0.0322 -
```

```
accuracy: 0.9894
Epoch 201/250
195/195 [============] - Os 859us/step - loss: 0.0227 -
accuracy: 0.9929
Epoch 202/250
195/195 [============ ] - 0s 843us/step - loss: 0.0240 -
accuracy: 0.9921
Epoch 203/250
accuracy: 0.9868
Epoch 204/250
accuracy: 0.9884
Epoch 205/250
accuracy: 0.9889
Epoch 206/250
195/195 [============ ] - Os 1ms/step - loss: 0.0405 -
accuracy: 0.9862
Epoch 207/250
195/195 [============ ] - 0s 848us/step - loss: 0.0277 -
accuracy: 0.9918
Epoch 208/250
accuracy: 0.9912
Epoch 209/250
accuracy: 0.9870
Epoch 210/250
accuracy: 0.9857
Epoch 211/250
195/195 [============ ] - 0s 833us/step - loss: 0.0292 -
accuracy: 0.9908
Epoch 212/250
accuracy: 0.9913
Epoch 213/250
accuracy: 0.9916
Epoch 214/250
195/195 [============] - Os 925us/step - loss: 0.0164 -
accuracy: 0.9961
Epoch 215/250
195/195 [============ ] - 0s 869us/step - loss: 0.0265 -
accuracy: 0.9918
Epoch 216/250
195/195 [============ ] - 0s 869us/step - loss: 0.0481 -
```

```
accuracy: 0.9846
Epoch 217/250
195/195 [============ ] - Os 1ms/step - loss: 0.0277 -
accuracy: 0.9912
Epoch 218/250
accuracy: 0.9913
Epoch 219/250
accuracy: 0.9928
Epoch 220/250
195/195 [============= ] - 0s 874us/step - loss: 0.0306 -
accuracy: 0.9907
Epoch 221/250
accuracy: 0.9867
Epoch 222/250
195/195 [============] - Os 900us/step - loss: 0.0260 -
accuracy: 0.9912
Epoch 223/250
195/195 [============ ] - 0s 925us/step - loss: 0.0180 -
accuracy: 0.9944
Epoch 224/250
accuracy: 0.9878
Epoch 225/250
accuracy: 0.9817
Epoch 226/250
accuracy: 0.9905
Epoch 227/250
accuracy: 0.9910
Epoch 228/250
accuracy: 0.9944
Epoch 229/250
accuracy: 0.9947
Epoch 230/250
195/195 [============ ] - Os 1ms/step - loss: 0.0261 -
accuracy: 0.9916
Epoch 231/250
accuracy: 0.9947
Epoch 232/250
```

```
accuracy: 0.9923
Epoch 233/250
195/195 [============] - Os 884us/step - loss: 0.0293 -
accuracy: 0.9910
Epoch 234/250
195/195 [============ ] - 0s 903us/step - loss: 0.0670 -
accuracy: 0.9830
Epoch 235/250
accuracy: 0.9932
Epoch 236/250
accuracy: 0.9928
Epoch 237/250
accuracy: 0.9924
Epoch 238/250
195/195 [============] - Os 843us/step - loss: 0.0515 -
accuracy: 0.9863
Epoch 239/250
195/195 [============ ] - 0s 874us/step - loss: 0.0370 -
accuracy: 0.9887
Epoch 240/250
accuracy: 0.9945
Epoch 241/250
accuracy: 0.9955
Epoch 242/250
accuracy: 0.9957
Epoch 243/250
195/195 [============] - Os 920us/step - loss: 0.0224 -
accuracy: 0.9936
Epoch 244/250
195/195 [=============== ] - Os 905us/step - loss: 0.0196 -
accuracy: 0.9932
Epoch 245/250
accuracy: 0.9870
Epoch 246/250
195/195 [============] - Os 941us/step - loss: 0.0807 -
accuracy: 0.9767
Epoch 247/250
195/195 [============ ] - 0s 966us/step - loss: 0.0254 -
accuracy: 0.9926
Epoch 248/250
195/195 [============ ] - 0s 859us/step - loss: 0.0157 -
```

```
accuracy: 0.9957
    Epoch 249/250
    195/195 [============ ] - 0s 987us/step - loss: 0.0149 -
    accuracy: 0.9952
    Epoch 250/250
    accuracy: 0.9924
[41]: <keras.callbacks.History at 0x2300c1ffc70>
[42]: model.evaluate(X_test,y_test)
    accuracy: 0.9640
[42]: [0.15632732212543488, 0.9640102982521057]
[43]: model.evaluate(X_train,y_train)
    accuracy: 0.9968
[43]: [0.012905284762382507, 0.9967845678329468]
[44]: y_train
[44]: 849
          0
    2575
          0
    187
    588
          0
    1130
          0
    3399
          0
    2773
          0
    296
          0
    575
          0
    2165
          0
    Name: stroke, Length: 6220, dtype: int64
[45]: y_test_predict = model.predict(X_test)
    y_train_predict = model.predict(X_train)
    49/49 [======== ] - Os 737us/step
    195/195 [========== ] - Os 637us/step
[46]: X_train
[46]:
                  age hypertension heart_disease ever_married \
            0 1.183919
    849
                                         0
                                                    1
    2575
            1 -0.717780
                              0
                                         0
                                                    0
```

```
187
           0 1.714625
                                     1
                                                     1
                                                                    1
588
           0 -0.850457
                                     0
                                                     0
                                                                    1
1130
           1 1.626174
                                     0
                                                     0
                                                                    1
               •••
3399
           0 1.714625
                                     1
                                                     1
                                                                    1
2773
           1 -0.762006
                                     0
                                                     0
                                                                    1
296
           0 1.007016
                                     0
                                                     0
                                                                    1
575
           1 0.078280
                                     0
                                                     0
                                                                    1
2165
           0 -1.381163
                                     0
                                                                    0
      Residence_type avg_glucose_level bmi work_type_Never_worked
849
                    1
                                0.512187 0.916151
                                                                            0
                                                                            0
2575
                    1
                               -0.926325 1.554823
                    1
187
                                0.100726 -0.057063
                                                                            0
588
                    1
                               -0.000007 -0.589290
                                                                            0
1130
                    1
                               -0.597477 -0.650116
                                                                            0
3399
                    1
                                -0.895412 0.794499
                                                                            0
2773
                                                                            0
                    1
                                0.226510 0.140621
296
                    0
                                 2.731513 0.034175
                                                                            0
575
                    0
                                0.531907 1.113835
                                                                            0
2165
                    1
                               -0.405071 -1.699363
                                                                            0
      work_type_Private
                          work_type_Self-employed
                                                     work_type_children
849
                       0
                                                                       0
                                                  1
2575
                       1
                                                  0
                                                                       0
187
                       0
                                                  0
                                                                       0
588
                                                  0
                                                                       0
1130
                       1
                                                  0
                                                                       0
3399
                       1
                                                  0
                                                                       0
2773
                       0
                                                  0
                                                                       0
296
                       1
                                                  0
                                                                       0
575
                       1
                                                                       0
                                                  0
2165
      smoking_status_formerly smoked
                                        smoking_status_never smoked
849
                                     1
                                                                    0
                                     0
2575
                                                                    1
187
                                     1
                                                                    0
588
                                     1
                                                                    0
1130
                                     1
                                                                    0
•••
3399
                                     0
                                                                    1
2773
                                                                    0
                                     1
296
                                     0
                                                                    1
575
                                     0
                                                                    1
```

```
2165
                                         0
                                                                       1
            smoking_status_smokes
      849
      2575
                                0
      187
                                0
      588
                                0
      1130
                                0
      3399
                                0
      2773
                                0
      296
                                0
      575
                                0
      2165
                                0
      [6220 rows x 15 columns]
[47]: y_test_predict.shape
[47]: (1556, 1)
[48]: y_test_pred = []
      for ele in y_test_predict:
          if ele >0.5:
              y_test_pred.append(1)
          else:
              y_test_pred.append(0)
[49]: y_train_pred = []
      for ele in y_train_predict:
          if ele >0.5:
              y_train_pred.append(1)
          else:
              y_train_pred.append(0)
          Checking the accuracy of the model
[50]: print('Accuracy for test data:', accuracy_score(y_test, y_test_pred))
      print('Accuracy for train data:', accuracy_score(y_train, y_train_pred))
     Accuracy for test data: 0.9640102827763496
     Accuracy for train data: 0.9967845659163987
[51]: print(classification_report(y_test,y_test_pred))
      cm= tf.math.confusion_matrix(labels = y_test,predictions=y_test_pred)
      plt.figure(figsize=(10,7))
      sns.heatmap(cm,annot=True,fmt='d')
```

```
plt.xlabel('Pridected')
plt.ylabel('Truth')
```

	precision	recall	f1-score	support
0	1.00	0.94	0.97	956
1	0.92	1.00	0.96	600
accuracy			0.96	1556
macro avg	0.96	0.97	0.96	1556
weighted avg	0.97	0.96	0.96	1556

[51]: Text(69.0, 0.5, 'Truth')

6 From here we conclude that the given model has recall for 1 has 100%. which means whenever any patient has chances of stroke our model will report it accurately.

```
[52]: | input_data = (1,49,0,0,0,104.86,31.9,0,1,0,0,0,0,1)
      # changing the input_data to numpy array
     input_data = np.asarray(input_data)
      # reshape the array as we are predicting for one instance
     input data = input data.reshape(1,-1)
     #standarised the data
     print(input_data[0,1],input_data[0,10],input_data[0,11])
     lst=scaler.transform([[input_data[0,1],input_data[0,6],input_data[0,7]]])
     lst
     input_data[0,1],input_data[0,6],input_data[0,7] = lst[0,0],lst[0,1],lst[0,2]
     print(input_data)
     prediction = model.predict(input_data)
     print(prediction)
     if prediction[0] >= 0.5:
         print('The patient has Stroke')
     else:
         print('The patient has not strokee')
                    1.051242
                                            1
                                                     1 1
       →100993
                      1.
       →265900
                              1
                                        0
                                                0
                                                         1
                                                                  0
                                                                           0
     49.0 0.0 0.0
     ΓΓ1.
                 0.25518205 0.
                                       0.
                                                             0.
                                                  0.
       0.79253384 0.55119568 0.
                                       1.
                                                  0.
                                                             0.
                                      11
     1/1 [======] - 0s 47ms/step
     [[0.9999907]]
     The patient has Stroke
     C:\Users\01abn\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X
     does not have valid feature names, but StandardScaler was fitted with feature
     names
```

warnings.warn(

6.1 Saving the model

```
[53]: #Saving the scaler and model
       filename = 'heart_stroke.sav'
       pickle.dump(model, open(filename, 'wb'))
       scalerfile = 'scaler.sav'
      pickle.dump(scaler, open(scalerfile, 'wb'))
      Keras weights file (<HDF5 file "variables.h5" (mode r+)>) saving:
      ...layers\dense
      ...vars
      ...0
      ...1
      ...layers\dense_1
      ...vars
      ...0
      ...1
      ...layers\dense_2
      ...vars
      ...0
      ...1
      ...layers\dense_3
      ...vars
      ...0
      ...1
      ...layers\dense_4
      ...vars
      ...0
      ...1
      ...metrics\mean
      ...vars
      ...0
      ...metrics\mean_metric_wrapper
      ...vars
      ...0
      ...1
      ...optimizer
      ...vars
      ...0
      ...1
      ...10
      ...11
      ...12
      ...13
      ...14
      ...15
      ...16
```

```
...17
      ...18
     ...19
      ...2
      ...20
      ...3
      ...4
      ...5
      ...6
      ...7
      ...8
      ...9
      ...vars
     Keras model archive saving:
                                                                   Modified
                                                                                           Size
     File Name
                                                           2022-12-24 02:53:32
                                                                                           2672
      config.json
     metadata.json
                                                           2022-12-24 02:53:32
                                                                                             64
     variables.h5
                                                           2022-12-24 02:53:32
                                                                                         56424
[54]: # loading the saved model
      load_model = pickle.load(open('heart_stroke.sav', 'rb'))
      load_scaler = pickle.load(open('scaler.sav','rb'))
     Keras model archive loading:
     File Name
                                                                   Modified
                                                                                          Size
                                                           2022-12-24 02:53:32
                                                                                           2672
      config.json
     metadata.json
                                                           2022-12-24 02:53:32
                                                                                             64
                                                                                         56424
      variables.h5
                                                           2022-12-24 02:53:32
      Keras weights file (<HDF5 file "variables.h5" (mode r)>) loading:
      ...layers\dense
     ...vars
      ...0
      ...1
     ...layers\dense_1
      ...vars
      ...0
      ...1
     ...layers\dense_2
      ...vars
     ...0
      ...1
      ...layers\dense_3
     ...vars
     ...0
     ...1
     ...layers\dense_4
     ...vars
      ...0
```

```
...metrics\mean
     ...vars
     ...0
      ...1
     ...metrics\mean_metric_wrapper
     ...vars
      ...0
     ...1
     ...optimizer
     ...vars
     ...0
     ...1
     ...10
     ...11
     ...12
     ...13
     ...14
     ...15
     ...16
     ...17
     ...18
     ...19
     ...2
     ...20
     ...3
      ...4
      ...5
      ...6
     ...7
      ...8
     ...9
      ...vars
[55]: input_data = (1,49,0,0,0,0,104.86,31.9,0,1,0,0,0,0,1)
      # changing the input_data to numpy array
      input_data = np.asarray(input_data)
      # reshape the array as we are predicting for one instance
      input_data = input_data.reshape(1,-1)
      #standarised the data
      print(input_data[0,1],input_data[0,10],input_data[0,11])
      lst=load_scaler.transform([[input_data[0,1],input_data[0,6],input_data[0,7]]])
      # lst
```

...1

```
input_data[0,1],input_data[0,6],input_data[0,7] = lst[0,0],lst[0,1],lst[0,2]
      # print(input_data)
     prediction = load_model.predict(input_data)
     print(prediction)
     if prediction[0] >= 0.5:
         print('The patient has Stroke')
     else:
         print('The patient has not strokee')
     49.0 0.0 0.0
     1/1 [=======] - Os 55ms/step
     [[0.9999907]]
     The patient has Stroke
     C:\Users\01abn\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X
     does not have valid feature names, but StandardScaler was fitted with feature
     names
       warnings.warn(
[56]: for col in X:
         print(col)
     gender
     age
     hypertension
     heart_disease
     ever_married
     Residence_type
     avg_glucose_level
     bmi
     work_type_Never_worked
     work_type_Private
     work_type_Self-employed
     work_type_children
     smoking_status_formerly smoked
     smoking_status_never smoked
     smoking_status_smokes
 []:
```