HW3

Will

7 de junio de 2017

HW3

Question 1

A situation in my work where I might use exponential smoothing could be inflation forecast. We use CPI as a input for expected rate of return. Monthly CPI tend to looks seasonally with respect to its history. So I could use a algoritm to determinate the best smoothing parameter, choises the lower square error. If that not the case I think that I could use 0.5.

Question 2

```
## Holt-Winters exponential smoothing without trend and with multiplicative seasonal component.
##
## Call:
## HoltWinters(x = weather.ts, beta = FALSE, seasonal = "multiplicative")
##
## Smoothing parameters:
##
    alpha: 0.003602305
    beta: FALSE
##
##
    gamma: 0.3349119
##
## Coefficients:
##
               [,1]
        88.6737351
## a
## s1
         1.0511398
## s2
         1.0471550
## s3
         1.0550725
## s4
         0.9724155
## s5
         1.0218876
## s6
         1.0215369
## s7
         1.0062241
## s8
         0.9838796
## s9
         1.0256818
         0.9992231
## s10
## s11
         1.0479930
## s12
         1.0034866
## s13
         0.9964509
## s14
         1.0153821
         0.9702652
## s15
## s16
         1.0078804
## s17
         0.9702829
## s18
         1.0263794
## s19
         0.9729813
## s20
         0.9731394
## s21
         1.0477167
         1.0103373
## s22
## s23
         1.0669926
## s24
         1.0069094
## s25
         1.0221226
## s26
         1.0140726
## s27
         1.0254200
## s28
         1.0066853
## s29
         1.0034566
## s30
         1.0068381
## s31
         1.0586770
## s32
         0.9942702
## s33
         0.9927694
## s34
         1.0331662
## s35
         0.9715186
## s36
         0.9802569
## s37
         0.9839578
## s38
         0.9957634
## s39
         0.9728097
## s40
         1.0168391
## s41
         0.9880801
## s42
         0.9983103
## s43
         1.0299514
## s44
         1.0095804
## s45
         1.0181410
## s46
         1.0675946
## s47
         0.9244345
## s48
         0.9790192
```

##	c 40	0.0060074
	s49	0.9860974
##	s50	1.0063036
##	s51	0.9970861
##	s52	1.0023613
##	s53	1.0011952
##	s54	1.0464975
##	s55	0.9959979 1.0097277
##	s56	
##	s57	0.9621225
##	s58	0.9959313
##	s59	1.0010061
##	s60	1.0211570
##	s61	1.0211142
##	s62 s63	1.0076132 0.9807728
##	s64	1.0028275
##	s65	1.0025273
##	s66	1.0023118
##	s67	0.9750916
##	s68	1.0204169
##	s69	0.9708398
##	s70	1.0125174
##	s70	0.9885081
##	s72	1.0025759
##	s73	0.9910751
##	s74	1.0502752
##	s75	0.9974947
##	s76	1.0239587
##		0.9611695
##	s78	0.9848963
##	s79	0.9827427
##	s80	0.9849916
##		0.9921234
##	s82	0.9610377
##	s83	0.9956130
##	s84	1.0282449
##	s85	1.0139620
##	s86	1.0840655
##	s87	0.9826990
##	s88	1.0306210
##	s89	0.9820241
##	s90	1.0005204
##	s91	0.9364654
##	s92	0.9987285
##	s93	0.9532717
##	s94	1.0624530
##	s95	0.9971866
##	s96	1.0011559
##	s97	0.9671295
##	s98	1.0026525
##	s99	0.9499695
##	s100	0.9559687
##	s101	0.9796541
##	s102	1.0060623
##	s103	1.0009059
##	s104	1.0408399
##	s105	1.0345199
##	s106	1.0408350
##	s107	0.9694587
##	s108	1.0458977
##	s109	0.9977161
##	s110	1.0027367

```
1.0014566
      1.0140479
      0.9875947
      1.0176157
      0.9990346
      1.0194243
s116
      0.9891841
      0.9907493
      1.0055288
      0.9516815
s120
      0.9641723
s122
      0.9641715
s123
      0.9880533
```

```
plot(fitted(model), plot.conf=FALSE, type="o", fcol="white", xlab="Time")
```

fitted(model)

The level in fitted results shows that end of summer has been gotten later in recent years. However, taking into account the 20year history that trend is not very clear.

Question 3

A linear regression problem for could be Colombian Currency Forecast

As a predictors I could use:

CPI actual

CPI Forecast

Central Bank Rate actual

Central Bank Forecast

GDP actual

Consumer Sentiment

US vs Colombian bonds yield spread Price of insurance cost for colombian government debt

Question 4

```
library(ggplot2)
library(MASS)
library(leaps)
library(relaimpo)
## Loading required package: boot
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:boot':
##
##
       aml
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
##
       dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
setwd("C:/Users/ce02144/Documents/HW3")
#Reading data
uscrime <- read.table("uscrime.txt", header = TRUE)</pre>
#Creating model
model = lm(Crime~., data = uscrime)
#Analyzing model
summary(model)
```

```
##
## Call:
  lm(formula = Crime ~ ., data = uscrime)
## Residuals:
##
      Min
               1Q Median
                                3Q
                                      Max
  -395.74 -98.09
                    -6.69 112.99
##
                                   512.67
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.984e+03 1.628e+03 -3.675 0.000893 ***
## M
               8.783e+01 4.171e+01
                                      2.106 0.043443 *
              -3.803e+00 1.488e+02 -0.026 0.979765
## So
## Ed
               1.883e+02 6.209e+01
                                      3.033 0.004861 **
               1.928e+02 1.061e+02
                                     1.817 0.078892 .
## Po1
## Po2
              -1.094e+02 1.175e+02 -0.931 0.358830
## LF
               -6.638e+02 1.470e+03 -0.452 0.654654
## M.F
               1.741e+01 2.035e+01
                                     0.855 0.398995
## Pop
               -7.330e-01 1.290e+00
                                     -0.568 0.573845
## NW
               4.204e+00 6.481e+00
                                     0.649 0.521279
               -5.827e+03 4.210e+03 -1.384 0.176238
## U1
## U2
               1.678e+02 8.234e+01
                                      2.038 0.050161 .
               9.617e-02 1.037e-01
                                      0.928 0.360754
## Wealth
## Inea
               7.067e+01
                          2.272e+01
                                      3.111 0.003983 **
## Prob
               -4.855e+03 2.272e+03
                                     -2.137 0.040627 *
                                     -0.486 0.630708
## Time
               -3.479e+00 7.165e+00
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 209.1 on 31 degrees of freedom
## Multiple R-squared: 0.8031, Adjusted R-squared: 0.7078
## F-statistic: 8.429 on 15 and 31 DF, p-value: 3.539e-07
coefficients(model)
```

```
##
     (Intercept)
                               М
                                              So
                                                             Ed
                                                                           Po<sub>1</sub>
  -5.984288e+03
                   8.783017e+01 -3.803450e+00
                                                  1.883243e+02
                                                                 1.928043e+02
##
                              LF
                                            M.F
##
              Po2
                                                            Pop
##
   -1.094219e+02 -6.638261e+02
                                  1.740686e+01 -7.330081e-01
                                                                 4.204461e+00
##
               U1
                              U2
                                         Wealth
                                                           Ineq
##
   -5.827103e+03
                   1.677997e+02 9.616624e-02 7.067210e+01 -4.855266e+03
##
             Time
## -3.479018e+00
```

```
AIC(model)
```

```
## [1] 650.0291
```

```
BIC(model)
```

```
## [1] 681.4816
```

```
#Calculing the relative importance of predictors
# Bootstrap Measures of Relative Importance (5 samples)
boot <- boot.relimp(model, b = 5, type = c("lmg"), rela = TRUE)
plot(booteval.relimp(boot,sort = TRUE), las = 2, cex.axis = 0.5, srt = 60, adj = 1)</pre>
```

Relative importances for Crime

with 95% bootstrap confidence intervals

Method LMG

 $R^2 = 80.31\%$, metrics are normalized to sum 100%.

```
#Prediction test
M = 14.0
So = 0
Ed = 10.0
Po1 = 12.0
Po2 = 15.5
LF = 0.640
M.F = 94.0
Pop = 150
NW = 1.1
U1 = 0.120
U2 = 3.6
Wealth = 3200
Ineq = 20.1
Prob = 0.04
Time = 39.0
question4 <- data.frame(M,</pre>
                         Ed,
                         Po1,
                         Po2,
                         LF,
                         M.F,
                         Pop,
                         NW,
                         U1,
                         U2,
                         Wealth,
                         Ineq,
                         Prob,
                         Time
                         )
#crime prediction
predict(model, newdata = question4, type = "response" )
##
## 155.4349
```

```
#we could look for better model using leaps library
#nbest best model for each combination.

leaps <- regsubsets(Crime~., data = uscrime, nbest = 1)

# Plot alternative models by bic. There are same predictors but different intercepts

plot(leaps, scale = "bic")</pre>
```


Plot alternative models by bic. There are same predictors but different intercepts plot(leaps, scale = "r2")

