浙江大学 20 <u>20</u> <u>-20</u> <u>21</u> 秋冬学期《时间序列分析》课程期末考试试卷

考试形式: √闭、开卷 (请在选定项上打√), 允许带 计算器 进场

考试日期: ____2021___ 年 ___01___ 月 ___25___ 日, 考试时间: ____120___ 分钟

诚信考试, 沉着应考, 杜绝违纪

考生姓名:	学早.	所属院系:	
/5 T.XT.40 ·	子 勺 .	120周25.	

由 CC98 @kausiujik 回忆整理,请勿用于商业用途

- 1. (15 分) 设平稳序列 $\{X_t\}$ 观察值为 x_1, x_2, \dots, x_N , 记 $y_t = x_t \overline{x}_N$, 其中 $\overline{x}_N = \frac{1}{N} \sum_{k=1}^N x_k$.
- (1) 叙述 AR(p) 序列的 AIC、BIC 定阶;
- (2) 写出 $\{X_t\}$ 的自协方差函数估计表达式;
- (3) 设 $\{y_t\}$ 满足模型 $y_t ay_{t-1} = \varepsilon_t$, 求自回归系数的 Yule-Walker 估计 \hat{a} 和最小二乘估计 \tilde{a} .
- 2. (20 分) 设 $\{X_t\}$ 满足模型 $X_t = \varepsilon_t + b\varepsilon_{t-1}$, 其中 b > 0, $\{\varepsilon_t\} \sim WN(0,1)$.
- (1) 证明: $\{X_t\}$ 是平稳序列;
- (2) 写出 $\{X_t\}$ 的谱密度函数;
- (3) 试给出 $\{X_t\}$ 所满足的 MA(1) 模型;

(4) 记
$$\overline{X}_N = \frac{1}{N} \sum_{k=1}^N X_k$$
, 证明: $\sqrt{NX}_N \stackrel{\mathrm{d}}{\longrightarrow} N(0, (1+b)^2), N \to \infty$;

(5)
$$\exists \hat{X}_{n+k} = L(X_{n+k}|X_n, X_{n-1}, \cdots, X_1), \ \ \ \ \ \lim_{k \to \infty} \mathbb{E}(X_{n+k} - \hat{X}_{n+k})^2.$$

3. (20 分) 设平稳序列
$$\{X_t\}$$
 的自协方差函数为 $\gamma_k=2 imes\left(\frac{1}{3}\right)^{|k|}, k\in\mathbb{Z}.$

(1) 今
$$\varepsilon_t = X_t - \frac{1}{3}X_{t-1}$$
, 证明: $\{\varepsilon_t\}$ 是白噪声;

- (2) 证明: $\{X_t\}$ 的偏相关系数 $a_{n,n}$ 是 1 后截尾的;
- (3) 设 $Y_t = X_t + \frac{1}{2}X_{t-1}$, 问 $\{Y_t\}$ 满足何模型? 并给出此模型;
- (4) 设 $Y_t = X_t + \eta_t$, 其中 $\{\eta_t\}$ 是与 $\{X_t\}$ 独立的白噪声 WN(0,1), 证明: $\{Y_t\}$ 是 ARMA(1,1) 序列.
- 4. (20 分) 设零均值平稳序列 {X_t} 满足如下 ARMA(1,2) 模型:

$$X_t - bX_{t-1} = \varepsilon_t + 2b\varepsilon_{t-1} + b^2\varepsilon_{t-2}, \quad \{\varepsilon_t\} \sim WN(0, 1).$$

模型的平稳解为 $X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$.

- (1) 求 b 的取值范围;
- (2) 求 $\{X_t\}$ 的 Wold 系数 ψ_1, ψ_2, ψ_3 ;
- (3) 对 $k \ge 0$, 计算 $\gamma_k b\gamma_{k-1}$;
- (4) 求自协方差函数 $\gamma_k, k \geq 0$;

(5) 证明: 矩阵
$$\begin{pmatrix} \gamma_2 & \gamma_1 & \gamma_0 \\ \gamma_3 & \gamma_2 & \gamma_1 \\ \gamma_4 & \gamma_3 & \gamma_2 \end{pmatrix}$$
可逆.

5. (20 分) 题目同第四题.(PS: 卷子上就是这么写的)

(1) 没
$$\begin{cases} Y_t = X_t, & t = 1, 2, \\ Y_t = X_t - bX_{t-1}, & t \ge 3. \end{cases}$$
 证明: $\overline{sp}\{X_1, X_2, \cdots, X_n\} = \overline{sp}\{Y_1, Y_2, \cdots, Y_n\};$

- (2) 记 $\hat{X}_n = L(X_n | X_{n-1}, X_{n-2}, \cdots, X_1)$, $\hat{Y}_n = L(Y_n | Y_{n-1}, Y_{n-2}, \cdots, Y_1)$, 证明: 对 $n \geq 1$, 有 $X_n \hat{X}_n = Y_n \hat{Y}_n$ 且 $\{X_n \hat{X}_n, n \geq 1\}$ 是正交序列;
- (3) 设序列 $\{Y_n\}$ 的递推预测是 $\begin{cases} \widehat{Y}_1 = 0, \\ \widehat{Y}_2 = \theta_{11}(Y_1 \widehat{Y}_1), & 求 X_1, X_2, X_3 \text{ 的递推预} \\ \widehat{Y}_3 = \theta_{21}(Y_2 \widehat{Y}_2) + \theta_{22}(Y_1 \widehat{Y}_1), & \end{cases}$ 测公式;
- (4) 求系数 θ_{11}, θ_{22} ;
- (5) 记 $\nu_n = \mathbb{E}(X_{n+1} \widehat{X}_{n+1})^2$, 证明: $\lim_{n \to \infty} \nu_n = 1$.
- 6. (5 分) 设 $\{V_t\}$ 为一决定性平稳序列, $\{\varepsilon_t\}$ 是白噪声 WN(0, σ^2) ($\sigma^2 \neq 0$), 且 $\{\varepsilon_t\}$ 与 $\{V_t\}$ 正交. 设 $X_t = \varepsilon_t + V_t$, 证明: $\{X_t\}$ 是非决定性平稳序列.