6 6

Teórico-prática: Velocidade de Reacção. Equações Cinéticas. Tempos de semi-vida.

1) Escreva as expressões da velocidade de reação para as seguintes reações em função do desaparecimento dos reagentes e da formação dos produtos:

a)
$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$

b)
$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g)$$

c)
$$5 Br^{-}(aq) + BrO_{3}^{-}(aq) + 6 H^{+}(aq) \longrightarrow 3 Br_{2}(aq) + 3 H_{2}O(1)$$

2) Considere a reação:

$$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$$

Suponha que num determinado instante o hidrogénio molecular reage a uma velocidade de 0,074 Ms⁻¹.

- a) A que velocidade se forma o amoníaco?
- b) A que velocidade reage o azoto molecular?
- 3) A equação cinética para a reação:

$$NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2 H_2O(1)$$

é dada por velocidade = $k[NH_4^+].[NO_2^-]$. A constante de velocidade é 3,0 x 10^{-4} M⁻¹.s⁻¹ a 25°C. Calcule a velocidade da reação a esta temperatura se $[NH_4^+]=0,26M$ e $[NO_2^-]=0,080M$.

4) Considere a reação

$$A + B \longrightarrow produtos$$

Determine a ordem da reação e calcule a constante de velocidade a partir dos seguintes resultados obtidos a uma dada temperatura:

[A] (M)	[B] (M)	velocidade (M.s ⁻¹)
1,50	1,50	0,32
1,50	2,50	0,32
3,00	1,50	0,64

5) Considere a reação

$$A + B \longrightarrow produtos$$

A velocidade da reação é 1,6 x 10⁻² M.s⁻¹ quando a concentração de A é 0,35 M. Calcule a constante de velocidade se a reacção for:

- a) de 1^a ordem em relação a A.
- b) de 2^a ordem em relação a A.
- 6) Considere a reação

$$X + Y \longrightarrow Z$$

Obtiveram-se os seguintes resultados a 360 K:

velocidade inicial de consumo de X (M.s ⁻¹)	[X] (M)	[Y] (M)
0,147	0,10	0,50
0,127	0,20	0,30
4,064	0,40	0,60
1,016	0,20	0,60
0,508	0,40	0,30

- a) Determine a ordem da reação.
- b) Calcule a velocidade inicial de desaparecimento de X se a concentração de X for 0,30 M e a de Y for 0,40 M.
- 7) A constante de velocidade da reação de 2ª ordem:

$$2 \text{ NOBr}(g) \longrightarrow 2 \text{ NO}(g) + \text{Br}_2(g)$$

é 0,80 M⁻¹.s⁻¹ a 10°C. Calcule a concentração de NOBr após 22s de reação se a concentração inicial for de 0,086M.

8) Qual o tempo de meia vida de um composto se 75% de uma dada amostra desse composto decompuser em 60 minutos? Admita uma cinética de primeira ordem.

9) A decomposição da fosfina é uma reação de 1ª ordem:

$$4PH_{3}(g) \longrightarrow P_{4}(g) + 6H_{2}(g)$$

O tempo de semi-transformação da reação é de 35s a 680° C. Calcule :

- a) A constante de velocidade da reação.
- b) O tempo necessário para a decomposição de 95% de fosfina.
- **10)** A reação seguinte é de 2ª ordem em relação a A:

A uma determinada temperatura, a constante de velocidade de 2ª ordem é 1,46 M⁻¹.s⁻¹. Calcule o tempo de semi-transformação da reação se a concentração inicial de A for 0,86 M.

11) O factor de frequência para a reação:

$$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$$

é 8,7 x 10⁻¹² s⁻¹ e a energia de ativação (Ea) 63 kJ.mol⁻¹

Qual a constante de velocidade desta reação a 75°C

12) A constante de velocidade para a reação de 1ª ordem é 4,60x10-4 s-1 a 350°C. Calcule a temperatura para a qual a constante de velocidade será 8,80x10-4 s-1 se a energia de ativação da reacção for 104 KJ.mol-1.