Applied Time Series Analysis: Final Project Appendix

Figure 1

Figure 2

```
### AR Model - consider all orders p from 1 to 7 ###
p=7
#store information criteria values
ARaic = rep(NA,7)
ARaicc = rep(NA,7)
ARbic = rep(NA,7)
#append
for (p in 1:7) {
 fitAR = Arima(log(apple), order=c(p,1,0), method='ML')
 ARaic[p] = fitAR$aic
 ARaicc[p] = fitAR$aicc
 ARbic[p] = fitAR$bic
### MA Model - consider all orders q from 1 to 7 ###
q=7
#store information criteria values
MAaic = rep(NA,7)
MAaicc = rep(NA,7)
MAbic = rep(NA,7)
#append
for (q in 1:7) {
 fitMA = Arima(log(apple), order=c(0,1,q), method='ML')
 MAaic[q] = fitMA$aic
 MAaicc[q] = fitMA$aicc
 MAbic[q] = fitMA\$bic
### ARMA(p,q) model ###
# I'm curious about ARMA Model - consider all orders p and q from 1 to 7 #
p=7
q=7
#store information criteria values
ARMAaic = matrix(0, nrow=p, ncol=q, byrow=TRUE) \#row p represents ARMA(p,1,q)
ARMAaicc = matrix(0, nrow=p, ncol=q, byrow=TRUE)
ARMAbic = matrix(0, nrow=p, ncol=q, byrow=TRUE)
```

```
#append
for (p in 1:7) { #p
 for (q in 1:7) { #q
  fitARMA = Arima(log(apple), order=c(p,1,q), method='ML')
  ARMAaic[p,q] = fitARMA$aic
  ARMAaicc[p,q] = fitARMA$aicc
  ARMAbic[p,q] = fitARMA\$bic
### Model Choice - Choose model with lowest information criteria ###
min(ARaic) #highest
## [1] -3094.903
min(MAaic) #Second Lowest
## [1] -3094.91
min(ARMAaic) #Lowest value (most negative value)
## [1] -3097.772
min(ARaicc) #Highest
## [1] -3094.882
min(MAaicc) #Second Lowest
## [1] -3094.889
min(ARMAaicc) #Lowest value (most negative value)
## [1] -3097.665
min(ARbic) #Second lowest
## [1] -3086.223
min(MAbic) #Lowest value (most negative value)
## [1] -3086.23
min(ARMAbic) #Highest
## [1] -3080.174
### which orders for each model have lowest information criterion? ###
\#AR(p)
which(min(ARaic)==ARaic) #1
## [1] 1
which(min(ARaicc)==ARaicc) #1
## [1] 1
which(min(ARbic)==ARbic) #1
## [1] 1
```

```
\#AR(1)
AR1 = Arima(log(apple), order=c(0,1,1), method='ML')
\#MA(q)
which(min(MAaic)==MAaic) #1
## [1] 1
which(min(min(MAaicc))==MAaicc) #1
## [1] 1
which(min(MAbic)==MAbic) #1
## [1] 1
\#MA(1)
MA1 = Arima(log(apple), order=c(0,1,1), method='ML')
\#ARMA(p)
which(min(ARMAaic)==ARMAaic) #9, corresponding to 9th entry, or (2nd row, 2nd col)
which(min(ARMAaicc)==ARMAaicc) #9, corresponding to 9th entry, or (2nd row, 2nd col)
## [1] 9
which(min(ARMAbic)==ARMAbic) #1
## [1] 1
##ARMA(2,2)
ARMA22 = Arima(log(apple), order=c(2,1,2), method='ML')
ARMA22 #has lowest AIC and AICC values
## Series: log(apple)
## ARIMA(2,1,2)
##
## Coefficients:
##
         ar1
               ar2
                            ma2
                     ma1
##
       -0.7865 -0.9559 0.8195 0.9544
## s.e. 0.0338 0.0480 0.0475 0.0376
##
## sigma^2 estimated as 0.0002455: log likelihood=1553.89
## AIC=-3097.77 AICc=-3097.67 BIC=-3076.07
```

Figure 3

```
n = length(apple)

ARMA202 = Arima(diff((log(apple)))[1:(n-59)], order=c(2,0,2), method='ML', include.constant=TRUE)

ARMA202

## Series: diff((log(apple)))[1:(n - 59)]

## ARIMA(2,0,2) with non-zero mean

##

## Coefficients:

## ar1 ar2 ma1 ma2 mean

## 0.920 -0.9895 -0.9375 0.9861 5e-04

## s.e. 0.009 0.0119 0.0124 0.0166 7e-04

##

## sigma^2 estimated as 0.0002448: log likelihood=1395.88

## AIC=-2779.77 AICc=-2779.6 BIC=-2754.37
```

Figure 4

Figure 5

Student's t Q-Q Plot for ehat

Figure 6

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 8

MARSS fit is

Estimation method: BFGS

Estimation converged in 412 iterations.

Log-likelihood: -9736.747 AIC: 19641.49 AICc: 19646.3

	ML.Est	Std.Err	low.ci	up.CI
R.r11	2.84e-01	0.32663	-3.57e-01	9.24e-01
R.r12	7.19e-01	0.39426	-5.33e-02	1.49e+00
R.r13	3.61e+00	2.76240	-1.80e+00	9.03e+00
R.r14	3.39e-01	0.30206	-2.53e-01	9.31e-01
R.r15	1.63e+00	1.54609	-1.40e+00	4.66e+00
R.r16	2.60e+00	2.25462	-1.81e+00	7.02e+00
R.r22	2.42e+00	0.71426	1.02e+00	3.82e+00
R.r23	9.36e+00	4.19148	1.14e+00	1.76e+01
R.r24	4.99e-01	0.44952	-3.82e-01	1.38e+00
R.r25	4.49e+00	2.32674	-7.12e-02	9.05e+00
R.r26	6.82e+00	3.32832	2.95e-01	1.33e+01
R.r33	4.63e+01	33.46542	-1.93e+01	1.12e+02
R.r34	4.34e+00	3.21935	-1.97e+00	1.06e+01
R.r35	2.08e+01	16.20847	-1.10e+01	5.25e+01
R.r36	3.33e+01	22.99801	-1.18e+01	7.84e+01
R.r44	7.15e-01	0.47487	-2.16e-01	1.65e+00
R.r45	1.68e+00	1.81237	-1.88e+00	5.23e+00
R.r46	3.01e+00	2.51040	-1.91e+00	7.94e+00
R.r55	9.60e+00	10.35560	-1.07e+01	2.99e+01
R.r56	1.51e+01	13.19337	-1.08e+01	4.09e+01
R.r66	2.40e+01	20.91870	-1.70e+01	6.50e+01
B.phi11	9.82e-01	0.01155	9.60e-01	1.01e+00
B.phi21	-1.44e-02	0.01497	-4.38e-02	1.49e-02
B.phi31	-2.13e-01	0.11353	-4.36e-01	9.45e-03
B.phi41	-1.57e-02	0.01329	-4.17e-02	1.04e-02
B.phi51	-5.16e-02	0.06386	-1.77e-01	7.35e-02
B.phi61	1.99e-02	0.09178	-1.60e-01	2.00e-01
B.phi12	-1.72e-02	0.01356	-4.38e-02	9.40e-03
B.phi22	9.90e-01	0.01775	9.55e-01	1.02e+00
B.phi32	2.99e-01	0.13448	3.57e-02	5.63e-01
B.phi42	2.80e-02	0.01570	-2.78e-03	5.88e-02
B.phi52	1.47e-01	0.07529	-1.36e-04	2.95e-01
B.phi62	1.35e-01	0.10822	-7.73e-02	3.47e-01

```
B.phi13
            3.21e-03
                      0.00202 -7.55e-04 7.18e-03
B.phi23
                       0.00265 -3.39e-03 7.00e-03
            1.81e-03
B.phi33
                       0.02007 9.17e-01 9.95e-01
            9.56e-01
B.phi43
                       0.00234 -7.84e-03 1.35e-03
           -3.25e-03
B.phi53
                       0.01125 -3.70e-02 7.08e-03
           -1.50e-02
B.phi63
           -2.59e-02
                       0.01615 -5.75e-02 5.79e-03
B.phi14
                       0.00981 4.74e-03 4.32e-02
            2.40e-02
B.phi24
            1.47e-02
                       0.01279 -1.03e-02 3.98e-02
B.phi34
           -2.70e-02
                       0.09694 -2.17e-01 1.63e-01
B.phi44
                       0.01140 9.68e-01 1.01e+00
            9.90e-01
B.phi54
            6.95e-02
                      0.05452 -3.73e-02 1.76e-01
B.phi64
            4.22e-02
                       0.07829 -1.11e-01 1.96e-01
B.phi15
                      0.00414 -1.14e-02 4.88e-03
           -3.24e-03
B.phi25
                       0.00541 -1.33e-02 7.88e-03
           -2.73e-03
B.phi35
            6.34e-02
                       0.04087 -1.67e-02 1.44e-01
                      0.00479 -1.50e-02 3.79e-03
B.phi45
           -5.59e-03
B.phi55
                      0.02321 9.19e-01 1.01e+00
            9.65e-01
B.phi65
            1.82e-02
                      0.03306 -4.66e-02 8.30e-02
B.phi16
            5.56e-04
                       0.00122 -1.83e-03 2.94e-03
            1.01e-03
                       0.00159 -2.10e-03 4.12e-03
B.phi26
B.phi36
           -8.58e-03
                      0.01200 -3.21e-02 1.49e-02
B.phi46
            3.43e-03
                       0.00141 6.80e-04 6.19e-03
B.phi56
            9.62e-03
                       0.00681 -3.72e-03 2.30e-02
B.phi66
                                9.73e-01 1.01e+00
            9.92e-01
                      0.00970
Q.q11
            6.73e + 00
                       0.75165
                                5.26e+00 8.20e+00
            4.97e+00
                       0.82781
                                3.35e+00 6.59e+00
Q.q12
Q.q13
            4.01e+01
                       6.20084
                                2.80e+01 5.23e+01
                                1.71e+00 4.34e+00
Q.q14
            3.03e+00
                       0.67153
Q.q15
            2.30e+01
                       3.49974
                                1.61e+01 2.99e+01
Q.q16
            3.63e+01
                       5.13683
                                2.62e+01 4.63e+01
Q.q22
            1.13e+01
                       1.37587
                                8.62e+00 1.40e+01
Q.q23
            5.99e+01
                       8.69748
                                4.29e+01 7.70e+01
Q.q24
            4.85e+00
                       0.93193
                                3.02e+00 6.67e+00
Q.q25
            3.33e+01
                       4.88037
                                2.37e+01 4.29e+01
Q.q26
            4.86e+01
                      6.99531
                                3.49e+01 6.23e+01
                                5.09e+02 8.01e+02
Q.q33
            6.55e+02 74.37035
Q.q34
            3.94e+01
                      7.00599
                                2.57e+01 5.31e+01
Q.q35
            2.60e+02 36.21922
                                1.89e+02 3.31e+02
Q.q36
            3.63e+02 51.33955
                                2.63e+02 4.64e+02
Q.q44
            8.98e+00
                      1.03274
                                6.95e+00 1.10e+01
Q.q45
            2.50e+01
                      4.01992
                                1.72e+01 3.29e+01
Q.q46
            3.07e+01
                      5.56434
                                1.98e+01 4.16e+01
Q.q55
            2.07e+02 23.45524
                                1.61e+02 2.53e+02
```

```
Q.q56 2.29e+02 29.93648 1.70e+02 2.88e+02 Q.q66 4.28e+02 47.87742 3.35e+02 5.22e+02 x0.X.AAPL 1.12e+02 2.68994 1.07e+02 1.18e+02 x0.X.ADBE 1.03e+02 3.70960 9.61e+01 1.11e+02 x0.X.AMZN 7.57e+02 26.89201 7.04e+02 8.10e+02 x0.X.FB 1.16e+02 3.19377 1.10e+02 1.23e+02 x0.X.GOOG 7.88e+02 15.06400 7.58e+02 8.17e+02 x0.X.^GSPC 2.26e+03 21.39016 2.22e+03 2.30e+03 Initial states (x0) defined at t=0
```

CIs calculated at alpha = 0.05 via method=hessian