

# Clustering

- Identify computation regions of similar behavior
  - Data structure not Gaussian → DBSCAN
  - Similar in terms of duration or hardware counter rediced metrics
    - Different routines may have similar behavior
    - One routine may have different behaviors









# **Clustering results**

### Scatter Plot of Clustering Metrics



#### **Clusters Distribution Over Time**



#### **Clusters Performance**

| CLUSTER              | 1       | 2       |
|----------------------|---------|---------|
| % Time               | 36.29   | 29.52   |
| Avg. Burst Dur. (ms) | 220.46  | 177.70  |
| IPC                  | 0.53    | 0.50    |
| MIPS                 | 1210.07 | 1164.36 |
| L1M/KInstr           | 22.72   | 32.63   |
| L2M/KInstr           | 0.59    | 1.23    |
| MEM.BW (MB/s)        | 90.77   | 182.65  |
|                      | Í       |         |



#### **Code Linking**

| CLUSTER | CODE SECTION              |  |  |
|---------|---------------------------|--|--|
| 1       | solve_nmm.f:[2037 - 2310] |  |  |
| 2       | solve_nmm.f:[1478 - 1782] |  |  |
|         | solve_nmm.f:[2030 - 1782] |  |  |
| 3       | solve_nmm.f:[1241 - 1345] |  |  |
| 4       | solve_nmm.f:[2771 - 2865] |  |  |
|         | solve_nmm.f:[2388 - 2489] |  |  |
| 5       | solve_nmm.f:[1478 - 1569] |  |  |
| 6       | solve_nmm.f:[1607 - 1633] |  |  |



# **Quality of clustering result**

- Expected SPMD behavior
- Load balance/ heterogeneous algorithm issues

LU.A









### **Automatic clustering quality assessment**

- Leverage Multiple Sequence alignment tools from Life Sciences
- Process == Sequence of clusters  $\leftrightarrow$  sequence of amino acids == DMA
- CLUSTAL W, T-Coffee, Kalign2
- Cluster Sequence Score (0..1)
- Per cluster / Global
  - Weighted average



BT.A 0022



BT.A 0043





### Clustering vs. classification

- Clustering time drastically grows with number of points
- Selection of a subset of data to clusterize
  - Space: Select a few processes. Full time sequence
  - Random sampling: wide covering
- Remaining data: "nearest" neighbor classification



### **GROMACS 64 processes**

### 64 processes



#### 25% random records



32 random processes



15% random records



16 random processes



10% random records



8 random processes + 15% random records

Good quality Fast analysis







### SPECFEM3D (64 tasks)



### Clusters distribution





### **CPI STACK model**







# SPECFEM3D (64 tasks)

### Other statistics

| Category    | Metric Description                           | Cluster 1    | Cluster 2  |
|-------------|----------------------------------------------|--------------|------------|
| Performance | % Duration                                   | 0.70236      | 0.26024    |
| Performance | Avg. Burst Duration (μs)                     | 2.142.664,27 | 947.044,53 |
| Performance | Total preemted time (μs)                     | 31394,19     | 13759,21   |
| Performance | % preempted time                             | 1,465%       | 1,453%     |
| Performance | IPC                                          | 0,75         | 0,66       |
| Performance | СРІ                                          | 1,33         | 1,51       |
| Performance | MIPs                                         | 1702,70      | 1501,75    |
| Performance | Mem.BW (MB/s)                                | 260,22       | 203,84     |
| Performance | Memory instructions per second               | 1324,80      | 1740,67    |
| Performance | HW floating point instructions per cycle     | 0,290        | 0,168      |
| Performance | Flop rate (MFLOPs)                           | 1.421,36     | 555,95     |
| Performance | HW floating point instructions rate          | 656,95       | 381,15     |
| Performance | Computation intensity                        | 2,004        | 1,128      |
| Performance | Local L2 load bandwidth per processor (MB/s) | 5.634,58     | 2.409,52   |
| Performance | % Loads from local L2 per cycle              | 2,039%       | 0,872%     |

| Category     | Metric Description                                             | Cluster 1  | Cluster 2 |
|--------------|----------------------------------------------------------------|------------|-----------|
| Architecture | % Instr. Completed                                             | 32,25%     | 32,22%    |
| Architecture | L1 misses per Kinstr.                                          | 41,37      | 34,82     |
| Architecture | L2 misses per Kinstr.                                          | 1,194      | 1,060     |
| Architecture | Bytes from maim memory per floating point instruction finished | 1,649      | 1,361     |
| Architecture | Number of Loads per Load miss                                  | 24,81      | 66,68     |
| Architecture | Number of Stores per Store miss                                | 6,74       | 5,27      |
| Architecture | Number of Loads&Stores per L1 miss                             | 18,81      | 33,28     |
| Architecture | L1 cache hit rate                                              | 94,68%     | 97,00%    |
| Architecture | Number of Loads per (D)TLB miss                                | 11.403,59  | 5.873,04  |
| Architecture | Number of Loads&Stores per (D)TLB miss                         | 12.945,98  | 6.425,90  |
| Architecture | % TLB misses per cycle                                         | 0,005%     | 0,012%    |
| Architecture | Total Loads from local L2 (M) (total_ld_l_L2)                  | 94,320     | 17,828    |
| Architecture | Local L2 load traffic (MB)                                     | 12.073,007 | 2.281,926 |

| Category        | Metric Description                         | Cluster 1     | Cluster 2   |
|-----------------|--------------------------------------------|---------------|-------------|
| Instruction Mix | FMA ops per floating point instruction     | 0,763         | 0,633       |
| Instruction Mix | Instructions per Load/Store                | 1,285         | 0,863       |
| Instruction Mix | HW floating point instructions (flips)     | 1.407.628.943 | 360.968.332 |
| Instruction Mix | Total floating point operations (flops)    | 3.045.492.593 | 526.507.674 |
| Instruction Mix | Total FP Load&Store operations (fp_tot_ls) | 1.519.651.784 | 466.816.330 |
| Instruction Mix | FMA %                                      | 81,04%        | 82,15%      |
| Instruction Mix | Memory Mix                                 | 25,10%        | 37,35%      |
| Instruction Mix | Load Mix                                   | 22,11%        | 34,14%      |
| Instruction Mix | Store Mix                                  | 2,99%         | 3,21%       |
| Instruction Mix | FPU Mix                                    | 12,44%        | 8,18%       |
| Instruction Mix | FXU Mix                                    | 3,93%         | 12,64%      |





# SPECMPI'07 – LESLIE3D (256 tasks)





256 tasks, 300 Mb









### **GROMACS (64 tasks)**





64 tasks, 150 Mb









### **Clustering steps**

- 1. Obtain a tracefile
  - If using multiple counter sets, guarantee some common counters
  - If targeting CPIStack use predefined sets (as example)
- 2. Define the clustering XML clustering axis, scatter plot axis, metrics to extrapolate
- 3. Run the bust-clusterizer tool
- 4. Analyze the results scatter plot, clustered paraver tracefile (, cpistack table of performance metrics)

 Files available @ MN in /gpfs/apps/CEPBATOOLS/PRACE\_tutorial/examples/clustering





### **Clustering steps – Obtaining a tracefile**

 extrae\_cpistack.xml – Select all the required counter sets to compute CPIStack model

application





### Clustering steps – Clustering specification

May need to addapt to reject cluster | IPC.xml non relevant Addapt starting from a computations "big" number (0.1) <?xml version="1.0";?> <clustering definition duration filter="10000" use duration="no"</pre> apply\_log="yes" normalize data="yes" threshold filter="0"> <DBSCAN epsilon="0.020" min points="10"/> <clustering parameters> <single event apply log="yes" name="Native Instr"> Paraver event – instructions counter <event type>42001090</event type> <factor>1.0</factor> </single event> <mixed events apply log="yes" name="cl IPC" operation="/"> <event type a>42001090 <event type b>42001008 <factor>1.0</factor> </mixed events> </clustering parameters> **Builds IPC from Paraver events** 





### Clustering steps – Clustering specification

cluster\_I\_IPC.xml (and 2)

Metrics to extrapolate projection parameters> <single event apply log="yes" name="PM INST DISP"> <event type>42001091</event type> <factor>1.0</factor> </single event> <single event apply log="yes" name="PM DATA FROM MEM"> <event type>42001012</event type> <factor>1.0</factor> Scatter plot axis: </single event> IPC, Instructions  $(\ldots)$ <plot options raw metrics="yes"> <x metric title="IPC">cl IPC</x metric> <y metric title="Instructions Completed">Native Instr</y metric>





</plot options>

</clustering definition>

# Clustering steps – Running burst-clusterizer

clusterize.sh <tracefile>

```
#!/bin/bash
xml=cluster.I.IPC.xml
clusterize=/gpfs/apps/CEPBATOOLS/burst-clusterizer-devel/32/bin/burst-
clusterizer-stable
$clusterize -d $xml -c -i $1.prv $1_clustered.prv
```





# Clustering steps – Running burst-clusterizer

#### Usage:

-b

-C

./burst-clusterizer-stable -d <clustering\_def.xml> [OPTIONS] -i <input\_trace> [<output\_trace>]

-h This help Silent mode

-d <clustering\_def\_xml> XML containing the clustering process definition

Print "block begin" and "block end" records

for each burst on output trace

Generate the CPIStack model report for each cluster found.

Computes the k-neighbour (or range) distance in terms of clustering parameter defined with '-d'. Generates an GNUPlot to easily select the DBScan parameters

CSV file containing an eigenvectors matrix to transform the original space

 $-p < k > [,k_end]$ 

-m <eigen matrix file>





# Clustering steps – Running burst-clusterizer

Extract \*normalized\* data from input file  $-\mathbf{x}$ Extract \*raw\* data from input file to disk -rCreate cluster sequence to compute the alignment -a[n] Using '-an' noise points are NOT FLUSHED in the resulting sequence Generate the file used to create a tree trough -t successive clusterings -i <input trace> Input Dimemas/Paraver trace Do NOT generate output trace (but, the output -ntrace name is needed) <output trace|output data> Output Dimemas/Paraver traces resulting from the clustering process or output data file if parameters '-x' or '-r' are used





### Clustering steps – burst-clusterizer outputs

- Paraver tracefile with events identifying clusterid of the computing regions
  - output name.prv, ourput name.pcf

```
Next running state belongs to cluster 7

1:1:1:1:214115714:90000001:7

1:1:1:1:1:214115714:392776571:1

2:1:1:1:1:214115714:60000019:3:60000119:3:42001073:9455169:42001145:1907024

0:42001086:4369022:42001008:127463060:42001001:32383493:42001090:103633639:
42001079:32433965:42001211:393318

2:1:1:1:1:392776571:90000001:0

2:1:1:1:1:392776571:90000001:5
```

- Use configuration files to load predefined views as
  - cluster\_id.cfg timeline of the clusters
  - 2dp\_cid.cfg profile analysis of the different clusters
  - 3dh\_ipc\_cid.cfg histogram of the IPC distribution for the different clusters





### Clustering steps – burst-clusterizer outputs

- Scatter plot (gnuplot and table of points labeled with clustter\_id)
  - output\_name.cl\_IPC.Native\_Instr.gnuplot
  - output\_name.clustered.csv

```
Native_Instr, cl_IPC, cluster_id

103633639.000000,0.813048,4

208944291.000000,0.515611,6

101473632.000000,0.825092,4

207310140.000000,0.516196,6

101805859.000000,0.826846,4

207311962.000000,0.515731,6

(...)
```





### Clustering steps – burst-clusterizer outputs

Table of projected metrics

WARNING::: Performance metrics and CPI-Stack based on PPC 970 hardware counters

output\_name.clusters\_info.csv

```
Cluster Name, Cluster 1, Cluster 2, Cluster 3, Cluster 4
Density, 88, 97, 95, 89
Total duration, 19431319793, 16573362782, 9958380002, 6484333782
Avg. duration, 220810452, 170859410, 104825052, 72857682
% Total duration, 0.37049, 0.31600, 0.18987, 0.12363
PM_CYC, 188228124, 386472209, 236642031, 164835232
PM_GRP_CMPL, 46409199, 55155653, 25732210, 31108464
PM_GCT_EMPTY_CYC, 11076062, 1331066, 5634077, 1828854
PM_GCT_EMPTY_IC_MISS, 3935162, 654553, 747382, 380387
(...)
```

Inport this file to excel template CPIStackDetailedDefinitiveNEW.
 {xls | ods}



