Schematic & Layout Deliberations

Boris Murmann bmurmann@hawaii.edu

Output Bitstream

Plots by Wannasa:

- Bit patterns may differ between different computers
- This is not a problem, but somewhat expected
- The bit pattern is very sensitive to initial conditions and small rounding errors
- Two different bit patterns can lead to the same final digital output (after decimation)

Stage Testbench

Output with per = 80ns

https://github.com/bmurmann/EE628/blob/main/5_Design/3_Real_circuits/tb_stage_corners.ipynb

Dynamic Error

$$Error = (value(t) - final) / final$$

Inverter Gate Leakage Simulation

COMMANDS

.param temp=27

.control
dc Vin 0.2 1 1m
set color0 = white
plot i(Vin)
.endc

MODEL

.lib \$::SG13G2 MODELS/cornerMOSlv.lib mos tt

Boris Murmann

/foss/designs/tb inv leak.sch

2024-04-06 03:47:23

TT FF

$$\Delta V = \frac{\Delta t \times I}{C} = \frac{30ns \times 500pA}{100 \, fF} = 150 \mu V$$

$$\frac{150\mu V}{800mV} = 0.0002 = 0.02\%$$

Explains the observed droop

How Slow Can We Go?

 We will lose the inverter operating point if we drift by voltages on the order of 100mV at the gate (driven by 100fF capacitor)

$$\Delta t = \frac{C \times \Delta V}{I} = \frac{100 fF \times 100 mV}{500 pA} = 20 \mu s$$

$$f_{clk,min} = \frac{1}{2\Delta t} = 250kHz$$

Sample floorplan for "stage"

Schematic

A Few Tips

- Enlarge your drawing grid to simplify placement and routing at larger scales (e.g., as large as 50nm)
- Navigation → Zoom & Pan → On Paste → Don't Change View
- Use M1 and Poly only for extremely short routes between adjacent devices
- Decide on routing directions for upper metal layers, e.g., M2 vertical, M3 horizontal, etc.

....