QUESTION 5

The Fibonacci sequence is defined iteratively by setting $F_1 = F_2 = 1$ and thereafter letting $F_{n+2} = F_n + F_{n+1}$.

Theorem For any natural number n,

$$\sum_{k=1}^{n} F_k = F_{n+2}$$

Proof: By induction.

For n = 1, the left-hand side is $F_1 = 1$ and the right-hand side is $F_2 = 1$, so the identity is valid for n = 1.

Assume the identity holds for n. Then:

$$\sum_{k=1}^{n+1} F_k = \sum_{k=1}^{n} F_k + F_{n+1}$$

$$= F_{n+2} + F_{n+1}, \text{ by the induction hypothesis}$$

$$= F_{n+3}, \text{ by the definition of } F_{n+3}$$

which is the identity for n+1. The proof is complete.