

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica PE Maestría en Ciencias de la Ingeniería con Orientación en Sistemas

PROGRAMA ANALÍTICO

l. Datos de Identificación de la Unidad de Aprendizaje:										
1. Clave y nombre de la Unidad	de Aprendizaje: PM101 Inteligencia artificial									
2. Frecuencia semanal: horas de	trabajo presencial 4									
3. Horas de trabajo extra aula por semana: 2										
4. Modalidad: ⊠ Escolarizada □ No escolarizada □ Mixto										
5. Período académico: ⊠ Semestral □ Tetramestral □ Modular										
6. LGAC: Sistemas estocásticos y	simulación									
7. Ubicación semestral: 1 o 2										
8. Área curricular: formación bás	sica, formación avanzada, de aplicación, libre eleccióninvestigación									
9. Créditos: 4										
10. Requisito: Ninguno										
11. Fecha de elaboración: 20/01/2010										
12. Fecha de la última actualización: 10/06/2021										
3. Responsable(s) del diseño: 100959 Dr. Romeo Sánchez Nigenda 096633 Dra. Satu Elisa Schaeffer										

Revisión: 1 Página 1 de 8

II. Presentación:

La *inteligencia artificial* refiere a búsqueda y planeación de acciones, razonamiento con restricciones, aprendizaje máquina y computación evolutiva (algoritmos genéticos).

III. Propósito(s):

Introducir al estudiante los conceptos básicos de la inteligencia artificial para que éste pueda construir herramientas inteligentes y aplicarlas en diferentes problemas de ingeniería.

IV. Competencias del perfil de egreso:

14. Competencias del perfil de egreso

- P1) Resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.
- P2) Resolver problemas concretos en sistemas de la industria, la academia o el sector público en base a las herramientas de la toma de decisiones con bases científicas para lograr el mejor diseño, análisis, planeación o gestión de dichos sistemas.
- P3) Establecer comunicación con los distintos sectores de la sociedad a fin de establecer proyectos estratégicos en las distintas disciplinas de la ingeniería de sistemas y crear la cultura de la creación de riqueza basada en el conocimiento.

15. Competencias generales a que se vincula la Unidad de Aprendizaje:

Declaración de la competencia general vinculada a la unidad de aprendizaje	Evidencia
C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de	Tareas
acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar	
y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque	
ecuménico.	
C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las	Tareas
ciencias y la comunicación como herramientas para el acceso a la información y su	
transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo	
con técnicas de vanguardia que le permitan su participación constructiva en la	
sociedad.	
C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los mo-	Tareas, proyecto
delos de pensamiento científico para analizar fenómenos naturales y sociales que le	
permitan tomar decisiones pertinentes en su ámbito de influencia con responsabi-	
lidad social.	

Revisión: 1 Página 2 de 8

16. Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje: La unidad se vincula con las siguientes competencias específicas:

Competencia Espe- cífica	Nivel I Inicial	Evidencia	Nivel II Básico	Evidencia	Nivel III Autónomo	Evidencia	Nivel IV Estratégico	Evidencia
E2) Resolver pro- blemas concretos en			Identifica los	Tareas,	Resuelve ne- cesidades	Tareas,		
sistemas de la in-			principios de la ingeniería de sis-	proyec- to	previamente	proyec- to.		
dustria, la academia			temas necesarios		identificadas en			
o el sector público			para modelar y		cuanto al diseño,			
en base a las he-			resolver un pro-		análisis, planea-			
rramientas de la to- ma de decisiones con			blema aplicado específico		ción o gestión de sistemas en			
bases científicas para			especifico.		la industria, la			
lograr el mejor dise-					academia o el			
ño, análisis, planea-					sector público.			
ción o gestión de di-								
chos sistemas.								

V. Representación gráfica:

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

17. Desarrollo de las fases de la Unidad de Aprendizaje: Se cubren los principios teóricos y prácticos de la inteligencia artificial. Se busca desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de varios los conceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También se necesita un conocimiento sólido de programación.

La sesiones son de cuatro horas cada una y son veinte semanas en total. La primera semana es introductoria y las últimas dos semanas combinan elementos de las tres unidades temáticas en el contexto del proyecto integrador.

Ini Introducción; selección de temas de proyecto

UT1 Métodos de búsqueda (4 semanas)

UT2 Planeación (4 semanas)

UT3 Algoritmos evolutivos inteligentes (4 semanas)

UT4 Aprendizaje máquina (5 semanas)

Pl Presentaciones de proyectos

Rev Revisión de portafolios de evidencia

Unidad temática 1: Métodos de búsqueda

Periodo: 4 semanas

Elementos de competencia:

Cuatro (4) tareas Calidad de la redacsemanales, siendo cada una un reporte escrito y código de la implementa- Cuatro (4) tareas Calidad de la redacsemanales, siendo ción científica del reconseguia de la redacse con ejemplos; lectoro de la implementa- Experimentación con ejemplos; lectoro de la inteligencia artificial. Métodos diversos de búsqueda del campo de la inteligencia artificial. Métodos diversos de búsqueda del campo de la inteligencia artificial.	Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
semanales, siendo ción científica del re- cada una un repor- te escrito y código de la implementa- cobertura de la ex- cada una un repor- te escrito y código ciencia del método; ción de ejemplos; lec- tura de material de apoyo; modifica- ción de ejemplos; búsqueda del campo na web de la unida y la literatura citada tificial. lenguaje Python o s milar; paquete LATE	aprendizaje	peño	aprendizaje		
de búsqueda de intelligencia artificial. de experimentos; análisis y reportaje de resultados obtenidos. tífica; repositorios de GitHub.	Cuatro (4) tareas semanales, siendo cada una un repor- te escrito y código de la implementa- ción de un método de búsqueda de in-	Calidad de la redac- ción científica del re- porte; precisión y efi- ciencia del método; cobertura de la ex-	Experimentación con ejemplos; lec- tura de material de apoyo; modifica- ción de ejemplos; diseño y ejecución de experimentos; análisis y repor- taje de resultados	búsqueda del campo de la inteligencia ar-	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción científica; repositorios de GitHub.

Revisión: 1 Página 4 de 8

Unidad temática 2: Planeación

Periodo: 4 semanas

Elementos de competencia:

Evidencias de	Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Cuatro (4) tareas semanales, siendo cada una un reporte escrito y código de la implementación de un método de planeación.	Calidad de la redac- ción científica del reporte; precisión del método; eficiencia de la implementa- ción del método; cobertura de la experimentación.	Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos.	Métodos diversos de planeación.	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción científica; repositorios de Git Hub.

Unidad temática 3: Algoritmos evolutivos inteligentes

Periodo: 4 semanas

Elementos de competencia:

Evidencias de (Criterios de desem-	Actividades de	Contenidos	Recursos
aprendizaje	peño	aprendizaje		
Cuatro (4) tareas semanales, siendo cada una un reporte escrito y código de la implementación de un método evolutivo.	Calidad de la redac- ción científica del reporte; precisión del método; eficiencia de la implementa- ción del método; cobertura de la experimentación.	Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos.	Métodos evolutivos diversos de la inteli- gencia artificial.	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción científica; repositorios de GitHub.

Unidad temática 4: Aprendizaje máquina

Periodo: 5 semanas

Elementos de competencia:

Evidencias de aprendizaje	Criterios de desem-	Actividades de aprendizaje	Contenidos	Recursos
Cinco (5) tareas se- manales, siendo ca- da una un repor- te escrito y códi- go de la implemen- tación de un mé- todo de aprendizaje de máquina.	Calidad de la redac- ción científica del reporte; precisión del método; eficiencia de la implementa- ción del método; cobertura de la experimentación.	Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos.	Métodos diversos de aprendizaje máqui- na.	Material en la página web de la unidad y la literatura citada; lenguaje Python o similar; paquete LATEX para redacción científica; repositorios de Git Hub.

Revisión: 1

VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio público que debe reflejar todas las fases del trabajo.

No habrá examen. Son 17 tareas (A1-A17) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 5 puntos por tarea:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$ contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$ inadecuado en alzance y calidad

El proyecto final (A18) otorga un máximo de 15 puntos, evaluados en los siguientes rubros

- 1. Variedad de técnicas de empleadas
- 2. Cobertura y validez de la experimentación
- 3. Claridad y relevancia de los resultados
- 4. Calidad de visualización científica
- 5. Calidad de redacción científica

con la escala:

3 = cumple con lo que se esperaba

2 = débil en alcance y/o calidad

1 = débil en ambos alcance y calidad

 $\mathbf{0}$ = inadecuado en alzance y calidad

Ponderación específica

Actividad	A1	A2	А3	A4	A 5	A 6	A7	A8	A 9	A10	A11	A12	A13	A14	A15	A16	A17	A18	Total
Ponderación	5%	5 %	5%	5 %	5%	5 %	5 %	5%	5%	5%	5%	5%	5%	5%	5%	5%	5 %	15%	100 %

Revisión: 1 Vigente a partir del: 01 de agosto del 2016

VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje:

Portafolio en un repositorio digital público que contiene los reportes escritos y los códigos de la implementación de todas las tareas y el proyecto integrador.

IX. Fuentes de apoyo y consulta:

19. Fuentes de apoyo y consulta

Básicas

- S. Russell & P. Norvig: Artificial Intelligence: A Modern Approach. Third Edition. Prentice Hall. 2010.
- D.E. Goldberg: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Reading, EUA, 1989.
- S. HAYKIN: Neural Networks: A Comprehensive Foundation. Second edition. Prentice Hall, Englewood-Cliffs, EUA, 1998

Complementarias Artículos científicos especializados relacionados a los temas tratados, de preferencia publicados en revistas internacionales indizados recientes.

Revisión: 1 Página 8 de 8