Unit IV

4	Matrix Algebra II
4.1	Revision of matrices and determinant.
4.2	Eigenvalues and Eigenvectors of matrices
4.3	Eigenvalues and Eigenvector of special matrices
4.4	Cayley-Hamilton's Theorem and its applications.
4.5	Crout's method of LU decomposition

Examples

- **1.** Find eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$.
- **2.** Find eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$.
- Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$
- Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$.
- Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$.
- Find eigenvalues and corresponding eigenvectors of $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
- 7. If $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$, then find the eigenvalues of (i) A (ii) A^{T} (iii) A^{3} (iv) 3A (v) A^{-1} .
- Find eigenvectors of the matrix $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$.

- 9. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then find A^2 , A^3 , A^{-1} , A^{-2} using the Cayley-Hamilton theorem.
- Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ and hence find A^{-1} and A^{8} .
- 11. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, then prove that $A^5 A^4 + 3A^3 5A^2 + 2A 3I_2 = 32A 103I_2.$
- Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and hence find A^{-1} .
- Find the characteristic equation of a matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ and hence express $A^9 6A^8 + 10A^7 3A^6 + A + I_3$ as a linear polynomial in A and find its value.
- Factorize the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ into the LU form.
- Find the *LU* decomposition of the matrix $B = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. (**H.W**)
- **16.** Using Crout's LU decomposition (or factorization method), solve the following system of linear equations:

$$2x + y + 4z = 12$$
; $8x - 3y + 2z = 20$; $4x + 11y - z = 33$.

17. Solve the following system of linear equations using LU decomposition method.

$$4x + 3y + 2z = 16$$
; $2x + 3y + 4z = 20$; $x + 2y + z = 8$. (H.W.)