4.3 TEST MS

1. (a) (i) Expression for
$$K_a$$
 $K_a = \frac{[H^+][CH_3CH_2COO^-]}{[CH_3CH_2COOH]}$ (1)
(ii) Expression for pK_a $pK_a = -\log_{10}K_a$ (1)
(iii) $K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$ (1)
 $[CH_3CH_2COOH] = 0.10 \text{ M}$ (1)
 $\therefore [H^+] = (1) (0.1 \times 1.35 \times 10^{-5})$
 $= 1.16 \times 10^{-3}$ (1)
 $\therefore pH = 2.93$ (1) 6

(b) $[CH_3CH_2COO^-]$ high or $CH_3CH_2COO^-$ strong electrolyte (1)
 $CH_3CH_2COO^-$ ions react with H^+ (1)
 $CH_3CH_2COO^+$ weak acid or very little dissociated (1) 3

[9]

2. (a) $HA \rightleftharpoons H^+(aq) + A^-(aq)$ or $HA + H_2O \rightleftharpoons H_3O^+ + A^-$ (1) 1
(b) $Ka = [H^+][A^-]/[HA]$ or $Ka = [H_3O^+][A^-]/[HA]$ (1) 1
(c) (i) Increases (1) (ii) No change (1) (d) Sodium ethanoate or sodium hydroxide (1) Buffer solution (1) 2

3. (a) $K_w = [H^+][OH^-]$ 1
(b) $pH = -\log_{10}[H^+]$ 2
(c) $pH = -\log_{10}(2.00) = -0.30$ 1
(d) $[H^+] = \frac{10^{-14}}{2.50} = 4.0 \times 10^{-15} \text{ mol dm}^{-3}$ (1)
 $\therefore pH = 14.40$ (1) 2

(e) <u>number of moles of acid and base:</u>

$$H^{+} = 19.0 \times \frac{2.00}{1000} = \underline{0.0380} \& OH^{-} = 16.0 \times \frac{2.50}{1000} = \underline{0.0400} (1)$$

Total volume:

$$V = 19.0 + 16.0 = 35.0 \text{ cm}^3$$
 (1)

Concentration and pH:

:.XS [OH⁻] =
$$(0.0400 - 0.0380)$$
 (1) $\times \frac{1000}{35.0}$ (1) = 0.0571 M (2)

$$\therefore [H^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{10^{-14}}{0.0571} = \underline{1.75 \times 10^{-13}} \,\mathrm{M} \,(\mathbf{1})$$

∴
$$pH = 12.76$$
 (1)

- 4. (i) H+ or proton acceptor (1) $CH_3NH_2 + H_2O \iff CH_3^+NH_3 (+) OH^- (1)$
 - (ii) CH₃NH₃Cl or HCl (1)
 Or any ammonium compound or strong acid name or formula
 - (iii) extra OH⁻ reacts with CH₃NH₃ or reaction / equilibrium moves to left or ratio salt / base remains almost constant (1) Any 2

[11]

- **5.** (i) NaHSO₃
 - (ii) $NaHSO_3 + NaOH \rightarrow Na_2SO_3 + H_2O$

or
$$HS_3^- + OH^- \rightarrow SO_3^{2-} + H_2O$$
 1

(iii) Phenolphthalein or alizarin yellow or thymol blue 1
[3]

6. (a) before any KOH added:
$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 or $\frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$ (1)
$$m K_a = \frac{[H^+]^2}{[CH_3COOH]]}$$
 (1)
$$m[H^+] = \sqrt{1.74 \times 10^{-5} \times 0.160} = 1.67 \times 10^{-3}$$
 (1)
$$\therefore pH = 2.78$$
 (1)

(b) at
$$8 \text{ cm}^3 \text{ KOH}$$
:

Moles KOH added =
$$(8 \times 10^{-3}) \times (0.210 = 1.68 \times 10^{-3})$$
 (1) m moles of CH₃COO⁻ formed = 1.68×10^{-3} (1) Original moles of CH₃COOH = $(25 \times 10^{-3}) \times 0.160 = 4.0 \times 10^{-3}$ (1)

m moles of CH₃COOH left =
$$(4.0 \times 10^{-3}) - (1.68 \times 10^{-3})$$

= 2.32×10^{-3} (1)

$$[H^{+}] = K_{a} \times \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$$
 (1)
= 1.74 × 10⁻⁵ × $\frac{2.23 \times 10^{-3} / V}{1.68 \times 10^{-3} / V}$ = 2.40 × 10⁻⁵ (1)

∴ pH = 4.62 (1)

It forget subtraction: max 5 If K_a expression not used max 5 if moles of CH_3COOH wrong but substitution used max 5

at 40 cm³ of KOH: (c)

Total moles of KOH =
$$(40 \times 10^{-3}) \times 0.21 = 8.4 \times 10^{-3}$$
 (1)

: excess moles of KOH =
$$(8.4 \times 10^{-3})$$
 - (4.0×10^{-3})
= 4.4×10^{-3} (1)

in total volume = $40 + 25 = 65 \text{ cm}^3$ (1)

:
$$[OH^-] = 4.4 \times 10^{-3} \times \frac{1000}{65} = 0.0677 (1)$$

$$\therefore [H^+] = \frac{10^{-14}}{0.0677}$$

OR pOH =1.17

$$= 1.477 \times 10^{-13} \, (1)$$

∴ pH =
$$12.83$$
 (1)

If volume missed: max 4

If moles of acid wrong but method includes subtraction: max 5

If no subtraction: max 4

[Max 15]

7