Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty, Andrew McCallum, Fernando Pereira

Presenter: Yejin Choi

arcs: observations (X) nodes: outputs (Y) Label Bias Problem 1 i: 2 b:rib b:rob 3

C1	Herbivores	(-)	like	(r)	merino	(i)	sheep	(b)
S1	NNS	(0)	IN	(1)	JJ	(2)	NN	(3)
C2	Carnivores	(-)	like	(r)	eating	(o)	sheep	(b)
S2	NNS	(0)	VB	(4)	VBG	(5)	NN	(3)

- •Suppose [NNS => VB] transition more frequent than [NNS => IN]
- •Suppose from [VB], only [VB => VBG] transition is possible
- \rightarrow now, What is $P(Y_i = VBG \mid Y_{i-1} = VB, X_i = merino) ???$
- •Recall MEMM models $P(Y_i | Y_{i-1}, X_i)$

Label Bias Problem

Herbivores	(h)	like	(r)	merino	(i)	sheep	(b)
NNS	(0)	IN	(1)	JJ	(2)	NN	(3)
Carnivores	(c)	like	(r)	eating	(o)	sheep	(b)
NNS	(0)	VB	(4)	VBG	(5)	NN	(3)

- So, how do we fix this nonsense ? $P(Y_i = VBG \mid Y_{i-1} = VB, X_i = ???) = 1 \text{ for any } X_i$
- → Do not normalize on each node! Instead, normalize over the entire sequence. This motivates the "global normalization" scheme of CRFs.

Other approaches: Cohen and Carvalho (2005), Sutton and McCallum (2005)

Label Bias Problem

Herbivores	(h)	like	(r)	merino	(i)	sheep	(b)
NNS	(0)	IN	(1)	JJ	(2)	NN	(3)
Carnivores	(c)	like	(r)	eating	(o)	sheep	(b)
NNS	(0)	VB	(4)	VBG	(5)	NN	(3)

Wait, what about HMMs?

- •Recall HMM models $P(X_i \mid Y_i)$ and $P(Y_i \mid Y_{i-1})$ (so that $P(X_i \mid Y_i, Y_{i-1}) \bullet P(Y_i \mid Y_{i-1}) = P(X_i, Y_i \mid Y_{i-1})$)
 - then we can get P(merino | VBG) = 0 !

So, Let's normalize globally! (But, how?)

- What we need is the global joint distribution. i.e., $\mathbf{p}(\mathbf{y} \mid \mathbf{x})$
- where $y = (y_1, ..., y_n)$ and $x = (x_1, ..., x_n)$ - we do not want distributions on individual node. i.e., $\mathbf{p}(y_i \mid x_i)$
- Instead, we want non-probabilistic **potential** function. i.e., $\phi(y_i, x_i)$
- $\mathfrak{F}(y \mid y) \approx \mathfrak{g}(\phi(y_1, x_n)) + \ldots + (y_n, y_n)$
- Problem with directed graphs (like Bayesian Network)
- a probability distribution should be given for each node then, the joint probability $\mathbf{p}(\mathbf{y}) = \prod_i \mathbf{p}(\mathbf{y}_i \mid \mathbf{parents}(\mathbf{y}_i))$
- lacktriangle btw, what is parents(y_i) for MEMM ?
- Markov Random Field! (= Markov Network, Random Field)

Label Bias V.S. Observation Bias

-ا ع	0.0-	ABD	SNN	TO TOT	129110	ככ			
MEMM	MMH	элодв	səxəpui	All the					
	e.g.	_							
	Observation explains current state so Observation (hence ignoring state transition)					Previous state explains current state owell (hence ignoring observation)			
	(Klein and Manning 2002)				(Klein	(1	(Bottou, 1991; Lafferty et. al. 2001		
	Observation Bias						Label Bias		
_							<u> </u>		

→ Both are to do with local conditional normalization.

Hammersley-Clifford theorem (1971)

$$P(\vec{Y}) = \frac{1}{Z} \prod_{\text{olique}} \phi(\vec{Y})$$

where
$$Z = \sum_{Y} \prod_{c} \phi(Y_{c})$$

Given MRF
$$G=(Y,E)$$
 such that $P(Y_i \mid Y \setminus Y_i) = P(Y_i \mid nbr(Y_i))$

2. Given $\phi(Y_c)$ for \forall clique C in G, such that $\phi(Y_c) = \mathbf{0}$

- cliques may overlap.
- cliques may not be maximal.
- this implies we don't need to compute $P(Y_i \mid nbr(Y_i))$ to get P(Y)!

won 101 to wow, solutioning on X...

Markov Random Field

Let G=(Y,E) be a graph where each vertex Y_v is a random variable Suppose $P(Y_v \mid all \text{ other } Y) = P(Y_v \mid neighbors(Y_v))$ then Y is a random field

Example: (X^{3}) (X^{3})

- $P(Y_5 | all other Y) = P(Y_5 | Y_4, Y_6)$
- But, how do we compute the global joint distribution $P\left(Y \right)$ out of this ?
- \bullet Besides, We don't want to compute $P(Y_i \, | \, neighbors(Y_i))$!!!

function will give us a nice negative function, but exp $\phi(\lambda^i, x) = \exp \sum_k y^k t^k (\lambda^i, x)$ Can use any other non $P(y \mid x)$ for linear-chain CRFs

$$\phi(y_i, y_{i+1}, x) = \exp \sum_k \lambda_k f_k(y_i, y_{i+1}, x)$$
Then,
$$\phi(y_i, y_{i+1}, x) = \exp \sum_k \lambda_k f_k(y_i, y_{i+1}, x)$$

$$\varphi(y_i, y_{i+1}, x) = \exp \sum_k \lambda_k f_k(y_i, y_{i+1}, x)$$
Then,
$$\phi(y_i, y_{i+1}, x) = \frac{1}{Z(x)} \prod_i \left(\phi(y_i, y_{i+1}, x) \phi(y_i, y_{i+1}, x) \right)$$

$$\sum_{(x)} \frac{Z(x)}{Z(x)} \exp\left(\sum_{i,k} \lambda_{ik} f_{k}(y_{i}, x) + \sum_{i,k} \lambda_{ik} f_{k}(y_{i}, y_{i+1}, x)\right) \sim$$

$$= \frac{1}{Z(x)} \exp\left(\sum_{i,k} \lambda_{ik} f_{k}(y_{i}, x) + \sum_{i,k} \lambda_{ik} f_{k}(y_{i}, y_{i+1}, x)\right)$$

$$= \frac{1}{Z(x)} \exp\left(\sum_{i,k} \lambda_{ik} f_{k}(y_{i}, x) + \sum_{i,k} \lambda_{ik} f_{k}(y_{i}, y_{i+1}, x)\right)$$

where
$$Z(x) = \sum_{y} \exp \left(\lambda \cdot \mathbf{F}(y, x) \right)$$

Then,

ŢЭŢ

 $\left((x_{i} | y_{i})^{2} \right) = \left(\sum_{\alpha \in \mathcal{A}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}$

Objective function for training

Given the training data
$$D = \{x^{(j)}, y^{(j)}\}^{N}_{j=1}$$
 and $p(y \mid x) = \frac{1}{X(x)} \exp \lambda \bullet F(y, x)$

 $\mathbf{I}(\mathbf{y}) = \log L(\mathbf{y}) = \sum_{\mathbf{j}} \log p(\mathbf{y}(\mathbf{j}) | \mathbf{x}(\mathbf{j}))$ equiv. to optimize conditional likelihood $L(\lambda) = L(\lambda \mid D) = P(D \mid \lambda) = \prod_{j} p(y^{(j)} \mid x^{(j)})$ Objective function:

$$I(\lambda) = \sum_{j} \log p(y^{(j)}|x^{(j)}) = \sum_{j} \log \frac{1}{Z(x)} \exp \lambda \cdot \mathbf{F} (y^{(j)}, x^{(j)}) - \log \frac{\mathbf{Z}(x^{(j)})}{\mathbf{Z}} = \sum_{j} \lambda \cdot \mathbf{F} (y^{(j)}, x^{(j)}) - \log \frac{\mathbf{Z}(x^{(j)})}{\mathbf{Z}} \exp \lambda \cdot \mathbf{F} (y^{(j)}, x^{(j)})$$

Definition of CRFs

. D ni srodigian are v and v are neighbors in G. $p(\mathbf{X}_v \mid \mathbf{X}_v, \mathbf{W}_v \mid \mathbf{X}_v, \mathbf{W}_v \mid \mathbf{X}_v, \mathbf{W}_v \mid \mathbf{X}_v, \mathbf{W}_v \mid \mathbf{X}_v)$, where opey the Markov property with respect to the graph: case, when conditioned on X, the random variables Y_v of G. Then (X, Y) is a conditional random field in $\mathbf{Y} = (\mathbf{Y}_v)_{v \in V}$, so that \mathbf{Y} is indexed by the vertices **Definition.** Let G = (V, E) be a graph such that

- and notice that X is not part of V. except CRFs condition on X. Almost identical to the definition of MRFs,
- the conditional cases (on X) as well! Hammersley-Clifford theorem can be extended to

Objective function for training

Given the training data
$$\mathbf{D} = \{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{j=1}^N$$
 and $\mathbf{p}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{X(\mathbf{x})} \in \mathbf{x} \mathbf{p} \lambda \bullet \mathbf{F}(\mathbf{y}, \mathbf{x})$

Objective function : conditional likelihood
$$L(\pmb{\lambda}) = L(\pmb{\lambda} \mid D) = P(D \mid \pmb{\lambda}) = \prod_j p(y^{(j)} \mid x^{(j)})$$
 equiv. to optimize
$$(\pmb{\lambda}) = \log L(\pmb{\lambda}) = \sum_j \log p(y^{(j)} \mid x^{(j)})$$

$$\mathbf{l}(\boldsymbol{\lambda}) = \sum_{j} \log p(\mathbf{y}^{(j)} | \mathbf{x}^{(j)}) = \sum_{j} \log \frac{1}{\mathbf{Z}(\mathbf{x})} \exp \boldsymbol{\lambda} \cdot \mathbf{F} (\mathbf{y}^{(j)}, \mathbf{x}^{(j)}) - \log \mathbf{Z}(\mathbf{x}^{(j)})$$

$$= \sum_{j} \boldsymbol{\lambda} \cdot \mathbf{F} (\mathbf{y}^{(j)}, \mathbf{x}^{(j)}) - \log \mathbf{Z}(\mathbf{x}^{(j)})$$

$$= \sum_{j} \left(\boldsymbol{\lambda} \cdot \mathbf{F} (\mathbf{y}^{(j)}, \mathbf{x}^{(j)}) - \log \mathbf{Z}_{\mathbf{y}} \exp \boldsymbol{\lambda} \cdot \mathbf{F} (\mathbf{y}^{(j)}, \mathbf{x}^{(j)}) \right)$$

 $= \exp \sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i+1}, x)$

 $(x_{i+1}y_{i+1}, x)$

Parameter Estimation for CRFs

- \rightarrow pow to compute argmax, (λ) ?
- Iterative scaling algorithms
- Generalized iterative scaling (GIS)
- easy to implement

- L-BFGS: limited memory Newton's method
- much harder to implement, but lots of code available

Computing X(x) ... for linear-chain CRFs

- Improved iterative scaling (IIS)
- both really slow to converge
- Gradient descent methods
- CG: conjugate gradient
- \rightarrow you only need to provide $l(\lambda)$ and $l'(\lambda)$
- much faster to converge

Parameter Estimation for CRFs

 $\begin{bmatrix} \dots & \dots \\ \hline qq + fp & \overline{8q + \partial p} \end{bmatrix} = \begin{bmatrix} q & 8 \\ f & \delta \end{bmatrix} \times \begin{bmatrix} p & \delta \\ q & p \end{bmatrix}$

 $I(\lambda) = \sum_{j} \log p(y^{(j)} | x^{(j)}) = \sum_{j} \left(\lambda \bullet F(y^{(j)}, x^{(j)}) - \log \sum_{y} \exp \lambda \bullet F(y, x^{(j)}) \right)$

____nonName___

Iterative scaling algorithms

nonName

- Generalized iterative scaling (GIS)
- Improved iterative scaling (IIS)

Sha and Pereira (2003)

in minutes, 375k examples Table 3: Runtime for various training methods

(Collins 2002) voted perceptron. discriminatively with ·Possible to train (conditional) likelihood. •All of these maximize the

+nonVame

- CG: conjugate gradient Oradient descent methods

Newton's method - L-BFGS : limited memory

component for $\text{argmax}_{y} \; P(y \mid x) \; ... \; \text{for linear-chain CRFs}$

Figure 2. Graphical structures of simple HMMs (lett), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.

WEWW

Graphical representation

CKE

An open circle indicates that the variable is not generated by the model.

WWH

MEMM, etc

A universal

Other CRFs

Factorial CRFs (Sutton et.al., 2004)

Graphical representation

An open circle indicates that the variable is not generated by the model. Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.

ION

:sMV2 •

■ Maxent:

$$\min_{\mathbf{W}} |\mathbf{W}||^2 - \sum_{i} \left(\frac{\mathbf{W}^{\mathsf{T}} \mathbf{I}_i(\mathbf{y}^i) - \max_{\mathbf{Y}} \left(\mathbf{w}^{\mathsf{T}} \mathbf{I}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right)}{i} \right)$$

Hard (Penalized) Margin

 $\min_{\mathbf{w}} |k| |w||^2 - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp\left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$

- The SVM tries to beat the augmented runner-up better than a function of the other scores. Very similar! Both try to make the true score
- The maxent classifier tries to beat the "soft-max"

II yqortn⊒ mumixeM

- Also: regularization (smoothing)
- $\min_{\mathbf{A}} \mathbf{X} = \sum_{i} \mathbf{A}_{i} (\mathbf{y}^{i}) \log \sum_{\mathbf{V}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \log \sum_{i} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))$
- Maximize likelihood = Minimize "log-loss"

$$\min_{\mathbf{W}} \ \, \mathbf{k} ||\mathbf{w}||^2 - \sum_i \left(\mathbf{w}^{\dagger} \mathbf{f}_i(\mathbf{y}^i) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})) \right)$$

- Motivation
- Connection to maximum entropy principle
- Might want to do a good job of being uncertain on noisy cases...
- ... in practice, though, posteriors are pretty peaked

SSOJ-BOJ

If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} |\mathbf{w}| |w| |\mathbf{w}^{\mathsf{D}}| = \sum_{i} |\mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\mathsf{T}} \mathbf{f}_{i}(\mathbf{y}))$$

■ This minimizes the "log-loss" on each example

$$\begin{bmatrix} ((\chi)^i \mathbf{1}^\top \mathbf{w}) \operatorname{dx} \sum_{\mathbf{y}} \operatorname{exp}(\mathbf{w}^i) \mathbf{1}^{\mathbf{y}} \\ (\chi)^i \mathbf{1}^\top \mathbf{w} \\ (\chi)^i \mathbf{1}^\top \mathbf{w} \end{bmatrix} - \log \operatorname{P}(\chi^i)^i \mathbf{1}^\top \mathbf{w}$$
 sool ano-orac span as $\operatorname{P}(\chi^i) \mathbf{1}^\top \mathbf{w}$

Merino Sheep

Loss Functions: I

egniH ■

$$\left(\left[(y_i)^{i} + (y_i)^{i} \mathbf{1}^{\top} \mathbf{w}\right] \times \sup_{\mathbf{V}} - (^{i} y_i)^{i} \mathbf{1}^{\top} \mathbf{w}\right) \underset{i}{\overset{\sim}{\sim}}$$

$$\sum_{i} \left(\mathbf{w}_{+} \mathbf{I}_{i}(\mathbf{y}_{i}) - \mathbf{max} \left[\mathbf{w}_{+} \mathbf{I}_{i}(\mathbf{y}) \right] \right)$$

$$\sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right) \right)$$