(Axler §7A, cont.) last time, we saw:

- given inner prod. spaces (V, < , >), (W, { , }),
 T : V to W defines an adjoint T* : W to V
 characterized by {Tv, w} = <v, T*w>
- if V, W are finite-dim'l
 then get orthonormal bases for V and W
 i.e., the basis vectors e_i satisfy
 <e_i, e_i> = 1

<e j, e i> = 0 if j \neq j

let M be the matrix of T wrt the orthonormal bases

Q what is the matrix of T*?
[let them cook a bit]

<u>A</u> WLOG can take V = F^n and W = F^m under their dot / skew-dot products and choose the bases to be the std bases

 $F = R: \quad \text{for all v and w, we require} \\ \{Tv, w\} = (Tv)^t w = v^t T^t w \\ \{v, T^*w\} = v^t T^*w \\ \text{taking } v = e_j \text{ and } w = e_i \text{ shows} \\ T^t_{\{j, i\}} = T^*_{\{j, i\}} \text{ for all } j, i \\ \text{so } T^* = T^t \end{aligned}$

F = C: for all v and w, $\{Tv, w\} = (Tv)^t w^- = v^t T^t w^ \{v, T^*w\} = v^t (T^*w)^- = v^t (T^*)^- w^$ so $T^t_{\{j, i\}} = (T^*)^-_{\{j, i\}}$ for all j, i so $T^* = (T^t)^-$ [that is:] <u>Thm</u>

wrt orthonormal bases for both V and W, T: V to W and T*: W to V have matrices that are mutual conjugate transposes [we may write M* = (M^t)^-]

[works for both R and C: conjugation does nothing in the case of R]

[we deduce:]

Properties of Adjoints

- $(aS + T)^* = a^-S^* + T^*$ [for all a in F and S, T]
- $Id^* = Id$
- $\qquad (\mathsf{T}^*)^* = \mathsf{T}$
- $(S \circ T)^* = T^* \circ S^*$
- T* is invertible iff T is, and in this case,
 (T*)^{-1} = (T^{-1})*

[backing up a bit to §6B–6C, we revisit] Orthogonal Complements

<u>Df</u> given linear U sub V, its orthogonal complement (wrt < , >) is

$$U^{\perp} = \{v \text{ in } V \mid \langle v, u \rangle = 0 \text{ for all } u \text{ in } U\}$$

- by definiteness of <, >, U^{\perp} cap $U = \{0\}$
- [we saw last time:] by Gram–Schmidt, if V is finite-dim'l, then $V = U + U^{\perp}$

if V is finite-dim'l, then we also have:

-
$$(U_1 + U_2)^{\perp}$$
 = [what?] $(U_1)^{\perp}$ cap $(U_2)^{\perp}$ [and why?]

$$- (U\bot)\bot = U$$

[notice similarity to properties of adjoints...]

Q how do adjoints interact with complements?

Thm 1) $\operatorname{im}(T)^{\perp} = \ker(T^*)$ and $\ker(T^*)^{\perp} = \operatorname{im}(T)$ 2) $\ker(T)^{\perp} = \operatorname{im}(T^*)$ and $\operatorname{im}(T^*)^{\perp} = \ker(T)$

Pf 2) follows from 1) by swapping T and T*

to show im(T) $^{\perp}$ = ker(T*): w in ker(T*) iff T*w = **0**_V iff <v, T*w> = 0 for all v in V iff <Tv , w> = 0 for all v in V iff w in im(T) $^{\perp}$

taking () \perp of both sides, we get ker(T*) \perp = im(T)

<u>Cor</u> if V, W are finite-dim'l, then direct sums:

 $V = \ker(T) + \operatorname{im}(T^*)$ $W = \operatorname{im}(T) + \ker(T^*)$

now consider a linear operator T: V to V

<u>Df</u> [a linear op] T is self-adjoint iff $T^* = T$, i.e., $\langle Tv', v \rangle = \langle v', Tv \rangle$ for all v, v'

if M is the matrix of T wrt an orthonormal basis, then T* = T iff M* = M [where M* denotes the conjugate transpose]

<u>Prop</u> if T is self-adjoint (over either R or C) then every eigenval of T is real [is the converse true? no]

Pf let v be an eigenvec with eigenval λ [what is <Tv, v>? pause]

$$<$$
Tv, v> = $<$ λ v, v> = λ but also $<$ v, Tv> = $<$ v, λ v> = λ ⁻ $<$ v, v>

since $v \neq 0$, we know $\langle v, v \rangle \neq 0$ by definiteness so $\lambda = \lambda^-$

[here is a slightly weaker notion:]

<u>Df</u> a linear op T is normal iff $T^* \circ T = T \circ T^*$, i.e., they commute

[thus, any self-adjoint operator is normal]

Ex let M : F^2 to F^2 be

$$M = 1$$
 -1 so that $M^* = 1$ 1
1 1 -1 1

then
$$M^* \neq M$$
, yet $M^*M = 2$ 0 = MM^* 0 2

<u>Prop</u> T is normal iff $||Tv|| = ||T^*v||$ for all v in V

 $\begin{array}{ll} \underline{Pf} & T \text{ is normal} \\ & \text{iff } T^* \circ T - T \circ T^* \text{ is zero} \\ & \text{iff } <\!\! (T^* \circ T - T \circ T^*) v, \, v > = 0 \text{ for all } v \\ & \text{iff } <\!\! T^*Tv, \, v > = <\!\! TT^*v, \, v > \text{ for all } v \\ & \text{iff } <\!\! Tv, \, Tv > = <\!\! T^*v, \, T^*v > \text{ for all } v \\ \end{array}$

<u>Thm</u>	if T: V to V is normal, then:
1)	$ker(T^*) = ker(T)$
2)	$im(T^*) = im(T)$
3)	$T - \lambda$ is normal for all λ in F
<u>Pf</u>	1) follows from the prop
2) from im(T*) = ker(T) $^{\perp}$ = ker(T*) $^{\perp}$ = im(T)	
3) from $(T - \lambda) \circ (T - \lambda)^*$	
	$= (T - \lambda) \circ (T^* - \lambda^{\scriptscriptstyle{-}})$
	$= T \circ T^* - \lambda^- T - \lambda T^* + \lambda ^2$
	$= T^* \circ T - \lambda^{T} - \lambda T^* + \lambda ^{A}$
	$= (T^* - \lambda^{\scriptscriptstyle{-}}) \circ (T - \lambda)$
	$= (T - \lambda)^* \circ (T - \lambda)$

then T is diagonalizable