Universitatea Babeș-Bolyai Cluj-Napoca Facultatea de Matematică și Informatică

EXAMEN DE LICENȚĂ Proba scrisă – 27 iunie 2016 Specializarea Matematică Informatică

- I. 1. a) Să se definească noțiunea de subgrup al unui grup.
 - b) Să se arate că $2\mathbb{Z} \cup 3\mathbb{Z}$ nu este subgrup în grupul $(\mathbb{Z}, +)$.
 - c) Să se arate că dacă G este un grup și H_1, H_2 sunt subgrupuri ale lui G atunci are loc echivalența: $H_1 \cup H_2$ este subgrup al lui G dacă și numai dacă $H_1 \subseteq H_2$ sau $H_2 \subseteq H_1$.
 - 2. Considerăm functia $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x + 2y, y z).
 - a) Să se arate că f este \mathbb{R} -liniară.
 - b) Să se arate că v = ((1,0,1),(1,1,0),(1,1,1)) este bază în \mathbb{R}^3 și w = ((1,1),(1,0)) este bază în \mathbb{R}^2 .
 - c) Să se determine matricea $[f]_{v,w}$.
- II. 1. Să se determine toate valorile lui $a \in (0, \infty)$ pentru care seria numerică $\sum_{n=1}^{\infty} C_{2n}^n a^n$ este convergentă.
 - 2. Să se calculeze integralele Riemann

a)
$$\int_0^1 \frac{dx}{1+e^x}$$
; b) $\int_0^1 \frac{x dx}{1+x+e^x}$.

- III. Considerăm, pe parabola $y^2 = 2px$, punctele A, B, C, de ordonate a, b, c, cu $a, b, c \in \mathbb{R}$. Fie A' intersecția dintre tangentele în B și C, B' intersecția dintre tangentele în A și C și C' intersecția dintre tangentele în A și B.
 - a) Determinați coordonatele punctelor A', B', C'.
 - b) Demonstrați că aria triunghiului ABC este dublul ariei triunghiului A'B'C'.
 - c) Dacă G și G' sunt centrele de greutate ale triunghiurilor ABC, respectiv A'B'C', demonstrați că dreapta GG' este paralelă cu axa parabolei.

IV. Scrieți un program într-unul din limbajele de programare Python, C++, Java, C# care:

- a) Definește o clasă *ObiectLicitat* având un atribut privat *denumire* de tip șir de caractere, un atribut privat *pretDePornire* de tip întreg, un constructor public pentru inițializarea atributelor *denumire* și *pretDePornire*, o metodă publică *getDenumire*() ce retunează denumirea obiectului licitat, o metodă publică *getPretDePornire*() ce returnează prețul de pornire al obiectului licitat.
- b) Definește o clasă *TablouDeObiecte* având un atribut privat *nrElemente* de tip întreg, un atribut privat *elem* de tip tablou cu elemente de tipul *ObiectLicitat*, un constructor pentru inițializarea atributelor *nrElemente* și *elem*, o metodă publică *adauga* care adaugă un obiect licitat, specificat ca parametru al metodei, în șirul *elem*, o metodă publică *elementAt(int pos)* care returnează elementul de pe poziția *pos*, o metodă *get-NrElemente()* care returnează numărul de elemente din tablou și o metodă *sortare()* care sortează descrescător după prețul de pornire obiectele licitate din tablou.
- c) Definește o funcție care construiește un tablou de tipul *TablouDeObiecte* (definit la punctul b)) conținând următoarele elemente: un obiect de tipul *ObiectLicitat* având denumire "Laptop" și *pretDePornire* 1000, un obiect de tipul *ObiectLicitat* având denumire "Casti" și *pretDePornire* 200, un obiect de tipul *ObiectLicitat* având denumire "Masina" și *pretDePornire* 8000.
- d) Construiește în funcția principală a programului un tablou de obiecte licitate (apelând funcția de la punctul c)), sortează tabloul (apelând metoda *sortare()* din clasa *TablouDeObiecte* de la punctul b)), apoi afișează tabloul sortat.

Notă:

Nu se vor folosi containere sortate.

Nu se vor defini alte metode decât cele specificate în enunț.

Nu se vor folosi operații de sortare.

Timp de lucru efectiv 3 ore. Toate subiectele sunt obligatorii. Fiecare subiect se notează cu o notă de la 1 la 10. Nota finală la proba scrisă este $\frac{2}{3} \cdot \frac{NotaI+NotaIII+NotaIII}{3} + \frac{NotaIV}{3}$

Soluții geometrie

Remarcăm, înainte de toate, că

$$A = A\left(\frac{a^2}{2p}, a\right), \quad B = B\left(\frac{b^2}{2p}, b\right), \quad C = C\left(\frac{c^2}{2p}, c\right).$$

Ecuația tangentei într-un punct (x_0, y_0) al parabolei se scrie prin dedublare, adică

$$yy_0 = p(x + x_0).$$

Pentru tangenta în A obținem

$$ay = p\left(x + \frac{a^2}{2p}\right)$$

și, analog, pentru tangentele în B și C,

$$by = p\left(x + \frac{b^2}{2p}\right)$$

și

$$cy = p\left(x + \frac{c^2}{2p}\right).$$

(a) Se obține imediat

$$A' = A' \left(\frac{bc}{2p}, \frac{b+c}{2} \right), \quad B' = B' \left(\frac{ca}{2p}, \frac{c+a}{2} \right), \quad C' = C' \left(\frac{ab}{2p}, \frac{a+b}{2} \right).$$

(b) Aria triunghiului ABC este

$$Aria_{ABC} = \frac{1}{4p} \begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix} = \frac{1}{4p} \left| (a-b)(b-c)(c-a) \right|.$$

Aria triunghiului A'B'C' este

$$Aria_{A'B'C'} = \frac{1}{8p} \begin{vmatrix} bc & b+c & 1 \\ ca & c+a & 1 \\ ab & a+b & 1 \end{vmatrix} = \frac{1}{8p} |(a-b)(b-c)(c-a)|,$$

de unde rezultatul.

(c) Un calcul simplu ne arată că

$$G = G\left(\frac{a^2 + b^2 + c^2}{6p}, \frac{a+b+c}{3}\right),$$

$$G' = G'\left(\frac{bc + ca + ab}{6p}, \frac{a + b + c}{3}\right),$$

de unde rezultă imediat rezultatul cerut.

EXAMEN DE LICENȚĂ

Proba scrisă – 27 iunie 2016 Specializarea Matematică Informatică Barem de corectare

Algebră

Ofic	ciu
1	a) Definiția
	a) Liniaritatea funcției
	b) $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} \neq 0, \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \neq 0$
•	c) $[f]_{v,w} = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 2 & 3 \end{pmatrix}$
Of	Analiză
Olio	ciu1pt
1.	Cu notația $u_n = C_{2n}^n a^n$ are $\log D_n = \frac{2a(2n+1)}{n+1}$
	$D = \lim_{n \to \infty} D_n = 4a$
	Dacă $a < \frac{1}{4}$, atunci seria este convergentă
	Dacă $a > \frac{1}{4}$, atunci seria este divergentă
	Dacă $a = \frac{1}{4}$, atunci $D_n = \frac{2n+1}{2n+2}$, deci $R_n = n\left(\frac{1}{D_n} - 1\right) = \frac{n}{2n+1}$
	$R = \lim_{n \to \infty} R_n = \frac{1}{2} < 1$, deci seria este divergentă
2.	(a) Cu schimbarea de variabilă $x = e^t$ se obține $\int_0^1 \frac{dx}{1 + e^x} = \int_1^e \frac{dt}{(1 + t)t}$
	$\int_0^1 \frac{dx}{1+e^x} = \int_1^e \left(\frac{1}{t} - \frac{1}{1+t}\right) dt = \left(\ln t - \ln(1+t)\right)\Big _1^e = 1 - \ln\frac{e+1}{2} \dots 1 pt$
	(b) $\int_0^1 \frac{x dx}{1 + x + e^x} = \int_0^1 \frac{1 + x + e^x - (1 + e^x)}{1 + x + e^x} dx = \int_0^1 \left(1 - \frac{(1 + x + e^x)'}{1 + x + e^x} \right) dx \dots 1 pt$
	$\int_0^1 \frac{x dx}{1 + x + e^x} = \left(x - \ln(1 + x + e^x)\right) \Big _0^1 = 1 - \ln\frac{e + 2}{2} \dots 1pt$

Geometrie

Ofic	ciu .	1pt			
a)		Determinarea coordonatelor punctelor A,B,C : $A\left(\frac{a^2}{2p},a\right), B\left(\frac{b^2}{2p},b\right), C\left(\frac{c^2}{2p},c\right)$ 1pt			
	(ii)	Scrierea ecuațiilor tangentelor în A,B,C : $ay = p\left(x + \frac{a^2}{2p}\right)$, $by = p\left(x + \frac{b^2}{2p}\right)$, $cy =$			
		$p\left(x+\frac{c^2}{2p}\right)$			
	(iii)	Determinarea coordonatelor lui A', B', C' , ca intersecții ale tangentelor: $A'\left(\frac{bc}{2p}, \frac{b+c}{2}\right)$,			
		$B'\left(\frac{ca}{2p}, \frac{c+a}{2}\right), C'\left(\frac{ab}{2p}, \frac{a+b}{2}\right)$			
b)	(i)	Calculul ariei lui ABC : $Aria_{ABC} = \frac{1}{4p} \left (a-b)(b-c)(c-a) \right \dots 1$ pt			
	(ii)	Calculul ariei lui $A'B'C'$: $Aria_{A'B'C'}=\frac{1}{8p}\left (a-b)(b-c)(c-a)\right $ 1pt			
	(iii)	Demonstrarea relației dintre arii			
c)	(i)	Determinarea coordonatelor lui $G: G\left(\frac{a^2+b^2+c^2}{6p}, \frac{a+b+c}{3}\right) \dots 0.5$ pt			
	(ii)	Determinarea coordonatelor lui G' : $G'\left(\frac{bc+ca+ab}{6p}, \frac{a+b+c}{3}\right)$ 0.5pt			
	(iii)	Demonstrarea faptului că $GG' \parallel Ox$			
		Informatică			
Ofic	ciu .	1pt			
a) I	Defin	nirea clasei ObiectLicitat (2pt) din care:			
	atri	bute			
constructor					
metoda denumire()					
		oda pretDePornire()			
b) I		nirea clasei <i>TablouDeObiecte</i> (3.5pt) din care:			
		bute $2 \cdot 0.25 = 0.5$ pt			
		structor			
		oda sortare()			
		oda adauga() 0.5pt oda elementAt() 0.5pt			
		oda getNrElemente()			
c) Funcția de creare a tabloului (2pt) din care:					
C) 1		·			
	Sign	natură corectă, declarare tablou si returnare rezultat			

	Creare obiecte de tipul <i>ObiectLicitat</i>	0.25 = 0.75pt
	Adăugare obiecte in tablou	0.25 = 0.75pt
d)	Program principal (1.5pt) din care:	
	apel funcție construire tablou	0.5pt
	apel funcție sortare	0.5pt
	afisare elemente	0.5pt