MATH 3022 ALGEBRA II ASSIGNMENT 2

JOE TRAN

Question 2. (a) Let R be a commutative ring with unity $(1_R \neq 0_R)$. Show that if $\{0_R\}$ and R and the only ideals of R, then R is a field.

(b) Let F be a field. Use (a) to show that F[x] is not a field.

Solution. (a) Suppose that R is not a field. Then there exists some $x \neq 0 \in R$ such that x has no inverse, so $\langle x \rangle = \{rx : r \in R\} \neq \langle 0 \rangle$ and we cannot obtain 1_R (as this would mean that there exists an $r \in R$ such that rx = 1, and since R is commutative, then we also have that rx = xr = 1 which implies that $x^{-1} = r$), and it cannot be R also. By contrapositive, we have shown that R is not a field.

(b) Let $p(x) \in F[x]$. Then $xp(x) \in F[x]$ and suppose that xp(x) = 1. Then when $x = 0 \in F$, we obtain that $0 = 1 \in F$, which is absurd.

Question 3. Show that the principal ideal (x-1) in $\mathbb{Z}[x]$ is prime but not maximal.

Solution. Note that because we have $\mathbb{Z}[x]/\langle x-1\rangle \simeq \mathbb{Z}$, and because \mathbb{Z} is an integral domain, then so is $\mathbb{Z}[x]/\langle x-1\rangle$, and so $\langle x-1\rangle$ is a prime ideal. However, $\mathbb{Z}[x]/\langle x-1\rangle \simeq \mathbb{Z}$ and \mathbb{Z} is not a field, so $\mathbb{Z}[x]/\langle x-1\rangle$ cannot be a field, so $\langle x-1\rangle$ cannot be maximal.

Question 5. Let R be an integral domain. Assume that the division algorithm always holds in R[x]. Prove that R is a field.

Solution. To see that R is a field, we need to show that every element in R has a multiplicative inverse. Indeed, let $r \neq 0 \in R$, and let $r_1(x) \in R[x]$ be such that $r_1(x) = r$ and $\deg(r_1(x)) = 0$. Let $p(x) \in R[x]$ be an irreducible polynomial with $\deg(p(x)) \geq 1$. Then by assumption, we use the division algorithm so that

$$r_1(x) = p(x)q(x) + r(x)$$

where either r(x) = 0 or $\deg(r(x)) < \deg(p(x))$. Now we consider the following cases:

- Case 1: If r(x) = 0, then $r_1(x) = p(x)q(x)$, but r_1 would be a multiple of p(x), which is absurd, because $r \neq 0 \in R$ and $\deg(r_1(x)) = 0$, while $\deg(p(x)) > 0$.
- Case 2: If $0 = \deg(r(x)) < \deg(p(x))$ and since $\deg(r(x))$ cannot be smaller than 0, so this case does not hold.

Therefore, there is no such polynomials of degree greater than 0 in R[x].

Now consider the polynomial given by

$$p(x) = xr + 1$$

Since there are no irreducible polynomials of degree 0, then p(x) is reducible. Then by the division algorithm, there exists polynomials a(x) and b(x) such that

$$p(x) = a(x)b(x) = xr + 1$$

which implies that xr is a multiple of an element of R and so, there exists an element r^{-1} such that $rr^{-1} = 1$. Therefore, as $r \neq 0 \in R$ was arbitrary, every nonzero element in R has a multiplicative inverse, so R is a field.

Date: February 23, 2024.

2 JOE TRAN

Question 8. Let p be prime.

- (a) Show that there are $\frac{p(p+1)}{2}$ reducible polynomials over \mathbb{Z}_p of the form $x^2 + ax + b$.
- (b) Determine the number of irreducible polynomials over \mathbb{Z}_p of the form $x^2 + ax + b$.
- (c) Show that there exists a field of order p^2 for every prime p.
- (d) Construct a finite field with four elements. Give the addition table and the multiplication table of your field.

Solution. (a) Assume that $x^2 + ax + b$ is a reducible polynomial over \mathbb{Z}_p . Then there exists $x - \alpha$ and $x - \beta \in \mathbb{Z}_p[x]$ such that

$$x^{2} + ax + b = \begin{cases} (x - \alpha)(x - \beta) & \text{if } \alpha \neq \beta \\ (x - \alpha)^{2} & \text{if } \alpha = \beta \end{cases}$$

Then since over \mathbb{Z}_p , we have $|\mathbb{Z}_p| = p$, then the number of quadratic monic polynomials is p^2 . Since there are $\binom{p}{2}$ ways of choosing α and β in the first case (without repetition), and p ways for the second case. Therefore,

$$\binom{p}{2} + p = \frac{p!}{2!(p-2)!} + p$$

$$= \frac{p(p-1)(p-2)!}{2(p-2)!} + p$$

$$= \frac{p(p-1)}{2} + p$$

$$= \frac{p(p-1) + 2p}{2}$$

$$= \frac{p(p-1) + 2p}{2}$$

$$= \frac{p(p-1) + 2p}{2}$$

$$= \frac{p(p+1)}{2}$$

Therefore, there are $\frac{p(p+1)}{2}$ reducible polynomials over \mathbb{Z}_p of the form $x^2 + ax + b$. (b) Because the number of quadratic monic polynomials is p^2 and the number of reducible quadratic monic polynomials is $\frac{p(p+1)}{2}$ from (a), then the number of irreducible monic quadratic polynomials are

$$p^{2} - \frac{p(p+1)}{2} = \frac{2p^{2} - p^{2} - p}{2} = \frac{p^{2} - p}{2} = \frac{p(p-1)}{2}$$

- (c) Since there is a polynomial of the form $x^2 + ax + b$ that is irreducible over \mathbb{Z}_p , then the quotient $\mathbb{Z}_p[x]/\langle x^2 + ax + b \rangle$ is a field with p^2 elements, since as mentioned from (a), the number of quadratic monic polynomials is p^2 .
- (d) First let us consider \mathbb{Z}_2 . We seek an irreducible polynomial p(x) of degree 1 over \mathbb{Z}_2 . Note that the following polynomials of degree 1 are possible in \mathbb{Z}_2 :

$$p(x) = x$$
 $p(x) = x + 1$

However, note that p(x) = x + 1 is irreducible since $f(0) = 1 \neq 0$, $f(1) = 2 \neq 0$, and therefore, $\mathbb{Z}_2[x]/\langle x+1\rangle$ is a finite field of order 4. Note that if $I=\langle x+1\rangle$, then the quotient ring is given as

$$\mathbb{Z}_2[x]/\langle x+1\rangle = \{0+\langle x+1\rangle, 1+\langle x+1\rangle, x+\langle x+1\rangle, x+1+\langle x+1\rangle\}$$

Then our addition table is given as

+	0+I	1+I	x + I	(x+1)+I
0+I	0+I	1+I	x + I	(x+1) + I
1+I	1+I	0+I	(x+1)+I	x + I
x + I	x + I	(x+1) + I	0+I	1+I
(x+1) + I	(x+1) + I	x + I	1+I	0+I

and the multiplication table is given as

•	0+I	1+I	x + I	(x+1)+I
0+I	0+I	0+I	0+I	0+I
1+I	0+I	1+I	x + I	(x+1)+I
x + I	0+I	x + I	(x+1)+I	1+I
(x+1) + I	0+I	(x+1) + I	1+I	x + I

Question 10. Either prove that $f(x) = 3x^5 - 4x^4 + 7x^3 + 16x^2 - 2$ is irreducible over \mathbb{Q} , or factor it into a product of irreducible factors in $\mathbb{Q}[x]$.

Solution. We claim that f(x) is irreducible over \mathbb{Q} . Indeed, say we take $x=-1\in\mathbb{Q}$. Then observe that

$$f(-1) = 3(-1)^5 - 4(-1)^4 + 7(-1)^3 + 16(-1)^2 - 2 = 0$$

so $x + 1 \in \mathbb{Q}[x]$ is a factor of f(x). Then by performing long division,

$$\begin{array}{r}
3x^4 - 7x^3 + 14x^2 + 2x - 2 \\
x+1) \overline{3x^5 - 4x^4 + 7x^3 + 16x^2} - 2 \\
\underline{-3x^5 - 3x^4} \\
-7x^4 + 7x^3 \\
\underline{-7x^4 + 7x^3} \\
14x^3 + 16x^2 \\
\underline{-14x^3 - 14x^2} \\
2x^2 \\
\underline{-2x^2 - 2x} \\
-2x - 2 \\
\underline{-2x + 2} \\
0
\end{array}$$

Now by the division algorithm, we can write

$$3x^5 - 4x^4 + 7x^3 + 16x^2 - 2 = (x+1)(3x^4 - 7x^3 + 14x^2 + 2x - 2)$$

Let $g(x) = 3x^4 - 7x^3 + 14x^2 + 2x - 2$. Say we take $x = \frac{1}{3} \in \mathbb{Q}$. Then observe that

$$g\left(\frac{1}{3}\right) = 3\left(\frac{1}{3}\right)^4 - 7\left(\frac{1}{3}\right)^3 + 14\left(\frac{1}{3}\right)^2 + 2\left(\frac{1}{3}\right) - 2 = 0$$

JOE TRAN

so $x-\frac{1}{3}\in\mathbb{Q}[x]$ is a factor of g(x). Then by performing long division,

$$\begin{array}{r}
3x^3 - 6x^2 + 12x + 6 \\
x - \frac{1}{3}) \overline{3x^4 - 7x^3 + 14x^2 + 2x - 2} \\
\underline{-3x^4 + x^3} \\
-6x^3 + 14x^2 \\
\underline{-6x^3 - 2x^2} \\
12x^2 + 2x \\
\underline{-12x^2 + 4x} \\
6x - 2 \\
\underline{-6x + 2} \\
0
\end{array}$$

Now by the division algorithm,

$$3x^4 - 7x^3 + 14x^2 + 2x - 2 = \left(x - \frac{1}{3}\right)(3x^3 - 6x^2 + 12x + 6)$$
$$= (3x - 1)(x^3 - 2x^2 + 4x + 2)$$

Let $h(x) = x^3 - 2x^2 + 4x + 2$. We claim that h(x) is irreducible over \mathbb{Q} . Indeed, because the leading coefficient of h(x) is 1 and the constant term of h(x) is 2, then we have the test factors of 2, being 1 and 2. Checking each,

$$h(1) = (1)^3 - 2(1)^2 + 4(1) + 2 = 5 \neq 0$$

$$h(2) = (2)^3 - 2(2)^2 + 4(2) + 2 = 10 \neq 0$$

Since none of the above test factors are such that h(x) = 0, then h(x) is not irreducible. Therefore,

$$f(x) = (x+1)(3x-1)(x^3 - 2x^2 + 4x + 2)$$

Bonus. Complete the questions specified on Page 5 of your Test 1:

- (2) (a) Let R be a ring with identity. Show that if $a \in R$ is a zero divisor, then it is not a unit.
 - (b) Is the converse true? Justify your answer.

Solution. (a) Assume that $a \in R$ is a zero divisor, and assume for a contradiction that $a \in R$ is a unit. Since a is a zero divisor, then there exists a $b \neq 0 \in R$ such that

$$ab = 0$$

and since a is a unit, then there exists a unique $a^{-1} \in R$ such that

(2)
$$aa^{-1} = [a^{-1}a = 1]$$

Then right multiplying both sides of (2) in the bracket by b so that

$$(a^{-1}a)b = 1b$$
$$a^{-1}(ab) = b$$
$$a^{-1} \cdot 0 = b$$
$$b = 0$$

which is absurd because it contradicts the assumption that $b \neq 0 \in R$ and thus contradicts the assumption that a is a zero divisor. Therefore, it must be the case that a cannot be a unit.

(b) The converse of (a) is if a is not a unit, then a is a zero divisor. We claim that the statement is true. Assume that a is not a unit. Then for every $a^{-1} \in R$, we have that

(1)
$$a \cdot a^{-1} = [a^{-1} \cdot a \neq 1]$$

And now assume for a contradiction, that a is not a zero divisor. Then for every $b \neq 0 \in R$, we have that $ab \neq 0$, so let $c \neq 0$ be such that

$$ab = c$$

Then right multiplying both sides of (1) by b so that

$$(a^{-1} \cdot a) \cdot b \neq 1 \cdot b$$

$$a^{-1} \cdot (a \cdot b) \neq b$$

$$a^{-1} \cdot c \neq b$$

$$a \cdot (a^{-1} \cdot c) \neq a \cdot b$$

$$c \neq ab$$

which is a contradiction. Therefore, if a is not a unit, then a must be a zero divisor.