1.6: Continuity

Date: _____

The function y = f(x) is continuous at x = a

$$\lim_{x\to c} \lim_{x\to c} f(x) = f(a)$$

OTHERWISE y = f(x) is discontinuous at x = a.

For the graph to right, y = f(x) is continuous for

all $x \in R$ provided that $\chi = -3$, -1, 2

Ex1. Consider the function: $f(x) = \begin{cases} x, & x < 1 \\ (x - 2)^2, & x \ge 1 \end{cases}$

- a. Graph y = f(x).
- b. Find $\lim_{x\to 1} f(x)$.

$$\lim_{x\to 1^+} f(x) = (1-2)^2$$

Thus | [m f(x) = |

c. Find f(1).

 $f(1) = (1-2)^{2}$ = 1 eguals + hat

d. Is y = f(x) continuous at x = 1? Explain.

Yes
$$b/c$$
 $\lim_{x \to 1} f(x) = f(1)$

Ex2. Determine all values of x for which each function is continuous.

a. $f(x) = x^5 - 9x$

F(x) 15 continuous XER.

So g(x) is continuous for AER | A<-4 or x>4

c.
$$h(x) = \begin{cases} 4+x, & x < 5 \\ 2x, & x \ge 5 \end{cases}$$

$$\lim_{x\to 5^+} h(x) = 2(5)$$

:. h(x) is cont. for xer / x ≠ 5.

j(x) is continuous for $x \in \mathbb{R} \mid x > 1$, $x \neq 3$

$$J(1) = 0$$

: y=j(x) is NOT continuous

Ex3. Find
$$a$$
 and b such that $f(x) = \begin{cases} x+3 & x < -2 \\ ax^2+5 & -2 \le x < 2 \\ x+b & x \ge 2 \end{cases}$ is continuous for all $x \in R$. Then,

Since
$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} f(x)$$

...
$$\chi + 3 = a \times^2 + 5$$
 when $\chi = -2$
 $-2 + 3 = a(-2)^2 + 5$
 $1 = 4a + 5$
 $4a = -4$

Similarity 1
$$ax^{2}+5=x+b \text{ when } x=2$$

$$-(a)^{2}+5=a+b$$

$$|=a+b|$$

$$x+3 \qquad x<-2$$

$$-x^{2}+5 \qquad -2 < x < 2$$

$$x+3 \qquad x<-2$$

$$-x^{2}+5 \qquad -2 < x < 2$$

$$x+3 \qquad x<-2$$

$$-x^{2}+5 \qquad -2 < x < 2$$

$$f(x) = \begin{cases} x+3 & x < -\lambda \\ -x^2 + 5 & -\lambda \leq x < \lambda \\ x = -\lambda \leq x < \lambda \end{cases}$$

Homefun: Page 51 #1 \rightarrow 5 (Ans. 5d $x \in R \mid x \ge -2$), 7, 8, 10 \rightarrow 14, 15 (Ans. A = B - 3, $B \ne 1$ is less awkward), 16, 17