Prototyping

Gido Wahrmann

E-Mail: gido.wahrmann@hshl.de

Kristian Rother

E-Mail: <u>kristian.rother@hshl.de</u>

Stefan Henkler

E-Mail: stefan.henkler@hshl.de

Use Case

Precision Farming

- ► Enabler for feeding the world
- ▶ Beeing productive, efficient, ecological, economical

https://www.farmmanagement.pro/tips-for-improving-precision-farming-practices/

Use Case

Precision Farming

- Develop an autonomous vehicle that can collect objects (bales of straw)
- ▶ The size of the system to be developed is of scale 1:10
- ▶ The test environment is given in the following (size 7.5 to 3.5 meters
- ► The coordination of your vehicle is given by the lines
- Somewhere on the test track the bales of straw are distributed
- ➤ Your vehicle must collect the bales of straw and bring them to a certain position

Prerequisite

- Create a team git
- ► Add all team members
- ► Add all lectures
 - ► Stefan Henkler (shenkler), Kristian Rother, Gido Wahrmann
- ► Upload continuously your results to git
 - ► These includes the responsibilities
 - ► (Pre-) final version are uploaded within of the specified deadlines
- ▶ Divide the overall task into separate parts for each teammember in the following way, like:

			Name1		Name2		Name
			Todo (incl.	Done (incl.			
#	Task	Short summary	Deadline)	Finishing date	Todo	Done	
1	Task1						
2	Task2						
	Task						

Systems Engineering

Task 1 & 2

Task 1

- Develop a first system engineering model based on the Systems Engineering lecture
 - ► This includes all parts of the analysis
 - ▶ Deadline: Sunday, April 3 eob.
- ▶ Outcomes are SysML Diagrams
- ▶ Refine your system engineering model and develop a first prototype
 - ▶ Being able to follow a line and detect obstacles
 - ► First version is simulated in tinkercad
 - Second version is realized on a test vehicle in our labs
 - ▶ Deadline: Sunday, April 10 eob

Relevant criteria

- Quality of solution
 - Originality
 - ► Completeness
 - ► Integrity
- ► Usage of methods and techniques
 - ▶ Usage of process specific tools like github, trello, ...
 - ▶ SysML/UML Diagrams like
 - ▶ Requirements, Use Cases, Scenarios, Constraints, Block-Diagrams,