EE2016F22 Microprocessor Lab Experiment 5 Lab Report

Ameya (EE21B014)

22 October 2022

Contents

1	Ain	1	1
2	Equ	nipments, Hardwares / Softwares Required	1
3	Tas	ks to be Performed	1
	3.1	Compute the factorial of a given number using ARM processor through assembly programming	1
	3.2	Combine the low four bits of each of the four consecutive bytes beginning at LIST into one 16-bit halfword. The value at LIST goes into the most significant nibble of the result. Store the result	
	3.3	in the 32-bit variable RESULT	3
${f L}$	ist	of Figures	
	1 2	Output on debugging	2
	3	KEIL Output	4

1 Aim

To

- 1. learn the architecture of ARM processor
- 2. learn basics of ARM instruction set, in particular the ARM instructions pertaining to computations
- 3. go through example programs and
- 4. write assembly language programs for the given set of (computational) problems

2 Equipments, Hardwares / Softwares Required

- 1. KEIL 5 IDE for ARM
- 2. Flashmagic software for programming flash memory
- 3. ARM7 hardware kit
- 4. USB to serial converter
- 5. Serial cross cable

3 Tasks to be Performed

3.1 Compute the factorial of a given number using ARM processor through assembly programming

The ARM code used to implement the given task has been given below:

```
AREA Program, CODE, READONLY
  Entry
2
     LDR RO, NUM1
     SUB R1, R0, #1
  label
     CMP R1, #0
6
     BEQ done
     MUL R2, R1, R0
     MOV RO, R2
     SUB R1, R1, #1
10
11
     LDR R3, =Result
12
     STR RO, [R3]
     SWI &11
14
15 NUM1 DCW &00003
```

```
align
AREA DataRam, DATA, READWRITE
Result DCD 0
END
```

ARM code

Figure 1: Output on debugging

3.2 Combine the low four bits of each of the four consecutive bytes beginning at LIST into one 16-bit halfword. The value at LIST goes into the most significant nibble of the result. Store the result in the 32-bit variable RESULT.

The ARM code used to implement the given task has been given below:

```
AREA Program, CODE, READONLY
Entry
LDR RO, =LIST
MOV R5, #0
MOV R6, #0
MOV R9, #16
Loop
CMP R6, #4
BEQ done
LDR R1, [RO]
```

```
MOV R2, #15
11
     AND R3, R2, R1
     MOV R12, R5
13
     MUL R5, R12, R9
     ADD R5, R5, R3
15
     ADD RO, RO, #4
     ADD R6, R6, #1
^{17}
   B Loop
18
   done
19
     LDR R7, =Result
     STR R5, [R7]
21
     SWI &11
22
   LIST DCD &2D3F, &5F53, &1234, &0987
23
   AREA DataRam, DATA, READWRITE
   Result DCD 0
26
   END
```

ARM code

Figure 2: Final Output

3.3 Given a 32 bit number, identify whether it is an even or odd (without division)

The ARM code is given below

```
AREA Program, CODE, READONLY
Entry
```

```
LDR RO, NUM1
3
     MOV R1, #1
     AND R2, R1, R0
5
     CMP R2, #0
6
     BEQ even
     MOV R3, #1
     B done
9
   even
10
     MOV R3, #0
11
   done
     LDR R4, =Result
13
     STR R3, [R4]
14
     SWI &11
15
   NUM1 DCD &00003
16
   align
17
     AREA DataRam, DATA, READWRITE
18
   Result DCD 0
19
     END
20
```

ARM code

Figure 3: KEIL Output