BAYESIAN NETWORKS

Chapter 14.1–4

Outline

- \Diamond Syntax
- \Diamond Semantics
- ♦ Exact inference by enumeration
- \Diamond Exact inference by variable elimination

Bayesian networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- a set of nodes, one per variable
- a directed, acyclic graph (link pprox "directly influences")
- a conditional distribution for each node given its parents:

$$\mathbf{P}(X_i|\mathsf{Parents}(X_i))$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

Scenario: I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example 2 contd.

Compactness

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i|\mathsf{parents}(X_i))$$

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

=

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | \mathsf{parents}(X_i))$$

$$\mathsf{e.g.,} \ P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1,\ldots,X_{i-1} such that $\mathbf{P}(X_i|\mathsf{Parents}(X_i))=\mathbf{P}(X_i|X_1,\ldots,X_{i-1})$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \text{ (chain rule)}$$
$$= \prod_{i=1}^n \mathbf{P}(X_i | \mathsf{Parents}(X_i)) \text{ (by construction)}$$

$$P(J|M) = P(J)$$
?

$$P(J|M)=P(J)$$
? No
$$P(A|J,M)=P(A|J)$$
? $P(A|J,M)=P(A)$?

$$\begin{array}{l} P(J|M) = P(J) ? \quad \text{No} \\ P(A|J,M) = P(A|J) ? \quad P(A|J,M) = P(A) ? \quad \text{No} \\ P(B|A,J,M) = P(B|A) ? \\ P(B|A,J,M) = P(B) ? \end{array}$$

$$P(J|M) = P(J)? \text{ No} \\ P(A|J,M) = P(A|J)? \ P(A|J,M) = P(A)? \text{ No} \\ P(B|A,J,M) = P(B|A)? \text{ Yes} \\ P(B|A,J,M) = P(B)? \text{ No} \\ P(E|B,A,J,M) = P(E|A)? \\ P(E|B,A,J,M) = P(E|A)? \\ P(E|B,A,J,M) = P(E|A,B)?$$

$$P(J|M) = P(J)$$
? No $P(A|J,M) = P(A)$? No $P(B|A,J,M) = P(B|A)$? Yes $P(B|A,J,M) = P(B|A)$? No $P(E|B,A,J,M) = P(E|A)$? No $P(E|B,A,J,M) = P(E|A)$? No $P(E|B,A,J,M) = P(E|A,B)$? Yes

Example contd.

Deciding conditional independence is hard in noncausal directions (symptoms \rightarrow causes)

Causal models (causes \rightarrow symptoms) and conditional independence seem easier for humans!

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1+2+4+2+4=13 numbers needed

Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Example: Car insurance

Inference tasks

Simple queries: compute posterior marginal $P(X_i|\mathbf{E}=E)$ e.g., P(NoGas|Gauge=empty,Lights=on,Starts=false)

Conjunctive queries: $\mathbf{P}(X_i, X_j | \mathbf{E} = E) = \mathbf{P}(X_i | \mathbf{E} = E)\mathbf{P}(X_j | X_i, \mathbf{E} = E)$

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

We focus on simple and conjunctive queries

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\mathbf{P}(B|j,m)$$

$$= \mathbf{P}(B,j,m)/P(j,m)$$

$$= \alpha \mathbf{P}(B,j,m)$$

$$= \alpha \Sigma_e \Sigma_a \mathbf{P}(B,e,a,j,m)$$

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$\mathbf{P}(B|j,m) = \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M}$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{A} P(j|a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{J}(a) f_{M}(a)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{a} f_{A}(a,b,e)}_{A} f_{A}(a,b,e)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{e} f_{A}(a,b,e)}_{A} f_{A}(a,b,e)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{e} f_{A}(a,b,e)}_{A} f_{A}(a,b,e)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{\sum_{e} f_{A}(a,b,e)}_{A} f_{A}(a,b,e)$$

$$= \alpha \mathbf{P}(B) \underbrace{\sum_{e} f_{A}(a,b,e)}_{A} \underbrace{\sum_{e} f_{A}(a,b,e)}_{A} f_{A$$

Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

$$\Sigma_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \Sigma_x f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$

assuming f_1, \ldots, f_i do not depend on X

Pointwise product of factors f_1 and f_2 :

$$f_1(x_1,\ldots,x_j,y_1,\ldots,y_k)\times f_2(y_1,\ldots,y_k,z_1,\ldots,z_l)\\ = f(x_1,\ldots,x_j,y_1,\ldots,y_k,z_1,\ldots,z_l)\\ \text{e.g., } f_1(a,b)\times f_2(b,c) = f(a,b,c)$$

Irrelevant variables

Consider the query P(JohnCalls|Burglary = true)

$$P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(J|a) \sum_{m} P(m|a)$$

Sum over m is identically 1; M is **irrelevant** to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathcal{E})$

Here, X = JohnCalls, $\mathcal{E}_{=}\{Burglary\}$, and $Ancestors(\{X\} \cup \mathcal{E}_{)} = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

Summary

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Exact inference by enumeration

Exact inference by variable elimination

Examples of skills expected:

- \diamondsuit Formulate a belief network for a given problem domain
- \Diamond Derive expression for joint probability distribution for given belief network
- ♦ Use inference by enumeration to answer a query about simple or conjunctive queries on a given belief network