

Data Advanced

COMBINATIELEER

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Doel + Inhoud

Aantal elementen in een verzameling tellen via

- 1. Permutaties
- 2. Variaties
- 3. Herhalingsvariaties
- 4. Combinaties

Permutaties

ABCD	ABDC	ACBD	ACDB	ADBC	ADCB
BACD	BADC	BCAD	BCDA	BDAC	BDCA
CABD	CADB	CBAD	CBDA	CDAB	CDBA
DABC	DACB	DBAC	DBCA	DCAB	DCBA

Een **permutatie** van n elementen is een **geordend n** - tal van verschillende elementen gekozen uit een gegeven verzameling van n elementen.

$$P_n = n!$$

Permutaties

Voorbeeld 2 pg 4 (cursus)

Voorbeeld 3 a – b pg 4 (cursus)

Variaties

Een variatie van p elementen uit n elementen is een geordend p – tal van p verschillende elementen gekozen uit de gegeven verzameling van n elementen.

$$V_n^p = n(n-1)(n-2) \dots (n-p+1) = \frac{n!}{(n-p)!}$$

Variaties

Voorbeeld 5 pg 6 (cursus)

Voorbeeld 6 pg 7 (cursus)

Herhalingsvariaties

Een **herhalingsvariatie** van *p* elementen uit *n* elementen is een **geordend** *p* – tal van elementen gekozen uit een gegeven verzameling van *n* elementen; waarbij hetzelfde element meermaals gekozen mag worden.

$$\bar{V}_n^p = n^p$$

Herhalingsvariaties

Voorbeeld 8 pg 9 (cursus)

Voorbeeld 9 a – b pg 9 (cursus)

Combinaties

Voorbeeld 10 pg 10 (cursus)

Er is een voetbalcompetitie met 16 ploegen. De eerste 5 ploegen mogen door naar de volgende ronde (ongeacht of je op plaats 1 of op plaats 5 eindigt). Op hoeveel verschillende manieren kan je een pronostiek maken van de eerste 5 ploegen

Combinaties

Een **combinatie** van p elementen uit n ($p \le n$) is een deelverzameling van p **verschillende** elementen gekozen uit een gegeven verzameling van n elementen; waarbij de **volgorde niet** van belang is.

$$C_n^p = \frac{n!}{p! (n-p)!}$$

Combinaties

Voorbeeld 11 pg 11 (cursus)

Samenvatting

Formularium

Soort			Herhaling	Berekening
Groepering	elementen uit <i>n</i>	van belang?	mogelijk	
Permutatie	n	ja	neen	$P_n = n!$
Variatie	p ≤ n	ja	neen	$V_n^p = \frac{n!}{(n-p)!}$
Herh. variatie	p willekeurig	ja	ja	$\overline{V}_n^{\ p} = n^p$
Combinatie	p ≤ n	neen	neen	$C_n^p = \frac{n!}{p!(n-p)!}$

Oefeningen

$$2-4-6-8-10-12-14-17-18-19$$

Uitkomsten oefeningen

```
1:252 - 362880 - 1 - 49
```

2: 5 245 786

3: 3125 - 16807 - 120 - 2520

4:720 - 120 - 15

5: 551 300 - 125 000 - 1,838 * 10^9

6: 165 765 600

7: 1680

Uitkomsten oefeningen

```
8: 35 152 000
```

9:336

10: 1 048 576 - 59 049

11: b

12: d

13: c

14: 3840

Uitkomsten oefeningen

```
15:6720 - 252 - 756 - 126
```

16: 60

17:294 - 49 - 502

18: 270

19:5

20: 60 000

21: 120

