1 Гильбертовы пространства

1.1 Определение и простейшие свойства гильбертова пространства

Определение 1.1. Полное евклидово (унитарное) бесконечномерное пространство называется Γ илъбертовым (обычно обозначается H)

Теорема 1. Норма согласованная со скалярным произведением существует \Leftrightarrow выполнено равенство $||x+y||^2 + ||x-y||^2 = 2 (||x||^2 + ||y||^2)$

1.2 Теорема об элементе с наименьшей нормой. Разложение гильбертова пространства в прямую ортогональную сумму подпространств

Определение 1.2. Множество называется выпуклым, если вместе с любой парой своих точек оно содержит и соединяющий их отрезок

Теорема 2. (об элементе с наименьшей нормой)

 Π усть M - замкнутое выпуклое подмножество H, тогда в M существует элемент с наименьшей нормой u он единственен.

Определение 1.3. Множество всех элементов H ортогональных подмножеству L называется ортогональным дополнением к L (обозначается L^{\perp})

Теорема 3. (о разложении Гильбертова пространства в сумму)

Пусть L - замкнутое линейное подмножество H, тогда справедливо $H=L\oplus L^\perp$, т.е. $\forall x\in H$ $\exists !\ x_1\in L, x_2\in L^\perp:\ x=x_1+x_2$

1.3 Теорема Рисса о представлении линейного ограниченного функционала

Лемма 1.1. Пусть f(x) - линейный ограниченный функционал над H и $f\not\equiv 0$, тогда $\dim (\ker f)^\perp=1$

Теорема 4. (Рисса о представлении линейного ограниченного функционала) $\forall \ f(x) \in H^* \ \exists! \ h \in H: \ f(x) = (x,h), \ \|f\| = \|h\|$

1.4 Слабая сходимость

Свойства слабо сходящихся последовательностей:

1.
$$x_n \to x_0, ||x_n|| \to ||x_0|| \Rightarrow x_n \to x_0$$

2.
$$x_n \to x \Rightarrow \underline{\lim}_{n \to \infty} ||x_n|| \geqslant ||x||$$

3. (Лемма Кадеца)
$$x_n \to x \Rightarrow \exists \{n_k\}: \ \frac{x_{n_1} + \dots + x_{n_k}}{k} \to x$$

1.5 Полные, замкнутые, ортонормированные системы

Определение 1.4. Система называется замкнутой в H, если любой элемент из H можно приблизить конечной линейной комбинацией из элементов системы с наперёд заданной точностью.

Определение 1.5. Система $\{x_n\}_{n=1}^{\infty}$ называется полной, если из $(x,x_k)=0, \forall k\in\mathbb{N}$ следует x=0.

Теорема 5. В Н понятие замкнутости и полноты эквивалентны.

 $m Teopema 6. \ (\it Pucca-Фишера)$

Пусть $\{e_n\}$ - полная система и пусть задана $\{c_k\}\subset\mathbb{C}: \sum\limits_{k=1}^{\infty}|c_k|^2<\infty\Rightarrow\exists!\ x\in H:\ (x,e_k)=c_k\ u\sum\limits_{k=1}^{\infty}|c_k|^2=\|x\|^2$

1.6 Процесс ортогонализации

Теорема 7. B сепарабельном H существует полная ортонормированная система.

Теорема 8. Все сепарабельные гильбертовы пространства изоморфны с изоментией между собой.

2 Пространства Соболева. Обобщённые решения краевых задач

Определение 2.1. Пространство Соболева: Рассмотрим пространсво $C^1[0,1]$ со скалярным произведением $(u,v)_w = \int\limits_0^1 uvdt + \int\limits_0^1 u'v'dt$ пополним это пространство по норме, тогда получим пространство Соболева $W^1_2(0,1)$.

Определение 2.2. Рассмотрим $\|u_n-u_m\|_{W^1_2(0,1)}$ - фундаментальная, тогда Обобщённой производной функции и называется $\lim_{n\to\infty}u'_n=v$

Лемма 2.1. Пусть $u(x) \in C^1[0,1]$, тогда $||u||_C \leqslant \sqrt{2}||u||_{W_2^1(0,1)}$

Теорема 9. (Вложения)

Пространство $W_2^1(0,1) \subset C(0,1)$, причем ограничено $(\exists M>0: \|u\|_C\leqslant M\|u\|_{W_2^1(0,1)})$

Теорема 10. Вложение $W_2^1(0,1) \subset C(0,1)$ компактно.

Следствие 2.1. Из последовательности, ограниченной в $W_2^1(0,1) \subset C(0,1)$ можно выбрать подпоследовательность, сходяющуюся в $L_2[0,1]$.

2.1 Обобщённые решения краевых задач

Пространство $\dot{W}^1_2(0,1)$ - пространство Соболева, но функции дополнительно обращаются в 0 на концах отрезка. 1-ая краевая задача

$$\begin{cases} \left(a(t)u'(t)\right)' - c(t)u(t) = -f(t), \\ u(0) = u(1) = 0, \\ 0 < a_0 \leqslant a(t) \leqslant a1 < \infty, \\ 0 \leqslant c_0 \leqslant c(t) \leqslant c1 < \infty, \\ f(t) \in L_2(0, 1), \\ a(t), b(t) - \text{Ограниченные и измеримые на } [0,1] \end{cases}$$
(2.1)

Определение 2.3. Обобщённым решением первой краевой задачи (2.1) называется функция $u \in \dot{W}_{2}^{1}(0,1),$ удовлетворяющая тождеству $\forall v \in \dot{W}_{2}^{1}(0,1)$

$$\int_{0}^{1} (a(t)u'(t)v'(t) + c(t)u(t)v(t)) dt = \int_{0}^{1} f(t)v(t)dt$$

Теорема 11. Обобщённое решение задачи (2.1) существует и единственно

Лемма 2.2. (Неравенство Пуанкаре)

Пусть $u \in \dot{W}_{2}^{1}(0,1)$, тогда $\int_{0}^{1} u^{2} dt \leqslant \int (u')^{2} dt$

2-ая краевая задача

$$\begin{cases} \left(a(t)u'(t)\right)' - c(t)u(t) = -f(t), \\ u'(0) = u'(1) = 0, \\ 0 < a_0 \leqslant a(t) \leqslant a1 < \infty, \\ 0 < c_0 \leqslant c(t) \leqslant c1 < \infty, \\ f(t) \in L_2(0,1), \\ a(t), b(t) - \text{Ограниченные и измеримые на } [0,1] \end{cases}$$
 (2.2)

Определение 2.4. Обобщённым решением второй краевой задачи (2.2) называется функция $u \in W_2^1(0,1)$, удовлетворяющая тождеству $\forall v \in W_2^1(0,1)$

$$\int_{0}^{1} \left(a(t)u'(t)v'(t) + c(t)u(t)v(t) \right) dt = \int_{0}^{1} f(t)v(t)dt$$

Теорема 12. Обобщённое решение задачи (2.2) существует и единственно

2.2 Обобщённое решение краевых задач для уравнений в частных производных

1-ая краевая задача

 $D \subset \mathbb{R}^{n}$ - ограниченная область.

$$\begin{cases} \sum\limits_{i,j=1}^n \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \right) - c(x) u(x) = -f(x) \\ u|_{\sigma D} = 0, \\ a_0 \|\xi\| \leqslant \sum\limits_{i,j=1}^n a_{ij}(x) |\xi_i| |\xi_j| \leqslant a_1 \|\xi\| \\ 0 < a_0 \leqslant a(x) \leqslant a1 < \infty, \\ 0 \leqslant c_0 \leqslant c(x) \leqslant c1 < \infty, \\ f(x) \in L_2(D), \\ a(x), b(x)$$
 — Ограниченные и измеримые на D

 $\dot{W}_{2}^{1}(D)$ - аналогично функции обращаются в 0 на границе.

Определение 2.5. Обобщённым решением второй краевой задачи (2.3) называется функция $u \in \dot{W}_2^1(D)$, удовлетворяющая тождеству $\forall v \in \dot{W}_2^1(D)$

$$\int_{D} \left(\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} + c(x)u(x)v(x) \right) dx = \int_{D} f(x)v(x) dx$$

Лемма 2.3. (Неравенство Пуанкаре)

 $u(x) \in W_2^1(D)$, тогда справедливо $\int_D u^2(x) dx \leqslant C \int_D (\nabla u)^2 dx$, C зависит только от области.

Теорема 13. Обобщённое решение задачи (2.3) существует и единственно.

2-ая краевая задача

Все аналогично, только на границе $\frac{\partial u}{\partial n}|_{\sigma D}=0$ и $c_0>0.$

3 Компактные (вполне непрерывные) операторы в гильбертовом пространстве

3.1 Сопряженный оператор

Определение 3.1. Оператор B называется сопряжённым κ оператору A, если $\forall x,y \in H: \ (Ax,y) = (x,By)$

Теорема 14. Пусть A - линейный ограниченный оператор, тогда $\exists ! A^*$ - линейный и ограниченный и $\|A\| = \|A^*\|$

3.2 Вполне непрерывные операторы

Определение 3.2. Оператор A называется вполне непрерывным, если слабосходяющуюся последовательность переводит в сильно сходяющуюся.

Лемма 3.1. Пусть A - линейный ограниченный, тогда из $x_n \to x$ следует $Ax_n \to Ax$

Определение 3.3. Пусть A - вполне непрерывный, тогда A^* - вполне непрерывный

3.3 Компактный оператор

Определение 3.4. Оператор А называется компактным, если ограниченное множество переводит в предкомпактное.

Теорема 15. Оператор A - компактный \Leftarrow он вполне непрерывен.

3.4 Приближение компактных операторов

Теорема 16. Пусть A - ограниченный, A_n - вполне непрерывны $u \|A_n\| \to \|A\|$, тогда A - компактный.

Лемма 3.2. Пусть A - компактный, тогда $\exists z \in H : \|z\| = 1 \ u \ \|Az\| = \|A\|$.

Теорема 17. Пусть $\{e_n\}_{n=1}^{\infty}$ - ОНБ в сепарабельном Н. $P_n x = \sum_{k=1}^{n} (x, e_k) e_k$. Пусть А - компактный, тогда $\|A - P_n A P_n\| \to 0$.

4 Теория Фредгольма для вполне непрерывных операторов

4.1 Третья теорема фредгольма

Будем рассматривать оператор T = E - A, где A - вполне непрерывный.

Теорема 18. $\exists a > 0: ||Tx|| \geqslant a||x||, \forall x \perp \ker T$

Теорема 19. R(T) - замкнуто

 $\overline{ extbf{Teope}}$ ма 20. Пусть B - линейный ограниченный оператор, тогда справедливо разложение $H = \ker B \oplus \overline{R(B^*)} = \ker B^* \oplus \overline{R(B)}$

Теорема 21. (III - Фредгольма)

Уравнение Tx = y разрешимо $\Leftrightarrow y \perp \ker T^*$

4.2 Первая теорема Фредгольма

Теорема 22. $def T = \dim \ker T < \infty$

Теорема 23. (о стабилизации ядер)

 $\exists N \in \mathbb{N} : \ker T \subset \ker T^2 \subset \cdots \subset \ker T^N = \ker T^{N+1} = \cdots$

Теорема 24. (*I* - Фредгольма)

Уравнение Tx = y разрешимо $npu \ \forall \ npa soй части \Leftrightarrow \ker T = \emptyset$

4.3 Вторая теорема Фредгольма

Теорема 25. (II - Фредгольма) $def\ T = def\ T^* < \infty$

4.4 Общее операторное уравнение. Альтернатива Фредгольма

$$(A - \lambda E)x = y, \ \lambda \neq 0 \in \mathbb{C}, \ A$$
 – вп. непр.

можем переписать в виде

$$(E - \tilde{A})x = \tilde{y}, \ \tilde{y} = -y/\lambda, \ \tilde{A} = -A/\lambda$$

Теорема 26. Уравнение $(A - \lambda E)x = y$ разрешимо для любой правой части $\Leftrightarrow \ker A - \lambda E = \{0\}$

Теорема 27. $def(A - \lambda E) = def(A^* - \overline{\lambda}E) < \infty$

Теорема 28. Уравнение $(A - \lambda E)x = y$ разрешимо $\Leftrightarrow y \perp \ker A^* - \overline{\lambda}E$.

Теорема 29. (Альтернатива Фредгольма)

Либо уравнение $(A - \lambda E)x = y$ разрешимо для любой правой части, либо $\ker A - \lambda E \neq \{0\}$

5 Спектральная теория линейный ограниченных операторов

5.1 Спектр оператора

X - банахово.

Определение 5.1. Точка $\lambda \in \mathbb{C}$ называется регулярной точкой оператора A, если

1. $\ker (A - \lambda E) = \{0\}$

2. $R(A - \lambda E) = X$

3. $\exists (A-\lambda E)^{-1}$ - ограниченный и определённый на всем X.

Определение 5.2. *Множество регулярных точек оператора A обозначаем* $\rho(A)$

Определение 5.3. $\sigma(A) = \mathbb{C}\backslash \rho(A)$ - спектр оператора A.

Теорема 30. Пусть A - ограниченный оператор $u \mid \lambda \mid > ||A|| \Rightarrow \lambda \in \rho(A)$.

Определение 5.4. $R_A(\lambda) = (A - \lambda E)^{-1}$ - резольвента оператора A.

Теорема 31. Пусть A - ограниченный оператор, $\lambda \in \rho(A)$, $|\Delta| < \frac{1}{\|R_A(\lambda)\|} \Rightarrow \lambda + \Delta \in \rho(A)$.

Теорема 32. (Тождество Гильберта)

Если A - ограниченный и $\lambda, \mu \in \rho(A)$, то $R_A(\lambda) - R_A(\mu) = (\lambda - \mu)R_A(\lambda)R_A(\mu)$

Теорема 33. H - гильбертово. Пусть $A: H \to H$ - линейный ограниченный оператор, тогда $\sigma(A) \neq \emptyset$.

5.2 Спектр вполне непрерывного оператора

Определение 5.5. (Классификация точек спектра)

Пусть $\lambda \in \sigma(A)$, тогда

- 1. Если $\ker (A \lambda E) \neq \{0\}$, то λ приндалжент точечному спектру $\sigma_p(A)$.
- 2. Если $\ker (A \lambda E) = \{0\}$, $R(A \lambda E) \neq X$, но $\overline{R(A \lambda E)} = X$, то λ принадлежит непрерывному спектру $\sigma_c(A)$.
- 3. Если $\ker (A \lambda E) = \{0\}$, $R(A \lambda E) \neq X$ и $\overline{R(A \lambda E)} \neq X$, то λ принадлежит остаточному спектру $\sigma_r(A)$.

Теорема 34. Пусть A - вполне непрерывный оператор $u \ \lambda \neq 0 \in \sigma(A)$, тогда $\lambda \in \sigma_p(A)$.

Теорема 35. Если $\dim H = \infty$ и A - вполне непрерывный, то $0 \in \sigma(A)$.

Теорема 36. Пусть A - вполне непрерывный оператор, тогда если в спектре $\sigma(A)$ есть последовательность λ_n , то $\lambda_n \to 0$.

5.3 Спектр самосопрожяенного оператора

H - гильбретово. $A:H\to H$ - линейный ограниченный самосопряженный.

Теорема 37. Пусть A - ограниченный самосопряженный оператор, тогда $\|A\| = \sup_{\|x\|=1} (Ax,x) = \mu$.

Теорема 38. Ограниченный линейный оператор A - самоспряженный $\Leftrightarrow Im\ (Ax,x)=0, \forall x\in X$

Теорема 39. Пусть A ограниченный линейный самосопряженный оператор, тогда $\sigma(A) \subset \mathbb{R}$

 ${f Лемма~5.1.}$ Собственные вектора A отвечающие различным собственным значениям ортгональны.

5.4 Теорема Гильберта-Шмидта

Пусть H - гильбертово. $A: H \to H$ - линейный вполне непрервный самосопряженный оператор.

Теорема 40. Пусть $M = \sup_{\|x\|=1} (Ax,x), -m = \inf_{\|x\|=1} (Ax,x),$ тогда $\sigma(A) \subset [-m,M],$ если $\dim H = \infty,$ то $0 \in [-m,M].$

Теорема 41. $\exists \lambda$ - собственное значение A: $\|A\| = |\lambda|$

Теорема 42. (Гильберта-Шмидта)

В замыкании образа оператора A содержится полная ортноромированная система собственных векторов, отвечающих $\lambda \neq 0$

5.5 Теорема Гильберта-Шмидта для интегрального оператора

Пусть $Ax(t) = \int_D K(t,s)x(s)ds$ - интегральный оператор.

- 1. $K(t,s) = \overline{K(s,t)}$
- 2. D ограниченная область
- 3. $\int_D |K(t,s)|^2 ds \leq C, \forall t \in D$

Теорема 43. Если y = Ax, то ряд по собственным функциям A сходится абсолютно и равномерно в D к функции y(t).

6 Нелинейные операторы. Теорема Шаудера о неподвижной точке

6.1 Теорема Брауэра о неподвижной точке

Теорема 44. (Брауэра)

Любое непрерывное отображение замкнутого шара в себя в конечномерном нормированном пространстве имеет неподвижную точку.