Understanding LLM Memory: A Basic Guide

Table of Contents

- 1. What is LLM Memory?
- 2. Short-Term Memory (Context Window)
- 3. Long-Term Memory
- 4. Types of Long-Term Memory
- 5. How Memory Works in Practice
- 6. Memory Limitations
- 7. Future Developments
- 8. Key Takeaways

1. What is LLM Memory?

LLM Memory refers to how Large Language Models (like ChatGPT, Claude, Gemini) store and access information during conversations and tasks.

Think of it like human memory - we have:

- Short-term memory: What we're thinking about right now
- Long-term memory: Everything we've learned and remember from the past

LLMs work similarly but with some important differences.

2. Short-Term Memory (Context Window)

What is it?

Short-term memory in LLMs is called the **context window** - it's the amount of text the model can "remember" and work with in a single conversation.

Key Features:

- **Limited size**: Usually measured in "tokens" (roughly words)
- Active during conversation: Everything in the current chat session
- **Temporary**: Lost when the conversation ends
- **High quality**: The model can reason about everything in this window

Example Sizes:

- GPT-3.5: ~4,000 tokens (~3,000 words)
- **GPT-4**: ~8,000-32,000 tokens (~6,000-24,000 words)
- Claude: ~100,000+ tokens (~75,000+ words)
- Gemini: Up to 1 million tokens

What happens when it's full?

When the context window fills up, older parts of the conversation are "forgotten" to make room for new information.

3. Long-Term Memory

What is it?

Long-term memory is information the LLM learned during its training phase - all the knowledge it gained from books, websites, and other text data.

Key Features:

- Vast amount: Billions of facts, concepts, and patterns
- **Permanent**: Doesn't change during conversations
- Pre-trained: Built before the model was released
- No updates: Can't learn new facts from conversations

What's included:

- General knowledge (history, science, culture)
- Language patterns and grammar
- Common sense reasoning
- Factual information (up to training cutoff date)

4. Types of Long-Term Memory

A. Parametric Memory

- **Definition**: Knowledge stored in the model's neural network weights
- Content: Facts, concepts, language patterns
- **Example**: Knowing that Paris is the capital of France
- Characteristics: Fixed, can't be updated without retraining

B. Episodic Memory

- Definition: Memory of specific events or experiences
- Current Status: Most LLMs don't have true episodic memory
- What this means: They can't remember previous conversations with you
- Exception: Some newer models have limited conversation history features

C. Semantic Memory

- **Definition**: General knowledge and facts about the world
- Examples:
 - Mathematical formulas
 - Historical events
 - Scientific concepts
 - Language rules
- Source: Training data from books, articles, websites

D. Procedural Memory

- **Definition**: Knowledge of how to do things
- Examples:
 - How to write code
 - How to solve math problems
 - How to format text
 - How to follow instructions

5. How Memory Works in Practice

During a Conversation:

- 1. **You send a message** → Goes into short-term memory (context window)
- 2. **Model processes** → Uses both short-term context and long-term knowledge
- 3. **Generates response** → Based on combining both memory types
- 4. **Response added** → Your message and the response stay in short-term memory

Memory Interaction:

Your Question \rightarrow [Short-term Memory] + [Long-term Memory] \rightarrow Al Response

Example:

- You ask: "What's the weather like today in New York?"
- Short-term memory: Your specific question
- Long-term memory: Knowledge about weather, New York
- Result: The AI explains it needs current data (not in long-term memory)

6. Memory Limitations

Short-Term Memory Limits:

- Size constraint: Limited context window
- No persistence: Forgotten after conversation ends
- Processing cost: Larger contexts require more computing power

Long-Term Memory Limits:

- No updates: Can't learn new information from conversations
- Training cutoff: Knowledge only up to a certain date
- No personal memory: Can't remember your previous conversations
- Potential inaccuracies: May contain outdated or incorrect information

What LLMs Cannot Do:

- Remember you from previous conversations
- Learn new facts during conversations
- Update their knowledge base
- Store personal information permanently

7. Future Developments

Emerging Technologies:

- Retrieval-Augmented Generation (RAG): Adding external knowledge bases
- **Vector databases**: Storing and retrieving specific information
- Memory architectures: New ways to handle long-term information
- Persistent memory: Experimental features to remember across sessions

What's Coming:

- Better long-term memory systems
- Ability to learn and update knowledge

- Personal memory features
- Larger context windows

8. Key Takeaways

Remember These Points:

- 1. **Two main types**: Short-term (context window) and long-term (training knowledge)
- 2. **Short-term is temporary**: Lost when conversation ends
- 3. **Long-term is fixed**: Can't be updated during conversations
- 4. **Context matters**: Everything in the current conversation affects responses
- 5. **No cross-chat memory**: Each conversation starts fresh
- 6. Knowledge cutoff: Long-term memory has a training date limit

Practical Tips:

- Provide context: Include relevant information in your messages
- **Be specific**: Clear questions get better answers
- **Understand limitations**: The Al can't remember previous chats
- Check dates: Information might be outdated
- **Use the context window**: Refer back to earlier parts of the conversation

Glossary

Context Window: The amount of text an LLM can process at once **Tokens**: Units of text (roughly equivalent to words) **Parameters**: The learned values that store the model's knowledge **Training Cutoff**: The date when the model's training data ends **RAG**: Retrieval-Augmented Generation - adding external knowledge sources

This guide provides a basic understanding of LLM memory systems. As AI technology evolves rapidly, some details may change with newer models and architectures.