

NOM:CORRIGE.....

1 **E**SCALIER MÉCANIQUE

Question 1.

En utilisant le principe de superposition et la formule de black, il vient $\Omega_m(p) = \frac{K_a}{K_a + Jp + f_v} \Omega_c(p) - \frac{1}{K_a + Jp + f_v} C_f(p)$.

Sous forme canonique on a : $\Omega_m(p) = \frac{\frac{K_a}{K_a + f_v}}{1 + \frac{J}{K_a + f_v}p} \Omega_c(p) - \frac{\frac{1}{K_a + f_v}}{1 + \frac{J}{K_a + f_v}p} C_f(p)$

Question 2.

Par identification, on a : $\tau = \frac{J}{K_a + f_v}$

Question 3.

En utilisant le théorème de la valeur finale, on a $\omega_{\infty}=\lim_{t\to\infty}\omega_m(t)=\lim_{p\to 0}p\Omega_m(p)$.

Comme $\Omega_c(p) = \frac{\omega_{c0}}{p}$ et $C_f(p) = \frac{c_{f0}}{p}$, on obtient $\omega_{\infty} = \frac{K_a}{K_a + f_v} \omega_{c0} - \frac{1}{K_a + f_v} c_{f0}$.

Question 4.

À partir des trois essais à vide de la figure, on peut tracer $\omega_{\infty}=g_1(\omega_{c0})$. En choisissant un modèle linéaire, on trouve : $\omega_{\infty}=\omega_{c0}-42$.

Pour la fonction g_2 , plusieurs méthodes sont possibles :

- Tangente à l'origine ... difficile à tracer !
- Tangente à un instant t quelconque. Les courbes sont assez belles en dessous de 0,5s. J'ai pris t = 0,3. (traits forts)
- Pour $t = \tau$ on est à 63% de la valeur finale soit respectivement : 68; 52,3; 36,5 $rad. s^{-1}$. (traits tirets)
- Pour $t=3\tau$ on est à 95% de la valeur finale. Les oscillations sur la valeur finale rendent cette solution peu exploitable... quoi que !

On trouve $\tau \approx 0.7s$ indépendant de ω_{c0} .

Des résultats précédents, on déduit :

$$\frac{1}{K_a + f_v} c_{f0} = 42$$

$$\frac{K_a}{K_a + f_v} = 1$$

$$\frac{J}{K_a + f_v} = 0.7$$

Soit

$$f_v = 0 \text{ N.m. s}$$

 $c_{f0} = 42K_a$ $AN: C_{f0} = 5,1 \text{ N.m.}$
 $J = 0,7K_a$ $AN: J = 0,0854 \text{ Kg. } m^2$

Question 5.

L'intégrateur placé en amont de la perturbation annule l'erreur statique due à une variation de charges. C'est le critère de précision de FS1. La partie proportionnelle devant laisser la possibilité d'assurer la marge de phase

Question 6.

On remplit temps de réponse et déplacement. Pour le facteur de confort, on relève l'accélération maximale en fonction de K d'après $3^{\text{ème}}$ figure, puis on calcule le facteur de confort à l'aide de la formule de la $1^{\text{ère}}$ figure.

K	Temps de réponse à 5% (en s)	Dépassement maximum (en %)	Facteur de confort
0,5	9	31	$\Gamma_{max} = 0.42$ 7,7
1	4,5	19	$\Gamma_{max} = 0.62$ 5.5
2,5	3	19	$\Gamma_{max} = 0.62$ 5.5
5	2	5	$\Gamma_{max} = 0.57$ 6

Pour valider tous les critères, on prend K = 5

Question 7.

Fonction de transfert en boucle ouverte : $H_{BO}(p) = \frac{\Omega_m(p)}{\varepsilon(p)} = \frac{KK_a}{J} \cdot \frac{1+p}{p^2}$ $AN: H_{BO}(p) = 7,625 \cdot \frac{1+p}{p^2}$.

$$u(t) - e(t) = Ri(t) + L\frac{d}{dt}i(t) \xrightarrow{L} U(p) - E(p) = I(p)[R + Lp] \quad (1)$$

$$2c_m(t) - c_r(t) = J\dot{\omega}_m(t) + f\omega_m(t) \xrightarrow{L} 2C_m(p) - C_r(p) = \Omega_m(p)[f + Jp] \quad (2)$$

$$C_m(t) = k_T i(t) \xrightarrow{L} C_m(p) = k_T I(p)$$
 (3)

$$E(t) = k_E \omega_m(t) \xrightarrow{L} E(p) = k_T \Omega_m(p) \quad (4)$$

$$(1) \to G_1(p) = \frac{1}{R + Lp}$$

$$(2) \to G_3(p) = \frac{1}{f + Jp}$$

$$(3) \to G_2(p) = k_T$$

$$(4) \to G_4(p) = k_E$$

$$C_r(p) = 0 \Rightarrow \left[\frac{\Omega_m(p)}{U(p)}\right]_{C_r(p)=0} = \frac{2G_1(p).G_2(p).G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_4(p)}$$

$$U(p) = 0 \Rightarrow \left[\frac{\Omega_m(p)}{-C_r(p)}\right]_{U(p)=0} = \frac{G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_4(p)}$$

Question 11.

Modèles d'identification : fonctions du 1^{er} ordre

Justifications : tangente à l'origine non nulle + allure exponentielle décroissante

Déterminez <u>numériquement</u> $F_1(p)$

Déterminez <u>numériquement</u> $F_2(p)$

On pose:
$$F_1(p) = \frac{K_1}{1 + \tau_1 \cdot p}$$

On pose:
$$F_2(p) = \frac{K_2}{1 + \tau_2 \cdot p}$$

$$K_1 = \frac{\omega_m(\infty)}{100} = \frac{17.25}{100} = 0.1725 rad/(sV)$$

$$K_2 = \frac{-\omega_m(\infty)}{1000} = \frac{0.58}{1000} = 5.8 \cdot 10^{-4} \, rad \, / (s \cdot N \cdot m)$$

$$Tr_{5\%} = 3 \cdot \tau_1 = 1.4s$$
 $\tau_1 = 0.47s$

$$\tau_1 = 0.47s$$

$$Tr_{5\%} = 3 \cdot \tau_2 = 1.4s$$
 $\tau_2 = 0.47s$

$$\tau_2 = 0.47s$$

$$F_1(p) = \frac{0.1725}{1 + 0.47 \cdot p}$$
 et $F_2(p) = \frac{5.8 \cdot 10^{-4}}{1 + 0.47 \cdot p}$

Question 12.

D'après le schéma :
$$H(p) = F_2(p) = \frac{K_2}{1 + \tau_2 \cdot p} = \frac{5.8 \cdot 10^{-4}}{1 + 0.47 \cdot p}$$

Et par conséquent :
$$B = \frac{K_1}{K_2} = \frac{0.1725}{5.8 \cdot 10^{-4}} = 297.4 N \cdot m/V$$

$$B = 297.4N \cdot m/V$$
, $D = K_2 = 5.8 \cdot 10^{-4} \, rad/s \cdot N \cdot m$ et $T = 0.47s$

La transmission implique :
$$v(t) = \frac{D}{2} \cdot \omega(t) = \frac{D}{2} \cdot k \cdot \omega_m(t)$$

$$E = \frac{D}{2} \cdot k$$
 $E = 0.1m$

Question 14.

$$\varepsilon(t) = F \cdot v_c(t) - \frac{\mu}{E} v(t) = 0$$
 quand $v_c(t) = v(t)$ si $F = \frac{\mu}{E}$ $F = 7.16V \cdot s / m$

Question 15.

La fonction de transfert en boucle ouverte est du 1^{er} ordre ⇒ système bouclé stable.

Question 16.

La FTBO est de classe nulle donc
$$\epsilon'_s = \frac{V_0}{1 + K_{FTBO}} = \frac{V_0}{1 + C_0 \cdot A' \cdot B \cdot G}$$
 . $\epsilon'_s = 4.286 m/s$

Question 17

$$\frac{V(p)}{Cr(p)} = \frac{-G}{1 + T \cdot p + C_0 \cdot A' \cdot B \cdot G} \quad \varepsilon''(p) = -V(p) = \frac{G}{1 + T \cdot p + C_0 \cdot A' \cdot B \cdot G} \cdot Cr(p)$$

$$\varepsilon^{\prime\prime}_{s} = \lim_{\rho \to 0} p \cdot \varepsilon^{\prime\prime}(\rho) = \frac{Cr_0 \cdot G}{1 + C_0 \cdot A^{\prime} \cdot B \cdot G} \text{ et } \varepsilon^{\prime\prime}_{s} = -0.156 m/s$$

Question 18.

$$\epsilon''_{s} = +0.160 m/s$$

Question 19.

- 1- Descente des « Arcs ». $\varepsilon'_{s} = 4.286 0.156 \ \varepsilon'_{s} = 4.13 m/s$
- 2- Montée vers « La Plagne ». $\varepsilon'_s = 4.46m/s$

Question 20.

Non car pour annuler cette erreur statique il faudrait un gain C₀ infini.

Question 21.

$$FTBO(p) = \frac{C_i \cdot A' \cdot B \cdot G}{p \cdot (1 + T \cdot p)} \qquad FTBO(p) = \frac{1.8}{p \cdot (1 + 0.47 \cdot p)}$$

Question 22.

La FTBO peut s'écrire :
$$FTBO(p) = \frac{1.8}{p} \times \frac{1}{(1+0.47 \cdot p)}$$

La FTBO est le produit d'un intégrateur de gain 1.8, d'un premier ordre de gain unitaire et de constante de temps 0.47s (pulsation de coupure 2.13rad/s)

Question 23.

$$M\phi \ge 45^{\circ} \quad \Rightarrow \quad \omega_{0dB} \le 2.13 rad/s$$

$$M\phi \ge 45^{\circ} \quad \Rightarrow \quad \omega_{0dB} \le 2.13 rad/s \qquad \qquad \text{soit } \frac{C_i A' BG}{\sqrt{2}} \le 2.13 rad/s$$

$$C_i \le \frac{\sqrt{2}}{A' BG} \cdot 2.13 \qquad \qquad C_i \le 1.67$$

$$C_i \le \frac{\sqrt{2}}{A'BG} \cdot 2.13$$

$$C_i \le 1.67$$

Question 24.

Oui, tant que Ci n'est pas trop petit, le critère de « Pulsation de coupure en boucle ouverte » sera respectée

(remarque: on peut montrer que
$$\omega_{0dB} \ge 1 rad / s \Rightarrow C_i \ge \frac{(1+T^2)^{1/2}}{A'BG} = 0.61$$
)

Question 25.

La FTBO est de classe 1 alors $\, \epsilon_{\,s}' = 0 \, . \,$

Question 26.

Une intégration est placée en amont de la perturbation alors $\, {\epsilon'}'_{s} = 0 \,$

Question 27.

$$\varepsilon_s = 0$$

L'écart statique est nul donc le critère est vérifié

Question 28.

Pour une FTBO de **classe 1**, l'erreur de traı̂nage s'exprime : $\varepsilon_v = \frac{a}{K_{FTBO}} = \frac{1}{C_i \cdot A' \cdot B \cdot G}$

$$\varepsilon_{v} = \frac{1}{C_{i} \cdot A' \cdot B \cdot G}$$

L'erreur de traînage devant être nulle, C_i doit tendre vers **l'infini**, ce qui est **irréaliste**.

Question 29.

Pour ω_{0dB} la phase vaut -205° donc la marge de phase est négative : le système n'est pas stable.

Question 30.

Degrés de phase à ajouter : -205° + Deg ϕ = -135°

Degrés de phase : 70°

Question 32.

D'après ce qui précède :

$$a = \frac{1 + \sin \phi_{max}}{1 - \sin \phi_{max}}$$

avec
$$\phi_{\text{max}}$$
 = 70°

$$a = 32.16$$

Question 33.

Étant donné les propriétés de symétrie de la courbe de phase : $\omega = \frac{1}{\sqrt{\tau \cdot a\tau}}$

Question 34.

II vient :
$$\tau = \frac{1}{\omega \sqrt{a}}$$
, $\tau = 0.176s$

Question 35.

Pour respecter ces 2 critères il faut que la pulsation $\, \omega_{0dB} \,$ soit égale à 1rad/s

Or pour ce correcteur le gain correspondant à son maximum de phase vaut : $20 \cdot log(K \cdot \sqrt{a})$

D'après le diagramme de Bode fourni en annexe 4 il vient :

$$20 \cdot log(K \cdot \sqrt{a}) = -4.2dB$$

$$K = 0.109$$

Question 36.

La FTBO est de **classe 2** alors l'écart statique est nul même en présence d'une perturbation échelon (une intégration au moins placée en amont de la perturbation)

La FTBO est de classe 2 alors l'écart de traînage est nul

Question 37.

D'après ce qui précède, ce correcteur permet bien de vérifier **tous les critères** du cahier des charges.