MS115 Mathematics for Enterprise Computing Tutorial Sheet 2

- 1. Per class, De Morgan's Laws state the following:
 - (i) not $(P \land Q) \equiv \text{not } P \lor \text{not } Q$, (ii) not $(P \lor Q) \equiv \text{not } P \land \text{not } Q$.

Use a truth table to prove (ii).

2. (i) Suppose that n and m are integers. Give a direct proof that the following proposition is logically true:

If n and m are even integers, then n+m is an even integer.

(ii) Suppose that n is an integer. Give a contrapositive proof that the following proposition is logically true:

If n^2 is an even integer, then n is an even integer.

3. Use induction to prove that the following predicate is true for all $n \ge 1$:

$$P(n): 1+3+5+\ldots+(2n-1)=n^2.$$

- 4. Use induction to prove the following statements hold for all $n \ge 1$:
 - (i) If a is a positive real number with $a \neq 1$, then

$$1 + a + a^{2} + \ldots + a^{n-1} = \frac{1 - a^{n}}{1 - a}$$

(ii) $(n^3 - n)$ is divisible by 3

Hint: Recall that, for m and n integers, m is divisible by n means that there exists an integer k such that m = nk.