FICHA DEL TRABAJO FINAL

Título del trabajo:	Implementació d'una eina en R/Shiny per a l'anàlisi de significació biològica utilitzant l'anàlisi de les rutes		
Nombre del autor:	Vasyl Druchkiv		
Nombre del consultor/a:	Alexandre Sánchez Pla		
Nombre del PRA:	Nombre y dos apellidos		
Fecha de entrega (mm/aaaa):	Juny/2019		
Titulación::	Bioinformàtica I bioestadística Anàlisi de dades òmiques		
Área del Trabajo Final:			
Idioma del trabajo:	Català		
Palabras clave	Pathway analysis, R, Shiny		

Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de aplicación, metodología, resultados i conclusiones del trabajo.

L'obectiu de teball és trobar paquets de Bioconductor i desenvolupar una aplicació Shiny per dur a terme l'anàlisi de les rutes (*Pathway analisis*). Un *Pathway* és el conjunt de gens relacionats amb una funció biològica i descriu la relació entre els gens. Primer s'indentifiquen els mètodes teòrics actualment presents per trobar i visualitzar les rutes diferencialment expressades. També s'identifiquen les bases de dades per anotar les rutes i els paquets de Bioconductor específics per fer l'analisi. D'aquesta manera es crea una aplicació Shiny que ofereix l'anàlisis ORA (Over-representation Analsisis), GSEA (Gene Set Enrichment Analisis) i l'anàlisi de la topografia de les rutes. Els paquest elegits per a anàlisi de les rutes de Bioconductor són: *clusterProfiler, ReactomPA* i *patview*. L'anotació de gens es fa finalment via tres bases de dades: GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) i Reactome.

L'usuari pot seleccionar les ontologies de GO, especificar el nivell de significació I el mètode d'ajustament. Es obté per cada base de dades una taula per a l'anàlisi ORA i l'altra per GSEA. Els resultats es visualitzen via Bar plot, Dot plot, enrichment map, gene-concept network, GO plot, KEGG pathway i Reactome pathway. Es fa possible la descarga de les taules en format de .csv i la de les imatges en format .png. L'usuari pot especificar la resolució I altres atributs d'imatges.

La creació de l'aplicació està seguida per la seva validació, on és presenta la seva funcionalitat i es compara el resultat amb l'estudi original.

Abstract (in English, 250 words or less):					
Objective of the thesis is to find Bioconductor packages for pathway analisis and implement them using Shiny. A pathway is a set of genes related to a specific biological function and describes a relation between that genes. First I identify theoric methods available at the moment for finding and visualising the differencially expressed pathways. Furthermore I identify data bases for gene annotation and specific Bioconductor packages for perfoming analisis. Second, I develop Shiny application which offers ORA (Over-representation Analysis), GSEA (Gene Set Enrichment Analysis) and topologic analysis of the pathways. The packages selected for the analisis are <i>clusterProfiler</i> , <i>ReactomPA</i> i <i>patview</i> . Gene annotation is done using three data bases: GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) and Reactome.					
User can select GO ontologies, specify significance level and adjustment method. For each annotation data base a table with results is generated. Additionally results are visualized with bar plot, dot plot, enrichment map					
L'usuari pot seleccionar les ontologies de GO, especificar el nivell de significació I el mètode d'ajustament. Es obté per cada base de dades una taula per a l'anàlisi ORA i l'altra per GSEA. Els resultats es visualitzen via Bar plot, Dot plot, enrichment map, gene-concept network, GO plot, KEGG pathway i Reactome pathway. Es fa possible la descarga de les taules en format de .csv i la de les imatges en format .png. L'usuari pot especificar la resolució I altres atributs d'imatges.					
La creació de l'aplicació està seguida per la seva validació, on és presenta la seva funcionalitat i es compara el resultat amb l'estudi original.					