Word embeddings

Victor Kitov

v v kit ov@yandex ru

Standard word representations

- Denote V=vocabulary size.
- ullet Standard word representations use sparse vectors $x \in \mathbb{R}^V$
 - $x_w = \mathbb{I}[w \text{ occured in the document}]$
 - $x_w = TF_w = \#[w \text{ occured in the document}]$
 - $x_w = TF_w IDF_w$, $IDF_w = \frac{N}{N_w}$
 - N number of all documents
 - N_w number of documents, containing w at least once.
- V is large, so dense word representations (word embeddings) $x \in \mathbb{R}^K$, K << V are preferred
 - less inputs=>less parameters=>less overfitting
 - handle synonyms, like "car" and "automobile"

Interpretable word embeddings

- $x \in \mathbb{R}^K$, where x^i is some *i*-th interpretable feature, e.g.
 - x^1 : part of speech
 - x^2 : gender (for nouns)
 - x^3 : tense (for verbs)
 - x4: starts from capital letter
 - x^5 : #[letters]
 - x^6 : category: machine learning, physics, biology, ...
 - x⁷: subcategory: supervised, unsupervised, semi-supervised learning
 - ...
- Need to invent features for each task and extract them.
- Want this to be done automatically!

Uninterpretable word embeddings

- Clustering words with similar meaning to similar representations.
- Distributional hypothesis: words have similar meaning <=> they co-occur together frequently.
- "accuracy of SVM", "SVM gave accuracy", "lower accuracy, compared to SVM"
 - SVM and accuracy are connected!
- Typical dimensionality of embedding \in [300, 500].

Table of Contents

- Word embeddings from matrix factorization
- 2 Word2vec

SVD decomposition

Every matrix $X \in \mathbb{R}^{N \times D}$, rank X = R, can be decomposed into the product of three matrices:

$$X = U\Sigma V^T$$

where

- $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$
- $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}, \ \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_R \ge 0$
- $U^TU = I$, $V^TV = I$, where $I \in \mathbb{R}^{R \times R}$ is identity matrix.

Interpretation of SVD

For X_{ii} let i denote objects and j denote properties.

- Columns of U orthonormal basis of columns of X
- Rows of V^T orthonormal basis of rows of X
- Σ scaling.
- Efficient representations of low-rank matrix!

Interpretation of SVD

For X_{ii} let i denote objects and j denote properties.

- Rows of U are normalized coordinates of rows in V^T
- $\Sigma = diag\{\sigma_1, ...\sigma_R\}$ shows the magnitudes of presence of each row from V^T .

Truncated SVD decomposition

Simplification to rank $K \leq R$:

$$X_K = U_K \Sigma_K V_K$$

$$\begin{split} \Sigma &= \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \longrightarrow \textit{diag}\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \longrightarrow [v_1, v_2, ... v_K] = V_K \end{split}$$

• Now rows of *U* give reduced representation of rows of *X*.

Embeddings from term-document matrix factorization

• Form term-document matrix $M \in \mathbb{R}^{V \times D}$:

 $M_{wd} = \#[\text{word } w \text{ appeared in document } d]$

 Latent semantic analysis (LSA): apply truncated SVD of order K to M:

$$M = U_K \Sigma_K V_K^T$$

- Rows of U_K give word embeddings!
- Usually K = 300.
- M_{wc} may contain instead of TF: log(TF), TF-IDF.

Co-occurrence matrix

Form co-occurrence matrix $M = \{m_{wc}\}_{w \in V, c \in V}$:

- Form single document by concatenating all documents from the collection
- ② Slide rolling window of width 2W + 1 centered at word w over all words.
 - ullet increase M_{wc} by count, how many times word c appears within $\pm W$ of word w

Embedding dimensionality

For word embeddings apply truncated SVD with $K \in [500, 5000]$.

- co-occurrence in documents: general topics
- co-occurrence in context: more specific topics
 - => more degrees of freedom needed, than for LSA.

Table of Contents

- 1 Word embeddings from matrix factorization
- Word2vec
 - Models
 - Loss calculation optimizations

Word embeddings - Victor Kitov Word2vec Models

- Word2vec
 - Models
 - Loss calculation optimizations

Models

Word2vec

- Proposed in 2013¹.
- Computationally efficient:
 - Remove computationally expensive hidden layer.
 - Omit expensive denominator calculation.
- Thus can be trained on much bigger datasets.
 - better embeddings, especially for rare words.
- Comments: for each w models evaluate:
 - ullet target word embedding v_w
 - ullet context word embedding $ilde{v}_w$
- Target&context embeddings may be averaged or concatenated later.

¹Mikolov et al. (2013), Mikolov et al. (2013)

Continious bag of words (CBOW)

Continuous bag of words (CBOW)

CBOW: predict current word given context.

$$\frac{1}{T} \sum_{t=1}^{T} \ln p(w_t | w_{t-c}, ...w_{t-1}, w_{t+1}, ...w_{t+c}) \to \max_{\theta}$$

where
$$v_{context} = \sum_{-c \leq i \leq c, \, i \neq 0} v_{w_{t+i}}$$
 and

$$p(w_{t}|w_{t-c},..w_{t-1},w_{t+1},...w_{t+c}) = \frac{\exp(v_{context}^{T}\tilde{v}_{w_{t}})}{\sum_{w=1}^{V} \exp(v_{context}^{T}\tilde{v}_{w})}$$

Skip-gram model

Skip-gram model

Skip-gram: predict context, given current word:

$$\frac{1}{T}\sum_{t=1}^{T}\sum_{-c\leq i\leq c,\,i\neq 0}\ln p(w_{t+i}|w_t)\rightarrow \max_{\theta}$$

$$p(w_{t+i}|w_t) = \frac{\exp\left(v_{w_t}^T \tilde{v}_{w_{t+i}}\right)}{\sum_{w=1}^V \exp\left(v_{w_t}^T \tilde{v}_w\right)}$$

- Word2vec
 - Models
 - Loss calculation optimizations

Optimizations

$$p(w_{t+i}|w_t) = \frac{\exp\left(v_{w_t}^T \tilde{v}_{w_{t+i}}\right)}{\sum_{w=1}^{V} \exp\left(v_{w_t}^T \tilde{v}_w\right)}$$

- Summation over all words in vocabulary is impractical.
- Two optimization approaches:
 - hierarchical soft-max
 - calculates probabilities in $O(\log_2 V)$
 - negative sampling
 - uses different optimization criteria

Software & precomputed embeddings

- gensim.models.word2vec
 - python wrapper for finding word2vec
- Word2vec tool & precomputed representations
 - fact c code for finding word2vec
 - pre-trained 300-dimensional vectors for 3 million words and phrases.
 - trained on Google News dataset (about 100 billion words).

Conclusion

- Word embeddings allow to map words to compact dense representations.
- Approaches:
 - matrix factorization
 - term-document matrix
 - co-occurrence matrix
 - neural net based (Skip-gram, CBOW)