OPERATIONAL AMPLIFIER

The TDA1034 is a high-performance general purpose operational amplifier. Compared to most of the standard operational amplifiers (e.g. µA741, TBA221, LM301A and LM307), it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidth.

This makes the device especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amp is internally compensated for gain equal to, or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.). If very low noise is of prime importance, it is recommended that the TDA1034N version be used which has guaranteed noise specifications and somewhat lower input current.

Features

- Small-signal bandwidth: 10 MHz
- Output drive capability: 600Ω , 10 V (r.m.s.) at $V_p = -V_N = 18 V$
- Input noise voltage
- : $4 \text{ nV}/\sqrt{\text{Hz}}$
- D.C. voltage gain
- : 100 000
- A.C. voltage gain
- : 6000 at 10 kHz
- Power bandwidth
- : 200 kHz
- Slew-rate
- : 13 V/µs
- Large supply voltage range
- : ± 3 to ± 20 V

PACKAGE OUTLINES (see general section).

TDA1034; N : TO-99 (8-lead metal envelope).

TDA 1034B; NB: SOT-97 (plastic 8-lead dual in-line). TDA 1034D; ND: SO-8 (SOT-96A) (plastic 8-lead flat pack).

TDA1034; N TDA1034B; NB TDA1034D; ND

 ${\bf RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

Vol	tages
V OI	lages

Positive supply voltage	$V_{I\!\!P}$.	max. 20	V
Negative supply voltage	v_N	max. 20	V
Common mode input voltage (pins 2 and 3)		$v_{I\!\!P}$ to $-v_{N}$	
Differential input voltage	v_{2-3}	max. ± 0.5	V ¹)
Temperatures			

Op	perating ambient temperature	$^{\mathrm{T}}$ amb	- 25 to +85	°C
Sto	orage temperature; metal envelope	$T_{ m stg}$	-65 to +150	оС
	plastic envelope	Tsto	-65 to $+125$	$^{\mathrm{o}}\mathrm{C}$

Maximum power dissipation in free air

package	mounting	max, power dissipation	derating factor for	max, junction temperature	thermal resistance
		$\begin{array}{c} \text{at T}_{\text{amb}} = 50.^{\circ}\text{C} \\ \text{(mW)} \end{array}$	$T_{a mb} > 50 ^{\circ}C$ (mW/ $^{\circ}C$)	(°C)	R _{th j-a} (°C/W)
	on PC board	625	6,25	150	160
TO-99	with 33 °C/W cooling fin; on PC board	1100	11	150	90
SOT-97	on PC board	450	6	125	165
SOT-96A	on ceramic substrate of 4 cm ²	500	6,7	125	150
501 7011	on PC board of 4 cm ²	325	4,3	125	230

¹⁾ Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds

TDA1034; N TDA1034B; NB TDA1034D; ND

CHARACTERISTICS at $V_P = 15 \text{ V}$; $-V_N = 15 \text{ V}$; $T_{amb} = 15 \text{ V}$	= 25 °C un	less oth	erwise spec	ified
Input offset voltage	Vio	typ.	0,5 4,0	mV mV
Input bias current	Ii	typ. <	0,5 1,5	μΑ μΑ
Input offset current	Iio	typ.	0,02 0,3	μ Α μ Α
Input voltage range	$V_{\mathbf{i}}$	> typ.	+12; -13 +13; -14	V V
Differential input resistance	R _i	> typ.	.30 100	kΩ kΩ
Common mode rejection ratio	CMRR	> typ.	80 100	dB dB
Power supply voltage rejection ratio	PSRR	typ.	10 50	μV /V μV /V
Large-signal voltage gain R _L = 600 Ω; V ₀ = ±10V	G _v	> typ.	30 000 100 000	
Output voltage swing at R $_{L}$ = 600 Ω	Vo	> typ.	± 12 ± 13	V V
Output resistance; closed loop $G_V = 30 \text{ dB}$; f = 10 kHz; $R_L = 600 \Omega$; $C_C = 22 \text{ pF}$	R _o	typ.	0,3	Ω
Output short-circuit current	Isc	typ.	38	mA
Supply current at I ₀ = 0	IP; N	typ.	4 6,5	mA mA
Transient response (voltage follower) $V_i = 50 \text{ mV}; R_L = 600 \Omega; C_C = 22 \text{ pF}; C_L = 100 \text{ pF}$	et e			
rise time overshoot	tr	typ.	20 20	ns %
V_{i} = 50 mV; R_{L} = 600 Ω ; C_{C} = 47 pF; C_{L} = 500 pF				
rise time overshoot	tr	typ.	50 35	ns %
A.C. gain at f = 10 kHz; $C_C = 0$ at f = 10 kHz; $C_C = 22$ pF	$G_{\mathbf{v}}$ $G_{\mathbf{v}}$	typ.	6000 2 2 00	
Unity gain frequency at C_C = 22 pF; C_L = 100 pF	f	typ.	10	MHz
Slew-rate at $C_C = 0$ at $C_C = 22 \text{ pF}$	S S	typ.	13 6	V/μs V/μs
Power bandwidth at $V_{O(p-p)} = 20 \text{ V}$ $C_{C} = 0$ $C_{C} = 22 \text{ pF}$	B B	typ.	200 95	kHz kHz

 $nV/\sqrt{H_7}$

μΑ

0,8 μA

CHARA	CTERISTICS	(continued)

Input noise voltage at f = 30 Hz		$V_{\mathbf{n}}$	typ.	7	nV/\sqrt{Hz}
at $f = 1 \text{ kHz}$		V_n	typ.	4	nV/\sqrt{Hz}
Input noise current at f = 30 Hz at f = 1 kHz	•	I_n I_n	typ.	2,5 0,6	pA/\sqrt{Hz} pA/\sqrt{Hz}
CHARACTERISTICS at $V_P = 18 V$; $-V_N = 18 V$; T_{amb}	= 25	°C unle	ess other	wise sp	ecified
Output voltage swing at R $_{L}$ = 600 Ω		v _o	> tvp.	± 15 ± 16	V V
			typ.	4,2	

Supply current at $I_0 = 0$ $I_{P;N}$ mΑ Power bandwidth at $V_{o(p-p)} = 28 \text{ V}$

 $R_{L} = 600 \Omega$; $C_{C} = 22 \text{ pF}$ 70 typ. kHz

TDA1034N version

Input bias current

The TDA1034N version has the same electrical specifications as the TDA1034, with the following exceptions:

Input offset current	I_{io}	typ. <	0,01	μA μA
Input noise voltage at f = 30 Hz	V_n	typ.	5,5 7	$\begin{array}{c} nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \end{array}$
at $f = 1 \text{ kHz}$	v _n	typ. <	3,5 4,5	nV/\sqrt{Hz} nV/\sqrt{Hz}
Input noise current at f = 30 Hz at f = 1 kHz	I _n I _n	typ.	1,5 0,4	pA/\sqrt{Hz} pA/\sqrt{Hz}

Broadband noise figure $f = 10 \text{ Hz to } 20 \text{ kHz}; R_S = 5 \text{ k}\Omega$ 0,9 dB typ.

Frequency compensation and offset voltage adjustment circuit.

IDA1034; N TDA1034B; NB TDA1034D; ND

Open loop frequency response.

Slew-rate as a function of compensation capacitance.

Closed loop frequency response.

Large-signal frequency response.

June 1976

Input common mode voltage range.

Supply current.

