7

9

2

3

4

5

1

2

3

4

5

6

7

8

9

What is claimed is:

1	1. A radio receiver comprising:
2	at least one amplifier to receive radio signals; and
3	a control circuit coupled to the at least one amplifier, wherein the control circuit
4	adjusts the operation of the at least one amplifier based on the received radio giornals

Ž. The radio receiver of claim 1, wherein the at least one amplifier is a LNA to receive a RF signal and produce an amplified signal that is coupled to a downconverting mixer that produces a mixer output, and the control circuit comprises: a peak detector coupled to receive the mixer output to produce a peak signal; an integrator coupled to the peak detector to receive the peak signal and produce an integrated signal;

a/mixer coupled to receive the integrated signal and a transmit power indicator to produce a current control signal that is coupled to the LNA to control a bias current of the LNA, wherein cross modulation associated with the received RF signal is reduced.

- The radio receiver of claim 2, further comprising a second mixer coupled 3. to the output of the integrator and a receiver gain control signal to produce a VCO current control signal that is coupled to a VCO associated with a PLL that drives the downconverting mixer, wherein reciprocal mixing associated with the received RF signal is reduced by adjustment of the VCO associated with the PLL.
- 4 An adaptive system for use with a radio receiver to adapt to interfering signals associated with a received RF signal, the radio receiver includes a LNA to receive the RF signal and produce an amplified signal that is coupled to a down-converting mixer that produces a mixer output, the adaptive system comprises: a peak detector coupled to receive the mixer output to produce a peak signal;

an integrator coupled to the peak detector to receive the peak signal and produce an integrated signal; and

a mixer coupled to receive the integrated signal and a transmit power indicator to produce a current control signal that is coupled to the LNA to control a bias current of the

1

1

2

3

4

5

1

2

3

4

- 10 LNA, wherein cross modulation associated with the received RF signal is reduced.
- 5. The adaptive system of claim 4, further comprising a filter coupled to receive the mixer output and produce a filtered output that is coupled to the peak detector.
- The adaptive system of claim 4, further comprising a LNA control circuit coupled to the mixer to receive the current control signal and produce a LNA control signal that is coupled to the LNA to control a bias current of the LNA, wherein cross modulation associated with the received RF signal is reduced.
- The adaptive system of claim 4, further comprising a second mixer coupled to the output of the integrator and a receiver gain control signal to produce a VCO current control signal that is coupled to a VCO associated with a PLL that drives the down-converting mixer, wherein reciprocal mixing associated with the received RF signal is reduced by adjustment of the VCO associated with the PLL.
- 1 8. The adaptive system of claim 7, wherein the VCO control current is 2 coupled to the VCO associated with the PLL via a VCO control circuit.

The adaptive system of claim 4, further comprising a buffer coupled

between the mixer output and a non-linear element.

10. The adaptive system of claim wherein the non-linear element comprises

a diode element.

11. The adaptive system of claim 9, further comprising:

an account integrator coupled to the non-linear element and the buffer to produce a second integrator output; and

a third mixer coupled to receive the secand integrator output and a receiver power indicator to produce a receive control signal.

12. The adaptive system of claim 11, wherein the receive control signal is coupled to a receive control circuit, and wherein an output of the receive control circuit is coupled to the down-converting mixer to adjust the down-converting mixer to reduce intermodulation distortion.

	Jen J	1	13. A method for providing an adaptive system for use with a radio receiver to
٠\٦.	7	2	adapt to interfering signals associated with a received RF signal, the radio receiver
/10	NX X	3	\ includes an LNA to receive the RF signal and produce an amplified signal that is coupled
رم مر	~26/ 00,	.(4	to a down-converting mixer that produces a mixer output, the method comprising steps
ns /	14	5-	of:
	'n	9)62	deriving a peak signal from the mixer output;
	4/19	£ 7	integrating the peak signal to produce an integrated signal;
		8	mixing the integrated signal and a transmit power indicator to produce a current
		9	control signal; and
		10	controlling a bias current of the LNA with the current control signal, wherein
		11	cross modulation associated with the received RF signal is reduced.
			indep.
		l	14. The method of claim 12, wherein the step of mixing is a step of:
	ļ.	2	mixing the integrated signal and a receive power indicator to produce a VCO
		3	control signal; and
	<u>_</u>	4	the step of controlling is a step of:
		5	controlling a VCO based on the VCO control signal, wherein the VCO is
	ļ.	6	associated with a PLL coupled to the down-converting mixer, and wherein reciprocal
	đ	7	mixing associated with the received RF signal is reduced by adjustment of the VCO
		8	associated with the PLL
		1	15. The method of claim 13, wherein the step of mixing is a step of:
		2	mixing the integrated signal and a receive power indicator to produce a receive
		3	control signal; and
		4	the step of controlling is a step of:
		5	controlling the down-converting mixer based on the receive control signal,

wherein intermodulation distortion associated with the received RF signal is reduced.

6

Ì