Advanced Calculus, Fall 2023 Practice Exam 3

Name:_______Row and Seat:______

- 10 1. Define the *derivative* as the limit of a *Newton quotient*.
- 10 2. Show that the function $x \in (-\infty, 0) \cup 5 \mapsto x$ is not differentiable at 5.
- 3. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto x^2 + x$ at 2.
- 4. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto x^2 + x$ at a, where a is any real number.
- 5. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto \sqrt{x}$ at 3.
- 6. Use the QRS definition of uniformly continuity to show that that $x \in [-1, 1] \mapsto x^2$ is *uniformly continuous* on its domain.
- 7. Use the undefinition of uniformly continuity to show that the function $x \in \mathbb{R} \mapsto 8x^2$ is not uniformly continuous on its domain.
- 8. Show that the function $x \in \mathbf{R} \mapsto \begin{cases} x\cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is *continuous* at 0. You may use the fact that $|\cos(x)| \leq 1$ for all real x without proving it.
- 9. Show that the function $x \in \mathbf{R} \mapsto \begin{cases} x^2 \cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is differentiable at 0. Depending on your method, the result of the previous question might be useful.
- 10 10. Let $F : \mathbf{R} \to \mathbf{R}$ be continuous at a. If F(a) > 0, show that there is a positive number δ such that F(x) > 0 for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$.
- 11. Show that the function $x \in \mathbb{R}_{>0} \mapsto \frac{1}{x}$ is not uniformly continuous on its domain.
- 12. Let $F : \mathbf{R} \to \mathbf{R}$ be differentiable at a and suppose F'(a) > 0. Is it true that F is increasing on a neighborhood of a? If so, prove it.
- 13. Give an example of a function $F: [-1,1] \to \mathbf{R}$ such that $\sup (\operatorname{range}(F)) \not\in \operatorname{range}(F)$.

- 14. Give an example of a function $F: (-1,1) \to \mathbf{R}$ such that $\sup (\operatorname{range}(F)) \not\in \operatorname{range}(F)$ and F is continuous on (-1,1).
 - 15. Let $F: \mathbf{R} \to \mathbf{R}$ satisfy the inequality $|F(x) F(y)| \le |x y|$ for all $x, y \in \mathbf{R}$.
- (a) Show that *F* is *continuous at zero*.
- (b) Show that F is uniformly continuous on \mathbf{R} .
- 10 16. Show that $x \in \mathbf{R} \mapsto x^3$ is continuous at 10.
- 17. Show that the function with signature $F : \mathbf{R} \to \mathbf{R}$ and formula $F(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is not continuous at 0.
- 10 18. Either prove or disprove: Let $F, G : \mathbf{R} \to \mathbf{R}$, and let $a \in \text{dom}(FG)$. If FG is continuous at a, then both F and G are continuous at a.
- 10 19. Let $F : \mathbf{R} \to \mathbf{R}$ be continuous at a. Show that |F| is continuous at a.
- 10 20. Use the inequality $|\sqrt{a} \sqrt{b}| \le \sqrt{|a b|}$, for a, b > 0 to show that the square root function is uniformly continuous on $[0, \infty)$.
- 10 21. Show that the function $x \in \mathbf{R} \mapsto x^2$ is not uniformly continuous on \mathbf{R} .
- 22. Show that $x \in \mathbf{R} \mapsto x^2|x|$ is differentiable at 0. (The absolute value function isn't differentiable at 0, so the product rule *isn't* an option!)
- 23. Use the MVT to show that for all $x, y \in \mathbf{R}$, we have $|\cos(x) \cos(y)| \le |x y|$. You may use the facts (i) $\cos' = \sin$ and (ii) $|\sin(x)| \le 1$ for all real x.