量子力学习题集

马祥芸

September 1, 2022

Contents

1	薛定谔方程与一维定态问题	2		
	1.1 一维有限势场	2		
	1.2 一维 δ 势			
	1.3 一维分段无限深势阱			
	1.4 半壁无限深势阱			
	1.5 复合势: $\delta(x)$ 和阶梯势			
	1.6 复合势: $\delta(x)$ 和阶梯势			
	1.7 复合势:δ(x) 和谐振子势			
	1.8 反比例势: 合流超几何函数			
	1.9 氢原子势能			
	1.10 反比例势能			
	1.11 已知波函数与 V(x) 的极限			
	1.12 已知波函数与 V(x) 的均值			
	1.13 已知能量与势能的关系			
	1.14 已知两能量的本征态			
	1.16 改变哈密顿量求本征值 (表象变换)			
	1.17 期望值问题			
	1.18 转子演化问题			
	1.10 权] 供他问题	O		
2	力学量算符	9		
3	表象	9		
4	三维定态问题	9		
5	近似方法			
6	自旋	9		
7	全同粒子体系	9		
8	散射	9		

1 薛定谔方程与一维定态问题

1.1 一维有限势场

定理 1.1. 势函数具有偶对称 V(x) = V(-x), $\psi(x)$ 和 $\psi(-x)$ 均是波函数的解证明.

$$\frac{d^2}{[d(-x)]^2}=\frac{d^2}{dx^2}$$

定理 1.2. 设 V(x) = V(-x), 每一个 $\psi(x)$ 都有确定的字称 (奇偶性)(注意每一个解的字称可以不相同)

证明. 由于定理1.1,构造

$$f(x) = \psi(x) + \psi(-x)$$
$$g(x) = \psi(x) - \psi(-x)$$

f(x) 为偶字称,g(x) 为奇字称,它们均为能量 E 的解 而 $\psi(x)$ 与 $\psi(-x)$ 都可以用 f(x) 和 g(x) 表示

$$\psi(x) = \frac{1}{2}[f(x) + g(x)]$$

$$\psi(-x) = \frac{1}{2}[f(x) - g(x)]$$

推论 1. 设 V(-x) = V(x), 而且对应于能量本征值 E, 方程的解无简并, 则该能量本征态必有确定的字称, 例如一维谐振子, 一维对称方势阱

• 若 E 非简并 本征函数具有确定字称 (两种字称)

$$\psi(-x) = \hat{P}\psi(x) = c\psi \quad c = \pm 1$$

• 若 E 简并 $\psi(x)$ 和 $\psi(-x)$ 分别为独立的波函数,它们的线性组合是具有字称的解

$$\psi_{\pm}(x) = \frac{1}{\sqrt{2}} [\psi(x) \pm \psi(-x)]$$

偶宇称涉及到的函数图像如下

奇宇称涉及到的函数图像如下

由于此题的势能函数具有偶对称, 因此波函数可能存在偶 or 奇宇称 (需要分开讨论), 此题中偶宇称至少存在一个交点, 而奇宇称有解必须有条件 $Q > \frac{\pi}{2}$, 由题意可知存在且仅存在一个束缚态,所以保留偶宇称的唯一解即可 $(Q < \frac{\pi}{2})$

1.2 一维 δ 势

先不考虑 $x \neq 0$ 的局部区域, 丢掉 $\delta(x)$ 势阱, 需要用到一阶微分变化值的关系

$$\triangle(\frac{d\psi}{dx}) = \int_{-\varepsilon}^{+\varepsilon} \frac{\hbar^2}{2\mu} V(x) \psi(x) dx$$

注意不要丢了 $\delta(x)$ 前面的参数,需要用到其积分性质

$$\int_{-\varepsilon}^{+\varepsilon} \delta(x)\psi(x)dx = \psi(0)$$

在归一化中,由于在 $x \neq 0$ 其他的区域的波函数具有对称性,对其中一边积分时其值为 $\frac{1}{2}$

$$\int_0^{+\infty} A^2 e^{-2kx} dx = \frac{1}{2}$$

1.3 一维分段无限深势阱

此题的特点是 x=0 处的 $V(x)|_{x=0}=\infty$, 与 $\delta(x)$ 势不一样的是, 虽然在此处的势能大小都是为 ∞ , 但是前者的 $\psi(0)=0$ (也因此 $\Delta \frac{d\psi}{dx}=0$, 连续) 而后者并不为 $\psi(0)\neq 0$, 所以 $\delta(x)$ 势通常在此点并不连续。

当然由于V(x)具有偶对称性,波函数同样具有确定的字称,现假设两个排除0点的波函数解分别为

$$\psi_1(x) = B\sin(kx) \quad (0 < x < a) \quad \psi_2(x) = D\sin(kx) \quad (-a < x < 0)$$

给两种方法通过宇称判断系数关系

- 全局判断法 若 $\psi(x)$ 在 |x| < a 上为奇字称, 那么恰好为正弦函数 $\sin(kx)$ (奇函数) 的形式 $\Rightarrow B = D$
- 定义法 由奇宇称的定义 $\psi(x) = -\psi(-x) \Rightarrow B\sin(kx) = -D\sin(-kx) = D\sin(kx) \Rightarrow B = D$

最后需要注意 n 的取值范围, 应该是从 $n=1,2,3\cdots$ 不能从 0 开始因为 $ka=0 \Rightarrow k=0$ (能量为 0) 可能在归一化中需要用到的三角函数数学公式

$$\sin(x+y) = \sin x \cos y + \sin y \cos x \quad \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(2x) = 2\sin x \cos x \quad \cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2} \quad \cos^2 x = \frac{1 + \cos(2x)}{2}$$

1.4 半壁无限深势阱

再次遇到 $y = -x \cot x$, 记忆关键点的方式可以通过极限来记忆

$$\begin{split} & \lim_{x \to 0} -x \cot x = \lim_{x \to 0} -\frac{x}{\sin x} + \lim_{x \to 0} \cos x = -1 \times 1 = -1 \\ & \lim_{x \to \frac{\pi}{2}} -x \cot x = \lim_{x \to \frac{\pi}{2}} -\frac{x}{\sin x} + \lim_{x \to \frac{\pi}{2}} \cos x = -\frac{\pi}{2} \times 0 = 0 \end{split}$$

最后在此题中可变参量为a与 V_0 ,最好化简为不等式一边仅有可变参量,正如

$$V_0 a^2 \geq \frac{\pi^2 \hbar^2}{8\mu}$$

1.5 复合势: $\delta(x)$ 和阶梯势

注意任何含有 $\delta(x)$ 的势场其束缚态能量必然是负数, 所以 E < 0, 明确这一点再求解, 同样 x = 0 处波函数不连续, 在求一阶微分关系时不要忘记 $\delta(x)$ 前面的的所有系数此题束缚态条件比较特殊, 是可解析的等式, 不需要两个方程联立作图求解, 最后保证一方为根式, 另一方包含所有可变参量并要求 > 0 即可. 同时在最后的归一化过程中需要全空间积分为 1(不是对称函数).

1.6 复合势: $\delta(x)$ 和阶梯势

此题直接带入波函数的连续性条件得到的方程组是难以求解的,因此需要特殊技巧

- 获得奇宇称的解, 先无视 $\delta(x)$ 势, 采用无限深方势阱的解, 只取在 $x=\frac{a}{5}$ 的有效解
- 获得偶宇称解重点在于 $\psi_2(a)=0$, 所以不妨让 $\psi_2(x)=A\sin(x-a)$, 同时在 $x=\frac{a}{2}$ 处连续得到 $\psi(x)=-A\sin(x-a)$, 它是很容易验证在关于 $x=\frac{a}{2}$ 对称的.(设对称轴为 x=b)

$$\psi_1(b-x) = \psi_2(b+x) \quad \Rightarrow b = \frac{a}{2}$$

注意在求第一激发态的时候还没有考虑 $a \to 0$, 所以对于偶宇称的解的最低能量是在某一个区间, 需要把两种宇 称解的最低能量进行对比.

1.7 复合势: $\delta(x)$ 和谐振子势

加入 $\delta(x)$ 后需要重新考虑 x=0 的一阶连续情况, 也就是 $\psi(0)$ 的值, 若 $\psi(0)=0$ 则原来的解仍成立反之不成立, 所以带入 x=0 后发现是 H(0)=0 即可, 事实上仅有 $n=1,3,5\cdots$ 成立

1.8 反比例势: 合流超几何函数

关键点

- 整理微分方程形如 $\frac{d^2\psi(x)}{dx^2} k^2\psi(x) + \frac{\beta}{x}\psi(x)$
- 带入 $\psi(x) = xe^{-kx}F(x)$ 进一步整理微分方程
- 变量代换 $\xi \to 2kx$ 进一步整理微分方程
- 形如 $\xi \frac{d^2 F(\xi)}{d\xi^2} + (\gamma \xi) \frac{dF(\xi)}{d\xi} \alpha F(\xi) = 0$

$$E = -|E| \quad \beta = \frac{2\mu a}{\hbar^2} \quad \gamma = 2 \quad \alpha = 1 - \frac{\beta}{2k} = 1 - \frac{\mu a}{k\hbar^2}$$
$$\psi(\xi) = A\xi e^{-\frac{\xi}{2}} F(\alpha, \gamma, \xi)$$

一般不考,记得反比例势能的解和合流超几何方程有关就行了,其解为合流超几何函数,此题和1.9,1.10的差不多

1.9 氢原子势能

见1.8颢

1.10 反比例势能

见1.8题

1.11 已知波函数与 V(x) 的极限

此题具有启发性, 当已知波函数时, 那么波函数的二阶导数同样已知, 因此 Schrödinger 方程的未知数仅有 V(x) 与 E, 可以得到 V(E,x) 方程, 在利用额外条件进行求解, 此题为 $x\to +\infty$ $V\to 0$, 可以解得 E, 再求解 V(x) 求导的时候需要小心, 此题的二阶导一共有 4 项

1.12 已知波函数与 V(x) 的均值

同题目1.11类似,不过给出另一个已知条件是 $\langle \psi | V | \psi \rangle = 0$, 记住利用这类已知条件时不要贸然带入波函数进行求解,应该凑题目条件,同时获得一个经验就是能量 E 是与坐标变量无关的,通常是优先求的,其次在得到 $\int \psi^* E \psi dx$ 后不要变成 E, 能量的平均值和定态能量并不是同一个东西.

1.13 已知能量与势能的关系

求解过程中注意三角函数的周期性

$$\arctan{(-1)} = -\frac{\pi}{4} + n\pi \quad (n=1,2,3\cdots)$$

1.14 已知两能量的本征态

此题的关键点

• 两个有能量的本征态具有正交性

$$\int_{-\infty}^{\infty} \psi_1^*(x)\psi_2(x) = 0$$

但是直接利用以上正交关系来直接求得 b,c 是复杂又难以实现的, 我们需要额外的关系来先求得一个参数化简第二个波函数.

由于 $\psi_1(x)$ 的信息是完全可知的,因此我们需要利用它来获得关于 V(x) 的信息,本题可得到 V(x) 具有偶对称性,因此我们可以化简 $\psi_2(x)$,只能存在一个偶字称即 b=0.

这个积分可拆分成如下两个积分

$$\int_{-\infty}^{+\infty} ce^{-\beta x^2} dx + \int_{-\infty}^{+\infty} x^2 e^{-\beta x^2} dx = 0 \quad (1)$$

这两个积分相当典型,在后面使用高斯试探函数经常会遇到此类积分,现总结

1.

$$\int_{-\infty}^{+\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$$

证明.

$$I = \int_{-\infty}^{+\infty} e^{-ax^2} dx$$

$$I^2 = \int_{-\infty}^{+\infty} e^{-a(x^2 + y^2)} dx dy$$

 $\Rightarrow x = r\cos\theta \quad y = r\sin\theta$

$$I^2 = \int_0^{+\infty} \int_0^{2\pi} e^{-ar^2} r dr d\theta$$

$$I^{2} = \int_{0}^{+\infty} \pi e^{-ar^{2}} d(r^{2})$$
$$= \frac{\pi}{a} \Longrightarrow I = \sqrt{\frac{\pi}{a}}$$

2.

$$\int_{-\infty}^{+\infty} x^2 e^{-ax^2} dx dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

特别的当 $n = 1, 3, 5, 7 \cdots$

$$\int_{-\infty}^{+\infty} x^n e^{-ax^2} dx dx = 0$$

证明.

$$\frac{d(e^{-ax^2})}{dt} = -2axe^{-ax^2}$$

$$I = -\frac{1}{2a} \int_{-\infty}^{+\infty} x d(e^{-ax^2})$$
$$= -\frac{1}{2a} (xe^{-ax^2} \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} e^{-ax^2} dx)$$

洛必达法则

$$\lim_{x \to \pm \infty} x e^{-x^2} = \frac{1}{2xe^{x^2}} \bigg|_{x \to \pm \infty} = 0^+ \quad and \quad 0^-$$

$$I = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

3. 表格积分法(处理复杂分部积分函数):被积函数的结构为—(多项式)(函数) (本质是分部积分)

$$\int (x^2 + x)e^{3x} dx \qquad \int x(x - a)\sin 2x \qquad \int e^{3x}\sin 2x dx$$

记为 f(x) g(x)

f(x)	f'(x)	f''(x)	 0
g(x)	$\int g(x)dx$	$\iint g(x)dxdx$	 $\iiint \dots$

第二行的项数与第一行保持一致,共计[n,n]

$$+(1,2)-(2,3)+(3,4)-(4,5)\cdots+c$$

注意:(i,i+1) 表示第一行第 i 个元素 × 第二行的第 (i+1) 个元素,每一个乘积前的正负号为 [+,-,+,...] 交替,同时不要漏掉积分常数 c,如果第一行的函数无法求导到 0,求导直到出现原函数的常数倍也可以.($\int e^{3x} \sin 2x dx$ 的积分第一行第三项为原函数的 $-\frac{9}{4}$ 倍)

回到原积分 $I_1+I_2=0$,第一个积分值很容易知道为 $c\sqrt{\frac{\pi}{\beta}}$,第二个积分值为 $\frac{1}{2\beta}\sqrt{\frac{\pi}{\beta}}$,求得 $c=-\frac{1}{2\beta}$ 方程 (9) 带入波函数求解复杂,需要细心,其中有一部需要分解因式 (具有启发性,二阶导为原函数的一个多项式倍)

$$\begin{split} \frac{\psi_2^{''}(x)}{\psi_2(x)} &= \frac{\beta(2\beta^2x^4 - 11\beta x^2 + 5)}{2\beta x^2 - 1} \\ &= \frac{\beta(2\beta x^2 - 1)(\beta x^2 - 5)}{2\beta x^2 - 1} \\ &= \beta(\beta x^2 - 5) \end{split}$$

1.15 圆圈运动

此题的 x 是以圆环的外周长为度量的,需要变换波函数的变量便于求解 $x=R\varphi$,因此 $\frac{d}{dx^2}=\frac{1}{R^2d\varphi^2}$ 此时 $V(x)=a\delta(x-L/2)\Longrightarrow V(\varphi)=a\delta[R(\varphi-\pi)]$ 值得注意的一个 $\delta(x)$ 的缩放性质

$$\int_{-\infty}^{+\infty} \delta(Rx) dx = \int_{-\infty}^{+\infty} \frac{1}{R} \delta(Rx) d(Rx) = 1 \Longrightarrow \delta(Rx) = \frac{1}{R} \delta(x)$$

所以我们得到新的势函数 $V(\varphi)=\frac{a}{R}\delta(\varphi-\pi)$, 在求解过程中不使用三角函数解, 使用复幂指数的解更合适 (涉及角度), $\psi(x)=Ae^{-ik\varphi}+Be^{ik\varphi}$

连续性条件发生变化,发散点为 $\varphi = \pi$,实际上第三个条件和第一个条件给出的结论是一样的,而第二个条件往往是被忽略的

$$\psi_1(0) = \psi_2(2\pi) \quad \psi_1'(0) = \psi_2'(2\pi) \quad \psi_1(\pi) = \psi_2(\pi)$$

由前两个条件可以得到如下两个方程组

$$A + B = C + D \tag{1}$$

$$A - B = C - D \tag{2}$$

容易解出 A=C 带入方程 (1)or(2) 会得到 B=D, A 与 B 的关系需要一阶波函数在 $\varphi=\pi$ 的连续性关系解出, 之后我们需要再将复幂指数的解在返回三角函数形式并归一化得到

$$\psi(x) = \sqrt{\frac{1}{\pi}} \sin m\varphi$$

存在一个隐藏的周期性边界条件限制 m 的取值

$$\psi(\varphi) = \psi(\varphi + 2\pi) \Longrightarrow 2m\varphi = 2n\pi \quad (n = 1, 2, 3, 4\cdots) \Longrightarrow m = 1, 2, 3, 4\cdots$$

由此我们可以反解出

$$E_n = \frac{\hbar^2 m^2}{2\mu R^2}$$
 $(m = 1, 2, 3, 4 \cdots)$

1.16 改变哈密顿量求本征值(表象变换)

此题的关键在于表象的变换, 由坐标表象转化到动量表象 (详见曾书 P_{151} 和 P_{281-6})

$$\hat{m{x}}=\hbar rac{\partial}{\partial \hat{m{p}}}$$

证明.

$$\psi_p(x) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$
$$\delta(x) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{ipx} dp$$
$$\delta(p) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{-ipx} dx$$

n 为维数, 这里取 1 进行证明, 证明前须知内积 $\langle x|\psi\rangle$ 就是波动力学的波函数

$$\psi(x) \stackrel{def}{=\!=\!=\!=} \langle x | \psi \rangle$$

进一步可知动量在坐标表象下即为动量波函数

$$\langle x|p\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\langle p|x\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{-ipx}{\hbar}}$$

算符 \hat{x} 在坐标表象下的形式为x,同理算符 \hat{p} 在动量表象下为p

$$\hat{\boldsymbol{x}} |x\rangle = x |x\rangle \quad \hat{\boldsymbol{p}} |p\rangle = p |p\rangle$$

关于 δ 函数

$$\langle x'|x\rangle = \delta(x'-x)$$

坐标算符在自己坐标表象下的矩阵元

$$x_{x'x''} = \langle x'|\hat{\boldsymbol{x}}|x''\rangle = x'\langle x'|x''\rangle = x'\delta(x'-x'')$$

$$\begin{split} x_{p'p''} &= \langle p'|x|p''\rangle \\ &= \langle p'|x'\rangle \; \langle x'|x|x''\rangle \langle x''|p''\rangle \\ &= \frac{1}{(2\pi\hbar)} \iint e^{\frac{-ip'x'}{\hbar}} e^{\frac{ip''x''}{\hbar}} x'\delta(x'-x'') dx' dx'' \\ &= \frac{1}{(2\pi\hbar)} \int x' e^{\frac{-ix(p'-p'')}{\hbar}} dx' \\ &= \frac{1}{(2\pi)} \int x' e^{-i(p'-p'')\frac{x}{\hbar}} d(\frac{x'}{\hbar}) \end{split}$$

积分内恰好出现了一个 x' 也就是坐标算符

$$\frac{\mathrm{d}e^{\frac{-ix(p'-p'')}{\hbar}}}{\mathrm{d}p'} = -\frac{i}{\hbar}e^{\frac{-ix(p'-p'')}{\hbar}}$$
$$e^{\frac{-ix(p'-p'')}{\hbar}} = i\hbar\frac{\mathrm{d}}{\mathrm{d}p'}e^{\frac{-ix(p'-p'')}{\hbar}}$$

因此

$$\frac{1}{(2\pi)} \int x' e^{\frac{-ix(p'-p'')}{\hbar}} dx' = \frac{1}{(2\pi)} i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} 2\pi \delta(p'-p'')$$
$$= i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \delta(p'-p'')$$

有了矩阵元后,考虑算符的一般作用

$$\begin{split} |\varphi\rangle &= \hat{\boldsymbol{x}} \, |\psi\rangle \Longrightarrow \langle p|\varphi\rangle = \, \langle p|\hat{\boldsymbol{x}}|\psi\rangle \Longrightarrow \varphi_p = \int dp' x_{pp'} \psi_{p'} \\ \varphi_{p'} &= \int dp'' [x_{p'p''}] \psi_{p''} = \int dp'' [i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \delta(p'-p'')] \psi_{p''} = i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \psi_{p'} \end{split}$$

1.17 期望值问题

此题涉及到两种绘景的选择: 薛定谔绘景和海森堡景

• 薛定谔绘景

此绘景下, 负责时间演化的算符是一种幺正算符 ($UU^*=U^*U=I_n\quad U^{-1}=U^*$), 态向量 $|\psi(0)\rangle_s$, 经过时 t, 演化到 $|\psi(t)\rangle_s$, 演化方程表示为

$$|\psi(t)\rangle_s = U(t,0) |\psi(0)\rangle_s$$

U(t,0) 是时间从 0 流易到 t 的时间演化算符 (或者写为时间 t_0),是幺正算符,假设系统哈密顿量 H 不含时间,则时间演化算符为

$$U(t,0) = e^{\frac{-iHt}{\hbar}}$$

而且时间演化算符与哈密顿量对易,注意指数函数 e^{-iHt} 必须通过泰勒级数进行计算

• 海森堡绘景

态向量 $|\psi(t)\rangle_H$, 算符 $A_H(t)$ 的定义分别为

$$|\psi(t)\rangle_H \stackrel{def}{=\!=\!=\!=} |\psi(0)\rangle_H = |\psi(0)\rangle_s$$

$$A_H(t) \stackrel{def}{=\!=\!=\!=} U^{\dagger}(t,0) A_s U(t,0)$$

时间演化算符对时间的偏导数为

$$\frac{\partial U(t,0)}{\partial t} = \frac{1}{i\hbar} HU(t,0)$$

$$\frac{\partial U^{\dagger}(t,0)}{\partial t} = -\frac{1}{i\hbar}U^{\dagger}(t,0)H$$

所以算符 $A_H(t)$ 对时间的导数为

$$\frac{\mathrm{d}A_H(t)}{\mathrm{d}t} = \frac{1}{i\hbar}[U^\dagger A_s U, U_\dagger H U]$$

不含时间的哈密顿量在两种绘景下完全一样

$$H_H = U^{\dagger} H_s U = H_s = H$$

将算符的定义纳入考虑,得到海森堡运动方程

$$\frac{\mathrm{d}A_H(t)}{\mathrm{d}t} = \frac{1}{i\hbar}[A_H(t), H]$$

$$\frac{\mathrm{d} < A_H(t) >}{\mathrm{d}t} = \frac{1}{i\hbar} \overline{[A_H(t), H]}$$

宁外在解题过程中需要用到一个特殊的对易关系

$$[\hat{\boldsymbol{x}}, F(\hat{\boldsymbol{p}})] = i\hbar F'(\hat{\boldsymbol{p}}) \Longleftrightarrow [\hat{\boldsymbol{x}}, \hat{\boldsymbol{p}}^n] = i\hbar n\hat{\boldsymbol{p}}^{n-1}$$

1.18 转子演化问题

自由转子和自由粒子的解的形式相似

$$\psi = Ae^{-imx} + Be^{imx}$$

通常两个传播方向会将其合并

$$\psi_m = Ae^{imx}$$

但是自由转子具有周期性边界条件 $\psi(x)=\psi(x+2\pi)$ 因此使得 m 的取值只有整数 $m=0,\pm 1,\pm 2,\pm 3\cdots$,也正因为是分立指标,所以和自由粒子有所不同,可以简单的写成求和.

波函数由多个波函数线性组合而成

$$\psi(\varphi,t) = \sum_{m} c_m \psi_m(\varphi) U(t,0)$$

所以题目要求我们求出处于新的能量基态概率 $|c_0|^2$, 因此我们先要求出 c_m , 事实上它是由初始条件决定的 (初始波函数)

同样的在我们已知了初始波函数与初始能量,初始波函数仍然可以用 $\psi_m(\varphi)$ 展开 (t=0,U(0,0)=1)

$$\psi(\varphi,0) = \sum_{m} c_{m} \psi_{m}(\varphi)$$
$$\psi_{n}^{*}(\varphi)\psi(\varphi,0) = \sum_{m} c_{m} \psi_{n}^{*}(\varphi)\psi_{m}(\varphi)$$

对其进行积分,只留下了 c_m 项进行积分

$$\int \psi_m^*(\varphi)\psi(\varphi,0)d\varphi = \int c_m \psi_m^*(\varphi)\psi_m(\varphi)d\varphi$$
$$c_m = \int_0^{\varphi_0} \psi_m^*(\varphi)\psi(\varphi,0)d\varphi$$
$$c_0 = \int_0^{\varphi_0} \sin\frac{\pi\varphi}{\varphi_0}d\varphi = \frac{2\varphi_0}{\pi\sqrt{\varphi\varphi_0}}$$
$$|c_0|^2 = \frac{4\varphi_0}{\pi^3}$$

 $\diamondsuit m = 0$

时间演化算符并不影响粒子处于某个态的概率,因此当移除壁垒后概率仍旧以移除前的波函数作为初始状态(初始条件),这样将初始波函数展开(移除后的波函数可解),一些特定的系数可以求解 $(m \neq 0$ 无法求解)

- 2 力学量算符
- 3 表象
- 4 三维定态问题
- 5 近似方法
- 6 自旋
- 7 全同粒子体系
- 8 散射