## PRÁCTICA 4: Suma de Vectores

Sofía Fernández Moreno

 $\frac{\mathrm{Curso}\ 2016/2017}{\mathrm{ACAP}}$ 



Dispositivo Numero: 0

Nombre del dispositivo: GeForce GTX 660 Ti

Frecuencia Reloj (KHz): 3004000 Memory Bus Width (bits): 192

Ancho de Banda (GB/s): 144.192000

A la hora de realizar el reparto del tamaño de bloques en la GPU he asignado la condición de si nos encontramos con un tamaño de vector(N) mayor a 1024, asignaremos una dimensión de 512. Para el caso contrario, asignaremos la dimensión del bloque a la mitad del tamaño del vector(N/2). Todo esto se debe a que el valor máximo del tamaño de bloque es de 1024 hebras.

Una vez hecho lo anterior y asignados los bloques y las hebras , ejecutamos los bloques compuestos de hebras, de esta manera hay paralelismo entre multiprocesadores y entre los cores del multiprocesador. vecAddKernel<<< dimgrid, dimblock>>>(dA, dB, dC, n);

Los códigos para la suma en la GPU y en la CPU están adjuntos en el ZIP de la práctica, además del proyecto para obtener las características de la GPU.

Ahora pasamos a calcular los tiempos para cada suma.

| Carpeta | Tamaño | SumaGPU    | SumaCPU    | Ganancia    | Tamaño Bloque |
|---------|--------|------------|------------|-------------|---------------|
| 0       | 100    | 0,00002032 | 0,00000127 | 0,0625      | 50            |
| 3       | 100    | 0,00002046 | 0,00000067 | 0,032746823 | 50            |
| 5       | 1025   | 0,00002068 | 0,00000865 | 0,41827853  | 512           |
| 6       | 2048   | 0,00001516 | 0,0000179  | 1,180738786 | 512           |
| 1       | 4096   | 0,00002026 | 0,0000437  | 2,156959526 | 512           |
| 7       | 5000   | 0,00002203 | 0,00003458 | 1,569677712 | 512           |
| 8       | 6000   | 0,00002029 | 0,00004031 | 1,986692952 | 512           |
| 4       | 9000   | 0,00001525 | 0,00006336 | 4,154754098 | 512           |
| 9       | 9000   | 0,00001571 | 0,00006585 | 4,191597708 | 512           |
| 2       | 32768  | 0,00001781 | 0,00023972 | 13,45985401 | 512           |





