Week 8

The Hydrogen Atom

8.1 Hydrogen Atom II

2/19: • Review of the hydrogen atom.

- The potential is given by

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r}$$

■ This is an important case of motion in a central potential in quantum mechanics.

- We go to polar coordinates because they are most convenient for motion in a central potential.

- We achieve separation of variables via

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell m}(\theta,\phi)$$

- This leads into the spherical harmonics

$$\hat{\vec{L}}^{2}Y_{\ell m}(\theta,\phi) = \hbar^{2}\ell(\ell+1)Y_{\ell m}(\theta,\phi)$$
$$\hat{L}_{z}Y_{\ell m}(\theta,\phi) = \hbar mY_{\ell m}(\theta,\phi)$$

■ Additionally, the quantum number m satisfies $-\ell \le m \le \ell$, giving us $2\ell + 1$ solutions for each ℓ .

- With the spherical harmonics, the main question becomes how to find $R_{n\ell}$.

■ We do this via the change of variables

$$U_{n\ell}(r) = rR_{n\ell}(r)$$

yielding a function that satisfies the analogous one-dimensional effective system

$$-\frac{\hbar^2}{2M} \frac{\mathrm{d}^2}{\mathrm{d}r^2} [U_{n\ell}(r)] + \underbrace{\left[V(r) + \frac{\hbar^2 \ell(\ell+1)}{2Mr^2}\right]}_{V_{\mathrm{eff}}(r)} U_{n\ell}(r) = E_{n\ell} U_{n\ell}(r)$$

- We analyze such systems using their asymptotic behavior as $r \to 0$ and $r \to \infty$.

■ See Figure 7.2. We are looking for bound states $E_{n\ell}$.

■ When the energy is positive, we have continuous solutions; it's only when the energy is negative that we have quantized bound states.

- Performing such analyses, we propose an ansatz

$$U_{n\ell}(r) = f_{n\ell}(r)r^{\ell+1}e^{-k_{n\ell}r}$$

where

$$E_{n\ell} = -\frac{\hbar^2 k_{n\ell}^2}{2M}$$

- We suppose that f is a polynomial function

$$f_{n\ell}(r) = \sum_{j} a_j r^j$$

and solve for it using the differential equation

$$f_{n\ell}''(r) + f_{n\ell}'(r) \left[\frac{2(\ell+1)}{r} - 2k_{n\ell} \right] + f_{n\ell}(r) \left[-\frac{2k_{n\ell}(\ell+1)}{r} + \frac{2}{a_{\rm B}r} \right] = 0$$

- This analysis leads us to the recursion relation

$$a_{j+1} = \frac{2k_{n\ell}(j+\ell+1) - \frac{2}{a_{\rm B}}}{(j+1)(j+2\ell+2)}a_j$$

- We then choose $j_{\text{max}} = N$, yielding

$$k_{n\ell} = \frac{1}{a_{\rm B} \underbrace{(N+\ell+1)}_{n}}$$

where we canonically call n the **principal quantum number**.

- This is a divergence from last time's notation, but one made for good reason, as we will see shortly.
- Note that we did not introduce this notation last time because we didn't want to have to discuss its subtleties then, as we will today.
- Thus, the energy depends only on this value n via

$$E_{n\ell} = -\frac{\hbar^2}{2m_e a_{\rm B}^2 (N + \ell + 1)^2} = -\frac{\rm Ry}{n^2}$$

where Ry is the Rydberg constant defined last time.

- \blacksquare Essentially, the energy depends on this value n which in turn has a hidden dependence on ℓ .
- We now begin on new content, continuing from above however.
- The energy spacing versus n.

Figure 8.1: 1 H energy spacing vs. n.

- The energies get closer and closer together as n increases until they become continuous for positive values of energy.
- The equations and figure imply that $-E_1 = \text{Ry}$ is the minimum energy necessary to remove the electron from the hydrogen atom.
- If we don't have this much energy, a lesser amount will still affect the electron, just moving it to an **excited state**.

- In particular, $E_m E_1$ is the amount of energy necessary to move the electron to an excited state E_m of higher energy than E_1 .
- What is also interesting is that if the electron is in an excited state of energy E_m , then it will not stay there forever.
 - Experimentally, even in this time independent potential, the electron can jump back down to a lower state by emitting electromagnetic radiation of energy $E_{\gamma} = E_m E_1$.
 - This is evidence that the vacuum in which we assume the hydrogen atom lies is not really *vacuum*! Rather, the vacuum contains something called the EM field, and there are fluctuations in this EM field that can push the electron down energy states.
 - This is discussed more in Quantum Mechanics II, but is ignored in our present formalism of the hydrogen atom.
- Now for every fixed n, the equation $n = N + \ell + 1$ implies that $\ell = 0, 1, \dots, n 1$.
 - But for every ℓ , there are $2\ell+1$ solutions with the same energy.
 - Thus, for every n, there are

$$\sum_{\ell=0}^{n-1} (2\ell+1) = 2\sum_{\ell=0}^{n-1} \ell + \sum_{\ell=0}^{n-1} 1 = 2 \cdot \frac{n(n-1)}{2} + n = n^2$$

different states with the same energy.

- Aside: A fun application of this stuff to cosmology.
 - The universe started as a hot plasma that cooled down as the universe expanded.
 - The early universe contained a lot of crap, including photons.
 - When early protons and electrons tried to combine at hot temperatures, the huge amount of EM radiation would kick the electrons out.
 - Thus, stable atoms could not form.
 - The specific temperatures at which this would occur were

$$k_{\rm B}T > 13.6 \,{\rm eV}$$

- At temperatures $k_{\rm B}T < 13.6\,{\rm eV}$, protons and electrons bind together, and the universe becomes transparent to radiation.
- Evidence that this happened: Cosmic microwave background.
 - When the universe became transparent, it was at microwave temperatures.
 - This was when the universe was about 13000 years old.
- Now back to math.
- Since we now have an explicit definition for $k_{n\ell}$, we may rewrite the solutions as

$$U_{n\ell}(r) = f_{n\ell}(r)r^{\ell+1}e^{-r/a_{\mathrm{B}}n}$$

- Notationally, do remember that n gives energy, ℓ gives angular momentum, and $N=n-\ell-1$ gives the polynomial degree of $f_{n\ell}(r)$.
- Thus, if N=0, then $n=\ell+1$ and the radial probability density of finding the particle at a given r is

$$r^{2}|R_{n\ell}(r)|^{2} = |U_{n\ell}(r)|^{2} = r^{2n}e^{-2r/a_{\rm B}n}$$

• What is the maximum, i.e., the most probable distance from the nucleus?

- Differentiate the probability density with respect to r and determine where it equals zero.

$$0 = 2nr^{2n-1}e^{-2r/a_{\rm B}n} - \frac{2r^{2n}}{a_{\rm B}n}e^{-2r/a_{\rm B}n}$$

$$\frac{2r^{2n}}{a_{\rm B}n} = 2nr^{2n-1}$$

$$r_{\rm max} = a_{\rm B}n^2$$

- ullet What happens if you have an ion of charge Ze?
 - Then

$$V(r) = -\frac{Ze^2}{4\pi\epsilon_0 r}$$

- Thus,

$$E_n = -\frac{\operatorname{Ry} Z^2}{n^2}$$

and the Bohr radius halves.