2002 USAMO #5

Tristan Shin

 $23~\mathrm{Mar}~2016$

Let a, b be integers greater than 2. Prove that there exists a positive integer k and a finite sequence n_1, n_2, \ldots, n_k of positive integers such that $n_1 = a, n_k = b$, and $n_i n_{i+1}$ is divisible by $n_i + n_{i+1}$ for each i $(1 \le i < k)$.

It suffices to show that we can go from x to x+1. First note that $3 \to 6 \to 12 \to 4$ works, so assume x>3. Then the sequence

$$x \to x(x-1) \to x(x-1)(x-2) \to x(x-1)(x-2)(x-3)$$

 $\to (x+1)x(x-1)(x-2) \to (x+1)x(x-1) \to (x+1)x \to x+1$

works.