8 Technische Aspekte des Logikentwurfs

8.1 Realisierung der Schaltalgebra durch Logikgatter

Überblick

Anstelle der Schalterrealisierung durch Reihen- und Parallelschaltung lassen sich die Operationen +, \cdot , $\overline{}$ mit sogenannte Logikgattern oder digitalen Verknüpfungsgliedern durchführen. Es handelt sich dabei meist um elektronische Schaltungen, die auch Schaltkreis genannt werden.

Ein Gatter ist als Blackbox mit einem oder mehreren Eingängen und einem Ausgang gegeben. Von einer solchen Blackbox ist nur das Schaltverhalten bekannt. Dabei bezeichnet das Schaltverhalten das Verhalten der Spannung am Ausgang in Abhängigkeit von den an den Eingängen angelegten Spannungen. Die am Eingang angelegten Spannungen werden als Eingangssignale und die resultierende Spannung am Ausgang als Ausgangssignal bezeichnet.

Zuordnung von Signalen zu Logikwerten

Als Eingangssignale sind bei digitalen Gattern nur zwei verschiedene Spannungswerte (Stromwerte) innerhalb gewisser Toleranzgrenzen zugelassen. Dies gilt auch für das Ausgangssignal. Beiden Spannungswerten werden jeweils ein Schaltzustand zugewiesen, z.B. entspricht "0V" dem Schaltzustand 0 und "5V" dem Zustand 1. Sind somit z.B. 0V und 5V die zulässigen Spannungswerte, lässt sich zu jedem Schaltgatter eine entsprechende Schalttabelle angeben.

8.1.1 Positive Und Negative Logik

Die Realisierung logischer Funktionen durch Hardware erfordert die Darstellung der binären Variablen durch geeignete elektrische Größen. In digitalen Schaltkreisen erfolgt somit die Darstellung der boolschen Werte 0 und 1 durch zwei unterschiedliche Spannungspegel bzw. Spannungspegelbereiche. Diese Zuordnung der High-(H) und Lowpegel(L) kann entweder durch positive oder negative Logik geschehen.

	Pegel		phys. Größe	
Wert	pos. Logik	neg. Logik	pos. Logik	neg. Logik
0	L	Н	z.B. 0V	z.B. 0V
1	Н	L	z.B. +5V	z.B12V

Die Zuordnung der physikalischen Größen kann dabei willkürlich erfolgen, da die mathematische Logik keine Unterscheidung in positive und negative Logik besitzt. Diese ist somit nur erforderlich, wenn man die technische Realisierung der logischen Funktionen betrachtet.

8.1.2 Pegelbereiche

Problemstellung

Die Spannungspegel innerhalb digitaler Schaltungen unterliegen Streuungen. Die Ursachen liegen in Bauelementtoleranzen, Temperaturschwankungen, Betriebsspannungsschwankungen und Störsignalen.

Abbildung 8.1: Spannungspegelbereiche für den H- und L-Pegel

Eine Verringerung des Einflusses der Toleranzen geschieht durch die Zuordnung der Spannungspegel H und L zu einem jeweils relativ breiten Pegelbereich. Beide Pegelbereiche werden durch eine verbotene undefinierte Zone getrennt.

8.1.3 Übertragungs(Transfer)Kennlinie

Elektronisches Verhalten

Die Beziehung zwischen Aus- und Eingangsgröße - z.B. Spannung $(U_A\ ,\ U_E)$ - eines Gatters heißt Transfer- oder Übertragungskennlinie. Sie stellt die wichtigste statische Eigenschaft eines Gatters dar. Die Transferkennlinie hängt von der Schaltungsstruktur, den gewählten Bauelementen, der Belastung und der Temperatur ab. Sie zeigt den typische Logikpegel und den statischen Störabstand.

Abbildung 8.2: Übertragungskennlinie eines Inverters

8.1.4 Statischer Störabstand

Definition des statischen Störabstandes U_S

Der statische Störabstand U_S beschreibt den zulässigen Störspannungshub, der den logischen Zustand eines Gatters noch nicht ändert. Die Voraussetzung dafür ist, dass das Störsignal länger als die mittlere Verzögerungszeit dauert. Er definiert auch die Störspannung, die dem Ausgangssignal einer Stufe überlagert sein darf, ohne bei einer nachgeschalteten gleichen Stufe den zulässigen Eingangswert zu überschreiten. Die Störabstände für L- und H-Pegel sind verschieden und werden getrennt (U_{SL}, U_{SH}) angeben.

$$\begin{array}{c} U_{SH} = U_{AHmin} - U_{EHmin} \\ U_{SL} = U_{ELmax} - U_{ALmax} \end{array}$$

Abbildung 8.3: Definition des statischen Störspannungsabstandes

8.1.5 Dynamischer Störabstand

Problemstellung

Ist die Eingangssignaldauer kleiner als die Gatterverzögerungszeit, ist die Gatterfunktion nicht mehr gewährleistet.

Definition des dynamischen Störabstandes

Der dynamische Störabstand ist die minimal erforderliche Impulslänge t_{min} am Eingang eines Gatters, bei der das Gatter noch korrekt schaltet.

Abbildung 8.4: Dynamischer Störabstand

8.1.6 Belastbarkeit

Die Gattereingänge bilden <u>Last</u> für angeschlossene Ausgänge. Bei bipolaren Schaltungen handelt es sich um eine Strombelastung, MOSFET-Schaltungen weisen hingegen nur eine kapazitive Last auf. Meistens interessiert nur, wieviele Eingänge von nachfolgenden Gattern an einen Gatterausgang angeschlossen werden können. Man rechnet daher nicht mit Strömen, sondern mit festgelegten Lasteinheiten (unit load), in denen sämtliche "worst-case"-Bedingungen berücksichtigt sind. Die Berechnung der Lastfaktoren erfolgt getrennt für H- und L-Pegel. In Datenblättern wird dann der größere bzw. kleinere Wert angegeben.

 $I_{\mathsf{E}_\mathsf{H}}$ Eingangsstrom bei H-Pegel $\quad I_{\mathsf{E}_\mathsf{L}}$ Eingangsstrom bei L-Pegel $\quad I_{\mathsf{A}_\mathsf{L}}$ Ausgangsstrom bei L-Pegel

Abbildung 8.5: Definition der Gatterströme

Eingangslastfaktor (fan in)

Faktor 1 ist die Belastung des Eingangs eines elementaren Grundgatters.

$$(fanin)_H = \frac{I_{E_H}}{I_{E_{H_E}}}$$
 $(fanin)_L = \frac{I_{E_L}}{I_{E_{L_E}}}$

Ausgangslastfaktor (fan out)

Anzahl von Eingangslastfaktoren 1 der gleichen Schaltkreisfamilie, mit der ein Schaltkreisausgang belastet werden darf.

$$(fanout)_H = rac{I_{A_H}}{I_{E_{H_F}}}$$
 $(fanout)_L = rac{I_{A_L}}{I_{E_{L_F}}}$

8.1.7 Verlustleistung

Mittlere statische Verlustleistung P_V

Fast alle Schaltkreisfamilien haben unterschiedliche Leistungsaufnahmen bei einem Ausgangspegel L bzw. H.

$$P_V = \frac{P_{VH} + P_{VL}}{2}$$
 arithmetisches Mittel der Verlustleistung

dynamische Verlustleistung

Bei verschiedenen Schaltkreisfamilien tritt eine hohe dynamische Verlustleistung auf, die durch den Signalwechsel verursacht wird.

$$P_{VCMOS} \sim f \text{ mit } f \triangleq Taktfrequenz$$

8.1.8 Schaltzeiten

Problemstellung

Das dynamische Schaltverhalten digitaler Schaltkreise wird durch die Verzögerungszeit t_p , die Anstiegszeit t_r und Abfallzeit t_f bestimmt. Die Schaltzeiten hängen somit unter anderem von der Art der Beschaltung des Ausgangs ab.

Verzögerungszeit (propagation delay, Durchlaufzeit) tp

Man unterscheidet zwischen den Verzögerungszeiten t_{pHL} und t_{pLH} entsprechend der HL-oder LH-Ausgangsflanke. Die Verzögerungszeiten werden bei 50% des Signalspannungspegels gemessen. Somit ist t_{pLH} das propagation delay von L nach H und t_{pHL} von H nach L. Die Gatterverzögerungszeit errechnet sich aus dem arithmetischen Mittelwert $t_{pd} = \frac{1}{2} \cdot (t_{p_{HL}} + t_{p_{LH}})$.

Abbildung 8.6: Propagation-Delay

Abfallzeit(fall time) und Anstiegszeit(rise time)

Die Anstiegs- bzw. Abfallzeit liegt zwischen 10% und 90% des Spannungshubs bei einer Ansteuerung mit einem idealen Rechteckimpuls am Eingang.

Symbol	eng. Beschreibung	Taktflankenänderung	deutsche Beschreibung
t _r	rise time	$L \rightarrow H$	Anstiegszeit
t _f	fall time	$H \to L$	Abfallzeit

Abbildung 8.7: Definition Schaltzeiten

8.1.9 Geschwindigkeit-Leistungs-Produkt

Das Geschwindigkeits-Leistungs-Produkt W_G dient häufig als Bewertungskriterium für das dynamische Verhalten logischer Schaltkreise. Dieses Produkt beschreibt das Verhältnis zwischen der Verlustleistung(P_V) und der Verzögerungszeit(t_{pd}). Beschleunigt man also eine Anwendung oder Schaltung geschieht das auf Kosten der steigenden Verlustleistung oder anders herum. Das Geschwindigkeits-Leistungs-Produkt kann man auch mit der Formel $W_G = P_V \cdot t_{pd}$ beschreiben.

8.2 Dynamisches Verhalten von Schaltnetzen

8.2.1 Hazards

Die unterschiedlichen Verzögerungen einzelner Eingangssignale können in einem Schaltnetz Eingangskombinationen verursachen, die kurzzeitig zu fehlerhaften Ausgangskombinationen führen können. Diesen Effekt bezeichnet man auch als "Hazard". Ein Hazard ist ein Übergang zwischen zwei Eingangskombinationen, bei dem die Möglichkeit besteht, dass während der Übergangsphase auf Grund unterschiedlicher Signalverzögerungen falsche Ausgangsignale auftreten. Ob dann tatsächlich der Fehler auftritt, hängt von den realen Verzögerungszeiten der einzelnen Signale ab. Man spricht hierbei dann von einem hazardbehafteten Schaltnetz.

Gegeben sei folgender boolscher Ausdruck: $y = x_2 \cdot \overline{x_0} + \overline{x_2} \cdot x_1$.

Abbildung 8.8: Hazardbehaftete Schaltung

Abbildung 8.9: Entstehung von Hazards

Als Beispiel kann man hier den Übergang von der Eingangskombination (x_2, x_1, x_0) 110 nach 001 betrachten. Im ersten Fall treten im Übergangsintervall kurzzeitig fälschlicherweise die Signale 0 und 1 auf. Bei den angenommen Verzögerungen hat das hazardbehaftete Schaltnetz auch einen Hazard zur Folge. Im zweiten Fall erfolgt in der Übergangsphase ein eindeutiges Umschalten vom Wert 1 auf den Wert 0. Es ergibt sich keine falsche Aufeinanderfolge von Werten der Ausgangssignale. In diesem Fall liegt also für das gleiche Schaltnetz kein Hazard vor.

Bezüglich der Werte der Ausgangssignale, die vor und nach dem Übergang gefordert sind, unterscheidet man zwischen statischen und dynamischen Hazards.

Statischer Hazard

In einer Schaltung y(x) heißt ein beim Übergang zwischen den Eingangskombinationen x_1 und x_2 auftretender Hazard statischer Hazard, wenn bezüglich der Werte der Ausgangssignale gilt: $y(x_1) \rightarrow y(x_2)$.

Bei statischen Hazards unterscheidet man noch zwischen 0-Hazards und 1-Hazards. Ein statischer 0-Hazard (bzw. 1-Hazard) ist ein Hazard, bei dem das Ausgangssignal vor und nach dem Übergang gleich 0 (bzw. gleich 1) ist.

Dynamischer Hazard

In einer Schaltung y(x) heißt ein beim Übergang zwischen den Eingangskombinationen x_1 und x_2 auftretende Hazard dynamischer Hazard, wenn bezüglich der Werte der Ausgangssignale gilt: $y(x_1) \rightarrow \overline{y(x_2)}$.

Abbildung 8.10: Typen von Hazards

8.2.2 Funktionshazards

Statischer Funktionshazard

Ein Schaltnetz y(x) ist bei einem Übergang zwischen den Eingangskombinationen x_1 und x_2 mit einem statischen Funktionshazard behaftet, wenn es eine Wertekombination g für die Variablen x gibt, die während des Übergangs auftritt und für die gilt: $y(x_1) \rightarrow y(g) \rightarrow y(x_2)$.

Als Kriterien zur Erkennung eines statischen Funktionshazards dienen zum einen der Funktionswert vor und nach dem Übergang, der gleich sein muss. Zum anderen muss es Wertekombinationen des Eingangsvektors g geben, die während des Übergangs momentan auftreten und die eine Änderung des Funktionswerts bewirken.

Betrachtet man in der Schaltung $y = x_2 \cdot \overline{x_0} + \overline{x_2} \cdot x_1$ z.B. den Übergang von 110 nach 011, dann tritt ein statischer Funktionshazard auf.

Dynamischer Funktionshazard

Ein Schaltnetz y(x) enthält beim Übergang zwischen den Eingangskombinationen x_1 und x_2 einen dynamischen Funktionshazard, wenn es zwei Wertekombinationen g_1 und g_2 von x gibt, die, ausgehend von x_1 zeitlich nacheinander auftreten und für die gilt: $y(x_1) \rightarrow y(g_1) \rightarrow y(g_2) \rightarrow y(x_2)$.

In den KV-Diagrammen sind einige Funktionshazards durch Linien gekennzeichnet.

Abbildung 8.11: Funktionshazard

8.2.3 Strukturhazards

Ursache

Beim Übergang von 110 nach 010 entsteht kein Funktionshazard, da sich nur ein Variablenwert ändert. Dennoch kann während dieses Übergangs ein falsches Ausgangssignal enstehen. Die Ursache des falschen Ausgangssignals sind die Verzögerungen, die innerhalb eines Schaltnetzes zwischen einem Signal und seiner Negation wirksam sind.

Abbildung 8.12: Entstehung eines Strukturhazards

Das Ausgangssignal nimmt kurzzeitig den Wert 0 an, obwohl es den Wert 1 haben soll. Gemäß der Definition liegt ein statischer 1-Hazard vor.

Dieser Hazard wird allerdings in diesem Fall Strukturhazard genannt. Die Ursache dieses Strukturhazards ist, dass die Wertänderungen der Signale x und \bar{x} nicht genau zeitgleich erfolgen. Es gibt also Zeitpunkte, zu denen beide Signale x und \bar{x} gleich 0 oder gleich 1 sind. Hat x_1 den Wert 1 und x_0 den Wert 0 und wird der Wert von x_2 geändert (Übergang von 110 nach 010), tritt in der Schaltung ein statischer Strukturhazard auf. Dieser statische 1-Strukturhazard ist in dem KV-Diagramm durch eine Linie gekennzeichnet.

Die Veranschaulichung eines dynamischen Strukturhazards (siehe Abbildung 8.12c) zeigt den Übergang von 111 nach 010. Dabei wurde angenommen, dass die Verzögerung von x_2 größer ist als die Verzögerung von x_0 . man erkennt, dass der Wert von y sich

Abbildung 8.13: Statischer Strukturhazard

zunächst von 0 nach 1 ändert, dann noch einmal nach 0 zurückgeht und erst dann wieder 1 wird. Es ensteht also ein zusätzlicher Einsimpuls.

Abbildung 8.14: Dynamischer Strukturhazard

8.2.4 Vermeidung von Hazards

Übersicht

Ob die in Schaltnetzen auftretenden Hazards für eine nachgeschaltete Anordnung kritisch sind, hängt im wesentlichen von deren Zeitkonstanten ab. Deshalb ist es notwendig durch geeignete Maßnahmen die verschiedenartigen Hazardeinflüsse zu vermeiden.

Wichtigste Maßnahme zur Vermeidung von Hazards

Es gibt drei wichtige Maßnahmen die man ergreifen kann, um Hazards zu vermeiden. Zum einen verhindert ein Taktbetrieb (eine Synchronisierung der Schaltung), dass aufgetretene Hazards sich in nachfolgenden Schaltungsteilen ausbreiten können. Zum anderen kann man durch gezieltes Hinzufügen von Verzögerungsgattern in die Eingangsleitung einen Ausgleich von vorhandenen Verzögerungen bewirken. Darüber hinaus kann auch eine Änderung der Schaltstruktur - also Umformung der boolschen Algebra - Hazards verhindern.

Folgende Funktion beschreibt ein Schaltnetz in dem keine statischen Strukturhazards auftreten.

$$y = x_2 \cdot \overline{x_0} + \overline{x_2} \cdot x_1 + x_1 \cdot \overline{x_0}$$

Abbildung 8.15: Beseitigung des Strukturhazards

Es kann gezeigt werden, dass durch die Hinzunahme der redundanten Primimpl
kanten $x_1 \cdot \overline{x_0}$ auch die beiden dynamischen Strukturhazards beseitigt werden.

Eine Schaltung die durch eine disjunktive Normalform beschrieben wird, ist genau dann frei von allen statischen und dynamischen Strukturhazards, wenn die disjunktive Normalform aus allen Primimplikanten der betroffenen Funktion aufgebaut ist. Die Vermeidung von Strukturhazards durch hinzufügen von Primimplikanten ist somit sehr aufwendig.