RECAP

Man course topics:

I. Field extensions

- charactering algebraic & transcendental externory

II. Gröbner bases

- monomial order

- Construction / detection of Gobber beggs (Buchberger)

III. Ideal-variety correspondence

- various operaturs, e.g. U, n, +, -,:

IV. Polynomial & returned functions

- properties of V from Functions V-oK
- Isomorphum & brational equivakace

I. Field extensions

Algebraic extensions

Compare to the coordinate ring construction: $IF pek(E), LT(p) = t^{N}$ then

K[t]/cp> = spank [1, t, -, t" -}

and for V=V(p)cK

K[V] = K[E]/I(V(p)) = K[E]/(q) = xpenk 11, E, -, EM-(3)

where $q = (t - \alpha_i) - -(t - \alpha_M)$

a, -, am GK routs of p in K

Transcendental extensions

Kukla) Co Kuklt)

II Grother bases Monomial orders Total order (transitu

Total order (transitive & every pair can be compared) with $\times^{\alpha} \times^{p} \Rightarrow \times^{\alpha+8} \times^{\beta+8} \forall \alpha, p, y \in \mathbb{N}^{n}$

· Xx ≥0 Yx ∈ Nn

to make polynomial division algorithmic (no arbitrary choices)

Grobner basis
finite subset GCI with <LT(G)>=<LT(I)>

Character zetuns!

• Buchberger: $\overline{S(g_{i},g_{i})}^{G} = 0 \quad \forall g_{i},g_{i} \in G$

$$S(p,q) = \frac{x^{N}}{LT(p)} P - \frac{x^{N}}{LT(q)} q$$
, $x^{N} = lcn(LMp), LM(q))$

Sufficient criterion: LT(g) all coprime LT(p), LT(q) coprine $\Rightarrow \overline{S(p,q)}^{(p,q)} = 0$.

Buchberger's algorithm:
1f
$$S(g_{i},g_{j})^{G}=r\neq 0$$
, add $r\neq G$.

III Ideal-variety correspondence Perfect correspondence for radical ideals & alg closed fields ALGEBRA GEOMETRY V(I) I I(V) VCI)nV(J) エャJ (I(V)+I(W) YnW (I(v)+I(w) myllt not be reduced: $V=V(x^2-y)$, $W=V(x^2+y)$) IJ or InJ V(I) U V(I) JIN) I(W) = I(V) n I(W) (I(V)I(W) might not be radical: V=V(x), W=V(x)) て: ナ V(I) ヽV(I) I(v): I(w) $\overline{\vee \vee} \overline{\vee}$ Ink[xu, xn] na(VCI) I(V)nK[xx+1-xn] $\pi(V)$ I = I(VCI) prine VCI) irreducible I=I(VCI)) moximul VCI)={a} pont ACC DCC \leftarrow I, c I, c . -) IN=INH V, 2 /2 ?-- => Vn= Vn+1

Non-radical ideals and ideals in non-algebraically closed fields contain more information then varieties:

1)
$$V(x^{2}-y) \cap V(x^{2}+y) = \{(0,0)\}$$

 $(x^{2}-y) + (x^{2}+y) = (x^{2},y)$
degree 2 intersection
Visible in ideal sum

7)
$$V(x^3-y) \cap V(x^2-y) = \{(0,0), (1,1)\}$$

 $(x^3-y) + (x^2-y) = (x^2-y, xy-y, y^2-y) = I$
 y^2-y
 $y=0$
 $y=1$
 $g_1(x,0)=x^2$ $g_1(x,1)=x^2-1$

$$g_2(x,0)=0$$
 $g_2(x,1)=x-1$
 deg^2 intersection deg^2 intersection
 $Compare \sqrt{I} = \langle x-y, y^2-y \rangle$

3)
$$T = \langle x^2 + 1 \rangle$$
 & $J = \langle x^2 + x + 1 \rangle$ in $Q[x]$

$$V(I) = V(J) = V(I + J) = \emptyset$$

$$I detects the missing routs $\pm i \in Q$$$

J detects the missing roots $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i \in \mathbb{Q}$ I+J=<1> \rightarrow no common missing roots.

IV Polynomial & rational mappings

 $\phi: V \to K$ polynomial mapping: $\exists p \in K[x, -x_n] \quad \forall a \in V \quad \not \Rightarrow (a) = p(a)$ $\phi: V \to K \quad \text{rational napping:} \quad (\text{require } V \quad \text{irreducible})$ $\exists p, q \in K[x, -x_n] \quad \forall a \in V \quad \not \Rightarrow (a) = \frac{p(a)}{q(a)},$ $\exists b \in V \quad q(b) \neq 0$

Note: only values d(a) matter: If $V=V(x-y^1, x-z^3)$ C/R³, then $d:V\to IR$, $d(xy,z)=x^2+\sin^2(y^4)+\cos^2(z^6)$ Is a polynomial mapping! Indeed $y^4-z^6\in(x-y^2,x-z^3)>$ so on V $\sin^2(y^4)+\cos^2(z^6)=\sin^2(y^4)+\cos^2(y^4)=1$ $\Rightarrow d(x,y,z)=x^2+1$

Isomorphic varieties:

V=BW and polynomial and B=idw, Box=idv

2011

Birdianally equivalent varieties:

V=== W, a,B retinal asB=idw, Roa=idv
equality wherever defined