Examenul național de bacalaureat 2024 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ŞI DE NOTARE

Model

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(1-2i)+i(4+i)=2-4i+4i+i^2=$	3p
	=2+(-1)=1	2p
2.	$f(3) = -3 \Rightarrow 9 + 3a - a = -3$	3p
	a = -6	2p
3.	$x^2 + 8 = 8 - 2x$, de unde obţinem $x^2 + 2x = 0$	3 p
	x = -2 sau $x = 0$, care convin	2p
4.	Cifra zecilor se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în câte 4 moduri, deci se pot forma $2 \cdot 4 = 8$ numere	3p
5.	$\overrightarrow{OA} = 3\overrightarrow{j}, \ \overrightarrow{OB} = 4\overrightarrow{i}$	2p
	$\overrightarrow{OC} = \overrightarrow{4i} + 3\overrightarrow{j}$, deci punctul C are coordonatele $(4,3)$	3 p
6.	DC = 4	2p
	BD = 3, deci $BC = BD + DC = 3 + 4 = 7$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - (-1) - 0 - 0 = 1	3 p
b)	$A(a) \cdot A(b) = \begin{pmatrix} 1 & 0 & 0 \\ -b+a & 1 & a-b \\ 0 & 0 & 1 \end{pmatrix} =$	3р
	$= \begin{pmatrix} 0 & 0 & 0 \\ a-b & 0 & a-b \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A(a) - A(b) + I_3, \text{ pentru orice numere reale } a \text{ și } b$	2p
c)	$(A(1))^{-1} = A(1), (A(0))^{-1} = A(0)$	2p
	$X = (A(1))^{-1} \cdot (A(0))^{-1}$, de unde obţinem $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	3р
2.a)	$3 \circ 5 = m(3-3)(5-3) + 3 =$	3 p
	$= m \cdot 0 \cdot 2 + 3 = 3$, pentru orice $m \in (0, +\infty)$	2p

b)	$x \circ \frac{7}{2} = 2(x-3)(\frac{7}{2}-3) + 3 = x-3+3 = x$, pentru orice $x \in M$	2p
	$\frac{7}{2} \circ x = 2\left(\frac{7}{2} - 3\right)(x - 3) + 3 = x - 3 + 3 = x$, pentru orice $x \in M$, deci $e = \frac{7}{2}$ este elementul neutru al legii de compoziție " \circ "	3 p
c)	$f(x \circ y) = 3 + \sqrt{(x-3)(y-3) + 3 - 3} = 3 + \sqrt{(x-3)(y-3)} =$	2p
	$= 3 + (3 + \sqrt{x - 3} - 3)(3 + \sqrt{y - 3} - 3) = (f(x) - 3)(f(y) - 3) + 3 = f(x) \circ f(y), \text{ pentru orice}$ $x, y \in M$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 - \frac{-e^{-x}(x-1) - e^{-x}}{(x-1)^2} =$	3 p
	$=1+\frac{xe^{-x}}{\left(x-1\right)^{2}}=\frac{\left(x-1\right)^{2}+xe^{-x}}{\left(x-1\right)^{2}}, \ x\in\left(1,+\infty\right)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{e^{-x}}{x(x-1)} \right) = 1$	3p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(-\frac{e^{-x}}{x - 1} \right) = 0, \text{ deci dreapta de ecuație } y = x \text{ este asimptota oblică}$	2p
<u> </u>	spre $+\infty$ la graficul funcției f	
c)	$f'(x) > 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict crescătoare pe $(1, +\infty)$, deci f este	2p
	injectivă	- r
	$\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to 1} f(x) = -\infty$ și f este continuă, deci f este surjectivă, de unde	•
	$x \to +\infty$ $x \to 1$ obținem că f este bijectivă	3 p
2.a)	0 10	
2.a)	$\int_{1}^{3} f(x)(x^{2}+1)^{2} dx = \int_{1}^{3} x dx = \frac{x^{2}}{2} \Big _{1}^{3} =$	3 p
	$=\frac{9}{2}-\frac{1}{2}=4$	2p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{x}{\left(x^{2} + 1\right)^{2}} dx = \frac{1}{2} \int_{0}^{1} \frac{\left(x^{2} + 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} dx = -\frac{1}{2} \cdot \frac{1}{x^{2} + 1} \bigg _{0}^{1} =$	3 p
	$=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}$	2p
c)	$= -\frac{1}{4} + \frac{1}{2} = \frac{1}{4}$ $I_n = \int_0^1 x^n \sqrt{xf(x)} dx = \int_0^1 \frac{x^{n+1}}{x^2 + 1} dx, \text{ pentru orice număr natural nenul } n$	2p
	$I_n - I_{n+4} = \int_0^1 \frac{x^{n+1} \left(1 - x^4\right)}{x^2 + 1} dx = \int_0^1 x^{n+1} \left(1 - x^2\right) dx = \frac{x^{n+2}}{n+2} \left \frac{1}{0} - \frac{x^{n+4}}{n+4} \right \frac{1}{0} = \frac{1}{n+2} - \frac{1}{n+4} = $	3 p
	$=\frac{2}{(n+2)(n+4)}$, pentru orice număr natural nenul <i>n</i>	