Clase práctica 6

October 24, 2025

- 1. Si f es una función multiplicativa y no es idénticamente nula entonces f(1) = 1.
- 2. Si n>1 se escribe como $n=p_1^{e_1}*\dots*p_k^{e_k}$, entonces todos los divisores positivos de n se escriben como $d=p_1^{a_1}*\dots*p_k^{a_k}$, con $0\leq a_i\leq e_i$.
- 3. Sean n, m enteros positivos, tales que (n, m) = 1. Entonces todo divisor de n * m se escribe como $d = d_1 * d_2$, en donde $d_1|n$ y $d_2|m$, además se cumple $(d_1, d_2) = 1$, y todos estos productos son diferentes.
- 4. Sea $\tau(n)$ para n positivo, la cantidad de divisores positivos de n. Demuestre que esta función es multiplicativa. Encuentre una expresión para calcularla.
- 5. Sea $\sigma(n)$ para n positivo, la suma de los divisores positivos de n. Demuestre que esta función es multiplicativa. Encuentre una expresión para calcularla.
- 6. Sea n>1 demuestre que la multiplicación de todos los divisores positivos de n es igual a $n^{\tau(n)/2}$.
- 7. Demuestre que si f es una función multiplicativa y $F(n) = \sum_{d|n} f(d)$, entonces F es multiplicativa.
- 8. Demuestre que para $n \ge 1$ se cumple que $\sum_{d|n} \phi(d) = n$.
- 9. ******** Demuestre que $\phi(n) = \sum_{d \mid n} \frac{n}{d} \mu(d).$