Name: Cayce Beames Date: November 25, 2019 Professor Steven Gillette

Abstract

In this lab, I created 4 circuits to observe current, voltage, and switching behaviors of NPN and PNP transistors as a simulation of microprocessor control for a simulated work load including direct transistor switching and switching to a relay. Additionally, learned the concepts as to why a switching relay must have a flyback, or clamping diode installed in parallel with a coil relay.

Learning Objectives

- Use a transistor to interface a (simulated) microprocessor output and a load
- Build and test an "active high" transistor switch circuit
- Build and test an "active low" transistor switch circuit

Notes:

- 1. Took all voltage measurements relative to ground (unless otherwise stated)
- 2. Recorded relevant measurements and calculation results in data tables
- 3. Recorded all measured values on the circuit schematics
- 4. Used all available precision in calculations, rounded off answers to 3 significant figures

Materials

Quantity	Description
1	12V lamp
1	2N3904 or 2N2896 transistor
1	2N4403 transistor
1	1N4148 diode
1	12V relay
1	Base resistor (TBD)
1	Global Specialties trainer
1	Digital multimeter (DMM)

Procedure – Setup

1. Used an ohmmeter to measure the 12V lamp's cold resistance. Used Ohm's Law to *calculated and record* the expected operating current at room temperature.

$$R = 59.1\Omega$$
 $I = \frac{E}{R} = \frac{12V}{59.1\Omega} = .203A = \frac{203mA}{1200}$

2. Built circuit 1. *Measured and recorded* the actual operating current at working temperature. Use this I_{load} value for the transistor interface design steps below.

$$I = 23.48 \text{mA}$$
 $R = \frac{E}{I} = \frac{12V}{23.48 \text{mA}} = 511 \Omega$ Resistance increased at operating current!

3. *Measured and recorded* the voltage outputs of the GS Trainer SW1 in the on and off positions. This switch simulates the voltage and current outputs for a typical microcontroller. Used the on value as V_{in} for the design calculations below. Ensured that the switch bank voltage selection was set to 5V to ensure that the switch was receiving 5V rather than the +12V source voltage.

$$E = 5.05V$$

Procedure - Lamp Driver Design & Test

- 4. Using Circuit 2 as a template, designed a lamp driver circuit that will operate with the SW1 input. Assume a transistor beta of 100.
 - a. *Calculated and recorded* the desired base current using the Base Current Formula.

$$I_B = \frac{I_{load}}{\beta_{dc}} \frac{23.48mA}{100} = \frac{235\mu A}{100}$$

b. *Calculated and recorded* the base resistor value using the Base Resistor formula.

$$R_{base} = \frac{V_{in} - V_{BE}}{2 * I_{base}} = \frac{5.05V - 0.6V}{2 * 234\mu A} = \frac{4.45V}{4.696\mu A} = 9.51k\Omega$$

- 5. Built Circuit 2 using a resistor nearest to R_{base} value calculated above. $9.5k\Omega$
- 6. *Measured and recorded* V_{BE} , V_{LOAD} , V_{CE} , for both HIGH and LOW inputs from SW1.

	HIGH	LOW
$V_{ m IN}$	+5V	0V
V_{BE}	793mV	-22mV
V_{LOAD}	11.8V	0V
V _{CE}	169mV	0V

7. *Demonstrated* the circuit performance to the instructor or lab assistant for *signature*. (See Attachment A – Signature and Lab Notes)

Procedure - Relay Driver Design & Test

8. *Measured and recorded* the resistance of the relay coil. *Calculated and recorded* the expected Circuit 3 current using Ohm's Law.

$$R = 362\Omega$$
 $I = \frac{E}{R} = \frac{12.03V}{8620} = .33A = \frac{33mA}{8}$

9. Using Circuit 3 as a template, designed a relay driver circuit that will operate with the SW1 input, assuming a transistor beta of 100.

a. *Calculated and recorded* the desired base current using the Base Current Formula.

$$I_B = \frac{I_{load}}{\beta_{dc}} \frac{33mA}{100} = \frac{330\mu A}{100}$$

b. *Calculated and recorded* the base resistor value using the Base Resistor formula.

$$R_{base} = \frac{V_{in} - V_{BE}}{2 * I_{base}} = \frac{5.05V - 0.6V}{2 * 330\mu A} = \frac{4.45V}{660\mu A} = \frac{6.74k\Omega}{600}$$

- 10. Built Circuit 3 using a resistor nearest to R_{base} value calculated above, $6.8k\Omega$.
- 11. Measured and recorded V_{BE} , V_{LOAD} , V_{CE} , for both HIGH and LOW inputs from SW1.

	HIGH	LOW
$V_{\rm IN}$	+5V	0V
V_{BE}	800mV	-2.5mV
V_{LOAD}	11.8V	1.7V
V _{CE}	500μV	0.1V

12. *Demonstrated* the circuit performance to the instructor or lab assistant for *signature*. (See Attachment A – Signature and Lab Notes)

Procedure - PNP Lamp Driver

- 13. Built Circuit 4. Connected the input first to +12, then to 0V (ground). Note; this circuit is "active low," meaning the input is driven low to turn on the transistor.
- 14. *Measured and recorded* V_{BE}, V_{LOAD}, V_{CE}, for both HIGH and LOW inputs from SW1. (12V & 0V)

	HIGH	LOW
$V_{\rm IN}$	+12V	0V
V_{BE}	9.13V	-0.4mV
V_{LOAD}	2.18V	11.83V
V _{CE}	9.78V	111mV

15. *Demonstrated* the circuit performance to the instructor or lab assistant for signature. (See Attachment A – Signature and Lab Notes)

Formulas

Base Current

$$I_{B} = \frac{I_{load}}{\beta_{dc}}$$

Base Resistor

$$R_{base} = \frac{V_{in} - V_{BE}}{2 \times I_{base}}$$

Where;

I_B = base current

 β_{dc} = transistor beta (gain) I_{load} = operating current

Where;

R_{base} = base resistor (ohms)

2 = safety factor (current is limited by the load)
V_{in} = S1 high output voltage

V_{BE} = base emitter barrier potential I_{base} = desired base current

Results Data

Lamp Driver Setup

Lamp Resistance (Ω)	Source Voltage	Expected Current (mA) I = E / R	Measured Current (mA)	SV	rainer V1 ages
Resistance (22)	Voltage	12V	(ma)	HI	LO
59.1Ω	12V	$I = \frac{127}{59.1\Omega}$	203mA	5.05V	0V

Lamp Driver Design

Eump Differ	Eamp Biver Besign			
Desired Base Current				
I_{LOAD} b_{DC} $I_{B} = I_{LOAD} / b_{DC}$				
23.48mA	100	234μΑ		

Base Resistor			
V _{IN} (SW1 HI)	$ m V_{BE}$	I _{BASE}	$R_{base} = \frac{V_{in} - V_{BE}}{2 \times I_{base}}$
5.05V	0.6V	234μΑ	9.5kΩ

Lamp Driver Test

	шоп	LOW
	HIGH	LOW
V_{IN}	+5V	0V
V_{BE}	793mV	-22mV
V_{LOAD}	11.8V	0V
V_{CE}	169mV	0V

Results Data

Relay Driver Design

		Expected	GS T	rainer	
Coil	Source	Current (mA)	SV	V1	
Resistance (Ω)	Voltage	I = E / R	Volt	ages	
			HI	LO	
362Ω	12V	33mA	5.05V	0V	

Desired Base Current			
I_{LOAD} b_{DC} $I_{B} = I_{LOAD} / b_{DC}$			
33mA	100	330μΑ	

Base Resistor			
V _{IN} (SW1 HI)	$\mathbf{V}_{ ext{BE}}$	I _{BASE}	$R_{base} = \frac{V_{in} - V_{BE}}{2 \times I_{base}}$
5.05V	0.6V	330μΑ	6.74kΩ

Relay Driver Test

	HIGH	LOW
$V_{\rm IN}$	+5V	0V
V_{BE}	800mV	-2.5mV
V_{LOAD}	11.77V	1.7V
V _{CE}	500μV	0.1mV

PNP Lamp Driver Test

THE Europ Billion Test				
	HIGH	LOW		
V _{IN}	+12V	0V		
V _{BE}	9.13V	-0.4mV		
V _{LOAD}	2.18V	11.83V		
V _{CE}	9.78V	111mV		

Critical Thinking

1. For circuit 1, why was the measured lamp current different than the calculated lamp current?

Resistance is affected by the heat of the filament. The resistance through the lamp was observed to increase.

2. Discuss the advantages of transistors over electromechanical contacts.

Transistors area significantly faster in operation and last longer between than mechanical switch contacts found in electromechanical relays. Additionally, transistors use significantly less current and take up less space than relays. Lastly, all these factors drive price down. Transistors cost less than relays.

3. Explain the reason for the protection diode in Circuit 3.

When a relay coil circuit is de-energized, the energy stored in the magnetic field of the coil tends to flow in the reverse direction. A protection diode will assist in preventing the current from flowing back into the circuit during the de-energizing phase of the inductor coil.

4. What did you learn with this lab?

This lab was an opportunity to observe the switching capabilities of the transistor simulating microprocessor control in both active high and active low configurations. It was also an opportunity to explore that resistance in incandescent lamps increases as a result of the heat generated from the filament and how flyback diodes can help protect a transistor circuit. Lastly, while we could not measure the speed of effect of switching on the lamp versus switching the relay, the experiment allowed for exploration of switching solid state and mechanical loads.

Appendix A – Signature and Lab Notes

SIERRA	MECH 10 - La Transistor Driv	TIE O OTHER TOTTED
ame Cayce	Scanes	11/21/19
Build and tes	es stor to interface a (simulated) mic st an "active high" transistor swit st an "active low" transistor switc	tch circuit
Notes:		
 Record relevant Record all n 	tage measurements relative to gro vant measurements and calculation neasured values on the circuit sch lable precision in calculations, roo	on results in data tables
Materials		
Quantity	Description	
1 1 1	12V lamp 2N3904 or 2N2896 transistor 2N4403 transistor 1N4148 diode	
1 1 1	12V relay Base resistor (TBD) Global Specialties trainer Digital multimeter (DMM)	Strang discribe of the section of th
Procedure - Setu	p	Frenchese - FNF Lamp Briver
calculate of	and record the expected operating	
2. Build circu temperatur	uit 1. Measure and record the acture. Use this I _{load} value for the transi	al operating current at working istor interface design steps below.
73. Measure of positions.	and record the voltage outputs of the This switch simulates the voltage a	the GS Trainer PB1 in the on and off and current outputs for a typical the design calculations below.
Procedure - Lan	np Driver Design & Test	
the PB1 in	nput. Assume a transistor beta of 10	
a. Co	alculate and record the desired bas ormula. Show your work.	se current using the Base Current
	alculate and record the base resisted armula. Show your work.	- 5,051-0.61 - 41.96 M
SDG 11/14	MECH 10 - I	

5. Build Circuit 2 using the R_{base} value calculated above.

%. Measure and record V_{BE} , V_{LOAD} , V_{CE} , for both HIGH and LOW inputs from

Demonstrate the circuit performance to the instructor or lab assistant for

Procedure - Relay Driver Design & Test

8. Measure and record the resistance of the relay coil. Calculate and record the expected Circuit 3 current using Ohm's Law.

9. Using Circuit 3 as a template, design a relay driver circuit that will operate with the PB1 input. Assume a transistor beta of 100.

Formula. Show your work.

b. Calculate and record the base resistor value using the Base Resistor formula. Show your work. $\frac{5.05 - 16}{2 \times 330 \mu \text{ k}} = 6.742 \text{ kg}$

10. Build Circuit 3 using the Rbase value calculated above.

M. Measure and record VBE, VLOAD, VCE, for both HIGH and LOW inputs from

2. Demonstrate the circuit performance to the instructor or lab assistant for signature.

Procedure - PNP Lamp Driver

13. Build Circuit 4. Connect the input first to +12, then to 0V (ground). Note; this circuit is "active low," meaning the input is driven low to turn on the transistor.

14. Measure and record VBE, VLOAD, VCE, for both HIGH and LOW inputs from PB1. (12V & 0V)

13. Demonstrate the circuit performance to the instructor or lab assistant for signature.

Formulas

Base Current

Base Resistor

$$I_{B} = \frac{I_{load}}{\beta_{dc}}$$

$$R_{base} = \frac{V_{in} - V_{BE}}{2 \times I_{base}}$$

Where;

I_B = base current β_{dc} = transistor beta (gain) ad = operating current

R_{base} = base resistor (ohms) 2 = safety factor (current is limited by the load) Vin = S1 high output voltage

V_{BE} = base emitter barrier potential = desired base current

SDG 11/14

MECH 10 - Lab 21

Page 2 of 5

amp Driver Se	etup				
Lamp Resistance (Ω)	Source Voltage	Expected Current (mA) $I = E / R$	Measured Current (mA)	GS Trainer PBT Voltages	
59:12	12V	I = 12/59.12	203mk	F.05V OV	
n . n					
Lamp Driver D	esign esired Base	Current			
I _{LOAD}	β_{DC}	$I_B = I_{LOAD} / \beta_D$			
23.48mx	100	234pt	N Gesti		
		Base Resistor			
			$R_{base} = \frac{V_{base}}{2}$	$\frac{1}{N} - V_{BE}$	
V _{IN} (PB1 HI)	V_{BE}	I _{BASE}			05.5
5,050	0.6V	234 NA	7.	SIKJZ US!	ng 9.5KSZ
I D.i	Cont				
Lamp Driver	HIGH	LOW	16,		
V	+5V	0V			
V _{IN}	793mV	- 22m	J		
V _{BE}	11.81,	OV			
V _{LOAD}	169mJ	VO			
V CE	10 11 4				
				,	
SDG 11/14					Page 3 of 5

Results Data

Relay Driver Design

Coil Resistance (Ω)	Source Voltage	Expected Current (mA) $I = E / R$	GST PBIV	
	2 /		HI	LO
36252	12.05V	33mA	5,05	21

Desired Base Current			
I _{LOAD}	$I_B = I_{LOAD} / \beta_{DC}$		
33 mA	100	330 NA	

Base Resistor				
V _{IN} (PBT HI)	$ m V_{BE}$	I _{BASE}	$R_{base} = \frac{V_{in} - V_{BE}}{2 \times I_{base}}$	
5,051	0.6V	330NA	6.74 \$52	

Using 6.8KR

Relay Driver Test

	HIGH	LOW	
V _{IN}	+5V	0V	
V _{BE}	800mJ	-2,5 mJ	
V _{LOAD}	11,77	-1.71	
V _{CE}	SDOIN	Oilau	

PNP Lamp Driver Test

1 M Lamp Driver Test				
	HIGH	LOW		
VIN	+12V	0V		
V _{BE}	9.131	-0.4mV		
V _{LOAD}	2.181	11,831		
V _{CE}	9,781	(ilm)		

SDG 11/14

MECH 10 - Lab 21

Page 4 of 5

Critical Thinking

- 1. For circuit 1, why was the measured lamp current different than the calculated lamp current? resistance is affected by heart of filament
- 2. Discuss the advantages of transistors over electromechanical contacts. Sust, like
- 3. Explain the reason for the protection diode in Circuit 3. Protect from reserved
- 4. What did you learn with this lab?

Grading Criteria

Grading Criteria		Points Possible	Points Earned
Documentation	Abstract, introduction, experiment, data results, conclusions, attachments, clarity, spelling, grammar	10	
Setup	Currents calculated, measured, and recorded.	5	
Lamp Driver	Base current and resistor calculated; Circuit values measured and recorded; circuit demonstrated & signed off	10	
Relay Driver	Base current and resistor calculated; Circuit values measured and recorded; circuit demonstrated & signed off	10	
PNP Lamp Driver	Circuit values measured and recorded; circuit demonstrated & signed off	10	
Critical thinking	Questions answered completely & accurately. State conclusions drawn and lessons learned from the lab	10	
On-time submittal	Lab report is submitted in accordance with the assignment due date as posted on Canvas	5	2
	Total	60	

Lab Report Format

Abstract - a summary and high-level overview of the lab and its results

Introduction - State the objectives of the laboratory and list the equipment required

Experiment - Describe the procedure used to carry out the lab

Results Data - list all data taken in table or graphical format

Critical Thinking - State the conclusions drawn and lessons learned from the laboratory activities. Answer any questions found within the lab procedure.

Attachments – grading criteria, verification signatures, circuit diagrams, lab procedures & notes

SDG 11/14

MECH 10 - Lab 21

Page 5 of 5

Grading Criteria

		Points Possible	Points Earned
Documentation	Abstract, introduction, experiment, data results, conclusions, attachments, clarity, spelling, grammar	10	
Setup	Currents calculated, measured, and recorded.	5	
Lamp Driver	Base current and resistor calculated; Circuit values measured and recorded; circuit demonstrated & signed off	10	
Relay Driver	Base current and resistor calculated; Circuit values measured and recorded; circuit demonstrated & signed off	10	
PNP Lamp Driver	Circuit values measured and recorded; circuit demonstrated & signed off	10	
Critical thinking	Questions answered completely & accurately. State conclusions drawn and lessons learned from the lab	10	
On-time submittal	Lab report is submitted in accordance with the assignment due date as posted on Canvas	5	
	Total	60	

Lab Report Format

Abstract - a summary and high-level overview of the lab and its results

Introduction - State the objectives of the laboratory and list the equipment required

Experiment - Describe the procedure used to carry out the lab

Results Data - list all data taken in table or graphical format

Critical Thinking - State the conclusions drawn and lessons learned from the laboratory activities. Answer any questions found within the lab procedure.

Attachments – grading criteria, verification signatures, circuit diagrams, lab procedures & notes