

PROPOSAL PROGRAM KREATIVITAS MAHASISWA JUDUL PROGRAM

PERANCANGAN DAN REALISASI SISTEM SENSOR AIR BERSIH DENGAN PENGIRIMAN DATA TELEMETRI MENGGUNAKAN MEDIA WALKIE TALKIE SEBAGAI TRANCIEVER UNTUK DAERAH BLANK SPOT

BIDANG KEGIATAN: PKM KARSA CIPTA

Diusulkan oleh:

Ketua: Zahra Zakiyah Salsabila K
 Anggota : 1. Sarah Muslimawati
 2. Agmel Melvia
 151344031 Tahun Angkatan 2015
 151344027 Tahun Angkatan 2015
 161344003 Tahun Angkatan 2016

POLITEKNIK NEGERI BANDUNG BANDUNG 2018

PENGESAHAN PKM-KARSACIPTA

1. Judul Kegiatan : Perancangan dan Realisasi Sistem Sensor

Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranciever Untuk Daerah

Blank Spot

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Zahra Zakiyah Salsabila K

b. NIM : 151344031c. Jurusan : Teknik Elektro

d. Politeknik : Politeknik Negeri Bandung
e. Alamat Rumah : Jl. Ancol Utara I No 78A/36D

Kel.Balonggede, Kec Regol, Kota. Bandung.

No.HP 08561389666

f. Alamat email : zakyzara@gmail.com4. Anggota Pelaksana Kegiatan/Penulis : 2 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Tata Supriyadi, DUT., ST., M.Eng.

b. NIDN : 0026116303

c. Alamat Rumah : Jl. Sipil No. 03 Perumahan Polban

Bandung

d. Nomot Tel/HP : 08121496565

6. Biaya Kegiatan Total

a. DIPA Polban : Rp8.450.000 7. Jangka Waktu Pelaksanaan : 3 bulan

Bandung, 24 Mei 2018

Menyetujui

Dosen pendamping Ketua Pelaksana Kegiatan

<u>Tata Supriyadi, DUT., ST.,M.Eng.</u> <u>Zahra Zakiyah Salsabila K</u>

NIP. 196311261993031002 NIM.151344027

Mengetahui,

Ketua UPPM, Ketua Jurusan

Dr. Ir. Ediana Sutjiredjeki, M.Sc. Malayusfi, BSEE,MT

NIP. 19550228 198403 2 001 NIP. 19540101 198403 1001

DAFTAR ISI

PENGESAHAN PKM-KARSACIPTA	i
DAFTAR ISI	ii
BAB I	1
PENDAHULUAN	1
BAB II	3
TINJAUAN PUSTAKA	3
BAB III	6
METODOLOGI PENYELESAIAN	6
3.1 Pra Kegiatan	6
3.2 Pelaksanaan Kegiatan	6
3.3 Pasca Kegiatan	7
BAB IV	8
BIAYA DAN JADWAL KEGIATAN	8
4.1 Anggaran Biaya	8
Tabel 1. Ringkasan Anggaran Biaya	8
4.2 Jadwal Kegiatan	8
Tabel 2. Jadwal Kegiatan Penelitian	8
DAFTAR PUSTAKA	9
LAMPIRAN LAMPIRAN	10
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	10
Lampiran 2. Justifikasi Anggaran Kegiatan	20
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	22
Lampiran 4. Surat Pernyataan Ketua Pelaksana	23
Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan	24

BABI

PENDAHULUAN

Air merupakan salah satu jenis sumber daya alam yang banyak dimanfaatkan oleh manusia untuk dikonsumsi atau melakukan aktivitas sehari-hari. Dewasa ini pun kebutuhan akan air bersih semakin meningkat sehingga banyak dilakukan pencarian sumber air bersih. Namun masyarakat banyak yang tidak mengetahui standar dari kualitas air yang baik. Selain itu, saat dilakukan pencarian air bersih seringkali langsung membawa massa dan alat-alat untuk menggali tanpa mengetahui medan yang akan dilalui sebelumnya. Hal itu dikarenakan sulitnya dilakukan komunikasi karena sumber air bersih biasanya berada pada daerah terpencil banyak benda yang menghalangi sinyal pemancar sehingga tidak dapat terjangkau jaringan GSM.

Sudah banyak solusi yang ditawarkan untuk mengatasi kedua permasalahan utama tersebut. Solusi untuk mengukur kelayakan air diantaranya pendeteksi kualitas air dengan metoda fuzzy logic (Abdullah, 2016), pengukuran parameter pH, suhu dan kekeruhan, pendeteksi kekeruhan air (Hedlyni,2011)(Manik, 2013) menggunakan fototransistor dan led infrared dan berbasis mikrokontroller. Pada sistem pendeteksi kualitas air dengan metoda logic (Abdullah, 2016), data yang didapatkan hanyalah tingkat keasaman (pH) serta kekeruhan yang diukur menggunakan LED. Pada sistem pendeteksi kekeruhan air (Hedlyni,2011)(Manik, 2013), data yang didapatkan hanyalah tingkat kekeruhan sehingga parameter lain seperti suhu dan pH yang menentukan kualitas air terabaikan.

Selain itu solusi untuk melakukan komunikasi pada daerah tak terjangkau jaringan diantaranya sistem komunikasi LOS (Saedudin, 2012), penggunaan modul wifi (Nugraha, 2015), RF (Adityas, 2017), modem radio (Raveons, 2011), penggunaan walkie talkie sebagai transmitter (Abdurrahim, 2017), dan sistem telemetri radio (Akbar, 2013). Sistem komunikasi LOS (Saedudin, 2012) memiliki kelemahan yaitu pengiriman data harus berada pada suatu bidang lurus serta tidak boleh ada penghalang. Pada penggunaan modul WiFi (Nugraha, 2015) memiliki kelemahan yaitu hanya dapat berinteraksi degan modul WiFi yang sejenis. Pada sistem komunikasi menggunakan modul RF memiliki kelemahan yaitu jarak jangkauan yang relatif pendek. Penggunaan modem radio (Raveons, 2011) sulit untuk kegiatan bergerak, begitu juga dengan sistem telemetri radio (Akbar, 2013).

Untuk mengatasi permasalahan tersebut, penulis memberi solusi untuk melakukan pengukuran kualitas air dengan parameter suhu, pH, serta kekeruhan air yang diintergasikan dengan penggunaan walkie talkie sebagai media pentransmisi data yang akan memudahkan proses pencarian air bersih tanpa harus langsung membawa massa dan alat berat. Kelebihan dari sistem ini adalah data mengenai kualitas air dapat dikirimkan dari lokasi penemuan sumber air dan terjalinnya komunikasi antara surveyor air bersih dengan tim yang akan melakukan

pengambilan air sehingga tim pengambilan air akan bergerak setelah ditemukannya lokasi sumber air bersih. Kelebihan lainnya dalah alat yang digunakan untuk berkomunikasi mudah untuk berpindah tempat (*portable*).

Alat ini memiliki dua sub sistem yang masing-masing terdiri dari modul rx tx, modem, dan walkie talkie. Namun, salah satu sub sistem terintegrasi dengan pendeteksi air bersih yang terdiri dari sensor-sensor yang telah disebutkan sebelumnya. Bagian yang terintegrasi detektor memiliki peranan sebagai pencari air bersih yang kemudian datanya dapat diakses melalui smartphone dan dapat juga dikirimkan kepada sub sistem yang lainnya yang ditransmisikan melalui walkie talkie. Sub sistem yang tidak terintegrasi detektor kemudian dapat mengetahui kondisi air yang telah ditemukan dan apabila kondisi air bagus, selanjutnya akan mengirimkan tim menuju lokasi tersebut. Namun apabila kondisi air kurang bagus, maka pencarian tetap dapat dilanjutkan kembali karena alat ini mudah dipindahkan (portable). Selain dapat mengakses data telemetri, kedua sub sistem juga dapat melakukan komunikasi serupa pesan singkat. Semua hal tersebut dilakukan tanpa melalui jaringan GSM ataupun internet.

Dengan merealisasikan sistem ini diharapkan pencarian air bersih dapat berlangsung dengan lebih efektif dan efisien. Maka dari itu judul yang diangkat yaitu "PERANCANGAN DAN REALISASI SISTEM SENSOR AIR BERSIH DENGAN PENGIRIMAN DATA TELEMETRI MENGGUNAKAN MEDIA WALKIE TALKIE SEBAGAI TRANCEIVER UNTUK DAERAH BLANK SPOT"

BAB II

TINJAUAN PUSTAKA

Penelitian ataupun pengembangan terdahulu sangat penting guna menemukan titik perbedaan maupun persamaan dengan penelitian yang akan dilakukan. Selain itu, penelitian terdahulu juga berguna sebagai perbandingan untuk pengembangan sekaligus landasan dalam pembuatan Manajemen Proyek ini.

Air bersih merupakan salah satu jenis sumber daya alam yang banyak dimanfaatkan oleh manusia untuk dikonsumsi atau melakukan aktivitas seharihari. Air bersih dikatakan layak untuk dikonsumsi, jika memenuhi beberapa persyaratan kualitas air yang meliputi persyaratan fisik, persyaratan kimiawi dan persyaratan mikrobiologis (Abdullah, 2016). Akan tetapi banyak dari masyarakat indonesia sekarang yang kurang peduli tentang kualitas air yang mereka konsumsi, terutama masyarakat yang tinggal di pinggir-pinggir sungai yang telah tercemar oleh sampah maupun limbah pabrik. Dengan menggunakan sistem ini, akurasi pengukuran pH >80%, terutama pada pH bernilai 7 mencapai 94.40%, dan pada system ini pH yang di anggap memenuhi kualitas air bernilai antar 6,5 – 7,5 dan alat ini dapat mengukur tingkat kekeruhan air pada rentang 0-200 dengan jarak pencahayaan led dengan sensor LDR sebesar 10cm.

Kesehatan air sangat perlu saat ini. Hal ini dikarenakan pencemaran air sangat mudah terjadi. Alat ukur kualitas air ini menggunakan parameter suhu, kekeruhan, pH serta menggunakan Arduino sebagai mikrokontrolernya (Amani, 2016). Pengukuran suhu menggunakan sensor LM35, pengukuran pH menggunakan sensor pH dengan pengkondisian sensor pH dari Dfrobot. Perancangan suatu alat yang dapat mengukur suatu kekeruhan air juga diperlukan pada saat ini (Manik, 2013). Dengan menggunakan sensor LDR (Light Dependent Resistor), dimana sensor ini dapat mendeteksi air dari tingkat cahaya LED (Light Emitting Diode) yang menembus air tersebut, maka akan terdeteksi kekeruhan air. Pemprosesan dan pengendalinya dilakukan oleh ATMega 8535.

Air yang keruh akan menyebabkan intensitas cahaya yang masuk kedalamnya berkurang. Dengan demikian tingkat kekeruhan air dapat dideteksi dengan alat pengukur intensitas cahaya (Hedlyni,2011). Kegiatan rancang bangun perlu dilakukan dengan tujuan untuk menghasilkan alat yang dapat digunakan untuk mengukur tingkat kekeruhan air sebagai pemanfaatan piranti elektronika berupa fototransistor.

Terdapat beberapa solusi untuk melakukan komunikasi data tanpa menggunakan jaringan GSM seperti sistem komunikasi LOS, penggunaan modul wifi, penggunaan modul RF, penggunaan modem radio dan sistem telemetri radio.

Sistem komunikasi *line of sight* dapat dimanfaatkan untuk melakukan komunikasi data tanpa adanya jaringan GSM. Permasalahan dari sistem komunikasi ini adalah tidak boleh adanya benda yang menghalangi jalur transmisi (Saedudin, 2012). Sedangkan pada daerah yang tidak terjangkau oleh sinyal GSM seperti hutan dan dalam pertambangan terdapat banyak benda yang menghalangi. Alat yang kami kembangkan memanfaatkan gelombang radio dari walkie talkie sehingga tidak mempermasalahkan benda yang menghalangi.

Salah satu sistem lain yang telah dibuat adalah sistem transmisi data pada frekuensi radio menggunakan modul xbee. Modul Xbee menggunakan jaringan wifi untuk memancarkan gelombang radio (Nugraha, 2015). Modul ini memiliki harga yang cukup mahal dan komunikasi hanya dapat dilakukan antar modul Xbee. Selain itu penggunaan modul ini hanya digunakan sebagai transmisi data saja. Alat yang kami buat adalah pemanfaatan lebih lanjut dari penggunaan walkie talkie dimana walkie talkie dapat bekerja sebagai alat komunikasi *voice* namun dapat digunakan juga sebagai media pengiriman data.

Modul RF seperti modul TLP – RLP dapat digunakan juga sebagai komunikasi data via RF (Adityas,2017). Modul ini cukup sederhana dan bekerja dengan modulasi ASK (*Amplitude Shift Keying*) dengan frekuensi yang sudah ditetapkan pada nilai tertentu. Kelemahan pada penggunaan modul ini berada pada jarak pancar yang dekat dan biasanya hanya digunakan untuk mengirim data sederhana. Alat yang kami kembangkan akan mengolah data yang cukup rumit seperti file gambar dan jarak yang cukup jauh sehingga penggunaan modul TLP – RLP tidak memadai.

Sistem telemetri radio dapat digunakan dalam pengiriman data hasil sensor (Akbar, 2013). Sistem ini mengirimkan data telemetri melalui pemancar radio. Sistem radio ini memiliki kemiripan dengan alat yang kami buat. Perbedaannya ada pada bagian modem serta pemancar dan penerima radio. Sistem telemetri pada umumnya menggunakan radio pemancar tersendiri untuk komunikasi. Alat yang kami rancang menggunakan walkie talkie sebagai pemancar dan penerima untuk kemudahan mobilitas serta penggunaan walkie talkie yang sudah umum sehingga penerapannya lebih mudah dilakukan.

Perusahaan Raveon telah mengembangkan data radio modem yang digunakan untuk mengirim data antara dua lokasi atau (Raveons, 2011). Alat ini diciptakan dengan tujuan hanya untuk mengirim data dan bukan untuk dibawa sedangkan alat kami buat memanfaatkan walkie talkie yang memiliki mobilitas tinggi sehingga dapat digunakan dalam kegiatan yang bergerak.

Dari semua alat yang sudah ada perlu pengembangan kembali sistem komunikasi data untuk daerah tertutup dengan mengutamakan kemudahan penggunaan dan dapat digunakan untuk mobilitas. Walkie talkie dipilih karena penggunaan yang sudah umum sehingga tidak memerlukan penambahan pemancar dan penerima radio (Abdurrahim, 2017). Walkie talkie juga dapat digunakan untuk kegiatan bergerak sehingga komunikasi data dapat terus berjalan. Sistem penerima

pada modem yang kami rancang didesain untuk dapat menerima pengiriman data tanpa kabel sehingga dapat melakukan pengiriman data melalui alat yang sudah umum seperti *smartphone*.

BAB III

METODOLOGI PENYELESAIAN

Metode pelaksanaan program karsa cipta ini adalah sebagai berikut :

3.1 Pra Kegiatan

Dari blok diagram yang telah diusulkan maka akan dilakukan perancangan agar menjadi sebuah bentu skema. Untuk sistem ini akan digunakan dua buah walkie talkie yang berfungsi sebagai transceiver untuk pengirim dan penerima data, modem FSK untuk menjaga keutuhan data yang dikitim dan diterima, *trigger* PTT untuk mengaktifkan walkie talkie, mikrokontroler sebagai pengolah data dari *device* ataupun sensor, modul Bluetooth yang berfungsi untuk menerima dan mengirimkan data dari/ke *device*, dan juga sistem sensor air bersih yang terdiri dari sensor suhu, pH, dan kekeruhan.

Dengan alat-alat di atas, terdapat dua sub sistem. Kedua sub sistem dapat dibuat dengan mengintegrasikan device dengan mikrokontroller melalui modul Bluetooth yang nantinya ada data yang dikirim berupa pesan singkat. Kemudian output dari mikrokontroller dimodulasi menggunakan modem FSK agar data bisa diterima oleh walkie talkie. Sebelumnya, apabila akan mengirim data maka *trigger* PTT akan mengaktifkan walkie talkie sebagai transmitter. Sebaliknya apabila tidak ada data yang akan dikirim maka walkie talkie secara otomatis akan bertindak sebagai receiver.

Terdapat perbedaan antara dua sub sistem tersebut yaitu pada salah satu sub sistem dilengkapi dengan fitur sistem sensor air bersih. Sensor air bersih yang terdiri dari sensor suhu, pH, dan kekeruhan tersebut akan mengirimkan datanya kepada mikrokontroller untuk kemudian dilakukan pengolahan data untuk menentukan apakah air tersebut bersih atau tidak.

3.2 Pelaksanaan Kegiatan

1. Realisasi

Setelah didapat skema yang diperlukan dari sistem, selanjutnya akan dilakukan realisasi dari perancangan sistem tersebut. Skema yang dipasang dan digunakan di jalan akan dirangkai pada PCB menggunakan layout yang telah ditentukan. Sebelum dirangkai fix ke PCB, alat dan komponen harus dipastikan bekerja dengan baik dengan mengujinya terlebih dahulu. Jika sudah dipastikan semua alat berfungsi maka dapat langsung dirangkai di PCB. Agar sistem terlihat rapi dan tidak tercecer maka dibuat juga casing sebagai tempat/wadah bagi rangkaian.

2. Pengujian

a. Modem FSK

Untuk menjaga keutuhan data, data digital yang berasal dari mikrokontroller akan dimodulasi secara Frequency Shift Keying yang keluarannya berupa data analog agar dapat diterima oleh walkie talkie. Sementara apabila data berasal dari walkie talkie maka akan dilakukan proses demodulasi untuk mengembalikan data ke bentuk semula sebelum akhirnya diproses kembali oleh mikrokontroller.

b. Trigger PTT

Trigger PTT digunakan untuk merubah mode walkie talkie yang semula berperan sebagai receiver menjadi berperan sebagai transmitter dengan cara memberikan tegangan tertentu pada port Push To Talk pada walkie talkie.

c. Sistem sensor air bersih

Sistem sensor air bersih yang terdiri dari sensor Ph, kekeruhan, dan suhu nantinya akan mengambil data kemudian dilakukan analisa berdasarkan standar tertentu. Air yang tidak memenuhi persyaratan akan dianggap tidak baik atau tidak bersih, sebaliknya apabila air memenuhi persyaratan akan dianggap baik dan data dapat dikirimkan ke *user* lainnya.

d. Pengiriman data berupa text antar device

Device akan mengirimkan data berupa text kepada modul bluetooth yang kemudian akan diproses dengan mikrokontroler.

3.3 Pasca Kegiatan

1. Analisis

Pada tahap ini akan dianalisis kinerja dari komunikasi antar kedua sub sistem tersebut. Sebelumnya pada salah satu sub sistem yang memiliki fitur sistem sensor air bersih juga dilakukan analisa untuk menentukan kondisi air bersih atau tidak. Data yang dikirim harus sama dengan data yang diterima.

2. Evaluasi

Diharapkan sistem ini dapat membantu masyarakat yang akan melakukan pencarian air bersih agar lebih efektif karena tidak perlu membawa banyak barang dan banyak orang untuk melakukan analisis dan dipermudah untuk melakukan komunikasi, terutama pada daerah yang tidak terjangkau jaringan GSM.

BAB IV

BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 1. Ringkasan Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Peralatan penunjang	2.550.000
2	Bahan habis pakai	3.010.000
3	Perjalanan	790.000
4	Lain-lain	2.100.000
	JUMLAH	8.450.000

Terbilang: Tujuh Juta Empat Ratus Lima Puluh Ribu Rupiah

4.2 Jadwal Kegiatan

Tabel 2. Jadwal Kegiatan Penelitian

No	Vagiatan		Bulan ke-1		Bulan ke-2			Bulan ke-3					
NO	Kegiatan	1	2	3	4	5	6	7	8	9	10	11	12
1	Perancangan												
2	Survey Komponen												
3	Implementasi Alat												
4	Tahap Analisi												
5	Pengujian Alat												
6	Evaluasi												
7	Pembuatan Laporan Akhir												

DAFTAR PUSTAKA

- Abdullah, M., 2016. RANCANG BANGUN SISTEM PENDETEKSI KUALITAS
 - AIR MENGGUNAKAN METODE FUZZY LOGIC. *e-Proceeding of Engineering ISSN*, Volume 3, p. 1321.
- Abdurrahim, M., 2017. REALISASI SISTEM KOMUNIKASI DATA DENGAN PEMANFAATAN
- WALKIE TALKIE SEBAGAI ALAT TRANSMISI RADIO UNTUK DAERAH
 - TIDAK TERJANGKAU JARINGAN GSM DAN INTERNET, Bandung: Politeknik Negeri Bandung (POLBAN).
- Adityas, B., 2017. *Modul Komunikasi Data via RF*. [Online]
 Available at: http://bonusoid.blogspot.co.id/2013/01/modul-komunikasi-data
 - via-rf.html [Accessed 7 April 2018].
- Akbar, A., 2013. *Modul FTETI 1 Sistem Telemetri Radio*, Bandung: Program Studi
 - Fisika Institut Teknologi Bandung (ITB).
- Amani, F., 2016. ALAT UKUR KUALITAS AIR MINUM DENGAN PARAMETER PH, SUHU, TINGKAT KEKERUHAN, DAN JUMLAH PADATAN TERLARUT. *JETri ISSN*, Volume 14, pp. 49-62.
- Hedlyni, 2011. PENDETEKSIKEKERUHANAIRBERBASISMIKROKONTROLER AT89S51DENGANSENSORFOTOTRANSISTORDANLED INFRAMERAH, Padang: Universitas Andalas.
- Manik, L. E., 2013. RANCANG BANGUN APLIKASI SISTEM PENDETEKSI KEKERUHAN AIR MENGGUNAKAN MIKROKONTROLER AVR ATMEGA 8535. *e-journal Teknik Elektro dan Komputer*, Volume 3, pp. 1-6.
- Nugraha, Y., 2015. Transmisi Data Melalui Sistem Komunikasi Frekuensi Radio Dengan Menggunakan Modul Xbee Pro 24-ACI-001, Surabaya: Fakultas Matematika dan Ilmu Pengetahuan alam Universitas Negeri Surabaya (UNS).
- Raveons, 2011. *Data Radio Modems*. [Online]
 Available at: http://www.raveon.com/Data-Radio-Modems.html. [Accessed 7 April 2018].
- Saedudin, R., 2012. *Pengantar Sistem Telekomunikasi BAB IX Sistem Komunikasi LOS*. Bandung: Sekolah Tinggi Teknologi Telekomunikasi (STT Telkom).

LAMPIRAN LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping

1. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Zahra Zakiyah Salsabil Kurnia
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	151344031
5	Tempat dan Tanggal Lahir	Bandung, 27 September 1997
6	E-mail	zakyzara@gmail.com
7	Nomor Telepon/HP	08561389666

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Depok Jaya I	SMPN 11 Bandung	SMAN 4 Bandung
Jurusan			IPA
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 1 Divisi 1 GPMB 2014	GPMB	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan Dan Realisasi Sistem Sensor Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranceiver Untuk Daerah Blank Spot"

Bandung, 24 Mei 2018 Pengusul,

Zahra Zakiyah Salsabila K

2. Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Sarah Muslimawati
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	151344027
5	Tempat dan Tanggal Lahir	Bandung, 26 April 1997
6	E-mail	muslimawatisarah26@gmail.com
7	Nomor Telepon/HP	085892562434

E. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Garuda I	SMPN 25 Bandung	SMKN 11 Bandung
Jurusan	-	-	TKJ
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

F. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

G. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

1	No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
	1.	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan Dan Realisasi Sistem Sensor Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranceiver Untuk Daerah Blank Spot"

Bandung, 24 Mei 2018 Pengusul,

Sarah Muslimawati

3. Biodata Anggota 2

A. Identitas Diri Identitas Diri

1.	Nama Lengkap	Agmel Melvia
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Telekomunikasi
4.	NIM	161344003
5.	Tempat dan Tanggal Lahir	Purwakarta, 11 Januari 2000
6.	Email	melviaagmel@gmail.com
7.	Nomor Telepon/Hp	081546581337

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN 1 Nagri	SMPN 1	SMAN 1
	Tengah	Purwakarta	Purwakarta
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2005 - 2011	2011 - 2013	2013 - 2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

NO	Nama Pertemuan Ilmiah/ Seminar	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 5 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan Dan Realisasi Sistem Sensor Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranceiver Untuk Daerah Blank Spot (Tidak Terjangkau Jaringan GSM)"

Bandung, 24 Mei 2018 Pengusul,

Agmel Melvia

4. Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Tata Supriyadi, DUT., ST., M.Eng.		
2	Jenis Kelamin	Laki – laki		
3	Program Studi	Teknik Telekomunikasi		
4	NIDN	0026112603		
5	Tempat dan Tanggal	Bandung, 26 Nopember 1963		
	Lahir	Dandung, 20 Nopember 1905		
6	E-mail	tatasupriyadi@yahoo.com		
7	Nomor Telepon/HP	08121496565		

B. Riwayat Pendidikan

No.	Pendidikan	Perguruan Tinggi	Tahun
1.	DIPLOMA	IUT Le Montet Universite de Nancy I, Nancy – Perancis, Genie Electrique, Informatique Industrielle.	1986-1988
2.	STRATA 1	Universitas Kristen Maranatha, Bandung Jurusan Teknik Elektro.	1998-2000
3.	STRATA 2	Universitas Gadjah Mada, Yogyakarta Jurusan Teknik Elektro, Program Sistem Komputer dan Informatika	2009-2011

C. Pengalaman Penelitian

1.	2012	DIPA (Terapan)	Anggota	Pengembangan Rear-end Collision Warning System berbasis Fuzzy Logic
2.	2013	DIPA (Pengemban gan Laboratoriu m)	Anggota	Pengembangan Modul Praktikum Switching Power Supply Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi
3.	2014	DIPA (Pengemban gan	Anggota	Pengembangan Modul Praktikum Personal Computer Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi

		Laboratoriu m)		
4.	2016	DIPA (Pengemban gan Laboratoriu m)	Anggota	Pengembangan Modul Praktikum Sistem Unit Display Personal Computer (PC) Untuk Pembelajaran Praktikum Dasar Teknik Komputer
5.	2016	DIPA (Penelitian Terapan Berbasis KBK)	Ketua	Rancang Bangun Alat Bantu Baca Nilai Nominal Uang Kertas Rupiah Untuk Penyandang Tunanetra Menggunakan Algoritma Backpropagation
6.	2017	RISTEK DIKTI (Penelitian Produk Terapan)	Ketua	Pengembangan Alat Bantu Pengganti Indera Penglihatan Berbasis Embedded System Bagi Disabilitas Netra

D. Pemakalah Seminar Ilmiah (Oral Presentation)

N	Karya Tulis	Tahun
0.		
1.	Disain dan Implementasi Detektor Perembesan Air pada Mainhole Sambungan Kabel Telepon Bawah Tanah di Proceedings Industrial Electronics Seminar 2002, ITS, Surabaya.	2002
2.	Perancangan dan realisasi alat pendeteksi kantuk dengan menggunakan kamera digital cmucam di Proceedings Seminar Nasional POLBAN, Bandung	2006
3.	Design of Product Service System: Online Self-Assessment for Higher Education Institution Studentsdi APTECS 2010 Conference, ITS, Surabaya.	2010
4.	Penggunaan Sensor Ultrasonik Sebagai Pendeteksi Ketinggian Air Sungai Pada Sistem Peringatan Dini Tanggap Darurat Bencana Banjir	2011
5.	Pemanfaatan Jaringan Seluler dan Jaringan Internet Untuk Memantau Sistem Keamanan Rumah	2012

	dengan User Interface Berbasis Handphone Android, di	
	Proceedings Seminar IRWNS POLBAN, Bandung, 2012	
6.	Upaya Meningkatkan Indeks Prestasi Mahasiswa Politeknik	2012
	Melalui Online Self Assesment System, di Jurnal	
	ELEKTRAN, VOL. 2, NO. 1, JUNI 2012, Jurusan Teknik	
	Elektro, POLBAN	

E. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Satyalancana Karya Satya X Tahun	Presiden	2009

F. Pengalaman Pengabdian Kepada Masyarakat

No.	Tahun	Judul	Sumbe r	Jumlah (Rp)
1.	2012	Pelatihan Administrasi Perkantoran di Kelurahan Gegerkalong	DIPA	10.000.000,-
2.	2012	Sistem Peringatan Intercom melalui jaringan LAN untuk mendukung SISKAMLING di Kelurahan Gegerkalong	DIPA	10.000.000,-
3.	2015	Pendampingan Penataan Ulang dan Teknik Pengoperasian Sound Sistem di Mesjid Jami Al-Haq	DIPA	15.000.000,-
4.	2016	Pendampingan Dan Pelatihan Teknik Perancangan, Penginstalasian dan Pengoperasian Sistem Komunikasi Radio Dan Data Untuk Anggota SENKOM Mitra POLRI	DIPA	20.000.000,-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan Dan Realisasi Sistem Sensor Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranceiver Untuk Daerah Blank Spot"

Bandung, 24 Mei 2018 Pengusul,

Tata Supriyadi, DUT., ST.,M.Eng.

Lampiran 2. Justifikasi Anggaran Kegiatan

Peralatan penunjang

Material	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah (Rp)		
Toolset Elektronik	Alat pendukung dalam proses pembuatan rangkaian	1 Set	500.000	500.000		
Multimeter Digital	Membaca tegangan, arus, hambatan dan ketersambungan jalur PCB	1 Buah	1.000.000	1.000.000		
Kabel Ekstensi	Sumber untuk menyalakan alat	1 Buah	50.000	50.000		
Walkie Talkie	Pemancar dan penerima radio yang digunakaan alat	2 Buah	500.000	1.000.000		
	SUB TOTAL (Rp)					

Bahan Habis Pakai

	Justifikasi Harga		Harga	
Material	Pemakaian	Volume	Satuan (Rp)	Jumlah
Arduino Mega + case	Penunjang	1 set	300.000	300.000
	Mikrokontroler			
Arduino NANO		2 buah	70.000	140.000
Modul sensor pH	Modul dan sensor	1 buah	575.000	575.000
Modul sensor kekeruhan		1 buah	300.000	300.000
Modul sensor suhu LM 35		1 buah	15.000	15.000
Modul RF (RX TX)		1 buah	20.000	20.000
	Komponen			
	Pentransmisian			
Komponen modem	data	2 buah	500.000	1.000.000
PCB	Alat pengujian	2 buah	200.000	400.000
Timah		1 buah	60.000	60.000
Casing	Bahan penunjang 2 buah 100.000		200.000	
	3.010.000			

Perjalanan

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Perjalanan ke percetakan PCB	Perjalanan untuk mencetak dan mengambil hasil print PCB	5 Kali	75.000	375.000
Perjalanan ke Jaya Plaza	Survey dan pembelian komponen	5 Kali	75.000	375.000
Parkir	Biaya parkir setiap perjalanan	20 Kali	2.000	40.000
SUB TOTAL (Rp)				790.000

Lain-lain

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Pembuatan Laporan	Pembuatan proposal dan laporan akhir	3Buah	50.000	150.000
Konsumsi (Untuk 3 Bulan)	Konsumsi dalam rapat dan pembuatan alat	15 Buah	40.000	600.000
Seminar Nasional	Kegiatan seminar nasional yang diikuti	3 Orang	450.000	1.350.000
SUB TOTAL (Rp)				2.100.000
TOTAL KESELURUHAN (Rp)				8.450.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Zahra Zakiyah S K / 151344931	D4 Teknik Telekomunikasi	Teknik Elektro	12 minggu	Membuat modem FSK dan trigger serta mengingrasikannya dengan walkie talkie dan mikrokontroller
2	Sarah Muslimawati/ 151344027	D4 Teknik Telekomunikasi	Teknik Elektro	12 minggu	Membuat sensor air bersih serta membuat program analisanya
3	Agmel Melvia/ 161344003	D4 Teknik Telekomunikasi	Teknik Elektro	12 minggu	Membuat hubungan device dengan mikrokontroller dan memastikan data yang dikirm sama dengan data yang diterima

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Zahra Zakiyah Salsabila K

NIM : 151344031

Program Studi : D4 Teknik Telekomunikasi

Fakultas /Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa usulan **proposal PKM-KC** saya dengan judul: Perancangan Dan Realisasi Sistem Sensor Air Bersih Dengan Pengiriman Data Telemetri Menggunakan Media Walkie Talkie Sebagai Tranceiver Untuk Daerah Blank Spot yang diusulkan untuk tahun anggaran 2018/2019 bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Bandung, 24 Mei 2018

Mengetahui, Yang menyatakan,

Ketua UPPM,

Dr. Ir. Ediana Sutjiredjeki, M.Sc. Zahra Zakiyah Salsabila K

NIP. 19550228 198403 2 001 NIM. 151344031

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

1. Flow Chart

Pada subbab ini akan dijelaskan tentang program yang akan dikerjaan melalui Flow Chart.

1.1 Flow Chart Program Kontrol tanpa sensor

Gambar 1. Flow Chart Program Kontrol Tanpa Sensor

Pada dasarnya, komunikasi yang dilakukan adalah half duplex sehingga perlu dilakukan pengecekan terlebih dahulu apakah ada data yang masuk dari modem atau tidak. Apabila ada data dari modem, itu artinya *device* dengan sistem sensor telah mengirimkan data sehingga *controller* akan mengolah data yang kemudian akan dikirimkan ke *device* penerima (sistem tanpa sensor). Setelah itu dilakukan pengecekan mengenai ada tidaknya data yang akan dikirim dari device sistem tanpa sensor. Apabila ada, maka *controller* akan mengolah data tersebut yang kemudian akan dikirimkan ke modem untuk diteruskan ke pemancar (walkie talkie).

1.2 Flow Chart Program Kontrol dengan sensor

Gambar 2. Flow Chart Program Kontrol dengan sensor

Sama seperti sistem control tanpa sensor, komunikasi yang dilakukan adalah half duplex sehingga perlu dilakukan pengecekan terlebih dahulu apakah ada data yang masuk dari modem atau tidak. Apabila ada data dari modem, itu artinya *device* tanpa sistem sensor telah mengirimkan data sehingga *controller* akan mengolah data yang kemudian akan dikirimkan ke *device* penerima (sistem dengan sensor). Setelah itu dilakukan pengecekan mengenai ada tidaknya data yang akan dikirim dari sensor. Apabila ada, maka *controller* akan mengolah data tersebut yang kemudian akan dikirimkan ke modem untuk diteruskan ke pemancar (walkie talkie).

• Blok Diagram Sistem Keseluruhan

Gambar 4. Diagram Blok Secara Keseluruhan

Blok diagram di atas menunjukkan alur proses pengiriman data. Pada bagan pertama (tanpa sensor) pengirim hanya akan mengirimkan data melalui *device* yang berupa *smartphone*. Sementara pada bagan kedua (dengan sensor), pengirim bisa juga mengirimkan telemetri. Data yang berasal dari smartphone tersebut diterima oleh bagian modul rx tx. Data *controller* akan mengatur alur data dan melakukan persiapan konversi bila dibutuhkan. Modem akan mengubah data dari bentuk digital ke analog dan sebaliknya karena Walkie Talkie hanya dapat menerima data analog sedangkan data yang dikirim dan diterima controller berupa data digital. Walkie talkie memiliki dua buah *port* yaitu *port speaker* dan *port microphone*. *Port microphone* digunakan untuk mengirim data melalui walkie talkie dan *port speaker* digunakan untuk menerima data dari walkie talkie. Pada bagian penerima, data akan dikonversi kembali menjadi bentuk digital agar dapat diakses oleh penerima. Data *controller* akan mengatur pengirim data ke penerima melalui modul rx tx.

2. Ilustrasi Sistem Keseluruhan

Gambar 5. Ilustrasi Sistem Keseluruhan

Daerah yang memiliki sumber air bersih biasanya berada pada daerah terpencil seperti hutan,. Namun pada pencarian sumber air bersih sering kali sulit untuk melakukan komunikasi karena banyak benda yang menghalangi sinyal pemancar, sehingga pada pencariannya harus langsung membawa massa dan alatalat untuk menggali tanpa mengetahui medan yang akan dilalui sebelumnya. Untuk itu jaringan yang dapat digunakan pada daerah tersebut adalah walkie talkie yang memiliki kelebihan yaitu *portable* (mudah dipindahkan) dan memiliki pemancar dan penerima sendiri. Walkie talkie sendiri sebenarnya sudah banyak dipakai untuk melakukan komunikasi, namun kami memanfaatkan walkie talkie sebagai media pengirim data yang sudah terintegrasi dengan senosr pendeteksi air bersih sebelumnya sehingga dapat mengirimkan data telemetri dari sensor tersebut. Selain itu, pengguna juga dapat melakukan komunikasi lain seperti pengiriman pesan singkat. Semua hal tersebut dilakukan tanpa melalui jaringan GSM dan internet.