Universidad Autónoma del Estado de México

Facultad de Ciencias

Licenciatura en Matemáticas

Álgebra Lineal

Profesora:

Socorro López Olvera

Tarea 2

Alumnos:

Peña Mateos Jesús Jacob Santana Reyes Osmar Dominique Gallegos Torres Gonzalo

Semestre: 2022B

- 1. Diga si las siguientes proposiciones son falsas o verdaderas y justifique su respuesta.
 - i. La matriz identidad es una matriz triangular superior.

Af! La matriz identidad es una matriz triangular superior.

Dem.

Por definition, $I_n = [a_{ij}] \ \forall i = j$

- ii. Si V es un K espacio vectorial, $W \leq V$ y $U \leq W$ entonces $U \leq V$.
- iii. Si A es una matriz con tr(A) = 0, entonces A es matriz antisimétrica.
- 2. Sean $n \in \mathbb{N}$, K un campo, $A \in M_n[K]$ y A^t su transpuesta.
 - i. Demuestra que $A+A^t$ es una matriz simétrica.
 - ii. Sea $U = \{A \in M_n[K] \mid A \text{ es antisimétrica}\} \subseteq M_n[K]$. Demuestre que $U \leq M_n[K]$.
 - iii. ¿Cuántas entradas diferentes puede tener una matriz simétrica de orden n? Argumente su respuesta.
- 3. Demuestre el corolario 13.
- 4. Se
aV un K espacio vectorial y
 $W\subseteq V$ no vacío. Demuestre que $W\leq V,$ si
 y solo si se cumple:
 - i. $u z \in W$ para cualesquiera $u, z \in W$.
 - $ii. \ \lambda u \in W, \ \forall \ \lambda \in K \ y \ \forall \ u \in W.$
- 5. Sean $V = \mathbb{R}^3$, un \mathbb{R} espacio vectorial, con las operaciones usuales de suma y producto por escalar, W_1 y W_2 subconjuntos de V, definidos como, $W_1 = \{(a,b,c) \in \mathbb{R}^3 \mid 3a-b+4c=0\}$ y $W_2 = \{(a,b,c) \in \mathbb{R}^3 \mid b=-a,2c=a\}$ ¿Es $V = W_1 \oplus W_2$? Demuéstrelo o dé un contraejemplo de la propiedad que no se cumpla.