## Chap 1: Solving Nonlinear Eq.

- Interval Halving (Bisection)
- Linear Interpolation Methods
- Newton's Method
- Muller's Method
- Fixed-Point Iteration
- Order of convergence
- Multiple Roots
- Nonlinear systems

#### Introduction -1

- Problem: Solve f(x)=0
  - A system of nonlinear equations

$$f_1(x_1, x_2, ...., x_n) = 0$$
  
 $\vdots$   
 $f_n(x_1, x_2, ...., x_n) = 0$ 

- Nonlinear function can be
  - Polynomials

$$f(x, y) = \sum_{i+j=n} a_{ij} x^i y^j$$

- Functions involve transcendental functions
  - sin, cos, exponentials

#### Introduction -2

- Closed form solutions
  - Only available for polynomials of degree less than 5.
    - Quadratic formula for degree 2
    - Complicated for degrees 3 and 4
  - For nonlinear polynomial system
    - Algebraic methods such as Grobner basis can be applied to eliminate variables and reduce the system to a triangular form

#### Introduction -3

- Numerical solutions
  - Via iteration procedure
    - Starting point
    - Compute iterates
    - Check for termination
  - Need to consider
    - Convergence
    - Rate of convergence
    - Stability
      - Early error magnified or not?

#### Bisection method 1

- An ancient but effective method for solving f(x)=0
- Starting with [x<sub>1</sub>, x<sub>2</sub>]: an interval that bracket a root, with f(x<sub>1</sub>)\*f(x<sub>2</sub>) < 0</li>
  - f changes signs at x<sub>1</sub> and x<sub>2</sub>
  - If f is continuous, there must be at least one root between x<sub>1</sub> and x<sub>2</sub>
- Divides the interval in half, finds in which half the root must lie, and repeat

### **Bisection method** -2

Pseudo code

Repeat

$$x_3 = (x_1 + x_2)/2$$
  
if  $f(x_3) f(x_1) < 0$   
 $x_2 = x_3$   
else  $x_1 = x_3$   
Until  $(|x_1 - x_2|/2 < \text{tolerance})$ 

- The final value of x<sub>3</sub> approximates the root,
   with error no more than |x<sub>1</sub>-x<sub>2</sub>|/2
- The method may produce a false root if f(x) is discontinuous on [x<sub>1</sub>,x<sub>2</sub>]

## Bisection Method -3

#### Advantages

- It is guaranteed to work if f(x) is continuous in the initial interval, and if the interval actually brackets a root
- The number of iterations to achieve a specified accuracy is known in advance, since the interval [a, b] is halved each time, so

error after n iterations 
$$< \left| \frac{b-a}{2^n} \right|$$

$$\left| \frac{b-a}{2^n} \right|$$
 < Tolerance  $\Rightarrow$  a bound on  $n$ 

#### Disadvantages

- Slow to converge
  - Why? No information about f(x) is used

#### **Bisection Method** 4

#### An example, a=0, b=1, tolerance=1E-4

$$f(x) = 3x + \sin(x) - e^x = 0$$

Table 1.1 The bisection method for  $f(x) = 3x + \sin(x) - e^x = 0$ , starting from  $x_1 = 0$ ,  $x_2 = 1$ , using a tolerance value of 1E-4

| Iteration   | $X_{\mathbf{I}}$ | $X_2$   | $X_3$   | $F(X_3)$ | Maximum<br>error | Actual<br>error |
|-------------|------------------|---------|---------|----------|------------------|-----------------|
| 1           | 0.00000          | 1.00000 | 0,50000 | 0.33070  | 0,50000          | 0.13958         |
|             | 0.00000          | 0,50000 | 0.25000 | -0.28662 | 0.25000          | -0.11042        |
| 3           | 0.25000          | 0.50000 | 0.37500 | 0.03628  | 0.12500          | 0.01458         |
|             | 0.25000          | 0.37500 | 0.31250 | -0.12190 | 0.06250          | -0.04792        |
| 4<br>5<br>6 | 0.31250          | 0.37500 | 0.34375 | -0.04196 | 0.03125          | -0.01667        |
| 6           | 0.34375          | 0.37500 | 0.35938 | -0.00262 | 0.01563          | -0.00105        |
| 7           | 0.35938          | 0.37500 | 0.36719 | 0.01689  | 0.00781          | 0.00677         |
| 8           | 0.35938          | 0.36719 | 0.36328 | 0.00715  | 0.00391          | 0.00286         |
| 8<br>9      | 0.35938          | 0.36328 | 0.36133 | 0.00227  | 0.00195          | 0.00091         |
| 10          | 0.35938          | 0.36133 | 0.36035 | -0.00018 | 0.00098          | -0.00007        |
| 11          | 0.36035          | 0.36133 | 0.36084 | 0.00105  | 0.00049          | 0.00042         |
| 12          | 0.36035          | 0.36084 | 0.36060 | 0.00044  | 0.00024          | 0.00017         |
| 13          | 0.36035          | 0.36060 | 0.36047 | 0.00013  | 0.00012          | 0.00005         |

#### Bisection Method .5

#### Some comments

- Recommended: used for finding an approximate value for the root, and the value is refined by more efficient methods
  - Most other root-finding methods require a starting value near to a root – lacking this, they may fail completely
  - Good practice:
    - Graph the function first
    - Search for interval that with sign change at ends
    - Apply Bisection to get an initial starting value
    - Apply better methods
- Not applicable to the case of multiple roots
  - Find the root by working on with f'(x), which will be zero at a multiple root.

## **Linear Interpolation Methods**

- Approximate the function by a straight line
  - Interpolated line
    - The secant method
      - Two x-values nearest to the root
    - False position method
      - Similar to the Bisection method
      - Two points need to bracket the root
  - Tangent line
    - Newton method



Figure 1.1

#### Secant method 1

#### Secant method

- Find two points on the curve near to the root
  - Draw a graph or apply a few iteration of bisection.
  - Two point may both be on one side of the root, or on opposite sides
- Find the line through these two points and find the point it intersects the x-axis

Repeat the process until the intersection point

is close enough to the root.



### Secant method -2

From the similar triangles, we have

$$\frac{(x_1 - x_2)}{f(x_1)} = \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

Solve for  $x_2$ :

$$x_2 = x_1 - f(x_1) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

Repeat the iteration, we have

$$x_{n+1} = x_n - f(x_n) \frac{(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$



Feach newly computed value should be nearer to the root.

#### After second iteration:

Always using the last two computed values.

#### After first iteration:

There aren't two last computed values.

Swap x0 and x1 if Necessary, such that x1 is closer to the root.

### The Secant Method -3

#### Start with x<sub>0</sub> and x<sub>1</sub> near the root

if  $|f(x_0)| < |f(x_1)|$  then swap  $x_0$  and  $x_1$ 

Repeat

$$x_2 = x_1 - \frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$x_0 = x_1$$

$$x_1 = x_2$$

Until  $|f(x_2)|$  < tolerance value



Figure 1.1

#### Note:

If f(x) is not continuous, the method may fail.

# The Secant Method 4 An Example

**Table 1.2** Secant method on  $f(x) = 3x + \sin(x) - e^x$ 

| Iteration | $x_0$     | $x_1$     | $x_2$     | $f(x_2)$      |  |
|-----------|-----------|-----------|-----------|---------------|--|
| 1         | 1         | 0         | 0.4709896 | 0.2651588     |  |
| 2         | 0         | 0.4709896 | 0.3722771 | 2.953367E-02  |  |
| 3         | 0.4709896 | 0.3722771 | 0.3599043 | -1.294787E-03 |  |
| 4         | 0.3722771 | 0.3599043 | 0.3604239 | 5.552969E-06  |  |
| 5         | 0.3599043 | 0.3604239 | 0.3604217 | 3.554221E-08  |  |

At x = .3604217, tolerance of .0000001 met!

 Fewer iterations are required compared to bisection: 5 iterations

## The Secant Method <sub>-5</sub> Problems

 If the function is far from linear near the root, the successive iterates can fly off to points far from the root



Figure 1.2
A pathological case for the secant method

### False Position Method -1

- Avoid problems of secant method
  - Ensure that the root is bracketed between two starting values and remain between the successive pairs.
  - Similar to bisection method
    - x0 and x1 bracket a root

#### **Differences:**

- Next iterate is taken at the intersection of a line between the pair of x-values and the x-axis rather than the midpoint
- Gives faster convergence than does bisection, but at expense of a more complicated algorithm

### False Position Method -2

 $x_0$  and  $x_1$  bracket a root

Repeat

$$x_2 = x_1 - f(x_1) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$
if  $f(x_2)$  opposite sign to  $f(x_0)$ 

$$x_1 = x_2$$
else  $x_0 = x_2$ 
Until  $|f(x_2)| <$  tolerance value

Note:

if f(x) is not continuous, the method may fail.

## **A Comparison**

#### Speed of convergence

- Secant (best), false position, then bisection

**Table 1.3** Comparison of methods,  $f(x) = 3x + \sin(x) - e^x = 0$ ,  $x_0 = 0$ ,  $x_1 = 1$ 

| Iteration                      | Interval halving |           | False position    |                      | Secant method          |                   |
|--------------------------------|------------------|-----------|-------------------|----------------------|------------------------|-------------------|
|                                | х                | f(x)      | X                 | f(x)                 | x                      | f(x)              |
| 1                              | 0.5              | 0.330704  | 0.470990          | 0.265160             | 0.470990               | 0.265160          |
|                                | 0.25             | -0.286621 | 0.372277          | 0.029533             | 0.372277               | 0.029533          |
| 2                              | 0.375            | 0.036281  | 0.361598          | $2.94 * 10^{-3}$     | 0.359904               | $-1.29 * 10^{-3}$ |
| 4                              | 0.3125           | -0.121899 | 0.360538          | $2.90 \circ 10^{-4}$ | 0.360424               | $5.55 * 10^{-6}$  |
| 5                              | 0.34375          | -0.041956 | 0.360433          | $2.93 \cdot 10^{-5}$ | 0.360422               | $3.55 * 10^{-7}$  |
| Error<br>after 5<br>iterations | 0.01667          |           | $-1.17 * 10^{-5}$ |                      | <-1 * 10 <sup>-7</sup> |                   |

- Takes a single initial x<sub>0</sub> (not too far from a root), and the intersection of the tangent line and x-axis as the next
- Is the most widely used method

- More rapidly convergent than bisection, secant

and false position.



Figure 1.3

#### Iteration

$$\tan \theta = f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

•

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$



Figure 1.3

Given a x<sub>0</sub> reasonably close to the root.

Compute 
$$f(x_0)$$
 and  $f'(x_0)$   
if  $(f(x_0) \neq 0)$  and  $(f'(x_0) \neq 0)$   
Repeat

$$x_0 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
Until  $(|x_0 - x_1| < \text{tolerance1})$  or  $(|f(x_0)| < \text{tolerance2})$ 

#### Note:

 $x_1 = x_0$ 

The method may converge to a root different from the expected one or diverge if the starting value is not close enough to the root.

#### Rate of convergence

- Quadratically convergent
  - Error of each step approaches a constant K times the square of the error of the previous step
  - The net result of this is that the number of decimal places of accuracy nearly doubles at each iteration
  - Fewer steps than previous methods
    - But, at the cost of two function evaluations at each step
      - » Previous methods need only one at each step (after the first step)
  - Faster than any of the methods discussed so far

## Newton's Method -5 - Example

$$f(x) = 3x + \sin x - e^x = 0$$

Starting with  $x_0 = 0.0$ 

$$x_1 = 0.33333$$

$$x_2 = 0.36017$$

$$x_3 = 0.3604217$$

True 
$$x = 0.360421703$$

#### Note:

After 3 iterations, the solution is correct to 7 digits.

The error after an iteration is about 1/3 of the square of the previous error.

#### In some cases

- May converge to a different root, diverge, or oscillating
  - Converge
  - Wandering: jump around, and then jump to a point near to the root, and then converge rapidly
  - In endless loop, i.e., cycling
    - Starting point near to an inflection point or a turning point (local minimum/maximum)
  - Overshooting
    - Fly off to infinity when ever reach the minimum or maximum of the curve
    - X-intercept x1 is far from both x0 and the desired root, may converge to different root



Figure 1.4

Starting point near to a turning point

# Newton's Method 3 vs. interpolated methods

Interpolated methods:

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

$$= x_n - \underbrace{\frac{f(x_n)}{f(x_n) - f(x_{n-1})}}_{x_n - x_{n-1}}$$

Difference quotient approximates the derivative!! So closely resemble to Newton method!!

# Newton's Method 5 Complex roots

 Newton's method works with complex roots if a complex starting value is given.

$$f(x) = x^3 + 2x^2 - x + 5$$

$$f(x) = 0$$
 has a real root at  $x = -3$ 

It has two complex roots because x - axis is not crossed again.

Start with  $x_0 = 1 + i$ , we have

$$x_1 = 0.486238 + 1.04587i, x_2 = 0.448139 + 1.23665i$$

$$x_3 = 0.462720 + 1.22242i, x_4 = 0.462925 + 1.22253i$$

$$x_5 = 0.462925 + 1.22253i$$

Since agree to 6 significant digits, we have an estimate good to at least 6 significant digits.

Start with  $x_0 = 1 - i$ , we have the conjugate

$$0.462925 - 1.22253i$$



Figure 1.5 Plot of  $f(x) = x^3 + 2x^2 - x + 5$ 

# Newton's Method 10 for polynomials

- Polynomials have nice behavior:
  - They are everywhere continuous
  - They are smooth
  - Their derivatives are also continuous and smooth.
  - They are readily evaluated.
  - Number of roots can be predicted
  - Evaluation requires only +, -, \*.

# Newton's Method -11 for polynomials

- For previous methods, expect Newton method, there is nothing new (gain from the properties of polynomials)
- Polynomial evaluation of f(x) and f'(x) can be done by the use of synthetic division, which is based on the well known remainder theorem

## Newton's Method -12 for polynomials

- Evaluating a polynomial by nested form
  - can be done by (or equivalent to)synthetic division
  - Evaluate f(x) at x=2

$$f(x) = 2x^3 + x^2 - 3x - 3$$
$$= ((2x+1)x - 3)x - 3$$

⇒ Process of synthetic division

Synthetic division for x = 2:

Note: Nested form evaluation:

$$((2x+1)x-3)x-3$$

with 
$$x - 2: ((2 \times 2 + 1) \times 2 + 3) \times 2 - 3 \rightarrow 11$$

Re min der Theorem:

$$\frac{2x^3 + x^2 - 3x - 3}{x - 2} = 2x^2 + 5x + 7 + \frac{11}{x - 2}$$

That is,

$$2x^3 + x^2 - 3x - 3 = (x - 2)(2x^2 + 5x + 7) + 11$$

# Newton's Method -13 for polynomials

Example on synthetic division



# Newton's Method -14 for polynomials

 If the reduced (quotient) polynomial is divided by x-2 again, the remainder is the value of the derivative at x=2

$$f(x) = (x-2)(2x^2 + 5x + 7) + 11$$

$$x = 2$$

$$2 5 7$$

$$f'(x) = (2x^2 + 5x + 7) + (x-2)(4x + 5)$$

$$2 9 (25) \leftarrow f'(6)$$

$$f'(2)$$
 is the value of  $2x^2 + 5x + 7$  at  $x = 2$ 

$$f'(2) = 25$$
  
 $x_1 = 2 - \frac{11}{25} = 1.56$ 

## Newton's Method -15 for polynomials

Synthetic division algorithm:

A way of obtaining  $Q_{n-1}(x)$  and R.

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$P_n(x)$$
=  $(x-a)Q_{n-1}(x) + R$   
=  $(x-a)(b_{n-1}x^{n-1} + \dots + b_1x + b_0) + R$ 

Multiplyin g out and equating codfficients of like terms in x, we have

$$\begin{aligned} & a_n = b_{n-1} \\ & P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 & a_{n-1} = b_{n-2} - a b_{n-1} \\ & a_{n-2} = b_{n-3} - a b_{n-2} \\ & \vdots \\ & P_n(x) \\ & = (x-a)Q_{n-1}(x) + R \end{aligned} \Rightarrow \begin{cases} b_{n-1} = a_n \\ b_{n-2} = a_{n-1} + a b_{n-1} \\ b_{n-3} = a_{n-2} + a b_{n-2} \\ \vdots \\ b_0 = a_1 + a b_1 \\ R = a_0 + a b_0 \end{aligned}$$

b<sub>i</sub> and R are is the form of systhetic division

## Newton's Method -16 for polynomials

 If the quotient polynomial is divided by x-a again, the remainder is the value of the derivative at x=a. WHY?

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Dividing  $P_n(x)$  by x-a, we have

$$\frac{P_n(x)}{x-a} = Q_{n-1}(x) + \frac{R}{x-a}$$

That is,

$$P_n(x) = (x-a)Q_{n-1}(x) + R$$

So 
$$P_n(a) = R$$

Differentiate  $P_n(x)$ , we get

$$P'_{n}(x) = (x-a)Q'_{n-1}(x) + (1)Q_{n-1}(x)$$

Letting x = a, we have

$$P_n'(a) = Q_{n-1}(a)$$
 = remainder on dividing  $Q_{n-1}(x)$  by  $(x-a)$ .

## Comparisons Newton vs. secant

For simple root (i.e., f'(r) = 0)

- Rate of convergence
  - Newton method: quadratically, order: 2
  - Secant method: order: 1.62
    - Faster than linear convergence
  - Both converge linearly to multiple roots

#### Robustness

- Newton method: converge, wandering, overshooting, and cycling
- Secant method: converge, wandering, overshooting. But more robust than Newton

### Muller's method -1

 A quadratic polynomial approximation is made to fit 3 points near a root.

A quadratic polynomial 
$$p_2(v) = av^2 + bv + c$$
  
to fit  $[x_1, f(x_1)], [x_0, f(x_0)], [x_2, f(x_2)]$ 

Using the quadratic rule to obtain the proper zero



Figure 1.7

Simplify the development by transforming axes such that axes pass through the middle point.

So let  $v = x - x_0$ , and we try to fit the 3 points with  $y = p_2(v) = av^2 + bv + c$ .

Let  $h_1 = x_1 - x_0$ ,  $h_2 = x_0 - x_2$ ,

Evaluate the coefficients by evaluating p(v) at the three points :

$$v = 0$$
:  $a(0)^2 + b(0) + c = f_0 \Rightarrow c = f_0$ 

$$v = h_1$$
:  $a(h_1)^2 + b(h_1) + c = f_1$ 

$$v = -h_2$$
:  $a(h_2)^2 + b(-h_2) + c = f_2$ 

Let  $\gamma = h_2/h_1$ , solving two linear equations for a and b:

$$a = \frac{\gamma f_1 - f_0(1+\gamma) + f_2}{\gamma h_1^2 (1+\gamma)}$$

$$b = \frac{f_1 - f_0 - ah_1^2}{h_1}$$

• Solve for the root of  $p_2(v) = av^2 + bv + c = 0$ by the quadratic formula, choosing the root nearest to the middle point  $\mathbf{x}_0$  by making the absolute value of denominate as large as possible in the following form:

root = 
$$x_0 - v = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}} \left( = x_0 + \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \right)$$

- WHY? See next slide
  - More stable compared to standard one
  - Choose the sign to give the largest absolute value of denominator: b>0: +, b<0: --, b=0: either</li>

$$p_{2}(v) = av^{2} + bv + c$$

$$= a(x - x_{0})^{2} + b(x - x_{0}) + c = 0$$

$$v = x - x_{0} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = x_0 + \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

with  $\pm$  chosen to minimize the modulus of the numerator (x is closest to  $x_0$ ): b > 0 --> take +, b < 0 --> take -.

But minimizing the numerator may cancel significant digits when  $b^2$  is much larger than 4ac (since  $\sqrt{b^2 - 4ac} \sim b$ ). 39

Example:

$$p(v) = v^2 + 62.10v + 1 = 0$$

Using 4-digit rounding arithmetic

$$b > 0$$
, so take +,

$$\sqrt{b^2 - 4ac} = 62.06 \approx b = 62.10$$

and 
$$x_1 = -0.01610723$$
,

with relative error:  $2.4 \times 10^{-1}$ 

cancellation error → Large error!

Other root:

$$x_2 = -62.08390,$$

with relative error:  $3.2 \times 10^{-4}$ 

#### Equivalent form:

$$\left(\frac{-b+\sqrt{b^2-4ac}}{2a}\right)\left(\frac{-b-\sqrt{b^2-4ac}}{-b-\sqrt{b^2-4ac}}\right)$$

$$=\frac{b^2-(b^2-4ac)}{2a(-b-\sqrt{b^2-4ac})} = \frac{-2c}{b+\sqrt{b^2-4ac}}$$

$$\left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)\left(\frac{-b + \sqrt{b^2 - 4ac}}{-b + \sqrt{b^2 - 4ac}}\right)$$

$$= \frac{-2c}{b - \sqrt{b^2 - 4ac}}$$

To guard against this, root is calculated in the equivalent form:

$$x = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$
with  $\pm$  chosen to maximize
the modulus of the
denominator:
$$b > 0 --> \text{take} +$$

$$b < 0 --> \text{take} -$$

There will be no case of substracting two nearly equal numbers.

Using the equivalent form:

$$x = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

$$b > 0$$
, take +

$$x_1 = -0.01610,$$

relative error:  $6.2 \times 10^{-4}$ 

No cancellation error → Smaller error!

Other root:

$$x_2 = -50.00,$$

relative error:  $1.9 \times 10^{-1}$ 

- Start from three initial point x1, x0, x2
- Find a quadratic form passing through three point and find the roots
- Choose next 3 points that are most closely spaced
  - The root is to the right of  $x_0$ :  $x_0$ ,  $x_1$ , root
  - The root is to the left of  $x_0 : x_0, x_2$ , root

#### Procedure:

Given points  $x_2 < x_0 < x_1$ ,

- Evaluate the functions  $f_2, f_0, f_1$ .
- Find the coefficients of  $p_2(v)$ .
- Compute the roots:

$$x_r = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

Choose the root closest to  $x_0$ 

by making the denominator as largeas possible, and label it  $x_r$ 

If 
$$x_r > x_0$$

then rearrange to  $x_0, x_1, x_r$ 

else rearrange to  $x_0, x_2, x_r$ 

Until  $|f(x_r)| < \text{Ftol}$ 

- Converge rate: similar to that for Newton method (actually order 1.85)
- No derivative evaluation and only one function evaluation per iteration (after we have obtained the next point)
- Will find a complex root if complex starting value is given
- May fail under some conditions
  - What will make the denominator of root's expression zero or nearly zero

#### **EXAMPLE 1.2** Find a root between 0 and 1 of the same transcendental function as before: $f(x) = 3x + \sin(x) - e^x$ . Let

$$x_0 = 0.5, \quad f(x_0) = 0.330704$$
  $h_1 = 0.5,$   
 $x_1 = 1.0, \quad f(x_1) = 1.123189$   $h_2 = 0.5,$   
 $x_2 = 0.0, \quad f(x_2) = -1$   $\gamma = 1.0.$ 

Then

$$a = \frac{(1.0)(1.123189) - 0.330704(2.0) + (-1)}{1.0(0.5)^{2}(2.0)} = -1.07644,$$

$$b = \frac{1.123189 - 0.330704 - (-1.07644)(0.5)^{2}}{0.5} = 2.12319,$$

$$c = 0.330704,$$

and

root = 
$$0.5 - \frac{2(0.330704)}{2.12319 + \sqrt{(2.12319)^2 - 4(-1.07644)(0.330704)}}$$
  
=  $0.354914$ .

For the next iteration, we have

$$x_0 = 0.354914$$
,  $f(x_0) = -0.0138066$   $h_1 = 0.145086$ ,  $x_1 = 0.5$ ,  $f(x_1) = 0.330704$   $h_2 = 0.354914$ ,  $x_2 = 0$ ,  $f(x_2) = -1$   $\gamma = 2.44623$ .

Then

$$a = \frac{(2.44623)(0.330704) - (-0.0138066)(3.44623) + (-1)}{2.44623(0.145086)^2(3.44623)} = -0.808314,$$

$$b = \frac{0.330704 - (-0.0138066) - (-0.808314)(0.145086)^2}{0.145086} = 2.49180,$$

$$c = -0.0138066,$$

$$root = 0.354914 - \frac{2(-0.0138066)}{2.49180 + \sqrt{(2.49180)^2 - 4(-0.808314)(-0.0138066)}}$$

$$= 0.360465.$$

After a third iteration, we get 0.3604217 as the value for the root, which is identical to that from Newton's method after three iterations.

- A useful way for root finding
- Basis for some important theory
- **Fixed point**  $f(x) = 0 \Rightarrow x = g(x)$  (in several forms) r: a fixed point of g if r = g(r)
- Fixed-point iteration  $x_{n+1} = g(x_n), n = 0, 1, 2, 3,...$
- Under suitable conditions, the fixed-point iteration converges to the fixed point r, a root of f(x)=0
- Different rearranges will converge at different rate, or converge to different root, or diverge

$$f(x) = x^2 - 2x - 3 = 0$$
 roots: -1, 3

1. 
$$x = g_1(x) = \sqrt{2x+3}$$
  
Start with  $x_0 = 4$ :  
 $x_1 = 3.31662, x_2 = 3.10375$   
 $x_3 = 3.03439, x_4 = 3.01144$   
 $x_5 = 3.00381 \Rightarrow \text{converges to } x = 3$ 

2. 
$$x = g_2(x) = \frac{3}{x-2}$$
  
 $x_1 = 1.5, x_2 = -6, x_3 = -0.375,$   
 $x_4 = -1.263158, x_5 = -0.919355$   
 $x_6 = -1.02762, x_7 = -0.990876$   
 $x_8 = -1.00305 \implies \text{converges to } x = -1$ 

3. 
$$x = g_3(x) = \frac{x^2 - 3}{2}$$
  
 $x_0 = 4$ ,  
 $x_1 = 6.5$   
 $x_2 = 19.625$ ,  
 $x_3 = 191.070 \Rightarrow \text{diverges}$ 

Different arrangements have different convergence behavior. Why?

Look into this problem by using the graph of two intersecting plots of y = x and y = g(x).





## Fixed-Point Iteration <sub>-4</sub> Rate of Convergence

Assume  $\{x_n\}_{n=0}^{\infty}$  converges to r.

Let  $e_n = x_n - r$ .

If  $|e_n|$  approaches to  $c|e_{n-1}|^k$  as n becames infinite, we say that the sequence converges to r with order of convergence k, or formally:

The sequence  $\{x_n\}_{n=0}^{\infty}$  is called linearly converge to r if  $e_n \to 0$  in such a way that

$$\lim_{n\to\infty}\frac{e_n}{e_{n-1}}=C_L, \text{ where } 0<\left|C_L\right|<1$$

The sequence  $\{x_n\}_{n=0}^{\infty}$  is called superlinearly converge to r if  $e_n \to 0$  in such a way that

$$\lim_{n\to\infty}\frac{e_n}{e_{n-1}}=0$$

The sequence  $\{x_n\}_{n=0}^{\infty}$  is called quadratically converge to r if  $e_n \to 0$  in such a way that

$$\lim_{n\to\infty} \frac{e_n}{e_{n-1}^2} = C_Q, \text{ where } C_Q \neq 0$$

#### • Error

en+1 and en

$$x_{n+1} = g(x_n)$$
 and r is the root (fixed point)

$$x_{n+1} - r = g(x_n) - r = \frac{g(x_n) - g(r)}{x_n - r}(x_n - r)$$

If g(x) and g'(x) are continuous on the interval from r to  $x_n$ , the mean value theorem implies that

$$x_{n+1} - r = g'(\tau_n)(x_n - r),$$

where  $\tau_n$  lies between  $x_n$  and r, and hence

$$\left|\mathbf{e}_{\mathbf{n}+1}\right| = \left|g'(\tau_n)\right| \left|e_n\right|$$

#### Condition for convergence

Suppose |g'(x)| < K < 1 for all x in the interval of size h around the root.

If  $x_0$  is chosen in this interval, fixed point iteration will converge because

$$|e_{n+1}| < K|e_n| < K^2|e_{n-1}| < \cdots < K^{n+1}|e_0|.$$

Note that all succeeding iterates will lie in this interval and will converge to r.

# Fixed-Point Iteration 4 Convergence Rate

Order of convergence: linear

$$\begin{aligned} |e_{n+1}| &= |x_{n+1} - r| \\ &= |g'(\tau_n)(x_n - r)| \\ &= |g'(\tau_n)||e_n|, \end{aligned}$$

where  $\tau_n$  lies between  $x_n$  and r.

So if |g'(x)| < K < 1 for all x in the interval,

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|} = \lim_{n \to \infty} |g'(\tau_n)|, \text{ where } \tau_n \text{ lies between } x_n \text{ and } r.$$

$$= |g'(r)| < 1 \text{ (since } x_n \text{ converges to } r, \tau_n \text{ converges to } r)$$

Converge linearly!

- Converge | g'(p) | < 1</li>
  - Monotone converging
    - 0 < g'(p) < 1
  - Oscillating converging
    - -1 < g'(p) < 0
- Diverge | g'(p) | > 1
  - Monotone diverging
    - 1 < g'(p)
  - Oscillating diverging
    - g'(p) < -1







1 < g'(x): Monotone divergent



g'(x) < -1: Oscillating divergent

## Convergence Condition for Newton Method

Rewrite the Newton method as a fixed-point iteration :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n)$$

$$g'(x) = \frac{f(x)f''(x)}{\left[f'(x)\right]^2}$$

Based on the condition for convergence of fixed-point iteration:

Newton method converges if, on an interval about the root r,

$$\left|g'(x)\right| = \left|\frac{f(x)f''(x)}{\left[f'(x)\right]^2}\right| < 1$$

provided that  $x_0$  is in the interval.

# Convergence Order for Newton Method (for simple root)

By Taylor expansion of g(x) at r:

$$g(x) = g(r) + g'(r)(x - r) + \frac{g''(\xi)}{2}(x - r)^{2}$$

where  $\xi$  lies in the interval from  $x_n$  to r.

Since 
$$f(r) = 0$$
,  $g'(r) = \frac{f(r)f''(r)}{[f'(r)]^2} = 0$ ,

we have

$$g(x_n) = g(r) + \frac{g''(\xi_n)}{2}(x_n - r)^2$$

$$e_{n+1} = x_{n+1} - r = g(x_n) - g(r) = \frac{g''(\xi_n)}{2} e_n^2$$

As the iterates  $x_n$  approach to r when n approaches to infinity, so does  $\xi_n$ . That is,

$$\lim_{n\to\infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{2}} = \lim_{n\to\infty} \left|\frac{g''(\xi_{n})}{2}\right|$$

$$= \left| \frac{g''(r)}{2} \right| \neq 0$$

(for simple root)

So Newton method is quadratically convergent.

## Convergence Condition of Bisection Method

#### [From Mathews and Fink, p 54]

Theorem

Assume that  $f \in C[a,b]$  and that there exists a number  $r \in [a,b]$  such that f(r) = 0. If f(a)f(b) < 0, the sequence  $\{x_n\}_{n=0}^{\infty}$  generated by the bisection process, then

$$|x_n - r| \le \frac{b - a}{2^{n+1}}$$
 for  $n = 0,1,2,...$ 

Therefore

$$\lim_{n\to\infty}x_n=r.$$

## Convergence Condition of Bisection Method

Pf : Since the root r and midpoint  $x_n$  lie in [a, b],

$$\left|x_n - r\right| \le \frac{b_n - a_n}{2}$$
, for all  $n$ .

Observe that  $b_1 - a_1 = \frac{b_0 - a_0}{2}$   $(a_0 = a, b_0 = b)$ 

$$b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b_0 - a_0}{2^2}$$

By induction, we have

$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$

So

$$|x_n - r| \le \frac{b_n - a_n}{2} \le \frac{b_0 - a_0}{2^{n+1}}$$

## **Convergence Condition of Bisection Method**

Pf: Since the root r and midpoint  $x_n$  lie in [a, b],

$$|x_n - r| \le \frac{b_n - a_n}{2}$$
, for all  $n$ .

Basic step: Observe that  $b_1 - a_1 = \frac{b_0 - a_0}{2}$   $(a_0 = a, b_0 = b)$ 

$$b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b_0 - a_0}{2^2}$$

Induction step: Assuming it is true for n-1, we have

$$b_n - a_n = \frac{b_{n-1} - a_{n-1}}{2} = \frac{1}{2} \frac{b_0 - a_0}{2^{n-1}} = \frac{b_0 - a_0}{2^n}$$

So

$$|x_n - r| \le \frac{b_n - a_n}{2} \le \frac{b_0 - a_0}{2^{n+1}}$$

Proof by induction:

Basic step: prove it is true for n=1Induction step:

Assume it is true for n=kProve it is true for n=k+1

$$(a_0 = a, b_0 = b)$$

## Convergence Order of Bisection Method

- One-half of the current interval is an upper bound to the error, which can serve as the estimate of the error
- So  $|e_{n+1}|=0.5$   $|e_n|$  Linearly convergent!!

Since

$$e_{n+1} = |x_{n+1} - r| \le \frac{b_{n+1} - a_{n+1}}{2}, \quad e_{n+1} \approx \frac{b_{n+1} - a_{n+1}}{2}$$

$$e_n = |x_n - r| \le \frac{b_n - a_n}{2}, \quad e_n \approx \frac{b_n - a_n}{2}$$

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n} = \left(\frac{b_{n+1} - a_{n+1}}{2}\right) / \left(\frac{b_n - a_n}{2}\right) = \frac{1}{2}$$
(since  $b_{n+1} - a_{n+1} = \frac{b_n - a_n}{2}$ )

## **Convergence Order of Secant Method**

Consider  $x_{n+1} = g(x_n, x_{n-1})$ .

Apply Taylor series and derive

$$\lim_{n=0}^{\infty} \frac{|e_{n+1}|}{|e_n e_{n-1}|} = \frac{1}{2} \left| \frac{f''(r)}{f'(r)} \right|$$

Further error analysis leads to

$$\lim_{n\to\infty}\frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{\alpha}}=K,$$

where

$$\alpha = \frac{1+\sqrt{5}}{2} = 1.62, \ K = \frac{1}{2} \left| \frac{f''(r)}{f'(r)} \right|^{1/\alpha}$$

So convergence order is 1.618.

# **Convergence Order for All Methods: summary**

- Fixed-point iteration: Order: linear
- Bisection: Order: linear
  - One-half of the current interval is an upper bound to the error, which can serve as the estimate of the error
  - So  $|e_{n+1}| = 0.5 |e_n|$
- False Position: Order: linear
  - $-X_{n+1}=g(x_{n}, x_{n-1})$
  - The root is always bracketed, so  $x_{n-1}$  can be thought as a constant
  - It is exactly as the fixed-point iteration, so it is linearly convergent

# **Convergence order for All Methods: summary**

- Secant method: order: 1.62
  - $-x_{n+1}=g(x_{n}, x_{n-1})$
  - Similar analysis as the Newton method results in

$$e_{n+1} = \frac{g''(\xi_1)g''(\xi_2)}{2}e_n e_{n-1}$$

- Better than linear convergence but poorer than quadratic convergence. It has been shown the order is 1.62.
- Muller method: order=1.85
- Newton method: order= 2 (quadratic)

## **Starting Point Issues**

- Newton method requires the initial point to be close to a root. General cases:
  - Converge, or scattering and then converge (wandering)
  - Oscillating
  - Diverge
- Newton method for polynomials (all roots)
  - Obtain an approximate for the first root
  - Proceed to obtain additional roots from the reduced polynomial, in which synthetic division can be employed to improve an initial estimate.
  - The process is repeated until the reduced

#### Multiple roots

- Examples
  - $f(x)=(x+1)^3$ : triple root at x=-1
  - $f(x)=(x-2)^2$ : double root at x=2



Figure 1.9

#### Previous methods do not work well

- Newton/secant method converges only linearly to a double/triple root
- Bisection and false position methods fail to get a double root. (because no sign changes)
- Muller's method is fastest, then Newton method, and then Secant method



| <b>Table 1.7</b> Getting a double root, for $f(x) = (x-1)*(e^{(x-1)}-1)$ |                     |                 |                        |  |  |
|--------------------------------------------------------------------------|---------------------|-----------------|------------------------|--|--|
| posting to the post                                                      | Secant<br>method    | Newton's method | Muller's method        |  |  |
| Estimate after 9 iterations<br>Start value(s)                            | 1.00331<br>1.2, 1.5 | 1.00126<br>2.0  | 1.00058<br>0, 1.2, 1.5 |  |  |

Double root at 1

#### Problems for Newton method

- Slow convergence: Converge linearly at double/triple roots with ratio (k-1)/k
  - Ratio of errors=1/2 for double roots
  - Ratio of errors=2/3 for triple roots
- Another disadvantage: Imprecision
  - Curve is flat near the root
    - f'(x) will always be 0 at a root

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- There is a "neighborhood of uncertainty" around the root, where f(x) are very small around the root
  - » Computers will find f(x) equal to 0 throughout the neighborhood of the root
  - » Program cannot distinguish which value is really the root
  - » Using double precision helps to decrease the neighborhood of uncertainty



Figure 1.10 Plot of  $(x - 1) (e^{(x-1)} - 1)$ 

Table 1.4 Errors when finding a double root

| Iteration | Error    | Ratio |
|-----------|----------|-------|
| I         | 0.3679   |       |
| 2         | 0.1666   | 0.453 |
| 3         | 0.0798   | 0.479 |
| 4         | 0.0391   | 0.490 |
| 5         | 0.0193   | 0.494 |
| 6         | 0.0096   | 0.497 |
| 7         | 0.0048   | 0.500 |
| 8         | 8 0.0024 |       |

Converge linearly to a double root with ratio=1/2



**Table 1.10** Successive errors with Newton's method, for  $f(x) = (x + 1)^3 = 0$ 

| Iteration | Error  | Iteration | Error   |
|-----------|--------|-----------|---------|
| 0         | 0.5    | 6         | 0.0439  |
| 1         | 0.3333 | 7         | 0.0293  |
| 2         | 0.2222 | 8         | 0.0195  |
| 3         | 0.1482 | 9         | 0.0130  |
| 4         | 0.0988 | 10        | 0.00867 |
| 5         | 0.0658 |           |         |

Converge linearly to a triple root with ratio=2/3

#### Multiple Roots -6

- Linear convergence of Newton method to a double root and triple root
- For double roots
  - Bisection/false position methods fail for double roots
- For triple roots
  - All methods work, but even slower

#### Multiple Roots -7

#### Why linearly converge with error ratio (k-1)/k?

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n)$$

Taylor series of g(x) about r:

$$g(x) = g(r) + g'(r)(x-r) + (g''(\xi)/2)(x-r)^2$$

For simple roots, g'(r) = 0 leads to quadratic convergence.

For a root r of multiplicity k,

we cannot say 
$$g'(r) = \frac{f(r)f''(r)}{(f'(r))^2} = 0$$
. Why? 0/0

We can factor out  $(x-r)^k$  from f(x) to get

$$f(x) = (x-r)^k Q(x)$$
, where  $Q(r) \neq 0$ ,

even though 
$$f'(r) = f''(r) = \dots = f^{(k-1)}(r) = 0$$
.

#### Multiple Roots -8

Consider 
$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$$
 and let  $h = x - r$   

$$g'(x)$$

$$= \frac{h^k Q(x) [h^k Q''(x) + 2kh^{k-1} Q'(x) + k(k-1)h^{k-2} Q(x)]}{[h^k Q'(x) + kh^{k-1} Q(x)]^2}$$

$$=\frac{h^{2k-2}Q(x)\Big[h^2Q''(x)+2khQ'(x)+k(k-1)Q(x)\Big]}{h^{2k-2}\left[hQ'(x)+kQ(x)\right]^2}$$

When x = r, both denominator and numerator are 0, we cannot say g'(r) = 0.

Actually dividing denominator and numerator by  $h^{2k-2}$ , we have

$$\lim_{h \to 0} g'(x) = g'(r)$$

$$= \frac{Q(r) [0 \cdot Q''(r) + 0 \cdot Q'(r) + k(k-1)Q(r)]}{[0 \cdot Q'(r) + kQ(r)]^2}$$

$$= \frac{k(k-1)Q(r)^2}{k^2 Q(r)^2} = \frac{k-1}{k} \neq 0$$

$$g(x_n) = g(r) + g'(\xi_n)(x_n - r)$$

$$e_{n+1} = x_{n+1} - r = g(x_n) - g(r) = g'(\xi_n)e_n$$

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|} = \lim_{n \to \infty} g'(\xi_n) = g'(r) = \frac{k-1}{k}.$$

So the convergence is linear with

$$\lim_{n\to\infty}\frac{\left|e_{n+1}\right|}{\left|e_{n}\right|}=\frac{k-1}{k}.$$

# Remedies for Multiple Roots with Newton Method 1

# 1. For a root of multiplicity *k*, restore quadratic convergence by modifying the formula to (if k is known)

$$x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)} \equiv g_k(x_n)$$

Why?

At 
$$f(r) = 0$$
,  $g_{\nu}(r) = r$ . Based on

$$f(x) = (x-r)^k Q(x)$$
, where  $Q(r) \neq 0$ ,

we have

$$g'_k(x) =$$

$$\frac{(r-x)\{k(r-x)QQ''+Q'[2kQ-(k-1)(r-x)Q']\}}{[(r-x)Q'+kQ]^2}$$

We can easily see that  $g'_k(r) = 0$ , so the modified Newton method converge quadratically at multiple roots (including simple root where k = 1).

### Remedies for Multiple Roots with Newton Method -2

With modified Newton method:

$$f(x) = (x-1)(e^{(x-1)}-1)$$

The third iterate is

$$x_3 = 1.00088$$
 with  $f(x_3) = 0.00000$ 

Note: we also find that

$$e_{n+1} = 0.24e_n^2$$

confirming quadratic convergence.

# Remedies for Multiple Roots with Newton Method -3

- But k is unknown in advance!!
- Guess a k by comparing a graph of f(x) with the plots of (x-r)k using an approximate r and various values of k.
  - The flatness will be similar, but this is not justified
- Divide f(x) by (x-r) and deflate the function, reducing the multiplicity by one.
  - But r is unknown
    - Dividing f by (x-s), where s is an approximate of r, does almost the same thing.

### Remedies for Multiple Roots with Newton Method 4

#### 2. If k is known

- k=2
  - Newton method can be applied to f'(x)=0 to converge quadratically to a double root of f(x) =0. (simple root of f'(x)=0)
- k=3
  - Similarly, the method can be applied to f''(x) = 0 to get quadratic convergence to a triple root. (simple root of f''(x)=0)

$$f(x) = (x-r)^{2}Q(x), \text{ where } Q(r) \neq 0,$$

$$f'(x) = 2(x-r)Q(x) + (x-r)^{2}Q'(x)$$

$$= (x-r)[2Q(x) + (x-r)Q'(x)]$$
where  $2Q(r) + (r-r)Q'(x) = 2Q(r) \neq 0$ 

# Remedies for Multiple Roots with Newton Method -5

- 3. If k is known [Acton 1970]
  A most tempting scheme:
  - When f(x) has a root r of multiplicity k, we have

$$f(x) = (x-r)^k Q(x) \text{ and } Q(r) \neq 0$$
  
$$f'(x) = k(x-r)^{k-1} Q(x) + (x-r)^k Q'(x)$$
  
$$= (x-r)^{k-1} [kQ(x) + (x-r)Q'(x)]$$

 If we divide f(x) by f'(x), we effectively deflate f(x) n-1 times and we now work with a new function that has only a single root at x=r.
 Why? See next page.

# Remedies for Multiple Roots with Newton Method -6

If f(x) has a root of multiplicity k at x = r,  $f(x) = (x - r)^k Q(x)$ , where  $Q(r) \neq 0$ . Let

$$S(x) = \frac{f(x)}{f'(x)} = \frac{(x-r)^k Q(x)}{k(x-r)^{k-1} Q(x) + (x-r)^k Q'(x)}$$
$$= (x-r) \frac{Q(x)}{kQ(x) + (x-r)Q'(x)}$$

which has a simple root at x = r (since  $Q(r) \neq 0$ ).

When S(x) used in Newton formula, we have

$$x_{n+1} = x_n - \frac{S(x_n)}{S'(x_n)}$$

$$= x_n - \frac{f(x_n)f'(x_n)}{[f'(x_n)]^2 - f(x_n)f''(x_n)} \equiv g(x_n)$$

 Used to speed up convergence of any sequence that is linearly convergent.

#### **Definitions:**

Given the sequence  $\{p_n\}_{n=0}^{\infty}$ , define the forward difference

$$\Delta p_n = p_{n+1} - p_n$$
, for  $n \ge 0$ .

Higher powers  $\Delta^k p_n$  is defined recursively by

$$\Delta^k p_n = \Delta^{k-1}(\Delta p_n)$$
, for  $n \ge 2$ .

#### Theorem:

[From Friedman/Kandel, p90]
Assume that the sequence  $\{p_n\}_{n=0}^{\infty}$  converge linearly to p and that  $p_n - p \neq 0$  for all  $n \geq 0$ .

If there exists a real number

A with |A| < 1

such that

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}=A,$$

then the sequence  $\{q_n\}_{n=0}^{\infty}$  defined by

$$q_{n} = p_{n} - \frac{(\Delta p_{n})^{2}}{\Delta^{2} p_{n}}$$

$$= p_{n} - \frac{(p_{n+1} - p_{n})^{2}}{p_{n+2} - 2p_{n+1} + p_{n}}$$

converges to p faster than  $\{p_n\}_{n=0}^{\infty}$  in the sense that

$$\lim_{n\to\infty}\left|\frac{q_n-p}{p_n-p}\right|=0.$$

#### Proof:

Since there exists a real number

A with |A| < 1 such that

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}=A,$$

we have

$$\frac{p_{n+1} - p}{p_n - p} \approx A \approx \frac{p_{n+2} - p}{p_{n+1} - p}$$

when n is large.

This implies

$$(p_{n+1}-p)^2 \approx (p_n-p)(p_{n+2}-p)$$

Expanding the terms and cancelling  $p^2$  yields

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

$$= p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} = q_n.$$

We need to prove that  $\{q_n\}_{n=0}^{\infty}$  converges to p faster than  $\{p_n\}_{n=0}^{\infty}$  in the sense that

$$\lim_{n\to\infty}\left|\frac{q_n-p}{p_n-p}\right|=0.$$

Proof:(continued)

Let 
$$e'_n = q_n - p$$
, then

$$e'_{n} = p_{n} - p - \frac{(p_{n+1} - p_{n})^{2}}{p_{n+2} - 2p_{n+1} + p_{n}}$$

$$= e_n - \frac{(e_{n+1} - e_n)^2}{e_{n+2} - 2e_{n+1} + e_n}$$

$$=\frac{e_n e_{n+2} - e_{n+1}^2}{e_{n+2} - 2e_{n+1} + e_n}$$

Note that

Based on 
$$\lim_{n\to\infty} \frac{e_{n+1}}{e_n} = A$$
,

$$e_{n+1} = (A + \theta_n)e_n$$

$$e_{n+2} = (A + \theta_{n+1})e_{n+1}$$
  
=  $(A + \theta_{n+1})(A + \theta_n)e_n$ 

where 
$$\theta_n, \theta_{n+1} \to 0$$

as 
$$n \to \infty$$
.

Proof:(continued)

Therefore

$$e'_n$$

$$= \frac{(A + \theta_{n+1})(A + \theta_n)e_n^2 - (A + \theta_n)^2 e_n^2}{(A + \theta_{n+1})(A + \theta_n)e_n - 2(A + \theta_n)e_n + e_n}$$

$$= \frac{(A + \theta_{n+1})(A + \theta_n) - (A + \theta_n)^2}{(A + \theta_{n+1})(A + \theta_n) - 2(A + \theta_n) + 1} e_n$$

$$= \frac{(A + \theta_n)[(A + \theta_{n+1}) - (A + \theta_n)]}{(A^2 - 2A + 1) + A\theta_{n+1} + A\theta_n + \theta_{n+1}\theta_n - 2\theta_n}$$

$$= \frac{(A+\theta_n)}{(A-1)^2 + A(\theta_{n+1}+\theta_n) + \theta_n(\theta_{n+1}-2)} (\theta_{n+1}-\theta_n) e_n$$

Hence

$$\frac{e'_{n}}{e_{n}} = \frac{(A + \theta_{n})}{(A - 1)^{2} + A(\theta_{n+1} + \theta_{n}) + \theta_{n}(\theta_{n+1} - 2)}(\theta_{n+1} - \theta_{n})$$

and

$$\lim_{n\to\infty} \left| \frac{e'_n}{e_n} \right| = \frac{A}{(A-1)^2} \lim_{n\to\infty} (\theta_{n+1} - \theta_n) = 0.$$

#### **Advantages:**

- No significant additional computing time, because the time for computing  $q_n$  is negligible, once  $p_n$ ,  $p_{n+1}$ ,  $p_{n+2}$  are already given.
- Aitken acceleration speeds up the convergence for any sequence that is linearly convergent.

Rate of convergence of Aitken method

– Quadratic? NO!! Still linear, but faster than that for original sequence. WHY??

Theorem:

Consider  $p_{n+1} = g(p_n)$ . If the sequence

 $\{p_n\}_{n=0}^{\infty}$  converge linearly to p and

$$\lim_{n\to\infty}\frac{e_{n+1}}{e_n}=A\qquad (=g'(p)),$$

for |A| < 1, then the Aitken sequence  $\{q_n\}_{n=0}^{\infty}$ 

behaves asymptotically according to

$$\lim_{n \to \infty} \frac{e'_{n+1}}{e'_n} = A^2 < A$$

**Proof**: Since

$$e'_{n} = \frac{(A + \theta_{n+1})(A + \theta_{n})e_{n}^{2} - (A + \theta_{n})^{2}e_{n}^{2}}{(A + \theta_{n+1})(A + \theta_{n})e_{n} - 2(A + \theta_{n})e_{n} + e_{n}}$$

$$= \frac{(A + \theta_{n})}{(A - 1)^{2} + A(\theta_{n+1} + \theta_{n}) + \theta_{n}(\theta_{n+1} - 2)}(\theta_{n+1} - \theta_{n})e_{n}$$

Hence

$$\frac{e'_{n+1}}{e'_{n}} = \frac{(A + \theta_{n+1})[(A - 1)^{2} + A(\theta_{n} + \theta_{n+1}) + \theta_{n}(\theta_{n+1} - 2)]}{(A + \theta_{n})[(A - 1)^{2} + A(\theta_{n+1} + \theta_{n+2}) + \theta_{n+1}(\theta_{n+2} - 2)]} \frac{e_{n+1}(\theta_{n+2} - \theta_{n+1})}{e_{n}(\theta_{n+1} - \theta_{n})}$$

Since

$$\lim_{n\to\infty}\theta_n=0 \text{ and } \lim_{n\to\infty}\frac{e_{n+1}}{e_n}=A$$

We have

$$\lim_{n\to\infty}\frac{e'_{n+1}}{e'_n}=A\lim_{n\to\infty}\frac{(\theta_{n+2}-\theta_{n+1})}{(\theta_{n+1}-\theta_n)}.$$

We need to show that

$$\lim_{n\to\infty}\frac{(\theta_{n+2}-\theta_{n+1})}{(\theta_{n+1}-\theta_n)}=A.$$

Proof:

Consider

$$g(x) = g(r) + (x - r)g'(r) + \frac{(x - r)^2}{2}g''(\xi),$$

where  $\xi$  is between x and r.

$$e_{n+1} = x_{n+1} - r = g(x_n) - g(r)$$

$$= (x_n - r)g'(r) + \frac{(x_n - r)^2}{2}g''(\xi_n),$$

where  $\xi_n$  is between  $x_n$  and r, so  $\lim_{n\to\infty} \xi_n = r$ .

Due to the continuity of g", we can write

$$g''(\xi_n) = g''(r) + \theta'_n$$
,  $\lim_{n \to \infty} \theta'_n = 0$ .

Hence

$$e_{n+1} = e_n A + \frac{e_n^2}{2} (A' + \theta_n'),$$

where g'(r) = A, g''(r) = A'

Because  $e_{n+1} = (A + \theta_n)e_n$ , we obtain

$$e_{n+1} = e_n A + \frac{e_n^2}{2} (A' + \theta_n') = (A + \theta_n) e_n$$

and 
$$\theta_n = \frac{e_n}{2} (A' + \theta_n')$$
.

Finally,

$$\lim_{n\to\infty} \frac{\theta_{n+1}}{\theta_n} = \lim_{n\to\infty} \frac{\frac{e_{n+1}}{2} \left( A' + \theta'_{n+1} \right)}{\frac{e_n}{2} \left( A' + \theta'_n \right)}$$

$$= \lim_{n \to \infty} \left( \frac{e_{n+1}}{e_n} \frac{A' + \theta'_{n+1}}{A' + \theta'_n} \right) = \lim_{n \to \infty} \frac{e_{n+1}}{e_n} = A.$$

Therefore

$$\lim_{n \to \infty} \frac{\theta_{n+2} - \theta_{n+1}}{\theta_{n+1} - \theta_n} = \lim_{n \to \infty} \frac{\frac{\theta_{n+2}}{\theta_{n+1}} - 1}{1 - \frac{\theta_n}{\theta_{n+1}}} = \frac{A - 1}{1 - \frac{1}{A}} = A$$

Theorem:

Given a tolerance  $\varepsilon > 0$ , let N, N' denote the number of iterations required for convergence using fixed point iteration and Aitken's iteration, respectively. Then

$$\lim_{\varepsilon \to 0} \frac{N'}{N} = \frac{1}{2}$$

N=11, N'=5  

$$|e_4/e_3|=0.312 \sim |A|=g'(s)=(3/8) s^2=0.308$$
  
 $|e_4/e_3|=0.096 \sim A^2=0.095$ 

#### Example 3.3.4.

Let  $f(x) = 1 - (x^3/8)$ ,  $0 \le x \le 1$  (Fig. 3.3.1) and consider the equation x = f(x), given a first approximation  $x_0 = 0$  and a tolerance  $\epsilon = 10^{-6}$ . The exact solution computed to nine significant digits is s = 0.906795303. A comparison between the performances of the SIM and ATKN is given in Table 3.3.3.

**Table 3.3.3.**  $x = 1 - (x^3/8), \ 0 \le x \le 1, \ x_0 = 0, \ \epsilon = 10^{-6}$ 

| n  | $x_n$        | $x'_n$      | $ \epsilon_n/\epsilon_{n-1} $ | $\epsilon'_n/\epsilon'_{n-1}$ |
|----|--------------|-------------|-------------------------------|-------------------------------|
| 0  | 0.0000000000 | 0.88888889  |                               |                               |
| 1  | 1.000000000  | 0.906020558 | 0.103                         | 0.043                         |
| 2  | 0.875000000  | 0.906717286 | 0.341                         | 0.101                         |
| 3  | 0.916259766  | 0.906788044 | 0.298                         | 0.093                         |
| 4  | 0.903846331  | 0.906794608 | 0.312                         | 0.096                         |
| :  |              |             |                               |                               |
| 12 | 0.906796083  |             | H-STATE OF                    |                               |

SIM: Fixed point iteration

#### Example 3.3.1.

Consider  $x = e^{-x}$ ,  $1/2 \le x \le 2/3$ ,  $x_0 = 0.5$ . Table 3.3.1 contains the first eight iterations, using the SIM, compared with eight iterations based on Aitken's scheme.

Table 3.3.1.  $x = e^{-x}$  (Aitken's Method)

| n  | $X_R$    | x' <sub>n</sub> |  |
|----|----------|-----------------|--|
| 0  | 0.500000 | 0.567624        |  |
| 1  | 0.606531 | 0.567299        |  |
| 2  | 0.545239 | 0.567193        |  |
| 3  | 0.579703 | 0.567159        |  |
| 4  | 0.560065 | 0.567148        |  |
| 5  | 0.571172 | 0.567145        |  |
| 6  | 0.564863 | 0.567144        |  |
| 7  | 0.568438 | 0.567143        |  |
| 8  | 0.566409 |                 |  |
|    |          |                 |  |
| 22 | 0.567143 |                 |  |

We see that ATKN yields the first 6 digits of the exact solution after 8 iterations, compared with the 22 that are needed for the SIM (to provide the same accuracy).

Example 3.3.2

|                               | ITERATIO         | Exact solution to 8 decimal digits: 0.73908513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11- 2                         | $32. x = \cos x$ | (Aitken's Method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 5                       |                  | X'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n                             | $\chi_n$         | 0.72801036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                             | 1.00000000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The section of the section of | 0.54030231       | 0.73366516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2                             | 0.85755322       | 0.73690629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                             | 0.65428979       | 0.73805042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                             | 0.79348036       | 0.73863610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5                             | 0.70136877       | 0.73887038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                             | 0.76395968       | 0.73899224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                             | 0.72210243       | 0.73904251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8                             | 0.75041776       | 0.73906595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9                             | 0.73140404       | 0.73907638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10                            | 0.74423735       | 0.73908118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                            | 0.73560474       | To approximate r within error 10^-5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               |                  | Aitken method: requires 11 iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _26                           | 0.73909441       | Fixed-point iteration: requires 25 iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                  | The second secon |

#### **Nonlinear systems**

#### Nonlinear system

$$f_1(x_1, x_2, x_3,..., x_n) = 0$$

$$f_2(x_1, x_2, x_3,..., x_n) = 0$$

$$\vdots$$

$$\vdots$$

$$f_n(x_1, x_2, x_3,..., x_n) = 0$$

#### 2x2 system

$$f(x, y) = 0$$
$$g(x, y) = 0$$

Solution set: Regarded as the intersections of two algebraic curves.

#### **Nonlinear systems**

#### Example

$$\begin{cases} x^2 + y^2 = 4 \\ e^x + y = 0 \end{cases}$$



Figure 1.11

#### Nonlinear Systems Methods

#### Similar to solving f(x)=0

- Fixed point iteration
  - Different formulae behave differently
  - Converge linearly
- Newton method
  - Derivative vs. Jacobian matrix
  - Converge quadratically

# Nonlinear Systems Fixed Point Iteration

Consider the 2x2 system:

$$\begin{cases} f_1(x, y) = 0 \\ f_2(x, y) = 0 \end{cases}$$

Fixed point equation:

$$\begin{cases} x = g_1(x, y) \\ y = g_2(x, y) \end{cases}$$

If the starting point is sufficiently close to the fixed point (p, q), and if

$$\left| \frac{\partial g_1}{\partial x}(p,q) \right| + \left| \frac{\partial g_1}{\partial y}(p,q) \right| < 1$$
 and

$$\left| \frac{\partial g_2}{\partial x}(p,q) \right| + \left| \frac{\partial g_2}{\partial y}(p,q) \right| < 1$$

then the iteration converges to the fixed point.

Note:

If the conditions are not met, the iteration might diverge.

### **Nonlinear Systems Fixed Point Iteration**

$$\begin{cases} x^2 - 2x - y + 0.5 = 0 \\ x^2 + 4y^2 - 4 = 0 \end{cases}$$

Fixed point formulation:

$$\begin{cases} x = \frac{x^2 - y + 0.5}{2} \\ y = \frac{-x^2 - 4y^2 + 8y + 4}{8} \end{cases}$$

Starting with (0,1), it converges to (-0.2,1.0).

Observe that

$$\left| \frac{\partial g_1}{\partial x}(p,q) \right| + \left| \frac{\partial g_1}{\partial y}(p,q) \right|$$

$$= |x| + |-0.5| < 1, \text{ and}$$

$$\left| \frac{\partial g_2}{\partial x}(p,q) \right| + \left| \frac{\partial g_2}{\partial y}(p,q) \right|$$

$$<\frac{|-x|}{4}+|-y+1|<1$$

for 
$$-0.5 < x < 0.5$$
 and  $0.5 < y < 1.5$ .

Starting with (2,0), it diverges away from the solution.

### Nonlinear Systems Newton Method

Newton method for solving  $\begin{cases} f(x, y) = 0 \\ g(x, y) = 0 \end{cases}$ 

Let (r, s) be a root and expand both functions as a Taylor series about  $(x_i, y_i)$ , where  $(x_i, y_i)$  is a point near the root:

$$\begin{cases} f(r,s) = 0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) \\ + f_y(x_i, y_i)(s - y_i) + \cdots \\ g(r,s) = 0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) \\ + g_y(x_i, y_i)(s - y_i) + \cdots \end{cases}$$

Truncating both series give

$$\begin{cases} 0 = f(x_i, y_i) + f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) \\ 0 = g(x_i, y_i) + g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i) \end{cases}$$

#### Nonlinear systems Newton method

The system is rewritten as

$$\begin{cases} f_x(x_i, y_i)(r - x_i) + f_y(x_i, y_i)(s - y_i) = -f(x_i, y_i) \\ g_x(x_i, y_i)(r - x_i) + g_y(x_i, y_i)(s - y_i) = -g(x_i, y_i). \end{cases}$$

The iterate is derived by solving

$$\begin{cases} f_x(x_i, y_i) \Delta x_i + f_y(x_i, y_i) \Delta y_i = -f(x_i, y_i) \\ g_x(x_i, y_i) \Delta x_i + g_y(x_i, y_i) \Delta x_i = -g(x_i, y_i) \end{cases}$$

where  $x_{i+1} = x_i + \Delta x_i$  and  $y_{i+1} = y_i + \Delta y_i$  are improved estimate of the root.

Repeating this iteration until both  $f(x_i)$  and  $g(y_i)$  are close to zero.

#### Nonlinear Systems Newton Method

$$\begin{cases} f_x(x_i, y_i) \Delta x_i + f_y(x_i, y_i) \Delta y_i = -f(x_i, y_i) \\ g_x(x_i, y_i) \Delta x_i + g_y(x_i, y_i) \Delta x_i = -g(x_i, y_i) \end{cases}$$

can be rewritten as

$$J(x_i, y_i) \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix} = \begin{bmatrix} -f(x_i, y_i) \\ -g(x_i, y_i) \end{bmatrix}$$

If  $J(x_i, y_i)$  is nonsingular,  $\Delta x_i$  and  $\Delta y_i$  can be found by solving the linear system.

New iterate is obtained by

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} \Delta x_i \\ \Delta y_i \end{bmatrix}.$$

# Nonlinear Systems Newton Method

- The Newton method for solving nonlinear system converges quadratically, but requiring
  - n<sup>2</sup>+n function evaluations at each step
    - 6 function evaluations for a 2x2 system
    - 12 function evaluations for a 3x3 system
  - Solving an nxn linear system