Scaling ML using Cloud ML Engine

Contents

- 1. Data Science Workflow
- 2. Where to develop?
- 3. Hands-ON Tutorial: Running MNIST on ML-Engine
 - A. Setup
 - B. Training Possibilities
 - C. Evaluation
 - D. Deployment
- 4. Recap
- 5. Appendix
 - A. Jupyter Slides

1. Data Science Workflow

- Goal is to standardise the development of models
 - Checklist of necessary technical steps

Vision: Achieve an first end-to-end model in production within a productincrement of 10 weeks

Scale out: Scale without having to rewrite your model

Data Science Process - Proposal

Step 1: Preparation	Step 2: Data exploration and model building	Step 3: Model deployment
1.1 Project setup	2.1 One click to start the Data Scientist Exploration Environment	3.1 Model serving
1.2 Quick data exploration	2.2 Setup for Data exploration and Machine Learning	3.2 Model deployment (load balancing)
1.3 Data visualization	2.3 Deep dive in data exploration	3.3 Model versioning
-	2.4 Data visualization and profiling	3.4 Model monitoring
-	2.5 Feature engineering	-
-	2.6 Model building	-
-	2.7 Model training	-
-	2.8 Model testing	-
-	2.9 Hyparameters tuning	-
-	2.10 Model visualisation	-

steps 1 and 2 can be done only locally

We will look today at

- 2.7 How to train a model?
- 2.8 How to evaluate a model?
- 3.1 How to make predictions?
- 3.2 How to deploy a model?

Should help to answer:

- Where do we need to improve?
- Where to go next?

Process description will be refined.

2. Where to develop?

Locally using

- Google SDK on your laptop (CLI)
- your IDE (e.g. PyCharme)
- Juypter Notebook
- gcloud ml-engine local

Simple Cloud setup using

- Google Console (https://console.cloud.google.com/) Compute Engine with 5 GB storage
- Cloud Editor
- datalab
- gcloud ml-engine(local)

Proposal

- when to migrate to GCP:
 - distribute learning on several machines
 - serve model 24/7

develop locally

3. Hands-ON Tutorial: Running MNIST on ML-Engine

- deep dive into step 2 and 3 of Data Science process
- data exploration is omitted as a curated dataset is used

Adapted from Notebook (https://github.com/GoogleCloudPlatform/training-data-analyst/blob/master/courses/machine_learning/cloudmle/cloudmle.ipynb) of Google Coursera Course Serverless Machine Learning with Tensorflow on Google Cloud Platform (https://www.coursera.org/learn/serverless-machine-learning-gcp/)

• In order to import from src functionality later in this notebook, it is necessary to change to the root directory of the notebooks directory

MNIST use-case

recognise hand-written digits (e.g. on a postal card)

```
In [20]: from src.utils.mnist_utils import plot_mnist_testdata
plot_mnist_testdata()
```


Why MNIST?

- images need pre-processing
- black and white images are numeric vectors

3.A Setup

- 1. ML Engine Runtimes
- 2. Repository Structure
- 3. Configuration Variables
 - Environment variables to set
 - How to add them to your runtime
- 4. Setup gcloud runtime

Create conda environement

• conda env create -f environment.yml -n env_gcp_dl

1 ML Engine Runtimes

Default ML-Engine Runtimes depend on the Tensorflow Version

- <u>list of runtimes (https://cloud.google.com/ml-engine/docs/tensorflow/runtime-version-list)</u>
- Current Version: 1.12

```
In []: #!conda install tensorflow=1.12
In [21]: import tensorflow as tf
tf.__version__
Out[21]: '1.12.0'
```

2. Repository structure

```
In [ ]: ls | grep "/\|yaml"
```

Key Directories containing information

```
.
+-- data
+-- src
| +-- models
| +-- packages
config.yaml
```

In the next step the contents of config.yaml) will be important

3. GCP Environment Variables

- PR0JECT_ID: unique ID that identifies your project, e.g. ml-productive-pipeline-12345
- BUCKET: BLOB-store ID. Each project has per default an bucket named by the PROJECT ID
- REGION: Which data center to use

Additional Environment Variables needed for ML-Engine

- PKG_NAME: Package Name which will contain your model
- TF_VERSION: Tensorflow Version

```
In []: import yaml
    from pprint import pprint
    with open("config.yaml", "r", encoding = "utf8") as f:
        config = yaml.load(f)
        pprint(config)
```

Adding Environment Variables to your runtime

- add variables persistently to the runtime of your kernel from jupyter (or datalab)
- use os.environ dictionary

```
In []: import os
    PROJECT = config['project-id']
    REGION = config['region'] # Choose an available region for Cloud MLE from http
    s://cloud.google.com/ml-engine/docs/regions.
    BUCKET = config['bucket'] # REPLACE WITH YOUR BUCKET NAME. Use a regional bucke
    t in the region you selected.
    PKG_NAME = config['pkg-name']

    os.environ['PROJECT'] = PROJECT
    os.environ['BUCKET'] = BUCKET
    os.environ['REGION'] = REGION
    os.environ['TFVERSION'] = str(config['tf-version']) # Tensorflow version 1.4 b
    efore
    os.environ['PKG_NAME'] = config['pkg-name']
```

Now, you can access the environement variable in the terminal where your jupyter, datalab or iphyton.

```
In [ ]: !echo "Using Tensorflow Version: $TFVERSION"
```

4. Setup gcloud runtime

```
In [ ]: %%bash
    gcloud config set project $PROJECT
    gcloud config set compute/region $REGION
```

Access Control

- not necessary if you use
 - datalab
 - local sdk
- Service Accounts (<u>Creating and Managing Service Accounts</u>)
 (<u>https://cloud.google.com/iam/docs/creating-managing-service-accounts</u>)
 - need be assigned read/write permission to BUCKET

Beyond Scripting: Packaging up the code

Take your code and put into a standard Python package structure, see pkg_mnist_fnn/model.py (../src/pkg_mnist_fnn/model.py)

Key-Idea:

- define entry point which can be called
- write all tasks as a function (callable)

Why a package?

 can be called from other scripts import model

model.py

load most recent version, if needed:

```
In [ ]: %load src/pkg_mnist_fnn/model.py
```

```
import tensorflow as tf
import numpy as np
from .utils import load data
#Factor into config:
N PIXEL = 784
O\overline{U}TDIR = 'trained'
USE TPU = False
EPO\overline{C}HS = 5
IMAGE SIZE = 28 * 28
NUM L\overline{A}BELS = 10
BATCH SIZE = 128
def parse images(x):
   return x.reshape(len(x), -1).astype('float32')
def parse labels(y):
   return y.astype('int32')
```

```
def numpy input fn(images: np.ndarray,
                   labels: np.ndarray,
                   mode=tf.estimator.ModeKeys.EVAL):
    0.00
    Return depending on the `mode`-key an Interator which can be use to feed i
nto
    the Estimator-Model.
    Alternative if a `tf.data.Dataset` named `dataset` would be created:
    `dataset.make one shot iterator().get next()`
    if mode == tf.estimator.ModeKeys.TRAIN:
        _epochs = EPOCHS
        _shuffle = True
         num threads = 2
    else:
        _{epochs} = 1
        shuffle = False
        num threads = 1
    return tf.estimator.inputs.numpy input fn(
        {'x': images},
        y=labels,
        batch size=BATCH SIZE,
        num epochs= epochs, # Boolean, if True shuffles the queue.
                            # Avoid shuffle at prediction time.
        # Boolean, if True shuffles the queue. Avoid shuffle at prediction
        shuffle= shuffle,
        queue capacity=1000, # Integer, number of threads used for reading
        # and enqueueing. To have predicted order of reading and enqueueing,
        # such as in prediction and evaluation mode, num threads should be 1.
        num threads= num threads
```

```
def train and evaluate(args):
    Utility function for distributed training on ML-Engine
    www.tensorflow.org/api docs/python/tf/estimator/train and evaluate
   # Load Data in Memoery
    (x train, y train), (x test, y test) = load data(
        rel path=args['data path'])
    x train = parse images(x train)
    x test = parse images(x test)
    y train = parse labels(y train)
    y test = parse labels(y test)
    model = tf.estimator.DNNClassifier(
        hidden units=[256, 128, 64],
        feature columns=[tf.feature column.numeric column(
            'x', shape=[N PIXEL, ])],
        model dir=args['output dir'],
        n classes=10,
        optimizer=tf.train.AdamOptimizer,
        # activation fn=,
        dropout=0.2,
        batch norm=False,
        loss reduction='weighted sum',
        warm start from=None,
        confiq = None
    train spec = tf.estimator.TrainSpec(
   # see next slide
```

```
def train and evaluate(args):
    Utility function for distributed training on ML-Engine
    www.tensorflow.org/api docs/python/tf/estimator/train and evaluate
   # see previous slide
    model = tf.estimator.DNNClassifier(
    # see previous slide
    train spec = tf.estimator.TrainSpec(
        input fn=numpy input fn(
            x train, y train, mode=tf.estimator.ModeKeys.TRAIN),
        max steps=args['train steps'],
        hooks = None
    exporter = tf.estimator.LatestExporter('exporter', serving input fn)
    eval spec = tf.estimator.EvalSpec(
        input fn=numpy input fn(
            x test, y test, mode=tf.estimator.ModeKeys.EVAL),
        steps=None,
        start delay secs=args['eval delay secs'],
        throttle secs=args['min eval frequency'],
        exporters=exporter
    tf.estimator.train and evaluate(
        estimator=model, train spec=train spec, eval spec=eval spec)
```

task.py

load most recent file using:

```
In [ ]: %load src/pkg_mnist_fnn/task.py
```

```
0.00
Parse arguments and call main function
import os
import argparse
import shutil
from .model import train and evaluate
if name == ' main ':
    parser = argparse.ArgumentParser()
    parser.add argument(
        '--data path',
        help='GCS or local path to training data',
        required=True
    parser.add argument(
        '--output dir',
        help='GCS location to write checkpoints and export models',
        required=True
    parser.add argument(
        '--train batch size',
        help='Batch size for training steps',
        type=int,
        default='128'
    parser.add argument(
        '--train steps',
        help='Steps to run the training job for',
        type=int,
        default='200'
```

```
parser.add argument(
       '--hidden units',
       help='List of hidden layer sizes to use for DNN feature columns',
       nargs='+',
       type=int,
       default=[128, 64, 32]
   parser.add argument(
       '--job dir',
       help='this model ignores this field, but it is required by gcloud',
       default='iunk'
   # Eval arguments
   parser.add argument(
       '--eval delay secs',
       help='How long to wait before running first evaluation',
       default=1,
       type=int
   parser.add argument(
        '--min eval frequency',
       help='Seconds between evaluations',
       default=10,
       type=int
   args = parser.parse args(). dict
   OUTDIR = args['output dir']
   # # Train and Evaluate (use TensorBoard to visualize)
   train and evaluate(args)
```

3.B Train using ML-Engine on

your local machine

- 1. Call your python script (module)
- 2.Usegcloud ml-engine local train

a cluster of machines using ML-Engine service

1.Use gcloud ml-engine
 train

Modeling and ML-Engine

- Environment Variables with absolut paths to relevant folders:
 - PWD: where your project folder lies
 - PKG_NAME: Self-Contained Package to be exported into sitepackages in venv
 - trained: Where to store checkpoints (logs, weights, graph)

```
In []: %%bash
    echo "Working Directory: $PWD"
    echo "Local data Directory: $PWD/data"
    echo "Package Directory: $PWD/src/$PKG_NAME"
    echo "Saved Model Directory: $PWD/src/$PKG_NAME/trained/"
    rm -rf $PWD/src/$PKG_NAME/trained/ # start fresh
    echo "Erased previously saved models"
```

1. Running the Python module without gcp ml-engine

- Entry point is defined in task.py
 - parses command line arguments
- conda env has to be active

Saved Model

```
In [ ]: %%bash
DATE=$(ls $PWD/src/$PKG_NAME/trained/export/exporter/ |tail -1)
    echo "Date as integer: $DATE"
    echo
    date -d @${DATE}
```

And we would be ready to deploy

... but of course not without looking at performance metrics or predictions!

2. Training using gcloud ml-engine local train

 continue training using ml-engine local

3. Training Cloud using gcloud ml-engine train

- a copy of the data is in Google Storage (buckets)
- gcloud ml-engine output is saved to OUTDIRin Google
 Storage
 - checkpoints (logs)
 - model graph and weights
- data is copied to Google Storage

NOTE: No with-spaces behind line break symbol \

```
In [ ]: OUTDIR = '/'.join(['gs:/', BUCKET, PKG_NAME, 'trained'])
    os.environ['OUTDIR'] = OUTDIR

In [ ]: !gsutil -m cp ${PWD}/data/mnist/raw/mnist.npz gs://${BUCKET}/$PKG_NAME/data/mni
    st.npz
```

Start Job

```
In [ ]:
        %%bash
         OUTDIR=gs://${BUCKET}/$PKG NAME/trained
         JOBNAME=mnist $(date -u +%y%m%d %H%M%S)
         echo $OUTDIR $REGION $JOBNAME
         qsutil -m rm -rf $OUTDIR
         gcloud ml-engine jobs submit training $JOBNAME \
            --region=$REGION \
            --module-name=$PKG NAME.task \
            --package-path=${PWD}/src/$PKG NAME \
            --staging-bucket=gs://$BUCKET \
            --scale-tier=BASIC \
            --python-version 3.5 \
            --runtime-version=$TFVERSION \
            --data path="gs://${BUCKET}/$PKG NAME/data/" \
            --output dir=$OUTDIR \
            --train steps=5000 \
            -- job dīr=$OUTDIR/jobs
```

Fetch logs from ml-engine job

replace mnist_190226_135612 with your JOBNAME

```
In [ ]: !gcloud ml-engine jobs describe mnist_190226_135612
In [ ]: !gcloud ml-engine jobs stream-logs mnist_190226_135612
```

Check Results in TensorBoard

- metrics and variables are inspected from the logs, called checkpoints (ckpt)
- Dashboard on localhost: TensorBoard

Inspect Models trained on your machine:

 tensorboard --logdir src/pkg mnist fnn/trained

```
In []: %%bash
    source activate gcp_dl
    tensorboard --logdir $PWD/src/$PKG_NAME/trained
```

Or trained on GCP, where results are store in Google Cloud Storage

Deploy model - from any previous step

- tf.estimator.LatestExporteris used to store a model for deployment in the cloud
- See also: tf.estimator.export, tf.saved_model

<u>Link to Console (https://console.cloud.google.com/)</u>

Check that a model has been saved on your Bucket:

```
In [ ]: %%bash
    gsutil ls gs://${BUCKET}/${PKG_NAME}/trained/export/exporter
```

Deploy

Identifier for deployed model:

- MODEL NAME
- MODEL_VERSION

```
In []: %%bash
    MODEL_NAME="MNIST_MLENGINE"
    MODEL_VERSION="v2"
    MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/$PKG_NAME/trained/export/exporter | t ail -1)
    echo "Run these commands one-by-one (the very first time, you'll create a model and then create a version)"
    #gcloud ml-engine versions delete ${MODEL_VERSION} --model ${MODEL_NAME} + #gcloud ml-engine models delete ${MODEL_NAME} --regions $REGION
    gcloud ml-engine versions create ${MODEL_NAME} --regions $REGION
    gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version $TFVERSION
```

Predictions

- 1. Using the Model saved by Python Module
- 2. Using Model saved by ml-engine local
- 3. Using Model trained online

Tools get predictions:

- Command Line Interfaces
 - gcloud ml-engine local predict
 - gcloud ml-engine predict
- Python Client

Let's look again at our four examples

```
In [22]: from src.utils.mnist_utils import plot_mnist_testdata
plot_mnist_testdata()
```


ML-Engine: ml-engine local predict

- Using Model saved
 - Python module
 - ml-engine
 local

```
In [ ]: %%bash
  gcloud ml-engine local predict --help
```

Online Prediction - Command Line

• same output format as before

```
In []: %%bash
    gcloud ml-engine predict --model=MNIST_MLENGINE --version=v1 --json-instances=d
    ata/test.json
```

Check Console

Online Prediction - Python Client

In []: | from oauth2client.client import GoogleCredentials

- Get predictions using the <u>Python-Client-Library</u>, see <u>Tutorial</u> (<u>https://cloud.google.com/ml-engine/docs/tensorflow/python-client-library</u>).
- API-Reference (https://cloud.google.com/ml-engine/reference/rest/)
- service account authentification: <u>link</u>
 (https://cloud.google.com/iam/docs/creating-managing-service-accounts)

```
In [ ]: | MODEL NAME = 'MNIST_MLENGINE'
        VERSI\overline{0}N = 'v1'
In [ ]: | # Load data
        from src.pkg mnist fnn.utils import load data
         from src.pkg mnist fnn.model import parse images
         ( , ), (x test, y test) = load data(rel path='data')
         N=4
        test indices = np.random.randint(low=0, high=len(y test), size=N)
        x test, y test = x test[test indices], y test[test indices]
        x test = parse images(x test).tolist()
        eol = "\r\n"
        n lines = len(y test)
         instances = []
        with open("data/test.json", "r") as f:
             for image, label in zip(x test, y test):
                 instances.append({"x": image}) #, "y": int(label)}
In [ ]: | project id = 'projects/{}/models/{}/versions/{}'.format(PROJECT, MODEL NAME, VE
        RSION)
         request data = {"instances":
             instances
         request = api.projects().predict(body=request data, name=project id).execute()
         print(request)
In [ ]: | for i, pred in enumerate(request['predictions']):
             print("Predicted class: {}, True Class:\t{}".format(pred['classes'][0], y t
         est[i]))
```

Recap

TRAIN

Cloud Storage Bucket Ckpts TRAIN ML-Engine Compute Engines

PREDICT

Outlook

- Add different models types
 - different layers of abstraction in tensorflow
 - sklearn
- Show how to use ml engine in SQL in BigQuery

Appendix

Notes on Jupyter Slides

- Activate: View -> Cell Toolbar -> Slideshow
- nbextensions (https://jupyter-contribnbextensions.readthedocs.io/en/latest/install.html)
 - <u>split cells vertically (https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/splitcell/readme.htm</u>
 - install into base conda environment
- <u>RISE (https://damianavila.github.io/RISE/installation.html)</u> for interactive presentations
 - using conda: conda install -c damianavila82 rise
 - activte scrolling in Notebook-Metadata, see <u>link</u>
 (<u>https://damianavila.github.io/RISE/customize.html#config-right-scroll)</u>
 - adapt width and height of your slides to your machine and needs. <u>link</u> (<u>https://damianavila.github.io/RISE/customize.html#change-the-width-and-height-of-slides</u>)