34 NP-Completeness

Almost all the algorithms we have studied thus far have been *polynomial-time algorithms*: on inputs of size n, their worst-case running time is $O(n^k)$ for some constant k. You might wonder whether *all* problems can be solved in polynomial time. The answer is no. For example, there are problems, such as Turing's famous "Halting Problem," that cannot be solved by any computer, no matter how much time we allow. There are also problems that can be solved, but not in time $O(n^k)$ for any constant k. Generally, we think of problems that are solvable by polynomial-time algorithms as being tractable, or easy, and problems that require superpolynomial time as being intractable, or hard.

The subject of this chapter, however, is an interesting class of problems, called the "NP-complete" problems, whose status is unknown. No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor has anyone yet been able to prove that no polynomial-time algorithm can exist for any one of them. This so-called $P \neq NP$ question has been one of the deepest, most perplexing open research problems in theoretical computer science since it was first posed in 1971.

Several NP-complete problems are particularly tantalizing because they seem on the surface to be similar to problems that we know how to solve in polynomial time. In each of the following pairs of problems, one is solvable in polynomial time and the other is NP-complete, but the difference between problems appears to be slight:

Shortest vs. longest simple paths: In Chapter 24, we saw that even with negative edge weights, we can find *shortest* paths from a single source in a directed graph G = (V, E) in O(VE) time. Finding a *longest* simple path between two vertices is difficult, however. Merely determining whether a graph contains a simple path with at least a given number of edges is NP-complete.

Euler tour vs. hamiltonian cycle: An *Euler tour* of a connected, directed graph G = (V, E) is a cycle that traverses each *edge* of G exactly once, although it is allowed to visit each vertex more than once. By Problem 22-3, we can determine whether a graph has an Euler tour in only O(E) time and, in fact,

we can find the edges of the Euler tour in O(E) time. A **hamiltonian cycle** of a directed graph G = (V, E) is a simple cycle that contains each *vertex* in V. Determining whether a directed graph has a hamiltonian cycle is NP-complete. (Later in this chapter, we shall prove that determining whether an *undirected* graph has a hamiltonian cycle is NP-complete.)

2-CNF satisfiability vs. 3-CNF satisfiability: A boolean formula contains variables whose values are 0 or 1; boolean connectives such as \land (AND), \lor (OR), and \neg (NOT); and parentheses. A boolean formula is *satisfiable* if there exists some assignment of the values 0 and 1 to its variables that causes it to evaluate to 1. We shall define terms more formally later in this chapter, but informally, a boolean formula is in *k-conjunctive normal form*, or *k-CNF*, if it is the AND of clauses of ORs of exactly *k* variables or their negations. For example, the boolean formula $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3)$ is in 2-CNF. (It has the satisfying assignment $x_1 = 1, x_2 = 0, x_3 = 1$.) Although we can determine in polynomial time whether a 2-CNF formula is satisfiable, we shall see later in this chapter that determining whether a 3-CNF formula is satisfiable is NP-complete.

NP-completeness and the classes P and NP

Throughout this chapter, we shall refer to three classes of problems: P, NP, and NPC, the latter class being the NP-complete problems. We describe them informally here, and we shall define them more formally later on.

The class P consists of those problems that are solvable in polynomial time. More specifically, they are problems that can be solved in time $O(n^k)$ for some constant k, where n is the size of the input to the problem. Most of the problems examined in previous chapters are in P.

The class NP consists of those problems that are "verifiable" in polynomial time. What do we mean by a problem being verifiable? If we were somehow given a "certificate" of a solution, then we could verify that the certificate is correct in time polynomial in the size of the input to the problem. For example, in the hamiltonian-cycle problem, given a directed graph G=(V,E), a certificate would be a sequence $\langle \nu_1,\nu_2,\nu_3,\ldots,\nu_{|V|}\rangle$ of |V| vertices. We could easily check in polynomial time that $(\nu_i,\nu_{i+1})\in E$ for $i=1,2,3,\ldots,|V|-1$ and that $(\nu_{|V|},\nu_1)\in E$ as well. As another example, for 3-CNF satisfiability, a certificate would be an assignment of values to variables. We could check in polynomial time that this assignment satisfies the boolean formula.

Any problem in P is also in NP, since if a problem is in P then we can solve it in polynomial time without even being supplied a certificate. We shall formalize this notion later in this chapter, but for now we can believe that $P \subseteq NP$. The open question is whether or not P is a proper subset of NP.

Informally, a problem is in the class NPC—and we refer to it as being *NP-complete*—if it is in NP and is as "hard" as any problem in NP. We shall formally define what it means to be as hard as any problem in NP later in this chapter. In the meantime, we will state without proof that if *any* NP-complete problem can be solved in polynomial time, then *every* problem in NP has a polynomial-time algorithm. Most theoretical computer scientists believe that the NP-complete problems are intractable, since given the wide range of NP-complete problems that have been studied to date—without anyone having discovered a polynomial-time solution to any of them—it would be truly astounding if all of them could be solved in polynomial time. Yet, given the effort devoted thus far to proving that NP-complete problems are intractable—without a conclusive outcome—we cannot rule out the possibility that the NP-complete problems are in fact solvable in polynomial time.

To become a good algorithm designer, you must understand the rudiments of the theory of NP-completeness. If you can establish a problem as NP-complete, you provide good evidence for its intractability. As an engineer, you would then do better to spend your time developing an approximation algorithm (see Chapter 35) or solving a tractable special case, rather than searching for a fast algorithm that solves the problem exactly. Moreover, many natural and interesting problems that on the surface seem no harder than sorting, graph searching, or network flow are in fact NP-complete. Therefore, you should become familiar with this remarkable class of problems.

Overview of showing problems to be NP-complete

The techniques we use to show that a particular problem is NP-complete differ fundamentally from the techniques used throughout most of this book to design and analyze algorithms. When we demonstrate that a problem is NP-complete, we are making a statement about how hard it is (or at least how hard we think it is), rather than about how easy it is. We are not trying to prove the existence of an efficient algorithm, but instead that no efficient algorithm is likely to exist. In this way, NP-completeness proofs bear some similarity to the proof in Section 8.1 of an $\Omega(n \lg n)$ -time lower bound for any comparison sort algorithm; the specific techniques used for showing NP-completeness differ from the decision-tree method used in Section 8.1, however.

We rely on three key concepts in showing a problem to be NP-complete:

Decision problems vs. optimization problems

Many problems of interest are *optimization problems*, in which each feasible (i.e., "legal") solution has an associated value, and we wish to find a feasible solution with the best value. For example, in a problem that we call SHORTEST-PATH,

we are given an undirected graph G and vertices u and v, and we wish to find a path from u to v that uses the fewest edges. In other words, SHORTEST-PATH is the single-pair shortest-path problem in an unweighted, undirected graph. NP-completeness applies directly not to optimization problems, however, but to *decision problems*, in which the answer is simply "yes" or "no" (or, more formally, "1" or "0").

Although NP-complete problems are confined to the realm of decision problems, we can take advantage of a convenient relationship between optimization problems and decision problems. We usually can cast a given optimization problem as a related decision problem by imposing a bound on the value to be optimized. For example, a decision problem related to SHORTEST-PATH is PATH: given a directed graph G, vertices u and v, and an integer k, does a path exist from u to v consisting of at most k edges?

The relationship between an optimization problem and its related decision problem works in our favor when we try to show that the optimization problem is "hard." That is because the decision problem is in a sense "easier," or at least "no harder." As a specific example, we can solve PATH by solving SHORTEST-PATH and then comparing the number of edges in the shortest path found to the value of the decision-problem parameter k. In other words, if an optimization problem is easy, its related decision problem is easy as well. Stated in a way that has more relevance to NP-completeness, if we can provide evidence that a decision problem is hard, we also provide evidence that its related optimization problem is hard. Thus, even though it restricts attention to decision problems, the theory of NP-completeness often has implications for optimization problems as well.

Reductions

The above notion of showing that one problem is no harder or no easier than another applies even when both problems are decision problems. We take advantage of this idea in almost every NP-completeness proof, as follows. Let us consider a decision problem A, which we would like to solve in polynomial time. We call the input to a particular problem an *instance* of that problem; for example, in PATH, an instance would be a particular graph G, particular vertices u and v of G, and a particular integer k. Now suppose that we already know how to solve a different decision problem G in polynomial time. Finally, suppose that we have a procedure that transforms any instance G of G into some instance G of G with the following characteristics:

- The transformation takes polynomial time.
- The answers are the same. That is, the answer for α is "yes" if and only if the answer for β is also "yes."

Figure 34.1 How to use a polynomial-time reduction algorithm to solve a decision problem A in polynomial time, given a polynomial-time decision algorithm for another problem B. In polynomial time, we transform an instance α of A into an instance β of B, we solve B in polynomial time, and we use the answer for β as the answer for α .

We call such a procedure a polynomial-time *reduction algorithm* and, as Figure 34.1 shows, it provides us a way to solve problem A in polynomial time:

- 1. Given an instance α of problem A, use a polynomial-time reduction algorithm to transform it to an instance β of problem B.
- 2. Run the polynomial-time decision algorithm for B on the instance β .
- 3. Use the answer for β as the answer for α .

As long as each of these steps takes polynomial time, all three together do also, and so we have a way to decide on α in polynomial time. In other words, by "reducing" solving problem A to solving problem B, we use the "easiness" of B to prove the "easiness" of A.

Recalling that NP-completeness is about showing how hard a problem is rather than how easy it is, we use polynomial-time reductions in the opposite way to show that a problem is NP-complete. Let us take the idea a step further, and show how we could use polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem B. Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can exist. (Let us not concern ourselves for now with how to find such a problem A.) Suppose further that we have a polynomial-time reduction transforming instances of A to instances of B. Now we can use a simple proof by contradiction to show that no polynomial-time algorithm can exist for B. Suppose otherwise; i.e., suppose that B has a polynomial-time algorithm. Then, using the method shown in Figure 34.1, we would have a way to solve problem A in polynomial time, which contradicts our assumption that there is no polynomial-time algorithm for A.

For NP-completeness, we cannot assume that there is absolutely no polynomial-time algorithm for problem A. The proof methodology is similar, however, in that we prove that problem B is NP-complete on the assumption that problem A is also NP-complete.

A first NP-complete problem

Because the technique of reduction relies on having a problem already known to be NP-complete in order to prove a different problem NP-complete, we need a "first" NP-complete problem. The problem we shall use is the circuit-satisfiability problem, in which we are given a boolean combinational circuit composed of AND, OR, and NOT gates, and we wish to know whether there exists some set of boolean inputs to this circuit that causes its output to be 1. We shall prove that this first problem is NP-complete in Section 34.3.

Chapter outline

This chapter studies the aspects of NP-completeness that bear most directly on the analysis of algorithms. In Section 34.1, we formalize our notion of "problem" and define the complexity class P of polynomial-time solvable decision problems. We also see how these notions fit into the framework of formal-language theory. Section 34.2 defines the class NP of decision problems whose solutions are verifiable in polynomial time. It also formally poses the $P \neq NP$ question.

Section 34.3 shows we can relate problems via polynomial-time "reductions." It defines NP-completeness and sketches a proof that one problem, called "circuit satisfiability," is NP-complete. Having found one NP-complete problem, we show in Section 34.4 how to prove other problems to be NP-complete much more simply by the methodology of reductions. We illustrate this methodology by showing that two formula-satisfiability problems are NP-complete. With additional reductions, we show in Section 34.5 a variety of other problems to be NP-complete.

34.1 Polynomial time

We begin our study of NP-completeness by formalizing our notion of polynomialtime solvable problems. We generally regard these problems as tractable, but for philosophical, not mathematical, reasons. We can offer three supporting arguments.

First, although we may reasonably regard a problem that requires time $\Theta(n^{100})$ to be intractable, very few practical problems require time on the order of such a high-degree polynomial. The polynomial-time computable problems encountered in practice typically require much less time. Experience has shown that once the first polynomial-time algorithm for a problem has been discovered, more efficient algorithms often follow. Even if the current best algorithm for a problem has a running time of $\Theta(n^{100})$, an algorithm with a much better running time will likely soon be discovered.

Second, for many reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another. For example, the class of problems solvable in polynomial time by the serial random-access machine used throughout most of this book is the same as the class of problems solvable in polynomial time on abstract Turing machines. ¹ It is also the same as the class of problems solvable in polynomial time on a parallel computer when the number of processors grows polynomially with the input size.

Third, the class of polynomial-time solvable problems has nice closure properties, since polynomials are closed under addition, multiplication, and composition. For example, if the output of one polynomial-time algorithm is fed into the input of another, the composite algorithm is polynomial. Exercise 34.1-5 asks you to show that if an algorithm makes a constant number of calls to polynomial-time subroutines and performs an additional amount of work that also takes polynomial time, then the running time of the composite algorithm is polynomial.

Abstract problems

To understand the class of polynomial-time solvable problems, we must first have a formal notion of what a "problem" is. We define an *abstract problem* Q to be a binary relation on a set I of problem *instances* and a set S of problem *solutions*. For example, an instance for SHORTEST-PATH is a triple consisting of a graph and two vertices. A solution is a sequence of vertices in the graph, with perhaps the empty sequence denoting that no path exists. The problem SHORTEST-PATH itself is the relation that associates each instance of a graph and two vertices with a shortest path in the graph that connects the two vertices. Since shortest paths are not necessarily unique, a given problem instance may have more than one solution.

This formulation of an abstract problem is more general than we need for our purposes. As we saw above, the theory of NP-completeness restricts attention to *decision problems*: those having a yes/no solution. In this case, we can view an abstract decision problem as a function that maps the instance set I to the solution set $\{0,1\}$. For example, a decision problem related to SHORTEST-PATH is the problem PATH that we saw earlier. If $i = \langle G, u, v, k \rangle$ is an instance of the decision problem PATH, then PATH(i) = 1 (yes) if a shortest path from u to v has at most k edges, and PATH(i) = 0 (no) otherwise. Many abstract problems are not decision problems, but rather *optimization problems*, which require some value to be minimized or maximized. As we saw above, however, we can usually recast an optimization problem as a decision problem that is no harder.

¹See Hopcroft and Ullman [180] or Lewis and Papadimitriou [236] for a thorough treatment of the Turing-machine model.

Encodings

In order for a computer program to solve an abstract problem, we must represent problem instances in a way that the program understands. An *encoding* of a set S of abstract objects is a mapping e from S to the set of binary strings.² For example, we are all familiar with encoding the natural numbers $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$ as the strings $\{0, 1, 10, 11, 100, \ldots\}$. Using this encoding, e(17) = 10001. If you have looked at computer representations of keyboard characters, you probably have seen the ASCII code, where, for example, the encoding of A is 1000001. We can encode a compound object as a binary string by combining the representations of its constituent parts. Polygons, graphs, functions, ordered pairs, programs—all can be encoded as binary strings.

Thus, a computer algorithm that "solves" some abstract decision problem actually takes an encoding of a problem instance as input. We call a problem whose instance set is the set of binary strings a *concrete problem*. We say that an algorithm *solves* a concrete problem in time O(T(n)) if, when it is provided a problem instance i of length n = |i|, the algorithm can produce the solution in O(T(n)) time.³ A concrete problem is *polynomial-time solvable*, therefore, if there exists an algorithm to solve it in time $O(n^k)$ for some constant k.

We can now formally define the *complexity class* **P** as the set of concrete decision problems that are polynomial-time solvable.

We can use encodings to map abstract problems to concrete problems. Given an abstract decision problem Q mapping an instance set I to $\{0,1\}$, an encoding $e:I \to \{0,1\}^*$ can induce a related concrete decision problem, which we denote by e(Q). If the solution to an abstract-problem instance $i \in I$ is $Q(i) \in \{0,1\}$, then the solution to the concrete-problem instance $e(i) \in \{0,1\}^*$ is also Q(i). As a technicality, some binary strings might represent no meaningful abstract-problem instance. For convenience, we shall assume that any such string maps arbitrarily to 0. Thus, the concrete problem produces the same solutions as the abstract problem on binary-string instances that represent the encodings of abstract-problem instances.

We would like to extend the definition of polynomial-time solvability from concrete problems to abstract problems by using encodings as the bridge, but we would

 $^{^{2}}$ The codomain of e need not be *binary* strings; any set of strings over a finite alphabet having at least 2 symbols will do.

³We assume that the algorithm's output is separate from its input. Because it takes at least one time step to produce each bit of the output and the algorithm takes O(T(n)) time steps, the size of the output is O(T(n)).

⁴We denote by $\{0, 1\}^*$ the set of all strings composed of symbols from the set $\{0, 1\}$.

like the definition to be independent of any particular encoding. That is, the efficiency of solving a problem should not depend on how the problem is encoded. Unfortunately, it depends quite heavily on the encoding. For example, suppose that an integer k is to be provided as the sole input to an algorithm, and suppose that the running time of the algorithm is $\Theta(k)$. If the integer k is provided in unary—a string of k 1s—then the running time of the algorithm is O(n) on length-n inputs, which is polynomial time. If we use the more natural binary representation of the integer k, however, then the input length is $n = \lfloor \lg k \rfloor + 1$. In this case, the running time of the algorithm is $\Theta(k) = \Theta(2^n)$, which is exponential in the size of the input. Thus, depending on the encoding, the algorithm runs in either polynomial or superpolynomial time.

How we encode an abstract problem matters quite a bit to how we understand polynomial time. We cannot really talk about solving an abstract problem without first specifying an encoding. Nevertheless, in practice, if we rule out "expensive" encodings such as unary ones, the actual encoding of a problem makes little difference to whether the problem can be solved in polynomial time. For example, representing integers in base 3 instead of binary has no effect on whether a problem is solvable in polynomial time, since we can convert an integer represented in base 3 to an integer represented in base 2 in polynomial time.

We say that a function $f: \{0,1\}^* \to \{0,1\}^*$ is *polynomial-time computable* if there exists a polynomial-time algorithm A that, given any input $x \in \{0,1\}^*$, produces as output f(x). For some set I of problem instances, we say that two encodings e_1 and e_2 are *polynomially related* if there exist two polynomial-time computable functions f_{12} and f_{21} such that for any $i \in I$, we have $f_{12}(e_1(i)) = e_2(i)$ and $f_{21}(e_2(i)) = e_1(i)$. That is, a polynomial-time algorithm can compute the encoding $e_2(i)$ from the encoding $e_1(i)$, and vice versa. If two encodings e_1 and e_2 of an abstract problem are polynomially related, whether the problem is polynomial-time solvable or not is independent of which encoding we use, as the following lemma shows.

Lemma 34.1

Let Q be an abstract decision problem on an instance set I, and let e_1 and e_2 be polynomially related encodings on I. Then, $e_1(Q) \in P$ if and only if $e_2(Q) \in P$.

⁵Technically, we also require the functions f_{12} and f_{21} to "map noninstances to noninstances." A **noninstance** of an encoding e is a string $x \in \{0, 1\}^*$ such that there is no instance i for which e(i) = x. We require that $f_{12}(x) = y$ for every noninstance x of encoding e_1 , where y is some noninstance of e_2 , and that $f_{21}(x') = y'$ for every noninstance x' of e_2 , where y' is some noninstance of e_1 .

Proof We need only prove the forward direction, since the backward direction is symmetric. Suppose, therefore, that $e_1(Q)$ can be solved in time $O(n^k)$ for some constant k. Further, suppose that for any problem instance i, the encoding $e_1(i)$ can be computed from the encoding $e_2(i)$ in time $O(n^c)$ for some constant c, where $n = |e_2(i)|$. To solve problem $e_2(Q)$, on input $e_2(i)$, we first compute $e_1(i)$ and then run the algorithm for $e_1(Q)$ on $e_1(i)$. How long does this take? Converting encodings takes time $O(n^c)$, and therefore $|e_1(i)| = O(n^c)$, since the output of a serial computer cannot be longer than its running time. Solving the problem on $e_1(i)$ takes time $O(|e_1(i)|^k) = O(n^{ck})$, which is polynomial since both c and k are constants.

Thus, whether an abstract problem has its instances encoded in binary or base 3 does not affect its "complexity," that is, whether it is polynomial-time solvable or not; but if instances are encoded in unary, its complexity may change. In order to be able to converse in an encoding-independent fashion, we shall generally assume that problem instances are encoded in any reasonable, concise fashion, unless we specifically say otherwise. To be precise, we shall assume that the encoding of an integer is polynomially related to its binary representation, and that the encoding of a finite set is polynomially related to its encoding as a list of its elements, enclosed in braces and separated by commas. (ASCII is one such encoding scheme.) With such a "standard" encoding in hand, we can derive reasonable encodings of other mathematical objects, such as tuples, graphs, and formulas. To denote the standard encoding of an object, we shall enclose the object in angle braces. Thus, $\langle G \rangle$ denotes the standard encoding of a graph G.

As long as we implicitly use an encoding that is polynomially related to this standard encoding, we can talk directly about abstract problems without reference to any particular encoding, knowing that the choice of encoding has no effect on whether the abstract problem is polynomial-time solvable. Henceforth, we shall generally assume that all problem instances are binary strings encoded using the standard encoding, unless we explicitly specify the contrary. We shall also typically neglect the distinction between abstract and concrete problems. You should watch out for problems that arise in practice, however, in which a standard encoding is not obvious and the encoding does make a difference.

A formal-language framework

By focusing on decision problems, we can take advantage of the machinery of formal-language theory. Let's review some definitions from that theory. An **alphabet** Σ is a finite set of symbols. A **language** L over Σ is any set of strings made up of symbols from Σ . For example, if $\Sigma = \{0, 1\}$, the set $L = \{10, 11, 101, 111, 1011, 1101, 10001, \ldots\}$ is the language of binary represen-

tations of prime numbers. We denote the *empty string* by ε , the *empty language* by \emptyset , and the language of all strings over Σ by Σ^* . For example, if $\Sigma = \{0, 1\}$, then $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$ is the set of all binary strings. Every language L over Σ is a subset of Σ^* .

We can perform a variety of operations on languages. Set-theoretic operations, such as *union* and *intersection*, follow directly from the set-theoretic definitions. We define the *complement* of L by $\overline{L} = \Sigma^* - L$. The *concatenation* L_1L_2 of two languages L_1 and L_2 is the language

$$L = \{x_1 x_2 : x_1 \in L_1 \text{ and } x_2 \in L_2\}$$
.

The *closure* or *Kleene star* of a language L is the language

$$L^* = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots,$$

where L^k is the language obtained by concatenating L to itself k times.

From the point of view of language theory, the set of instances for any decision problem Q is simply the set Σ^* , where $\Sigma = \{0, 1\}$. Since Q is entirely characterized by those problem instances that produce a 1 (yes) answer, we can view Q as a language L over $\Sigma = \{0, 1\}$, where

$$L = \{ x \in \Sigma^* : Q(x) = 1 \} .$$

For example, the decision problem PATH has the corresponding language

```
PATH = \{\langle G, u, v, k \rangle : G = (V, E) \text{ is an undirected graph,}

u, v \in V,

k \ge 0 \text{ is an integer, and}

there exists a path from u to v in G

consisting of at most k edges\}.
```

(Where convenient, we shall sometimes use the same name—PATH in this case—to refer to both a decision problem and its corresponding language.)

The formal-language framework allows us to express concisely the relation between decision problems and algorithms that solve them. We say that an algorithm A accepts a string $x \in \{0,1\}^*$ if, given input x, the algorithm's output A(x) is 1. The language accepted by an algorithm A is the set of strings $L = \{x \in \{0,1\}^* : A(x) = 1\}$, that is, the set of strings that the algorithm accepts. An algorithm A rejects a string x if A(x) = 0.

Even if language L is accepted by an algorithm A, the algorithm will not necessarily reject a string $x \notin L$ provided as input to it. For example, the algorithm may loop forever. A language L is **decided** by an algorithm A if every binary string in L is accepted by A and every binary string not in L is rejected by A. A language L is **accepted in polynomial time** by an algorithm A if it is accepted by A and if in addition there exists a constant k such that for any length-n string $x \in L$,

algorithm A accepts x in time $O(n^k)$. A language L is **decided in polynomial time** by an algorithm A if there exists a constant k such that for any length-n string $x \in \{0,1\}^*$, the algorithm correctly decides whether $x \in L$ in time $O(n^k)$. Thus, to accept a language, an algorithm need only produce an answer when provided a string in L, but to decide a language, it must correctly accept or reject every string in $\{0,1\}^*$.

As an example, the language PATH can be accepted in polynomial time. One polynomial-time accepting algorithm verifies that G encodes an undirected graph, verifies that G and G are vertices in G, uses breadth-first search to compute a shortest path from G to G and then compares the number of edges on the shortest path obtained with G. If G encodes an undirected graph and the path found from G to G has at most G edges, the algorithm outputs 1 and halts. Otherwise, the algorithm runs forever. This algorithm does not decide PATH, however, since it does not explicitly output 0 for instances in which a shortest path has more than G edges. A decision algorithm for PATH must explicitly reject binary strings that do not belong to PATH. For a decision problem such as PATH, such a decision algorithm is easy to design: instead of running forever when there is not a path from G to G with at most G edges, it outputs 0 and halts. (It must also output 0 and halt if the input encoding is faulty.) For other problems, such as Turing's Halting Problem, there exists an accepting algorithm, but no decision algorithm exists.

We can informally define a *complexity class* as a set of languages, membership in which is determined by a *complexity measure*, such as running time, of an algorithm that determines whether a given string x belongs to language L. The actual definition of a complexity class is somewhat more technical.⁶

Using this language-theoretic framework, we can provide an alternative definition of the complexity class P:

```
P = \{L \subseteq \{0,1\}^* : \text{ there exists an algorithm } A \text{ that decides } L \text{ in polynomial time} \} .
```

In fact, P is also the class of languages that can be accepted in polynomial time.

Theorem 34.2

 $P = \{L : L \text{ is accepted by a polynomial-time algorithm} \}$.

Proof Because the class of languages decided by polynomial-time algorithms is a subset of the class of languages accepted by polynomial-time algorithms, we need only show that if L is accepted by a polynomial-time algorithm, it is decided by a polynomial-time algorithm. Let L be the language accepted by some

⁶For more on complexity classes, see the seminal paper by Hartmanis and Stearns [162].

polynomial-time algorithm A. We shall use a classic "simulation" argument to construct another polynomial-time algorithm A' that decides L. Because A accepts L in time $O(n^k)$ for some constant k, there also exists a constant c such that A accepts L in at most cn^k steps. For any input string x, the algorithm A' simulates cn^k steps of A. After simulating cn^k steps, algorithm A' inspects the behavior of A. If A has accepted x, then A' accepts x by outputting a 1. If A has not accepted x, then A' rejects x by outputting a 0. The overhead of A' simulating A does not increase the running time by more than a polynomial factor, and thus A' is a polynomial-time algorithm that decides L.

Note that the proof of Theorem 34.2 is nonconstructive. For a given language $L \in P$, we may not actually know a bound on the running time for the algorithm A that accepts L. Nevertheless, we know that such a bound exists, and therefore, that an algorithm A' exists that can check the bound, even though we may not be able to find the algorithm A' easily.

Exercises

34.1-1

Define the optimization problem LONGEST-PATH-LENGTH as the relation that associates each instance of an undirected graph and two vertices with the number of edges in a longest simple path between the two vertices. Define the decision problem LONGEST-PATH = $\{\langle G, u, v, k \rangle : G = (V, E) \text{ is an undirected graph, } u, v \in V, k \geq 0 \text{ is an integer, and there exists a simple path from } u \text{ to } v \text{ in } G \text{ consisting of at least } k \text{ edges} \}$. Show that the optimization problem LONGEST-PATH-LENGTH can be solved in polynomial time if and only if LONGEST-PATH $\in P$.

34.1-2

Give a formal definition for the problem of finding the longest simple cycle in an undirected graph. Give a related decision problem. Give the language corresponding to the decision problem.

34.1-3

Give a formal encoding of directed graphs as binary strings using an adjacency-matrix representation. Do the same using an adjacency-list representation. Argue that the two representations are polynomially related.

34.1-4

Is the dynamic-programming algorithm for the 0-1 knapsack problem that is asked for in Exercise 16.2-2 a polynomial-time algorithm? Explain your answer.

34.1-5

Show that if an algorithm makes at most a constant number of calls to polynomial-time subroutines and performs an additional amount of work that also takes polynomial time, then it runs in polynomial time. Also show that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

34.1-6

Show that the class P, viewed as a set of languages, is closed under union, intersection, concatenation, complement, and Kleene star. That is, if $L_1, L_2 \in P$, then $L_1 \cup L_2 \in P$, $L_1 \cap L_2 \in P$, $L_1 L_2 \in P$, and $L_1^* \in P$.

34.2 Polynomial-time verification

We now look at algorithms that verify membership in languages. For example, suppose that for a given instance $\langle G, u, v, k \rangle$ of the decision problem PATH, we are also given a path p from u to v. We can easily check whether p is a path in G and whether the length of p is at most k, and if so, we can view p as a "certificate" that the instance indeed belongs to PATH. For the decision problem PATH, this certificate doesn't seem to buy us much. After all, PATH belongs to P—in fact, we can solve PATH in linear time—and so verifying membership from a given certificate takes as long as solving the problem from scratch. We shall now examine a problem for which we know of no polynomial-time decision algorithm and yet, given a certificate, verification is easy.

Hamiltonian cycles

The problem of finding a hamiltonian cycle in an undirected graph has been studied for over a hundred years. Formally, a **hamiltonian cycle** of an undirected graph G = (V, E) is a simple cycle that contains each vertex in V. A graph that contains a hamiltonian cycle is said to be **hamiltonian**; otherwise, it is **nonhamiltonian**. The name honors W. R. Hamilton, who described a mathematical game on the dodecahedron (Figure 34.2(a)) in which one player sticks five pins in any five consecutive vertices and the other player must complete the path to form a cycle

Figure 34.2 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a hamiltonian cycle shown by shaded edges. (b) A bipartite graph with an odd number of vertices. Any such graph is nonhamiltonian.

containing all the vertices.⁷ The dodecahedron is hamiltonian, and Figure 34.2(a) shows one hamiltonian cycle. Not all graphs are hamiltonian, however. For example, Figure 34.2(b) shows a bipartite graph with an odd number of vertices. Exercise 34.2-2 asks you to show that all such graphs are nonhamiltonian.

We can define the *hamiltonian-cycle problem*, "Does a graph G have a hamiltonian cycle?" as a formal language:

 $HAM-CYCLE = \{\langle G \rangle : G \text{ is a hamiltonian graph} \}$.

How might an algorithm decide the language HAM-CYCLE? Given a problem instance $\langle G \rangle$, one possible decision algorithm lists all permutations of the vertices of G and then checks each permutation to see if it is a hamiltonian path. What is the running time of this algorithm? If we use the "reasonable" encoding of a graph as its adjacency matrix, the number m of vertices in the graph is $\Omega(\sqrt{n})$, where $n = |\langle G \rangle|$ is the length of the encoding of G. There are m! possible permutations

⁷In a letter dated 17 October 1856 to his friend John T. Graves, Hamilton [157, p. 624] wrote, "I have found that some young persons have been much amused by trying a new mathematical game which the Icosion furnishes, one person sticking five pins in any five consecutive points ... and the other player then aiming to insert, which by the theory in this letter can always be done, fifteen other pins, in cyclical succession, so as to cover all the other points, and to end in immediate proximity to the pin wherewith his antagonist had begun."

of the vertices, and therefore the running time is $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$, which is not $O(n^k)$ for any constant k. Thus, this naive algorithm does not run in polynomial time. In fact, the hamiltonian-cycle problem is NP-complete, as we shall prove in Section 34.5.

Verification algorithms

Consider a slightly easier problem. Suppose that a friend tells you that a given graph G is hamiltonian, and then offers to prove it by giving you the vertices in order along the hamiltonian cycle. It would certainly be easy enough to verify the proof: simply verify that the provided cycle is hamiltonian by checking whether it is a permutation of the vertices of V and whether each of the consecutive edges along the cycle actually exists in the graph. You could certainly implement this verification algorithm to run in $O(n^2)$ time, where n is the length of the encoding of G. Thus, a proof that a hamiltonian cycle exists in a graph can be verified in polynomial time.

We define a *verification algorithm* as being a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a *certificate*. A two-argument algorithm A *verifies* an input string x if there exists a certificate y such that A(x, y) = 1. The *language verified* by a verification algorithm A is

$$L = \{x \in \{0, 1\}^* : \text{ there exists } y \in \{0, 1\}^* \text{ such that } A(x, y) = 1\}$$
.

Intuitively, an algorithm A verifies a language L if for any string $x \in L$, there exists a certificate y that A can use to prove that $x \in L$. Moreover, for any string $x \notin L$, there must be no certificate proving that $x \in L$. For example, in the hamiltonian-cycle problem, the certificate is the list of vertices in some hamiltonian cycle. If a graph is hamiltonian, the hamiltonian cycle itself offers enough information to verify this fact. Conversely, if a graph is not hamiltonian, there can be no list of vertices that fools the verification algorithm into believing that the graph is hamiltonian, since the verification algorithm carefully checks the proposed "cycle" to be sure.

The complexity class NP

The *complexity class* **NP** is the class of languages that can be verified by a polynomial-time algorithm. More precisely, a language L belongs to NP if and only if there exist a two-input polynomial-time algorithm A and a constant c such that

```
L = \{x \in \{0, 1\}^* : \text{ there exists a certificate } y \text{ with } |y| = O(|x|^c)  such that A(x, y) = 1\}.
```

We say that algorithm A verifies language L in polynomial time.

From our earlier discussion on the hamiltonian-cycle problem, we now see that HAM-CYCLE \in NP. (It is always nice to know that an important set is nonempty.) Moreover, if $L \in$ P, then $L \in$ NP, since if there is a polynomial-time algorithm to decide L, the algorithm can be easily converted to a two-argument verification algorithm that simply ignores any certificate and accepts exactly those input strings it determines to be in L. Thus, $P \subseteq$ NP.

It is unknown whether P = NP, but most researchers believe that P and NP are not the same class. Intuitively, the class P consists of problems that can be solved quickly. The class NP consists of problems for which a solution can be verified quickly. You may have learned from experience that it is often more difficult to solve a problem from scratch than to verify a clearly presented solution, especially when working under time constraints. Theoretical computer scientists generally believe that this analogy extends to the classes P and NP, and thus that NP includes languages that are not in P.

There is more compelling, though not conclusive, evidence that $P \neq NP$ —the existence of languages that are "NP-complete." We shall study this class in Section 34.3.

Many other fundamental questions beyond the $P \neq NP$ question remain unresolved. Figure 34.3 shows some possible scenarios. Despite much work by many researchers, no one even knows whether the class NP is closed under complement. That is, does $L \in NP$ imply $\overline{L} \in NP$? We can define the *complexity class* **co-NP** as the set of languages L such that $\overline{L} \in NP$. We can restate the question of whether NP is closed under complement as whether NP = co-NP. Since P is closed under complement (Exercise 34.1-6), it follows from Exercise 34.2-9 that $P \subseteq NP \cap \text{co-NP}$. Once again, however, no one knows whether $P = NP \cap \text{co-NP}$ or whether there is some language in $NP \cap \text{co-NP} - P$.

⁸The name "NP" stands for "nondeterministic polynomial time." The class NP was originally studied in the context of nondeterminism, but this book uses the somewhat simpler yet equivalent notion of verification. Hopcroft and Ullman [180] give a good presentation of NP-completeness in terms of nondeterministic models of computation.

Figure 34.3 Four possibilities for relationships among complexity classes. In each diagram, one region enclosing another indicates a proper-subset relation. (a) P = NP = co-NP. Most researchers regard this possibility as the most unlikely. (b) If NP is closed under complement, then NP = co-NP, but it need not be the case that P = NP. (c) $P = NP \cap \text{co-NP}$, but NP is not closed under complement. (d) $NP \neq \text{co-NP}$ and $P \neq NP \cap \text{co-NP}$. Most researchers regard this possibility as the most likely.

Thus, our understanding of the precise relationship between P and NP is woefully incomplete. Nevertheless, even though we might not be able to prove that a particular problem is intractable, if we can prove that it is NP-complete, then we have gained valuable information about it.

Exercises

34.2-1

Consider the language GRAPH-ISOMORPHISM = $\{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are isomorphic graphs} \}$. Prove that GRAPH-ISOMORPHISM \in NP by describing a polynomial-time algorithm to verify the language.

34.2-2

Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is nonhamiltonian.

34.2-3

Show that if HAM-CYCLE \in P, then the problem of listing the vertices of a hamiltonian cycle, in order, is polynomial-time solvable.

34.2-4

Prove that the class NP of languages is closed under union, intersection, concatenation, and Kleene star. Discuss the closure of NP under complement.

34.2-5

Show that any language in NP can be decided by an algorithm running in time $2^{O(n^k)}$ for some constant k.

34.2-6

A *hamiltonian path* in a graph is a simple path that visits every vertex exactly once. Show that the language HAM-PATH = $\{\langle G, u, v \rangle : \text{there is a hamiltonian path from } u \text{ to } v \text{ in graph } G\}$ belongs to NP.

34 2-7

Show that the hamiltonian-path problem from Exercise 34.2-6 can be solved in polynomial time on directed acyclic graphs. Give an efficient algorithm for the problem.

34.2-8

Let ϕ be a boolean formula constructed from the boolean input variables x_1, x_2, \ldots, x_k , negations (\neg) , ANDs (\land) , ORs (\lor) , and parentheses. The formula ϕ is a *tautology* if it evaluates to 1 for every assignment of 1 and 0 to the input variables. Define TAUTOLOGY as the language of boolean formulas that are tautologies. Show that TAUTOLOGY \in co-NP.

34.2-9

Prove that $P \subseteq \text{co-NP}$.

34.2-10

Prove that if $NP \neq co-NP$, then $P \neq NP$.

34.2-11

Let G be a connected, undirected graph with at least 3 vertices, and let G^3 be the graph obtained by connecting all pairs of vertices that are connected by a path in G of length at most 3. Prove that G^3 is hamiltonian. (*Hint:* Construct a spanning tree for G, and use an inductive argument.)

34.3 NP-completeness and reducibility

Perhaps the most compelling reason why theoretical computer scientists believe that $P \neq NP$ comes from the existence of the class of "NP-complete" problems. This class has the intriguing property that if *any* NP-complete problem can be solved in polynomial time, then *every* problem in NP has a polynomial-time solution, that is, P = NP. Despite years of study, though, no polynomial-time algorithm has ever been discovered for any NP-complete problem.

The language HAM-CYCLE is one NP-complete problem. If we could decide HAM-CYCLE in polynomial time, then we could solve every problem in NP in polynomial time. In fact, if NP-P should turn out to be nonempty, we could say with certainty that $HAM-CYCLE \in NP-P$.

The NP-complete languages are, in a sense, the "hardest" languages in NP. In this section, we shall show how to compare the relative "hardness" of languages using a precise notion called "polynomial-time reducibility." Then we formally define the NP-complete languages, and we finish by sketching a proof that one such language, called CIRCUIT-SAT, is NP-complete. In Sections 34.4 and 34.5, we shall use the notion of reducibility to show that many other problems are NP-complete.

Reducibility

Intuitively, a problem Q can be reduced to another problem Q' if any instance of Q can be "easily rephrased" as an instance of Q', the solution to which provides a solution to the instance of Q. For example, the problem of solving linear equations in an indeterminate x reduces to the problem of solving quadratic equations. Given an instance ax + b = 0, we transform it to $0x^2 + ax + b = 0$, whose solution provides a solution to ax + b = 0. Thus, if a problem Q reduces to another problem Q', then Q is, in a sense, "no harder to solve" than Q'.

Returning to our formal-language framework for decision problems, we say that a language L_1 is **polynomial-time reducible** to a language L_2 , written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \{0, 1\}^* \to \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$,

$$x \in L_1$$
 if and only if $f(x) \in L_2$. (34.1)

We call the function f the **reduction function**, and a polynomial-time algorithm F that computes f is a **reduction algorithm**.

Figure 34.4 illustrates the idea of a polynomial-time reduction from a language L_1 to another language L_2 . Each language is a subset of $\{0,1\}^*$. The reduction function f provides a polynomial-time mapping such that if $x \in L_1$,

Figure 34.4 An illustration of a polynomial-time reduction from a language L_1 to a language L_2 via a reduction function f. For any input $x \in \{0, 1\}^*$, the question of whether $x \in L_1$ has the same answer as the question of whether $f(x) \in L_2$.

then $f(x) \in L_2$. Moreover, if $x \notin L_1$, then $f(x) \notin L_2$. Thus, the reduction function maps any instance x of the decision problem represented by the language L_1 to an instance f(x) of the problem represented by L_2 . Providing an answer to whether $f(x) \in L_2$ directly provides the answer to whether $x \in L_1$.

Polynomial-time reductions give us a powerful tool for proving that various languages belong to P.

Lemma 34.3

If $L_1, L_2 \subseteq \{0, 1\}^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in P$ implies $L_1 \in P$.

Proof Let A_2 be a polynomial-time algorithm that decides L_2 , and let F be a polynomial-time reduction algorithm that computes the reduction function f. We shall construct a polynomial-time algorithm A_1 that decides L_1 .

Figure 34.5 illustrates how we construct A_1 . For a given input $x \in \{0, 1\}^*$, algorithm A_1 uses F to transform x into f(x), and then it uses A_2 to test whether $f(x) \in L_2$. Algorithm A_1 takes the output from algorithm A_2 and produces that answer as its own output.

The correctness of A_1 follows from condition (34.1). The algorithm runs in polynomial time, since both F and A_2 run in polynomial time (see Exercise 34.1-5).

NP-completeness

Polynomial-time reductions provide a formal means for showing that one problem is at least as hard as another, to within a polynomial-time factor. That is, if $L_1 \leq_P L_2$, then L_1 is not more than a polynomial factor harder than L_2 , which is

Figure 34.5 The proof of Lemma 34.3. The algorithm F is a reduction algorithm that computes the reduction function f from L_1 to L_2 in polynomial time, and A_2 is a polynomial-time algorithm that decides L_2 . Algorithm A_1 decides whether $x \in L_1$ by using F to transform any input x into f(x) and then using A_2 to decide whether $f(x) \in L_2$.

why the "less than or equal to" notation for reduction is mnemonic. We can now define the set of NP-complete languages, which are the hardest problems in NP.

A language $L \subseteq \{0, 1\}^*$ is **NP-complete** if

- 1. $L \in NP$, and
- 2. $L' \leq_{\mathbf{P}} L$ for every $L' \in \mathbf{NP}$.

If a language L satisfies property 2, but not necessarily property 1, we say that L is NP-hard. We also define NPC to be the class of NP-complete languages.

As the following theorem shows, NP-completeness is at the crux of deciding whether P is in fact equal to NP.

Theorem 34.4

If any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if any problem in NP is not polynomial-time solvable, then no NP-complete problem is polynomial-time solvable.

Proof Suppose that $L \in P$ and also that $L \in NPC$. For any $L' \in NP$, we have $L' \leq_P L$ by property 2 of the definition of NP-completeness. Thus, by Lemma 34.3, we also have that $L' \in P$, which proves the first statement of the theorem.

To prove the second statement, note that it is the contrapositive of the first statement.

It is for this reason that research into the $P \neq NP$ question centers around the NP-complete problems. Most theoretical computer scientists believe that $P \neq NP$, which leads to the relationships among P, NP, and NPC shown in Figure 34.6. But, for all we know, someone may yet come up with a polynomial-time algorithm for an NP-complete problem, thus proving that P = NP. Nevertheless, since no polynomial-time algorithm for any NP-complete problem has yet been discov-

Figure 34.6 How most theoretical computer scientists view the relationships among P, NP, and NPC. Both P and NPC are wholly contained within NP, and $P \cap NPC = \emptyset$.

ered, a proof that a problem is NP-complete provides excellent evidence that it is intractable.

Circuit satisfiability

We have defined the notion of an NP-complete problem, but up to this point, we have not actually proved that any problem is NP-complete. Once we prove that at least one problem is NP-complete, we can use polynomial-time reducibility as a tool to prove other problems to be NP-complete. Thus, we now focus on demonstrating the existence of an NP-complete problem: the circuit-satisfiability problem.

Unfortunately, the formal proof that the circuit-satisfiability problem is NP-complete requires technical detail beyond the scope of this text. Instead, we shall informally describe a proof that relies on a basic understanding of boolean combinational circuits.

Boolean combinational circuits are built from boolean combinational elements that are interconnected by wires. A *boolean combinational element* is any circuit element that has a constant number of boolean inputs and outputs and that performs a well-defined function. Boolean values are drawn from the set $\{0,1\}$, where 0 represents FALSE and 1 represents TRUE.

The boolean combinational elements that we use in the circuit-satisfiability problem compute simple boolean functions, and they are known as *logic gates*. Figure 34.7 shows the three basic logic gates that we use in the circuit-satisfiability problem: the *NOT gate* (or *inverter*), the *AND gate*, and the *OR gate*. The NOT gate takes a single binary *input* x, whose value is either 0 or 1, and produces a binary *output* z whose value is opposite that of the input value. Each of the other two gates takes two binary inputs x and y and produces a single binary output z.

We can describe the operation of each gate, and of any boolean combinational element, by a *truth table*, shown under each gate in Figure 34.7. A truth table gives the outputs of the combinational element for each possible setting of the inputs. For