Vektori

- 1. Neka su vektori \vec{a} i \vec{b} takvi da je $|\vec{a}| = 2$, $\left| \vec{b} \right| = 1$ i $\sphericalangle \left(\vec{a}, \vec{b} \right) = \frac{\pi}{3}$. Izračunati: $\vec{a} \cdot \vec{b}$, $\left(\vec{a} + 2\vec{b} \right) \cdot \left(\vec{a} \vec{b} \right)$ i $\left(\vec{a} \vec{b} \right) \cdot \left(\vec{a} + \vec{b} \right)$.
- 2. Naći intenzitet vektora $\vec{a} = \vec{p} 2\vec{q}$, ako je $|\vec{p}| = 2$, $|\vec{q}| = \sqrt{3}$ i $\sphericalangle(\vec{p}, \vec{q}) = \frac{\pi}{6}$.
- 3. Odrediti realan parametar α tako da vektori $\vec{p} = \alpha \vec{a} + 17\vec{b}$ i $\vec{q} = 3\vec{a} \vec{b}$ budu uzajamno normalni, ako je $|\vec{a}| = 2$, $|\vec{b}| = 5$ i $\not < \left(\vec{a}, \vec{b}\right) = \frac{2\pi}{3}$.
- 4. Koji ugao obrazuju jedinični vektori \vec{a} i \vec{b} ako su vektori $\vec{p} = \vec{a} + 2\vec{b}$ i $\vec{q} = 5\vec{a} 4\vec{b}$ uzajamno normalni?
- 5. Izračunati površinu paralelograma konstruisanog nad vektorima $\vec{p}=2\vec{b}-\vec{a}$ i $\vec{q}=3\vec{a}+2\vec{b}$ ako je $|\vec{a}|=\left|\vec{b}\right|=5$ i $\not <\left(\vec{a},\vec{b}\right)=\frac{\pi}{4}$.
- 6. Za koje vrednosti realnog parametra k će vektori $\vec{p} = k\vec{a} + 5\vec{b}$ i $\vec{q} = 3\vec{a} \vec{b}$ biti kolinearni ako vektori \vec{a} i \vec{b} nisu kolinearni?
- 7. Dati su vektori $\vec{a}=\vec{m}-2\vec{n}$ i $\vec{b}=2\vec{m}+\vec{n}$, gde je $|\vec{m}|=2,$ $|\vec{n}|=3$ i $\sphericalangle(\vec{m},\vec{n})=\frac{\pi}{3}$.
 - (a) Odrediti projekciju vektora \vec{b} na vektor \vec{a} .
 - (b) Izračunati površinu trougla određenog vektorima \vec{a} i \vec{b} .
- 8. Za vektore $\vec{a} = 8\vec{i} + 2\vec{j} 2\vec{k}$ i $\vec{b} = 4\vec{i} 4\vec{j}$ izračunati: $|\vec{a}|, |\vec{b}|, 3\vec{a} + \vec{b}, 2\vec{a} \vec{b}, \vec{a} \cdot \vec{b}, \vec{a} \times \vec{b}$ i $\not \subset (\vec{a}, \vec{b})$.
- 9. Dati su vektori $\vec{a}=(1,1,1),\,\vec{b}=(1,1,0)$ i $\vec{c}=(1,-1,0).$ Naći vektor \vec{x} tako da važi $\vec{x}\times\vec{a}=3$ i $\vec{x}\times\vec{b}=\vec{c}.$
- 10. Izračunati površinu paralelograma konstruisanog nad vektorima $\vec{p}=2\vec{i}+3\vec{j}$ i $\vec{q}=\vec{i}-4\vec{j}$.
- 11. Odrediti koordinate temena D paralelograma ABCD i dužinu dijagonale AC ako su data tri uzastopna temena $A(1,-2,0),\,B(2,1,3)$ i C(2,0,5).
- 12. Izračunati zapreminu paralelopipeda konstruisanog nad vektorima $\vec{a} = -\vec{i} + 2\vec{j} 3\vec{k}$ i $\vec{b} = 4\vec{i} \vec{k}$ i $\vec{c} = -2\vec{i} + 5\vec{j} \vec{k}$.
- 13. Date su tačke A(1,1,1), B(2,2,1) i C(2,1,2). Izračunati ugao između vektora \overrightarrow{AB} i \overrightarrow{AC} .
- 14. Odrediti realan parametar α tako da vektori $\vec{a}=2\vec{i}-3\vec{j}$ i $\vec{b}=\alpha\vec{i}+4\vec{j}$ budu ortoonalni.
- 15. Odrediti projekciju vektora $\vec{a}=\vec{i}+\vec{j}+2\vec{k}$ na vektor $\vec{b}=\vec{i}-\vec{j}+4\vec{k}.$
- 16. Dati su vektori $\vec{a}=(2k-1,2,k+2),\, \vec{b}=(3,k-1,-1)$ i $\vec{c}=(p,1,3),\, \mathrm{gde}$ su $k\in\mathbb{R}$ i $p\in\mathbb{R}^-.$
 - (a) Odrediti vrednost parametara ki ptako da važi $\vec{a} \bot \vec{b}$ i $|\vec{c}| = \sqrt{26}.$
 - (b) Za tako određene k i p pokazati da su vektori \vec{a}, \vec{b} i \vec{c} komplanarni.

ZA VEŽBU:IZ SKRIPTE Zadatak 10.12, 10.20, 10.21

Primer: 10.1