(11) Publication number: 0 458 642 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91304695.9

(22) Date of filing: 23.05.91

(51) Int. CI.5: C07D 235/02, A61K 31/415

(30) Priority: 24.05.90 GB 9011589

(43) Date of publication of application: 27.11.91 Bulletin 91/48

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

71) Applicant: THE WELLCOME FOUNDATION Unicom House 160 Euston Road London NW1 2BP (GB)

(72) Inventor: Giles, Heather **Langley Court** Beckenham, Kent, BR3 3BS (GB) Inventor: Robertson, Alan Duncan Langley Court Beckenham, Kent, BR3 3BS (GB) Inventor: Kelly, Michael Gerard Langley Court

Beckenham, Kent, BR3 3BS (GB) Inventor: Leff, Paul, Fisons pic, Pharm. Division

Bakewell Road

Loughborough, Leicestershire LE11 0RH (GB)

(74) Representative: Garrett, Michael et al The Wellcome Research Laboratories Gr up Patents and Agreements Langley Court Beckenham Kent BR3 3BS (GB)

(54) Amino bicyclic compounds.

The present invention is concerned with compounds of formula (I)

wherein

X is a sulphur atom or oxygen atom or a group -NR¹- or -CR¹R²-, in the alpha- or beta-configuration, where R¹ and R² are hydrogen or straight or branched C₁-5 alkyl;

X¹ is a C₁-5 straight chain or branched alkylene group, a C₃-5 straight chain or branched alkeylene group or a substituted or unsubstituted C₆ or C₁0 aromatic group, the optional substituents on the aromatic group being one or more of C₁- alkeylene group being one or more of C₁- alkeylene aromatic group being one or more of C₁- alkeylene aromatic and tribulemental.

on the aromatic group being one or more of C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, halo and trihalomethyl; X² is a cyano, carboxyl, carboxamide, hydroxymethyl, C₂₋₅ alkoxycarbonyl, or 5-tetrazolyl group; Z¹ is a group selected from -NH-CH₂-R³ and -N=CO-R³ wherein R³ is a group selected from -CO-Y and -CH(Y¹)Y, Y being a group selected from C₃₋₈ alkyl, C₃₋₈ alkenyl, phenyl-C₁₋₄ alkyl and phenyl (wherein the phenyl group in both cases is optionally substituted by one or more groups independently selected from C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, halo and trihalomethyl), cycloalkyl of from 4 to 8 carbon atoms and 5- and 6-membered heterocyclic radicals containing at I ast one oxygen, sulphur, or nitrogen heteroatom and Y^1 being a group selected from hydroxy, hydrogen, C_{1-4} alkoxy and C_{1-5} alkanoyloxy;

 Z^2 is hydrogen, C_{1-12} alkyl (straight or branched), C_{2-12} alkenyl or alkynyl, C_8 or C_{10} aryl or C_6 or C_{10} aryl- C_{1-12} alkyl wherein the aryl group is ptionally substituted by one or more groups independently selected from phenyl, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl) or cycloalkyl of

from 3 to 5 carbon atoms;

and salts, esters and oth r physiologically functional derivatives thereof.

The preparation of these compounds, medicaments containing them and their use as therapeutic agents are also within the scope of the invention.

This invention is concerned with a novel class of N-amino hexahydrocyclopenta[d]imidazole-2(1H)-one derivatives. The preparation of these compounds, medicaments containing them and their use as therapeutic agents are also within the scope of the invention.

In EP-A-0046597, there are described certain diazabicyclooctanedione derivatives which have pharmacological properties related to thos of natural prostaglandins, as demonstrated by their ability to mimic or antagonise the physiological effects of the natural prostaglandins in various biological preparations.

We have now discovered a novel class of N-amino hexahydrocyclopenta[d]imidazole-2(1H)-one derivatives having particularly advantageous pharmacological properties arising from their improved selectivity for the PGD₂-class of receptors over other prostanoid receptor types, thereby increasing potency at this class of receptor. Such selectivity finds application in the treatment and prophylaxis of conditions in which this class of receptor is implicated, for example, blood platelet aggregation and increased intraocular pressure.

According to a first aspect of the present invention, therefore, there is provided a compound of formula (I):

$$Z^{2} \xrightarrow{N} Z^{1}$$

$$Z^{1}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{3}$$

$$Z^{4}$$

$$Z^{1}$$

$$Z^{2}$$

wherein

5

10

15

20

25

30

35

40

45

50

55

X represents a sulphur atom or oxygen atom or a group -NR1- or -CR1R2-, in the alpha- or beta-configuration, where R1 and R2 are hydrogen or straight or branched C_{1-5} alkyl;

 X^1 represents a C_{1-5} straight chain or branched alkylene group, a C_{3-5} straight chain or branched alkenylene group or a substituted or unsubstituted C_6 or C_{10} aromatic group, the optional substituents on the aromatic group being one or more of C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl;

X² represents a cyano, carboxyl, carboxamide, hydroxymethyl, C₂₋₅ alkoxycarbonyl, or 5-tetrazolyl group;

 Z^1 represents a group selected from -NH-CH₂-R³ and -N=CH-R³ wherein R³ is a group selected from -CO-Y and -CH(Y¹)Y, Y being a group selected from C₃₋₈ alkyl, C₃₋₈ alkenyl, phenyl-C₁₋₄ alkyl and phenyl (wherein the phenyl group in both cases is optionally substituted by one or more groups independently selected from C₁₋₄ alkyl, C₁₋₄ alkoxy, nitro, halo and trihalomethyl), cycloalkyl of from 4 to 8 carbon atoms and 5- and 6-membered heterocyclic radicals containing at least one oxygen, sulphur, or nitrogen heteroatom and Y¹ being a group selected from hydroxy, hydrogen, C₁₋₄ alkoxy and C₁₋₅ alkanoyloxy;

 Z^2 represents hydrogen, C_{1-12} alkyl (straight or branched), C_{2-12} alkenyl or alkynyl, C_6 or C_{10} aryl or C_6 or C_{10} aryl- C_{1-12} alkyl wherein the aryl group is optionally substituted by one or more groups independ ntly selected from phenyl, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl) or cycloalkyl of from 3 to 5 carbon atoms;

and salts, esters and other physiologically functional derivatives thereof.

The term "physiologically functional derivatives" includes, for example, amides of the compounds of formula (I) and bioprecursors or "pro-drugs" of said compounds which are converted in vivo to compounds of formula (I) and/or their salts or derivatives. Solvates, for example, hydrates, of the compounds of formula (I) and of their salts, esters and physiologically functional derivatives are also within the scope of the present invention.

Preferred compounds of formula (I), by virtue of their advantageous pharmacological properties, include those wherein

X represents a sulphur atom, an oxygen atom, or a methylene group in the beta-configuration;

X1 represents a C3-4 straight alkyl chain;

 X^2 is a carboxy group or a corresponding C_{1-4} alkyl ester or salt thereof;

Z¹ is a group s lected from -NH-CH₂-R wherein R is a group of formula -CH(Y¹)Y in which Y¹ is hydroxy and Y is phenyl, alkyl of from 3 to 8 carbon atoms, or cycloalkyl of from 4 to 8, particularly 6, carbon atoms; and

 Z^2 is a group sell cted from hydrogen, C_{1-6} straight and branch id alkyl and C_3 - C_6 cycloalkyl, especially thyl and propyl.

The most preferred compound of formula (I) for the treatment of thrombo-embolic disorders is 5-(3-carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-ethylhexahydrocyclopenta[d]imidazol-2(1H)-o ne. For the treatment of ocular diseases, two of the most preferred compounds of formula (I) are 5-(3-carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)hexahydrocyclopenta[d]imidazol-2-(1H)-one and 5-(3-carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethyl amino)hexa-hydrocyclopenta[d]imidazol-2(1H)-one.

Particularly valuable salts for medical purposes are those having a pharmaceutically acceptable cation, such as an alkali metal, for example, sodium and potassium, an alkaline earth metal, for example, calcium and magnesium, ammonium, or an organic base, particularly an amine, such as ethanolamine. Salts having non-pharmaceutically acceptable cations are within the scope of this invention as useful intermediates for the preparation of pharmaceutically acceptable salts and derivatives or for use in non-therapeutic applications, for example, in vitro or ex vitro prostanoid receptor differentiation.

10

15

20

25

30

45

50

When Z¹ is a five- or six-membered heterocyclic radical as defined above, the ring of the radical may be saturated or unsaturated. Examples include pyridyl, thienyl, tetrahydropyranyl and tetrahydrofuryl.

Except when there is a clear indication to the contrary, formula (i) and other formulae in this specification embrace all stereoisomers represented therein. In particular, such formulae include the enantiomeric forms, racemates and diastereomers.

As indicated, the compounds of formula (I) are of value in having pharmacological properties related to those of natural prostaglandins. Thus, the compounds may mimic or antagonise the effects of members of the prostaglandin D series. For example, compounds of formula (I) have been found to mimic the anti-aggregatory effects of PGD₂ on blood platelets and reduce intraocular pressure.

Compounds of formula (I) have advantages over the 2,4-diazabicyclo[3.3.0.]octane-3,7-dione derivatives disclosed in EP-A-0046597 in that they demonstrate substantially improved selectivity for the DP-class of receptors over other prostanoid receptor types and markedly greater potency at the DP-class of receptor. It follows that these compounds demonstrate a greater therapeutic index than the 2,4-diazabicyclo[3.3.0.]octane-3,7-dione derivatives of EP-A-0046597 as blood platelet anti-aggregatory agents and agents for the reduction of intraocular pressure.

According to a second aspect of the invention, therefore, there is provided a compound of formula (I) for use in a method of treatment of the human or animal body by therapy, particularly the treatment or prophylaxis of a thrombo-embolic disorder or a condition giving rise to increased intraocular pressure, for example, glaucoma. By the term "thrombo-embolic disorder" is meant a disorder whose aetiology is associated with blood platelet aggregation.

The compounds of the invention are particularly useful in the treatment and prevention of myocardial infarction, thromboses and strokes. The compounds may also be used to promote the potency of vascular grafts following surgery and to treat complications of arteriosclerosis and conditions such as atherosclerosis, blood clotting defects due to lipidaemia and other clinical conditions in which the underlying aetiology is associated with lipid imbalance or hyperlipidaemia. A further use for these compounds is as an additive to blood and other fluids which are used in artificial extracorporeal circulation and the perfusion of isolated body portions. The compounds of formula (I) and their salts and derivatives may also be used in the treatment of peripheral vascular disease and angina and, as indicated, in the treatment of ocular diseases, particularly those which give rise to increased intraocular pressure, for example, glaucoma.

According to a third aspect of the invention, there are provided methods for the prophylaxis or treatment of a thrombo-embolic disorder in a mammal and for the prophylaxis or treatment of a condition giving ris to increased intraocular pressure in a mammal which comprise administering to said mammal a therapeutically effective amount of a compound of formula (I) or of a salt, ester, or other physiologically functional derivative.

Hereinafter the term "a compound of formula (I)" includes salts, esters and other physiologically functional derivatives of said compounds and solvates of all thereof.

The amount of a compound of formula (I) required to achieve the desired biological effect will depend on a number of factors, for example, the specific compound chosen, the use for which it is intended, the mode of administration and the general condition of the recipient. In general, a daily dose may be expected to lie in the range of from 0.1 mcg to 20 mg per kilogram bodyweight. For example, an intravenous dose may lie in the range of from 5 mcg or 10 mcg to 1 mg/kg which may conveniently be administered as an infusion of from 0.01 to 50 mcg per kilogram per minute. Infusion fluids suitable for this purpose may contain from 0.001 to 100, for exampl , from 0.01 to 110, mcg per millilitre, preferably 1 to 10 mcg/ml. Unit doses may contain from 10 mcg to 100 mg, for example, ampoules for injection may contain from 0.01 to 1 mg and orally administrable unit dose formulations, such as tablets or capsules, may contain from 0.1 to 50, for example, 2 to 20 mg. Such dosage

units may be administered, for example, 1, 2, 3 or 4 times per day, separately or in multiples ther of.

Mor specifically, when a compound of formula (I) is used to inhibit platelet aggregation it is generally desirable to achiev a concentration in the appropriate liquid, whether it be the blood of a patient or a perfusion fluid, of about 1 mcg to 10 mg, for example, from 10 mcg to 1 mg, per litre. For opthalmic applications, a concentration in the range 0.04g/L to 10g/L is generally preferred.

According to a fourth aspect of the invention, there are provided pharmaceutical formulations comprising, as active ingredient, at least one compound of formula (I) together with at least one pharmaceutical carrier. The carrier must, of course, be 'acceptable' in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient. The carrier may be a solid or a liquid and is preferably formulated with a compound of formula (I) as a unit dose formulation, for example, a tablet, which may contain from 0.05% to 95% by weight of the active ingredient. Other pharmacologically active substances may also be present in the formulations of the present invention, for example, when treating a thrombo-embolic disorder, a beta-adrenoceptor blocking agent, such as propranolol, or when treating intraocular pressure, a muscarinic ag nist, such as pilocarpine, or a beta-antagonist, such as timolol.

According to a fifth aspect of the invention, there is provided a method of preparing a medicament which comprises admixing a compound of formula (I) with a pharmaceutically acceptable carrier. The formulations may be prepared by any of the well-known techniques of pharmacy consisting essentially of admixing the components of the formulation.

15

25

30

35

40

45

55

Formulations according to the invention include those suitable for oral, buccal (e.g. sub-lingual), parent ral (e.g. subcutaneous, intramuscular, intradermal and intravenous) and topical (e.g. opthalmic) administration, although the most suitable route in any given case will depend in the nature and severity of the condition being treated and on the nature of the active compound.

Formulations suitable for oral administration may be presented as discrete units such as capsules, cachets, lozenges, or tablets each containing a predetermined amount of the active compound; as powders or granules; as solutions or suspensions in aqueous or non-aqueous liquids; or as oil-in-water or water-in-oil emulsions. Such formulations may be prepared by any of the methods of pharmacy, all of which include the step of bringing into association the active ingredient with the carrier which comprises one or more appropriate ingredients. In general, the formulations of the invention may be prepared by uniformly and intimately admixing the active ingredient with liquids or finely divided solid carriers, or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or moulding a powder or granules of the active ingredient, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing the active ingredient in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent and/or surface-active or dispersing agent(s). Moulded tablets may be made by moulding the powdered active ingredient moistened with an inert liquid diluent in a suitable machine.

Formulations suitable for buccal (e.g. sub-lingual) administration include lozenges comprising the active ingredient in a flavoured base, e.g. sucrose and acacia or tragacanth, and pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia.

Formulations suitable for parenteral administration conveniently comprise sterile aqueous preparations of the active ingredient, which preparations are preferably isotonic with the blood of the recipient. The preparations are preferably administered intravenously, although administration may be effected by means of subcutaneous or intramuscular injection. Such preparations may conveniently be prepared by admixing the active ingredient with water and rendering the product sterile and isotonic with the blood.

Topical formulations are particularly suitable for opthalmic use and preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which may be used in such formulations include petroleum jelly, lanolin, polyethylene glycols, alcohols and combinations thereof. The active ingredient is generally present at a concentration of from 0.1 to 15% w/w of the composition, for example, from about 0.5 to about 2% w/w.

As indicated, by reason of their prostaglandin DP-receptor properties, the compounds of formula (I) may be used in the pharmacological characterisation and differentiation of the biological activities of the natural prostaglandins and their receptors.

According to a sixth aspect of the invention, there is provided the use of a compound of formula (I) in the manufacture of a medicament for the treatment or prophylaxis of a thrombo-embolic disorder or of a condition giving rise to increased intraocular pressure.

The compounds of formula (I) may be prepared in any conventional manner, for example, by the method described below. According to a seventh aspect of the invention, therefore, there is provided a process for the preparation of compounds of formula (I) which comprises: reacting a compound of formula (II)

wherein X, X1 and X2 are as hereinbefore d fined, or functional equivalents thereof, with a compound of formula (III)

$$Z^2 - N - Z'$$
(III)

5

10

20

25

30

35

45

50

55

wherein Z¹ and Z² are as hereinbefore defined and A is a suitable leaving group in the alpha- or beta-configuration, in the presence of a base, such as an alkali metal alkoxide;

and optionally converting the compound of formula (I) so obtained to another compound of formula (I) or to a salt, ester, or other physiologically functional derivative of either.

The leaving group A may be a mesylate, tosylate, halogen, or any other suitable group.

The compound of formula (II) may conveniently be employed in the form of a salt, viz

wherein M⁺ is an alkali metal cation, for example, sodium. The use of two equivalents of the compound of formula (II) per equivalent of the compound of formula (I) avoids the necessity for subsequent base treatment

When using the above process to prepare a compound of formula (I) in which group X is in the alpha-configuration, a compound of formula (III) in which the leaving group A is in the beta-configuration should be used. Similarly, to prepare a compound of formula (I) in which X is in the alpha-configuration, a starting material of formula (III) in which the leaving group A is in the beta-configuration is required. The latter starting materials may be prepared from corresponding starting materials of formula (III) containing a different leaving group in the beta-configuration by reacting the latter material with a suitable reagent serving to replace the first leaving group (in the beta-configuration) with a second (desired) leaving group (also in the beta-configuration). Thus, for example, a compound of formula (III) in which A represents a halogen atom in the beta-configuration may be prepared by reaction of a corresponding compound of formula (III) in which A represents a hydrocarbonsul-phonyloxy group in the beta-configuration with an appropriate source of halide anions, for example, an alkali metal halide, such as lithium chloride.

A compound of formula (III) wherein A represents a leaving group in the alpha- or beta-configuration may be prepared by reacting a compound of formula (IV)

wherein Z² and Z¹ are as hereinbefore defined and the hydroxyl group is in the alpha- or beta-configuration, with an appropriate reagent serving to introduce the group A in the same configuration. Thus, for example, a compound of formula (IV) may be reacted with a hydrocarbonsulphonyl halide, for example, a chloride, to introduce a hydrocarbonsulphonyl group. The reaction is conveniently effected in the presence of an organic base, such as pyridine.

A compound of formula (IV) wherein the hydroxy group is in the beta-configuration can b prepared from a compound of formula (IV) wherein the hydroxy group is in the alpha-configuration by inversion, for example, using triphenylphosphine and diethylazodicarboxylate, following the method of Mitsunobu (Tetrahedron Lett. (1972) 1279).

A compound of formula (IV) where Z1 and Z2 are as already defined can be prepared by reacting a com-

pound of formula (V)

 $Z^{2} = N$ $Z^{2} = N$ N = N N

wherein Z² is as hereinbefore defined, with a compound

wherein R^3 is as hereinbefore defined, in the presence of a base in an appropriate solvent, for exampl , methanol.

A compound of formula (V) where Z² is as hereinbefore defined may be prepared by reducing a compound of formula (VI)

wherein Z^2 is as defined and Z^3 can be Z^1 as hereinbefore defined or an alternative imino protecting group, for example, benzylideneimino -N=CH-Ph, using a suitable reducing system, such as catalytic hydrogenation.

A compound of formula (VI) may be prepared by reacting a compound of formula (VII)

wherein Z^2 and Z^3 are as hereinbefore defined, with an appropriate reducing agent such as a metal hydride, sodium borohydride being particularly suitable for this purpose.

Compounds of formula (VII) may be prepared from a compound of formula (VIII)

55

20

25

30

35

40

45

$$Z^{2} \xrightarrow{HN} N Z^{3}$$
(VIII)

wherein Q represents a carbonyl or carbonyl-protecting group, for example, an ethylenedioxy group, by cyclisation under acid or base conditions. When acidic conditions are used, the reaction conveniently results in deprotection of the carbonyl group and concomitant cyclisation of the heterocyclic ring. When basic conditions are used for the cyclisation, a carbonyl-protecting group, if present, has to be removed in a prior step under acid conditions.

Compounds of formula (VIII) may be prepared by reacting a compound of formula (IX)

$$\bigvee_{\text{VH-Z}_3} \text{(ix)}$$

wherein Q and Z^3 are as hereinbefore defined, with cyanic acid or a Z^2 -substituted isocyanate or, alternatively, by reaction with phosgene or its equivalent and subsequent treatment with an appropriate Z^2 -substituted amine, wherein Z^2 is as hereinbefore defined.

Compounds of formula (IX) may be prepared by reacting a compound of formula (X) with a compound of formula (XI)

wherein Q and Z^3 are as hereinbefore defined and B is a leaving group, preferably bromine, in the presence of a base, such as pyridine, in a suitable, preferably non-protic, solvent, such as toluene.

Compounds of formula (X) may be prepared from cyclopent-2-enone in a conventional manner, for example, according to the method of DePuy (J.Org.Chem. 28, 3508 (1964)) in the case of the preparation of 5-bromo-3,3-ethylenedioxycyclopentene.

The invention also provides novel intermediates of formulae (II) to (X).

The following Examples illustrate the invention.

50

45

5

10

15

20

25

30

35

SYNTHETIC EXAMPLES

Example 1

10

15

20

25

30

35

45

55

5 Preparation of 5-(3-Methoxycarbonylpropylthio)-1-(2-cyclohexyl-2- hydroxyethylideneamino)- 3-propylhexahyd-rocyclopenta[d]imidazol2(1H)-one

(a) Cyclopentenone ethyleneketal

Cyclopentenone ethyleneketal was prepared from cyclopentanone, ethylene glycol and bromine followed by subsequent dehydrohalogenation by literature methods: see E.W. Garbisch, J.Org.Chem., 30, 2109 (1965).

(b) 5-Bromo-3.3-ethylenedioxycyclopentene

5-Bromo-3,3-ethylenedioxycyclopentene was prepared from the compound of step (a) by the method of DePuy (J.Org.Chem., 29, 3508 (1964)).

(c) Benzaldehyde 1.4-dioxaspiro[4.4]non-6-en-8-ylhydrazone

The allylic bromide of step (b) (0.178 mol) was dissolved in toluene (50 ml) and the solution cooled to -40°C with stirring. Benzaldehyde hydrazone (0.141 mol) in toluene (50 ml) was added rapidly over 5 minutes, followed by triethylamine (25g). The solution was warmed slowly to 15°C and stirred at this temperature for 16 hours. The mixture was then brought to a gentle reflux for a further 5 hours. After cooling, the triethylamine hydrobromide formed was filtered off under reduced pressure and the resulting solution concentrated in vacuo and purified by chromatography (silica, diethyl ether). This gave the desired product as an oil (18.9g).

(d) Benzaldehyde 2-(1,4-dioxaspiro[4.4]non-6-en-8-yl)-4-propylsemicarbazone

The compound of step (c) (16g) and pyridine (12.25g) were added to toluene (300 ml) and the resulting solution cooled to 0°C. To this stirred mixture, a solution of phosgene in toluene (12.5%, 125 ml) was rapidly added over 10 minutes, after which the solution was warmed to 15°C and stirred for a further 20 minut s. n-Propylamine (20 ml) was added to the solution at 0°C over 5 minutes and, after stirring for a further 30 minutes, water (200 ml) was added. The organic layer was separated and dried over anhy. sodium sulphate. After filtration, concentration in vacuo gave the desired product as a brown gum (21.0g).

(e) 1-Benzylideneamino-3-propyltetrahydrocyclopenta[d]imidazol -2,5(1H,3H)-dione

An acetone solution (150 ml) of the compound of step (d) (21g) was stirred at 15°C while camphorsulphonic acid (2.5g) was added portionwise over 10 minutes. After 4 hours, the mixture was concentrated in vacuo, water (150 ml) and chloroform (100 ml) added and the organic phase separated. The latter was washed with dilute sodium bicarbonate (100 ml), separated and concentrated in vacuo to give the desired product as a brown oil (21.0g).

(f) 1-Benzylideneamino-3-propyl-5-hydroxyhexahydrocylopenta[d]imidazol-2(1H)-one

The compound of step (e) (21g) was dissolved in methanol (100 ml) and the solution cooled to 0°C while sodium borohydride (1.5g) was added portionwise over 15 minutes. When addition was complete, the solvent was removed in vacuo, water (100 ml) and chloroform (100 ml) added and the organic phase separated. After drying over anhy, sodium sulphate, filtration and concentration in vacuo gave the crude product as a brown gum (21g). This was purified by column chromatography (silica, 10:1 diethyl ether:methanol) to give the desired product as fine white needles (7.5g), mp 150.3-150.8°C.

%C 66.97 %H 6.96 %N 14.59

¹H NMR: (CDCl₃, δ) 7.8 (1H, s, N=C<u>H</u>), 7.7-7.2 (5H, m, Ph), 4.4 (1H, m, C<u>H</u>N), 4.2 (1H, m, C<u>H</u>OH), 3.5 (1H, m, CH of C<u>H</u>₂N), 3.05 (1H, m, CH of C<u>H</u>₂N), 0.9 (3H, t, C<u>H</u>₃)

(g) 1-amino-3-propyl-5-hydroxyhexahydrocyclopenta[d]-imidazole-2(1H)-on

The compound of step (f) (7.0g) was added to a solution of methanol (280 ml) and acetic acid (2.25 ml)

containing 10% Pd on carbon (2.5g) and the resulting mixture stirred at 15°C under an atmosphere of hydrogen for 3 days. The catalyst was removed by filtration thr ugh Celite and concentration of the filtrate in vacuo gave the desired product as an oil (5.0g).

(h) 5-Hydroxy-1-(2-cyclohexyl-2-acetoxyethylideneamino)-3-propylhexahydrocyclopenta[d]imidazole- 2(1H)-

A solution of the compound of step (g) (5.0g) and 2-acetoxy-2-cyclohexylacetaldehyde (Ross et al, J.Med-.Chem., 22, 412 (1979), 6.0g) in methanol (175 ml) containing sodium acetate (3.64g) was stirred at 15°C under a nitrogen atmosphere for 16 hours. The alcohol was removed in vacuo and water (100 ml) and chloroform (100 ml) added. The organic phase was separated and washed with brine (100 ml), then dried over anhy. sodium sulphate. Filtration and concentration of the filtrate in vacuo gave a yellow oil (10.8g).

Column chromatography of the crude product (silica, 7% methanol in diethyl ether) gave the desired produced as a pair of diastereoisomers (7.8g).

(i) 5-Methanesulphonyloxy-1-(2-cyclohexyl-2-acetoxyethylidene-amino)-3-propylhexahydrocyclopenta [d] imidazole-2(1H)-one

To a solution of the compound of step (h) (7.8g) and pyridine (3.6g) in dichloromethane (100 ml) at 0°C under an atmosphere of nitrogen was added methanesulphonyl chloride (5.2g). After stirring for 20 hours, water (100 ml) was added and the organic layer separated. The latter was washed with 1N HCl (100 ml) and again separated and dried over anhy. magnesium sulphate. Filtration and concentration of the filtrate in vacuo gave 10.0g of crude product containing both diastereoisomers.

The individual diastereoisomers, compound A and compound B, were separated by column chromatography (silica, 3% methanol in ethyl acetate).

Less polar isomer: Compound A: More polar isomer:

3.0g Compound B: 3.1g

¹H NMR (CDCl₃, δ): Compound A: 7.15 (1H, d, N=CH), 5.05 (1H, m, CHOMs), 4.9 (1H, t, CHOAc), 4.20 (1H, dd, CHN), 4.0 (1H, dd, CHN), 2.70 (3H, s, SO₂CH₃), 1.85 (3H, s, COCH₃)

(j) 5-(3-Methoxycarbonylpropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3- propylhexahydrocyclopenta [d]imidazol-2(1H)-one

Under an atmosphere of nitrogen, thiobutyrolactone (1.72g) was added to methanolic sodium methoxide (from sodium, 390 mg) in dry methanol (20 ml)) at 15°C and the resulting solution stirred for two hours. The solvent was removed in vacuo and the residue dissolved in dry dimethylsulphoxide (20 ml) under nitrogen.

Compound A of step (i) (3.0g) in dimethylsulphoxide (10 ml) was added in one portion to the thiolate solution and the resulting mixture stirred at 15°C for 16 hours. The solution was diluted with water (200 ml) and the crude product extracted into diethyl ether (200 ml). After drying over anhy, sodium sulphate, the mixture was filtered and the filtrate concentrated in vacuo to give an oil. Column chromatography (silica, 5% methanol in ethyl acetate) gave the desired product as a colourless oil (1.4g).

¹H NMR (CDCl₃, δ): 7.2 (1H, d, N=C<u>H</u>), 4.25 (1H, dd, C<u>H</u>N), 4.1 (1H, dd, C<u>H</u>N), 4.0 (1H, m, C<u>H</u>OH), 3.55 $(3H, s, CO_2C_{13}), 0.80 (3H, t, C_{13})$

45 Example 2

5

15

25

30

35

5(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-propylhexahydrocyclopenta[d]imidazol-2(1H)-one

50 The compound of Example 1 (1.4g) was dissolved in methanol:water (2:1, 10 ml) and to the stirred solution was added lithium hydroxide (0.267g). The resulting mixture was maintained at 45°C for one hour. The pH was adjusted to 5.0 with 2N HCl, water (50 ml) was added and the product was extracted into chloroform (50 ml). After drying over anhy, sodium sulphate, the mixture was filtered and the filtrate concentrated in vacuo to give the desired product (1.15g).

¹H NMR (CDCl₃, δ): 7.2 (1H, d, N=CH), 4.4 (1H, dd, CHN), 4.2 (1H, dd, CH), 4.1 (1H, m, CHOH), 0.9 (3H, t, CH₃)

Example 3

5

10

20

25

35

5(3-Carboxypropylthio)-1-(2-cycloh xyl-2-hydroxyethylamino)-3-propylhexahydrocyclopenta[d]imidazol-2(1H) -on

The compound (0.5g) of Example 2 was dissolv d in a mixtur of m thanol (5 ml) and ac tic acid (5 ml) at 15°C and to the stirred solution was added sodium cyanoborohydride (0.15g). After one hour, the solution was concentrated in vacuo, water (20 ml) and chloroform (20 ml) were added and the organic phase separated and dried over anhy. sodium sulphate. Filtration and concentration of the filtrate in vacuo gave the desired produced (0.49g).

¹H NMR (CDCl₃, δ): 4.1 (2H, m, 2xC<u>H</u>N), 3.2 (1H, m, C<u>H</u>OH), 0.9 (3H, t, C<u>H</u>₃)

Example 4

15 5-(3-Methoxycarbonylpropylthio)-1-(2-cyclohexyl-2-hydroxy-ethylideneamino)-3-ethylhexahydrocyclopenta[d]i midazol-2(1H)-one

This compound was prepared following the general procedure of Example 1, except that in step (d) ethylamine was used instead of n-propylamine. In addition to this compound, compounds which correspond respectively to the compound of step (f) and compound A except that they are 3-ethyl rather than 3-propyl were prepared and subjected to NMR analysis:

5(3-Methoxycarbonylpropylthio)-1-(2-cyclohexyl-2-hydroxy-ethylideneamino)-3-ethylhexahydrocyclopenta[d]im idazol-2-(1H)-one

¹H NMR (CDCl₃, δ): 7.4-7.2 (2H, m, CH=N and OH), 4.6-4.1 (3H, m, NCHCHN and CHOH), 3.9-3.4 (4H, m, CO₂CH₃ and CH₂N*), 3.4-2.8 (2H, m, CH₂N* and SCH), 2.8-2.1 (6H, m, SCH₂CH₂CH₂CO₂), 2.1-1.0 (18H, m, remaining protons)

30 1-Benzylideneamino-3-ethyl-5-hydroxyhexahydrocyclopenta[d]imidazol-2,(1H)-one

¹H NMR (CDCl₃, δ): 7.8 (1H, d, C<u>H</u>=N), 7.7-7.3 (5H, m, Ph), 4.5-4.4 (2H, m, NC<u>HCH</u>N), 4.3-4.1 (1H, m, C<u>H</u>OH), 3.8-3.5 (1H, m, C<u>H</u>₂N*), 3.3-3.0 (1H, m, C<u>H</u>₂N*), 2.3-1.9 (4H, m, 2xC<u>H</u>₂), 1.7 (1H, brs, O<u>H</u>), 1.2-1.1 (3H, t, C<u>H</u>₃)

5-Methanesulphonyl-1-(2-cyclohexyl-2-acetoxyethylideneamino)-3-ethylhexahydrocyclopenta[d]imidazole-2(1 H)-one

¹H NMR (CDCl₃, δ): 7.4 (1H, d, C<u>H</u>=N), 5.4-5.2 (1H, m, C<u>H</u>OMs), 5.2-5.1 (1H, t, C<u>H</u>OAc), 4.5-4.2 (2H, m, NC<u>HCHN</u>), 3.8-3.5 (1H, sextet, C<u>H₂N*</u>), 3.3-3.0 (1H, sextet, C<u>H₂N*</u>), 2.9 (3H, s, OSO₂C<u>H₃</u>), 2.6-1.9 (4H, m, 2xC<u>H₂</u>), 2.1 (3H, s, C<u>H₃CO₂</u>), 1.8-1.5 (11H, m, remaining C<u>H₂'s</u>), 1.2-1.1 (3H, t, C<u>H₃CH₂</u>)

Example 5

45 5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-ethylhexahydrocyclopenta[d]imidazol-2 (1H)-one

Following the general procedure of Example 2, this compound was prepared from the compound of Example 4.

¹H NMR (CDCl₃, δ): 7.2 (1H, d, C<u>H</u>=N), 5.3-4.4 (2H, brs, CO₂<u>H</u> and O<u>H</u>), 4.4-4.2 (2H, m, NC<u>HCH</u>N), 4.2-4.1 (1H, t, C<u>H</u>OH), 3.7-3.4 (1H, m, C<u>H</u>₂N*), 3.3-3.0 (2H, m, C<u>H</u>₂N* and SC<u>H</u>), 2.7-2.4 (4H, m, C<u>H</u>₂CO₂ and SC<u>H</u>₂), 2.4-1.1 (17H, m, remaing C<u>H</u>₂'s) overlain by 1.2-1.1 (3H, t, C<u>H</u>₃)

Example 6

5(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxy thylamino)-3-ethylh xahydrocyclopenta[d]imidazol-2(1H)-one

¹H NMR (CDCl₃, δ): 6.1-4.5 (3H, brs, exchangeable protons), 4.2-4.0 (2H, m, NC<u>HCH</u>N), 3.6-2.9 (6H, m, C<u>H</u>₂N, C<u>H</u>₂NH, OC<u>H</u> and SC<u>H</u>), 2.8-2.0 (4H, m, C<u>H</u>₂CO₂ and C<u>H</u>₂S), 2.0-0.9 (17H, m, remaining C<u>H</u>₂'s) overlain by 1.2-1.1 (3H, t, C<u>H</u>₃)

10 Example 7

5

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-methylhexahydrocyclopenta[d]imidazol-2(1H)-one

This compound was prepared following the general procedure of Examples 1 and 2. The structure was confirmed by ¹H NMR analysis (CDCl₃, δ): 7.2 (1H, d, N=CH), 2.85 (3H, s, CH₃).

Example 8

20 5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylamino)-3-methylhexahydrocyclopenta[d]imidazol-2(1H)-one

This compound was prepared from the compound of Example 7 following the general procedure of Example 3. The structure was confirmed by ${}^{1}H$ NMR analysis (CDCl₃, δ): 2.8 (3H, s, CH₃).

Example 9

25

30

35

*5*0

55

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-isopropylhexahydrocyclopenta[d]imida zol-2(1H)-one

This compound was prepared following the general procedure of Examples 1 and 2. The structure was confirmed by 1H NMR analysis (CDCl₃, δ): 7.0 (1H, m, N=C<u>H</u>), 1.2 (6H, m, <u>Me₂</u>CHN).

Example 10

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylamino)-3-isopropylhexahydrocyclopenta[d]imidazol-2(1H)-one

This compound was prepared from the compound of Example 9 following the general procedure of Example 3. The structure was confirmed by ¹H NMR analysis (CDCl₃, δ): 4.1 (2H, m, 2xC<u>H</u>N), 3.95 (1H, m, Me₂C<u>H</u>N), 1.2 (6H, dd, Me₂CHN).

Example 11

45 5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-3-cyclopropylhexahydrocyclopenta[d]imid azol-2(1H)-one

This compound was prepared following the general procedure of Examples 1 and 2. The structure was confirmed by ^{1}H NMR analysis (CDCl₃, δ): 7.3 (1H, d, N=CH), 4.3 (1H, m, CHN), 4.1 (2H, m, CHN and NCHCH₂CH₂), 3.2 (1H, m, OCH).

Example 12

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylamino)-3-cyclopropylhexahydrocyclopenta[d]imidazol-2(1H)-one

This compound was prepared from the compound of Example 11 foll wing the gen ral procedure of Exampl 3. The structure was confirmed by ^{1}H NMR analysis (CDCi₃, δ): 4.0 (3H, m, 2xCHN and $NCHCH_{2}CH_{2}$),

0.8 (4H, m, NCHCH2CH2).

Example 13

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxy thylideneamino)hexahydrocyclop nta[d]imidazol-2(1H)-on

This compound was prepared following the general procedure of Examples 1 and 2. The structure was confirmed by 1_H NMR analysis (CDCl₃, δ): 7.1 (1H, d, N=C<u>H</u>), 4.4 (1H, t, C<u>H</u>N), 4.2 (1H, m, C<u>H</u>N), 4.1 (1H, t, OC<u>H</u>).

Example 14

10

15

5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylamino)-hexahydrocyclopenta[d]imidazol-2(1H)one

This compound was prepared from the compound of Example 13 following the general procedure of Example 3. The structure was confirmed by ¹H NMR analysis (CDCl₃, δ): 4.2 (2H, m, 2xCHN), 3.2 (1H, m, OCH).

PHARMACEUTICAL FORMULATION EXAMPLES

The "active ingredient" in the following formulations is any compound of the invention (as hereinbefore defined, for example, any of the compounds of Synthetic Examples 1 to 14).

Example A: Tablet

25		<u>Per_tablet</u>
	Active Ingredient	5.0 mg
30	Lactose	82.0 mg
	Starch	10.0 mg
	Povidone	2.0 mg
	Magnesium Stearate	1.0 mg

Mix together the active ingredient, lactose and starch. Granulate the powders using a solution of povidone in purified water. Dry the granules, add the magnesium stearate and compress to produce tablets (100mg per tablet).

Example B: Ointment

Active Ingredient		1.0 g
White Soft Paraffin	to	100.0 g

Disperse the active ingredient in a small volume of the vehicle. Gradually incorporate this into the bulk to produce a smooth, homogeneous product. Fill into collapsible metal tubes.

55

35

40

45

Example C: Cream for topical use

5	Active Ingredient		1.0 g
3	Polawax GP 200		20.0 g
	Lanolin Anhydrous	-	2.0 g
	White Beeswax		2.5 g
10	Methyl hydroxybenzoate		0.1 g
	Distilled Water	to	100.0 g

Heat the Polawax, beeswax and lanolin together at 60°C. Add a solution of methyl hydroxybenzoate.

Homogenise using high speed stirring. Allow the temperature to fall to 50°C. Add and disperse the active ingredient. Allow to cool with slow speed stirring.

Example D: Lotion for topical use

20			
	Active Ingredient		1.0 g
	Sorbitan Monolaurate		0.6 g
25	Polysorbate 20		0.6 g
	Cetostearyl Alcohol		1.2 g
	Glycerin		6.0 g
30	Methyl Hydroxybenzoate		0.2 g
	Purified Water B.P.	to	100 ml

The methyl hydroxybenzoate and glycerin were dissolved in 70ml of the water at 75°C. The sorbitan monolaurate, Polysorbate 20 and cetostearyl alcohol were melted together at 75°C and added to the aqueous solution. The resulting emulsion was homogenised, allowed to cool with continuous stirring and the active ingredient added as a suspension in the remaining water. The whole was stirred until homogeneous.

Example E: Eye drops

	Active Ingredient		0.5 g
	Methyl Hydroxybenzoate		0.01 g
4 5	Propyl Hydroxybenzoate		0.04 g
	Purified Water B.P.	to	100 m1

The methyl and propyl hydroxybenzoates were dissolved in 70ml of purified water at 75°C and the resulting solution allowed to cool. The active ingredient was then added and the solution made up to 100ml with purified water. The solution was sterilised by filtration through a membrane filter of 0.22µm pore size and packed aseptically into suitable sterile containers.

50

Example F: Injectable solution

5

10

20

35

40

45

50

55

Active Ingredient		10.0 mg
Water for Injections B.P.	to	1.0 ml

The active ingredient was dissolved in half of the Water for Injections and then made up to volume and sterilised by filtration. The resulting solution was distributed into ampoules under aseptic conditions.

Example G: Powder capsules for inhalation

	Active Ingredient $(0.5-7.0\mu m powder)$	4 mg
15	Lactose (30-90µm powder)	46.0 mg

The powders were mixed until homogeneous and filled into suitably sized hard gelatin capsules (50mg per capsule).

Example H: Inhalation aerosol

25	Active Ingredient $(0.5-7.0\mu m powder)$	200 mg
20	Sorbitan Trioleate	100 mg
	Saccharin Sodium $(0.5-7.0\mu m powder)$	5 mg
	Methanol	2 mg
30	Trichlorofluoromethane	4.2 g
	Dichlorodifluoromethane to	10 0 ml

The sorbitan trioleate and menthol were dissolved in the trichlorofluoromethane. The saccharin sodium and active ingredient were dispersed in the mixture which was then transferred to a suitable aerosol canister and the dichlorofluoromethane injected through the valve system. This composition provides 2mg of active ingredient in each 100µl dose.

BIOLOGICAL ASSAY for inhibition of platelet aggregation

The average intrinsic activities (% of maximum possible response) and efficacies of a series of 10-substituted bicyclic analogues were obtained in the human washed platelet (inhibition of aggregation induced by 5 \times 10⁻⁵M ADP) and rabbit jugular vein (relaxation of tone induced by 1 \times 10⁻⁶M histamine). Numbers in brackets indicate numbers of replicates.

COMPOUND EXAMPLE NO.	CALCULATED AVERAGE INTRINSIC ACTIVITY (%)		EFFICACY RELATIVE TO SYNTHETIC EXAMPLE 14	
	Platelet (v.ADP 5x10 ⁻⁵ M)	Jugular (v.Histamine 1x10 ⁻⁶ M)	Platelet (calculated)	Jugular
8	79 (4)	52 (6)	0.25	0.27
7	65 (4)	31 (5)	0.12	0.16
6	78 (6)	41 (6)	0.24	0.21
5	51 (5)	16 (3)	0.07	0.09
3	27 (5)	9 (2)	0.02	0.05
2	7	0	0.005	_

BIOLOGICAL ASSAY for reduction of intraocular pressure (IOP)

(i) Rabbits

30

35

40

45

55

Normotensive male rabbits weighing about 3 kg were used. Eye drops of the compound of Synthetic Example 14 ($200\mu g/ml$ and 1mg/ml) were prepared as solutions in a mixture of glycerin and Tween 80 and applied topically (0.05ml) to unilateral eyes. The contralateral eyes were untreated. IOP was measured at t_0 and 1, 2, 4, 6 and 8 hours after application with a Pneumatic Tonometer (Alcon). Data was obtained as ΔIOP (treated eye's IOP - untreated eye's IOP) and analysed statistically by the method of Dunnett.

The compound significantly reduced IOP at both concentrations for periods of 6 hours ($200\mu g/ml$) and 8 hours (1mg/ml). The IOP of the untreated eye was unaffected.

(ii) Cats

Normotensive male cats weighing about 4 kg were used. Eye drops of the compound of Synthetic Example 14 (40µg/ml, 200µg/ml and 1mg/ml) were prepared as solutions in a mixture of glycerin and Tween 80 and applied topically (0.05ml) to both eyes. IOP was measured as described above and the data analysed statistically by the method of Dunnett.

The compound significantly reduced IOP at all three concentrations for periods of 2 hours (40µg/ml), 5 hours (200µg/ml) and 7 hours (1mg/ml).

TOXICITY

The compound of Synthetic Example 5 was administered to Wistar rats once daily for 14 days by slow bolus intravenous injection at dose levels of 0.1, 1.0 and 10 mg/kg/day. S rial blood samples were tak n during the dosing phase. All animals were subjected to full macroscopic xamination at necropsy and a comprehensive selection of tissues evaluated histopathologically.

No toxicologically significant effects were observed in the blood sample nor were any gross abnormalities

or toxicologically m aningful effects on organ weights noted at autopsy. No evidence of an toxicologically significant effect was observed in the histopathological examination of the tissues.

5 Claims

1. A compound of formula (I)

10

20

25

15

wherein

X is a sulphur atom or oxygen atom or a group -NR¹- or -CR¹R²-, in the alpha- or beta-configuration, where R¹ and R² are hydrogen or straight or branched C_{1-5} alkyl;

 X^1 is a C_{1-5} straight chain or branched alkylene group, a C_{3-5} straight chain or branched alkenylene group or a substituted or unsubstituted C_6 or C_{10} aromatic group, the optional substituents on the aromatic group being one or more of C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl;

 X^2 is a cyano, carboxyl, carboxamide, hydroxymethyl, C_{2-5} alkoxycarbonyl, or 5-tetrazolyl group;

 Z^1 is a group selected from -NH-CH $_2$ -R 3 and -N-CH-R 3 wherein R 3 is a group selected from -CO-Y and -CH(Y 1)Y, Y being a group selected from C_{3-8} alkyl, C_{3-8} alkenyl, phenyl- C_{1-4} alkyl and phenyl (wherein the phenyl group in both cases is optionally substituted by one or more groups independently selected from C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl), cycloalkyl of from 4 to 8 carbon atoms and 5-and 6-membered heterocyclic radicals containing at least one oxygen, sulphur, or nitrogen heteroatom and Y 1 being a group selected from hydroxy, hydrogen, C_{1-4} alkoxy and C_{1-5} alkanoyloxy;

35

40

45

30

 Z^2 is hydrogen, C_{1-12} alkyl (straight or branched), C_{2-12} alkenyl or alkynyl, C_6 or C_{10} aryl or C_6 or C_{10} aryl- C_{1-12} alkyl wherein the aryl group is optionally substituted by one or more groups independently selected from phenyl, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl) or cycloalkyl of from 3 to 5 carbon atoms;

and salts, esters and other physiologically functional derivatives thereof.

2. A compound of formula (I) as shown in Claim 1 wherein

X is a sulphur atom, an oxygen atom, or a methylene group in the beta-configuration;

X1 is a C3-4 straight alkyl chain;

X² is a carboxy group or a corresponding C₁₋₄ alkyl ester or salt thereof;

 Z^1 is a group selected from -NH-CH₂-R wherein R is a group of formula -CH(Y¹)Y in which Y¹ is hydroxy and Y is phenyl, alkyl of 3 to 8 carbon atoms, or cycloalkyl of 4 to 8 carbon atoms; and

 Z^2 is a group selected from hydrogen, C_{1-8} straight and branched alkyl and C_3 - C_6 cycloalkyl; and salts, esters and other physiologically functional derivatives thereof.

50

- 3. 5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylamino)-hexahydrocyclopenta[d]imidazol-2(1H)-one and salts, esters and other physiologically functional derivatives thereof.
- 4. 5-(3-Carboxypropylthio)-1-(2-cyclohexyl-2-hydroxyethylideneamino)-hexahydrocyclopenta[d]imidazol-2 (1H)-one and salts, esters and other physiologically functional derivatives thereof.
 - A process for the preparation of a compound of formula (I) as defined in Claim 1 which comprises reacting a compound of formula (II)

 X^2-X^1-X-H (II)

wherein X, X^1 and X^2 are as defined in Claim 1, or a functional equivalent thereof, with a compound of formula (III)

5

10

$$Z^2 - N - Z'$$
(III)

15

wherein Z^1 and Z^2 are as defined in Claim 1 and A is a suitable leaving group in the alpha- or beta-configuration, in the presence of a base;

and optionally converting the compound of formula (I) so obtained to another compound of formula (I) or to a salt, ester, or other physiologically functional derivative of either.

20

- 6. A medicament comprising a compound of formula (I) as defined in Claim 1 or 2 or as named in Claim 3 or 4.
- 7. A medicament according to Claim 6 for the prophylaxis or treatment of a thrombo-embolic disorder.

25

- 8. A medicament according to Claim 6 for the prophylaxis or treatment of a condition giving rise to increased intraocular pressure.
- 9. A medicament according to Claim 8 wherein said condition is glaucoma.

30

- 10. A medicament according to any of Claims 6 to 9 which is in a form suitable for oral, buccal, parenteral, rectal, or topical administration.
- 11. A method of preparing a medicament which comprises admixing a compound of formula (I) as defined in Claim 1 or 2 or as named in Claim 3 or 4 with a pharmaceutically acceptable carrier.
 - 12. A compound of formula (I) as defined in Claim 1 or 2 or as named in Claim 3 or 4 for use as a therapeutic agent.
- 40 13. The use of a compound of formula (I) as defined in Claim 1 or 2 or as named in Claim 3 or 4 in the manufacture of a medicament for the prophylaxis or treatment of a thrombo-embolic disorder.
 - 14. The use of a compound of formula (I) as defined in claim 1 or 2 or as named in Claim 3 or 4 in the manufacture of a medicament for the propylaxis or treatment of a condition which gives rise to increased intraocular pressure.
 - 15. Use according to Claim 14 wherein said condition is glaucoma.

Claims for the following Contracting States: ES

50

45

1. A process for the preparation of a compound of formula (I)

$$Z^{2} = \sum_{i=1}^{N} Z^{i}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{2}$$

$$Z^{3}$$

$$Z^{4}$$

$$Z^{4}$$

$$Z^{5}$$

$$Z^{7}$$

$$Z^{7}$$

wherein

5

10

15

20

25

30

35

40

45

50

55

X is a sulphur atom or oxygen atom or a group -NR¹- or -CR¹R²-, in the alpha- or beta-configuration, where R¹ and R² are hydrogen or straight or branched C_{1-5} alkyl;

 X^1 is a C_{1-5} straight chain or branched alkylene group, a C_{3-5} straight chain or branched alkenylene group or a substituted or unsubstituted C_8 or C_{10} aromatic group, the optional substituents on the aromatic group being one or more of C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl;

 X^2 is a cyano, carboxyl, carboxamide, hydroxymethyl, $C_{2-\delta}$ alkoxycarbonyl, or 5-tetrazolyl group;

 Z^1 is a group selected from -NH-CH₂-R³ and -NaCH-R³ wherein R³ is a group selected from -CO-Y and -CH(Y¹)Y, Y being a group selected from C_{3-8} alkyl, C_{3-8} alkenyl, phenyl- C_{1-4} alkyl and phenyl (wherein the phenyl group in both cases is optionally substituted by one or more groups independently selected from C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl), cycloalkyl of from 4 to 8 carbon atoms and 5-and 6-membered heterocyclic radicals containing at least one oxygen, sulphur, or nitrogen heteroatom and Y¹ being a group selected from hydroxy, hydrogen, C_{1-4} alkoxy and C_{1-5} alkanoyloxy;

 Z^2 is hydrogen, C_{1-12} alkyl (straight or branched), C_{2-12} alkenyl or alkynyl, C_6 or C_{10} aryl or C_6 or C_{10} aryl- C_{1-12} alkyl wherein the aryl group is optionally substituted by one or more groups independently selected from phenyl, C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo and trihalomethyl) or cycloalkyl of from 3 to 5 carbon atoms;

which comprises reacting a compound of formula (II)

$$X^2-X^1-X-H$$
 (II)

wherein X, X^1 and X^2 are as defined above, or a functional equivalent thereof, with a compound of formula (III)

$$Z^2 - N - Z'$$

$$(111)$$

wherein Z^1 and Z^2 are as defined above and A is a suitable leaving group in the alpha- or beta-configuration, in the presence of a base;

and optionally converting the compound of formula (I) so obtained to another compound of formula (I) or to a salt, ester or other physiologically functional derivative of either.

- A process according to Claim 1 for the preparation of a compound of formula (I) wherein
 - X is a sulphur atom, an oxygen atom, or a m thylene group in the beta-configuration;
 - X1 is a C3-4 straight alkyl chain;
 - X² is a carboxy group or a corresponding C₁₋₄ alkyl ester or salt thereof;

Z¹ is a group selected from -NH-CH₂-R wherein R is a group of formula -CH(Y¹)Y in which Y¹ is hydroxy and Y is phenyl, alkyl of 3 to 8 carbon atoms, or cycloalkyl of 4 to 8 carbon atoms; and

 Z^2 is a group selected from hydrogen, C_{1-6} straight and branch d alkyl and C_3 - C_6 cycloalkyl; or a salt, ester, or other physiologically functional derivative thereof.

- A process according to Claim 2 for the preparation of 5-(3-carboxypropylthi)-1-(2-cyclohexyl-2-hyd-roxyethylamino)-hexahydrocyclopenta[d]imidazol-2(1H)-one or a salt, ester, or other physiologically functional derivative thereof.
 - 4. A process according to Claim 2 for the preparation of 5-(3-carboxypropylthio)-1-(2-cyclohexyl-2-hyd-roxyethylideneamino)-hexahydrocyclopenta[d]imidazol-2(1H)-one or a salt, ester, or other physiologically functional derivative thereof.

5. A method of preparing a medicament which comprises admixing a compound of formula (I) as defined in Claim 1 or 2 or as named in Claim 3 or 4 with a pharmaceutically acceptable carrier.

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 4695

		DERED TO BE RELEVAN	· A	
Category	Citation of document with in of relevant pas	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL 5)
D,X	EP-A-0 046 597 (WELLTD.) * whole document; ex		1-4,6- 15	C 07 D 235/02 A 61 K 31/415
A	GB-A-2 098 214 (HO) * page 4, table 1; 4	ECHST AG) example 7; abstract	1-4,6- 15	
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				C 07 D 235/00 C 07 D 263/00 C 07 D 317/00
		·		
	The present search report has be	een drawn up for all claims	1	
	Place of search	Date of completion of the search		Exeminer
В	ERLIN	24-07-1991	FRE	LON D.L.M.G.
X : par Y : par doc	CATEGORY OF CITED DOCUMEN ficularly relevant if taken alone ticularly relevant if combined with and ument of the same category haplogical background	E : earlier patent d after the filing	ocument, but pub date	lished on, or
A : technological background O : non-written disclosure P : intermediate document		& : member of the document	same patent fami	ly, corresponding