# Oracle modalities

Andrew W Swan

Carnegie Mellon University

May 23, 2023

#### What is an oracle?

## Definition (Turing '36)

A partial function  $\mathbb{N} \to \mathbb{N}$  is *computable* if it can be computed by a Turing machine (a computer program).

Key idea: We can encode computer programs as natural numbers. We write the partial function encoded by e as  $\varphi_e$ .

# Theorem (Turing '36)

There is at least one non computable function.

Proof.

$$\kappa(n) := egin{cases} 1 & arphi_n(n) \downarrow = 0 \ 0 & ext{otherwise} \end{cases}$$



# Definition (Turing '39)

An oracle Turing machine is a computer program that can query information from an outside source (an oracle). We say a partial function  $f: \mathbb{N} \to 2$  is computable relative to  $\chi: \mathbb{N} \to 2$  if we can compute f using  $\chi$  as an oracle.

We also say that f is *Turing reducible to*  $\chi$  and write  $f \leq_{\mathcal{T}} \chi$ . Note that this defines a preorder on functions  $\mathbb{N} \to 2$ . We refer to the poset reflection of this preorder as the *Turing degrees*.

### Example

A web browser can send queries (http requests) to a server and receive back information (webpages).

Queries can depend on the result of previous queries. E.g. a webbrowser can request all the images mentioned on a webpage that it just received.

# Computability in topos theory

# Theorem (Hyland '82)

The Turing degrees embed into the lattice of subtoposes of the effective topos,  $\mathcal{E}$ ff.

#### Key ideas:

- ▶ Set is a subtopos of  $\mathcal{E}ff$ . Write  $\nabla$  for the corresponding sheafification monad.
- ► For objects  $X, Y \in \mathcal{E}ff$ , every morphism  $X \to Y$  is computable.
- Applying  $\nabla$  "erases computational information:" we can think of maps  $\nabla X \to \nabla Y$  as non computable functions  $X \to Y$ .
- ▶ For a given  $\chi: \nabla X \to \nabla Y$ , we can consider the largest subtopos of  $\mathcal{E}ff$  containing  $\chi$ . The morphisms in the subtopos are *computable relative to*  $\chi$ .

#### **Modalities**

# Definition (Rijke, Shulman, Spitters)

A uniquely eliminating modality is an operation on types  $\bigcirc: \mathcal{U} \to \mathcal{U}$  together with unit  $\eta_X: X \to \bigcirc X$  for each  $X: \mathcal{U}$  such that the canonical map  $\prod_{z:\bigcirc X} \bigcirc (P(z)) \to \prod_{x:X} \bigcirc P(\eta_X(x))$  is an equivalence for  $X: \mathcal{U}$  and  $P:\bigcirc X \to \mathcal{U}$ :



#### A type X is

- ▶  $\bigcirc$ -modal if  $\eta_X : X \to \bigcirc X$  is an equivalence.
- ▶  $\bigcirc$ -separated if for all x, y : X, x = y is  $\bigcirc$ -modal.
- O-connected if OX is contractible.

#### Definition

Let  $a: A \vdash B(a)$  be a family of types. A type X is B-null if for all a: A the canonical map  $X \to X^{B(a)}$  is an equivalence:



# Theorem (Rijke, Shulman, Spitters)

There is a modality  $\bigcirc_B$ , defined as a higher inductive type, such that a type is  $\bigcirc_B$ -modal precisely if it is B-null.

#### Cubical Assemblies

Carrying out the construction of cubical sets internally in the category of assemblies, we can get a realizability model of HoTT:

# Theorem (Uemura)

The category of cubical assemblies consists of cubical sets constructed internally in the lcc of assemblies. Cubical assemblies form a model of cubical type theory and thereby HoTT.

# Theorem (S, Uemura)

Cubical assemblies have a reflective subuniverse that satisfies Church's thesis "all functions are computable."

#### Cubical Assemblies

Carrying out the construction of cubical sets internally in the category of assemblies, we can get a realizability model of HoTT:

# Theorem (Uemura)

The category of cubical assemblies consists of cubical sets constructed internally in the lcc of assemblies. Cubical assemblies form a model of cubical type theory and thereby HoTT.

# Theorem (S, Uemura)

Cubical assemblies have a reflective subuniverse that satisfies Church's thesis "all functions are computable."

We can use Church's thesis to give an example of a map  $\chi:\mathbb{N}\to\nabla 2$  that does not extend to a map  $\mathbb{N}\to 2$ : the characteristic function of the halting set.

#### ¬¬-sheafification

#### Definition

Write  $\nabla$  for  $\neg\neg$ -sheafification, i.e. nullification of all propositions P such that  $\neg\neg P$  is true.

In general the existence of  $\nabla$  in cubical assemblies is problematic due to size issues. However, for many purposes we can use the 0-truncated version.

# Theorem (S)

 $\nabla_0$ , the modality reflecting onto 0-truncated  $\neg\neg$ -sheaves, exists in cubical assemblies. Moreover, we can describe it explicitly:  $\nabla_0 X$  is the discrete, uniform cubical assembly on the connected components of X.

### Oracle modalities

#### Definition

For oracles  $\bigcirc$  and  $\bigcirc'$  we say  $\bigcirc$  is *Turing reducible* to  $\bigcirc'$  and write  $\bigcirc \leq_{\mathcal{T}} \bigcirc'$  if every  $\bigcirc$ -connected type is  $\bigcirc'$ -connected.

#### Definition

Given  $\chi: A \to \nabla B$  the associated *oracle modality*,  $\bigcirc_{\chi}$  is the nullification of  $a: A \vdash \chi(a) \downarrow$ .

#### Intuition:

- ▶ Any function in cubical sets appears as a map  $\chi: A \to \nabla B$  in cubical assemblies.
- ightharpoonup is the smallest modality forcing  $\chi$  to be a total function.

Since  $\bigcirc_{\chi}$  is a special case of nullification, we can view it as a HIT. The point constructors are the same as I/O monads (free monads on polynomial endofunctors), but it also has path constructors:

- ► For x: X we have  $\eta(x): \bigcirc_{\chi} X$ . "Everything computable without the oracle is still computable with it."
- ▶ Given a: A and  $f: \chi(a) \downarrow \to \bigcirc_{\chi} X$ , then  $\sup(a, f): \bigcirc_{\chi} X$ . "If we can compute an element of  $\bigcirc_{\chi} X$  by querying the oracle at a, then it is oracle computable."

Since  $\bigcirc_{\chi}$  is a special case of nullification, we can view it as a HIT. The point constructors are the same as I/O monads (free monads on polynomial endofunctors), but it also has path constructors:

- ► For x: X we have  $\eta(x): \bigcirc_{\chi} X$ . "Everything computable without the oracle is still computable with it."
- ▶ Given a: A and  $f: \chi(a) \downarrow \to \bigcirc_{\chi} X$ , then  $\sup(a, f): \bigcirc_{\chi} X$ . "If we can compute an element of  $\bigcirc_{\chi} X$  by querying the oracle at a, then it is oracle computable."
- ▶ If  $z: \chi(a) \downarrow$  then  $\sup(a, f) = f(z)$ . "Only the final value of the computation matters: computing the same thing with the oracle and without the oracle are propositionally equal."

Since  $\bigcirc_{\chi}$  is a special case of nullification, we can view it as a HIT. The point constructors are the same as I/O monads (free monads on polynomial endofunctors), but it also has path constructors:

- ► For x: X we have  $\eta(x): \bigcirc_{\chi} X$ . "Everything computable without the oracle is still computable with it."
- ▶ Given a: A and  $f: \chi(a) \downarrow \to \bigcirc_{\chi} X$ , then  $\sup(a, f): \bigcirc_{\chi} X$ . "If we can compute an element of  $\bigcirc_{\chi} X$  by querying the oracle at a, then it is oracle computable."
- If  $z: \chi(a) \downarrow$  then  $\sup(a, f) = f(z)$ . "Only the final value of the computation matters: computing the same thing with the oracle and without the oracle are propositionally equal."
- The above two constructors also apply to paths. "If we can compute a path using an oracle query to a, then the path belongs to ○√√."

#### Dimension shift

## Theorem (Christensen, Opie, Rijke, Scoccola)

For any modality  $\bigcirc$  there is a modality  $\bigcirc$ = such that a type X is  $\bigcirc$ =-modal iff it is  $\bigcirc$ -separated. For nullification of a :  $A \vdash B(a)$  we can describe it explicitly as nullification of the pointwise suspension a :  $A \vdash \Sigma B(a)$ .

### Dimension shift

# Theorem (Christensen, Opie, Rijke, Scoccola)

For any modality  $\bigcirc$  there is a modality  $\bigcirc$ = such that a type X is  $\bigcirc$ =-modal iff it is  $\bigcirc$ -separated. For nullification of  $a:A \vdash B(a)$  we can describe it explicitly as nullification of the pointwise suspension  $a:A \vdash \Sigma B(a)$ .

Intuition: We can use an oracle  $\chi$  to construct paths in  $\bigcirc_{\chi}^= X$  but not points. More formally,

#### Observation

Any  $\neg\neg$ -separated set is  $\bigcirc_{\chi}^{=}$ -separated.

Any map  $\mathbb{N} \to \bigcirc_{\chi}^{=} \mathbb{N}$  is computable, but e.g. there can be a map  $\mathbb{N} \to \bigcirc_{\chi}^{=} \mathbb{S}^1$  equal to loop if  $\varphi_e e \downarrow$  and otherwise refl. In fact,

$$\pi_1(\bigcirc_{\chi}^{=}\mathbb{S}^1) = \bigcirc_{\chi}\mathbb{Z} \neq \bigcirc_{\chi}^{=}\mathbb{Z} = \mathbb{Z}$$

#### Observation

Suppose that  $\bigcirc_{\beta} \leq_{\mathcal{T}} \bigcirc_{\alpha}^{=}$ . Then  $\beta$  is computable.

#### Proof.

The generators of  $\bigcirc_{\beta}$  are -1-truncated. Hence they are  $\bigcirc_{\alpha}^=$ -modal. By the assumption  $\bigcirc_{\beta} \leq_{\mathcal{T}} \bigcirc_{\alpha}^=$  they are also  $\bigcirc_{\alpha}$ -connected. Hence they are contractible, which can only happen when  $\beta$  is already computable.

Q: What happens in higher dimensions, when we can no longer assume the generators are *n*-truncated?

- ► The Turing degrees and the homotopy groups of spheres are both well studied objects with rich mathematical structure.
- ► There are very simple examples of modalities in cubical assemblies that inherit characterisitics from both structures.
- We leave it for future work to find more interesting examples of interaction between computability theory and homotopy theory.

Some related results have been formalised in cubical Agda https://github.com/awswan/oraclemodality.

Thanks for your attention!