Math 2205: Calculus II Fall 2018

These are the common trigonometric substitutions.

For Form $\sqrt{a^2 - u^2}$

Let

$$u = a \sin \theta$$

then

$$\sqrt{a^2 - u^2} = a\cos\theta$$

where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

For Form $\sqrt{a^2 + u^2}$

Let

$$u = a \tan \theta$$

then

$$\sqrt{a^2 + u^2} = a \sec \theta$$

where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

For Form $\sqrt{u^2 - a^2}$

Let

$$u = a \sec \theta$$

then

$$\sqrt{u^2 - a^2} = \begin{cases} a \tan \theta, & \text{if } u > a, \text{ where } 0 \le \theta \le \frac{\pi}{2} \\ -a \tan \theta, & \text{if } u < -a, \text{ where } \frac{\pi}{2} \le \theta \le \pi \end{cases}$$

where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Additional Helpful Identities

Reciprocal	Pythagorean	Double Angle
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	$\sin^2\theta + \cos^2\theta = 1$	$\sin 2\theta = 2\sin\theta\cos\theta$
$\csc\theta = \frac{1}{\sin\theta}$	$1 + \cot^2 \theta = \csc^2 \theta$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
$\sec\theta = \frac{1}{\cos\theta}$	$\tan^2\theta + 1 = \sec^2\theta$	Half Angle
$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$		$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$
		$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$

It is also helpful to recall that for an angle θ the trigonometric functions are given by

When coverting back to functions of x you may also need the following identities for inverse trig functions

Inverse Trig Functions		Alternative Notation	
$y = \sin^{-1}(x)$	is equivalent to	$x = \sin(y)$	$y = \sin^{-1}(x) = \arcsin(x)$
$y = \cos^{-1}(x)$	is equivalent to	$x = \cos(y)$	$y = \cos^{-1}(x) = \arccos(x)$
$y = \tan^{-1}(x)$	is equivalent to	$x = \tan(y)$	$y = \tan^{-1}(x) = \arctan(x)$

Examples

Example 1: Integrate
$$\int \frac{1}{x^2\sqrt{9-x^2}} dx$$

Rewriting We have
$$\int \frac{1}{X^2 \cdot 13^2 - x^2} dx$$

This has form
$$\sqrt{\Omega^2 - u^2}$$

Use substitution $U = \Omega \sin \Theta$
 $\Rightarrow X = 3 \sin \Theta$ $\Rightarrow X^2 = [3 \sin \Theta]^2 = 9 \sin^2 \Theta$
 $\Rightarrow \Delta X = 3 \cos \Theta = 0$

Integral becomes
$$\int_{\frac{1}{9\sin^2\theta}} \frac{1}{\sqrt{9-9\sin^2\theta}} (3\cos\theta d\theta)$$

Note:
$$\sqrt{9-9\sin\theta} = \sqrt{9(1-\sin^2\theta)}$$

 $=\sqrt{9\cos^2\theta}$ Since $1-\sin^2\theta = \cos^2\theta$
 $=\sqrt{9\cos^2\theta}$
 $=3\cos\theta$

$$= \int \frac{3\cos\theta}{9\sin^2\theta (3\cos\theta)} d\theta = \frac{1}{9} \int \frac{1}{\sin^2\theta} d\theta$$

$$= \frac{1}{9} \int \csc^2\theta d\theta$$

$$= -\frac{1}{9} \cot\theta + C$$

Now we need to rewrite the result in terms of x

$$\frac{3}{\sqrt{3^2 + x^2}} \times \text{Cot } \Theta = \frac{OPP}{Adj} = \frac{\sqrt{3^2 - x^2}}{\chi}$$

$$\Rightarrow \int \frac{1}{\chi^2 \sqrt{9 - \chi^2}} dx = -\frac{1}{9} \left(\frac{\sqrt{3^2 - \chi^2}}{\chi} \right) + C$$

Example 2: Integrate
$$\int_{\sqrt{3}}^{2} \frac{\sqrt{x^2-3}}{x} dx$$

This has form $\sqrt{u^2-a^2}$

Use substitution
$$U = 0$$
 seco
 $\Rightarrow x = 13$ seco $\Rightarrow x^2 = (13 \text{ seco})^2 = 3 \text{ sec}^2 0$
 $\Rightarrow dx = 13$ seco $\Rightarrow dx = 13$

we also need to change our bounds in terms of O

$$X = 2 \implies 13 \text{ Sec}\theta = 2$$

$$\Rightarrow \text{ Sec}\theta = \frac{2}{13}$$

$$\Rightarrow \text{ Sec}\theta = \frac{2}{13} = 1$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

$$X = 13 \implies 13 \text{ Sec}\theta = 13$$

$$\Rightarrow \text{ Sec}\theta = \frac{1}{3} = 1$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

$$X = 13 \implies 13 \text{ Sec}\theta = 13$$

$$\Rightarrow \text{ Sec}\theta = \frac{1}{3} = 1$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

$$\Rightarrow \theta = 0$$

Integral becomes

$$\int_{0}^{\frac{\pi}{6}} \sqrt{3 \sec^{2}\theta - 3} \left(\frac{13 \sec^{2}\theta - 10}{13 \sec^{2}\theta - 10} \right) \left(\frac{13 \sec^{2}\theta - 10}{13 \sec^{2}\theta - 10} \right) d\theta = \int_{0}^{\frac{\pi}{6}} \sqrt{3 \tan^{2}\theta} \tan \theta d\theta$$

$$= 13 \int_{0}^{\frac{\pi}{6}} \tan^{2}\theta d\theta$$

$$= 13 \int_{0}^{\frac{\pi}{6}} (\sec^{2}\theta - 1) d\theta$$

$$= 13 \left[\frac{\pi}{6} \sec^{2}\theta d\theta - \int_{0}^{\frac{\pi}{6}} 1 d\theta \right] = 13 \left[\frac{1}{13} - \frac{\pi}{6} \right] = 1 - \frac{\pi}{13} \frac{1}{6}$$