硬件描述语言及 FPGA 设计 平日作业

姓名:	

学号: _____

专业:_____

1. SignaltapII 的采样时钟的频率必须: ()。
A. 小于被测信号频率;
B. 大于被测信号频率;
C. SignaltapII 和 Modelsim 一样,都是软仿真工具;
D. 以上都不对。
2. 片上可编程器件的英文缩写是()。
A、SOP
B、SOPC
C, SoC
D. SPI
3. 下面的软件中,专门用于 FPGA 仿真的是: ()
A. QuartusII B. Modelsim
C. protues D. Symplify
4. 下列关于同步和异步复位描述正确的是()。
A、同步复位是不受时钟影响;
B、使用 FPGA 设计时芯片的异步复位和同步复位可随意替换使用;
C、同步复位需要在时钟沿来临的时候才会对整个系统进行复位;
D、同步复位最大的优点是,数据通路可以不依赖于时钟而复位可用。
5. 下面说法正确的是: ()
A. Modelssim不能进行后仿真 B. 不可综合语句是没有用的
C. Verilog HDL 没有包含大量不可综合的语句 D. QuartussII9.0 支持仿真
6. 下列设计流程中,哪一步不能在 Qarutus II 上实现: ()
A. RTL 级描述 B. 逻辑综合
C. 门级网表 D. 芯片级版图
7. 在下列程序中, always 状态将描述一个带同步 Nset 输入端的上升沿触发器,则空括号内应填入
always @ ()
if (! Nset)
Q<=1;
else
Q<=D;
A. posedge Clock B. negedge Nset
C. negedge Nset or posedge Clock D. negedge Nset or negedge Clock
8. INTEL FPGA 芯片不包括()。

一、单选题:

C. Arria D. Stratix			
9. 下列哪些语句不可以被综合成电路()。		
A, initial			
B, always			
C, assign			
D, for			
二、填空题:			
1. 目前世界上符合 IEEE 标准的硬件描述语言	有:		o
2. initial 块执行次。			
3. 行为级建模中的过程赋值语句用于对	类型的型	变量赋值。	
4. 若条件分支比较多,使用	语句比较方便。		
5. 顺序块使用关键字	来表示。		
6. Verilog HDL 程序是由	构成。		
7. Verilog HDL 模块中的语句位于关键字		_之中。	
8. 函数语句使用关键字	 未定义。		
9. always 块可以表示	翌 辑或	逻辑。	
10. 状态机分为: 和_	o		
11. NiosII 的内核分为三个工作模式:		和经济型。	
12. 状态机的置位和复位分为:	和	o	
13. 按照可综合模块设计原则,用 always 块刻	付组合逻辑建模时,用_		o
14. Verilog 模型的行为描述包括:			°
15. 同一模块中多个 always 语句执行顺序是:		0	
16. SignalTapII 的测试接口是 JTAG,其设计	文件后缀名是		0
17. 可编程逻辑单元 LE 主要包括 3 个部分:	\		`
输出寄存器逻辑。			
18. Quartus 的输入方法中,采用原理图输入	、法建立的文件后缀为_		o
19.目前 Altera FPGA 主要:、	、 Cycl	one。	
20. 目前最具代表性的软核嵌入式系统处理器	包括:		o
21. 目前 Altera FPGA 的配置数据主要下载方	式包括:		
22. 根据仿真逻辑意义的不同,仿真可分为三	类:、_	,	RTL 级仿真
23. 结构化的过程块包括:、		o	
24. always 块执行次数:	0		
25. assign 语句用于对 类	型的变量赋值。		

00 气头加及供送力使用关键	# # =	
26. 行为级条件语句使用关键词	_ 米衣不。	
27. 块语句按照语句执行时序可分为:、		•
28. 并行块使用关键字	_来表示。	
29. Verilog HDL 最基本的 4 种数据类型包括:、		、和 integer。
30. 任务使用关键字来定义。		
31. 带有 posedge 或 negedge 关键字的事件表达式表示		的时序逻辑。
32. Verilog 模型的描述包括: 行为描述、 和	级	_ •
33. 同一模块中多个 initial 语句执行顺序是:。		
34. 在 quartus II 中,图形文件的扩展名是	o	
35. 目前主要的 FPGA 公司:、、Microsem	i (Actel) 。	
36. Altera FPGA 内部的 CPU 分为:、、	、固核。	
37. 目前世界上符合 IEEE 标准的硬件描述语言有:、	o	
三、简答题:		
1、 基于数字系统设计流程包括哪些步骤 ?各步骤的功能?		
答:		

2、 请描述使用 modelsim 进行仿真的基本流程。

答

3、FPGA与ARM、DSP从资源配置来看的区别有哪些。

4,	FPGA	与 ARM、	DSP 开	发语言	本身	的区别	有哪些。
答:	:						
5	EDC V	系统结构	和次派	有 托冊	IK 此2	画山公	左 囡
い 答		水 划细节	外中央份	K 巴1白吻	₩ 三 •	凹山刀	শা হা ॰
台	:						

6、NIOS II 硬件开发流程包括哪些?

答:

3. JTAG
答:
4. ISP
答:
5. 下载
答:
6. FPGA
答 :
7. wire 型
答:
8. reg 型
答:
9. 布局布线
答:
10. 逻辑综合
答 :

四、名词解释:

1. SoC

2. LUT

答:

答:

- 11. RTL 设12. 时序约束13. Verilong HDL14. 时序分析
 - 15. 综合优化
- 16. CPLD
- 17. IP 核
- 18. ISP 下载
- 19. EDA
- 20. ASIC
- 21. FIFO
- 22. 时序逻辑
- 23. 约束文件
- 24. 行为级建模
- 25. 综合优化
- 26. 时序路径
- 27. 综合约束
- 28. Testbench
- 29. 组合逻辑
- 30. 硬件仿真

五、电路设计题

1. 设计实现下表 1 功能的电路程序(模块名称 dff)

表 1 功能表

		7 7 7 7 7 7 1 7 1			
clk	clr	reset	d	q	qn
1	0	X	X	0	1
1	1	0	X	1	0
1	1	1	0	0	1
1	1	1	1	1	0

2. 设计实现下表 2 功能的电路程序(模块名称 decode)

表 2 功能表

EN	D2D1D0(d)	Q[7:0] (b)
0	X	11111111
1	0	11111110
1	1	11111101
1	2	11111011
1	3	11110111
1	4	11101111
1	5	11011111
1	6	10111111
1	7	01111111

3.设计实现下表 3 功能的电路程序(模块名称 CODE-83)

表 3 功能表

clk	reset	d
†	0	0
†	1	1
†	1	2
†	1	3
†	1	4
†	1	5
1	1	6
†	1	7

S[1:0](b)	Y
00	DO
01	D1
10	D2
11	D3

5.设计实现下表 5 功能的电路程序(模块名称 counter) 表 5 功能表

clk	reset	d
†	0	0
t	1	1
Ť	1	2
†	1	3
Ť	1	4
ţ	1	5
Ť	1	6
t	1	7

6. 设计实现下表 6 功能的电路程序(模块名称 DECODER_3_8) 表 6 功能表

EN	D[2:0]	Q[7:0]
0	Х	11111111
1	000	11111110
1	001	11111101
1	010	11111011
1	011	11110111
1	100	11101111
1	101	11011111
1	110	10111111
1	111	01111111

7. 设计下图 1 电路图的程序(模块名 FF)。

13

8. 用门级结构描述下图 2 的 D 触发器。

School nd1 a nd3 c nd5 e nd7 q nd5 e nd7 q nd6 f nd8 qb nd4 d nd6 f nd8 qb

14

9.用 Verilog 描述下图 3 的门级 SR 锁存器电路(模块名 SR_LATCH)。

10. 用 Verilog 描述下图 4 的门级 JK 触发器电路(模块名 JK_FF)。

图 4 电路图

11.设计下图 5 电路图的程序(模块名 muxtwo)。

12.用 Verilog 描述下图 6 的门级 T 触发器电路(模块名 T_FF)。 NAND3

13.设计一个如图 7 的电机控制(停止、低速、高速)模块(模块名 MotorControl)。

图 7 电机控制图

14.设计一个带使能功能的模 60 计数器、输出为 BCD 的电路模块(模块名 MOD60)。

15.设计下图 8 电路图的程序(模块名 TrafficLightController)

图 8 序列检测电路图

16.设计下图 9 电路图的程序(模块名 XLJC)。

图 9 序列检测电路

17.设计下图 10 所示的电路程序(模块名 FSM)。

图 10 状态转移电路图

24

六、综合题

1. 试分析下面程序,找出程序中存在的语法错误,写出正确的完整程序。
//对 CPA 四分频,且占空比为 1/3
module div4(CPA, CPB)
output CPB;
input CPA;
Reg CPB;
always @ (posedge CPA)
 if (i==3)
 begin i=0; CPB<=b' 1; end
 else
 begin i=i+1; CPB<=0; end
 end
endmodule

2. 试分析下面程序,找出程序中存在的语法错误,写出正确的完整程序。 //带异步清零的 JK 触发器逻辑功能描述

3. 试分析下面程序,找出程序中存在的语法错误,写出正确的完整程序。

```
//异步清零的 4 位计数器
module Hardreg(d, clk, clrb, q)
input clk, clrb;
input [3:0]d;
output [3:0]q;
Reg [3:0]q;
always @ (posedge clk)
    if (clrb)
        begin q<=b' 1; end
    else
        begin q<=d+1;end
    end
endmodule
```

4. 试分析下面程序,找出程序中存在的语法错误,写出正确的完整程序。

```
module Example(clk, data_in, data_out);
input clk;
input [3:0] data_in;
output data_out;
reg temp;
always @(posedge clk) begin
    temp = data_in[0];
end
always @(data_in) begin
    case(data_in)
        4'b0001: data_out = 1'b1;
        4'b0010: data_out = 1'b0;
    endcase
end
assign data_out = temp;
```

5. 试分析下面程序,找出程序中存在的语法错误,写出正确的完整程序。

```
module Counter(clk, rst, cnt)
input clk, rst;
output cnt;
always @(posedge clk) begin
    if (rst) cnt = 0;
    else cnt <= cnt + 1;
always @(*) begin
    $display("Current count: %d", cnt);
    end
initial begin
    cnt <= 0;
    end
endmodule</pre>
```

```
7. 分析电路描述, 画出产生的波形。
module CLK_tb(clk);
output clk;
reg clk;
initial
begin
#3 clk = 1;
#4 clk = 0;
#6 clk = 1;
#2 clk = 0;
#5 clk = 1;
#12 clk = 0;
```

end

 $end modu \\ 1e$

```
8. 分析电路描述,画出产生的波形。
module Pulse (clk);
output clk;
reg clk;
initial
fork
#2 clk = 1; #7 clk = 0;
#11 clk = 1; #15 clk = 0;
#16 clk = 1; #21 clk = 0;
join
```

 ${\tt Endmodule}$

Endmodule

```
10.分析电路描述,画出产生的波形。
module WAVE_tb;
reg clk;
initial begin
clk = 0;
forever #5 clk = ~clk;
end
```

 ${\tt endmodule}$

11.分析下图 12 中的波形,设计一个测试模块,产生同样的波形(`timescale lus/lus)。

12. 分析下图 13 中的波形,设计一个测试模块(LED_tb),产生同样的波形(`timescale lus/lus)。

13. 根据下图 14 所示的层次化设计模块图,设计相关电路程序,同时设计测试模块(top_tb)。

A = (A + B) * (C + D)

图 14 层次化设计模块图

14. 根据下图 15 所示的层次化设计模块图,设计相关电路程序,同时设计测试模块(div_8_tb)。

图 15 层次化设计模块图

15.根据下图 16 所示的层次化设计模块图,设计相关电路程序,同时设计测试模块(d_4_tb)。

图 16 层次化设计模块图

16.根据下图 17 所示的层次化设计模块图,包含一个分频器模块和一个计数器模块,分频输出驱动计数器,设计相关电路模块,同时设计测试模块(DIV 16 tb)。

图 17 层次化设计模块图

17. 根据下图 18 层次化模块图设计电路模块及测试模块(模块名 ADDER_8BIT,测试模块 ADDER_8BIT_tb)。

图 18 层次化设计模块图

18.根据层次化模块图 19 设计电路程序及测试模块(模块名 MULTIPLEXER,测试模块 mux_tb)。

