JUMO GmbH & Co. KG P.O. Box 1209 D-36039 Fulda, Germany

Telefon: +49 661 6003 321 Fax: +49 661 6003 9695 E-Mail: mail@jumo.net Web: http://www.jumo.net Представительство в России Фирма «ЮМО», г. Москва, 115162 ул. Люсиновская, 70, стр. 5 Тел: +7 495 961 32 44; 954 11 10

Факс: +7 495 954 69 06 E-Mail: jumo@jumo.ru Интернет: www.jumo.ru

Типовой лист 202732

стр. 1/7

JUMO ecoTRANS Lf 03 Микропроцессорный измерительный преобразователь / коммутационный аппарат для величины электропроводности или удельного сопротивления и температуры

Тип 202732 в корпусе для монтажа на рейку

(35 x 7,5 мм по DIN EN 60 715)

Краткое описание

Измерительный преобразователь электропроводности JUMO есоTRANS Lf 03 предназначен для измерений величины удельной электропроводности или удельного сопротивления жидкостей с помощью подключаемых к нему кондуктометрических ячеек.

Типичные области применения это установки для контроля пресной воды и водоподготовки, установки обратного осмоса, ионообменные установки, особо чистая вода и фармацевтическая промышленность, контроль конденсата, промывных ванн и охлаждающей воды.

Управление прибором и конфигурирование осуществляется с помощью кнопок и встроенного жидкокристаллического дисплея. Кроме того, настройка возможна через setup-разъем (ноутбук / ПК), с помощью удобной setup-программы. С помощью Setup-программы можно также распечатывать данные конфигурации, таким образом, облегчая документирование.

Приборы поставляются вместе с калибровочным сертификатом, в котором отображены характеристики поставляемого прибора и данные о его калибровке.

Блок-схема

Особенности

- Показания в мкСм/см, мСм/см, кОм*см, МОм*см, µmho/cm, mmho/cm
- Два параллельных выхода действительного значения для электропроводности и температуры процесса 0(4)... 20 мА / 0(2)... 10 В, свободно программируемые
- Коммутирующий выход (переключающий релейный контакт или, альтернативно, два выхода типа «открытый коллектор»)
- Переключающая функция USP, согласно USP<645> для использования в водных системах в фармацевтической промышленности.
- Температурная компенсация по выбору:
- природная вода по EN 27 888
- ASTM D 1125-95 (особо чистая вода)
- линейная
- Тройная гальваническая развязка (вход, выход и электропитание гальванически изолированы друг от друга).
- Монтаж на несущую рейку
- Таймер калибровки
- Возможен ввод пользовательской характеристики датчика температуры (например, NTC, PTC и др.)
- Стандартная температура (температура сравнения), устанавливаемая (10... 25... 40 °C)
- Поставка вместе с калибровочным сертификатом

05.07/00440101 353

Управление

Управление JUMO есоTRANS Lf 03 производится с помощью кнопок на корпусе и ЖКД или с помощью Setup-программы через персональный компьютер.

Возможности калибров-ки

■ Калибровка константы ячейки

Вследствие технологических допусков, константа измерительной ячейки электропроводности может немного отклоняться от своего номинального (указанного в маркировке) значения. Кроме того, константа ячейки может изменяться во время эксплуатации (из-за отложения осадков или износа ячейки). Это приводит к изменению выходного сигнала измерительной ячейки. JUMO ecoTRANS Lf 03 дает пользователю возможность компенсировать какое-либо отклонение константы ячейки от номинального значения, либо с помощью ее ввода вручную (диапазон 20... 500 %), либо с помощью автоматической калибровки относительной константы ячейки К

 Калибровка температурного коэффициента п

Электропроводность почти всех растворов зависит от температуры. Следовательно, для достижения точности измерений необходимо знать как температуру, так и температурный коэффициент α [%/K] исследуемого раствора. Температура может быть измерена автоматически с помощью датчиков (Pt100 / Pt1000 / NTC / PTC), или же она должна быть задана вручную.

Температурный коэффициент может определяться прибором JUMO есоTRANS Lf 03 автоматически, или вводиться вручную в диапазоне 0... 5,5 %/K.

Таймер калибровки

Встроенный активированный таймер калибровки указывает на необходимость очередной калибровки (константа ячейки / температурный коэффициент).

Особо чистая вода / USP <645> / фармацевтические функции

Πο USP <645> (United States Pharmamacopoeia), исследование воды on-line в фармацевтической промышленности (purified water (очищенная вода) и WFI (вода для инъекций)) выполняется с помощью измерения электропроводности. В данном случае задается измерение без температурной компенсации. Правила USP<645> включают таблицу, которая устанавливает допустимую электропроводность особо чистой воды при определенной температуре. Если текущее измеренное значение остается ниже значения, приведенного в таблице, то качество воды считается удовлетворительным. В JUMO ecoTRANS Lf 03 эти связи учтены, и он допущен для использования в установках особо чистой воды в фармацевтической промышленности.

Более подробную информацию можно найти в публикации JUMO «Информация

по измерению особо чистой воды» (FAS 614) (см. www.jumo.de).

USP-контакт / USP<645> -функция

Если данная функция активна, сконфигурированный контакт срабатывает в соответствии с предписаниями USP<645>.

USP<645> предаварийная тревога

С помощью этой функции можно определить, на сколько раньше (в % от значения в таблице) должно последовать сообщение (срабатывание контакта).

Функции выходов JUMO ecoTRANS Lf 03

Аналоговые выходы

- По одному аналоговому выходу действительного значения электропроводности / сопротивления и температуры.
- Шкала для аналоговых выходных сигналов может задаваться произвольно (начало и конец диапазона измерений)

При выходе за нижний или верхний пределы измерений, аналоговые выходы могут принимать следующие состояния:

«Low», в зависимости от выбранного типа выходного сигнала соответствует: 0 MA / 0 B / 3.4 MA / 1.4 B.

«High», в зависимости от выбранного типа выходного сигнала, соответствует: 22 мА / 10.7 В.

Эти состояния могут распознаваться системой верхнего уровня как «неправильные» и служат для вызова аварийной сигнализации.

Имитация выхода действительного значения:

Выходной сигнал действительного значения в ручном режиме может быть установлен произвольно.

Применение: «сухой» ввод установки в эксплуатацию (без измерительной ячейки, поиск неисправности. сервис).

Переключающие выходы

В зависимости от исполнения, прибор оснащен либо одним реле с переключающим контактом, либо двумя выходами типа «открытый коллектор».

Переключающие выходы можно произвольно использовать для контроля электропроводности/удельного сопротивления или температуры.

Им можно назначить следующие функции:

- Мониторинг предельного значения (макс. или мин. предельный компаратор) с программируемым гистерезисом.
- Функция импульсного контакта (при достижении точки переключения контакт кратковременно замыкается, а затем размыкается снова).
- Программируемое замедление при притягивании и отпускании
- Инверсия релейных выходов
- Поведение релейного выхода при переходе за верхний или нижний предел измерений или активном контроле измерительной цепи программируется (притягивание / отпускание).
- Аварийная сигнализация USP или предаварийная сигнализация (см. фарма-

цевтические функции USP<645>)

■ Сигнал таймера калибровки

Технические характеристики

Входы

Аналоговый вход 1 (электропроводность)

Кондуктометрические ячейки с константами ячеек 0,01; 0,1; 1,0; 3,0; 10,0 1 /см (двухэлектродный принцип).

Настройка константы ячейки может проводиться в диапазоне 20... 500 %, что дает возможность задать редко используемые константы ячейки (например, 0,2; 0,5 и т.д.).

Компенсация сопротивления проводов – аналоговый вход 1

Влияние проводов с большой длиной при диапазонах измерений больше примерно 20 мСм/см может быть скомпенсировано путем ввода значения сопротивления соединительных проводов (в диапазоне от 0,00 до 99,99 Ом).

Настройка нулевой точки – аналоговый вход 1

Специфические для оборудования отклонения нулевой точки могут быть скомпенсированы

Диапазоны измерений проводимости

от 0... 1 мкСм до 0... 200 мСм, в зависимости от константы ячейки.

Все диапазоны измерений приведены в конце раздела «Технические характеристики».

Аналоговый вход 2 (температура)

- Термометр сопротивления Pt100 или Pt1000: -10... +250 °C.
- NTC, 2 кОм, 25°C, B=3500: -10... +150 °C
- NTC UUA 32J49; 2,25 кОм: -10... +150 °C
- KTY 11-6; 2000 Om: -10... +150 °C
- Пользовательская характеристика, макс. сопротивление 4500 Ом

Все датчики температуры можно подключать по 2-, 3- или 4-проводной схеме.

Ввод пользовательской характеристики для датчиков температуры возможен через Setup-программу. Это позволит продолжать использовать уже возможно имеющиеся датчики температуры (NTC и подобные).

Показания температуры в °С или °F, переключаемые.

Компенсация сопротивления проводов – аналоговый вход 2

Корректировка действительного значения может производиться в диапазоне -20...+20 °C с помощью параметра Offset.

Эталонная температура (для температурной компенсации)

устанавливается от 10 до 40 °C (заводская установка 25 °C, по международному стандарту)

Диапазон измерения температуры -10... +250 °C или +14... +482 °F

Отклонение характеристики (температура)

для Pt100/Pt1000: ≤ 0,6% от диапазона измерения

NTC 2кОм: \leq 1.5% от диапазона NTC UUA: \leq 2,0% от диапазона KTY 11-6: \leq 0,8% от диапазона

для пользовательской характеристики: $\le 5 \text{ Om}$

Выходы

2 аналоговых выхода

свободно конфигурируются:

 $0(2)\dots 10$ В RHaгр. ≥ 2 кОм и $10\dots (2)0$ В RHaгр. ≥ 2 кОм или $0(4)\dots 20$ мА RHaгр. ≤ 400 Ом и $20\dots 4(0)$ мА RHaгр. ≤ 400 Ом гальваническая развязка от входов: $\Delta U \leq 30$ В АС или $\Delta U \leq 50$ В DC Шкала не менее 10% от диапазона измерений.

Отклонение характеристики выходного сигнала

 \leq 0,25% ± 50 ppm/K

Релейный выход

переключающий контакт коммутируемая мощность: 8 А, 250 В АС или 8 А, 24 В DC при омической нагрузке срок службы контактов: > 100 000 сраба-

тываний при номинальной нагрузке

«Открытый коллектор»

коммутируемая мощность:

100 мА, 35 В DC при омической нагрузке, падение напряжения во включенном состоянии \leq 1,2 В, без защиты от короткого замыкания

Общие характеристики

Аналогово-цифровой преобразователь разрешение 14 бит

Период опроса

500 мс = 2 измерения в сек.

Влияние температуры окружающей среды

 \leq 0,5% / 10 K

Мониторинг измерительной цепи

Вход 1 (электропроводность): выход за пределы диапазона Вход 2 (температура):

выход за пределы диапазона, короткое замыкание и обрыв сенсора.

В случае неисправности выходы приходят в определенное (конфигурируемое) состо-

Безопасность хранения данных EEPROM

Напряжение питания

DC 20... 30 B, остаточная пульсация <5% потребляемая мощность ≤ 3 Вт с защитой от перепутывания полярности. Работа только в SELV- или PELV-сетях

Электрические соединения

винтовые зажимы до 2,5 мм²

Допустимая температура окружающей среды

-10... +60 °C

Температура хранения

-20... +75 °C

Климатические условия

отн. влажность ≤ 75%, без конденсации

Пылевлагозащита (по EN 60 529)

IP 20

Электробезопасность

по EN 61 010

изоляционное расстояние в воздухе и ток утечки для:

- категории перенапряжения II
- степени загрязнения 2

Электромагнитная совместимость

по EN 61 326

помехоустойчивость: промышленные требования

излучение помех: класс В

Корпус

поликарбонат, для монтажа на несущую рейку

Монтаж

на DIN-рейку 35 x 7,5 мм по EN 60 715

Рабочее положение

произвольное

Macca

≈ 150 г

Константа ячейки	Диапазоны измерений интервал показаний / единица измерения					
$K = 0.01$ 1 /cm	01,000 мкСм/см	01,000 μmho/ cm	1000 9999 кОм*см	1,00 99,99 МОм*см	1	
K = 0,01 ¹ /cm	02,00 мкСм/см	02,00 μmho/ cm	500 9999 кОм*см	0,50 50,00 МОм*см	1	
K = 0,01 ¹ /cm	05,00 мкСм/см	05,00 μmho/ cm	200 9999 кОм*см	0,20 20,00 МОм*см	1	
K = 0,01 ¹ /cm	020,00 мкСм/см	020,00 μmho/ cm	50 2500 кОм*см	0,05 2,50 МОм*см	2	
K = 0,1 ¹/см	05,00 мкСм/см	05,00 μmho/ cm	200 9999 кОм*см	0,20 20,00 МОм*см	1	
K = 0,1 ¹/см	020,00 мкСм/см	020,00 μmho/ cm	50 2500 кОм*см	0,05 2,50 МОм*см	1	
K = 0,1 ¹/см	0200,0 мкСм/см	0200,0 μmho/ cm	5,0 250,0 кОм*см	-	2	
K = 0,1 ¹/см	01000 мкСм/см	01000 μmho/ cm	1,00 50,00 кОм*см	-	3	
K = 1 ¹ /cm	0500,0 мкСм/см	0500,0 µmho/ cm	2,00 99,99 кОм*см	-	1	
K = 1 ¹ /cm	01000 мкСм/см	01000 μmho/ cm	1,00 50,00 кОм*см	-	3	
K = 1 ¹ /cm	02,00 мСм/см	02,00 mmho/cm	0,50 25,00 кОм*см	-	2	
K = 1 ¹ /cm	010,00 мСм/см	010,00 mmho/cm	0,10 5,00 кОм*см	-	3, 4	
K = 1 ¹ /cm	020,00 мСм/см	020,00 mmho/cm	-	-	2	
K = 1 ¹ /cm	0100,00 мСм/см	0100,00 mmho/cm	-	-	3, 4	
K = 3 ¹ /cm	030,00 мСм/см	030,00 mmho/cm	-	-	3, 4	
K = 10 ¹ /cm	0100,00 мСм/см	0100,00 mmho/cm	-	-	3, 4	
K = 10 ¹ /cm	0200,00 мСм/см	0200,00 mmho/cm	-	-	3	

⁻ Диапазон измерения невозможен

05.07/00440101 355

Следующие отклонения характеристики относятся к мкСм/см или мСм/см

¹ Отклонение характеристики ≤ 1%

 $^{^2}$ Отклонение характеристики \leq 1,5%

 $^{^3}$ Отклонение характеристики $\leq 2\%$

⁴ Для температур ≥ 85°C и температурного коэффициентаТ, > 2,2%/К отклонения характеристики могут быть больше

Управление через Setup-интерфейс

стр.4/7

Персональный или портативный компьютер с интерфейсом RS232 Операционная система:

- Windows '98®
- Windows 2000®
- Windows XP®
- Windows NT® or 4.0

Размеры

Схема подключения

	Ячейка э	лектропроводно	JUMO ecoTRANS Lf 03	
	штекерная головка	неразъемный кабель	Штекер М12	
Внешний электрод	+	белый	1	14
Внутренний электрод	2	коричневый	2	13
Датчик	1	желтый	3	9*
температуры	3	зеленый	4	12*

^{*} подключение по 2-проводной схеме

Выходы	Распределение выводов	Обозначение
I Аналоговый выход: электропровод- ность (гальваническая развязка)	5 + 6 -	5 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
II Аналоговый выход: температура (гальваническая развязка)	7 + 8 -	7 8 0
III Реле	1 полюс 3 размыкающий контакт 4 замыкающий контакт	3 1 4 0 0 5
Выход типа «Открытый коллектор» 1 (гальваническая развязка)	1 GND 3 +	1 3 0 0 GND +
Выход типа «Открытый коллектор» 2 (гальваническая развязка)	1 GND 4 +	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Измерительные входы	Распределение выводов	Обозначение
Ячейка электропроводности	14 внешний электрод (для коаксиальных ячеек) 13 внутренний электрод (для коаксиальных ячеек)	14 13
Термометр сопротивления с двухпроводной схемой подключения	9 12	9 12
Термометр сопротивления с трехпроводной схемой подключения	9 11 12	11 9 12 0 0 0
Термометр сопротивления с четырехпроводной схемой подключения	9 10 11 12	9 10 11 12

Напряжение питания	апряжение питания Распределение выводов				
Напряжение питания (с защитой от перепутывания полярности)		L- L+	L- L+ O O - +		

05.07/00440101 357

Пример подключения для выхода «открытый коллектор»

Подключение реле

Подключение системы верхнего уровня

RA – токоограничительный резистор для макс. $I=100\ MA$

358

Данные для заказа: JUMO есоTRANS Lf 03, микропроцессорный измерительный преобразователь / коммутационный аппарат для величины электропроводности или удельного сопротивления и температуры

			_					_		
- 1	1	١	ь	2:	20	P	ы	14	ти	п
١,	٠.	,	_	u	,,	טי	ы.			

	202732		JUMO ecoTRANS Lf 03,
			микропроцессорный измерительный преобразователь /коммутационный аппарат для величины
l .			электропроводности или удельного сопротивления и температуры
		(2)	Выход I (электропроводность / удельное сопротивление)
х	888		аналоговый выход, свободно программируемый
		(3)	Выход II (температура)
х	888		аналоговый выход, свободно программируемый
		(4)	Выход III (переключающий)
х	101		1 х реле, переключающий контакт
х	177		2 х открытый коллектор
		(5)	Типовые дополнения
х	000		нет
0	024		в комплекте с Setup-программой

Ключ заказа	(1)		(2)		(3)		(4)		(5)	
Пример заказа		/		-		-		/		
	202732	/	888	-	888	-	101	/	000	

Поставляется со склада в Германии

Тип	Примечание	Арт. №
202732/888-888-101/000	релейный выход	00441865
202732/888-888-177/000	выход типа «открытый коллектор»	00441866
202732/888-888-101/024	релейный выход, Setup-программа	00441867

Принадлежности

Описание	Арт. №
Setup-программа для JUMO ecoTRANS Lf 03	00441961
ПК-интерфейсный кабель с TTL-/RS232-конвертором и адаптером	00350260
ПК-интерфейсный кабель USB / TTL-конвертором и двумя адаптерами	00456352
Имитатор величины электропроводности (см. типовой лист 20.2711)	00300478
Блок питания, тип PS5R-A24 для монтажа на DIN-рейку Входное напряжение 100240 В АС / 5060 Гц, выходное напряжение 24 В DC / 0,3 А	00374661

359 05.07/00440101