In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridge,Elastifrom sklearn.model_selection import train_test_split

Out[2]:

	date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0	NaN	NaN	28
1	2017- 06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0	1.4	2.9	28
2	2017- 06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN	NaN	0.9	28
3	2017- 06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN	NaN	NaN	28
4	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0	NaN	NaN	28
											•••	•••				
210115	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN	NaN	NaN	28
210116	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0	NaN	NaN	28
210117	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN	NaN	NaN	28
210118	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN	NaN	NaN	28
210119	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN	NaN	NaN	28

210120 rows × 16 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210120 entries, 0 to 210119 Data columns (total 16 columns): Column Non-Null Count Dtype _ _ _ _ _ ---------210120 non-null object 0 date 1 BEN 50201 non-null float64 2 CH4 6410 non-null float64 3 CO 87001 non-null float64 4 EBE 49973 non-null float64 5 25472 non-null float64 NMHC float64 6 209065 non-null NO 7 NO 2 209065 non-null float64 8 52818 non-null float64 NOx 9 0 3 121398 non-null float64 10 PM10 104141 non-null float64 11 PM25 52023 non-null float64 86803 non-null float64 12 SO_2 13 TCH 25472 non-null float64 14 50117 non-null float64 TOL 15 station 210120 non-null int64 dtypes: float64(14), int64(1), object(1) memory usage: 25.6+ MB

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL	s
87457	2017- 10-01 01:00:00	0.6	1.22	0.3	0.4	0.09	4.0	54.0	60.0	43.0	12.0	9.0	13.0	1.31	2.3	280
87462	2017- 10-01 01:00:00	0.2	1.18	0.2	0.1	0.09	1.0	26.0	28.0	42.0	14.0	6.0	3.0	1.27	1.1	280
87481	2017- 10-01 02:00:00	0.4	1.22	0.2	0.2	0.06	2.0	32.0	36.0	53.0	14.0	10.0	13.0	1.28	1.3	280
87486	2017- 10-01 02:00:00	0.2	1.19	0.2	0.1	0.07	1.0	15.0	17.0	51.0	18.0	8.0	3.0	1.26	0.8	280
87505	2017- 10-01 03:00:00	0.3	1.23	0.2	0.2	0.06	2.0	27.0	29.0	57.0	15.0	10.0	13.0	1.29	1.0	280
158238	2017- 12-31 22:00:00	0.3	1.11	0.2	0.1	0.03	1.0	8.0	9.0	73.0	3.0	1.0	3.0	1.14	0.2	280
158257	2017- 12-31 23:00:00	0.6	1.38	0.3	0.1	0.03	6.0	42.0	51.0	47.0	7.0	4.0	3.0	1.41	0.9	280
158262	2017- 12-31 23:00:00	0.3	1.11	0.2	0.1	0.03	1.0	6.0	8.0	72.0	6.0	3.0	3.0	1.14	0.2	280
158281	2018- 01-01 00:00:00	0.5	1.38	0.2	0.1	0.02	2.0	20.0	23.0	69.0	4.0	2.0	3.0	1.39	0.6	280
158286	2018- 01-01 00:00:00	0.3	1.11	0.2	0.1	0.03	1.0	1.0	3.0	83.0	8.0	5.0	3.0	1.14	0.2	280

4127 rows × 16 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

Out[6]: <AxesSubplot:>


```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x25f5f6d7fd0>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

```
Out[10]: <matplotlib.collections.PathCollection at 0x25f5f7a3c70>
```



```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.24
                  124
          1.36
                  118
          1.26
                  112
          1.25
                  110
          1.41
                  107
          3.23
                    1
          2.47
                    1
          2.35
                    1
          2.61
                    1
          2.94
          Name: TCH, Length: 164, dtype: int64
```

```
In [13]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[13]: 1.0 2428 2.0 1699

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x25f5f80f820>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x25f5f64b2e0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
en=ElasticNet()
In [20]:
         en.fit(x_train,y_train)
Out[20]: ElasticNet()
```

```
In [21]: prediction2=rr.predict(x test)
         plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x25f60140640>


```
In [22]:
         ens=en.score(x_test,y_test)
```

```
In [23]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
```

0.8446472469016151

Out[23]: 0.8976558488919304

Logistic

```
In [24]: |g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value counts()
Out[24]: Low
                 2428
         High
                 1699
         Name: TCH, dtype: int64
         x=df1.drop(["TCH"],axis=1)
In [25]:
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [26]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
```

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x25f601ad700>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]:
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [30]:
         df1=df1.replace(g1)
In [31]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [32]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[32]: RandomForestClassifier()
In [33]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [35]:
         rfcs=grid_search.best_score_
In [36]: rfc best=grid search.best estimator
In [37]: | from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[37]: [Text(1962.6206896551726, 2019.0857142857144, 'BEN <= 0.65\ngini = 0.477\nsamples =
         1820\nvalue = [1757, 1131]\nclass = Yes'),
          Text(837.0000000000001, 1708.457142857143, 'NO_2 <= 24.5\ngini = 0.239\nsamples = 9
         40\nvalue = [1312, 211]\nclass = Yes'),
          Text(384.82758620689657, 1397.8285714285716, 'CH4 <= 1.315\ngini = 0.069\nsamples =
         362\nvalue = [567, 21]\nclass = Yes'),
          Text(230.89655172413796, 1087.2, 'CO <= 0.15\ngini = 0.004\nsamples = 342\nvalue =
         [555, 1]\nclass = Yes'),
          Text(153.93103448275863, 776.5714285714287, 'CH4 <= 1.215\ngini = 0.021\nsamples =
         60\nvalue = [93, 1]\nclass = Yes'),
          Text(76.96551724137932, 465.9428571428573, 'gini = 0.0\nsamples = 55\nvalue = [89,
         0]\nclass = Yes'),
          Text(230.89655172413796, 465.9428571428573, 'gini = 0.32\nsamples = 5\nvalue = [4,
         1]\nclass = Yes'),
          Text(307.86206896551727, 776.5714285714287, 'gini = 0.0\nsamples = 282\nvalue = [46
         2, 0]\nclass = Yes'),
          Text(538.7586206896552, 1087.2, 'NMHC <= 0.025\ngini = 0.469\nsamples = 20\nvalue =
         [12, 20] \setminus class = No'),
          Text(461.79310344827593, 776.5714285714287, 'TOL <= 0.75\ngini = 0.245\nsamples = 1
                    [12 2]\ --]---
In [38]: print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
         Linear: 0.8441268043977549
```

Linear: 0.8441268043977549 Lasso: 0.6393010463991731 Ridge: 0.8446472469016151 ElasticNet: 0.7899757472729623 Logistic: 0.579499596448749 Random Forest: 0.9681440443213296

Best Model is Random Forest

Out[39]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	NaN	NaN	:
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	0.8	1
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	NaN	1.1	:
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	NaN	NaN	:
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	NaN	NaN	:
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	NaN	NaN	:
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	NaN	NaN	:
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	NaN	NaN	:
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	NaN	NaN	1
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	NaN	NaN	:

69096 rows × 16 columns

In [40]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 69096 entries, 0 to 69095 Data columns (total 16 columns): Column Non-Null Count Dtype _ _ _ _ _ ---------0 69096 non-null object date 1 BEN 16950 non-null float64 2 CH4 8440 non-null float64 3 CO 28598 non-null float64 4 EBE 16949 non-null float64 5 8440 non-null NMHC float64 6 68826 non-null float64 NO 7 NO 2 68826 non-null float64 8 68826 non-null float64 NOx 9 40049 non-null float64 0 3 10 PM10 36911 non-null float64 18912 non-null float64 11 PM25 28586 non-null float64 12 S0_2 13 TCH 8440 non-null float64 14 16950 non-null float64 TOL 15 station 69096 non-null int64 dtypes: float64(14), int64(1), object(1) memory usage: 8.4+ MB

In [41]: df3=df2.dropna()
df3

Out[41]:

	date	BEN	CH4	со	EBE	имнс	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL	
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	0.8	28
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0	1.16	1.4	28
25	2018- 03-01 02:00:00	0.4	1.42	0.2	0.1	0.01	4.0	26.0	32.0	64.0	4.0	4.0	3.0	1.44	0.7	28
30	2018- 03-01 02:00:00	0.3	1.10	0.2	0.1	0.05	1.0	12.0	13.0	69.0	5.0	4.0	4.0	1.14	0.8	28
49	2018- 03-01 03:00:00	0.3	1.41	0.2	0.1	0.01	3.0	16.0	20.0	68.0	3.0	2.0	3.0	1.42	0.4	2{
69030	2018- 01-31 22:00:00	1.8	1.21	0.7	1.7	0.19	151.0	129.0	361.0	1.0	45.0	26.0	11.0	1.40	11.9	21
69049	2018- 01-31 23:00:00	3.1	1.87	1.2	2.0	0.35	296.0	162.0	615.0	3.0	39.0	23.0	8.0	2.22	12.5	28
69054	2018- 01-31 23:00:00	1.6	1.17	0.6	1.4	0.15	127.0	106.0	301.0	1.0	43.0	25.0	8.0	1.32	10.3	28
69073	2018- 02-01 00:00:00	3.2	1.53	1.0	2.1	0.19	125.0	117.0	309.0	3.0	37.0	24.0	6.0	1.72	13.0	28
69078	2018- 02-01 00:00:00	1.3	1.14	0.4	0.8	0.10	54.0	73.0	155.0	1.0	27.0	16.0	5.0	1.24	6.8	28

4562 rows × 16 columns

In [42]: df3=df3.drop(["date"],axis=1)

```
In [43]: sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

In []:

In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)

Out[46]: <matplotlib.collections.PathCollection at 0x25f605d5070>


```
lis=li.score(x_test,y_test)
In [47]:
         df3["TCH"].value_counts()
Out[48]: 1.15
                  246
         1.43
                  232
         1.44
                  223
         1.14
                  210
         1.13
                  201
         2.35
                    1
         2.58
                    1
         2.73
                    1
         2.12
                    1
         1.96
         Name: TCH, Length: 143, dtype: int64
In [49]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 2.0
                 2477
         1.0
                 2085
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[50]: Lasso(alpha=5)
In [51]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
Out[51]: <matplotlib.collections.PathCollection at 0x25f60639190>

22
20
18
```

2.5

3.0

3.5

4.0

1.6

1.4

0.5

0.0

1.0

1.5

2.0

```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x25f6068d760>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[56]: ElasticNet()

```
In [57]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[57]: <matplotlib.collections.PathCollection at 0x25f606f32b0>


```
In [58]: ens=en.score(x_test,y_test)
```

```
In [59]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.9979283454674264

Out[59]: 0.998113461617783

Logistic

Out[62]: LogisticRegression()

In [62]: lo=LogisticRegression()

lo.fit(x_train,y_train)

```
In [63]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x25f6075c7f0>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [66]:
         df3=df3.replace(g1)
In [67]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [68]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[68]: RandomForestClassifier()
In [69]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [71]: rfcs=grid_search.best_score_
```

In [72]: rfc_best=grid_search.best_estimator_

```
In [73]: from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fille
```

```
Out[73]: [Text(1435.6875, 2019.0857142857144, 'NO <= 2.5\ngini = 0.497\nsamples = 2022\nvalue =
         [1468, 1725] \setminus nclass = No'),
          Text(465.0, 1708.457142857143, 'CH4 <= 1.385\ngini = 0.186\nsamples = 603\nvalue = [8
         40, 97]\nclass = Yes'),
          Text(279.0, 1397.8285714285716, 'station <= 28079016.0\ngini = 0.007\nsamples = 539\n
         value = [838, 3]\nclass = Yes'),
          Text(186.0, 1087.2, 'NO 2 <= 17.5\ngini = 0.204\nsamples = 17\nvalue = [23, 3]\nclass
         = Yes'),
          Text(93.0, 776.5714285714287, 'gini = 0.0\nsamples = 11\nvalue = [17, 0]\nclass = Ye
          Text(279.0, 776.5714285714287, 'gini = 0.444\nsamples = 6\nvalue = [6, 3]\nclass = Ye
          Text(372.0, 1087.2, 'gini = 0.0\nsamples = 522\nvalue = [815, 0]\nclass = Yes'),
          Text(651.0, 1397.8285714285716, 'PM10 <= 4.5 \neq 0.041 = 64 = 64 = 64
         941\nclass = No'),
          Text(558.0, 1087.2, 'gini = 0.0\nsamples = 35\nvalue = [0, 56]\nclass = No'),
          Text(744.0, 1087.2, ^{\circ}0_3 \le 52.0 \neq 0.095 = 29 \neq 0.095 = 29 = [2, 38] = [2, 38]
         = No'),
          Text(651.0, 776.5714285714287, 'gini = 0.0\nsamples = 12\nvalue = [0, 19]\nclass = N
          Text(837.0, 776.5714285714287, 'NOx <= 23.5 \cdot \text{ngini} = 0.172 \cdot \text{nsamples} = 17 \cdot \text{nvalue} = [2, 1.5]
         19]\nclass = No'),
          Text(744.0, 465.9428571428573, 'gini = 0.298\nsamples = 10\nvalue = [2, 9]\nclass = N
         o'),
          Text(930.0, 465.9428571428573, 'gini = 0.0\nsamples = 7\nvalue = [0, 10]\nclass = N
          Text(2406.375, 1708.457142857143, 'NOx <= 31.5\ngini = 0.402\nsamples = 1419\nvalue =
         [628, 1628] \setminus class = No'),
          Text(1581.0, 1397.8285714285716, 'NMHC <= 0.035\ngini = 0.409\nsamples = 94\nvalue =
          [102, 41]\nclass = Yes'),
          Text(1488.0, 1087.2, 'NOx <= 25.5\ngini = 0.497\nsamples = 58\nvalue = [48, 41]\nclas
         s = Yes'),
          Text(1209.0, 776.5714285714287, 'CH4 <= 1.375\ngini = 0.43\nsamples = 22\nvalue = [1
         0, 221\nclass = No'),
          Text(1116.0, 465.9428571428573, 'gini = 0.0\nsamples = 6\nvalue = [9, 0]\nclass = Ye
          Text(1302.0, 465.9428571428573, 'SO 2 <= 2.0\ngini = 0.083\nsamples = 16\nvalue = [1,
         221\nclass = No'),
          Text(1209.0, 155.3142857142857, 'gini = 0.18\nsamples = 8\nvalue = [1, 9]\nclass = N
         o'),
          Text(1395.0, 155.3142857142857, 'gini = 0.0\nsamples = 8\nvalue = [0, 13]\nclass = N
          Text(1767.0, 776.5714285714287, 'CH4 <= 1.395\ngini = 0.444\nsamples = 36\nvalue = [3
         8, 19]\nclass = Yes'),
          Text(1674.0, 465.9428571428573, 'NO_2 <= 23.5\ngini = 0.05\nsamples = 24\nvalue = [3
         8, 1]\nclass = Yes'),
          Text(1581.0, 155.3142857142857, 'gini = 0.0\nsamples = 19\nvalue = [34, 0]\nclass = Y
          Text(1767.0, 155.3142857142857, 'gini = 0.32\nsamples = 5\nvalue = [4, 1]\nclass = Ye
          Text(1860.0, 465.9428571428573, 'gini = 0.0\nsamples = 12\nvalue = [0, 18]\nclass = N
          Text(1674.0, 1087.2, 'gini = 0.0\nsamples = 36\nvalue = [54, 0]\nclass = Yes'),
          Text(3231.75, 1397.8285714285716, 'PM25 <= 10.5\ngini = 0.374\nsamples = 1325\nvalue
         = [526, 1587] \setminus nclass = No'),
          Text(2604.0, 1087.2, 'CO <= 0.25\ngini = 0.319\nsamples = 911\nvalue = [287, 1157]\nc
         lass = No'),
          Text(2232.0, 776.5714285714287, 'PM25 <= 2.5\ngini = 0.426\nsamples = 87\nvalue = [9
         2, 41]\nclass = Yes'),
          Text(2046.0, 465.9428571428573, 'CH4 <= 1.385\ngini = 0.5\nsamples = 32\nvalue = [25,
         25]\nclass = Yes'),
```

```
Text(1953.0, 155.3142857142857, 'gini = 0.083\nsamples = 14\nvalue = [22, 1]\nclass =
Yes'),
Text(2139.0, 155.3142857142857, 'gini = 0.198\nsamples = 18\nvalue = [3, 24]\nclass =
Text(2418.0, 465.9428571428573, 'NMHC <= 0.045\ngini = 0.311\nsamples = 55\nvalue =
[67, 16]\nclass = Yes'),
Text(2325.0, 155.3142857142857, 'gini = 0.435\nsamples = 36\nvalue = [34, 16]\nclass
Text(2511.0, 155.3142857142857, 'gini = 0.0\nsamples = 19\nvalue = [33, 0]\nclass = Y
es'),
Text(2976.0, 776.5714285714287, 'station <= 28079016.0\ngini = 0.253\nsamples = 824\n
value = [195, 1116]\nclass = No'),
Text(2790.0, 465.9428571428573, 'CO <= 0.35\ngini = 0.137\nsamples = 762\nvalue = [8
9, 1114\nclass = No'),
Text(2697.0, 155.3142857142857, 'gini = 0.216\nsamples = 357\nvalue = [73, 520]\nclas
Text(2883.0, 155.3142857142857, 'gini = 0.051\nsamples = 405\nvalue = [16, 594]\nclas
s = No'),
Text(3162.0, 465.9428571428573, '0 3 <= 19.5\ngini = 0.036\nsamples = 62\nvalue = [10
Text(3069.0, 155.3142857142857, 'gini = 0.0\nsamples = 50\nvalue = [88, 0]\nclass = Y
Text(3255.0, 155.3142857142857, 'gini = 0.18\nsamples = 12\nvalue = [18, 2]\nclass =
Text(3859.5, 1087.2, 'EBE <= 0.25\ngini = 0.459\nsamples = 414\nvalue = [239, 430]\nc
lass = No'),
Text(3627.0, 776.5714285714287, 'CH4 <= 1.395\ngini = 0.407\nsamples = 81\nvalue = [9
8, 39]\nclass = Yes'),
Text(3534.0, 465.9428571428573, 'CH4 <= 1.355\ngini = 0.14\nsamples = 61\nvalue = [9
8, 8]\nclass = Yes'),
Text(3441.0, 155.3142857142857, 'gini = 0.0\nsamples = 50\nvalue = [88, 0]\nclass = Y
Text(3627.0, 155.3142857142857, 'gini = 0.494\nsamples = 11\nvalue = [10, 8]\nclass =
Yes'),
Text(3720.0, 465.9428571428573, 'gini = 0.0\nsamples = 20\nvalue = [0, 31]\nclass = N
o'),
Text(4092.0, 776.5714285714287, 'NOx <= 91.0\ngini = 0.39\nsamples = 333\nvalue = [14
1, 3911\nclass = No'),
Text(3906.0, 465.9428571428573, 'station <= 28079016.0\ngini = 0.498\nsamples = 56\nv
alue = [46, 40] \setminus class = Yes'),
Text(3813.0, 155.3142857142857, 'gini = 0.229\nsamples = 24\nvalue = [5, 33]\nclass =
No'),
Text(3999.0, 155.3142857142857, 'gini = 0.249\nsamples = 32\nvalue = [41, 7]\nclass =
Yes'),
Text(4278.0, 465.9428571428573, '0 3 <= 1.5\ngini = 0.335\nsamples = 277\nvalue = [9
5, 351]\nclass = No'),
Text(4185.0, 155.3142857142857, 'gini = 0.357\nsamples = 52\nvalue = [66, 20]\nclass
= Yes'),
Text(4371.0, 155.3142857142857, 'gini = 0.148\nsamples = 225\nvalue = [29, 331]\nclas
s = No')
```



```
In [74]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.9996222720077558 Lasso: 0.3728582371674869 Ridge: 0.9979283454674264 ElasticNet: 0.5889752318704515 Logistic: 0.5536888239590942 Random Forest: 0.9802696314989101

Best model is Linear Regression

In []: