

八通道触摸感应开关(I²C)

RH6010

规格书

Revision 1.5 2011-11-25

湖南融和微电子有限公司 RH6010_SPEC_Ver2.0 1/13页 11/25/2011

目 录

1.	简介.			3
2.	特性.			3
3.	封装为	示意图		3
4.	功能扩	描述		4
	4.1	I2C总约	戋	4
	4.2	配置寄	存器	4
		4.2.1	灵敏度配置寄存器(SCT[1:0]& SFT[5:0])	4
		4.2.2	荡器频率配置寄存器(OTC)	4
		4.2.3	触摸最大开启时间寄存器(MOT[1:0])	4
		4.2.4	中断标志(INT)电平配置寄存器(OLH)	5
		4.2.5	按键输出形式KEY Type配置寄存器(KEYT)	5
		4.2.6	低功耗模式配置寄存器(LPM)	5
		4.2.7	重新自校准时间配置寄存器(RCT, Re-Calibration Time)	5
		4.2.8	上电默认配置	5
	4.3 4	键值寄有	² 器	6
6.	电气	参数		6
7.	应用日	电路		6
8.	穿透	力应用说	.明	7
9.	I ² C通	讯及源件	c码	8
	9.1	I ² C总结	的寻址	8
	9.2	RH601	0 I ² C通讯流程图	8
	9.3	RH601	0源代码	8
		9.3.1	汇编语言格式	8
		9.3.2	C程序格式	10
10	料准	信自 (SSOP16L)	13

1.简介

RH6010 是一款带 I^2C 总线接口的 8 通道电容式触摸感应控制开关 IC,可以替代传统的机械式开关。 RH6010 可通过 I^2C 总线接口配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品中。

RH6010系列共有2个版本,其中

RH6010 面向低功耗;

RH6010A 面向高灵敏度。

2.特性

- 工作电压: 2.0V~5.5V
- 典型工作电流 60uA,低功耗模式工作电流小于 10uA(均指 3.0V 供电且不带负载的条件下)
- 采用 I²C 通信协议,可通过设置内部寄存器配置 成多种模式
- 带有中断输出脚,可用于唤醒主控 MCU
- 内置去抖动算法可有效防止由噪声导致的误动作
- 可用于玻璃、陶瓷、塑料等介质表面
- 芯片 I²C 地址: 78H

3.封装示意图

图 1 封装示意图(SSOP16L(0.635-D1.40))

表 1 引脚描述表

NO.	PADNAME	Descrption	NO.	PADNAME	Descrption		
1	GND	负电源	16	CJM	· 外置电容 CJ 调节端		
2	INT	中断指示标志	15	CJP	7 外 直 电 谷 🔾 5 阴 口 圳		
3	TP4		14	TP3			
4	TP5	 触摸按键 	13	TP2	 触摸按键		
5	TP6	照1矢1女娃	12	TP1	服3天1女娃		
6	TP7		11	TP0			
7	SDA	I ² C 通讯数据线	10	CKT	测试管脚		
8	SCL	I ² C 通讯时钟线	9	VDD	正电源		
注意:	注意: CKT 引脚在正常使用时悬空						

4.功能描述

通过设置内部寄存器,RH6010 既能配置为多种输出模式,也可灵活调节灵敏度和稳定度。

上电完成后若不需要对片内寄存器进行写操作,则设置为默认模式。

4.1 I2C总线

RH6010采用标准I²C总线接口与主控MCU 通讯,可通过该协议设置寄存器进行模式配置,也可 读出按键状态值或寄存器值。

关于 I²C 详细信息请参考标准 I²C 通信协议资料。

注 1: RH6010 在工作中可动态多次配置。

注 2: I²C 地址: 78H。

4.2 配置寄存器

可通过 I^2C 总线的写指令写入寄存值。每次执行写寄存器指令后,芯片将更新配置寄存器值并自动重校准。 表 2 寄存器表

Reg.	Name	D7	D6	D5	D4	D3	D2	D1	D0
00H(R/W)	Config1	SCT[1:0]		SFT[5:0]					
01H(R/W)	Config2	OTC	MOT[1:0]	OLH	KEYT	LPM	RTC[1:	0]
02H (R)		Key7	Key6	Key5	Key4	Key3	Key2	Key1	Key0
03H(R/W) Reserved									
注意: 02H 寄存器为只读									

4.2.1 灵敏度配置寄存器(SCT[1:0]& SFT[5:0])

SCT[1:0]可粗略地配置触摸传感器计数时长,计数时长越大,灵敏度越高。当 SCT[1:0]从 00B 向 11B 调节,灵敏度逐渐提高。

SFT[5:0]可较精细地配置触摸传感器计数时长。当 SFT[5:0]从 000000B 向 111111B 调节,灵敏度逐渐提高。

4.2.2 荡器频率配置寄存器(OTC)

OTC 配置触摸传感器的振荡器时钟输入有效频率。当 OTC 由 0 调节至 1, 灵敏度提高。

表 3 OTC 寄存器

NAME	选项	功能	备注
отс	=1	TCK	Default=1
Oic	=0	TCK/2	Delault=1

4.2.3 触摸最大开启时间寄存器(MOT[1:0])

最大开启时间指检测到触摸,且该触摸一直未释放(并无其余触摸通道被按下或释放)至 IC 自动重校准的时间。若触摸通道发生变化,则重新开始计数。

表 4 MOT 寄存器

NAME	选项	功能	备注		
	00	约 100S			
MOTI4.01	01	约 50S	Default=11		
MOT[1:0]	10	约 20S	Derault=11		
	11	无穷大			
注意:最大开启时间为芯片在 VDD=3.0V 且无负载的条件下测得,不可作为精确时间					

4.2.4 中断标志(INT)电平配置寄存器(OLH)

INT 可设置触摸被检测到时输出的 INT 中断脉冲是高电平还是低电平脉冲有效 (脉冲宽度约 20us)。

表 5 OLH 寄存器

NAME	选项	功能	备注
OLH	=1	INT 输出高电平脉冲	Default=1
OLH	=0	INT 输出低电平脉冲	Derauit=1

4.2.5 按键输出形式 KEY Type 配置寄存器(KEYT)

当 KEY Type=1 时为 multi-key 模式,即当同时有数个按键按住时,会同时承认几个按住的键;

当 KEY Type=0 时为 single-key 模式,即当有数个按键均按住时,只会承认最先被按下的键。

表 6 KEYT 寄存器

NAME	选项	功能	备注
KEYT	=1	multi-key 模式	Dofoult_1
KETI	=0	single-key 模式	Default=1

4.2.6 低功耗模式配置寄存器(LPM)

当 LPM=1 时, 低功耗模式 disable, IC 会全速持续进行触摸检测;

当 LPM=0 时,低功耗模式 enable, IC 在一段时间没有检测到触摸则进入低功耗模式,但在此模式下仍会侦测触摸;当侦测到触摸,IC 进入全速模式。当所有触摸释放,IC 将继续保持全速模式检测一段时间,在这段时间内没有触摸则再次进入低功耗模式。

表7LPM寄存器

NAME	选项	功能	备注
LPM	=1	低功耗模式 disable	Default=1
LPIVI	=0	低功耗模式 enable	Delault=1

4.2.7 重新自校准时间配置寄存器(RCT, Re-Calibration Time)

当低功耗模式 disable,重新自校准时间指 IC 未检测到触摸,重新自校正之间隔时间。

当低功耗模式 enable,重新自校准时间指 IC 检测到触摸并退出低功耗模式之后,当触摸释放,IC 先重新自校正,然后再进入低功耗模式之间隔时间。

表 8 RCT 寄存器

NAME	选项	功	功能			
		LPM=1	LPM=0			
	=00	约 1s	约 3.0s			
DCT[4.0]	=01	约 3s	约 6.3s	Default=01		
RCT[1:0]	=10	约 6.3s	约 13s	Delault=01		
	=11	约 13s	约 26s			
注音, 重新自校准时间为芯片在 VDD=3 0V 日无负裁的条件下测得。不可作为精确时间						

4.2.8 上电默认配置

上述配置寄存器,在IC上电完成后,除RCT[1:0]=01(4S)以外,其余寄存器均默认为1。

4.3 键值寄存器

当 KEYn=0 时,表示该触摸没有被检测到。

当 KEYn=1 时,表示该触摸被检测到,且 INT 输出中断标志脉冲;松开后 KEYn 立即由 1 更新为 0(KEYn 键值为去抖动后更新键值),该键值可通过 1^2 C 读出。

5.绝对最大值

表 9 工作条件规格表

参数	符号	额定值	单位
工作电压	V_{DD}	-0.3~5.5	V
输入/输出电压	V _I /V _O	-0.5∼V _{DD} +0.5	V
工作温度	T _{OPR}	-20 ~ 70	$^{\circ}\!\mathbb{C}$
储藏温度	T _{STG}	-40 ~ 125	${\mathbb C}$

6.电气参数

表 10 电气参数表

参数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	VDD		2.0	3.0	5.5	V
参考振荡器	MCK	VDD=3.0V 无负载	-	330K	-	Hz
传感器振荡器	TCK	VDD=3.0V 无负载	-	330K	-	Hz
工作电流	lon	3.0V 无负载,全速模式	-	60.0	-	uA
工作电机	lop	3.0V 无负载, 低功耗模式	-	10	-	uA
若无特别说明, VDD 为 3.0V, 环境温度为 25℃,芯片输出无负载						

7.应用电路

图 2 RH6010 应用示意图

说明:

- 1. CJ 指调节灵敏度的电容,电容值大小 0pF~50pF(电容值的增大将导致灵敏度降低),可根据具体应用进行 选择。
- 2. Rs 指在触摸电极和触摸输入脚之间串联的电阻,用于提高触摸的抗干扰能力,可根据具体应用进行选择。
- **3.** VDD 与 GND 间需并联滤波电容以消除噪声。供电电源需稳定,如果电源电压漂移或者快速变化,可能引起灵敏度漂移或检测错误。
- 4. 请参看<RH60XX应用指南>,以改善实际应用之可靠性。

8.穿透力应用说明

表11: 穿透力与铺地、感应电极大小对应关系

感应电极面积	PCB顶层不铺地 底层不铺地	PCB顶层铺实铜 底层35%铺地
6×6mm	4mm	0.9 mm
7×7mm	5mm	1.1 mm
8×8mm	7mm	1.3 mm
10×10mm	8mm	1.8 mm
12×12mm	10mm	2.5 mm
15×15mm	13mm	3.5 mm

说明:

- 1. 此表仅供参考,具体焊盘大小应根据实际模具外壳厚度来调整。
- 2. 触摸焊盘面积越大,可穿透介质材料越厚。
- 3. PCB铺地比例越小,PCB点触焊盘与地之间的寄生电容越小,人体触摸后新生的手指电容相对PCB寄生电容变化越大,触摸灵敏度越高,可穿透介质越厚。
- 4. PCB铺地比例越小,越易受到外界干扰。
- 5. 建议实际应用时兼顾灵敏度和抗干扰设计PCB的铺地形式。如对穿透介质厚度要求不高,建议增加铺地比例以提高抗干扰性能。

9.12C通讯及源代码

9.1 I²C总线的寻址

I2C总线协议明确规定:采用7位的寻址字节+1位读/写控制位。D7~D1位组成从机的地址,D0位是数据传送方向位,为"0"时表示主机向从机写数据,为"1"时表示主机由从机读数据。如下图:

位:	7	6	5	4	3	2	1	0
	从机地址					R/W		

RH6010 I²C地址是0x78H, 当主机向从机写数据时, 寻址地址为0xF0: 当主机向从机读数据时, 寻址地址为0xF1。

9.2 RH6010 I²C通讯流程图

图3 发送数据流程图

图4 读取数据流程图

ACK_BIT,IIC_SEND

ACK BIT, IIC SEND

IIC_DATA,IIC_SLS

ACK BIT, IIC SEND

:寄存器地址

;灵敏度

IIC DATA,#00H

LCALL IIC SEND BYTE

LCALL IIC_SEND_BYTE

LCALL IIC_REACK

LCALL IIC_REACK

9.3 RH6010源代码

9.3.1 汇编语言格式

MOV IIC_CONFIG, #0F5H

;单键模式、OTC最高频率、触摸最大开启时间无穷大、中断输出高电平、关闭低功耗模式、重新自校准时间约6.3s

MOV IIC_SLS , #0FCH ;设置灵敏度 为0xFCH

IIC_SEND: ;发送部分

LCALL IIC_START

LCALL IIC_REACK

MOV IIC_DATA,#0F0H ;芯片地址

LCALL IIC_SEND_BYTE

_____ | |

IIC_DATA,IIC_CONFIG ;CONFIGURATION
LCALL IIC_SEND_BYTE
LCALL IIC_REACK
JB ACK BIT,IIC SEND

JB ACK_BIT,IIC_SEN LCALL IIC STOP

JΒ

JB

JB

MOV

MOV

MOV

湖南融和微电子有限公司 RH6010_SPEC_Ver2.0 8/13页 11/25/2011

RET CLRIIC_SCL ;-----LJMP IIC_SEND_BYTE2 IIC_RECEIVE: ;读取部分 WR_0: LCALL IIC_START CLR IIC_SDATA MOV IIC DATA,#0F0H ;芯片地址 SETB IIC SCL LCALL IIC_SEND_BYTE NOP LCALL IIC_REACK NOP CLRIIC_SCL JB ACK_BIT,IIC_RECEIVE LJMP IIC_SEND_BYTE2 MOV IIC_DATA,#02H ;寄存器地址 LCALL IIC SEND BYTE IIC RECEIVE BYTE: :接收一个字节 LCALL IIC REACK MOV IIC COUNTER,#08H IIC_RECE_TEMP,#00H MOV ACK_BIT,IIC_RECEIVE JB IIC_RECEIVE_BYTE1: LCALL IIC START SETB IIC_SDATA MOV IIC_DATA,#0F1H ;芯片地址 SETB IIC_SCL LCALL IIC SEND BYTE NOP LCALL IIC_REACK NOP MOV C,IIC_SDATA ACK BIT, IIC RECEIVE JB MOV A,IIC_RECE_TEMP LCALL IIC RECEIVE BYTE;读取02H寄存 CLRIIC SCL 器的内容 RLCA LCALL IIC_NACK MOV IIC_RECE_TEMP,A LCALL IIC_STOP DJNZ MOV TOUCH, IIC_RECE_TEMP IIC_COUNTER, IIC_RECEIVE_BYTE1 RET RET ;-----IIC START: ;起始信号 IIC_SEND_BYTE: 发送一个字节 SETB IIC_SDATA MOV A,IIC_DATA SETB IIC_SCL MOV IIC COUNTER,#08H NOP IIC_SEND_BYTE1: NOP **RLCA** CLRIIC SDATA JC WR_1 NOP LJMP WR_0 NOP IIC SEND BYTE2: CLRIIC_SCL DJNZ RET :-----IIC COUNTER, IIC SEND BYTE1 IIC_STOP: ;终止信号 RET WR 1: CLR IIC_SDATA IIC_SCL **SETB** IIC_SDATA SETB **SETB** IIC_SCL NOP NOP NOP NOP SETB IIC_SDATA

RH6010_SPEC

```
NOP
                                                                Send(0xf0);
                                                                               //发送器
   NOP
                                             件地址(7位)+0
   CLRIIC_SDATA
                                                                if(RecAck()) //判断返回,为
   RET
                                             0表示从机返回成功应答
:-----
                                                                    break;
IIC_ACK:
          ;应答信号
                                                                Send(0x00);
                                                                               //发送器
   CLRIIC_SDATA
                                             内部子地址
   SETB
               IIC_SCL
                                                                if(RecAck())
   NOP
                                                                    break;
   NOP
                                                                Send(ucSLS);
                                                                if(RecAck())
   CLR IIC_SCL
   SETB
               IIC SDATA
                                                                    break;
   RET
                                                                Send(ucKeyTypeTemp);
:-----
                                                                if(RecAck())
IIC_NACK: ;非应答信号
                                                                    break;
   SETB
               IIC_SDATA
                                                                Stop();
                                                                               //停止
   SETB
               IIC SCL
                                                                ucFlagGoodWR = 1;
                                                                   break;
   NOP
   NOP
                                                                }
                                                        }while(!ucFlagGoodWR);
   CLR IIC_SCL
   CLRIIC SDATA
                                                                ucFlagGoodWR = 0;
   RET
;-----
IIC_REACK: ;接收应答信号
   SETB
               IIC_SDATA
                              ;作为输入
   NOP
                                                        while(1){ //主机读取数据
                          ;第九个时钟开始
   SETB
               IIC SCL
                                                            Start();
   NOP
                                                            Send(0xf0);
   MOV
           C, IIC_SDATA;读SDA线
                                                            if(RecAck())
   MOV
           ACK_BIT, C
                                                                break;
                  ;时钟脉冲结束
   CLR IIC_SCL
                                                            Send(0x02);
   RET
                                                            if(RecAck())
                                                                break;
                                                            Start();
                                                                       //重启动
9.3.2 C程序格式
                                                            Send(0xf1); //发送器件地址(7
   #include<reg52.h>
                                             位)+1(读)
   #include<I2C_C51.h>
                                                            if(RecAck())
   #define uchar unsigned char /*宏定义*/
                                                                break:
   #define uint unsigned int
                                                            touch = Receive(); //读取数据
      //主机写入数据
                                                            NoAck();
                                                                           //发送非应答,
       ucFlagNeedWR = 0;
                                             准备停止
       do
                                                            Stop();
                                                                           //停止
                                                            break;
           while(1){
                  Start();
                              //启动
```



```
//I2C通讯IO口模拟程序
   //只有在SCL线的时钟信号是低电平时才能改变
   //起始条件: SCL 线是高电平时SDA 线从高电
平向低电平切换
   //停止条件: 当SCL 是高电平时SDA 线由低电
平向高电平切换
   //SDA 线上的数据必须在时钟的高电平周期保
持稳定数据线的高或低电平状态
   #include <reg51.h>
   #include <intrins.h>
   #define uchar unsigned char /*宏定义*/
   #define uint unsigned int
   sbit SDA = P1^1;
   sbit SCL = P1^0;
   //启动函数,在SCL为高时,SDA的下降沿为启
动信号
   void Start(void)
      SCL = 0;
                   //SCL处于低电平
时,SDA才能改变
      SDA= 1:
                // 一个"开始"状态,该状态必
须在其他命令之前执行
      SCL = 1;
                   // 当scl为高电平时sda
的下降沿表示开始状态
      _nop_(); _nop_(); _nop_();
_nop_(); //给一个延时
      SDA = 0:
                   //给下降沿表示开始
      _nop_(); _nop_(); _nop_(); _nop_();
      SCL = 0:
                   //恢复低电平以改变sda
的值
      SDA = 1;
   }
   //停止函数,在SCL为高时,SDA的上升沿为停
止信号。
   void Stop(void)
      SCL = 0;
                   //SCL处于低电平
```

```
上升沿表示停止,
      SCL = 1;
                    //scl为高电平时改变sda
的状态表示启动, 停止
      _nop_(); _nop_(); _nop_(); _//
延时
      SDA = 1;
      _nop_(); _nop_(); _nop_();
_nop_();
      SCL = 0;
   }
   //检查应答位
   bit RecAck(void)
      SCL = 0:
                    //在scl为0的时候改变
sda的值
      SCL = 1;
                    //在scl为1的时候等待
      sda值的变化,在器件接受到数据后会把sda
      拉低。
      _nop_(); _nop_(); _nop_(); _nop_();
      CY = SDA;
                    // 因为返回值总是放在
CY中的
      _nop_();
      SCL = 0:
      return(CY); //如果为CY为低则表示接受
成功, 如果为高, 则表示接受失败。
   }
   //对I2C总线产生应答(一般用在读操作中)
   void Ack(void)
   {
                 // EEPROM通过在收到每个
      SDA = 0:
地址或数据之后,
      _nop_();_nop_();
      SCL = 1;
                 //置SDA低电平的方式确认
表示收到读SDA口状态
      _nop_(); _nop_(); _nop_();
      _nop_(); _nop_(); _nop_();
      SCL = 0;
      _nop_();
      SDA = 1;
   }
```

SDA = 0:

时,SDA改变数值 */

//scl为高电平时,sda的


```
receivebyte <<= 1;
                                                          SCL = 1;
                                                                          //拉高scl准备给下
    //不对I2C总线产生应答
                                               降沿
                                                          _nop_();
    void NoAck(void)
                                                          receivebyte |= SDA;
                                                                              //接受值左移
                                               一位把低位和sda相或得到sda的状态值
    {
       SDA = 1;
                                                          SCL=0:
                                                                          //给下降沿发出sda
       SCL = 1;
                                               的状态值
       _nop_(); _nop_(); _nop_();
                                                      }while(-- i);
                                                      return(receivebyte);
       _nop_(); _nop_(); _nop_();
       SCL = 0;
                                                   }
    }
                                                   //以下为头文件<I2C_C51.H>
    //向I2C总线写数据,每次写8位数据。
    void Send(uchar sendbyte)
                                                   #ifndef I2C C51 H
                                                   #define I2C_C51_H
       uchar j = 8;
       do
                                                   #ifndef uchar
                                                   #define uchar unsigned char
       {
           SCL = 0:
                       //拉低scl准备给上升沿
                                                   #endif
           sendbyte <<= 1; // 使
CY=sendbyte^7;
                                                   //启动函数
           SDA = CY;
                       // CY 进位标志位
                                                   extern void Start(void);
           _nop_();_nop_(); _nop_();
           SCL = 1;
                           //给上升沿,发出
                                                   //停止函数
sda的状态值
                                                   extern void Stop(void);
           _nop_();_nop_();_nop_();
       }while(--j);
                                                   //检查应答位
       _nop_();
                                                   extern bit RecAck(void);
       SCL=0;
   }
                                                   //对I2C总线产生应答
                                                   extern void Ack(void);
    //从I2C总线上读数据子程序, 每次读8位数据
                                                   //不对I2C总线产生应答
                                                   extern void NoAck(void);
    uchar Receive(void)
                                                   //向I2C总线写数据,每次8位
    {
       register receivebyte;
                                                   extern void Send(uchar sendByte);
       uchar i = 8;
       SCL = 0;
                                                   //向I2C总线读数据,每次8位
       SDA = 1;
                                                   extern uchar Receive(void);
       do{
                                                   #endif
```


10.封装信息 (SSOP16L)

Symbol	Dimensions in mm						
Syllibol	Min	Тур	Max				
Α	1	-	1.75				
A 1	0.10	-	0.225				
A2	1.30	1.40	1.50				
A3	0.50	0.60	0.70				
b	0.24	-	0.30				
b1	0.23	0.254	0.28				
С	0.20	-	0.25				
c1	0.19	0.20	0.21				
D	4.80	4.90	5.00				
E	5.80	6.00	6.20				
E1	3.80	-	4.00				
е	0.635BSC						
h	0.25	-	0.50				
L	0.50	0.65	0.80				
L1	1.05BSC						
θ	0	-	8°				

注意!

规格如有更新,恕不另行通知。请在使用该 IC 前更新规格书至最新版本。