¢ EPODOC / EPO

PN - SU1668132 A1 19910807

PD - 1991-08-07

PR - SU19884495980 19881017

OPD - 1988-10-17

TI - VACUUM MANIPULATOR

IN - KUZNETSOV NIKOLAJ A [SU]; LOGINOV PAVEL V [SU]; SHASHKOV ANATOLIJ I [SU] PA - KUZNETSOV NIKOLAJ A [SU]; LOGINOV PAVEL V [SU]; SHASHKOV ANATOLIJ [SU]

IC - B25J11/00; B25J21/00

O WPI / DERWENT

TI - Manipulator for vacuum plant - gripper has two rotatable levers, one connected to spring, other to cable of clamping mechanism

PR - SU19884495980 19881017

PN - SU1668132 A1 19910807 DW199227 B25J21/00 006pp

PA - (KUZN-I) KUZNETSOV N A

IC - B25J11/00 ;B25J21/00

IN - KUZNETSOV N A; LOGINOV P V; SHASHKOV A I

- SU1668132 The manipulator's longitudinal movement drive (3) includes a motor (19) and gear-rack transmission. The rack (24) of which is mounted on the protrusion of a slide (2). The gripper (4) is in the form of a body and two levers (9,10) rotatable onpivots and equipped with interacting protrusions. One lever (9) is connected to a spring (12) attached to the body of the gripper, and the other (10) is connected via a roller (11) to the cable (29) of a clamping mechanism.

USE/ADVANTAGE - Reliability is increased by increasing rigidity of construction. To transfer items from one vacuum chamber to another, e.g in electron, and ion spectroscopy. Bul. 29/7.8.91

OPD - 1988-10-17

AN - 1992-224988 [25]

BEST AVAILABLE COPY

1668132 A 1

(51)5 B 25 J 21/00//B 25 J 11/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГННТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4495980/08

(22) 17.10.88

(46) 07.08.91. Бюл. № 29

(72) Н. А. Кузнецов, П. В. Логинов

н А. И. Шашков

(53) 62-229.72 (088.8)

(56) Авторское свидетельство СССР № 1441992, кл. Н 01 J 37/20, 1988.

(54) ВАКУУМНЫЙ МАНИПУЛЯТОР (57) Изобретение относится к устройствам вакуумной техники и может использоваться в вакуумных установках для передачи изделий из одной вакуумной камеры в другую, например для передачи подложек в установках электронной и ионной спектросконии. Целью изобретения является повышение надежности работы за счет увеличения жесткости конструкции. Вакуумный манипулятор состоит из герметичного корпуса 1.

ползуна 2, выполненно в виде трубы с двумя парами продольных парадлельных дорожек с выступами между ними, на которых установлены опорные ролики, а также захваки 4 е приводом его зажима и приводом 3 сто продольного перемещения. Привод 3 про осньюго перемещения включает двига-🗼 . 19 и зубчато-реечную передачу, рейка то которой смонтирована на выступе ползуна 2. Захват 4 выполнен в виде корпуса и двух рычагов 9 и 10, установленных с возможностью поворота на осях, за-решленных в корпусе захвата 4, и снабженных взаимодействующими друг с другом выступами. При этом рычат 9 соединей с пружиной 12, прикрепленной к корпусу захвата, а рычат 10 соединен через ролик 11 с тросиком 29 механизма зажима. Тросик 29 привода зажима расположен сбоку от ползуна 2. 1 сп ф-лы, 9 ил.

Изобретение относится к устройствам вакуумной техники и может использоваться в вакуумных установках для передачи изделий из одной вакуумной камеры в другую, например для передачи подложек в установках электропной и ионной спектроскопии

Цель изобретения — повышение надежности работы за счет увеличения жест-

кости конструкции.

На фиг. 1 показав манипулятор, общий вил, на фиг. 2 — разрез А.—А на фиг. 1 (захват в положении «Закрыт»); на фиг. 3 — разрез Б. Б на фиг. 1; на фиг. 4 — разрез В. В на фиг. 1; на фиг. 5 — захват манипулятора в положении «Открыт»; на фиг. 6 и 7 — сахват с разными типами подложкодержателей, на фиг. 8 и 9 — то же, захват понернут на 90° вокруг оси ползуна и своего исходного положения.

Манипулятор (фиг. 1) состоит ил герметичного корпуса 1, ползуна 2, привода 3 продольного перемещения ползуна, захвата 4

и привода зажима 5 захвата.

Герметичный корпус I снабжен опорными роликами 6 и 7, на которых размещается ползун 2, выполненный в виде трубы, имеющей две пары продольных парадлельных дорожек с выступами между ними, расположенными на противоположных сторонах трубы. Пол ун 2 одной стороной опирается на ролик 6, контактируя по дорожкам и выступу, дорожки другой стороны касаются роликов 7, амеющих возможность регулировки их положения по направлению к ползуну (фиг. 3) са счет эксцентричных осей, на которых располагаются ролики 7.

Захват 4 состоит из корпуса 8, в котором установлены рычаги 9 и 10, имеющие возможность новорота вокруг своих осей, ролика 11, пружины 12, связанной одним кондом с корпусом 8, а другим с выстуном 13 рычага 10, расположенного ближе к подложкодержателю 14 и перпендикулярно оси

манипулятора.

Выступ 15 рычага 9 снабжен роликом 16, через когорый рычаги 9 и 10 кинематически взаимодействуют между собой. На рычагах 9 и 10 устанавливаются сменные губки 17, предназначенные для зажима подложкодержателей 14. Различные модификации губок 17 показаны на фиг. 2 и 6 9. На фиг. 8 и 9 корпус 8 захвата установлен с поворотом на 90° вокруг оси ползуна 2, при этом ролик 11 переустанавливается на внешнюю сторону корпуса 8, а рычан 9 снабжается дополнительной планкой 18.

Привод 3 продольного перемещения состоит из двигателя 19 с вакуумным вводом 20 вращения, выходной вал 21 которого установлен на подпициниках 22 аубчато-речной передачи, вслущее зубчатое колесо 23 которой взаимодействует с зубчатой рейкой 24, смонтированной на подзуне 2, и датчиков 25 контроля угла поворота выходного вала 21.

Привод зажима 5 захвата состоит из двигателя 26, вакуумного ввода 27 возвратно-поступательного перемещения, штока 28, тросика 29, трех роликов 30, средний из которых закреплен на конце штока 28, а два крайних на неподвижной опоре 31 в корпусе 1. Перемещения штока контролируются датчиками положений (не показаны).

Тросик 29 расположен сбоку от ползуна 2 (фиг. 1, 3), одним концом соединен с рычагом 9 (фиг. 2 и 5 -7) или планкой 18 (фиг. 8 и 9), а другим — с устройством натяжения, закрепленным на другом конце ползуна 2 и состоящим из кроиштейна 32 и пружины 33 растяжения. При этом тросик 29 проходит между средним и крайними роликами 30 механизма зажима 5 и слегка касается их.

Кронштейн 32 установлен в направляющей 34, по которой может перемещаться с помощью винта 35. Это перемещение используется для натяжения тросика 29 при сборке в зависимости от его длины.

На герметичном корпусе 1 установлено устройство 36 контроля исходного положения ползуна 2, состоящее из ролика 37, взанимодействующего с упором 38 ползуна 2, штока 39, сильфона 40 и датчика 41.

Это устройство в датчик 25 угла новорота обеспечивают возможность автоматизированного перемещения полнуча 2 от привода.

На переднем фланце герметичного корауса 1 расположен сильфонный компенсатор 42, состоящий из сильфона 43, торцы которого герметично соединены с фланцами 44, и трех вингов 45, обеспечивающих возможность изменения расположения фланцев 44 между собой в продольном и поперечном направлениях.

- Манипулятор работает слезующим обра-

Сначала прой водится раскрытие захвата 4. Включение явигателя 26 зажима вызывает перемещение штока 28 вниз (на фиг. 1 показано в тонких липиях). При этом тросик 29 натягивается, что вызывает поворот рычага 9 захвата 4 вокруг своей оси. Рычаг 9 возлействует через ролик 16 на рычаг 10, сменные губки 17 поворачиваются, и захват 4 раскрывается.

После включения двигателя 19 привода з продольного перемещения зубчатое колесо 23, находящееся в зацеплении с рейкой 24 (фиг. 4) подзуна 2, начинает вращаться и

приводит в движение ползун 2.

Для захвата подложкодержателя 14 шток 28 отводят вверх, при этом гросик 29 освобождается, пружина 12 растяжения захвата 4 вызывает поворот рычага 10, который, взаимодействуя с рычагом 9, синхронно поворачивает и его, захват закрывается, надежно зажимая подложкодержатель 14 под действием пружины 12. Взаимодействие рыча-

гов 9 и 10 обеспечивает самоцентрирование губок 17.

После этого ползун 2 перемещает подложкодержатель 14 вперед или назад в зависимости от техпроцесса. Пройденное расстояние контролируется датчиком 25, фиксирующим число оборотов вала 21. Исходное положение ползуна 2 фиксируется устройством 36 контроля.

При возвращении ползуна 2 в исходное заднее положение упор 38 нажимает на ролик 37 и перемещает шток 29, сжимая сильфон 40. Перемещение штока приводит к срабатыванию датчика 41, сигнализирующего о перемещении ползуна 2 в исходное положение.

После установки манипулятора на вакуумную камеру юстировка его положения по углу и в вертикальной плоскости обеспечивается с помощью сильфонного компенсатора 42.

Изменение положения по углу производится за счет регулировки винтов 45 по длине, а перемещение в вертикальной плоскости — путем смещения винтов 45 в отверстиях фланца 44, выполненных с зазором.

Рабочее натяжение тросика 29 автоматически обеспечивается пружиной 33 растяжения. При значительном вытягивании тросика 29 кронштейн 32 перемещают вдоль ползуна вправо с помощью винта 35, восстанавливая тем самым исходное натяжение тросика 29 и пружины 33.

Расположение тросика 29 сбоку от ползуна 2 упрощает сборку манипулятора и улучшает условия его эксплуатации. Самоцентрирующийся захват 4 обеспечивает надежный зажим подложкодержателя 14 даже в случае его смещения относительно продольной оси манипулятора.

Выполнение губок 17 съемными значительно расширяет функциональные возможности манипулятора и обеспечивает захват и передачу различных типов подложкодержателей 14 (фиг. 6—9) с различным их положением относительно произвольной оси манипулятора, включая торцовый захват (фиг. 8).

При торцовом захвате и вертикальном расположении подложкодержателя 14 (фиг. 9) корпус 8 захвата 4 устанавливают в ползуне 2 с поворотом на 90°

вокруг его оси. При этом ролик 11 устанавливается на внешней стороне корпуса 9 захвата 4.

Формула изобретения

 Вакуумный манипулятор, содержащий герметичный корпус и установленный в нем на опорных роликах ползун, кинематически связанный с приводом его продольного перемещения, включающим двигатель и зубчато-реечную передачу, зубчатое колесо которой связано с двигателем, а также захват, корпус которого установлен на одном конце ползуна, и привод зажима захвата, включающий двигатель, трос, один конец которого закреплен на торце ползуна, протн воположном месту крепления захвата, и три ролика, средний из которых закреплен на выходном элементе двигателя, а два крайних — на герметичном корпусе, отличающийся тем, что, с целью повышения надежности за счет ужесточения конструкции. ползун выполнен в виде трубы с расположенными на ее противоположных сторонах двумя парами продольных параллельных 25 дорожек, и выступами между ними, а опорные ролики установлены с возможностью взаимодействия с продольными параллельными дорожками трубы и с одним из выступов, причем два опорных ролика установлены с возможностью регулировочного перемещения относительно ползуна, а рейка зубчатой передачи привода продольного перемещения ползуна смонтирована на другом выступе, при этом трос привода зажима захвата расположен между двумя продольными параллельными дорожками и связан с торцом ползуна посредством дополнительно введенного натяжного устройства, а захват выполнен в виде корпуса, двух двуплечих рычагов, установленных на корпусе и снабженных выступами, взаимолействующими друг с другом и с дополнительно введенной пружиной, при этом один из этих рычагов связан с корпусом посредством этой пружины, а другой рычаг связан е тросом привода зажима захвата.

 Манипулятор по п. 1, отличающий-45 ся тем, что корпус захвата установлен с возможностью изменения положения по углу относительно оси ползуна.

Редактор В. Данко Заказ 2613

Составитель А. Ширяева Техред А. Кравчук Корректор А. Обручар Тираж Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035. Москва, Ж-35. Раушская наб. д. 4:5 Производственно-издательский комбинат «Патент», г. Ужгород, ул. Гагарина, 101

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.