Some Results on Independent and Identically Distributed Normal RVs

Statistical Inference and Multivariate Analysis (MA324)

IITG: 2023

Theorem .1. Let $X_1, X_2, ..., X_n$ be i.i.d. N(0,1) random variables. Then

$$\sum_{i=1}^{n} X_i^2 \sim Gamma\left(\frac{n}{2}, \frac{1}{2}\right) \equiv \chi_n^2.$$

Proof: The MGF of X_1^2 is given by

$$M_{X_1^2}(t) = E\left(e^{tX_1^2}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\frac{1}{2}-t)x^2} dx = (1-2t)^{-\frac{1}{2}},$$

for $t < \frac{1}{2}$. Hence, the MGF of $T = \sum_{i=1}^{n} X_i^2$

$$M_T(t) = \prod_{i=1}^n M_{X_i^2}(t) = (1-2t)^{-\frac{n}{2}},$$

where $t < \frac{1}{2}$. Thus, $T = \sum_{i=1}^{n} X_i^2 \sim Gamma(\frac{n}{2}, \frac{1}{2})$. This distribution is also known as χ^2 distribution with degrees of freedom n. Thus, the sum of squares of n i.i.d. N(0, 1) RVs has a χ^2 distribution with degrees of freedom n.

Theorem .2. Let X_1, X_2, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ random variables. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Then \overline{X} and S^2 are independently distributed and

$$\overline{X} \sim N(\mu, \sigma^2/n)$$
 and $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$.

Proof: Let A be an $n \times n$ orthogonal matrix, whose first row is

$$\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right).$$

Note that such a matrix exists as we can start with the row and construct a basis of \mathbb{R}^n . Then Gram-Schmidt orthogonalization will give us the required matrix. As A is orthogonal, its' inverse exists and $A^{-1} = A^T$, the transpose of A. Now, consider the transformation of random vector $\mathbf{X} = (X_1, X_2, \ldots, X_n)'$ given by

$$Y = AX$$

First, we shall try to find the distribution of Y. Note that the transformation g(x) = Ax is a one-to-one transformation as A is invertible. The inverse transformation is given by x = A'y. Hence, the Jacobian

of the inverse transformation is J = det(A). As A is orthogonal, absolute value of det(A) is one. Now, as X_1, X_2, \ldots, X_n are *i.i.d.* $N(\mu, \sigma^2)$ RVs, the JPDF of \mathbf{X} , for $\mathbf{x} = (x_1, x_2, \ldots, x_n)' \in \mathbb{R}^n$, is

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right]$$
$$= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left[-\frac{1}{2\sigma^2} (\mathbf{x} - \boldsymbol{\mu})' (\mathbf{x} - \boldsymbol{\mu})\right],$$

where $\boldsymbol{\mu} = (\mu, \mu, \dots, \mu)'$ is a *n* component vector. Thus, the JPDF of \boldsymbol{Y} , for $\boldsymbol{y} \in \mathbb{R}^n$, is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(A'\mathbf{y})$$

$$= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left[-\frac{1}{2\sigma^2}(A'\mathbf{y} - \boldsymbol{\mu})'(A'\mathbf{y} - \boldsymbol{\mu})\right]$$

$$= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{y} - \boldsymbol{\eta})'(\mathbf{y} - \boldsymbol{\eta})\right],$$

where $\eta = (\eta_1, \eta_2, ..., \eta_n)' = A\mu$. Note that $\eta_1 = \sqrt{n}\mu$. Moreover,

$$\eta'\eta = \mu'\mu \implies \sum_{i=1}^n \eta_i^2 = n\mu^2 \implies \sum_{i=2}^n \eta_i^2 = n\mu^2 - \eta_1^2 = 0.$$

Thus, $\eta_i = 0$ for i = 2, 3, ..., n. Hence, the JPDF of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(y_1 - \sqrt{n}\mu)^2} \left\{ \prod_{i=2}^n \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{y_i^2}{2\sigma^2}} \right\} \quad \text{for } \mathbf{y} = (y_1, y_2, \dots, y_n)' \in \mathbb{R}^n.$$

Therefore, Y_1, Y_2, \ldots, Y_n are independent RVs and $Y_1 \sim N(\sqrt{n}\mu, \sigma^2)$ and $Y_i \sim N(0, \sigma^2)$ for $i = 2, 3, \ldots, n$, where $\mathbf{Y} = (Y_1, Y_2, \ldots, Y_n)'$. Now,

$$Y_1 = \sqrt{n} \, \overline{X} \implies \sqrt{n} \, \overline{X} \sim N(\sqrt{n}\mu, \sigma^2) \implies \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

Again,

$$Y'Y = X'X \implies \sum_{i=2}^{n} Y_i^2 = \sum_{i=1}^{n} X_i^2 - Y_1^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2 = (n-1)S^2.$$

For $i=2, 3, \ldots, n, \frac{Y_i}{\sigma}$ are i.i.d. N(0, 1) RVs. Thus, using the previous theorem

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=2}^n \left(\frac{Y_i}{\sigma}\right)^2 \sim \chi_{n-1}^2.$$

Notice that \overline{X} is a function of Y_1 only, and S^2 is a function of Y_2, Y_3, \ldots, Y_n . As Y_i 's are independent, \overline{X} and S^2 are independent.

Definition .1 (t-distribution). A CRV X is said to have a Student's t-distribution (or simply, t-distribution) with n degrees of freedom if the PDF of X is given by

$$f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \quad \text{for } t \in \mathbb{R}.$$

We will use the notation $X \sim t_n$ to denote that the RV X has a t-distribution with n degrees of freedom.

Theorem .3. Let $X \sim N(0, 1)$ and $Y \sim \chi_n^2$ be two independent RVs. Then the RV $T = \frac{X}{\sqrt{Y/n}} \sim t_n$.

Proof: This theorem can be proved using the transformation technique 2. Note that the JPDF of X and Y is

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \times \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} y^{\frac{n}{2}-1} e^{-\frac{y}{2}} \quad \text{for } x \in \mathbb{R}, y > 0.$$

Take $V = \sqrt{\frac{Y}{n}}$. Then the inverse mapping is x = tv and $y = nv^2$. The Jacobian of the transformation is

$$J = \begin{vmatrix} v & t \\ 0 & 2nv \end{vmatrix} = 2nv^2 > 0.$$

Thus, the JPDF of T and V is

$$f_{T,V}(t, v) = \frac{n^{\frac{n}{2}}}{2^{\frac{n-1}{2}}\sqrt{\pi}\Gamma(\frac{n}{2})}v^n e^{-\frac{1}{2}nv^2\left(1+\frac{t^2}{n}\right)}$$
 for $t \in \mathbb{R}, v > 0$.

Therefore, for $t \in \mathbb{R}$, the marginal PDF of T is

$$f_T(t) = \int_0^\infty f_{T,V}(t,v)dv$$

$$= \frac{n^{\frac{n}{2}}}{2^{\frac{n-1}{2}}\sqrt{n}\Gamma(\frac{n}{2})} \int_0^\infty v^n e^{-\frac{1}{2}nv^2\left(1 + \frac{t^2}{n}\right)} dv$$

$$= \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}.$$

Corollary .1. Let X_1, X_2, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ random variables. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Then

$$\sqrt{n} \, \frac{\overline{X} - \mu}{S} \sim t_{n-1},$$

where S is the positive square root of S^2 .

Proof: From Theorem .2, it is clear that $\sqrt{n} \frac{\overline{X} - \mu}{\sigma} \sim N(0, 1)$. Therefore,

$$\frac{\sqrt{n} \frac{\overline{X} - \mu}{\sigma}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} = \sqrt{n} \frac{\overline{X} - \mu}{S} \sim t_{n-1}.$$

Definition .2 (F-distribution). A CRV X is said to have a F-distribution with n and m degrees of freedom if the PDF of X is given by

$$f(x) = \frac{1}{B\left(\frac{n}{2}, \frac{m}{2}\right)} \left(\frac{n}{m}\right)^{\frac{n}{2}} x^{\frac{n}{2}-1} \left(1 + \frac{n}{m}x\right)^{-\frac{n+m}{2}} \qquad for \ x > 0.$$

We will use the notation $X \sim F_{n,m}$ to denote that the RV X has a F-distribution with n and m degrees of freedom.

Theorem .4. Let $X \sim \chi_n^2$ and $Y \sim \chi_m^2$ are two independent RVs. Then

$$F = \frac{X/n}{Y/m} = \frac{mX}{nY} \sim F_{n, m}.$$

Proof: The JPDF of X and Y is

$$f_{X,Y}(x,y) = \frac{1}{2^{\frac{m+n}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} x^{\frac{n}{2}-1} y^{\frac{m}{2}-1} e^{-\frac{1}{2}(x+y)} \quad \text{for } x > 0, y > 0.$$

Taking V=Y, the inverse transformation is $x=\frac{n}{m}fv$ and y=v. The Jacobian of the inverse transformation is

$$J = \begin{vmatrix} \frac{n}{m}v & \frac{n}{m}f\\ 0 & 1 \end{vmatrix} = \frac{n}{m}v > 0.$$

Thus, the JPDF of F and V is

$$f_{F,V}(f,v) = \frac{\left(\frac{n}{m}\right)^{\frac{n}{2}}}{2^{\frac{m+n}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} f^{\frac{n}{2}-1}v^{\frac{m+n}{2}-1}e^{-\frac{1}{2}(1+\frac{n}{m}f)v} \quad \text{for } f > 0, v > 0.$$

Therefore, for f > 0, the marginal PDF of F is

$$f_F(f) = \frac{\left(\frac{n}{m}\right)^{\frac{n}{2}}}{2^{\frac{m+n}{2}}\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} f^{\frac{n}{2}-1} \int_0^\infty v^{\frac{m+n}{2}-1} e^{-\frac{1}{2}(1+\frac{n}{m}f)v} dv$$

$$= \frac{\left(\frac{n}{m}\right)^{\frac{n}{2}}}{B\left(\frac{n}{2}, \frac{m}{2}\right)} f^{\frac{n}{2}-1} \left(1 + \frac{n}{m}f\right)^{\frac{n+m}{2}}.$$

Corollary .2. Let $X_1, X_2, ..., X_n \overset{i.i.d.}{\sim} N(\mu_1, \sigma_1^2)$ and $Y_1, Y_2, ..., Y_m \overset{i.i.d.}{\sim} N(\mu_2, \sigma_2^2)$. Also, assume that X_i 's and Y_j 's are independent. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \overline{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$, and $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2$. Then

$$\frac{\sigma_2^2 S_X^2}{\sigma_1^2 S_Y^2} \sim F_{n-1,m-1}.$$

Proof: The proof is straight forward from the Theorems .4 and .2.