强化学习从以上

1. (5 pts) In a finite state MDP (S, A, P, r, γ) , suppose every reward function r(s, a, s') is changed by an affine transformation to $a \cdot r(s, a, s') + b$, where a > 0. Show that the optimal policies remain unchanged.

廿元.

$$=\pi(s)$$

:在给这相目的始第咯的情况下,两种回报逐数下求详的最优第略相同

2. (10 pts) Recall the definition of the advantage function in Lecture 2:

$$g(\pi', \pi) = \mathcal{T}_{\pi'} v_{\pi} - v_{\pi},$$

where $\mathcal{T}_{\pi'}$ is the Bellman operator associated with the policy π' . Show that π^* is the optimal policy if and only if for any π there holds $g(\pi, \pi^*) \leq 0$ (elementwise).

¥π,5

$$g(z,z^*)(s) = \int_{z} V_{z^*}(s) - V_{z^*}(s)$$

= $\int_{z} V_{z^*}(s) - \int_{z^*} V_{z^*}(s)$

30. (elementwise)

: tx, g(z, z*) <0.

取工二工*为最优荣略

\$ so = argmax { Vz*(0- Vaa (5) }

Note 45, 2, 5.2. Vz* (5) > Vz(5)

Note || TVz*-TVza|| = argmax |TVz*(5)-Tvza(5)|

Note 丁为了一压缩算方

4. (5 pts) Present and prove a general policy improvement lemma that has been used in the proof of Theorem 1 (about the improvement of ϵ -greedy policy) in Lecture 4.

Present:
$$Q_{\pi}(s, \pi'(s)) \ni V_{\pi}(s) . \forall s =) V_{\pi'}(s) \ni V_{\pi}(s) \forall s$$

Proof: $Q_{\pi}(s, \pi'(s)) = \underset{\alpha \sim \pi}{E} . \{ q_{\pi}(s, \alpha) \}$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \forall \pi(s) \}$$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \forall \pi(s) \}$$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \underbrace{V_{\pi}(s)} \}$$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \underbrace{V_{\pi}(s)} \}$$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \underbrace{V_{\pi}(s)} \}$$

$$= \underset{\alpha \sim \pi'}{E} \underbrace{E} \{ r(s, \alpha, s) + 1 \underbrace{V_{\pi}(s)} \}$$

. - -

.. VT (8) > 97(5, T(5)) > VT(5).