# **Techno India NJR Institute of Technology**



# Course File Data Structures & Algorithm (3CS4- 05)

Akhilesh Deep Arya (Assistant Professor) **Department of CSE** 



# RAJASTHAN TECHNICAL UNIVERSITY, KOTA

# Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

# 3CS4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P Max. Marks: 150 (IA:30, ETE:120)

End Term Exam: 3 Hours

| SN | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.                                                                                                                                                                                                          |       |
| 2  | Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues.  Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list. | 10    |
| 3  | Searching Techniques: Sequential and binary search. Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.                                                                                                                                                                                                                                                                               | 7     |
| 4  | Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.                                                                                                                                                                                                                                               | 7     |
| 5  | Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms. Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.                                                                                                                                                                                  | 8     |
|    | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40    |

#### **Course Overview:**

Student will learn basics of DSA from this 40 hours course. They will be able to perform operations such as insertion, deletion and search, on linear and non linear data structures. Linear data structures covered under this course are array, stack, queue, double ended queue and linked list. In non linear data structure this course will cover trees and graphs. Student will learn and implement bubble, selection, insertion, quick and bucket sort algorithm using C programming language. This course will also cover the implementation of linear search, binary search and hashing techniques using C Language.

DSA is the basic requirement for the job role of software developer in the companies like TCS, Infosys etc. Most of the questions asked during the placement drive for the IT Company are created from this subject. Student should learn and develop problem solving abilities using DSA in order to get a good job in IT company.

#### **Course Outcomes:**

| CO. NO. | <b>Cognitive Level</b> | Course Outcome                                                                                                                                                                                                                                                             |
|---------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Synthesis              | Student will be able to design algorithms and convert those algorithms into a C language code to perform push and pop operation on stack data structure. Students also develop an ability to perform recursion and apply them to the tower of Hanoi problem.               |
| 2       | Application            | Student will be able to design algorithms and convert those algorithms into a C language code to perform enqueu, dequeue and traversing operation on queue and Linked list data structure. Student will also able to list the advantages and disadvantages of Linked List. |
| 3       | Analysis               | Students will be able to write C code to implement Linear search, Binary Search, bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sort.                                                                             |
| 4       | Application            | Students will be able to write C programming code to create binary tree and implement pre, post and in order traversing on the tree data structure.                                                                                                                        |
| 5       | Application            | Students will be able to write C programming code to implement Hashing. He should be able to perform breadth and depth first search operations on Graph data structure.                                                                                                    |

## **Prerequisites:**

- 1. Fundamentals of C programming.
- 2. Students should be efficient in writing code using looping statements.
- 3. Students should be able to perform insertion and deletion operations on array.
- 4. Students should be able to implement structures using pointers in C programming.

# **Course Outcome Mapping with Program Outcome:**

| Course<br>Outcome |                                                              | Program Outcomes (PO's)                            |   |   |   |   |   |   |   |   |   |   | PSOs             |                  |      |
|-------------------|--------------------------------------------------------------|----------------------------------------------------|---|---|---|---|---|---|---|---|---|---|------------------|------------------|------|
| CO. NO.           | Do                                                           | Domain Specific (PO) Domain Independent (PO)       |   |   |   |   |   |   |   |   |   |   | 1308             |                  |      |
|                   | PO1                                                          | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 |   |   |   |   |   |   |   |   |   |   | PSO <sub>1</sub> | PSO <sub>2</sub> | PSO3 |
| CO1               | 3                                                            | 2                                                  | - | 2 | - | - | - | - | - | - | - | 1 | 1                | 1                | -    |
| CO2               | 3                                                            | 3                                                  | 1 | 2 | 1 | - | - | - | - | - | - | 1 | 1                | 1                | -    |
| CO3               | 3                                                            | 2                                                  | 1 | 2 | 1 | - | - | - | - | - | - | 1 | 1                | 1                | -    |
| CO4               | 3                                                            | 2                                                  | 1 | 2 | 1 | 1 | - | - | - | - | - | 1 | 1                | 1                | -    |
| CO5               | 3                                                            | 2                                                  | 2 | 2 | 1 | 1 | - | - | - | - | 1 | 1 | 1                | 1                | -    |
| 1: Slight (Lo     | 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High) |                                                    |   |   |   |   |   |   |   |   |   |   |                  |                  |      |

# **Course Coverage Module Wise:**

| Lect. No. | Unit | Торіс                                                                           |
|-----------|------|---------------------------------------------------------------------------------|
| 1         | 1    | Stacks: Introduction and real world examples                                    |
| 2         | 1    | Student should be able to write algorithm for stack push and pop operations     |
| 3         | 1    | Student should be able to write functions in C programming to perform push,     |
|           |      | pop, peak and display operation on stack                                        |
| 4         | 1    | Student should be able to write C program to reverse a string using stack data  |
|           |      | structure                                                                       |
| 5         | 1    | Student should be able to write C program to check balanced parenthesizing      |
|           |      | using stack data structure                                                      |
| 6         | 1    | Student should be able to design an algorithm, also can write a C programming   |
|           |      | code to convert infix expression into postfix expression                        |
| 7         | 1    | Student should be able to write a C code to evaluate postfix expression using   |
|           |      | stack data structure                                                            |
| 8         | 1    | Student should write a recursive code using C programming to solve Towers       |
|           |      | of Hanoi, having 'n' number of rings                                            |
| 9         | 2    | Queues: Introductions and real world examples                                   |
| 10        | 2    | Student should be able to write algorithm for enqueue and dequeue operations    |
|           |      | on queue data structures                                                        |
| 11        | 2    | Students should be able to write C code to implement queue operations using     |
|           |      | stack.                                                                          |
| 12        | 2    | Students should be able to write C code for Round Robin Algorithm using         |
|           |      | Queue data structure                                                            |
| 13        | 2    | Students should be able to write C code to implement enqueue and dequeue        |
|           |      | operations on double ended queue                                                |
| 14        | 2    | Linked Lists: Introduction and real world examples                              |
| 15        | 2    | Student should be able to write C code for creating a singly linked list and to |
|           |      | implement insertion and deletion operations on it                               |
| 16        | 2    | Student should be able to implement stacks using linked list                    |

| 17 2 Student should be able to implement Queue using linked list 18 2 Student should be able to write C code to implement Circular Queue using linked list 19 2 Student should be able to write a C code to reverse a singly linked list without creating additional spaces 20 2 Student should be able to write C code for creating a doubly linked list and to implement insertion and deletion operations on it 21 3 Scarching Techniques: Sequential and binary search 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation of Tree 31 4 Student should be able to write C code to create a binary tree using linked representation of Tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 5 Student should be able to write C code to implement Binary tree and a B+ tree 35 4 Student should be able to write C code to implement Binary tree and a B+ tree 36 5 Graphs: Basic concepts, Different representations of Graphs 37 4 Students should be able to reate a threaded binary tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Dijkstra's shor |    |   |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----------------------------------------------------------------------------------|
| linked list   Student should be able to write a C code to reverse a singly linked list without creating additional spaces   20   2   Student should be able write C code for creating a doubly linked list and to implement insertion and deletion operations on it     21   3   Scarching Techniques: Sequential and binary search     22   3   Student should be able to write C code for linear search and binary search     23   3   Student should be able to write C code to implement bubble sort     24   3   Student should be able to write C code to implement selection sort and insertion sort     25   3   Student should be able to write C code to implement Quick sort considering pivot element at the end of the array     26   3   Student should be able to write C code to implement Heap sort using divide and conquer method     27   3   Student should be able to write C code to implement Merge sort using divide and conquer method     28   3   Student should be able to write C code for counting sort algorithm     29   4   Trees: Definition of tree, Properties of tree, array and linked representation of Tree     30   4   Student should be able to write C code to create a binary tree using linked representation of Tree     31   4   Student should be able to write C code to create a binary tree using linked representation     31   4   Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree     32   4   Student should be able to write C code to implement Binary Tree     33   4   Student should be able to write C code to implement Binary tree     35   4   Student should be able to write C code to implement Binary Tree     36   4   Student should be able to write C code to implement Binary tree     37   4   Student should be able to write C code to implement Binary tree     38   5   Graphs: Basic concepts, Different representations of Graphs     39   5   Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given s   | 17 | 2 | Student should be able to implement Queue using linked list                      |
| 20 Student should be able to write a C code to reverse a singly linked list without creating additional spaces 20 2 Student should be able write C code for creating a doubly linked list and to implement insertion and deletion operations on it 21 3 Searching Techniques: Sequential and binary search 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement bubble sort 25 3 Student should be able to write C code to implement Selection sort and insertion sort 26 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation of Tree 31 4 Student should be able to write C code to create a binary tree using linked representation 32 4 Student should be able to write C code to create a binary tree using linked nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 34 5 Student should be able to write C code to implement Binary Tree 35 4 Student should be able to write C code to implement Binary Tree and a B+ tree 36 4 Student should be able to write C code to implement Binary tree and a B+ tree 37 5 5 Student should be able to write C code to implement Binary tree and a B+ tree 38 6 6 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set | 18 | 2 | Student should be able to write C code to implement Circular Queue using         |
| creating additional spaces  20 2 Student should be able write C code for creating a doubly linked list and to implement insertion and deletion operations on it  21 3 Searching Techniques: Sequential and binary search 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation of Tree 31 4 Student should be able to write C code to create a binary tree using linked representation of the pre, post and, inorder traversal of binary tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 5 Student should be able to write C code to implement Binary Tree 35 4 Student should be able to write C code to implement Binary Tree 36 4 Student should be able to write C code to implement Binary tree and a B+ tree 37 4 Student should be able to write C code to implement Binary Tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 40 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                        |    |   | linked list                                                                      |
| 20 2 Student should be able write C code for creating a doubly linked list and to implement insertion and deletion operations on it  21 3 Searching Techniques: Sequential and binary search 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to list the difference between a binary tree and a B+ tree 35 4 Student should be able to write C code to implement Binary Tree 36 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree also list the advantages of balanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortes | 19 | 2 | Student should be able to write a C code to reverse a singly linked list without |
| implement insertion and deletion operations on it  21 3 Searching Techniques: Sequential and binary search 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write C code to create a binary tree using linked representation 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 34 5 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to wri |    |   | creating additional spaces                                                       |
| 21         3         Searching Techniques: Sequential and binary search           22         3         Student should be able to write C code for linear search and binary search           23         3         Student should be able to write C code to implement bubble sort           24         3         Student should be able to write C code to implement selection sort and insertion sort           25         3         Student should be able to write C code to implement Heap sort using divide and conquer method           26         3         Student should be able to write C code to implement Merge sort using divide and conquer method           27         3         Student should be able to write C code for counting sort algorithm           28         3         Student should be able to write C code for counting sort algorithm           29         4         Trees: Definition of tree, Properties of tree, array and linked representation of Tree           30         4         Student should be able to write C code to create a binary tree using linked representation           31         4         Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree           32         4         Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree           33         4         Student should be able to write C code to implement Binary Tree <td>20</td> <td>2</td> <td>Student should be able write C code for creating a doubly linked list and to</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | 2 | Student should be able write C code for creating a doubly linked list and to     |
| 22 3 Student should be able to write C code for linear search and binary search 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write C code to create a binary tree using linked representation 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 34 4 Student should be able to write C code to implement Binary Tree 35 4 Student should be able to write C code to implement Binary tree and a B+ tree 36 5 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 37 4 Students should be able to write the advantages of balanced tree also list the advantages of balanced tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                           |    |   | implement insertion and deletion operations on it                                |
| 23 3 Student should be able to write C code to implement bubble sort 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 5 Student should be able to write C code to implement Binary Tree 35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Students should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Students should be able to create a threaded binary tree using 37 4 Students should be able to recate a threaded binary tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                   | 21 | 3 | Searching Techniques: Sequential and binary search                               |
| 24 3 Student should be able to write C code to implement selection sort and insertion sort 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write C code to create a binary tree using linked representation 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 5 Student should be able to list the difference between a binary tree and a B+ tree 35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree 37 5 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                            | 22 | 3 | · ·                                                                              |
| insertion sort  Student should be able to write C code to implement Quick sort considering pivot element at the end of the array  Student should be able to write C code to implement Heap sort using divide and conquer method  Student should be able to write C code to implement Merge sort using divide and conquer method  Student should be able to write C code to implement Merge sort using divide and conquer method  Student should be able to write C code for counting sort algorithm  Trees: Definition of tree, Properties of tree, array and linked representation of Tree  Student should be able to write C code to create a binary tree using linked representation  Student should be able to write C code to create a binary tree using linked representation of tree, properties of tree, array and linked representation  Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  Student should be able to list the difference between a binary tree and a B+ tree  Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  Student should be able to create a threaded binary tree using  Student should be able to create a threaded binary tree using  Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                          | 23 | 3 |                                                                                  |
| 25 3 Student should be able to write C code to implement Quick sort considering pivot element at the end of the array  26 3 Student should be able to write C code to implement Heap sort using divide and conquer method  27 3 Student should be able to write C code to implement Merge sort using divide and conquer method  28 3 Student should be able to write C code for counting sort algorithm  29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree  30 4 Student should be able to write C code to create a binary tree using linked representation  31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree  32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  33 4 Student should be able to write C code to implement Binary Tree  34 4 Student should be able to list the difference between a binary tree and a B+ tree  35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  36 4 Student should be able to create a threaded binary tree using  37 4 Student should be able to create a threaded binary tree using  38 5 Graphs: Basic concepts, Different representations of Graphs  39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24 | 3 | Student should be able to write C code to implement selection sort and           |
| pivot element at the end of the array  26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |                                                                                  |
| 26 3 Student should be able to write C code to implement Heap sort using divide and conquer method 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write C code to create a binary tree using linked representation 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 4 Student should be able to write C code to implement Binary Tree 35 4 Student should be able to list the difference between a binary tree and a B+ tree 36 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree also list the advantages of balanced tree also list the advantages of balanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 | 3 | Student should be able to write C code to implement Quick sort considering       |
| and conquer method  27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |   |                                                                                  |
| 27 3 Student should be able to write C code to implement Merge sort using divide and conquer method 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 4 Students should be able to list the difference between a binary tree and a B+ tree 35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Student should be able to create a threaded binary tree using 37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26 | 3 | Student should be able to write C code to implement Heap sort using divide       |
| and conquer method  28 3 Student should be able to write C code for counting sort algorithm  29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree  30 4 Student should be able to write C code to create a binary tree using linked representation  31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree  32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  33 4 Student should be able to write C code to implement Binary Tree  34 4 Student should be able to list the difference between a binary tree and a B+ tree  35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  36 4 Student should be able to create a threaded binary tree using  37 4 Student should be able to create a threaded binary tree using totations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs  39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   | 1                                                                                |
| 28 3 Student should be able to write C code for counting sort algorithm 29 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree 30 4 Student should be able to write C code to create a binary tree using linked representation 31 4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree 33 4 Student should be able to write C code to implement Binary Tree 34 5 Students should be able to list the difference between a binary tree and a B+ tree 35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree 36 4 Student should be able to create a threaded binary tree using 37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree 38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 | 3 | Student should be able to write C code to implement Merge sort using divide      |
| 4 Trees: Definition of tree, Properties of tree, array and linked representation of Tree  30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |                                                                                  |
| representation of Tree  30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 | 3 | Student should be able to write C code for counting sort algorithm               |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 | 4 | Trees: Definition of tree, Properties of tree, array and linked                  |
| representation  4 Student should be able to write recursive functions in C programming for the pre, post and, inorder traversal of binary tree  32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  33 4 Student should be able to write C code to implement Binary Tree  34 4 Students should be able to list the difference between a binary tree and a B+ tree  35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  36 4 Students should be able to create a threaded binary tree using  37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs  39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |   | *                                                                                |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 | 4 |                                                                                  |
| pre, post and, inorder traversal of binary tree  32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |                                                                                  |
| 32 4 Student should be able to write C code to count num of nodes, num of leaf nodes and internal nodes in a binary tree  33 4 Student should be able to write C code to implement Binary Tree  34 5 Students should be able to list the difference between a binary tree and a B+ tree  35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  36 4 Students should be able to create a threaded binary tree using  37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs  39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 | 4 |                                                                                  |
| nodes and internal nodes in a binary tree  33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |   |                                                                                  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 | 4 |                                                                                  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |   | •                                                                                |
| tree  35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 4 |                                                                                  |
| 35 4 Student should be able to write the advantages of balanced tree also list the advantages of balanced tree  36 4 Students should be able to create a threaded binary tree using  37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs  39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34 | 4 | Students should be able to list the difference between a binary tree and a B+    |
| advantages of balanced tree  36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |                                                                                  |
| 36 4 Students should be able to create a threaded binary tree using 37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35 | 4 | _                                                                                |
| 37 4 Student should be able to balance an unbalanced tree using the concepts and rotations explained in the AVL tree  38 5 Graphs: Basic concepts, Different representations of Graphs 39 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements 40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements 41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |   |                                                                                  |
| rotations explained in the AVL tree  38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |   |                                                                                  |
| 385Graphs: Basic concepts, Different representations of Graphs395Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements405Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements415Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 | 4 | 9 •                                                                              |
| 5 Student should be able to write Graph Traversals (BFS & DFS) algorithm and can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |   |                                                                                  |
| can perform it on the given set of elements  40 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |   |                                                                                  |
| 5 Student should be able to write Minimum Spanning Tree (Prims & Kruskal) algorithm and implement the same on the given set of elements  41 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 | 5 |                                                                                  |
| algorithm and implement the same on the given set of elements  Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |                                                                                  |
| 5 Student should be able to write Dijkstra's shortest path algorithm and drive the shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 5 |                                                                                  |
| shortest path from the graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |   |                                                                                  |
| 1 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41 | 5 | y ± ±                                                                            |
| 42   5   Student should be able to write C code to implement Hashing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _ | 1 0 1                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42 | 5 | Student should be able to write C code to implement Hashing                      |

#### **TEXT/REFERENCE BOOKS**

- 1. Data structures, Schaum Series, S. Lipshutz
- 2. Data Structures in C, Reema Thareja, Oxford University Press
- 3. An introduction to data structures with applications By Jean-Paul Tremblay, P. G. Sorenson, TMH
- 4. Data Structures in C, Tanenbaum, Pearson

#### **Course Level Problems (Test Items):**

| CO.NO. | Problem description                                                                                                                                                                                                                                                                                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | A. Write an algorithm to perform push and pop operation on stack.  B. Write a program to reverse a string using stack.                                                                                                                                                                                                                                    |
| 2      | <ul> <li>C. Write a recursive function in C to solve tower of Hanoi problem.</li> <li>A. Write a C program to perform enqueue and dequeue operations in queue.</li> <li>B. Write a C program to implement round robin scheduling algorithm.</li> <li>C. Write an algorithm to insert and delete elements from various locations of Linked List</li> </ul> |
| 3      | <ul> <li>A. Write an algorithm of binary search.</li> <li>B. Write a C program to implement Bubble sort.</li> <li>C. Write a C program to implement Selection Sort.</li> <li>D. Write an algorithm of quick sort.</li> </ul>                                                                                                                              |
| 4      | <ul> <li>A. Write a C program to implement binary tree.</li> <li>B. Write a C program to traverse binary tree.</li> <li>C. Explain the balance factor of tree and draw a balanced AVL tree using the data given.</li> </ul>                                                                                                                               |
| 5      | <ul><li>A. Write an algorithm for breadth first search and depth first search.</li><li>B. Find minimum spanning tree using Prim's algorithm</li><li>C. Write a C program to implement the concept of Hashing.</li></ul>                                                                                                                                   |

# **Assessment Methodology:**

- 1. Online quiz on kahoot after every module completion.
- 2. Practical exam in lab where they have to write code on C compiler for the given problem statement. (Once in a week)
- 3. Assignments one from each unit.
- 4. Midterm subjective paper where they have to write algorithms to perform different operations on different data structures as mentioned in the modules. (Twice during the semester)
- 5. Final paper at the end of the semester subjective.

# Teaching and Learning resources unit-wise:

# Unit-1

Stack implementation and application of stack.

# Video Tutorials:

- 1. <a href="https://youtu.be/a32\_3hiZCU0">https://youtu.be/a32\_3hiZCU0</a>
- 2. https://youtu.be/SBy-OVSOOjQ
- 3. <a href="https://youtu.be/wKi0y-9RNRs">https://youtu.be/wKi0y-9RNRs</a>
- 4. https://youtu.be/dO9HBypj6I8
- 5. https://youtu.be/77OVgLg8KZ0
- 6. <a href="https://youtu.be/8C1hMq2Ult0">https://youtu.be/8C1hMq2Ult0</a>
- 7. <a href="https://youtu.be/ANrDqsSbRIU">https://youtu.be/ANrDqsSbRIU</a>

Theory concepts: https://www.geeksforgeeks.org/stack-data-structure/

Sample Quiz: <a href="https://www.geeksforgeeks.org/data-structure-gq/stack-gq/">https://www.geeksforgeeks.org/data-structure-gq/stack-gq/</a>

NPTEL Course:

#### A. Queue implementation and applications of queue

#### Video Tutorials:

- 1. <a href="https://youtu.be/gXRZWcaL-l0">https://youtu.be/gXRZWcaL-l0</a>
- 2. https://youtu.be/b7pb 8JsrpM
- 3. https://youtu.be/7cQ2jP5Kesc
- 4. <a href="https://youtu.be/3Pv644T5Z3o">https://youtu.be/3Pv644T5Z3o</a>
- 5. https://youtu.be/FHjBJS171Qc
- 6. https://youtu.be/3yJ-THK0i5o
- 7. https://youtu.be/-KCYLW15UxE
- 8. https://youtu.be/ hcjDuq3Ta4
- 9. https://youtu.be/uwO8sN0RZeE
- 10. https://youtu.be/iqZZ2n4PhuM
- 11. https://youtu.be/TpqgFxbIgqU
- 12. https://youtu.be/FPLxtiSEAYY
- 13. https://youtu.be/-VKPDdoJKpk
- 14. https://youtu.be/woCh6On-f6Y
- 15. https://youtu.be/iN1lLROajJM
- 16. https://youtu.be/ 3tWGnknhkM
- 17. https://youtu.be/axoSzZIeeTw
- 18. https://youtu.be/EY3Xftmh-fk
- 19. https://youtu.be/StwLOLAjX2Q
- 20. https://youtu.be/ohaSrCKyCb8
- 21. https://youtu.be/qb9e5g EgFY

Theory concepts: https://www.geeksforgeeks.org/queue-data-structure/

Sample Quiz: https://www.geeksforgeeks.org/data-structure-gq/queue-gq/

B. Linked list implementation and various operations on linked list

Video Tutorials: https://www.voutube.com/watch?v=a32 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/data-structures/linked-list/">https://www.geeksforgeeks.org/data-structures/linked-list/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/data-structure-gq/linked-list-gq/">https://www.geeksforgeeks.org/data-structure-gq/linked-list-gq/</a>

#### NPTEL Course:

#### A. Linear and binary search

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/searching-algorithms/">https://www.geeksforgeeks.org/searching-algorithms/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/algorithms-gg/searching-gg/">https://www.geeksforgeeks.org/algorithms-gg/searching-gg/</a>

#### B. Sorting techniques

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/sorting-algorithms/">https://www.geeksforgeeks.org/sorting-algorithms/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/algorithms-gq/searching-and-sorting-gq/">https://www.geeksforgeeks.org/algorithms-gq/searching-and-sorting-gq/</a>

#### NPTEL Course:

#### A. Fundamentals of Trees

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: https://www.geeksforgeeks.org/binary-tree-data-structure/

Sample Quiz: <a href="https://www.geeksforgeeks.org/data-structure-gq/binary-trees-gq/">https://www.geeksforgeeks.org/data-structure-gq/binary-trees-gq/</a>

#### B. Binary search tree implementation

Video Tutorials: https://www.youtube.com/watch?v=a32 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/binary-search-tree-data-structure/">https://www.geeksforgeeks.org/binary-search-tree-data-structure/</a>

Sample Quiz: https://www.geeksforgeeks.org/data-structure-gq/binary-search-trees-gq/

#### C. B+ Trees

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/introduction-of-b-tree/">https://www.geeksforgeeks.org/introduction-of-b-tree/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/introduction-of-b-tree/">https://www.geeksforgeeks.org/introduction-of-b-tree/</a>

#### D. AVL Tree

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: https://www.geeksforgeeks.org/avl-tree-set-1-insertion/

Sample Quiz: <a href="https://www.geeksforgeeks.org/avl-tree-set-2-deletion/">https://www.geeksforgeeks.org/avl-tree-set-2-deletion/</a>

#### NPTEL Course:

#### A. Graph

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/">https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/data-structure-gq/graph-gq/">https://www.geeksforgeeks.org/data-structure-gq/graph-gq/</a>

#### B. Hashing

Video Tutorials: <a href="https://www.youtube.com/watch?v=a32">https://www.youtube.com/watch?v=a32</a> 3hiZCU0&t=73s

Theory concepts: <a href="https://www.geeksforgeeks.org/hashing-data-structure/">https://www.geeksforgeeks.org/hashing-data-structure/</a>

Sample Quiz: <a href="https://www.geeksforgeeks.org/data-structure-gq/hash-gq/">https://www.geeksforgeeks.org/data-structure-gq/hash-gq/</a>

#### NPTEL Course:

## **Previous Year Question Papers:**

Total No. of Pages: 03 Total No. of Questions: 25 Roll No.

# B.Tech. III-Sem. (Main/Back) Exam Jan. 2019 Computer Science Engineering 3CSU02 Data Structures and Algorithms 3EU3022

Time: 3 Hours

Maximum Marks: 100 Min. Passing marks: 33

Instructions to candidates: -

PART A: Short answer questions (up to 25 words) 10 x 2 marks = 20 marks. All ten questions are compulsory.

PART B: Analytical Problem Solving questions (up to 100 words) 6 x 5 marks = 30 marks. Candidates have to answer six questions out of eight.

PART C: Descriptive Analytical Problem solving questions 5 x 10 marks = 50 marks. Candidates have to answer five questions out of seven.

#### PART A

- Q. L. Why we need to do algorithm analysis?

Write the name of an algorithm which can be used as a single source single destination shortest path algirithm.

- Q.4 Give Comparision between tree and graph?
- Q.5 Define Spanning tree. What is MST?
- Q.6 Which data structures are used for BFS and DFS of a graph?

  Q.7 What are linear and non-linear data structures?
- Q.8 What is linked list? What are its types?

· das

- Q.9 Explain the advantages of Binary search over linear search?
- Q.10 How is an array different from Linked list?

### PART B

- Q.1 Write the following infix expressions in their postfix and prefix forms:
- (a) D-B+C
- (b) (A+B)\*C-D\*F+C
- Q.2 What is queue? How it is different from stack and how is it implemented?
- Q.3) Create lexically ordered Binary Search Tree for the following:-

JAN, FEB, MAR, APR, MAY, JUNE, JULY, AUG, SEPT, OCT, NOV, DEC.

- Q4 Write the essantial differences between complete binary tree and strict binary tree?
- Q.5 Calculate the address of the element A[3,2] using row major order for an array A[1..5, 1..5] of elements. It is stored at location 2033 and the size of each element is 3 Bytes. http://www.rtuonline.com
- Q.6 How insertion and selection sorts are different? Explain.
- Q.7 What is the value of the following postfix expression:

Q.8 What is asymptotic analysis of an algorithm? What are asymptotic notations?

#### PART C

- Q.1 Create the AVL tree.
- 21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7.
- Q2 Write an algorithms for inserting a node and deleting a node from a doubly linked list? What are the advantages of doubly linked list over singly linked list?
- Q3 Define AVL tree? Discuss the term "Balance factor". Explain the various rotations of AVL tree?

- Q.4 Analyze the running time for merge sort algorithm. Argye upon its wrost case, best caseand average case running time.
- Q.5 Write shote note (any two) :-
- (i) Heap sort
- (ii) B- tree
- (jii) Tree traversal techniues
- Q.6 What are the various ways to represeant a graph? Find the following two for the graph given below in Q.7:
- (i) Adjacency list representation
- (ii) Adjacency matric representation
- Q71\sing prim's and kniskal's algorithm, find the minimum spanning tree for the following graph? What is the weight of a minimum spanning tree of the following graph?

My



3E1138

Roll No.

Total No of Pages: 4

# 3E1138

B. Tech. III - Sem. (Main / Back) Exam., Dec. 2019 PCC Computer Science & Engineering 3CS4-05 Data Structures and Algorithms CS, IT

Time: 3 Hours

Maximum Marks: 120

Instructions to Candidates:

Attempt all ten questions from Part A, five questions out of seven questions from Part B and four questions out of five from Part C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly. Units of quantities used/calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No. 205)

1. NIL

2. NIL

# PART - A

(Answer should be given up to 25 words only)

 $[10 \times 2 = 20]$ 

# All questions are compulsory

- Q.1 Define data structure. Mention any two applications of data structures.
- Q.2 Mention the purpose of B+ Trees.
- Q.4 What is meant by abstract data type?
- 6.5 What are the applications of stack?
- Q.6 What do you mean by circular linked list?

[3E1138] Page 1 of 4 [4940]

| Q.7         | Compare graph ar                           | nd tree. |       |       |        |               |             |        |                            |                |  |
|-------------|--------------------------------------------|----------|-------|-------|--------|---------------|-------------|--------|----------------------------|----------------|--|
| Q.8         | Differentiate betw                         | een lir  | ear a | nd no | n-lin  | ear da        | ıta stı     | uctur  | re.                        |                |  |
| Q.9         | What is a dequeue                          | e?       |       |       |        |               |             |        |                            |                |  |
| Q.io        | Define Hash func                           | tion.    |       |       |        |               |             |        |                            |                |  |
|             | PART – B                                   |          |       |       |        |               |             |        |                            |                |  |
|             | (Analytical/Problem solving questions) [5> |          |       |       |        |               |             |        |                            |                |  |
| ,           | Attempt any five questions                 |          |       |       |        |               |             |        |                            |                |  |
| Q.1         | Difference between                         | en lin   | ear q | ueue  | and    | circu         | lar q       | ueue.  | Also write the advan       | ntage and      |  |
| -           | disadvantage of c                          | ircular  | queu  | ie.   |        |               |             |        |                            | [8]            |  |
|             |                                            |          |       |       |        |               |             |        | in with suitable examp     | le. [8]        |  |
| Ø.3         | Convert followin                           | g expr   | essio | ns in | its eq | uival         | ent p       | ost fi | x expressions –            | [8]            |  |
|             | (i) A * (B + C                             | * D) +   | E     |       |        |               |             |        | ¥                          |                |  |
|             | (ii) A * B ^ C +                           | - D      |       |       |        |               |             |        |                            |                |  |
| 6.4         | Define Binary S                            | Search   | Tree  | . Wi  | rite a | lgori         | thm         | to in  | nplement insertion op      | eration on     |  |
|             | Binary search tre                          | ec.      |       |       |        |               |             |        |                            | [8]            |  |
| <b>Q</b> .5 | The in – order &                           | pre – o  | rder  | trave | rsal s | equer         | ice of      | node   | es in a binary tree are gi | iven below:    |  |
|             | In-order: E                                | Α        | C     | K     | F      | Н             | D           | В      | G                          |                |  |
|             | Pre-order: F                               | Α        | E     | K     | C      | D             | Н           | G      | В                          |                |  |
|             | Draw the binary                            | tree.    |       |       |        |               |             |        |                            | [8]            |  |
| Q.6         | What is a priority                         | y queu   | e? Ho | ow ca | n it b | e imp         | oleme       | ented  | ? Explain an application   | on of priority |  |
|             | queue.                                     |          |       |       |        |               |             |        |                            | [8]            |  |
| Q.7         | ) What is a Threa                          | nded B   | inary | Tre   | e? E:  | xplair        | n the       | adva   | entages of using a three   | eaded binary   |  |
|             | tree.                                      |          |       |       |        |               |             |        |                            | [8]            |  |
|             |                                            |          |       |       |        |               |             |        |                            | 100            |  |
| [3E         | 1138]                                      |          |       |       | Pa     | ge <b>2</b> ( | of <b>4</b> |        |                            | [4940]         |  |

#### mapara a a a a aomino.com

 $[4 \times 15 = 60]$ 

# PART - C

# (Descriptive/Analytical/Problem Solving/Design Questions)

# Attempt any four questions

Q.1 Create the linked list to represent the following polynomials –

$$\begin{array}{l}
5x^5 + 4x^4 + 6x^2 - 4 \\
8x^6 + 4x^4 + 3x^3 + 2x^2 + x
\end{array}$$

Write a function add () to add these polynomials and print the resultant linked list.

Q.2 Define a B-Tree. What are the application of B-Tree? Draw a B-Tree of order 4 (four) by insertion of the following keys in order:

- What is sorting? Write an algorithm to sort the real number using insertion sort and selection sort. What is the time complexity for both selection and insertion sort? [15]
- Q.4 (a) Define the spanning tree. Write the Prim's algorithm to find the minimum cost spanning tree of the following: http://www.rtuonline.com [8]



O (b) Describe the Dijkstra's algorithm for finding shortest path with help of suitable example.

[3E1138] Page 3 of 4 [4940]

| Ø.5 (a)          | What is AVL tree? Explain the balancing methods of AVL tree with  | an  |  |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
| •                | example.                                                          |     |  |  |  |  |  |  |  |
| $\bigcirc^{(p)}$ | What do you mean by hashing and collision? Discuss the advantages | and |  |  |  |  |  |  |  |
|                  | disadvantages of hashing over other searching techniques.         |     |  |  |  |  |  |  |  |
|                  |                                                                   |     |  |  |  |  |  |  |  |