Transformers: A Review, and Recent Developments in Vision

Anurag Arnab

Transformers

English German Translation quality

GNMT (RNN)

ConvS2S (CNN)

Machine translation

Machine translation

SliceNet (CNN)

Transformer

Image classification

Currently the leading model across a number of domains!

Outline

- What are Transformers?
- Transformers for Computer Vision:
 - Vision Transformers (ViT)
 - Video Vision Transfomers (ViViT)

Context

<u>Image credit</u>

Context

 "The animal didn't cross the street because it was too tired"

• What is "it"?

Try more examples here

Context

Attention and Transformers

- Attention is a method of gathering relevant contextual information
- The Transformer is a neural network layer that relies on attention
- In fact, state-of-the-art models across various domains consist

almost entirely of transformer layers.

What is Attention?

High-Level Overview

 Use machine translation as initial example, as this is what Transformers were initially developed for

High-Level Overview

Embed input into tokens (fixed dimensional vector)

Process with encoder layer

- Given an input sequence, X
- Project to Query, Key, Values using linear transforms.
- Head output = Softmax(QK^T)V

- Given an input sequence, X
- Project to Queries, Keys and Values using linear transforms.

$$\circ$$
 Q = W^QX, K = W^KX, V = W^VX

- Project to Queries, Keys and Values using linear transforms.
- Calculate a score: For each query, how relevant are all the other

- Project to Queries, Keys and Values using linear transforms.
- Calculate a score: For each query, how relevant are all the other words?

- Project to Queries, Keys and Values using linear transforms.
- Calculate a score
- Representation of each query token is attention-weighted sum of values.
 - \circ Z = Softmax(QK^T)V

Self-Attention in Detail: As a Matrix

Self-Attention in Detail: As a Matrix

Self-Attention in Detail: Multiple Heads

- Self-attention is permutation invariant!
 - Say input is [x1, x2, x3]. And output is [y1, y2, y3]
 - \circ If input is [x1, x3, x2]. Output is ...

- Self-attention is permutation invariant!
 - Say input is [x1, x2, x3]. And output is [y1, y2, y3]
 - If input is [x1, x3, x2]. Output is [y1, y3, y2]

- Self-attention is permutation invariant!
 - Say input is [x1, x2, x3]. And output is [y1, y2, y3]
 - \circ If input is [x1, x3, x2]. Output is [y1, y3, y2]
- But what if the ordering of the input vectors conveys information as well?
 - The position of a word in a sentence matters!
 - ""The man ate a fish" != "The fish ate a man"

- Self-attention is permutation invariant!
- Learned positional embedding
 - At the input, add a learned vector to each token
 - Representation of the token changes depending on its input position

- Self-attention is permutation invariant!
- Sinusoidal positional embedding

$$PE(i, \delta) = \begin{cases} \sin(\frac{i}{10000^{2\delta'/d}}) & \text{if } \delta = 2\delta' \\ \cos(\frac{i}{10000^{2\delta'/d}}) & \text{if } \delta = 2\delta' + 1 \end{cases}$$

Google Research

Figure credit

Putting it all together

Transformer of <u>Vaswani et al. Attention is all You Need</u>

Figure 1: Architecture of the standard Transformer (Vaswani et al., 2017)

Advantages of Transformers

- Great for modelling context
 - Each token can have access to all other tokens in the sequence
- A generic architecture:
 - Operates on any inputs that can be tokenized!
- Parallelizable
- Empirically shown to perform excellently at scale

Transformers at Scale

- Keep performing better with deeper models and more data
- Scaling laws for neural language models

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Weaknesses of Transformers

- Quadratic complexity
 - Each token attends to every other token
 - \circ N tokens \rightarrow N² operations
 - Prohibitive as the number of tokens increases!
- Most powerful language models are extremely expensive
- Large body of work on more efficient transformers. <u>Good survey</u>
 <u>paper</u>
- Transformers can overfit easily on smaller datasets

Going beyond language

- Transformers are the state-of-the-art in language processing
- Lot of data available for language
- Can transformers be adapted for other domains (ie Computer Vision)?

Transformers and Computer Vision

- CNNs are the architecture of choice in Vision
- Transformers are the architecture of choice in NLP

Transformers and Computer Vision

- CNNs are the architecture of choice in Vision
- Transformers are the architecture of choice in NLP
- Numerous attempts to incorporate self-attention into CNNs:
 - Wang CVPR 2018, Bello ICCV 2019, Huang ICCV 2019, Carion ECCV 2020
- Or to replace convolutions entirely with self-attention
 - o Parmar ICML 2018, Ramachandran NeurIPS 2019

Vision Transformers

An Image is Worth 16x16 Words

Vision Transformer Models

Model	Layers	${\it Hidden size } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Notation e.g. ViT-L/16

Vision Transformers are effective at scale

- Transformers have less inductive biases then Convolutional Networks (ie translational equivariance)
- So they need more data to train

Vision Transformers are effective at scale

 Transformers, are however, able to take advantage of large-scale data better than CNNs can

And are more compute-efficient too in terms of computation to reach

accuracy.

Vision Transformers

- A paradigm shift in Computer Vision
 - O Do we still need convolutional networks?
- A number of follow-ups:
 - More efficient
 - Other tasks like segmentation and detection
 - [Pyramid ViT], [Swin Transformer], [mViT]

Vision Transformers for Video

- ViViT: A Video Vision Transformer
- To handle large number of tokens, explore more efficient factorised attention variants.
- Regularisation to train on comparatively small video datasets.

Input Encoding 1: Uniform Frame Sampling

- Sample frames, extract 2D patches and linearly project (as in ViT)
- Effectively consider a video as a "big image"

Input Encoding 2: Tubelet embedding

- Extract 3D tubelets to encode spatio-temporal "tubes" into tokens
- Temporal information included from the initial tokenisation stage.
- Works better when initialised appropriately.

ViViT: Joint Spatio-Temporal Attention

- Simply forward many spatio-temporal tokens through multiple transformer layers.
- Requires a lot of computation, and high-capacity means it can overfit easily on smaller datasets.

ViViT: Space/Time Factorisations

Alternative ways of mixing the temporal and spatial information Reduces complexity from $O((w * h)^2 + t^2)$ instead of $O((w*h*t)^2)$

ViViT Factorisations

Factorised encoder

 "Late fusion" of spatial and temporal information

Factorised self-attention

 Perform self-attention separately over space and time

Factorised dot-product

 Attention heads separated over space and time dimensions.

Model Variants

- Tokens fixed across models
- Unfactorised model works best on larger datasets (ie Kinetics), but

slowest.

Model Variants

Factorised encoder works best on smaller datasets (ie Epic Kitchens)
as it overfits less.

State-of-the-art Results on 5 Datasets

(a) Killetics 40	(a)	Kinetics	400
------------------	-----	-----------------	-----

Method	Top 1	Top 5	Views
blVNet [16]	73.5	91.2	Q -2
STM [30]	73.7	91.6	
TEA [39]	76.1	92.5	10×3
TSM-ResNeXt-101 [40]	76.3	_	_
I3D NL [72]	77.7	93.3	10×3
CorrNet-101 [67]	79.2	_	10×3
ip-CSN-152 [63]	79.2	93.8	10×3
LGD-3D R101 [48]	79.4	94.4	_
SlowFast R101-NL [18]	79.8	93.9	10×3
X3D-XXL [17]	80.4	94.6	10×3
TimeSformer-L [2]	80.7	94.7	1×3
ViViT-L/16x2	80.6	94.7	4×3
ViViT-L/16x2 320	81.3	94.7	4×3
Methods with large-scale pr	etraining	g	
ip-CSN-152 [63] (IG [41])	82.5	95.3	10×3
ViViT-L/16x2 (JFT)	82.8	95.5	4×3
ViViT-L/16x2 320 (JFT)	83.5	95.5	4×3
ViViT-H/16x2 (JFT)	84.8	95.8	4×3

(b) Kinetics 600

Method	Top 1	Top 5	Views
AttentionNAS [73]	79.8	94.4	-
LGD-3D R101 [48]	81.5	95.6	_
SlowFast R101-NL [18]	81.8	95.1	10×3
X3D-XL [17]	81.9	95.5	10×3
TimeSformer-HR [2]	82.4	96.0	-
ViViT-L/16x2	82.5	95.6	4×3
ViViT-L/16x2 320	83.0	95.7	4×3
ViViT-L/16x2 (JFT)	84.3	96.2	4×3
ViViT-H/16x2 (JFT)	85.8	96.5	4×3

	Top 1	Top 5
TSN [69]	25.3	50.1
TRN [83]	28.3	53.4
I3D [6]	29.5	56.1
blVNet [16]	31.4	59.3
AssembleNet-101 [51]	34.3	62.7
ViViT-L/16x2	38.0	64.9

(d) Epic Kitchens 100 Top 1 accuracy

Action	Verb	Noun	
33.2	60.2	46.0	
35.3	65.9	45.4	
36.7	66.0	47.2	
38.3	67.9	49.0	
38.5	65.6	50.0	
44.0	66.4	56.8	
	33.2 35.3 36.7 38.3 38.5	33.2 60.2 35.3 65.9 36.7 66.0 38.3 67.9 38.5 65.6	

(e) Something-Something v2

Method	Top 1	Top 5
TRN [83]	48.8	77.6
SlowFast [17, 77]	61.7	0-0
TimeSformer-HR [2]	62.5	_
TSM [40]	63.4	88.5
STM [30]	64.2	89.8
TEA [39]	65.1	-
blVNet [16]	65.2	90.3
ViViT-L/16x2 Fact. encoder	65.4	89.8

Regularisation

- Video datasets are not as large as ImageNet / ImageNet21k / JFT
 - Original ViT paper didn't get good performance on ImageNet.
- Strategies
 - Use pretrained image models from ImageNet-21K or JFT
 - For smaller datasets, we use further regularisation methods, inspired by <u>DelT</u>.

	Top-1 accuracy	
Random crop, flip, colour jitter	38.4	
+ Kinetics 400 initialisation	39.6	
+ Stochastic depth [28]	40.2	5.3% gain on
+ Random augment [10]	41.1	Epic Kitchens
+ Label smoothing [58]	43.1	
+ Mixup [79]	43.7	Google Research

Context: NLP vs Vision

Questions?

anurag.arnab@gmail.com

