Phylogenies derived from somatic mutations agree with physical topologies in *Eucalyptus*

Adam J Orr 1,2 Robert Lanfear 3 Reed Cartwright 1,2

¹School of Life Sciences, Arizona State University ²Biodesign Institute, Arizona State University

³College of Medicine, Biology and Environment, Australian National University

Introduction

- ► Somatic mutations are rare but sequencing errors are common, making somatic mutations difficult to detect.
- ▶ Little is known about the spread of somatic mutations, despite the key role they play in cancer development.
- ▶ If the pattern of mutations in the phylogeny matches the branching pattern of the plant, then plants can be used to easily validate somatic mutations.

Methods: Variant Detection

- ▶ 8 samples collected in triplicate
- ▶ Variants were removed if the genotypes of all replicates of a sample were not identical

Results: Variant Detection

Next steps: Reference Improvement

To improve resolution of short internodes, we attempt to modify the E. grandisgenome to make it more suitable for E. melliodora by:

- ▶ Aligning the reads to the *E. grandis* genome
- Creating a consensus sequence from this alignment
- ▶ Aligning the reads to this consensus to create a draft *E. melliodora* genome

Results: Reference Improvement

Alignment to the consensus sequence produces an alignment with higher overall quality scores than alignment to the *Eucalyptus grandis* reference.

The Choice of Mapper Affects Generated Reference Quality

Conclusions

- ▶ Phylogenies of somatic mutations within a *Eucalyptus* tree match the branching patterns of the tree using both a reference-based and a reference-free variant caller.
- Aligning reads to a close relative, obtaining a consensus sequence, then realigning to that consensus seems to improve alignment quality.
- ▶ The choice of aligner makes a difference.

Acknowledgements

This work is supported by grant NIH R01-HG007178.

cartwrig.ht/lab/ ajorr1@asu.edu