Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 07 - Support Vector Regression and Optimization Basics

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates for Gaussian and Laplacian (and Beta) priors, L_0 , L_1 and L_2 Regularization, Support Vector Regression
- 4 How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent
 Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality
 - SUR motwoles Duality (Kernelized representation)

 Equivalences Penalized regression 4 constrained
 regression

Support Vector Regression

One more formulation before we look at Tools of Optimization/duality

Support Vector Regression (SVR)

- Any point in the band (of ϵ) is not penalized. Thus the loss function is known as ϵ -insensitive loss

 Acknowledging that measurement
- Any point outside the band is penalized, and has slackness ξ_i or ξ_i^*
- The SVR model curve may not pass through any training point

In words: Give me a regression curve (in x) (so fail fix) = $W^T \phi(x) + b$ such that: Training Pto in an E-band around curve do not contribute to any loss (New part) @ Loss / Error contribution from pto outside the E-band 15 minimized (as E-50 problem lends to earlier problem) 3 so(w) is penalty (continued from before) We will formulat & solve SUR problem which as $\epsilon \rightarrow 0$ also helps solve problem of min level discussed in TUTORIAL 1

$$y_{i} > f(x_{i}) \text{ outside } \mathcal{E}_{i} = \max \left(y_{i} - f(x_{i}) - \mathcal{E}_{i}, 0 \right) = \max \left(e^{x} r_{i} - \mathcal{E}_{i}, 0 \right)$$

Then
$$\mathcal{E}_{i} = \max \left(f(x_{i}) - y_{i} - \mathcal{E}_{i}, 0 \right) = \max \left(-e^{x} r_{i} - \mathcal{E}_{i}, 0 \right)$$

The tolerance \mathcal{E}_{i} is fixed

It is desirable that $\forall i$: Constraints

$$y_{i} - \left(w^{q} \phi(x_{i}) + b \right) - \mathcal{E}_{i} \leq \mathcal{E}_{i}$$

O\leq \mathbb{E}_{i}

$$0 \leq \mathcal{E}_{i}$$

are the fixed of the point of the properties of the prope

E is a hyperparameter in as much as 1 was 1

- The tolerance ϵ is fixed
- It is desirable that $\forall i$:

•
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i$$

•
$$b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*$$

Prove: That &il so

Claim: If E.> 0 4 E:> 0. prove contradiction result (y:-ωτφ(x.)-6-ε ≤ξ; min (2;+2;) ② ω φ(x,) + b - y i) ∈ ≤ ξ... x K-E- &i = K7E 0< 4. Proof: 表フロヨロis an equality コドーモンロヨードーモベロ => 2= = o yields lower value of objective while also satisfying (2)

- 1-norm Error, and L_2 regularized:
 - $\min_{\mathbf{w},b,\xi_{i},\xi_{i}^{*}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i} + \xi_{i}^{*})$ s.t. $\forall i$, $y_{i} - \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - b \leq \epsilon + \xi_{i}$, $b + \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - y_{i} \leq \epsilon + \xi_{i}^{*}$, $\xi_{i}, \xi_{i}^{*} \geq 0$
- quadratic (oss: crior2) • 2-norm Error, and L_2 regularized: $\binom{m_1m_1cm_2}{m_1cm_2}$ min = ||w||2+C = (21+212) sit $y_i - \omega^T \phi(a_i) - b \le \varepsilon + \varepsilon_i$ 25. 25. ce $\varepsilon_i^2 \rightarrow \infty$ as $b \ne \omega^T \phi(a_i) - y_i \le \varepsilon + \varepsilon_i^T$ 25. ce $\varepsilon_i^2 \rightarrow -\infty$, $\varepsilon_i > 0$

- 1-norm Error, and L₂ regularized:
 - $\min_{\mathbf{w},b,\xi_i,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$ s.t. $\forall i$. $\mathbf{y}_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i$ $b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - \mathbf{y}_i < \epsilon + \xi_i^*$ $\xi_i, \xi_i^* \geq 0$
- 2-norm Error, and L_2 regularized:
- $\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ Is satisfied for ξ_i .

 $\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ Is also satisfied for ξ_i .

 $\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ Then f is also satisfied for ξ_i .

 f is also satisfied for f is also satisfied f is also satisfied f.

 f is also satisfied f is also satisfied f is also satisfied f is also satisfied f.

 f is also satisfied f is all f is also satisfied f is also satis

Need for Optimization so far

Unconstrained (Penalized) Optimization:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \Omega(\mathbf{w})$$

Constrained Optimization 1:

$$\mathbf{w}_{Reg} = \mathop{
m arg\ min}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

• Constrained Optimization 2 (t = 1 or 2):

$$\underset{\mathbf{w},b,\xi_{i},\xi_{i}^{*}}{\min} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i}^{t} + \xi_{i}^{*t})$$

s.t.
$$\forall i, y_i - w^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i; b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*$$

- Equivalence: λ (Penalized) $\equiv \theta$ (Constrained)
- **Duality**: Dual of Support Vector Regression

Solving Unconstrained Minimization Problem

- Intuitively: Minimize by setting derivative (gradient) to 0 and hoping to find closed form solution.
- When is such a solution a global minimum?
- For most optimization problems, finding closed form solutions is difficult. Even for linear regression (for which closed form solution exists), are there alternative methods?
 - Eg: Consider, $\mathbf{y} = \Phi \mathbf{w}$,where Φ is a matrix with full column rank, the least squares solution, $\mathbf{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$. Now, imagine that Φ is a very large matrix. with say, 100,000 columns and 1,000,000 rows. Computation of closed form solution might be challenging.
- How about iterative methods?

• 1-norm Error, and L_2 regularized:

•
$$\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$$

s.t. $\forall i$,
 $y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon + \xi_i$,
 $b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \le \epsilon + \xi_i^*$,
 $\xi_i, \xi_i^* \ge 0$

- 2-norm Error, and L_2 regularized:
 - $\min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ s.t. $\forall i$, $y_i - \mathbf{w}^\top \phi(x_i) - b \le \epsilon + \xi_i$, $b + \mathbf{w}^\top \phi(x_i) - y_i \le \epsilon + \xi_i^*$
 - Here, the constraints $\xi_i, \xi_i^* \geq 0$ are not necessary

Need for Optimization so far

Unconstrained (Penalized) Optimization:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg min}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \Omega(\mathbf{w})$$

• Constrained Optimization 1:

$$\mathbf{w}_{Reg} = \mathop{
m arg\ min}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq heta$

• Constrained Optimization 2 (t = 1 or 2):

$$\underset{\mathbf{w},b,\xi_{i},\xi_{i}^{*}}{\min} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i} (\xi_{i}^{t} + \xi_{i}^{*t})$$

s.t.
$$\forall i, y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon + \xi_i; b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \le \epsilon + \xi_i^*$$

- Equivalence: λ (Penalized) $\equiv \theta$ (Constrained)
- **Duality**: Dual of Support Vector Regression

