本试卷适用范围

南京农业大学试题纸

2018-2019 学年 第一学期 课程类型:必修√、选修 卷 类: A、B√

保在		化字			字号	y	生名	 -		
_,	选择	题 (每小匙	返2分,去	t 40 分)i	青将选择是	遵答案填在	下列表格	中!		
1,		2.	3,	4.	5.	6.	7、	8.	9.	10、
11、	•	12、	13、	14、	15、	16、	17、	18、	19、	20、
			竹 O ₂ 5.0 L 🤊	fil 100 kPa fi	的 H ₂ 10.0 L	同时混合在	E 20 L 的密	闭容器中,	在温度不变	的条件下,
混合	气体的	总压力为								
	A. 3	120 kPa		B. 125 kP	a	C. 1	80 kPa		D. 100 kl	Pa
2、3	7℃时』	血液的渗透	压为 775 kP	a,给人体都	静脉注射萄	萄糖(摩尔	质量为 180	g/mol)的	农度为 (等	渗溶液)
	A. 8	85.0 g/L	В	3. 5.41×10 ⁴	g/L	C.	54.1 g/L]	D. 2.7×10 ⁴	g/L
		容器中,A、 可常数为原3		中气体建立位	化学平衡,'	它们的反应	是:A+B [:]	= C,在相同	司的温度下	若体积缩小
	A. 3	3 倍	.]	B. 2倍		C.	9 倍		D. 不变	
4、汽	《化是》	这样一个过	程,其							
	Α. Δ	Δ<i>H、ΔS</i> 和Δ	∆G 在一切溫	温度下均为面	E值	Β. ΔΗ	和ΔS为正位	直		
	C. 2	∆G 在 T 值(氐时为负值。	, 在 <i>T</i> 值高	时为正值	D. Δ <i>I</i>	I 与压力有	极大关系		
5、下		去正确的是		4						•
-		•	的情况下.	化学反应的	热效应只与	- 过程的始 2	大和丝太右:	关。而与反	应的诠答于	:
		只有等压过		1012/24	J.M. 790,227 (J ₹ \$1 ± #3 ∑ #1	21627121	7, 110-3/X		
				.反应的ΔH	始终大于反	应的ΔU				•
		化学反应的								
6、次	ナチ基を	元反应: 2N	$O + O_2 = 2N$	IJO₂,若将	体系的压力	由原来的1	大气压増力	大到 2 大气	玉,则正反	应的速度为
原来									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	A. 2	2倍		B. 4倍		С	. 6倍		D. 8倍	:
7、反	应 A:	$2NO_2(g) = N$	$V_2O_4(g)$ ΔC	G(A) = -5.8	kJ·mol ⁻¹ ,反	应 B: N ₂ (g	$+3H_{2}(g) =$	2NH₃(g)	$\Delta G(B) = -1$	6.7 kJ·mol ⁻¹
	A.)	反应 A 较反	应B快	F	3. 反应 B \$	交反应 A 快		•		
•	C. F	两反应速度	相同		D. 无法判	断两反应速	度			
8、具	具有 sp³	等性杂化轫	1道类型的分	}子空间构建	型是			٠.		
	A. 3	平面正方形	В.	. 正四面体	型	C. 平面三	角形	D. I	E八面体型	
9、下	列离于	子中外层 d \$	九道在半充	满状态的是						
	A. (Cr ³⁺		B. Fe ³⁺		C. Co ³⁺		Γ). Cu ⁺	

10、从精密度好就可判断分析结果可靠的前提是
A. 随机误差小 B. 系统误差小 C. 相对标准偏差小 D. 平均偏差小
11、由电对 MnO ₄ -/Mn ²⁺ 与 Fe ³⁺ /Fe ²⁺ 组成原电池,已知电对 MnO ₄ -/Mn ²⁺ 的φ ^Θ 大于 Fe ³⁺ /Fe ²⁺ 的φ ^Θ 值,若增大溶液的 pF
值,原电池的电动势将
A. 增大 B. 减小 C. 不变 D. 无法判断
12、已知一定的温度下,CdCO ₃ 的 $K_{sp}^{\Theta} = 4.0 \times 10^{-12}$, Cd(OH) ₂ 的 $K_{sp}^{\Theta} = 3.2 \times 10^{-14}$, 那么它们在水中的溶解度
A. CdCO ₃ > Cd(OH) ₂ B. CdCO ₃ < Cd(OH) ₂ C. CdCO ₃ = Cd(OH) ₂ D. 不能确定
13、下列哪一种说法欠妥
A. 配合物中心原子是中性原子或带正电荷的离子。
B. 螯合物以六员环、五员环较稳定。
C. 配位数就是配位体的个数。
D. 二乙二胺合铜(Ⅱ)离子比四氨合铜(Ⅱ)离子稳定
14、缓冲溶液的缓冲范围是
A. $pH \pm 1$ B. $K_a \pm 1$ C. $pK_a \pm 10$ D. $pK_a \pm 1$
15、用 AgNO ₃ 处理[Fe(H ₂ O) ₅ Cl]Br 溶液,产生的沉淀主要是
A. AgCl B. AgBr C. AgCl和 AgBr D. Fe(OH) ₃
16、以邻苯二甲酸氢钾为基准物质,标定 NaOH 溶液浓度,滴定前,碱式滴定管内无气泡存在,滴定过程中滴定管
内产生了一个气泡,但是在滴定结束时气泡又消失了,则会导致
A. 对测定结果无影响 B. 无法推测 C. NaOH浓度偏大 D. NaOH浓度偏小
17、用 EDTA 滴定 Ca ²⁺ 、Mg ²⁺ ,若溶液中存在少量 Fe ³⁺ 和 Al ³⁺ 对测定有干扰,消除干扰方法是
A. 控制酸度法 B. 配位掩蔽法 C. 沉淀掩蔽法 D. 氧化还原掩蔽法
18、根据下列标准电极电势数据,指出在标准状态时,不能共存于同一溶液的是
A. Br和 Hg ²⁺ B. Br和 Fe ³⁺ C. Hg ₂ ²⁺ 和 Fe ³⁺ D. Sn和 Fe ³⁺
已知: $\varphi^{\Theta}(Br_2/Br_1) = +1.07 \text{ V}$, $\varphi^{\Theta}(Hg^{2+}/Hg_2^{2+}) = +0.92 \text{ V}$, $\varphi^{\Theta}(Fe^{3+}/Fe^{2+}) = +0.77 \text{ V}$, $\varphi^{\Theta}(Sn^{2+}/Sn) = -0.14 \text{ V}$
19、[Ni(en) ₂] ²⁺ 离子中镍的配位数和氧化数分别是
A. 2, +2 B. 2, +3 C. 6, +2 D. 4, +2
20、298K, 某酸 HA 0.10 mol·L-1 离解度为 0.1%,则溶液中 OH-离子浓度为
A. 10^{-3} B. 10^{-11} C. 10^{-12} D. 10^{-10}
 二、填空题(每空 2 分, 共 22 分)
□、 八工
7. \N. \D. \O. \O. \O. \O. \O. \O. \O. \O. \O. \O
2、同离子效应使难溶电解质的溶解度, 盐效应使难溶电解质的溶解度。
3、在EDTA(Y ⁴)直接滴定法中,设金属离子为 M,指示剂为 HIn,如果 Kj (MIn) > Kj (MY)会出现
4、已知 φ^{Θ} (MnO ₄ /Mn ²⁺) = 1.51 V, φ^{Θ} (Cl ₂ /Cl ⁻) = 1.33 V, φ^{Θ} (Fe ³⁺ /Fe ²⁺) = 0.77 V, φ^{Θ} (I ₂ /I ⁻) = 0.54 V, 由此可知上述氧化
态、还原态物质中,最强的氧化剂是,最强的还原剂是。

5、酸碱质子理论认为,当水作为酸时,经		——————— 当水作为碱时,	它的共轭酸是
 6、CH₃CH₂OH 与 H₂O 分子间的作用力有_			
 三、 简答题(每题 5分,共10分)			
1、简述基准物质具备的条件和标准溶液的	配制方法。		
2、用 NaOH 滴定某二元弱酸 H ₂ A, 其电离 写出有关方程式。	常数分别为 K_{a1} 和 K_{a2} ,	试分析滴定时可	能会存在哪几种不同的情况,并
可证有人为任政。	•		
•			
			·
四、计算题(每题7分,共28分)			
a the Library I A day I am a name of the control of			
1、某水溶液中含有少量难挥发性溶质,在2 E (3) 208 15V 时的涂漆 E (程) 20% 1 甲根	71.7 K 时凝固,求该溶	液的: (1) 正常	佛点;(2)在 298.15 K 时的蒸气
压(3)298.15K 时的渗透压(假定溶液是理想 纯水的蒸气压为 3.178 kPa。	的)。 凸知水的 $K_b=0.5$	12 K·kg·mol ⁻¹ , 1	K _f = 1.86 K·kg·mol ⁻¹ , 298.15 K 时
•			
•			
	·		

			ol·L-1的 Na ₃ PO ₄ 溶		新 100 mp,故t	开乢化口俗
i的 pH 值。(己知 H ₃ H	PO_4 的 $K_{a1}^{\Theta} = 6.7 \times 10^{-1}$	$0^{-3}, K_{a2}^{\Theta} = 6$	$6.2 \times 10^{-8}, K_{a3}^{\Theta} = 4.5$	5×10 ⁻¹³)		
	•					
		:				
	· · · · · · · · · · · · · · · · · · ·					
		•		•		
·						
				•		
	•					
						•
						r -1 (C - 2+)
. 298K 时,将电对 M						
01 mol·L ⁻¹ 。 φ ^Θ (MnO		$\Theta(Cu^{2+}/Cu) =$	0.34 V。(1) 与出	原电池付亏和电	池及座(2) 年	异原电池电幼
(3) 计算该反应的	平衡常数 K ^e		•			
		. •				
			•			
		•				•
					•	
			· · · · · · · · · · · · · · · · · · ·	:		o 6-11-7-16-70
、在 0.10 mol·L ⁻¹ HC	1 溶液中混有少量系	杂质 Cd ²⁺ 离子	子,在室温下通入]	H₂S 气体来除去	Cd ²⁺ ,问通入 H	S 气体到饱和
、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时, Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入	H ₂ S 气体来除去 0 ⁻⁷ , <i>Ka</i> 2 ⁰ = 7.1×1	Cd ²⁺ ,问通入 H _. 0 ^{–15} ,CdS 的 <i>K_{sp}</i>	S 气体到饱和 ⁶ =1.4×10 ⁻²⁹)
、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	ZI 溶液中混有少量系)时, Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	^E ,在室温下通入 l I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H₂S 气体来除去 0 ⁻⁷ , <i>Ka</i> 2 ^Θ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ^{–15} ,CdS 的 <i>K_{sp}</i>	S 气体到饱和 ^Θ = 1.4×10 ⁻²⁹)
、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时, Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	^上 ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H₂S 气体来除去 0 ⁻⁷ , K _{a2} ⁰ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 ^O = 1.4×10 ⁻²⁹)
I、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	^上 ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} [©] = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ^{–15} , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
I、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	^上 ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ⁰ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ^{–15} , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	ZI 溶液中混有少量系)时, Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	^E ,在室温下通入 1 I ₂ S 的 <i>K</i> _{a1} ^O = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ⁰ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ^Θ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 [⊕] = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} [©] = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 <i>K_{a1}^O =</i> 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ⁰ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>Ksp</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
i、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 K _{a1} Θ = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ^Θ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 <i>Ka</i> 1 ^O = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} [©] = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入 1 I ₂ S 的 <i>K_{a1}</i> ^Θ = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} [©] = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	² ,在室温下通入] I ₂ S 的 K _{a1} Θ = 1.3×1	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ^Θ = 7.1×1	Cd ²⁺ ,问通入 H ₂	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)
4、在 0.10 mol·L ⁻¹ HC (浓度为 0.10 mol·L ⁻¹	Cl 溶液中混有少量系)时,Cd ²⁺ 浓度为多	杂质 Cd ²⁺ 离子 少?(已知 F	E_1 ,在室温下通入 I_2 S 的 K_{a1} $\Theta = 1.3 \times 1$	H ₂ S 气体来除去 0 ⁻⁷ , K _{a2} ^Θ = 7.1×1	Cd ²⁺ ,问通入 H ₂ 0 ⁻¹⁵ , CdS 的 <i>K_{sp}</i>	S 气体到饱和 Θ = 1.4×10 ⁻²⁹)

岜	
Ŧ	
戋	

本试卷适用范围

南京农业大学试题纸

2017-2018 学年第一学期 课程类型: 必修 试卷类型: A

课程号	课程	名 无棣	几化学		学分	MEXE:	A .
		姓名		·		班级	**************************************
题号		=	Ξ	四	五	总分	签名
得分			÷				- 14- 4-4
1、采用减压蒸 (Δ H _m (苯酚	7 –48.139KJ 3.2K	,已知苯酚的 mol ⁻¹) B、392				,此时苯酚的》 D、463.9K	,
A、T、 3、已知人体血 1.86K•ko•m	U、W 液的冰点降(t ol-1)	B、T、V、 €值为ΔT _f 是().56,则在体验	且37°C时渗透	压为()	KPa.(水的凝	固点降低常数
4、	<i>)</i>	F 友的非电解员	瓦A和B,分别	别溶解在 1L z	k中,测得 A	溶液的凝固点	
5、下列热力学	函数不为零的	i是()	77.7 八人里	D, A	小肥佣 定	质量小于A的	
A、溶液 A、溶液	在灰平,长定 友蒸气压下降	、神俗似具有似 B、溶液	(数性质的是) 凝固点下降	() _a		D、ΔH ⁰ m(石 D、溶液有	
7. 0.1mol·L·¹ C A. 0.25	5	B、0.3	C	0.6	D. 0.2		
8、己知反应 C 气体在 273K, 2	COZNER PALE	即钟吹刀(ه (ر				则产生的 NO₂
A、22.4 9、将 5dm³300k 的容器中,维持 A、O ₂ i C、N ₂ fi 10、反应 MgO(s	L 、300KPa 的 体系温度 300 的压强降低, 的压强不变,。 ()+SO ₃ (g) — () ()。	B、44.9L O ₂ 与 8dm ³ 400 K,则下面判 N ₂ 和 He 的 总压比混合前	0K、200KPa f 断中正确的是 压强增加 的总压低 s)在低温时为	的 N ₂ 以及 3.56 ()。 B、 D、(自发,其逆反	dm ³ 350K、60d N ₂ 的压强增 D ₂ ,N ₂ 和 He I 应在高温下为	OKPa的He, J 加, O2和He	的压强降低
C、AH 11、下列陈述中 A、反应) B、热等	<0, △S<0 >0, △S<0 正确的是(过程中,随着; F系统的焓值 F压且不做非(D、 系统的熵值增		\$>0		, <u>.</u>

D、标准状态下,任何温度下均不可自发进行的反应,必定是 $\Delta_r H^0 > 0$, $\Delta_r S^0 < 0$

逆向移动的是()	为Δ.H=-40.5 kJ·mol ⁻¹ ,反应达到平衡后,下列因素中可使平衡
A、T一定,V一定,压入惰性气体	B、V一定,P一定,T升高
C、T一定,V 变小	D、P一定,T一定,压入惰性气体
0.1 2	DAY WAY TO THE CHEEK CHEEK
二、填空题(每空1分,共15分)	
1、当实际气体处于,的条件	牛下,此时实际气体接近理想气体。
a management of the contract o) mol L-1 BaCl2 溶液 50mL 混合制得 BaSO4 溶胶,其胶团结构式
	离子是,电泳时胶粒向移动;当使用 AICli,
MgSO4,K3[Fe(CN)6]这三种电解质聚沉该溶胶的	才,聚沉值由大到小分别是。
3、将氨和氢化氢气体分别从从一根 1.20 米的玻	璃管两端向管内自由扩散,两气体会在距玻璃管通入氨气的一
端 m的位置相遇生成NH4Cl白烟。	
	Livid Bearing of the green administration from regarding the following with the
4、水的三相点所对应的温度是,若无	
5、影响化学反应 吉布斯函数变的主要因素有_	,利用吉布斯函数变判断过程自发性的前提条件
是	
	质的量相等。T 一定,反应 CO(g) + H ₂ O → → H ₂ (g) + CO ₂ (g)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the s
平衡时,CO的转化率为a,则Ke=	
7、根据碰撞理论,分子间能发生化学反)	立的碰撞称为,那发生该类碰撞的条件
是:、。	
三、简答题(每题3分,共15分)	
	. There is a standard and an orange of the same bears of the same and a second or a second or
1、在密闭容器中放入两个容积为 1dm² 的烧杯,	A 杯中装有 300cm³的水,B 杯中装有 500cm³的 NaCl 溶液。
最终达到平衡时会呈现什么现象? 为什么?	
The state of the s	
•	
•	
2、请简单阐述晶体和非晶体的区别。	
	•
	•
f	
3、化学平衡的特征是什么?	
,	•
•	

4、氨分解反应 2NH₃ ===== N₂ + 3H₂ 是基元反应吗? 为什么?

5、试写出溶胶的常用制备方法,并尝试举例说明其中一种方法。

四、计算题(共36分)

- 1、(10 分) 在 25 ℃和 100 kPa 时,于水面上收集 10 dm³ 空气,然后将其压缩到 200 kPa。已知 25 ℃时水的饱和蒸气压为 3167 Pa,求:
 - (1) 压缩后气体的质量(5分);
 - (2) 压缩后水蒸气的摩尔分数 (5分)。

- 2、(13 分) 试求反应, MgCO₃(s) → MgO(s) + CO₂(g) 的下列物理量:
 - (1) 在 298K,100KPa 下的 $\Delta_1 H^0_m(298K)$, $\Delta_2 S^0_m(298K)$, $\Delta_4 G^0_m(298K)$; (3分)
 - (2) 在 1123K, 100kPa 下的 △,G⁰m(1123K) 和 K⁰(1123K); (3分)
 - (3) 在 100KPa 压力下 (p(CO2)=100kPa) 进行分解的最低温度。(4分)已知:

MgCO₃(s) MgO(s) CO₂(g) $\Delta_{r}H^{\theta}_{m}(298K)/kJ\cdot mol^{-1}$ -1111.88 -601.83 -393.5 $\Delta_{r}S^{\theta}_{m}(298K)/kJ\cdot mol^{-1}$ 65.6 27 213.7 $\Delta_{r}G^{\theta}_{m}(298K) kJ\cdot mol^{-1}$ -1028.8 -596.55 -394.36

- 图 3、(13分) 反应 2NO(g) + O₂ ——— 2NO₂(g),已知此反应对 O₂是一级反应。在某温度下的反应速率常数 为 8.8×10⁻¹dm⁻⁶·mol⁻²·s⁻¹。
 - (1) 当反应物的浓度均为 0.10mol·dm³ 时,反应的反应速率是多少? (3分)
 - (2) 若反应的焓变 4.H⁹ = -113kJ·mol⁻¹, 逆反应的活化能为 114kJ·mol⁻¹, 计算正反应的活化能。(3分)
 - (3) 在 600K 反应达到平衡后,升高温度至 700K,分别计正逆反应速率增加的倍数,并由此说明平衡的移动方向。(4分)

南京农业大学试题纸 课程类型, 必修 2017-2018 学年第一学期 本试卷适用范围

课程名

课程号

中华

做 战分 班级 H 即 nl 林公 國 命令

一、选择题(每题2分, 共24分)

3、日知人体血液的冰点降低值为 A n.是 0.56,则在体强 37℃时锋进压为(()XPa,《水的凝固点降低常数 D, T, V, U B, T, V, Ø 1.86K · kg · mol⁻¹)

4. 称取同样质量的两种难挥发的非电解质 A 和 B. 分别溶解在 1L 水中,到得 A 溶液的凝固点比 B 溶液的凝 C. 775.97 I=CKT B, 387.98

STr. > 4Te △4- 4·bs

B、B 的相对分子或量小于,A 的相对分子或量 D、不能确定 A、B的相对分子质量大于A的相对分子质量 C, B 的相对分子质量等于 A 的相对分子质量

5. 下列熱力學函數不为應的是 ((A 、 A A A A M ** (Br. 1) **

D、 4 班。 (石壘, s) v B. A.C. (行题, Fe. s) C. A S. (行题, s) 6、裕诚的下列性质中, 提定稀溶液具有依数性质的是(

D. 格液有锑琥珀 C、格液的渗点上升 A、海液蒸气压下降。 B、海液凝固点下降 7、0.1mol·L.¹CaCla新被的萬子强度是(B)

8、日知反应 Cu+4HNO₃ (称) ——— Cu(NO₃) + 2NO₃(g) + 2H₃O₃,者有 4mol 的硝酸铵还原则产生的 NO₃ C. 89.9L V= P D, 180L D, 0,2 9 0 气体在273K, 202KPa下所占的体积为(2)。

9、 卷 5dm3300K、300KPa 的 Oz 与 8dm3400K、200KPa 的 Nz以及 3.5dm3550K、600KPa 的 He,压入 10dm3 的容器中,维持体系温度 300K,则下面判断中正确的是(🜔),

B、Na的压强增加, Oa和 He的压强降低 —►MgSO4(s)在低温时为自发,其逆反应在高温下为自发,由此可知,该正反 D、O. N.和 H. 的的压竭均降低 /n b / A、O: 的用閩降無4 Na 性 的用閩操加 C、Na的压强不变火总压比离合前的总压低 10. 反应 MgO(s) + SQ_y(g) — 应的△H, △S为(广

A. AH<0, AS<0 C. AH>0, AS<0

B, AH<0, AS>0 B, AH>0, AS>0

下列陈述中正确的是(

í

等温等压且不做非体积功的自发过程,一定是热力学能降低的过程

杨蓓状态下,任何温度下均不可自发进行的反应,必定是4,1200,4,26人0

A、T一定, V一定, 压入惰性气体X 12、反应式 NO_(g) + NO(g) 近向物型的場(3)

N. V一定, P一定, 工升的

C. T一定, V 数小

二、城空题(每至1分上共15分) 1、当实际机体处于一场16、16/15 的条件下,此时实际气体接近强超气体。

2、把 0.020mol·L²NesSO.将报 10m² 与 0.0050 mol·L²BaCl; 符符 50m² 福会制得 BaSO, 特胶, 其胶团结构式 为 [(BaSo), ngw²以下:2) of 1.39 中电位离子是 Ba 。电铁时欧拉向 是 AS 等的,当使用 AICli. MgSO. K.JFe(CN)alk三种电解原聚沉淀溶胶时,像沉值由大到小分别是 AICli. MgSO. K.JFe(CN)alk三种电解原聚沉淀溶胶时,像沉值由大到小分别是 AICli. MgSo. AICli. 在 1.20 米的玻璃管防罐向管内自由<mark>位置。两气体会在距玻璃管理入复气的一部 0.712 — 在 Medial AICli. The Base The AICli. The Base The Base The Conf. The Con</mark> 0.7/3 m 的位置相遇生成 NH,Cl 白烟.

6. 路 CO 和 社の(3)第合于一条器中, 防着的物质的量相等。 T 一定, 反应 CO(g) + 社の ----- 世 (g) + CO(g) 出来 こく 在社社 もままままます。 ピッカー・コンプ・コ 平衡时,CO 的特化率为 a,则 Ke

植对即同合志。

三、简答题(每题3分,共15分)

1、在西阳答器中放入两个叠积为 1dm; 的烧杯,A 杯中装着 300cm; 的水,B 杯中装有 500cm 的 NaCl 溶液。 最终达到平衡时会呈现什么现象? 为什么

达到即\tot. A 松平有水鱼部 游乐, B 林平水峦多.

因为自己中有语用八山,其对非发,有对印制设在西部以称明高。

人称中吃海河门口进入气相,在联1位聚气压的8本个上分析要成份有世人8本不。 (文学业X会相中 溶剂(>>2多)研办。 (同时沿河) 在相同各件下相比,案的目锋166 详简单阐述晶体和非晶体的区别。 ú

1. 的1年具有国民的少路主,并各1年到16多国民的增生

2. 智慧品准复布圆英的几河外形,布满中机设布。

品件具有各相科注、科的作具有各相同性。 3、化学平衡的特征是什么?

14. 改梦平赋年在在一条条件下部达到的最大服务,此时后在西台乐之。

的连章相兽。从表心是五番,新名许益4中质的治疗度应更怕医2的好度(如治律、歯信等)不知可 ta 化类取除是一种动高取除,化类平衡方式 正当为虚心在进行,只是的,当为企进行 间家化,又有像便。

(3) 化步车(数)是有条件的车(支)。各部界条件(全)、仓屋、18度、后为等)成数时,原生的工程 对我们的不, 重到在新的条件下的建立起新的牢骚子, 布一座的19下, 无位后应是从正面不是

查局部分、反应部可以到这平壤。

(1): 4,4% (2914) = 214% (140.1) + 414% (62.9) - 4,4% (14402.1) = -60x87 + (-393.5) - (-1111.83) = 116.55 x7fm-(43% (298) = 27 + 218.7 - 65.6 = 175.1 Jfm-(+7) 246m (298) = -394.36 - 596.55 + 6026.8 = 27.37 x7fm-(-6) (4). Axter (1038) = 4.4.8 (2988) - 11375 - 6.5.8 (2288)	$\Delta_{\mu}(S_{0}) = -RT(h R^{0} + \frac{1}{12} + $	1.9 *****、ないと、4.44 (2944)	- ** ** ** ** ** ** ** ** ** ** ** ** **	(3). XTOR F.	11年二年(十一六) 18: 九二日描(祐一初)=11029 87 鱼五座。	$(n_{k_1} = \frac{E_B}{R}(\frac{1}{12} - \frac{1}{12})$
4、面社解反应20kth ==== Na+3th,基础元反应吗?为什么? 不是: 因为:沒反准母的为此如 5.0 不是一份直接作的主政案序科的 有是当这几个第之区 12 (每到)到产2年,	5、过等出解胶的常用物名为法,并尝过学则说明其中一种方法。 5、被13、 14、12、12、12、13、13、13、13、13、13、13、13、13、13、13、13、13、	1,4 + 25 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /	H,	10 = RT = 8.34 kgho. and 16. 18 x 29.34 med 14 3 29 (med x 30.21) = 11.247 bg (4). Rx = 0.39 med x (4.79 x 28.95 (med 14 3 29) (med 14 3 20.21) = 11.247 bg (5). Rx = 2.45 kgh x 106 (6). Rx = 2.47 kgh x 106 (6). Rx = 2.47 kgh x 106 (7). Rx = 2.47 kgh x 106 (8). Rx = 2.47 kgh x 106 (9). Rx = 2.47 kgh	2. (13 分) 結果反応 (1972年) (12 元) (13 分) (13 分) (13 位) (13 位	7: -1028.8 -596.55 -

装订

本试卷适用范围

南京农业大学试题纸

2016-2017 学年第一学期 课程类型: 必修 试卷类型: A

课程 无机	【及分析化学 班级		学号	姓名	成绩,
题号		=	Ξ.	四	总分
得分		_			
		44			
1	选择题(每题2分,		公别丰元其…与从	组分的分压力和分体	积) (***)
				aののの正の和分体 o. Pi/P总=n _i /n总	然) "()
. ""				0. 11/1 mg — n _i /mg	•
	量浓度相同的下列 c 溶液 B.			D. NaCl 溶液	्र स्ट
	•			C。已知水的 K = 1.8	
	下质量为 ()。	L.CHINNHATHIN S.	· · · · · · · · · · · · · · · · · · ·	OF LIMMOND M-1. C	O K Rg I MOI 3 191
A. 17	72. 4 B.	90	C. 180	D. 135	
	种溶液的浓度表示			()
A 质量百分 C. 质量摩	•		物质的量浓度 摩尔分数		
1.	反应中 , Δ, <i>H</i> ⁹ 与产				
,	$(g) + 0_2(g) = 2H$	and the second second second	, , , , , , , , , , , , , , , , , , ,		
1 6	$(g) + 10_2(g) = N$				· · · · · · · · · · · · · · · · · · ·
•	金刚石)= C(石墨) (g) + ½Cl ₂ (g) =			•	
		·	= -144 kJ • mol ⁻¹ .	$\Delta_r S_s^{\Theta} = -146 \text{ J} \cdot \text{mg}$	1 ⁻¹ • K ⁻¹ . 反应认平
	页的分压均为 <i>P</i> ,贝	er r	· ·		
A. 780	o ° C i	3. 508℃	C. 713°C	D. 1053°C	
	相反应平衡不受压				
	$(g) + 3H_2$ $(g) = 2NH$ $(g) + 0_2$ $(g) = 2CO_2$				
	$nO_2(s) = MnO(s)$				
	$O_2(s) + Mn(s) = 2$				·
	$O_2(s) + Man(s) - 2$	(MIC(S) ~	$\Delta_{r} \Pi_{m} = -250.1$ K.	J • IIIO1	
M V	丘O₂(s)的标准生质	戏给 $\Delta_f H_m^{\theta}$ 为多少			()
	•			D. 317.	5 KJ - mol ⁻¹
9. 当反应	A ₂ +B ₂ =2AB 的速率方	程为 $v = k \circ c(A_2)$	c(B₂) 时,可以律	导出的结论是此反应	()
A. 一定是基			B. 一定是非基元及	_	
C. 无法肯定	是否为基元反应		D. 对 A 来说是基元	G 反应	

10. 下列几种条件变化中,能引起反应速率常数 k 值改变的是()。 A. 反应温度改变 B. 反应容器体积改变 C. 反应压力改变 D. 反应物浓度改变
11. 对某一均为气相物质参加的吸热可逆化学反应,下列说法正确的是()。 A. 温度升高,正反应速率常数增加,逆反应的速率常数减小,从而导致反应速率加快。 B. 温度降低,活化分子的百分数下降,从而导致反应速率减慢。 C. 温度升高,正反应活化能降低,逆反应活化能增加,从而导致反应速率加快。 D. 温度降低,正反应速率常数降低,逆反应的速率常数增加,从而导致反应速率减慢。
12. 在一个多电子原子中,具有下列各套量子数 (n, 1, n, n,) 电子,能量最大的电子是 () A. 2, 1, +1-1/2 B. 3, 2, +1, +1/2 C. 3, 1, 0, -1/2 D. 3, 1, -1, +1/2
13. 具有下列外层电子构型的原子,第一电离能 I, 最低的是 ()
A. ns ² np ³ B. ns ² np ⁴ C. ns ² np ⁵ D. ns ² np ⁶
14. H ₂ 0 分子中氧的成键轨道是 ()。 A. 2p ₃ , 2p ₄ 轨道 B ₂ sp 杂化轨道 C ₂ sp 杂化轨道 D ₂ 不等性 sp 杂化轨道 D ₃ 不等性 sp 杂化轨道 D ₄ 不等性 sp 杂化轨道 D ₂ 不等性 sp 杂化轨道 D ₃ 不等性 sp 杂化轨道 D ₄ 不等性 sp 杂化轨道 D ₅ 不等性 sp 杂化轨道 D ₄ 不等性 sp 杂化轨道 D ₅ 不等性 sp 杂化轨道 D ₄ 不等性 sp 杂化轨道 D ₅ 不
16. 碘溶于酒精后成为医用碘酒,碘分子和酒精分子之间产生的作用力有 () A. 色散力 B. 诱导力和色散力 C. 取向力、诱导力、色散力 D. 范德华力和氢键 17. 下列各分子中,偶极矩不为零的是 ()
A. BeCl ₂ B. NF ₃
C. BF, D. CH, 18. 基态原子的第四电子层中只有两个电子,则此原子的第三电子层中的电子数 ()
A. 肯定是8个 B. 肯定是18个
C. 肯定是 8-18 个 D. 肯定是 1-18 个
19. 达到化学平衡的条件是()
A. 反应物和产物的浓度相等
B. 反应停止发生
C. 正向反应速率等于逆向反应速率 D. 反应不再产生热效应
20. 将一块冰放在 273K 的食盐水中,则()
A. 冰的质量增加 B. 无变化 C. 冰逐渐融化 D. 溶液温度升高
二、填空题(共 22 分)
1、溶胶稳定因素有、、、。
2、将 0. 45g 非电解质溶于 30g 水中,使水的凝固点降低 0. 15℃,已知 H.0 的 K _b =1.86K • kg • mol ⁻¹ ,则
该非电解质的摩尔质量(g • mol ⁻¹)是。
3、在 373K 和 100kPa 下, 2,0mol H。和 1,0mol 0。反应, 生成水蒸气, 放出 483.7kJ的热量, 则生成 1.0mol
水蒸气的 ΔH

	· ·	
4、水在 0℃的熔化热为 6.02KJ/	/mol,则 1.0mol 水在熔化过程中的熵变是	
T .	对 1/T 作图,可得一条直线,直线的斜率为_	
距为。	,	
6、反应 NO₂(g)+CO(g)=NO(g)+	CO _s (g)在 600K 时的速率常数为 0,0280 mol ⁻¹ 。	L·s ¹ ,在 650K 时的速率常数
为 0. 220 mol ⁻¹ • L • s ⁻¹ 此反应的		The same of the sa
7、等体积的 AgNO, 溶液和 的 Ki	Br 溶液混合,可形成 AgBr 溶胶,其胶团结构	式为
三、简答题 (每题 5 分, 共 10 分 1. 稀溶液有哪些依数性? 产生这	b) 些依数性的根本原因是什么?说明稀溶液依数	姓定律的适用条件是什么。
化率将提高至 0.40。 (3)从反应速率常数的单位可以 (4)在反应历程中,定速步骤是		·市政论问 信,所以 E ₂ 的转
四、计算题(每题 7 分,共 28 分) 、乙醛分解为一非基元反应 CH ₃ CHO(g)=CH ₄ (g)+CO(g	g)	
在 303K 时测得各种不同乙醛液 C (CH ₃ CHO) / (mol · L ⁻¹)		
v/ (mol · L ⁻¹ · s ⁻¹)	0.10 0.20 0.30 0.40 0.025 0.102 0.228 0.406	
(1) 写出该反应的速率方程; ((3) c(CHCHO)=0.25 mol. L ⁻¹ E	2) 求反应的速率常数 k;	

2.己知

C₂H₅OH(1)

 $C_2H_5OH(g)$

 $S_m (J \cdot X^1 \cdot mol^3)$

161

282

 $\Delta_f H_m(kJ \cdot mol^{-1})$

-277.6

-235.3

**

- 1. 在 298.15 K 和标准态下, C2H3OH(J) 能否自发转变成 C2H3OH(g)?
- 2. 在 373 K 和标准态下, C₂H₅OH(I)能否自发转变成 C₂H₅OH(g)?
- 3. 估计乙醇的沸点。

- 3、某难挥发、 非电解质水溶液的凝固点为 272.15 K,
 - 计算: (1) 此溶液的沸点;
 - (2) 298.15 K 时此溶液的蒸气压;
 - (3) 在 273,15K 时此溶液的渗透压。

4、在碱性溶液中,有下列反应:

 H_2PO_2 (aq) + OH: (aq) = HPO_3^2 (aq) + $H_2(g)$

在一定温度下实验测定下列数据:

实验编号 c(H₂PO₂)(mol.L⁻¹) 1 0.10

0.10 0.10

c(OH)(mol L-1)

v(mol.L⁻¹.S⁻¹) 5.30 ×10⁻⁹

2 0.503 0.50

0.10

2.67 × 10⁻⁸ 4.25 × 10⁻⁷

试求: (1) 反应级数

(2) 速率常数

.

选择题

1-5 BCCBD

6-10 CDACA

11-15 BABBB

16-20 BBCCC

填空题

1、布朗运动、胶粒带电、溶剂化膜

2. 186

3. $\Delta H = -241.9 \text{kJ}$ $\Delta U = -240.35 \text{kJ}$

4, 22 J • mol • K -1

5, - (Ea/k), lnA

6. 134KJ/mol

$$\int_{7} \left[(AgBr)_{ss} \cdot nAg^{+} \cdot (n-x)NO_{s}^{-} \right]^{+} \cdot xNO_{s}^{-}$$

问答题

- 1、产生这些依数性的根本原因是蒸汽压下降; 稀溶液的依数性定律的适用条件是难挥发,非电解质溶液。
- 2、(1) 反应速率也受浓度大小和反应级数的影响
 - (2) 催化剂不能改变平衡状态

四、计算题

- 1. (1)v=kc²(CH₃CHO) (2)K=2.53 mol⁻¹ · L · s⁻¹ (3) v=0. 158 mol · L⁻¹ · s⁻¹
- 2、(1) 不能 (2) 能 (3) T=350K
- 3、(1) 沸点 T = 373.15 + 0.27 = 373.42 K (2) p = 3.14 kPa
 - (3) 1220 kPa
- 4, (1) 3 (2) $k=5.30 \times 10^{-6} L^2 \cdot mol^{-2} \cdot S^{-1}$

本试卷运用范围 大农本科一年级

南京农业大学试题纸

2015-2016 学年第一学期 课程类型: 必修

				学分						
学号				·	班级					
题号 — 二		9 A	う	-ti:	人	总分	签名			
得分										
一、选择题(每小题	一、选择题 (每小题 2 分,共 40 分) 请将选择题答案填在下列表格中!									
1.C. 2.B 3.1	B 4.C	5.B	6.C	7,C	8.C	9.A	10,A			
1136 12.B 13	3.D 14.B	15.B	16.C	17.A	18D	19.A	20,A			
A789.5 kJ·mol 2.37℃时,人体血液的)。 h	J-mol ¹ Pa, 与应 mol ¹ . C. 5. d(s)=Sh ² (l mol L ¹) l mol L ¹) l mol L ¹) Al ₂ O ₃ (s), l生成的铁 C. 1. B. Δ	C. +2. 液具含料 4 g L-1 0.001 imol , Sn ²⁺ (0.00 , Sn ²⁺ (0.00) Cd ²⁺ (0.00 Sn ²⁺ (0.00 Kack Kack	1 kJ mol-l- 同参逻压 D. (-L-l)+Cd- Ol mol-L-l- Ol mol-L-l- Ol mol-L-l- T的等压 D.	D 的蓄气 (5 g L ¹ (0.10 mol () Sn(+) () Pt(+) () Pt(+) () Pt(+) () A 效应 () O 1 kg	+789.5 肆碌注射 (L ⁻¹)的原 =-847.6	kJ·mol ⁻¹ 液浓度是 皂池符号 kJ·mol ⁻¹ ,			

7.473K 时, 反应 2NO(g) + O ₂ (g) = 2NO ₂ (g)在密闭容器中达平衡, 加入惰性气体 He 使, 平衡将()。	S-22-470
A. 左移 B. 右移 C. 不移动 D. 不能确定	
8. 电池反应 Ag+(0.0010 mol·L-1) + Ag(s) = Ag(s) + Ag+(1.0 mol·L-1)的电动势为() _a
A. 0.000 V B. 0.180 V C0.180 V D. 0.018 V	
9. 反应 A+B=C+D 是可逆反应,其ΔH<0,当升高温度时,将使()。	
$A. k_{x}$ 和 k_{y} 都增大 $B. k_{x}$ 和 k_{y} 都減小 $C. k_{x}$ 减小, k_{y} 增大 $D. k_{x}$ 增大, k_{y}	彭小
10.100 mL 0.3 mol L-1的 NaH ₂ PO ₄ 溶液与 50 mL 0.2 mol·L-1的 Na ₃ PO ₄ 溶液混合,混合)	? 言溶液的
pH 值为 ()。已知: $pK_{a_1}^{\Theta} = 2.21$, $pK_{a_2}^{\Theta} = 7.20$, $pK_{a_3}^{\Theta} = 12.36$	Li sel incena
A. 7.20 B. 2.21 C. 12.36 D. 6.80	
11. 下列原子或离子中,原子轨道能量与后量子数无关的是()。	
A. He B. Be ³⁺ C. Li D. Li ⁴	
12. 已知某反应的這率常数 k 的量纲为 s-1,则该反应为 ()。	
A. 零级反应 B. 一级反应 C. 二级反应 D. 三级反应	
13. 在 pH 为 5.0 时,用 EDTA 滴定含有 Al ²⁺ 、 Zn ²⁻ 、 Mg ²⁺ 和大量 F 等离子的溶液	5,已知
$\lg K^{-}(AlY)=16.3$, $\lg K^{-}(ZnY)=16.5$, $\lg K^{-}(MgY)=8.0$, $\lg C_{Y(H)}=6.5$, $\lg K^{-}([AlF_6]^{3-})=19$	8. 则最
终测得的是()。	
A. Al ³⁺ 、Zn ²⁺ 、Mg ² 的总量 B. Zn ²⁺ 、Mg ² 的总量	
C. Mg ² 的合量 D. Zg ² 的含量	
14. 配合物 K4[Fe(CN)4]的磁矩为 0,则中心离子的杂化类型为 ()。	
A. sp^3d^2 B. d^2sp^3 C. sp^3d D. sp^3	
15. 将置于普通干燥器中保存的硼砂作为基准物质用于标定盐酸,则盐酸浓度将().
A. 偏高 B. 偏低 C. 无影响 D. 不確定	
16. 下列分子中,相邻共价键间夹角最小的是()。	
A. BF ₃ B. NH ₃ C. H ₂ O D. CCl ₄	
17. 已知在 1 mol L-1 HCl 中,Fe ³⁻ /Fe ²⁻ 的条件电极电位是 0.58 V,Sn ⁴⁺ /Sn ²⁺ 的条件电极电位	.是 0.14
V。当用 Fe ³⁺ 滴定 Sn ²⁺ 至计量点时,体系的电位为 ()。	
A. 0.32 V B. 0.14 V C. 0.68 V D. 0.41 V	
18. 甲醇和乙醇分子间存在的作用力是 ()。	
A. 色散力,诱导力 B. 色散力,诱导力,取向力	ŀ
C. 色散力,诱导力,氢键 D. 色散力,诱导力,取向力,氢键	
19. 用 0.1000 mol L-1 NaOH 滴定相同浓度的某弱酸(pKe = 3.75)的 pH 突跃范围为 6.75~	~9.70;
若用同样的酸滴定弱酸($pK_a^e=4.75$)时,则滴定曲线的突跃范围为(
A. 7.75 ~ 9.70 B. 7.75 ~ 10.70 C. 6.75 ~ 9.70 D. 6.75 ~ 10.70	
20. 已知配合物[Mn(CN) ₆] ³⁻ 和[Ni(NH ₃) ₆] ²⁺ 的磁矩 #都为 2.83 B.M, 那么它们分别	属于
() 型配合物。	
A. 内轨: 外轨 B. 外轨: 内轨 C. 内轨: 内轨 D. 外轨; 外轨	

二、填空题(每空2分,共20分)
1. 写出(NH4);HPO4 溶液的质子条件式: 2c(H;PO4)+c(H;PO4-)+c(H+)=c(NH3)+c(OH-)+c(PO4-)。
2. 用 100 mL 0.005 mol·L·lAgNO;溶液和 100 mL 0.01 mol·L·lKI 溶液制备溶胶,则该溶胶在电场
中甸电泳运动的结构式为
3. 配位化合物[Fe(CN):(en):]CI的名称是 <u>氢化二氢根。二乙二胺合铁(III)</u> ;中心离子采取的
杂化轨道类型为d ² sp ³ _,配位数是_6;配位原子是C和N。
4. KCl、KBr、SiCl4与SiBr4这四种化合物熔点高低顺序为KCl>KBr>SiBr4>SiCl4。
5. 条件相同的同一种反应有两种不同写法: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta G_1^0 = K_1^0$
$\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \implies NH_3(g) \qquad \Delta G_2^{\Theta} \qquad K_2^{\Theta}$
则 ΔG_1^e 与 ΔG_2^e 的数量关系是 ΔG_1^e = $2\Delta G_1^e$, K_1^e 与 K_2^e 的数量关系是。
6. 根据 BrO; +2H,O+4ε-=BrO-+40H- φ ^e
$BrO^- + H_2O + 2e^- = Br^- + 2OH^- \qquad \varphi_2^2$
· 已知 $\varphi_2^{\circ} > \varphi_2^{\circ}$,则可能发生的反应方程式为
三、简答和计算题(共 40 分)
1. (9分) 已知下列物质在 298K 时 A.G. (kJ mol ⁻¹)
H ₂ (g) CO ₂ (g) H ₂ O(g) CO(g)
0.0 -394.4 -228.4 -137.2
(1) 判断 298K 时,反应 H-(g) + CO-(g) = H-O(g) + CO(g) 在标准状态下自发进行的方向。
(2) 计算反应的 K ⁹
(3) 当 $p_{\text{co.}}$ =20 kPa, p_{co} =0.01 kPa, $p_{\text{s.o}}$ =0.02 kPa, $p_{\text{s.o}}$ =10 kPa 时,反应进行的方向。
詞: (1) $\triangle_i G_m^{\epsilon} = -137.2 + (-228.4) - 0 - (-394.4)$
= 28.8 kJ/mo! >0 所以,反应逆向进行或者向左进行。
(2) $ ext{d}$ $ ext{Δ}_{n}G_{n}^{\Theta} = -RTlnK^{\square}$
$K^{3} = 9.0 \times 10^{-6}$
(3) $Q = (P_{CO}/P^{\circ}) \cdot (P_{H_2O}/P^{\circ}) / (P_{CO_2}/P^{\circ}) \cdot (P_{H_2}/P^{\circ})$
= 1.0 ×10-6 < K [®]
所以,反应正向进行或者向右进行

(8分) 将 50 mL 含 0.953g MgCl₂(相对分子量为 95.3)的溶液与等体积的 1.8 mol·L⁻¹ NH₃·H₂O 溶液混合,问在所得的溶液中应加入多少固体 NH₄Cl (相对分子量为 53.5) 才可防止 Mg(OH)₂ 沉淀生成? 已知: K^Θ_{sp} [Mg(OH)₂]= 1.2 ×10⁻¹¹, K^Θ_b (NH₃)= 1.76 ×10⁻⁵ 解: c(Mg²⁺)= (0.953 / 95.3)/ 0.1 = 0.10 mol·L⁻¹

c(NH₃H₂O) = 1.8/2 = 0.90 mol·L⁻¹ 欲防止 Mg(OH)₂产生,

 $Q_i = c(Mg^{2+}) \cdot c^2(OH^-) \le K_{sp}^{\oplus}$

所以 $K_{sp}^{\Rightarrow} = 0.10 \times c^2(OH^*)$

 $c(OH)=1.1\times10^{-5}\,\mathrm{mol}\,\mathrm{L}^{-1}$ pOH= 4.96 因为 NH₃· H₂O 与 NH₄Cl 混合溶液即为缓冲体系,故有:

 $pOH = pK_b^{\Theta} - \lg(c_{R}/c_{R})$

 $4.96 = 4.75 - \lg (c_{\text{NH3}} / c_{\text{NH4}}^+)$ $c_{\text{NH3}} / c_{\text{NH4}}^+ = 0.62$

 $c_{\text{NH}}^{+} = 0.90 / 0.62 = 1.45 \text{ mol·L}^{-1}$

所以, NH₄Cl的质量为 0.10×1.45×53.5=7.76 g

3. (6 分) 欲使 0.10 mol AgBr 溶解于 1.0 LNa₂S₂O₃ 溶液,Na₂S₂O₃ 的最低浓度是多少?已知 $K_i^{\bullet}([Ag(S_2O_3)_2]^{3-})=2.9\times10^{13}$, $K_{sp}^{\bullet}(AgBr)=5.35\times10^{-13}$ 解:

解: $AgB_1(s) + 2S_2O_3^{2-} \Rightarrow [Ag(S_2O_3^{2-})_2]^{2-} + Br^{-}$

 $K^{\pm} = \frac{c([\text{Ag}(S_2O_2), j^2])/c^{\pm} \cdot c(\text{Br}^-)/c^{\pm}}{[c(S_2O_2^2)/c^{\pm}]^2}$

= $K_1^e ([Ag(S_2O_3)_2]^{2-}) \cdot K_{ss}^e (AgB_7) = 2.9 \times 10^{13} \times 5.35 \times 10^{-13} = 15.5$

可得: $c(S_2O_5^{2-}) = 0.025 \text{ mol L}^{-1}$

则 $c(S_2O_3^{2-})_{35}=0.025+0.1\times2=0.225 \text{ mol·L}=1$

4. (7分) 现用 25.00 mL 0.04520 mol L⁻¹ 的 EDTA 处理一 50.00 mL 含 Ni²⁺和 Zn²⁺的溶液,使与其完全反应。过量的未反应的 EDTA 需用 12.40 mL 0.01230 mol L⁻¹ 的 Mg²⁺溶液滴定。然后再加入过量的 2,3-二硫基丙醇从 Zn-EDTA 配合物中宣换出 EDTA、释放出的 EDTA 又需消耗 Mg²⁺溶液 29.20 mL,试计算原试液中 Ni²⁺和 Zn²⁺的浓度。

解: $Zn^{2+} + Y^{4} = ZnY^{2-}$

$$Ni^{2+} + Y^{4-} = NiY^{2-}$$

$$Mg^{2+} + Y^{4-} = MgY^{2-}$$
 $n(EDTA) = 25.00 \times 0.04520 \times 10^{-3} = 1.130 \times 10^{-3} \text{ mol}$
 $n(Mg^{2+}) = 12.40 \times 0.01230 \times 10^{-3} = 0.1525 \times 10^{-3} \text{ mol}$
 $n(Mg^{2+}) + n(Ni^{2+}) = 1.130 \times 10^{-3} - 0.1525 \times 10^{-3} \text{ mol}$
 $n(Zn^{2+}) + n(Ni^{2+}) = 1.130 \times 10^{-3} - 0.1525 \times 10^{-3}$
 $= 0.978 \times 10^{-3} \text{ mol}$
 $n(Zn^{2+}) = 29.20 \times 0.01230 \times 10^{-3} = 0.3592 \times 10^{-3} \text{ mol}$
 $n(Ni^{2+}) = 0.978 \times 10^{-3} - 0.3592 \times 10^{-3} = 0.619 \times 10^{-3} \text{ mol}$
 $n(Ni^{2+}) = 0.3592 \times 10^{-3} / 50.00 \times 10^{-3} = 7.184 \times 10^{-3} \text{ mol} \cdot L^{-1}$
 $c(Ni^{2+}) = 0.619 \times 10^{-3} / 50.00 \times 10^{-3} = 1.24 \times 10^{-2} \text{ mol} \cdot L^{-1}$

- 5. (10 分) 298.15 K, MnO₂与 HCl 反应制备 Cl₂. 已知: φ^{\oplus} (MnO₂/Mn²⁺) = 1.23 V, φ^{\oplus} (Cl₂/Cl⁻) = 1.36 V.
 - (1) 将该反应设计成原电池。写出电池符号、电池反应、电极反应。
 - (2) 在标准状态下是否可以制备 Cl2。
 - (3) 信设 c(HCl) = 10 mol L-1, 其他物质都处于标准状态,制全 CL是否可行。
 - 解: (1) MnO₂(s) + 4HCl = MnCl₂ + Cl₂(g) + 2H₂O 正极: MnO₂/Mn²⁺ 负极: Cl₂/Cl 正极反应: MnO₂(s) + 4H⁺ + 2e⁻ = Mn²⁺ + 2H₂O 负极反应: 2Cl⁻ = Cl₂ + 2e⁻ 电池符号为: (-)Pt|Cl₂(p)|Cl⁻(e₃) || H⁺(c₂), Mn²⁺(e₃)|MnO₂(s)|P₂(+)

(2)
$$E^{0} = \varphi_{+}^{0} - \varphi_{-}^{0}$$

= 1.23 - 1.36 = -0.13 V < 0

: 反应不能自发向右进行,即不能制得 Cla

(3)

$$\varphi_{+} = \varphi_{+}^{\Theta} + \frac{0.05915}{2} \lg \frac{[c(H^{+})/c^{\Theta}]^{4}}{c(Mn^{2+})/c^{\Theta}} = 1.23 + \frac{0.05915}{2} \lg(10^{2}) = 1.348 \text{ V}$$

$$\varphi_{-} = \varphi_{-}^{\Theta} + \frac{0.05915}{2} \lg \frac{p(\text{Cl}_{2})/p^{\Theta}}{[c(\text{Cl}^{-})/c^{\Theta}]^{2}} = 1.36 + \frac{0.05915}{2} \lg(10^{-2}) = 1.301 \text{ V}$$

$$E = \varphi_{+} - \varphi_{+} = 1.348 \text{ V} - 1.301 \text{ V} = 0.047 \text{ V}$$

: 在此条件下,该反应能自发向右进行制得 Cl.。

装订线

本试卷适用范围 草叶、食品、资 环、农学专业

南京农业大学试题纸

2013-2014 学年第一学期 课程类型:必修 试卷类型: A

選写	课程	<u>无机及分</u> 析化学	_班级	学号·	<u>姓名</u>	成绩								
一、 选择題 (每題 3 分, 共 30 分) 1. 用排水取气法在 25℃时收集到 245ml 氧气, 其压力为 98. 28kPa, 求所收集气体中氧气的分压。(298k 时水的饱和蒸汽压为 3. 169kPa) (2. 49. 1. 169kPa) (2. 49. 1. 169kPa) (2. 49. 1. 169kPa) (2. 49. 1. 169kPa) (3. 495. 11kPa) (4. 373. 31K (4. 412. 54K (4. 2. 54K	题号		**************************************	Ξ	四	总分	,							
1. 用排水取气法在 25℃ 时收集到 245ml 氧气,其压力为 98. 28kPa,求所收集气体中氧气的分压。(298k 时水的饱和蒸汽压为 3. 169kPa) () A95. 11kPa B. 97. 11kPa C. 98. 28kPa D. 101. 45kPa 2. 将 1. 09g 葡萄糖溶于 20g 水中,此葡萄糖溶液的沸点是(已知 T°=373. 15K,K=0. 512K. kg/mol) A. 373. 31K B. 384. 31K C. 412. 54K D. 432. 54K 3. 在超显微镜下观察胶体,可看到 A 胶体粒子本身 B. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的混合发光点 D. 胶体对光散射和反射后的混合发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K² 大于 800K 时的 K² , 这说明该反应 () A. ΔrH²m>0 B. ΔrH²m<0 C. ΔrG²m<0 DΔrG²m>0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B、C 都对 7. 反 应 A₂+2B→2D 的 反 应 速率 方程式为 v=kc(A₂)•c(B)•c(B),则该 反应() A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 B. 反应的活化能增大 D. 活化分子百分数增大 D. 活化分子的数目增多	得分													
1. 用排水取气法在 25℃ 时收集到 245ml 氧气,其压力为 98. 28kPa,求所收集气体中氧气的分压。(298k 时水的饱和蒸汽压为 3. 169kPa) () A95. 11kPa B. 97. 11kPa C. 98. 28kPa D. 101. 45kPa 2. 将 1. 09g 葡萄糖溶于 20g 水中,此葡萄糖溶液的沸点是(已知 T°=373. 15K,K=0. 512K. kg/mol) A. 373. 31K B. 384. 31K C. 412. 54K D. 432. 54K 3. 在超显微镜下观察胶体,可看到 A 胶体粒子本身 B. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的混合发光点 D. 胶体对光散射和反射后的混合发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K² 大于 800K 时的 K² , 这说明该反应 () A. ΔrH²m>0 B. ΔrH²m<0 C. ΔrG²m<0 DΔrG²m>0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B、C 都对 7. 反 应 A₂+2B→2D 的 反 应 速率 方程式为 v=kc(A₂)•c(B)•c(B),则该 反应() A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 B. 反应的活化能增大 D. 活化分子百分数增大 D. 活化分子的数目增多	L	1				<u> </u>								
时水的饱和蒸汽压为 3. 169kPa)	-,													
A 95. 11kPa B. 97. 11kPa C. 98. 28kPa D. 101. 45kPa 2. 将 1. 09g 葡萄糖溶于 20g 水中,此葡萄糖溶液的沸点是(已知 T° =373. 15K, K=0. 512K. kg/mol) A. 373. 31K B. 384. 31K C. 412. 54K D. 432. 54K 3. 在超显微镜下观察胶体,可看到 B. 胶体对光散射后的发光点 D. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的混合发光点 D. 及子H®m O C. 全子®m O D全子®m > 0 A. 全子H®m N B. 全子H®m O C. 全子®m O D全子®m > 0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B320J C. 40J D40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速率 方程式为 V=kc(A₂)•c (B)•c (B),则该反应 () A. 一定是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 A. 反应的速率常数增大 B. 反应的活化能增大 D. 活化分子的数目增多														
2. 将 1.09g 葡萄糖溶于 20g 水中,此葡萄糖溶液的沸点是(已知 T° =373.15K, K=0.512K.kg/mol) A. 373.31K B. 384.31K C. 412.54K D. 432.54K 3. 在超显微镜下观察胶体,可看到 A 胶体粒子本身 B. 胶体对光散射后的发光点 C. 胶体对光反射后的发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K® 大于 800K 时的 K® ,这说明该反应 () A. ΔrH®m>0 B. ΔrH®m<0 C. ΔrG®m<0 DΔrG®m>0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速 率 方 程 式 为 V=kc(A₂) •c (B) •c (B) ,则该 反 应 () A. 一定是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 C. 不能确定是否是基元反应 D. 反应的活化能增大 D. 活化分子的数目增多	· · · · · · · · · · · · · · · · · · ·													
K=0. 512K. kg/mol) A. 373. 31K C. 412. 54K B. 384. 31K C. 412. 54K 3. 在超显微镜下观察胶体,可看到 A 胶体粒子本身 C 胶体对光反射后的发光点 D. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K ⁰ 大于 800K 时的 K ⁰ ,这说明该反应 4. 已知某反应在 500K 时 K ⁰ 大于 800K 时的 K ⁰ ,这说明该反应 A. △rH ⁰ m > 0 B. △rH ⁰ m < 0 C. △rG ⁰ m < 0 D △rG ⁰ m > 0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂ + 2B → 2D 的 反 应 速 率 方 程 式 为 v=kc(A₂) • c (B) • c (B) , 则 该 反 应 () A. 一定是基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 C. 活化分子自分数增大 D. 活化分子的数目增多	1,00.	,			· · · · · · · · · · · · · · · · · · ·									
A. 373.31K C. 412.54K D. 432.54K 3. 在超显微镜下观察胶体,可看到 A 胶体粒子本身 C 胶体对光反射后的发光点 D. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K ⁶ 大于 800K 时的 K ⁶ ,这说明该反应 A. △rH ⁶ m > B. △rH ⁶ m < C. △rG ⁶ m < D. D△rG ⁶ m > D 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A. 可逆条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂ + 2B → 2D 的 反 应 速 率 方 程 式 为 v=kc(A₂) • c (B) • c (B) ,则该反应 () A. 一定是基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 C. 活化分子百分数增大 D. 活化分子的数目增多			于 20g 水中,	此葡萄糖溶液	的沸点是(已知	T ° =373.	15K,							
C. 412.54K D. 432.54K 3. 在超显微镜下观察胶体,可看到 () A 胶体粒子本身 B. 胶体对光散射后的发光点 D. 胶体对光散射和反射后的发光点 D. 胶体对光散射和反射后的混合发光点 4. 已知某反应在 500K 时 K³ 大于 800K 时的 K³ ,这说明该反应 () A. △rH³m>0 B. △rH³m<0 C. △rG³m<0 D △rG³m>0 D △rG³m>0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. −320J C. 40J D. −40J D. −40J D. −40J D. −40J D. −40J D. −40J D. −20 D. ←20 D		_	n óc	M ÖdV										
3. 在超显微镜下观察胶体,可看到	•	ř – ř												
A 胶体粒子本身	G. 412.	34K	D, 43	2. JAN										
A 胶体粒子本身	3. 在超	显微镜下观察胶体	,可看到				()							
4. 已知某反应在 500K 时 K ⁹ 大于 800K 时的 K ⁹ ,这说明该反应 A. △rH ⁹ m×0 B. △rH ⁹ m <0 C. △rG ⁹ m <0 D △rG ⁹ m ×0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 () A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速 率 方 程 式 为 v=kc(A₂)•c (B)•c (B),则该反应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	A 胶体	粒子本身												
A. △rH ⁰ m > 0 B. △rH ⁰ m < 0 C. △rG ⁰ m < 0 D△rG ⁰ m > 0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 () A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂ + 2B → 2D 的 反 应 速 率 方 程 式 为 v=kc(A₂) • c (B) • c (B) ,则该反应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	C胶体	对光反射后的发光	だ 点	D. 胶体	对光散射和反射局	于的混合发光	点							
A. △rH ⁰ m > 0 B. △rH ⁰ m < 0 C. △rG ⁰ m < 0 D△rG ⁰ m > 0 5. 一个体系对环境做了 180J 的功,其内能减少了 140J,则体系与环境交换的热量为 () A. 320J B. ¬320J C. 40J D. ¬40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 () A. 可逆条件下进行 B. 恒温,无非膨胀功条件下进行 C. 恒容,无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂ + 2B → 2D 的 反 应 速 率 方 程 式 为 v=kc(A₂) • c (B) • c (B) ,则该反应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	4 日知	ま反应在 500K:时 :	c* 大王 800K 时的	ϙ <i>κ®</i> ,这说明该反	i io		():							
5. 一个体系对环境做了 180J 的功, 其内能减少了 140J, 则体系与环境交换的热量为 () A. 320J B320J C. 40J D40J				•			` /							
A. 320J B320J C. 40J D40J 6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 () A. 可逆条件下进行 B. 恒温, 无非膨胀功条件下进行 C. 恒容, 无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂ + 2B → 2D 的 反 应 速 率 方 程 式 为 v=kc(A₂) • c (B) • c (B) , 则 该 反 应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多					*									
6. 盖斯定律认为化学反应热效应与过程无关这种说法所以正确是因为反应处在 A. 可逆条件下进行 B. 恒温, 无非膨胀功条件下进行 C. 恒容, 无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速 率 方 程 式 为 v=kc(A₂)•c(B)•c(B), 则 该 反 应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大, 反应速率加快的原因是 A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多					体系与环境交换的	的热量为	()							
 A. 可逆条件下进行 C. 恒容, 无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速 率 方 程 式 为 v=kc(A₂)•c(B)•c(B), 则 该 反 应 () A. 一定是基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多 	A. 320J	B320J	U. 40J	υ. -4 0J										
 A. 可逆条件下进行 C. 恒容, 无非膨胀功条件下进行 D. B. C 都对 7. 反 应 A₂+2B→2D 的 反 应 速 率 方 程 式 为 v=kc(A₂)•c(B)•c(B), 则 该 反 应 () A. 一定是基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多 	6. 盖斯ス	定律认为化学反应	热效应与过程无	关这种说法所以	正确是因为反应处	在	$\langle \cdot \rangle$							
7. 反 应 A ₂ +2B→2D 的 反 应 速 率 方 程 式 为 v=kc(A ₂)•c(B)•c(B),则该 反 应 () A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多														
() A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大, 反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	C. 恒容,	无非膨胀功条件	下进行 D.B.	C都对										
() A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大, 反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多														
A. 一定是基元反应 B. 一定是非基元反应 C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大, 反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	7. 反 应	$A_2 + 2B \rightarrow 2D$ fr	的反应速率力	了程式为 v=kc	$(A_2) \cdot c (B) \cdot c (B)$),则该	反 应							
C. 不能确定是否是基元反应 D. 反应为二级反应 8. 在恒温下反应物浓度增大, 反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	()	•												
8. 在恒温下反应物浓度增大,反应速率加快的原因是 () A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多				E是非基元反应										
A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	C. 不能和	角定是否是基元反	应 D. 反区	立为二级反应										
A. 反应的速率常数增大 B. 反应的活化能增大 C. 活化分子百分数增大 D. 活化分子的数目增多	。 左右法	3下反应物次度增	士 反应速率加速	4的盾田県			<i>(</i>)							
C. 活化分子百分数增大 D. 活化分子的数目增多														
9. 下列各组量子数, 哪组是合理的 ()					Ş									
9. 下列各组量子数,哪组是合理的 ()			■ A FF											
A. n=2				1-11			()							

C, n=3 f=0 m=-1 D.	n=2 =3	m=+2			
10. 在下列化合物中,不具有孤对电子 A. H ₂ O B. NH ₃ C. NH ₄		DH ₂ S			()
二、填空题(每题 2 分,共 20 分) 11. 将 2g 甲醇(摩尔质量为 32g/mol) 12. 溶胶稳定因素有					<u></u>
13. 在100°C和p [®] 下加热1molH ₂ 0(1)	使其完全变	成 100℃和 p ^e	下的水蒸气,	则此过程	的0为
	是; 0, H, © 等分子间	》以电负性依然 作用力。			
结构, 试问该溶胶在电场中向哪极移	动?并比较	AICI ₃ , NaSO ₄ , K	$\left[Fe(CN)_6\right]$	三种电解质	对溶胶
的聚沉能力。					
					v
17. 判断正误,并简要说明。 (1) 某反应的速率常数很高,所以反应速 (2) 某催化剂用于合成氨,N ₂ 的转化率为 提高到 0, 4.		新催化剂使反应	速率常数提高-	一倍,所以封	比率将
提高到 0. 4.					
	÷		•		
		•			
18. 解释下列事实:					:
18. 解释下列争失: (1) 石墨导电金刚石不能。					
(2) H ₂ 0 的沸点高于 H ₂ S 的沸点。					
		and the second second second			

四、计算题(每题8分,共32分)

19. 烟草的有害成分尼古丁的实验式是 C₅H₁N₁, 现将 496mg 尼古丁溶于 10. 0g 水中, 所得溶液在 101. 3KPa 下的 沸点是 100. 17℃, 求尼古丁的分子式。(Kb=0. 512K)

20. 已知反应 $CO_2(g) + H_2(g) \longleftrightarrow CO(g) + H_2O(g)$ 在 700K 时的 K^θ =9.07, $\Delta r H^\theta m$ =-37.9kj/mol, 求 800K 时的平衡常数 K

21. 反应 $C_2H_4+H_2\to C_2H_6$ 在 300K 时 k1=0. 0013mo l/(L. S),400K 时 k2=0. 0045mo l/(L. S),求该反应的活化能 Ea.

22. 密闭容器中进行的某基元反应 A (g) +2B(g)=2C(g), 当反应物的起始浓度分别为 cA=0. 2mol/L, cB=0. 3mol/L 时的反应速率为 0. 725mol/(L. S), 若温度不变, 增大反应物浓度 cA=1. 2mol/L, cB=0. 6mol/L, 使, 此时反应速率为多大? 为原来反应速率的多少倍?

《无机与分析化学》2013-2014 答案

一、选择题

1.A 2.A 3.B 4.B 5.C 6.D 7.C 8.D 9.A 10.C

二、填空题

- 11. 1. 25kg. mol⁻¹
- 12. 布朗运动 丁达尔效应 加入电解质,相互聚沉
- 13.40.60kJ/mol -3101.12kJ -3060.522kJ 40.6kJ/mol
- 14. Mg C1>H>0

15 色散力, 诱导力, 试剂误差 仪器误差 操作误差

三、简答题

16, n(kel)=0.015L \times 0.01mo1/L=1.5 \times 10⁻⁴moI

 $n (AgNO_3) = 0.1 L \times 0.05 mol/L = 5 \times 10^{-3} mol$

由题可知AgNO。过量

则「(AgCl) nAg+(n-x)NO₃-7** • xNO₃-向负极移动

聚沉能力 $[K_3Fe(CN)_6] > Na_2SO_4 > AlCl_3$

- 17. (1) 错误, 还受反应物浓度和反应级数影响
- (2) 错误,催化剂只改变反应历程,而不改变始终态,所以转化率不改变
- 18. (1) 金刚石不是原子晶体,无自由移动电子,石墨是混合型晶体,层状结构,有自由移动电子 (2) H₂0 有氢键而 H₂S 没有。
- 19、解: △Tb=k,•b。

$$b_{g} = \frac{mE}{ME \cdot mk \text{ (g)}} \times 1000$$

$$(100.17 - 100) = 0.512 \bullet \frac{0.496 \times 1000}{M \mathbb{E} \bullet 10}$$

M尼=149.384g/mol

M(C.H,N)=81

$$\frac{M尼}{M(C5H7N)} = 1.844 \approx 2$$

:尼古丁分子式为 G, H, N,

第2页 共4页

$$\lg \frac{k^{\theta}(800)}{k^{\theta}(700)} = \frac{\Delta r H^{\theta} m}{2.303 R} (\frac{1}{T700} - \frac{1}{T800})$$

20.
$$\lg \frac{k^{\theta}}{9.07} = \frac{-37.9 \times 10^{3}}{2.303 \times 8.314} (\frac{1}{700} - \frac{1}{800}) \approx -0.3535$$

 $k^{\theta} = 4.02$

$$\lg \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\lg \frac{0.0045}{0.0013} = \frac{Ea}{2.303 \times 8.314} \left(\frac{1}{300} - \frac{1}{400}\right)$$

$$Ea = 12.39 \text{kJ}$$

22. V此时=
$$k \cdot c(A) \cdot c^2(B)$$

= $40 \times 1.2 \times 0.6^2 = 17.28 \text{mol} / (L \cdot s)$

17.28÷0.72=24则为原来反应速率的24倍

本试卷适应范围 农学。 生料等专业

南京农业大学试题纸

2012-2013 学年 第一学期 课程类型: 必修V、选修 试卷类型: AV、E

		£014		يملخ بأبي	777	EXXX: 25	IN A YELL	B 1441		A.V. D	
	评程_无机	及分析化學	<u>学</u>	E级	· · · · · · · · · · · · · · · · · · ·	学号	: 		名	·	
-	趣号	_				四	无		总分	签名	
	得分										
	得分	-	7	~ 							
			_								
	<u> </u>	<u></u>	」 —、i	选择题(每小题 2分	,共40 分	})请将设	基择题答 第	陸填在下	列表格中!	
	1,	25	3,	4.	5 v	6.	7.	8.	9.	10.	
	11,	12、	13.	14、	15,	16.	17.	18,	19.	20.	
	1、下列访	经法正确的]是							. 2	
	A.	σ键和π	:键在分	F 中均可	单独存在	B. 极 ⁴	生分子间包	又存在取了	句力		
										的空间结构	
	2、浓度为	7 0.1 mol	L-I 的 No	cl. Na	SO ₄ 、甘油	(C ₃ H ₈ O ₃)	、蔗糖(C ₁₂ H ₂₂ O ₁) 溶液	,其渗透压	
	从大到	小的顺序	是				•				
	A.	甘油 >	蔗糖 >1	la ₃ SO ₄ >	NaCl	B. N	aCl > Na ₂	SO4> 甘	油>底	塘	
	c.	甘油 =	蔗糖 >1	Īá₂ŞÖ₄ >	NaCl	D. N	$a_2SO_4 > N$	IaCl>甘	油=蔗	塘	
	3、下列电	以寸中, φ	"值最小	的是(己	知K,(AgB	(r) = 5.35 ×	10^{-13} , K	e (AgI) =	8.52 × 10	0 ⁻¹⁷ ,	
	K_t (A)	g(\$2O ₃) ₂ ³ -	$) = 3.2 \times$	10 ¹³ , K	(Ag(CN)2)=1.3 × 1() ²¹)			•	
	A.	AgBr/Ag	<u> </u>	B. AgI/	Ag	C. Ag(S ₂ C) ₃) ₂ ³⁻ /Ag	D	. Ag(C	N) ₂ /Ag	
	4、下列证	初中溶解	Mg(OH)2效果量	好的是			. ,			
	Á.	NH ₃ :H ₂ O)	В. Н	Ac	C. H	I ₂ O	D.	NaCl		
	5、下列物	1质中不是	基准物质	质的是							
***************************************	Α.	硼砂	В.	邻苯二	甲酸氢钾	. C. 重	铬酸钾	D	.高锰質	後钾	
	6、无水碳	酸钠作为	基准物质	用于标	定盐酸溶液	的准确派	度,若称量	前碳酸钠	吸水了	,则用此碳	
		定盐酸溶									
	A.	无影响		В.	偏低	. (. 偏高		D. 7	下确定	
-	7、下列档	合剂螯合	能力最强	風的是							
+						В.	H-NCH-C	CHANHA	<u>.</u>		
1	A. H ₂ NCH ₂ NH ₂ B. H ₂ NCH ₂ CH ₂ NH ₂ C. H ₂ NCH ₂ CH ₂ CH ₂ NH ₂ D. H ₂ NCH ₂ CH ₂ CH ₃ NH ₃										

- 8、下列弱酸用 NaOH 滴定,能实现分两步滴定,形成两个较明显滴定突跃的是
 - A. H_2S : $(K_n = 8.91 \times 10^{-8})$, $K_n = 1.0 \times 10^{-19}$
 - B. $H_2C_2O_4$ ($K_4 = 5.62 \times 10^{-2}$, $K_4 = 1.55 \times 10^{-4}$)
 - C. CICH₂COOH ($K_s^9 = 1.35 \times 10^{-3}$)
 - D. H₃PO₄ ($K_{n_1}^{"} = 6.92 \times 10^{-3}$, $K_{n_2}^{"} = 6.17 \times 10^{-8}$, $K_{n_3}^{"} = 4.79 \times 10^{-13}$)
- 9、下列化合物中, 偶极矩为零的是
 - A. H₂S
- B. CHCl.
- C. BF₃
- D. PCh
- 10、根据下列标准电极电势,指出在标准状态下可以共存于同一溶液中的是

已知 φ^{e} (Br₂/Br) = 1.07 V, φ^{e} (Fe³⁺/Fe²⁺) = 0.771 V, φ^{e} (Hg²⁺/Hg₂²⁺) = 0.92 V, φ^{e} (Sn²⁺/Sn) = 0.14 V

- A. Br₂水和 Hg₂²⁺
- B. Sn和Hg²⁺ C. Sn²⁺和Br⁻
- D. Hg²⁺ 和 Fe²⁺
- 11、用 $K_2Cr_2O_7$ 法测定 $FeSO_4$ 时,需要加入 H_3PO_4 ,以下不是加入 H_3PO_4 目的的是
 - A. 增大滴定的突跃范围,减小滴定误差
- B. 消除 Cr3+的绿色

C. 消除 Fe³⁺的黄色

- D. 使反应进行更彻底
- 12、下列计算中,结果的有效数字保留不正确的是
 - A. $12.2 \times 0.23 = 2.8$
- B. $-\log(1.8 \times 10^{-5}) = 4.7$
- C. $12.7 \pm 0.25 = 12.9$
- D. 294.2 / 2 = 147.1
- 13、用双指示剂法测定某一混合碱样品,用 HCI 标准溶液滴定至酚酞终点,用去 V₁ mL, 继续 滴定至甲基橙终点又消耗 凡加L, 且 N > V, 该混合碱的组成是
 - A. NaOH + Na₂CO₃
- B. NaHCO₃ + Na₂CO₃
- C. NaOH + NaHCO₃
- D. Na₂CO₃
- 14、在 1073 K 下,反应 $2NO(g) + 2H_2(g) = N_2(g) + 2H_2O(g)$ 的反应速率如下表:

- 	1		
序号	c(NO) / (mol·L ⁻¹)	$c(H_2) / (\text{mol } L^{-1})$	ν/ (mol·L ⁻¹ ·S ⁻¹)
I	2.00×10^{-3}	6.00 × 10 ⁻³	1.92 × 10 ⁻³
2	1.00 × 10 ⁻³	6.00 × 10 ⁻³	0.48 × 10 ⁻³
3	2.00 × 10 ⁻³	3.00 × 10 ⁻³	0.96×10^{-3}

则该反应的速率方程为

A. $y = kc(NO) \cdot c(H_2)$

B. $v = kc^2(NO) \cdot c^2(H_2)$

C. $v = kc(NO) \cdot c^2(H_2)$

D. $y = kc^2(NO) \cdot c(H_2)$

15、对于一个化学反应来说,下列说法正确的是

A. 放热越多,反应速率越快

B. 活化能越小, 反应速率越快

C. 平衡常数越大, 反应速率越快

D. $\Delta_{r}G_{m}^{"}$ 越大,反应速率越快

16、难容电解质 BaSO₄、BaCO₃、Mg(OH)₂、Al(OH)₃ 的溶度积常数分别是 2.6×10⁻⁹、1.1×10⁻¹⁰、 5.6×10^{-12} 、 2.0×10^{-33} ,则在水中溶解度最大的是

A. BaSOi

B. BaCO₃

C. Mg(OH)₂

D. Al(OH)3

17、已知一元弱酸 HA 溶液的浓度为 0.10 mol·L⁻¹, pH=5.00,则 0.10 mol·L⁻¹ 的共轭碱 A⁻溶液 的oH为

A. 11.00

B. 9.00

C. 8.50

D. 9.50

18、下列各组量子数中,相应于氢原子 Schrodinger 方程的合理解的一组是

l=1 m=-1 $m_s=+1/2$ A. n=3

B. n=2 l=2 m=0 $m_s=+1/2$

C. n=3 1=0 m=+1 $m_s=-1/2$

D. n=2 1=1 m=+1 $m_s = 0$

19、可逆反应 PCl₅(g) — PCl₅(g) + Cl₂(g)在密闭容器中进行,其焓变小于零。当达到平衡时, 下列说法正确的是

- A. 平衡条件不变; 加入催化剂使平衡向左移动
- B. 保持总体积不变, 通入氦气使压力增加1倍, 平衡向左移动
- C. 保持总压力不变, 通入氮气使体积增加1倍, 平衡向右移动
- D. 升高温度, 平衡向右移动

20、在滴定分析测定中,将导致系统误差的是

A. 试样未经充分混匀

B. 滴定时有液滴溅出

C. 砝码未经校正

D. 滴定过程中温度有微小波动

得分。评简人
二、填空题(每空1分,共20分)
1、[Cr(NH ₃) ₄ Cl ₂]NO ₃ 的名称是,配位数为,
中心离子的杂化方式是。
2、EDTA 有个配位原子,可形成个数合环。
3、把 0.020 mol·L ⁻¹ 的 Na ₂ SO ₄ 溶液 10 mL 与 0.0050 mol·L ⁻¹ 的 BaCl ₂ 溶液 50 mL 混合制得 BaSO ₄
溶胶,其胶团结构式为
K ₃ [Fe(CN) ₆]三种电解质对该溶胶的聚沉能力由小到大为
4、写出 NaH_PO4 溶液的质子条件式:
5、HF、HCl、HBr 三物质沸点按
6、反应(1)是: $C1_2(g) + 2Br = Br_2 + 2Cl$,反应(2)是: $\frac{1}{2}C1_2(g) + Br = \frac{1}{2}Br_2 + Cl$,反应(1)的 K_1''
与反应(2)的 K, 的关系是, 标准电动势 E, 和 E, 的关系
是
7、假设一个化学反应在任意温度下都能自发进行,则有该反应的 ΔH 0、 ΔS 0。(反应都在等温等压的条件下进行)
8、用 0.1000 mol·L ⁻¹ NaOH 滴定同浓度的醋酸溶液(pk = 4.75),pH 突跃范围为 7.76~9.70,
若用此 NaOH 滴定同浓度的某弱酸 A(pK,=3.75)时,pH 突跃范围是为。
9、在 500 g 水中含 22.5 g 某非电解质的溶液, 其凝固点为-0.465 ${\mathbb C}$ 。已知水的 $K_{\rm f}=1.86$
K-kg-mol ⁻¹ ,则溶质的摩尔质量为。
10、He ⁺ 离子的3s与3d轨道的能量关系为(填<, = 或 >)。
11、反渗透是指。
12、配合物 Fe(CN) ₆ ³⁻ , Fe(CN) ₆ ⁴⁻ , Fe(H ₂ O) ₆ ³⁺ , Fe(H ₂ O) ₆ ²⁺ 中,磁矩大小的顺序为
13、反应式 Cu ₂ S + HNO ₃ → Cu(NO ₃) ₂ + H ₂ SO ₄ + NO + H ₂ O 配平后 Cu ₂ S 和 NO 前的系数分别为
和。 和。

得分	评阅人

三、简答和计算题 (每题 8 分, 共 40 分)

1、为何 HAc 和 NaAc 混合溶液具有缓冲作用?如何用 0.20 mol·L⁻¹HAc 和 0.20 mol·L⁻¹ NaAc 溶 液配制成总浓度为 0.20 mol·L⁻¹、体积为 1000 mL 和 pH = 5 的缓冲溶液?请用计算说明。已 知 HAc 的 pK = 4.75。

2、已知 298 时反应:

 $2SO_2(g) + O_2(g) = 2SO_3(g)$

205.2

 $\Delta_l H_m^* / k J - mol^{-1}$

-296.8

-395.7

 $S_{m}^{*}/\operatorname{I-mol}^{-1} \cdot K^{-1}$

248.2

256.8

通过计算说明在 1000 K 时 SO_3 、 SO_2 、 O_2 的分压分别为 100、25、25 kPa 时,正反应是否自发进行?

3、某硅酸盐试样 1.000 g, 以重量法测得 Fe₂O₃ + Al₂O₃ 的总量为 0.5000 g。 将沉淀溶于酸,将 Fe³⁺还原为 Fe²⁺、用 0.03000 mol·L⁻¹ K₂Cr₂O₇溶液滴淀,消耗 25.00 mL。谙计算试样中 FeO 和 Al₂O₃ 的质量分数。[M(FeO) = 71.85 g·mol⁻¹; M(Fe₂O₃) = 159.7 g·mol⁻¹]

4、298 K 时,将氢电极和银-氯化银电极组成原电池,已知:氢电极所在半电池溶液的 pH = 4, $p_{\rm H_2} = p^{\rm G}$:银-氮化银电极所在半电池溶液中 Cl 的浓度是 1 mol·L ,请写出:(1) 该电池的电池符号:(2) 正、负极的电极反应和电池反应;(3) 计算该原电池的电动势和平衡常数。已知: $\phi^{\rm G}({\rm Ag}^{\rm T}/{\rm Ag})=0.80~{\rm V}$, $K_{\rm sp}^{\rm G}({\rm AgCl})=1.77\times 10^{-10}$ 。

5、已知1g K (ZnY) = 16.50、 K_n (Zn(OH)₂) = 3 × 10⁻¹⁷。计算(1)用 0.02000 mol·L⁻¹ EDTA 滴定 等浓度 Zn⁻¹ 同近宜的 pH 范围(即最高酸度和最低酸度)。(2) pH = 5.5 时,用 0.02000 mol·L⁻¹ EDTA 滴定 20.00 mL 新浓度 Zn²⁻ 滴定曲线的突跃范围。包括化学计量点。(只考虑酸效应)

									
		2.0	3.0	3.5	4.0	5.0	5,5	6.0	6.5
pН	1.0	2.0			8.44	6.45	5,50	4.66	3.92
lga, res	17.13	13.44	10,60	9.40	0.31		<u> </u>		· — — — — — — — — — — — — — — — — — — —

系工任美州人

```
2012-2013 (农伙参考)
```

1.CZ-D3.B4.BSD 6.C.7.B&D 9.C.10A 11.BDA13.A14.DD.A16C17A8A19.C20.C.

三、治的酸二氯-四氢色铬(III),6,sp3d2

2.6. 3. IBOSO4)mNBa2+. (2n-x)er] ** ACT. KZIFO(OU)ZKM9504 < AICK 4]H3 POY) + ZHT] = ZHPOY]+2ZFOY =]+[D4-)

T. HCICHBYCHF 6. KIO=[KO]2 E, 0=720

7. <, > 8.6.76~9.70]. Bug. mol-1 10 <.

11.在渗透压较大溶液的一侧,加速比型渗透压压压高的压力,应使溶剂从高浓度溶验一侧向低浓度溶液一侧的粉点从而达到浓密流液加到的

12, te (H20)6"7 fe [H20)6"> fe (CN)6"> fe (CN)6"

13, 3, 10

三. OHACADAIA AC 的现在路路中的超越的并至DH的抗剧初HAC和图书中的扩放对方在成分NaAc,所以现在缓冲作图

TH= pka (HAC)-19 D(HAC) C(HAC)=C(AO)=U2md.L-1

PH= pka (HAC)-19 D(HAC)

V(HAC)=359.9mL

V(AC)=640.1mL

2_ AH@Q98K)= 2x(-395,7)-(-216.8)x2=-197.8kJ.mol-1

15°(298K)=2x2568-2x2482-205,2=-1887.moH.K-

AGO = AH- TASO = -9.8 KJ. mol-1

AG = AG 0+ RT/17 (= AG 0+ RT/17 (100 kpa) 2

(25kpg)(25kpg)) == 4/8/5/mo/50

反之不是让时间发出的

3 仅23年2 式

\$+C+202+6+6+++++=2C+3++6+63++7H2O

WFEO= 6Ckcror MFEO X100%

= 6x0,03000 mol.2-x25c00x/0-32 x 71.859·mol-1 1,0009

=32,3375%

4. 解 (1) (-) Pt | Holpe) | H+ (IXID finite) | 10-(1)mHer) | 100 | 100 | 100 | 110 |

5. 解的。PH在4~7.6 201

本试卷适应范围 本科一年级学生

南京农业大学试题纸

2010-2011 学年 一学期 课程类型: 必修 试卷类型: A

	课程 无	机及分	析化学	班级			学号			姓名 -		· · · · · · · · · · · · · · · · · · ·	成结	责 ——	
		题号	55 二		=	三四			总分			签名			
		得分													
一、选择题(请将答案填在表格中,每题2分,共30分)															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1.5
	i	1	l	i .	ļ.	1	ı	1	1	1	ł	1		1	

- 1. 下列质量摩尔浓度相同的溶液凝固点由低到高的顺序是:
 - ①HAc 溶液

订 线

- ② CaCl。溶液 ③蔗糖水溶液 ④NaCl 水溶液
- A:(1)(2)(3)(4)
- B: (1)(3)(2)(4)
- C: (2)(4)(1)(3)
- D: 2341
- 2. 某体系经过循环过程回到起始状态,下列量中不一定为零的是
 - A: AH
- B: AS
- Ć; ΔĠ
- 3. 等温等压下,已知反应 X=2Y 的 $\Delta rH^{\theta}m(1)$ 及反应 2X=Z 的 $\Delta rH^{\theta}m(2)$,则反应 Z=4Y 的 $\Delta rH^{\theta}m$

装

订

- A: $2\Delta r H^{\theta} m(1) + \Delta r H^{\theta} m(2)$ B: $2\Delta r H^{\theta} m(2) + \Delta r H^{\theta} m(1)$
- C: $2\Delta r H^{\theta} m(1) \Delta r H^{\theta} m(2)$ D: $2\Delta r H^{\theta} m(2) \Delta r H^{\theta} m(1)$
- 4. 下列化合物熔点高低顺序正确的是
 - A:SiCI, > KC1 > SiBr, >Mg0 B: Mg0 >KC1 >SiBr, >SiCL,
 - C:SiBr, SiCl, MgO > KCl D: KCl >MgO >SiCl, >SiBr,
- 5. 量子数 n=3, n=1 的原子轨道上,允许的最多电子数为
 - A; 2
- B: 4
- C: 6
- 6、下列各数中,有效数字位数为四位的是
 - A; c $(H+) = 0.0300 \text{mol} \cdot L^{1}$
- B: pH = 10.69

C: 1000

- D: c (NaOH) = 0.1087 mol L^{1}
- 7. 已知一元弱酸 HB 溶液的浓度为 0.1 mol· L', pH = 3.00, 则其 0.1 mol· L' 的共轭碱 NaB 溶液的

pH 为

A: 11.0

B: 10.00

C: 9.00

D: 8.00

8. 某一试液(可能是 NaOH、 NaCO3 和 NaHCO3 中的一种或两种的混合物)采用双指示剂法,在同一维 形瓶中用 HCI 标准溶液连续滴定,以酚酞为指示剂消耗 HCI 的体积为 Vi, 以甲基橙为指示剂消耗的 HCI 的体积为 V2, 若 0~ V1~ V2, 则此试液的组成为

A: NaCO3

B: NaHCO₃ + NaCO₃ C: NaOH + NaCO₃ D: NaHCO₃

9. 某温度下,难容性物质 A_mB_n 的溶解度是 x mol· L^2 ,则该温度下其 K_m^a 为

A: x MAD

B: $\min X^{m+n}$ C: $\min^m n^n X^{m+n}$

10. 下列配位,体中能作整合剂的是

A: H2NNH2

B: H2NCH2CH2NH2 C: SCN D: SO42

11. 已知 AgCl 的 K 0 及[Ag(NH3)2]*的 K 2 则 AgCl +2NH3 ⇌ [Ag(NH3)2]*+ Cl 的平衡常数为

A. $K_{sp}^{\theta} \times K_{r}^{\theta}$ B. $K_{sp}^{\theta} / K_{r}^{\theta}$ C. $K_{r}^{\theta} / K_{sp}^{\theta}$ D. $1 / [K_{sp}^{\theta} \times K_{r}^{\theta}]$

12. 利用酸效应曲线可选择滴定单独金属离子时的。

A: 最低酸度

B: pH 突跃范围 C: 最低 pH 值 D: 最高 pH 值

13. 某电池-) A | A² (0.10 mol·L¹) | B³ (0.10 mol·L¹) | B(+ 的电动势 E= 0.27V, 则该电池的标准 电动势 E® 为

A: 0.24V B: 0.27V C: 0.30V D: 0.33V

- 14. 下列滴定实验中, 指示剂在接近终点时加入的是
 - A: NaOH 标准溶液滴定 HCl 溶液 B: AgNO。标准溶液滴定 Cl (莫尔法)
 - C: EDTA 标准溶液滴定 Zn' D: Na.S.O.标准溶液滴定 I.溶液
- 15. 分光光度法中,下列叙述错误的是

A: 吸光度可表示为-1gT B: 可以采用示差分光光度计法测定较高含量的组分

- C: 一般选择被测物质的最大吸收波长作为入射光的波长
- D. 若样品溶液有色,而试剂、显色剂均为无色时,可用配置溶液的溶剂作为参比溶液

一、填空题 (每空 2 分, 共 30 分)

			シ測得的反应初始速度 v y
3. 26-101/4 of 104/00/00/6-161	178-170 MEZYAC		心义应敛数分别是
实验序号	c _N / mol· L¹	c _u ∕ mol• L ¹	V/mol·L ³ ·s ³
(1)	0. 2	0.3:	2. 0×10 ¹
(2)	0. 2	0. 6	8.0×10
(3)	0. 3	0.6	8. 0×10 ⁴
Na2HP04 溶液的质了条			
半充满,此元素为	选择的指示剂是		
半充满,此元素为 佛尔哈德法测定 Ag+时 [Pt(NO ₂)(NH ₃)(en)]Cl 配	选择的指示剂是。 合物系统命名是		,配位数是
半充满,此元素为	选择的指示剂是。 合物系统命名是		
半充满,此元素为	选择的指示剂是。 合物系统命名是 中心原子采取	。 轨道杂化,其标	,配位数是 构成的配合物是
半充满,此元素为	选择的指示剂是 合物系统命名是 中心原子采取 1· L-1 KMnO4 溶液于厚	数道杂化,其构 轨道杂化,其构 度为 2.0 cm 的比色皿	,配位数是
半充满,此元素为	选择的指示剂是 合物系统命名是 中心原子采取 ol· L-1 KMnO4 溶液于厚	轨道杂化,其本度为 2.0 cm 的比色皿, 该波长下的摩尔	,配位数是
[Fe(CN) ₆] ⁴ 配离子中,外)轨型配合物。 置浓度为 1.7×10 ⁻⁵ mo 为 30.0%,则该溶液。 已知φ ⁶ (Ce ⁴⁺ / Ce ³⁺)	选择的指示剂是 合物系统命名是 中心原子采取 ol· L-1 KMnO4 溶液于厚	轨道杂化,其本度为 2.0 cm 的比色皿, 该波长下的摩尔	,配位数是

·	·			
1.不用计算、请解释为何 Ag 不能置换出 HC	1.溶液中的 H+,	但能置换出 HI	溶液中的 H+?	
2.配位滴定中药控制溶液的 pH 范围,请简单	要说明其原因。			
				<u>.</u>
				•
	·			
四、计算题 (每题 8 分, 共32 分)				
1. 乌洛托品 (化学名称: 六次甲基四胺—	一(CH ₂) ₆ N ₄)是	治疗尿道感染的	药品,药典上规定	建纯度不能
小于 99%,称取该药品 0.1190g 加入 0.	04971 mo]• L ⁻¹	H ₂ SO ₄ 50.0 n	nL. 加热发生反应	∑:
$(CH_2)_6N_4 + 2 H_2SO_4 + 6H_2O = 6HCHO$			* george	
再用 0.1037 mol- L-1 NaOH 凹滴过量的			计算程具由包	次 料县的质鲁/
	· _•			A TURNET HOLD OF CHEEN
数,并说明其纯度是否达到药典的规定	$M \left[(CH_2)_6 \Lambda \right]$	$\ell_4 \int = 140.2 \text{g} \cdot \text{mol}$	-1)	
		•		:
			,	
A PARTIES OF A PROBLEMS CONC. TO THE	nakat at sintern	生和 交水管道。	A month of the	2日人: 近海
2. 欲配制 pH = 4.70 级冲溶液 500 mL 1.0		1 加 多少電灯 1	umoi L"HAC	低 台,开而
加多小豪升水? 已知 DK^{θ} (HAC) = 4.75	ء أ			

- —) Ag | [Ag (S₂O₃)]³⁻ (0.1mol·L⁻¹), S₂O₃²⁻ (0.1mol·L⁻¹) | Br⁻(0.1mol·L⁻¹) | AgBr | Ag (+
- (1) 写出原电池正、负极的电极反应:
- (2) 计算原电池反应的标准平衡常数:
- (3) 计算该原电池的电动势:
- (4) 计算电池反应的 $\Delta_{a}G_{a}$ 。

已知
$$\varphi_{1g^+/Ag}^{\theta} = 0.7999 \, \text{V}$$
 , $K_{sp}^{\theta} \left(AgBr \right) = 5.0 \times 10^{-13}$, $K_f^{\theta} \left[Ag(S_2 O_3)_2 \right]^{3-} = 2.9 \times 10^{-13}$

4. Na₂SO₄·10H₂O (s) 的风化反应可表示为:

$$Na_2SO_4 \cdot 10H_2O(s) = Na_2SO_4(s) + 10 H_2O(g)$$

己知
$$\Delta_r G_{\mathfrak{m}}^{\theta} \left(kJ \ / \ mol\right)$$
 -3644

和 298K 时的水的饱和蒸汽压为 3.17 kPa。

求:(1) 298K 时该反应的 $\Delta_r G_s^{\theta}$ 和 K^{θ} 。

(2) 在 298 K 时和空气相对湿度为 60%时, Na₂SO₄·10H₂O (s)是否发生风化?

南京农业大学 2010-2011 学年无机分析化学试题 (A) 参考答案

一. 选择题

二、填空题

- 1. 正: [(AgI)mnI-(n-x)K+]x-xK+
- $2. \ \nu = k \cdot c^2(B) \ ; \ 2$
- 3, $[H^+] + [H_2PO_4] + [H_2PO_4]^2 = [OH^-] + [PO_4]^3$
- 5, [NH₄Fe(SO₄)₂·12H₂O]
- 6、 氯化一硝基一氨基一乙二胺合铂[I]: 12
- 7、d²sp³ . 内
- 8, 0,523 , 1,538×10-6 L·mol-1·cm-1
- 9. 0.86-1.44V
- 10、指示剂的变色范围全部或部分落在滴定的突跃范围内。
- 三、简答题
- 1.答:因为 $\varphi^{\theta}(AgI/Ag) < \varphi^{\theta}(H^+/H_2)$,所以Ag能从HI中置换出H⁺

因为 $\varphi^{\theta}(AgC1 / Ag) > \varphi^{\theta}(H^+ / H_a)$, 所以 Ag 不能从 HCl 中置换出 H⁺

2答:因为pH太低,EDTA副反应越多;因为pH太高,金属离子易形成氢氧沉淀。

四、计算题

2H₂SO₄

0.04971×50×10-3-n

 $W\% = \frac{x \cdot M}{0.1190} \times 100\%$: 达到药典的规定

2.
$$M: pH = pK_a^{\theta}(HAc) - \lg \frac{n(\mathfrak{R})}{n(Re)}$$

= 4.75 -
$$1g \frac{1.0 \times V}{50 \times 10^{-3} \times 1.0}$$

- · 加水量 = 500×10⁻³-50×10⁻³- ∨
- 3.解: (1) 正极: AgBr+e = Br+Ag 负极: [Ag(S₂O₃)₂]³·= Ag+2S₂O₃²·+e·

(2)
$$\lg K^{\theta} = \frac{1}{0.0592} (\varphi_{+}^{\theta} - \varphi_{-}^{\theta})$$

$$\varphi_{+}^{\theta} = \varphi_{A_{\theta}+/A_{\theta}}^{\theta} + \frac{0.0592}{1} \lg K_{sp}^{\theta}$$

$$\varphi_{-}^{\theta} = \varphi_{Ag+/Ag}^{\theta} + \frac{0.0592}{1} \lg \frac{1}{K_f^{\theta}}$$

(3)
$$E^{\theta} = \frac{RT}{nF} \ln K$$
 $E = E^{\theta} - \lg \frac{0.0592}{1} \lg Q$

(4)
$$\Delta rGm = -nFE$$

4.
$$M$$
: (1) $\Delta r G_{\mu}^{\theta} = -RT \ln K^{\theta}$

(2)
$$P_{x}=3.17 \times 60\%$$

$$\Delta rGm=2.303RT \lg \frac{Q}{K^{\theta}}$$

= 2.303 × 8.314 × 298
$$\lg \frac{[P_{*} / p^{\theta}]^{10}}{K^{\theta}}$$

2010年无机及分析化学考试试题/参考答案

- 一、判断题(在正确的题前打"√",错误的题前打"×")
- 1. 同种原子间,双键键能是单键键能的两倍。()
- 2、 化学 反应 2X+3Y=Z 的反应速率可表示为=-dc(X)/2dt=dc(z)/dt。 ()
- 3. 金属原子失去外层电子后都能形成与稀有气体相同的电子组态。 ()
- 4. 反应物浓度增加,反应速率增大。()
- 5. 在中心离子和配体及配位数相向的情况下,内轨型配合物比外轨型配合物的稳定性大。 ()
- 6. 电对对应电极电势不受酸度影响。()
- 7. 以硼砂为基准物质标定 HCl 溶液时,选用酚酞为指示剂。 ()
- 8. Fe3+, A13+对铬黑 T 有封闭作用。 ()
- 9. 有色配合物的摩尔吸收系数 x 与其浓度有关。 ()
- 10. 配位滴定的突跃范围不仅与离子浓度有关, 也与条件稳定常数有关。()

二、选择题

- 1. 已知: Mg(s)+Cl2(g)=MgCl2(s) ΔrHm = -624kJ·mol-1, 则该反应()。
- A. 在任何温度下, 正向反应自发进行
- B. 在任何温度下, 正向反应不可能正向自发
- C. 高温下, 正向反应是自发的, 低温下, 正向反应不自发
- D. 高温下, 正向反应不自发, 低温下, 正向反应可以自发进行
- 2. 在一容器中,反应 2SO2(g)+O2(g)=2SO3(g)达到平衡后,加入一定量的氦气, 并保持总压力和温度不变,平衡将会()。
- A. 向正方向移动 B. 向逆方向移动
- C. 无明显变化 D. 不能判断。
- 3. 下列化学键极性大小次序正确的是()。
- A. Si-Cl>Al-Cl>P-Cl B. Al-Cl>Si-Cl>P-Cl
- C. Al-CI>P-CI>Si-CI D. Si-CI>P-CI>Al-CI
- 4. 下列离子中外层 d 轨道达到半充满的是()。
- A. Cr3+ B. Fe3+ C. Co3+ D. Cu
- 5. 下列哪一反应的焓变代表 KCI 的晶格能是 ()。
- A. K+(g)+Cl-(g)=KCl(s) B. K(g)+Cl(g)=KCl(s)
- $C_{x}K(s)+Cl(s)=KCl(s)D_{x}K(s)+\frac{1}{2}Cl2(g)=KCl(s)$
- 6. 油画长期暴露在空气中,会由于硫化氢的存在而变黑。为使已变暗的古油画恢复原来白色,使用的方法是()。
- A. 用稀 H2O2 水溶液擦洗 B. 用清水小心擦洗
- C. 用钛白粉细心涂描 D. 用硫磺漂泊
- 7. 已知巯基(-SH)能与某些重金属离子形成强的配位健,下列哪种物质是重金属离子最好的螯合剂()。
- A. CH3-SH B. H2S
- C. CH3-S-CH3 D. HS-CH2-CH(SH)-CH2-OH
- 8. 水溶液中, 可大量共存的物质是(_)。
- A. MnO4-, H2O2 B. C2O72-, H2O2

- C. CrO42-, H2O2 D. Cr (OH) 4-, H2O2
- 9. 在 AgNO3 溶液中,加入稍过量的 KBr 溶液,制得 AgBr 溶胶,则其胶团结构为()。
- A. $[(AgBr)m \cdot nBr \cdot (n-x)K +]x \cdot xK +$
- B. $[(AgBr)m \cdot nAg + \cdot \cdot (n-x)NO3]x + \cdot xNO3 -$
- C. [(AgBr)m•nBr-]n-•nK+
- D. [(AgBr)m•NO3-]n-•nNO3-
- 10. 下列水溶液沸点最高的是()。
- A. 0.010mol•kg-1FeCl3 B. 0.010mol•kg-1HCl
- C. 0.010mol•kg-1HgCl2 D. 0.010mol•kg-1ZnCl2
- 11. 25℃, 对于电极反应 O2+4H+=2H2O 来说, 当 p(O2)=100kPa 时, 酸度与电极电势的关系式是()。
- A. = +0.059 pH B. = +0.059 pH
- C. = +0.0148 pH D. = -0.0148 pH
- 12. 用 NaOH 标准溶液滴定一元弱酸, 若弱酸和 NaOH 的浓度都增大到原来的 10 倍, 滴定突跃范围变化的情况是()。
- A. 突跃范围增加 2 个 pH 单位 B. 突跃范围减少 2 个 pH 单位
- C. 突跃范围增加不足2个 pH 单位 D. 突跃范围增加超过2个 pH 单位
- 13. pH 电势法测定时, 酸度计需用标准缓冲溶液定位, 目的是()。
- A. 消除不对称电势对测定的影响
- B. 使玻璃电极活化,即产生膜电势
- C. 使玻璃膜充分水化,即离子交换作用进行完全
- D. 加快氢离子迁移
- 14. 电势滴定法中,滴定终点所在的位置为()。
- A.d /dV-V 曲线中 , d /dV=0 处
- B. d2 /dV2-V 曲线中 , d2 /dV2=0 处
- C. —V 曲线中, 取最大值处
- D. 2 / V2—V 曲线中 , 2 / V2 取最大值处
- 15. 某金属离子 M 与试剂 R 形成一有色配合物 MR, 若溶液中 M 的浓度为 1.0×10 -4 mol·L-1,用 1cm 比色皿于波长 525 nm 处测得吸光度 A 为 0.400,此配合物在 525 nm 处的摩尔吸收系数为 ()。
- A. 4.0×10-3L•mol-1•cm-1 B. 4.0×103 L•mol-1•cm-1
- C. 4.0×10-4 L•mol-1•cm-1 D. 4.0×105 L•mol-1•cm-1
- 16. 氧化还原指示剂邻二氮菲亚铁氧化态与还原态之间得失一个电子, 其φ = 1.06V, 则它的变色范围是()。
- A. 1.00 ~ 1.12V B. 0.96 ~ 1.16V C. 0.86 ~ 1.26V D. 1.03 ~ 1.09V
- 17. 标定 NaOH 溶液的基准物质是()。
- A. KHC8H4O4 B. Na2CO3 C. Na2C2O4 D. Na2B4O7•10H2O
- 18. 某混合碱用盐酸滴定至酚酞变色,消耗 V1 mL,继续以甲基橙为指示剂消耗
- V2 mL,已知 V1>V2,组成是()。
- A. Na2CO3 B. Na2CO3 与 NaHCO3
- C. NaOH 与 Na2CO3 D. NaHCO3 与 NaOH
- 19. 可见分光光度法中,为了减少测量误差,理想的吸光度读数范围是()。

A. 0.2~1.2 B. 0.5~2.5 C. 0.2~0.8 D. 0.05~0.9

20. 下列溶液能用 HCl 或 NaOH 标准溶液直接滴定的是(浓度均为 0.1mol·L-1)

A. NaAc B. NH4Cl C. HCN D. HCOOH

[(HAc)=1.79 \times 10-5, (NH3)=1.8 \times 10-5, (HCN)=4.99 \times 10-10, (HCOOH) = 1.7 \times 10-4]

三、填空题

- 1. 现有两种溶液, 一为 1.5g 尿素{M[(NH2)2CO]=60g·mol-1)溶于 200g 水中, 另一为 42.75g 未知物(非电解质)溶于 1000g 水中。这两种溶液具有相同的凝固点。未知物的摩尔质量为。
- 2. 将血红细胞放于纯水中,细胞会逐渐涨大以至破裂,造成溶血现象。造成溶血现象的原因是。
- 3. 配合物(NH4)2[FeF5(H2O)]的系统命名为。中心离子的配位数是,配位原子是,根据杂化轨道理论,在配合物中中心离子的杂化轨道为,属型配合物。
- 4. 己知下列元素电势图:

MnO4-+1,69 V MnO2+1,23 VMn2+; IO3-+1,19 VI2+0.54 I-pH=0 时,写出下列两种条件下,KMnO4与 KI 溶液反应的方程式(配平):a. KI 过量时:

b. KMnO4 过量时:

- 5. 下列离子中, HCO3-, [Fe(OH)5(H2O)]2-, S2-; NH4+只能作碱的是, 只能作酸的是, 既可作酸又能作碱的是。
- 6. 在 Ba2+和 Ag+离子的混合溶液中,逐滴加入 K2Cr2O7 溶液,首先生成 色的沉淀,当加入足量 K2Cr2O7 溶液并使 c(K2Cr2O7)=0.10mol·L-1,则溶液中 c(Ba2+)和 c(Ag+)分别等于。(K sp(BaCrO4)=1.2 10-10, K sp(Ag2CrO4)=1.1 10-12)
- 7. 已知内轨型配合物[Co(NH3)6]3+比外轨型配合物[Co(NH3)6]2+稳定,则 (Co3+/Co2+) 与 [Co(NH3)6]3+/[Co(NH3)6]2+ 比 数值较高, [Co(NH3)6]2+和 Co2+比较, 的还原性较强。

8. 写出下列离子在水溶液中呈现的颜色

0. 马山下列内1年小田水下土水的8

MnO42- , CrO42- , Ni2+ ... Mn2+ , Cu2+ , [HgI42-] ...

- 9. CaF2, KClO4, MnS, AgCl 等沉淀在高氯酸水溶液中, 溶解度明显增大的为,明显减少的为。
- 10. 标定 KMnO4 常用的基准物质是,滴定时需要注意的反应条件是(1);(2);(3)。
- 11. NaHS 水溶液的 质子条件式为: _______。
 12. 沉淀滴定法中的莫尔法使用的指示剂为______,其作用原理是_____。
- 13. 酸碱指示剂的理论变色范围为
- 14. 为下列滴定选择合适的指示剂:
- (1) KMnO4 法测 H2O2
- (2) 返滴定法测定氨水含量

15. EDTA 滴定中,介质 pH 越低,则	值越	,	越	
滴定的 pM 突跃越。	(填"大"、"小")			,

四、计算题

- 1. 计算 c(Na2CO3)= 0.30 mol×L Na2CO3 水溶液的 pH。若向该溶液中加入等体积的 c (HCl) = 0.10 mol×L-1HCl 水溶液, 计算混合后溶液液的 pH。 {Kaly(H2CO3) = 4.3 ´10-7 , Ka2y(H2CO3) = 5.6 ´10-11 }
- 2. 己知 Pb(OH)2(s) = Pb2+(aq) + 2OH-(aq) Kspy{ Pb(OH)2} = 1.6 '10-17 PbCl2 = Pb2+(aq) + 2Cl-(aq) Kspy (PbCl2) = 1.6 '10-5

H2O(1) = H+(aq) +OH-(aq) Kwy = 1.0 '10-14

- 计算: (1) 反应 Pb(OH)2(s) + 2H+(aq)+2Cl-(aq)=PbCl2(s)+2H2O(l)的标准平衡常数。(2) 如将 0.10mol 固体 Pb(OH)2 与 1L c (HCl) = 0.21 mol×L-1HCl 水溶液混合,则平衡后,溶液的 pH, c (Pb2+)各为多少?
- 3. 试计算在 1L 氨水中溶解 0.1 mol AgCl 固体,氨水的初始浓度至少为多大? Kspy (AgCl)=1.8×10-10 Kfy{Ag(NH3)2+}=1.1×107
- 4. 测定某溶液的浓度,4 次平行测定结果($mol \cdot L$ -1)如下: 0.5063, 0.5064, 0.5086, 0.5051。(1) 用 Q 值检验法检验可疑值是否舍弃。(P=95%; n=4, Q0.95 = 0.84) (2) 已知 s=0.0015, 求置信概率为 95%时平均值的置信区间。(P=95%, f=3, t=3.18; f=4, t=2.78)。
- 5. 用 0.02 mol·L-1 的 EDTA 滴定 0.02 mol·L-1 的 Fe3+溶液, 要求 Δ pM = \pm 0.2, 分

析结果的相对误差 ≤± 0.1%, 计算滴定适宜酸度范围?

已知 lgKf (FeY) = 25.1, Ksp [Fe(OH)3] = 10-37.4, 有关 pH 所对应的酸效应系

数见下表:

pH 1.1 1.2 1.3 1.4

lgαY(H) 17.8 17.3 16.8 16.3

无机及分析化学考试题参考答案

一、判断题:

- 1. \times 2. \checkmark 3. \times 4. \times 5. \checkmark 6. \checkmark 7. \times 8. \checkmark 9. \times 10. \checkmark
- 二、选择题
- 1. D 2. B 3. B 4. B 5. A 6. A 7. D 8. D 9. A 10. A
- 11. B 12. C 13. A 14. B 15. B 16. A 17. A 18. C 19. C 20. D
- 三、填空题
- 1. 342 g•mol-1
- 2. 渗透压
- 3. 五氟·一水合铁(III)酸铵; 6; F,O; sp3d2; 外轨
- 4. 2KMnO4 +10 KI +8H2SO4 = 2MnSO4 +5I2 +8H2O +6 K2SO4.
- 4KMnO4 +5 KI + 7H2SO4 = 4MnSO4 +I2 +3KIO3+7H2O +3K2SO4
- 5. S2-; NH4+; HCO3-, [Fe(OH)5(H2O)]2-;

- 6. 黄色: c(Ba2+)=6×10-10 mol·L-1, c(Ag+)=2.35×10-6 mol·L-1
- 7. -(Co3+/Co2+), [Co(NH3)6]2+
- 8. 紫红色; 黄色; 浅绿色; 淡粉红色; 浅蓝色; 无色
- 9. MnS: KClO4
- 10. Na2C2O4; (1)温度,需要加热,但不要超过90°C; (2)酸度,用 H2SO4 控制酸度; (3) 滴定速度,刚开始滴定速度一定要慢
- 11. c(S2-) + c(OH-) = c(H2S) + c(H+)
- 12, K2CrO4, 2Ag++CrO4-=Ag2CrO4 ↓
- 13. $pH = pKHIn \pm 1$
- 14. KMnO4 自身作为指示剂; 甲基红
- 15. 大: 小: 小:

四、计算题

- 1. 把 Na2CO3 当作一元碱处理, 计算得到[OH-]=7.32 10-3, pH=11.86, 加入 HC1 后, 构成缓冲溶液, 利用缓冲溶液公式计算, 得 pH=10.55。
- 2. 解: 目标方程式为(1)-(2)-(3) 2。

Pb(OH)2(s) + 2H+(aq)+2Cl-(aq)=PbCl2(s)+2H2O(l)

初态: 0.10.2100

终态: 0.01 x

 $[Cl-] = x = 10-6 \text{ mol} \cdot L-1$

[CI]2 [Pb2+]=Ksp=1.6 10-17 得 [Pb2+]=1.6 10-5 mol·L-1

3. 解: 由多重平衡得: AgCl+2NH3=[Ag(NH3)2]++Cl-

溶解时还要消耗 0.2 mol, 所以, 需要氨水的最初浓度是 2.43 mol·L-1。

4. 解: 0.5051、0.5063、0.5064、0.5086

极差 R=0.5086-0.5051=0.0035

保留可疑值。

当 n=4, f=3, P=95%,t=3.18,

=0.5066 =0.5066 0.00239

置信区间为: (0.5066 0.00239)

5. 解: 已知 lgKf (FeY) = 25.1

则 $lg\alpha Y(H) \leq lgKf$ (FeY) -8=25.1-8=17.1

查表知, pH≥1.2. 故滴定时的最低 pH 为 1.2(最高酸度)。

最低酸度由 Fe (OH)3 的 Ksp 求得:

查表得 Ksp(Fe (OH)3)=10-37.4

pOH=11.9 pH=2.1 (注意:此式中 Fe3+的浓度为起始浓度) 即滴定的最高允许 pH=2.1(最低酸度) 本试卷近用范制 草叶、食品、资 环、农学专业

南京农业大学试题纸

2008-2009 学年第一学期 课程类型: 必修 试卷类型: A

课程 _	普通化学 班级	· <u> </u>	⁵ 姓	名	•
题号	_	:=;	Ξ	四	总分
得分					
	选择题(每题2分,	共40分)			-
1. 有关			/i 分别表示某一气体	组分的分压力和分包	体积) ()
1	$=\sum Pi$ B. F		C. PiV总=n,RT	D.Pi/P总=n _i	• ••
	块冰放在 273K 的 质量增加 新融化		B.无变化 溶液温度升高		()
3.甲烷的	/燃烧热是-965.6k	I.mol J,其相应的	热化学方程式是		()
AC(g)	$+4H(g)=CH_4(g)$		$\Delta c H_m^{\ \theta} = -965.6$	kJ • mol⁻¹	
B. <i>C</i> (g)	$+2H_2(g)=CH_4(g)$)	$\Delta c H_m^{\ \theta} = -965.67$	$kJ \bullet mol^{-1}$	
CCH ₄ ($(g) + 3/2O_2(g) = C0$	$O(g) + 2H_2O(1)$	$\Delta cH_m^{\theta} = -965.6$	5kJ • mol⁻¹	
DCH4($(g) + 2O_2(g) = CO_2(g)$	$(g)+2H_2O(1)$	$\Delta c H_m^{\theta} = -965.6$	kJ •mol⁻¹	
A. 反应特 C.正向反 5.下列说 A.在等温 无关	学平衡的条件是 勿和产物的浓度相 应速率等于逆向。 法正确的是 品等压的条件下,	反应速率 化学反应的热效	B.反应停止发生 D 反应不再产生素 应应只与反应的好	热效应 始态和终态有关, _「	() 而与反应的途径
C.因为 I	F压过程下为有公 I=U+PV,所以反 反应的热效应等于	应的AH始终大	于反应的△U		
A.化学反 B.催化剂 C.如果某了	去正确的是 立的活化能越大, 的使用可以提高化 可逆反应的正反应 数的单位是恒定的	学反应的 <mark>平衡</mark> 特 活化能比逆反应	化率	么该正反应为吸热。	反应:
					1

7.反应 $HIO_3 + 3H_2SO_3 = HI + 3H_2SO_4$ 的速率方程式是	()
$A.v = k \cdot c(HIO_3) \cdot c^3 H_2 SO_3$ $B.v = k \cdot c(HIO_3) \cdot c H_2 SO_3$		
$C.v = k \cdot [c(HIO_3) + c H_2SO_3]$ D.无法确定		··
8.下列各分子中,偶极矩不为零的是 A.BeCl ₂ B.NF ₃ C.BF ₃ D.CH ₄	•()
9.基态原子的第四电子层中只有两个电子,则此原子的第三电子层中的电子数 A.肯定是 8.个 B.肯定是 18.个 C.肯定是 8-18 个 D.肯定是 1-18 个	Ç	}
10.在滴定分析测定中,属于系统误差的是A.试样未经充分混匀 B.滴定时有液滴溅出. C.砝码未校准 D.滴定时气温忽约11.下列银盐中氧化能力最强的是A.AgNO3 B.AgCl C.AgBr D.AgI	() 低)
12. 当溶液的 pH 降低时,下列难溶盐的溶解度变化最小的是A.CaF2B.BaSO4C.ZnSD.CaCO3	Ć.)
$[Co(C_2O_4)_2(en)]$ 中,中心离子的配位数和氧化数分别为	()
A.6,3 B.3,3 C.4,2 D.4,3		
14.已知碳酸的解离常数 pK_{a1} 和 pK_{a2} 分别为 6.38 和 10.25,当用盐酸中和 NaNO3 溶液3	至 pl	I=4
时,溶液中主要存在的物质是以下哪一种 A.H ₂ CO ₃ B.CO ₃ ² C.HCO ₃ D.CO ₃ ² 和 HCO ₃	.()
15.下列物质不能作为配体的是 A.NH ₃ B.NH ₄ C.H ₂ O D.CO	()
16.用浓度为 0.10mol L-1 的 HCl 滴定等浓度 NaOH, 滴定曲线中突跃范围的 pH 值为 9.	7-4.3	.
如果改用 0.010mol.Lin的 HCl 滴定等浓度 NaOH,则突跃范围为 pH 值	Ç)
A.9.7-4.3 B.8.7-5.3 C.8.7-4.3 D.9.7-5.3 17.在 EDTA 配位滴定中,下列有关酸效应的叙述正确的是	r)
A.酸效应系数越大,配合物的稳定性就越大 B.体系的 pH 值越大,酸效应系数越大	*	1
C.酸效应系数越大, 滴定的突跃范围就越大 D.在滴定过程中可以利用缓冲溶液抑制酸效应的发生		
18.已知 $\varphi^{\theta}(MnO_{*}^{-}/Mn^{2+})$ =1.51 $V, \varphi^{\theta}(I_{2}/I^{-})$ =0.54 V 由此可知上述氧化态、还原态物质	中,	最
强的氧化剂和最强的还原剂分别是	()
$A. I_2$ 和 $I^ B. MnO_4$ ⁻ 和 Mn^{2+} $C. I_2$ 和 Mn^{2+} $D. MnO_4$ ⁻ 和 I^-		
19.用草酸为基准物质标定 KMnO4 溶液时,KMnO4 与草酸的物质的量之比为 (ζ.)
A. 1:1 B. 4:5 C. 2:5 D.5:2		\Box

A.0.10mol • L'的NH ₃ • H ₂ O与0.50mol • L'NH ₄ Cl混合溶液	
B.0.10mol ◆ L ⁻¹ 的NH ₃ ◆ H ₂ O与0.10mol ◆ L ⁻¹ NH ₄ Cl混合溶液	
$C.0.20 mol \bullet L^{-1}$ 的 $NH_3 \bullet H_2O = 0.40 mol \bullet L^{-1}NH_4C$]混合溶液	
D,0.30mol • L¹的NH ₃ • H ₂ O与0.30mol • L¹NH ₄ Cl混合溶液	
二、填空题(每题 2 分, 共 22 分) 1.下列两反应:	
(1) $2n + Cu^{2} \cdot (1mol \cdot L^{-1}) = 2n^{2} \cdot (1mol \cdot L^{-1}) + Cu$	
$(2)2Zn + 2Cu^{2+}(1mol \bullet L^{-1}) = 2Zn^{2+}(1mol \bullet L^{-1}) + 2Cu$	
设反应式(1)和反应式(2)的电动势分别为 E1 和 E2,	自由能变分别为 ^{Δ,G} , 和 ^{Δ,G} 2, 平 _復
常数分别为 K_1^{θ} 和 K_2^{θ} ,则此反应的 $E1$ 和 $E2$ 的关系是_	, Δ,G, 和 Δ,G ₂ 的关系是
, K ₁ 和 K ₂ 的关系是。	
2.将下列反应设计为原电池: Ag ⁺ (0.50mol • L ⁻¹)+Fe ²⁺ (1.0m	$nol \bullet L^{-1}) = Ao(s) + Eo^{3+}(0.5 \text{ mod a } 1-1)$
其电池号为	ŕ
3.已知 Ag ₃ PO ₄ 在 298K 时的溶解度为 S,则该温度下 Ag ₃ PO ₄	的溶度积常数可表示为
4.原子的四个量子数中,决定原子轨道形状的是;决定	E原子轨道在空间的伸展方向的是
5.酸碱滴定中一元弱酸能够被强碱准确滴定的条件是	配位海定中全属南子能够
饭 EDIA 作佣调定的条件是。	THE STATE OF THE PARTY OF THE STATE OF THE S
6.H ₂ PO4 是一种两性物质,计算其酸度的最简公式是	。 的华示刘刚 <i>带</i>
三、简答题(每题 5 分,共 10 分)	(11)1日バン川11中小阪。
1.试用杂化轨道理论说明 H ₂ O*离子的空间构型和成键种类。	r.
) · A在测导—NoOli 和 No CO 的语人类 D + A A A A A A A A A A A A A A A A A A	
2,。今需测定一 NaOH 和 Na ₂ CO ₃ 的混合样品中各组分及杂质的含量 计算方法。	,谓简述测定的方法,过程以及结果的

四、计算题(每题7分,共28分	四、	计算题	(每题7分,	共28分
-----------------	----	-----	--------	------

1.临床上用的葡萄糖(C₆H₁₂O₆)等渗液的凝固点降低值为 0.543°C, 溶液的密度为 1.085g.cm⁻³, 试求此葡萄糖溶液的质量分数和 37°C时人体血液的渗透压。(已知水的凝固点下降常数 Kf 为=1.86K.kg.mol⁻¹)

2.为标定溶液 Na₂S₂O₃, 称取基准物质 K₂Ct₂O₇0.1260g 用稀盐酸溶解后,加入过量的 KI 置于暗处 5min 待反应完成后加入水 80mL,用滴定,终点时耗用 Na₂S₂O₃19.47mL,计算 Na₂S₂O₃浓度 (已知 K₂Ct₂O₇的相对摩尔质量为 294.2)

3.配制 pH=9.35 的缓冲液 50 mL,需 $0.10 \, mol \bullet L^{-1}$ 的氨水和 $0.1 \, mol \bullet L^{-1}$ 0 的盐酸各多少毫升?已知 NH₃的 $Kb^\theta = 1.79 \times 10^{-5}$

- 4.要测定电对 Ag'/Ag 的标准电极电势 $\varphi^{\theta}(Ag'/Ag)$,可以将此电极与标准氢电极组成原电池。
- (1) 试写出该原电池的电池符号和正负极反应;
- (2) 经测定发现该原电池的电动势为 0.799V,如果此时往银电极所在的半电池里慢慢滴加氨水溶液至平衡时氨水的浓度达到 $1.0 \, mol \, \bullet \, L^{-1}$,求此时电池的电动势,假设整个过程中银电极半电池溶液的体积保持不变,

 $Ag(NH_3)_2$ 配离子的稳定常数 $K_f^\theta(Ag(NH_3)_2^{\dagger})=1.6\times10^7$

南京农业大学 2008-2009 学年无机分析化学试题 (A)

参考答案

一. 选择题

二、填空题

- 1. $E_1 = E_2$; $\Delta_r G_1 = \Delta_r G_2$; $(K_1^{\theta})^2 = K_2^{\theta}$
- 2. -) Pt | $Fe^{2+}(1mol \cdot L^{-1})$, $Fe^{3+}(0.50mol \cdot L^{-1}) \mid Ag^{+}(0.50mol \cdot L^{+1}) \mid Ag(+1) \mid$
- 3. 27S4
- 4、 l(角量了数); m(磁量了数);
- 5. $co \cdot K_r \ge 10^6$.

6.
$$c(H^+) = \sqrt{K_{a1}^{\theta} \cdot K_{a2}^{\theta}}$$

- 7. 自身指示剂
- 三、简答题
- 1. 答: O 原子的最外层电子排布为 $2s^2sp^3$, H_3O^+ 窗子中 O 原子采用了不等性 sp^3 杂化,其中两个 sp^3 杂化轨道上的成对电子与 H 原子 1s 上的电子形成两个共价 σ 键,还有一个 sp^3 杂化轨道上的孤对电子与 H 的空轨道形成一个 σ 配位键,最后一个 sp^3 杂化轨道有一为孤对电子占据,整个 H_3O^+ 离子的空间构型为三角锥型。

2.答:测定混合样品中 NaOH 与 Na_2CO_3 的各组分含量可以用酸碱测定的双指示剂法,具体过程如下:准确称取一定质量的混合物 $m_s(g)$,先以酚酞为指示剂,再用 HCI 标准溶液滴定至终点,记下用去 HCI 溶液的体积 V_1 ,然后加入甲基橙指示剂,再用 HCI 继续滴定至终点,记下用去 HCI 溶液的体积 V_2 ,则

$$\omega(Na_2CO_3) = \frac{c(HC1) \cdot V_2(HC1) \times 106.0}{m_1}$$

$$\omega(NaOH) = \frac{c(HCI) \cdot [V_1(HCI) - V_2(HCI)] \times 40.00}{m_s}$$

杂质=
$$1 - \omega(Na_sCO_3) - \omega(NaOH)$$

四、计算题

$$M(C_6H_{12}O_6) = 180g \text{ mol}^{-1}$$

溶液的质量分数=
$$\frac{0.292 \times 180}{0.292 \times 180 + 1000} \times 100\% = 4.99\%$$

$$c = \frac{0.292 \times 1.085}{0.292 \times 180 + 1000} \times 100\% = 0.301 \text{moJ} \cdot L^{-1}$$

$$\pi = eRT = 0.301 \times 8.314 \times 310 = 775.8Pa$$

2.4.
$$K_2Cr_2O_7 + 6KI + 14HCI = 2CrCl_3 + 3Cl_2 + 8KCI + 7H_2O$$

$$I_2 + 2Na_2S_2O_3 = 2KC1 + Na_2S_4O_6$$

$$K_2 C r_2 O_2 - 3I_2 - 6Na_2 S_2 O_6$$

根据物质量比关系,则有

$$n(Na_2S_2O_6) = 6n(K_2Cr_2O_7)$$

$$(cV)_{x_{a_1}s_2o_a} = 6m(K_2Cr_2O_7) / M(K_2Cr_2O_7)$$

$$C(Na_2S_2O_6) = 6 \times (0.1260 / 294.2) / 19.47 \times 10^{-3} = 0.1320 mol \cdot L^{-1}$$

3.解: 设需要氨水xml, 则需要HC1 (50-x) ml

$$pOH = pK_{b}^{\theta} - \lg \frac{n(弱碱)}{n(共轭酸)}$$

14-9. 35=4. 75-1g
$$\frac{0.10x-0.10(50-x)}{0.10(50-x)}$$

$$x = 34.7 \text{ ml}$$
 50-x = 15.3 ml

4.解: (1) 正极反应:
$$Ag^{+} + e = Ag(s)$$
 负极反应: $H_{2} = 2H^{+} + 2e$

(2) $\varphi^{\theta}(Ag^{+} / Ag) = 0.799V$ $Ag^{+} + 2NH_{3} = [Ag(NH_{3})_{2}]^{+}$
 $K_{f}^{\theta} = \frac{c([Ag(NH_{3})_{2}]^{+})}{c(Ag^{+}) \cdot c^{2}(NH_{3})} = \frac{1.0}{c(Ag^{+}) \times 10^{2}} = 1.6 \times 10^{7}$
 $\therefore c(Ag^{+}) = \frac{1}{K_{f}^{\theta}}$
 $\varphi(Ag^{+} / Ag) = \varphi^{\theta}(Ag^{+} / Ag) - \frac{0.0592}{1} \lg \frac{1}{c(Ag^{+})}$
 $= \varphi^{\theta}(Ag^{+} / Ag) - \frac{0.0592}{1} \lg K_{f}^{\theta}([Ag(NH_{3})_{2}]^{+})$
 $= 0.799 - 0.0592 \lg 1.6 \times 10^{7} = 0.373 \text{ V}$

 $E_{36} = 0.373 \text{V}$

第一單

1、理想气体状态方程式:

$$pV = nRT$$
 $pV = \frac{m}{M}RT$

pM = pRT (注意单位的一致)

2、道尔顿分压定律。

P, = x, p (注意分压的定义)

3、两个浓度表示法:

p = p + p2 + p3 +

物质的量次度 $c_B = \frac{n_B}{V}$ (molti) 质量摩尔汶度 $b_B = \frac{n_B}{m_A}$ (molkg⁻¹)

4、路波的依数性;

定性:蔡气压下降(根本原因)、沸点升简,凝固点下降,产生渗透压 变化程度: A3B(或 AB1)型>AB 型>弱电解质溶液>非电解质溶液

定量,小量难挥发非电解质的稀溶液

 $p \cdot b(\mathbf{B}) = p \cdot M_{\mathbf{A}} \cdot b(\mathbf{B})$

 $=c_1RT=bRT$

性质,市朗运动,丁达尔效应,电泳,电渗

络胶粒于带电原因:胶体粒子对溶液中的离子产生选择性吸附

Agnor KI (过量) → [(Agl) in in · (n-x)K*]* · xK*

ABNO3 (红量)+KI→ [(Agl)minAg**(fr.x),NO5:[**・***NQ5*

电位离子知反离子

吸附层和扩散层,加入电解原,使得吸附层里的反离子增多,引电势下降,胶体

聚沉值和聚沉能力,与胶粒带相反电荷的离子的价数影响最大,价数越高,聚沉

能力越强 次数 1. 5.8%, NaCl 裕液产生的渗透压接近于(

(a) 5.8%蔗糖溶液

(b) 5.8%的 HAc 裕被

(c) 2.0 mol/kg-1 建糖溶液

(d) 1.0 mol/kg -1 葡萄糖溶液

2. 在 0.Cd 的 100g KCl 脊液中,加入重量为 100g 的冰,一般时间后。温合 被中冰的质量为(

(c) 等于100g (b) 小于 100g (a) 大于100g

(d) 不能确定

3. 相对分子量为 120 的弱酸 1A3, 00g. 格子 100g. 水中, 在 101,325 kPa 下砌 得其碑点为 100.18°C。 求此弱酸溶液的解离度。

4. 考虑到乙醇的沸点 78.3℃ 和 Kb=1.16,解下列各题:

(1) 由 20 g 某物质与 100 g 乙醇组成的溶液在 79°C 时沸腾,计算波溶质的 相对分子量, (2) 电6.57 8 破落于 100 8 乙醇的溶液、在78.66C 时沸腾,那么在溶解状态 下碘以什么形态存在的(碘的相对原子量为127)?

第二章

1、状态函数特征;

状态函数变化量只与体系的始、终态有关,与途径无关。

2, 功(W)和热(Q),

 $W_{\mathbf{k}} = -P_{\mathbf{k}} \cdot \Delta V$

恒容反应数: Q = AU 恒压反应数: Q = AH

3、 4U 。 反应的热力学能变(ki-mol-1)

计算方法: △U=Q+W=Q,

4、 AH: 反应的始变

△,H。 反应的标准磨尔拾变(kJ·mol·l)

Δ,H°,物质的标准摩尔生成塔(kJ·mol·l)

例: $C(石墨) + O_2(g) = CO_2(g)$ $\Delta_f H_m^0(CO_2) = \Delta_f H_m^0 = -393.5 \text{kJ.mof.}$

△,H。"。物质的标准摩尔燃烧好(ki mol·i)

 \emptyset : $CH_1(g) + 2O_1(g) \rightarrow CO_1(g) + 2H_1O(i)$ $\Delta_e H_m^6(CH_1) = \Delta_r H_m^6$

(1) 盖斯定律: 方程式(1) = 方程式(2) + 方程式(3)

(2) 利用 $\Delta_f H_a^0$: $\Delta_f H_a^0 = \sum v_u \Delta_f H_a^0$ (B)

 $\Delta_{r}H_{m}^{\theta}(1) = \Delta_{r}H_{m}^{\theta}(2) + \Delta_{r}H_{m}^{\theta}(3)$

(3) 利用 $\triangle_{\epsilon}H_{\alpha}^{\theta}$; $\triangle_{\epsilon}H_{\alpha}^{\theta} = -\sum v_{\alpha} \triangle_{\epsilon}H_{\alpha}^{\theta}(B)$

(4) $\Delta_r H_{\infty}^{6}(T) \approx \Delta_r H_{\infty}^{6}(298.15\text{K})$

5、45; 反应的熵变, 5; 体系的混乱度

A,S。 反应的标准摩尔绳变(J·mol·l·K·l)

 Δ , S_a^a 的计算方法: S,: 物质的标准摩尔斯(J·mol·l·K·l)(注意: 单质的标准摩尔熵不等于零)

(1) $\Delta S_{\bullet}^{\theta} = \sum_{\nu_{\theta}} S_{\bullet}^{\theta}(\mathbf{B})$

(2) 等溫可逆过程体系熵变的计算。(相变点的相变) $\Delta S = \frac{Q_s}{T}$

(3) 环境熵变的计算: $\Delta S_{\mu} = \frac{Q_{\mu}}{T} = \frac{-\Delta H_{\mu}}{T}$

(4) $\Delta_r S_m^{\Theta}(T) \approx \Delta_r S_m^{\Theta}(298.15K)$

6、AG; 反应的自由能变, G; 体系的自由能

A,C。· 反应的标准摩尔自由能变(kJ·mol·l)

 Δ ,G°的计算方法。 △,C。 物质的标准摩尔生成自由能(kJ·mol·l)

(1) 利用 $\Delta_{f}G_{s}^{n}: \Delta_{f}G_{s}^{n} = \sum_{v_{s}} v_{s} \Delta_{f}G_{s}^{n}(B)$

(2) $\Delta_r G_{m(T)}^{\Theta} = \Delta_r H_{m(T)}^{\Theta} - T \Delta_r S_{m(T)}^{\Theta} = \Delta_r H_{m(298K)}^{\Theta} - T \Delta_r S_{m(298K)}^{\Theta}$

(注意: Δ,G, 与温度有关)

(3) $\Delta_r G_m^{\theta} = -RT \ln K^{\theta}$

(4) $\Delta_r G_m^\theta = -nFE_m^\theta$

7、Δ,U^a_{*}、Δ,H^a_{*}、Δ,S^a_{*}、Δ,G^a_{*}之间的相互关系

 $\Delta_r H_n^0 = \Delta_r U_n^0 + \Delta_n RT$

 $\Delta_{r}G_{m(T)}^{\Theta} = \Delta_{r}H_{m(T)}^{\Theta} - T\Delta_{r}S_{m(T)}^{\Theta} = \Delta_{r}H_{m(298K)}^{\Theta} - T\Delta_{r}S_{m(298K)}^{\Theta}$

8、 Δ, U_n^0 、 Δ, H_n^0 、 Δ, S_n^0 、 Δ, G_n^0 与方程式写法的关系,与方程式变化相同

9、判断反应向哪一个方向进行:

(1) 体系中所用物质都处于标准态;

 $\Delta_r G_s^0 < 0$: 反应正向进行 $\Delta_r G_s^0 > 0$: 反应逆向进行 $\Delta_r G_s^0 = 0$: 反应平衡

(2) 体系中有的物质处于非标准态;

 $\Delta_{i}G_{m}(T) = -RT \ln K^{0} + RT \ln Q$

 $\Delta_i G_{i,i}^* < 0$: 反应正向进行 $\Delta_i G_{i,i}^* > 0$: 反应进向进行 $\Delta_i G_{i,i}^* = 0$: 反应平衡

10、平衡常数 K9 (定值,只与温度有关); 2 < K⁹: 反应正向进行 2 > K⁹: 反应逆向进行 2 = K⁸: 反应平衡

表达式: $aA+dD \rightleftharpoons eE+fR$ $K^0 = \frac{(dB)/c^0}{[dA)/c^0]^n}[dD)/c^0]^n$

K[®]的计算方法:

(1) 根据平衡时体系中各物质的浓度计算

(2) $\Delta_r G_m^9 = -RT \ln K^9$

(3) $\lg K^0 = \frac{nE_0}{0.0592}$

(4) 不同溫度时, $\ln \frac{K_0^9}{K_1^9} = -\frac{\Delta_i H_m^9(298.15K)}{R} (\frac{1}{T_1} - \frac{1}{T_1})$

11、平衡常数 16与方程式之间的关系;

方程式(1) = 方程式(2) + 方程式(3) → K₁0 = K₂0 × K₃0

12、化学平衡的移动;浓度、压力、温度、催化剂

13、平衡时体系中各物质浓度的计算。

- (1) 後平衡时某物质的浓度为xmolrL·l
- (2). 把平衡时体系中所有物质的浓度用,mol·L·l·表示
- (3) 找到该反应的平衡常数 Ke
- (4) 代入平衡的表达式,计算出 x. (可以进行一定的近似)

灰然

- 放热过程。则不增加,平衡常数水 1、 某一可逆反应,若为吸热过程,则了增加,平衡常数 K 岩岩
- 2. 某一反应在一定条件下的转化率为25.9%,当有催化剂存在时,其特化率应

在 300°C 达到平衡时,有 97%分解。则此反应为_ 3. PCIS 的分解反应是 PCIs=PCIs+CIs. 在200 °C 达平衡时 PCIs 有 48.5% 分解, A. > 25.3%B. < 25.3% C. = 25.3%

A. 放热反应

B. 吸热反应

0. 即不吸热因不放热

D. 无法确定

4. 对于某一可逆反应。

 $C(s) + H_2O(g) = CO(g) + H_2(g)$

下列说法是否正确? 为什么? (1) $\text{HT}_{K^{\Theta}} = \frac{p(\text{CO})/p^{\Theta} \cdot p(\text{H}_1)/p^{\Theta}}{p(\text{H}_2\text{O})/p^{\Theta}}$

随着正反应的进行,p(tho)不断减少,p(CO)、p(th) 不断增加,所以,KP也不

- 向正向进行. (2) 提高温度,可便正反应速率增加,逆反应速率减少,所以能加快反应
- (3) 增加体系的压力对平衡没有影响。
- (4) 加入正催化剂可使正反应速率增加,故可使平衡向正方向移动。
- 5. 为除去氮气中的杂质氧气,将氮气在100 kPa 下通过 600 0C 的铜粉进行脱氧。 $2Cu(s) + \frac{1}{2}O_2(g) = Cu_2O(s)$

AS	分别为	(1)不作以	下,该过	6. 化学			已知,	若气流缓
		,放热 40 kJ; (2)	下,该过程分别依两个不同的途径完成;	反应 A(g) + B(g) =	S,,,0 / J. mol-1-K-1.	∆iH _n ®/kJ-mol¹	298K B	赞地使反应达到平衡
	AC® 分别为_	(1)不作功, 放热:40 kl; (2) 作聚大功; 放热 2 kl, 则在(1)、(2)两种情况下。ALP)途径完成;	化学反应 A(g)+B(g)=2C(g), A、B、C均为理想气体、产25℃标准态	93.3	-169,0	Cu ₂ O (s)	若气流缓慢地使反应达到平衡,来经过纯化后在数气中残余氧的体积直分数。
		凹在(I)、(2)两末		力理想气体、在	33.0	٥	Cu (s)	,中残余氧的体
	E	Ā		- <u>လွ</u>				段位
		光下, A.69		C旅箱物	205.03	0	O ₂ (g)	分数

第二章

1、化学反应速率 单位: mol·L¹·s¹

平均速率; V=1, Δcg

解时速率: y= 1 dog

2、瞬时速率,的计算方法。

- (1) 作 c~/ 图,找到时刻/时曲线切线的斜端, dc_
- (2) 基元反应: $aA+bB\rightarrow cC$ $v_B=\frac{1}{v_B}\frac{dc(B)}{dt}=kc^s(A)c^b(B)$
- 通过实验数据求出水,,也可通过反应机理找到挖速步骤求得。 (3) 非基元反应。 $aA+bB\to cC$ $v_b=\frac{1}{v_b}\frac{dc(B)}{dt}=kc^*(A)c^*(B)$
- 3、反应级数
- (1) 基元反应; 反应级数 = 反应分子数 = a+b 正整数
- (2) 非基元反应: 反应级数 = x+y 正整数, 分数, 零

4、選率常數 k (定值,只与溫度有失)

$$k = A e^{(-2\omega/RT)}$$
 不同溫度时; $h_1 = -\frac{E_a}{R}(\frac{1}{T_1} - \frac{1}{T_1})$

- 5、括化能 E_a; △H = E_a, -E_a,
- 6、反应递率的影响因素
- (1) 反应物浓度 c: cf; 碰撞频率1, yf
- (2) 反应温度了。了,活化分子百分数1、小
- (3) 催化剂, 加入催化剂, 降低了 Ea, vf

滐 77

- 1. 一般说,温度升高,反应速度明显增加,主要原因是()
- A. 分子碰撞机会增加
- B. 反应物压力增加
- C. 活化分子的百分数增加
- D. 反应的活化能降低
- 2. A=B+C是吸热的可进基元反应,正反应的语化能记为 £ g
- 逆反应的活化能记为 Eig. 那么 ()
- B. E :: > E :
- C. E = E =
- D. E : 与 E : 大小无法比较
- 某一分解反应 A=B+C, 当 c(A)=0.20 mol·L·1, 则
- 则托反应的级数为()
- A. \$4级 B. 一级
- C. 二级
- 4. 反应 HIO₃ + 2H₂SO₃ = HI + 3H₂SO₄ 分二步完成
- HIO3+H3O3=HIO2+H2SO4 (慢)
- $H1O_2 + H_2SO_3 = HI + 2H_2SO_4$ (快)

则反应速率方程为: ,反应毁数为

5. 57℃时,测反应 NO(g) + 1/2Cl₁(g) = NOCl(g)的速率得到

© 0.25 ① 0.25 c(NO)/mol L-1 c(Cl₂)/mol·L-1 0.50 0.50 0.25 v(NO)/mol.L.1.s-1 1.43×10° 2.86×10-6 11.4×10-6

- (1) 反应总级数和速率方程?
- 应的活代能为多少? (2) 岩 67℃时 c(NO) = c(Cl₂) = 0.25 mol·L¹, v=1.83×10-1 mol·L¹·s¹ 则反

- 1、y(x,y,z)→y(r, 0, y);描述电子核外运动状态的被函数(也称为原子轨道)
- 2、|ψ(r, θ, φ)|²; 空间某—点电子出现的概率密度 $|\psi(x,y,z)|^2 = \frac{dp}{dV}$
- 3、w(r, 0, q)由三个量子数决定: n、f、m
- (1) n: 主量子数 (决定电子层数) n=1,2,3......a
- (2) li 角量子数 (同一层中不同分层, 决定 w的形状) l=0,12,n-1 1=0: s 轨道 (一个) 形状: 珠状

I=1: p轨道 (三个px, px, px) 形状: 哑铃状

1=2: d轨道 (五个dox dox dax daya) 形状: 花瓣状

- (3) m: 磁量子数 (决定 v 的伸展方向) m=0,±1,±2,.....±1
- n、 L. m 确定了,则电子所在原子轨道确定
- (4) m; 自旋電子数 m,=±1/2
- 4、s, p, d 原子轨道的角度分布图: n、l、m、m。确定了,则电子的运动状态确定

5、s, p, d 电子云角度分布图

6、氢原子的几种径向分布图:

7、原子轨道的能量 6:

- (1) 单电子体系: E只与n有关。n,E($E = -\frac{E^2}{L^2}(2.179 \times 10^{-10})$ J

多电子体系。屏蔽效应和穿透效应。 后,《后,

- 8、多电子原子核外电子的排布:(第一一第四周期 (1) 排布规则: 保里不相容原理: 能量最低原理; 狭特规则
- (2) 由于填入制道顺序: 1s-+2s-+2p-+3s-+3p-+4s-+3d-+4p
- (3) 原子失去电子变成离子时,失去电子的顺序; up→ns→(n-1)d→(n-2)f
- 9、原子结构与元素周期律。
- (1) 原子半径:同一短周期自左至右原子半径逐渐减小,稍有气体突然增大 同一主族自上至下原子半径逐渐增大

(2) 电离能 (1)。同一周期自左至右电离能逐渐增大。(He 的电离能最大) 副族元素;同一周期自左至右半径减小幅度较主族元素小 同一主族自上至下电离能逐渐破小,(Cs 的电离能吸小)

12、杂化轨道理论;

- (1) 如 郊化; Beffy 直线型, 键角 180°
- (2) sp² 杂化, BF3 平面三角形, 键角 120°
- (3) sp³ 杂化; CH. E.0 NH3 sp²不韓性杂化 三角锥, 健角 107°18' sp³不等性杂化 角型, 键角 104.5° sp³等性杂化 正四面体、鏡角 109.5°

13、分子间力。

- (1)、非极性分子——非极性分子,只存在色散力 (2) 色散力为主,看分子量大小 极性分子——非极性分子,诱导力、色散力 极性分子——极性分子。 双向力、诱导力、色散力
- 14、氢键:

例外,Be出口和且的电离能高,N出C和O的电离能高

(3) 电子亲和能(E); 同一周期自左至右电子亲和能逐渐增大

同一主族自上至下电子亲和能逐渐减小

例外,第二周期的电子素合能大于第三周期

(4) 电负性:同一周期自左至右电负性逐渐增大 同一主旗自上至下电负性逐渐减少

10、离子键

- (1) 特点。无饱和性。无方向性
- (2) 大小,离乎电荷激高,半径愈小,晶格能愈大,离子键越牢面熔点越高
- (1) 形成; 两个原子中岛旋相反的成单电子的轨道重叠
- (2) 特点、饱和性(决定于单电子数),方向性(最大重叠)
- (3) 类型: 0键:"头碰头" n键:"肩井肩"

共价单键:一定是 0 键; 洪价多重强:一个 0 链 其余的都是

- (1) 形式: X—H----Y (X,Y: F,O,N)
- (2) 特点: 分子间氢键可以使某些分子的熔沸点升高

第五章

- 1、有效数字的修约和计算(加减法、乘除法)
- 2、误差——准确度 E=X-X_T
- (1) 系统误差 特点 如何消除
- (2) 偶然误差 特点 如何减小

无限次测量: 正态分布 置信区间: μ=x±uσ

有限次测量; 1分布 置侑区间; μ=x±√i

置信度 置信区间 1

(3) 相对误差; $\frac{(X-X_T)}{X_T} \times 100\%$

如何級小, 増大 Xr (称量: w > 0.2000g; 滴定: V > 20 mL)

3、偏差——精密度

・旅准偏差:
$$n > 20$$
 $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$

$$n < 20 \quad s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

- 4、准确度与精密度的关系
- 5、滴定分析法概论:
- (1) 终点误差
- (2) 滴定方式及实例: 直接滴定法(强酸滴定强碱)

返滴定法 (氣含量的测定)

置换滴定法(间接碘量法中、K2C12O7氧化碘化钾)

间接滴定法(KMnO4法测定 Ca²⁺含量)

- (3) 标准释液的配制:
 ① 直接配制法 基准物质(四个特点) 仪器 分析天平和容量瓶

$$c_{\lambda} = \frac{m}{M_{\lambda} \cdot V}$$

② 间接配制法 非基准物质

仪器 台天平和滴定裝置

$$c_{\rm N} = \frac{m_{\rm BM}}{M_{\rm BM} \cdot V_{\rm N}}$$

(4) 有关计算: 注意有效数字的保留

1、一元共轭酸碳。 $HA+H_1O \rightleftharpoons H_1O^+A^ K_a^0 = \frac{c(H^+)\cdot c(A^-)}{c(HA)}$

$$A^- + H_2O \rightleftharpoons HA + OH^ K_b^0 = \frac{c(OH^-) \cdot c(HA)}{c(A^-)}$$

 $K_{\rm a}^{\Theta} \cdot K_{\rm b}^{\Theta} = K_{\rm w}^{\Theta} = 10^{-14}$

2、多元共轭酸碳: H,A+H,0←H,O+HA $K_{il}^{\theta} = \frac{c(H^*) \cdot c(HA^*)}{c(H_2A)}$

$$HA^{-}+H_{1}O \rightleftharpoons H_{1}O^{+}+A^{2}$$
 $K_{n}^{0} = \frac{c(H^{+})\cdot c(A^{2})}{c(HA^{-})}$

岛反应:
$$H_1A+2H_1O \Rightarrow 2H_1O^*+A^*$$
 $K_0^0 = K_0^0 \times K_{20}^0$

注意: 在同一体系中,两个平衡中各物质的浓度均为该物质平衡时在体系中的总

., 两步电离中。(H⁺)在平衡时数值是相同的

$$A^{2} + H_{2}O \rightleftharpoons HA^{2} + OH^{2}$$
 $K_{H}^{0} = \frac{C}{2}$

$$K_{\text{H}}^{\Theta} = \frac{c(\text{OH}^{-}) \cdot c(\text{HA}^{-})}{c(\text{A}^{2-})}$$

$$HA^-+H_1O \rightleftharpoons H_1A+OH^ K_{n_1}^0 = \frac{c(OH^-)\cdot c(H_2A)}{c(HA^-)}$$

总反应:
$$A^2 + 2H_10 \rightleftharpoons H_2A + 2OH$$
 $K_b^0 = K_{b1}^0 \times K_{b2}^0$

3、质子条件式

4、不同类型溶液酸度的计算(只适用于纯溶液)

- (1) 一元强酸HA: 最简式; c(H)=c 一元强破 BOH,最简式: c(OH)=c
- (2) 一元弱酸 HA:

稀释定律, $\alpha = \sqrt{\frac{K_0}{c}}$ c·K⁹ ≥ 20K⁹, c/K⁹ ≥ 500: 最简式; c(H¹) = √K⁰, c

一片照實

 $c \cdot K_0^9 \ge 20 K_0^9$, $c/K_0^9 \ge 500$: $c \cdot K_b^0 \ge 20 K_w^0$, $c / K_b^0 \le 500$: 最简式: c(OH⁻)=√K₀°-c 近似式; c(OH')=√X; [c-c(OH)]

- (3) 多元期酸 H.A. 作为一元明散处理 K.9---K.19
- 有关同离子效应中的计算,接平衡时体系中各物质浓度计算方法计算(第二章
- 6、缓冲溶液:由一对共轭酸碱组成
- (1) pH=pKe-1g/c(珠轭碱) $pH = pK_0 - lg - n(規酸)$
- (2) 缓冲容量 p: c(总) 1, p 1; 缓冲比越接近 1, p 1
- (3) 级冲将液的配制。找到合适的缓冲对。根据总浓度计算企业和企
- 7、酸碱滴定法

ü

 $c \cdot K_0^9 \ge 20 K_0^9$, $c \cdot K_0^9 \le 500$, 近似式; $c(H^*) = \sqrt{K_0^9 \left[c - c(H^*)\right]}$

多元弱碱:作为一元弱碱处理 720—7210

5、同离子效应和盐效应。

 $pOH = pK_0^0 - \lg \frac{c(現碱)}{c(共轭酸)}$ $pOH = pK_0^0 - lg n(拱轭陂)$

级冲能力: 1:10 < c(酸): c(碳) < 10:1 级冲范围为: pH=pK*+1

(1)酸碱滴定曲线:以滴定剂的加入重(或滴定分数)为模型标(溶液 pfi 值

突厥范围:——化学计量点前后 0.1%

指示剂选择原则。指示剂变色范围全部或一部分落在液定变灰范围内 指示剂的变色点与化学反应计量点越接近越好 指示剂的变色过程从无色至有色或从浅色度深色

(2) 一元强碱(酸)滴定一元强酸(碘)。

突跃范围只与浓度。6.有关 浓度增大10倍,突跃增加2个pti单位 (3) 一元强碳(酸)滴定一元弱酸(碱),NaOH 1 HAc

 $pH = p.K_{*}^{0} - lg \frac{n(HAc)}{n(Ac)} = pH = p.K_{*}^{0} - lg \frac{20.00 - 19.98}{19.98}$ 突跃范围起点; Vn.on=19.98 mL, HAc 和 NaAc

化学计量点,Viaon=20,00mL: NaAc

$$c(OH) = \sqrt{K_b^0 \cdot \frac{c_0}{2}}$$

突跃范围终点: Ymon=20.02mL; NaAc, NaOH

 $c(OH^{-}) = c_0 \times \frac{20.02 + 20.00}{20.02 + 20.00}$

影响突跃范围的因素。①。越大,突跃范围越大,。只与突跃终点有关,。增加 10 倍、终点上移 1 个 pH 单位

② K.越大,突跃范围越大, K. 只与起点有拱, K.增加

10 倍。超点下移 1 个 pH 单位

弱酸(碱)能否被直接准确滴定的条件: c.K. 21×10° (4) 多元弱酸(碳)的滴定,NaOH J FlaA

① $c \cdot K_0^6 \ge 10^{-8}, c \cdot K_0^6 \ge 10^{-8}, K_0^6 / K_0^6 \ge 10^4$ 两个日*都可被准确满定|也可分

NaOH+NaHA - Na,A+H,O 第二代學字疊点字句: Na:A NaOH+H,A 1 NaHA+H,O 第一化学计量点产物: NaHA

- ② c·K 2 > 10 *, c·K 2 > 10 *, K / K 2 < 10 * 两个 H 间时被准确确定出来。 2NeOH+H,A 云Na,A+2H,O 尺有一个化学计量点产物; Na,A
 - ③ c·Kg ≥10-4°c·Kg ≤10-4°Kg /Kg >10' 只有第一个日推推确滴定 NaOH+H,A 一NaIA+H,O ,只有一个化学计量点产物, NaHA

(5) 酸碱指示剂:(碱式结构和酸式结构颜色不相同)

愛色原理,Hh+H,0 → H,0+h. K_{hh} 殿式色

 $pH = pK_n^0 - lg \frac{c(HIn)}{c(ln)}$

变色点:c(In)=c(IIIn),pH=pKin (与化学计量点接近)

(与突跃范围有重合) 变色范围, pH=pKm±1

(6) 酸碱滴定法的应用:

① HCI 标准溶液的标记,

基准物质: Na₂CO₃ Na₂CO₃ + 2HCl = 2NaCl + H₂CO₃

 $c(HCI) = \frac{2m(Na_1CO_2)}{M(Na_1CO_2)/V(HCI)}$

基准物质:硼砂 NapB4O7 + 2HCL + 5H2O = 4H3BO3 + 2NaCl 甲基红 $c(HCI) = \frac{2m(Na_1B_1O_1 \cdot 10H_1O)}{M(Na_1B_1O_1 \cdot 10H_1O) V(HCI)}$

② NaOH 标准语表的标点: Cood tow = Cood tho

基准物质: 邻苯二甲酸氢钾

 $\alpha(NaOH) = \frac{m(KHP)}{M(KHP)/r(NaOH)}$

③ 铵盐中氨含量的测定;

蒸馏法(返滴定法)

NH3+H*(过程的 HCI)=NH;

H*(剩余)+OH*(用NaOH 滴定)=H₂O

2

 $\psi(N) = \frac{[c(HCI)^p(HCI) - c(NaOH)^p(NaOH)] \times 14.01}{p(NaOH)^p(HCI) + c(NaOH)^p(NaOH)}$

甲醛法(置换滴定法)

4NH4* + 6HCHO = (CH2),6N4 + 4H+ + 6H2O

H++OH: (用 NaOH 漸定)=H2O

 $v_{\nu}(N) = \frac{c(NaOH) \cdot V(NaOH) \times 14.01}{c(NaOH) \cdot V(NaOH) \times 14.01}$

④ 混合碱的测定。

连续滴定 八一酚酞 九二甲基橙

NaOH, Na2CO3 $N > P_2$

Na₂CO₃ $N_1 = N_2$

Na₂CO₃, NaHCO₃ N.< 12

NaHCO₃ N=0

NaOH $V_2 = 0$

NaOH 和 NazCo3 含量的测定: "W(Na_CO3) = c(HCl) · V_(HCl)×1060

 $w(NaOH) = \frac{c(HCI) \cdot [V/(HCI) - V_1(HCI)] \times 40.00}{1}$

NazCOs和 NaHCOs 台灣製定。 w(Na,COs) = c(HCl)、K(HCl)×106.0

 $\psi(N_BHCQ_1) = \frac{c(HCI)[V_2(HCI) - V_1(HCI)] \times 84.01}{c(HCI)[V_2(HCI)] \times 84.01}$

分两个锥形瓶滴定 八二酚酞 凡二甲基橙

NaOH, Na2CO3 $V_1 > V_2 - V_1$

Na₂CO₃ $N = N_2 - N_1$

NayCO3, NaHCO3 $V_1 < V_2 - V_1$

NaHCO₃ V = 0

NaOH $V_2 - V_1 = 0$

2

1、熔度积水。1

 $A_n | B_n(y) \rightleftharpoons m A^{**}(aq) + n B^{**}(aq) \quad K_{sp} \theta = c^n (A^{**}) \times c^*(B^n)$

- 2、| 溶解度 3:饱和溶液里将质的物质的量浓度
- 3、溶度积和溶解度的相互关系,《在纯的难溶盐饱和溶液中》
- $A_{\mu}B_{\mu}(t) \rightleftharpoons nA^{m+}(aq) + mB^{m}(aq) \qquad K_{\mu}^{0} = (nS)^{n} \cdot (mS)^{m}$

K-P大型离子资质的影唱,而落解,则不同。

- 4、溶废积规则:
- O| KK| 6, 长色色游泳,沉淀游解,
- Qi=Kil9, 沉淀溶解试平衡, 为饱和溶液,
- O ➤ K, 9, 对包书游谈, 汽流柜田。
- 5. 沉淀溶解平衡的移动:
- (1) 单纯的沉淀溶解平衡 A_B_(s) == nA^{m+}(aq)+mB^{**}(aq)

回离子效应: 平衡逆向移动

- **並校**屋。 平衡正向移助
- 电容数像化物控制 pH 值,控制沉淀生成

 π 生成沉淀: $C_{\rm or} \leq \sqrt{\frac{K_{\rm obs}^2}{C_{\rm obs}}}$ 沉淀完全, $C_{\rm obs} \geq \sqrt{\frac{K_{\rm obs}^2}{10^3}}$ M(OH),(s) = MH = M" (aq) + nOH (aq)

(4) 沉淀溶解平衡与酸碱平衡的结合

硫化物的酸溶解沉淀反应; MS(9)+2H*(nq) == M**(aq)+H₂S(aq)

$$K^{\Theta} = \frac{K_{\rm th}^{\Theta}(MS)}{K_{\rm tl}^{\Theta}(H_2S) \cdot K_{\rm tl}^{\Theta}(H_1S)}$$

 $Mg(OH)_{\lambda}(s)+2NH^{\lambda}(aq) \rightleftharpoons Mg^{\lambda \lambda}(aq)+2NH^{\lambda}\cdot H_{\lambda}O(aq) \quad K^{0} \rightleftharpoons \frac{K_{\mu}^{0}(Mg(OH)_{\lambda})}{[K_{\mu}^{0}(NH_{\lambda})]!}$

 $M_g^{2*}(dq) + 2NH_3 \cdot H_2O(aq) \rightleftharpoons Mg(OH)_2(s) + 2NH_1^2(aq) \quad K^9 = \frac{[K_b^3(NH_2)]^2}{K_b^6(Ag(OH)_2)}$

(3) 沉淀溶解平衡与配位平衡的结合

 $A_BCI(s) + 2NH_3 \rightleftharpoons [A_B(NH_3), 1]^4 + G1^4 \quad K^9 = K_9^9 ([A_B(NH_3), 1]^3) \cdot K_9^9 (A_BCI)$

(4) 沉淀溶解平衡与氧化还原平衡的结合

Ag+ c= Ag (s)

 $\varphi^{\theta}(Ag^{4}/Ag)=0.799 \text{ V}$

 $\varphi^{\theta}(AgBu/Ag) = \varphi(Ag^*/Ag) = \varphi^{\theta}(Ag^*/Ag) - \frac{0.0592}{1} \frac{1}{1 \cdot c(Ag^*)}$ 4 (AgBi/Ag) AgBr (s) + e = Ag (s) + Br

 $= \rho^{\theta} (Ag^{+}/Ag) - \frac{0.0592}{1} \lg \frac{1}{K_{\mu}^{\theta}(AgBr)}$

(5) 沉淀的特化

 $CaSO_{4}(s) + CO_{3}^{-1} \rightleftharpoons CaCO_{3}(s) + SO_{4}^{-2} \qquad K = \frac{K_{11}^{9}(CaSO_{4})}{K_{10}^{9}(CaCO_{3})}$

6. 沉淀滴定

了解三种滴定方法使用的指示剂,特别物,滴定反应和滴定条件

1、日知平衡 A.B. (9)=2A*+3B*-有×mol/L 的 A.B. 幣解,则

Kw⁹ (A₁B₃)为: ()

B. 108x3 A. 27x3

2. 难粹电解质 AB,在水溶液中部分溶解,若平衡时で(A²⁴)=x,

c(B)=y, 则珠落物的溶度积表达式。(

B. $K_{\mu\theta} = x^2 y$ A. Ky0= x2.3/2

D. Kut = (2x)2.y C. Ky0 = x12 3. K., (AgCl) = 1.8×10-10. AgCl,在 0.001mol L-1 NaCl 将液中的

溶解度(mol·L-1); (

C. 0.001 B. 1,34×10-4 A. 1,8×10-10

4. 使 CaCOs 具有最大溶解度的溶液是。

C KNO B. NazCO3

为米饱和状态。 5. 溶度积规则中

6. 洗涤 BaSO4 沉淀时,最好选用

7. 在广和CT共存的条件下, 当溶液中同时折出 AgI和 AgCI 沉淀时, 溶液中广和

第八章

1,配合物的组成,[Cu(NH3)4]2*

配位数,配离子电荷的计算

2、配合物的命名。

3、整合物和整合效应:

多齿配体形成的配合物叫螯合物

整合效应的原因,加效应,形成多个五元、六元整合环

4、配离子构型:

(1) 配位数=2 5p.杂化 直线形 [AB(NH3)1]*

(2) 配位数=4 sp³杂化 正四面体型 外轨型 [Zn(NH₃)₃)²⁺ dp²杂化 平面正方形 内轨型 [Cu(NH₃)₃)³⁺

(3) 配位数=6 p³ 杂化 正八面体型 外轨型 [Fe(H₂O)₂]³ d²p³ 杂化 正八面体型 内轨型 [Fe(CN)₂]⁴

5、内、外轨型配合物的判断,

(1) 根据配体直接判断。配体 GN、NOs、CO———内轨型配合物。

配体F、H2O---外轨型配合物。

(2) 由中心原子电子构型直接判断: Yg*、Zn²*、Cd²*——(n-1)dio ———外轨型配合物 Cr²*(34)———内轨型配合

物。 (3) 由配合物的磁性实验来判断: $\mu = \sqrt{n(n+2)}$ n. 中心原子中未成对电子数一般外轨型配合物 n. 比较大 内轨型配合物 n. 比较小

6、配位平衡;

Cu**+4NH, 配位 Cu(NH,), p* [Cu(NH,),]** 的 负 独 记 常

K⁹([Cu(NH,),]²⁺)

2

$$K_{f}^{\theta} = \frac{c(|Cu(NH_{3})_{4}|^{24})}{c(|Cu^{24}|) \cdot c(|NH_{3}|)^{4}}$$

7、配位平衡的移动;

(1) 配位平衡与酸碱平衡的结合

 $\mathrm{Re}^{1} + \mathrm{GHF} \rightleftharpoons \mathrm{Feg.l}^{1} + \mathrm{GH}^{1} \qquad K^{0} = K_{f}^{0} (\mathrm{Feg.l}^{1-}) \cdot [K_{g}^{0} (\mathrm{HF})]^{6}$

(2) 配位平衡与沉淀溶解平衡的结合

 $AgCl(s) + 2NH_1 \rightleftharpoons [Ag(NH_1)_1]^{\dagger} + Cl^{-} \quad K^{\theta} = K_f^{\theta}([Ag(NH_1)_1]^{\dagger}) \cdot K_g^{\theta}(AgCl)$

(3) 配位平衡与氧化还原平衡的结合

 $Ag^{+} + c = Ag(s)$ $\phi^{\theta}(Ag^{t}/Ag) = 0.799 \text{ V}$

 $[Ag(NH_3)_1]^+ + c = Ag(s) + 2NH_3$ $\phi^B([Ag(NH_3)_1]^+ /Ag)$

此时体系中 c([Ag(NHs)]]*) = 1.0 molt-1 c(NHs) = 1.0 molt-1

根据平衡: Ag'+2NH, == [Ag(NH,)]

 $K_f^2([Ag(NH_j)_j]^*) = \frac{c([Ag(NH_j)_j]^*)}{c(Ag^*) \cdot c(NH_j)^2} \Rightarrow c(Ag^*) = \frac{1}{K_f^2}$

 $\varphi^{9}([Ag(NH_{1})_{1}^{*}]/Ag) = \varphi(Ag^{*}/Ag) = \varphi^{9}(Ag^{*}/Ag) - \frac{0.0592}{1} \frac{1}{ig} \frac{1}{c(Ag^{*})}$ $= \varphi^{9}(Ag^{*}/Ag) - \frac{0.0592}{1} Ig K_{f}^{9}([Ag(NH_{1})_{1}^{*}])$

(4) 两个配位平衡的结合

配位体的重换: [Ni(NIL)₀]^{2*}+3 en + [Ni(en)₃]^{2*}+6 NH₃

 $K^{\Theta} = \frac{K_f^{\Theta}(\text{INi(en)}, 1^{l^*})}{K_f^{\Theta}(\text{INi(NH},)_6)^{l^*})}$

8、配位循定法。

(1) 配离子的条件稳定常数 1g.K.g. (MY)=1g.K.g (MY)-1gavon

avan : EDTA 的酸效应系数 溶液的酸度f, avail

(2) 配位滴定曲线,以配位剂 BDTA 的加入量(或滴定分数 T)为模坐标,pM分级坐标

突跃范围, ——化学计量点前后 0.1%

突跃范围起点: c(M"*)=c₀×20.00-19.98

2

以 kd (MY)=1g Kt (MY)-1g ann, 因此 KP1, 突厥範囲1, and), 突厥范围1 (4) 单一离子准确搁定的条件。 c。(M)×Kf*(MY)≥10°或省 g.Kf*(MY)≥8 (1)。地大,突跃范围越大,。只与突跃起点有关,与突跃终点无关。 $c(M^{**}) = \frac{c(MY)}{K_I^{9'}(MX) \cdot c(Y')} = \frac{20.02 - 20.00}{K_I^{9'}(MY) \times c_b \times 20.02 + 20.00}$ 最高酸度: lg Ki* (MY)=lg Ki* (MY)-lg a_{r(1)1} ≥ 8.0 化学计量点, pM= $\frac{1}{2}\left\{ \lg K_{\rm P}^{\rm P}(MX) - \lg \frac{1}{2} \alpha(M) \right\}$ 突跃范围终点: c(Y)=c₀×20.02-20.00 **邮响配位架跃范围的因案**: 5)配位洞定的酸度控制 (6) M、N 两离子同存时

 $\frac{d(M)\cdot K_{\rm P}^{\rm P}(MY)}{d(M)\cdot K_{\rm P}^{\rm P}(NY)} \ge 10^5$ 可排除 N 的干扰,实现对金属离子 N 的准确演定。

(M)-Kg(MY) < 10° 两种离子同时被滴定出来(M)-Kg(MY)

如何消除n的干扰,降低c(N)加入拖蔽剂(配位拖嵌知沉淀掩蔽) (力) 金属指示剂(游离态和配合物态颜色不相同)

农的原理: M+In → Min K⁹(Min)

一游离色 配合物色

 $pM = \lg K_t^{e'}(Min) - \lg \frac{c(Min)}{c(in')}$ $K_{\epsilon}^{\Theta}(MIh) = \frac{c(MIn)}{c(M) \cdot c(In)}$ 要色过程: EDTA J Mg** 指示剂: 格廉丁 变色范围, pM=lgK^{g'}(MIn)±1

① In+Mg²⁺(少韓被反应)→ MgIn (红色)

(红色) ② Mg²⁺ (游离的) + Y → MgY (賦色) ® 终点: MgIn+Y→MgY+In

第九章

1. n2Ox1+n1Red1=n1Red1+n1Ox2 两个电对: 如Ox1/Red1)和p(Ox1/Red3)

正数: 还原反应 Oxi+ne=Red: \$\omega_t=\phi_t^2 \cdot \frac{0.0592}{\eta_t} \cdot \frac{c(Red.)}{\eta_t}

负极: 氧化反应 $\operatorname{Red}_{b} = \operatorname{Ox}_{2} + me$ $p_{s} = \varphi_{s}^{0} - \frac{0.0592}{f_{s}} \frac{o(\operatorname{Red}_{12})}{c(\operatorname{Ox}_{2})}$

 $E_{\rm hh} = \varphi_{+} - \varphi_{-} = (\varphi_{+}^{0} - \varphi_{-}^{0}) - \frac{0.0592}{4_{1} \times h_{2}} \frac{c^{10} ({\rm Red}_{1}) \cdot c^{10} ({\rm Ox}_{2})}{c^{10} ({\rm Ox}_{1}) \cdot c^{10} ({\rm Red}_{2})}$ = Ea - 0.0592 [g(平衡表式)

48、48、48、体系中所有物质处于标准态

 $\Delta_{\mathcal{C}}G^{0} = \Delta_{\mathcal{A}}H^{0} - T\Delta_{\mathcal{C}}S^{0} = -nFE_{\mathbf{m}}^{0}$

 $1gK^0 = \frac{nE_0^0}{0.0592}$

 $\Delta_{\mathcal{L}}G = -nFE_{th}$

电池符号,一)负极电极 || 正极电极 (十

2、电极电势的含意;

《無化态/还原态》 电极反应: 氧化态 + m = 还原态

(1) 即(氧化态/还原态)与电极反应写法无关

电极电势越负,(充当负极)电对中还原态的还原性越强 (2) 电极电势越正,(充当正极)电对中氧化态的氧化性越强

(3)。中值较高的氧化态物质能和中值较低的还原态物质发生氧化还原反应

平衡逆向移动: p降低

 $\tilde{\mathcal{W}}(\cdot,\varphi^0(Ag^*/Ag)>\varphi^0(AgCl/Ag)>\varphi^0((Ag(NH3)_3l^*/Ag)>\varphi^0(AgBr/Ag)>\varphi^0(AgL/Ag),$

3、判断氧化还原反应进行的方向。

5. > 0 反应向正方向自发进行

E. = 0 反应处于平衡状态

En < 0 正反应方向非自发(逆方向自发进行)

4、计算 Kn9和 KP;

(1) $Ag^+ + e = Ag(s)$

 $\varphi^{\theta}(Ag^{+}/Ag)$

AgBr(s) + c = Ag(s) + Br

φ⁸(AgBI/Ag)

方柱①: 組成原电池: $Ag^+ + Br^- - AgBr(s) \lg K^9 = \frac{nE_0^8}{0.0592} \quad K^9 = \frac{1}{K_0^9}$

 $\phi^{0}(AgBt/Ag) = \varphi(Ag^{*}/Ag) = \phi^{0}(Ag^{*}/Ag) - \frac{0.0592}{1} \frac{1}{c(Ag^{*})}$ 方法②: $= \phi^{0}(Ag^{*}/Ag) - \frac{0.0592}{1} \frac{1}{1} \frac{1}{K_{\mu}^{0}(AgBt)}$

(2) Ag+e=Ag(s)

φ⁸ (Ag*/Ag)

 $[Ag(NH_3)_2]^+ + e = Ag(s) + 2NH_3$

W ([Ag(NH3)1]* /Ag)

 $\rho^{\theta}([Ag(NH_{s})_{s}^{1}]/Ag) = \varphi(Ag^{*}/Ag) = \rho^{\theta}(Ag^{*}/Ag) - \frac{0.0592}{1} \frac{1}{c(Ag^{*})}$ $= \rho^{\theta}(Ag^{*}/Ag) - \frac{0.0592}{1} \lg K_{\theta}^{\theta}((Ag(NH_{s})_{s}^{1}))$

5、氧化还原平衡的移动

例:氧化还原平衡与沉淀平衡的结合

 $Cu(s) + Cu^{2+} + 2Cl = 2CuCl(s)$ $K^{\theta} = \frac{K_{\theta}^{\theta}}{(K_{\theta}^{\theta})^2}$

$$\rightarrow Cu(s) + Cu^{2+} = 2Cu^{+} \qquad \text{(1)} \ l_{g} K_{i}^{i\theta} = \frac{E_{i\theta}^{i\theta}}{0.0592} = \frac{\varphi^{0}(Cu^{2+}/Cu^{+}) - \varphi^{0}(Cu^{+}/Cu)}{0.0592}$$

CuCl (s) = Cu⁺ + Cl \otimes $K_2^0 = K_3^0$ (CuCl)

6、元素电势图及其应用。

(1) 判断歧化反应

(2) $\rho^{0} = \frac{n_{i}\rho^{0} + n_{i}\rho^{0}_{i} + n_{i}\rho^{0}_{i} + \cdots}{n_{i} + n_{i} + n_{i} + n_{i} + \cdots}$

7、氧化还原摘定法。

(1) 条件标准电极电势(p^{Br}); Ox+ne:=Red

 $\varphi(Ox/Red) = \varphi^{0'}(Ox/Red) - \frac{0.05915}{n} \lg \frac{e(Red)}{e(Ox)}$

(2) 氧化还頂滴定曲线,以獨定剂的加入量(滴定分数)为積坐标,体系的电势为级坐标

noOxi+niRedz=niRedi+niOxi 正极:Oxi+nie=Redi 负极:Redz=Oxi+

处跃范围:——化学计量点前后 0.1%

突跃范围起点。 Pe' + 0.05915 lg10³

化学订量点: \$0.00 = 11.00 + 11.00.00

突跃范围终点: p² + 0.05915₁₈10⁻³

 $m=m_1$; $g_{r_1}=\frac{\rho^p+\rho^p}{2}$ 计量点正好位于突跃范围的中点

111年12: 计遗点偏向电子转移数较多的电对的一方

(3) 氧化还原滴定指示剂

① 自身指示剂: KMnO, ② 专属指示剂: 淀粉

③ 氧化还原指示剂:(氧化态和还原态颜色不相同)

夾色原理; ln(Ox)+ne ≒ ln(Red)

要色点 | o(In) = o⁹ (In) (与计量点 o₂ = n₁o² + n o² + ku)

变色范围: $\varphi(\ln) = \varphi^{\varphi'}(\ln) \pm \frac{0.0592}{n}$

变色过程: Ox1↓Reda 还原态色 → 氧化态色

Red 1 Ox1 氧化态色 一 还原态色

(4) 氧化还原滴定方法的应用

〇 西结酸钾浓

MaO, 1 +8H++5e=M12++4H,O 48=1.51 V

非基准协质,用 NazCiO4标定 MnO4格被浓度

2MpOt + 5C2O42+ 16H+= 2Mp2+ + 10CO2 1+8H2O

 $c(KMnO_4) = \frac{\frac{2}{5}m(Na_2C_1O_4)}{\frac{5}{14}(Na_2C_2O_4)P(KMnO_4)}$ ## $\overline{\pi}$ #II: KMnO_4

应用实例,双氧水中 HiOz 含量的测定 —— 直接滴定法

软锤矿中 MnO. 的图底 —— 返滴法

钙盐中钙含量的测定 —— 间接流定法

② 重铬酸钾法

Crop*(橙色)+14H+6e=Cr*(緑色)+7H2O 9040-10+=1.33V

基准物质,直接配制 指示机,二苯胺磷酸钠,邻苯氨基苯甲酸

应用实例: 铁矿石中铁合量的测定

Cr. 0, 1 + 6Fe¹⁺ + 14H⁺ = 2Cr³⁺ + 6Fe³⁺ + 7H₃O

反应加入HaPOa的作用:降低Test较度,掩蔽Test的颜色,提渐反应的酸度。降

p(Fe²⁴/Fe²⁴),增大滴定突跃范围

指示約 门苯胺磺酸钠 (氧化态。紫红色 跖原态。 无色》

CDO'-1'Fe'': 沒錄色---道紫色 Fe'' CTO'-'- 红棕色--綠色

③ 碘蜡法

 $l_1 + 2e = 2I$ $\phi^0(l_2/1') = 0, 545 \text{ V}$

指示处: 范卷 有海路湖: Nasso, 1,+28,0; = 21+5,0°

8