- 1/ Which of the three principle types of flowsheet would one use to:
 - i) give a new employee an overview of the plant process?
 - ii) trace down a fault in a control loop?
 - iii) make a preliminary capital cost estimate to construct a plant?
 - iv) indicate whether a controller is to be located in the control room or in the plant?
 - v) indicate which pipe lines need insulation?
 - vi) represent major pieces of equipment as rectangles rather than icons?
 - vii) In what type of flowsheet would one expect to find pipe diameters and materials of construction?
- 2/ 500kg of a 5% slurry of calcium hydroxide in water is to be prepared by diluting a 20% slurry. Calculate the quantities required.

[125kg of 20% Ca(OH)₂ and 375kg of H₂O]

3/ 20% excess air is supplied to a furnace burning 100m³/hr of natural gas (95% methane, 5% ethane by volume). Calculate the air flow of air (21% O₂) required. The reactions are:

$$CH_4 + 2O_2 -> CO_2 + 2H_2O$$

 $C_2H_6 + 7/2 O_2 -> 2CO_2 + 3H_2O$
[1185.7m³/hr]

In the production of ethanol by the hydrolysis of ethylene, diethyl ether is produced as a by-product. The feed stream composition is 55% ethylene, 5% inerts, 40% water. The composition of the product stream is 52.26% ethylene, 5.49% ethanol, 0.16% ether, 36.81% water, 5.28% inerts. All percentages are by mole. Calculate the selectivity of ethylene for ethanol and for ether and also the conversion of ethylene. The reactions are:

$$C_2H_4 + H_2O -> C_2H_5OH$$

 $2C_2H_5OH -> (C_2H_5)_2O + H_2O$
[selectivity for ethanol = 94.4%, for ether = 5.44%, conversion = 10%]

- A train of two distillation columns is being used to separate a mixture of hexane, heptane and octane. The feed to the first column contains 40 mole% hexane, 30 mole% heptane and 30 mole% octane and enters at a rate of 2500 kmol/h. In the first column 98% of the octane fed is recovered in the bottom product. Essentially no hexane goes with the bottom product and the mole fraction of octane in the bottom is 99.5%. The overhead product flows to a second column. The overhead product from the second column contains 98 mole% hexane and no octane. In addition, 98% of the hexane fed to this column is recovered in the overhead.
 - a) Draw a diagram of the process, labeling all of the streams.
 - b) Calculate the molar flow rates and mole fractions for each stream in the process.
- 6/ In ammonia production from H_2 and N_2 , unreacted material is recycled. The feed stream to the process is at 200mols/hr and contains 0.2% argon as an inert. To avoid a build up of the inert there is a purge stream. Calculate the required flow rate in the purge stream to maintain the argon level in the recycle stream below 5%.

[8 mols/hr]

7/ Examine the process flow diagram below and answer the following questions:

- i) What is the pressure (in bar) in stream 5?
- ii) What is the temperature change in the product caused by E-603?
- iii) What is the role of the LIC between E-603 and the boiler feed water (bfw)?
- iv) What differences (composition, pressure, temperature, flowrate, vapour fraction) are there between streams 3 and 5?
- v) What is the overall conversion of this process?

Stream No.	1	2	3	4	5
Temperature (°C)	25	25	511	400	50
Pressure (bar)	11.7	6.44	2.77	11.34	2.09
Vapor fraction	1.0	1.0	1.0	0.0	1.0
Mass flowrate (tonne/h)	3.19	1.40	4.59	16.63	4.59
Molar flowrate (kmol/h)					
Propylene	75.89	-	58.08	0 0	58.08
Chlorine	===	19.70		-	-
Allyl chloride	<u> </u>	75 <u>-2</u> 5	15.56	8488	15.56
2-Chloro propene	-	-	0.46	0-0	0.46
Di chloro propene	-	· —	1.81	-	1.81
Hydrogen chloride	<u>8000</u>	73 <u>—2</u> 5	19.70	8486	19.70
Carbon	-	-	_1	4 0	
Dowtherm™ A	===	55 5		$4.62 \mathrm{kg/s}$	-
Total mole flow (kmol/h)	75.89	19.70	95.61	4.62 kg/s	95.61

 $Conversion = \frac{moles \ of \ reagent \ consumed}{moles \ of \ reagent \ supplied}$ Selectivity

moles of product formed

= moles of product that could have been formed had all reagent been used to make product moles of product formed

 $Yield = \frac{1}{moles\ of\ reagent\ supplied\ x\ stoichiometry}$

Yield = conversion * selectivity