End Semester Examination

Discrete Structures IIIT Hyderabad, Monsoon 2023

November 25, 2023

Maximum Marks: 100.

There are ten questions, 10 marks each. Calculators are allowed.

1.	Fill in the following blanks: $10 \times 1 = 10$
	1. The coefficient of x^9y^3 in $(2x-3y)^{12}$ is
	2. The number of arrangements of the letters in MISSISSIPPI having no consecutive S's is
	3. The number of positive integer solutions for $a + b + c + d = 10$ is
	4. If two integers are selected at random without replacement from $\{1, 2, \dots, 100\}$, the probability that the integers are consecutive is
	5. If $Pr(A) = 0.5$, $Pr(B) = 0.3$, and $Pr(A B) + Pr(B A) = 0.8$, then $Pr(A \cap B)$ is
	6. State True or False: If eight people are in a room, at least two of them have birthdays that occur on the same day of the week:
	7. State True or False: Let triangle ABC be equilateral with AB=1. If we select 10 points in the interioro this triangle, there must be at least two whose distance apart is less than 1/3:
	8. How many times must we roll a single die in order to get the same score at least thrice?
	9. Solution to $a_{n+2} - 4a_{n+1} + 3a_n + 200 = 0$, with $a_0 = 2$, $a_1 = 104$ is
	10. The chromatic number (minimum number of colors required to properly color a graph) of a connected bipartite graph is
2. (ive an example for each of the following: $2+3+5=10$
	1. A simple undirected graph G that has an Euler circuit (a circuit that has every edge once) and an example of a way to orient the edges (give directions to edges to obtain a directed graph) such that the resultant digraph does not have a Euler circuit and another way to orient the edges such that the digraph has a Euler circuit.
	2. A binary operation on graphs of n vertices such that the set of all graphs on n vertices forms a group (for that operation).
	3. Two binary operations on graphs of n vertices, say $+$ and \star , such that the set of all graphs on n vertices forms a ring (using $+, \star$).
3. P	rove or disprove the following: $4 \times 2\frac{1}{2} = 10$
	1. If F is a finite field, the characteristic of F must be prime. However, the converse is not true.
	2. Any finite integral domain is a field.
	3. Any integral domain with finite characteristic must be of finite order.
	4. If U is an ideal of ring R and $1 \in U$, then $U = R$.

4. For any group G, let A(G) denote the set of all automorphisms of G and let $F(G) = \{T_g \in A(G) \mid g \in G, T_g : G \to G \text{ where } \forall x \in G, T_g(x) = g^{-1}xg\}$. Prove the following:

	 A(G) is a group. If G = S₃ (symmetric group of degree 3) then G is isomorphic to F(G). F(G) is a normal subgroup of A(G). F(G) is isomorphic to G Z where Z is the center of G. 	
5	5. Let G be a group in which , for some integer $n > 1$, $(ab)^n = a^n b^n$, for all $a, b \in G$. Prove the following:	$4 \times 2\frac{1}{2} = 10$
	 G⁽ⁿ⁾ = {xⁿ x ∈ G} is a normal subgroup of G. G⁽ⁿ⁻¹⁾ = {xⁿ⁻¹ x ∈ G} is a normal subgroup of G. 	
	 aⁿ⁻¹bⁿ = bⁿaⁿ⁻¹ for all a, b ∈ G. (aba⁻¹b⁻¹)ⁿ⁽ⁿ⁻¹⁾ = e for all a, b ∈ G. 	
6.	. Prove each of the following: (a) Lagrange's Theorem for finite groups (regarding order of a suthe order of group), (b) If H and K are subgroups of group G then $(H \cap K)$ is a subgroup of subgroup of a cyclic group is itself a cyclic group.	abgroup dividing f G , and (c) any $3+3+4=10$
7.	Prove the following regarding simple planar graphs:	2+2+6=10
	1. Theory of planar graphs is popular only for undirected graphs and not directed graphs.	Why?
	2. Every planar graph is 6-colorable.	
	3. Let p_n be the probability that a simple graph on n vertices, chosen uniformly at random possible simple undirected graphs, is planar. What are the values of p_4 , p_5 and p_6 ?	from all the $2^{\binom{n}{2}}$
8.	Given n distinct objects, prove that:	3 + 5 + 2 = 10
	1. The number of derangements of n objects (arrangements where i^{th} object is not in i^{th} $1 \le i \le n$), is (approximately) $\frac{n!}{e}$.	position, for all
	2. The number of times you need to pick an object uniformly at random (one at a time wis such that the probability that you pick the same object more than once is at least 0.5, is	
	3. The number of ways in which the n objects can be permuted so that none of the follow objects (assume objects are numbered as $1, \ldots, n$) occurs contiguously anywhere in the $1, 2, 3$ and $4, 5, 6, 7$, and $8, 9$ is	e permutations
	Given numbers a, b, c and d , suppose you have find $\gcd(a, b^{c^d})$ on your computer. How would yo assuming that you know the prime factorization of a ? (Note that machine may not be able store the value of b^{c^d} , even including all time/memory available in the Universe!) Hint: Use Euclid's algorithm, Chinese Remainder Theorem and Fermat's Little Theorem toge	to compute and
0.	Write in detail with proofs and applications about any two among of the following:	$2 \times 5 = 10$
	1. Well-Ordering Principle	
	2. Pigeonhole Principle	
	3. Equivalence Relations and Partitions	

- 4. Principle of Inclusion and Exclusion
- 5. Taxonomy of Recurrence Relations and Their Solutions
- 6. Platonic Solids and Planar Graphs

BEST OF LUCK	