<u>Purpose</u>

The lab was an orientation and we went over units of measure and conversion.

Procedures

My notebook was used for the linear measurements and my cell phone was used for the weighted measurement. The containers and the pH testing strips were provided. I used a timer on my cell phone to measure time while checking my pulse rate.

Results

Linear Measurements				
Length	280 mm	28 cm		
Width	215 mm	21.5 cm		
Depth	20 mm	2 cm		

Volume Measurements		
Beaker	100 ml	.1
Graduated cylinder	.98 ml	.098 I

Mass Measurement		
Cell Phone	.02462 mg	204.62 g
Water	.09458 mg	94.58 g

pH Measurement	
Container "A"	4
Container "B"	7
Container "C"	10

Time Measurement	beats/second	beats/minute	beats/millisecond
Pulse rate after 15 sec	17	.283333	
Pulse rate after 60 sec	66	1.2	66000

Discussion

The conversions were not difficult to calculate. The pages in the lab report with the conversion information assisted with that. I did notice that my pulse rate at 60 sec was a little off if you multiply the 15 sec by four. I think that was because I would have to move my hand to press start on the timer.

Conclusion

Reviewing conversions and measurements is helpful since the U.S. does not use the metric system. When taking my pulse again I will try to use something else as a timer so that my measurement is more accurate.