Mathematik II für Physiker und Physikerinnen - math240

$\overline{Modul\text{-}Nr.}$	math240
Kategorie	Pflicht
Le ist ung spunkte	11
vorgesehenes Semester	2.

Modul: Mathematik II für Physiker und Physikerinnen

Modulbe standteile:

$\overline{\mathbf{Nr}}$	Lehrveranstaltung	LV-Nr.	LP	LV-Art	SWS	Semester
1	Mathematik II (für Physiker und Physikerinnen)	math241	11	Vorl. + Üb.	4+3	SS

Teilnahmevoraussetzungen: keine

Prüfungsform: Klausur

Inhalt: Analysis II

Qualifikationsziel: Vermittlung der mathematischen Grundbegriffe und Methoden

Studienleistung/Kriterien zur Vergabe von LP: Erfolgreiche Bearbeitung der Übungsaufgaben

Dauer: 1 Semester

Max. Teilnehmerzahl: ca. 200

Gewichtung: 11/163

Anmerkung:

PDF version of this page.

Mathematik II (für Physiker und Physikerinnen) - math241

$\overline{Lehr veran staltung}$	Mathematik II (für Physiker und Physikerinnen)				
LV-Nr.	math241				

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+3	11	SS

Teilnahmevoraussetzungen:

Empfohlene Vorkenntnisse: Mathematik I für Physiker und Physikerinnen (math140)

Studien- und Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Vermittlung der mathematischen Grundbegriffe und Methoden, erforderlich für die theoretischen Physikvorlesungen nach dem 2. Semester

Inhalte der LV:

Mehrdimensionale Integration:

Transformationssatz, Integration auf gekrümmten Objekten (Gramsche Determinate), Längenberechnung von Kurven, Flächeninhaltsberechnung von gekrümmten Flächen, Berechnung von Volumina.

Vektoranalysis in drei Dimensionen: grad, rot, div, Gaußscher und Stokesscher Satz, Erhaltungsgrößen, Maxwellgleichungen. Verallgemeinerung auf beliebige Dimension.

Fourieranalysis, Fourierreihen, Fouriertransformation, Hilberträume, vollständige Funktionensysteme

Literaturhinweise:

- G. B. Arfken, H. J. Weber; Mathematical Methods for Physicists (Academic Press 6. Aufl. 2005)
- S. Hassani; Mathematical Physics (Springer; New York 1999)
- O. Forster; Analysis II (Vieweg, Wiesbaden 2005)
- O. Forster; Analysis III (Vieweg, Wiesbaden 1984)

PDF version of this page.