Proposition: Concerning the Fibonacci sequence,

$$S_n: F_1 + F_3 + F_5 + \dots + F_{2(n-1)-1} + F_{2n-1} = F_{2n}.$$

Proof. (Induction).

Basis step. Suppose n=1. Observe that $F_{2n-1}=F_{2(1)-1}=1=F_{2(1)}=F_{2n}$. Thus S_1 . Inductive step. Suppose S_k for $k \in \mathbb{N}$.

We now show S_k implies S_{k+1} . Observe that

$$F_1 + F_3 + F_5 + \dots + F_{2((k+1)-1)-1} + F_{2(k+1)-1} = (F_1 + F_3 + F_5 + \dots + F_{2k-1}) + F_{2k+1}$$
 (1)

$$= F_{2k} + F_{2k+1} \tag{2}$$

$$=F_{2k+2} \tag{3}$$

$$= F_{2(k+1)}. (4)$$

Thus S_{k+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.