ΔΙΚΤΥΑ 1 – ΣΟΣ ΤΥΠΟΛΟΓΙΟ

Ethernet:

Κάθε τερματικό επιλέγει τυχαία (ομοιόμορφα) \mathbf{k} (ακέραιο) στο διάστημα (\mathbf{k} ∈) [0, $\mathbf{2}$ ^m - 1], $\mathbf{\acute{o}}$ που \mathbf{m} = \mathbf{min} {10, \mathbf{n} }.

Αν επιλέξουν το ίδιο μικρότερο σύγκρουση και όταν την αντιληφθούν οπισθοδρόμηση, αλλιώς κερδίζει το μικρότερο

$$P(A) = \frac{x}{2^{\min(10, k_1)}}, \quad x \in [0, 2^{\min\{10, n\}} - 1], \quad \underline{\text{KOL}} \quad P(\text{col}) = \frac{1}{2^{\min(10, k_1, k_2, \dots)}}$$

Εύρος Ζώνης/ Μέγιστη Ταχύτητα Μετάδοσης/ Μέγιστος Ρυθμός Μετάδοσης Καναλιού				
$C = W * log_2 (1 + \frac{s}{N})$ bps (bits/second)	W : Εύρος Ζώνης Συχνοτήτων του Καναλιού			
	S : Ισχύς του Σήματος Πληροφορίας			
	N : Ισχύς του Σήματος Θορύβου			
$\log 2(k) = \frac{\ln(k)}{\ln(2)} \qquad \underline{\kappa\alpha l} \qquad \left(\frac{S}{N}\right) dB = 10 * \log\left(\frac{S}{N}\right)$	$\frac{S}{N}$ = SNR : Σηματοθορυβική Σχέση του Καναλιού			

Κατακερματισμός

Αν (L + TH + IPH) > MTU, τότε δεν χωράει το πακέτο, και σπάει σε θραύσματα

Κάθε θραύσμα θα έχει μέγεθος MTU, εκτός το τελευταίο, <u>που</u> μπορεί να είναι μικρότερο από MTU.

ΕΠΙΠΕΔΟ	ΠΡΟΣΘΕΤΕΙ ΚΕΦΑΛΙΔΑ		Bytes	EXE	ΕΧΕΙ ΩΦΕΛΙΜΟ		
Εφαρμογής	L				-		
Μεταφοράς ΤΗ	TLI	UDP	8				
	TCP	20	L				
Δικτύου	IPH	IP	20	L	TH		
Μετάδοσης	L _{μετάδοσης_fec}			L	TH	IPH	

ΕΠΙΤΥΧΙΑ ΠΑΚΕΤΟΥ	P(success_packet) = [P(success_frame)] k

ΑΒΡ (συνολικός – μέσος χρόνος)				
$d = (k-1)*t_{timeout} + (2*t_{pr} + t_{tr} + t_s + t_{ack})$	$\bar{\mathbf{d}} = (\bar{\mathbf{k}} - 1) * \mathbf{t}_{timeout} + (2 * \mathbf{t}_{pr} + \mathbf{t}_{tr} + \mathbf{t}_{s} + \mathbf{t}_{ack})$			
Αν δεν δίνει t _{timeout} γίνεται:				
$d = k * (2*t_{pr} + t_{tr} + t_s + t_{ack})$	$\bar{\mathbf{d}} = \bar{\mathbf{k}} * (2*\mathbf{t}_{pr} + \mathbf{t}_{tr} + \mathbf{t}_{s} + \mathbf{t}_{ack})$			

$$\bar{\mathbf{k}} = \frac{1}{1 - \mathbf{p}} \qquad \qquad \lambda_{\text{in}} = \frac{\pi \alpha \kappa \acute{\epsilon} \tau \alpha \, \pi o v \, \varphi \tau \acute{\alpha} v o v v}{1 \, sec} \qquad \qquad \lambda_{\text{out}} = \frac{1}{\bar{\mathbf{d}}} \qquad \qquad \mathbf{R} = \frac{\mathbf{l}_{\text{tr}}}{\bar{\mathbf{d}}} \quad \text{(bps)} \qquad \qquad \mathbf{n} = \frac{\mathbf{t}_{\text{tr}}}{\bar{\mathbf{d}}}$$