	I.	Savois	Lice	la	delimi	ion
--	----	--------	------	----	--------	-----

Ge sont des mesures de sécurité. Jimon:

~~ D x + y ~~ (N).

II. Classes d'équivalence pou = 8.

Aimsi, si QQ = Q alors, par confluence, il existe M un 2-terme

B'est absurde can on aurait
$$\Omega \Omega = P = \Omega$$
 ($\Omega \Omega = \sigma_B^* P$ implique $P = \Omega \Omega$ con il m'y a que 2 redex).

Q2. 2. Soit N une forme normale avec 2 & VECN) Grapose:

III Propriété du diamont pour les réductions possibles

Q3. 1.

* Gas MN -> M'N ave (M -> M'. Par hypothèse d'induction H'EZI.
avec He 21, Ne 21.
D'en M'NEZI por Ci).
* Gas MN -> MN' ave (N -> N'. Par by pothese d'induction N'E 21.
avec He 21, Ne 21.
D'en H N'EZI par Gi).
* Cas 2x. M - 2x. M' Quee H - H' et Me2I, (9x. H) e2I, H'e2I
Et, we(M') = ve(M) (prewe por induction) parayordiad
d'où (2 x . M') & 27 con x e NC(M).
Q-L. 3.