# Memory RAS 提升云服务器高可靠性

Linux Memory RAS 实现及增强 Memory RAS 在腾讯云的应用实践 宋有泉 @ Intel 吴永楷 @ Tencent

# **Agenda**

- ◆ Linux Memory RAS 实现及增强
  - ◆ MCA
  - Linux Memory MCA Recovery
  - ◆ Linux Memory RAS status
- ◆ Memory RAS 在腾讯云的应用实践

# Server Reliability Required Level Increase Dramatically





Top 5 hardware components failure ranking in one datacenter; Memory failure rate is the top one.

Copyright © 2017 ITIC All Rights Reserved

Source: ITIC 2017-2018, Global Server Hardware & Server OS Reliability Survey

### RAS Enabling Framework



# MCA(Machine Check Architecture) on Intel® Xeon®



| Type of Error <sup>1</sup> | UC | EN | PCC | S              | AR | Signaling | Software Action                                                        | Example                                            |
|----------------------------|----|----|-----|----------------|----|-----------|------------------------------------------------------------------------|----------------------------------------------------|
| Uncorrected Error (UC)     | 1  | 1  | 1   | х              | х  | MCE       | If EN=1, reset the system, else log and OK to keep the system running. |                                                    |
| SRAR                       | 1  | 1  | 0   | 1              | 1  | MCE       | For known MCACOD, take specific recovery action;                       | Cache to processor load error.                     |
|                            |    |    |     |                |    |           | For unknown MCACOD, must bugcheck.                                     |                                                    |
|                            |    |    |     |                |    |           | If OVER=1, reset system, else take specific recovery action.           |                                                    |
| SRA0                       | 1  | x2 | 0   | x <sup>2</sup> | 0  | MCE/CMC   | For known MCACOD, take specific recovery action;                       | Patrol scrub and explicit writeback poison errors. |
|                            |    |    |     |                |    |           | For unknown MCACOD, OK to keep the system running.                     |                                                    |
| UCNA                       | 1  | X  | 0   | 0              | 0  | CMC       | Log the error and Ok to keep the system running.                       | Poison detection error.                            |
| Corrected Error (CE)       | 0  | X  | X   | х              | X  | CMC       | Log the error and no corrective action required.                       | ECC in caches and memory.                          |

#### NOTES:

- 1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32\_MCG\_CAP[24] (MCG\_SER\_P) is set.
- 2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.



### Intel® Xeon® Processor Fault Classification



## Intel® Xeon® Processor Fault Classification



# Linux MCA Recovery

- Legacy MCA/EMCA/EMCA2
- CE/UCE handling
- Memory Failure to isolate the error page and even kill impact applications
- VM RAS



### **Local MCE**

### **Backgroud:**

 Historically, MCE on Intel x86 processors broadcasts to all logical processors

#### **Issues:**

 Broadcasted MCE events may result in fatal event and prevent system recovery.

### **Actions:**

- Intel MCA to allow signaling to only one logical processor.
- No require to perform rendezvous with other logical processors.

Kernel commits: (bc12edb8, 88d53867, 243d657e, 8838eb6c)

Benefit: 1. Enhances MCA recovery-execution path 2.Increases the possibility of recovery

### **Prevent Speculation Access to Poisoned Data**

#### **Problem Statement**

- -Speculative access log error in MCA bank MSRs.
- Escalation of a subsequent error since the overflow bit set.
- Cause fatal error for the overflow



(kernel commits: ce0fa3e, fd0e786d, 284ce40, c748610, 17fae129)
Result: Injection memory UCE error up to 20,000+ without issue with patched kernel

## Patrol Scrub SRAO Downgrade to CE — Mitigate UCE + OVR

#### **Problem Statement**

- Patrol Scrub detected UCE (SRAO) signal as MCE
- Nested MCE thus triggering catastrophic fault (IERR)



Downgrade Patrol scrub UCE to CE patch merged to v5.10 with kernel commit fd258dc4

# MCE Recovery when Kernel Copy from User Space



With pathset, MCE recovery from kernel context when executing copy\_user\_xxx serial functions.

Patchset is merged to v5.10 now. (kernel commits: 41ce0564, a05d54c4, 278b917f, a2f73400, c0ab7ffc, 30063810)

# Address Range Memory Mirror



### Address Range Memory Mirror — Recovery: kernel data UCE -> CE

```
[root@localhost mem_uaccess]# ./test_mem_uaccess
open successed fd = 3
user space virtual address=0x6010c0, physical address=0x28de6f430c0
Waiting for test 'r' or 'w'
r
kernel copy_to_user
Waiting for test 'r' or 'w'
```

```
18504.676026] kernel buffer virtual address=0xffff8c4cba6752c9 phyiscal address=0x2ba6752c9
 [19088.709349] mce: [Hardware Error]: Machine check events logged
 19088.709514] EDAC skx MC1: HANDLING MCE MEMORY ERROR
 19088.709516] EDAC skx MC1: CPU 0: Machine Check Event: 0 Bank 8: 9c00004001010092
 19088.709517] EDAC skx MC1: TSC 0
[19088.709519] EDAC skx MC1: ADDR 2ba6753c0
[19088.709520] EDAC skx MC1: MISC 620802c130206086
[19088.709522] EDAC skx MC1: PROCESSOR 0:50656 TIME 1565779301 SOCKET 0 APIC 0
[19088.709529] EDAC MC1: 1 CE memory read error on CPU SrcID#0 MC#1 Chan#2 DIMM#0 (channel:2 slot:0 pag
ain:32 syndrome:0x0 - err code:0101:0092 socket:0 imc:1 rank:1 bg:1 ba:3 row:10df col:238)
[19088.709595] {2}[Hardware Error]: Hardware error from APEI Generic Hardware Error Source: 0
[19088.709597] {2}[Hardware Error]: It has been corrected by h/w and requires no further action
[19088.709599] {2}[Hardware Error]: event severity: corrected
[19088.709600] {2}[Hardware Error]: Error 0, type: corrected
[19088.709601] {2}[Hardware Error]: fru text: Card02, ChnC, DIMMO
[19088.709603] {2}[Hardware Error]: section type: memory error
[19088.709604] {2}[Hardware Error]: error status: 0x0000000000000000
[19088.709606] {2}[Hardware Error]: physical address: 0x00000002ba6753c0
[19088.709608] {2}[Hardware Error]: node: 1 card: 2 module: 0 rank: 1 bank: 2 device: 0 row: 12719 co
[19088.709611] {2}[Hardware Error]: DIMM location: NODE 1 CPU1 DIMM D1
[19088.709623] EDAC skx MC1: HANDLING MCE MEMORY ERROR
[19088.709625] EDAC skx MC1: CPU 0: Machine Check Event: 0 Bank 1: 94000000000009f
[19088.709626] EDAC skx MC1: TSC d96640f25768
[19088.709627] EDAC skx MC1: ADDR 2ba6753c0
[19088.709628] EDAC skx MC1: MISC 0
[19088.709630] EDAC skx MC1: PROCESSOR 0:50656 TIME 1565779301 SOCKET 0 APIC 0
[19088.709634] EDAC MC1: 0 CE memory read error on CPU SrcID#0 MC#1 Chan#2 DIMM#0 (channel:2 slot:0 pag
ain:32 syndrome:0x0 - err code:0000:009f socket:0 imc:1 rank:1 bg:1 ba:3 row:10df col:238)
[root@localhost mem uaccess]#
```

## **Linux Memory RAS Status**

- **◆** UE (Uncorrected Error)
- ✓ SRAR/SRAO MCA recovery Done (v3.14)
- ✓ Address Range/Partial Mirror v4.6+
- ✓ UCNA memory error isolate v5.6
- ✓ Downgrade Patrol Scrub UCE to CE v5.10
- ✓ Recovery for MCE when kernel copy from user v5.10
- ✓ 1GB Hugepage Recovery ??
- ✓ Enhancement/Bug fix
- Speculation to approach UCE page
- SRAO overflow handling
- "Unknown Source MCACOD"
- **◆** CE (Corrected Error)
- ✓ Memory Failure Prediction/Analysis user space & kernel support(EDAC)

# Memory RAS 在腾讯云的应用实践



- 腾讯云星星海首款自研四路服务器
- 基于第三代英特尔® 至强® 可扩展处理器
- 使用第二代英特尔® 傲腾™ 持久内存

## 背景

• 腾讯云英特尔® 至强® 可扩展平台服务器硬件故障导致的宕机中, 内存故障占比很高



### 原因分析

#### 内存故障多的原因

- 业界难题: DRAM内存颗粒上的Cell容易受环境因素及电气特性影响发生故障
- 内存故障发生后,目前业界采用的解决方案是在CPU的内存控制器上增加ECC算法来进行内存纠错
- ECC算法可以纠正的错误称为CE错误,无法纠正的错误称为UC错误

在英特尔® 至强® 可扩展平台上,业界用于提高内存可靠性的技术有:

- SDDC+1
- ADDDC+1
- Memory Mirroring

• SDDC+1





- 1. Normal Memory Write/Read
- 2. Example: Device D0 hard failure.
  - 1. Corrected Error Count would reach threshold quickly.
  - BIOS/SMM detects the failed DRAM Device DO. Triggers Device Tagging.

#### After Device Tagging

- 1. Memory Writer operation: Unchanged (Normal).
- 2. Memory read operation:
  - 1. D0 device data is replaced with that of Parity Device.
  - 2. iMC does normal error Checking.
  - 3. Intel Xeon Scable Processor Family: Upon detecting error, logs error and signal MCE.

优点:由CPU硬件及UEFI固件直接完成,无须OS软件干涉,集成简单

缺点: 牺牲了纠错能力,在做了device tagging后容易造成后续UC错误增多,引起CPU IERR

ADDDC+1





- Normal Memory Write/Read with Spare Device as D0.
- 2. Example: Device D1 hard failure (second device).
  - Corrected Error Count would reach threshold quickly.
  - 2. BIOS/SMM detects the failed DRAM Device D1. Triggers Device Tagging.

#### After DDDC Device Sparing

- Memory Write operation: Unchanged. Still using spare device.
- 2. Memory read operation:
  - D1 device data is replaced with that of Parity Device.
  - 2. iMC does normal error checking.
  - Upon detecting error, logs error and corrects SBE. In case of MBE, logs error and signal MCE.

#### 优点

- 1. 由CPU硬件及UEFI固件直接完成,无须OS软件干涉,集成简单
- 2. 可以同时覆盖两个Rank上的任意两个故障颗粒

#### 缺点

- 1. Lockstep模式启动后对系统性能有一定影响
- 2. 在触发了device sparing后,后续进一步发生的错误容易造成后续UC错误增多,引起CPU IERR

Memory Mirroring



### 优点

- 1. 作用范围广,容错能力突出
- 2. 由CPU硬件及UEFI固件直接完成,无须OS软件干涉,集成简单

### 缺点

增加了服务器内存的成本

### MCA Recovery

- 核心概念:
- 1. UC错误不直接触发OS的硬件宕机流程,把决定权交给OS
- 2. 将内存UC错误根据触发场景进一步细分为SRAR、SRAO、UCNA等概念
- 3. OS根据不同的错误类型以及出现UC错误的内存页面的使用情况,采取不同的恢复策略

### MCA Recovery

#### • SRAR:



### MCA Recovery

#### • SRAO:



### 硬件及底层固件层面

- 底层固件和BIOS支持不完善
- 硬件平台设计的缺陷

### 软件层面

- 缺乏实用的自动化注错工具
- SRAO带了OVERFLOW、UCNA错误忽略不处理导致演变成fatal UCE
- 对1G大页隔离支持不完善
- · 错误传递到VM, 有些情况下会给客户带来困扰

• SRAO可能造成MCE嵌套引起服务器挂死

### 解决方案

- 1. SRAO降级为CE,通过CMCI中断上报给OS
- 2. OS在CMCI中断处理程序里判别降级的情况,实现页面正确隔离

```
[3356947.608435] [SRAO-downgrade] UE error downgrade to CE!!! mce->addr=0x5e5cc59400 [3356947.608458] mce: [Hardware Error]: Machine check events logged [3356947.608627] MCE 0x5e5cc59: Killing mca_recovery_sr:388676 due to hardware memory corruption [3356947.608660] MCE 0x5e5cc59: dirty LRU page recovery: Recovered [3356947.609667] EDAC skx MC2: HANDLING MCE MEMORY ERROR [3356947.609669] EDAC skx MC2: CPU 20: Machine Check Event: 0 Bank 13: 8c000040001000c0 [3356947.609671] EDAC skx MC2: TSC 0 [3356947.609672] EDAC skx MC2: ADDR 5e5cc59400 [3356947.609674] EDAC skx MC2: MISC 900000140014086 [3356947.609675] EDAC skx MC2: PROCESSOR 0:50654 TIME 1602830621 SOCKET 1 APIC 40 [3356947.609683] EDAC MC2: 1 CE memory scrubbing error on CPU_SrcID#1_MC#0_Chan#0_DIMM#0 (channel
```

• 3万次SRAR自动注错测试过程中会概率性发生服务器宕机

```
[ 4338.652615] mce: [Hardware Error]: CPU 41: Machine Check Exception: 7 Bank 1: b980000000100134 [ 4338.652616] mce: [Hardware Error]: Machine check events logged [ 4338.652685] mce: [Hardware Error]: RIP 10:<ffffffff81334139> {copy_user_enhanced_fast_string+0x9/0x20} [ 4338.652730] mce: [Hardware Error]: TSC a2f140cc140 MISC 86 [ 4338.652757] mce: [Hardware Error]: PROCESSOR 0:50654 TIME 1548405546 SOCKET 0 APIC 3 microcode 2000043 [ 4338.652795] mce: [Hardware Error]: Run the above through 'mcelog --ascii' [ 4339.182285] mce: [Hardware Error]: CPU 1: Machine Check Exception: 5 Bank 1: b980000000100134 [ 4339.182319] mce: [Hardware Error]: RIP !INEXACT! 10:<ffffffff816b3555> {intel_idle+0xd5/0x15a} [ 4339.182360] mce: [Hardware Error]: TSC a2f140cc13a MISC 86 [ 4339.182386] mce: [Hardware Error]: PROCESSOR 0:50654 TIME 1548405546 SOCKET 0 APIC 2 microcode 2000043 [ 4339.182423] mce: [Hardware Error]: Run the above through 'mcelog --ascii' [ 4339.185054] mce: [Hardware Error]: Machine check: Action required: unknown MCACOD [ 4339.185084] Kernel panic - not syncing: Fatal machine check
```

• 3万次SRAR自动注错测试过程中会概率性发生服务器宕机

#### 问题原因

CPU缓存预取后导致底层硬件行为异常

[exception RIP: copy user enhanced fast string+9]

```
RAX: 00000000000000000
                               RBX: ffff885f7272fdd8 RCX: ffffffffffff99
    RDX: 0000000000001000 RSI: ffff882f594600f7 RDI: 00000000f59d60ff
    RBP: ffff885f7272fd58 R8: 00000000000000 R9: ffffea00bd6517dc
    R10: ffff885f7272fd28 R11: 000000000000000 R12: 000000000001000
    R13: 00000000000e0000 R14: 00000000000000 R15: ffffea00bd6517c0
    ORIG RAX: fffffffffffffff CS: 0010 SS: 0018
    <MCE exception stack> ---
    [ffff885f7272fd28] copy user enhanced fast string at ffffffff81334139
crash> dis copy user enhanced fast string
0xffffffff81334130 <copy user enhanced fast string>: stac
Oxfffffffff81334133 <copy user enhanced fast string+3>: and %edx,%edx
0xffffffff81334135 <copy user enhanced fast string+5>: je 0xffffffff8133413b <copy user enhanced fast string+11>
0xffffffff81334137 <copy user enhanced fast string+7>: mov %edx,%ecx
0xffffffff81334139 <copy user enhanced fast string+9>: rep movsb %ds:(%rsi),%es:(%rdi)
Oxffffffff8133413b <copy user enhanced fast string+11>: xor %eax,%eax
Oxffffffff8133413d <copy_user_enhanced_fast_string+13>: clac
                                                                这个指令触发了MCE异常
xfffffffff81334140 <copy user enhanced fast string+16>: retq
```

RIP: ffffffff81334139 RSP: ffff885f7272fd28 RFLAGS: 00050206

注错测试程序注入错误的地址是:

inject UC not fatal error to addr = 0x2f59460000

R15是另一个应用程序访问的page结构体地址,该程序访问一个页面的长度(0x1000)

PAGE PHYSICAL MAPPING ffffea00bd6517c0 2f5945f000 ffff882f60b72a70

RCX: 0xfffffffffff09 = -247

RSI: 0xffff882f594600f7 == 物理地址 0x2f594600f7

注意到:0x2f5945f000 + 0x1000 + <mark>247</mark> = 0x2f594600f7

#### 解决方案

对于hwpoisoned隔离的页面,通过设置页表项PCD位,禁止该页面高速缓存

### 自动化注错及检测工具

• 可实现多种MCA Recovery相关功能的自动注错和流程是否触发正常的检测

```
[2019-3-8 09:23:08] inject UC not fatal error to addr = 0x5ec211b400
[29988 / 29998] SRAR Recovery from addr=0x5ec211b000: allocated new page at virt addr=0x7f0e8e9a3000,physical addr 0x5ece4d8000 recovery_times=29988,inject_times=29998,last_recovery_times=29987
[2019-3-8 09:23:11] inject UC not fatal error to addr = 0x5ece4d8400
[29989 / 29999] SRAR Recovery from addr=0x5ece4d8000: allocated new page at virt addr=0x7f0e8e9a3000,physical addr 0x5ec1492000 recovery_times=29989,inject_times=29999,last_recovery_times=29988
[2019-3-8 09:23:14] inject UC not fatal error to addr = 0x5ec1492400
[29990 / 30000] SRAR Recovery from addr=0x5ec1492000: allocated new page at virt addr=0x7f0e8e9a3000,physical addr 0x5ec5046000 [29990 / 30000] SRAR Recovery from addr=0x5ec1492000: allocated new page at virt addr=0x7f0e8e9a3000,physical addr 0x5ec5046000 [Successfully recovery 29990 times],inject 30000 srar errors in total.
```

```
[2019-3-11 18:41:07] inject UC not fatal error to addr = 0x5dd61fc400
[18 / 18] SRAO Recovery from addr=0x5dd61fc000: allocated new page at virt addr=0x7f6183df3000,physical addr 0x5e91176000 srao_recovery_times=18,inject_times=18,last_recovery_times=17
[2019-3-11 19:32:57] inject UC not fatal error to addr = 0x5e91176400
[19 / 19] SRAO Recovery from addr=0x5e91176000: allocated new page at virt addr=0x7f6183df3000,physical addr 0x5de4c0a000 srao_recovery_times=19,inject_times=19,last_recovery_times=18
[2019-3-11 19:33:45] inject UC not fatal error to addr = 0x5de4c0a400
[20 / 20] SRAO Recovery from addr=0x5de4c0a000: allocated new page at virt addr=0x7f6183df3000,physical addr 0x5f59c70000 Successfully recovery 20 times from SRAO inject 20 errors in total.

Restore /proc/sys/vm/memory_failure_early_kill to 0
```

```
[2019-3-11 20:04:23] inject 1 CE error to paddr = 0x2ecd9e3000 begin...
[2019-3-11 20:04:23] inject 1 CE error to paddr = 0x2ecd9e3000 finish.
[2019-3-11 20:04:24] detect soft offline recovery for 5 times,old addr=0x2ecd9e3000,new addr=0x2ecd928000
[2019-3-11 20:04:24] Successfully soft offline recovery for 5 times
```

## 腾讯云现网运维举措



### 快速热迁移



#### 结合热迁移技术快速隐患规避

- 1. 监控宿主机硬件事件, 识别硬件异常信息
- 2. 发起VM调度, 热迁移主动规避硬件隐患, ms级切换, 不影响VM业务

### 改善数据

- 目前腾讯云英特尔®至强®可扩展平台上,内存UCE故障约有50%可以通过MCA Recovery来予以容错避免宕机
- 腾讯云宕机故障中,内存故障的占比从50%以上下降至23%
- 腾讯云服务器月度硬件故障宕机率下降至原来的一半以下

## MCA Recovery失效的主要因素

- CPU内部出现了PCC(Processor Context Corruption),导致fatal UCE
- CPU的Cbo模块 Tor Table 发生 3-strike timeout , 触发了CPU IERR
- 故障发生在内核自身使用的内存上或不可恢复的内核函数路径上

#### 下一步计划

- 深入挖掘上述失效的因素,进一步提高MCA Recovery生效率
- · 内存CE错误的细化解析及分析

## Reference

• <a href="https://www.intel.com/content/www/us/en/software/reduce-server-crash-rate-tencent-paper.html">https://www.intel.com/content/www/us/en/software/reduce-server-crash-rate-tencent-paper.html</a>