# TOPICS IN ALGEBRAIC LOGIC AND DUALITY THEORY Lecture 1

Rodrigo N. Almeida, Simon Lemal May 29, 2025

# Plan for the Day

- · Announcements.
- · Recap of Heyting algebras (today's focus).
- · Free algebras.
- · Deductive and Craig interpolation.
- · Amalgamation and Super-Amalgamation.

## **Announcements**

1. On Wednesday there will be the first seminar.

#### **Announcements**

- 1. On Wednesday there will be the first seminar.
- 2. A seminar instruction sheet with suggested topics and reading has been posted.



## Recap

We start with intuitionistic and modal logic:

#### Definition

Let  $\overline{p} = \{p_1, ..., p_n\}$  be some finite set of propositional letters, and M some language (either modal or intuitionistic). We denote by  $\mathcal{L}_M(\overline{p})$  the set of M formulas over  $\overline{p}$ .

We start with intuitionistic and modal logic:

#### Definition

Let  $\overline{p}=\{p_1,...,p_n\}$  be some finite set of propositional letters, and M some language (either modal or intuitionistic). We denote by  $\mathcal{L}_M(\overline{p})$  the set of M formulas over  $\overline{p}$ .

#### Definition

Let L be a set of formulas in M. We say that L is a logic if:

- 1. Whenever M is the intuitionistic language,  $L \supseteq \mathsf{IPC}$  and L is closed under uniform substitution and Modus Ponens;
- 2. Whenever M is the modal language,  $L \supseteq K$  and L is closed under uniform substitution, necessitation and Modus Ponens.

It will be convenient for future purposes to consider relations between formulas:

#### Definition

Let M be a language, and L be a logic, and let  $\Delta$  be a set of formulas. We say that a sequence  $(\phi_0,...,\phi_n)$  is an L-derivation with hypotheses in  $\Delta$  if:

- 1. Whenever M is intuitionistic, either  $\phi_i$  is a substitution instance of an axiom of L, or  $\phi_i \in \Delta$ , or  $\phi_i$  is obtained from  $\phi_j, \phi_k$  for j, k < i by applying Modus Ponens;
- 2. Whenever M is modal logic, the above with the additional possibility that  $\phi_i$  is obtained from  $\phi_k$  for k < i by applying necessitation.

Given  $\Delta \cup \{\phi\}$  a set of M-formulas we write:

$$\Delta \vdash_L \phi$$

to mean that there is some L-derivation of  $\phi$  with hypotheses in  $\Delta$ .

## Derivations and deduction-detachment

| E | v | 2 | n   | ٠, | 2 | i. | _ |
|---|---|---|-----|----|---|----|---|
| - | Л | u | • • | ч  | 9 | ٠  | · |

In modal logic  $\mathbf{K}$  we have:

$$\phi \vdash_{\mathbf{K}} \Box \phi$$
.

However,  $\not\vdash_{\mathbf{K}} p \to \Box p$ . So there are L-derivations which are not reducible to theorems!

## Derivations and deduction-detachment

## Example

In modal logic  ${f K}$  we have:

$$\phi \vdash_{\mathbf{K}} \Box \phi$$
.

However,  $\not\vdash_{\mathbf{K}} p \to \Box p$ . So there are L-derivations which are not reducible to theorems!

## Example

In IPC we have for each pair of formulas  $\phi, \psi$ :

$$\phi \vdash_{\mathsf{IPC}} \psi \iff_{\mathsf{IPC}} \phi \to \psi.$$

## Derivations and deduction-detachment

## Example

In modal logic  ${f K}$  we have:

$$\phi \vdash_{\mathbf{K}} \Box \phi$$
.

However,  $\not\vdash_{\mathbf{K}} p \to \Box p$ . So there are L-derivations which are not reducible to theorems!

## Example

In IPC we have for each pair of formulas  $\phi, \psi$ :

$$\phi \vdash_{\mathsf{IPC}} \psi \iff_{\mathsf{IPC}} \phi \to \psi.$$

## Example

In modal logic S4 we have:

$$\phi \vdash_{\mathbf{S4}} \psi \iff \vdash_{\mathbf{S4}} \Box \phi \to \psi$$

# Algebras

Given M a language, we will focus on the kinds of algebras which will be useful for the system at hand:

- 1. If *M* is intuitionistic logic, we will focus on Heyting algebras and its subvarieties (like Boolean algebras);
- 2. If M is modal logic, we will focus on modal algebras (and its subvarieties);

Given M a language, we will focus on the kinds of algebras which will be useful for the system at hand:

- 1. If *M* is intuitionistic logic, we will focus on Heyting algebras and its subvarieties (like Boolean algebras);
- 2. If *M* is modal logic, we will focus on modal algebras (and its subvarieties);

Given a logic L we will denote by Alg(L) the algebras of L, and given a variety V, we denote by Log(V) the logic of V.

Given M a language, we will focus on the kinds of algebras which will be useful for the system at hand:

- 1. If *M* is intuitionistic logic, we will focus on Heyting algebras and its subvarieties (like Boolean algebras);
- 2. If *M* is modal logic, we will focus on modal algebras (and its subvarieties);

Given a logic L we will denote by Alg(L) the algebras of L, and given a variety V, we denote by Log(V) the logic of V.

Recall that an algebra A is called subdirectly irreducible if  $\mathsf{Con}(A)$  has a second least element; equivalently  $\Delta$  is completely meet irreducible. It is called *finitely subdirectly irreducible* if  $\Delta$  is meet irreducible.

Given M a language, we will focus on the kinds of algebras which will be useful for the system at hand:

- 1. If *M* is intuitionistic logic, we will focus on Heyting algebras and its subvarieties (like Boolean algebras);
- 2. If M is modal logic, we will focus on modal algebras (and its subvarieties);

Given a logic L we will denote by Alg(L) the algebras of L, and given a variety V, we denote by Log(V) the logic of V.

Recall that an algebra A is called subdirectly irreducible if  $\mathsf{Con}(A)$  has a second least element; equivalently  $\Delta$  is completely meet irreducible. It is called *finitely subdirectly irreducible* if  $\Delta$  is meet irreducible. For Heyting algebras these are the duals of strongly rooted and rooted Esakia spaces.

## Quotients

Given two (Heyting or modal) algebras A,B of the same type, and a surjective homomorphism  $f:A\to B$  (a 'quotient'), there is a way of representing this 'internally' in A: with *filters*. Importantly we recall a notion that was not heavily stressed in the lectures in MSL:

#### Definition

Let  $(A, \square)$  be a modal algebra. We say that a filter  $F \subseteq A$  is a modal filter if whenever  $a \in F$  then  $\square a \in F$ .

### Quotients

Given two (Heyting or modal) algebras A,B of the same type, and a surjective homomorphism  $f:A\to B$  (a 'quotient'), there is a way of representing this 'internally' in A: with *filters*. Importantly we recall a notion that was not heavily stressed in the lectures in MSL:

#### Definition

Let  $(A, \square)$  be a modal algebra. We say that a filter  $F \subseteq A$  is a modal filter if whenever  $a \in F$  then  $\square a \in F$ .

#### Theorem

There are 1-1 correspondences between the following:

- 1. Filters on a Heyting algebra A and quotients  $f: A \rightarrow B$ ;
- 2. Modal filters on a modal algebra A and quotients  $f: A \rightarrow B$ .

## **Quotients and filters**

Given a quotient  $f: A \rightarrow B$  we can form a filter

$$F_f := f^{-1}[1],$$

which, if A,B are modal algebras and f is a modal homomorphism, will be a modal filter.

## **Quotients and filters**

Given a quotient  $f: A \rightarrow B$  we can form a filter

$$F_f := f^{-1}[1],$$

which, if A,B are modal algebras and f is a modal homomorphism, will be a modal filter.

Conversely, if  $F\subseteq A$  is a filter, we can define a quotient algebra A/F by the following equivalence:

$$a \sim_F b \iff a \leftrightarrow b \in F$$
.

You should check this gives a quotient in the appropriate cases.

# Filters and upsets

When working with duality, filters admit a nice representation:

#### Theorem

There is a dual correspondence between the following:

- 1. Filters on a Heyting algebra H, and closed upsets in  $X_H$ ;
- 2. Modal filters on a modal algebra A, and closed generated subframes of  $(X_A,R)$ .

## Intermezzo: Distributive lattices

Distributive lattices do not follow the previous pattern. Their quotients are not given by filters:



Figure 1: Example of distributive lattice quotient that is not a filter

We will need special syntactic algebras. These are the Lindenbaum-Tarski algebras, or algebras of formulas.

We will need special syntactic algebras. These are the Lindenbaum-Tarski algebras, or algebras of formulas.

#### Definition

Let X be a set of propositional letters and L be a logic. We denote by  $\mathcal{F}_L(X)$  the algebra of formulas on X modulo L provability.

In other words, elements of this algebra are equivalence classes of formulas  $[\phi]_L$ , where:

$$\phi \sim_L \psi \iff \phi \leftrightarrow \psi \in L.$$

We will need special syntactic algebras. These are the Lindenbaum-Tarski algebras, or algebras of formulas.

#### Definition

Let X be a set of propositional letters and L be a logic. We denote by  $\mathcal{F}_L(X)$  the algebra of formulas on X modulo L provability.

In other words, elements of this algebra are equivalence classes of formulas  $[\phi]_L$ , where:

$$\phi \sim_L \psi \iff \phi \leftrightarrow \psi \in L.$$

These algebras enjoy a special categorical property:

#### Lemma

Let L be a logic, and  $A \in \mathsf{Alg}(L)$  and  $v: X \to A$  be any map. Then there is a unique homomorphism  $\overline{v}: \mathcal{F}_L(X) \to A$  such that  $\overline{v}(x) = v(x)$  for each  $x \in X$ .

Free algebras have the advantage that they allow us to reason syntactically. Every algebra can be thought of as a quotient of a free algebra:

#### Lemma

Let L be a logic, and  $A \in Alg(L)$ . Then there is some X and a surjective homomorphism  $\mathcal{F}_L(X) \to A$ .

### Proof.

Let X = A; then use the previous lemma.

# Free algebras and completeness

The logical import of free algebras is that they allow us to reason about logic from the point of view of a single algebraic model:

#### Lemma

Let L be a logic in a language M, and  $\phi \in \mathcal{L}_M(\overline{p})$ . Then we have that  $\phi \in L$  if and only if  $[\phi]_L = 1$  in  $\mathcal{F}_L(\overline{p})$ .

## Free algebras and completeness

The logical import of free algebras is that they allow us to reason about logic from the point of view of a single algebraic model:

#### Lemma

Let L be a logic in a language M, and  $\phi \in \mathcal{L}_M(\overline{p})$ . Then we have that  $\phi \in L$  if and only if  $[\phi]_L = 1$  in  $\mathcal{F}_L(\overline{p})$ .

Consequently, we have:

$$[\phi]_L \leqslant [\psi]_L \iff \phi \to \psi \in L.$$

## **Interpolation Properties**

Now let us consider some Interpolation Properties:

#### Definition

Let M be a language, and L be a logic. We say that L has the:

1. Craig Interpolation Property if and only if for each pair of formulas  $\phi \in \mathcal{L}_M(\overline{p}, \overline{r})$  and  $\psi \in \mathcal{L}_M(\overline{q}, \overline{r})$ , if  $\vdash_L \phi \to \psi$  then there is a formula  $\chi \in \mathcal{L}_M(\overline{r})$  such that:

$$\vdash_L \phi \to \chi \text{ and } \vdash_L \chi \to \psi.$$

2. Deductive interpolation property if and only if for each pair of formulas  $\phi \in \mathcal{L}_M(\overline{p}, \overline{r})$  and  $\psi \in \mathcal{L}_M(\overline{q}, \overline{r})$ , if  $\phi \vdash_L \psi$  then there is a formula  $\chi \in \mathcal{L}_M(\overline{r})$  such that:

$$\phi \vdash_L \chi$$
 and  $\chi \vdash_L \psi$ .

# Classical Interpolation

#### Theorem

The logic CPC has Craig (deductive) interpolation.

#### Proof.

Assume that  $\vdash_{\mathsf{CPC}} \phi \to \psi$ . Consider:

$$\chi := \phi(\top, \overline{r}) \vee \phi(\bot, \overline{r}).$$

Then by induction on the structure of formulas, using negation normal form, we can show that  $\phi \leqslant \chi$ ; and by uniform substitution, since  $\vdash \phi \to \psi$ , then  $\vdash \chi \to \psi$ . This shows the result.

# Classical Interpolation

#### Theorem

The logic CPC has Craig (deductive) interpolation.

#### Proof.

Assume that  $\vdash_{\mathsf{CPC}} \phi \to \psi$ . Consider:

$$\chi := \phi(\top, \overline{r}) \vee \phi(\bot, \overline{r}).$$

Then by induction on the structure of formulas, using negation normal form, we can show that  $\phi \leqslant \chi$ ; and by uniform substitution, since  $\vdash \phi \rightarrow \psi$ , then  $\vdash \chi \rightarrow \psi$ . This shows the result.

This proof proves both Craig and deductive interpolation; in fact it shows something much stronger which we will see again later.

Amalgamation

# Amalgamation

#### Definition

Let  $\mathcal K$  be a class of algebras. We say  $\mathcal K$  has the amalgamation property if whenever  $(A,B_1,B_2,f_1,f_2)$  is a tuple of algebras in  $\mathcal K$ , where  $f_1,f_2$  are injective (an amalgam), there is some algebra  $C\in\mathcal K$  and a pair of injective morphisms making the diagram commute.



Figure 2: Amalgamation Diagram

# Amalgamation for finite Boolean algebras

Let us give a simple example of this, using duality.

#### Theorem

The class of finite Boolean algebras has the amalgamation property.

#### Proof.

Let  $(A, B_1, B_2, f_1, f_2)$  be an amalgam of finite Boolean algebras. By duality, we obtain a tuple  $(X, Y_1, Y_2, g_1, g_2)$  where  $g_1$  and  $g_2$  are surjective functions.

# Amalgamation for finite Boolean algebras

Let us give a simple example of this, using duality.

#### Theorem

The class of finite Boolean algebras has the amalgamation property.

#### Proof.

Let  $(A,B_1,B_2,f_1,f_2)$  be an amalgam of finite Boolean algebras. By duality, we obtain a tuple  $(X,Y_1,Y_2,g_1,g_2)$  where  $g_1$  and  $g_2$  are surjective functions. Consider:

$$Eq(g_1, g_2) = \{(x, y) \in X_1 \times X_2 : g_1(x) = g_2(y)\};$$

this is a set, and its projection on each coordinate is surjective: if  $x \in X_1$ , then  $g_1(x) = g_2(y)$  by surjectivity of  $g_2$ , so  $(x,y) \in Eq(g_1,g_2)$ ; by duality, this ensures amalgamation.

## Super-Amalgamation

This property can be made stronger:

#### Definition

A class  $\mathcal K$  of algebras has the super-amalgamation property if whenever  $(A,B_1,B_2,f_1,f_2)$  is an amalgam, there is an algebra C and a pair of injective morphisms  $p_1,p_2$  witnessing the amalgamation property, and satisfying the following additional property: for each  $a\in A_1$  and  $b\in A_2$  whenever  $p_1(a)\leqslant p_2(b)$  then there is some  $c\in A_0$  such that  $a\leqslant f_1(c)$  and  $f_2(c)\leqslant b$ .

Interpolation and Amalgamation

# Craig interpolation and super-amalgamation

We will now relate the properties we have just introduced. First we note that given  $\overline{p}, \overline{q}, \overline{r}$  three sets of propositional variables, we have that the following diagram always commutes:



Figure 3: Amalgamation of free algebras

Then we have:

### Theorem

The diagram above is a super-amalgamation if and only if L has the Craig interpolation property.

Fix now a language M.

#### Theorem

The following are equivalent for L a logic:

- 1. L has the deductive interpolation property;
- 2.  $\mathbf{V}_L$  has the amalgamation property.

### Proof.

(2) implies (1): for this we will need to use a lemma:

### Lemma

Assume that  $\phi(\overline{p}, \overline{r}) \vdash_L \psi(\overline{q}, \overline{r})$ , but there is no  $\chi(\overline{r})$  which interpolates them deductively. Then there is a pair of filters  $F_1 \subseteq \mathcal{F}_L(\overline{p}, \overline{r})$  and  $F_2 \subseteq \mathcal{F}_L(\overline{q}, \overline{r})$ , such that  $F_0 = F_1 \cap \mathcal{F}_L(\overline{r}) = F_2 \cap \mathcal{F}_L(\overline{r})$ ,  $[\phi]_L \in F_1$  and  $[\psi]_L \notin F_2$ .

Assume then that  $\phi(\overline{p},\overline{r}) \vdash_L \psi(\overline{q},\overline{r})$  has no interpolant. By the Lemma, let  $F_0,F_1,F_2$  be given.

### Proof.

Now consider the following diagram:



Figure 4:

The conditions on the filters  $F_1,F_2$  ensure that  $i_1,i_2$  are injective. Hence there is an algebra D, and maps  $h_1,h_2$ . Now consider the valuation  $v:\overline{p,q,r}\to D$  given by the diagram, i.e. $v(\overline{p})=h_1(\overline{p}),\ v(\overline{q})=h_2(\overline{q})$  and  $v(\overline{r})=h_1(\overline{r})=h_2(\overline{r})$ . Then we have that for each formula  $\phi(\overline{p},\overline{r}),v(\phi)=h_1(\phi)$ , and similar for  $h_2$ .

21

### Proof.

Now consider the following diagram:



Figure 4:

The conditions on the filters  $F_1, F_2$  ensure that  $i_1, i_2$  are injective. Hence

there is an algebra D, and maps  $h_1,h_2$ . Now consider the valuation  $v:\overline{p,q,r}\to D$  given by the diagram, i.e.  $v(\overline{p})=h_1(\overline{p}),\ v(\overline{q})=h_2(\overline{q})$  and  $v(\overline{r})=h_1(\overline{r})=h_2(\overline{r})$ . Then we have that for each formula  $\phi(\overline{p},\overline{r}),\ v(\phi)=h_1(\phi)$ , and similar for  $h_2$ . Now since  $\phi\in F_1,\ v(\phi)=1$ ; hence by hypothesis,  $v(\psi)=1$ ; so  $h_2(\psi)=1$ , so by assumption,  $\psi\in F_2$  — a contradiction.

### Proof.

(1) implies (2): Now assume that L has deductive interpolation. Let  $(A, B_1, B_2, f_1, f_2)$  be an amalgam. Fix some presentation of these as quotients of free algebras.



Figure 5: Interpolation diagram

In particular, fix  $F_1$  the filter producing  $B_1$ ,  $F_2$  the filter producing  $B_2$ , and  $F_0$  the filter producing A.

### Proof.

C is obtained from  $G = \operatorname{Fil}(F_1 \cup F_2)$  and  $k_i : B_i \to C$  is obtained by sending  $b \in B_i$  to itself in  $\mathcal{F}_L(B_1 \cup B_2)$ , and composing that with the quotient to C; this is well-defined because  $F_1 \subseteq G$ .

#### Proof.

C is obtained from  $G = \operatorname{Fil}(F_1 \cup F_2)$  and  $k_i : B_i \to C$  is obtained by sending  $b \in B_i$  to itself in  $\mathcal{F}_L(B_1 \cup B_2)$ , and composing that with the quotient to C; this is well-defined because  $F_1 \subseteq G$ .

The diagram commutes – this is a matter of diagram chasing. The key is to show that  $k_1$  and  $k_2$  are injective.

#### Proof.

C is obtained from  $G = \operatorname{Fil}(F_1 \cup F_2)$  and  $k_i : B_i \to C$  is obtained by sending  $b \in B_i$  to itself in  $\mathcal{F}_L(B_1 \cup B_2)$ , and composing that with the quotient to C; this is well-defined because  $F_1 \subseteq G$ .

The diagram commutes – this is a matter of diagram chasing. The key is to show that  $k_1$  and  $k_2$  are injective.

For that assume that  $k_1(b)=1$ ; we need to show that b=1. The former means that  $b\in G$ , so there is some  $c\in F_1$  and  $d\in F_2$  such that  $c\wedge d\leqslant b$ . Hence  $\vdash_L d\to (c\to b)$ , so it follows that  $d\vdash_L c\to b$ ; then by deductive interpolation there is some k in the language of A such that  $d\vdash_L k$  and  $k\vdash_L c\to b$ . Since  $d\in F_2$ , then  $k\in F_2$ ; since the inclusion of A into  $B_2$  is injective, then  $k\in F_0$ , so [k]=1 in  $B_1$ . Thus  $[c\to b]=1$  in  $B_1$ , and since  $c\in F_1$ , then  $b\in F_1$  as well.



# Equivalence of Craig Interpolation and Superamalgamation

### Theorem

The following are equivalent for a logic L:

- 1. L has the Craig interpolation property.
- 2. Alg(L) has the superamalgamation property.

This equivalence can be proven using a similar (but simpler) strategy.

# Equivalences in superintuitionistic logics

In the case of intuitionistic logic we can obtain a stronger result:

#### Theorem

The following are equivalent for a superintuitionistic logic L:

- 1. L has the Craig interpolation property;
- 2. L has amalgamation;
- 3. Any triple  $(H, H_0, H_1)$  where  $H, H_0, H_1$  are finitely subdirectly irreducible is amalgamable in L.

To prove the equivalence with the latter, we can use the following lemma:

#### Lemma

Let  $A_0 \leqslant A_1, A_2$  be M-algebras. Suppose that  $a \in A_1$  and  $b \in A_2$  but there exists no  $c \in A_0$  such that both  $a \leqslant c$  and  $c \leqslant b$ . Then there exist prime filters  $F_1 \subseteq A_1$  and  $F_2 \subseteq A_2$  such that  $a \in F_1$ ,  $b \notin F_2$  and  $F_1 \cap A_0 = F_2 \cap A_0$ .

Examples and Counterexamples

We will show:

#### Theorem

IPC has the Craig interpolation property.

### Proof.

By Maksimova's characterization, it suffices to show amalgamation. We use duality.

We will show:

### Theorem

IPC has the Craig interpolation property.

### Proof.

By Maksimova's characterization, it suffices to show amalgamation. We use duality.

Let  $(X,Y_0,Y_1,g_1,g_2)$  be a diagram of Esakia spaces where  $g_1,g_2$  are p-morphisms. Consider:

$$Eq(g_1, g_2) = \{(x, y) \in Y_1 \times Y_2 : g_1(x) = g_2(y)\},\$$

understood as a poset with the coordinatewise order.

We will show:

#### Theorem

IPC has the Craig interpolation property.

#### Proof.

By Maksimova's characterization, it suffices to show amalgamation. We use duality.

Let  $(X,Y_0,Y_1,g_1,g_2)$  be a diagram of Esakia spaces where  $g_1,g_2$  are p-morphisms. Consider:

$$Eq(g_1,g_2) = \{(x,y) \in Y_1 \times Y_2 : g_1(x) = g_2(y)\},\$$

understood as a poset with the coordinatewise order. Note that  $\pi_{Y_1}: Eq(g_1,g_2) \to Y_1$  is a p-morphism: if  $\pi_{Y_1}(x,y) \leqslant z$ , then  $g_1(x) \leqslant g_1(z)$ ; then  $g_2(y) \leqslant g_1(z)$ , so since  $g_2$  is a p-morphism, there is some  $y \leqslant w$  such that  $g_1(z) = g_2(w)$ . Then  $(x,y) \leqslant (z,w)$ , and  $\pi_{Y_1}(z,w) = z$ .

We will show:

#### Theorem

IPC has the Craig interpolation property.

#### Proof.

By Maksimova's characterization, it suffices to show amalgamation. We use duality.

Let  $(X,Y_0,Y_1,g_1,g_2)$  be a diagram of Esakia spaces where  $g_1,g_2$  are p-morphisms. Consider:

$$Eq(g_1, g_2) = \{(x, y) \in Y_1 \times Y_2 : g_1(x) = g_2(y)\},\$$

understood as a poset with the coordinatewise order. Note that  $\pi_{Y_1}: Eq(g_1,g_2) \to Y_1$  is a p-morphism: if  $\pi_{Y_1}(x,y) \leqslant z$ , then  $g_1(x) \leqslant g_1(z)$ ; then  $g_2(y) \leqslant g_1(z)$ , so since  $g_2$  is a p-morphism, there is some  $y \leqslant w$  such that  $g_1(z) = g_2(w)$ . Then  $(x,y) \leqslant (z,w)$ , and  $\pi_{Y_1}(z,w) = z$ . Moreover, note that with  $\pi_{Y_1}$  and  $\pi_{Y_2}$ , the diagram commutes.

# Craig Interpolation for IPC (cont.d)

#### Proof.

Now consider  $\operatorname{Up}(Eq(g_1,g_2))$ ; this is a Heyting algebra. Moreover, because  $\pi_{Y_1}$  is surjective a p-morphism,  $\pi_{Y_1}^{-1}:\operatorname{ClopUp}(Y_1) \to \operatorname{Up}(Eq(g_1,g_2))$  is an injective Heyting algebra homomorphism.

# Craig Interpolation for IPC (cont.d)

### Proof.

Now consider  $\operatorname{Up}(Eq(g_1,g_2))$ ; this is a Heyting algebra. Moreover, because  $\pi_{Y_1}$  is surjective a p-morphism,  $\pi_{Y_1}^{-1}:\operatorname{ClopUp}(Y_1)\to\operatorname{Up}(Eq(g_1,g_2))$  is an injective Heyting algebra homomorphism.

Moreover the diagram commutes. So this provides an amalgam as desired.

# Craig interpolation for other systems

The above proof works in a very similar way to prove Craig interpolation for  ${f K}.$ 

# Craig interpolation for other systems

The above proof works in a very similar way to prove Craig interpolation for  $\mathbf{K}$ .

For extensions, it often needs tweaking: we will see this in the seminar on Wednesday.

### Failures of Interpolation

Let us give an example of failure of deductive interpolation for  ${\bf S4.3}$ , again using failure of amalgamation. Let  $\bullet$  denote irreflexive points and  $\circ$  denote reflexive points.



Let X be a two element cluster,  $\{E,O\}$ . Define p-morphisms  $g_i:Y_i\to X$  by sending all the evens to E and all the odds to O.

Let X be a two element cluster,  $\{E,O\}$ . Define p-morphisms  $g_i:Y_i\to X$  by sending all the evens to E and all the odds to O.

Suppose that Z amalgamates this diagram. Let  $p_i:Z\to Y_i$  be the maps. First note that if  $k\in Z$ , and  $p_i(k)$  is a natural number, then k is irreflexive.

Let X be a two element cluster,  $\{E,O\}$ . Define p-morphisms  $g_i:Y_i\to X$  by sending all the evens to E and all the odds to O.

Suppose that Z amalgamates this diagram. Let  $p_i:Z\to Y_i$  be the maps. First note that if  $k\in Z$ , and  $p_i(k)$  is a natural number, then k is irreflexive.

Now let  $p_1(k_0)=0$  and let  $k_2$  be minimal above  $k_0$  such that  $p_1(k_2)=2$ . By the p-morphism condition let  $p_1(k_1)=1$ , and successively  $p_1(k_1')=1$ ; note that by linearity, and order preservation, we must have  $k_0Rk_1Rk_1'Rk_2$ .

Let X be a two element cluster,  $\{E,O\}$ . Define p-morphisms  $g_i:Y_i\to X$  by sending all the evens to E and all the odds to O.

Suppose that Z amalgamates this diagram. Let  $p_i:Z\to Y_i$  be the maps. First note that if  $k\in Z$ , and  $p_i(k)$  is a natural number, then k is irreflexive.

Now let  $p_1(k_0)=0$  and let  $k_2$  be minimal above  $k_0$  such that  $p_1(k_2)=2$ . By the p-morphism condition let  $p_1(k_1)=1$ , and successively  $p_1(k_1')=1$ ; note that by linearity, and order preservation, we must have  $k_0Rk_1Rk_1'Rk_2$ .

Now since  $k_0$  and  $k_2$  map to evens, and  $k_1$  maps to an odd, by the diagram commuting, we must have that  $p_2(k_0) \neq p_2(k_2)$ , say  $p_2(k_0) = 2n$ . By the p-morphism condition there is some  $k_1Rz_1Rz_2$ , such that  $p_2(z_1) = 2n+1$  and  $p_2(z_2) = 2n+2$ . Thus  $p_1(z_2) \neq 0$ , and so by construction,  $k_2Rz$ . But then  $p_2(k_2)Rp_2(z_2)$ , which means by the arguments given that  $p_2(k_2) = 2n+2$ .

# Failure of Interpolation of S4.3 (cont.d)

Then we have that 
$$p_2(k_0)=2n$$
 and  $p_2(k_2)=2n+2$ . But we have that then  $p_2(k_1)=p_2(k_1')$ . By order preservation, then  $p_2(k_1)Rp_2(k_1')$ , which contradicts the fact that this point is irreflexive.

### Next time

· Beth's definability property.

### Next time

- · Beth's definability property.
- · Epimorphism surjectivity.

### Next time

- · Beth's definability property.
- Epimorphism surjectivity.
- · (?)

