Step-1

We have to explain $||ABx|| \le ||A|| ||B|| ||x||$ and also deduce that $||AB|| \le ||A|| ||B||$

We know that the norm of A is the number $\|A\|$ is $\|A\|^2 = \max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2}$ $\|A\|^2 = \max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2}$

From (1), we can write
$$||A||^2 \ge \frac{||Ax||^2}{||x||^2}, x \ne 0$$

$$||A|| \ge \frac{||Ax||}{||x||}, x \ne 0$$

Since norm is a non negative quantity, we get $\|A\| \ge \frac{\|Ax\|}{\|x\|}, x \ne 0$

In other words, $||Ax|| \le ||A|| ||x||$ $\hat{a} \in \hat{a} \in \hat{a} \in \hat{a}$ (2)

Step-2

Let *x* be any nonzero column vector.

Now

$$||ABx|| = ||A(Bx)||$$

$$\leq ||A|| ||Bx||$$

$$\leq ||A|| ||B|| ||x||$$
 (Since by (2))

Therefore, $||ABx|| \le ||A|| ||B|| ||x||$

Step-3

We have
$$||ABx|| \le ||A|| ||B|| ||x||$$

$$\Rightarrow \frac{\|ABx\|}{\|x\|} \le \|A\| \|B\|$$
 for every non zero column vector x

$$\Rightarrow \max_{x\neq 0} \frac{\left\| \left(AB \right) x \right\|}{\left\| x \right\|} \leq \left\| A \right\| \left\| B \right\|$$

$$\Rightarrow ||AB|| \le ||A|| ||B||$$
 (Since by (1))

Hence $||AB|| \le ||A|| ||B||$