

MACHINE LEARNING AVANZATO DA ZERO

ANTONIO DI CECCO - SCHOOL OF AI

Reti neurali introduzione

History

- Nearly everything we talk about today existed ~1990
- What changed?
 - More data
 - Faster computers (GPUs TPUs)
 - Some improvements:
 - o relu
 - o Drop-out
 - o adam
 - batch-normalization
 - residual networks

Logistic regression as neural net

Basic Architecture

h(x)=f(W1 * x+b1)

o(x)=g(w2 * h(x)+b2)

More layers

Nonlinear activation function

Supervised Neural Networks

- Non-linear models for classification and regression
- Work well for very large datasets
- Non-convex optimization
- Notoriously slow to train need for GPUs
- Use dot products etc require preprocessing, → similar to SVM or linear models, unlike trees
- MANY variants (Convolutional nets, Gated Recurrent neural networks, Long-Short-Term Memory, recursive neural networks, variational autoencoders, generative adverserial networks, deep reinforcement learning, ...)

Training Objective

$$egin{aligned} h(x) &= f(W_1x + b_1) \ o(x) &= g(W_2h(x) + b_2) = g(W_2f(W_1x + b_1) + b_2) \ &\min_{W_1,W_2,b_1,b_2} \sum_{i=1}^N l(y_i,o(x_i)) \ &= \min_{W_1,W_2,b_1,b_2} \sum_{i=1}^N l(y_i,g(W_2f(W_1x + b_1) + b_2) \end{aligned}$$

- Squared loss for regression.
- Cross-entropy loss for classification

Backpropagation

$$\text{Need } \frac{\partial l(y,o)}{\partial W_i} \text{ and } \frac{\partial l(y,o)}{\partial b_i}$$

$$\text{net}(x) := W_1 x + b_1$$

$$\frac{\partial o(\mathbf{x})}{\partial W_1} = \frac{\partial o(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial \text{net}(\mathbf{x})} \frac{\partial \text{net}(\mathbf{x})}{\partial W_1}$$

$$\frac{\partial o(\mathbf{x})}{\partial W_1} = \frac{\partial o(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})}$$

$$\frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} = \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})}$$

$$\frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} = \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})}$$

$$\frac{\partial h(\mathbf{x})}{\partial h(\mathbf{x})} \frac{\partial h(\mathbf{x})}$$

• la backpropagation non è un algoritmo di ottimizzazione ma un modo di calcolare il gradiente!

MA!

- subgradients
- differenziabilità numerica

Optimizing W, b

Batch

$$W_i \leftarrow W_i - \eta \sum_{j=1}^N rac{\partial l(x_j,y_j)}{\partial W_i}$$

Online/Stochastic

$$W_i \leftarrow W_i - \eta rac{\partial l(x_j, y_j)}{\partial W_i}$$

Minibatch

$$W_i \leftarrow W_i - \eta \sum_{j=k}^{k+m} rac{\partial l(x_j,y_j)}{\partial W_i}$$

Learning Heuristics

- Constant η not good
- Can decrease η
- Better: adaptive η for each entry if W_i
- State-of-the-art: adam (with magic numbers)
- https://arxiv.org/pdf/1412.6980.pdf
- http://sebastianruder.com/optimizing-gradient-descent/

Picking Optimization Algorithms

- Small dataset: off the shelf like l-bfgs
- Big dataset: adam / rmsprop
- Have time & nerve: tune the schedule

Neural Network in practica

Neural Nets with sklearn

mlp = MLPClassifier(solver='lbfgs', random_state=0).fit(X_train, y_train)
print(mlp.score(X_train, y_train))
print(mlp.score(X_test, y_test))

1.0 0.88

Random State

Hidden Layer Size

```
mlp = MLPClassifier(solver='lbfgs', hidden_layer_size=(5,), random_state=10)
mlp.fit(X_train, y_train)
print(mlp.score(X_train, y_train))
print(mlp.score(X_test, y_test))
0.93
0.82
```


1.0 0.92

Regression


```
from sklearn.neural_network import MLPRegressor
mlp_relu = MLPRegressor(solver="lbfgs").fit(X, y)
mlp_tanh = MLPRegressor(solver="lbfgs", activation='tanh').fit(X, y)
```

Complexity Control

- Number of parameters
- Regularization
- Early Stopping
- drop-out

Grid-Searching Neural Nets

mean_test_score mean_train_score

param_mlpclassifier__alpha

0.001	0.978873	1.000000
0.010	0.981221	1.000000
0.100	0.971831	1.000000
1.000	0.978873	0.999412
10.000	0.983568	0.990612
100.000	0.938967	0.945427
1000.000	0.626761	0.626761

Searching hidden layer sizes

Getting Flexible and Scaling Up

Write your own neural networks

```
class NeuralNetwork(object):
    def __init__(self):
        # initialize coefficients and biases
        pass

def forward(self, x):
        activation = x
        for coef, bias in zip(self.coef_, self.bias_):
            activation = self.nonlinearity(np.dot(activation, coef) + bias)
        return activation

def backward(self, x):
    # compute gradient of stuff in forward pass
    pass
```

Autodiff

```
# http://mxnet.io/architecture/program_model.html
class array(object) :
   """Simple Array object that support autodiff."""
   def __init__(self, value, name=None):
       self.value = value
        if name:
            self.grad = lambda g : {name : g}
   def __add__(self, other):
        assert isinstance(other, int)
        ret = array(self.value + other)
        ret.grad = lambda g : self.grad(g)
        return ret
   def __mul__(self, other):
       assert isinstance(other, array)
        ret = array(self.value * other.value)
        def grad(g):
           x = self.grad(g * other.value)
            x.update(other.grad(g * self.value))
```

```
a = array(np.array([1, 2]), 'a')
b = array(np.array([3, 4]), 'b')
c = b * a
d = c + 1
print(d.value)
print(d.grad(1))
[4 9]
{'b': array([1, 2]), 'a': array([3, 4])}
```

TensorFlow Image Classification Training Performance

Dual CPU System: Dual Intel E5-2699 v4 @ 3.6 GHz | GPU-Accelerated System: Single Intel E5-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 (PCle) | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

TensorFlow Inception v3 Training Scalable Performance on Multi-GPU Node

GPU-Accelerated System: Single Intel ES-2699 v4 @ 3.6 GHz, NVIDIA® Tesla® K80/M40/P100 (PCIe) | Google's Inception v3 image classification network, 500 steps; 64 Batch Size; cuDNN v5.1

https://developer.nvidia.com/deep-learning-performance-training-inference

All I want from a deep learning framework

- Autodiff
- GPU support
- Optimization and inspection of computation graph
- on-the-fly generation of the graph (?)
- distribution over muliple GPUs and/or cluster (?)
- Choices (right now):
 - Skorch
 - TensorFlow
 - PyTorch / Torch
 - o (Theano)

Deep Learning Libraries

- Keras (Tensorflow, CNTK, Theano)
- PyTorch (torch)
- MXNet (MXNet)
- Also see: http://mxnet.io/architecture/program model.html

Quick look at TensorFlow

programmazione imperativa

- "down to the metal" don't use for everyday tasks
- Three steps for learning (originally):
 - Build the computation graph (using array operations and functions etc)
 - Create an Optimizer (gradient descent, adam, ...) attached to the graph.
 - Run the actual computation.
- Eager mode (default in Tensorflow 2.0):
 - Write imperative code directly

```
import tensorflow as tf
import numpy as np
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x data = np.random.rand(100).astype(np.float32)
y_{data} = x_{data} * 0.1 + 0.3
# create graph: model
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
                                                                           No
y = W * x_data + b
                                                                           computation
# create graph: loss
loss = tf.reduce mean(tf.square(y - y data))
# bind optimizer
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
                                                                            Allocate
init = tf.global_variables_initializer()
                                                                            variables
sess = tf.Session()
sess.run(init)
# Fit the line.
                                                                           All the work /
for step in range(201):
    sess.run(train)
                                                                           computation
   if step % 20 == 0:
       print(step, sess.run(W), sess.run(b))
```

https://www.tensorflow.org/versions/r0.10/get_started/

PyTorch example

```
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
N = 100
# Create random input and output data
x = torch.randn(N, 1, device=device, dtype=dtype)
y = torch.randn(N, 1, device=device, dtype=dtype)
# Randomly initialize weights
w = torch.randn(D_in, H, device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    y_pred = x.mm(w1)
    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
    loss.backward()
    # Update weights using gradient descent
    w1 -= learning_rate * w1.grad
    w1.grad.zero_()
```

Don't go down to the metal unless you have to!

Don't write TensorFlow, write Keras!

Don't write PyTorch, write **pytorch.nn** or **FastAI** (or **Skorch** or ignite)