МГТУ им. Н.Э. Баумана

Факультет "Информатика и системы управления" Кафедра "Системы обработки информации и управления"

дисциплина:

"Технологии машинного обучения"

Отчет по лабораторной работе №4

"Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей"

Выполнил:

Студент группы ИУ5-61Б

Сукиасян В.М.

Преподаватель:

Гапанюк Ю.Е.

Цель лабораторной работы: изучение сложных способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 3. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 4. Постройте модель и оцените качество модели с использованием кроссвалидации.
- 5. Произведите подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации.

Выполнение ЛР:

1. Загрузка и первичный анализ данных. Выберем dataframe для решения задачи классификации

```
In [95]: import numpy as np
            import pandas as pd
            from typing import Dict, Tuple
            from scipy import stats
            from sklearn.datasets import load iris
           from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score, cross_validate
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
            from sklearn.metrics import accuracy_score, balanced_accuracy_score
            from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score, classification_report from sklearn.metrics import confusion_matrix
            from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score
            from sklearn.metrics import roc_curve, roc_auc_score
            import seaborn as sns
            import matplotlib.pyplot as plt
            %matplotlib inline
           sns.set(style="ticks")
In [96]: iris = load_iris()
In [97]: # Наименования признаков
           iris.feature_names
Out[97]: ['sepal length (cm)',
               sepal width (cm)',
             'petal length (cm)
              'petal width (cm)']
In [98]: # Размер выборки
           iris.data.shape, iris.target.shape
Out[98]: ((150, 4), (150,))
In [99]: # Сформируем DataFrame
            iris_df = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
                                     columns= iris['feature_names'] + ['target'])
in [100]: # И выведем его статистические характеристики
           iris_df.describe()
```

Out[100]:						
		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333	1.000000
	std	0.828066	0.435866	1.765298	0.762238	0.819232
	min	4.300000	2.000000	1.000000	0.100000	0.000000
	25%	5.100000	2.800000	1.600000	0.300000	0.000000
	50%	5.800000	3.000000	4.350000	1.300000	1.000000
	75%	6.400000	3.300000	5.100000	1.800000	2.000000
	max	7.900000	4.400000	6.900000	2.500000	2.000000

2. Разделим dataframe на тестовую и обучающую выборку

3. Обучение модели ближайших соседей для произвольно заданного гиперпараметра K

```
In [104]: # 2 ближайших соседа
          cl1_1 = KNeighborsClassifier(n_neighbors=2)
          cl1_1.fit(iris_X_train, iris_y_train)
          target1_1 = cl1_1.predict(iris_X_test)
         len(target1_1), target1_1
Out[104]: (68,
           array([0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1,
                 In [105]: # 7 ближайших соседей
          cl1_2 = KNeighborsClassifier(n_neighbors=7)
          cl1_2.fit(iris_X_train, iris_y_train)
         target1_2 = cl1_2.predict(iris_X_test)
len(target1_2), target1_2
Out[105]: (68,
          array([0, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1,
                 2, 0, 2, 1, 0, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 0, 1, 2, 2, 0, 1, 2,
                 1, 2, 0, 0, 0, 1, 0, 0, 2, 2, 2, 2, 1, 1, 2, 1, 0, 2, 2, 0, 0, 2,
                 0, 2]))
```

4. Метрики качества классификации

Accuracy

```
In [106]: # iris_y_test - эталонное значение классов из исходной (тестовой) выборки # target* - предсказанное значение классов

# 2 ближайших соседа accuracy_score(iris_y_test, target1_1)

Out[106]: 0.9411764705882353
```

```
In [107]: # 7 ближайших соседей
           accuracy_score(iris_y_test, target1_2)
Out[107]: 0.9558823529411765
In [108]: def accuracy_score_for_classes(
              y_true: np.ndarray,
               y_pred: np.ndarray) -> Dict[int, float]:
               Вычисление метрики accuracy для каждого класса
              y_true - истинные значения классов
               y_pred - предсказанные значения классов
               Возвращает словарь: ключ - метка класса,
               значение - Accuracy для данного класса
               # Для удобства фильтрации сформируем Pandas DataFrame
               d = {'t': y_true, 'p': y_pred}
               df = pd.DataFrame(data=d)
               # Метки классов
               classes = np.unique(y_true)
               # Результирующий словарь
               res = dict()
               # Перебор меток классов
               for c in classes:
                   # отфильтруем данные, которые соответствуют
                   # текущей метке класса в истинных значениях
                   temp data flt = df[df['t']==c]
                   # расчет ассигасу для заданной метки класса
                   temp_acc = accuracy_score(
   temp_data_flt['t'].values,
   temp_data_flt['p'].values)
                   # сохранение результата в словарь
                   res[c] = temp_acc
               return res
           def print_accuracy_score_for_classes(
              y true: np.ndarray,
               y_pred: np.ndarray):
               Вывод метрики accuracy для каждого класса
               accs = accuracy_score_for_classes(y_true, y_pred)
               if len(accs)>0:
                   print('Метка \t Accuracy')
               for i in accs:
                   print('{} \t {}'.format(i, accs[i]))
In [109]: # 2 ближайших соседа
          print_accuracy_score_for_classes(iris_y_test, target1_1)
           Метка
                    Accuracy
           0
                    1.0
                    1.0
                    0.8333333333333334
In [110]: # 7 ближайших соседей
          print_accuracy_score_for_classes(iris_y_test, target1_2)
           Метка
                    Accuracy
           0
                    1.0
           1
                    0.9523809523809523
           2
                    0.916666666666666
```

• Матрица ошибок или Confusion Matrix

```
In [113]: tn, fp, fn, tp = confusion_matrix(bin_iris_y_test, bin_target1_1).ravel()
tn, fp, fn, tp
Out[113]: (44, 0, 4, 20)
In [114]: plot_confusion_matrix(cl1_1, iris_X_test, iris_y_test,
                                display_labels=iris.target_names, cmap=plt.cm.BuPu)
Out[114]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0xbf06348>
                                                      15
                                           0
              virginica
                             versicolor
Predicted label
                                         virginica
Out[115]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0xbfa4808>
                                  0
                                                     0.6
                                                     0.4
                                                     0.2
                                 0.17
              virginica
                       setosa
                               versicolor
                                         virginica
                                dicted lab
```


• Precision, recall и F-мера

```
In [117]: # Для 2 δπωκαŭωυχ cocedeŭ precision_score(bin_iris_y_test, bin_target1_1), recall_score(bin_iris_y_test, bin_target1_1)

Out[117]: (1.0, 0.8333333333333333)

In [118]: # Для 7 δπωκαŭωυχ cocedeŭ precision_score(bin_iris_y_test, bin_target1_2), recall_score(bin_iris_y_test, bin_target1_2)

Out[118]: (0.9565217391304348, 0.9166666666666666)
```

```
In [119]: # Параметры TP, TN, FP, FN считаются как сумма по всем классам
            precision_score(iris_y_test, target1_1, average='micro')
Out[119]: 0.9411764705882353
In [120]: # Параметры TP, TN, FP, FN считаются отдельно для каждого класса
            # и берется среднее значение, дисбаланс классов не учитывается.
            precision_score(iris_y_test, target1_1, average='macro')
Out[120]: 0.946666666666667
 In [121]: # Параметры ТР, ТN, FP, FN считаются отдельно для каждого класса
            # и берется средневзвешенное значение, дисбаланс классов учитывается
            # в виде веса классов (вес - количество истинных значений каждого класса).
            precision_score(iris_y_test, target1_1, average='weighted')
Out[121]: 0.9505882352941176
 In [122]: # f-мера
 In [123]: f1_score(bin_iris_y_test, bin_target1_2)
Out[123]: 0.9361702127659574
 In [124]: f1_score(iris_y_test, target1_1, average='micro')
Out[124]: 0.9411764705882353
 In [125]: f1_score(iris_y_test, target1_1, average='macro')
Out[125]: 0.9407114624505929
 In [126]: f1 score(iris y test, target1 1, average='weighted')
Out[126]: 0.9410602185538247
 In [127]: classification_report(iris_y_test, target1_1,
                                   target_names=iris.target_names, output_dict=True)
'recall': 1.0,
'f1-score': 0.9130434782608696,
'support': 21},
'virginica': {'precision': 1.0,
             'recall': 0.83333333333333334,
            'f1-score': 0.90909090909091,
'support': 24},
'accuracy': 0.9411764705882353,
'macro avg': {'precision': 0.946666666666667,
'recall': 0.944444444444445,
             'f1-score': 0.9407114624505929,
             'support': 68},
            'weighted avg': {'precision': 0.9505882352941176, 'recall': 0.9411764705882353, 'f1-score': 0.9410602185538247,
             'support': 68}}
```

ROC-кривая и ROC AUC

```
In [128]: fpr, tpr, thresholds = roc_curve(bin_iris_y_test, bin_target1_1,
                                        pos_label=1)
         fpr, tpr, thresholds
Out[128]: (array([0., 0., 1.]),
                          , 0.83333333, 1.
          array([0.
          array([2, 1, 0]))
In [129]: # Отрисовка ROC-кривой
         roc_auc_value = roc_auc_score(y_true, y_score, average=average)
             plt.figure()
             1w = 2
             plt.plot(fpr, tpr, color='darkorange',
                     lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
             plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--
             plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver operating characteristic example')
             plt.legend(loc="lower right")
             plt.show()
```

```
In [130]: # Для 2 ближайших соседей
            draw roc curve(bin iris y test, bin target1 1, pos label=1, average='micro')
            # Для 7 ближайших соседей
            draw_roc_curve(bin_iris_y_test, bin_target1_2, pos_label=1, average='micro')
                            Receiver operating characteristic example
               0.8
               0.6
               0.4
               0.2
                                                   ROC curve (area = 0.92)
                                                  0.6
                                      False Positive Rate
                            Receiver operating characteristic example
                1.0
               0.6
                0.2

    ROC curve (area = 0.95)

                                      False Positive Rate
```

Проанализировав результаты полученных метрик качества классификации, можно судить о среднем качестве классификации.

5. Построение модели с использованием кросс-валидации

```
In [131]: iris_cross = cross_val_score(KNeighborsClassifier(n_neighbors=2),
                                         iris.data, iris.target, cv=5)
            iris cross
Out[131]: array([0.96666667, 0.93333333, 0.93333333, 0.9
                                                                          , 1.
                                                                                        1)
In [132]: np.mean(iris_cross)
Out[132]: 0.946666666666665
iris_cross = cross_validate(KNeighborsClassifier(n_neighbors=2),
                                        iris.data, iris.target, scoring=scoring,
                                        cv=5, return_train_score=True)
            iris cross
Out[133]: {'fit_time': array([0.00100017, 0.
                                                             , 0.00099993, 0.
              score_time': array([0.00500011, 0.00500035, 0.00400019, 0.00500035, 0.00400043]),
             'test_precision': array([0.96969697, 0.94444444, 0.9423569 , 1. ]), 'train_precision': array([0.97674419, 0.98412698, 0.97674419, 0.98412698, 0.97674419]),
              'test_recall': array([0.96666667, 0.93333333, 0.93333333, 0.9 , 1.
'train_recall': array([0.975 , 0.98333333, 0.975 , 0.98333333, 0.975
'test_f1': array([0.96658312, 0.93265993, 0.93265993, 0.89974937, 1.
              'train_f1': array([0.97496479, 0.98332291, 0.97496479, 0.98332291, 0.97496479])}
```

6. Нахождение наилучшего гиперпараметра К с использованием GridSearchCV и кросс-валидации

```
In [135]: %%time
                    clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='accuracy')
                   clf_gs.fit(iris_X_train, iris_y_train)
Out[135]: GridSearchCV(cv=5, error_score=nan,
                                            estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30,
metric='minkowski',
                                                                                                        metric_params=None, n_jobs=None,
                                                                                                        n neighbors=5, p=2,
                                                                                                        weights='uniform')
                                            iid='deprecated', n_jobs=None,
                                            param_grid=[{'n_neighbors': array([ 5,  8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38])}], pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                                             scoring='accuracy', verbose=0)
In [136]: clf_gs.cv_results_
Out[136]: {'mean_fit_time': array([0.0006001 , 0.00039997, 0.00040007, 0.00040002, 0.00039997,
                                   0. ,00040002, 0.00040007, 0.00020003, 0.000600005, 0.0006
0. ,0. ]),
                      0.00048002, 0.00040007, 0.00020003, 0.00000005, 0.0000

0. , 0. ]),

'std_fit_time': array([0.00048998, 0.00048986, 0.00048998, 0.00048992, 0.00048986,

0.00048992, 0.00048998, 0.00040007, 0.00048994, 0.0004899,

0. , 0. ]),

'mean_score_time': array([0.00139999, 0.00140009, 0.00139999, 0.00160012, 0.00140014,
                                  0.00160012, 0.00139999, 0.00160007, 0.00140004, 0.00140014, 0.00099998, 0.00200009]),
                       'std score time': array([4.89881921e-04, 4.89901406e-04, 4.89979242e-04, 4.89959789e-04,
                                   4.89862464e-04, 4.89959789e-04, 4.89979242e-04, 4.90018183e-04,
                                   4.89940316e-04, 4.89862464e-04, 9.53674316e-08, 1.50789149e-07])
                      'param_n_neighbors': masked_array(data=[5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38],
mask=[False, False, False, False, False, False, False, False,
                                                          False, False, False, False],
                                  fill_value='?'
                                            dtype=object),
                       dtype=object),
'params': [{'n_neighbors': 5},
{'n_neighbors': 8},
{'n_neighbors': 11},
{'n_neighbors': 14},
                        {'n_neighbors': 17},
                         ('n_neighbors': 20},
                          'n_neighbors': 23},
                         {'n neighbors': 26},
                        {'n neighbors': 29},
                         {'n_neighbors': 32},
                        {'n_neighbors': 35},
                          {'n_neighbors': 38}],
                        'split0 test score': array([0.94117647, 1.
                                                                                                                                                   0.94117647. 1.
                                     0.94117647, 0.94117647, 0.94117647, 0.94117647,
                        0.94117647, 0.94117647]),
'split1_test_score': array([0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 0.94117647, 
                                     0.94117647, 0.94117647, 1.
0.94117647, 0.94117647]),
                                                                                               , 1.
                                                                                                                           , 1.
                        'split2_test_score': array([0.9375, 0.9375, 0.875 , 0.9375, 0.875 , 0.875 , 0.875 , 0.9375,
                                     0.8125, 0.875 , 0.8125, 0.875 ]),
                        'split3_test_score': array([0.9375, 0.9375, 0.9375, 0.9375, 0.9375, 0.9375, 0.9375, 0.9375,
                                     0.8125, 0.8125, 0.8125, 0.8125]),
                                                                                                         , 1.
                                                                                                                                       , 0.9375, 0.9375, 0.9375, 1.
                        'split4_test_score': array([1. , 1. 0.9375, 0.875 , 1. , 0.9375]),
                                                                                                                        , 1.
                        'mean_test_score': array([0.95147059, 0.96323529, 0.95073529, 0.95147059, 0.93823529,
                                     0.92647059, 0.92647059, 0.96323529, 0.90073529, 0.90073529,
                                     0.90147059, 0.90147059]),
                        'std_test_score': array([0.02432035, 0.03004826, 0.046597 , 0.02432035, 0.03955582,
                                     0.02578776, 0.02578776, 0.03004826, 0.0753811 , 0.06418574,
                                     0.07575314, 0.05112277]),
                        'rank_test_score': array([ 3, 1, 5, 3, 6, 7, 7, 1, 11, 11, 9, 9])}
 In [137]: # Лучшая модель
                     clf_gs.best_estimator_
 Out[137]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                                                              metric_params=None, n_jobs=None, n_neighbors=8, p=2,
weights='uniform')
 In [138]: # Лучшее значение метрики
                     clf_gs.best_score_
 Out[138]: 0.9632352941176471
                     clf_gs.best_params_
 Out[139]: {'n_neighbors': 8}
```

```
In [140]: # Изменение качества на тестовой выборке в зависимости от К-соседей
           plt.plot(n_range, clf_gs.cv_results_['mean_test_score'])
Out[140]: [<matplotlib.lines.Line2D at 0xc290908>]
            0.96
            0.95
            0.94
            0.93
            0.92
            0.91
            0.90
                                                        35
                        10
                               15
                                     20
                                           25
                                                  30
```

Таким образом, лучшее найденное значение гиперпараметра = 8. При этом гиперпараметре получено наилучшее значение метрики = 0.963