

اصول سیستمهای کامپیوتری

استاندارد نمایش اعداد اعشاری

مدرس: دکتر محمد حسن شیرعلی شهرضا

استاندارد اعداد اعشاري

• دقت تک

Single Precision

S	e (8-bits)	f (23-bits)

- Value of bits stored in representation is:
 - If e=255 and f!= 0, then v is NaN regardless of s
 - If e=255 and f = 0, then $v = (-1)^s \infty$
 - If 0 < e < 255, then $v = (-1)^{s} 2^{e-127} (1.f)$ normalized number
 - If e = 0 and f != 0, the $v = (-1)^{s} 2^{-126} (0.f)$
 - Denormalized numbers allow for graceful underflow
 - If e = 0 and f = 0 the $v = (-1)^{s} 0$ (zero)

استاندارد اعداد اعشاري

• دقت مضاعف

Double Precision

S	e (11-bits)	f (52-bits)

- Value of bits in word representation is:
 - If e=2047 and f!= 0, then v is NaN regardless of s
 - If e=2047 and f = 0, then $v = (-1)^{s} \infty$
 - If 0 < e < 2047, then $v = (-1)^{s} 2^{e-1023}$ (1.f)
 - normalized number
 - If e = 0 and f != 0, the $v = (-1)^{s} 2^{-1022}$ (0.f)
 - Denormalized numbers allow for graceful underflow
 - If e = 0 and f = 0 the $v = (-1)^{s} 0$ (zero)

- Converting from base 10 to the representation
- Single precision example
- Covert 100₁₀
- Step 1 convert to binary 0110 0100

In a binary representation form of 1.xxx have

$$-01100100 = 1.100100 \times 2^{6}$$

مثال ۱ (ادامه)

- 1.1001 x 2^6 is binary for 100
 - Thus the exponent is a 6 •
- Biased exponent will be $6+127=133 = 1000\ 0101$
 - Sign will be a 0 for positive -
 - Stored fractional part f will be 1001 -
 - Thus we have •
 - se f-
 - 0 <u>100 0 010 1</u> 1 00 1000.... -
 - 4 2 C 8 0000 in hexadecimal -
 - \$42C8 0000 is representation for 100 -

مثال ۲

Representation for -175 •

$$175 = 128 + 32 + 8 + 4 + 2 + 1 = 1010 1111 -$$

Or
$$1.0101111 \times 2^7$$
 –

$$S = 1 -$$

Exponent is
$$7 + 127 = 134 = 1000 \ 0110 - 1000 \ 0110 \ - 10$$

Fractional part
$$f = 0101111 -$$

مثال 1 برای تبدیل معکوس

- Convert \$C32F 0000 into decimal
 - Extract components from
 - 1100 0011 0010 1111 -
 - S = 1 -
- Exponent = $1000\ 0110 = 128+4+2 = 134$
 - unbias 134 127 = 7 -
 - f = 0101111 so mantissa is 1.0101111 -
- Adjust by exponent 1010 1111 (move binary pt 7 places) -
 - Or 128+32+15 = 175 -
 - Sign is negative so -175 -

مثال ۲ برای تبدیل معکوس

- Convert \$41C8 0000 to decimal
 - 0100 0001 1100 1000 0000 -
 - S is 0 so positive number -
- Exponent 1000 0011 = 128+3=131-127=4
 - f = 1001 so mantissa is 1.1001 –
- With 4 binary positions have 11001 as final number or a decimal
 - 25 -

