Research Methods

Probability and Null Hypothesis Testing (incl. z-Test and t-Test)

Laurens Rook (Delft University of Technology)

Previous lectures

- Descriptive statistics
- Experiments: building blocks & research designs
- Today: Probability, null hypothesis significance testing (Ch. 4) and inferential statistics (Ch. 5-6)
 - illustrated for z-test & various t-tests

Learning goals

- Understanding probability and its relation with the normal distribution
- Differentiate null and alternative hypothesis
- Understanding the relation between Type 1 and Type 2 errors and hypothesis testing
- Capable of explaining what statistical significance means (for z-test & various t-test)

Probability

Basic concepts

- Probability = the number of ways a particular outcome (event) can occur divided by the total number of outcomes (events)
- Proportion = to express probabilities as varying between 0.0 (certainly no occurrence) and 1.0 (certain occurrence of event)
- Uncertainty = the range in event occurrence likelihood

Examples

<u>Flipping a coin once</u> --> probability to get a "head"

Number of ways to get "head" / number of possible outcomes = $\frac{1}{2}$ = .50

Rolling "2" with a die once --> probability to get a "2"

Number of ways to get "2" / number of possible outcomes = 1/6 = .167

❖ After many trials, we can accurately predict what proportion of an event ("head", "2") will take place

Two probability rules

- Multiplication rule (the "AND" rule)
 - the probability of a series of outcomes occurring on successive trials is the product of their individual probabilities, when the sequence of outcomes is independent
 - E.g., getting "heads" twice in two tosses:

0.5 * 0.5 = 0.25

Two probability rules

- Addition rule (the "OR" rule)
 - the probability of one outcome or another outcome occurring on a particular trial is the sum of their individual probabilities, when the outcomes are mutually exclusive
 - E.g., drawing either "clubs" or "hearts" from a deck of cards:

$$0.25 + 0.25 = 0.5$$

The link between probability and the standard normal curve

We can use the areas under the standard curve to determine the probability that an observation falls within a certain area under the curve

How? With z-scores

$$Z = \frac{x - \mu}{\sigma}$$

• Where: x = a person's score

 μ = the population mean

 σ = the population standard deviation

We convert a person's test score into a z-score using the formula, and reasd the associated proportion (the area under the curve) from a table (book, Table A1, Appendix A)

Example 1

❖ We collected intelligence test scores that are normally distributed with a mean = 100 and SD = 15. What is the probability that we select from the general population a person with a test score of 119 or higher?

$$Z = \frac{X - \mu}{\sigma} = \frac{119 - 100}{15} = \frac{19}{15} = 1.27$$

--> Table A1 from Appendix A: $p(X \ge 119) = .10203 (10.2\%)$

Example 2

❖ We collected intelligence test scores that are normally distributed with a mean = 100 and SD = 15. What is the probability that we select from the general population a person with a test score of <u>70 or lower</u>?

$$Z = \frac{X - \mu}{\sigma} = \frac{70 - 100}{15} = \frac{-30}{15} = -2.0$$

--> Table A1 from Appendix A: $p(X \le 70) = .02275 (2.3\%)$

Example 3 (multiplication)

❖ We collected intelligence test scores that are normally distributed with a mean = 100 and SD = 15. What is the probability that we select from the general population a person with a test score of 80 or lower AND a person with a test score of 125 or higher?

$$Z_{1} = \frac{X-\mu}{\sigma} = \frac{80-100}{15} = \frac{-20}{15} = -1.33 --> p(X \le 80) = .09175$$

$$Z_{2} = \frac{X-\mu}{\sigma} = \frac{125-100}{15} = \frac{25}{15} = 1.67 --> p(X \ge 125) = .04745$$

.00435 (0.4%)

Why relevant?

- We can use the individual score --> z-score conversion principle for hypothesis testing research when:
 - > We are interested in a sample mean (z-test)
 - We have set critical values (areas under the normal curve that we consider regions of rejection)
 - We have formulated a null hypothesis and an alternative hypothesis

Hypothesis testing

Null hypothesis significance testing

- The aim of research usually is to provide an answer to a research question, which is formulated as a statement that can be accepted / rejected
- The process of discovering if the statement is supported by your data (or not) -->Null hypothesis significance testing (NHST)

Steps in hypothesis development

- 1. State the null (H₀) and alternative (H_a) hypotheses
- 2. Determine your significance level (p < .05 or else)
- 3. Choose the appropriate statistical test based on the type of scales used (nominal, ordinal, interval, ratio)
- 4. Check your statistical output to see if your null hypothesis is accepted / rejected, or if – instead – the alternative hypothesis is accepted / rejected

How science works (the empirical cycle)

A research dilemma

- You cannot statistically demonstrate the "truth" of a research statement
- Statistics are better capable of showing that something is not true
 - --> they are designed for "falsification" purposes

Karl Popper

The way out of this...

- To propose exactly the opposite of what you wish to demonstrate to be true in a null hypothesis
- Then falsify that opposite statement (or null hypothesis)
- And, what is left (your initial or alternative hypothesis) must then be true

Null hypothesis significance testing (approach)

- We start with two competing hypotheses:
- ❖ H₀ (the null hypothesis): the effect does <u>not</u> exist
- ❖ H_a (the alternative hypothesis): an effect (a difference between two groups) exists, and is significant
 - this H_a is your research hypothesis, the statement you wish to support --> but you test it via the null hypothesis!

H₀ and H_a: two forms

- ❖ One-tailed: Your H_a is formulated in terms of "higher / lower" (thus directional); same follows for the H₀
- ❖ Two-tailed: Your H_a is formulated in terms of "differences that exist between groups" (nondirectional); the H₀ then states that no differences exist

Probability and statistical significance

- Statistical significance = an observed difference between two descriptive statistics (such as the means), which is unlikely to have occurred by chance
- Probability value = in social and management science, researchers usually work with a p-value of .05
 - --> they take a 5% risk of making a Type 1 error

NHST is prone to Type-1 and Type-2 errors

TABLE 8.1 The four possible outcomes in statistical decision making

THE RESEARCHER'S DECISION	THE TRUTH (UNKNOWN TO THE RESEARCHER)	
	H _o is true	H ₀ is false
Reject H_0 (say it is false)	Type I error	Correct decision
Fail to reject H_0 (say it is true)	Correct decision	Type II error

Example

Toward Linguistic Recognition of Generalized Anxiety Disorder

Laurens Rook*, Maria Chiara Mazza, Iulia Lefter and Frances Brazier

Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands

FIGURE 1 | Unweighted average recall (UAR) and unweighted average precision (UAP) for the four classifiers given Language Inventory Word Count (LIWC) features, and for a concatenation of LIWC features, Behavioral Inhibition System and Behavioral Approach System personality features (LIWC_BISBAS), respectively.

GAD ≥ 10

Example

Toward Linguistic Recognition of Generalized Anxiety Disorder

Laurens Rook*, Maria Chiara Mazza, Iulia Lefter and Frances Brazier

Faculty of Technology, Policy and Management, Delft University of Technology, Delft, Netherlands

- False positives --> when text was emotionally negative for a particular episode, but positive on the overall study journey (Type I)
- False negatives --> idem when text had been very short (2-3 condensed sentences; Type II)

In sum: Essence of null hypothesis significance testing

- \Box H₀ (the null hypothesis): the effect does not exist
- ☐ H_a (the alternative hypothesis): an effect exists
- ❖ We conduct a statistic test that represents H₀. We calculate the probability that we get a value big enough to accept H₀. Thus we check the p-value of H₀
- ❖ If too small (p < 0.05), we reject the idea of H₀ that we have no effect, and accept our H_a instead!

Inferential statistics (z-test)

Inferential statistics

- NHST allows us to select a sample, compare it with the population at large, and analyze data collected
- Inferential statistics = procedures for drawing conclusions about a (wider) population, based on data collected from a (smaller) sample
- ❖ Parametric tests --> a (z or t) test that involves making assumptions about estimates of population characteristics (mean, sd)

Today (Ch. 5-6)

- The single-sample z-test
- ❖ The single-sample *t*-test
- The t-test for related groups
- The t-test for independent groups

The (single sample) z-test

❖ A (single sample) z-test = a parametric inferential statistical test of the null hypothesis for a single sample, where the population variance is known

The z-score vs. z-test

- ❖ A z-score = a single data point (such as a single participant's score) --> you could compare this score to the mean score of the wider population
- ❖ A z-test = a sample mean (from all participant scores in your study) --> you compare this sample mean to the population mean

The z-score vs. z-test

z-score (single data point):

z-test (sample mean):

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$$

 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$ $\sigma_{\bar{x}} = \text{standard de}_{\underline{viation}}$ of the

sampling distribution (SE of

the mean)

 σ = standard deviation

N = distribution of sample means for

sample size N

$$Z = \frac{X - \mu}{\sigma}$$

$$Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$

$$Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$
 $\bar{X} = \text{sample mean}$

 $\mu =$ mean of sampling distribution

(single sample) z-test: when?

- **❖ A single-group design** = A research study in which there is only one group of participants
 - Example: the one-shot case study design from the lectures on (quasi) experiments
 - when the population variance is known

Posttest only (one-shot case study) design*

Experimental group

Treatment

X

O

Treatment effect = 0

Form of a z-test (one-tailed)

- Given are:
 - a normal distribution on scores
 - a population mean
 - a sample mean
 - one-tailed test --> alpha level of .05 or less
- Question to answer: Is the sample mean statistically bigger (or smaller) than the population mean?

Example

FIGURE 9.1 The obtained mean in relation to the population mean

Population mean

Sample mean

Interpretation of a z-test (one-tailed)

- We convert the z-score to the associated proportion (Table A1, Appendix A) to get the z value obtained
- We compare the z critical value (that marks the edge of the region of rejection in a sampling distribution) with the z value obtained
- Critical value = the edge of the region of rejection in a sampling distribution. Values equal or beyond it fall in the region of rejection for the H₀

Interpretation: Example

FIGURE 9.2
The z critical value and the z obtained for the z test example

The z value obtained falls in the region of rejection for the H_0 .

Interpretation: the sample mean was statistically different from the population mean at p < .05 (one-tailed)

Form of a z-test (one-tailed)

- Given are:
 - a normal distribution
 - a population mean
 - a sample mean
 - one-tailed test --> alpha level of .05 or less
- Question to answer: Is the sample mean statistically bigger (or smaller) than the population mean?

Interpretation of a z-test (two-tailed)

FIGURE 9.3
Regions of rejection
and critical values
for one-tailed versus
two-tailed tests

Interpretation: Example

FIGURE 9.4
The z critical value
and the z obtained
for the two-tailed
z test example

The z value obtained does NOT fall in the region of rejection for the H_0 . Interpretation: the sample mean was NOT statistically different from the population mean at p < .05 (two-tailed)

Statistical power & assumptions

- **❖ Statistical power** = the probability that you correctly reject a false H₀
- This is higher with a one-tailed test, given that the z critical value does not need to be so large to get significantly different from the population mean
 - A one-tailed test is more statistically powerful than a two-sided test (it increases the chance to find a p < .05, and to correctly reject H₀)
 - Another way to achieve this is to increase your sample size (which you usually do for a two-sided test)

In JASP

Inferential statistics (t-test)

(a) The (single sample) t-test

- ❖ A (single sample) t-test = a parametric inferential statistical test of the null hypothesis for a single sample, where the population variance is NOT known
- Unlike the z-test, the (Student's) t-test works with t distributions that are NOT normally distributed (but have a bell-shaped, symmetrical form)
- * Notation includes **degrees of freedom** (df) = N-1

The number of scores that are free to vary (sample size - 1)

Example

FIGURE 10.1
The t critical value and the t obtained for the single-sample one-tailed t test example

$$t(9) = 2.06, p < .05 \text{ (one-tailed)}$$

Example (two-tailed)

FIGURE 10.2
The t critical value
and the t obtained
for the singlesample two-tailed
test example

 $\star t(9) = 2.06$, *ns.* (two-tailed)

Statistical power & assumptions

- The (single sample) t-test should be used only if:
 - the data are interval / ratio in scale
 - the population distribution of scores is symmetrical
- If those assumptions aren't met --> nonparametric tests should be used

One sample z-test and t-test in JASP

One Sample T-Test

One Sample T-Test ▼

	Test	Statistic	df	р
CPerson	Student	37.51	119	< .001
	Z	36.83		< .001

(b) Testing hypotheses about two related means

- Paired samples t-test = to examine the differences in the same group before and after a treatment
 - \Box H₀ = there is no difference between the pretest and posttest
 - □ H_a = there exists a difference between pretest and posttest

(One group) pretest-posttest design*

[Time]

Experimental group

Pretest score	Treatment	Posttest score
O_1	X	O_2

Treatment effect = $(O_2 - O_1)$

Paired samples t-test in JASP

Paired Samples T-Test

Paired Samples T-Test

Measure 1		Measure 2	t	df	р
Howdoyoufeelrightnow_A	_	Howdoyoufeelrightnow	-0.211	141	0.833

Note. Student's t-test.

(c) Testing hypotheses about unrelated means

- ❖ Independent samples t-test = when we are interested whether two groups are different from each other on a particular interval / ratio-scaled factor
- This applies to experimental (treatment) vs. control group designs

Posttest with control group design*

[Time]

Experimental group

Control group

Treatment	Test score
X	O_1
	02

 $\textbf{Treatment effect} = (\textbf{\textit{O}}_1 - \textbf{\textit{O}}_2)$

7-tests are about comparing means between two independent groups

JASP output presentation in exam

Independent Samples T-Test ▼

Independent Samples T-Test

	t	df	р
CPerson	-11.219	118	< .001
CS	-0.899	118	0.371

Note. Student's t-test.

In sum

Learning goals (Ch. 4)

- Understanding probability and its relation with the normal distribution
- Differentiate null and alternative hypothesis
- Understanding the relation between Type 1 and Type 2 errors and hypothesis testing
- Capable of explaining what statistical significance means (for z-test & various t-test)

Learning goals (Ch. 5 - 6)

- Explain what a z-score / z-test / t-test is and how it is computed
- Explain what statistical power is and how to make statistical tests more powerful
- List the assumptions of the z-test / t-test
- Capable of interpreting a z-test / t-test result (one-tailed and two-tailed)

