

Outline:

- Introduction
- Data Exploration
- Data Wrangling
- Exploratory Data Analysis
- Modelling
- Business Recommendations

Outline:

- Introduction
- Data Exploration
- Data Wrangling
- Exploratory Data Analysis
- Modelling
- Business Recommendations

Introduction

- E-commerce is \$4.89 trillion industry.
- Shopify a leading platform with **1.7 million** active stores.
- Project aims to get most of data Shopify provides.
- Supervised Machine Learning models (ML) to predict:
- Post-First Week Customer Spending (Regression)
- Repeat Orders Past The First Week (Classification)

Data Exploration

• Shopify Order Exports standardized; each row represents item sold with 73 columns.

Einancial

- Feature Columns:
- Name
- Email
- Paid at
- Subtotal
- Line-Item Name
- Line-Item Quality

	Name	Email	Status	Paid at	Status	Fulfilled at	Marketing	Currency	Subtotal	Shipping	Taxes	Total	Code	Amount	•
0	#29489	Anonymous4245	paid	11/11/2021 16:53	unfulfilled	NaN	no	USD	142.0	0.00	11.72	153.72	NaN	0.0	
1	#29489	Anonymous4245	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	#29489	Anonymous4245	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	#29488	Anonymous9987	paid	11/11/2021 10:09	unfulfilled	NaN	no	USD	40.0	5.36	2.90	48.26	NaN	0.0	
4	#29487	Anonymous9675	paid	11/10/2021 14:54	fulfilled	11/11/2021 10:56	no	USD	94.0	5.06	0.00	99.06	NaN	0.0	!

Discount Discount 6

Eulfillment Eulfilled Accents

Data Exploration (2)

- Dataset from a Women's Sports Fitness Apparel Store.
- Generated \$1.8 million in YTD revenue since June 2018.
- Contains **50,418** items purchased since inception.
- 16,180 unique customers ; 28% are repeat
- 25,188 unique orders; 53% made by repeat customers.
- 560 unique item skus.

Data Exploration Summary:

- Median Order frequency is 43 days.
- Unlikely to make an order after 218 days.
- 75% first prior to 2020-11, final data ends in 2021-11.
- 1-year LTV Threshold.
 - Lose only ~ 25% of our data

Distribution of First Orders by month since June 2018 .

Data Wrangling

- **Objective**: Predict Behavior for *358* days <u>following the</u> week of their first order.
- Reshape the DataFrame by customer:
- First Order Date
- Most Recent Order Date
- LTV start
- LTV end

CustomerID	pfw_spent	fw_nb_orders	fw_nb_items	fw_total_spent	fw_used_coupon	first_order_month	$fw_purchased_accessory$	first_item_size
Anonymous13455	1257.80	1	1	50.0	0	6	0	М
Anonymous2142	436.15	1	1	48.0	0	5	0	L
Anonymous4843	1052.75	2	2	96.0	0	10	0	S
Anonymous11225	728.10	1	1	16.0	0	1	1	No size
Anonymous540	1114.75	1	1	50.0	0	1	0	XS

Data Wrangling: Variables to test with pfw_spend

Correlation Amongst Variables

FWS Plays a Small Role in Increasing PFWS

Post First Week Spend vs. First Week Spend

A CUSTOMER SPENDING MORE IN THEIR FIRST WEEK TENDS TO SPEND MORE 358 DAYS LATER. People who fit larger sizes tend to have higher PFWS

Post First Week Spend vs. First Item Size

PFWS IS LOWER FOR CUSTOMERS WHO ORDER SMALLER SIZES.

XS Mean:

\$38

First Orders made between Feb-June have higher PFWS than the rest of the year

Highest Month: Mean (May): \$59

Lowest Month Mean (Nov): \$24

Post First Week Spend vs. Month First Order

CUSTOMERS MAKING
THEIR FIRST PURCHASE
THROUGH FEB-JUNE
TEND TO SPEND MORE
358 DAYS LATER

Post First Week Spend vs. First Week Items Purchased

CUSTOMERS WHO
PURCHASE MORE ITEMS
PURCHASED MORE IN
THE PRECEDING 358
DAYS.

No Coupon Mean: \$33

Used Coupon Mean: \$42

Post First Week Spend vs. Coupon Use in First Week

CUSTOMERS WHO USE COUPONS HAVE HIGHER PFWS Opted Out Mean: \$35

Opted In Mean: \$45

Post First Week Spend vs. Opting in Marketing Emails

CUSTOMERS WHO OPT INTO MARKETING EMAILS HAVE HIGHER PFWS.

Pre-Processing

- Regression Models used: Linear Regression and Random Forest Regressor
- **Drop columns** in EDA deemed not relevant and those that are redundant.
- Label Encoding: Changed Month of First Order.
- One-Hot Encoding on Categorical Variables
- Scale Data for First Week Spend Data.
- Train Test Split at 0.75 /0.25; training data has 7942, testing has 2648
- Grid Search CV to perform hyperparameter tuning with 5-fold cross validation.

Regression Model Results

- Multiple Linear Regression Results:
- **R squared** of ~ 0.04 on testing data.
- Only 4% of the variance can be explained
- Linear Model not best at explaining the relationship.

- Random Forest Regressor:
- **R squared** of 0.036 on testing data.

Switch to Classification

- Reformulate our initial question "Can we predict the post first week spend?" to "Can we predict if a customer will purchase again after the first week?"
- New target column repeat
- Drop post_first_week_spend
- Address Class imbalance with resampling of training data 50/50.

ROC curve for the different Classification Models

Classification Results

- Use the <u>Adaboost</u> model to get the best precision (+20%) and good recall (+31%) to predict repeat customers.
- Use <u>Logistic Regression</u> model to predict non-repeat customers.

Model	Best Hyperparameters	ROC_AUC	F1_Score (weighted)	Precision	Recall	Accuracy
Logistic Regression	{'C': 0.001, 'I1_ratio': 0, 'penalty': 'I2'}	0.587	0.384	0.319	0.484	0.579
Random Forest Classifier	{'n_estimators': 10, 'max_features': 'sqrt', 'max_depth': 4, ' criterion': 'gini', 'bootstrap': 'False'}	0.601	0.437	0.318	0.697	0.512
AdaBoost Classifier	{'n_estimators': 250, 'learning_rate': 0.01, 'min_samples_leaf': 10, be_max_depth': 2}	0.593	0.433	0.323	0.656	0.534
Gradient Boosting Classifier	{'n_estimators': 5, 'max_depth': 3, 'loss': 'deviance', 'criterion': 'mae'}	0.592	0.419	0.315	0.624	0.530
No Skill Classifier	NA	0.5	0.35	0.27	0.5	0.5

Feature Importance in the Model

Business Findings and Model Usage

- 1) Revisit Product Sizing
- 2) Use thresholding with Adaboost for promotions
- 3) Increase First Week Spending
- 4) Incentivize Opting into Marketing Emails
- 5) Spend more on Ads around Mother's day

Future Work

- Repeating the Project integrating more data (Surveys, Google Analytics, etc...)
- Determining optimal promotions to give.
- Diving into Product Analytics and explore results at the product level.
- Using unsupervised learning techniques to cluster our customers.
- Trying to Identify Resellers in our dataset.
- Use this study as a way to track effects of Influencer Marketing.

any questioms?

