Group Theory

Week 2 Exercises

Topic(s): Cosets, Lagrange's Theorem, pth roots of unity

Awez

1 Solutions

Solution (Q1). • Let number of elements in G be n.

- Since n is prime, $n \ge 2$, and there exists at least one element which is not identity (e), let it be u.
- If the order of u is p, the subgroup generated by u is $\{e, u, u^2, \dots, u^{p-1}\}$.
- Clearly size of this subgroup (p) is at least 2.
- By Lagrange's theorem size of a subgroup divides the size of the group.
- But size of G(n) is a prime, so if p divides n and $p \ge 2$ then p = n.
- G has an element which generates a subgroup covering entirety of G, hence G is cyclic.
- Thus, any group with prime number of elements is cyclic.

Solution (Q2). • Yes, consider G which is infinite and H which contains just e, the identity, which in itself forms a subgroup.

- Then G has infinite number of cosets $\{\{a\}|a\in G\}$.
- Another example is, consider \mathbb{R}^{*1} under multiplication as G and H as $\{-1,1\}$ then each $a \in G$, a > 0 forms the left coset $aH = \{-a,a\}$ which is unique.
- Thus there are infinite left cosets of G with respect to finite H.

 $^{^1\}mathbb{R}^*$ is just $\mathbb{R}-\{0\}$