Ayudantía 1 Finanzas 1 Anualidades

Gabriel Haensgen

¹Universidad Diego Portales. Facultad de Economía y Empresa. Escuela Ingeniería Comercial

Abril 2020

Recordatorio

Explicar error ayudantía 1

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Formulario

Valor del dinero en el tiempo:

$$P_n = P_0(1+r)^n$$

Formulario

Valor del dinero en el tiempo:

$$P_n = P_0(1+r)^n$$

Valor presente anualidad:

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

Formulario

Valor del dinero en el tiempo:

$$P_n = P_0(1+r)^n$$

Valor presente anualidad:

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

Valor presente anualidad geométrica:

$$P_0 = \frac{C}{r - g} \cdot \left(1 - \left(\frac{1 + g}{1 + r}\right)^n\right)$$

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Jaime Palma tiene 23 años (en t=0) y está planeado su jubilación a los 64 años (en t=41). El planea ahorrar \$2000 cada año por los siguientes 15 años (de t=1 a t=15). El desea tener una jubilación de \$100000 por año por 20 años y que su primer pago se haga en t=41. ¿Cuánto debería de ahorrar Jaime cada año desde t=16 a t=40 en orden de cumplir su meta?. Dado que Jaime Palma es Ingeniero Comercial de la UDP posee un portafolio de inversiones diversificadas en acciones, bonos y fondos mutuos que le permite obtener una rentabilidad anual del 8 % en promedio

Solution

Primero que nada, este ejercicio se puede hacer de muchas formas, lo importante es tener claro el valor en el tiempo y en que momento necesitamos trabajar los datos. Separaremos el ejercicio en pequeñas partes:

Solution

Primero que nada, este ejercicio se puede hacer de muchas formas, lo importante es tener claro el valor en el tiempo y en que momento necesitamos trabajar los datos. Separaremos el ejercicio en pequeñas partes:

Primero, veremos el valor futuro de ahorrar \$2.000 por 15 años.

Solution

Primero que nada, este ejercicio se puede hacer de muchas formas, lo importante es tener claro el valor en el tiempo y en que momento necesitamos trabajar los datos. Separaremos el ejercicio en pequeñas partes:

Primero, veremos el valor futuro de ahorrar \$2.000 por 15 años. Después obtendremos el valor presente de la jubilación que Jaime desea

Solution

Primero que nada, este ejercicio se puede hacer de muchas formas, lo importante es tener claro el valor en el tiempo y en que momento necesitamos trabajar los datos. Separaremos el ejercicio en pequeñas partes:

Primero, veremos el valor futuro de ahorrar \$2.000 por 15 años. Después obtendremos el valor presente de la jubilación que Jaime desea

Luego, éste valor presente lo llevaremos de t=40 a t=15.

Solution

Primero que nada, este ejercicio se puede hacer de muchas formas, lo importante es tener claro el valor en el tiempo y en que momento necesitamos trabajar los datos. Separaremos el ejercicio en pequeñas partes:

Primero, veremos el valor futuro de ahorrar \$2.000 por 15 años. Después obtendremos el valor presente de la jubilación que Jaime desea

Luego, éste valor presente lo llevaremos de t=40 a t=15. Después, la diferencia entre el valor futuro de los \$2.000 y el valor presente de la jubilación será el valor presente de lo que falta por ahorrar...; Se entiende por qué?

Solution

Solution

$$P_n = P_0(1+r)^n$$

Solution

$$P_n = P_0(1+r)^n$$

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

Solution

$$P_n = P_0(1+r)^n$$

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

$$P_n = \frac{C}{r} \cdot ((1+r)^n - 1)$$

$$P_n = \frac{2000}{0.08} \cdot \left((1,08)^{15} - 1 \right)$$

$$P_n = 54304,2278$$

Solution

Solution

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

Solution

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

$$P_{40} = \frac{100000}{0,08} \cdot \left(1 - \frac{1}{(1,08)^{20}}\right)$$

Solution

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

$$P_{40} = \frac{100000}{0,08} \cdot \left(1 - \frac{1}{(1,08)^{20}}\right)$$

$$P_{40} = $981814,74$$

Solution

$$P_0 = \frac{C}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$$

$$P_{40} = \frac{100000}{0,08} \cdot \left(1 - \frac{1}{(1,08)^{20}}\right)$$

$$P_{40} = $981814,74$$

Solution

Solution

$$P_{15} = \frac{P_{40}}{1,08^{25}}$$

Solution

$$P_{15} = \frac{P_{40}}{1,08^{25}}$$

$$P_{15} = \frac{981814,74}{1,08^{25}}$$

Solution

$$P_{15} = \frac{P_{40}}{1,08^{25}}$$

$$P_{15} = \frac{981814,74}{1,08^{25}}$$

$$P_{15} = 143362, 53$$

Solution

Luego, este valor lo llevaremos de t=40 a t=15

$$P_{15} = \frac{P_{40}}{1,08^{25}}$$

$$P_{15} = \frac{981814,74}{1,08^{25}}$$

$$P_{15} = 143362, 53$$

Luego, como esta cantidad es mayor que lo que se tendrá ahorrado (54.304,2278), obtendremos la diferencia para saber cuanto se debe ahorrar extra los siguientes años:

Solution

Luego, este valor lo llevaremos de t=40 a t=15

$$P_{15} = \frac{P_{40}}{1,08^{25}}$$

$$P_{15} = \frac{981814,74}{1,08^{25}}$$

$$P_{15} = 143362, 53$$

Luego, como esta cantidad es mayor que lo que se tendrá ahorrado (54.304,2278), obtendremos la diferencia para saber cuanto se debe ahorrar extra los siguientes años:

$$143362,53 - 54304,2278 = 89058,30$$

Solution

Finalmente, sabemos que en t=15 faltarán 89058,30 para tener la pensión deseada... por lo que para saber cuanto debemos ahorrar mes a mes de ahora en adelante, consideraremos éste el valor presente que queremos alcanzar.

Solution

Finalmente, sabemos que en t=15 faltarán 89058,30 para tener la pensión deseada... por lo que para saber cuanto debemos ahorrar mes a mes de ahora en adelante, consideraremos éste el valor presente que queremos alcanzar.

$$89058, 30 = \frac{C}{0,08} \cdot \left(1 - \frac{1}{1,08^{25}}\right)$$

Solution

Finalmente, sabemos que en t=15 faltarán 89058,30 para tener la pensión deseada... por lo que para saber cuanto debemos ahorrar mes a mes de ahora en adelante, consideraremos éste el valor presente que queremos alcanzar.

$$89058, 30 = \frac{\textit{C}}{0,08} \cdot \left(1 - \frac{1}{1,08^{25}}\right)$$

$$C = 8342, 87$$

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Si ahorras CLP \$100.000 durante este año y vas aumentando la cuota anual un 10 % durante los próximos 15 años, ¿Cuánto tendrás al cabo de 15 años si la tasa de interés es 4 % pagadera anualmente?

Si ahorras CLP \$100.000 durante este año y vas aumentando la cuota anual un 10 % durante los próximos 15 años, ¿Cuánto tendrás al cabo de 15 años si la tasa de interés es 4 % pagadera anualmente?.

Solution

Por los datos, podemos reconocer que consiste en una anualidad geométrica (por el crecimiento), no obstante, nos piden el valor futuro.

Solution

$$P_n = \frac{C}{r-g} \cdot \left(1 - \left(\frac{1+g}{1+r}\right)^n\right) \cdot (1+r)^n$$

Solution

$$P_n = \frac{C}{r-g} \cdot \left(1 - \left(\frac{1+g}{1+r}\right)^n\right) \cdot (1+r)^n$$

$$P_n = \frac{100000}{0,04-0,1} \cdot \left(1 - \left(\frac{1+0,1}{1+0,04}\right)^{15}\right) \cdot (1+0,04)^{15}$$

Solution

$$P_n = \frac{C}{r-g} \cdot \left(1 - \left(\frac{1+g}{1+r}\right)^n\right) \cdot (1+r)^n$$

$$P_n = \frac{100000}{0,04-0,1} \cdot \left(1 - \left(\frac{1+0,1}{1+0,04}\right)^{15}\right) \cdot (1+0,04)^{15}$$

$$P_n = 3960507,77$$

Contenido

- Formulario
- 2 Preguntas
 - Pregunta 1
 - Pregunta 2
 - Pregunta 3

Hoy es 10 de abril de 2020 y la UF está a CLP \$26.000. La tasa de inflación anual es 2 % y la tasa de interés nominal anual simple (APR) es 8 %.

Pedro planea comprar una butaca del estadio de River Plate de UF 3.000 dentro de 6 años y su banco paga intereses mensualmente en UF. ¿Cuántas UF tiene que ahorrar Pedro cada mes para acumular el 40 % necesario para el pie?

Hoy es 10 de abril de 2020 y la UF está a CLP \$26.000. La tasa de inflación anual es 2 % y la tasa de interés nominal anual simple (APR) es 8 %.

Pedro planea comprar una butaca del estadio de River Plate de UF 3.000 dentro de 6 años y su banco paga intereses mensualmente en UF. ¿Cuántas UF tiene que ahorrar Pedro cada mes para acumular el 40 % necesario para el pie?

- (A) Menos de UF 5
- (B) Entre UF 5 y UF 10
- (C) Entre UF 10 y UF 15
- (D) Más de UF 15

Solution

Separaremos éste ejercicio en 5 partes para su mejor comprensión:

Solution

Separaremos éste ejercicio en 5 partes para su mejor comprensión:

1- Obtendremos cuánto es el pie que debe pagar Pedro:

Solution

Separaremos éste ejercicio en 5 partes para su mejor comprensión: 1- Obtendremos cuánto es el pie que debe pagar Pedro:

$$0, 4 \cdot 3000 = 1200$$

Solution

Separaremos éste ejercicio en 5 partes para su mejor comprensión:

1- Obtendremos cuánto es el pie que debe pagar Pedro:

$$0, 4 \cdot 3000 = 1200$$

2- Pasaremos la tasa APR a tasa EAR:

Solution

Separaremos éste ejercicio en 5 partes para su mejor comprensión:

1- Obtendremos cuánto es el pie que debe pagar Pedro:

$$0, 4 \cdot 3000 = 1200$$

2- Pasaremos la tasa APR a tasa EAR:

$$\left(1+\frac{0.08}{12}\right)^{12}-1=8,29995\%$$

Solution

3- Obtendremos la tasa Real anual:

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

$$(1+r)^{12} = 1+6,17842\%$$

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

$$(1+r)^{12} = 1+6,17842\%$$

 $1+r = \sqrt[12]{1,0617642}$

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

$$(1+r)^{12} = 1+6,17842\%$$

 $1+r = \sqrt[12]{1,0617642}$
 $1+r = 1,005006816$

Solution

3- Obtendremos la tasa Real anual:

$$\left(\frac{1+0,082999506}{1+0,002}\right)-1=6,17842\,\%$$

$$(1+r)^{12} = 1+6,17842\%$$
$$1+r = \sqrt[12]{1,0617642}$$
$$1+r = 1,005006816$$
$$r = 0,5006816\%$$

Solution

5- Finalmente, obtenemos el valor C (cuánto debe ahorrar Pedro al final de cada mes) de la fórmula de valor futuro (se entiende por qué valor futuro?):

Solution

5- Finalmente, obtenemos el valor C (cuánto debe ahorrar Pedro al final de cada mes) de la fórmula de valor futuro (se entiende por qué valor futuro?):

$$1200 = \frac{C}{0.005006816} \cdot ((1,005006816)^7 2 - 1)$$

Solution

5- Finalmente, obtenemos el valor C (cuánto debe ahorrar Pedro al final de cada mes) de la fórmula de valor futuro (se entiende por qué valor futuro?):

$$1200 = \frac{C}{0,005006816} \cdot ((1,005006816)^7 2 - 1)$$

$$1200 = C \cdot 86,43092383$$

Solution

5- Finalmente, obtenemos el valor C (cuánto debe ahorrar Pedro al final de cada mes) de la fórmula de valor futuro (se entiende por qué valor futuro?):

$$1200 = \frac{C}{0,005006816} \cdot ((1,005006816)^7 2 - 1)$$
$$1200 = C \cdot 86,43092383$$

C = 13,88391963