充足可能性ソルバ (SAT ソルバ) の原理

Hiromi ISHII

2024-03-10 Tsukuba Computer Mathematics Seminar 2024

自己紹介

自己紹介

自己紹介

- いしいひるみ
 ◆ 石井大海
- ◆ 2018 年度 筑波大学数学専攻博士後期課程修了(照井研)
- ◆計算機合宿には2014年から参加
- ◆ 現職: Haskell 製大規模数値計算ベンチャー研究開発職
- ◆ 宣伝: 今年 05/11, 12 に横浜でお芝居をするので興味のある方は是非観に きてください

充足可能性ソルバ (SAT ソルバ) の原理

本日の話題:充足可能性問題と SAT ソルバ

- ◆ 充足可能性問題:与えられた命題論理式が(古典的に)充足可能かどうかを判定する問題
 - ト 古典命題論理式:命題変数 $P_1,...,Q_1,...$,を \land (かつ)、 \lor (または)、 \rightarrow (ならば)、 \neg (でない)で結んで得られる論理式
 - ▶ 古典的充足可能性:与えられた式を真とするような、 命題変数への真偽値。(真)または×(偽)の割り当てが存在するか?
- ◆ 充足可能性 (SATisfiability) を略して SAT と呼ぶ。
- ◆ 判定問題としては NP- 完全: 総当たりで解けるような任意の問題が SAT に帰着できる
- ◆ 色々な問題が SAT (やその拡張である SMT ソルバ) で解け、実用上も重要

SAT で解ける問題の例:論理パズル

問 1 (三人の島民[1])

常に嘘だけをいう嘘吐きと、本当のことだけをいう正直者だけが住む島で、A, B, C = Aの島民に出会った。彼らのいうことには:

- ◆ A: 「BとCはどちらも正直者だ」
- ◆B: 「A は嘘吐きで、C は正直者だ」

A, B, C はそれぞれ正直者か、嘘吐きか?

三人の島民:回答

◆ *A*, *B*, *C* を「A が正直者」「B が正直者」「C が正直者」を表す命題変数とする

(1)

(2)

◆情報を命題論理式に変換して(1) ∧ (2) を充足する解を求めればよい:

$$A \iff B \land C$$

$$B \Longleftrightarrow \neg A \land C$$

◆ 真偽値表を書いてみると、全員嘘吐きだとわかる。

\overline{A}	В	C	(1)	(2)	$(1) \wedge (2)$	\overline{A}	В	C	(1)	(2)	(1)
0	0	0	0	×	×	×	0	0	×	0	>
0	0	X	×	×	×	×	0	×	0	×	>
0	×	0	×	0	×	×	×	0	0	×	×
0	\times	×	\times	0	×	×	×	×	0	0	0

充足可能性ソルバ (SAT ソルバ) の原理

SATで解ける問題の例:数独

- ◆簡単な例として、4 × 4 の小さな数独の問題を SAT で解 くことを考える。
 - ▶ 各マスには 1,2,3,4 のいずれかの数字一つを入れる。

- ちょうど一度ずつ入る。
- $P_{ij}^{=k} \iff d_{ij} = k$ という命題変数とする。

 $d_{03} d_{13} d_{23} d_{33}$

まとめ

まとめ

• Matome here

参考文献

[1] レイモンド・スマリヤン, "スマリヤンの決定不能の論理パズル ゲーデルの定理と様相論理," 白揚社,2008.