Na	ıme:
	Klausur: Grundlagen der Elektronik SS 11
Ku	rzfragen ohne Unterlagen (Bearbeitungszeit: 30 min)
1)	Zeichnen Sie in das nebenstehende kartesische Koordinatensystem folgende Richtungen/Ebenen ein: [110], (110), [T21]. (Bitte entsprechend kennzeichnen.)
2)	Wie groß ist der Abstand zweier nächster Nachbaratome der gleichen Art in einem Kristallgitter mit der Gitterkonstante a
	im Zinkblendegitter?
3)	Welche der Aussagen zu dem gezeigten Bändermodell mit den Bandkanten W_{v} und W_{L} sowie den beiden Quasi-Ferminiveaus W_{Fn} und W_{Fp} für die Elektronen und Löcher sind richtig unter der Voraussetzung gleicher effektiver Zustandsdichten im Leitungs- und Valenzband?
4)	Welche der Aussagen zum Bipolartransistor sind richtig?
5)	Um welche digitale Grundschaltung handelt es sich bei dem Bild rechts unten?
	Um welche Transistoren handelt es sich bei M_1 und M_2 ?
	Stellen Sie die Wahrheitstabelle zur Schaltung auf:
6)	Welche der Aussagen zum Stromfluss durch einen idealen pn-Übergang sind zutreffend?
7)	Betrachten Sie die nebenstehende Schaltung mit einem idealen Operationsverstärker. Bestimmen Sie die Ausgangsspannung u_{\bullet} in Abhängigkeit von den Eingangsspannungen u_{1} und u_{2} sowie den Widerständen.
	$u_{\mathbf{a}} =$

Wie lässt sich die Funktion der Schaltung beschreiben?

8) Der schematische Querschnitt rechts zeigt zwei CMOS-Transistoren. Ergänzen Sie jeweils den Kanaltyp und beschriften Sie in dem unteren Feld das markierte Material, bzw. die Schicht.

CMOS ist die Abkürzung für:

- Konstruieren Sie die Stromkennlinie aus dem Ausgangskennlinienfeld. Um welche Art von Transistor handelt es sich? (Hinweis zur Stromrichtung: Alle Ströme fließen in den Transistor hinein.)
- 10) Welche der Aussagen zu einer Doppelheterostruktur-LED sind richtig?

- zinkelenden gitter: $(=\frac{\sqrt{2}}{2}a$ a=5.654 Å

 Diamant gitter: $(=\frac{\sqrt{3}}{2}a$ a=5.431 Å
- 3) Wr liegt mittig zwischen Wr U. WL
- 4) Early · Eeffekt Alhanigkeit von Czuß Spannung
 - 2 Verhälfnis von Emitter in Basis Majoritats
 - Basistransportfaktor BT ist das Verhältnis B. stron zum gesamten Enitterstrom
 - Stromgesteaert siehe 5509 Lennert Karztragen.

- außere Spg. in Sperrichtung -> Sperrstrom durch
 Minotitäts träger
 in Durchlass richtung -> IF Strom
- 7. DPs Wikipedia OP Invertierend/Nicht In.
- 8. Non I pro

 Complementary Metal Oxide semiconductor

 9. Ic Io 10. Niedrige Schuellstromdichte
 Wirkungsgrad Skript

Name:	 Matrikel-Nr.:

Klausur: Grundlagen der Elektronik SS 11

Ich erkläre mich damit einverstanden, dass meine Klausurnote gemeinsam mit meiner Matrikelnummer im Institut ausgehängt wird.

Braunschweig, den 8. 8. 2011	Unterschrift:	
------------------------------	---------------	--

Aufgaben ohne Unterlagen (Bearbeitungszeit: 2 Std.)

- 1) Ein homogen mit Donatoren und Akzeptoren dotierter Halbleiter weist folgende Daten auf: $W_G = 1.5 \text{ eV}$; $W_L W_{D1} = 10 \text{ meV}$; $W_A W_V = 10 \text{ meV}$; $N_L = 5 \cdot 10^{17} \text{ cm}^{-3} (T/T_0)^{3/2}$; $N_V = 1 \cdot 10^{19} \text{ cm}^{-3} (T/T_0)^{3/2}$; $N_{D1} = 2 \cdot 10^{13} \text{ cm}^{-3}$; $N_A = 10^{15} \text{ cm}^{-3}$; zur Vereinfachung sei $W_V = 0$. Sein elektrisches Verhalten soll bei $T_0 = 300 \text{ K}$ untersucht werden ($kT_0 \approx 26 \text{ meV}$).
 - a) Berechnen Sie Eigenleitungskonzentration $n_i = (n \cdot p)^{0.5}$ und -niveau $W_i = (W_V + W_L)/2 + 0.5 \cdot kT \cdot \ln(N_V/N_L)$.
 - b) Zeichnen Sie unter Verwendung obiger Daten die Konzentrationen der freien Ladungsträger n und p sowie asymptotisch der ionisierten Störstellen N_{D1}^+ und N_A^- in Abhängigkeit von der Lage des Fermi-Niveaus W_F in das Shockley-Diagramm (Abb. 1a und b). Markieren Sie in Teil a alle wichtigen Größen $(N_L, N_V, n_I, W_{D1}, W_A, W_L, W_V, W_I, W_{F1})$. Geben Sie für Ladungsneutralität die Lage des Fermi-Niveaus W_{F1} sowie die sich einstellenden Elektronen- und Löcherkonzentrationen n_1 und p_1 an (Werte).
 - c) Derselbe Halbleiter wird zusätzlich mit einem zweiten Donator $N_{\rm D2}=10^{16}~{\rm cm}^{-3};$ $W_{\rm L}-W_{\rm D2}=750~{\rm meV}$ dotiert. Berechnen Sie die Konzentration ionisierter Donatoren $N_{\rm D2}^+$ für $W_{\rm F}=1,25~{\rm eV}$ mit

$$N_{\rm D}^{*} = N_{\rm D} \left(2 \exp \left(\frac{W_{\rm F} - W_{\rm D}}{kT} \right) + 1 \right)^{-1}$$

d) Ergänzen Sie Abb. 1b um den asymptotischen Verlauf der ionisierten Störstellen N_{D2}+ unter Verwendung des bei c) berechneten Wertes und geben Sie für Ladungsneutralität die Lage des Fermi-Niveaus $W_{\rm F2}$ sowie die sich einstellenden Elektronen- und Löcherkonzentrationen n_2 und p_2 an (Werte).

Stellen Sie die Gleichung für Elektroneutralität auf. Vereinfachen Sie sie für beide Fälle (1 und 2) durch Vernachlässigungen aufgrund der Informationen aus den Shockley-Diagrammen in Abb. 1 a und b. Berechnen Sie daraus W_{F1,2} sowie n_{1,2} und p_{1,2}. Diskutieren Sie das Ergebnis kurz.

Abb. 1: Shockley-Diagramme

lame:

Matrikel-Nr.:

Gegeben ist der abrupte n^+p -Übergang in Abb. 2 mit den konstanten Dotierungen $N_D^+ = N_D = 6 \cdot 10^{17}$ cm⁻³ und $N_A^- = N_A = 10^{15}$ cm⁻³. Bekannt sind weiterhin: Eigenleitungskonzentration $n_i = 10^{10}$ cm⁻³; Permittivität $\varepsilon = 10^{-12}$ As/(Vcm); Diffusionslängen $L_u = L_p = 5$ µm; Lebensdauern $\tau_p = \tau_u = 20$ µs, Temperatur T = 300 K (kT = 26 meV).

a) Skizzieren Sie die Verläufe der Raumladungsdichte ρ, der Feldstärke E und der Bandkanten W_L und W_V in der Diode für thermodynamisches Gleichgewicht (U = 0). Dabei soll angenommen werden, dass die Raumladungszone (-w_n ≤ x ≤ w_p) vollständig an beweglichen Ladungsträgern verarmt ist und ihre Ränder scharf sind. Achten Sie auf vollständige Beschriftung!

nung U_D in Abb. 2d ein und berechnen Sie sie (Formel und Wert)
unter Verwendung der bekannten Abb. 2: n^+p -Diode
Gleichungen für $n,p = f(W_F)$ aus
diesem Diagramm. Wie groß sind $n_{n0}(-w_n)$ und $n_{p0}(w_p)$?

C) Der Strom durch den n⁺p-Übergang soll analysiert werden. Stellen Sie dazu für die Minoritätsladungsträger die Strom- und Kontinuitätsgleichungen in den beiden Bahngebieten (-d ≤ x ≤ -w_n und w_p ≤ x ≤ d) auf. Allgemein gilt

$$J_{\rm n} = J_{\rm nF} + J_{\rm nD} = \sigma_{\rm n} E + {\rm q} D_{\rm n} {\rm grad} n_{\rm p} \; ; \; \frac{{\rm d} n_{\rm p}}{{\rm d} t} = \frac{1}{{\rm q}} {\rm div} J_{\rm n} - r + g \; ; \; r = \frac{n_{\rm p} - n_{\rm p0}}{\tau_{\rm n}} \; ; \; L_{\rm n} = \sqrt{D_{\rm n} \tau_{\rm n}} \; ; \; L_{\rm p} = \sqrt{D_{\rm p} \tau_{\rm n}} \; ; \; L_{\rm p} = \sqrt{D_{\rm p} \tau_{\rm p}} \; ;$$

Bilden Sie daraus für den eingeschwungenen Zustand die Differentialgleichungen, die die Verläufe der Minoritätsladungsträgerkonzentrationen beschreiben.

- d) An den Kontakten bei ±d herrscht Gleichgewicht. Wie lauten die vier Randbedingungen für die Minoritätsladungsträgerkonzentrationen in Abhängigkeit von U (vgl. Abb. 2a) an den Orten x = -d, -w_n, w_p, d (Formeln)?
- e) Lösen Sie die DGLs mit den Randbedingungen aus d) in Abhängigkeit von U und den Ansätzen

$$n_{\rm p} = A \cdot \sinh\left(\frac{x - w_{\rm p}}{L_{\rm n}}\right) + B \cdot \sinh\left(\frac{d - x}{L_{\rm n}}\right) + C \text{ und}$$

$$p_{\rm n} = D \cdot \sinh\left(\frac{-d - x}{L_{\rm p}}\right) + E \cdot \sinh\left(\frac{x + w_{\rm n}}{L_{\rm p}}\right) + F.$$

Hinweis: Bestimmen Sie zunächst die Konstanten C und F unter Zuhilfenahme des Aufgabenteils c).

f) Berechnen Sie das Verhältnis von Elektronen- zu Löcherstromdichte über den n^+p Übergang J_n/J_p unter Vernachlässigung von Generation und Rekombination in der
Verarmungszone und einem Spannungsabfall über den Bahngebieten. Geben Sie das
Verhältnis näherungsweise an für den Fall, dass $|d| \gg w_n$, w_p ist (Formel und Wert).
Diskutieren Sie kurz das Ergebnis.

- Ein pnp-Transistor wird in Emitterschaltung betrieben und durch sein Vierquadranten-Kennlinienfeld (Abb. 3) spezifiziert.
 - a) Tragen Sie den Arbeitspunkt ($U_{\infty} = -8 \text{ V}$, $I_b = -24 \,\mu\text{A}$) in die Diagramme ein. Wie groß sind U_{∞} und I_e ? (Hinweis: Transistor-Strompfeile zeigen in das Bauelement hinein.)

 Das Kleinsignalverhalten des Transistors soll durch seine hybride Stromverstärker-Matrix für die Emitterschaltung

$$u_1 = h_{11e}i_1 + h_{12e}u_2$$
 und $i_2 = h_{21e}i_1 + h_{22e}u_2$.

beschrieben werden. Skizzieren Sie unter Verwendung der Matrix-Elemente das Vierpol-Ersatzschaltbild des Transistors, und beschriften Sie seine Anschlussklemmen mit E (Emitter), B (Basis) und C (Kollektor).

- c) Geben Sie die Zuordnung der Ströme und Spannungen (u_{1,2} und i_{1,2}) zu den Größen der Kennlinienfelder an und bestimmen Sie Zahlenwerte für h_{11e}, h_{12e}, h_{21e} und h_{22e} aus den Kennlinienfeldern (Abb. 3).
- d) Rechnen Sie für die Emitterschaltung die h-Parameter in die y-Parameter der Leitwertmatrix um (Gleichungen und Werte). Geben Sie dazu zunächst die beiden Gleichungen der y-Matrix an und skizzieren Sie den zugehörigen Vierpol.

Lösung zu 1):

- a) $n_i(T) = [N_L(T) \cdot N_V(T)]^{1/2} \cdot \exp[-W_G/(2kT)] = 5.6 \cdot 10^5 \text{ cm}^{-3}, W_i = 0.79 \text{ eV mit } W_G = W_L \text{ da } W_V = 0.$
- b) Shockley-Diagramm siehe unten (a). Ablesen der Werte an der Kreuzung der Summenkurven für positive und negative Ladungen: $W_{\rm F1} \approx 0.24$ eV; $p_1 \approx N_{\rm A} = 10^{15}$ cm⁻³; $n_1 = n_1^2/p_1 = 3.2 \cdot 10^4$ cm⁻³.

- c) $N_{D2}^+(W_F = 1,25 \text{ eV}) = 2.10^7 \text{ cm}^{-3}$
- d) Damit folgt das Shockley-Diagramm oben (b) aus dem man ablesen kann: $W_{\rm F2} \approx W_{\rm i} = 0.79 \, {\rm eV}; \, n_2 \approx p_2 \approx n_{\rm i} = 5.6 \cdot 10^5 \, {\rm cm}^{-3}.$
- e) Elektroneutralität heißt $n + N_A^- = p + N_D^+$.

Im Fall 1 ist $N_{D1} \ll N_A$. Folglich haben wir einen p-Halbleiter mit $p_1 \approx N_A^- = N_A = 10^{15} \text{ cm}^{-3} \gg n_1 = n_1^2/p_1 = 3,2 \cdot 10^{-4} \text{ cm}^{-3} \text{ und } W_F = -kT \cdot \ln(N_A/N_V) + W_V = 0,24 \text{ eV}.$

Im Fall 2 zeigt das Shockley-Diagramm, dass N_{D2}^+ und $N_A^- > N_{D1}^+$, n und p. Also folgt $N_{D2}^+ \approx N_A^- = N_A$ bzw. $W_{F2} - W_V \approx W_{D2} - W_L + W_G + kT \ln[(N_{D2}/N_A-1)/2] = 0,789 \text{ eV} \approx W_1$ und $n_2 \approx p_2 \approx n_1 = 5,6\cdot10^5 \text{ cm}^{-3}$. Durch den "tiefen" Donator wird der Akzeptor kompensiert und quasi Eigenleitung erreicht.

Matrikel-Nr.:

E

-d

Lösung zu 2):

- a) Siehe Abb.
- b) Aus Abb. d) folgt $qU_D = (W_L W_F)|_{wp} (W_L W_F)|_{-nm}$. Mit $n_{n0}(-w_n) = N_D = N_L \cdot \exp[(W_F W_L)/kT]$ und $p_{p0}(w_p) = N_A = N_V \cdot \exp[(W_V W_F)/kT]$ so wie $n_{p0}(w_p) = n_i^2/N_A$ folgt

c)

$$U_{\rm D} = \frac{kT}{q} \cdot \ln \left(\frac{N_{\rm D} N_{\rm A}}{n_{\rm l}^2} \right) = 0.76 \text{ V}.$$

c) Im stationären Zustand (dp_p/dt = dn_p/dt = 0) ergeben sich die gesuchten Differenzialgleichungen

$$0 = \frac{d^2 n_p}{dx^2} - \frac{n_p - n_{p0}}{L_n^2} \quad \text{und} \quad 0 = \frac{d^2 p_n}{dx^2} - \frac{p_n - p_{n0}}{L_p^2}.$$

d) $p_n(-d) = p_{n0} = n_i^2/N_D$, $n_p(d) = n_{p0} = n_i^2/N_A$ für Gleichgewicht und mit der Pfeilrichtung der Spannung gilt

$$p_n(-w_p) = p_{n0} \cdot e^{\frac{-qU}{kT}}$$
 und $n_p(w_p) = n_{p0} \cdot e^{\frac{-qU}{kT}}$.

e) Die Konstante C ergibt sich nach Einsetzen des Ansatzes in die DGL.

$$\frac{A}{L_{\rm n}^2} \cdot \sinh\left(\frac{x-w_{\rm p}}{L_{\rm n}}\right) + \frac{B}{L_{\rm n}^2} \cdot \sinh\left(\frac{d-x}{L_{\rm n}}\right) - \frac{A \cdot \sinh\left(\frac{x-w_{\rm p}}{L_{\rm n}}\right) + B \cdot \sinh\left(\frac{d-x}{L_{\rm n}}\right) + C - n_{\rm p0}}{L_{\rm n}^2} = 0$$

$$\Rightarrow C = n_{\rm p0} \; ; \; \text{analog folgt } F = p_{\rm n0} \; .$$

Mit den Randbedingungen (aus d) folgen direkt die Konstanten A und B

$$x = d: \quad n_{p} = n_{p0} = A \cdot \sinh\left(\frac{d - w_{p}}{L_{n}}\right) + B \cdot 0 + n_{p0} \quad \rightarrow \quad A = 0$$

$$x = w_{p}: \quad n_{p} = n_{p0} \cdot e^{-\frac{qU}{kT}} = A \cdot 0 + B \cdot \sinh\left(\frac{d - w_{p}}{L_{n}}\right) + n_{p0} \quad \rightarrow \quad B = \frac{n_{p0}\left(e^{-\frac{qU}{kT}} - 1\right)}{\sinh\left(\frac{d - w_{p}}{L_{n}}\right)}.$$

$$x = -d; \quad p_{n} = p_{n0} = D \cdot 0 + E \cdot \sinh\left(\frac{-d + w_{n}}{L_{p}}\right) + p_{n0} \rightarrow E = 0$$

$$x = -w_{n}; \quad p_{n} = p_{n0} \cdot e^{-\frac{qU}{kT}} = D \cdot \sinh\left(\frac{-d + w_{n}}{L_{p}}\right) + p_{n0} \rightarrow D = \frac{p_{n0}\left(e^{-\frac{qU}{kT}} - 1\right)}{\sinh\left(\frac{-d + w_{n}}{L_{p}}\right)}.$$

und daraus

$$n_{\rm p} - n_{\rm p0} = n_{\rm p0} \left(e^{-\frac{{\rm q}U}{kT}} - 1 \right) \frac{\sinh\left(\frac{d-x}{L_{\rm n}}\right)}{\sinh\left(\frac{d-w_{\rm p}}{L_{\rm n}}\right)} \quad \text{bzw.} \quad p_{\rm n} - p_{\rm n0} = p_{\rm n0} \left(e^{-\frac{{\rm q}U}{kT}} - 1 \right) \frac{\sinh\left(\frac{-d-x}{L_{\rm p}}\right)}{\sinh\left(\frac{-d+w_{\rm n}}{L_{\rm p}}\right)} \quad .$$

 f) Wegen der feldfreien Bahngebiete und der vernachlässigbaren Generation/Rekombination in der Verarmungszone folgt

$$J_{n} = qD_{n} \frac{dn_{p}}{dx} \Big|_{x=w_{p}} = \frac{qD_{n}n_{p0}\left(e^{-\frac{qU}{kT}}-1\right)}{-L_{n} \cdot \tanh\left(\frac{d-w_{p}}{L_{n}}\right)} \text{ und}$$

$$J_{p} = -qD_{p} \frac{dp_{n}}{dx} \Big|_{x=-w_{n}} = -\frac{qD_{p}p_{n0}\left(e^{-\frac{qU}{kT}}-1\right)}{-L_{p} \cdot \tanh\left(\frac{-d+w_{n}}{L_{p}}\right)}.$$

Für den gesuchten Quotienten ergibt sich näherungsweise (bei Vernachlässigung der schmalen Verarmungszonen) $J_{n}/J_{p} = n_{p0}/p_{a0} = N_{D}/N_{A} = 600$. Die hoch dotierte Seite dominiert also den Strom – in diesem Falle die Elektronen.

Lösung zu 3:

- a) Mit den gegebenen Daten lässt sich der Arbeitspunkt in alle vier Kennlinien eintragen (siehe rechts). Man kann ablesen, dass $U_{eb} = 0.5 \text{ V und } I_{o} = -6.3 \text{ mA}$ sind.
- b) Das Ersatzschaltbild folgt direkt aus den gegebenen Gleichungen (siehe unten).

c) Damit ergeben sich folgende Zuordnungen: $u_1 = -u_{ch}$, $i_1 = i_b$, $u_2 = u_{ce}$ and $i_2 = i_c$.

Aus den Steigungen im Arbeitspunkt folgen die h-Parameter:

$$h_{11e} = -\frac{\partial U_{ob}}{\partial I_b}\Big|_{U_{oc}} = \frac{0.15 \text{ V}}{50 \text{ }\mu\text{A}} = 3 \text{ k}\Omega, h_{12e} = -\frac{\partial U_{eb}}{\partial U_{oc}}\Big|_{I_b} = 0,$$

$$h_{21e} = \frac{\partial I_c}{\partial I_b}\Big|_{U_{oc}} = \frac{9.3 \text{ mA}}{44 \text{ }\mu\text{A}} = 211, h_{22e} = \frac{\partial I_o}{\partial U_{ce}}\Big|_{I_b} = \frac{0.9 \text{ mA}}{15 \text{ V}} = 60 \text{ }\mu\text{S}.$$

$$i_1 = y_{11e}u_1 + y_{12e}u_2$$

$$i_2 = y_{21e}u_1 + y_{22e}u_2$$

Umstellen der h-Parameter-Gleichungen liefert

$$i_1 = \frac{1}{h_{11e}} u_1 - \frac{h_{12e}}{h_{11e}} u_2$$

$$i_2 = h_{21e} \left(\frac{1}{h_{11e}} u_1 - \frac{h_{12e}}{h_{11e}} u_2 \right) + h_{22e} u_2 = \frac{h_{21e}}{h_{11e}} u_1 + \frac{h_{22e} h_{11e} - h_{12e} h_{21e}}{h_{11e}} u_2 .$$

Ein Koeffizientenvergleich liefert direkt:

$$y_{11c} = \frac{1}{h_{11c}} = 333 \text{ } \mu\text{S} \text{ ; } y_{12c} = -\frac{h_{12c}}{h_{11c}} = 0 \text{ ; }$$

$$y_{21c} = \frac{h_{21c}}{h_{11c}} = 70 \text{ } \text{mS} \text{ ; } y_{22c} = \frac{h_{22c}h_{11c} - h_{12c}h_{21c}}{h_{11c}} = 60 \text{ } \mu\text{S} \text{ .}$$