FEATURES

- Overshoot and Undershoot Voltage Protection
- Isolation in Powered-Off Mode, V₊ = 0
- · Specified Break-Before-Make Switching
- Low ON-State Resistance (12 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

SOT-23 OR SC-70 PACKAGE

APPLICATIONS

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits

YEP OR YZP PACKAGE (BOTTOM VIEW)

DESCRIPTION/ORDERING INFORMATION

The TS5A63157 is a single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. Signals up to V_{+} (peak) can be transmitted in either direction.

TI has integrated overshoot and undershoot protection circuitry. The TS5A63157 senses overshoot and undershoot events at the I/Os and responds by preventing voltage differentials from developing and turning the switch on.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoStar, NanoFree are trademarks of Texas Instruments.

SUMMARY OF CHARACTERISTICS $V_{+} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$

Configuration	Single 2:1 Multiplexer/ Demultiplexer (1 × SPDT)					
Number of channels	1					
ON-state resistance (ron)	12 Ω					
ON-state resistance match (Δr _{on})	0.15 Ω					
ON-state resistance flatness (r _{on(flat)})	6 Ω					
Turn-on/turn-off time (t _{ON} /t _{OFF})	5.7 ns/3.8 ns					
Break-before-make time (t _{BBM})	0.5 ns					
Charge injection (Q _C)	7 pC					
Bandwidth (BW)	250 MHz					
OFF isolation (O _{ISO})	-57 dB at 10 MHz					
Crosstalk (X _{TALK})	-54 dB at 10 MHz					
Total harmonic distortion (THD)	0.01%					
Leakage current (I _{NO(OFF)} /I _{NC(OFF)})	±1 μA					
Power-supply current (I ₊)	10 μΑ					
Undershoot protection	–2 V					
Overshoot protection	V ₊ + 2 V					
Package options	6-pin SOT-23, SC-70, and DSBGA					

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YEP	Tape and reel	TS5A63157YEPR (3)	
-40°C to 85°C	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Tape and reel	TS5A63157YZPR ⁽³⁾	PREVIEW
	SOT (SOT-23) – DBV	Tape and reel	TS5A63157DBVR	JBE_
	SOT (SC-70) – DCK	Tape and reel	TS5A63157DCKR	J7_

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
- (2) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, · = Pb-free).
- (3) Package preview

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

SCDS203-DECEMBER 2005

Absolute Minimum and Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾		-0.5	6.5	V
$V_{NO} \ V_{NC} \ V_{COM}$	Analog voltage range(3)(4)(5)		-0.5	V ₊ + 0.5	V
I _K	Analog port diode current	V_{NC} , V_{NO} , V_{COM} < 0 or V_{NO} , V_{NC} , V_{COM} > V_{+}	-50	50	mA
I _{NO} I _{NC} I _{COM}	On-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{+}	-50	50	mA
V_{I}	Digital input voltage range (3)(4)		-0.5	6.5	V
I_{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I ₊	Continuous current through V ₊		-100	100	mA
I_{GND}	Continuous current through GND		-100	100	mA
		DBV package ⁽⁶⁾		206	
0	Deale as the real impedance	DCK package (6)		252	°C/W
θ_{JA}	Package thermal impedance	YEA/YZA package ⁽⁶⁾		143	-C/VV
		YEP/YZP package (7)		123	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 5) This value is limited to 5.5 V maximum.
- (6) The package thermal impedance is calculated in accordance with JESD 51-7.
- (7) The package thermal impedance is calculated in accordance with JESD 51-5.

SCDS203-DECEMBER 2005

Electrical Characteristics for 5-V Supply

 V_{+} = 4.5 V to 5.5 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$V_{\text{COM}}, V_{\text{NO}}, V_{\text{NO}}$					0		V ₊	V
Voltage undershoot	V _{IKU}	$0 \ge (I_{NC}, I_{NO}, \text{ or } I_{COM}) \ge -\xi$	50 mA		5.5 V			-2	V
Peak ON-state	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C	4.5 V		4.6	11	Ω
resistance	r _{peak}	$I_{COM} = -30 \text{ mA},$	See Figure 13	Full	4.5 V			13	32
		V_{NO} or $V_{NC} = 0$,		25°C			4	6.5	
		I _{COM} = 30 mA		Full				8	
ON-state	r _{on}	V_{NO} or $V_{NC} = 2.4 \text{ V}$, $I_{COM} = -30 \text{ mA}$	Switch ON,	25°C	4.5 V		4	8	Ω
resistance	·on		See Figure 13	Full				10	
		V_{NO} or $V_{NC} = 4.5 \text{ V}$,		25°C	:		5.5	10	
		$I_{COM} = -30 \text{ mA}$		Full				12	
ON-state resistance				25°C			0.1	0.14	
match between channels	$\Delta r_{\sf on}$	V_{NO} or $V_{NC} = 3.15 \text{ V}$, $I_{COM} = -30 \text{ mA}$,	Switch ON, See Figure 13	Full	4.5 V			0.15	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C			1.5	2	
resistance flatness	r _{on(flat)}	$I_{COM} = -30 \text{ mA},$	See Figure 13	Full	4.5 V			4	Ω
	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C	5.5 V		0.001	0.03	
NC, NO OFF leakage	I _{NO(OFF)}	$V_{COM} = V_{+}$ to 0	See Figure 14	Full	5.5 V			0.05	^
current	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 5.5 V,	Switch OFF,	25°C	0		0.15	1	μΑ
	I _{NOPWROFF)}	$V_{COM} = 5.5 \text{ V to } 0,$	See Figure 14	Full	U			5	
COM		$V_{COM} = 0 \text{ to } 5.5 \text{ V},$	Switch ON,	25°C			0.2	1	
OFF leakage current	COM(PWROFF)	V_{NC} or $V_{NO} = 5.5 \text{ V to } 0$,	See Figure 14	Full	0			10	μΑ
NC, NO	1	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C			0.001	0.01	
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$V_{COM} = Open,$	See Figure 15	Full	5.5 V			0.02	μΑ
COM		V or V - Open	Switch ON,	25°C			0.003	0.03	
ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	See Figure 15	Full	5.5 V			0.05	μΑ
Digital Control In	put (IN)								
Input logic high	V _{IH}			Full		V ₊ × 0.7		5.5	V
Input logic low	V _{IL}			Full		0		V ₊ × 0.3	V
Input leakage	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C	5.5 V		0.05	0.1	μΑ
current	יוהי יוב	1 333 3 33		Full				0.02	r

Electrical Characteristics for 5-V Supply (continued)

 $\rm V_{\scriptscriptstyle +} = 4.5~V$ to 5.5 V, $\rm T_{\rm A} = -40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONI	DITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Dynamic	•			•					
		V - V or CND	C = 50 pE	25°C	5 V	2	3.4	5	
Turn-on time	t _{ON}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	4.5 V to 5.5 V	2		5.5	ns
		$V_{COM} = V_{+}$ or GND,	$C_{L} = 50 \text{ pF},$	25°C	5 V	1	2.8	3.4	
Turn-off time	t _{OFF}	$R_L = 500 \Omega$	See Figure 17	Full	4.5 V to 5.5 V	1		3.8	ns
Output voltage during undershoot	V _{OUTU}	See Figure 18				2.5	V _{OH} - 0.3		V
Output voltage during overshoot	V _{OUTO}	See Figure 18					V _{OL} + 0.3	2	V
Break-before-		\/ -\/ -\/2	C _L = 50 pF,	25°C	5 V	0.5	5	12	
make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	See Figure 19	Full	4.5 V to 5.5 V	0.5		14	ns
Charge injection	Q_{C}	$V_{GEN} = 0,$ $R_{GEN} = 0,$	$C_L = 0.1 \text{ nF},$ See Figure 23	25°C	5 V		-21		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	5 V		5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	5 V		14.5		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		14.5		pF
Digital input capacitance	C _I	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	5 V		2.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	5 V		371		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 21	25°C	5 V		-61		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 22	25°C	5 V		-61		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	5 V		0.06		%
Supply					,			'	
Positive supply	I ₊	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C	5.5 V	-	0.01	0.1	μА
current	'+	VI - V+ OI GIND,	SWILLII ON OI OFF	Full	3.5 v			0.75	μΛ

SCDS203-DECEMBER 2005

Electrical Characteristics for 3.3-V Supply

 $V_{+} = 3 \text{ V to } 3.6 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V ₊	V
Voltage undershoot	V _{IKU}	$0 \ge (I_{NC}, I_{NO}, \text{ or } I_{COM}) \ge -5$	0 mA		3.6 V				V
Peak ON-state	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C	3 V		6.4	14	Ω
resistance	r _{peak}	$I_{COM} = -24 \text{ mA},$	See Figure 13	Full	3 V			18	52
		V_{NO} or $V_{NC} = 0$,		25°C			4.8	8	
ON-state	r _{on}	I _{COM} = 24 mA	Switch ON,	Full	3 V			10	Ω
resistance	on	V_{NO} or $V_{NC} = 3 V$,	See Figure 13	25°C			6.3	12	
		$I_{COM} = -24 \text{ mA}$		Full				15	
ON-state				25°C			0.1	0.2	
resistance match between channels	$\Delta r_{\sf on}$	V_{NO} or $V_{NC} = 2.1 \text{ V}$, $I_{COM} = -24 \text{ mA}$,	Switch ON, See Figure 13	Full	3 V			0.2	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C			2.8	4	
resistance flatness	r _{on(flat)}	$I_{\text{COM}} = -24 \text{ mA},$	See Figure 13	Full	3 V			7	Ω
	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	3.6 V		0	0.03	
NC, NO OFF leakage	I _{NO(OFF)}	$V_{COM} = V_{+}$ to 0	See Figure 14	Full	3.6 V			0.05	μA
current	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 3.6 V,	Switch OFF,	25°C	0		0.15	0.05	μΑ
	I _{NOPWROFF)}	$V_{COM} = 3.6 \text{ V to 0},$	See Figure 14	Full	· ·			2	
COM		$V_{COM} = 0 \text{ to } 3.6 \text{ V},$	Switch ON,	25°C	0		0.2	0.05	^
OFF leakage current	I _{COM(PWROFF)}	V_{NC} or $V_{NO} = 3.6 \text{ V to } 0$,	See Figure 14	Full	U			5	μΑ
NC, NO	1	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch ON,	25°C		-0.1	0.05	0.1	
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$V_{\text{COM}} = \text{Open},$	See Figure 15	Full	3.6 V	-1		1	μΑ
СОМ		V _{NC} or V _{NO} = Open,	Switch ON,	25°C			0.003	0.03	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0 \text{ to } V_+,$	See Figure 15	Full	3.6 V			0.05	μΑ
Digital Control II	nput (IN)								
Input logic high	V _{IH}			Full		V ₊ × 0.7		5.5	V
Input logic low	V _{IL}			Full		0		V ₊ × 0.3	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	3.6 V		0.005	0.01	μΑ

SCDS203-DECEMBER 2005

Electrical Characteristics for 3.3-V Supply (continued)

 $\rm V_{\scriptscriptstyle +} = 3~V$ to 3.6 V, $\rm T_{\rm A} = -40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Dynamic				•					
		V - V or CND	$C_1 = 50 \text{ pF},$	25°C	3.3 V	2	4.3	6.6	
Turn-on time	t _{ON}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	See Figure 17	Full	3 V to 3.6 V	2		7	ns
		V v or CND	C	25°C	3.3 V	1	3.3	6.3	
Turn-off time	t _{OFF}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	3 V to 3.6 V	1		7	ns
Output voltage during undershoot	V _{OUTU}	See Figure 18				2.5	V _{OH} - 0.3		V
Output voltage during overshoot	V _{OUTO}	See Figure 18					V _{OL} + 0.3	2	V
Drook before		V V V/O	C 50 %F	25°C	3.3 V	0.5	7	17	
Break-before- make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 50 pF, See Figure 19	Full	3 V to 3.6 V	0.5		19.5	ns
Charge injection	$Q_{\mathbb{C}}$	V _{GEN} = 0, R _{GEN} = 0,	$C_L = 0.1 \text{ nF},$ See Figure 23	25°C	3.3 V		-11.5		рС
NC, NO OFF capacitance	$\begin{matrix} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{matrix}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		5		pF
NC, NO ON capacitance	$C_{NC(ON)}, \ C_{NO(ON)}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	3.3 V		15		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	3.3 V		15		pF
Digital input capacitance	C _I	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V		2.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	3.3 V		370		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 21	25°C	3.3 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 22	25°C	3.3 V		-60		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	3.3 V		0.1		%
Supply									
Positive supply current	I ₊	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	3.6 V		0.05	0.1	μΑ

SCDS203-DECEMBER 2005

Electrical Characteristics for 2.5-V Supply

 V_{+} = 2.3 V to 2.7 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	V ₊	MIN TYP	MAX	UNIT
Analog Switch						,	<u> </u>	
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0	V ₊	V
Voltage undershoot	V _{IKU}	0 mA \geq (I _{NC} , I _{NO} , or I _{COM})	≥ – 50 mA		2.7 V			V
Peak ON-state	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C	2.3 V	9.2	30	Ω
resistance	r _{peak}	$I_{COM} = -8 \text{ mA},$	See Figure 13	Full	2.0 1		35	
		V_{NO} or $V_{NC} = 0$,		25°C		5.4	8.5	
ON-state	r	I _{COM} = 8 mA	Switch ON,	Full	2.3 V		12	Ω
resistance	r _{on}	V_{NO} or $V_{NC} = 2.3 \text{ V}$,	See Figure 13	25°C	2.5 V	8.6	15.5	52
		$I_{COM} = -8 \text{ mA}$		Full			25	
ON-state				25°C		0.05	0.3	
resistance match between channels	$\Delta r_{\sf on}$	V_{NO} or $V_{NC} = 1.6 \text{ V}$, $I_{COM} = -8 \text{ mA}$,	Switch ON, See Figure 13	Full	2.3 V		0.5	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C		5	9	
resistance flatness	r _{on(flat)}	$I_{\text{COM}} = -8 \text{ mA},$	See Figure 13	Full	2.3 V		15	Ω
	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C	2.7 V	0	0.03	
NC, NO OFF leakage	I _{NO(OFF)}	$V_{COM} = V_{+}$ to 0,	See Figure 14	Full	2.7 V		0.05	μΑ
current	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 2.7 V,	Switch OFF,	25°C	0	0.15	0.05	μΑ
	I _{NOPWROFF)}	$V_{COM} = 2.7 \text{ V to } 0,$	See Figure 14	Full	U		0.75	
COM		$V_{COM} = 0 \text{ to } 2.7 \text{ V},$	Switch ON,	25°C		0.2	0.5	
OFF leakage current	I _{COM(PWROFF)}	V_{NC} or $V_{NO} = 2.7 \text{ V to 0}$,	See Figure 14	Full	0		1	μΑ
NC, NO	hieren	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C		0.001	0.01	
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V _{COM} = Open,	See Figure 15	Full	2.7 V		0.02	μΑ
СОМ		V _{NC} or V _{NO} = Open,	Switch ON,	25°C		0.003	0.03	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0 \text{ to } V_+,$	See Figure 15	Full	2.7 V		0.05	μА
Digital Control I	nput (IN)							
Input logic high	V _{IH}			Full		V ₊ × 0.75	5.5	٧
Input logic low	V _{IL}			Full		0	V ₊ × 0.25	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	2.7 V	0.005	0.01	μΑ

Electrical Characteristics for 2.5-V Supply (continued)

 $\rm V_{+} = 2.3~V$ to 2.7 V, $\rm T_{A} = -40^{\circ}C$ to $85^{\circ}C$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONI	DITIONS	T _A	٧,	MIN	TYP	MAX	UNIT
Dynamic									
		$V_{COM} = V_{+} \text{ or GND},$	C _L = 50 pF,	25°C	2.5 V	3	5.8	9.6	
Turn-on time	t _{ON}	$R_L = 500 \Omega$,	See Figure 17	Full	2.3 V to 2.7 V	3		12	ns
		$V_{COM} = V_{+}$ or GND,	$C_{L} = 50 \text{ pF},$	25°C	2.5 V	1.5	4.5	7.3	
Turn-off time	t _{OFF}	$R_L = 500 \Omega,$	See Figure 17	Full	2.3 V to 2.7 V	1.5		7.5	ns
Output voltage during undershoot	V _{OUTU}	See Figure 18				2.5	V _{OH} - 0.3		V
Output voltage during overshoot	V _{OUTO}	See Figure 18					V _{OL} + 0.3	2	V
Break-before-		V - V - V /2	$C_{L} = 50 \text{ pF},$	25°C	2.5 V	0.5	10	25	
make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	See Figure 19	Full	2.3 V to 2.7 V	0.5		28.5	ns
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $R_{GEN} = 0,$	$C_L = 0.1 \text{ nF},$ See Figure 23	25°C	2.5 V		-8		pC
NC, NO OFF capacitance	$\begin{matrix} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{matrix}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		5		pF
NC, NO ON capacitance	$C_{NC(ON)}, \ C_{NO(ON)}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		15		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		15		pF
Digital input capacitance	C_{l}	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		2.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	2.5 V		367		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 21	25°C	2.5 V		-60		dB
Crosstalk	X_{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 22	25°C	2.5 V		-60		dB
Total harmonic distortion	THD	$R_{L} = 600 \Omega,$ $C_{L} = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	2.5 V		0.15		%
Supply									
Positive supply current	I ₊	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	2.7 V		0.05	0.1	nA

SCDS203-DECEMBER 2005

Electrical Characteristics for 1.8-V Supply

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONI	DITIONS	T _A	V ₊	MIN T	P MAX	UNIT
Analog Switch						•		
Analog signal range	$V_{\mbox{\scriptsize COM}}, V_{\mbox{\scriptsize NO}}, \\ V_{\mbox{\scriptsize NC}}$					0	V,	. V
Voltage undershoot	V _{IKU}	$0 \ge (I_{NC}, I_{NO}, \text{ or } I_{COM}) \ge -5$	50 mA		1.95 V			V
Peak		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C		13	.8 60	
ON-state resistance	r _{peak}	$I_{COM} = -4 \text{ mA},$	See Figure 13	Full	1.65 V		120	Ω
		V_{NO} or $V_{NC} = 0$,		25°C		5	.9 15	<u>i</u>
ON-state	r _{on}	I _{COM} = 4 mA	Switch ON,	Full	1.65 V		15	Ω
resistance	ion	V_{NO} or $V_{NC} = 1.65 V$,	See Figure 13	25°C	1.00 V	12	8 40	
		I _{COM} = -4 mA		Full			45	i
ON-state resistance				25°C	:	(0.1 0.5	<u>; </u>
match between channels	$\Delta r_{\sf on}$	V_{NO} or $V_{NC} = 1.15 \text{ V}$, $I_{COM} = -4 \text{ mA}$,	Switch ON, See Figure 13	Full	1.65 V		0.8	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C		26	.5 60	
resistance flatness	r _{on(flat)}	$I_{COM} = -4 \text{ mA},$	See Figure 13	Full	1.65 V		80	Ω
	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C	1.95 V		0 0.03	1
NC, NO OFF leakage	I _{NO(OFF)}	$V_{COM} = V_{+}$ to 0,	See Figure 14	Full	1.95 V		0.05	μΑ
current	I _{NC(PWROFF)} ,	V_{NC} or $V_{NO} = 0$ to 1.95 V,	Switch OFF,	25°C	0	0.	15 0.05	μΛ
	I _{NOPWROFF)}	$V_{COM} = 1.95 \text{ V to 0},$	See Figure 14	Full	<u> </u>		0.75	1
COM OFF leakage		$V_{COM} = 0 \text{ to } 1.95 \text{ V},$	Switch ON,	25°C	0	(.2 0.5	
current	ICOM(PWROFF)	V_{NC} or $V_{NO} = 1.95 \text{ V to 0}$,	See Figure 14	Full	U		1	μΑ
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C		0.0	0.01	
ON leakage current	I _{NO(ON)}	V _{COM} = Open,	See Figure 15	Full	1.95 V		0.02	μA
СОМ		V_{NC} or V_{NO} = Open,	Switch ON,	25°C		0.0	0.03	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0 \text{ to } V_+,$	See Figure 15	Full	1.95 V		0.05	μΑ
Digital Control In	put (IN)							
Input logic high	V _{IH}			Full		V ₊ × 0.75	5.5	V
Input logic low	V _{IL}			Full		0	V, × 0.25	
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	1.95 V	0.0	0.01	пΑ

Electrical Characteristics for 1.8-V Supply (continued)

 $\rm V_{+} = 1.65~V$ to 1.95 V, $\rm T_{A} = -40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONI	DITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Dynamic					,			,	
		V v or CND	C	25°C	1.8 V		9.5	23	
Turn-on time	t _{ON}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	1.65 V to 1.95 V			24	ns
		V V or CND	C	25°C	1.8 V		5.9	10	
Turn-off time	t _{OFF}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	1.65 V to 1.95 V			12	ns
Output voltage during undershoot	V _{OUTU}	See Figure 18				2.5	V _{OH} - 0.3		٧
Output voltage during overshoot	V _{OUTO}	See Figure 18					V _{OL} + 0.3	2	٧
Break-before-		V - V - V /2	C - 50 pE	25°C	1.8 V	0.5	18	50	
make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 50 pF, See Figure 19	Full	1.65 V to 1.95 V	0.5		55	ns
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 0.1 nF, See Figure 23	25°C	1.8 V		- 5		рС
NC, NO OFF capacitance	$\begin{matrix} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{matrix}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		5.5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V _{NC} or V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V		15.5		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V		15.5		pF
Digital input capacitance	C _I	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	1.8 V		2.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	1.8 V		369		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 21	25°C	1.8 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 22	25°C	1.8 V		-60		dB
Total harmonic distortion	THD	$R_{L} = 600 \Omega,$ $C_{L} = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 24	25°C	1.8 V		0.4		%
Supply									
Positive supply current	I ₊	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	1.95 V		0.05	0.06	μΑ

TYPICAL PERFORMANCE

Figure 1. r_{on} vs V_{COM}

Figure 2. r_{on} vs V_{COM} ($V_{+} = 3$ V)

Figure 3. r_{on} vs V_{COM} ($V_{+} = 5$ V)

TYPICAL PERFORMANCE (continued)

Figure 4. Leakage Current vs Temperature ($V_{+} = 5.5 \text{ V}$)

Figure 5. Charge Injection (Q_C) vs V_{COM}

Figure 6. t_{ON} and t_{OFF} vs Supply Voltage

Figure 7. t_{ON} and t_{OFF} vs Temperature (V₊ = 5 V)

Figure 8. Logic-Level Threshold vs V₊

Figure 9. Bandwidth $(V_+ = 3.3 \text{ V})$

TYPICAL PERFORMANCE (continued)

Figure 10. OFF Isolation and Crosstalk ($V_{+} = 3.3 \text{ V}$)

Figure 11. Total Harmonic Distortion (THD) vs Frequency ($V_{+} = 3.3 \text{ V}$)

Figure 12. Power-Supply Current vs Temperature $(V_+ = 5 V)$

PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION	
1	NO	Normally open	
2	GND	Digital ground	
3	NC	Normally closed	
4	COM	Common	
5	V ₊	Power supply	
6	IN	Digital control to connect COM to NO or NC	

PARAMETER DESCRIPTION

Vocal	SYMBOL	DESCRIPTION
V _{NC} Voltage at NC V _{NO} Voltage at NO Resistance between COM and NC or COM and NO ports when the channel is ON F _{post} Resistance between COM and NC or COM and NO ports when the channel is ON F _{post} Peak on-state resistance over a specified voltage range Ar _{en} Difference between the maximum and minimum value of f _{gon} in a channel over the specified range of conditions Inference of f _{gon} between channels in a specific device Difference between the maximum and minimum value of f _{gon} in a channel over the specified range of conditions Inference of t _{gon} between the maximum and minimum value of f _{gon} in a channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port during the power-down condition, V₂ = 0 Leakage current measured at the NC port during the power-down condition, V₂ = 0 Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the ON state and the output (NC or NO) open Leakage current measured at the COM port during the power-down condition, V₂ = 0 Leakage current measured at the COM port during the power-down condition, V₂ = 0 Leakage current measured at the COM port during the power-down condition, V₂ = 0 Leakage current measured at the comtor input (IN) V ₁ Maximum input voltage for logic low for the control input (IN) V ₁ Voltage at the control input (IN) V ₂ Voltage at the control input (IN) V ₃ Voltage at the contro	V _{COM}	Voltage at COM
Votage at NO Fign. Resistance between COM and NC or COM and NO ports when the channel is ON Fignals Peak on-state resistance over a specified voltage range Afon Difference of fign. between channels in a specific device Fignals Difference between the maximum and minimum value of fign. in a channel over the specified range of conditions Nicopers Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Nicoporty Incomo Incomo Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NC to COM) in the ON state and the output (NC or NO) open Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Viii Minimum input voltage for logic high for the control input (IN) Viii Maximum input voltage for logic high for the control input (IN) Viii Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Voltage at the control input (IN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal wh		Voltage at NC
Resistance between COM and NC or COM and NO ports when the channel is ON Fpeck Peak on-state resistance over a specified voltage range Arce Difference of r _m between channels in a specific device Fortilati Difference between the maximum and minimum value of r _m in a channel over the specified range of conditions Inc(CPFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state NoCPHROFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NC to COM) in the ON state and the output (NC or NO) open Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Minimum input voltage for logic high for the control input (IN) V _L Maximum input voltage for logic high for the control input (IN) V _L Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM) or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of condit		
F_peak Peak on-state resistance over a specified voltage range Δran Difference of r _m between channels in a specific device fontional Difference of r _m between channels in a specific device Incorer Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Incorer Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Incorer Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Incorer Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state and the output (COM) (COM) port of the COM) in the OFF state and the output (COM) port of the COM) port of the COM port, with the corresponding channel (NC to COM) in the OFF state and the output (COM) port of the COM) port, with the corresponding channel (NC to COM) in the OFF state and the output (NC or NC) open date and the output (NC		
Difference of r _{on} between channels in a specific device f _{ontition} Difference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions lncoper, lncoper, Leakage current measured at the NC port during the power-down condition, V ₊ = 0 lso, OCFT Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state lncoper, CoM, CoM, CoM, CoM, CoM, CoM, CoM, CoM		
Difference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions I _{NC(PYNROFF)} Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state I _{NC(PYNROFF)} Leakage current measured at the NC port during the power-down condition, v _z = 0 I _{NC(PYNROFF)} Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state I _{NC(PYNROFF)} Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state I _{NC(PYNROFF)} Leakage current measured at the NO port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the ON state and the output (NO or NO) open Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the ON state and the output (NO or NO) open Leakage current measured at the COM port during the power-down condition, v _z = 0 Leakage current measured at the COM port during the power-down condition, v _z = 0 Minimum input voltage for logic low for the control input (IN) V _z Maximum input voltage for logic low for the control input (IN) V _z V _z Maximum input voltage for logic low for the control input (IN) V _z V _z		
NacionFi Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state		
INCIPOREDET: Leakage current measured at the NC port during the power-down condition, V ₊ = 0 INCIPOREDET: Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the NO port during the power-down condition, V ₊ = 0 Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Viriand Maximum input voltage for logic high for the control input (IN) Viriand Maximum input voltage for logic high for the control input (IN) Voltage at the control input (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-oft time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Valuage Valuag		***
No(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state		
Inc PWROFF Leakage current measured at the NO port during the power-down condition, V ₊ = 0 Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the ON state and the output (NC or NO) open Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open Leakage current measured at the COM port during the power-down condition, V ₊ = 0 Leakage current measured at the COM port during the power-down condition, V ₊ = 0 V _H	, ,	
Incircion Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open		
No(ON) (COM) open	INO(PWROFF)	
COM(ON) COM) open	I _{NC(ON)}	(COM) open
COMICNO and the output (NC or NO) open Leakage current measured at the COM port during the power-down condition, V ₊ = 0 V _{IH}	I _{NO(ON)}	
V _H Minimum input voltage for logic high for the control input (IN) V _I Maximum input voltage for logic low for the control input (IN) V _I Voltage at the control input (IN) I _{IH} , I _{IL} Leakage current measured at the control input (IN) I _{IH} , I _{IL} Leakage current measured at the control input (IN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control signal changes state. Charge injection is a measurement of when the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. Ch(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNO(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is ON Com(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON Com(ON) Capacitance at the COM port when the corresponding channel (NC to NC or NC to NC to NC or NC to NC	I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open
V _{IL} Voltage at the control input (IN) V _I Voltage at the control input (IN) I _{IH} , I _{IL} Leakage current measured at the control input (IN) ton Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-of time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Chage injection is a measurement of unwanted signal coupling from the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge diduced due to switching of the control input.Charge injection, Q _C = C _L ×Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance at the COM port when the corresponding channel (NC to NC or COM to NO) is ON Capacitance at the COM port when the corresponding channel (NC to COM) is ON Capacitance of control input (IN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF channel (NC to NO	I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$
V ₁ Voltage at the control input (IN) I _{IH} , I _{IL} Leakage current measured at the control input (IN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. CNCIOFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNCION) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNCION) Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance at the NC port when the corresponding channel (NC to COM) is ON Capacitance of control input (IN) Olso OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. XTALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in w	V _{IH}	Minimum input voltage for logic high for the control input (IN)
I _{IH} . I _{IL} Leakage current measured at the control input (IN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.Charge injection, Q _c = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. C _{NC(OFF)} Capacitance at the NC port when the corresponding channel (NC to COM) is OFF C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{COM(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (NC to COM) is ON C ₁ Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher	V _{IL}	Maximum input voltage for logic low for the control input (IN)
Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. C _{NC(OFF)} Capacitance at the NC port when the corresponding channel (NC to COM) is OFF C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NC(OM)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (NO to COM) is ON C _C Capacitance at the COM port when the corresponding channel (NO to COM) is ON C _C Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel is –3 dB below the DC gain. ThD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second,	V _I	Voltage at the control input (IN)
topf Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OF. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CADACITATION CAPACITATION CAPAC	I _{IH} , I _{IL}	Leakage current measured at the control input (IN)
delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF. Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.Charge injection, Q _C = C _L ×Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. C _{NC(OFF)} Capacitance at the NC port when the corresponding channel (NC to COM) is OFF C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NO(ON)} Capacitance at the NO port when the corresponding channel (NC to COM) is ON C _{COM(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BM Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch.	t _{ON}	
delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. C _{NC(OFF)} Capacitance at the NC port when the corresponding channel (NC to COM) is OFF C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C ₁ Capacitance of control input (IN) O ₂ Capacitance of control input (IN) O ₃ Correstalk is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. ThD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. 1 ₄ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undersh	t _{OFF}	
October 1. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × Δ V _{COM} , C _L is the load capacitance and ΔV _{COM} is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNO(ON) Capacitance at the NO port when the corresponding channel (NO to COM) is ON COM(ON) Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C1 Capacitance of control input (IN) O1SO OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X1ALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	t _{BBM}	
C _{NO(OFF)} Capacitance at the NO port when the corresponding channel (NO to COM) is OFF C _{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NO(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C ₁ Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	Q_{C}	output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control
C _{NO(OFF)} Capacitance at the NO port when the corresponding channel (NO to COM) is OFF C _{NO(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NO(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C _I Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Voutu Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an overshoot Voutus Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{NO(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON C _{NO(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C _I Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. ThD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an overshoot Voutor		Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON C _{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON C _I Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot		Capacitance at the NC port when the corresponding channel (NC to COM) is ON
Common Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON Cl Capacitance of control input (IN) Olso OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. XTALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I Static power-supply current with the control (IN) pin at V+ or GND Voutou Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot		Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _I Capacitance of control input (IN) O _{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot		Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. X _{TALK} Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Voute Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot		Capacitance of control input (IN)
NC). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	O _{ISO}	
THD Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	X _{TALK}	
harmonics to the magnitude of fundamental harmonic. I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND Voutout voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain.
Volume Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	THD	
Volume Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch. Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot	I ₊	Static power-supply current with the control (IN) pin at V ₊ or GND
		Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an
	V _{OUTO}	

Figure 13. ON-State Resistance (r_{on})

Figure 14. OFF-State Leakage Current (I_{NC(OFF)}, I_{NO(PWROFF)}, I_{NO(PWROFF)}, I_{COM(PWROFF)})

TRUMENTS www.ti.com

SCDS203-DECEMBER 2005

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 15. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)}, I_{NO(ON)})

Figure 16. Capacitance (C_{IN} , $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$)

PARAMETER MEASUREMENT INFORMATION (continued)

(1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

Figure 17. Turn-On (t_{ON}) and Turn-Off (t_{OFF}) Time

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 18. Undershoot and Overshoot Test

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
- (2) C_L includes probe and jig capacitance.

Figure 19. Break-Before-Make (t_{BBM}) Time

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 20. Bandwidth (BW)

Figure 21. OFF Isolation (O_{ISO})

Figure 22. Crosstalk (X_{TALK})

PARAMETER MEASUREMENT INFORMATION (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
- (2) C_L includes probe and jig capacitance.

Figure 23. Charge Injection (Q_C)

(1) C_L includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

.com 18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS5A63157DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS5A63157DBVRE4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS5A63157DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS5A63157DCKRE4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated