1 Chapter 3

- 1. Since $P(A_1 \cap A_2) = 0.64 = (0.8)(0.8) = P(A_1)P(A_2)$, we can conclude that A_1 and A_2 are independent; hence, the answer is (c).
- 2. (a) $P(A \cap B) = P(B \cap A) = P(B|A) = (0.95)(0.05) = 0.0475$.
 - (b) $P(B) = P(B \cap A) + P(B \cap A^c) = 0.0475 + (.03)(1 0.05) = 0.076.$
 - (c) $P(A|B) = P(A \cap B)/P(B) = 0.0475/0.076 = 0.625$.
- 3. Let A be the event that an adult gets the flu and let B be the event that an adult gets the flu shot.
 - (a) $P(A \cap B) = P(A|B) P(B) = (0.1)(0.42) = 0.042$.
 - (b) $P(A) = P(A \cap B) + P(A \cap B^c) = 0.042 + (0.7)(1 0.42) = 0.448.$
- 4. Let X denote the number of people who have asthma. Then $X \sim Binomial$ (n = 50, p = 0.2). (Think about why!)
 - (a) $P(X = 19) = \binom{50}{19}(0.2)^{19}(0.8)^{50-19} = \approx 0.001579.$
 - (b) The standard deviation is $\sigma = \sqrt{np(1-p)} = \sqrt{(50)(0.2)(0.8)} = 2.828427$ and the mean/expected value is $\mu = np = (50)(0.2) = 10$. Hence, the z-score is $(19-10)/2.828427 \approx 3.181981$ which implies that 19 is a little over three standard deviations above the mean.
 - (c) Using the empirical rule, we have that $P\left(X\geq19\right)\approx P\left(X\geq\mu+3\sigma\right)\approx\left(1-0.997\right)/2=0.003/2=0.0015.$ (Draw a picture!). The exact answer is

```
1 - pbinom(18, size = 50, prob = 0.2)
## [1] 0.002511203
```

- 5. $E[X] = \sum_{r=1}^{3} rP(X=r) = (1)(1/3) + (2)(1/3) + (3)(1/3) = 2$ envelopes.
- 6. (a) $E[X] = \mu = \sum_{r=0}^{4} rP(X=r) = (0)(0.2) + (1)(0.3) + (2)(0.3) + (3)(0.1) + (4)(0.1) = 1.6$ egg masses.
 - (b) $Var\left[X\right] = \sum_{r=0}^{4} \left(r \mu\right)^2 P\left(X = r\right) = \left(0 1.6\right)^2 \left(0.2\right) + \left(1 1.6\right)^2 \left(0.3\right) + \left(2 1.6\right)^2 \left(0.3\right) + \left(3 1.6\right)^2 \left(0.1\right) + \left(4 1.6\right)^2 \left(0.1\right) = 1.44$. Hence, the standard deviation is $\sqrt{1.44} = 1.2$ egg masses.
- 7. Let A be the event that a subject is taking the drug (then A^c is the event that the subject is taking the placebo) and let B be the event that a subject improves.
 - (a) $P(B \cap A) = P(B|A)P(A) = (0.6)(0.5) = 0.3$.
 - (b) $P(B) = P(B \cap A) + P(B \cap A^c) = 0.3 + (0.35)(0.5) = 0.475.$

- 8. Let Y be a random variable denoting the number of chickens out of 20 with the bird flu. It then follows that $Y \sim Binomial (n = 20, p = 0.1)$.
 - (a) $P(Y=5) = {20 \choose 5} (0.1)^5 (0.9)^1 = (15504) (10^{-5}) (0.2058911) \approx 0.031921.$
 - (b) E[Y] = np = (20)(0.1) = 2 chickens.
 - (c) $\sqrt{Var[Y]} = \sqrt{np(1-p)} = \sqrt{(20)(0.1)(0.9)} \approx 1.3416$ chickens.
- 9. Let X be a random variable denoting the number of frog eggs that hatch out of 100. Then, $X \sim Binomial$ (n = 100, p = 0.87). (Since the frog eggs hatch independently of each other!)
 - (a) $P(X=80)=\binom{100}{80}(0.87)^{80}(0.13)^{20}\approx 0.01477606$. You should be able to do this with a calculator, but in R we would just use

```
dbinom(80, size = 100, prob = 0.87)
## [1] 0.01477606
```

- (b) For a binomial random variable, E[X] = np = (100)(0.87) = 87 eggs.
- (c) To use the empirical rule, we must first calculate the standard deviation of X. The stahndard deviation of a binomial random variable is given by $\sqrt{Var\left[X\right]} = \sqrt{np(1-p)} = \sqrt{3.31} = 3.363034$. Computing the z-score yields

$$Z = \frac{77 - 87}{3.363034} = -2.973505 \approx -3.$$

In other words, 77 eggs is about three standard deviations below the mean. So, $P(X \le 77) \approx$ the probability of being three or more standard deviations below the mean $\approx 0.003/2 = 0.0015$.

2 Chapter 4

- 1. No (it looks bimodal).
- 2. The best answer is (d); bimodal.
- 3. The population might consist of both males and females, and each of these subpopulations probably has its own mean.
- 4. The best answer is (a); 31.
- 5. The best answer is (c); 0.22.
- 6. The best answer is (e); 0.94.
- 7. It will remain the same. Go back to the properties about correlation and linear transformations!

- 8. The best answer is (d); 0.27.
- 9. The best answer is (d); 0.58.
- 10. Use the fact that $X \sim N (\mu = 5.28, \sigma = 0.4)$.

(a)

$$\begin{split} P\left(X > 5.4\right) &= 1 - P\left(X \le 5.4\right) \\ &= 1 - P\left(\frac{X - 5.28}{0.4} < \frac{5.4 - 5.28}{0.4}\right) \\ &= 1 - P\left(Z < \frac{5.4 - 5.28}{0.4}\right) \\ &= 1 - P\left(Z < 0.3\right) \\ &= 1 - \Phi\left(0.3\right) \end{split}$$

In R, we get

```
1 - pnorm(0.3)
## [1] 0.3820886
```

(b)

$$\begin{split} P\left(5 < X < 6\right) &= P\left(X < 6\right) - P\left(X < 5\right) \\ &= P\left(\frac{X - 5.28}{0.4} < \frac{6 - 5.28}{0.4}\right) - P\left(\frac{X - 5.28}{0.4} < \frac{5 - 5.28}{0.4}\right) \\ &= P\left(Z < \frac{6 - 5.28}{0.4}\right) - P\left(Z < \frac{5 - 5.28}{0.4}\right) \\ &= P\left(Z < 1.8\right) - P\left(Z < -0.7\right) \\ &= \Phi\left(1.8\right) - \Phi\left(-0.7\right) \end{split}$$

In R, we get

```
pnorm(1.8) - pnorm(-0.7)
## [1] 0.722106
```

(c) The general formula for the p-th percentile, denoted x_p , of a normal distribution with mean μ and standard deviation σ is

$$x_p = \mu + \sigma z_p$$

where z_p is the p-th percentile of a standard normal distribution (which we can obtain using qnorm(p) in R). Hence, the 95-th percentile is $x_{0.95} = 5.28 + 0.4 z_{0.95}$. Using qnorm(0.95) in R, we obtain $x_{0.95} = 5.28 + 0.4 (1.644854) = 5.937941$.

(d) Since the data are a random sample from a normal distribution, we know that the sample mean also has a normal distribution; in particular, $\bar{X} \sim N \left(\mu = 5.28, \sigma = 0.4/\sqrt{50}\right)$. Hence,

$$\begin{split} P\left(\bar{X} > 5.4\right) &= 1 - P\left(\bar{X} \le 5.4\right) \\ &= 1 - P\left(\frac{\bar{X} - 5.28}{0.4/\sqrt{50}} < \frac{5.4 - 5.28}{0.4/\sqrt{50}}\right) \\ &= 1 - P\left(Z < \frac{5.4 - 5.28}{0.4/\sqrt{50}}\right) \\ &= 1 - P\left(Z < 2.12132\right) \\ &= 1 - \Phi\left(2.12132\right) \end{split}$$

In R, we get

11. Use the fact that $X \sim N (\mu = 170, \sigma = 20)$.

(a)

$$\begin{split} P\left(X > 200\right) &= 1 - P\left(X \le 200\right) \\ &= 1 - P\left(\frac{X - 170}{20} < \frac{200 - 170}{20}\right) \\ &= 1 - P\left(Z < \frac{200 - 170}{20}\right) \\ &= 1 - P\left(Z < 1.5\right) \\ &= 1 - \Phi\left(1.5\right) \end{split}$$

In R, we get

(b) Using the fact that $\bar{X} \sim N \left(\mu = 170, \sigma = 20/\sqrt{20} \right)$, we get

$$\begin{split} P\left(\bar{X} > 200\right) &= 1 - P\left(\bar{X} \le 200\right) \\ &= 1 - P\left(\frac{\bar{X} - 170}{20/\sqrt{20}} < \frac{200 - 170}{20/\sqrt{20}}\right) \\ &= 1 - P\left(Z < \frac{200 - 170}{20/\sqrt{20}}\right) \\ &= 1 - P\left(Z < 6.708204\right) \\ &= 1 - \Phi\left(6.708204\right) \end{split}$$

In R, we get

```
1 - pnorm(6.708204)
## [1] 9.851675e-12
```

(c) $x_{0.95} = \mu + \sigma z_{0.95} = 170 + 20 (1.644854) = 202.8971 \text{ (mg/dL)}.$