第11次作业

1. 有一大批糖果,现从中随机取16袋称得重量(克)为

506 508 499 503 504 510 497 512

514 505 493 496 506 502 509 496

假设袋装糖果重量服从正态分布,求总体均值的95%置信的区间估计。如果用这16袋样品的平均重量作为总体均值的估计,误差的范围为多少?这个范围是在什么意义下?

- 从一大批灯泡中随机地取 5 只作寿命试验,测得寿命(小时)为
 1050 1100 1120 1250 1280
 假设灯泡寿命服从正态分布,求这批灯泡寿命平均值 95%置信的单侧置信下限
 (即求 μ̂(X₁,···, X_n) 使得 P(μ > μ̂) ≥ 0.95)。
- 3. *为提高某一化学生产过程的得率,试图采用一种新的催化剂。为慎重起见, 先进行试验。采用原催化剂 20 次试验的得率均值为91.73,样本方差为3.89; 采用新催化剂 30 次试验的得率均值为93.75,样本方差为4.02。假设两总体 都服从正态分布,且两样本独立。
 - (1) 假设两总体方差相等,求两总体均值差的95%置信的区间估计。
 - (2) 不假设两总体方差相等,求两总体均值差的95%置信的区间估计。
 - (3) 两种催化剂有显著差别吗?请尝试说明你的理由。
- 4. *设随机样本 X_i ($i=1,\cdots,n$)来自总体 $U(0,\theta)$ 。证明: 对于任意给定常数 $0<\alpha<1$,可以找到常数 c_n ,使 $(\max\{X_1,\cdots,X_n\},c_n\max\{X_1,\cdots,X_n\})$ 为 θ 的一个 $(1-\alpha)$ 置信区间。
- 5. *假设总体服从参数为 λ 的 Poisson 分布, X_1, \dots, X_n 为随机样本,常数 $0 < \alpha < 1$,求 λ 的 1α 置信的区间估计。
- 6. 从一批次产品随机地取 100 个样品进行检测,发现 40 个不合格,求这批产品 合格率 p 的 95%置信的区间估计。
- 7. *假设总体服从 $N(\mu,\sigma^2)$,参数 μ 已知, σ^2 未知, X_1,\cdots,X_n 为其独立随机样本,常数 $0<\alpha<1$ 。
 - (1) 求 σ 的极大似然估计 σ *。
 - (2) 利用 Fisher 信息量给出 σ^* 的标准误差的估计。

- (3) 利用 σ *给出 $\log \sigma$ 的 $1-\alpha$ 置信的区间估计。
- 8. * (Bayes 区间估计) 假设总体服从 $N(\mu,\sigma^2)$,参数 σ^2 已知, X_1,\cdots,X_n 为其独立随机样本, μ 的先验分布为 $N(\mu_0,\sigma_0^2)$, μ_0,σ_0^2 为已知常数, $0<\alpha<1$ 为常数。
 - (1) 求 a,b 使得在 μ 的后验分布下 $P(a < \mu < b) \ge 1-\alpha$ 。选取 a,b 使得区间长度最小。
 - (2) $\phi \sigma_0 \to \infty$,给出(1)中估计区间(a,b)的极限情况,将其与经典方法所求置信区间相比较,并尝试给予直观解释。
- 9. (计算机实验)作业 10-9 续。
 - (1) 利用作业 10-9 的结果给出 $\theta = e^{\mu}$ 的 95% 置信的区间估计。
 - (2) 注意到 \overline{X} 是 μ 的极大似然估计,你还能据此给出其他建立置信区间的方法吗?对于方法的合理性进行简要说明。