Ubiquitous Genomics

•••

Assignment #1 | Apr 29, 2022

Yoni Peleg, Eden Rosenthal, Ashley Newman, Adi Harush

Agenda

- The Task
- Our Process
- Assignment Tasks:
 - Analyzing Pfizer and Moderna Vaccines
 - Comparison to the Wuhan Strain
 - o BA.2 Protein Extraction
 - Building the mRNA Vaccine
- Key Takeaways
- References

THE TASK

The Task

- 1. Our goal was to develop a new vaccine for BA.2
- 2. How mRNA vaccines work:

 The spike protein is essential for the virus to attach to the host cell, thereby making it an effective antigen.
- 3. Isolate the spike protein from the sequence of BA.2
- 4. Use Pfizer's reference to determine the mRNA sequence, 5'UTR and 3'UTR, codon optimizations and the fatty lipid bilayer that protects it on the move.

OUR PROCESS

Our Process

- 1. Started with reading the assignment
- 2. Got a bit scared:)
- 3. Went through the lectures, researched and gained confidence
- 4. Collected the relevant data
- 5. Got comfortable with BioPython
- 6. Data exploration
- 7. Researched more into GC-content, Spike lengths and additional terms
- 8. Wrapped the new vaccine 💉

And Of Course :)

ASSIGNMENT TASKS

Analyzing Pfizer and Moderna Vaccines

	Pfizer	Moderna
	Pilzer	модегпа
Initiation Codon	54	57
Termination Codon	3873 UGA	3876 UGA
Translated Length	1273	1273
Proteins	Identical protein level	

Pfizer Vaccine Distributions

Comparison to the Wuhan Strain

Genome Length	29,903
S Gene Start	21,562
S Gene End	25,383

	Wuhan	Pfizer
GC-content	38%	57%
Protein Differences	985: K 986: V	985: P 986: P
Change Motivations	 Higher G-C count converts more efficiently to proteins! Proline substitution leads to a more rigid spike 	

Wuhan Protein Sequence

Wuhan's protein's sequence is:

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQS
LLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIG
INITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFA
SVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPF
ERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGGVLTESNKKFLPFQQFGRDIADTTDAVRDPQ
TLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYT
MSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKP
SKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFN
SAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCG
KGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHT
SPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

Wuhan Pfizer AUGUUUGUUUUU... AUGUUCGUGUUC...

```
{'AAA': {'AAA', 'AAG'},
 'AAC': {'AAC', 'AAU'}.
 'AAG': {'AAA', 'AAG'},
 'AAU': {'AAC', 'AAU'},
 'ACA': {'ACA', 'ACC'},
 'ACC': {'ACA', 'ACC'},
 'ACG': {'ACC'},
 'ACU': {'ACA', 'ACC'},
 'AGA': {'AGA', 'AGG', 'CGG'},
 'AGC': {'AGC', 'UCC'},
 'AGG': {'AGA', 'CGC', 'CGG'},
 'AGU': {'AGC', 'UCU'},
 'AUA': {'AUC'. 'AUU'}.
 'AUC': {'AUC', 'AUU'},
 'AUG': {'AUG'},
 'AUU': {'AUC'. 'AUU'}.
 'CAA': {'CAA', 'CAG'},
 'CAC': {'CAC', 'CAU'},
 'CAG': {'CAG'}.
 'CAU': {'CAC', 'CAU'},
 'CCA': {'CCC', 'CCU'},
 'CCC': {'CCC', 'CCU'},
 'CCU': {'CCA', 'CCC', 'CCU'},
 'CGC': {'CGG'},
 'CGG': {'AGA', 'CGG'},
 'CGU': {'AGA', 'CGG'},
 'CUA': {'CUG'},
 'CUC': {'CUG'},
 'CUG': {'CUG'},
 'CUU': {'CUG'},
 'GAA': {'GAA', 'GAG'},
 'GAC': {'GAC', 'GAU'},
 'GAG': {'GAA', 'GAG'},
 'GAU': {'GAC', 'GAU'},
 'GCA': {'GCA', 'GCC', 'GCU'},
 'GCC': {'GCC', 'GCU'},
 'GCG': {'GCC'},
 'GCU': {'GCA', 'GCC', 'GCU'},
 'GGA': {'GGA', 'GGC', 'GGG'},
 'GGC': {'GGA', 'GGC'},
 'GGG': {'GGA', 'GGC'},
 'GGU': {'GGA', 'GGC', 'GGG', 'GGU'},
 'GUA': {'GUG'},
 'GUC': {'GUC', 'GUG', 'GUU'},
'GUG': {'GUC', 'GUG'},
 GUU': {'GUC'. 'GUG'}.
 'UAC': {'UAC', 'UAU'},
 'UAU': {'UAC', 'UAU'},
 'UCA': {'AGC', 'UCC', 'UCU'},
 'UCC': {'AGC', 'UCC'},
 'UCG': {'AGC', 'UCU'},
 'UCU': {'AGC', 'UCC', 'UCU'}.
 'UGC': {'UGC', 'UGU'},
 'UGG': {'UGG'}.
 'UGU': {'UGC', 'UGU'},
 'UUA': {'CUC', 'CUG'},
 'UUC': {'UUC', 'UUU'}.
 'UUG': {'CUC', 'CUG'},
```

BA.2 Protein Extraction

The Path to the Spike:

- First we tried to find the BA.2 spike by aligning the entire BA.2 seq against the Wuhan spike seq.
- Then we decided to search on the translated seq instead of RNA/DNA.
- We searched for proteins that match the
 Wuhan protein (and spike protein in general)
 length.
- We used BioPython align to search the protein with the best align score for each record.
- We searched for the most common spike.

BA.2 Protein Extraction

Final Method:

- 1. Translate mRNA sequence.
- 2. Align each protein sequence with the Wuhan spike.
- 3. Choose protein sequence with highest alignment score.
- 4. Repeat on multiple BA.2 sequences.
- 5. Choose the most common sequence.

BA.2 Protein Extraction

Observations:

- We eventually decided to use the alignment score as it's a better measurement than length.
- We discovered that just by filtering proteins with the proper length we found the spike.
- We discovered shifts in the location of the spike protein between different BA.2 records.
- We also saw different variations of the spike protein between different records.

Comparison of BA.2 S Gene Amino-Acids

Building the mRNA Vaccine

Method:

- Use start-codon index in BA.2 S gene protein to extract S gene mRNA sequence
- Use Pfizer lookup table to determine BA.2 codon mapping
- 3. Switch KV->PP based on index
- 4. Add 5'UTR and 3'UTR from Pfizer vaccine

UBI GROUP BA.2 VACCINE

GAGAAUAAACUAGUAUUCUUCUGGUCCCCACAGACUCAGAGAAACCCGCCACCAUGUUUGUCUUCCUGGUGCUGCCUCUGGUCCUCGGGCCAGUGCGUCAAUCUGAUCACCCGGACACAAUCCUACACCAAUUCCUU CACACGGGGIGUCUAIUACCCUGAUAAGGICUUCAGAAGCAGCGUGCUCCAUUCCACAGGACCUGUUCUCUUUUUCCAAUGUCACCUGGUUUCACGCAAUCCACGUCAGCGCACCAAAGGACCAAAAGAU UCAGCCCUUCCUGAUGGAUCUGGAAGGGAAGCAGGGAAAUUUUAAGAAUCUGAGAGAAUUUGUCUUCAAAAAUAUCGAUGGGUAUUUCAAGAUUUAUUCCAAACACCCCCAUUAACCUGGGACGGGAUCUGCCACAGG GUUUCUCUGCUCUCGAGCCCCUCGUGGAUCUGCCUAUCGGCAUCAAUAUUACCCGCUUUCAGACCCUGCUGGCCCGCAUAGGAGCUAUCUGACACCAGGUGAUUCUAGCAGCGGUUGGACAGCCGGUGCCGCCGCAUAU UAUGUCGGAUACCUGCAACCACGCACAUUCCUGCUCAAAUAUAAUGAAAACGGAACAAUCACAGACGCCGUGGAUUGCGCACUGGAUCCACUGUCUGAGACCAAAUGUACCCUGAAAAGCUUCACAGUGGAAAAGGGCAU CUACCAGACCUCUAACUJUJAGAGUCCAACCUACCGAGUCCAUCGUCAGGUUUCCAAAUAUUACAAACCUCUGUCCACUCGACGAGUGUUCAAUGCCACAAGAUJUJGCAUCUGUGUAUGCCUGGAAUAGGAAAAAGGAUJUU GAGGUCUCCCAGAUCGCUCCCGGACAGACCGGAAACAUCGCCGACUAUAAUUAUAAGCUGCCUGACGACUUUACCGGCUGUGUCAUCGACGAAGUUCCAACAACUGGAUUCCAAAGUCGGCGGGAAUUACAAUUAUCU CUACAUACGGCGUGGGACAUCAGCCCUACCGGGUGGUGGUGCUGUCCUUUGAACUGCUGCACGCUCCUGCUACAGUCUGCGGCCCAAAGAAGAGCACCAAUCUGGUGAAAAACAAAUGUGUUAACUUUAAUUUCAACGGG CUGACAGGAACAGGUGUGCUGACAGAGUCUAAUAAAAAGUUCCUGCCAUUUCAGCAAUUUGGAAGAGACAUCGCCGACACACCGACGCCGUGAGAGACCCCCAGACCCUGGAAAUUCUGGACAUUACCCCCUGCUCUUU CGGGGGGGIJCUCUGUCAUCACCCCGGCACAAACACCAGCAACCAGGUGGCUGUCCUGUAUCAGGGGGGUCAACUGUACCGAAGUUCCUGUGGCUAUUCAUGCUGACCAGCUGACCCCUACCUGGCGGGUCUACUCUACCG GCAGCAACGUGUUCCAAACAAGAGCUGGAUGCCUCAUUGGCGCCGAAUACGUCAACAAUUCUUACGAAUGCGAUAUCCCCAUCGGGGCCGGAAUCUGCGCCAGCUAUCAGACCCAGACCAAAAGCCAUCGGAGAGCUCGG CAAAACCAGCGUGGAUUGUACAAUGUACAUUUGUGGGGACAGCACCGAGUGCUCCAACCUGCUCCAGUACGGAAGCUUUUGUACCCAACUGAAAAGAGCCCUCACAGGAAUCGCAGUGGAGCAAGAUAAGAACACAC GUGACACUGGCUGACGCAGGAUUUAUCAAGCAGUAUGGUGAUUGUCUGGGCGACAUUGCCGCCAGGGAUCUGAUCUGIGCUCAGAAAUUUUAAUGGACUGACCGUCCUGCCCCCCCUGCUGACCGAUGAAAUGAUUGACCGA GIANACAAGCGCACUGCUGGCGGCACCAUNACCUCGGGUGGACAUNIGGGGCUGGUGCCGCUCUCCAGAUCCCUNUCGCUAUGCAGAUGGCCUACAGAUNUAACGGUAUNGGGGUCACCCAGAACGUCCUGUAUGAAA AUCAAAAGCUGAUCGCCAAUCAAUUCAAUUCUGCUAUCGGCAAAAUUCAGGAUAGCCUGUCUAGCACAGCAAGCGCACUGGGCAAACUGCAGGAUGGUGAGCACACGCACAGGCACUCAACACCCUGGUCAAGCAG CUGAGCUCCAAAUUUGGAGCUAUUAGCUCUGUGCUCAAUGACAUUCUGAGCAGACUGGAUAAACCUCCUGCUGAAGGUCGACCAGCUCAUCACGGAAGGCUGCAAUCUCUGCAGACCUACGUGACCAGCAACU GAUCAGGGCAGCUGAAAUUCGGGCAUCCGCUAACCUGGCUGCAACCAAGAUGUCCGAAUGCGUGCUGGGGCAGUCCAAGAGAGGUUCGACUUUUGCGGAAAAGGCUAUCAUCUGAUGAGCUUCCCUCAGUCCGCACCCCACG CAGAGAAACUUUUACGAGCCCCAGAUCAUUACAACAGAUAAUACAUUCGUGAGCGGGAAUUGCGACGUCGUGAUCGGGAUUGUCAAUAACACAGUGUAUGAUCCCCUGCAGCCUGAGCUCGACCUCUUUCAAAGAAGAAGACU ACCUGCAAGAACUGGGCAAGUACGAGCAGUACAUUAAAUGGCCUUGGUAUAUUUGGCUGGGUUUUAUUGCCGGACUGAUCGCCAUUGUGAUGGUCACCAUUAUGCUGCAGCAGCAGCAGCUGCAGCUGCAGCUGCAGCUGCAGCAGAAA GGAUGCUGUUCUUGUGGCUCCUGUUGCAAGUUUGACGAGGACGAUUCUGAGCCUGUGCUGAAGGGAGGACGACUCAAACUGCACCUGAUGACUCGAGCUGGUACUGCACGCAAUGCUAGCUGCCCUUUCCCGUCCU

KEY TAKEAWAYS

Key Takeaways

- Pfizer's lookup table is partially understandable (e.g GC-content maximization), but there is still a multiple-options dilemma
- 2. Solution based on large sample and choosing most common protein sequence
- 3. Small changes can be make a huge difference and be very impactful (PP, GC)
- 4. The fact that extremely valuable sequence databases (commercial vaccines included!) are open-source and available is mind-blowing and powerful

REFERENCES

References

- https://www.genome.gov/about-genomics/fact-sheets/COVID-19-mRNA-Vaccine-Production
- https://www.ncbi.nlm.nih.gov/nuccore/1798174254
- https://en.wikipedia.org/wiki/GC-content
- https://berthub.eu/articles/posts/reverse-engineering-source-code-of-the-biontech-pfizer-vaccine/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584442/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463026/
- https://journals.asm.org/doi/10.1128/mBio.02648-20
- https://www.nature.com/articles/s41586-021-03275-y
- https://www.news-medical.net/health/What-are-Spike-Proteins.aspx

THANK YOU 🙏