PHYS 5602 - Elementary Particle Physics Assignment 3

Trevor Burn // 100712473 January 25, 2012

For all Feynman diagrams, time moves bottom to top.

1. A π^0 is a meson given by either $u\bar{u}$ or $d\bar{d}$. Thus, the QED diagram leading to $\pi^0 \to \gamma\gamma$ decay is

- 2. For this question, we use n^* to be in the centre of mass frame, and n to be in the lab frame.
 - (a) In the centre of mass frame, conservation of momentum and energy gets us that $E_{\gamma,1}^* = E_{\gamma,2}^* = m_{\pi}/2$, with $p_{\gamma,1}^* = -p_{\gamma,2}^* = m_{\pi}/2$. If we assume that the photons are traveling at an angle θ with respect to the $\hat{\mathbf{x}}$ direction, then $p_x^* = p^* \cos \theta$, and $p_y^* = p^* \sin \theta$. Then taking a Lorentz boost in the $\hat{\mathbf{x}}$ direction at speed β and noting that $E_{\pi} = \gamma m_{\pi}$, we get

$$E = \gamma (E^* - \beta p_x^*)$$

$$E_{\gamma,1} = \gamma \left[\frac{m_\pi}{2} - \beta \frac{m_\pi}{2} \cos \theta \right]$$

$$= \frac{m_\pi}{2} \gamma (1 - \beta \cos \theta)$$

$$= \frac{E_\pi}{2} (1 - \beta \cos \theta)$$

$$E_{\gamma,2} = \gamma \left[\frac{m_\pi}{2} + \beta \frac{m_\pi}{2} \cos \theta \right]$$

$$= \frac{m_\pi}{2} \gamma (1 + \beta \cos \theta)$$

$$= \frac{E_\pi}{2} (1 + \beta \cos \theta)$$

(b) The ratio is given by

$$\begin{split} R &= \frac{E_{\gamma,1}}{E_{\gamma,2}} \\ &= \frac{\frac{E_{\pi}}{2} \left(1 - \beta \cos \theta\right)}{\frac{E_{\pi}}{2} \left(1 + \beta \cos \theta\right)} \\ &= \frac{1 - \beta \cos \theta}{1 + \beta \cos \theta} \end{split}$$

(c) For ultra relativistic particles, $\beta \approx 1$, and hence $R \approx (1 - \cos \theta)/(1 + \cos \theta)$.

1

3. (a) The minimum energy particle B can have is when B is at rest, and hence $E_{\min}=m_B$. The maximum energy particle B can have is when the other particles are at rest, and their energies are m_C, m_D . Then the available energy is

$$E_{\text{max}} = m_A - m_B - m_C - m_D + m_B$$
$$= m_A - m_C - m_D$$

And hence $m_B \leq E_B \leq m_A - m_C - m_D$. Note that all of this assumes that $m_A \geq m_B + m_C + m_D$.

(b) Taking neutrino mass to be zero, we therefore get $m_e \le E_e \le m_\mu$, or 511 keV $\le E_e \le 106$ MeV.