Elec. & Comm. Eng. Dep.

Q1] Find the dc transmission, the corner frequency f_0 , and the transmission at f = 2 MHz for the low pass STC circuit shown in Fig. 1.

Fig. 1.

Ans.: −6 dB; 318 kHz; −22 dB

Q2] Find the transfer function T(s) of the circuit in Fig. 2. What type of STC network is it?

Fig. 2.

Ans.:

$$T(s) = \frac{C_1}{C_1 + C_2} \frac{s}{s + [1/(C_1 + C_2)R]}; \text{ HP}$$

Q3] For the situation discussed in Fig. 2, if $R = 10 \text{ k}\Omega$, find the capacitor values that result in the circuit having a high-frequency transmission of 0.5 V/V and a corner frequency $\omega_0 = 10 \text{ rad/s}$.

Ans.: $C_1 = C_2 = 5 \mu F$

Q4] In Fig.3, a common-emitter amplifier has $C_{C1} = C_E = C_{C2} = 1 \mu F$, $R_B = 100 \text{ k}\Omega$, $R_{\text{sig}} = 5 \text{ k}\Omega$, $g_m = 40 \text{ mA/V}$, $r_{\Pi} = 2.5 \text{ k}\Omega$, $R_C = 8 \text{ k}\Omega$, and $R_L = 5 \text{ k}\Omega$. Assuming that the three capacitors do not interact, find f_{P1} , f_{P2} , and f_{P3} , and hence estimate f_L .

Fig.3

Ans.: 21.4 Hz, 2.21 KHz, 12.2 Hz

Q5] In Fig. 4, a CS amplifier has $C_{C1} = C_S = C_{C2} = 1$ μF, $R_G = 10$ MΩ, $R_{\text{sig}} = 100$ kΩ, $g_m = 2$ mA/V, $R_D = R_L = 10$ kΩ. Find A_M , f_{P1} , f_{P2} , f_{P3} , and f_L .

Fig.4

Q6] Select appropriate values for the coupling capacitors C_{C1} and C_{C2} and the bypass capacitor C_S for a CS amplifier for which $R_G = 4.7 \text{ M}\Omega$, $R_D = R_L = 15 \text{ k}\Omega$, $R_{sig} = 100 \text{ k}\Omega$, and gm = 1 mA/V. It is required to have f_L at 100 Hz and that the nearest break frequency be at least a decade lower.

Ans.: 3.3nF, 0.53μF, 1.6μF

- **Q7]** For the common-emitter amplifier of Fig. 5, neglect r_o , and assume the current source to be ideal.
- (a) Derive an expression for the midband gain.
- (b) Derive expressions for the break frequencies caused by C_E and C_C .
- (c) Give an expression for the amplifier voltage gain A(s).
- (d) For $R_{\text{sig}} = R_C = R_L = 10 \text{ k}\Omega$, $\beta = 100$, and I = 1 mA, find the value of the midband gain.
- (e) Select values for C_E and C_C to place the two break frequencies a decade apart and to obtain a lower 3-dB frequency of 100 Hz while minimizing the total capacitance.
- (f) Sketch a Bode plot for the gain magnitude.
- (g) Find the phase shift at 100 Hz.

Ans.: -40 V/V, 12.7μF, 0.8μF, -129.3°

Q8] The NMOS transistor in the discrete CS amplifier circuit of Fig. 6 is biased to have $g_m = 1 \text{ mA/V}$. Find $A_M, f_{P1}, f_{P2}, f_{P3}$, and f_L .

Ans.: -3.16 V/V, 1.9 Hz, 23.9 Hz, 108.3 Hz, 108.3 Hz

Q9] A discrete MOSFET common-source amplifier has $R_{in} = 2 \text{ M}\Omega$, $g_m = 4 \text{ mA/V}$, $r_o = 100 \text{ k}\Omega$, $R_D = 10 \text{ k}\Omega$, $C_{gs} = 2 \text{ pF}$, and $C_{gd} = 0.5 \text{ pF}$. The amplifier is fed from a voltage source with an internal resistance of 500 k Ω and is connected to a 10-k Ω load. Find:

- (a) the overall midband gain A_M
- (b) the upper 3-dB frequency f_H

Ans.: -15.2 V/V, 33.1 K*Hz*

Q10] The NMOS transistor in the discrete CS amplifier circuit of Fig. 6 is biased to have $g_m = 1 \text{ mA/V}$ and $r_o = 100 \text{ k}\Omega$. Find A_M . If $C_{gs} = 1 \text{ pF}$ and $C_{gd} = 0.2 \text{ pF}$, find f_H .

Ans.: -3.06 V/V, 874.99 KHz

Q11] The analysis of the high-frequency response of the common-source amplifier, presented in the text, is based on the assumption that the resistance of the signal source, R_{sig} , is large and, thus, that its interaction with the input capacitance C_{in} produces the "dominant pole" that determines the upper 3-dB frequency f_H . In some situations, however, the CS amplifier is fed with a very low R_{sig} . To investigate the high-frequency response of the amplifier in such a case, Fig. 7 shows the equivalent circuit when the CS amplifier is fed with an ideal voltage source V_{sig} having $R_{\text{sig}} = 0$. Note that C_L denotes the total capacitance at the output node. By writing a node equation at the output, show that the transfer function V_o/V_{sig} is given by

$$\frac{Vo}{V \text{sig}} = -g_m R_L' \frac{1 - s(C_{gd}/g_m)}{1 + s(C_L + C_{gd})R_L'}$$

At frequencies $\omega << (g_m/c_{gd})$, the *s* term in the numerator can be neglected. In such case, what is the upper 3-dB frequency resulting? Compute the values of A_M and f_H for the case: $C_{gd} = 0.5 \text{ pF}$, $C_L = 2 \text{ pF}$, $g_m = 4 \text{ mA/V}$, and $R_L' = 5 \text{ k}\Omega$.

Ans.: -20 V/V, 12.7 MHz

Q12] Consider the common-emitter amplifier of **Fig. 8** under the following conditions: $R_{\text{sig}} = 5 \text{ k}\Omega$, $R_1 = 33 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_E = 3.9 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$, $R_L = 5.6 \text{ k}\Omega$, $V_{CC} = 5 \text{ V}$. The dc emitter current can be shown to be $I_E \approx 0.3 \text{ mA}$, at which $\beta_0 = 120$, $r_0 = 300 \text{ k}\Omega$, and $r_x = 50 \text{ }\Omega$. Find the input resistance R_{in} and the midband gain A_{M} . If the transistor is specified to have $f_T = 700 \text{ MHz}$ and $C\mu = 1 \text{ pF}$, find the upper 3-dB frequency f_{H} . ($V_T = 25 \text{ mV}$)

Ans.: 5.7 K Ω , -16.11 V/V, 1.79 MHz

Q13] For a version of the CE amplifier circuit in **Fig. 8**, $R_{\text{sig}} = 10 \text{ k}\Omega$, $R_1 = 68 \text{ k}\Omega$, $R_2 = 27 \text{ k}\Omega$, $R_E = 2.2 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$, and $R_L = 10 \text{ k}\Omega$. The collector current is 0.8 mA, $\beta = 200$, $f_T = 1 \text{ GHz}$, and $C_{\mu} = 0.8 \text{ pF}$. Neglecting the effect of r_x and r_o , find the midband voltage gain and the upper 3-dB frequency f_H .

Ans.: -32.8 V/V, 572 KHz

Q14] (A) Draw the low frequency and mid-band equivalent circuits for the Common-Collector amplifier in **Fig.9**, if $R_S = 2K\Omega$, $R_1 = 100K\Omega$, $R_2 = 300K\Omega$, $R_3 = 13K\Omega$, $R_4 = 100K\Omega$, $C_1 = 4.7\mu F$, $C_2 = 10\mu F$, $C_{\Pi} = 20pF$, $C\mu = 2pF$ $\beta = 100$ and $I_C = 0.25mA$. (B) What are the lower-cut off frequency and the mid-band gain of the amplifier? (C) Draw the high frequency model and write expression for the voltage gain at the high-frequency.

(D) What is the higher cut-off frequency?

Fig.9

- **Q15]** (A) Draw the low frequency and mid-band equivalent circuits for the Common-Drain amplifier in Fig.10, if $R_S = 2K\Omega$, $R_1 = 1.5M\Omega$, $R_2 = 2.2M\Omega$, $R_3 = 12K\Omega$ $R_4 = 100K\Omega$, $C_1 = 4.7\mu F$, $C_2 = 0.1\mu F$, $C_{gs} = 1pF$, $C_{gd} = 5pF$ and $I_D = 0.1mA$ (at $V_{GS} V_T = 0.75 V$).
- (B) What are the lower-cut off frequency and the mid-band gain of the amplifier?
- (C) Draw the high frequency model and write expression for the voltage gain at the high-frequency.
- **(D)** What is the higher cut-off frequency?

Fig.10

Best Wishes Dr. Eman F. Sawires
.....End

9.11 Consider the common-emitter amplifier of Fig. P9.11 under the following conditions: $R_{\text{sig}} = 5 \text{ k}\Omega$, $R_1 = 33 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_E = 3.9 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$, $R_L = 5.6 \text{ k}\Omega$, $V_{CC} = 5 \text{ V}$. The dc emitter current can be shown to be $I_E \approx 0.3 \text{ mA}$, at which $\beta = 120$. Find the input resistance R_{in} and the midband gain A_M . If $C_{C1} = C_{C2} = 1 \text{ }\mu\text{F}$ and $C_E = 20 \text{ }\mu\text{F}$, find the three break frequencies f_{P1} , f_{P2} , and f_{P3} and an estimate for f_L . Note that R_E has to be taken into account in evaluating f_{P2} .

