Practical List

(Note: Any platform for Python can be used for lab exercises)

1. Given below is a dictionary having two keys 'Boys' and 'Girls' and having two lists of heights of five Boys and Five Girls respectively as values associated with these keys

Original dictionary of lists:

```
{'Boys': [72, 68, 70, 69, 74], 'Girls': [63, 65, 69, 62, 61]}
```

From the given dictionary of lists create the following list of dictionaries:

```
[{'Boys': 72, 'Girls': 63}, {'Boys': 68, 'Girls': 65}, {'Boys': 70, 'Girls': 69}, {'Boys': 69, 'Girls': 62}, {'Boys': 74, 'Girls': 61]
```

- 2. Write programs in Python using NumPy library to do the following:
 - a. Compute the mean, standard deviation, and variance of a two dimensional random integer array along the second axis.
 - b. Get the indices of the sorted elements of a given array.
 - a. B = [56, 48, 22, 41, 78, 91, 24, 46, 8, 33]
 - c. Create a 2-dimensional array of size m x n integer elements, also print the shape, type and data type of the array and then reshape it into nx m array, n and m are user inputs given at the run time.
 - d. Test whether the elements of a given array are zero, non-zero and NaN. Record the indices of these elements in three separate arrays.
- 3. Create a dataframe having at least 3 columns and 50 rows to store numeric data generated using a random function. Replace 10% of the values by null values whose index positions are generated using random function. Do the following:
 - a. Identify and count missing values in a dataframe.
 - b. Drop the column having more than 5 null values.
 - c. Identify the row label having maximum of the sum of all values in a row and drop that row.
 - d. Sort the dataframe on the basis of the first column.
 - e. Remove all duplicates from the first column.
 - f. Find the correlation between first and second column and covariance between second and third column.
 - g. Detect the outliers and remove the rows having outliers.
 - h. Discretize second column and create 5 bins
- 4. Consider two excel files having attendance of a workshop's participants for two days. Each file has three fields 'Name', 'Time of joining', duration (in minutes) where names are unique within a file. Note that duration may take one of three values (30, 40, 50) only. Import the data into two dataframes and do the following:
 - a. Perform merging of the two dataframes to find the names of students who had attended the workshop on both days.
 - b. Find names of all students who have attended workshop on either of the days.
 - c. Merge two data frames row-wise and find the total number of records in the data frame.
 - d. Merge two data frames and use two columns names and duration as multi-row indexes. Generate descriptive statistics for this multi-index.
- 5. Taking Iris data, plot the following with proper legend and axis labels: (Download IRIS data from: https://archive.ics.uci.edu/ml/datasets/iris or import it from sklearn.datasets)

- a. Plot bar chart to show the frequency of each class label in the data.
- b. Draw a scatter plot for Petal width vs sepal width.
- c. Plot density distribution for feature petal length.
- d. Use a pair plot to show pairwise bivariate distribution in the Iris Dataset.
- 6. Consider any sales training/ weather forecasting dataset
 - a. Compute mean of a series grouped by another series
 - b. Fill an intermittent time series to replace all missing dates with values of previous non-missing date.
 - c. Perform appropriate year-month string to dates conversion.
 - d. Split a dataset to group by two columns and then sort the aggregated results within the groups.
 - e. Split a given dataframe into groups with bin counts.
- 7. Consider a data frame containing data about students i.e. name, gender and passing division:

	Name	Birth_Month	Gender	Pass_Division
0	Mudit Chauhan	December	М	III
1	Seema Chopra	January	F	II
2	Rani Gupta	March	F	I
3	Aditya Narayan	October	M	I
4	Sanjeev Sahni	February	М	II
5	Prakash Kumar	December	М	III
6	Ritu Agarwa l	September	F	I
7	Akshay Goel	August	M	I
8	Meeta Ku l karni	July	F	=
9	Preeti Ahuja	November	F	II
10	Sunil Das Gupta	April	М	III
11	Sonali Sapre	January	F	I
12	Rashmi Talwar	June	F	III
13	Ashish Dubey	May	М	II
14	Kiran Sharma	February	F	II
15	Sameer Bansal	October	М	I

- a. Perform one hot encoding of the last two columns of categorical data using the get_dummies() function.
- b. Sort this data frame on the "Birth Month" column (i.e. January to December). Hint: Convert Month to Categorical.
- 8. Consider the following data frame containing a family name, gender of the family member and her/his monthly income in each record.