

(3.2) Get y-inter			
Use ((1,1) for y = 2x+	. .	
	1=2(-1)+1		
	1 = 2 + b		
(3.3) Summarize	Eguntion		
Ewwh	on of tangent line t	athe curve y=+(x))
c. Calculate +(1.1	line to apportmate		
(1.1) = (1.1)		\frac{1}{\gamma'(\lambda.\lambda)} = \frac{2}{3}	2(1.1)-) ≈ 1.2)
for f (x) =		*,(*) 9 9	-for
	comparing f(x) with is	t's li-mear approximation at	- x >1 using various values - near 1.
	Linear Approximation	y = x 2	
0.9	0.8 0.8	0.8)	
1.05		1.1025	
	1,2	1.21	
40 10 10 10 10 10 10 10 10 10 10 10 10 10	-paroximation of f'(x)	close to exact	values of f(x) for
	various values of x		

A. Find equation of tangent line to the curve +(x) = Vx+2 at x=2.

B. Use line to approximate V4.1 and calculate V4.1 directly using flx)

C. Finally, construct table comparing f(x) with its linear approximation at x = 2 using various values near 2.

(A) (re+ +'(x)

dx ((x+2) 1/2)

dx (1)

 $\frac{1}{2}(x+2)^{1/2-1}$

-1 · (x+2) -1/2

2 (x+2) 1/2

F'(x) = 1

f'(2) = 1 $2\sqrt{2+2}$

(a) Set Equation or Tangert line

$$y = mx + b$$
 $f'(2) = \frac{1}{4}$
 $f''(2) = \frac{1}{4}$

(b) Get Pomein and Range: Pomein and Range or linear Equation (-50,00)

Pomain for $y = \frac{1}{4}x + b$
 $f''(2) = \frac{1}{4}x + b$

(-00,00), x have no restrictions

Get Range

 $f''(2) = \frac{1}{4}x + b$
 $f''(3) = \frac{1}{4}x + b$
 $f''(3)$

(a)
$$f(x) = \sqrt{x+2}$$

(b) $f(x) = \sqrt{x+2}$

(c) $f(x) = \sqrt{x+2}$

(c) $f(x) = \sqrt{x+2}$

(d) $f(x) = \sqrt{x+2}$

(e) $f(x) = \sqrt{x+2}$

(f(x)) $f(x) = \sqrt{x+2}$

(f(x)) $f(x) = \sqrt{x+2}$

(g) $f(x) = \sqrt{x+2}$

(g

Get linearization of f(x) = sin(x) at 0.

1 Ge+ +1(x)

$$\int f'(x) = cor(x)$$

@ Ge+ +1(0)

3 Set equation of tangent line

9 Domain and Range of y = x+3 (-00,00)

@ Get y-intercept

@ Summarize +'(x) equation

