DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 08 - STORAGE

Caching - Generic

- Caching as a principle can be applied between any two levels of memory
- e.g. Buffer Cache (part of RAM)
 - transparent to App,
 - maintained by OS,
 - between main memory and hard disk,
 - R_{RAM,buffer}= 1
- ■e.g. Disk cache
 - between RAM and hard disk
 - typically part of disk controller
 - typically semiconductor memory
 - may be non-volatile ROM on high end disks to support power breakdowns.
 - transparent to OS and Apps

Caching - Generic

- Other examples:
 - network client cache transparent to OS and apps.
 - web client (browser cache) transparent to OS and apps.
 - proxy cache (client proxy, server proxy) transparent to OS and apps; client proxies are transparent to servers and vice-versa.
 - distribution cache transparent to OS, apps, and clients or servers or both.
- Exercise: Find out typical R values in this case.

- Input Output Devices
 Access to I/O devices is different from access to memory devices (cache, ROM, RAM)
 - I/O devices are usually not semiconductor devices.
 - Need more than electronic decoding/switching
 - They are often bulky and have moving parts
 - So they can not be stored on board.
- Most significantly I/O devices are slow
 - Speed mismatch between Processor and I/O devices
 - Fully synchronous I/O will heavily impair processor utilization

I/O Techniques

Polling:

- pseudo-asynchronous
 - Processor inspects (multiple) devices in rotation
- Even with several devices,
 - processor may still be forced to do useless work or wait or both.

Interrupts:

- Processor initiates I/O by requesting an operation with the device.
 - May disconnect if response can't be immediate, which is usually the case
- When device is ready with a response it interrupts the processor.
 - Processor finishes I/O with the device.
- Asynchronous but
 - Data transfer between I/O device and memory still requires processor to execute instructions.

I/O Techniques

- Direct Memory Access
 - Processor initiates I/O
 - DMA controller acts as an intermediary:
 - interacts with the device,
 - transfers data to/from memory as appropriate, and
 - interrupts processor to signal completion.
 - From the processor's perspective DMA controller is yet another device
 - But one that works at semiconductor speeds
- I/O Processor
 - More sophisticated version of DMA controller with
 - the ability to execute code: execute I/O routines, interact with the OS etc.

I/O Performance

- I/O may be a small component of a program
 - Why worry about I/O performance?
- Speed-up and Amdahl's Law
 - Say I/O is a fraction f of the total work-load.
 - And you improve the rest of the system by a factor of x
 - Then the effective speedup is:

```
 T_{\text{origin}} / (f^*T_{\text{origin}} + (1-f)^*T_{\text{origin}}/x) = 1/(f+(1-f)/x)
```

- Implications of Amdahl's Law:
 - Example:
 - if 10% of time is spent in I/O and
 - rest of the system performance improves by a factor of 100
 - then the effective speedup is

- At the limit
 - Lt $_{x\to\infty}$ (Speedup) = 1/(f + 0) = 1/f

I/O - Performance Parameters

- I/O Rate
 - Number of I/O operations per unit time
- Data Transfer Rate
 - Affects Time Taken for completion of a single I/O operation.
- I/O Performance depends on various factors:
 - The specific I/O device
 - Processing Overhead
 - Architecture and Operating Systems Design
 - E.g. DMA performance, availability of buffer cache

Magnetic Memories

- Non-Volatile
 - Power not needed for retention
- Floppy Disks
 - Flexible, can be carried, limited size

Floppy Disk

- Originally
 - A single surface disk (8 in.)
- Later
 - 2 surfaces; 4X density; (5.25in.)
 - 2 surfaces; High density; (3.5 in)
 - □ 1.44MB capacity;
 - Access rate 10 ms (complete sector)
- Geometry:
 - 80 tracks per surface;
 - 18 sectors per track (160 x 18 = 2880 sectors)
 - \Box 1 sector = 512 bytes

Magnetic Memories

- Hard Disks
 - Hard cased
 - Originally meant for PCs and mainframes
 - 14 in. diameter for mainframes in 60s
 - 3.5 in. diameter for PCs from 80's
 - Now available in various shapes:
 - Mini disks (2.5 in. dia.) for laptops, gaming consoles and as external pocket storage
 - □ 2.75 in × 0.275–0.59 in × 3.945 in (69.85 mm × 7–15 mm × 100 mm) = 48.895–104.775 cm³
 - □ laptops 9.5mm and desktop 12.5mm
 - Micro disks (1.68 in. or 1.8 in. dia) for iPods / Cameras / other handheld devices
 - 0.85 in. form factor mobile phones [SD/MMC slot compatible HDD optimized for video storage on 4G handset]

Magnetic Memories

