

AD-A273 257

Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds

Technical Paper No. 143

December 1990

Approved for Public Release. Distribution Unlimi

Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Accesion For	
NTIS CRAQI	×
DTIO FAB	
United the surf)
: , 15 _V	
1	
Diti	\mathcal{A}'
TULL 1	. 41
	:
A-1	

RUNOFF PREDICTION UNCERTAINTY FOR UNGAUGED AGRICULTURAL WATERSHEDS

By David M. Goldman, Miguel A. Mariño, and Arlen D. Feldman, Members, ASCE

ABSTRACT: A physically based stochastic watershed model is used to estimate runoff prediction uncertainty for small agricultural watersheds in Hastings, Nebraska. The stochastic nature of the model results from postulating a probabilistic model for parameter estimation and input errors. The key factors assumed to contribute to prediction uncertainty are errors in estimating infiltration parameters and moisture conditions prior to a rainfall event. The error distributions for parameter estimates are inferred from soil survey information, and the error distribution for moisture conditions from a regression between antecedent precipitation indices and measured soil moisture. Comparison of model predicted and observed errors demonstrates that the model is conservative in that it is biased towards overprediction of errors.

INTRODUCTION

A common approach to deriving flood-flow-frequency curves for an ungauged watershed is to simulate a design storm with an event-oriented watershed model. As with most models, a significant problem with this approach is model parameter estimation. One approach to the problem is to estimate watershed model parameters from generally available information such as topographic maps and soil maps. Probably the most difficult part of the problem is estimating loss rates from this type of information.

Loss rate parameter estimation for an event-oriented model consists of determining both the soil moisture condition prior to the rainfall event and the soil infiltration parameters. The particular focus of this study will be on determining the uncertainty in estimating initial moisture conditions from antecedent precipitation indices and infiltration parameters from commonly available soil survey information, particle-size distribution, and porosity, as proposed by Rawls and Brakensiek (1982).

An examination of the runoff prediction uncertainty caused by estimating loss rate parameters from simple indices such as particle-size distribution will be investigated using a physically based stochastic (PBS) watershed model (Klemes 1978). The PBS model will be formulated as a typical event-oriented distributed watershed model, except that the loss rate parameters will be considered stochastic (Goldman 1987). The stochastic nature of the loss rate parameters will be represented by the loss rate parameters' probability distributions. The parameter probability distribution represents the estimation

¹Hydr. Engr., Hydrologic Engrg. Ctr., Corps of Engrs., 609 Second St., Davis, CA 95616.

²Prof., Land, Air, and Water Sci., Dept. of Civ. Engrg., Univ. of California, Davis, CA 95616.

²Chf. Res. Div., Hydrologic Engrg. Ctr., Corps of Engrs., 609 Second St., Davis, CA

Note. Discussion open until May 1, 1991. To extend the closing date one month, a written request must be filed with the ASCE Manager of Journals. The manuscript for this paper was submitted for review and possible publication on April 19, 1989. This paper is part of the *Journal of Irrigation and Drainage Engineering*, Vol. 116, No. 6, November/December, 1990. ©ASCE, ISSN 0733-9437/90/0006-0752/\$1.00 + \$.15 per page. Paper No. 25346.

uncertainty when depending on typically available information such as the simple indices proposed.

The PBS model prediction uncertainty is represented by the derived probability distribution for runoff volume and peak discharge. The derived probability distribution gives the runoff exceedance probabilities for any particular runoff event. In other words, the derived probability distributions give the chance that an observed runoff volume or peak discharge will exceed a given amount for a given rainfall event and antecedent moisture condition. The usefulness of the model-estimated prediction uncertainty, and in turn the estimated uncertainty in parameter values, will be verified by comparing predicted and observed exceedance probabilities for rainfall-runoff events recorded for small agricultural watersheds in Hastings, Nebraska.

TEST WATERSHED DESCRIPTION

The U.S. Department of Agriculture (USDA) maintained watersheds in Hastings, Nebraska (*The Central* no date), where rainfall-runoff, soil-moisture, and land-use data were collected from the period 1939–1967 and maintained in the REPHLEX data base (*REPHLEX* 1983). The seven watersheds used in this research were all about 4.0 acres in size with overland flow slopes ranging from 2.0 to 7.0%. The watershed soils are dominated by the Hastings silt loam and silt clay loam horizons. Although data for a number of different management practices existed, only runoff events from land surfaces with straight row contouring were considered, because this situation corresponds best to the assumptions that will be made in developing the PBS model.

There was always a rain gage within 200 ft of the border of any of the watersheds tested. Unfortunately, however, the rain gages were not shielded. The soil moisture data were obtained by analyzing fist-sized soil samples taken from field trenches. The major advantage of using the Hastings data is that they had a relatively long record, which was important for verifying the predictions of the PBS model.

MODEL FORMULATION

A single-event approach to modeling runoff was chosen to avoid the problem of simulating interstorm runoff dynamics such as evapotranspiration and long-term base flow. Assuming that overland flow will dominate the runoff process, a typical kinematic wave model will be used to model a watershed (Fig. 1). The watershed has two overland flow planes both with width W, and overland flow lengths and slopes equal to, respectively, l_1 , l_2 , and S_{01} , S_{02} . Rainfall excess is assumed to be uniformly distributed over each overland flow plane. The physical properties and the initial conditions for the watershed represented by the overland flow planes are assumed to be uniform both horizontally and vertically. Rainfall excess is calculated by first subtracting an initial surface loss

$$r(t) = 0 \quad \text{for } P(t) \le I_a \quad t \ge 0 \quad \dots \tag{1}$$

$$r(t) = r_0(t) \qquad \text{for } P(t) > I_a \qquad t \ge 0 \ldots (2)$$

where P(t) = the cumulative precipitation over the watershed; r(t) = the

FIG. 1. Schematic of Watershed Model

rainfall intensity adjusted for surface losses; t = the time since the start of rainfall; $r_0(t) =$ the measured rainfall intensity; and $I_a =$ the depth of surface loss assumed to be uniform over the watershed. Second, an infiltration loss is calculated by the Green and Ampt (GA) approach

$$F = \frac{\Omega}{\frac{i}{K_s} - 1} = \frac{K_s \Omega}{\frac{dF}{dt} - K_s} \qquad i > K_s \qquad (3)$$

where dF/dt = i(t) is equal to the infiltration rate; F = the cumulative infiltration; K_s = the soil's saturated hydraulic conductivity; Ω = the product of the wetting front suction, ψ_t , and the soil volumetric deficit at the beginning of the storm, $\Delta\theta = \phi - \theta_t$; ϕ = the soil's porosity; and θ_t = the initial volumetric water content. The GA equation, as originally developed, is only strictly applicable to a uniform moisture condition at the soil surface or, in the case of rainfall infiltration, a ponded surface condition. Modifications were made as suggested by Mein and Larson (1973) and Morel-Seytoux (1980) to use the GA equation for unponded surface conditions and variable rainfall rates.

The rainfall excess is routed overland to the channel using the kinematic wave equations of motion

$$\frac{\partial q}{\partial x} + \frac{\partial y}{\partial t} = e$$
 initial condition: $t = 0$, $y = 0$

boundary condition:
$$x = 0$$
, $y = 0$(4)

$$q = \alpha y^m \dots (5)$$

where q = q(x, t) is the flow per unit width; $\alpha = 1.49S_0^{1/2}/N$; S_0 = the slope along the overland flow length; N = a roughness coefficient for overland flow; m = 1.67; y = y(x, t) is the depth of flow; and x = the distance along the direction of overland flow. The equations will be solved using a finite difference scheme proposed by Leclerc and Schaake (1973).

Flow entering the channel will be concentrated immediately to the watershed outlet to obtain the total outliow, Q. Channel routing of the flow

using the kinematic wave equations is a standard procedure. However, the channels of the test catchments used in this research are short and have little storage. Performing channel routing would add little in simulation capability, while adding greatly to the computational burdens in performing the uncertainty analysis. Consequently, a reasonable assumption was made that channel routing could be ignored.

PARAMETER ESTIMATION

Estimating Green and Ampt Parameters from Simple Indices

Rawls et al. (1981, 1982, 1983) and Rawls and Brakensiek (1982) reported on the relationship between simple soil indices and the Green and Ampt parameters. The general procedure involved has been to relate a simple soil index such as texture class to the Brooks and Corey parameters (Rawls et al. 1982), porosity ϕ , residual saturation, θ_r , bubbling pressure ψ_{δ} , and the pore-size distribution, λ . These parameters are used to describe the soil matric suction curve by the relationship

$$S_{e} = \frac{\theta - \theta_{r}}{\Phi - \theta_{r}} = \frac{\psi^{\lambda}}{\psi^{\lambda}_{\lambda}}.$$
 (6)

where S_e = the effective saturation; and θ = the volumetric water content at matric suction ψ . The Brooks and Corey parameters are then used to calculate the wetting front suction, ψ_f , by

$$\psi_f = \psi_w + \frac{\psi_w^n}{1-n} \left[\psi_i^{(1-n)} - \psi_w^{(1-n)} \right] \dots (7)$$

where ψ_w = the water entry pressure; ψ_i = the water content corresponding to the initial soil moisture content of the soil prior to ponded infiltration; and ψ_w , the water entry pressure, and n are defined as

$$\psi_{w} = \frac{\psi_{b}}{2} \qquad (8)$$

$$n=3\lambda+2.....(9)$$

Assuming that the initial moisture content is equal to the residual saturation, the formula finally derived by Brakensiek (1977) and applied by Rawls et al. (1982) is obtained as

$$\psi_f = \frac{n}{n-1} \psi_w \quad ... \tag{10}$$

Since initial moisture conditions will be estimated using an API index, ψ_f will be calculated via Eq. 7 in model simulations of infiltration. The saturated hydraulic conductivity is calculated using Brutsaert's (1967) solution of the Childs and Collis-George permeability integral

$$K_s = \frac{\alpha \theta_c^2 \lambda^2}{\psi_b^2 (\lambda + 1)(\lambda + 1)}$$
(cm/s)(11)

where $\theta_e = \phi - \theta_r$. The parameter a was set equal to 21.0 by fitting Eq.

11 to an average of observed saturated hydraulic conductivity values for a full range of soil texture classes (Rawls et al. 1982). Rawls and Brakensiek (1989) developed the regression relationships shown here between simple soil indices; particle size distribution and total porosity, and the Brooks and Corey parameters.

 $\theta_r = -0.0182482 + 0.00087269(SA) + 0.00513488(CL) + 0.02939286(PR)$

 $-0.00015395(CL^2) - 0.0010827(SA)(PR) - 0.00018233(CL^2)(PR^2)$

The regression equations (Rawls and Brakensiek 1989) are

- $\lambda = \exp \left[-0.7842831 + 0.0177544(SA) 1.062498(PR) 0.00005304(SA^2) \right]$
- $-0.00273493(CL^2) + 1.11134946(PR^2) 0.03088295(SA)(PR)$
- $+ 0.00026587(SA^2)(PR^2) 0.0061052(CL^2)(PR^2) 0.00000235(SA^2)(CL)$
- $\psi_b = \exp[5.3396738 + 0.1845038(CL) 2.48394546(PR)]$
- $-0.00213853(CL^2) 0.04356349(SA)(PR) 0.61745089(CL)(PR)$
- $+ 0.00143598(SA^2)(PR^2) 0.00855375(CL^2)(PR^2) 0.00001282(SA^2)(CL)$
- $+ 0.00895359(CL^2)(PR) 0.00072472(SA^2)(PR) + 0.0000054(CL^2)(SA)$
- $+ 0.50028060(PR^2)(CL)$].....(14)

where $PR = \phi = \text{total porosity (vol/vol)}$; CL = % clay (particle size); SA = % sand (particle size); $\psi_b = \text{bubbling pressure (cm)}$; $\lambda = \text{pore-size distribution}$; and $\theta_r = \text{residual saturation (vol/vol)}$. The data for these regressions were obtained from the numerous soil surveys performed in the United States.

The data needed to apply these regressions can be conveniently obtained from the SOILS-5 data base compiled by the Soil Conservation Service and maintained by the Corps of Engineers (SOILS-5 1983). The relevant information provided by these data is the particle-size distribution, the percent sand, clay, and silt, and the porosity for different horizons of a soil series.

Selection of Soil Parameter Probability Distributions

In the case of the watershed model used in this research, the chosen parameters' probability distribution should describe the chance that the parameter will have a certain value for a given storm event. The random variation of a particular infiltration parameter between events might be affected by biologic (macropores), cultural (management practice), seasonal (crop growth), and meteorologic (rain-induced surface crusting) factors.

The distribution of soil properties within a given texture class or for a given particle-size distribution does not give information on the random variation of soil hydraulic properties in the field. Rather, the distribution of infiltration parameter values for a given soil property index is a measure of the uncertainty in predicting the infiltration properties of a field sample using that index. The correspondence between the probability distribution derived from a simple index and a field measurement program would be coincidental at best.

TABLE 1. Values for Watershed Model's Stochastic Parameters

	Sand			Clay	Porosity	
Watershed (1)	Mean (%) (2)	Range (%) (3)	Mean (%) (4)	Range (%) (5)	Mean (vol/vol) (6)	Coefficient of variation (7)
8	3.4	0.4-6.4	23.9	19.5-28.4	0.51	0.1
9	3.1	0.3-5.9	21.4	16.6-26.2	0.51	0.1
10	2.5	0.0-5.0	21.7	16.9-26.5	0.51	0.1
11	2.5	0.0-5.0	23.1	18.5-27.7	0.51	0.1
12	2.5	0.0-5.0	24.6	20.2-29.0	0.51	0.1
19	2.5	0.0-5.0	26.4	22.2-30.6	0.51	0.1
20	2.5	0.0-5.0	27.4	23.4–31.4	0.51	0.1

The probability distribution obtained from a simple index might be useful if the distribution of the parameter's values (e.g., the values of saturated hydraulic conductivity) bounds the range of the values for the actual field parameter. Furthermore, the parameter distribution obtained may be even more useful from an engineering perspective if it not only bounded the potential range of the field parameter, but also led to a conservative watershed model prediction of runoff. For example, the simple index probability distribution should overpredict the chance that the saturated hydraulic conductivity will be less than the true field value, which in turn will result in an overprediction of the chance that runoff will exceed a certain value. The overprediction resulting from the simple index may be considered to provide a safety factor that would be useful in design situations.

The probability distribution for the Green and Ampt infiltration parameters will be derived from assumed distributions for particle size distribution and total porosity via Eqs. 7, 11, 12, 13, and 14. The SOILS-5 data base provides the range in particle-size distribution and total porosity for the watershed soils (see Table 1). The particle-size distribution, as defined by the percentages of sand and clay, was assumed to be distributed uniformly over this range. The total porosity obtained from the SOILS-5 data base was assumed to have a normal distribution with a coefficient of variation equal to 0.1 in analogy to that found for variation within a texture class (McCuen et al. 1981).

Deriving the distributions of the Green and Ampt parameters K, and ψ_f is an intermediate step in deriving the volume and peak discharge probability distributions. The probability distribution for K, is independent of antecedent moisture and was derived using Monte Carlo simulation. The mean, standard deviation, skew, and kurtosis derived by Monte Carlo simulation are shown in Table 2.

The distribution of ψ_f is conditional on the antecedent moisture condition, and is not easily reported in general. However, the ψ_f corresponding to the mean infiltration parameters and initial moisture content equal to the residual saturation is shown in Table 3 for informational purposes. The derived mean values for K_f and ψ_f will not be equivalent to those calculated directly from average values of total porosity and particle distribution as can be seen, for example, by comparing the values of K_f shown in Tables 2 and 3.

No attempt will be made to assess the sensitivity of model predictions to

TABLE 2. Derived Values for Saturated Hydraulic Conductivity

Watershed (1)	Mean (in./hr) (2)	Standard deviation (in./hr) (3)	Coefficient of variation (4)	Skew (5)	Kurtosis (6)
8	0.055	0.044	0.80	1.6	6.6
9	0.061	0.045	0.74	1.6	6.5
10	0.058	0.044	0.76	1.6	6.2
11	0.055	0.042	0.76	1.6	6.4
12	0.051	0.041	0.80	1.7	6.6
19	0.047	0.039	0.83	1.7	7.0
20	0.045	0.038	0.84	1.8	7.2

Note: 1.0 in. = 2.54 cm, 1.0 in./hr = 2.54 cm/h.

the assumed probability distributions (i.e., normal or uniform) for particlesize distribution or total porosity. In verifying the model, the focus will be on comparing model predictions within one and two standard deviations about the mean prediction. Presumably, the standard deviation about the mean prediction will be most affected by the standard deviation assumed for model parameters. The tails of the assumed distributions, and consequently the shape, should be less important. Certainly, the best way to test sensitivity of model predictions to assumed parameter distributions is to try some different distributions. However, this was not possible given the computational burdens required to derive model predictions by Monte Carlo simulation.

Estimation of Initial Abstraction

The initial abstraction is defined as the water that is not free to flow overland to a stream. These losses are due to the interception of rain by crops and the depression storage due to the microrelief of the surface. Viessman et al. (1977) summarize studies that could be used to estimate interception loss. However, estimation of the depression storage from soil survey information is extremely difficult. Linden (1979) estimated depression storage for cultivated soils using a microrelief model. The key parameters in this model are random roughness and land surface slope (random roughness is essentially a measure of the variation of soil heights from the plane that would

TABLE 3. Deterministic Values for Watershed Green and Ampt and Brooks and Corey Parameters

Watershed (1)	Sand (%) (2)	Clay (%) (3)	Porosity	Residual saturation, 0, (vol/vol) (5)	Effective saturation 8, (vol/vol) (6)	Wetting front suction by (in.)	Saturated hydraulic conductivity K, (in./hr) (8)	Bubbling pressure \$\dagger(\text{in.}) (9)	Pore size distribution λ (10)
8	3.4	23.9	0.51	0.080	0.430	18.62	0.0430	24.19	0.296
9	3.1	21.4	0.51	0.074	0.436	18.14	0.0487	23.67	0.306
10	2.5	21.7	0.51	0.075	0.435	18.41	0.0468	24.03	0.305
11	2.5	23.1	0.51	0.078	0.432	18.69	0.0435	24.35	0.299
12	2.5	24.6	0.51	0.082	0.428	19.02	0.0400	24.72	0.293
19	2.5	26.4	0.51	0.086	0.424	19.45	0.0364	25.19	0.286
20	2.5	27.4	0.51	0.088	0.422	19.69	0.0342	25.48	0.281

Note: 1.0 in. = 2.54 cm, 1.0 in./hr = 2.54 cm/h.

define zero cut and fill). Application of Linden's results are hampered because, as Allmaras et al. (1966) found, random roughness in an agricultural soil is a function of the plowing tool, initial water content prior to plowing, and soil preparation. Consequently, random roughness and, correspondingly, depression storage are very difficult to estimate from soil survey information.

Linden's results indicated that for the surface slopes of the test watersheds, 3-7%, the depression storage could vary between 0.08 and 0.40 in. (0.20 and 1.05 cm), corresponding to random roughness values between 0.3 and 1.6 in. (0.8 and 4.0 cm) (Linden 1979). Combining this depression storage with potential interception loss would lead to a surface loss that at the high end could account for the observed losses in 80% of the observed events.

Given that there are no simple indices for estimating random roughness from soil survey information and the large impact that assumptions about this parameter can have on predicted runoff, the assumption was made that the initial loss is zero. This assumption should lead to a model bias towards overprediction on the average. The actual bias can be observed by comparing mean predicted runoff with observed runoff values. Whether the bias is in a range reasonably attributed to surface loss can be judged in the context of future research. The advantage of this assumption is that the surface loss does not end up being a "fudge factor" that is varied to account for model bias.

Kinematic Wave Parameter Estimates

The estimates of overland flow lengths and slopes for overland flow planes were obtained from 2-ft contour interval topographic maps. The roughness values for overland flow were estimated as a best average value for all runoff events based on published values [summary given by Hjemfelt (1986)]. The values for these parameters are given in Table 4 for each test watershed.

Estimating Initial Moisture Content

An estimate of the average moisture conditions prior to a rainfall event is needed to implement the Green and Ampt method. The moisture condition was estimated by developing regression relationships between an antecedent precipitation index (API) and essentially point measurements of soil moisture. The regression relationships will then be used to predict the average moisture condition prior to a rainfail event given the API.

There are a number of difficulties with this approach. First, the use of soil moisture data to develop this relationship is a departure from the ungauged analysis procedure. However, soil moisture measurements are rarely available, and it was felt that investigating their usefulness was an important opportunity. Second, the assumption is made that the estimates of soil moisture obtained from grab samples (point measurements) are indicative of the general watershed moisture condition. Certainly, there will be spatial variation of soil moisture across a watershed. However, the point soil moisture is the best indicator of the average watershed moisture condition available, although it has drawbacks.

Third and finally, the assumption that an API can be used to assess average watershed conditions ignores the effect of evapotranspiration between storm events on available moisture. Again, API is not an ideal proxy for

TABLE 4. Kinematic Wave Parameters for Test Watersheds

Watershed (1)	Areaª (acre) (2)	Overland flow length <i>l</i> (ft) (3)	Overland slope S_o (4)	Roughness coefficient N (5)	Initial abstraction I. (in.)
8	3.84	280	0.07	0.1	0
8	3.64	220	0.07	0.1	0
9	3.93	280	0.04	0.1	0
9	4.02	220	∂. 05	0.1	0
10	4.16	250	0.03	0.1	0
10	4.01	200	0.05	0.1	0
11	4.16	210	0.04	0.1	0
11	4.26	200	0.03	1.0	0
12	3.93	280	0.03	0.1	0
12	3.97	270	0.02	0.1	0
19	3.62	390	0.07	0.1	0
19	3.62	280	0.04	0.1	0
20	2.48	500	0.05	0.1	0
20	2.48	220	0.05	0.1	0

'Area after 1959.

Note: 1.0 acre = 0.405 '1a; 1.0 ft = 3.28 m, 1.0 in. = 2.54 cm.

soil moisture; but for ungauged analysis with a single-event model, it is probably the only one available.

The soil moisture data were obtained at various unreported locations within the test watersheds (*The Central* no date). The data were obtained by making gravimetric measurements of soil moisture for specimens taken from fist-sized field samples. The sampling interval was unevenly spaced over about 30 years of the measurement program. The volumetric water content was calculated from the reported gravimetric values, θ_D (fraction of dry unit weight), by applying the following formula:

$$\theta = \frac{\theta_D \gamma_{SD}}{\gamma_w} = 1.3622\theta_D \dots (15)$$

where θ = the volumetric water content; γ_w = the unit weight of water; and γ_{SD} = the dry unit weight of soil, taken as 85 lb/cu ft for all soils in the study area.

The soil measurements are most plentiful for the months during the growing season, April-October. The measurements were taken at depths between 0.0 and 6.0 ft. For the purposes of calculating infiltration, soil moisture measurements from 0.0 to 1.0 ft were considered most important. These soil moisture measurements covered a full range of soil moisture conditions. A linear regression relationship was established between the 5-, 15-, and 30-day API and the estimated soil moisture to explore the effects of short, medium-, and long-term antecedent rainfall. Both multiple regression and simple regressions were explored, as can be seen from the results shown in Fig. 2. The multiple coefficient of determination, R^2 , is not tremendously impressive for any of the months examined. The results indicate that the best simple regression was not significantly poorer than the multiple regres-

FIG. 2. Multiple Linear Regression between 5-, 15-, and 30-Day API and Soil Moisture at 0-1 ft Depth

sion relationships. Consequently, the best simple regression relationship was used for predicting average watershed moisture conditions.

The error made in estimating the average moisture condition via API is computed by using the final regression results shown in Table 5. The estimated error is modeled by a normal distribution whose mean value is given by the regression for each month and standard deviation is estimated by the standard error of the regression. Technically, the error distribution should be proportional to the product of the standard error and the student's t-distribution. However, the number of degrees of freedom available for the regression makes the difference between the normal and t-distribution small enough to be ignored.

TABLE 5. Simple Regression Equations for API and Soil Moisture Using Best Index

Month (1)	Abscissa intercept a (2)	Slope b (3)	Simple correlation, R (4)	Number of API days ^a (5)	Mean predicted moisture content (vol/vol) (6)	Standard error (vol/vol) (7)	Number of observations (8)
4	0.32	0.022	0.33	15	0.35	0.07	230
5	0.34	0.004	0.04	5	0.34	0.07	189
6	0.26	0.046	0.71	15	0.40	0.11	227
7	0.14	0.020	0.58	30	0.21	0.07	171
8	0.23	0.064	0.38	15	0.33	0.13	199
9	0.16	0.043	0.77	30	0.32	0.12	212
10	0.23	0.036	0.47	30	0.30	0.10	188

 $^{\bullet}\theta_i = a + b(P)$, where P is the antecedent precipitation for days designated in column 5.

STOCHASTIC ANALYSIS RESULTS

Stochastic model predictions were made by using Monte Carlo simulation to derive the probability of runoff volumes, peak discharge, and time-to-peak discharge for a given rainfall event. The distributions were estimated by performing sufficient Monte Carlo simulations to obtain stable estimates of the distribution's mean, standard deviation, skew, and kurtosis. The distributions were estimated for 101 events observed for the test watersheds. Other rainfall events were available from the test watershed records, but various observation errors excluded their use.

The statistics for the predicted volume and peak discharge stabilized in a reasonable number of simulations (5,000). However, the derived standard deviation, skew, and kurtosis for the time-to-peak discharge did not stabilize as readily, requiring at least 50,000 simulations. Since the estimation of time-to-peak discharge statistics led to onerous computer time, only the mean time-to-peak discharge was calculated.

The model was verified by comparing both model mean runoff predictions and predicted exceedance probabilities as determined from derived distributions with corresponding runoff observations and exceedance probabilities estimated from observations. A comparison of mean predicted and observed runoff resulted in a bias towards overprediction for runoff volumes of 0.20 in. and for peak discharge an overprediction of about 1.3 cfs. The prediction of time-to-peak discharge waas biased towards an underprediction of about 24 minutes on the average. However, any individual prediction of volume, peak discharge, or time-to-peak discharge can differ from the observed value by a much larger amount than the average bias, as can be seen from Figs. 3-5.

The exceedance probability comparisons were made at plus or minus one or two standard deviations for the derived distributions (see Fig. 6). The observed exceedance or nonexceedance probabilities are defined as, respec-

FIG. 3. Predicted Mean Volumes versus Observed Volumes

FIG. 4. Predicted Mean Peak Discharge versus Observed Volumes

tively, the fraction of observed occurrences that are greater than the mean prediction plus one or two standard deviations, and/or less than the mean prediction minus one or two standard deviations.

To estimate the predicted exceedance probability, a functional form for the derived distributions was determined by comparing the relationship of the coefficient of variation of the skew or kurtosis for the derived runoff distributions with that of the normal and lognormal distributions, as shown

FIG. 5. Predicted Mean Time to Peak Discharge versus Observed Peak Discharge

FIG. 6. Definition of Error Bounds and Corresponding Error Exceedance Probabilities

in Figs. 7 and 8. A comparison of the simulation results shows that the derived distributions for both runoff volume and peak discharge are better represented by a normal distribution than a lognormal distribution.

Assuming that the derived distributions are normal, model-predicted exceedance probabilities at plus or minus one and two standard deviations about the mean are equal to 16% and 2.5%, respectively. The estimated observed exceedance probabilities for the volume and peak discharge analysis are

FIG. 7. Comparison of Derived Skew for Runoff Volumes and Peak Discharges with Those for Normal and Two-Parameter Lognormal Distributions

FIG. 8. Comparison of Derived Kurtosis for Runoff Volumes and Peak Discharges with Those for Normal and Two-Parameter Lognormal Distributions

compared to the predicted ones in Table 6. The comparisons indicate that the model conservatively predicts exceedance probability at plus one standard deviation for both prediction variables and at two standard deviations for runoff volume. However, the model prediction of discharge is not conservative at two standard deviations in that the estimated observed exceedance probability is 3.0%, whereas the predicted one is 2.5%. Consequently, the results demonstrate that the model is conservative at one standard deviation, but not necessarily at two standard deviations. A corresponding comparison of nonexceedance probabilities also shown in Table 6 indicates

TABLE 6. Comparison of Observed and Predicted Exceedance Probabilities (Based on 101 Events)

Number of standard	Exceeda	nce (%)*	Nonexceedance (%) ^b		
deviations (1)	Predicted (2)	Observed (3)	Predicted (4)	Observed (5)	
		(a) Volume			
1.0	16.0	1.0	16.0	44.6	
2.0	2.5	0.0	2.5	12.9	
_	(b) Peak Discharge	е		
1.0	16.0	9.9	16.0	31.7	
2.0	2.5	3.0	2.5	9.9	

Exceedance probability = the chance that runoff volume or peak discharge will exceed the mean prediction by the given number of standard deviations.

^{*}Nonexceedance probability = the chance that runoff volume or peak discharge will be less than the mean minus the given number of standard deviations.

that the model underpredicts the chance that the runoff will be less than one or two standard deviations. Thus, the model is conservative in this respect.

CONCLUSIONS

The uncertainty in model predictions was conservatively estimated, for the most part, by considering the error resulting from using simple indices to estimate infiltration parameters. In other words, the assumed error model for infiltration parameter estimates resulted in estimated model prediction errors that were somewhat greater than the observed prediction error. This conservatism may be useful in that it could be used to obtain a safety factor in a design situation.

The conservatism of the estimated prediction uncertainty might be attributed to the assumptions made in choosing parameter probability distributions and in assuming zero surface loss. The conservatism in the estimated prediction uncertainty would be lessened if some type of peaked distribution were used instead of the uniform distribution assumed for particle-size distribution. Estimation of a surface loss may have helped in reducing the bias towards overprediction of runoff. However, further research in quantifying surface losses for ungauged watersheds would be helpful in attempts to estimate this parameter for the model. Additionally, the infiltration estimation procedure could be improved by finding a better indicator of soil moisture than an antecedent precipitation index.

The estimation procedure used for infiltration parameters could be useful when applying a PBS type model to derive flow-frequency curves (Eagleson 1972). However, application of this estimation procedure to more gauged basins would be necessary to determine whether it is consistently conservative and to determine the degree of conservatism.

APPENDIX I. REFERENCES

- Allmaras, R. R., et al. (1966). "Total porosity and random roughness of the interrow zone as influenced by tillage." *Conservation Res. Report No.* 7, Minnesota and South Dakota Agric. Exp. Sta., U.S. Dept. of Agr., Agric. Res. Svc., Washington, D.C. 22.
- Brakensiek, D. L. (1977). "Estimating the effective capillary pressure in the Green and Ampt infiltration equation." Water Resour. Res., 13(3), 680-682.
- Brutsaert, W. (1967). "Some methods of calculating unsaturated permeability." *Trans. ASAE*, American Society of Agricultural Engineers, 10(3), 400-404.
- The Central Great Plains experiment watershed. (No date). Agric. Res. Svc., U.S. Dept. of Agr., Beltsville, Md.
- Cosby, B. J., et al. (1984). "A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils." Water Resour. Res., 20(6), 682-690.
- Eagleson, P. S. (1972). "Dynamics of flood frequency." Water Resour. Res., 8(4), 878-897.
- Goldman, D. M. (1987). "Estimating runoff prediction uncertainty using a physically-based stochastic watershed model." Thesis presented to the University of California, at Davis, Calif., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
- Hjemfelt, A. T., Jr. (1986). "Estimating peak runoff from field-size watersheds." Water Resour. Bull., 22'2), 257-266.
- Klemes, V. (1978). "Physically based stochastic hydrologic analysis." Adv. Hydrosci., 11(1), 285-352.

Leclerc, G., and Schaake, J. C., Jr. (1973). "Methodology for assessing the potential impact of urban development on urban runoff and the relative efficiency of runoff control alternatives." Ralph M. Parsons Lab., Dept. No. 167, Massachusetts Inst. of Tech., Cambridge, Mass.

Linden, R. L. (1979). "A model to predict soil water storage as affected by tillage practices." Thesis presented to the University of Minnesota, at Minneapolis, Minn., in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

McCuen, R. H., Rawls, W. J., and Brakensiek, D. L. (1981). "Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil textures." Water Resour. Res., 17(4), 1005-1013.

Mein, R. G., and Larson, C. L. (1973). "Modeling infiltration during a steady rain." Water Resour. Res., 9(2), 384-394.

Morel-Seytoux, H. J. (1980). "Application of infiltration theory in hydrologic practice, CEP80-81HJM2, Engrg. Res. Ctr., HYDROWAR program, Colorado State Univ., Fort Collins, Colo.

Rawls, W. J., and Brakensiek, D. L. (1982). "Estimating soil water retention from soil properties." J. Irrig. and Drainage, ASCE, 108(2), 166-171.

Rawls, W. J., and Brakensiek, D. L. (1989). "Estimation of soil water retention and hydraulic properties in unsaturated flow in hydrologic modeling, theory and practice." H. J. Morel-Seytoux, ed., NATO ASI Series, Series C: Mathematical and Physical Sciences, 275, Kluwer Academic Publishers, Boston, Mass.

Rawls, W. J., Brakensiek, D. L., and Saxton, K. E. (1981). "Soil water characteristics." Amer. Soc. Agric. Engrg. Paper No. 81-2510.

Rawls, W. J., Brakensiek, D. L., and Saxton, K. E. (1982). "Estimation of soil water properties." Trans. ASAE, 25(5), 1316-1320, 1328.

Rawls, W. J., Brakensiek, D. L., and Soni, B. (1983). "Agricultural management effects on soil, water processes, part I: Soil water retention and Green-Ampt infiltration parameters." Trans. ASAE, 25(5), 1316-1320, 1328.

REPHLEX: Retrieval procedures for hydrologic data from experimental watersheds in the United States. (1983). Arm-NE-9, Agric. Res. Svc., U.S. Dept. of Agr., Beltsville, Md.

"SOILS-5: An interactive soils information systems users manual." Tech. Rept. N-163, Constr. Engrg. Res. Lab., U.S. Army Corps of Engrs., Champaign, Ill. Veissman, W., Jr., et al. (1977). Introduction to hydrology. Dun-Donelly, New York,

N.Y.

APPENDIX II. NOTATION

The following symbols are used in this paper:

F = cumulative infiltration (in.);

 I_a = initial abstraction (in.); i = infiltration rate (in./hr);

 $K_r =$ saturated hydraulic conductivity (in./hr);

l = length along overland flow plane (ft);

P = cumulative precipitation (in.);

Q = total watershed outflow (cfs);

q = flow per unit width of channel (cfs/ft);

m = kinematic wave discharge exponent = 1.67;

N =roughness coefficient for overland flow;

 $n = 3\lambda + 2;$

r = rainfall intensity adjusted for surface loss (in./hr);

 r_0 = rainfall intensity (in./hr);

 S_0 = slope along ove $\frac{1}{2}$ of flow plane (ft/ft);

 S_{ϵ} = effective saturation;

t = time (sec);

```
width of overland flow plane (ft);
W
         distance along overland flow plane (ft);
     =
 x
         flow depth along overland flow plane (ft);
 y
         1.49S_0^{1/2}/N; soil dry unit weight (lb/cu ft);
 α
Ysa
         unit weight of water (lb/cu ft);
γw
     = volumetric water deficit (vol/vol);
Δθ
     = volumetric water content (vol/vol);
 θ
         gravimetric water content (fraction of dry unit weight);
\theta_D
     = \phi - \theta_r \text{ (vol/vol)};
θ,
     = initial water content (vol/vol);
 θ,
         residual saturation (vol/vol);
     = pore-s ze distribution;
 λ
         standard deviation;
 σ
     =
     = porosity (vol/vol);
 ф
     = matric suction (in.);
     = bubbling pressure (in.);
     = wetting front suction (in.);
     = water entry pressure (in.); and
          \psi_{\ell}\Delta\theta (in.).
 Ω
```

APPENDIX III. CONVERSION TO SI UNITS

To convert	<u>To</u>	Multiply by
acre	ha	0.405
ft	cm	30.48
in.	cm	2.54
lb/cu ft	N/m^3	157.05
lb/cu ft cu ft/sec	m^3/s	0.0283

TECHNICAL PAPER SERIES (\$2 per paper)

TP-1	Use of Interrelated Records to Simulate	TP-38	Water Quality Evaluation of Aquatic Systems
TP-2	Streamflow Optimization Techniques for Hydrologic	TP-39	A Method for Analyzing Effects of Dam Failures in Design Studies
17-6	Engineering	TP-40	Storm Drainage and Urban Region Flood Control
TP-3	Methods of Determination of Safe Yield and		Planning
	Compensation Water from Storage Reservoirs	TP-41	HEC-5C, A Simulation Model for System
TP-4	Functional Evaluation of a Water Resources	/-	Formulation and Evaluation
TP-5	System Streamflow Synthesis for Ungaged Rivers	TP-42 TP-43	Optimal Sizing of Urban Flood Control Systems Hydrologic and Economic Simulation of Flood
TP-6	Simulation of Daily Streamflow	17-43	Control Aspects of Water Resources Systems
TP-7	Pilot Study for Storage Requirements for	TP-44	Sizing Flood Control Reservoir Systems by
	Low Flow Augmentation		Systems Analysis
TP-8	Worth of Streamflow Data for Project	TP-45	Techniques for Real-Time Operation of Flood
	Design - A Pilot Study		Control Reservoirs in the Merrimack River
TP-9	Economic Evaluation of Reservoir System	TD 44	Basin
TP-10	Accomplishments Hydrologic Simulation in Water-Yield	TP-46	Spatial Data Analysis of Monstructural Measures
11 10	Analysis	TP-47	Comprehensive Flood Plain Studies Using
TP-11	Survey of Programs for Water Surface		Spatial Data Management Techniques
	Profiles	TP-48	Direct Runoff Hydrograph Parameters Versus
TP-12	•		Urbanization
47	Stream System	TP-49	Experience of HEC in Disseminating Information
TP-13	Maximum Utilization of Scarce Data in Hydrologic Design	TP-50	on Hydrological Models
TP-14	Techniques for Evaluating Long-Term	18-30	Effects of Dam Removal: An Approach to Sedimentation
	Reservoir Yields	TP-51	Design of Flood Control Improvements by
TP-15	Hydrostatistics - Principles of		Systems Analysis: A Case Study
	Application	TP-52	Potential Use of Digital Computer Ground Water
TP-16			Models
TO 47	Modeling Techniques	TP-53	Development of Generalized Free Surface Flow
TP-17	Hydrologic Engineering Techniques for Regional Water Resources Planning	TP-54	Models Using Finite Element Techniques Adjustment of Peak Discharge Rates for
TP-18		17"34	Urbenization
	Region	TP-55	The Development and Servicing of Spatial Data
TP-19	Suspended Sediment Discharge in Streams		Management Techniques in the Corps of
TP-20	Computer Determination of Flow Through		Engineers
	Bridges	TP-56	Experiences of the Hydrologic Engineering
TP-21	An Approach to Reservoir Temperature		Center in Maintaining Widely Used Hydrologic
TP-22	Analysis A Finite Difference Method for Analyzing	TP-57	and Water Resource Computer Models Flood Damage Assessments Using Spatial Data
17 - <u>6</u> E	Liquid Flow in Variably Saturated Porous	IP-3/	Management Techniques
	Media	TP-58	A Model for Evaluating Runoff-Quality in
TP-23	Uses of Simulation in River Basin Planning		Metropolitan Master Planning
TP-24	Hydroelectric Power Analysis in Reservoir	TP-59	Testing of Several Runoff Models on an Urban
TD 35	Systems	/0	Watershed
TP-25 TP-26	Status of Water Resource Systems Analysis System Relationships for Panama Canal	TP-60	Operational Simulation of a Reservoir System
17-20	Water Supply	TP-61	with Pumped Storage Technical Factors in Small Mydropower Planning
TP-27	System Analysis of the Panama Canal Water	TP-62	Flood Hydrograph and Peak Flow Frequency
	Supply		Analysis
TP-28	Digital Simulation of an Existing Water	TP-63	HEC Contribution to Reservoir System Operation
	Resources System	TP-64	Determining Peak-Discharge Frequencies in an
TP-29	Computer Applications in Continuing Education	TD 45	Urbanizing Watershed: A Case Study
TP-30		TP-65	Feasibility Analysis in Small Hydropower Planning
50	Dependability	TP-66	Reservoir Storage Determination by Computer
TP-31	Development of System Operation Rules for		Simulation of Flood Control and Conservation
	an Existing System by Simulation		Systems
TP-32	Alternative Approaches to Water Resource	TP-67	Hydrologic Land Use Classification Using
70 77	System Simulation	/-	LANDSAT
TP-33	System Simulation for Integrated Use of Hydroelectric and Thermal Power Generation	TP-68	Interactive Nonstructural Flood-Control Planning
TP-34	Optimizing Flood Control Allocation for a	TP-69	Critical Water Surface by Minimum Specific
••	Multipurpose Reservoir	., 0,	Energy Using the Parabolic Method
TP-35	Computer Models for Rainfall-Runoff and	TP-70	Corps of Engineers Experience with Autometic
TO T/	River Hydraulic Analysis		Calibration of a Precipitation-Runoff Model
TP-36	Evaluation of Drought Effects at Lake	TP-71	Determination of Land Use from Satellite
TP-37	Atitlan Downstream Effects of the Levee	TP-72	Imagery for Input to Hydrologic Models
	Overtopping at Wilkes-Barre, PA, During	17-16	Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and
	Tropical Storm Agnes		Water Quality

TP-73	
	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir
	Modet
TP-75	HEC Activities in keservoir Analysis
TP-76	Institutional Support of Water Resource
	Models
TP-77	Investigation of Soil Conservation Service
	Urban Hydrology Techniques
TP-78	Potential for Increasing the Output of
	Existing Hydroelectric Plants
TP-79	Potential Energy and Capacity Gains from
	Flood Control Storage Reallocation at Existing U. S. Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the
1F-00	Analysis of Power Potential at Storage
	Projects
TP-81	Data Management Systems for Water
•.	Resources Planning
TP-82	The New NEC-1 Flood Hydrograph Package .
TP-83	River and Reservoir Systems Water Quality
	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner: The Hydrologic
	Engineering Center Program
TP-87	Documentation Needs for Water Resources
	Models
TP-88	Reservoir System Regulation for Water
To 00	Quality Control A Software System to Aid in Making
TP-89	Real-Time Water Control Decisions
TP-90	Calibration, Verification and Application
16-30	of a Two-Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-92	Hydrologic Engineering Center Planning
	Models
TP-93	Flood Routing Through a Flat, Complex
	Flood Plain Using a One-Dimensional
	Unsteady Flow Computer Program
TP-94	Dredged-Material Disposal Management Model
TP-94 TP-95	Dredged-Material Disposal Management Model Infiltration and Soil Moisture
TP-95	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1
	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center
TP-95 TP-96	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning
TP-95	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood
TP-95 TP-96 TP-97	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream
TP-95 TP-96	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes
TP-95 TP-96 TP-97	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The
TP-95 TP-96 TP-97	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes
TP-95 TP-96 TP-97 TP-98	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience
TP-95 TP-96 TP-97 TP-98 TP-99	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation -
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103 TP-104	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103 TP-104	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103 TP-104 TP-105	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a TMO-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-107	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a TMO-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expension
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-107	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a TMO-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-103 TP-104 TP-105 TP-106 TP-108	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expansion Role of Small Computers in Two-Dimensional
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-108 TP-108	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expansion Role of Small Computers in Two-Dimensional Flow Modeling
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-108 TP-108 TP-108 TP-110	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expansion Role of Small Computers in Two-Dimensional Flow Modeling One-Dimensional Model For Mud Flows Subdivision Froude Number HEC-50: System Water Quality Modeling
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-108 TP-108 TP-108 TP-110	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expansion Role of Small Computers in Two-Dimensional Flow Modeling One-Dimensional Model For Mud Flows Subdivision Froude Number HEC-5Q: System Water Quality Modeling New Developments in HEC Programs for Flood
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-107 TP-108 TP-110 TP-111 TP-112	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expension Role of Small Computers in Two-Dimensional Flow Modeling One-Dimensional Model For Mud Flows Subdivision Froude Number HEC-50: System Water Quality Modeling New Developments in HEC Programs for Flood Control
TP-95 TP-96 TP-97 TP-98 TP-99 TP-100 TP-101 TP-102 TP-104 TP-105 TP-106 TP-107 TP-108 TP-110 TP-111 TP-112	Dredged-Material Disposal Management Model Infiltration and Soil Moisture Redistribution in HEC-1 The Hydrologic Engineering Center Experience in Nonstructural Planning Prediction of the Effects of a Flood Control Project on a Meandering Stream Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience Reservoir System Analysis for Water Quality Probable Maximum Flood Estimation - Eastern United States Use of Computer Program HEC-5 for Water Supply Analysis Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating Modeling Water Resources Systems for Water Quality Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity Expansion Role of Small Computers in Two-Dimensional Flow Modeling One-Dimensional Model For Mud Flows Subdivision Froude Number HEC-5Q: System Water Quality Modeling New Developments in HEC Programs for Flood

17"114	Function Computed water surface Profiles -
** 445	Executive Summery
TP-115	Application of Spatial-Data Management
444	Techniques in Corps Planning
TP-116	The HEC's Activities in Watershed Modeling
TP-117	HEC-1 and HEC-2 Applications on the
	MicroComputer
TP-118	Real-Time Snow Simulation Model for the
	Monongahela River Basin
TP-119	Multi-Purpose, Multi-Reservoir Simulation on a
	PC
TP-120	Technology Transfer of Corps' Hydrologic
	Models
TP-121	Development, Calibration and Application of
	Runoff Forecasting Models for the Allegherry
	River Basin
TP-122	The Estimation of Rainfall for Flood
	Forecasting Using Radar and Rain Gage Data
TP-123	Developing and Managing a Comprehensive
	Reservoir Analysis Model
TP-124	Review of the U.S. Army Corps of Engineering
11 164	Involvement With Alluvial Fan Flooding
	Problems
TD 435	
TP-125	An Integrated Software Package for Flood
TO 43/	Damage Analysis
TP-126	The Value and Depreciation of Existing
	Facilities: The Case of Reservoirs
TP-127	Floodplain-Management Plan Enumeration
TP-128	Two-Dimensional Floodplain Modeling
TP-129	Status and New Capabilities of Computer
	Program HEC-6: "Scour and Deposition in
	Rivers and Reservoirs*
TP-130	Estimating Sediment Delivery and Yield on
	Alluvial Fans
TP-131	Hydrologic Aspects of Flood Warning -
	Preparedness Programs
TP-132	Twenty-five Years of Developing, Distributing
	and Supporting Hydrologic Engineering Computer
	Programs
TP-133	Predicting Deposition Patterns in Small Basin
TP-134	Annual Extreme Lake Elevations by Total
	Probability Theorem
TP-135	A Muskingum-Cunge Channel Flow Routing Method
	for Drainage Networks
TP-136	Prescriptive Reservoir System Analysis Model
	Missouri River System Application
TP-137	A Generalized Simulation Model for Reservoir
	System Analysis
TP-138	The HEC NexGen Software Development Project
TP-139	Issues for Applications Developers
TP-140	HEC-RAS/HEC-2 Comparison Study
TP-141	HEC-RAS Conveyance Comparison
TP-142	Systems Analysis Applications at the
	Hydrologic Engineering Center
TP-143	Runoff Prediction Uncertainty for Ungauged
173	Agricultural Watersheds
TP-144	Review of GIS Applications in Hydrologic
177	Modeling
	nous III

TP-114 Accuracy of Computed Water Surface Profiles -

SECURITY CLASSIFICATION OF THIS PAGE					
REPORT	DOCUMENTATIO	N PAGE		Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION Unclassified		16. RESTRICTIVE			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	JLE	Distribution of this document is unlimited			
4. PERFORMING ORGANIZATION REPORT NUMB	5. MONITORING	ORGANIZATION REP	PORT NUMBER(S)		
Technical Paper No. 143					
6a. NAME OF PERFORMING ORGANIZATION Hydrologic Engineering Center	7a. NAME OF M	ONITORING ORGANI	ZATION		
6c. ADDRESS (City, State, and ZIP Code)	CEWRC-HEC	75 4000555/6	in. Sana and 710 Co		
609 Second Street Davis, CA 95616		70. ADDRESS (CI	ity, State, and ZIP Co	(Je)	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable) CEWRC	9. PROCUREMEN	IT INSTRUMENT IDEN	NTIFICATION NUMBER	
Water Resources Support Center 8c. ADDRESS (City, State, and ZIP Code)	CEWRC	10 SOURCE OF	FUNDING NUMBERS		
Casey Building # 2594		PROGRAM	PROJECT	TASK WORK UNIT	
Ft. Belvoir, VA 22060-5586		ELEMENT NO.	NO.	NO. ACCESSION NO	
11. TITLE (Include Security Classification)			<u> </u>		
Runoff Prediction Uncertainty	for Ungauged Ag	ricultural	Watersheds		
12. PERSONAL AUTHOR(S) David M. Goldman, Miguel A. 1	Marino, and Arle	n D. Feldmar	1		
13a. TYPÉ OF REPORT 13b. TIME C	OVERED	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT			
	то	1990 Decemb	oer	17	
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES				dentify by block number)	
FIELD GROUP SUB-GROUP	Runoff, Rain Gauges, Soil		ing, Uncertai	nty, Error, Watershed	
	044665, 5011				
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)			
A physically based stochastic watershed model is used to estimate runoff prediction uncertainty for small agricultural watersheds in Hastings, Nebraska. The stochastic nature of the model results from postulating a probabilistic model for parameter estimation and input errors. The key factors assumed to contribute to prediction uncertainty are errors in estimating infiltration parameters and moisture conditions prior to a rainfall event. The error distributions for parameter estimates are inferred from soil survey information, and the error distribution for moisture conditions from a regression between antecedent precipitation indices and measured soil moisture. Comparison of model predicted and observed errors demonstrates that the model is conservative in that it is biased towards overprediction of errors.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT			CURITY CLASSIFICAT	TION	
22a. NAME OF RESPONSIBLE INDIVIDUAL	RPT. DTIC USERS		(Include Area Code)		
DARRYL W. DAVIS		(916) 756	-1104	CEWRC-HEC	