ECON 613: Applied Econometrics

Methods for Cross-sectional Data

February 12, 2019

Binary Response Model

Multinomial Choices

Introduction

Binary response models are models where the variable to be explained y is a random variable taking on the values zero and one which indicate whether or not a certain event has occured.

- ightharpoonup y = 1 if a person is employed
- y = 1 if a family contributes to a charity during a particular year
- ightharpoonup y = 1 if a firm has a particular type of pension plan
- y = 1 if a worker goes to college
- Regardless of what y stands for, we refer to y = 1 as a success and y = 0 as a failure.

An OLS regression of y on dependent variables denoted x ignores the discreteness of the dependent variable and does not constrain predicted probabilities to be between zero and one.

Linear Probability Model (1)

$$P(y = 1) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k.$$
 (1)

- ▶ If x_1 is continuous, β_1 is the change in the probability of success given one unit increase in x_1
- If x₁ is discrete, β₁ is the difference in the probability of success when x₁ = 1 and x₁ = 0, holding other x_i fixed.

Linear Probability Model (2)

Given that y is a random variable (Bernouilli), we also have

$$E(y \mid x) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k. \tag{2}$$

$$Var(y \mid x) = x\beta(1-x\beta) \tag{3}$$

Implications:

- ▶ OLS regression of y on $x_1, x_2, ..., x_k$ produces consistent and unbiased estimators of the β_j .
- Heteroskedacticity, which can be dealt with using standard heteroskedasticity-robust standard errors.
- Problem: OLS fitted values may not be between zero and one.

Maximum Likelihood Estimation: Logit and Probit Models

For binary outcome data, the dependent variable y takes one of two values. We let

$$y = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1 - p \end{cases}$$
 (4)

Parametrize conditional probabilities:

$$p_i = F_{\epsilon}(X\beta) \tag{5}$$

And, Marginal Effects

$$\frac{\partial Pr(y_i = 1 \mid x_i)}{\partial x_{ii}} = F'_{\epsilon}(X\beta)\beta_j \tag{6}$$

Probit Model (1)

The probit model corresponds to the case where F(x) is the cumulative standard normal distribution function

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(\frac{1}{2}X^2) dX \tag{7}$$

Where $F(X\beta) = \Phi(X\beta)$.

Probit Model (2)

Consider the latent approach

$$y^* = X\beta + \epsilon \tag{8}$$

where $\epsilon \sim N(0,1)$. Think of y^* as the net utility associated with some action. If the action yields positive net utility, it is undertaken otherwise it is not.

• We would care only about the sign of y^*

$$y = \begin{cases} 1, & \text{if } p \\ 0, & \text{with probability } 1 - p \end{cases}$$
 (9)

Probabilities

$$Pr(y = 1) = Pr(y^* > 0) = Pr(X\beta + \epsilon \ge 0)$$

= $Pr(\epsilon \ge -X\beta) = Pr(\epsilon \le X\beta) = \Phi(X\beta)$

Logit Model

The logit model specifies the cdf function F(x) is now the logistic function

$$\Lambda(x) = \frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{1 + \exp(x)}$$
 (10)

The logit model is most easily derived by assuming that

$$\log\left(\frac{P}{1-P}\right) = X\beta\tag{11}$$

The logarithm of the odds (ratio of two probabilities) is equal to $X\beta$

Maximum Likelihood Estimation

- Likelihood can not be defined as a joint density function.
- Outcome of a Bernouilli trial

$$f(y_i \mid x_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$
 (12)

 Given the independence of individuals, the likelihood can be written

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} F(x_i \beta)^{y_i} (1 - F(x_i \beta))^{1 - y_i}$$
 (13)

Log Likelihood

The log likelihood

$$\log \mathcal{L}(\beta) = \sum_{i=1}^{n} y_i ln F(x_i \beta) + (1 - y_i) ln (1 - F(x_i \beta))$$
 (14)

First order conditions

$$\sum_{i=1}^{n} \frac{y_i - F(x_i \beta)}{F(x_i \beta)(1 - F(x_i \beta))} F'(x_i \beta) x_i = 0$$
 (15)

Empirical considerations

- Probit and logit yield same outcomes. Only difference is how parameters are scaled.
- The natural metric to compare models is the fitted log-likelihood provided that the models have the same number of parameters.
- Although estimated parameters are different, marginal effects are quite similar.

Pseudo R2

$$R_{\mathsf{Binary}}^2 = 1 - \frac{\mathcal{L}(\hat{\beta})}{N[\bar{y} \ln \bar{y} + (1 - \bar{y}) \ln (1 - \bar{y})]} \tag{16}$$

Predicted Outcomes

- ► The criterion $\sum_i (y_i \hat{y}_i)^2$ gives the number of wrong predictions.
 - average rule: let $\hat{y} = 1$ when $\hat{p} = F(X\beta) > 0.5$
 - Receiver Operating Characteristics (ROC) curve plots the fractions of y=1 correctly classified against the fractions of y=0 incorrectly specified as the cutoffs $\hat{p}=F(X\beta)>c$ varies.

Example: Describing the data

		No Affair	Affair
Gender	female	0.54	0.48
Gender	male	0.46	0.52
	17.5	0.01	0.02
	22	0.22	0.11
	27	0.26	0.24
	32	0.17	0.25
Age	37	0.14	0.15
· ·	42	0.08	0.12
	47	0.04	0.05
	52	0.03	0.04
	57	0.04	0.02
	0.125	0.02	0.01
	0.417	0.02	0.01
	0.75	0.06	0.02
Years Married	1.5	0.17	0.08
rears iviarried	4	0.17	0.18
	7	0.13	0.15
	10	0.11	0.14
	15	0.31	0.41
Share		0.75	0.25

Example: Affairs

		No Affair	Affair
Children	no	0.319	0.18
Children	yes	0.681	0.82
	_		
	1	0.062	0.133
	2	0.273	0.273
Religiousness	3	0.191	0.287
	4	0.348	0.22
	5	0.126	0.087
		0.011	0.010
	9	0.011	0.013
	12	0.069	0.087
	14	0.264	0.233
Education	16	0.211	0.133
	17	0.137	0.18
	18	0.175	0.22
	20	0.133	0.133

Probit

	Model 1	Model 2	Model 3	Model 4
(Intercept)	-0.74*** (0.08)	-0.02 (0.51)	-0.18 (0.52)	-0.02 (0.81)
as.factor(gender)male	0.14	0.13 (0.12)	0.14 (0.12)	0.21 (0.12)
as.factor(age)22	(0.11)	-1.12* (0.53)	-1.07* (0.54)	-1.45* (0.61)
as.factor(age)27		-0.76 (0.53)	-0.82 (0.53)	-1.44* (0.62)
as.factor(age)32		-0.48 (0.53)	-0.60 (0.53)	-1.36* (0.63)
as.factor(age)37		-0.70 (0.53)	-0.84 (0.54)	-1.79** (0.66)
as.factor(age)42		-0.50 (0.54)	-0.65 (0.55)	-1.61* (0.67)
as.factor(age)47		-0.56 (0.58)	-0.68 (0.59)	-1.72* (0.71)
as.factor(age)52		-0.62 (0.59)	-0.76 (0.60)	-1.75* (0.71)
as.factor(age)57		-1.17 (0.62)	-1.31* (0.62)	-2.36** (0.74)
as.factor(children)yes		(0.02)	0.31*	0.11 (0.17)
as.factor(yearsmarried)0.417			(0.15)	0.01 (0.77)
as.factor(yearsmarried)0.75				-0.37 (0.67)
as.factor(yearsmarried)1.5				0.22 (0.56)
as.factor(yearsmarried)4				0.62 (0.57)
Log Likelihood	-336.91	-327.84	-325.74	-319.69

Logit

	Model 1	Model 2	Model 3	Model 4
(Intercept)	-1.22*** (0.13)	-0.03 (0.82)	-0.31 (0.84)	-0.07 (1.48)
as.factor(gender)male	0.24	0.21 (0.20)	0.23	0.34 (0.21)
as.factor(age)22	(3-3)	-1.88* (0.86)	-1.78* (0.87)	-2.44 [*] (1.05)
as.factor(age)27		-1.24 (0.84)	-1.35 (0.85)	-2.41 [*] (1.06)
as.factor(age)32		-0.77 (0.84)	-0.99 (0.86)	-2.29* (1.08)
as.factor(age)37		-1.14 (0.86)	-1.38 (0.88)	-2.99** (1.13)
as.factor(age)42		-0.82 (0.87)	-1.07 (0.89)	-2.70* (1.14)
as.factor(age)47		-0.90 (0.94)	-1.11 (0.95)	-2.87* (1.21)
as.factor(age)52		-1.00 (0.95)	-1.26 (0.97)	-2.95* (1.21)
as.factor(age)57		-1.97 (1.03)	-2.22* (1.05)	-3.99** (1.29)
as.factor(children)yes			0.54* (0.27)	0.16 (0.30)
as.factor(yearsmarried)0.417				0.09 (1.49)
as.factor(yearsmarried)0.75				-0.50 (1.31)
as.factor(yearsmarried)1.5				0.42 (1.10)
as.factor(yearsmarried)4				1.11 (1.10)
Log Likelihood	-336.91	-327.90	-325.85	-320.24

Probit VS Logit

	Probit	Logit
(Intercept)	-0.02	-0.07
. ,	(0.81)	(1.48)
as.factor(gender)male	0.21	0.34
(8)	(0.12)	(0.21)
as.factor(age)22	-1.45 [*]	-2.44 [*]
(3)	(0.61)	(1.05)
as.factor(age)27	-1.44*	-2.41 [*]
(181)	(0.62)	(1.06)
as.factor(age)32	-1.36*	-2.29 [*]
(181)	(0.63)	(1.08)
as.factor(age)37	-1.79**	-2.99 [*] *
(181)	(0.66)	(1.13)
as.factor(age)42	-1.61*	-2.70*
(181)	(0.67)	(1.14)
as.factor(age)47	-1.72*	-2.87*
(3)	(0.71)	(1.21)
as.factor(age)52	-1.75*	-2.95 [*]
(181)	(0.71)	(1.21)
as.factor(age)57	-2.36**	-3.99**
(181)	(0.74)	(1.29)
as.factor(children)yes	0.11	0.16
((0.17)	(0.30)
as.factor(yearsmarried)0.417	0.01	0.09
3	(0.77)	(1.49)
AIC	675.38	676.48
BIC	754.55	755.66
Log Likelihood	-319.69	-320.24

p < 0.001, p < 0.01, p < 0.05

Identification considerations

- $ightharpoonup \beta$ is identified up to a scale.
- We observe only whether $X\beta + \epsilon > 0$.
- ▶ Implication for the interpretation of the coefficients.

Model Selection

- ► $AIC = 2k 2 \log \mathcal{L}$
- $BIC = \log(n)k 2\log \mathcal{L}$

Determinants of Female Labor Supply

Cross-section data originating from the health survey SOMIPOPS for Switzerland in 1981.

- participation Factor: Did the individual participate in the labor force?
- income: Logarithm of nonlabor income.
- age: Age in decades (years divided by 10).
- education: Years of formal education.
- youngkids: Number of young children (under 7 years of age).
- oldkids:Number of older children (over 7 years of age).
- foreign Factor: Is the individual a foreigner (i.e., not Swiss)?

Describing the data (1)

Describing the data (2)

		Partici	pation
		No	Yes
	0	0.6921	0.8454
Number of verse kide	1	0.2123	0.1172
Number of young kids	2	0.0892	0.0324
	3	0.0064	0.005
	0	0.4904	0.404
	1	0.2166	0.2394
	2	0.2166	0.2643
Number of old kids	3	0.0573	0.0698
	4	0.0149	0.0175
	5	0.0042	0
	6	0	0.005

Effect of income

	Model 1	Model 2	Model 3
(Intercept)	5.97***	-16.60	116.89
	(1.19)	(10.14)	(67.96)
income	-0.57^{***}	3.69	-37.41
	(0.11)	(1.91)	(20.52)
I(income ²)		-0.20^{*}	3.97
		(0.09)	(2.06)
$I(income^3)$			-0.14*
			(0.07)
Log Likelihood	-587.91	-585.54	-583.06
Num. obs.	872	872	872
*** - 0 001 **	- 0 01 *	. 0.05	

^{***}p < 0.001, **p < 0.01, *p < 0.05

Effect of age

	Model 1	Model 2	Model 3
(Intercept)	0.34*	-3.52***	-1.10
	(0.17)	(0.63)	(2.20)
age	-0.01**	0.19***	-0.00
	(0.00)	(0.03)	(0.18)
$I(age^2)$, ,	-0.00***	0.00
, - ,		(0.00)	(0.00)
$I(age^3)$,	-0.00
()			(0.00)
Log Likelihood	-597.85	-576.39	-575.71
Num. obs.	872	872	872
*** - < 0.001 **	0 01 * -	< 0.0E	

^{***}p < 0.001, **p < 0.01, *p < 0.05

Specification

	Model 1	Model 2	Model 3
(Intercept)	7.66***	4.65***	-7.42
,	(1.28)	(1.40)	(10.73)
income	-0.56***	-0.74***	1.55
	(0.12)	(0.13)	(2.03)
age	-0.03***	0.23***	0.23***
	(0.01)	(0.04)	(0.04)
education	-0.03	-0.02	-0.02
	(0.02)	(0.02)	(0.02)
youngkids	-0.71^{***}	-0.64***	-0.64***
	(0.10)	(0.10)	(0.10)
oldkids	-0.01	-0.16**	-0.16**
	(0.04)	(0.05)	(0.05)
$I(age^2)$		-0.00***	-0.00***
		(0.00)	(0.00)
I(income ²)			-0.11
			(0.10)
Log Likelihood	-550.08	-526.38	-525.86
Num. obs.	872	872	872
Num. obs. ***p < 0.001, **/			872

Marginal Effects

Recall that marginal effects are given by

$$\frac{\partial Pr(y_i = 1 \mid x_i)}{\partial x_{ij}} = F'_{\epsilon}(X\beta)\beta_j \tag{17}$$

- Different definitions
 - Average marginal effects in the sample.
 - Marginal effect evaluated at the mean.

Marginal Effects

income	0.53
age	0.08
education	-0.01
youngkids	-0.22
oldkids	-0.05
$I(age^2)$	-0.00
I(income ²)	-0.04

Prediction

	Model		
Data	0	1	
0	325	146	
1	137	264	

ROC

By citizenship

	Native	Immigrants	
(Intercept)	-6.85	-67.57	
. ,	(11.24)	(48.18)	
income	`1.17 ´	13.31	
	(2.11)	(9.16)	
age	0.24***	0.14	
	(0.05)	(0.09)	
education	0.05*	-0.03	
	(0.02)	(0.04)	
youngkids	-0.76***	-0.75***	
	(0.13)	(0.18)	
oldkids	-0.16**	-0.18	
	(0.06)	(0.12)	
$I(age^2)$	-0.00***	-0.00	
	(0.00)	(0.00)	
I(income ²)	-0.09	-0.66	
	(0.10)	(0.43)	
Log Likelihood	-384.24	-117.82	
Num. obs.	656	216	
*** n < 0.001 ** n < 0.01 * n < 0.05			

Murder Rates

Cross-section data on states in 1950.

- ▶ rate: Murder rate per 100,000 (FBI estimate, 1950).
- convictions: Number of convictions divided by number of murders in 1950.
- executions: Average number of executions during 1946–1950 divided by convictions in 1950.
- time: Median time served (in months) of convicted murderers released in 1951.
- ▶ income: Median family income in 1949 (in 1,000 USD).
- ▶ Ifp: Labor force participation rate in 1950 (in percent).
- noncauc: Proportion of population that is non-Caucasian in 1950.
- southern: Factor indicating region.

Warnings

- ▶ Binary model of the determinants of having an execution
- ► This is very bad economics
- An example to illustrate some technical problems

```
glm(formula = I(executions > 0) ~ time + income + noncauc -
    southern, family = binomial, data = MurderRates)
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.99326 20.77336 0.529
                                   0.5967
time
    0.01943 0.01040 1.868 0.0617 .
          10.61013 5.65409 1.877 0.0606 .
income
```

70.98785 36.41181 1.950 0.0512 . noncauc lfp

southernyes 17.33126 2872.17069 0.006

0.9952

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

- ▶ Diagnostic
- ► Point estimate and Std.

```
table(I(MurderRates$executions > 0), MurderRates$southern)
```

FALSE 9 0

TRUE 20 15

no yes

Quasi Separation

▶ We have here β^0 such that

$$y_i = 0$$
 whenever $x_i' \beta^0 \le 0$
 $y_i = 1$ whenever $x_i' \beta^0 \ge 0$

▶ The maximum likelihood estimate does not exist.

Binary Response Mode

Multinomial Choices

Multinomial Models

Dependent variable has several possible outcomes, that are mutually exclusive

- Commute to work (car, bus, bike, walking)
- Employment status (full time, part time, unemployed)
- Occupation choice, field of study, product choice
- Ordered choices eg. education choices
- Unordered choices eg. fishing mode

Ordered Discrete Response

Suppose that $y^*(=x_i\beta+\epsilon_i)$ is continuously distributed with standard deviation σ but the observed response y_i is an ordered discrete choice (ODR) taking $0,1,\ldots,R-1$ determined by fixed threesholds γ_r . Formally, we have

$$y = \begin{cases} 0, & \text{if } x\beta + \epsilon < \gamma_1 \\ 1, & \text{if } \gamma_1 \le x\beta + \epsilon < \gamma_2 \\ 2, & \text{if } \gamma_2 \le x\beta + \epsilon < \gamma_3 \\ \dots \\ R - 1, & \text{if } \gamma_{R-1} \le x\beta + \epsilon \end{cases}$$
(18)

Identification

- Not all parameters are identified as in the binary response model.
- ► Consider $\gamma_r \leq x\beta + \epsilon < \gamma_{r+1}$. Then, we have $\frac{\gamma_r \gamma_1}{\sigma} \leq \frac{x\beta + \epsilon \gamma}{\sigma} < \frac{\gamma_{r+1} \gamma_1}{\sigma}$
- Then, the identified parameters are

$$\alpha = \left(\frac{\beta_1 - \gamma_1}{\sigma}, \frac{\beta_2}{\sigma}, \dots, \frac{\beta_k}{\sigma}\right) \tag{19}$$

$$\rho_r = \frac{\gamma_r - \gamma_1}{\sigma} \tag{20}$$

for
$$r = 2, ..., R - 1$$
.

Toward the Likelihood

$$y = r$$

$$\gamma_{r} \leq x\beta + \epsilon < \gamma_{r+1}
\gamma_{r} - x\beta \leq \epsilon < \gamma_{r+1} - x\beta
\frac{\gamma_{r} - \gamma_{1}}{\sigma} + \frac{\gamma_{1} - x\beta}{\sigma} \leq \frac{\epsilon}{\sigma} < \frac{\gamma_{r+1} - \gamma_{1}}{\sigma} + \frac{\gamma_{1} - x\beta}{\sigma}
\rho_{r} - x\alpha \leq \frac{\epsilon}{\sigma} < \rho_{r+1} - x\alpha$$

Likelihood

Choice probabilities

$$P(y = r \mid x) = P(\rho_r - x\alpha \le \frac{\epsilon}{\sigma} < \rho_{r+1} - x\alpha)$$
$$= F(\rho_{r+1} - x\alpha) - F(\rho_r - x\alpha)$$

Likelihood

$$\mathcal{L}(a,t) = \prod_{i=1}^{N} \prod_{r=0}^{K-1} [P(y_i = r \mid x)]^{y_{ir}}$$
 (21)

▶ Log Likelihood of the probit model

$$\log \mathcal{L}(a,t) = \sum_{i=1}^{N} \sum_{r=0}^{R-1} y_{ir} \log(\Phi(t_{r+1} - xa) - \Phi(t_r - xa))$$
 (22)

where a and t are respectively the parameters to be estimated and the cutoffs.

Marginal Effects

► The marginal effects of x on each choice probabilities can be derived as:

$$\frac{\partial P(y=r\mid x)}{\partial x} = -\alpha(\phi(\rho_{r+1} - x\alpha) - \phi(\rho_r - x\alpha))$$
 (23)

Caution

$$\sum_{r=0}^{R} P(y = r \mid x) = 1$$
 (24)

Then

$$\sum_{r=0}^{R} \frac{\partial P(y=r \mid x)}{\partial x} = 0$$
 (25)

An increase in some choice probability necessarily entails a decrease in some other choice probabilities.

Multinomial Logit

The models differ according to whether or not regressors vary across alternatives.

► Conditional logit model

$$p_{ij} = \frac{\exp(x_{ij}\beta)}{\sum_{l=1}^{m} \exp(x_{il}\beta)} \qquad j = 1, \dots, m.$$
 (26)

Multinomial logit model

$$p_{ij} = \frac{\exp(x_i \beta_j)}{\sum_{l=1}^m \exp(x_i \beta_l)} \qquad j = 1, \dots, m.$$
 (27)

Mixed logit model

$$p_{ij} = \frac{\exp(x_{ij}\beta + w_i\gamma_j)}{\sum_{l=1}^{m} \exp(x_{il}\beta + w_i\gamma_l)} \qquad j = 1, \dots, m.$$
 (28)

Marginal Effects

Conditional logit

$$\frac{\partial p_{ij}}{\partial x_{ik}} = p_{ij}(\delta_{ijk} - p_{ik})\beta \tag{29}$$

where δ_{ijk} is an indicator variable equal to 1 if j=k and equal to 0 otherwise.

Multinomial logit

$$\frac{\partial p_{ij}}{\partial x_i} = p_{ij}(\beta_j - \bar{\beta}_i) \tag{30}$$

where $\bar{\beta}_i = \sum_I p_{iI} \beta_I$

Independence of Irrelevant Alternatives

- A property of the conditional logit and multinomial logit is that discrimination among the m alternatives reduces to a series of pairwise comparisons that are unaffected by the characteristics of alternatives other than the pair under consideration.
- ► The choice probabilities must be unaffected by the removal of one alternative.

That is because

$$Pr(y = j \mid y = k) = \frac{p_j}{p_j + p_k}$$
 (31)

Testing for IIA

- Estimate the model twice
 - On the full set of alternatives and obtain θ_{full}
 - ▶ On a subset of alternatives and obtain θ_{subset}
- ▶ Compare $\mathcal{L}_{subset}(\theta_{full})$ and $\mathcal{L}_{subset}(\theta_{subset})$. If there is a significant different, then IIA is violated.

It is very (very) rare that IIA is not violated.

Hausman and McFadden Test

$$HM = (\hat{\beta}^r - \hat{\beta}^f)' [var_{\hat{\beta}^r} - var_{\hat{\beta}^f}]^{-1} (\hat{\beta}^r - \hat{\beta}^f)$$
(32)

We have that

$$HM \sim \chi^2(||\beta^r||) \tag{33}$$

If IIA holds.

Alternatives

- Generalized Extreme Value Model
- Nested Logit Model
- Random Parameters Logit
- Multinomial Probit

Nested Logit

Nested Logit

The nested logit model breaks decision making into groups. The utility for the alternative is given

$$U_{jk} = V_{jk} + \epsilon_{jk}$$
 $k = 1, 2, \dots, K_j, j = 1, 2, \dots, J$ (34)

Utilities are given by:

- ▶ $V_{11} + \epsilon_{11}$
- **.** . . .
- $ightharpoonup V_{JK_J} + \epsilon_{JK_J}$

Choice Probabilities

Choice probability

$$p_{jk} = p_j \times p_{k|j}. \tag{35}$$

▶ This arises from GEV joint distribution

$$F(\epsilon) = \exp(-G(e^{-\epsilon_{11}}, \ldots, e^{-\epsilon_{1K_1}}; \ldots; e^{-\epsilon_{J1}}, \ldots, e^{-\epsilon_{JK_J}}))$$

with

$$G(Y) = G(Y_{11}, \dots, Y_{1K_1}, \dots, Y_{JK_J}) = \sum_{j=1}^{J} \left(\sum_{k=1}^{K_j} Y_{jk}^{\frac{1}{\rho_j}} \right)^{\rho_j}$$
(36)

Model

Consider

$$V_{jk} = z_j \alpha + x_{jk} \beta_j \quad k = 1, \dots, K_j, \quad j = 1, \dots, J$$
 (37)

The probability of the nested logit model

$$p_{jk} = p_j \times p_{k|j} = \frac{\exp(z_j \alpha + \rho_j I_j)}{\sum_{m=1}^J \exp(z_m \alpha + \rho_m I_m)} \times \frac{\exp(x_{jk} \beta / \rho_j + \rho_j I_j)}{\sum_{m=1}^J \exp(z_m \alpha + \rho_m I_m)}$$

where

$$I_j = In \left(\sum_{l=1}^{K_j} \exp(x_{jl} \beta_j / \rho_j) \right)$$

is the inclusive value or the log-sum.

Likelihood

For the *ith* observation, we observe $K_1 + \ldots + K_J$ outcomes y_{ijk} , where $y_{ijk} = 1$ if alternative jk is chosen and is zero otherwise. Then the density of one observation y_i can be expressed

$$f(y_i) = \prod_{j=1}^{J} \prod_{k=1}^{K_J} [p_{ij} \times p_{ik|j}]^{y_{ijk}} = \prod_{j=1}^{J} p_{ij}^{y_{ij}} \left(\prod_{k=1}^{K_J} p_{ik|j}^{y_{ijk}} \right)$$

The log likelihood is given by

$$InL = \sum_{i=1}^{N} \sum_{y=1}^{J} y_{ij} \log(p_{ij}) + \sum_{i=1}^{N} \sum_{y=1}^{J} \sum_{k=1}^{K_J} y_{ijk} \log(p_{ik|j})$$

Discussions and Limitations

- Nested Logit can be estimated in two steps following the construction of the densities
- Not all choices are easy to nest.

Multinomial Probit

Consider m-choice with

$$U_j = V_j + \epsilon_j$$
 $j = 1, 2, ..., m.$ (38)

where $\epsilon \sim \mathbb{N}(0, \Sigma)$.

- Σ is the matrix of variance-covariance, which can be left unrestricted to capture the correlation between choices.
- Choice probabilities.. For 4 choices, we have

$$P(Y=1) = \int_{-\infty}^{-V_{41}} \int_{-\infty}^{-V_{31}} \int_{-\infty}^{-V_{21}} f(x, y, z) dz dy dx$$
 (39)

where f(x, y, z) is the pdf of the trivariate normal.

Need simulation to compute the choice probabilities and the likelihood.

Applications

- Conditional logit
- Multinomial logit
- Mixed logit

Data: Car

Sample of 4654 individuals stating preferences for cars

- choice: choice of a vehicule amoung 6 propositions,
- college: college education?,
- hsg2: size of household greater than 2?
- coml5: commute lower than 5 miles a day?,
- type: body type, one of regcar (regular car), sportuv (sport utility vehicule), sportcar, stwagon
- (station wagon), truck, van, for each proposition z from 1 to 6,
- fuel: fuel for proposition z, one of gasoline, methanol, cng (compressed natural gas), electric.,
- price: price of vehicule divided by the logarithm of income,
- range: hundreds of miles vehicule can travel between refuelings/rechargings,

Data

- acc: acceleration, tens of seconds required to reach 30 mph from stop,
- speed: highest attainable speed in hundreds of mph,
- pollution: tailpipe emissions as fraction of those for new gas vehicule,
- size: 0 for a mini, 1 for a subcompact, 2 for a compact and 3 for a midsize or large vehicule,
- space: fraction of luggage space in comparable new gas vehicule,
- cost: cost per mile of travel (tens of cents): home recharging for electric vehicule, station refueling otherwise
- station: fraction of stations that can refuel recharge vehicule

Descriptive Statistics

Statistic	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
college	0.429	0.514	0	0	1	1
hsg2	0.571	0.514	0	0	1	1
coml5	0.429	0.514	0	0	1	1
alt	3.214	1.805	1	2	4.8	6
price	4.212	0.620	3.311	3.700	4.717	5.139
range	275.000	79.663	125	250	300	400
acc	4.429	1.530	2	2.9	6	6
speed	115.000	23.534	85	95	140	140
pollution	0.300	0.206	0.000	0.138	0.475	0.600
size	2.571	0.514	2	2	3	3
space	0.914	0.141	0.700	0.775	1.000	1.000
cost	5.714	1.729	4	4	7.5	8
station	0.371	0.421	0.000	0.100	0.825	1.000

Conditional Logit

	Model 1
2:(intercept)	-0.98***
	(0.07)
3:(intercept)	0.46***
	(0.04)
4:(intercept)	-0.70***
	(0.07)
5:(intercept)	0.56***
	(0.04)
6:(intercept)	-0.77***
	(0.08)
typesportuv	-0.05
	(0.15)
typesportcar	-0.18
	(0.16)
typestwagon	-0.57* [*] **
0	(0.08)
typetruck	-0.49* [*] **
· ·	(0.06)
typevan	-0.14*
· ·	(0.07)
price	-0.19***
•	(0.03)
cost	-0.07***
	(0.01)
AIC	14473.98
Log Likelihood	-7224.99
Num. obs.	4654

Table: Statistical models

Conditional Logit: Interactions

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
2:(intercept)	-1.19***	-1.19***	-1.19***	-1.19***	-1.19***	-1.19***
	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)	(0.07)
3:(intercept)	-0.54***	-0.56***	-0.54***	-0.55***	-0.55***	-0.56***
	(0.09)	(0.09)	(0.09)	(0.09)	(0.09)	(0.09)
4:(intercept)	-1.89***	-1.91***	-1.89***	-1.90***	-1.90***	-1.91***
,	(0.10)	(0.10)	(0.10)	(0.10)	(0.10)	(0.10)
5:(intercept)	-1.02***	-1.05***	-1.02***	-1.03***	-1.03***	-1.05***
,	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)
6:(intercept)	-2.61***	-2.64***	-2.61***	-2.62***	-2.62***	-2.64***
	(0.16)	(0.16)	(0.16)	(0.16)	(0.16)	(0.16)
fuelmethanol	-1.18***	-1.30***	-1.28***	-1.26***	-ì.30***	-1.30***
	(0.18)	(0.18)	(0.18)	(0.18)	(0.18)	(0.18)
fuelcng	-0.66***	-0.67***	-0.66***	-0.66***	-0.66***	-0.67***
	(0.13)	(0.13)	(0.13)	(0.13)	(0.13)	(0.13)
fuelelectric	-0.13	-0.13	-0.12	-0.13	-0.12	-0.13
	(0.08)	(0.08)	(0.08)	(80.0)	(80.0)	(0.08)
range	0.00***	0.00***	0.00***	0.00***	0.00***	0.00****
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
price	-0.19***	-0.19***		-0.12***		-0.22***
	(0.03)	(0.03)		(0.03)		(0.03)
cost	. ,	-0.08***		. ,	-0.05**	-0.11***
		(0.01)			(0.02)	(0.02)
I(price * cost)		, ,	-0.02***	-0.01***	-0.01*	0.01
			(0.00)	(0.00)	(0.00)	(0.00)
AIC	14309.01	14196.72	14247.97	14229.76	14240.86	14195.58
Log Likelihood	-7144.50	-7087.36	-7113.98	-7103.88	-7109.43	-7085.79
Num. obs.	4654	4654	4654	4654	4654	4654

***p < 0.001, **p < 0.01, *p < 0.05

Conditional Logit: Effect of size

*** -0.98* 7) (0.07 ** 0.41* 4) (0.04 *** -0.74* 7) (0.07 7) (0.53* 4) (0.04	7) (0.07) ** 0.41*** 4) (0.04) *** -0.74** 7) (0.07)
7) (0.07 ** 0.41** 4) (0.04 *** -0.74* 7) (0.07 ** 0.53**	7) (0.07) ** 0.41*** 4) (0.04) *** -0.74** 7) (0.07)
** 0.41** 4) (0.04 *** -0.74* 7) (0.07 ** 0.53**	** 0.41*** 4) (0.04) *** -0.74** 7) (0.07)
4) (0.04 *** -0.74* 7) (0.07 ** 0.53**	4) (0.04) *** -0.74** 7) (0.07)
*** -0.74* 7) (0.07 ** 0.53**	-0.74** 7) (0.07)
7) (0.07 ** 0.53**	7) (0.07)
** 0.53*	
	** 0.53***
T) (U.U4	
*** -0.81*	
7) (0.07	7) (0.07)
04 - 0.0	
5) (0.15	5) (0.15)
17 —0.1	17 -0.17
6) (0.16	
* [*] ** -0.55*	* [*] ** -0.55* [*]
80.0)	(80.0)
*** -0.49*	*** -0.49**
6) (0.06	
0) (0.00	6) (0.06)
5* (0.00 5* -0.15	
	5* -0.15*
5* -0.15	5* -0.15* 7) (0.07)
5* -0.15 7) (0.07	5* -0.15* 7) (0.07) 3
5* -0.15 7) (0.07 * 0.03	5* -0.15* 7) (0.07) 3 0)
5* -0.15 7) (0.07 * 0.03 2) (0.10	5* -0.15* 7) (0.07) 3 0)
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0)
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0) 1 2)
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0) 1 1 2) 0.06
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0) 1 1 2) 0.06 (0.12)
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0) 1 2) 0.06 (0.12) 0.09
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 0) 1 1 2) 0.06 (0.12) 0.09 (0.12)
5* -0.15 7) (0.07 * 0.03 2) (0.10 0.01	5* -0.15* 7) (0.07) 3 3 0) 1 2) 0.06 (0.12) 0.09 (0.12) 0.15 (0.12)
	7) (0.07 * 0.03 2) (0.10 0.03

Conditional Logit: Distance and car type

	Model 1	Model 2	Model 3	Model 4
2:(intercept)	-1.19***	-1.19***	-1.19***	-1.19***
	(0.07)	(0.07)	(0.07)	(0.07)
3:(intercept)	-0.56***	-0.59***	-0.56***	-0.59***
	(0.09)	(0.09)	(0.09)	(0.09)
4:(intercept)	-1.91***	-1.94***	-1.91***	-1.94***
	(0.10)	(0.11)	(0.10)	(0.11)
5:(intercept)	-1.05***	-1.08***	-1.05***	-1.09***
	(0.15)	(0.15)	(0.15)	(0.15)
6:(intercept)	-2.64***	-2.67***	-2.64***	-2.68***
	(0.16)	(0.16)	(0.16)	(0.16)
fuelmethanol	-1.30***	-1.34***	-1.30***	-1.35***
	(0.18)	(0.18)	(0.18)	(0.18)
fuelcng	-0.67***	-0.68***	-0.67***	-0.69***
	(0.13)	(0.13)	(0.13)	(0.13)
fuelelectric	-0.13	-0.13	-0.13	-0.13
	(80.0)	(0.08)	(0.08)	(0.08)
price	-0.19***	-0.19***	-0.19***	-0.19***
	(0.03)	(0.03)	(0.03)	(0.03)
cost	-0.08***	-0.08***	-0.09***	-0.09***
	(0.01)	(0.01)	(0.01)	(0.01)
range	0.00***	0.00***	0.00***	0.00***
	(0.00)	(0.00)	(0.00)	(0.00)
I(range * comI5)		-0.00		-0.00
		(0.00)		(0.00)
I(cost * comI5)			0.03	Ò.03*
*			(0.02)	(0.02)
Log Likelihood	-7087.36	-7086.12	-7085.96	-7084.18
Num. obs.	4654	4654	4654	4654

Conditional Logit: Price and College

	Model 1	Model 2	Model 3
2.(:=+====+)	-0.98***	-0.98***	-0.98***
2:(intercept)			
2.(:	(0.07) 0.46***	(0.07) 0.46***	(0.07) 0.46***
3:(intercept)			
	(0.04)	(0.04)	(0.04)
4:(intercept)	-0.69***	-0.69***	-0.69***
- 4	(0.07)	(0.07)	(0.07)
5:(intercept)	0.56***	0.56***	0.56***
	(0.04)	(0.04)	(0.04)
6:(intercept)	-0.77***	-0.77***	-0.77***
	(0.08)	(0.08)	(0.08)
typesportuv	-0.05	-0.05	-0.04
	(0.15)	(0.15)	(0.15)
typesportcar	-0.18	-0.18	-0.18
	(0.16)	(0.16)	(0.16)
typestwagon	-0.57***	-0.57***	-0.57***
	(0.08)	(0.08)	(80.0)
typetruck	-0.49* [*] *	-0.49* [*] **	-0.49***
**	(0.06)	(0.06)	(0.06)
typevan	-0.14 [*]	-0.14*	-0.14*
71	(0.07)	(0.07)	(0.07)
price	-0.25***	-0.25***	-0.24***
p	(0.05)	(0.05)	(0.05)
cost	-0.07***	-0.07***	-0.05***
0000	(0.01)	(0.01)	(0.01)
I(price * college)	0.08	0.08	0.07
(price college)	(0.06)	(0.06)	(0.06)
I(cost * college)	(0.00)	(0.00)	-0.03
i(cost college)			(0.02)
AIC	14474.49	14474.49	14474.06
	-7224.24	-7224.24	-7223.03
Log Likelihood			
Num. obs.	4654	4654	4654
*** $p < 0.001$,	** $p < 0.01$, *p < 0.05	

Interpretation

- Point estimates
- ► Non invariant characteristics

Multinomial Logit

	Model 1	Model 2
2:(intercept)	-1.09***	-1.09***
	(0.14)	(0.14)
3:(intercept)	0.41***	0.41***
	(0.09)	(0.09)
4:(intercept)	-0.80***	-0.80***
	(0.13)	(0.13)
5:(intercept)	0.65***	0.65***
	(0.09)	(0.09)
6:(intercept)	-0.75***	-0.75***
	(0.13)	(0.13)
2:college	-0.14	-0.04
	(0.16)	(0.20)
3:college	0.01	0.58***
	(0.11)	(0.13)
4:college	-0.17	0.41*
	(0.15)	(0.20)
5:college	-0.17	0.17
	(0.10)	(0.13)
6:college	-0.43**	-0.17
	(0.15)	(0.21)
2:I(college * cost)		-0.02
		(0.03)
3:I(college * cost)		-0.12***
		(0.02)
4:I(college * cost)		-0.12***
= 1/ 11 #		(0.03)
5:I(college * cost)		-0.07***
6.1((0.02)
6:I(college * cost)		-0.05
N also	4654	(0.03) 4654
Num. obs.		
$^{***}p < 0.001,$	$^{**}p < 0.01,$	* $p < 0.05$

Multinomial Logit

	Model 1	Model 2
2:(intercept)	-1.09***	-1.09***
	(80.0)	(0.08)
3:(intercept)	0.46***	0.46***
	(0.05)	(0.05)
4:(intercept)	-0.87***	-0.87***
	(0.08)	(0.08)
5:(intercept)	0.48***	0.48***
	(0.05)	(0.05)
6:(intercept)	-1.07***	-1.07***
	(0.08)	(80.0)
2:coml5	-0.32*	-0.84*
	(0.15)	(0.43)
3:coml5	-0.11	-0.34
	(0.09)	(0.19)
4:coml5	-0.18	-0.23
	(0.13)	(0.32)
5:coml5	0.11	-0.11
	(0.09)	(0.18)
6:coml5	-0.00	-0.37
	(0.14)	(0.35)
2:I(coml5 * size)		0.21
		(0.16)
3:I(coml5 * size)		0.10
		(0.07)
4:I(coml5 * size)		0.02
		(0.12)
5:I(coml5 * size)		0.09
C1/ IE * ' \		(0.07)
6:I(coml5 * size)		0.16
		(0.13)
Num. obs.	4654 ** n < 0.01	4654
***p < 0.001,	**p < 0.01	, * <i>p</i> < 0.05

Issues Days

- ► Completely Voluntary Bonus in grade (+)
- One topic (for example The effects of immigration on natives)
 - Introduction
 - ▶ Paper 1 What
 - Paper 1 Findings
 - Paper 2 What
 - Paper 2 Findings
 - ▶ Paper 3 What
 - Paper 3 Findings
 - Conclusion
- Class discussion.