Introduction to Data Science (IDS) course

Regression Lecture 4 Instruction

IDS-I-L4

Height (cm)	Weight (kg)
160	57
162	54
167	64
175	71
175	73
180	70
180	76
182	74
185	82
190	94

Exercise:

Calculate a linear regression model that predicts the weight of a person based on their height.

Height (cm)	Weight (kg)
160	57
162	54
167	64
175	71
175	73
180	70
180	76
182	74
185	82
190	94

First we plot the data

Height (cm)	Weight (kg)
160	57
162	54
167	64
175	71
175	73
180	70
180	76
182	74
185	82
190	94

We try to fit a linear function to our data points: y = b + wx

But which line fits our data best?

Blue: y = -200.5 + 1.55xGreen: y = -124.41 + 1.12x

Basic idea:

Calculate the sum of squared errors and pick the function that reports the smaller value

Blue: y = -200.5 + 1.55xGreen: y = -124.41 + 1.12x

x	у	Prediction	Error	Error ²	Prediction	Error	Error ²
160	57	47.5	9.5	90.25	54.79	2.21	4.88
162	54	50.6	3.4	11.56	57.03	-3.03	9.18
167	64	58.35	5.65	31.92	62.63	1.37	1.88
175	71	70.75	0.25	0.06	71.59	-0.59	0.35
175	73	70.75	2.25	5.06	71.59	1.41	1.98
180	70	78.5	-8.5	72.25	77.19	-7.19	51.70
180	76	78.5	-2.5	6.25	77.19	-1.19	1.42
182	74	81.60	-7.60	57.76	79.43	-5.43	29.48
185	82	86.25	-4.25	18.06	82.79	-0.79	0.62
190	94	94	0	0	88.39	5.61	31.47

Basic idea:

Calculate the sum of squared errors and pick the function that reports the smaller value

Blue: y = -200.5 + 1.55x $L_2 = 146,585$ Green: y = -124.41 + 1.12x $L_2 = 33,47$

x	у	Prediction	Error	Error ²	Prediction	Error	Error ²
160	57	47.5	9.5	90.25	54.79	2.21	4.88
162	54	50.6	3.4	11.56	57.03	-3.03	9.18
167	64	58.35	5.65	31.92	62.63	1.37	1.88
175	71	70.75	0.25	0.06	71.59	-0.59	0.35
175	73	70.75	2.25	5.06	71.59	1.41	1.98
180	70	78.5	-8.5	72.25	77.19	-7.19	51.70
180	76	78.5	-2.5	6.25	77.19	-1.19	1.42
182	74	81.60	-7.60	57.76	79.43	-5.43	29.48
185	82	86.25	-4.25	18.06	82.79	-0.79	0.62
190	94	94	0	0	88.39	5.61	31.47

293,17

66,94

Basic idea:

Calculate the sum of squared errors and pick the function that reports the smaller value

Your turn!

Calculate the sum of squared errors for the red function:

Red:
$$y = -48 + 0.67x$$

Logistic Regression Example

Linear function is *separating* rather than predicting!

Logistic regression function shown in the picture:

$$830 - 0.667 \times RPM - VIBRATION = 0$$

Exercise:

RPM = 800, Vibration = 400 will be classified as +. What about RPM = 600, Vibration = 500?

Logistic Regression Example

$$830 - 0.667 \times RPM - VIBRATION = 0$$

Exercise:

RPM = 800, Vibration = 400 will be classified as +. What about RPM = 600, Vibration = 500?

Solution:

 $830 - 0.667 \times 800 - 400 = -103.6$

→ negative instances are mapped to +

830 -0.667 x 600 - 500 = -70.2 \rightarrow mapped to +!

Logistic Regression Example

Your turn:

Exercise:

Consider the logistic regression function 18 + 1.4x - y = 0 seperating blue from red. We know that x = 5, y = 15 is mapped to blue.

What about x = 8, y = 30?

Introduction to Data Science (IDS) course

SVMLecture 5 Instruction

IDS-I-L5

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

Exercise:

Calculate a hyperplane that seperates the class of persons with low creditworthiness from those with high creditworthiness based on their monthly income and debts.

(It is sufficient to formulate the optimization problem ©)

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

Plot of the data:

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

2 descriptive features

→ hyperplane has dimension 2-1= 1

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

- 2 descriptive features
- → hyperplane has dimension 2-1= 1

We transform the problem to an optimization problem as shown in the lecture...

Simple SVM Example - Solution

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

$$\min_{\overrightarrow{w},b} \frac{1}{2} \|\overrightarrow{w}\|^2$$
 such that $y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i + b) \ge 1$ for any i

Simple SVM Example - Solution

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

$$\min_{\overrightarrow{w},b} \frac{1}{2} ||\overrightarrow{w}||^2 \text{ such that}
y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i + b) \ge 1 \text{ for any } i
\min_{1/2} ||\overrightarrow{w}||^2 = \frac{1}{2}(w_1^2 + w_2^2) \text{ such that}
-1((w_1, w_2) \cdot (1238, 7002) + b) \ge 1
-1((w_1, w_2) \cdot (602, 13081) + b) \ge 1
-1((w_1, w_2) \cdot (2309, 30002) + b) \ge 1
1((w_1, w_2) \cdot (1186, 899) + b) \ge 1
1((w_1, w_2) \cdot (791, 8989) + b) \ge 1
1((w_1, w_2) \cdot (1888, 0) + b) \ge 1
1((w_1, w_2) \cdot (1400, 421) + b) \ge 1
-1((w_1, w_2) \cdot (3971, 52776) + b) \ge 1
-1((w_1, w_2) \cdot (910, 2001) + b) \ge 1
1((w_1, w_2) \cdot (4522, 10) + b) \ge 1$$

Simple SVM Example - Solution

Income	Debts	Credit
1238	7002	Low
602	13081	Low
2309	30002	Low
1186	899	High
791	8989	Low
1888	0	High
1400	421	High
3971	52776	Low
910	2001	Low
4522	10	High

We don't want to solve this manually! ©

$$\min \frac{1}{2} \|\vec{w}\|^2 = \frac{1}{2} (w_1^2 + w_2^2) \text{ such that}$$

$$-1((w_1, w_2) \cdot (1238, 7002) + b) \ge 1$$

$$-1((w_1, w_2) \cdot (602, 13081) + b) \ge 1$$

$$-1((w_1, w_2) \cdot (2309, 30002) + b) \ge 1$$

$$1((w_1, w_2) \cdot (1186, 899) + b) \ge 1$$

$$-1((w_1, w_2) \cdot (791, 8989) + b) \ge 1$$

$$1((w_1, w_2) \cdot (1888, 0) + b) \ge 1$$

$$1((w_1, w_2) \cdot (1400, 421) + b) \ge 1$$

$$-1((w_1, w_2) \cdot (3971, 52776) + b) \ge 1$$

$$-1((w_1, w_2) \cdot (910, 2001) + b) \ge 1$$

$$1((w_1, w_2) \cdot (4522, 10) + b) \ge 1$$

Hotel Cost	Distance from Center	Visitor Max Budget	Hotel booked?
25	5	50	У
110	2	30	У
49	6	100	У
123	11	200	n
88	15	300	n
41	2	20	n
67	10	35	n
93	5	40	n
29	3	40	У
158	1	70	n

Your turn!

Formulate the optimization problem for finding the best hyperplane classifying the given data!

