B. Análisis de Forma de Onda

Se pueden obtener una infinidad de formas de onda resultantes a partir del tipo de impedancia de carga que se conecta a la línea (ya sea resistiva pura, imaginaria o compleja), pero podemos mencionar algunos casos de interés.

1) Línea de transmisión terminada en corto circuito

En este caso se tiene Z_L =0, por lo que el coeficiente de reflexión Γ_L nos queda como:

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{0 - Z_0}{0 + Z_0} = -1 \tag{29}$$

Lo anterior indica que las ondas incidente y reflejada en z=0 tendrán la misma amplitud pero estarán en contrafase, por lo que la suma algebraica resulta nula.

2) Línea de transmisión terminada en carga adaptada

En este caso se tiene $Z_L = Z_0$, por lo que el coeficiente de reflexión Γ_L nos queda como:

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{Z_0 - Z_0}{Z_L + Z_0} = 0$$
(30)

Lo anterior indica que no existirá onda reflejada en la carga, por lo que el pulso en *z*=0 no se verá afectado en su amplitud.

3) Línea de transmisión terminada en circuito abierto

En este caso se tiene $Z_L \rightarrow \infty$, por lo que el coeficiente de reflexión Γ_L nos queda como:

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{\infty - Z_0}{\infty + Z_0} = 1 \tag{31}$$

Lo anterior indica que las ondas incidente y reflejada en *z*=0 tendrán la misma amplitud y estarán en fase, por lo que la suma algebraica resulta en una duplicación del voltaje del generador.

La respuesta a escalón (unitario) de estos casos resistivos, junto con algunas impedancias imaginarias simples, pueden resumirse en la Fig. 10. Estas respuestas suponen una línea de transmisión de largo $L_{\rm Z}$ y velocidad de propagación $V_{\rm P}$. La tensión desplegada corresponde al voltaje a la entrada de la línea de transmisión (voltaje incidente + reflejado).

Fig. 10 RDT.

VI. TRABAJO EN EL LABORATORIO

En esta experiencia de laboratorio, se utilizarán los siguientes equipos y módulos:

- 1 Osciloscopio TEK TDS 210 con opción FFT
- 1 Generador de señales
- 2 Cable coaxial URM 202
- 4 Cargas desconocidas a determinar mediante RDT
- 1 Módulo de adaptación de impedancias: malla L.

El esquema de RDT a considerar en esta experiencia es el siguiente:

Fig. 11 Esquema básico de RDT.

VII. INFORME PREVIO

- Investigue el esquema de medición mediante RDT.
- 2. Investigue los parámetros de interés asociados al cable coaxial URM 202, tales como el valor de la constante dieléctrica de éste y estime la velocidad de propagación y longitud de onda de la señal, además de las pérdidas asociadas al cable. Establezca un método para medir la atenuación del cable.
- 3. Calcule los parámetros de mallas L para $Z_L=75\Omega$ y $Z_0=50\Omega$; $Z_L=300\Omega$ y $Z_0=75\Omega$; $Z_L=50\Omega$ y $Z_0=75\Omega$.
- 4. Reproduzca las formas de onda de RDT para distintas Z_L: RC serie/paralelo, RL serie/paralelo, con R>Z₀ y R<Z₀. Desarrolle expresiones temporales para la respuesta de cada uno de los casos mencionados utilizando análisis con la transformada de Laplace. Establezca un método