Oefententamen Telecommunicatietechniek II (ET3505-D2)

Opgave 1.

Gegeven is een basisbandsignaal

$$x(t) = 0.7u(t) - 2u(t - \tau)$$

u(t) is de eenheidsstapfunctie $u(t) = \{0 \text{ voor } t < 0; 1 \text{ voor } t \ge 0\}$. Voor amplitudemodulatie geldt dat $m(t) = \mu x(t)$, waarin μ de modulatie-index wordt genoemd.

- a) Schets het gemoduleerde signaal s(t) als functie van de tijd $t \in [-2/f_C, +8/f_C]$ voor de volgende drie gevallen:
 - i. amplitudemodulatie (AM) met modulatie-index $\mu = 0.5$;
 - ii. amplitudemodulatie (AM) met modulatie-index $\mu = 2$;
 - iii. dubbelzijbandmodulatie met onderdrukte draaggolf (DSB-SC), waarbij m(t) = x(t).

De draaggolffrequentie is f_c , en in alle gevallen geldt $\tau = 5/f_c$.

b) Beargumenteer voor elk van de drie bovengenoemde gevallen of x(t) met een omhullende-detector kan worden teruggewonnen uit s(t). Zo nee, geef dan nauwkeurig aan op welke manier correcte demodulatie dan wel mogelijk is.

Opgave 2.

Een dubbelzijband (DSB-SC) gemoduleerd signaal $s_c(t)$ met top-top waarde $2A_c$ [V] en additieve witte ruis met tweezijdige spectrale vermogensdichtheid $N_0/2$ [W/Hz] worden toegevoerd aan een synchrone detector. De bandbreedte van het informatiesignaal m(t) is B en de equivalente ruisbandbreedte van het laagdoorlaatfilter van de detector is B_L met $B_L > B$.

- a) Leid een uitdrukking af voor de signaal-ruis verhouding SNR_{uit} na demodulatie, indien de lokale oscillator van de synchrone detector een fasefout ϕ vertoont.
- b) Hoeveel dB zal SNR_{uit} bij een fasefout $\phi = 50^{\circ}$ slechter zijn dan in de optimale situatie? Motiveer uw antwoord.

Opgave 3.

Met een digitaal transmissiesysteem wordt een datasignaal met bitsnelheid $R_b = 1$ Mbit/s verzonden met FSK modulatie waarbij de maximale frequentiezwaai $\Delta F = 2.5$ MHz bedraagt. Het signaalvermogen op de ingang van de ontvanger is $S_{in} = -15$ dBm. In de ontvanger wordt een coherente detector toegepast, gevolgd door een laagdoorlaatfilter met een equivalente ruisbandbreedte van $B_{eq} = 2$ MHz.

- a. Bereken de transmissiebandbreedte B_T van het uitgezonden signaal.
- b. Bereken de bitfoutenkans P_e , indien de dubbelzijdige spectrale ruisdichtheid op de ingang van de ontvanger $N_0/2 = -92$ dBm/Hz bedraagt.
- c. De transmissiebandbreedte kan worden verkleind door aanpassing van de frequentiezwaai. Bepaal de frequentiezwaai ΔF zodanig dat Minimum Shift Keying (MSK) ontstaat, en geef de bijbehorende transmissiebandbreedte B_T (neem hiervoor de "null-null" bandbreedte).
- d. Bepaal de bitfoutenkans voor MSK modulatie indien in de ontvanger een matched filter wordt toegepast.

Opgave 4.

Een superheterodyne HF-ontvanger voor de korte golf, waarvan het RF-afstembereik loopt van 0.5 - 30 MHz, heeft een middenfrequentie $f_{IF}=455$ kHz. De frequentie van de lokale oscillator wordt zo gekozen dat deze altijd hoger is dan de zendfrequentie f_c waarop de ontvanger is afgestemd. Het principe schema van de ontvanger is weergegeven in Figuur 1.

Figuur 1. Blokschema van de HF-ontvanger

- a. Bepaal het noodzakelijke afstembereik van de lokale oscillator.
- b. Bereken de frequentieband waarin de spiegelfrequenties ("image signals") liggen, en geef aan welke spiegelfrequenties binnen het RF-afstembereik van de ontvanger vallen.
- c. Met de ontvanger wordt een USSB (upper single sideband) gemoduleerd signaal ontvangen. Welke detector dient er op de middenfrequentie te worden toegepast? Motiveer uw antwoord.

Opgave 5.

Een FM-ontvanger heeft een IF bandbreedte (IF = Intermediate Frequency) $B_{IF} = 120 \text{ kHz}$, en een basisband-bandbreedte $B_{bb} = 10 \text{ kHz}$. Er wordt een toongemoduleerd FM-signaal ontvangen met $m(t) = \sin(4000\pi t)$ en modulatie-index $\beta_f = 5$.

- a) Bereken het benodigde signaalvermogen S_{in} aan de ingang van de ontvanger voor een signaalruisverhouding aan de uitgang $SNR_{uit}=40~\mathrm{dB}$, indien de enkelzijdige spectrale ruisvermogensdichtheid op de ingang $N_0=-92~\mathrm{dBm/Hz}$ bedraagt.
- b) De bandbreedte B_{bb} van het basisbandfilter is instelbaar. Welke basisband-bandbreedte dient te worden ingesteld om SNR_{uit} te verbeteren tot $SNR_{uit} = 50$ dB, bij gelijkblijvende S_{in} .

Opgave 1.

Het basisband signaal $x(t) = 0.7u(t) - 2u(t-\tau)$ met $\tau = \frac{5}{f_c}$ wordt met een vorm van amplitude modulatie verzonden.

a.1 AM-modulatie met modulatie-index $\mu = 0.5$: het basisband modulatiesignaal is dan $m(t) = \mu x(t)$.

Het AM signaal wordt nu:

$$\begin{split} s(t) &= A_c [1+m(t)] \cos \omega_c t = A_c [1+0.5x(t)] \cos \omega_c t \\ &= A_c [1+0.35u(t)-u(t-\tau)] \cos \omega_c t \\ &= \begin{cases} A_c \cos \omega_c t & -\frac{2}{f_c} \le t < 0 \\ 1.35A_c \cos \omega_c t & 0 \le t < \frac{5}{f_c} \\ 0.35A_c \cos \omega_c t & \frac{5}{f_c} \le t \le \frac{8}{f_c} \end{cases} \end{split}$$

a.2 AM-modulatie met modulatie-index $\mu = 2$.

Het AM signaal wordt nu:

$$\begin{split} s(t) &= A_c [1 + m(t)] \cos \omega_c t = A_c [1 + 2x(t)] \cos \omega_c t \\ &= A_c [1 + 1.4u(t) - 4u(t - \tau)] \cos \omega_c t \\ &= \begin{cases} A_c \cos \omega_c t & -\frac{2}{f_c} \le t < 0 \\ 2.4 A_c \cos \omega_c t & 0 \le t < \frac{5}{f_c} \\ -1.6 A_c \cos \omega_c t & \frac{5}{f_c} \le t \le \frac{8}{f_c} \end{cases} \end{split}$$

a.3 Dubbelzijband modulatie met onderdrukte draaggolf (DSB-SC): het basisband modulatiesignaal is dan m(t) = x(t).

Het DSB-SC signaal wordt nu:

$$s(t) = A_{c}m(t)\cos\omega_{c}t = A_{c}x(t)\cos\omega_{c}t$$

$$= A_{c}[0.7u(t) - 2u(t - \tau)]\cos\omega_{c}t$$

$$= \begin{cases} 0 & -\frac{2}{f_{c}} \le t < 0\\ 0.7A_{c}\cos\omega_{c}t & 0 \le t < \frac{5}{f_{c}}\\ -1.3A_{c}\cos\omega_{c}t & \frac{5}{f} \le t \le \frac{8}{f_{c}} \end{cases}$$

- b.1 Het signaal onder a.1 kan met een omhullende detector worden teruggewonnen want $1+m(t)\geq 0$.
- b.2 Het signaal onder a.2 kan niet met een omhullende detector worden teruggewonnen want 1+m(t) is soms negatief. Hierdoor treedt een fasesprong op van 180° wat tot vervorming leidt bij omhullende detectie. Voor correcte demodulatie dient een coherente detector gebruikt te worden.
- b.3 Idem als b.2.

Opgave 2.

Een dubbelzijband gemoduleerd signaal kan geschreven worden als $s_c(t) = A_c \cos(\omega_c t)$.

Figuur 1. Synchrone detectie

a). Synchrone detectie met een fase fout ϕ (zie figuur 1) geeft:

$$\begin{split} s_{uit}(t) &= 2s_c(t)\cos(\omega_c t + \phi) = 2A_c m(t)\cos(\omega_c t)\cos(\omega_c t + \phi) \\ &= A_c m(t) \big[\cos(\phi) + \cos(2\omega_c t + \phi)\big] \end{split}.$$

De tweede term wordt door het laagdoorlaatfilter uitgefilterd. Nu volgt voor het uitgangssignaal: $s_{uit}(t) = A_c m(t) \cos \phi$ met vermogen $P_{s_{uit}} = A_c^2 \overline{m^2(t)} \cos^2 \phi$. Het ruisvermogen na het LPF met equivalente ruisbandbreedte B_L bedraagt $P_N = 2 \cdot (2 \cdot B_L) \cdot N_0 / 2 = 2 \cdot B_L \cdot N_0$ (zie Couch, p. 512). Nu volgt voor de signaal-ruisverhouding op de uitgang:

$$SNR_{uit} = \frac{P_{s_{uit}}}{P_N} = \frac{A_c^2 m^2(t) \cos^2 \phi}{2 \cdot B_L \cdot N_0}.$$

b). Voor een maximaal signaalvermogen na detectie dient $\phi = 0$ te zijn. De fasefout van $50^{\circ} \equiv \frac{5\pi}{18}$ rad leidt tot een degradatie van de SNR van:

$$\frac{SNR_{uit}(\phi = \frac{5\pi}{18})}{SNR_{uit}(\phi = 0)} = \cos^2 \frac{5\pi}{18} = 0.413 \equiv -3.84 \text{ dB ten opzichte van de optimate situatie met } \phi = 0.$$

Opgave 3.

Met een digitaal transmissiesysteem wordt een datasignaal met bitsnelheid $R_b=1$ Mbit/s verzonden met FSK modulatie waarbij de maximale frequentiezwaai $\Delta F=2.5$ MHz bedraagt. Het signaalvermogen op de ingang van de ontvanger is $S_{in}=-15$ dBm. In de ontvanger wordt een coherente detector toegepast, gevolgd door een laagdoorlaatfilter met een equivalente ruisbandbreedte van $B_{eq}=2$ MHz.

- a). De transmissiebandbreedte van het uitgezonden signaal bedraagt: $B_T = 2 \cdot (\Delta F + R_b) = 7$ MHz.
- b). Voor coherente detectie geldt voor de bitfoutenkans:

$$P_e = Q\left(\sqrt{\frac{A_c^2}{4 \cdot B \cdot N_0}}\right) = Q\left(\sqrt{\frac{S_{in}}{2 \cdot B \cdot N_0}}\right).$$

Voor de SNR vinden we met $N_0 = -89 \text{ dBm/Hz}$:

$$SNR = \frac{S_{in}}{2 \cdot B \cdot N_0} = -15 \text{ dBm } -3 \text{ dB} + 89 \text{ dBm/Hz } -10^{\cdot 10} \log 2 \cdot 10^6 \text{ dBHz}$$

= 8 dB = 6.31.

Hiermee wordt de bitfoutenkans $P_e = Q(\sqrt{6.31}) = Q(2.51) = 6 \cdot 10^{-3}$.

- c). Continue-fase FSK gaat over in Minumim Shift Keying (MSK) voor een digiale modulatie-index $h = \frac{2 \cdot \Delta F}{R_b} = 0.5$. Hieruitvolgt voor $\Delta F = \frac{R_b}{4} = 250$ kHz. De bijbehorende transmissiebandbreedte $B_{T,0-0} = 2 \cdot 0.75 \cdot R_b = 1.5 \cdot R_b = 1.5$ MHz (zie ook figuur 5-35 en formule 5-115 in Couch).
- d). Voor MSK met een "matched-filter" ontvanger vinden we voor de verhouding E_b/N_0 : $\frac{E_b}{N_0} = \frac{S_{in} \cdot T_b}{N_0} = \frac{S_{in}}{N_0 \cdot R_b} \equiv -15 \text{ dBm} + 89 \text{ dBm/Hz} 10 \cdot ^{10} \log 10^6 = 17 \text{ dB} \equiv 50.1.$ Hiermee volgt voor de bitfoutenkans: $P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = Q(\sqrt{50.1}) = Q(\sqrt{7.1}) \approx \frac{1}{7.1 \cdot \sqrt{2\pi}} e^{\frac{-50.1}{2}} \approx 7.4 \cdot 10^{-13}.$

Opgave 4.

Het RF-bereik van de HF-ontvanger is 0.5-30 MHz. De middenfrequentie ligt op 455 kHz en de oscillatorfrequentie wordt hoger gekozen dan de te ontvangen frequentie: $f_{LO} > f_c$.

- a. Het afstembereik van de oscillator dient te lopen van $f_{LO_{min}} \leq f_{LO} \leq f_{LO_{max}}$, met $f_{LO_{min}} = f_{c_{min}} + f_{IF} = 955 \text{ kHz en } f_{LO_{max}} = f_{c_{max}} + f_{IF} = 30455 \text{ kHz, dus}$ $955 \leq f_{LO} \leq 30455 \text{ kHz.}$
- b. Voor een bepaalde frequentie f_c waarop de ontvanger is afgestemd, vinden we de spiegelfrequentie als: $f_{sp} = f_{LO} + f_{IF} = f_c + 2f_{IF}$. Het frequentiegebied waarbinnen de spiegelfrequenties liggen, loopt van $f_{sp_\min} \le f_{sp} \le f_{sp_\max}$, met $f_{sp_\min} = f_{c_\min} + 2f_{IF} = 1410 \text{ kHz}$ en $f_{sp_\max} = f_{c_\max} + 2f_{IF} = 30910 \text{ kHz}$, dus $1410 \le f_{sp} \le 30910 \text{ kHz}$. Hieruit blijkt dat de band $1410 \le f_{sp} \le 30000 \text{ overlapt met de afstemband}$.
- c. Doordat $f_{LO} > f_c$ (bovenmenging), geldt voor de te ontvangen signalen: $f_{LO} f_c = f_{IF}$ en vindt er dus een spiegeling van het signaalspectrum paats. Hierdoor worden boven- en onderzijband verwisseld, en wordt een ontvangen USSB signaal omgezet in een LSSB signaal \Rightarrow op f_{IF} is daarom een LSSB detector nodig.

Opgave 5.

Er wordt een toongemoduleerd FM-signaal ontvangen met frequentie $f_m = 2000$ Hz. Verder geldt:

- omdat de modulatie sinusvormig is: $\frac{\overline{m^2}}{V_p^2} = 0.5$
- modulation index $\beta_f = 5$
- IF bandwidth $B_{IF} = 120 \text{ kHz}$
- basisband bandbreedte B_{bb} = 10 kHz. Let op: de basisbandbandbreedte is niet aan gepast aan de bandbreedte van het informatiesignaal $B = f_m$. B_{bb} is veel te grrot!
- noise power spectral density $N_0 = -92 \text{ dBm/Hz} = 6.31 \cdot 10^{-13} \text{ W/Hz}$.
- a. Aan de uitgang van de detector (met versterkingsfactor K) vinden we:

- het signaalvermogen
$$S_{\text{det}} = \frac{K^2 D_f^2 \overline{m^2}}{\left(2\pi\right)^2} = K^2 \beta_f^2 B^2 \frac{\overline{m^2}}{V_p^2} = K^2 \beta_f^2 f_m^2 \frac{\overline{m^2}}{V_p^2} = \frac{1}{2} K^2 \beta_f^2 f_m^2$$

Hierbij is gebruik gemaakt van: $\beta_f = \frac{\Delta F}{B} = \frac{\Delta F}{f_m} = \frac{D_f V_p}{2\pi f_m} \Rightarrow \frac{D_f}{2\pi f_m} = \frac{\beta_f}{V_p}$

- het ruisvermogen:
$$N_{\text{det}}(\text{in } B_{bb}) = \frac{2}{3} \frac{K^2}{A_a^2} N_0 B_{bb}^3$$

Hiermee vinden we voor de SNR aan de uitgang van de detector:
$$SNR_{det} = \frac{\frac{1}{2}K^2\beta_f^2f_m^2}{\frac{2}{3}\frac{K^2}{A_o^2}N_0B_{bb}^3} = \frac{3}{2}S_{in}\frac{\beta_f^2f_m^2}{N_0B_{bb}^3}$$

met
$$S_{in} = \frac{A_c^2}{2}$$
.

Voor een vereiste $SNR_{det} = 40 \text{ dB}$ vinden we nu voor S_{in} :

$$S_{in} = SNR_{\text{det}} \frac{2}{3} \frac{N_0 B_{bb}^3}{\beta_f^2 f_m^2} = \frac{2 \cdot 10^4 \cdot 6.31 \cdot 10^{-13} \cdot 10^{12}}{3 \cdot 25 \cdot 4 \cdot 10^6} = 42 \ \mu\text{W} \ \equiv -13.8 \ \text{dBm} \ .$$

b. In a. hebben we gevonden dat $SNR_{det} \approx \frac{1}{B_{bb}^3}$, dus voor een verbetering van 10 dB (dit komt overeen met een factor 10) dient B_{bb} met een factor $\sqrt[3]{10} = 2.15$ verkleind te worden. De nieuwe B_{bb} wordt nu: $B'_{bb} = \frac{B_{bb}}{\sqrt[3]{10}} = 4642$ Hz. Hierbij is nog voldaan aan $B'_{bb} > f_m = 2000$ Hz, anders zou immers ook de signaalcomponent uitgefilterd worden.