Baccalauréat 2018

Session Normale

Honneur – Fraternité – Justice

Série : Sciences de la Nature Epreuve : MATHEMATIQUES Durée : 4 heures Coefficient : 6

Exercice 1 (3 points)

Un groupe de 100 candidats ont passé un test d'inscription dans un centre de formation professionnelle.

Le test est composé de deux épreuves obligatoires : une écrite et une orale.

Les résultats ont montré que : 60 candidats ont réussi l'épreuve écrite dont 45 ont réussi aussi l'épreuve orale.

Parmi ceux qui ont échoué dans l'épreuve écrite 25 % ont réussi l'épreuve orale.

On choisit au hasard un candidat de ce groupe et on considère les évènements suivants :

A: « le candidat a réussi l'épreuve écrite» ; B: « le candidat a réussi l'épreuve orale».

Pour chacune des questions de cet exercice, une seule des trois réponses proposées est correcte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La probabilité $p(A)$ est	0.6	0.45	0.25	(0.5 pt)
2	La probabilité $p(A \cap B)$ est	0.6	0.45	0.25	(0.5 pt)
3	La probabilité $p_A(B)$ est	0.75	0.45	0.25	(0.5 pt)
4	La probabilité $p_{\overline{A}}(B)$ est	0.75	0.45	0.25	(0.5 pt)
5	la probabilité p(B) est	0.75	0.55	0.1	(0.5 pt)

La durée de l'épreuve écrite varie de 20 à 60 minutes. On suppose que le temps X, exprimé en minutes, mis par un candidat avant de remettre sa copie, lors de cette épreuve, est une variable aléatoire qui suit une loi uniforme.

6	La fonction de densité de X est	$f(x) = \frac{1}{20}$	$f(x) = \frac{1}{40}$	$f(x) = \frac{1}{60}$	(0.25 pt)
7	La probabilité que ce candidat remet sa copie après 30 minutes est	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{3}{4}$	(0.25 pt)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse.

Aucune justification n'est demandée :

Question n°	1	2	3	4	5	6	7
Réponse							

Exercice 2 (5 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$. Pour tout nombre complexe z on pose : $P(z) = z^3 - (3+2i)z^2 + (3+3i)z - 4i$.

pose: $P(z) = z^3 - (3+2i)z^2 + (3+3i)z - 4i$.	
1.a) Déterminer les racines carrées du nombre complexe $-8+6i$	0,5pt
b) Calculer P(i)	0,5pt
c) Déterminer les nombres a et b tels que pour tout nombre complexe z on a : $P(z) = (z-i)(z^2+az+b)$.	0.5pt
d) En déduire l'ensemble des solutions de l'équation $P(z) = 0$.	0,5pt
2) Soit A, B et C les points d'affixes respectives $z_A = i$, $z_B = 1 - i$ et $z_C = 2 + 2i$.	
a) Placer les points A, B et C.	0,5pt
b) Déterminer la nature du triangle ABC.	0,25pt
c) Déterminer l'affixe du point D tel que ABDC soit un parallélogramme.	0.25pt
d) Déterminer et construire l'ensemble Γ des points M du plan d'affixe z tel que $\left \frac{z-2-2i}{z-1+i} \right = 1$.	0,5pt
3° Pour tout entier naturel n, on pose $z_n = (z_C)^n$ et $v_n = z_n $.	
a) Vérifier que $z_C = 2\sqrt{2}e^{i\frac{\pi}{4}}$ puis en déduire l'écriture trigonométrique de z_n .	0,5pt

b) Montrer que (v_n) est une suite géométrique dont on donnera la raison et le premier terme.

c) Calculer la limite de (v_n) et exprimer en fonction de n la somme $S_n = v_0 + v_1 + ... + v_n$

0,5pt

0.5pt

Exercice 3 (5 points)

Soit f la fonction numérique définie sur \mathbb{R} par $f(x) = 2x - 1 + 2xe^{-x}$ et soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1° a) Montrer que $\lim_{x \to -\infty} f(x) = -\infty$ et que $\lim_{x \to +\infty} f(x) = +\infty$ 0,5pt
- b) Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement. 0,5pt
- c) Montrer que la droite D d'équation y = 2x 1 est une asymptote oblique à (C) et étudier la position relative entre (C) et D.

 0,5pt
- 2° a) Calculer la dérivée f' puis montrer que l'expression de la dérivée seconde de f est $f''(x) = (2x-4)e^{-x}$ 0,5pt
- b) Montrer que la courbe (C) admet un point d'inflexion A dont on donnera les coordonnées. 0,25pt
- c) Etudier les variations de f'et en déduire que f'est positive.
- d) Dresser le tableau de variation de f . 0,5pt
- 3° a) Montrer que la courbe (C) coupe (Ox) en un unique point d'abscisse α avec $0.2 < \alpha < 0.3 \mid 0.5$ pt
- b) Déterminer le point B de (C) où la tangente T est parallèle à l'asymptote D. Donner une équation de T.
- c) Tracer D, T et (C) dans le repère $(O; \vec{i}, \vec{j})$.
- d) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation : $-m-1+2xe^{-x}=0$

Exercice 4 (7 points)

Soit f la fonction définie sur $]0,+\infty[$ par : $f(x) = \frac{2+x+x\ln x}{x}$ et soit (C) sa courbe

représentative dans un repère orthonormé (O; i, j).

- 1° a) Montrer que $\lim_{x\to 0^+} f(x) = +\infty$ et interpréter graphiquement. (0,75pt)
- b) Vérifier que $f(x) = \frac{2}{x} + 1 + \ln x$ (0,5pt)
- c) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement (0,5pt)
- 2° a) Calculer f'(x) et dresser le tableau de variation de f. (1pt)
- b) Donner une équation de la tangente T à la courbe (C) au point d'abscisse $x_0 = 1$ (0,5pt)
- 3° Soit g la restriction de f sur l'intervalle I =]0;2]
- a) Montrer que g est une bijection de I sur un intervalle J que l'on précisera. (0,5pt)
- b) Dresser le tableau de variation de g^{-1} , où g^{-1} est la fonction réciproque de g. (0,5pt)
- c) Calculer $(g^{-1})'(3)$ (on pourra utiliser 2° b)) (0,25pt)
- d) Construire (C), (C') et T dans le repère $(O; \vec{i}, \vec{j})$, où (C') est la courbe de g^{-1} . (0,5pt)
- 4°) On considère la fonction h définie sur]0,+∞[par h(x)=f(x)-x
- a) Dresser le tableau de variation de h. (0,5pt)
- b) Montrer que l'équation h(x) = 0 admet une unique solution α , telle que $2 < \alpha < 3$. Vérifier que $f(\alpha) = \alpha$ et en déduire que $\forall x \ge \alpha$ on a $f(x) x \le 0$ (0.5pt)
- 5°) Soit (u_n) la suite définie par $\begin{cases} u_0 = 3 \\ u_{n+1} = f(u_n), \ \forall n \in \mathbb{N} \end{cases}$
- a) Montrer par récurrence que $u_n \ge \alpha$, $\forall n \in \mathbb{N}$. (0,25pt)
- b) Montrer que (u_n) est décroissante (on pourra utiliser 4° b). En déduire que (u_n) est convergente. (0,25pt)
- 6° a) Utiliser une intégration par parties pour calculer l'intégrale $K = \int_{1}^{e} \ln x dx$. (0,25pt)
- b) En déduire l'aire du domaine délimité par la courbe (C), l'axe des abscisses et les droites d'équations x=1 et x=e (0.25pt)