CS311: Data Communication

Transmission Impairments and Channel Capacity

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Impairments

- To send data we have to send signal through a communication medium.
- A medium is not ideal. The imperfections cause impairments in the signal.
- Impairments:
 - Attenuation
 - Distortion
 - Noise

Attenuation

• Attenuation leads to loss of energy in decibel. $dB = 10\log_{10}(P_2/P_1)$

 It decides how far a signal can be sent without amplification.

 An amplifier can be used to compensate the attenuation of the medium.

Decibel

• Decibel (dB) is a measure of the relative strengths of two signals. If P_2 and P_1 are signal strengths of two different points 2 and 1 respectively, then relative strength at the first point with respect to the second point in dB is $dB = 10log_{10}(P_2/P_1)$

Decibel

- > Example-1
- Let the energy strength of point 2 is $1/10^{th}$ with respect to point 1. Then attenuation in dB is $10\log_{10}(1/10) = -10$ dB. Note that loss ofpower is represented by negative sign.
- On the other hand let the gain is 100 times at point 3 with respect to point 2. Then gain in dB is $10\log_{10}(100/1) = 20$ dB, which is positive.

Decibel

It may be noted that signal strength at point 3
with respect to point 1 can be obtained by adding
the two values; (-10) + 20 = 10 dB.

Data rate limits

- > How fast data can be sent?
- It depends on three factors:
 - Bandwidth of the channel
 - Number of levels used in the signal
 - Noise level in the channel

Bandwidth of a medium

 Bandwidth refers to the range of frequencies that a medium can pass without a loss of one-half of the power (-3 dB) contained in the signal.

Digital signal requires low-pass channel

- Bandwidth of a medium decides the quality of the signal at the other end.
- A digital signal (usually aperiodic) requires a bandwidth from 0 to infinity. So, it needs a low pass channel.

Analog signal requires band-pass channel

Distortion

 Attenuation of all frequency components are not same. Some frequencies are passed without attenuation, some are weakened and some are blocked. This leads to distortion.

Effect on signal passing through a band-limited channel

Attenuation Distortion

- Attenuation varies as a function of frequency.
- This is known as Attenuation distortion.
- Example: Voice Grade telephone line.
- Solution is to use equalizer.
- Problem is less in case of digital signal

Delay Distortion

- Arises in case of guided media.
- Velocity of propagation varies with frequency.
- This leads to delay distortion.
- Example: Voice Grade telephone line.
- Effect can be minimized using equalizer.
- Digital signal is more affected.

Nyquist Bit Rate

- > (Noiseless channel)
- In case of noiseless channel, the maximum bit rate is given by the Nyquist bit rate

$$C = 2.B.log_2L$$

Where C is known as the channel capacity

B is the bandwidth of the channel

and L is the number of signal levels used

Baud Rate

- The baud rate or signalling rate is defined as the number of distinct symbols transmitted per second, irrespective of the form of encoding.
- For baseband digital signal, L=2

Maximum baud rate =
$$\frac{1}{\text{Element width(in seconds)}}$$
 = 2B

Bit Rate

 The bit rate or information rate I is the actual equivalent number of bits transmitted per second.

I =Baud Rate x Bits per Baud =Baud Rate x N =Baud Rate x $\log_2 M$

 For binary encoding, the bit rate and the baud rate are the same; i.e.,

I = Baud Rate

- Let us consider the telephone channel having bandwidth B = 4 kHz. Assuming there is no noise, determine channel capacity for the following encoding levels:
 - (i) 2 and (ii) 128
 - (i) C = 2B = 2x4000 = 8 Kbit/s
 - (ii) $C = 2x4000x\log_2 128 = 8000x7 = 56 \text{ Kbit/s}$

Effects of Noise

- When there is noise present in the medium, the limitation of both bandwidth and noise must be considered.
- A noise spike may cause a given level to be interpreted as a signal of greater level if it is in positive phase or a smaller level if it is in negative phase.
- Noise becomes more problematic as the number of levels increases.

Signal-to-Noise Ratio

Let P = average signal power

Let N = average noise power

$$\frac{S}{N} = \frac{Average Signal Power}{Average Noise Power} = \frac{P}{N}$$

$$\left(\frac{S}{N}\right)_{dB} = 10 \log\left(\frac{S}{N}\right)$$

Shannon Capacity (Noisy Channel)

Shannon Capacity gives the highest data rate for a noisy channel

$$C = B \times \log_2(1 + S/N)$$

Where S/N is the signal to noise ratio.

In case of extremely noisy channel, C = 0

Between the Nyquist bit rate and the Shannon limit, the result providing the smallest channel capacity is the one that establishes the limit.

A channel has B = 4 kHz. Determine the following channel capacity for each of the following signal-to-noise ratios: (a) 20 dB, (b) 30 dB, (c) 40 dB

(a)
$$C = B \log_2 \left[1 + \frac{S}{N} \right] = 4 \times 10^3 \times \log_2 (1+100)$$

= $4 \times 10^3 \times 3.32 \times 2.004 = 26.6 \text{ Kbit/s}$

(b) C = B
$$\log_2 \left[1 + \frac{s}{N} \right] = 4 \times 10^3 \times \log_2(1+1000)$$

= $4 \times 10^3 \times 3.32 \times 3.000 = 39.8 \text{ Kbit/s}$

(c) C = B
$$\log_2 \left[1 + \frac{s}{N} \right] = 4 \times 10^3 \times \log_2 (1 + 10^4)$$

= $4 \times 10^3 \times 3.32 \times 4.000 = 53.1 \text{ Kbit/s}$

- ➤ A channel has B = 4 kHz and a signal-to-noise ratio of 30 dB. Determine maximum information rate for 4-level encoding.
- For B = 4 kHz and 4-level encoding the Nyquist Bit rate is 16 Kbps.
- Again for B = 4 kHz and S/N of 30 dB the Shannon Capacity is 39.8 Kbps.
- The smallest of the two has to be taken as information capacity.

I = 16 Kbps

- ➤ A channel has B = 4 kHz and a signal-to-noise ratio of 30 dB. Determine maximum information rate for 128-level encoding.
- The Nyquist Bit rate for B = 4 kHz and M = 128 levels is 56 Kbps.
- Again the Shannon Capacity for B = 4 kHz and S/N of 30 dB is 39.8 Kbps.
- The smallest of the two values decides the channel capacity C = 39.8 Kbps

- The digital signal is to be designed to permit 160 kbps for a bandwidth of 20 kHz. Determine (a) number of levels and (b) S/N ratio.
- (a) Apply Nyquist Bit rate to determine number of levels.

$$C = 2Blog_2M \ or \ 160x10^3 = 2x20x10^3log_2M$$

 $M = 2^4 = 16 \ meaning \ 4 \ bits/baud$

(b) Apply Shannon capacity to determine the S/N ratio.

$$C = B \log_2 \left[1 + \frac{S}{N} \right]$$
or $160x10^3 = 20x10^3 \log_2 \left[1 + \frac{S}{N} \right]$

$$\frac{S}{N} = 2^8 - 1 \text{ or } \left(\frac{S}{N} \right)_{dB} = 24.07 \text{ dB}$$

Noise

- Several types of noise may corrupt the signal.
- Common Noise Types:
 - Thermal: N = k.T.B
 - Intermodulation: Occurs when signals of different frequencies share the same medium.
 - Crosstalk: It is due to unwanted coupling between two media.
 - Impulse Noise: Arises due to disturbances such as lightning, electric sparks.
 - Digital signals are more affected than Analog signals

Thanks!