# 02

# Basic Electronics Review

#### **Basic Electronics**

- What we will review:
  - Basics of voltage and current
    - Using instruments to measure them
    - Resistance
    - Capacitance
    - Combining them

#### **Basic Circuits Review**

- We make things happen with voltage and current
- We sense things by measuring voltage or current
- We compute things by varying voltage or current

#### **Basic Circuits Review**

- Water Analogy
  - Voltage -> Pressure
  - Current -> Flow
  - Resistance -> ~Fluid shear
  - Capacitance -> ~Elastic membrane



### Hydraulic Analogy Reference

- Electrons (or alternatively positive ions) are analogous to water molecules.
- Conservation of mass (ions/electrons) applies even if they are flowing.



http://www.physics-chemistry-interactive-flash-animation.com/electricity\_electromagnetism\_interactive/hydraulic\_analogy\_difference\_voltage\_current.htm

Circuits and Circuitlab.com

- Symbols represent components connected with perfect conductors.
- Create an account (All upenn.edu email have student accounts)
- Use this to create diagrams for homeworks and project reports.



# Voltage Sources



# Measuring Voltage





Voltage is like differential pressure

Measured between two points

"The voltage at point A with respect to point B"

"The voltage across..."

"The voltage at point A..."

Assumes measurement device draws no current

# Measuring Voltage in Real Life





Digital Volt
Meter

DVM DMM



Digital Multi-Meter



Measurement is Imperfect
Draws tiny current/flow



#### Current







We use Benjamin Franklin's Current

Positive charge flow -> In a circuit, current flows FROM positive TO negative

Unit = Amperes (A)

Sometimes referred to as i

#### **Current Sources**

#### **Symbols**



#### **Properties**

Delivers a constant current flow independent of voltage

#### **Examples**

There are no natural current sources

We can build circuits to approximate a current source

Power supplies typically have C.C. (constant current) mode

# Voltage Paradox



# **Measuring Current**

Current is measured though a point

To Measure: break the circuit at that point and insert the measuring instrument. We will use a DMM.



Ammeter is fused, Fuse is easy to blow often blown in MEAM equipment.



# **Electricity in Actuation**

- Apply a voltage, amount of current through device determines magnitude.
- LED: apply a voltage, the amount of current determines how bright.
- Motor: apply voltage, the amount of current determines how much torque.

Power = Volts \* Current

#### Resistance

Constriction creates
Resistance to water flow

Conceptually pipes with 0 resistance are infinitely wide



The Resistance to Flow

Resistor creates resistance to current flow

Units = Ohms

V vs I Behavior described by Ohm's Law

$$V = I R$$

Volts = Amperes \* Ohms



**Symbols** 

3.3K Ω

#### **Properties**

Constant resistance independent

Dissipates power 
$$VI = I^2R = \frac{V^2}{R}$$

wiper 2.7M potentiometer

Though many are temperature sensitive

For this class typ 1/8W, 1/4W

ariables

3 digits: 10% to 2% accuracy Markings: color coded bands represent value

lst sig. Digit,

2<sup>nd</sup> sig. Digit,

number of zeros,

silver/gold

4 digits: 1% and better accuracy

1st sig. Digit,

2<sup>nd</sup> sig. Digit,

3rd sig. Digit,

number of zeros

# Measuring Resistance

Force a small current (~0.02mA) to flow and then measure the voltage drop

We will use the DMM for this



# Measuring Resistance in situ



Will the DMM give the value of resistor?



#### Ground





Earth Gnd Analog Gnd

n/a for this course

For this class, it is useful to think of it as a symbol that provides a reference point, often but not always the most negative point.

More generally – outside of this course, it is an integral path in the current flow that can mean other things.



Like reservoir

# Combining Resistance in Series



$$R_{Total} = R_1 + R_2$$



Kirchoffs

Voltage law:

$$V_{\rm total} = I R_{\rm total}$$

$$V_1 + V_2 = V_{\text{total}}$$

$$IR_1 + IR_2 = IR_{total}$$

# Combining Resistance in Parallel



$$\frac{1}{R_{Total}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_{Total} = \frac{R_1 R_2}{R_1 + R_2}$$



$$\mathbf{V}_{\mathrm{total}} = \mathbf{I}_{\mathrm{total}} \ \mathbf{R}_{\mathrm{total}} = \mathbf{I}_{1} \mathbf{R}_{1}$$
 $\mathbf{V}_{\mathrm{total}} = \mathbf{I}_{\mathrm{total}} \ \mathbf{R}_{\mathrm{total}} = \mathbf{I}_{2} \mathbf{R}_{2}$ 

Current law: 
$$-I_1 - I_2 + I_{total} = 0$$





V<sub>d</sub>? Voltmeter non-ideality
$$V_{d}?$$

$$IM$$

$$V_{m}$$

$$IM$$

$$V_{m}$$

$$Cheap meters, R_{m} = ~IM \Omega$$

$$I = \frac{10V}{R_1 + R_2}$$

$$V_d = I R_2$$

$$V_{\rm d} = 10V \frac{10K}{10K + 10K}$$

good meters, 
$$R_m = \sim 10 M \Omega$$

Example 1: 
$$R_1 = R_2 = 10K \Omega$$

$$10K + 9.9K$$

V<sub>d</sub> should be 5.00 but measured is 4.975V

Example 2: 
$$R_1 = R_2 = 1M \Omega$$

Use 
$$1/4W$$
 resistors  $10\Omega << R << 10M\Omega$ 

Question 1: V<sub>d</sub> should be 5.00 but measured is ??? V

# Capacitors

nonPolar Polar



Integrating
Charge (storage)

#### **Properties**

Characteristic Equations:

$$I = C \frac{dV}{dT}$$

$$V = \frac{1}{C} \int I dT$$

Markings Polar vs Non-Polar

Polar may EXPLODE

Values

Capacitance

uF  $(10^{-6})$  if polar

Voltage rating

pF (10<sup>-12</sup>) if nonPolar

See http://kiloohm.info/3-digit-capacitor/103

Electrolytics mark (-)
Tantalums mark (+)

Longer lead

 $103 (pF) = 10 \times 1000 pF$ 

#### **Examples**





Monolythic Cermamic



Ceramic



Tantalum



# **Capacitors**

#### Charge storage





$$I = C \frac{dV}{dT}$$

pico pF = 
$$10^{-12}$$
F micro uF =  $10^{-6}$ F

Capacitors in parallel & Series  $I = I_1 + I_2 = C_1 \frac{dV}{dt} + C_2 \frac{dV}{dt}$ 

$$C = C \frac{dV}{dT}$$

$$I = (C_1 + C_2) \frac{dV}{dt} = C_{\text{eq}} \frac{dV}{dt}$$

$$I_{1} = I_{2} = C_{1} \frac{d(V - V_{1})}{dt} = C_{1} \frac{dV_{1}}{dt} = C_{2} \frac{dV_{1}}{dt}$$



$$\overline{dt} = \overline{C_1 + C_2} \overline{dt}$$

$$I = C_2 \frac{dV_1}{dt} = \frac{C_1 C_2}{C_1 + C_2} \frac{dV}{dt}$$



# Protoboard "Solderless Breadboard"

Vertical bus typically used for power (red for positive blue/black for negative)

Use solidcore wires to make connections from one row to another

Google solderless breadboard https://www.youtube.com/watch?v=6WReFkfrUIk



## Things to do before next Wednesday:

- Pickup classkit from TA during Office Hours (OH).
- If you are unregistered and want to take this course:
  - Juniors: Email Katie (meamugra@seas), cc:me
  - All others can add the course as normal.
- If you want to place out of this course:
  - Send request email to yim@seas.upenn.edu to get tested.
- Lab 0: Equipment usage is due next Wednesday
  - Recitation Friday will cover some of the material that is due