

Pyroelectric Infrared Radial Sensor

TYPE: BS412
NANYANG SENBA OPTICAL AND ELECTRONIC CO., LTD.

Digital Smart Pyroelectric Detector BS412

BS412 is a newest smart digital motion detector with a small window size. It offers a complete motion detector solution, with all electronic circuitry built into the detector housing. Only a power supply and power-switching components need to be added to make the entire motion switch.

BS412 includes the time setting only.

■ Features and Benefits

- Digital signal processing (DSP)
- Power adjustable, save more energy
- Two-way differential high impedance sensor input and temperature compensation
- Built-in filter, screen the interference by other frequency
- Excellent power supply rejection, Insensitive to RF interference
- Schmidt REL output

■ Application

- Intelligent appliance
- Alarms
- Motion detector
- Sensor lamp, Sensor switch
- Security system
- Automatic control etc.

■ Dimension

Page 2 of 9 www.nysenba.com

Page 3 of 9 www.nysenba.com

■ Technical Data

1. Maximum Ratings

Characteristics	Symbol	Min. Value	Max. Value	Unit	Remarks
Supply Voltage	Vdd	-0.3	3.6	V	
Working	Тѕт	-20	85	°C	
Temperature					
Max.current for pin	Into	-100	100	mA	
Storage	Тѕт	-40	125	°C	
Temperature					

2. Working Conditions (T=25°C, Vdd=3V, Except other requirements)

2. Working Conditions (1=25°C, Vdd=3V,				Except other requirements)		
Symb ol	Min.	Туре	Max.	Unit	Remarks	
V_{DD}	2.0	3	3.3	V	IR=0.5mA	
I_{DD}	9	9.5	11	μA		
V _{SENS}		90		μA		
		1	1			
I _{OL}	10			mA	V _{OL} <1V	
I _{OH}			-10	mA	$V_{OL}>(V_{DD}-1V)$	
T _{OL}		2.3		s		
Тон	2		3600	s		
	I.	ı	1	l .	l	
	0		V_{DD}	V	0V to ¼ V _{DD}	
	-1		1	μA		
			•	l .		
			7	Hz		
			0.44	Hz		
F _{CLK}			64	kHz		
		ADC		Alarm	Comp. & rm Event Logic Pest Control Logic GND N ADC ON TIME	
	Symb ol VDD IDD VSENS	Symb ol Min. V _{DD} 2.0 I _{DD} 9 V _{SENS} 10 I _{OL} 10 I _{OH} 7 T _{OH} 2 0 -1	Symb ol Min. ol Type VDD 2.0 3 IDD 9 9.5 VSENS 90 IOL IOH 2.3 TOH 2 FCLK ADC	Symb ol Ol Min. Ol Type ol Max. VDD 2.0 3 3.3 IDD 9 9.5 11 VSENS 90 -10 IOH -10 -10 TOH 2 3600 O VDD -1 -1 1 7 O.444 FCLK 64	Symb ol Min. ol Type ol Max. ol Unit ol VDD 2.0 3 3.3 V IDD 9 9.5 11 μA VSENS 90 μA IOL 10 mA IOH -10 mA TOL 2.3 s TOH 2 3600 s IOH -1 1 μA IOH -1	

Page 4 of 9 www.nysenba.com

■ Ontime Setting

1. Analog setting style for on-time

Td: On-time time

R: On-time Resistor

C: On-time Capacitor

* C=0pF

* C=0pF

Page 5 of 9 www.nysenba.com

* C=100pF

* C=1npF

* C=10npF

Page 6 of 9 www.nysenba.com

2. Digital setting style for on-time

No	On-time Voltage (VDD)	On-time center Voltage (VDD)	Pull-down- Resistor (Ω) (Pull-up=1M)	Time (Td) (sec)
0	0~1/32VDD	1/64VDD	0R	2
1	1/32VDD~2/32V DD	3/64VDD	51K	5
2	2/32VDD~3/32V DD	5/64VDD	82K	10
3	3/32VDD~4/32V DD	7/64VDD	124K	15
4	4/32VDD~5/32V DD	9/64VDD	165K	20
5	5/32VDD~6/32V DD	11/64VDD	210K	30
6	6/32VDD~7/32V DD	13/64VDD	255K	45
7	7/32VDD~8/32V DD	15/64VDD	309K	60
8	8/32VDD~9/32V DD	17/64VDD	360K	90
9	9/32VDD~10/32 VDD	19/64VDD	422K	120
10	10/32VDD~11/3 2VDD	21/64VDD	487K	180
11	11/32VDD~12/3 2VDD	23/64VDD	560K	300
12	12/32VDD~13/3 2VDD	25/64VDD	634K	600
13	13/32VDD~14/3 2VDD	27/64VDD	732K	900
14	14/32VDD~16/3 2VDD	29/64VDD	825K	1800
15	15/32VDD~16/3 2VDD	31/64	953K	3600

■ Typical Application

Page 7 of 9 www.nysenba.com

Notes: The circuit design for PIR Sensor BS412.

■ Spectral Response of Window Materials

Notes: The average transitivity curve for silicon filter with 5.5µm pass IR filter

■ Detection View

Page 8 of 9 www.nysenba.com

X-Y sectional view

Notes: 1.X-Y sectional view represent the detecting

2. Objects with temperature difference can be Detected in the vertical level.

Senba Sensing Technology Co., Ltd.

Add: 2nd Floor, No.4 Building, Huawan Industry Zone, Gushu,

Bao'an Dist., Shenzhen City, China

Website: www.nysenba.com
E-mail: lily@sbcds.com.cn
Tel: 86-755-82591842
Fax: 86-755-82594762

Page 9 of 9 www.nysenba.com