Graphs and Graph Algorithms

Fundamentals, Terminology, Traversal and Algorithms

SoftUni Team Technical Trainers

Software University

https://about.softuni.bg

Table of Contents

- 1. Graph Definitions and Terminology
- 2. Representing Graphs
- 3. Graph Traversal Algorithms
 - Depth-First-Search (DFS)
 - Breadth-First-Search (BFS)
- 4. Connected Components
- 5. Topological Sorting
 - Source Removal and DFS Algorithms
- 6. Shortest Path in Unweighted Graph

Graph Data Structure

- Graph, denoted as G(V, E)
 - Set of nodes V with many-to-many relationship between them (edges E)
 - Each node (vertex) has multiple predecessors and multiple successors

Graph Definitions

- Node (vertex)
 - Element of a graph
 - Can have name / value
 - Keeps a list of adjacent nodes

Edge

- Connection between two nodes
- Can be directed / undirected
- Can be weighted / unweighted
- Can have name / value

Graph Definitions (2)

Directed graph

Edges have direction

Undirected graph

Undirected edges

Graph Definitions (3)

Weighted graph

Weight (cost) is associated with each edge

Graph Definitions (4)

- Path (in undirected graph)
 - Sequence of nodes n₁, n₂, ... n_k
 - Edge exists between each pair of nodes n_i, n_{i+1}
 - Examples:
 - A, B, C is a path
 - A, B, G, N, K is a path
 - H, K, C is not a path
 - H, G, B, G, N is a path

Graph Definitions (5)

- Path (in directed graph)
 - Sequence of nodes n₁, n₂, ... n_k
 - Directed edge exists between each pair of nodes n_i, n_{i+1}
 - Examples:
 - A, B, C is a path
 - N, G, A, B, C is a path
 - A, G, K is not a path
 - H, G, K, N is not a path

Graph Definitions (6)

Cycle

- Path that ends back at the starting node
- Example of cycle: A, B, C, G, A
- Simple path
 - No cycles in path
- Acyclic graph
 - Graph with no cycles
 - Acyclic undirected graphs are trees

Graph Definitions (7)

- Two nodes are reachable if a path exists between them
- Connected graph

Every two nodes are reachable from each other

Connected graph

A

F

G

Unconnected graph holding two connected components

Graphs and Their Applications

- Graphs have many real-world applications
 - Modeling a computer network like the Internet
 - Routes are simple paths in the network
 - Modeling a city map
 - Streets are edges, crossings are vertices
 - Social networks
 - People are nodes and their connections are edges
 - State machines
 - States are nodes, transitions are edges

Representing Graphs

Classic and OOP Ways

Representing Graphs

Adjacency list

Each node holds a list of its neighbors

1 -> {2, 4} 2 -> {3} 3 -> {1} 4 -> {2}

Adjacency matrix

 Each cell keeps whether and how two nodes are connected

List of edges

	1_	2	3	4
1	0	1	0	1
2	0	0	1	0
3	1	0	0	0
4	0	1	0	0

Graph Representation: Adjacency List


```
var g = new List<int>[] {
  new List<int> { 3, 6},
  new List<int> { 2, 3, 4, 5, 6},
  new List<int> { 1, 4, 5},
  new List<int> { 0, 1, 5},
  new List<int> { 1, 2, 6},
  new List<int> { 1, 2, 3},
  new List<int> { 0, 1, 4}
// Add an edge { 3 <-> 6 }
g[3].Add(6); g[6].Add(3);
// List the children of node #1
var childNodes = g[1];
```

Graph Representation: Adjacency Matrix


```
int[][] graph = new int[][] {
   // 0 1 2 3 4 5 6
    { 0, 0, 0, 1, 0, 0, 1 }, // node 0
    { 0, 0, 1, 1, 1, 1, 1 }, // node 1
    { 0, 1, 0, 0, 1, 1, 0 }, // node 2
    { 1, 1, 0, 0, 0, 1, 0 }, // node 3
    { 0, 1, 1, 0, 0, 0, 1 }, // node 4
    { 0, 1, 1, 1, 0, 0, 0 }, // node 5
    { 1, 1, 0, 0, 1, 0, 0 }, // node 6
};
// Add an edge { 3 -> 6 }
graph[3][6] = 1;
// List the children of node #1
int[] childNodes = graph[1];
```


Graph Representation: List of Edges


```
class Edge
  public int Parent {get; set; }
  public int Child {get; set; }
var graph = new List<Edge>() {
  new Edge() { Parent = 0, Child = 3 },
  new Edge() { Parent = 0, Child = 6 }, ...
// Add an edge { 3 -> 6 }
graph.Add(new Edge() { Parent = 3, Child = 6 });
// List the children of node #1
var childNodes = graph.Where(e => e.Parent == 1);
```

Numbering Graph Nodes

- A common technique to speed up working with graphs
 - Numbering the nodes and accessing them by index

(not by name)

Graph of numbered nodes: [0...6]

Graph of named nodes

Numbering Graph Nodes – How?

- Suppose we have a graph of n nodes
 - We can assign a number for each node in the range [0...n-1]

#	Node
0	Ruse
1	Sofia
2	Pleven
3	Varna
4	Bourgas
5	Stara Zagora
6	Plovdiv

OOP-Based-Graph Representation

- Using OOP:
 - Class Node
 - Class Edge (Connection)
 - Class Graph
 - Optional classes
 - Algorithm classes

Graphs Traversals

Depth-First Search and Breadth-First Search

Graph Traversal Algorithms

- Traversing a graph means to visit each of its nodes exactly once
 - The order of visiting nodes may vary on the traversal algorithm
 - Depth-First Search (DFS)
 - Visit node's successors first
 - Usually implemented by recursion
 - Breadth-First Search (BFS)
 - Nearest nodes visited first
 - Implemented with a queue

Depth-First Search (DFS)

 Depth-First Search (DFS) first visits all descendants of given node recursively, finally visits the node itself

```
visited[0 ... n-1] = false;
for (v = 0 ... n-1) dfs(v)
dfs (node) {
  if not visited[node] {
    visited[node] = true;
    for each child c of node
      dfs(c);
    print node;
```


DFS in Action (Step 1)

DFS in Action (Step 2)

DFS in Action (Step 3)

DFS in Action (Step 4)

DFS in Action (Step 5)

DFS in Action (Step 6)

• Stack: 1, 19

Output: 7

Return back from recursion and print the last visited node - 7

DFS in Action (Step 7)

• Stack: 1, 19, 12

Output: 7

DFS in Action (Step 8)

• Stack: 1, 19

DFS in Action (Step 9)

• Stack: 1, 19, 31

DFS in Action (Step 10)

Stack: 1, 19, 31, 21

DFS in Action (Step 11)

Stack: 1, 19, 31, 21, 14

DFS in Action (Step 12)

Stack: 1, 19, 31, 21, 14, 6

DFS in Action (Step 13)

Stack: 1, 19, 31, 21, 14

DFS in Action (Step 14)

Stack: 1, 19, 31, 21, 14, 23

DFS in Action (Step 15)

Stack: 1, 19, 31, 21, 14, 23, 21

DFS in Action (Step 16)

Stack: 1, 19, 31, 21, 14, 23

DFS in Action (Step 17)

DFS in Action (Step 18)

• Stack: 1, 19, 31, 21

DFS in Action (Step 19)

• Stack: 1, 19, 31 Output: 7, 12, 6, 23, 14, 21 23

DFS in Action (Step 20)

• Stack: 1, 19

Output: 7, 12, 6, 23,14, 21, 31

DFS in Action (Step 21)

DFS in Action (Step 22)

• Stack: 1, 19

Output: 7, 12, 6, 23,14, 21, 31

DFS in Action (Step 23)

DFS in Action (Step 24)

DFS in Action (Step 25)

DFS in Action (Step 26)

DFS in Action (Step 27)

DFS in Action (Step 28)

Breadth-First Search (BFS)

Breadth-First Search (BFS) first visits the neighbor nodes,
 then the neighbors of neighbors, then their neighbors, etc.

```
bfs(node) {
 queue node
 visited[node] = true
 while queue not empty
   v queue
   print v
   for each child c of v
     if not visited[c]
       queue 🛑 c
       visited[c] = true
```


BFS in Action (Step 1)

• Queue: 7

BFS in Action (Step 2)

• Queue: X

BFS in Action (Step 3)

■ Queue: 💢 19

BFS in Action (Step 4)

Queue: X, 19, 21

BFS in Action (Step 5)

Queue: X, 19, 21, 14

BFS in Action (Step 6)

Queue: X, 12, 21, 14

BFS in Action (Step 7)

Queue: X, 18, 21, 14, 1

BFS in Action (Step 8)

Queue: X, 12, 21, 14, 1, 12

BFS in Action (Step 9)

Queue: X, 19, 21, 14, 1, 12, 31

BFS in Action (Step 10)

Queue: X, 1X, 21, 14, 1, 12, 31

BFS in Action (Step 11)

Queue: X, 12, 14, 1, 12, 31

Output: 7, 19, 21

BFS in Action (Step 12)

Queue: X, 1X, 2X, 14, 1, 12, 31

Output: 7, 19, 21

BFS in Action (Step 13)

Queue: X, 12, 24, 1, 12, 31

BFS in Action (Step 14)

Queue: X, 29, 21, 24, 1, 12, 31, 23

BFS in Action (Step 15)

Queue: X, 12, 24, 14, 1, 12, 31, 23, 6

BFS in Action (Step 16)

Queue: X 19, 24, 12, 31, 23, 6

BFS in Action (Step 17)

Queue: X, 14, 24, 12, 31, 23, 6

BFS in Action (Step 18)

Queue: X, X, X, X, X, 31, 23, 6

Output: 7, 19, 21, 14, 1,12

BFS in Action (Step 19)

Queue: X, 12, 24, 14, 12, 34, 23, 6

Output: 7, 19, 21, 14, 1,12, 31

BFS in Action (Step 20)

Queue: X 19, 24, 14, X, 12, 31, 23, 6

Output: 7, 19, 21, 14, 1,12, 31

BFS in Action (Step 21)

Queue: X, 12, 24, 14, X, 12, 31, 28, 6

Output: 7, 19, 21, 14, 1,12, 31, 23

BFS in Action (Step 22)

■ Queue: 🛪, 🎉, 🔼, ¼, ¼, ¼, ¾, 6

Output: 7, 19, 21, 14, 1,12, 31, 23

BFS in Action (Step 23)

Queue: X, 12, 24, 14, 14, 12, 34, 28, 8

Output: 7, 19, 21, 14, 1,12, 31, 23, 6

BFS in Action (Step 24)

Queue: X, 124, 24, 14, 14, 14, 14, 14, 14, 14, 14

Output: 7, 19, 21, 14, 1,12, 31, 23, 6

Iterative DFS and BFS

- What will happen if in the Breadth-First Search (BFS) algorithm we change the queue with a stack?
 - An iterative stack-based Depth-First Search (DFS)

```
bfs(node) {
 queue — node
 visited[node] = true
 while queue not empty
   v — queue
   print v
   for each child c of v
     if not visited[c]
       queue ← c
       visited[c] = true
```

```
dfs(node) {
  stack ← node
  visited[node] = true
  while stack not empty
    v \leftarrow stack
    print v
    for each child c of v
      if not visited[c]
        stack ← c
        visited[c] = true
```


Graph Connectivity

Finding the Connected Components

Graph Connectivity

- Connected component of undirected graph
 - A sub-graph in which any two nodes are connected to each other by paths
 - E.g. the graph below consists of 3 connected components

Finding All Graph Connected Components

- Finding the connected components in a graph
 - Loop through all nodes and start a DFS / BFS traversing from any unvisited node
- Each time you start a new traversal
 - You find a new connected component

Graph Connected Components: Algorithm


```
visited[] = false;
foreach node from graph G {
   if (not visited[node]) {
      dfs(node);
      countOfComponents++;
   }
}
```

```
dfs(node) {
   if (not visited[node]) {
     visited[node] = true;
     foreach c in node.children
        dfs(c);
   }
}
```


Topological Sorting

Ordering a Graph by Set of Dependencies

Topological Sorting

Topological sorting (ordering) of a directed graph

- Linear ordering of its vertices, such that
- For every directed edge from vertex
 u to vertex v, u comes before v in the ordering
- Example:

$$7 \rightarrow 5 \rightarrow 3 \rightarrow 11 \rightarrow 8 \rightarrow 2 \rightarrow 9 \rightarrow 10$$

$$3 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 11 \rightarrow 2 \rightarrow 9 \rightarrow 10$$

$$5 \rightarrow 7 \rightarrow 3 \rightarrow 8 \rightarrow 11 \rightarrow 10 \rightarrow 9 \rightarrow 2$$

Topological Sorting – Example

- We have a set of learning topics with dependencies
 - Order the topics in such order that all dependencies are met
- Example:

Loops depend on variables, conditionals and IDEs

- Variables depend on IDEs
- Bits depend on variables and loops
- Conditionals depend on variables
- Ordering:
 - IDEs \rightarrow variables \rightarrow loops \rightarrow bits

Topological Sorting – Rules

- Rules
 - Undirected graphs cannot be sorted
 - Graphs with cycles cannot be sorted
 - Sorting is not unique
 - Various sorting algorithms exists, and they give different results

Topological Sorting: Source Removal Algorithm

- Source removal top-sort algorithm
 - Create an empty list
 - Repeat until the graph is empty:
 - Find a node without incoming edges
 - Print this node
 - Remove the edge from the graph

Source Removal Algorithm

- L ← empty list that will hold the sorted elements (output)
- $S \leftarrow$ set of all nodes with no incoming edges
- while S is non-empty do
- remove some node n from S
- append n to L
- for each node m with an edge e: { n through m }
- remove edge e from the graph
- if m has no other incoming edges then
- insert m into S
- if graph is empty
- return L (a topologically sorted order)
- else
- return "Error: graph has at least one cycle"

Step #1: Find a Node with No Incoming Edges

Step #2: Remove Node A with Its Edges

Step #3: Find a Node with No Incoming Edges

Step #4: Remove Node B with Its Edges

Step #5: Find a Node with No Incoming Edges

Step #6: Remove Node E with Its Edges

Step #7: Find a Node with No Incoming Edges

Step #8: Remove Node D with Its Edges

Step #9: Find a Node with No Incoming Edges

Step #10: Remove Node C with Its Edges

Step #11: Find a Node with No Incoming Edges

Step #12: Remove Node F with Its Edges

Result: Topological Sorting

Topological Sorting: DFS Algorithm


```
sortedNodes = { } // linked list to hold the result
visitedNodes = { } // set of already visited nodes
foreach node in graphNodes
   topSortDFS(node)
topSortDFS(node)
    if node ∉ visitedNodes
        visitedNodes ← node
        for each child c of node
            TopSortDFS(c)
        insert node upfront in the sortedNodes
```

TopSort: DFS Algorithm + Cycle Detection


```
sortedNodes = { } // linked list to hold the result
visitedNodes = { } // set of already visited nodes
cycleNodes = { } // set of nodes in the current DFS cycle
foreach node in graphNodes
    topSortDFS(node)
topSortDFS(node)
    if node \epsilon cycleNodes
        return "Error: cycle detected"
    if node ∉ visitedNodes
        visitedNodes ← node
        cycleNodes ← node
        for each child c of node
            topSortDFS(c)
        remove node from cycleNodes
        insert node upfront in the sortedNodes
```


Shortest Path

Shortest Path in Unweighted Graph

Shortest Path in Unweighted Graph

In unweighted graphs finding the shortest path can be done with BFS (all edges have the same weight):

BFS Shortest Path


```
bfs(G, start, end)
    visited[start] = true
    queue.enqueue(start)
   while (!queue.isEmpty())
          v = queue.dequeue()
          if v is end
          return v
          for all edges from v to w in G.adjacentEdges(v) do
             if w is not labeled as discovered then
                 label w as discovered
                 w.parent = v
                 queue.enqueue(w)
```

Summary

- Representing graphs in memory
 - Adjacency list holding the children for each node
 - Adjacency matrix
 - List of edges
 - Numbering the nodes for faster access
- Depth-First Search (DFS) recursive in-depth traversal
- Breadth-First Search (BFS) in-width traversal with a queue
- Topological sorting
- Shortest path in unweighted graph

Questions?

SoftUni Diamond Partners

SUPER HOSTING .BG

Educational Partners

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

