Qspice - Model Generators Guide by KSKelvin

KSKelvin Kelvin Leung

Created on: 10-29-2024 Last Update: 12-17-2024

Model Generator and Precaution in using this Guide

- Model Generator
 - Model generators are in File > Model Generator > Diode/JFET/MOSFET
 - Execute one of these model generators, within the subprogram, it has official HELP

- Precaution in using this Guide
 - The model generator appears to still be subject to change. If you are unable to replicate the example provided in this guideline, it may be related to a change in the model generator
 - I cannot guarantee the accuracy of this guideline as it heavily relies on parameter studies through these model generators. This guideline is still in its preliminary status

Diode Model Generator DIODE.exe

Diode Model Generator

Parameters Generation

Diode Model Generator – Preliminaries Tab

Determine: mfg, lave, Vrev, Eg, tt, Cjo**, BV, IBV, NBV

Diode Model Generator – I-V Curve Tab

Determine: Is, N, Rs, TRs1, XTI

Diode Model Generator – Capacitance Tab

Determine: Cjo, m, Vj

Diode Model Generator

Example – Datasheet of Onsemi MURS1200

Example – Onsemi MURS120 Datasheet to Model Generator

Example – Onsemi MURS120 Datasheet to Model Generator

Example – Onsemi MURS120 Datasheet to Model Generator

Figure 3. Typical Capacitance

Diode Model Generator

Example – Datasheet of Microchip APT15D100BCT

Example – Microchip APT15D100BCT Datasheet to Model Generator

Example – Microchip APT15D100BCT Datasheet to Model Generator

Example – Microchip APT15D100BCT Datasheet to Model Generator

MOSFET Model Generator

MOSFET.exe

MOSFET Model Generator

Parameters Generation

MOSFET Model Generator – Preliminaries Tab

Determine: mfg, Ids, Vds, Qg, Rg, Rds, Rd, Rs, Eg, tt

MOSFET Model Generator – Output Characteristics

Determine: Vto, Kp, Lambda, RonX, eta, Vtotc

MOSFET Model Generator – Body Diode

Determine: Is, N, Rs, TRs1, XTI

MOSFET Model Generator – Gate Charge

Determine: Cgs, Cgdmin, Cgdmax, Cjo

MOSFET Model Generator

Example – Recreate from a model

Determine Rds(on), Vgs, Idrain @ Rds(on) and Rext÷(Rext+Rchannel)

Qspice: Preliminaries (Rdson Vgs Idrain and Rext).qsch

- Rext : Rd + Rs
 - Rds(on) is basically consist of Rext (external resistance : Rd, Rs) and Rchannel (channel resistance)
 - To estimate Rext, fully turn ON a FET model with extreme gatesource voltage, which minimized Rchannel and Rds(on) is dominated by Rext
 - In this example, Rs+Rd=Rext=39.8m Ω . And by extreme gatesource, Rext=40.6m Ω

- Now put,
 - Rds(on) = 53.2m Ω
 - Vgs @ Rds(on) = 5V
 - Idrain @ Rds(on) = 1A
 - Rext = Rs+Rd = 40.6m Ω
 - Rchannel@Rds(on) = Rds(on) – Rext = $53.2m\Omega - 40.6m\Omega$ = $12.6m\Omega$
 - Rext÷(Rext+Rchannel) = 40.6Ω /(40.6Ω +12.6 Ω) = 0.763Ω

Determine Rg from a MOSFET Model

Qspice: Preliminaries - Rg.qsch

- Rg
 - Rg is series resistance in gate
 - Rg can be identified with ac analysis and only read the real part with Cartesian representation
 - Now, put
 - Rg = value of Zr()

Appendix

Digitize with Crosshair Cursor with Arrow Slight Adjustment

Step #2:

 Move cursor to this area, hold Left mouse button Now, the cursor become a crosshair

TYPICAL PERFORMANCE CURVES

Step #3:

- Move crosshair cursor to pdf to digitize lower left corner (Can use arrow key to adjust crosshair position precisely)
- · Release left mouse button and location is digitized
- [Repeat Step #2 and #3 until all points is digitized]

