本讲主题

路由算法

路由与转发

路由算法(协议)确定去往目的网络的最佳路径

转发表确定在本路 由器如何转发分组

网络抽象:图

图: G = (N, E)

N = 路由器集合= { u, v, w, x, y, z }

E = 链路集合 ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

附注: 图的抽象在网络领域应用很广泛

E.g.:P2P, 其中, N是 peers集合, 而E是TCP连接集合

图抽象:费用(Costs)

c(x, x') = 链路(x, x')的费用 e.g., c(w, z) = 5

每段链路的费用可以总是1,

或者是,

带宽的倒数、拥塞程度等

路径费用: $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

关键问题:源到目的(如u到z)的最小费用路径是什么?

路由算法: 寻找最小费用路径的算法

路由算法分类

静态路由 vs 动态路由?

静态路由:

- ❖ 手工配置
- ❖ 路由更新慢
- ❖ 优先级高

动态路由:

- * 路由更新快
 - 定期更新
 - 及时响应链路费用或 网络拓扑变化

全局信息 vs 分散信息?

全局信息:

- ❖ 所有路由器掌握完整的网络 拓扑和链路费用信息
- ❖ E.g. 链路状态(LS)路由算法分散(decentralized)信息:
- ❖ 路由器只掌握物理相连的邻居以及链路费用
- ❖ 邻居间信息交换、运算的迭 代过程
- ❖ E.g. 距离向量(DV)路由算法

本讲主题

链路状态路由算法

网络抽象:图

图: G = (N, E)

N = 路由器集合= { u, v, w, x, y, z }

E = 链路集合 ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

链路状态路由算法

Dijkstra 算法

- ❖ 所有结点(路由器)掌握网络拓扑和链路费用
 - 通过"链路状态广播"
 - 所有结点拥有相同信息
- * 计算从一个结点("源") 到达所有其他结点的最 短路径
 - 获得该结点的转发表
- * 迭代: k次迭代后,得到 到达k个目的结点的最短 路径

符号:

- *** C**(**x**,**y**): 结点**x**到结点**y**链路 费用; 如果**x**和**y**不直接相 连,则=∞
- ❖ D(v): 从源到目的v的当前 路径费用值
- ❖p(v): 沿从源到v的当前路 径,v的前序结点
- ❖ N': 已经找到最小费用路 径的结点集合

Dijkstra 算法

```
1 初始化:
2 N' = \{u\}
3 for 所有结点v
4 if v毗邻u
5
     then D(v) = c(u,v)
6
   else D(v) = \infty
  Loop
  找出不在 N'中的w,满足D(w)最小
  将w加入N'
11 更新w的所有不在N'中的邻居v的D(v):
12 D(v) = min(D(v), D(w) + c(w,v))
13 /*到达v的新费用或者是原先到达v的费用,或者是
  已知的到达w的最短路径费用加上w到v的费用 */
14
15 until 所有结点在N'中
```

Dijkstra 算法:例1

Dijkstra 算法:例2

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2 ,u	5, <u>u</u>	1,u	00	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy←	2, u	3,y			4 ,y
3	uxyv←		3,y			4 ,y
4	uxyvw ←					4,y
5	uxyvwz ←					

Dijkstra 算法:例2

u的最终最短路径树:

u的最终转发表:

目的	链路
V	(u,v)
X	(u,x)
y	(u,x)
W	(u,x)
Z	(u,x)

本讲主题

距离向量路由算法(1)

距离向量(Distance Vector)路由算法

Bellman-Ford方程(动态规划)

```
令:
 d_{x}(y):=从x到y最短路径的费用(距离)
则:
 d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}
                   从邻居v到达目的y的费用(距离)
             x到邻居v的费用
        在x的所有邻居v中取最小值
```

Bellman-Ford 举例

显然: $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

根据B-F方程:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$
$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

重点: 结点获得最短路径的下一跳,该信息用于转发表中!

距离向量路由算法

- \mathbf{v} $\mathbf{D}_{\mathbf{x}}(\mathbf{y}) =$ 从结点**x**到结点**y**的最小费用估计
 - x维护距离向量(DV): **D**_x = [D_x(y): y ∈ N]
- ❖ 结点x:
 - 己知到达每个邻居的费用: c(x,v)
 - 维护其所有邻居的距离向量: D_v = [D_v(y): y ∈ N]

核心思想:

- ❖ 每个结点不定时地将其自身的DV估计发送给其邻居
- ❖ 当x接收到邻居的新的DV估计时,即依据B-F更新其自身的距离向量估计:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

❖ D_x(y)将最终收敛于实际的最小费用 d_x(y)

距离向量路由算法

异步迭代:

- * 引发每次局部迭代的因素
 - 局部链路费用改变
 - 来自邻居的DV更新

分布式:

- ❖ 每个结点只当DV变化时 才通告给邻居
 - 邻居在必要时(其**DV**更新 后发生改变)再通告它们 的邻居

每个结点:

等待(本地局部链路费用变 化或者收到邻居的DV更新) 重新计算 DV估计 如果DV中到达任一目的距 离发生改变, **通告**所有邻居

本讲主题

距离向量路由算法(2)

距离向量路由算法: 举例

距离向量路由算法: 举例

本讲主题

层次路由

层次路由

将任意规模网络抽象为一个图计算路由-过于理想化

- * 标识所有路由器
- ❖ "扁平"网络
- ——在实际网络(尤其是大规模网络)中,不可行!

网络规模:考虑6亿目的结点的网络

- * 路由表几乎无法存储!
- ❖ 路由计算过程的信息 (e.g. 链路状态分组、 DV)交换量巨大,会淹 没链路!

管理自治:

- ❖每个网络的管理可能都期望自主控制其网内的路由
- ❖ 互联网(internet) = 网络之 网络(network of networks)

层次路由

- ❖聚合路由器为一个区域:自治系统AS(autonomous systems)
- ❖同一AS内的路由器运行相同的路由协议(算法)
 - 自治系统内部路由协议 ("intra-AS" routing protocol)
 - 不同自治系统内的路由 器可以运行不同的AS内 部路由协议

网关路由器(gateway router):

- ❖位于AS"边缘"
- ❖ 通过链路连接其他AS的 网关路由器

互连的AS

- ❖ 转发表由AS内部路由算法 与AS间路由算法共同配置
 - AS内部路由算法设置 AS内部目的网络路由 入口(entries)
 - AS内部路由算法与AS 间路由算法共同设置 AS外部目的网络路由 入口

自治系统间(Inter-AS)路由任务

- * 假设AS1内某路由器收到一个目的地址在AS1之外的数据报:
 - 路由器应该将该数据 报转发给哪个网关路 由器呢?

AS1必须:

- 1.学习到哪些目的网络可以通过AS2到达,哪些可以通过AS3到达
- 2.将这些网络可达性信息 传播给AS1内部路由器

自治系统间路由任务!

例: 路由器1d的转发表设置

- ❖假设AS1学习到(通过AS间路由协议):子网x可以通过AS3 (网关 1c)到达,但不能通过AS2到达
 - AS间路由协议向所有内部路由器传播该可达性信息
- ❖路由器1d:利用AS内部路由信息,确定其到达1c的最小费用路径接口/

例:在多AS间选择

- ❖假设AS1通过AS间路由协议学习到:子网x通过 AS3和AS2均可到达
- ❖为了配置转发表,路由器1d必须确定应该将去往 子网x的数据报转发给哪个网关?
 - 这个任务也是由AS间路由协议完成!

例:在多AS间选择

- ❖假设AS1通过AS间路由协议学习到:子网x通过 AS3和AS2均可到达
- ❖为了配置转发表,路由器1d必须确定应该将去往 子网x的数据报转发给哪个网关?
 - 这个任务也是由AS间路由协议完成!
- ❖热土豆路由:将分组发送给最近的网关路由器.

本讲主题

RIP协议简介

AS内部路由

- ❖Internet采用层次路由
- ❖AS内部路由协议也称为内部网络协议IGP (interior gateway protocols)
- ❖最常见的AS内部路由协议:
 - 路由信息协议: RIP(Routing Information Protocol)
 - 开放最短路径优先: OSPF(Open Shortest Path First)
 - 内部网关路由协议: IGRP(Interior Gateway Routing Protocol)
 - Cisco私有协议

本讲主题

OSPF协议简介

OSPF (Open Shortest Path First)

- ❖"开放":公众可用
- ◆采用链路状态路由算法
 - LS分组扩散(通告)
 - 每个路由器构造完整的网络(AS)拓扑图
 - 利用Dijkstra算法计算路由
- ❖OSPF通告中每个入口对应一个邻居
- ❖OSPF通告在整个AS范围泛洪
 - OSPF报文直接封装到IP数据报中
- ❖与OSPF极其相似的一个路由协议: IS-IS路由协议

本讲主题

BGP协议简介(1)

Internet AS间路由协议: BGP

- ❖ 边界网关协议BGP (Border Gateway Protocol): 事实上的标准域间路由协议
 - 将Internet "粘合"为一个整体的关键
- ❖ BGP为每个AS提供了一种手段:
 - eBGP: 从邻居AS获取子网可达性信息.
 - iBGP: 向所有AS内部路由器传播子网可达性信息.
 - 基于可达性信息与策略,确定到达其他网络的"好" 路径.
- ❖ 容许子网向Internet其余部分通告它的存在: "我在这儿!"

BGP基础

- ❖当AS3通告一个前缀给AS1时:
 - AS3承诺可以将数据报转发给该子网
 - AS3在通告中会聚合网络前缀

BGP基础: 分发路径信息

- ❖ 在3a与1c之间, AS3利用eBGP会话向AS1发送前缀可 达性信息.
 - 1c则可以利用iBGP向AS1内的所有路由器分发新的前缀可达性信息
 - 1b可以(也可能不)进一步通过1b-到-2a的eBGP会话,向 AS2通告新的可达性信息
- ❖ 当路由器获得新的前缀可达性时,即在其转发表中增加关于该前缀的入口(路由项).

路径属性与BGP路由(route)

- ❖ 通告的前缀信息包括BGP属性
 - 前缀+属性= "路由"
- ❖ 两个重要属性:
 - AS-PATH(AS路径): 包含前缀通告所经过的AS序列: e.g., AS 67, AS 17
 - NEXT-HOP(下一跳): 开始一个AS-PATH的路由器接口,指向下一跳AS.
 - 可能从当前AS到下一跳AS存在多条链路

本讲主题

BGP协议简介(2)

BGP路由选择

- ❖网关路由器收到路由通告后,利用其输入策略 (import policy)决策接受/拒绝该路由
 - e.g., 从不将流量路由到AS x
 - 基于策略(policy-based) 路由
- ❖路由器可能获知到达某目的AS的多条路由,基于 以下准则选择:
 - 1. 本地偏好(preference)值属性: 策略决策(policy decision)
 - 2. 最短AS-PATH
 - 3. 最近NEXT-HOP路由器: 热土豆路由(hot potato routing)
 - 4. 附加准则

BGP路由选择策略

- ❖ A,B,C是提供商网络/AS(provider network/AS)
- ❖ X,W,Y是客户网络(customer network/AS)
- ❖ W,Y是桩网络(stub network/AS): 只与一个其他AS相连
- ❖ X是双宿网络(dual-homed network/AS): 连接两个其他AS
 - X不期望经过他路由B到C的流量
 - ... 因此, X不会向B通告任何一条到达C的路由

BGP路由选择策略

图例: 提供商网络

客户网络

- ❖ A向B通告一条路径: AW
- ❖ B向X通告路径: BAW
- ❖ B是否应该向C通告路径BAW呢?
 - 绝不! B路由CBAW的流量没有任何"收益", 因为W和C均不是B的客户。
 - B期望强制C通过A向W路由流量
 - B期望只路由去往/来自其客户的流量!

为什么采用不同的AS内与AS间路由协议?

策略(policy):

- ❖ inter-AS: 期望能够管理控制流量如何被路由,谁路由 经过其网络等.
- ❖ intra-AS: 单一管理, 无需策略决策

规模(scale):

- ❖ 层次路由节省路由表大小,减少路由更新流量
- * 适应大规模互联网

性能(performance):

- ❖ intra-AS: 侧重性能
- ❖ inter-AS: 策略主导