Задание 2

- 1. [1 балл] Пусть $X_1, \dots, X_n \sim \mathrm{Gamma}(\alpha, \beta)$ (гамма-распределение). Найти с помощью метода моментов оценки для α и β .
- 2. [5 баллов] Пусть n_1 количество людей, которые получили лечение по методике 1, а n_2 количество людей, которые получили лечение по методике 2. Обозначим через X_1 количество людей, получивших лечение по методике 1, на которых эта методика повлияла положительно. Аналогично, обозначим через X_2 количество людей, получивших лечение по методике 2, на которых эта методика повлияла положительно. Предположим, что $X_1 \sim Binomial(n_1, p_1)$ и $X_2 \sim Binomial(n_2, p_2)$. Положим $\psi = p_1 p_2$.
 - а) Найти ОМП $\widehat{\psi}$ для параметра $\psi.$
 - b) Найти информационную матрицу Фишера $I(p_1, p_2)$
 - c) Используя многопараметрический дельта-метод найти асимптотическую стандартную ошибку для $\widehat{\psi}$
 - d) Допустим, что $n_1=n_2=200,\,X_1=160,\,X_2=148.$ Подсчитать значение $\widehat{\psi}$. Найти приблизительный 90% доверительный интервал для ψ используя (i) многопараметрический дельта-метод и (ii) параметрический бутстреп
- 3. [6 баллов] Пусть $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Пусть $\tau = 95\%$ квантиль, то есть $P(X < \tau) = 0.95$. Необходимо
 - (a) Найти MLE для au
 - (b) Найти выражение для приближенного 1 α доверительного интервала для au
 - (с) Допустим, что выборка значений имеет вид

$$\begin{array}{c} 3.23, -2.50, 1.88, -0.68, 4.43, 0.17, \\ 1.03, -0.07, -0.01, 0.76, 1.76, 3.18, \\ 0.33, -0.31, 0.30, -0.61, 1.52, 5.43, \\ 1.54, 2.28, 0.42, 2.33, -1.03, 4.00, \\ 0.39 \end{array}$$

Необходимо найти MLE $\hat{\tau}$, стандартную ошибку оценки используя дельта-метод. Также надо оценить стандартную ошибку оценки, используя параметрический бутстреп.

4. [5 баллов] Пусть $X_1, \ldots, X_n \sim N(\theta, 1)$. Определим

$$Y_i = \left\{ \begin{array}{ll} 1, & \text{если } X_i > 0; \\ 0, & \text{если } X_i \le 0. \end{array} \right.$$

Положим $\psi = P(Y_1 = 1)$.

- а) Подсчитать оценку $\hat{\psi}$ максимума правдоподобия для ψ .
- b) Найти приближенный 95% доверительный интервал для ψ .
- c) Пусть $\tilde{\psi}=\frac{1}{n}\sum_{i=1}^{n}Y_{i}$. Доказать, что $\tilde{\psi}$ является состоятельной оценкой для ψ .
- d) Подсчитать асимптотическую относительную эффективность оценки $\tilde{\psi}$ по сравнению с оценкой $\hat{\psi}$. Для этого предлагается использовать дельта-метод, чтобы оценить стандартную ошибки оценки максимума правдоподобия. После чего надо подсчитать стандартную ошибку (т.е. стандартное отклонение) величины $\tilde{\psi}$.
- е) Допустим, что данные на самом деле не распределены нормально. Показать, что в таком случае $\hat{\psi}$ не является состоятельной оценкой. Будет ли, и если ответ "да", то к чему, сходится при $n \to \infty$ оценка $\hat{\psi}$ в смысле какой-нибудь сходимости?
- 5. [З балла] Пусть $X_1, \ldots, X_n \sim \text{Uniform}(0,\theta), \ Y = \max\{X_1, \ldots, X_m\}.$ Необходимо протестировать $H_0: \theta = 1/2 \text{ vs. } H_1: \theta > 1/2.$ В данном случае нельзя использовать тест Вальда, так как Y при $n \to \infty$ не сходится к нормальному распределению. Допустим, что мы будем использовать следующее правило: гипотеза H_0 отвергается, если Y > c. Необходимо
 - (а) Найти функцию мощности
 - (b) При каком значении параметра c размер теста будет равен 0.05?
 - (c) Какого значение p-value, если размер выборки n=20 и Y=0.48? Что можно сказать о гипотезе H_0 ?
 - (d) Какого значение p-value, если размер выборки n=20 и Y=0.52? Что можно сказать о гипотезе H_0 ?
- 6. [3 балла] Был проведен эксперимент по оценке эффективности различных лекарств, используемых для уменьшения послеоперационных эффектов, и получены следующие результаты

	Количество пациентов	Количество осложнений
Placebo	80	45
Chlorpromazine	75	26
Dimenhydrinate	85	52
Pentobarbital (100 mg)	67	35
Pentobarbital (150 mg)	85	37

- (a) Протестировать "успешность" каждого из лекарств по сравнению с плацебо на 5% уровне значимости. Указать также подсчитанные оценки вероятностей успешных исходов.
- (b) Проделать эксперименты, аналогичные экспериментам предыдущего пункта, но использовать при этом методы Бонферрони и Benjamini-Hochberg.

- 7. [3 балла] Пусть $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$.
 - (a) Пусть $\lambda_0>0$. Построить критерий Вальда размера α для различения гипотез $H_0:\lambda=\lambda_0$ vs. $H_1:\lambda\neq\lambda_0$.
 - (b) Пусть $\lambda_0=1$, n=20 и $\alpha=0.05$. Сгенерировать $X_1,\ldots,X_n\sim \text{Poisson}\,(\lambda_0)$ и применить критерий Вальда. Повторить эксперимент много раз и подсчитать долю от общего числа случаев, когда гипотеза H_0 была отклонена. Насколько получившаяся доля ошибок I рода оказалась близкой к 0.05?
- 8. [4 балла] Пусть $X_1, \ldots, X_n \sim \text{Binomial}(n,p)$. Построить тест на основе обобщенного отношения правдоподобий для для различения гипотез $H_0: p=p_0$ vs. $H_1: p\neq p_0$. Сравнить (как аналитически, так и экспериментально) полученный тест с тестом Вальда для различения этих гипотез.