Fear and Lending in Sovereign Debt: The Role of Risk Premia in Default and Renegotiations

Camilo Alvarez WL/VMI seminar series

October 21, 2021

- ► Negotiations to restructure sovereign debt are long and costly
 - ➤ On average more than 8 years to complete (Benjamin and Wright 2013)
- ► International business cycles influence the outcome of sovereign debt restructurings (Asonuma and Joo 2019)
 - ► Find low international output is correlated with higher haircuts and lower delays
- ► The time-varying risk aversion of lenders can play an important role
 - ► Matters a lot for sovereign debt prices

1. Data:

- ► Find high significant relationship between lenders' risk appetite and debt restructuring outcomes (haircuts and delays)
- ► Find suggestive evidence of higher rates of default when risk premia is high

- 1. Data
- 2. Build a sovereign default model that has renegotiation with delays and time-varying international rates
 - ► Take into account that lenders will accept worse deals in bad times
 - ▶ Want: X% of defaults in the last 50 years were caused by changes in risk premia

- 1. Data
- 2. Model
- 3. Quantitative Exercise
 - Show that a higher interest rate results in higher probability of default
 - ► Show that a higher interest rate results in both shorter delays in renegotiations and larger haircuts
 - ► The model can generate an average delay length comparable to that experienced by Argentina 2001

- 1. Data
- 2. Model
- 3. Quantitative Exercise
 - Show that a higher interest rate results in higher probability of default
 - ► Show that a higher interest rate results in both shorter delays in renegotiations and larger haircuts
 - ► The model can generate an average delay length comparable to that experienced by Argentina 2001

Line: Time varying risk premia affects both the default (higher interest rates make it more likely) and restructuring outcomes (higher interest rates lead to shorter delays and higher haircuts)

Two main databases:

- ► Trebesch and Cruces/Trebesch haircut dataset
 - ► Start and end dates of 197 sovereign defaults / debt restructurings covering 1970-2020.
 - ▶ 187 sovereign debt restructurings results covering 1970-2013
 - ► External Debt
- ▶ Gilchrist and Zakrajsek
 - ► Excess bond premium for US financial firms
 - ▶ Reflects a change in the effective risk-bearing capacity of the financial sector
 - Commonly used as a proxy for the creditor risk appetite independent of business cycle movements

Positive correlation between defaulting and risk appetite

Negative and significant correlation between risk appetite and

$$Duration_{i,t} = \beta GZSpreads_t + \beta_0 \mathbb{C}_{i,t} + \epsilon_t$$

- ► GZ Spread- creditor risk appetite
- \blacktriangleright C controls- i.e. Local GDP, LIBOR, IMF programs, bond exchange, etc.

Similarly, for Haircuts

Duration vs Spreads

C7 IIS overes

	GZ US excess bond premium, average (%)
	coef/se
GZ US excess bond premium, average $(\%)$	-42.49*
Debtor GDP deviation from trend, end (%)	1.34*
External debt, end (% of GDP)	0.30**
Export/debt service ratio, end $(\%)$	3.32***
LIBOR 12-month, end (%)	-11.87***
LIBOR 12-month, average (%)	13.99***
IMF-supported program, end (dummy)	-33.29**
Bond restructurings (dummy)	11.08
Contant	-
Sample	62
$Adj-R^2$	0.69
Root MSE	45.7

Higher Excess returns are associated with lower duration

Haircuts vs Spreads

GZ US excess bond premium, end (%)

	coef/se
GZ US excess bond premium, end (%)	14.66**
Duration of restructurings (years)	0.18*** 0.17 -3.11** 0.15*** 0.31 -0.08 -3.16**
Debtor GDP deviation from trend, end (%)	
Debtor per capita US\$ GDP, end (thousand US\$)	
External debt, end (% of GDP)	
Export/debt service ratio, end (%)	
LIBOR 12-month, end (%)	
LIBOR 12-month, average (%)	
IMF-supported program, end (dummy)	-6.53
Bond restructurings (dummy)	-5.94
Post-1989 IMF lending regime (dummy)	7.94
Contant	59.14***
Sample	76
Adj-R ²	0.51
Root MSE	18.92

Higher Excess returns are associated with higher haircuts

Main takeaways:

- 1. Significant relationship between investors risk appetite and debt restructuring outcomes
- 2. Suggestive relationship between investors risk appetite and default decisions

<u>Model</u> 11/27

- ► Small open economy
- ► Government chooses if to repay
- ► Government issues one-period debt, and choose consumption
- ightharpoonup International lenders lend with a period interest rate of r_t
 - \blacktriangleright here r_t is not constant and is correlated with output

Timeline 12/2

- 1. Start period with s = (B, Y, r)
 - \triangleright B is the bonds held by international investors
 - ightharpoonup Y is stochastic output
 - ightharpoonup r is stochastic world interest rate
- 2. If in good standing: Government decides to default or not
 - ▶ if default: Gov face quadratic productivity penalty, and renegotiations start the next period
 - ightharpoonup if repays: Gov chooses B'
- 3. If in default: play a renegotiation game, where there is a random choice of who makes the first offer
 - \blacktriangleright if successful: you pay αB and reenter financial markets next period
 - if not: Pay a fixed rate of outstanding debt $\hat{r}B$

Government solves:

$$V(B,Y,r) = \max \left\{ V^r(B,Y,r), V^d(B,Y^{def},r) \right\}$$

So if the gov repays:

$$V^r(B,Y,r) = \max_{B',C} \quad U(C) + \beta \mathbb{E}\left[V(B',Y',r')\right]$$

ST ::

$$C + B = q(B', Y, r)B' + Y$$

So when the gov defaults:

$$V^d(B, Y, r) = \max_C \quad U(C) + \beta \mathbb{E} \left[V^r(B, Y', r') \right]$$

ST::

$$C+\hat{r}B=Y^{def}$$

- Stochastic bargaining game over α , similar to Merlo and Wilson (1995)
 - ► Stationary Strategies
- ▶ Players take turn making the first offer,
 - ightharpoonup Probability ϕ the borrower makes the first offer
 - $ightharpoonup 1-\phi$ the lender makes the first offer
- ▶ Whoever makes the first offer will choose such an offer so that it is accepted and gives them the maximum surplus
 - ▶ Lender will choose the highest α
 - \triangleright Borrowers will choose the lowest α
 - \triangleright Sometimes such a α will not exists, which creates delays

▶ In equilibrium, when the borrower proposes, the strategy is to propose an α that solves the following problem:

$$\alpha_B^*(y, B, r) = \arg\max V_B^{prop}(y, B, r) \tag{1}$$

s.t.

$$V_B^{prop} \ge V_B^{pass} \tag{2}$$

$$V_L^{accept} \ge V_L^{pass} \tag{3}$$

Similarly for the lender

▶ Details

Mechanism 18/27

The main two features will be:

- 1. Renegotiation can lead to delays as lenders want to capture a piece of a larger pie
- 2. During high r_t times, investors are relatively more impatient and leads to:
 - ► Less delays
 - ▶ higher haircuts
 - Ex-ante this can lead a country to default.

Bonds are priced to include recovery rates:

$$q(y, B, r) = \frac{1}{(1+r)} \mathbb{E} \left[(1 - D(y', B', r')) + D(y', B', r') \left(\Delta_L(y', B', r') \right) \right]$$

Alt.

Utility
$$U = \frac{C^{1-\gamma}}{1-\gamma}$$

Default cost: $Y_{def} = Y + max\{0, d_0Y - d_1Y^2\}$
Output $Y_t = \rho Y_{t-1} + \epsilon_t + v_t$
Interest rate: $r_t = \rho r_{t-1} + \omega_t - v_t$

Parameter		Value	Source
Risk Aversion	γ	2	Standard
Autocorr in r	$ ho_r$	0.83	
Autocorr in Y	ρ_y	0.83	MECON
Output St Dev	σ_{ϵ}	0.007	
r St Dev	σ_{ω}	0.007	
Common St Dev	σ_v	0.038	
Borrower Prop	ϕ	0.4	Bi (2008)
Discount Factor	β	0.96	
Minimum Service	\hat{r}	0.017	

Table: Parameters

Moment	Data	Model	Source
Default Probabilities	1.92%	2.40%	Bi (2008)
Debt Recovery Rate	35%	37%	S & Z (2005)
Renegotiation Delay (Qts)	13.3	16	

Table: Moments

Quant.

Quant.

Quant. 25/27

Quant.

Conclusion 27/27

What I do:

- ▶ Document relationship between risk appetite and renegotiation outcomes.
- ▶ Build a model that can show similar features
- ▶ show model can plausibly recreate some of the moments

What I want:

- ▶ Better series for time-varying risk premia
- ► More complete model
- ► Expand to not only be about one country
- ▶ Do counterfactuals

The payoff functions if there is a solution:

$$\Delta_B^B(Y,B,r) = V_B^{prop} = U(Y_{def} - \alpha_B^* B) + \beta EV(Y',0,r')$$

$$\Delta_L^B(Y,B,r) = V_L^{accept} = \alpha_B^* B$$

Otherwise, passing give the payoffs

$$\Delta_B^B(Y, B, r) = V_B^{pass} = U(Y_{def} - \hat{r}B) + \beta E \Delta_B(Y', B, r')$$
$$\Delta_L^B(Y, B, r) = V_L^{pass} = \hat{r}B + \frac{1}{1+r}\beta E \Delta_L(Y', B, r')$$

▶ Back

Similarly, we can have lenders to have utility functions to be:

$$U_{L,T}(C_{L,T}) = \frac{C_{L,T}^{1-\eta_t}}{1-\eta_t} + \frac{1}{r_t} \mathbb{E}\left[\frac{C_{L,T+1}^{1-\eta_{t+1}}}{1-\eta_{t+1}}\right]$$

Effects:

- \blacktriangleright changes q(B',Y,r) but does not particularly changes results
- less nice pictures and slightly more complicated
- ▶ Open question about how to calibrate r_t and η_t

▶ Back