DOSSIER PHYSIQUE-CHIMIE

SECONDE * PREMIÈRE S

ATTENTION

L'intégralité du programme de Collège et de Seconde doit être maitrisée pour la Première S. Ce document ne revient que sur quelques points du programme de Seconde.

Conseil : consacrer les deux dernières semaines du mois d'aout à la préparation de la rentrée (reprendre cours, exercices, devoirs, corrections de devoirs...)

NOTIONS ET CONNAISSANCES À MAITRISER POUR LA RENTRÉE EN CLASSE DE PREMIÈRE S

Mathématiques

- Puissances de 10 ($10^a \times 10^b = 10^{a+b}$, $10^a / 10^b = 10^{a-b}$, $1/10^a = 10^{-a}$, (10^a)^b = $10^{a \times b}$)
- Trigonométrie (savoir utiliser le cercle trigonométrique et connaître les valeurs des sinus et cosinus pour les angles 0, π, π/2, π/3, π/4, π/6)
- Vecteurs (représentation, norme, somme de vecteurs)
- ♦ Thalès et Pythagore
- ◆ Calcul mental (la calculatrice sera interdite lors des contrôles en Première S)

Conversions

- ◆ Multiples et sous-multiples (ex. : 1 cm = 10⁻² m)
- Volumes $(1 \text{ m}^3 = 10^3 \text{ L}, 1 \text{ dm}^3 = 1 \text{ L}, 1 \text{ cm}^3 = 1 \text{ mL})$

Physique/Chimie

- ◆ Connaître six des sept unités du Système International (longueur, masse, temps, courant électrique, température, quantité de matière)
- Chiffres significatifs (multiplication/division et addition/soustraction)

Physique

- ◆ Forces (poids, réaction du support, force d'attraction gravitationnelle)
- ◆ Lumière (spectres, absorption, émission, radiations, longueur d'onde)
- ◆ Loi de Boyle-Mariotte
- ◆ Principe d'inertie : "Dans un référentiel terrestre, tout objet persévère dans son état de repos ou de mouvement rectiligne et uniforme si les forces qui s'exercent sur lui se compensent. Et réciproquement."
- ◆ Référentiel et mouvement (définitions)

Chimie

- ◆ Quantité de matière et calcul de quantités de matière (n=m/M)
- Réactions chimiques (règles de conservation, coefficients stœchiométriques)
- ◆ Atomes et molécules (constitution de l'atome, isotopes, structure électronique, liaisons covalentes, règles de l'octet et du duet, formules développées et semi-développées, isomères)
- Classification périodique des éléments
- Extraction, séparation et identification d'espèces chimiques
- ◆ Dissolution/dilution (relations, protocoles, matériel, sécurité en laboratoire)

Relations à connaître

- ◆ Fréquence: f = 1/T avec f en Hz et T en s
- ◆ Vitesse de la lumière dans le vide : c = 3,00.10⁸ m.s⁻¹
- ◆ Concentration molaire: c = n/V en n en mol. V en L et c en mol.L⁻¹
- ◆ Quantité de matière: n = m / M avec m en g, M en g.mol⁻¹ et n en mol
- ◆ Pression: p = F/S avec F en N, S en m² et p en Pascal (Pa)
- ◆ Vitesse: v = d/t avec d en m, t en s et v en m.s⁻¹
- Relation de Snell-Descartes: n₁.sin(i₁) = n₂.sin(i₂) avec n₁, n₂ indices de réfraction des milieux 1 et 2 (sans unité) et i₁, i₂ angles d'incidence et de réfraction
- Forces d'interaction gravitationnelle: $F_{A/B} = F_{B/A} = G.(m_A.m_B/d^2)$ avec d en m, m_A et m_B en kg et F en N
- ◆ Poids: P = m.g avec m en kg, g en N.kg⁻¹ et P en N
- ◆ Loi de Boyle-Mariotte: p.V = cste avec p en Pascal (Pa) et V en m³

PROGRAMME DE PREMIÈRE S

A. Capacités et attitudes

- ◆ L'approche expérimentale
 ◆ Le lien avec les autres disciplines
- ◆ La démarche scientifique
 ◆ La mise en perspective historique
 ◆ L'usage adapté des technologies de l'information et de la communication (Tic)

B. Programme

OBSERVER: Couleurs et images

- 1. Couleur, vision et image
- 2. Sources de lumière colorée
- 3. Matières colorées

COMPRENDRE: Lois et modèles

- 4. Cohésion et transformations de la matière
- **5.** Champs et forces
- **6.** Formes et principe de conservation de l'énergie

AGIR: Défis du XXIème siècle

- 7. Convertir l'énergie et économiser les ressources
- 8. Synthétiser des molécules et fabriquer de nouveaux matériaux
- 9. Créer et innover

MULTIPLES ET SOUS-MULTIPLES

Préfixes	Symbole	Puissance de 10 de l'unité	Etymologie				
giga	G	10 ⁹	Grec: gigas, géant				
méga	M	10 ⁶	Grec: megas, grand				
kilo	k	10³	Grec: khilioi, mille				
hecto	h	10 ²	Grec: hekaton, cent				
deca	da	10 ¹	Grec: deka, dix				
	10° = 1						
deci	d	10 ⁻¹	Latin: decem, dix				
centi	С	10 ⁻²	Latin: cente, cent				
milli	m	10 ⁻³	Latin: mille, mille				
micro	μ	10 ⁻⁶	Grec: mikros, petit				
nano	n	10 ⁻⁹	Latin: nanus, nain				
pico	р	10 ⁻¹²	Italien: piccolo, petit				
femto	f	10 ⁻¹⁵	Danois: femten, quinze				

LES 7 UNITÉS DE BASE DU SYSTÈME INTERNATIONAL D'UNITÉS (SI)

Les sept grandeurs de base correspondant aux sept unités de base sont la longueur, la masse, le temps, le courant électrique, la température thermodynamique, la quantité de matière et l'intensité lumineuse. Toutes les autres grandeurs sont des grandeurs dérivées et sont exprimées au moyen d'unités dérivées, définies comme étant des produits de puissances des unités de base.

- Longueur (mètre, m) Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde. Il en résulte que la vitesse de la lumière dans le vide est égale à 299 792 458 m.s⁻¹ exactement.
- ◆ Masse (kilogramme, kg) Le kilogramme est l'unité de masse; il est égal à la masse du prototype international du kilogramme.
- ◆ Temps (seconde, s) La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.
- ◆ Courant électrique (ampère, A)

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2.10⁻⁷ newton par mètre de longueur.

- Température thermodynamique (kelvin, K) Le kelvin, unité de température thermodynamique, est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau.
- Quantité de matière (mole, mol)
 - 1. La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12.
 - 2. Lorsqu'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules.
- ◆ Intensité lumineuse (candela, cd) La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement

SÉCURITÉ EN CHIMIE

Espèces chimiques inflammables		Espèces chimiques corrosives		Espèces chimiques nocives ou irritantes		Espèces chimiques toxiques	
Prennent feu au contact d'une flamme.		Détruisent la peau ou certains matériaux.		Provoquent une gêne provisoire.		Provoquent des troubles comme: maux de tête, diarrhées, comas.	
Ex. : alcool, essence, butane		Ex. : acide sulfurique, nitrique, soude		Ex. : ammoniac		Ex. : monoxyde de carbone	
Ancien	Nouveau	Ancien	Nouveau	Ancien	Nouveau	Ancien	Nouveau
pictogramme	pictogramme	pictogramme	pictogramme	pictogramme	pictogramme	pictogramme	pictogramme
				*			
Inflammable		Corı	rosif	Nocif ou irritant		Toxique	
	Il faut impérativement respecter les consignes de sécurité.						
Eloigner ces espèces		Manipuler ces espèces		Porter les gants et les		Éviter tout contact avec	
chimiques de toute		chimiques avec les gants		lunettes et travailler dans		la peau, toute inhalation,	
flamme.		et les lunette	•			toute ingestion.	

Autre pictogramme :

Substance dangereuse pour l'environnement

Précautions : une telle substance ne doit pas être rejetée dans les eaux usées (lavabo, WC, etc...), elle doit être récupérée après utilisation.

CHIFFRES SIGNIFICATIFS

La grandeur numérique attribuée à une mesure expérimentale est **toujours une approximation**. Lorsqu'on mesure une grandeur quelconque (masse, longueur, vitesse ou temps par exemple), on ne peut jamais obtenir une valeur exacte. Une mesure physique est donc toujours imprécise et la précision dépend de plusieurs facteurs: **le facteur humain**, **l'outil de mesure et le phénomène à mesurer**.

Supposons qu'on écrive 15,7 cm pour la longueur d'un objet. Par convention cela veut dire que la mesure est précise au dixième de centimètre près. Si la précision de la mesure allait jusqu'au centième de centimètre on écrirait 15,70 cm. En écrivant 15,7 cm on a gardé trois **chiffres significatifs** (1, 5 et 7). Dans 15,70 cm il y a quatre chiffres significatifs (1, 5, 7 et 0).

I. Les zéros

Lorsqu'on inscrit 28 g pour la valeur d'une masse, ce nombre comporte deux chiffres significatifs. On pourrait aussi écrire 0,028 kg sans changer la précision de l'information, ce nombre porte aussi deux chiffres significatifs. Les zéros qui apparaissent à la gauche d'un nombre ne sont pas comptés comme chiffres significatifs.

II. Arrondir

Arrondir un nombre, c'est laisser de côté un ou plusieurs chiffres placés à la droite du nombre. Si le premier chiffre qu'on laisse de côté est plus petit que 5, le dernier chiffre significatif qu'on garde demeure inchangé. S'il est plus grand que 5 ou égal à 5, on ajoute 1 au dernier chiffre significatif retenu.

III. Règles

1. La multiplication et la division

Pour la multiplication et la division, il faut arrondir la réponse pour qu'elle ait le **même nombre de chiffres significatifs** que le nombre qui en a le moins dans l'opération.

Exemple: 7,485 x 8,61 = 64,44585 en tenant compte des chiffres significatifs le résultats final est 64,4

2. L'addition et la soustraction

Pour l'addition et la soustraction, il faut arrondir la réponse pour qu'elle ait le **même nombre de chiffres décimaux** que le nombre qui en a le moins dans l'opération.

Exemples: 58,01 + 0,038 = 58,048 en tenant compte des chiffres significatifs le résultats final est 58,05

RÉVISIONS ET ENTRAINEMENT : EXERCICES DU LIVRE DE SECONDE

Sélection

DESCRIPTION DE L'UNIVERS, DU TRÈS PETIT AU TRÈS GRAND

Exercices conseillés:

- ◆ Exercice résolu p.22
- ◆ Exercices: 8 et 10 p.23; 11 et 13 p.24; 17, 18et 19 p.25
- ◆ A lire: « La grande histoire de l'Univers : du Big Bang à la naissance de la vie » p.26

LA LUMIÈRE DES ÉTOILES

Exercices conseillés:

- ◆ Exercice résolu p.36
- ◆ Exercices: 1, 3, 4et 5 p.37; 7, 9 et 10 p.38; 15 p.39; 16 et 19 p.40

RÉFRACTION ET DISPERSION DANS L'ATMOSPHÈRE

Exercices conseillés:

- ◆ Exercice résolu p.50
- ◆ Exercices: 1, 3 et 7 p.51; 10 p.52; 14 p.53

L'ATOME

Exercices conseillés:

- ◆ Exercice résolu p.64
- ◆ Exercices: 1, 3, 8, 9, 11 p.65; 13, 14 p.66; 16 p.7
- ◆ A lire: p. 61 et 62

CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS

Exercices conseillés:

- ◆ Exercices résolus p.78 et 79
- ◆ Exercices: 1, 2, 4, 6, 7 et 9 p.80; 10 et 11 p.81
- ◆ A lire: p. 74 et 76

LA RELATIVITE DU MOUVEMENT

Exercices conseillés:

- ◆ Exercice résolu p.92
- ◆ Exercices: 5 et 6 p.93; 10 p.94; 13 et 14 p.95; 16 p.96

LA GRAVITATION UNIVERSELLE

Exercices conseillés:

- Exercices résolus p.106
- ◆ Exercices: 2, 5 et 6 p.107; 8 et 11p.108; 12, 13 et 14 p.109
- ◆ A lire: p.112, 113 et 114

LES MOLECULES

Exercices conseillés:

- Exercices résolus p.136
- Exercices: 1,2 3, 4, et 6 p.137; 7, 9 et 10 p.138; 11 p.139

QUANTITE DE MATIERE

Exercices conseillés:

- Exercices résolus p.150 et 151
- Exercices: 1, 2, 3, 4, 6 et 7 p.152; 8, 9 10 et 11 p.153; 14 p.154

LES SOLUTIONS

Exercices conseillés:

- ◆ Exercice résolu p.190
- ◆ Exercices: 1, 2, 3, 5, 6, 8 et 9 p.191; 12 p.192; 15, 16 et 17 p.193

LES LIAISONS CARBONE

Un atome de carbone possède quatre électrons sur sa couche externe et doit donc former quatre liaisons covalentes pour obéir à la règle de l'octet. Pour cela il y a quatre possibilités:

- ◆ 4 liaisons simples avec 4 autres atomes
- ◆ 2 liaisons simples et une liaison double avec 3 autres atomes
- ◆ 1 liaison simple et 1 liaison triple avec 2 autres atomes
- ◆ 2 liaisons doubles avec deux autres atomes

L'atome de carbone est **digonal** (deux cotés) s'il est lié à deux autres atomes (la structure est alors linéaire), **trigonal** (trois cotés) s'il est lié à trois autres atomes (la structure est alors plane), **tétragonal** (quatre cotés) s'il est lié à quatre autres atomes (la structure est alors tétraédrique).

La répartition de ces liaisons a donc une influence directe sur la géométrie des molécules.

Exemples:

Molécules	CH₄ Méthane	COCI₂ Dichlorure de méthanoyle (phosgène)	CO₂ Dioxyde de carbone	HCN Cyanure d'hydrogène
Caractéristiques	Structure tétraédrique Carbone tetragonal	Structure plane Carbone trigonal	Structure linéaire Carbone digonal	Structure linéaire Carbone digonal
Modèle			•••	•
Modèle avec liaisons				□
Représentations de Lewis	H - C - H 	(a) (c) (c)	(0=C=0)	H−C≡NI
Structures	Structure tétraédrique Angle H-C-H: 109°	Structure plane Angle Cl-C-Cl: 112°	Structure linéaire	Structure linéaire

GÉOMÉTRIE DES MOLÉCULES

La géométrie des molécules est due à la répulsion entre les doublets liants et non liants.

Les doublets se **repoussent au maximum** dans l'espace afin d'être **les plus éloignés possibles** les uns des autres.

Exemples:

Molécules	NH ₃ Ammoniac	H₂O Eau	O ₂ Dioxygène
Modèle			•••
Représentations de Lewis	H — N — H I H	H ^{∕Ô} \H	(0=0)
Structures	Structure pyramidale à base triangulaire Angles H-N-H: 108°	Structure plane coudée Angle H-O-H: 105°	Structure linéaire

IONS, MOLÉCULES ET COMPOSÉS IONIQUES

	υ, .			
CATIONS		ANIONS		
ion oxonium	H₃O⁺	ion hydroxyde	HO-	
ion cuivreux ou cuivre I	Cu⁺	ion nitrate	NO ₃ -	
ion cuivrique ou cuivre II	Cu ²⁺	ion fluorure	F-	
ion sodium	Na⁺	ion iodure	ŀ	
ion calcium	Ca ²⁺	ion bromure	Br⁻	
ion ferreux ou fer	Fe ²⁺	ion chlorure	Cl ⁻	
ion ferrique ou fer III	Fe ³⁺	ion sulfate	SO ₄ ²⁻	
ion lithium	Li⁺	ion dichromate	Cr ₂ O ₇ ²	
ion argent	Ag⁺	ion carbonate	CO ₃ ²⁻	
ion magnésium	Mg ²⁺	ion phosphate	PO ₄ 3-	
ion potassium	K⁺	ion permanganate	MnO ₄	
ion plomb	Pb^{2+}	ion sulfure	S ²⁻	
ion ammonium	NH_4^+	ion thiosulfate	$S_2O_3^{2}$	
ion zinc	Zn ²⁺	ion bromate	BrO ₃	
ion baryum	Ba ²⁺	ion chromate	CrO ₄ ²	

MOLECULES					
dioxygène	$O_{2\;(g)}$				
dihydrogène	$H_{2 (g)}$				
diazote	$N_{2\;(g)}$				
dichlore	$\text{Cl}_{2\ (g)}$				
dibrome	$Br_{2 \; (I)}$				
diiode	l _{2 (s)}				
méthane	$CH_{4(g)}$				
dioxyde de carbone (gaz carbonique)	$CO_{2(g)}$				
monoxyde de carbone	CO (g)				
dioxyde d'azote	$NO_{2(g)}$				
ammoniaque	$NH_{3(aq)}$				
eau	$H_2O_{(I)}$				
glucose	$C_6H_{12}O_{6(s)}$				
saccharose (sucre)	$C_{12}H_{22}O_{11\;(s)}$				
peroxyde d'hydrogène (eau oxygénée)	H ₂ O _{2 (I)}				

COMPOSES IONIQUES					
hydroxyde de sodium (soude)	NaOH				
chlorure de sodium (sel)	NaCl				
sulfate de cuivre	CuSO ₄				
nitrate d'argent	$AgNO_3$				
chlorure d'argent	AgCl				
hydroxyde de potassium (potasse)	KOH				
permanganate de potassium	KMnO ₄				
dichromate de potassium	K ₂ Cr ₂ O ₇				

TESTS CHIMIQUES

Espèce à identifier (couleur en solution aqueuse)	Réactif utilisé	lon réagissant dans le réactif	Résultat du test	Nom et formule du produit formé
Ion chlorure - Cl ⁻ (incolore)	Solution de nitrate d'argent (Ag+ NO ₃ -)	lon argent Ag⁺	Précipité blanc (noircit à la lumière)	Chlorure d'argent : AgCl _(s) Ag ⁺ + Cl ⁻ = AgCl
lon magnésium - Mg ²⁺ (incolore)	Solution d'hydroxyde de sodium (Na ⁺ + HO ⁻)	Ion hydroxyde HO ⁻	Précipité blanc	Hydroxyde de magnésium : $Mg(OH)_{2 (s)}$ $Mg^{2+} + 2HO^{-} = Mg(OH)_{2}$
lon cuivre II - Cu ²⁺ (bleu)	Solution d'hydroxyde de sodium (Na ⁺ + HO ⁻)	Ion hydroxyde HO ⁻	Précipité bleu	Hydroxyde de cuivre II : $Cu(OH)_{2 (s)}$ $Cu^{2+} + 2HO^{-} = Cu(OH)_{2}$
lon fer II - Fe ²⁺ (vert pâle)	Solution d'hydroxyde de sodium (Na ⁺ + HO ⁻)	Ion hydroxyde HO ⁻	Précipité vert	Hydroxyde de fer II : $Fe(OH)_{2 (s)}$ $Fe^{2+} + 2HO^{-} = Fe(OH)_{2}$
lon fer III - Fe ³⁺ (rouge pâle)	Solution d'hydroxyde de sodium (Na ⁺ + HO ⁻)	Ion hydroxyde HO-	Précipité rouille	Hydroxyde de fer III : $Fe(OH)_{3 (s)}$ $Fe^{3+} + 3HO^{-} = Fe(OH)_{3}$
lon zinc - Zn ²⁺ (incolore)	Solution d'hydroxyde de sodium (Na+ + HO-)	Ion hydroxyde HO-	Précipité blanc	Hydroxyde de zinc : $Zn(OH)_{2 (s)}$ $Zn^{2+} + 2HO^{-} = Zn(OH)_{2}$
Ion sodium - Na ⁺ (incolore)	Test de flamme		Flamme jaune orangé	
lon potassium - K ⁺ (incolore)	Test de flamme		Flamme violette	

Autres tests

Espèce Chimique Présente	Test Chimique	Action
L'eau Sulfate de cuivre anhydre		Cette poudre blanche devient bleue en présence d'eau
Dioxyde de carbone		L'eau de Chaux qui est initialement un liquide transparent se trouble en présence de CO ₂
Espèce Chimique acide, neutre ou basique		Cet indicateur coloré est de couleur jaune en milieu acide, vert en milieu neutre et bleu en milieu basique.
Glucose	Liqueur de Fehling	Ce liquide bleu donne un précipité rouge par chauffage
Amidon	L'eau iodée	Ce liquide brin devient bleu foncé au contact de l'amidon

TRAVAUX PERSONNELS ENCADRÉS (TPE)

Les Travaux Personnels Encadrés concernent tous les élèves des classes de première et cette épreuve donne lieu à une note sur 20 points; seuls sont retenus les points supérieurs à la moyenne de 10 sur 20, affectés d'un coefficient 2.

Les TPE sont l'occasion pour les élèves de développer des capacités d'autonomie et d'initiative dans la conduite de leur travail en vue d'aboutir à une réalisation concrète. Leur durée s'étale sur 18 semaines maximum à partir du début de l'année scolaire de première.

Les TPE sont une des activités permettant une approche des savoirs privilégiant la pluridisciplinarité. Ils donnent à l'élève la capacité de conduire et de mener à bien des recherches de manière autonome en vue de la réalisation d'une production. Cette dernière fait l'objet d'une soutenance en tant qu'épreuve anticipée au baccalauréat général. Il contribue de la sorte à la construction du projet de l'élève et à une préparation aux exigences de l'enseignement supérieur.

Thèmes

Les TPE consistent en un travail pluridisciplinaire conduit par un groupe d'élèves à partir d'un sujet se rapportant à des thèmes définis au niveau national. Les thèmes retenus ont pour objet de favoriser les liens entre les différents enseignements. À partir de ces thèmes, les élèves choisissent un sujet en accord avec leurs enseignants.

Thèmes 2013-2014 et 2014-2015

	Série économique et sociale	Série littéraire	Série scientifique
	Éthique et responsabilité	Éthique et responsabilité	Éthique et responsabilité
Thèmes communs	Santé et bien-être	Santé et bien-être	Santé et bien-être
	Individuel et collectif	Individuel et collectif	Individuel et collectif
	La consommation	Héros et personnages	Avancées scientifiques et réalisations techniques
Thèmes spécifiques	('rica at prograc	Représentations et réalités	La mesure
	L'argent	Lumière, lumières	Matière et forme

Pluridisciplinarité

Les TPE associent au moins deux disciplines et s'appuient sur les disciplines spécifiques de chaque série. Ils doivent permettre aux élèves de :

- réinvestir et renforcer les savoirs ainsi que les compétences acquises dans les disciplines associées;
- ◆ développer des capacités d'autonomie et d'initiative dans la recherche et l'exploitation de documents ;
- commencer à se familiariser avec les méthodes de travail et d'organisation qui seront mobilisées dans l'enseignement supérieur.

Groupes

Le travail collectif des élèves sur une assez longue période est une pratique caractéristique des TPE. C'est pourquoi les TPE doivent être le fruit d'un travail d'équipe. Ce sont généralement les groupes de 3 élèves qui permettent les conditions de travail les plus efficaces.

Déroulement

Plusieurs étapes peuvent être distinguées dans le déroulement des TPE:

- une première phase au cours de laquelle sont définis le sujet et sa problématique; on veillera dans ce cadre à bien délimiter les contours du sujet en se gardant de problématiques trop ambitieuses par rapport au niveau des élèves des classes de première;
- la deuxième phase est centrée sur la recherche documentaire ;
- la troisième phase conduit à réaliser une production ;
- ◆ la quatrième phase, la soutenance, donne lieu à une présentation orale de la réalisation, s'appuyant sur une note synthétique individuelle.

Production

Les productions ne doivent pas aboutir à un montage d'informations et de documents sans véritable appropriation du sujet et sans regard critique sur les sources utilisées. Une attention toute particulière sera portée au caractère original de la production des élèves, excluant la simple copie d'éléments préexistants.

Carnet de bord

Tout au long du déroulement des TPE, la tenue régulière d'un carnet de bord (individuel ou collectif) est particulièrement recommandée. Trace d'un itinéraire personnel, le carnet de bord permet à l'élève (ou au groupe) de noter au fil du temps le déroulement et les principales étapes du travail. Il garde également la mémoire des documents consultés et leurs références. Témoin de la démarche adoptée, il permet aux professeurs encadrant les TPE de dialoguer avec les élèves en portant la trace des conseils et des précisions apportés.

Mode d'évaluation des Travaux Personnels Encadrés

La notation prend en compte pour chacun des élèves du groupe :

- 1. L'évaluation du travail effectué, pour 8 points sur 20. La note est attribuée à chaque élève. Elle correspond à l'évaluation de la démarche personnelle et de l'investissement.
- 2. Une épreuve orale, pour 12 points sur 20. Cette épreuve est évaluée par au moins deux professeurs autres que ceux ayant suivi les Travaux Personnels Encadrés des élèves. L'évaluation prend en compte :
 - pour 6 points, la production finale proprement dite du travail personnel encadré et une note synthétique, de deux pages maximum, rédigée par chaque élève qui sert à individualiser l'appréciation
 - pour 6 points, une soutenance orale, d'une durée modulable selon la taille du groupe sur la base de 10 minutes par élève, qui se décompose en deux temps d'égale durée :
 - un premier temps au cours duquel le groupe d'élèves (ou l'élève) présente le travail réalisé ;
 - un temps d'entretien au cours duquel chaque élève est interrogé sur sa contribution personnelle.

Enjeux

- Solliciter la curiosité intellectuelle dans une situation d'apprentissage actif, former l'esprit critique, motiver les élèves par un travail dont ils définissent eux-mêmes le sujet.
- Mobiliser les savoirs dans une production, découvrir les liens qui existent entre les différentes disciplines et percevoir la cohérence des savoirs scolaires.
- Se confronter à l'erreur et la surmonter.
- ◆ Développer de nouvelles capacités et compétences, utiles pour la poursuite d'études, la vie sociale et professionnelle : autonomie, travail en groupe, recherche documentaire, argumentation, maîtrise de l'outil informatique et d'Internet, expression orale ...
- ◆ Acquérir des méthodes de travail : élaboration progressive puis choix stabilisé d'une problématique, choix d'un support adapté de réalisation, présentation synthétique, respect d'un échéancier...

VERRERIE DE LABORATOIRE

Au cours d'une manipulation, de nombreux volumes sont mesurés, chacun avec une précision différente. Il convient donc d'utiliser à bon escient la verrerie en fonction de son degré de précision.

Tube à essai Pour faire des petits tests

Burette Pour mesurer des volumes précis au ½ mL lors de dosage

Bécher Contient une solution avant prélèvement, utilisé pour les dosages

Erlenmeyer Contient une solution avant prélèvement, utilisé pour les dosages

Fiole jaugée

Utilisée pour faire

des solutions

précis au 10^{ème} de mL

Pipette jaugée

Pour mesurer des volumes précis au 10^{ème} de mL

Éprouvette Pour mesurer des volumes précis au mL

RÉALISER UNE SOLUTION PAR DISSOLUTION

La masse m en g de solide à peser est telle que m = C.V.M avec C est la concentration en mol.L⁻¹, V le volume de solution en L, et M la masse molaire en g.mol⁻¹.

PRÉPARER UNE SOLUTION DE CONCENTRATION DONNÉE PAR DILUTION

Au cours d'une dilution la quantité de matière ne change pas: $C_m.V_m = C_f.V_f$ avec C_m la concentration de la solution mère de volume V_m et C_f la concentration de la solution fille de volume V_f .

bien homogénéiser la

solution.