COP-3402 Systems Software 09/19 Thu

Review:

Regular expressions define string patterns

Concatenation: ab => a must be followed by b

Alternation: a|b => a or b

Closure: a* => a; zero or more times

Given some finite alphabet of symbols, a language is all the possible sequences of symbols, which can be infinite. Regular expressions are a way to define a language.

Regular languages can be represented one for one with finite automata.

Finite automata: A finite set of symbols, and FA can process them one at a time and changes its state depending on what symbols it sees, also how causes it to transition to a new state.

Computational model of turnstile:

Two states: locked and unlocked; changing its state depending on what input/symbol you give.

Example of a State Diagram:

start 9 letter or digit

Circles represent the **states**, they can be labeled, such as 9, etc. **Transitions** between states are represented by **arrows** between states. Seeing a **letter** transitions us to the next state in our language. Accepting state is represented by a **double circle**.

Epsilon represents empty string in our language.

Deterministic FA: one state at a time

Non-deterministic FA: multiple states at once, the same symbol, multiple transitions, epsilon transitions

Example of FA with Transition Table:

STATE	a	b	ϵ
0	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

=> this ex. Non-deterministic FA.

A non-deterministic FA can be converted to DFA via **subset construction**. If we have some number n of states, how many subsets of those states are there? 2^n We can turn all those subsets into a single states in a DFA (subset construction).

Regex Operations as NFAs:

Figure 3.41: NFA for the concatenation of two regular expressions

Dragon book-concatenation.

Figure 3.40: NFA for the union of two regular expressions

Dragon book-alternation.

Figure 3.42: NFA for the closure of a regular expression Dragon book-kleene closure.

Ex. (a|b)*abb

Dragon book.

How to construct a DFA from an NFA systematically:
Each DFA state created by subset of NFA states, can be in multiple states
Simulate being in multiple states using a single state
Multiple states are a subset of the NFA states
Create the DFA by calling each subset a single DFA state

Subset Construction Algorithm:

Start at the starting state of NFA

Group all states reachable by epsilon (epsilon closure); call this group as initial state of DFA For each symbol s in the alphabet;

Get all states that s transitions to

Find epsilon-closure of those states

Call this group as a single state of DFA

Repeat for all combinations of NFA states and symbols

Stop when you have covered them all.

Ex of converting from NFA to DFA. ((a|b)b)*

D FA	NFA subsets	а	b
40 B C	\$ 1,9,2,3,43 \$ 5,73 \$ 6,73 \$ 8,9,2,3,43	{5,73	{6,73 {8,9,2,3,4} {8,9,2,3,43 {6,73

