MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2007 SOLUTION KEY

Team Round

A)
$$x^8 - 81 = (x^4 - 9)(x^4 + 9) = (x^2 - 3)(x^2 + 3)(x^2 - 3i)(x^2 + 3i) = 0$$

 \Rightarrow roots: $\pm \sqrt{3}$, $\pm \sqrt{3}i \pm \sqrt{3}i$ and $\pm \sqrt{-3}i$

The last two pairs must be further simplified.

Let
$$\sqrt{3i} = a + bi$$
. Squaring, $(a^2 - b^2) + 2abi = 0 + 3i$.
Thus, $\begin{cases} a^2 - b^2 = 0 \\ 2ab = 3 \end{cases} \Rightarrow b = \frac{3}{2a} \text{ and } a^2 - \frac{9}{4a^2} = 0$

Substituting,
$$4a^4 - 9 = (2a^2 + 3)(2a^2 - 3) = 0 \Rightarrow a^2 = 3/2 \Rightarrow a = \frac{\sqrt{6}}{2}$$
 and $b = \frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2}$

and
$$\sqrt{3i} = \pm \left(\frac{\sqrt{6}}{2} + \frac{\sqrt{6}}{2}i\right)$$
. You should verify that $\sqrt{-3i} = \pm \left(\frac{\sqrt{6}}{2} - \frac{\sqrt{6}}{2}i\right)$.

Therefore,
$$(A, B) = \left(\sqrt{3}, \frac{\sqrt{6}}{2}\right)$$
.

B) Subtracting the second equation from the first, $4a - 4c = 20 \Rightarrow a = c + 5$ Substituting in the first equation, $(c + 5) + 3b + 5c = 50 \Rightarrow 6c + 3b = 45 \Rightarrow b = 15 - 2c$

Since all variables must be positive integers, $c \ge 1 \rightarrow a > 6$ and b = 13, 11, 9, ..., 1 b prime $\rightarrow b = 13, 11, 7, 5$ or 3

Substituting in the two equations,
$$\begin{cases} b = 13 & 11 & 7 & 5 & 3 \\ a + 5c = 11 & 17 & 29 & 35 & 41 \\ 5a + c = 31 & 37 & 49 & 55 & 61 \end{cases}$$

Adding 6(a+c) = 42, 54, 78, 90 or $102 \rightarrow a+c=7, 9, 13, 15$ or 17 Only 9 and 15 are composite $a=c+5, 9 \rightarrow (a, c) = (7, 2)$ and $15 \rightarrow (a, c) = (10, 5) \rightarrow (7, 11, 2)$ and (10, 5, 5)