

1 Базовые теоретические вопросы

1.1 Дать определение единичной, нулевой, верхней треугольной и нижней треугольной

лапидтви.

Единичная матрица - квадратная матрица, для элементов которой выполняется следующее

т.е. элементы главной диагонали равны 1, остальные 0.

Обозначение [E]

Нулевая матрица - матрица, все элементы которой равны 0, т.е. $a_{ij}=0, \forall i, j$

Обозначение [\Theta]

Верхняя треугольная матрица - квадратная матрица, все элементы под главной диагональю которой равны 0.

OLIDEHOTENE VOLIGEET EEU LITHEMERG ANG CHMATEM BEHTEGEN GHUATEM BRI HEGTWAT BRINNING

Нижняя треугольная матрица - квадратная матрица, все элементы над главной диагональю которой равны 0.

1.2 Дать определение равенства матриц.

Матрицы называются равными, если:

1) они имеют одинаковый тип,

2) У них совпадают все соответствующие элементы.

$$(i_i d) = \mathbb{A} \text{ in } (i_i a) = N \text{ rec}$$

$$(i_i d) = \mathbb{A} \text{ in } (\mathbb{A})_{in} M \ni \mathbb{A}, A \iff \mathbb{A} = N$$

1.3 Дать определение суммы матриц и произведения матрицы на число.

Суммя матриц $A=(a_{ij})$ и $B=(b_{ij})$ одного типа $m\times n$ - матрица $C=(c_{ij})$ того же типа $m\times n$ с элементами $c_{ij}=a_{ij}+b_{ij}$.

Произведение матрицы $A=(c_{ij})$ типа m imes n на число $lpha\in\mathbb{R}$ - матрица $C=(c_{ij})$ того же

Then be calculated a submitted $M = (a_{ij})$ and $m \times n$ has ancho $\alpha \in \mathbb{R}$ -matching $C = (c_{ij})$ acto we thus $m \times n$ is a submitted $M = (a_{ij})$ and $M = (a_{ij})$ and M =

1.4 Дать определение операции транспонирования матриц.

Для матрицы $A=(a_{ij})$ типа $m\times m$ ее транспонированной матрицей называется матрица $A=(c_{ij})$ типа $A=(c_{ij})$ т

При транспонировании матрицы ее строки (столбцы) страновятся столбцами (строками) с те-

ми же номерами.

1.5 Дать определение операции умножения матриц.

Произведением матрицы $A=(a_{ij})$ типа $m\times n$ и матрицы $B=(b_{ij})$ типа $n\times p$ называется матрица $C=(c_{ij})$ типа $m\times p$ с элементами $c_{ij}=\sum\limits_{k=1}^{n}a_{ik}b_{kj}=a_{i1}b_{1j}+...+a_{in}b_{nj}.$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a_{i1}} & \mathbf{a_{i2}} & \dots & \mathbf{a_{in}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \times \begin{pmatrix} b_{11} & \dots & \mathbf{b_{1j}} & \dots & b_{1p} \\ b_{21} & \dots & \mathbf{b_{2j}} & \dots & b_{2p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n1} & \dots & \mathbf{b_{nj}} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1j} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2j} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \dots & \mathbf{c_{ij}} & \dots & c_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mj} & \dots & c_{mp} \end{pmatrix}$$

 $AB \neq BA$ (как правило).

1.6 Дать определение обратной матрицы.

Пусть A - квадратная матрица порядка n. Матрица B называется **обратной** к матрице A, если:

- 1. Она того же порядка n,
- 2. AB = BA = E, где E единичная матрица.

1.7 Дать определение минора. Какие миноры называются окаймляющими для данного минора матрицы?

Минором порядка k матрицы A типа $m \times n$ называется определитель, который составлен из элементов этой матрицы, стоящих на пересечении любых k строк и k столбцов с сохранением порядка этих строк и столбцов.

Обозначение: минор $M^{j_1...j_k}_{i_1...i_k}$ составлен из элементов, расположенных на пересечении строк $i_1,...,i_k$ и столбцов $j_1,...,j_k$, причем $i_1<...< i_k, j_1<...< j_k$.

Минор M' матрицы A называется **окаймляющим** для минора M, если он получается из M добавлением одной новой строки и одного нового столбца, причем эти строка и столбец входят в матрицу A и не входят в минор M.

1.8 Дать определение базисного минора и ранга матрицы.

Ранг матрицы - число, равное максимальному проядку среди ее ненулевых миноров.

Минор M матрицы A называется **базисным**, если

- 1) он не равен нулю,
- 2) его порядок равен RgA.

У матрицы может быть несколько базисных миноров.

Для этого с помощью элементарных преобразований получим из B матрицу B^{\prime} вида

Copyright pluttandtfiiris

$$A \geqslant {}^{\prime}A \otimes A = A \otimes A \Leftarrow \begin{pmatrix} * & \cdots & * & \cdots & * \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ * & \cdots & * & \cdots & * \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} = {}^{\prime}A \sim A$$

Как получить матрицу B'? Базисные неизвестные (первые r штук) однозначно выражаются через свободные (последние n-r=k штук). Следовательно в матрице B вся первая строка является линейной комбинацию k последних строк. Вычтем из первой строки линейную комбинацию k последних строк. Получим нулевую строку. Аналогично в матрице B вся вторая строка является линейной комбинацией k последних строк. Вычтем из второй строки линейную комбинацию k последних. Получим нулевую строку. И т.д. до r-ой строки матрицы B. Получили B'. Маз 1), 2) $\Rightarrow RgB = k$.

IITh

LI

1.9 Дать определение однородной и неоднородной СЛАУ.

Системой линейных алгебраических уравнений называется система вида

The $a_{ij},b_i,x_i\in\mathbb{R}$

Числа a_{ij} называются коэффициентами системы, b_{ij} называется свободными членами. СЛАУ называется однородной, если все b равны 0, неоднородной, если хотя бы один из b_i не равен 0.

1.10 Дать определение фундаментальной системы решений однородной СЛАУ.

Пусть дана однородная СЛАУ $AX=\Theta$ с n неизвесными $x_1,...,x_n$, и пусть RgA=r. Фундаментальной системой решений (ФСР) однородной СЛАУ $AX=\Theta$ называется любой набор из k=n-r линейно независимых столбцов $x^{(1)},...,x^{(k)}$ является решениями этой системы.

1.11 Записать формулы для нахождения обратной матрицы к произведению двух обратимых матриц и для транспонированной матрицы.

Обратная матрица к произведению двух обратимых матриц: если квадратные матрицы A^{-1} и B^{-1} , то их произведение AB имеет обратные матрицы A^{-1} и B^{-1} , то их произведение AB имеет обратири матрицу $(AB)^{-1}$, причем $(AB)^{-1} = B^{-1}A^{-1}$.

Обратная матрица для транспонированной матрицы: если квадратная матрица Λ имеет обратную матрицу Λ^{-1} , то транспонированная матрица Λ^T тоже имеет обратную матрицу $(\Lambda^T)^{-1}$, причем $(\Lambda^T)^{-1} = (\Lambda^{-1})^T$.

1.12 Дать определение присоединённой матрицы и записать формулу для вычисления обратной матрицы.

Присоединеной матрицей для квадратной матрицы A называется матрица $A^*=(A_{ji})$, где Φ ормула для вычисления обратной матрицы

$${}^* h \frac{1}{h t_2 h} = {}^{1-} h$$

1.13 Перечислить элементарные преобразования матриц.

Элементарные преобразования матриц

$$X = A^{-1}B \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} A_{11}b_1 & A_{21}b_2 & \dots & A_{n1}b_n \\ A_{12}b_1 & A_{22}b_2 & \dots & A_{n2}b_n \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}b_1 & A_{2n}b_2 & \dots & A_{nn}b_n \end{pmatrix}$$

Следовательно
$$x_1 = \frac{b_1 A_{11} + b_2 A_{21} + \ldots + b_n A_{n1} +}{\Delta} = \frac{\begin{pmatrix} b_1 & a_{12} & \ldots & a_{1n} \\ b_2 & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \ldots & a_{nn} \end{pmatrix}}{\Delta} = \frac{\Delta_1}{\Delta}, \text{ и тд, } x_n = \frac{\Delta_n}{\Delta}$$

ЧТД

2.8 Доказать теорему о структуре общего решения однородной СЛАУ.

теорема (о структуре общего решения однородной СЛАУ)

Пусть $X_1^{(1)},...,X_k^{(k)}$ - любая ФСР однородной СЛАУ $AX=\Theta$ Тогда любое решение X этой системы можно представить как линейную комбинацию ФСР: $X=c_1X^{(1)}+...+c_kX^{(k)}$, где $c_i\in\mathbb{R}$.

Доказательство

Рассмотрим матрицу B, состоящую из столбцов X и $X^{(1)},...,X^{(k)}$:

$$B = \begin{pmatrix} x_1 & \dots & x_1^{(1)} & \dots & x_1^{(k)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_r & \dots & x_r^{(1)} & \dots & x_r^{(k)} \\ x_{r+1} & \dots & x_{r+1}^{(1)} & \dots & x_{r+1}^{(k)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_n & \dots & x_n^{(1)} & \dots & x_n^{(k)} \end{pmatrix}$$

Напомним, что в системе $AX=\Theta, RgA=r:x_1,...,x_r$ - базисные неизвестные, $x_{r+1},...,x_n$ - свободные

Докажем, что RqB = k.

Тогда, т.к. столбцы $X^{(1)},...,X^{(k)}$ по определению ФСР линейно независимы и их k штук, по следствию 2 из теоремы о базисном миноре (ранг матрицы равен максимальному количеству ее линейно независимых столбцов(строк)) столбцы $X^{(1)},...,X^{(k)}$ являются базисными. Следовательно, по п2 теоремы о базисном миноре, столбец X является их линейной комбинацией. 1) $RgB\geqslant k$, т.к. RgB равен максимальному количеству линейно независимых столбцов(строк) матрицы, а мы знаем, что r столбцов матрицы B линейно независимы.

2) Докажем, что $RqB \leqslant k$.

- 1) Умножение строки (столбца) матрицы на число $\lambda \neq 0$:
- 2) Перестановка двух строк (столбцов).
- 2) Добавление к одной строке (столбцу) матрицы другой строки (столбца), умноженной на число.

1.14 Записать формулы Крамера для решения системы линейных уравнений с обратимой матрицей.

СЛАУ AX=B, где A - квадратная и $det A\neq 0$, имеет единственное решение, причем $x_1=\frac{\Delta_1}{\Delta},...,x_n=\frac{\Delta_n}{\Delta}$, где $\Delta=det A$,

$$\Delta_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \dots, \Delta_{n} = \begin{vmatrix} a_{11} & \dots & a_{1n-1} & b_{1} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn-1} & b_{n} \end{vmatrix}$$

1.15 Перечислить различные формы записи системы линейных алгебраических уравнений (СЛАУ). Какая СЛАУ называется совместной?

Формы записи СЛАУ:

1. Координатная:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
 $a_{ij}, b_i, x_i \in \mathbb{R}$

2. Векторная:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

или

$$x_1\vec{a_1} + x_2\vec{a_2} + \dots + x_n\vec{a_n} = \vec{b}$$

3. Матричная:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$AX = B \ (A\vec{x} = \vec{b})$$

$$x - n = \lambda_{\cdot}(^{(1)}X, \dots, ^{(2)}X, ^{(1)}X$$
 хи мирьнеодо ,
$$\begin{pmatrix} x \\ y \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} x \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} x \\ x \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 ...,
$$\begin{pmatrix} x \\ y \\ \vdots \\ 0 \\ \vdots \\$$

(2) Покажем, что мы построили именно ФСР

 $X^{(1)},\dots,X^{(k)}$ - решения (по построению), их $\mathbf{k}=\mathbf{n}$ - г.

Осталось доказать, что $X^{(1)},\dots,X^{(k)}$ - линейно независимы.

Рассмотрим линейную комбинацию $\alpha_1 X^{(1)} + ... + \alpha_k X^{(k)} = \Theta$. Из последних строк имеем:

Мз (r+1)-й строки: $\alpha_1 \cdot 1 + \alpha_2 \cdot 0 + \ldots + \alpha_k \cdot 0 = 0 \Rightarrow \alpha_1 = 0$

Мз (r+2)-й строки: $\alpha_1 \cdot 0 + \alpha_2 \cdot 1 + \ldots + \alpha_k \cdot 0 = 0$

Мз (n)-й строки: $\alpha_1 \cdot 0 + \alpha_2 \cdot 0 + \dots + \alpha_k \cdot 1 = 0 \Rightarrow \alpha_k = 0$,

Следовательно $X^{(1)}, ..., X^{(k)}$ линейно независимы. Мы построили $\Phi \mathrm{CP}.$

IITh

мой матрицей. -птядоо э йинэнаяду хынйэниг ымэтэлэ вешения системы линейных уравнений с обраги-

pwədoəL

СЛАУ AX=B, где A - квадратная и $detA\neq 0$, имеет единственное решение, причем $x_1=0$

$$A19b = \triangle, \frac{n}{\Delta} = nx, \dots, \frac{1}{\Delta}$$

$$\begin{vmatrix} \mathbf{1}^{d} & \mathbf{1} - n \mathbf{1}^{D} & \cdots & \mathbf{1} \mathbf{1}^{D} \\ \vdots & \vdots & \vdots & \vdots \\ n^{d} & \mathbf{1} - n n^{D} & \cdots & \mathbf{1} n^{D} \end{vmatrix} = n^{D} \cdot \cdots \cdot \begin{vmatrix} n^{1}^{D} & \cdots & 2\mathbf{1}^{D} & \mathbf{1}^{d} \\ \vdots & \vdots & \vdots & \vdots \\ n^{n}^{D} & \cdots & 2^{n}^{D} & n^{d} \end{vmatrix} = 1^{D}$$

уравнения. По условию $det A \neq 0 \Rightarrow \exists A^{-1} \Rightarrow$ решение матричного уровнения однозначно СЛАУ AX=B, где $A-(n\times n)$, $X-(n\times 1)$, $B-(n\times 1)$ является часным случаем матричного Доказательство

Распишем нахождение решения X более подробно: $A^{-1}=\frac{1}{\Delta \ell t A}A^*=\frac{1}{\Delta}(A_{ji})$, где A^* - присо- A^{1-} A=X вэтидохьн

единенная матрица.

СЛАУ называется совместной (несовместной), если она имеет (не имеет) решение.

1.16 Привести пример, показывающий, что умножение матриц некоммутативно.

Некомутативность произведение матриц: $AB \neq BA$ (как правило, но бывают исключения)

$$AA \neq AA \Leftarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = AA, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = AA : \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = A, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A$$

$$AB \neq BA \Leftarrow \begin{pmatrix} 8 & E \\ 8 & 4 \end{pmatrix} = AB, (II) = BA : \begin{pmatrix} E \\ 4 \end{pmatrix} = B, (II) = AB$$

1.17 Сформулировать свойства ассоциативности умножения матриц и дистрибутивности умножения относительно сложения.

Свойства умножения матриц:

- . (O(A)) Ассоциативность (O(A)) Ассоциативность
- 2) Anctphogythrhoctf (A + B)C = AC + BC.

1.18 Сформулировать критерий Кронекера — Капелли совместности СЛАУ.

Система AX=B совместна \iff ранг расширенной матрицы равен рангу матрицы, т.е. Rg(A|B)=RgA

1.19 Сформулировать теорему о базисном миноре.

Теорема о базисном миноре:

- I. Базисные строки (столбцы) матрицы A, соответствующие любому базисному минору M,
- 2. Любые строки (столбцы) матрицы A, не входящие в базисный минор M, являются линейными комбинациями базисных строк (столбцов).

1.20 Сформулировать теорему о свойствах решений однородной СЛАУ.

Если $X^{(1)},...,X^{(S)}$ - решения однородной СЛАУ, то любая их линейная комбинация $X=\alpha_1X^{(1)}+...+\alpha_sX^{(S)},\alpha_i\in\mathbb{R}$, тоже является решением.

1.21 Сформулировать теорему о структуре общего решения неоднородной СЛАУ.

Пусть X^0 - некоторое решение неоднородной СЛАУ AX=B, $X^{(1)},\dots,X^{(k)}$ - ФСР соответствующей однородной СЛАУ $AX=\Theta$.

Тогда любое решение X неоднородной СЛАУ AX=B можно представить в виде:

$$X = X^0 + c_1 X^{(1)} + \dots + c_k X^{(k)}$$

The
$$c_i \in \mathbb{R}, i = 1, ..., k$$
.

2.6 Доказать теорему о существовании ФСР однородной СЛАУ.

Теорема (о существовании ФСР однородной СЛАУ)

Пусть дана однородная СЛАУ $AX = \Theta$ с n неизвестными $x_1, ..., x_n$, и пусть RgA = r < n. Тогда для нее \exists ФСР (т.е. \exists набор из k = n - r линейно независимых решений $X^{(1)}, ..., X^{(k)}$)

Доказательство

- (1) Построение ФСР
 - 1) Дана система $AX = \Theta$ с n неизвестными $x_1, ..., x_n$, и, RgA = r < n. Можно считать, что базисным минором порядка r является $M_{1...r}^{1...r}$

Строки (r+1)-я, ..., n-я матрицы A являются линейными комбинациями базисных строк 1-й, ..., r-й \Rightarrow уравнения (r+1)-е, ..., n-е можно отбросить.

$$\begin{cases} a_{11}x_1 + \dots + a_{1r}x_r + a_{1r}x_r + a_{1r}x_r + \dots + a_{1n}x_n = 0 \\ \vdots \\ a_{r1}x_1 + \dots + a_{rr}x_r + a_{rr}x_r + \dots + a_{rn}x_n = 0 \end{cases}$$

2) Переменные $x_1, ..., x_r$ - базисные,

 $x_{r+1},...,x_n$ - свободные.

Выразим базисные через свободные:

$$\begin{cases} a_{11}x_1 + \dots + a_{1r}x_r = -a_{1r+1}x_{r+1} - \dots - a_{1n}x_n \\ \vdots \\ a_{r1}x_1 + \dots + a_{rr}x_r = -a_{rr+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$$

 \forall набора $x_{r+1},...,x_n$ получим СЛАУ из r уравнений с r неизвестными $x_1,...,x_r,$ det системы = $M_{1...r}^{1...r} \neq 0 \Rightarrow$ по теореме Крамера эта система имеет единственное решение.

3) Будем придавать свободным переменным различные значения:

$$x_{r+1} = 1$$
, $x_{r+2} = 0$, ..., $x_n = 0$;
 $x_{r+1} = 0$, $x_{r+2} = 1$, ..., $x_n = 0$;
 \vdots
 $x_{r+1} = 0$, $x_{r+2} = 0$, ..., $x_n = 1$.

Для каждого набора значений свободных переменных найдем базисные, получим решение системы:

1.22 Сформулировать теорему о структуре общего решения однородной СЛАУ.

Пусть $X^{(1)},...,X^{(k)}$ - любая ФСР однородной СЛАУ $AX=\Theta$.

Тогда любое решение X этой системы можно представить как линейную комбинацию Φ CP:

$$X = c_1 X^{(1)} + ... + c_k X^{(k)},$$
 где $c_i \in \mathbb{R}$

1.23 Сформулировать теорему об инвариантности ранга при элементарных преобразованиях матрицы.

При элементарных преобразованиях матрицы ее ранг не меняется.

1.24 Сформулировать критерий существования обратной матрицы.

Для квадратной матрицы $A \exists$ обратная матрица $A^{-1} \iff det A \neq 0$ (т.е. когда A - невырожденная матрица).

2.5 Доказать критерий Кронекера — Капелли совместности СЛАУ.

Kритерий Kронекера — Kапелли совместности CЛ $rac{1}{N}N$

Система AX=B совместна \iff ранг расширенной матрицы = рангу матрицы, т.е. Rg(A|B)=

 $A \rho A$

Доказательство

 (\Leftarrow)

Пусть система AX=B совместна. Докажем, что Rg(A|B)=RgA.

Столбцы матрицы A являются столбцами матрицы $(A|B) \Rightarrow RgA \leqslant Rg(A|B)$

2) Докажем, что $RgA \geqslant Rg(A|B)$

Т.к. система AX=B совместна, то \exists ее решение $x_1,...,x_n$:

 $\overleftarrow{d} = \overleftarrow{n} b_n x + \ldots + \overleftarrow{1} b_1 x$

Пусть $\vec{a_1},...\vec{a_k}$ - базисные столбцы в матрице $A \Rightarrow$ по теореме о базисном миноре, столбцы

 $a_{k+1},...,a_n$ выражаются через столбцы $a_1,...,a_k \Rightarrow$ столбец b выражается через $a_1,...,a_k \Rightarrow$

 $\vec{a_1}, ..., \vec{a_k}$ - базисные столбцы в матрице (A|B).

Это означает, что число базисных столбцов в матрице (A|B) не может быть больше числа ба-

зисных столбцов в матрице $A\Rightarrow Rg(A|B)\leqslant RgA$.

$$A_{\mathcal{B}} \mathcal{A} = (A|A)_{\mathcal{B}} \mathcal{A} \Leftarrow (A_{\mathcal{C}})_{\mathcal{C}} \in \mathbb{A}$$

 (\Rightarrow)

Пусть Rg(A|B) = RgA.

Докажем, что система AX=B совместна.

Пусть $M \leftarrow$ базисный минор в $A (M \neq 0$ и максимального порядка) $\Rightarrow M$ будет базисным

(A|A) а модоним

Пусть M расположен в столбцах $\vec{a_1},...\vec{a_k}$ в $A\Rightarrow \vec{a_1},...\vec{a_k},$ будут базисными столбцами и в A и в

Выразим через них столбец \overline{b} (это можно сделать по теореме о базисном миноре):

$$x^0a_1^1+\ldots+x^0_ka_k^k=\vec{b}$$
 (с какими-то x^1_1,\ldots,x^k_k)

Дополним это равенство:

$$\overleftarrow{d} = \overleftarrow{n} b 0 + \ldots + \overleftarrow{1 + 3} b 0 + \overleftarrow{3} b \overleftarrow{3} x + \ldots + \overleftarrow{1} b \overleftarrow{0} x$$

Она означает, что $x_1=x_1^0,...,x_k=x_k^0,x_{k+1}=0,...,x_n=0$ является решением СЛАУ AX=B , Aта запись является векторной записью СЛАУ AX=B

т.е. система совместна.

IITh

2 Теоретические вопросы повышенной сложности

2.1 Доказать теорему о связи решений неоднородной и соответствующей однородной СЛАУ.

Теорема (о связи решений неоднородной и соответствующей однородной CIMV).

Пусть X^0 - некоторое решение неоднородной СЛАУ AX=B, тогда: X - решение этой же СЛАУ $\iff X=X^0+Y$, где Y - некоторое решение соответствующей однородной СЛАУ $AX=\Theta$.

Доказательство

(⇐)

Пусть X^0 , X - решения неоднородной СЛАУ AX=B. Рассмотрим $Y=X-X^0$ и найдем AY: $AY=A(X-X^0)=AX-AX^0=B-B=\Theta$, т.е. $AY=\Theta$, а значит, Y - решение однородной

 $AY=A(X-X^0)=AX-AX^0=B-B=\Theta$, т.е. $AY=\Theta$, а значит, Y - решение однородной СЛАУ $AX=\Theta$ и $X=X^0+Y$.

(\Leftrightarrow) Пусть X^0 - решение неоднородной СЛАУ AX=B (т.е. $AX^0=B$), а Y - решение однородной СЛАУ $AX=\Theta$ (т.е. $AY=\Theta$). Рассмотрим $X=X^0+Y$ и найдем AX:

 $AX = A(X^0 + Y) = AX^0 + AY = B + \Theta = B$, т.е. X - решение неоднородной СЛАУ AX = B.

IITh

Теорема (о структуре общего решения неоднородной СЛАУ).

Пусть X^0 - некоторое решение неоднородной СЛАУ AX=B, $X^{(1)},...,X^{(k)}$ - Φ СР (фундаментальная система решений) соответствующей однородной СЛАУ $AX=\Theta$.

Тогда любое решение X неоднородной СЛАУ AX=B можно представить в виде:

$$X=X^0+c_1X^{(1)}+\ldots+c_kX^{(k)}, \text{ the } c_i\in\mathbb{R}, i=1,\ldots,k.$$

Доказательство

Пусть X^0 - некоторое решение неоднородной СЛАУ AX=B, X - любое решение той же

системы. Тогда по теореме о связи решений неоднородной и соответствующей однородной СЛАУ: $X=X^0+Y$, где Y - некоторое решение соответствующей однородной СЛАУ.

По теореме о структуре общего решения однородной СЛАУ:

 $Y=c_1X^{(1)}+...+c_kX^{(k)}$, где $X^{(1)},...,X^{(k)}$ - ФСР однородной СЛАУ, $c_i\in\mathbb{R}$. Следовательно $X=X^0+c_1X^{(1)}+...+c_kX^{(k)}$.

ITh

2.4 Доказать критерий существования обратной матрицы.

критерий существования обратной матрицы

Для квадратной матрицы $A \exists$ обратная матрица $A^{-1} \iff det A \neq 0$ (т.е. когда A - невырожденная матрица).

Доказательство

 (\Rightarrow)

Пусть $\exists A^{-1}$. Докажем, что $det A \neq 0$.

По определению обратной матрицы,

$$AA^{-1} = E.$$

Возьмем det от левой и правой части:

$$det(AA^{-1}) = detE$$

По свойствам det:

$$det A \cdot det A^{-1} = 1,$$

произведение чисел равно $1 \to det A \neq 0$, $det(A^{-1}) \neq 0$.

 (\Leftarrow)

Пусть $det A \neq 0$.

- 1. Построим матрицу A^{-1} :
 - 1) Найдем \forall алгебраические дополнения A_{ij} и составим из них матрицу (A_{ij}) .
 - 2) Транспонируем матрицу (A_{ij}) :

$$(A_{ji}) = (A_{ij})^T$$

- 3) Рассмотрим матрицу $B=(b_{ij})$, где $b_{ij}=\frac{A_{ji}}{det A}$, т.е. $B=\frac{1}{det A}(A_{ji})$
- 2. Проверим, что построенная матрица B и будет A^{-1} .

В самом деле, B - квадратная и осталось проверить, что AB = E (и BA = E).

Обозначим AB через $C = (c_{ik})$

Найдем
$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk} = \sum_{j=1}^n a_{ij} \frac{A_{kj}}{\det A} = \frac{1}{\det A} \sum_{j=1}^n a_{ij} A_{kj} = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$$

т.к.
$$\sum_{j=1} a_{ij} A_{kj} = \begin{cases} det A, i = k \\ 0, i \neq k \text{ (по т. о "фальшивом" разложении определителя*)} \end{cases}$$

Следовательно, C=E, и AB=E. Аналогично показывается, что BA=E. Из $1,2\Rightarrow B$ является A^{-1} для A.

2.2 Доказать свойства ассоциативности и дистрибутивности умножения матриц.

Свойство ассоциативности умножения матриц: (AB)C = A(BC)

Доказательство

$$\underbrace{(AB)C}_{D} = \underbrace{A(BC)}_{F}$$

Докажем, что матрицы X и Y:

- 1) имеют одинаковый тип,
- 2) их соответствующие элементы равны: $x_{ij}=y_{ij}$

матрицы типа
$$A = (a_{ij}) \quad m \times n$$

$$B = (b_{ij}) \quad n \times k$$

$$D = (d_{ij}) \quad m \times k$$

$$C = (c_{ij}) \quad k \times l$$

$$F = (f_{ij}) \quad n \times l$$

$$X = (x_{ij}) \quad \mathbf{m} \times \mathbf{l}$$

$$Y = (y_{ij}) \quad \mathbf{m} \times \mathbf{l}$$

$$x_{ij} = \sum_{r=1}^k d_{ir} c_{rj} = \sum_{r=1}^k (\sum_{s=1}^n a_{is} b_{sr}) c_{rj} = \sum_{r=1}^k (\sum_{s=1}^n a_{is} b_{sr} c_{rj}),$$

$$y_{ij} = \sum_{s=1}^n a_{is} f_{sj} = \sum_{s=1}^n (a_{is} (\sum_{r=1}^k b_{sr} c_{rj})) = \sum_{s=1}^n (\sum_{r=1}^k a_{is} b_{sr} c_{rj}) = \sum_{r=1}^k (\sum_{s=1}^n a_{is} b_{sr} c_{rj}), \text{ r.e. } x_{ij} = y_{ij}.$$

ЧТД

Свойство дистрибутивности умножения матриц: (A+B)C = AC + BC

Доказательство

$$\underbrace{\overbrace{(A+B)\,C}^Y}_X = \underbrace{(AC)}_Z + \underbrace{(BC)}_W$$
 Докажем, что матрицы Y и $Z+W$:

- 1) имеют одинаковый тип,
- 2) их соответствующие элементы равны: $y_{ij}=z_{ij}+w_{ij}$

П Copyright pluttandflitiis.

$$\begin{pmatrix} \iota_{1}^{D} & \iota_{1}^{D} & \cdots & \iota_{1}^{D} \\ \vdots & \vdots & & \vdots \\ \iota_{1}^{D} & \iota_{1}^{D} & \cdots & \iota_{1}^{D} \end{pmatrix} = \iota \Delta$$

Порядок Δ_j равен r+1, следовательно λ

Разложим Δ_j по последнему столбцу:

 $\Delta_j=a_{1j}A_{1j}+...+a_{rj}A_{rj}+a_{ij}A_{ij}=0$, где A_{kj} - это алгебраические дополнения элементов

 a_{kj} B Δ_{j} .

Заметим, что

I) эти алгебраические дополнения A_{kj} не зависят от номера j, т.к. при их вычислении

ј-й столбец вычеркивается.

$$0 \neq M = M^{(1+\tau)}(1-) = M^{(1+\tau)+(1+\tau)}(1-) = i h (2$$

Выразим элемент a_{ij} :

$$\text{a.i.} = \underbrace{\frac{\Lambda^{-1}}{M}}_{\text{rd}} \cdots - \underbrace{\frac{\Lambda^{-1}}{M}}_{\text{rd}} \underbrace{\frac{\Lambda^{-1}}{M}}_{\text{rd}} = i_i n$$

 $a_{ij}=b_1a_{1j}+...+b_ra_{rj}$, где $b_1,...,b_r$ не зависят от номера Ј.

Если поставить на место j-го столбца в Δ_j его 1-й столбец, то получим

$$\begin{pmatrix} 11^D & {}_{1}1^D & \cdots & 11^D \\ \vdots & \vdots & & \vdots \\ 1_1^D & {}_{1}n^D & \cdots & 1_n^D \end{pmatrix} = {}_{1}\Delta$$

, $_{ii}A_{1i}b+_{i7}A_{17}b+...+_{i1}A_{11}b={}_{1}\Delta$ и

выразим элемент a_{i1} :

$$a_{11} = \frac{M_{11}}{M} a_{11} - \dots - \frac{M_{r1}}{M} a_{r1}, \text{ T.e.}$$

 $a_{i1} = b_1 a_{11} + ... + b_r a_{r1}$, (с теми же коэффициентами $b_1, ..., b_r$).

Аналогично ставим на место \jmath -го столбца в Δ остальные столбцы по очереди и будем

получать аналогичные равенства, в частности,

$$a_{ir} = b_1 a_{1r} + \dots + b_r a_{rr}.$$

Следовательно, вся i-я строка матрицы A является линейной комбинацией ее первых r

строк (базисных) с коэффициентами p_1, \dots, p_k .

матрицы типа
$$\mathbf{A} = (a_{ij})$$
 $\mathbf{m} \times \mathbf{n}$ $\mathbf{n} \times \mathbf{n}$

$$y_{ij} = \sum_{r=1}^{n} x_{ir} c_{rj} = \sum_{l=1}^{n} (a_{ir} + b_{ir}) c_{rj} = \sum_{l=1}^{n} (a_{ir} c_{rj} + b_{ir} c_{rj}) = \sum_{l=1}^{n} a_{ir} c_{rj} + \sum_{l=1}^{n} b_{ir} c_{rj} = z_{ij} + w_{ij}.$$

IITh

01

2.3 Доказать теорему о базисном миноре.

әдонпш шонәперд о ршәдоәД

- I. Базисные строки (столбцы) матрицы A, соответствующие любому базисному минору M,
- 2. Любые строки (столбцы) матрицы A, не входящие в базисный минор M, являются ли-

Доказательство (для строк)

Пусть матрица $A=(a_{ij})$ имеет тип m imes n, пусть RgA=r и пусть M - базисный минор

Рассмотрим строки, на которых построен M. Это базисные строки матрциы A.

1. Докажем, что базисные строки линейно независимы.

нейными комбинациями базисных строк (столбцов).

- Пусть от противного они линейно зависимы $\Longrightarrow^{\text{по критерию}}$ хотя бы одна строка из них в матрице A является линейной комбинацией остальных $\Longrightarrow^{\text{по св-ву det}} det M = 0$,
- Противоречие, т.к. М базисный минор.
- 2. Докажем, что любая строка матрицы A, не входящая в базисный минор M, является линейной комбинацией базисных строк.

Пусть базисный минор M расположен в верхнем левом углу матрицы A:

$$\begin{pmatrix} {}^{\imath_1 D} & \cdots & {}^{\imath_1 D} \\ \vdots & \ddots & \vdots \\ {}^{\imath_{\imath \tau} D} & \cdots & {}^{\imath_{\tau} D} \end{pmatrix} = M$$

Добавим к M любую i-ю **не базисную** строку и любой j-й столбец (возможно даже ба-

зисниц):