Math 225B Differential Geometry: Homework 2 $\,$

Jan 18th, 2019

Professor Peter Petersen

Anish Chedalavada

Exercise 1. Show the following:

- a) For any bundle $\pi: E \to B$, the map $s: B \to E$ with $s: p \mapsto 0 \in \pi^{-1}(p)$ is a section.
- b) Show that an n-plane bundle is trivial if and only if there exist everywhere linearly independent sections global $s_1, ..., s_n$.
- c) Show that locally every n-plane bundle has n linearly independent sections.

Proof. a) It suffices to show that s is continuous, as the composition with the projection is clearly the identity. We have that a base of open sets for a vector bundle locally corresponds with the product topology. Thus, the preimage of any open set in E is determined by local preimages in $U_i \times \mathbb{R}^{\neg}$ for U_i a cover of the manifold, and we have that the preimage of any open set $O \subset U_i \times \mathbb{R}^{\neg}$ is $O \cap U_i \times O$ which is open in the relative topology on U_i , coinciding with the topology of the manifold and thus the section is continuous.

- b) One direction is clear, as if a bundle is trivial then we have the bundle is $M \times \mathbb{R}^k$ and we define n linearly independent sections by $s_i : p \mapsto (p, (0, ..., v_i, ..., 0))$, which is continuous as it corresponds to the zero section followed by translation in the second coordinate. For the backwards direction, we define a homeomorphism from $M \times \mathbb{R}^n$ to E given by $(p, x_1, ..., x_n) \mapsto (p, x_1s_1(p), ..., x_ns_n(p))$. This map restricts to linear isomorphisms at each point as a linearly independent basis is sent to a linearly independent basis, and is thus bijective, continuous as every open set E is the union of open sets of the form $\bigcup_{x_i \in V_i} U_i \times (s_1x_1, ..., s_1x_n)$ as by linear independence, a local trivialization of every open set can be given with the basis of sections, and the preimage is $U_i \times V_i \subset M \times \mathbb{R}^n$ (V_i open by product topology on local trivialization. Clearly, open sets are mapped to open sets and this is a homeomorphism.
- c) For an n-plane bundle, around every point we have a local trivialization given by $U \times \mathbb{R}^k$. Selecting any closed subset $K \subset U$ containing p, we define n sections of p by sending p to (p, w_i) for $(w_i)_{i=1,\ldots,n}$ an orthonormal basis for $\pi_2(U \times \mathbb{R}^k)$. This corresponds to the zero section followed by translation in the second coordinate and is clearly smooth. We define this to vanish on $M \setminus U$. This may be extended to a map on all of M by the Tietze extension theorem (the map factors through a map to $1 \in \mathbb{R}$ on K and to 0 on $M \setminus U$. This yields a section of the manifold that locally maps to a basis element. Repeating this process for each basis vector yields n distinct sections that are linearly independent on $p \in K^o$, i.e. satisfying the local condition.

Exercise 2. If $g: \mathbb{R} \to \mathbb{R}$ is C^{∞} show that $g(x) = g(0) + g'(0)x + x^2h(x)$ for some C^{∞} function $h: \mathbb{R} \to \mathbb{R}$. Proof. Define $h(x) = \frac{g(x) - g(0) - g'(0)x}{x^2}$ for $x \neq 0$. At 0 we evaluate the limit:

$$\lim_{x \to 0} \frac{g(x) - g(0) - g'(0)}{x^2} = \lim_{x \to 0} \frac{g'(x) - g'(0)}{2x} = \frac{g''(0)}{2}$$

By l'Höpital's rule. Thus, this function is continuous. Furthermore, evaluating the derivative at 0 yields us:

$$\lim_{x \to 0} \frac{g(x) - g(0) - g'(0)x - \frac{g''(0)}{2}}{x^2} = \lim_{x \to 0} \frac{g'(x) - g'(0)}{x} = \frac{g''(0)}{2}$$

Which agrees on both sides of the limit. Thus, the function is clearly C^{∞} everywhere and differentiable at 0, and by similar logic as above we may show that higher derivatives of this function also exist for all nth derivatives.

Exercise 3. Show the following:

- a) Let $p_0 \in S^{n-1}$ be the point (0,...,1). For $n \geq 2$ define $f: SO(n) \to S^{n-1}$ by $f(A) = A(p_0)$. Show that f is continuous and open. Show that $f^{-1}(p_0)$ is homeomorphic to SO(n-1), and then show that $f^{-1}(p)$ is homeomorphic to SO(n-1) for all $p \in S^{n-1}$.
- b) SO(1) is a point, so it is connected. Using part a) and induction on n show that SO(n) is connected for all n.
- c) Show that O(n) has exactly two components.

Proof. f is clearly continuous, as under the normal metric topology on $\mathbb{R}^{n \times n}$ we have that for small perturbations in the entries of an $n \times n$ matrix that the resultant image points of a fixed vector are also perturbed by small amounts: thus, metric space continuity holds.

Claim: This map is open.

Let $A \in U$ open. We have some $\epsilon > 0$ s.t. $B_{\epsilon}(A) \subset U$ under the Euclidean metric. Thus, there is a $\delta > 0$ s.t. $\forall w \in B_{\delta}(v), \exists B \in B_{\epsilon}(A)$ s.t. B(v) = w. Thus, the map is open and we have the claim. The preimage of p_0 is all maps that fix the nth vector, which are of the form: $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ with A orthogonal n-1 dimensional square matrix with determinant 1; i.e. isomorphic to SO(n-1) via the map $A \mapsto B$ by projecting onto the first $(n-1)^2$ coordinates. This is clearly continuous (it is a projection), injective as the last 2n-1 coordinates are constant, and bijective as every n-1 dimension orthogonal matrix can be augmented to an n dimensional one as above. Finally, it is a bijective continuous map from a compact space to a Hausdorff space, and is thus a homeomorphism. Finally, the preimage of any point p is the left coset of the stabilizer of subgroup of p_0 , which is homeomorphic to SO(n-1).

For part b), assume that SO(n-1) is connected for some n. We have that S^{n-1} is connected so the image of any two disjoint clopen sets must overlap at some point p. However, the preimage of p is connected by assumption, yielding a contradiction. Thus, SO(n) is connected.

c) We know that O(n) has matrices either of determinant positive or negative 1. SO(n) is connected from b), and there exists a homeomorphism from one to the other via multiplication of -1 in the first column. They are disjoint, and thus there are two connected components.

Exercise 4. a) Show that the matrix of the adjoint is the transpose matrix.

- b) Show that a symmetric matrix can be orthogonally diagonalized if we assume that it may be diagonalized.
- c) Show that a positive definite matrix is nonsingular.
- d) Show that $A^T \cdot A$ is positive semi-definite.
- e) Show that a positive semi-definite A can be written as $A = B^2$ for some B.
- f) Prove polar decomposition.
- q) Show that O_1 and P_1 are continuous functions of A.
- h) Show that $GL(n,\mathbb{R}) \cong O(n,\mathbb{R}) \times P(n,\mathbb{R})$

Proof. a) We have that if $\langle T^*v, w \rangle = \langle v, Tw \rangle$ then $T^*v^T \cdot w = v^T \cdot Tw$. Let $\{e_i\}_{i=1,\dots,n}$ be a basis for \mathbb{R}^n . For each basis element, we have that $e_i^T \cdot Ae_j = A^Te_i^Te_j$ as the first inner product represents the *i*th entry in the *j*th column, while the second one represents the *j*th entry in the *i*th column, and when $A_{ij}^* = A_{ji}$ we have that the adjoint must be the transpose.

b) Selecting the first eigenvector w_1 , we may generate an orthogonal basis (by Gram-Schmidt) with orthogonal change of basis matrix O s.t.:

$$OAO^T = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & & \\ 0 & & B \end{pmatrix}$$

And B is clearly symmetric as $B^T = OA^TO^T = OAO^T|_{\mathbb{R}^{n-1}}$. Inductively proceeding yields the result.

- c) If it were singular then $\langle Tv, v \rangle = 0$ for $v \in \ker T \setminus 0$.
- d) $\langle A^T \cdot Av, v \rangle = \langle Av, Av \rangle = ||Av||^2 \ge 0.$
- e) A is symmetric and thus orthogonally diagonalizable: positive semi-definite implies all eigenvalues are ≥ 0 , so we may define $B = \text{diag}\{\sqrt{\lambda_1},...,\sqrt{\lambda_n}\}$ in the diagonalized basis, positive semi-definite is preserved under orthogonal transformations and the diagonalized basis is orthogonal.
- f) We have that $A^TA = B^2$ for B constructible as positive definite (can take all roots from e) positive, invertible implies nonzero eigenvalues). We have that $A = (A^T)^{-1}B \cdot B$. $(A^T)^{-1}B \cdot ((A^T)^{-1}B)^T = (A^T)^{-1}A^TAA^{-1} = I$ and so $(A^T)^{-1}B$ is orthogonal. Uniqueness follows as if $O_2^TO_1 = P_1^TP_2$ then $O_2^TO_1$ is orthogonal and diagonalizable for all eigenvalues positive, which is only possible if all eigenvalues are 1 i.e. $O_2^TO_1$ is the identity.
- g) If $A^{(n)} \to A$ is a convergent sequence then every subsequence of $A_1^{(n)}$ has a convergent subsequence by compactness of the orthogonal group, and this subsequence converges to the same limit A_2 by uniqueness of the polar decomposition. Given this fact, we have that $(A_1^{(n)})^{-1}A^{(n)} = A_2^{(n)}$, showing that $A_2^{(n)}$ must also converge to the limit A_2 , and thus both functions are continuous.
- h) We have a bijection from $GL(n,R)toO(n,\mathbb{R}) \times P(n,\mathbb{R})$ via polar decomposition. This is continuous in each coordinate from part g. Furthermore, the inverse, given by multiplication of the two coordinates, must be continuous as multiplication is continuous on a topological group.

Exercise 5. a) Show that a nonsingular linear transformation with positive determinant is homotopic to the identity map.

b) Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^{∞} and f(0) = 0, $f(\mathbb{R}^n - 0) \subset \mathbb{R}^n - 0$ then $f: \mathbb{R}^n - 0 \to \mathbb{R}^n - 0$ is homotopic to Df.

Proof. a) Let $A:[0,1] \to GL(n,\mathbb{R})$ be continuous, and define $H:[0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ by H(x,t) = A(t)(x). Equipping a linear transformation with the operator norm (i.e. $||A(t)|| = \sup_{||x||=1} ||Ax||$), we have that $||A(t)x|| = ||A(t)|| \cdot ||x||$. Continuity then follows as $||A(t_0)w - A(t_1)v|| < ||A(t_0)w - A(t_1)w|| + ||A(t_1)|| \cdot ||v - w||$. We can independently impose restrictions on $t_0 - t_1$ (by continuity) and v - w s.t. the inequality above is less than ϵ for arbitrary $\epsilon > 0$, and thus this function is continuous. For a nonsingular linear transformation, we may define a homotopy to the identity as there is exists path between positive definite matrices by 31 h).

b) We define a homotopy given by $H(x,t) = \frac{f(tx)}{t}$ for $0 < t \le 1$, and Df(0)(x) for t = 0. We have that this is continuous at the origin (as it suffices to show continuity in the second coordinate at t = 0, as the directional derivative is defined as the limit as $t \to 0$ for the difference quotient in H(x,t) under the assumption that f(0) = 0.