Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 7

Abgabe Dienstag 09.06.2015

- (1) Zeigen Sie, dass jeder endlichdimensionale Teilraum eines Hilbertraumes abgeschlossen ist.
- (2) Zeigen Sie, dass das orthogonale Komplement einer beliebigen Menge in einem Vektorraum mit Skalarprodukt ein abgeschlossener Unterraum ist.
- (3) Es sei H ein Hilbertraum und $U, V \subseteq H$ abgeschlossene Unterräume. Weiterhin seien P_U, P_V die zugehörigen Orthogonalprojektionen. Zeigen Sie folgende Aussagen.
 - (a) Es gilt $P_U P_V = 0$ genau dann, wenn $U \perp V$.
 - (b) Es ist $P_U + P_V$ eine Orthogonalprojektion genau dann, wenn $P_U P_V = 0$.
 - (c) Es ist $P_U P_V$ eine Orthogonalprojektion genau dann, wenn $P_U P_V = P_V P_U$.
 - (d) Es gilt $P_U P_V = P_V$ genau dann, wenn $V \subseteq U$.
 - (e) Es ist $P_U P_V$ eine Orthogonalprojektion genau dann, wenn $V \subseteq U$.
 - (f) Es gilt $P_U P_V = P_V$ genau dann, wenn für alle $x \in H$ die Ungleichung $||P_V x|| \le ||P_U x||$ gilt.
- (4) Es sei $(e_n)_{n\in\mathbb{N}}$ ein Orthonormalsystem in dem Hilbertraum H mit Skalarprodukt $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$.
 - (a) Zeigen Sie, dass (e_n) schwach gegen Null konvergiert (also für alle $x \in H$ gilt $\lim_{n \to \infty} \langle x, e_n \rangle = 0$).
 - (b) Zeigen Sie, dass (e_n) nicht in Norm gegen 0 konvergiert.

Zusatz

Gegeben sei ein Hilbertraum H mit Skalarprodukt $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$. Zeigen Sie die folgenden Aussagen.

(a) Ist $(e_{\alpha})_{\alpha \in I}$ ein Orthonormalsystem in H für eine gegebenene Indexmenge I, dann gilt

$$||e_{\alpha} - e_{\beta}|| = 2, \qquad \alpha \neq \beta.$$

- (b) Gibt es eine abzählbare Orthonormalbasis von H, so gibt es eine abzählbare dichte Teilmenge von H.
- (c) Falls H eine Orthonormalbasis $(e_{\alpha})_{\alpha \in I}$ mit überabzählbarer Indexmenge besitzt, dann gibt es keine abzählbare Orthonormalbasis für H.