DoSA-3D 사용 메뉴얼

Solenoid Example

2022-05-28 zgitae@gmail.com

DoSA 구성

PC 요구사항

➤ CPU : 4 Core 이상

➤ RAM : 16GB 이상

프로그램 구성

Toolbar

1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정

✓ Steel: 연자성체 추가 및 사양 설정

3. 가상실험

✓ Force : 자기력 예측

작업 흐름

제품 설계

<u>가상 실험</u>

해석 모델

해석모델 설명

1. 형상 모델

2. 제품 사양

가. 코일권선

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. 전원

• Voltage: 14.5V

(작업 예제파일 : DoSA-3D 설치 디렉토리 > Samples > Solenoid)

Design 생성

- 1. Toolbar > New 버튼 클릭
- 2. Design Name : 작업 명칭 입력 (Solenoid)
- 3. Shape File (STEP): Solenoid.step 선택 (튜토리얼 문서와 함께 제공됨)

[<u>형상작업 주의사항</u>]

DoSA-3D 는 아직 아래의 기능제한을 가지고 있음

가. 형상 제한

- 코일 중심축은 Y 축과 일치해야 합니다.
- 전류는 다각 코일이라도 원통 형태로 인가됩니다. (다각 코일의 경우 약간의 차이가 발생할 수 있음)

나. 파트 수 제한

- 동작은 하나의 파트만 지원합니다.
- 하나의 코일만 지원합니다.

다. 형상작업 가이드

- https://solenoid.or.kr/data/Drawing Guide KOR.pdf

Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.

Design 생성

8. Design 생성을 확인한다.

Parts Design

Coil 추가

- 1. Toolbar > Coil 버튼 클릭
- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭

Coil 설계

1. Coil 기구사양 입력

✓ Inner Diameter: 9.6

✓ Outer Diameter: 21.6

✓ Coil Height: 16

✓ Copper Diameter: 0.27

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

3. Coil 사양 확인

Δ	Common Fields	
	Node Name	Coil
Δ		
	Part Material	Copper
	Curent Direction	IN
	Moving Parts	FIXED
Δ	Calculated Fields	
	Coil Turns	1040
	Coil Resistance [Ω]	15, 20945
	Coil Layers	20
	Turns of One Layer	52
		JE
۵	Design Fields (optio	
Δ		
Δ	Desian Fields (optio	nal)
Δ	Design Fields (optio Coil Wire Grade	nal) Enameled_IEC_Grade_2
4	Design Fields (ontio Coil Wire Grade Inner Diameter [mm]	nal) Enameled_IEC_Grade_2 9,6
4	Design Fields (optio Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm]	nal) Enameled_IEC_Grade_2 9,6 21,6 16
4	Design Fields (option Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm]	nal) Enameled_IEC_Grade_2 9,6 21,6 16
4	Design Fields (option Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm]	nal) Enameled_IEC_Grade_2 9,6 21,6 16 0,27 0,31072
4	Design Fields (option Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm]	nal) Enameled_IEC_Grade_2 9,6 21,6 16 0,27 0,31072
4	Design Fields (option Coil Wire Grade Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm] Coil Temperature [*C]	nal) Enameled_IEC_Grade_2 9,6 21,6 16 0,27 0,31072 20

1

3

Armature 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Armature" 선택
- 3. OK 버튼 클릭

Armature 설정

1. Armature 속성 설정

✓ Part Material : SUS_430 선택

✓ Moving Parts : MOVING

자기력 계산 파트 선정

[BH 곡선]

Core 추가

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Core" 선택
- 3. OK 버튼 클릭

Core 설정

1. Core 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Case 생성

- 1. Toolbar > Steel 버튼 클릭
- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭

Case 설정

1. Case 속성 설정

✓ Part Material : SUS_430 선택

[BH 곡선]

1

Virtual Test

자기력 가상실험

1. Toolbar > Force 버튼 클릭

2. Test Name: "force"

3. OK 버튼 클릭

4. 자기력 가상실험 설정

✓ Voltage: 14.5

✓ B Rotation Angle : 45✓ Mesh Size Percent : 7✓ Actuator Type : Solenoid

5. Force Test 버튼 클릭

~	Common Fields			
	Node Name	Force		
~	Input Fields	A		
	Voltage [V]	14.5		
	Max, Current [A]	0, 95335		
~	Initial Position Fields			
	Y Movement [mm]	0		
	X Movement [mm]	0		
	Z Movement [mm]	0		
~	Post-Processing Fi	elds		
	B Rotation Angle [°]	45		
	B Vector Resolution	50		
~	Condition Fields			
	Mesh Size [%]	7		
	Actuator Type	Solenoid		

자기력 가상실험 실행

- 7. 형상을 확인 하고 Run 버튼을 클릭한다.
- 8. 해석 진행 중에 상황을 확인하려면 Gmsh 상태 바를 클릭한다

자기력 가상실험 결과

- 9. 자속밀도를 확인 한다. (해석 시간은 컴퓨터 사양에 따라 다름)
- 10. **Gmsh** 를 종료한다.
- 11. DoSA-3D 안에서 자기력을 확인한다.

Tips

Design 열기

- 1. Toolbar > Open 버튼 클릭
- 2. Design 디렉토리 더블 클릭
- 3. Design 파일 더블 클릭

Thank You

Email: zgitae@gmail.com