## Required Libraries

```
import scipy
import sklearn.svm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import sklearn.linear_model, sklearn.datasets
from sklearn import kernel_ridge
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.tree import DecisionTreeClassifier
```

# Loading the combined test and train datasets for regression

To be able to preprocess the datasets more efficiently, train and test datasets have been combined and will be seperated according to their original lengths (800/220) in the model fitting section.

```
#Getting the combined housing_coursework test and training dataset
housingData = pd.read_csv('/housing_coursework_data.csv')

df = pd.DataFrame(data= housingData)

display(df)
```

|      | No.  | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | pop |
|------|------|-----------|----------|--------------------|-------------|----------------|-----|
| 0    | 1    | -122.21   | 37.83    | 34                 | 5065        | 788.0          |     |
| 1    | 2    | -122.22   | 37.77    | 52                 | 391         | 128.0          |     |
| 2    | 3    | -122.23   | 37.79    | 30                 | 610         | 145.0          |     |
| 3    | 4    | -122.20   | 37.78    | 52                 | 2300        | 443.0          |     |
| 4    | 5    | -122.19   | 37.79    | 50                 | 954         | 217.0          |     |
|      |      |           |          |                    |             |                |     |
| 1015 | 1016 | -121.70   | 38.65    | 22                 | 1360        | 282.0          |     |

|      |      | ~         | os comple | tad at 21·10 |      | • X    |
|------|------|-----------|-----------|--------------|------|--------|
| 1010 | 1017 | - 14 1.74 | os comple | 10           | 1020 | ٨ ٢٠٠٠ |
| 1017 | 1018 | -122.00   | 38.83     | 26           | 272  | 49.0   |
| 1018 | 1019 | -122.03   | 38.69     | 23           | 1796 | 380.0  |
| 1019 | 1020 | -121.58   | 39.14     | 52           | 662  | 160.0  |
|      |      |           |           |              |      |        |

1020 rows × 11 columns

# Preprocessing

To be able to get a more accurate result, we must prepare the dataset to fit into our models.

```
df = df.drop(columns=['No.', 'longitude', 'latitude'])
display(df.head())
```

|   | housing_median_age | total_rooms | total_bedrooms | population | households | median_in |
|---|--------------------|-------------|----------------|------------|------------|-----------|
| 0 | 34                 | 5065        | 788.0          | 1627       | 766        | 6.        |
| 1 | 52                 | 391         | 128.0          | 520        | 138        | 1.        |
| 2 | 30                 | 610         | 145.0          | 425        | 140        | 1.        |
| 3 | 52                 | 2300        | 443.0          | 1225       | 423        | 3.        |
| 4 | 50                 | 954         | 217.0          | 546        | 201        | 2.        |

display(df.select\_dtypes(include=np.number).head())
display(df.select\_dtypes(exclude=np.number).head())

|   | housing_median_age | total_rooms | total_bedrooms | population | households | median_in |
|---|--------------------|-------------|----------------|------------|------------|-----------|
| 0 | 34                 | 5065        | 788.0          | 1627       | 766        | 6.        |
| 1 | 52                 | 391         | 128.0          | 520        | 138        | 1.        |
| 2 | 30                 | 610         | 145.0          | 425        | 140        | 1.        |
| 3 | 52                 | 2300        | 443.0          | 1225       | 423        | 3.        |
| 4 | 50                 | 954         | 217.0          | 546        | 201        | 2.        |

7°

ocean\_proximity

0 NEAR BAY

- 1 NEAR BAY
- 2 NEAR BAY
- 3 NEAR BAY

display(df.select\_dtypes(include=np.number).describe())

|       | housing_median_age | total_rooms  | total_bedrooms | population   | households  | me |
|-------|--------------------|--------------|----------------|--------------|-------------|----|
| count | 1020.000000        | 1020.000000  | 1011.000000    | 1020.000000  | 1020.000000 |    |
| mean  | 27.623529          | 2732.830392  | 556.577646     | 1474.960784  | 515.614706  |    |
| std   | 12.311122          | 2168.037719  | 423.168029     | 1116.843167  | 382.273122  |    |
| min   | 2.000000           | 19.000000    | 11.000000      | 34.000000    | 9.000000    |    |
| 25%   | 17.000000          | 1482.000000  | 301.500000     | 807.500000   | 287.750000  |    |
| 50%   | 28.000000          | 2206.500000  | 452.000000     | 1204.000000  | 427.000000  |    |
| 75%   | 36.000000          | 3260.000000  | 672.500000     | 1815.750000  | 626.500000  |    |
| max   | 52.000000          | 27700.000000 | 4386.000000    | 15037.000000 | 4072.000000 |    |

## Removing lines that have empty data

```
print('Original dataset length:')
print(len(df))
df_nl = df.dropna()
print('Dataset length after removing all rows of missing data:')
print(len(df_nl))

    Original dataset length:
    1020
    Dataset length after removing all rows of missing data:
    1011
```

### Removing outliers

df\_nl["housing\_median\_age"].hist()

#### <AxesSubplot:>





df\_nl=df\_nl[df\_nl["housing\_median\_age"] > 10]
df\_nl["housing\_median\_age"].hist()





### df\_nl["total\_rooms"].hist()

### <AxesSubplot:>



df\_nl=df\_nl[df\_nl["total\_rooms"] < 8000]
df\_nl=df\_nl[df\_nl["total\_rooms"] > 100]
df\_nl["total\_rooms"].hist()

### <AxesSubplot:>



df\_nl["total\_bedrooms"].hist()





df\_nl=df\_nl[df\_nl["total\_bedrooms"] < 1250]
df\_nl=df\_nl[df\_nl["total\_bedrooms"] > 50]
df\_nl["total\_bedrooms"].hist()

### <AxesSubplot:>



## df\_nl["population"].hist()





df\_nl=df\_nl[df\_nl["population"] < 3500]
df\_nl=df\_nl[df\_nl["population"] > 100]
df\_nl["population"].hist()

### <AxesSubplot:>



## df\_nl["households"].hist()

### <AxesSubplot:>





df\_nl["median\_income"].hist()





## <AxesSubplot:>



display(df\_nl.select\_dtypes(include=np.number).describe())

|       | housing_median_age | total_rooms | total_bedrooms | population  | households | medi |
|-------|--------------------|-------------|----------------|-------------|------------|------|
| count | 845.000000         | 845.000000  | 845.000000     | 845.000000  | 845.000000 | }    |
|       | 20 000522          | 000E 407044 | 474 060700     | 1070 071006 | 444 E04064 |      |

| mean | ∠ <del>∀.∀∀∪</del> ⊃აა | Z333.1Z/011 | 414.002122  | 1212.21 1000 | 444.531301  |
|------|------------------------|-------------|-------------|--------------|-------------|
| std  | 10.893491              | 1189.606128 | 229.670442  | 634.104043   | 213.169515  |
| min  | 11.000000              | 296.000000  | 62.000000   | 131.000000   | 56.000000   |
| 25%  | 21.000000              | 1456.000000 | 297.000000  | 801.000000   | 284.000000  |
| 50%  | 30.000000              | 2127.000000 | 428.000000  | 1155.000000  | 411.000000  |
| 75%  | 37.000000              | 2946.000000 | 612.000000  | 1643.000000  | 573.000000  |
| max  | 52.000000              | 7436.000000 | 1224.000000 | 3444.000000  | 1150.000000 |

Xy\_df = df\_nl[['median\_income', 'median\_house\_value']]
display(Xy\_df)

|      | median_income | median_house_value | 10+ |
|------|---------------|--------------------|-----|
| 0    | 6.8976        | 333300             |     |
| 1    | 1.6471        | 95000              |     |
| 2    | 1.6198        | 122700             |     |
| 3    | 3.5398        | 158400             |     |
| 4    | 2.6667        | 172800             |     |
|      |               |                    |     |
| 1012 | 3.9000        | 146900             |     |
| 1013 | 1.9510        | 152500             |     |
| 1014 | 4.7222        | 167200             |     |
| 1015 | 2.4167        | 225000             |     |
| 1018 | 2.7955        | 96300              |     |
|      |               |                    |     |

845 rows × 2 columns

display(Xy\_df.select\_dtypes(include=np.number).describe())

|              | median_income | median_house_value |
|--------------|---------------|--------------------|
| count        | 845.000000    | 845.000000         |
| mean         | 3.778673      | 202746.897041      |
| std          | 1.614736      | 110577.971892      |
| min          | 1.011400      | 14999.000000       |
| <b>3</b> E0/ | 0 550000      | 116500 000000      |

| <b>45</b> % | ∠.ɔɔ⊌∠∪∪ | ບບບບບບ.ບບcơ ເ ເ |
|-------------|----------|-----------------|
| 50%         | 3.638900 | 182100.000000   |
| 75%         | 4.701900 | 251800.000000   |
| max         | 9.814400 | 500001.000000   |

## **Univariate Linear Regression**

```
X = np.array(Xy_df[['median_income']])
y = np.array(Xy_df['median_house_value'])
n_train_points = 645
n_new_points = 200
X_train = X[:n_train_points]
X_new = X[n_train_points:n_train_points+n_new_points]
y_train = y[:n_train_points]
y_true = y[n_train_points:n_train_points+n_new_points]
obj = sklearn.linear_model.LinearRegression(fit_intercept=True)
obj.fit(X_train, y_train)
y_pred = obj.predict(X_new)
print('theta_0:',obj.intercept_)
print('theta_1:',obj.coef_)
     theta_0: 41075.503248247755
     theta_1: [42343.37535385]
plt.scatter(X_new, y_true, color='black', label='y_true') # Observed y values
plt.scatter(X_new, y_pred, color='blue', label='y_pred') # predicted y values
plt.plot(np.r_[0:12:0.1], obj.predict(np.r_[0:12:0.1][:, np.newaxis]), color='blue', label=
plt.xlabel('median_income')
plt.ylabel('median_house_value')
plt.legend()
plt.show()
```

500000 y\_pred — hypothesis



```
#The mean squared error loss
print('Mean squared error loss: {:.4f}'.format(sklearn.metrics.mean_squared_error(y_true, y
#The R2 score
print('R2 score: {:.4f}'.format(sklearn.metrics.r2_score(y_true, y_pred)))

Mean squared error loss: 7853511232.6919
R2 score: 0.5014
```

## Kernal Ridge Regression

```
X = np.array(Xy_df[['median_income']])
y = np.array(Xy_df['median_house_value'])
n_train_points = 645
n_new_points = 200
X_train = X[:n_train_points]
X_new = X[n_train_points:n_train_points+n_new_points]
y_train = y[:n_train_points]
y_true = y[n_train_points:n_train_points+n_new_points]
obj = kernel_ridge.KernelRidge(kernel='rbf')
obj.fit(X_train, y_train)
y_pred = obj.predict(X_new)
plt.scatter(X_new, y_true, color='black', label='y_true')
plt.scatter(X_new, y_pred, color='blue', label='y_pred')
plt.plot(np.r_[0:12:0.1], obj.predict(np.r_[0:12:0.1][:, np.newaxis]), color='blue', label=
plt.xlabel('median_income')
plt.ylabel('median_house_value')
plt.legend()
plt.show()
```



Loading the combined test and train datasets for

regression

To be able to preprocess the datasets more efficiently, train and test datasets have been combined and will be seperated according to their original lengths (650/241) in the model fitting section.

```
#Getting the combined Titanic test and training dataset
titanicData = pd.read_csv('/Titanic_data.csv')

sf = pd.DataFrame(data= titanicData)
display(sf)
```

|   | PassengerId | Pclass | Name                          | Sex  | Age  | SibSp | Parch | Ticket    | Fare   | Emb |
|---|-------------|--------|-------------------------------|------|------|-------|-------|-----------|--------|-----|
| 0 | 1           | 3      | Braund,<br>Mr. Owen<br>Harris | male | 22.0 | 1     | 0     | A/5 21171 | 7.2500 |     |

| 1 | 2 | 1 | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1 | 0 | PC 17599            | 71.2833 |
|---|---|---|---------------------------------------------------------------|--------|------|---|---|---------------------|---------|
| 2 | 3 | 3 | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0 | 0 | STON/O2.<br>3101282 | 7.9250  |
| 3 | 4 | 1 | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female | 35.0 | 1 | 0 | 113803              | 53.1000 |

# Preprocessing

To be able to get a more accurate result, we must prepare the dataset to fit into our models.

sf = sf.drop(columns=['PassengerId', 'Name', 'SibSp', 'Parch', 'Ticket', 'Fare'])
display(sf.head())

|   | Pclass | Sex    | Age  | Embarked | Target: Survived |  |
|---|--------|--------|------|----------|------------------|--|
| 0 | 3      | male   | 22.0 | S        | 0                |  |
| 1 | 1      | female | 38.0 | С        | 1                |  |
| 2 | 3      | female | 26.0 | S        | 1                |  |
| 3 | 1      | female | 35.0 | S        | 1                |  |
| 4 | 3      | male   | 35.0 | S        | 0                |  |

display(sf.select\_dtypes(include=np.number).head())
display(sf.select\_dtypes(exclude=np.number).head())

|   | Pclass | Age  | Target: Survived | 10+ |
|---|--------|------|------------------|-----|
| 0 | 3      | 22.0 | 0                |     |
| 1 | 1      | 38.0 | 1                |     |
| 2 | 3      | 26.0 | 1                |     |
| 3 | 1      | 35.0 | 1                |     |

| 4 | 3      | 35.0     |
|---|--------|----------|
|   | Sex    | Embarked |
| 0 | male   | S        |
| 1 | female | С        |
| 2 | female | S        |
| 3 | female | S        |
| 4 | male   | S        |

## Determining if there is any mistypes or empty data

```
print(pd.unique(sf['Pclass']))
print(pd.unique(sf['Target: Survived']))
print(pd.unique(sf['Sex']))
print(pd.unique(sf['Embarked']))

[3 1 2]
  [0 1]
  ['male' 'female']
  ['S' 'C' 'Q' nan]
```

display(sf.select\_dtypes(include=np.number).describe())

|       | Pclass     | Age        | Target: Survived |
|-------|------------|------------|------------------|
| count | 891.000000 | 714.000000 | 891.000000       |
| mean  | 2.308642   | 29.699118  | 0.383838         |
| std   | 0.836071   | 14.526497  | 0.486592         |
| min   | 1.000000   | 0.420000   | 0.000000         |
| 25%   | 2.000000   | 20.125000  | 0.000000         |
| 50%   | 3.000000   | 28.000000  | 0.000000         |
| 75%   | 3.000000   | 38.000000  | 1.000000         |
| max   | 3.000000   | 80.000000  | 1.000000         |

```
print('Original dataset length:')
print(len(sf))
sf_nl = sf.dropna()
print('Dataset length after removing all rows of missing data:')
print(len(sf_nl))
```

Original dataset length: 891 Dataset length after removing all rows of missing data: 712

## sf\_nl["Age"].hist()





### <AxesSubplot:>



display(sf\_nl.select\_dtypes(include=np.number).describe())

|       | Pclass     | Age        | Target: Survived | 10. |
|-------|------------|------------|------------------|-----|
| count | 643.000000 | 643.000000 | 643.000000       |     |
| mean  | 2.244168   | 30.115863  | 0.390358         |     |

| std | 0.835976 | 11.466844 | 0.488210 |
|-----|----------|-----------|----------|
| min | 1.000000 | 6.000000  | 0.000000 |
| 25% | 1.000000 | 22.000000 | 0.000000 |
| 50% | 3.000000 | 29.000000 | 0.000000 |
| 75% | 3.000000 | 37.500000 | 1.000000 |
| max | 3.000000 | 59.000000 | 1.000000 |

sf\_f = sf\_nl.drop(columns=['Sex', 'Embarked'])
display(sf\_f)

|     | Pclass | Age  | Target: Survived |
|-----|--------|------|------------------|
| 0   | 3      | 22.0 | 0                |
| 1   | 1      | 38.0 | 1                |
| 2   | 3      | 26.0 | 1                |
| 3   | 1      | 35.0 | 1                |
| 4   | 3      | 35.0 | 0                |
|     |        |      |                  |
| 885 | 3      | 39.0 | 0                |
| 886 | 2      | 27.0 | 0                |
| 887 | 1      | 19.0 | 1                |
| 889 | 1      | 26.0 | 1                |
| 890 | 3      | 32.0 | 0                |
|     |        |      |                  |

643 rows × 3 columns

## Converting the dataset to arrays

```
dataset = sf_f
raw_X_sf = pd.DataFrame(data=dataset, columns=['Pclass', 'Age'])
raw_y_sf = pd.DataFrame(data=1 - (dataset['Target: Survived']), columns=['Target: Survived
raw_sf = pd.concat([raw_X_sf, raw_y_sf], axis=1)
#Shuffling the dataset
rng = np.random.default_rng(0)
Xy_sf = raw_sf.iloc[rng.permutation(len(raw_sf))].reset_index(drop=True)
display(Xy_sf)
```

|     | Pclass | Age  | Target: Survived |
|-----|--------|------|------------------|
| 0   | 3      | 19.0 | 1                |
| 1   | 1      | 22.0 | 0                |
| 2   | 2      | 19.0 | 0                |
| 3   | 2      | 23.0 | 1                |
| 4   | 2      | 23.0 | 1                |
|     |        |      |                  |
| 638 | 3      | 19.0 | 0                |
| 639 | 2      | 24.0 | 0                |
| 640 | 1      | 30.0 | 0                |
| 641 | 1      | 42.0 | 0                |
| 642 | 3      | 42.0 | 1                |
|     |        |      |                  |

643 rows × 3 columns

## Conversion of data to NumPy arrays

```
#Preparing the NumPy ndarrays
Xs = np.array(Xy_sf[sf_f.columns[0:2]])
ys = np.array(Xy_sf['Target: Survived'])

n_train_points = 450
n_new_points = 193

#Splitting the data into training/new data
raw_X_train = Xs[:n_train_points]
raw_X_new = Xs[n_train_points:n_train_points+n_new_points]

#Splitting the targets into training/new data
y_train = ys[:n_train_points]
y_new = ys[n_train_points:n_train_points+n_new_points]
```

## Standardization

```
scaler = StandardScaler()
scaler.fit(raw_X_train)
```

```
X_train = scaler.transform(raw_X_train)
X_new=scaler.transform(raw_X_new)
```

## **Decision Tree**

```
#Creating Decison Tree object
obj = DecisionTreeClassifier(min_samples_split=2, min_samples_leaf=9,random_state=40)
#Training the model using the training sets
obj.fit(X_train, y_train)
#Making predictions using the testing set
y_new_pred = obj.predict(X_new)
#The accuracy score
print('Accuracy: {:.4f}'.format(sklearn.metrics.accuracy_score(y_new, y_new_pred)))
#Confusion matrix
confusion_mat = sklearn.metrics.confusion_matrix(y_new, y_new_pred, normalize='all')
print('Confusion matrix: ', confusion_mat)
#Visualizing the confusion matrix
sklearn.metrics.ConfusionMatrixDisplay(confusion_mat, display_labels=['benign', 'malignant
plt.grid(False)
#The classification report
print(sklearn.metrics.classification_report(y_new, y_new_pred))
     Accuracy: 0.6788
     Confusion matrix: [[0.29015544 0.12953368]
      [0.19170984 0.38860104]]
                   precision
                                recall f1-score
                                                    support
                0
                        0.60
                                   0.69
                                             0.64
                                                         81
                1
                        0.75
                                   0.67
                                                        112
                                             0.71
                                             0.68
                                                        193
         accuracy
                        0.68
                                   0.68
                                             0.68
                                                        193
        macro avg
                        0.69
                                   0.68
                                             0.68
                                                        193
     weighted avg
                      0.29
                                     0.13
          benign
                                                  -0.25
```



## **SVM**

## Creation of SVM object and predicting

```
#Creating the support vector classifier object
obj = sklearn.svm.SVC(C=1,kernel='rbf',random_state=40)
#Training the model using the training sets
obj.fit(X_train, y_train)
#Making predictions using the testing set
y_pred = obj.predict(X_new)
```

## Plotting SVM results

```
# Plotting the outputs
xrange = [-2, 2]
yrange = [-2, 2]
step = 0.1
x = np.arange(xrange[0], xrange[1], step)
y = np.arange(yrange[0], yrange[1], step)
xx, yy = np.meshgrid(x, y)
obj.set_params(decision_function_shape='ovo')
z = obj.decision_function(np.c_[xx.reshape([-1]), yy.reshape([-1])]).reshape(xx.shape)
plt.contourf(xx, yy, z, cmap='bwr', vmin=-10.0, vmax=10.0, levels=200)
X_{new_neg} = X_{new_new} = 0, :]
X_{new_pos} = X_{new_y_new==1}, :]
plt.scatter(X_new_neg[:, 0], X_new_neg[:, 1], color='blue', label='y_new (y=0, benign)')
plt.scatter(X_new_pos[:, 0], X_new_pos[:, 1], color='red', label='y_new (y=1, malignant)')
plt.xlim(xrange)
plt.ylim(yrange)
plt.xlabel(sf_f.columns[0])
plt.ylabel(sf_f.columns[1])
```

```
plt.legend()
```

plt.show()



#The accuracy score
print('Accuracy: {:.4f}'.format(sklearn.metrics.accuracy\_score(y\_new, y\_pred)))

#Confusion matrix

confusion\_mat = sklearn.metrics.confusion\_matrix(y\_new, y\_pred, normalize='all')
print('Confusion matrix: ', confusion\_mat)

#Visualizing the confusion matrix
sklearn.metrics.ConfusionMatrixDisplay(confusion\_mat, display\_labels=['benign', 'malignant
plt.grid(False)

#The classification report
print(sklearn.metrics.classification\_report(y\_new, y\_pred))

Accuracy: 0.6995

Confusion matrix: [[0.21243523 0.20725389]

[0.09326425 0.48704663]]

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.69      | 0.51   | 0.59     | 81      |
| 1            | 0.70      | 0.84   | 0.76     | 112     |
| accuracy     |           |        | 0.70     | 193     |
| macro avg    | 0.70      | 0.67   | 0.67     | 193     |
| weighted avg | 0.70      | 0.70   | 0.69     | 193     |





Colab paid products - Cancel contracts here