Algoritmi e Strutture Dati - Prova d'esame 11/01/12

Esercizio 0 Scrivere correttamente nome, cognome, numero di matricola, riga e colonna.

Esercizio 1 - Punti ≥ 4

Si consideri la seguente ricorrenza

$$T(n) = \begin{cases} T(\lfloor n/c \rfloor) + \Theta(1) & n > 1 \\ 1 & n \leq 1 \end{cases}$$

Si calcoli la corrispondente funzione di complessità utilizzando il metodo di sostituzione.

Esercizio 2 - Punti ≥ 6

Avete a disposizione n dadi e n bulloni. Tutti i dadi hanno dimensioni diverse; tutti i bulloni hanno dimensioni diverse; per ogni dado, esiste un bullone corrispondente e viceversa. Non potete confrontare due bulloni o due dadi; potete però confrontare un bullone b con un dado d (operazione try(b,d)), e ottenere -1 se il bullone è più piccolo del dado, 0 se coincidono e +1 se il bullone è più grande del dado. Scrivere un algoritmo che trova la coppia bullone e dado più piccoli, discuterne correttezza e complessità misurata nel numero di operazioni try().

Esercizio 3 - Punti ≥ 10

Siano $X[1 \dots n]$ e $Y[1 \dots n]$ due vettori, ciascuno contenente n interi già ordinati. Descrivete un algoritmo che in tempo $O(\log n)$ trovi la mediana dei 2n elementi dei vettori X e Y (cioè dell'insieme $X \cup Y$).

Esercizio 4 - Punti ≥ 14

Bisogna creare un albero di ricerca contenente n chiavi $k_1 < k_2 < ... < k_n$, a ciascuna delle chiavi è associato un peso p_i rappresentante la frequenza con cui si stima che la chiave verrà poi ricercata. Assumendo che la radice dell'albero sia a livello 1, il costo dell'albero di ricerca per le n chiavi viene definito come $\sum_{i=1}^n p_i \cdot l_i$, dove l_i è il livello dell'albero in cui si trova la chiave k_i . Descrivere un algoritmo che trovi l'albero di ricerca di costo minimo e discuterne la complessità.

Suggerimento: si utilizzi la programmazione dinamica.