GIẢI TÍCH 2 BÀI 5

CHƯƠNG III. TÍCH PHÂN BỘI A. TÍCH PHÂN HAI LỚP (TÍCH PHÂN KÉP) Đặt vấn đề.

- Trong GT 1, có
$$S = 2\pi \int_{a}^{b} y(x) \sqrt{1 + {y'}^{2}(x)} dx, y(x) \ge 0.$$

- Đối với mặt cong không tròn xoay, có tính được diện tích ?

$$-f(x) = \begin{cases} e^{x} & x \in [0;1) \\ 2 & x = 1 \end{cases} \Rightarrow \exists \int_{0}^{1} f(x) dx \Rightarrow \int_{0}^{1} f(x) dx = ?$$

(0.1)

3.0. Tính thể tích bằng tích phân lặp

• Đã biết công thức tính thể tích vật thể trong Giải

tích I: $V = \int_{0}^{b} S(x) dx$

Diện tích tiết diện thẳng S(x) được tính như sau:

$$S(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$
 (0.2)

Thay (0.2) vào (0.1) ta có

$$V = \int_{a}^{b} \left(\int_{y_1(x)}^{y_2(x)} f(x, y) dy \right) dx = \int_{a}^{b} \int_{y_1(x)}^{y_2(x)} f(x; y) dy$$

Ví dụ 1. Tính tích phân lặp
$$I = \int_{0}^{1} dx \int_{x^2}^{x} 2y dy$$

Giải

+)
$$I = \int_{0}^{1} \left(\int_{x^{2}}^{x} 2y dy \right) dx = \int_{0}^{1} y^{2} \Big|_{x^{2}}^{x} dx$$

+) =
$$\int_{0}^{1} (x^{2} - x^{4}) dx = (\frac{x^{3}}{3} - \frac{x^{5}}{5}) \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{5} = \frac{2}{5}$$

Ví dụ 2. Sử dụng tích phân lặp tính thể tích tứ diện giới hạn bởi các mặt phẳng toạ độ và mặt phẳng

$$x + y + z = 1$$
.

Giải

+)
$$I = \int_{0}^{1} S(x) dx = \int_{0}^{1} \left(\int_{0}^{1-x} z dy \right) dx = \int_{0}^{1} \left(\int_{0}^{1-x} (1-x-y) dy \right) dx$$
+)
$$= \int_{0}^{1} \left[(1-x)y - \frac{y^{2}}{2} \right]_{0}^{1-x} dx = \int_{0}^{1} \left[(1-x)^{2} - \frac{(1-x)^{2}}{2} \right] dx$$
+)
$$= \int_{0}^{1} \frac{(1-x)^{2}}{2} dx = \frac{(x-1)^{3}}{6} \Big|_{0}^{1} = \frac{1}{6}.$$

3.1. Tích phân hai lớp trên hình chữ nhật đóng

3.1.1. Định nghĩa

a) Phân hoạch π chia hình chữ nhật $R = [a; b] \times [c; d]$ thành hữu hạn các hình chữ nhật đóng, đôi một

không có phần trong chung và có $|R| = \sum_{i=1}^{n} \Delta R_i$,

 ΔR_i là diện tích hình chữ nhật thứ i, |R| là diện tích hình chữ nhật R;

 d_i là đường chéo hình chữ nhật ΔR_i , $d(\pi) = \sup_{i=1,n} d_i$.

Hàm f(x,y) xác định và bị chặn trên R.

b) Tổng tích phân

$$\sigma = \sigma(f, \pi, p_1, ..., p_n) = \sum_{i=1}^n f(\xi_i, \eta_i) \Delta R_i, p_i(\xi_i, \eta_i)$$

c) Các tổng Đacbu

- Tổng Đacbu dưới: $s(\pi) = \sum_{i=1}^{n} m_i \Delta R_i$
- Tổng Đacbu trên: $S(\pi) = \sum_{i=1}^{n} M_i \Delta R_i$, ở đó $m_i = \inf_{\Delta R_i} f(x, y), M_i = \sup_{\Delta R_i} f(x, y),$

$$m = \inf_{R} f(x, y), M = \sup_{R} f(x, y)$$

thì có

 $m|R| \le s(\pi) \le \sigma(f, \pi, p_1, ..., p_n) \le S(\pi) \le M|R|$

- d) Tổng trên không tăng, tổng dưới không giảm
- Ta bảo phân hoạch π' mịn hơn π nếu mỗi hình chữ nhật trong phân hoạch π' luôn nằm trong hình chữ nhật nào đấy của phân hoạch π
- Khi π' mịn hơn π , ta có $s(\pi) \le s(\pi') \le S(\pi') \le S(\pi)$.
- e) Dãy chuẩn tắc các phép phân hoạch

Cho $\{\pi_n\}$ là dãy các phân hoạch hình chữ nhật R. Dãy $\{\pi_n\}$ được gọi là chuẩn tắc nếu $\lim_{n\to\infty} d(\pi_n) = 0$.

f) Định nghĩa tích phân kép

Cho f xác định trên hình chữ nhật đóng R, Nếu có

$$\lim_{n\to\infty} \sigma(f, \pi_n, p_1, \dots, p_n) = \lim_{n\to\infty} \sum_{j=1}^{p_n} f(\xi_j, \eta_j) \Delta R_j = I \qquad (s\acute{c})$$

thực hữu hạn) với mọi dãy chuẩn tắc

$$\{\pi_n\}: \ \pi_n = \{\Delta R_1, \ \Delta R_2, \ ..., \ \Delta R_{p_n}\},\$$

với mọi cách chọn điểm $p_i = (\xi_i ; \eta_i) \in \Delta R_i$, thì ta có hàm f khả tích trên R và viết $\iint_R f(x, y) dx dy = I$.

Ví dụ 3. Tính
$$\iint_{R} 2dx \, dy$$
, ở đó $R: -1 \le x \le 1$, $0 \le y \le 1$.

Giải

+) Với mọi dãy chuẩn tắc

$$\{\pi_n\}: \pi_n = \{\Delta R_1, \Delta R_2, ..., \Delta R_{p_n}\},\$$

với mọi cách chọn điểm $p_i = (\xi_i; \eta_i) \in \Delta R_i$, thì ta có

$$\lim_{n\to\infty} \sigma(f, \pi_n, p_1, ..., p_n) \equiv \lim_{n\to\infty} \sum_{i=1}^{p_n} f(\xi_i, \eta_i) \Delta R_i$$

$$= \lim_{n \to \infty} \sum_{i=1}^{p_n} 2\Delta R_i = 2 \lim_{n \to \infty} \sum_{i=1}^{p_n} \Delta R_i = 2 \times 2 = 4$$

+)
$$\Rightarrow \iint_{R} 2dx \, dy = 4$$
.

3.1.2. Điều kiện khả tích

Định lí 1. Hàm f khả tích trên R đóng $\Rightarrow f$ bị chặn Định nghĩa. $\{\pi_n\}$ là dãy chuẩn tắc bất kì. Ta gọi $\lim_{n\to\infty} s(\pi_n)$ ($\lim_{n\to\infty} S(\pi_n)$) là tích phân dưới hai lớp $n\to\infty$

(tích phân trên hai lớp) và kí hiệu là

$$\iint\limits_R f(x,y)dx\,dy\,\left(\iint\limits_R f(x,y)dx\,dy\right)$$

Định lí 2. Ta có

1°/
$$s(\pi) \le \iint_R f(x,y) dxdy \le \iint_R f(x,y) dxdy \le S(\pi),$$

 $\forall \pi$.

2°/
$$\sup_{\mathbb{P}(R)} s(\pi) = \iint_{R} f(x, y) dx dy$$
,

$$\inf_{\mathbb{P}(R)} S(\pi) = \overline{\iint_{R} f(x, y) dx dy},$$

P(R) là tập tất cả các phân hoạch của R.

Định lí 3.

Cho f bị chặn trên \overline{R} . Khi đó f khả tích trên R

$$\Leftrightarrow \iint_{R} f(x,y) dx dy = \iint_{R} f(x,y) dx dy.$$

Khi đó ta có

$$\iint\limits_R f(x,y)dxdy = \iint\limits_R f(x,y)dxdy = \iint\limits_R f(x,y)dxdy.$$

Định lí 4. Cho f bị chặn trên \overline{R} . Khi đó f khả tích trên $R \Leftrightarrow \forall \ \varepsilon > 0$, bé tuỳ ý, \exists phân hoạch π của R sao cho $S(\pi) - s(\pi) < \varepsilon$

Định lí 5. f liên tục trên \overline{R} thì f khả tích trên R.

Định lí 6. f xác định và bị chặn trên R, có f liên tục trên $R \setminus E$, ở đó $E \subset R$ và $|E| = 0 \Rightarrow f$ khả tích trên R.

3.2. Độ đo Peanno – Jourdan

• Độ đo. Tìm lớp $M \subset \mathbb{R}^2$ để $\forall A \subset M$ có độ đo là m(A) thoả mãn:

1°/ 0
$$\leq m(A) \leq +\infty$$

- 2°/ Mọi hình chữ nhật $\Delta \in M$ và có $m(\Delta) = |\Delta|$
- 3°/ Mọi A, $B \in M$, rời nhau thì có

$$m(A \cup B) = m(A) + m(B)$$

• Độ đo Peanno – Jordan. Cho $A \subset \mathbb{R}^2$, ta gọi độ

đo ngoài của nó là
$$m^*(A) = \inf \left\{ \sum_{i=1}^n |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A \right\}$$
, ở

đó Δ_i là những hình chữ nhật.

Nếu $A \subset \Delta_0$ nào đó thì ta gọi độ đo trong của nó là

$$m_*(A) = |\Delta_0| - m^*(\Delta_0 \setminus A).$$

Tập A được gọi là đo được $\Leftrightarrow m^*(A) = m_*(A)$ và khi đó ta định nghĩa $m(A) = m^*(A) = m_*(A)$

Độ đo Peanno-Jordan thoả mãn các tiên đề về độ đo.

3.3. Tích phân hai lớp trên tập hợp giới nội

a) Định nghĩa. R là hình chữ nhật đóng, tập giới nội $D \subset R$, hàm f xác định trên D, và

$$f_0(x,y) = \begin{cases} f(x,y), (x,y) \in D \\ 0, (x,y) \in R \setminus D \end{cases}$$

Nếu f_0 khả tích trên R thì ta bảo f khả tích trên D và định nghĩa

$$\iint_{D} f(x, y) dx dy = \iint_{R} f_{0}(x, y) dx dy$$

Định lí 7. D giới nội trong R, f bị chặn, $f \ge 0$ trên D. Nếu f khả tích trên D thì tập

$$A = \left\{ \left(x, y, z \right) \in \mathbb{R}^3 : \left(x, y \right) \in D, 0 \le z \le f \left(x, y \right) \right\}$$

đo được theo nghĩa Jordan trong \mathbb{R}^3 và thể tích của

A là
$$|A| = \iint_D f(x, y) dx dy$$

Định lí 8. Tập D giới nội trong \mathbb{R}^2 , $X_D(x, y) = 1$, $(x, y) \in D$. Tập D đo được theo nghĩa Jordan $\Leftrightarrow X_D$ khả tích trên D, khi đó ta có

$$|D| = \iint_D X_D(x, y) dx dy = \iint_D dx dy$$

Nhận xét.

- Là công thức tổng quát nhất tính diện tích miền phẳng.
- Công thức tổng quát tính độ dài đoạn thẳng là

$$|[a;b]| = \int_a^b dx = b - a.$$

Hệ quả 1. Tập D giới nội trong \mathbb{R}^2 thì D đo được theo nghĩa Jordan $\Leftrightarrow |\partial D| = 0$

Hệ quả 2. Hàm số $f:[a;b] \rightarrow \mathbb{R}$ khả tích trên đoạn [a;b] thì đồ thị Γ của f có diện tích 0.

Hệ quả 3. D giới nội trong \mathbb{R}^2 , ∂D là hợp của hữu hạn cung được xác định bởi các hàm số liên tục thì D là tập hợp đo được.

Miền giới nội trong \mathbb{R}^2 thoả các điều kiện của Hệ quả 3 được gọi là miền chính quy trong \mathbb{R}^2 b) Tính chất

1°/ Cộng tính. $D = D_1 \cup D_2$ giới nội trong \mathbb{R}^2 , $|D_1 \cap D_2| = 0$, f khả tích trên D_1 , $D_2 \Rightarrow f$ khả tích trên D và có

$$\iint_{D} f(x, y) dx dy = \iint_{D_1} f(x, y) dx dy + \iint_{D_2} f(x, y) dx dy$$

2°/ Tuyến tính. *D* giới nội trong \mathbb{R}^2 , f, g khả tích trên $D \Rightarrow \alpha f + \beta g$ khả tích trên D và có

$$\iint_{D} \left[\alpha f(x, y) + \beta g(x, y) \right] dx dy$$

$$= \alpha \iint_{D} f(x, y) dx dy + \beta \iint_{D} g(x, y) dx dy, \ \alpha, \beta \in \mathbb{R}$$

3°/ Bảo toàn thứ tự. Hai hàm f, g khả tích trên tập giới nội $D \subset \mathbb{R}^2$, và có $f(x, y) \leq g(x, y)$, $\forall (x, y) \in D$. Khi đó

$$\iint\limits_{D} f(x,y) dx dy \leq \iint\limits_{D} g(x,y) dx dy.$$

Hệ quả 4. Nếu $m \le f(x, y) \le M$, $\forall (x, y) \in D$, thì có $m|D| \le \iint_D f(x, y) dx dy \le M|D|$

Hệ quả 5.

PGS. TS. Nguyễn Xuân Thảo

thao.nguyenxuan@hust.edu.vn

$$\left| \iint\limits_{D} f(x,y) dx dy \right| \leq \iint\limits_{D} \left| f(x,y) \right| dx dy$$

4°/ Khả tích.

Định lí 9. D là tập đo được trong \mathbb{R}^2 , f liên tục, bị chặn trên $D \Rightarrow f$ khả tích trên D.

Định lí 10.

$$|D| = 0$$
, f bị chặn trên $D \Rightarrow \iint_D f(x, y) dx dy = 0$.

Định lí 11. g bị chặn trên D, f khả tích trên D, |E| = 0, $E \subset D$, g(x, y) = f(x, y), $\forall (x, y) \in D \setminus E \Rightarrow g$ khả tích trên D và có $\iint_D g(x, y) dx dy = \iint_D f(x, y) dx dy$

Ví dụ 4. Tính
$$I = \iint_D f(x, y) dx dy$$
, ở đó

$$D = (0;2) \times (0;2), \ f(x,y) = \begin{cases} 1 & khi(x;y) \in D, \ y = -x + 1 \\ 2 & khi(x;y) \in D, \ y = -x + 2 \\ 3 & khi(x;y) \in D, \ (x;y) \neq \end{cases}$$

Giải

+) Từ hệ quả
$$2,có |(0;2)| = 0,$$

$$|(x;y): y=-x+1,0 \le x \le 1|=0,$$

$$|(x;y): y=-x+2, 0 \le x \le 2|=0.$$

+) Từ Định lí 11, có

$$I = \iint_{D} f(x, y) dx dy = \iint_{D} g(x, y) dx dy = \iint_{R} g(x, y) dx dy,$$

$$R = [0;2] \times [0;2], g(x;y) = 3, \forall (x;y) \in R.$$

+)
$$\Rightarrow I = \iint_R g(x, y) dx dy = \iint_R 3dx dy$$

$$=3\iint_{R} dx \, dy = 3 \times 4 = 12.$$
 (ĐL 8)

5°/ Các định lí giá trị trung bình

Định lí 12. D là tập hợp đo được, f khả tích trên D và có $m \le f(x, y) \le M$, $\forall (x, y) \in D$.

Khi đó $\exists \mu \in [m, M]$ sao cho $\iint_D f(x, y) dx dy = \mu |D|$

Định lí 13. Cho D đóng, đo được, liên thông, f liên tục trên $D \Rightarrow \exists p(\xi, \eta) \in D$ sao cho

$$\iint_{D} f(x,y) dx dy = f(p)|D|.$$

Ví dụ 5.

$$f(x) = \begin{cases} e^{x} & x \in [0;1) \\ 2 & x = 1 \end{cases} \Rightarrow \exists \int_{0}^{1} f(x) dx \Rightarrow \int_{0}^{1} f(x) dx = ?$$

$$\text{Tù ĐL 11} \Rightarrow \int_{0}^{1} f(x) dx = \int_{0}^{1} e^{x} dx = e - 1.$$

HAVE A GOOD UNDERSTANDING!