1. (Currently Amended) A method for operating a flue gas purification pla	nt				
(10) comprising having a plurality of parallel absorber chambers (11), in which the					
method comprising:					
simultaneously oxidizing CO and NO in each absorber chamber (11), CO and NO					
are simultaneously oxidized by means of with a catalyst in a first absorber (15) according					
to the SCONOx principle, and absorbing the resulting NO2 is absorbed on the catalyst					
surface; in which;					
oxidizing SO ₂ is furthermore oxidized by means of with a catalyst in a second					
absorber (14)-upstream of the first absorber (15)-according to the SCOSOx principle, and					
absorbing the resulting SO ₃ is absorbed on the catalyst surface, in which method;					
successively regenerating the absorber chambers (11) are successively					
regenerated by means of with a regeneration gas containing hydrogen and/or, hydrogen					
compounds, or both, in regularly repeating regeneration cycles affecting all the absorber					
chambers (11), characterized in that; and					
selecting the regeneration time of the second absorber (14) within the					
regeneration cycle is respectively selected to be long enough to guarantee sufficient for					
regeneration of the second absorber (14).					
2. (Currently Amended) The method as claimed in claim 1, characterized is	11				
that comprising:					
allocating a regeneration time for each absorber chamber (11) is allocated a					
regeneration time within the regeneration cycle, in that for full regeneration of an					
absorber chamber (11) in the regeneration time;					
regenerating the second absorber (14) is first regenerated in a first time segment	t <u>:</u>				
and					
regenerating the first absorber (15) is regenerated in a subsequent second time					
segment, and in that, wherein the first time segment lasts is at least about 5 minutes, for					
full regeneration of an absorber chamber in the regeneration time.					
3. (Currently Amended) The method as claimed in claim 2, characterized in	Ħ				
that wherein the second time segment lasts is at least about 3 minutes.					

4.	(Currently Amended)	The method as claimed in claim 1, characterized in
that-co	mprising regenerating the first	and second absorbers (14, 15) are regenerated
indepe	ndently of one another.	

5.	(Currently Amended)	The method as claimed in one of claims 1 to 4 Claim		
<u>1</u> , ch	aracterized in that comprising:			
	regenerating the first absorbe	ers (15) of the absorber chambers (11) are regenerated		
in a first regeneration cycle; and				
	regenerating the second abso	rbers (14)-of the absorber chambers (11) are		
regenerated in a second regeneration cycle, and in that;				
	wherein the second regenerate	tion cycle lasts substantially longer than the first		
regen	eration cycle.			

6. (Currently Amended) The method as claimed <u>in claim 5</u>, characterized in that <u>wherein</u> only the second absorber (14) of an absorber chamber (11) is respectively regenerated in each first regeneration cycle.