西安电子科技大学

___<u>电子线路实验(I)__</u> 课程实验报告

实验名称 __集成运放在有源滤波器中的应用__

学院	_ 班				
姓名 学号		成	绩		
	—— 目				
指导教师评语:					
	指	导教师 : 年	_月日		
实验报告内容基本要求及参考格式					
一、实验目的					
二、实验所用仪器(或实验环境)					
三、实验基本原理及步骤(或方案设计及理论计算)					
四、实验数据记录(或仿真及软件设计)					
五、实验结果分析及回答问题(或测	试环境及测	则试结果)			

集成运放在有源滤波器中的应用

一、实验目的

学会集成运算放大器实现有源滤波器。

二、实验所用仪器设备

- 1. 测量仪器: 万用表、信号源、直流稳压电源、示波器、毫伏表。
- 2. 模拟电路通用实验板(内含集成电路插座、电阻、电容等)。

三、实验内容及要求

滤波器是一种选频电路,它是一种能使有用频率信号通过,同时抑制(或衰减)此频率以外的信号。由RC元件与运算放大器组成的滤波器成为RC有源滤波器。根据滤波器通过信号的频率范围可分为低通(LPF)、高通(HPF)、带通(BPF)、带阻(BEF)、全通(APF)滤波器。本实验主要研究二阶RC有源低通、高通和带通滤波器的设计和调试,并给出了低通滤波器的快速设计方法和部分参考电路。设计者只要根据低通滤波器的电路图,通过查表得到RC元件的数值就可以了。

实验内容及要求:

- 1. 用 F007 设计一个二阶 RC 有源低通滤波器,要求截至频率 f_H =10kHz, 增益 A_u = 2。
- 2. 用 F007 设计一个二阶 RC 高通滤波器. 要求截止频率 $f_1 = 5kHz$. 增益 $A_{ij} = 2$ 。

要求: 根据实验内容要求设计实验电路,并搭建实验电路,达到设计要求。<u>分别测量低通和高通滤波器的频率响</u>应、上限截止频率 f_1 、下限截止频率 f_2 以及增益 A_2 。

四、实验说明及思路提示

与风候《柳春教符生如红》

- 1. 二阶 RC 有源低通滤波器(LPF)
- i. 二阶 RC 有源低通滤波器快速设计法
- 二阶 RC 有源低通滤波器电路如图 1 所示。表 1 给出的截止频率 f₁ 与电容值的选择参考对照表。

表 1 截止频率 和 与电容值的选择参考对照表

f	10~100Hz	0.1~1kHz	1~10kHz	10~100kHz
С	♦ 1~0.1uF	0.01~0.001uF	0.01~0.001uF	10000~100uF

图 1 二阶低通滤波器

Un毫伏表or 三波器)到 该电路若 R1=R2,C1=C2=C,则其上限截至频率为

$$f_{H} = \frac{1}{2\pi} \sqrt{\frac{1}{R_{1}R_{2}C_{2}C_{2}}} = \frac{1}{2\pi RC}$$
 (1)

电压增益为

$$A_{u} = 1 + \frac{R_{4}}{R_{3}}$$
 (2)

品质因数为

$$Q = \frac{1}{3-A_u}$$
 (为使系统稳定, $A_u < 3, Q - \Re < 10$) (3)

ii. 设计步骤

根据截止频率从表-1 中选定一个电容(注意要按电容系列值选),根据式(1)计算出 R值。根据 Q值计算出 A_u ,选择 R_3 ,从式(2)中算出 R_4 。

2. 高通滤波器设计

设计高通滤波器电路与低通滤波器相似,电路形式一样,所不同的是电阻和电容位置互换。根据 $f_t = 5kHz$,增益 $A_u = 2$,选择电容电阻。参考电路如图 2 所示。

图 2 高通滤波器参考电路(Au = 2)

五、实验设计过程

(实验设计过程应包含从题目分析到电路设计的全过程,参数选择以及画出电路图)

1. 实验内容1电路设计

2. 实验内容 2 电路设	计

六、实验数据记录与处理

- 1. 实验内容 1:
- ① 实验数据记录

- ② 实验数据处理
- 1) 绘制幅频特性曲线:

2) 从曲线中得到:

2. 实验内容 2: ① 实验数据记录		
② 实验数据处理 1) 绘制幅频特性曲线:		
2)从曲线中得到:		
增益:		
截止频率:		
3)误差计算:	4	

增益:

截止频率:

3) 误差计算:

七、实验分析与总结