Contrôle de géométrie analytique N°2

Durée : 1 heure 30 minutes Barème sur 15 points

NOM:		
	Groupe	
PRENOM:		

1. L'espace est muni d'un repère orthonormé $(O, \vec{e}_1, \vec{e}_2, \vec{e}_3)$ direct.

On considère deux points A(1; 1; 2) et B(0; 0; 1) et le plan α d'équation :

$$\alpha \,:\, x-y+z+1=0\,.$$

Déterminer le lieu des points P appartenant à α , tels que le volume géométrique du parallélépipède construit sur OABP soit égal à 2. Exprimer ce lieu sous forme paramétrique.

$$\overrightarrow{Reponse}: \overrightarrow{OP} = \begin{pmatrix} 1+\lambda \\ \lambda-1 \\ -3 \end{pmatrix} \quad \text{ou} \quad \overrightarrow{OP} = \begin{pmatrix} 1+\lambda \\ \lambda+3 \\ 1 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$
 4,5 pts

- 2. Dans l'espace, un plan α est défini par les points O et A et par un vecteur \vec{u} . Soit encore le point D, $D \notin \alpha$.
 - a) Déterminer vectoriellement, en fonction des données, le rayon-vecteur \overrightarrow{OH} , où le point H est la projection orthogonale de D sur le plan α .

L'espace est muni d'un repère orthonormé direct d'origine O.

On pose:
$$A(2; -2; -3)$$
 $D(2; 1; 3)$ $\vec{u} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

- b) Déterminer les coordonnées du point H défini sous a).
- c) On considère un triangle de sommets A,B et C, contenu dans le plan α . Déterminer les coordonnées de B et C sachant que :
 - \bullet le point H est le pied de la hauteur issue de C,
 - le côté AC est parallèle à un plan de vecteurs directeurs \vec{u} et \vec{v} ,
 - les droites (BD) et (O, \vec{v}) sont orthogonales.

$$\overrightarrow{OH} = \overrightarrow{d} - (\overrightarrow{d} \cdot (\overrightarrow{a} \times \overrightarrow{u})) \frac{\overrightarrow{a} \times \overrightarrow{u}}{\|\overrightarrow{a} \times \overrightarrow{u}\|^2} , \ H(0;2;1) \, , \ B(-1;4;3) \, , \ C(-4;-2;3) \, . \ 6 \text{ pts}$$
 Tourner la page SVP

3. Dans le plan muni d'une origine O, on donne un vecteur unitaire \vec{u} , $(\|\vec{u}\| = 1)$, et un point A défini par le rayon-vecteur $\overrightarrow{OA} = \vec{a}$. On pose $\|\vec{a}\| = a$.

On considère le triangle OAB isocèle de base AB. La droite (O, \vec{u}) est la médiane issue de O.

A l'aide du calcul vectoriel uniquement,

On suppose $\vec{a} \cdot \vec{u} \neq 0$.

- a) déterminer, en fonction de \vec{a} et \vec{u} , le rayon-vecteur $\overrightarrow{OB} = \vec{b}$,
- b) déterminer, en fonction de \vec{a} , \vec{u} et de $\varphi = \angle(\vec{u}, \vec{a})$, le rayon-vecteur \overrightarrow{OC} sachant que :
 - ullet OABC est un trapèze de bases AB et OC,
 - ullet la diagonale OB est perpendiculaire au côté BC.

Réponses:
$$\vec{b} = -\vec{a} + 2(\vec{a} \cdot \vec{u})\vec{u}$$
, $\overrightarrow{OC} = \frac{1}{\sin^2 \varphi}((\vec{a} \cdot \vec{u})\vec{u} - \vec{a})$, $\varphi \neq \frac{\pi}{2}$. 4,5 pts