Лабораторная работа №6

Моделирование распространения эпидемии (SIR-модель)

Хватов Максим Григорьевич

Содержание

0.1	Исходные данные (Вариант 45)														
0.2	Математическая модель (SIR)														
0.3	Реализация в Scilab														
0.4	Результаты														
	0.4.1 Графики для случая 1: (І(0) ≤І^*)	6													
	0.4.2 Графики для случая 2: (I(0) > I^*)	7													
0.5	Выводы														
0.6	Приложение. Исходный код	8													

Список иллюстраций

1	График 1																				(6
2	График 2	•	•	•	•		•		•	•		•		•	•		•		•	•	,	7

Цель работы:

Исследовать распространение эпидемии с помощью численного решения системы дифференциальных уравнений и построить графики изменения численности восприимчивых, инфицированных и выздоровевших в двух различных случаях: при начальном числе заражённых, меньшем либо равном критическому значению (I^*), и при превышении этого значения.

0.1 Исходные данные (Вариант 45)

На острове проживает (N = 6666) человек. Начальные условия:

- Случай 1:
 - **-** (I(0) = 83) инфицированные
 - (R(0) = 6) иммунные
 - (S(0) = N I(0) R(0) = 6577)
- Случай 2:
 - **-** (I(0) = 150) инфицированные

- (R(0) = 6) иммунные
- (S(0) = N I(0) R(0) = 6510)

Параметры модели:

- (**⊠**= 0.0001) коэффициент заражения
- (**🗷**= 0.05) коэффициент выздоровления
- ($I^{*} = 100$) пороговое значение числа инфицированных

0.2 Математическая модель (SIR)

SIR-модель описывается системой обыкновенных дифференциальных уравнений. В зависимости от того, превышает ли число инфицированных пороговое значение (I^*), модель принимает два вида:

Если (I > I^*):

$$\begin{split} \frac{dS}{dt} &= -\alpha \cdot S \cdot I \\ \frac{dI}{dt} &= \alpha \cdot S \cdot I - \beta \cdot I \\ \frac{dR}{dt} &= \beta \cdot I \end{split}$$

Если (І ≤І^*):

$$\begin{aligned} \frac{dS}{dt} &= 0\\ \frac{dI}{dt} &= -\beta \cdot I\\ \frac{dR}{dt} &= \beta \cdot I \end{aligned}$$

0.3 Реализация в Scilab

Реализация модели выполнена в **Scilab** с использованием численного метода решения системы ОДУ (ode). Были построены графики численности (S(t)), (I(t)), (R(t)) во времени для обоих случаев:

1. Случай 1: (І(0) = 83 ≤І^*)

Заражение не распространяется. Количество инфицированных экспоненциально убывает, число здоровых остаётся постоянным.

2. Случай 2: (І(0) = 150 > І^*)

Эпидемия активно распространяется. Наблюдается рост числа заболевших с последующим пиком и спадом. Часть восприимчивых переходит в категорию выздоровевших.

5

0.4 Результаты

0.4.1 Графики для случая 1: (І(0) ≤І^*)

Рис. 1: График 1

0.4.2 Графики для случая 2: (I(0) > I^*)

Рис. 2: График 2

0.5 Выводы

- При ($I(0) \le I^*$) заражение не распространяется, так как не достигается критическое значение инфицированных.
- При ($I(0) > I^*$) наблюдается массовое заражение, за которым следует спад. Это соответствует классическому сценарию эпидемии.
- Модель SIR позволяет прогнозировать течение эпидемии и оценить эффективность ограничительных мер в зависимости от начальных условий.

0.6 Приложение. Исходный код

```
function dydt = system_epidemic(t, y, alpha, beta, I_star)
    S = y(1);
    I = y(2);
    R = y(3);
    if I > I_star then
        dS = -alpha * S * I;
        dI = alpha * S * I - beta * I;
    else
        dS = 0;
        dI = -beta * I;
    end
    dR = beta * I;
    dydt = [dS; dI; dR];
endfunction
// Общие параметры
alpha = 0.0001;
beta = 0.05;
I_star = 100;
N = 6666;
t = 0:1:200;
// ---- Случай 1: I0 <= I*
I0_1 = 83;
R0_1 = 6;
S0_1 = N - I0_1 - R0_1;
```

```
y0_1 = [S0_1; I0_1; R0_1];
deff('dydt = f1(t,y)', 'dydt = system_epidemic(t, y, alpha, beta, I_star)');
y1 = ode(y0_1, 0, t, f1);
// ---- Случай 2: I0 > I*
I0_2 = 150;
R0_2 = 6;
S0_2 = N - I0_2 - R0_2;
y0_2 = [S0_2; I0_2; R0_2];
deff('dydt = f2(t,y)', 'dydt = system_epidemic(t, y, alpha, beta, I_star)');
y2 = ode(y0_2, 0, t, f2);
// ---- Построение графиков
scf(0);
plot(t, y1(1,:), 'b', t, y1(2,:), 'r', t, y1(3,:), 'g');
legend("S(t) - I = 83", "I(t) - I = 83", "R(t) - I = 83");
xtitle("Случай 1: IX = 83 \le I*", "Время (дни)", "Число особей");
xgrid();
scf(1);
plot(t, y2(1,:), 'b--', t, y2(2,:), 'r--', t, y2(3,:), 'g--');
legend("S(t) - IX=150", "I(t) - IX=150", "R(t) - IX=150");
xtitle("Случай 2: IX = 150 > I*", "Время (дни)", "Число особей");
xqrid();
```