U.S.S.N. 10/675,874 Filed: September 30, 2003 AMENDMENT & RESPONSE

TO OFFICE ACTION

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

1. (Currently Amended) A sustained release pharmaceutical formulation for delivery to the

lungs of a patient by inhalation comprising:

porous microparticles which comprise a pharmaceutical agent and a matrix

material, the microparticles having a geometric size between 0.1 µm and 5 µm and an average

porosity between 15 % and 90 % by volume,

wherein the combination of the pharmaceutical agent, matrix material, geometric

size, and average porosity are selected to provide that, upon inhalation of the formulation into the

lungs lungs, a therapeutically or prophylactically effective amount of the pharmaceutical agent is

released from the microparticles in the lungs for at least 2 hours.

2. (Original) The formulation of claim 1, wherein a majority of the pharmaceutical agent is

released from the microparticles by 24 hours following inhalation.

3. (Currently Amended) A sustained release pharmaceutical formulation for delivery to the

lungs of a patient by inhalation comprising:

porous microparticles which comprise a pharmaceutical agent and a matrix

material, the microparticles having a geometric size between 0.1 µm and 5 µm and an average

porosity between 15 % and 90 % by volume,

wherein the combination of the pharmaceutical agent, matrix material, geometric

size, and average porosity are selected to provide that, upon inhalation of the formulation into the

lungs lungs, a majority of the pharmaceutical agent is released no earlier than about 2 hours and

no later than about 24 hours following inhalation.

U.S.S.N. 10/675,874 Filed: September 30, 2003 AMENDMENT & RESPONSE TO OFFICE ACTION

- 4. (Currently Amended) The formulation of claim 1, wherein the porous microparticles have a volume average diameter between about 1 μm and 5 μm a geometric size between 1.7 μm and 3.8 μm .
- 5. (Currently Amended) The formulation of claim 1, wherein the matrix material is present in the formulation in an amount between about 50 wt. % and about 90 wt. % the porous microparticles have a volume median diameter between about 1 μm and 5 μm.
- 6. (Currently Amended) The formulation of claim 1, wherein the porous microparticles have an average porosity between about 15 and 90% about 28 % and about 81 % by volume.
- 7. (Original) The formulation of claim 1, wherein the pharmaceutical agent is a bronchodilator, a steroid, an antibiotic, an antiasthmatic, an antineoplastic, a peptide, or a protein.
- 8. (Original) The formulation of claim 1, wherein the pharmaceutical agent comprises a corticosteroid.
- 9. (Original) The formulation of claim 6, wherein the corticosteroid is selected from the group consisting of budesonide, fluticasone propionate, beclomethasone dipropionate, mometasone, flunisolide, and triamcinolone acetonide.
- 10. (Original) The formulation of claim 1, wherein the matrix material comprises a biocompatible synthetic polymer, a lipid, a hydrophobic molecule, or a combination thereof.
- 11. (Original) The formulation of claim 10, wherein the synthetic polymer comprises a polymer selected from the group consisting of poly(hydroxy acids), poly(lactide), poly(glycolide), poly(lactide-co-glycolide), polyanhydrides, polyorthoesters, polyamides, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyvinyl alcohols, polyvinyl ethers, polyvinylpyrrolidone, poly(butyric acid), poly(valeric acid), and poly(lactide-co-caprolactone), copolymers, derivatives, and blends thereof.

AMENDMENT & RESPONSE

TO OFFICE ACTION

12. (Original) The formulation of claim 10, wherein the synthetic polymer comprises a

poly(lactic acid), a poly(glycolic acid), a poly(lactic-co-glycolic acid), or a poly(lactide-co-

glycolide).

13. (Currently Amended) The formulation of claim 1 claim 10, wherein the polymer is a

poly(lactide- co-glycolide) copolymerized with polyethylene glycol.

14. (Original) The formulation of claim 1, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 4 hours.

15. (Original) The formulation of claim 1, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 6 hours.

16. (Original) The formulation of claim 1, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 8 hours.

17. (Original) The formulation of claim 1, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 16 hours.

18. (Original) The formulation of claim 1, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 20 hours.

19. (Original) The formulation of claim 3, wherein a majority of the pharmaceutical agent is

released no earlier than about 6 hours and no later than about 18 hours following inhalation.

AMENDMENT & RESPONSE

TO OFFICE ACTION

20. (Original) The formulation of claim 3, wherein a majority of the pharmaceutical agent is

released no earlier than about 4 hours and no later than about 12 hours following inhalation.

21. (Original) The formulation of claim 1, wherein at least 50% by weight of the

microparticles delivered to the lung is delivered to the combined central and upper lung upon

inhalation by the patient.

22. (Original) The formulation of claim 1, further comprising one or more pharmaceutically

acceptable bulking agents blended with the porous microparticles to form a dry powder blend

formulation.

23. (Original) The formulation of claim 22, wherein the bulking agent comprises particles

which have a volume average size between 10 and 500 µm.

24. (Original) The formulation of claim 22, wherein the bulking agent is selected from the

group consisting of lactose, mannitol, sorbitol, trehalose, xylitol, and combinations thereof.

25. (Original) The formulation of claim 1, wherein the porous microparticles further

comprise one or more surfactants.

26. (Original) The formulation of claim 25, wherein the one or more surfactants comprises a

phospholipid.

27. (Original) The formulation of claim 1, further comprising one or more pharmaceutically

acceptable suspending agents that are liquid within a metered dose inhaler to form a metered

dose inhaler formulation.

28. (Original) The formulation of claim 1, further comprising one or more other

pharmaceutical agents.

29. (Original) The formulation of claim 1, further comprising additional microparticles

blended with the porous microparticles.

AMENDMENT & RESPONSE

TO OFFICE ACTION

30. (Original) The formulation of claim 29, wherein the additional microparticles comprise one or more other pharmaceutical agents.

31. (Currently Amended) A dry powder sustained release pharmaceutical formulation for delivery to the lungs of a patient by inhalation comprising:

porous microparticles having a volume average diameter between 1 μ m and 5 μ m geometric size between 0.1 μ m and 5 μ m and an average porosity between 15 % and 90 % by volume, the porous microparticles being formed of at least a pharmaceutical agent, a matrix material, and a surfactant; and

a pharmaceutically acceptable bulking agent blended with the porous microparticles,

wherein the combination of the pharmaceutical agent, matrix material, geometric size, and average porosity are selected to provide that, upon inhalation of the formulation into the lungs lungs, a majority of the pharmaceutical agent is released no earlier than about 2 hours and no later than about 24 hours following inhalation.

32. (Currently Amended) A sustained release pharmaceutical formulation for delivery to the lungs of a patient by inhalation comprising:

porous microparticles which comprise a pharmaceutical agent and a matrix material, the microparticles having a geometric size between 0.1 μm and 5 μm and an average porosity between 15 % and 90 % by volume,

wherein the combination of the pharmaceutical agent, matrix material, geometric size, and average porosity are selected to provide that, upon inhalation of the formulation into the lungs lungs, there is an increase in MAT_{inh} of at least 25% compared to the MAT_{inh} obtained when the pharmaceutical agent is administered by inhalation of microparticles not in the form of porous microparticles which comprise the pharmaceutical agent and the matrix material.

U.S.S.N. 10/675,874

Filed: September 30, 2003

AMENDMENT & RESPONSE

TO OFFICE ACTION

33. (Currently Amended) A method of delivering a pharmaceutical agent to the lungs of a

patient comprising:

having the patient inhale a sustained release pharmaceutical formulation which

comprises porous microparticles which comprise a pharmaceutical agent and a matrix material,

the microparticles having a geometric size between 0.1 µm and 5 µm and an average porosity

between 15 % and 90 % by volume, wherein the combination of the pharmaceutical agent,

matrix material, geometric size, and average porosity are selected to provide that, upon

inhalation of the formulation into the lungs lungs, a therapeutically or prophylactically effective

amount of the pharmaceutical agent is released from the microparticles in the lungs for at least 2

hours.

34. (Original) The method of claim 33, wherein a majority of the pharmaceutical agent is

released from the microparticles by 24 hours following inhalation.

35. (Original) The method of claim 33, wherein the patient is in need of treatment for a

respiratory disease or disorder.

36. (Original) The method of claim 33, wherein the patient suffers from asthma, and the

pharmaceutical agent is one effective in the treatment or control of asthma.

37. (Original) The method of claim 33, wherein the pharmaceutical agent is a corticosteroid.

38. (Original) The method of claim 33, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 4 hours.

39. (Original) The method of claim 33, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 8 hours.

U.S.S.N. 10/675,874

Filed: September 30, 2003 AMENDMENT & RESPONSE

TO OFFICE ACTION

40. (Original) The method of claim 33, wherein a therapeutically or prophylactically

effective amount of the pharmaceutical agent is released from the microparticles in the lungs for

at least 16 hours.

41. (Original) The method of claim 35, wherein a majority of the pharmaceutical agent is

released no earlier than about 10 hours and no later than about 24 hours following inhalation.

42. (Original) The method of claim 35, wherein a majority of the pharmaceutical agent is

released no earlier than about 6 hours and no later than about 18 hours following inhalation.

43. (Original) The method of claim 33, wherein upon inhalation of the formulation into the

lungs there is an increase in MAT_{inh} of at least 25% compared to the MAT_{inh} obtained when the

pharmaceutical agent is administered by inhalation of microparticles not in the form of porous

microparticles which comprise the pharmaceutical agent and the matrix material.

44. (Original) The method of claim 33, wherein the patient orally inhales the sustained

release formulation using a dry powder inhalation device.

45. (Original) The method of claim 33, wherein the formulation provides local or plasma

concentrations which do not fluctuate by more than a factor of four over the period of sustained

release.

U.S.S.N. 10/675,874

Filed: September 30, 2003

AMENDMENT & RESPONSE

TO OFFICE ACTION

46. (Currently Amended) A method for making a dry powder formulation for inhalation and

sustained release of pharmaceutical agent comprising:

dissolving a matrix material in a volatile solvent to form a solution;

adding a pharmaceutical agent to the solution to form an emulsion, suspension, or

second solution; and

removing the volatile solvent from the emulsion, suspension, or second solution

to yield porous microparticles which comprise the pharmaceutical agent and the matrix material,

the microparticles having a geometric size between 0.1 µm and 5 µm and an average porosity

between 15 % and 90 % by volume,

wherein the combination of the pharmaceutical agent, matrix material, geometric

size, and average porosity are selected to provide that, upon inhalation of the formulation into the

lungs lungs, a therapeutically or prophylactically effective amount of the pharmaceutical agent is

released from the microparticles in the lungs for at least 2 hours.

47. (Original) The method of claim 46, wherein the matrix material comprises a

biocompatible synthetic polymer, and the volatile solvent comprises an organic solvent.

48. (Original) The method of claim 46, further comprising combining one or more

surfactants with the solution.

49. (Original) The method of claim 46, wherein the surfactant comprises a phospholipid.

AMENDMENT & RESPONSE

TO OFFICE ACTION

50. (Currently Amended) A method for making a dry powder formulation for inhalation and

sustained release of pharmaceutical agent comprising:

dissolving a matrix material in a volatile solvent to form a solution;

adding a pharmaceutical agent to the solution;

combining at least one pore forming agent with the pharmaceutical agent in the

solution to form an emulsion, suspension, or second solution; and

removing the volatile solvent and the pore forming agent from the emulsion,

suspension, or second solution to yield porous microparticles which comprise the pharmaceutical

agent and the matrix material, the microparticles having a geometric size between 0.1 µm and 5

μm and an average porosity between 15 % and 90 % by volume,

wherein the combination of the pharmaceutical agent, matrix material, geometric

size, and average porosity are selected to provide that, upon inhalation of the formulation into the

lungs lungs, a therapeutically or prophylactically effective amount of the pharmaceutical agent is

released from the microparticles in the lungs for at least 2 hours.

51. (Original) The method of claim 50, wherein the pore forming agent is in the form of an

aqueous solution when combined with the solution comprising matrix material.

52. (Original) The method of claim 50, wherein the pore forming agent is a volatile salt.

53. (Original) The method of claim 50, the step of removing the volatile solvent and pore

forming agent from the emulsion, suspension, or second solution is conducted using a process

selected from spray drying, evaporation, fluid bed drying, lyophilization, vacuum drying, or a

combination thereof.

54. (Original) The method of claim 50, further comprising blending the porous

microparticles with a pharmaceutically acceptable bulking agent.

55. (Original) The method of claim 54, wherein the bulking agent is selected from the group

consisting of lactose, mannitol, sorbitol, trehalose, xylitol, and combinations thereof.

U.S.S.N. 10/675,874 Filed: September 30, 2003 AMENDMENT & RESPONSE TO OFFICE ACTION

56. (Original) The method of claim 54, wherein the pharmaceutical agent comprises a corticosteroid.