RSAConference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: PS-W02

8 Million Findings in One Year: Fresh Look at the State of Software Security

Chris Wysopal

Co-Founder and CTO
Veracode

@WeldPond

Jay Jacobs

Co-Founder and Chief Data Scientist Cyentia Institute @jayjacobs

What is this research?

- Veracode State of Software Security (SoSS), Vol. 10
- Largest quantitative study of application security findings
- Partnered with data scientists at Cyentia Institute

The Why:

- Insights into industry performance, and impact of DevSecOps on fix rates
- Provide data for customers to benchmark themselves against their peers
- Generate actionable advice for improving application security programs

The How:

- Formulate questions that might be answerable given the available data
- Stand back and use science

The Data...

Vol. 1 Vol. 10

1,591 ——85,000+

software tested

That's over a 50-fold increase in sample size!

software tested

Over 2,300 Veracode customers

12 months of software scan data: April 1, 2018 – March 31, 2019

Over 85,000 unique pieces of software and 1.4 million individual assessments

= 500 applications

Mean Time to Remediation among closed findings

- The median fix time remains relatively unchanged from 10 years ago.
- However, the tail of everaccruing "security debt" just got a lot longer, causing the mean closed time to stretch out.

Proportion of software applications/products with at least one flaw in the initial scan

RSAConference2020

Software with high-severity flaws

Majority of products/applications are free from high/critical flaws

Apps with no high-sev flaws

Apps with at least 1 high-sev flaw

Prevalence of flaw categories in **SOSS Volume 1 and 10**

Fix rate across all flaws

"Fix rate" is the proportion of discovered flaws that are successfully closed or remediated.

Fix Rate

Measuring time to remediate is challenging...

- Simple approach is to calculate time for remediated findings
 - Ignores the still-open (security debt)
 - But it's simple and intuitive
- Survival analysis studies the time to an event
 - Accounts for findings that are still open (security debt)
 - Team stopped scanning
 - Not closed yet, was still open at last scan

Time to Failure (example)

These are "censored" - all we know is they lasted "at least" this long.

Time to Failure (example)

VERACOIDE

RSAConference2020

Flaw persistence curve

Flaw persistence curve

Median Time-to-remediate across flaw categories

Time-to-remediation across flaw severity scores

Surprisingly, flaw severity doesn't correlate strongly with fix speed

Even the Very High severity flaws have a long tail for fix time, taking over 130 days to reach the 75% closed milestone.

Speed and comprehensiveness for flaw categories

RS∧Conference2020

OWASP Top 10: Rankings

Probability of remediation over time

Flaw fix capacity and accumulation (security debt) over time

RSAConference2020

Frequency of security scanning across SDLC

VERACOIDE

Effect of annual scan frequency on median time-toremediation

- Frequent scanners closed flaws much quicker.
- Fix rate was tripled
- Security debt reduced three-fold.

Fix capacity and security debt by scan frequency

Security scanning across a sample of SDLCs

Fix capacity and security debt by scan cadence

Our data suggests:

- Security automation (as measured by scan frequency) continues to significantly lag the widespread and accelerating adoption of DevOps
- Developers do not prioritize fixes in a security-appropriate manner; recency appears to outweigh every other factor
- Incorporating daily application testing improves MedianTTR by 3x relative to weekly testing
- Steady testing facilitates chipping away at security debt, while bursty testing allows security debt to balloon

Apply What You Have Learned Today

- Next week you should:
 - Identify DevOps pipelines in your organization that could have AST added
- In the first three months following this presentation you should:
 - Add AST to the DevOps pipelines that are ready
 - Get on a steady cadence for finding and fixing security flaws
- Within six months you should:
 - Work to get all development teams using an automated build process
 - Integrate AST into the build and defect tracking system and process

RSAConference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: PS-W02

8 Million Findings in One Year: Fresh Look at the State of Software Security

Chris Wysopal

Co-founder and CTO Veracode @WeldPond

Jay Jacobs

Co-founder and Chief Data Scientist Cyentia Institute @jayjacobs