

Estudo de viabilidade

Cadim – Cardiogram Monitor

Abner Lima - Analista de requisitos e desenvolvedor Daniel Queiroz - Tester e desenvolvedor Franklyn Seabra - Product Owner e desenvolvedor Leonardo Quezado - Tester e desenvolvedor Tibet Teixeira - Scrum Master e desenvolvedor

HISTÓRICO DE REVISÕES

Data	Versão	Descrição	Responsável
20/03/2019	1.0	Informações iniciais	Daniel, Franklyn, Abner, Tibet, Ieonardo
21/03/2019	1.1	Análise de risco	Daniel, Franklyn
19/06/2019	2.0	Correção dos itens 2, 4 e 5	Tibet Teixeira

ÍNDICE

HISTÓRICO DE REVISÕES	2
CONTEXTUALIZAÇÃO DO PROJETO	4
Objetivos do Projeto	4
Descrição do Desenvolvimento do Produto	4
VIABILIDADE FINANCEIRA	4
Custo da equipe e do local	4
Custo dos materiais	5
VIABILIDADE TÉCNICA	5
Conhecimentos da equipe	5
VIABILIDADE DE CRONOGRAMA	5
VIABILIDADE ORGANIZACIONAL	ϵ
PRINCIPAIS RISCOS	6
BIBLIOGRAFIA	8
GLOSSÁRIO	c

1 CONTEXTUALIZAÇÃO DO PROJETO

1.1 Objetivos do Projeto

A motivação deste aplicativo é a possibilidade dos médicos conseguirem acompanhar pacientes com anomalias cardíacas, de maneira rápida e barata, e que não possuem a possibilidade de, cotidianamente, realizarem um eletrocardiograma (ECG). Podendo, desta forma, detectar doenças rapidamente.

O projeto é uma atualização de um produto já existente que consistia na captura e exibição de sinais ECG. Porém, esse produto carece de funcionalidades importantes, como acompanhamento médico, incluindo página web para acesso médico. Além disso, sua interface não é muito amigável, pois os elementos da tela estão muito desorganizados.

O projeto irá atender as necessidades do cliente da seguinte forma:

- 1. O paciente poderá realizar exames ECGs em sua própria residência e quando achar necessário. (Palpitação, arritmia e etc)
- 2. O médico terá acesso rápido, via aplicação web, aos exames feitos de seus pacientes, para assim realizar um melhor diagnóstico. Pois no modelo atual de exames ECG, quando o paciente vai ao hospital para realizar o exame, essa demora pode resultar em uma alteração do resultado.

1.2 Descrição do Desenvolvimento do Produto

O produto será composto de três componentes de software, que são o software controlador da placa Arduino, para coletar os dados de monitoramento de ECG, a aplicação móvel para Android que exibe uma plotagem do ECG e envia os dados para um servidor e uma página web onde o médico pode acompanhar os eletrocardiogramas do paciente.

Para desenvolvimento do produto será utilizado um modelo de processo incremental, especificamente o Scrum, pois assim será possível adequar as características funcionais do produto com os requisitos do cliente obtendo feedback a cada iteração. Isso é essencial uma vez que a equipe não possui conhecimento técnico de acompanhamento de ECG, mas com a participação contínua de um profissional da saúde e pacientes o produto pode atender melhor aos requisitos. Como o produto é uma atualização de um produto já existente, resta apenas ajustar detalhes técnicos adicionar alguns componentes que estão ausentes como a página web. Essas tarefas se encaixam no prazo de 4 meses para entrega do produto.

2 VIABILIDADE FINANCEIRA

O projeto objetiva ser de baixo custo. Havendo gasto apenas com os equipamentos eletrônicos para captura e envios dos sinais.

A. Custo da equipe e do local

Os custos da equipe e do local não serão levados em consideração.

B. Custo dos materiais

• Arduino Uno: Varia entre 33 a 45 reais.

• Biossensor de eletrocardiograma: 80 reais.

• Módulo arduino wifi/bluetooth: 24/30 reais.

*mini-Protoboard: 5 reais.

• Eletrodos: 40 reais

*Componente opcional

Custos que totalizam no máximo R\$ 200,00. Ficando a critério da empresa compradora: contratação ou disponibilização de um servidor com acesso a internet para manter os dados dos clientes e para que os médicos possam consultar dados dos pacientes.

Para os devidos fins de criação de protótipos, afirmamos que já possuímos os seguintes componentes: servidor, módulo bluetooth, biosensor, Arduino Uno e eletrodos. Portanto, não há impedimentos financeiros para a elaboração do projeto.

3 VIABILIDADE TÉCNICA

O Arduino será programado em C por se tratar da linguagem padrão.

O módulo Bluetooth será configurado para transmitir amostragens de 256 Hz por se tratar da vazão do biossensor em questão.

O aplicativo será desenvolvido na linguagem Java e será executado somente em dispositivos Android. Por se tratar de uma aplicação bem objetiva de captura de sinais, não há necessidade de um dispositivo com grandes capacidade de processamento, tornando-se uma aplicação sem muitos empecilhos para os usuários.

A aplicação servidor será desenvolvida em Java e com as ferramentas de controle de dependências Maven e servidor Spring Boot.

3.1 Conhecimentos da equipe

5 integrantes possuem conhecimento na construção de aplicações em Android.

- 1 integrante tem conhecimento sobre configuração do módulo bluetooth.
- 2 integrantes possuem conhecimento sobre programação em Arduino.
- 2 integrantes possuem conhecimento em Spring Boot.

Como o conhecimento está bem distribuído, há uma maior facilidade em aprender as ferramentas e tecnologias que serão utilizadas no projeto.

4 VIABILIDADE DE CRONOGRAMA

Como o software se baseia em melhorias em um software já feito, há a necessidade apenas de refatoração de algumas partes do código, implementar um código para salvar os dados do paciente em um servidor e criação de testes para garantia da funcionalidade.

Com o conhecimento prévio de boa parte dos integrantes em diversas partes do

projeto, é viável estabelecer prazos de um mês e meio para a refatoração dos códigos fontes, um mês para a criação de novas funcionalidades e um mês para a aplicação de testes. Os testes ocorrerão em paralelo com alguns momentos de implementação.

Abaixo, segue uma tabela com o cronograma dos artefatos a serem entregues com datas de início e de entrega.

Marco	Artefatos	Data Início	Data Entrega
Definição da aplicação	Definição do tema, sigla e objetivos do projeto mais a descrição informal;	06/03/2019	07/03/2019
Estudo de viabilidade	Relatório sobre o estudo de viabilidade	08/03/2019	21/03/2019
Termo de Abertura	Indicar como e o que será feito.	22/03/2019	26/03/2019
Plano do Projeto	Listar todos os fatores envolvidos no projeto	22/03/2019	26/03/2019
Especificação dos requisitos	Obter os produtos do software dentro do prazo estabelecido	27/03/2019	04/04/2019
Protótipo e diagramas UML	Design da aplicação	06/04/2019	18/04/2019
Plano de Teste	Descrição de como ocorrerão os testes	20/04/2019	15/05/2019
Definição do plano de projeto	Plano do projeto, incluindo diagrama de barras	20/05/2019	15/06/2019
Versão final	Entrega final do projeto	17/06/2019	22/06/2019

Tabela 1: Cronograma de entrega dos artefatos

5 VIABILIDADE ORGANIZACIONAL

O suporte do hospital para implantar com sucesso seria um treinamento e cadastramento dos medicos cardiologistas de forma que eles possam usar o sistema Web e explicar o funcionamento do aplicativo móvel e recomendar a compra do equipamento para o público alvo (pessoas com problemas cardíacos, que queiram descobrir tais problemas de forma mais eficiente), ou até mesmo o hospital vender o equipamento.

6 PRINCIPAIS RISCOS

- 1. Tempo insuficiente para aprender e colocar em prática as tecnologias.
- 2. Falta de parcerias com os hospitais.
- 3. Falta de comunicação da equipe no decorrer do projeto.
- 4. Divisão incorreta de atividades.
- 5. Defeito no biossensor, Arduino ou modulo bluetooth.
- 6. Integrantes doentes.

Risco	Categoria	Tipo	Probabilidade	Efeitos	Estratégia
1	Projeto	Tecnologia	Alta	Grave	Reorganizar as funções de cada um e/ou usar ferramentas de geração de código.
2	Negócio	Organizacional	Muito alta	Toleráveis	Preparar um documento de instruções para a gerência sênior, que mostre como o projeto está contribuindo de maneira positiva para as metas da empresa.
3	Projeto	Pessoal	Baixa	Sério	Momentos de descontração entre os integrantes, propor outras atividades de forma a melhorar o relacionamento.
4	Projeto	Pessoal	Média	Grave	Reorganizar as funções de cada um.
5	Técnico e Desempenho	Ferramentas	Baixa	Toleráveis	Substituir os componentes potencialmente defeituosos por componentes comprados e de confiabilidade reconhecida.
6	Processo	Pessoal	Baixa	Sério	Reorganizar a equipe de maneira que haja mais superposição de trabalho e, portanto, as pessoas compreendam as tarefas uns dos outros.

Tabela 2: Tabela de riscos

7 BIBLIOGRAFIA

TEIXEIRA, T.; CASTILHO, F. S. D.; RODRIGUES, D.; TORQUATO, D.; MADEIRO, J. P. V.; FILHO, JOSE MARIA DA SILVA MONTEIRO; BRAYNER, Ângelo Roncalli de Alencar; VIDAL, Vânia Maria Ponte; ARRUDA, N.; VINUTO, T. MobileECG: uma Ferramenta para Publicação e Integração de Dados de Sinais ECG. In: 33rd Annual Brazilian Symposium on Databases, 2018, Rio de Janeiro. 33rd Annual Brazilian Symposium on Databases, 2018. p. 41-46.

SOMMERVILLE, I. **Engenharia de Software**. 9th ed. Pearson, 2011

GLOSSÁRIO

Termo	Definição	
ECG	Eletrocardiograma.	
Shield EKG	Dispositivo utilizado para a coleta do ECG.	
Eletrodos	Pulseiras utilizadas na coleta do ECG.	