- 1) If the dog is barking, then the dog is in the
 - 2) If the dog is in the house then someone is at the Front door unless the dog is not barking.
 - 3) The dog is barking.
 - 4) Someone is at the Front door.

1)
$$b \Rightarrow h$$

2) $h \Rightarrow (d \lor 7b)$ } equivalent $(h \Rightarrow d) \lor 7b$

3) b 4) d

6		d	h	b⇒h	durb	h=>(dv7b)
T	\prod	T	I	T	T	This BV shows this set
Ī		7	۴	F	T	T of Sormulas is
7		F	<u></u>	<u>-</u>	F	Consistant.
F		Ť	1	1	7	\ \frac{1}{2}
F		T	F	7	7	
F	J١	F	ΙF	T	17	[

A set of Sormulas is consistent if there is at least one BV in which all the formula one T.

A formula is satisfiable if there is at least one BV in which it is T.

$$(2)$$
 a) $(a=77b) \wedge (c \Rightarrow 7d)$

Is this formula satisfiable? Yes.

$$V(a) = F \qquad V((a \Rightarrow 7b) \wedge (c \Rightarrow 7d)$$

$$V(c) = F$$
 = $(v(a) IMP (NOT V(b))) AND(v(c) IMP (NOT V(d)))$
 $V(d) = T$ = $(F IMP NOT (T))) AND(F IMP (NOT T)))$

$$V(\alpha) = F$$
 $V((\alpha = > 76) \wedge (70 = > 76))$

$$V(b) = T$$

$$= (V(a) ImP(NOT v(b))) AND ((NOT v(a)) ImP(NOT v(c)))$$

$$= (V(a) ImP(NOT v(b))) AND ((NOT F) ImP(NOT F))$$