Selected DHT algorithms: Chord and Pastry

Dmitri Moltchanov

Department of Communications Engineering Tampere University of Technology moltchan@cs.tut.fi

October 24, 2014

Based on slides provided by R. Dunaytsev http://utopia.duth.gr/rdunayts/

Outline

- Introduction
- Chord
- Pastry
- Summary
- **5** Learning outcomes

Outline

- Introduction
- 2 Chord
- 3 Pastry
- 4 Summary
- Learning outcomes

Introduction

- In P2P systems, cooperative peers self-organize themselves into overlay networks and relay/store data for each other
- The major challenge is how to achieve efficient resource search in these large-scale distributed-storage networks

- 2 types of overlays:
 - Unstructured
 - Structured
- Unstructured systems do not impose any structure on the overlay networks or loosely structured
 - E.g., Napster, Gnutella, Freenet, FastTrack, eDonkey2000, BitTorrent
 - Usually resilient to peer dynamics
 - Support complex search based on file metadata
 - Low search efficiency, especially for unpopular files
- Structured systems impose particular structures on the overlay networks
 - E.g., Distributed Hash Tables (DHTs)
 - The topology of the peer network is tightly controlled
 - Any file can be located in a small number of overlay hops

• Search process in unstructured P2P systems

- Basic features of structured P2P overlays:
 - Structure to accommodate participating nodes and data in the overlay
 - Routing algorithm to locate nodes in the overlay and insert/retrieve data to/from them
 - Join/leave mechanisms to enable self-organization and fault tolerance
- Structures (aka geometries)
 - Structured overlays use a number of different geometries (rings, trees, hypercubes, tori, XOR, ...)
 - The primary goal is to enable the deterministic lookup (i.e., access guarantees with certain time bounds)
 - The performance is directly related to how nodes are arranged and how the overlay structure is maintained when nodes arrive and leave

Routing algorithms

- They define how a target node is located in the overlay network
- DHT-based routing algorithms work as follows:
 - The node ID space is formed by applying a hashing function to node IDs (e.g., MAC/IP addresses)
 - A commonly used hashing function is SHA-1 (Secure Hash Algorithm version 1)
 - IDs for data items are created by applying the same hashing function to them (e.g., filenames or keywords)
 - Thus, the node IDs and data IDs fall into the same address space
 - Data items are typically stored on the closest node with the node ID greater than or equal to the data ID
 - If the node with the closest ID does not store the data item, then it is not available in the network
 - Using this approach any existing data item can be found by any node in the overlay

Join/leave mechanisms

- Usually, P2P systems are highly dynamic in nature (aka **node churn**)
- Hence, some mechanisms are needed to allow nodes to join or leave the system at any time with minimal impact to the functioning of the overlay

• Nodes join as follows:

- Get a unique ID for the node
- Position itself into the overlay structure based on the node ID and the geometry
- Update the routing tables (both the joining node and all the affected nodes)

Bootstrapping:

- As a rule, a new node contacts a bootstrapping server first and gets a partial list of existing nodes
- Another common approach is to let nascent nodes know in advance an
 entry point into the network (e.g., a list of known nodes of the overlay
 or a list of non-public bootstrapping servers)

Nodes leave as follows:

- When a node leaves or becomes unreachable, nodes that point to that node are affected
- Their routing table entries will be stale and have to be updated
- A gracefully departing node notifies its neighbors about its departure
- Its neighbors then propagate these changes if needed
- 6 However, a node may leave the system unexpectedly (e.g., due to network failure or power outage)
- Under these circumstances, the node will not notify its neighbors
- We Hence, the system must have some failure detection mechanism
- Failure detection is usually handled by keep-alive messages or periodic checking

In P2P file sharing systems, DHT just helps peers to find each other

Outline

- Introduction
- 2 Chord
- 3 Pastry
- 4 Summary
- Learning outcomes

Chord

- Chord was proposed in 2001 by Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan, and was developed at MIT
 - See "Chord: a scalable peer-to-peer lookup service for Internet applications"
- Chord uses consistent hashing and SHA-1 as a hash function to assign each node (by hashing the node's IP address) and each data item an m-bit ID, where m is a predefined system parameter
- These IDs are arranged as a **circle** modulo 2^m , from 0 to $2^m 1$
- Modulo arithmetic is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value – the modulus
 - E.g., $7 + 7 + 7 \equiv 9 \pmod{12} \Rightarrow 9:00 \text{ PM or } 21:00 \pmod{24}$

- Data items are mapped to nodes whose ID is greater than or equal to the ID of the data item (aka a key)
 - Due to consistent hashing, all nodes receive roughly the same number of keys and can join/leave the system with minimal disruption
- Thus, a node in a Chord circle with clockwise increasing IDs is responsible for all keys that precede it counter-clockwise

- Each node has a successor and a predecessor
- Since nodes may disappear from the network, each node records several nodes preceding it and following it
- Each node also maintains information about (at most) m other neighbors, called fingers, in a finger table
- The *i*-th entry, $i=1,2,\ldots,m$, in the finger table of node N points to the node whose ID is the smallest value bigger than or equal to $N+2^{i-1}\pmod{2^m}$ in the clock wise direction

Finger table of node 2 (N2)

	9	
i	Target	Successor
1	$2 + 2^0 = 3$	N4
2	$2 + 2^1 = 4$	N4
3	$2 + 2^2 = 6$	N7
4	$2 + 2^3 = 10$	N12
5	$2 + 2^4 = 18$	N20
6	$2 + 2^5 = 34$	N36

Chord routing algorithm:

- The primary goal of the routing algorithm is to quickly locate the node responsible for a particular key
- Chord routing works as follows:
 - 1 A key lookup query is routed along the ID circle
 - ② Upon receiving a lookup query, the node first checks if the lookup key ID falls between this node ID + 1 and its successor ID
 - If it does, then the node returns the successor ID as the destination node and terminates the lookup service
 - Otherwise, the node relays the lookup query to the node in its finger table with ID closest to, but preceding, the lookup key ID
 - The relaying process proceeds iteratively until the destination node is found

- m = 6 (i.e., modulo $2^m = 64$); 12 nodes; node 2 looks up key 45
 - (1) N36 is the closest to key 45; (2) N43 immediately precedes key 45;
 - (3) N58 is the first successor of key 45 on the circle

(1) Finger table of N2

.,	
Target	Suc.
2 + 1 = 3	N4
2 + 2 = 4	N4
2 + 4 = 6	N7
2 + 8 = 10	N12
2 + 16 = 18	N20
2 + 32 = 34	N36

(2) Finger table of N36 (3) Finger table of N43

Target	Suc.
36 + 1 = 37	N38
36 + 2 = 38	N38
36 + 4 = 40	N43
36 + 8 = 44	N58
36 + 16 = 52	N58
36 + 32 ≡ 4	N4

Target	Suc.
43 + 1 = 44	N58
43 + 2 = 45	N58
43 + 4 = 47	N58
43 + 8 = 51	N58
43 + 16 = 59	N60
43 + 32 ≡ 11	N12

- m = 6 (i.e., modulo $2^m = 64$); 12 nodes; node 12 looks up key 45
 - (1) N30 immediately precedes key 45; (2) N38 immediately precedes key 45; (3) N43 immediately precedes key 45; (4) N58 is the first successor of key 45 on the circle

(1) Table of N12	(2) Table of N30	(3)
------------------	------------------	-----

(3) Table of N38

(4)	Table	of	N43
-----	-------	----	-----

(.)	–	(=) . abio oi . too		(0) . ab.0 0.		()			
Target	Suc.	Target	Suc.	Target	Suc.	Target	Suc.		
12 + 1 = 13	N20	30 + 1 = 31	N36	38 + 1 = 39	N43	43 + 1 = 44	N58		
12 + 2 = 14	N20	30 + 2 = 32	N36	38 + 2 = 40	N43	43 + 2 = 45	N58		
12 + 4 = 16	N20	30 + 4 = 34	N36	38 + 4 = 42	N43	43 + 4 = 47	N58		
12 + 8 = 20	N20	30 + 8 = 38	N38	38 + 8 = 46	N58	43 + 8 = 51	N58		
12 + 16 = 28	N30	30 + 16 = 46	N58	38 + 16 = 54	N58	43 + 16 = 59	N60		
12 + 32 = 44	N58	30 + 32 = 62	N2	38 + 32 ≡ 6	N7	43 + 32 ≡ 11	N12		

- As a finger table stores at most m entries, its size is independent of the number of keys or nodes in the network
- The Chord routing algorithm exploits the information stored in the finger table of each node
 - A node forwards queries for a key K to the closest predecessor of K on the ID circle according to its finger table
 - For distant keys K, queries are routed over large distances on the ID circle in a single hop
 - The closer the query gets to K, the more accurate the routing information of the intermediate nodes on the location of K becomes

- It has been shown that the number of routing steps in Chord is at the order of $O(\log N)$, where N is the total number of nodes
 - According to the Change of Base Theorem, when we talk about logarithmic growth, the base of the logarithm is not important: $\log_2 N = C * \log_b N$, $C = \log_2 b$, a, b > 0, $a, b \neq 1$
- Queries on an unstructured P2P network tend to have lookup complexity of the order of O(N)

- Chord join/leave mechanisms:
- Nodes join as follows:
 - The newly arrived node first uses consistent hashing to generate its ID
 - 2 It then contacts the **bootstrapping** server to lookup the successor ID
 - This successor node becomes new node's successor node
 - The joining node is inserted into the overlay and takes on part of the successor node's load
 - The new node uses a stabilization protocol to verify its finger table
- To validate and update successor pointers as nodes join and leave the system, the stabilization protocol is executed periodically at the background of individual nodes
- When a node detects a failure of a finger during a lookup, it chooses the next best preceding node from its finger table

Outline

- Introduction
- Chord
- 3 Pastry
- 4 Summary
- Learning outcomes

Pastry

- Pastry was proposed in 2001 by Antony Rowstron and Peter Druschel, and was developed at Microsoft Research, Ltd., Rice University, Purdue University, and University of Washington
 - See "Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems"
 - The Pastry project: www.freepastry.org
- Similar to Chord, its main goal is to create a completely decentralized, structured P2P overlay in which objects can be efficiently located and lookup queries efficiently routed

- In Pastry, data items and nodes have unique 128-bit IDs, ranging from 0 to $2^{128}-1$
 - For the purposes of routing, these IDs are treated of as sequences of digits in base 2^b
 - Typically, b = 4, so these digits are hexadecimal (HEX)
- These IDs are arranged as a circle modulo 2128
- The node IDs are randomly generated at node join, and uniformly distributed in the ID space
- Instead of organizing the ID space as a Chord-like circle, the Pastry routing is based on numeric closeness of IDs
 - When forwarding a message to a destination key K, a node will choose the node in its routing table with the longest prefix match

- Each node in Pastry maintains 3 tables:
 - Routing table
 - Leaf set
 - Neighborhood set
- Routing table contains $\lceil \log_{2^b} N \rceil$ rows with 2^b columns, where N is the total number of Pastry nodes
 - The entries in row j refer to a node whose ID shares the present node ID only in the first j digits
 - Similar to Chord's finger table, it stores links into the ID space
- **Leaf set** is a set of *I* nodes with numerically closest IDs (1/2 larger and 1/2 smaller than the ID of the current node)
 - Like Chord's successor list
- Neighborhood set maintains information about nodes that are close together in terms of network locality
 - E.g., number of IP hops, Round-Trip Time (RTT) values

Pastry routing algorithm:

- The primary goal of the routing algorithm is to quickly locate the node responsible for a particular key
- Pastry routing works as follows:
 - Given a message with its key, the node first checks its leaf set
 - ② If there is a node whose ID is closest to the key, the message is forwarded directly to the node
 - If the key is not covered by the leaf set, then the node checks the routing table and the message is forwarded to a node that shares a common prefix with the key by at least one more digit
 - This way, with log_{2b} N steps, the message can reach its destination node
- Thus, the number of routing steps in Pastry is at the order of O(log N)

- b=4; base $2^b=16$; N=10,000 nodes; $\lceil \log_{16} 10,000 \rceil = 4$ rows; node 63AB looks up key EB3E
 - From its routing table, node 63AB gets node E123, which shares
 1-digit common prefix with the key
 - Node E123 checks its routing table and gets node EB17, which shares
 2-digit common prefix with the key
 - Node EB17 then checks its routing table and gets node EB39, which shares 3-digit common prefix with the key
 - Finally, node EB39 checks its leaf set and forwards the message directly to node EB3E

- 63AB \rightarrow E123 \rightarrow EB17 \rightarrow EB39 \rightarrow EB3E
 - "..." represents arbitrary suffixes in base 16
 - IP address and port number associated with each entry are not shown

(1) Routing table of node 63AB

0	1	2	3	4	5		7	8	9	A	В	C	D	E	F
60	61	62		64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
630	631	632	633	634	635	636	637	638	639		63B	63C	63D	63E	63F

(2) Routing table of node E... (e.g., E123)

0	1	2	3	4	5	6	7	8	9	A	В	C	D		F
E0		E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF
E10	E11		E13	E14	E15	E16	E17	E18	E19	E1A	E1B	E1C	E1D	E1E	E1F

(3) Routing table of node EB... (e.g., EB17)

0		1	2	3	4	5	6	7	8	9	A	В	C	D		F
E0		E1	E2	E3	E4	E5	E6	E7	E8	E9	EA		EC	ED	EE	EF
EB	08		EB2	EB3	EB4	EB5	EB6	EB7	EB8	EB9	EBA	EBB	EBC	EBD	EBE	EBF

(4) Leaf set of node EB3... (e.g., EB39)

EB30 EB31 EB32 EB33 EB34 EB35 EB36 EB37 EB38 EB3A EB3B EB3C EB3D EB3E EI

Pastry join/leave mechanisms:

- Nodes join as follows:
 - The joining node must know of at least another node already in the system
 - It generates an ID for itself, and sends a join request to the known node
 - The request will be routed to the node whose ID is numerically closest to the new node ID
 - All the nodes encountered on route to the destination will send their state tables (routing table, leaf set, and neighborhood set) to the new node
 - The new node will initialize its own state tables, and it will inform appropriate nodes of its presence

- Nodes leave/failure as follows:
 - Nodes in Pastry may fail or depart without any notice
 - Routing table maintenance is handled by periodically exchanging keep-alive messages among neighboring nodes
 - If a node is unresponsive for a certain period, it is presumed failed
 - 4 All members of the failed node's leaf set are then notified and they update their leaf sets
- With concurrent node failures, eventual message delivery is guaranteed unless I/2 or more nodes with adjacent IDs fail simultaneously
 - Parameter / is an even integer with typical value of 16

Outline

- Introduction
- Chord
- 3 Pastry
- 4 Summary
- Learning outcomes

Summary

- Structured overlays use the concept of consistent hashing and are able to locate objects with a cost that is at the order of O(log N), where N is the total number of nodes
- The number of DHT algorithms is huge and continues to grow
- Most variants of DHT-based systems try to optimize:
 - Data lookup cost
 - Routing table size
 - Maintenance cost
 - Fault tolerance

	Chord	Pastry				
Structure	Circle	Hybrid: circle + tree (similar to the Plaxton's algorithm)				
Routing algorithm	Matching key and node ID	Matching key and prefix in node ID				
Routing performance	O(log N), where N is the number of nodes	O(log N), where N is the number of nodes				

Outline

- Introduction
- Chord
- 3 Pastry
- 4 Summary
- **5** Learning outcomes

Learning Outcomes

- Things to know:
 - Fundamentals of DHT algorithms
 - How Chord works
 - How Pastry works