ساختمان دادهها و طراحى الگوريتمها

تمرین سری چهارم درخت ها زمان آزمون: ۲۷ اردیبهشت

مسئلهی ۱. دیکشنری با درخت

یک دیکشنری مرتب شده را که به وسیله درخت AVL پیاده سازی شده است، در نظر بگیرید. نشان دهید که می توان عملیات زیر را، با تغییر اندک در ساختمان داده مذکور، در زمان $\mathcal{O}(\log n)$ پشتیبانی کرد:

تعداد تمامی عنصرهایی مانند k که بین k_1 و k_1 اند را بیاب. countAllinRange (k_1,k_1)

مسئلهی ۲. پیوند دو زیر درخت

فرض کنید که دو درخت AVL با نام های T_1 و T_1 داده شده است. به طوری که بزرگترین عنصر در T_1 از کوچکترین عنصر در T_1 مقدار کمتری دارد. عملیات $Join(T_1,T_1)$ را تعریف می کنیم به طوری که حاصل آن یک درخت عملیات است، عناصر دو درخت باشد. الگوریتمی ارائه دهید که در زمان $\mathcal{O}(\log n)$ ، به طوری که n تعداد عناصر درخت حاصل شده است، عملیات فوق را انجام دهد.

مسئلهی ۳. متوسط مقادیر درخت

T مانند AVL مانند x در یک درخت در زمان ثابت میانگین عناصر یک زیر درخت را به ریشه گره x در یک درخت AVL مانند x محاسبه کرد. لازم است تا الگوریتم شما مشخص کند در هر چرخش چگونه در زمان ثابت می توان گره ها را به روز کرد تا مقدار میانگین را بتوان کماکان محاسبه نمود.

مسئلهی ۴. یک پیوند دیگر!

عملیات **join** دو مجموعه غیر ایستای S_1 و S_1 و عنصر x را در نظر می گیرد، به طوری که $x_1 \in S_1$ و $x_2 \in S_1$ داریم که $x_1 \in S_1$ این عملیات، مجموعه $x_2 \in S_1 \cup S_2$ خواهد بود. فرض کنید که یک درخت که آمرز سیاه به نام $x_2 \in S_1$ داده شده است. همچنین مفروض است که تعداد گره های سیاه در هر مسیر از ریشه هر زیر درخت $x_2 \in S_1$ به طوری که درخت $x_3 \in S_2$ در متغیری به نام $x_4 \in S_3$ شده است. اکنون قصد داریم عملیات $x_2 \in S_1$ را پیاده سازی کنیم، به طوری که درخت های قرمز سیاه $x_2 \in S_2$ را منحل کرده و حاصل درخت $x_3 \in S_2$ را منحل کرده و حاصل درخت $x_3 \in S_1$ را نظر بگیرید.

- الف) مفروض است که $bh[T_1] > bh[T_1] > bh$. الگوریتمی با زمان اجرای $O(\log n)$ ارائه دهید که یک گره سیاه به نام y را در th با بزرگترین کلید در میان گره هایی پیدا می کند که پارامتر th شان برابر th است.
- ب) نشان دهید که چگونه $T_y \cup \{x\} \cup T_y$ را که در آن T_y زیر درخت با ریشه y است، می توان در زمان ثابت جایگزین T_y نمود، بدون آنکه خاصیت درخت دودویی از بین برود.
- ج) چه رنگی را می بایست به گره x نسبت دهیم تا خاصیت درخت قرمز_سیاه در قسمت های بالای آن نیز حفظ شود؟ (فرض کنید همه برگ ها رنگ سیاه دارند)
 - د) نشان دهید که زمان اجرای عملیات $\mathbf{join}(T_1, x, T_1)$ است.

مسئلهی ۵. رنگ آمیزی بیشترین تعداد بازه

تعداد n بازه به فرم $[s_i,f_i]$ داده شده که هر s_i و s_i نمایانگر یک عدد صحیح مثبت بوده و نیز s_i داده شده که هر s_i است. هدف رنگ آمیزی بیشترین تعداد بازه با استفاده از s_i عدد رنگ عدد رنگ است. هدف رنگ آمیزی بیشترین تعداد بازه با استفاده از s_i عدد رنگ است. به نحوی که هر بازه نهایتا یک رنگ دریافت کرده و بازه هایی که همپوشانی دارند، رنگ یکسان نداشته باشند. لازم به ذکر است که دو بازه $[s_i,f_i]$ و $[s_i,f_i]$ همپوشانی دارند، چنانچه $[s_i,f_i]$ الگوریتمی طراحی کنید که در زمان $\mathcal{O}(n\log n)$ چنین رنگ آمیزی ای را بیابد.

شکل ۱: رنگ آمیزی بازههای فوق با چهار رنگ. بازههای ضربدر خورده رنگ آمیزی نشدهاند.

مسئلهی ۶. نوعی درخت دودویی

یک درخت دودویی T را در نظر بگیرید. تعداد گرههای درون T را با |T| نمایش می دهیم. برای یک گره مانند T مانند T زیردرخت سمت چپ آن و R_x زیر درخت سمت راستش خواهد بود. گوییم زیر درخت با ریشه x تقریبا متوازن است، L_x (L_x) و $|R_x| \leqslant |R_x|$ و $|R_x| \leqslant |R_x|$.

الف) بیشترین ارتفاع یک درخت دودویی T با n گره در حالی که (ABP(root) برقرار است، چقدر خواهد بود؟

ب) به یک درخت ABP گوییم چنانچه خاصیت مذکور برای تمامی گره های درخت برقرار باشد. نشان دهید که اگر چنین بود، ارتفاع درخت $\mathcal{O}(\log n)$ است. به طور دقیق تر، نشان دهید که برای یک درخت ABP مانند T،

$$\operatorname{height}(T) \leqslant \log_{\Upsilon} n / \log_{\Upsilon} \Upsilon / \Upsilon$$

مسئلهی ۷. WB-BST

 $^{ ext{VB-BST}}$ برای هر گره u در یک درخت ریشه دار، $\operatorname{size}(u)$ را تعداد گرههای موجود در زیر درخت به ریشه u در نظر بگیرید. u کندرخت دودویی است که ناوردایی زیر در آن برقرار است:

$$\mathit{size}(u.left) \leqslant \frac{\mathsf{Y}}{\mathsf{Y}} \cdot \mathit{size}(u) \text{ and } \mathit{size}(u.right) \leqslant \frac{\mathsf{Y}}{\mathsf{Y}} \cdot \mathit{size}(u)$$

که در آن u.right فرزند راست u و u.left فرزند چپ آن است. هنگامی که بابت درج و یا حذف گرهها ناوردایی بهم بخورد، ایتدا گرهای که بیشترین ارتفاع را داشته و ناوردایی در آن صدق نمیکند، در نظر گرفته می شود. سپس زیر درخت آن گره به طور کامل از نو ساخته می گردد، به نحوی که اختلاف ارتفاع زیردرخت راست و چپ هر گره در آن زیر درخت، حداکثر یک باشد.

- است. $\mathcal{O}(\log_{\mathsf{P/Y}} n)$ نشان دهید که ارتفاع درخت هنگامی که n گره را در خود دارد،
- ب) نشان دهید که بازسازی زیردرخت یک گره مانند u، حداکثر $\mathcal{O}(\operatorname{size}(u))$ زمان خواهد برد.
 - ج) نشان دهید که بعد از عملیات بازسازی، توازن درخت برقرار شده است.

Weight-balanced Binary Search Tree

- د) با روش حسابداری، نشان دهید که هزینه سرشکن هر درج و یا حذف از مرتبه زمانی $\mathcal{O}(\log n)$ است.
 - ه) مورد بالا را با استفاده از تابع پتانسیل نیز ثابت کنید.

مسئلهي ٨. اطلاعات اضافه

فرض کنید که در هر گره x از یک x از یک x افیلد جدیدی به نام x افرض کنید که در هر گره x از یک x درخت به ریشه x در خود ذخیره کرده است.

- $O(\log n)$ نشان دهید چگونه می توان عملیات درج و حذف را در این ساختمان داده تغییر داد تا کماکان با مرتبه زمانی هم عملیات درج و حذف و هم به روز رسانی فیلد اضافه شده به هر گره انجام شود.
- ب) با استفاده از قسمت قبل، یک الگوریتم با مرتبه زمانی $O(1+|h_1-h_1|)$ ارائه دهید تا عملیات **join** را بر روی دو T_1 با ارتفاع h_1 و h_2 انجام دهد. عملیات **join** دو درخت T_1 و T_2 و عنصر T_3 را گرفته، به نحوی که f_3 و f_4 و f_5 داریم که f_5 داریم که f_6 داریم که f_7 داریم که f_8 داریم که ویمانی نمایی درختی جدید شامل تمامی عناصر f_8 درختی جدید شامل تمامی عناصر f_8 درختی درختی جدید شامل تمامی درختی درختی جدید شامل تمامی درختی درختی جدید شامل تمامی درختی در
- ج) الگوریتمی از مرتبه زمانی $\mathcal{O}(\log n)$ پیشنهاد دهید که عملیات split را انجام دهد. این عملیات دقیقا برعکس عملیات مند **join** عمل میکند. الگوریتم شما میبایست یک درخت و یک کلید k به عنوان ورودی دریافت نماید. میتوانید از مسیری که از ریشه درخت تا گره حاوی کلید k در الگوریتم خود کمک بگیرید. فرض کنید مسیر مذکور در خود کلیدهای $\{k_1, k_2, \cdots, k_m\}$ را جا داده است. مشخصا، میتوانید زیر درخت راست و چپ هر کلید k_i و رابطه آنها با k_i را در نظر بگیرید. همچنین مجازید از عملیات **join** در طراحی الگوریتم خود استفاده کنید.

مسئلهی ۹. ساختن Heap

الگوریتم زیر را برای ساختن Heap به نام H در نظر بگیرید. این الگوریتم ابتدا آرایه A را با n عنصر دریافت کرده و سپس با یافتن عنصر minimal به نام $x \in A$ آن را ریشه H قرار می دهد. سپس به طور بازگشتی دو زیر Heap گره x را میسازد. که هر یک تقریبا $\frac{n-1}{2}$ تا عنصر دارد. یک تحلیل زمانی برای الگوریتم مذکور ارائه دهید. همچنین، راهی برای بهبودالگوریتم داده شده ارائه کنید.

SLOWHEAP(i, j)

If i = j then return pointer to heap consisting of node containing A[i]

Find $i \leq l \leq j$ such that x = A[l] is the minimum element in $A[i \dots j]$

Exchange A[l] and A[j]

 $Ptr_{\text{left}} = \text{SLOWHEAP}(i, |\frac{i+j-1}{2}|)$

 $Ptr_{\text{right}} = \text{SLOWHEAP}(\left|\frac{i+j-1}{2}\right| + 1, j-1)$

Return pointer to heap consisting of root r containing x with child pointers $Ptr_{\rm left}$ and $Ptr_{\rm right}$

End