Конспект по алгебре

C	одержание		
1	Вопрос 1		3

1 Вопрос 1

Группа, подгруппа, гомоморфизм групп. Ядро и образ гомоморфизма.

Определение. < G, *, e > - группа, $*: G \times G \to G, e \in G$

- 1. $\forall a, b, c \in G \ (ab)c = a(bc)$
- 2. $\forall g \in G \ eg = ge = g$
- 3. $\forall g \in G \ \exists g^{-1} \in G \ gg^{-1} = g^{-1}g = e$

Если $\forall a,b \in G \ ab = ba$ то группу называют абелевой

Теорема. $\exists ! e \in G \ eg = ge = g$

Определение. G - группа, тогда $H \subset G$ называют $noderpynno\ddot{u}$, если

- 1. $e \in H$
- 2. $\forall h_1, h_2 \in H \ h_1 h_2 \in H \mid HH \subset H$
- 3. $\forall h \in H \ h^{-1} \in H \mid H^{-1} \subset H$

Определение. G, W - группы.

 $f:G \to W$ называют гомоморфизмом (групп), если $\forall g_1,g_2 \in G \ f(g_1g_2) = f(g_1) * f(g_2)$

Теорема. $f:G \to W$ - гомоморфизм $f(e_G)=e_W$

Определение. $f:G\to W$ - гомоморфизм, тогда $kerf=g\in G|f(g)=e_W$ - называют ядром гомоморфизма f

 $Teopema.\ kerf$ - $nodepynna\ G$

Определение. $f: G \to W$ - гомоморфизм, тогда $Imf = \{w \in W: \exists g \in G \ f(g) = w\}$ - называют *образом гомоморфизма* f