Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des affirmations proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

- 1. Soit c un nombre réel strictement supérieur à 1. Sur l'ensemble des nombres réels, la fonction polynôme f définie par $f(x) = x^2 + 2x + c$.
 - a. change de signe exactement 2 fois
 - b. change de signe exactement une fois
 - c. est toujours positive
 - d. est toujours négative
- **2.** Si x est un nombre réel appartenant à l'intervalle $[-\pi; 0]$ tel que $\cos x = \frac{3}{5}$, alors sin x a pour valeur

 - d. On ne peut pas savoir
- 3. Le quadrilatère ABCD est un carré. On a :
 - **a.** \overrightarrow{AB} . $\overrightarrow{AD} = 0$
 - **b.** $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$
 - **c.** $\overrightarrow{AB} \cdot \overrightarrow{AB} = 0$
 - **d.** \overrightarrow{AB} . $\overrightarrow{DC} = 0$
- **4.** La droite d'équation 2x y + 1 = 0 coupe l'axe des abscisses au point A de coordonnées:
 - **a.** A(0;1)
 - **b.** $A(\frac{1}{2};0)$

 - **c.** A(0;-1)**d.** $A(-\frac{1}{2};0)$

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage) Prénom(s) :																				
N° candidat :												N° (d'ins	scrip	otio	n :				
Libert · Égalité · Fraternité RÉPUIRI JOJE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocation	on.)													1.1

- 5. Pour tout réel x, $\frac{e^x}{e^{-x}}$ est égal à a. -1 b. e^{-2x} c. $(e^x)^2$ d. e^0

Exercice 2 (5 points)

Un biologiste étudie une population de bactéries dans un milieu fermé. À l'instant initial, il y a 10 000 bactéries et la population augmente de 15% par heure.

On modélise la situation par une suite (u_n) pour laquelle, pour tout entier naturel n, u_n représente une estimation du nombre de bactéries au bout de n heures. On a donc u_0 = 10 000.

1. Expliquer pourquoi la suite (u_n) vérifie pour tout entier naturel n:

$$u_n = 10\ 000\ \times\ 1,15^n$$
.

- **2.** Quelle est la nature de la suite (u_n) . On précisera le premier terme et la raison.
- 3. Combien y aura-t-il de bactéries au bout de 10 heures ?
- 4. On considère la fonction suivante définie en langage Python.

```
def bacteries(N):

u=10000

for i in range(N):

u=u*1.15

return u
```

On a appelé cette fonction en donnant différentes valeurs au paramètre n et l'on a dressé le tableau suivant.

n	10	100	1 000	10 000
Bactéries (N)	40 455	1,2 × 10 ¹⁰	4,99 × 10 ⁶⁴	3,052 × 10 ³⁰⁷

Quelle interprétation peut-on donner de ces résultats dans le contexte de l'exercice ?

5. Lorsque la population atteint 200 000 bactéries, le biologiste répand un désinfectant afin de tester son efficacité. Une heure plus tard, il reste 4 000 bactéries. Quel est le pourcentage de diminution du nombre de bactéries?

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 (5 points)

Claire joue régulièrement à un jeu de simulation de tournois de judo en ligne. Les adversaires qu'elle combat sont générés automatiquement de manière aléatoire selon le niveau atteint dans le jeu.

Elle a atteint le niveau le plus élevé, celui de la ceinture noire. Les scores relevés par le jeu montrent qu'elle gagne dans 45% des cas si son adversaire est ceinture noire et dans 70% si son adversaire n'est pas ceinture noire.

Claire commence un tournoi et un premier adversaire est généré par le jeu. A ce niveau la probabilité d'affronter un adversaire ayant une ceinture noire est 0,6.

On note:

- N l'événement : « l'adversaire est ceinture noire » ;
- G l'événement : « Claire gagne le combat ».
- 1. Recopier et compléter l'arbre pondéré ci-dessous modélisant cette situation.

- 2. Calculer la probabilité que l'adversaire soit ceinture noire et que Claire gagne son tournoi.
- **3.** Montrer que la probabilité que Claire gagne son combat est 0,55.
- **4.** Claire vient de perdre un combat. Quelle est la probabilité que le combat ait été contre une ceinture noire ?
- **5.** On considère dans cette question que la probabilité que Claire gagne est 0,55. Elle fait deux combats successifs.

On note *X* la variable qui compte le nombre de victoires.

Donner la loi de probabilité de X.

Exercice 4 (5 points)

On modélise la valeur de vente (en milliers d'euros) d'une voiture électrique en fonction du nombre x d'années à partir de sa mise sur le marché par la fonction f définie sur l'intervalle [0;10] par

$$f(x) = 35e^{-0.22x}$$
.

- **1.** Calculer f(0). Quel est le prix de vente de cette voiture au moment de la mise sur le marché ?
- 2. Donner une valeur approchée du prix de vente au bout de 5 ans et 6 mois.
- **3.** On admet que la fonction f est dérivable et on note f' sa fonction dérivée. Montrer que pour tout x appartenant à [0; 10],

$$f'(x) = -7.7e^{-0.22x}$$
.

- **4.** Dresser le tableau de variation de la fonction f.
- **5.** Un client souhaite revendre sa voiture dès que celle-ci aura un prix de vente inférieur à 10 000 euros. Après combien de mois après avoir acheté sa voiture pourra-t-il la revendre ?