MARKSCHEME

May 2006

CHEMISTRY

Higher Level

Paper 3

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option B – Medicines and drugs

B1. (a) a moderate dose may induce sedation / reduce anxiety or tension / slower mental activity / slows CNS / causes drowsiness; a high dose may induce sleep / coma / unconsciousness / death;

Award [1] for both.

[1]

(b) orange to green;

Cr³⁺ / chromium(III);

[2]

[2]

B2. (a) amphetamines / stimulants;

increased heart rate / increased blood pressure / increased breathing rate / dilation of pupils / constriction of arteries / sweating / increased alertness / decreased appetite;

(b) (i) nicotine; [1] Accept nicotin.

(ii) increased heart rate;

increased blood pressure;

reduced urine output;

increased concentration / stimulating effect;

[2 max]

Award [1] each for any two.

(iii) increased risk of cancer;

increased risk of stroke / (coronary) thrombosis / heart disease;

ulcers:

emphysema/bronchitis/shortage of breath;

coughing / bad breath / yellowing of teeth or fingers;

effect on pregnancy;

[2 max]

Award [1] each for any two.

B3. (a) viruses are smaller;

viruses do not have nuclei/cell wall / bacteria do have nuclei/cell wall;

viruses do not have cytoplasm / bacteria do have cytoplasm;

viruses do not feed/excrete/grow / bacteria do feed/excrete/grow;

viruses use cell material of the invaded cell to reproduce themselves;

[2 max]

[2]

Award [1] each for any two.

(b) stops virus replication;

acyclovir becomes part of DNA of virus / mimics nucleotide or guanine / alters virus DNA / prevents other nucleotides from attaching;

(c) if receptor site is modified/altered, HIV virus could not bind to cells;

drug prevents HIV from losing the protein coat;

reverse transcriptase can be blocked (to avoid converting the virus into a structure that can enter the nucleus of the host cell);

the production of new viral RNA and proteins can be blocked;

drug stops viruses leaving the cells;

[2 max]

Award [1] each for any two.

B4. (a) nitrous oxide is not very powerful / some side effects; ethoxyethane is flammable;

halothane is potentially harmful to the ozone layer/is a CFC/is toxic;

[3]

(b) (i) (0.8+0.3+0.1=)1.2 atm;

[1]

(ii) (applying $p_{O^2} = X_{O^2} P_{total}$) $X_{O^2} = 0.25 / \frac{1}{4} / 25 \%$; [1] If necessary apply (U-1) to (b).

B5. one enantioner has beneficial/desired effect;

the other enantiomer no effect/harmful effect/waste of material/more clinical trials necessary; thalidomide;

one thalidomide enantiomer relieves symptoms of morning sickness while the other isomer can cause birth defects;

Accept alternatives, e.g.

ibuprofen;

one enantiomer much more effective;

taxol;

one enantiomer much more effective;

[4]

Option C – Human biochemistry

P 1-10-1-10-1

C1. (a)

$$H_{2}N$$
— CH — C — N — CH — C — O
 $H_{2}N$ — CH — C — O
 $H_{2}N$ — CH — C — OH
 CH_{3}
 CH_{3}

Award [1] for the correct peptide bond and an additional [1] if the rest of the structure is correct.

Accept
$$- \begin{array}{c} 0 & H & 0 \\ \parallel & \parallel & \parallel \\ - C - N - \end{array}$$
 or $- \begin{array}{c} 0 \\ \parallel & \parallel \\ - C - N H - \end{array}$ for the peptide bond.

- (ii) condensation; H_2O / water; [2]
- (b) mixture placed on gel/paper;
 use of buffer solution;
 potential difference applied;
 amino acids move differently (depending on pH / isoelectric point);
 develop/spray with ninhydrin;
 compare distances travelled with standards (OWTTE) / compare the isoelectric points;

 Award [1] each for any four.

 [4 max]
- (c) (i) sequence/chain of amino acids; [1]
 - (ii) α-helix = intramolecular/spiral/OWTTE;
 β-sheet = attraction between chains (accept intermolecular) / OWTTE;
 Accept suitable diagrams.

[1]

-9-

Accept

- there are no more double bonds / all single bonds (in the R group); molecules pack closer together/straighter chains / regular structure / fewer kinks / OWTTE; stronger van der Waals' forces; [3] Accept London / dispersion forces / vdW but not intermolecular.
- **C3.** (a) reaction slows down;

 $V_{\rm max}$ unchanged;

 $K_{\rm m}$ increased;

inhibitors occupy active sites;

substrate molecules prevented from binding to enzyme;

[4 max] Any four for [1] each.

position of $K_{\rm m}$ must show derivation (using $\frac{1}{2}V_{\rm max}$). correct line must show slower rate but need not extend to V_{max} . [2]

C4. (a) Ringing and labelling one of the two nucleotides;

[1]

(b) for the other nucleotide:
 circling and labelling base;
 circling and labelling sugar / pentose / ribose (accept deoxyribose);
 circling and labelling either phosphate;
 If the same nucleotide is used award [2] max.

[3]

Option D – Environmental chemistry

D1. melting of polar ice caps; thermal expansion of oceans/seas; rise in sea level/coastal flooding; *Award* [2] max.

changes in agriculture / biodiversity; Award [1] max.

[3 max]

D2. (a) (i) agriculture / irrigation **and** industry; *Both uses needed*.

[1]

(ii) oceans/seas;

glaciers;

[2]

Accept ice caps / polar regions / Antarctica or Arctic.

If more than two answers are given wrong answers cancel out correct answers.

-11-

(b) (i) Passed through resins containing silicates / zeolites;

Na⁺ replaced by H⁺;

Cl⁻ replaced by OH⁻;

 $H^+ + OH^- \rightarrow H_2O$;

[4]

If positive ions and negative ions given in place of Na^+ and Cl^- , award [1] max for second and third points.

(ii) no heating/fuel needed; resins need to be replaced/regenerated;

[2]

- (c) amount of oxygen to decompose/oxidize the organic/biological matter; in 5 days / in a given time / at a fixed temperature; lower BOD for pure water / higher BOD for water containing organic waste; [3]
- **D3.** (a) internal combustion engines;

Do not accept car exhaust.

burning coal/oil;

[2]

- (b) (photochemical smog contains) oxides of nitrogen / hydrocarbons;(reducing smog contains) soot/fly ash/particulates / sulfur dioxide;
- (c) convection currents get cut/pollutants cannot escape to higher altitudes *OWTTE*; concentration of pollutants increase/damage they can do lasts longer;

[2]

D4. (a) contains conjugated double bonds / delocalised electrons;
u.v. light/radiation is absorbed; [2]

(b) A; D;

E1. environmental impact;

distance from sources of raw materials / transport links;

availability of energy/water;

labour force;

availability of investment / existence of markets;

Award [2] for any three, [1] for any two.

[2 max]

E2. (a) limestone/CaCO₃;

coke/C/carbon;

Do not accept coal.

air / air enriched with hydrocarbons;

[2]

Do not accept oxygen.

Award [2] for all three, [1] for two.

(b) (i) contains too much carbon/4%C; (and so it is) brittle / has low malleability / *OWTTE*;

[2]

[2]

(ii) adding oxygen / converting impurities to their oxides;

$$C + O_2 \rightarrow CO_2 / 2C + O_2 \rightarrow 2CO / P_4 + 5O_2 \rightarrow P_4O_{10} / Si + O_2 \rightarrow SiO_2;$$

-13-

(c) negative effect on the landscape;

high demand for electricity / factory sited near power source;

much aluminium is recycled / saving energy / reducing landfill sites;

CO, produced / greenhouse gas / global warming;

fluoride emissions;

[4]

Award [1] each for any four.

- **E3.** (a) as a chemical feedstock / as a source of other chemicals (plastics, dyes, etc); [1]
 - (b) (i) petroleum originated from living things / some amino acids contain sulfur; [1]
 - (ii) burning produces SO_2/SO_3 /acid rain;

Or

it poisons catalysts;

[1 max]

E4. (a) brine/salt/sodium chloride;

[1]

(b) negative electrode

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^- / 2H^+ + 2e^- \rightarrow H_2;$$

positive electrode

$$2Cl^{-} \rightarrow Cl_{2} + 2e^{-};$$
 [2]

Accept e instead of e^- .

Award [1] for two correct equations at the wrong electrodes.

(c) NaOH / sodium hydroxide;

sodium ions are present in the solution, and OH⁻ ions are also produced / OWTTE;

-14-

[2]

E5. (a) 750 K / temperature in range 700-800 K;

 ΔG for the decomposition becomes negative;

[2]

[2]

[1]

(b) (i) 1450-1500 K;

$$Cr_2O_3 + 3C \rightarrow 2Cr + 3CO$$
;

(ii) ΔG for the reaction is positive at all temperatures / lines do not cross;

F1. (a) energy to be released at practical/reasonable rates / not too fast and not too slow / controllable;

-15-

minimal pollution / no health hazards;

Must mention pollution do not accept clean or environmentally friendly.

cheap / plentiful / accessible;

renewable;

[2]

[2]

Award [1] each for any two.

(b) (i) Nuclear fusion:

technology not yet developed / *OWTTE* / releases too much energy in a very short period of time / hard to control;

(ii) Tidal energy:

not every place has great tidal changes / needs energy storage facilities / OWTTE;

F2. advantages

no pollution;

no moving parts / no maintenance;

no need for refueling / sunlight is free/unlimited;

produce less noise;

does not use non-renewable source of energy / conserves petroleum for other uses / OWTTE;[3 max] Award [1] each for any three.

disadvantages

low power output / not very efficient / need a large surface area;

battery/storage facilities (needed in absence of light);

high capital cost;

easily damaged;

[3 max]

Award [1] each for any three.

F3. (a) Lead/Pb and lead(IV) oxide/PbO₂/lead dioxide;

[1]

(b)
$$PbO_2 + 4H^+ + SO_4^{2-} + 2e \rightarrow PbSO_4 + 2H_2O$$
 /

$$\text{PbO}_2 + 2\text{H}^+ + \text{H}_2\text{SO}_4 + 2\text{e} \rightarrow \text{PbSO}_4 + 2\text{H}_2\text{O}$$
 ;

positive because reduction occurs / electron gained;

F4. outline

surplus energy used to pump water from low to high level; electricity generated when water flows from high to low level;

advantages

uses cheap/off peak electricity; rapid response to demand;

produces no pollution;

avoids building power plants that would be used rarely;

Award [1] each for any two.

disadvantages

impact on the environment;

high capital cost;

few locations suitable;

energy lost in pumping water;

Award [1] each for any two.

[6 max]

F5. (a) high activity / gives out much radiation;

stays radioactive for a long time / (contains isotopes with) long half-lives;

[2]

(b) under water / in cooling ponds;

vitrified / made into glass;

buried underground/in granite/in deep mines;

Award [1] each for any two.

[2 max]

(c)
$$k = \frac{0.693}{3.8 \times 10^5} = 1.82 \times 10^{-6} \text{ (year}^{-1}\text{)};$$

$$t = \frac{\ln \frac{100}{10}}{k} = 1.3 \times 10^6 \text{ years};$$
 [2]

Unit needed for second mark.

Accept value in range 1.25×10^6 and 1.30×10^6 .

Option G – Modern analytical chemistry

G1. (a)

Information	Analytical technique
Isotopic composition of an element	Mass spectrometry; Accept Mass spectroscopy.
Functional groups present in an organic compound	Infrared spectroscopy;
Concentration of Fe ³⁺ ions in industrial waste waters	Visible spectroscopy/flame spectroscopy / colorimetry; Accept UV / visible but not UV on its own.

[3]

G2. (a) (i) A: beam splitter / (rotating) mirror;

B: sample;

C: control / reference / solvent;

[2]

Accept B and C to be in inverted order

Award [2] for three correct, [1] for any two.

(ii) produces one frequency/wavelength; *Accept narrow range*.

[1]

(iii) to convert radiation to an electronic signal;

to compare (the intensities of) sample and control/reference beams;

to determine the absorption (at particular frequencies);

[2 max]

(b) vibrations excited to higher energy levels;

the bonds bend/stretch;

the dipole moment/polarity of the molecule changes;

[2]

Award [2] max.

(c) I corresponds to A;

II corresponds to C;

III corresponds to B;

[2 max]

Award [1] for identifying each of two matches (the third one is automatically determined).

I=O-H;

II=C=O;

III=C=C;

[3]

(d) A;

higher wavenumbers imply higher energies;

G3. (a) mass spectrometry;

[1]

(b) (i) LC can handle larger amounts than GLC;

[1]

(ii) HPLC;

Sugars would decompose at the high temperature used in GLC / sugars not volatile;

[2]

(c) (i) the ratio between the distance travelled by the spot/stain and the distance travelled by the solvent front;

– 18 –

Or

 $R_{\rm f} = \frac{\text{distance travelled by the spot}}{\text{distance travelled by the solvent front}};$

[1 max]

(ii) Y is a pure substance, X is a mixture;

Sample X

contains a substance different from A,B,C and D; (probably) contains alkaloid A;

Sample Y

(probably) contains alkaloid B;

[3 max]

Award [1] for any three.

H1. (a) UV light / sunlight (present);

[1]

(b) Throughout accept radical with or without • *initiation reaction(s)*:

$$Cl_2 \rightarrow 2 Cl \cdot ;$$
 [1]

– 19 –

propagation reactions:

Cl• + CH₃CH₃
$$\rightarrow$$
 CH₃CH₂• + HCl;
CH₃CH₂• + Cl₂ \rightarrow CH₃CH₂Cl + Cl•; [2]

termination reactions:

$$CH_3CH_2 \cdot + Cl \cdot \rightarrow CH_3CH_2Cl;$$

$$2Cl \cdot \rightarrow Cl_2$$
;

$$2CH_3CH_2 \bullet \rightarrow CH_3CH_2CH_2CH_3;$$

[1 max]

Award [1] for any termination reaction.

If initiation, propagation, termination not labelled or incorrectly labelled award [3] max.

(c) CFCs/chlorofluoroalkanes reach the upper atmosphere because they are normally unreactive;

UV light breaks the C-Cl bond releasing Cl• radicals;

Cl• radicals react with ozone (molecules);

a (comparatively) small number of radicals can decompose a large number of ozone molecules /OWTTE; [3 max]

Accept suitable equations.

Award [1] for any three.

H2. (a) concentrated HNO₃;

No penalty for omitting one "concentrated".

Award [1] for both reagents correct but no "concentrated".

(b)
$$HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$$
 and $H_2NO_3^+ \rightarrow H_2O + NO_2^+$;

Or

 $HNO_3 + H_2SO_4 \rightarrow H_2O + NO_2^+ + HSO_4^- / HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-;$ [1 max]

(c)
$$NO_2^+$$
 NO_2^+ H H ;

Award mark for curly arrow shown correctly.

Award mark for curly arrow shown correctly.

(d)
$$\begin{array}{c} CH_3 \\ \hline \\ NO_2 \end{array} ; \quad \text{and} \qquad \begin{array}{c} CH_3 \\ \hline \\ NO_2 \end{array} ;$$

Accept correct names. Award [1] for each.

$$NO_2$$
 ;

[3]

(e)	CH ₃ - is electron-releasing / has positive inductive effect;	
	increase attraction between ring and NO ₂ ⁺ / OWTTE;	[2]

(f) chloromethane / CH₃Cl;

Accept CH₃Br or CH₃I

aluminium chloride / AlCl₃/Fe/FeCl₃; [2]

H3. (a) concentrated H₃PO₄ / H₂SO₄; elimination / dehydration;

[2]

(b)

$$CH_{3} \xrightarrow{\begin{array}{c|c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Award mark for structure of protonated alcohol.

$$CH_{3} \begin{array}{c|c} H & H & H & H & H \\ \hline \begin{array}{c|c} C & C & CH_{3} \end{array} & \begin{array}{c|c} C & CH_{3} \end{array} & \begin{array}{c|c} C & CH_{3} \end{array} & + H_{2}O; \\ \hline \begin{array}{c|c} C & C & H \end{array} & \begin{array}{c|c} C & CH_{3} \end{array} & + H_{2}O; \\ \hline \end{array}$$

Award mark for curly arrow shown correctly.

$$CH_3$$
— C — C — CH_3 — CH_3 — C — C — C — $CH_3 + H^+;$

[3]

Award mark for curly arrow shown correctly **and** structure of alkene. For second and third step accept single step mechanism.

$$\begin{array}{c|c} H & H \\ \hline & | \\ \hline & | \\ \hline C & C \\ \hline & C \\ \hline & C \\ \hline & C \\ \hline & CH_3 \\ \hline & OH_2 \\ & + & [I] \\ \end{array}$$