CALCULUS

Bachelor in Computer Science and Engineering

Course 2021–2022

Real numbers: inequalities, subsets; methods of proof

Problem 1.1.

1.
$$x \in (-\infty, -2) \cup (0, 1) \cup (1, +\infty)$$

2.
$$x \in [0, 25]$$

3.
$$\forall x \in \mathbb{R}$$

4.
$$x \in [-5, 11]$$

$$5. \ \mathbf{x} \in \left(\frac{3}{2}, 2\right) \cup \left(2, \frac{5}{2}\right)$$

6.
$$x \in (-\infty, 2] \cup [3, +\infty)$$

7.
$$x \in (-3,0) \cup (5,+\infty)$$

8.
$$x \in (-7, -4) \cup (-1, +\infty)$$

9.
$$x \in (-\infty, 1) \cup (2, +\infty)$$

10.
$$x = \frac{-1 \pm \sqrt{21}}{2}$$

11.
$$x \in (-\sqrt{2} + 1, 1) \cup (1, 1 + \sqrt{2})$$

Problem 1.2.

1.
$$\sup(A_1) = 1$$
, $\inf(A_1) = 0$, $\max(A_1) = 1$, no $\min(A_1)$

2.
$$sup(A_2)=1$$
 , $inf(A_2)=-1$, $m\acute{a}x(A_2)=1$, $m\acute{i}n(A_2)=-1$

3.
$$sup(A_3) = \sqrt{2}$$
, $inf(A_3) = 0$, no $máx(A_3)$, $min(A_3) = 0$

4. no
$$sup(A_4)$$
, no $inf(A_4)$, no $máx(A_4)$, no $min(A_4)$

5.
$$sup(A_5)=\frac{\sqrt{5}-1}{2}$$
 , $inf(A_5)=\frac{-\sqrt{5}-1}{2}$, no máx(A_5) , no mín(A_5)

1

6.
$$sup(A_6)=0$$
 , $inf(A_6)=\frac{-\sqrt{5}-1}{2}$, no máx(A_6) , no mín(A_6)

7.
$$\sup(A_7) = 1 + \frac{1}{2}$$
, $\inf(A_7) = -1$, $\max(A_7) = 1 + \frac{1}{2}$, no $\min(A_7)$

8.
$$\sup(A_8) = 3$$
, $\inf(A_8) = \frac{1}{3}$, no $\max(A_8)$, no $\min(A_8)$

9.
$$sup(A_9) = d$$
, $inf(A_9) = a$, no $máx(A_9)$, no $min(A_9)$

10.
$$sup(A_{10}) = \frac{7}{10}$$
 , $inf(A_{10}) = 0$, $máx(A_{10}) = \frac{7}{10}$, no $min(A_{10})$

Problem 1.3.

- 1. Proof by contradiction.
- 2. For instance, by the method of induction.
- 3. For instance, by the method of induction.
- 4. *Hint*: prove the three inequalities on the right separately, using properties of the square root if necessary.
- 5. *Hint*: find for which values of x and y the inequality on the right is satisfied.
- 6. *Hint*: in order to prove \Longrightarrow , take the square of both sides of the equality on the left; in order to prove \Leftarrow , distinguish between three cases, namely x = 0 or y = 0, x > 0 and y > 0, x < 0 and y < 0.

Sequences of real numbers

Problem 2.1.

- a) Bounded; not monotone; not convergent.
- b) Bounded; not monotone; convergent to 0 (for instance, use either the limit properties or the sandwich theorem).
- c) Bounded; monotone; convergent to 1.
- d) Bounded; not monotone; convergent to 1/2.
- e) Bounded; not monotone; convergent to x (for instance, use the sandwich theorem).

- f) Bounded; not monotone; convergent to 1/2 (for instance, use the sandwich theorem).
- g) Bounded; monotone; convergent to π (it may be useful to check the behavior of $ln(a_n)$).
- h) Bounded; monotone for $n \ge 2$; convergent to 1/2 (for instance, consider the formula for the sum of the first n natural numbers).
- i) Bounded; monotone; convergent to x (distinguish cases x = y and $x \neq y$).

Problem 2.2.

- a) The sequence converges to 0.
- b) The sequence converges to 0 (for instance, use the sandwich theorem).
- c) The sequence diverges.
- d) The sequence converges to 0.
- e) The sequence converges to 1/3.

Problem 2.3.

- a) The sequence can be written as $a_n = \sqrt{3}\,a_{n-1} \ \, \forall n \geq 2$, $a_1 = \sqrt{3}$. Use the method of induction to prove that a_n is bounded. In addition, the sequence is increasing and converges to 3.
- b) Use the method of induction to prove that a_n is bounded. In addition, the sequence is increasing and converges to 20/3.
- c) Use the method of induction to prove that a_n is bounded. In addition, the sequence is decreasing and converges to 1/3.
- d) Use the method of induction to prove that a_n is bounded. In addition, the sequence is increasing and converges to 3.

Problem 2.4.

- a) The limit is 1 (use that $\sqrt[n]{n} \to 1$ as $n \to \infty$).
- b) The limit is 1 (use that $\sqrt[n]{n} \to 1$ as $n \to \infty$).
- c) The limit is $e^{1/3}$ (use that $(1+\alpha_n)^{1/\alpha_n}\to e$ as $n\to\infty$, if $\alpha_n\to 0$).

Series of real numbers

Problem 3.1.

- a) Convergent telescoping series (as indicated, the sum of the series is 1).
- b) Convergent (for instance, use the comparison test with $b_k = 1/k^2$).
- c) Divergent (for instance, use the comparison test with $b_k = 1/k$).
- d) Convergent (for instance, use the limit comparison test with $b_k = 1/k^{3/2}$).
- e) Convergent (for instance, use the limit comparison test with $b_k = 1/k^2$).
- f) Convergent (for instance, use the limit comparison test with $b_k = (2/3)^k$).
- g) Convergent (for instance, use the limit comparison test with $b_k = 1/k^3$).
- h) Divergent (for instance, use the comparison test with $a_k = 1/k$).
- i) Convergent (for instance, use the limit comparison test with $b_k = 1/k^{3/2}$).
- j) Divergent (for instance, use the comparison test with $a_k = 1/k$).

Problem 3.2.

- a) Alternating series: convergent by Leibniz test.
- b) Convergent. For instance, consider the series of $|a_k|$ and use the comparison test with $b_k = (1/5)^k$; then, convergence of $\sum_{k=1}^{\infty} |a_k|$ implies convergence of $\sum_{k=1}^{\infty} a_k$.
- c) Alternating series: convergent by Leibniz test.
- d) Convergent by ratio test.
- e) Divergent by root test.
- f) Convergent by root test.
- g) Convergent by ratio test.
- h) Divergent telescoping series.

Problem 3.3.

- 1) Convergent for |b| > 1 and a > 0, divergent for |b| < 1 ($b \ne 0$) and a > 0 (using the ratio test). Divergent for $b = \pm 1$ (a > 0) as the general term of the series does not tend to zero.
- 2) Convergent for all values of $b \in \mathbb{R}$ by ratio test.
- 3) Convergent for $|\alpha| < \sqrt[3]{7}/2$ and divergent for $|\alpha| > \sqrt[3]{7}/2$ (using the ratio test). For $\alpha = \sqrt[3]{7}/2$ the series is convergent by Leibniz test, while for $\alpha = -\sqrt[3]{7}/2$ it is divergent (for instance, use the limit comparison test with $b_k = 1/k^{2/3}$).