

EINN: Epidemic Prediction using ML

Mert Saruhan, B.Sc.

hs-mittweida.de

Agenda

1 What is EINN?

2 Background

3 EINN Model

4 Results

- EINN is a (Neural Network) machine learning model to predict epidemic dynamics [1]

- EINN is a (**Neural Network**) machine learning model to predict epidemic dynamics [1]
- Mechanistic models (ODE models e.g SIR/SEIRM) good at trend approximation [1]
- RNN powered epidemic models good at short and long term epidemic prediction [1]
- EINN combines the knowledge of PINN, RNN, and ODE [1]

- EINN is a (Neural Network) machine learning model to predict epidemic dynamics [1]
- Mechanistic models (ODE models e.g SIR/SEIRM) good at trend approximation [1]
- RNN powered epidemic models good at short and long term epidemic prediction [1]

- EINN is a (Neural Network) machine learning model to predict epidemic dynamics [1]
- Mechanistic models (ODE models e.g SIR/SEIRM) good at trend approximation [1]
- RNN powered epidemic models good at short and long term epidemic prediction [1]
- EINN combines the knowledge of PINN, RNN, and ODE [1]

Mechanistic epidemic models

- Uses ODE to predict

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{NI} \alpha_t E_t$

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$

Mechanistic epidemic models

- Uses ODE to predict
- Have many models: SIR, SEIR, SEIRM etc.
- Susceptible (S): $\frac{dS_t}{dt} = -\beta_t \frac{S_t I_t}{N}$
- Exposed (E): $\frac{dE_t}{dt} = \beta_t \frac{S_t I_t}{N} \alpha_t E_t$
- Infected (I): $\frac{dI_t}{dt} = \alpha_t E_t \gamma_t I_t \mu_t I_t$
- Recovered (R): $\frac{dR_t}{dt} = \gamma_t I_t$
- Mortality (M): $\frac{dM_t}{dt} = \mu_t I_t$

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

RNN

- RNN is a neural network model
- Uses the previous state as an input to predict the next state
- Used in object detection and NLP

Figure: Example structure of RNN and NN [2]

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a} = -\mu ||\vec{v}||\vec{v} - \vec{g}, \vec{v} = \frac{df}{dt}, \vec{a} = \frac{d^2f}{dt^2}$$

$$\mathsf{L}_{\mathsf{physics}} = \tfrac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \tfrac{df_i}{dt_i} \| \tfrac{df_i}{dt_i} - \vec{g} - \left(\tfrac{d^2 f_i}{dt^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a}=-\mu \|\vec{v}\|\vec{v}-\vec{g}$$
, $\vec{v}=\frac{df}{dt}$, $\vec{a}=\frac{d^2f}{dt^2}$

$$\mathsf{L}_{\mathsf{physics}} = \frac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \frac{df_i}{dt_i} \| \frac{df_i}{dt_i} - \vec{g} - \left(\frac{d^2 f_i}{dt_i^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a} = -\mu \|\vec{v}\|\vec{v} - \vec{g}, \vec{v} = \frac{df}{dt}, \vec{a} = \frac{d^2f}{dt^2}$$

$$\mathsf{L}_{\mathsf{physics}} = \frac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \frac{df_i}{dt_i} \| \frac{df_i}{dt_i} - \vec{g} - \left(\frac{d^2 f_i}{dt_i^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a} = -\mu \|\vec{v}\| \vec{v} - \vec{g}$$
, $\vec{v} = \frac{df}{dt}$, $\vec{a} = \frac{d^2f}{dt^2}$

$$\mathsf{L}_{\mathsf{physics}} = \frac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \frac{df_i}{dt_i} \| \frac{df_i}{dt_i} - \vec{g} - \left(\frac{d^2 f_i}{dt_i^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

PINN

- Uses physics laws to predict the next state
- Uses PDE (partial differential equation) and ODE (ordinary differential equation) as a loss estimator
- L_{data}: loss from data fitting
- L_{physics}: loss from physics laws

e.g.
$$\vec{a} = -\mu \|\vec{v}\| \vec{v} - \vec{g}$$
, $\vec{v} = \frac{df}{dt}$, $\vec{a} = \frac{d^2f}{dt^2}$

$$\mathsf{L}_{\mathsf{physics}} = \frac{1}{N} \sum_{i=0}^{N-1} \left(-\mu \| \frac{df_i}{dt_i} \| \frac{df_i}{dt_i} - \vec{g} - \left(\frac{d^2 f_i}{dt_i^2} \right) \right)^2$$

• $L_{total} = L_{data} + L_{physics}$

PINN for Systems Biology

- Recent works with PINN for Systems Biology [3, 4]: better PINN for SIR mechanics
- Uses time t as input for Neural Network N(t) and rate of change in ODE systems f_{ODE}(t)
- Uses $(\frac{dN(t)}{dt} f_{ODE}(t))$ as a loss

PINN for Systems Biology

- Recent works with PINN for Systems Biology [3, 4]: better PINN for SIR mechanics
- Uses time t as input for Neural Network N(t) and rate of change in ODE systems $f_{ODE}(t)$

PINN for Systems Biology

- Recent works with PINN for Systems Biology [3, 4]: better PINN for SIR mechanics
- Uses time t as input for Neural Network N(t) and rate of change in ODE systems $f_{\rm ODE}(t)$
- Uses $(\frac{dN(t)}{dt} f_{ODE}(t))$ as a loss

Model summary

Figure: EINN Model. (a) The training model. (b) Needed gradients to train the model using autograd. (c) ODE losses of feature module and time module. Taken from: [1]

Source model (Time module)

- Source model is a PINN for Systems Biology

Source model (Time module)

- Source model is a PINN for Systems Biology
- Input: time

Source model (Time module)

- Source model is a PINN for Systems Biology
- Input: time
- Output: embedding of the epidemic ODE states (e_t)

Source model (Time module)

- Source model is a PINN for Systems Biology
- Input: time
- Output: embedding of the epidemic ODE states (e_t)

Source model (Time module)

- Source model is a PINN for Systems Biology
- Input: time
- Output: embedding of the epidemic ODE states (e_t)
- Model freezes when $e_t \approx e_t^F$

Time module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

 ODE loss for time module (L^{ODE-T}) [11:

$$\frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\frac{ds_t}{dt} - f_{\text{ODE}}(s_t, \Omega_t) \right]^2$$
 s_t : predicted ODE states at time t using time module path

Time module losses

- In the ODE states, Mortality (M) is observed and other states are latent [5]

Time module losses

- In the ODE states, Mortality (M) is observed and other states are latent [5]
- $L^{\text{Data-T}}$ [1]: $\frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\hat{M}_t M_t \right]^2$ M: mortality, \hat{M}_t : predicted mortality using time module path

Time module losses

- Adding monoticity loss (loss from latent states) to make learning less challenging using domain knowledge [1, 6]

Time module losses

- Adding monoticity loss (loss from latent states) to make learning less challenging using domain knowledge [1, 6]
- S is monotonically decreasing and R is monotonically increasing [1]

•
$$L^{\text{Mono}} = \frac{1}{N+1} \left(\sum_{t=t_0}^{t_N} \frac{dS_t}{dt} \text{ReLU} \left(\frac{dS_t}{dt} \right) + \sum_{t=t_0}^{t_N} -1 \frac{dR_t}{dt} \text{ReLU} \left(-\frac{dR_t}{dt} \right) \right)$$

Time module losses

- Adding parameter to loss to track parameter change with time

Time module losses

- Adding parameter to loss to track parameter change with time
- $L^{\mathsf{Param}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\Omega_{t+1} \Omega_t \right]^2$

Target model (Feature module)

- Target model is an RNN model

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)
- Model freezes when $e_t \approx e_t^F$

Target model (Feature module)

- Target model is an RNN model
- Input (x_t) : Features relevant to the problem
- Output: embedding of the epidemic ODE states (e_t^F)
- Model freezes when $e_t \approx e_t^F$
- Loss (L^{Emb}): $\frac{1}{N+1} \sum_{t=t_0}^{t_N} [e_t e_t^F]^2$

Target module losses

Figure: Cropped model summary showing the training summary. Cropped from: [1]

• $e_t \approx e_t^F$ required for gradient trick for ODE loss from feature module

$$ullet$$
 $e_tpprox e_t^F \Rightarrow rac{ds_t^r}{dt} = rac{ds_t^r}{de_t^F}rac{de_t^r}{dt} pprox rac{ds_t^r}{de_t^F}rac{de_t}{dt}$

 Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[\frac{ds_t^F}{de_t^F} \frac{de_t}{dt} - f_{\text{ODE}}(s_t^F, \Omega_t) \right]^2$$

Target module losses

- $e_t \approx e_t^F$ required for gradient trick for ODE loss from feature module
- $e_t \approx e_t^F \Rightarrow \frac{ds_t^F}{dt} = \frac{ds_t^F}{de_t^F} \frac{de_t^F}{dt} \approx \frac{ds_t^F}{de_t^F} \frac{de_t}{dt}$
- Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\frac{ds_t^F}{de_t^F}\frac{de_t}{dt}-f_{\mathsf{ODE}}(s_t^F,\Omega_t)\right]^2$$

Target module losses

- $e_t \approx e_t^F$ required for gradient trick for ODE loss from feature module
- $e_t \approx e_t^F \Rightarrow \frac{ds_t^F}{dt} = \frac{ds_t^F}{de_t^F} \frac{de_t^F}{dt} \approx \frac{ds_t^F}{de_t^F} \frac{de_t}{dt}$
- Loss ODE from feature module (L^{ODE-F}) [1]:

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\frac{ds_t^F}{de_t^F}\frac{de_t}{dt}-f_{\mathsf{ODE}}(s_t^F,\Omega_t)\right]^2$$

Target module losses

- \hat{M}_{t}^{F} : predicted mortality using feature module path

Target module losses

- \hat{M}_{t}^{F} : predicted mortality using feature module path
- Loss from data (L^{Data-F}):

$$\frac{1}{N+1}\sum_{t=t_0}^{t_N}\left[\hat{M}_t^F-M_t\right]^2$$

Target module losses

- N_{output} feed-forward Neural Network

•
$$L^{\text{Output}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[s_t - s_t^F \right]$$

Target module losses

- N_{output} feed-forward Neural Network
- Alligning findings from both paths

•
$$L^{\text{Output}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} [s_t - s_t^F]$$

Target module losses

- N_{output} feed-forward Neural Network
- Alligning findings from both paths

•
$$L^{\text{Output}} = \frac{1}{N+1} \sum_{t=t_0}^{t_N} \left[s_t - s_t^F \right]^2$$

- Generation: The NN learns directly from ODE generated data [1, 7, 8]
- Regularization: The NN predicts states and parameters of an ODE and learns from the parameters [1, 9, 10]
- Ensembling: Combines predictions of RNN and SEIRM/SIR outputs in one NN for a final prediction [1, 11, 12]
- EINNs-NoGradMatching: skipping $e_t \approx e_t^F$ part [1]

Model	Short-term (1-4 wks)			Long-term (5-8 wks)			Trend correlation
	NR1	NR2	ND	NR1	NR2	ND	PC
Task 1: C	OVID-19	Forecast	ing (US N	iational +	47 states)	
RNN (GRU+Atten)	1.09	0.50	0.86	1.19	0.53	0.96	0.08
Mechanistic model (SEIRM)	2.35	1.13	1.36	7.14	2.99	3.11	0.53
GENERATION	0.79	0.35	0.60	0.93	0.40	0.74	-0.01
REGULARIZATION	1.05	0.48	0.81	1.19	0.53	0.97	0.09
Ensembling	0.91	0.41	0.68	0.93	0.40	0.69	-0.01
EINNs (ours)	0.54	0.24	0.38	0.85	0.37	0.66	0.46
PINN (time module standalone)	0.84	0.38	0.64	0.93	0.40	0.72	0.24
EINNs-NoGradMatching	0.64	0.29	0.49	0.98	0.43	0.79	0.03
Task	2: Influe	nza Forec	asting (1	HHS re	gions)		
RNN (GRU+Atten)	0.72	0.38	0.67	1.19	0.51	1.14	-0.03
Mechanistic model (SIRS)	0.72	0.38	0.51	1.16	0.55	0.81	0.71
GENERATION	0.76	0.4	0.71	1.21	0.52	1.15	-0.14
REGULARIZATION	1.19	0.64	1.00	1.22	0.54	0.9	-0.45
Ensembling	0.89	0.47	0.77	0.83	0.35	0.73	-0.69
EINNs (ours)	0.53	0.27	0.37	1.01	0.42	0.73	0.68
PINN (time module standalone)	0.55	0.29	0.44	1.13	0.48	1.02	-0.47
EINNs-NoGradMatching	0.53	0.27	0.38	1.02	0.42	0.76	0.50

Figure: Short-term, Long-term, and Trend results. NR: Normalized RMSE (Lower is better), ND: Normal Deviation (Lower is better) PC: Pearson Correlation (Higher is better). Image taken from: [1]

- Better short and long term prediction than RNN and Mechanistic model (SEIRM)

- Better short and long term prediction than RNN and Mechanistic model (SEIRM)
- Better trend correlation than RNN and sligtly less trend correlation than Mechanistic model

- Better short and long term prediction than RNN and Mechanistic model (SEIRM)
- Better trend correlation than RNN and sligtly less trend correlation than Mechanistic model
- Not sensitive to parameter change [1]

- Better short and long term prediction than RNN and Mechanistic model (SEIRM)
- Better trend correlation than RNN and sligtly less trend correlation than Mechanistic model
- Not sensitive to parameter change [1]
- only L^{output} effectively contributes to EINN-NoGrad [1]

- Better short and long term prediction than RNN and Mechanistic model (SEIRM)
- Better trend correlation than RNN and sligtly less trend correlation than Mechanistic model
- Not sensitive to parameter change [1]
- only L^{output} effectively contributes to EINN-NoGrad [1]
- Even PINN learns from ODE, they still generate different outputs [1]

Bibliography I

- A. Rodríguez, I. Cui, N. Ramakrishnan, B. Adhikari, and B. A. Prakash, [1] *Einns: Epidemiologically-informed neural networks*, 2023. DOI: 10.48550/arXiv.2202.10446.arXiv: 2202.10446 [cs.LG].
- A guide to recurrent neural networks: Understanding rnn and lstm networks, [2] https://builtin.com/data-science/recurrent-neural-networksand-lstm. Accessed: 2023-11-26.
- A. Yazdani and et al., Systems biology informed deep learning for inferring [3] parameters and hidden dynamics. PLOS Comp. Bio., 2020.
- [4] G. Karniadakis and et al., *Physics-informed machine learning*, 2021.

Bibliography II

- [5] J. T. Wu and et al., Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: A modelling study, 2020.
- [6] N. Muralidhar and et al., *Incorporating prior domain knowledge into deep* neural networks, 2018.
- L. Wang and et al., Defsi: Deep learning based epidemic forecasting with [7] synthetic information, 2019.
- [8] Sanchez-Gonzalez and et al., Learning to simulate complex physics with graph networks, 2020.

Bibliography III

- J. Gao and et al., Stan: Spatio-temporal attention network for pandemic [9] prediction using real-world evidence, 2021.
- [10] N. Gaw and et al., Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric mri. 2019.
- [11] A. Adiga and et al., All models are useful: Bayesian ensembling for robust high resolution covid-19 forecasting, 2021.
- [12] T. K. Yamana and et al., *Individual versus superensemble forecasts of* seasonal influenza outbreaks in the united states, 2017.

Thank You

- Mert Saruhan, B.Sc.

Mathematics for Network and Data Science (MA20w1-M)

Hochschule Mittweida
University of Applied Sciences
Technikumplatz 17 | 09648 Mittweida

hs-mittweida.de