볼츠만 머신

② 생성자	때 재환 김
: 태그	엔지니어링

볼츠만 머신(Boltzmann Machine)은 통계 물리학에서 기원한 **에너지 기반의 확률 신경망모델**로, 확률 분포를 학습하고 샘플링하는 데 매우 유용합니다. 볼츠만 머신은 복잡한 데이터의 분포를 학습하는 데 유리하며, 확률론적 추론과 최적화 문제에도 활용됩니다. 이 모델은 모든 뉴런이 서로 상호작용하면서 시스템의 **에너지를 최소화**하고, 이를 통해 데이터의 잠재적인 구조와 패턴을 찾아내는 데 중점을 둡니다.

1. 볼츠만 머신의 배경: 통계 물리학과 볼츠만 분포

볼츠만 머신은 물리학에서 볼츠만 분포(Boltzmann Distribution)와 **에너지 최소화 원리**를 바탕으로 만들어졌습니다. 볼츠만 분포는 온도에 따라 입자들이 어떤 상태에 있을 확률을 나타내는 확률 분포입니다. 이 분포는 고온에서는 모든 상태에 고르게 분포되지만, 온도가 낮아지면 에너지가 낮은 상태로 수렴하는 특성을 가집니다. 볼츠만 머신은 이 원리를 차용해각 뉴런의 상태가 에너지 최소화 상태로 점진적으로 수렴하도록 설계되었습니다.

볼츠만 분포

볼츠만 분포에서 특정 상태 s가 나타날 확률은 다음과 같이 정의됩니다.

$$P(s) = rac{e^{-eta E(s)}}{Z}$$

• P(s): 시스템이 상태 s에 있을 확률

• E(s): 상태 s의 에너지

• $eta=rac{1}{k_BT}$: 온도에 대한 역수, 여기서 k_B 는 볼츠만 상수, T는 절대 온도

• Z: 분배 함수(정규화 상수)로, 모든 가능한 상태의 에너지를 정규화합니다.

이때, **온도가 낮을수록 에너지가 낮은 상태가 선택될 가능성이 높아** 시스템이 점점 안정된 상태로 수렴합니다. 볼츠만 머신은 이 원리를 통해 시스템의 뉴런 상태를 업데이트하며, 최종적으로 특정 확률 분포에 수렴하도록 합니다.

2. 볼츠만 머신의 구조

볼츠만 머신은 **완전 연결 이진 신경망**으로, 모든 뉴런이 서로 연결된 형태로 구성됩니다. 각 뉴런은 0 또는 1의 이진 값을 가지며, 상호작용을 통해 시스템의 에너지가 결정됩니다. 볼 츠만 머신의 뉴런은 크게 두 종류로 나눌 수 있습니다.

- 가시 노드(Visible Units): 데이터가 주어지는 입력층으로, 관찰된 데이터를 입력하고 학습하는 부분입니다.
- **숨겨진 노드(Hidden Units)**: 데이터의 잠재적인 패턴을 학습하여 가시 노드가 더 복잡한 분포를 모델링할 수 있도록 합니다.

이 두 종류의 노드 간 상호작용으로 인해 볼츠만 머신은 데이터를 더 정교하게 표현할 수 있으며, 숨겨진 노드는 특히 입력 데이터 간의 **잠재적인 관계**를 학습하는 데 중요한 역할을 합니다.

3. 에너지 함수와 확률 분포

볼츠만 머신의 **에너지 함수**는 뉴런들 간의 연결 가중치와 각 뉴런의 상태에 의해 정의됩니다. 에너지가 낮은 상태일수록 더 안정적이며, 시스템은 점차적으로 에너지를 낮추는 상태로 수렴합니다. 볼츠만 머신에서의 에너지는 다음과 같은 함수로 표현됩니다.

$$E(s) = -\sum_{i < j} w_{ij} s_i s_j - \sum_i b_i s_i$$

- E(s): 특정 상태 s의 에너지
- w_{ij} : 뉴런 i와 j 간의 가중치
- s_i : 뉴런 i의 상태(이 또는 1)
- b_i : 뉴런 i에 대한 바이어스

이 에너지는 네트워크 상태가 주어졌을 때 시스템의 안정성을 측정하며, 시스템은 에너지를 점차 최소화하여 특정 확률 분포를 형성합니다. 이 확률 분포는 에너지가 낮은 상태일수록 높은 확률을 가지며, 네트워크는 이러한 확률 분포에 수렴하도록 뉴런 상태를 업데이트합니다.

4. 상태 갱신과 기브스 샘플링

볼츠만 머신은 네트워크의 상태를 반복적으로 갱신하여 에너지가 최소화되는 상태로 수렴하는데, 이때 **기브스 샘플링(Gibbs Sampling)** 기법을 사용합니다. 기브스 샘플링은 각 뉴런의 상태를 확률적으로 갱신하면서 시스템이 최종적으로 안정 상태에 도달하도록 합니다.

기브스 샘플링을 통한 각 뉴런의 상태 갱신은 다음과 같은 조건부 확률로 이루어집니다.

$$P(s_i = 1 | s_{-i}) = \sigma \left(\sum_j w_{ij} s_j + b_i
ight)$$

- $P(s_i=1|s_{-i})$: 다른 뉴런들의 상태가 고정되었을 때, 뉴런 i가 $oldsymbol{1}$ 일 확률
- $\sigma(x) = \frac{1}{1+e^{-x}}$: 시그모이드 함수

기브스 샘플링을 통해 시스템은 반복적으로 뉴런 상태를 업데이트하며, 이 과정을 통해 네트 워크는 에너지 최소화 상태에 도달하게 됩니다. 이 상태에서 네트워크는 학습한 확률 분포를 기반으로 데이터의 특성을 모델링할 수 있게 됩니다.

5. 볼츠만 머신의 학습

볼츠만 머신의 학습은 네트워크의 가중치와 바이어스를 조정하여 입력 데이터의 분포를 반영하는 과정입니다. 일반적으로 볼츠만 머신의 학습은 기브스 샘플링을 통해 각 뉴런 상태를 업데이트한 후, 에너지를 최소화하도록 가중치를 조정하는 과정을 포함합니다.

대조 발산 (Contrastive Divergence, CD)

볼츠만 머신 학습의 주요 알고리즘 중 하나인 **대조 발산(CD)**은 제한된 볼츠만 머신 (RBM)에서 주로 사용됩니다. 이는 가중치 업데이트를 위한 효율적인 학습 방법으로, 다음과 같은 과정을 따릅니다.

- 1. 포워드 패스: 가시 노드에 데이터를 입력하여 숨겨진 노드의 초기 상태를 계산합니다.
- 2. 재구성(Reconstruction): 숨겨진 노드의 상태를 기반으로 가시 노드를 재구성합니다.
- 3. **가중치 업데이트**: 원본 데이터와 재구성된 데이터 간의 차이에 기반하여 가중치를 업데 이트합니다.

CD는 기브스 샘플링을 간소화하여 볼츠만 머신의 학습을 가속화하며, 이 과정을 여러 번 반복하여 가중치가 데이터 분포에 맞게 수렴하도록 합니다.

6. 볼츠만 머신의 변형: 제한된 볼츠만 머신(RBM)

기본적인 볼츠만 머신은 계산 복잡도가 매우 높으며, 모든 노드가 서로 연결된 구조로 인해학습이 매우 어렵습니다. 이를 개선한 모델이 바로 **제한된 볼츠만 머신(RBM)**입니다.

제한된 볼츠만 머신의 구조

RBM은 가시 노드와 숨겨진 노드 간에만 연결된 구조를 가지며, **가시 노드 간, 숨겨진 노드 간의 연결을 제거**한 모델입니다. 이 구조는 학습의 효율성을 높여주며, 대조 발산 알고리즘을 통해 비교적 빠르게 학습할 수 있습니다. RBM은 특히 **심층 신경망**에서 특징 추출 또는 사전학습 단계로 많이 사용됩니다.

7. 볼츠만 머신의 응용

볼츠만 머신과 그 변형 모델들은 여러 분야에서 응용되고 있습니다.

- 추천 시스템: 사용자의 과거 데이터 패턴을 학습하여 맞춤형 추천을 제공합니다.
- **이미지 복원**: 손상된 이미지의 패턴을 학습하여 원본 이미지로 복원합니다.
- 차원 축소 및 특징 추출: RBM을 사용하여 데이터의 중요한 특성을 추출하고, 이를 고차 원 데이터의 차원 축소에 활용합니다.

볼츠만 머신 3

• 최적화 문제: 볼츠만 머신은 조합 최적화 문제에서 전역 최적해를 찾기 위해 사용될 수 있습니다. 예를 들어, 여행자 문제(TSP)와 같은 최적화 문제에서 상태를 샘플링하여 최 적의 해를 찾습니다.

볼츠만 머신 4