The Primo Insurance Company is introducing two new product lines: special risk insurance and mortgages. The expected profit is \$ 5 per unit on special risk insurance and \$ 2 per unit on mortgages. Management wishes to establish sales quotas for the new product lines to maximize total expected profit. The work requirements are as follows:

	Work-Hour	s per Unit	Work-Hours
Department	Special Risk	Mortgage	Available
Underwriting	3	2	2400
Administration	0	1	800
Claims	2	0	1200

- 1. Formulate a linear programming model for this problem:
 - a. Decision Variables:
 - i. Let x_1 be units of special risk insurance products
 - ii. Let x_2 be units of mortage products
 - b. Objective: Maximize Profit *P* such that $P = 5x_1 + 2x_2$
 - c. Constraits: Department Hour Availability

i.
$$3x_1 + 2x_2 \le 2400$$

ii.
$$0x_1 + 1x_2 \le 800$$

iii.
$$2x_1 + 0x_2 \le 1200$$

iv.
$$x_1 \ge 0$$
 and $x_2 \ge 0$

2. Use the graphical method to solve this model

- 3. Verify the exact value of your optimal solution from part by solving algebraically for the simultaneous solution of the relevant two equations
 - a. Since we obtained the maximum possible profit P = 3600 through graphing method, we will determine the values of the decision variables by solving the systems of inequalities in the given constraints:

$$\begin{cases} 3x_1 + 2x_2 \le 2400 \\ 0x_1 + 1x_2 \le 800 \Rightarrow x_2 \le 800 \\ 2x_1 + 0x_2 \le 1200 \Rightarrow x_1 \le 600 \end{cases}$$

Since $P = 5x_1 + 2x_2$, thus each x_1 units mostly influence the maximum profit P thus direct substitute $x_1 = 600$ to equation 1:

$$\begin{cases} 3x_1 + 2x_2 \leq 2400 \Rightarrow 2x_2 \leq 2400 - 3(600) \Rightarrow 2x_2 \leq 600 \Rightarrow x_2 \leq 300 \\ x_2 \leq 800 \\ x_1 \leq 600 \end{cases}$$

This means, that considering $x_1 = 600$, then x_2 has least upper bounded by 300

$$\begin{cases} x_2 \le 300 \\ x_2 \le 800 \\ x_1 \le 600 \end{cases}$$

Thus, the decision therefore $x_1 = 600$ and $x_2 = 300$ to achieve maximum profit P = 3600

Consider the model

$$Minimize Z = 40x_1 + 50x_2$$

that is subject to

$$2x_1 + 3x_2 \ge 30$$

$$x_1 + x_2 \ge 12$$

$$2x_1 + x_2 \ge 20$$

and

$$x_1 \ge 0, x_2 \ge 0$$

1. Use graphical model to solve the model

APM1137

The decision shall be made to minimize Z are when $x_1 = 7.5$ and $x_2 = 5$; graphically, this is where point C intersects within the feasible region that would give Z = 550, this is relatively lowest amount as compared to point A or B.

2. How does the optimal solution change if the objective function is changed to $Z = 40x_1 + 70x_2$

As each unit of x_2 increases, it became more valuable in Z from $40x_1 + 50x_2$ to $40x_1 + 70x_2$ thus the line gets way steeper with respect to x_2 , that is why we need at least Z = 600 = 40(15) + 70(0) to achieve minimum amount of Z given $x_1 = 15$ and $x_2 = 0$ units respectively.

3. How does the optimal solution change if the third functional constraints are changed to $2x_1 + x_2 \ge 15$

As we go back to the original $Z = 40x_1 + 50x_2$ but the third functional constraint were changed, the entire feasible region or solution has also been altered, such that it gives us 4 possible decisions due to the new premise that the third constraints had to offer. The minimum amount of Z that satisfies all constraints shall be Z = 540 where the decisions are $x_1 = 6$ and $x_2 = 6$.