1. If the input to the following algorithm is an odd, composite, non-Carmichael number; then show that $\Pr(Error) \leq \frac{1}{2}$.

4

Algorithm 1 Fermat's Test

```
1: procedure IsPRIME(n)
2: Select a \in \{1, 2, \dots n-1\} uniformly at random
3: if a^{n-1} \equiv 1 \pmod{n} then
4: print "Prime"
5: else
6: print "Composite"
7: end if
8: end procedure
```

Solution: Proved in the class.

2. If n is an odd Carmichael number then show that $n = p_1 \cdot p_2 \cdots p_t$ for some primes $p_1, p_2, \dots p_t$ satisfying $(p_i - 1)$ divides (n - 1) for $i = 1, 2, \dots t$.

4

Solution: Proved in the class.

3

3. What is the order of 538 in \mathbb{Z}_{1287}^* ?

Solution: We know that the group $(\mathbb{Z}_{1287}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*, \times)$. [Here $f: \mathbb{Z}_{1287}^* \to \mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*$, defined by $f(a) = (a \mod 9, a \mod 11, a \mod 13)$, is the isomorphism function.]

Since f is an isomorphism, the order of 538 in \mathbb{Z}_{1287}^* is same as the order of f(538) [which is equal to (-2, -1, 5)] in $(\mathbb{Z}_9^* \times \mathbb{Z}_{11}^* \times \mathbb{Z}_{13}^*, \times)$.

Calculating the powers of (-2, -1, 5), we get $(-2, -1, 5)^1 = (-2, -1, 5)$, $(-2, -1, 5)^2 = (4, 1, -1)$, $(-2, -1, 5)^3 = (-8, -1, -5) = (1, -1, -5)$, $(-2, -1, 5)^4 = (4, 1, -1)^2 = (-2, 1, 1)$ and so on. We find that 12 is the smallest exponent e such that $(-2, -1, 5)^e = (1, 1, 1)$; and so the order is 12.

2

4. For $n=p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t}$, we used the isomorphism between (\mathbb{Z}_n^*,\times) and $(\mathbb{Z}_{p_1^{e_1}}^*\times\mathbb{Z}_{p_2^{e_2}}^*\times\cdots\times\mathbb{Z}_{p_t^{e_t}}^*,\times)$ to calculate the value of $\varphi(n)$. Can we use the same technique to calculate the value of $\varphi(p_i^{e_i})$ for $i=1,2,\ldots t$. Justify your answer.

Solution: For $n = n_1 \cdot n_2 \cdots n_t$, the Chinese Remainder Theorem requires n_i to be pairwise coprime. Therefore, we cannot say that $(\mathbb{Z}_{p_i^e}^*, \times)$ is isomorphic to $(\mathbb{Z}_{p_i}^* \times \mathbb{Z}_{p_i}^* \times \cdots \times \mathbb{Z}_{p_i}^*, \times)$

5. If $n = 2 \cdot p^e$ for some odd prime p, then show that \mathbb{Z}_n^* is cyclic.

3

Solution: We know that $\mathbb{Z}_{p^e}^*$ is cyclic for all primes p. Therefore it has a generator. Let g be a generator of $\mathbb{Z}_{p^e}^*$.

The order of (1,g) in $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is same as the order of g in $(\mathbb{Z}_{p^e}^*, \times)$, which is equal to $p^{e-1}(p-1)$. Since $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is isomorphic to $(\mathbb{Z}_{2p^e}^*, \times)$, the order of (1,g) in $(\mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*, \times)$ is same as the order of $f^{-1}(1,g)$ in $(\mathbb{Z}_{2p^e}^*, \times)$. [Here $f: \mathbb{Z}_{2p^e}^* \to \mathbb{Z}_2^* \times \mathbb{Z}_{p^e}^*$ is the isomorphism function]. Therefore, the order of $f^{-1}(1,g)$ in $(\mathbb{Z}_{2p^e}^*, \times)$ is $p^{e-1}(p-1)$.

Since the size of $(\mathbb{Z}_{2p^e}^*, \times)$ is $\varphi(2p^e) = 2p^e(1 - \frac{1}{2})(1 - \frac{1}{p}) = p^{e-1}(p-1)$, therefore $f^{-1}(1,g)$ is the generator of $(\mathbb{Z}_{2p^e}^*, \times)$. Hence $(\mathbb{Z}_{2p^e}^*, \times)$ is a cyclic group.

6. Give a subgroup of \mathbb{Z}_{323}^* of size 18.

Solution: We know that the group $(\mathbb{Z}_{323}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$. [Here $f: \mathbb{Z}_{323}^* \to \mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*$ is the isomorphism function.]

It is easy to see that $(\{1\} \times \mathbb{Z}_{19}^*, \times)$ is a subgroup of $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$ of size 18. Since the group $(\mathbb{Z}_{323}^*, \times)$ is isomorphic to the group $(\mathbb{Z}_{17}^* \times \mathbb{Z}_{19}^*, \times)$, therefore $(f^{-1}(\{1\} \times \mathbb{Z}_{19}^*), \times)$ is a subgroup of $(\mathbb{Z}_{323}^*, \times)$ of size 18. [Here $f^{-1}(\{1\} \times \mathbb{Z}_{19}^*)$ denotes the set $\{x \in \mathbb{Z}_{323}^* \mid f(x) \in \{1\} \times \mathbb{Z}_{19}^*\}$].

By Chinese Remainder Theorem, we get $f^{-1}(\{1\} \times \mathbb{Z}_{19}^*) = \{17x + 1 \mid 0 \leqslant x < 18\}.$

4