Modelagem de Dados

Modelos de banco de dados

Eduardo Furlan Miranda 2025-07-01

Adaptado de: WERLICH, C. *Modelagem de Dados*. Londrina: EDE SA, 2018. ISBN 978-85-522-1154-9.

Introdução à Modelagem de Dados

- A tecnologia no dia a dia
 - Utilização de aplicativos em computadores, tablets e smartphones para diversos fins
 - Empresas oferecendo serviços diferenciados via aplicações
 - Exemplo: sistemas bancários para pagamentos e transferências
- A importância da modelagem de banco de dados
 - Etapa primordial para o sucesso das aplicações
 - Equívocos no modelo podem causar funcionalidades incorretas
 - Impacto negativo para a empresa e seus clientes

O Papel do Analista de Sistemas e Levantamento de Requisitos

- Função do analista de sistemas
 - Levantar requisitos para entender as necessidades do cliente
 - Iniciar o processo de modelagem de dados
- Estudo de caso: Oficina mecânica de carros importados
 - Oficina de pequeno porte necessita controle de peças usadas nos serviços
 - Necessário conhecer a rotina de trabalho da empresa
 - Agendamento de visitas para conversar com funcionários
- Informações levantadas sobre a oficina
 - Cadastro de clientes e seus carros
 - Controle de pequeno estoque de peças (de alto giro)

Requisitos da Oficina Mecânica

- Continuação das informações levantadas
 - Necessidade de controle sobre as atividades dos funcionários, requerendo cadastro
 - Para cada serviço: verificação de executor, materiais e tempo
 - Atendimento por ordem de chegada, sem agendamentos prévios
 - Lista de clientes VIPs com preferência de atendimento
- Questões a serem respondidas
 - Quais entidades (tabelas) podem ser listadas para o modelo conceitual
 - Que informações guardar em cada tabela
 - Qual SGBD recomendar
- A modelagem de dados como destaque na carreira do analista
 - Ser eficiente neste item é um dos destaques da profissão
 - Planejar um sistema corretamente previne problemas futuros

O Que é Modelagem de Dados

- Definição e processo
 - Processo que se repete de forma progressiva (Coronel e Rob, 2011)
 - Inicia com compreensão simples e amplia detalhes com melhor entendimento
 - Fase mais crucial no desenvolvimento de software
- Consequências de um projeto apressado
 - Desempenho abaixo do esperado
 - Consultas complicadas e resultados equivocados
 - Impacto negativo na performance do software
- Modelo de dados: detalhamento dos tipos de informações a serem guardadas (Cougo, 1997)
 - Construído com linguagem de modelagem de dados (textual ou gráfica)
 - Representação conhecida como esquema de banco de dados (Korth, Silberschatz, Sudarshan, 2012)

Exemplo de representação gráfica

Figura 2.1 | Exemplo de representação gráfica

Modelos Gráficos e a Comunicação

Modelo de dados

- Reprodução gráfica de estruturas de dados de situações reais (Coronel e Rob, 2011)
- Pode representar uma abstração de algo real ou objeto
- Finalidade: auxiliar na compreensão de situações reais
- Modelos gráficos para comunicação
 - Utilizados para simplificar a comunicação com o usuário
 - Exemplo: "RECEITA DE BOLO possui INGREDIENTES" é facilmente compreendido
 - Usuários tornam-se aptos a opinar com poucas explicações
- No contexto de banco de dados
 - O modelo representa as estruturas das tabelas, os dados e seus relacionamentos

Sequência do Processo de Modelagem de Dados

- Projeto de sistema de informações
 - Atividade complexa: planejamentos, especificações e desenvolvimento (Abreu e Machado, 2004)
 - Necessário estabelecer uma sequência de atividades para guiar a modelagem
- Transformação de objetos do mundo real
 - Objetos ou eventos do mundo real podem ser modelados e transformados em entidades (tabelas)
 - Exemplos de objetos: clientes, empresas, funcionários, produtos
 - Exemplos de eventos: reservas, atendimentos, locação
- Foco do projeto de banco de dados
 - Como a estrutura do banco será utilizada para armazenar e gerenciar todos os dados do sistema

Processo de modelagem de dados

Figura 2.2 | Processo de modelagem de dados

Fases da Modelagem de Dados

- Processo de modelagem de um banco de dados
 - Análise de requisitos: levantamento das necessidades do cliente
 - Modelo conceitual: não contém detalhes físicos, representa a realidade
 - Modelo lógico: descreve as estruturas contidas no banco de dados
 - Modelo físico: detalhamento ao nível do SGBD, criação de componentes
- Início de um banco de dados de sucesso
 - Começa no levantamento e análise de requisitos (Coronel e Rob, 2011)
 - Deve-se estudar o domínio do problema que o banco de dados deve solucionar
 - Reuniões com o cliente para detectar necessidades e rotinas de trabalho
 - Reduz a chance de problemas na modelagem por requisitos esquecidos

Pontos Importantes na Análise de Requisitos

- Considerações na análise de requisitos (Cougo, 1997)
 - Abrangência: determinar o escopo do projeto e processos a observar
 - Nível de detalhamento: definir o nível de detalhes que o projeto deverá possuir
 - Tempo para a produção do modelo: estabelecer um prazo, problemas podem ser rapidamente solucionados
 - Recursos disponíveis: determinar a quantidade de mão de obra para desenvolver o software
- Interação analista-usuário
 - Nenhum usuário entende todas as necessidades da aplicação (Korth, Silberschatz, Sudarshan, 2012)
 - Analista precisa interagir para identificar e criar as regras de negócio
 - Má execução desta parte pode levar a refazer a modelagem
 - Resulta em documentos de especificação do projeto validados com o cliente

Requisitos e Regras de Negócio

- Requisito vs Regra de Negócio
 - Requisito: refere-se às funcionalidades que o software deverá possuir
 - Regra de negócio: determina como o software deverá se comportar e quais restrições terá
 - Ambos possuem foco diferente
- Exemplos
 - Requisito: matricular o aluno na disciplina de estágio
 - Regra de negócio: o aluno somente será matriculado na disciplina de estágio caso não haja dependência no primeiro e no segundo semestre do curso
- Próximo passo após levantamento de requisitos: modelagem conceitual

Modelagem Conceitual: Descrição e Propósito

Modelagem conceitual

- Descrição concisa das informações que o software deverá possuir (Navathe e Ramez, 2005)
- É uma representação do que precisa ser realizado, não a solução do problema
- Gera um esquema conceitual ou uma visão mais abrangente e geral do banco de dados

Linguagens de representação

- Pode usar linguagens textuais ou linguagens gráficas
- Não há preocupação com as regras de modelagem de dados nesta fase
- Linguagem textual é menos utilizada por ser mais complexa com muitas informações

Entidades e atributos

- Exemplo textual de entidades Ator e Filme com alguns campos (Figura 2.3)
- Entidades geralmente possuem muitos atributos, dificultando a visualização textual

Figura 2.3 | Linguagem textual

Figura 2.3 | Linguagem textual

Ator: nome do ator, valor do cachê, data de nascimento, altura

Filme: nome do filme, data de lançamento, orçamento, duração

Figura 2.4 | Linguagem gráfica simplificada

Figura 2.4 | Linguagem gráfica simplificada

Vantagens do Modelo Conceitual

- Utilização de modelos de entidade relacionamento
 - Descrever esquemas para apresentar aos usuários
 - Sanar eventuais dúvidas de entendimento do software
- Exemplos de situações definidas na modelagem conceitual (universidade)
 - O aluno poderá se matricular em mais de um curso
 - Um professor pode lecionar em vários cursos
 - Uma turma pode ser composta por alunos de cursos diferentes
- Decisões do cliente
 - As perguntas são respondidas pelo cliente, que irá determinar essas situações
- Independência de SGBD
 - Nesta fase, não é levado em conta como as informações serão armazenadas no SGBD
- Benefícios do modelo conceitual (Coronel e Rob, 2011)
 - Fornece a visão de nível macro, de forma simplificada
 - Independente de hardware e de software
 - Não exige adaptações para determinado SGBD ou equipamento
 - Objetivo é a definição do problema e não a sua solução

Modelo Lógico do Banco de Dados

- Etapa de mapeamento
 - Mapeia o conceito de modelos de entidade e relacionamentos com foco na criação do banco de dados
- Transformações no modelo lógico
 - Entidades são transformadas em tabelas para armazenar as informações
 - Relacionamentos são estabelecidos e regras são definidas
 - Tipos de dados para cada campo da tabela são determinados (Korth, Silberschatz, Sudarshan, 2012)
- Nível de detalhe
 - Transforma-se de um modelo mais abstrato (conceitual) para um modelo com mais detalhes de implementação

Figura 2.5 | Forma Gráfica e Textual

Figura 2.5 | Forma Gráfica e Textual

Filme: (#código, nome, orçamento)

Características do Modelo Lógico

- Definição de Cougo (1997)
 - Modelo em que objetos, características e relacionamentos são representados de acordo com regras de implementação
 - Considera os limites impostos por alguma tecnologia de determinado SGBD
- Definição de relacionamentos e chaves
 - No modelo lógico, serão determinados os relacionamentos e as chaves entre as tabelas
- Formas de representação
 - Além da forma gráfica, pode-se utilizar a forma textual (Figura 2.5)
 - A forma textual ajuda a detalhar os atributos da tabela, deixando a gráfica mais "limpa"
 - Exemplo da Figura 2.5: campo chave "código" com o sinal "#" indicando sua importância
- Melhor prática de desenvolvimento
 - Um modelo lógico de dados deve ser criado a partir do modelo conceitual
 - Construção direta sem modelo conceitual compromete a participação do usuário e aumenta erros

Modelo Físico do Banco de Dados

- Última fase do projeto de banco de dados
 - Determina as estruturas de armazenamento interno
 - Define as chaves (ou índices) e os diversos caminhos de acesso à base de dados (Navathe e Ramez, 2005)
- Desenvolvimento de software de aplicação
 - Paralelamente às atividades de modelagem física, são criados os softwares de aplicação
 - Estes softwares irão interagir com o banco de dados implementado
- Regras e segurança
 - As regras de cada SGBD devem ser utilizadas nesta fase
 - Regras de segurança como políticas de backup e permissões de acesso devem ser implementadas

Ferramentas e Linguagens no Modelo Físico

- Linguagem Structured Query Language (SQL)
 - Utilizada na modelagem física (Korth, Silberschatz, Sudarshan, 2012)
 - Principal objetivo: a manipulação dos bancos de dados relacionais
 - Utilizada para interagir com o usuário e com o SGBD
 - Permite inserir, consultar, gerenciar, controlar transações, entre outras opções

Ferramentas CASE

- Cougo (1997) enfatiza o uso de ferramentas CASE
- Auxiliam nas tarefas do desenvolvimento de software, desde a análise de requisitos e modelagem
- Incluem programação e testes na elaboração dos modelos
- Sempre levando em conta o SGBD que será utilizado

Software de Aplicação

- Conceito de software de aplicação
 - Conjuntos de programas de computador com os quais o usuário pode realizar determinadas tarefas
- Interação com o banco de dados
 - Exemplo: o software acadêmico que a secretária utiliza é o software de aplicação
 - Este software acessa o banco de dados
 - O banco de dados é criado em um SGBD

Estudo de Caso: Gerenciamento Acadêmico Escolar

- Cenário: escola de ensino fundamental bilíngue
 - Necessita de um software para seu gerenciamento acadêmico
 - Analista de sistemas levantou requisitos essenciais após entrevistas
- Requisitos essenciais
 - Escola possui diversos departamentos (matemática, estudo da linguagem, etc)
 - Um departamento pode oferecer diversas disciplinas
 - Uma disciplina pertence a somente um departamento
- Continuação dos requisitos
 - Um aluno somente pode estar matriculado em um único curso
 - Uma mesma disciplina pode constar no currículo de diversos cursos
 - Todo professor pertence a um departamento e poderá lecionar em diversas disciplinas

Atributos das Entidades do Estudo de Caso

- Atributos para as entidades
 - Professores: código, nome, formação, endereço, telefone
 - Curso: código, nome, sigla
 - Disciplinas: código, denominação, sigla, ementa
 - Departamentos: código, denominação
 - Aluno: matrícula, nome, endereço, telefone, filiação e data de nascimento
- Modelo conceitual simplificado
 - Elaborado conforme os requisitos determinados pelo cliente (Figura 2.7)
 - Objetivo é mostrar a estrutura macro do banco de dados

Modelo Lógico de uma Escola (modelo conceitual simplificado)

Figura 2.7 | Modelo Lógico de uma Escola

Figura 2.8 | Modelo Lógico em um SGBD

Figura 2.8 | Modelo Lógico em um SGBD

Modelo Lógico e Físico do Estudo de Caso

- Modelo Lógico (Figura 2.8)
 - Exemplo de modelo lógico do estudo de caso
 - Novas entidades apareceram: 'Currículo' e 'Prof-Disc'
 - Simplificado para fins didáticos, utilizando o SGBD Access®
- Modelo Físico
 - A última etapa, o modelo físico, dependerá do SGBD a ser utilizado
 - Exemplo de comando SQL para criar uma tabela (Figura 2.9)
- Exemplo de comando SQL (Figura 2.9)
 - CREATE TABLE Departamento (
 - cod_dep int primary key not null,
 - departamento varchar(150));
- Reflexão sobre complexidade
 - O modelo lógico é sempre mais complexo que o modelo conceitual
 - Questionamentos sobre onde encaixar boletim, diário do professor ou formação do professor como tabela

Figura 2.9 | Exemplo comando SQL

Figura 2.9 | Exemplo comando SQL

create table Departamento (
cod_dep int primary key not null,
departamento varchar(150));

Importância das Etapas de Modelagem

- Relevância das primeiras etapas
 - Modelagem conceitual e lógica são de grande relevância
 - São essenciais para atender às necessidades do cliente
- Última etapa: modelagem física
 - Está voltada diretamente ao SGBD escolhido para a criação do banco de dados
- Importância de cada etapa
 - Cada etapa possui a sua importância
 - Projetar um banco de dados é vital para o sucesso do software que está sendo desenvolvido

Prática: Modelagem para Oficina Mecânica

- Sua missão como empreendedor
 - Realizar um modelo conceitual para apresentar ao sr. Ruddy, proprietário da oficina
 - O passo inicial é observar os requisitos levantados
- Requisitos da oficina para o software
 - Necessário cadastro de clientes e de seus carros
 - Pequeno estoque de peças (de alto giro)
 - Necessidade de controle sobre as atividades dos funcionários
- Continuação dos requisitos
 - Para cada serviço: verificação de executor, materiais e tempo
 - Não há agendamentos prévios, atendimento por ordem de chegada
 - Lista de clientes VIPs com preferência de atendimento
- Identificação de tabelas
 - Buscar por substantivos fortes que indiquem informações guardáveis em um banco de dados
 - Exemplo: "clientes" e "carros" podem gerar tabelas Cliente e Carro

Tabelas e Atributos para Oficina Mecânica (Exemplo)

- Exemplo de informações para tabelas
 - Tabela: Cliente
 - nome, CPF, endereço, CEP, telefone fixo, celular, e-mail, data de nascimento
 - Tabela: Carro
 - placa, modelo, ano, tipo de combustível, quilometragem
- Campos para identificação
 - Os campos sublinhados ajudam a identificar as informações de cada tabela

Exercício Prático: Modelagem Oficina Mecânica

- Sua tarefa (continuação)
 - Encontrar mais campos para as tabelas Cliente e Carro
 - Observar os demais requisitos e encontrar mais tabelas e seus respectivos campos
 - Em cada tabela, sublinhar um campo que você considera o mais importante para identificar o registro dela
- Criação do modelo conceitual
 - Crie o modelo de forma textual (continue conforme as duas tabelas de exemplo)
 - Crie mais campos nas tabelas e sublinhe o campo mais importante
 - Aponte qual SGBD você indicaria para ser utilizado no desenvolvimento do software
 - Crie uma apresentação para o cliente

Avançando na Prática: Modelagem para Floricultura

- Descrição da situação-problema: Floricultura Flores Belas
 - Trabalha com entregas de flores e presentes
 - Acúmulo de encomendas e entregas em datas especiais
 - Será desenvolvido um software no ambiente Web para agilizar o processo
- Sua missão: elaborar um modelo conceitual do banco de dados da floricultura
- Requisitos básicos levantados
 - Necessário cadastrar clientes, encomendas, local de entrega e produtos
 - Um cliente poderá realizar várias encomendas
 - Cada encomenda pertence a apenas um cliente

Requisitos e Questões para Modelagem da Floricultura

- Continuação dos requisitos
 - Cada encomenda poderá ter vários produtos
 - Os produtos estão classificados por tipo: flores, chocolates, presentes, cartão, etc
 - Uma encomenda sempre deverá ter um local de entrega
 - Não será necessário o controle de pagamento (será feito via cartão de crédito)
- Tarefas a serem realizadas
 - Deverá criar o modelo conceitual gráfico
 - Responder: Quais são as tabelas que irão compor o modelo conceitual
 - Responder: Como ficará o relacionamento entre essas tabelas, no modelo conceitual e de forma gráfica
- Sugestão de modelo conceitual (Figura 2.10)
 - Podemos ter uma visão macro do funcionamento da floricultura
 - Servirá de partida para a próxima etapa de modelagem: o modelo lógico

Figura 2.10 | Modelo conceitual da floricultura Flores Belas

Figura 2.10 | Modelo conceitual da floricultura Flores Belas

Questão 1: Sequência de Modelagem

- Segundo Coronel e Rob (2011)
 - O modelo conceitual simula uma visão global do banco de dados
 - Disponibiliza uma visão geral de como o banco de dados é na realidade
 - É uma das ferramentas de comunicação entre o pessoal de desenvolvimento do software e o cliente

Questão

- Marque a alternativa que demonstra o nome do modelo que deve ser realizado após a criação do modelo conceitual:
 - Modelo físico
 - Modelo de entidades
 - Modelo de requisitos
 - Modelo lógico
 - Modelo particional

Questão 2: SQL e Modelagem

- Segundo Korth, Silberschatz e Sudarshan (2012)
 - Na modelagem física, é utilizada a linguagem Structured Query Language (SQL)
 - SQL tem como principal objetivo a manipulação dos bancos de dados relacionais
 - É utilizada para interagir com o usuário e o SGBD, permitindo inserir, consultar, gerenciar, controlar transações, entre outras opções

Questão

- Analise os itens atentamente e marque a opção correta e que complete a sentença respectivamente:
 - entidade SGBD
 - classe software
 - modelagem física SGBD
 - modelagem conceitual software
 - modelagem lógica programa de aplicação

Questão 3: Entender o Domínio do Problema

Sucesso de um banco de dados

- Começa muito antes do desenvolvimento do software
- Várias etapas devem ser realizadas para atender às expectativas e necessidades do cliente
- Uma etapa principal é entender o domínio do problema antes de efetivamente desenvolver o software

Questão

- Analise cuidadosamente os itens e marque a alternativa correta que demonstra o objetivo de "entender o domínio do problema":
 - Ajuda a equipe de usuários a criar novos atributos para as entidades
 - Ajuda a equipe de desenvolvimento a compreender questões relacionadas com a construção do sistema
 - É utilizado em último recurso, caso haja problemas no desenvolvimento do software
 - É utilizado diretamente na modelagem física do banco de dados, com auxílio do SGBD
 - Serve para estabelecer as restrições de acesso físico ao banco de dados