

NFA, ε-NFA and Moore, Mealy machines

Lecture 9 and 10

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \Phi \}$

Advantages & Caveats for NFA

- Great for modeling regular expressions
 - String processing e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
 - Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice)
 - They are not the same though
 - A parallel computer could exist in multiple "states" at the same time

- Micron's Automata Processor (introduced in 2013)
- 2D array of MISD (multiple instruction single data) fabric w/ thousands to millions of processing elements.
- 1 input symbol = fed to all states (i.e., cores)
- Non-determinism using circuits
- http://www.micronautomata.com/

But, DFAs and NFAs are equivalent in their power to capture langauges!!

Differences: DFA vs. NFA

DFA

- All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- Accepts input if the last state visited is in F
- Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

NFA NFA

- Some transitions could be non-deterministic
 - A transition could lead to a subset of states
- Not all symbol transitions need to be defined explicitly (if undefined will go to an error state – this is just a design convenience, not to be confused with "nondeterminism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct
- 5. Practical implementations limited but emerging (e.g., Micron automata processor)

Equivalence of DFA & NFA

Theorem:

Should be true for any L

A language L is accepted by a DFA <u>if and only if</u> it is accepted by an NFA.

Proof:

- 1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)

2. Only-if part is trivial:

Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- If-part: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to convert an NFA into a DFA?
 - Observation: In an NFA, each transition maps to a subset of states
 - Idea: Represent:

each "subset of NFA_states" → a single "DFA_state"

Subset construction

NFA to DFA by subset construction

- Let $N = \{Q_N, \sum, \delta_N, q_0, F_N\}$
- Goal: Build D={ Q_D , \sum , δ_D , { q_0 }, F_D } s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - F_D=set of subsets S of Q_N s.t. S∩F_N≠Φ
 - $δ_D$: for each subset S of Q_N and for each input symbol a in Σ:

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

• $L = \{ w \mid w \text{ ends in } 01 \}$

NFA:

	δ_{N}	0	1
	\mathbf{q}_0	$\{q_0,q_1\}$	{q ₀ }
•	q_1	Ø	{q ₂ }
	*q ₂	Ø	Ø

DFA:

δ_{D}	0	1
 ▶[q ₀]	[q ₀ ,q ₁]	[q ₀]
[q ₀ ,q ₁]	[q ₀ ,q ₁]	[q ₀ ,q ₂]
*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

- 0. Enumerate all possible subsets
- 1. Determine transitions
- 2. Retain only those states reachable from $\{q_0\}$

Correctness of subset construction

<u>Theorem:</u> If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N)

- Proof:
 - Show that $\delta_D(\{q_0\}, w) \equiv \delta_N(q_0, w)$, for all w
 - Using induction on w's length:
 - Let w = xa
 - $\bullet \ \, \overline{\delta}_{D}(\{q_{0}\},xa) \equiv \overline{\delta}_{D}(\widehat{\delta}_{N}(q_{0},x), a) \equiv \widehat{\delta}_{N}(q_{0},w)$

Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
 - Example: Google querying
- Extensions of this idea:
 - PATRICIA tree, suffix tree

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to <u>consume</u> the next symbol from the input and when to <u>ignore</u> it.
 - (but the machine can never <u>skip</u> a symbol)
- => A transition can happen even without really consuming an input symbol (think of consuming ε as a free token) if this happens, then it becomes an ε-NFA (see next few slides).
- A single transition cannot consume more than one (non-ε) symbol.

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

 ε -NFAs have one more column in their transition table

Example of an ε-NFA

 $L = \{w \mid w \text{ is empty, } \underline{or} \text{ if non-empty will end in } 01\}$

ECLOSE(q₂)

{}

 $\{q_2\}$

0,1

 $*q_2$

{}

ε-closure of a state q,
 ECLOSE(q), is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε-transitions.

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of an ε-NFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in 01}\}$

Simulate for w=101:

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of another ε-NFA

	δ_{E}	0	1	3
	*q' ₀	{}	{}	{q' ₀ ,q ₀ ,q ₃ }
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_{0,}q_{3}\}$
	q_1	{}	{q ₂ }	{q ₁ }
	*q ₂	{}	{}	$\{q_2\}$
	q_3	{}	{q ₂ }	{q ₃ }

Simulate for w=101:

?

Equivalency of DFA, NFA, ε-NFA

Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA

Implication:

- DFA \equiv NFA \equiv ϵ -NFA
- (all accept Regular Languages)

Eliminating ε-transitions

```
Let E = \{Q_E, \sum, \delta_E, q_0, F_E\} be an \epsilon-NFA

<u>Goal</u>: To build DFA D = \{Q_D, \sum, \delta_D, \{q_D\}, F_D\} s.t. L(D) = L(E)

<u>Construction</u>:
```

- Q_D = all reachable subsets of Q_E factoring in ε-closures
- $q_D = ECLOSE(q_0)$
- F_D=subsets S in Q_D s.t. S∩F_F≠Φ
- δ_D: for each subset S of Q_E and for each input symbol a∈Σ:
 - Let $R = \bigcup_{p \text{ in } s} \delta_E(p,a)$

// go to destination states

// from there, take a union of all their ε-closures

Example: ε-NFA → DFA

L = {w | w is empty, or if non-empty will end in 01}

	δ_{E}	0	1	3
\rightarrow	*q' ₀	{}	{}	{q' ₀ ,q ₀ }
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0\}$
	q_1	{}	$\{q_2\}$	$\{q_1\}$
	*q ₂	{}	{}	$\{q_2\}$

	δ_{D}	0	1
\rightarrow	*{q' ₀ ,q ₀ }		
	•••		

Example: ε-NFA → DFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in 01}\}$

Extended Transition Function for NFAs

For above NFA process string 00101??

Extended Function for ε-NFA

• Let compute $\delta(q0,5.6)=??$

Moore and Mealy Machines

Definition and example will be demonstrate in class

S

Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA & NFA
- Removal of redundant states and including dead states
- ε-transitions in NFA
- Extended Transition function
- Moorey and Melay machine
- Text searching applications