Ranking Factors of Team Success

Nataliia Pobiedina, Julia Neidhardt, Maria del Carmen Calatrava Moreno, and Hannes Werthner

Julia Neidhardt

julia.neidhardt@ec.tuwien.ac.at

Agenda

- Background and Motivation
- The Game and Its Community
- The Dataset
- Factors of Team Success
- Ranking Factors of Team Success
- Conclusion and Future Work

Background and Motivation

- Vast amount of data on the Web allow for observing social interactions on a large scale
- We want to study cooperation within teams and factors of team success
- For this we use the multiplayer online game Dota 2
- Here players are always assigned to a team with common goals and interest

The Game and Its Community

- Multiplayer Online Battle Arena game by Valve
- Two teams of five players
- Each player controls a "hero" that evolves through destruction of enemy forces
- One match: on average 45 minutes
- Steam platform: social network around Dota 2

http://www.dota2wiki.com/wiki/Dota 2 Wiki, 01/13

The Game and Its Community (2)

- Heroes are unique characters:
 - 66 distinct heroes
 - Through combination of initial attributes heroes are suited for different strategies ("roles")

Crucial: Strategies should be chosen based on all heroes in the team

http://www.dota2wiki.com/wiki/Dota 2 Wiki, 01/13

The Dataset

Factor 1: Players' Experience

Win?	#Previous Played Matches	#Previous Won Matches	Time Played (min)	 #Deaths
0	10	7	320	25

Logistic regression

Experience score for each player in a team

Average of experience scores of team members

Team's experience score

→ **Result:** Team's experience score has a high impact on team success (p<0.007)

Factor 2: Selected Heroes

Win?	Strength	Agility	Intelligence	 Attack Range
1	18	16	27	625

Logistic regression

Score for each hero

Average of scores of heroes in a team

Team's hero score

→ **Result:** Team hero score has a high impact on team success ($p < 1.8 \times 10^{-6}$)

Factor 3: Friendship Ties

For each player: number of friends (on Steam platform) within the team

Result: Number of friends within the team has a high impact on team success $(p < 2.2 \times 10^{-16})$

Factor 4: National Diversity

Number of distinct countries in a team

■ Not all countries know → filter dataset

■ **Result**: Teams with *one*or two countries are

more likely to win than

teams with three or more

countries (p<0.04)

Factor 4: National Diversity (2)

 Next step: subdivision of matches according to their difficulty, i.e., low, normal, high.

Results:

Difficulty	Low	Medium	High
p-value	<0.004	0.184	0.421

→ Teams perform better if members are only from one or two countries; in particular if players are not so advanced

Ranking Factors

- Quantification of influence of different factors
 - We exclude Factor 4 (smaller dataset, low significance level)

Win?	Factor 1	Factor 2	Factor 3
1/0	Team Experience Score	Team Hero Score	Maximum # of Friends

Logistic regression

Fitted Model

Goodness-of-Fit Tests

Ranking of Factors

Ranking Factors (2)

Ranking		χ²	Df	p-value
Factor 3	Maximum number of friends: measures the social ties inside the team	210.6	4	<2.0 ×10 ⁻⁴⁴
Factor 2	Team hero score: is related to the chosen characters	89.8	1	<2.7 ×10 ⁻²¹
Factor 1	Team experience score: aggregates the experience of the team members	72.7	1	<1.5 × 10 ⁻¹⁷

(Analysis of variance, Type III test with likelihood-ratio χ^2 statistics)

Ranking Factors (3)

Model Summary:

***p<0.01

win	Coefficient	Std. Error
constant	-0.067***	0.01
max # friends = 4	0.283***	0.026
max # friends = 3	0.191***	0.019
max # friends = 2	0.108***	0.014
max # friends = 1	0.038***	0.012
team hero score	0.16***	0.017
team experiences score	-0.144***	0.017

Number of Observations: 174,404

Conclusion and Future Work

- Data from online games can be used to infer social behavior pattern
- Results imply that friendship ties and strategy of the entire team are more crucial than experience of players
- Future work:
 - Extent the model to account also for other factors
 - Introduce more sophisticated measures of team experience and role distribution
 - Apply network analysis to study friendship ties
 - Take into account cultural distance

