of amount of which we is there are

want belongist in fruit while the

of attendance that the

P.

P -> polynomial Time.

Prefers to the class of decision problem that can be solved by a deterministic Turing machine in polynomial Time. In simple terms, A problem is solvable easily in the polynomial Time based on the Algerithms efficiency and input Taken it is called as P type problem.

> Time complexity is less. (O(n^k)).

Example:

- 1) searching (O(logn))
- 2) Sorting (O(logn))
- 3) Matrix Multiplication

NP:

NP -> Non-Deterministic Polynomial Time.
Note: NP does not stand For non-polynomial

- > NP refers to the set of decision problems for which a given solution can be verified in polynomial Time. While a solution to an NP problem might be difficult to find, if someone provides a solution, if can be sheeked relatively.
 - > In other words, It is a type of computational problem that if a solution is given it can be

Verified in polynomial Time. However, there may not necesorily be an efficient algarithm to find the solution itself in Polynomial Time.

> The Time domplexity you problems in NP in exponential. (2 ^ O(n^k)).

- Example:

 1) Travelling sales purson (O(n²2n)).
 - 1) Knapsack problem (0(2,1/2).)
 - 3) braph doloring (2n)

Diffurence between P & NP Problem.

NP class problems
Problems in NP can be Verified in polynomial Time. but might hot have known Polynomial-time Algorithm For their solutions.
All the NP dass problems are basifally non-determing - nistic
Every problem which is in NP is not the P class problem.
NP class problems can not be solved efficiently.
Eg: Knapsouk problem,

Relation between P & NP:

Trackable: Problems van be solved in polynomial Time.

In Trackable: cannot be solved in polynomial Time.

NP-Hard:

> A problem is NP-hard if its at least as hard as the hardest problem is NP.

> A polynomial-time algorithm for any NPhard problem, it would imply that P=NP. > NP hand problems are difficult to solve and often serve as a benchmark For problem complexity.

NP-complete:

> NP-somplete problem are a subset of NP problems that are the hardest problem in NP.

- > It includes both in NP and NP-hand, they belongs to the class of problem where solutions can be quickly verified.
- > Solving any NP-complete problem in polynomial Time would imply that every problem in NP Could also be isolved in polynomial time (ie, P=NP).

Example:

P class Problem:

Let us Take Dijkstras Algorithm:

 $a \rightarrow c = 2$ $a \rightarrow c \rightarrow b \rightarrow 2+1 = 3$, b = 3 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow 3+5 = 8$, d = 8 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow E \rightarrow 8+2 = 10$, e = 10 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow E \rightarrow 2$ 10+3 = 13, Z = 13.

[a-7c-7b-7d-7e-72]-7 is the minimum path Time complexity: O((V+E) * log (V)).

When our

NP class problem:

Knapsack problem:

1. Find the most valuable unbest of item that fit into the knap-sack.

Item	weight	Value	10
1.	1617	\$42	W=10
2	3	\$ 12	
3	4	\$ 40	
4	5	\$ 25	

Item	weight	Value
One passible.		adams 3
	:	\$42
	7	
2.	9 3	\$ 12
3	4	\$ 40
4		\$ 25
Two possible	5	A
		\$ 54
1,2	10	\$ 7 NO.F.S
114	12	*)
2,3	7	\$\$52
2,4	8	₹ \$3₹
3/4		\$ 365
Three possible	9	W. LY
1,2,3	14	X7
1,2,4	15	x No granble
1., 3,4	15	* polition
2, 3,4	12	
Four panible	. 101	X y
1,2,3,4		X

optimal solution = (3,4) w=9 V=\$65Time complexity = O(nw).

of the south of the state of the

NP-Hard Problem: (Travelling solesmen problem)

 $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a = 2+8+1+7=18$ $-a \rightarrow b \rightarrow d \rightarrow c \rightarrow a = 2+3+1+5=11$ $-a \rightarrow c \rightarrow b \rightarrow d \rightarrow a = 5+8+3+7=23$ $-a \rightarrow c \rightarrow d \rightarrow b \rightarrow a = 5+1+8+9=11$ $-a \rightarrow d \rightarrow b \rightarrow c \rightarrow a = 7+3+8+5=23$ $-a \rightarrow d \rightarrow c \rightarrow a = 7+1+8+2=18$

Ly optimal solution.

Time complexity: o(n^2*2^n)

was it in the

NP- complete Problem: (subset problem)

hodes -> {3,5,6,7}

D-715 V Destination (07) Required Value. > Initially start with o node.

broke - W

Steps:

> I runt the values on both side of the hodes

untill all the nodes insert.

> Choose the way to find the Target value node

Time complexity: O(n * sum)

Short out method to sheek answer:

0=15

Add the nodes which will give this solution.

D = {3,5,7}

Hure, wob is not calculated.