Семинар 8. ЭЛЕМЕНТЫ ОБЩЕЙ АЛГЕБРЫ. МОНОИДЫ И ПОЛУГРУППЫ

1. Бинарные операции

Пусть на множестве A определена бинарная операция, обозначаемая * .

Определение 8.1. Бинарная операция * называется:

1) ассоциативной, если для любых x, y, z

$$(x*y)*z = x*(y*z);$$

2) коммутативной, если для любых x, y

$$x * y = y * x;$$

3) идемпотентной, если для любого x

$$x * x = x$$
.

а) Теоретико-множественные операции ∪, ∩ являются ассоциативными, так как

$$(A \cup B) \cup C = A \cup (B \cup C);$$

$$(A \cap B) \cap C = A \cap (B \cap C);$$

коммутативными, так как

$$A \cup B = B \cup A; \quad A \cap B = B \cap A;$$

и идемпотентными, так как

$$A \cup A = A; \quad A \cap A = A;$$

б) Операция \ разности не является ассоциативной, так как

$$A \setminus (B \setminus C) \neq (A \setminus B) \setminus C$$
.

Определение 8.2.

Группоидом называется любое множество с одной бинарной операцией.

Группоид, операция которого ассоциативна, называется **полугруппой**.

Пример 1.

а) Множество натуральных чисел с операцией сложения будет полугруппой, поскольку

$$(a+b) + c = a + (b+c).$$

б) Множество 2^A всех подмножеств множества A с операцией теоретико-множественной разности \setminus только группоид, но не полугруппа, поскольку операция \setminus не ассоциативна.

Задача 4.1

Является ли алгебра (M,\odot) полугруппой, если:

(a)
$$M = \mathbb{N}, \quad x \odot y = 2xy$$
;

(6)
$$M = \mathbb{R}, \quad x \odot y = \sin(x) \cdot \sin(y)$$
.

Определение 8.3. Элемент 1 множества A называется левым (правым) нейтральным элементом относительно данной операции, если для любого $x \in A$ 1 * x = x (x * 1 = x). Нейтральный элемент, который является одновременно левым и правым, называется просто нейтральным элементом.

Нейтральный элемент часто называют единицей.

Определение 8.4. Полугруппа, в которой существует нейтральный элемент относительно операции, называется **моноидом**.

Моноид часто называют полугруппой с единицей.

Пример 2.

Пустое множество \varnothing является $e\partial u h u u e \ddot{u}$ относительно объединения, так как для любого множества X

$$X \cup \emptyset = X$$
.

Алгебра $(2^A, \cup)$ — моноид.

Универсальное множество U есть $e\partial u h u u a$ относительно пересечения, так как для любого множества $X \subset U$

$$X \cap U = X$$
.

Алгебра $(2^U, \cup)$ — моноид.

Задача 4.2. На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) — полугруппа. Что можно сказать о нейтральных элементах этой полугруппы?

Задача 4.3. Пусть S — полугруппа матриц вида $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, $x,y \in \mathbb{R}$ с операцией умножения. Существуют ли в этой полугруппе левый или правый нейтральные элементы?

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 8.5. Элемент 0 множества A называется **левым (правым) нулем** относительно данной операции, если для любого $x \in A$ $\mathbf{0} * x = \mathbf{0} (x * \mathbf{0} = \mathbf{0}).$

Нуль, который является одновременно левым и правым, называется просто **нулем**.

Пример 3.

Пустое множество \varnothing является $\mathit{нулем}$ относительно пересечения, так как для любого множества X

$$X \cap \emptyset = \emptyset$$
.

Универсальное множество U есть $\mathit{нуль}$ относительно объединения так как

$$X \cup U = U$$
.

Задача 4.4. Пусть S — полугруппа матриц вида $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, $x,y \in \mathbb{R}$, с операцией умножения матриц. Существуют ли в этой полугруппе левый или пра-

вый нули? Сколько?

First

□ Prev

□ Next
□ Last
□ Go Back
□ Full Screen
□ Close
□ Quit

Домашнее задание.

Задача Д4.1 Является ли алгебра (M, \odot) полугруппой или моноидом, если:

(a)
$$M = \mathbb{Z}, \quad x \odot y = x^2 + y^2;$$

- (6) $M = [0, 1], \quad x \odot y = \min x, y;$
- (B) $M = \mathbb{R}, \quad x \odot y = x y$.

Задача Д4.2. На множестве M^2 , где M — некоторое множество, определена операция \circ по правилу $(x,y)\circ(z,t)=(x,t)$. Является ли (M^2,\circ) полугруппой? Моноидом?

Задача Д4.3. Является ли группоид $(2^A, \triangle)$ полугруппой? Моноидом?