- 1) (15P) Kondensatornetzteil: Die Leistung an einem ohmschen Verbraucher soll durch einen Vorschaltkondensator reduziert werden.
 - Der Verbraucher soll dadurch folgende Werte haben: U_R=200V; I=300mA
 - Die Gesamtspannung beträgt: Uges=230V bei f=50Hz
 - a) (15P) Skizzieren Sie ein Spannungszeigerdiagramm im Maßstab 1cm:50V und lesen Sie daraus die Spannung Uc am Kondensator ab.
- 2) Die Spannungen von 2 in Serie geschalteter Bauteile, die von einem sinusförmigen Wechselstrom mit 1kHz durchflossen werden, sollen zur Gesamtspannung addiert werden.
 - U_1 : \hat{U}_1 =40V; ϕ_1 =+30°
 - U₂: \hat{U}_1 =20V; ϕ_2 =-90°
 - a) (15P) Berechnen Sie eine Nullstelle t_N von U₁.
 - b) (5P) Berechnen Sie den Effektivwert U_{1eff} von U₁.
- (25P) An einem Wechselstromwiderstand wurden folgende Zeitverläufe gemessen.
 - a) (5P) Ermitteln Sie die Frequenz.
 - b) (10P) Berechnen Sie den Betrag des Widerstands |Z|.
 - c) (10P) Ermitteln Sie den Phasenwinkel der Spannung und wählen Sie welche Komponenten in dieser Last enthalten sein müssen:
 - □ ohmscher Widerstand R
 - □ Induktivität L
 - □ Kapazität C

- 4) (30P) Der Motor einer Modelleisenbahn soll als R-L-Serienschaltung modelliert werden.
 - Bei Nennspannung U_N=24V 50Hz fließt ein Strom I=500mA.
 - Mit dem Ohmmeter wird ein Wert von 24Ω gemessen.

Der Motor soll mit einem Vorschaltkondensator bei einer höheren Gesamtspannung von 48V 50Hz betrieben werden.

- a) (5P) Skizzieren Sie die notwendige Schaltung und zeichnen Sie alle bekannten Größen ein.
- c) (15P) Berechnen (nicht nur aus der Grafik ablesen) Sie den Vorschaltkondensator C.
- 5) (25P) Eine sinusförmige Spannung hat einen Spitzenwert von 100Volt, eine Frequenz von 50Hz und einen Phasenwinkel von -30°.
 - a) (5P) Berechnen Sie die Kreisfreguenz.
 - b) (5P) Berechnen Sie die Periodendauer.
 - c) (15P) Berechnen Sie das erste (t_{Max1}) und zweite (t_{Max2}) Maximum für t > 0.
- 6) (50P) Ein Wechselstromverbraucher stellt einen frequenzunabhängigen Widerstand von 100Ω dar und soll bei seiner Nennspannung $U_N=24V$ 50Hz betrieben werden. Um sich einen Transformator zu sparen, soll dieser Widerstand mit einem Vorschaltkondensator an 230Volt betrieben werden.
 - a) Skizzieren Sie die notwendige Schaltung und zeichnen Sie alle bekannten Größen ein.
 - b) Skizzieren Sie ein (nicht maßstäbliches) Spannungszeigerdiagramm.
 - c) Berechnen Sie den Vorschaltkondensator.