MA2001 Assignment 3

Xu Junheng Marcus

October 14, 2021

Problem 1

(i) Apply Gauss-Jordan elimination on A^T ,

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 6 \\ 2 & 1 & -4 & 3 \\ 3 & 3 & -3 & 6 \\ 3 & 2 & -5 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Therefore

$$\{(1,2,2,3,3),(2,4,1,3,2),(3,6,3,6,1)\}$$

is a basis for R(A) since it is a linearly independent subset of row vectors of A that spans R(A).

(ii) Apply Gauss-Jordan elimination on \boldsymbol{A} ,

$$\begin{pmatrix}
1 & 2 & 2 & 3 & 3 \\
2 & 4 & 1 & 3 & 2 \\
1 & 2 & -4 & -3 & -5 \\
3 & 6 & 3 & 6 & 1
\end{pmatrix} \xrightarrow{rref} \begin{pmatrix}
1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Since columns 2 and 4 are non-pivot, the extended basis for \mathbb{R}^5 is

$$\{(1,2,2,3,3),(2,4,1,3,2),(3,6,3,6,1),(0,1,0,0,0),(0,0,0,1,0)\}$$

(iii) From above, S corresponds to columns 2, 4, 5. Since

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 4 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -3 \\ 6 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2 \\ 4 \\ 2 \\ 6 \end{pmatrix}$$

S spans C(A). Moreover rank(A) = 3, so S is a basis for C(A).

(iv) No. Let M be a matrix in row echelon form. Suppose C(M) = C(A). Then rank(M) = 3. Note that

$$\begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1\\2\\1\\3 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3\\2\\-5\\1 \end{pmatrix} \not\in \boldsymbol{C}(\boldsymbol{M})$$

since basis vectors of C(M) are standard vectors.

- (i) $U_1 = \operatorname{span} \{ v_1, v_2, v_3 \}$ and $U_2 = \operatorname{span} \{ v_3, v_4 \}$. Sets $\{ v_1, v_2, v_3 \}$ and $\{ v_3, v_4 \}$ are subsets of S, hence linearly independent. Therefore $\dim U_1 = 3$ and $\dim U_2 = 2$. Consider $u = av_1 + bv_2 + cv_3 = dv_3 + ev_4 \in U_1 \cap U_2$ for some $a, b, c, d, e \in \mathbb{R}$. Then $av_1 + bv_2 + (c d)v_3 ev_4 = 0$. Since S is linearly independent we have a = b = e = 0 and c = d. So $\dim U_1 \cap U_2 = \dim \operatorname{span} v_3 = 1$.
- (ii) $W = \text{span} \{ v_1 + v_2, v_3 + v_4 \}$. The set $\{ v_1 + v_2, v_3 + v_4 \}$ is linearly independent, since $a(v_1 + v_2) + b(v_3 + v_4) = \mathbf{0} \iff a = b = 0$ by linear independence of S. Therefore $\dim W = 2$. WLOG suppose $v_1 = a(v_1 + v_2) + b(v_3 + v_4) \in W$ for some $a, b \in \mathbb{R}$. Then $(a-1)v_1 + av_2 + bv_3 + bv_4 = \mathbf{0}$ contradicts linearly independence of the set $\{ v_1 + v_2, v_3 + v_4 \}$.
- (iii) $\dim X_1 + \dim X_2 \dim X_1 \cap X_2 = \dim X_1 + X_2 \leq \dim V = \dim \operatorname{span} S = 4$. Then $2 \leq \dim X_1 \cap X_2 \leq \min \{\dim X_1, \dim X_2\} = 3$. Take $X_1 = X_2$. Then $\dim X_1 \cap X_2 = \dim X_1 = \dim X_2 = 3$. Take $X_1 = \operatorname{span} \{v_1, v_2, v_3\}$ and $X_2 = \operatorname{span} \{v_2, v_3, v_4\}$. Then $\dim X_1 \cap X_2 = \dim \operatorname{span} v_2, v_3 = 2$ by above.
- (iv) No. Suppose T is a subspace of V and $S \subseteq T \subset V$. Then $V = \operatorname{span} S \subseteq T \subset V$ contradicts.

Problem 3

(a)

$$D = \begin{pmatrix} x+1 & 1 & 1 & 1\\ 0 & x-2 & -3 & -3\\ 0 & 0 & (x+1)(x-2) & x+1\\ 0 & 0 & x-2 & 1 \end{pmatrix}$$

It suffices to consider x = -1, 2 and otherwise.

When x = -1, rank $(\mathbf{D}) = 2$.

$$D = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & -3 & -3 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 0 & 1 & 0 & 4/3 \\ 0 & 0 & 1 & -1/3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

When x = 2, rank $(\mathbf{D}) = 3$.

$$D = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 0 & 0 & -3 & -3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 1/3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Otherwise, third and fourth row are multiples of each other, so $rank(\mathbf{D}) = 3$. Therefore $rank(\mathbf{D}) = 2$ if x = -1 and $rank(\mathbf{D}) = 3$ otherwise.

- (b) (i) If \boldsymbol{A} is of full column rank, then null(\boldsymbol{A}) = { $\boldsymbol{0}$ } by rank-nullity theorem. Let T_A be the injective linear map from $\boldsymbol{C}(\boldsymbol{B})$ to $\boldsymbol{C}(\boldsymbol{A}\boldsymbol{B})$. Let S be a basis for $\boldsymbol{C}(\boldsymbol{B})$ and $T_A(S) = \{T_A(\boldsymbol{v}) \mid \boldsymbol{v} \in S\}$. Then $\sum_{\boldsymbol{v} \in S} \alpha_i T_A(\boldsymbol{v}) = T_A(\sum_{\boldsymbol{v} \in S} \alpha_i \boldsymbol{v}) = \boldsymbol{0} \iff \sum_{\boldsymbol{v} \in S} \alpha_i \boldsymbol{v} = \boldsymbol{0} \iff \alpha_i = 0 \text{ and } \boldsymbol{x} = T_A(\sum_{\boldsymbol{v} \in S} \alpha_i \boldsymbol{v}) \in \boldsymbol{C}(\boldsymbol{A}\boldsymbol{B}) \iff \boldsymbol{x} = \sum_{\boldsymbol{v} \in S} \alpha_i T_A(\boldsymbol{v}) \in \operatorname{span} T_A(S)$. Since $T_A(S)$ is linearly independent and it spans $\boldsymbol{C}(\boldsymbol{A}\boldsymbol{B})$, $T_A(S)$ is a basis for $\boldsymbol{C}(\boldsymbol{A}\boldsymbol{B})$. Since T_A is injective, rank $\boldsymbol{A}\boldsymbol{B} = \dim \boldsymbol{C}(\boldsymbol{A}\boldsymbol{B}) = |T_A(S)| = |S| = \dim \boldsymbol{C}(\boldsymbol{B}) = \operatorname{rank} \boldsymbol{B}$.
 - (ii) $\forall M \operatorname{rank} M = \operatorname{rank} M^T$ since column and row ranks are equal. Then $\operatorname{rank} AB = \operatorname{rank} (AB)^T = \operatorname{rank} A^T = \operatorname{rank} A$ by above.

(i) Let

$$\boldsymbol{N} = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 \\ -1 & 2 & 0 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1/2 & 1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \end{pmatrix}$$

Since $N^T A^T = (AN)^T = 0$.

$$\begin{pmatrix} 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1/2 & 1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \end{pmatrix} \boldsymbol{A}^T = \mathbf{0}$$

Then

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & ^{1/2} & ^{-1/2} \\ 0 & ^{1/2} & ^{1/2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & ^{1/2} & ^{1/2} & 0 & 1 & 0 \\ 0 & ^{-1/2} & ^{1/2} & 0 & 0 & 1 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 1 & -1 & 1 \end{pmatrix}$$

(ii) The general solution is

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + a \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 2 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

where $a, b, c \in \mathbb{R}$

(iii) True. dim $C(A) = \operatorname{rank} A = 6 - \operatorname{dim} \operatorname{null} A = 3 = \operatorname{dim} \mathbb{R}^3$ and $C(A) \subseteq \mathbb{R}^3$. Let S be a basis for C(A). Suppose $\exists v \in \mathbb{R}^3 \setminus C(A)$. Then $v \notin S$. Then $S \cup \{v\}$ is a set of 4 linearly independent vectors, which contradicts. Therefore $C(A) = \mathbb{R}^3$ i.e. $\forall c \in \mathbb{R}^3 \quad \exists x \quad Ax = c$.

(iv) Since $Ax = 0 \implies BAx = 0$, $\text{null}(A) \subseteq \text{null}(BA)$ in general. Moreover $BAx = 0 \implies Ax = B^{-1}0 = 0$, so $\text{null}(BA) \subseteq \text{null}(A)$. Therefore null(BA) = null(A). The basis for the null space of BA is

$$\left\{ \begin{pmatrix} -1\\1\\1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\0\\-1\\0\\1 \end{pmatrix} \right\}$$

Problem 5

$$\begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{pmatrix} \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 0 \\ 3 & -2 & 3 \end{pmatrix}$$

(i)
$$[\boldsymbol{w}_1]_S = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, [\boldsymbol{w}_2]_S = \begin{pmatrix} -2\\1\\0 \end{pmatrix}, [\boldsymbol{w}_3]_S = \begin{pmatrix} -2\\0\\-1 \end{pmatrix}$$

$$[\boldsymbol{w}_1]_T = \left(egin{array}{c} 2 \ 1 \ 3 \end{array}
ight), [\boldsymbol{w}_2]_T = \left(egin{array}{c} 1 \ -2 \ -2 \end{array}
ight), [\boldsymbol{w}_3]_T = \left(egin{array}{c} 3 \ 0 \ 3 \end{array}
ight)$$

(ii) The transition matrix is

$$\begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 0 \\ 3 & -2 & 3 \end{pmatrix} \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -4 & -7 & 5 \\ -3 & -8 & 6 \\ -8 & -18 & 13 \end{pmatrix}$$

(iii) The matrix inverse is

$$\begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 0 \\ 3 & -2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -4/3 & -1/3 & 2/3 \\ 3 & 4 & -3 \\ {}^{10}/3 & {}^{16}/3 & {}^{-11}/3 \end{pmatrix}$$

Hence

$$[\mathbf{v}_1]_S = \begin{pmatrix} -4/3 \\ 3 \\ 10/3 \end{pmatrix}, [\mathbf{v}_2]_S = \begin{pmatrix} -1/3 \\ 4 \\ 16/3 \end{pmatrix}, [\mathbf{v}_3]_S = \begin{pmatrix} 2/3 \\ -3 \\ -11/3 \end{pmatrix}$$

(iv) From above,

$$C = \begin{pmatrix} -4 & -7 & 5 \\ -3 & -8 & 6 \\ -8 & -18 & 13 \end{pmatrix}$$

(v)

$$\begin{pmatrix} \mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \mathbf{w}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3} \end{pmatrix} = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}^{T} \begin{pmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{pmatrix} \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 1 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 & -2 \\ -1 & 6 & 3 \\ -2 & 3 & 5 \end{pmatrix} \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 25 & 20 & 0 \\ 20 & 18 & 3 \\ 0 & 3 & 5 \end{pmatrix}$$

We have $\mathbf{w}_1 \cdot \mathbf{w}_1 = 25$, $\mathbf{w}_2 \cdot \mathbf{w}_2 = 18$, $\mathbf{w}_3 \cdot \mathbf{w}_3 = 5$, $\mathbf{w}_1 \cdot \mathbf{w}_2 = \mathbf{w}_2 \cdot \mathbf{w}_1 = 20$, $\mathbf{w}_1 \cdot \mathbf{w}_3 = \mathbf{w}_3 \cdot \mathbf{w}_1 = 0$, $\mathbf{w}_2 \cdot \mathbf{w}_3 = \mathbf{w}_3 \cdot \mathbf{w}_2 = 3$.

(i)

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1 = \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} \\ \mathbf{v}_2 &= \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ &= \begin{pmatrix} -1\\2\\0\\0 \end{pmatrix} - \frac{3}{5} \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} = \begin{pmatrix} -\frac{8}{5} \\\frac{4}{5}\\0\\0 \end{pmatrix} \\ \mathbf{v}_3 &= \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ &= \begin{pmatrix} 1\\0\\2\\1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} - \frac{-\frac{8}{5}}{\frac{4}{5}} \begin{pmatrix} -\frac{8}{5}\\\frac{4}{5}\\0\\0 \end{pmatrix} \\ &= \begin{pmatrix} 4/5\\-\frac{2}{5}\\2\\1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -\frac{8}{5}\\\frac{4}{5}\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\2\\1 \end{pmatrix} \end{aligned}$$

(ii)

$$\operatorname{proj}_{V}(\boldsymbol{w}) = \frac{\boldsymbol{w} \cdot \boldsymbol{u}_{1}}{\boldsymbol{u}_{1} \cdot \boldsymbol{u}_{1}} \boldsymbol{u}_{1} + \frac{\boldsymbol{w} \cdot \boldsymbol{u}_{2}}{\boldsymbol{u}_{2} \cdot \boldsymbol{u}_{2}} \boldsymbol{u}_{2} + \frac{\boldsymbol{w} \cdot \boldsymbol{u}_{3}}{\boldsymbol{u}_{3} \cdot \boldsymbol{u}_{3}} \boldsymbol{u}_{3}$$

$$= \frac{11}{5} \begin{pmatrix} 1\\2\\0\\0 \end{pmatrix} + \frac{9}{5} \begin{pmatrix} -1\\2\\0\\0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1\\0\\2\\1 \end{pmatrix}$$

$$= \begin{pmatrix} 17/30\\8\\1/3\\1/6 \end{pmatrix}$$

(iii)

$$\left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{rref} \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Normalizing, we have

$$\boldsymbol{n} = \frac{\sqrt{5}}{2} \left(\begin{array}{c} 0 \\ 0 \\ -\frac{1}{2} \\ 1 \end{array} \right)$$

(iv) No. Let $\{n, n'\}$ be linearly independent. $S \cup \{n, n'\} \subseteq \mathbb{R}^4$ is linearly dependent. Then we can write n' = an + u where $u = bu_2 + cu_2 + du_3 \in V$ for some $a, b, c, d \in \mathbb{R}$. Then

$$\mathbf{n}' \cdot \mathbf{u} = a(\mathbf{n} \cdot \mathbf{u}) + \mathbf{u} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{u} \ge 0$$

By (a) equality holds, so u = 0. Then n' = n contradicts (b).

- (i) $\mathbf{v} \in W \cap W^{\perp} \iff \mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0}$. Therefore $W \cap W^{\perp} = \{\mathbf{0}\}$.
- (ii) Take T to be an ordered basis extended from S for \mathbb{R}^n and T' to be an orthogonal basis derived from T using Gram Schmidt. By definition $\mathbf{w}'_k = \mathbf{w}_k \sum_{j \leq k} \operatorname{proj}_{\mathbf{w}'_j}(\mathbf{w}_k)$. Then

$$\boldsymbol{w}_k = \boldsymbol{w}_k' + \sum_{j < k} \alpha_j \boldsymbol{w}_j' \in \operatorname{span} \left\{ \boldsymbol{w}_1', \boldsymbol{w}_2', \dots, \boldsymbol{w}_m' \right\}$$

Taking k = m we have

$$W = \operatorname{span} \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m \} \subseteq \operatorname{span} \{ \boldsymbol{w}_1', \boldsymbol{w}_2', \dots, \boldsymbol{w}_m' \}$$

Lemma. $\boldsymbol{w}_k' \in \operatorname{span} \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k \}$

Proof. We proceed by induction on k. Trivially $\mathbf{w}'_1 = \mathbf{w}_1 \in \text{span} \{ \mathbf{w}_1 \}$. Suppose the lemma stands for all j < k. Then there exists a sequence α_j such that

$$\boldsymbol{w}_k' - \boldsymbol{w}_k = \sum_{j < k} \operatorname{proj}_{\boldsymbol{w}_j'}(\boldsymbol{w}_k) = \sum_{j < k} \alpha_j \boldsymbol{w}_j' \in \bigcup_{j < k} \operatorname{span} \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_j \} = \operatorname{span} \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{k-1} \}$$

Then
$$w'_k = w_k + (w'_k - w_k) \in \text{span} \{ w_1, w_2, \dots, w_k \}.$$

Therefore span $\{ \boldsymbol{w}_1', \boldsymbol{w}_2', \dots, \boldsymbol{w}_m' \} \subseteq \text{span} \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m \} = W$. Then $W = \text{span} \{ \boldsymbol{w}_1', \boldsymbol{w}_2', \dots, \boldsymbol{w}_m' \}$. Since T' is orthogonal, for all sequence α_j

$$\left(\sum_{j=1}^{n-m} \alpha_j \boldsymbol{w}_{m+j}'\right) \cdot \boldsymbol{w}_i = \sum_{j=1}^{n-m} \alpha_j (\boldsymbol{w}_{m+j}' \cdot \boldsymbol{w}_i) = 0$$

Therefore span $\{ \boldsymbol{w}_{m+1}', \boldsymbol{w}_{m+1}', \dots, \boldsymbol{w}_n' \} \subseteq W^{\perp}$ and $\dim W^{\perp} \geq n - m$. From hint,

$$\dim W + \dim W^{\perp} - \dim W \cap W^{\perp} = \dim W + W^{\perp} < \dim \mathbb{R}^{n}$$

$$\dim W^{\perp} = \dim W + W^{\perp} + \dim W \cap W^{\perp} - \dim W \le n - m$$

Therefore $\dim W^{\perp} = n - m$. Now suppose $\exists \boldsymbol{v} \in W^{\perp} \setminus \operatorname{span} \{ \boldsymbol{w}'_{m+1}, \boldsymbol{w}'_{m+1}, \dots, \boldsymbol{w}'_n \}$. Then the set $\{ \boldsymbol{v}, \boldsymbol{w}'_{m+1}, \boldsymbol{w}'_{m+1}, \dots, \boldsymbol{w}'_n \}$ is linearly independent, so $\operatorname{span} \{ \boldsymbol{v}, \boldsymbol{w}'_{m+1}, \boldsymbol{w}'_{m+1}, \dots, \boldsymbol{w}'_n \}$ is a subspace of W^{\perp} with dimension n - m + 1, which contradicts. Therefore $W^{\perp} \subseteq \operatorname{span} \{ \boldsymbol{w}'_{m+1}, \boldsymbol{w}'_{m+1}, \dots, \boldsymbol{w}'_n \}$. Using above we have $W^{\perp} = \operatorname{span} \{ \boldsymbol{w}'_{m+1}, \boldsymbol{w}'_{m+1}, \dots, \boldsymbol{w}'_n \}$.

(iii) Let a_i be the *i*th column vector of A. Suppose $AA^Tx = 0$. Then $A^Tx \cdot a_i^T = 0 \quad \forall i$. Therefore $A^Tx \in R(A)^{\perp}$. But $A^Tx \in C(A^T) = R(A)$. By above $A^Tx = 0 \iff x \cdot a_i = 0 \quad \forall i \iff x \in W^{\perp}$. So null $AA^T \subseteq W^{\perp}$. Moreover $x \in W^{\perp} \iff A^Tx = 0 \implies AA^Tx = 0$, so $W^{\perp} \subseteq \text{null } AA^T$. Then the solution space of $AA^Tx = 0$ is W^{\perp} .