Sprawozdanie z laboratorium: Bioinformatyka

Część II: Wyniki i analiza eksperymentu

8 kwietnia 2017

Prowadzący: prof. dr hab. inż. Marta Kasprzak

Autorzy: **Damian Jurga** inf122481 I2 damian.m.jurga@student.put.poznan.pl **Grzegorz Miebs** inf122453 I2 grzegorz.miebs@student.put.poznan.pl

Zajęcia środowe, 11:45.

Oświadczamy, że niniejsze sprawozdanie zostało przygotowane wyłącznie przez powyższych autorów, a wszystkie elementy pochodzące z innych źródeł zostały odpowiednio zaznaczone i są cytowane w bibliografii.

1 Wstęp

Celem tego sprawozdania jest przedstawienie opracowania metody heurystycznej rozwiązującej problem sekwencjonowania łańcuchów DNA z błędami pozytywnymi oraz negatywnymi w czasie wielomianowym. Algorytm mając dany na wejściu zbiór oligonukleotydów (tj. ciągów nukleotydów: adeniny, tyminy, guaniny i cytozyny), długość sekwencji oryginalnej, powinien zwrócić jak najdłuższą sekwencję.

W tym celu zaproponowano następujący algorytm: sekwencja jest budowana za pomocą algorytmu wiązkowego, następnie poprawiana algorytmem wspinaczkowym i, jeżeli to możliwe, ponownie przedłużana algorytmem wiązkowym lub poprzez pełny przegląd. Przyjęto szerokość wiązki równą osiem, maksymalną liczbę iteracji algorytmu wspinaczkowego równą sto oraz karę za ponowne odwiedzenie tego samego wierzchołku równą pięć.

2 Wyniki

Pomiarów dokonano na procesorze intel i7, 4 rdzeniowym, taktowowanym z częstotliwością 3 GHz. Mierzono czas wykonania, długość sekwencji oraz liczbę wykorzystanych oligonukleotydów. Wyniki porównano według długości sekwencji wyjściowej (liczby nukleotydów), liczby wykorzystanych oligonukleotydów oraz czasu wykonania. Porównywano w funkcjach mocy wejściowego zbioru oligonukleotydów oraz długości nici kwasu nukleinowego, który posłużył do jego utworzenia.

2.1 Wszystkie instancje

Rysunek 1: Na osi odciętych odłożona jest długość sekwencji wejściowej, a na rzędnych — czas wykonywania w milisekundach

Czas wykonania, jak widać na rysunku 1. jest funkcją wielomianową; można ją przybliżyć następującym dwumianem długości kwasu nukleinowego: $0.0076n^2-1.0704n+198.69$. Długość sekwencji wyjściowej na rys.2. jest w przybliżeniu równa długości sekwencji wejściowej $(n_{out}=0.99n_{in}-0.16)$. Rozważanie wartości w funkcji mocy zbioru nie ma sensu, gdyż w

Rysunek 2: Na osi odciętych odlożona jest długość sekwencji wejściowej, a na rzędnych — długość sekwencji wyjściowej

większości przypadków wartość funkcji sprowadzałaby się do wartości funkcji obliczanych dla jednej z typów instancji.

2.2 Porównanie poszczególnych typów instancji

2.2.1 Według czasu

Rysunek 3: Na osi odciętych odłożona jest długość sekwencji wejściowej, a na rzędnych — czas wykonywania w milisekundach

Rysunek 4: Na osi odciętych odłożona jest moc zbioru oligonukleotydów, a na rzędnych — czas wykonywania w milisekundach

Jak widać na rys.3., szybciej zostały wykonane obliczenia dla instancji z błędami negatywnymi o tych samych docelowych długościach. Wynika to zapewne z konieczności zbadania mniejszej liczby ślepych odnóg algorytmu wiązkowego.

Na rys.4. widać, że instancje z błędami pozytywnymi były wykonywane wolniej dla zbiorów o podobnej mocy. W przypadku instancji o błędach negatywnych, czas wykonywania nie wydaje się zależeć w znaczącym stopniu od tego, czy wynikają z powtórzeń, czy są w pełni losowe. Ten wykres każe podejrzewać, że w badanym zakresie znaczący wpływ na czas wykonywania ma przede wszystkim moc zbioru oligonukleotydów, a więc i liczba błędów.

Oba wykresy sugerują, że przyjęty algorytm ma złożoność wielomianową, zgodnie z wcześniejszą analizą teoretyczną.

2.2.2 Według długości sekwencji wyjściowej

Rys.5. wydaje się potwierdzać skuteczność algorytmu — sekwencje wyjściowe, dla każdego typu instancji, osiągają długość bardzo bliską docelowej.

Jak widać na rys.6. instancje z błędami pozytywnymi zależą liniowo od mocy zbioru. W przypadku instancji z błędami negatywnymi liczba błędów jest tak duża, że powoduje "przeskok do niższej kategorii" i tak, na przykład przypadek, który ma osiągnąć długość 500 na wejściu zadaje zbiór o mocy mniejszej niż taki, który ma osiągnąć długość 400, przez co charakter funkcji nie jest widoczny.

2.2.3 Według liczby wykorzystanych nukleotydów

Rys.7. obrazuje oczywistą zależność, że liczba wykorzystanych oligonukleotydów zależy liniowo od docelowej długości łańcucha, który zostanie z nich zbudowany. Wszystkie funkcje przedstawione na rys.8. są w przybliżeniu prostymi. Widać, że błędy negatywne leżą niemalże na tej samej prostej, a więc można podejrzewać, że umiejscowienie błędu nie wpływa w zadanym zakresie na wynik. Ta prosta ma współczynnik kierunkowy bliski jeden, gdyż obecność błędów negatywnych nie przeszkadza zmusza do wykorzystania jak największej liczby

Rysunek 5: Na osi odciętych odłożona jest długość sekwencji wejściowej, a na rzędnych — długość sekwencji wyjściowej

Rysunek 6: Na osi odciętych odłożona jest moc zbioru oligonukleotydów, a na rzędnych — długość sekwencji wyjściowej

Rysunek 7: Na osi odciętych odłożona jest długość sekwencji wejściowej, a na rzędnych — liczba wykorzystanych oligonukleotydów (bez powtórzeń)

Rysunek 8: Na osi odciętych odłożona jest moc zbioru oligonukleotydów, a na rzędnych — liczba wykorzystanych oligonukleotydów (bez powtórzeń)

Tabela 1: Instancje z błędami negatywnymi wynikającymi z powtórzeń

lp	ilość	1	n	czas[ms]	użyte	użyte	długość	procent	skoki
	nukleotydów				oligonukleotydy	oligonukleotydy	wynikowa	użytych	
					(z powtórzeniami)				
24	498	10	509	1913	487	477	509	95	13
25	492	10	509	1828	492	486	509	98	8
26	488	10	509	1795	488	486	509	99	12
27	482	10	509	1775	478	471	509	97	22
28	468	10	509	1646	464	459	509	98	36

Tabela 2: Instancje z błędami pozytywnymi losowymi Instancje z błędami pozytywnymi, przekłamania na końcach oligonukleotydów

lp	ilość	1	n	czas[ms]	użyte	użyte	długość	procent	skoki
	nukleotydów				oligonukleotydy	oligonukleotydy	wynikowa	użytych	
					(z powtórzeniami)				
29	280	10	209	445	200	200	209	71	0
30	280	10	209	434	200	200	209	71	0
31	280	10	209	428	200	200	209	71	0
32	420	10	309	923	295	295	309	70	5
33	420	10	309	896	281	280	309	66	19
34	420	10	309	886	300	300	309	71	0
35	560	10	409	1515	400	400	409	71	0
36	560	10	409	1557	400	400	409	71	0
37	560	10	409	1530	386	386	409	68	14
38	700	10	509	2470	500	500	509	71	0
39	700	10	509	2461	500	500	509	71	0
40	700	10	509	2402	499	499	509	71	1

oligonukleotydów. Proste odpowiadające instancjom z błędami pozytywnymi mają niższy współczynnik kierunkowy, gdyż błędy pozytywne wymuszają z drugiej strony nie wykorzystywanie pewnych oligonukleotydów.

3 Wyniki ujęte w tabeli

Jak widać w tabelach 1-4 instancje z błędami negatywnymi wykorzystują średnio 95% swoich oligonukleotydów, a te z błędami pozytywnymi 78%, co zgadza się z charakterem wcześniej omówionych wykresów. W instancjach z błędami negatywnymi przeskakiwane jest średnio 98 nukleotydów, a z pozytywnymi — 8, ale rozważając jedynie te zawierające tylko błędy losowe średnie liczby skoków stają się odpowiednio 115 i 3.

4 Plusy

Niewątpliwym plusem tego rozwiązania jest wysoka odporność na złośliwe instancje. Odporność tak wynika z faktu, iż algorytm ten składa się z kilku innych algorytmów, które w znacznym stopniu się uzupełniają i rekompensują swoje wady. Kolejnym plusem zaproponowanego rozwiązania jest jego duża elastyczność. Użytkownik może dowolnie sterować parametrami, które w jasny sposób wpływają na czas obliczeń oraz jakość końcowego rozwiązania. Jeśli

Tabela 3: Instancje z błędami pozytywnymi, przekłamania na końcach oligonukleotydów

lp	ilość	l	n	czas[ms]	użyte	użyte	długość	procent	skoki
	nukleotydów				oligonukleotydy	oligonukleotydy	wynikowa	użytych	
					(z powtórzeniami)				
41	220	10	209	350	178	171	209	77	22
42	220	10	209	389	199	199	209	90	1
43	220	10	209	391	194	191	209	86	6
44	330	10	309	784	292	290	309	87	8
45	330	10	309	753	286	278	309	84	14
46	330	10	309	792	291	291	309	88	9
47	440	10	409	1280	381	380	407	86	19
48	440	10	409	1333	385	385	409	87	15
49	440	10	409	1237	382	378	409	85	18
50	550	10	509	1990	489	489	509	88	11
51	550	10	509	2076	483	483	506	87	17
52	550	10	509	1898	485	480	509	87	15

Tabela 4: Instancje z błędami negatywnymi losowymi

lp	ilość	1	n	czas[ms]	użyte	użyte	długość	procent	skoki
	nukleotydów				oligonukleotydy	oligonukleotydy	wynikowa	użytych	
					(z powtórzeniami)				
0	160	10	209	267	160	160	207	100	40
1	120	10	209	166	120	120	207	100	80
2	160	10	209	249	155	155	209	96	45
3	120	10	209	132	106	105	209	87	94
4	160	10	209	244	156	154	209	96	44
5	120	10	209	143	113	107	209	89	87
6	240	10	309	476	239	239	309	99	61
7	180	10	309	287	170	167	309	92	130
8	240	10	309	512	238	234	309	97	62
9	180	10	309	304	172	168	309	93	128
10	240	10	309	498	232	222	309	92	68
11	180	10	309	283	170	164	309	91	130
12	320	10	409	805	310	308	406	96	90
13	240	10	409	469	227	218	409	90	173
14	320	10	409	810	311	307	409	95	89
15	240	10	409	476	232	232	408	96	168
16	320	10	409	784	310	310	409	96	90
17	240	10	409	476	224	222	409	92	176
18	400	10	509	1241	397	397	509	99	103
19	300	10	509	683	281	277	507	92	219
20	400	10	509	1148	375	373	509	93	125
21	300	10	509	710	282	275	509	91	218
22	400	10	509	1183	385	378	509	94	115
23	300	10	509	689	282	282	504	94	218

zależy nam na szybkich obliczeniach możemy ustalić niewielkie wartości parametrów, jednakże jeśli bardziej cenimy jakość rozwiązań możemy zwiększyć ich wartość, należy jednak liczyć się z wydłużeniem czasu działania programu. Algorytm ten można w znacznym stopniu zrównoleglić, co pozwoli wykonywać go w sposób efektywnych w systemach rozproszonych czy nawet na laptopie z wielordzeniowym procesorem. Rozwiązanie to jest podzielone na trzy etapy i w każdym z nich wykorzystywany jest inny algorytm. Ta modułowa budowa pozwala na stosunkowo łatwe wymienianie algorytmów stosowanych w poszczególnych etapach.

5 Minusy

Algorytm składa się z kilku etapów i w każdym z nich stosowany jest inny algorytm, dlatego, mimo determinizmu tego rozwiązania, niemalże niemożliwe jest przewidzenie bez dokładnej analizy jak zachowa się algorytm dla konkretnej instancji. Ciężko jest także wskazać klasy instancji dla których algorytm poradzi sobie dobrze, bądź źle.

6 Dalsze eksperymenty

Wyniki sugerują, że dałoby się zaproponować takie parametry algorytmu, by zoptymalizować czas wykonywania i odległość od sekwencji wejściowej. Jest to problem optymalizacji wielokryterialnej wymagający zbadania wpływu szerokości wiązki, maksymalnej liczby iteracji algorytmu wspinaczkowego, wartości kary oraz granicy długości określającej, czy w trzeciej fazie zostanie zastosowany algorytm wiązkowy, czy pełnego przeglądu, na oba kryteria.

Najprostszym lecz czasochłonnym sposobem wydaje się zastosowanie algorytmu pełnego przeglądu lub wspinaczkowego na charakterystycznych wartościach parametrów wejściowych.