Concepts

Topics covered are:

- 1. Differentiation
- 2. Chain Rule
- 3. Differentiability
- 4. Increasing and Decreasing Functions
- 5. Increment Theorem

Differentiation

The rate of change of a function is said to be the derivative of a function.

$$f'(x) = \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
, where $h = \Delta x$

Here are different ways to write a derivative, considering y = f(x):

$$\frac{dy}{dx} = f'(x) = y'$$

For differentiating it n times:

$$\frac{d^n y}{(dx)^n} = f^{"} \dots n \ times(x) = y^{"} \dots n \ times$$

Chain rule

If
$$y = f(u)$$
, $u = g(x)$ or $y = f(g(x))$,
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Differentiability

A function f(x) is differentiable at a point if RHD = LHD where

$$RHD = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ and}$$

$$LHD = \lim_{h \to 0} \frac{f(x-h) - f(x)}{-h}$$

Graphically, A function which is continuous and has no sharp points throughout its domain is said to be differentiable.

Here is a list of some functions and their continuity and differentiability throughout its domain:

Function	Continuous?	Differentiable?
Polynomial $(\sum_{i=0}^{n} a^{i} x^{n-i}, n \in N)$	Yes	Yes
Modulus (x)	Yes	No (at 0)
Constant (a)	Yes	Yes
Signum $(\frac{ x }{x}, x \neq 0; 0, x = 0)$	No (at 0)	No (at 0)
Greatest Integer / Floor ([x])	No (at integers)	No (at integers)
Smallest Integer / Ceil ([x])	No (at integers)	No (at integers)
Fractional $(\{x\} = x - [x])$	No (at integers)	No (at integers)
Reciprocal $(\frac{1}{f(x)}, f(x) \neq 0)$	No (depends on $f(x)$)	No (depends on $f(x)$)

Increasing and Decreasing Functions

A function f(x) is said to to be increasing throughout (a, b) if $f'(x) \ge 0$, $x \in (a, b)$ A function f(x) is said to to be decreasing throughout (a, b) if $f'(x) \le 0$, $x \in (a, b)$

A function f(x) is said to to be strictly increasing throughout (a, b) if f'(x) > 0, $x \in (a, b)$ A function f(x) is said to to be strictly decreasing throughout (a, b) if f'(x) < 0, $x \in (a, b)$

A function f(x) is said to to be constant throughout (a, b) if f'(x) = 0, $x \in (a, b)$

Increment Theorem

If a function f(x) is differentiable at a point x, then for a small increment Δx , the corresponding increment in the function, $\Delta y = f(x + \Delta x) - f(x)$, can be expressed as:

$$\Delta y = f'(x) \cdot \Delta x + \epsilon \cdot \Delta x$$

where $\epsilon \to 0$ as $\Delta x \to 0$.

Here, ϵ is a small number that cancels out the error achieved by approximating the change in the function. It becomes negligible as the change in x is reduced, because the value of y gets more accurate.

Uses

Differentiation: To find the rate of change in something at a given instant, and to obtain the tangent of a curve at any given input value.

Chain Rule: Finding derivatives of nested functions.

Differentiability: Determine whether a function can be differentiated at a given input value without having to look at the curve.

Increasing and Decreasing Functions: Determine whether a function is rising or declined over a range without looking at the curve.

Increment Theorem: Highly useful for error approximation and rigorous ways to prove derivatives.