国家精品课程,国家精品资源共享课

工程信号与系统

西安电子科技大学 Xidian University, Xi'an China

引言

工程信号与系统重视本课程与后续课程的知识衔接,强调对数字信号处理、自动控制原理、小波分析等相关课程的入门引导,达到开窗搭桥的效果。

大家对时域内系统分析的积分运算望而生畏,而变换域分析方法将会开拓思路、化繁为简。转变视角后,大家将看到更多系统的特性,从而了解信号处理在滤波器设计、稳定性分析、图像工程等的应用。

引言

1.主要问题

对给定的具体系统,求给定激励的响应。

状态变量法(内部法):建立状态方程

小波分析: 小波分析理论简介

引言

2.课程框架

拉普拉斯变换与复频域分析

知识点名称	知识点名称
K1.01 双边拉普拉斯变换的定义	K1.19 Matlab绘制零极点图、判断稳定
K1.02 收敛域	K1.20 系统函数与系统的频率特性
K1.03 单边拉氏变换的定义	K1.21 Matlab求频率响应函数,判断稳定
K1.04 单边拉氏变换与傅里叶变换的关系	K1.22 连续系统的s域框图
K1.05 常见信号的拉普拉斯变换	K1.23 连续系统的信号流图
K1.06 拉普拉斯变换的性质-线性、尺度变换	K1.24 梅森公式
K1.07 拉普拉斯变换的性质-时移、复频移特性	K1.25 连续系统的模拟: 直接形式
K1.08 拉普拉斯变换的性质-时域和复频域的微积分特性	K1.26 连续系统的模拟:级联形式
K1.09 拉普拉斯变换的性质-卷积定理	K1.27 连续系统的模拟: 并联形式
K1.10 拉普拉斯变换的性质-初值、终值定理	K1.28 零极点配置的作用
K1.11 拉普拉斯反变换	K1.29 低通滤波器,带通滤波器,带阻滤波器中零极点的配置
K1.12 拉普拉斯变换的Matlab求解	K1.30 一阶RC电路实现低通滤波器
K1.13 电路元件和定理的s域模型	K1.31 自动位置控制系统的举例,分析闭环反馈系统特性
K1.14 电路系统的s域分析方法	K1.32 根轨迹法,Matlab绘制根轨迹
K1.15 微分方程的变换解	K1.33 奈奎斯特的稳定性判据,Matlab绘制奈奎斯特曲线
K1.16 连续系统函数H(s)的定义和求解	K1.34 音响反馈系统的模型
K1.17 连续系统函数的零极点分布与时域特性	K1.35 反馈降低闭环噪声信号的扰动
K1.18 连续系统稳定性判据	

双边拉普拉斯变换的定义

知识点K1.01

双边拉普拉斯变换的定义

主要内容:

双边拉普拉斯变换的定义

基本要求:

- 1. 掌握双边拉普拉斯变换和双边拉普拉斯反变换
- 2. 掌握象函数与原函数

双边拉普拉斯变换的定义

K1.01 双边拉普拉斯变换的定义

有些函数不满足绝对可积条件,求解傅里叶变换困难。为此,可用一衰减因子 $e^{-\alpha}$ (σ 为实常数)乘信号f(t),适当选取 σ 的值,使乘积信号f(t) $e^{-\alpha}$ 当 $t\to\infty$ 时信号幅度趋近于0,从而使f(t) $e^{-\alpha}$ 的傅里叶变换存在。

$$F_b(\sigma + j\omega) = \mathcal{F}[f(t)e^{-\sigma t}] = \int_{-\infty}^{\infty} f(t)e^{-\sigma t}e^{-j\omega t}dt = \int_{-\infty}^{\infty} f(t)e^{-(\sigma + j\omega)t}dt$$

相应的傅里叶逆变换为 $f(t) e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_b(\sigma + j\omega) e^{j\omega t} d\omega$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_b(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega$$

双边拉普拉斯变换的定义

$$F_b(s) = \int_{-\infty}^{\infty} f(t)e^{-st} dt$$
 双边拉普拉斯变换对

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F_b(s) e^{st} ds$$

 $F_b(s)$ 称为f(t)的双边拉氏变换(或象函数), f(t)称为 $F_b(s)$ 的双边拉氏逆变换(或原函数)。

