APS/DFD 2002, November 25 (Dallas, TX)

[FE.1] Numerical analysis of non-Brownian particles in Stokes flow

Kengo Ichiki

Department of Mechanical Engineering
The Johns Hopkins University

Supported by DOE grant FG02-99ER14966

Introduction

Target systems: Suspensions (solid-fluid mixture)

- Rheology (non-Newtonian), pattern formation, etc
- Many-body hydrodynamic interaction

Problem on computational study

- mono-layer simulations is not enough for purely 3D phenomena
 - ex. particle segregations in axial direction Tirumkudulu *et al.* (1999) Phys. Fluids **11**, 507

The goal of this talk:

Develop a FAST scheme under PERIODIC boundary conditions

Contents:

- Method Multipole expansion/
 Ewald summation/ Fast Multipole Method
- Results Accuracy/ Performance
- Discussion Other works
- Conclusions and Future plans

Method – Multipole expansion

KI (2002) J. Fluid Mech. 452, 231

Starting point: Integral equation

$$u(x) = -\frac{1}{8\pi\mu} \sum_{\beta} \int_{S_{\beta}} dS(y) \, \mathsf{J}(x - y) \cdot f(y)$$

- u: velocity
- $J(r) = (I + rr/r^2)/r$: Oseen tensor
- f(y): force density on the surface at y

Multipole expansion

$$u(x) = \sum_{\beta} \sum_{m=0}^{\infty} \mathscr{J}^{(m)}(x - x_{\beta}) \cdot \mathscr{F}^{(m)}(\beta)$$

- $\mathcal{J}^{(m)} = \nabla^m J : m$ -th order derivative of J
- $\mathscr{F}^{(m)}(\beta) = -\frac{1}{8\pi\mu} \frac{1}{m!} \int_{S_{\beta}} dS(\boldsymbol{y}) (\boldsymbol{x}_{\beta} \boldsymbol{y})^m \boldsymbol{f}(\boldsymbol{y})$: m-th order force moment for particle β

Multipole Method (Tree code)

$$u(x) = \mathscr{J}(x - x_C) \cdot \mathscr{F}(C)$$

• $\mathscr{F}(C) = \sum_{\beta} \mathscr{F}(\beta)$: force moment for group C

(For simplicity, summation of *m* is committed)

Method – Periodic B.C.

$$u(x) = \sum_{\Gamma} \sum_{eta} \mathscr{J}(x - (x_{eta} + L_{\Gamma})) \cdot \mathscr{F}(eta)$$

• L_{Γ} : lattice vector of periodic image Γ

Ewald summation technique

Beenakker (1986) J. Chem. Phys. 85, 1581

$$\mathsf{J}(\boldsymbol{r}) = \mathsf{J}^{(r)}(\boldsymbol{r}) + \mathsf{J}^{(k)}(\boldsymbol{r})$$

- real part : $J^{(r)}(r) = (I\nabla^2 \nabla\nabla)r \operatorname{erfc}(\xi r)$
- reciprocal part : $J^{(k)}(r) = (I\nabla^2 \nabla\nabla)r \operatorname{erf}(\xi r)$

From Poisson's summation formula,

$$u(x) = \sum_{\Gamma} \sum_{\beta} \mathscr{J}^{(r)}(x - (x_{\beta} + L_{\Gamma})) \cdot \mathscr{F}(\beta)$$

$$+rac{1}{V}\sum_{\Lambda}\sum_{eta}e^{-ioldsymbol{k}_{\Lambda}\cdot(oldsymbol{x}-oldsymbol{x}_{eta})}\,\, ilde{\mathscr{J}}^{(k)}(oldsymbol{k}_{\Lambda})\cdot\mathscr{F}(eta)$$

- $\tilde{\mathsf{J}}^{(k)}(\boldsymbol{k}) = \int d\boldsymbol{r} \ e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \ \mathsf{J}^{(k)}(\boldsymbol{r})$
- k_{Λ} : lattice vector in reciprocal space

Method – Fast Multipole Method

Velocity derivatives

$$\mathscr{V}^{(n)}(\boldsymbol{x}_{\alpha}) = \sum_{\beta} \sum_{m=0} \mathscr{J}^{(n+m)}(\boldsymbol{x}_{\alpha} - \boldsymbol{x}_{\beta}) \cdot \mathscr{F}^{(m)}(\beta)$$

• $\mathscr{V}^{(n)} = \nabla^n u$: velocity derivatives

Fast Multipole Method

Greengard-Rokhlin (1987) J. Comput. Phys. 73, 325

- direct calculation $\Rightarrow 4 \times 4$ steps
- FMM calculation \Rightarrow 1 step

$$\mathscr{F}(D) = \sum_{\beta} \mathcal{S}_F(x_D, x_\beta) \mathscr{F}^{(m)}(\beta)$$

$$\left(\mathscr{V}^{(n)}(\boldsymbol{x}_C) = \sum_{m=0} \mathscr{J}^{(n+m)}(\boldsymbol{x}_C - \boldsymbol{x}_D) \cdot \mathscr{F}^{(m)}(D)
ight)$$

$$\mathscr{V}(\boldsymbol{x}_{\alpha}) = \mathcal{S}_{V}(\boldsymbol{x}_{\alpha}, \boldsymbol{x}_{C}) \cdot \mathscr{V}(\boldsymbol{x}_{C})$$

Results – Accuracy

Results – Accuracy

Results – Performance

Results - Performance

Discussion – Other works

Duan-Krasny (2000)

- J. Chem. Phys. 113, 3492
 - Laplace problem (electrostatic interaction)
 - Multipole Method (Tree code) for real space summation
 - $\bullet \Rightarrow O(NlogN)$

Sierou-Brady (2001)

J.Fluid Mech. 448, 115

- Particle-Particle and Particle-Mesh (P^3M) for reciprocal space summation
- $\bullet \Rightarrow O(NlogN)$

Sangani-Mo (1996)

Phys. Fluids 8, 1990

- FMM
- $\bullet \Rightarrow O(N)$

Conclusions and Future plans

Conclusions:

- Developed numerical scheme under periodic B.C.
 - Multipole expansion
 - adaptive FMM

Future plans:

- Finish coding (assemble all)
- Tune parameters there are many parameters
 - ξ , critical R/r, q, N_{div}
- Apply to physical problems
 - pattern formation in 3D shearing flows
 - general complex flows
 - * Rheology
 - * dynamical and statistical behavior
 - * ...