CSC345/M45: Big Data & Machine Learning (support vector machine)

Prof. Xianghua Xie

x.xie@swansea.ac.uk

http://csvision.swan.ac.uk

224 Computational Foundry, Bay Campus

Clustering vs. Classification

- Clustering: unsupervised learning
 - Class labels of the data are unknown
 - Given data, the task is to establish the existence of classes or clusters in the data
- Classification: supervised learning
 - Supervision: data (observations) are labelled with pre-defined classes
 - The input data (training set) consists of multiple records, each of which has multiple attributes or features
 - Given training data, the task is
 - to develop an accurate description or model for each class using the features
 - and to predict categorical class label for unseen data (test data)

- Supervised learning
 - Training data (X_i, Y_i) , X_i is typically a feature vector and Y_i is the corresponding class label
 - The task of training is to find a good mapping function f
 - The derived function is then evaluated on test data (unseen data)

A classifier, a mapping, a hypothesis

Logistic regression cost function:

$$E(\omega) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log h_{\omega}(x_i) + (1 - y_i) \log(1 - h_{\omega}(x_i))] + \frac{\lambda}{2N} \omega^T \omega$$

$$h_{\omega}(x) = \frac{1}{1 + e^{-\omega^T x}}$$

Logistic regression cost function:

$$E(\omega) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log h_{\omega}(x_i) + (1 - y_i) \log(1 - h_{\omega}(x_i))] + \frac{\lambda}{2N} \omega^T \omega$$

- If y=1, we want $h_{\omega}(x) \approx 1$, $\omega^T x \gg 0$
- If y=0, we want $h_{\omega}(x) \approx 0$, $\omega^T x < 0$

$$h_{\omega}(x) = \frac{1}{1 + e^{-\omega^T x}}$$

Logistic regression cost function:

$$E(\omega) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log h_{\omega}(x_i) + (1 - y_i) \log(1 - h_{\omega}(x_i))] + \frac{\lambda}{2N} \omega^T \omega$$

$$\lim_{\omega} -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log h_{\omega}(x_i) + (1 - y_i) \log(1 - h_{\omega}(x_i)) \right] + \frac{\lambda}{2N} \omega^T \omega$$

$$\min_{\omega} \frac{1}{N} \sum_{i=1}^{N} \left[y_i \left(-\log h_{\omega}(x_i) \right) + (1 - y_i) \left(-\log(1 - h_{\omega}(x_i)) \right) \right] + \frac{\lambda}{2N} \omega^T \omega$$

$$\lim_{\omega} \sum_{i=1}^{N} \left[y_i \left(-\log h_{\omega}(x_i) \right) + (1 - y_i) \left(-\log(1 - h_{\omega}(x_i)) \right) \right] + \frac{\lambda}{2} \omega^T \omega$$

$$\lim_{\omega} C \sum_{i=1}^{N} [y_i (-\log h_{\omega}(x_i)) + (1-y_i)(-\log(1-h_{\omega}(x_i)))] + \frac{1}{2}\omega^T \omega$$

$$\lim_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

Logistic regression cost function:

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

$$\begin{cases}
\cos t_{1(\omega^T \chi_i)} = -\log h_{\omega}(x_i) & \text{if } y = 1 \\
\cos t_{0(\omega^T \chi_i)} = -\log(1 - h_{\omega}(x_i)) & \text{if } y = 0
\end{cases}$$

Logistic regression cost function:

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

$$\begin{cases}
\cos t_{1(\omega^T \chi_i)} = -\log h_{\omega}(x_i) & \text{if } y = 1 \\
\cos t_{0(\omega^T \chi_i)} = -\log(1 - h_{\omega}(x_i)) & \text{if } y = 0
\end{cases}$$

If y=1, we want $h_{\omega}(x) \approx 1$, $\omega^T x \gg 0$

If y=0, we want $h_{\omega}(x) \approx 0$, $\omega^T x \ll 0$

SVM cost function (linear case):

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

SVM cost function (linear case):

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

If y=1, we want $\omega^T x \ge 1$

If y=0, we want $\omega^T x \leq -1$

10

SVM cost function (linear case):

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

$$\begin{cases}
\cos t_{1}(\omega^{T} \chi_{i}) = \max(0, 1 - \omega^{T} \chi_{i}) & \text{if } y = 1 \\
\cos t_{0}(\omega^{T} \chi_{i}) = \max(0, 1 + \omega^{T} \chi_{i}) & \text{if } y = 0
\end{cases}$$

If y=1, we want $\omega^T x \ge 1$

If y=0, we want $\omega^T x \leq -1$

SVM Decision Boundary: large margin classifier

SVM Decision Boundary

Recap: cost function

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

Equivalent to:

$$\min_{\omega} \frac{1}{2} \omega^T \omega = \min_{\omega} \frac{1}{2} \sum_{i=1}^{N} \omega_i^2$$

s.t.
$$\omega^T x_i \ge 1$$
, if $y_i = 1$ $\omega^T x_i \le -1$, if $y_i = 0$

SVM Decision Boundary

$$\min_{\omega} \frac{1}{2} \omega^T \omega = \min_{\omega} \frac{1}{2} \sum_{i=1}^{N} \omega_i^2$$

s.t.
$$\omega^T x_i \ge 1$$
, if $y_i = 1$
 $\omega^T x_i \le -1$, if $y_i = 0$

Which one of the decision boundaries is better?

Non-linear Decision Boundary

- How to represent the decision boundary?
 - Use the linear regression technique; but note the data is nonlinear
 - Use polynomials
 - Use kernel functions

Non-linear Decision Boundary

- How to represent the decision boundary?
 - Use the linear regression technique; but note the data is nonlinear
 - Use polynomials
 - Use kernel functions

Recap: linear regression

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Decision Boundary: from linear to non-linear

Linear case:

$$\min_{\omega} C \sum_{i=1}^{N} [y_i \operatorname{cost}_1(\omega^T x_i) + (1 - y_i) \operatorname{cost}_0(\omega^T x_i)] + \frac{1}{2} \omega^T \omega$$

Non-linear case:

$$\min_{\omega} C \sum_{i=1}^{N} \left[y_i \operatorname{cost}_1(\omega^T \phi(x_i)) + (1 - y_i) \operatorname{cost}_0(\omega^T \phi(x_i)) \right] + \frac{1}{2} \omega^T \omega$$

SVM Parameters

- (
 - Large C: lower bias, higher variance
 - Small C: higher bias, lower variance

$$\min_{\omega} C \sum_{i=1}^{N} \left[y_i \operatorname{cost}_1(\omega^T \phi(x_i)) + (1 - y_i) \operatorname{cost}_0(\omega^T \phi(x_i)) \right] + \frac{1}{2} \omega^T \omega$$

- σ (kernel width)
 - Large σ :
 - kernel varies more smoothly
 - Higher bias, lower variance
 - small σ :
 - Kernel is sharper
 - Lower bias, higher variance

Evaluation

- Measure performance on independent blind test data
- LOOCV: leave one out cross validation
 - Take one sample from the dataset as the test data and the remaining for training
 - Rotate the test data across the whole dataset
 - Performance is measured as the average across the rounds
- K-fold cross validation:
 - Divide the dataset into K even parts
 - K-1 parts used for training, and one for testing
 - Rotating the test set
 - Performance is measured as the average across the rounds
- 2-fold cross validation
 - Simplest variation of K-fold
 - Training and testing has equal number of samples

Evaluation

- Positive: data sample that belongs to the class of interest
- Negative: data sample that does not belong to the class
- True positive: a positive sample correctly identified as positive
- False positive: a negative sample incorrectly classified as positive
- True negative: a negative sample correctly identified as negative
- False negative: a positive sample incorrectly classified as negative
- True positive rate: sensitivity
 - Percentage of correct prediction of positive samples $\frac{TP}{TP + FN}$
- True negative rate: specificity TN
 - Percentage of correct prediction of negative samples $\overline{TN+FP}$

- Evaluation
 - Overall accuracy
 - Percentage of correct prediction

$$Acc = \frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{P + N}$$

- Error rate
 - Percentage of incorrect prediction
- 2-class confusion matrix

True class	Predicted class	
	positive	negative
positive	TP	?
negative	?	TN

ROC Curve

- Receiver operating characteristic (ROC), or ROC curve
 - a graphical plot that illustrates the performance of a binary classifier as its decision boundary is varied
 - X axis: false positive rate
 - Y axis: true positive rate
 - Each classifier represented by a point in ROC space corresponding to its (FP,TP) pair

ROC Curve

- A basic ROC curve showing 5 discrete classifiers
 - Which one is the best classifier?
 - What is the dashed line?

Creating an ROC Curve

- A classifier produces a single ROC point.
- If the classifier has a "sensitivity" parameter, varying it produces a series of ROC points (confusion matrices).
- Alternatively, if the classifier is produced by a learning algorithm, a series of ROC points can be generated by varying the class ratio in the training set.
 - Class ratio (class distribution):
 number of positives samples versus
 number of negative samples

Example ROC Curve

graph

- Learner L1 dominates as L2's ROC curve is beneath L1's curve
 - i.e. L1 is better than L2 for all possible costs and class distributions
- L2 & L3: neither dominates

Perhaps switch the classifiers at the intersection point on ROC

