빅데이터를 이용한 통계그래픽스 TEAM PROJECT

[Theme: Pollution]

4조 김송희 양보연 이하은 정유진 주선미 최희원

목차 CONTENTS

01 서론

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

2000년부터 2016년까지 <mark>미국 내 주·군·시별 4개 오염 물질</mark>(No2, o3, so2, co)의 관측 자료

자료 크기: 약 390MB / 관측치 수: 1746661 / 변수 개수: 29 (범주형 + 연속형)

01 서론 - 변수 정리

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

Variable		Туре	Description	
State_Code		int	미국 환경보호국(EPA)이 지정한 주 코드	
County_Code		int	미국 환경보호국(EPA)이 지정한 군 코드	
Site_Num		int	미국 환경보호국(EPA)이 지정한 관측 장소 코드	
Address		char	관측 장소의 실제 주소	
State		char	관측 장소의 주 명칭	
County		char	관측 장소의 군 명칭	
City		char	관측 장소의 시 명칭	
Date_Local	Date_Local		관측 일자	
**************************************	_Units	char	이산화질소 측정 단위	
NO2(이산화질소)	_Mean	num	하루 동안 측정된 이산화질소의 평균 농도	
O3(오존)	_1st_Max_Value	num	하루 동안 측정된 이산화질소 농도 중 최대치	
SO2 (이산화황) CO (일산화탄소)	_1st_Max_Hour	int	이산화질소 농도 최대치가 측정된 시간	
	_AQI	int	하루 동안 측정된 이산화질소의 공기 품질 지표	
Year		int	관측한 연도	
Month		int	관측한 달	
Day		int	관측한 날짜	

01 서론 - 관측치 정리

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

01 서론 - ① [관측치의 중복]

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

03_Mean	03_1st_Max_Value	03_1st_Max_Hour	03_AQI
0.0225	0.04	10	34
0.0225	0.04	10	34
0.0225	0.04	10	34
0.0225	0.04	10	34
0.013375	0.032	10	27
0.013375	0.032	10	27
0.013375	0.032	10	27
0.013375	0.032	10	27

SO2_Mean	SO2_1st_Max_Value	SO2_1st_Max_Hour	SO2_AQI
3	9	21	13
3	9	21	13
2.975	6.6	23	NA
2.975	6.6	23	NA
1.958333	3	22	4
1.958333	3	22	4
1.9375	2.6	23	NA
1.9375	2.6	23	NA

▲ 데이터 일부 - O3

▲ 데이터 일부 - SO2

01 서론 - ① [관측치의 중복]

자료 소개 및 정리 - US Pollution

데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

Pollution_NO2 <- Pollution %>% select(State_Code, County_Code, Site_Num, Address, State, County, City, Date_Local, Year, Month, Day, NO2_Units, NO2_Mean, NO2_1st_Max_Value, NO2_1st_Max_Hour, NO2_AQI)

01 서론 - ① [관측치의 중복]

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

Pollution_NO2 <- Pollution_NO2 %>% distinct()

rear		IMOUR	Day	INOZ_MEAN	INOZ_TSt_Max_value
200	0	1	1	19.041667	49
200	0	1	1	19.041667	49
200	0	1	1	19.041667	49
200	0	1	1	19.041667	49
200	0	1	2	22.958333	36
ear	Ñ	1onth [Day Î	N02_Mean	NO2_1st_Max_Value
000		1	1	19.041667	49
000		1	2	22.958333	36
000		1	3	38.125	51
000	Ū	1	4	40.26087	74
200	0	1	3	38.125	51
200	0	1	4	40.26087	74
200	0	1	4	40.26087	74
200	0	1	4	40.26087	74
200	0	1	4	40.26087	74
	200 200 200 200 200 200 200 200 200	2000 2000 2000 2000 2000 2000 300 000	2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 000 1 000 1 2000 1 2000 1 2000 1 2000 1	2000 1 1 2000 1 1 2000 1 1 2000 1 1 2000 1 2 ear Month Day 000 1 1 000 1 2 000 1 3 000 1 4 2000 1 3 2000 1 4 2000 1 4 2000 1 4	2000 1 1 19.041667 2000 1 1 19.041667 2000 1 1 19.041667 2000 1 1 19.041667 2000 1 2 22.958333 ear Month Day NO2_Mean 000 1 1 19.041667 000 1 2 22.958333 000 1 3 38.125 000 1 3 38.125 2000 1 4 40.26087 2000 1 4 40.26087 2000 1 4 40.26087

Veer Month Day MO2 Mean MO2 1st May Value

01 서론 - ②[이상치]

자료 소개 및 정리 - US Pollution 데이터 출처 https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

> summary(Pollution)

> Summary(POTTU	ILTON)				
State_Code	County_Code		Address	State	County
Min. : 1.00	Min. : 1.00	Min. : 1 Le	ngth:1746661	Length: 1746661	Length: 1746661
1st Qu.: 6.00	1st Qu.: 17.00	1st Qu.: 9 Cl	ass :character	Class :character	Class :character
Median :17.00	Median : 59.00	Median: 60 Mo	de :character	Mode :character	Mode :character
Mean :22.31	Mean : 71.69	Mean :1118			
3rd Qu.:40.00	3rd Qu.: 97.00	3rd Qu.:1039			
Max. :80.00	Max. :650.00	Max. :9997			
_					
Date_Local	Year	Month	Day	NO2_Units	NO2_Mean
Min. :2000-0			Min. : 1.00	Length:1746661	Min. : -2.00
1st Qu.:2004-1	_	1st Qu.: 4.00	1st Qu.: 8.00	Class :character	-
Median :2009-0		Median : 7.00	Median :16.00	Mode :character	Median : 10.74
Mean :2008-1	.0-13 Mean :2008	8 Mean : 6.52	Mean :15.75		Mean : 12.82
3rd Qu.:2012-1	.1-06 3rd Qu.:2012	? 3rd Qu.: 9.00	3rd Qu.:23.00		3rd Qu.: 17.71
Max. :2016-0	05-31 Max. :2016	Max. :12.00	Max. :31.00		Max. :139.54
NO. AOT	02 Units	O2 Maan	O2 1st May Va	lue 03_1st_Max_Hour	. 02 401
NO2_AQI	03_Units	03_Mean			-
Min. : 0.0	Length: 1746661	Min. :0.00000			Min. : 0.00
1st Qu.: 12.0	Class :character	1st Qu.:0.01787	_	_	1st Qu.: 25.00
Median: 23.0	Mode :character	Median :0.02587			Median : 33.00
Mean : 23.9		Mean :0.02612			Mean : 36.05
3rd Qu.: 33.0		3rd Qu.:0.03392	_	•	3rd Qu.: 42.00
Max. :132.0		Max. :0.09508	Max. :0.141	.0 Max. :23.00	Max. :218.00

01 서론 - ②[이상치]

자료 소개 및 정리 - US Pollution 데이터 출처 http://slideplayer.com/slide/5675334/

Parts per million/billion (ppm & ppb)

• ppm =
$$\frac{\text{mass solute}}{\text{volume solution}} \times 10^6$$

• ppb =
$$\frac{\text{mass solute}}{\text{volume solution}} \times 10^9$$

Mass and volume units must match.

OI

(Kg & L)

or
$$\frac{mg}{L} = ppm$$

or
$$\frac{\mu g}{L}$$
 = ppb

AND

For <u>very</u> low concentrations:

parts per trillion
$$\frac{ng}{L}$$
 = pp

01 서론 - ②[이상치]

자료 소개 및 정리 - US Pollution

데이터 출처

https://www.kaggle.com/sogun3/uspollution) 논문 '관악과 시청의 요일별 오존농도'

본론 소주제 소개

1오염물질 자체 분석1)가설1

- 2 날짜별 오염물질 분석1) 가설2
 - 설2 2) 가설3
- 3위치별 오염물질 분석1) 가설45) 가설5

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

Variables Description

Vari	able	Туре	Description
State_Code		int	미국 환경보호국(EPA)이 지정한 주 코드
County_Code		int	미국 환경보호국(EPA)이 지정한 군 코드
Site_Num		int	미국 환경보호국(EPA)이 지정한 관측 장소 코드
Address		char	관측 장소의 실제 주소
State		char	관측 장소의 주 명칭
County		char	관측 장소의 군 명칭
City		char	관측 장소의 시 명칭
Date_Local		Date	관측 일자
	+Units	char	이산화질소 측정 단위
NO2(이산화질소) O3(오존)	_Mean	num	하루 동안 측정된 이산화질소의 평균 농도
O3(조근) SO2(이산화황)	_1st_Max_Value	num	하루 동안 측정된 이산화질소 농도 중 최대치
CO(일산화탄소)	_1st_Max_Hour	int	이산화질소 농도 최대치가 측정된 시간
CO(콘센와인파)	_AQI	int	하루 동안 측정된 이산화질소의 공기 품질 지표
Year		int	관측한 연도
Month		int	관측한 달
Day		int	관측한 날짜

*파란색: 기존 변수 / 빨간색: 추가 변수

〈가설 첫 번째〉

출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다.

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

Hour 별 value의 갯수

NO2_1 st _Max_ Hour	Count
최소	2869
최대	39639

SO2_1 st _Max_ Hour	Count
최소	8218
최대	110085

CO_1 st _Max_H our	Count
최소	6313
최대	233666

O3_1 st _Max_H our	Count
최소	1216
최대	113611

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

Hour 별 value의 mean

10 11 12 13 14 15 16 17 18 19 20 21 22 23

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

데이터 출처 [논문] 관악과 시청별 요일별 오존농도 -김정화, 김용표-

- NO2는 교통량에 영향을 많이 받기 때문에 출근시간에 높은 농도 형성
- NO2는 O3의 <u>합성작용을 방해</u> -> 서로 반대의 결과 도출
- NO2는 출근시간에 농도가 <mark>높고</mark>, O3는 출근시간에 농도가 <mark>낮다</mark>.

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

데이터 출처 [논문] 관악과 시청별 요일별 오존농도 -김정화, 김용표-

- CO 또한 출퇴근시간과 밤에 높은 농도를 달성하는 것을 볼 수 있음.
- CO는 주거환경에서 가장 높은 발생률을 보임
 → 아침과 저녁에 높은 농도

- 1. 오염물질 자체 분석
- 1) 가설1 "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."

데이터 출처 [논문] 관악과 시청별 요일별 오존농도 -김정화, 김용표-

결론 및 이유 〈SO2〉

- SO2는 출근시간 ~ 퇴근시간에 계속해서 높은 농도를 달성.

본론 소주제 소개

오염물질 자체 분석 1) 가설1

- 2날짜별 오염물질 분석
1) 가설22) 2) 가설3
- 3 위치별 오염물질 분석 1) 가설4
 - 5) 가설5

- 2. 날짜별 분석
- * 분석 내용 소개
- ▶ 2000년부터 2016년까지의 관측 기간 중, 2002년 6월 10일이 640건으로 가장 많았고, 2001년 2월 12일이 136건으로 가장 적었다.
- ▶ 최대값과 최소값의 차이가 약 500건
 - → 날짜별 자료분석에 있어서 mean 값을 취하여 살펴보는 것이 적절할 것이라 판단

Date_Local	Count
2002-06-10	640
2016-05-01	28

- ▶ 가설2. 2010년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다.
- ▶ <mark>가설3.</mark> 우리나라의 경우, 늦가을부터 겨울까지가 가장 대기오염이 심각하다고 여겨진다. 마찬가지로 미국도 늦가을부터 겨울까지의 오염물질의 농도가 높을 것이다.

03 본론-가설2,3 <4개의 오염물질을 Year별로 나눠서 분석>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

<NO2_연도별>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

- ▶ NO2는 시간에 따라 오염물질의 평균 농도가 감소하고 있음을 확인할 수 있다.
- ▶ 또한 2000년에 NO2의 평균 농도가 매우 크게 관측된 날짜는 2000년 1월 19일이었음을 확인할 수 있다.

<SO2_연도별>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

- ▶ SO2는 평균 농도가 대략 비슷하게 분포하긴 하지만, 시간에 따라 오염물질의 평균 농도가 감소하고 있음을 확인할 수 있다.
- ▶ 또한 2006년경에 SO2의 평균 농도가 매우 크게 관측된 날짜는 2006년 5월 4일이었음을 확인할 수 있다.

<O3_연도별>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

- ▶ O3는 평균 농도가 시간에 따라 증가하고 있음을 확인할 수 있다.
- ▶ 또한 2000년경에 O3의 평균 농도가 매우 크게 관측된 날짜는 2000년 6월 10일이었음을 확인할 수 있다.

<CO_연도별>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

- ▶ CO는 시간에 따라 오염물질의 평균 농도가 감소하고 있음을 확인할 수 있다.
- ▶ 또한 CO의 평균 농도가 매우 크게 관측된 날짜는 2000년 12월 경이었음을 확인할 수 있다.

<가설2에 대한 결론>

- 2. 날짜별 분석
- 1) 가설2 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."

- ▶ NO2, SO2, CO는 2010년에서 2016년으로 갈수록 점차 평균 농도 가 <mark>줄어 들고</mark> 있는 반면, <mark>O3</mark>의 평균 농도는 점차 <mark>증가</mark>하고 있다.
- ▶ 따라서 "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아 질 것"이라는 가설은 O3에 대해서만 가능성이 인정되고 나머지 세 오염물질에 대해서는 오히려 감소할 것이라는 예측이 가능하므로, 가설은 기각된다.

03 본론-가설2,3 <4개의 오염물질을 Month별로 나눠서 분석>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

<NO2_계절별>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

▶ NO2는 가을과 겨울철에 가장 오염물질의 농도가 높은 것으로 관찰된다.

<SO2_계절별>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

▶ SO2는 봄과 가을철에 오염물질의 농도가 낮고, 여름과 겨울철에 오염물질의 농도가 높은 것으로 관찰된다.

<O3_계절별>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

▶ O3는 겨울철에 오염물질의 평균농도가 가장 낮게 나타난다^{...}

<CO_계절별>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

▶ CO는 가을과 겨울철에 오염물질의 평균농도가 높게 나타난다.

03 본론-가설2,3 <계절별-4개의 오염물질 다 함께 나타내기>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

● 계절별로 4개의 오염물질을 함께 나타낸 결과, 공통적으로 시간이 흐름에 따라 CO의 평균 농도가 줄어들고 있었음을 확인할 수 있다.

<가설3에 대한 결론>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."

- ▶ NO2, SO2, CO는 여름에서 겨울로 갈수록 오염물질의 평균 농도가 <mark>증가</mark>하고 있는 반면, O3의 평균 농도는 점차 <mark>감소</mark>하고 있다.
- ▶ "늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것"이라는 가설은 NO2,CO,(SO2)에 대해서는 적당하지만 O3에 대해서는 기각된다.

<가설3에 대한 결론+추가 원인분석>

- 2. 날짜별 분석
- 2) 가설3 "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."
- NO2, CO 그리고 O3가 서로 반대인 경향을 보인 이유는 생성원인일 확률이 높다.
 NO2가 강한 자외선을 받아 분해되고
 불안전하게 재결합 되는 O3는 자연적으로 여름철에 많았고
 CO의 가장 큰 발생장소인 거주지에서 겨울철 난방을 통해 가장 많은 양이 발생했다는 근거자료를 통해 확인해볼 수 있다.

본론 소주제 소개

1 오염물질 자체 분석 1) 가설1

2 날짜별 오염물질 분석 1) 가설2

2) 가설3

3위치별 오염물질 분석1)가설4 5) 가설5

- 3. 지역별 분석
- 1) 가설 4 "캘리포니아 주 안에서 공업지역(남동부)의 대기오염이 많을 것이다."

〈가설 4〉 캘리포니아 주 안에서 공업지역(남동부)의 대기 오염이 많을 것이다.

- 3. 지역별 분석
- 1) 가설 4 "캘리포니아 주 안에서 공업지역(남동부)의 대기오염이 많을 것이다."

Mean 기준

- NO2 Burbank (30.43051), Bakersfield (28.95377), Fontana (21.32776) 등 남부공업도시
- SO2 남부 지역인 San diego (3.306962), Los Angeles (1.567195) 등이 10개의 도시에 포함
- CO Hawthorne (0.8577227), Bakersfield (0.8259681), San diego (0.8242527), Burbank (0.7470623) 등의 많은 도시들 이 상위 10개 도시 중 포함
- O3 남동부에 위치하는 Victorville (0.03338854), 중남부에 위치한 Fresno (0.03037633)

AQI 기준

- NO3 San diego (35.67786), Bakersfield (51.83486), Fontana (34.69798) 등 남동부 지역에 위치
- SO2 Hawthorne(9.215022), San diego(8.854640), Bakersfield(8.633028) 등의 많은 남부지역이 10개 도시 중 상위권에 위치
- CO Hawthorne(17.165673), Bakersfield(16.074074) 등의 남부 지역과 정확한 남동부 지역인 Calexico(14.712884) 등의 많은 도시들이 포함
- O3 남부의 도시인 Fontana (55.98019), 중남부에 위치한 Fresno (52.80754), 남동부에 위치한 Victorville (51.25039)

- 3. 지역별 분석
- 1) 가설 4 "캘리포니아 주 안에서 공업지역(남동부)의 대기오염이 많을 것이다."

- NO2 California 지역 안의 NO2와 공기 오염 정도(AQI) 사이의 관계를 조사한 결과 조금의 미세한 차이는 있었지만 거의 비례하는 수준이다.
- SO2 California 지역 안의 SO2와 공기 오염 정도(AQI) 사이의 관계를 조사한 결과 조금의 미세한 차이는 있었지만 거의 비례하는 수준이다.
- CO California 지역 안의 CO와 공기 오염 정도(AQI) 사이의 관계를 조사한 결과 조금의 미세한 차이는 있었지만 거의 비례하는 수준이다.
- O3 California 지역 안의 O3와 공기 오염 정도(AQI) 사이의 관계를 조사한 결과 앞서 조사했던 물질들 보다는 O3와 AQI 사이의 관계가 크게 와 닿진 않았지만 아예 관련성 없는 결과는 아니다.

결론 : 실제 높게 나온 곳 10개를 찾아서 실제 공업지역인지(캘리포니아 주 남동부, 실리콘 밸리 근처)를 살펴본 결과 10개의 모든 주가 그곳에 속하진 않았지만 과반수의 지역이 속해 있었다.

- 3. 지역별 분석
- 2) 가설 5 "공업지역이 많은 주가 대기오염이 높을 것이다."

〈가설 5〉 공업지역이 많은 주가 대기오염이 높을 것이다.

- 3. 지역별 분석
- 2) 가설 5 "공업지역이 많은 주가 대기오염이 높을 것이다."

Mean 기준

- NO2 Colorado (19.71049), Arizona (19.09904), New York (18.99439), Massachusetts (18.62205)
- SO2 북부의 Alaska (6.092910), New York (4.819131), Kentucky (3.800549)
- CO *Arizona* (0.4885040), *Missouri* (0.4684906), *California* (0.4578803), *Colorado* (0.4451940)
- O3 *Utah(0.03206618), Nevada(0.03199683)*

AQI 기준

- NO3 Arizona (36.16699), Colorado (36.07811), Michigan (31.89824)
- SO2 Michigan (19.20731), Missouri (18.59471), Ohio (16.06159)
- CO CO mean값과 거의 순서가 일치, *Arizona* (9.174156), *Colorado* (7.760302), *California* (7.606910), *Missouri* (7.438742)
- O3 Utah (42.23614), Missouri (41.97449), Indiana (41.59765)

- 3. 지역별 분석
- 2) 가설 5 공업지역이 많은 주가 대기오염이 높을 것이다.

- NO2 NO2 조사결과에서는 공업지역의 주의 수와 대기오염도가 큰 상관관계를 가졌다.
- SO2 반면 SO2 조사결과에서는 공업지역의 주의 수와 대기오염도와는 관계를 지을 만큼 관련도가 크지 않았다.
- CO CO 조사 결과 공업지역의 수와 대기오염도는 거의 비례한다고 볼 수 있다.
- O3 O3 조사결과에서는 공업지역의 주의 수와 대기오염도와는 관계를 지을 만큼 관련도 가 크지 않았다.

결론 : 실제 농도가 높게 나온 주 10개 찿아서 대조해본 결과 대다수가 미국 남부 지방의 공 업지역이었다. (검색 결과, 미국 공업지역은 대부분 오대호 연안/선벨트지역-노스캐롤라 이나 주~남부 캘리포니아, 북쪽 지역이 많음)

- 3. 지역별 분석
- 2) 가설 5 "공업지역이 많은 주가 대기오염이 높을 것이다."

- 3. 지역별 분석
- 2) 가설 5 "공업지역이 많은 주가 대기오염이 높을 것이다."

- 1. Country Of Mexico 37.96057
- 2. Arizona (36.16699),
- 3. Colorado (36.07811),

- 1. Michigan (19.20731),
- 3. Missouri (18.59471),
- 5. Ohio (16.06159)

- 3. 지역별 분석
- 2) 가설 5 "공업지역이 많은 주가 대기오염이 높을 것이다."

- 3. Arizona (9.174156),
- 4. Colorado (7.760302),
- 5. California (7.606910),
- 6. Missouri (7.438742)

- 4. Utah(42.23614),
- 5. Missouri (41.97449),
- 6. Indiana (41.59765)

05 결론

- 가설 1. "출퇴근시간의 오염물질의 Max_Value가 높게 측정될 것이다."
- ▶ NO2와 CO만 출퇴근 시간의 오염물질이 높게 측정된다.
- 가설 2. "2000년에서 2016년으로 갈수록 오염물질의 농도가 높아질 것이다."
- ▶ NO2, SO2, CO는 점차 평균 농도가 줄어 들고 있는 반면, O3의 평균 농도는 점차 증가하고 있다.
- 가설3. "미국의 늦가을부터 겨울까지의 오염물질의 농도가 가장 높을 것이다."
- ▶ NO2, SO2, CO는 여름에서 겨울로 갈수록 오염물질의 평균 농도가 증가하고 있는 반면, O3의 평균 농도는 점차 감소하고 있다.
- 가설 4. "캘리포니아 주 안에서 공업지역(남동부)의 대기오염이 많을 것이다."
- ▶ 대기오염이 가장 높은 10개의 주 중 과반수의 지역이 공업지역(남동부)에 속해 있었다.
- 가설 5. "공업지역이 많은 주가 대기오염이 높을 것이다."
- ▶ 실제 오염 물질의 농도가 높게 나온 주 10개를 찾아 대조해본 결과 대다수가 미국 남부 지방의 공업지역이었다.

감사합니다♥