

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Memóriák

Regiszterek

Közös órajellel vezérelt D flip-flop csoport Összetartozó adatbitek tárolása A tárolás az órajel felfutó élére történik

Műveletek: Kiolvasás (RD) Regiszter three-state kimenettel Kiolvasás (RD) Beírás (WR) Q Érvényes adat Hold time Setup time

Beírás (WR)

D

74LS374

28ns 20ns

Regiszter tömb

2 regiszter

A 0	WR	RD	Művelet	
0	0	1	0. regiszter írása	
0	1	0	0. regiszter olvasása	
1	0	1	1. regiszter írása	
1	1	0	1. regiszter olvasása	
Х	1	1	nincs művelet	

Regiszter tömb

n regiszter (n = 2^m)

Regiszter kiválasztása (címzés): $A_0...A_{m-1}$ (m db címvezeték)

Memória

Adatok tárolására alkalmas regiszter tömb

ROM (read only memory)

- maszk programozott
- PROM (egyszer írható)
- EPROM (UV törölhető, újraírható)
- EEPROM (elektronikusan törölhető, újraírható)

Tárolt bitek száma 2ⁿ

kilo Mega Giga Tera Peta bit
$$\rightarrow$$
 kbit \rightarrow Mbit \rightarrow Gbit \rightarrow Tbit \rightarrow Pbit 2^0 2^{10} 2^{20} 2^{30} 2^{40} 2^{50}

RAM (random access memory)

- statikus (tárolás flip-flopban)
- dinamikus (tárolás kondenzátorban)
 → frissítés

Szervezés

egy művelettel elérhető bitek száma: 2^m

1 kbyte = 1024 byte = 8 kbit = 8192 bit

Memória

Kapacitás: $2^n * 2^M$ bit = 2^{n+M} bit

1 kbit =
$$2^{10}$$
 bit $2^{(n+M-10)}$ kbit

Címbitek száma	Adatbitek száma		Memória kapacitása [kbit]	
12	8	2 ³	32	
14	64		1024	2 ¹⁰⁺¹⁰ bit
13	16	24	128	2 ⁷⁺¹⁰ bit

$$2^{12} * 2^3 = 2^{15}$$
 bit $\rightarrow 2^{15-10} \rightarrow 2^5 = 32k$

$$2^{14} * 2^{6} = 2^{20} \rightarrow 64$$

$$2^{13} * 2^4 = 2^{17} \rightarrow 13$$

Kapacitás:
$$2^n * 2^M$$
 bit = 2^{n+M} bit 1 kbyte = 2^{13} bit

1 kbyte =
$$2^{13}$$
 bit $2^{(n+M-13)}$ kbyte

Címbitek száma	Adatbitek száma		Memória kapacitása [kbyte]	
9	4	2 ²	0.25	
13	16		16	2 ⁴⁺¹³ bit
9	16	2 ⁴	1	2 ⁰⁺¹³ bit

$$2^9 * 2^2 = 2^{11}$$
 bit $\rightarrow 2^{11-13} \rightarrow 2^{-2} = 0.25$ k

$$2^{13} * 2^4 = 2^{17} \rightarrow 16$$

$$2^9 * 2^4 = 2^{13} \rightarrow 9$$

Interfész

Memória 2^(n+M) bit

A_{n-1} ... A₀: n db címvezeték $D_{m-1} \dots D_0$: m db adatvezeték $m = 2^M$

Kapacitás: $2^n * 2^M$ bit = 2^{n+M} bit

OE: kimenet engedélyezés

CE: memória modul engedélyezés

(kaszkádosítás)

R/W: művelet kijelölés

1: olvasás, 0: írás

Belső felépítés

n=20
→ 1 048 576 vezeték

Mátrix elrendezés

→ 1024 vezeték m db 1024/1 multiplexer

Kapacitás növelése: bitszélesség

- azonos cím vezetékek
- azonos engedélyezés
- kimenetek egymás mellé fűzése

Kapacitás növelése: adatmennyiség

- kimenetek összekötve
- engedélyezéshez dekóder
- dekódolás a felső bitekből

64 kbit memória, 8 bit szervezés Építőelem: 16kbit, 4 bit szervezés

cél interfész:

D =
$$8 \rightarrow 2^{3}$$

K = $64 \text{ kbit} \rightarrow 2^{16}$
A = 13

építőelem interfész:

D =
$$4 \rightarrow 2^2$$

K = 16 kbit $\rightarrow 2^{14}$
A = 12

Bitszélesség növelése: 4k x 4bit → 4k x 8bit

2 db 4k x 4bit memória kell

CE, R/W egyszerre vezérelt

Azonos címvezetékek

Adatvezetékek egymás mellé fűzve

Adatmennyiég növelése: 4k x 8bit → 8k x 8bit 2 db 4k x 8bit memória kell Adatvezetékek összekötve Engedélyezéshez dekóder

Memória – olvasás (EPROM)

Memória – olvasás (RAM)

Memória – írás (RAM)

Memória – írás (RAM)

