Bài 9. Tích của một vecto với một số

Mở đầu trang 55 SGK Toán 10 tập 1: Với mỗi cặp vật đặt trên hai đầu của một cánh tay đòn AB, luôn có duy nhất một điểm M thuộc AB để nếu đặt trụ đỡ tại M thì cánh tay đòn ở trạng thái cân bằng (H.4.20). Điều trên còn đúng trong trường hợp tổng quát hơn, chẳng hạn, cánh tay đòn được thay bởi một tấm ván hình đa giác n đỉnh A_1 , A_2 , A_3 , ..., A_n , tại mỗi đỉnh A_i có đặt một vật nặng m_i (kg). Ở đây, ta coi cánh tay đòn, tấm ván là không có trọng lượng. Trong Vật lí, điểm M như trên được gọi là điểm khối tâm của hệ chất điểm A_1 , A_2 , A_3 , ..., A_n ứng với các khối lượng m_1 , m_2 , m_3 , ..., m_n (kg).

Qua bài học này, ta sẽ thấy Hình học cho phép xác định vị trí khối tâm của một hệ chất điểm.

Hoạt động 1 trang 55 SGK Toán 10 tập 1: Cho vecto $\overrightarrow{AB} = \overrightarrow{a}$. Hãy xác định điểm C sao cho $\overrightarrow{BC} = \overrightarrow{a}$.

- a) Tìm mối quan hệ giữa \overrightarrow{AB} và $\overrightarrow{a} + \overrightarrow{a}$.
- b) Vecto $\vec{a} + \vec{a}$ có mối quan hệ như thế nào về hướng và độ dài với vecto \vec{a} .

Lời giải

+) $\overrightarrow{AB} = \overrightarrow{a}$ nên \overrightarrow{AB} cùng hướng và cùng độ lớn với \overrightarrow{a} ;

+) $\overrightarrow{BC} = \overrightarrow{a}$ nên \overrightarrow{BC} cùng hướng và cùng độ lớn với \overrightarrow{a} .

Do đó \overrightarrow{AB} và \overrightarrow{BC} cùng hướng và cùng độ lớn với \overrightarrow{a}

Suy ra ba điểm A, B, C thẳng hàng và AB = BC

Hay B là trung điểm của AC.

Vậy điểm C là điểm sao cho B là trung điểm của AC.

a) Ta có: $\vec{a} + \vec{a} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (quy tắc ba điểm)

Suy ra
$$|\vec{a} + \vec{a}| = |\overrightarrow{AC}| = AC$$

$$\label{eq:main_action} \text{M\`a AC} = \text{AB} + \text{BC} = 2\text{AB n\'en} \, \left| \vec{a} + \vec{a} \right| = 2\text{AB} \,.$$

Lại có AC cùng hướng với AB

Vậy $\vec{a} + \vec{a}$ cùng hướng với vecto \overrightarrow{AB} và $|\vec{a} + \vec{a}| = 2AB = 2|\overrightarrow{AB}|$.

b) Vì $\overrightarrow{AB} = \overrightarrow{a}$ nên \overrightarrow{AB} cùng hướng vecto \overrightarrow{a} và $\left| \overrightarrow{AB} \right| = \left| \overrightarrow{a} \right|$ hay $AB = \left| \overrightarrow{a} \right|$

Mà $\vec{a} + \vec{a}$ cùng hướng với vecto \overrightarrow{AB} và $\left| \vec{a} + \vec{a} \right| = 2AB$.

Do đó $\vec{a} + \vec{a}$ cùng hướng với vecto \vec{a} và $|\vec{a} + \vec{a}| = 2|\vec{a}|$.

Câu hỏi trang 55 SGK Toán 10 tập 1: la và a có bằng nhau hay không?

Lời giải

Tích của vecto $\vec{a} \neq \vec{0}$ với số thực k=1>0 là một vecto kí hiệu là $1\vec{a}$, vecto này cùng hướng với vecto \vec{a} và có độ dài bằng $1.|\vec{a}|=|\vec{a}|$.

Do đó $1\vec{a} = \vec{a}$.

Vậy
$$1\vec{a} = \vec{a}$$
.

Hoạt động 2 trang 56 SGK Toán 10 tập 1: Trên một trục số, gọi O, A, M, N tương ứng biểu diễn các số $0;1;\sqrt{2};-\sqrt{2}$. Hãy nêu mối quan hệ về hướng và độ dài của mỗi vecto $\overrightarrow{OM},\overrightarrow{ON}$ với vecto $\overrightarrow{a}=\overrightarrow{OA}$. Viết đẳng thức thể hiện mối quan hệ giữa hai vecto \overrightarrow{OM} và \overrightarrow{OA} .

Lời giải

Trên trục số Hình 4.22 ta thấy:

- Về hướng:

Điểm M và điểm A nằm cùng phía đối với điểm O trên trục số nên \overrightarrow{OM} cùng hướng với \overrightarrow{OA} ;

Điểm N và điểm A nằm khác phía đối với điểm O trên trục số nên \overrightarrow{ON} ngược hướng với \overrightarrow{OA} .

- Về độ dài:

+ Điểm A biểu diễn cho số 1 nên
$$OA = 1$$
 do đó $|\overrightarrow{OA}| = OA = 1$

+ Điểm M biểu diễn cho số
$$\sqrt{2}$$
 nên OM = $\sqrt{2}$ do đó $\left|\overrightarrow{OM}\right|$ = OM = $\sqrt{2}$

Suy ra
$$\left| \overrightarrow{OM} \right| = \sqrt{2} \left| \overrightarrow{OA} \right| = \sqrt{2} \left| \overrightarrow{a} \right|$$

+ Điểm N biểu diễn cho số
$$-\sqrt{2}$$
 nên $ON = \left|-\sqrt{2}\right| = \sqrt{2}$ do đó $\left|\overrightarrow{ON}\right| = ON = \sqrt{2}$

Suy ra
$$|\overrightarrow{ON}| = \sqrt{2} |\overrightarrow{OA}| = \sqrt{2} |\overrightarrow{a}|$$

Vậy \overrightarrow{OM} cùng hướng với $\overrightarrow{a} = \overrightarrow{OA}$ và $\left| \overrightarrow{OM} \right| = \sqrt{2} |\overrightarrow{a}|$

$$\overrightarrow{ON}$$
 ngược hướng với $\overrightarrow{a} = \overrightarrow{OA}$ và $\left| \overrightarrow{ON} \right| = \sqrt{2} \left| \overrightarrow{a} \right|$

Đẳng thức biểu thị mối quan hệ giữa hai vecto \overrightarrow{OM} và \overrightarrow{OA} là $\overrightarrow{OM} = \sqrt{2}\overrightarrow{OA}$.

Câu hỏi trang 56 SGK Toán 10 tập 1: $-\vec{a}$ và $(-1)\vec{a}$ có mối quan hệ gì?

Lời giải

 $+ \ \text{Vecto} \ \vec{-a} \ \text{là vecto} \ \vec{\text{dôi}} \ \text{của vecto} \ \vec{a} \ \text{nên} \ \vec{-a} \ \text{ngược hướng với} \ \vec{a} \ \text{và có độ dài} \ \vec{\left|\vec{a}\right|}.$

+ Vector $(-1)\vec{a}$ là tích của vector \vec{a} với số thực k = -1 < 0 nên $(-1)\vec{a}$ ngược hướng với \vec{a} và có độ dài $-(-1)|\vec{a}| = 1.|\vec{a}| = |\vec{a}|$.

Do đó vecto $(-1)\vec{a}$ cùng hướng với $-\vec{a}$ và cùng có độ dài bằng độ dài của \vec{a} .

Vậy
$$(-1)\vec{a} = -\vec{a}$$
.

Luyện tập 1 trang 56 SGK Toán 10 tập 1: Cho đường thẳng d đi qua hai điểm phân biệt A và B (H.4.25). Những khẳng định nào sau đây là đúng?

- a) Điểm M thuộc đường thẳng d khi và chỉ khi tồn tại số t để $\overrightarrow{AM} = t\overrightarrow{AB}$.
- b) Với điểm M bất kì, ta luôn có: $\overrightarrow{AM} = \frac{AM}{AB}.\overrightarrow{AB}$.
- c) Điểm M thuộc tia đối của tia AB khi và chỉ khi tồn tại số $t \le 0$ để $\overrightarrow{AM} = t\overrightarrow{AB}$.

Lời giải

a)

+ Nếu điểm M thuộc đường thẳng d thì ba điểm A, B, M thẳng hàng nên \overrightarrow{AM} cùng phương \overrightarrow{AB}

Do đó ta có tồn tại một số thực t thỏa mãn $\overrightarrow{AM} = t\overrightarrow{AB}$.

+ Nếu tồn tại số t thỏa mãn $\overrightarrow{AM} = t\overrightarrow{AB}$ thì \overrightarrow{AM} cùng phương \overrightarrow{AB} Hay đường thẳng AM song song hoặc trùng với đường thẳng AB. Mà cả hai đường thẳng này đều đi qua A nên đường thẳng AM trùng với đường thẳng AB.

Do đó A, M, B thẳng hàng hay M thuộc đường thẳng d.

Vậy khẳng định a) đúng.

b) Nếu M không thuộc đường thẳng d thì \overrightarrow{AM} không cùng phương với \overrightarrow{AB} .

Do đó ta không thể viết dưới dạng $\overrightarrow{AM} = \frac{AM}{AB} \overrightarrow{AB}$.

Vậy khẳng định b) sai.

c)

Nếu điểm M thuộc tia đối của tia AB thì hai vector \overrightarrow{AM} và \overrightarrow{AB} là hai vector cùng phương, ngược hướng

Khi đó tồn tại số thực $t \le 0$ thỏa mãn $\overrightarrow{AM} = t\overrightarrow{AB}$.

Ngược lại, nếu tồn tại số $t \le 0$ để $\overrightarrow{AM} = t\overrightarrow{AB}$ thì hoặc hai vecto \overrightarrow{AB} và \overrightarrow{AM} ngược hướng (với t < 0) hoặc $M \equiv A$ (với t = 0).

Do đó khẳng định c) đúng.

Hoạt động 3 trang 57 SGK Toán 10 tập 1: Với $\vec{u} \neq \vec{0}$ và hai số thực k, t, những khẳng định nào sau đây là đúng?

a) Hai vector $k(t\vec{u})$ và $(kt)\vec{u}$ có cùng độ dài bằng $|kt||\vec{u}|$.

- b) Nếu kt ≥ 0 thì cả hai vecto $k(t\vec{u})$, $(kt)\vec{u}$ cùng hướng với \vec{u} .
- c) Nếu kt < 0 thì cả hai vecto $k(\vec{tu})$, $(kt)\vec{u}$ ngược hướng với \vec{u} .
- d) Hai vecto $k(t\vec{u})$ và $(kt)\vec{u}$ bằng nhau.

Lời giải

a) Ta có:
$$|\mathbf{k}(\mathbf{t}\mathbf{u})| = |\mathbf{k}||\mathbf{t}\mathbf{u}| = |\mathbf{k}||\mathbf{t}||\mathbf{u}| = |\mathbf{k}t||\mathbf{u}||\mathbf{u}||\mathbf{v}$$
à $|(\mathbf{k}\mathbf{t})\mathbf{u}| = |\mathbf{k}t||\mathbf{u}||$

Suy ra
$$|\mathbf{k}(\mathbf{t}\mathbf{u})| = |(\mathbf{k}\mathbf{t})\mathbf{u}| = |\mathbf{k}\mathbf{t}||\mathbf{u}|$$

Do đó hai vecto $k(t\vec{u})$ và $(kt)\vec{u}$ có cùng độ dài bằng $|kt||\vec{u}|$. Vậy khẳng định a) đúng.

b) - Với kt ≥ 0 thì vector (kt) \vec{u} cùng hướng với vector \vec{u}

- Với kt
$$\geq 0 \Leftrightarrow \begin{cases} k \geq 0 \\ t \geq 0 \end{cases}$$
 hoặc $\begin{cases} k \leq 0 \\ t \leq 0 \end{cases}$

+) Trường hợp 1: $k \ge 0$ và $t \ge 0$

Với $t \ge 0$ thì vecto \vec{u} cùng hướng với vecto \vec{u} ;

Với $k \ge 0$ thì vecto $k(\vec{tu})$ cùng hướng với vecto \vec{tu} ;

Do đó với $k \ge 0$ và $t \ge 0$ thì $k(t\vec{u})$ cùng hướng với vecto \vec{u} (do cùng hướng với $t\vec{u}$).

+) Trường hợp 2: $k \le 0$ và $t \le 0$

Với $t \le 0$ thì vecto \vec{u} ngược hướng với vecto \vec{u} ;

Với $k \le 0$ thì vector $k(\vec{tu})$ ngược hướng với vector \vec{tu} ;

Do đó với $k \le 0$ và $t \le 0$ thì $k(\vec{tu})$ cùng hướng với vecto \vec{u} (do cùng ngược hướng với \vec{tu}).

Kết hợp hai trường hợp ta có: với kt ≥ 0 thì k $\left(\vec{tu}\right)$ cùng hướng với vecto \vec{u} .

Suy ra: nếu kt ≥ 0 thì cả hai vecto $k(\vec{tu})$, $(kt)\vec{u}$ cùng hướng với \vec{u} .

Vậy khẳng định b) là đúng.

c) – Với kt < 0 thì vecto $(kt)\vec{u}$ ngược hướng với vecto \vec{u}

- Với kt < 0
$$\Leftrightarrow$$
 $\begin{cases} k > 0 \\ t < 0 \end{cases}$ hoặc $\begin{cases} k < 0 \\ t > 0 \end{cases}$

+) Trường hợp 1: k > 0 và t < 0

Với t < 0 thì vecto \vec{u} ngược hướng với vecto \vec{u} ;

Với k > 0 thì vecto $k(\vec{tu})$ cùng hướng với vecto \vec{tu} ;

Do đó với k>0 và t<0 thì $\,k\!\left(\vec{tu}\right)$ ngược hướng với vecto \vec{u}

+) Trường hợp 2: k < 0 và t > 0

Với t > 0 thì vecto \vec{u} cùng hướng với vecto \vec{u} ;

Với k < 0 thì vector $k(\vec{tu})$ ngược hướng với vector \vec{tu} ;

Do đó với k<0 và t>0 thì $\left.k\!\left(\vec{tu}\right)$ ngược hướng với vecto \vec{u} .

Kết hợp hai trường hợp ta có: với kt < 0 thì $k(\vec{tu})$ ngược hướng với vecto \vec{u} .

Suy ra nếu kt < 0 thì cả hai vecto $k(\vec{tu})$, $(kt)\vec{u}$ ngược hướng với \vec{u} .

Vậy khẳng định c) là đúng.

- d) Theo câu a thì hai vecto $k(\vec{tu})$ và $(kt)\vec{u}$ có cùng độ dài.
- + Nếu kt ≥ 0 thì cả hai vecto $k(\vec{tu})$, $(kt)\vec{u}$ cùng hướng với \vec{u} .

Suy ra hai vecto $k(t\vec{u})$, $(kt)\vec{u}$ cùng hướng.

 $+ \ N \acute{e}u \ kt < 0 \ thì \ cả hai \ vecto \ k \Big(\vec{tu}\Big), \Big(kt\Big)\vec{u} \ ngược \ hướng \ với \ \vec{u} \ .$

Suy ra hai vecto $k(\vec{tu})$, $(kt)\vec{u}$ cùng hướng.

Do đó hai vecto $k(t\vec{u})$, $(kt)\vec{u}$ cùng hướng với mọi k, t.

$$\Rightarrow k(\vec{tu}) = (kt)\vec{u}$$

Hay hai vecto $k(\vec{tu})$ và $(kt)\vec{u}$ bằng nhau.

Vậy khẳng định d) đúng.

Hoạt động 4 trang 57 SGK Toán 10 tập 1: Hãy chỉ ra trên Hình 4.26 hai vector $3(\vec{u} + \vec{v})$ và $3\vec{u} + 3\vec{v}$. Từ đó, nêu mối quan hệ giữa $3(\vec{u} + \vec{v})$ và $3\vec{u} + 3\vec{v}$.

Lời giải

Giả sử $\overrightarrow{OE} = \overrightarrow{u}, \overrightarrow{OF} = \overrightarrow{v}$ được biểu diễn như hình vẽ trên.

+ Xét hình bình hành OEMF, ta có:

 $\vec{u} + \vec{v} = \overrightarrow{OE} + \overrightarrow{OF} = \overrightarrow{OM}$ (quy tắc hình bình hành)

$$\Rightarrow 3(\vec{u} + \vec{v}) = 3\overrightarrow{OM}$$

Trên hình vẽ ta thấy OC = 3OM và \overrightarrow{OC} cùng hướng với \overrightarrow{OM} .

Do đó
$$3(\vec{u} + \vec{v}) = 3\overrightarrow{OM} = \overrightarrow{OC}$$
. (1)

+ Trên hình vẽ ta thấy $OA = 3 \left| \overrightarrow{u} \right|$ và \overrightarrow{OA} cùng hướng với \overrightarrow{u}

 $OB = 3 |\vec{v}|$ và \overrightarrow{OB} cùng hướng với \vec{v}

Do đó
$$\overrightarrow{OA} = 3\overrightarrow{u}, \overrightarrow{OB} = 3\overrightarrow{v}$$

Xét hình bình hành OACB, ta có:

 $3\vec{u} + 3\vec{v} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ (quy tắc hình bình hành) (2)

Từ (1) và (2)
$$\Rightarrow 3(\vec{u} + \vec{v}) = 3\vec{u} + 3\vec{v} (= \overrightarrow{OC})$$

Vậy
$$3(\vec{u} + \vec{v}) = 3\vec{u} + 3\vec{v}$$
.

Luyện tập 2 trang 57 SGK Toán 10 tập 1: Cho tam giác ABC có trọng tâm G. Chứng minh với điểm O tùy ý, ta có:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$$

Lời giải

Vì G là trọng tâm tam giác ABC nên ta có: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$ (Tính chất trọng tâm của tam giác)

Với điểm O bất kì ta có: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \left(\overrightarrow{OG} + \overrightarrow{GA}\right) + \left(\overrightarrow{OG} + \overrightarrow{GB}\right) + \left(\overrightarrow{OG} + \overrightarrow{GC}\right)$

$$= \left(\overrightarrow{OG} + \overrightarrow{OG} + \overrightarrow{OG}\right) + \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}\right)$$

$$=3\overrightarrow{OG}+\overrightarrow{0}$$

$$=3\overrightarrow{OG}$$
.

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$$
.

Luyện tập 3 trang 57 SGK Toán 10 tập 1: Trong Hình 4.27, hãy biểu thị mỗi vecto \vec{u} , \vec{v} theo hai vecto \vec{a} , \vec{b} , tức là tìm các số x, y, z, t để $\vec{u} = x\vec{a} + y\vec{b}$, $\vec{v} = t\vec{a} + z\vec{b}$.

Lời giải

Giả sử các điểm O, A, B, C, M, N, P là các điểm như trong hình vẽ dưới đây.

Khi đó ta có:

$$\overrightarrow{OA} = \overrightarrow{a}; \overrightarrow{OB} = 2\overrightarrow{b}; \overrightarrow{OC} = \overrightarrow{u}; \overrightarrow{OM} = 3\overrightarrow{b}; \overrightarrow{ON} = -2\overrightarrow{a}; \overrightarrow{OP} = \overrightarrow{v}$$

Xét hình bình hành OACB, có: $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ (quy tắc hình bình hành)

Suy ra
$$\vec{u} = \vec{a} + 2\vec{b}$$
.

Xét hình bình hành OMPN, có: $\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{ON}$ (quy tắc hình bình hành)

Suy ra
$$\vec{v} = 3\vec{b} + (-2\vec{a}) = -2\vec{a} + 3\vec{b}$$
.

Vậy
$$\vec{u} = \vec{a} + 2\vec{b}, \vec{v} = -2\vec{a} + 3\vec{b}.$$

Bài 4.11 trang 58 SGK Toán 10 tập 1: Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị \overrightarrow{AM} theo hai vecto \overrightarrow{AB} và \overrightarrow{AD} .

Lời giải

Gọi E là điểm đối xứng với A qua M.

Khi đó M là trung điểm của BC và AE.

Suy ra tứ giác ABEC là hình bình hành.

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AE}$$
 (quy tắc hình bình hành)

Mà $\overrightarrow{AE} = 2\overrightarrow{AM}$ (M là trung điểm của AE)

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM} \Rightarrow \overrightarrow{AM} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$$

Xét hình bình hành ABCD có: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$ (quy tắc hình bình hành)

$$\Rightarrow \overrightarrow{AM} = \frac{\overrightarrow{AB} + \left(\overrightarrow{AB} + \overrightarrow{AD}\right)}{2} = \frac{\overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{AD}}{2}$$

$$\Rightarrow \overrightarrow{AM} = \frac{2\overrightarrow{AB} + \overrightarrow{AD}}{2} = \frac{2\overrightarrow{AB}}{2} + \frac{\overrightarrow{AD}}{2} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$$

$$V$$
ây $\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$.

Bài 4.12 trang 58 SGK Toán 10 tập 1: Cho tứ giác ABCD. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng $\overrightarrow{BC} + \overrightarrow{AD} = 2\overrightarrow{MN} = \overrightarrow{AC} + \overrightarrow{BD}$. **Lời giải**

Ta có:
$$\overrightarrow{AC} + \overrightarrow{BD} = (\overrightarrow{AD} + \overrightarrow{DC}) + (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$\Rightarrow \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC} + (\overrightarrow{DC} + \overrightarrow{CD}) = \overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{0} = \overrightarrow{AD} + \overrightarrow{BC}$$
Do đó $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$ (1)

Ta có: $\overrightarrow{BC} + \overrightarrow{AD} = (\overrightarrow{MC} - \overrightarrow{MB}) + (\overrightarrow{MD} - \overrightarrow{MA}) = \overrightarrow{MC} - \overrightarrow{MB} + \overrightarrow{MD} - \overrightarrow{MA}$

$$\Rightarrow \overrightarrow{BC} + \overrightarrow{AD} = (\overrightarrow{MC} + \overrightarrow{MD}) - (\overrightarrow{MA} + \overrightarrow{MB})$$

Lại có M là trung điểm của AB nên $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$

N là trung điểm của DC, với điểm M bất kì ta có $\overrightarrow{MC} + \overrightarrow{MD} = 2\overrightarrow{MN}$

Suy ra
$$\overrightarrow{BC} + \overrightarrow{AD} = 2\overrightarrow{MN} - \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{BC} + \overrightarrow{AD} = 2\overrightarrow{MN}$$
 (2)

Từ (1) và (2) suy ra $\overrightarrow{BC} + \overrightarrow{AD} = 2\overrightarrow{MN} = \overrightarrow{AC} + \overrightarrow{BD}$.

Bài 4.13 trang 58 SGK Toán 10 tập 1: Cho hai điểm phân biệt A và B.

- a) Hãy xác định điểm K sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0}$.
- b) Chứng minh rằng với mọi điểm O, ta có: $\overrightarrow{OK} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$.

Lời giải

a) *Cách 1:*

Giả sử có điểm K thỏa mãn $\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0}$. Khi đó $\overrightarrow{KA} = -2\overrightarrow{KB}$. Suy ra hai vecto \overrightarrow{KA} và \overrightarrow{KB} cùng phương, ngược hướng và $\overrightarrow{KA} = 2\overrightarrow{KB}$. Suy ra điểm K thuộc đoạn AB và $\overrightarrow{KA} = 2\overrightarrow{KB}$.

Cách 2:

Gọi M là trung điểm của đoạn thẳng AB suy ra $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

Khi đó ta có: $\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0}$.

$$\Leftrightarrow$$
 $\left(\overrightarrow{KM} + \overrightarrow{MA}\right) + 2\left(\overrightarrow{KM} + \overrightarrow{MB}\right) = \overrightarrow{0}$

$$\Leftrightarrow \overrightarrow{KM} + \overrightarrow{MA} + 2\overrightarrow{KM} + 2\overrightarrow{MB} = \vec{0}$$

$$\Leftrightarrow$$
 $\left(\overrightarrow{KM} + 2\overrightarrow{KM}\right) + \left(\overrightarrow{MA} + \overrightarrow{MB}\right) + \overrightarrow{MB} = \overrightarrow{0}$

$$\Leftrightarrow 3\overrightarrow{KM} + \overrightarrow{MB} = \overrightarrow{0} (\overrightarrow{Vi} \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0})$$

$$\Leftrightarrow 3\overrightarrow{KM} = -\overrightarrow{MB}$$

$$\Leftrightarrow 3\overrightarrow{KM} = \overrightarrow{BM}$$

$$\Leftrightarrow \overrightarrow{KM} = \frac{1}{3}\overrightarrow{BM}$$

$$\Leftrightarrow \overrightarrow{MK} = \frac{1}{3}\overrightarrow{MB}$$

Suy ra vecto \overrightarrow{MK} cùng hướng với vecto \overrightarrow{MB} và thỏa mãn $MK = \frac{1}{3}MB$.

Vậy điểm K là điểm nằm giữa M và B sao cho thỏa mãn $MK = \frac{1}{3}MB$.

b)

Cách 1:

Ta có:

$$\frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB} = \frac{1}{3}\left(\overrightarrow{OK} + \overrightarrow{KA}\right) + \frac{2}{3}\left(\overrightarrow{OK} + \overrightarrow{KB}\right) = \frac{1}{3}\overrightarrow{OK} + \frac{1}{3}\overrightarrow{KA} + \frac{2}{3}\overrightarrow{OK} + \frac{2}{3}\overrightarrow{KB}$$

$$= \left(\frac{1}{3}\overrightarrow{OK} + \frac{2}{3}\overrightarrow{OK}\right) + \left(\frac{1}{3}\overrightarrow{KA} + \frac{2}{3}\overrightarrow{KB}\right) = \overrightarrow{OK} + \frac{1}{3}\left(\overrightarrow{KA} + 2\overrightarrow{KB}\right)$$

$$\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0} \text{ (theo câu a) do } \overrightarrow{do} \ \overrightarrow{\frac{1}{3}OA} + \frac{2}{3}\overrightarrow{OB} = \overrightarrow{OK} + \frac{1}{3}.\overrightarrow{0} = \overrightarrow{OK}$$

Vậy với mọi điểm O, ta có: $\overrightarrow{OK} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$.

Cách 2:

Ta có:
$$\overrightarrow{OK} = \overrightarrow{OM} + \overrightarrow{MK}$$

Theo câu a ta có
$$\overrightarrow{MK} = \frac{1}{3} \overrightarrow{MB} = \frac{1}{3} (\overrightarrow{MO} + \overrightarrow{OB})$$

$$Do \ \texttt{\r{a}\'{o}} \ \overrightarrow{OK} = \overrightarrow{OM} + \overrightarrow{MK} = \overrightarrow{OM} + \frac{1}{3} \Big(\overrightarrow{MO} + \overrightarrow{OB} \Big) = \overrightarrow{OM} + \frac{1}{3} \overrightarrow{MO} + \frac{1}{3} \overrightarrow{OB}$$

$$= \overrightarrow{OM} - \frac{1}{3}\overrightarrow{OM} + \frac{1}{3}\overrightarrow{OB}$$

$$=\frac{2}{3}\overrightarrow{OM} + \frac{1}{3}\overrightarrow{OB}$$

Vì M là trung điểm của AB nên
$$\overrightarrow{OA} + \overrightarrow{OB} = 2\overrightarrow{OM} \Rightarrow \overrightarrow{OM} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB})$$

$$\Rightarrow \overrightarrow{OK} = \frac{2}{3} \cdot \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) + \frac{1}{3} \overrightarrow{OB} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) + \frac{1}{3} \overrightarrow{OB}$$

$$\Rightarrow \overrightarrow{OK} = \frac{1}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB} + \frac{1}{3}\overrightarrow{OB} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$$

Vậy với mọi điểm O, ta có:
$$\overrightarrow{OK} = \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$$
.

Bài 4.14 trang 58 SGK Toán 10 tập 1: Cho tam giác ABC.

- a) Hãy xác định điểm M để $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.
- b) Chứng minh rằng với mọi điểm O, ta có: $\overrightarrow{OA} + \overrightarrow{OB} + 2\overrightarrow{OC} = 4\overrightarrow{OM}$.

Lời giải

a) Gọi G là trọng tâm tam giác ABC suy ra $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Ta có:
$$\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$$

$$\Leftrightarrow \left(\overrightarrow{MG} + \overrightarrow{GA}\right) + \left(\overrightarrow{MG} + \overrightarrow{GB}\right) + 2\left(\overrightarrow{MG} + \overrightarrow{GC}\right) = \vec{0}$$

$$\Leftrightarrow \overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} + \overrightarrow{GB} + 2\overrightarrow{MG} + 2\overrightarrow{GC} = \overrightarrow{0}$$

$$\Leftrightarrow \left(\overrightarrow{MG} + \overrightarrow{MG} + 2\overrightarrow{MG}\right) + \left(\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}\right) + \overrightarrow{GC} = \vec{0}$$

$$\Leftrightarrow 4\overrightarrow{MG} + \overrightarrow{GC} = \overrightarrow{0} \text{ (vì } \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \text{)}$$

$$\Leftrightarrow 4\overrightarrow{MG} = -\overrightarrow{GC}$$

$$\Leftrightarrow$$
 $-4\overrightarrow{GM} = -\overrightarrow{GC}$

$$\iff \overrightarrow{GM} = \frac{1}{4} \overrightarrow{GC}$$

Do đó vecto \overrightarrow{GM} cùng hướng với vecto \overrightarrow{GC} và $GM = \frac{1}{4}GC$.

Vậy điểm M nằm giữa G và C sao cho $GM = \frac{1}{4}GC$.

b) Ta có:
$$\overrightarrow{OA} + \overrightarrow{OB} + 2\overrightarrow{OC} = \left(\overrightarrow{OM} + \overrightarrow{MA}\right) + \left(\overrightarrow{OM} + \overrightarrow{MB}\right) + 2\left(\overrightarrow{OM} + \overrightarrow{MC}\right)$$

$$=\overrightarrow{OM} + \overrightarrow{MA} + \overrightarrow{OM} + \overrightarrow{MB} + 2\overrightarrow{OM} + 2\overrightarrow{MC}$$

$$= \left(\overrightarrow{OM} + \overrightarrow{OM} + 2\overrightarrow{OM}\right) + \left(\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}\right)$$

$$=4\overrightarrow{OM}+\overrightarrow{0}$$
 (vì $\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}$)

 $=4\overrightarrow{OM}$

Vậy với mọi điểm O, ta có: $\overrightarrow{OA} + \overrightarrow{OB} + 2\overrightarrow{OC} = 4\overrightarrow{OM}$.

Bài 4.15 trang 59 SGK Toán 10 tập 1: Chất điểm A chịu tác động của ba lực $\overrightarrow{F}_1, \overrightarrow{F}_2, \overrightarrow{F}_3$ như Hình 4.30 và ở trạng thái cân bằng (tức là $\overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = \overrightarrow{0}$). Tính độ lớn của các lực $\overrightarrow{F}_2, \overrightarrow{F}_3$, biết \overrightarrow{F}_1 có độ lớn là 20 N.

Lời giải

Giả sử các điểm B, C, D, E thoả mãn $\overrightarrow{AB} = \overrightarrow{F_1}; \overrightarrow{AD} = \overrightarrow{F_2}; \overrightarrow{AE} = \overrightarrow{F_3}$ và ABCD là hình bình hành.

Vì ABCD là hình bình hành nên $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ hay $\overrightarrow{F_1} + \overrightarrow{F_2} = \overrightarrow{AC}$

Ta có:
$$\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{F_1} + \overrightarrow{F_2} = -\overrightarrow{F_3}$$

$$\Leftrightarrow \overrightarrow{AC} = -\overrightarrow{F_3}$$

Suy ra hai vecto \overrightarrow{AC} và \overrightarrow{F}_3 là hai vecto đối nhau

$$\Rightarrow |\overrightarrow{AC}| = |\overrightarrow{F_3}| \text{ và CAD} = 60^{\circ}.$$

ABCD là hình bình hành nên $\left|\overrightarrow{F_{1}}\right|=\left|\overrightarrow{AB}\right|=AB=DC=20\big(N\big)$

Tam giác ACD vuông tại D có:

+) AD = DC.cot CAD =
$$20.\cot 60^\circ = \frac{20}{\tan 60^\circ} = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3}$$

Do đó
$$\left| \overrightarrow{F_2} \right| = \frac{20\sqrt{3}}{3} (N)$$

+) AC =
$$\frac{DC}{\sin CAD}$$
 = $\frac{20}{\sin 60^{\circ}}$ = $\frac{20}{\frac{\sqrt{3}}{2}}$ = $\frac{40}{\sqrt{3}}$ = $\frac{40\sqrt{3}}{3}$

Do đó
$$|\overrightarrow{F_3}| = |\overrightarrow{AC}| = \frac{40\sqrt{3}}{3}(N)$$

Vậy độ lớn vecto $\overrightarrow{F_2}, \overrightarrow{F_3}$ lần lượt là $\frac{20\sqrt{3}}{3}$ N, $\frac{40\sqrt{3}}{3}$ N.