Dimensionality Reduction Techniques

TM Quest

Overview

What Will we Learn in This Module?

- What is meant by reducing dimensions?
 - How to reduce dimensions based on correlation.
 - How to reduce dimensions based on variation.
- What are principal component analysis (PCA)?
 - For which problems are PCA useful?
 - How to implement PCA in scikit-learn.

Idea

Notice

- The more features you have, the higher the dimensionality of the problem is.
- We will henceforth refer to the number of features as the dimensionality of the problem we are trying to solve.

The Curse of Dimensionality!

Definition

Machine learning models tend to perform worse when the number of features used in the model increases. High-dimensional data is thus often difficult to predict well.

Intuitive Explanations

- Imagine that you have three features that all can take the values 0 or 1. Then there are only $2 * 2 * 2 = 2^3 = 8$ different combinations. For every new observation, you have most likely seen several precisely equal data points in the training phase.
- Imagine now that you have 100 features that all can take the values 0 or 1. Then there are 2¹⁰⁰ = 1,125,899,906,842,624 different combinations. Given a new observation, you have probably not seen anything remotely close in the training phase.

Solution: Reduce the Number of Dimensions

Befor	re
-------	----

Feature 1	Feature 2	Feature 3
1	7	3
5	6	2
7	9	7
4	2	7
8	9	9
2	1	2
9	0	4
4	2	3

After

(ij cc.		
Feature 1	Feature 2	
1	7	
5	6	
7	9	
4	2	
8	9	
2	1	
9	0	
4	2	

Goal

Rather than removing features (columns) randomly, we would like to remove them based on some criterion.

Principal Component Analysis

Motivation

Rather than simply removing some of the features, we can create a small set of new features that are combinations of the old ones.

Before

Feature 1	Feature 2	Feature 3
1	7	3
5	6	2
7	9	7
4	2	7
8	9	9
2	1	2
9	0	4
4	2	3

After

• 0			
New Feature 1	New Feature 2		
8	-2		
11	3		
16	0		
6	-3		
17	-1		
3	0		
9	5		
6	1		

Principal Component Analysis

Principal Component Analysis

Definition

Principal Component Analysis (PCA) tries to pick a combination of columns that retain the variance in the data as much as possible.

Facts

- In scikit-learn there is a pre-built class that performs PCA. You can use this in a scikit-learn pipeline to avoid the curse of dimensionality.
- There is a parameter that dictates how many new columns you want. The optimal value can be found with hyperparameter search.
- It's a good idea to scale the data before performing PCA.