

In the Claims:

Claim 1 (currently amended) An electrode structure for an electrolysis cell divided by a separator into an anodic compartment and a cathodic compartment, comprising at least one movable surface suited to be put in contact with the separator and provided with a component of higher thickness having a substantially planar development overlapped to a thin sheet provided with openings or to a thin mesh of wires, and a catalytic coating applied only to said component of higher thickness.

Claim 2 (currently amended) The structure of claim 1 characterised characterized by being an anodic structure wherein the separator is a diaphragm or membrane for a chlor-alkali cell and said catalytic coating comprises a catalyst for chlorine evolution.

Claim 3 (currently amended) The structure of claims claim 1 ~~or~~-2 wherein said component of higher thickness consists of a multiplicity of vertical and parallel plates.

Claim 4 (currently amended) The structure of claim 3 wherein said vertical plates have a width comprised between 2 and 10 millimetres millimeters, a thickness comprised between 0.3 and 2 millimetres and a spacing comprised between 2 and 10 millimetres millimeters.

Claim 5 (currently amended) The structure of claims claim 1 ~~or~~-2 wherein said component of higher thickness consists of a multiplicity of horizontal and parallel plates.

Claim 6 (currently amended) The structure of claim 5 wherein said plates have a thickness of at least 0.3 millimetres millimeters and are mutually spaced apart by at least 1 millimetre millimeter.

Claim 7 (currently amended) The structure of claim 5 wherein said horizontal plates are arranged in parallel and in off-set rows spaced apart by 1 to 5 millimetres millimeters, each of said plates being 5 to 30 millimetre millimeter long, said plates being obtained by deformation of a 0.3 to 2 millimetre millimeter thick sheet.

Claim 8 (currently amended) The structure of ~~claims~~ claim 1 or 2 wherein said component of higher thickness consists of a sheet provided with openings.

Claim 9 (original) The structure of claim 8 wherein said sheet provided with openings is an unflattened expanded sheet.

Claim 10 (currently amended) The structure of ~~the previous claims~~ claim 1 wherein said thin sheet provided with openings is a flattened expanded sheet or a perforated sheet or a sintered porous layer.

Claim 11 (currently amended) The structure of claim 10 wherein said flattened expanded sheet is 0.2 to 0.8 millimetre millimeter thick and is provided with rhomboidal openings with major diagonal comprised between 3 and 7 millimetres millimeters and minor diagonal comprised between 1 and 5 millimetres millimeters.

Claim 12 (currently amended) The structure of ~~the previous claims~~ claim 1 wherein said thin sheet provided with openings has a ratio between opening clearance and overall geometric area at least equal to 0.5.

Claim 13 (original) The structure of claim 12 wherein said ratio between opening clearance and overall geometric area is at least equal to 0.9.

Claim 14 (currently amended) The structure of ~~the previous claims~~ claim 1 wherein said thin sheet provided with openings is made of a corrosion-

resistant metal or of a polymeric material stable at the operating conditions of said cell.

Claim 15 (original) The structure of claim 14 wherein said corrosion-resistant metal consists of titanium or titanium alloy.

Claim 16 (currently amended) The structure of claim 14 wherein said polymeric material consists of an optionally hydrophilised hydrophilized fluorinated polymer.

Claim 17 (currently amended) ~~The structure of the previous claims~~ claim 1 wherein said thin sheet provided with openings or thin mesh of wires is secured to said component of higher thickness.

Claim 18 (currently amended) ~~The structure of the previous claims~~ claim 1 wherein said thin sheet provided with openings or thin mesh of wires is placed in contact with the separator.

Claim 19 (currently amended) A chlor-alkali membrane or diaphragm cell comprising at least a structure of ~~the previous claims~~ claim 1.

Cancel Claims 20 and 21.

Please add the following claim:

Claim 22 (new) A method of producing chlorine comprising electrolyzing an aqueous sodium chloride solution in a cell of claim 19 at a voltage not higher than 3 volts at a current density of 2500 A/m² and an oxygen content in chlorine not higher than 2%.