Week 10 - Session 1

DW 10.009 – Introduction to Python Programming

Week 10 Breakdown

- Session 1: Introduction to Data Science
 - Introduction to Numpy
 - Core ideas about data science
 - Data Manipulation and Visualization

- Session 2: Introduction to regression
 - Key parameters for regression
 - Linear regression
 - Multiple linear regression
- Session 3: About classification
 - Key parameters for classification
 - K-NN Classification

Week 10 Breakdown

- Session 1: Introduction to Data Science
 - Introduction to Numpy
 - Core ideas about data science
 - Data Manipulation and Visualization

- Session 2: Introduction to regression
 - Key parameters for regression
 - Linear regression
 - Multiple linear regression
- Session 3: About classification
 - Key parameters for classification
 - K-NN Classification

About the Numpy library

A quick tour of the key concepts and functions

Numpy vs lists

- Numpy arrays are objects from the Numpy library.
 - Typically used to describe matrices and vectors.
- The look very similar to nested lists
 of lists, which we have used earlier
 for representing matrices.

```
import numpy as np
    # Create a matrix as a nested list of lists
    matrix1 = [[0,1], [2,3]]
    print(type(matrix1))
    print(matrix1)
    # Create a matrix as a numpy array
    matrix2 = np.array([[0,1],[2,3]])
    print(type(matrix2))
    print(matrix2)
<class 'list'>
[[0, 1], [2, 3]]
<class 'numpy.ndarray'>
[[0 1]
[2 3]]
```

Numpy vs lists

- Numpy arrays offer more tools for matrix computation.
- For starters, Numpy can identify oddly-shaped matrices from the start.
- Many methods from lists can be reused, but the numpy library offers more functions/methods.

```
1 # Create a matrix as a nested list of lists
2 matrix3 = [[0,1], [2,3,4]]
3 print(matrix3)
4
5 # Create a matrix as a numpy array
6 matrix4 = np.array([[0,1], [2,3,4]])
7 print(matrix4)

[[0, 1], [2, 3, 4]]
[list([0, 1]) list([2, 3, 4])]
```

Numpy generation: array, zeros, ones

- The Numpy arrays can be generated in multiple ways
- We can pass a nested list of lists detailing the matrix elements.
- Or we can generate matrices by specifying dimensions and fill it with zeros or ones.

```
# Create an array with a nested list of lists
   matrix1 = np.array([[0,1],[2,3]])
    print(matrix1)
[[0 1]
[2 3]]
   # Create a matrix full of zeros
    matrix2 = np.zeros([4,2])
    print(matrix2)
[[0. 0.]
 [0. 0.]
 [0. 0.]
 [0. 0.]]
   # Create a matrix full of ones
    matrix3 = np.ones([2,3])
    print(matrix3)
[[1. 1. 1.]
 [1. 1. 1.]]
```

Numpy generation 2: eye ,linspace, arange

[0 2 4 6 8]

- It is also possible to create square identity matrices with eye()
- Or use linspace and a range functions to create vectors with regularly spaced elements.

```
1 # Create an identity square matrix
 2 matrix4 = np.eye(3)
    print(matrix4)
[[1. 0. 0.]
 [0. 1. 0.]
[0. 0. 1.]]
 1 # - Create a linearly spaced 1D vector
 2 # Linspace(a,b,c) creates a vector with c
   # regularly spaced elements, with a as the
   # first element and b as the last element
   matrix5 = np.linspace(0,10,5)
    print(matrix5)
[0. 2.5 5. 7.5 10.]
 1 # - Create a linearly spaced 1D vector
 2 # Arange(a,b,c) creates a vector, with a as the
 3 # first element and c as the spacing between elements.
 4 # b is the last element, but is never included.
 5 \mid matrix6 = np.arange(0,10,2)
    print(matrix6)
```

Some key attributes of Numpy: shape and size

- The Numpy arrays are custom objects with some attributes.
- Some interesting attributes are
 - Shape: contains a tuple, with the number of rows and columns of the matrix.
 - **Size:** an integer containing the number of elements in the numpy array.

```
# Create a numpy array
    matrix = np.array([[0,1,2],[3,4,5]])
    print(matrix)
    # Number of elements in array
    print(matrix.size)
    # Matrix dimensions
    print(matrix.shape)
10
    # Number of rows
    print(matrix.shape[0])
13
    # Number of columns
    print(matrix.shape[1])
[[0 1 2]
 [3 4 5]]
(2, 3)
2
```

Basic operators: addition and multiplication

- Interestingly, the basic operations on matrices have been implemented in Numpy.
- For instance, the addition + works as expected.

```
# Some matrices
    matrix1 = np.array([[0,1],[1,0]])
    print(matrix1)
    matrix2 = np.array([[0,2],[1,-1]])
    print(matrix2)
[[0 1]
 [1 0]]
[[ 0 2]
 [ 1 -1]]
 1 # Matrix addition
    matrix3 = matrix1 + matrix2
    print(matrix3)
[[ 0 3]
[ 2 -1]]
```

Basic operators: addition and multiplication

- Interestingly, the basic operations on matrices have been implemented in Numpy.
- The multiplication * however is an element-wise multiplication by default.
- The standard matrix multiplication uses the dot() function.

```
# Some matrices
    matrix1 = np.array([[0,1],[1,0]])
    print(matrix1)
    matrix2 = np.array([[0,2],[1,-1]])
    print(matrix2)
[[0 1]
 [1 0]]
[[0 2]
 [ 1 -1]]
 1 # Matrix addition
    matrix3 = matrix1 + matrix2
    print(matrix3)
[[ 0 3]
[2-1]]
 1 # Element-wise multiplication
    matrix4 = matrix1*matrix2
    print(matrix4)
[[0 2]
 [1 0]]
 1 # "Normal" matrix multiplication
    matrix5 = np.dot(matrix1, matrix2)
    print(matrix5)
[[ 1 -1]
```

Indexing

- As before with nested lists, we can perform indexing with successive brackets.
- However, we can also use the bracket and comma notation on Numpy arrays.
 - (and it is often much prefered)

```
# Some matrices
    matrix1 = [[0,1],[1,0]]
    print(matrix1)
    # Element selection in nested lists
    element1 = matrix1[0][1]
   print(element1)
    element1 = matrix1[0,1] # Does not work on lists
   print(element1)
[[0, 1], [1, 0]]
                                         Traceback (most recent call last)
TypeError
<ipython-input-42-9867793e052b> in <module>
      5 element1 = matrix1[0][1]
      6 print(element1)
----> 7 element1 = matrix1[0,1] # Does not work on lists
      8 print(element1)
TypeError: list indices must be integers or slices, not tuple
 1 # Some matrix
    matrix2 = np.array([[0,2],[1,-1]])
    print(matrix2)
   # Element selection in numpy arrays
   element2 = matrix2[0][1]
   print(element2)
    element2 = matrix2[0,1] # Does not work on lists
   print(element2)
[[0 2]
[ 1 -1]]
```

Slicing

- We can also perform slicing, as before.
- We can also use the : symbol to select all the elements along a dimension of the matrix
 - (whole row/column)

```
1 # A matrix
 2 matrix = np.array([[0,2],[1,-1]])
   print(matrix)
[[0 2]
 [ 1 -1]]
   # Getting a whole line
   index = 1
    elements = matrix[index,:]
    print(elements)
[ 1 -1]
   # Getting a whole column
 2 index = 1
   | elements = matrix[:,index]
    print(elements)
```

[2-1]

Reshaping into 1D arrays, a.k.a. flattening.

- Sometimes, we might be interested to reshape our matrix into a 1D vector.
- We can do so with the reshape() function.
- This operation is typically known as **flattening** a matrix

```
# A matrix
 2 matrix = np.array([[0,1,2], [3,4,5]])
    print(matrix)
[[0 1 2]
 [3 4 5]]
   # Reshaping into a 2D (1 x N) array
    matrix2 = np.reshape(matrix, [1,6])
    # Or equivalently
    matrix2 = np.reshape(matrix, [1,matrix.size])
    print(matrix2)
[[0 1 2 3 4 5]]
```

Reshaping and transposing

- It can also be used to reshape a matrix from a given shape to another one.
- For instance **reshape** a (2,3) matrix into a (3,2) matrix.
- Important: this is not a transposition operation!
 - Transposition = transpose()

```
# A matrix
    matrix = np.array([[0,1,2], [3,4,5]])
    print(matrix)
    # Reshaping into another format
    matrix3 = np.reshape(matrix, [3,2])
    print(matrix3)
[[0 1 2]
 [3 4 5]]
[[0 1]
 [2 3]
 [4 5]]
    # Reshaping into another format
    matrix4 = np.transpose(matrix)
    print(matrix4)
[[0 3]
```

Eigenvalues and eigenvectors

- Numpy also has lots of functions implementing linear algebra operations, such as
 - Finding eigenvalues and eigenvectors

```
# A matrix
    matrix = np.array([[1,1],[0,-1]])
    print(matrix)
[[ 1 1]
[ 0 -1]]
 1 # Find the eigenvalues and eigenvectors
    eigenvalues, eigenvectors = np.linalg.eig(matrix)
 1 # Array of eigenvalues
 2 print(eigenvalues)
[ 1. -1.]
 1 # Array of eigenvectors
 2 print(eigenvectors)
[[ 1.
             -0.4472136
              0.89442719]]
 1 # First eigenvector
    print(eigenvectors[0])
[ 1.
           -0.4472136]
 1 # Second eigenvector
    print(eigenvectors[1])
[0.
           0.89442719]
```

Linear system solving

- Numpy also has lots of functions implementing linear algebra operations, such as
 - Solving a linear system of equations

```
1 # --- Attempting to solve the linear system below
 2 + 3 \times [0] + x[1] = 9
 3 + x[0] + 2x[1] = 8
   # It can be described as Ax = B, with A and B as
    A = np.array([[3,1], [1,2]])
    B = np.array([9,8])
    # Solving linear system
    x = np.linalg.solve(A, B)
10
    # Solutions
    print(x)
   # x[0] solution
    print(x[0])
15 \# x[1] solution
    print(x[1])
[2. 3.]
2.0
3.0
```

Min, Max, Mean, Median, Percentile

- It has also functions for finding the
 - Minimal value,
 - Maximal value,
 - Mean value,
 - Median values,
 - Etc.
- For any given array, containing random variables realizations.
- Here, we create an array of realizations for a uniform(0,1) random variable, with the random.random() function.

```
1 # Create a nested list of uniformly distributed
2 # random values between 0 and 1
   nested list = [random.random() for i in range(5)]
  # Make it a numpy array
   matrix = np.array([nested list])
   print(matrix)
[0.22004288 0.53493323 0.73236796 0.37417799 0.6502602 ]]
1 # Create a nested list of uniformly distributed
  # random values between 0 and 1
   nested list = [random.random() for i in range(10000)]
   # Make it a numpy array
   matrix = np.array([nested_list])
   print(matrix.shape)
```

Min, Max, Mean, Median, Percentile

- It has also functions for finding the
 - Minimal value,
 - Maximal value,
 - Mean value,
 - Median values,
 - Etc.
- For any given array, containing random variables realizations.
- Here, we create an array of realizations for a uniform(0,1) random variable, with the random.random() function.

```
1 # Minimal value
 print(np.min(matrix))
5.052808826566668e-06
 1 # Maximal value
 print(np.max(matrix))
0.999945892478096
 1 # Mean value
 2 print(np.mean(matrix))
0.5024344386819765
 1 # Median value
 2 print(np.median(matrix))
0.5042077048148175
 1 # n%-percentile value: value of the element,
   # which is greater than n% of the samples in matrix
    n = 25
    print(np.percentile(matrix, n))
0.2509906081803283
```

Conclusion: Numpy

- Numpy is a powerful library for matrix and vector calculations, typically used in data science.
- More info about its possibilities, here:
 https://www.numpy.org/devdocs/user/quickstart.html
- Also has some math functions: np.cos, np.sin, np.log, etc.
- Also has some random functions: np.random.randint
- More linear algebra functions: rank of a matrix, determinant of a matrix, inversion of a matrix, diagonalization of a matrix, etc.

A quick introduction to data science

We will see more about these typical problems in Sessions 2 and 3.

A quick introduction to data science

- Data science has been recently trending, with many keyswords...
- But what is the core idea behind this data science concept?

A quick introduction to data science

- Data science has been recently trending, with many keyswords...
- But what is the core idea behind this data science concept?

- Core ideas
 - make sense from data
 - and learn information from it.

Core idea behind data science: find the missing function, based on available data

- What we have done in Programming so far was to design functions,
 - which would do specific operations
 - and return outputs
 - for any input we could give it

Core idea behind data science: find the missing function, based on available data

- What we have done in Programming so far was to design functions,
 - which would do specific operations
 - and return outputs
 - for any input we could give it

- But sometimes, we can encounter problems where
 - we can easily find inputs and expected outputs,
 - but the function to be coded is not simple to figure out.

Core idea behind data science: find the missing function, based on available data

- What we have done in Programming so far was to design functions,
 - which would do specific operations
 - and return outputs
 - for any input we could give it

- But sometimes, we can encounter problems where
 - we can easily find inputs and expected outputs,
 - but the function to be coded is not simple to figure out.
- Idea: What if the computer could learn the function on its own?

• For instance, if I were to give you this table of values...

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
7	49
8	64
9	81
10	100

- For instance, if I were to give you this table of values...
- And then ask you to guess the expected output for the value 6...

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
6	?
7	49
8	64
9	81
10	100

- For instance, if I were to give you this table of values...
- And then ask you to guess the expected output for the value 6...
- You would probably guess, it is 36.

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
6	?
7	49
8	64
9	81
10	100

- For instance, if I were to give you this table of values...
- And then ask you to guess the expected output for the value 6...
- You would probably guess, it is 36.
- Because you guessed, that the missing function y = f(x), was $f(x) = x^2$.
- And f(6) = 36.

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
6	?
7	49
8	64
9	81
10	100

Record/Experience, features/inputs and labels/outputs

What just happened?

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
7	49
8	64
9	81
10	100
6	?

Record/Experience, features/inputs and labels/outputs

- What just happened?
- You used your previous experience/record

Experience/Record

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
7	49
8	64
9	81
10	100
6	?

Record/Experience, features/inputs and labels/outputs

- What just happened?
- You used your previous experience/record
- To "guess" what might be the relationship/function f
 - Between your inputs/features x
 - And their respective outputs/labels y

Experience/Record

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
7	49
8	64
9	81
10	100
6	?

Input x (available) Function f

Output y = f(x) (available)

About regression

• That is a very common problem in data science, called **regression**.

About regression

- That is a very common problem in data science, called regression.
- Mathematically speaking, it consists of finding the curve that covers the points (x,y) you have in your record/experience.
- So that you could later predict the outputs of unseen input values.

1
$$x = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]$$

2 $y = [0, 1, 4, 9, 16, 25, 49, 64, 81, 100]$

Typical problems in regression

• Typically, our squares example

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25
7	49
8	64
9	81
10	100
6	?

Typical problems in regression

- Typically, our squares example
- The IQ tests: « guess the element that comes next in the sequence »

Inputs x	Outputs y
1	1
2	4
3	9
4	16
5	25

Typical problems in regression

- Typically, our squares example
- The IQ tests: « guess the element that comes next in the sequence »
- Exemple with appartment selling
 - Guessing the selling price of an appartment based on its size and your previous sales.

Typical problems in regression

- Typically, our squares example
- The IQ tests: « guess the element that comes next in the sequence »
- Exemple with appartment selling
 - Guessing the selling price of an appartment based on its size and your previous sales.
- Etc.

Regression and classification

- Regression problems are very common in real-life.
- Other very common problems are classification ones.

Regression and classification

- Regression problems are very common in real-life.
- Other very common problems are classification ones.
- Typically used in computer vision.

Input x (available)

Function f

Output y = f(x) (available)

Very easy for a human...

It's a cat!

Regression and classification

- Regression problems are very common in real-life.
- Other very common problems are classification ones.
- Typically used in computer vision.

Input x (available)

Function f

Output y = f(x) (available)

It's a cat!

Classification are very common in computer vision

- Computer vision problems:
 - Image recognition: given a picture, tell me what it is (cats/dogs, name of the person)

It's a cat!

Classification are very common in computer vision

- Computer vision problems:
 - Image recognition: given a picture, tell me what it is (cats/dogs, name of the person)
 - Image classification: given a CT scan, tell me if there is a cancer/not cancer

That's cancerous

Classification are very common in computer vision

- Computer vision problems:
 - Image recognition: given a picture, tell me what it is (cats/dogs, name of the person)
 - Image classification: given a CT scan, tell me if there is a cancer/no cancer
 - Image recognition + segmentation:
 - find if there is a pedestrian in the picture
 - and if so, where he/she is,
 - And what its movement is.

Recap for data science

- Many real-life problems
 - will fall in either the regression or the classification category
 - and can be addressed with data science based approaches.

- We will cover a typical regression problem on Session 2.
- And a typical classification problem on Session 3.

Recap for data science

- Many real-life problems
 - will fall in either the regression or the classification category
 - and can be addressed with data science based approaches.

- We will cover a typical regression problem on Session 2.
- And a typical classification problem on Session 3.

But before we do so, a quick word about data visualization.

About data visualization

Looking for ideas, by exploring your data.

 Often, in data science problems, we like to plot the data to see what the problem looks like.

- Often, in data science problems, we like to plot the data to see what the problem looks like.
- For instance, we could have plotted the points of the square problem discussed earlier...
- And recognized that the missing function we were looking for was most likely a quadratic function of some sort.

- Let us say I have a table of previous appartment sales...
- Containing a list of appartments I have sold in the past, with their size (in sqm) and their price (in \$)

Size (in sqm)	Price (in \$)
57	544000
76	760000
92	947000
101	1006000
101	1049000
106	1037000
•••	•••

- Let us say I have a table of previous appartment sales...
- Containing a list of appartments I have sold in the past, with their size (in sqm) and their price (in \$).
- And friend comes and asks for an estimation of the price of its 125sqm appartment. What is your answer?

Size (in sqm)	Price (in \$)
57	544000
76	760000
92	947000
101	1006000
101	1049000
106	1037000
•••	•••

- Let us say I have a table of previous appartment sales...
- Containing a list of appartments I have sold in the past, with their size (in sqm) and their price (in \$)
- And friend comes and asks for an estimation of the price of its 125sqm appartment. What is your answer?

Scatter plots

- Scatter plots are often useful.
- They give rough insights as to what the function linking my inputs and outputs might be.

Scatter plots

- Scatter plots are often useful.
- They give rough insights as to what the function linking my inputs and outputs might be.

Using data descriptors

- Data descriptors are also very useful.
- They give a numerical recap of key values of the data (its min, max, mean, median, etc.)
- Data objects often have built-in descriptors, but their name may vary.

```
1 # part b
 2 bunchobject = datasets.load breast cancer()
    print(bunchobject.DESCR)
 4 print(bunchobject.feature names)
    print(bunchobject.target names)
    print(bunchobject.data.shape)
.. _breast_cancer_dataset:
Breast cancer wisconsin (diagnostic) dataset
**Data Set Characteristics:**
    :Number of Instances: 569
    :Number of Attributes: 30 numeric, predictive attributes and the class
    :Attribute Information:
        - radius (mean of distances from center to points on the perimeter)
        - texture (standard deviation of gray-scale values)
        - perimeter

    area

        - smoothness (local variation in radius lengths)
        - compactness (perimeter^2 / area - 1.0)
        - concavity (severity of concave portions of the contour)
```

- Let us say I have a table of previous appartment sales...
- Containing a list of appartments I have sold in the past, with their size (in sqm) and their price (in \$).
- And friend comes and asks for an estimation of the price of its 125sqm appartment. What is your answer?

Size (in sqm)	Price (in \$)
57	544000
76	760000
92	947000
101	1006000
101	1049000
106	1037000
•••	•••

Histogram plots

 Histograms are also useful, in order to visualize the distribution of the appartments you have in your record.

Histogram plots

- Histograms are also useful, in order to visualize the distribution of the appartments you have in your record.
- Price for a 110sqm appartment?
- → Confident, I have seen a lot of those

Histogram plots

- Histograms are also useful, in order to visualize the distribution of the appartments you have in your record.
- Price for a 110sqm appartment?
- → Confident, I have seen a lot of those
- Price for a 500sqm appartment?
- → Have never seen those before...

Boxplots

- Boxplots can also be used to get information about the data distribution.
- They more or less do the same thing as the histogram plots and five-number summaries.

Let us practice a bit

Problem set 10 - Q1, Q2 & Q3 (confusion matrix, 5-number summary and normalization)

Q1: Confusion matrix and precision metrics

- In this activity, let us assume we have designed a computer vision AI, attempting to recognize images of birds/cats.
- We have two lists.
 - The first one, named actual, contains what really is in the image (bird or cat)
 - The second one, named predicted, contains what our AI identified in the images.
- Step 1: define a confusion matrix, listing the number of right guesses and mistakes, as described in Q1.
- Step 2: define some key precision metrics (recall, accuracy, false positive rate) for our AI.

Let us practice a bit

Problem set 10 - Q1, Q2 & Q3 (confusion matrix, 5-number summary and normalization)

Q2: Five-number summary

- The five-number summary, is an informative function about data, listing
 - The minimal value in a given array
 - The maximal value in a given array
 - The median value in a given array
 - The first quarter percentile value in a given array
 - The third quarter percentile value in a given array

For Q2: Min, Max, Mean, Median, Percentile

- Numpy has functions for finding the
 - Minimal value,
 - Maximal value,
 - Mean value,
 - Median values,
 - Etc.
- For any given array, containing data.

```
1 # Minimal value
 print(np.min(matrix))
5.052808826566668e-06
 1 # Maximal value
 print(np.max(matrix))
0.999945892478096
 1 # Mean value
 2 print(np.mean(matrix))
0.5024344386819765
 1 # Median value
 print(np.median(matrix))
0.5042077048148175
 1 # n%-percentile value: value of the element,
 2 # which is greater than n% of the samples in matrix
    n = 25
```

print(np.percentile(matrix, n))

0.2509906081803283

Let us practice a bit

Problem set 10 - Q1, Q2 & Q3 (confusion matrix, 5-number summary and normalization)

Q3: data normalization

- Data normalization is a typical operation in Machine Learning.
 - It re-scales the data, so that the minimal value in the data will become 0.
 - And the maximal value will become 1.

Input x1	Input x2
1	10
2	6
3	2
4	4
5	0

Input x1 (normalized)	Input x2 (normalized)
0	1
0.25	0.6
0.5	0.2
0.75	0.4
1	0

Q3: data normalization

- Data normalization is a typical operation in Machine Learning.
 - It re-scales the data, so that the minimal value in the data will become 0.
 - And the maximal value will become 1.
- Q3: write a function that receives a data array, and normalize the columns of the array one-by-one.

Input x1	Input x2
1	10
2	6
3	2
4	4
5	0

Input x1 (normalized)	Input x2 (normalized)
0	1
0.25	0.6
0.5	0.2
0.75	0.4
1	0

Conclusion

- Data manipulation and visualization is the first thing to do when encountering a data science problem.
- It usually gives us good insights
 - as to what the data consists of,
 - how the data is distributed,
 - and sometimes, even gives us a clear linear/polynomial trend that we can reuse!
- On the next session, we will discuss linear/polynomial regression and classification problems.