ME 430A - Técnicas de Amostragem Segundo semestre de 2011 Prova

Data: 14/09/2011

Nome:	RA:
r voilie.	

Leia atentamente as instruções abaixo:

- Coloque seu nome completo e RA em todas as folhas que você recebeu, inclusive nesta.
- Leia atentamente cada uma das questões.
- Enuncie, claramente, todos os resultados que você utilizar.
- Justifique, adequadamente, seus desenvolvimentos, sem, no entanto, escrever excessivamente.
- O(a) aluno(a) só poderá sair da sala após as 16h30, mesmo que já tenha finalizado a prova. Após a saída do(a) primeiro(a) aluno(a) não será permitido a entrada de nenhum(a) outro(a) aluno(a).
- Não é permitdo empréstimo de material.
- Não serão dirimidas dúvidas de quaisquer natureza.
- Resolva a prova, preferencialmente, à caneta, e procure ser organizado(a). Se fizer à lápis, destaque, à caneta, sua resposta.
- O(a) aluno(a) deverá portar sua carteira de estudante e apresentá-la, quando for solicitada sua assinatura.
- Contestações a respeito da nota, só serão consideradas se estiverem por escrito.
- A nota do aluno(a) será $\frac{NP}{NT} \times 10$, em que NP é o número de pontos obtidos na prova e NT é o numero total de pontos da prova.
- A prova terá duração de 120 minutos, das 16h às 18h, improrrogáveis.

Faça uma excelente Prova!!

Questões

1. Considere uma população com N=3 elementos, em que $\mathbf{d}=(1,3,4)$, da qual pretende-se estimar a média μ , através da média amostral $\widehat{\mu}$. Para isso selecionar-se-á uma amostra aleatória de tamanho n=2. Considere os planos amostrais A e B, assim definidos:

Tabela 2: Plano amostral B						
s	11	12	13	22	23	33
P(s)	1/9	2/9	2/9	1/9	2/9	1/9

Responda os itens.

- a) Encontre a distribuição (exata) de $\widehat{\mu}$ para o plano Amostral A. Calcule também a esperança, variância, erro-padrão e o EQM de $\widehat{\mu}$ (50 pontos).
- b) Encontre a distribuição (exata) de $\widehat{\mu}$ para o plano Amostral B. Calcule também a esperança, variância, erro-padrão e o EQM de $\widehat{\mu}$ (50 pontos).
- c) Com os resultados obtidos nos itens a) e b) compare, da forma mais completa possível, o estimador em estudo, em relação aos planos amostrais. Qual dos planos amostrais você sugere para estimar μ usando $\widehat{\mu}$? Justifique, adequadamente, sua resposta (30 pontos).
- d) [Este item não está relacionado aos planos amostrais acima] Considere o plano amostral AASs (sem reposição). Utilizando a distribuição assintótica de \hat{p} vista em classe, prove que o tamanho da amostra (n) que satisfaz:

$$P(|\widehat{p}-p|<\delta)=\gamma$$
é dado por $\frac{N}{\frac{\delta^2(N-1)}{p(1-p)z^2}+1},$ em que $P(Z>z)=\frac{1-\gamma}{2},Z\sim N(0,1)$ (50 pontos).

- e) [Este item não está relacionado aos planos amostrais acima] Em relação ao item d), encontre n (considerando a maior variância possível associada à população), para $\gamma = 0,95, \, \delta = 0,02$ e N = 2000 (20 pontos).
- 2. Considere o plano AASs (sem reposição). Responda os itens:
 - a) Suponha uma população com N = 1500, da qual desejamos estimar a média μ , com base em uma amostra de tamanho n e utilizando a média amostral $\widehat{\mu}$. Baseado em uma amostra piloto de tamanho n=20, obtevê-se $\widehat{s}^2=100,25$. Determine o tamanho da amostra de tal forma que $P(|\widehat{\mu}-\mu|<3)=0,90$. Sugestão: vide formulário (60 pontos).

2

- b) Com base na amostra retirada da população "restante" (formada pela população original excluídos os elementos que foram sorteados na amostra piloto), cujo tamanho foi determinado no item a), junto com a amostra piloto, obtevê-se os seguintes resultados: $\tilde{\mu}=13,55$ e $\tilde{s}^2=93,32$. Construa um IC assintótico de $\gamma=0,99$ com base nos resultados que você obteve através dessa amostra total (70 pontos).
- c) Seja (Δ_i, Δ_j) o vetor aleatório como definido para o plano AASs (sem reposição). A distribuição conjunta desse vetor é dada por:

	Δ_i	
Δ_i	0	1
0	$\frac{(N-n)(N-n-1)}{N(N-1)}$	α
1	α	$\frac{n(n-1)}{N(N-1)}$

em que $\alpha \in (0,1)$. Encontre o valor de α (70 pontos).

3. Considere uma população com N elementos, ou seja, $\mathcal{U} = \{1, 2, ..., N\}$ da qual pretendese estimar a média μ , através de um plano AASs. Considere o seguinte estimador:

$$\widehat{\mu}_{st} = \frac{y_1 + y_N + (N-2)\widehat{\mu}_2}{N} \,,$$

em que y_1 e y_N sao os valores da característica de interesse associados ao primeiro e último elementos, respectivamente, os quais são conhecidos e $\hat{\mu}_2$ é a média amostral oriunda de uma amostra de tamanho n-2 retirada dos N - 2 ($\mathcal{U}^*\{2,3,...,N-1\}$) elementos restantes.

- a) Prove que $\mathcal{E}(\widehat{\mu}_{st}) = \mu$ (80 pontos).
- b) Prove que $\mathcal{V}(\widehat{\mu}_{st}) = \left(\frac{N-2}{N}\right)^2 \left(1 \frac{n-2}{N-2}\right) \frac{s_2^2}{n-2}$, em que $s_2^2 = \frac{1}{N-3} \sum_{i=2}^{N-2} (y_i \mu_2)^2$ e $\mu_2 = \frac{1}{N-2} \sum_{i=2}^{N-2} y_i$ (70 pontos).
- c) Considere que $s_2^2 < s^2$ e que N e n são, ambos, muito grandes. Compare $\mathcal{V}(\widehat{\mu}_{st})$ e $\mathcal{V}(\widehat{\mu})$. Quals dos dois estimadores você escolheria para estimar μ ? Justifique, adequadamente sua resposta (50 pontos).

Formulário

1. Parâmetros populacionais de interesse:
$$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i; \tau = N \mu = \sum_{i=1}^{N} y_i; \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2;$$

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \mu)^2, \ p = \frac{1}{N} \sum_{i=1}^{N} y_i, y_i \in \{0, 1\}.$$

2. Estimadores:
$$\widehat{\mu} = \frac{1}{n} \sum_{i \in \mathbf{s}} Y_i; \widehat{\tau} = N \widehat{\mu} = \sum_{i \in \mathbf{s}} Y_i; \ \widehat{\sigma}^2 = \widehat{s}^2 = \frac{1}{n-1} \sum_{i \in \mathbf{s}} (Y_i - \widehat{\mu})^2, \ \widehat{p} = \frac{1}{n} \sum_{i \in \mathbf{s}} Y_i, Y_i \in \{0, 1\}.$$

3. Variâncias dos estimadores

(a) AASc:
$$\mathcal{V}(\widehat{\mu}) = \frac{\sigma^2}{n}$$
; $\mathcal{V}(\widehat{\tau}) = N^2 \frac{\sigma^2}{n}$; $\mathcal{V}(\widehat{p}) = \frac{p(1-p)}{n}$.

(b) AASs:
$$\mathcal{V}(\widehat{\mu}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}; \mathcal{V}(\widehat{\tau}) = \left(1 - \frac{n}{N}\right) N^2 \frac{s^2}{n}; \mathcal{V}(\widehat{p}) = \left(\frac{N-n}{N-1}\right) \frac{p(1-p)}{n}.$$

4. Estimadores não viciados para as variâncias dos estimadores

(a) AASc:
$$\widehat{\mathcal{V}}(\widehat{\mu}) = \frac{\widehat{\sigma}^2}{n}$$
; $\widehat{\mathcal{V}}(\widehat{\tau}) = N^2 \frac{\widehat{\sigma}^2}{n}$; $\widehat{\mathcal{V}}(\widehat{p}) = \frac{\widehat{p}(1-\widehat{p})}{n-1}$.

(b) AASs:
$$\widehat{\mathcal{V}}(\widehat{\mu}) = (1 - \frac{n}{N}) \frac{\widehat{s}^2}{n}; \widehat{\mathcal{V}}(\widehat{\tau}) = (1 - \frac{n}{N}) N^2 \frac{\widehat{s}^2}{n}; \widehat{\mathcal{V}}(\widehat{p}) = (\frac{1 - n/N}{n - 1}) \widehat{p}(1 - \widehat{p})$$

5. Tamanho da amostra relativo à média (visto em sala) para o plano AASs , $n=\frac{Ns^2z^2}{\delta^2N+s^2z^2}$, em que $P(Z>z)=\frac{1-\gamma}{2}, Z\sim N(0,1)$.