Solving Congruences

Theorem 1 (Modular Inverses). Let n be a positive integer, and a an integer. Then the congruence $ax \equiv 1 \mod n$ has a solution x if and only if gcd(a, n) = 1. In this case, the solution x is unique mod n.

Proof. First suppose $\gcd(a,n)=1$. By Bezout's Identity, we have au+nv=1 for some integers u and v. In particular, n|(au-1), so that $au\equiv 1 \mod n$ as needed. Conversely, suppose $ax\equiv 1 \mod n$ has a solution u. By definition we have that n divides au-1, so that 1=au+nv for some integer v. Now let $d=\gcd(a,n)$, with a=da' and n=dn'. Then 1=d(a'u+n'v), so that d=1 as claimed.

Finally, suppose we have two solutions of this equation, u_1 and u_2 . Note that $au_1 \equiv au_2 \mod n$, so that n divides $au_1 - au_2 = a(u_1 - u_2)$. Since $\gcd(a, n) = 1$ we have $n|(u_1 - u_2)$, so that $u_1 \equiv u_2 \mod n$ as claimed.

Theorem 2 (Simultaneous Linear Congruences). Let a and b be relatively prime positive integers. Then for any integers u and v, the system of congruences

$$\begin{cases} x \equiv u \mod a \\ x \equiv v \mod b \end{cases}$$

has a unique solution mod n.

Proof. First we show existence. Since gcd(a, b) = 1, by Bezout's Identity there exist integers h and k such that 1 = ah + bk. Multiplying by v - u, we have

$$v - u = ah(v - u) + bk(v - u),$$

and rearranging, we let

$$t = u + ah(v - u) = v - bk(v - u).$$

Clearly $t \equiv u \mod a$ and $t \equiv v \mod b$.

Next we show uniqueness. To this end, suppose t and s are both solutions of this system. In particular, we have $t \equiv u \mod a$ and $t \equiv u \mod b$. Say $q_1a = u - t = q_2b$. Now a divides q_2b , and since a and b are relatively prime, by Euclid's Lemma we have $a|q_2$. Thus $u - t = q'_2ab$, so that $t \equiv u \mod ab$ as needed.