Relatório 1º projecto ASA 2023/2024

Grupo: tp022 **Aluno:** Alexandre Ramos 102598

Dado um retângulo original, e um conjunto de retângulos de tamanho menor ou igual a A, aos quais está associado um valor, o objetivo do problema é encontrar a melhor combinação de retângulos do conjunto que podem ser obtidos a partir do original por meio de cortes ao longo de todo o seu o comprimento ou largura, de forma a maximizar o valor da combinação. Pela natureza do problema, encontrar a melhor combinação para A x*y passa por encontrar a melhor solução para (no limite) cada um dos sub-retângulos que podemos obter de A. Isto é, o problema exibe optimal substructure, e portanto métodos de programação dinâmica são adequados para resolvê-lo eficientemente.

Este problema pode ser classificado como uma variante próxima do weighted unstaged guillotine cutting problem, pelo que são conhecidos métodos exatos e heurísticos vastamente mais eficientes que o aqui apresentado.

Método proposto

Seja x_0 o comprimento de A, x_i para x em $\{1,...,x_1\}$ a largura dos sub-retângulos de um retângulo x^*y , y_0 , e y_i , análogos, e seja v(x,y) a função que dá o valor da melhor combinação para o retângulo x^*y , e sejam:

```
\begin{split} &f(x,y)=\max(\max(\{v(x\_i): i \text{ em } \{1,...,x/2\}\});\\ &g(x,y)=\max(\{v(x,y\_i): i \text{ em } \{1,...,y/2\}\});\\ &h(x,y)=\max(\{\text{item.val}: \text{item.x} = x \text{ e item.y=y}\});\\ &v(x,y)=\max(\{\text{item.val}: \text{item.x} = x \text{ e item.y=y}\});\\ &Portanto \text{ este método tem } O(x*y*log(x)*log(y)). \end{split}
```

Grupo: tp022 **Aluno:** Alexandre Ramos 102598

Runtime medido:

X	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
i	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
ms	1	2	3	5	8	12	17	25	35	46	62	81	104	131	160	196	244	281	330	387

Como esperado, o runtime deste método é linear em relação a x*y*(x+y).