LSTM

Lecture 22-23

Long Short-Term Memory (LSTM)

- A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a solution to the vanishing gradients problem.
- On step t, there is a hidden state $oldsymbol{h}^{(t)}$ and a cell state $oldsymbol{c}^{(t)}$
 - Both are vectors length n
 - The cell stores long-term information
 - The LSTM can erase, write and read information from the cell
- The selection of which information is erased/written/read is controlled by three corresponding gates
 - The gates are also vectors length n
 - On each timestep, each element of the gates can be open (1), closed (0), or somewhere in-between.
 - The gates are dynamic: their value is computed based on the current context

Long Short-Term Memory (LSTM)

We have a sequence of inputs $m{x}^{(t)}$, and we will compute a sequence of hidden states $m{h}^{(t)}$ and cell states $c^{(t)}$. On timestep t:

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

<u>Cell state</u>: erase ("forget") some content from last cell state, and write ("input") some new cell content

<u>Hidden state</u>: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$\boldsymbol{i}^{(t)} = \sigma \left(\boldsymbol{W}_i \boldsymbol{h}^{(t-1)} + \boldsymbol{U}_i \boldsymbol{x}^{(t)} + \boldsymbol{b}_i \right)$$

$$oldsymbol{o}^{(t)} = \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight)$$

$$egin{aligned} ilde{oldsymbol{c}}^{(t)} &= anh\left(oldsymbol{W}_coldsymbol{h}^{(t-1)} + oldsymbol{U}_coldsymbol{x}^{(t)} + oldsymbol{b}_c
ight) \ oldsymbol{c}^{(t)} &= oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)} \end{aligned}$$

$$ightarrow oldsymbol{h}^{(t)} = oldsymbol{o}^{(t)} \circ anh oldsymbol{c}^{(t)}$$

Gates are applied using element-wise product

All these are vectors of same length *n*

The LSTM output gate's action on the cell state

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Gates:

States:

$$o_{t} = \sigma(W_{o}h_{t-1} + U_{o}x_{t} + b_{o}) \qquad \tilde{s}_{t} = \sigma(W_{h}h_{t-1} + U_{t}x_{t} + b)$$

$$i_{t} = \sigma(W_{i}h_{t-1} + U_{i}x_{t} + b_{i}) \qquad s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{s}_{t}$$

$$f_{t} = \sigma(W_{f}h_{t-1} + U_{f}x_{t} + b_{f}) \qquad h_{t} = o_{t} \odot \sigma(s_{t})$$

$$\tilde{s}_t = \sigma(Wh_{t-1} + Ux_t + b)$$

$$s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s}_t$$

$$h_t = o_t \odot \sigma(s_t)$$

$$h_t = (s_t)^*(o_t)$$

If the state at time t-1 did not contribute much to the state at time t (i.e., if $||f_t|| \to 0$ and $||o_{t-1}|| \to 0$) then during backpropagation the gradients flowing into s_{t-1} will vanish

In general, the gradient of $\mathcal{L}_t(\theta)$ w.r.t. θ_i vanishes when the gradients flowing through each and every **path** from $L_t(\theta)$ to θ_i vanish.

On the other hand, the gradient of $\mathcal{L}_t(\theta)$ w.r.t. θ_i explodes when the gradient flowing through at least one path explodes.

