2005.5 PhilNITS

Fundamental IT Engineer Examination (Morning)

Questions must be answered in accordance with the following:

Question Nos.	Q1-Q80
Question Selection	All questions are compulsory
Examination Time	9:30-12:00 (150 minutes)

Instructions:

- Use an HB pencil. If you need to change an answer, erase your previous answer completely and neatly. Wipe away any eraser debris.
- Mark your examinee information and test answers in accordance with the instructions below. Your test will not be graded if you do not mark properly. Do not mark or write on the answer sheet outside of the prescribed places.
- (1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space . below each digit.

(2) Date of Birth

Write your date of birth (in numbers) exactly as it is printed on your examination admission card, and mark the appropriate space below each digit.

Select one answer (a through d) for each question.

Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the next Fundamental IT Engineer Examination conducted?

- a) September . b) October
- c) November
- d) December

Since the correct answer is "b)" (October), mark your answer sheet as follows: [Sample Reply]

No.	a	Ь	С	d
Q 1		©	\bigcirc	\bigcirc

Do not open the exam booklet until instructed to do so. inquiries about the exam questions will not be answered.

Q1.	Symbol strings consisting of 0 Symbol strings whose length is Symbol strings whose length is Symbol strings whose length is Which one of the expression strings whose lengths are 1 thr	8 1: 0, 1 8 2: 00, 01, 10, 11 8 3: 000, 001, 010, 011, 18 8 shown below represe	100, 101, 110, 111	of symbol
	a) $2 \times (2^{n-1})$ b) $2 \times 2^{n-1}$	e) 2 ⁿ	d) 2 ⁿ -1	
Q2.	In order to multiply a positive should it be shifted to the left?	e integer, expressed in Assume that no overfl	binary, by 32, how ow will occur.	many bits
	a) 4	(c) 6	d) 32	
Q3.	'According to the IEEE754 (1 expressed as follows:	985) standard, a 32-bit	floating point number	er format is
	Sign Exponent part (1 bit) (8 bits)	Mantissa (23 bit	s)	
,	Which of the following hexade E(Exponent part)? Here, "mainformation by performing a A'a) 0FF00000 b) 7F80	ask bits" refers to a bit	pattern used to extra	act required
Q4.	From the tanswer groups bel in the above text.	ow, select the correct		
	a) 8 b) 16	c) 128	d) 256	
Q5.	Which of the following is deci- floating-point number?	mal numbers can be exp	pressed without er.or	as a binary
	a) 0.2 b) 0.3	c) 0.4	d) 0.5	

Q6.	Fr	om the logic	al ex pressions s	shown below,	select	the one that is	s equal to $\mathbf{x} \cdot \mathbf{\bar{y}}$	$+\overline{X}\cdot Y$.
	" •	" is AND, "-	" is OR, and \overline{X}	is the negat	Cio no.	Χ.		
	a)	(X+Y) · ($(\overline{X} \cdot Y)$	b)	(X -	-Y) · (X+\)		
	c)	(X+Y) · ($(\widetilde{\chi} + \overline{\widetilde{Y}})$	d)	(x +	$(\mathbf{Y}) \cdot (\mathbf{X} + \mathbf{Y})$		
Q7.	it	is and all o is algorithm	is the algorithm ther digits are a turns this bit ated in Step 3 sh	changed to 0 string to 000	s. Fo	or example, w	hen 00101000	is given,
	Ste		n bit string "A" nd the result of					subtracted
	Ste	ep 2: Exclusi "C."	ve OR (EOR)	of "A" and "	3" is c	alculated and	the result is a	ssigned to
٠.	Ste	ep 3:	***					,
	a)	Exclusive (OR (EOR) of "A	A" and "C" is	calcula	ited.		
			ND (NAND) o					
			" and "C" is ca					
	d)	OR of "A"	and "C" is calc	ulated		,		
			c	-				
Q8.	n of	data items, in comparison i	n ascending ord required to reac	er, are stored	in an a ue by r	array. What is means of a bir	the approxima	te number thod?
	of	data items, in comparison i log ₂ n	ascending ord required to reac	er, are stored h a given val	ue by r	erray. What is means of a bir $(n+1)/2$	the approxima	te number thod?

- a) Tree
- b) Queue
- c) Graph
- d) Stack

Q10. There is a complete binary tree that has all the leaves. Which one of the relational expressions holds for the complete binary tree? The n is the number of nodes and k $(k \ge 1)$ is the number of hierarchical levels from the root to the leaves. The number (k) of hierarchical levels of the example is 3.

- a) n = k(k-1) + 1
- b) n = k(k-2) + 3

c) $n = 2^k - 1$

d) $n = 2^k + 1$

k = 3

flow chart expressing an algorithm in which a character string, obtained by concatenating the character string of length n after the character string of length m, is stored in array Z. Which processes are the correct ones to insert into A and B in the figure? In this example, it is assumed that a single character is stored in a single array element.

Note: The repetition specification in the loop headers denotes the following:

Variable names: initial value, increment, terminal value.

	А		В
- (a)	$X(k) \rightarrow$	Z(k)	$Y(k) \to Z(m \pm k)$
b)	$\Sigma(k) \rightarrow$	Z(k)	$Y(k) \rightarrow Z(n+k)$
(c)	$Y(k) \rightarrow$	Z(k)	$X(k) \to Z(m \pm k)$
d)	$Y(k) \rightarrow$	Z(k)	$X(k) \rightarrow Z(n+k)$

Q12. What condition needs to be inserted in the box below so that the same value x can be obtained when each of the algorithms described in the two flowcharts below are performed on a positive integer M?

Q13. What can be deducted from the decision table below showing pass/fail criteria for a test? The test here consists of three subjects — Human resources management, Accounting, and English, each with 100 points as the maximum score.

years of work experience >= 5	Y	Y	Y	N
Total score in 3 subjects >= 260	Y	Y	N	-
Score in English >= 90	Y	N	-	- 1
Pass	X	-	-	-
Tentative pass	-	Х	-	-
Fail	-	No.	X	X

- a) Persons who have scored 90 or more points in English are considered to have passed or tentatively passed.
- b) Persons who have scored less than 90 points in English are considered to have failed.
 - c) Persons with work experience of 5 or more years are considered to have passed or tentatively passed.
 - d) Persons who have scored less than 60 points in Accounting are considered to have failed.