

并网系统设计祖关

◆ 太阳能系统设计概要

初步设计

- 项目商谈、调查
- 确定容量
- 确定并网点
- 系统串并联设计
- 设备选型
- 电气原理图
- 阵列角度设计
- 阵列布置图
- 阴影计算
- 推算发电量

深化设计

设备接线图 (设备间关系、线缆类型、长度、结点方式)

设备位置图 (设备相对位置、体积、之间距离)

系统走线图(走线路径-线缆长度型号)

线缆选型(压降、容量、损耗率、类型:护套、阻燃、屏蔽、软硬)

设备细化选型 (附加模块、连接端子、环境要求、通信方式等)

防雷设计(防雷等级、避雷针、避雷带、引下线、电力与通信防雷保护器)

配电设计(防逆流、三相平衡调节、峰值功率控制、保护功能等)

基础设计(基础结构、基础稳定性; 地基摩擦力与附着力)

支架强度计算 (风压、积雪、地震)

支架部件、装配详图 (零件三维装配图、部件加工用详图)

系统效率计算(线损、设备损耗、环境损耗、其它损耗)

◆ 太阳能系统项目实施流程

系统串并联设计要素

		光伏发由站得计		
并网逆变器		光电板组件	XV all	
		Куосега		说明
Sunny Central - SC 100		KC200GHT-2		
	400 0 1101	21 x 24 = 504	401101	
最大交流功率:		每路额定功率:	4.8 kWp	
最大直流功率:		光电输入总功率:	100.8 kWp	o.k.
(最大直流功率 ,逆变器输入	/ 额定功率 PV)	獭足功率比:	105%	
县,东海市区。	450.037	#\$ } P\$ MDD# F ₩ .7000 .	400.437	
最小直流电压:	450.0 V	輸入路-MPP电压,当 +70℃:	498.4 V	o.k.
		輸入路-MPP电压,当 +50℃:	557.4 V	o.k.
县士MDD中区。	000.037	輸入路-MPP电压,当 +25℃:	631.2 V	o.k.
最大MPP电压:	820.U V	輸入路-MPP电压,当 +15℃:	660.7 ∨	o.k.
		输入路-开路电压,当 +25°C:	789.6 ∨	0.k.
最大直流电压:	900.0 ∨		892.9 V	o.k.
ACCEPTATOLE .	330.0 ¥	### VAL 7124 - 10 V .	332.3 4	
最大直流电压:	235.0 A			
最大直流电压 (557 ∨):	190.2 A	最大可能的光电板电流:	159.8 A	o.k.
, ,				
		利用的光伏能量值:	99.99%	o.k.

	光电板参数	₩ .	
Kyocera: KC200GHT-2	(MPP: 最大功率点)		
额定功率:	200 Wp	开路电压温度系数:	54 , poly
MPP电压:	26.3 V	MPP电压,当 +50°C:	23.2 V
MPP电流:	7.6 A	MPP电压,当 +70℃:	20.8 ∨
开路电压:	32.9 ∨	MPP电压,当 +15℃:	27.5 V
短路电流:	8.2 A	开路电压,当 -10℃:	37.2 V
开路电压点温度系数:		-0.37 % %/℃	
最大功率点电压温度系数:		-123.00 mV %/℃	估算值
光伏组件允许系统电压:		1000 ∨	

光电板倾角:

光电板温度:

(+50°C) **交流电压:**400 V

系统容量

- ★ 决定系统容量的要素:
 - 1、设置地点
 - 2、周围环境
 - 3、面积
 - 4、价格
 - 5、发电量

太阳能电池板选型要点

● 转换效率

- 1) 芯片转换效率
- 2) 电池板转换效率
- 公差
- 工艺技术
 - 1) 一体化生产
 - 2) 生产工艺细节
- 生产时间
- 业绩
 - 1) 实际运行情况
 - 2) 各个权威机构认定
- 最大串联电压
- 玻璃、边框、接线盒、线缆

逆变器选型要点

● 安全可靠

- 1) 可靠的"孤岛效应"防护手段
- 2) 完善的并网保护功能
- 3) 可靠的地震, 雷击, 对地短路等防护措施

● 高电能质量

- 1) 优质的纯正正弦波输出
- 2) 低谐波分量

● 高效电能转换率

- 1) 内含MPPT功能
- 2) 高电能转换效率(峰值、平均值)

● 简明的人机交互方式

- 1)内置显示屏与指示灯 (显示当前发电电量,累计发电电量,故障信息等)
- 2) 内附通信功能 (LAN/RS232/485通信接口)

● 智能自动运行能力

- 1) 自动与电网同步
- 2) 自动电压调整功能
- 3) 直流侧电压宽输入范围

● 节能低噪 美

- 1) 较低的自我消耗电力
- 2) 较低的噪音

阵列角度设计

		方 位 角						
		0'(真南)	15'	30°	45"	90°(東、西)		
傾斜角	水平面	88.4	88.4	88.4	88.4	88.4		
	10°	94.3	94.1	93.4	92.3	87.6		
	50°	98.2	97.8	96.6	94.6	85.8		
	30*	100	99.6	97.8	95.1	82.8		
	40°	99.7	99.0	97.0	93.6	78.9		

東京地区での設置角度に対する年間発電電力量比率(真腐(方位角の)、傾斜角30、設置を100%とした場合)

★ 阵列角度设计的要素:

- 1、设置地纬度
- 2、方位角
- 3、周围环境
- 4、风力
- 5、尘污
- 6、积雪
- 7、经验校正系数

阵列布置图

阴影计算

阴影计算

 α :日陰係数 (=L/H)

推定发电量

太陽能発電システム (200kW) 推定発電量

