View on GitHub

Circuitos Digitais

Repo of Digital Circuits course - CRT0384

PRÁTICA 04 - BCD E DISPLAY 7 SEGMENTOS

Voltar à home

OBJETIVOS

- Verificar o funcionamento de um multiplexador 3:8;
- Analisar o funcionamento de decodificadores BCD para display de sete segmentos;
- Implementar um conversor de código binário para Gray.

Material Necessário:

- Kit Digital;
- Display de sete segmentos catodo comum;
- Sete resistores de 150 OHMs;
- 01 TTL 74LS138;
- 01 CMOS 4511 do KIT
- 01 CI 74LS86

INTRODUÇÃO

Codificadores e decodificadores são circuitos integrados que implementam funções lógicas responsáveis por modificar sequências lógicas (binárias) para aplicações específicas, seja relacionadas à comunicação, exibição ou proteção de dados. Um código binário muito utilizado na prática refere-se ao código de acionamento de displays de sete segmentos

Fundamentalmente, um display de sete segmentos nada mais é que um conjunto de 7 LEDs dispostos de maneira fixa a formar um 8. Os LEDs podem ser acionados individualmente permitindo que quantidades em decimal, binário Octal ou até mesmo Hexadecimal sejam apresentados. Em sua realização mais comum eles podem ser o que se convencionou chamar de anodo comum ou catodo comum o que corresponde a dizer que os LEDs são acionados via nível lógico "0" e "1" respectivamente.

Quatro representações do display de sete segmentos. Da esquerda para a direita: a) Nomeação usando letras para cada um dos segmentos; b) ligação usual dos LEDs com os terminadores do componente; c) esquema do componente apresentando dois terminais comuns (com = terra) e finalmente d) uma foto do componente real.

Padrões de ativação dos LEDs do display de 7 segmentos para representação dos dígitos decimais.

O código de 7 segmentos fornece uma alternativa simples para implementação de circuitos que precisam fornecer dados numéricos de saída para o usuário. Veja a tabela de saída para um display 7 segmentos acima:

CODIFICADOR 3:8

O circuito codificador 74138 ativa o nível lógico baixo para uma das oito saídas Y0-Y7 apenas quando o endereço correspondente estiver ativado. Implemente, utilizando o CI 74138, um circuito que realiza a multiplexação de uma entrada para alguma das 8 saídas.

Verifique a influência da mudança do nível lógico apenas do pino G1 sobre o comportamento das saídas multiplexadas.

SN54LS138, SN54S138 . . . J OR W PACKAGE SN74LS138, SN74S138A . . . D OR N PACKAGE

G2A 4 13 Y2
G2B 5 12 Y3
G1 6 11 Y4
Y7 7 10 Y5
GND 8 9 Y6

###

'LS138, SN54138, SN74S138A FUNCTION TABLE

INPUTS				OUTPUTS								
ENABLE SELECT					JOIPOIS							
G1	Ğ2*	С	8	Α	YO	Y1	Y2	¥3	¥4	Y5	Y6	Y7
х	Н	х	X	х	Н	Н	Н	Н	H	Н	Н	Н
L	X	×	×	×	н	Н	Н	Н	Н	Н	Н	н
н	Ł	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	н	н	L	Н	Н	Н	H	Н	Н
н	L	L	н	L	н	н	L	Н	Н	Н	Н	Н
н	L	L.	н	н	н	Н	H	L	Н	Н	Н	н
н	L	н	L	L	н	Н	Н	Н	L	Н	Н	Н
н	L	H	L	н	Н	Н	H	Н	Н	Ļ	Н	н
н	L	н	н	L	н	н	Н	H	Н	н	L	н
H_	L	н	н	Н	Η	Н	н	Н	Н	Н	н	L

*G2 = G2A + G2B

H = high level, L = low level, X = irrelevant

Em seguida, conecte o pino G1 ao gerador de frequência da placa. Introduza como entrada os pinos correspondentes a 0,5 Hz e 1 Hz (ciclos por segundo).

DISPLAY 7 SEGMENTOS E CÓDIGO BCD

Implemente no Kit um display que visualize todas as combinações BCD utilizando o CI 4511 (decodificador BCD - 7 segmentos). Verifique todas as saídas para todas as entradas possíveis.

decimal	A	В	С	D	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	-	-	-	-	-	_	-
11	1	0	1	1	-	_	_	-	_	_	-
12	1	1	0	0	-	-	-	-	-	_	-
13	1	1	0	1	-	_	-	-	-	_	-
14	1	1	1	0	-	_	_	-	-	_	-
15	1	1	1	1		_		_	_	_	_

Verifique também as entradas não válidas no código BCD

CÓDIGO GRAY

O código de Gray inventado por Frank Gray é um código binário refletivo (RBC - Reflected Binary Code) no qual apenas um bit muda na representação de uma entre números sucessivos. Projete um decodificador que efetue a conversão do código Gray de quatro bits para o sistema binário comum de quatro bits. Represente as saídas do código Gray em 4 bits e compare com a saída obtida no circuito implementado:

SN5486, SN54LS86A, SN54S86 . . . J OR W PACKAGE SN7486 . . . N PACKAGE SN74LS86A, SN74S86 . . . D OR N PACKAGE (TOP VIEW)

1A 1B 1Y 2A 2B 2Y	1 2 3 4 5 6	14 13 12 11 10 9		VCC 4B 4A 4Y 3B 3A
GND	4	8]	3Y

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

FUNCTION TABLE

INP	UTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	н
Н	L	н
Н	Н	L

H = high level, L = low level

logic symbol†

1A (1) 1B (2)	≖1	(3) 1Y
2A (4) (5)		(6) 2Y
3A (9) (10)		(8) 3Y
4A (12) 4B (13)		(11 <u>)</u> 4Y

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

FUNCTION TABLE

INP	UTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	н
Н	L	н
Н	Н	L

H = high level, L = low level

Em seguida, monte o decodificador Gray utilizando o circuito a seguir. Conecte a saída do circuito decodificador ao driver do display 7 segmentos visto no início da prática.

(Gray	Cod	е	Binary				
g ₃	g_2	g_1	g ₀	b ₃ b ₂ b ₁ b				
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	0	1	1	0	
0	1	1	0	0	1	0	0	
0	1	1	1	0	1	0	1	
1	0	0	0	1	1	1	1	
1	0	0	1	1	1	1	0	
1	0	1	0	1	1	0	0	
1	0	1	1	1	1	0	1	
1	1	0	0	1	0	0	0	
1	1	0	1	1	0	0	1	
1	1	1	0	1	0	1	1	
1	1	1	1	1	0	1	0	

Circuito correspondente ao decodificador Gray

PÓS LABORATÓRIO - RELATÓRIO

1. Descreva os procedimentos de montagem realizados na prática. Comente

8 of 9

sobre dois tipos de displays 7 segmentos: catodo comum e anodo comum. Qual a diferença e aplicabilidade entre eles?

2. Pesquise circuitos lógicos que recebam número binário em 4 bits e

convertam em hexadecimal para exibição em display 7 segmentos. Exemplo de exibição:

1. Construa um circuito, utilizando portas lógicas básicas (NOT, AND e

OR) que implemente um decodificador 3:8 tal como o CI 74138. Represente o diagrama, a tabela verdade e implemente utilizando um simulador. Mostre as saídas do simulador quando são modificadas as entradas. Não esqueça de incluir o pino de sinal G1 e as entradas G2 e G3.

2. Implemente um circuito que realize a conversão de binário para

código Gray de 5 bits. Por sua vez, crie também o circuito decodificador, mostrando as 32 entradas binárias, 32 saídas intermediárias em gray e as 32 saídas decodificadas em binário. Utilize portas lógicas básicas (NOT, AND e OR) e a porta XOR.

Circuitos Digitais maintained by marcielbp

Published with GitHub Pages