

Intro to the course

02476 Machine Learning Operations
 Nicki Skafte Detlefsen

Who am I

- Bachelor, master, PhD from DTU
- Currently: Postdoc
- Old focus:
 - Inductive biases in deep learning
 - Generative models
 - Geometry aware manifolds
- New focus:
 - MLOps
 - Efficient machine learning

Who am I

- Eager open-source contributor
 - This course is open-source

 ML Engineer at <u>https://lightning.ai/</u>

Course settings

- 5 ECTS
- 3 weeks period
- Level: Master
- Grade Pass/not passed
- Type of assessment:
 - Code hand-in
 - Weekly project updates
 - Final oral examination

Recommended prerequisite

- General understanding of machine learning (datasets, probability, classifiers, overfitting etc.)
- Basic knowledge about deep learning (backpropagration, convolutional neural network, auto-encoders etc.)
- Coding in Pytorch

Course webpage

Github:

https://github.com/SkafteNicki/dtu_mlops/tree/january2022

Rendered page:

https://skaftenicki.github.io/dtu_mlops/

Communication

Join the slack channel

https://join.slack.com/t/dtumlops/shared invite/zt-1j1zx8t4h-nTbUPibR9xCz58 erDyyikw

- General announcements
- Asking questions
- Communication with team members

For non public info we use DTU learn

https://learn.inside.dtu.dk

What is this course/What it is not

What is this course:

Introduce the student to a number of coding practices that will help them organization, scale, monitor and deploy machine learning models either in a research or production setting. To provide hands-on experience with a number of frameworks, both local and in the cloud, for doing large scale machine learning models.

Keywords:

- Organization
- Scalability Reproducibility
- Hands-on experience

What this course is not:

How different machine learning models works

What do I expect from you

The course is centered around two principals:

- Learning by doing
- Learning by exploration-exploitation

We provide lectures, exercises and guidance but encourage self study.

Organisation of material

- 1 day = 1 session (S)
- 1 session = multiple modules (M)
- Core modules:
 - Essential in some way
- All other modules are highly recommend
- S10 contains additional modules

What I hope from this course

- Have fun!
- That you get to fill your toolbox with useful frameworks
- (Maybe) Learn something along the way

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog...

A typical day in this course

Exercise days:

- Meet in at 9:00
- Lecture for 15-30 mins
 - I am still learning how to do lectures
 - Lectures are not meant to give teach you anything, but provide some context to the topic of the day
- Exercises until 14:00-17:00
 - Remember to take a lunch break
 - Workload will depend on you

Project days

- Sometimes a small lecture or company presentation
- Rest of the day you work on projects
- Office hour (may be virtual)

Projects

- Approximately 1/3 of the course time is spend on project work
- More info here: https://skaftenicki.github.io/dtu_mlops/projects
- Already now you are recommended to think about forming groups
 - 4 people (3 and 5 is also acceptable)
 - Thursday we will do some speed dating to form groups for people not already having one.
 Also feel free to write in the #find-a-group slack channel.

Exam

Due to increase in students the exam format has been changed.

Two parts:

- 1. Written part: An template with ~30 questions that you can fill out as you work on your projects. It will be part of your project Github repository.
- Oral part: 5 min per group, you get to show us a running demo of your project. Probably quick question for all members.

More on this on Friday.

How to pass

- Meet in and do the exercises
- In the final project:

Show that you can use the tools you learn about throughout the course

We still have a 100% pass rate after approx ~180 students.

Hands-in

Memes

ONLINECOURSES

FROM YOUTUBE

FROM ARTICLES

GROM MEMES

