Introducción Lección 1

Prof.Ing. Jeferson González G.

CE-5303 Introducción a los Sistemas Embebidos Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica

- Motivación
 - Definición
 - Historia
 - Aplicaciones
 - Tendencias en Sistemas Empotrados
- Diseño de Sistemas Empotrados

Motivación

- Características de Sistemas Empotrados
- Retos en el Diseño de un Sistema Empotrado
- Proceso de Co-diseño de HW y SW

Diferentes definiciones:

Definición 1

Es una combinación de hardware, software y componentes mecánicos, en algunos casos, cuyo objetivo es desempeñar una **función específica.**

Diferentes definiciones:

Definición 1

Es una combinación de hardware, software y componentes mecánicos, en algunos casos, cuyo objetivo es desempeñar una **función específica.**

Definición 2

Sistema de procesamiento que se encuentra **inmerso** en un sistema más grande

Diferentes definiciones:

Definición 1

Es una combinación de hardware, software y componentes mecánicos, en algunos casos, cuyo objetivo es desempeñar una **función específica.**

Definición 2

Sistema de procesamiento que se encuentra **inmerso** en un sistema más grande

Definición 3

Casi cualquier sistema informático que no sea una computadora de escritorio, portátil o mainframe/servidor

Whirlwind

Computador diseñado a finales de los 40's por MIT para simular vuelo de entrenamiento de escuadrones de bombardeo.

- 4000 tubos al vacío
- Tiempo real

"Circuitos" de memoria

Intel 4004

Primer microprocesador en un simple chip, así como el primero disponible comercialmente, en 1971.

- 8 bits
- 740 kHz
- Arquitectura Harvard
- Empleado en calculadoras, dispositivos de control, semáforos.

Eventos importantes

- 1950's Creación Lenguaje ensamblador.
- **1952** Grace Hopper escribió el primer compilador para una computadora digital.
- 1958 Jack St Clair invent el circuito integrado en Texas Instruments.
- 1970 Texas Instruments desarrolla un circuito integrado programable llamado PLA
- 1979 Laboratorios Bell introdujo el primer procesador de senãles digitales (DSP).
- 1983 Richard Stallman anuncia el sistema operativo GNU.

Eventos importantes

- 1985 Acorn Computers lanza el ARM1.
- 1991 Linux es diseñado por un estudiante avanzado de universidad llamado Linux Torvarlds
- 2005 IBM, Intel y AMD liberan sus primeros procesadores de múltiple núcleo.

Aplicaciones

Aplicaciones

Mercado	Aplicaciones
Automóviles	Inyección electrónica
	Frenos
	Control de vidrios, etc
Consumo	Televisión
	Celulares
	Videojuegos,etc
Control Industrial	Sistemas de robótica
	Control automático
Medicina	Marcapasos
	Bombas de transfusión
Redes	Routers
	Hubs
	Modems
Oficina	Fax
	Fotocopiadora

Tendencias en Sistemas Empotrados

Tecnología Móvil

Tendencias en Sistemas Empotrados

Smart phones

 En una casa promedio hay 20 microprocesadores y para el corto plazo se calcula que cada ser humano interactuar con 350 microprocesadores por día.

- En una casa promedio hay 20 microprocesadores y para el corto plazo se calcula que cada ser humano interactuar con 350 microprocesadores por día.
- En automóviles de alto rendimiento se emplean hasta 100 microprocesadores por automóvil, en los más económicos se emplean hasta 40 microprocesadores.

- En una casa promedio hay 20 microprocesadores y para el corto plazo se calcula que cada ser humano interactuar con 350 microprocesadores por día.
- En automóviles de alto rendimiento se emplean hasta 100 microprocesadores por automóvil, en los más económicos se emplean hasta 40 microprocesadores.
- Nuevos conceptos: Internet of Things (IoT), computación ubicua, computación ambiental, sistemas ciber-físicos**, wearables, etc.

- En una casa promedio hay 20 microprocesadores y para el corto plazo se calcula que cada ser humano interactuar con 350 microprocesadores por día.
- En automóviles de alto rendimiento se emplean hasta 100 microprocesadores por automóvil, en los más económicos se emplean hasta 40 microprocesadores.
- Nuevos conceptos: Internet of Things (IoT), computación ubicua, computación ambiental, sistemas ciber-físicos**, wearables, etc.

¿Cuántas PC, laptops?

Características de Sistemas Empotrados

- Funcionalidad: Combina recursos de SW y HW para realizar una función específica.
 - Procesadores de aplicación específica.

Características de Sistemas Empotrados

- Funcionalidad: Combina recursos de SW y HW para realizar una función específica.
 - Procesadores de aplicación específica.
- Complejidad: En general son sistemas complejos.
 - Sistemas heterogéneos.
 - Concurrencia.
 - Algoritmos complejos (DSP, procesamiento gráfico).

- Funcionalidad: Combina recursos de SW y HW para realizar una función específica.
 - Procesadores de aplicación específica.
- Complejidad: En general son sistemas complejos.
 - Sistemas heterogéneos.
 - Concurrencia.
 - Algoritmos complejos (DSP, procesamiento gráfico).
- Cumplimiento de plazos
 - Tiempo real (Hard, Soft).
 - Múltiples tazas de procesamiento.

Características de Sistemas Empotrados

- Funcionalidad: Combina recursos de SW y HW para realizar una función específica.
 - Procesadores de aplicación específica.
- Complejidad: En general son sistemas complejos.
 - Sistemas heterogéneos.
 - Concurrencia.
 - Algoritmos complejos (DSP, procesamiento gráfico).
- Cumplimiento de plazos
 - Tiempo real (Hard, Soft).
 - Múltiples tazas de procesamiento.
- Costo: Crítico
 - Costo de manufactura.
 - Costo energético.

Retos en el Diseño de un Sistema Empotrado

Principales retos

- Incremento en la productividad.
- Time To Market.
- Alto rendimiento vs Bajo consumo energético.
- Complejidad.
- Plazos de tiempo (Deadlines).
- Seguridad

Proceso de Co-diseño de HW y SW

Co-diseño

Una vez que la arquitectura del sistema ha sido definida, los componentes de hardware y software pueden ser **diseñados independientemente**

El reto del los flujos de co-diseño es determinar **cómo realizar la partición** para que algunas operaciones sean realizadas por software y otras por hardware.

Proceso de Co-diseño de HW y SW

Co-diseño

Referencias

Miguel Angel Aguilar U. (2009)

Material de clase: Introducción a los Sistemas Embebidos

Mará Haydeé Rodríguez B. (2014)

Material de clase: Sistemas Empotrados

E.A. Lee and S.A. Seshia (2011)

Introduction to Embedded Systems: A Cyber-Physical Systems Approach

Frank Vahid and Tony Givargis (1999)

Embedded System Design: A Unified Hardware/Software Approach