

THE FIXED POINTS OF THE CIRCLE ACTION ON HOCHSCHILD HOMOLOGY

MARC HOYOIS

Let k be a commutative ring and let A be a flat k -algebra. The Hochschild complex $\mathrm{HH}(A)$ of A with coefficients in itself is defined as the normalization of a simplicial k -module A^\natural with

$$A_n^\natural = A^{\otimes_k(n+1)}.$$

The simplicial k -module A^\natural is in fact a *cyclic* k -module: it extends to a contravariant functor on Connes' cyclic category Λ . As we will see below, it follows that the chain complex $\mathrm{HH}(A)$ acquires an action of the circle group \mathbb{T} . The cyclic homology and negative cyclic homology of A over k are classically defined by means of explicit bicomplexes. The goal of this note is to show that:

- (1) The *cyclic homology* $\mathrm{HC}(A)$ coincides with the *orbits* of the \mathbb{T} -action on $\mathrm{HH}(A)$.
- (2) The *negative cyclic homology* $\mathrm{HN}(A)$ coincides with the *fixed points* of the \mathbb{T} -action on $\mathrm{HH}(A)$.

The first statement is due to Kassel [Kas87, Proposition A.5]. The second statement is probably well-known, but a proof seems to be missing from the literature. This gap was partially filled in [TV11], where (2) is proved at the level of connected components for A a smooth commutative k -algebras and $\mathbb{Q} \subset k$. Here we will give a proof of (1) and observe that (2) follows formally from a mild refinement of (1) and Koszul duality. This “mild refinement” amounts to identifying two classes in the second cohomology group of \mathbb{CP}^∞ .

We will proceed as follows:

- In §1, we recall abstract definitions of cyclic and negative cyclic homology in a more general context, namely for ∞ -categories enriched in a symmetric monoidal ∞ -category.
- In §2, we show that in the special case of differential graded categories over a commutative ring, the abstract definitions recover the classical ones.

1. CYCLIC HOMOLOGY OF ENRICHED ∞ -CATEGORIES

Let \mathcal{E} be a presentably *symmetric* monoidal ∞ -category, for instance the ∞ -category Mod_k for k an E_∞ -ring. We denote by $\mathrm{Cat}(\mathcal{E})$ the ∞ -category of \mathcal{E} -enriched ∞ -categories with a set of objects. We will associate to every $\mathcal{C} \in \mathrm{Cat}(\mathcal{E})$ a cyclic object \mathcal{C}^\natural in \mathcal{E} .

Given a finite directed graph \mathcal{J} , with vertices \mathcal{J}_0 and edges \mathcal{J}_1 , define

$$\mathrm{Dia}(\mathcal{J}, \mathcal{C}) = \coprod_{f: \mathcal{J}_0 \rightarrow \mathrm{ob}(\mathcal{C})} \bigotimes_{e \in \mathcal{J}_1} \mathcal{C}(fe_0, fe_1) \in \mathcal{E}.$$

We think of $\mathrm{Dia}(\mathcal{J}, \mathcal{C})$ as an “object of \mathcal{J} -diagrams in \mathcal{C} ”. Its functoriality in \mathcal{J} is described by the following category Υ :

- An object of Υ is a finite directed graph.
- A morphism $\mathcal{J} \rightarrow \mathcal{J}'$ in Υ is a morphism of directed graphs from \mathcal{J} to the free category on \mathcal{J}' , such that every edge in \mathcal{J} is passed through exactly once.

Given a morphism $\mathcal{J} \rightarrow \mathcal{J}'$ in Υ , we can use composition in \mathcal{C} to define a “restriction” map $\mathrm{Dia}(\mathcal{J}', \mathcal{C}) \rightarrow \mathrm{Dia}(\mathcal{J}, \mathcal{C})$, and we can upgrade this construction to a functor

$$\mathrm{Dia}: \Upsilon^{\mathrm{op}} \times \mathrm{Cat}(\mathcal{E}) \rightarrow \mathcal{E}.$$

A *cyclic graph* is a directed graph which is homeomorphic to an oriented circle. The cyclic category Λ [Con83] is equivalent to the full subcategory of Υ on the cyclic graphs (see Figure 1).

The cyclic object \mathcal{C}^\natural is by definition the restriction of $\mathrm{Dia}(-, \mathcal{C}): \Upsilon^{\mathrm{op}} \rightarrow \mathcal{E}$ to cyclic graphs.

FIGURE 1. The cyclic category $\Lambda \subset \Upsilon$.

Remark 1.1. We can define an extension of Dia to graphs in which edges are labeled by bimodules. Given $\mathcal{C} \in \text{Cat}(\mathcal{E})$ and a \mathcal{C} -bimodule \mathcal{M} , the cyclic graphs with one edge labeled by \mathcal{M} and all other edges labeled by \mathcal{C} form a subcategory equivalent to Δ . The restriction of Dia to this subcategory is the usual simplicial object in \mathcal{E} whose colimit is the Hochschild homology of \mathcal{C} with coefficients in \mathcal{M} .

Let $\Lambda \rightarrow \hat{\Lambda}$ denote the ∞ -groupoid completion of Λ , and let \mathbb{T} be the automorphism ∞ -group of $[0]$ in $\hat{\Lambda}$. Since Λ is connected, there is a canonical equivalence $B\mathbb{T} \simeq \hat{\Lambda}$.

Let $\text{PSh}(\Lambda, \mathcal{E})$ be the ∞ -category of \mathcal{E} -valued presheaves on Λ , and let $\text{PSh}_{\sim}(\Lambda, \mathcal{E}) \subset \text{PSh}(\Lambda, \mathcal{E})$ be the full subcategory of presheaves sending all morphisms of Λ to equivalences. We have an obvious equivalence

$$\text{PSh}_{\sim}(\Lambda, \mathcal{E}) \simeq \text{PSh}(B\mathbb{T}, \mathcal{E}).$$

Since \mathcal{E} is presentable and Λ is small, $\text{PSh}_{\sim}(\Lambda, \mathcal{E})$ is a reflective subcategory of $\text{PSh}(\Lambda, \mathcal{E})$. We denote by

$$|-|: \text{PSh}(\Lambda, \mathcal{E}) \rightarrow \text{PSh}_{\sim}(\Lambda, \mathcal{E}) \simeq \text{PSh}(B\mathbb{T}, \mathcal{E})$$

the left adjoint to the inclusion. The morphisms

$$* \xrightarrow{i} B\mathbb{T} \xrightarrow{p} *$$

each induce three functors between the categories of presheaves. We will write

$$u_{\mathbb{T}} = i^*, \quad (-)_{h\mathbb{T}} = p_!, \quad (-)^{h\mathbb{T}} = p_*$$

for the forgetful functor, the \mathbb{T} -orbit functor, and the \mathbb{T} -fixed points functor, respectively.

Lemma 1.2. *Let $F \in \text{PSh}(\Lambda, \mathcal{E})$ be a cyclic object. There is a natural equivalence*

$$u_{\mathbb{T}}|F| \simeq \underset{[n] \in \Delta^{\text{op}}}{\text{colim}} F([n]).$$

Proof. Let $j: \Delta \hookrightarrow \Lambda$ be the inclusion. Let $F \in \text{PSh}_{\sim}(\Delta, \mathcal{E})$ and let $j_* F \in \text{PSh}(\Lambda, \mathcal{E})$ be the right Kan extension of F . Since every morphism in Λ is a composition of isomorphisms and morphisms in Δ , $j_* F$ sends all morphisms in Λ to equivalences. Thus, we have a commuting square

$$\begin{array}{ccc} \text{PSh}_{\sim}(\Delta, \mathcal{E}) & \hookrightarrow & \text{PSh}(\Delta, \mathcal{E}) \\ j_* \downarrow & & \downarrow j_* \\ \text{PSh}_{\sim}(\Lambda, \mathcal{E}) & \hookrightarrow & \text{PSh}(\Lambda, \mathcal{E}). \end{array}$$

Since Δ^{op} is sifted, evaluation at $[0]$ is an equivalence $\text{PSh}_{\sim}(\Delta, \mathcal{E}) \simeq \mathcal{E}$. The left adjoint square, followed by evaluation at $[0]$, says that $u_{\mathbb{T}}|F| \simeq \text{colim } j^* F$, as desired. \square

It follows from Lemma 1.2 that $u_{\mathbb{T}}|\mathcal{C}^\natural| \simeq \text{HH}(\mathcal{C})$, the Hochschild homology of \mathcal{C} with coefficients in itself. As another corollary, we recover the following computation of Connes [Con83, Théorème 10]:

Corollary 1.3. $\hat{\Lambda} \simeq K(\mathbb{Z}, 2)$.

Proof. If $F \in \text{PSh}_{\sim}(\Lambda)$, then, by Yoneda, $\text{Map}(\Lambda^0, F) \simeq \text{Map}(\hat{\Lambda}^0, F)$. In other words, the canonical map $\Lambda^0 \rightarrow \hat{\Lambda}^0$ induces an equivalence $|\Lambda^0| \simeq |\hat{\Lambda}^0|$, and hence $u_{\mathbb{T}}|\Lambda^0| \simeq \mathbb{T}$. On the other hand, the underlying simplicial set of Λ^0 is $\Delta^1/\partial\Delta^1$, so $u_{\mathbb{T}}|\Lambda^0| \simeq K(\mathbb{Z}, 1)$ by Lemma 1.2. Thus, \mathbb{T} is a $K(\mathbb{Z}, 1)$, and hence $B\mathbb{T} \simeq \hat{\Lambda}$ is a $K(\mathbb{Z}, 2)$. \square

In particular, \mathbb{T} is equivalent to the circle as an ∞ -group, which justifies the notation.

Definition 1.4. Let \mathcal{E} be a presentably symmetric monoidal ∞ -category and let $\mathcal{C} \in \mathsf{Cat}(\mathcal{E})$.

(1) The *cyclic homology* of \mathcal{C} is

$$\mathrm{HC}(\mathcal{C}) = |\mathcal{C}^\natural|_{h\mathbb{T}} \in \mathcal{E}.$$

(2) The *negative cyclic homology* of \mathcal{C} is

$$\mathrm{HN}(\mathcal{C}) = |\mathcal{C}^\natural|^{h\mathbb{T}} \in \mathcal{E}.$$

Note that $\mathrm{HC}(\mathcal{C})$ is simply the colimit of $\mathcal{C}^\natural: \Lambda^{\mathrm{op}} \rightarrow \mathcal{E}$.

Remark 1.5. There are several interesting refinements and generalizations of the above definitions. Note that the invariants HH , HC , and HN depend only on $|\mathcal{C}^\natural|$. The *topological cyclic homology* of \mathcal{C} is a refinement of negative cyclic homology, defined when \mathcal{E} is the ∞ -category of modules over an E_∞ -ring, which uses some additional structure on \mathcal{C}^\natural . In another direction, additional structure on \mathcal{C} can lead to $|\mathcal{C}^\natural|$ being acted on by more complicated ∞ -groups. For example, if \mathcal{C} has a duality \dagger , then \mathcal{C}^\natural extends to the dihedral category whose classifying space is $BO(2)$. The coinvariants $|\mathcal{C}^\natural|_{hO(2)}$ are called the *dihedral homology* of (\mathcal{C}, \dagger) .

The previous definitions apply in particular when \mathcal{C} has a unique object, in which case we may identify it with an A_∞ -algebra in \mathcal{E} . If A is an E_∞ -algebra in \mathcal{E} , there is a more direct description of $|A^\natural|$. In this case, A^\natural is the underlying cyclic object of the cyclic E_∞ -algebra $\Lambda^0 \otimes A \in \mathrm{PSh}(\Lambda, \mathrm{CAlg}(\mathcal{E}))$, where Λ^0 is the cyclic set represented by $[0] \in \Lambda$ and \otimes is the canonical action of the ∞ -category \mathcal{S} of spaces on the presentable ∞ -category $\mathrm{CAlg}(\mathcal{E})$. For any cyclic space $K \in \mathrm{PSh}(\Lambda)$, we clearly have $|K \otimes A| \simeq |K| \otimes A$. It follows that $|A^\natural| \in \mathrm{PSh}(B\mathbb{T}, \mathcal{E})$ is the underlying object of the E_∞ -algebra

$$|\Lambda^0| \otimes A \simeq \mathbb{T} \otimes A \in \mathrm{PSh}(B\mathbb{T}, \mathrm{CAlg}(\mathcal{E})).$$

In particular, $\mathrm{HH}(A)$ and $\mathrm{HN}(A)$ inherit E_∞ -algebra structures from A . Their geometric interpretation is the following: if $X = \mathrm{Spec} A$, then $\mathrm{Spec} \mathrm{HH}(A)$ is the *free loop space* of X and $\mathrm{Spec} \mathrm{HN}(A)$ is the *space of circles* in X . The cyclic homology $\mathrm{HC}(A)$ is a quasi-coherent sheaf on the free loop space of X .

2. COMPARISON WITH THE CLASSICAL DEFINITIONS

Let k be a discrete commutative ring and let A be an A_∞ -algebra over k . The cyclic and negative cyclic homology of A over k are classically defined via explicit bicomplexes. Let us start by recalling these definitions, following [Lod92, §5.1].

Let M_\bullet be a cyclic object in an additive category \mathcal{A} . The usual presentation of Λ provides the face and degeneracy operators $d_i: M_n \rightarrow M_{n-1}$ and $s_i: M_n \rightarrow M_{n+1}$ ($0 \leq i \leq n$), as well as the cyclic operator $c: M_n \rightarrow M_n$ of order $n+1$. We define the additional operators

$$\begin{aligned} b: M_n &\rightarrow M_{n-1}, & b &= \sum_{i=0}^n (-1)^i d_i, \\ s_{-1}: M_n &\rightarrow M_{n+1}, & s_{-1} &= cs_n, \\ t: M_n &\rightarrow M_n, & t &= (-1)^n c, \\ N: M_n &\rightarrow M_n, & N &= \sum_{i=0}^n t^i, \\ B: M_n &\rightarrow M_{n+1}, & B &= (\mathrm{id} - t)s_{-1}N. \end{aligned}$$

We easily verify that $b^2 = 0$, $B^2 = 0$, and $bB + Bb = 0$. In particular, (M, b) is a chain complex in \mathcal{A} . We now take \mathcal{A} to be the category Ch_k of chain complexes of k -modules. Then (M, b) is a (commuting) bicomplex and we denote by $(C_*(M), b)$ the total chain complex with

$$C_n(M) = \bigoplus_{p+q=n} M_{p,q}.$$

We then form the (anticommuting) bicomplex

$$\begin{array}{ccccccc}
 & \vdots & & \vdots & & \vdots & \\
 & \downarrow & & \downarrow & & \downarrow & \\
 \cdots & \longleftarrow & C_2(M) & \xleftarrow{B} & C_1(M) & \xleftarrow{B} & C_0(M) \longleftarrow \cdots \\
 & b \downarrow & & b \downarrow & & b \downarrow & \\
 \cdots & \longleftarrow & C_1(M) & \xleftarrow{B} & C_0(M) & \xleftarrow{B} & C_{-1}(M) \longleftarrow \cdots \\
 & b \downarrow & & b \downarrow & & b \downarrow & \\
 \cdots & \longleftarrow & C_0(M) & \xleftarrow{B} & C_{-1}(M) & \xleftarrow{B} & C_{-2}(M) \longleftarrow \cdots \\
 & \downarrow & & \downarrow & & \downarrow & \\
 & \vdots & & \vdots & & \vdots &
 \end{array}$$

where the $C_0(M)$'s are on the main diagonal. Removing all negatively graded columns, we obtain the *cyclic bicomplex* $\text{BC}(M)$; removing all the positively graded columns, we obtain the *negative cyclic bicomplex* $\text{BN}(M)$. Finally, we form the total complexes

$$\text{Tot}^\oplus \text{BC}, \text{Tot}^\Pi \text{BN}: \text{PSh}(\Lambda, \text{Ch}_k) \rightarrow \text{Ch}_k,$$

where

$$\text{Tot}^\oplus(C)_n = \bigoplus_{p+q=n} C_{p,q} \quad \text{and} \quad \text{Tot}^\Pi(C)_n = \prod_{p+q=n} C_{p,q}.$$

These functors clearly preserve quasi-isomorphisms and hence induce functors

$$\text{CC}, \text{CN}: \text{PSh}(\Lambda, \text{Mod}_k) \rightarrow \text{Mod}_k.$$

Theorem 2.1. *Let k be a discrete commutative ring and M a cyclic k -module. Then there are natural equivalences*

$$|M|_{h\mathbb{T}} \simeq \text{CC}(M) \quad \text{and} \quad |M|^{h\mathbb{T}} \simeq \text{CN}(M).$$

In particular, if \mathcal{C} is a k -linear ∞ -category, then

$$\text{HC}(\mathcal{C}) \simeq \text{CC}(\mathcal{C}^\sharp) \quad \text{and} \quad \text{HN}(\mathcal{C}) \simeq \text{CN}(\mathcal{C}^\sharp).$$

We first rephrase the classical definitions in terms of *mixed complexes*, following Kassel [Kas87]. We let $k[\epsilon]$ be the differential graded k -algebra

$$\cdots \rightarrow 0 \rightarrow k\epsilon \xrightarrow{0} k \rightarrow 0 \rightarrow \cdots,$$

which is nonzero in degrees 1 and 0. The ∞ -category $\text{Mod}_{k[\epsilon]}$ is the localization of the category of differential graded $k[\epsilon]$ -modules, also called mixed complexes, at the quasi-isomorphisms. We denote by

$$K: \text{PSh}(\Lambda, \text{Mod}_k) \rightarrow \text{Mod}_{k[\epsilon]}$$

the functor induced by sending a cyclic chain complex M to the mixed complex $(C_*(M), b, B)$.

Lemma 2.2. *Let $M \in \text{PSh}(\Lambda, \text{Mod}_k)$. Then*

$$\text{CC}(M) \simeq k \otimes_{k[\epsilon]} K(M) \quad \text{and} \quad \text{CN}(M) \simeq \text{Hom}_{k[\epsilon]}(k, K(M)).$$

Proof. We work at the level of complexes. Let Qk be the nonnegatively graded mixed complex

$$\cdots \leftrightarrows k\epsilon \stackrel{\epsilon}{\rightleftharpoons} k \stackrel{0}{\rightleftharpoons} k\epsilon \stackrel{\epsilon}{\rightleftharpoons} k.$$

There is an obvious morphism $Qk \rightarrow k$ which is a cofibrant resolution of k for the projective model structure on mixed complexes. By inspection, we have isomorphisms of chain complexes

$$\text{Tot}^\oplus \text{BC}(M) \simeq Qk \otimes_{k[\epsilon]} (C_*(M), b, B) \quad \text{and} \quad \text{Tot}^\Pi \text{BN}(M) \simeq \text{Hom}_{k[\epsilon]}(Qk, (C_*(M), b, B)).$$

This proves the claim. \square

Let $k[\mathbb{T}]$ be the A_∞ -ring $k \otimes \Sigma^\infty \mathbb{T}_+$. There is an obvious equivalence of ∞ -categories

$$\mathrm{PSh}(B\mathbb{T}, \mathrm{Mod}_k) \simeq \mathrm{Mod}_{k[\mathbb{T}]}$$

that makes the following squares commute:

$$(2.3) \quad \begin{array}{ccc} \mathrm{PSh}(B\mathbb{T}, \mathrm{Mod}_k) & \xrightarrow{(-)^{h\mathbb{T}}} & \mathrm{Mod}_k \\ \simeq \downarrow & \parallel & \simeq \downarrow \\ \mathrm{Mod}_{k[\mathbb{T}]} & \xrightarrow{k \otimes_{k[\mathbb{T}]} -} & \mathrm{Mod}_k, \end{array} \quad \begin{array}{ccc} \mathrm{PSh}(B\mathbb{T}, \mathrm{Mod}_k) & \xrightarrow{(-)^{h\mathbb{T}}} & \mathrm{Mod}_k \\ \simeq \downarrow & \parallel & \simeq \downarrow \\ \mathrm{Mod}_{k[\mathbb{T}]} & \xrightarrow{\mathrm{Hom}_{k[\mathbb{T}]}(k, -)} & \mathrm{Mod}_k. \end{array}$$

Let $\gamma \in H_1(\mathbb{T}, \mathbb{Z})$ be a generator. Sending ϵ to γ defines an equivalence of augmented A_∞ - k -algebras $\gamma: k[\epsilon] \simeq k[\mathbb{T}]$, whence an equivalence of ∞ -categories

$$\gamma^*: \mathrm{Mod}_{k[\mathbb{T}]} \simeq \mathrm{Mod}_{k[\epsilon]}.$$

The main result of this note is then that $K(M)$ is a model for $|M|$. More precisely:

Theorem 2.4. *There exists a generator $\gamma \in H_1(\mathbb{T}, \mathbb{Z})$ such that the following triangle commutes:*

$$\begin{array}{ccc} \mathrm{PSh}(\Lambda, \mathrm{Mod}_k) & \xrightarrow{|-|} & \mathrm{PSh}(B\mathbb{T}, \mathrm{Mod}_k) \\ & \searrow K & \simeq \downarrow \gamma^* \\ & & \mathrm{Mod}_{k[\epsilon]}. \end{array}$$

Theorem 2.1 follows from Theorem 2.4, Lemma 2.2, and (2.3). Note that K sends $\mathrm{colim}_{\Delta^{\mathrm{op}}}$ -equivalences to equivalences and hence factors through $|-$. By Theorem 2.4, the induced functor $\mathrm{PSh}(B\mathbb{T}, \mathrm{Mod}_k) \rightarrow \mathrm{Mod}_{k[\epsilon]}$ agrees with γ^* . In particular, we recover the following result of Dwyer and Kan [DK85, Remark 6.7]:

Corollary 2.5. *The functor $K: \mathrm{PSh}(\Lambda, \mathrm{Mod}_k) \rightarrow \mathrm{Mod}_{k[\epsilon]}$ induces an equivalence of ∞ -categories*

$$\mathrm{PSh}_{\simeq}(\Lambda, \mathrm{Mod}_k) \simeq \mathrm{Mod}_{k[\epsilon]}.$$

To prove Theorem 2.4, we consider the “universal case”, namely the cocyclic cyclic k -module $k[\Lambda^\bullet]$. We have a natural equivalence

$$M \simeq k[\Lambda^\bullet] \otimes_{\Lambda} M,$$

where

$$\otimes_{\Lambda}: \mathrm{Fun}(\Lambda, \mathrm{Mod}_k) \times \mathrm{PSh}(\Lambda, \mathrm{Mod}_k) \rightarrow \mathrm{Mod}_k$$

is the coend pairing. Similarly, we have

$$|M| \simeq |k[\Lambda^\bullet]| \otimes_{\Lambda} M \quad \text{and} \quad K(M) \simeq K(k[\Lambda^\bullet]) \otimes_{\Lambda} M,$$

since both $|-$ and K commute with tensoring with constant k -modules and with colimits (for K , note that colimits in $\mathrm{Mod}_{k[\epsilon]}$ are detected by the forgetful functor to Mod_k). Thus, it will suffice to produce an equivalence of cocyclic $k[\epsilon]$ -modules

$$(2.6) \quad \gamma^*|k[\Lambda^\bullet]| \simeq K(k[\Lambda^\bullet]).$$

Let $k[u]$ denote the A_∞ - k -coalgebra $k \otimes_{k[\epsilon]} k$. Note that a $k[u]$ -comodule structure on $M \in \mathrm{Mod}_k$ is the same thing as map $M \rightarrow M[2]$. The functor $k \otimes_{k[\epsilon]} -: \mathrm{Mod}_{k[\epsilon]} \rightarrow \mathrm{Mod}_k$ factors through a fully faithful functor from $k[\epsilon]$ -modules to $k[u]$ -comodules:

$$\begin{array}{ccc} & \mathrm{Comod}_{k[u]} & \\ & \nearrow \dashv & \downarrow \text{forget} \\ \mathrm{Mod}_{k[\epsilon]} & \xrightarrow{k \otimes_{k[\epsilon]} -} & \mathrm{Mod}_k. \end{array}$$

To prove (2.6), it will therefore suffice to produce an equivalence of cocyclic $k[u]$ -comodules

$$(2.7) \quad k \otimes_{k[\epsilon]} \gamma^*|k[\Lambda^\bullet]| \simeq k \otimes_{k[\epsilon]} K(k[\Lambda^\bullet]).$$

Note that both cocyclic objects send all morphisms in Λ to equivalences and hence can be viewed as functors $B\mathbb{T} \rightarrow \text{Comod}_{k[u]}$.

Let us first compute the left-hand side of (2.7). The generator γ induces an equivalence of coaugmented A_∞ - k -coalgebras $\check{\gamma}: k[u] \simeq k[B\mathbb{T}]$, whence an equivalence of ∞ -categories

$$\check{\gamma}^*: \text{Comod}_{k[B\mathbb{T}]} \simeq \text{Comod}_{k[u]}.$$

We clearly have

$$k \otimes_{k[\epsilon]} \gamma^*|k[\Lambda^\bullet]| \simeq \check{\gamma}^*|k[\Lambda^\bullet]|_{h\mathbb{T}}.$$

Now, $|k[\Lambda^\bullet]|_{h\mathbb{T}} \simeq k[|\Lambda^\bullet|_{h\mathbb{T}}]$, where $|\Lambda^\bullet|_{h\mathbb{T}}$ is a $B\mathbb{T}$ -comodule in $\text{Fun}_\simeq(\Lambda, \mathcal{S}) \simeq \mathcal{S}_{/B\mathbb{T}}$. If $\pi^*: \mathcal{S} \rightarrow \mathcal{S}_{/B\mathbb{T}}$ is the functor $\pi^*X = X \times B\mathbb{T}$, then a $B\mathbb{T}$ -comodule structure on π^*X is simply a map $\pi^*X \rightarrow \pi^*B\mathbb{T}$, i.e., a map $X \times B\mathbb{T} \rightarrow B\mathbb{T}$ in \mathcal{S} . Here, $|\Lambda^\bullet|_{h\mathbb{T}}$ is $\pi^*(*) \in \mathcal{S}_{/B\mathbb{T}}$ and its $B\mathbb{T}$ -comodule structure $\sigma: \pi^*(*) \rightarrow \pi^*(B\mathbb{T})$ is given by the identity $B\mathbb{T} \rightarrow B\mathbb{T}$. Applying $\check{\gamma}^*k[-]$, we deduce that the left-hand side of (2.7) is the constant cocyclic k -module \underline{k} with $k[u]$ -comodule structure given by the composition

$$(2.8) \quad \underline{k} \xrightarrow{\sigma} \underline{k}[B\mathbb{T}] \xrightarrow{\check{\gamma}} \underline{k}[u].$$

Note that equivalence classes of $k[u]$ -comodule structures on \underline{k} are in bijection with

$$[\underline{k}, \underline{k}[2]] \simeq H^2(B\mathbb{T}, k).$$

Under this classification, (2.8) comes from an integral cohomology class, namely the image of the identity $B\mathbb{T} \rightarrow B\mathbb{T}$ under the isomorphism

$$[B\mathbb{T}, B\mathbb{T}] \xrightarrow{\check{\gamma}} H^2(B\mathbb{T}, \mathbb{Z}).$$

In particular, it comes from a generator of the infinite cyclic group $H^2(B\mathbb{T}, \mathbb{Z})$, determined by γ . We must therefore show that the right-hand side of (2.7) is also equivalent to the constant cocyclic k -module \underline{k} with $k[u]$ -comodule structure classified by a generator of $H^2(B\mathbb{T}, \mathbb{Z})$.

Recall that $K(k[\Lambda^\bullet])$ is the following mixed complex of cocyclic k -modules:

$$\cdots \rightleftarrows k[\Lambda_2] \xrightarrow[B]{\quad} k[\Lambda_1] \xrightarrow[B]{\quad} k[\Lambda_0].$$

Consider the mixed complex Qk from the proof of Lemma 2.2, which can be used to compute $k \otimes_{k[\epsilon]}$ – at the level of complexes. It comes with an obvious self-map $Qk \rightarrow Qk[2]$ which induces the $k[u]$ -comodule structure on $k \otimes_{k[\epsilon]} M$ for every mixed complex M . Let us write down explicitly the resulting chain complex $Qk \otimes_{k[\epsilon]} K(k[\Lambda^\bullet])$ of cocyclic $k[u]$ -comodules. It is the total complex of the first-quadrant bicomplex

$$(2.9) \quad \begin{array}{ccc} \vdots & \vdots & \vdots \\ \downarrow & \downarrow & \downarrow \\ k[\Lambda_2] & \xleftarrow[B]{\quad} & k[\Lambda_1] \xleftarrow[B]{\quad} k[\Lambda_0] \\ b \downarrow & & b \downarrow \\ k[\Lambda_1] & \xleftarrow[B]{\quad} & k[\Lambda_0] \\ b \downarrow & & \\ k[\Lambda_0], & & \end{array}$$

with $k[u]$ -comodule structure induced by the obvious degree $(-1, -1)$ endomorphism δ .

Lemma 2.10. *The bicomplex (2.9) is a resolution of the constant cocyclic k -module \underline{k} . Moreover, the endomorphism δ represents a generator of the invertible k -module $[\underline{k}, \underline{k}[2]] \simeq H^2(B\mathbb{T}, k)$.*

Proof. Let K_{**} be the bicomplex (2.9), with the obvious augmentation $K_{**} \rightarrow \underline{k}$. For M a cyclic object in an additive category, we define the operator $b': M_n \rightarrow M_{n-1}$ by

$$b' = b - (-1)^n d_n = \sum_{i=0}^{n-1} (-1)^i d_i.$$

Let L_{**} be the $(2, 0)$ -periodic first-quadrant bicomplex

$$\begin{array}{ccccc} \vdots & \vdots & \vdots & & \\ \downarrow & \downarrow & \downarrow & & \\ k[\Lambda_2] & \xleftarrow{\text{id} - t} & k[\Lambda_2] & \xleftarrow{N} & k[\Lambda_2] \longleftarrow \cdots \\ b \downarrow & -b' \downarrow & b \downarrow & & \\ k[\Lambda_1] & \xleftarrow{\text{id} - t} & k[\Lambda_1] & \xleftarrow{N} & k[\Lambda_1] \longleftarrow \cdots \\ b \downarrow & -b' \downarrow & b \downarrow & & \\ k[\Lambda_0] & \xleftarrow{\text{id} - t} & k[\Lambda_0] & \xleftarrow{N} & k[\Lambda_0] \longleftarrow \cdots \end{array}$$

with the obvious augmentation $L_{**} \rightarrow k$, and let M_{**} be the bicomplex obtained from L_{**} by annihilating the even-numbered columns. Let $\phi: \text{Tot } K_{**} \rightarrow \text{Tot } L_{**}$ be the map induced by $(\text{id}, s_{-1}N): k[\Lambda_n] \rightarrow k[\Lambda_n] \oplus k[\Lambda_{n+1}]$, and let $\psi: \text{Tot } L_{**} \rightarrow \text{Tot } M_{**}$ be the map induced by $-s_{-1}N + \text{id}: k[\Lambda_n] \oplus k[\Lambda_{n+1}] \rightarrow k[\Lambda_{n+1}]$. A straightforward computation shows that ϕ and ψ are chain maps and that we have a commutative diagram with exact rows

$$(2.11) \quad \begin{array}{ccccccc} 0 & \longrightarrow & \text{Tot } K_{**} & \xrightarrow{\phi} & \text{Tot } L_{**} & \xrightarrow{\psi} & \text{Tot } M_{**} \longrightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \longrightarrow & \underline{k} & \xrightarrow{\text{id}} & \underline{k} & \longrightarrow & 0 \end{array}$$

From the identity $s_{-1}b' + b's_{-1} = \text{id}$, we deduce that each column of M_{**} has zero homology, and hence that $\text{Tot } M_{**} \simeq 0$. Next we show that each row of L_{**} has zero positive homology, so that the homology of $\text{Tot } L_{**}$ can be computed as the homology of the zeroth column of horizontal homology of L_{**} . This can be proved pointwise, so consider a part of the n th row evaluated at $[m]$:

$$(2.12) \quad \cdots \rightarrow k[\Lambda(n, m)] \xrightarrow{\text{id} - t} k[\Lambda(n, m)] \xrightarrow{N} k[\Lambda(n, m)] \rightarrow \cdots.$$

By the structure theorem for Λ , we have $\Lambda(n, m) = C_{n+1} \times \Delta(n, m)$, where C_{n+1} is the set of automorphisms of $[n]$ in Λ . Thus, (2.12) is obtained from the complex

$$(2.13) \quad \cdots \rightarrow k[C_{n+1}] \xrightarrow{\text{id} - t} k[C_{n+1}] \xrightarrow{N} k[C_{n+1}] \rightarrow \cdots.$$

by tensoring with the free k -module $k[\Delta(n, m)]$, and we need only prove that (2.13) is exact. Let

$$x = \sum_{i=0}^n x_i c^i \in k[C_{n+1}].$$

Suppose first that $x(\text{id} - t) = 0$; then $x_i = (-1)^{ni} x_0$ and hence $x = x_0 N$. Suppose next that $xN = 0$, i.e., that $\sum_{i=0}^n (-1)^{ni} x_{n-i} = 0$; putting $y_0 = x_0$ and $y_i = x_i + (-1)^n y_{i-1}$ for $i > 0$, we find $x = y(\text{id} - t)$. This proves the exactness of (2.13), and also that the image of $\text{id} - t: k[C_{n+1}] \rightarrow k[C_{n+1}]$ is exactly the kernel of the surjective map $k[C_{n+1}] \rightarrow k$, $x \mapsto \sum_{i=0}^n (-1)^{ni} x_{n-i}$. This map identifies the 0th homology of the n th row of L_{**} evaluated at $[m]$ with $k[\Delta(n, m)]$. Moreover, the vertical map $k[\Delta(n, m)] \rightarrow k[\Delta(n-1, m)]$ induced by $-b$ is the usual differential associated with the simplicial k -module $k[\Delta^m]$. This proves that $\text{Tot } L_{**} \rightarrow \underline{k}$ is a resolution of k . From (2.11) we deduce that $\text{Tot } K_{**} \rightarrow \underline{k}$ is a quasi-isomorphism.

To prove the second statement, we contemplate the complex $\text{Hom}(\text{Tot } K_{**}, \underline{k})$: it is the total complex of the bicomplex

$$\begin{array}{ccc} & k & \\ & 0 \downarrow & \\ & k \longleftarrow k & \\ & 0 \downarrow & \text{id} \downarrow \\ k & \longleftarrow k & \longleftarrow k \\ 0 \downarrow & \text{id} \downarrow & 0 \downarrow \\ \vdots & \vdots & \vdots \end{array}$$

with trivial horizontal differentials and alternating vertical differentials. We immediately check that

$$\mathrm{Tot} K_{**} \xrightarrow{\delta} (\mathrm{Tot} K_{**})[2] \rightarrow \underline{k}[2]$$

is a cocycle generating the second cohomology module. \square

It follows from Lemma 2.10 that the right-hand side of (2.7) is the constant cocyclic k -module \underline{k} with $k[u]$ -comodule structure classified by $\delta: \underline{k} \rightarrow \underline{k}[2]$. Comparing with (2.8) and noting that δ is natural in k , we deduce that Theorem 2.4 holds by choosing $\gamma \in H_1(\mathbb{T}, \mathbb{Z})$ to be the generator corresponding to $\delta \in H^2(B\mathbb{T}, \mathbb{Z})$.

REFERENCES

- [Con83] A. Connes, *Cohomologie cyclique et foncteurs Extⁿ*, C. R. Acad. Sci. Paris Ser. I Math. **296** (1983), pp. 953–958
- [DK85] W. G. Dwyer and D. M. Kan, *Normalizing the cyclic modules of Connes*, Comment. Math. Helvetici **60** (1985), pp. 582–600
- [Kas87] C. Kassel, *Cyclic Homology, Comodules, and Mixed Complexes*, J. Algebra **107** (1987), pp. 195–216
- [Lod92] J.-L. Loday, *Cyclic Homology*, Springer-Verlag, 1992
- [TV11] B. Toën and G. Vezzosi, *Algèbres simpliciales S^1 -équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs*, Compos. Math. **147** (2011), no. 6, pp. 1979–2000