# **Automating Keyboard Typing**

Practical Reinforcement Learning

•••

Aidan Keaveny

# Overview

- 1. Problem Formulation
- 2. What is Reinforcement Learning?
- 3. Practical RL for URC Competition
- 4. Future Work



# **Problem Formulation**

• Keyboard typing is a *high precision task* at URC competition

 Main Goal: Attempt to replace traditional path planning techniques or joystick operations with an optimal control policy that is learnt via Reinforcement Learning.



# **Problem Formulation**





- Env: The agent is always acting in an environment.
- <u>State-Actions Pairs</u>: The agent in one of many states (s) of the environment can choose to take one of many actions (a).
- <u>Model</u>: How the environment reacts to certain actions is defined by a model which we may or may not know.
- Reward: Once an action is taken, the environment delivers a reward (r) as feedback.



- <u>Goal</u>: We want to hit a desired key so we need the 6-DoF Pose ...
- States  $s_t$  [1x39]: goal, initial pose, *current* joint positions, velocities, efforts, position and velocity limit switches
- Actions  $a_{t}$  [1x5]: desired joint positions (position control)
- Reward Function *R*:





### **RL Overview**

- Game playing: AlphaGo involves both model-free methods (CNN), and also model-based methods (Monte Carlo Tree Search)
- Control problems: much less structure...
  - Effective representations of the state space  $s_t$
  - Discrete or continuous control actions  $a_t$
  - Engineered reward functions R









### **RL Overview**





#### Atari games:

#### Q-learning:

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, et al. "Playing Atari with Deep Reinforcement Learning". (2013).

#### Policy gradients:

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. "Trust Region Policy Optimization". (2015).
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. "Asynchronous methods for deep reinforcement learning". (2016).



#### Real-world robots:

#### Guided policy search:

S. Levine\*, C. Finn\*, T. Darrell, P. Abbeel. "End-to-end training of deep visuomotor policies". (2015).

#### Q-learning:

D. Kalashnikov et al. "QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation". (2018).



Beating Go champions: Supervised learning + policy gradients + value functions + Monte Carlo tree search:

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, et al. "Mastering the game of Go with deep neural networks and tree search". Nature (2016).



# Different Types of RL



value/policy

direct

planning

acting

experience

# Different Types of RL

# Types of RL algorithms

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[ \sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$



- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy
- Model-based RL: estimate the transition model, and then...
  - Use it for planning (no explicit policy)
  - Use it to improve a policy
  - Something else

### **RL Overview**



### **RL Overview**

#### Why so many RL algorithms?

- Different tradeoffs
  - · Sample efficiency
  - Stability & ease of use
- Different assumptions
  - Stochastic or deterministic?
  - Continuous or discrete?
  - Episodic or infinite horizon?
- Different things are easy or hard in different settings
  - · Easier to represent the policy?
  - Easier to represent the model?



# Different Types of RL

- Learning from demonstrations
  - Directly copying observed behavior
  - Inferring rewards from observed behavior (inverse reinforcement learning)
- Learning from observing the world
  - Learning to predict "yeah, keyboard typing isn't hard enough .."
  - Unsupervised learning
- Learning from other tasks
  - Transfer learning
  - Meta-learning: learning to learn

# Small break before Practical RL ..



# OpenAl + Stable-Baselines3

```
class TestClass:
    NUM_EPISODES = 1
    MAX STEPS = 5000
    KEY POSITION = np.array([0.6, 0.6, 0.6])
    KEY_ORIENTATION = np.array([0, 0, 0, 1])
    def __run_test(self, env):
        pp = pprint.PrettyPrinter() # TODO: update to python 3.8 to use sort_dicts = False
        for episode in range(self.NUM_EPISODES):
            initial observation = env.reset()
            print('Initial Observation:')
            pp.pprint(initial_observation)
            for sim_step in range(self.MAX_STEPS):
                action = env.action_space.sample()
                observation, reward, done, info = env.step(action)
                print()
                print('Action:')
                pp.pprint(action)
                print('Observation:')
                pp.pprint(observation)
                print('Info:')
                pp.pprint(info)
                print('Reward:')
                pp.pprint(reward)
                if done:
                    print()
                    print(f'Episode #{episode} finished after {info["sim"]["steps_executed"]} steps!')
                    print(f'Episode #{episode} exit condition was {info["sim"]["end condition"]}')
                    print()
                    break
```







# Progress Update: SAR



# Robo-Gym: Sim 2 Real ..









# Pose Estimation: *my thesis work..*









# Robohub's Kinova Gen3





#### **Future Work**

- Arm: Test arm's IK with closed loop feedback
- RL: Test RL Algorithm with real hardware
- Pose Estimation: Experiments with fixed keyboard position ...
- Robohub: Can always use the Gen3 arm for testing



#### References

- AlphaGo Documentary
- Sutton & Barto Textbook (U of A !!!)
- CS285: Berkeley's Deep Reinforcement Learning
- OpenAI Gym Tutorial
- Stable -Baselines3
- Robo-Gym