

Computer Vision

Image formation

School of Electronic & Electrical Engineering

Sungkyunkwan University

Hyunjin Park

Light and Shading

Lighting

- Light
 - Emitted by light sources and then reflected from an object's surface
 - A portion of this light is directed towards the camera

Lighting

- Light distribution: $L(\widehat{v}; \lambda)$
 - $\widehat{\pmb{v}}$: Light directions
 - λ : Color values (or wavelengths)

Radiance

- $L(P, \theta, \varphi)$
- Power emitted from a surface patch
- Function of position and direction

Irradiance

- $L(x, \theta, \varphi)$
- Power falling on a surface patch
- Function of incoming angle

Lighting

- Many effects when light strikes a surface
 - Absorbed
 - Transmitted
 - Reflected
 - Scattered
 - Travel along the surface and leave at some other point

- Assume that
 - surfaces do not generate light internally
 - all the light leaving a point is due to that arriving at that point

BRDF

- Bidirectional Reflectance Distribution Function (BRDF)
 - Ratio of the radiance in the outgoing direction to the incident irradiance

$$\rho_{bd}(P, \theta_o, \phi_o, \theta_i, \phi_i) = \frac{L_o(P, \theta_o, \phi_o)}{L_i(P, \theta_i, \phi_i) \cos \theta_i dw}$$

- Function of incoming (θ_i, ϕ_i) and outgoing light direction (θ_o, ϕ_o)
- Tells how bright a surface appears when viewed from one direction while light falls on it from another

BRDF

Symmetric in incoming and outgoing directions

$$\rho_{bd}(P, \theta_o, \phi_o, \theta_i, \phi_i) = \rho_{bd}(P, \theta_i, \phi_i, \theta_o, \phi_o)$$

BRDF

- Radiance leaving a surface in a particular direction
 - Add contributions from every incoming direction

$$L_o(P, \theta_o, \phi_o) = \int \rho_{bd}(P, \theta_o, \phi_o, \theta_i, \phi_i) L_i(P, \theta_i, \phi_i) \cos \theta_i dw$$

Radiosity

- In many situations, we do not need angle coordinates
 - E.g.) Cotton cloth: The reflected light is not dependent on angle

- Radiosity: Suppress angles
 - Appropriate radiometric unit
 - **Total power** leaving a point on the surface, per unit area on the surface
 - Independent to the direction
- Radiosity from radiance
 - Sum radiance leaving surface over all exit directions, multiplying by a cosine as this is per unit area, not per unit foreshortened area

$$B(P) = \int L_o(P, \theta, \phi) \cos \theta \, dw$$

Surface reflectance

- Diffuse reflection (scattering)
 - Re-emit uniformly in all directions
 - Color strongly depends on the nature of a surface

- Specular reflection
 - Mirror-like → Produce highlights
 - Highly directional
 - Same color as incident light (assume independent to material)

- Reflection coefficient (albedo)
 - The ratio of the total reflected power to the total incident power

Lambertian surfaces

- Lambertian surfaces
 - Ideal diffuse surfaces
 - Light uniformly in all directions
 - It appears to have the same brightness from all viewpoints
 - E.g.) cotton cloth, carpets, etc.
 - For such surfaces, radiance leaving the surface is independent of angle

Lambertian surfaces

- Lambert's law
 - The intensity of reflected light energy (I_d) is proportional to the cosine of the angle θ between the surface normal (N) and the illumination direction (S)

$$I_d = \rho_d L_i \cos \theta = \rho_d L_i (N \cdot S)$$

, where ρ_d : diffuse albedo

Specular surfaces

- Specular surfaces
 - Mirror-like surfaces
 - Radiation arriving along a direction leaves along the specular direction
 - Reflect about normal
 - Some fraction is absorbed, some reflected
 - A highlight on an object is a bright spot caused by the specular reflection
 - Highlights indicate that the object is waxy, metallic, or glassy, etc.

Specular reflectance

Phong's model

• The intensity of reflected light energy falls off with $\cos^n(\delta\theta)$

$$I_s = \rho_s L_s \cos^{\mathrm{n}}(\delta \theta)$$

, where ho_s : specular albedo

Lambertian + specular surfaces

- All surfaces are Lambertian + Specular component
- Advantage
 - Easy to manipulate
 - Very often quite close true
- Disadvantage
 - Very little advantage in modeling behavior of light at a surface in more detail

Sources

Source

- How bright are objects?
- The internally generated power radiated per unit area on the radiating surface
- A source can have both
 - Radiosity (∵ it reflects)
 - Exitance (∵ it emits)
- Light sources to be considered
 - Point light source
 - Ambient light source

Sources

- Darkening with distance
 - The intensity of light received by any object surface decreases with the square of its distance from the source

A nearby point source

$$\rho_d(P)\left(\frac{N(P)\cdot S(P)}{r(P)^2}\right)$$

- N: Surface normal
- ρ_d : Diffuse albedo
- *S*: Source vector

A distant point source

Issue: Nearby point source gets bigger if one gets closer

- A distant point source
 - Assume that all points in the model are close to each other with respect to the distance to the source
 - Then, the source vector S and distance does not vary much
 - Roll the constants together

$$\rho_d(P)(N(P)\cdot S)$$

Shading

Local shading model

- Surface has radiosity due only to sources visible at each point
- Advantages
 - Easy to manipulate
 - Supports simple theories how shape information is extracted from shading

Global shading model

- Surface radiosity is due to radiance reflected from other surfaces as well as from sources
- Advantage
 - Usually very accurate
- Disadvantage
 - Extremely difficult to infer anything from shading values

Phong shading model

- Popular shading model used in computer graphics
- It accounts for
 - Ambient light
 - Diffuse reflection
 - Specular reflection
 - Darkening with distance

