KARTY GRAFICZNE

Czym właściwie jest karta graficzna?

Jest to karta rozszerzeń komputera (czasami określana też mianem akceleratora grafiki)
odpowiedzialna za renderowanie grafiki i jej konwersję na sygnał zrozumiały dla wyświetlacza.

- Karta graficzna przyjmuje zazwyczaj postać karty rozszerzeń montowanej w magistrali wejścia/wyjścia na płycie głównej, przystosowana do pracy jako oddzielna karta graficzna tzw. dedykowana.
 - procesory serii Radeon Graphics produkowane przez ATI technologies, marka AMD
 - procesory serii GeForce produkowane przez Nvidia
 - procesory firmy Matrox
 - procesory firmy XGI Technology
- Opcjonalnie układ graficzny może być zintegrowany z mostkiem północnym lub bezpośrednio w CPU.
 - procesory marki Intel GMA
 - procesory firmy AMD
 - procesory firmy SiS
 - procesory firmy VIA Technologies

Główne elementy karty graficznej:

- złącze magistrali,
- bios karty,
- procesor graficzny GPU,
- wbudowany akcelerator 3D,
- pamięć RAM,
- Konwerter cyfrowo-analogowy RAMDAC,
- zestaw wyjść, złącz np D-Sub, DVI, HDMI.

Schemat blokowy karty graficzej

GPU

- **GPU** (*graphics processing unit*) koprocesor graficzny jest główną jednostką obliczeniową kart graficznych odpowiedzialną za generowanie obrazu.
- Współczesne układy GPU wykorzystują większość swoich tranzystorów do wykonywania obliczeń związanych z grafiką komputerową 3D. Początkowo były wykorzystywane do przyspieszania intensywnej pamięci polegającej na mapowaniu tekstur i renderowaniu wielokątów, a następnie dodawaniu jednostek w celu przyspieszania obliczeń geometrycznych, takich jak obracanie i tłumaczenie wierzchołków w różne układy współrzędnych.
- Najnowsze osiągnięcia w układach GPU obejmują obsługę programowalnych shaderów, które mogą manipulować wierzchołkami i teksturami za pomocą wielu takich samych operacji obsługiwanych przez procesory, techniki oversamplingu i interpolacji, aby zmniejszyć aliasing i bardzo precyzyjne przestrzenie kolorów. problemów równoległych.

Konwerter RAMDAC

(Random Access Memory Digital-to-Analog Converter) Jest to układ zamieniający sygnał cyfrowy generowany przez kartę graficzną na sygnał analogowy. Sygnał analogowy zawiera składowe obrazu w postaci sygnałów RGB w którym napięcie elektryczne jest proporcjonalne do wartości reprezentowanej dane cyfrowe. Taki sygnał może zostać wyświetlony na analogowym monitorze, telewizorze lub rzutniku.

Pamięć VRAM (VideoRAM)

- Jest to rodzaj pamięci RAM zastosowanej w kartach graficznych, przeznaczonej wyłącznie do przetwarzania informacji o obrazie, teksturach oraz danych o głębi (z pamięci jest w tym celu wydzielany tzw. Bufor Z).
- VRAM umożliwia jednoczesny zapis (przez kontroler graficzny) i odczyt (przez przetwornik RAMDAC). Gdyby obydwie te czynności musiały by być wykonywane w jednym bloku pamięci przetwornik RAMDAC musiał by czekać na ukończenie zapisywania, podobnie byłoby z odczytem.

Bios karty graficznej

(ang. Basic Input/Output System, podstawowy system wejścia/wyjścia) umożliwia działanie karty graficznej zanim zostanie wczytany system operacyjny oraz pozwala na wykonywanie instrukcji karty przez oprogramowanie systemowe. Dzięki tej możliwości komputer po uruchomieniu wyświetla informację o konfiguracji systemu, umożliwia wejście w ustawienia Biosu płyty głównej, wyświetla informację o uruchamianiu systemu operacyjnego.

Złącza magistrali

- Karta graficzna, jeżeli nie jest zintegrowana z płytą główna musi zostać podłączona do niej za pomocą odpowiedniego łącza. W miarę rozwoju techniki komputerowej rodzaj używanego złącza ulegał zmianie.
 - Starsze rodzaje złącz: VESA, MCA, ISA,
 - PCI (ang. Peripheral Component Interconnect) o transferze danych do 512 MB/s,
 - AGP (ang. Accelerated Graphics Port) o transferze danych do 2 GB/s,
 - PCI Express o transferze danych do 16 GB/s.

Rodzaj magistrali	Transfer danych w MB/s
PCI	133
AGP v1.0 prędkość 1x	266
AGP v1.0 prędkość 2x	533
AGP v1.0 prędkość 4x	1066
AGP v1.0 prędkość 8x	2133
PCIe v1.0 prędkość 1x	250
PCIe v1.0 prędkość 2x	500
PCIe v1.0 prędkość 4x	1000
PCIe v1.0 prędkość 8x	2000
PCIe v1.0 prędkość 16x	4000
PCIe v2.0 prędkość 16x	8000
PCIe v3.0 prędkość 16x	16000

Złącza wyjścia kart graficznych

- Karta graficzna może posiadać jedno lub wiele złącz do podłączenia jednego lub wielu monitorów. Zazwyczaj karta posiada różnego typu złącza, aby umożliwić podłączenie monitora wybranym systemem.
 - D-SUB sygnał analogowy w postaci RGB,
 - DVI ((Digital Video Interface) złącze sygnału
 - DVI-A złącze DVI posiadające również sygnał analogowy
 - HDMI (High Definition Multimedia Interface) Jest to cyfrowy standard przesyłania sygnału audio/wideo umożliwiający transmisję w wysokiej rozdzielczości (HD) i dźwięku wielokanałowego.
 - DisplayPort (Video Electronics Standards Association) Uniwersalny interfejs cyfrowy
 - Inne spotykane złącza: S-VHS, Composite Video,

Bibliografia:

- https://pl.wikipedia.org/wiki/Karta_graficzna
- http://zswolow.internetdsl.pl/e107_files/downloads//utk/karty-graficzne-budowa-ati-nvidia-wyklad.pdf
- http://kaczki.dobra.net.pl/pliki/utk_018_kgraficzne.pdf
- http://utk.edu.pl/karty-graficzne/budowa-karty-graficznej/
- http://zelota.netshock.pl/pdf/KartyRozszerzen/KartyGraficzne.pdf

Wykonał: Patryk Szymkowiak grupa k38