L'atome polyélectronique

Nous allons chercher à déterminer les fonctions d'ondes décrivant un système à plusieurs électrons, cas de tous les atomes sauf l'hydrogène

Descritpion très complexe, problème à n-corps. L'électron interagit avec le noyau mais aussi avec tous les autres électrons. Il n'est plus possible de résoudre l'équation de Scrödinger analytiquement (pb d'écriture du potentiel).

==> Approximations, résolution approchée

Approximations:

orbitales hydrogénoïdes niveaux atomiques

Approximations des orbitales hydrogénoïdes

un atome quelconque possède des orbitales du même type que l'atome d'hydrogène ses électrons sont décrits indépendamment les uns des autres par des orbitales analogues à celles obtenues pour l'atome d'hydrogène

Les fonctions d'ondes sont déterminées par les valeurs des 3 nombres quantiques n, l et m

Les états décrits par ces fonctions sont appelés orbitales atomiques (OA)

Approximation des niveaux atomiques

On considère qu'un électron occupe une orbitale donnée et possède une énergie bien déterminée : il est placé sur un niveau atomique

Pour l'hydrogène les valeurs propres de l'énergie ne dépendent que de n

Pour un atome quelconque les valeurs propres dépendent de n et l

les niveaux 2s (n=2,l=0) et 2p (n=2,l=1) ne possédent plus les mêmes valeurs d'énergie.

Pour n=3, 3 niveaux d'énergies pour les orbitales 3s,3p et 3d ... il y a une levée partielle de la dégénérescence

niveaux peuplés par ordre d'énergie croissante $(n+l \nearrow)$

si n+l identique, c'est le niveau avec l'indice n le plus petit qui est rempli en premier

O.A. 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p ...
$$n+l$$
 1 2 3 3 4 4 5 5 5 6 6 6 7 7 7 ...

Ordre de remplissage des OA Règle de Klechkowski

niveaux peuplés par ordre **d'énergie croissante** (*n*+*l* ≯)

si *n*+*l* identique, c'est le niveau avec l'indice *n* le plus petit qui est rempli en premier


```
O.A. 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p ... n+l 1 2 3 3 4 4 5 5 5 6 6 6 7 7 7 ...
```

Construction d'une structure électronique

Considérons un atome de numéro atomique Z. Son noyau posséde la charge +Ze, et il contient Z électrons à répartir sur les différents niveaux disponibles.

3 principes sont utilisés pour la répartition des électrons:

principe de Pauli

principe de l'énergie minimale

règle de Hund

Principe de Pauli

Dans un atome, il ne peut exister qu'un seul électron dans un état quantique donné un électron a son état caractérisé par 4 nombres quantiques : *n*, *l*, *m*, *s* (spin)

```
s= ± ½
==> une orbitale ne peut être occupée que par 2 électrons de spins opposés
```

si un seul électron occupe une orbitale son spin est indéterminé c'est un **électron célibataire**

n=1	1 orbitale s	2 électrons	2 électrons
n=2	1 orbitale s	2 électrons	
	3 orbitales p	6 électrons	8 électrons
n=3	1 orbitale s	2 électrons	
	3 orbitales p	6 électrons	
	5 orbitales d	10 électrons	18 électrons
n=4	1 orbitale s	2 électrons	
	3 orbitales p	6 électrons	
	5 orbitales d	10 électrons	
	7 orbitales f	14 électrons	32 électrons

1 niveau n contient n^2 orbitales sur lesquelles on peut placer $2n^2$ électrons

Principe de l'énergie minimale

L'état fondamental d'un atome est son état de plus basse énergie. Pour obtenir la structure électronique d'un atome dans son état fondamental on place les électrons sur des niveaux les plus bas possibles en énergie (en respectant le principe de Pauli) d'abord 2e⁻ sur 1s, puis 2s puis 2p...

$$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\ 6s^2\ 4f^{14}\ 5d^{10}\ 6p^6\ 7s^2\ \dots$$

Il existe des états qui ne sont pas conformes à ce principe : ce sont les états excités

le retour à l'état fondamental s'accompagne d'un dégagement d'énergie sous forme de photon

$$E_{photon} = hv = E_{excité} - E_{fondamental}$$

Règle de Hund

Quand plusieurs configurations sont possibles, on privilégie toujours celle qui posséde le plus grand nombre d'électrons célibataires.

2 e célibataires sur un niveau p correspond à une énergie plus faible que 2 électrons appariés sur le même niveau

Ce concept a une grande importance quant aux propriétés magnétiques de la matière

Les propriétés magnétiques d'un atome sont liées au nombre d'électrons célibataires qu'il contient

Propriétés magnétiques

Si on applique un champ magnétique à la matière, elle peut ou non acquérir une aimantation

diamagnétisme : aimantation faible ou nulle

paramagnétisme : aimantation importante dans le sens du champ

Le paramagnétisme est caractéristique des atomes, ions ou molécules possédant des électrons célibataires

Structure électronique des éléments

La structure électronique d'un élément va conditionner ses propriétés chimiques réactions chimiques = échanges d'électrons entre éléments

Cette structure est **périodique** : remplissage des orbitales s puis p puis d.... les propriétés des éléments vont présenter une périodicité similaire

Pour cette raison les différents éléments sont classés dans un tableau que l'on appelle

tableau périodique des éléments

La compréhension de la structure électronique d'un élément permet de faire des analogies avec les propriétés d'autres éléments

Périodicité des structures électroniques

Oxygène (O)	8 électrons	1s ² 2s ² 2p ⁴	couche n=1 complète remplissage n=2
Fluor (F)	9 électrons	1s ² 2s ² 2p ⁵	couche n=1 complète remplissage n=2
Néon (Ne)	10 électrons	1s ² 2s ² 2p ⁶	couches n=1,2 complètes
Sodium (Na)	11 électrons	1s ² 2s ² 2p ⁶ 3s ¹	couches n=1,2 complètes remplissage n=3

Ces 3 éléments ont une structure électronique similaire, *n*s¹ ils ont des prorpiétés similaires (famille des alcalins)

Lithium (Li) Z=3 1s² 2s¹ Sodium (Na) Z=11 1s²2s²2p⁶ 3s¹ Potassium (K) Z=19 1s²2s²2p⁶3s²3p⁶ 4s¹

Ces 3 éléments ont une structure électronique similaire, *np*⁶ ils ont des prorpiétés similaires (famille des gaz rares)

Néon (Ne) Z=10	$1s^22s^2$		2p ⁶
Argon (Ar) Z=18	$1s^22s^22p^63s^2$		$3p^6$
Krypton (Kr) Z=26	1s ² 2s ² 2p ⁶ 3s ²	$3p^64s^23d^{10}$	4p ⁶

Simplification de l'écriture : structure de l'argon = structure du néon + 8 électrons écriture : [Ar] : [Ne] 3s²3p⁶

structure électronique de l'argon

structure électronique du néon

Structure de la classification périodique

éléments classés par numéro atomique croissant découpage en blocs correspondant aux remplissage des orbitales s,p,d,f

Représentation habituelle

18 **colonnes** (**groupes**) correspondant à 2 e⁻ s + 6 e⁻ p + 10 e⁻ d = 18 7 **lignes** (**périodes**) correspondant à n=1,2,3... éléments f peu fréquents sont à part

les éléments y sont classés par **numéro** atomique croissant

ligne 1 remplissage des niveaux correspondants à n=1 : orbitale 1s = 2e⁻ = 2 éléments ligne 2 n=2 : orbitales 2s et 2p = 8 e⁻ = 8 éléments

A l'exception de la première, chaque ligne commence par un alcalin (Na,K...) et se termine par un gaz rare (Ne, Ar...)

1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
hydrogen 1																		helium 2
H																		
																		He
1.00794(7) lithium	beryllium	ı	1	Key:	element name								baron	carbon	nitrogen	axygen	fluorine	4.002602(2) neon
3	4				omic numb								5	6	7	8	9	10
Li	Be			S	ymb	ol							В	C	N	0	F	Ne
6.941(2)	9.012182(3)		Į	2001 atomic	weight (mean r	elative mass)							10.811(7)	12.0107(8)	14.00674(7)	15.9994(3)	18.9984032(5)	20.1797(6)
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												ΑI	Si	P	S	CI	Ar
22.989770(2)	24.3050(6)												26.981538(2)	28.0855(3)	30.973761(2)	32.065(5)	35.453(2)	39.948(1)
potassium	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese	iran 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium	germanium 32	arsenic	selenium	bromine	krypton
19						24	25						31		33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1)	40.078(4)		44.955910(8)	47.867(1)	50.9415(1)	51.9961(6)	54.938049(9)	55.845(2)	58.933200(9)	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.92160(2)	78.96(3)	79.904(1)	83.798(2)
rubidium 37	strontium 38		yttrium 39	ziroonium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
			$\tilde{\mathbf{v}}$				_										35	
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.4678(3)	87.62(1)		88.90585(2)	91.224(2)	92.90638(2)	95.94(1)	[98]	101.07(2)	102.90550(2)	106.42(1)	107.8682(2)	112.411(8)	114.818(3)	118.710(7)	121.760(1)	127.60(3)	126.90447(3)	131.293(6)
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
		*							_		19		-01					
Cs	Ba	_ ^	Lu	Hf	Ta	W	Re	Os	l Ir	Pt	Au	Hg	Ш	Pb	Bi	Po	At	Rn
132.90545(2)	137.327(7)		174.967(1)	178.49(2)	180.9479(1)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)	207.2(1)	208.98038(2)	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	damstadtium 110	unununium 111	ununbium 112		ununquadium 114				
		**		-						_								
Fr	Ra	^^	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	UUD		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]		[289]				

*lanthanoids

**actinoids

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.04(3)
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Quelques grandes familles

1° colonne : famille des alcalins ...ns¹

un seul électron dans la couche périphérique, oxydation aisée se trouvent généralement dans l'état d'oxydation +1 Li, Na, K, Rb, Cs, Fr

- 17° colonne : famille des halogènes ...ns²np⁵ manque un électron sur la couche périphérique, réduction aisée se trouvent généralement dans l'état d'oxydation -1 ex : sel avec un alcalin NaCl F, Cl, Br, I
- 18° colonne : famille des gaz rares ...ns²np6 couche périphérique saturée, très inerte (pas de réactivité chimique) He, Ne, Ar, Kr, Xe, Rn
- éléments du bloc d : métaux de transition bons conducteurs électroniques, souvent existence de multiples états d'oxydation

Alcalins couche de valence ns¹

1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 helium
1																		2
Н																		He
1.00794(7) Ithium	beryllium		[element name		1						baron	carbon	nitrogen	axygen	fluorine	4.002602(2) neon
3	B •				omic numb	_							B	6	7	o O	F F	10
0.04(0)	Be				ymbo									40.0407/0	N	15.9994(3)	_	Ne
6.941(2) sodium	9.012182(3) magnesium		L	2001 atomic 1	weight (mean r	elasve mass)	ı						10.811(7) aluminium	12.0107(8) silicon	14.00674(7) phosphorus	sulfur	18.9984032(5) chlorine	20.1797(6) argon
11 No	12												13	14	15	16	17	18
Na 22.989770(2)	Mg 24.3050(6)												A 26.981538(2)	Si 28.0855(3)	30.973761(2)	S 32.065(5)	CI 35.453(2)	Ar 39.948(1)
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1) rubidium	40.078(4) strontium		44.955910(8) yttrium	47.867(1) ziroonium	50.9415(1) niobium	51.9961(6) molybdenum		55.845(2) ruthenium	58.933200(9) rhodium	58.6934(2) palladium	63.546(3) silver	65.409(4) cadmium	69.723(1) indium	72.64(1) tin	74.92160(2) antimory	78.96(3) tellurium	79.904(1) iodine	83.798(2) xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	l	Xe
85.4678(3) caesium	87.62(1) barium		88.90585(2) lutetium	91.224(2) hafnium	92.90638(2) tantalum	95.94(1) tungsten	[98] rhenium	101.07(2) osmium	102.90550(2) irldium	106.42(1) platinum	107.8682(2) gold	112.411(8) mercury	11 4.818(3) thallium	118.710(7) lead	121.760(1) bismuth	127.60(3) polonium	126.90447(3) astatine	131.293(6) radon
55	56	57-70 *	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	•	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.90545(2) francium	137.327(7) radium		174.967(1) lawrencium	178.49(2) rutherfordium	180.9479(1) dubnium	183.84(1) seaborgium	186.207(1) bohrium	190.23(3) hassium	192.217(3) meitnerium	195.078(2) darmstadtium	196.96655(2) unununium	200.59(2) ununbium	204.3833(2)	207.2(1) ununquadium	208.98038(2)	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]		[289]				

*lanthanoids

**actinoids

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.04(3)
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Quelques grandes familles

1° colonne : famille des alcalins ...ns¹ un seul électron dans la couche périphérique, oxydation aisée se trouvent généralement dans l'état d'oxydation +1 Li, Na, K, Rb, Cs, Fr

17° colonne : famille des halogènes ...ns²np⁵

manque un électron sur la couche périphérique, réduction aisée se trouvent généralement dans l'état d'oxydation -1 ex : sel avec un alcalin NaCl F, Cl, Br, I

- 18° colonne : famille des gaz rares ...ns²np6 couche périphérique saturée, très inerte (pas de réactivité chimique) He, Ne, Ar, Kr, Xe, Rn
- éléments du bloc d : métaux de transition bons conducteurs électroniques, souvent existence de multiples états d'oxydation

Halogènes couche de valence np⁵

Column C	1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 helium
Application	1																		2
1.00794(7)	H																		He
Second S																			4.002602(2)
Li Be 6.941(2) 9.012182(3) sodium magnesium 11 12 Na Mg 22.999770(2) 23.3050(8) potassium calcium 19 20 K Ca 39.0983(1) 40.078(4) 40.95810(8) 47.867(1) 50.9415(1) 51.9981(8) 54.938049(9) 55.845(2) 58.93800(8) 95.845(2) 95.945(2) 95.																			neon 10
10.811(7) 12.0107(8) 14.00674(7) 15.9994(3) 18.9984020(5) 20.1	• •														Č	-:-	_		
Solidium September Solidium Solidium September Solidium September Solidium September Solidium September Solidium Solidium September Solidium September Solidium Solidium September Solidium Solidium September Solidium Solidium September Solidium Soli	[]	De			5	ymb	וט							D		IN	U	Г	Ne
11					2001 atomic	weight (mean i	relative mass)												20.1797(6)
Na Ng 22,997702 24,3050/8 Dotassium Cradium Dotassium Cradium Cradium Dotassium																			argon 18
26.9917302 24.3050 69 potassium calcium																			Är
Dotassium Cadidum 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 35 35 35 35																			39.948(1)
Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Ni Sec				scandium	titanium	vanadium	chromium	manganese	iran	cobalt	nickel	copper							krypton
39.0983(1) 40.078(4)	19	20		21	22	23	24	25	26	27		29	30	31	32	33			36
Part	K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 52 53 53 54 55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 65 85 85 85 85 85 85																			83.798(2)
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te X 85.4678(3) 87.62(1) 88.90585(2) 91.224(2) 92.90638(2) 95.94(1) [98] 101.07(2) 102.90550(2) 107.8682(2) 112.411(8) 114.818(3) 118.710(7) 121.780(1) 127.80(3) 126.90447(3) 131. caesium barium barium barium barium plashnum gold mercury thallium lead bismuth polonium astatine rs 55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 6 CS Ba * <th></th> <th>xenon 54</th>																			xenon 54
85.4678(3) 87.62(1) 88.90585(2) 91.224(2) 92.90638(2) 95.94(1) [98] 101.07(2) 102.90550(2) 106.42(1) 107.8632(2) 112.411(8) 114.818(3) 118.710(7) 121.780(1) 127.80(3) 126.90447(3) 131. caesium barium barium barium tungsten rhenium comium indium platinum gold mercury thallium lead bismuth polonium asstatine raises as a statine raise statine raises as a statine raise raise raises as a statine raise raise raises r							l	_										ï	Xe
CS Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At 132.90545(2) 137.327(7)				I						1									
55																			131.293(6) radon
132.90545(2) 137.327(7) 174.967(1) 178.49(2) 180.9479(1) 183.84(1) 186.207(1) 190.23(3) 192.217(3) 195.078(2) 196.96655(2) 200.59(2) 204.3833(2) 207.2(1) 208.98038(2) [209] [210] [2 1 1 1 1 1 1 1 1 1			57-70																86
132.90545(2) 137.327(7) 174.967(1) 178.49(2) 180.9479(1) 183.84(1) 186.207(1) 190.23(3) 192.217(3) 195.078(2) 196.96655(2) 200.59(2) 204.3833(2) 207.2(1) 208.98038(2) [209] [210] [2 transium radium and the formula of the following seaborgium and the following seaborgium	Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
87 88 89-102 103 104 105 106 107 108 109 110 111 112 114		137.327(7)		174.967(1)			183.84(1)	186.207(1)		192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)		208.98038(2)	[209]	[210]	[222]
			00 100																
Fr Ha ^^ Lr Ht Db Sq Bh Hs Mt Ds Uuu Uub Uuq															l				
	Fr	ка	**			1	Sg	Bn	HS	Mt			Uub		Uuq				
[223] [226] [262] [261] [262] [266] [264] [269] [268] [271] [272] [285] [289]	[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]		[289]				

*lanthanoids

**actinoids

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.04(3)
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Quelques grandes familles

- 1° colonne : famille des alcalins ...ns¹ un seul électron dans la couche périphérique, oxydation aisée se trouvent généralement dans l'état d'oxydation +1 Li, Na, K, Rb, Cs, Fr
- 17° colonne : famille des halogènes ...ns²np⁵ manque un électron sur la couche périphérique, réduction aisée se trouvent généralement dans l'état d'oxydation -1 ex : sel avec un alcalin NaCl F, Cl, Br, I
- 18° colonne : famille des gaz rares ...ns²np6
 couche périphérique saturée, très inerte (pas de réactivité chimique)
 He, Ne, Ar, Kr, Xe, Rn
- éléments du bloc d : métaux de transition bons conducteurs électroniques, souvent existence de multiples états d'oxydation

Gaz rares couche de valence np^6

1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 helium
1																		2
H																		He
1.00794(7)				Key:														4.002602(2)
lithium	beryllium				element name								baron	carbon	nitrogen	axygen	fluorine	neon
3	4				omic numl	_							5	6	7	8	9	10
LI	Be			S	ymb	Ol							В	C	N	0	F	Ne
6.941(2)	9.012182(3)			2001 atomic	weight (mean i	elative mass)							10.811(7)	12.0107(8)	14.00674(7)	15.9994(3)	18.9984032(5)	20.1797(6)
sodium 11	magnesium 12												aluminium	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
1 1													13		15			
Na	Mg												ΑI	Si	P	S	CI	Ar
22.989770(2)	24.3050(6)												26.981538(2)	28.0855(3)	30.973761(2)	32.065(5)	35.453(2)	39.948(1)
potassium	calcium 20		scandium	titanium 22	vanadium	chromium	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium	arsenic	selenium 24	bromine	krypton
19			21		23	24		_	_		_			32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1)	40.078(4)		44.955910(8)	47.867(1)	50.9415(1)	51.9961(6)	54.938049(9)	55.845(2)	58.933200(9)	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.92160(2)	78.96(3)	79.904(1)	83.798(2)
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
			$\tilde{\mathbf{v}}$				_											
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4678(3)	87.62(1)		88.90585(2)	91.224(2)	92.90638(2)	95.94(1)	[98]	101.07(2)	102.90550(2)	106.42(1)	107.8682(2)	112.411(8)	114.818(3)	118.710(7)	121.760(1)	127.60(3)	126.90447(3)	131.293(6)
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
		*											-					
Cs	Ba		Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Ш	Pb	Bi	Po	At	Rn
132.90545(2)	137.327(7)		174.967(1)	178.49(2)	180.9479(1)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)	207.2(1)	208.98038(2)	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	damstadtium 110	unununium 111	ununbium 112		ununquadium 114				
		**					_											
Fr	Ra		Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	auu		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]		[289]				

*lanthanoids

**actinoids

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.04(3)
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Quelques grandes familles

- 1° colonne : famille des alcalins ...ns¹ un seul électron dans la couche périphérique, oxydation aisée se trouvent généralement dans l'état d'oxydation +1 Li, Na, K, Rb, Cs, Fr
- 17° colonne : famille des halogènes ...ns²np⁵ manque un électron sur la couche périphérique, réduction aisée se trouvent généralement dans l'état d'oxydation -1 ex : sel avec un alcalin NaCl F, Cl, Br, I
- 18° colonne : famille des gaz rares ...ns²np6 couche périphérique saturée, très inerte (pas de réactivité chimique) He, Ne, Ar, Kr, Xe, Rn

éléments du bloc d : métaux de transition

bons conducteurs électroniques, souvent existence de multiples états d'oxydation

Métaux de transition couche de valence *n*d¹⁻¹⁰

1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 helium
H																		He
1.00794(7)				Key:														4.002602(2)
lithium 3	beryllium 4				element name								baron 5	carbon	nitrogen 7	axygen 8	fluorine	nean
													_	6	1	_	9	10
Li	Ве			S	ymb	וכ							В	С	N	0	F	Ne
6.941(2) sodium	9.012182(3) magnesium			2001 atomic	weight (mean r	elative mass)							10.811(7) aluminium	12.0107(8) silicon	14.00674(7) phosphorus	15.9994(3) sulfur	18.9984032(5) chlorine	20.1797(6) argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	P	S	CI	Ar
22.989770(2) potassium	24.3050(6) calcium		scandium	titanium	vanadium	chromium	manganese	iran	cobalt	nickel	copper	zinc	26.981538(2) gallium	28.0855(3) germanium	30.973761(2) arsenic	32.065(5) selenium	35.453(2) bromine	39.948(1) krypton
19	20	/	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1)	40.078(4)		44.955910(8)	47.867(1)	50.9415(1)	51.9961(6)	54.938049(9)	55.845(2)	58.933200(9)	58.6934(2)	63.546(3)	65.409(4)	69.723(1)	72.64(1)	74.92160(2)	78.96(3)	79.904(1)	83.798(2)
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4678(3)	87.62(1)		88.90585(2)	91.224(2)	92.90638(2)	95.94(1)	[98]	101.07(2)	102.90550(2)	108.42(1)	107.8682(2)	112.411(8)	114.818(3)	118.710(7)	121.760(1)	127.60(3)	126.90447(3)	131.293(6)
caesium 55	barium 56	57-70	lutetium 71	halnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	irldium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.90545(2)	137.327(7)		174.967(1)	178.49(2)	180.9479(1)	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2)	196.96655(2)	200.59(2)	204.3833(2)	207.2(1)	208.98038(2)	[209]	[210]	[222]
francium 87	radium 88	89-102	103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	damstadtium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub		Uuq				
[223]	[226]	\	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]	/	[289]				
													1		•			

*lanthanoids

**actinoids

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.04(3)
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

ligne 4 : n=4

remplissage de 4s PUIS 3d PUIS 4p

Le remplissage des orbitales 3d conduit à la première série des métaux de transition Scandium (Sc, Z=21) --> Zinc (Zn, z=30) 10 éléments en tout

ces éléments possèdent des électrons sur une couche 3d incomplète niveaux 4s et 3d sont très proches en énergie.

Le niveau 3d voit son énergie décroitre au fur et à mesure qu'il se remplit, et il se rapproche du niveau 4s

==> irrégularité de remplissage

Sc : $[Ar]4s^23d^1$ Ti : $[Ar]4s^23d^2$

 $V : [Ar]4s^23d^3$

Cr : [Ar]4s¹3d⁵ au lieu de 4s²3d⁴ car 3d et 4s trés proches + application règle de Hund

Mn: $[Ar]4s^23d^5$

Fe : $[Ar]4s^23d^6$

Co : $[Ar]4s^23d^7$

Ni : $[Ar]4s^23d^8$

Cu : [Ar]4s¹3d¹⁰ au lieu de 4s²3d⁹ comme dans le cas de Cr

 $Zn : [Ar]4s^23d^{10}$

Périodicité des propriétés physico-chimiques

Nous venons de voir que la structure électronique des éléments est périodique. Les propriétés chimiques des éléments sont reliées à la structure électronique ==> elles sont aussi (relativement) périodiques

ex : tous les éléments de la première colonne sont des métaux facilement oxydables, les gaz rares sont tous inertes...

Un certain nombre d'autres propriétés ont le même comportement rayon atomique énergie d'ionisation affinité électronique électronégativité

. . .

Cela permet de prévoir certaines propriétés, ou de comparer des éléments si l'on connait leur structure électronique

variation du rayon atomique

les électrons d'un même niveau électronique *n* sont tous à des distances semblables du noyau (énergies de liaisons assez proches)

les électrons situés sur des niveaux croissants sont de plus en plus éloignés du noyau, de plus en plus d'électrons écrantent l'attraction nucléaire ils sont donc plus faiblement liés au noyau.

sur une ligne ou période, de gauche à droite:

la charge nucléaire augmente, le rayon atomique diminue

élément Li Be B C N O F Ne rayon covalent(Å) 1,23 0,9 0,82 0,77 0,75 0,73 0,72 0,71

sur une colonne (groupe) de haut en bas:

la charge nucléaire augmente, l'interaction noyau / électrons diminue le rayon atomique augmente

élément H Li Na K Rb Cs rayon covalent(Å) 0,32 1,23 1,54 2,03 2,16 2,35

Energie d'ionisation

Energie nécessaire pour arracher un électron à un atome d'un élément gazeux dans son état fondamental

Plus un électron est lié à un noyau, plus cette énergie augmente.

$$Na_{(g)}$$
 -----> $Na_{(g)}^+ + e^-$ [Ne]3s¹ $E_{ionisation} = 5.138 \text{ eV}$

Dans une période, E_{ionisation} augmente quand z augmente

élément Li Be ... F E_{ionisation} (eV) 5,3 9,3 ... 17,45

Dans un groupe, E_{ionisation} diminue quand z augmente

élément Li Na ... Cs E_{ionisation} (eV) 5,3 5,1 ... 3,9

Affinité électronique

Energie libérée par la réaction de fixation d'un électron par un atome gazeux $H_{(g)} + e^- -----> H_{(g)}^-$

convention de signe différente de la convention thermodynamique: réaction exothermique (dégagement de chaleur) AE > 0 réaction endothermique AE < 0

Quand AE augmente, cela signifie qu'il est plus facile de capturer un électron

dans une période AE augmente lorsque z augmente

élément Li F AE (kJ.mol⁻¹) 59,2 322

dans un groupe AE diminue quand z augmente

élément Li Rb AE (kJ.mol⁻¹) 59,2 46,9

L'électronégativité

tendance d'un élément à gagner des électrons (comportement oxydant) l'électronégativité n'est pas une propriété physique, c'est une moyenne algébrique entre l'énergie d'ionisation et l'affinité électronique $\chi = \frac{1}{2}$ (EI + AE) (définition de Mulliken)

Dans une période χ augmente quand z augmente élément Li Be B C N O F χ 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Dans un groupe χ augmente quand z diminue élément H Li Na K Rb Cs Fr χ 2,1 1,0 0,9 0,8 0,8 0,7 0,7

Cu (z=29) [Ar]
$$4s^23d^9 ==> [Ar]3d^{10}4s^1$$

le niveau "d plein a une énergie inférieure au niveau 4s le cuivre est paramagnétique (1 électron célibataire) électron 4s¹ faiblement lié au noyau, l'oxydation donne naissance à l'ion cuivreux Cu⁺ : [Ar]3d¹⁰4s⁰ diamagnétique

mais comme les niveaux sont très proches, il est presque aussi facile d'arracher un autre électron, formation de l'ion doublement chargé

Cu²⁺: [Ar]3d⁹ paramagnétique

les autres électrons sont plus fortement liés, pas d'ion Cu³⁺

on remplit ensuite le niveau 4p

Ga: $[Ar]3d^{10}4s^24p^1$

...

 $Kr : [Ar] 3d^{10} 4s^2 4p^6$

ligne 6 n=6 remplissage des niveaux 6s,5d,4f et 6p

alacalin : Cs : [Xe]6s¹ premier élément du bloc d : La : [Xe]6s²5d¹ à partir de l'élément suivant, le cérium (Z=58) on remplit la couche 4f Ce : [Xe]6s²4f² au lieu de 6s²5d¹4f¹ la couche f contient 14 électrons, on décrit 14 éléments jusqu'au Lutetium (Z=71) ces éléments ont des propriétés proches de celles du Lanthane, ce sont les lanthanides ou terres rares

Le remplissage de la couche 5d décrit ensuite la 3° série de métaux de transition de Hf (Z=72) : [Xe]4f¹⁴5d²6s² à mercure Hg : [Xe]4f¹⁴5d¹⁰6s² anomalies de remplissage

Pt : $[Xe]4f^{14}5d^96s^1$ au lieu de $[Xe]4f^{14}5d^86s^2$

 $Au:[Xe]4f^{14}5d^{10}6s^1 \ au \ lieu \ de\ [Xe]4f^{14}5d^96s^2$

les orbitales 6p sont ensuite remplies jusqu'au gaz rare

 $Rn : [Xe][Xe]4f^{14}5d^{10}6s^26p^6$

ligne 7 remplissage 7s, 5f, 6d, 7p

la couche 5d commence à se remplir avec l'Actinium (z=89) : [Rn]6d¹7s² puis le thorium (different du Ce) : [Rn]6d²7s²

le remplissage de la couche 5f commence avec le Proactinium

Pa: $[Rn]5f^26d^17s^2$ (z=90)

jusqu'au Lawrencium Lr : [Rn]5f¹⁴6d¹7s²

tous les éléments situés après l'uranium (z=92) sont **artificiels et instables** l'élément le plus lourd de la classification est l'ununquandium z=114

ligne 1: n=1, 2 éléments remplissage de la couche 1s. H : **1s**¹, He : 1s² (gaz rare)

ligne 2: n=2, 8 éléments remplissage de la couche 2s. Li : $1s^2\mathbf{2s^1}$ (alcalin), Be : $1s^22s^2$ remplissage de la couche 2p. B : $1s^22s^22p^1$ C : $1s^22s^22p^2$ N : $1s^22s^22p^3$ O : $1s^22s^22p^4$ F : $1s^22s^22p^5$

Ne : 1s²2s²2p⁶ (gaz rare) beaucoup d'éléments courants de la chimie organique

ligne 3: n=3 on ne décrit que 8 éléments, 3s et 3p car la couche 3d est remplie après la 4s

remplissage 3s. Na : $1s^22s^22p^63s^1 = [Ne]3s^1$

remplissage 3p. Al : $[Ne]3s^23p^1$... Ar : $[Ne]3s^23p^6$