2018 / 2019

COMISSÃO DE EXAME INTELECTUAL

INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

- 1. Você recebeu este CADERNO DE QUESTÕES e um CARTÃO DE RESPOSTAS.
- 2. Este caderno de questões possui, além das capas externas, 24 (vinte e quatro) páginas, das quais 20 (vinte) contêm 40 (quarenta) questões objetivas, cada uma com valor igual a 0,25 (zero vírgula vinte e cinco), e 03 (três) páginas destinadas ao rascunho. Observe que as respostas deverão ser lançadas no cartão de respostas. Respostas lançadas no caderno de questões não serão consideradas para efeito de correção.
- 3. Para realizar esta prova, você poderá usar lápis (ou lapiseira), caneta azul ou preta, borracha, apontador, par de esquadros, compasso, régua milimetrada e transferidor.
- 4. A interpretação das questões faz parte da prova, portanto são vedadas perguntas à Comissão de Aplicação e Fiscalização (CAF).
- 5. Cada questão objetiva admite uma única resposta, que deve ser assinalada no cartão de respostas a caneta, no local correspondente ao número da questão. O assinalamento de duas respostas para a mesma questão implicará na anulação da questão.
- 6. Siga atentamente as instruções do cartão de respostas para o preenchimento do mesmo. Cuidado para não errar ao preencher o cartão.
- 7. O tempo total para a execução da prova é limitado a 4 (quatro) horas.
- 8. Não haverá tempo suplementar para o preenchimento do cartão de respostas.
- 9. Não é permitido deixar o local de exame antes de transcorrido o prazo de **1 (uma) hora** de execução de prova.
- 10. Os 03 (três) últimos candidatos a terminar a prova deverão permanecer em sala para acompanhar a conclusão dos trabalhos da CAF.
- 11. Leia os enunciados com atenção. Resolva as questões na ordem que mais lhe convier.
- 12. Não é permitido destacar quaisquer das folhas que compõem este caderno.
- 13. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO

QUESTÕES DE 1 A 15 MATEMÁTICA

1ª QUESTÃO Valor: 0,25

Aristeu e seu irmão nasceram nos séculos XX e XXI, respectivamente. Neste ano, 2018, os dois já fizeram aniversário e a idade de cada um deles é a soma dos três últimos dígitos do ano de seu respectivo nascimento. Qual é a soma das idades dos dois irmãos?

- (A) 23
- (B) 26
- (C) 29
- (D) 32
- (E) 39

2ª QUESTÃO Valor: 0,25

Os ângulos $\theta_1,\theta_2,\theta_3,\cdots,\theta_{100}$ são os termos de uma progressão aritmética na qual $\theta_{11}+\theta_{26}+\theta_{75}+\theta_{90}=\frac{\pi}{4}$. O valor de $\mathrm{sen}(\sum_{i=1}^{100}\theta_i)$ é:

- (A) -1
- (B) $-\frac{\sqrt{2}}{2}$
- (C) 0
- (D) $\frac{\sqrt{2}}{2}$
- (E) 1

3ª QUESTÃO Valor: 0,25

Calcule o valor do determinante:

$$\begin{vmatrix} 4 & 2 & 1 \\ \log 81 & \log 900 & \log 300 \\ (\log 9)^2 & 2 + 4 \log 3 + 2(\log 3)^2 & (\log 3 + 2)^2 \end{vmatrix}$$

- (A) 1
- (B) 2
- (C) 4
- (D) 8
- (E) 16

4ª QUESTÃO

Valor: 0,25

Seja a inequação:

$$6x^4 - 5x^3 - 29x^2 + 10x < 0$$

Seja (a,b) um intervalo contido no conjunto solução dessa inequação. O maior valor possível para b-a é:

- (A) 2
- (B) $\frac{13}{6}$
- (C) $\frac{1}{3}$
- (D) $\frac{5}{2}$
- (E) $\frac{8}{3}$

5ª QUESTÃO Valor: 0,25

Sejam x_1 , x_2 e x_3 raízes da equação $x^3-ax-16=0$. Sendo a um número real, o valor de $x_1^3+x_2^3+x_3^3$ é igual a:

- (A) 32 a
- (B) 48 2a
- (C) 48
- (D) 48 + 2a
- (E) 32 + a

6ª QUESTÃO Valor: 0,25

Seja z um número complexo tal que $z^{12} \in \mathbb{R}$, Re(z) = 1 e $arg(z) \in \left(0, \frac{\pi}{2}\right)$. A soma dos inversos dos possíveis valores de |z| está no intervalo:

- (A) $\left(\frac{1}{2}, \frac{3}{2}\right)$
- (B) $\left(\frac{3}{2}, \frac{5}{2}\right)$
- (C) $\left(\frac{5}{2}, \frac{7}{2}\right)$
- (D) $\left(\frac{7}{2}, \frac{9}{2}\right)$
- (E) $\left(\frac{9}{2}, \frac{11}{2}\right)$

7ª QUESTÃO

Valor: 0,25

Definimos a função $f: \mathbb{N} \to \mathbb{N}$ da seguinte forma:

$$\begin{cases} f(0) = 0 \\ f(1) = 1 \end{cases}$$
$$\begin{cases} f(2n) = f(n), & n \ge 1 \\ f(2n+1) = n^2, & n \ge 1 \end{cases}$$

Definimos a função $g: \mathbb{N} \to \mathbb{N}$ da seguinte forma: g(n) = f(n)f(n+1).

Podemos afirmar que:

- (A) g é uma função sobrejetora.
- (B) g é uma função injetora.
- (C) f é uma função sobrejetora.
- (D) f é uma função injetora.
- (E) g(2018) tem mais do que 4 divisores positivos.

8ª QUESTÃO Valor: 0,25

Em um jogo de RPG "*Role-Playing Game*" em que os jogadores lançam um par de dados para determinar a vitória ou a derrota quando se confrontam em duelos, os dados são icosaedros regulares com faces numeradas de 1 a 20. Vence quem soma mais pontos na rolagem dos dados e, em caso de empate, os dois perdem. Em um confronto, seu adversário somou 35 pontos na rolagem de dados. É sua vez de rolar os dados. Qual sua chance de vencer este duelo?

(A) 1/2

(B)3/76

(C) 9/400

(D)1/80

(E)3/80

9ª QUESTÃO Valor: 0,25

Um hexágono regular está inscrito em um círculo de raio R. São sorteados 3 vértices distintos do hexágono, a saber: A, B e C. Seja r o raio do círculo inscrito ao triângulo ABC. Qual a probabilidade de que $r = \frac{R}{2}$?

(A) 0

(B) 1/10

(C) 3/5

(D)1/20

(E) 1/6

10^a QUESTÃO Valor: 0,25

O número de soluções reais da equação abaixo é:

$$(\cos x)^{2018} = 2 - 2^{(x/\pi)^2}$$

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

11^a QUESTÃO

Valor: 0,25

Seja um triângulo ABC com lados a, b e c opostos aos ângulos \hat{A} , \hat{B} e \hat{C} , respectivamente. Os lados a, b e c formam uma progressão aritmética nesta ordem. Determine a relação correta entre as funções trigonométricas dos ângulos dos vértices desse triângulo.

(A)
$$2sen(\hat{A} + \hat{C}) = sen(\hat{A}) + sen(\hat{C})$$

(B)
$$2cos(\hat{A} + \hat{C}) = cos(\hat{A}) + cos(\hat{C})$$

(C)
$$2sen(\hat{A} - \hat{C}) = sen(\hat{A}) - sen(\hat{C})$$

(D)
$$2cos(\hat{A} - \hat{C}) = cos(\hat{A}) - cos(\hat{C})$$

(E)
$$2cos(\hat{A} + \hat{C}) = sen(\hat{A}) + sen(\hat{C})$$

12ª QUESTÃO Valor: 0,25

Uma hipérbole equilátera de eixo igual a 4, com centro na origem, eixos paralelos aos eixos coordenados e focos no eixo das abscissas sofre uma rotação de 45º no sentido anti-horário em torno da origem. A equação dessa hipérbole após a rotação é:

(A)
$$xy = 2$$

(B)
$$x^2 + xy - y^2 = 4$$

(C)
$$x^2 - y^2 = 2$$

(D)
$$xy = -2$$

(E)
$$x^2 - y^2 = -2$$

13ª QUESTÃO Valor: 0,25

Em um setor circular de 45°, limitado pelos raios \overline{OA} e \overline{OB} iguais a R, inscreve-se um quadrado MNPQ, onde \overline{MN} está apoiado em \overline{OA} e o ponto Q sobre o raio \overline{OB} . Então, o perímetro do quadrado é:

- (A) 4R
- (B) 2R
- (C) $2R\sqrt{2}$
- (D) $4R\sqrt{5}$
- (E) $4R\frac{\sqrt{5}}{5}$

Considere as afirmações abaixo:

- I) se três pontos são colineares, então eles são coplanares;
- II) se uma reta tem um ponto sobre um plano, então ela está contida nesse plano;
- III) se quatro pontos são não coplanares, então eles determinam 6 (seis) planos;
- IV) duas retas não paralelas determinam um plano;
- V) se dois planos distintos têm um ponto em comum, então a sua interseção é uma reta.

Entre essas afirmações:

- (A) apenas uma é verdadeira;
- (B) apenas duas são verdadeiras;
- (C) apenas três são verdadeiras;
- (D) apenas quatro são verdadeiras;
- (E) todas são verdadeiras.

15^a QUESTÃO Valor: 0,25

Em um tetraedro ABCD, os ângulos $A\widehat{B}C$ e $A\widehat{C}B$ são idênticos e a aresta AD é ortogonal à BC. A área do ΔABC é igual à área do ΔACD , e o ângulo $M\widehat{A}D$ é igual ao ângulo $M\widehat{D}A$, onde M é ponto médio de BC. Calcule a área total do tetraedro ABCD, em cm², sabendo que BC = 2cm, e que o ângulo $B\widehat{A}C$ é igual a 30^o .

- (A) $(2 \sqrt{3})$
- (B) $(2 + \sqrt{3})$
- (C) $4(2-\sqrt{3})$
- (D) $4(2+\sqrt{3})$
- (E) 4

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO

QUESTÕES DE 16 A 30 FÍSICA

16^a QUESTÃO Valor: 0,25

Figura 1 Figura 2

Considerando as Figuras 1 e 2 acima e, com relação às ondas sonoras em tubos, avalie as afirmações a seguir:

Afirmação I. as ondas sonoras são ondas mecânicas, longitudinais, que necessitam de um meio material para se propagarem, como representado na Figura 1.

Afirmação II. uma onda sonora propagando-se em um tubo sonoro movimenta as partículas do ar no seu interior na direção transversal, como representado na Figura 2.

Afirmação III. os tubos sonoros com uma extremidade fechada, como representado na Figura 2, podem estabelecer todos os harmônicos da frequência fundamental.

É correto o que se afirma em:

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III apenas.
- (E) I e III, apenas.

Uma lanterna cilíndrica muito potente possui uma lente divergente em sua extremidade. Ela projeta uma luz sobre um anteparo vertical. O eixo central da lanterna e o eixo principal da lente estão alinhados e formam um ângulo de 45° com a horizontal. A lâmpada da lanterna gera raios de luz paralelos, que encontram a lente divergente, formando um feixe cônico de luz na sua saída. O centro óptico da lente 0 está, aproximadamente, alinhado com as bordas frontais da lanterna. A distância horizontal entre o foco F da lente e o anteparo é de 1 m. Sabendo disto, pode-se observar que o contorno da luz projetada pela lanterna no anteparo forma uma seção plana cônica. Diante do exposto, o comprimento do semieixo maior do contorno dessa seção, em metros, é:

Dados:

- a lente é do tipo plano-côncava;
- a face côncava está na parte mais externa da lanterna;
- diâmetro da lanterna: *d* = 10 cm;
- índice de refração do meio externo (ar): 1;
- índice de refração da lente: 1,5;
- raio de curvatura da face côncava: 2,5 √3 cm.
- (A) $3\sqrt{2}$
- (B) $(\sqrt{3} 1)$
- (C) $(\sqrt{3} + 1)$
- (D) $\sqrt{3}$
- (E) $2\sqrt{3}$

Valor: 0,25

Um corpo encontra-se com $^2/_3$ de seu volume submerso. Uma de suas extremidades está presa por uma corda a um conjunto de roldanas que suspende uma carga puntiforme submetida a um campo elétrico uniforme. A outra extremidade está presa a uma mola distendida que está fixa no fundo do recipiente. Este sistema se encontra em equilíbrio e sua configuração é mostrada na figura acima. Desprezando os efeitos de borda no campo elétrico, a deformação da mola na condição de equilíbrio é:

Dados:

- a corda e as roldanas são ideais;
- aceleração da gravidade: *g*;
- massa específica do fluido: ρ;
- massa específica do corpo: 2ρ;
- constante elástica da mola: k;
- volume do corpo: V;
- intensidade do campo elétrico uniforme: E;
- massa da carga elétrica: m; e
- carga elétrica: + q.

(A)
$$\frac{g}{k} \left(\frac{m}{2} - \frac{4\rho V}{3} \right) + \frac{qE}{2k}$$

(B)
$$\frac{g}{k} \left(\frac{3m}{2} - \frac{4\rho V}{3} \right) + \frac{3qE}{2k}$$

(C)
$$\frac{g}{3k}(m-4\rho v+qE)+\frac{qE}{k}$$

(D)
$$\frac{g}{k} \left(\frac{mg}{2} - \frac{4\rho V}{3} \right) + \frac{qE}{2k}$$

(E)
$$\frac{mg}{k} \left(\frac{qE}{d} - \frac{2\rho V}{3} \right)$$

Uma partícula desloca-se solidária a um trilho circular com 0,5 m de raio. Sabe-se que o ângulo θ , indicado na figura, segue a equação $\theta=t^2$, onde t é o tempo em segundos e θ é o ângulo em radianos. O módulo do vetor aceleração da partícula, em t=1 s, é:

- (A) $\sqrt{5}$
- (B) $\sqrt{2}$
- (C) 1
- (D) $2\sqrt{5}$
- (E) 2

20^a QUESTÃO Valor: 0,25

A figura acima mostra três meios transparentes, de índices de refração n_1 , n_2 e n_3 , e o percurso de um raio luminoso. Observando a figura, é possível concluir que:

- (A) $n_2 < n_3 < n_1$
- (B) $n_1 < n_2 < n_3$
- (C) $n_3 < n_1 < n_2$
- (D) $n_1 < n_3 < n_2$
- (E) $n_2 < n_1 < n_3$

Figura 1 Figura 2

Duas partículas A e B, ambas com carga positiva +Q e massas 2m e m, respectivamente, viajam, em velocidades constantes v e 2v e nas direções e sentidos mostrados na Figura 1, até se chocarem e ficarem grudadas no instante em que penetram numa região sujeita a um campo magnético constante (0, 0, B), sendo B uma constante positiva. O comprimento da trajetória percorrida pelo conjunto A+B dentro da região sujeita ao campo magnético é:

Observações:

- despreze o efeito gravitacional;
- antes do choque, a partícula B viaja tangenciando a região sujeita ao campo magnético;
- o sistema de eixo adotado é o mostrado na Figura 2; e
- despreze a interação elétrica entre as partículas A e B.

(A)
$$\frac{3\sqrt{2}\pi mv}{20R}$$

(B)
$$\frac{\sqrt{2}\pi mv}{OB}$$

(C)
$$\frac{3\sqrt{2}\pi mv}{OB}$$

(D)
$$\frac{3\pi mv}{2QB}$$

(E)
$$\frac{\sqrt{2}\pi mv}{2QB}$$

A figura mostra um circuito montado sob um plano inclinado feito de material condutor ideal, sem atrito de ângulo α com a horizontal. Um corpo é liberado do ponto A e, à medida que passa pelos sensores localizados nos pontos 1, 2, 3 e 4, as chaves Ch₁, Ch₂, Ch₃ e Ch₄ são fechadas instantaneamente. Diante do exposto, a energia elétrica dissipada durante a descida do corpo até o ponto B, em joules, é:

Dados:

- $R_1 = 10 \Omega$;
- $R_2 = 10 \Omega$;
- $R_3 = 5 \Omega$;
- $R_4 = 2.5 \Omega$;
- E = 10 V;
- $\alpha = 30^{\circ}$; e
- $g = 10 \text{ m/s}^2$.
- (A) 6
- (B) 16
- (C) 32
- (D) 62
- (E) 120

23ª QUESTÃO

Valor: 0,25

Considere as seguintes grandezas e suas dimensionais:

Calor específico – [c]

Coeficiente de dilatação térmica – $[\alpha]$

Constante eletrostática – [k]

Permeabilidade magnética – $[\mu]$

A alternativa que expressa uma grandeza adimensional é:

- (A) $[c][\alpha]^{-1}[k][\mu]$
- (B) $[c][\alpha]^{-1}[k]^{-1}[\mu]$
- (C) $[c][\alpha]^{-1}[k][\mu]^{-1}$
- (D) $[c][\alpha]^{-2}[k][\mu]^{-2}$
- (E) $[c][\alpha]^{-2}[k]^{-1}[\mu]^{-2}$

24ª QUESTÃO Valor: 0,25

A figura mostra uma haste de massa desprezível com um apoio articulado em uma extremidade. A outra extremidade possui um recipiente apoiado em uma mola e amarrado ao solo por um fio. A haste é mantida na posição horizontal e a mola comprimida. Uma bola é colocada nesse recipiente e, após o corte do fio, o sistema é liberado com distensão instantânea da mola.

A constante elástica da mola, em N/m, para que, quando a prancha estiver perpendicular ao solo, a bola seja lançada e acerte o cesto é:

Dados:

- comprimento da prancha: 1 m;
- distância do apoio ao cesto: 5 m;
- massa da bola: 200 g;
- deformação inicial da mola: 10 cm; e
- aceleração da gravidade: 10 m/s².

Observação:

• despreze as dimensões da bola.

- (A) 400
- (B) 500
- (C) 2900
- (D) 3400
- (E) 12900

Um manômetro de reservatório é composto por dois tubos verticais comunicantes pelas respectivas bases e abertos em suas extremidades. Esse conjunto é preenchido parcialmente por um fluido e, como o dispositivo encontra-se no ar à pressão atmosférica padrão, o nível de fluido nos dois tubos é o mesmo. Em um dado momento, no tubo à esquerda, é adicionada uma pressão manométrica equivalente a 12 mm de coluna de água. Considerando que não haja vazamento no manômetro, a ascensão de fluido no tubo à direita, em mm, é igual a:

Dados:

• diâmetro do tubo à esquerda: 20 mm;

• diâmetro do tubo à direita: 10 mm; e

• densidade do fluido: 1,2.

(A) 20

(B) 40

(C) 8

(D) 4

(E) 10

26^a QUESTÃO Valor: 0,25

Um cilindro de raio R rola, sem deslizar, em velocidade angular ω , sobre uma superfície plana horizontal até atingir uma rampa. Considerando também que o rolamento na rampa seja sem deslizamento e chamando de g a aceleração da gravidade, a altura máxima, h, que o eixo do cilindro alcança na rampa em relação à superfície plana é:

(A)
$$R + \frac{\omega^2 R^2}{g}$$

(B)
$$R + \frac{\omega^2 R^2}{2g}$$

(C)
$$2R + \frac{\omega^2 R^2}{g}$$

(D)
$$\frac{\omega^2 R^2}{g}$$

(E)
$$\frac{\omega^2 R^2}{2g}$$

27ª QUESTÃO Valor: 0,25

Duas pessoas executam um experimento para medir o raio da Terra a partir da observação do pôr do Sol. No momento em que uma pessoa, deitada, observa o pôr do Sol a partir do nível do mar, uma outra pessoa, de pé, inicia a contagem do tempo até que ela observe o pôr do Sol a partir da altura dos seus olhos. Sabendo-se que o intervalo de tempo entre as duas observações é Δt , o raio da Terra obtido por meio desse experimento é

Observações:

- considere a terra uma esfera perfeita;
- considere o eixo de rotação do planeta perpendicular ao plano de translação;
- o experimento foi executado na linha do Equador; e
- desconsidere o movimento de translação da Terra.

Dados:

- período de rotação da Terra: T; e
- distância vertical entre os olhos do segundo observador e o nível do mar: h.

$$(\mathsf{A})\,\frac{h}{1-\cos\!\left(2\pi\frac{\Delta t}{T}\right)}$$

(B)
$$\frac{h}{sec(2\pi\frac{\Delta t}{T})-1}$$

(C)
$$h \cot\left(2\pi \frac{\Delta t}{T}\right)$$

(D)
$$h \operatorname{cosec}\left(2\pi \frac{\Delta t}{T}\right)$$

(E)
$$\frac{h \operatorname{sen}\left(2\pi \frac{\Delta t}{T}\right)}{1 - \operatorname{cos}\left(2\pi \frac{\Delta t}{T}\right)}$$

Valor: 0,25

fonte de tensão

Cabos

Tempo de abertura do fusível

[ms]

Valor: 0,25

Figura 1

Uma fonte de tensão com tensão interna E e resistência interna R_{int} = 0,05 Ω , protegida por um fusível, alimenta uma carga por meio de dois cabos com resistência linear igual a 1 Ω /km, como mostra a Figura 1. A Figura 2 mostra a aproximação da reta característica de operação do fusível utilizado na fonte.

Inicialmente, a carga que consome 10 kW e opera com tensão terminal V_T igual a 100 V, mas, subitamente, um curto circuito entre os cabos que alimentam a carga faz com que o fusível se rompa, abrindo o circuito.

Sabendo-se que o tempo de abertura do fusível foi de 1,25 ms, a energia total dissipada nos cabos, em joules, durante o período de ocorrência do curto circuito é, aproximadamente:

- (A) 41
- (B) 55
- (C) 73
- (D) 90

150

(E) 98

corrente

650

Figura 2

A figura mostra uma estrutura composta pelas barras AB, AC, AD e CD e BD articuladas em suas extremidades. O apoio no ponto A impede os deslocamentos nas direções x e y, enquanto o apoio no ponto C impede o deslocamento apenas na direção x. No ponto D dessa estrutura encontra-se uma partícula elétrica de carga positiva q. Uma partícula elétrica de carga positiva q encontra-se posicionada no ponto indicado na figura. Uma força de 10 N é aplicada no ponto B, conforme indicada na figura. Para que a força de reação no ponto C seja zero, o produto q. Q deve ser igual a:

Observação:

- as barras e partículas possuem massa desprezível; e
- as distâncias nos desenhos estão representadas em metros.

Dado:

- constante eletrostática do meio: k.
- (A) $\frac{1250}{7k}$
- (B) $\frac{125}{70k}$
- (C) $\frac{7}{1250k}$
- (D) $\frac{1250}{k}$
- (E) $\frac{k}{1250}$

30ª QUESTÃO

Valor: 0,25

Um tubo sonoro de comprimento total L=1m, aberto nas duas extremidades, possui uma parede móvel em seu interior, conforme a figura. Essa parede é composta de material refletor de ondas sonoras e pode ser transladada para diferentes posições, dividindo o tubo em duas câmaras de comprimento L_1 e L_2 . Duas ondas sonoras distintas adentram nesse tubo, uma pela abertura da esquerda, com $f_1=2,89$ kHz, e outra pela abertura da direita, com $f_2=850$ Hz. Em relação às ondas sonoras, os valores de L_1 e L_2 , em cm, que possibilitarão a formação de ondas ressonantes em ambas as cavidades são, respectivamente:

Dado:

- O meio no interior do tudo é o ar, onde o som se propaga com velocidade 340 m/s.
- (A) 14,7 e 85,3
- (B) 44,1 e 55,9
- (C) 50,0 e 50,0
- (D) 70,0 e 30,0
- (E) 90,0 e 10,0

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO

QUESTÕES DE 31 A 40 QUÍMICA

31ª QUESTÃO Valor: 0,25

Admita que uma solução aquosa 0,0400 molar de ácido tricloroacético congele a -0,1395 °C. Considere, ainda, que a constante de abaixamento do ponto de congelamento (K_c) da água seja 1,860 °C.kg.mol $^{-1}$ e que 1,00 L de solução contenha 1,00 kg de solvente. O valor da constante de dissociação (K_a) do ácido tricloroacético será:

- (A) $4.90.10^{-7}$
- (B) 3,28.10⁻⁵
- (C) $7,66.10^{-3}$
- (D) 1,36.10⁻²
- (E) $2,45.10^{-1}$

32ª QUESTÃO Valor: 0,25

As moléculas abaixo são utilizadas como agentes antioxidantes:

Tais agentes encontram utilização na **química medicinal** devido a sua habilidade em capturar radicais livres, espécies muito nocivas ao corpo, pois oxidam o DNA, causando inúmeras doenças.

A atividade antioxidante desses compostos está relacionada a sua capacidade de doar **elétrons** ou **radicais hidrogênio**. Baseado nesse conceito, é de se esperar que a ordem decrescente de atividade antioxidante das moléculas seja:

- $(A) \quad (I) > (II) > (III)$
- (B) (I) > (III) > (II)
- (C) (II) > (I) > (III)
- (D) (II) > (III) > (I)
- (E) (III) > (I) > (II)

Considere as reações abaixo:

$$H_2(g) + {}^{1\!\!/}_2 O_2(g) \to \ H_2O(I) \hspace{0.5cm} (I)$$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$
 (II)

Assinale a alternativa correta.

- (A) O decréscimo de entropia é menor na reação (I) do que na reação (II).
- (B) O acréscimo de entropia na reação (I) é maior do que na reação (II).
- (C) O decréscimo de entropia é menor na reação (II) do que na reação (I).
- (D) O acréscimo de entropia na reação (II) é maior do que na reação (I).
- (E) A variação de entropia é igual em ambas as reações.

34ª QUESTÃO Valor: 0,25

É requerido que fazendas produtoras de leite bovino controlem a acidez do leite que está aguardando o processamento. Essa acidez é resultante da conversão da lactose em ácido lático (ácido 2-hidroxipropanoico) por ação de microrganismos:

$$C_{12}H_{22}O_{11} + H_2O \rightarrow 4C_3H_6O_3$$

Um fazendeiro decidiu fazer um experimento para determinar a taxa de geração de ácido lático no leite armazenado: retirou uma amostra de 50 cm³ de leite, cuja concentração de ácido lático é de 1,8 g/L, e, depois de três horas, utilizou 40 cm³ de uma solução 0,1 molar de NaOH para neutralizá-la.

Conclui-se que a taxa média de produção de ácido lático por litro de leite é:

- (A) 0,25 mg/L.s
- (B) 0,33 mg/L.s
- (C) 0,50 mg/L.s
- (D) 0,67 mg/L.s
- (E) 1,00 mg/L.s

35^a QUESTÃO Valor: 0,25

Escolha a alternativa que apresenta as substâncias relacionadas em ordem crescente de solubilidade em água, a 25 °C e 1 atm:

- (A) Bromo < dissulfeto de carbono < butanol < etanol < brometo de potássio.
- (B) Metano < neopentano < dietilcetona < *t*-butanol < *n*-butanol.
- (C) Hidróxido de alumínio < carbonato de cálcio < carbonato de magnésio < nitrato de prata < sulfato de bário.</p>
- (D) Isobutano < **p**-diclorobenzeno < **o**-diclorobenzeno < **o**-nitrofenol < **p**-nitrofenol.
- (E) Cromato de chumbo (II) < Cromato de bário < carbonato de sódio < carbonato de magnésio < clorato de magnésio.

Assinale a alternativa correta:

(A) A estrutura primária de uma proteína é definida pela ordem em que os aminoácidos adenina, timina, citosina e guanina se ligam entre si.

- (B) A estrutura secundária de uma proteína é definida por conformações locais de sua cadeia principal que assumem padrões específicos, tais como hélices α e folhas β.
- (C) A estrutura terciária de uma proteína é definida pelo modo conforme duas ou mais cadeias polipeptídicas se agregam entre si.
- (D) As enzimas são proteínas que atuam como catalisadores biológicos e que se caracterizam pela sua capacidade de reagir, simultaneamente, com milhares de substratos de grande diversidade estrutural.
- (E) A glicose, a ribose e a frutose são enzimas que devem ser obrigatoriamente ingeridas na dieta dos seres humanos, uma vez que nossos organismos não conseguem sintetizá-las.

37^a QUESTÃO Valor: 0,25

Considere as representações, não identificadas, dos seguintes polímeros: polibutadieno, poliestireno, poli(cloreto de vinila), poli(metacrilato de metila) e poli(cloreto de vinilideno).

Com base nessas estruturas, avalie as sentenças a seguir:

- I O poli(cloreto de vinilideno) apresenta isomeria óptica enquanto o poli(cloreto de vinila) não apresenta isomeria óptica.
- II O polibutadieno pode apresentar estereoisômeros cis e trans.
- III A massa molar do mero do poliestireno é maior do que a do mero do polibutadieno.
- IV A transesterificação do poli(metacrilato de metila) com etanol produz acetato de metila mais o poli(álcool vinílico).

É correto apenas o que se afirma nas sentenças:

- (A) II e III.
- (B) I e II.
- (C) II e IV.
- (D) I, III e IV.
- (E) I, II e III.

38ª QUESTÃO Valor: 0,25

Assinale a alternativa VERDADEIRA:

(A) A energia de ligação na molécula de NO é maior que no íon NO+.

- (B) A energia de ligação na molécula de CO é maior que no íon CO+.
- (C) A molécula de O_2 tem maior energia de ligação que os íons O_2^+ e O_2^- .
- (D) A ligação dupla C=C tem o dobro da energia da ligação simples C-C.
- (E) O íon NO- é mais estável que o íon NO+.

39^a QUESTÃO Valor: 0,25

Quanto à precipitação do hidróxido férrico (K_{PS} = 1,0.10⁻³⁶) em uma solução 0,001 molar de Fe³⁺, é correto afirmar que

- (A) independe do pH.
- (B) ocorre somente na faixa de pH alcalino.
- (C) ocorre somente na faixa de pH ácido.
- (D) não ocorre para pH < 3
- (E) ocorre somente para pH \geq 12.

40^a QUESTÃO Valor: 0,25

Assinale, dentre as alternativas, aquela que corresponde às funções orgânicas geradas após a hidrólise ácida total da molécula abaixo:

- (A) Ácido carboxílico, amina, álcool.
- (B) Amina, ácido carboxílico, álcool, aldeído.
- (C) Álcool, cetona, éster, éter.
- (D) Amida, aldeído, cetona.
- (E) Éter, amida, ácido carboxílico.

RASCUNHO		

RASCUNHO		

RASCUNHO		