Nome Cognome Matricola

PROVA 3

Domande aperte (articolare le risposte) [3 punti]

- L'elettronegatività è una proprietà periodica fondamentale per comprendere il legame chimico. Spiega cosa indica e come varia nella tavola periodica, illustrando le conseguenze sui legami covalenti e ionici.
- Descrivi il significato della costante di equilibrio e come si calcola a partire dalle concentrazioni.
- Analizza le modalità di espressione della concentrazione di una soluzione e confronta vantaggi e limiti delle diverse unità.
- Analizza la funzione di stato entalpia (H) e il suo ruolo nelle trasformazioni a pressione costante.

Domande chiuse (risposta corretta = 1, risposta errata = -0.5, mancata risposta = 0)

1 - Qual è la definizione corretta di composto? (variante)	2 - La delocalizzazione elettronica è tipica di:
a) Una miscela di due o più elementi	a) Composti ionici
b) Una sostanza formata da atomi dello stesso tipo	b) Sali in acqua
c) Una sostanza formata da due o più elementi	c) Metalli
chimicamente combinati	d) Gas nobili
d) Un elemento che si trova in natura	e) Idrocarburi
e) Una soluzione omogenea	
3 - I solidi amorfi sono caratterizzati da:	4 - Quale legge descrive il comportamento P∝1/V?
a) Superfici riflettenti	a) Legge di Boyle
b) Sistema periodico	b) Legge di Dalton
c) Ordine a lungo raggio	c) Legge di Charles
d) Assenza di struttura ordinata	d) Legge di Gay-Lussac
e) Struttura cubica	e) Legge di Avogadro
5 - Una soluzione isotonica ha:	6 - Il principio di Le Chatelier si applica a variazioni di:
a) Concentrazione nulla	a) Massa e colore
b) La stessa pressione osmotica della cellula	b) Volume e colore
c) Più soluto della cellula	c) Concentrazione, temperatura, pressione
d) Energia potenziale chimica	d) Solo pressione
e) Effetto tossico sulle cellule	e) Conducibilità e pH
7 - L'unità di misura della velocità di reazione è:	8 - Il potenziale della cella si calcola come:
a) mol/L·s	a) Differenza tra elettroni ceduti
b) kg/mol	b) E°anodo + E°catodo
c) L/s	c) E°catodo - E°anodo
d) mol/s	d) Differenza tra le masse molari
e) E) mol/L	e) Prodotto delle tensioni

Esercizio 1 (3 pt)

Bilanciare la seguente reazione chimica, in ambiente acquoso, indicando il nome di tutti i composti.

 $RbMnO_4 + HBr \longleftrightarrow RbBr + MnBr_2 + Br_2$

Esercizio 2 (3 pt)

Calcolare il pH e la concentrazione di tutte le specie all'equilibrio in una soluzione 0,025 M di acido ipocloroso (HOCl), sapendo che la costante di dissociazione acida è $Ka = 1,3 \times 10^{-5}$. Porre attenzione alle cifre significative.

Esercizio 3 (3 pt)

$$Mn + HBr \longleftrightarrow MnBr_2 + H_2$$

Dopo aver bilanciato la reazione, calcolare il volume di idrogeno che si sviluppa sciogliendo 12,50 g di manganese (Mn) in 30,00 mL di acido bromidrico 6,0 M (HBr) e determinare quale reagente resta alla fine della reazione e in quale quantità. La reazione avviene a 55,0 °C e alla pressione di 2,30 atm. Prestare attenzione alle cifre significative.

Esercizio 4 (1 pt)

Quanti elettroni presenta l'anione S²⁻?