Лекция 7: оценка и выбор моделей

٠

Параметрические модели

Линейная модель представляет собой важный пример параметрической модели:

$$f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

■ Линейная модель определяется р + 1 параметрами

$$\beta_0, \beta_1, \ldots, \beta_p$$
.

- Мы оцениваем параметры на основе подгонки модели на обучающем наборе данных.
- Хотя такие модели почти никогда не показывают очень хорошую точность, но служат хорошей и интерпретируемой аппроксимацией неизвестной истинной функции f(X).

Линейная регрессия

• Задача регрессии:

$$y(x_1,...,x_p) = E(Y | X_1 = x_1,...,X_p = x_p)$$

Уравнение линейной регрессии:

$$f(X) = b_0 + \sum_{j=1}^{p} X_j b_j + \varepsilon$$

- \square $\epsilon = N(0,6^2)$ шум
- □ Y отклик
- \square X=(X₁,..., X_p) регрессоры (предикторы)
- □ b параметры модели
- Линеаризируемые регрессии:
 - □ Степенная ,Экспоненциальная
 - □ Гиперболическая, и другие
- Цель регрессионного анализа:
 - Определение наличия связи между переменными и характера этой связи (подбор уравнения)
 - Предсказание значения зависимой переменной с помощью независимой(-ых)
 - Определение вклада отдельных независимых переменных в вариацию зависимой

$$y = ax_1^{b_1} x_2^{b_2} ... x_p^{b_p} \mathcal{E},$$

$$y = e^{a+b_1x_1+b_2x_2+...+b_px_p+\varepsilon},$$

$$y = (a + b_1 x_1 + b_2 x_2 + ... b_p x_p + \varepsilon)^{-1}$$

Простая линейная регрессия

Предположения:

- Независимость наблюдений
- Выбранное уравнение регрессии (например, линейное) соответсвует истинной зависимости в данных
- Нормальность ошибки (с константной дисперсией по всем наблюдениям)

Базовая модель (Нулевая гипотеза)

- Нулевая гипотеза:
 - □ Регрессионная модель приближает наблюдаемые данные не лучше базовой модели константы (β₁=0)
- Альтернативная гипотеза:
 - Регрессионная модель лучше приближает наблюдаемые данные чем базовая модель константа (β₁≠0)

Проверка предположений модели с помощью графиков остатков

Графики: как остатки зависят от прогноза, от отклика, от предикторов

Графики остатков

r

Множественная линейная регрессия

■ Пример линейной модели с двумя переменными

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
, где

Y – отклик, X_1 и X_2 предикторы, ε - ошибка, $β_0$, $β_1$, и $β_2$ -параметры

(неизвестные)

Нет зависимости

Есть зависимость

Множественная линейная регрессия

■ В общем случае ищем зависимость как линейную комбинацию *k* предикторов X₁ - X_k:

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$$
 Линейная модель с линейными эффектами

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2 + \varepsilon$$

Линейная модель с нелинейными эффектами

×

Метод наименьших квадратов и проблема мультиколлинеарности

Оценка ошибки = сумма регрессионных остатков (квадратичная функция потерь):

$$RSS(B) = \sum_{i=1}^{N} (y_i - f(\overline{x}_i))^2 = \sum_{i=1}^{N} (y_i - b_0 - \sum_{i=1}^{p} x_{ij} b_j)^2$$

В матричной форме:

$$RSS(B) = (\overline{y} - XB)^T (\overline{y} - XB)$$

- Единственное оптимальное решение (если матрица данных не сингулярная)
- Недостатки:

$$B = (X^T X)^{-1} X^T \overline{y}$$

- □ Сингулярная матрица данных из-за коррелированных факторов
- Большое число регрессоров плохая точность и интерпретируемость
- Основные подходы:
 - □ Поиск и удаление зависимых и незначимых факторов
 - □ Использование «смещенных» регуляризированных моделей
 - переход к новым независимым факторам, например, с помощью метода главных компонент

Иллюстрация мультиколлинеарности

- Портятся статистики с оценкой значимости переменных
- Увеличивается вариативность оценки параметров и как следствие ошибка
- Есть тенденция к неограниченному росту коэф.

Пример (Python)

```
from sklearn.linear_model import LinearRegression
```

```
X_2d = X[:, :2]
X_2d_test = X_test[:, :2]
```

```
regr = LinearRegression()
regr.fit(X_2d, y)
pass
```



```
ax = plt.subplot(projection='3d')
ax.scatter(X_2d_test[:, 0], X_2d_test[:, 1], y_test, color="green")
ax.plot_trisurf(X_2d_test[:, 0], X_2d_test[:, 1], regr.predict(X_2d_test), alpha=0.5)
```

Проблемы входных переменных и для KNN и для МНК

Зависимость

Не релевантность отклику

Выхода два: либо преобразование либо исключение

м

Простые методы сокращения размерности

Дано: входные переменные {x1,...,xn} и выходная (числовая или бинарная) у **Задача**: оставить только значимые и независимые хі

Работает в два этапа:

- 1. Уделяет все x_i , где $R^2(x_i) < T1 (y \partial a \pi e h u e h e з h a ч u m ы x)$
- 2. Forward stepwise регрессия $f(x_{i1},...x_{ik})$ пока $R^2(f(x_{i1},...x_{ik}))-R^2(f(x_{i1},...x_{ik-1}))>T2$ (удаление зависимых)

Преобразования переменных:

- Дискретизация непрерывных
- Группировка категориальных

Пример (Python)

from sklearn.feature_selection import SequentialFeatureSelector, VarianceThreshold

```
KNN = KNeighborsRegressor(n neighbors=5)
VT = VarianceThreshold(threshold=0.002)
X = VT.fit transform(X)
X.shape, X .shape
((200, 10), (200, 9))
# KNN.score(X, y) returns R2 - performed until tol is satisfied
# direction: forward/backward - add or remove features
# for newer scikit-learn versions:
selector = SequentialFeatureSelector(KNN, n features to select="auto", tol=0.5, direction="backward")
# for older scikit-learn versions:
selector = SequentialFeatureSelector(KNN, n features to select=3, direction="backward")
selector.fit(X , y)
X = selector.transform(X )
```

Недостаток – не сохраняет значимости на каждой итерации Возможное решение – наследуемся от модели (KNN) и добавляем в fit или score вывод своих логов

w

Простые методы сокращения размерности

- Unsupervised рассматривали в теме по самооганизации
- Supervised его простая модификация:
 - □ X₁ множество переменных, включенных в модель (изначально пустое),
 - □ X₂ множество переменных, НЕ включенных в модель (изначально все переменные)
 - Y отклик
 - □ На каждом делается перенос одной переменной x из X_2 в X_1 , такое чтобы:

$$\min \operatorname{Trace} \left(\mathbf{Y}^{\top} \left(\mathbf{I} - \mathbf{X}_1 \left(\mathbf{X}_1^{\top} \mathbf{X}_1 \right)^{-1} \mathbf{X}_1^{\top} \right) \mathbf{Y} \right)$$

 □ До тех пор, пока не отберется заданное число переменных, либо пока не будет описана заданная пропорция вариации по инф.
 критерию

Выбор модели и регуляризация на примере линейных моделей регрессии

■ Отклик линейной модели

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- Истинные зависимости редко бывают линейными
- Но: интерпретируемость и часто хорошее качество прогнозирования.
- Рассмотрим способы, при которых простая линейная модель может быть улучшена путем замены МНК некоторыми альтернативными методами подгонки.

М

Оценка точности расчета коэффициентов

 Стандартная ошибка оценки отражает, какие изменения происходят при повторной выборке

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

где
$$\sigma^2 = \operatorname{Var}(\epsilon)$$

- Эти стандартные ошибки могут быть использованы для вычисления доверительных интервалов.
- 95%-ый доверительный интервал определяется как диапазон значений, таких что с вероятностью 95% диапазон будет содержать истинное неизвестное значение параметра. Он имеет вид

$$\hat{\beta}_1 \pm 2 \cdot SE(\hat{\beta}_1)$$
.

×

Проверка гипотез

- Стандартные ошибки также могут использоваться для проверки гипотез о коэффициентах.
- Наиболее распространенный вариант проверки гипотез заключается в проверке нулевой гипотезы

 H_0 : Нет никакой связи между X и Y против *альтернативной гипотезы*

 H_A : Между X и Y существует некоторая взаимосвязь.

Математически это соответствует проверке

$$H_0: \beta_1 = 0$$
 VS $H_A: \beta_1 \neq 0$,

1

Проверка гипотез - продолжение

Чтобы проверить нулевую гипотезу (о равенстве нулю коэфициента), мы вычисляем *t-статистику*

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)},$$

- Она будет иметь *t*-распределение с n-2 степенями свободы, предполагая β_1 = 0.
- Можно вычислить вероятность наблюдения любого значения, большего или равного |t|, это p-value.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Оценка общей точности модели

■ Мы вычисляем стандартную ошибку невязок

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

где сумма квадратов невязок: $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

■ R-квадрат или доля объясненной дисперсии

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

где $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ - общая сумма квадратов.

- Можно показать, что в простой
- линейной регрессии $R^2 = r^2$,
- где *r* корреляция между *X* и *Y*:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n-p-1)} \sim F_{p,n-p-1}$$

Quantity	Value
Residual Standard Error	1.69
R^2	0.897
F-statistic	570

×

Интерпретация коэффициентов регрессии

- Идеальный сценарий: предикторы некоррелированы:
 - Каждый коэффициент можно оценить и тестировать отдельно.
 - Интерпретации такие как «единичного изменение X_j связано с β_j —ым изменением в значении Y, тогда как все остальные переменные остаются фиксированными».
- Корреляции между переменными вызывают проблемы:
 - Дисперсия всех коэффициентов имеет тенденцию к увеличению, иногда резкому
 - Интерпретации становятся непредсказуемыми когда X_j меняется, все остальное тоже меняется.
- «По сути, все модели ошибочны, но некоторые из них полезны» (George Box)

M

Качественные (категориальные) признаки

Пример: исследовать различия в балансе кредитных карт между мужчинами и женщинами, не учитывая другие переменные.

Создается новая переменная

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

Итоговая модель имеет вид:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \end{cases}$$

Интерпретация:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
gender[Female]	19.73	46.05	0.429	0.6690

M

Качественные признаки с более чем двумя возможными значениями

 Для признаков с несколькими возможными значениями создаются дополнительные фиктивные переменные. Например, для переменной ethnicity:

$$x_{i1} = egin{cases} 1 & ext{if ith person is Asian} \ 0 & ext{if ith person is not Asian,} \end{cases}$$
 а вторая: $x_{i2} = egin{cases} 1 & ext{if ith person is Caucasian} \ 0 & ext{if ith person is not Caucasian.} \end{cases}$

 Тогда обе эти переменные могут быть использованы в формуле регрессии и модель будет иметь вид

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is AA.} \end{cases}$$

Качественные признаки с более чем двумя возможными значениями

 Число фиктивных переменных будет на единицу меньше, чем количество возможных различных значений, есть специальное базовое значение.

Level	D_A	D_B	D _C	D_D	D _E	D_F	D _G	D_H	D,
A	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	
С	0	0	1	0	0	0	0	0	
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	
F	0	0	0	0	0	1	0	0	
G	0	0	0	0	0	0	1	0	
н	0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	0	0	

	Coefficient	Std. Error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

.

Расширения линейной модели

Удаление предположения аддитивности: *взаимодействующие* переменные и *нелинейность*

Взаимодействующие переменны:

 Раньше мы предполагали, что влияние предикторов на отклик независимо, например:

$$\widehat{\text{sales}} = \beta_0 + \beta_1 \times \text{TV} + \beta_2 \times \text{radio} + \beta_3 \times \text{newspaper}$$

■ Модель с взаимосвязями имеет вид

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

2

Интерпретация примера

- Результаты в этой таблице показывают, что взаимосвязи важны.
- Величина *p*-value для члена TV*radio, отражающего взаимосвязь, чрезвычайно мала, что свидетельствует о наличии достоверных доказательств для гипотезы H_A: β₃ ≠ 0.
- R² для модели с учетом взаимосвязей составляет 96.8%, по сравнению с только лишь 89.7% для модели, которая прогнозирует значение sales, используя значения TV и radio без учета взаимосвязей между ними.
- Это означает, что (96.8 89.7)/(100 89.7) = 69% дисперсии для sales, которая остается после построения аддитивной модели, объясняется членом, отражающим взаимосвязь.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

м

Иерархия

- Иногда может иметь место ситуация, что член, отражающий взаимосвязь, имеет очень маленькое p-value, но связанные с ним базовые признаки (в примере, TV и radio) не проявляют аналогичные свойства.
- Принцип иерархии:

Если мы включаем взаимосвязь в модель, мы должны также включать базовые признаки, даже если значения p-value, связанные с их коэффициентами, не показывают значимость.

Мотивация – улучшение интерпретируемости

Пример

	fixed acidity	volatile acidity	citric acid	sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	target_quality
4893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	6
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	5
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	6
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	7
4897	6.0	0.21	0.38	8.0	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	6

```
import statsmodels.api as sm

y = df["target_quality"]
X = df[set(df.columns) - {"target_quality"}]

results = sm.OLS(y, X).fit()
results.summary()
```

Dep. Variable:	target_quality	R-squared (uncentered):	0.984
Model:	OLS	Adj. R-squared (uncentered):	0.984
Method:	Least Squares	F-statistic:	2.707e+04
Date:	Sun, 05 Mar 2023	Prob (F-statistic):	0.00
Time:	08:08:45	Log-Likelihood:	-5575.5
No. Observations:	4898	AIC:	1.117e+04
Df Residuals:	4887	BIC:	1.124e+04
Df Model:	11		

	coef	std err	t	P> t	[0.025	0.975]
sugar	0.0250	0.003	9.642	0.000	0.020	0.030
рН	0.1684	0.084	2.014	0.044	0.005	0.332
citric acid	-0.0293	0.096	-0.305	0.760	-0.218	0.159
volatile acidity	-1.9585	0.114	-17.196	0.000	-2.182	-1.735
density	2.0420	0.353	5.780	0.000	1.349	2.735
alcohol	0.3656	0.011	32.880	0.000	0.344	0.387
free sulfur dioxide	0.0048	0.001	5.710	0.000	0.003	0.006
sulphates	0.4165	0.097	4.279	0.000	0.226	0.607
chlorides	-0.9426	0.543	-1.736	0.083	-2.007	0.122
total sulfur dioxide	-0.0009	0.000	-2.352	0.019	-0.002	-0.000
fixed acidity	-0.0506	0.015	-3.356	0.001	-0.080	-0.021

Пример

```
res = results.tvalues
sign = (res > 0).map({True:"orange", False:"blue"})
res = abs(res).sort_values()[::-1]
sign = sign[res.index].values
plt.bar(res.index, res.values, color=sign)
plt.xticks(rotation=45)
plt.show()
```

```
fig = sm.graphics.plot_fit(results, "pH")
fig.tight_layout(pad=1.0)
```


Пример с formula

```
import statsmodels.formula.api as smf
model1 = smf.ols(formula='target_quality ~ alcohol * pH', data=df)
res1 = model1.fit()
res1.summary()
```

model1	coef	std err	t	P> t	[0.025	0.975]
Intercept	16.9769	2.194	7.739	0.000	12.676	21.277
alcohol	-1.1383	0.207	-5.491	0.000	-1.545	-0.732
рН	-4.5215	0.691	-6.547	0.000	-5.875	-3.168
alcohol:pH	0.4557	0.065	6.990	0.000	0.328	0.583

Dep. Variable:	target_quality	R-squared:	0.200
Model:	OLS	Adj. R-squared:	0.199
Method:	Least Squares	F-statistic:	407.6
No. Observations:	4898	AIC:	1.162e+04
Df Residuals:	4894	BIC:	1.165e+04
Df Model:	3		

```
model2 = smf.ols(formula='target_quality ~ alcohol + pH', data=df)
res2 = model2.fit()
res2.summary()
```

model2	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.7422	0.250	6.966	0.000	1.252	2.233
alcohol	0.3093	0.009	33.207	0.000	0.291	0.328
рН	0.2770	0.076	3.649	0.000	0.128	0.426

Dep. Variable:	target_quality	R-squared:	0.192
Model:	OLS	Adj. R-squared:	0.192
Method:	Least Squares	F-statistic:	581.3
No. Observations:	4898	AIC:	1.167e+04
Df Residuals:	4895	BIC:	1.169e+04
Df Model:	2		

×

Выбор важных переменных

Наиболее очевидный подход называется регрессия всех подмножеств или регрессия наилучших подмножеств (МНК для всех комбинаций и выбор лучшего варианта по некторому

критерию)

- На практие не всегда применимо для значительного числа переменных, Поэтому существуют методы:
 - 1. Пошаговые методы (прямые, обратные, комбинированные)
 - 2. Методы с регуляризацией (штраф за сложность)
 - 3. Методы преобразования пространства признаков (регрессия главных компонент и PLS)

Прямой отбор

- Начинаем с нулевой модели содержащей только константу.
- Строим р простых линейных регрессий и добавляем к нулевой модели переменную, которая дает наименьшее значение RSS.
- Добавляем к этой модели переменную, которая дает наименьшее значение RSS среди всех моделей с двумя переменными.
- Продолжаем процесс до тех пор, пока не сработает какое-либо правило останова,
- Например, на каждом шаге рассчитывается p-value гипотезы о том, что улучшение целевой функции по сравнению с нулевой моделью существенно.

Обратный отбор

- Начинаем с модели, содержащей все переменные.
- Удаляем переменную с наибольшим p-value, то есть переменную, которая является наименее статистически значимой.
- Строим новую модель с (*p-1*)-ой переменными и удаляем переменную с наибольшим *p*-value.
- Продолжаем до тех пор, пока не сработает правило останова.
- Например, на каждом шаге рассчитывается p-value гипотезы о том, что ухудшение целевой функции по сравнению с нулевой моделью существенно.

Комбинированный отбор

- Прямой и обратный методы жадные (как и комбинированный)
 с не сильно гибким перебором
- Комбинированный метод (более гибкий перебор):
 - 1. Пытаемся сделать шаг вперед (сначала из нулевой модели)
 - 2. Затем пытаемся сделать шаг назад
 - Продолжаем 1 и 2 до тех пор, пока не сработает правило останова и для добавления и для удаления переменных или пока не попали в «цикл» (последоватльное добавление и удаление одной и той же переменной)

-Пошаговая регрессия

- 1. Пусть M_0 начальная модель, которая не содержит предикторов.
- 2. Для k = 0, ..., p -1: все p-k моделей, которые дают улучшение по сравнению с предикторами в M_k с добавлением одного дополнительного предиктора.

3. Выбираем одну наилучшую модель среди $M_0, ..., M_p$, используя валидационную или кросс-валидированную ошибку прогнозирования, C_p (AIC), BIC или скорректированный коэффициент детерминации R^2 .

м

Выбор оптимальной модели

- Модель, содержащая все предикторы, всегда будет иметь наименьшее RSS и наибольший R², так как эти величины связаны с ошибкой обучения.
- Нужно выбрать модель с низкой тестовой ошибкой, а не с малой ошибкой обучения. Таким образом, RSS и R² не подходят для выбора лучшей модели среди набора моделей с различным количеством предикторов.
- Мы можем косвенно оценить ошибку тестирования, делая поправку на ошибку обучения, чтобы учесть смещения из-за переобучения.
- Мы можем *непосредственно* оценить погрешность тестирования, используя либо подход валидационного набора, либо подход кросс-валидации.

C_p , AIC, BIC и скорректированный коэффициент детерминации R^2

- Эти методы настраивают ошибку обучения для размера модели, и могут быть использованы для выбора среди множества моделей с различным числом переменных.
- На рисунке показаны C_p , BIC, и скорректированный R^2 для лучшей модели каждого размера.

٠

Некоторые подробности

• $Mallow C_p$:

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right),$$

- где d обобщенное значение используемых параметров и $\hat{\sigma}^2$ оценки дисперсии ошибки ϵ , связанной с каждым измерением отклика.
- Критерий *AIC*, определяемый для широкого класса моделей, рассчитывается методом максимального правдоподобия:

$$AIC = -2 log L + 2d$$

- где *L* значение функции логарифмического правдоподобия для оцениваемой модели.
- В случае линейной модели с гауссовскими ошибками, максимальное правдоподобие и наименьшие квадраты - это одно и то же, и С_р и АІС эквивалентны.

М

BIC

BIC =
$$\frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$
.

- Аналогично С_р, ВІС будет небольшой для моделей с низкой ошибкой тестирования, и поэтому мы выбираем модель, которая имеет самое низкое значение ВІС.
- Обратите внимание на то, что ВІС заменяет $2d\hat{\sigma}^2$, используемое C_p ,на $\log(n)d\hat{\sigma}^2$, где n число наблюдений.
- Так как log n > 2 для любого n > 7, ВІС статистики в целом сильнее штрафует модели со многими переменными, и, следовательно, приводит к выбору модели меньшего размера, чем C_p

1

Вычисление R²

■ Для модели наименьших квадратов с *d* переменными скорректированная *R*² статистика рассчитывается как:

Adjusted
$$R^2 = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}$$
.

где TSS – полная сумма квадратов.

- В отличие от С_р, AIC и BIC, для которых малое значение указывает на модель с низкой ошибкой тестирования, большое значение скорректированного R² соответствует модели с небольшой ошибкой тестирования.
- В отличие от статистики R^2 , скорректированная R^2 статистика наказывает за включение ненужных переменных в модель.

Пример forward R^2

```
def next_possible_feature(X, y, current_features,
                          by="rsquared", asc=False):
    feat_dict = {'feat': [], by:[]}
    for col in X.columns:
        if col not in (current_features):
            sub_X = X[current_features + [col]]
            sub_X = sm.add\_constant(sub_X)
            model = sm.OLS(y, sub_X).fit()
            metric = getattr(model, by)
            feat_dict['feat'].append(col)
            feat_dict[by].append(metric)
    feat_df = pd.DataFrame(feat_dict)
    feat_df = feat_df.sort_values(by=[by],ascending=asc)
    best = feat_df.iloc[0].to_dict()
    return (best['feat'], best[by])
# r12
curr_feats = []
for i in range(len(X.columns)):
    print("="*10, "iteration:", i, "="*10)
    col, val = next_possible_feature(X, y, curr_feats,
                                      "rsquared", False)
    print("+", col, "->", val)
    curr_feats.append(col)
```

```
====== iteration: 0 =======
+ alcohol -> 0.18972533274925663
====== iteration: 1 =======
+ volatile acidity -> 0.2402311847533
======= iteration: 2 =======
+ sugar -> 0.25852615806597845
====== iteration: 3 =======
+ free sulfur dioxide -> 0.2639942210
======= iteration: 4 =======
+ density -> 0.2689515645655992
======= iteration: 5 =======
+ pH -> 0.2751821150463122
======= iteration: 6 =======
+ sulphates -> 0.2801195827165033
====== iteration: 7 =======
+ fixed acidity -> 0.2817519637249508
====== iteration: 8 =======
+ total sulfur dioxide -> 0.281835337
====== iteration: 9 =======
+ chlorides -> 0.28186254437932134
======= iteration: 10 =======
+ citric acid -> 0.2818703641332855
```

Пример forward AIC

```
# AIC
  curr_feats = []
  vals = []
  for i in range(len(X.columns)):
      col, val = next_possible_feature(X, y, curr_feats,
                                            "aic", True)
      curr_feats.append(col)
      vals.append(val)
  ind_min = np.argmin(vals)
11700
11600
11500
11400
11300
11200
                                       Tixed acidicy to dioxide thoride's
11100
      volatile acidity
```

м

Валидация и кросс-валидация

- Каждая из процедур возвращает последовательность моделей M_k , индексированная по размеру модели k=0,1,2,... Наша задача здесь состоит в выборе \hat{k} . После выбора, мы определим модель $\mathcal{M}_{\hat{k}}$
- Вычислим ошибку на валидационном наборе или ошибку перекрестной проверки для каждой модели M_k, а затем выберем k, для которого полученная ошибка тестирования является наименьшей.
- Эта процедура имеет преимущество по сравнению с AIC, BIC, С_р и скорректированным R², которое состоит в том, что оно обеспечивает непосредственную оценку тестовой ошибки, и не требует оценки дисперсии ошибки
- Она также может быть использована в более широком диапазоне задач выбора модели, даже в случаях, когда трудно точно определить число степеней свободы модели (например количество предикторов в модели) или трудно оценить дисперсию ошибок

Пример SequentialFeatureSelector

```
from sklearn.feature_selection import SequentialFeatureSelector
     from sklearn import linear_model
     lm = linear_model.LinearRegression()
     sfs = SequentialFeatureSelector(lm,
             n_features_to_select=4,
             direction="forward",
             cv=3)
     sfs.fit(X, y)
                            sfs.get_support()
  array([False, False, True, False, True, False, False, True, True,
         False, False])
                     sfs.get_feature_names_out()
array(['alcohol', 'volatile acidity', 'sulphates', 'sugar '], dtype=object)
```

Пример

```
# BIC
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import mean_squared_error
def get_full_bic(X, y):
    model = sm.OLS(y, X).fit()
    return model.bic
def get_folds_error(X, y, folds):
    kf = StratifiedKFold(n_splits=folds)
    res_folds = []
    for tr_ind, tst_ind in kf.split(X, y):
        model = sm.OLS(y[tr_ind]),
                       X.iloc[tr_ind]).fit()
        y_pred = model.predict(X.iloc[tst_ind])
        error = mean_squared_error(y[tst_ind], y_pred)
        res_folds.append(error)
    return np.mean(res_folds)
```

```
full_bic = []
val_err = []
cv_err = []

range_feats = range(len(curr_feats))
for i in range_feats:
    sub_X = X[curr_feats[:i+1]]
    full_bic.append(get_full_bic(sub_X, y))
    val_err.append(get_folds_error(sub_X, y, 2))
    cv_err.append(get_folds_error(sub_X, y, 5))
```

Пример

```
fig, axes = plt.subplots(ncols=3, figsize=(14, 4))

metr = [np.sqrt(full_bic), val_err, cv_err]
names = ["Sq root of BIC", "Val ERR", "CV ERR"]

for i, (l, n) in enumerate(zip(metr, names)):
    ind_min = np.argmin(l)
    axes[i].set_title(n)
    axes[i].plot(range_feats, l)
    axes[i].scatter(range_feats[ind_min], l[ind_min])
plt.show()
```


Если не нормальное распределение ошибки?

Функция связи
$$\longrightarrow$$
 $g(E(y_i)) = F(\mathbf{X}, \beta)$

- Распределение отклика наблюдений принадлежит экспоненциальному семейству. $f(y | \theta) = h(y)c(\theta) \exp(t(y) \cdot W(\theta))$
- Дисперсия зависимой переменной Ү функция от среднего.
- $F(X,\beta)$ моделирует функцию от E(y) (link function функция связи)
- Распределение отклика наблюдений может подсказать какую функцию связи выбрать (дальше)
- Пример (лоистическая регрессия):

$$f(y | p) = p^{y} (1-p)^{1-y} =$$

$$= (1-p)I_{y} \exp(y \log(p/(1-p)))$$

$$I_{y} = \begin{cases} 1, y \in \{0,1\} \\ 0, uhave \end{cases}$$

Типовые функции связи для обобщенных линейных моделей

Model	Response	Distribution	Mean	Variance	Canonical Link
Linear					identity
Regression	Continuous	Normal	μ	σ^2	μ
Logistic regression	Dichotomous	Binomial	π	π(1- π)/n	logit log[π/(1-π)]
Poisson Regression	Count	Poisson	λ	λ	log log(λ)
Gamma Regression	Continuous	Gamma	μ	μ ² /ν	*inverse 1/μ

^{*}часто используется функция связи LOG

×

Оценка отклонения

Поиск параметров модели

- решается задача оптимизации
- max loglik с заданным распределением и функцией связи

Распределение Отклонение

$$Q(\mathbf{w}) = \sum (y - \mu(\mathbf{w}))^2$$

$$Q(\mathbf{w}) = 2\sum \left[y \ln(y/\mu(\mathbf{w})) - (y-\mu(\mathbf{w})) \right]$$

$$Q(\mathbf{w}) = 2\sum \left[-\ln(y/\mu(\mathbf{w})) + (y-\mu(\mathbf{w}))/\mu(\mathbf{w}) \right]$$

$$Q(\mathbf{w}) = -2\sum [y \ln(\mu(\mathbf{w})) + (1 - y) \ln(1 - \mu(\mathbf{w}))]$$

10

Выбор распределения для обощенной линейной модели

- В случае гетероскедастичности вместо линейной часто применяется гамма регрессия (с различными функциями связи)
- Гамма распределение:
 - Асиметричное распределение для положительных значений
 - Дисперсия пропорциональна квадрату среднего
 - □ Хвост «легче» чем у логнормального

Пример использования GLM

```
import statsmodels.api as sm

gamma_model = sm.GLM(y, X, family=sm.families.Gamma())
gamma_results = gamma_model.fit()
gamma_results.summary()
```

				coef	std err	Z	P> z	[0.025	0.975]
			free sulfur dioxide	-0.0001	2.41e-05	-5.598	0.000	-0.000	-8.76e-05
target_quality	No. Observations:	4898	density	0.2860	0.010	27.808	0.000	0.266	0.306
GLM	Df Residuals:	4887	alcohol	-0.0100	0.000	-31.482	0.000	-0.011	-0.009
Gamma	Df Model:	10	рН	-0.0067	0.002	-2.768	0.006	-0.011	-0.002
inverse_power	Scale:	0.016581	volatile acidity	0.0618	0.003	17.836	0.000	0.055	0.069
IRLS	Log-Likelihood:	-5595.9	total sulfur dioxide	2.369e-05	1.1e-05	2.162	0.031	2.21e-06	4.52e-05
Sun, 12 Mar 2023	Deviance:	83.215	fixed acidity	0.0010	0.000	2.372	0.018	0.000	0.002
20:31:55	Pearson chi2:	81.0	sulphates	-0.0122	0.003	-4.496	0.000	-0.018	-0.007
6	Pseudo R-squ. (CS):	0.3134	sugar	-0.0009	7.57e-05	-11.640	0.000	-0.001	-0.001
			chlorides	0.0367	0.017	2.149	0.032	0.003	0.070
			citric acid	0.0012	0.003	0.404	0.686	-0.004	0.007
	GLM Gamma inverse_power IRLS Sun, 12 Mar 2023 20:31:55	GLM Df Residuals: Gamma Df Model: inverse_power Scale: IRLS Log-Likelihood: Sun, 12 Mar 2023 Deviance:	GLM Df Residuals: 4887 Gamma Df Model: 10 inverse_power Scale: 0.016581 IRLS Log-Likelihood: -5595.9 Sun, 12 Mar 2023 Deviance: 83.215 20:31:55 Pearson chi2: 81.0	target_quality No. Observations: 4898 density GLM Df Residuals: 4887 alcohol Gamma Df Model: 10 pH inverse_power Scale: 0.016581 volatile acidity IRLS Log-Likelihood: -5595.9 total sulfur dioxide Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 20:31:55 Pearson chi2: 81.0 sulphates 6 Pseudo R-squ. (CS): 0.3134 sugar chlorides	target_quality No. Observations: 4898 density 0.2860 GLM Df Residuals: 4887 alcohol -0.0100 Gamma Df Model: 10 pH -0.0067 inverse_power Scale: 0.016581 volatile acidity 0.0618 IRLS Log-Likelihood: -5595.9 total sulfur dioxide 2.369e-05 Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 0.0010 20:31:55 Pearson chi2: 81.0 sulphates -0.0122 6 Pseudo R-squ. (CS): 0.3134 sugar -0.0009 chlorides 0.0367	target_quality No. Observations: 4898 density 0.2860 0.010 GLM Df Residuals: 4887 alcohol -0.0100 0.000 Gamma Df Model: 10 pH -0.0067 0.002 inverse_power Scale: 0.016581 volatile acidity 0.0618 0.003 IRLS Log-Likelihood: -5595.9 total sulfur dioxide 2.369e-05 1.1e-05 Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 0.0010 0.000 20:31:55 Pearson chi2: 81.0 sulphates -0.0122 0.003 6 Pseudo R-squ. (CS): 0.3134 sugar -0.0009 7.57e-05 chlorides 0.0367 0.017	target_quality No. Observations: 4898 density 0.2860 0.010 27.808 GLM Df Residuals: 4887 alcohol -0.0100 0.000 -31.482 Gamma Df Model: 10 pH -0.0067 0.002 -2.768 inverse_power Scale: 0.016581 volatile acidity 0.0618 0.003 17.836 IRLS Log-Likelihood: -5595.9 total sulfur dioxide 2.369e-05 1.1e-05 2.162 Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 0.0010 0.000 2.372 20:31:55 Pearson chi2: 81.0 sulphates -0.0122 0.003 -4.496 6 Pseudo R-squ. (CS): 0.3134 sugar -0.0009 7.57e-05 -11.640 chlorides 0.0367 0.017 2.149	target_quality No. Observations: 4898 density 0.2860 0.010 27.808 0.000 GLM Df Residuals: 4887 alcohol -0.0100 0.000 -31.482 0.000 Gamma Df Model: 10 pH -0.0067 0.002 -2.768 0.006 inverse_power Scale: 0.016581 volatile acidity 0.0618 0.003 17.836 0.000 IRLS Log-Likelihood: -5595.9 total sulfur dioxide 2.369e-05 1.1e-05 2.162 0.031 Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 0.0010 0.000 2.372 0.018 20:31:55 Pearson chi2: 81.0 sulphates -0.0122 0.003 -4.496 0.000 chlorides 0.0367 0.017 2.149 0.032	target_quality No. Observations: 4898 density 0.2860 0.010 27.808 0.000 -0.001 GLM Df Residuals: 4887 alcohol -0.0100 0.000 -31.482 0.000 -0.011 Gamma Df Model: 10 pH -0.0067 0.002 -2.768 0.006 -0.011 inverse_power Scale: 0.016581 volatile acidity 0.0618 0.003 17.836 0.000 0.055 Sun, 12 Mar 2023 Deviance: 83.215 fixed acidity 0.0010 0.000 2.372 0.018 0.000 20:31:55 Pearson chi2: 81.0 sulphates -0.0122 0.003 -4.496 0.000 -0.018 bear 10 minute resident Pearson chi2: 81.0 sulphates -0.0122 0.003 -4.496 0.000 -0.018 bear 12 minute resident Pearson chi2: 81.0 sulphates -0.0122 0.003 -4.496 0.000 -0.001 chlorides 0.0367

Пример использования GLM

```
fig, ax = plt.subplots()
yhat = gamma_results.predict(X)
ax.scatter(yhat, y)
```



```
fig, ax = plt.subplots()
resid = gamma_results.resid_deviance.copy()
resid_std = stats.zscore(resid)
ax.hist(resid_std, bins=25)
```


М

Методы регуляризации (штраф за сложность)

Регрессия Ridge и Lasso

- Методы выбора подмножества используют метод наименьших квадратов для линейной модели, которая содержит подмножество предикторов.
- В качестве альтернативы, можно построить модель содержащую все р предикторов с использованием методики, которая ограничивает или регуляризирует оценки коэффициентов, или, что эквивалентно, сводит некоторые оценки коэффициентов к нулю.
- Может быть не сразу понятно, почему такое ограничение должно улучшить построение модели, но оказывается, что сокращение количества коэффициентов может значительно уменьшить их дисперсию.

м

Гребневая регрессия

■ Напомним, что процедура подгонки по методу наименьших квадратов оценивает коэффициенты β₀, β₁, ..., β_p , минимизируя:

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

• Оценки коэффициентов \hat{eta}^R ridge-регрессии напротив являются значениями, которые надо минимизировать

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS} + \left(\lambda \sum_{j=1}^{p} \beta_j^2, \right)$$

где *λ*≥*0* - параметр настройки, который задается (рассчитывается) независимо.

Штраф за сложность

Гребневая регрессия

- Гребневая регрессия (как и МНК) стремится найти коэффициенты, которые дают наименьшее RSS.
- Но, второй член, $\lambda \sum_j \beta_j^2$, называемый штрафом сокращения, мал при $\beta_1, ..., \beta_p$ близких к нулю, и поэтому имеет место эффект сведения оценок β_j к нулю. Параметр настройки λ (подбор кросс-валидацией) служит для управления относительным влиянием этих двух членов на оценки коэффициентов

.

Гребневая регрессия: масштабирование предикторов

- Оценки коэффициентов стандартным методом наименьших квадратов являются масштабируемым: умножая X_j на константу c просто приводит к масштабированию оценок коэффициентов наименьших квадратов на коэффициент. Другими словами, независимо от того, как масштабируется j-ый предиктор, $X_j \hat{\beta}_j$ останется прежним.
- Оценки коэффициентов гребневой регрессии наоборот могут существенно измениться при умножении заданного предиктора на константу, из-за суммы квадратов коэффициентов в штрафной части целевой функции регрессии.
- Поэтому лучше всего применять гребневую-регрессию после нормирования коэффициентов на коэффициенты модели без регуляризации $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$, или после *стандартизации предикторов:* $\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij}-\overline{x}_{j})^{2}}}$

м

Почему Ridge регрессия дает улучшения по сравнению с методом наименьших квадратов?

Компромисс отклонение-дисперсия

Смоделированные данные с n = 50 наблюдениями, pкоэффициенты. предикторами все имеют отличные OT нуля смещение (черное), дисперсия Квадратичное (зеленая) среднеквадратичная ошибка тестирования (фиолетовая) ДЛЯ предикторов ridge-регрессии на смоделированном наборе данных, в зависимости от λ и $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$, Горизонтальные пунктирные ЛИНИИ указывают на минимально возможное значение MSE.

M

Lasso

- Гребневая регрессия имеет один очевидный недостаток: в отличие от отбора подмножества, которое, как правило, выбирает модели, которые включают только подмножество переменных, гребневая регрессия будет включать в себя все р предикторов в конечной модели
- Lasso относительно недавняя альтернатива, которая преодолевает этот недостаток. Коэффициенты lasso минимизируют величину

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p |\beta_j| = \text{RSS} \left(+\lambda \sum_{j=1}^p |\beta_j|\right).$$
 Штраф за

сложность

Lasso: продолжение

- В случае Lasso, штраф имеет эффект сведения некоторых оценок коэффициентов в точности к нулю, когда параметр настройки λ достаточно велик.
- Следовательно, так же, как выбор лучшего подмножества, lasso выполняет отбор переменных.
- lasso приводит к разреженным моделям моделям, которые включают только подмножество переменных.
- Как и в ridge регрессии, выбирая хорошее значение λ для lasso имеет решающее значение

Выбор переменных в регрессии Lasso

Почему lasso, в отличие от ridge-регрессии, приводит к оценкам коэффициентов, которые в точности равны нулю?

Можно показать, что оценки коэффициентов lasso и ridge регрессии решают задачи

$$\underset{\beta}{\text{minimize}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

при условии
$$\sum_{j=1}^p |\beta_j| \le s$$

И

$$\min_{eta} \sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2$$
 при условии $\sum_{j=1}^p eta_j^2 \leq s,$

$$\sum_{j=1}^{p} \beta_j^2 \le s,$$

соответственно.

Иллюстрация регрессии Lasso

Выбор параметров настройки для Ridge регрессии и Lasso

- Что же касается выбора подмножества, для ridgeрегрессии и lasso нам нужен способ определения, какая из рассматриваемых моделей лучше.
- То есть нам нужен метод выбора значения для параметра настройки λ или, что эквивалентно, значение s.
- Перекрестная проверка обеспечивает простой способ решения этой проблемы. Выберем сетку значений λ и вычислим ошибку кросс-валидации для каждого значения λ.
- Затем мы выбираем значение параметра настройки, для которого ошибка перекрестной проверки является наименьшей.
- И, наконец, модель перестраивается с использованием всех имеющихся объектов и выбранного значения параметра настройки.

Пример Ridge

```
from sklearn.linear_model import Ridge
degree = np.linspace(-5, 5, 10)
alphas = np.exp(degree)
scores = []
for alpha in alphas:
    ridge = Ridge(alpha=alpha, fit_intercept=False)
    score = cross_val_score(ridge, X, y, cv=5,
                            scoring="r2")
    scores.append(np.mean(score))
plt.figure(figsize=(7, 5))
plt.plot(degree, scores)
best_score = np.argmax(scores)
plt.axvline(x=degree[best_score], linestyle="--")
plt.show()
```


Ошибки перекрестной проверки, которые являются результатом применения ridge регрессии для различных значений λ .

Пример Ridge

```
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
coefs = []
for alpha in alphas:
    ridge = Ridge(alpha=alpha)
    ridge.fit(X, y)
    scaler = StandardScaler()
   coef = ridge.coef_.reshape(-1, 1)
    coef = scaler.fit_transform(coef)
    coefs.append(coef.reshape(1, -1))
plt.figure(figsize=(7, 5))
plt.plot(degree, np.vstack(coefs))
plt.legend(X.columns)
plt.axvline(x=degree[best_score], linestyle="--")
plt.axhline(y=0, color="black")
plt.show()
```


Оценки коэффициентов в зависимости от λ . Вертикальные пунктирные линии обозначают значение λ , выбранное в результате перекрестной проверки.

Пример LASSO

```
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
coefs = []
degree = np.linspace(-5, 5, 20)
alphas = np.exp(degree)
for alpha in alphas:
    lasso = Lasso(alpha=alpha)
    lasso.fit(X, y)
    scaler = StandardScaler()
    coef = lasso.coef_.reshape(-1, 1)
    coef = scaler.fit_transform(coef)
    coefs.append(coef.reshape(1, -1))
plt.figure(figsize=(7, 5))
plt.plot(degree, np.vstack(coefs))
plt.legend(X.columns, loc='upper right')
plt.axhline(y=0, color="black")
plt.show()
```


Оценки коэффициентов в зависимости от λ . Вертикальные пунктирные линии обозначают значение λ , выбранное в результате перекрестной проверки.

Алгоритм LAR

- Сначала все переменные стандартизуются, а отклик центрируется, и все коэффициенты равны 0.
- □ Находится предиктор наиболее коррелирующий с откликом и делается максимальный шаг (рассчитывается его коэффициент) по направлению этого предиктора пока не найдется другой предиктор с такой же корреляцией с остатком, как уже добавленный
- Второй предиктор добавляется в модель и делается максимальный шаг в направлении биссектрисы между добавленными предикторами, пока не найдется следующий предиктор, коррелирующий с остатком так же как уже добавленные
- □ Аналогично находится третий предиктор и так далее.

LAR:

Coefficient Progression for LogDollars | Doctor | Doctor

Forward Stepwise:

LAR: Двухмерный пример

- \square LARS m=2 предиктора.
- \square \bar{y}_2 проекция y в $L(x_1 \ x_2)$ решение.
- П Начинаем $\hat{\mu}_0$ = 0, вектор остатков $\bar{y}_2 \hat{\mu}_0$ больше коррелирует с x_1 чем с x_2 .
- \square LARS находит $\hat{\mu}_1=\hat{\mu}_0+\hat{\gamma}_1x_1$ где $\hat{\gamma}_1$ выбран так что $\bar{y}_2-\hat{\mu}_1$ биссектриса угла между x_1 и x_2 .
- \square Далее $\hat{\mu}_2 = \hat{\mu}_1 + \hat{\gamma}_2 u_2$ где u_2 единичный вектор вдоль биссектрисы; $\hat{\mu}_2 = \overline{\nu}_2$.

LAR: Трехмерный пример

На каждом шаге LARS оценивает $\hat{\mu}_k$ сходясь в результате к МНК y решению .

Пример LAR

Пример lars path

```
from sklearn import linear_model
alphas, _, coefs = linear_model.lars_path(
         X.to_numpy(), y.to_numpy(), method="lasso")
xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]
```


м

Методы сокращения размерности: подробности

■ Пусть $Z_1, Z_2, ..., Z_M$ — М линейных комбинаций (M < p) наших исходных p предикторов. т.е.

$$Z_m = \sum_{j=1}^p \phi_{mj} X_j \tag{1}$$

для некоторых $\phi_{m1},\ldots,\phi_{mp}$.

Затем мы можем построить модель линейной регрессии

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \quad i = 1, \dots, n,$$
 (2)

используя МНК.

- Отметим, что в модели (2), коэффициенты регрессии заданы значениями $\theta_0, \theta_1, \dots, \theta_M$. Если $\phi_{m1}, \dots, \phi_{mp}$.
- подобраны хорошо, то такие подходы к снижению размерности могут быть лучше, чем МНК регрессия.

М

Заметим, что из определения (1) следует,

$$\sum_{m=1}^{M} \theta_{m} z_{im} = \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{mj} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \phi_{mj} x_{ij} = \sum_{j=1}^{p} \beta_{j} x_{ij},$$
 где
$$\beta_{j} = \sum_{m=1}^{M} \theta_{m} \phi_{mj}. \tag{3}$$

- Следовательно, модель (2) можно рассматривать как частный случай исходной модели линейной регрессии.
- Снижение размерности необходимо для ограничения коэффициентов β_j, так как теперь они должны принимать форму (3).
- Это может дать выигрыш в компромиссе дисперсии смещения.

10

Регрессия главных компонент

- Мы применяем анализ главных компонентов (РСА), чтобы определить линейные комбинации предикторов для применения в регрессии.
- Первый главный компонент соответствует (нормализованной) линейной комбинации переменных с самой большой дисперсией.
- Второй главный компонент имеет самую большую дисперсию, при условии отсутствия корреляции с первым.
- И так далее.
- Поэтому если мы имеем много скоррелированных исходных переменных, мы заменим их небольшим набором главных компонентов, которые отражают их совместное изменение.

Применение регрессии главных компонент

```
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_val_predict
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
PCR = make_pipeline(PCA(n_components=5), LinearRegression())
y_cv = cross_val_predict(PCR, X, y, cv=10)
mean_squared_error(y, y_cv)
0.6193829630825505
# Поиск количества компонент
def optimise_comp_cv(X, y, n_comp):
    PCR = make_pipeline(PCA(n_components=n_comp),
                         LinearRegression())
    # Расчет ошибки на кросс-валидации
    y_cv = cross_val_predict(PCR, X, y, cv=10)
    mse = mean_squared_error(y, y_cv)
    var = explained_variance_score(y, y_cv)
```

bias = mse - var

return mse, bias, var

Выбор количества компонент М

```
PCR
mse_, bias_, var_ = [], [], []
                                                         0.8
list_components = list(range(1, X.shape[1]+1))
                                                                                                    BIAS
                                                         0.7
for n_comp in list_components:
                                                                                                    VAR
    mse, bias, var = optimise_comp_cv(X, y, n_comp)
                                                         0.6
    mse_.append(mse)
    bias_.append(bias)
                                                         0.5
    var_.append(var)
                                                         0.4
plt.plot(list_components, np.array(mse_))
                                                         0.3
plt.plot(list_components, np.array(bias_))
                                                         0.2
plt.plot(list_components, np.array(var_))
plt.xlabel('Количество компонент PCR')
                                                         0.1
plt.legend(["MSE", "BIAS", "VAR"])
plt.title('PCR')
                                                         0.0
                                                                                                 10
plt.show()
                                                                         Количество компонент РСВ
```

Оранжевая, зеленая и синяя линии соответствуют смещению, дисперсии и тестовой среднеквадратической ошибке.

м

Метод частичных наименьших квадратов

- PCR определяет линейные комбинации, или *направления*, которые наилучшим образом представляют предикторы $X_1, ..., X_p$.
- Эти направления определяются обучением без учителя, так как отклик У не используется при определении направлений главных компонент.
- То есть отклик не *контролирует* определение главных компонентов.
- Следовательно, PCR страдает от потенциально серьезного недостатка: нет никакой гарантии, что направления, которые наилучшим образом объясняют предикторы, также будут лучшими направлениями при использовании для прогнозирования отклика.

м

Метод частичных наименьших квадратов (PLS): продолжение

- Подобно PCR, PLS является метод снижения размерности, который сначала определяет новый набор признаков Z₁,...,Z_M, которые являются линейными комбинациями исходных признаков, а затем строит линейную модель с помощью OLS с использованием этих *М* новых признаков.
- Но в отличие от PCR, PLS определяет эти признаки на основе контролируемого обучения - то есть, он использует отклик Y с целью выявления новых признаков, которые не только хорошо аппроксимируют исходные признаки, но и связаны с откликом.
- Грубо говоря, подход PLS пытается определить направления, которые позволяют объяснить как отклики, так и предикторы.

$$\max_{|\alpha|=1,v_l^TS\alpha=0,l=1,\dots,m-1} Corr^2(y,X\alpha) Var(X\alpha)$$

НА ОСНОВЕ ЛАТЕНТНЫХ ПЕРЕМЕННЫХ

полезно, когда у нас много переменных, и они сильно коррелируют

PRINCIPAL COMPONENTS REGRESSION

$$X_1, \dots, X_p \to Z_1, \dots, Z_M$$
, $M \ll p, Z_i = Xv_i$
$$Y^{PCR} = \hat{Y} + \sum_{m=1}^M \theta_m Z_m$$

PARTIAL LEAST SQUARES

1

Подробности о методе частичных наименьших квадратов

- После стандартизации p предикторов, PLS вычисляет первое направление Z_1 на основе установки каждого ϕ_{1j} равным коэффициенту простой линейной регрессии Y для X_{j} .
- Можно показать, что этот коэффициент пропорционален корреляции между Y и X_i .
- Следовательно, при вычислении $Z_1 = \sum_{j=1}^p \phi_{1j} X_j$, PLS устанавливает наибольший вес переменным, которые наиболее тесно связаны с откликом.
- Последующие направления определяются на основе расчета невязки, а затем повторения вышеописанного.

Применение PLS

```
from sklearn.cross_decomposition import PLSRegression
# Поиск количества компонент

def optimise_comp_cv(X, y, n_comp):
    pls = PLSRegression(n_components=n_comp)
    # Расчет ошибки на кросс-валидации
    y_cv = cross_val_predict(pls, X, y, cv=10)
    mse = mean_squared_error(y, y_cv)
    var = explained_variance_score(y, y_cv)
    bias = mse - var
    return mse, bias, var
```


Применение PLS

```
coefs = []
list_components = list(range(1, X.shape[1]+1))
for n_comp in list_components:
    pls = PLSRegression(n_components=n_comp)
    pls.fit(X, y)
    scaler = StandardScaler()
    coef = pls.coef_.reshape(-1, 1)
    coef = scaler.fit_transform(coef)
    coefs.append(coef.reshape(1, -1))

plt.figure(figsize=(7, 5))
plt.plot(list_components, np.vstack(coefs))
plt.legend(X.columns, loc='upper right')
plt.axhline(y=0, color="black")
plt.show()
```


Оценка важности переменных в PLS

■ VIP статистика (Variable importance in projection) оценивает важность каждого предиктора x_j с учетом значений его коэффициентов w_{jk} в проекции на каждую из k главных компонент с учетом пропорции описанной ей вариации отклика SSY_k/SSY_{total} :

$$vip^{2}(x_{j}) = \sum_{k} w_{jk}^{2} SSY_{k} / SSY_{total}$$


```
def vip(model):
 t = model.x scores
 w = model.x weights
  q = model.y loadings
  p, h = w.shape
  vips = np.zeros((p,))
  s = np.diag(t.T @ t @ q.T @ q).reshape(h, -1)
 total s = np.sum(s)
 for i in range(p):
      weight = np.array([(w[i,j] / np.linalg.norm(w[:,j]))**2
                         for j in range(h)])
     vips[i] = np.sqrt(p*(s.T @ weight)/total s)
  return vips
pls = PLSRegression(n components=5)
pls.fit(X, y)
vips=vip(pls)
ind = np.argsort(vips)[::-1]
plt.bar(pls.feature_names_in_[ind], vips[ind])
plt.xticks(rotation=45)
plt.axhline(y=1, linestyle="--")
plt.show()
```

Пропущенные значения

Не все значения атрибутов известны или достоверны
 важная задача, так как многие к ней сводятся (удаление шума, не консистентностей и т.д.)
 Причины появления пропущенных значений
 Ошибки «оборудования» и/или ПО при получении данных от датчиков и из экспериментов
 Удаление несогласованных значений атрибутов
 Просто не введены в систему из-за халатности или ошибки
 Часть данных может быть опциональна с точки зрения бизнес процессов организации, но важна для анализа
 Не хранится правильная история изменений – невозможно

правильно определить значение на момент анализа

- Пропущенные данные:
 - □ Ведут к неточным результатам анализа
 - □ Допускаются не всеми алгоритмами анализа

Методы обработки пропущенных значений

- Игнорировать объект или запись:
 - □ Можем потерять важные объекты (например, опорные вектора)
 - □ Можем «испортить» выборочное распределение
 - □ В некоторых задачах процент пропущенных значений велик (>50%)
- Заполнение пропущенных значений «вручную»:
 - □ Нужен очень грамотный эксперт
 - □ Полностью «вручную» невозможно для больших объемов
 - □ Правила заполнения (импутации) трудно формулировать проблема полноты, противоречивости, достоверности
- Использование глобальной спец. константы типа "unknown"
 - □ Не всеми алгоритмами анализа реализуемо
- Импутация «среднего» или «наиболее ожидаемого» значения
 - □ По всей выборке, по страту (срезу), по классу, по кластеру и т.д.
 - Наиболее популярный метод
 - □ но можем «испортить» выборочное распределение
- Методы импутации на основе DM
 - □ Будем рассматривать

Основные подходы к подстановке пропусков

- Импутация константным значением все пропуски для переменной заменяются на:
 - Моду (для категориальных) или мат. ожидание,
 или пользовательскую константу
 или робастные оценки

- Импутация псевдослучайным значением:
 - □ В соответсвии с распределением
- Импутация прогнозом (оценкой)
 - □ Только деревья решений (но можно делать свои модели)

Для неслучайных пропусков – индикаторные переменные

- □ Одна на все наблюдение
- □ Своя для каждой переменной

Оценки

$$X_i = f(X_1, \ldots, X_p)$$

Пример Simple Imputer

```
X_ = X[["alcohol", "pH"]].values

X_nan = X_.copy()
# Генерация пропусков
ind = np.random.rand(X_nan.shape[0]) < 0.2
X_nan[ind, 0] = np.nan
np.isnan(X_nan).sum()</pre>
```

```
from sklearn.impute import SimpleImputer

X_only_nan = X_nan[:, 0].reshape(-1, 1)
a = pd.DataFrame(X_only_nan, columns=["Source"])
imp = SimpleImputer(strategy='most_frequent')
imp.fit_transform(X_only_nan)
```

970

Alcohol - Imputer

Пример KNN Imputer

```
from sklearn.impute import KNNImputer
a = pd.DataFrame(X_only_nan, columns=["Source"])
knn_imp = KNNImputer(n_neighbors=2)
knn_imp.fit_transform(X_nan)[:, 0]
```

Alcohol - Imputer

Преобразование непрерывных переменных

- Простые преобразования:
 - □ Функции от исходной (log, exp, ...)

□ Нормализация (z-score, центрирование, сведение на [0,1])

$$v' = \frac{v - mean_A}{stand _ dev_A}$$
 $v' = \frac{v - min_A}{max_A - min_A}$

- Дискретизация (равные интервалы, равные группы, адаптивные интервалы с учетом отклика и т.д.)
- Адаптивные преобразования перебор простых и выбор лучшего по некоторому критерию:
 - □ Нормальность распределения результата
 - □ Корреляция с откликом
 - □ Оптимальная дискретизация

Преобразование категориальных переменных

Level	D{\wedge}	D _B	D _C	$D_{\mathcal{D}}$	D _E	D_F	D _C	D_{tt}	D.
A	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	0
С	0	0	1	0	0	0	0	0	0
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	0
F	0	0	0	0	0	1	0	0	0
G	0	0	0	0	0	0	1	0	0
Н	0	0	0	0	0	0	0	1	0
I	0	0	0	0	0	0	0	0	1

- Бинарное кодирование
- Выделение категории редких признаков
- Группировка признаков по поведению отклика (будет подробнее позже)

Level	N _i	ΣY _i	p i
Α	1562	430	0.28
В	970	432	0.45
С	223	45	0.20
D	111	36	0.32
E	85	23	0.27
F	<u>50</u>	20	0.40
G	23	8	0.35
■ H	17	5	0.29
1	12	6	0.50
J	5	5	1.00

Преобразование непрерывных переменных (Normalization)

```
X_{-} = X["alcohol"].values.reshape(-1, 1)
```

```
from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler
a = pd.DataFrame(X_, columns=["Source"])

fig, axes = plt.subplots(ncols=2, figsize=(10, 4))
fig.suptitle("Alcohol - Normalization")
sns.kdeplot(a[["Source"]], ax=axes[0], fill=True)

mm = MinMaxScaler().fit_transform(X_)
ma = MaxAbsScaler().fit_transform(X_)
```



```
from sklearn.preprocessing import StandardScaler, RobustScaler
st_sc = StandardScaler().fit_transform(X_)
rb_sc = RobustScaler().fit_transform(X_)
```

Alcohol - Standartization


```
from sklearn.preprocessing import QuantileTransformer, KBinsDiscretizer

q_tr = QuantileTransformer(n_quantiles=5).fit_transform(X_)
kbn = KBinsDiscretizer(encode="ordinal").fit_transform(X_)
```

Alcohol - Discretization

Преобразование категориальных переменных

```
from sklearn.preprocessing import LabelEncoder
print("quality", quality[-5:, 0])
le = LabelEncoder()
labels = le.fit_transform(quality)
print("Classes", le.classes_)
print("LabelEncoder")
print(labels[-5:])
from sklearn.preprocessing import OneHotEncoder
print("quality", quality[-5:, 0])
ohe = OneHotEncoder()
code = ohe.fit_transform(quality).toarray()
print("OneHotEncoder")
print(code[-5:])

available [6: 5: 7.6]
```

quality [6 5 6 7 6]

LabelEncoder

[3 2 3 4 3]

Classes [3 4 5 6 7 8 9]

```
quality [6 5 6 7 6]
OneHotEncoder
[[0. 0. 0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0.]
```