Tarea - Ejercicio Empírico 3

Profesor: Mauricio Tejada - Estudiante: Matías Vicuña

26/09/2022

Parte 1
Gráfico 1.1

Índice Producción Manufacturero Linealizado

Gráfico 1.2

Diferencia – Índice Producción Manufacturero

Parte 2

Modelos Autoregresivos

Ahora presentamos el modelo Autoregresivo (AR), la cual en el modelo autoregresivo de p rezagos se define como:

$$AR(p) = y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t$$

Ahora, construimos los modelos desde el AR(1) al AR(8):

Table 1: Modelo AR(1), AR(2) y AR(3)

	Dependent variable:		
	AR(1)	$rac{ ext{dif.lipm}}{ ext{AR}(2)}$	AR(3)
$\overline{L(dif.lipm)}$	-0.482*** (0.069)	()	()
L(dif.lipm, 1:2)1	(0.000)	-0.609***	
L(dif.lipm, 1:2)2		(0.076) $-0.284***$ (0.076)	
L(dif.lipm, 1:3)1		(0.010)	-0.668***
L(dif.lipm, 1:3)2			(0.079) -0.413^{***}
L(dif.lipm, 1:3)3			(0.089) $-0.208***$ (0.078)
Constant	$0.002 \\ (0.004)$	$0.002 \\ (0.004)$	0.002 (0.004)
Adjusted R ²	0.230	0.282	0.305
Residual Std. Error F Statistic	0.052 (df = 159) 48.857*** (df = 1; 159)	0.049 (df = 157) 32.149*** (df = 2; 157)	0.049 (df = 155) 24.135*** (df = 3; 155)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: Modelo AR(4), AR(5) y AR(6)

	Dependent variable:		
	A D (4)	dif.lipm	AD(c)
	AR(4)	AR(5)	AR(6)
L(dif.lipm, 1:4)1	-0.757***		
T (1101)	(0.074)		
L(dif.lipm, 1:4)2	-0.586***		
T / 1:f 1: 1.4\9	$(0.088) \\ -0.480^{***}$		
L(dif.lipm, 1:4)3			
L(dif.lipm, 1:4)4	$(0.088) \\ -0.404^{***}$		
L(dif.iipiii, 1.4)4	-0.404 (0.074)		
L(dif.lipm, 1:5)1	(0.014)	-0.705***	
L(dii.iipiii, 1.0)1		(0.081)	
L(dif.lipm, 1:5)2		-0.524***	
-())-		(0.096)	
L(dif.lipm, 1:5)3		-0.407^{***}	
(1 , ,		(0.100)	
L(dif.lipm, 1:5)4		-0.306^{***}	
		(0.096)	
L(dif.lipm, 1:5)5		0.132	
		(0.082)	
L(dif.lipm, 1:6)1			-0.654***
_ /			(0.075)
L(dif.lipm, 1:6)2			-0.642^{***}
T (1.61. 4.6) 0			(0.092)
L(dif.lipm, 1:6)3			-0.566^{***}
T (1:f 1: 1.c) 4			$(0.097) \\ -0.514***$
L(dif.lipm, 1:6)4			-0.514 (0.097)
L(dif.lipm, 1:6)5			(0.037) -0.143
L(an.npm, 1.0)0			(0.092)
L(dif.lipm, 1:6)6			-0.402^{***}
=(ap.iii, 1.0)0			(0.077)
Constant	0.003	0.003	0.004
	(0.004)	(0.004)	(0.003)
Adjusted R ²	0.414	0.420	0.505
Residual Std. Error	0.045 (df = 153)	0.045 (df = 151)	0.041 (df = 149)
F Statistic	$28.689^{***} (df = 4; 153)$	$23.586^{***} (df = 5; 151)$	$27.387^{***} (df = 6; 149)$

Note: *p<0.1; **p<0.05; ***p<0.01

Table 3: Modelo AR(7) y AR(8)

	Dependent variable: dif.lipm	
	AR(7)	AR(8)
L(dif.lipm, 1:7)1	-0.639***	
	(0.083)	
L(dif.lipm, 1:7)2	-0.636***	
_ /	(0.093)	
L(dif.lipm, 1:7)3	-0.546***	
- ((0.106)	
L(dif.lipm, 1:7)4	-0.491***	
T / 1:01: 4 F) F	(0.109)	
L(dif.lipm, 1:7)5	-0.117	
T / 1:61: 1 5\0	(0.107)	
L(dif.lipm, 1:7)6	-0.377***	
T / 1:C1: 1 7\7	(0.094)	
L(dif.lipm, 1:7)7	0.040	
I (dif limm 1.0)1	(0.085)	0.625***
L(dif.lipm, 1:8)1		-0.635^{***}
L(dif.lipm, 1:8)2		$(0.082) \\ -0.670^{***}$
L(dif.lipiii, 1.6)2		-0.070 (0.098)
L(dif.lipm, 1:8)3		-0.561^{***}
E(dif.iipiii, 1.0)5		(0.107)
L(dif.lipm, 1:8)4		-0.540^{***}
E(an.npm, 1.0)1		(0.116)
L(dif.lipm, 1:8)5		-0.170
2(4111117111711171)		(0.116)
L(dif.lipm, 1:8)6		-0.449^{***}
(1 / /		(0.108)
L(dif.lipm, 1:8)7		-0.018
, , ,		(0.101)
L(dif.lipm, 1:8)8		-0.096
, - ,		(0.086)
Constant	0.004	0.004
	(0.003)	(0.003)
Adjusted R ²	0.501	0.507
Residual Std. Error	0.042 (df = 147)	0.041 (df = 145)
F Statistic	23.055^{***} (df = 7; 147)	$20.675^{***} (df = 8; 145)$
	, , ,	,
Note:	*p<0.1; **p<0.05; ***p<0.01	

Finalizamos comprobando cual de los modelos se ajusta mejor, para ello usamos el método AIC, que se determina con la siguiente formula:

$$AIC(p) = ln\left(\frac{SRC(p)}{T}\right) + (p+1)\frac{2}{T}$$

```
## Models AIC
## 1 AR(1) -952.649589727125
## 2 AR(2) -959.969749553088
## 3 AR(3) -958.090672250325
## 4 AR(4) -976.911021480577
## 5 AR(5) -970.489231730488
## 6 AR(6) -987.631945393241
## 7 AR(7) -978.475887947625
## 8 AR(8) -972.183619686683
```

Viendo el resultado que nos arroja AIC, concluimos que la afirmación es correcta, dado que el valor mínimo se presenta en el modelo de AR(6).

Parte 3

```
## Linear hypothesis test
##
## Hypothesis:
## L(dif.lipm,6)5 = 0
## L(dif.lipm,6)6 = 0
##
## Model 1: restricted model
## Model 2: dif.lipm ~ L(dif.lipm, 1:6)
##
##
    Res.Df
               RSS Df Sum of Sq
                                          Pr(>F)
## 1
        151 0.30584
## 2
        149 0.25389 2 0.051956 15.246 9.465e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Respuesta: Según lo que nos entregó la hipótesis, se rechaza la hipótsis nula y comprobamos que el mejor modelo es el AR(6).

Parte 4

Generamos la predicción usando la función predict, en dónde para las predicciones j periodos adelante se determina de la siguiente forma:

$$y_{T+j|T} = \phi_0(1 + \phi_1 + \phi_1^2 + \dots + \phi_1^{j-1}) + \phi_1^j y_T$$

```
## fecha prediccion
## 1 Aug 2022 0.059692019433705
## 2 Sep 2022 -0.0798415203958785
## 3 Oct 2022 0.0793682722999781
## 4 Nov 2022 -0.0392038871163718
## 5 Dec 2022 0.00885125160621689
```

Parte 5

Usando los valores que obtuvimos de la predicción en la parte anterior, realizamos unos calculos para lograr conseguir el índice de diciembre de 2022.

```
IPM<sub>dic22</sub>: ## [1] 100.4552
```

Parte 6

Luego de hacer todos los calculos anteriores y definir el índice del año 2022, usamos el método ar y forecast para desarrollarlo, mostraré los códigos a usar y desarrollar.

```
#***** Parte 6 *****
reg <- ar(dif.lipm, order.max = 8, aic = TRUE)</pre>
reg$aic
##
                                              3
                                                                                6
                                                                     5
                          49.649969 44.320724 19.912245
## 102.476060
               61.676525
                                                            20.258979
                                                                         0.000000
##
            7
                       8
     1.955271
                3.128444
reg_final <- ar(dif.lipm, order.max = 6)</pre>
resultados <- forecast(reg_final, h = 5, level = 0.95)
resultados
##
            Point Forecast
                                 Lo 95
## Aug 2022
               0.059692019 -0.02301321 0.14239725
## Sep 2022
              -0.079841520 -0.18021025 0.02052721
## Oct 2022
               0.079368272 -0.02200003 0.18073657
## Nov 2022
              -0.039203887 -0.14057269 0.06216492
               0.008851252 -0.09251755 0.11022006
## Dec 2022
# Respuesta: Se llega a los mismo resultados anteriormente conseguidos en el apartado 4, comprobando su
```