Vortrag

für Seminar "Maschinelles Lernen"

von Nikos Vormwald

Models and Issues in Data Stream Systems

- Neue Klasse von datenintensiven Anwendungen
 - Daten sind Datenstrom
- Beispiele
 - Finanzanwendungen, Netzwerküberwachung
 - Sicherheit, Telekommunikation, Internet
 - Produktion, Sensornetzwerke, etc.

Grenzen herkömmlicher Methoden

- Alle Daten sammeln + in Datenbank speichern
- DBMS = Database Managment System
 - Anfragen <u>präzise</u> beantworten (alle Daten betrachten)
 - Aber: nicht möglich bei Datenströmen, da Daten zu groß oder nicht verfügbar (kommen erst in Zukunft an)
 - Anfragen <u>sofort</u> beantworten
 - Aber: Datenströme müssen über Zeitraum beobachtet werden (Antwort wird immer genauer)
- => Bedarf für neue Forschung

Data Stream Managment System (DSMS)

Aufbau

Die Datenströme

- Einzelne Dateneinheiten sind relationale Tuple
 - Bsp.: (src:144.56.7.2; dest:31.77.1.7; len:200)
- In mehreren verschiedenen Datenströmen
- Sind unbegrenzt/unberechenbar
- Ankunft: online, sehr/unterschiedlich schnell
- System hat keine Kontrolle über Reihenfolge
- Eingetroffene Elemente werden gelöscht
- Archivierung (langsam, teuer, begrenzt)

- Unterscheidung in
 - One-time queries
 - Schnappschuss vom System
 - Antwort basierend auf Schnappschuss
 - Continuous queries
 - kontinuierlich berechnet während Datenstrom eintrifft
 - Antwort entspricht dem Datenstrom, der bis dahin eingetroffen ist
 - Gespeichert und aktualisiert
 - Oder selbst ein Datenstrom

- Zweite Unterscheidung in
 - Predefined queries
 - Erreichen DSMS vor relevanten Daten
 - Ad hoc queries
 - Erreichen DSMS online während des Datenstroms
 - Nicht im Vorraus bekannt
 - Korrekte Antwort hängt von Daten ab, die bereits eingetroffen sind (mögl. bereits verloren)

Zahlenbeispiel

DSMS in Beispielen

- Traderbot (Finanz Such Maschine)
 - Datenströme: Kurs-Ticker, Nachrichten
- iPolicy Networks (Sicherheitsplattform)
 - Datenströme: multi-gigabit Netzwerk Paketströme
 - => Firewall, Intrusion-Detection
- Yahoo (Personalisierung, load-balancing)
 - Datenströme: Clickstreams (web logs)
- Sensorenüberwachung/analyse
 - Datenströme: Daten von Sensoren

Traderbot.com

37

Anfragen beantworten (Inside DSMS)

2 Operationen

- Generell gilt: 2 Operationen:
- update(tuple)
 - Neues Element aus Datenstrom wird verarbeitet
 - Datenstruktur wird verändert/angepasst
- computeAnswer()
 - Antwort auf Anfragen wird erneuert/aktualisiert

Begrenzter Speicher

- Datenströme sind unbegr. -> großer Speicher
- Vorschlag: Festplattenplatz benutzen
- continuous queries
 - Neue Daten treffen ein; alte noch verarbeitet
 - > Algorithmus muss Schritt halten
 - > Beschränkt auf Hauptspeicher (RAM)

Approximierte Antworten

- Exakte Antwort nicht immer möglich
- Aber: Approximationen oft akzeptabel
- Viele Möglichkeiten zur Approximationen
 - Sliding Windows
 - Batch Processing
 - Sampling
 - Synopses/Sketches
 - Decision Trees
 - Cluster

• ...

Sliding Windows

- Idee: nicht alle Daten betrachten, nur aktuellste
- 2 Arten:
 - Physikalische (letzten 100 Elemente des Stroms)
 - Logische (Elemente der letzten 15 Minuten)
- Vorteile:
 - Fest definiert, einfach nachzuvollziehen, deterministisch
 - Macht Sinn (aktuellere Daten meistens bedeutender)

Batch Processing

- Update = schnell, computeAnswer = langsam
- Lösung: Daten werden in Batches verarbeitet
- D.h.: Datenelemente werden gebuffert; Antwort auf Anfrage wird periodisch berechnet
- Nachteil:
 - Antwort ist nicht immer die aktuellste Antwort
- Vorteile:
 - Antwort ist korrekt (gewesen in der Vergangenheit)
 - Gut bei impulsartigem Datenstrom
 - Schnelle Übertragung = buffern; langsam = berechnen

Sampling

- Update = langsam, computeAnswer = schnell
- Zeit um Element zu verarbeiten > Intervall zwischen Elementen im Datenstrom
 - zwecklos alle Elemente verarbeiten zu wollen
- Elemente werden verworfen
- -> Antwort wird mit Auswahl an Elementen berechnet
- Nachteil:
 - Annäherung an richtige Antwort nicht garantiert

Synopsis Data Structures

- Idee: update und computeAnswer schneller machen
- Datenstruktur nicht Exakte Representation, sondern Synopsis/Sketch (= annährende Datenstruktur)
- => Minimum an Berechnungzeit pro Element
- Alternative zu Batch Processing & Sampling
- ergebnisreiches Forschungsgebiet

Blocking Operators (1/2)

- Benötigen gesamte Eingabe um Ergebnis zu produzieren
- Bsp.: sort, sum, count, min, max, avg
- Datenstrom unendlich -> nie Ergebnis
- Aber: Operationen notwendig
- Ansatz 1: Operationen ersetzen durch nicht blockierende mit annähernd selben Resultat
 - sort -> juggle (lokales Umordnen der Datenstroms)
 - Andere Ersetzungen? Fehlerabschätzung?

Blocking Operators (2/2)

- Ansatz 2: Datenstrom erweitern mit Informationen darüber was noch kommen kann
 - "für alle zukünftigen Tuple gilt: daynumber > 10"
 - -> Für 1-10 kann blockende Operation angewendet werden, da alle nötigen Daten vorhanden sind
- Andere Informationen über Datenstrom:
 - geclustert? ab/aufsteigend?
- Kann helfen Operationen zu "entblocken"

Zugriff auf vergangene Daten

- Datenelement verloren, wenn vorbeigeströmt
- Ad hoc queries mögl. nicht korrekt beantwortbar
- Lösung 1: Ad hoc queries nur für zukünftige Daten berechnen
 - Akzeptabel für viele Anwendungen
- Lösung 2: Zusammenfassung vom Datenstrom bilden
 - = annährende Antwort auf zukünftige ad hoc queries
 - Problem: Was speichern? Wie zusammenfassen?

STREAM

- STanford stREam DatA Manager
- Im Web:
 - Projekt eingestellt; Java-Exception
- Übersicht
 - Sprache
 - Timestamps
 - Anfrage Verarbeitungsarchitektur

Sprache

- Sprache f
 ür Anfragen: SQL (modifiziert)
 - Neu: window specification
 - partition by: jede Gruppe in eigenem Fenster
 - partition by customer_id
 - Fenstergröße:
 - rows 10 preceding = physische Größe
 - range 15 minutes preceding = logische Größe
 - Filter auf das Fenster
 - where typ = 'long distance'

Anfrage Beispiel

SELECT AVG(Window.minutes)
 FROM
 (SELECT Calls.customer_id, Calls.minutes
 FROM Calls, Customers
 WHERE Calls.customer_id = Customers.customer_id
 AND Customers.typ = 'Gold')
 Window [ROWS 3 PRECEDING]

 => liefert durchschnittliche Länge der letzten 3 Gespräche von 'Gold'-Kunden.

Kunden Datenbank				
customer_typ				
Gold	???			
Gold	???			
Standard	???			
Gold	???			
	customer_typ Gold Gold Standard			

	<u>Strea</u>	<u>am der <i>i</i></u>	<u>Anrute </u>
	Minutes	customer_id	
+	8	2	???
•	3	1	???
	6	3	???
	21	4	???

Sliding	
customer_id	Minutes
2	8
1	3
4	21

avg 10,3

Timestamps Arten

Implicit

- Zeit nicht im Tuple angegeben / nicht wichtig
- Spezielles Feld zu jedem Datentuple hinzugefügt
- Ankunftszeit des Tuples im System

Explicit

- Datenfeld wird für Timestamp verwendet
- Tuple entspricht Ereignis in realer Welt
- ~ Entstehungszeit des Tuples
- Nachteil: können in falscher Reihenfolge am DSM-System eintreffen
 - Aber ungefähr korrekt, Ausgleich durch Buffering

Timestamps Kombination (1/3)

Aber: was bei Kombination aus 2 Streams?

Timestamps Kombination (2/3)

- "best effort"-Ansatz:
 - Keine Garantie für Reihenfolge der neuen Tuples
 - Annahme: frühere Ankunft -> frühere Verarbeitung
 - Ausgabereihenfolge hängt von Implementierung/Zeitplan des Operators ab
 - Tuple bekommt implizites Timestampfeld angehängt bei Produktion durch Operator

Timestamps Kombination (3/3)

- Zweiter Ansatz
 - User spezifiziert in Anfrage, wie neuer Timestamp erstellt wird
 - Anfrage: "Stream A mit Stream B kombinieren"
 - -> Timestamp vom erstgenannten Stream übernommen
- Nachteil: Buffering nötig um sortierte Ausgabe zu produzieren

Anfrage Verarbeitungsarchitektur

Verbleibt im System für unbegrenzte Zeit

Operator1 = z.B.: join, Operator2 = z.B.: avg Synopsis können Sliding Windows etc sein

Zentraler scheduler

- Erlaubt Operatoren die Ausführung
 - Zeitbasiert: "Operator1 darf 10 Sekunden laufen"
 - Quantitativ:
 - "Operator1 darf 10 Eingangstuple verarbeiten"
 - "Operator1 muss 10 Ausgangstuple produzieren"
- Ausführung eines Operators beinhaltet:
 - Aktualisieren der Synopsis (update(tuple))
 - Ausgabe des Ergebnisses (computeAnswer())
- Verschiedene Policies möglich
 - Welcher Operator wann? Wie lange? Unter welchen Bedingungen?

Operatoren

- In STREAM adaptiv designed
 - > je mehr Speicher, desto genauere Ergebnisse
 - Speicher kann online für Operatoren verringert/erhöht werden
 - = Speicher <-> Genauigkeit Tradeoff:
- Fragen
 - Wie können annährende Ergebnisse erzeugt werden?
 - Wie verhalten sich annährende Ergebnisse wenn man sie miteinander kombiniert?
 - Wie soll Speicher an Operatoren verteilt werden, um genauere Ergebnisse zu produzieren?
 - Wie optimalen Plan aus Anfrage erstellen?

Herrausforderungen

- Mehrere laufende Anfragen -> mehrere Pläne müssen Ausführungszeit zugeteilt bekommen
- Zeitvarrierende Raten der Eingangsströme/Ausgangströme
 - Muss Synchronisiert werden
 - Buffer für Eingangsstreams verwalten
 - Verändern der Speicherzuteilung online
 - Verändern des Ausführungsplans online

Algorithmen

- Data Stream Algorithmus:
 - Eingabe: x1,...,xn,... (Datenstrom)
 - Nur einmal gescannt in steigender Reihenfolge
 - Ausgabe: Wert einer Funktion f erhalten, anhand des bisher gesehen Datenstroms
- Komplexität: Speicherverbrauch, Zeit
 - Sollte unabhängig sein von N (=Anzahl gescannter Elemente = unendlich) -> nicht möglich
 - Unter O(poly(log N)) als "well-solved" betrachtet
 - Machmal nichtmal mit Annäherungen möglich

Algorithmen

- Viele Bemühungen vorhandene Algorithmen auf Data Stream Modell anzupassen und zu optimieren
- Aproximation um Zeit/Speicher zu sparen
- Forschungsarbeiten zu Vielzahl von Algorithmen
- Suche nach neuen Optimierungsmöglichkeiten
- Viele offene Fragen...

Zusammenfassung

- Arbeiten mit Datenströmen erfordert neue Überlegungen für
 - Datenmanagment
 - Anfrageverarbeitung
 - Algorithmen
- "Meta"-Fragen:
 - Erweiterung von normaler Datenbank-Technologie ausreichend? (oder komplett neue Methoden?)
 - Jede Anwendung von Grund auf neu entwickeln? (oder vielseitig einsetzbare Grundsysteme entwickeln?)
 - Unlösbare Anwendungen für DSMS?

Quellen

- Paper "Models and Issues in Data Stream Systems"
- www.traderbot.com
- www-db.stanford.edu/stream