

Reachability of Fair Allocations via Sequential Exchanges

Ayumi Igarashi

University of Tokyo

Naoyuki Kamiyama

Kyushu University

Warut Suksompong

National Univ. of Singapore

Sheung Man Yuen

National Univ. of Singapore

Fair Division of Indivisible Goods

- Fair Division of Indivisible Goods
 - The study of allocating goods fairly among competing agents.
- **Example.** A company wishes to allocate its employees to different departments in a fair manner.
 - agent → head of department
 - o good → employee

agents

- **Fairness notion**
 - Envy-freeness up to one good (EF1)

goods

An EF1 allocation always exists[†]

Reachability of Fair Allocations

We take a "dynamic" perspective.

- Every month, two employees from different departments will be selected to exchange positions.
- EF1 must be maintained throughout the whole process.
- Question: Is it always possible to reach the desired final allocation?

Reconfiguration

- Reachability problems are also known as reconfiguration problems
- Examples:
 - Minimum spanning tree¹
 - Graph coloring²
 - Perfect matching³

Reachability has also been studied in voting^{4 5}

¹ On the Complexity of Reconfiguration Problems (Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno, 2011)

² Finding Shortest Paths between Graph Colorings (Johnson, Kratsch, Kratsch, Patel, and Paulusma, 2016)

³ The Perfect Matching Reconfiguration Problem (Bonamy, Bousquet, Heinrich, Ito, Kobayashi, Mary, Mühlenthaler, and Wasa, 2019)

⁴ On Swap-Distance Geometry of Voting Rules (Obraztsova, Elkind, Faliszewski, and Slinko, 2013)

⁵ On Swap Convexity of Voting Rules (Obraztsova, Elkind, and Faliszewski, 2020)

Exchange Graph

Vertices

All allocations with the same size vector.

Edges

Two allocations are adjacent iff they can be reached via an exchange.

Question: Is the EF1 exchange graph always connected?

Two Agents, General Utilities

• **Theorem.** X There exists an instance for **two agents** such that the EF1 exchange graph is **not connected**.

Two Agents, Identical / Binary Utilities

- Theorem. ✓ The EF1 exchange graph is connected for any instance with two agents and identical utilities.
- Theorem. ✓ The EF1 exchange graph is connected for any instance with two agents and binary utilities.

Three or More Agents

• Theorem. X For every $n \ge 3$, there exists an instance for n agents with identical utilities such that the EF1 exchange graph is not connected.

- Theorem. X For every $n \ge 3$, there exists an instance for n agents with binary utilities such that the EF1 exchange graph is not connected.
- Theorem. ✓ The EF1 exchange graph is connected for any instance with identical binary utilities.

Connectivity is PSPACE-Complete

- Theorem. Determining the existence of an EF1 exchange path between two EF1 allocations is PSPACE-complete.
- Proof. Use a reduction from Perfect Matching Reconfiguration.†

[†] The Perfect Matching Reconfiguration Problem (Bonamy, Bousquet, Heinrich, Ito, Kobayashi, Mary, Mühlenthaler, and Wasa, 2019)

Summary for Connectivity

utilities	general	identical	binary	identical binary
two agents	X	✓	√	✓
≥ three agents	PSPACE-complete	X	X	✓

Optimality of EF1 Exchange Path

We only consider instances where the EF1 exchange graph is connected.

- Question: Is there always an optimal EF1 exchange path?
- Theorem. X There exists an instance for two agents such that the EF1 exchange graph is connected, but for some pair of EF1 allocations, no optimal EF1 exchange path exists between them.

utilities		general	identical	binary	identical binary
two agents	connected? optimal?	X	✓	✓	✓
≥ three agents	connected? optimal?	X	X	X	√

Two Agents, Identical / Binary Utilities

 Theorem. ✓ An optimal EF1 exchange path exists between any two allocations in any instance with two agents and identical or binary utilities.

utilities		general	identical	binary	identical binary
two agents	connected? optimal?	X	√	√	√ √
≥ three agents	connected? optimal?	X	X	X	✓

Three or More Agents

- **Theorem.** X For every $n \ge 3$, there exists an instance for n agents with identical binary utilities such that the EF1 exchange graph is connected, but for some pair of EF1 allocations, no optimal EF1 exchange path exists between them.
- Theorem. Determining the existence of an optimal EF1 exchange path between two EF1 allocations is NP-hard, even for four agents with identical utilities.
- Theorem. Finding the optimal number of exchanges from the initial allocation to the final allocation on the exchange graph is NP-hard (disregarding the EF1 property).

utilities		general	identical	binary	identical binary
two agents	connected? optimal?	X	*	√	*
≥ three agents	connected? optimal?	X	X	X	X

Conclusion

Summary

0	utilities		general	identical	binary	identical binary
	two agents	connected? optimal?	X	√ √	√ ✓	< \
	≥ three agents	connected? optimal?	X	X	X	х

- Connectivity of EF1 exchange graph is PSPACE-complete.
- Optimality of EF1 exchange path is NP-hard.
- $_{\circ}$ Finding optimal number of exchanges (disregarding EF1) is NP-hard.

Future work

- Transfers, instead of exchanges
- Other fairness notions besides EF1