

微算機實驗報告

Lab #11

姓名:**溫環華**

系級:**電機系**

學號:0710872

上課時間:2021-12-14

- 、實驗目的:

We learned the principle of the buzzer, the calculation method of the scale frequency and use the internal TIMER interrupt to control the square wave output and emit different scales.

三、程式流程圖:

四、問題與討論:

1. 試根據你所設計的程式架構,解說如何實現蜂鳴器的長短音功能。

By using 2 timers which is timer 0 and Timer 1 we can control the length of the tone, the longer tone we can assign it to Timer 1 using the interrupt function. The value of Timer 1 must be longer than Timer 0.

2. 假設要更改音色,試問要如何更改?

We can change the tone's frequency by changing the table value. The value of the table is calculated by the frequency and the clock of the microcomputer.

五、程式碼與註解:

1.

```
ROW2:
   MOV PO, #OBFH
                       // Set value #OBFH to PO
    CALL DELAY
                        // Call delay function
                        // Set value PO to A
   MOV A, PO
   ANL A,#OFH
                       // Subtract value in A by #0FH
   MOV RO,#4
                       // Set value #4 to RO
                       // Compare if A = #0FH, jmp to COL1 if false, Continue if true
   CJNE A, #0FH, COL1
   MOV PO, #ODFH
                       // Set value #ODFH to PO
   CALL DELAY
                        // Call delay function
   MOV A, PO
                       // Set value PO to A
   ANL A, #OFH
                       // Subtract value in A by #0FH
                       // Set value #8 to RO
   MOV RO,#8
   CJNE A, #0FH, COL1
                       // Compare if A = #OFH, jmp to COL1 if false, Continue if true
ROW4:
   MOV PO, #OEFH
                        // Set value #0EFH to P0
   CALL DELAY
                        // Call delay function
   MOV A, PO
                        // Set value PO to A
   ANL A, #OFH
                        // Subtract value in A by #0FH
                       // Set value #12 to RO
   MOV RO.#12
                       // Compare if A = \#0FH, jmp to COL1 if false, Continue if true // Jump to ROW1
   CJNE A, #OFH, COL1
   JMP ROW1
COL1:
   CJNE A, #0EH, COL2
                       // Compare if A = #OEH, jmp to COL2 if false, Continue if true
   MOV R1,#0
                       // Set value #0 to R1
// Jump to LOOF
   JMP LOOP
COL2:
   CJNE A, #ODH, COL3
                        // Compare if A = #ODH, jmp to COL3 if false, Continue if true
   MOV R1,#1
                       // Set value #1 to R1
   JMP LOOP
                       // Jump to LOOP
COL3:
   CJNE A, #OBH, COL4
                       // Compare if A = #OBH, jmp to COL4 if false, Continue if true
                        // Set value #2 to R
// Jump to LOOP
   MOV R1.#2
   JMP LOOP
   CJNE A, #07H, ROW1 // Compare if A = #07H, jmp to ROW1 if false, Continue if true
   MOV R1.#3
                       // Set value #3 to R1
   JMP LOOP
                        // Jump to LOOP
LOOP:
   MOV B, #2
                       // Set value #2 to B
                        // Set RO to A
   MOV A,RO
   ADD A,R1
                        // Set R1 to A
   MUL AB
                        // Multiply A and B
                        // Set A to R2
   MOV R2,A
   MOVC A, @A+DPTR
                       // Set A = A + DPTR
   MOV R3,A
                        // Set A to R3
                        // Set R3 to Timer 0 High
   MOV THO, R3
   INC R2
                        // Increment R2
                       // Set A to R2
// Set A = A + DPTR
   MOV A,R2
   MOVC A, @A+DPTR
   MOV R4,A
                        // Set A to R4
                        // Set R4 to Timer 0 Low
   MOV TLO, R4
   SETB TRO
                        // Run Timer 0
   SETB TR1
                        // Run Timer 1
   JMP ROW1
                        // Jump to ROW1
INTERRUPT:
   MOV TH1,#60
                        // Set #60 to Timer 1 High
    MOV TL1, #176
                        // Set #176 to Timer 1 Low
   DJNZ R5, RETURN
                        // Decrement R5, if zero jump to RETURN
    CLR TRO
                        // Clear Timer O
    CLR TR1
                        // Clear Timer 1
   MOV R5,#20
                        // Set #20 to R5
```

```
RETURN:
    RETI
                            // Return
COUNTER:
    CPL P1.0
                            // Complement P1.0 Value
                            // Set R3 to Timer 0 High
// Set R4 to Timer 0 Low
// Return
    MOV THO,R3
MOV TLO,R4
    RETI
DELAY:
    MOV R6,#0FH
DELAY1:
   MOV R7, #01FH
DELAY2:
    DJNZ R7, DELAY2
    DJNZ R6, DELAY1
    RET
TABLE:
    DB 196,12
    DB 202,28
    DB 208,21
    DB 211,8
    DB 216,5
    DB 220,16
    DB 224,12
    DB 226,4
END
2.
                       // Open 0000H address
// Jump to START
// Open 00BH address
ORG 0000H
JMP START
ORG OOBH
                        // Jump to COUNTER
// Open 001BH address
JMP COUNTER
ORG 001BH
                        // Jump to INTERRUPT 
// Open 0050H address
JMP INTERRUPT
ORG 0050H
START:
    SETB EA
                                 // Enable All interrupt
                                 // Enable Interrupt 0
    SETB ETO
                                // Set value #00010000B to TMOD
// Clear Timer 0 Flag
    MOV TMOD, #00010000B
    CLR TF0
    SETB ET1
                                 // Enable Interrupt 1
                                // Clear Timer 1 Flag
    CLR TF1
                                // Set #TABLE to DPTR
// Set value #0 to R0
// Set value #60 to R3
// Set value #176 to R4
    MOV DPTR, #TABLE
    MOV RO, #0
    MOV R3, #60
    MOV R4, #176
LOOP:
    MOV A, RO
                                // Set value RO to A
    MOVC A, &A+DPTR
                                // Set A = A + DPTR
    MOV R1, A
                                 // Set A to R1
    MOV THO, R1
                                // Set R1 to Timer 0 High
    INC RO
                                 // Increment RO
    MOV A, RO
                                 // Set value RO to A
                                 // Set A = A + DPTR
    MOVC A, @A+DPTR
    MOV R2, A
                                 // Set A to R2
    MOV TLO, R2
                                 // Set R5 to Timer 0 Low
// Increment R0
    INC RO
```

```
// Set value RO to A
   MOV A, RO
   MOVC A, @A+DPTR
                             // Set A = A + DPTR
// Set A to R5
   MOV R5, A
                             // Increment RO
   INC RO
   MOV TH1, R3
                             // Set R3 to Timer 1 High
                             // Set R4 to Timer 1 Low
   MOV TL1, R4
   SETB TR1
                             // Run Timer 1
   SETB TRO
                             // Run Timer 0
   CLR OOH
                             // Clear value at 00H
   JNB 00H,$
                             // if 00H is Zero, Loop this command
                            // Call Delay Function
// Check if RO = #36. If true, continue. If false, jump to LOOP
   ACALL DELAY
   CJNE RO, #36, LOOP
                             // Set #0 to R0
   MOV RO, #0
                             // Jump to LOOP
   JMP LOOP
INTERRUPT:
                             // Set R3 to Timer 1 High
   MOV TH1, R3
   MOV TL1, R4
                             // Set R4 to Timer 1 Low
   DJNZ R5, RETURN
                             // Decrement R5, if zero jump to RETURN
                             // Run 00H
   SETB OOH
                             // Clear Timer 0
// Clear Timer 1
   CLR TRO
   CLR TR1
RETURN:
   RETI
                            // Return
COUNTER:
                             // Complement P1.0 Value
// Set R1 to Timer 0 High
// Set R2 to Timer 0 Low
   CPL P1.0
   MOV THO, R1
   MOV TL0, R2
    RETI
                             // Return
DELAY:
   MOV R6,#07FH
DELAY1:
   MOV R7, #01FH
DELAY2:
   DJNZ R7, DELAY2
   DJNZ R6, DELAY1
    RET
TABLE:
   DB 220,16,5
    DB 211,8,5
    DB 196,12,5
    DB 211,8,5
   DB 216,5,5
   DB 226,4,10
    DB 216,5,5
    DB 220,16,5
    DB 216,5,5
    DB 196,12,5
    DB 211,8,5
    DB 211,8,10
END
```

六、心得:

- 1. We learned how to use the internal Timer as a delay. The internal structure of the Timer/Counter is also introduced. I feel that I can understand the teacher's explanation during the class. The next experiment should be no problem.
- 2. Timer/Counter has some settings to do, and I am not familiar with the whole system at the beginning, I am stuck for a long time, I don't know how to start, and the experiment last week has not been done yet. After reading the handout many times, I kept trying to write, and then asked the TAs to figure out the concept as much as possible, and finally I wrote it out.