rahul-project-1

August 5, 2024

1 NAME:- RAHUL ASHOK PATIL

2 PROJECT:-

SOLVING CLASSIFICATION PREDICTION FOR "MACHINE FAILURE PREDICTION USING SENSOR DATA" DATASET USING LOGISTIC REGRESSION, NAIVES BAYES, CLASSIFICATION, SUPPORT VECTOR CLASSIFIER, K NEAREST NEIGHBOUR, DECISION TREE CLASSIFIER.

3 ABOUT PROJECT:-

THIS DATASET CONTAINS SENSOR DATA COLLECTED FROM VARIOUS MACHINES, WITH THE AIM OF PREDICTING MACHINE FAILURES IN ADVANCE. IT INCLUDES A VARIETY OF SENSOR READINGS AS WELL AS THE RECORDED MACHINE FAILURES.

4 DATA:-

FOOTFALL: The number of people or objects passing by the machine.

TEMPMODE: The temperature mode or setting of the machine.

AQ: Air quality index near the machine.

USS: Ultrasonic sensor data, indicating proximity measurements.

CS: Current sensor readings, indicating the electrical current usage of the machine.

VOC: Volatile organic compounds level detected near the machine.

RP: Rotational position or RPM (revolutions per minute) of the machine parts.

IP: Input pressure to the machine.

TEMPERATURE: The operating temperature of the machine.

FAIL: Binary indicator of machine failure (1 for failure, 0 for no failure).

5 APPROACH:-

1.LOAD THE REQUIRED LIBRARIES SUCH AS PANDAS , MATPLOTLIB, SEABORN , NUMPY, ALONG WITH THE GIVEN DATASET.

2.PERFORM EDA ON THE GIVEN DATASET.

3.IMPORT 'LOGISTIC REGRESSION , NAIVES BAYES, CLASSIFICATION ,SUPPORT VECTOR CLASSIFIER, K NEAREST NEIGHBOUR, DECISION TREE CLASSIFIER'.AND SPLIT THE GIVEN DATASET INTO TRAINING AND TESTING DATA USING

TRAIN_TEST_SPLIT.THEN CALCULATE ACCURACY SCORE USING SKLEARN LIBRARY BY IMPORTING METRICS.

4.ONCE WE GET ACCURACY SCORE OF ALL MODELS FOR BOTH TRAINING AND TESTING DATA, CREATE A DATAFRAME AND LOAD ALL THE ACCURACY OF ALL MODEL.

 $5. \rm VISUALIZATION:$ ONCE THE DATASET IS CREATED PLOT THE ACCURACY OF ALL THE MODELS USING BARPLOT

```
[130]: import pandas as pd
       import matplotlib.pyplot as plt
                                                           #LOADING ALL THE REQURIED
         →LIBRARIES.
       import seaborn as sns
       import numpy as np
[131]: D=pd.read_csv(r"C:\Users\RAHUL PATIL\Downloads\data.csv") #LOADING THE GIVEN
        →DATASET
       D
[131]:
             footfall tempMode
                                   ΑQ
                                       USS
                                            CS
                                                 VOC
                                                      RP
                                                           ΙP
                                                               Temperature fail
       0
                    0
                               7
                                    7
                                         1
                                              6
                                                   6
                                                      36
                                                            3
                                                                          1
                                                                                 1
                  190
                                    3
                                                                                 0
       1
                               1
                                         3
                                              5
                                                   1
                                                      20
                                                            4
                                                                          1
                               7
                                    2
                                         2
                                              6
                                                                                 0
       2
                   31
                                                   1
                                                      24
                                                            6
                                                                          1
                               4
                                    3
                                              5
       3
                   83
                                         4
                                                   1
                                                      28
                                                            6
                                                                          1
                                                                                 0
       4
                  640
                               7
                                    5
                                         6
                                              4
                                                   0
                                                      68
                                                            6
                                                                          1
                                                                                 0
       . .
                                                                         24
       939
                    0
                               7
                                    7
                                              6
                                                   4
                                                      73
                                                            6
                                                                                 1
                                         1
       940
                    0
                               7
                                    5
                                         2
                                              6
                                                   6
                                                      50
                                                                         24
                                                                                 1
                                                            6
       941
                    0
                                             7
                                                                         24
                               3
                                    6
                                         2
                                                   5
                                                      43
                                                            6
                                                                                 1
       942
                    0
                               6
                                    6
                                         2
                                             5
                                                   6
                                                      46
                                                            7
                                                                         24
                                                                                 1
       943
                   18
                               7
                                    4
                                         2
                                             6
                                                   3
                                                            7
                                                                         24
                                                      61
                                                                                 1
       [944 rows x 10 columns]
[132]: D.isna().sum() #CHECKING NULL VALUES
[132]: footfall
                        0
                        0
       tempMode
                        0
       ΑQ
       USS
                        0
       CS
                        0
       VOC
                        0
       RР
                        0
       ΙP
                        0
```

Temperature

dtype: int64

fail

[133]: D.info() #SHOWS ALL INFORMATION REGARDING THE DATA SUCH AS NULL VALUE, COLUMNS.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 944 entries, 0 to 943
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	footfall	944 non-null	int64
1	tempMode	944 non-null	int64
2	AQ	944 non-null	int64
3	USS	944 non-null	int64
4	CS	944 non-null	int64
5	VOC	944 non-null	int64
6	RP	944 non-null	int64
7	IP	944 non-null	int64
8	Temperature	944 non-null	int64
9	fail	944 non-null	int64

dtypes: int64(10)
memory usage: 73.9 KB

[134]: D.describe() #SHOWS THE ALL DETAILS REGARDING ALL NUMERICAL COLUMNS

[134]:		footfall	tempMode	AQ	USS	CS	\
	count	944.000000	944.000000	944.000000	944.000000	944.000000	•
	mean	306.381356	3.727754	4.325212	2.939619	5.394068	
	std	1082.606745	2.677235	1.438436	1.383725	1.269349	
	min	0.000000	0.000000	1.000000	1.000000	1.000000	
	25%	1.000000	1.000000	3.000000	2.000000	5.000000	
	50%	22.000000	3.000000	4.000000	3.000000	6.000000	
	75%	110.000000	7.000000	6.000000	4.000000	6.000000	
	max	7300.000000	7.000000	7.000000	7.000000	7.000000	
		VOC	RP	IP	Temperature	fail	
	count	944.000000	944.000000	944.000000	944.000000	944.000000	
	mean	2.842161	47.043432	4.565678	16.331568	0.416314	
	std	2.273337	16.423130	1.599287	5.974781	0.493208	
	min	0.000000	19.000000	1.000000	1.000000	0.000000	
	25%	1.000000	34.000000	3.000000	14.000000	0.000000	
	50%	2.000000	44.000000	4.000000	17.000000	0.000000	
	75%	5.000000	58.000000	6.000000	21.000000	1.000000	
	max	6.000000	91.000000	7.000000	24.000000	1.000000	

[135]: D.shape #shows no. of rows and columns

[135]: (944, 10)

[136]: plt.figure(figsize=(20,15)) #PLOT HISTPLOT TO SEE DATA DISTRIBUTION
D.hist()
plt.show()

<Figure size 2000x1500 with 0 Axes>

[137]: D.sample(5).plot() #PLOT SAMPLE DATA

[137]: <Axes: >

[138]:	D.corr()*100 #SHOWS CORRELATION						
[138]:		footfall	tempMode	AQ	USS	CS	\
	footfall	100.000000	2.045710	-6.581633	1.945272	2.563835	
	tempMode	2.045710	100.000000	-1.085510	0.214175	-1.395619	
	AQ	-6.581633	-1.085510	100.000000	-15.688392	-9.000961	
	USS	1.945272	0.214175	-15.688392	100.000000	-35.291496	
	CS	2.563835	-1.395619	-9.000961	-35.291496	100.000000	
	VOC	-8.959027	-5.236919	61.856955	-39.947697	4.803661	
	RP	-4.371965	40.878426	9.465632	-3.254931	-2.696842	
	IP	-0.386942	-5.810881	-10.586751	-20.641620	18.573905	
	Temperature	-1.800898	-6.256824	3.432784	-22.512226	14.397186	
	fail	-7.306605	-1.446182	58.323765	-46.657375	1.885493	
		VOC	RP	IP	Temperature	fail	
	footfall	-8.959027	-4.371965	-0.386942	-1.800898	-7.306605	
	tempMode	-5.236919	40.878426	-5.810881	-6.256824	-1.446182	
	AQ	61.856955	9.465632	-10.586751	3.432784	58.323765	
	USS	-39.947697	-3.254931	-20.641620	-22.512226	-46.657375	
	CS	4.803661	-2.696842	18.573905	14.397186	1.885493	
	VOC	100.000000	0.802311	10.362780	20.895564	79.732915	
	RP	0.802311	100.000000	-15.884066	-7.849861	5.366771	

```
ΙP
              10.362780 -15.884066 100.000000
                                                   37.277143
                                                                 8.562354
Temperature
              20.895564
                          -7.849861
                                      37.277143
                                                  100.000000
                                                                19.025688
fail
              79.732915
                           5.366771
                                       8.562354
                                                   19.025688
                                                              100.000000
```

```
[139]: sns.heatmap(D.corr(),annot=True)
plt.show()
```



```
[]: for i in D.columns:
    D.groupby(i)['fail'].mean().plot.bar()
    plt.xlabel(i)
    plt.ylabel('fail')
    plt.show()
```



```
[72]: for i in D.columns:
    plt.boxplot(D[i])
    plt.title(i)
    plt.show()
```



```
[73]: for i in D.columns:
    q1=D[i].quantile(.25)
    q3=D[i].quantile(.75)
    ub=q3+(1.5*(q3-q1))
    lb=q1-(1.5*(q3-q1))
    D.loc[D[i]>ub,i]=ub
    D.loc[D[i]<lb,i]=lb
    plt.boxplot(D[i])
    plt.title(i)
    plt.show()</pre>
```

C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '273.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

```
D.loc[D[i]>ub,i]=ub
```


C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '10.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '7.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '10.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '31.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

C:\Users\RAHUL PATIL\AppData\Local\Temp\ipykernel_11052\2536566110.py:6: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future error of pandas. Value '2.5' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.


```
[74]: D.columns
[74]: Index(['footfall', 'tempMode', 'AQ', 'USS', 'CS', 'VOC', 'RP', 'IP',
             'Temperature', 'fail'],
            dtype='object')
[75]: F=D.drop('fail',axis=1) #STORE DATA INTO FEATURES AND TARGET
      T=D['fail']
[76]: from sklearn.model_selection import train_test_split #SPLIT THE DATASET INTO_
       → TRAIN AND TESTING DATA
      x_train,x_test,y_train,y_test=train_test_split(F,T)
[77]: from sklearn.preprocessing import MinMaxScaler
      M=MinMaxScaler()
[78]: x_train
[78]:
           footfall tempMode
                                ΑQ
                                    USS
                                          CS VOC
                                                   RP
                                                        ΙP
                                                            Temperature
      58
                0.0
                            0
                               6.0
                                      2
                                         6.0
                                                6
                                                   37
                                                       6.0
                                                                    4.0
      472
                9.0
                            7
                               3.0
                                      4
                                         6.0
                                                1
                                                   53 2.0
                                                                   17.0
```

```
857
              0.0
                          3 3.0
                                    3 6.0
                                             1 39 6.0
                                                                23.0
     650
              54.0
                          7 4.0
                                    2 6.0
                                             4 62 5.0
                                                                20.0
     . .
             110.0
                          0 5.0
                                    3 6.0
                                              5 26 4.0
                                                                15.0
     324
     19
              19.0
                          2 2.0
                                    1 4.0
                                             0 36 3.0
                                                                3.5
              0.0
                          7 6.0
                                    7 5.0
                                             0 62 3.0
                                                                3.5
     15
     283
              35.0
                          4 6.0
                                    2 5.0
                                              4 38 2.0
                                                                15.0
                                                                24.0
     925
               0.0
                          0 3.0
                                 4 4.0
                                             0 48 6.0
     [708 rows x 9 columns]
[79]: x_train=M.fit_transform(x_train) #fit the data into model
     x_test=M.transform(x_test)
[80]: x_train
[80]: array([[0. , 0.
                                 , 0.83333333, ..., 0.25 , 0.83333333,
             0.02439024],
                                 , 0.33333333, ..., 0.47222222, 0.16666667,
            [0.03290676, 1.
             0.65853659],
            [0.06946984, 0.42857143, 0.66666667, ..., 0.375 , 0.5
            0.95121951],
            ...,
                      , 1.
            [0.
                                  , 0.83333333, ..., 0.59722222, 0.33333333,
                      ٦.
            [0.12797075, 0.57142857, 0.83333333, ..., 0.26388889, 0.16666667,
             0.56097561],
                                 , 0.33333333, ..., 0.40277778, 0.83333333,
            ГО.
                      , 0.
                      ]])
             1.
[81]: x_test
                 , 0.57142857, 0.33333333, ..., 0.40277778, 0.33333333,
[81]: array([[1.
             0.75609756].
                      , 0.28571429, 0.5 , ..., 0.36111111, 0.33333333,
             0.65853659],
                                 , 0.33333333, ..., 0.29166667, 0.83333333,
            [0.03290676, 1.
             0.75609756],
            [0.12065814, 1.
                                  , 0.83333333, ..., 0.44444444, 0.5
             0.
                      ],
            [1.
                      , 1.
                                  , 0.33333333, ..., 0.26388889, 0.5
             0.80487805],
                                 , 0.66666667, ..., 0.25 , 0.66666667,
            [0.
                 , 0.
             0.70731707]])
```

853

19.0

3 5.0

3 7.0

3 46 4.0

23.0

6 LOGISTIC REGRESSION:-

```
[82]: from sklearn.linear_model import LogisticRegression
      L=LogisticRegression()
      L.fit(x_train,y_train)
[82]: LogisticRegression()
[83]: L1=L.score(x_train,y_train)*100 #for training accuracy
[83]: 90.3954802259887
[84]: L2=L.score(x_test,y_test)*100 #for testing accuracy
[84]: 93.64406779661016
     7 SVC:-
[85]: from sklearn.svm import SVC
      S=SVC()
      S.fit(x_train,y_train)
[85]: SVC()
[86]: S1=S.score(x_train,y_train)*100
[86]: 92.37288135593221
[87]: S2=S.score(x_test,y_test)*100
      S2
[87]: 93.22033898305084
     8 NAIVES BAYES:-
[88]: from sklearn.naive_bayes import_
       →GaussianNB, ComplementNB, MultinomialNB, BernoulliNB
      G=GaussianNB()
      C=ComplementNB()
      M=MultinomialNB()
      B=BernoulliNB()
```

9 GaussianNB:-

```
[89]: G.fit(x_train,y_train)
[89]: GaussianNB()
[90]: G1=G.score(x_train,y_train)*100
      G1
[90]: 90.5367231638418
[91]: G2=G.score(x_test,y_test)*100
      G2
[91]: 93.22033898305084
          BernoulliNB:-
     10
[92]: B.fit(x_train,y_train)
[92]: BernoulliNB()
[93]: B1=B.score(x_train,y_train)*100
[93]: 70.90395480225989
[94]: B2=B.score(x_test,y_test)*100
      В2
[94]: 68.22033898305084
          ComplementNB:-
     11
[95]: C.fit(x_train,y_train)
[95]: ComplementNB()
[96]: C1=C.score(x_train,y_train)*100
      C1
[96]: 88.70056497175142
[97]: C2=C.score(x_test,y_test)*100
      C2
```

[97]: 90.2542372881356

12 MultinomialNB:-

```
[98]: M.fit(x_train,y_train)

[98]: MultinomialNB()

[99]: M1=M.score(x_train,y_train)*100
    M1

[99]: 88.2768361581921

[100]: M2=M.score(x_test,y_test)*100
    M2
```

[100]: 89.83050847457628

[104]: 91.52542372881356

13 K NEAREST NEIGHBOR:-

```
[101]: from sklearn.neighbors import KNeighborsClassifier
K=KNeighborsClassifier()

[102]: K.fit(x_train,y_train)

[102]: KNeighborsClassifier()

[103]: K1=K.score(x_train,y_train)*100
K1

[103]: 90.67796610169492

[104]: K2=K.score(x_test,y_test)*100
K2
```

14 DECISION TREE CLASSIFIER:-

```
[105]: from sklearn.tree import DecisionTreeClassifier
    D=DecisionTreeClassifier()
[106]: D.fit(x_train,y_train)
```

```
[106]: DecisionTreeClassifier()
[107]: D1=D.score(x_train,y_train)*100
[107]: 100.0
[108]: D2=D.score(x_test,y_test)*100
[108]: 86.4406779661017
          RANDOM FOREST:-
      15
[111]: from sklearn.ensemble import RandomForestClassifier
       f=RandomForestClassifier()
       f.fit(x_train,y_train)
[111]: RandomForestClassifier()
[121]: F1=f.score(x_train,y_train)*100
[121]: 100.0
[122]: F2=f.score(x_test,y_test)*100
       F2
[122]: 90.67796610169492
           ADA BOOST:-
      16
[123]: from sklearn.ensemble import AdaBoostClassifier
       A=AdaBoostClassifier()
[124]: A.fit(x_train,y_train)
[124]: AdaBoostClassifier()
[125]: A1=A.score(x_train,y_train)*100
[125]: 91.94915254237289
```

```
[126]: A2=A.score(x_test,y_test)*100
A2
```

[126]: 92.37288135593221

17 ACCURACY GRAPH:-

```
[127]:
                                Train Accuracy Test Accuracy
                        Models
         LOGISTIC REGRESSION
                                          90.40
                                                          93.64
                           SVC
                                          92.37
                                                          93.22
       1
                    GaussianNB
                                                          93.22
       2
                                          90.54
                  BernoulliNB
                                          70.90
                                                          68.22
       3
       4
                 ComplementNB
                                          88.70
                                                          90.25
                                                          89.83
                MultinomialNB
                                          88.28
       5
                                                          91.53
       6
           K Nearest Neighbor
                                          90.68
       7
                Decision Tree
                                         100.00
                                                          86.44
       8
           AdaBoostClassifier
                                          91.95
                                                          92.37
                 RandomForest
                                         100.00
                                                          90.68
```

```
[128]: plt.bar(AC['Models'],AC['Train Accuracy'],label='Train')
   plt.bar(AC['Models'],AC['Test Accuracy'],align='edge',label='Test')
   plt.legend(bbox_to_anchor=[1,0,0,1])
   plt.xlabel('MODELS')
   plt.ylabel('ACCURACY')
   plt.xticks(rotation=90)
   plt.show()
```


18 CONCLUSION:-

ABOVE THE BAR CHART IT IS CLEAR THAT SVC IS BEST FOR CLASSIFICATION FOR THIS DATASET

[]: