Contents

1	Data	2
	Data Basics	2
	Visualizing Data	2
2	Descriptive Statistics	4
	Descriptive vs. Inferential	_

1 Data

Data Basics

- Frequent types of data in statistics:
 - Interval: numeric scale with meaningful intervals, e.g. temperature in celsius.
 - o Ratio: numeric but with a meaningful zero, e.g. height.
 - **Discrete**: numeric with with no arbitrary precision, e.g. population.
 - o **Ordinal**: sortable and discrete, e.g. education level.
 - o **Nominal**: non-sortable and discrete, e.g. genre.
- ▶ **Sample data**: Data from *some* members of a group.
- ▶ **Population data**: Data from *all* members of a group.
- \triangleright Sample population sometimes uses hat notation, e.g. $\hat{\beta}$, $\hat{\sigma}$, or other slight ambiguities. Sample data is used more often than population in statistics.

Visualizing Data

- ▶ Bar plots: used to represent categorical (nominal and ordinal) and discrete numerical data.
- ▶ **Box plots**: collection of a data that is split into separate quatiles in order to illustrate overall distribution of data and its potential outliers.
- ▶ **Histograms**: similar to bar plots, but with binned continuous data on the x-axis. Shape and order is meaningful.
 - Histograms of counts:
 - Often more meaningful interpretation of raw data.
 - Difficult to compare across datasets.
 - Does not need to sum up to 1.
 - Usually better for qualitative inspection.
 - Histograms of proportion:
 - Can be more difficult to relate to raw data.
 - Easier to compare across datasets.
 - Illustrates proportion of dataset.
 - Usually better for quantitative analysis.

- ho Translating from counts to proportions: $bin_i = 100 \, (bin_i \, / \, sum(bins))$
- ▶ Pie charts: representation of nominal, ordinal, or discrete data that must sum up to 1.

2 Descriptive Statistics

Descriptive vs. Inferential

 \triangleright