DatasetFile

April 22, 2024

```
[]: from google.colab import drive drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
[]: file_path = '/content/drive/MyDrive/Colab Notebooks/train.csv' dataset = pd.read_csv(file_path)
```

PREPROCESSING

1. The Number or rows and columns in this dataset:

```
[ ]: nRow, nCol = dataset.shape
print(f'This Dataset consist of {nRow} rows and {nCol} columns.')
```

This Dataset consist of 891 rows and 12 columns.

2. The names of these columns:

```
[]: print("The names of the columns/classes in this Dataset are:")
    column_names = dataset.columns
    for column in column_names:
        print(column)
```

The names of the columns/classes in this Dataset are:

```
PassengerId
```

Survived

Pclass

Name

Sex

Age

SibSp

Parch

Ticket Fare Cabin Embarked

3. A Glimpse of this dataset's content:

```
[]: print("A Preview of the first 5 rows of the dataset:")
dataset.head(5)
```

A Preview of the first 5 rows of the dataset:

```
[]:
        PassengerId Survived Pclass \
                  1
                  2
     1
                             1
                                      1
     2
                  3
                             1
                                      3
                  4
     3
                             1
                                      1
     4
                  5
                             0
                                      3
```

```
Name
                                                          Sex
                                                                Age SibSp \
0
                             Braund, Mr. Owen Harris
                                                         male
                                                               22.0
                                                                          1
1
  Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
2
                              Heikkinen, Miss. Laina
                                                               26.0
                                                                          0
                                                       female
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                       female
                                                               35.0
                                                                          1
4
                            Allen, Mr. William Henry
                                                         male
                                                              35.0
                                                                          0
```

	Parch	Ticket	Fare	Cabin	Embarked
0	0	A/5 21171	7.2500	NaN	S
1	0	PC 17599	71.2833	C85	C
2	0	STON/02. 3101282	7.9250	NaN	S
3	0	113803	53.1000	C123	S
4	0	373450	8.0500	NaN	S

4. The Size of this dataset:

```
[]: print("The Size of this Dataset is:")
dataset.size
```

The Size of this Dataset is:

- []: 10692
 - 5. The data types:

```
[]: print("The Data Types:")
dataset.dtypes
```

The Data Types:

```
[]: PassengerId
                      int64
    Survived
                      int64
    Pclass
                      int64
    Name
                     object
    Sex
                     object
    Age
                    float64
    SibSp
                      int64
                      int64
    Parch
    Ticket
                     object
                    float64
    Fare
     Cabin
                     object
     Embarked
                     object
     dtype: object
```

6. A Summary of the dataset:

```
[]: print("A Summary of the Values in this Dataset of each column:") dataset.info()
```

A Summary of the Values in this Dataset of each column: <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

7. Checking if there is any missing values:

```
[]: dataset.isna().sum()
```

[]: PassengerId 0
Survived 0
Pclass 0
Name 0

Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

[]: print("Visualizing the missing values:")
sns.heatmap(dataset.isna(),yticklabels=False,cbar=False,cmap='viridis')

Visualizing the missing values:

[]: <Axes: >


```
[]: print("Another way to visualize the missing values:")
   dataset.isnull().sum().plot(kind='bar')
   plt.ylabel('Number of missing values')
   plt.show()
```

Another way to visualize the missing values:

8. Checking if there is any duplicated values:

```
[]: print("Checking if there is any duplicates:")
dataset.duplicated().sum()
```

Checking if there is any duplicates:

[]: 0

9. Dealing With the missing Values in the Age Column:

```
[]: mean_val=dataset['Age'].mean()
     print(mean_val)
    29.69911764705882
[]: dataset_cleaned=dataset.copy()
[]: dataset_cleaned['Age']=dataset['Age'].fillna(value=mean_val)
     dataset_cleaned['Age'].isna().sum()
[]: 0
[]: mean_val = dataset_cleaned['Age'].mean()
     plt.figure(figsize=(10, 6))
     plt.hist(dataset_cleaned['Age'], bins=20, color='skyblue', edgecolor='black',__
      ⇒alpha=0.7)
     plt.xlabel('Age')
     plt.ylabel('Count')
     plt.title('Histogram of Ages of Passengers')
    plt.grid(True)
     # Add text annotation for the mean age at the top right corner
     plt.text(0.95, 0.95, f'Mean Age: {mean_val:.2f}', fontsize=12, color='red', __
      ⇔ha='right', va='top', transform=plt.gca().transAxes)
     plt.show()
```


10. Dealing with the missing values in the Cabin Column:

```
[]: mode_val=dataset['Cabin'].mode()[0]
mode_val
dataset_cleaned['Cabin']=dataset['Cabin'].fillna(value=mode_val)
dataset_cleaned['Cabin'].isna().sum()
```

[]: 0

11. Dealing with the values in the Embarked Column:

```
[]: print("The passengers here embarked from three places:")
    print("C --> Cherbourg")
    print("Q --> Queenstown")
    print("S --> Sothampton")

embarked_counts = dataset['Embarked'].value_counts()

# Calculate the total number of passengers for each port
    total_passengers = embarked_counts.sum()

# Calculate the average number of passengers for each port
    average_passengers = embarked_counts / total_passengers

# Print the average number of passengers for each port
```

```
print("Average Number of Passengers for Each Port of Embarkation:")
for port, average in average_passengers.items():
    if port == 'C':
        port_name = "Cherbourg"
    elif port == 'Q':
        port_name = "Queenstown"
    elif port == 'S':
        port_name = "Southampton"
    else:
        port_name = "Unknown Port"
    print(f"{port_name}: {average:.2f}")
# Find the port with the most passengers
most_passengers_port = embarked_counts.idxmax()
if most_passengers_port == 'C':
    most_passengers_port_name = "Cherbourg"
elif most_passengers_port == 'Q':
    most_passengers_port_name = "Queenstown"
elif most_passengers_port == 'S':
    most_passengers_port_name = "Southampton"
else:
    most_passengers_port_name = "Unknown Port"
# Find the port with the least passengers
least_passengers_port = embarked_counts.idxmin()
if least_passengers_port == 'C':
    least_passengers_port_name = "Cherbourg"
elif least_passengers_port == 'Q':
    least_passengers_port_name = "Queenstown"
elif least_passengers_port == 'S':
    least_passengers_port_name = "Southampton"
else:
    least_passengers_port_name = "Unknown Port"
# Print the port with the most and least passengers
print("\nPort with the Most Passengers:", most_passengers_port_name)
print("Port with the Least Passengers:", least_passengers_port_name)
The passengers here embarked from three places:
C --> Cherbourg
Q --> Queenstown
S --> Sothampton
Average Number of Passengers for Each Port of Embarkation:
Southampton: 0.72
Cherbourg: 0.19
```

Queenstown: 0.09

Port with the Most Passengers: Southampton Port with the Least Passengers: Queenstown

```
[]: # Create a bar plot to visualize the average number of passengers for each port
     plt.figure(figsize=(10, 6))
     average_passengers.plot(kind='bar', color='skyblue', edgecolor='black', alpha=0.
      →7)
     plt.xlabel('Port of Embarkation')
     plt.ylabel('Average Number of Passengers')
     plt.title('Average Number of Passengers for Each Port of Embarkation')
     plt.xticks(rotation=0)
     plt.grid(axis='y')
     # Highlight the port with the most passengers
     plt.axhline(y=average_passengers[most_passengers_port], color='green',_
      ⇔linestyle='--', label='Most Passengers Port')
     # Highlight the port with the least passengers
     plt.axhline(y=average_passengers[least_passengers_port], color='red',_
      ⇔linestyle='--', label='Least Passengers Port')
     plt.legend()
     plt.show()
```



```
[]: mode_val=dataset['Embarked'].mode()[0]
     dataset_cleaned['Embarked']=dataset['Embarked'].fillna(value=mode_val)
     dataset_cleaned['Embarked'].isna().sum()
[]: 0
      12. The Cleaned Dataset:
[]: dataset_cleaned.head()
[]:
                      Survived
        PassengerId
                                Pclass
                   1
     1
                   2
                             1
                                      1
     2
                   3
                                      3
                              1
     3
                   4
                              1
                                      1
                   5
                             0
                                      3
     4
                                                        Name
                                                                  Sex
                                                                         Age
                                                                              SibSp
     0
                                    Braund, Mr. Owen Harris
                                                                 male
                                                                       22.0
                                                                                  1
     1
        Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                                     38.0
                                                                                1
     2
                                     Heikkinen, Miss. Laina
                                                                                  0
                                                               female
                                                                       26.0
     3
             Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                               female
                                                                       35.0
                                                                                  1
     4
                                   Allen, Mr. William Henry
                                                                 male
                                                                       35.0
                                                                                  0
        Parch
                                               Cabin Embarked
                          Ticket
                                      Fare
     0
                       A/5 21171
                                    7.2500
                                                             S
            0
                                            B96 B98
                                                             С
     1
            0
                        PC 17599
                                   71.2833
                                                 C85
     2
            0
                STON/02. 3101282
                                    7.9250
                                            B96 B98
                                                             S
     3
                                                             S
            0
                          113803
                                   53.1000
                                                C123
            0
                          373450
                                    8.0500
                                            B96 B98
                                                             S
[]: dataset_cleaned.isna().sum()
[]: PassengerId
                     0
     Survived
                     0
     Pclass
                     0
     Name
                     0
     Sex
                     0
     Age
                     0
                     0
     SibSp
     Parch
                     0
     Ticket
                     0
     Fare
                     0
     Cabin
                     0
     Embarked
                     0
```

13. The number of passengers and the ratio of males and females:

dtype: int64

```
[]: passenger_count = dataset['PassengerId'].count()
     print("The number of passengers in this dataset is: ", passenger_count)
     # Count the number of males and females
     sex_counts = dataset['Sex'].value_counts()
     # Get the total number of males and females
     total_males = sex_counts['male'] if 'male' in sex_counts else 0
     total_females = sex_counts['female'] if 'female' in sex_counts else 0
     labels = sex_counts.index
     sizes = sex_counts.values
     colors = ['#ff9999', '#66b3ff'] # Red for Female, Blue for Male
     plt.figure(figsize=(6, 6))
     plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f\%', startangle=90)
     plt.title('Distribution of Male and Female Passengers')
     plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle
     # Add text annotation for the number of passengers outside the pie chart
     plt.text(1.5, 1, f'Passenger Count: {passenger_count}', fontsize=12, ___
     ⇔color='black', ha='right', va='top')
     # Show the plot
     plt.show()
```

The number of passengers in this dataset is: 891

Distribution of Male and Female Passengers

14. Predicting The number of passengers That are older than 35 and younger than 35 using the Z-Score:

```
[]: std_age = dataset_cleaned['Age'].std()
average_age = dataset_cleaned['Age'].mean()
# Calculate the Z-score for age 35
z_score_35 = (35 - average_age) / std_age

# Using the Z-score, we can calculate the probabilities of ages greater than_u and less than 35
# Assuming a normal distribution, about 50% of values are below the mean_u (Z-score = 0)
# So, we find the probabilities using the Z-table or a standard normal_u distribution calculator
# Probability of age > 35
```

```
prob_age_gt_35 = 1 - 0.5 + 0.5 * (1 - z_score_35)
# Probability of age < 35
prob_age_lt_35 = 1 - prob_age_gt_35
# Predict the number of passengers likely to be bigger than 35 and lesser than \square
⇔35
total_passengers = len(dataset)
predicted_gt_35 = prob_age_gt_35 * total_passengers
predicted_lt_35 = prob_age_lt_35 * total_passengers
labels = ['Older than 35', 'Younger than 35']
sizes = [predicted_gt_35, predicted_lt_35]
colors = ['lightcoral', 'lightskyblue']
# Create a pie chart
plt.figure(figsize=(8, 8))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140)
plt.axis('equal')
plt.title('Predicted Number of Passengers by Age Group')
# Add text below the pie chart
plt.text(0, -1.2, f" Number of Passengers Older than 35: {predicted_gt_35}", __
 ⇔ha='left', va='center', fontsize=14)
plt.text(0, -1.4, f" Number of Passengers Younger than 35: {predicted_lt_35}", __
 ⇔ha='left', va='center', fontsize=14)
plt.show()
```

Predicted Number of Passengers by Age Group Younger than 35

Number of Passengers Older than 35: 709.3709950198783

Number of Passengers Younger than 35: 181.6290049801217

15. Calculations on the price of the ticket and fare:

```
[]: highest_fare = dataset_cleaned['Fare'].max()
lowest_fare = dataset_cleaned['Fare'].min()
average_fare = dataset_cleaned['Fare'].mean()

# Print the results
print("Highest Price paid by a passenger for a ticket is:", highest_fare)
print("Lowest Price paid by a passenger for a ticket is:", lowest_fare)
print("Average Price paid by a passenger for a ticket is:", average_fare)
```

Highest Price paid by a passenger for a ticket is: 512.3292 Lowest Price paid by a passenger for a ticket is: 0.0 Average Price paid by a passenger for a ticket is: 32.204207968574636

the relationship between two variables which are the age and the fare:

```
[]: plt.scatter(dataset_cleaned['Age'],dataset_cleaned['Fare'],alpha=0.5)
    plt.title('scatter of age vs fare')
    plt.xlabel('age')
```

```
plt.ylabel('fare')
plt.show()
```


Explore fare and age columns for outliers and use Winsorizing to treat the outliers in the fare column by replacing extreme values with less extreme ones.

Scatter Plot of Age to Explore Outliers


```
# Detect outliers with a scatter plot
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.scatter(dataset_cleaned.index, dataset_cleaned['Fare'], color='blue',
alpha=0.5)
plt.xlabel('Passenger Index')
plt.ylabel('Fare')
plt.title('Scatter Plot of Fare to Explore Outliers (Before Winsorization)')

# Winsorize the fare column at the 1% and 99% levels
dataset_cleaned['fare_winsorized'] = winsorize(dataset_cleaned['Fare'],
limits=[0.01, 0.01])

# Display the first few rows of the dataset with the winsorized fare column
plt.subplot(1, 2, 2)
```


16. Applying the Correlation Matrix:

```
[]: numeric_cols=dataset_cleaned.select_dtypes(include=['int64','float64'])
[]: correlation_matrix=numeric_cols.corr()
[]: sns.heatmap(correlation_matrix,annot=True,cbar="coolwarm", linewidth=0.5)
[]: <Axes: >
```


17. The Distributions of the passengers into classes in this dataset:

```
most_passengers_class = class_counts.idxmax()
if most_passengers_class == 1:
   most_passengers_class_name = "First Class"
elif most_passengers_class == 2:
   most_passengers_class_name = "Second Class"
elif most_passengers_class == 3:
   most_passengers_class_name = "Third Class"
else:
   most_passengers_class_name = "Unknown Class"
# Get the class with the least passengers
least_passengers_class = class_counts.idxmin()
if least_passengers_class == 1:
   least_passengers_class_name = "First Class"
elif least_passengers_class == 2:
   least_passengers_class_name = "Second Class"
elif least_passengers_class == 3:
   least_passengers_class_name = "Third Class"
else:
   least_passengers_class_name = "Unknown Class"
# Calculate the percentages
total passengers = class counts.sum()
percentages = (class_counts / total_passengers) * 100
# Create a pie chart
labels = ['Third Class', 'First Class', 'Second Class']
sizes = percentages.values
colors = ['#ff9999', '#66b3ff', '#99ff99'] # Red, Blue, Green
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
plt.title('Distribution of Passengers by Class')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# Show the plot
plt.show()
# Print the summary
print("\nSummary of number of passengers and their classes:")
print(f"Class with the most passengers: {most_passengers_class_name}")
print(f"Class with the least passengers: {least_passengers_class_name}")
```

In this dataset the passengers are distributed in three classes: First, Second and third.

Number of Passengers in Each Class:

Third Class: 491 passengers First Class: 216 passengers Second Class: 184 passengers

Distribution of Passengers by Class

Summary of number of passengers and their classes: Class with the most passengers: Third Class Class with the least passengers: Second Class

18. The Survival Rates in this dataset:

```
[]: survived_counts = dataset_cleaned['Survived'].value_counts()
labels = ['Survived', 'Did Not Survive']
sizes = [survived_counts[1], survived_counts[0]]
total_passengers = sum(sizes) # Total number of passengers

# Calculate the percentages
percent_survived = (sizes[0] / total_passengers) * 100
percent_not_survived = (sizes[1] / total_passengers) * 100
```

```
colors = ['#66b3ff', '#ff9999'] # Blue for Survived, Red for Did Not Survive
explode = (0.1, 0) # explode the first slice (Survived)
plt.figure(figsize=(6, 6))
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct= 1%1.

→1f%%', startangle=90)
plt.title('Survival Percentage')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# Show the plot
plt.show()
# Extract the counts
number_of_survived = survived_counts[1] if 1 in survived_counts else 0
number_of_not_survived = survived_counts[0] if 0 in survived_counts else 0
print("Number of Survived People:", number_of_survived)
print("Number of People who Did Not Survive:", number_of_not_survived)
print("Percentage of Survived People: {:.2f}%".format(percent_survived))
print("Percentage of People who Did Not Survive: {:.2f}%".
 →format(percent_not_survived))
```

Survival Percentage

Number of Survived People: 342

Number of People who Did Not Survive: 549

Percentage of Survived People: 38.38%

Percentage of People who Did Not Survive: 61.62%

The relationship between the class of the passenger and the survival

```
[]: sns.countplot(x='Survived',hue='Pclass',data=dataset_cleaned)
```

[]: <Axes: xlabel='Survived', ylabel='count'>

The relationship between the sex of the passenger and the survival

```
[]: sns.countplot(x='Pclass',hue='Survived',data=dataset_cleaned)
```

[]: <Axes: xlabel='Pclass', ylabel='count'>

19. Feature Engineering: Creating a new column called Family size that uses two other columns of the dataset and predicts the number of the family members of each passenger:

plt.show()

[]: dataset_cleaned.head()

[]:	PassengerId	Survived	Pclass	\
0	1	0	3	
1	2	1	1	
2	3	1	3	
3	4	1	1	
4	5	0	3	

					Name	Sex	Age	SibSp	\
0			Braund,	Mr. Ower	n Harris	male	22.0	1	
1	Cuming	s, Mrs. John Bradl	ey (Flore	nce Brigg	gs Th fe	emale 3	8.0	1	
2			Heikki	nen, Miss	s. Laina	female	26.0	0	
3	F	utrelle, Mrs. Jacq	ues Heath	(Lily Ma	y Peel)	female	35.0	1	
4			Allen, M	r. Willia	am Henry	male	35.0	0	
	Parch	Ticket	Fare	Cabin	${\tt Embarked}$	fare_w	insori	zed \	
0	0	A/5 21171	7.2500	B96 B98	S		7.2	500	
1	0	PC 17599	71.2833	C85	C		71.2	833	
2	0	STON/02. 3101282	7.9250	B96 B98	S		7.9	250	
3	0	113803	53.1000	C123	S		53.1	000	
4	0	373450	8.0500	B96 B98	S		8.0	500	

```
FamilySize
0 2
1 2
2 1
3 2
4 1
```

20. Label Encoding On Categorical Variables

```
[]:
         PassengerId Survived
                                   Pclass
                                             \
                                0
     0
                     1
                                          3
                     2
                                1
                                          1
     1
     2
                     3
                                          3
                                 1
     3
                     4
                                1
                                          1
                                          3
```

```
Name
                                                             Sex
                                                                    Age
                                                                         SibSp
0
                               Braund, Mr. Owen Harris
                                                            male
                                                                   22.0
                                                                              1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                                            1
1
2
                                Heikkinen, Miss. Laina
                                                          female
                                                                   26.0
                                                                              0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                          female
                                                                   35.0
                                                                              1
4
                              Allen, Mr. William Henry
                                                            male
                                                                   35.0
                                                                              0
   Parch
                     Ticket
                                 Fare
                                          Cabin Embarked
                                                           fare_winsorized
0
       0
                  A/5 21171
                               7.2500
                                       B96 B98
                                                        S
                                                                     7.2500
                              71.2833
1
       0
                   PC 17599
                                                        C
                                                                    71.2833
                                            C85
2
       0
          STON/02. 3101282
                               7.9250
                                        B96 B98
                                                        S
                                                                     7.9250
                                                        S
3
       0
                     113803
                              53.1000
                                                                    53.1000
                                           C123
4
       0
                     373450
                                                        S
                                                                     8.0500
                               8.0500
                                       B96 B98
```

FamilySize Sex_encoded Cabin_encoded Embarked_encoded Ticket_encoded

```
2
    1
                             0
                                           81
                                                               0
                                                                             596
    2
                1
                             0
                                           47
                                                               2
                                                                             669
    3
                 2
                                                               2
                              0
                                           55
                                                                             49
    4
                 1
                              1
                                           47
                                                               2
                                                                             472
[]: dataset_label_encoding.

¬drop(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1, inplace=True)

[]: dataset_label_encoding.head()
                                           SibSp
[]:
       PassengerId Survived Pclass
                                                   Parch
                                                             Fare \
                                       Age
                 1
                           0
                                      22.0
                                                1
                                                            7.2500
                 2
                                      38.0
    1
                           1
                                   1
                                                1
                                                        0
                                                          71.2833
    2
                 3
                           1
                                   3 26.0
                                                0
                                                        0
                                                            7.9250
                 4
                           1
                                   1 35.0
                                                        0 53.1000
    3
                                                1
    4
                 5
                           0
                                   3 35.0
                                                            8.0500
                                                0
       fare_winsorized
                        FamilySize
                                    Sex_encoded Cabin_encoded
                                                                Embarked_encoded
    0
                7.2500
                                  2
                                                             47
                                                                                2
                                               1
               71.2833
                                  2
                                               0
                                                             81
                                                                                0
    1
                                                             47
                                                                                2
    2
                7.9250
                                  1
                                               0
    3
                53.1000
                                  2
                                               0
                                                             55
                                                                                2
                                                             47
                                                                                2
                8.0500
                                  1
                                               1
       Ticket_encoded
    0
    1
                   596
    2
                   669
    3
                   49
    4
                   472
     21. Applying the Standard Scaler library on the label encoded dataset:
[]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    scaled_data=scaler.fit_transform(dataset_label_encoding)
[]: print(scaled_data)
    [[-1.73010796 -0.78927234 0.82737724 ... -0.28188124 0.58595414
       0.91896631]
     1.28262456]
     [-1.72233219 1.2669898
                               0.82737724 ... -0.28188124 0.58595414
       1.64628282]
     [ 1.72233219 -0.78927234  0.82737724 ... -0.28188124  0.58595414
```

22. Checking the accuracy of the dataset using Logistic Regression:

```
[]: from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     from sklearn.metrics import accuracy score
     # Select features and target variable
     X = dataset_cleaned[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
     y = dataset_cleaned['Survived']
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
      ⇔random_state=42)
     # Train a logistic regression model
     model = LogisticRegression()
     model.fit(X_train, y_train)
     # Make predictions on the test set
     y_pred = model.predict(X_test)
     # Calculate the accuracy of the model
     accuracy = accuracy_score(y_test, y_pred)
     print(f'Accuracy is: {accuracy:.2f}')
```

Accuracy is: 0.73

23. Improving the accuracy of the dataset using logistic regression and CV:

```
[]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import cross_val_score
    from sklearn.preprocessing import StandardScaler

# Load the Titanic dataset
    titanic_data = dataset_cleaned.copy()

# Feature Engineering
    titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
    titanic_data['IsAlone'] = 1
    titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0
```

```
# Select relevant features
features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
X = titanic_data[features]
y = titanic_data['Survived']
# Handle categorical variables
X = pd.get_dummies(X)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
 →random state=42)
# Feature scaling
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Initialize the Logistic Regression Classifier
lr = LogisticRegression(max iter=2000)
# Perform cross-validation
cv = cross_val_score(lr, X_train_scaled, y_train, cv=5)
# Print cross-validation scores
print("Cross-validation scores:", cv)
print("Mean cross-validation score:", cv.mean())
```

Cross-validation scores: [0.81818182 0.81818182 0.8028169 0.74647887 0.83098592]

Mean cross-validation score: 0.8033290653008963

24. improving the accuracy using Random Forest Classifier and Feature Engineering:

```
[]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score

# Load the Titanic dataset
    titanic_data = dataset_cleaned.copy()

# Feature Engineering
    titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
    titanic_data['IsAlone'] = 1
    titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0

# Select relevant features
    features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
    X = titanic_data[features]
```

```
y = titanic_data['Survived']

# Handle categorical variables
X = pd.get_dummies(X)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u_drandom_state=42)

# Train the Random Forest Classifier
rf = RandomForestClassifier()
rf.fit(X_train, y_train)

# Make predictions on the test set
y_pred = rf.predict(X_test)

# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.8156424581005587

25. Using KNN to get the accuracy:

```
[]:|from sklearn.neighbors import KNeighborsClassifier
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import accuracy_score
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Feature Engineering
     titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
     titanic data['IsAlone'] = 1
     titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0
     # Select relevant features
     features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
     X = titanic_data[features]
     y = titanic_data['Survived']
     # Handle categorical variables
     X = pd.get_dummies(X)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random state=42)
```

```
# Train the KNN Classifier
knn = KNeighborsClassifier(n_neighbors=5) # You can adjust the number of
neighbors as per your preference
knn.fit(X_train, y_train)

# Make predictions on the test set
y_pred = knn.predict(X_test)

# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.7262569832402235

26. Using KNN and Standard Scaler to improve the accuracy:

```
[]: from sklearn.model selection import train test split
     from sklearn.preprocessing import StandardScaler
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy_score
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Feature Engineering
     titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
     titanic_data['IsAlone'] = 1
     titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0
     # Select relevant features
     features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
     X = titanic data[features]
     y = titanic_data['Survived']
     # Handle categorical variables
     X = pd.get_dummies(X)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Feature Scaling
     scaler = StandardScaler()
     X_train_scaled = scaler.fit_transform(X_train)
     X_test_scaled = scaler.transform(X_test)
     # Train the K-Nearest Neighbors Classifier
     knn = KNeighborsClassifier(n_neighbors=5)
```

```
knn.fit(X_train_scaled, y_train)

# Make predictions on the test set
y_pred = knn.predict(X_test_scaled)

# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.7988826815642458

27. Using KNN as Regressors and predict the age in the dataset then getting the MSE to evaluate the performance:

```
[]: from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     from sklearn.neighbors import KNeighborsRegressor
     from sklearn.metrics import mean_squared_error
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Select relevant features and target variable
     features = ['Pclass', 'SibSp', 'Parch', 'Fare']
     X = titanic_data[features]
     y = titanic_data['Age']
     # Handle missing values
     X.fillna(X.mean(), inplace=True)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
     →random_state=42)
     # Feature Scaling
     scaler = StandardScaler()
     X_train_scaled = scaler.fit_transform(X_train)
     X_test_scaled = scaler.transform(X_test)
     # Train the K-Nearest Neighbors Regressor
     knn = KNeighborsRegressor(n_neighbors=5)
     knn.fit(X_train_scaled, y_train)
     # Make predictions on the test set
     y_pred = knn.predict(X_test_scaled)
     # Calculate Mean Squared Error
     mse = mean_squared_error(y_test, y_pred)
```

```
Mean Squared Error: 132.05177328023814
    <ipython-input-116-a5e87ff6de27>:15: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      X.fillna(X.mean(), inplace=True)
     28. Getting the Accuracy using KNN and CV:
[]: from sklearn.neighbors import KNeighborsClassifier
     from sklearn.model_selection import cross_val_score
     from sklearn.preprocessing import StandardScaler
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Feature Engineering
     titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
     titanic_data['IsAlone'] = 1
     titanic data.loc[titanic data['FamilySize'] > 1, 'IsAlone'] = 0
     # Select relevant features
     features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
     X = titanic_data[features]
     y = titanic_data['Survived']
     # Handle categorical variables
     X = pd.get_dummies(X)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Feature scaling
     scaler = StandardScaler()
     X_train_scaled = scaler.fit_transform(X_train)
     X_test_scaled = scaler.transform(X_test)
     # Initialize the KNN Classifier
     knn = KNeighborsClassifier()
     # Perform cross-validation
     cv = cross_val_score(knn, X_train_scaled, y_train, cv=5)
```

print(f'Mean Squared Error: {mse}')

```
# Print cross-validation scores
print("Cross-validation scores:", cv)
print("Mean cross-validation score:", cv.mean())
```

Cross-validation scores: [0.8041958 0.81818182 0.81690141 0.76760563 0.82394366]

Mean cross-validation score: 0.8061656653205949

Conclusion of the Accuracies optained:

- Accuracy using Logistic Regression = 0.73
- Accuracy using Logistic Regression and CV = 0.8033
- Improving accuracy using Random forest & Feature engineering = 0.82
- Using KNN to get the accuracy = 0.72
- Using KNN & Standard Scaler = 0.798
- Using KNN & CV = 0.806
- 29. Linear Regression:

```
[]: from sklearn.linear_model import LinearRegression
     from sklearn.model selection import train test split
     from sklearn.metrics import mean_squared_error
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Feature Engineering
     titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
     titanic_data['IsAlone'] = 1
     titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0
     # Select relevant features
     features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
     X = titanic data[features]
     y = titanic_data['Age'] # Assuming Age is the target variable for linear_
      →regression
     # Handle categorical variables
     X = pd.get_dummies(X)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Initialize the Linear Regression model
     linear_reg = LinearRegression()
     # Train the model
     linear_reg.fit(X_train, y_train)
```

```
# Make predictions
y_pred = linear_reg.predict(X_test)

# Evaluate the model using mean squared error
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
```

Mean Squared Error: 1.019002948831566e-28

```
[]: from sklearn.linear_model import LinearRegression
     from sklearn.model_selection import train_test_split
     # Load the Titanic dataset
     titanic_data = dataset_cleaned.copy()
     # Feature Engineering
     titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
     titanic_data['IsAlone'] = 1
     titanic_data.loc[titanic_data['FamilySize'] > 1, 'IsAlone'] = 0
     # Select relevant features
     features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
     X = titanic data[features]
     y = titanic_data['Age'] # Assuming Age is the target variable for linear_
      →regression
     # Handle categorical variables
     X = pd.get_dummies(X)
     # Split the data into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      →random_state=42)
     # Initialize the Linear Regression model
     linear_reg = LinearRegression()
     # Train the model
     linear_reg.fit(X_train, y_train)
     # Print the coefficients
     print("Linear Regression Coefficients:")
     for feature, coef in zip(X.columns, linear_reg.coef_):
         print(f"{feature}: {coef}")
```

Linear Regression Coefficients:

Pclass: 9.373691014878045e-15
Age: 0.999999999999996
Fare: 1.1102230246251565e-16
FamilySize: -2.0469737016526324e-16
IsAlone: 2.2724877535296173e-16
Sex_female: -1.214306433183765e-17
Sex_male: 1.3877787807814457e-17
Embarked_C: 4.119968255444917e-17
Embarked_Q: -2.862293735361732e-17
Embarked_S: -1.3444106938820255e-17
using linear regression to detext outliers:

```
[]: from sklearn.linear model import LinearRegression
    from sklearn.model_selection import train_test_split
    # Load the Titanic dataset
    titanic_data = dataset_cleaned.copy()
    # Feature Engineering
    titanic_data['FamilySize'] = titanic_data['SibSp'] + titanic_data['Parch'] + 1
    titanic_data['IsAlone'] = 1
    # Select relevant features
    features = ['Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'FamilySize', 'IsAlone']
    X = titanic data[features]
    y = titanic_data['Age'] # Assuming Age is the target variable for linear_
     ⇔regression
    # Handle categorical variables
    X = pd.get_dummies(X)
    # Split the data into training and testing sets
    →random_state=42)
    # Initialize and train the Linear Regression model
    linear_reg = LinearRegression()
    linear_reg.fit(X_train, y_train)
    # Predict the target variable for the test set
    y_pred = linear_reg.predict(X_test)
    # Calculate residuals
    residuals = y_test - y_pred
    # Calculate absolute residuals
```

```
absolute_residuals = np.abs(residuals)

# Calculate the mean and standard deviation of the residuals
mean_residuals = np.mean(absolute_residuals)

std_residuals = np.std(absolute_residuals)

# Set a threshold for identifying outliers (e.g., 3 standard deviations from_u the mean)
threshold = 3 * std_residuals

# Identify outliers
outliers = X_test[absolute_residuals > threshold]

print("Outliers detected:")
print(outliers)
```

Outliers detected:

	Pclass	Age	Fare	FamilySize	IsAlone	Sex_female	${\tt Sex_male}$	\
802	1	11.000000	120.0000	4	1	False	True	
280	3	65.000000	7.7500	1	1	False	True	
299	1	50.000000	247.5208	2	1	True	False	
311	1	18.000000	262.3750	5	1	True	False	
291	1	19.000000	91.0792	2	1	True	False	
527	1	29.699118	221.7792	1	1	False	True	
31	1	29.699118	146.5208	2	1	True	False	

	${\tt Embarked_C}$	${\tt Embarked_Q}$	${\tt Embarked_S}$
802	False	False	True
280	False	True	False
299	True	False	False
311	True	False	False
291	True	False	False
527	False	False	True
31	True	False	False