```
In [ ]:
        import pandas as pd
        import numpy as np
        import datetime
        import yfinance as yf
        import matplotlib.pyplot as plt
        import pandas_datareader.data as web
        from datetime import date, datetime, time, timezone
In [ ]: import pandas as pd
        def get_stock_data(ticker, start, end):
            data = yf.download(ticker, start=start, end=end)
            data.insert(0, 'Ticker', ticker)
            return data
In [ ]: ticker = 'DIS'
        start_date = '2023-01-01'
        end_date = '2023-07-31'
In [ ]: stock_data = get_stock_data(ticker, start_date, end_date)
        stock_data.head()
      [********* 100%********* 1 of 1 completed
Out[]:
                   Ticker
                             Open
                                        High
                                                  Low
                                                           Close Adj Close
                                                                             Volume
             Date
         2023-01-
                     DIS 88.980003 89.970001 87.830002 88.970001 88.970001 14997100
               03
         2023-01-
                     DIS 90.000000 92.750000 89.360001
                                                       91.980003 91.980003 14957200
               04
         2023-01-
                     DIS 91.660004 92.480003 90.510002 91.919998 91.919998 11622600
               05
         2023-01-
                     DIS 92.660004 94.690002 91.320000 93.919998 93.919998
                                                                            9828100
               06
         2023-01-
                     DIS 94.430000 95.699997 93.449997 94.769997 94.769997 11675800
               09
In [ ]: stock data = stock data.pivot(index = None, columns = "Ticker", values = "Close"
        stock_data.head()
```

Out[]:

Ticker

DIS

```
Date
        2023-01-03 88.970001
        2023-01-04 91.980003
        2023-01-05 91.919998
        2023-01-06 93.919998
        2023-01-09 94.769997
In [ ]: SPY = get_stock_data("SPY",start,end)
       IYW = get stock data("IYW", start, end)
       VT = get stock data("VT", start, end)
       DBA = get stock data("DBA", start, end)
       TLT = get_stock_data("TLT", start, end)
       PDBC = get_stock_data("PDBC", start, end)
       IAU = get_stock_data("IAU",start,end)
      [********* 100%********** 1 of 1 completed
      [********* 100%*********** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [********** 100%********** 1 of 1 completed
      [********** 100%********** 1 of 1 completed
      [********* 100%********** 1 of 1 completed
        ******** 1 of 1 completed
In [ ]: SPY.info()
      <class 'pandas.core.frame.DataFrame'>
      DatetimeIndex: 143 entries, 2023-01-03 to 2023-07-28
      Data columns (total 7 columns):
                   Non-Null Count Dtype
       #
          Column
          ____
                    -----
         Ticker 143 non-null object
Open 143 non-null float64
       0
       1
                  143 non-null float64
       2
         High
         Low 143 non-null float64
Close 143 non-null float64
       3
         Adj Close 143 non-null float64
                    143 non-null
         Volume
                                   int64
      dtypes: float64(5), int64(1), object(1)
      memory usage: 8.9+ KB
In [ ]: SPY = SPY.pivot(index=None, columns="Ticker", values="Close")
       IYW = IYW.pivot(index=None,columns="Ticker",values="Close")
       VT = VT.pivot(index=None, columns="Ticker", values="Close")
       DBA = DBA.pivot(index=None,columns="Ticker",values="Close")
       TLT = TLT.pivot(index=None,columns="Ticker",values="Close")
       PDBC = PDBC.pivot(index=None,columns="Ticker",values="Close")
       IAU = IAU.pivot(index=None, columns="Ticker", values="Close")
In [ ]: stock = pd.concat([SPY,IYW,VT,DBA,TLT,PDBC,IAU],axis = 1,join='outer')
       stock.head()
```

Out[]:	Ticker	SPY	IYW	VT	DBA	TLT	PDBC	IAU
_	Date							
	2023- 01-03	380.820007	73.949997	86.239998	19.930000	101.459999	14.41	34.880001
	2023- 01-04	383.760010	74.180000	87.300003	19.690001	102.849998	14.12	35.209999
	2023- 01-05	379.380005	72.540001	86.400002	19.639999	103.279999	14.06	34.790001
	2023- 01-06	388.079987	74.470001	88.379997	19.559999	105.180000	14.15	35.430000
	2023- 01-09	387.859985	75.480003	88.589996	19.629999	105.739998	14.35	35.500000


```
In [ ]: covid = stock['2020-2-1':'2020-7-31']
```

```
In [ ]: plt.style.use('ggplot')
    covid.plot(figsize=(20,10))
    plt.show()
```



```
In [ ]: x = covid.index
s_y = covid[['SPY']]
i_y = covid[['IAU']]
d_y = covid[['DBA']]
t_y = covid[['TLT']]
```

```
import matplotlib.pyplot as plt

fig,axs = plt.subplots(1,3,figsize = (15,5))
axs[0].plot(x, s_y)
axs[1].plot(x, i_y)
axs[2].plot(x, t_y)

fig.suptitle("Covid 19")
```

Out[]: Text(0.5, 0.98, 'Covid 19')

Covid 19


```
In [ ]: ticker = 'PDBC'
In [ ]: stock_data = get_stock_data(ticker, start_date, end_date)
    stock_data.head()
```

[********** 100%********** 1 of 1 completed

```
Out[]:
                    Ticker Open High
                                          Low Close Adj Close Volume
              Date
         2023-01-03
                     PDBC 14.60 14.69 14.350
                                               14.41
                                                          14.41 9766300
         2023-01-04
                     PDBC
                          14.18 14.23 14.060
                                               14.12
                                                          14.12 5159500
         2023-01-05
                     PDBC 14.08 14.15 14.000
                                               14.06
                                                         14.06 3305800
         2023-01-06
                     PDBC
                          14.18 14.24 14.080
                                               14.15
                                                          14.15 4234800
         2023-01-09
                     PDBC 14.38 14.50 14.323
                                               14.35
                                                          14.35 5908000
        stock_data.drop(['Ticker','Open','High','Low','Close','Adj Close'],axis = 1,inpl
In [ ]:
        stock data.head()
Out[]:
                     Volume
              Date
         2023-01-03 9766300
         2023-01-04 5159500
         2023-01-05 3305800
         2023-01-06 4234800
         2023-01-09 5908000
In [ ]: x = stock_data.index
        y = stock_data["Volume"]
        plt.figure(figsize=(15,3))
        plt.bar(x,y)
        plt.show()
       1.50
       1.25
In [ ]:
        stock_data = get_stock_data(ticker, start_date, end_date)
        stock_data.head()
```

[********* 100%********** 1 of 1 completed

Out[]:

	Ticker	Open	High	Low	Close	Adj Close	Volume
Date							
2023-01-03	PDBC	14.60	14.69	14.350	14.41	14.41	9766300
2023-01-04	PDBC	14.18	14.23	14.060	14.12	14.12	5159500
2023-01-05	PDBC	14.08	14.15	14.000	14.06	14.06	3305800
2023-01-06	PDBC	14.18	14.24	14.080	14.15	14.15	4234800
2023-01-09	PDBC	14.38	14.50	14.323	14.35	14.35	5908000

```
In []: fig = plt.figure(figsize=(12,8))

top_grid = plt.subplot2grid((4,4),(0,0),rowspan=3,colspan=4)
bottom_grid = plt.subplot2grid((4,4),(3,0),rowspan=1,colspan=4)

top_grid.plot(stock_data.index,stock_data['Close'],label = "Close")
bottom_grid.plot(stock_data.index,stock_data['Volume'],label = "Volume")

plt.tight_layout()

plt.legend()
plt.show()
```


In []: stock.head()

```
Out[ ]:
          Ticker
                       SPY
                                IYW
                                            VT
                                                    DBA
                                                               TLT PDBC
                                                                                IAU
           Date
          2023-
                 380.820007 73.949997 86.239998 19.930000 101.459999 14.41 34.880001
          01-03
          2023-
                 383.760010 74.180000 87.300003 19.690001 102.849998
                                                                     14.12 35.209999
          01-04
          2023-
                 379.380005 72.540001 86.400002 19.639999 103.279999
                                                                    14.06 34.790001
          01-05
          2023-
                 388.079987 74.470001 88.379997 19.559999 105.180000
                                                                     14.15 35.430000
          01-06
          2023-
                 387.859985 75.480003 88.589996 19.629999 105.739998
                                                                    14.35 35.500000
          01-09
In [ ]: stock['SPY']
Out[]: Date
                      380.820007
        2023-01-03
        2023-01-04
                      383.760010
        2023-01-05 379.380005
        2023-01-06
                   388.079987
        2023-01-09
                      387.859985
        2023-07-24
                     454.200012
        2023-07-25
                     455.440002
        2023-07-26
                     455.510010
        2023-07-27
                     452.489990
        2023-07-28
                     456.920013
        Name: SPY, Length: 143, dtype: float64
In [ ]: stock['SPY'].shift(1)
Out[]: Date
        2023-01-03
                             NaN
        2023-01-04 380.820007
        2023-01-05 383.760010
        2023-01-06
                      379.380005
        2023-01-09
                      388.079987
        2023-07-24 452.179993
        2023-07-25
                     454.200012
        2023-07-26 455.440002
        2023-07-27 455.510010
                   452.489990
        2023-07-28
        Name: SPY, Length: 143, dtype: float64
In [ ]: spy_dayily_pc = (stock['SPY']/stock['SPY'].shift(1)-1)*100
        spy_dayily_pc
```

```
Out[]: Date
        2023-01-03
                           NaN
                    0.772019
        2023-01-04
        2023-01-05
                    -1.141340
        2023-01-06
                     2.293210
        2023-01-09
                     -0.056690
                        . . .
        2023-07-24
                      0.446729
        2023-07-25
                      0.273005
        2023-07-26
                      0.015371
        2023-07-27
                     -0.662997
        2023-07-28
                      0.979032
        Name: SPY, Length: 143, dtype: float64
```

In []: spy_dayily_pc.plot()

Out[]: <Axes: xlabel='Date'>


```
In [ ]: spy_dayily_pc = (stock['SPY']-stock['SPY'].shift(1))/stock['SPY'].shift(1)*100
    spy_dayily_pc.iloc[0] = 0
To [ ]: plt bist(spy_dayily_pc_F0)
```

In []: plt.hist(spy_dayily_pc,bins = 50)
plt.show

Out[]: <function matplotlib.pyplot.show(close=None, block=None)>

In []: stock_dayily_pc = (stock-stock.shift(1))/stock.shift(1)*100
stock_dayily_pc.head()

Out[]:	Ticker	SPY	IYW	VT	DBA	TLT	PDBC	IAU
	Date							
	2023-01- 03	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	2023-01- 04	0.772019	0.311026	1.229134	-1.204214	1.369997	-2.012491	0.946095
	2023-01- 05	-1.141340	-2.210838	-1.030930	-0.253942	0.418085	-0.424925	-1.192838
	2023-01- 06	2.293210	2.660601	2.291662	-0.407332	1.839661	0.640108	1.839607
	2023-01- 09	-0.056690	1.356254	0.237609	0.357872	0.532418	1.413433	0.197572

Out[]:	Ticker	SPY	IYW	VT	DBA	TLT	PDBC	IAU
	Date							
	2023- 01-03	NaN						
	2023- 01-04	0.772019	0.311026	1.229134	-1.204214	1.369997	-2.012491	0.946095
	2023- 01-05	-0.369321	-1.899812	0.198205	-1.458155	1.788082	-2.437416	-0.246743
	2023- 01-06	1.923890	0.760789	2.489866	-1.865487	3.627743	-1.797308	1.592865
	2023- 01-09	1.867200	2.117043	2.727475	-1.507615	4.160161	-0.383875	1.790437
	•••		•••					
	2023- 07-24	18.167673	41.521474	14.811073	11.841544	0.693326	2.867262	6.508759
	2023- 07-25	18.440678	42.534953	15.112523	11.886288	0.505873	3.343127	7.049009
	2023- 07-26	18.456049	42.122878	15.292848	11.662669	0.604715	2.801855	7.586347
	2023- 07-27	17.793052	42.050915	14.632845	10.766215	-1.340574	2.665804	6.036378
	2023- 07-28	18.772084	44.004291	15.669694	10.223471	-0.826984	3.074520	6.796419

143 rows × 7 columns


```
In [ ]: df_corr = stock_dayily_pc.corr()
df_corr
```

Out[]:	Ticker	SPY	IYW	VT	DBA	TLT	PDBC	IAU
	Ticker							
	SPY	1.000000	0.861755	0.950274	0.220478	-0.027286	0.331629	-0.079354
	IYW	0.861755	1.000000	0.800055	0.066309	0.048336	0.123772	-0.032007
	VT	0.950274	0.800055	1.000000	0.289654	-0.016303	0.422287	0.030049
	DBA	0.220478	0.066309	0.289654	1.000000	0.027704	0.557974	0.032718
	TLT	-0.027286	0.048336	-0.016303	0.027704	1.000000	-0.045833	0.462083
	PDBC	0.331629	0.123772	0.422287	0.557974	-0.045833	1.000000	0.158478
	IAU	-0.079354	-0.032007	0.030049	0.032718	0.462083	0.158478	1.000000

```
In [ ]: plt.imshow(df_corr,cmap='hot',interpolation='none')
    plt.colorbar()
    plt.xticks(range(len(df_corr)),df_corr.columns)
    plt.yticks(range(len(df_corr)),df_corr.columns)

    plt.gcf().set_size_inches(10,10)
```


In []: periods = 75
 vol = stock_dayily_pc.rolling(window=periods).std()
 vol

Out[]:	Ticker	SPY	IYW	VT	DBA	TLT	PDBC	IAU
	Date							
	2023-01-03	NaN						
	2023-01-04	NaN						
	2023-01-05	NaN						
	2023-01-06	NaN						
	2023-01-09	NaN						
	•••		•••					
	2023-07-24	0.707558	1.166506	0.734429	0.809015	0.963432	1.064412	0.732151
	2023-07-25	0.706113	1.156585	0.731453	0.807949	0.954634	1.065039	0.735241
	2023-07-26	0.705720	1.156957	0.731077	0.802649	0.954034	1.066217	0.733968
	2023-07-27	0.711860	1.156609	0.736521	0.810772	0.961963	1.066175	0.750537
	2023-07-28	0.718360	1.164933	0.744222	0.811101	0.963905	1.065341	0.752773

143 rows × 7 columns

```
In [ ]: vol['SPY'].plot()
    vol['TLT'].plot()
    vol['DBA'].plot()
```

Out[]: <Axes: xlabel='Date'>

