03 Department Mapping Table

2025-10-19

Contents

1	Dep	partment Mapping Table - Vision-Based Pick and Place System	1
	1.1	Overview	1
	1.2	1. Core Concepts by Department	1
		1.2.1 1.1 Mechanical Department	1
		1.2.2 1.2 Electrical Department	2
		1.2.3 1.3 Electronics Department	2
		1.2.4 1.4 Software Department	3
		1.2.5 1.5 AI Department	3
		1.2.6 1.6 Security Department	3
	1.3	2. Module Mapping by Department	4
	1.4	3. UI, Visualization, Specifications by Department	5
	1.5	4. Testing by Department	6
	1.6	5. Observability by Department	7
	1.7	6. Logging & Tracing by Department	8
	1.8	7. Cross-Department Integration Matrix	9
	1.9	8. Dimensional Consistency Table	9
		1.9.1 8.1 Units Standardization	9
		1.9.2 8.2 Coordinate Frame Conventions	10
	1.10	9. Database Design by Department	10
		10. API Design by Department	
		11. Final Summary Table: Department Overview	

1 Department Mapping Table - Vision-Based Pick and Place System

1.1 Overview

This document provides a **comprehensive cross-departmental mapping** of concepts, modules, specifications, testing, observability, and logging for the vision-based pick-and-place robotic system.

1.2 1. Core Concepts by Department

1.2.1 1.1 Mechanical Department

Concept	Description	Application
Robot Kinematics	D-H parameters, link geometry	Workspace analysis, URDF modeling
Rigid Body Dynamics	$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) =$	Motion simulation, control design
End-Effector Design	Gripper mechanisms (parallel jaw, suction)	Grasp force, object handling
Transmission Systems	Gears, harmonic drives, belts	Torque amplification, backlash
Structural Analysis	FEA, vibration modes, stiffness	Minimize oscillations, ensure safety
Material Selection	Aluminum, steel, composites	Weight vs strength trade-offs
CAD Modeling	SolidWorks, CATIA, Fusion 360	3D design, assembly validation

${\bf 1.2.2}\quad {\bf 1.2}\ {\bf Electrical\ Department}$

Concept	Description	Application
Power Distribution	AC-DC conversion, DC bus architecture	48V DC bus for motors, 12V for logic
Motor Control	Servo drives, current/velocity/position loops	Joint actuation, precision control
Power Budget	Calculate total power consumption	Size power supply, thermal mgmt
EMI/EMC	Electromagnetic	CE marking, industrial
Compliance	interference/compatibility	standards
Grounding & Safety	Protective earth, isolation	Electrical safety, noise reduction
Circuit Protection	Fuses, circuit breakers, overcurrent	Prevent damage, safety shutdown
Wiring & Cabling	Cable sizing, shielding, routing	Minimize voltage drop, interference

1.2.3 1.3 Electronics Department

Concept	Description	Application
Vision Sensors	RGB-D cameras, stereo, industrial cameras	Object detection, pose estimation
Force/Torque Sensing	6-axis F/T sensors, strain gauges	Grasp control, collision detection
Proximity Sensors	Inductive, capacitive, photoelectric	Object presence, safety zones
Encoder Systems	Rotary (incremental/absolute), linear	Joint position feedback

Concept	Description	Application
Signal Conditioning	Amplification, filtering, ADC	Noise reduction, accurate sensing
Embedded Controllers	MCU (STM32), SBC (Jetson, RPi)	Low-level I/O, vision processing
Communication Interfaces	USB, UART, SPI, I2C, EtherCAT, CAN	Sensor data transfer, motor control

1.2.4 1.4 Software Department

Concept	Description	Application
ROS2 Architecture	Nodes, topics, services, actions	System integration, modularity
MoveIt Motion Planning	OMPL, collision checking, IK	Path planning, trajectory generation
Computer Vision Pipeline	Image processing, object detection (YOLO, OpenCV)	Perception, localization
State Machines / Behavior Trees	Task sequencing, error handling	High-level control, autonomy
Real-Time Control	RT-Preempt Linux, deterministic loops	Low-latency motor control
Data Management	Databases (PostgreSQL), time-series (InfluxDB)	Logging, analytics
API Design	RESTful APIs, gRPC, ROS services	External integration

1.2.5 1.5 AI Department

Concept	Description	Application
Object Detection	Deep learning (YOLO, SSD, Faster R-CNN)	Identify objects in images
Pose Estimation	6DoF pose from RGB-D (PVNet, DenseFusion)	Grasp planning, alignment
Grasp Synthesis	Learning-based (GraspNet, Dex-Net)	Optimal grasp selection
Reinforcement Learning	Policy learning for adaptive grasping	Improve performance over time
Point Cloud Processing	Segmentation, clustering (PCL, Open3D)	3D scene understanding
Model Training	Training pipelines, data augmentation	Custom datasets, fine-tuning
Inference Optimization	TensorRT, ONNX Runtime, quantization	Real-time performance on edge

1.2.6 1.6 Security Department

Concept	Description	Application
Network Security	Firewalls, VLANs, secure communication	Protect control network
Authentication & Authorization	User roles, access control (RBAC)	Restrict system access
Data Encryption	TLS for communication, encrypted storage	Protect sensitive data
Secure Boot	Firmware integrity verification	Prevent unauthorized code
Vulnerability Management	Regular security audits, patch management	Minimize attack surface
Safety Interlocks	Emergency stop, safety-rated controllers	Physical safety enforcement
Logging & Audit Trails	Immutable logs, intrusion detection	Forensics, compliance

1.3 2. Module Mapping by Department

Departme	Technology Departmen*Module/ComponentInputs Outputs Stack				
Mechanic	aRobot Manipulator (6-DOF Arm)	Motor torques	Joint motion, end-effector pose	Aluminum links, harmonic drives	
	Gripper Assembly	Gripper command (open/close)	Grasp force, jaw position	Parallel jaw, pneumatic actuator	
	Mounting Frame	Static loads	Structural support	Steel frame, vibration dampers	
Electrical	Power Supply Unit (48V DC)	230V AC mains	48V DC, 20A	AC-DC converter, EMI filter	
	Servo Drive	Position/velocity	Motor current	Beckhoff,	
	(EtherCAT)	commands	(3-phase AC)	Kollmorgen drives	
	Power Distribution Board	48V DC bus	12V, 5V, 3.3V rails	Buck converters, fuses	
Electronic	csRGB-D Camera (RealSense D435)	USB 3.0 power, triggers	RGB image, depth map, point cloud	Intel RealSense SDK	
	Force/Torque Sensor (ATI Mini45)	Robot motion, contact forces	Fx, Fy, Fz, Tx, Ty, Tz	ATI DAQ, ROS driver	
	Absolute Encoders (17-bit)	Motor shaft rotation	Absolute position	BiSS-C, EnDat protocol	
	Embedded Controller (Jetson	Vision data, control commands	Object poses, grasp plans	NVIDIA Jetson, Ubuntu 22.04	
	Xavier)		9P	0 10 0000000	
Software	Vision Pipeline Node	RGB-D frames	Object bounding boxes, poses	ROS2, OpenCV, YOLO	
	MoveIt Planning Node	Target pose, scene	Joint trajectory	MoveIt2, OMPL	

Departme	erModule/Componer	$\operatorname{ntInputs}$	Outputs	Technology Stack
	Grasp Planner Node	Object pose, point cloud	Gripper pose, approach vector	PCL, custom algorithms
	Task Orchestrator (State Machine) ros2_control	System state, sensor events Joint trajectories	High-level commands Motor commands	BehaviorTree.CPP, SMACH ros2_control,
	Controller Manager	o omic trajectories	(EtherCAT)	RT-Preempt
\mathbf{AI}	Object Detection	RGB image	Bounding boxes,	PyTorch,
	Model (YOLOv8)	(640x640)	class labels	TensorRT
	Pose Estimation Model (PVNet)	RGB-D, object mask	6DoF pose (x,y,z,roll,pitch,yaw)	PyTorch, CUDA
	Grasp Network (GraspNet)	Point cloud, object segmentation	Grasp poses, quality scores	TensorFlow, Python
Security	Firewall & Network Segmentation	Network traffic	Filtered traffic	iptables, VLANs
	Authentication Service	User credentials	Access tokens (JWT)	OAuth2, Keycloak
	Audit Logger	System events	Immutable log entries	Syslog, ELK stack

1.4 3. UI, Visualization, Specifications by Department

Departmen	ntUI/Visualization	Specifications	Tools	
Mechanical CAD 3D viewer,		- Workspace: 800mm radius-	SolidWorks, Fusion	
	assembly animations	Payload: 5kg- Repeatability:	360, FreeCAD	
		$\pm 0.1 \mathrm{mm}$		
	FEA stress/strain	- Max deflection: < 0.5 mm-	ANSYS, Abaqus	
	visualization	Safety factor: >3		
Electrical	Power flow diagram,	- Input: 230V AC, 50Hz- DC	AutoCAD Electrical,	
	load distribution	Bus: $48V$, $20A$ - Efficiency: $>90\%$	EPLAN	
	Circuit schematics,	- Overcurrent protection: 25A	KiCAD, Altium	
	PCB layout	breaker- Grounding: $<1\Omega$	Designer	
Electronics	Sensor data dashboards	- Camera: 1920×1080 @ 30fps -	Grafana, Plotly,	
	(Grafana)	F/T range: $\pm 100N$, $\pm 10Nm$ -	RViz2	
		Encoder: 17-bit		
	Signal waveforms	- ADC: 16-bit, 1kHz sampling-	LTSpice, oscilloscope	
	(oscilloscope)	Noise: $<0.1\%$ FSR	tools	
Software	RViz2 (robot state, TF,	- Control loop: 1kHz- Latency:	RViz2, Foxglove	
	point clouds)	<10ms- ROS2: Humble	Studio	
	Dashboards (system	- API: RESTful, gRPC-	Grafana, Prometheus,	
	status, metrics)	Database: PostgreSQL	Kibana	

DepartmentUI/Visualization		Specifications	Tools
AI	Model performance plots (precision-recall)	- Detection mAP: >0.95- Pose error: <5mm, <5°- Inference: <50ms	TensorBoard, Weights & Biases
Security	Live inference visualization Security monitoring dashboard	 - GPU utilization: >80%- Batch size: 1 (real-time) - Access logs retention: 1 year-Encryption: TLS 1.3- Audit: ISO 27001 	Custom dashboards, Jupyter Splunk, ELK, Grafana
	Network topology map	- Segmentation: 3 VLANs (control, data, mgmt)	Nmap, Wireshark

1.5 4. Testing by Department

Departmentest Type	Test Cases	Pass Criteria	Tools
Mechanical tatic Load	Apply 5kg payload,	Deflection	Load cell, dial
Testing	measure deflection	$< 0.5 \mathrm{mm}$	indicator
Vibration Testing	Excite at natural	Amplitude	Accelerometer,
	frequencies, measure amplitude	<1mm	FFT analyzer
Endurance Testing	10,000 pick-place cycles	No mechanical wear/failure	Automated test rig
Electrical Power Quality	Measure voltage ripple,	Ripple $<5\%$,	Oscilloscope,
Testing	efficiency	Efficiency $>90\%$	power meter
EMC Testing	Radiated/conducted emissions	Comply with EN 61000-6-2	EMC chamber, spectrum analyzer
Short-Circuit	Intentional short, verify	Breaker trips	Current probe,
Testing	protection triggers	<10ms	oscilloscope
Electronics ensor Calibration	Compare sensor output with known reference	Error $<1\%$ FSR	Calibration weights, fixtures
Signal Integrity Testing	Measure noise, crosstalk on high-speed buses	SNR > 40dB	Oscilloscope, logic analyzer
Environmental	Temperature (-10°C to	Functional	Climate
Testing	50°C), humidity (10-90% RH)	within range	chamber
Software Unit Testing	Test individual ROS nodes, functions	Code coverage >80%	pytest, gtest
Integration Testing	Test node communication, end-to-end workflow	All tests pass	ROS launch tests, pytest
Real-Time	Measure control loop	Jitter $< 1 ms$,	cyclictest, ROS
Performance Testing	jitter, latency	Latency < 10ms	diagnostics

Departm	neThest Type	Test Cases	Pass Criteria	Tools
	Load Testing	Simulate 100 concurrent vision requests	Response time <100ms	JMeter, Locust
AI	Model Validation	Test on holdout dataset	mAP >0.95, Pose error <5mm	Python scripts, TensorBoard
	Edge Case Testing	Occluded objects, varying lighting	Detection rate >90%	Custom test datasets
	Performance	Measure inference time on	$<50 \mathrm{ms}$ per frame	NVIDIA Nsight,
	Benchmarking	target hardware		TensorRT profiler
Security	Penetration Testing	Simulate cyberattacks on control network	No unauthorized access	Metasploit, Nmap, Burp Suite
	Access Control Testing	Verify role-based permissions	Users restricted per role	Manual testing, automated scripts
	Encryption Validation	Verify TLS handshake, data encryption	TLS 1.3, AES-256	Wireshark, OpenSSL tools

1.6 5. Observability by Department

Metrics			
DepartmeMonitored	Thresholds/Alerts	Visualization	Tools
Mechanicabint positions, velocities	Position error >5 mm \rightarrow alert	RViz2, Grafana time-series	ROS diagnostics, Prometheus
Gripper force, jaw opening	Force $>100N \rightarrow alert$ (overload)	Grafana dashboard	$ros2_control,$ $InfluxDB$
Electrical Bus voltage, current draw	Voltage $<45\mathrm{V}$ or $>50\mathrm{V} \rightarrow$ alertCurrent $>20\mathrm{A} \rightarrow$ alert	Grafana, SCADA HMI	Modbus monitors, Grafana
Motor temperatures Electronics amera frame rate, data rate	Temp >70°C \rightarrow warning, >80°C \rightarrow shutdown FPS <25 \rightarrow warning	Thermal camera, Grafana Grafana, RViz2 diagnostics	Thermistors, Prometheus ROS image_transport, Prometheus
F/T sensor readings CPU/GPU utilization (Jetson)	Force spike $>150N \rightarrow$ collision alert GPU $>95\% \rightarrow$ thermal throttling risk	Real-time plot, Grafana NVIDIA Jetson stats, Grafana	ROS topic monitor tegrastats, Prometheus exporter
Software Node alive status, topic Hz	Node down \rightarrow critical alertHz $<10 \rightarrow$ warning	ROS2 diagnostics, Grafana	ros2 topic hz, diagnostics agg

	Metrics			
Departm	ne M tonitored	${ m Thresholds/Alerts}$	Visualization	Tools
-	Control loop	Latency $> 10 \text{ms} \rightarrow$	Grafana	ROS diagnostics,
	latency, jitter	warning	time-series	Prometheus
	Database query	Query $>100 \text{ms} \rightarrow \text{slow}$	Grafana,	PostgreSQL logs,
	time	query log	pgAdmin	Prometheus
\mathbf{AI}	Inference time,	Inference $>50 \mathrm{ms} \rightarrow$	Grafana,	NVIDIA-SMI,
	GPU memory	warning Memory >90% \rightarrow alert	TensorBoard	Prometheus
	Detection	Confidence $<0.7 \rightarrow low$	Custom	ROS topic,
	confidence scores	confidence alert	dashboard	Grafana
Security	Failed login	>5 failures in 5min \rightarrow	Security	Fail2ban, ELK
-	attempts	lockout + alert	dashboard, SIEM	stack
	Network	Unexpected traffic \rightarrow	Network	Intrusion
	anomalies	alert	topology,	detection
			Grafana	(Snort), ELK
	Certificate expiry	$<30 \text{ days} \rightarrow \text{warning}$	Security	Certbot,
	- 0	, G	dashboard	Prometheus

1.7 6. Logging & Tracing by Department

Departme	erItogs Captured	Log Format	Retentio	nTools
Mechanical oint positions, trajectories		CSV, ROS bag	30 days	rosbag2, custom logger
	Collision events, emergency stops	JSON, syslog	1 year	syslog-ng, ELK
Electrical	Power on/off events, faults	Syslog, Modbus logs	1 year	syslog, Modbus logger
	Motor drive errors, alarms	Proprietary drive logs, CSV	1 year	Drive software, custom parser
Electronics ensor data streams (raw + processed)		HDF5, ROS bag	7 days (raw)	rosbag2, HDF5
	Calibration parameters, changes	JSON, version-controlled files	Indefinite	Git, config management
Software	ROS node logs (INFO, WARN, ERROR)	ROS logging (console, file)	30 days	ros2 launch, syslog
	API requests/responses	JSON, structured logs	90 days	FastAPI logging, ELK
AI	Control loop timings Model version, hyperparameters	CSV, InfluxDB time-series MLflow tracking, YAML configs	30 days Indefinite	InfluxDB, Grafana MLflow, DVC

Departmentogs Captured		Log Format	Retentio	RetentionTools	
	Inference results (detections, poses)	JSON, ROS bag	30 days	rosbag2, custom JSON logger	
	Training metrics (loss, accuracy)	TensorBoard logs	Indefinite	TensorBoard, Weights & Biases	
Security	Authentication attempts (success/fail)	Syslog, JSON	1 year	Syslog, ELK	
	System access audit trail	Immutable logs (blockchain/append-only)	5 years	Audit logging service, ELK	
	Network traffic logs	Pcap, NetFlow	30 days	tcpdump, Wireshark, ELK	

Distributed Tracing: - Tool: Jaeger, Zipkin - **Purpose:** Trace requests across ROS nodes, services, actions - **Retention:** 7 days - **Instrumentation:** OpenTelemetry in ROS2 nodes

1.8 7. Cross-Department Integration Matrix

	Departments		Critical
Integration Point	Involved	Interface	Requirements
Camera to Vision	Electronics Software	USB 3.0, ROS	<30ms latency, 30fps
Pipeline		$image_transport$	
Vision to Motion	Software (AI)	ROS service/action	Pose accuracy <5mm
Planning	Software (MoveIt)		
Motion Planning to	Software Electrical	EtherCAT,	1kHz control loop,
Motor Control		ros2_control	<1ms jitter
F/T Sensor to	Electronics Software	Analog/Digital, ROS	1kHz sampling, <0.1N
Control		topic	noise
Emergency Stop	Electrical Security	Hardwired, Safety	<10ms response time
		PLC	
Power Supply to	Electrical Mechanical	48V DC bus	Voltage ripple $<5\%$
Motors			
CAD to Simulation	Mechanical Software	URDF export	Accurate inertia,
			collision mesh
Security Auth to API	Security Software	JWT tokens, TLS	<100ms auth latency

1.9 8. Dimensional Consistency Table

1.9.1 8.1 Units Standardization

Quantity	Unit	Symbol	Notes
Length	Meter	m	SI base unit
Mass	Kilogram	kg	SI base unit
Time	Second	S	SI base unit
Force	Newton	N	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$
Torque	Newton-meter	$N \cdot m$	Also moment of force
Angle	Radian	rad	Preferred over degrees in code
Angular Velocity	Rad per second	rad/s	-
Voltage	Volt	V	Electrical potential
Current	Ampere	A	Electrical current
Power	Watt	W	1 W = 1 J/s
Frequency	Hertz	${ m Hz}$	1 Hz = 1/s

1.9.2 8.2 Coordinate Frame Conventions

Frame	Origin	Orientation (Right-Hand Rule)
World	Floor center	X: forward, Y: left, Z: up
Robot Base	Robot mounting point	X: forward, Y: left, Z: up
Camera	Optical center	X: right, Y: down, Z: forward (OpenCV)
End-Effector	Flange center	X: approach, Y: closing, Z: normal
Object	Object centroid	X, Y, Z: aligned with object principal axes

1.10 9. Database Design by Department

Departme	r ID atabase	Tables/Collections	Schema	Access Pattern	
$\overline{\mathbf{Mechanica} \mathbf{Postgre SQIparts}, \mathtt{assemblies}, \mathtt{bom}}$			part_id, name, material, weight, CAD_file_url	Infrequent writes, periodic reads	
Electrical	PostgreSQ	<pre>Ipower_logs, motor_status</pre>	timestamp, bus_voltage, current, temp	High-frequency inserts (1Hz)	
ElectronicsInfluxDB :		sensor_data (time-series)	time, sensor_id, value, unit	High-frequency writes (1kHz)	
Software	PostgreSQ	Itasks, logs, configs	task_id, status, start_time, end_time	Frequent reads/writes	
	Redis	Session cache, real-time state	key-value (JSON)	Sub-ms latency	
AI	MongoDB	datasets, models, inferences	model_id, version, accuracy, inference_results	Append-heavy (inference logs)	
	MLflow Backend	Experiment tracking	Managed by MLflow	Experiment analysis, model registry	
Security	PostgreSQ	Musers, roles, audit_trail	user_id, role, action, timestamp, IP	Append-only audit logs	

DepartmenDatabas	${ m e\ Tables/Collections}$	Schema	Access Pattern
ELK (Elastic- search)	Security logs (indexed)	timestamp, event_type, severity, details	Full-text search, real-time alerts

1.11 10. API Design by Department

	API				Rate
Department	Type	Endpoints	Methods	Auth	Limit
Software	REST	/api/v1/tasks,	GET,	JWT	100
		/api/v1/status	POST		req/min
	gRPC	PlanMotion,	RPC	mTLS	No limit
		ExecuteTrajectory			(internal)
\mathbf{AI}	REST	/api/v1/detect,	POST	API Key	60 req/min
		/api/v1/pose_estimate			
	WebSocket	/ws/live_inference	Stream	JWT	1
					conn/user
Security	REST	/api/v1/auth/login,	POST	Username/Pa	asso req/min
		/api/v1/auth/logout			
	REST	/api/v1/audit/logs	GET	Admin	10 req/min
				JWT	

1.12 11. Final Summary Table: Department Overview

	Primary		
DepartmentResponsibility		Key Deliverables	Critical Metrics
Mechanical Robot structure,		CAD models, URDF, FEA	Repeatability ± 0.1 mm,
	kinematics, gripper	reports	Payload 5kg
Electrical	Power, motor control,	Circuit schematics, power	Efficiency >90%, Voltage
	wiring	budget, motor specs	regulation $\pm 2\%$
Electronics Sensors, embedded		Sensor specs, calibration	Sensor accuracy $<1\%$,
	systems, I/O	procedures, drivers	Sampling rate >1kHz
Software	ROS2, control,	ROS packages, APIs, state	Control loop 1kHz, Latency
	planning, integration	machines, tests	<10ms
\mathbf{AI}	Perception, learning,	Trained models, datasets,	Detection mAP > 0.95 ,
	optimization	inference pipeline	Inference $<50 \text{ms}$
Security	Cybersecurity, access	Security policies, audit logs,	Zero breaches, 100% audit
	control, audits	encryption	coverage

Document Status: Complete **Last Updated:** 2025-10-18 **Author:** Cross-Functional Team **Review Status:** Pending Multi-Department Review