CSE 232 Homework 3

Aygün BAYIR

161044119

Step 1: Create FSM

Step 2: Obtain Architecture

- 7 states (3-bit register will be used)
- a is input
- x, y, z are outputs

Step 3: Encode the states

State	S2	S1	S0
S0	0	0	0
S1	0	0	1
S2	0	1	0
S3	0	1	1
S4	1	0	0
S5	1	0	1
S6	1	1	0

Step 4: Generate State Table

Inputs			Outputs						
s2	s1	s0	а	n2	n1	n0	х	У	Z
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	1	0	1	1
0	0	1	1	0	1	0	0	1	1
0	1	0	0	0	1	0	1	1	1
0	1	0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	0	1	0
0	1	1	1	1	0	0	0	1	0
1	0	0	0	1	0	0	0	0	1
1	0	0	1	1	0	1	0	0	1
1	0	1	0	1	0	1	1	0	1
1	0	1	1	1	1	0	1	0	1
1	1	0	0	1	1	0	1	0	0
1	1	0	1	0	0	0	1	0	0

Step 5: Obtain Boolean expressions and draw controller

<u>N2</u>

$$\begin{aligned} &n2 = s2'.s1.s0.a + s2.s1'.s0'.a' + s2.s1'.s0'.a + s2.s1'.s0.a' + s2.s1'.s0.a + s2.s1.s0'.a' \\ &= s2'.s1.s0.a + s2.s1'.s0'. (a'+a) + s2.s1'.s0.(a'+a) + s2.s1.s0'.a' \\ &= s2'.s1.s0.a + s2.s1'.(s0'+s0) + s2.s1.s0'.a' \end{aligned}$$

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00				
01			1	
11	1			
10	1	1	1	1

We obtained same equation from Karnaugh-Map.

<u>N1</u>

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00	·		1	
01	1	1		1
11				
10		1		1

We obtained same equation from Karnaugh-Map.

NO

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00		1		1
01		1		1
11				
10		1		1

We obtained same equation from Karnaugh-Map.

<u>X</u>

$$x = s2'.s1.s0'.a' + s2'.s1.s0'.a + s2.s1'.s0.a' + s2.s1'.s0.a + s2.s1.s0'.a' + s2.s1.s0'.a$$

= $s2'.s1.s0'.(a'+a) + s2.s1'.s0.(a'+a) + s2.s1.s0'.(a'+a)$
= $s1.s0'.(s2'+s2) + s2.s1'.s0$

$$x = s1.s0' + s2.s1'.s0$$

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00				
01	1	1		
11	1	1		
10			1	1

We obtained same equation from Karnaugh-Map.

y = s2'.s1 + s2'.s1'.s0

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00			1	1
01	1	1	1	1
11				
10				

$$y = s2'.s0 + s2'.s1$$

We obtained a simpler equation from Karnaugh-Map and used this equation in controller design.

Z

$$z = s2'.s1'.s0.a' + s2'.s1'.s0.a + s2'.s1.s0'.a' + s2'.s1.s0'.a + s2.s1'.s0'.a' + s2.s1'.s0'.a + s2.s1'.s0.a' + s2.s1'.s0'.a' + s2.s1'.s0'.a'$$

Karnaugh-Map

s2 s1 \ s0 a	00	01	11	10
00			1	1
01	1	1		
11				
10	1	1	1	1

We obtained same equation from Karnaugh-Map.

Controller Design

