Problem 1

```
What we want to prove: Pr(\alpha 1, ..., \alpha n \mid \beta) = \prod I (from i = 1 \text{ to } n) Pr(\alpha i \mid \alpha i + 1, ..., \alpha n, \beta).
Therefore, we need to use n to do the induction proof:
             Base Case: for n = 0 and n = 1, this holds true trivially
                                   for n = 2, Bayes' conditioning rule tells that Pr(\alpha 1, \alpha 2 | \beta) = Pr(\alpha 1 | \alpha 2, \beta)P
                                   r(\alpha 2|\beta)
             Inductive Step: We make an assumption that Pr(\alpha 1, ..., \alpha n \mid \beta) = \prod_{i=1}^{n} I(\text{from } i = 1, \text{ to } n)
                                          Pr(\alpha i \mid \alpha i+1, \dots, \alpha n, \beta). By the Bayes' conditioning rule, we get the
                                          following:
                                                      Pr(\alpha 1, \ldots, \alpha n+1|\beta)
                                                                   =Pr(\alpha n+1|\alpha 1, ..., \alpha n, \beta) * Pr(\alpha 1|\alpha 2, ..., \alpha n, \beta)...Pr(\alpha n|\beta)
                                                                   =(Pr(\alpha n+1,\alpha 1|\alpha 2,...,\alpha n,\beta)/Pr(\alpha 1|\alpha 2,...,\alpha n,\beta)) * (Pr(\alpha 1|\alpha 2,...,\alpha n,\beta))
                                                                   ..., \alpha n, \beta) ... Pr(\alpha n | \beta))
                                                                   =((\Pr(\alpha 1|\alpha 2,\ldots,\alpha n+1,\beta) * \Pr(\alpha n+1|\alpha 2,\ldots)
                                                                   (\alpha n, \beta)/(Pr(\alpha 1 | \alpha 2, ..., \alpha n, \beta))) * (Pr(\alpha 1 | \alpha 2, ..., \alpha n, \beta) ...
                                                                   Pr(\alpha n|\beta)
                                                                   =\Pr(\alpha 1 | \alpha 2, ..., \alpha n+1, \beta) * \Pr(\alpha n+1 | \alpha 2, ..., \alpha n, \beta) *
                                                                   (Pr(\alpha 2|\alpha 3, ..., \alpha n, \beta) ... P r(\alpha 1, ..., \alpha n|\beta))
                                                                   =\Pr(\alpha 1 | \alpha 2, ..., \alpha n, \beta) * \Pr(\alpha 2 | \alpha 3, ..., \alpha n, \beta) * \Pr(\alpha n + 1 | \alpha 3, ..., \alpha n, \beta)
                                                                   \alpha n, \beta) * (Pr(\alpha 3 | \alpha 4, ..., \alpha n, \beta) ... Pr(\alpha n | \beta))
```

All of the above can be simplified to something like this:

$$\begin{split} & \text{P r}(\alpha 1, \, \dots, \, \alpha n + 1 | \beta) = (\, \text{Pr}(\alpha n + 1 | \beta) \, / \, \text{Pr}(\alpha n | \beta) \,) \, * \, (\text{P r}(\alpha 1 | \alpha 2, \, \dots, \, \alpha n + 1, \, \beta) \, \dots \, \text{P r}(\alpha n - 1 | \alpha n, \, \beta)) \, * \, \text{Pr}(\alpha n | \beta) \\ & = \text{Pr}(\alpha 1 | \alpha 2, \, \dots, \, \alpha n + 1, \, \beta) \, \dots \, \text{Pr}(\alpha n + 1 | \beta) \\ & = \prod_{i=1}^{n} (\text{from } i = 1 \text{ to } n + 1) \, \text{Pr}(\alpha i | \alpha i + 1, \, \dots, \, \alpha n + 1, \, \beta) \end{split}$$

Problem 2

```
O = oil
```

N = natural gas

P = positive geographic test

$$\begin{split} Pr(o|t) &= \left(Pr(o) / Pr(t) \right) / Pr(t|o) \\ &= \left(Pr(o) \ Pr(t|o) \right) / \left(Pr(t|o) Pr(o) + Pr(t|g) Pr(g) + Pr(t|\bar{o}, \bar{g}) P\left(\bar{o}, \bar{g}\right) \right) \\ &= \left((.5)(.9) \right) / \left((.9)(.5) + (.3)(.2) + (.1)(.3) \right) = \textbf{.833} \end{split}$$

Problem 3

C n is what we will use for a heads on the coin flip's nth time.

Bayesian Network:

Conditional Probability Tables:

h=he	eads, f=	tails				
a !	(c) 13 13 13		h h h h	1 PC(1C) .2 .8 .4 .6 .8		C2 P(C2)C3 + 2.6 + 1.6 + 1.2
C C3 G n a 1 + b n b + E 17 C	3(C3 C 12 14 16 18 12 C2		R	Ofara ((21/m)	
h h h	h	C3 h h + + + + + + + + + + + + + + + + +	on of of	P(B1C1, 62 0 0	13	
h h h	+ + + + + + + + + + + + + + + + + + + +	h t t	of of on	0		
+ + + + +	h	h + -	off on off	0		
+ +	+ +		on	0		

Problem 4

- a. I(A, φ, BE), I(B, φ, AC), I(C, A, BDE), I(D, AB, CE), I(E, B, ACDFG), I(F, CD, ABEH), I(G, F, ABCDEH), I(H, EF, ABCDG)
- b. d separated(A, F, E) → blocked(ADB)? not → blocked(DBE) not => **False** d separated(G, B, E) → blocked(GFH)? not → blocked(FHE)? not => **False** d separated(AB, CDE, GH) → blocked(ACF)? yes, blocked(ADF)? yes → blocked(BDF)? yes → blocked(BEH)? yes => **True**
- c. Pr(a,b,c,d,e,f,g,h) = Pr(a) * Pr(b) * Pr(c|a) * Pr(d|a,b) * Pr(e|b) * Pr(f|c,d) * Pr(h|f,e) * Pr(g|f)
- d. For the markovian assumption, $I(A, \varphi, BE)$:

$$Pr(A = 1, B = 1) = Pr(A = 1) * Pr(B = 1) = (0.2)(0.7) = 0.14$$

$$AND: Using I(A, \phi, BE): Pr(E = 0|A = 0) = Pr(E = 0)$$

$$= Pr(E = 0|B = 1) * Pr(B = 1) + Pr(E = 0|B = 0) * Pr(B = 0)$$

$$= (.9)(0.7) + (.1)(.3) = .66$$

Problem 5

a.
$$M(\alpha) = w0, w2, w3$$

b.
$$Pr(\alpha) = Pr(A = 0, B = 1) = 1 - Pr(w1) = 0.8$$

c.
$$Pr(A,B|\alpha) =$$

World	P(World)	
w0	.375	
w1	0	
w2	.125	
w3	.5	

d.
$$Pr(A \Rightarrow \neg B)$$

= $(Pr((A \Rightarrow \neg B) \land (A \Rightarrow B))) / (Pr(\alpha))$
= $(Pr((\neg A \lor \neg B) \land (\neg A \lor B))) / (Pr(\alpha))$
= $Pr(\neg A)/Pr(\alpha)$
= $.5/.8 = .625$