선박의 저항과 추진

2018. 4

류 재 문

5.1 선박의 저항

선박의 저항

Froude Assumption

- Ct(Fn, Rn)
$$\sim$$
 CF(Rn) + CR(Fn)

Form Factor

Dimensional Analysis

• The resistance of a ship:

$$R_T = f(V, L, \rho, \nu, g)$$

Total Resistance

- V Ship speed
- L Ship length
- ρ Fluid density
- *v* Fluid kinematic viscosity
- g Gravity acceleration

- Dimensional Analysis
 - Total resistance coefficient

$$C_T = C_T(R_n, F_n)$$

• Total resistance coefficient $C_T = \frac{R_T}{1/2\rho V^2 S}$

• Reynolds number
$$R_n = \frac{VL}{V} = \frac{\rho \frac{V^2}{L}}{\mu \frac{V}{L^2}}$$

• Froude number $F_n = \frac{V}{\sqrt{gL}} = \sqrt{\frac{\rho \frac{V^2}{L}}{\rho g}}$

5.1.1 모형시험과 상사법칙

그림 5.1 최초의 근대식 예인수조(1872, Torquay, UK)

Similitude

Geometric similitude

그림 5.2 모형선과 실선의 기하학적 상사

Kinematic similitude

$$\left(\frac{V_A}{V_B}\right)_M = \left(\frac{V_A}{V_B}\right)_S.$$

$$\left(\frac{V}{\pi nD}\right)_{M} = \left(\frac{V}{\pi nD}\right)_{S}.$$

$$J \equiv \frac{V}{nD}$$

Dynamic similitude

$$\left(\frac{F_t}{F_n}\right)_M = \left(\frac{F_t}{F_n}\right)_S.$$

그림 5.3 모형선과 실선의 동역학적 상사

Froude Number

$$C_T = \frac{R_T}{(\rho V^2/2)S}.$$

S: Wetted Surface

$$C_T(Rn, Fn) \simeq C_F(Rn) + C_R(Fn)$$
.

표 5.1 대표적인 선종별 저항계수

선 종	전체저항 계수 $C_T imes 10^3$	마찰저항 계수 $C_F imes 10^3$	조파저항 계수 $C_W \times 10^3$	잉여저항 계수 $C_R imes 10^3$	프루드수 V/\sqrt{gL}
유조선 (300K VLCC)	2.08	1.40	0.288	0.68	0.14
산적화물선 (75K Panamax)	2.28	1.46	0.543	0.82	0.17
정제유탱커 (35K PT)	2.78	1.51	0.877	1.27	0.19
컨테이너선 (9,000 TEU)	1.99	1.33	0.474	0.66	0.23
자동차선 (3,000 unit PCC)	2.60	1.49	0.931	1.11	0.24
구축함	2.60	1.42	0.825	1,18	0.28

5.1.2 실선의 저항추정

$$C_T = C_F + C_R,$$

$$C_F = \frac{0.075}{(\log Rn - 2)^2},$$

$$C_{TS} = C_{FS} + C_{RS} + C_{AS}.$$

 C_{AS} 는 모형선-실선 상관수정계수(model-ship correlation allowance).

• (CR)m = (CR)s, CF(Rnm) \neq CF(Rns)

그림 5.4 1957 ITTC 모형선-실선 상관곡선

$$C_T = C_V + C_W = (1+k)C_F + C_W,$$

$$C_R = kC_F + C_W.$$

$$C_{TS} = (1+k)C_{FS} + C_{WS} + C_{AS} + C_{AAS}$$
.

5.1.3 저항시험

- Resistance Test EHP
- POW test (Propeller Open Water test)
- Self Propulsion Test
- Propeller Cavitation test

그림 5.5 예인수조 시설(KRISO)

Resistance Test

- Towing Carriage
- Dynamometer
- Clamp
- Trim Guide

그림 5.6 저항시험을 위한 계측 및 제어 시스템

Circulating Water Channel

유속 계측

• Pitot Tube

5.1.4 선형과 저항성능

- 선수형상
 - Cp 곡선
 - bulbous bow
 - entrance angle
 - LCB vs CB
 - breaking wave

그림 5.8 선속에 따른 선수부 횡단면형상 비교

그림 5.9 높은 벌브(좌)와 중간 벌브(우)

19.75ST

그림 5.11 수선면의 도입각

선미형상

그림 5.12 U형과 V형 선미형상

선박의 추진

Propeller

그림 5.13 선박용 나사프로펠러

Propeller 형상

그림 5.14 프로펠러의 형상과 명칭

그림 5.15 프로펠러의 날개 및 날개단면의 형상

- Chord, Span
- Rake
- Skew
- Pitch
- Blade outline

Foil 에 작용하는 힘

그림 5.16 날개단면에 작용하는 힘과 전형적인 압력분포

FOR AHEAD MOTION

- Thrust vs Torque
- Drag vs Lift
- Angle of Attack
- Pressure Coefficient

$$C_p = \frac{p - p_{\infty}}{\rho U^2 / 2} = \frac{p_r}{\rho U^2 / 2},$$

5.2.2 추진동력과 효율

Propeller

그림 5.17 선박의 여러 가지 동력

지시동력(indicated power) P_I

$$P_I = p_M \times A \times s \times n \times N_c.$$

제동동력(brake power) P_B

축동력(shaft power) P_S

$$P_S = 2\pi n Q_s$$
.

전달동력(delivered power) P_D

$$P_D = 2\pi n Q$$
.

추진동력(thrust power) P_T $P_T = T V_A.$

유효동력(effective power) P_E

$$P_E = RV$$
.

준추진효율(quasi-propulsive efficiency) η_D 와 선각효율(hull efficiency) η_H

$$\eta_D = \frac{P_E}{P_D} = \frac{RV}{2\pi nQ}.$$

$$\eta_H = \frac{P_E}{P_T} = \frac{RV}{TV_A} = \frac{R}{T} \frac{V}{V_A}.$$

선체-프로펠러 상호작용

반류비(wake fraction) w

$$w = \frac{V_w}{V} = \frac{V - V_A}{V} = 1 - \frac{V_A}{V}.$$

추력감소비(thrust deduction fraction) t

$$t = \frac{\Delta R}{T} = \frac{T - R}{T} = 1 - \frac{R}{T}.$$

선각효율

$$\eta_H = \frac{R}{T} \frac{V}{V_A} = \frac{1-t}{1-w}.$$

선미효율(efficiency behind the hull) η_B

$$\eta_B = \frac{P_T}{P_D} = \frac{TV_A}{2\pi n Q}.$$

$$\eta_D = \frac{P_E}{P_D} = \frac{P_T}{P_D} \frac{P_E}{P_T} = \eta_B \eta_H,$$

$$\eta_D = \frac{P_E}{P_D} = \eta_B \frac{1-t}{1-w}$$

프로펠러 모형시험

POW test

$$\frac{V_M}{n_M D_M} = \frac{V_S}{n_S D_S} \rightarrow n_M = n_S \frac{V_M}{V_S} \frac{D_S}{D_M} = \frac{n_S}{\sqrt{\lambda}}.$$

그림 5.18 프로펠러 단독시험(KRISO)

$$K_T = rac{T}{
ho n^2 D^4}, \ K_Q = rac{Q}{
ho n^2 D^5} \qquad \eta_0 = rac{T V_A}{2\pi n Q}, \ \eta_0 = rac{K_T V_A}{2\pi n K_Q D} = rac{J_A}{2\pi} rac{K_T}{K_Q}, \ J_A = rac{V_A}{n D}.$$

자항시험

- Self-propulsion test → 자항요소 (self propulsion factors) 추정 → η_H 와 η_B
- 모형선 Fn 일치
- 모형과 실선의 Reynolds 수 차이 → 모형 선 마찰계수>실선 마찰계수 → 저항 보정
- 표면마찰보정 (skin friction correction)

$$F_D = \frac{1}{2} \rho_M V_M^2 S_M (C_{FM} - C_{FS}).$$

그림 5.20 자항시험 제어 및 계측 시스템

프로펠러 공동시험

• 온도 일정하며 압력 낮춰 증기압 이하가 되면 물은 기체가 되며 cavitation 현상 발 생

그림 5.21 물의 온도-압력 상태곡선

그림 5.23 프로펠러에 발생하는 공동의 생성과 소멸

그림 5.24 대형공동수조 (KRISO)

여러 가지 추진기

Fixed Pitch Propeller, FPP

그림 5.25 고정피치 프로펠러(FPP)

Controllable Pitch Propeller, CPP

그림 5.26 가변피치 프로펠러(CPP)

Highly Skewed Propeller

그림 5.27 고스큐 프로펠러

Tip raked propeller

그림 5.28 날개끝경사 프로펠러(좌)와 Kappel 프로펠러(우)

Contra-Rotating Propeller, CRP

그림 5.29 상반회전 프로펠러(CRP)

Ducted Propeller

그림 5.31 일반 덕트 프로펠러(좌)와 Mitsui 복합 덕트 프로펠러(우)

• Podded type Propelled; POD Propeller

그림 5.32 포드형 프로펠러

Water jet propulsion

그림 5.33 물분사 추진

• 초전도 전자추진

그림 5.34 초전도 전자추진의 원리와 최초 초전도 추진선, YAMATO-1호(일본)

Propulsive Efficiency and Propulsion factors

