Игра ним

Аутор: Марија Мијаиловић *Ментор*: проф.др Миодраг Живковић

Математички факултет Универзитет у Београду

Септембар, 2020

Садржај

Игра ним

Витхофова игра

Евалуација решења

Игра ним

- Два играча
- ▶ Број жетона и гомила на столу одређују сами играчи
- Жетони се узимају само са једне гомиле, и мора се узети бар један жетон
- ▶ Нормални и мизерни ним

Пример тока игре нормалног нима

4 / 16

Слика 2: Ток ним игре

Марија Мијаиловић Игра вим Септембар, 2020

Шта је Витхофова игра?

- ▶ Две гомиле жетона
- ▶ Жетони се узимају са једне или обе гомиле
- ▶ Све позиције се могу разврстати у добитне и изгубљене

Изгубљене позиције за a=1

n	Α	В		
0	0	0		
1	1	2		
2	3	5		
3	4	7		
4	6	10 13 15 18		
5	8			
6	9			
7	11			
8	12	20		
9	14	23		
10	16	26		
11	17	28		

Рекурзивна стратегија

Дефиниција оператора тех

 $\max(A)$ означава најмањи природни број који није у скупу A, тј. $\max(\emptyset)=0$ и $\max(A)=\min\{i|i\notin A\}.$

Рекурзивна карактеризација изгубљених позиција

Све изгубљене позиције (A_n, B_n) могу се изразити на следећи начин:

$$A_n = \max\{A_i, B_i : i < n\} \tag{1}$$

$$B_n = A_n + an \tag{2}$$

Алгебарска стратегија

8 / 16

Алгебарска карактеризација изгубљених позиција

Све изгубљене позиције (A_n, B_n) могу експлицитно изразити на следећи начин $A_n = \lfloor \alpha \cdot n \rfloor, B_n = \lfloor \beta \cdot n \rfloor$, где је:

$$\alpha = \frac{2 - a + \sqrt{a^2 + 4}}{2} \tag{3}$$

$$\beta = \alpha + a, \tag{4}$$

овде су α и β ирационални за свако a>0

Рекурзивна и алгебарска карактеризација изгубљених

Нека је a=1 и тренутна позиција (x,y) је:

- ▶ (13,29), како је $B_5 = 13$, то се из позиције (13,29) уклањајући 21 жетона прелази у позицију (A_5 , B_5) = (8,13).
- \blacktriangleright (12,29), како је $A_8=12$ и $29>B_8=20$, то се из позиције (12,29) уклањајући 9 жетона прелази у позицију $(A_8,B_8)=(12,20)$.
- ▶ (12,15), како је $A_8 = 12$ и $15 < B_8 = 20$, то се из позиције (12,15) уклањајући по 8 жетона са обе гомиле прелази у позицију $(A_3, B_3) = (4,7)$.

позиција

Аритметичка стратегија

Нека је $[a_0, a_1, a_2, \dots]$ верижни развој броја α и за низове p_n и q_n важи следећа рекурентна релација:

$$p_{-1} = 1, \ p_0 = a_0, \ p_n = a_n p_{n-1} + p_{n-2}, \ (n \ge 1)$$
 (5)

$$q_{-1}=0, \ q_0=1, \ q_n=a_nq_{n-1}+q_{n-2}, \ (n\geq 1).$$
 (6)

Аритметичка стратегија

11 / 16

- lacktriangle Репрезентација R је $R = (d_m, d_{m-1}, \ldots, d_1, d_0), \ 0 \leq d_i \leq a_{i+1}$
- lacktriangleright Леви померај репрезентације R је $R^{'}=(d_m,d_{m-1},\ldots,d_1,d_0,0)$
- lacktriangle Десни померај репрезентације R је $R^{''}=(d_m,d_{m-1},\ldots,d_1)$
- ▶ Веза p-интерпретације I_p и q-репрезентације R_q је $I_p(R_q(k)) = I_p(d_m, d_{m-1}, \dots, d_0)$

Приказ првих 15 бројева записаних у p и q систему, за $a_i=2,\ i>1$

q ₃	q_2	q_1	\mathbf{q}_0	p ₃	p ₂	p_1	\mathbf{p}_0	
12	5	2	1	17	7	3	1	n
			1				1	1
		1	0				2	2
		1	1			1	0	3
		2	0			1	1	4
	1	0	0			1	2	5
	1	0	1			2	0	6
	1	1	0		1	0	0	7
	1	1	1		1	0	1	8
	1	2	0		1	0	2	9
	2	0	0		1	1	0	10
	2	0	1		1	1	1	11
1	0	0	0		1	1	2	12
1	0	0	1		1	2	0	13
1	0	1	0		2	0	0	14
1	0	1	1		2	0	1	15

Аритметичка карактеризација изгубљених позиција

13 / 16

Нека је a=2 и тренутна позиција (x,y) је:

- ▶ (17,29), како се $R_p(17)=(1,0,0,0)$ завршава непарним бројем нула, онда је $B_5=17$ и $I_p(R_p^{''}(17)=I_p(1,0,0)=7$ па је победнички потез (7,17).
- lacktriangle (11, 29), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$ па пошто је 29>27 победнички потез је (11, 27).
- ▶ (11,25), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$, па пошто је 25<27 рачуна се $R_q(\lfloor \frac{y-x}{a} \rfloor)=R_q(7)=(1,1,0)$ и $I_p(R_q(7))=10$ па је победники потез (9,23).
- ▶ (11,23), како се $R_p(11)=(1,1,1)$ завршава парним бројем нула, онда је $A_8=11$ и $I_p(R_p^{'}(11))=I_p(1,1,1,0)=27$, па пошто је 23<27 рачуна се $R_q(\lfloor \frac{y-x}{a} \rfloor)=R_q(6)=(1,0,1)$ и $I_p(R_q(6))=8$ па је победники потез (8,20).

Евалуација решења

14 / 16

Слика 3: Сумиран приказ извршавања свих стратегија за конструкцију табеле изгубљених позиција

Марија Мијаиловић Игра жим Септембар, 2020

Евалуација решења

15 / 16

Слика 4: Сумиран приказ извршавања рекурзивне и алгебарске стратегије за конструкцију табеле изгубљених позиција

Марија Мијаиловић Игра ним Септембар, 2020

Kpaj

Хвала на пажњи! Питања?