CS 589 Fall 2021 Lecture 3

IR Evaluation (Pseudo)-relevance feedback

Monday 6:30-9:00

Babbio 122

All zoom links in Canvas

photo: https://www.scubedstudios.com/information-retrieval/

Review of Lecture 2: Probabilistic Ranking Principle

- Given the query q, all documents should be ranked by their probability of relevance p(rel=1|q,d)
 - RSJ model:
 - Doesn't leverage the TF information
 - Rely on relevance judgment
 - BM25 model
 - Estimate the probability using the 2-Poisson model conditioned on the eliteness of a word to a document
 - Obtain a parameter-free model by approximating the 2-Poisson model

Review of Lecture 2: LM-based retrieval model

- Given the query q, rank all documents by the probability p(q | d) of generating q from d
 - Estimate p(q|d) based on the i.i.d. assumption
 - Estimate p(w|d) based on the (unigram) statistical language model
 - MLE: $p(w|d) = \frac{count(w,d)}{|d|}$
 - Jelinek-Mercer smoothing: $p_s(w_i|d) = \lambda p(w_i|d) + (1-\lambda)p(w_i|C)$
 - Dirichlet smoothing:

$$score^{Dir}(q, d) = \sum_{w_i, w_i \in d, p(w_i | \hat{\theta}_q)} p(w_i | \hat{\theta}_q) \log \left(1 + \frac{count(w_i, d)}{\mu p(w_i | C)}\right) + \log \frac{\mu}{\mu + |dl|}$$

Pop quiz (LM-based retrieval model)

Suppose d1={"the", "more", "the", "better"}, d2={"the", "pizza"}, d3={"just", "do", "it"}, what is the probability of p("the"|d1) and p("the"|d3)? Suppose alpha_d=0.1

$$p(w_i|d) = \begin{cases} p_{seen}(w_i|d) & \text{if } w_i \text{ is seen in d} \\ \alpha_d p(w_i|C) & o.w. \end{cases}$$

- A: 0.5, 0.3333
- B: 0.5, 0.03333
- C: 0.4831, 0.3125
- D: 0.4831, 0.03125

Pop quiz (LM-based retrieval model)

• In the feedback-based retrieval model, if the 2 feedback documents are d1={"the", "more", "the", "better"}, d2={"the", "pizza"}, q={"pizza", "hut"}, what is the feedback retrieval model? The feedback retrieval model is computed below, and lambda = 0.9

$$\theta_q \leftarrow \lambda \theta_q + (1 - \lambda)\theta_q^F$$

- A: pizza: 0.5, hut: 0.5
- B: pizza: 0.46, hut: 0.45
- C: pizza: 0.46, hut: 0.45, the: 0.05, more: 0.016, better: 0.016

Lecture 3

- Basic evaluation metrics for an IR system
 - Precision/recall
 - MAP, MRR, NDCG
- The Cranfield evaluation methodology
 - Pooling strategy
- Online evaluation, A/B test
- Relevance feedback

Information retrieval evaluation

After learning CS589, you graduate and join Bing

Information retrieval evaluation

After learning CS589, you graduate and join Bing

Information retrieval evaluation

- How to know
 - If your search engine has outperformed another search engine
 - If your search engine performance has improved compared to the last quarter?

Metrics for a good search engine

Return what the users are looking for

Relevance, CTR = click thru rate

Return results fast

Latency

Users likes to come back

Retention rate

Rank-based measurements

- Binary relevance
 - Precision@K
 - Mean average precision (MAP)
 - Mean reciprocal rank (MRR)
- Multiple levels of relevance
 - Normalized discounted cumulative gain (NDCG)

Precision of retrieved documents

Fraction of retrieved docs that are relevant

$$precision = \frac{\#relevant\&retrieved}{\#retrieved}$$

Fraction of relevant documents that are retrieved

$$recall = \frac{\#relevant\&retrieved}{\#relevant}$$

Precision-recall curve

Average precision

- Consider the rank position of each relevant and retrieved doc
 - K₁, K₂, ... K_R
- Compute Precision@K for K = K₁, K₂, ... K_R
- Average precision: # retrieved documents

$$ext{AveP} = rac{\sum_{k=1}^{n} (P(k) imes ext{rel}(k))}{ ext{number of relevant documents}}$$

MAP

Suppose there are 5 relevant documents for both query 1 and 2

This value = #relevant documents, not # retrieved relevant documents (why?)

mean average precision = (0.62 + 0.266)/2 = 0.443

average precision query 2 = (0.5 + 0.4 + 0.43)/5 = 0.266

Mean reciprocal rank

- Measure the effectiveness of the ranked results
 - Assume users are only looking for one relevant document

$$RR = 1.0 / (1.0 + rank_1)$$

p starts from 0

$$MRR = 1/2 \times (1 + 1/2) = 0.75$$

Beyond binary relevance

- Discounted cumulative gain (DCG)
- Popular measure for evaluating web search and related tasks
- Information gain-based evaluation (economics)
 - For each relevant document, the user has gained some information
 - The higher the relevance, the higher gain
 - The gain is discounted when the relevant document appears in a lower position

Discounted cumulative gain (DCG)

Ranking #1

Ranking #2

$$ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{2^{rel_i}-1}{\log_2(i+1)}$$

p starts from 1

$$DCG@4query\ 1 = \frac{2^2 - 1}{\log_2 2} + \frac{2^1 - 1}{\log_2 4} + \frac{2^2 - 1}{\log_2 5} = 4.79$$

$$DCG@4\ query\ 2 = \frac{2^2 - 1}{\log_2 3} = 1.89$$

Why normalizing DCG?

 If we do not normalize DCG, the performance will be biased towards systems that perform well on queries with larger DCG scales

Normalized Discounted cumulative gain (nDCG)

$$nDCG_{4} = (4.79/7.68 + 1.89/7.68)/2 = 0.43$$

$$IDCG@47uery\ 1 = \frac{2^2 - 1}{\log_2 2} + \frac{2^2 - 1}{\log_2 3} + \frac{2^2 - 1}{\log_2 4} + \frac{2^2 - 1}{\log_2 5} = 7.68$$

$$IDCG@4query\ 2 = \frac{2^2 - 1}{\log_2 2} + \frac{2^2 - 1}{\log_2 3} + \frac{2^2 - 1}{\log_2 4} + \frac{2^2 - 1}{\log_2 5} = 7.68$$

Relevance evaluation methodology

- Offline evaluation:
 - Evaluation based on annotators' annotation (explicit)
 - TREC conference
 - Cranfield experiments
 - Pooling
 - Evaluation based on user click through logs (implicit)
- Online evaluation
 - A/B testing

Text REtrieval Conference (TREC)

```
Since 1980 Copy
                 <num> Number: 794
Relevanc
                 <title> pet therapy
  • The re
                                                                                      g
                 <desc> Description:
                 How are pets or animals used in therapy for humans and what are the
                 benefits?
 Different 1
                 <narr> Narrative:

    Web

                 Relevant documents must include details of how pet- or animal-assisted
                 therapy is or has been used. Relevant details include information
     Quest
                 about pet therapy programs, descriptions of the circumstances in which
     Microk
                 pet therapy is used, the benefits of this type of therapy, the degree
                 of success of this therapy, and any laws or regulations governing it.
                 </top>
```

The Cranfield experiment (1958)

 Imagine you need to help users search for literatures in a digital library, how would you design such a system?

query = "subject = AI & subject =
bioinformatics"

system 1: the Boolean retrieval system

The Cranfield experiment (1958)

 Imagine you need to help users search for literatures in a digital library, how would you design such a system?

Document-term matrix

	intelligence	book	the	cat	artificial	dog	business
Doc1	8	1	3	1 /	0	1	0
Doc2	1	P	0	0	0	0	1
query	1	0		0	1	0	0

query = "artificial intelligence"

bags of words representation

The Cranfield experiment (1958)

- Basic ingredients
 - A corpus of documents (1.4k paper abstracts)
 - A set of 225 queries and their information needs
 - Binary relevance judgment for each (q, d) pair
 - Reuse the relevance judgments for each (q, d) pair

query = "best phone", time = 2012, relevance = 1

Nokia

query = "best phone", time = 2022₂₅ relevance = 0

Scalability problem in human annotation

- TREC contains 225 x 1.4k = 315k (query, documents) pairs
- How to annotate so many pairs?

- Pooling strategy
 - For each of K system, first run the system to get top 100 results
 - Annotate the union of all such documents

- TREC style relevance judgment
 - Explicit relevance judgment
 - Difficult to achieve large scalability
 - Relevance is fixed
- Relevance judgment using user clicks
 - Implicit relevance judgment
 - Effortless relevance judgment at a large scale
 - Relevance is fixed, (assume relevance judgment stays the same upon reranking)

Click logs for "CIKM"

slides from Stanford CS276

- System logs the users engagement behaviors:
 - Time stamp
 - Session id
 - Query id, query content
 - Items viewed by the user (in sequential order)
 - Whether each item has been clicked by the user
 - User's demographic information, search/click history, location, device
 - Dwell time, browsing time for each document
 - Eye tracking information

- Click logs are stored in large tables
- Using SQL to extract a subset of query logs

Session Id	Timestamp	Action	Action details					
123457	1388494920	search	Query = 'flawless'					
123457	1388494980	click	Page Id = '755'					
123457	1388495060	reformulation	Query ='flawless beyonce' => Reformulation = 'beyonce'					
123457	1388495115	click	Page Id = '170'					
123458	1388495415	search	Query ='cikm conference'					
123456	1388361661	reformulation	Query ='cikm conference' => Reformulation = '2014'					
123456	1388361720	click	Page Id = "45"					

Online evaluation methodology

- Assumption made by offline evaluation
 - After reranking, relevance judgment stays the same
 - Which is not true...
- Relevance judgment is dynamic, subject to user bias
 - Bias based on positions
 - Preference shifting over time, location
 - Decoy effects
 - Change in preference between two options when also presented with a third option that is asymmetrically dominated

- Position bias
 - Higher position receives more attention
 - The same item gets lower click in lower position

An experimental comparison of click position-bias models

- Which model captures the position bias?
 - Baseline hypothesis: no position bias
 - Mixture hypothesis: click is due to a mixture of relevance and constant bias:

$$c_{di} = \lambda r_d + (1 - \lambda) b_i$$

 Cascade model: a linear traversal through the ranking, and that documents below a clicked result are not examined

$$c_{di} = r_d \prod_{j=1}^{i-1} (1 - r_{docinrank:j})$$

An experimental comparison of click position-bias models

- Which model captures the position bias?
 - Baseline hypothesis: no position bias
 - Mixture hypothesis: click is due to a mixture of relevance and constant bias:

$$c_{di} = \lambda r_d + (1 - \lambda) b_i$$

 Cascade model: a linear traversal through the ranking, and that documents below a clicked result are not examined

$$c_{di} = r_d \prod_{j=1}^{i-1} (1 - r_{docinrank:j})$$

- Controlled experiment:
 - Show document A and B at position m and m+1
 - Flip the two documents
 - Four outcomes: A clicked or skipped, B clicked or skipped
- Test the three hypothesis by comparing their probability with the true click probability:

$$CE(hyp) = -\sum_{i=1}^{4} p_{hyp}(outcome_i) \log p_{true}(outcome_i)$$

- Result of CE:
 - At upper rank, the baseline model works better
 - At lower rank, the cascade model works the best

An experimental comparison of click position-bias models

Decoy effects

VS

\$500, 30G

\$550, 20G

click probability = 0.5

click probability = 0.4

click probability = 0.5

Online evaluation methodology

- Evaluation by actually having the system deployed and observe user response
 - Less scalable
 - A/B testing

Query: [support vector machines]

_		•
Dan	l/ına	Λ
Naii	king	$\boldsymbol{\vdash}$

Kernel machines

SVM-light

Lucent SVM demo

Royal Holl. SVM

SVM software

SVM tutorial

Ranking B

Kernel machines

SVMs

Intro to SVMs

Archives of SVM

SVM-light

SVM software

Interleaving

A clicks = 3, B clicks = 1

Statistical significance testing

 How sure can you be that an observed difference doesn't simply result from the particular queries you chose?

Experiment 1			Experiment 2		
<u>Query</u>	System A	System B	<u>Query</u>	System A	System B
1 2 3 4 5	0.20 0.21 0.22 0.19 0.17	0.40 0.41 0.42 0.39 0.37	1 2 3 4 5	0.02 0.39 0.16 0.58 0.04	0.76 0.07 0.37 0.21 0.02
6 7	0.20 0.21	0.40 0.41	6 7	0.09 0.12	0.91 0.46
Average	e 0.20	0.40	Average	e 0.20	0.40

Statistical significance testing

<u>Query</u>	System A	System B	Sign Test	<u>Wilcoxon</u>	
1	0.02	0.76	+	+0.74	
2	0.39	0.07	-	- 0.32	
3	0.16	0.37	+	+0.21	Wilcoxon test:
4	0.58	0.21	-	- 0.37	
5	0.04	0.02	-	- 0.02	$W = \sum_{i=1}^{N} [\operatorname{sgn}(x_{2,i} - x_{1,i}) \cdot R_{i}]$
6	0.09	0.91	+	+0.82	$W = \sum_{i=1}^{n} [\operatorname{sgn}(x_{2,i} - x_{1,i}) \cdot \mathbf{R}_{i}]$
7	0.12	0.46	-	- 0.38	
Average	e 0.20	0.40	p=1.0	p=0.9375	

Retrieval feedback in session search

query = "best phone"

Does the user prefer lower priced phone, or high end phones? Larger storage, better camera?

\$400, 20G, Nokia

\$500, 30G, Nokia

session 2

observed click

Rocchio feedback

Feedback for vector-space model

beta >> gamma

- Rocchio's practical issues
 - Large vocabularies (only consider important words)
 - Robust and effective
 - Requires relevance feedback

Pseudo-relevance feedback

- What if we do not have relevance judgments?
 - Use the top retrieved documents as "pseudo relevance documents"
- Why does pseudo-relevance feedback work?

```
query = "fish tank"
```

www.petsmart.com > fish > aquariums ▼

Fish Tanks & Aquariums | PetSmart

125 Items - Shop the latest **fish tanks** and aquariums at PetSmart to find interesting ways showcase your favorite fish. Browse large and small tanks, fresh and ...

Tanks, Aquariums & Nets | Fish Tanks for Sale: Discount · Fish Aquariums

Relevance feedback in RSJ model

$$O(rel = 1|q, d) \stackrel{rank}{=} \sum_{w_i = 1} \log \frac{\alpha_i (1 - \beta_i)}{\beta_i (1 - \alpha_i)}$$

(Robertson & Sparck Jones 76)

$$\alpha_i = p(w_i = 1|q, rel = 1)$$

$$= \frac{count(w_i = 1, rel = 1) + 0.5}{count(rel = 1) + 1}$$

Probability for a word to appear in a relevant doc

$$\beta_i = p(w_i = 0|q, rel = 0)$$

$$= \frac{count(w_i = 0, rel = 0) + 0.5}{count(rel = 0) + 1}$$

Probability for a word to appear in a non-relevant doc

(Pseudo)relevance feedback language model

$$score^{JM}(q,d) = \sum_{w_i,w_i \in d, p(w_i | \hat{\theta}_q)} p(w_i | \hat{\theta}_q) \log \left(1 + \frac{(1-\lambda)count(w_i,d)}{\lambda p(w_i | C)}\right)$$

$$p(w_i | q) = \frac{count(w_i,q)}{|q|} \quad \textit{sparsity}$$

Query expansion

- Q what is the most
- what is the most common blood type
- Q what is the most shared video on tiktok
- Q what is the most expensive car
- what is the most expensive car in the world
- Q what is the most expensive thing in the world
- Q what is the most popular game

Google	yoga mat
🔊 On sale	
Available nearby	
Buy on Google	
Price	
Up to \$15	
\$15 - \$30	
\$30 - \$50	
Over \$50	
\$ to \$	GO
Brand	
Gaiam	
lululemon	
Manduka	1

Query reformulation

- Query expansion/reformulation techniques
 - Using manually created synonyms
 - Using automatically derived thesaurus
 - Using query log mining

Word	Nearest neighbors
absolutely	absurd, whatsoever, totally, exactly, nothing
bottomed	dip, copper, drops, topped, slide, trimmed
captivating	shimmer, stunningly, superbly, plucky, witty
doghouse	dog, porch, crawling, beside, downstairs
makeup	repellent, lotion, glossy, sunscreen, skin, gel
mediating	reconciliation, negotiate, case, conciliation
keeping	hoping, bring, wiping, could, some, would
lithographs	drawings, Picasso, Dali, sculptures, Gauguin
pathogens	toxins, bacteria, organisms, bacterial, parasite
senses	grasp, psyche, truly, clumsy, naive, innate

Summary

- Know how to compute Prec/recall, MAP, NDCG, MRR
 - Try implementing them on your own for HW1 and reproduce the results
- Know how the Cranfield experimental methodology and pooling works
- Know how the feedback retrieval model works