STAT 710 Second Exam 8:25am-9:15am, March 10, 2011

Please show all your work for full credits.

1. Let X be a discrete observation satisfying

$$P(X = -1) = \theta, \quad P(X = x) = (1 - \theta)^2 \theta^x, \quad x = 0, 1, 2, ...,$$
 (1)

where $\theta \in (0,1)$ is an unknown parameter.

- (a) (3 points) Obtain the likelihood function $\ell(\theta)$ when X = x, and derive the MLE of θ and show it is a unique MLE.
- (b) (2 points) Suppose that we know $\theta \in [0.5, 1)$. Derive the MLE of θ and show why it is the MLE.

From now on we suppose that there are iid observations $X_1, ..., X_n$ from the distribution given by (1) with $\theta \in (0, 1)$.

- (c) (3 points) Obtain the likelihood function in terms of $T = \sum_{i=1}^{n} X_i I_{\{X_i \geq 0\}}$ and N = the number of *i*'s with $X_i = -1$, and provide a sufficient and necessary condition under which there is a unique MLE inside (0,1).
- (d) (2 points) Let $\hat{\theta}_{1n}$ be the MLE of θ , $\hat{\theta}_{2n} = N/n$, and $\hat{\theta}_{3n} = T/n$. Show that each $\hat{\theta}_{kn}$ is a consistent estimator of θ .
- (e) (2 points) Derive the asymptotic distribution of the MLE.
- (f) (2 points) Obtain the asymptotic relative efficiency of the MLE w.r.t. $\hat{\theta}_{2n}$.
- 2. Let $X_1, ..., X_n$ be i.i.d. observations having the Lebesgue p.d.f.

$$f_{\theta}(x) = \frac{1 + |x - \theta|}{3} I_{(0,1)}(|x - \theta|),$$

where $\theta \in \mathcal{R}$ is an unknown parameter.

- (a) (3 points) Obtain the asymptotic distribution of the pth sample quantile when p = 0.75.
- (b) (3 points) Calculate the asymptotic relative efficiency of the sample mean with respect to the sample median.