This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- İLLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-354156

(43)公開日 平成11年(1999)12月24日

(51) Int.Cl. ⁸	識別配号	FI
H01M 10/4	10	H 0 1 M 10/40 A
		Z
4/0	2	4/02 C
4/5	58	4/58
		審査請求 未請求 請求項の数4 〇L (全 9 頁)
(21)出願番号	特顧平10-157759	(71)出顧人 000001889
		三洋電機株式会社
(22)出顧日	平成10年(1998)6月5日	大阪府守口市京阪本通2丁目5番5号
		(72)発明者 阪口 妙子
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 砂川 拓也
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(72)発明者 藤本 洋行
		大阪府守口市京阪本通2丁目5番5号 三
		洋電機株式会社内
		(74)代理人 弁理士 安富 耕二 (外1名)
		最終頁に続く

(54) 【発明の名称】 非水系電解液二次電池

(57)【要約】

【課題】 特定の組成を有する正極を用いた非水系電解 被二次電池において、溶媒の分解に起因する電解液の劣 化を抑制し、サイクル特性を向上させる。

【解決手段】 組成式 $Li_aCo_bM_cNi_{1-b-c}O_2$ (MはMn、B、Mg、Al、Si、Ca、Ti、V、Fe、Cu、Zn及UGaから選択される元素、且 $O0 \le a \le 1.2$ 、 $0.01 \le b \le 0.4$ 、 $0.01 \le c \le 0.4$ 、 $0.02 \le b + c \le 0.5$) で表わされる正極を用いた非水系電解液二次電池において、溶質が、 $LiN(C_nF_{2n+1}SO_2)$ ($C_mF_{2m+1}SO_2$) または $LiC(C_nF_{2n+1}SO_2)$ ($C_mF_{2m+1}SO_2$) または $LiC(C_nF_{2n+1}SO_2)$ ($C_mF_{2m+1}SO_2$) は、Unc Em Unc Em Un

【特許請求の範囲】

【 簡求項 1 】 組成式LiaCobMcNi1-b-c02 {Mはマンガン (Mn)、ホウ素 (B)、マグネシウム (Mg)、アルミニウム (Al)、ケイ素 (Si)、カルシウム (Ca)、チタン (Ti)、パナジウム (V)、鉄 (Fe)、銅 (Cu)、亜鉛 (Zn)及びガリウム (Ga) からなる群から選択される少なくとも 1 種の元素であり、且つ0 \le a \le 1.2、0.01 \le b \le 0.4、0.01 \le c \le 0.4、0.02 \le b + c \le 0.5} で表される正極と、リチウム金属又はリチウムを吸蔵放出可能な物質を主材とする負極と、これら両電極を隔離するセパレーターと、溶媒及び溶質とからなる非水系電解液を備えてなる非水系電解液二次電池において、

前記溶質が、 $LiN(C_nF_{2n+1}SO_2)(C_nF_{2n+1}SO_2)$ または $LiC(C_nF_{2n+1}SO_2)_2(C_nF_{2n+1}SO_2)$ (ここで $n=1\sim5$ 、 $m=1\sim5$ 、但しnとmは同時に1ではない)から選ばれた少なくとも一種の電解質塩であり、

且つ前記溶媒が、環構成成分として酸素、硫黄、窒素の うち少なくとも1つを含む5員または6員複素環化合物 を含有していることを特徴とする非水系電解液二次電 池。

【請求項2】 前記複素環化合物が、前記非水系電解液に対して0.01~3.0mol/1含有されることを特徴とする 請求項1記載の非水系電解液二次電池。

【請求項3】 前記電解質塩が、 $LiN(C_2F_5SO_2)_2$ 、 $LiN(CF_3SO_2)(C_4F_9SO_2)$ のいずれかである請求項1記載の非水系電解液二次電池。

【請求項4】 前記非水系電解液が、前記電解質塩を0. 5~2.0mol/1含有することを特徴とする請求項1記載の 非水系電解液二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水系電解液二次 電池に係わり、特にサイクル特性の向上を目的とした非 水系電解液の改良に関する。

[0002]

【従来の技術】非水系電解液二次電池の電解液溶媒として、プロピレンカーボネート等を使用した場合、溶媒分子の分解に起因して、電解液の安定性及びサイクル特性が著しく低下するという欠点があった。この点を改良するために、芳香族カーボネートの添加(特開平8-273700号公報参照)により、電解液の安定性の向上を図ることが提案されている。

【0003】しかしながら、本発明者らが検討した結果、芳香族カーボネートを含有させた場合であっても、正極として組成式 $L_{ia}Co_{b}M_{c}Ni_{1-b-c}O_{2}$ (MはMn、B、Mg、Al、Ca、Ti、V、Fe、Cu、Zn、Gaの中から選択される少なくとも1種の元素であり、且つ0 \leq a \leq 1.2、0.01 \leq b \leq 0.4、0.01 \leq c \leq 0.4、0.02 \leq b+c \leq 0.5)で表されるリチウム遷移金属複合酸化物を使用すると、高容量であるものの、十分なサイクル特性が得られないとい

う問題があることがわかった。

[0004]

【発明が解決しようとする課題】そこで本発明は、上述の問題を解決すべくなされたものであって、従来の非水 系電解液二次電池に比べ、サイクル特性に優れた非水系 電解液二次電池を提供することにある。

[0005]

【課題を解決するための手段】上記目的を違成する為の 本発明に係わる非水系電解液二次電池(以下、「本発明 館池」と称する。)は、組成式LiaCopMeNi1-b-cO2 {M はマンガン (Mn)、ホウ素 (B)、マグネシウム (M g)、アルミニウム(Al)、ケイ素(Si)、カルシウム (Ca)、チタン(Ti)、パナジウム(V)、鉄(Fe)、 銅(Cu)、亜鉛(Zn)及びガリウム (Ga) からなる群か ら選択される少なくとも1種の元素であり、且つ0≦a ≤ 1.2 , $0.01 \leq b \leq 0.4$, $0.01 \leq c \leq 0.4$, $0.02 \leq b + c$ ≦0.5)で表される正極と、リチウム金属又はリチウム を吸蔵放出可能な物質を主材とする負極と、これら両電 極を隔離するセパレーターと、溶媒及び溶質とからなる 非水系電解液を備えてなる非水系電解液二次電池におい て、前記溶質が、LiN(C_nF_{2n+1}SO₂)(C_mF_{2m+1}SO₂)またはL $iC(C_nF_{2n+1}SO_2)_2(C_mF_{2m+1}SO_2)$ (ここで $n=1\sim 5$, $m=1\sim 5$) 1~5、但しnとmは同時に1ではない)から選ばれた少 なくとも一種の電解質塩であり、且つ前記溶媒が、環構 成成分として酸素、硫黄、窒素のうち少なくとも1つを 含む5員または6員複素環化合物を含有していることを 特徴とする。係る構成により、従来の非水系電解液二次 電池において問題となっていた、充放電サイクル時に起 こる放電容量の低下が抑制されるのである。

【0006】 言い換えれば、環構成成分として酸素、硫 黄、窒素のうち少なくとも1つを含む5 員または6 員複 素環化合物を非水電解液に添加し、電解液のイオン導電 率を向上させるとともに、安定且つ良質な被膜を負極の 表面に形成させることにより、負極と溶媒分子の接触を 断ち、非水系電解液の劣化を防止している。そして、充 放電時に起こる電解液の分解反応を抑制し、充放電にお ける可逆性を向上させるものである。

【0007】更に、本発明電池は、 $LiN(C_nF_{2n+1}SO_2)$ ($C_mF_{2m+1}SO_2$)、 $LiC(C_nF_{2n+1}SO_2)_2$ ($C_mF_{2m+1}SO_2$)($n=1\sim5$ 、 $m=1\sim5$ 、但しnとmは同時に1ではない)で示される電解質塩を、非水電解液に添加、使用し、安定な陰イオンに起因する良質な被膜を正極の表面に形成させている。このようにして、正極からの電荷移行及び正極から電解液へのリチウムイオンの拡散をスムーズに行い、正極の結晶構造の劣化を防止する。

【0008】本発明に使用される、環構成成分として酸 索、硫黄、窒素のうち少なくとも1つを含む5員または 6員複素環化合物の具体例としては、1,3-プロパンスル トン(環構成成分として酸素、硫黄を含む5員複素環化 合物)、スルホラン(環構成成分として酸素、硫黄を含 む5員複素環化合物)、ブタジエンスルホン(環構成成分として酸素、硫黄を含む5員複素環化合物)、ビニレンカーボネート(環構成成分として酸素を含む5員複素環化合物)、イソキサゾール(環構成成分として酸素、窒素を含む5員複素環化合物)、N-メチルモルホリン(環構成成分として酸素、窒素を含む6員複素環化合物)、N-メチルー2-ピロリドン(環構成成分として酸素、窒素を含む5員複素環化合物)などが挙げられる。【0009】この複素環化合物の、非水系電解液への添加量は、少量でもその効果を発揮するが、特に0.01~3.0mol/1の範囲が好ましい。

【0010】本発明は、非水電解液の添加剤の改良に関する。それゆえ、添加剤以外の他の電池材料については、非水系電解質電池用として従来公知の材料を特に制限なく使用することができる。

【0011】例えば、非水系電解液の溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の有機溶媒や、これらとジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(EMC)などの低沸点溶媒との混合溶媒が例示される。

【0012】なかでも、本発明で規定する添加剤との相性が良く、サイクル特性を向上させる上で特に好ましい溶媒は、一種又は二種以上の環状炭酸エステルと一種又は二種以上の鎖状炭酸エステルとの体積比1:4~4:1の混合溶媒である。

【0013】尚、負極材料としては、金属リチウムや、リチウムーアルミニウム合金、リチウムー鉛合金、リチウムー鉛合金、リチウムー銀合金等のリチウム合金や、黒鉛、コークス、有機物焼成体等の炭素材料や、SnO₂、SnO、TiO₂、Nb₂O₃等の電位が正極活物質に比べて卑な金属酸化物が例示される。

[0014]

【発明の実施の形態】以下、本発明を実施例に基づいて、更に詳細に説明するが、本発明は下記実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。

【0015】《実験1》この実験1では、複合酸化物 (正極材料)の組成比と、充放電サイクル特性の関係を 調べた。

【0016】 [正極の作製] 正極の出発原料としての 水酸化リチウム (LiOH) 、水酸化ニッケル (Ni (0 H)₂)、水酸化コバルト(Co(OH)₂)及び二酸化マンガン(MnO₂)とを、下配の表 1 に示した各種モル比となるように乳鉢にて混合する。この混合物を酸素雰囲気下で75 0℃で20時間熱処理後、粉砕し、複合酸化物を得た。この複合酸化物を正極活物質とし、この正極活物質の粉末90重量部と、人造黒鉛粉末 5 重量部と、ポリフッ化ビニリデン 5 重量部のNーメチルー2-ピロリドン(NMP)溶液とを混合してスラリーを調整した。このスラリーをアルミニウム箔の両面にドクターブレード法により強布して活物質層を形成した後、150℃で 2 時間真空乾燥して、正極を作製した。

【0017】 [負極の作製] 天然黒鉛95重量部と、ポリフッ化ビニリデン5重量部のNMP溶液とを混合しスラリーを調整した。このスラリーを頻箔の両面にドクターブレード法により塗布して炭素層を形成した後、150でで2時間真空乾燥して、負極を作製した。

【0018】 [非水電解液の調製] エチレンカーボネートとジメチルカーボネートの等体積混合溶媒に、LiN (CF_3SO_2) $(C_4F_6SO_2)$ を1.0mol/1溶かした溶液に、更に特定の複素環化合物として、ビニレンカーボネートを非水電解液に対して<math>1.5mol/1となるように添加混合して非水系電解液を調製した。

【0019】 [電池の作製] 上記の正極、負極及び非水系電解液を用いて、AAサイズの非水系電解液二次電池(電池寸法:直径14 mm、高さ50mm)を作製した。尚、いずれの電池も、セパレータとしてポリプロピレン製の多孔膜を用いた。

【0020】ここで準備した電池は、組成式 $Li_a Co_b M_c Ni_{1-b-c} O_2$ (MはMn、B、Mg、Al、Si、Ca、Ti、V、Fe、Cu、Zn、Gaの中から選択される少なくとも1種の元素であり、且つ $0 \le a \le 1.2$ 、 $0.01 \le b \le 0.4$ 、 $0.01 \le c \le 0.4$ 、 $0.02 \le b + c \le 0.5$)で表される正極を用いた本発明電池A $1\sim$ A9の9種類と、この組成範囲には含まれない比較電池V $1\sim$ V7の7種類の、合計16種類の電池を準備した。

【0021】そして、これらの電池を用い、充放電サイクル試験を行った。この実験条件は各電池を、それぞれ室温(25℃)にて、200mAで4.2Vまで定電流充電した後、200mAで2.75Vまで定電流放電する工程を1サイクルとする充放電サイクル試験を繰り返して行い、放電容量が初期放電容量の90%を下回るまでのサイクル数を求めた。その結果を、表1に併せて示す。

[0022]

【表1】

電池	複合酸化物中の各元素のモル比			サイクル数	
	Ľi	Ni	Co	Mn	(回)
電池A1	1. 00	0. 98	0.01	0. 01	328
電池A 2	1. 00	0. 79	0. 01	0. 20	3 3 5
電池A3	1. 00	0. 59	0. 01	0. 40	3 4 3
電池A4	1. 00	0. 50	0.10	0. 40	3 3 2
電池A 5	1. 00	0. 79	0. 20	0. 01	333
電池 A 6	1. 00	0. 60	0. 20	0. 20	3 3 2
電池A7	1. 00	0. 50	0. 20	0. 30	330
電池A8	1. 00	0. 59	0. 40	0. 01	328
電池A 9	1. 00	0. 50	0. 40	0. 10	334
電池 V 1	1. 00	0. 50	0. 45	0. 05	162
電池V2	1. 00	0. 50	0. 05	0. 45	160
電池V3	1. 00	0. 45	0.15	0. 40	163
電池V4	1. 00	0. 45	0. 40	0. 15	165
電池∨5	1. 00	0. 90	0.00	0. 10	106
電池∨6	1. 00	0. 90	0.10	0. 00	113
電池V7	1. 00	1. 00	0. 00	0. 00	60

【0023】表1より、本発明電池A1~A9と比較電池V1~V7の比較から、Li₂Co_pMn_eNi_{1-b-c}O₂ (0≦ a

極 V 1 ~ V 7 の比較から、 $L1_a Co_b Mn_c N1_{1-b-c} O_2$ ($0 \le a \le 1.2$ 、 $0.01 \le b \le 0.4$ 、 $0.01 \le c \le 0.4$ 、 $0.02 \le b + c \le 0.5$) の組成式で表される複合酸化物は、優れたサイクル特性を示すことがわかる。

【0024】この実験1では、環構成成分として酸素、硫黄、窒素のうち少なくとも1つを含む5員または6員複素環化合物としてビニレンカーボネートを用いた場合について例示しているが、ビニレンカーボネート以外の、1,3-プロパンスルトン、スルホラン、ブタジエンスルトン、イソキサゾール、N-メチルモルホリン、N-メチルー2-ピロリドンを用いた場合であっても、サイクル数増加の傾向が伺える。

【0025】《実験2》次に、この実験2では、正極材料である複合酸化物の出発原料と、電池の充放電サイク

ル特性の関係を調べた。

【0026】出発原料として、水酸化リチウム (Li0H)、水酸化ニッケル (Ni(0H)₂)、水酸化コバルト (Co(0H)₂)及び更に下記の表 2 に示した原料を、各元素のモル比がLi:Ni:Co:M(Li,Ni,Co,前記以外の元素)=1:0.6:0.3:0.1になるように乳鉢にて混合した。その後、この混合物を酸素雰囲気下で750℃で20時間熱処理後、粉砕し、複合酸化物を得た。

【0027】このようにして得た複合酸化物を正極活物質として用いたこと以外は上記実験1の電池A1と同様にして、電池B1~B12を作製した。そして、各電池について、上記実験1と同様にしてサイクル試験を行った。この結果を、表2に示す。

[0028]

【表2】

電池	LiOH、Ni(OH),、Co(OH), 以外の出発原料	サイクル数 (回)
電池 B 1	H ₁ BO ₃	3 3 3
電池B2	Mg (OH),	3 3 1
電池B3	AI(0H),	3 4 5
電池B4	\$10	310
電池B5	Ca (OH),	3 2 8
電池B6	Ti (0H)4	3 3 3
電池B7	V ₂ O ₆	3 3 4
電池B8	Fe00H	3 4 2
電池B9	Cu (0H) ,	3 3 1
電池B10	ZnO	3 3 3
電池B11	Ga ₂ O ₃	3 3 2
電池 B 12	MnO _z	3 3 6

【0029】この表2に示すように、電池B1~B12のサイクル特性の結果から、 $\text{Li}_a\text{Co}_b\text{M}_c\text{Ni}_{1-b-c}\text{O}_2$ (Mは、B、Mg、A1、Si、Ca、Ti、V、Fe、Cu、Zn、Ga、Mnの中から選択される少なくとも1種の元素であり、且つ0≦ $a \le 1.2$ 、 $0.01 \le b \le 0.4$ 、 $0.01 \le c \le 0.4$ 、 $0.02 \le b + c \le 0.5$)の組成式で表される複合酸化物は、優れたサイクル特性を示すことがわかる。

【0030】この実験2において、特定の複素環化合物としてピニレンカーボネートを用いているが、ピニレンカーボネート以外の、1,3-プロパンスルトン、スルホラン、プタジエンスルトン、イソキサゾール、N-メチルモルホリン、N-メチル-2-ピロリドンを用いた場合であっても、上記組成式で表される複合酸化物では、同様にサイクル数増加の傾向が伺える。

【0031】《実験3》この実験3では、電解質塩の種類と、サイクル特性の関係を調べた。

【0032】先ず、出発原料としてのLiOH、Ni(OH)2、C

o(OH)₂及びMnO₂を、各元素のモル比がLi:Ni:Co:Mn (=1:0.6:0.3:0.1になるように乳鉢にて混合した 後、酸素雰囲気下で750℃で20時間熱処理後、粉砕し、 複合酸化物を得た。

【0033】また、エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、表3に示す種々の電解質塩を1.0mol/1溶かした溶液に、複素環化合物としてピニレンカーボネートを非水電解液に対して1.5mol/1となるように添加混合して非水系電解液を調製した。

【0034】このようにして得た複合酸化物及び非水電解液を用いたこと以外は実験1と同様にして、本発明電池C1~C6、比較電池W1~W6を作製した。

【0035】次に上記のようにして作製した各電池について、上記実験1と同様にサイクル試験を行った。その結果を、表3に示す。

[0036]

【表3】

電池	電解質塩	サイクル数(回)
電池 C 1	Lin(CF,SO,) (C,F,SO,)	3 3 5
電池C2	Lin(C4F,SO2),	3 2 2
電池C3	Lin(C ₂ F ₅ SO ₂),	331
電池C4	LiC(CF,SO,),(C4F,SO,)	320
電池C5	LiC(CF,SO,) (C,F,SO,),	3 2 4
電池C6	LiC(C4F3SO2)3	3 2 9
電池W 1	Lin(CF,SO2),	287
電池W 2	LiC(CF,SO ₂),	294
電池W3	LiPF ₆	2 2 6
電池W4	LiBF ₄	204
電池W5	LiCIO4	2 1 6
電池W 6	無添加	197

【0037】表3に示すように、電池C1、電池C2のサイクル特性が特に良い。この事実から、電解質塩としては、 $Lin(CF_3SO_2)(C_4F_9SO_2)$ 、 $Lin(C_2F_5SO_2)_2$ を使用することが好ましいことがわかる。

【0038】また、LiN(CF₃SO₂)₂またはLiC(CF₃SO₂)₃を添加した比較電池W1、W2は、本発明電池C1~C6に比べて、サイクル特性に劣る傾向がみられた。尚、これらは、溶質の組成式LiN(C_nF_{2n+1}SO₂)(C_mF_{2m+1}SO₂)またはLiC(C_nF_{2n+1}SO₂)₂(C_mF_{2m+1}SO₂)において、n=1、m=10場合のものである。これは、LiN(CF₃SO₂)₂またはLiC(CF₃SO₂)₃が、正極の集電体であるアルミニウム箔を溶解し、電極の劣化を加速するためと考えられる。【0039】《実験4》この実験4では、環構成成分として酸素、硫黄、窒素のうち少なくとも1つを含む5員または6員複素環化合物の種類とサイクル特性の関係を調べた。

【0040】尚、以下の実験用電池では、正極材料として上記実験4で作製したのと同様の複合酸化物を用いている。また、非水系電解液としては、エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、LiN(CF_3SO_2) $(C_4F_9SO_2)$ を1.0mol/1溶かした溶液に、種々の複素環化合物を非水電解液に対して1.5mol/1となるように添加混合して調製した。

【0041】このようにして得た複合酸化物及び非水電解液を用いたこと以外は実験1と同様にして、本発明電池D1~D7を作製した。

【0042】尚、本発明電池D1で使用した複素環化合物である1,3-プロパンスルトンの構造式を、次の化1に示す。

【0043】 【化1】

1, 3-プロパンスルトン

【0044】また、本発明電池D2で使用した複素環化 合物であるスルホランの構造式を、次の化2に示す。

[0045]

【化2】

スルホラン

【0046】本発明電池D3で使用した複素環化合物であるブタジエンスルホンの構造式を、次の化3に示す。

[0047]

【化3】

ブタジエンスルホン

【0048】また、本発明電池D4で使用した複案環化 合物であるビニレンカーボネートの構造式を、次の化4 に示す。

[0049]

【化4】

ピニレンカーポネート

【0050】本発明電池D5で使用した複素環化合物であるイソキサゾールの構造式を、次の化5に示す。

[0051]

【化5】

イソキサゾール 【0052】本発明電池D6で使用した複素環化合物であるN-メチルモルホリンの構造式を、次の化6に示す。

[0053]

【化6】

N-メチルモルホリン

【0054】そして、本発明電池D7で使用した複素環化合物であるN-メチル-2-ピロリドンの構造式を、次の化7に示す。

【0055】 【化7】

ドメチル-2-ピロリドン

【0056】また、複素環化合物を添加しない以外は、 上記電池D1と同様にして、比較電池Xを準備した。 【0057】そして各電池について、実験1と同様にサイクル試験を行った。その結果を、表4に示す。尚、表4には電池C1の結果も、表3より転記して示してある。

【0058】 【表4】

電池	複素環化合物	サイクル数(面)
電池 D1	1,3-プロパンスルトン	310
電池D2	スルホラン	3 1 2
電池D3	ブタジエンスルホン	3 3 2
電池D4(C1)	ビニレンカーポネート	3 3 5
電池D 5	イソキサゾール	330
電池D 6	N-メチルモルホリン	3 1 8
電池D7	N-メチル-2-ピロリドン	3 1 5
電池X	無添加	204

【0059】表4に示すように、本発明電池D1~DTは、比較電池Xに比べてサイクル特性に優れていることがわかる。これは、環構成成分として酸素、硫黄、窒素のうち少なくとも1つを含む5員または6員複素環化合物が、安定且つ良質な被膜を負極の表面に形成することにより、負極と溶媒分子の接触を断ち、これが充放電時に起こる電解液の分解反応を抑制し、充放電における可逆性が向上するためと考えられる。

【0060】また特に、環構造に不飽和結合を有する複素環化合物を用いた電池D3~D5のサイクル特性が良好であり、これは、化合物内に含まれる不飽和結合が皮膜形成反応を促進するためであると考えられる。

【0061】この実験4では、正極材料として、LiCo $_{0.6}$ Mn $_{0.3}$ Ni $_{0.1}$ O₂を用いた場合について例示している

が、 $\text{Li}_{\mathbf{a}}\text{Lo}_{\mathbf{b}}\text{M}_{\mathbf{c}}\text{NI}_{1-\mathbf{b}-\mathbf{c}}\text{O}_{\mathbf{c}}$ ($\mathbf{o} \le \mathbf{a} \le 1.2$ 、 $0.01 \le \mathbf{b} \le 0.4$ 、 $0.01 \le \mathbf{c} \le 0.4$ 、 $0.02 \le \mathbf{b} + \mathbf{c} \le 0.5$ 、 \mathbf{M} は、 \mathbf{B} 、 \mathbf{M} g、 \mathbf{A} 1、 \mathbf{S} i、 \mathbf{C} a、 \mathbf{T} i、 \mathbf{V} 、 \mathbf{F} e、 \mathbf{C} u、 \mathbf{C} n、 \mathbf{G} aの中から選択される少なくとも1種の元素である)の組成式で表される、他の組成比の正極材料を用いた場合であっても、サイクル数増加の傾向が認められた。

【0062】《実験5》この実験5では、上述した特定 複素環化合物の、非水系電解液への好適な添加量を調べ た。

【0063】 先ず、エチレンカーボネートとジメチルカーボネートの等体積混合溶媒に、 $Lin(CF_3SO_2)(C_4F_9SO_2)$ を1.5mol/1溶かした溶液を準備する。これに対して、複素原化合物としてビニレンカーボネートを、表5に示す濃度となるように添加混合して、非水系電解液を

関製した。

【0064】このようにして得た非水電解液を用いたこと以外は電池A1と同様にして、本発明電池E1~E7、及びビニレンカーボネート無添加の比較電池Yを作製した。

【0065】次に上記のようにして作製した各電池につ

いて、上記実験1と同様にサイクル試験を行った。その 結果を、表5に示す。尚、表5には電池C1の結果も、 表3より転記して示してある。

[0066]

【表5】

電池	ピニレンカーポネート	サイクル数	
	添加量(mol/l)	(国)	
電 池E 1	0.001	3 1 2	
電池E2	0.01 .	3 2 4	
電池E3	0. 1	3 2 9	
電池E4(C1)	1. 5	3 3 5	
雅池E5	3. 0	3 2 4	
電池E6	4. 0	318	
電池E7	5. 0	3 1 2	
比較電池Y	無添加	175	

【0067】表5に示すように、電池E2~電池E5のサイクル特性が特に良い。この事実から、ビニレンカーボネートを非水系電解液に対して、0.01~3.0mol/1となるように添加混合して使用することが好ましいことが分かる。ここで、ビニレンカーボネートを3.0mol/1よりも多く添加すると、サイクル特性の低下がみられるが、これは、余剰のビニレンカーボネートが正極上で分解し、電極反応を妨げるためと考えられる。

【0068】尚、ビニレンカーボネート以外の複素環化合物を使用する場合も、添加量が0.01~3.0mo1/1となるように使用することが好ましいことを別途確認した。 【0069】《実験6》この実験6では、電解質塩の非

【0070】先ず、エチレンカーボネートとジメチルカ

水系電解液への好適な添加量を調べた。

一ポネートの等体積混合容媒に、複素環化合物としてピニレンカーポネートを $1.0 \mathrm{mol}/1$ 溶かした溶液を準備する。この溶液に対して、電解質塩である $\mathrm{Lin}(\mathrm{CF_3SO_2})(\mathrm{C_4}\mathrm{F_9SO_2})$ を、表6に示す各濃度となるように添加混合して、非水系電解液を調製した。

【0071】このようにして得た非水系電解液を用いたこと以外は上記電池A1と同様にして、本発明電池F1~F8を作製した。

【0072】上記各電池について、実験1と同様にサイクル試験を行った。この結果を、表6に示す。尚、表6には、本発明電池F4であるC1と、比較電池W6の結果も、表3より転記して示してある。

[0073]

【表6】

電池 電池	LiN(CF,SO,) (C,F,SO,)	サイクル数
	添加量(mol/l)	(国)
電池F1	0.001	309
電池 F 2	0.01	312
電池F3	0. 5	320
電池F4(C1)	0. 1	3 2 9
電池F5	1.0	3 3 5
電池 F 6	2. 0	3 2 0
電池F7	3. 0	313
電池F8	4. 0	305
比較電池W6	無添加	197

【0074】表6に示すようと、本発明電池の中でも記 池F3~電池F6のサイクル特性が特に良い。この事実 から、 $LiN(CF_3SO_2)(C_4F_9SO_2)$ を非水系電解液に対して、 $0.5\sim2.0 \text{mol}/1$ となるように添加混合して使用すること が好ましいことが分かる。 ${0.0 $ \neq 6}$ 尚、 $LiN(d_2F_5SO_2)_2$ を電解質として使用する場合も、添加量が $0.5\sim2.0 mol/1$ となるように使用することが好ましいことを別途確認した。

[0076]

【発明の効果】以上詳述したとおり、特定の添加剤及び

特定の電解質塩を含有する非水系電解液を使用すること により、電解液のイオン導電率が向上するとともに、非 水系電解液中の溶媒の分解に起因して起こる非水系電解

液の劣化が抑制され、サイクル特性に優れた非水系電解 液二次電池が提供できるものであり、その工業的価値は 極めて大きい。

フロントページの続き

(72)発明者 渡辺 浩志

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72) 発明者 能間 俊之

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72) 発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内