

PSoC® Creator™ Project Datasheet for Z80_3Pin

Creation Time: 10/21/2019 06:57:47

User: DESKTOP-2UF8LNB\HPz420

Project: Z80_3Pin

Tool: PSoC Creator 4.2

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600

http://www.cypress.com

Copyright

Copyright © 2019 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

Trademarks

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Creator is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Philips I2C Patent Rights

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of a Cypress product in a life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable.'

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

	Overview	
2 F	Pins	
	2.1 Hardware Pins	4
	2.2 Hardware Ports.	
	2.3 Software Pins	
3.5	System Settings	
0 0	3.1 System Configuration.	
	3.2 System Debug Settings	
	3.3 System Operating Conditions	
4 C	Clocks	
	4.1 System Clocks	
	4.2 Local and Design Wide Clocks	. 13
5 Ir	nterrupts and DMAs	. 14
	5.1 Interrupts	. 14
	5.2 DMAs	
6 F	Flash Memory	
	Design Contents	
' -	7.1 Schematic Sheet: AddrLower	
	7.1 Schematic Sheet: AddressMid	
	7.3 Schematic Sheet: AddressUpper	
	7.4 Schematic Sheet: SRAMCtlr	
	7.5 Schematic Sheet: BankComp	
	7.6 Schematic Sheet: IO_Ctrlr	
	7.7 Schematic Sheet: MailboxData	. 22
	7.8 Schematic Sheet: PSoC_Perip	. 23
8 C	Components	24
	8.1 Component type: cy_srff [v1.0]	
	8.1.1 Instance cy_srff_1	
	8.2 Component type: CyControlReg [v1.80]	
	8.2.1 Instance AdrHighOut	2/
	8.2.2 Instance AdrLowOut	
	8.2.3 Instance AdrMidOut	
	8.2.4 Instance BankBaseAdr	
	8.2.5 Instance BankMask	
	8.2.6 Instance ExtSRAMCtl	
	8.2.7 Instance H1_Reg	
	8.2.8 Instance IO_Ctrl_Reg	
	8.2.9 Instance Z80_Data_In	. 28
	8.3 Component type: cydff [v1.30]	. 28
	8.3.1 Instance cydff_1	
	8.3.2 Instance cydff_10	
	8.3.3 Instance cydff_2	
	8.3.4 Instance cydff_3	
	8.3.5 Instance cydff 4	
	8.3.6 Instance cydff_5	
	8.3.7 Instance cydff_6	
	8.3.8 Instance cydff_7	
	8.3.9 Instance cydff_8	
	8.3.10 Instance cydff_9	
	8.4 Component type: CyStatusReg [v1.90]	.31
	8.4.1 Instance AdrLowIn.	
	8.4.2 Instance IO Stat Reg.	
	8.4.3 Instance Z80_Data_Out	
	8.5 Component type: I2C [v3.50]	
	8.5.1 Instance I2C	
	8.6 Component type: mux [v1.10]	
	8.6.1 Instance mux_1	. 35 35
	o n z insiance mux. Tu	- 35

8.6.3 Instance mux 11	
8.6.4 Instance mux 2	
8.6.5 Instance mux 3	
8.6.6 Instance mux 4	
8.6.7 Instance mux 5	
8.6.8 Instance mux 6	
8.6.9 Instance mux 7	
8.6.10 Instance mux 8	
8.6.11 Instance mux 9	
8.7 Component type: USBFS [v3.20]	38
8.7.1 Instance USBUART	
8.8 Component type: VDAC8 [v1.90]	
8.8.1 Instance VDAC8_1	40
9 Other Resources	

1 Overview

The Cypress PSoC 5 is a family of 32-bit devices with the following characteristics:

- High-performance 32-bit ARM Cortex-M3 core with a nested vectored interrupt controller (NVIC) and a high-performance DMA controller
- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals, such as USB, I2C and SPI
- Analog subsystem that includes 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit DACs that can be configured for 12-bit operation, comparators, op amps and configurable switched capacitor (SC) and continuous time (CT) blocks to create PGAs, TIAs, mixers, and more
- Several types of memory elements, including SRAM, flash, and EEPROM
- Programming and debug system through JTAG, serial wire debug (SWD), and single wire viewer (SWV)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>CY8C52LP</u> series member PSoC 5LP device. For details on all the systems listed above, please refer to the <u>PSoC 5LP Technical Reference Manual</u>.

Figure 1. CY8C52LP Device Series Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value
Part Number	CY8C5267AXI-LP051
Package Name	100-TQFP
Family	PSoC 5LP
Series	CY8C52LP
Max CPU speed (MHz)	0
Flash size (kB)	128
SRAM size (kB)	32
EEPROM size (bytes)	2048
Vdd range (V)	1.71 to 5.5
Automotive qualified	No (Industrial Grade Only)
Temp range (Celsius)	-40 to 85
JTAG ID	0x2E133069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by Bus Clock, listed in the <u>System Clocks</u> section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Resource Type	Used	Free	Max	% Used
Digital Clocks	3	5	8	37.50 %
Analog Clocks	0	4	4	0.00 %
CapSense Buffers	0	2	2	0.00 %
Interrupts	9	23	32	28.13 %
Ю	65	7	72	90.28 %
Segment LCD	0	1	1	0.00 %
I2C	1	0	1	100.00 %
USB	1	0	1	100.00 %
DMA Channels	0	24	24	0.00 %
Timer	0	4	4	0.00 %
UDB				
Macrocells	32	160	192	16.67 %
Unique P-terms	52	332	384	13.54 %
Total P-terms	53			
Datapath Cells	0	24	24	0.00 %
Status Cells	4	20	24	16.67 %
Status Registers	3			
Sync Cells (x2)	1			
Control Cells	9	15	24	37.50 %
Control Registers	9			
Comparator	0	2	2	0.00 %
Delta-Sigma ADC	0	1	1	0.00 %
LPF	0	2	2	0.00 %
SAR ADC	0	1	1	0.00 %
DAC				
VIDAC	1	0	1	100.00 %

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Name	Type	Drive Mode	Reset State
1	P2[5]	SRAMA16	Dgtl Out	Strong drive	HiZ Analog Unb
2	P2[6]	SRAMA18	Dgtl Out	Strong drive	HiZ Analog Unb
3	P2[7]	SRAMA17	Dgtl Out	Strong drive	HiZ Analog Unb
4	P12[4]	SCL	Dgtl I/O	OD, DL	HiZ Analog Unb
5	P12[5]	SDA	Dgtl I/O	OD, DL	HiZ Analog Unb
6	P6[4]	CPUA12	Dgtl In	HiZ digital	HiZ Analog Unb
7	P6[5]	CPUA13	Dgtl In	HiZ digital	HiZ Analog Unb
8	P6[6]	CPUA14	Dgtl In	HiZ digital	HiZ Analog Unb
9	P6[7]	CPUA15	Dgtl In	HiZ digital	HiZ Analog Unb
10	VSSB	VSSB	Dedicated		
11	IND	IND	Dedicated		
12	VB	VB	Dedicated		
13	VBAT	VBAT	Dedicated		
14	VSSD	VSSD	Power		
15	XRES_N	XRES_N	Dedicated		
16	P5[0]	CPUD0	Dgtl I/O	Res pull up	HiZ Analog Unb
17	P5[1]	CPUD1	Dgtl I/O	Res pull up	HiZ Analog Unb
18	P5[2]	CPUD2	Dgtl I/O	Res pull up	HiZ Analog Unb
19	P5[3]	CPUD3	Dgtl I/O	Res pull up	HiZ Analog Unb
20	P1[0]	Debug:SWD_IO	Reserved		
21	P1[1]	Debug:SWD_CK	Reserved		
22	P1[2]	GPIO [unused]			HiZ Analog Unb
23	P1[3]	Debug:SWV	Reserved		
24	P1[4]	GPIO [unused]			HiZ Analog Unb
25	P1[5]	CPURSTn	Dgtl Out	Strong drive	HiZ Analog Unb
26	VDDIO1	VDDIO1	Power		
27	P1[6]	GPIO [unused]			HiZ Analog Unb
28	P1[7]	LED	Dgtl Out	Strong drive	HiZ Analog Unb
29	P12[6]	SIO [unused]			HiZ Analog Unb
30	P12[7]	SIO [unused]			HiZ Analog Unb
31	P5[4]	CPUD4	Dgtl I/O	Res pull up	HiZ Analog Unb
32	P5[5]	CPUD5	Dgtl I/O	Res pull up	HiZ Analog Unb
33	P5[6]	CPUD6	Dgtl I/O	Res pull up	HiZ Analog Unb
34	P5[7]	CPUD7	Dgtl I/O	Res pull up	HiZ Analog Unb
35	P15[6]	\USBUART:Dp\	Analog	HiZ analog	HiZ Analog Unb
36	P15[7]	\USBUART:Dm\	Analog	HiZ analog	HiZ Analog Unb
37	VDDD	VDDD	Power		
38	VSSD	VSSD	Power		
39	VCCD	VCCD	Power		
42	P15[0]	BUSACK_n	Software In/Out	HiZ digital	HiZ Analog Unb
43	P15[1]	BUSRQ_n	Dgtl Out	Strong drive	HiZ Analog Unb
44	P3[0]	HALT_n	Software In/Out	Res pull up	HiZ Analog Unb
45	P3[1]	WAIT_n_1	Dgtl Out	Strong drive	HiZ Analog Unb
46	P3[2]	M1_n	Dgtl In	Res pull up	HiZ Analog Unb

Pin	Port	Name	Туре	Drive Mode	Reset State
47	P3[3]	INT_n	Dgtl Out	Strong drive	HiZ Analog Unb
48	P3[4]	NMI_n	Dgtl Out	Strong drive	HiZ Analog Unb
49	P3[5]	IORQ_n	Dgtl In	Res pull up	HiZ Analog Unb
50	VDDIO3	VDDIO3	Power		
51	P3[6]	CPUWR_n	Dgtl In	Res pull up	HiZ Analog Unb
52	P3[7]	CPURD_n	Dgtl In	Res pull up	HiZ Analog Unb
53	P12[0]	MREQ_n	Dgtl In	Res pull up	HiZ Analog Unb
54	P12[1]	SIO [unused]			HiZ Analog Unb
55	P15[2]	XTAL 32kHz:Xi	Reserved		
56	P15[3]	XTAL 32kHz:Xi	Reserved		
63	VCCA	VCCA	Power		
64	VSSA	VSSA	Power		
65	VDDA	VDDA	Power		
66	VSSD	VSSD	Power		
67	P12[2]	SIO [unused]			HiZ Analog Unb
68	P12[3]	I2CINT_n	Software In/Out	HiZ digital	HiZ Analog Unb
69	P4[0]	CPUA0	Dgtl I/O	Strong drive	HiZ Analog Unb
70	P4[1]	CPUA1	Dgtl I/O	Strong drive	HiZ Analog Unb
71	P0[0]	CPU_CLK	Dgtl Out	Strong drive	HiZ Analog Unb
72	P0[1]	MEMRD_n	Dgtl Out	Strong drive	HiZ Analog Unb
73	P0[2]	MEMWR_n	Dgtl Out	Strong drive	HiZ Analog Unb
74	P0[3]	SRAMCS_n	Dgtl Out	Strong drive	HiZ Analog Unb
75	VDDIO0	VDDIO0	Power		
76	P0[4]	P76	Dgtl Out	Strong drive	HiZ Analog Unb
77	P0[5]	P77	Dgtl Out	Strong drive	HiZ Analog Unb
78	P0[6]	P78	Dgtl Out	Strong drive	HiZ Analog Unb
79	P0[7]	P79	Dgtl Out	Strong drive	HiZ Analog Unb
80	P4[2]	CPUA2	Dgtl I/O	Strong drive	HiZ Analog Unb
81	P4[3]	CPUA3	Dgtl I/O	Strong drive	HiZ Analog Unb
82	P4[4]	CPUA4	Dgtl I/O	Strong drive	HiZ Analog Unb
83	P4[5]	CPUA5	Dgtl I/O	Strong drive	HiZ Analog Unb
84	P4[6]	CPUA6	Dgtl I/O	Strong drive	HiZ Analog Unb
85	P4[7]	CPUA7	Dgtl I/O	Strong drive	HiZ Analog Unb
86	VCCD	VCCD	Power		
87	VSSD	VSSD	Power		
88	VDDD	VDDD	Power		
89	P6[0]	CPUA8	Dgtl Out	Res pull up	HiZ Analog Unb
90	P6[1]	CPUA9	Dgtl Out	Res pull up	HiZ Analog Unb
91	P6[2]	CPUA10	Dgtl Out	Res pull up	HiZ Analog Unb
92	P6[3]	CPUA11	Dgtl In	HiZ digital	HiZ Analog Unb
93	P15[4]	OSC_IN	Software In/Out	HiZ digital	HiZ Analog Unb
94	P15[5]	DAC_OUT	Analog	HiZ analog	HiZ Analog Unb
95	P2[0]	SRAMA11	Dgtl Out	Strong drive	HiZ Analog Unb
96	P2[1]	SRAMA12	Dgtl Out	Strong drive	HiZ Analog Unb
97	P2[2]	SRAMA13	Dgtl Out	Strong drive	HiZ Analog Unb
98	P2[3]	SRAMA14	Dgtl Out	Strong drive	HiZ Analog Unb
99	P2[4]	SRAMA15	Dgtl Out	Strong drive	HiZ Analog Unb
100	VDDIO2	VDDIO2	Power		

Abbreviations used in Table 3 have the following meanings:

- Dgtl Out = Digital Output
 HiZ Analog Unb = Hi-Z Analog Unbuffered

- Dgtl I/O = Digital In/Out
- OD, DL = Open drain, drives low
- Dgtl In = Digital Input
- HiZ digital = High impedance digital
- Res pull up = Resistive pull up
- HiZ analog = High impedance analog

2.2 Hardware Ports

Table 4 contains information about the pins on this device in device port order. (No connection ["n/c"], power and dedicated pins have been omitted.)

Table 4. Device Ports

Port	Pin	Name	Type	Drive Mode	Reset State
P0[0]	71	CPU_CLK	Dgtl Out	Strong drive	HiZ Analog Unb
P0[1]	72	MEMRD_n	Dgtl Out	Strong drive	HiZ Analog Unb
P0[2]	73	MEMWR_n	Dgtl Out	Strong drive	HiZ Analog Unb
P0[3]	74	SRAMCS_n	Dgtl Out	Strong drive	HiZ Analog Unb
P0[4]	76	P76	Dgtl Out	Strong drive	HiZ Analog Unb
P0[5]	77	P77	Dgtl Out	Strong drive	HiZ Analog Unb
P0[6]	78	P78	Dgtl Out	Strong drive	HiZ Analog Unb
P0[7]	79	P79	Dgtl Out	Strong drive	HiZ Analog Unb
P1[0]	20	Debug:SWD_IO	Reserved		
P1[1]	21	Debug:SWD_CK	Reserved		
P1[2]	22	GPIO [unused]			HiZ Analog Unb
P1[3]	23	Debug:SWV	Reserved		
P1[4]	24	GPIO [unused]			HiZ Analog Unb
P1[5]	25	CPURSTn	Dgtl Out	Strong drive	HiZ Analog Unb
P1[6]	27	GPIO [unused]			HiZ Analog Unb
P1[7]	28	LED	Dgtl Out	Strong drive	HiZ Analog Unb
P12[0]	53	MREQ_n	Dgtl In	Res pull up	HiZ Analog Unb
P12[1]	54	SIO [unused]			HiZ Analog Unb
P12[2]	67	SIO [unused]			HiZ Analog Unb
P12[3]	68	I2CINT_n	Software In/Out	HiZ digital	HiZ Analog Unb
P12[4]	4	SCL	Dgtl I/O	OD, DL	HiZ Analog Unb
P12[5]	5	SDA	Dgtl I/O	OD, DL	HiZ Analog Unb
P12[6]	29	SIO [unused]			HiZ Analog Unb
P12[7]	30	SIO [unused]			HiZ Analog Unb
P15[0]	42	BUSACK_n	Software In/Out	HiZ digital	HiZ Analog Unb
P15[1]	43	BUSRQ_n	Dgtl Out	Strong drive	HiZ Analog Unb
P15[2]	55	XTAL 32kHz:Xi	Reserved		
P15[3]	56	XTAL 32kHz:Xi	Reserved		
P15[4]	93	OSC_IN	Software In/Out	HiZ digital	HiZ Analog Unb
P15[5]	94	DAC_OUT	Analog	HiZ analog	HiZ Analog Unb
P15[6]	35	\USBUART:Dp\	Analog	HiZ analog	HiZ Analog Unb
P15[7]	36	\USBUART:Dm\	Analog	HiZ analog	HiZ Analog Unb
P2[0]	95	SRAMA11	Dgtl Out	Strong drive	HiZ Analog Unb
P2[1]	96	SRAMA12	Dgtl Out	Strong drive	HiZ Analog Unb
P2[2]	97	SRAMA13	Dgtl Out	Strong drive	HiZ Analog Unb
P2[3]	98	SRAMA14	Dgtl Out	Strong drive	HiZ Analog Unb
P2[4]	99	SRAMA15	Dgtl Out	Strong drive	HiZ Analog Unb
P2[5]	1	SRAMA16	Dgtl Out	Strong drive	HiZ Analog Unb
P2[6]	2	SRAMA18	Dgtl Out	Strong drive	HiZ Analog Unb
P2[7]	3	SRAMA17	Dgtl Out	Strong drive	HiZ Analog Unb
P3[0]	44	HALT_n	Software In/Out	Res pull up	HiZ Analog Unb
P3[1]	45	WAIT_n_1	Dgtl Out	Strong drive	HiZ Analog Unb

Port	Pin	Name	Type	Drive Mode	Reset State
P3[2]	46	M1_n	Dgtl In	Res pull up	HiZ Analog Unb
P3[3]	47	INT_n	Dgtl Out	Strong drive	HiZ Analog Unb
P3[4]	48	NMI_n	Dgtl Out	Strong drive	HiZ Analog Unb
P3[5]	49	IORQ_n	Dgtl In	Res pull up	HiZ Analog Unb
P3[6]	51	CPUWR_n	Dgtl In	Res pull up	HiZ Analog Unb
P3[7]	52	CPURD_n	Dgtl In	Res pull up	HiZ Analog Unb
P4[0]	69	CPUA0	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[1]	70	CPUA1	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[2]	80	CPUA2	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[3]	81	CPUA3	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[4]	82	CPUA4	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[5]	83	CPUA5	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[6]	84	CPUA6	Dgtl I/O	Strong drive	HiZ Analog Unb
P4[7]	85	CPUA7	Dgtl I/O	Strong drive	HiZ Analog Unb
P5[0]	16	CPUD0	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[1]	17	CPUD1	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[2]	18	CPUD2	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[3]	19	CPUD3	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[4]	31	CPUD4	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[5]	32	CPUD5	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[6]	33	CPUD6	Dgtl I/O	Res pull up	HiZ Analog Unb
P5[7]	34	CPUD7	Dgtl I/O	Res pull up	HiZ Analog Unb
P6[0]	89	CPUA8	Dgtl Out	Res pull up	HiZ Analog Unb
P6[1]	90	CPUA9	Dgtl Out	Res pull up	HiZ Analog Unb
P6[2]	91	CPUA10	Dgtl Out	Res pull up	HiZ Analog Unb
P6[3]	92	CPUA11	Dgtl In	HiZ digital	HiZ Analog Unb
P6[4]	6	CPUA12	Dgtl In	HiZ digital	HiZ Analog Unb
P6[5]	7	CPUA13	Dgtl In	HiZ digital	HiZ Analog Unb
P6[6]	8	CPUA14	Dgtl In	HiZ digital	HiZ Analog Unb
P6[7]	9	CPUA15	Dgtl In	HiZ digital	HiZ Analog Unb

Abbreviations used in Table 4 have the following meanings:

- Dgtl Out = Digital Output
- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl In = Digital Input
- Res pull up = Resistive pull up
- HiZ digital = High impedance digital
- Dgtl I/O = Digital In/Out
- OD, DL = Open drain, drives low
- HiZ analog = High impedance analog

2.3 Software Pins

Table 5 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 5. Software Pins

Name	Port	Туре	Reset State
\USBUART:Dm\	P15[7]	Analog	HiZ Analog Unb
\USBUART:Dp\	P15[6]	Analog	HiZ Analog Unb
BUSACK_n	P15[0]	Software	HiZ Analog Unb
_		In/Out	-
BUSRQ_n	P15[1]	Dgtl Out	HiZ Analog Unb
CPU_CLK	P0[0]	Dgtl Out	HiZ Analog Unb
CPUA0	P4[0]	Dgtl I/O	HiZ Analog Unb
CPUA1	P4[1]	Dgtl I/O	HiZ Analog Unb
CPUA10	P6[2]	Dgtl Out	HiZ Analog Unb
CPUA11	P6[3]	Dgtl In	HiZ Analog Unb
CPUA12	P6[4]	Dgtl In	HiZ Analog Unb
CPUA13	P6[5]	Dgtl In	HiZ Analog Unb
CPUA14	P6[6]	Dgtl In	HiZ Analog Unb
CPUA15	P6[7]	Dgtl In	HiZ Analog Unb
CPUA2	P4[2]	Dgtl I/O	HiZ Analog Unb
CPUA3	P4[3]	Dgtl I/O	HiZ Analog Unb
CPUA4	P4[4]	Dgtl I/O	HiZ Analog Unb
CPUA5	P4[5]	Dgtl I/O	HiZ Analog Unb
CPUA6	P4[6]	Dgtl I/O	HiZ Analog Unb
CPUA7	P4[7]	Dgtl I/O	HiZ Analog Unb
CPUA8	P6[0]	Dgtl Out	HiZ Analog Unb
CPUA9	P6[1]	Dgtl Out	HiZ Analog Unb
CPUD0 CPUD1	P5[0]	Dgtl I/O	HiZ Analog Unb
CPUD1	P5[1]	Dgtl I/O	HiZ Analog Unb
CPUD3	P5[2]	Dgtl I/O Dgtl I/O	HiZ Analog Unb HiZ Analog Unb
CPUD4	P5[3] P5[4]	Dgtl I/O	HiZ Analog Unb
CPUD5	 	Dgtl I/O	HiZ Analog Unb
CPUD6	P5[5] P5[6]	Dgtl I/O	HiZ Analog Unb
CPUD7	P5[7]	Dgtl I/O	HiZ Analog Unb
CPURD n	P3[7]	Dgtl In	HiZ Analog Unb
CPURSTn	P1[5]	Dgtl Out	HiZ Analog Unb
CPUWR n	P3[6]	Dgtl In	HiZ Analog Unb
DAC_OUT	P15[5]	Analog	HiZ Analog Unb
Debug:SWD_CK	P1[1]	Reserved	The Thatog Oth
Debug:SWD_IO	P1[0]	Reserved	
Debug:SWV	P1[3]	Reserved	
GPIO [unused]	P1[2]		HiZ Analog Unb
GPIO [unused]	P1[4]		HiZ Analog Unb
GPIO [unused]	P1[6]		HiZ Analog Unb
HALT_n	P3[0]	Software In/Out	HiZ Analog Unb
I2CINT_n	P12[3]	Software In/Out	HiZ Analog Unb
INT_n	P3[3]	Dgtl Out	HiZ Analog Unb
IORQ n	P3[5]	Dgtl In	HiZ Analog Unb

Name	Port	Туре	Reset State
LED	P1[7]	Dgtl Out	HiZ Analog Unb
M1_n	P3[2]	Dgtl In	HiZ Analog Unb
MEMRD_n	P0[1]	Dgtl Out	HiZ Analog Unb
MEMWR_n	P0[2]	Dgtl Out	HiZ Analog Unb
MREQ_n	P12[0]	Dgtl In	HiZ Analog Unb
NMI_n	P3[4]	Dgtl Out	HiZ Analog Unb
OSC_IN	P15[4]	Software In/Out	HiZ Analog Unb
P76	P0[4]	Dgtl Out	HiZ Analog Unb
P77	P0[5]	Dgtl Out	HiZ Analog Unb
P78	P0[6]	Dgtl Out	HiZ Analog Unb
P79	P0[7]	Dgtl Out	HiZ Analog Unb
SCL	P12[4]	Dgtl I/O	HiZ Analog Unb
SDA	P12[5]	Dgtl I/O	HiZ Analog Unb
SIO [unused]	P12[6]		HiZ Analog Unb
SIO [unused]	P12[7]		HiZ Analog Unb
SIO [unused]	P12[2]		HiZ Analog Unb
SIO [unused]	P12[1]		HiZ Analog Unb
SRAMA11	P2[0]	Dgtl Out	HiZ Analog Unb
SRAMA12	P2[1]	Dgtl Out	HiZ Analog Unb
SRAMA13	P2[2]	Dgtl Out	HiZ Analog Unb
SRAMA14	P2[3]	Dgtl Out	HiZ Analog Unb
SRAMA15	P2[4]	Dgtl Out	HiZ Analog Unb
SRAMA16	P2[5]	Dgtl Out	HiZ Analog Unb
SRAMA17	P2[7]	Dgtl Out	HiZ Analog Unb
SRAMA18	P2[6]	Dgtl Out	HiZ Analog Unb
SRAMCS_n	P0[3]	Dgtl Out	HiZ Analog Unb
WAIT_n_1	P3[1]	Dgtl Out	HiZ Analog Unb
XTAL 32kHz:Xi	P15[3]	Reserved	
XTAL 32kHz:Xi	P15[2]	Reserved	

Abbreviations used in Table 5 have the following meanings:

- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl Out = Digital Output
- Dgtl I/O = Digital In/Out
- Dgtl In = Digital Input

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the **System Reference Guide**
 - o CyPins API routines
- Programming Application Interface section in the cy_pins component datasheet

3 System Settings

3.1 System Configuration

Table 6. System Configuration Settings

Name	Value
Device Configuration Mode	Compressed
Enable Error Correcting Code (ECC)	False
Store Configuration Data in ECC Memory	True
Instruction Cache Enabled	True
Enable Fast IMO During Startup	True
Unused Bonded IO	Allow but warn
Heap Size (bytes)	0x80
Stack Size (bytes)	0x0800
Include CMSIS Core Peripheral Library Files	True

3.2 System Debug Settings

Table 7. System Debug Settings

Name	Value
Debug Select	SWD+SWV (serial
	wire debug and
	viewer)
Enable Device Protection	False
Embedded Trace (ETM)	False
Use Optional XRES	False

3.3 System Operating Conditions

Table 8. System Operating Conditions

Name	Value
VDDA (V)	5.0
VDDD (V)	5.0
VDDIO0 (V)	5.0
VDDIO1 (V)	5.0
VDDIO2 (V)	5.0
VDDIO3 (V)	5.0
Variable VDDA	False
Temperature Range	-40C -
	85/125C

4 Clocks

The clock system includes these clock resources:

- Four internal clock sources increase system integration:
 - o 3 to 74.7 MHz Internal Main Oscillator (IMO) ±1% at 3 MHz
 - o 1 kHz, 33 kHz, and 100 kHz Internal Low Speed Oscillator (ILO) outputs
 - 12 to 80 MHz clock doubler output, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and Digital System Interconnect (DSI)
 - 24 to 80 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI
- Clock generated using a DSI signal from an external I/O pin or other logic
- Two external clock sources provide high precision clocks:
 - o 4 to 25 MHz External Crystal Oscillator (MHzECO)
 - o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)
- Dedicated 16-bit divider for bus clock
- Eight individually sourced 16-bit clock dividers for the digital system peripherals
- Four individually sourced 16-bit clock dividers with skew for the analog system peripherals
- IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB. (USB equipped parts only)

Figure 3. System Clock Configuration

4.1 System Clocks

Table 9 lists the system clocks used in this design.

Table 9. System Clocks

Name	Domain	Source	Desired	Nominal	Accuracy	Start	Enabled
			Freq	Freq	(%)	at	
						Reset	
BUS_CLK	DIGITAL	MASTER_CLK	? MHz	60 MHz	±0.25	True	True
MASTER_CLK	DIGITAL	PLL_OUT	? MHz	60 MHz	±0.25	True	True
PLL_OUT	DIGITAL	IMO	60 MHz	60 MHz	±0.25	True	True
USB_CLK	DIGITAL	IMO	48 MHz	48 MHz	±0.25	False	True
IMO	DIGITAL		24 MHz	24 MHz	±0.25	True	True
ILO	DIGITAL		? MHz	100 kHz	-55,+100	True	True
XTAL 32kHz	DIGITAL		32.768	32.768	±0	False	True
			kHz	kHz			
Digital Signal	DIGITAL		? MHz	? MHz	±0	False	False
XTAL	DIGITAL		24 MHz	? MHz	±0	False	False

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 10 lists the local clocks used in this design.

Table 10. Local Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	at	Enabled
						Reset	
I2C_BusClock	DIGITAL	BUS_CLK	? MHz	60 MHz	±0.25	True	True
Clock_1	DIGITAL	MASTER_CLK	? MHz	60 MHz	±0.25	True	True
Clock_3	DIGITAL	MASTER_CLK	6 MHz	6 MHz	±0.25	True	True
Clock_2	DIGITAL	MASTER_CLK	400 kHz	400 kHz	±0.25	True	True

For more information on clocking resources, please refer to:

- Clocking System chapter in the PSoC 5LP Technical Reference Manual
- Clocking chapter in the <u>System Reference Guide</u>
 - CyPLL API routines
 - CylMO API routines
 - CylLO API routines
 - CyMaster API routines
 - CyXTAL API routines

5 Interrupts and DMAs

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 11. Interrupts

Name	Intr	Vector	Priority
	Num		
USBUART_ep_1	0	0	7
USBUART_ep_2	1	1	7
USBUART_ep_3	2	2	7
USBUART_dp_int	12	12	7
I2C_I2C_IRQ	15	15	7
USBUART_sof_int	21	21	7
USBUART_arb_int	22	22	7
USBUART_bus_reset	23	23	7
USBUART_ep_0	24	24	7

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 5LP Technical Reference Manual
- Interrupts chapter in the <u>System Reference Guide</u>
 Cylnt API routines and related registers
- Datasheet for <u>cy_isr component</u>

5.2 DMAs

This design contains no DMA components.

6 Flash Memory

PSoC 5LP devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 12 lists the Flash protection settings for your design.

Table 12. Flash Protection Settings

Start Address	End Address	Protection Level
0x0	0x1FFFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 256 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- F Factory Upgrade
- R Field Upgrade
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the PSoC 5LP Technical Reference Manual
- Flash and EEPROM chapter in the System Reference Guide
 - o CyWrite API routines
 - CyFlash API routines

7 Design Contents

This design's schematic content consists of the following 8 schematic sheets:

7.1 Schematic Sheet: AddrLower

Figure 5. Schematic Sheet: AddrLower

This schematic sheet contains the following component instances:

- Instance <u>AdrLowIn</u> (type: CyStatusReg_v1_90)
- Instance <u>AdrLowOut</u> (type: CyControlReg_v1_80)
- Instance cydff_v1_30)
- Instance cydff_v1_30)
- Instance cydff_3 (type: cydff_v1_30)
- Instance <u>cydff 4</u> (type: cydff_v1_30)
- Instance cydff_v1_30)
- Instance cydff_6 (type: cydff_v1_30)
- Instance cydff_7 (type: cydff_v1_30)
- Instance <u>cydff_8</u> (type: cydff_v1_30)

7.2 Schematic Sheet: AddressMid

Figure 6. Schematic Sheet: AddressMid

This schematic sheet contains the following component instances:

• Instance AdrMidOut (type: CyControlReg_v1_80)

SRAMA18

7.3 Schematic Sheet: AddressUpper

Z80A[15:11] AdrHighOut Control Reg SAR[7:0] control[7:0] Z80A[15] CPUA15 6[7] Z80A[11] SRAMA15 CPUA11 [6[3] SAR[4] SRAMA11 SAR[0] SAR[5] Z80A[12] SRAMA16 CPUA12 [6[4] SRAMA12 SAR[1] SAR[6] Z80A[13] SRAMA17 CPUA13 [6[5] SAR[2] SRAMA13 SAR[7] 0 Z80A[14]

SRAMA14

Figure 7. Schematic Sheet: AddressUpper

This schematic sheet contains the following component instances:

Instance <u>AdrHighOut</u> (type: CyControlReg_v1_80)

SAR[3]

Instance mux_1 (type: mux_v1_10)

CPUA14 666

BANKED DRV_RAM

- Instance mux_10 (type: mux_v1_10)
- Instance <u>mux_11</u> (type: mux_v1_10)
- Instance mux_2 (type: mux_v1_10)
- Instance mux_3 (type: mux_v1_10)
- Instance mux_4 (type: mux_v1_10)
- Instance mux_5 (type: mux_v1_10)
- Instance mux_6 (type: mux_v1_10)

10/21/2019 06:57 18 Z80_3Pin Datasheet

7.4 Schematic Sheet: SRAMCtlr

Figure 8. Schematic Sheet: SRAMCtlr

This schematic sheet contains the following component instances:

- Instance ExtSRAMCtl (type: CyControlReg_v1_80)
- Instance <u>mux_7</u>(type: mux_v1_10)
- Instance mux_8 (type: mux_v1_10)
- Instance mux_9 (type: mux_v1_10)

7.5 Schematic Sheet: BankComp

BankBaseAdr Control Reg BNK[4:0] MSK[5] control[4:0] BNK[4] BankBaseAdr Z80A[15] selects the Z80 MSK[4] base address BNK[3] of the bank Z80A[14] MSK[3] BNK[2] Z80A[13] BANKED 💠 MSK[2] BNK[1] Z80A[12] MSK[1] BNK[0] Z80A[11] MSK[0] Z80A[15:11] BankMask Control Reg MSK[5:0] control[5:0] BankMask

Figure 9. Schematic Sheet: BankComp

This schematic sheet contains the following component instances:

0x20 = Disable banking (power on default)

• Instance BankBaseAdr (type: CyControlReg_v1_80)

0x10 = 32KB banks 0x18 = 16KB banks 0x1C = 8KB banks 0x1E = 4KB banks 0x1F = 2 KB banks

Instance <u>BankMask</u> (type: CyControlReg_v1_80)

7.6 Schematic Sheet: IO_Ctrlr

Figure 10. Schematic Sheet: IO_Ctrlr

This schematic sheet contains the following component instances:

- Instance <u>cy_srff_1</u> (type: cy_srff_v1_0)
- Instance cydff_10 (type: cydff_v1_30)
- Instance <u>cydff_9</u> (type: cydff_v1_30)
- Instance <u>IO_Ctrl_Reg_(type: CyControlReg_v1_80)</u>
- Instance <u>IO_Stat_Reg_(type: CyStatusReg_v1_90)</u>

7.7 Schematic Sheet: MailboxData

Z80_Data_In Control Reg CPUD0 Pins ZDO[0] control_0 control_1 CPUD1 control_2 PSoC_CLK control_3 control_4 Pins Clock_1 III ZDO[1] control_5 CPUD2 control_6 control_7 Z80_Data_Out Pins ZDO[2] ZDO[7:0] CPUD3 status[7:0] Pins ZDO[3] CPUD4 Pins ZDO[4] CPUD5 Pins ZDO[5] CPUD6 Pins ZDO[6] CPUD7 M1n Pins ZDO[7] ZDO[7:0] IORQ_n 🕾 CPURDn SRAMWRITE DRV_RAM

Figure 11. Schematic Sheet: MailboxData

This schematic sheet contains the following component instances:

- Instance Z80_Data_In (type: CyControlReg_v1_80)
- Instance <u>Z80_Data_Out</u> (type: CyStatusReg_v1_90)

7.8 Schematic Sheet: PSoC_Perip

Figure 12. Schematic Sheet: PSoC_Perip

This schematic sheet contains the following component instances:

- Instance H1_Reg_type: CyControlReg_v1_80)
- Instance <a>I2C (type: I2C_v3_50)
- Instance <u>USBUART</u> (type: USBFS_v3_20)
- Instance VDAC8_v1_90)

8 Components

8.1 Component type: cy_srff [v1.0]

8.1.1 Instance cy_srff_1

Description: SR Flip Flop Instance type: cy_srff [v1.0]

Datasheet: online component datasheet for cy_srff

Table 13. Component Parameters for cy_srff_1

Parameter Name	Value	Description
ArrayWidth	1	Width of s, r, and q terminals.
		Must be between 1 and 32.
User Comments		Instance-specific comments.

8.2 Component type: CyControlReg [v1.80]

8.2.1 Instance AdrHighOut

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 14. Component Parameters for AdrHighOut

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	true	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	8	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.2 Instance AdrLowOut

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 15. Component Parameters for AdrLowOut

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode

Parameter Name	Value	Description
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	false	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	8	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.3 Instance AdrMidOut

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 16. Component Parameters for AdrMidOut

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	false	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	3	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.4 Instance BankBaseAdr

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 17. Component Parameters for BankBaseAdr

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode

Parameter Name	Value	Description
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	true	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	5	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.5 Instance BankMask

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 18. Component Parameters for BankMask

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	32	Defines bit value
BusDisplay	true	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	6	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.6 Instance ExtSRAMCtl

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 19. Component Parameters for ExtSRAMCtl

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode

Parameter Name	Value	Description
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	16	Defines bit value
BusDisplay	false	Displays the output terminals as bus
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	5	Defines the number of outputs needed (1-8)
User Comments		Instance-specific comments.

8.2.7 Instance H1_Reg

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 20. Component Parameters for H1_Reg

Parameter Name	Value	Description
Bit0Mode	PulseMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	false	Displays the output terminals as bus
ExternalReset	false	Shows the reset terminal
NumOutputs	4	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.8 Instance IO_Ctrl_Reg

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 21. Component Parameters for IO_Ctrl_Reg

Parameter Name	Value	Description
Bit0Mode	PulseMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value

Parameter Name	Value	Description
BusDisplay	false	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	3	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.2.9 Instance Z80_Data_In

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.80]

Datasheet: online component datasheet for CyControlReg

Table 22. Component Parameters for Z80_Data_In

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	0	Defines bit value
BusDisplay	false	Displays the output terminals as
		bus
ExternalReset	false	Shows the reset terminal
NumOutputs	8	Defines the number of outputs
		needed (1-8)
User Comments		Instance-specific comments.

8.3 Component type: cydff [v1.30]

8.3.1 Instance cydff_1

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 23. Component Parameters for cydff_1

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.2 Instance cydff_10

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 24. Component Parameters for cydff_10

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset and reset to be either a bus or a single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.3 Instance cydff_2

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 25. Component Parameters for cydff_2

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.4 Instance cydff_3

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 26. Component Parameters for cydff 3

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.5 Instance cydff_4

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 27. Component Parameters for cydff_4

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset and reset to be either a bus or a single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.6 Instance cydff_5

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 28. Component Parameters for cydff 5

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.7 Instance cydff_6

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 29. Component Parameters for cydff_6

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset and reset to be either a bus or a single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.8 Instance cydff_7

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 30. Component Parameters for cydff_7

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.9 Instance cydff_8

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 31. Component Parameters for cydff_8

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.3.10 Instance cydff_9

Description: D Flip Flop with configurable reset and preset

Instance type: cydff [v1.30]

Datasheet: online component datasheet for cydff

Table 32. Component Parameters for cydff_9

Parameter Name	Value	Description
ArrayWidth	1	Width of d and q terminals. Must
		be between 1 and 32.
MultiPresetReset	true	Defines options to set the preset
		and reset to be either a bus or a
		single bit.
PresetOrReset	None	Preset/ Reset parameter
SmallMode	true	
User Comments		Instance-specific comments.

8.4 Component type: CyStatusReg [v1.90]

8.4.1 Instance AdrLowIn

Description: The Status Register allows the firmware to read values from digital signals.

Instance type: CyStatusReg [v1.90]

Datasheet: online component datasheet for CyStatusReg

Table 33. Component Parameters for AdrLowIn

Parameter Name	Value	Description
Bit0Mode	Transparent	Bit Mode for Bit 0 of the Status
		Register
Bit1Mode	Transparent	Bit Mode for Bit 1 of the Status
		Register
Bit2Mode	Transparent	Bit Mode for Bit 2 of the Status
		Register
Bit3Mode	Transparent	Bit Mode for Bit 3 of the Status
		Register
Bit4Mode	Transparent	Bit Mode for Bit 4 of the Status
		Register
Bit5Mode	Transparent	Bit Mode for Bit 5 of the Status
		Register
Bit6Mode	Transparent	Bit Mode for Bit 6 of the Status
		Register
Bit7Mode	Transparent	Bit Mode for Bit 7 of the Status
		Register
BusDisplay	false	Displays the input terminals as
		bus
Interrupt	false	Shows the interrupt terminal
MaskValue	0	Defines the value of the
		interrupt mask
NumInputs	8	Defines the number of status
		inputs (1-8)
User Comments		Instance-specific comments.

8.4.2 Instance IO_Stat_Reg

Description: The Status Register allows the firmware to read values from digital signals.

Instance type: CyStatusReg [v1.90]

Datasheet: online component datasheet for CyStatusReg

Table 34. Component Parameters for IO_Stat_Reg

Parameter Name	Value	Description
Bit0Mode	Transparent	Bit Mode for Bit 0 of the Status Register
Bit1Mode	Transparent	Bit Mode for Bit 1 of the Status Register
Bit2Mode	Transparent	Bit Mode for Bit 2 of the Status Register
Bit3Mode	Transparent	Bit Mode for Bit 3 of the Status Register
Bit4Mode	Transparent	Bit Mode for Bit 4 of the Status Register
Bit5Mode	Transparent	Bit Mode for Bit 5 of the Status Register
Bit6Mode	Transparent	Bit Mode for Bit 6 of the Status Register
Bit7Mode	Transparent	Bit Mode for Bit 7 of the Status Register
BusDisplay	false	Displays the input terminals as bus
Interrupt	false	Shows the interrupt terminal
MaskValue	0	Defines the value of the interrupt mask

Parameter Name	Value	Description
NumInputs	5	Defines the number of status
		inputs (1-8)
User Comments		Instance-specific comments.

8.4.3 Instance Z80_Data_Out

Description: The Status Register allows the firmware to read values from digital signals.

Instance type: CyStatusReg [v1.90]

Datasheet: online component datasheet for CyStatusReg

Table 35. Component Parameters for Z80_Data_Out

Parameter Name	Value	Description
Bit0Mode		Bit Mode for Bit 0 of the Status
Ditolvioue	Transparent	
		Register
Bit1Mode	Transparent	Bit Mode for Bit 1 of the Status
		Register
Bit2Mode	Transparent	Bit Mode for Bit 2 of the Status
		Register
Bit3Mode	Transparent	Bit Mode for Bit 3 of the Status
	'	Register
Bit4Mode	Transparent	Bit Mode for Bit 4 of the Status
Bit iiviodo	rranoparoni	Register
Bit5Mode	Transparent	Bit Mode for Bit 5 of the Status
Dissivioue	Папърагені	
D''OLA		Register
Bit6Mode	Transparent	Bit Mode for Bit 6 of the Status
		Register
Bit7Mode	Transparent	Bit Mode for Bit 7 of the Status
		Register
BusDisplay	true	Displays the input terminals as
		bus
Interrupt	false	Shows the interrupt terminal
MaskValue	0	Defines the value of the
		interrupt mask
NumInputs	8	Defines the number of status
		inputs (1-8)
User Comments		Instance-specific comments.
	l	•

8.5 Component type: I2C [v3.50]

8.5.1 Instance I2C

Description: Standard I2C communication interface

Instance type: I2C [v3.50]

Datasheet: online component datasheet for I2C

Table 36. Component Parameters for I2C

Parameter Name	Value	Description
Address_Decode	Hardware	Determines either hardware or
		software address match logic.
BusSpeed_kHz	400	I2C Data Rate in kbps.
		Standard settings are 50, 100,
		400 or 1000. The value must be
		between 1 and 1000.
EnableWakeup	false	Determines if I2C is selected as
		wakeup source.

Parameter Name	Value	Description
ExternalBuffer	false	Exposes scl and sda in and out
		terminals outside the
First and Online to Land Land	falaa	component.
Externi2cIntrHandler	false	Allows I2C interrupt handler to be set outside the I2C
		component. This feature
		intended only for PM/SM bus
		usage.
ExternTmoutIntrHandler	false	Allows I2C timeout interrupt
		handler to be set outside the
		I2C component. This feature
		intended only for PM/SM bus usage.
Hex	false	Indicates that address has been
Tick	laise	input in hexadecimal format.
I2C_Mode	Master	Determines I2C mode
		(Slave/Master/Multi-
		Master/Multi-Master-Slave).
I2cBusPort	Any	Determines which I2C pins have been selected. Select I2C0/I2C1
		and connect to corresponding
		pins to be able use I2C as
		wakeup source.
Implementation	FixedFunction	Determines either I2C
		implementation Fixed Function
		or UDB.
NotSlaveClockMinusTolerance	25	Internal component clock
		negative tolerance value in Master, Multi-Master or Multi-
		Master-Slave mode.
NotSlaveClockPlusTolerance	5	Internal component clock
		positive tolerance value in
		Master, Multi-Master or Multi-
Day of the French Lad	f.1.	Master-Slave mode.
PrescalerEnabled	false	Enables prescaler (7-bit counter) to expand timeout
		timer range.
PrescalerPeriod	3	Prescaler period of timeout
		timer.
SclTimeoutEnabled	false	Enables low time monitoring of
		scl line.
SdaTimeoutEnabled	false	Enables low time monitoring of
Clave Address		sda line.
Slave_Address	<u>8</u> 5	7-bits I2C slave address.
SlaveClockMinusTolerance	5	Internal component clock negative tolerance value in
		Slave mode.
SlaveClockPlusTolerance	50	Internal component clock
		positive tolerance value in Slave
		mode.
TimeoutImplementation	UDB	Determines either timeout timer
		feature implementation as UDB
		or Fixed Function. The Fixed Function implementation only
		available for PSoC5LP.

Parameter Name	Value	Description
TimeOutms	25	Determines maximum time allowed for scl or sda to be low state (in mS). The timeout timer generates interrupt after timeout expires.
TimeoutPeriodff	39999	Period of timeout timer (Fixed Function).
TimeoutPeriodUdb	39999	Period of timeout timer (UDB).
UdbInternalClock	true	Determines either internal or external clock source for I2C UDB.
UdbSlaveFixedPlacementEnable	false	Enables fixed placement for I2C UDB. Only available in slave mode.
User Comments		Instance-specific comments.

8.6 Component type: mux [v1.10]

8.6.1 Instance mux_1

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 37. Component Parameters for mux_1

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.2 Instance mux_10

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 38. Component Parameters for mux 10

		_
Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.3 Instance mux_11

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 39. Component Parameters for mux 11

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.4 Instance mux_2

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 40. Component Parameters for mux 2

•		_
Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.5 Instance mux_3

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 41. Component Parameters for mux_3

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.6 Instance mux 4

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 42. Component Parameters for mux_4

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.7 Instance mux_5

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 43. Component Parameters for mux_5

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.8 Instance mux_6

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 44. Component Parameters for mux 6

		
Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.9 Instance mux 7

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 45. Component Parameters for mux_7

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.10 Instance mux_8

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 46. Component Parameters for mux_8

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.6.11 Instance mux_9

Description: Multiplexer with configurable number of input terminals and terminal width.

Instance type: mux [v1.10]

Datasheet: online component datasheet for mux

Table 47. Component Parameters for mux_9

Parameter Name	Value	Description
NumInputTerminals	2	Number of inputs required for
		the Multiplexer. Acceptable
		values are 2, 4, 8, and 16.
TerminalWidth	1	Width of each terminal
User Comments		Instance-specific comments.

8.7 Component type: USBFS [v3.20]

8.7.1 Instance USBUART

Description: USB 2.0 Full Speed Device Framework

Instance type: USBFS [v3.20]

Datasheet: online component datasheet for USBFS

Table 48. Component Parameters for USBUART

Parameter Name	Value	Description
EnableBatteryChargDetect	false	This parameter allows to detect a charging supported USB host port using the API function USBFS_DetectPortType().
EnableCDCApi	true	Enables additional high level API's that allow the CDC device to be used similar to a UART device.
EnableMidiApi	true	Enables additional high level MIDI API's.
endpointMA	MA_Static	Endpoint memory allocation
endpointMM	EP_Manual	Endpoint memory management
epDMAautoOptimization	false	This parameter enables resource optimization for DMA with Automatic Memory Management mode. Set this parameter value to true only when a single IN endpoint is present in the device. Enabling this parameter in a multi IN endpoint device configuration causes undesired effects.
extern_cls	false	This parameter allows for user or other component to implement his own handler for Class requests. USBFSDispatchClassRqst() function should be implemented if this parameter enabled.
extern_vbus	false	This parameter enables external VBUSDET input.

Parameter Name	Value	Description
extern_vnd	false	This parameter allows for user or other component to implement his own handler for Vendor specific requests. USBFS_HandleVendorRqst() function should be implemented if this parameter enabled.
extJackCount	0	Max number of External MIDI IN Jack or OUT Jack descriptors
Gen16bitEpAccessApi	true	This parameter defines whether to generate APIs for the 16-bits endpoint access.
HandleMscRequests	true	This parameter is used to enable handling MSC requests and generate MSC APIs.
isrGroupArbiter	High	This parameter defines the interrupt group of the Arbiter Interrupt.
isrGroupBusReset	Low	This parameter defines the interrupt group of the Bus Reset Interrupt.
isrGroupEp0	Medium	This parameter defines the interrupt group of the Control Endpoint Interrupt (EP0).
isrGroupEp1	Medium	This parameter defines the interrupt group of the Data Endpoint 1 Interrupt.
isrGroupEp2	Medium	This parameter defines the interrupt group of the Data Endpoint 2 Interrupt.
isrGroupEp3	Medium	This parameter defines the interrupt group of the Data Endpoint 3 Interrupt.
isrGroupEp4	Medium	This parameter defines the interrupt group of the Data Endpoint 4 Interrupt.
isrGroupEp5	Medium	This parameter defines the interrupt group of the Data Endpoint 5 Interrupt.
isrGroupEp6	Medium	This parameter defines the interrupt group of the Data Endpoint 6 Interrupt.
isrGroupEp7	Medium	This parameter defines the interrupt group of the Data Endpoint 7 Interrupt.
isrGroupEp8	Medium	This parameter defines the interrupt group of the Data Endpoint 8 Interrupt.
isrGroupLpm	High	This parameter defines the interrupt group of the LPM Interrupt.
isrGroupSof	Low	This parameter defines the interrupt group of the Start of Frame Interrupt.
max_interfaces_num	2	Defines maximum interfaces number

Parameter Name	Value	Description
Mode	false	Specifies whether the implementation will create API for interfacing to UART component(s) for a corresponding set of external MIDI connections.
mon_vbus	false	The mon_vbus parameter adds a single VBUS monitor pin to the design. This pin must be connected to VBUS and must be assigned in the pin editor.
MscDescriptors		Mass Storage Class Descriptors
MscLogicalUnitsNum	1	This parameter allows to specify the number of logical units that should be supported by the Mass Storage device.
out_sof	false	The out_sof parameter enables Start-of-Frame output.
Pid	F232	Product ID
powerpad_vbus	false	This parameter enables VBUS power pad
ProdactName		This string is displayed by the Operating System when it is installing the mass storage device as the Product Name.
ProdactRevision		This string is displayed by the Operating System when it is installing the mass storage device as the Product Revision.
rm_lpm_int	true	Removes LPM ISR
User Comments		Instance-specific comments.
VendorName		This string is displayed by the Operating System when it is installing the mass storage device as the Vendor Name.
Vid	04B4	Vendor ID

8.8 Component type: VDAC8 [v1.90]

8.8.1 Instance VDAC8_1

Description: 8-Bit Voltage DAC Instance type: VDAC8 [v1.90]

Datasheet: online component datasheet for VDAC8

Table 49. Component Parameters for VDAC8_1

•	-	
Parameter Name	Value	Description
Data_Source	CPU or DMA (Data Bus)	Selects the method in which the data is written to the vDAC.
Initial_Value	100	Configures the initial vDAC output voltage. The output uses the following relation: Initial output voltage = value*(FullRange/255). This calculated output voltage value is invalid if DAC Bus is used.

Parameter Name	Value	Description
Strobe_Mode	Register Write	Selects how the data is strobed into the DAC. For a register write, the data is strobed into the DAC on each CPU or DMA write. If operating in External mode, an external data strobe signal is required.
User Comments		Instance-specific comments.
VDAC_Range	0 - 1.020V (4mV/bit)	Specifies the full voltage scale range of the vDAC
VDAC_Speed	Low Speed	Specifies the vDAC settling speed. Note that the 'Slow Speed' selection consumes less power.
Voltage	255	This parameter sets the voltage value.

9 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the <u>System Reference Guide</u>
 - Software base types
 - o Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - o The full PSoC 5LP register map is covered in the PSoC 5LP Registers Technical Reference
 - o Register Access chapter in the System Reference Guide
 - § CY_GET API routines § CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - o General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 5LP Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 5LP Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CyPm API routines
- Watchdog Timer chapter in the **System Reference Guide**
 - CyWdt API routines
- Cache Management
 - o Cache Controller chapter in the PSoC 5LP Technical Reference Manual
 - o Cache chapter in the System Reference Guide
 - § CyFlushCache() API routine