DDR 布板注意事项

文件标识: RK-SM-YF-036

发布版本: V1.3.1

日期: 2021-02-25

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

记录所有平台的 DDR 布板注意事项

产品版本

芯片名称	内核版本
所有芯片	所有内核版本

读者对象

本文档(本指南)主要适用于以下工程师:

硬件工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	何灿阳	2017-11-02	初始版本
V1.1.0	陈炜	2017-11-09	更改某些表述
V1.2.0	汤云平	2018-01-14	增加 RK3326 描述及 LPDDR2/LPDDR3 要求
V1.3.0	陈有敏	2018-10-08	增加总容量 3GB 说明和 RK3399 单通道布线要求
V1.3.1	黄莹	2021-02-25	修改格式

目录

DDR 布板注意事项

- 1. 名词说明
- 2. 总的要求
- 3. RK3399 特殊要求
- 4. RK3326、PX30 特殊要求

1. 名词说明

颗粒:指各种 DDR memory, DDR3 memory、DDR4 memory、LPDDR3 memory、LPDDR4 memory、LPDDR2 memory

• CS: 主控或 DDR memory 的片选信号

• rank: 就是 CS, 就是片选信号

• **byte**: 主控每 8 根 DDR 信号线,成为一个 byte。所以 byte0 指 DQ0-DQ7,byte1 指 DQ8-DQ15,byte2 指 DQ16-DQ23,byte3 指 DQ24-DQ31。注意,这里的 DQ 都是说主控的,颗粒的 DQ 不一定跟主控的 DQ 是一一对应连接的。

• bank: 是指 DDR memory 的 bank 数量

• column: 是指 DDR memory 的 column 数量

• row: 是指 DDR memory 的 row 数量

• **AXI SPLIT**: 非对称容量组合模式,如高位寻址区为 16bit 位宽,低位寻址区为 32bit 位宽。例如常规的组合为 256x16+256x16,而 AXI SPLIT 的组合为 256x16+128x16=768MB,在高位寻址区只剩16bit 位宽,示意图如下图。

2. 总的要求

总的要求适用于所有平台,各款主控的特殊要求,后面单独列出

- 1、DQ 的交换,不能超出该组 byte,只能在 byte 内部进行交换。有些主控有特殊要求,byte 内部都不能交换,见具体主控的特殊要求
- 2、用到 2 个 CS 上的 bank、column 数量不同的 DDR 颗粒,需要跟软件确认是否支持
- 3、如果颗粒只有一个 CS, 只能接在主控的 CS0 上
- 4、如果只用一个通道, 只支持通道 0
- 5、如果颗粒 2 个 CS 的容量不同,则容量小的应该放在主控的 CS1 上
- 6、所有平台,不支持大于 2 个 CS 的颗粒
- 7、如果颗粒只有一个 ODT(像 LPDDR3),应该连到 ODT0 上

8、6Gb、12Gb 的使用比较特殊(8Gb、4Gb、2Gb 没有这条限制)

目前只支持一个通道上的 2 个 CS 都是 6Gb 或者 2 个 CS 都是 12Gb 的,不支持 6Gb、12Gb 与 8Gb、4Gb、2Gb 混合在 2 个 CS 中使用。

比如:

CS0	CS1	支持情况
6Gb	6Gb	支持
12Gb	12Gb	支持
6Gb	12Gb	不支持 违反要求 5,并且这样组合也不支持
12Gb	6Gb	不支持,这种组合也不支持
8Gb	6Gb	不支持 8Gb 和 6Gb 混合在 2 个 CS 中
12Gb	8Gb	不支持 12Gb 和 8Gb 混合在 2 个 CS 中
6Gb	4Gb	不支持 6Gb 和 4Gb 混合在 2 个 CS 中
12Gb	4Gb	不支持 12Gb 和 4Gb 混合在 2 个 CS 中

9、颗粒的 RZQ 不能共用

- 10、DDR4 目前连接方式暂无特殊要求
- 11、外接 LPDDR2 或 LPDDR3 时,DDR0 的 DQ0-DQ7 应该一一对应的连接到 DRAM 的 DQ0-DQ7
- 12、双通道 DRAM 总容量 3GB 支持情况

双通道 DRAM 总容量 3GB 支持的颗粒组合如下图:

				LPDDR3 X16(2die)			LPDDR3 X32(1die)				DDF	ie)			
				C:	s0	C	s 1	CS	s0	cs1		cs0		cs1	
				col	row	col	row	col	row	col	row	col	row	col	row
	1	cha:	6Gb/cs0 + 6Gb/cs1					10	15	10	15				
	1	chb:	6Gb/cs0 + 6Gb/cs1					10	15	10	15				
1.5GB+1.5GB	2	cha:	12Gb/cs0	11	15			11	15						
1.065-1.065	۷	chb:	12Gb/cs0	11	15			11	15						
	3	cha:	8Gb/cs0 + 4Gb/cs1					10	15	10	14	10	15	10	14
		chb:	8Gb/cs0 + 4Gb/cs1					10	15	10	14	10	15	10	14
	4	cha:	16Gb/cs0	11	15			11	15			10	16		
		chb:	8Gb/csO	11	14			10	15			10	15		
	5	cha:	16Gb/cs0					11	15			10	16		
OCD LICE		chb:	4Gb/cs0 + 4Gb/cs1					10	14	10	14	10	14	10	14
2GB+1GB	6	cha:	8Gb/cs0 + 8Gb/cs1	11	14	11	14	10	15	10	15	10	15	10	15
		chb:	8Gb/csO	11	14			10	15			10	15		
	7	cha:	8Gb/cs0 + 8Gb/cs1					10	15	10	15	10	15	10	15
		chb:	4Gb/cs0 + 4Gb/cs1					10	14	10	14	10	14	10	14

说明: 1) RK3288, RK3399 支持双通道。

13、单通道 DRAM 总容量 3GB 支持情况

单通道 DRAM 总容量 3GB 支持的颗粒组合如下图:

		LPDDR3				LPDDR3					LPD	DR3					
		C	s0	cs1		cs0		cs1		cs0		cs1		cs0		cs1	
		X32(1die) X32(1die)		ldie)	X16(2die)		X16(2die)		X32(1die)		X16(2die)		X16(2die)		X32(1die)		
		col	row	col	row	col	row	col	row	col	row	col	row	col	row	col	row
1	24Gb/cs0					12	15										
2	12Gb/cs0 + 12Gb/cs1	11	15	11	15	11	15	11	15	11	15	11	15	11	15	11	15
3	16Gb/cs0 + 8Gb/cs1					11	15	11	14	11	15	11	14				
			DD	R3		DDR3			DDR3				DDR3				
		C	cs0 cs1			cs0 cs1			s 1	cs0 cs1				C	30	cs1	
		X16 (2	2die)	X16 (2die)	X8(4die) X8(4		X8(4die) X		X16(2die)		X8(4die)		die)	X16(2die		
		col	row	col	row	col	row	col	row	col	row	col	row	col	row	col	row
1	24Gb/cs0																
2	12Gb/cs0 + 12Gb/cs1																
3	16Gb/cs0 + 8Gb/cs1	10	16	10	15	10	16	10	15	10	16	10	15	10	16	10	15

3. RK3399 特殊要求

- 1、CS2 是 CS0 的复制信号, CS3 是 CS1 的复制信号, 其行为与被复制信号完全一样
- 2、CLK 走线必须比该通道任意一组 DQS 都长, ddr PHY 的要求
- 3、LPDDR3的 D0-D15必须和主控完全——对应的连接
- 4、LPDDR3的 D16、D24 这 2 根数据线也必须和主控完全一一对应连接
- 5、注意主控一个通道与 LPDDR4 颗粒 2 个通道的组成关系

采用颗粒的 Channel A + Channel C 组成一个 32bit,和 Channel B + Channel D 组成一个 32bit,这种方法,能做到避免 ZQ 共用的问题

- 6、LPDDR4 的 RZQ 要通过 240 电阻接 VDDQ,而不是 GND,这点要注意,RK3399 主控端没有变,还是一样 RZQ 通过 240 电阻接 GND
- 7、接 LPDDR4 时,主控端的 DDR0_ODT0/1,DDR1_ODT0/1 悬空,不用连到 LPDDR4 颗粒。而颗粒端的 ODT_CA_X 默认通过 10K 电阻上拉到 VDDQ,暂时预留 DNP 的下拉电阻
- 8、LPDDR4 所有数据线(DQ)都不能对调,不管组内,还是组间
- 9、如果只用 channel 0, channel 1 也需要供电

4. RK3326、PX30 特殊要求

1、支持的位宽组合方式

- 1. 32bit 最大位宽(大容量 16bit+小容量 16bit), 举例: 256x16+128x16=768MB。
- 2. 16bit 最大位宽(大容量 8bit+小容量 8bit),举例: 512x8+256x8=768MB。

2、颗粒要求

AXI SPLIT 模式下,要求所有颗粒的 column,bank 是相同的。

3、连接要求

- 1. AXI SPLIT 模式下,要求在使用 16bit 位宽的颗粒时,需要将 AP DDR 控制器的 byte0/1 接在一个颗粒上,将 byte2/3 接在一个颗粒上。
- 2. AXI SPLIT 模式下,要求较大容量的颗粒连接到 AP DDR 控制器的低位区,如 byte0 或 byte0/1,举例: 16bit a 颗粒+16bit b 颗粒组成 32bit 位宽,如果 a 颗粒的容量大,则 a 颗粒连接到 byte0/1。
- 3. 如果使用 2 个 CS,则只有 CS1 支持 AXI SPLIT,允许两种方式:
 - 1. CS1 上采用非对称容量,如 CS0 上为 32bit 总位宽,则 CS1 上采用大容量 16bit+小容量 16bit 颗粒拼接成 32bit,如 CS0 上为 16bit 总位宽,则 CS1 上采用大容量 8bit+小容量 8bit 颗粒拼接成 16bit。
 - 2. CS1 上只贴一半位宽的颗粒,要求其 row<=CS0 上的颗粒。如 CS0 为 32bit 总位宽,则 CS1 贴 16bit 的颗粒,如 CS0 为 16bit 总位宽,则 CS1 贴 8bit 的颗粒。
- 4、下表列举出了所有支持的 AXI SPLIT 的容量组合。该表格之外的 AXI SPLIT 组合都不支持。

NO.	CS0	CS1	支持 情况
1	16bit 最大位宽(大容量 8bit+小容 量 8bit)	无颗粒	支持
2	32bit 最大位宽(大容量 16bit+小 容量 16bit)	无颗粒	支持
3	32bit 固定位宽	32bit 最大位宽(大容量 16bit+小容量 16bit)	支持
4	32bit 固定位宽	16bit 固定位宽,接 Byte0/1(row<=cs0 上 的颗粒 row)	支持
5	16bit 固定位宽	16bit 最大位宽(大容量 8bit+小容量 8bit)	支持
6	16bit 固定位宽	8bit 固定位宽,接 Byte0(row<=cs0 上的 颗粒 row)	支持

5、常规应用同其他平台一致。