Universal Algebra in UniMath

Cosimo Perini Brogi (j.w.w. G. Amato, M. Maggesi, M. Parton)

University of Genoa

HoTT-UF 2020 - July 7, 2020

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

- Syntax for mathematical objects
- Logic (i.e. notions of proposition and proof)
- ► Interpretation of the syntax in the context of mathematical objects

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

- Syntax for mathematical objects
- Logic (i.e. notions of proposition and proof)
- Interpretation of the syntax in the context of mathematical objects

ZFC set theory is superior to Type Theory!

- Syntax for mathematical objects
- Logic (i.e. notions of proposition and proof)
- Interpretation of the syntax in the context of mathematical objects

UniMath – Origins

UniMath origin dates back to 2014 when three Coa libraries were combined:

- ► Foundations (Voevodsky, 2010)
- RezkCompletion (Ahrens, Kapulkin, Shulman, 2013)
- Ktheory (Grayson, 2013)

UniMath – Underlying Language

Martin-Löf Type Theory / subsystem of Coq:

- ▷ no record types
- ▷ no inductive types
- ▷ no match construct

Extended by:

- □ Univalence (and Function Extensionality) Axiom(s)
- Propositional Resizing

Warning

UniMath – Underlying Language

Martin-Löf Type Theory / subsystem of Coa:

- ▷ no record types
- ▷ no inductive types
- > no match construct

Extended by:

- Univalence (and Function Extensionality) Axiom(s)
- Propositional Resizing

Warning $U_0: U_0$

UniMath – Underlying Language

Martin-Löf Type Theory / subsystem of Coa:

- ▷ no record types
- ▷ no inductive types
- ▷ no match construct

Extended by:

- Univalence (and Function Extensionality) Axiom(s)
- Propositional Resizing

Warning $U_0: U_0$

A (single-sorted) signature σ consists of an *set* of *symbols* each one having a specific *arity*.

An algebraic structure over σ is given by an set A together with a collection of operations on A, corresponding to symbols of σ .

```
Definition Arity: UU := nat
```

```
Definition signature: UU := \sum (names: hSet), names \rightarrow Arity.
```

Definition names (σ : signature): hSet := prl σ .

```
Definition arity (σ: signature)
  (nm: names σ): Arity :=
  pr2 σ nm.
```

Definition dom $\{\sigma\colon \text{signature}\}$ (support: UU) (nm: names σ): UU := Vector support (arity nm).

Definition cod (σ : signature) (support: UU) (nm: names σ): UU := support.

Definition algebra (σ : signature): UU := \sum (support: hSet), \prod (nm: names σ), dom support nm \rightarrow cod support nm.

General Idea

Syntax

and

Algebra

Semantics

A (single-sorted) signature σ consists of an *set* of *symbols* each one having a specific *arity*.

An algebraic structure over σ is given by an set A together with a collection of operations on A, corresponding to symbols of σ .

```
Definition Arity: UU := nat.
```

```
Definition signature: UU := \sum (names: hSet), names \rightarrow Arity.

Definition names (\sigma: signature): hSet :=
```

```
perinttion names (\sigma: signature): nset := pr1 \sigma.
```

```
Definition arity \{\sigma: \text{ signature}\}\ (nm: names \sigma): Arity := pr2 \sigma nm.
```

```
(support: UU) (nm: names σ): UU :=
Vector support (arity nm).
```

```
Definition cod \{\sigma\colon \text{signature}\}\ (support: UU) (nm: names \sigma): UU := support.
```

```
Definition algebra (\sigma: signature): UU := \sum (support: hSet), \prod (nm: names \sigma), dom support nm \rightarrow cod support nm.
```

General Idea

Syntax

and

Algebra

Semantics

A (single-sorted) signature σ consists of an set of symbols each one having a specific arity.

An algebraic structure over σ is given by an *set A* together with a *collection* of *operations* on *A*, corresponding to symbols of σ .

```
Definition Arity: UU := nat.
```

```
Definition signature: UU := \sum (names: hSet), names \rightarrow Arity.
```

Definition names (σ : signature): hSet := pr1 σ .

```
Definition arity \{\sigma: \text{ signature}\}\ (nm: names \sigma): Arity := pr2 \sigma nm.
```

(support: UU) (nm: names o): UU :=
Vector support (arity nm).

Definition cod $\{\sigma\colon \text{signature}\}\$ (support: UU) (nm: names σ): UU := support.

Definition algebra (σ : signature): UU := \sum (support: hSet), \prod (nm: names σ), dom support nm \rightarrow cod support nm.

General Idea

Signature Syntax

and

Algebra

A (single-sorted) signature σ consists of an set of symbols each one having a specific arity.

An algebraic structure over σ is given by an *set A* together with a *collection* of *operations* on A, corresponding to symbols of σ .

```
Definition signature: UU :=
 \sum (names: hSet), names \rightarrow Arity.
Definition names (\sigma: signature): hSet :=
 pr1 \sigma.
Definition arity \{\sigma: \text{ signature}\}\
   (nm: names \sigma): Aritv :=
 pr2 \sigma nm.
Definition dom \{\sigma: \text{ signature}\}\
   (support: UU) (nm: names \sigma): UU :=
    Vector support (arity nm).
Definition cod \{\sigma: \text{ signature}\}\
   (support: UU) (nm: names \sigma): UU :=
    support.
```

Definition algebra (σ : signature): UU := \sum (support: hSet), \prod (nm: names σ), dom support nm \rightarrow cod support nm.

Definition Arity: UU := nat.

General Idea

Signature Syntax

and

Algebra Semantics

A (single-sorted) signature σ consists of an set of symbols each one having a specific arity.

An algebraic structure over σ is given by an *set A* together with a *collection* of *operations* on A, corresponding to symbols of σ .

```
Definition Arity: UU := nat.
Definition signature: UU :=
 \sum (names: hSet), names \rightarrow Arity.
Definition names (\sigma: signature): hSet :=
 pr1 \sigma.
Definition arity \{\sigma: \text{ signature}\}\
  (nm: names \sigma): Aritv :=
 pr2 \sigma nm.
Definition dom \{\sigma: \text{ signature}\}\
   (support: UU) (nm: names \sigma): UU :=
    Vector support (arity nm).
Definition cod \{\sigma: \text{ signature}\}\
   (support: UU) (nm: names \sigma): UU :=
    support.
```

Definition algebra (σ : signature): UU := \sum (support: hSet), \prod (nm: names σ), dom support nm \rightarrow cod support nm.

General Idea

Signature and Sen

Algebra Semantics

Univalent Category of σ -Algebras

A homomorphism between algebras over the same σ is a map of underlying carriers which respects operations.

```
Definition ishom (al a2: algebra \sigma) (f: al \rightarrow a2): UU := \prod (nm: names \sigma) (x: dom al nm), f (op al nm x) = (op a2 nm (vector_map f x))
```

Lemmo

 σ -algebras and homomorphisms form a *univalent* category

Proof.

We use structure identity principle as implemented by displayed categories:

- $ightharpoonup (A : hSet) \mapsto (isAlgebra A) : \mathcal{U}$
- ▶ $(f: A \rightarrow B) \mapsto (ishom f): hProp$
- ishomid and ishomcomp
- ▶ is_univalent_disp_from_SIP_data
- See CatAlgebras.v.

Univalent Category of σ -Algebras

A homomorphism

between algebras over the same σ is a map of underlying carriers which respects operations.

```
Definition ishom {a1 a2: algebra \sigma} (f: a1 \rightarrow a2): UU := \prod (nm: names \sigma) (x: dom a1 nm), f (op a1 nm x) = (op a2 nm (vector_map f x)).
```

Lemmo

 σ -algebras and homomorphisms form a *univalent* category

Proof.

We use structure identity principle as implemented by displayed categories:

- $ightharpoonup (A : hSet) \mapsto (isAlgebra A) : \mathcal{U}$
- ▶ $(f: A \rightarrow B) \mapsto (ishom f): hProp$
- ▶ ishomid and ishomcomp
- ▶ is_univalent_disp_from_SIP_data
- See Cat Algebras.v.

Univalent Category of σ -Algebras

A homomorphism between algebras over the same σ is a map of underlying carriers which respects operations.

```
Definition ishom {a1 a2: algebra \sigma} (f: a1 \rightarrow a2): UU := \prod (nm: names \sigma) (x: dom a1 nm), f (op a1 nm x) = (op a2 nm (vector_map f x)).
```

Lemma

 σ -algebras and homomorphisms form a *univalent* category

Proof.

We use structure identity principle as implemented by displayed categories:

- $ightharpoonup (A : hSet) \mapsto (isAlgebra A) : \mathcal{U}$
- ▶ $(f: A \rightarrow B) \mapsto (ishom f): hProp$
- ▶ ishomid and ishomcomp
- is_univalent_disp_from_SIP_data

See CatAlgebras.v.

Term Algebra

Let σ be a signature and V a set of variables (disjoint from σ). The term algebra $T(\sigma, V)$ has

- \circ as carrier, the least set including V and closed under application of symbols of σ
- as operations, the "symbols themselves"

Lemma (iscontrhomsfromterm)

Given a signature σ , $\mathit{T}(\sigma,\varnothing)$ is the initial object of σ -algebras.

Lemma (iscontruniversalmap)

For any signature σ , any set V of variables, any σ -algebra A, and any $\alpha:V\to |A|$, there exists a unique homomorphism $\alpha^*:T(\sigma,V)\to A$ that extends α .

We want UniMath to evaluate and handle easily the terms, but we do not have inductive types!

Term Algebra

Let σ be a signature and V a set of variables (disjoint from σ). The term algebra $T(\sigma, V)$ has

- \circ as carrier, the least set including V and closed under application of symbols of σ
- as operations, the "symbols themselves"

Lemma (iscontrhomsfromterm)

Given a signature σ , $T(\sigma, \emptyset)$ is the initial object of σ -algebras.

Lemma (iscontruniversalmap)

For any signature σ , any set V of variables, any σ -algebra A, and any $\alpha:V\to |A|$, there exists a unique homomorphism $\alpha^*:\mathcal{T}(\sigma,V)\to A$ that extends α .

We want UniMath to evaluate and handle easily the terms, but we do not have inductive types!

Sketch of implementation

- \Box $t \in T(sigma, V) \rightarrow list of function symbols (and variables)$
- Lists are executed by a stack machine (status monad on natural numbers)
 - ♦ Status n → remaining elements after execution
 - ♦ Status error → stack underflow
- At the end of execution, a w.f. term always has status 1
- □ Induction principle in order to reason on terms

```
Theorem term_ind (P: term sigma → UU)

(R: term ind HP P) (t: term sigma): P
```

- R states that for any symbol nm of σ , if P holds for any elements of the list corresponding to nm, then P holds for the whole term.
- Key ingredients of the implementation, but severa lemmas required to make it work!

Sketch of implementation

- □ $t \in T(sigma, V)$ \leadsto list of function symbols (and variables)
- Lists are executed by a stack machine (status monad on natural numbers)
 - ♦ Status n → remaining elements after execution
 - ♦ Status error → stack underflow
- At the end of execution, a w.f. term always has status 1
- □ Induction principle in order to reason on terms

```
(R: term ind HP P) (t: term sigma → UU)
```

R states that for any symbol nm of σ , if P holds for any elements of the list corresponding to nm, then P holds for the whole term.

Key ingredients of the implementation, but severa lemmas required to make it work!

Sketch of implementation

- □ $t \in T(sigma, V)$ \leadsto list of function symbols (and variables)
- Lists are executed by a stack machine (status monad on natural numbers)
 - ♦ Status n → remaining elements after execution
 - ♦ Status error → stack underflow
- At the end of execution, a w.f. term always has status 1
- □ Induction principle in order to reason on terms

```
(R: term_ind_HP P) (t: term sigma): P t.
```

R states that for any symbol nm of σ , if P holds for any elements of the list corresponding to nm, then P holds for the whole term.

Key ingredients of the implementation, but severa lemmas required to make it work!

Sketch of implementation

- □ $t \in T(sigma, V)$ \leadsto list of function symbols (and variables)
- Lists are executed by a stack machine (status monad on natural numbers)
 - \diamond Status n \leadsto remaining elements after execution
 - ♦ Status error → stack underflow
- $\ \square$ At the end of execution, a w.f. term always has status 1
- Induction principle in order to reason on terms

```
Theorem term_ind (P: term sigma \rightarrow UU) (R: term_ind_HP P) (t: term sigma): P t.
```

R states that for any symbol nm of σ , if P holds for any elements of the list corresponding to nm, then P holds for the whole term.

Key ingredients of the implementation, but severa lemmas required to make it work!

Sketch of implementation

- □ $t \in T(sigma, V)$ \leadsto list of function symbols (and variables)
- Lists are executed by a stack machine (status monad on natural numbers)
 - ♦ Status n → remaining elements after execution
 - ♦ Status error → stack underflow
- At the end of execution, a w.f. term always has status 1
- Induction principle in order to reason on terms

```
Theorem term_ind (P: term sigma → UU)
(R: term_ind_HP P) (t: term sigma): P t.
```

R states that for any symbol nm of σ , if P holds for any elements of the list corresponding to nm, then P holds for the whole term.

Wey ingredients of the implementation, but several lemmas required to make it work!

Varieties

Given a signature σ , an equation has the form t = s, for $t, s \in T(\sigma, V)$.

We say that a σ -algebra A satisfies an equation t = s when for any valuation $\alpha : V \to |A|$, $t[\alpha] = s[\alpha]$ holds in A.

```
Definition equation : UU := vterm \sigma V \times vterm \sigma V.
```

Definition sysequations: UU := \sum E : hSet, E \rightarrow equation σ V.

```
Definition fromvterm (A:UU) 

(R: (\prod (nm: names \sigma), 

Vector A (arity nm) \rightarrowA)) (\alpha:V \rightarrow A) 

: vterm \sigma V \rightarrow A.
```

Definition veval(A:algebra σ)
(α :V \rightarrow support a):free_algebra σ V \rightarrow support A :=
fromvterm(A nm rec, op A nm rec) f.

```
Definition holds (A:algebra \sigma) (e:equation \sigma V) : UU := \prod \alpha, veval A \alpha (lhs e) = veval A \alpha(rhs e).
```

Definition eqsignature : UU := \sum (σ : signature) (V: hSet), sysequations σ V.

Univalent category of varieties (via displayed categories):

```
Definition is_eqalgebra \{\sigma: eqsignature\}\ (A: algebra \sigma): UU := \prod e: eqs \sigma, holds A (geteq e)
```

Varieties

Given a signature σ , an equation has the form t = s, for $t, s \in T(\sigma, V)$.

We say that a σ -algebra A satisfies an equation t=s when for any valuation $\alpha:V\to |A|$, $t[\alpha]=s[\alpha]$ holds in A.

```
Definition equation : UU :=
vterm \sigma V \times vterm \sigma V.
Definition sysequations: UU
  := \sum E : hSet, E \rightarrow equation \sigma V.
Definition from vterm {A:UU}
 (R : (\prod (nm : names \sigma),
     Vector A (arity nm) \rightarrow A)) (\alpha: V \rightarrow A)
     · vterm σ V → A
Definition veval(A:algebra \sigma)
(\alpha:V \rightarrow \text{support a}): \text{free\_algebra } \sigma \ V
→ support A :=
from vterm (\lambda nm rec, op A nm rec) f.
Definition holds (A:algebra \sigma)
(e:equation \sigma V) : UU := \prod \alpha,
veval A \alpha (lhs e) = veval A \alpha(rhs e).
Definition egsignature : UU
```

 $:= \sum (\sigma : signature) (V: hSet),$

sysequations σ V.

Univalent category of varieties (via displayed categories):

```
Definition is_eqalgebra \{\sigma : \text{eqsignature}\}\ (A : \text{algebra } \sigma) : UU := \prod e : \text{eqs } \sigma, holds A (geteq e)
```

Varieties

Given a signature σ , an equation has the form t = s, for $t, s \in T(\sigma, V)$.

We say that a σ -algebra A satisfies an equation t=s when for any valuation $\alpha:V\to |A|$, $t[\alpha]=s[\alpha]$ holds in A.

```
Definition equation : UU :=
vterm \sigma V \times vterm \sigma V.
Definition sysequations: UU
  := \sum E : hSet, E \rightarrow equation \sigma V.
Definition from vterm {A:UU}
 (R : (\prod (nm : names \sigma),
     Vector A (arity nm) \rightarrow A)) (\alpha:V \rightarrow A)
     : vterm \sigma V \rightarrow A.
Definition veval(A:algebra \sigma)
(\alpha:V \rightarrow \text{support a}): \text{free\_algebra } \sigma \ V
→ support A :=
from vterm (\lambda nm rec, op A nm rec) f.
Definition holds (A:algebra \sigma)
(e:equation \sigma V) : UU := \prod \alpha,
veval A \alpha (lhs e) = veval A \alpha(rhs e).
Definition egsignature : UU
```

 $:= \sum (\sigma : signature) (V: hSet),$

sysequations σ V.

Univalent category of varieties (via displayed categories):

```
Definition is_eqalgebra \{\sigma : eqsignature\}(A : algebra \sigma) : UU := \prod e : eqs \sigma, holds A (geteq e)
```

The code is publicly available from GitHub https://github.com/amato-gianluca/UniMath, directory Algebra/Universal and it is still under development.

Let's see how it works by now!

The code is publicly available from GitHub https://github.com/amato-gianluca/UniMath, directory Algebra/Universal and it is still under development.

Let's see how it works by now!

Summary and Future Work

What we have:

- A formalization of signatures, algebras, varieties;
- A "bottom-up" implementation of terms over a signature and term algebras that UniMath is able to use computationally;
 - Both proofs and computations concerning terms in UniMath environment → Poincaré Principle;
 - A general induction principle to handle terms → Reflection;
- Univalent categories of algebras and varieties built as displayed structures over HSET.

What we are working on:

- ♦ Left universal objects and Birkhoff Theorem
- Multi-sorted signatures,
- Comparison with different formalizations.

Summary and Future Work

What we have:

- A formalization of signatures, algebras, varieties;
- A "bottom-up" implementation of terms over a signature and term algebras that UniMath is able to use computationally;
 - Both proofs and computations concerning terms in UniMath environment → Poincaré Principle;
 - A general induction principle to handle terms --- Reflection;
- Univalent categories of algebras and varieties built as displayed structures over HSET.

What we are working on:

- Left universal objects and Birkhoff Theorem;
- Multi-sorted signatures;
- Comparison with different formalizations.

Many thanks for your attention!