

Mini-Projet Dep Learning

Encadré par: Pr. ABDELHAK MAHMOUDI

Présenté par: FATIMA ZAHRA EL HAJJI

 La technique de test la plus couramment utilisée actuellement pour le diagnostic du COVID-19 est une réaction en chaîne de transcription inversepolymérase en temps réel (RT-PCR).

Images radiographiques thoraciques d'un patient COVID-19 de 50 ans atteint d'une pneumonie pendant une semaine [Tulin Ozturk et al,2020]

Les chercheurs affirment que la combinaison des caractéristiques des images cliniques avec les résultats de laboratoire peut aider à la détection précoce du COVID-19.[Lee EY et al,2020]

• La sensibilité de la RT-PCR COVID-19 est de 60 à 70 %, par conséquent, les patients atteints de pneumonie due au COVID-19 peuvent présenter des anomalies pulmonaires en examinant les images radiologiques mais une RT-PCR initialement négative [Kanne JP et al ,2020] [Xie X et al ,2020].

Automated detection of COVID-19 cases using deep neural networks with X-ray images

[Tulin Ozturk et al.2020]

« DarkCovidNet » est un modèle pour le dépistage automatique COVID-19 utilisant des images crues de rayon X de poitrine. Le modèle est développé pour fournir des diagnostics précis pour la classification binaire (COVID vs. No-Findings) et la classification multi-classes (COVID vs. No-Findings vs. Pneumonia).

L'idée de DarkCovidNet

Au lieu d'initier un développement de modèle approfondi à partir de zéro, une approche plus rationnelle consiste à créer un modèle en utilisant des modèles déjà éprouvés.

Architecture de DarkCovidNet

- « **DarkCovidNet** » comporte 17 couches de convolution
- Chaque couche DN (DarkNet) a une couche convolutive suivie des opérations BatchNorm et LeakyReLU, tandis que chaque couche 3 × Conv a la même configuration trois fois sous forme successive.

$$f(x) = egin{array}{cc} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array}$$

- Le nombre des paramètres à optimiser est 1 164 434 pour classification binaire et 1 167 586 pour classification multi-classes.
- Les mises à jour de poids : optimiseur Adam

Les données

Images radiographiques

Résultats Expérimentaux

- La performance du modèle proposé est évaluée à l'aide de la procédure de validation croisée quintuple pour le problème de classification binaire et triple.
- DarkCovidNet est formé pendant 100 époques.

Représentation schématique du schéma de formation et de validation utilisé dans la procédure de validation croisée en 5 étapes.

Une augmentation significative des valeurs de perte au début de la formation, qui diminuent considérablement à la fin de la formation.

Métriques de Performance

multi-classes

Folds	Folds Performance Metrics (%)						
	Sensitivity	Specificity	Precision	F1-score	Accuracy		
Fold-1	88.17	93.66	90.97	89.44	89.33		
Fold-2	84.57	90.61	89.38	86.63	84.89		
Fold-3	84.13	91.14	89.88	86.54	85.78		
Fold-4	83.66	92.29	90.61	86.42	87.11		
Fold-5	85.83	92.75	89.71	87.57	88.00		
Average	85.35	92.18	89.96	87.37	87.02		

binary classes

Folds	Performance Metrics (%)						
	Sensitivity	Specificity	Precision	F1-score	Accuracy		
Fold-1	100	100	100	100	100		
Fold-2	96.42	96.42	94.52	95.52	97.60		
Fold-3	90.47	90.47	98.14	93.79	96.80		
Fold-4	93.75	93.75	98.57	95.93	97.60		
Fold-5	93.18	93.18	98.58	95.62	97.60		
Overlapped							
COVID-19	90.65	99.61	97.97	94.17	98.07		
No-Findings	99.61	90.65	98.09	98.84	98.07		
Average	95.13	95.3	98.03	96.51	98.08		

Matrices de confusion

multi-classes

binary classes

Évaluation des sorties du modèle par des radiologues

- Les sorties du modèle sont partagées avec des radiologues experts pour confirmer la robustesse du DarkCovidNet.
- Une approche de carte thermique [Selvaraju RR et al , 2017] était utilisée pour représenter visuellement les décisions prises par le modèle.

Les radiologues ont confirmé que le modèle DarkCovidNet réussit à détecter les cas du COVID-19.

Wang et al [2020], ont conçu **COVID-Net**, un modèle basé sur l'apprentissage en profondeur, pour la détection de COVID19. COVID-Net a atteint un taux de réussite de **92,4** % en utilisant un total de 16 756 images radiographiques.

Sethy et Behera [2020] ont utilisé des modèles CNN pour extraire les caractéristiques de l'image, puis les ont classées à l'aide du classificateur SVM. Dans cette étude, une précision de 95,38 %.

Zheng et al. [2020] ont proposé un modèle CNN profond en trois dimensions pour détecter le COVID-19 à partir d'images TDM et ont rapporté une précision de 90,8 %.

Conclusion

- DarkCovidNet est un modèle basé sur l'apprentissage en profondeur pour détecter et classer les cas de COVID-19 à partir d'images radiographiques.
- Ce modèle est capable d'effectuer des tâches binaires et multi-classes avec une précision de 98,08 % et 87,02 %, respectivement.
- Ce système peut être utilisé dans des endroits reculés des pays touchés par le COVID-19 pour pallier une pénurie de radiologues.
- Ces modèles peuvent être utilisés aussi pour diagnostiquer d'autres maladies liées à la poitrine, notamment la tuberculose et la pneumonie.