Analysis I

Thomas Fleming

October 26, 2021

Contents

1 Lebesque Integration

 $\mathbf{2}$

Lecture 16: Conclusion of Measure Theory and Lebesque Integration

Tue 19 Oct 2021 13:02

Recall. We stated the theorems behind littlewood's 3 principles, now we prove them.

Proof. 1. (2.2). Let J be the collection of all open intervals (a,b) with $a,b \in \mathbb{Q}$ and a < b. Since J is countable we can order the intervals $J = \{J_k : k \in \mathbb{N}\}$. Let $\varepsilon > 0$ and first we do the case S is bounded. For each $n \in \mathbb{N}$, there is a closed set $C_n \subseteq f^{-1}(J_n)$ and a $D_n = S \setminus f^{-1}(I_n)$ such that $\mu(S \setminus (C_n \cup D_n)) < \frac{\varepsilon}{2^n}$. Since S is bounded, C_n and D_n are compact. Let $K = \bigcap_{n \in \mathbb{N}} (C_n \cup D_n)$ and as $C_n, D_n \subseteq S$, we see $K \subseteq S$. Furthermore, K is compact and we find $\mu(S \setminus K) \le \sum_{i=1}^{\infty} \mu(S \setminus (C_n \cup D_n)) < \varepsilon$. Now, we show the restriction is continuous. Let $\varepsilon > 0$, then for $x \in K$ we find $a,b \in \mathbb{Q}$ such that a < f(x) < b and $b - a < \varepsilon$. Hence, there is $n \in \mathbb{N}$ such that $I_n = (a,b)$. Consequently, $x \in f^{-1}(I_n)$ and $x \notin S \setminus f^{-1}(I_n)$. So, $x \in (S \setminus f^{-1}(I_n))^c \subseteq D_n^c$. As D_n is closed, D_n^c is open, hence there is a $\delta > 0$ so that $(x - \delta, x + \delta) \subseteq D_n^c$. If $y \in K \cap D_n^c$, then $y \in C_n$, thus $y \in f^{-1}(I_n)$, hence a < f(y) < b. So, $|f(x) - f(y)| < b - a = \varepsilon$ for $y \in (x - \delta, x + \delta)$.

Now, we do the unbounded case. As S is unbounded and $\varepsilon>0$, we find $N\in N$ so that $S'=S\cap [-N,N]$ has the property $\mu\left(S\setminus S'\right)<\frac{\varepsilon}{2},$ that is S is approximated by a bounded function arbitrarily well. Since S' is bounded, there is a compact set $K\subseteq S'\subset S$ so that $f\mid K$ is continuous and $\mu\left(S'\setminus K\right)<\frac{\varepsilon}{2}.$ Then, $\mu\left(S\setminus K\right)=\mu\left(S\setminus S'\right)+\mu\left(S'\setminus K\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$

2. (2.4). Let E^* be the set of all $x \in S$ such that $(f_n(x))$ does not converge. By assumption, $\mu(E^*) = 0$. Since $f(x) = \lim_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)$ for all $x \in S \setminus E^*$, then f is measurable. For $k, \ell \in \mathbb{N}$, let $E_{k,\ell} = \{x \in S : |f_\ell(x) - f(x)| \ge \frac{1}{k}\}$. Then, $E_{k,\ell}$ is measurable. Fix k. If for each $n \in \mathbb{N}$ there is a $\ell \ge n$ so that $|f_\ell(x) - f(x)| \ge \frac{1}{k}$, then $x \in E^*$ as f does not converge at that point. Hence, $\bigcap_{n \in \mathbb{N}} \bigcup_{\ell=n}^{\infty} E_{k,\ell} \subseteq E^*$. Since $\mu(\bigcup_{\ell=1}^{\infty} E_{k,\ell}) \le \mu(S) \le \infty$, and the collection $\{\bigcup_{\ell=n}^{\infty} E_{k,\ell}\}$ is clearly descending. Hence, $\mu(\bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} E_{k,\ell}) = \lim_{n \to \infty} \mu(\bigcup_{\ell=n}^{\infty} E_{k,\ell}) \le \mu(E^*) = 0$.

This holds for all $k \in \mathbb{N}$. So, for $\varepsilon > 0$ and $k \in \mathbb{N}$, we have a $n_k \in \mathbb{N}$ such that $\mu\left(\bigcup_{\ell=n_k}^{\infty} E_{k,\ell}\right) < \frac{\varepsilon}{2^k}$. Thus, $E = \bigcup_{k \in \mathbb{N}} \bigcup_{\ell=n_k}^{\infty} E_{k,\ell}$ is measurable and $\mu(E) < \sum_{k=1}^{\infty} \bigcup_{\ell=n_k}^{\infty} E_{k,l} = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon$. If $x \in S \setminus E$, then $|f_n(x) - f(x)| < \frac{1}{k}$ for $k \in \mathbb{N}$ if $n \ge n_k$. So, (f_n) converges uniformly on $S \setminus E$.

This concludes measure theory.

1 Lebesque Integration

Definition 1.1 (Lebesque Integral: Nonnegative Simple Functions). Let s be a nonnegative simple function of the form $s = \sum_{k=1}^{K} a_k \chi_{S_k}$ where $\{S_k : 1 \leq k \leq K\}$ is a disjoint collection of measurable sets. Then, the **Lebesque Integral** of s is defined to be

$$\int s = \int s(x) dx = \int s d\mu = \sum_{k=1}^{K} a_k \mu(S_k).$$

Proposition 1.1. If s is nonnegative and simple with two representations, $s = \sum_{k=1}^{K} a_k \chi_{S_k} = \sum_{j=1}^{J} b_j \chi_{T_j}$ for disjoint collections of measurable sets $\{S_k : 1 \le k \le K\}$ and $\{T_j : 1 \le j \le J\}$. Then

$$\sum_{k=1}^{K} a_k \mu\left(S_k\right) = \sum_{j=1}^{J} b_j \mu\left(T_j\right).$$

In particular, $\int s$ is well defined.

The proof of this is trivial.

Lemma 1.1. Let s,t be nonnegative and simple and $\alpha \geq 0$. Then

$$\alpha \cdot \int s = \int \alpha \cdot s$$
 and $\int (s+t) = \int s + \int t$

.

Proof. Clearly, multiplying the sum times α yields $\alpha \sum_{k=1}^K a_k \mu\left(S_k\right) = \sum_{k=1}^K \alpha a_k \mu\left(S_k\right)$. For the second claim. Suppose $s = \sum_{k=1}^K a_k \chi_{S_k}$ and $g = \sum_{j=1}^J b_j \chi_{T_j}$ are canonical representations. Then, $s+t = \sum_{k=1}^K \sum_{j=1}^J \left(a_k + b_j\right) \chi_{S_k \cap T_j}$ with

 $\{S_k\cap T_j: 1\leq k\leq K, 1\leq j\leq J\}$ is a disjoint collection and

$$\int (s+t) = \sum_{k=1}^{K} \sum_{j=1}^{J} (a_k + b_j) \mu (S_k \cap T_j)$$

$$= \sum_{k=1}^{K} a_k \sum_{j=1}^{J} \mu (S_k \cap T_j) + \sum_{j=1}^{J} b_j \sum_{k=1}^{K} \mu (S_k \cap T_j)$$

$$= \sum_{k=1}^{K} a_k \mu (S_k) + \sum_{j=1}^{J} b_j \mu (T_j)$$

$$= \int s + \int t.$$

Lemma 1.2. Let s,t be nonnegative and simple such that $s \leq t$. Then, $\int s \leq \int t$.

Proof.

$$\int t = \int (t - s + s)$$

$$= \int \underbrace{(t - s)}_{\geq 0} + \int s$$

$$\geq \int s.$$

Definition 1.2. Let $f: S \to \overline{\mathbb{R}}$, then the **zero extension** of f to \mathbb{R} is

$$f^*: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto f^*(x) = \begin{cases} f(x), & x \in S \\ 0, & x \notin S \end{cases}.$$

Moreover, this function preserves measurability.

Definition 1.3 (Lebesque Integral of a General Nonnegative Function). Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be a nonnegative measurable function and $\mathscr{S}(f)$ be the collection of all nonnegative simple functions, s, such that $s \leq f$. Then, the **Lebesque Integral** of f over \mathbb{R} is defined to be

$$\int f = \int_{\mathbb{R}} f(x) dx = \sup \{ \int s : s \in \mathscr{S}(f) \}$$

If $f: S \to \overline{\mathbb{R}}$ is nonnegative and measurable, then

$$\int_{S} f = \int_{S} f(x) dx = \int_{\mathbb{R}} f^{*}$$

Theorem 1.1 (Chebyshev's Inequality). Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be nonnegative and measurable. Then, for any $\lambda \in (0, \infty)$, then

$$\mu\left(\left\{x \in \mathbb{R} : f\left(x\right) \ge \lambda\right\}\right) \le \frac{1}{\lambda} \int f.$$

Proof. Let $E = \{x \in \mathbb{R} : f(x) \ge \lambda\}$. This is the preimage of an extended borel set, hence measurable. Let $s = \lambda \chi_E$. Then, $s \in \mathscr{S}(f)$. Hence, $\int s = \lambda \mu(E) \le \int f$. Hence the inequality holds.

Theorem 1.2. Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be nonnegative ad measurable. Then $\int f = 0$ if and only if f(x) = 0 for almost every $x \in \mathbb{R}$.

Proof. Suppose $\int f = 0$, then by chebyshev

$$\mu\left(\left\{x \in \mathbb{R} : f\left(x\right) > 0\right\}\right) = \mu\left(\bigcup_{n \in \mathbb{N}} \left\{x \in \mathbb{R} : f\left(x \ge n\right)\right\}\right)$$

$$\leq \sum_{n=1}^{\infty} \mu\left(\left\{x \in \mathbb{R} : f\left(x\right) \ge \frac{1}{n}\right\}\right)$$

$$= \sum_{i=1}^{\infty} \int f$$

Conversely, if $f\left(x\right)=0$ almost everywhere, then for every $s\in\mathscr{S}\left(f\right)$, we see s is zero almost everywhere, hence $\int s=0$, so $\int f=\sup\{0:s\in\mathscr{S}\left(f\right)\}=0$. \square

Lecture 17: General Lebesque Integral

Tue 26 Oct 2021 13:15