A. Display Size

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

A big company decided to launch a new series of rectangular displays, and decided that the display must have exactly n pixels.

Your task is to determine the size of the rectangular display — the number of lines (rows) of pixels a and the number of columns of pixels b, so that:

- there are exactly *n* pixels on the display;
- the number of rows does not exceed the number of columns, it means $a \le b$;
- the difference b a is as small as possible.

Input

The first line contains the positive integer n ($1 \le n \le 10^6$) — the number of pixels display should have.

Output

Print two integers — the number of rows and columns on the display.

Examples

input	
8	
output	
2 4	

input	
64	
output	
8 8	

input	
5	
output	
1 5	

input	
999999	
output	
999 1001	

Note

In the first example the minimum possible difference equals 2, so on the display should be 2 rows of 4 pixels.

In the second example the minimum possible difference equals 0, so on the display should be 8 rows of 8 pixels.

In the third example the minimum possible difference equals 4, so on the display should be 1 row of 5 pixels.