TAREA 2 DE ANILLOS

ESTEBAN OSPINO

- 1. Dominios Euclideos
- 2. Dominios de ideales principales
- 3. Dominios de factorización única

Problema 1 (6).

De mostraci'on.

a) Si $a \equiv b \mod 2$, entonces

$$a + bi = \left(\frac{a+b}{2} + \frac{b-a}{2}i\right)(1+i) \in (1+i)$$

Por lo que $\overline{a+bi}=\overline{0}$. Si $a\not\equiv b \mod 2$, entonces $a+1\equiv b \mod 2$, por lo que $\overline{a+1+bi}=\overline{a+bi}+\overline{1}=\overline{0}+\overline{1}=\overline{1}$. Estos son los únicos dos casos posibles, así que $(1+i)=\left\{\overline{0},\overline{1}\right\}$, como es un dominio con dos elementos, entonces es un cuerpo.

b) Primero veamos la cantidad de elementos de $\mathbb{Z}[i]/(q)$, Sea $a+bi \in \mathbb{Z}[i]$, entonces $\overline{a+bi} = \overline{a} + \overline{b} \cdot \overline{i}$, por lo que, tanto \overline{a} como \overline{b} tienen q posibles valores para tomar, así, la cantidad de elementos de $\mathbb{Z}[i]/(q)$ es $q \cdot q = q^2$.

Por otro lado, como $q \equiv 3 \mod 4$, entonces q es irreducible en $\mathbb{Z}[i]$, como Z[i] es dominio de ideales principales, entonces q es primo y por tanto (q) es un ideal maximal, lo cual implica que $\mathbb{Z}[i]/(q)$ es cuerpo.

c)