Theory of Automata & Formal Languages (Theory of Computation)

Compiled By

Prof. M. S. Bhatt

Languages

Find a language over {a, b} which is neighter {λ}
nor {a, b}* and satisfies L=L*

Find a language over {a, b} which is neighter {λ}
nor {a, b}* and satisfies L=L*

• L= $\{\lambda , a ,aa ,aaa, aaaa,...., \} = \{a^n | n >= 0\}$

L={x belongs to{a, b}*| length of x is even}

 Find an infinite language over {a, b} which is neigher {λ} nor {a, b}* and satisfies L ≠ L*

 Find an infinite language over {a, b} which is neigher {λ} nor {a, b}* and satisfies L ≠ L*

• L= $\{a, aaa, aaaaaa, \dots, \} = \{a^n \mid n \text{ is odd }\}$

L={x belongs to{a, b}*| length of x is odd}

 Find languages L1 and L2 satisfying L1L2= L2L1 and neither language is subset of the other and neither language is {λ}

 Find languages L1 and L2 satisfying L1L2= L2L1 and neither language is subset of the other and neigher language is {λ}

- L1 = $\{a, aaa, aaaaa, ..., \} = \{a^n \mid n \text{ is odd }\}$
- L2= $\{\lambda , aa, aaaa,, \} = \{a^n \mid n \text{ is even } \}$
- L1L2= a.aa = aaa = aa.a = L2L1
- L1L2= a. λ = a = λ .a=L2L1

• Find languages L1 and L2 satisfying L1L2= L2L1 and L1 is a proper non-empty subset of L2 and L1 \neq { λ }

 Find languages L1 and L2 satisfying L1L2= L2L1 and L1 is a proper non-empty subset of L2 and L1 ≠{λ}

- L1 = $\{a, aaa, aaaaa,, \} = \{a^n \mid n \text{ is odd }\}$
- L2= $\{\lambda, a, aa, aaa, aaaa, ..., \} = \{a^n \mid n > = 0 \}$
- L1L2= a.aa = aaa = aa.a = L2L1
- L1L2= a, λ = a = λ .a=L2L1

 Let languages L1 and L2 be subset of {a,b}* and consider two languages L1*U L2* and (L1 U L2)*.
 Which of the two is always a subset of the other?

 Let languages L1 and L2 be subset of {a,b}* and consider two languages L1*U L2* and (L1 U L2)*.
 Which of the two is always a subset of the other?

- L1={a}, L1*= { λ , a, aa, aaa, aaaa,.....}
- L2={b}, L2*={ λ ,b, bb, bbb, bbb,.....}
- L1* U L2* = $\{\lambda, a, b, aa, bb, aaa, bbb, \dots \}$
- (L1 U L2) = {a, b}, (L1 U L2)* = {λ, a, b, ab, ba, aba,}

 For a finite language L, |L| denotes number of elements in L, for finite languages A and B,is |A.B|= |A|*|B| always true ?

 For a finite language L, |L| denotes number of elements in L, for finite languages A and B,is |A.B|= |A|*|B| always true ?

- $A = \{ a \}, |A| = 2$
- $B = \{ba, \}, |B| = 2$
- \bullet AB = {abba, aba, aba, aa} = {abba, aba, aa}
- |AB|= 3
- |A|*|B|=2*2=4
- Statement is not always true

• Let L1, L2 and L3 be languages over some alphabet Σ . Is L1(L2 \cap L3) = L1.L2 \cap L1.L3 always true?

• Let L1, L2 and L3 be languages over some alphabet Σ . Is L1(L2 \cap L3) = L1.L2 \cap L1.L3 always true?

- L1={ab, a}
- L2={a}
- L3={ba}
- L1(L2 \cap L3) = {ab, a} . Φ = Φ
- $L1.L2 \cap L1.L3 = \{aba, aa \} \cap \{abba, aba \} = \{aba\}$

Let L_1, L_2 be languages, then the concatenation $L_1 \circ L_2 = \{w \mid w = xy, x \in L_1, y \in L_2\}$. If $L_2 = \emptyset$, then there is no string $y \in L_2$ and so there is no possible w such that w = xy. Thus for any L_1 , we'll have $L_1 \circ \emptyset = \emptyset$.

Are (L1 \cap L2) * and L1* \cap L2* always Equal?

```
L1 = \{a, ba\}
L2 = \{ab, a\}
L1* = { ^, a, ba, aa, aba, baa, baba, ....}
L2* = \{ , ab, a, abab, aba, aab, aa, ..... \}
L1* \cap L2* = \{^{\land}, a, aba, aa, \ldots \}
L1 \cap L2 = \{a\}
(L1 \cap L2)^* = \{^{\land}, a, aa, aaa, \dots \}
```

They are not always equal