

Predictive, Scalable and Interpretable knowledge tracing on structured domains

Hanqi Zhou, Robert Bamler, Charley M. Wu*, Álvaro Tejero-Cantero* (*equal contribution)

hanqi.zhou@uni-tuebingen.de

Department of Computer Science,

Cluster of Excellence "Machine Learning for Science", Tübingen Al Center,

University of Tübingen

We aim to improve self-directed learning

 by estimating learner knowledge, and providing the right learning materials

source: Duolingo (math learning)

We observe learning histories of each learner

We observe learning histories of each learner

source: Duolingo (math learning)

We observe learning histories of each learner

Knowledge structure

Knowledge concept (KC)

source: Duolingo (math learning)

- We observe learning histories of each learner
- We aim to estimate a learner's knowledge states and predict future performance

- We observe learning histories of each learner
- We aim to estimate a learner's knowledge states and predict future performance

Observed performance

- We observe learning histories of each learner
- We aim to estimate a learner's knowledge states and predict future performance

- We observe learning histories of each learner
- We aim to estimate a learner's knowledge states and predict future performance

- Learning history $\mathcal{H}_{1:N}^{\ell}:=\{t_n,x_n,y_n\}_{1:N}^l$ from learner ℓ
 - Interaction time t_n
 - Knowledge concept index $x_n \in \{1, ..., K\}$
 - Learner's performance $y_n \in 0,1$

- Learning history $\mathcal{H}_{1:N}^{\ell} := \{t_n, x_n, y_n\}_{1:N}^{\ell}$ from learner ℓ
 - Interaction time t_n
 - Knowledge concept index $x_n \in \{1, ..., K\}$
 - Learner's performance $y_n \in 0,1$
- Latent knowledge states $\mathbf{z}_{1:N}^{\ell} = [z_1^{1:K},...,z_n^{1:K}]^T$

- Learning history $\mathcal{H}_{1:N}^{\ell} := \{t_n, x_n, y_n\}_{1:N}^{\ell}$ from learner ℓ
 - Interaction time t_n
 - Knowledge concept index $x_n \in \{1, ..., K\}$
 - Learner's performance $y_n \in 0,1$
- Latent knowledge states $\mathbf{z}_{1:N}^{\ell} = [z_1^{1:K}, ..., z_n^{1:K}]^T$
- Prediction \hat{y}_{n+1}
 - $p(y_{n+1} = 1) = \operatorname{sigmoid}(z_{n+1})$

Psychological methods: multi-factor regression

$$\begin{split} f_{\theta}(z_{n+1} \mid \mathscr{H}_{1:n}, t_{n+1}, x_{n+1}) \\ &= \alpha \cdot \mathsf{property}_{x_{n+1}} \\ + \beta \cdot \mathsf{spacing}_{\mathscr{H}} \\ + \gamma \cdot \mathsf{ability}_{\ell} \\ + \end{split}$$

Time t_n Concept x_n Performance y_n Latent states z_n Learner ℓ

Psychological methods: multi-factor regression

$$\begin{aligned} &f_{\theta}(z_{n+1} \mid \mathcal{H}_{1:n}, t_{n+1}, x_{n+1}) \\ &= \alpha \cdot \mathsf{property}_{x_{n+1}} \\ &+ \beta \cdot \mathsf{spacing}_{\mathcal{H}} \\ &+ \gamma \cdot \mathsf{ability}_{\ell} \\ &+ \dots \end{aligned}$$
 KC/assignment difficulty Correct/incorrect frequency

Time t_n Concept x_n Performance y_n Latent states z_n Learner ℓ

Psychological methods: multi-factor regression

$$\begin{split} &f_{\theta}(z_{n+1} \mid \mathcal{H}_{1:n}, t_{n+1}, x_{n+1}) \\ &= \alpha \cdot \mathsf{property}_{x_{n+1}} \\ &+ \beta \cdot \mathsf{spacing}_{\mathcal{H}} \quad \qquad \mathsf{Time \ duration} \\ &+ \gamma \cdot \mathsf{ability}_{\ell} \\ &+ \dots \end{split}$$

Performance y_n Latent states z_n Learner ℓ

Psychological methods: multi-factor regression

$$f_{\theta}(z_{n+1} \mid \mathcal{H}_{1:n}, t_{n+1}, x_{n+1})$$

$$= \alpha \cdot \text{property}_{x_{n+1}}$$

$$+\beta \cdot \text{spacing}_{\mathcal{H}}$$

$$+\gamma \cdot \text{ability}_{\ell} \qquad \qquad \text{Memory capacity}$$

$$+ \dots$$

Performance y_n Latent states z_n Learner ℓ

→ Half-life regression (HLR; Settles & Seeder, 2016; Duolingo)

$$f_{\theta}(z_{n+1} \mid \mathcal{H}_{1:n}, t_{n+1}, x_{n+1})$$

$$= \alpha \cdot \text{property}_{x_{n+1}} \text{Correct/incorrect frequency}$$

$$+ \beta \cdot \text{spacing}_{\mathcal{H}} \quad \text{Time duration}$$

Settles, B., & Meeder, B. (2016, August). A trainable spaced repetition model for language learning. In Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers) (pp. 1848-1858).

Psychological methods: multi-factor regression

Diagnosis: explicit modeling of performance factors

Inflexibility: the amount of parameters increase as the learners/concepts increase

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. Advances in neural information processing systems, 28.

Choi, Y., Lee, Y., Cho, J., Baek, J., Kim, B., Cha, Y., ... & Heo, J. (2020, August). Towards an appropriate query, key, and value computation for knowledge tracing. In *Proceedings of the seventh ACM conference on learning* scale (pp. 341-344).

Nakagawa, H., Iwasawa, Y., & Matsuo, Y. (2019, October). Graph-based knowledge tracing: modeling student proficiency using graph neural network. In *IEEE/WIC/ACM International Conference on Web Intelligence* (pp. 156-163).

- Deep learning models: embedding learning and fusion
- High-capacity: can handle high-dimensional feature and large data
- Interpretability: but what do these features mean?

A little more efforts: deep learning + psychology

$$p(y_{n+1}^{\text{correct}} \mid \mathcal{H}_{1:n}, t_{n+1}, x_{n+1})$$

$$= \alpha \cdot \text{property}_{x_{n+1}}$$

$$+ \beta \cdot \text{ability}_{\ell}$$

$$+ \gamma \cdot \text{spacing}_{\mathcal{H}}$$

QIKT: Chen, J., Liu, Z., Huang, S., Liu, Q., & Luo, W. (2023, June). Improving interpretability of deep sequential knowledge tracing models with question-centric cognitive representations. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 37, No. 12, pp. 14196-14204).

Motivation of Probabilistic Generative Model: PSI-KT

- Computational modeling :
 - A flexible architecture with
 - Identifiable interpretability

Motivation of Probabilistic Generative Model: PSI-KT

- Computational modeling
 - A flexible architecture with
 - Identifiable interpretability

- Real-world scenario:
 - Small data regime and real-time adaptation

Prerequisites **structure** the domain by relating KCs

Human learners **forget** over time but reinforce knowledge through practice

Prerequisites **structure** the domain by relating KCs

Learning process

Human learners forget over time but reinforce knowledge through practice

Prerequisites **structure** the domain by relating concepts

Learning process

Prerequisites

Generative model: cognitive traits

Per learner $s_n^\ell := (\alpha_n^\ell, \mu_n^\ell, \gamma_n^\ell, \sigma_n^\ell)$ for personalization

- Memory: forgetting rate $lpha_n^\ell$, long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^ℓ
- Noise: knowledge volatility σ_n^ℓ

Generative model: cognitive traits

Latent knowledge states z Observed performance y

Per learner $s_n^\ell := (\alpha_n^\ell, \mu_n^\ell, \gamma_n^\ell, \sigma_n^\ell)$ for personalization

- Memory: forgetting rate $lpha_n^\ell$, long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^{ℓ}
- Noise: knowledge volatility σ_n^{ℓ}

Evolution:

•
$$s_n^{\ell} \sim p_{\theta_s} \left(s_n^{\ell} \mid s_{n-1}^{\ell} \right) := \mathcal{N} \left(s_n^{\ell} \mid Hs_{n-1}^{\ell}, R \right)$$

Generative model: cognitive traits

Per learner $s_n^\ell := (\alpha_n^\ell, \mu_n^\ell, \gamma_n^\ell, \sigma_n^\ell)$ for personalization

- Memory: forgetting rate $lpha_n^\ell$, long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^ℓ
- Noise: knowledge volatility σ_n^ℓ

Zhou, H., Tejero-Cantero, A., & Wu, C. M (2023 CCN). The Dynamic and Structured Nature of Learning and Memory.

Observed performance y

Per learner $s_n^\ell:=(\alpha_n^\ell,\mu_n^\ell,\gamma_n^\ell,\sigma_n^\ell)$ for personalization

- Memory: forgetting rate α_n^ℓ , long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^{ℓ}
- Noise: knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$ for learning dynamics

Ornstein-Uhlenbeck process

$$dz^{\ell,k}/dt = \alpha^{\ell} \left(\mu^{\ell} - z^{\ell,k} \right) + \sigma^{\ell} \eta(t)$$

Observed y_{n-1} y_n performance y

Per learner $s_n^\ell:=(\alpha_n^\ell,\mu_n^\ell,\gamma_n^\ell,\sigma_n^\ell)$ for personalization

- Memory: forgetting rate α_n^{ℓ} , long-term consolidation μ_n^{ℓ}
- Structure: transfer ability γ_n^{ℓ}
- Noise: knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$ for learning dynamics

$$dz^{\ell,k}/dt = \alpha^{\ell} \left(\mu^{\ell} - z^{\ell,k} \right) + \sigma^{\ell} \eta(t)$$

Short-term: exponential decay

•
$$z_n^{\ell,k} = z_{n-1}^{\ell,k} \exp\left(-\alpha_n^{\ell} \tau_n^{\ell}\right)$$

Observed performance *y*

Per learner $s_n^\ell:=(\alpha_n^\ell,\mu_n^\ell,\gamma_n^\ell,\sigma_n^\ell)$ for personalization

- Memory: forgetting rate α_n^ℓ , long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^{ℓ}
- Noise: knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$ for learning dynamics

$$dz^{\ell,k}/dt = \alpha^{\ell} \left(\mu^{\ell} - z^{\ell,k} \right) + \sigma^{\ell} \eta(t)$$

Short-term: exponential decay

•
$$z_n^{\ell,k} = z_{n-1}^{\ell,k} \exp\left(-\alpha_n^{\ell} \tau_n^{\ell}\right)$$

Long-term: shifted by global structure

$$\tilde{\mu}_n^{\ell,k} := \mu_n^{\ell} + \gamma_n^{\ell} \sum_{i \neq k} a_{ik} z_n^{\ell,i}, \qquad a_{ik} \in \theta_0$$

Observed performance *y*

Per learner $s_n^\ell:=(\alpha_n^\ell,\mu_n^\ell,\gamma_n^\ell,\sigma_n^\ell)$ for personalization

- Memory: forgetting rate α_n^ℓ , long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^{ℓ}
- Noise: knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$ for learning dynamics

· Short-term: exponential decay

•
$$dz^{\ell,k}/dt = \alpha^{\ell} \left(\mu^{\ell} - z^{\ell,k}\right) + \sigma^{\ell} \eta(t)$$

Long-term: shifted by global structure

$$\tilde{\mu}_n^{\ell,k} := \mu_n^{\ell} + \gamma_n^{\ell} \sum_{i \neq k} a_{ik} z_n^{\ell,i}, \qquad a_{ik} \in \theta_G$$

Evolution:

$$z_n^{\ell,k} = \underbrace{z_{n-1}^{\ell,k} \exp\left(-\alpha_n^\ell \tau_n^\ell\right)}_{\text{short-term dynamics}} + \underbrace{\tilde{\mu}_n^{\ell,k} (1 - \exp\left(-\alpha_n^\ell \tau_n^\ell\right))}_{\text{long-term dynamics}}$$

Generative model: observations

Observed performance
$$y$$

Per learner $s_n^\ell:=(\alpha_n^\ell,\mu_n^\ell,\gamma_n^\ell,\sigma_n^\ell)$ for personalization

- Memory: forgetting rate α_n^ℓ , long-term consolidation μ_n^ℓ
- Structure: transfer ability γ_n^ℓ
- Noise: knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$ for learning dynamics

- Transient: $\mathrm{d}z^{\ell,k}/\mathrm{d}t = \alpha^{\ell} \left(\mu^{\ell} z^{\ell,k}\right) + \sigma^{\ell} \eta(t)$
- Long-term: $\tilde{\mu}_n^{\ell,k^\dagger} := \mu_n^\ell + \gamma_n^\ell \sum_{i \neq k} a_{ik} z_n^{\ell,i}$

Observation

• Emission: $\hat{y}_n^\ell \sim p\left(y_n^\ell \mid z_n^{\ell,k}\right) := \operatorname{Bern}\left(\operatorname{sigmoid}\left(z_n^{\ell,k}\right)\right)$

Exact inference over latent variables

- Full distribution over latents
- Point estimation over parameters

Exact inference over latent variables 👺

$$= \frac{p_{\theta}(s_{1:n}, \mathbf{z}_{1:n} \mid y_{1:n})}{\int_{s_{1:n}} \int_{\mathbf{z}_{1:n}} p_{\theta}(s_{1:n}, \mathbf{z}_{1:n}, y_{1:n})}$$

We need help from NN-based

Approximate Bayesian Inference 😎

$$q_{\phi} (z_{1:n}, s_{1:n} \mid y_{1:n}) = q_{\phi} (z_{1:n}) q_{\phi} (s_{1:n})$$

$$\downarrow p_{\theta}(s_{1:n}, \mathbf{Z}_{1:n} \mid y_{1:n})$$

We need help from NN-based

Approximate Bayesian Inference

$$\begin{aligned} & q^{\star}(\omega) \\ &= \arg\min_{q(\cdot) \in \mathcal{Q}} \mathrm{KL}[q_{\phi}(\omega) \| p_{\theta}(\omega \mid D)] \end{aligned}$$

Latent states $\omega := \{s_{1:n}, \mathbf{z}_{1:n}\}$ Observation $D := \mathcal{H}_{1:n}$

Figure source: https://gregorygundersen.com/blog/2021/04/16/variational-inference/

We need help from NN-based

Approximate Bayesian Inference

$$\begin{aligned} & q^{\star}(\omega) \\ &= \arg\min_{q(\cdot) \in \mathcal{Q}} \mathrm{KL}[q_{\phi}(\omega) \| p_{\theta}(\omega \mid D)] \end{aligned}$$

$$q^{\star}(\mathbf{z}_{1:n})q^{\star}(s_{1:n})$$
= $\underset{q(\cdot) \in \mathcal{Q}}{\min} \text{KL}[q_{\phi}(\mathbf{z}_{1:n})q_{\phi}(s_{1:n}) || p_{\theta}(s_{1:n}, \mathbf{z}_{1:n} | y_{1:n})]$

Latent states
$$\omega := \{s_{1:n}, \mathbf{z}_{1:n}\}$$

Observation $D := \mathcal{H}_{1:n}$

Figure source: https://gregorygundersen.com/blog/2021/04/16/variational-inference/

ELBO

$$\begin{split} \operatorname{KL}\left[q_{\phi}(\omega)\|p_{\theta}(\omega\mid D)\right] &= \int_{\omega} q_{\phi}(\omega) \log \frac{q_{\phi}(\omega)}{p_{\theta}(\omega\mid D)} = \mathbb{E}_{q}\left[\log \frac{q_{\phi}(\omega)}{p_{\theta}(\omega\mid D)}\right] \\ &= -\mathbb{E}_{q}[\log p_{\theta}(D\mid \omega)] + \mathbb{E}_{q}[\log \frac{q_{\phi}(\omega)}{p_{\theta}(\omega)}] + \log p(D) \\ &\underbrace{\qquad \qquad }_{-\operatorname{ELBO}} \end{split}$$

$$L_{\mathrm{ELBO}}(\phi, \theta) = \mathbb{E}_{q_{\phi}(\omega)} \left[\log p_{\theta}(D \mid \omega) \right] - \mathrm{KL} \left[q_{\phi}(\omega) || p_{\theta}(\omega) \right]$$

Latent states $\omega := \{s_{1:n}, \mathbf{z}_{1:n}\}$

Observation $D := \mathcal{H}_{1:n}$

ELBO for fixed learning histories

$$\begin{split} L_{\text{ELBO}}(\phi,\theta) &= \mathbb{E}_{q_{\phi}(\omega)} \left[\log p_{\theta}(D \mid \omega) \right] - \text{KL} \left[q_{\phi}(\omega) \| p_{\theta}(\omega) \right] \\ &= \mathbb{E}_{q_{\phi}(z_{1:n},s_{1:n})} \left[\log p_{\theta}(y_{1:n} \mid z_{1:n},s_{1:n}) - \log(q_{\phi}(z_{1:n},s_{1:n}) - p_{\theta}(z_{1:n},s_{1:n} \mid z_{0},s_{0})) \right] \end{split}$$

$$L_{\mathrm{ELBO}}(\phi, \theta) = \mathbb{E}_{q_{\phi}(\omega_{1:n})} \left[\log p_{\theta}(D_{1:n} \mid \omega_{1:n}) \right] - \mathrm{KL} \left[q_{\phi}(\omega_{1:n}) || p_{\theta}(\omega_{1:n}) \right]$$

$$L_{\text{ELBO}}(\phi_n, \theta_n) = \mathbb{E}_{q_{\phi_n}(\omega_n)} \left[\log p_{\theta_n}(D_n \mid \omega_n) \right] - \text{KL} \left[q_{\phi_n}(\omega_n) || q_{\phi_{n-1}}(\omega_{n-1}) \right]$$

Overall

Latent inference:

Online variational inference $L_{
m ELBO}(\phi, heta)$

$$= \mathbb{E}_{q_{\phi}(\omega)} \left[\log p_{\theta}(D \mid \omega) \right]$$

$$-\mathrm{KL}\left[q_{\phi}(\omega)\|p_{\theta}(\omega)\right]$$

Per learner $s_n^\ell := (\alpha_n^\ell, \mu_n^\ell, \gamma_n^\ell, \sigma_n^\ell)$

- forgetting rate α_n^{ℓ} , long-term consolidation μ_n^{ℓ}
- transfer ability γ_n^{ℓ}
- knowledge volatility σ_n^ℓ

Per learner & KC $z_n^{\ell,k}$

$$\bullet \quad \mathrm{d} z^{\ell,k}/\mathrm{d} t = \alpha^\ell \left(\mu^\ell - z^{\ell,k}\right) + \sigma^\ell \eta(t)$$

$$\tilde{\mu}_n^{\ell,k^{\dagger}} := \mu_n^{\ell} + \gamma_n^{\ell} \sum_{i \neq k} a_{ik} z_n^{\ell,i}$$

Observation

· Emission:

$$\hat{y}_n^{\ell} \sim p\left(y_n^{\ell} \mid z_n^{\ell,k}\right) := \operatorname{Bern}\left(\operatorname{sigmoid}\left(z_n^{\ell,k}\right)\right)$$

KT datasets

- Assistment 2012
- Assistment 2017
- Junyi 2015
 - Pre-college mathematics study

Exercises distribution on area in knowledge map

	user_id	exercise	problem_type	problem_number	topic_mode	suggested	review_mode	time_done	time_taken	time_taken_attempts	correct
0	12884	time_terminology	analog_word	1	False	False	False	1420714810324490	4	3&1	False
1	239464	multiplication_1	0	6	False	False	False	1403098400836660	2	2	True
2	147359	adding_decimals_0.5	0	6	False	False	False	1418890695540340	16	16	True
3	158155	multiplication_1	0	3	False	False	False	1400469444264040	2	2	True
4	147151	subtraction_2	subtraction-2	10	True	True	False	1382650905730160	4	4	True

PSI: Achieving predictive accuracy on limited data

• Within-learner 10-step prediction performance as a function of cohort sizes

PSI: Scaling efficiently with more interactions

Cumulative training time of continual learning

60

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

- Specific to each learner
- Consistent across data splits
- Disentangled across dimensions

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

- Specific to each learner: $MI(s; \ell) = H(s) H(s \mid \ell)$
- Consistent across data splits
- Disentangled across dimensions

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

- Specific to each learner
- Consistent across data splits: $\mathbb{E}_{\ell_{\mathsf{Sub}}} \operatorname{MI}\left(s^{\ell}; \ell_{\mathsf{sub}}\right) := \mathbb{E}_{\ell_{\mathsf{Sub}}} \left[\operatorname{H}(s \mid \ell) - \operatorname{H}\left(s \mid \ell_{\mathsf{sub}}\right) \right]$
- Disentangled across dimensions

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

- Specific
- Consistent across data splits
- Disentangled across dimensions: $KL(s||\mathscr{E}) := H(s)_{full} - H(s|\mathscr{E})_{diag}$

• Cognitive traits: forgetting rate, consolidation memory, transfer ability, volatility

Representation capacity

- Specific to each learner
- Consistent across data splits
- Disentangled across dimensions

Metric	Dataset	Baseline	PSI-KT
Specificity $\mathrm{MI}(s;\ell)\uparrow$	Assist12 Assist17 Junyi15	8.8 10.1 13.5	$\frac{8.4}{10.0}$
Consistency $^{-1}$ $\mathbb{E}_{\ell_{\text{sub}}} \text{MI}(s^{\ell}; \ell_{\text{sub}}) \downarrow$	Assist12	12.2	7.4
	Assist17	6.4	6.4
	Junyi15	7.7	5.0
Disentanglement $D_{\mathrm{KL}}(s\ \ell) \uparrow$	Assist12	2.3	7.4
	Assist17	0.6	8.4
	Junyi15	5.0	11.5

Bold indicates the better model. PSI-KT vs. the best baseline model.

Knowledge structure: prerequisites

Structure correctness:

- Human-annotated ground-truth
- Learners' progress

Knowledge structure: prerequisites

Structure correctness:

- Human-annotated ground-truth
- Learners' progress

Metric	MRR ↑	JS expert ↑	JS crowd ↑	nLL ↓		
Dataset	Junyi15					
Best Baseline PSI-KT	.0082 .0086	.0015 .0019	.0047 .0095	3.03 4.11		

• Knowledge structure: prerequisites

Structure correctness: causally support in human learning

Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. *Psychological review*, *116*(4), 661.

Knowledge structure: prerequisites

Structure correctness: causally support in human learning

• Knowledge structure: prerequisites

Structure correctness: causally support in human learning

$$\begin{split} \operatorname{support}_{i \to k} &:= \log P \left(\mathcal{H} \mid G_{i \to k} \right) \\ &- \log P \left(\mathcal{H} \mid G_{i \to k} \right) \end{split}$$

Summary

PSI-KT

Knowledge tracing for future intelligent tutoring systems

Acknowledgement

Charley Wu

Álvaro Tejero-Cantero

Summary

PSI-KT

Knowledge tracing for future intelligent tutoring systems

