DẠNG TOÁN 20: TÌM ĐIỂM BIỂU DIỄN CỦA SỐ PHỨC CHO TRƯỚC

I. KIÉN THỨC CẦN NHỚ:

◆ Điểm biểu diễn số phức:

Số phức z = a + bi, $(a, b \in \mathbb{R})$ được biểu diễn bởi điểm M(a;b).

II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ

- Tìm điểm biểu diễn số phức khi biết tọa độ.
- Tìm tập điểm biểu diễn số phức là đường thẳng, đường tròn, elip, parabol.

BÀI TẬP MẪU

(ĐỀ MINH HOA - BDG 2020-2021) Trên mặt phẳng tọa độ, điểm biểu diễn số phức 3-2i có tọa độ là A.

(2;3).

B.(-2;3).

C.(3;2).

D.(3;-2).

Phân tích hướng dẫn giải

1. DẠNG TOÁN: Đây là dạng toán xác định điểm biểu diễn của một số phức.

Phương pháp

Số phức z = a + bi, $(a, b \in \mathbb{R})$ được biểu diễn bởi điểm M(a;b).

2. HƯỚNG GIẢI:

B1: Dang z = a + bi, $(a, b \in \mathbb{R})$.

B2: Tìm điểm biểu diễn của số phức z là M(a;b).

Từ đó, ta có thể giải bài toán cụ thể như sau:

Lời giải

Chọn D Điểm biểu diễn số phức z = 3 - 2i có tọa độ là (3; -2).

Bài tập tương tự và phát triển:

§ Mức độ 1

Điểm M(4;-1) là điểm biểu diễn số phức nào sau đây? Câu 1.

A.
$$z = 4 - i$$

B.
$$z = -4 + i$$

C.
$$z = -1 + 4i$$

D.
$$z = 1 - 4i$$

Hướng dẫn giải

Điểm M trong hình vẽ biểu diễn số phức \overline{z} . Số phức z bằng Câu 2.

A. z = -2 - 3i.

- **B.** z = 2 3i.
- **C.** z = 2 + 3i. Lời giải
- **D.** z = -2 + 3i.

Trong hình vẽ bên, điểm M biểu diễn số phức z. Số phức \overline{z} là Câu 3.

- **A.** $\overline{z} = -3 + 2i$.
- **B.** $\overline{z} = -3 2i$.
- C. $\overline{z} = 3 + 2i$.
- **D.** $\overline{z} = 3 2i$.

Điểm M trong hình vẽ bên là điểm biểu diễn số phức z tìm phần thực và phần ảo của số phức z. Câu 4.

- **A.** Phần thực là -1 và phần ảo là 2i.
- C. Phần thực là 2 và phần ảo là -i.
- **B.** Phần thực là 2 và phần ảo là -1.
- **D.** Phần thực là -1 và phần ảo là 2.

Lời giải

Cho số phức z thoả mãn (2-3i)z = 23-2i. Hỏi điểm biểu diễn số phức z là điểm nào trong các Câu 5. điểm M, N, P, Q ở hình bên?

- A. Điểm N.
- **B.** Điểm M.
- C. Điểm P.
- **D.** Điểm Q.

Lời giải

Cho số phức z = 3 - 2i. Điểm nào dưới đây là điểm biểu diễn của số phức $w = z - i.\overline{z}$ trên mặt Câu 6. phẳng toạ độ?

- **A.** Q(-1;3).
- **B.** P(5;-5).
- **C.** M(-5;5). **D.** N(1;-3).

Cho số phức z = (1-2i)(2+3i), điểm biểu diễn của số phức i.z là Câu 7.

A. M(-1;8).

B. *M* (1;8).

C. M(8;-1).

D. M(8;1).

Lời giải:

Gọi A là điểm biểu diễn của số phức z = 3 - 4i và B là điểm biểu diễn của số phức z' = -3 + 4i. Câu 8. Tìm mệnh đề đúng trong các mệnh đề sau.

- **A.** Hai điểm A và B đối xứng với nhau qua gốc toạ độ O.
- **B.** Hai điểm A và B đối xứng với nhau qua trục hoành.
- C. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x.
- **D.** Hai điểm A và B đối xứng với nhau qua truc tung.

Lời giải

Cho hai số phức $z_1 = 1 - i$ và $z_2 = 1 + 2i$. Trên mặt phẳng Oxy, điểm biểu diễn của số phức $3z_1 + z_2$ có toa đô là

A. (4;-1).

D. (1;4).

Câu 10. Cho tam giác ABC có ba đỉnh A, B, C lần lượt là điểm biểu diễn hình học của các số phức $z_1 = 2 - i$, $z_2 = -1 + 6i$, $z_3 = 8 + i$. Số phức z_4 có điểm biểu diễn hình học là trọng tâm của tam giác ABC.

A. $z_4 = 9 + 6i$. **B.** $z_4 = 3 + 2i$.

C. $z_4 = 3 - 2i$. **D.** $z_4 = 9 - 6i$.

Lời giải

§ Mức độ 2

Cho các điểm A, B, C nằm trong mặt phẳng phức lần lượt biểu diễn các số phức 5-i, -2+i, 2-6i. Gọi D là điểm sao cho tứ giác ABCD là hình bình hành. Điểm D biểu diễn số phức nào trong các số phức sau đây?

A. z = 4 - 6i.

B. z = -2 + 8i.

C. z = -5 - 4i. **D.** z = 9 - 8i.

Trong mặt phẳng Oxy, A(-1,2), B(7,-5) lần lượt biểu diễn hai số phức z_1 , z_2 . C biểu diễn số phức $z_1 + z_2$. Trong các mệnh đề sau, mệnh đề nào **sai**.

A. C có tọa độ (6;-3).

B. \overrightarrow{CB} biểu diễn số phức $-z_1$.

C. \overrightarrow{AB} biểu diễn số phức $z_1 - z_2$.

D. *OACB* là hình thoi.

Lời giải

Cho số phức z = m-1+(2m-3)i, $m \in \mathbb{R}$. Tìm m để điểm biểu diễn của số phức z nằm trên đường phân giác của góc phần tư thứ hai và thứ tư.

A. m = 2.

B. $m = \frac{4}{3}$. **C.** $m = \frac{1}{3}$. **D.** $m = \frac{3}{2}$. **Lòi giải**

Trong mặt phẳng tọa độ Oxy, gọi M là điểm biểu diễn số phức z = 3 - 4i; M' là điểm biểu diễn cho số phức $z' = \frac{1+i}{2}z$. Tính diện tích tam giác *OMM'*.

A. $S_{\Delta OMM'} = \frac{15}{2}$. **B.** $S_{\Delta OMM'} = \frac{25}{4}$. **C.** $S_{\Delta OMM'} = \frac{25}{2}$. **D.** $S_{\Delta OMM'} = \frac{15}{4}$. **Lòi giải**

Gọi z_1 là nghiệm phức có phần ảo âm của phương trình $z^2 + 10z + 34 = 0$. Tìm tọa độ điểm M biểu diễn số phức $w = (i-1)z_1$.

A. M(2;-8). **B.** M(-2;8). **C.** M(-8;2). **D.** M(8;-2).

Lời giải

Cho số phức z thỏa mãn điều kiện $z - (2+3i)\overline{z} = 1-9i$. Số phức $w = \frac{5}{iz}$ có điểm biểu diễn là Câu 6.

A. (-1;2).

B. (2;-1).

C. (1;-2).

D. (-2;-1).

Hướng dẫn giải

- Gọi M và N lần lượt là các điểm biểu diễn của z_1 , z_2 trên mặt phẳng tọa độ, I là trung điểm MN, O là gốc tọa độ (ba điểm O, M, N phân biệt và không thẳng hàng). Mệnh đề nào sau đây là đúng?
 - **A.** $|z_1 + z_2| = 2OI$.

B. $|z_1 + z_2| = OI$.

C. $|z_1 + z_2| = OM + ON$.

D. $|z_1 + z_2| = 2(OM + ON)$.

Lời giải

- **Câu 8.** Cho A, B, C lần lượt là các điểm biểu diễn của các số phức (3-5i)i; 2-3i; $\frac{2i-1}{i}$. Tìm số phức có điểm biểu diễn D sao cho ABCD là hình bình hành.
 - **A.** z = -8 + 2i.
- **B.** z = -7 i.
- **C.** z = 5 7i.
- **D.** z = 5 + 7i.

Lời giải

- Giả sử A, B theo thứ tự là điểm biểu diễn của số phức z_1 , z_2 . Khi đó độ dài của \overrightarrow{AB} bằng Câu 9.
- **B.** $|z_1| |z_2|$.
- **C.** $|z_1| + |z_2|$. **D.** $|z_2 + z_1|$.

Lời giải

- Cho 3 điểm A, B, C lần lượt biểu diễn cho các số phức z_1 , z_2 , z_3 . Biết $|z_1| = |z_2| = |z_3|$ và $z_1 + z_2 = 0$. Khi đó tam giác ABC là tam giác gì?
 - A. Tam giác ABC đều.

B. Tam giác ABC vuông tại C.

C. Tam giác ABC cân tại C.

D. Tam giác ABC vuông cân tại C.

§ Mức độ 3

- *Câu 1.* Cho số phức z thỏa mãn |z+i|=1. Biết rằng tập hợp các điểm biểu diễn các số phức w=z-2i là một đường tròn. Tâm của đường tròn đó là:
 - **A.** I(0;-1).
- **B.** I(0;-3).
- C. I(0;3).
- **D.** I(0;1).

Lời giải

- Cho số phức z, biết rằng các điểm biểu diễn hình học của các số phức z; iz và z+iz tạo thành một tam giác có diện tích bằng 18. Mô đun của số phức z bằng
 - **A.** $2\sqrt{3}$.
- **B.** $3\sqrt{2}$.
- **C.** 6.
- **D.** 9.

Lời giải

- Cho số phức z có |z|=4. Tập hợp các điểm M trong mặt phẳng tọa độ Oxy biểu diễn số phức Câu 3. $w = \overline{z} + 3i$ là một đường tròn. Tính bán kính đường tròn đó.
 - **A.** 4.

- **C.** 3.
- **D.** $4\sqrt{2}$.

Lời giải

- Tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z-2|+|z+2|=10. Câu 4.
 - **A.** Đường tròn $(x-2)^2 + (y+2)^2 = 100$. **B.** Elip $\frac{x^2}{25} + \frac{y^2}{4} = 1$.
 - C. Đường tròn $(x-2)^2 + (y+2)^2 = 10$. D. Elip $\frac{x^2}{25} + \frac{y^2}{21} = 1$.

- Tập hợp các điểm biểu diễn các số phức z thỏa mãn $2|z-i|=|z-\overline{z}+2i|$ là Câu 5.
 - A. Một đường thẳng.
- B. Một đường tròn.
- C. Môt Parabol.
- D. Môt Elip.

Lớp

Lời giải

- Cho số phức z thỏa mãn |z-2+3i| = |z-2-3i|. Biết $|z-1-2i| + |z-7-4i| = 6\sqrt{2}$, M(x; y) là điểm Câu 6. biểu diễn số phức z, khi đó x thuộc khoảng
 - **A.** (0;2)
- **B.** (1;3)
- **C.** (4;8)
- **D.** (2;4)

Lời giải

- Tìm tập hợp điểm biểu diễn các số phức z thỏa Câu 7.
 - **A.** d: 6x + 4y 3 = 0.

- **B.** d: x + 2y 1 = 0.
- C. $(C): x^2 + y^2 2x + 2y + 1 = 0$.
- **D.** $(C): x^2 + y^2 4x + 2y + 4 = 0$.

Lời giải

- Trong mặt phẳng tọa độ Oxy, cho số phức z thỏa mãn |z-1+2i|=3. Tập hợp các điểm biểu diễn Câu 8. cho số phức w = z(1+i) là đường tròn
 - **A.** Tâm I(3;-1), $R = 3\sqrt{2}$.

B. Tâm I(-3;1), R = 3.

C. Tâm I(-3;1), $R = 3\sqrt{2}$.

D. Tâm I(3;-1), R=3.

Cho số phức z thỏa mãn điều kiện $|z-3+4i| \le 2$. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số Câu 9. phức w = 2z + 1 - i là hình tròn có diện tích

A. $S = 9\pi$.

B. $S = 12\pi$.

C. $S = 16\pi$.

D. $S = 25\pi$.

Lời giải

Câu 10. Cho số phức z thỏa mãn |z-3+4i|=2 và w=2z+1-i. Trong mặt phẳng phức, tập hợp điểm biểu diễn số phức w là đường tròn tâm I, bán kính R. Khi đó:

A. I(-7;9), R = 16.

B. I(-7;9), R = 4.

C. I(7;-9), R = 16.

D. I(7;-9), R = 4

Lời giải

§ Mức độ 4

Trong mặt phẳng tọa độ Oxy, gọi (H) là tập hợp các điểm biểu diễn hình học của số phức z thỏa

. Diện tích của hình phẳng (H) là

B. $8\pi - 8$.

C. $2\pi - 4$.

D. $8\pi - 4$.

- **Câu 2.** Gọi z_1, z_2 là hai trong các số phức z thỏa mãn |z-3+5i|=5 và $|z_1-z_2|=6$. Tìm môđun của số phức $\omega=z_1+z_2-6+10i$.
 - **A.** $|\omega| = 10$.
- **B.** $|\omega| = 32$.
- **C.** $|\omega| = 16$.
- **D.** $|\omega| = 8$.

- **Câu 3.** Tính tổng của tất cả các giá trị của tham số m để tồn tại duy nhất số phức z thoả mãn đồng thời |z| = m và $|z 4m + 3mi| = m^2$.
 - **A.** 4.

- **B.** 6.
- **C.** 9.
- **D.** 10.

Cho z_1 , z_2 là hai trong các số phức z thỏa mãn điều kiện |z-5-3i|=5, đồng thời $|z_1-z_2|=8$. Tập hợp các điểm biểu diễn của số phức $w=z_1+z_2$ trong mặt phẳng tọa độ $Oxy\,$ là đường tròn có phương trình nào dưới đây?

A.
$$\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{9}{4}$$
.

B.
$$(x-10)^2 + (y-6)^2 = 36$$
.

C.
$$(x-10)^2 + (y-6)^2 = 16$$
.

D.
$$\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 = 9$$
.

Lời giải

Gọi M là điểm biểu diễn của số phức z thỏa mãn $\left|z+m-1+\sqrt{3}i\right|=4$. Tìm tất cả các số thực mCâu 5. sao cho tập hợp các điểm M là đường tròn tiếp xúc với trục Oy.

A.
$$m = -5$$
; $m = 3$.

B.
$$m = 5$$
; $m = -3$.

C.
$$m = -3$$
.

D.
$$m = 5$$
.

- Tính diện tích hình phẳng giới hạn bởi các điểm biểu diễn các số phức thỏa mãn |z+2-i|+|z-4-i|=10.
 - **A.** 15π .
- **B.** 12π .
- **C.** 20π .
- D. Đáp án khác.

- Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứa các điểm biểu diễn các số phức z thỏa Câu 7. mãn $\frac{z}{16}$ và $\frac{16}{\overline{z}}$ có phần thực và phần ảo đều thuộc đoạn [0;1]. Tính diện tích S của (H).
 - **A.** $S = 32(6-\pi)$.
- **B.** $S = 16(4-\pi)$.
- **C.** S = 256.
- **D.** $S = 64\pi$.

- Cho hai số phức z_1, z_2 thoả mãn $|z_1| = 2, |z_2| = \sqrt{3}$. Gọi M, N là các điểm biểu diễn cho z_1 và iz_2 . *Câu 8.* Biết $\widehat{MON} = 30^{\circ}$. Tính $S = \left| z_1^2 + 4z_2^2 \right|$.
 - **A.** $5\sqrt{2}$
- **B.** $3\sqrt{3}$
- **C.** $4\sqrt{7}$.
- **D.** $\sqrt{5}$.

- Cho số phức z_0 có $|z_0|$ = 2021. Diện tích của đa giác có các đỉnh là các điểm biểu diễn của z_0 và các Câu 9. nghiệm của phương trình $\frac{1}{z+z_0} = \frac{1}{z} + \frac{1}{z_0}$ được viết dạng $\frac{n\sqrt{3}}{4}$, $n \in \mathbb{N}$. Chữ số hàng đơn vị của n là **A.** 9 **B.** 8 **C.** 3. **D.** 4.
 - **A.** 9

Lời giải

- Cho số phức z thay đổi thỏa mãn $\left|z-i\right|+\left|z+i\right|=6$. Gọi S là đường cong tạo bởi tập hợp tất cả các điểm biểu diễn của số phức (z-i)(1+i) khi z thay đổi. Tính diện tích hình phẳng được giới hạn bởi đường cong S.
 - **A.** 12π .
- **B.** $12\pi\sqrt{2}$.
- **C.** $9\pi\sqrt{2}$.
- \mathbf{D} . 9π .