Coalescent inference of HIV transmission history

Raymond Heil
T-6: Theoretical Biology and Biophysics
Emma Goldberg, Thomas Leitner

20 July 2022

Why this project?

- * Supplementing existing tracing methods
 - Interviews
 - Tracing contact pairs
- * Finding signal in genome sequences

What are we looking for?

- * Tips represent individual viral sequences
- * Shows the evolutionary distance between individuals
- * What can we infer about a single transmission time?

Coalescent modeling:

Node times as a function of population

Relationship between population and samples

Large N causes node times to be further apart, stretching the tree

Effect of changing population size

Predicting transmission time on a changing population

Results

What I did. . . In this, I could show what's going on for my

Next steps

In the coming weeks...

- * Getting linear population to...um, work.
- * What else was I even thinking about lol

Next steps

Next year (and later)...

