Exercises: Modular arithmetic part 1

- 1. Which of these congruences are true?
 - (a) $5 \equiv 29 \mod 12$ True
 - (b) $33 \equiv 2 \mod 15$ False
 - (c) $-3 \equiv 30 \mod 11$ True
 - (d) $-2 \equiv -50 \mod 26$ False
 - (e) $50 \equiv 24 \mod 26$ True
- 2. Write these congruences, $a \equiv b \mod m$, in the form a = qm + b.
 - (a) $19 \equiv 4 \mod 5$;

$$19 = (3)(5) + 4$$

(b) $200 \equiv 50 \mod 15$;

$$200 = (10)(15) + 50$$

(c) $-10 \equiv 2 \mod 3$;

$$-10 = (-4)(3) + 2$$

(d) $-20 \equiv -6 \mod 7$;

$$-20 = (-2)(7) - 6$$

(e) $72 \equiv 20 \mod 26$;

$$72 = (2)(26) + 20$$

- 3. Complete the following congruences with the smallest positive solution.
 - (a) $40 \equiv 4 \mod 9$;
 - (b) $312 \equiv 12 \mod 15$;
 - (c) $312 \equiv 11 \mod 7$;
 - (d) $-1 \equiv 25 \mod 26$;
 - (e) $55 \equiv 3 \mod 26$.

- 4. Write three possible solutions for each of these congruences:
 - (a) $2 \equiv \mod 16$; 2, 18, 34
 - (b) $-60 \equiv \mod 26$; -60, -35, -10
 - (c) $27 \equiv \mod 26$. 1, 27, 43
- 5. Write out all the possible remainders modulo 7.
 - 0, 1, 2, 3, 4, 5, 6.