Autómatas y Lenguajes formales Ejercicio Semanal 8

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

5 de abril del 2019

- 1. Dado el siguiente lenguaje: $L = \{w \in \{a,b\}^* | \eta_a(w) = \eta_b(w)\}$ es decir el lenguaje que tiene el mismo número de a's que de b's
 - (a) Demuestra que el lenguaje no es regular con el lema del bombeo.

El lema del Bombeo dice que si L es un lenguaje regular infinito entonces existe un número $n \in \mathbb{N}$, llamado constante de bombeo para L, tal que para cualquier cadena $w \in L$ con $|w| \ge n$ existen cadenas u,v,x tales que:

```
i. w = uvx
```

ii.
$$|uv| \geq n$$

iii.
$$v \neq \epsilon$$

iv.
$$\forall m \in \mathbb{N}(uv^m x \in L)$$

Vamos a demostrar por contradicción:

Supongamos que L es un lenguaje regular y que n es la constante de bombeo tal que cualquier cadena $w \in L$, $|w| \ge n$. Sabemos que $w = a^n x b^n$ y que w se puede descomponer en uvx, de ahí, podemos dar la siguiente descomposición:

$$u=a^k,\ v=a^j,\ k\geq 0, j\geq 1$$
 De ahí, tenemos que $x=a^{n-k-j}xb^n$

Se puede ver que cumplimos con $|uv| \ge n$ y $v \ne \epsilon$. Si tomamos m = 4, por el lema del bombeo, $uv^4x \in L$.

Pero tenemos que $uv^4x = a^ka^ja^ja^ja^ja^{n-k-j}xb^n = a^{n+3j}xb^n \notin L$, lo cual es una contradicción.

Por lo tanto, L no es un lenguaje regular ■

(b) Demuestra que el lenguaje no es regular usando el conjunto estafador.

Un conjunto infinito $S \subseteq \Sigma^*$ es un conjunto estafador para L si y sólo si $\forall x, y \in S(x \not\equiv_L y)$.

Sea $S = \{a^i | i \in \mathbb{N}\}$, veamos que S es un conjunto estafador: Sean $a^m, a^n \in S$ con $n \neq m$

Por un lado tenemos $a^m b^m \in L$ Por otra parte tenemos $a^n b^m \notin L$

Por lo tanto $a^m \not\equiv_L a^n$ y S es un conjunto estafador de L.