Entregable 1

Practico 0 Ej. 7

Practico 0 - 7) Crear un data.frame miejemplo con 5 columnas (4 numéricas y 1 categórica) y 6 observaciones (o sea 6 filas).

```
c1 <- c(1,2,3,4,5,6)
c5 <- c('a', 'b', 'c', 'd', 'e', 'f')
miejemplo <- data.frame(c1, c2=c1*2, c3=c2*2, c4=c3*2, c5)</pre>
```

```
> miejemplo
c1 c2 c3 c4 c5
1 1 2 4 8 a
2 2 4 8 16 b
3 3 6 12 24 c
4 4 8 16 32 d
5 5 10 20 40 e
6 6 12 24 48 f
```

```
> typeof(c1)
[1] "double"
> typeof(c5)
[1] "character"
```

0 - 7 - a) Dar nombres a las filas y nombres a las columnas.

```
colnames(miejemplo) <- c('col_1','col_2','col_3','col_4','col_5')
rownames(miejemplo) <- c('row_1','row_2','row_3','row_4','row_5','row_6')</pre>
```

```
> miejemplo
   col_1 col_2 col_3 col_4 col_5
row_1 1 2 4 8
      2 4
row 2
               8 16
                        b
      3 6 12 24
4 8 16 32
row_3
                        C
row_4
                      d
row_5 5 10
row_6 6 12
      5 10 20 40
                         е
               24
                   48
                         f
```

0 - 7 - b) Añadir a este objeto una columna que sea la suma de las 3 primeras columnas numéricas y otra columna que indica con 0/1 si el valor numérico de la segunda columna es

mayor que 5 o no. Dar un nombre a estas nuevas columnas.

```
miejemplo$sum_1_2_3 <- miejemplo$col_1 + miejemplo$col_2 + miejemplo$col_3
miejemplo$grt_5 <- sapply(miejemplo$col_2, function(x) if (x>5) return(1) else
return(0))
names(miejemplo)[names(miejemplo) == "sum_1_2_3"] <- "col_sum"
names(miejemplo)[names(miejemplo) == "grt_5"] <- "greater"</pre>
```

```
> miejemplo
     col_1 col_2 col_3 col_4 col_5 col_sum greater
         1
                                       7
row 1
               2
                    4
                                               0
                          8
                               а
                                              0
row_2
         2
              4
                    8
                         16
                               b
                                      14
row_3
        3
             6
                   12
                         24
                               С
                                      21
                                              1
                                              1
row 4
        4
              8
                   16
                         32
                               d
                                      28
        5 10
row 5
                   20
                         40
                               е
                                      35
                                              1
                               f
row_6
         6
              12
                   24
                         48
                                      42
                                               1
```

0 - 7- c) Borrar la primera fila y la última columna. Dar un nombre a este nuevo objeto

nuevo_ejemplo <- miejemplo[-1,-length(miejemplo)]</pre>

```
> nuevo_ejemplo
     col_1 col_2 col_3 col_4 col_5 col_sum
               4
                         16
                                b
row_2
         2
                    8
row_3
         3
                   12
                         24
                                      21
               6
                                C
row_4
         4
             8
                   16
                         32
                                d
                                      28
        5
row 5
              10
                   20
                         40
                                е
                                      35
                                f
                   24
                                      42
row_6
         6
              12
                         48
```

0 - 7 - d) Hacer un resumen estadístico de los datos de este data frame cuando esto tiene sentido.

En realidad no tiene mucho sentido hacer un resumen estadístico de estos datos, pero ahí van.

summary(miejemplo)

```
col 1
                col 2
                            col 3
                                         col 4
                                               col 5
                                                         col sum
Min. :1.00 Min. : 2.0
                          Min. : 4
                                     Min. : 8
                                                 a:1
                                                      Min. : 7.00
1st Qu.:2.25 1st Qu.: 4.5
                          1st Qu.: 9
                                     1st Qu.:18
                                                 b:1
                                                      1st Qu.:15.75
Median :3.50 Median : 7.0
                          Median :14
                                     Median :28
                                                 c:1
                                                      Median :24.50
             Mean : 7.0
    :3.50
                                                 d:1
Mean
                          Mean :14
                                     Mean :28
                                                      Mean :24.50
3rd Qu.:4.75
             3rd Qu.: 9.5
                          3rd Qu.:19
                                     3rd Qu.:38
                                                 e:1
                                                      3rd Qu.:33.25
Max. :6.00
            Max. :12.0
                          Max.
                               :24
                                     Max. :48
                                                 f:1
                                                      Max. :42.00
  greater
Min. :0.0000
```

```
1st Qu.:0.2500
Median :1.0000
Mean :0.6667
3rd Qu.:1.0000
Max. :1.0000
```

0 - 7 - e) Escribir miejemplo en un archivo de texto miejemplo.txt. Borrar el objeto de R. Cargar este archivo en el objeto miejemplo2.

```
= TRUE, col.names = TRUE)
rm(miejemplo)

> miejemplo
Error: object 'miejemplo' not found
```

write.table(miejemplo, 'miejemplo.csv', append = FALSE, sep = ",", dec = ".", row.names

```
miejemplo2 <- read.csv(file="./miejemplo.csv", header=TRUE, sep=",")</pre>
```

```
> miejemplo2
   col 1 col 2 col 3 col 4 col 5 col sum greater
                             7
row 1
       1 2
              4
                   8
                        а
row_2
          4
              8 16
                       b
                             14
                                    0
      3 6 12 24
4 8 16 32
row 3
                       С
                             21
                                    1
                       d
                            28
                                    1
row 4
      5 10 20 40
row_5
                       е
                            35
                                    1
row_6 6 12 24 48
                        f
                             42
                                    1
```

0 - 7 - f) Repetir el paso anterior con la base de datos de Iris.

```
write.table(iris, 'iris.csv', append = FALSE, sep = ",",dec = ".", row.names =
TRUE,col.names = TRUE)
iris2 <- read.csv(file="./iris.csv", header=TRUE, sep=",")</pre>
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
          5.1
                     3.5
                              1.4
                                          0.2
                                               setosa
2
          4.9
                     3.0
                               1.4
                                          0.2
                                               setosa
3
          4.7
                     3.2
                               1.3
                                         0.2
                                               setosa
4
          4.6
                    3.1
                               1.5
                                         0.2
                                                setosa
          5.0
                                         0.2
5
                    3.6
                               1.4
                                               setosa
6
          5.4
                    3.9
                               1.7
                                         0.4
                                                setosa
         6.2
                     3.4
                               5.4
                                         2.3 virginica
149
          5.9
                                5.1
150
                     3.0
                                          1.8 virginica
```

Practico 1 Ej 8 Sean x e y vectores aleatorios, A y B matrices y c un vector fijo (no aleatorio) real. Pruebe que:

 $\mathrm{D}_{E}(Ax) = \mathrm{D}_{E}(x)$

 $\hat{E}(Ax) = \frac{1}{n}\sum_{i=1}^{n}Ax_i = A\frac{1}{n}\sum_{i=1}^{n}x_i = A\mathbb{E}(x)$

Cov(Ax,By) = ACov(x,y)B'

 $\label{eq:cov(Ax,By)=\mathbb{E}((Ax-\bar{y})')=\mathbb{E}((Ax-\bar{y})')=\mathbb{E}((x-\bar{y})')=\mathbb{E}($

Var(Ax) = AVar(x)A'

 $\begin{aligned} & \text{Var}(Ax) = \text{Cov}(Ax,Ax) = \text{mathbb}\{E\}((Ax-\text{bar}\{x\})') = \text{mathbb}\{E\}((A(x-\text{bar}\{x\})',A') = A\text{mathbb}\{E\}((x-\text{bar}\{x\})',A') = A\text{cov}(x,x)A' = A\text{var}(x)A' \end{aligned}$

 $Cov(x, y) = \mathbb{E}(xy')-\mathbb{E}(x)\mathbb{E}(y)$

 $$Cov(x,y)=\mathbb{E}((x-\mathbb{E}(x))(y-\mathbb{E}(y))')=\mathbb{E}(x)'-\mathbb{E}(y)'-\mathbb{E}(x)'+\mathbb{E}(x)'-\mathbb{E}(x$

Var(x-c) = Var(x)

 $\begin{aligned} & \text{Var}(x-c) = \mathbb{E}((x-c)^2) - \mathbb{E}((x-c$

 $$=\mathbb{E}(x^2)-\mathbb{$

 $$=\mathbb{E}(x^2)-2c\mathbb{E}(x)+c^2-(\mathbb{E}(x)^2-2c\mathbb{E}(x)+c^2)=\mathbb{E}(x^2)-2c\mathbb{E}(x)+c^2-\mathbb{E}(x)^2+2c\mathbb{E}(x)-c^2=\mathbb{E}(x^2)-\mathbb{E}(x)^2=\mathbb{E}(x)^2+2c\mathbb{E}(x)^2=\mathbb{$

Si x ~ (μ, Σ) entonces $E(x'Ax) = tr(A\Sigma) + \mu'A\mu$

 $$X'AX = (X-\mu)'AX + \mu'AX = (X-\mu)'A(X-\mu) + \mu'AX + (X-\mu)'A\mu' $Rightarrow \mathbb{E} $ (X'AX) = \mathbb{E} ((X-\mu)'A(X-\mu)) + \mu'A\mu' $ = (\sum_{i=1}^{n} \sin_{i=1}^{n} \sin_{i$

Practico 1 Ej 14 Se considera la función de densidad dada por

 $f(x, y) = \left(\frac{x + 0 + 1}{0 + x} \right)$

Halle \$K\$

Para que sea una función de densidad se tiene que cumplir:

 $\int_{0}^{1} \int_{0}^{1-x} f(x,y) dydx = 1$

 $=K\frac{1^2}{2}-K\frac{1^3}{3}-K\frac{1^3}{$

 $Rightarrow \frac{K}{6}=1 Rightarrow K=6$

 $f(x, y) = \left(\frac{x + 0 & \sin(x - y)}{0 < x < 1, 0 < y < 1 - x} 0 & \left(\frac{x + 0 & \cot(x - y)}{0 < y < 1 - x} \right)$

Halle las funciónes de densidad marginales

 $f_x(x)=\int_{-\infty}^{-\infty} f_x(y)^{-0} 0\ dy+\int_{0}^{1-x} 6x\ dy+\int_{1-x}^{+\infty} 0}^{1-x} 6x\ dy+\int_{0}^{1-x} 6x\ dy=\int_{0}^{1-x} 6x\ dy=\int_$

 $\int_{-\infty}^{+\infty} f_x(x) dx=1 \left(-\infty \int_{-\infty}^{0}0 dx+\int_{0}^{1} 6x-6x^2 dx + \int_{0}^{1} 6x-6x^2 dx + \int_{0}^{1} 6x-6x^2 dx + \int_{0}^{1} 6x^2 dx = \int_{0}^{1} 6x^2 dx = \int_{0}^{1} -2x^3 \sqrt{0}^{1} = 3-2=1$

 $f_y(y)=\int_{-\infty}^{-\infty} f_{xy}(x,y) dx=\int_{-\infty}^{0} 0 dx+\int_{0}^{1-y} 6x dx+\int_{1-y}^{+\infty} 0 dx=\int_{0}^{1-y} 6x dx+\int_{0}^{1-y} 6x dx=\int_{0}^{1-y} 6x$

 $$ \int_{-\infty}^{+\infty} f_y(y) dy=1 \left(-\int_{-\infty}^{0}0 dy + \int_{0}^{1}3-6y+3y^2 dy + \int_{0}^{1}3-6y+3y^2 dy + \int_{0}^{1}3-6y+3y^2 dy + \int_{0}^{1}3-6y+3y^2 dy + \int_{0}^{1}3-3y^2 dy + \int_{0}^{1}3$