

LTE RADIO TEST REPORT

Report No: STS1612254F05

Issued for

Shenzhen YLWD Technology Co.,Ltd

RM1002.A.Haisong BLD.RDTairan.FuTian District Shenzhen,China

Product Name:	Mobile phone
Brand Name:	MOVIC
Model Name:	HERO1
Series Model:	HERO2, HERO3, HERO4, HERO5, HERO6, HERO7, HERO8, HERO9, HERO10
FCC ID:	2AKSA-HERO
Test Standard:	47 CFR Part 2, 24(E), 27

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen YLWD Technology Co.,Ltd
Address:	RM1002.A.Haisong BLD.RDTairan.FuTian District Shenzhen, China
Manufacture's Name:	Shenzhen YLWD Technology Co.,Ltd
Address:	RM1002.A.Haisong BLD.RDTairan.FuTian District Shenzhen, China
Product name:	Mobile phone
Brand name:	MOVIC
Model and/or type reference:	HERO1
Standards:	47 CFR Part 2, 24(E), 27
Test procedure	: ANSI / TIA 603-D-2010
under test (EUT) is in compliance sample identified in the report. This report shall not be reproduce may be altered or revised by STS Date of Test Date of performance of tests	. 28 Dec. 2016~11 Jan. 2017
Date of Issue	. 12 Jan. 2017
Test Result	. Pass
Testing En	Clo L'
Technical M Authorized	Manager: (Leo li) (Tony liu) APPROVAL APPR

Report No.: STS1612254F05

TABLE OF CONTENTS	Page
1. SUMMARY OF TEST RESULTS	5
2. GENERAL INFORMATION	8
3. CONDUCTED OUTPUT POWER	17
4. PEAK-TO-AVERAGE RATIO	27
5. RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER	29
6. OCCUPIED BANDWIDTH	41
7. CONDUCTED BAND EDGE	44
B. CONDUCTED SPURIOUS EMISSION	46
9. RADIATED SPURIOUS EMISSION	47
10. FREQUENCY STABILITY	67
PHOTOS OF TEST SETUP	72

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	12 Jan. 2017	STS1612254F05	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

1.1 TEST RESULTS DESCRIPTION AND LABORATORY INFORMATION

Setion	FCC Rule	Description	Limit	Result
	§2.1046	Conducted Output Power	Reporting Only	PASS
	§24.232(d)	Peak-to-Average Ratio	<13 dB	PASS
	§2.1049 §24.238(b) §27.53(h)(3) §27.53(m)(6)	Occupied Bandwidth	Reporting Only	PASS
	§2.1051) §24.238(a) §27.53(g) §27.53(h)	Conducted Band Edge Measurement (Band 2)(Band 4) (Band 17)	<43+10log10(P[Watts])	PASS
	§27.53(m)(4)	(Band 7)	<43+10log10(P[Watts])	PASS
	§2.1051 §24.238(a) §27.53(g) §27.53(h)	Conducted Spurious Emission (Band 2)(Band 4) (Band 17)	<43+10log10(P[Watts])	PASS
	§27.53(m)(4)	Conducted Spurious Emission (Band 7)	< 55+10log10(P[Watts])	PASS
	§2.1055 §24.235 §27.54	Frequency Stability Temperature & Voltage	< 2.5 ppm for Part 22 Within Authorized Band	PASS

		,	
§27.50(c)(10)	Effective Radiated Power (Band 17)	ERP < 3 Watt	PASS
§24.232(c) §27.50(h)(2)	Equivalent Isotropic Radiated Power (Band 2)((Band 7)	EIRP < 2Watt	PASS
§27.50(d)(4)	Equivalent Isotropic Radiated Power (Band 4)	EIRP < 1Watt	PASS
§2.1053 §24.238(a) §27.53(g) §27.53(h)	Radiated Spurious Emission (Band 2)(Band 4) (Band 17)	< 43+10log10(P[Watts])	PASS
§2.1053 §27.53(m)(4)	Radiated Spurious Emission (Band 7)	< 55+10log10(P[Watts])	PASS

Report No.: STS1612254F05

1.1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.70dB
4	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

2. GENERAL INFORMATION

2.1 TECHNICAL SPECIFICATIONS AND REGULATIONS

2.1.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Mobile phone	
Hardware version:	WW822 V0.5	
Software version:	MOVIC_W5_KS772C_V6.1.4_20161223_1120_pm	
FCC ID:	2AKSA-HERO	
	U.S. Bands:	
	☑LTE FDD Band 2 ☑LTE FDD Band 4	
Frequency Bands:	☐LTE FDD Band 5 ☑LTE FDD Band 7	
	☐LTE FDD Band 12 ☐LTE FDD Band 13	
	⊠LTE FDD Band 17	
SIM CARD:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM	
SIM CARD:	1 is used to tested	
Antenna:	PIFA Antenna	
	LTE Band 17: -1.5dBi	
Antenna gain:	LTE Band 4: 0.5dBi LTE Band 2: 0.5dBi	
	LTE Band 7: -1.5dBi	
Power Supply:	DC 3.8V by battery or DC 4.35V supplied by adapter	
Battery parameter:	Capacitance: 3300mA, Rated Voltage: 3.8V	
Adapter Input:	AC100-240V, 50/60Hz, 200mA	
Adapter Output:	DC 5.3V, 1000mA	

2.1.2 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Pr	oduct Specification Subjective To This Standard	
	LTE Band 2:1850.7~1909.3MHz	
Tx Frequency	LTE Band 4:1710.7~1754.3MHz	
	LTE Band 7:2502.7~2567.3MHz	
	LTE Band 17:706.7~713.2MHz	
	LTE Band 2:1930.7~1989.3MHz	
Rx Frequency	LTE Band 4:2110.7~2154.3MHz	
	LTE Band 7:2622.7~2687.3MHz	
	LTE Band 17:736.3~743.3MHz	
	LTE Band 2: 1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz	
Bandwidth	LTE Band 4: 1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz /20MHz	
	LTE Band 7 : 5MHz / 10MHz / 15MHz / 20MHz	
	LTE Band 17: 5MHz / 10MHz	
	LTE Band 2 : 22.52dBm	
Maximum Output	LTE Band 4 : 22.56 dBm	
Power Limit	LTE Band 7: 22.58 dBm	
	LTE Band 17: 23.08 dBm	
Type of Modulation	QPSK / 16QAM	

2.1.3 EMISSION DESIGNATOR

LTE Band 2 BW(MHz)	Emission Designator (99%OBW)QPSK	Emission Designator (99%OBW)16QAM
1.4	1M10G7D	1M10W7D
3	2M70G7D	2M69W7D
5	4M58G7D	4M57W7D
10	8M97G7D	8M96W7D
15	13M61G7D	13M61W7D
20	18M03G7D	18M04W7D

LTE Band 4 BW(MHz)	Emission Designator (99%OBW)QPSK	Emission Designator (99%OBW)16QAM
1.4	1M10G7D	1M10W7D
3	2M69G7D	2M68W7D
5	4M53G7D	4M52W7D
10	8M95G7D	8M94W7D
15	13M49G7D	13M50W7D
20	17M96G7D	17M98W7D

LTE Band 7 BW(MHz)	Emission Designator (99%OBW)QPSK	Emission Designator (99%OBW)16QAM
5	4M53G7D	4M53W7D
10	8M95G7D	8M95W7D
15	13M52G7D	13M51W7D
20	17M97G7D	17M97W7D

LTE Band 17 BW(MHz)	Emission Designator (99%OBW)QPSK	Emission Designator (99%OBW)16QAM
5	4M54G7D	4M53W7D
10	8M95G7D	8M95W7D

2.1.4 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D02 Power Meas. License Digital Systems v02r02 with maximum output power.Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission.

Remark:

- 1. The mark "v" means that this configuration is chosen for testing
- 2. The mark "-" means that this bandwidth is not supported.
- 3. The device is investigated from 30MHz to 10 times of fundamental signal for radiated

ITEMS	ITEMS Band		anc	dwic	dth (MH	z)	Modu		RB#		Test Channel			
		1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full	L	М	Н
	2	٧	٧	٧	٧	^	٧	V	V	V	v	V	٧	٧	V
	4	٧	٧	٧	٧	٧	٧	٧	V	٧	٧	٧	٧	٧	٧
Max. Output	7	-	-	٧	٧	٧	٧	٧	V	٧	٧	٧	٧	٧	٧
Power	17	-	ı	٧	٧	ı	•	V	V	V	V	٧	٧	٧	V
	2						٧	V	V	V		V	٧	٧	V
	4						٧	V	V	V		٧	٧	٧	V
Peak&Avera	7	•	-				٧	V	V	V		٧	٧	٧	V
Ratio	17	-	-		٧		-	٧	V	V		٧	٧	٧	٧
	2	٧	٧	٧	٧	٧	٧	V	V			٧	٧	٧	٧
	4	٧	٧	٧	٧	٧	٧	٧	V			٧	٧	٧	٧
26dB&99%	7	-	-	٧	٧	V	٧	v	V			٧	٧	٧	V
Bandwidth	17	-	-	٧	٧		-	V	V			٧	٧	٧	٧
	2	V	٧	٧	V	٧	٧	٧	V	٧		٧	٧	٧	٧
	4	٧	٧	٧	٧	٧	٧	V	V	٧		٧	٧	٧	٧
Conducted	7	-	-	٧	V	V	٧	٧	V	٧		٧	٧	٧	٧
Band Edge	17	-	-	٧	٧	-	-	V	V	٧		٧	٧	٧	V

ITEMS Band		Bandwidth (MHz)				Modu	lation	RB#			Test Channel				
		1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full	L	М	Н
	2	٧	V	٧	٧	٧	٧	٧	v	٧			٧	٧	٧
Conducted	4	٧	V	٧	٧	٧	V	V	v	٧			٧	٧	٧
Conducted Spurious	7	-	-	٧	٧	٧	٧	V	V	٧			٧	٧	٧
Emission	17	-	-	٧	٧	-	-	V	V	٧			٧	٧	٧
	2				V			٧				٧		٧	
	4				٧			V				٧		٧	
Frequency	7	-	-		٧			V				٧		٧	
Stability	17	-	-		٧	-	-	V				٧		٧	
	2	٧	V	٧	٧	٧	٧	٧	v	٧			٧	٧	٧
	4	٧	V	٧	٧	٧	٧	٧	v	٧			٧	٧	٧
E.R.P.&	7	-	-	٧	٧	٧	V	V	V	٧			٧	٧	٧
E.I.R.P.	17	-	-	٧	٧	-	-	V	V	٧			٧	٧	٧
	2	٧	v	٧	٧	٧	٧	V		V			٧	٧	٧
Radiated	4	٧	V	V	٧	٧	٧	V		V			٧	٧	٧
Spurious	7	-	-	v	٧	٧	٧	V		V			٧	٧	٧
Emission	17	-	-	V	V	-	-	٧		V			٧	V	V

2.1.5 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for filing to comply with the 47 CFR Part 2, 24(E), 27

2.1.6 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with eut intended for fcc grant together.

2.1.7 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.1.8 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

2.1.9 CONFIGURATION OF EUT SYSTEM

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

E-1 EUT

Table 2-1 Equipment Used in EUT System

	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Item	Equipment	Model No.	Serial No.	Note
E-1	Mobile phone	HERO1	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_</code> column.

2.1.10 MEASUREMENT INSTRUMENTS

The radiated emission testing was performed according to the procedures of ansi ANSI / TIA 603-D-2010 and FCC CFR 47 rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibra-	Calibrated Until
	Agilant		MV50440240	tion	2047.40.22
Spectrum Analyzer	Agilent	E4407B	MY50140340	2016.10.23	2017.10.22
Signal Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	101427	2016.10.23	2017.10.22
Communication Tester	Agilent	8960	MY48360751	2016.10.23	2017.10.22
Communication Tester	R&S	CMU200	112012	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	102086	2016.10.23	2017.10.22
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Bilog Antenna (Calibration antenna)	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2015.03.05	2018.03.04
Horn Antenna (Calibration antenna)	Schwarzbeck	BBHA 9120D	9120D-1343	2015.03.05	2018.03.04
MXA SIGNAL Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Double Ridge Horn Antenna	COM-POWER CORPORATION	AH-840	AHA-840	2016.03.06	2017.03.05
Low frequency cable	N/A	R01	N/A	NCR	NCR
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/96287	NCR	NCR
Vector signal generator	Agilent	E8257D-521	MY45141029	2016.10.23	2017.10.22
Power amplifier	DESAY	ZHL-42W	9638	2016.10.23	2017.10.22
Band Reject fil- ter(1920-1980MHz)	COM-MW	ZBSF-1920-1980	0092	2016.10.23	2017.10.22
Band Reject fil- ter(880-915MHz)	COM-MW	ZBSF-C897.5-35	707	2016.10.23	2017.10.22
Band Reject fil- ter(1710-1785MHz)	COM-MW	ZBSF-C1747.5-75	708	2016.10.23	2017.10.22
Band Reject fil- ter(1850-1910MHz)	COM-MW	ZBSF-C1880-60	709	2016.10.23	2017.10.22
Band Reject fil- ter(2500-2570MHz)	COM-MW	ZBSF-C2535-70	710	2016.10.23	2017.10.22
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	2016.10.23	2017.10.22

2. 1.11 MEASUREMENT RESULTS EXPLANATION EXAMPLE

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factorbetween EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF Cable Loss + Attenuator Factor.

3. CONDUCTED OUTPUT POWER

3.1 DESCRIPTION OF THE CONDUCTED OUTPUT POWER MEASUREMENT

3.1.1 MEASUREMENT METHOD

A System Simulator Was Used To Establish Communication With The EUT. Its Parameters Were Set To Force The EUT Transmitting At Maximum Output Power. The Measured Power In The Radio Frequency On The Transmitter Output Terminals Shall Be Reported. configuration follows KDB 971168 D01.

3.1.2 TEST SETUP

3.1.3 TEST PROCEDURES

- 1. The Transmitter Output Port Was Connected To The System Simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.1.4 TEST RESULTS

	LTE	Band 2 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
1.4	1	0		22.14	22.37	22.32
1.4	1	2		21.91	22.09	22.04
1.4	1	5		21.68	21.79	21.78
1.4	3	0	QPSK	21.42	21.57	21.53
1.4	3	1		21.20	21.29	21.29
1.4	3	2		20.97	21.00	21.02
1.4	6	0		20.69	20.70	20.81
1.4	1	0		21.92	22.12	22.11
1.4	1	2		21.68	21.85	21.91
1.4	1	5		21.42	21.57	21.66
1.4	3	0	16-QAM	21.18	21.37	21.38
1.4	3	1		20.95	21.15	21.16
1.4	3	2		20.71	20.94	20.87
1.4	6	0		20.49	20.68	20.61
3	1	0		22.23	22.42	22.35
3	1	7		21.94	22.17	22.13
3	1	14		21.73	21.92	21.84
3	8	0	QPSK	21.47	21.65	21.60
3	8	4		21.25	21.38	21.39
3	8	7		20.99	21.10	21.18
3	15	0		20.74	20.87	20.94
3	1	0		22.01	22.15	22.11
3	1	7		21.76	21.87	21.85
3	1	14		21.50	21.65	21.61
3	8	0	16-QAM	21.22	21.37	21.36
3	8	4		20.93	21.15	21.09
3	8	7		20.71	20.87	20.89
3	15	0		20.43	20.67	20.61

	LTE	Band 2 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		22.51	22.49	22.52
5	1	12		22.22	22.22	22.30
5	1	24		22.00	21.93	22.03
5	12	0	QPSK	21.71	21.65	21.74
5	12	6		21.44	21.42	21.50
5	12	11		21.20	21.12	21.30
5	25	0		20.98	20.87	21.07
5	1	0		22.27	22.25	22.29
5	1	12		21.98	21.98	21.99
5	1	24		21.73	21.69	21.71
5	12	0	16-QAM	21.49	21.44	21.43
5	12	6		21.24	21.18	21.15
5	12	11		21.00	20.89	20.94
5	25	0		20.78	20.65	20.68
10	1	0		22.52	22.53	22.51
10	1	24		22.32	22.29	22.26
10	1	49		22.05	22.02	22.03
10	25	0	QPSK	21.77	21.80	21.81
10	25	12		21.53	21.60	21.59
10	25	24		21.27	21.30	21.34
10	50	0		21.06	21.04	21.08
10	1	0		22.25	22.31	22.31
10	1	24		22.02	22.02	22.06
10	1	49		21.79	21.81	21.78
10	25	0	16-QAM	21.54	21.55	21.50
10	25	12		21.29	21.33	21.23
10	25	24		21.03	21.03	20.98
10	50	0		20.83	20.78	20.69

	LTE	Band 2 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
15	1	0		22.35	22.38	22.43
15	1	37		22.12	22.10	22.17
15	1	74		21.89	21.84	21.93
15	36	0	QPSK	21.64	21.61	21.70
15	36	18		21.40	21.40	21.43
15	36	39		21.11	21.10	21.20
15	75	0		20.88	20.88	20.93
15	1	0		22.10	22.08	22.17
15	1	38		21.87	21.86	21.95
15	1	75		21.66	21.63	21.71
15	36	0	16-QAM	21.43	21.35	21.46
15	36	18		21.16	21.06	21.24
15	36	39		20.93	20.79	21.00
15	75	0		20.72	20.54	20.73
20	1	0		22.37	22.41	22.45
20	1	49		22.08	22.12	22.23
20	1	99		21.86	21.89	21.97
20	50	0	QPSK	21.62	21.64	21.72
20	50	24		21.36	21.44	21.46
20	50	49		21.07	21.22	21.17
20	100	0		20.85	21.00	20.93
20	1	0		22.13	22.12	22.24
20	1	49		21.92	21.92	22.01
20	1	99		21.67	21.68	21.76
20	50	0	16-QAM	21.38	21.41	21.54
20	50	24		21.14	21.19	21.30
20	50	49		20.88	20.93	21.03
20	100	0		20.60	20.70	20.81

	LTE	Band 4 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
1.4	1	0		22.35	22.52	22.55
1.4	1	2		22.12	22.24	22.31
1.4	1	5		21.92	22.02	22.11
1.4	3	0	QPSK	21.68	21.81	21.86
1.4	3	1		21.44	21.51	21.63
1.4	3	2		21.19	21.22	21.40
1.4	6	0		20.95	20.94	21.20
1.4	1	0		22.13	22.29	22.29
1.4	1	2		21.88	22.00	22.04
1.4	1	5		21.66	21.74	21.79
1.4	3	0	16-QAM	21.43	21.46	21.51
1.4	3	1		21.21	21.22	21.25
1.4	3	2		20.92	21.01	21.02
1.4	6	0		20.68	20.79	20.80
3	1	0		22.33	22.49	22.53
3	1	7		22.09	22.28	22.31
3	1	14		21.79	22.04	22.01
3	8	0	QPSK	21.52	21.75	21.77
3	8	4		21.26	21.51	21.50
3	8	7		21.03	21.28	21.28
3	15	0		20.81	21.08	20.99
3	1	0		22.05	22.19	22.31
3	1	7		21.82	21.96	22.07
3	1	14		21.55	21.70	21.81
3	8	0	16-QAM	21.34	21.43	21.59
3	8	4		21.08	21.20	21.33
3	8	7		20.84	20.93	21.13
3	15	0		20.60	20.67	20.87

	LTE	Band 4 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		22.33	22.53	22.56
5	1	12		22.03	22.26	22.35
5	1	24		21.76	22.02	22.12
5	12	0	QPSK	21.54	21.82	21.90
5	12	6		21.30	21.59	21.70
5	12	11		21.07	21.36	21.43
5	25	0		20.81	21.07	21.21
5	1	0		22.08	22.23	22.27
5	1	12		21.79	21.97	22.03
5	1	24		21.54	21.72	21.78
5	12	0	16-QAM	21.31	21.42	21.49
5	12	6		21.01	21.12	21.28
5	12	11		20.78	20.85	21.08
5	25	0		20.57	20.64	20.87
10	1	0		22.31	22.52	22.54
10	1	24		22.09	22.22	22.29
10	1	49		21.84	21.99	22.08
10	25	0	QPSK	21.56	21.77	21.85
10	25	12		21.28	21.50	21.62
10	25	24		20.98	21.30	21.41
10	50	0		20.78	21.07	21.15
10	1	0		22.04	22.29	22.27
10	1	24		21.77	22.04	22.06
10	1	49		21.48	21.74	21.82
10	25	0	16-QAM	21.18	21.52	21.59
10	25	12		20.93	21.27	21.32
10	25	24		20.63	21.01	21.10
10	50	0		20.43	20.77	20.85

	LTE	Band 4 Maximu	ım Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
15	1	0		22.36	22.51	22.52
15	1	37		22.12	22.28	22.22
15	1	74		21.89	22.07	22.02
15	36	0	QPSK	21.66	21.77	21.74
15	36	18		21.44	21.49	21.53
15	36	39		21.15	21.26	21.27
15	75	0		20.88	20.96	21.06
15	1	0		22.12	22.26	22.24
15	1	38		21.82	21.98	21.98
15	1	75		21.53	21.74	21.73
15	36	0	16-QAM	21.27	21.44	21.44
15	36	18		21.05	21.16	21.24
15	36	39		20.76	20.90	20.95
15	75	0		20.53	20.63	20.71
20	1	0		22.35	22.52	22.51
20	1	49		22.14	22.28	22.28
20	1	99		21.87	22.00	22.05
20	50	0	QPSK	21.67	21.77	21.75
20	50	24		21.46	21.54	21.51
20	50	49		21.20	21.27	21.23
20	100	0		20.90	20.98	21.01
20	1	0		22.15	22.29	22.28
20	1	49		21.85	22.07	22.05
20	1	99		21.56	21.81	21.78
20	50	0	16-QAM	21.31	21.56	21.50
20	50	24		21.02	21.32	21.23
20	50	49		20.73	21.02	20.97
20	100	0		20.48	20.75	20.71

	LTE	Band 7 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		22.48	22.53	22.58
5	1	12		22.28	22.31	22.33
5	1	24		22.00	22.06	22.04
5	12	0	QPSK	21.80	21.85	21.82
5	12	6		21.52	21.57	21.52
5	12	11		21.32	21.36	21.23
5	25	0		21.10	21.06	20.95
5	1	0		22.28	22.33	22.35
5	1	12		21.99	22.10	22.12
5	1	24		21.72	21.90	21.87
5	12	0	16-QAM	21.45	21.64	21.64
5	12	6		21.20	21.41	21.37
5	12	11		20.96	21.15	21.09
5	25	0		20.66	20.94	20.88
10	1	0		22.47	22.51	22.56
10	1	24		22.27	22.31	22.33
10	1	49		21.97	22.05	22.06
10	25	0	QPSK	21.72	21.80	21.86
10	25	12		21.50	21.52	21.62
10	25	24		21.22	21.31	21.33
10	50	0		20.99	21.04	21.05
10	1	0		22.19	22.28	22.27
10	1	24		21.92	22.08	21.98
10	1	49		21.64	21.81	21.68
10	25	0	16-QAM	21.38	21.59	21.48
10	25	12		21.11	21.34	21.26
10	25	24		20.84	21.05	21.06
10	50	0		20.64	20.81	20.76

LTE Band 7 Maximum Average Power [dBm]											
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest					
15	1	0		22.46	22.52	22.57					
15	1	37		22.24	22.32	22.37					
15	1	74		22.02	22.06	22.15					
15	36	0	QPSK	21.81	21.84	21.94					
15	36	18		21.52	21.61	21.67					
15	36	39		21.26	21.32	21.39					
15	75	0		21.03	21.09	21.11					
15	1	0		22.19	22.27	22.35					
15	1	38		21.93	21.99	22.10					
15	1	75		21.69	21.78	21.87					
15	36	0	16-QAM	21.41	21.54	21.67					
15	36	18		21.17	21.25	21.40					
15	36	39		20.88	20.95	21.12					
15	75	0		20.63	20.70	20.90					
20	1	0		22.47	22.51	22.57					
20	1	49		22.25	22.26	22.31					
20	1	99		22.04	22.00	22.02					
20	50	0	QPSK	21.79	21.74	21.81					
20	50	24		21.49	21.46	21.55					
20	50	49		21.20	21.21	21.31					
20	100	0		20.99	20.96	21.11					
20	1	0		22.19	22.22	22.33					
20	1	49		21.93	22.02	22.11					
20	1	99		21.69	21.72	21.83					
20	50	0	16-QAM	21.49	21.47	21.54					
20	50	24		21.20	21.18	21.31					
20	50	49		20.97	20.96	21.08					
20	100	0		20.73	20.70	20.78					

	LTE	Band 4 Maximu	um Average F	Power [dBm]		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest
5	1	0		23.08	22.99	22.95
5	1	12		22.80	22.78	22.69
5	1	24		22.51	22.57	22.42
5	12	0	QPSK	22.22	22.36	22.18
5	12	6		22.01	22.15	21.92
5	12	11		21.76	21.91	21.65
5	25	0		21.52	21.62	21.37
5	1	0		22.81	22.71	22.69
5	1	12		22.58	22.47	22.49
5	1	24		22.33	22.21	22.22
5	12	0	16-QAM	22.06	21.92	21.94
5	12	6		21.83	21.70	21.7
5	12	11		21.55	21.45	21.41
5	25	0		21.32	21.18	21.20
10	1	0		23.05	22.97	22.93
10	1	24		22.82	22.69	22.67
10	1	49		22.61	22.41	22.45
10	25	0	QPSK	22.38	22.11	22.24
10	25	12		22.10	21.83	21.96
10	25	24		21.81	21.62	21.68
10	50	0		21.56	21.33	21.44
10	1	0		22.77	22.74	22.65
10	1	24		22.55	22.45	22.45
10	1	49		22.27	22.23	22.18
10	25	0	16-QAM	22.07	21.98	21.91
10	25	12		21.78	21.76	21.63
10	25	24		21.56	21.47	21.41
10	50	0		21.26	21.20	21.18

4. PEAK-TO-AVERAGE RATIO

4.1 DESCRIPTION OF THE CONDUCTED OUTPUT POWER MEASUREMENT

4.1.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

4.1.2 TEST SETUP

4.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 5.7.2..
- 2. The EUT was connected to spectrum and system simulator via a power divider
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure the peak and average power of the spectrum analyzer
- 5. Record the deviation as Peak to Average Ratio.

	LTE									
LTE BW	1.4M	3M	5M	10M	15M	20M				
Span	3MHz	6MHz	10MHz	20MHz	30MHz	40MHz				
RBW	30kHz	30kHz	100kHz	100kHz	300kHz	300kHz				
VBW	100kHz	100kHz	300kHz	300kHz	1000kHz	1000kHz				
Detector	PK/AVG	PK/AVG	PK/AVG	PK/AVG	PK/AVG	PK/AVG				
Trace	Max	Max	Max	Max	Max	Max				
Sweep Count	Auto	Auto	Auto	Auto	Auto	Auto				

4.1.4 TEST RESULTS

	LTE Band 2 PAR [dBm]												
BW	RB	Modulation		Lowest			Middle			Highest			
[MHz]	Size	Wodulation	PEAK	AVG	P-A	PEAK	AVG	P-A	PEAK	AVG	P-A		
20	1	QPSK	24.87	22.37	2.5	24.91	22.41	2.5	24.94	22.45	2.49		
20	100	QFSK	23.35	20.85	2.5	23.52	21.01	2.51	23.43	20.93	2.5		
20	1	16 OAM	24.64	22.13	2.51	24.63	22.12	2.51	24.75	22.24	2.51		
20	100	16-QAM	23.12	20.61	2.51	23.22	20.71	2.51	23.31	20.81	2.5		
	Limit		≤13dBm										

Report No.: STS1612254F05

5. RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER

5.1 DESCRIPTION OF THE ERP/EIRP MEASUREMENT

5.1.1 MEASUREMENT METHOD

Effective radiated power output measurements by substitution method according to ANSI / TIA / EIA-603-D, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems. Mobile and portable (hand-held) stations operating are limited to average ERP, Equivalent isotropic radiated power output measurements by substitution method according to ANSI /TIA / EIA-603-D, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas ,Mobile and portable (hand-held) stations operating are limited to average EIRP.

5.1.2 TEST SETUP

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx(dBuV)+CL(dB)+SA(dB)+Gain(dBi)-107(dBuV to dBm)The SA is calibrated using following setup.

b) EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

5.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 5.6. and ANSI / TIA-603-D-2010 Section 2.2.17.
- 2. The EUT was placed on a non-conductive rotating platform 1.5 meters high in a semi-anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with Peak detector.
- 3. During the measurement, the system simulator parameters were set to force the EUTtransmitting at maximum output power. The maximum emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 4. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to-TIA/EIA-603-D. The EUT was replaced by dipole antenna (substitution antenna) at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain -Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL +Correction factor and ERP = EIRP 2.15.
- 5.RB Set greater than bandwidth, Vb Set spectrum analyzer Maximum support.

5.1.4 TEST RESULTS

LTE Band 2

			Radi	ated Power (EIRP) for L	TE Band 2/	1.4M					
						Result						
Modulation	RB		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion			
	Size	Offset	Onamie	(dBm)	loss		E.R.P(dBm)	Of Max. ERP	Conclusion			
	1	0	Lowest	11.47	2.37	10.40	19.50	Horizontal	Pass			
ODOK	1	0	Middle	13.29	2.39	10.42	21.32	Vertical	Pass			
	1	0	Highest	11.69	2.40	10.44	19.73	Horizontal	Pass			
QPSK	1	0	Lowest	13.4	2.37	10.40	21.43	Vertical	Pass			
	1	0	Middle	11.21	2.39	10.42	19.24	Horizontal	Pass			
	1	0	Highest	13.08	2.40	10.44	21.12	Vertical	Pass			
	1	0	Lowest	11.37	2.37	10.40	19.40	Horizontal	Pass			
	1	0	Middle	13.2	2.39	10.42	21.23	Vertical	Pass			
160011	1	0	Highest	11.55	2.40	10.44	19.59	Horizontal	Pass			
16QAM	1	0	Lowest	13.27	2.37	10.40	21.30	Vertical	Pass			
	1	0	Middle	11.14	2.39	10.42	19.17	Horizontal	Pass			
	1	0	Highest	12.97	2.40	10.44	21.01	Vertical	Pass			
Limit	EIRP<	P<2W=33dBm										

			Rac	liated Power	(EIRP) for L	TE Band 2	/ 3M					
		RB				Result						
Modulation	ΝĎ		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion			
Wodulation	Size	Offset	Chame	(dBm)	loss			Of Max.	Conclusion			
,	Size Oil	Oliset			1033	(dBi)	E.R.P(dBm)	ERP				
	1	0	Lowest	11.38	2.37	10.40	19.41	Horizontal	Pass			
	1	0	Middle	13.29	2.39	10.42	21.32	Vertical	Pass			
QPSK	1	0	Highest	11.53	2.40	10.44	19.57	Horizontal	Pass			
QFSK	1	0	Lowest	13.4	2.37	10.40	21.43	Vertical	Pass			
	1	0	Middle	11.2	2.39	10.42	19.23	Horizontal	Pass			
	1	0	Highest	13.08	2.40	10.44	21.12	Vertical	Pass			
	1	0	Lowest	11.58	2.37	10.40	19.61	Horizontal	Pass			
	1	0	Middle	13.11	2.39	10.42	21.14	Vertical	Pass			
16QAM	1	0	Highest	11.45	2.40	10.44	19.49	Horizontal	Pass			
TOQAW	1	0	Lowest	13.36	2.37	10.40	21.39	Vertical	Pass			
	1	0	Middle	11.22	2.39	10.42	19.25	Horizontal	Pass			
	1	0	Highest	12.98	2.40	10.44	21.02	Vertical	Pass			
Limit	EIRP<	P<2W=33dBm										

			Rad	liated Power	(EIRP) for L	TE Band 2	/ 5M				
		RB				Result	7				
Modulation	ľ	ΚΒ	Channel	S G.Level	Cable	Coin	PMeas	Polarization	Conclusion		
Modulation	Size	Officet	Charmer	(dBm)	loss	Gain	E.R.P(dBm)	Of Max.	Conclusion		
	Size	Offset		(ubiii)	1055	(dBi)	E.K.F(ubili)	ERP			
	1	0	Lowest	11.56	2.37	10.40	19.59	Horizontal	Pass		
	1	0	Middle	13.29	2.39	10.42	21.32	Vertical	Pass		
QPSK	1	0	Highest	11.56	2.40	10.44	19.60	Horizontal	Pass		
QFSN	1	0	Lowest	13.4	2.37	10.40	21.43	Vertical	Pass		
	1	0	Middle	11.11	2.39	10.42	19.14	Horizontal	Pass		
	1	0	Highest	13.08	2.40	10.44	21.12	Vertical	Pass		
	1	0	Lowest	11.55	2.37	10.40	19.58	Horizontal	Pass		
	1	0	Middle	13.15	2.39	10.42	21.18	Vertical	Pass		
16QAM	1	0	Highest	11.63	2.40	10.44	19.67	Horizontal	Pass		
IOQAM	1	0	Lowest	13.34	2.37	10.40	21.37	Vertical	Pass		
	1	0	Middle	11.31	2.39	10.42	19.34	Horizontal	Pass		
	1	0	Highest	12.95	2.40	10.44	20.99	Vertical	Pass		
Limit	EIRP<	EIRP<2W=33dBm									

			Rad	iated Power	(EIRP) for L	TE Band 2 /	10M					
		RB				Result						
Modulation	IND.		Channel	S G.Level	Cable	Gain	DMood	Polarization	Conclusion			
Modulation	Size	Offset	Onamici	(dBm) loss		PMeas	Of Max.	Conclusion				
,	Size Olise	Oliset			1088	(dBi)	E.R.P(dBm)	ERP				
	1	0	Lowest	11.36	2.37	10.40	19.39	Horizontal	Pass			
	1	0	Middle	13.29	2.39	10.42	21.32	Vertical	Pass			
QPSK	1	0	Highest	11.64	2.40	10.44	19.68	Horizontal	Pass			
QFSK	1	0	Lowest	13.4	2.37	10.40	21.43	Vertical	Pass			
	1	0	Middle	11.18	2.39	10.42	19.21	Horizontal	Pass			
	1	0	Highest	13.08	2.40	10.44	21.12	Vertical	Pass			
	1	0	Lowest	11.55	2.37	10.40	19.58	Horizontal	Pass			
	1	0	Middle	13.2	2.39	10.42	21.23	Vertical	Pass			
16QAM	1	0	Highest	11.63	2.40	10.44	19.67	Horizontal	Pass			
TOQAM	1	0	Lowest	13.11	2.37	10.40	21.14	Vertical	Pass			
	1	0	Middle	11.31	2.39	10.42	19.34	Horizontal	Pass			
	1	0	Highest	12.99	2.40	10.44	21.03	Vertical	Pass			
Limit	EIRP<	P<2W=33dBm										

			Rad	iated Power	(EIRP) for L	TE Band 2 /	15M				
		RB				Result					
Modulation	ND.		Channal	C.C.Lovel	Cabla	Coin	DMood	Polarization	Conclusion		
wodulation	Size	Offset	Channel	S G.Level (dBm)	Cable	Gain (dBi)	PMeas	Of Max.	Conclusion		
Size	Size	Size Offset		(dBiii) ioss	1055	(dbl)	E.R.P(dBm)	ERP			
	1	0	Lowest	11.32	2.37	10.40	19.35	Horizontal	Pass		
	1	0	Middle	13.29	2.39	10.42	21.32	Vertical	Pass		
QPSK	1	0	Highest	11.52	2.40	10.44	19.56	Horizontal	Pass		
	1	0	Lowest	13.4	2.37	10.40	21.43	Vertical	Pass		
	1	0	Middle	11.34	2.39	10.42	19.37	Horizontal	Pass		
	1	0	Highest	13.08	2.40	10.44	21.12	Vertical	Pass		
	1	0	Lowest	11.33	2.37	10.40	19.36	Horizontal	Pass		
	1	0	Middle	13.09	2.39	10.42	21.12	Vertical	Pass		
16QAM	1	0	Highest	11.42	2.40	10.44	19.46	Horizontal	Pass		
IOQAM	1	0	Lowest	13.27	2.37	10.40	21.30	Vertical	Pass		
	1	0	Middle	11.36	2.39	10.42	19.39	Horizontal	Pass		
	1	0	Highest	12.81	2.40	10.44	20.85	Vertical	Pass		
Limit	EIRP<	IRP<2W=33dBm									

			Rad	iated Power	(EIRP) for L	TE Band 2 /	20M					
		DD.				Result						
Modulation	RB		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion			
Modulation	Size	Offset	Charmer	(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion			
	SIZE C	0.23			1033	(ubi)	E.K.P(ubili)	ERP				
	1	0	Lowest	11.9	2.37	10.40	19.93	Horizontal	Pass			
	1	0	Middle	13.79	2.39	10.42	21.82	Vertical	Pass			
QPSK	1	0	Highest	12.04	2.40	10.44	20.08	Horizontal	Pass			
QFSK	1	0	Lowest	13.78	2.37	10.40	21.81	Vertical	Pass			
	1	0	Middle	11.94	2.39	10.42	19.97	Horizontal	Pass			
	1	0	Highest	13.79	2.40	10.44	21.83	Vertical	Pass			
	1	0	Lowest	11.89	2.37	10.40	19.92	Horizontal	Pass			
	1	0	Middle	13.64	2.39	10.42	21.67	Vertical	Pass			
16QAM	1	0	Highest	12.03	2.40	10.44	20.07	Horizontal	Pass			
IOQAW	1	0	Lowest	13.56	2.37	10.40	21.59	Vertical	Pass			
	1	0	Middle	11.93	2.39	10.42	19.96	Horizontal	Pass			
	1	0	Highest	13.73	2.40	10.44	21.77	Vertical	Pass			
Limit	EIRP<	P<2W=33dBm										

LTE Band 4

			Radi	ated Power ((EIRP) for L	TE Band 4 /	1.4M			
	_					Result				
Modulation	RB		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
Modulation	C:	04224	Charmer		loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion	
Size	Size	Size Offset			1033	(dDI)	Litti (dbiii)	ERP		
	1	0	Lowest	12.3	2.35	10.13	20.08	Horizontal	Pass	
	1	0	Middle	14.04	2.36	10.16	21.84	Vertical	Pass	
QPSK	1	0	Highest	12.43	2.37	10.22	20.28	Horizontal	Pass	
QFSN	1	0	Lowest	14.23	2.35	10.13	22.01	Vertical	Pass	
	1	0	Middle	12.44	2.36	10.16	20.24	Horizontal	Pass	
	1	0	Highest	14.18	2.37	10.22	22.03	Vertical	Pass	
	1	0	Lowest	12.07	2.35	10.13	19.85	Horizontal	Pass	
	1	0	Middle	13.88	2.36	10.16	21.68	Vertical	Pass	
16QAM	1	0	Highest	12.23	2.37	10.22	20.08	Horizontal	Pass	
IOQAM	1	0	Lowest	13.96	2.35	10.13	21.74	Vertical	Pass	
	1	0	Middle	12.48	2.36	10.16	20.28	Horizontal	Pass	
	1	0	Highest	13.97	2.37	10.22	21.82	Vertical	Pass	
Limit	EIRP<	IRP<1W=30dBm								

			-	lists d Day	(EIDD) (TE D 1 4	/ 014					
	Г		Rac	liated Power	(EIRP) for L	IE Band 4	/ 3M		<u> </u>			
	_	RB			Result							
Modulation	11.0		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion			
Modulation	Size	Offset	Chamilei					Of Max.	Conclusion			
	Size	Size Oliset		(dBIII)	1088	(dBi)	E.R.P(dBm)	ERP				
	1	0	Lowest	12.17	2.35	10.13	19.95	Horizontal	Pass			
	1	0	Middle	14.06	2.36	10.16	21.86	Vertical	Pass			
QPSK	1	0	Highest	12.38	2.37	10.22	20.23	Horizontal	Pass			
QFSK	1	0	Lowest	14.24	2.35	10.13	22.02	Vertical	Pass			
	1	0	Middle	12.5	2.36	10.16	20.30	Horizontal	Pass			
	1	0	Highest	14.16	2.37	10.22	22.01	Vertical	Pass			
	1	0	Lowest	12.18	2.35	10.13	19.96	Horizontal	Pass			
	1	0	Middle	13.8	2.36	10.16	21.60	Vertical	Pass			
16QAM	1	0	Highest	12.32	2.37	10.22	20.17	Horizontal	Pass			
TOQAM	1	0	Lowest	14.21	2.35	10.13	21.99	Vertical	Pass			
	1	0	Middle	12.49	2.36	10.16	20.29	Horizontal	Pass			
	1	0	Highest	14.11	2.37	10.22	21.96	Vertical	Pass			
Limit	EIRP<	x1W=30dBm										

Radiated Power (EIRP) for LTE Band 4 / 5M										
Modulation	RB		Channel	Result						
				S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
	Size	Offset	Chame	(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion	
								ERP		
QPSK	1	0	Lowest	12.13	2.35	10.13	19.91	Horizontal	Pass	
	1	0	Middle	14.07	2.36	10.16	21.87	Vertical	Pass	
	1	0	Highest	12.44	2.37	10.22	20.29	Horizontal	Pass	
	1	0	Lowest	14.23	2.35	10.13	22.01	Vertical	Pass	
	1	0	Middle	12.24	2.36	10.16	20.04	Horizontal	Pass	
	1	0	Highest	14.14	2.37	10.22	21.99	Vertical	Pass	
16QAM	1	0	Lowest	12.17	2.35	10.13	19.95	Horizontal	Pass	
	1	0	Middle	13.8	2.36	10.16	21.60	Vertical	Pass	
	1	0	Highest	12.36	2.37	10.22	20.21	Horizontal	Pass	
	1	0	Lowest	14.17	2.35	10.13	21.95	Vertical	Pass	
	1	0	Middle	12.43	2.36	10.16	20.23	Horizontal	Pass	
	1	0	Highest	13.98	2.37	10.22	21.83	Vertical	Pass	
Limit	EIRP<1W=30dBm									

Radiated Power (EIRP) for LTE Band 4 / 10M										
Modulation	RB		Channel	Result						
				S G.Level	Cable	Cain	PMeas	Polarization	Conclusion	
	Size	Offset	Chamer	(dBm)	loss	Gain	E.R.P(dBm)	Of Max.	Conclusion	
				(ubiii)	1055	(dBi)		ERP		
QPSK	1	0	Lowest	12.21	2.35	10.13	19.99	Horizontal	Pass	
	1	0	Middle	14.09	2.36	10.16	21.89	Vertical	Pass	
	1	0	Highest	12.22	2.37	10.22	20.07	Horizontal	Pass	
	1	0	Lowest	14.24	2.35	10.13	22.02	Vertical	Pass	
	1	0	Middle	12.23	2.36	10.16	20.03	Horizontal	Pass	
	1	0	Highest	14.16	2.37	10.22	22.01	Vertical	Pass	
16QAM	1	0	Lowest	12.27	2.35	10.13	20.05	Horizontal	Pass	
	1	0	Middle	13.85	2.36	10.16	21.65	Vertical	Pass	
	1	0	Highest	12.22	2.37	10.22	20.07	Horizontal	Pass	
	1	0	Lowest	14.12	2.35	10.13	21.90	Vertical	Pass	
	1	0	Middle	12.22	2.36	10.16	20.02	Horizontal	Pass	
	1	0	Highest	13.97	2.37	10.22	21.82	Vertical	Pass	
Limit	EIRP<1W=30dBm									

			Rad	iated Power	(EIRP) for L	TE Band 4 /	15M					
		RB			Result							
Modulation	KD		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion			
Modulation	Size	e Offset	Chamilei	(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion			
					1055	(ubi)	L.N.F (UDIII)	ERP				
	1	0	Lowest	12.14	2.35	10.13	19.92	Horizontal	Pass			
	1	0	Middle	14.1	2.36	10.16	21.90	Vertical	Pass			
QPSK	1	0	Highest	12.37	2.37	10.22	20.22	Horizontal	Pass			
QFSK	1	0	Lowest	14.22	2.35	10.13	22.00	Vertical	Pass			
	1	0	Middle	12.48	2.36	10.16	20.28	Horizontal	Pass			
	1	0	Highest	14.17	2.37	10.22	22.02	Vertical	Pass			
	1	0	Lowest	12.16	2.35	10.13	19.94	Horizontal	Pass			
	1	0	Middle	13.85	2.36	10.16	21.65	Vertical	Pass			
16QAM	1	0	Highest	12.27	2.37	10.22	20.12	Horizontal	Pass			
IOQAW	1	0	Lowest	14.08	2.35	10.13	21.86	Vertical	Pass			
	1	0	Middle	12.45	2.36	10.16	20.25	Horizontal	Pass			
	1	0	Highest	14.02	2.37	10.22	21.87	Vertical	Pass			
Limit	EIRP<	EIRP<1W=30dBm										

			Rad	iated Power	(EIRP) for L	TE Band 4 /	20M				
		. .									
Modulation	RB		Channel	S G.Level		Polarization	Conclusion				
Modulation	Size	Offset	Channel	(dBm)	Cable	Gain (dBi)	PMeas E.R.P(dBm)	Of Max.	Conclusion		
	Size Offset		(ubiii)	1055	(ubi)	(dBi) Litti (dBiii)	ERP				
	1	0	Lowest	12.21	2.35	10.13	19.99	Horizontal	Pass		
	1	0	Middle	14.11	2.36	10.16	21.91	Vertical	Pass		
QPSK	1	0	Highest	12.26	2.37	10.22	20.11	Horizontal	Pass		
QFSK	1	0	Lowest	14.25	2.35	10.13	22.03	Vertical	Pass		
	1	0	Middle	12.31	2.36	10.16	20.11	Horizontal	Pass		
	1	0	Highest	14.16	2.37	10.22	22.01	Vertical	Pass		
	1	0	Lowest	12.18	2.35	10.13	19.96	Horizontal	Pass		
	1	0	Middle	14	2.36	10.16	21.80	Vertical	Pass		
16QAM	1	0	Highest	12.37	2.37	10.22	20.22	Horizontal	Pass		
IOQAM	1	0	Lowest	14.07	2.35	10.13	21.85	Vertical	Pass		
	1	0	Middle	12.42	2.36	10.16	20.22	Horizontal	Pass		
	1	0	Highest	13.97	2.37	10.22	21.82	Vertical	Pass		
Limit	EIRP<	EIRP<1W=30dBm									

LTE Band 7

			Rad	liated Power	(EIRP) for L	TE Band 7	/ 5M		
		₹B				Result			
Modulation	ΝD		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion
iviodulation	Size	Officet	Charmer	(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion
		Offset		(ubili)	1033	(ubi)	L.IV.I (GDIII)	ERP	
	1	0	Lowest	11.52	2.56	10.60	19.56	Horizontal	Pass
	1	0	Middle	13.34	2.67	10.65	21.32	Vertical	Pass
QPSK	1	0	Highest	11.73	2.72	10.70	19.71	Horizontal	Pass
QFSK	1	0	Lowest	13.39	2.56	10.60	21.43	Vertical	Pass
	1	0	Middle	11.21	2.67	10.65	19.19	Horizontal	Pass
	1	0	Highest	13.14	2.72	10.70	21.12	Vertical	Pass
	1	0	Lowest	11.35	2.56	10.60	19.39	Horizontal	Pass
	1	0	Middle	13.16	2.67	10.65	21.14	Vertical	Pass
16QAM	1	0	Highest	11.7	2.72	10.70	19.68	Horizontal	Pass
TOQAW	1	0	Lowest	13.2	2.56	10.60	21.24	Vertical	Pass
	1	0	Middle	11.33	2.67	10.65	19.31	Horizontal	Pass
	1	0	Highest	13.06	2.72	10.70	21.04	Vertical	Pass
Limit	EIRP<	:2W=33d	Bm						

			Rad	iated Power	(EIRP) for L	TE Band 7 /	10M				
	-	D.D.				Result					
Modulation	RB		Channel	S G.Level	Cable	Gain	DMoos	Polarization	Conclusion		
Modulation	Size	Offset	Charmer	(dBm)	loss		PMeas E.R.P(dBm)	Of Max.	Conclusion		
	Size	Oliset		(ubiii)	1055	(dBi)		ERP			
	1	0	Lowest	12.07	2.56	10.60	20.11	Horizontal	Pass		
	1	0	Middle	14.01	2.67	10.65	21.99	Vertical	Pass		
QPSK	1	0	Highest	12.26	2.72	10.70	20.24	Horizontal	Pass		
QFSK	1	0	Lowest	13.98	2.56	10.60	22.02	Vertical	Pass		
	1	0	Middle	12.35	2.67	10.65	20.33	Horizontal	Pass		
	1	0	Highest	14.09	2.72	10.70	22.07	Vertical	Pass		
	1	0	Lowest	12.23	2.56	10.60	20.27	Horizontal	Pass		
	1	0	Middle	13.94	2.67	10.65	21.92	Vertical	Pass		
16QAM	1	0	Highest	12.09	2.72	10.70	20.07	Horizontal	Pass		
IOQAW	1	0	Lowest	13.96	2.56	10.60	22.00	Vertical	Pass		
-	1	0	Middle	12.32	2.67	10.65	20.30	Horizontal	Pass		
	1	0	Highest	13.86	2.72	10.70	21.84	Vertical	Pass		
Limit	EIRP<	IRP<2W=33dBm									

			Rad	iated Power	(EIRP) for L	TE Band 7 /	15M				
		DD.			Result						
Modulation	RB		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion		
Modulation	Size	Offset	Chame		loss	(dBi)		Of Max.	Conclusion		
	Size	Oliset			1000	(ubi)	E.R.P(dBm)	ERP			
	1	0	Lowest	12.19	2.56	10.60	20.23	Horizontal	Pass		
	1	0	Middle	14	2.67	10.65	21.98	Vertical	Pass		
QPSK	1	0	Highest	12.27	2.72	10.70	20.25	Horizontal	Pass		
QFSK	1	0	Lowest	13.97	2.56	10.60	22.01	Vertical	Pass		
	1	0	Middle	12.16	2.67	10.65	20.14	Horizontal	Pass		
	1	0	Highest	14.07	2.72	10.70	22.05	Vertical	Pass		
	1	0	Lowest	12.14	2.56	10.60	20.18	Horizontal	Pass		
	1	0	Middle	13.95	2.67	10.65	21.93	Vertical	Pass		
16QAM	1	0	Highest	12.27	2.72	10.70	20.25	Horizontal	Pass		
IOQAW	1	0	Lowest	13.69	2.56	10.60	21.73	Vertical	Pass		
	1	0	Middle	12.18	2.67	10.65	20.16	Horizontal	Pass		
	1	0	Highest	14.02	2.72	10.70	22.00	Vertical	Pass		
Limit	EIRP<	EIRP<2W=33dBm									

			Rad	iated Power	(EIRP) for L	TE Band 7 /	20M					
		.										
Modulation	RB		Channel	S G.Level	Cable	Cain	PMeas	Polarization	Conclusion			
Modulation	Size	Offset	Channel	(dBm)	loss	Gain (dBi)	E.R.P(dBm)	Of Max.	Conclusion			
	Size Uliset		(ubiii)	1055	(dBi)	Litti (dbiii)	ERP					
	1	0	Lowest	12.22	2.56	10.60	20.26	Horizontal	Pass			
	1	0	Middle	14.01	2.67	10.65	21.99	Vertical	Pass			
QPSK	1	0	Highest	12.31	2.72	10.70	20.29	Horizontal	Pass			
QFSK	1	0	Lowest	13.98	2.56	10.60	22.02	Vertical	Pass			
	1	0	Middle	12.12	2.67	10.65	20.10	Horizontal	Pass			
	1	0	Highest	14.09	2.72	10.70	22.07	Vertical	Pass			
	1	0	Lowest	11.97	2.56	10.60	20.01	Horizontal	Pass			
	1	0	Middle	13.95	2.67	10.65	21.93	Vertical	Pass			
16QAM	1	0	Highest	12.26	2.72	10.70	20.24	Horizontal	Pass			
IOQAM	1	0	Lowest	13.87	2.56	10.60	21.91	Vertical	Pass			
	1	0	Middle	12.26	2.67	10.65	20.24	Horizontal	Pass			
	1	0	Highest	13.82	2.72	10.70	21.80	Vertical	Pass			
Limit	EIRP<	EIRP<2W=33dBm										

LTE Band 17

			Rad	iated Power	(EIRP) for L	TE Band 17	/ 5M			
		RB				Result			Conclusion	
Modulation	Г	Λ D	Channel	S G.Level	Cable	Gain	PMeas	Polarization		
Wodulation	Size	Offset	Onamie		loss	(dBi)	E.R.P(dBm)	Of Max.	Conclusion	
	Size	Oliset		(dBIII)	1055	(ubi)		ERP		
	1	0	Lowest	15.51	1.21	6.40	20.70	Horizontal	Pass	
	1	0	Middle	17.39	1.22	6.40	22.57	Vertical	Pass	
QPSK	1	0	Highest	15.38	1.23	6.40	20.55	Horizontal	Pass	
QFSK	1	0	Lowest	17.29	1.21	6.40	22.48	Vertical	Pass	
	1	0	Middle	15.46	1.22	6.40	20.64	Horizontal	Pass	
	1	0	Highest	17.28	1.23	6.40	22.45	Vertical	Pass	
	1	0	Lowest	15.63	1.21	6.40	20.82	Horizontal	Pass	
	1	0	Middle	17.26	1.22	6.40	22.44	Vertical	Pass	
16QAM	1	0	Highest	15.38	1.23	6.40	20.55	Horizontal	Pass	
TOQAW	1	0	Lowest	17.17	1.21	6.40	22.36	Vertical	Pass	
	1	0	Middle	15.41	1.22	6.40	20.59	Horizontal	Pass	
	1	0	Highest	17.25	1.23	6.40	22.42	Vertical	Pass	
Limit	ERP<3W=34.77dBm									

			Radi	ated Power (EIRP) for LT	E Band 17	/ 10M			
	_	RB								
Modulation	IND.		Channel	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
Modulation	Size	Offset	Oname		loss		E.R.P(dBm)	Of Max.	Conclusion	
	Size	Oliset		(dBm)	1055	(dBi)		ERP		
	1	0	Lowest	15.39	1.21	6.40	20.58	Horizontal	Pass	
	1	0	Middle	17.38	1.22	6.40	22.56	Vertical	Pass	
QPSK	1	0	Highest	15.4	1.23	6.40	20.57	Horizontal	Pass	
QFSK	1	0	Lowest	17.28	1.21	6.40	22.47	Vertical	Pass	
	1	0	Middle	15.36	1.22	6.40	20.54	Horizontal	Pass	
	1	0	Highest	17.28	1.23	6.40	22.45	Vertical	Pass	
	1	0	Lowest	15.4	1.21	6.40	20.59	Horizontal	Pass	
	1	0	Middle	17.22	1.22	6.40	22.40	Vertical	Pass	
16QAM	1	0	Highest	15.37	1.23	6.40	20.54	Horizontal	Pass	
TOQAIVI	1	0	Lowest	17.1	1.21	6.40	22.29	Vertical	Pass	
	1	0	Middle	15.31	1.22	6.40	20.49	Horizontal	Pass	
	1	0	Highest	17.23	1.23	6.40	22.40	Vertical	Pass	
Limit	ERP<3W=34.77dBm									

6. OCCUPIED BANDWIDTH

6.1 DESCRIPTION OF OCCUPIED BANDWIDTH MEASUREMENT

6.1.1 MEASUREMENT METHOD

- 1. The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.
- 2. The 26 db emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 db below the maximum in-band spectral density of the modulated signal. spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

6.1.2 TEST SETUP

6.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 4.1.and 4.2
- 2. The EUT was connected to spectrum and system simulator via a power divider
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure the Occupied Bandwidth of the spectrum analyzer
- 5. Measure and record the Occupied Bandwidth from the Spectrum Analyzer.

	LTE								
LTE BW	1.4M	3M	5M	10M	15M	20M			
Span	3MHz	6MHz	10MHz	20MHz	30MHz	40MHz			
RBW	30kHz	30kHz	100kHz	100kHz	300kHz	300kHz			
VBW	100kHz	100kHz	300kHz	300kHz	1000kHz	1000kHz			
Detector	PK	PK	PK	PK	PK	PK			
Trace	Max	Max	Max	Max	Max	Max			
Sweep Count	Auto	Auto	Auto	Auto	Auto	Auto			

6.1.4 MEASUREMENT RESULT

LTE BAND 2

LTE Band 2 Bandwidth [MHz]											
BW [MHz]	Mod	Low	est est	Mid	dle	Highest					
DVV [IVII IZ]	IVIOU	26dB BW	99% BW	26dB BW	99% BW	26dB BW	99% BW				
1.4	QPSK	1.259	1.1025	1.309	1.1020	1.262	1.0944				
1.4	16-QAM	1.266	1.0942	1.265	1.0990	1.281	1.1015				
3	QPSK	2.948	2.6970	2.950	2.7002	2956	2.6984				
3	16-QAM	2.952	2.6943	2.955	2.6915	2.977	2.6934				
5	QPSK	5.145	4.5751	5.129	4.5578	5.137	4.5677				
5	16-QAM	5.155	4.5735	5.131	4.5742	5.136	4.5710				
10	QPSK	9.781	8.9494	9.749	8.9599	9.842	8.9703				
10	16-QAM	9.727	8.9576	9.770	8.9618	9.679	8.9488				
15	QPSK	15.09	13.613	15.06	13.597	15.10	13.593				
15	16-QAM	15.02	13.594	15.01	13.606	15.07	13.602				
20	QPSK	19.62	17.992	19.66	18.029	19.66	18.017				
20	16-QAM	19.67	18.012	19.63	17.996	19.64	18.038				

LTE BAND 4

		LTE	Band 4 Ba	ndwidth [M	lHz]		
BW [MHz]	Mod	Low	est	Mid	dle	Highest	
DVV [IVII 12]	IVIOU	26dB BW	99% BW	26dB BW	99% BW	26dB BW	99% BW
1.4	QPSK	1.286	1.1005	1.263	1.1035	1.274	1.0933
1.4	16-QAM	1.257	1.0947	1.279	1.0959	1.280	1.0984
3	QPSK	2.907	2.6867	2.913	2.6816	2.899	2.6812
3	16-QAM	2.913	2.6803	2.898	2.6765	2.921	2.6802
5	QPSK	5.100	4.5283	5.000	4.5187	5.042	4.5266
5	16-QAM	5.077	4.5246	5.047	4.5166	5.059	4.5241
10	QPSK	9.707	8.9548	9.742	8.9423	9.649	8.9362
10	16-QAM	9.623	8.9411	9.756	8.9399	9.693	8.9430
15	QPSK	14.89	13.461	14.94	13.484	14.80	13.491
15	16-QAM	14.79	13.496	14.80	13.496	14.78	13.495
20	QPSK	19.36	17.949	19.65	17.957	19.32	17.908
20	16-QAM	19.39	17.976	19.38	17.906	19.44	17.930

LTE Band 7 Bandwidth [MHz]										
BW [MHz]	Mod	Lowest		Mid	dle	Highest				
בארוויון אים	Mod	26dB BW	99% BW	26dB BW	99% BW	26dB BW	99% BW			
5	QPSK	5.083	4.5275	5.032	4.5263	5.093	4.5313			
5	16-QAM	5.057	4.5299	5.110	4.5212	5.109	4.5339			
10	QPSK	9.671	8.9311	9.752	8.9533	9.672	8.9452			
10	16-QAM	9.666	8.9435	9.648	8.9414	9.720	8.9405			
15	QPSK	14.75	13.472	14.93	13.515	14.90	13.485			
15	16-QAM	14.82	13.512	14.81	13.509	14.81	13.499			
20	QPSK	19.33	17.919	19.62	17.974	19.62	17.935			
20	16-QAM	19.47	17.945	19.40	17.966	19.45	17.921			

LTE BAND 17

LTE Band XVII Bandwidth [MHz]											
D\\\	Mod	Low	est est	Mid	dle	Highest					
BW [MHz]	V [MHz] Mod 26dB BW		99% BW	26dB BW	99% BW	26dB BW	99% BW				
5	QPSK	5.116	4.5367	5.061	4.5216	5.040	4.5232				
5	16-QAM	5.113	4.5310	5.082	4.5337	5.050	4.5212				
10	QPSK	9.720	8.9480	9.736	8.9525	9.763	8.9402				
10	16-QAM	9.735	8.9500	9.560	8.9434	9.721	8.9400				

NOTE: Test Plot See Appendix A part1 and part2.

Report No.: STS1612254F05

7. CONDUCTED BAND EDGE

7.1 DESCRIPTION OF CONDUCTED BAND EDGE MEASUREMENT

7.1.1 MEASUREMENT METHOD

1. §22.917(a)

For operations in the 824 – 849 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100kHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

2. §24.238 (a)

For operations in the 1850-1910 and 1930-1990 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 1MHz bandwidth. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed

3. §27.53 (h)

For operations in the 1710 – 1755 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 1 MHz bandwidth. However, in the 1MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4. §27.53(m)(4)

For operations in the 2500 MHz ~ 2570 MHz band this section, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition,the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHzand 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licenseesoperating on frequencies below 2495 MHz may also submit a documented interference complaintagainst BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

5. §27.53 (g)

For operations in the 698 -746 MHz band, the FCC limit is 43 + 10log10(P[Watts]) dB below the transmitter power P(Watts) in a 100 kHz bandwidth. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

7.1.2 TEST SETUP

7.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. The band edges of low and high channels for the highest RF powers were measured. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Set spectrum analyzer with RMS/AVG detector
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frquency band.
- 6. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

Band 7:

- = P(W) [55 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [55 + 10log(P)] (dB)
- = -25dBm.

	LTE									
LTE BW	1.4M	3M	5M	10M	15M	20M				
Span	12MHz	13MHz	15MHz	20MHz	25MHz	30MHz				
RBW	30kHz	30kHz	100kHz	100kHz	300kHz	300kHz				
VBW	100kHz	100kHz	300kHz	300kHz	1000kHz	1000kHz				
Detector	RMS	RMS	RMS	RMS	RMS	RMS				
Trace	Max	Max	Max	Max	Max	Max				
Sweep Count	Auto	Auto	Auto	Auto	Auto	Auto				

7.1.4 MEASUREMENT RESULT

NOTE: Test Plot See Appendix B part1 and part2

8. CONDUCTED SPURIOUS EMISSION

8.1 DESCRIPTION OF CONDUCTED SPURIOUS EMISSION MEASUREMENT

8.1.1 MEASUREMENT METHOD

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. For Band 7:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 55 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

8.1.2 TEST SETUP

8.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement
- 4. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frquency band.
- 6. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB) = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

For Band 7:P(W)- [43 + 10log(P)] (dB) =-25dBm

	LTE										
LTE BW	1.4M	3M	5M	10M	15M	20M					
Span	Auto	Auto	Auto	Auto	Auto	Auto					
RBW	1000kHz	1000kHz	1000kHz	1000kHz	1000kHz	1000kHz					
VBW	3000kHz	3000kHz	3000kHz	3000kHz	3000kHz	3000kHz					
Detector	PK	PK	PK	PK	PK	PK					
Trace	Max	Max	Max	Max	Max	Max					

8.1.4 TEST RESULTS

NOTE: Test Plot See Appendix C part1 and part2

9. RADIATED SPURIOUS EMISSION

9.1 DESCRIPTION OF RADIATED SPURIOUS EMISSION

9.1.1 MEASUREMENT METHOD

The radiated spurious emission was measured by substitution method according to ANSI / TIA / EIA-603-D-2010. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. For Band 7 The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 55 + 10 log (P) dB. For Band. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

5.1.2 Test Setup

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx (dBuV) +CL (dB) +SA (dB) +Gain (dBi) -107 (dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Pow-

9.1.3 TEST PROCEDURES

- 1. The testing follows FCC KDB 971168 v02r02 Section 5.8 and ANSI / TIA-603-D-2010 Section 2.2.12.
- 2. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 5. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 9. Taking the record of output power at antenna port.
- 10. Repeat step 7 to step 8 for another polarization.
- 11. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm

For Band 7:

The limit line is derived from $55 + 10\log(P)dB$ below the transmitter power P(Watts)

- = [30 + 10log(P)] (dBm) [55 + 10log(P)] (dB)
- = -25dBm

EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain

ERP (dBm) = EIRP - 2.15

9.1.4 TEST RESULTS

LTE BAND 2

LTE Band 2 / 1	.4MHz / QF	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for	Lowest
	S G.Lev	۸ ۱/ حاD: ۱	1.000	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3701.27	-34.93	12.60	12.93	-35.26	-13.00	-22.26	Н
5552.01	-34.99	13.10	17.11	-39.00	-13.00	-26.00	Н
7402.75	-32.30	11.50	22.20	-43.00	-13.00	-30.00	Н
3701.27	-35.15	12.60	12.93	-35.48	-13.00	-22.48	V
5552.01	-34.92	13.10	17.11	-38.93	-13.00	-25.93	V
7402.75	-32.80	11.50	22.20	-43.50	-13.00	-30.50	V
LTE Band 2 / 1	.4MHz / QF	PSK / RB S	ize 1 Offse	et 0/ The W	orst Test R	esults for	Middle
Frequency(MHz)	S G.Lev	Ant/dDi)	Loca	PMea	Limit	Margin	Dolority
Frequency(MHZ)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3760.24	-34.73	12.60	12.93	-35.06	-13.00	-22.06	Н
5640.08	-35.30	13.10	17.11	-39.31	-13.00	-26.31	Н
7519.86	-32.99	11.50	22.20	-43.69	-13.00	-30.69	Н
3760.24	-35.48	12.60	12.93	-35.81	-13.00	-22.81	V
5640.08	-34.19	13.10	17.11	-38.20	-13.00	-25.20	V
7519.86	-33.20	11.50	22.20	-43.90	-13.00	-30.90	V
LTE Band 2 / 1.	4MHz/QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for l	Highest
Fraguenov(MHz)	S G.Lev	۸ nt/dDi\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3818.47	-34.27	12.60	12.93	-34.60	-13.00	-21.60	Н
5727.45	-34.43	13.10	17.11	-38.44	-13.00	-25.44	Н
7636.75	-33.27	11.50	22.20	-43.97	-13.00	-30.97	Н
3818.47	-35.80	12.60	12.93	-36.13	-13.00	-23.13	V
5727.45	-34.19	13.10	17.11	-38.20	-13.00	-25.20	V
7636.75	-32.30	11.50	22.20	-43.00	-13.00	-30.00	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 2/3	3MHz / QP	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for L	owest
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
r requericy(ivii iz)	(dBm)	Ant(ubi)	LU55	(dBm)	(dBm)	(dBm)	Folanty
3703.39	-33.75	12.60	12.93	-34.08	-13.00	-21.08	Н
5554.30	-35.15	13.10	17.11	-39.16	-13.00	-26.16	Н
7406.55	-32.54	11.50	22.20	-43.24	-13.00	-30.24	Н
3703.39	-34.85	12.60	12.93	-35.18	-13.00	-22.18	V
5554.30	-34.10	13.10	17.11	-38.11	-13.00	-25.11	V
7406.55	-31.73	11.50	22.20	-42.43	-13.00	-29.43	V
LTE Band 2 /	3MHz / QP	SK / RB Siz	ze 1 Offset	0/ The Wo	orst Test Re	esults for N	/liddle
[S G.Lev	A 4/ -ID:\	1	PMea	Limit	Margin	Dalavitu
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3760.05	-33.65	12.60	12.93	-33.98	-13.00	-20.98	Н
5640.14	-34.06	13.10	17.11	-38.07	-13.00	-25.07	Н
7520.17	-32.68	11.50	22.20	-43.38	-13.00	-30.38	Н
3760.05	-34.60	12.60	12.93	-34.93	-13.00	-21.93	V
5640.14	-33.94	13.10	17.11	-37.95	-13.00	-24.95	V
7520.17	-32.92	11.50	22.20	-43.62	-13.00	-30.62	V
LTE Band 2/3	MHz / QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	ighest
[S G.Lev	۸ ۱/ حاD: ۱	1.555	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3816.56	-34.07	12.60	12.93	-34.40	-13.00	-21.40	Н
5725.08	-34.71	13.10	17.11	-38.72	-13.00	-25.72	Н
7633.14	-32.78	11.50	22.20	-43.48	-13.00	-30.48	Н
3816.56	-35.43	12.60	12.93	-35.76	-13.00	-22.76	V
5725.08	-33.84	13.10	17.11	-37.85	-13.00	-24.85	V
7633.14	-32.24	11.50	22.20	-42.94	-13.00	-29.94	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. Test is divided into three directions, X/Y/Z. X pattern for the worst.

LTE Band 2 / 5MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest **PMea** Limit S G.Lev Margin Frequency(MHz) Ant(dBi) Loss Polarity (dBm) (dBm) (dBm) (dBm) 3705.46 -33.74 12.60 12.93 -34.07-13.00 -21.07Н 5557.76 -35.30 13.10 17.11 -39.31 -13.00 -26.31 Н 22.20 Н 7410.53 -32.89 11.50 -43.59-13.00 -30.59 3705.46 -35.52 12.60 12.93 -35.85 -13.00 -22.85V ٧ 5557.76 -34.72 13.10 17.11 -38.73 -13.00 -25.73 7410.53 -32.95 11.50 22.20 -43.65 -13.00 -30.65 V LTE Band 2 / 5MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Middle **PMea** Limit S G.Lev Margin Frequency(MHz) Ant(dBi) **Polarity** Loss (dBm) (dBm) (dBm) (dBm) 3759.95 -34.94 12.60 12.93 -35.27 -13.00-22.27Η 17.11 Н 5639.87 -35.22 13.10 -39.23-13.00-26.237519.94 -32.31 11.50 22.20 -43.01 -13.00-30.01 Н -35.17 V 12.60 12.93 -13.00 -22.173759.95 -34.84 -35.18 17.11 V 5639.87 13.10 -39.19 -13.00 -26.19 ٧ 7519.94 -32.82 11.50 22.20 -43.52-13.00 -30.52 LTE Band 2 / 5MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Highest S G.Lev Limit **PMea** Margin Frequency(MHz) Ant(dBi) Loss Polarity (dBm) (dBm) (dBm) (dBm) 3814.02 -34.67 12.60 12.93 -35.00 -13.00 -22.00 Η 5721.14 -35.25 13.10 17.11 -39.26 -13.00 -26.26Н 7628.55 -32.63 11.50 22.20 -43.33 -13.00-30.33 Н ٧ 3814.02 -35.33 12.60 12.93 -35.66-13.00 -22.66 ٧ 5721.14 -33.99 13.10 17.11 -38.00 -13.00 -25.00

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. Test is divided into three directions, X/Y/Z. X pattern for the worst.

22.20

-43.09

-13.00

11.50

V

-30.09

7628.55

-32.39

LTE Band 2 / 1	0MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for I	Lowest
_	S G.Lev		_	PMea	Limit	Margin	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3710.31	-33.48	12.60	12.93	-33.81	-13.00	-20.81	Н
5565.53	-34.62	13.10	17.11	-38.63	-13.00	-25.63	Н
7421.25	-33.10	11.50	22.20	-43.80	-13.00	-30.80	Н
3710.31	-35.46	12.60	12.93	-35.79	-13.00	-22.79	V
5565.53	-34.48	13.10	17.11	-38.49	-13.00	-25.49	V
7421.25	-31.97	11.50	22.20	-42.67	-13.00	-29.67	V
LTE Band 2 / 1	0MHz / QF	SK / RB Si	ize 1 Offse	t 0/ The W	orst Test R	esults for	Middle
Fraguanov(MUz)	S G.Lev	Ant(dDi)	Loss	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	LUSS	(dBm)	(dBm)	(dBm)	Polarity
3760.13	-33.65	12.60	12.93	-33.98	-13.00	-20.98	Н
5640.09	-34.59	13.10	17.11	-38.60	-13.00	-25.60	Н
7519.97	-33.05	11.50	22.20	-43.75	-13.00	-30.75	Н
3760.13	-34.95	12.60	12.93	-35.28	-13.00	-22.28	V
5640.09	-34.13	13.10	17.11	-38.14	-13.00	-25.14	V
7519.97	-32.45	11.50	22.20	-43.15	-13.00	-30.15	V
LTE Band 2 / 1	0MHz / QP	SK / RB Siz	ze 1 Offset	0/ The Wo	orst Test Re	esults for h	lighest
Frequency(MHz)	S G.Lev	Ant/dDi\	Loss	PMea	Limit	Margin	Polority.
Frequency(MHz)	(dBm)	Ant(dBi)	L055	(dBm)	(dBm)	(dBm)	Polarity
3809.33	-34.90	12.60	12.93	-35.23	-13.00	-22.23	Н
5713.92	-34.85	13.10	17.11	-38.86	-13.00	-25.86	Н
7618.25	-33.41	11.50	22.20	-44.11	-13.00	-31.11	Н
3809.33	-34.90	12.60	12.93	-35.23	-13.00	-22.23	V
5713.92	-34.81	13.10	17.11	-38.82	-13.00	-25.82	V
1	i)	1	1		i	1	i .

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

22.20

-42.74

-13.00

-29.74

٧

11.50

Test is divided into three directions, X/Y/Z. X pattern for the worst.

-32.04

7618.25

LTE Band 2 / 1	5MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for I	Lowest
Fragues (MIII)	S G.Lev	\ nt(dD;)	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3716.11	-33.45	12.60	12.93	-33.78	-13.00	-20.78	Н
5573.98	-34.55	13.10	17.11	-38.56	-13.00	-25.56	Н
7618.85	-32.80	11.50	22.20	-43.50	-13.00	-30.50	Н
3716.11	-34.60	12.60	12.93	-34.93	-13.00	-21.93	V
5573.98	-34.10	13.10	17.11	-38.11	-13.00	-25.11	V
7618.85	-32.12	11.50	22.20	-42.82	-13.00	-29.82	V
LTE Band 2 /	5MHz / QP	SK / RB Siz	ze 1 Offset	0/ The Wo	orst Test Re	esults for N	Middle
[S G.Lev	۸ ۱/ حاD: ۱	1.555	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3759.89	-33.91	12.60	12.93	-34.24	-13.00	-21.24	Н
5640.24	-34.76	13.10	17.11	-38.77	-13.00	-25.77	Н
7520.04	-32.99	11.50	22.20	-43.69	-13.00	-30.69	Н
3759.89	-35.35	12.60	12.93	-35.68	-13.00	-22.68	V
5640.24	-34.85	13.10	17.11	-38.86	-13.00	-25.86	V
7520.04	-32.23	11.50	22.20	-42.93	-13.00	-29.93	V
LTE Band 2 / 5	MHz / QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	lighest
	SGLOV			PMoa	Limit	Margin	

Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	Piviea	Limit	wargin	Polarity
1 requericy(ivii iz)	(dBm)	Anti(abi)	L055	(dBm)	(dBm)	(dBm)	Folarity
3803.73	-33.70	12.60	12.93	-34.03	-13.00	-21.03	Η
5705.27	-34.62	13.10	17.11	-38.63	-13.00	-25.63	Η
7607.33	-32.30	11.50	22.20	-43.00	-13.00	-30.00	Н
3803.73	-34.66	12.60	12.93	-34.99	-13.00	-21.99	>
5705.27	-34.69	13.10	17.11	-38.70	-13.00	-25.70	V
7607.33	-32.05	11.50	22.20	-42.75	-13.00	-29.75	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

DAND Z							
LTE Band 2 / 2	20MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for I	Lowest
	S G.Lev	A 4 (-1D:)	1	PMea	Limit	Margin	Dalasita
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3721.45	-34.54	12.60	12.93	-34.87	-13.00	-21.87	Н
5581.54	-34.40	13.10	17.11	-38.41	-13.00	-25.41	Н
7441.73	-33.49	11.50	22.20	-44.19	-13.00	-31.19	Н
3721.45	-35.43	12.60	12.93	-35.76	-13.00	-22.76	V
5581.54	-34.69	13.10	17.11	-38.70	-13.00	-25.70	V
7441.73	-32.27	11.50	22.20	-42.97	-13.00	-29.97	V
LTE Band 2/	IOMHz / QF	SK / RB Si	ize 1 Offse	t 0/ The W	orst Test R	esults for	Middle
	S G.Lev	A 4/ -ID:\	1	PMea	Limit	Margin	Dalasita
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3760.02	-33.99	12.60	12.93	-34.32	-13.00	-21.32	Н
5640.09	-35.21	13.10	17.11	-39.22	-13.00	-26.22	Н
7520.13	-33.27	11.50	22.20	-43.97	-13.00	-30.97	Н
3760.02	-35.69	12.60	12.93	-36.02	-13.00	-23.02	V
5640.09	-34.68	13.10	17.11	-38.69	-13.00	-25.69	V
7520.13	-33.14	11.50	22.20	-43.84	-13.00	-30.84	V
LTE Band 2 / 1	0MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The Wo	orst Test Re	esults for h	lighest
	S G.Lev	۸ ۱/ حاD: ۱	1.000	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3798.43	-33.61	12.60	12.93	-33.94	-13.00	-20.94	Н
5697.46	-35.37	13.10	17.11	-39.38	-13.00	-26.38	Н
7596.89	-32.90	11.50	22.20	-43.60	-13.00	-30.60	Н
3798.43	-35.57	12.60	12.93	-35.90	-13.00	-22.90	V
5697.46	-35.23	13.10	17.11	-39.24	-13.00	-26.24	V
7596.89	-32.46	11.50	22.20	-43.16	-13.00	-30.16	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 4 / 1.	4MHz / QF	SK/RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for	Lowest
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
Frequency(MHz)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dBm)	Polarity
3422.20	-33.57	12.90	12.56	-33.23	-13.00	-20.23	Н
5133.48	-35.30	13.10	12.46	-34.66	-13.00	-21.66	Н
6844.86	-32.72	12.33	21.13	-41.52	-13.00	-28.52	Н
3422.20	-34.52	12.90	12.76	-34.38	-13.00	-21.38	V
5133.48	-33.99	13.10	16.32	-37.21	-13.00	-24.21	V
6844.86	-32.44	12.33	21.13	-41.24	-13.00	-28.24	V
LTE Band 4 / 1	.4MHz / QF	PSK / RB S	ize 1 Offse	et 0/ The W	orst Test R	esults for	Middle
	S G.Lev	۸ ۱/ ما ا ت)	1.000	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3466.14	-33.88	12.80	12.56	-33.64	-13.00	-20.64	Н
5199.25	-34.78	13.10	12.46	-34.14	-13.00	-21.14	Н
6932.19	-33.22	12.33	21.13	-42.02	-13.00	-29.02	Н
3466.14	-34.58	12.80	12.76	-34.54	-13.00	-21.54	V
5199.25	-34.13	13.10	16.32	-37.35	-13.00	-24.35	V
6932.19	-32.78	12.33	21.13	-41.58	-13.00	-28.58	V
LTE Band 4 / 1.	4MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for I	Highest
	S G.Lev	۸ nat/dD:\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3508.36	-34.41	12.61	12.56	-34.36	-13.00	-21.36	Н
5262.36	-35.01	13.12	12.46	-34.35	-13.00	-21.35	Н
7015.96	-33.06	12.32	21.13	-41.87	-13.00	-28.87	Н
3508.36	-34.98	12.61	12.76	-35.13	-13.00	-22.13	V
5262.36	-34.22	13.12	16.32	-37.42	-13.00	-24.42	V
7015.96	-32.79	12.32	21.13	-41.60	-13.00	-28.60	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. Test is divided into three directions, X/Y/Z. X pattern for the worst.

BAND 4							
LTE Band 4/3	3MHz/QP	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for L	owest
Гио ж о ю о / М. I	S G.Lev	۸ ۱/ ماD: ۱	Lana	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3424.30	-34.05	12.90	12.56	-33.71	-13.00	-20.71	Н
5136.21	-35.04	13.10	12.46	-34.40	-13.00	-21.40	Н
6848.55	-33.25	12.33	21.13	-42.05	-13.00	-29.05	Н
3424.30	-34.57	12.90	12.76	-34.43	-13.00	-21.43	V
5136.21	-34.05	13.10	16.32	-37.27	-13.00	-24.27	V
6848.55	-32.99	12.33	21.13	-41.79	-13.00	-28.79	V
LTE Band 4 /	3MHz / QP	SK / RB Siz	ze 1 Offset	0/ The Wo	orst Test Re	sults for N	/liddle
	S G.Lev	۸ ۱/ ما ا ت)	1.000	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3465.77	-34.53	12.80	12.56	-34.29	-13.00	-21.29	Н
5199.26	-34.03	13.10	12.46	-33.39	-13.00	-20.39	Н
6931.90	-32.86	12.33	21.13	-41.66	-13.00	-28.66	Н
3465.77	-35.65	12.80	12.76	-35.61	-13.00	-22.61	V
5199.26	-33.83	13.10	16.32	-37.05	-13.00	-24.05	V
6931.90	-32.66	12.33	21.13	-41.46	-13.00	-28.46	V
LTE Band 4/3	BMHz / QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	ighest
Fragues av (MIII-)	S G.Lev	۸ nat/dD:\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3506.76	-33.97	12.61	12.56	-33.92	-13.00	-20.92	Н
5262.23	-35.14	13.12	12.46	-34.48	-13.00	-21.48	Н
7012.94	-33.43	12.32	21.13	-42.24	-13.00	-29.24	Н
3506.76	-34.80	12.61	12.76	-34.95	-13.00	-21.95	V
5262.23	-34.63	13.12	16.32	-37.83	-13.00	-24.83	V
7012.94	-32.95	12.32	21.13	-41.76	-13.00	-28.76	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. Test is divided into three directions, X/Y/Z. X pattern for the worst.

BAND 4							
LTE Band 4/	5MHz/QP	SK / RB Siz	ze 1 Offset	0/ The Wo	rst Test Re	sults for L	.owest
	S G.Lev	۸ - مد/ حا ا ت: /	1	PMea	Limit	Margin	Dolovitu
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3426.47	-33.93	12.90	12.56	-33.59	-13.00	-20.59	Н
5139.48	-35.27	13.10	12.46	-34.63	-13.00	-21.63	Н
6852.52	-33.62	12.33	21.13	-42.42	-13.00	-29.42	Н
3426.47	-34.76	12.90	12.76	-34.62	-13.00	-21.62	V
5139.48	-34.60	13.10	16.32	-37.82	-13.00	-24.82	V
6852.52	-32.14	12.33	21.13	-40.94	-13.00	-27.94	V
LTE Band 4 /	5MHz / QP	SK / RB Siz	ze 1 Offset	t 0/ The Wo	orst Test Re	sults for N	Middle
	S G.Lev	A 4(-ID:)	1	PMea	Limit	Margin	Dalasita
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3465.77	-33.45	12.80	12.56	-33.21	-13.00	-20.21	Н
5198.83	-34.93	13.10	12.46	-34.29	-13.00	-21.29	Н
6931.94	-32.26	12.33	21.13	-41.06	-13.00	-28.06	Н
3465.77	-35.13	12.80	12.76	-35.09	-13.00	-22.09	V
5198.83	-33.93	13.10	16.32	-37.15	-13.00	-24.15	V
6931.94	-32.71	12.33	21.13	-41.51	-13.00	-28.51	V
LTE Band 4 / 5	MHz / QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	lighest
	S G.Lev	A 4(-ID:)	1	PMea	Limit	Margin	Dalasita
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
3506.73	-34.93	12.61	12.56	-34.88	-13.00	-21.88	Н
5262.49	-34.44	13.12	12.46	-33.78	-13.00	-20.78	Н
7013.10	-33.11	12.32	21.13	-41.92	-13.00	-28.92	Н
3506.73	-35.47	12.61	12.76	-35.62	-13.00	-22.62	V
5262.49	-35.22	13.12	16.32	-38.42	-13.00	-25.42	V
7013.10	-32.61	12.32	21.13	-41.42	-13.00	-28.42	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 4 / 10MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest									
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
r requericy(ivii iz)	(dBm)	Ant(abi)	L055	(dBm)	(dBm)	(dBm)	Polarity		
3436.45	-34.81	12.90	12.56	-34.47	-13.00	-21.47	Н		
5154.44	-34.00	13.10	12.46	-33.36	-13.00	-20.36	Н		
6872.94	-32.43	12.33	21.13	-41.23	-13.00	-28.23	Н		
3436.45	-35.67	12.90	12.76	-35.53	-13.00	-22.53	V		
5154.44	-34.74	13.10	16.32	-37.96	-13.00	-24.96	V		
6872.94	-32.23	12.33	21.13	-41.03	-13.00	-28.03	V		
LTE Band 4 / 1	0MHz / QF	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for	Middle		
	S G.Lev	۸ nat/dD:\	Loop	PMea	Limit	Margin	Dolority		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3465.77	-34.75	12.80	12.56	-34.51	-13.00	-21.51	Н		
5199.21	-34.83	13.10	12.46	-34.19	-13.00	-21.19	Н		
6932.12	-33.45	12.33	21.13	-42.25	-13.00	-29.25	Н		
3465.77	-35.97	12.80	12.76	-35.93	-13.00	-22.93	V		
5199.21	-34.58	13.10	16.32	-37.80	-13.00	-24.80	V		
6932.12	-32.38	12.33	21.13	-41.18	-13.00	-28.18	V		
LTE Band 4 / 10	0MHz / QP	SK / RB Siz	ze 1 Offset	t 0/ The Wo	orst Test Re	esults for h	lighest		
Гла си из си (NALI-)	S G.Lev	۸ ۱/ ماD: ۱	1.000	PMea	Limit	Margin	Delevity		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3494.49	-34.69	12.61	12.56	-34.64	-13.00	-21.64	Н		
5241.22	-34.37	13.12	12.46	-33.71	-13.00	-20.71	Н		
6988.22	-32.65	12.32	21.13	-41.46	-13.00	-28.46	Н		
3494.49	-35.46	12.61	12.76	-35.61	-13.00	-22.61	V		
5241.22	-34.71	13.12	16.32	-37.91	-13.00	-24.91	V		
6988.22	-32.69	12.32	21.13	-41.50	-13.00	-28.50	V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

DAND 4									
LTE Band 4 / 15MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest									
	S G.Lev	A := 4 (= 1 D ;)	1	PMea	Limit	Margin	Dalasitus		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3436.35	-33.69	12.90	12.56	-33.35	-13.00	-20.35	Н		
5154.24	-35.25	13.10	12.46	-34.61	-13.00	-21.61	Н		
6872.88	-32.31	12.33	21.13	-41.11	-13.00	-28.11	Н		
3436.35	-34.62	12.90	12.76	-34.48	-13.00	-21.48	V		
5154.24	-34.71	13.10	16.32	-37.93	-13.00	-24.93	V		
6872.88	-32.32	12.33	21.13	-41.12	-13.00	-28.12	V		
LTE Band 4 /	5MHz / QP	SK / RB Si	ze 1 Offset	0/ The Wo	orst Test Re	esults for N	Middle		
(NALL)	S G.Lev	A := 4 (= 1 D ;)	1	PMea	Limit	Margin	Polarity H		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)			
3465.83	-34.64	12.80	12.56	-34.40	-13.00	-21.40	Н		
5199.15	-34.32	13.10	12.46	-33.68	-13.00	-20.68	Н		
6932.30	-32.42	12.33	21.13	-41.22	-13.00	-28.22	Н		
3465.83	-34.68	12.80	12.76	-34.64	-13.00	-21.64	V		
5199.15	-34.47	13.10	16.32	-37.69	-13.00	-24.69	V		
6932.30	-32.83	12.33	21.13	-41.63	-13.00	-28.63	V		
LTE Band 4 / 5	MHz / QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	lighest		
[S G.Lev	۸ ۱/ حاD: /	Lana	PMea	Limit	Margin	Delevity		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3494.45	-33.80	12.61	12.56	-33.75	-13.00	-20.75	Н		
5242.51	-35.15	13.12	12.46	-34.49	-13.00	-21.49	Н		
6989.39	-32.89	12.32	21.13	-41.70	-13.00	-28.70	Н		
3494.45	-35.83	12.61	12.76	-35.98	-13.00	-22.98	V		
5242.51	-34.89	13.12	16.32	-38.09	-13.00	-25.09	V		
6989.39	-32.27	12.32	21.13	-41.08	-13.00	-28.08	V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 4 / 20MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest										
	S G.Lev	A 4/ -ID:\	1	PMea	Limit	Margin	Dalamit			
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
3440.23	-34.78	12.90	12.56	-34.44	-13.00	-21.44	Н			
5160.67	-34.49	13.10	12.46	-33.85	-13.00	-20.85	Н			
6880.77	-33.10	12.33	21.13	-41.90	-13.00	-28.90	Н			
3440.23	-35.18	12.90	12.76	-35.04	-13.00	-22.04	V			
5160.67	-34.63	13.10	16.32	-37.85	-13.00	-24.85	V			
6880.77	-32.85	12.33	21.13	-41.65	-13.00	-28.65	V			
LTE Band 4 / 1	OMHz/QF	SK / RB Si	ize 1 Offse	t 0/ The W	orst Test R	esults for	Middle			
Face (MILL)	S G.Lev	A 4 (-1D:)	1	PMea	Limit	Margin	Polarity			
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)				
3465.86	-34.63	12.80	12.56	-34.39	-13.00	-21.39	Н			
5199.18	-35.41	13.10	12.46	-34.77	-13.00	-21.77	Н			
6932.25	-32.44	12.33	21.13	-41.24	-13.00	-28.24	Н			
3465.86	-35.49	12.80	12.76	-35.45	-13.00	-22.45	V			
5199.18	-34.17	13.10	16.32	-37.39	-13.00	-24.39	V			
6932.25	-33.20	12.33	21.13	-42.00	-13.00	-29.00	V			
LTE Band 4 / 1	0MHz / QP	SK / RB Si	ze 1 Offse	t 0/ The Wo	orst Test Re	esults for h	lighest			
	S G.Lev	۸ ۱/ حاD: ۱	1.555	PMea	Limit	Margin	Delevity			
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
3490.82	-34.69	12.61	12.56	-34.64	-13.00	-21.64	Н			
5235.46	-34.79	13.12	12.46	-34.13	-13.00	-21.13	Н			
6980.24	-33.41	12.32	21.13	-42.22	-13.00	-29.22	Н			
3490.82	-35.76	12.61	12.76	-35.91	-13.00	-22.91	V			
5235.46	-34.60	13.12	16.32	-37.80	-13.00	-24.80	V			
6980.24	-33.13	12.32	21.13	-41.94	-13.00	-28.94	V			

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

BAILD I							
LTE Band 7 /	5MHz/QP	SK / RB Siz	ze 1 Offset	0/ The Wo	rst Test Re	sults for L	.owest
Fragues av/MLI=)	S G.Lev	Λ mt/dD;\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
5005.28	-34.38	12.66	12.54	-34.26	-13.00	-21.26	Н
7507.82	-35.04	11.46	12.57	-36.15	-13.00	-23.15	Н
10010.44	-32.96	12.79	21.23	-41.40	-13.00	-28.40	Н
5005.28	-35.32	12.66	12.54	-35.20	-13.00	-22.20	\ \
7507.82	-34.46	11.46	12.57	-35.57	-13.00	-22.57	V
10010.44	-32.60	12.79	21.23	-41.04	-13.00	-28.04	V
LTE Band 7 /	5MHz / QP	SK / RB Siz	ze 1 Offset	t 0/ The Wo	orst Test Re	esults for N	Middle
Fragues av (MIII-)	S G.Lev	Λ mt/dD;\	Loop	PMea	Limit	Margin	Polarity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	
5069.80	-33.67	12.72	12.55	-33.50	-13.00	-20.50	Н
7604.95	-34.85	11.46	12.57	-35.96	-13.00	-22.96	Н
10140.03	-32.66	12.09	21.25	-41.82	-13.00	-28.82	Н
5069.80	-35.93	12.80	12.55	-35.68	-13.00	-22.68	V
7604.95	-34.59	13.10	12.57	-34.06	-13.00	-21.06	V
10140.03	-31.88	12.33	21.25	-40.80	-13.00	-27.80	\ \
LTE Band 7 / 5	MHz/QPS	SK / RB Siz	e 1 Offset	0/ The Wo	rst Test Re	sults for H	lighest
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
Frequency(MH2)	(dBm)	Anii(ubi)	L055	(dBm)	(dBm)	(dBm)	Polarity
5134.38	-34.38	12.76	12.57	-34.19	-13.00	-21.19	Н
7701.25	-34.16	11.45	12.58	-35.29	-13.00	-22.29	Н
10268.34	-32.60	12.28	21.27	-41.59	-13.00	-28.59	Н
5134.38	-35.10	12.76	12.57	-34.91	-13.00	-21.91	V
7701.25	-34.25	11.45	12.58	-35.38	-13.00	-22.38	V
10268.34	-32.72	12.28	21.27	-41.71	-13.00	-28.71	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

BAND /							
LTE Band 7 / 1	0MHz/QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for I	Lowest
	S G.Lev	۸ ۱/ حاD: ۱	1	PMea	Limit	Margin	Delevity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
5010.12	-34.59	12.66	12.54	-34.47	-13.00	-21.47	Н
7515.72	-34.02	11.46	12.57	-35.13	-13.00	-22.13	Н
10021.07	-33.41	12.79	21.23	-41.85	-13.00	-28.85	Н
5010.12	-34.68	12.66	12.54	-34.56	-13.00	-21.56	V
7515.72	-34.04	11.46	12.57	-35.15	-13.00	-22.15	V
10021.07	-32.63	12.79	21.23	-41.07	-13.00	-28.07	V
LTE Band 7 / 1	IOMHz / QF	SK / RB Si	ize 1 Offse	t 0/ The W	orst Test R	esults for	Middle
	S G.Lev	A 4(-ID:)	1	PMea	Limit	Margin	Polarity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	
5069.78	-34.33	12.72	12.55	-34.16	-13.00	-21.16	Н
7605.06	-34.30	11.46	12.57	-35.41	-13.00	-22.41	Н
10139.85	-32.33	12.09	21.25	-41.49	-13.00	-28.49	Н
5069.78	-34.64	12.80	12.55	-34.39	-13.00	-21.39	V
7605.06	-33.97	13.10	12.57	-33.44	-13.00	-20.44	V
10139.85	-33.11	12.33	21.25	-42.03	-13.00	-29.03	V
LTE Band 7 / 1	0MHz/QP	SK / RB Si	ze 1 Offse	t 0/ The Wo	orst Test Re	esults for H	Highest
Fragues av/MII=)	S G.Lev	Λ mt/dD;\	Loop	PMea	Limit	Margin	Dolority
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity
5129.36	-34.76	12.76	12.57	-34.57	-13.00	-21.57	Н
7694.17	-35.38	11.45	12.58	-36.51	-13.00	-23.51	Н
10258.97	-33.49	12.28	21.27	-42.48	-13.00	-29.48	Н
5129.36	-34.99	12.76	12.57	-34.80	-13.00	-21.80	V
7694.17	-35.22	11.45	12.58	-36.35	-13.00	-23.35	V
10258.97	-33.02	12.28	21.27	-42.01	-13.00	-29.01	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

arity H H V
- - - - -
- - - - -

+
V
V
V
9
Polarity H
1
+
V
V
V
st
ority.
arity
+
+
1
V
V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 7 / 20MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest									
S G.Lev	Apt(dDi)	Loss	PMea	Limit	Margin	Polority /			
(dBm)	Ani(dBI)	LOSS	(dBm)	(dBm)	(dBm)	Polarity			
-34.84	12.66	12.54	-34.72	-13.00	-21.72	Н			
-34.64	11.46	12.57	-35.75	-13.00	-22.75	Н			
-32.58	12.79	21.23	-41.02	-13.00	-28.02	Н			
-35.53	12.66	12.54	-35.41	-13.00	-22.41	V			
-34.53	11.46	12.57	-35.64	-13.00	-22.64	V			
-32.17	12.79	21.23	-40.61	-13.00	-27.61	V			
0MHz / QF	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for	Middle			
S G.Lev	۸ nat/dD:)	Loop	PMea	Limit	Margin	Polarity H			
(dBm)	Ant(dBI)	LOSS	(dBm)	(dBm)	(dBm)				
-34.32	12.72	12.55	-34.15	-13.00	-21.15	Н			
-34.64	11.46	12.57	-35.75	-13.00	-22.75	Н			
-32.61	12.09	21.25	-41.77	-13.00	-28.77	Н			
-34.97	12.80	12.55	-34.72	-13.00	-21.72	V			
-34.04	13.10	12.57	-33.51	-13.00	-20.51	V			
-32.52	12.33	21.25	-41.44	-13.00	-28.44	V			
0MHz/QP	SK / RB Siz	ze 1 Offse	t 0/ The Wo	orst Test Re	esults for H	lighest			
S G.Lev	۸ nat/dD:)	Loop	PMea	Limit	Margin	Dolority			
(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dBm)	Polarity			
-33.62	12.76	12.57	-33.43	-13.00	-20.43	Н			
-34.31	11.45	12.58	-35.44	-13.00	-22.44	Н			
-33.58	12.28	21.27	-42.57	-13.00	-29.57	Н			
-35.92	12.76	12.57	-35.73	-13.00	-22.73	V			
-33.76	11.45	12.58	-34.89	-13.00	-21.89	V			
-32.15	12.28	21.27	-41.14	-13.00	-28.14	V			
	S G.Lev (dBm) -34.84 -34.64 -32.58 -35.53 -34.53 -32.17 OMHz / QF S G.Lev (dBm) -34.32 -34.64 -32.61 -34.97 -34.04 -32.52 OMHz / QP S G.Lev (dBm) -33.62 -34.31 -33.58 -35.92 -33.76	S G.Lev (dBm) -34.84 -34.64 -34.64 -32.58 -34.53 -34.53 -32.17 -32.17 -32.79 OMHz / QPSK / RB Si S G.Lev (dBm) -34.32 -34.64 -32.61 -34.97 -3	S G.Lev (dBm) Ant(dBi) Loss -34.84 12.66 12.54 -34.64 11.46 12.57 -32.58 12.79 21.23 -35.53 12.66 12.54 -34.53 11.46 12.57 -32.17 12.79 21.23 OMHz / QPSK / RB Size 1 Offset S G.Lev (dBm) Ant(dBi) Loss -34.32 12.72 12.55 -34.64 11.46 12.57 -32.61 12.09 21.25 -34.97 12.80 12.55 -34.04 13.10 12.57 -32.52 12.33 21.25 OMHz / QPSK / RB Size 1 Offset S G.Lev (dBm) Ant(dBi) Loss S G.Lev (dBm) Ant(dBi) Loss 12.57 -34.31 11.45 12.58 -33.58 12.28 21.27 -35.92 12.76 12.57 -33.76 11.45 12.58	S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -34.84 12.66 12.54 -34.72 -34.64 11.46 12.57 -35.75 -32.58 12.79 21.23 -41.02 -35.53 12.66 12.54 -35.41 -34.53 11.46 12.57 -35.64 -32.17 12.79 21.23 -40.61 OMHz / QPSK / RB Size 1 Offset 0/ The W S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -34.32 12.72 12.55 -34.15 -34.64 11.46 12.57 -35.75 -32.61 12.09 21.25 -41.77 -34.97 12.80 12.55 -34.72 -34.04 13.10 12.57 -33.51 -32.52 12.33 21.25 -41.44 OMHz / QPSK / RB Size 1 Offset 0/ The World (dBm) (dBm) -33.62 12.57 -33.43 -34.31 11.45 12.58 -35.44 -33.58 12.28	S G.Lev (dBm)	S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) Limit (dBm) Margin (dBm) -34.84 12.66 12.54 -34.72 -13.00 -21.72 -34.64 11.46 12.57 -35.75 -13.00 -22.75 -32.58 12.79 21.23 -41.02 -13.00 -28.02 -35.53 12.66 12.54 -35.41 -13.00 -22.41 -34.53 11.46 12.57 -35.64 -13.00 -22.64 -32.17 12.79 21.23 -40.61 -13.00 -27.61 OMHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Interpretation of Color o			

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

DAND II								
LTE Band 17 /	5MHz/QP	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for l	_owest	
F (8.41.1.)	S G.Lev	A . (/ ID')	1	PMea	Limit	Margin	Dalasii	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity	
1413.06	-33.73	8.17	9.34	-34.90	-13.00	-21.90	Н	
2120.55	-35.32	9.53	10.42	-36.21	-13.00	-23.21	Н	
2826.58	-32.67	11.27	11.12	-32.52	-13.00	-19.52	Н	
1413.06	-35.54	8.17	9.34	-36.71	-13.00	-23.71	V	
2120.55	-34.41	9.53	10.42	-35.30	-13.00	-22.30	V	
2826.58	-32.59	11.27	11.12	-32.44	-13.00	-19.44	V	
LTE Band 17 /	5MHz/QF	SK / RB Si	ze 1 Offse	t 0/ The W	orst Test R	esults for	Middle	
Fragues av/MII=)	S G.Lev	Λ mt/dD;\	Loop	PMea	Limit	Margin	Polarity	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)		
1419.80	-34.73	8.17	9.34	-35.90	-13.00	-22.90	Н	
2129.93	-35.00	9.53	10.42	-35.89	-13.00	-22.89	Н	
2840.20	-32.15	11.27	11.12	-32.00	-13.00	-19.00	Н	
1419.80	-35.91	8.17	9.34	-37.08	-13.00	-24.08	V	
2129.93	-33.83	9.53	10.42	-34.72	-13.00	-21.72	V	
2840.20	-32.08	11.27	11.12	-31.93	-13.00	-18.93	V	
LTE Band 17 /	5MHz/QP	SK / RB Si	ze 1 Offse	t 0/ The Wo	orst Test Re	esults for h	lighest	
Fragues av (NALIE)	S G.Lev	Λ mt/dD;\	Loop	PMea	Limit	Margin	Dolority	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity	
1425.96	-34.28	8.17	9.34	-35.45	-13.00	-22.45	Н	
2139.28	-34.21	9.53	10.42	-35.10	-13.00	-22.10	Н	
2852.50	-33.09	11.27	11.12	-32.94	-13.00	-19.94	Н	
1425.96	-34.66	8.17	9.34	-35.83	-13.00	-22.83	V	
2139.28	-34.46	9.53	10.42	-35.35	-13.00	-22.35	V	
2852.50	-32.09	11.27	11.12	-31.94	-13.00	-18.94	V	

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. Test is divided into three directions, X/Y/Z. X pattern for the worst.

DAND II									
LTE Band 17 / 10MHz / QPSK / RB Size 1 Offset 0/ The Worst Test Results for Lowest									
	S G.Lev	۸ ۱/ حاD: ۱	1.555	PMea	Limit	Margin	Delevity		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1418.40	-33.44	8.17	9.34	-34.61	-13.00	-21.61	Н		
2127.50	-34.20	9.53	10.42	-35.09	-13.00	-22.09	Н		
2836.47	-32.98	11.27	11.12	-32.83	-13.00	-19.83	Н		
1418.40	-34.58	8.17	9.34	-35.75	-13.00	-22.75	V		
2127.50	-33.87	9.53	10.42	-34.76	-13.00	-21.76	V		
2836.47	-32.30	11.27	11.12	-32.15	-13.00	-19.15	V		
LTE Band 17 /	10MHz / Q	PSK / RB S	ize 1 Offs	et 0/ The W	orst Test F	Results for	Middle		
F (A411.)	S G.Lev	A 4 (-1D:)	1	PMea	Limit	Margin	Polarity		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)			
1419.94	-34.78	8.17	9.34	-35.95	-13.00	-22.95	Н		
2130.18	-35.31	9.53	10.42	-36.20	-13.00	-23.20	Н		
2840.06	-33.29	11.27	11.12	-33.14	-13.00	-20.14	Н		
1419.94	-34.94	8.17	9.34	-36.11	-13.00	-23.11	V		
2130.18	-34.73	9.53	10.42	-35.62	-13.00	-22.62	V		
2840.06	-33.21	11.27	11.12	-33.06	-13.00	-20.06	V		
LTE Band 17 / 1	IOMHz/QF	PSK / RB S	ize 1 Offse	et 0/ The W	orst Test R	esults for	Highest		
	S G.Lev	۸ ۱/ حاD: ۱	1.555	PMea	Limit	Margin	Dalaritu		
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1421.18	-34.68	8.17	9.34	-35.85	-13.00	-22.85	Н		
2131.77	-34.61	9.53	10.42	-35.50	-13.00	-22.50	Н		
2842.41	-33.46	11.27	11.12	-33.31	-13.00	-20.31	Н		
1421.18	-35.53	8.17	9.34	-36.70	-13.00	-23.70	V		
2131.77	-34.22	9.53	10.42	-35.11	-13.00	-22.11	V		
2842.41	-31.76	11.27	11.12	-31.61	-13.00	-18.61	V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

10. FREQUENCY STABILITY

10.1 DESCRIPTION OF FREQUENCY STABILITY MEASUREMENT

10.1.1 MEASUREMENT METHOD

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency.

10.1.2 Test Setup

10.1.3 TEST PROCEDURES FOR TEMPERATURE VARIATION

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

10.1.4 TEST PROCEDURES FOR VOLTAGE VARIATION

- 1. The testing follows FCC KDB 971168 v02r02 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simlator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

10.1.4 MEASUREMENT RESULT

LTE BAND 2

	LTE Band 2 (QPSK) / 1880MHz / BW10M									
Temperature	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
(°C)	(Volt)	(Hz)	(ppm)							
50		11.92	0.006							
40		28.44	0.015		PASS					
30		36.49	0.019	2.5ppm						
20	Normal Vol-	23.69	0.013							
10		12.47	0.007							
0	tage	21.52	0.011							
-10		17.77	0.009							
-20		15.07	0.008							
-30		36.39	0.019							
25	Maximum Voltage	20.47	0.011							
25	BEP	30.46	0.016							

	LTE Band 2 (QPSK) / 1880MHz / BW20M									
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
	(Volt)	(Hz)	(ppm)							
50		33.02	0.018							
40		33.80	0.018		PASS					
30	Normal Vol-	12.83	0.007	2.5ppm						
20		19.85	0.011							
10		34.61	0.018							
0	tage	36.43	0.019							
-10		13.70	0.007							
-20		29.95	0.016							
-30		14.70	0.008							
25	Maximum	24.77	0.013							
	Voltage	24.77	0.013							
25	BEP	26.83	0.014							

Note:

- 1. Normal Voltage = 3.8V .; Battery End Point (BEP) = 3.4 V.; Maximum Voltage = 4.35 V
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

	LTE Band 4 (QPSK) / 1733MHz / BW10M									
Temperature	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result					
(°C)	(Volt)	(Hz)	(ppm)							
50		12.28	0.007							
40		11.61	0.007		PASS					
30		30.72	0.018	2.50000						
20	Normal Vol-	31.00	0.018							
10		34.04	0.020							
0	- tage	14.44	0.008							
-10		13.71	0.008	- 2.5ppm						
-20		28.74	0.017							
-30		32.28	0.019							
25	Maximum Voltage	21.93	0.013							
25	BEP	18.22	0.011							

LTE Band 4 (QPSK) / 1733MHz / BW20M					
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
	(Volt)	(Hz)	(ppm)		
50		19.28	0.011	2.5ppm	PASS
40		17.72	0.010		
30		13.55	0.008		
20	Normal Vol- tage	20.77	0.012		
10		17.19	0.010		
0		35.50	0.020		
-10		24.90	0.014		
-20		30.96	0.018		
-30		31.57	0.018		
25	Maximum	35.41 0.020	0.020		
	Voltage				
25	BEP	17.00	0.010		

Note:

- 1. Normal Voltage = 3.8V .; Battery End Point (BEP) = 3.4 V.; Maximum Voltage = 4.35 V
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

LTE Band 4 (QPSK) / 2535MHz / BW10M					
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit Re	Result
	(Volt)	(Hz)	(ppm)		
50		12.56	0.005	2.5ppm	PASS
40		34.15	0.013		
30		22.07	0.009		
20	Normal Vol- tage	15.47	0.006		
10		15.44	0.006		
0		21.16	0.008		
-10		32.57	0.013		
-20		29.37	0.012		
-30		32.91	0.013		
25	Maximum Voltage	20.20	0.008		
25	BEP	27.11	0.011		

LTE Band 4 (QPSK) / 2535MHz / BW20M					
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
	(Volt)	(Hz)	(ppm)		
50		31.02	0.012	2.5ppm	PASS
40		26.84	0.011		
30		16.80	0.007		
20	Normal Val	24.58	0.010		
10	Normal Vol- tage	23.12	0.009		
0		14.81	0.006		
-10		18.97	0.007		
-20		17.87	0.007		
-30		16.82	0.007		
25	Maximum	16.60	0.007		
	Voltage				
25	BEP	12.82	0.005		

Note:

- 1. Normal Voltage = 3.8V .; Battery End Point (BEP) = 3.4 V.; Maximum Voltage = 4.35 V
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

LTE Band 17 (QPSK) / 710MHz / BW5M					
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
	(Volt)	(Hz)	(ppm)		
50		35.18	0.050	2.5ppm	PASS
40		22.24	0.031		
30		18.22	0.026		
20	Normal Vol- tage	19.39	0.027		
10		12.47	0.018		
0		23.23	0.033		
-10		21.22	0.003		
-20		32.45	0.046		
-30		26.45	0.037		
25	Maximum Voltage	19.16	0.027		
25	BEP	14.18	0.020		

LTE Band 17 (QPSK) / 710MHz / BW10M					
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
	(Volt)	(Hz)	(ppm)		
50		19.77	0.028	2.5ppm	PASS
40		25.08	0.035		
30		12.92	0.018		
20	Nowe of Vol	28.87	0.041		
10	Normal Vol- tage	19.81	0.028		
0		31.53	0.044		
-10		27.78	0.004		
-20		32.73	0.046		
-30		25.18	0.035		
25	Maximum	30.12	0.042		
	Voltage				
25	BEP	12.57	0.018		

Note:

- 1. Normal Voltage = 3.8V .; Battery End Point (BEP) = 3.4 V.; Maximum Voltage = 4.35 V
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

PHOTOS OF TEST SETUP

RADIATED SPURIOUS EMISSION

* * * * * END OF THE REPORT * * * *