Stretch

Given the following right Cauchy-Green deformation tensor C

$$[C] = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0.36 \end{bmatrix} \tag{1}$$

- (a) Find the stretch for the material elements that were in the direction of \underline{e}_1 , \underline{e}_2 and \underline{e}_3 .
- (b) Find the stretch for the material element that was in the direction of $\underline{e}_1 + \underline{e}_2$.
- (c) Find $\cos \theta$, where θ is the angle between $d\underline{x}^{(1)}$ and $d\underline{x}^{(2)}$ and where $d\underline{X}^{(1)} = dS_1\underline{e}_1$ and $d\underline{X}^{(2)} = dS_2\underline{e}_1$ deform into $d\underline{x}^{(1)} = ds_1\underline{m}$ and $d\underline{x}^{(2)} = ds_2\underline{u}$.

Solution

(a) Let us recall that

$$\frac{|\underline{v}|}{|\underline{V}|} = \frac{\sqrt{\underline{v} \cdot \underline{v}}}{\sqrt{\underline{V} \cdot \underline{V}}} = \frac{\underline{\underline{V}} \cdot \underline{\underline{C}} \cdot \underline{V}}{\underline{\underline{V}} \cdot \underline{V}} = \sqrt{C_{ii}}$$
 (2)

Thus, stretch for direction \underline{e}_1 is $\sqrt{C_{11}}=3$, stretch for direction \underline{e}_2 is $\sqrt{C_{22}}=2$, stretch for direction \underline{e}_3 is $\sqrt{C_{33}}=0.6$,

(b) To get stretch for direction $\underline{e}_1 + \underline{e}_2$, we define $|\underline{V}| = \frac{1}{\sqrt{2}}(\underline{e}_1 + \underline{e}_2)$, so we have

$$\underline{v} \cdot \underline{v} = \underline{V} \cdot \underline{\underline{C}} \cdot \underline{V} = \frac{1}{2} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0.36 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{13}{2}$$
 (3)

So the stretch is $\frac{13}{2}$.

(c) To find $\cos \theta$,

$$\sin \theta = \frac{|\underline{dx}^{(1)}| \cdot |\underline{dx}^{(2)}|}{|\underline{dX}^{(1)}| \cdot |\underline{dX}^{(2)}|} = \frac{dS_1 \underline{e}_1 \cdot \underline{\underline{C}} \cdot \underline{e}_2 dS_2}{dS_1 dS_2} = C_{12} = 0 \tag{4}$$

Thus no angle variation, $\cos \theta = 1$.