The f-Divergence Expectation Iteration Scheme

Kamélia Daudel

Télécom Paris kamelia.daudel@telecom-paris.fr

November 22, 2019

Joint work with Randal Douc, François Portier and François Roueff

• Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data $\mathcal D$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : the marginal likelihood $p(\mathcal{D})$ is untractable.
- → Variational Inference methods :

Goal

Approximate the posterior density $p(\cdot|\mathcal{D})$ by a variational density q_{θ} , where $\theta \in T$:

$$\theta^* = \operatorname{arginf}_{\theta \in \mathsf{T}} \mathcal{D}(q_{\theta}, p(\cdot | \mathscr{D}))$$

where \mathcal{D} is a divergence.

• Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data $\mathcal D$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : the marginal likelihood $p(\mathcal{D})$ is untractable.
- → Variational Inference methods :

Goal

Approximate the posterior density $p(\cdot|\mathcal{D})$ by a variational density q_{θ} , where $\theta \in T$:

$$\theta^* = \operatorname{arginf}_{\theta \in \mathsf{T}} \mathcal{D}(q_{\theta}, p(\cdot | \mathscr{D}))$$

where \mathcal{D} is a divergence.

• Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : the marginal likelihood $p(\mathcal{D})$ is untractable.
- → Variational Inference methods :

Goal

Approximate the posterior density $p(\cdot|\mathscr{D})$ by a variational density q_{θ} , where $\theta \in \mathsf{T}$:

$$\theta^* = \operatorname{arginf}_{\theta \in \mathsf{T}} \mathcal{D}(q_{\theta}, p(\cdot | \mathscr{D})) ,$$

where \mathcal{D} is a divergence.

• Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : the marginal likelihood $p(\mathcal{D})$ is untractable.
- → Variational Inference methods :

Goal

Approximate the posterior density $p(\cdot|\mathscr{D})$ by a variational density q_{θ} , where $\theta \in \mathsf{T}$:

$$\theta^* = \operatorname{arginf}_{\theta \in \mathsf{T}} \mathcal{D}(q_{\theta}, p(\cdot | \mathscr{D})) ,$$

where \mathcal{D} is a divergence.

Usually in Variational Inference : approximating family

$$\{y \mapsto q_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Let us now consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) q_{\theta}(y) : \mu \in \mathsf{M} \right\}$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on $(\mathsf{T},\mathcal{T}).$

Question: Can we define an iterative scheme which diminishes a given objective function at each step?

 \rightarrow Yes : The f-El (ϕ) algorithm

Usually in Variational Inference: approximating family

$$\{y \mapsto q_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Let us now consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta) q_{\theta}(y) \ : \ \mu \in \mathsf{M} \right\} \ ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on $(\mathsf{T},\mathcal{T}).$

Question: Can we define an iterative scheme which diminishes a given objective function at each step?

$$\rightarrow$$
 Yes : The f -El(ϕ) algorithm

Usually in Variational Inference: approximating family

$$\{y \mapsto q_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Let us now consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta) q_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on (T,\mathcal{T}) .

Question: Can we define an iterative scheme which diminishes a given objective function at each step?

$$\rightarrow$$
 Yes : The f -El (ϕ) algorithm

Usually in Variational Inference: approximating family

$$\{y \mapsto q_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Let us now consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta) q_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $M_1(T)$, the set of probability measures on (T, \mathcal{T}) .

Question: Can we define an iterative scheme which diminishes a given objective function at each step?

 \rightarrow Yes : The f-EI (ϕ) algorithm !

Outline

- 1 Optimisation problem
- **2** The f-Expectation Iteration algorithm f-EI (ϕ)
- 3 Application to density approximation
- 4 Conclusion

Outline

- 1 Optimisation problem
- 2 The f-Expectation Iteration algorithm f-EI (ϕ)
- 3 Application to density approximation
- 4 Conclusion

Objective function : the f-divergence

- (Y, \mathcal{Y}, ν) : measured space, where ν is a σ -finite measure on (Y, \mathcal{Y})
- f : convex function over $(0,\infty)$ that satisfies f(1)=0
- \mathbb{P}_1 and \mathbb{P}_2 : two probability measures on (Y,\mathcal{Y}) such that $\mathbb{P}_1 \preceq \nu$, $\mathbb{P}_2 \preceq \nu$ with $p_1 = \frac{\mathrm{d}\mathbb{P}_1}{\mathrm{d}\nu}$, $p_2 = \frac{\mathrm{d}\mathbb{P}_2}{\mathrm{d}\nu}$

Definition 1 : f-divergence between \mathbb{P}_1 and \mathbb{P}_2

$$D_f(\mathbb{P}_1||\mathbb{P}_2) = \int_{\mathbf{Y}} f\left(\frac{p_1(y)}{p_2(y)}\right) p_2(y) \nu(\mathrm{d}y)$$

Objective function : the f-divergence

Definition 1 : f-divergence between \mathbb{P}_1 and \mathbb{P}_2

$$D_f(\mathbb{P}_1||\mathbb{P}_2) = \int_{\mathbf{Y}} f\left(\frac{p_1(y)}{p_2(y)}\right) p_2(y) \nu(\mathrm{d}y)$$

→ a flexible family of divergences

f(u)	Corresponding divergence	
$u \log(u)$	$D_{KL}(\mathbb{P}_1 \mathbb{P}_2) = \int_{Y} \log\left(\frac{p_1(y)}{p_2(y)}\right) p_1(y) \nu(\mathrm{d}y)$	
$-\log(u)$	$D_{rKL}(\mathbb{P}_1 \mathbb{P}_2) = \int_{Y} -\log\left(\frac{p_1(y)}{p_2(y)}\right) p_2(y)\nu(\mathrm{d}y)$	
$\frac{1}{\alpha(\alpha-1)}[u^{\alpha}-1]$	$D_A^{(\alpha)}(\mathbb{P}_1 \mathbb{P}_2) = \frac{1}{\alpha(\alpha-1)} \left[\int_{Y} \left(\frac{p_1(y)}{p_2(y)} \right)^{\alpha} p_2(y) \nu(\mathrm{d}y) - 1 \right]$	

Table 1: Special cases in the f-divergence family

Optimisation problem

- ullet (T,\mathcal{T}) : measurable space
- p : measurable positive function on (Y, \mathcal{Y})
- $Q:(\theta,A)\mapsto \int_A q(\theta,y)\nu(\mathrm{d}y)$: Markov transition kernel on $\mathsf{T}\times\mathcal{Y}$ with kernel density q

$$\forall \mu \in \mathcal{M}_1(\mathsf{T}), \ \forall y \in \mathsf{Y}, \ \mu q(y) = \int_\mathsf{T} \mu(\mathrm{d}\theta) q(\theta,y)$$

General optimisation problem

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \Psi^{(f)}(\mu)$$

where for all
$$\mu \in M_1(T)$$
, $\Psi^{(f)}(\mu) = \int_{Y} f\left(\frac{\mu q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$.

 \rightarrow The mapping $\mu \mapsto \Psi^{(f)}(\mu)$ is convex

Optimisation problem

- ullet (T,\mathcal{T}) : measurable space
- p : measurable positive function on (Y, \mathcal{Y})
- $Q:(\theta,A)\mapsto \int_A q(\theta,y)\nu(\mathrm{d}y)$: Markov transition kernel on $\mathsf{T}\times\mathcal{Y}$ with kernel density q

$$\forall \mu \in \mathcal{M}_1(\mathsf{T}), \ \forall y \in \mathsf{Y}, \ \mu q(y) = \int_\mathsf{T} \mu(\mathrm{d}\theta) q(\theta,y)$$

General optimisation problem

$$\mathrm{arginf}_{\mu \in \mathsf{M}} \Psi^{(f)}(\mu)$$

where for all
$$\mu \in M_1(T)$$
, $\Psi^{(f)}(\mu) = \int_{Y} f\left(\frac{\mu q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$.

 \to The mapping $\mu \mapsto \Psi^{(f)}(\mu)$ is convex.

Outline

- Optimisation problem
- **2** The f-Expectation Iteration algorithm f-EI (ϕ)
- 3 Application to density approximation
- 4 Conclusion

The f-Expectation Iteration algorithm f-EI (ϕ)

Let $\phi \in \mathbb{R}^*$, $\mu \in \mathrm{M}_1(\mathsf{T})$ such that $\Psi^{(f)}(\mu) < \infty$. We define the sequence of probability measures $(\mu_n)_{n \in \mathbb{N}}$ iteratively by

$$\begin{cases} \mu_0 = \mu, \\ \mu_{n+1} = \mathcal{I}^{\phi}(\mu_n), & n \in \mathbb{N}. \end{cases}$$
 (1)

Algorithm 1: Exact f-EI(ϕ) transition

- 1. Expectation step: $b_{\mu}(\theta) = \int_{\Upsilon} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y)$
- $2. \ \underline{\text{Iteration step}}: \ \mathcal{I}^{\phi}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})}$

When is the f-EI(ϕ) algorithm well-defined ?

$$\begin{split} b_{\mu}(\theta) &= \int_{\mathbf{Y}} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y) \\ \mathcal{I}^{\phi}(\mu)(\mathrm{d}\theta) &= \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

- (A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $q(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) $f:(0,\infty)\to\mathbb{R}$ is monotonous, strictly convex and continuously differentiable, and f(1)=0.
- ightarrow Under (A1) and (A2), b_{μ} is well-defined and $|b_{\mu}| \in (0,\infty]$
- o The iteration $\mu \mapsto \mathcal{I}^\phi(\mu)$ is well-defined if moreover we have

$$0 < \mu(|b_{\mu}|^{\phi}) < \infty . \tag{2}$$

When is the f-EI(ϕ) algorithm well-defined ?

$$\begin{split} b_{\mu}(\theta) &= \int_{\mathbf{Y}} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y) \\ \mathcal{I}^{\phi}(\mu)(\mathrm{d}\theta) &= \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

- (A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $q(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) $f:(0,\infty)\to\mathbb{R}$ is monotonous, strictly convex and continuously differentiable, and f(1)=0.
- \rightarrow Under (A1) and (A2), b_{μ} is well-defined and $|b_{\mu}| \in (0, \infty]$
- o The iteration $\mu\mapsto \mathcal{I}^\phi(\mu)$ is well-defined if moreover we have

$$0 < \mu(|b_{\mu}|^{\phi}) < \infty . \tag{2}$$

When is the f-EI(ϕ) algorithm well-defined ?

$$\begin{split} b_{\mu}(\theta) &= \int_{\mathbf{Y}} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y) \\ \mathcal{I}^{\phi}(\mu)(\mathrm{d}\theta) &= \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

- (A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $q(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) $f:(0,\infty)\to\mathbb{R}$ is monotonous, strictly convex and continuously differentiable, and f(1)=0.
- \rightarrow Under (A1) and (A2), b_{μ} is well-defined and $|b_{\mu}| \in (0, \infty]$.
- ightarrow The iteration $\mu\mapsto \mathcal{I}^\phi(\mu)$ is well-defined if moreover we have

$$0 < \mu(|b_{\mu}|^{\phi}) < \infty . \tag{2}$$

Monotonicity

Divergence co	Corresponding range	
Reverse $KL f(u) = -\log(u)$		$\phi \in (0,1]$
α -divergence	$\alpha \in (-\infty, -1]$	$\phi \in (0, -1/\alpha]$
$f(u) = \frac{1}{\alpha(\alpha - 1)}(u^{\alpha} - 1)$	$\alpha \in (-1,1) \setminus \{0\}$	$\phi \in (0,1]$
,	$\alpha \in (1, \infty)$	$\phi \in (1/(1-\alpha), 0)$

Table 2 : Allowed (f, ϕ) in the f-El (ϕ) algorithm

Theorem 1

Assume that p and q are as in (A1). Let (f, ϕ) belong to any of the cases in Table 2.

Then (A2) holds. Moreover, let $\mu\in \mathrm{M}_1(\mathsf{T})$ be such that $\Psi^{(f)}(\mu)<\infty.$ Then the sequence $(\mu_n)_{n\in\mathbb{N}}$ defined by (1) is well-defined and the sequence $(\Psi^{(f)}(\mu_n))_{n\in\mathbb{N}}$ is non-increasing.

Limiting behavior

(A3) T is a compact metric space, $\theta \mapsto q(\theta, y)$ is continuous for all $y \in Y$, $\Psi^{(f)}$ and b_{μ} are uniformly bounded w.r.t μ and θ .

Theorem 2

Assume (A1), (A2) and (A3). Further assume that there exists $\mu, \bar{\mu} \in M_1(T)$ such that the (well-defined) sequence $(\mu_n)_{n \in \mathbb{N}}$ defined by (1) weakly converges to $\bar{\mu}$ as $n \to \infty$. Then

- **1** $\bar{\mu}$ is a fixed point of \mathcal{I}^{ϕ} ,
- $\Psi^{(f)}(\bar{\mu}) = \inf_{\zeta \in \mathcal{M}_{1,\mu}(\mathsf{T})} \Psi^{(f)}(\zeta),$

for f non-increasing and $\phi > 0$ or f non-decreasing and $\phi < 0$.

 $M_{1,\mu}(T)$: set of probability measures dominated by μ

Limiting behavior

(A3) T is a compact metric space, $\theta \mapsto q(\theta, y)$ is continuous for all $y \in Y$, $\Psi^{(f)}$ and b_{μ} are uniformly bounded w.r.t μ and θ .

Theorem 2

Assume (A1), (A2) and (A3). Further assume that there exists $\mu, \bar{\mu} \in \mathrm{M}_1(\mathsf{T})$ such that the (well-defined) sequence $(\mu_n)_{n \in \mathbb{N}}$ defined by (1) weakly converges to $\bar{\mu}$ as $n \to \infty$. Then

- **1** $\bar{\mu}$ is a fixed point of \mathcal{I}^{ϕ} ,
- $\Psi^{(f)}(\bar{\mu}) = \inf_{\zeta \in \mathcal{M}_{1,\mu}(\mathsf{T})} \Psi^{(f)}(\zeta),$

for f non-increasing and $\phi > 0$ or f non-decreasing and $\phi < 0$.

 $\mathrm{M}_{1,\mu}(\mathsf{T})$: set of probability measures dominated by μ

 \rightarrow Compatible with Theorem 1 for (f, ϕ)

Approximate f-EI (ϕ)

Algorithm 1 typically involves an intractable integral in the Expectation step :

$$b_{\mu}(\theta) = \int_{\mathbf{Y}} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y) .$$

\rightarrow Approximate f-EI(ϕ)

Algorithm 2: Approximate f- $EI(\phi)$ transition

- 1. Sampling step: Draw independently $Y_1, ..., Y_K \sim \mu q$
- 2. Expectation step: $b_{\mu,K}(\theta) = \frac{1}{K} \sum_{k=1}^{K} \frac{q(\theta, Y_k)}{\mu q(Y_k)} f'\left(\frac{\mu q(Y_k)}{p(Y_k)}\right)$
- 3. Iteration step: $\mathcal{I}_K^{\phi}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})}$

Approximate f-EI (ϕ)

Algorithm 1 typically involves an intractable integral in the Expectation step :

$$b_{\mu}(\theta) = \int_{\mathbf{Y}} q(\theta, y) f'\left(\frac{\mu q(y)}{p(y)}\right) \nu(\mathrm{d}y) .$$

 \rightarrow Approximate f-EI(ϕ)

Algorithm 2: Approximate f-EI(ϕ) transition

- 1. Sampling step : Draw independently $Y_1, ..., Y_K \sim \mu q$
- 2. Expectation step: $b_{\mu,K}(\theta) = \frac{1}{K} \sum_{k=1}^{K} \frac{q(\theta, Y_k)}{\mu q(Y_k)} f'\left(\frac{\mu q(Y_k)}{p(Y_k)}\right)$
- 3. <u>Iteration step</u> : $\mathcal{I}_K^{\phi}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot |b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})}$

Total variation convergence

Let $Y_1, Y_2, ...$ be i.i.d random variables with common density μq w.r.t ν , defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 2

Assume (A1) and (A2). Let $\mu \in M_1(T)$, $\phi \in \mathbb{R}^*$ be such that $\mu(|b_\mu|) \vee \mu(|b_\mu|^\phi) < \infty$ and

$$\int_{\mathsf{T}} \mu(\mathrm{d}\theta) \mathbb{E}_{\mu q} \left[\left\{ \frac{q(\theta, Y_1)}{\mu q(Y_1)} \left| f'\left(\frac{\mu q(Y_1)}{p(Y_1)}\right) \right| \right\}^{\phi} \right] < \infty . \tag{3}$$

Then,

$$\lim_{K \to \infty} \left\| \mathcal{I}_K^{\phi}(\mu) - \mathcal{I}^{\phi}(\mu) \right\|_{TV} = 0, \quad \mathbb{P} - \text{a.s.}$$

• Triangular inequality :

$$\begin{split} \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| &= \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right. \\ &\quad \left. + \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| \\ &\quad \left. \leq \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} \right| 1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \right| + \frac{||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

which implies

$$\begin{split} \left\| \mathcal{I}_K^{\phi}(\mu) - \mathcal{I}^{\phi}(\mu) \right\|_{TV} &= \mu \left(\left| \frac{|b_{\mu,K}|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu}|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| \right) \\ &\leqslant \left| 1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \right| + \frac{\mu(||b_{\mu,K}|^{\phi} - |b_{\mu}|^{\phi}|)}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

• First term of the r.h.s : $\left|1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})}\right|$ Lemma $\lim_{K \to \infty} \mu(|b_{\mu,K}|^{\phi}) = \mu(|b_{\mu}|^{\phi})$, \mathbb{P} – a.s.

• Triangular inequality :

$$\begin{split} \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| &= \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right. \\ &\quad \left. + \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| \\ &\quad \left. \leq \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} \right| 1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \right| + \frac{||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

which implies:

$$\begin{split} \left\| \mathcal{I}_K^{\phi}(\mu) - \mathcal{I}^{\phi}(\mu) \right\|_{TV} &= \mu \left(\left| \frac{|b_{\mu,K}|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu}|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| \right) \\ &\leqslant \left| 1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \right| + \frac{\mu(||b_{\mu,K}|^{\phi} - |b_{\mu}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

• First term of the r.h.s : $\left|1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})}\right|$ Lemma $\lim_{K \to \infty} \mu(|b_{\mu,K}|^{\phi}) = \mu(|b_{\mu}|^{\phi})$, $\mathbb{P} - \text{a.s}$

• Triangular inequality :

$$\begin{split} \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| &= \left| \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} - \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right. \\ &\quad \left. + \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} - \frac{|b_{\mu}(\theta)|^{\phi}}{\mu(|b_{\mu}|^{\phi})} \right| \\ &\quad \left. \leq \frac{|b_{\mu,K}(\theta)|^{\phi}}{\mu(|b_{\mu,K}|^{\phi})} \right| 1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})} \right| + \frac{||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|}{\mu(|b_{\mu}|^{\phi})} \end{split}$$

which implies:

$$\begin{split} \left\| \mathcal{I}_K^\phi(\mu) - \mathcal{I}^\phi(\mu) \right\|_{TV} &= \mu \left(\left| \frac{|b_{\mu,K}|^\phi}{\mu(|b_{\mu,K}|^\phi)} - \frac{|b_{\mu}|^\phi}{\mu(|b_{\mu}|^\phi)} \right| \right) \\ &\leqslant \left| 1 - \frac{\mu(|b_{\mu,K}|^\phi)}{\mu(|b_{\mu}|^\phi)} \right| + \frac{\mu(||b_{\mu,K}|^\phi - |b_{\mu}|^\phi)}{\mu(|b_{\mu}|^\phi)} \end{split}$$

• First term of the r.h.s : $\left|1 - \frac{\mu(|b_{\mu,K}|^{\phi})}{\mu(|b_{\mu}|^{\phi})}\right|$ Lemma $\lim_{K \to \infty} \mu(|b_{\mu,K}|^{\phi}) = \mu(|b_{\mu}|^{\phi})$, $\mathbb{P} - \text{a.s.}$

• Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^{\varphi}-|b_{\mu}|^{\varphi})}{\mu(|b_{\mu}|^{\varphi})}$

Generalized Dominated Convergence Theorem:

1 For all $K \in \mathbb{N}^*$ and for μ -almost all $\theta \in \mathsf{T}$,

$$a_K(\theta) \leqslant b_K(\theta) \leqslant c_K(\theta)$$
,

and the limits $\lim_{K\to\infty} a_K(\theta)$, $\lim_{K\to\infty} b_K(\theta)$, $\lim_{K\to\infty} c_K(\theta)$ exist.

- - $\mu |\lim_{K\to\infty} a_K| + \mu |\lim_{K\to\infty} c_K| < \infty$
 - $\mu(\lim_{K \to \infty} a_K) = \lim_{K \to \infty} \mu(a_K)$ and $\mu(\lim_{K \to \infty} c_K) = \lim_{K \to \infty} \mu(c_K)$

$$\Rightarrow \mu(\lim_{K \to \infty} b_K) = \lim_{K \to \infty} \mu(b_K)$$

$$b_K(\theta) = ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|$$

• Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^{\phi}-|b_{\mu}|^{\phi}|)}{\mu(|b_{\nu}|^{\phi})}$

Generalized Dominated Convergence Theorem:

1 For all $K \in \mathbb{N}^*$ and for μ -almost all $\theta \in \mathsf{T}$,

$$a_K(\theta) \leqslant b_K(\theta) \leqslant c_K(\theta)$$
,

and the limits $\lim_{K\to\infty} a_K(\theta)$, $\lim_{K\to\infty} b_K(\theta)$, $\lim_{K\to\infty} c_K(\theta)$ exist.

- - $\mu |\lim_{K \to \infty} a_K| + \mu |\lim_{K \to \infty} c_K| < \infty$
 - $\mu(\lim_{K \to \infty} a_K) = \lim_{K \to \infty} \mu(a_K)$ and $\mu(\lim_{K \to \infty} c_K) = \lim_{K \to \infty} \mu(c_K)$

$$\Rightarrow \mu(\lim_{K \to \infty} b_K) = \lim_{K \to \infty} \mu(b_K)$$

$$b_K(\theta) = ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|$$

 \bullet Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^\phi-|b_\mu|^\phi|)}{\mu(|b_\mu|^\phi)}$

- For all $K \in \mathbb{N}^*$, for all $\theta \in \mathsf{T}$, $0 \le ||b_{\mu,K}(\theta)|^{\phi} |b_{\mu}(\theta)|^{\phi}| \le |b_{\mu,K}(\theta)|^{\phi} + |b_{\mu}(\theta)|^{\phi}$ and the limits line σ . (0) then σ . (0) with
 - and the limits $\lim_{K \to \infty} a_K(\theta)$, $\lim_{K \to \infty} b_K(\theta)$, $\lim_{K \to \infty} c_K(\theta)$ exist.

$$\Rightarrow \mu(\lim_{K \to \infty} b_K) = \lim_{K \to \infty} \mu(b_K)$$

$$b_K(\theta) = ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|$$

• Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^\phi-|b_\mu|^\phi|)}{\mu(|b_\mu|^\phi)}$

For all
$$K \in \mathbb{N}^{\star}$$
, for all $\theta \in \mathbb{T}$,
$$0 \leqslant ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}| \leqslant |b_{\mu,K}(\theta)|^{\phi} + |b_{\mu}(\theta)|^{\phi}$$
 and the limits $\lim_{K \to \infty} a_K(\theta)$, $\lim_{K \to \infty} b_K(\theta)$, $\lim_{K \to \infty} c_K(\theta)$ exist.
$$c_K(\theta)$$

- - $\bullet \ \ \mu(\lim_{K\to\infty}a_K)=\lim_{K\to\infty}\mu(a_K) \ \text{and} \ \mu(\lim_{K\to\infty}c_K)=\lim_{K\to\infty}\mu(c_K)$

$$\Rightarrow \mu(\lim_{K \to \infty} b_K) = \lim_{K \to \infty} \mu(b_K)$$

$$b_K(\theta) = ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|$$

• Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^\phi - |b_\mu|^\phi|)}{\mu(|b_\mu|^\phi)}$

For all
$$K \in \mathbb{N}^{\star}$$
, for all $\theta \in \mathbb{T}$,
$$0 \leqslant ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}| \leqslant |b_{\mu,K}(\theta)|^{\phi} + |b_{\mu}(\theta)|^{\phi}$$
 and the limits $\lim_{K \to \infty} a_K(\theta)$, $\lim_{K \to \infty} b_K(\theta)$, $\lim_{K \to \infty} c_K(\theta)$ exist.
$$c_K(\theta)$$

$$\Rightarrow \mu(\lim_{K\to\infty} b_K) = \lim_{K\to\infty} \mu(b_K)$$

$$b_K(\theta) = ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}|$$

• Second term of the r.h.s : $\frac{\mu(||b_{\mu,K}|^\phi - |b_\mu|^\phi|)}{\mu(|b_\mu|^\phi)}$

For all
$$K \in \mathbb{N}^{\star}$$
, for all $\theta \in \mathbb{T}$,
$$0 \leqslant ||b_{\mu,K}(\theta)|^{\phi} - |b_{\mu}(\theta)|^{\phi}| \leqslant |b_{\mu,K}(\theta)|^{\phi} + |b_{\mu}(\theta)|^{\phi}$$
 and the limits $\lim_{K \to \infty} a_K(\theta)$, $\lim_{K \to \infty} b_K(\theta)$, $\lim_{K \to \infty} c_K(\theta)$ exist.
$$c_K(\theta)$$

$$2 \left[\lim_{K \to \infty} \mu \left[|b_{\mu,K}|^{\phi} + |b_{\mu}|^{\phi} \right] = \mu \left[\lim_{K \to \infty} \left(|b_{\mu,K}|^{\phi} + |b_{\mu}|^{\phi} \right) \right] < \infty \right.$$
 (since $\mu(|b_{\mu}|^{\phi}) < \infty$ and $\lim_{K \to \infty} \mu(|b_{\mu,K}|^{\phi}) = \mu(|b_{\mu}|^{\phi})$, \mathbb{P} – a.s.)

$$\Rightarrow \lim_{K \to \infty} \mu(||b_{\mu,K}|^{\phi} - |b_{\mu}|^{\phi}|) = \mu(\lim_{K \to \infty} ||b_{\mu,K}|^{\phi} - |b_{\mu}|^{\phi}|) = 0, \quad \mathbb{P} - \text{a.s.}$$

Outline

- Optimisation problem
- **2** The f-Expectation Iteration algorithm f-El (ϕ)
- 3 Application to density approximation
- 4 Conclusion

f-EI (ϕ) applied to density approximation

Let \tilde{p} be a probability density function on (Y, \mathcal{Y}) and assume that we only have access to an unnormalized version p^* of the density \tilde{p} , that is for all $y \in Y$,

$$\tilde{p}(y) = \frac{p^*(y)}{Z} \,, \tag{4}$$

where $Z := \int_{Y} p^{*}(y)\nu(\mathrm{d}y)$ is called the *normalizing constant* or partition function.

o Posterior density approximation : $\tilde{p}=p(\cdot|\mathscr{D}),\ p^*=p(\mathscr{D},\cdot)$ and $Z=p(\mathscr{D})$.

Reformulation of the optimisation problem

- $\tilde{\mathbb{P}}$: probability measure on (Y,\mathcal{Y}) with density \tilde{p} with respect to ν
- for all $\mu \in \mathrm{M}_1(\mathsf{T})$, μQ : probability measure on (Y,\mathcal{Y}) with density μq with respect to ν

Lemma 3

Assume (A1). Then, for both the reverse Kullback-Leibler and the α -divergence, optimising the objective

$$D_f(\mu Q||\tilde{\mathbb{P}})$$

(with respect to μ) is equivalent to optimising the objective

$$\Psi^{(f)}(\mu;p) \text{ with } p=p^*.$$

Particular case of the α -divergence

$$\rightarrow \alpha\text{-bound}: \ \tilde{q} \mapsto \xi^{(\alpha)}(\tilde{q}) := \left[\int_{\mathbf{Y}} \left(\frac{\tilde{q}(y)}{p^*(y)} \right)^{\alpha} p^*(y) \nu(\mathrm{d}y) \right]^{\frac{1}{1-\alpha}}$$

 $\Psi^{(f)}(\mu;p) = \frac{1}{\alpha(\alpha-1)} \left(\xi^{(\alpha)}(\mu q)^{1-\alpha} - Z \right) \quad \text{with} \quad p = p^*$

Lemma 4

Assume (A1). Let $\mu \in M_1(T)$. Then, for all $\alpha_+ \in (0,1) \cup (1,+\infty)$ and all $\alpha_- < 0$, we have

$$\xi^{(\alpha^+)}(\mu q) \leqslant Z \leqslant \xi^{(\alpha^-)}(\mu q) . \tag{5}$$

 \rightarrow We can observe the convergence / monotonicity and obtain a bound on the normalising constant Z.

Particular case of the α -divergence

$$\rightarrow \alpha\text{-bound}: \ \tilde{q} \mapsto \xi^{(\alpha)}(\tilde{q}) := \left[\int_{\mathsf{Y}} \left(\frac{\tilde{q}(y)}{p^*(y)} \right)^{\alpha} p^*(y) \nu(\mathrm{d}y) \right]^{\frac{1}{1-\alpha}}$$
 Then,

$$\Psi^{(f)}(\mu;p) = \frac{1}{\alpha(\alpha-1)} \left(\xi^{(\alpha)}(\mu q)^{1-\alpha} - Z \right) \quad \text{with} \quad p = p^* \; .$$

Lemma 4

Assume (A1). Let $\mu \in M_1(T)$. Then, for all $\alpha_+ \in (0,1) \cup (1,+\infty)$ and all $\alpha_- < 0$, we have

$$\xi^{(\alpha^+)}(\mu q) \leqslant Z \leqslant \xi^{(\alpha^-)}(\mu q) . \tag{5}$$

 \rightarrow We can observe the convergence / monotonicity and obtain a bound on the normalising constant Z.

Particular case of the α -divergence

$$\rightarrow \alpha\text{-bound}: \ \tilde{q} \mapsto \xi^{(\alpha)}(\tilde{q}) := \left[\int_{\mathsf{Y}} \left(\frac{\tilde{q}(y)}{p^*(y)} \right)^{\alpha} p^*(y) \nu(\mathrm{d}y) \right]^{\frac{1}{1-\alpha}}$$
 Then,

$$\Psi^{(f)}(\mu;p) = \frac{1}{\alpha(\alpha-1)} \left(\xi^{(\alpha)}(\mu q)^{1-\alpha} - Z \right) \quad \text{with} \quad p = p^* \; .$$

Lemma 4

Assume (A1). Let $\mu \in M_1(T)$. Then, for all $\alpha_+ \in (0,1) \cup (1,+\infty)$ and all $\alpha_- < 0$, we have

$$\xi^{(\alpha^+)}(\mu q) \leqslant Z \leqslant \xi^{(\alpha^-)}(\mu q) . \tag{5}$$

ightarrow We can observe the convergence / monotonicity and obtain a bound on the normalising constant Z.

μ_0 is a weighted sum of Dirac measures

$$S_J = \left\{ oldsymbol{\lambda} = (\lambda_1, ..., \lambda_J) \in \mathbb{R}^J : \forall j \in \{1, ..., J\}, \ \lambda_j \geqslant 0 \ \text{and} \ \sum_{j=1}^J \lambda_j = 1 \right\}.$$

Let $\theta_1, ..., \theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{\lambda} = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$$
 with $\lambda \in \mathcal{S}_J$.

Then,
$$\mu_n = \underbrace{\mathcal{I}^{\phi} \circ \cdots \circ \mathcal{I}^{\phi}}_{n \text{ times}}(\mu_{\lambda})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$

with

$$\begin{cases} \boldsymbol{\lambda}_0 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \lambda_{j,n} \frac{|b_{\mu_n,K}(\theta_j)|^{\phi}}{\mu_n(|b_{\mu_n,K}|^{\phi})}, & n \in \mathbb{N}, \ j \in \{1,\dots,J\} \end{cases}$$

μ_0 is a weighted sum of Dirac measures

$$S_J = \Big\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \Big\}.$$

Let $\theta_1, ..., \theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{\pmb{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{\theta_j} \quad ext{with} \quad \pmb{\lambda} \in \mathcal{S}_J \;.$$

Then,
$$\mu_n = \underbrace{\mathcal{I}^{\phi} \circ \cdots \circ \mathcal{I}^{\phi}}_{n \text{ times}}(\mu_{\lambda})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$

with

$$\begin{cases} \lambda_0 = \lambda \\ \lambda_{j,n+1} = \lambda_{j,n} \frac{|b_{\mu_n,K}(\theta_j)|^{\phi}}{\mu_n(|b_{\mu_n,K}|^{\phi})}, & n \in \mathbb{N}, \ j \in \{1,\dots,J\} \end{cases}$$

μ_0 is a weighted sum of Dirac measures

$$S_J = \Big\{ \boldsymbol{\lambda} = (\lambda_1, ..., \lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1, ..., J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \Big\}.$$

Let $\theta_1, ..., \theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{\lambda} = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$$
 with $\lambda \in \mathcal{S}_J$.

Then,
$$\mu_n = \underbrace{\mathcal{I}^\phi \circ \cdots \circ \mathcal{I}^\phi}_{n \text{ times}}(\mu_{\pmb{\lambda}})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$

with

$$\begin{cases} \boldsymbol{\lambda}_0 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \lambda_{j,n} \frac{|b_{\mu_n,K}(\theta_j)|^{\phi}}{\mu_n(|b_{\mu_n,K}|^{\phi})}, & n \in \mathbb{N}, \ j \in \{1,\dots,J\} \end{cases}$$

Mixing the two

Algorithm 3: Mixture α -Approximate f-EI (ϕ)

Input: p^* : unnormalized version of the density \tilde{p} , Q: Markov transition kernel, K: number of samples, $\Theta_J = \{\theta_1, ..., \theta_J\} \subset T$: parameter set.

Output: Optimised weights λ .

Set $\lambda = \left[\frac{1}{J}, ..., \frac{1}{J}\right]$.

while the α -bound has not converged do

Sampling step : Draw independently K samples $Y_1, ..., Y_K$ from $\mu_{\lambda} q$.

Expectation step: Compute $A_{\lambda} = (a_j)_{1 \leq j \leq J}$ where

$$a_{j} = \frac{1}{K} \sum_{k=1}^{K} q(\theta_{j}, Y_{k}) \mu_{\lambda} q(Y_{k})^{\alpha - 2} p^{*}(Y_{k})^{1 - \alpha}$$

and deduce $B_{\lambda} = (\lambda_j a_j^{\phi})_{1 \leq j \leq J}$, $b_{\lambda} = \sum_{j=1}^J \lambda_j a_j^{\phi}$ and $c_{\lambda} = \sum_{j=1}^J \lambda_j a_j$.

Iteration step: Set

$$\xi_K^{(\alpha)}(\mu_{\lambda}q) \leftarrow c_{\lambda}^{1/(1-\alpha)}$$
$$\lambda \leftarrow \frac{1}{h} B_{\lambda}$$

end

Mixing the two

Algorithm 3: Mixture α -Approximate f-EI (ϕ)

Input: p^* : unnormalized version of the density \tilde{p} , Q: Markov transition kernel, K: number of samples, $\Theta_J = \{\theta_1, ..., \theta_J\} \subset T$: parameter set.

Output: Optimised weights λ .

Set
$$\lambda = \left[\frac{1}{J}, ..., \frac{1}{J}\right]$$
.

while the α -bound has not converged do

Sampling step: Draw independently K samples $Y_1, ..., Y_K$ from $\mu_{\lambda} q$.

Expectation step: Compute $A_{\lambda} = (a_j)_{1 \leq j \leq J}$ where

$$a_{j} = \frac{1}{K} \sum_{k=1}^{K} q(\theta_{j}, Y_{k}) \mu_{\lambda} q(Y_{k})^{\alpha - 2} p^{*}(Y_{k})^{1 - \alpha}$$

and deduce $\boldsymbol{B}_{\lambda} = (\lambda_j a_j^{\phi})_{1 \leqslant j \leqslant J}$, $b_{\lambda} = \sum_{j=1}^J \lambda_j a_j^{\phi}$ and $c_{\lambda} = \sum_{j=1}^J \lambda_j a_j$.

Iteration step: Set

$$\xi_K^{(\alpha)}(\mu_{\lambda}q) \leftarrow c_{\lambda}^{1/(1-\alpha)}$$
$$\lambda \leftarrow \frac{1}{h} B_{\lambda}$$

end

Mixing the two

Algorithm 3: Mixture α -Approximate f-EI (ϕ)

Input: p^* : unnormalized version of the density \tilde{p} , Q: Markov transition kernel, K: number of samples, $\Theta_J = \{\theta_1, ..., \theta_J\} \subset T$: parameter set.

Output: Optimised weights λ .

Set
$$\lambda = \left[\frac{1}{J}, ..., \frac{1}{J}\right]$$
.

while the α -bound has not converged do

Sampling step: Draw independently K samples $Y_1, ..., Y_K$ from $\mu_{\lambda}q$.

Expectation step: Compute $A_{\lambda} = (a_j)_{1 \leq j \leq J}$ where

$$a_{j} = \frac{1}{K} \sum_{k=1}^{K} q(\theta_{j}, Y_{k}) \mu_{\lambda} q(Y_{k})^{\alpha - 2} p^{*}(Y_{k})^{1 - \alpha}$$

and deduce $B_{\lambda} = (\lambda_j a_j^{\phi})_{1 \leqslant j \leqslant J}$, $b_{\lambda} = \sum_{j=1}^J \lambda_j a_j^{\phi}$ and $c_{\lambda} = \sum_{j=1}^J \lambda_j a_j$.

Iteration step: Set

$$\xi_K^{(\alpha)}(\mu_{\lambda}q) \leftarrow c_{\lambda}^{1/(1-\alpha)}$$
$$\lambda \leftarrow \frac{1}{b_{\lambda}}B_{\lambda}$$

Most of the computing effort

end

One interesting remark

- Most of the computing effort : compute $(b_{\mu_n,K}(\theta_j))_{1\leqslant j\leqslant J}$ (or equivalently $A_{\lambda}=(a_j)_{1\leqslant j\leqslant J}$).
- The score gradient of the function

$$\tilde{q} \mapsto \mathcal{L}_A^{(\alpha)}(\tilde{q}) := \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha - 1)} \left(\frac{\tilde{q}(y)}{p^*(y)} \right)^{\alpha} p^*(y) \nu(\mathrm{d}y) ,$$

is linked to the quantities approximated in our algorithm

$$\nabla_{\lambda} \mathcal{L}_A^{(\alpha)}(\mu_{\lambda} q) = (b_{\mu_{\lambda}}(\theta_j))_{1 \leqslant j \leqslant J} .$$

ightarrow similar to computations required in gradient-based methods involving the lpha-divergence or Renyi's lpha-divergence.

Numerical experiments : impact of ϕ

Towards an adaptive algorithm

- Algorithm 3 leaves $\{\theta_1,...,\theta_J\}$ unchanged (Exploitation Step)
- ightarrow Combine it with an Exploration step that modifies the parameter set !

Example: resampling + stochastic perturbation

Towards an adaptive algorithm

- Algorithm 3 leaves $\{\theta_1,...,\theta_J\}$ unchanged (Exploitation Step)
- \rightarrow Combine it with an Exploration step that modifies the parameter set !

Example: resampling + stochastic perturbation

Numerical experiments : impact of d and J

 $p^*(y) = Z \times [0.5 \mathcal{N}(\bm{y}; -s \bm{u_d}, \bm{I_d}) + 0.5 \mathcal{N}(\bm{y}; s \bm{u_d}, \bm{I_d})] \text{ with } s = 2 \text{ and } Z = 2$

Outline

- Optimisation problem
- **2** The f-Expectation Iteration algorithm f-EI (ϕ)
- 3 Application to density approximation
- 4 Conclusion

Conclusion

f-EI (ϕ) algorithm : novel iterative scheme that

- performs an update of measures
 - **1** Sufficient conditions on (f, ϕ) leading to a systematic decrease
 - 2 Convergence to an optimum
 - **3** Approximate version of the algorithm
- can be applied to density approximation
 - **1** α -bound: bound on Z, which also measures the convergence
 - 2 the computations involved in the Mixture α -Approximate f-El (ϕ) algorithm mostly rely on gradient-based calculations

Conclusion

f-EI (ϕ) algorithm : novel iterative scheme that

- performs an update of measures
 - **1** Sufficient conditions on (f, ϕ) leading to a systematic decrease
 - 2 Convergence to an optimum
 - **3** Approximate version of the algorithm
- can be applied to density approximation
 - **1** α -bound: bound on Z, which also measures the convergence
 - 2 the computations involved in the Mixture α -Approximate f-El (ϕ) algorithm mostly rely on gradient-based calculations

Perspectives

- ϕ constant in the f-EI(ϕ) algorithm \Rightarrow decaying learning rate
- Convergence rate of the f-EI (ϕ) algorithm
- Large scale learning
- Try other types of Exploration steps
- ullet Variance reduction schemes in the approximation of b_{μ_n}
- ..

References

- [1] Kamélia Daudel, Randal Douc, François Portier, François Roueff (2019). The f-Divergence Expectation Iteration Scheme. arXiv e-prints, page arXiv:1909.12239.
- [2] Randal Douc, Arnaud Guillin, Jean-Michel Marin, and Christian P. Robert (2007). Convergence of adaptive mixtures of importance sampling schemes. arXiv e-prints, page arXiv:0708.0711.
- [3] José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Daniel Hernández-Lobato, Thang Bui, and Richard E. Turner (2015). Black-box α -divergence Minimization. arXiv e-prints, page arXiv:1511.03243.
- [4] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statisticians (2016). arXiv e-prints, page arXiv:1601.00670.
- [5] Yingzhen Li and Richard E. Turner (2016). Rényi Divergence Variational Inference. arXiv e-prints, page arXiv:1602.02311.