Co-NP and the Asymmetry of NP

Efficient Certification

B is an efficient certifier for a problem X if the following properties hold

- B is a polynomial-time algorithm that takes two input arguments s and t
- There is a polynomial function p so that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \le p(|s|)$ and B(s, t) = yes

Observation

- An input string is a 'yes' instance if and only if there exists t so that B(s, t) = yes
- Negating this statement, we see that an input string s is a 'no' instance if and only if for all t, it's the case that B(s, t) = no

Complementary Problem

For every problem x, there is a natural complementary problem \overline{x} :

• For all input strings s, we say $s \in \overline{x}$ if and only if $s \notin x$

If $x \in P$, then $\overline{x} \in P$

Should $\bar{x} \in NP$ if $x \in NP$?

- The problem \overline{x} , rather, has a different property: for all s, we have $s \in \overline{x}$ if and only if for all t of length at most p(|s|), B(s, t) = no
- This is a fundamentally different definition, and it can't be worked around by simply "inverting" the output of the efficient certifier B to produce B
- The problem is that the "exists t" in the definition of NP has become a "for all t," and this is a serious change

A problem X belongs to co-NP if and only if the complementary problem $\bar{\mathbf{x}}$ belongs to NP

If NP ≠ co-NP, then P ≠ NP

$$X \in \mathbb{NP} \Longrightarrow X \in \mathbb{P} \Longrightarrow \overline{X} \in \mathbb{P} \Longrightarrow \overline{X} \in \mathbb{NP} \Longrightarrow X \in \text{co-NP}$$
 and
$$X \in \text{co-NP} \Longrightarrow \overline{X} \in \mathbb{NP} \Longrightarrow \overline{X} \in \mathbb{P} \Longrightarrow X \in \mathbb{P} \Longrightarrow X \in \mathbb{NP}$$

Hence it would follow that $NP \subseteq co-NP$ and $co-NP \subseteq NP$, whence NP = co-NP

The Class NP ∩ co-NP

- If a problem X belongs to both NP and co-NP, then
 - When the answer is yes, there is a short proof
 - When the answer is no, there is a short proof
- The problems that belong to this intersection NP ∩ co-NP are said to have a good characterization, since there is always a nice certificate for the solution
 - Example: Determine whether a flow network contains a flow of value at least v, for some quantity v
- $P \subseteq NP \cap co-NP$

PSPACE

The set of all problems that can be solved by an algorithm with polynomial space complexity

There is an algorithm that solves 3-SAT using only a polynomial amount of space

- Brute-force algorithm that tries all possible truth assignment
- Increment n-bit counter from 0 to 2ⁿ-1
- Counter holding value 'q' then x_i take that value of ith bit in q
- We spend only polynomial space in checking the truth assignment

$NP \subseteq PSPACE$

- Consider problem Y in NP
- Since Y≤3-SAT, there exist an algorithm that solves Y in polynomial number of steps
- Y uses only polynomial space

Subset relationship

Quantification

Let $\Phi(x_1, x_2, \dots, x_n)$ be a boolean formula of form

$$C_1 \land C_2 \land C_3 \land \dots \land C_k$$

3-SAT

$$\exists x_1 \exists x_2 \cdots \exists x_{n-2} \exists x_{n-1} \exists x_n \Phi(x_1, \dots, x_n)?$$

QSAT

$$\exists x_1 \forall x_2 \cdots \exists x_{n-2} \forall x_{n-1} \exists x_n \Phi(x_1, \dots, x_n)$$
?

Example

$$\Phi(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

$$\exists x_1 \forall x_2 \exists x_3 \Phi(x_1, x_2, x_3)$$
?

Reference

Jon Kleinberg and Éva Tardos. 2006. Algorithm Design

Thank you!

A&Q