Algebra Examenskurs Übungsblatt 7

Thema: Galoistheorie, endliche Körper, and Zahlentheorie

1 Aufwärmübungen

- **Aufgabe 1.1.** (i) Sei $p \ge 3$ eine (ungerade) Primzahl. Zeigen Sie, dass -1 genau dann quadratischer Rest modulo p ist, wenn $p \equiv 1 \pmod{4}$.
 - (ii) Für $a \in \mathbb{Z}$ gilt: die Zahl $n = 4a^2 + 1$ besitzt nur Primteiler p kongruent 1 (mod 4).
- (iii) Es gibt unedlich viele Primzahlen p, sodass $p \equiv 1 \pmod{4}$.

2 Aufgaben

Aufgabe 2.1 (H13-T2-A4). Sei K endlicher Körper. Sei $a \in K$. Zeigen Sie, dass es Elemente $x, y \in K$ gibt, so dass $x^2 + y^2 = a$ gilt.

Aufgabe 2.2 (H16-T2-A4). Sei p > 2 eine Primzahl. Wir betrachten den Körper $\mathbb{Q}(\zeta_p, \alpha_p) \subset \mathbb{C}$ mit $\alpha_p = \sqrt[p]{p} \in \mathbb{R}$ und $\zeta_p = e^{\frac{2\pi i}{p}}$. Zeigen Sie:

- (a) Die Körpererweiterung K/\mathbb{Q} ist galoissch.
- (b) $[K : \mathbb{Q}] = p(p-1)$.
- (c) Die Teilerweiterung $\mathbb{Q}(\alpha_p)/\mathbb{Q}$ ist nicht normal und daher ist die Galois-Gruppe $\mathrm{Gal}(K/\mathbb{Q})$ nicht abelsch.
- (d) $Gal(K/\mathbb{Q})$ hat einen Normalteiler der Ordnung p.

Aufgabe 2.3 (H16-T1-A5). Sei f(X) ein separables Polynom über \mathbb{Q} , welches in der Form $f(X) = h(X^2)$ mit $h(X) \in \mathbb{Q}[X]$ und $n := \deg h(X) \geq 2$ geschrieben werden kann. Zeigen Sie, dass die Galoissche Gruppe (eines Zerfällungskörpers) von f(X) nicht die volle symmetrische Gruppe \mathfrak{S}_{2n} der Nullstellen sein kann.

Viel Erfolg!