

Agents and Multi-Agent Systems

Multi-Agent Decision Making Social Choice Theory

2023/2024

Social Choice

- Social choice theory is concerned with making group decisions: given the preferences of different agents, how do we aggregate them to reflect the wishes of the population as a whole?
 - Formally, the issue is combining preferences to derive a social outcome
 - Typical example: voting procedures
- Strategic flavor: how should an agent vote to bring about its most preferred outcome?
 - Take into account its own preferences and those of others
 - Strategic manipulation is the possibility for agents to benefit from strategically misrepresenting their preferences (declared preferences ≠ true preferences)

Social Choice Model

- Assume a set $Ag = \{1, ..., n\}$ of *voters*. These are the entities who will be expressing preferences
- Voters make group decisions with respect to a set of outcomes

$$\Omega = \{\omega_1, \omega_2, \dots\}$$

- In an election, these can be seen as the candidates
 - If $|\Omega| = 2$, we have a pairwise election
 - If $|\Omega| > 2$, we have a general voting scenario
- Each voter has preferences over Ω : an *ordering* over the set of possible outcomes Ω
 - As a group choice, we may want to simply choose one
 - In other cases, we may want to rank the outcomes (candidates)

Preference Aggregation

Different voters typically have different preference orders

The fundamental problem of social choice theory

Given a collection of preference orders, one for each voter, how do we combine these to derive a group decision, that reflects as closely as possible the preferences of voters?

- Two variants of preference aggregation:
 - social welfare functions produce a social preference order
 - social choice functions produce a single choice

Social Welfare Functions

 A social welfare function takes the voter preferences and produces a social preference order:

$$f:\Pi(\Omega)\times\cdots\times\Pi(\Omega)\mapsto\Pi(\Omega)$$
 n times

- example: beauty contest
- >* indicates the outcome of a social welfare function: $\omega >$ * ω'
 - which indicates that ω is ranked above ω' in the social ordering

Social Choice Functions

 A social choice function takes the voter preferences and produces a single choice.

example: presidential election

Voting procedures

- Plurality Voting
- Sequential Majority
- Borda Count
- ... others (not mentioned here)

Voting procedure: Plurality

- Most commonly used to select a single outcome (but idea generalizes)
 - Social choice function
- Each voter submits its preference ordering.
- Each candidate gets one point for every preference order that ranks it first
- Winner is the one with largest number of points.

Paradox

Suppose $\Omega=\{\omega_1,\omega_2,\omega_3\}$, and: 40% voters voting for ω_1 30% of voters voting for ω_2 30% of voters voting for ω_3

 ω_1 wins, even though a *clear* majority (60%) prefer another candidate!

With only two candidates, then plurality is a simple majority election.

Plurality: strategic manipulation by tactical voting

Suppose your preferences are:

$$\omega_1 \succ_i \omega_2 \succ_i \omega_3$$

you believe:

- 49% of voters have preferences $\omega_2 >_i \omega_1 >_i \omega_3$
- 49% of voters have preferences $\omega_3 >_i \omega_2 >_i \omega_1$
- You may do better voting for ω_2 , even though this is not your true preference profile
- Tactical voting: strategically misrepresenting your preferences to bring about a more preferred outcome

Plurality: Condorcet's paradox

- Suppose $Ag = \{1, 2, 3\}$ and $\Omega = \{\omega_1, \omega_2, \omega_3\}$ with:
 - $-\omega_1 \succ_1 \omega_2 \succ_1 \omega_3$
 - $-\omega_3 \succ_2 \omega_1 \succ_2 \omega_2$
 - $-\omega_2 >_3 \omega_3 >_3 \omega_1$
- For every possible candidate, 2/3 (a majority) of the voters prefer another outcome

Condorcet's paradox: there are situations in which, no matter which outcome we choose, a majority of voters will be unhappy with the outcome chosen

Voting procedure: Sequential Majority

• A variant of plurality, in which players play in a series of rounds: either a *linear sequence* or a *tree* (knockout tournament).

Sequential Majority: Agendas

- Need to pick an ordering of the outcomes the agenda which determines who plays against whom
 - The final outcome depends also on the agenda (besides voter preferences)
- Problems:
 - Selecting a random order: does a democratic process depend on chance?
 - Selecting with some criteria: open to manipulation

This idea is easiest to illustrate using a majority graph

Sequential Majority: Agendas

• If an equal number of voters prefer each of

$$\omega_{1} > \omega_{2} > \omega_{3}$$

$$\omega_{3} > \omega_{1} > \omega_{2}$$

$$\omega_{2} > \omega_{3} > \omega_{1}$$

- Then, for every candidate, we can fix an agenda for that candidate to win in a sequential pairwise election!
 - With agenda $(\omega_3,\omega_2,\omega_1)$, ω_1 wins

– With agenda $(\omega_1,\omega_2,\omega_3)$, ω_3 wins

Sequential Majority: Majority Graphs

- Majority Graph: a compact representation of voter preferences a directed graph with:
 - nodes = candidates
 - an edge (ω, ω') if ω would beat ω' in a simple majority election, that is, a majority of voters rank ω above ω' .

Example:

- with agenda $(\omega_3, \omega_2, \omega_1)$, ω_1 wins
- with agenda $(\omega_1,\omega_3,\omega_2)$, ω_2 wins
- with agenda $(\omega_1, \omega_2, \omega_3)$, ω_3 wins

To determine if ω_i is a possible winner, we have to find, for every other ω_j , if there is a path from ω_i to ω_i in the majority graph.

Sequential Majority: Condorcet Winners

 A Condorcet winner is a candidate that would beat every other candidate in a pairwise election (winner for every possible agenda)

Example:

 ω_1 is a Condorcet winner: there is an edge from ω_1 to every other node

Voting procedure: Borda Count

- Plurality and Sequential Majority have many anomalies:
 - We're ignoring most information in a voter's preference order
 - We're only considering the top-ranked candidates
- The Borda Count takes the whole preference order into account:
 - For each candidate, we count the strength of opinion in favor for it
 - Suppose we have k candidates:
 - If ω_i appears first in a preference order, then we increment its counter by ω_i by k-1;
 - For the next candidate in a preference order, the counter is incremented by $k-2,\ldots$,
 - the last candidate in a preference order is not incremented (k k = 0).
 - After considering all voters, we order the outcomes by their count

Borda Count: example

• Suppose:

$$\Omega = \{\omega_L, \omega_D, \omega_C\}$$

$$- 43\% \text{ of } |Ag| : \omega_L > \omega_D > \omega_C$$

$$- 12\% \text{ of } |Ag| : \omega_D > \omega_L > \omega_C$$

$$- 45\% \text{ of } |Ag| : \omega_C > \omega_D > \omega_L$$

Result:

$$-\omega_L: 43 \times (3-1) + 12 \times (3-2) + 45 \times (3-3) = 98$$

$$-\omega_D: 43 \times (3-2) + 12 \times (3-1) + 45 \times (3-2) = 112$$

$$-\omega_C: 43 \times (3-3) + 12 \times (3-3) + 45 \times (3-1) = 90$$

Desirable Properties of Voting Procedures

Can we classify the properties of a "good" voting procedure? Three key properties:

The Pareto condition

If everybody prefers ω_i over ω_j , then ω_i should be ranked over ω_j in the social outcome.

The Condorcet winner condition

If ω_i is a Condorcet winner, then ω_i should always be ranked first.

Independence of Irrelevant Alternatives (IIA)

Whether ω_i is ranked above ω_j in the social outcome should depend only on the relative orderings of ω_i and ω_j in voters' preference profile

The Pareto Condition

- Recall the notion of Pareto efficiency
 - An outcome is Pareto efficient if there is no other outcome that makes one agent better off without making another worse off
- Pareto condition: if every voter ranks ω_i above ω_j , then the voting method should not choose ω_j , that is, we should have $\omega_i > *\omega_j$
- Plurality and Borda Count satisfy this criterion
- Sequential Majority violates this criterion

The Condorcet winner condition

- Recall the notion of Condorcet winner
 - The Condorcet winner is an outcome that would beat every other in a pairwise election
 - If there is a Condorcet winner, the voting method should choose it

- Sequential Majority satisfies this criterion
- Plurality and Borda Count violate this criterion

Independence of Irrelevant Alternatives

- Suppose there are a number of candidates including ω_i and ω_j and voter preferences make $\omega_i >^* \omega_j$
 - Now assume one voter k changes preferences, but still ranks make $\omega_i \succ_k \omega_j$
 - The independence of irrelevant alternatives condition says that however $>^*$ changes, we should still have $\omega_i >^* \omega_j$
 - In other words, if the relative ranking of ω_i and ω_j is not changed, the outcome should still rank ω_i and ω_j in the same way.
- Plurality, Sequential Majority and Borda Count do not satisfy this criterion

Arrow's Theorem

Are there any voting procedures that satisfy the Pareto condition and the Independence of Irrelevant Alternatives condition?

Arrow's theorem

For elections with more than 2 candidates, the only voting procedure satisfying these conditions is a dictatorship, in which the social outcome is in fact simply selected by one of the voters

$$f(\varpi_1, ..., \varpi_n) = \varpi_i$$

Gibbard-Satterthwaite Theorem

- Strategic manipulation
 - Each voter has its own 'true' preferences (private information)
 - Each voter is free to declare any preference profile
 - A voting procedure is manipulable if a voter can obtain a better outcome by unilaterally changing its announced preference profile
- Is there a voting procedure that is immune to such manipulation?
 - Yes! A dictatorship: the only non-manipulable voting method satisfying the
 Pareto property for elections with more than 2 candidates

Gibbard-Satterthwaite theorem

Only tells us that manipulation is possible in principle

- it does not give any indication of how to misrepresent preferences
- there are voting procedures whose manipulation is computationally complex

Further Reading

- Wooldridge, M. (2009). An Introduction to MultiAgent Systems, 2nd ed.,
 John Wiley & Sons: Chap. 12
- Shoham, Y. and Leyton-Brown, K. (2008). *Multiagent systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press: Chap. 9