An Introduction to Passivity–Based Control with Applications

Stefano Massaroli*

*Asama Lab, Department of Precision Engineering, The University of Tokyo

2019-01-16

Introduction

Today we will briefly cover the following topics:

- Passive systems and their properties
- Port-Hamiltonian systems & passivity-based control

The lecture will be divided into two parts:

- 1. Theory (with examples)
- 2. State-of-the-art applications

Note: all the MATLAB code to reproduce the simulations shown in this lecture are available at https://github.com/massastrello/PBCLecture

Premises

Notation:

The set \mathbb{R} (\mathbb{R}^+) is the the set of real (non negative real) numbers. The set of squared–integrable functions $z:\mathbb{R}\to\mathbb{R}^m$ is \mathcal{L}_2^m while the set of d–times continuously differentiable functions is \mathcal{C}^d . Let $\langle\cdot,\cdot\rangle:\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ denote the inner product on \mathbb{R}^m . The origin of \mathbb{R}^n is \mathbb{O}_n . Let $\mathcal{H}:\mathbb{R}^n\to\mathbb{R}$ be \mathcal{C}^2 and let $\nabla\,\mathcal{H}\in\mathbb{R}^n$ be its gradient. The Hessian of \mathcal{H} is $\nabla^2\,\mathcal{H}\in\mathbb{R}^{n\times n}$.

Consider the following (nonlinear) dynamical system

$$\Sigma: \begin{cases} \dot{x} = f(x) + g(x)u \\ y = h(x) \end{cases} \quad x \in \mathcal{X} \subset \mathbb{R}^n, u \in \mathcal{U} \subset \mathbb{R}^m, y \in \mathcal{Y} \subset \mathbb{R}^m$$

 $f: \mathcal{X} \to \mathbb{R}^n$, $g: \mathcal{X} \to \mathbb{R}^{m \times n}$ (rank $(g) = m \le n$) and $h: \mathcal{X} \to \mathbb{R}^m$ are assumed smooth enough such that solutions are forward–complete for all initial conditions $x_0 \in \mathcal{X}$ and all inputs $u(t) \in \mathcal{L}_2^m$.

Let $\Phi(t, x_0, u)$ denote the state trajectory at time $t \geq 0$.

Supply Rate and Dissipativity

Definition: Supply Rate

Any real-valued function

$$\omega: \mathcal{U} \times \mathcal{Y} \to \mathbb{R}$$

is called *supply rate*.

Definition: Dissipative System

A system Σ is dissipative with respect to the supply rate $\omega(u,y)$ if there exists a continuous function

$$\mathcal{H}: \mathcal{X} \to \mathbb{R}^+$$
 (storage function)

such that

$$\mathcal{H}(x(t)) - \mathcal{H}(x_0) \leq \int_0^t \omega(u(s), y(s)) ds \quad \forall u \in \mathcal{U}, x_0 \in \mathcal{X}, t \geq 0$$

 $\omega(u,y) o generalised$ power, $\mathcal{H}(x) o generalised$ energy

Passivity

Definition: Passive System

A system Σ is *passive* if it is dissipative w.r.t the supply rate

$$\omega(u,y) \triangleq \langle u,y \rangle \triangleq y^{\top}u$$

If a system is passive,

$$\mathcal{H}(x(t)) - \mathcal{H}(x_0) \leq \int_0^t y(s)^{\top} u(s) ds \quad \forall u \in \mathcal{U}, x_0 \in \mathcal{X}, t \geq 0$$

Remark

If u = 0, it holds

$$\dot{\mathcal{H}} = \nabla \mathcal{H}(x)\dot{x} \leq 0 \quad \forall x_0 \in \mathcal{X}, t \geq 0$$

- ⇒ The storage function **decreases** along any trajectory.
- \Rightarrow Any strict minimum x^* of $\mathcal{H}(x)$ is a Lyapunov stable equilibrium point of the system.

Passivity

Intuitions on the concept of passivity:

- it may be thought to be the "will" of the (autonomous) system to stabilize itself;
- the energy injected by the external input is not less than the variation of the stored energy:
 - \Rightarrow only part of the injected energy is stored, some energy is dissipated.

Definition: Kalman-Yakubovich-Popov (KYP) Property

A system Σ is said to enjoy the KYP property if $\exists \mathcal{H}: \mathcal{X} \to \mathbb{R}^+$, $\mathcal{H}(x) \in \mathcal{C}^1$, $\mathcal{H}(\mathbb{Q}_n) = 0$ such that:

$$\nabla \mathcal{H}(x) f(x) \leq 0$$

$$\nabla \mathcal{H}(x)g(x) = h^{\top}(x)$$

Proposition (Brynes)

A system enjoys the KYP property iff it is passive.

Passive LTI Systems

Let us consider a linear time invariant (LTI) system

$$\Sigma_{lin}: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C = \mathbb{R}^{m \times n}$ and $u, y \in \mathbb{R}^m$. The autonomous system (u = 0) is **stable** iff $\mathfrak{Re}[\lambda_i(A)] \leq 0$ for all $i = 1, \ldots, n$.

Let us consider a quadratic storage function $\mathcal{H}(x) = \frac{1}{2}x^{\top}Px$, $P = P^{\top} > 0$ Indeed, $\mathcal{H} \in \mathcal{C}^1$, $\mathcal{H}(\mathbb{O}_m) = 0$.

 \Rightarrow Let us try to apply the KYP lemma to the LTI system. It holds,

$$f(x) = Ax$$
, $g(x) = B$, $h(x) = Cx$

Therefore, the conditions on *P* for the KYP property become:

$$x^{\top} PAx \leq 0 \Leftrightarrow A^{\top} P + PA \leq 0$$

 $x^{\top} PB = x^{\top} C^{\top} \Leftrightarrow B^{\top} P = C$

7 / 45

Example: Mass-Spring-Damper

Consider a forced mass–spring–damper system with unitary mass

$$\ddot{\xi} + b\dot{\xi} + k\xi = \varphi \quad k, b \in \mathbb{R}^+$$

By choosing $u=\varphi$, and $x=[\xi,\dot{\xi}]^{\top}$, the state–space form of the system becomes:

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix}}_{A} x + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{B} u$$

The autonomous system is exponentially stable if b > 0. Let P be

$$P = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \quad \Rightarrow \quad P = P^{\top} > 0, \ A^{\top}P + PA < 0$$

 \Rightarrow The system is passive (with storage function $\mathcal{H}(x) = \frac{1}{2}x^{\top}Px$) choosing

$$y = Cx \triangleq B^{\top} Px = \dot{\xi}$$

Note: $\mathcal{H}(x)$ is the total energy of the system.

Numerical Simulation: k = 1, b = 0.5, $x_0 = [-0.9, 0]^{T}$

Numerical Simulation: k = 1, b = 0.5, $x_0 = [-0.9, 0]^{T}$

Output Feedback Asymptotic Stabilisation I

Definition: Detectability

A system Σ with $f(\mathbb{O}_n) = \mathbb{O}_n$ is zero–state detectable if

$$\forall x \in \mathcal{X} \quad y(t) = h(\Phi(t, x, \mathbb{O}_m)) = \mathbb{O}_m \ \forall t \ge 0 \Rightarrow \lim_{t \to \infty} \Phi(t, x, \mathbb{O}_m) = \mathbb{O}_n$$

Intuition: states should converge to zero when inputs and outputs are zero.

Output Feedback Asymptotic Stabilisation II

Theorem: Output feedback asymptotic stabilisation

Let Σ be passive with $\mathcal{H}(x): \mathcal{X} \to \mathbb{R}^+$ and $f(\mathbb{O}_n) = \mathbb{O}_n$ that is zero–state detectable and let $\varphi: \mathcal{Y} \to \mathcal{U}$, $\varphi \in \mathcal{C}^1$ such that

- $\varphi(\mathbb{O}_m) = \mathbb{O}_m$
- $y^{\top}\varphi(y) > 0 \quad \forall y \neq \mathbb{O}_m$

Then the control law

$$u = -\varphi(y)$$

asymptotically stabilises the equilibrium point.

Note: A possible choice of the input is $u = -\alpha y$ ($\alpha > 0$)

Output Feedback Asymptotic Stabilisation III

Example: Mass-spring-damper

system with $u = -\alpha y = -\alpha \dot{\xi}$ ($\alpha > 0$). Closed–loop system:

$$\dot{x} = \begin{bmatrix} \dot{\xi} \\ -k\xi - (b+\alpha)\dot{\xi} \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \alpha \dot{\xi} = \begin{bmatrix} \dot{\xi} \\ -k\xi - (b+\alpha)\dot{\xi} \end{bmatrix}$$

$$v = \dot{\xi}$$

Numerical Simulations: k = 1 and b = 0 and various values of α .

Numerical Simulations: k = 1 and b = 0 and various values of α .

Passivity-Based Control

Question: Can we exploit systems' passivity for control?

⇒ of course we can!

Classic control design

Design of state/output feedback (or even dynamic controller) based on *reference* $tracking \Rightarrow systems$ are thought as $signal\ processors$.

Passivity-based control (PBC)

Aims to modify the energetic properties of the system to achieve the desired behavior \Rightarrow particular attention on performance and not only in asymptotic stability even in nonlinear systems.

Port–Hamiltonian systems: framework in which PBC has been consistently developed

Port-Hamiltonian Systems: Origins

The theory of Port–Hamiltonian systems brings together different traditions of physical systems modeling and analysis:

- Port-Based Modeling (~ 50-60', Paynter): unified framework for modeling systems belonging to different physical domains.
 Achieved by recognizing energy as only common factor between physical domains.
- 2. **Geometric Mechanics** (\sim 70', Arnold): branch of *analytical mechanics* where the classical Hamiltonian mechanics is formalized in a "geometric way".
- ⇒ **Port–Hamiltonian (PH) systems** theory intrinsically merges *geometry* with *network theory* on a passivity substrate.

They have been firstly introduced by Arjian Van Der Schaft and Bernard Maschke in the mid 90'

Port-Hamiltonian Systems I

The input-state-output model of a port-Hamiltonian system is:

$$\Sigma_{PH}: \begin{cases} \dot{x} = \left[\mathcal{J}(x) - \mathcal{R}(x)\right] (\nabla \mathcal{H}(x))^{\top} + g(x) u \\ y = g^{\top} (\nabla \mathcal{H}(x))^{\top} \end{cases}$$

 \mathcal{H} : energy (Hamiltonian function), $\mathcal{J}(x) = -\mathcal{J}^{\top}(x)$: interconnection matrix, $\mathcal{R}(x) = \mathcal{R}^{\top}(x) \geq 0$: dissipation matrix g(x): input matrix (or power port).

Proposition:

A port–Hamiltonian system is passive with storage function $\mathcal{H}(x)$.

Power balance equation:
$$\dot{\mathcal{H}}(x) = y^{\top}u - \underbrace{\nabla \mathcal{H}(x)\mathcal{R}(\nabla \mathcal{H}(x))^{\top}}_{d(t) \geq 0}$$

PH Formulation of LTI system I

$$\mathcal{H}(x) = \frac{1}{2}x^{\top}P \Rightarrow \nabla \mathcal{H}(x) = x^{\top}P$$

Therefore, let u = 0

$$Ax = [\mathcal{J} - \mathcal{R}] Px \xrightarrow{\ker(P) \subseteq \ker(A)} AP^{-1} = \mathcal{J} - \mathcal{R}$$

How to find \mathcal{J} and \mathcal{R} ?

Observe that

$$[\mathcal{J} - \mathcal{R}] + [\mathcal{J} - \mathcal{R}]^{\top} = -2\mathcal{R}$$

Therefore,

$$\mathcal{R} = -\frac{1}{2} \left[A P^{-1} + P^{-1} A^{\top} \right]$$

$$\mathcal{J} = AP^{-1} + \mathcal{R} = AP^{-1} - \frac{1}{2} \left[AP^{-1} + P^{-1}A^{\top} \right] = \frac{1}{2} \left[AP^{-1} - P^{-1}A^{\top} \right]$$

PH Formulation of LTI system II

The natural dissipation d(t) of a LTI system is therefore

$$d(t) \triangleq \nabla \mathcal{H}(x) \mathcal{R} \nabla^{\top} \mathcal{H}(x) = -\frac{1}{2} x^{\top} P \left[A P^{-1} + P^{-1} A^{\top} \right] P x$$
$$= -\frac{1}{2} x^{\top} \left[P A + A^{\top} P \right] x$$
$$= -x^{\top} P A x$$

Any passive system Σ_{lin} with $ker(P) \subseteq ker(A)$ admits a port-Hamiltonian representation:

$$\begin{cases} \dot{x} = [\mathcal{J} - \mathcal{R}] Px + Bu \\ y = B^{\top} Px \end{cases}$$

PH Formulation of LTI system III

Example: mass-spring-damper

$$AP^{-1} = \begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix} \begin{bmatrix} 1/k & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -b \end{bmatrix}$$

$$P^{-1}A^{\top} = \begin{bmatrix} 1/k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -k \\ 1 & -b \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -b \end{bmatrix}$$

$$\mathcal{R} = -\frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & -b \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & -1 \\ 1 & -b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix}$$

$$\mathcal{J} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & -b \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & -1 \\ 1 & -b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$d(t) = -x^{\top} PAx = -\begin{bmatrix} \xi & \dot{\xi} \end{bmatrix} \begin{bmatrix} 0 & k \\ -k & -b \end{bmatrix} \begin{bmatrix} \dot{\xi} \\ \dot{\xi} \end{bmatrix} = b\dot{\xi}^2 \ge 0$$

21 / 45

Port-Hamiltonian Systems: Control

In the PH framework, the plant is viewed as an **energy-transformation device**. Indeed, the control is based on **passivity**.

$$\underbrace{\mathcal{H}(x(t)) - \mathcal{H}(x(0))}_{\text{stored energy}} = \underbrace{\int_0^t y^\top(s) u(s) ds}_{\text{supplied energy}} - \underbrace{\int_0^t d(s) ds}_{\text{dissipated energy}}$$

Passivity Based Control (PBC): preserve the energy conservation property but with desired energy and dissipation functions:

- Energy-balancing PBC: its final realization is static state and output feedbacks
- Control by interconnection: the controller is itself a PH system interconnected to the plant

Passivity-Based Control

Remark: We said the minima of $\mathcal{H}(x)$ are Lyapunov stable equilibrium points of the system.

 \Rightarrow Often, the configuration to be stabilised **is not** a strict minimum of $\mathcal{H}(x)$.

Passivity-Based Control Design:

- 1. **Energy Shaping**: Shape the energy of the system by means of a proper control law which assign a strict minimum in the desired set point;
- Damping Injection: Add dissipation to the system in order to asymptotically stabilize the desired configuration.
- ⇒ We will now introduce the so-called *Energy–Balancing PBC* (EB–PBC).

Energy-Balancing PBC I

Problem: Energy Shaping

Consider a PH system Σ_{PH} . A control action $u = \beta(x) + v$ solves the PBC problem if the closed-loop system satisfies a desired power-balance equation

$$\dot{\mathcal{H}}^* = z^\top v - d^*(t) \tag{1}$$

where \mathcal{H}^* is the desired energy function, $d^*(t)$ the desired dissipation function and $z \in \mathbb{R}^m$ the new power conjugated (passive) output.

Solution: Energy-Balancing PBC (Ortega)

Design the controller solving the dissipation inequality (1) setting:

$$z \triangleq y$$
$$d^*(t) \triangleq d(t) = \nabla \mathcal{H} \mathcal{R} \nabla \mathcal{H}$$

Energy-Balancing PBC II

Proposition:

If it is possible to find a function $\beta(x)$ such that

$$\dot{\mathcal{H}}_{a} = -y^{\top}\beta(x)$$

then the control law $u = \beta(x) + v$ is such that

$$\dot{\mathcal{H}}^* = y^\top v - d^*$$

is satisfied for $\mathcal{H}^* \triangleq \mathcal{H} + \mathcal{H}_a$.

 $\Rightarrow \beta(x)$ is such that the *added energy* \mathcal{H}_a equals the energy supplied to the system

 $\Rightarrow \mathcal{H}^*$ is the difference between the stored and supplied energy.

Closed-form solution of the EB-PBC controller:

$$\beta(\mathbf{x}) = -\mathbf{g}^{+} \left[\mathcal{J} - \mathcal{R} \right]^{\top} (\nabla \mathcal{H}_{\mathbf{a}})^{\top}$$

Energy-Balancing PBC III

where g^+ is the left pseudoinverse of g and \mathcal{H}_a satisfies the following matching equations

$$\begin{bmatrix} oldsymbol{g}^{oldsymbol{\perp}} oldsymbol{\left[\mathcal{J}-\mathcal{R}
ight]}^{oldsymbol{ au}} \end{bmatrix} (
abla \, \mathcal{H}_{oldsymbol{a}})^{oldsymbol{ au}} = \mathbb{0}_{\mathit{n+m}}$$

being g^{\perp} a left full-rank annihilator of g.

Note:
$$g^{+} \triangleq (g^{\top}g)^{-1}g^{\top}, g^{\perp}: g^{\perp}g = 0$$

The closed-loop system is then equivalent to

$$\dot{x} = [\mathcal{J} - \mathcal{R}] (\nabla \mathcal{H}^*)^\top + gv$$
$$y = g^\top (\nabla \mathcal{H}^*)^\top = g^\top (\nabla \mathcal{H})^\top$$

Damping Injection

It is possible to asymptotically stabilise the equilibrium configuration (a local minimum of the *shaped* Hamiltonian function) by the control law:

$$v = -\alpha y$$
, $\alpha > 0$

The controlled system can be described by the following equation:

$$\dot{\mathbf{x}} = [\mathcal{J} - \mathcal{R}] (\nabla \mathcal{H}^*)^{\top} - \alpha \mathbf{g} \mathbf{g}^{\top} (\nabla \mathcal{H}^*)^{\top}$$
$$= [\mathcal{J} - (\mathcal{R} + \alpha \mathbf{g} \mathbf{g}^{\top})] (\nabla \mathcal{H}^*)^{\top}$$

- ⇒ The damping injection adds to the system **power dissipation**.
- \Rightarrow Even in the <code>lossless</code> case, i.e., $\mathcal{R}=0$ the closed–loop system would be asymp. stable

Dissipation Obstacle

The matching conditions of the EB-PBC requires that at the equilibrium the energy extracted by the controller is zero, i.e.

$$y^T \beta(x^*) = 0$$

This limits the implementation of the EB-PBC.

 \Rightarrow However, it can be overcome with more advanced PBC techniques, i.e. *control* by interconnection.

Propisition:

The EB-PBC is subjected to the dissipation obstacle:

$$\begin{bmatrix} g^{\perp} \begin{bmatrix} \mathcal{J} - \mathcal{R} \end{bmatrix}^{\top} \\ g^{\top} \end{bmatrix} (\nabla \mathcal{H}_a)^{\top} = \mathbb{0}_{n+m} \Rightarrow \mathcal{R}(\nabla \mathcal{H}_a)^{\top} = 0$$

EB-PBC of LTI System

Unshaped energy: $\mathcal{H}(x) = \frac{1}{2}x^{\top}Px$

We want a desired *shaped* energy function which has a minimum in a configuration x^* , e.g.

$$\mathcal{H}^*(x) = \frac{1}{2}(x - x^*)^{\top} K(x - x^*), \ K = K^{\top} \ge 0$$

The energy balancing control law becomes

$$\beta(x) = -B^+ P^{-1} A^\top (\partial \mathcal{H}_a)^\top$$

where

$$\mathcal{H}_{a} = \frac{1}{2} [(x - x^{*})^{\top} K(x - x^{*}) - x^{\top} Px]$$

and with the matching conditions

$$\begin{bmatrix} B^{\perp} \begin{bmatrix} \mathcal{J} - \mathcal{R} \end{bmatrix}^{\top} \\ B^{\top} \end{bmatrix} (\partial \, \mathcal{H}_{a})^{\top} = \mathbb{0}_{n+m}$$

Final Control Scheme

EB-PBC of LTI System

Example: mass-spring-damper

Unshaped energy: $\mathcal{H}(x) = \frac{1}{2}k\xi^2 + \frac{1}{2}\dot{\xi}^2$

Desired fixed point: $x^* = [\bar{\xi}^*, 0]^{\top}$

Desired Energy function: $\mathcal{H}^* = \frac{1}{2}k^*(\xi - \xi^*)^2 + \frac{1}{2}\dot{\xi}^2$

Added energy:

$$\mathcal{H}_a = \mathcal{H}^* - \mathcal{H} = \frac{1}{2}k^*(\xi - \xi^*)^2 - k\xi^2 \Rightarrow \nabla \mathcal{H}_a = [k^*(\xi - \xi^*) - k\xi^2, 0]^\top$$

Therefore, the energy shaping control law becomes

$$\beta(x) = -\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & -b \end{bmatrix} \begin{bmatrix} K(\xi - \xi^*) \\ 0 \end{bmatrix}$$
$$= -k^*(\xi - \xi^*) + k\xi$$

Closed-loop system with also damping injection:

$$\dot{x} = \begin{bmatrix} \dot{\xi} \\ -k^*(\xi - \xi^*) - (b + \alpha)\dot{\xi} \end{bmatrix}$$

Numerical simulation: k = 1, b = 0.5, $k^* = 1$, $\xi^* = 0.5$, $\alpha = 4$, $x_0 = [-0.8, 0]^{T}$

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ 釣へで

Port-Hamiltonian Systems in Robotics

Port-Hamiltonian systems play an important role in robot control:

- robot teleoperation problem is often dealt with the PH systems theory;
- two widely used advanced robot control techniques correspond to special cases of PCB:
 - PD + gravity compensation
 - Impedance control
- Control of flexible manipulators (via distributed parameters PH systems)
- robust robot control with passive variable structure controllers

However, PH modeling is often applied in many more fields e.g.,

- power networks;
- multi-domain physical systems (e.g. electro-mechanical, thermo-electric etc.)

Application of Passivity–Based Control:

Multistable Energy Shaping of LTI Systems

Motivation

Claim:

Any autonomous exponentially stable LTI system admits only one equilibrium point. Furthermore, any linear controller only "moves" the equilibrium point.

In many practical situations, systems only operates in a finite number of working modes (voltages, positions, pressures, etc.).

- ⇒ A continuous exogenous reference signal must be constantly provided to the system in order to achieve the desired behavior.
- ⇒ The system itself has no "awareness" of the finiteness of the number of working modes.

Motivation

If it is possible to stabilise simultaneously all the working modes, we wouldn't need any external reference signal ⇒ Use only an asynchronous mode selector. A nonlinear controller is needed

Control Problem:

Simultaneously stabilise multiple fixed points by means of a proper nonlinear feedback controller to embed inside the system the information of the working modes:

Idea: Any stable LTI system could be passified with the right imput-output choice. \Rightarrow Use the theory of passivity based control.

Multistable Energy Shaping

Multistable passivity-based control (MS-PBC) problem

Given a passive LTI system Σ_{lin} , find a control law $u=\beta(x)+v$ solving the PBC problem with $\mathcal{H}^*\in\mathcal{C}^2$ is a desired storage (energy) function with N minimum points x_i^* ($i=1,\ldots,N$), i.e. such that:

$$\nabla \mathcal{H}^* \mid_{x=x_i^*} = 0, \ \nabla^2 \mathcal{H}^* \mid_{x=x_i^*} > 0 \quad \forall i = 1, \dots, N$$

- \Rightarrow The control problem can be just solved by the standard EB–PBC matching the requirements on the desired energy function.
 - \Rightarrow The problem reduces in designing a proper \mathcal{H}^* suitable for the task.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Example: Mass-Spring-Damper System

Consider the *mass–spring–damper* system and let the desired energy function have two minima symmetrically distributed on the displacement axes and that annihilates in the minima, e.g.,

$$\mathcal{H}^* = \lambda \xi^4 - \mu \xi^2 + \frac{1}{2}\dot{\xi}^2 - \frac{\mu^2}{2\lambda}$$
 $\lambda, \mu > 0$

which has two minima in $[\pm\sqrt{\mu/2\lambda},0]^{\top}$ and a local maximum in $[0,0]^{\top}$. Thus,

$$\mathcal{H}_{a} = \mathcal{H}^{*} - \mathcal{H} = \lambda \xi^{4} - (\mu + \frac{1}{2}k)\xi^{2} + \frac{1}{2}\dot{\xi}^{2} - \frac{\mu^{2}}{2\lambda}$$

and, therefore

$$\partial \mathcal{H}_{a} = [4\lambda \xi^{3} - (2\mu + k)\xi, 0]$$

It is straightforward to proof that the matching conditions of the EB–PBC are satisfied for \mathcal{H}_a and the energy shaping control law becomes

$$\beta(x) = -\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & -b \end{bmatrix} \begin{bmatrix} 4\lambda\xi^3 - (2\mu + k)\xi \\ 0 \end{bmatrix}$$
$$= -4\lambda\xi^3 + (2\mu + k)\xi \tag{2}$$

Numerical simulation: k = 1, b = 0.5, $\lambda = 2$, $\mu = 1 \Rightarrow x_{1,2}^* = [\pm 0.5, 0]^\top$, $\alpha = 0$, $x_0 = [-0.9, 0]^\top$.

マイロ トイラトイラト 夏 シスペン Stefano Massaroli(UT) Passivity—Based Control 2019—01—16 39 /45

Mode Selector

Let us suppose:

- to perform the multistable energy shaping control on a LTI system.
- to have the system in steady state in one of those working modes, i.e. x_i^* , and we want the system to change mode to x_i^* .
- \Rightarrow We can design an **hybrid controller** to be working as mode selector:
 - Switch-off energy shaping controller (the system is back linear);
 - Give an impulse to the system to bring the state close to x_j^{*};
 - Switch—on again the energy shaping controller

Impulse Control Design

When we switch-off the nonlinear controller the system is again LTI.

Problem: Bring the system from x_i^* to x_j^* in a time t^* with an impulse weights vector ν .

Impulse input:

$$u = \nu \delta(t), \ \nu \in \mathbb{R}^m$$

Impulse Response:

$$x(t^*) = e^{t^*A}(x_i^* + B\nu)$$

The design of the impulse controller $u(x_i^*, x_j^*)$ can be achieved by solving the following optimisation problem:

Find
$$t^*$$
, ν such that
$$(t^*, \gamma) = \operatorname*{arg\,min}_{t^*, \nu} \rho \|x_j^* - e^{t^*A} (x_i^* + B\nu)\|_2^2 + \gamma \|\nu\|_2^2$$
 subject to $\Phi(t^*, x_i^*, u(x_i^*, x_j^*)) \in \mathcal{B}_j$

where $\rho, \nu \in \mathbb{R}^+$ and \mathcal{B}_j is the basin of attraction of x_j^* .

Overall Hybrid System

The impulse control is equivalent to an abrupt change of initial condition (**jump**):

$$x^+ = x + B\nu$$
 (x^+ denotes the value of x after the impulse)

Then we leave the system uncontrolled for a time t^* before switching state again (A timer τ has been introduced).

$$\begin{array}{ccc}
r \neq 0 & \begin{bmatrix} x^{+} \\ \tau^{+} \end{bmatrix} = \begin{bmatrix} x + B\nu \\ 0 \end{bmatrix} \\
\begin{pmatrix} \dot{x} \\ \dot{\tau} \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ 0 \end{bmatrix} & \begin{pmatrix} \dot{x} \\ \dot{\tau} \end{bmatrix} = \begin{bmatrix} Ax \\ 1 \end{bmatrix} \\
\tau = t^{*} \land x \in \mathcal{B}.
\end{array}$$

Note: There is NO external continous reference signal \Rightarrow only a "logic" signal r.

Stefano Massaroli (UT) Passivity-Based Control 2019-01-16 42 / 45

Numerical Simulation: $\rho=1,\ \gamma=10^-3$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

43 / 45

Stefano Massaroli (UT) Passivity-Based Control 2019-01-16

Numerical Simulation: $\rho = 1$, $\gamma = 10^-3$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Stefano Massaroli (UT)

Numerical Simulation: $\rho = 1$, $\gamma = 10^-3$

Stefano Massaroli (UT)