

IN THE CLAIMS

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1 1. (currently amended) A method for isolating a channel of interest from a set of channels
2 from a plurality of multimedia sources that include a video network and a local media player, in
3 a multimedia system that includes a multimedia server that is coupled to the plurality of
4 multimedia sources, wherein at least one of the set of channels includes data from the local
5 media player, the method comprises:

6 receiving the set of channels as a stream of data via a communication path from the
7 multimedia server;

8 interpreting segments of the stream of data to identify data of the channel of interest;

9 interpreting the data of the channel of interest to determine type of the data;

10 processing the data of the channel of interest based on the type of data to produce
11 processed data including:

12 when the type of data is video data, converting the data of the channel of
13 interest into at least one of: YUV data and RGB data; and

14 storing the at least one of the YUV data and the RGB data in a frame

15 buffer to produce the processed data; and

16 providing the processed data for display.

1 2. (Original) The method of claim 1 further comprises:

2 receiving the stream of data in packets that include a header portion and a payload
3 portion; and

4 interpreting the header portion to determine which of the packets contain the data of the
5 channel of interest.

1 3. (Original) The method of claim 2, wherein the interpreting the data to determine the type
2 of data further comprises:

3 interpreting at least one of: the header portion and a header section of the payload portion
4 to determine the type of data.

- 1 4. (cancelled)
- 1 5. (currently amended) The method of claim 1~~claim 4~~, wherein the providing the processed
2 data further comprises:
3 retrieving the at least one of the YUV data and the RGB data from the frame buffer at a
4 display rate to produce retrieved display data; and
5 rendering the retrieved display data for display.
- 1 6. (currently amended) The method of claim 1~~claim 4~~further comprises:
2 Huffman decoding the video data to produce Huffman decoded data;
3 de-zigzagging the Huffman decoded data to produce de-ZZ data;
4 de-quantizing the de-ZZ data to produce de-Q data;
5 performing an inverse discrete cosine transform function upon the de-Q data to produce
6 IDCT data; and
7 performing at least one of motion compensation and scaling upon the IDCT data to
8 produce the YUV data.
- 1 7. (Original) The method of claim 6 further comprises:
2 converting the YUV data into the RGB data; and
3 storing the at least one of the YUV data and the RGB data.
- 1 8. (Original) The method of claim 3, wherein the processing the data further comprises:
2 when the type of data is audio data, converting the data of the channel of interest into
3 pulse code modulation (PCM) data; and
4 storing the PCM data in a frame buffer to produce the processed data.

1 9. (Original) The method of claim 8, wherein the providing the processed data further
2 comprises:

3 retrieving the PCM data from the frame buffer at a display rate to produce retrieved
4 display data; and

5 providing the retrieved display data to at least one speaker assembly.

1 10. (Original) The method of claim 3, wherein the processing the data further comprises:
2 when the type of data is application data, storing the application data in memory to
3 produce the processed data.

1 11. (Original) The method of claim 10, wherein the providing the processed data further
2 comprises:

3 retrieving the processed data from memory;

4 providing the processed data to a processor;

5 generating, by the processor, video data from the processed data; and

6 providing the video data to a display.

1 12. (Original) The method of claim 1 further comprises:

2 receiving the stream of data in frames that include a frame header and a frame payload;

3 and

4 interpreting the frame header to determine which of the frames contain the data of the
5 channel of interest.

1 13. (Original) The method of claim 1 further comprises:

2 transmitting a channel selection request, wherein the channel selection request identifies
3 the channel of interest.

1 14. (Original) The method of claim 1, wherein the receiving the stream of data further
2 comprises:

3 decoding the stream of data to recapture data of a channel of interest.

1 15. (Original) The method of claim 14, wherein the decoding further comprises at least one
2 of:

3 multilevel decoding of the stream of data;
4 non return to zero (NRZ) decoding of the stream of data;
5 Manchester decoding of the stream of data;
6 block decoding of the stream of data; and
7 nB/mB decoding of the stream of data, where n < m.

1
2 16-41. (cancelled)

3 42. (currently amended) An apparatus for isolating a channel of interest from a set of
4 channels from a plurality of media sources including a media network, a local media player and
5 the Internet, in a multimedia system that includes a multimedia server that is coupled to the
6 plurality of media sources, the apparatus comprises:

7 processing module; and

8 memory operably coupled to the processing module, wherein the memory includes
9 operational instructions that cause the processing module to:

10 receive the set of channels as a stream of data as a stream of data from the
11 multimedia server via a communication path;

12 interpret segments of the stream of data to identify data of the channel of interest;

13 interpret the data of the channel of interest to determine type of the data;

14 process the data of the channel of interest based on the type of data to produce
15 processed data including:

16 when the type of data is audio data, converting the data of the channel of
17 interest into pulse code modulation (PCM) data; and

18 storing the PCM data in a frame buffer to produce the processed data; and
19 provide the processed data for display.

1 43. (Original) The apparatus of claim 42, wherein the memory further comprises operational
2 instructions that cause the processing module to:

3 receive the stream of data in packets that include a header portion and a payload portion;
4 and

5 interpret the header portion to determine which of the packets contain the data of the
6 channel of interest.

1 44. (Original) The apparatus of claim 43, wherein the memory further comprises operational
2 instructions that cause the processing module to interpret the data to determine the type of data
3 by:

4 interpreting at least one of: the header portion and a header section of the payload portion
5 to determine the type of data.

1 45. (Original) The apparatus of claim 44, wherein the memory further comprises operational
2 instructions that cause the processing module to process the data by:

3 when the type of data is video data, converting the data of the channel of interest into at
4 least one of: YUV data and RGB data; and

5 storing the at least one of the YUV data and the RGB data in a frame buffer to produce
6 the processed data.

1 46. (Original) The apparatus of claim 45, wherein the memory further comprises operational
2 instructions that cause the processing module to provide the processed data by:

3 retrieving the at least one of the YUV data and the RGB data from the frame buffer at a
4 display rate to produce retrieved display data; and

5 rendering the retrieved display data for display.

1 47. (Original) The apparatus of claim 45, wherein the memory further comprises operational
2 instructions that cause the processing module to:

3 Huffman decode the video data to produce Huffman decoded data;

4 de-zigzag the Huffman decoded data to produce de-ZZ data;

5 de-quantize the de-ZZ data to produce de-Q data;

6 perform an inverse discrete cosine transform function upon the de-Q data to produce

7 IDCT data; and

8 perform at least one of motion compensation and scaling upon the IDCT data to produce

9 the YUV data.

1 48. (Original) The apparatus of claim 47, wherein the memory further comprises operational
2 instructions that cause the processing module to:

3 convert the YUV data into the RGB data; and

4 store the at least one of the YUV data and the RGB data.

1 49. (cancelled)

1 50. (currently amended) The apparatus of ~~claim 42~~claim 49, wherein the memory further
2 comprises operational instructions that cause the processing module to provide the processed
3 data:

4 retrieving the PCM data from the frame buffer at a display rate to produce retrieved
5 display data; and

6 providing the retrieved display data to at least one speaker assembly.

1 51. (Original) The apparatus of claim 44, wherein the memory further comprises operational
2 instructions that cause the processing module to process the data by:

3 when the type of data is application data, storing the application data in memory to
4 produce the processed data.

1 52. (Original) The apparatus of claim 51, wherein the memory further comprises operational
2 instructions that cause the processing module to provide the processed data by:

3 retrieving the processed data from memory;

4 providing the processed data to a processor;

5 generating, by the processor, video data from the processed data; and

6 providing the video data to a display.

1 53. (Original) The apparatus of claim 42, wherein the memory further comprises operational
2 instructions that cause the processing module to:

3 receive the stream of data in frames that include a frame header and a frame payload;

4 and

5 interpret the frame header to determine which of the frames contain the data of the
6 channel of interest.

1 54. (Original) The apparatus of claim 42, wherein the memory further comprises operational
2 instructions that cause the processing module to:

3 transmit a channel selection request, wherein the channel selection request identifies the
4 channel of interest.

1 55. (Original) The apparatus of claim 42, wherein the memory further comprises operational
2 instructions that cause the processing module to receive the stream of data:
3 decoding the stream of data to recapture data of a channel of interest.

1 56. (Original) The apparatus of claim 55, wherein the memory further comprises operational
2 instructions that cause the processing module to decode by at least one of:
3 multilevel decoding of the stream of data;
4 non return to zero (NRZ) decoding of the stream of data;
5 Manchester decoding of the stream of data;
6 block decoding of the stream of data; and
7 nB/mB decoding of the stream of data, where n < m.

1
2 57 -74. (cancelled)