

SWEN90016

Software Processes & Project Management

Quality Assurance Planning, Control, Monitoring

2019 – Semester 1 Tutorial 8

MELBOURNE Today's aim

MELBUUKNE

- 1. Know quality compliance frameworks, and their pros and cons
- 2. Know the different tools for achieving high quality outcomes
- 3. Discuss the costs and benefits of quality

Software Maturity Model

VIELDUUKNE

- 1. What are the advantages of moving a software process from "repeatable" to "defined"? (choose all that are correct)
 - a) A defined software process has measurement and control processes in place to encourage good management of the project
 - b) Less costly on the project team
 - c) It enables less experienced managers to perform as well as highly experienced managers.
 - d) Good for team morale

Software Maturity Model

MELBUUKNI

- What are the disadvantages of moving a software process from "repeatable" to "defined"? (choose all that are correct)
 - a) It is difficult to manage because there are fewer guidelines
 - b) Expensive
- c) It does not provide opportunities for junior managers to gain skills
- d) Can be problematic for team morale and interpersonal relationships

Capability Maturity Model

A tool for achieving high quality

From Lecture 9, slide 34

Optimizing (5)

Process change management Technology change management Defect prevention

Managed (4)

Software quality management

Quantitative process management

Defined (3)

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Repeatable (2)

Software configuration management Software quality assurance Software subcontract management Software project tracking and oversight Software project planning Requirements management

Initial (1)

Software Maturity Model

MELDUUKNI

From Lecture 9, slide 35

1. What are the advantages and disadvantages of moving a software process from "repeatable" to "defined"?

Defined (3)

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

Repeatable (2)

Software configuration management Software quality assurance Software subcontract management Software project tracking and oversight Software project planning Requirements management

In your assignment groups, discuss quality processes & do these activities

Create an appropriate formal checklist to review your own group assignment

3. Describe the outcome of this review?

THE UNIVERSITY OF MELBOURNE Quality Plan: A checklist

Atool	Quality Attributes	Definition According to McCall et al.
	Correctness	The extent to which a program satisfies its specifications
		and fulfils the user's mission objectives.
	Reliability	The extent to which a program can be expected to per-
		form its intended function with required precision.
	Efficiency	The amount of computing resources and code required by
		a program to perform a given function.
	Integrity	The extent to which access to software or data by unau-
		thorised persons can be controlled.
	Usability	The effort required to learn, operate, prepare input, and
		interpret output of a program.
	Maintainability	The effort required to locate and fix an error in an opera-
		tional program.
	Testability	The effort required to test a program to ensure that it per-
		forms its intended function.
	Flexibility	The effort required to modify an operational program.
	Portability	The effort required to transfer a program from hardware
		and/or software environment to another.
	Reusability	The extent to which a program (or parts thereof) can be
	-	reused in other applications.
	Interoperability	The effort required to couple one system with another.

Checklist for software requirements specification artifact

_	
Λ	+00
Δ	17 37 31
	LOO

Organisation and Completeness		
□ Are all internal cross-references to other requirements correct?		
☐ Are all requirements written at a consistent and appropriate level of detail?		
□ Do the requirements provide an adequate basis for design?		
☐ Is the implementation priority of each requirement included?		
☐ Are all external hardware, software, and communication interfaces defined?		
☐ Have algorithms intrinsic to the functional requirements been defined?		
Does the specification include all of the known customer or system needs?		
☐ Is the expected behaviour documented for all anticipated error conditions?		
Correctness		
□ Do any requirements conflict with or duplicate other requirements?		
☐ Is each requirement written in clear, concise, unambiguous language?		
☐ Is each requirement verifiable by testing, demonstration, review, or analysis?		
☐ Is each requirement in scope for the project?		
☐ Is each requirement free from content and grammatical errors?		
□ Is any necessary information missing from a requirement? If so, is it identified as "to be decided"?		
□ Can all of the requirements be implemented within known constraints?		
☐ Are any specified error messages unique and meaningful?		
Quality Attributes		
☐ Are all performance objectives properly specified?		
☐ Are all security and safety considerations properly specified?		
Are other pertinent quality attribute goals explicitly documented and quantified, with the acceptable tradeoffs specified?		
Traceability		
☐ Is each requirement uniquely and correctly identified?		
Is each software functional requirement traceable to a higher-level requirement (e.g. system require-		

MELDUUKNI

Quick video when on the importance of SW quality

https://www.youtube.com/watch?v=x8JR9Lh4XJ0

MELBOURNE Agile Quality Strategy

What is the role of QA in agile?

- After development there is a separate testing done by the agile team in a number of sprints
- As there is fast development cycles there is no time for testing
- Agile aims to adapt to changes quickly and minimize time so there is no testing
- a) Testing is done in each sprint
- e) Continuous integration between development and testing

MELBOURNE Agile Quality – Dev Team process

Agile QA desk-audit hurdle:

Invite multi skilled audience to desk audit: a business analyst, another developer and a tester

Review the code at the developer's desk, before the code is allowed to be committed into the shared *qit* repository, GITHub.

Once the code is committed into GITHub, it's test suite is run immediately by the Continuous Integration tool

CI tool displays run code's pass/fail status

MELBOURNE Agile Quality Process

WIELDWUKNE

Sprint Review QA evaluation:

- Build small piece of working software with minimal features
- Showcase the product chunk to the stakeholders early
- Fail fast and as cheaply as possible, & get timely feedback
- Capture the technical debt item in the Product Backlog, (optionally in FDD format)
- The Product Owner sets the priority of the technical debt item

Write QA Requirements as User Stories

As the Agile Scrum team:

5 a. We want a Quality Plan, so that our Sprint has a strong Quality Management focus

As a Quality Assurance **Design** team:

b. We want a QA checklist, so that key categories and attributes are assessed at defined times

As the System Administrator:

c. I want a password policy guideline, so that our application has helpful processes

I want a password policy checklist, so that our application is highly secure

MIELBUUKNE

Done!

MELBOURNE ISO-9000 Standards

ISO-9126: **SW Quality**

A compliance framework for achieving high quality

http://www.sqa.net/iso9126.html

Characteristics	Sub-characteristics
Functionality	Suitability Accuracy Interoperability Security
Reliability	Maturity Fault Tolerance Recoverability
Usability	Understandability Learnability Operability Attractiveness
Efficiency	Time Behaviour Resource Utilisation
Maintainability	Analysability Changeability Stability Testability
Portability	Adaptability Installability Co-existence Replaceability