概率论与数理统计

第三十六讲区间估计印

常数

不同样本值 $x_1, x_2, ..., x_n$ 算得的 θ 的估计值不同.

点估计方法的局限

设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是未知参数 θ 的估计量.

- 1) 用 $\hat{\epsilon}$ 估计 θ , 有多高的精度?
- 2) 用 $\hat{\epsilon}$ 估计 θ , 有多高的可信度?
- 3) 未知参数 府落在什么范围内?

希望根据所给的样本确定一个随机区间, 使其包含参数真值的概率达到指定的要求.

区间估计的定义

定义1 设总体 $X \sim F(x;\theta)$, θ 是待估计参数 , 若对给定的 α ($0 < \alpha < 1$) , 存在两个统计量: $\theta = \theta(X_1, X_2, \cdots, X_n)$, $\bar{\theta} = \bar{\theta}(X_1, X_2, \cdots, X_n)$ 使得 $P\{\theta < \theta < \bar{\theta}\} = 1 - \alpha$, $\theta \in \Theta$

则称随机区间($\underline{\theta}$, $\bar{\theta}$)为 θ 的置信度为 $1-\alpha$ 的置信区间. $\underline{\theta}$, $\bar{\theta}$ 分别称为置信下限和置信上限, $1-\alpha$ 称为置信度或置信水平.

区间估计的几点说明

- 1) 置信区间的区间长度 $\bar{\theta}$ $-\underline{\theta}$ 反映了估计的精度. $\bar{\theta}$ $-\theta$ 越小,估计精度越高.
- 2) α 反映了估计的可信度. α 越小 β , α 越大 , 估计的可信度越高;但通常会导致 $\overline{\theta}$ $\underline{\theta}$ 增大 , 从而导致估计的精度降低.
- 3) α 给定后,置信区间的选取不唯一,通常选取 $\bar{\theta}$ θ 最小的区间.

例 设 X_1 , X_2 , ... , X_n 是来自总体 $X \sim N(\mu, 1)$ 的样本 , 求 μ 的置信度为 $1 - \alpha$ 的置信区间.

 μ 的无偏估计为 \bar{X} ,且 $\overline{X} \sim N(\mu, \frac{1}{n}) \Longrightarrow$

$$-u_{1-\alpha/2}$$
 $u_{1-\alpha/2}$

例 设 X_1 , X_2 , ... , X_n 是来自总体 $X \sim N(\mu, 1)$ 的样本 , 求 μ 的置信度为 $1 - \alpha$ 的置信区间.

解 μ 的无偏估计为 \bar{X} ,且

$$\overline{X} \sim N(\mu, \frac{1}{n}) \Longrightarrow \frac{\overline{X} - \mu}{1/\sqrt{n}} \sim N(0, 1)$$

由此得到
$$P\{-u_{1-\alpha/2} < \frac{\overline{X} - \mu}{1/\sqrt{n}} < u_{1-\alpha/2}\} = 1 - \alpha$$

$$\mathbb{P} P\{\overline{X} - \frac{1}{\sqrt{n}}u_{1-\alpha/2} < \mu < \overline{X} + \frac{1}{\sqrt{n}}u_{1-\alpha/2}\} = 1 - \alpha$$

所以 μ 的置信度为 $1-\alpha$ 的置信区间为

$$(\bar{X} - \frac{1}{\sqrt{n}}u_{1-\alpha/2}, \ \bar{X} + \frac{1}{\sqrt{n}}u_{1-\alpha/2})$$

若取 n=16, $\alpha=0.05$, 查表得到 $u_{1-\alpha/2}=1.96$

则 μ 的置信度为 95% 的置信区间为

$$(\overline{X} - 0.49, \overline{X} + 0.49)$$

$$(\bar{X} - 0.49, \ \bar{X} + 0.49)$$
 — μ 的置信区间 $\bar{X} - 0.49$ — μ 的置信下限 $\bar{X} + 0.49$ — μ 的置信上限 $1 - \alpha$ — 置信度(置信水平)

若得到一样本值,计算得到 $\bar{x}=1.5$

则可得到一个区间: (1.01, 1.99)

它可能包含也可能不包含 μ 的真值

置信区间的含义

反复抽取容量为 16 的样本,每次都可以根据样本观测值 x_1, x_2, \dots, x_n 算得样本均值 \bar{x} ,得到一个区间

$$(\bar{x} - 0.49, \bar{x} + 0.49)$$

此区间可能包含未知参数 μ 的真值,也可能没包含.

而包含未知参数 μ 的区间个数约占95%,不包含未知参数 μ 的区间个数约占5%.

分位点的选取

问题 分位点为什么选取 $u_{1-\alpha/2}$?

当置信区间为
$$(\bar{X} - \frac{1}{\sqrt{n}}u_{1-\alpha/2}, \ \bar{X} + \frac{1}{\sqrt{n}}u_{1-\alpha/2})$$
 时,
区间长度为:

$$2\frac{1}{\sqrt{n}}u_{1-\alpha/2}$$

此时长度最短,即精度最高.

若取 $\alpha = 0.05$

$$u_{1-\frac{\alpha}{2}} - (-u_{1-\frac{\alpha}{2}}) = 2 \times 1.96$$

$$= 3.92$$

$$\frac{\alpha}{4} u_{1-\frac{\alpha}{4}} - (-u_{1-\frac{3\alpha}{4}}) = 2.24 + 1.78$$

$$= 4.02$$

选取原则 对称原则.

求解置信区间的一般过程

1) 构造样本的一个函数:

$$g(X_1, X_2, \cdots, X_n; \theta)$$
 — 称为枢轴变量

它含有待估参数 θ ,不含其它未知参数,其分布已知,且分布不依赖于未知参数(常由 θ 的点估计出发考虑).

2) 对给定的置信度 $1 - \alpha$, 确定 $g(X_1, X_2, \dots, X_n; \theta)$ 的分布的两个分位点: $x_{\alpha/2}$, $x_{1-\alpha/2}$, 使得

$$P\{x_{\alpha/2} < g(X_1, X_2, \dots, X_n; \theta) < x_{1-\alpha/2}\} = 1 - \alpha$$

3)解 $x_{\alpha/2} < g(X_1, X_2, \dots, X_n; \theta) < x_{1-\alpha/2}$ 得置信区间 $\left(\underline{\theta} = \underline{\theta}(X_1, X_2, \dots, X_n), \overline{\theta} = \overline{\theta}(X_1, X_2, \dots, X_n)\right)$

例 设 X_1 , X_2 , ... , X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本 , 其中参数 σ^2 知 , μ 未知 , 求 μ 的置信度为 $1 - \alpha$ 的置信区间.

思考 若已知 $\sigma^2 = 25$, n = 16 , 且由样本观测值 x_1, x_2, \ldots, x_n 计算样本均值 $\bar{x} = 1$, 得 到 μ 的置信区间 ($\bar{x} - 2.45, \bar{x} + 2.45$) ,问该 置信区间的置信度是多少?