

⑯ 日本国特許庁 (JP)

⑮ 特許出願公開

⑯ 公開特許公報 (A)

昭55-92200

⑯ Int. Cl.<sup>3</sup>  
C 02 F 11/14  
B 09 B 3/00

識別記号

厅内整理番号  
7729-4D  
6734-4D

⑯ 公開 昭和55年(1980)7月12日  
発明の数 1  
審査請求 未請求

(全 2 頁)

⑯ 赤泥の中和法

清水市三保4025番地の1 日本軽  
金属株式会社清水工場内

⑯ 特 願 昭54-28

⑯ 出 願 昭54(1979)1月5日

日本軽金属株式会社  
東京都中央区銀座7丁目3番5  
号

⑯ 発明者 望月脩

## 明細書

### 1 発明の名称

赤泥の中和法

### 2 特許請求の範囲

(1) パーキサイトを原料としたアルミナ製造工  
程から排出される赤泥を酸で中和するにあたり、  
その中和を少なくとも3段階に分けて行なうこと  
を特徴とする赤泥の中和法。

(2) 第1段階の中和の目標PH値を7~10とす  
ることを特徴とする特許請求の範囲第1項記載の  
赤泥の中和法。

(3) 各段階の中和の時間間隔を1時間以上とす  
ることを特徴とする特許請求の範囲第1項記載の  
赤泥の中和法。

### 3 発明の詳細な説明

本発明は赤泥の中和方法に関するものである。

赤泥は周知のように、パーキサイトを原料とし  
たアルミナ製造工程から排出されるものであるが、  
現在の所、道路用資材などとして一部利用されて

いるのみで、ほとんど廃棄投棄ないし埋立てによ  
つて処分されている。

アルミナ製造工程から排出された赤泥は、通常  
含水量約60%そしてPHが1.2~1.3の発酸である  
が、このものを廃棄投棄ないし埋立てによつて  
処分する場合には、法規制により、PHが5~9で  
なければならないので、一般に硫酸を添加して赤  
泥を中和する方法が採られている。

しかし乍ら赤泥は、その中和後時間の経過とと  
もにPHがかなり上昇する性質があり、処分時の  
規制値を満足させるためには、通常中和の目標  
PH値を5以下にしなければならないが、この場合、  
(1)赤泥はPH4.5付近で固化する性質があるた  
め、中和を強めて慎重に行なわねばならず、(2)中  
和に要する硫酸量が多くて費用が高み、且つ(3)PH  
が低いので中和設備の材質に留意しなければなら  
ない、というような問題が生じてくる。

本発明は上記したような問題点を解決し、容易  
且つ安価に赤泥を中和することを目的としたもの  
であつて、赤泥へ酸を添加したときのPH変化に

5  
因する詳細な研究の過程で、3回以上に分割して中和することにより、酸液加量が大巾に少なくなることが見出され、本発明が完成された。

すなわち本発明方法は、赤泥を酸で中和するにあたって、その中和を少なくとも3段階に分けて行ない、各に第1段階の中和の目標PH値を比較的高くすることを特徴とするもので、本方法を用いることによつて、赤泥の固化が避けられるとともに、中和設備の耐久性を考慮する必要がほとんどなくなり、しかも中和に要する全硫酸量が1段または2段中和に比べて大巾に少なくてすむという効果が得られる。

本発明方法において、第1段階の中和の目標PH値は7～10K、そして直後の段階のそれはほぼ中性の領域（たとえば5～8）にそれぞれ設定することが望ましい。第1段階における目標PH値が7以下であると、中和後のPH上昇度合が大きくなるため、全体の酸液加量がかえつて増加し、一方10を超えると、直後の段階のいずれかにおいてPH5以下に中和するか、あるいは中和段数をか

特開昭55-92210(2)

なり増さなければならぬので好ましくない。また第2段階以降は、上記したようにほぼ中性の領域になるよう中和すればよいわけであるが、比較段においては、目標PH値を標準8以下とすることが望ましい。というのは、1段または2段中和法に比べて中和後のPH上昇度合が1/2～1/3程度と大巾に小さくなるものの、本方法においても若干のPH上昇があるためである。

なお各段階における中和の時間間隔は、標準次のようにすることが望ましい。すなわち中和後のPH上昇は、比較的短時間で終る急激な部分と引続き緩慢な部分とに分けられるが、時間間隔としては、少なくとも、この急激な変化の終るまでの時間（通常約1時間）が必须であり、これを長くすればする程、中和後のPH上昇度合が小さくなる。

以下に本発明方法をさらに明確にするため、比較例とともに実施例を示す。

#### 比較例

ポーラサイトを原料としたアルミナ製造工程から排出された含水量60%そしてPH1.5の赤泥を、

6  
泥漿ポンプを用いて連続的にミキサーに導入し、ミキサー出口の泥漿のPHが5.0になるように、50重量%硫酸をミキサーに注入した。中和後の泥漿を攪拌機付の貯槽に入れてPHの経日変化を測定した所、中和4日後のPHは8.7を示し、なお若干上昇傾向が見られた。

この時の硫酸所要量（純分換算）は、赤泥固形分トン当たり120kgであつた。

#### 実施例

比較例に示したと同じ赤泥を用いて、これを3段階に分けて中和を行なつた。

中和方法は比較例と同じであつて、ミキサー出口のPHが目標値になるよう50重量%硫酸で連続的に泥漿を中和し、これを攪拌機付貯槽に貯留する方法を用いた。なお各段階の中和の時間間隔は約2.4時間であつた。

各段階の中和の目標PH値および赤泥固形分トン当たりの硫酸所要量（純分換算）は、第1段に示す通りであつた。

最終中和後の泥漿のPH経日変化を測定した所、

中和4日後のそれは8.2であり、この時点で、

第1表

|      | 中和の目標<br>PH値 | 硫酸所要量<br>(kg/t) |
|------|--------------|-----------------|
| 第1段階 | 7.5          | 50              |
| 第2段階 | 5.5          | 50              |
| 第3段階 | 4.5          | 10              |

その上昇傾向はほとんど認められなかつた。

なお中和に要した全硫酸量は70kgであつて、

比較例と比べて約40%低減した。

以上詳細に述べたように本発明によるときは、赤泥の中和を容易且つ安価に行なうことが可能となるので、工業的に有効な発明である。

特許出願人 日本軽金属株式会社