Start by importing the csv files

```
In []: import pandas as pd

baseline_file = "baseline_DrugCombDB_test_results.csv"
shuffle_file = "rewire_graph_DrugCombDB_test_results_.csv"

base_df = pd.read_csv(baseline_file)
shuffle_df = pd.read_csv(shuffle_file)
```

Merge the two dataframes

```
In []: shuffle_df = shuffle_df
shuffle_df = shuffle_df.drop("fold_id", axis=1).drop("graph_function", ax
base_df = base_df.drop("fold_id", axis=1)
base_df["graph_ratio"] = 0.0

merged_df = pd.concat([shuffle_df, base_df], ignore_index=True)
merged_df = merged_df.groupby('graph_ratio').mean().reset_index()
```

Now lets visualize the data

```
In [ ]: import matplotlib.pyplot as plt
        x = merged_df['graph_ratio']
        # Create a bar chart for each column (other than graph_ratio)
        columns_to_plot = columns_to_plot = [col for col in merged_df.columns if
        for column in columns to plot:
            plt.figure(figsize=(10, 6))
            # Find the index of the maximum value
            max_idx = merged_df[column].idxmax()
            min_idx = merged_df[column].idxmin()
            # Set bar colors (different color for the highest value)
            if column != "loss":
                colors = ['orange' if i != max_idx else 'green' for i in range(le
            else:
                colors = ['orange' if i != min_idx else 'green' for i in range(le
            # Plot the bars
            bars = plt.bar(x, merged_df[column], color=colors, width=0.05)
            # Add value labels on top of each bar
            for bar in bars:
                plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(),
                         f'{bar.get_height():.4f}', ha='center', va='bottom', fon
            # Adjust the y-axis limit to be relative to the maximum value
            plt.ylim(0, merged_df[column].max() * 1.1)
            # Title and labels
            plt.title(f'Bar Chart of {column} vs Graph Ratio', fontsize=14)
            plt.xlabel('Graph Ratio', fontsize=12)
```

```
plt.ylabel(column, fontsize=12)

# Ensure x-axis shows all graph_ratio labels
plt.xticks(x, labels=[f'{val:.1f}' for val in x], rotation=45)

# Show grid lines for y-axis
plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()
```


In []: merged_df

Out[]:		graph_ratio	loss	accuracy	precision	recall	roc_auc	pr_auc	f1_:
	0	0.0	0.536547	0.748002	0.728935	0.711327	0.826002	0.802354	0.7
	1	0.1	0.535557	0.748310	0.729220	0.711890	0.826283	0.802863	0.72
	2	0.2	0.534181	0.748688	0.728941	0.713845	0.827060	0.804134	0.72
	3	0.3	0.536237	0.748525	0.728402	0.713837	0.826535	0.803123	0.72
	4	0.4	0.534606	0.749709	0.730089	0.714545	0.827142	0.804601	0.7
	5	0.5	0.534137	0.747745	0.728056	0.712152	0.826752	0.803714	0.71
	6	0.6	0.535253	0.747995	0.728523	0.711902	0.826655	0.803701	0.7′
	7	0.7	0.535372	0.747463	0.728956	0.709938	0.826334	0.803633	0.7
	8	0.8	0.535572	0.746929	0.727906	0.709523	0.826248	0.803436	0.7
	9	0.9	0.535321	0.749280	0.729619	0.714174	0.826409	0.803009	0.7
)	