Digital System Design Course

Conceptos sobre Circuitos Secuénciales

☐ Circuito secuencial es un circuito digital donde las salidas dependen de los valores de las variables de estado presente, o de los valores de sus entradas y los valores de las variables de estado presente.

- Modelo para el circuito combinatorio
 - Representación gráfica:

– Representación matemática:
$$Z_i = F_i(X_1, X_2, ..., X_n) : \quad i = (1, 2, ..., n)$$

$$X_i = 0, 1$$

- ☐ *Modelo* para el *circuito secuencial*
 - * Representación *gráfica*:

Representación Matemática:

$$Z_i = g_i(X_1,...X_n, y_1,...y_r): i = (1,...m)$$

$$Y_i = h_i(X_1,...X_n, y_1,...y_r): i = (1,...r)$$

Donde:

 $X_1,...X_n$: Variables de Entrada

 $Z_1,...Z_m$: Variables de Salida

 $y_1,...y_r$: Estado Presente

 $Y_1,...Y_r$: Próximo Estado

$$Z = g(x, y)$$

$$Y = h(x, y)$$

Circuito Secuencial Síncrono

Circuito Secuencial Asíncrono

Diagrama de Tiempos para Máquinas de Estado

Clasificación: circuitos secuenciales

• Sincronismo: señal de *reloj* (clock)

Síncronos

- las salidas varían bajo una señal de control.
- señal de sincronismo o control: señal de reloj
- todos los "elementos de memoria" tienen el mismo clock

Asíncronos

- no necesitan una señal de sincronismo.
- las salidas varían, si varían las entradas.
- los "elementos de memoria" no tienen el mismo clock

Clasificación: circuitos secuenciales

- Función o propósito:
 - Propósito general: no se diseñan: ICs
 - Latches
 - Flop-flops
 - Registros
 - Registros de desplazamiento
 - Contadores
 - Propósito especifico: se diseñan: FSM-AFSM
 - Controladores
 - Secuenciadores
 - Unidades de control

Clasificación: circuitos secuenciales

- Maquinas de estado finito: FSM
 - Moore: las salidas son función de
 - variables del estado presente
 - Mealy: las salidas son función de
 - las señales de entrada
 - variables del estado presente

* tabla de verdad

Inputs		Outputs		
S	R	Q	\overline{Q}	
0	0	Q_0	\overline{Q}_0	→ no cambio
0	1	0	1	→ Reset
1	0	1	0	→ Set
1	1	X	X	→ no permitido

Circuitos Secuenciales: Latch SR – Tabla de estados: Estado Presente y Próximo Estado

Inputs		Estado Presente	Próximo Estado	
S(t)	R(t)	Q(t)	$\overline{Q}(t+1)$	
0	0	0	0	→ no cambio
0	0	1	1	IIO Calliblo
0	1	0	0	→ Reset
0	1	1	0	→ Reset
1	0	0	1	→ Set
1	0	1	1	- Det
1	1	0	d	→ no permitido
1	1	1	d	no permitido

* Mapas de Karnaugh

$$Q = S + \overline{R}Q_0$$
 : $Q^{t+1} = S^t + \overline{R}^t Q^t$

$$Q = S + \overline{R}Q_0 : Q^{t+1} = S^t + \overline{R}^t Q^t$$

$$\overline{Q} = \overline{S + \overline{R}Q_0} : \overline{Q^{t+1}} = \overline{S^t + \overline{R}^t Q^t}$$

1.
$$\overline{Q} = \overline{S + \overline{R}Q_0}$$

$$\overline{R}Q_0 = \overline{R + \overline{Q}_0}$$

$$\overline{Q} = \overline{S + \overline{R + \overline{Q}_0}}$$

2.
$$Q = \overline{R + \overline{Q}_{0}}$$

$$\overline{Q} = \overline{S + \overline{R}Q_{0}}$$

$$Q = S + \overline{R}Q_{0}$$

* tabla de verdad

Inputs		Outputs		
C	D	Q	\overline{Q}	
0	X	Q_0	\overline{Q}_0	
1	0	0	1	
1	1	1	0	

Tabla de estados: Estado Presente y Próximo Estado

Inputs		Estado Presente	Próximo Estado	
D(t)	C(t)	Q(t)	$\overline{Q}(t+1)$	
0	0	0	0	→ no cambio
0	0	1	1	ilo cambio
0	1	0	0	→ dato in
0	1	1	0	v dato in
1	0	0	0	→ no cambio
1	0	1	1	io camoro
1	1	0	1	→ dato in
1	1	1	1	uuto III

Mapas de Karnaugh

$$Q = D.C + \overline{C}Q_0 : Q^{t+1} = D^tC^t + \overline{C}^tQ^t$$

$$\overline{Q} = \overline{D.C + \overline{C}Q_0} : \overline{Q}^{t+1} = \overline{D^tC^t + \overline{C}^tQ^t}$$

Diagrama lógico

