Consider the sigmoid function $g(z) = \frac{1}{1+e^{-z}}$ (A) **[Ans]** when z = 0, g(z) = 0.5

(B) when z is negative, g(z) is also negative.

(C) [Ans] g(z) is always in the range of [0,1]

(D) g(z) is always in the range of [-1,1]

Consider the sigmoid function $g(\alpha,z)=\frac{1}{1+e^{-\alpha z}}$ where α is a positive real number. (A) if $\alpha_1>\alpha_2$, then $g(\alpha_1,z)\geq g(\alpha_2,z)$ for all z

- (B) if $\alpha_1 > \alpha_2$, then $g(\alpha_1, z) \le g(\alpha_2, z)$ for all z
 - (C) if $\alpha_1 > \alpha_2$, then $g(\alpha_1, z) \ge g(\alpha_2, z)$ for all z in the range [-1, 1](D) [Ans] if $\alpha_1 > \alpha_2$, then $g(\alpha_1, z) \ge g(\alpha_2, z)$ for all z in the range [1, 2]
 - (D) **[Ans]** if $\alpha_1 > \alpha_2$, then $g(\alpha_1, z) \ge g(\alpha_2, z)$ for all z in the range [1,2] (E) if $\alpha_1 > \alpha_2$, then $g(\alpha_1, z) \ge g(\alpha_2, z)$ for all z in the range [-2, -1]

Consider the sigmoid function $g(z)=\frac{1}{1+e^{-z}}$ Then g'(z) i.e., derivative of g(z) with respect to z

- (A) [Ans] is always positive for all values of z
- (B) is constant, i.e., derivative is independent of z.
- (C) $\frac{1}{1+e^2}$
- (D) [Ans] $\frac{e^{-z}}{(1+e^{-z})^2}$ (E) [Ans] g(z)(1-g(z))
- (L) [Alis] g(2)(1 g(2)

Consider the sigmoid function $g(z) = \frac{1}{1+e^{-z}}$ Then 1 - g(z) is

- (A) [Ans] is in the range of [0,1].
 - (B) $\frac{1}{1+e^z}$
 - (C) [Ans] $\frac{e^{-z}}{1+e^{-z}}$ (D) is in the range of [-1,0].
 - (E) [Ans] is in the range of [-1, +1].

You know the popular sigmoid function $g(z)=\frac{1}{1+e^{-z}}$, and also the $\tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}$ (A) tanh(z) is in the range of [0,1]

- - (C) [Ans] tanh(z) = 2g(2z) 1(D) **[Ans]** when z = 0, tanh(z) is 0.

 - (E) when z = 0, tanh(z) is 0.5.

(B) **[Ans]** tanh(z) is in the range of [-1, +1]