Apellido: Nombre: Carrera:

(1) Sea \mathbbm{k} un cuerpo y V un \mathbbm{k} -espacio vectorial.

- (a) (5 pts.) Sean v_1, \ldots, v_n vectores en V. Dar la definición del subespacio vectorial $\langle v_1, \ldots, v_n \rangle$.
- (b) (5 pts.) Sean $v, w \in V$ y $\lambda \in \mathbb{k}$. Demostrar que

$$\langle v, w \rangle = \langle v, \lambda v + w \rangle.$$

(c) (5 pts.) Sean $v, w, u \in V$. Demostrar que si $\{v, w, u\}$ es un conjunto LI entonces

$$\langle v, w \rangle \neq \langle v, u \rangle$$
.

(d) (5 pts.) Calcular la dimensión del subespacio vectorial de \mathbb{R}^4

$$W = \langle (1,0,1,0), (-1,1,0,1), (0,1,1,1), (-1,1,0,1) \rangle.$$

(2) Sean $a,b,c,d,e,f\in\mathbb{R}$ con a,d,f no nulos y sea U la matriz triangular superior

$$U = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$$

- (a) (5 pts.) Encontrar la inversa de U.
- (b) (5 pts.) Demostrar que si las columnas de U son autovectores de una matriz $A \in M_3(\mathbb{R})$, entonces A es triangular superior.
- (3) Sean $a,b\in\mathbb{R}$ y sean L_1 y L_2 las rectas en \mathbb{R}^3 dadas por

$$L_1 = \{ t(a, 1, 1) + (2, 1, 0) : t \in \mathbb{R} \},\$$

$$L_2 = \{s(1,0,b) + (1,1,-1) : s \in \mathbb{R}\}.$$

- (a) (5 pts.) Determinar **todos** los pares $(a, b) \in \mathbb{R}^2$ tales que la intersección $L_1 \cap L_2$ posee exactamente un punto.
- (b) (5 pts.) Determinar **todos** los pares $(a, b) \in \mathbb{R}^2$ tales que la intersección $L_1 \cap L_2$ es el conjunto vacio.
- (4) Sean $\mathcal{B} = \{1, x, x^2, x^3 + x\}$ base de $\mathbb{R}_4[x]$ y sea $\mathcal{C} = \{(1, 0), (0, 1)\}$ la base canónica de \mathbb{R}^2 . Sea $T : \mathbb{R}_4[x] \to \mathbb{R}^2$ una transformación lineal tal que

$$[T]_{\mathcal{BC}} = \begin{bmatrix} 0 & -1 & 1 & 1 \\ -1 & 2 & 0 & 0 \end{bmatrix}$$

- (a) (5 pts.) Calcular la dimensión del núcleo de T.
- (b) (5 pts.) Decidir si T es survectiva. Justificar.

(5) Sea $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ la transformación lineal definida por

$$T\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x - 2y & 2x - 4y \\ z + 3w & 2z + 6w \end{bmatrix}.$$

- (a) (5 pts.) Decidir si la matriz $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ pertenece a Im T. Justificar.
- (b) (10 pts.) Calcular los autovalores reales de T.
- (c) (10 pts.) Calcular los autoespacios de los autovalores calculados en el punto anterior.
- (d) (5 pts.) Decidir si T es diagonalizable.
- (6) (10 pts.) Decidir si existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que Nu $T = \langle (1,0,-1) \rangle$ y Nu $T \subset \operatorname{Im} T$. ¿Existe una única transformación lineal que satisfaga las propiedades anteriores?
- (7) Sea \mathbb{k} un cuerpo. Consideramos el \mathbb{k} -espacio vectorial $\mathbb{k}_n[x]$.
 - (a) (5 pts.) Demostrar que la función $T: \mathbb{k}_n[x] \to \mathbb{k}_n[x]$ dada por T(p(x)) = p(x-a), con $a \in \mathbb{k}$, es una transformación lineal biyectiva.
 - (b) (5 pts.) Demostrar que el conjunto

$$\{1, (x-a), (x-a)^2, \dots, (x-a)^{n-1}\}\$$

es una base de $\mathbb{k}_n[x]$.

1(a)	1(b)	1(c)	1(d)	2(a)	2(b)	3(a)	3(b)

4(a)	4(b)	5(a)	5(b)	5(c)	5(d)

6	7(a)	7(b)	Total	Nota	

Recordar: Si \mathbb{k} es un cuerpo y $n \in \mathbb{N}$, se denota por $\mathbb{k}_n[x]$ al espacio vectorial de polinomios de grado < n con coeficientes en \mathbb{k} . Es decir

$$\mathbb{k}_n[x] = \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{k}\}.$$

Este espacio vectorial tiene dimensión n.