逸出功的测量 实验报告

姓名: 吴晨聪 学号: 2022010311 实验日期: 2024年3月27日 实验台号: 9

一. 实验目的

- (1) 用里查孙直线法测定阴极材料的电子逸出功;
- (2) 了解热电子发射的规律;
- (3) 掌握逸出功的测量方法。

二. 实验仪器

- 1. 双路直流可调电源(右路) E_f: 输出约为0~5V, 0~1A;
- 2.双路直流可调电源(左路)Ea:输出约为0~150V;
- 3.指针式电流表:交直流两用,量程0~1A,用于测灯丝电流If;
- 4.数字电压表: 量程0~200mV;
- 5.实验板: 其上安装有标准二极管,灯丝KH两端已经并联上由两个相同电阻R(千欧量级) 串联而成的电阻;
- 6.实验面包板、元件:可以搭如图1所示的线路。

图 1 实验电路图

三. 数据处理

1. 原始数据:

 $I_{f1} = 0.500A$

U_a/V	36.08	49.01	63.99	81.05	100.02	121.11	144.03
U_e/mV	2.63	2.69	2.75	2.82	2.87	2.94	3.00
$\sqrt{u_a}$	6.01	7.00	8.00	9.00	10.00	11.00	12.00
$lg(u_e)$	0.42	0.43	0.44	0.45	0.46	0.47	0.48

$I_{f2}=0.529A$

U_a/V	36.07	49.03	64.01	81.07	100.01	121.02	144.02
U_e/mV	7.4	7.55	7.71	7.86	8.02	8.18	8.36
$\sqrt{u_a}$	6.006	7.002	8.001	9.004	10.000	11.001	12.001
$lg(u_e)$	0.869	0.878	0.887	0.895	0.904	0.913	0.922

$I_{f3}=0.561A$

U_a/V	36.03	49.07	64.01	81.07	100.68	121.03	144.01
U_e/mV	19.38	19.78	20.19	20.59	21.01	21.43	21.87
$\sqrt{u_a}$	6.002	7.005	8.001	9.004	10.034	11.001	12.000
$lg(u_e)$	1.287	1.296	1.305	1.314	1.322	1.331	1.340

$I_{f4} = 0.599A$

U_a/V	36.06	49.02	64.01	81.06	100.08	121.01	144.05
U_e/mV	55.51	56.61	57.73	58.86	59.95	61.14	62.34
$\sqrt{u_a}$	6.005	7.001	8.001	9.003	10.004	11.000	12.002
$lg(u_e)$	1.744	1.753	1.761	1.770	1.778	1.786	1.795

$I_{f5}=0.630A$

U_a/V	35.98	49.06	64.04	81.03	100.03	121.09	144.04
U_e/mV	120.84	123.19	125.57	127.91	130.27	132.78	135.28
$\sqrt{u_a}$	5.998	7.004	8.002	9.002	10.001	11.004	12.002
$lg(u_e)$	2.082	2.091	2.099	2.107	2.115	2.123	2.131

$I_{f6}=0.630A$

U_a/V	36.06	49.01	64.05	81.12	100.05	121.03	144.08
U_e/mV	250.8	255.8	260.5	265.4	270.1	274.9	280
$\sqrt{u_a}$	6.005	7.001	8.003	9.007	10.002	11.001	12.003
$lg(u_e)$	2.399	2.408	2.416	2.424	2.432	2.439	2.447

2. 作 $\lg U_e' \sim \sqrt{u_a}$ 拟合曲线:

图2 $\lg(u_e')\sim\sqrt{u_a}$ 关系曲线

3. 作lg ^{Ue}_{T²} ~ ¹ 拟合曲线:

$I_f(A)$	0.500	0.529	00561	0.599	0.630	0.660
I _e	2.3067	6.5539	17.1830	49.4538	108.0190	225.0091
T/K	1726	1780.14	1840.1	1899.16	1945.5	1991.8
T^{-1}/K^{-1}	0.000579	0.000562	0.000543	0.000527	0.000514	0.000502
$lg \frac{u_e}{T^2}$	-6.11108	-5.68441	-5.29458	-4.86292	-4.54456	-4.24629

图3 $lg\left(\frac{u_e}{T^2}\right) \sim \frac{1}{T}$ 关系曲线

4. 计算逸出功 W_0 :

根据

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\phi}{T}$$

两边同时加上一项 lgR_e ,即可得到

$$\lg \frac{U_e}{T^2} = \lg AS + \lg R_e - 5.039 \times 10^3 \frac{\phi}{T}$$

由此可知

$$\phi = -\frac{k}{5.039 \times 10^3} = -\frac{-22751}{5.039 \times 10^3} = 4.515V$$

可计算出逸出功的大小

$$W_0 = e_0 \phi = 4.515 \text{eV}$$

故相对偏差为:

$$\eta = \frac{4.515 - 4.54}{4.54} \times 100\% = 0.55\%$$

四. 实验总结

- 1. 初步掌握了由发射电流测量金属逸出功的原理和方法;
- 2. 通过搭接电路以及测量数据,进一步认识到在电路实验中,串并联关系的限制,电表、电源的非理想性,甚至电表的不同接法,往往都会带来系统误差,此时需全面考虑,选择产生系统误差最小的方式设计和连接电路:

五. 问题探讨

1. If系统误差修正的必要性?

实验中认为的If取值与实际灯丝电流大小的误差主要来源于:

- (1) 钨丝支路和R所在支路的电流:由于阴极电阻的大小约为几欧姆,而实验中用到的 $R=1.8k\Omega$,因此此处产生的系统误差大约为1%;
- (2)发射电流:由于发射电流的数量级为μA级,而实验中的灯丝电流在0.5A~0.7A之间取得,因此此处产生的系统误差远远小于1%。

综上所述, It的系统误差小于1%, 带来的影响可以忽略不计。

2. U。系统误差修正的必要性?

理论上,Ua应为A1点和钨丝中点间的压降,但此处有三个系统误差:

- (1) C点实际上不是灯丝中点的等效点位;
- (2)分压支路上的电阻 $1k\Omega$ 和 $1M\Omega$ 之比为1:1000而非1:999,因此实际测出的电压与实际电压存在大约1%的系统误差;
- (3)发射电流在2.7kΩ电阻上的压降会引入系统误差,由于发射电流的数量级为μA级,故该压降的数量级为mV级,而实验中测量的电压值为36V~144V,因此会引入约1%的系统误差。

综上所述, Ua的系统误差大约在1%左右, 在误差允许范围内, 该系统误差可忽略不计。

3. U'_e 是否需化成 I'_e 再进行数据处理?

由实验原理可推出

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{\sqrt{u_a}}{\sqrt{r_1 \ln \frac{r_2}{r_1}}}$$

两边同时加一项 $\lg R_e$,得到

$$\lg I_e' + \lg R_e = \lg I_e + \lg R_e + \frac{4.39}{2.303T} \frac{\sqrt{u_a}}{\sqrt{r_1 \ln \frac{r_2}{r_1}}}$$

根据对数加法运算的性质及欧姆定律可得

$$\lg U_e' = \lg U_e + \frac{4.39}{2.303T} \frac{\sqrt{u_a}}{\sqrt{r_1 \ln \frac{r_2}{r_1}}}$$

 $\lg U'_e \sim \sqrt{u_a}$ 图像的斜率等于 $\lg I'_e \sim \sqrt{u_a}$ 图像的斜率,因此无需将 U'_e 化成 I'_e 再进行后续处理,直接利用实验测得的电压值 U'_e 处理数据即可。

4. C点是否为灯丝中点的等效电位点?

不是, R_2 =1kΩ电阻到C点之间流过电流 I_C ,根据基尔霍夫电流定律,流过C点上方的电阻R的电流 I_1 与流过C点下方的电阻R的电流 I_2 不相等(I_2 = I_1 + I_C $\neq I_1$),根据欧姆定律知,上下两个电阻上的压降不相等,因此C点不是灯丝中点的等效点位点。

六. 原始数据记录

附录 实验测量数据记录参考表格

实验测量数据记录参考表格 实验题目: <u>绝</u>出功的测量 姓名: 是成功。 学号 2012010311 ,实验组号: 单三晚 K ,实验台号: 9 ,实验日期 1014.3.27

(1)灯丝电流 I_1 从 0.500A 开始,每改变 0.02-0.04A(最大电流不超过 0.700A)测定加速电压 U_a 和阳极 电流 L'(采样电阻上的电压 Uc)的关系;

(2)U。从 36V 开始逐步增加、最大不超过 150V。每个温度测 7 组数据、按照 U。从低到高的顺序测量。 (3)灯丝电流 I_{7} 对应的灯丝温度T由表 1中相邻两组数据采用线性插值法计算得出。

采样电阻(Ω)	I _f (A)/T(K)	$U_a(V)/U_{e'}(mV)$	1	- 2	3	4	5	6	7
$R_e = 2.7k$	In= 6.50	$U_d=$	36.08	49.01	63.99	81.05	100.02	/21.11	144.03
2.718	T1= 1726	U _e '=	2.63	2.69	2.15	2.82	2.87	2.94	3.00
$R_e = 2.1k$	In= 0.529	$U_a=$	36.07	49.03	64.03	81.06	100.06	121.02	144.02
2.7	T1= 1174.14	U_e '=	1.40	7.55	7.71	7.86	8.02	8.18	8.36
$R_e = 2.7 \text{K}$	1/1=0.561	$U_a=$	36.03	49.07	64.01	81.07	100.68	121.03	144.01
2.17	Ti= 1819,4	Ue'=	19.38	19.18	20.19	20.59	21.01	21.43	21.87
$R_e = 2Jk$	In= 6.599	$U_a=$	36.06	49.02	64.01	\$1.06	100.08	121.01	144.85
ZJK	T1= 1899.16	U_e =	55.51	\$6.61	57.73	58.86	59.95	61.14	6 2.34
Re = 1.7k	1/1= 6.63	$U_d=$	35.98	49.66	64.04	81.63	100.03	121.09	144.04
	Ti= 1945.4	U_e '=	120.84	123.19	125.57	127.91	130.27	132.78	135.28
e 210 -	1,1= 0.66	U_a	36.66	49.01	64.05	81.12	100.05	121.03	144.08
	T1= 1991.8	U_e	250.8	255.8	260.5	265.4	270.1	274.9	280.0

刘丰岐 2014.3.27