Numerical Method

National Cheng Kung University

Department of Engineering Science Instructor: Chi-Hua Yu

$HW\ 7$ Programming, Due 09:00, Wednesday, April $27^{th}\ ,\,2022$

注意事項:

- 1. Homework 的時間為公布題目後至下次上課前結束(上課當天 09:00)。
- 2. 請在規定的時段內完成作業,並用你的學號與 HW number 做一個檔案夾 (e.g., N96091350_HW3), 將你的全部 ipynb 檔放入檔案夾,壓縮後上傳至課程網站 (e.g., N96091350_HW3.zip),超過期限後不予補交。

Homework Submission Procedure (請仔細閱讀)

1. You should submit your Jupyter notebook and Python script (*.py, in Jupyter, click File, Download as, Python (*.py)).

- 2. Name a folder using your student id and lab number (e.g., n96081494_HW1), put all the pdf and all the Jupyter notebooks and python scripts into the folder and zip the folder (e.g., n96081494_HW1.zip).
- 3. Submit your lab directly through the course website.

National Cheng Kung University

Department of Engineering Science

Instructor: Chi-Hua Yu

- 1. (100%) Name your Jupyter notebook second_difference.ipynb and Python script second_difference.py. Consider the function $f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + 5x$. Write a function to complete the second order derivative of f(x) without using the function np.diff.
 - (1) Use the **forward-difference formula** to calculate the first derivative. Then the result of the first differential is substituted into the **backward-difference formula** to approximate the second order derivative. (Name your forward-difference function as my_forward_diff and backward-difference function as my_backward_diff.)

forward difference: $f'(x_j) = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}$

backward-difference: $f'(x_j) = \frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}$

(2) Please write a function which name sec_order_diff to complete the second order derivative. The equation is as follows:

$$f''(x_j) \approx \frac{f(x_{j+1}) - 2f(x_j) + f(x_{j-1})}{h^2}$$

Plot the difference and print the value of maximum error between the aforementioned numerical differentiation methods and their accuracy.

Below is the running example:

step size
h = 0.1
define grid
x = np.arange(-2, 4, h)
compute function
y = (1/4)*(x**4) + (1/3)*(x**3) + 5*x

compute corresponding grid
x_diff = x[1:-1:]
compute exact solution
exact_solution = 3*(x_diff**2) + 2*x_diff

The wide of the Exact solution is 12 and color is 'darkblue'.

The wide of Finite difference is 5, linestyle is "--" and color is 'orange'.

Numerical Method

National Cheng Kung University

Department of Engineering Science

Instructor: Chi-Hua Yu

The marker size of Second-order is 13, markerstyle is "*", linestyle = " " and color is 'lime'.

error of finite difference: 0.005000000075272055

error of second-order: 0.0050000000075201