1. Let $A = \{x \in R: |x-1| < 1\}$ and let $B = \{x \in R: |x-2| < 2\}$. Prove that $A \subseteq B$ and find A', B' and B\A.

Proof. Suppose $a \in \{x \in R: |x-1| < 1\}$.

This means that $a \in R$ and |a-1| < 1 so $-1 < a \le 2$.

Consequently, a must also be $0 < a \le 4$.

Therefore, $a \in \{x \in \mathbb{R}: |x-2| < 2\}$, so it follows that $A \subseteq \mathbb{B}$.

$$A' = \{x \in R: |x-1| \ge 1\}, B' = \{x \in R: |x-2| \ge 2\}$$

B\A is equal to $\{x \in \mathbb{R}: |x-2| < 2\}$ since this set contains elements not within A.

2. a. $A \subseteq B \iff A \cup B = B$

$$\implies$$
 $(A \cup B)' = B' \implies (A \cup B)' = B'$

Using Demorgan's Law

$$\implies A' \cap B' = B' \implies A' \cap B' = B'$$

$$\Longleftrightarrow B' \subset A' \Longleftrightarrow \mathrm{B'} \subset \mathrm{A'}$$

- b. By definition of \cap , $A \cap B = \{x: x \in A \land x \in B\}$. Therefore, for $A \cap A$ ' must be in both A and A', but A' is the set of all numbers not in A. Therefore, there will be nothing in the set resulting from $A \cap A$ ', hence $A \cap A' = \emptyset$.
- c. A \cup A' = the universal set. It follows that if x exists in an arbitrary set X, then it must also exist in the universal set.
- 3. Let $x \in A \setminus (B \cap C)$.

Then $x \in A$ but $x \notin B \cap C$.

From this, $x \notin B$ or $x \notin C$ (since it does not belong to both B and C).

Thus, either $x \in A \setminus B$ or $x \in A \setminus C$. That is, $x \in (A \setminus B) \cup (A \setminus C)$.

$$x \in A \setminus (B \cap C) \Longrightarrow x \in (A \setminus B) \cup (A \setminus C).$$

Therefore, $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C)$.

From this we can deduce that $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

4. a. $X = \{1,2\}$ or $\{1,2,3\}$

b.
$$X = \{3\}$$

c.
$$X = \{1, 2, 4\}$$

5. Suppose $(x, y) \in (A \cup B) \times (C \cup D)$.

From this, $x \in A \cup B$, so $x \in A$ or $x \in B$, and $y \in C \cup D$, so $y \in C$ or $y \in D$.

$$\Rightarrow$$
 $(x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C) \text{ or } (x \in A \text{ and } y \in D) \text{ or } (x \in B \text{ and } y \in D)$

$$=> (x, y) \in (A \times C)$$
 or $(x, y) \in (B \times C)$ or $(x, y) \in (A \times D)$ or $(x, y) \in (B \times D)$

$$=> (x, y) \in (A \times C) \cup (B \times C) \cup (A \times D) \cup (B \times D)$$

These steps can be performed in reverse with the exact same result, meaning that if $(x, y) \in (A \cup B) \times (C \cup D)$, then $(x, y) \in (A \times C) \cup (B \times C) \cup (A \times D) \cup (B \times D)$, and if $(x, y) \in (A \times C) \cup (B \times C) \cup (A \times D) \cup (B \times D)$, then $(x, y) \in (A \cup B) \times (C \cup D)$.

Hence it is proved that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times C) \cup (A \times D) \cup (B \times D)$.