ST3241 Categorical Data Analysis I Two-way Contingency Tables

 2×2 Tables, Relative Risks and Odds Ratios

What Is A Contingency Table (p.16)

- \bullet Suppose X and Y are two categorical variables
- X has I categories
- Y has J categories
- Display the IJ possible combinations of outcomes in a rectangular table having I rows for the categories of X and J columns for the categories of Y.
- A table of this form in which the cells contain frequency counts of outcomes is called a *contingency table*.

Example: Belief In Afterlife Data (p.18)

Belief in Afterlife			
Gender	Yes	No or Undecided	
Female	435	147	
Male	375	134	

- A contingency table that cross classifies two variables is called a $two-way\ table$.
- A table which cross classifies three variables is called a $three-way\ table.$
- A two-way table having I rows and J columns is called an $I \times J$ table.

Some Notations, Definitions ...

- $\pi_{ij} = P[X = i, Y = j]$ = probability that (X, Y) falls in the cell in row i and column j.
- The probabilities $\{\pi_{ij}\}$ form the joint distribution of X and Y.
- Note that,

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{ij} = 1$$

Marginal Distributions (p.17)

• The marginal distribution of X is π_{i+} , which is obtained by the row sums, that is,

$$\pi_{i+} = \sum_{j=1}^{J} \pi_{ij}$$

• The marginal distribution of Y is π_{+j} , which is obtained by the column sums, that is

$$\pi_{+j} = \sum_{i=1}^{I} \pi_{ij}$$

• For example, for a 2×2 table

$$\pi_{1+} = \pi_{11} + \pi_{12}, \pi_{+1} = \pi_{11} + \pi_{21}$$

Notations For The Data

• Cell counts are denoted by $\{n_{ij}\}$, with

$$n = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij}$$

• Cell proportions are

$$p_{ij} = \frac{n_{ij}}{n}$$

• The marginal frequencies are row totals $\{n_{i+}\}$ and column totals $\{n_{+j}\}$

Example

Gender	Yes	No or Undecided	Total
Female	$n_{11} = 435$	$n_{12} = 147$	$n_{1+}=582$
Male	$n_{21} = 375$	$n_{22} = 134$	$n_{2+} = 509$
Total	$n_{+1} = 810$	$n_{+2} = 281$	n = 1091

Example: Sample Proportions

	Belief		
Gender	Yes	No or Undecided	Total
Female	$p_{11}=0.398$	$p_{12}=0.135$	$p_{1+}=0.533$
Male	$p_{21} = 0.344$	$p_{22} = 0.123$	$p_{2+} = 0.467$
Total	$p_{+1} = 0.742$	$p_{+2} = 0.258$	p = 1.00

Conditional Probabilities

- Let Y be a response variable and X be an explanatory variable.
- It is informative to construct separate probability distributions for Y at each level of X.
- Such a distribution consists of conditional probabilities for Y given the level of X and is called a conditional distribution.

Example: Sample Conditional Distributions

- For females,
 - Proportion of yes responses = 0.747
 - Proportion of no responses = 0.253
- For males,
 - Proportion of yes responses = 0.737
 - Proportion of no responses = 0.263

Independence

- Is the belief in afterlife is independent of gender?
- Two variables are statistically independent if all joint probabilities equal the product of their marginal probabilities $\pi_{ij} = \pi_{i+}\pi_{+j}$, for $i = 1, \dots, I$ and $j = 1, \dots, J$
- \bullet Conditional distributions of Y are identical at each levels of X.

Probability Model For A 2×2 Table

- Poisson Model
 - Each of the 4 cell counts are independent Poisson random variables
- Binomial Model
 - Marginal totals of X are fixed.
 - Conditional distributions of Y at each level of X are binomial.
- Multinomial Model
 - Total sample size is fixed but not the row or column totals.
 - The distribution of 4 cell counts are then multinomial

Comparing Proportions In 2×2 Tables

- Assume that the row totals are fixed and hence we have a binomial model.
- Suppose the two categories of Y are *success* and *failure*.
- Let π_1 = Probability of success in row 1 and π_2 = Probability of success in row 2.
- The difference in probabilities $\pi_1 \pi_2$ compares the success probabilities in two rows.

Sample Difference of Proportions

- Let p_1 and p_2 be sample proportions of success for the two rows.
- The sample difference $p_1 p_2$ estimates $\pi_1 \pi_2$.
- If the counts in two rows are independent samples, the estimated standard error of $p_1 p_2$ is

$$\hat{\sigma}(p_1 - p_2) = \sqrt{\frac{p_1(1 - p_1)}{n_{1+}} + \frac{p_2(1 - p_2)}{n_{2+}}}$$

Example: Belief in Afterlife (p.16)

• In our example

$$p_1 = n_{11}/n_{1+} = 435/582 = 0.747$$

 $p_2 = n_{21}/n_{2+} = 375/509 = 0.737$

- Therefore, $p_1 p_2 = 0.747 0.737 = 0.010$
- The estimated standard error

$$\hat{\sigma}(p_1 - p_2) = \sqrt{p_1(1 - p_1)/n_{1+} + p_2(1 - p_2)/n_{2+}} = 0.02656$$

Example: Aspirin Use And Myocardial Infarction (p. 20)

	Myoca		
Group	Yes	No	Total
Placebo	189	10845	11034
Aspirin	104	10933	11037

• To find out whether regular intake of Aspirin reduces mortality from cardiovascular diseases

Example: Continued

- In this example, $p_1 = 189/11034 = 0.0171$ and $p_2 = 104/11037 = 0.0094$.
- Thus $p_1 p_2 = 0.0077$ and the estimated standard error,

$$\hat{\sigma}(p_1 - p_2) = \sqrt{\frac{0.0171 \times 0.9829}{11034} + \frac{0.0094 \times 0.9906}{11037}} = .0015.$$

Confidence Interval (p.19)

• A large sample $100(1-\alpha)\%$ confidence interval for $\pi_1 - \pi_2$ is

$$p_1 - p_2 \pm z_{\alpha/2} \hat{\sigma}(p_1 - p_2)$$

where $z_{\alpha/2}$ denotes the standard normal percentile having a right tail probability equals to $\alpha/2$.

• For the aspirin use example, a 95% C.I. for $\pi_1 - \pi_2$ is $0.0077 \pm 1.96 \times 0.0015 = (0.005, 0.011)$.

Notes (p.21)

- A difference between two proportions of a certain fixed size may have greater importance when both proportions are near 0 or 1 than when they are near the middle of the range.
- e.g. the difference between 0.010 and 0.001 is the same as the difference between 0.410 and 0.401, namely 0.009 but the former one may be more important than the later one.
- Examples of such cases include a comparison of drugs on the proportion of subjects who have adverse reactions when using the drug.

Relative Risk (p.21)

- In 2×2 tables, the relative risk is the ratio of the success probabilities for the two groups π_1/π_2 .
- The proportions 0.010 and 0.001 has a relative risk of 10.0 whereas the proportions 0.410 and 0.401 have a relative risk 1.02.

Relative Risk - Continued

- Sample relative risk = p_1/p_2 .
- Its distribution is heavily skewed and cannot approximated by normal distribution well unless the sample sizes are quite large.
- A large sample confidence interval is given by

$$\exp\left[\log(\frac{p_1}{p_2}) \pm z_{\alpha/2} \sqrt{\frac{1-p_1}{n_{1+}p_1} + \frac{1-p_2}{n_{2+}p_2}}\right]$$

Example: Aspirin Use and MI

- The sample relative risk is 1.818.
- A large sample 95% confidence interval for the relative risk π_1/π_2 is [1.4330, 2.3059].
- The C.I. (0.005, 0.011) for the difference of proportions, $\pi_1 \pi_2$, makes it seem as if the two groups differ by a trivial amount, but the relative risk shows that the difference may have important public health implications.

Odds Ratio (p.22)

• Within Row 1, the odds of success is

$$Odds_1 = \pi_1/(1 - \pi_1)$$

• Similarly, within Row 2, the odds of success is

$$Odds_2 = \pi_2/(1 - \pi_2)$$

• Odds Ratio

$$\theta = \frac{Odds_1}{Odds_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

Notes (p. 23)

- For example, if $\pi_1 = 0.75, Odds_1 = 0.75/0.25 = 3$.
- Odds are non-negative and values greater than 1 indicates a success is more likely than a failure.
- When X and Y are independent, conditional distributions of Rows 1 and 2 are same, that is, $\pi_1 = \pi_2$ and this implies, $\theta = 1$.

Observations

- X and Y are independent $\Leftrightarrow \pi_1 = \pi_2 \Leftrightarrow \theta = 1$.
- If $1 < \theta < \infty$, the odds of success are **higher** in row 1 than in row 2.
- If $0 < \theta < 1$, a success is **less** likely in row 1 than in row 2.

More Observations

- Values of θ farther from 1 (too small or too large) in a given direction indicates stronger level of association.
- If the order of the rows or the order of the columns is reversed (but not both), the new value of θ is the inverse of the original value.
- This ordering is usually arbitrary, so whether we get $\theta = 4.0$ or 0.25 is simply a matter of how we label the rows and columns.

More Observations

- As the odds ratio treats the variables symmetrically, it is unnecessary to identify one classification as a response variable to calculate it.
- When both variables are responses, the odds ratio can be defined using the joint probability as

$$\theta = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

and called $cross - product \ ratio$.

Sample Odds Ratio (p.24)

• Sample odds ratio is defined as

$$\hat{\theta} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}.$$

- For the Aspirin Use example, for the Placebo group, the odds of MI = 0.0174 and for the Aspirin group, the odds of MI = 0.0095.
- The sample odds ratio = 0.0174/0.0095 = 1.832.
- The estimated odds are 83% higher for the placebo group.

```
data veg;
  input habit $ count;
datalines;
Veg 10
Nonveg 15
; run;
proc freq data=veg order=data;
  weight count;
  tables habit / binomial (p=0.5);
run;
```

Output

The FREQ Procedure

			Cumulative	Cumulative
habit	Frequency	Percent	Frequency	Percent
Veg	10	40.00	10	40.00
Nonveg	15	60.00	25	100.00
Binomia	l Proportion	for habit	= Veg	
Proportion 0.4000			00	
ASE		0.09	80	

0.2080

0.1587

0.3173

95% Upper Conf Limit	0.5920
Exact Conf Limits	
95% Lower Conf Limit	0.2113
95% Upper Conf Limit	0.6133
Test of H0: Proportion = 0.5	
ASE under HO	0.1000
Z	-1.0000

95% Lower Conf Limit

One-sided Pr < Z

Two-sided Pr > |Z|

Sample Size = 25

```
data aspirin;
input group $ mi $ count;
datalines;
Placebo Yes 189
Placebo No 10845
Aspirin Yes 104
Aspirin No 10933
;
run;
proc freq data=aspirin order=data;
  weight count;
  tables group*mi / measures nopercent norow nocol;
run;
```

The FREQ Procedure

Table of group by mi

group mi

Frequency	Yes	No	Total
Placebo	189	10845	11034
Aspirin	104	10933	11037
Total	293	21778	22071

Output

Estimates of the Relative Risk (Row1/Row2)

Type of Study

Value 95% Confidence Limits

Case-Control (Odds Ratio)	1.8321 1.440	0 2.3308
Cohort (Coll Risk)	1.8178 1.433	0 2.3059
Cohort (Col2 Risk)	0.9922 0.989	2 0.9953

Sample Size = 22071

• For asymptotic test:

```
>veg<-10
>total<-25
>prop.test(veg,total,0.5,correct=F)
```

• For Exact Test:

```
>binom.test(veg,total,0.5)
```

Output For prop.test

```
1-sample proportions test without continuity correction
data: veg out of total, null probability 0.5
X-squared = 1, df = 1, p-value = 0.3173
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.2340330 0.5926054
sample estimates:
p
0.4
```

Output For binom.test

Exact binomial test

```
data: veg and total
number of successes = 10, number of trials = 25,
p-value = 0.4244
alternative hypothesis: true probability of
  success is not equal to 0.5
95 percent confidence interval:
0.2112548 0.6133465
sample estimates:
probability of success
  0.4
```

R Codes For 2×2 Tables

R Codes For Difference In Proportions

```
>prop.test(phs,correct=F)
2-sample test for equality of proportions without
continuity correction
data: phs
X-squared = 25.0139, df = 1, p-value = 5.692e-07
alternative hypothesis: two.sided
95 percent confidence interval:
0.004687751 0.010724297
sample estimates:
prop 1 prop 2
0.01712887 0.00942285
```

Relative Risk and Odds Ratio

```
>phs.test<-prop.test(phs,correct=F)
>phs.test$estimate[1]/phs.test$estimate[2]
prop 1 %Relative Risk%
1.817802
>odds<-phs.test$estimate/(1- phs.test$estimate)
>odds[1]/odds[2] %Odds Ratio%
prop 1
1.832054
```