

Unit 4: Brief review of other classifiers: SVM, ANN and Data Driven Approaches

Jyothi R.

Department of Computer Science and Engineering

Bagging vs Boosting

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

train & keep

train & evaluate

train & keep

Bagging

VS

Boosting

- Partitioning of data random
- **Goal to achieve** minimum variance
- **Methods used** random subspace
- **Combining the models** simple average
- **Example** random forest
- Advantages
- Reduces over-fitting of the model.
- Handles higher dimensionality data very well.
- Maintains accuracy for missing data.

Disadvantages:

- Since final prediction is based on the mean predictions from subset trees, it won't give precise values for the classification and regression model.

- higher vote to misclassified samples
- maximum accuracy
- gradient descent
- weighted majority vote
- Adaboost

Advantages

- Supports different loss function ('binary logistic' can be used for example).
- Works well with interactions.

Disadvantages:

- Prone to over-fitting.
- Requires careful tuning of different hyper-parameters.

Splitting a node

Depends on attribute types

Nominal Ordinal

Multiway split

Binary split

Multiway split

Which is the best split?

Continuous

Different ways of handling

Discretization to form an ordinal categorical attribute Static – discretize once at the beginning Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

Binary Decision: (A < v) or $(A \ge v)$

- consider all possible splits and find the best cut
- can be compute intensive

(i) Binary split

(ii) Multi-way split

Introduction

PES UNIVERSITY ONLINE

- Support vector machine(SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges.
- In the SVM algorithm, we plot each data item as a point in n-dimensional space with the value of each feature being the value of a particular coordinate.
- Then, we perform classification by finding the hyper-plane that differentiates the two classes very well.

Introduction

 Support Vectors are simply the coordinates of individual observation.
 The SVM classifier is a frontier which best segregates the two classes (hyper-plane/ line).

- Identify the right hyper-plane (Scenario-1):
 - Here, we have three hyper-planes (A, B and C
- Now, identify the right hyper-plane to classify star and circle.
- We need to remember a thumb rule to identify the right hyper-plane: "Select the hyper-plane which segregates the two classes better".
- In this scenario, hyper-plane "B" has excellen performed this job

How does it work?

PES UNIVERSITY ONLINE

- Identify the right hyper-plane (Scenario-2):
 - Here, we have three hyper-planes (A, B and C and all are segregating the classes well. Now, How can we identify the right hyper-plane?
- Here, maximizing the distances between nearest data point (either class) and hyperplane will help us to decide the right hyperplane. This distance is called as Margin

- Identify the right hyper-plane (Scenario-2):
 - Above, you can see that the margin for hyperplane C is high as compared to both A and B.
- Hence, we name the right hyper-plane as C.
 Another lightning reason for selecting the hyper-plane with higher margin is robustness.
- If we select a hyper-plane having low margin then there is high chance of miss-classification.

- Identify the right hyper-plane (Scenario-3):
- Use the rules as discussed in previous section to identify the right hyper-plane.
- Some of you may have selected the hyper-plane B as has higher margin compared to A.
- But, here is the catch, SVM selects the hyper-plane which classifies the classes accurately prior to maximizing margin.
- Here, hyper-plane B has a classification error and A ha
 classified all correctly. Therefore, the right hyper-plane is A.

- Can we classify two classes (Scenario-4)?:
- It is unable to segregate the two classes using a straight line, as one of the stars lies in the territory of other(circle) class as an outlier.

- Can we classify two classes (Scenario-4)?:
- As we already mentioned, one star at other end is like an outlier for star class. The SVM algorithm has a feature to ignore outliers and find the hyper-plane that has the maximum margin. Hence, we can say, SVM classification is robust to outliers.

- Find the hyper-plane to segregate to classes (Scenario-5):
- In the scenario below, we can't have linear hyperplane between the two classes, so how does SVM classify these two classes? Till now, we have only looked at the linear hyper-plane.
- SVM can solve this problem. Easily! It solves this
 problem by introducing additional feature. Here, we
 will add a new feature z=x^2+y^2. Now, let's plot the
 data points on axis x and z:

- Find the hyper-plane to segregate to classes (Scenario-5):
- In above plot, points to consider are:
- All values for z would be positive always because z is the squared sum of both x and y
- In the original plot, red circles appear close to the origin of x and y axes, leading to lower value of z and star relatively away from the origin result to higher value of z.

- In the SVM classifier, it is easy to have a linear hyper-plane between these two classes. But, another burning question which arises is, should we need to add this feature manually to have a hyper-plane.
- No, the SVM algorithm has a technique called the kernel trick. The SVM kernel is a function that takes low dimensional input space and transforms it to a higher dimensional space i.e. it converts not separable problem to separable problem.

How does it work?

PES UNIVERSITY ONLINE

- It is mostly useful in non-linear separation problem.
- Simply put, it does some extremely complex data transformations, then finds out the process to separate the data based on the labels or outputs you've defined.
- When we look at the hyper-plane in original input space it looks like a circle:

How to implement SVM in Python and R?

- In Python, scikit-learn is a widely used library for implementing machine learning algorithms.
- SVM is also available in the scikit-learn library and we follow the same structure for using it (Import library, object creation, fitting model and prediction).

Support Vector Machine(SVM) code in R

- The e1071 package in R is used to create Support Vector Machines with ease.
- It has helper functions as well as code for the Naive Bayes Classifier.

Pros and Cons associated with SVM

PES UNIVERSITY

- Pros:
- It works really well with a clear margin of separation
- It is effective in high dimensional spaces.
- It is effective in cases where the number of dimensions is greater than the number of samples.
- It uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

Pros and Cons associated with SVM

- Cons:
- It doesn't perform well when we have large data set because the required training time is higher
- It also doesn't perform very well, when the data set has more noise i.e.
 target classes are overlapping
- SVM doesn't directly provide probability estimates, these are calculated using an expensive five-fold cross-validation. It is included in the related SVC method of Python scikit-learn library.

Introduction to Artificial Neural Network

- PES
- A simple machine is a set of algorithm, which converts input(s) to output(s)
- In this scenario, the same input will always lead to the same output.
- Human brain, on the other hand, has a unique characteristic of creating transient states through neurons in between the sensory organs and the brain (decision taking unit).
- Hence, the probabilistic interim state brings out a factor of randomness, which brings out what we call "Creativity".

Introduction to Artificial Neural Network

- In ANN (Artificial neural network) or rather all machine learning algorithm,
 - we build some kind of transient states, which allows the machine to learn in a more sophisticated manner.
- The objective here is to bring out the framework of ANN algorithm in parallel to the functionality of human brain.
- A single perceptron (or neuron) can be imagined as a Logistic Regression. Artificial Neural Network, or ANN, is a group of multiple perceptron's/ neurons at each layer.
- ANN is also known as a Feed-Forward Neural network because inputs are processed only in the forward direction:

Introduction to Artificial Neural Network

How does a simple predictive algorithm work?

- A simple predictive algorithm tries to mimic the relationship between the
 Input and the output variables.
- The function derived in such routines is a direct linear or non-linear function between input and output variables.
- For instance, if we try to predict the total work experience of a person using his age, following is the kind of relationship we will observe:

How does a simple predictive algorithm work?

- Relationships can easily be predicted using simple regression algorithms.
- But it becomes difficult to make predictions in case of complex non-linear relationships and significant covariate terms.
- In such cases, we need more sophisticated machine learning tools.
- To make such predictions, we have two options either predict a complex non linear function or break this problem into multiple steps and solve for each step.
- The later can be achieved easily using an artificial neural network (ANN).

How does ANN work?

- It is truly said that the working of ANN takes its roots from the neural network residing in human brain.
- ANN operates on something referred to as Hidden State. These hidden states are similar to neurons. Each of these hidden state is a transient form which has a probabilistic behavior. A grid of such hidden state act as a bridge between the input and the output.

How does ANN work?

PES UNIVERSITY ONLINE

- Let's try to understand what the diagram actually means.
- We have a vector of three inputs and we intend to find the probability that the output event will fall into class 1 or class 2.
- For this prediction we need to predict a series of hidden classes in between (the bridge). The vector of the three inputs in some combination predicts the probability of activation of hidden nodes from 1 4.
- The probabilistic combination of hidden state 1-4 are then used to predict the
 activation rate of hidden nodes 5-8. These hidden nodes 5-8 in turn are used to
 predict hidden nodes 9-12, which finally predicts the outcome.
- The intermediate latent states allows the algorithm to learn from every prediction.

Advantages of Artificial Neural Network (ANN)

- Artificial Neural Network is capable of learning any nonlinear function.
- Hence, these networks are popularly known as Universal Function Approximators.
 ANNs have the capacity to learn weights that map any input to the output.

- One of the main reasons behind universal approximation is the activation function.
 Activation functions introduce nonlinear properties to the network.
- This helps the network learn any complex relationship between input and output.

Advantages of Artificial Neural Network (ANN)

- Here, the output at each neuron is the activation of a weighted sum of inputs.
- what happens if there is no activation function? The network only learns the linear function and can never learn complex relationships.
- An activation function is a powerhouse of ANN!

Challenges with Artificial Neural Network (ANN)

- While solving an image classification problem using ANN, the first step is to convert a 2-dimensional image into a 1-dimensional vector prior to training the model. This has two drawbacks:
- The number of trainable parameters increases drastically with an increase in the size of the image
- One common problem in all these neural networks is the Vanishing and exploding gradient.
- This problem is associated with the backpropagation algorithm.

Challenges with Artificial Neural Network (ANN)

- The weights of a neural network are updated through this backpropagation algorithm by finding the gradients:
- So, in the case of a very deep neural network (network with a large number of hidden layers), the gradient vanishes or explodes as it propagates backward which leads to vanishing and exploding gradient.
- ANN cannot capture sequential information in the input data which is required for dealing with sequence data

Data-Driven Approach

- If we want to consider abandoning heuristics and best practices and take on a data-driven approach to algorithm selection:
- Feed the data 'as is' to a neural network with more than 10 layers: deep learning!
- The Model will figure out the features
- Cons: Why is it working? More importantly, why is it failing?
 If we cannot answer these questions: how do we improve the approach??
 Parameter tuning is a nightmare with many millions of knobs to turn
- What are people interested in Machine Learning/ Artificial Intelligence Research today?
 FATE in Al... that is, ensuring:
 - fairness
 - accountability
 - transparency
 - ethics

Which classifier and what parameters?

Deciding the best algorithm and tuning parameters (an automated solution approach):

- Rather than picking your favorite algorithm, try 10 or 20 algorithms
- Double down on those that show signs of being better in performance, robustness, speed or whatever concerns interest you most
- Rather than picking the common parameters, grid search tens, hundreds or thousands of combinations of parameters.
- Become the objective scientist, leave behind anecdotes and study the intersection of complex learning systems and data observations from your problem domain.

Automated Solution-Approach in Action

- This is a powerful approach that requires less up-front knowledge, but a lot more back-end computation and experimentation.
- As such, it is likely you will be required to work with a smaller sample of your dataset so that you can get results quickly
- We can have a test harness that we can have complete faith in.
- Note: how can you have complete trust in your test harness?
- You develop trust by selecting the test options in a data-driven manner that gives you objective confidence that your chosen configuration is reliable.
- The type of estimation method (split, boosting, k-fold cross validation, etc.) and it's configuration (size of k, etc.).

Leverage Automation

- The automated solution approach is a problem of search
- Leverage automation to answer: Which is the best algorithm?

 What are the best parameter values?
- You can write re-usable scripts to search the for the most reliable test harness for our problem before we begin. No more ad hoc guessing.
- We can write a reusable script to try automatically 10, 20, 100 algorithms across a variety of libraries and implementations. No more favorite algorithms or libraries.
- The line between different algorithms is gone and a new parameter configuration is a new algorithm, we can write re-usable scripts to grid or random search each algorithm to truly sample its capability.
- Add feature engineering on the front so that each "view" on the data is a new problem for algorithms to be challenged against.
- Bolt-on ensembles at the end to combine some or all results (meta-algorithms).

Summary on an Automated Solution Approach

- In the traditional Machine Learning (model-driven approach) we look at the common heuristic and best-practice approach for algorithm selection and parameter tuning
- Pros: Excellent rationale for the solution approach, clear interpretability
 We can go back and analyze when something fails and fix it
- Cons: This approach requires human intervention, an understanding of the domain, is time consuming and possibly limit what the machine can do.
- We yearn for silver bullet general purpose best algorithms and best algorithm configurations, when no such things exist
- There is no best general purpose machine learning algorithm
- There are no best general purpose machine learning algorithm parameters
- The transferability of capability for an algorithm from one problem to another is questionable (look-up: transfer learning)
- The solution: study the working of multiple algorithms on your problem
- Automated approach: spot check algorithms, grid search for parameters and quickly find methods that yield good results, reliably (empirical justification for the choice of the learning algorithm and specific instantiation of parameters)

References

Text Book:

"Business Analytics, The Science of Data-Driven Making", U. Dinesh Kumar, Wiley 2017

"Recommender Systems, The text book, Charu C. Aggarwal, Springer 2016 Section 1.and Section 2.

Image Courtesy

https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/

https://www.analyticsvidhya.com/blog/2014/10/introduction-neural-network-simplified/

THANK YOU

Jyothi R.

Assistant Professor,
Department of Computer Science
jvothir@pes.edu