NSR Search Results Page 1 of 3

Visit the <u>Isotope Explorer</u> home page!

15 reference(s) found:

Keynumber: 1985KI09

Reference: J.Nucl.Sci.Technol.(Tokyo) 22, 337 (1985)

Authors: Y.Kikuchi, N.Sekine

Title: Evaluation of Neutron Nuclear Data of Natural Nickel and Its Isotopes

Keyword abstract: NUCLEAR REACTIONS Ni, 58 , 60 , 61 , 62 , 64 Ni(n,n), (n,n'), (n,2n), (n,3n), (n,p), (n,α) , (n,n'p), $(n,n'\alpha)$, E < 20 MeV; calculated $\sigma(E)$; deduced average capture $\sigma(E)$. Spherical

optical, statistical models.

Kevnumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Kevnumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, 32, 33, 34S,Cl, 35, 36, 37Cl,Ar, 36, 38, 40Ar,K, 39, 40, 41K,Ca, 40, 42, 43, 44, 46, 48Ca, 45, 46Sc,Ti, 46, 47, 48, 49, 50Ti,V, 50, 51V,Cr, 50, 52, 53, 54Cr,Fe, 54, 56, 57, 58Fe, 59Co,Ni, 58, 59, 60, 61, 62, 64Ni,Cu, 63, 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n, γ), (n,n), (n, α),E=thermal; evaluated σ ,radiative capture resonance integrals.

Kevnumber: 1975WI06

Reference: Phys.Rev. C11, 1477 (1975)

Authors: W.M.Wilson, G.E.Thomas, H.E.Jackson

Title: Thermal Neutron Capture Gamma Rays from Neutron Capture in ⁵⁹Ni and ⁶³Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶³Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, 60, 61, 62, 64Ni deduced levels, binding energies.

Keynumber: 1975FRZV

Coden: JOUR BAPSA 20 174 IB21

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰, ⁶¹Ni(n,γ); calculated σ.

Kevnumber: 1974PAZO

Coden: REPT USNDC-11 P221

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁶¹Ni(n,X), (n, γ),E=15-100 keV; measured σ .

Kevnumber: 1974PAZM

Coden: REPT COO-3058-50 P5

NSR Search Results Page 2 of 3

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁸Fe, ⁶¹Ni(n,γ), (n,X),E=15-100 keV; measured

 σ ,total σ .

Kevnumber: 1973KNZZ

Coden: REPT COO-3058-34 P3 (CRL)

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁶¹Ni(n, γ),E=10-200 keV; measured σ (E). ⁶²Ni

deduced resonances.

Keynumber: 1972MO46

Reference: Nucl.Instrum.Methods 105, 557 (1972)

Authors: R.Moreh, T.Bar-Noy

Title: Utilization of 11.4 MeV Photons from the 59 Ni(n, γ) 60 Ni Reaction for Scattering Experiments **Keyword abstract:** NUCLEAR REACTIONS 59 , 61 , 63 Ni(n, γ);E=reactor spectrum; measured E γ , 60 ,

⁶², ⁶⁴Ni deduced Eγ.

Keynumber: 1972HOYH

Coden: REPT COO-3058-27,P14

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁸Fe, ⁶¹, ⁶⁴Ni(n,X), (n,γ),E=0.1-35 keV; measured

 $\sigma(E)$, $\sigma(nT)(E)$. 55, 59Fe, 62, 65Ni deduced resonances.

Keynumber: 1970FA06

Reference: Nucl. Phys. A146, 549 (1970)

Authors: U.Fanger, D.Heck, W.Michaelis, H.Ottmar, H.Schmidt, R.Gaeta

Title: The Excited States of 62 Ni Studied by the (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁶¹Ni(n, γ), E=th; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$; deduced

Q. 62 Ni deduced levels, J, π , γ -mixing, γ -branching. Enriched target; Ge(Li), NaI(Tl) detectors.

Kevnumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n, γ), E=0.1-200 keV; measured σ (E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1969FAZZ

Reference: Contrib.Intern.Conf.Properties Nucl.States, Montreal, Canada, p.4 (1969)

Authors: U.Fanger, R.Gaeta, W.Michaelis, H.Ottmar, H.Schmidt

Title: Properties of Excited States in 62 Ni Studied by the (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁶¹Ni(n, γ), E=thermal; measured $\gamma \gamma$ -coin, $\gamma \gamma(\theta)$; deduced

O. 62 Ni deduced levels, J, π , γ -branching. Ge(Li) detector.

Keynumber: 1967FAZZ

Reference: Intern.Conf.Nucl.Structure, Tokyo, p.152(1967); KFK-616 **Authors:** U.Fanger, G.Markus, W.Michaelis, H.Ottmar, H.Schmidt **Title:** Nuclear Structure Studies with Radiative Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁷Fe, ⁶¹Ni(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin. ⁵⁸Fe,

NSR Search Results Page 3 of 3

 62 Ni deduced levels,J,π. 87 Sr(n,γ),E=thermal; measured Eγ,Iγ,γγ(θ). 88 Sr deduced levels,J,π.

Keynumber: 1966WAZY

Reference: Proc.Intern.Conf.Study of Nucl.Struct.With Neutrons, Antwerp, Belgium (1965), M.N.de Mevergnies, P.Van Assche, J.Vervier, Eds., North-Holland Publishing Co., Amsterdam, p.536 (1966);

EANDC-50-S, Paper 99 (1966)

Authors: R.Wagner, W.M.Good, D.Paya

Title: s-Wave Neutron Strength Functions of Isotopes in the 3s-Resonance Region 40 <A <70

Keyword abstract: NUCLEAR REACTIONS ⁴³Ca, ⁴⁷, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶¹Ni(n, γ),E=2-60 keV; σ (nt)

(E). ⁴⁴Ca, ⁴⁸, ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, ⁶²Ni deduced resonances, level spacings, strength functions.
