Group-14 Elements: Carbon family

SINGLE CORRECT CHOICE TYPE QUESTIONS

- 1. Which of the following elements was used in Biblical times on the floor in the Hanging gardens of Babylon (one of the wonders of the ancient world)? (D) C
 - (A) Sn
- (B) Pb
- (C) Si
- 2. The lowest melting solid among the following elements is
 - (A) Si
- (B) Pb
- (C) Ge
- Which of the following carbides consists of C₃⁴⁻ type of anionic part?
 - (A) Al₄C₃
- (B) CaC₂
- (C) B₄C
- (D) Mg,C,
- 4. Which of the following factors is mainly responsible for toxicity of CO gas?
- (A) It has very high calorific value.
- (B) It readily combines with O₂ to form CO₂.
- (C) It readily forms a complex with haemoglobin in the blood, which is 300 times more stable than oxyhaemoglobin complex.
- (D) CO is sparingly soluble in water.
- 5. In the following reactions, the Pb compounds A and B are respectively

- (A) Pb(NO₃), + PbO₂ and Pb(NO₃),
- (B) Pb(NO₃), and Pb(NO₃),
- (C) PbO₂ and Pb(NO₃)₂
- (D) Pb(NO₃)₂ and PbO₂ + Pb(NO₃),
- 6. When hot conc. NaCl solution is electrolysed in absence of PbO with severe stirring, the product obtained is
 - (A) Pb₃O₄
- (B) Pb,O,
- (C) PbO₂
- (D) NaClO₃
- 7. In which of the following reactions PbSO₄ is formed?
 - (A) PbO₂ + SO₂
 - (B) PbS + O₃
 - (C) PbS + H₂O₂
 - (D) All of the above.
- 8. SnO2 is insoluble in
 - (A) conc. HCl
 - (B) hot HNO,
 - (C) aqua regia
 - (D) All of the above.
- 9. The water repelling characteristic of silicones is due to
 - (A) the presence of alkyl group pointed towards surface.
 - (B) strong Si-O-Si-bonds.
 - (C) low surface area.
 - (D) high van der Waal's forces.

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

- 1. Which of the following properties decrease for interstitial carbides as compared to that of the parent
 - (A) Malleability
- (B) Hardness
- (C) Ductility
- (D) Density
- 2. Which of the following properties remain the same with the parent metal for the interstitial carbides?
 - (A) Ductility
- (B) Metallic lustre
- (C) Electric conductivity
- (D) Hardness
- 3. The constituent gases present in coal gas are (B) H₂
 - (A) CO
- (C) CH₄

- 4. Which of the following Group 14 elements have diamond type structure?
 - (A) Si
- (B) Ge
- (C) Sn
- (D) Pb
- 5. Which of the following compounds can be used for the detection of CO.?
 - (A) Ca(OH),
- (B) Na,CO,
- (C) Ba(OH),
- (D) H₂O
- Which of the following carbonates are thermally more stable as compared to MgCO₃?
 - (A) BeCO₃
- (B) SrCO₃
- (C) CaCO,
- (D) BaCO,

COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1 – 3

CO, is an acidic oxide and reacts with bases forming two series of salts bicarbonates and carbonates. CO, dissolves in water also, slightly, to form H₂CO₃.

- 1. When CO, dissolves in water, the ions that are present in equilibrium are
 - (A) CO₃²
 - (B) HCO₃
 - (C) H₃O⁺
 - (D) All of these
- 2. A hydrate of CO, can also be formed at 0°C under a pressure of 50 atm of CO2. The formula of the hydrate of CO, is
 - (A) CO₂ · 2H₂O
 - (B) CO₂ · 4H₂O
 - (C) CO₂ · 6H₂O
 - (D) CO, · 8H,O
- 3. Again H₂O and CO₂ are used by plants in a different manner during photosynthesis. The products of photosynthesis are
 - (A) $C_6H_{12}O_6 + O_2$
 - (B) $C_{12}H_{22}O_{11} + O_{22}$
 - (C) C₁₂O₂₂O₁₁ + H₂
 - (D) C₆H₁₂O₆ + N₂

Passage 2: For Questions 4 - 5

Natural gas
$$(CH_4)$$
 + Sulphur $\xrightarrow{600^{\circ}C}$ $\xrightarrow{\text{catalysed by}}$ $A + H_2S$

Compound A can also be prepared by heating charcoal and sulphur vapour at about 850°C.

- 4. Which of the following properties are correct for A?.
 - (A) It is highly inflammable.
 - (B) It is very poisonous, affecting brain and central nervous system.
 - (C) It is a colourless volatile liquid having very low flash point (30°C).
 - (D) All of these
- 5. For the following reaction, which of the following statements is incorrect regarding B and C?

- (A) Both B and C have planar anionic part.
- (B) B and C are isoelectronic (total number of electrons).
- (C) Both B and C are ionic compounds.
- (D) None of these

Passage 3: For Questions 6 - 7

I. Red solid (A) +
$$HNO_3 \rightarrow Neutral liquid$$
 (B) + $C + D_{brown pot}$

- II. C(solution) + $H_2S \rightarrow E_{black pr}$
- III. D is a very good oxidizing agent.
- IV. D+SO₂ → white solid (F) which is insoluble in dilute mineral acid.
- V. Compound A is an oxide of lead
- 6. The formula of D is
 - (A) PbO
 - (B) Pb(NO₃)₂
 - (C) PbO,
 - (D) PbO-PbO,
- 7. F can be converted into E when F is treated with
 - (A) dil. HCl
 - (B) H₂S
 - (C) coke powder (red hot)
 - (D) sulphur powder

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- Statement I: Ag₂CO₃ is slightly yellow or yellowish white in colour.

Statement II: Ag+ has strong polarizing power.

- 2. Statement I: The IE, of Pb is greater than that of Sn.
 - Statement II: The radius of Pb is greater than that of Sn.
- Statement I: Water gas has higher calorific value compared to producer gas.

Statement II: All constituents of producer gas may act as good fuel.

Statement I: I₂O₅ + 5CO → I₂ + 5CO₂

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

The number of equivalent of S2O32

- = number of equivalent of I₂
- = number of equivalent of CO

Statement II: The above set of reactions falls under the category of iodometry reactions.

Statement I: The formula for interstitial carbide formed by transition metals is MC.

Statement II: Transition metals are in general crystallized in the form of fcc or hcp pattern and all octahedral voids are occupied by carbon atom.

Statement I: Mg₂C₃ is a C₃-type of ionic carbide.

Statement II: Mg₂C₃ consists of three carbon atoms in one formula unit.

7. Statement I: Silane is more reactive than methane.

Statement II: The Si and C atoms are both sp³ hybridized in the two compounds.

8. Statement I: SiO₂ is not isostructural with CO₂.

Statement II: The formation of $3p_{\pi}-2p_{\pi}$ is not as effective as formation of $2p_{\pi}-2p_{\pi}$ in CO₂.

Statement I: Silicones have water repelling characteristics.

Statement II: (Si-O-Si) skeleton is covered with alkyl groups.

Statement I: 2PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O + O₂
 In this reaction H₂SO₄ acts as reducing agent.

Statement II: If PbO₂ is considered as lead peroxide, then above reaction is an example of disproportionation reaction.

INTEGER ANSWER TYPE QUESTIONS

The answer to each of the following questions is a nonnegative integer.

- 1. Find the number of C-C linkages in C₆₀.
- 2. Find the number of six membered rings in C_{s4}.
- 3. How many of the Group14 elements have higher value of IE₁ as compared to Pb?
- Among the following, find the number of elements that show catenation property.
 - C, Si, P, S, O, N, Ge
- 5. Find the number of Fe C bonds in Fe₂(CO)₀.
- Find the difference in number of σ bonds in the reactant and products when ammonium carbonate is heated.
- Find the number of planar species from the following.
 CO₃²⁻, COCl₂, SiO₄²⁻, C₃O₂, HCO₃⁻, CS₃²⁻, C₃S₂
- When SnC₂O₄ is heated in absence of air, find the difference in oxidation states of carbon atoms in gaseous products.

- Find the number of acidic oxides from the following. CO, GeO, SnO, PbO₂, SnO₂, GeO₂, SiO₂
- Find the number of water of crystallization in molecule of butter of tin.

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as **(A)**, **(B)**, **(C)** and **(D)**, while those in Column II are labelled as **(P)**, **(Q)**, **(R)**, **(S)** and **(T)**. Any given statement in Column I can have correct matching with *one or more* statements in Column II.

1. Match the type of silicon with the example.

Column I	Column II			
(A) Neso-silicate	(P) Zn ₄ (OH) [Si ₂ O ₇], Hemimorphite			
(B) Phyllo-silicate	(Q) Mg ₃ (OH) ₂ [(Si ₂ O ₅) ₂], Tale			
(C) Soro-silicate	(R) Na ₂ Fe ₃ ^{II} Fe ₂ ^{III} [(Si ₄ O ₁₁) ₂] (OH) ₂ , Crocidolite			
(D) Amphibole- silicate	(S) Be ₂ [Be ₂ SiO ₄] Phenacite			

Match the chlorosilanes with the compounds they yield on hydrolysis.

	Colum	n I				Co	lumn II
	(A) M	Si	Si O	Me Me		(P)	Only Me ₂ SiCl ₂
	(B)	Me 	-0-	Me - Si Me - Me		(Q)	Me ₂ SiCl ₂ + Me ₃ SiCl
(C		Me Si — O = Me		Me 0 — Si — O Me	1	(R)	Me ₂ SiCl ₂ + MeSiCl ₃
(D	Me,	Me 	Me - Si (Me 0 - Si - O - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Me 	(S)	Only Me ₃ SiCl
		Ma	24-	Mo	Me		

Match the reaction with the nature of the product obtained.

Column I	Column II			
(A) Diamond	(P) All atoms are sp ² hybridized.			
(B) Graphite	(Q) d_{C-C} is maximum.			
(C) Fullerene	(R) Does not exist as discrete molecules.			
	(S) Ring structure is existing.			

ANSWERS

Single Correct Choice Type Questions

- 1. (B)
- **3.** (D)
- **5.** (A)
- **7.** (D)
- 9. (A)

- **2.** (D)
- 4. (C)
- 6. (D)
- 8. (D)

Multiple Correct Choice Type Questions

- 1. (A), (C)
- **3.** (A), (B), (C), (D)
- **5.** (A), (C)

- 2. (B), (C)
- 4. (A), (B), (C)
- 6. (B), (C), (D

Comprehension Type Questions

- 1. (D)
- 3. (A)
- **5.** (B)
- **7.** (C)

- **2.** (D)
- 4. (D)
- 6. (C)

Assertion-Reasoning Type Questions

- 1. (A)
- 3. (C)
- 5. (A)
- **7.** (B)
- 9. (A)

- 2. (B)
- 4. (D)
- 6. (B)
- 8. (A)
- 10. (D)

Integer Answer Type Questions

- **1.** 90
- **3.** 3
- **5.** 12
- 7.6
- 9.3

- 2.32
- 4.7
- **6.** 1
- 8.2
- 10.5

Matrix-Match Type Questions

- 1. $(A) \rightarrow (S)$
 - $(B) \rightarrow (Q)$
 - $(C) \rightarrow (P)$
 - $(D) \rightarrow (R)$

- 2. $(A) \rightarrow (P)$
 - $(B) \rightarrow (S)$
 - $(C) \rightarrow (Q)$
 - $(D) \rightarrow (R)$

- 3. $(A) \to (Q), (R), (S)$
 - $(B) \rightarrow (P), (R), (S)$
 - $(C) \rightarrow (P), (S)$