Lecture 10 Random Variables, PMF, Expectation & Variance

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences Southern University of Science and Technology

Random Variable

What is a random variable (r.v.) ?

- An assignment of a value (a real number) to every possible outcome in the sample space.
- Mathematically: A real-valued function defined on a sample space Ω . In a particular experiment, a random variable $(\mathbf{r.v.})$ would be some function that assigns a real number to each possible outcome.

1

Random Variable

More about random variables

- Discrete or continuous.
- Can have several random variables defined on the same sample space.
- Notation
 - random variable X: function $\Omega \mapsto \mathbb{R}$
 - numerical value: x : value $\in \mathbb{R}$

Different random variables on the same sample space

Function of a random variable is an r.v.

 $X: \mathsf{height} \mathsf{ in} \mathsf{ m}$

$$Y = 100 \cdot X$$

Probability Mass Function (PMF)

Probability Mass Function (PMF)

The PMF of X = number of tails after three flips

x	$\mathbb{P}\left(\left\{X=x\right\}\right)$
0	1/8
1	3/8
2	3/8
3	1/8
otherwise	0

$$\mathbb{P}\left(\{X=x\}\right) = \begin{cases} \frac{1}{8}\,, & x=0,3\\ \\ \frac{3}{8}\,, & x=1,2\\ \\ 0\,, & \text{otherwise} \end{cases}$$

PMF Notation

Probability Mass Function

Notation

$$p_X(x) = \mathbb{P}(\{X = x\})$$

= $\mathbb{P}(\{\omega \in \Omega \mid X(\omega) = x\})$

Properties

$$p_X(x) \geqslant 0$$
$$\sum_{x} p_X(x) = 1$$

ω	$X(\omega) = x$	$p_X(x) = \mathbb{P}\left(\{X = x\}\right)$
ННН	0	$\frac{1}{8}$
THH, HTH, HHT	1	<u>3</u> 8
TTH, THT, THH	2	3/8
TTT	3	$\frac{1}{8}$

Geometric PMF

Experiment: keep flipping a coin $(\mathbb{P}(H) = p)$ until a head comes up for the first time. Let the random variable X be the number of flips.

ω	$X(\omega)$	$p_X(x)$
Н	1	p
TH	2	(1-p)p
TTH	3	$(1-p)^2p$
÷	:	:
$\underbrace{TTTTTT}_{n-1}H$	n	$(1-p)^{n-1}p$

Geometric PMF. X: geometric random variable.

How to compute a PMF $p_X(x)$

To compute a PMF $p_X(x)$:

- 1. Collect all possible outcomes for which X=x;
- 2. add their probabilities;
- 3. repeat for all x.

Compute PMF

Experiment: two independent rolls of a fair tetrahedral die.

F: outcome of the first roll S: outcome of the second roll X = min(F, S)

$$p_X(x) = ?$$

Expected value of a random variable (Expectation)

Experiment: archery

Let X be the score you get for each shot. What is the expected value of X ?

Think: What is the average score you will get after a large number of trials?

x	$p_X(x)$
1	0.19
2	0.17
3	0.15
4	0.13
5	0.11
6	0.09
7	0.07
8	0.05
9	0.03
10	0.01

Expected value (Expectation)

Definition

$$\mathbb{E}\left[X\right] = \sum_{x} x p_X(x)$$

- Interpretation
 - 1. Centre of gravity of the PMF
 - 2. Average in large number of repetitions of the experiment

PMF of X from the archery experiment

Expectation of a Uniform Distribution

Example: a uniform discrete random variable X on 0, 1, 2, 3, ..., n

What is $\mathbb{E}[X]$?

Properties of expectations

Let X be a random variable, and let Y = g(X), what is $\mathbb{E}[Y]$?

• The hard way:

• The easy way:

$$\mathbb{E}\left[Y\right] = \sum y p_Y(y)$$

$$\mathbb{E}[Y] = \sum_{y} y p_Y(y) \qquad \mathbb{E}[Y] = \sum_{x} g(x) p_X(x)$$

y	$p_Y(y)$
0	3/8
1	4/8
4	1/8

\overline{x}	g(x)	$p_X(x)$
0	1	1/8
1	0	3/8
2	1	3/8
3	4	1/8

Expectation of a linear function of r.v.

- \bullet Caution: in general $\mathbb{E}\left[g(X)\right] \neq g(\mathbb{E}\left[X\right])$
- ullet Exception: if α, β are constants, then we have:

-
$$\mathbb{E}\left[\alpha\right] = \alpha$$

-
$$\mathbb{E}\left[\alpha X\right] = \alpha \mathbb{E}\left[X\right]$$

-
$$\mathbb{E}\left[\alpha X + \beta\right] = \alpha \mathbb{E}\left[X\right] + \beta$$

Variance and standard deviation of a random variable

Definition of Variance

$$\mathbb{V}$$
ar $(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$

Properties of Variance

- \mathbb{V} ar $(X) = \mathbb{E}\left[X^2\right] (\mathbb{E}\left[X\right])^2$
- If α, β are constants, then $\mathbb{V}\mathrm{ar}\left(\alpha X + \beta\right) = \alpha^2 \mathbb{V}\mathrm{ar}\left(X\right)$

Definition of Standard Deviation

$$\sigma_X = \sqrt{\mathbb{V}\mathrm{ar}\left(X\right)}$$

Random Variables (Summary slide)

