UNCLASSIFIED

Defense Technical Information Center Compilation Part Notice

ADP023722

TITLE: Adaptive and Reactive Security for Wireless Sensor Networks DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the ARO Planning Workshop on Embedded Systems and Network Security Held in Raleigh, North Carolina on February 22-23, 2007

To order the complete compilation report, use: ADA485570

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP023711 thru ADP023727

UNCLASSIFIED

ARO Planning Workshop Security of Embedded Systems and Networks

John A. Stankovic University of Virginia January 25, 2005

Position Statement

Wireless sensor networks (WSNs) are composed of large numbers of minimal capacity sensing, computing, and communicating devices. These devices operate in complex and noisy environments. Transient and permanent random failures are commonplace. The considerable redundancy in such systems creates great potential for designing them to continue to provide their specified services even in the face of large numbers of such failures. WSNs are also susceptible to malicious, non-random *security* attacks. For example, a wireless sensor network deployed in remote regions to detect and classify targets could be rendered inoperative by various security attacks. To meet realistic requirements, WSNs must be able to continue to operate satisfactorily in the presence of, and to recover effectively from, security attacks. We propose that safe self-healing and adaptive infrastructures can work together to permit WSNs to continue to operate and self-heal in the presence of failures and security attacks.

Key Limitations and Challenges

- 1. Many current security solutions are heavyweight. Lightweight versions of current solutions and entirely new, but lightweight solutions are required for WSNs.
- 2. Many current solutions are not reactive; they attempt to provide security all-the-time. This is often not practical. We require new architectures and systems that can support dynamic reaction to attacks.
- 3. Detecting attacks is a serious problem in WSNs because of the limited resources that can be assigned to detection and because of the very noisy and failure prone devices, making it more difficult to distinguish between faults and security attacks. This includes stealthy denial of service attacks. The challenge is to solve these problems with new hardware and software solutions.

Promising Innovations

The confluence of four technologies is creating an opportunity for a major new approach to solving some aspects of the security problems for wireless sensor networks. Note that detecting attacks is not addressed in this position statement due to lack of space.

First, WSNs have now evolved to where there are large numbers of decentralized protocols integrated into functioning systems. However, these protocols have not typically addressed security. Large numbers of small sensor nodes each executing decentralized control protocols can provide a basis for new solutions that allow operation in the presence of attacks. For example, VigilNet, the system we developed under the Darpa NEST contract has well over 20 protocols operating in a decentralized manner and can form the basis for (initially) masking security threats; subsequently, based on concepts described below corrupted data or software components are self-healed. In other words, if designed with security in mind, decentralized protocols can prevent attacks in one part of the network from affecting the entire system. We consider the aggregate

behavior portrayed by large numbers of decentralized entities a critical technology, but it now needs to be "applied" to security problems.

Second, self-healing technology has progressed in the mainframe and Internet worlds to a degree where some of these ideas can now migrate to WSNs (subject to new sensor network constraints). Self-healing provides a means for masking and repairing security attacks. We suggest a need for extensions to self-healing technology that ascertain if the self-healing actions are safe (first off-line and then on-line) before they are placed into effect. The safety is ascertained by checking that dynamic integration of components to heal problems caused by security attacks meets required security, integrity and interface requirements. A key challenge is to ensure that the self-healing itself does not introduce new security vulnerabilities and make it easier to attack the system.

Third, emerging concepts in advanced aspect-oriented program design promise to allow for a separation of component, component-integration, security mechanism, and other concerns that, in turn, can enable important capabilities for the dependable design and dynamic adaptation of WSNs. Dynamic integration and re-configurability and the separate modularization of dynamically interchangeable security mechanisms and policy implementations are keys to enabling effective defense and self-repair. In particular, aspect-oriented separation of security-related code could facilitate the writing, verification, and updating of security code over time, allowing security countermeasures to evolve in the face of evolving threats.

Fourth, multi-hop wireless download can now support a real-time adaptive change to WSNs software. This can create diversity (downloading new components) and repair (downloading new allowable integration information), two concepts useful for addressing security attacks. Dynamically downloading and integrating updated security components is a key enabler for dynamic, evolving self-defense and repair under security attacks.

Milestones

- 1. Define new attack models for WSNs.
- 2. Create instances of lightweight security solutions for routing, localization, group sensor fusion, etc.
- 3. Develop hardware support for all aspects of security in WSNs.
- 4. Define a self-healing, security friendly architecture.
- 5. Implement and evaluate solutions in complete systems in realistic environments.

Summary

Wireless sensor networks have many uses for the military, e.g., they can provide surveillance in hostile areas, can help protect military installations, and can support urban warfare activities. The potential is unbounded. All of these capabilities will be jeopardized without built-in dependability and security capabilities. There is no way to finally solve the security problem as new attacks will always be conceived. We require solutions to enable WSNs to (i) operate in the presence of attacks, and (ii) evolve to support security changes needed over the lifetime of a system. The potential solutions mentioned here can help move WSNs from benign applications and environments to rugged and realistic systems that can achieve their true potential.

Adaptable and Reactive Security for Wireless Sensor Networks

John A. Stankovic
Department of Computer Science
University of Virginia

University of Virginia

Outline

- · Brief Motivation
- · Adaptable Self-Healing Architecture
 - Components
 - AOP
 - Robust Decentralized Control
 - Lightweight Security Components
- Systems of Systems
- · Summary

Security Issues

- Every one of the 30 services can be attacked
- Too expensive to make each service attack proof
- Attacks will evolve anyway

University of Virginia

Security Approach

- Operate in the presence security attacks
 - Robust decentralized control
- · Self-Heal
 - AOP
- · Evolve to new, unanticipated attacks
 - AOP and Wireless Downloads
- Lightweight solutions required due to severe constraints

Unanticipated Attacks

- What if advice was not available on the nodes
 - Typical for an unanticipated attack
 - Report event to base station
 - Find/Write new aspects
 - Disseminate to nodes

University of Virginia

Decentralized Control

- Large Numbers of Nodes
 - Aggregate Behavior Emerges
 - Control/Guarantee Behavior

- Redundancy
- · Mask faults/ attacks
- · Uniformity a problem/diversity

Lightweight Components

- · Secure (reactive/adaptive) routing
- · Localization

University of Virginia

SIGF

 The SIGF family provides incremental steps between stateless and shared-state protocols.

Protocol	General Approach	Corruption	Wormhole	HELLO flood	Black hole	Sybil	Replay DoS
IGF	Dynamic Binding	Q	ď	Q	100	nia.	900
SIGF-0	Nondeterminism	Ŋ	Ø	Ŋ	Ø	200-	100
SIGF-1	Local Reputation	Ø	Ø	ā	Ŋ	Ø	***
SIGF-2	Cryptography	Ŋ	ď	g g	B	Ø	Ŋ

 SIGF allows efficient operation when no attacks are present, and good enough security when they are.

Adaptive, Configurable

- Security level can be adaptive based on the resource constraints and security requirements.
- Each level can be configured based on parameters.

University of Virginia

Localization - Spotlight

- · Run time-sync protocol
- · Generate (invisible) light events
- · Sensor nodes detect the events and report the timestamps
- The Spotlight device computes the location of the sensor nodes

University of Virginia

Systems of Systems

- Inter-system security
- · How to program and debug to ensure
 - Behavior
 - Robustness

Summary

- · Security in WSN
 - Lightweight
 - Attack resilience
 - Evolve for unexpected attacks
- Security in Systems of Systems
- · Self-Healing Architecture
 - AOP extensions
 - Adaptive and lightweight protocols

Acknowledgements

- Anthony Wood
- · Hua Cao
- · Radu Stoleru