× 3.3 Belations

- · Relation
 - o Def: be thought of as a table that lists which elements of the first set relate to which elements of the second set. R
 - Define a relation to be a set of ordered pairs.
 - I Subject of the Cartesian product X x T
 - ex) Relation of Students to conneces

Student	Course
Bill	CompSci
Mary	Math
Bill	Art
Beth	History
Beth	CompSci
Dave	Math

- Let x = E Bill. Mary. Beth. Dave 3. Y = E Compscio.

 Math. Art. History 3. then B = E (J3TII. compScio).

 (Mary. Mary. (Bill). Art). ... (bave. Math 3
- -> since (beth. History) = R. beth B History
- o Diagraph
 - Informative way to picture a relation on a set
 - Draw dots or vertices to elements of X

If the element (x,y) is in the relation, we draw an arrow directed edge from x to y

((x,x) is from x to x, loop)

ex) $X = \xi 1.2.3.47$ defined by $(X.5) \in R$ if $X \leq y$. $X.5 \in X$

X= {1, 2, 3, 4}. (x, b) & A # x & y. x, b & X

- o Properties
 - DReflective: If $(x.x) \in R$ for every $x \in X$ ex) $x = \{1.2.3.43 \text{ is reflective because (1.1)}$ (2.2). (3.3) (4.4) $\in R$
- Symmetric: If for all $x.y \in X$, if $(x.y) \in R$, then $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$ $(y.x) \in R$ $(x.y) \in R$ $(y.x) \in R$

is symmetric

- $\square \text{ Antisymmetric: If for all } x.y \in X. \text{ if } (x.y) \in \mathbb{R} \text{ and}$ $(y.x) \in \mathbb{R}, \text{ Hen } x=y$
 - \rightarrow so, if there is no symmetric other than $x \beta x$, it is an antisymmetric.
 - ex) $X = \{1,2,3\}$. $A = \{(2,1), (2,3), (3,5)\}$ then. it is antisymmetric because there is only $\times A \times Of(C_3,3)$
- $\Box \text{ Transitive: If for all } x.y.z \in X. \text{ if } (x.y) \text{ and } (y.z) \in R$ $\text{. then } (x.z) \in R$
 - ex) $X = \{1.2.3.43. (x.y) \in A \text{ if } x \neq y \text{ is}$ transitive
- o Order
 - □ Partial order: A is reflexive, antisymmetric. transitive

 → B is partial order
 - \Box Comparable: If x, y \in X and either $x \in y$ or $y \leq x$.

 Then x and y are comparable \longleftrightarrow Incomparable
 - Total order: If every pair of elements in X is comparable.

 then R is total order.
 - \rightarrow so, every (x,y) must be included in β , the order should not be reversed.
- o other terms
 - = Inverse: 12- 2 (y.x) (x.y) GR3
 - Composition: $\beta_1 \circ \beta_1 = \{(x,z) | (x,y) \in B_1 \text{ and } (y,z) \in B_2 \}$ for some $y \in Y$