Proper Scoring Rules

Luiz Max de Carvalho[Imax.fgv@gmail.com],

School of Applied Mathematics, Getúlio Vargas Foundation (FGV), Rio de Janeiro.

October 13, 2020

- Motivation;
- Definitions and maths;
- Examples;
- Why I am interested in these things (maybe);

- How do you assess a prediction from a model?
 Desiderata:
 - (Well-calibrated) Probabilistic predictions;
 - Encourage careful and honest predictions;

Let \mathcal{P} be a convex class of probability measures on (Ω, \mathcal{A}) . We call $P \in \mathcal{P}$ a probabilistic forecast.

Definition 1 (Scoring rule)

We say $S(P, \cdot): \Omega \to [-\infty, \infty]$ is a **scoring rule** if it is measurable and $S(P, \cdot)$ is P-quasi-integrable for all $P \in \mathcal{P}$.

The expected score under $Q \in \mathcal{P}$ if the forecast is P is

$$S(P,Q) := \int_{\Omega} S(P,\omega) dQ(\omega).$$

Definition 2 (Strictly proper scoring rule)

We say S is **proper** if $S(Q, Q) \ge S(P, Q)$ for all $P, Q \in \mathcal{P}$. In addition, we say S is **strictly proper** if equality is achieved only for P = Q.

Definition 3 (Strong equivalence)

If S is a (strictly) proper scoring rule and $c \ge 1$ is a constant and h is a \mathcal{P} -integrable function, then Gneiting & Raftery, (2007), Eq.2:

$$S^*(P,\omega) = cS(P,\omega) + h(\omega) \tag{1}$$

is also a (strictly) proper scoring rule and we say S^* and S are **strongly equivalent** if c=1.

Connection with convex functions:

Theorem 4 (Convex functions and proper scoring rules)

A regular scoring rule $S: \mathcal{P} \times \Omega \to \overline{\mathbb{R}}$ is proper relative to the class \mathcal{P} if and only if there exists convex $G: \mathcal{P} \to \mathbb{R}$ such that

$$S(P,\omega) = G(P) - \int G^*(P,\omega) dP(\omega) + G^*(P,\omega),$$

where $G^*(P,\omega)$ is a subtangent of G at P.

The function

$$G(P) = \sup_{Q \in \mathcal{P}} S(Q, P), P \in \mathcal{P}$$
 (2)

is the **information measure** (or generalised entropy function) associated with S. Subject to regularity conditions on S, we can define

$$d(P,Q) = S(Q,Q) - S(P,Q), P,Q \in \mathcal{P}, \tag{3}$$

as the **divergence function** associated with S (and G). Under regularity conditions on Ω , $d(\cdot, \cdot)$ is called a *Bregman* divergence.

Note: if S is strictly proper, $d(P, Q) \ge 0$ with equality iff P = Q.

Statistical decision problems. If we let $U(\omega,a)$ be the utility for outcome ω under action a and $\mathcal P$ be a convex family of probability measures, then

$$S(P,\omega) = U(\omega, a_P),$$

where a_P is the Bayes act for $P \in \mathcal{P}$, is a proper scoring rule.

If we want to rank n forecasts, as long as they refer to the <u>same</u> set of forecast situations, we can compute

$$S_n := \frac{1}{n} \sum_{i=1}^n S(P_i, x_i).$$

Since forecasts are likely to vary – in quality – spatially and temporally, we can compute the **skill score**

$$S_n^{\text{skill}} := \frac{S_n^{\text{fcst}} - S_n^{\text{ref}}}{S_n^{\text{opt}} - S_n^{\text{ref}}},\tag{4}$$

where

- S_n^{fcst} is the forecaster's score;
- S_n^{opt} is a hypothetical optimal forecast;
- S_n^{ref} is the score for a reference (model or) strategy.

Suppose $\Omega = \{1, 2, ..., m\}$ consisting of mutually exclusive events and that \mathcal{P} is the set of open m-dimensional unit simplices. If a forecaster quotes a vector $\mathbf{p} \in \mathcal{P}$ and event i materialises, then their reward is $S(\mathbf{p}, i)$.

Remark 1 (Convexity)

A (regular) scoring rule is proper if and only if $G(\mathbf{p}) = S(\mathbf{p}, \mathbf{p})$ is convex.

Example: Brier score. If $G(\mathbf{p}) = \sum_{j=1}^{m} p_j^2 - 1$, then we have the *Brier score*:

$$S(\mathbf{p},i) = -\sum_{j=1}^{m} (\mathbb{I}_{j}(i) - p_{j})^{2} - \sum_{j=1}^{m} p_{j}^{2} - 1$$
 (5)

Spherical score.

For $\alpha > 1$ we can define

$$S(\mathbf{p},i) = \frac{p_i^{\alpha-1}}{\left(\sum_{j=1}^m p_j^{\alpha}\right)^{\frac{\alpha-1}{\alpha}}}$$
(6)

• Logarithmic score.

When $G(\mathbf{p}) = \text{is the Shannon entropy}$, we have $S(\mathbf{p}, i) = \log p_i$ and

$$d(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^{m} \log \left(\frac{q_j}{p_j} \right), \tag{7}$$

as the Kullback-Leibler divergence.

Scoring rules for density forecasts

Let μ be a σ -finite measure on (Ω, \mathcal{A}) . For $\alpha > 1$ define \mathcal{L}_{α} be the space of probability measures on (Ω, \mathcal{A}) such that $\nu \ll \mu$ and $p(\omega) = \frac{d\nu}{d\mu}(\omega)$ and

$$||p||_{\alpha} = \left(\int_{\Omega} p(\omega)^{\alpha} d\mu(\omega)\right)^{\alpha} < \infty.$$

We establish a correspondence between the forecast P and its μ -density, p. Examples:

• Quadratic:

$$QS(p,\omega) = 2p(\omega) - ||p||_2^2, \tag{8}$$

is strictly proper relative to \mathcal{L}_2 class of probability measures.

Pseudo-spherical:

$$\mathsf{PseudoS}(p,\omega) = \frac{p(\omega)^{\alpha-1}}{||p||_{\alpha}^{\alpha-1}},\tag{9}$$

Logarithmic score:

$$LogS(p,\omega) = log p(\omega), \tag{10}$$

is what happens to the pseudo-spherical score when $\alpha \to 1$.

The continuous ranked probability score (CRPS):

$$CRPS(F,x) = -\int_{-\infty}^{\infty} (F(y) - \mathbb{I}\{y \ge x\})^2 dy, \tag{11}$$

can be seen as the integral of the Brier scores for the associated binarisation of the forecasts based on x as cutoff.

Example:

$$\mathsf{CRPS}\left(\mathsf{Normal}(\mu,\sigma^2),x\right) = \sigma \left[\frac{1}{\sqrt{\pi}} - 2\varphi\left(\frac{x-\mu}{\sigma}\right) - \frac{x-\mu}{\sigma}\left(2\Phi\left(\frac{x-\mu}{\sigma}\right) - 1\right)\right],$$

where φ and Φ are the probability density function and cumulative distribution function of a standard normal, respectively.

The article lists a bunch more scoring rules:

- Energy score (Section 4.3), a generalisation of CRPS;
- Scoring rules that depend on the first two moments only (Section 4.4);
- Kernel scores (Section 5) negative-definite functions and (Hoeffding) expectations inequalities;
- Random-fold cross-validation (Section 7.2).

A few more connections.

Quantiles:

If one quotes the quantiles r_1, \ldots, r_k , we have

$$S(r_1,\ldots,r_k;P)=\int S(r_1,\ldots,r_k;x)\,dP(x)$$

as a proper scoring rule under somewhat mild technical conditions (see Theorem 6 in Gneiting & Raftery, (2007)).

Bayes factors:

We have

$$B_{12} = \frac{P(\boldsymbol{X} \mid H_1)}{P(\boldsymbol{X} \mid H_2)},$$

and thus

$$\log B_{12} = \operatorname{LogS}(H_1, \boldsymbol{X}) - \operatorname{LogS}(H_2, \boldsymbol{X}),$$

is a proper scoring rule.

Case study I: interval forecasts for heterokedastic processes FGV EMAP

The (Markovian) model is

$$X_{t+1} = \frac{1}{2} X_t + \frac{1}{2} X_t \epsilon_t + \epsilon_t, \; \epsilon_t \sim \mathsf{Normal}(0,1).$$

Interval predictions for X_{t+1} will be

$$I := \left[\frac{1}{2} X_t - c \left| 1 + \frac{1}{2} X_t \right|, \frac{1}{2} X_t + c \left| 1 + \frac{1}{2} X_t \right| \right], \tag{12}$$

with $c = \Phi^{-1}(\frac{1+\alpha}{2})$ and $\alpha = 0.95$.

Alternative forecast is

$$J := \left[F^{-1} \left(\frac{1 - \alpha}{2} \right), F^{-1} \left(\frac{1 + \alpha}{2} \right) \right], \tag{13}$$

where F is the unconditional stationary distribution of X_t . Finally, consider also

$$K := \left[\frac{1}{2}X_t - \gamma\left(\left|1 + \frac{1}{2}X_t\right|\right), \frac{1}{2}X_t + \gamma\left(\left|1 + \frac{1}{2}X_t\right|\right)\right] \tag{14}$$

where $\gamma(a) = a\sqrt{2(\log 7.36 - \log a)}\mathbb{I}(a < 7.26)$, which minimises interval width subject to nominal coverage.

Table 2. Comparison of One-Step-Ahead 95% Interval Forecasts for the Stationary Bilinear Process (44)

Interval forecast		Empirical coverage	Average width	Average interval score
ī	(45)	95.01%	4.00	4.77
J	(46)	95.08%	5.45	8.04
K	(47)	94.98%	3.79	5.32

NOTE: The table shows the empirical coverage, the average width, and the average value of the negatively oriented interval score (43) for the prediction intervals *I*, *J*, and *K* in 100,000 sequential forecasts in a sample path of length 100,001. See text for details.

Case study II: forecasting sea-level pressure

Key idea: model ensembles.

Five models give 48-hour look ahead predictions for sea-level pressure in (some

places of) the Pacific Ocean.

Problem: underdispersed predictions by the ensemble.

Solution: Come up with an inflation factor (R).

For upper (u_i) and lower (l_i) predictions, we can evaluate interval forecasts for the sea-level pressure problem using, for r > 0,

$$s_{\alpha}(r) = rac{1}{16,015} \sum_{i=1}^{16,015} S_{\alpha}^{\mathsf{int}}(\mathit{I}_{i},\mathit{u}_{i};x),$$

as a scoring rule, which takes both calibration and sharpness into account.

- The obvious: assess COVID-19 forecasts;
- The not-so-obvious: InfoDengue and InfoGripe ("gripe" is Portuguese for the flu);

Fig. 1. Past and present infectious disease forecasting challenges as a function of prediction horizon and number of models considered (data from refs. 10–14).

Figure 1 of Viboud & Vespigiani (2019).

- Proper scoring rules (PSRs) are cool! They permeate many seemingly unrelated things;
- A proper scoring rule encourages honest and well-calibrated forecasts;
- It is possible to define PSRs for interval, point and distributional forecasts;
- For more, see the work by Alexander P. Dawid, starting with Dawid (1984).