

UNIVERSIDAD NACIONAL DE LANUS

LICENCIATURA EN SISTEMAS

Introducción a los Sistemas Operativos

Profs.: Dr. Hernán Merlino Dr. Pablo Pytel

GUIA DE TRABAJOS PRÁCTICOS

Ejericico 1. Resuelva el siguiente ejercicio de planificación de procesos para utilizar el procesador indicando la traza completa de ejecución de los mismos.

_	Comienza en		Prioridad		
Proceso	tiempo	CPU	E/S	CPU	
P1	t1	4	3	3	Alta
P2	t1	2	4	3	Baja
P3	t3	2	5	1	Media
P4	t3	1	4	5	Media
P5	t5	3	2	3	Alta

Consideraciones:

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación

- a) Prioridades (No Apropitativo).
- b) Shortest Process Next (No Apropiativo).
- c) Shortest Remaining Time (Apropiativo).
- d) Round Robing q=3 (Apropitativo).

Ejericico 2. Resuelva el siguiente ejercicio de planificación de procesos para utilizar de procesador indicando la traza completa de ejecución de los mismos.

Drococo	Comienza en	Drioridad	Duración		
Proceso	tiempo Prioridad		CPU	E/S	CPU
P1	t1	Baja	4	2	1
P2	t1	Media	2	4	3
P3	t2	Alta	1	2	1
P4	t2	Media	3	1	2
P5	t3	Alta	3	2	4

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación

- a) First Come First Served (también denominado FIFO, No Apropiativo).
- b) Shortest Process Next (No Apropiativo).
- c) Por Prioridades (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robin (q = 1)
- f) Round Robin (q = 2)
- g) Round Robin (q = 4)

Ejericico 3. Resuelva el siguiente ejercicio de planificación de procesos para utilizar de procesador indicando la traza completa de ejecución de los mismos.

Drococo	Comienza en	Prioridad		[Ouración		
Proceso	tiempo	mpo	CPU	E/S	CPU	E/S	CPU
P1	t1	Media	5	1	3	1	4
P2	t2	Baja	2	3	3	2	2
P3	t2	Alta	4	2	4	3	1
P4	t3	Baja	2	1	1	2	3
P5	t4	Alta	3	2	4	5	4

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.

Utilizando el algoritmo de planificación:

- a) First Come First Served (también denominado FIFO, No Apropiativo).
- b) Shortest Process Next (No Apropiativo).
- c) Por Prioridades (No Apropiativo).
- d) Shortest Remaining Time (Apropiativo).
- e) Round Robin (q = 1)
- f) Round Robin (q = 2)
- g) Round Robin (q = 4)

Ejericico 4. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Nro de Página	¿Presente?	Nro de Frame	¿Modificado?	Tiempo último acceso
0	No	-	-	-
1	Si	44	Sí	T2
2	No	-	-	-
3	Si	22	No	T1
4	No	-	-	-

- El Tamaño de Página es 4KB.
- La asignación de páginas es fija (2 frames).
- El reemplazo es local con algoritmo Least-Recently-Used (menos usada recientemente).

Direcciones Lógicas:

- a) 15.456 (T3)
- b) 123 (T4)
- c) 14.545 (T5)
- d) 3054 (T6)

Múltiplos de 1024

1024; 2048; 3072; 4096; 5120; 6144; 7168; 8192; 9216; 10240;

11264; 12288; 13312; 14336; 15360;

16384; 17408; 18432; 19456; 20480

Ejericico 5. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Nro de Página	¿Presente?	Nro de Frame	¿Modificado?	Tiempo último acceso
0	Si	55	No	T2
1	No	-	-	-
2	Si	11	Sí	T1
3	No	-	-	-

- El Tamaño de Página es 4KB.
- La asignación de páginas es fija (2 frames).
- El reemplazo es local con algoritmo Least-Recently-Used (menos usada recientemente).

Direcciones Lógicas:

- a) 1.250 (T3)
- b) 123 (T4)
- c) 6.512 (T5)
- d) 14.545 (T6)

Ejericico 6. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Nro de Página	¿Presente?	Nro de Frame	Tiempo último acceso
0	No	-	-
1	Sí	54	T1
2	No	-	-
3	Sí	78	T2
4	No	-	-

- El Tamaño de Página es 1KB.
- La asignación de páginas es fija y local (2 frames).
- El reemplazo es local con algoritmo Least-Recently-Used (menos usada recientemente).

<u>Direcciones Lógicas:</u>

- a) 1235 (T3)
- b) 4546 (T4)
- c) 5123 (T5)
- d) 1045 (T6)
- e) 3545 (T7)

Ejericico 7. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Nro de Página	¿Presente?	Nro de Frame	Cantidad de accesos
0	Sí	44	2
1	No	-	-
2	No	-	-
3	Sí	33	1
4	No	-	-

- El Tamaño de Página es 2KB (2048 Bytes).
- La asignación de páginas es fija y local (2 frames).
- El reemplazo es local con algoritmo Least-Frequently-Used (menos frecuentemente usada).

<u>Direcciones Lógicas solicitadas</u>:

- a) 123 (T3)
- b) 3455 (T4)
- c) 1018 (T5)
- d) 6212 (T6)
- e) 7123 (T7)

Ejericico 8. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Nro de Página	¿Presente?	Nro de Frame	Cantidad de accesos
0	Sí	22	1
1	No	-	-
2	No	-	-
3	Sí	11	2
4	No	-	-

- El Tamaño de Página es 1KB (1024 Bytes).
- La asignación de páginas es fija y local (2 frames).
- El reemplazo es local con algoritmo Least-Frequently-Used (menos frecuentemente usada).

Direcciones Lógicas solicitadas:

- a) 456 (T3)
- b) 655 (T4)
- c) 2048 (T5)
- d) 4212 (T6)
- e) 5023 (T7)