Ajam w uma I-forma difuencial em RM f: RM Noma função Co, com f(x) ±0 para todo x E RM. Mortre que d (fw) = 0 (identica-mente zuol si, e somente se, a I-forma: $\mathcal{B} = W - 1 \cdot d\chi_{M+1}$ En \mathcal{L}^{M+1} Satisfax a equação $\mathcal{B} \wedge d\mathcal{B} = W \wedge dW$. (Considere $\mathcal{R}^M + \mathcal{L}^{M+1}$ definido por $\chi_{M+1} = 0$). como v í I-forma e f(x) uma função não nula para qualquer porto do domínio. Desijamos mostror que d(fn = 0. Para mostrove vamos utilizar o "pull back", então;

" sija uma forma de grace re a classe C* em M, para tocla

para metrização V: Mo - DM em M, existe uma circa forma

d y M, de gran (511) em M, tal que p*(d q w) = df *w)." Entao: B= W-1 dxm+1 - N-B=1 dxm+1 O=wrdw-BrdB → wrdw=BrdB. Como isso d(fr) =0. Agora a volta se $d(fw) \equiv 0$, então fw dw = 0, mas $f(x) \neq 0$ para todo $x \in \mathbb{R}^m$. Aplicando a rega da cadeia, temos f: RM -> R possui, em cada ponto x E RM, uma derivada, qué é uma tronsformações livear:

f(x): Tx RM -> Yx R, see [f'(x)] *: Am (T/M R) -> Am (Tx PM) (y*w)(x) = Zf (x)] →. w (f(x))