

REGRESSÃO LINEAR COM UMA VARIÁVEL

Aprendizado Supervisionado

Size (feet²)

Problema de Regressão Estima o valor real da saída (contínuo)

Problemas de classificação
Possui valores discretos de saída

Conjunto de treinamento dos preços das casas

Conjunto de treina	mento dos pr	eços das casas
	Size in feet ² (x)	Price (\$) in 1000's

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232

Notação:	• • •	• • •
m = Número de exemplos	de treinamento	
x 's = "input" variable / featu	ıres	
y 's = "output" variable / "tar	get" variable	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regressão linear com uma variável. (Univariate linear regression)

Regressão linear com uma variável – Função Custo

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
• • •	• • •

Hipótese:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$: Parâmetros Como escolher $heta_i$?

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

Função Custo – Erro médio quadrático

$$y \xrightarrow{\mathbf{y}} \mathbf{y} \xrightarrow{\mathbf{x}} \theta_0, \theta_1$$

$$\mathbf{y} \xrightarrow{\mathbf{y}} \mathbf{y} \xrightarrow{\mathbf{x}} \mathbf{y}$$

$$\mathbf{y} \xrightarrow{\mathbf{y}} \mathbf{y}$$

Ideia: escolher θ_0, θ_1 , tal que $h_{\theta}(x)$ esteja próximo de y para o conjunto de treinamento (x,y)

Hipótese

Simplificado

$$x) =$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$heta_0, heta_1$$

$$J(heta_0, heta_1)=rac{1}{2m}\sum_{i=1}^m \left(h_ heta(x^{(i)})-y^{(i)}
ight)^2$$

$$h_{\theta}(x) = \theta_1 x$$

$$\underset{\theta_1}{\operatorname{minimize}} \ J(\theta_1)$$

 $h_{\theta}(x)$

1,5 2 2,5 0,5 $J(0,5) = \frac{1}{2m} [(0,5-1)^2 + (1-2)^2 + (1,5-3)^2]$

 $J(\theta_1)$

(função do parâmetro θ_1)

$$J(0,5) = \frac{1}{2m} [(0,5-1)^{2} + \frac{1}{2\times 3}(3,5) = \frac{3,5}{6} \approx 0,68$$

Hipótese:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parâmetros: θ_0, θ_1

Função Custo:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objetivo: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

Para θ_0, θ_1 fixos

 $J(\theta_0, \theta_1)$

(função dos parâmetros $heta_0, heta_1$)

 $h_{\theta}(x)$

Para θ_0, θ_1 fixos

 $J(\theta_0, \theta_1)$

(função dos parâmetros $heta_0, heta_1$)

 $h_{ heta}(x)$ Para $heta_0, heta_1$ fixos

(função dos parâmetros θ_0, θ_1)

 $h_{\theta}(x)$

Para θ_0, θ_1 fixos

 $J(\theta_0, \theta_1)$

(função dos parâmetros θ_0, θ_1)

Regressão Linear com uma variável

Gradiente descendente

Tem alguma função $J(\theta_0,\theta_1)$ Que $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Outline:

- Comece com algum valor de θ_0, θ_1
- Mude os valores de $\,\theta_0,\theta_1\,$ de forma a reduzir $\,J(\theta_0,\theta_1)\,$ até chegar no valor mínimo

Algoritmo: Gradiente Descendente

```
repeat until convergence { \theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})  (for j = 0 and j = 1) } \alpha \rightarrow Taxa \ de \ apredizagem
```

Correto: Atualização Simultânea

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorreto:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Regressão Linear com uma variável

Algoritmo Gradiente Descendente

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) } }
```

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Se α é muito pequeno, o gradiente descendente pode ser muito lento.

Se α é muito grande, o gradiente descendente pode ultrapassar o mínimo. Ele, também, poderia não convergir ou, até mesmo, divergir.

O que acontece se inicializarmos em um mínimo local

Gradiente descendente pode convergir para um mínimo local mesmo com uma taxa de aprendizado (α) fixa

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Quando se aproxima do mínimo local, o gradiente descendente automaticamente conduzirá a steps menores. Assim, não é necessário diminuir o valor de α ao longo do tempo.

Regressão Linear com uma variável

Gradiente descendente para regressão linear

Algoritmo Gradiente descendente

Modelo de regressão linear

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{(i)} - y^{(i)})^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Algoritmo Gradiente descendente

repeat until convergence { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \qquad \text{Atualize} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \qquad \text{simultaneamente}$

Função Convexa

 $h_{ heta}(x)$ (para $heta_0, heta_1$ fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

 $h_{\theta}(x)$ (para θ_0,θ_1 fixos)

 $J(heta_0, heta_1)$ (função custo em função de $\, heta_0, heta_1\,$)

Gradiente Descente – Treinamento "Batch"

"Batch": Em cada passo ou época do gradiente descendente use todos os exemplos de treinamento