20-07-2023 create array with 0's and 1's

```
In [1]:
import numpy as np
                                                                              In [2]:
print(np.array([[0,0,0,0],[1,1,1,1]]))
[[0 \ 0 \ 0 \ 0]]
 [1 1 1 1]]
create array and print
                                                                             In [3]:
x = np.array([1, 2, 3, 4])
print(x)
[1 2 3 4]
create array whose initial content is random and print it
                                                                              In [6]:
y = np.random.rand(1,5)
print(y)
[[0.53627697 0.21262395 0.58548129 0.80698913 0.78518596]]
Create an array with the range of values with even intervals
                                                                             In [7]:
print (np.linspace(1,100,2))
[ 1. 100.]
create an array with values that are spaced linearly in a specified interval
                                                                              In [8]:
print (np.arange(0,100,+3))
[ 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 6
 72 75 78 81 84 87 90 93 96 99]
Access and manipulate elements in the array
                                                                            In [10]:
x[1]
                                                                           Out[10]:
2
                                                                            In [11]:
x[1]=29
x[1]
                                                                           Out[11]:
29
```

```
Create a 2-dimensional array and check the shape of the array
```

```
In [12]:
print(np.shape(x))
(4,)
```

Using the arange() and linspace() function to evenly space values in a specified interval

```
In [13]:
print(np.arange(0,50,2))
print(np.linspace(0,50,num=17,dtype=np.int32))

[ 0  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 4
4 46
48]
[ 0  3  6  9 12 15 18 21 25 28 31 34 37 40 43 46 50]
```

create an array of random values between 0 and 1 in a given shape

```
In [15]: print(np.random.rand(2,5))
[[0.09602765 0.831032 0.29664158 0.35093433 0.53813725]
[0.84731463 0.83714585 0.77396164 0.49332724 0.0947513 ]]
```

Repeat each element of an array by a specified number of times using repeat() and tile() functions

```
In [18]:
print(np.repeat(x,2))
print(np.tile(x,2))

[ 1  1  29  29  3  3  4  4]
[ 1  29  3  4  1  29  3  4]
```

How do you know the shape and size of an array?

with the help of np.shape and np.size

Create an array that indicates the total number of elements in an array

```
b=np.array([1,2,3,4,5,6,7,8,9])
print(np.size(b))
9
In [21]:
```

To find the number of dimensions of the array

```
In [29]:
d = np.array([[1,2,3,4,5],[6,7,8,9,10]])
print(np.ndim(d))
```

Create an array and reshape into a new array

```
In [34]:
c = np.array([0,5,10,15,20,25])
print(c)
print()
print(c.reshape(6,1))
[ 0 5 10 15 20 25]

[[ 0]
    [ 5]
    [10]
    [15]
    [20]
    [25]]
```

Create a null array of size 10

```
f=np.array(10,dtype=np.int32)
print(f)
10
```

Create any array with values ranging from 10 to 49 and print the numbers whose remainders are zero when divided by 7

```
In [37]:
for g in range(10,50,+1):
    if(g % 7 == 0):
        print(g)

14
21
28
35
42
49
```

Create an array and check any two conditions and print the output

```
In [40]:

h = np.array([1,2,3,4,5,6,7,8,9,10])

i = h[(h < 10) & (h > 2)]

print(i)

[3 4 5 6 7 8 9]
```

Use Arithmetic operator and print the output using array

```
In [41]:
j=np.array([1,2,3])
k=np.array([4,5,6])
l=j+k
print(l)
```

n=m[(m>10)]print(n)

[12 14 16 18 20]

use Relational operators and print the results using array

```
In [43]:
m=np.array([2,4,6,8,10,12,14,16,18,20])
```

Difference between python and ipython

python is general purposeprogramming language which provides the basic idle operation, functionsetc,. while ipython provides a variety of features like code auto completion and history review and visualization