Método Constructivo Greedy Determinista para Minimizar el Tiempo Máximo $\max(W_i)$ en Sistemas Put-to-Light (PTL)

1. Contexto y Conceptos Fundamentales

Un sistema Put-to-Light (PTL) se utiliza para clasificar pedidos de manera ágil y ordenada en un entorno logístico. Cada pedido agrupa uno o varios productos y debe asignarse a una posición (llamada "salida") dentro de alguna zona del PTL.

1.1. Zonas y Posiciones

- El sistema PTL se compone de varias zonas: $\{Z_1, Z_2, \dots, Z_j\}$.
- Cada zona Z_j posee un número limitado de posiciones que pueden ocuparse. Denotamos ese límite por n_{s_i} .
- Las posiciones (o salidas) se representan como $\{S_1, S_2, \ldots, S_k\}$. Cada posición S_k pertenece a exactamente una zona Z_j . Para indicar esto, se define un parámetro binario $s_{j,k}$ tal que:
 - $-s_{j,k}=1$ si la posición k está en la zona j.
 - $-s_{j,k}=0$ en caso contrario.

1.2. Pedidos

Se tiene un conjunto de pedidos $\{P_1, P_2, \dots, P_i\}$. Cada pedido:

- Representa un conjunto de productos, o un encargo de un cliente.
- Necesita una única posición (salida) para ser clasificado.
- No se puede dividir un pedido: todo el pedido P_i va a una sola posición S_k .

1.3. Tiempo de Asignación tiempo(i, k)

Asignar el pedido P_i a la posición S_k necesita cierto tiempo adicional, el cual puede considerarse como la sumatoria de:

- 1. Tiempo de manipulación (escaneo de productos por ejemplo).
- 2. Distancia interna en la zona (traslado de ida y vuelta para depositar los productos).

Ese tiempo se denota tiempo(i, k). Lo calculamos según la ecuación (7) del archivo "Problem Definition.pdf", e ignoramos la asignación a trabajadores específicos pero integramos los SKUs y las distancias:

tiempo
$$(i,k) = \sum_{m \in SKUs \text{ de i}} \left[t_{r_{i,m}} + 2\left(\frac{d_{j,k}}{v}\right) \right]$$

donde:

- $t_{r_{i,m}}$ es el tiempo de manipular la referencia m en el pedido i.
- $d_{j,k}$ es la distancia en la zona j hasta la posición k.
- \bullet v es la velocidad de desplazamiento.
- El "2" es porque se considera el trayecto de ida y vuelta para depositar los productos.

2. Objetivo: Minimizar $max(W_i)$

Para balancear el sistema, lo que nos interesa es que la zona más cargada no quede excesivamente saturada. Por ello, definimos:

- W_j : tiempo total (o carga total) que acumula la zona j. Una vez se asignan todos los pedidos, la zona j suma los tiempos de aquellos pedidos que cayeron en sus posiciones.
- La función objetivo es minimizar $\max(W_j)$, es decir, hacer que la zona más sobrecargada quede lo menos saturada posible.

Restricciones

- Un pedido no se parte: cada P_i va a una sola posición S_k .
- Una posición no se repite: si P_i usa la posición S_k , ningún otro pedido puede tomar S_k .
- ullet En cada zona Z_j , no se puede ocupar más de n_{s_j} posiciones con diferentes pedidos.

3. Descripción del Método Constructivo (Greedy Determinista)

El método constructivo se denomina "greedy" o "codicioso" porque, en cada decisión (asignar un pedido), busca la mejor opción local para cumplir con el objetivo de mantener bajo $\max(W_j)$. Una vez hecha la asignación, no se desasigna ni se reconsidera.

3.1. Paso 1: Ordenar los Pedidos

Antes de la asignación, ordenamos los pedidos de mayor a menor tiempo promedio. Por ejemplo:

- 1. Para cada pedido P_i , calculamos su tiempo promedio $\left(\frac{1}{|\text{salidas}|}\sum_k \text{tiempo}(i,k)\right)$.
- 2. Ordenamos de mayor a menor. Así colocamos primero los pedidos más costosos (en términos de tiempo) para controlar su efecto en $\max(W_i)$.

3.2. Paso 2: Asignar cada Pedido

Tomando los pedidos en ese orden:

- Para el pedido que estamos asignando, se consideran todas las posiciones (salidas) k que estén libres (no usadas) y cuya zona Z_j aún no haya llegado al límite (n_{s_j}) .
- Simulamos asignar P_i a cada salida k. Esto implica sumar tiempo(i, k) en la zona correspondiente j.
- Calculamos cómo cambiaría $\max(W_j)$ con esa asignación temporal.
- Se elige la posición k^* que menos incremente $\max(W_i)$.
- Se fija esa asignación. Esto significa:
 - Marcar esa salida k^* como ocupada,
 - Sumar tiempo (i, k^*) de forma permanente a W_i .
 - Aumentar en 1 el conteo de posiciones ocupadas en la zona j.

3.3. Paso 3: Continuar hasta Agotar Pedidos

Se repite el proceso para el siguiente pedido hasta haber cubierto todos. Al final, la zona j tiene un valor W_j que es la suma de los tiempos de clasificación de todos los pedidos que terminaron en las posiciones pertenecientes a Z_j .

4. Pseudocódigo del Método Greedy Determinista

ALGORITMO build_greedy_minmax():

- 1. LEER los datos del problema:
 - pedidos: lista de pedidos (p.ej. [P1, P2, ...]).
 - salidas: lista de posiciones (p.ej. [S1, S2, ...]).
 - zonas: lista de zonas (p.ej. [Z1, Z2, ...]).
 - s[(j,k)]: 1 si la salida k pertenece a la zona j, 0 si no.
 - $n_sal[j]$: número máximo de posiciones ocupables en la zona j.
 - tiempo[(i, k)]: tiempo de asignar el pedido i a la salida k, de acuerdo con la ecuación (7) (ignorando parte de trabajadores).

2. INICIALIZAR:

- $X = \{\}$ (diccionario de asignación, donde X[i] = k)
- used_positions = \emptyset (conjunto de salidas ya ocupadas)
- zone_usage[j] = 0 (para cada zona j, cuántos pedidos se han asignado)
- W[j] = 0.0 (para cada zona j, la suma de tiempos o "carga total")
- 3. **DEFINIR** función tiempo_promedio_pedido(i):
 - total = 0
 - para cada salida k en salidas:

$$total \leftarrow total + tiempo[(i, k)]$$

• retornar: total / (número_de_salidas)

4. ORDENAR la lista de pedidos:

- pedidos_ordenados = ORDENA(pedidos) seg'un tiempo_promedio_pedido(i) en orden DESCENDENTE.
- (Los de mayor tiempo promedio primero).

5. PARA cada pedido i en pedidos_ordenados:

- (5.1) best_k = NULO, best_valor = $+\infty$
- (5.2) PARA cada salida k en salidas:
 - Si k no está en used_positions:
 - $zona_k = ZONA$ a la que pertenece k (donde $s[(zona_k, k)] = 1$)

- $\ \mathbf{si} \ \mathtt{zone_usage[zona_k]} < \mathtt{n_sal[zona_k]} :$
 - Probar asignación temporal $i \to k$:

$$\texttt{old_w} \, \leftarrow \, W[\texttt{zona_k}]$$

$$W[\texttt{zona_k}] \; \leftarrow \; W[\texttt{zona_k}] + \texttt{tiempo}[(i,k)]$$

$$\mathtt{new_max} = \max(W[j] \mid j \in \mathtt{zonas})$$

• Si new_max < best_valor:

$$best_valor = new_max, best_k = k$$

• Revertir asignación:

$$W[\mathtt{zona_k}] \leftarrow \mathtt{old_w}$$

- (5.3) SI best_ $k \neq NULO$:
 - $\bullet \quad X[i] \; = \; \mathtt{best_k}$
 - used_positions.agregar(best_k)
 - zona_best = ZONA a la que pertenece best_k
 - $W[\mathtt{zona_best}] \leftarrow W[\mathtt{zona_best}] + \mathtt{tiempo}[(i,\mathtt{best_k})]$
 - $zone_usage[zona_best] \leftarrow zone_usage[zona_best] + 1$
- (5.4) EN CASO CONTRARIO:
 - No se encontró salida factible para ese pedido (se deja sin asignar)
- 6. AL final, calcular:

$$\max_{\text{time}} = \max(W[j] \mid j \in \text{zonas}).$$

7. **RETORNAR** (X, W, max_time) .

5. Limitaciones

- No garantiza la solución óptima: Las decisiones tempranas pueden condenar la asignación final a un resultado subóptimo; no hay "reacomodo" posterior.
- Puede ser muy sensible al orden de pedidos: Asignar grandes pedidos primero a una zona puede saturarla, y a veces un orden distinto generaría un mejor resultado.
- No reoptimiza: Una vez asignado un pedido, no se retira aunque pudiera mejorar globalmente.