

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Actuaría

Probabilidad I Clave Semestre Créditos Área 0625 3 10 Campo de Probabilidad y Estadística conocimiento Etapa Básica Curso (X) Taller () Lab () Sem () Modalidad Tipo T(X) P() T/P()Obligatorio (X) Optativo () Carácter **Horas** Obligatorio E () Optativo E() Semana Semestre **Teóricas Teóricas** 5 80 **Prácticas** 0 **Prácticas** 0 Total 5 Total 80

	Seriación
	Ninguna ()
	Obligatoria ()
Asignatura antecedente	
Asignatura subsecuente	
	Indicativa (X)
Asignatura antecedente	Cálculo Diferencial e Integral II
Asignatura subsecuente	Probabilidad II
	Matemáticas Actuariales del Seguro de Personas I

Objetivos generales:

- Conocer los conceptos básicos de la Probabilidad Matemática.
- Saber ilustrar sobre cómo una gran variedad de problemas que surgen en diferentes actividades, se pueden modelar y resolver utilizando la teoría de Probabilidad.

Objetivos específicos:

 Explicar las diferentes interpretaciones de la probabilidad, así como algunos conceptos y resultados elementales.

- Comprender lo que es una variable aleatoria. Estudiar el concepto de función de distribución y densidad. Explicar la naturaleza y características de algunas importantes familias de distribuciones.
- Comprender los conceptos de esperanza, momentos y función generadora de momentos.
- Explicar teoremas límite para variables aleatorias discretas. Leyes de los grandes números, el teorema del límite central y algunas aplicaciones.

	Índice temático		
	Tema	Horas semestre	
			Prácticas
1	Espacio de Probabilidad	15	0
2	Variables Aleatorias y Funciones de Distribución	30	0
3	Momentos de Variables Aleatorias	30	0
4	Teoremas límite para sucesiones de variables aleatorias discretas	5	0
	Total	8	80

Contenido Temático			
	Tema y subtemas		
1	Espacio de Probabilidad		
	1.1 1.2 1.3 1.4 1.5 1.6	Espacio muestral, eventos y su interpretación. Panorama histórico de la probabilidad, interpretación frecuentista, definición clásica, probabilidad geométrica. Definición axiomática de probabilidad (sin énfasis en sigma-álgebras). Propiedades de la probabilidad. Probabilidad condicional e independencia. Fórmulas de la probabilidad total y de Bayes.	
	1.7	Teorema de continuidad de la probabilidad.	
	1.8	Simulación de ejemplos elementales para ilustrar la interpretación	
		frecuentista.	
2	Varia	ables Aleatorias y Funciones de Distribución	
		•	
	2.1	Definición de variable aleatoria.	
	2.2	Función de distribución y sus propiedades.	
	2.3	Variables aleatorias discretas como familias paramétricas y su	
		interpretación; funciones de masa o densidad, incluyendo los ejemplos:	
		Bernoulli, Binomial, Poisson, Uniforme, Geométrica, Binomial	
		negativa, Hipergeométrica y modelos donde éstas aparecen.	
		Familias paramétricas discretas y su interpretación.	
	2.4	Variables aleatorias continuas (o absolutamente continuas) y funciones de densidad. Familias paramétricas, incluyendo los ejemplos:	

		Uniforme, Normal, Exponencial, Gamma, Cauchy, Beta,	
		Weibul, Pareto, Frechet, Gumbel, Logística, Gausiana inversa y	
		modelos donde éstas aparecen.	
	2.5	Función de distribución de funciones de variables aleatorias.	
	2.6	Simulación de variables aleatorias.	
3	Momentos de Variables Aleatorias		
	3.1	Esperanza, varianza y propiedades. La esperanza minimiza la distancia cuadrática.	
	3.2	Momentos de variables aleatorias.	
	3.3	Esperanza de funciones de una variable aleatoria.	
	3.4	Desigualdades, incluyendo las de Tchebyshev, Jensen, Markov,	
		Chernoff.	
	3.5	Funciones Generadoras:	
		Función generadora de momentos, función generadora de	
		momentos factoriales (para variables aleatorias con valores en	
		los naturales) y aplicaciones.	
4	Teor	emas límite para sucesiones de variables aleatorias discretas	
	4.1	Aproximación Poisson a la Binomial.	
	4.2	Vectores aleatorios, funciones de densidad y de distribución; conjunta y marginales.	
	4.3	Sumas de variables aleatorias independientes.	
	4.4	Enunciado de algunos teoremas límite: Leyes de los Grandes Números,	
		Teorema de Límite Central.	
	4.5	Demostración de la ley débil de los grandes números.	
	4.6	Teorema de Límite Central para la distribución Bernoulli (Teorema de	
		De Movire-Laplace).	
	4.7	Contrastar los resultados teóricos con los obtenidos por simulación.	

Estrategias didácticas		Evaluación del aprendizaje	
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	(X)	Examen final	(X)
Lecturas	(X)	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	(X)
Prácticas (taller o laboratorio)	(X)	Participación en clase	()
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	(X)	Portafolios	()
Casos de enseñanza	()	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	

Perfil	profesiográfico

Título o grado	Egresado de la licenciatura en Matemáticas, Actuaría o alguna otra carrera afín.	
	Es deseable que cuente con un posgrado en el área.	
Experiencia docente	Con experiencia docente en el área.	
Otra característica		

Bibliografía básica:

- Feller, W. (1968). An introduction to probability theory and its applications, Volumen I. New York: John Wiley & Sons Inc.
- Gnedenko, B. V. (1975). The theory of probability. Chelsea.
- Hoel, P. G., Port, S. C., Stone, C. J. (1971). <u>Introduction to probability theory</u>. Houghton Mifflin Company.
- Mood, A. M., Graybill, F. A., Boes, D. C. (1974). <u>Introduction to the theory of Statistics</u> (3^a ed.). McGraw-Hill.
- Ross, S. (1997). A first course in probability theory (5^a ed.). Prentice Hall.
- Casella, G. & Berger, R. L. (2002). <u>Statistical inference</u>. Thomson Learning, la Universidad de Michigan.
- Stirzaker, D.R. (2003). <u>Elementary Probability</u> (2^a ed.). Cambridge University Press.

Bibliografía complementaria:

- Ash, R. B. (1970). <u>Basic Probability Theory</u>. New York: John Wiley & Sons Inc.
- Casella, G. & Berger, R. L. (2002). <u>Statistical inference</u>. Thomson Learning, la Universidad de Michigan.
- Chung, K. L. (2001). A Course in Probability Theory (2^a ed.). Academic Press.
- Chung, K. L. (1974). <u>Elementary probability theory with stochastic processes</u> (3^a ed.). Springer-Verlag, New York.
- Grimmet G. R. & Stirzaker, D. R. (2001). <u>Probability and Random Processes</u> (3^a ed.). Oxford University Press.
- Grinstead, S. (1997). <u>Introduction to probability</u>. American Mathematical Soc.
- Gut, A. (2009). <u>An intermediate course in Probability, Springer Texts in Statistics</u> (2^a ed.). New York: Springer.
- Isaac, R. (1995). The Pleasures of Probability. Springer-Verlag.
- Resnick, S. I. (1999). A Probability Path. Birkhauser. Boston.
- Rincón, L. (2007). <u>Curso Intermedio de Probabilidad</u>. México: Imprenta de la Facultad de Ciencias UNAM.
- Ross, S. M. (2007). <u>Introduction to probability modelsm</u> (9^a ed.). Academic Press.
- Weaver, W. (1963). Lady Luck: The Theory of Probability. Dover.
- Stirzaker, D. R. (1999). Probability and Random Processes. Cambridge University Press, Cambridge.