MATH F111 - MATHEMATICS I Tutorial Sheet 3

1. Investigate the convergence of the sequence (x_n) where

(i)
$$x_n = \frac{1}{1+n^2} + \frac{2}{2+n^2} + \dots + \frac{n}{n+n^2}$$
.

(ii)
$$x_n = (a^n + b^n)^{1/n}$$
 where $0 < a < b$.

(iii)
$$x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \cdots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right)$$
.

(iv)
$$x_n = n^{\alpha} - (n+1)^{\alpha}$$
 for some $\alpha \in (0,1)$.

(v)
$$x_n = \frac{2^n}{n!}$$
.

(vi)
$$x_n = \frac{1-2+3-4+\dots+(-1)^{n-1}n}{n}$$
.

2. Let (x_n) be a sequence in \mathbb{R} . Prove or disprove the following statements:

1. If
$$x_n \to 0$$
 and (y_n) is a bounded sequence, then $x_n y_n \to 0$.

2. If
$$x_n \to \infty$$
 and (y_n) is a bounded sequence, then $x_n y_n \to \infty$.

3. Let (x_n) be a sequence in \mathbb{R} . Prove or disprove the following statements:

1. If the sequence
$$\left(x_n + \frac{1}{n}x_n\right)$$
 converges, then (x_n) converges.

2. If the sequence
$$\left(x_n^2 + \frac{1}{n}x_n\right)$$
 converges, then (x_n) converges.

4. Show that the sequence (x_n) is bounded and monotone, and find its limit where:

1.
$$x_1 = 2$$
 and $x_{n+1} = 2 - \frac{1}{x_n}$ for $n \in \mathbb{N}$.

2.
$$x_1 = \sqrt{2}$$
 and $x_{n+1} = \sqrt{2x_n}$ for $n \in \mathbb{N}$.

3.
$$x_1 = 1$$
 and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$ for $n \in \mathbb{N}$.

5. Let $0 < b_1 < a_1$ and define the sequences (a_n) and (b_n) by $a_{n+1} = \frac{a_n + b_n}{2}$ and $b_{n+1} = \sqrt{a_n b_n}$ for all $n \in \mathbb{N}$. Show that both (a_n) and (b_n) converge.

6. Let a > 0 and $x_1 > 0$. Define the sequence (x_n) by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

for all $n \in \mathbb{N}$. Show that the sequence (x_n) converges to \sqrt{a} .

7. Let (x_n) be a sequence in (0,1). Suppose $4x_n(1-x_{n+1})>1$ for all $n\in\mathbb{N}$. Show that the sequence (x_n) is monotone and find its limit.

8. Show that the sequence (x_n) defined by

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

is increasing and bounded above.