MISCELLANEOUS DATA ON MATERIALS FOR MILLIMETRE AND SUBMILLIMETRE OPTICS

James W. Lamb

Institut de Radio Astronomie Millimétrique 300, rue de la Piscine, Domaine Universitaire de Grenoble F-38406 St-Martin d'Hères Cedex, France

Received September 14, 1996

Abstract

Several parameters of various materials, including solid and foam dielectrics, absorbers, and metals, are collected for use in optical design in the millimetre and submillimetre range. Although the list is not exhaustive it covers most of the important materials and parameters, and extensive references are given.

Key Words: Dielectrics, millimetrewaves, submilleterwaves, material properties

Introduction

In the design of optical systems for the millimetre and submillimetre wavelength range there are various materials available with suitable properties. Choice of materials depends on losses, dielectric constants, and frequently on low-temperature suitability for cryogenic applications. There have been many types of measurements of materials in the millimetre, sub-millimetre, and infrared wave bands which are of interest in optical design. No attempt has been made to be critical of the different measurement methods and it is left to the reader to judge the accuracy and appropriateness of the measurements from the original publications. The Tables give refractive index and absorption data for some of the dielectrics which are most important for optical design.

Many more materials have been measured but these are often more for the understanding of the materials than for applications. More extensive lists of references for dielectrics are given by Simonis [1] and Birch [2].

Data are also given for metal reflectivities. Other physical properties which are useful in cryogenic optical design, such as thermal contraction and conductivity, are also tabulated.

Dielectric Parameters

The data are presented in terms of the real part of the dielectric constant, ε' , and the loss tangent, $\tan \delta$, which are commonly used by microwave engineers. The complex dielectric constant is

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{\epsilon}' - i\boldsymbol{\epsilon}'' \tag{1}$$

where $i = \sqrt{-1}$, and

$$\tan \delta = \epsilon''/\epsilon \tag{2}$$

In millimetre optics it is perhaps more common to deal with the refractive index, n, (which is also tabulated here) and power absorption coefficient, α . These are related to the complex refractive index

$$\hat{n} = n - ik \tag{3}$$

with

$$\alpha = 4\pi v k/c \tag{4}$$

c the speed of light, and v the frequency. For non-magnetic materials the two representations are related by

$$\epsilon' = n^2 - k^2 \qquad \epsilon'' = 2nk \tag{5}$$

or, for low loss materials,

$$\epsilon' = n^2 \qquad \tan \delta = 2k/n = \alpha c/2\pi n v$$
 (6)

Note that α is often given in units of cm⁻¹ or Np cm⁻¹. In the conventions of millimetrewave optics the neper (Np) is used as a measurement of power absorption (1 Np = 4.343 dB), in contrast to the normal electrical engineering definition in terms of amplitude.

Variability of Dielectric Properties

There are significant variations in the tabulated values for some of the materials. These arise from the measurement technique, the supplier, or

the preparation of the material. Original references should be consulted for details. Generally there are larger discrepancies in the absorption coefficients than the refractive indices, since they are more difficult to determine and are relatively sensitive to material preparation (annealing, sintering, impurities, etc.). Several papers discuss the differences between measurement techniques [3][4][5], and a recent paper presents the measurements of the same samples by several different laboratories [6].

Temperature Dependence

Most of the measurements have been made at room temperature (~300 K), but there are fewer results at cryogenic temperatures. In some cases where measured data are not available the *Lorentz-Lorenz formula* [7]

$$\rho \propto \frac{\epsilon - 1}{\epsilon + 2} \tag{7}$$

relating the density, ρ , and dielectric constant may be used along with the known thermal contraction to estimate the dielectric constant at different temperatures. PTFE and HDPE lenses designed accordingly have shown correct focusing compared to lenses where the effect was not accounted for [8]. In that instance, computing the dielectric constant at 4.2 K using (7) corrected a 25 % beam broadening in a feed system with a PTFE lens, yet some published data show no change in refractive index [9][10]. In the design of a cryogenic lens both the change in dimensions and the change in refractive index need to be taken into account.

Absorption in some samples varies significantly with temperature and in other only slightly [11]. In the context of cryogenic low-noise optics probably the most significant benefit of cooling is the reduction of the thermal emission rather than the reduction of loss.

Metallic Reflection

There are few measurements on the resistivity of metallic reflectors at mm and sub-mm wavelengths. Cook et al. describe an apparatus at 337 GHz [12], but their measurements are preliminary and subject to comparison with an aluminum plate of unknown absolute reflectivity. In practice, losses at mm wavelengths are almost negligible. For sub-millimetre wavelengths it may be sufficient to assume that the surface

resistivity is twice as high as calculated from the nominal DC conductivity. Surface resistivity, R_s , related to conductivity, σ , by

$$R_s = 10.88 \times 10^{-3} \sqrt{\left(\frac{10^7}{\sigma}\right) \frac{1}{\lambda_0}}$$
 (8)

 $(\lambda_0 \text{ in m, } \sigma \text{ in S m}^{-1})$. Surface roughness effects are discussed by Tischer [13] who indicates that when the roughness is greater than a skin depth the increase in effective surface resistivity is equal to the increase in area. The reflection loss is found (for normal incidence) from

$$f_L = \frac{R_s}{30\,\pi} \tag{9}$$

where f_L is the fraction of the power dissipated in the reflector.

Explanation of the Tables

It is difficult to ensure uniformity in the tabulations because of the different measurements and reporting of the various authors. Often the same material goes under different names (e.g., PMMA, Perspex, Plexiglas, Lucite, etc.). A single name has been used and a cross-reference table provided. Where possible, manufacturers names have been included with the material designation or as a footnote. The nomenclature for SiO₂ materials is confusing as the names silica and quartz are both used. There are perhaps differences in naturally and synthetically produced SiO₂ so the original designations have been retained.

Table I: Dielectric constants for a number of homogeneous solids which have reasonably low losses.

Table II: Losses for foams and woven sheet materials. These are materials which are suitable for vacuum or environmental windows and infrared filters. Over the last few years there has been a change in the foaming gasses from ones which are harmful to ozone to more benign ones. This has corresponded to a significant increase in the absorption at millimetre wavelengths and the number of suitable foams has decreased dramatically. Materials which are known to be no longer available are not included in the table. Expanded polystyrene appears to be a

transparent material, but there do not appear to be any definive infrared transparency figures.

Dielectric constants are not given here, but an empirically derived formula for expanded foams has been given by Sanford [14] as follows

$$\epsilon_r = \frac{2}{5} \left(\epsilon_{r0} \right)^{\frac{d}{d_0}} + \frac{3}{5} \left[1 + \frac{d}{d_0} (\epsilon_{r0} - 1) \right]$$
 (10)

where, for polystyrene, $\varepsilon_{0} = 2.54$, $d_0 = 1.05$ g cm⁻³, and for polyethylene, $\varepsilon_{0} = 2.25$, $d_0 = 0.092$ g cm⁻³.

Table III: Absorption properties of some solids suitable for optical loads at room and cryogenic temperatures.

Table IV: Reflection and transmission losses of some commercially available free-space absorbers of various types.

Table V: Thermal contraction of some dielectrics which can be used for lens design, *etc*.

Table VI: Thermal conductivity at cryogenic temperatures for some dielectrics.

Table VII: Material cross-reference for dielectrics. Some materials are known under various common, chemical, or trade names. The most common are given in the table.

Table VIII: Guide to reflectivities of metals at millimetre wavelengths. For a description of the material preparation or surface condition the original references should be consulted.

Acknowledgements

I wish to thank the many people have contributed information in this compilation. In particular, I wish to mention Paul Goldsmith who made available a table due to be published in a quasioptics text, and also Nigel Keen who supplied a number of references.

Table I: Low-Loss Dielectric Materials

Material	4	L	u	ε,	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K)				
Acrylic 31	100	300	1.611	2.595	=	[15]
	200		1.609	2.590	11.0	
	300		1.609	2.590	13.5	
AIN: (Generic)	146	300	2.81-2.88	7.90-8.29] 86-9	[16]
(Tokuyama Soda)	140	300	2.883	8.312	0.9	
Alumina:	100	300	3.0983	665.6	0.9	4],[17]
(WESGO)	250		3.0975	9.595	11.5	
	400		3.0980	9.598	16.0	
Alumina:	100	300	3.1451	9.892	=	[4],[17]
(COORS)	250		3.1440	9.885	21.5	
	400		3.1451	9.892	26.0	
Alumina: (BK-99)	140	300	3.244-3.252	10.523-10.576	2.7-3.2	[16]
(22XC)	150		3.05-3.06	9:30-9:36	2.7-3.5	
Alumina	245	300	3.093	9.5666		[18]
Beryllia	245	300	2.6126	6.8256] 4.7	[19]
Beryllia	30-900	293	2.588	901.9		[9]
	300				12	
Beryllia, Hot pressed	150	300	2.6732	7.1462	9.5	[4]
	300		2.6725	7.1425	22.6	
Beryllia:	100	300	2.5842	08/9'9	16 [[4],[17]
(Ceradyne Ceralloy 418s)	250	***************************************	2.5833	6.6735	22	
	450		2.5824	0699'9	25	
Beryllia: (B97-1)	140	300	2.6-2.62	98.9-92.9] 8-9	[16]

Material	J	T	u	-3	$\tan \delta \times 10^4$	Ref.
	(CHz)	(K)				
Beryllia	390	300	2.5871	6.693	11.5	[20]
BN	245	300	2.0727	4.2961	6.4	[19]
BN, Hot pressed'	141	300	1.783	3.179	14	[16]
	150	300	1.782	3.176	15	
BN, Pyrolitic	140	300	2.10-2.22	4.41-4.93	8-15	[16]
CaF ₂	140	300	2.609	208.9	61 19	[16]
Diamond, chemical vapour	120	300			100	[54]
deposition (CVD)	200		2.381	5.669	5	
	400		2.373	5.631		
	009		2.375	5.641		
	800		2.373	5.631		
Eccofoam SIL ²	22	300	1.71	2.91	260	[10]
		77	1.69	2.87	100	-
Epoxy casting resin, 36DK ⁽²⁾	94	300	2.3845	5.685	42	[21]
Epoxy casting resin, 36DA ⁽²⁾	94	300	1.9950	3.980	14	[21]
Epoxy casting resin, 36D ⁽²⁾	94	300	1.5770	2.487	11	[21]
Epoxy casting resin, 36DS ⁽²⁾	94	300	1.3285	1.765	41	[21]

¹ Not Homogeneous ² Emerson and Cuming, Inc

Ref.		[6]						[6]						[01]		[01]		[10]		[10]		[10]
$\tan \delta \times 10^4$		315	400	200	570	640	715	20.8	88	330	65	275	1040	230	41	250	42	240	39	340	43	
-3		3.50	3.50	3.50	3.53	3.53	3.53	4.00	4.00	4.00	5.20	5.20	5.20	2.96	2.87	2.97	2.89	2.99	2.90	3.08	2.90	4.33
L		1.87	1.87	1.87	1.88	1.88	1.88	2.00	2.00	2.00	2.28	2.28	2.28	1.72	1.69	1.72	1.70	1.73	1.70	1.76	1.70	2.08
L	(K)	4.8	4.8	4.8	300	300	300	4.8	4.8	4.8	300	300	300	300	11	300	77	300	11	300	11	300
4	(CHZ)	1001	300	006	100	300	006	100	300	006	1001	300	006	22		22		22		22		22
Material		Epoxy casting resin, Eccosorb	CR110 ⁽²⁾					Epoxy casting resin, Stycast	2850FT ⁽²⁾					Epoxy-Araldit CY 209, HY	9513	Epoxy-Araldit CY 220, HY	951(3)	Epoxy-Araldit D, HY 951(3)		Epoxy-Araldit F, HY 951 ⁽³⁾		Epoxy-LMB 1386, HY 951(3)

Material	J	T	u	.3	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K)				
138	22	300	2.09	4.38	110	[10]
DY 067 ⁽³⁾ Mixed by vol.	22	300	2.13	4.55	110	
		11	2.11	4.45	09	
Epoxy, Araldite	80-105	300	2.90	8.41	200	[22]
Epsilam-10	150	290	3.20	10.2	20	[23]
	009		3.25	10.2	50	
	006		3.25	10.2	130	
Ethyl cellulose	25	300	1.628	2.65	300	[24]
Ethyl cellulose	140	300	1.926	3.71	1000	[25]
Ferroflow	150	290	3.58	12.6	2700	[23]
	300		3.45	11.3	2800	
	009		3.30	10.6	3000	
Ferroflow	30-900	293	3.6	13.0		[9]
	300				3200	
Fluorogold: Parallel to grain	150	293	1.625	2.641	LL	[26]
z	300		1.625	2.641	77	
2	009		1.630	2.657	125	
z.			1.632	2.663	265	
Perpendicular to grain			1.602	2.566	40	
=	300		1.602	2.566	59	
=	009		1.606	2.579	110	
2	006		1.610	2.592	210	
Fluorogold	300-900	300	1	1	*	[27]

Strong dichroism

Material	3	1	u	,3	tan $\delta \times 10^4$	Ref.
	(ZHZ)	(K				
Fluorogold, rod	100	4.8	1.68	2.82	9.0	[6]
	300	4.8	1.68	2.82	13	
	006	4.8	1.68	2.82	230	
	100	300	1.70	2.89	12	
	300	300	1.70	2.89	64	
	006	300	1.70	2.89	295	
Fluorosint	150	9	1.881	3.538	8>	[28]
	300	9		3.538	231	
	009	9		3.553	9/	
	150	77		3.527	%	
	300	77	1.879	3.531	21	
	009	77		3.549	87	
	150	295		3.504	17	
	300	295		3.508	42	
	009	295		3.519	115	
Fused silica, 85% density, slip	94	300	1.814	3.29	26	[59]
cast						
Fused silica QU:			1.958	3.8338	14-15	[16]
On:	150	300	1.953	3.8142	5.5-7.1	
TO.			1.952	3.8103	5-5.3	

2.7 3.6 5.1 5.9	2.7 3.6 5.1 6.2 6.4	2.7 3.6 5.1 5.9 6.2 6.2 6.4												
		3.9968	3.9968	3.9968 3.9932 3.9932	3.9968 3.9932 3.9932 3.78	3.9968 3.9932 3.9932 3.78	3.9968 3.9932 3.9932 3.78 3.822	3.9968 3.9932 3.9932 3.78 3.822 3.8087	3.9968 3.9932 3.9932 3.78 3.82 3.822 3.8087	3.9968 3.9932 3.9932 3.822 3.822 3.8087 3.801 3.801	3.9968 3.9932 3.9932 3.822 3.822 3.8087 3.801 3.801	3.9968 3.9932 3.9932 3.822 3.822 3.8087 3.801 3.85 15.923	3.9968 3.9932 3.9932 3.822 3.822 3.8087 3.801 15.923 15.923	3.9968 3.9932 3.9932 3.822 3.822 3.801 3.801 15.923 16.048 16.048
		1.9992	1.9992	1.9992	1.9992 1.9983 1.9983 1.944	1.9992 1.9983 1.9983 1.944 1.954	1.9992 1.9983 1.9983 1.944 1.954	1.9992 1.9983 1.9983 1.944 1.954 1.951	1.9992 1.9983 1.9983 1.944 1.954 1.954 1.9516	1.9992 1.9983 1.9983 1.944 1.954 1.954 1.9516 1.962 3.9904	1.9992 1.9983 1.9983 1.944 1.954 1.955 1.955 1.956 1.960	1.9992 1.9983 1.9983 1.944 1.954 1.955 1.955 1.960 1.960 4.006	1.9992 1.9983 1.9983 1.944 1.954 1.955 1.955 1.960 3.9904	1.9992 1.9983 1.9983 1.944 1.954 1.955 1.955 1.956 3.9904 4.006 3.928
		300	300	300	300	300	300 300 300	300 300 300 300	300 300 300 300 300	300 300 300 300 300 300 300	300 300 300 300 300 300 300	300 300 300 300 300 300 300	300 300 300 300 300 300 300 1.5	300 300 300 300 300 300 300 300 300 300
800	800 900 1000	800 900 1000 120	800 900 1000 120 250	800 900 1000 120 250 360	800 900 1000 120 250 360	800 900 1000 120 250 360 10	800 900 1000 120 250 360 60-90	800 900 1000 120 250 360 60-90 60-90	800 900 1000 120 250 360 60-90 60-90 393	800 900 1000 120 250 360 60-90 60-90 245 245 393 393	800 900 1000 120 250 360 60-90 60-90 60-90 245 245 245 245 245 890	800 900 1000 250 360 60-90 60-90 245 245 393 393	800 900 1000 250 360 60-90 60-90 245 245 393 393 900 890	800 900 1000 120 250 360 60-90 60-90 245 245 245 245 890 890 1200
	***************************************	ium silicate				1 100 100	ium silicate (Spectrosil) (Spectrosil) Dynasil 4000)	ium silicate (Spectrosil) (Spectrosil) Dynasil 4000)	ium silicate (Spectrosil) (Spectrosil) Dynasil 4000)	(Spectrosil) (Spectrosil) (Spectrosil) Dynasil 4000) Spectrosil WF)	(Spectrosil) (Spectrosil) (Spectrosil) (Spectrosil) Spectrosil WF)	(Spectrosil) (Spectrosil) (Spectrosil) (Spectrosil WF) (Spectrosil WF)	(Spectrosil) (Spectrosil) Dynasil 4000) Spectrosil WF) (Spectrosil)	(Spectrosil) (Spectrosil) Dynasil 4000) Spectrosil WF) (Spectrosil)
		Pused silica, Titani	Fused silica, Titani with 7%TiO, ⁵	Fused silica, Titani with 7%TiO ₂ ⁵	Fused silica, Titani with 7%TiO ₂ Fused silica:	Fused silica, Titani with 7%TiO ₂ ⁵ Fused silica: Fused silica:	Fused silica, Titani with 7%TiO ₂ ⁵ Fused silica: Fused silica: Fused silica: (I	Fused silica, Titani with 7%TiO ₂ ⁵ Fused silica: Fused silica: (I Fused silica: (I	Fused silica, Titani with 7%TiO ₂ ⁵ Fused silica:	Tita	Fused silica, Titani with 7% TiO ₂ Fused silica: Fused silica: Fused silica: Fused silica: Germanium, Crystalline	Tital	Tita	
Titanium silicate 120 300 1.9992 3.9968 12 12 12 12 12 12 12 1	Spectrosil) 250 1.9983 3.9932 22 Spectrosil) 10 300 1.944 3.78 1.7 Spectrosil) 60-90 300 1.954 3.82 1.7 trosil WF) 245 300 1.9516 3.8087 18.0 Spectrosil) 393 300 1.9469 3.801 8.0 Spectrosil) 2-300 300 1.9469 3.801 12.87	Spectrosil) 360 1.9983 3.9932 22 (Spectrosil) 10 300 1.944 3.78 1.7 (Dynasil 4000) 245 300 1.954 3.822 18.0 (Spectrosil WF) 245 300 1.9516 3.802 18.0 (Spectrosil) 393 300 1.9469 3.801 12.87 (Spectrosil) 2-300 300 1.962 3.85 12.87	(Spectrosil) 10 300 1.944 3.78 1.71 (Spectrosil) 60-90 300 1.954 3.82 18.0 (Spectrosil WF) 245 300 1.9516 3.822 18.0 (Spectrosil WF) 245 300 1.9469 3.8087 8.0 (Spectrosil) 2-300 300 1.9469 3.801 12.87	(Spectrosil) 60-90 300 1.954 3.82 18.0 (Dynasil 4000) 245 300 1.9516 3.822 18.0 (Spectrosil WF) 245 300 1.9516 3.8087 8.0 (Spectrosil) 393 300 1.9469 3.801 12.87 (Spectrosil) 2-300 300 1.962 3.85 1	(Dynasil 4000) 245 300 1.955 3.822 18.0 (Spectrosil WF) 245 300 1.9469 3.8087 8.0 (Spectrosil) 2-300 300 1.9469 3.801 12.87	(Spectrosil WF) 245 300 1.9516 3.8087 8.0 393 300 1.9469 3.801 12.87 (Spectrosil) 2-300 300 1.962 3.85 1	393 300 1.9469 3.801 12.87 (Spectrosil) 2-300 300 1.962 3.85 1	(Spectrosil) 2-300 300 1.962 3.85 1				, 900 300 16.048 1.3	, 900 300 4.006 16.048 1.3 900 1.5 3.928 15.429 1.4	,, 900 300 4.006 16.048 1.3 900 1.5 3.928 15.429 1.4 1200 300 4.006 16.048 2.0

Material	J	L	u	-3	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K)				
Glass, Cover slip	100	4.8	2.42	5.86	0.9	[6]
	300	4.8	2.42	5.86	110	
	006	4.8	2.42	5.86	1500	
Glass, Pyrex ⁽⁵⁾	100	4.8		4.33	4.2	[6]
	300	4.8		4.33	53	
	006	4.8		4.33	530	
	100	300		4.45	125	
	300	300		4.45	255	
	006	300		4.45	464	
Glass, Pyrex ⁽⁵⁾	400	300			28	[30]
	009				40	-
Glass, Schott	100	4.8		4.33	1.8	[6]
	300	4.8	2.08	4.33	36	
	006	4.8	2.08	4.33	260	
	25	300	1.97	3.9	31	[24]
Glass ¹⁵⁷ 7070	2-300	300	2.0	4.0	24	[32]
HDPE	156	300			2.5	[35]
HDPE	160	290	1.5246	2.3244	3.1	[36]
	300		1.5247	2.3247	3.9	
	450		1.5246	2.3245	4.1	
	009		1.5247	2.3247	4.0	
	026		1.5245	2.3242	6.3	-
HDPE	300	300			2.1	[37]
	009				3.9	
	006				5.2	
	1200				6.5	

Ref.		<u> </u>										[6	<u></u>						[40],[41								
ľ		7 [33]	0 [38]	[39]		[40],	[41]					7 [35]	1 [36]	<u>∞</u>	-	2	<u>∞</u>	3 [38]	[40	<u></u>					0 [4]	0	_
$\tan \delta \times 10^4$		7.6	8.6-30							********		2.7				4.5	6.8	5.5-13						-		20.0	
-3		2.1641	2.3422-2.3472	2.34	2.29	2.455	2.452	2.449	2.434	2.399	2.326		2.2923	2.2924	2.2918	2.2913	2.2911	2.2894-2.2920	2.421	2,418	2.415	2.396	2.362		5.673		5 648
u		1.4711	1.5304-1.5320	1.53	1.51	1.567	1.566	1.565	1.560	1.549	1.525		1.5141	1.5141	1.5139	1.5137	1.5136	1.5131-1.5139	1.556	1.555	1.554	1.548	1.537	1.514	2.382	2.377	2.377
T	(K	300	293	300	77	4.2	20	09	120	200	295	300	290					293	4.2	20	09	120	200	295	300		_
4	(CHz)	068	1900-13000	26-40	26-40	300-900						156	160	300	450	009	1000	1875-13700	300-900						100	200	300
Material		HDPE	HDPE	HDPE		HDPE						LDPE	LDPE					LDPE	LDPE						Macor		

Material	j	T	u	-3	tan δ × 10⁴	Ref.
	(CHZ)	(K)				
Macor	150	290	2.37	5.62	135	[23]
	450		2.37	5.61	313	
	750		2.38	99:5	340	
	006		2.38	5.65	006	
Macor	30-900	293	2.38	5.66		[9]
	300				23	
Macor	390	300	2.3799	5.664	269	[20]
MgAl ₂ O ₄ Spinel	100	300	2.89420	8.3764	5.0	[4],[17]
	200	terre sur	2.89454	8.3784	0.6	
	300		2.89430	8.3770	11.5	
Neoprene, Sheet	100	4.8	2.4	5.76	200	[6]
	300	4.8	2.4	5.76	630	
2000	006	4.8	2.4	5.76	790	
Nickel ferrite	245	300	3.7298	13.911	17.4	[61]
Nylon	50	300	1.791	3.21		[30]
	400				16	
	450		1.778	3.16		
	200				22	
	009				26	
Nylon	100	4.8	1.72	2.99	2	[6]
	300	4.8	1.72	2.99	•	
	006	4.8	1.72	2.99		
Nylon	100	300	1.730	2.993	8.8	[15]
	200		1.729	2.993	12.5	
	300		1.729	2.995	16	

Material	Ţ	T	u	,3	$\tan \delta \times 10^4$	Ref.
	(ZHS)	(X)				
Nylon	150	290	1.7267	2.9814	101	[36]
	300	•	1.7266	2.9812	170	
	450		1.7268	2.9814	250	
Paraffin	22	300	1.51	2.27	3	[10]
Paraffin	25	300	1.48	2.2	<3	<3 [24]
Paraffin	120	300	1.480	2.19	27	27 [42]
	168	300	1.48	2.2	13.5	
Paraffin	2-300	300	1.52	2.3	10	[32]
Parylene N	6000-15000	300	1.44	2.07	300-700	[43]
PE	25	300	1.497	2.24	2.1	[24]
PE	71	300	1.510	2.28		[30]
	400				1.7	
	450		1.506	2.27		
	200				1.9	
	009				1.5	
	700				1.4	
	800				1.3	
	006				1.3	
	1000				1.3	
PE	100	300	1.5185	2.3058	3.7	[15]
	200		1.5183	2.3053	4.2	
	300		1.5182	2.3048	4.2	

⁶ Difference compared to manufacturesrs optical data of 1.62 possibly due to impurities.

Material	f	L	u	-3	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K)				
PE	143	300	1.520	2.31		[44]
	343		1.520	2.31		
PE	393	300	1.531	2.343	3.72	[20]
PE	850	300	1.526	2.33	4	[59]
PE	1000	298	1.5200	2.3104	14	[45]
	3000		1.5200	2.3104	14	
	2000		1.5200	2.3104	9	
PE	30-900	293	1.512-1.526	2.286-2.329	L-0	[9]
PETP	55	300	1.733	3.145	44	[46]
PETP	140	300	1.830	3.35	100	[25]
PETP	068	300	1.83	3.35	264	[47]
PMMA	25	300	1.603	2.57	32	[24]
PMMA	25	300	1.609	2.59	19	[24]
PMMA	71	300	1.615	2.61		[30]
-	400				20	
	450		1.619	2.62		
	200				20	
	009				36	
PMMA	100	300	1.608	2.585	8.1	[15]
	200		1.607	2.582	11.0	
	300		1.607	2.582	13.5	

⁷ Inter-laboratory comparison measurements

Material	•	T	u	,3	tan δ × 10*	Ref.
	(GHz)	(K)				
PMMA	100	4.8	1.57		27	[6]
	300	4.8	1.57		06	
	006	4.8	1.57		270	
	100	300	1.60	2.56	0.9	
	300	300	1.60		15.7	
	006	300	1.60		38	
PMMA	120	300	1.609	2.59	75	[42]
	168	300			68	
PMMA	140	300	1.600	2.56		[25]
	210		1.606	2.58		
PMMA	143	300	1.613	2.60		[44]
	343		1.615	2.61		
PMMA	150	290	1.6090	2.5887	68	[36]
	300		1.6081	2.5861	146	
!	450		1.6061	2.5791	214	
PMMA	245	300	1.616	2.612		[18]
ЬР	35	300	1.50	2.25		[31]
dd	100	300	1.5017	2.2550		[15]
	200		1.5016	2.2549	6.2	
	300		1.5015	2.0545		
PP	120	300			5.3	[48]
PP	156	300			5'9	[35]
PP	1500-12000	290	1.4970-1.4983	2.241-2.245	57-110°	[49]

8 Several absorption peaks

Material	J	T	u	,3	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K)				
PP, Sintered	068	300	1.4875	2.2127	30.1	[33]
PS	25	300	1.594	2.54	12	[24]
PS	71	300	1.54	2.37		[30]
	400				3	
	450		1.57	2.48		
	009				5	
	1000				7	
PS	120	300			13	[42]
	168	300			25	
PS	143	300	1.600	2.56	William Control of the Control of th	[44]
	343		1.603	2.57		
PS	150	290	1.5925	2.5361	18	[36]
	300		1.5920	2.5345	27	
	450		1.5916	2.5331	36	
	009		1.5910	2.5312	44	
	006		1.5897	2.5277	48	
PS	850	300	1.587	2.52	6	[59]
PS	1640-13000	290	1.583-1.593	2.505-2.537	8.8-53	[49]
PS	300-900	4.2	1.620	2.624		[40],[41
		20	1.619	2.621		
		09	1.617	2.615		
-		120	1.616	2.611		
		200	1.603	2.570		
		295	1.591	2.531		

9 Small change in absorption with temperature

Material	J	T	u	,3	$\tan \delta \times 10^4$	Ref.
	(CHz)	₹				
PTFE ¹⁰	22	300	1.40	1.96	5	[10]
		77	1.40	1.96	3	
PTFE	25	300	1.442	2.08	9	[24]
PTFE	35	300	2.058	1.73	3	3 [50]
PTFE	71	300	1.45	2.10		[30]
	400				4	
	450		1.41	1.99		
	009				2	
	1000				2	
PTFE	94	300	1.4370	2.065	2.1	[21]
PTFE	100	4.8	1.44	2.07		[6]
	300	4.8	1.44	2.07	1	
	006	4.8	1.44	2.07	•	
PTFE	100	300	1.4389	2.0701		[15]
	200		1.4386	2.0797	6.2	
	300		1.4385	2.0794		
PTFE	140	300	1.432	2.05	30	[25]
	210		1.442	2.08		
PTFE	143	300	1.439	2.07		[44]
	343		1.439	2.07		

Material	J	L	u	13	$\tan \delta \times 10^4$	Ref.
	(GHz)	(K				
PTFE	150	290	1.4330	2.0535	2.9	[36]
	300		1.4330	2.0535	2.8	
	450		1.4330	2.0535	6.1	
	1000		1.4330	2.0535	15	
PTFE	156	300			3.6	[35]
PTFE	820	300	1.429	2.042	7	[59]
PTFE	068	300	1,4333	2.0543	13.1	[33]
PTFE	1600-5700	290	1,440-1,478	2.074-2.187	24-160"	[49]
PTFE, Sintered	300	300			4.4	[37]
	009				_	
	006				20	
	1200				22	
PTFE, Unsintered	35	300	1.396	1.950		[51]
PTFE, Unsintered	35	300	1.397	1.952	0.5	[52]
PTFE, Unsintered	300	300			<1	[37]
	009				5	•
	006				13	
	1200				15	
Quartz, Crystalline	245	300	2.107	4.439		[18]
Quartz, Crystalline	390	300	2.1059	4.435		[20]
Quartz, Crystalline	068	300	2.1133	4.4660	2.5	[33]
Quartz, Fused (Herasil)	94	300	1.8738	3.511	10	[21]
Quartz, Fused	245	300	1.951	3.806		[18]

11 Strong absorption band above 6000 GHz

Material	J	L	E	,3	tan 8 × 104	Ref.
	(CHz)	(K)				
0	245	300	2.1059	4.4348	1.0	[19]
田			2.1533	4.6367	1.4	
ш	30-900	293	2.154	4.640		[9]
	300			******	2	
0	35	300	2.105	4.43	0.31	[51]
0	140	300	2.1076	4.4420	5.1	[16]
ш			2.1550	4.6440	2.4	
0	006	300	2.113	4.465		[34]
	006	1.5	2.110	4.452		_
	1200	300	2.115	4.473	7.5	
	1200	1.5	2.111	4.456	7.5	
田	006	300	2.156	4.648	0.5	
	006	1.5	2.142	4.588	0.3	
	1200	300	2.157	4.653	0.7	
	1200	1.5	2.144	4.597	0.2	
0	30-900	293	2.106	4.435		[9]
	300				2	
	10	300	1.594	2.54	5	[24]
	71	300	1.61	2.58		[30]
	400					_
	450		1.58	2.52		
	009				3	
	1000		:		5	
	94	300	1.5987	2.556	2.6	[21]
	140	300	1.572	2.47	20	[25]
	210		1.581	2.50		

f T n (CH ₂)
1/3
30-900 293
150
300
009
006
36 300
150
100
102
10
4
72 300
150
100
02
10
4
100 300
200
350

		-	_	s	<u>-</u>	$\tan \delta \times 10^4$	Ref.
	-	(GHz)	(K)				
Sapphire (HE	(EMLUX)	100	300	3.094	9.574	4.8	[54]
		200		3.094	9.572	6.9	
****		350		3.094	9.571	0.6	
		06	6.5			1.4	
		06	35			0.7	
		06	77			1.9	
		06	300			1.5	
		180	6.5			4.2	
		180	35			5.0	
		180	77			4.85	
		180	300			5.75	
Sapphire, α:	0	140	300	3.066-3.071	9.400-9.431	2.1-2.5	[16]
	田	140		3.400-3.405	11.560-11.594	1.1-1.4	
Sapphire:	0	006	300	3.069	9.419	17	[34]
		006	1.5	3.052	9.315	1.7	
	П	006	300	3.415	11.662	30	
		006	1.5	3.372	11.370	1.6	
Sapphire, z-cut		100	300	3.06396	9.3879	4.5	[4],[17]
		200		3.06356	9.3854	0.9	
		300		3.06350	9.3850	8.0	
Scotchcast 830		22	300	1.74	3.03	210	[10]
			77	1.71	2.92	51	
Silicon		100	300	3.4464	11.878	61	[4]
		250		3.4471	11.883	7.5	
		400		3.4469	11.881	5.0	
Silicon		245	300	3.4182	11.684	9.7	[61]

	Material	J	T	u	,3	$\tan \delta \times 10^4$	Ref.
		(CH2)	(K)				
Silicon		006	300	3.4155	11.666	9	[34]
			1.5	3.3818	11.437	1.6	
Silicon:	(ICHPS RAN.)	150	300	3.424	11.72	0.24	[16]
	(Wacker Ch.)			3.421-3.424	11.70-11.72	0.7-1.1	
Silicon		30-300	290	3.416-3.423	11.669-11.717		
Silicon	(HR-Si)	95	290			2.0	[55]
		100				1.4	
		150			_	0.8	
		200				9.0	
		250				0.5	
		300				0.4	
Silicon	(eHR-Si)	150	290			0.35	[55]
		200				0.25	
		250				0.20	
		300				0.20	
Silicon	(HP-Si;dLR-Si)	07	290			05.0	[55]
		100				0.36	
		150				0.25	
		200				0.20	
		250				0.15	
						0.10	·
Silicon	(HR-Si)	145	330			0.7	[55]
			290			0.7	
			150			1.3	
			100			1.1	

Ref.		[55]			[55]					[55]					[96]				[56]				[96]		
$\tan \delta \times 10^4$		0.28	0.80	0.5		0.23	0.13	0.15	_	_	0.20	80:0	60.0	80.0		10	8	6	17	111	8	6		2	3
,3															3.420	3.419	3.418	3.418	3.417	3.417	3.417	3.417	3.414	3.414	3.414
u	Annual Carlos Ca														11.697	11.687	11.685	11.686	11.678	11.678	11.678	11.678	11.655	11.655	11.655
T	(K)	290	001	70	330	290	150	100	70	330	290	150	100	10/	298				298				298		
4	(GHz)	145			145					145					100	200	300	400	100	200	300	400	200	300	400
Material		(HP-Si)			(eHR-Si)					(dLR-Si)					1 500 Ω cm				2 000 Ω cm				11 000 Ω cm		
		Silicon			Silicon			<u>.</u>		Silicon					Silicon		· -		Silicon				Silicon		

Ref.		[10]		[51]	[21]	[15]			[48]	[35]	[18]	[36]		****	[33]	7	[45]			[58],[41				
$\tan \delta \times 10^4$		_	48	4.8 [5	6 [5	6.4 [1	8.1	8.4	7.6 [4	6.1 [3		6.0 [3	6.8	11	10.7-10.6	6.5-(>20) ¹² [57]	13 [4	13	5	5]				
13		3.00	2.92	2.126	2.149	2.1276	2.1266	2.1262			2.129	2.1316	2.1316	2.1316	2.1266-2.1272	2.1182-2.1222	2.1208	2.1191	2.1196	2.176	2.176	2.173	2.149	2.162
n		1.73	1.71	1.470	1.4659	1.4587	1.4583	1.4581			1.459	1.4600	1.4600	1.4600	1.4583-1.4585	1.4555-1.4568	1.4563	1.4557	1.4559	1.475	1.475	1.474	1.466	1.458
L	(K)	300	7.7	300	300	300			300	300	300	290	,,,,,,		300	293	298			4.7	111	100	210	290
J	(GHz)	22		35	94	100	200	300	120	156	245	300	450	1000	068	900-12600	1000	3000	2000	300-900				
Material		Teflon-Vergussmasse		TPX	TPX	TPX			TPX	TPX	TPX	TPX			TPX	TPX	TPX			TPX				

¹² Several absorption bands. Strongest absorption at 12300 GHz

Material	4	L	u	ω̄	$\tan \delta \times 10^4$	Ref.
	(GHz)	(X)				
TPX, Sheet.	100	4.8	1.42	2.02	11.2	[6]
	300	4.8	1.42	2.02	11.2	
	006	4.8	1.42	2.02	11.2	
	100	300	1.43	2.04	•	
	300	300	1.43	2.04	1	
	006	300	1.43	2.04	•	
YAG	72	300			0.4	53
		150			0.2	
		100			0.03	
		70			0.007	
		10	•		0.001	
		4			0.001	
ZnSe	100	300	3.0158	780.6	19	[4]
	250		3.0155	9.092	27	
	350		3.0166	9.100	28	
ZnSe	890	300	3.1246	9.7631	33.1	[33]

Table II: Foam and Fabric Dielectrics

Material	Chara	cteristics	f	Loss ¹³	Ref.
			(GHz)		
Gore-Tex, cloth	Expanded PTI	E, 2×2 basket	120	1	[59]
	weave, with la	ıminated film	300	4	
			600	10	
			900	18	
			1200	33	
Dylite ¹⁴	Expanded	0.92 lb ft ⁻³	200	0.0018	[60]
	PS foam:	(17.8 kg m ⁻³)	230	0.0045	
			260	0.0045	
		1.26 lb ft ⁻³	200	0.0035	
		(20.2 kg m ⁻³)	230	0.0055	
			260	0.0075	
		1.33 lb ft ⁻³	200	0.0035	
		(21.3 kg m ⁻³)	230	0.0055	
			260	0.0075	
		1.84 lb ft ⁻³	200	0.0091	
		(29.5 kg m ^{.3})	230	0.011	
			260	0.013	
Styrodure ¹³ , Green		38 kg m ⁻³	320	0.030	[61]
Wallmate S1-E, Blue		34 kg m ⁻³	320	0.020	[61]

Table III: Solid Absorbers

Material	f	T	n	α	Ref.
	(GHz)	(K)		(Np cm ⁻¹)	
CR110 ¹⁶	36	300		1.2	[62]
	94			2.0	
	250			7.1	
	670			9.7	
	2550			>15	
CR110 ⁽¹⁶⁾	36	80		0.83	[62]
	94			1.3	
	250			4.7	
	2550			11.5	

Losses given in % for cloths, Np cm⁻¹ for foams.Radva Corporation, Radford, VA.

¹⁵ BASF

¹⁶ Emerson and Cuming, Inc.

Material	f	T	n	α	Ref.
	(GHz)	(K)		(Np cm ⁻¹)	
CR112 ⁽¹⁶⁾	36	300		6.0	[62]
	94			6.5	
	250			>15	
	670			>13	
CR112 ⁽¹⁶⁾	36	80		4.4	[62]
	94			5.5	
CR114(16)	36	300		7.7	[62]
	94			9.0	
	250			>15	
	670			>13	
CR117 ⁽¹⁶⁾	36	300		10.5	[62]
	94			11	
	250			>15	
	670			>13	
CR110 ⁽¹⁶⁾	100-300	1.2	1.93		[63]

Table IV: Foam Absorbers

Material	Geometry	f	T	R	Ref.
		(GHz)	(dB)	(dB)	
Eccosorb ANP-73 ¹⁷ Gold side	flat	85	22	11	[64]
White side		85	23	5.5	
Eccosorb AN-72(17) Gold side	flat	85	24	17.5	[64]
White side		85	24	18.5	
Eccosorb VHP-94-1(17)	pyramid	80	>40	>20	[65]
		115	>40	>15	
Eccosorb VHP-94-2(17)	pyramid	80	>50	>25	[65]
		115	>50	>15	
Eccosorb AN-72(17) White side	flat	80	>15	>12	[65]
		115	>20	>6	
Eccosorb CV-3(17)	egg box	80	>50		[65]
		115	>50		
APM3 ¹⁸ , unpainted	pyramid	80			[65]
		115			
APM3 ⁽¹⁸⁾ , painted	pyramid	80		>20	[65]
		115		>17	
APM5(18), unpainted	pyramid	80	>25	>30	[65]
		115	>30	>30	

¹⁷ Emerson and Cuming, Inc.¹⁸ Hyfral

APM5(18), painted	pyramid	80	>27	>25	[65]
		115	>33	>20	
Thomas Keating Absorber	ругатіd	80		>20	[65]
		115		>25	
LAO519	flat	80		>20	[66]
		115		>20	
LAO12 ⁽¹⁹⁾	flat	80		>15	[66]
		115		>20	
AF40 ⁽¹⁹⁾	flat	80			[66]
		115		>30	

Table V: Thermal Expansion

Total contraction in % from 300 K to temperature T as $(\ell_{300 \text{ K}} - \ell_T)/\ell_{300 \text{ K}}$

Material	4.2 K	20 K	80 K	200 K	Ref.
Epoxy, CY221/HY979 ⁽³⁾	1.14	1.14	1.03	0.57	[67]
HDPE	2.02	2.01	1.89	1.05	[67]
Nylon	1.32	1.30	1.07	0.93	[68]
PETP	1.24	1.24	1.09	0.53	[67]
PMMA	1.07	1.05	0.93	0.50	[67]
PP	1.25	1.25	1.15	0.62	[67]
PS	1.44	1.43	1.27	1.07	[67]
PTFE	1.86	1.86	1.76	0.91	[67]
Pyrex	0.04	0.04	0.04	0.01	[68]
Quartz, fused	-0.015	-0.015	0.000	0.003	[68]

Table VI: Thermal Conductivity

Material	T	k	Ref.
	(K)	(W cm ⁻¹ K ⁻¹)	
Epoxy Resin, MF110	15	1.4	[69]
Epoxy Resin, MF114	15	1.9	[69]
Glass, Pyrex	85	5.3	[70]
	200	8.4	
	300	10	
Nylon	4	0.13	[70]
	20	1.0	
	100	2.5	

¹⁹ GEC Marconi

Material	T	k	Ref.
_	(K)	(W cm ⁻¹ K ⁻¹)	
PE	4	0.11-0.26	[70]
	20	1.1-4.6	
	100	3.6	
	300	3.1-3.3	
PETP	30	0.6	[70]
	100	1.1	
	300	1.2	
PMMA	4	0.56	[70]
	20	0.72	•
	80	1.5	
	300	2.0	
PS	4	0.35	[70]
PTFE	5	0.56	[70]
	20	1.4	
	80	2.0-2.3	
	300	2.2	
Quartz, fused	4	0.95-1.3	[70]
	20	1.3-1.5	
	80	4.7-6.0	

Table VII: Material Cross-Reference

Material	Comments
Acrylic	Polymethacralate
Alumina	Al_2O_3
Beryllia	Beryllium oxide, BeO
BN	Boron nitride
CFRP	Carbon-fibre reinforced plastic
Epsilam-10	Ceramic powder filled TFE resin: 3M Company
Ferroflow	Castable microwave absorber: Microwave Filter Company Inc.
Fluorogold	PTFE filled with glass grains. Reg. trademark of Fluorocarbon Inc.
Fluorosint	PTFE alloyed with mica: Polymer Corporation USA & Polypenco
	Companies
Fused silica	Silica glass, SiO ₂
HDPE	High density polyethylene
LDPE	Low density polyethylene
Macor	Machinable glass ceramic (code 9658), Corning
Nylon	Polyamide
Parylene N	Poly para-xylene, Union Carbide
PE	Polyethylene
PETP	Polyethylene tetephthalate; Mylar (US), Melinex (UK)
PMMA	Polymethyl methacrylate: Perspex (US), Plexiglas (UK), Lucite

Material	Comments
PP	Polypropylene
PS	Polystyrene
PTFE	Polytetrafluoroethylene
Quartz:O	Ordinary ray
Е	Extraordinary ray
Rexolite	Cross linked polystyrene
Sapphire	Al_2O_3
Fused silica	QU - For ultraviolet; QV - For visible; QI - For infrared
Spectrosil	Fused silica: Thermal American Fused Quartz Co; WF: Water-free
TPX	A poly 4-methyl 1-pentene
Teflon	Treated PTFE
YAG	Yttrium Aluminium Garnet

Table VIII: Metallic Reflector Conductivities

Material	f	T	$\sigma_{ m eff}$	Ref.
	(GHz)	(K)	(10^7 S m^{-1})	
Aluminium	9	300	1.7	[71]
Aluminium, pure	24	300	1.97	[72]
Aluminium, pure	0	300	3.25	[72]
Aluminium 6061-T6, polished	260	300	1.2	[73]
Aluminium on glass ²⁰	260	300	1.7-2.3	[73]
Aluminium on CFRP(20)	260	300	0.3-1.6	[73]
Aluminium, bulk	377	300	1.6	[74]
Aluminium, film	377	300	2.7-4.6	[74]
Aluminium, pure	790	200	3.0	[75]
Aluminium, Alloy A5052	790	200	2.0	[75]
Bismuth, 500 nm on aluminium	260	300	0.37	[73]
Brass, free machining	0	300	1.48	[72]
Brass, free machining	24	300	1.11	[72]
Brass, yellow (80-20)	0	300	1.57	[72]
Brass, yellow (80-20)	24	300	1.45	[72]
Brass	260	300	0.96	[73]
Copper ²¹	337	300	7.8	[12]
Copper	35	300	4.5	[12]
Copper, electroformed	0	300	5.92	[72]
Copper, electroformed	24	300	3.15	[72]
Copper, plate	24	300	2.28-1.81	[72]
Copper, plate	0	300	5.92	[72]

²⁰ Variation over several samples

²¹ Measured relative to an Al plate.

Material	f	T	$\sigma_{\rm eff}$	Ref.
	(GHz)	(K)	(10^7 S m^{-1})	
Copper, bulk	337	300	1.8-4.6	[74]
Gold, 0.5 µm on quartz ⁽²¹⁾	337	300	2.06	[12]
Gold, evaporated	890	300	0.83	[76]
Gold, plate	24	300	1.87	[72]
Gold on glass	260	300	2.5	[73]
Phosphor-bronze	790	200	1.0	[75]
Gold, plate	0	300	4.10	[72]
Gold, film	337	300	1.3-2.7	[74]
Molybdenum	337	300	0.8-1.3	[74]
Silver; coin, drawn	24	300	2.92	[72]
Silver; coin, drawn	0	300	4.79	[72]
Silver; Fine, machined	24	300	2.92	[72]
Silver; Fine, machined	0	300	6.14	[72]
Silver; Plate	24	300	3.98-2.05	[72]
Silver; Plate	0	300	6.14	[72]
Stainless Steel, 304(21)	337	300	0.09	[12]
Stainless Steel	890	200	0.17	[75]
Tantalum ⁽²¹⁾	337	300	0.58	[12]

References

- [1] G. J. Simonis, "Index to the literature dealing with the near-millimeter wave properties of materials," *Int. J. Infrared Millimeter Waves*, vol. 3, no. 4, pp. 439-469, 1982.
- [2] J. R. Birch, "A bibliography on dispersive Fourier Transform spectrometry, 1963-1968", NPL Report DES 93, Mar. 1989.
- [3] J. R. Birch and R. N. Clarke, "Dielectric and optical measurements from 30 to 1000 GHz," *The Radio and Electronic Engineer*, vol. 52, no. 11/12, pp. 565-584, Nov/Dec. 1982.
- [4] M. N. Afsar and K. J. Button, "Millimeter-wave dielectric measurement of materials," *Proc. IEEE*, vol. 73, no. 1, pp. 131-153, Jan. 1985.
- [5] J. Chamberlain, "Submillimeter-wave techniques," High Frequency Dielectric Measurements, p. 105 IPC Science and Technology Press Ltd., 1972
- [6] J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaux, A. Hadini, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Königer, R. L. Moore, H. Matuso, T. Nakano, W. Richter, K. Saki, M. R. Stead, U. Stumper, R. S. Vigil and T. B. Wells, "An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimeter wavelengths," *IEEE Trans. Microwave Theory Tech.*, vol. 42, no. 6, pp. 956-965, Jun. 1994.
- [7] M. Born and E. Wolf: Principles of Optics, Oxford: Pergamon Press, 1980.
- [8] J. W. Lamb and J. M. Payne: Private communication.
- [9] M. Halpern, H. P. Gush, E. Wishnow, and V. De Cosmo, "Far infrared

transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast and various plastics," *Appl. Opt.*, vol. 25, no. 4, pp. 565-570, Feb. 1986.

- [10] R. W. Haas and P. W. Zimmerman, "22-GHz measurements of dielectric constants and loss tangents of castable dielectrics at room and cryogenic temperatures," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, no. 11, pp. 882-883, Nov. 1976.
- [11] W. Meyer, "Variation of dielectric microwave losses in polyethylene as a result of different sample treatments," in *Nonmetallic Materials and Composites*, A. F. Clark, R. P. Reed, and G. Hartwig (Eds), Plenum: New York, 1979.
- [12] J. D. Cook, J. W. Zwart, K. J. Long, V. O. Heinen, and N. Stankiewicz, "An experimental apparatus for measuring surface resistance in the submillimeter-wavelength region," *Rev. Sci. Instrum.*, vol. 62, no. 10, pp. 2480-2485, Oct. 1991.
- [13] F. J. Tischer, "Excess conduction losses at millimeter wavelengths", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, no. 11, pp. 853-858, Nov. 1976.
- [14] J. Sanford, "A Luneberg lens update," IEEE Antennas and Propagat., vol. 37, no. 1, pp. 76-79, Feb. 1995.
- [15] M. N. Afsar, "Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers," *IEEE Trans. Instrum. Meas.*, vol. IM-36, no. 2, pp. 530-536, Jun. 1987.
- [16] V. V. Parshin, "Dielectric materials for gyrotron output windows," *Int. J. Infrared Millimeter Waves*, vol. 15, no. 2, pp. 339-348, 1994.
- [17] M. N. Afsar, "Dielectric measurements of millimeter-wave materials," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, no. 12, pp. 1598-1609, Dec. 1984.
- [18] G. J. Simonis and R. D. Felock, "Index of refraction determination in the near-millimeter wavelength range using a mesh Fabry-Perot resonant cavity," *Appl. Opt.*, vol. 22, no. 1, pp194-197, Jan. 1983.
- [19] J. M. Dutta. C. R. Jones, and H Davé, "Complex dielectric constants for selected near-millimeter-wave materials at 245 GHz," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, no. 9, pp. 932-936, Sept. 1986.
- [20] U. Stumper, "Six-port and four-port reflectometers for complex permittivity measurements at submillimeter wavelengths," *IEEE Trans. Microwave Theory Tech.*, vol. 37, no. 1, pp. 222-230, Jan. 1989.
- [21] F. I. Shimabukuro, S. Lazar, M. R. Chernick, and H. B. Dyson, "A quasi-optical method for measuring the complex permittivity of materials," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, no. 7, pp. 659-665, Jul. 1984.
- [22] P. Goy and M. Gross, "Free space vector transmission-reflection from 18 to 760 GHz," Proc. 24th European Microwave Conf. Cannes, France, pp. 1973-1978, Sep. 1994.
- [23] J. R. Birch, "Optical constants of some commercial microwave materials between 90 and 1200 GHz," *IEE Proc.*, vol. 130, Pt. H, no. 5, pp. 327-330, Aug. 1983.

- [24] A. R. Von Hipple: Dielectric Materials And Applications, New York: Wiley, 1954.
- [25] F. Sobel, F. L. Wentworth and J. C. Wiltse, "Quasi-optical surface waveguide and other components for 100 to 300 Gc region," *IRE Trans. Microwave Theory Tech.*, vol. MTT-9, no. 6, pp. 512-518, Nov. 1961.
- [26] J. R. Birch and F. P. Kong, "Birefringence and dichroism in Fluorogold at near-millimeter wavelengths," *Infrared Phys.*, vol. 26, no. 2, pp. 131-133, 1986.
- [27] G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. Alessandro, and S. Fonti, "Polarization properties of Fluorogold in the far-infrared," *Infrared Phys.*, vol. 22, pp. 185-186, 1982.
- [28] P. B. Whibberly and J. R. Birch, "The temperature variation of the near-mm wavelength optical constants of Fluorosint," *Infrared Phys.*, vol. 29, no. 6, pp. 995-996, 1989.
- [29] K. H. Breeden, et. al., "Complex permittivity measurements at millimeter wavelengths," *Dielectric Materials and Applications*, pp. 50-53, IEE Conf. Pub. no. 67, 1970.
- [30] K. H. Breeden and A. P. Sheppard, "A note on the millimeter wave dielectric constant and loss tangent value of some common materials," *Radio Science*, no. 2, p 205, Feb. 1968.
- [31] R. G. Jones, "Millimeter wave dielectric measurement using open resonators," *High Frequency Dielectric Measurements*, pp. 78-83, IPC Science and Technology Press Ltd., 1972.
- [32] A. F. Harvey, Microwave Engineering, London: Academic Press, 1963
- [33] Q. Bingsheng, L. Chengjia, H. Jiangjun, and Q. Ruman, "Automatic measurement for dielectric properties of solid material at 890 GHz," *Int. J. Infrared Millimeter Waves*, vol. 13, no. 6, pp. 923-931, 1992.
- [34] E. V. Loewenstein, D. R. Smith, and R. L. Morgan, "Optical constants of far infrared materials. 2: Crystalline solids", *Appl. Opt.*, vol. 12, no. 2, pp. 398-406, Feb. 1973.
- [35] D. T. Llewellyn-Jones, R. J. Knight, P. H. Moffat, and H. A. Gebbie, "New method of measuring low values of dielectric loss in the near millimetre wavelength region using untuned cavities," *IEE Proc.*, vol. 127, Pt. A. no. 8, pp. 535540, Nov. 1980.
- [36] J. R. Birch, J. D. Dromey and J. Lesurf, "The optical constants of some common low-loss polymers between 4 and 40 cm⁻¹," *Infrared Phys.*, vol. 21, pp. 225-228, 1981.
 (For numerical data, see also: J. R. Birch, J. D. Dromey and J. Lesurf, "The optical constants of some common low-loss polymers between 4 and 40 cm⁻¹," *NPL Report DES 69*, National Physical Laboratory (UK), Feb. 1981)
- [37] J. W. Flemming and G. W. Chantry, "Accurate radiometric measurements on low-loss polymers at submillimetric wavelengths," *IEEE Trans. Instrum. Meas.*, vol. IM-23, no. 4, pp. 473-478, Dec. 1974.
- [38] J. R. Birch, "The far infrared optical constants of polyethylene," *Infrared Phys.*, vol. 30, no. 2, pp. 195-197, 1990.
- [39] K. Seeger, "Microwave measurement of the dielectric constant of high-

density polyethylene," *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 2, pp. 352-354, Feb., 1991.

- [40] J. R. Birch and F. P. Kong, "An interferometer for the determination of the temperature variation of the complex refraction spectra of reasonably transparent solids at near-millimetre wavelengths," *Infrared Phys.*, no. 2/3, pp. 309-314, 1984.
- [41] J. R. Birch, "Systematic errors in dispersive Fourier transform spectroscopy in a non-vacuum environment," *Infrared Phys.*, vol. 34, no. 1, pp. 89-93, 1993.
- [42] W. L. Brooks, et al., "Absorption of millimeter waves in dielectric solids," J. Opt. Soc. Am., vol. 43, pp. 1191-1194, Dec. 1953.
- [43] P. G. J. Irwin, P. A. R. Ade, S. B. Calcutt, S. B. Calcutt, F. W. Taylor, J. S. Seeley, R. Hunneman and L. Walton, "Investigation of dielectric spaced resonant mesh filter designs for PMIRR," *Infrared Phys.*, vol. 34, no. 6, pp. 549-563, 1993.
- [44] R. G. Fellers, "Measurements in the millimeter to micron range," *Proc. IEEE*, vol. 55, no. 6, pp. 1003-1014, Jun. 1967.
- [45] M. N. Afsar, J. Chamberlain, and G. W. Chantry, "High-precision dielectric measurements on liquids and solids at millimeter and submillimeter wavelengths," *IEEE Trans. Instrum. Meas.*, vol. IM-25, no. 4, pp. 290-294, Dec. 1976.
- [46] G. E. Conklin, "Measurement of the dielectric loss tangent of isotropic films at millimeter wavelengths," *Rev. Sci. Instrum.*, vol. 36, no. 9, pp. 1347-1349, Sep. 1965.
- [47] P. A. R. Ade, J. Acres, and W. R. Van der Reijden, "Reflection and absorption coefficients of Melinex at 338 μ," *Infrared Phys.*, vol. 11, pp. 233-235, 1971.
- [48] G. W. Chantry, "Optical materials for the submillimeter wave band," *High Frequency Dielectric Measurements*, pp. 117-121, IPC Science and Technology Press Ltd., 1972.
- [49] J. R. Birch, "The far-infrared optical constants of polypropylene, PTFE, and polysytrene," *Infrared Phys.*, vol. 6, no.1, pp. 33-38, 1992.
 (For numerical data, see also "The far-infrared optical constants of some common poyymers," *NPL Report DES 111*, National Physical Laboratory (UK), Jun. 1991)
- [50] W. Culshaw and M. V. Anderson, "Measurement of permittivity and dielectric loss with a mm-wave Fabry-Perot interferometer," *IEE Proc.*, vol. 109, Pt. B, Supp. 23, pp. 820-826, 1961.
- [51] R. G. Jones, "Dielectric measurements at mm wavelengths using open resonators," *Dielectric Materials and Applications*, pp. 141-144-53, IEE Conf. Pub. no. 129, 1975.
- [52] R. J. Cook, R. G. Jones, and C. B. Rosenberg, "Comparison of cavity and open resonator measurements of permittivity and loss angle," *IEEE Trans. Instrum. Meas.*, vol. IM-23, no. 4, pp. 438-442, Dec. 1974.
- [53] V. B. Braginsky, V. S. Ilchenko, "Experimental observations of fundamental microwave absorption in high-quality dielectric crystals," *Phys. Lett.*, vol. 120, no. 6, pp. 300-305, Mar. 1987.

- [54] M. N. Afsar and H. Chi, "Window materials for high power gyrotron," Int. J. Infrared Millimeter Waves, vol. 15, no. 7, pp. 1161-1179, 1994.
- [55] V. V. Parshin, R. Heidinger, B. A. Andreev, A. V. Gusev, and V. B. Shmagin, "Silicon as an advanced window material for high power gyrotrons," *Int. J. Infrared and Millimeter Waves*, vol. 16, no. 5, pp. 864-877, 1995.
- [56] M. N. Afsar and H. Chi: "Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high putity and compensated silicon," Int. J. IR and Millimeterwaves, vol. 15, no. 7, pp. 1181-1188, 1994.
- [57] J. R. Birch and E. A. Nichol, "The FIR optical constants of the polymer TPX," Infrared Phys., vol. 24, no. 6, pp. 573-575, 1984.
- [58] C. Meny, J. Léotin, and J. R. Birch, "Temperature variation of the near millimetre wavelength optical constants of TPX," *Infrared Phys.*, vol. 31, no. 2, pp. 211-213, 1991.
- [59] J. R. Birch, E. A. Nichol, and R. L. T. Street, "New near-millimeter wavelength radome material", Appl. Opt., vol. 22, pp. 2947-2949, Oct. 1983.
- [60] A. R. Kerr, N. J. Bailey, D E. Boyd and N. Horner, "A study of materials for a broadband millimeter-wave quasi-optical vacuum window", *Electronics Division Internal Report No.* 292, NRAO, Aug. 1992.
- [61] A. Karpov, "Properties of polystyrene foams in 300-600 GHz range," IRAM Technical Report, Aug. 1993.
- [62] H. Hemmati, J. C. Mather and W. L. Eichorn, "Submillimeter and millimeter wave characterization of absorbing materials," *Appl. Opt.*, vol. 24, no. 24, pp. 4489-4492, Dec. 1985.
- [63] J. B. Peterson and P. L. Richards, "A cryogenic blackbody for millimeter wavelengths", Int. J. Infrared Millimeterwaves., vol. 5, no. 12, pp. 1507-1515, 1984
- [64] L. Pettersson, "Tests of some mm-wave materials," *Electronics Division Internal Report No. 122*, Aug. 1972.
- [65] F. Mattiocco, "Absorber measurements between 80 and 115 GHz", IRAM Internal Report, Apr. 1994.
- [66] F. Mattiocco, IRAM Technical Note, Jun. 1994.
- [67] G. Schwartz, "Thermal expansion of polymers from 4.2 K to room temperature," *Cryogenics*, vol. 28, pp. 248-254, Apr. 1988.
- [68] A. C. Rose-Innes, Low Temperature Techniques, The English University Press, 1973.
- [69] A. P. D. Stewart and J. W. Lamb, Private communication.
- [70] G. E. Childs, L. J. Ericks, and R. L. Powell: Thermal Conductivity of Solids at Room Temperature and Below, NBS Monograph 131, 1973.
- [71] J. B Beyer and E. H. Scheibe, "Loss measurements of the beam waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-11, no. 1, pp. 18-22, Jan. 1963
- [72] N. Marcuvitz: Waveguide Handbook, London: Peter Peregrinus, 1986.
- [73] J. J. Bock, M. K. Parikh, M. L. Fischer, and A. E. Lange, "Emissivity measurements of reflective surfaces at near-millimeter wavelengths," *Appl. Optics*, vol. 34, no. 22, pp 4812-16, Aug. 1995.
- [74] J. W. Zwart, V. O. Heinen, K. Long, and N. Stankiewicz: "Surface

resistance measurements at 377 GHz," Int. J. Infrared and Millimeter Waves, vol. 17, no. 2, pp 349-357, 1996.

- [75] H. Matuso, J. Inatani, N. Kuno, K. Miyazawa, K. Okumura, T. Kasuga, and H. Murakami, "Submillimeter-wave telescope onboard a sounding rocket," SPIE Proc., San Diego, 1994.
- [76] R. J. Batt, G. D. Jones, and D. J. Harris, "The measurement of evaporated gold at 890 GHz", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, no. 6, pp. 488-491, Jun. 1977.