Independence assumption

Grouping factors and generalizability

Daniela Palleschi

2024-01-12

Table of contents

Independence assumption
(Non-)Independence
Repeated measures design
Other sources of non-independence
Pseudoreplication
Problem: Generalizability
Solution 1: Averaging
Solution 2: Single observations
Solution 3: Linear mixed models
History of mixed-effects models
1973: Language-as-fixed-effect-fallacy
ANOVAs: aggregation
2008: Baayen et al. (2008) and lme4
Task

Learning Objectives

Today we will learn about...

- ullet the independence assumption
- types of non-independence in linguistic data
- the history of mixed models in linguistics

Resources

- this lecture covers
 - Sections 1 and 2 from Winter & Grice (2021)
 - Sections 14.1-14.3 from Ch. 14 (Mixed Models I) in Winter (2019)
 - Sections 8.1-8.2 from Ch. 8 (Mixed-effects models I: Linear Regression) in Sonderegger (2023)

Independence assumption

- we already learned about some model assumptions
 - assumption of *normality* of residuals
 - homoscedasticity (constant variance) of residuals
 - absence of *collinearity* of predictors
- there another, argulably more important assumption
 - assumption of *independence*

(Non-)Independence

- non-independence: any possible link or connection between groups of data points
 - e.g., two observations from the same participant will tend to be more similar than to completely independent observations
 - any case where you might expect some clustering of observations by some grouping factor
- the independence assumption assumes that our data points are not linked
 - i.e., the value of one observation is completely independent from another
- violations of this assumption have major implications for Type I (alpha) error
 - i.e., the chances of observing an effect where there is none (false positive)
- it also artificially inflates sample size, which affects statistical power

Repeated measures design

- the reason most (experimental) linguistic data is non-independent is the use of the repeated-measures design
 - collecting multiple data points from e.g., the same participant and for the same item
 - increases statistical power, needing fewer participants (more data points, lower variance due to control in variability between subjects)
 - saves resources (fewer subjects)

Other sources of non-independence

- non-independence is prevalent in other fields of linguistics, e.g.,
 - corpus studies: text, author, language, dialect, register
 - phonetic experiments: speaker, listener, exact repetitions
 - socio-phonetics: dialect/geographical proximity, register, speaker

Pseudoreplication

Pseudoreplication refers to the treatment of dependent observations as independent data points, which causes an overabundance of erroneously significant results.

- Winter (2011), p. 2137
 - analysing nonindependent data as if they were independent
 - essentially, violating the independence assumption
 - very (very) common in older publications
 - can also result in Type M (magnitude) and S (sign) error
 - is one contributor (out of many) to the so-called replication crisis

Problem: Generalizability

• beyond spurious results, how researchers interpret the implications of their findings is problematic

Unfortunately, outside of a few domains such as psycholinguistics, it remains rare to see psychologists model stimuli as random effects – despite the fact that most inferences researchers draw are clearly meant to generalize over populations of stimuli.

— (yarkoni_generalizability_2022?), p. 4

- if we don't include grouping factors in our models, our findings are not generalisable beyond our sample
 - it could be that our findings are due to a few participants or experimental items who deviate from the rest
- we need to take this by-grouping factor variation into account, but how?

Solution 1: Averaging

- e.g., repeated measures ANOVA
 - seperate models for by-participant and by-item variance (with averaging) interpreted together
- PRO: takes both by-participant and -item variance into account
- CONs: not flexible or approrpriate for complex designs, and:
 - loses information regarding the variation across the grouped observations
 - lowers N
 - * e.g., if we average over participants, we'd have 1 only data point per participant!
 - therefore loses statistical power (Type II error)
 - inflates Type I error (chance of a false positive)
- in sum: not optimal

Solution 2: Single observations

- run an experiment without repeated measures
 - but this lowers statistical power
 - and drastically reduces generalizability
- e.g., we could present 60 participants with a single item
 - or we could present 1 participant with 60 trials
 - but these findings also can't be generalised beyond that one item or one participant...
- in sum: not optimal

Solution 3: Linear mixed models

- best available solution: use repeated-measures design and mixed models
- a.k.a. mixed (effects) models/LM(E)Ms, multi-level models, hierarchical models
- "mixed" because they contain:
 - fixed effects: usually predictors; describe systematic variation in our data that we wish to explain
 - random effects: unsystematic variation that are due to random sampling
- random effects take dependence between observations into account
 - contain varying intercepts and slopes per level of a **grouping factor**
- fixed effects estimates are usually qualititatively unchanged
 - what is affected in the measures of *variance*

History of mixed-effects models

1973: Language-as-fixed-effect-fallacy

- none of these ideas are new to linguistics
- Clark (1973):
 - without including dependencies between repeated observations from the same linguistic items in our models, we cannot generalise our findings beyond our stimuli
 - our results are relevant only for the subset of the population from which we sampled

The remedies for the language-as-fixed-effect fallacy are for the most part obvious. They include doing the right statistics, choosing the appropriate experimental design, and selecting a random or representative sample of language.

— Clark (1973), p. 347

ANOVAs: aggregation

- repeated measures ANOVAs were commonly used to take dependence between observations into account (and are still common in come fields today)
 - require aggregation (i.e., averaging) over items or subjects, not both simultaneously
 - drastically reduces our number of observations
 - loss of information in the variance of observed data
 - i.e., a loss of power (Type II error) and inflated Type I error (false positive)

2008: Baayen et al. (2008) and lme4

- enter mixed models with *crossed* random effects
- Journal of Memory and Language, Special Issue: Emerging Data Analysis
 - Baayen et al. (2008): introduction of lme4 package for linear mixed models
 - Jaeger (2008): overview of generalised linear mixed models
- in addition, Baayen (2008) was published, a textbook for analysing linguistic data with R with an emphasis on LMMs with lme4

Learning Objectives

Today we learned about...

- the independence assumption
- types of non-independence in linguistic data
- the history of mixed models in linguistics

Task

Discuss the following questions.

- 1. What is the independence assumption?
- 2. What happens when the independence assumption is violated?
- 3. What is the language-as-fixed-effect-fallacy?
- 4. What other sources of variance might be present in language research?
- 5. Why are repeated measures ANOVAs sub-optimal?

References

- Baayen, R. H. (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics using
- Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, 59(4), 390–412. https://doi.org/10.1016/j.jml.2007.12.005
- Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. *Journal of Verbal Learning and Verbal Behavior*, 12(4), 335–359. https://doi.org/10.1016/S0022-5371(73)80014-3
- Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. *Journal of Memory and Language*, 59(4), 434–446. https://doi.org/10.1016/j.jml.2007.11.007
- Sonderegger, M. (2023). Regression Modeling for Linguistic Data.
- Winter, B. (2011). PSEUDOREPLICATION IN PHONETIC RESEARCH.
- Winter, B. (2019). Statistics for Linguists: An Introduction Using R. In Statistics for Linguists: An Introduction Using R. Routledge. https://doi.org/10.4324/9781315165547
- Winter, B., & Grice, M. (2021). Independence and generalizability in linguistics. *Linguistics*, 59(5), 1251–1277. https://doi.org/10.1515/ling-2019-0049