§5. Неопределённости.

Вычисление пределов степенно-показательных функций.

Арифметические действия с бесконечно малыми и бесконечно большими функциями, как и в случае последовательностей (замечание 4.3 главы 2), могут привести к так называемым неопределённостям, когда неприменимы теоремы 2.2 и 4.5. Например, при вычислении $\lim (f(x) - g(x))$, если $f(x), g(x) \to +\infty$ или $f(x), g(x) \to -\infty$ при $x \to a$, неприменима теорема 4.5. В этом случае говорят, что выражение f(x) - g(x) при $x \to a$ приводит к вида $\infty - \infty$, а отыскание его предела называют неопределённости Если неопределённости. $f(x) \rightarrow 0, g(x) \rightarrow 0$ раскрытием $f(x) \to \infty, g(x) \to \infty$ при $x \to a$, то при вычислении $\lim_{x \to a} \frac{f(x)}{g(x)}$ неприменима теорема 2.2, говорят, что частное $\frac{f(x)}{g(x)}$ при $x \to a$ приводит к неопределённости 0/0 или ∞/∞ . Ниже рассматриваются некоторые методы для раскрытия некоторых неопределённостей.

1°. Неопределённость ∞/∞ в отношении многочленов при $x\to\infty$. Пусть

$$\frac{P_k(x)}{Q_n(x)} = \frac{a_0 x^k + a_1 x^{k-1} + \dots + a_{k-1} x + a_k}{b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n},$$

при этом $a_0 \neq 0$, $b_0 \neq 0$. В членах дроби вынесем за скобки старшие степени x:

$$\begin{split} \frac{a_0x^k + a_1x^{k-1} + \ldots + a_{k-1}x + a_k}{b_0x^n + b_1x^{n-1} + \ldots + b_{n-1}x + b_n} &= \frac{x^k(a_0 + a_1x^{-1} + \ldots + a_{k-1}x^{1-k} + a_kx^{-k})}{x^n(b_0 + b_1x^{-1} + \ldots + b_{n-1}x^{1-n} + b_nx^{-n})} = \\ &= x^{k-n}\frac{a_0 + a_1x^{-1} + \ldots + a_{k-1}x^{1-k} + a_kx^{-k}}{b_0 + b_1x^{-1} + \ldots + b_{n-1}x^{1-n} + b_nx^{-n}}. \end{split}$$

Предел второго сомножителя полученного произведения равен $a_0/b_0 \neq 0$

(пример 1.6, теорема 2.2), а
$$\lim_{x \to \infty} x^{k-n} = \begin{cases} 0 & \text{при } k < n, \\ 1 & \text{при } k = n, \\ \infty & \text{при } k > n, \end{cases}$$
 (примеры 1.6, 4.3).

Тогда, в силу теорем 2.2 и 4.7,

$$\lim_{x \to \infty} \frac{P_k(x)}{Q_n(x)} = \begin{cases} 0 & \text{при } k < n, \\ a_0/b_0 & \text{при } k = n, \\ \infty & \text{при } k > n. \end{cases}$$
 (5.1)

Так,
$$\lim_{x \to \infty} \frac{2x^3 - 3x^2 + 5x}{3x^3 - x + 2} = \frac{2}{3}$$
 ($k = n = 3$, $a_0 = 2$, $b_0 = 3$), а $\lim_{x \to \infty} \frac{x^2 - x + 5}{2x^3 - x^2 + 1} = 0$, так как здесь $k = 2$, $n = 3$, и, следовательно, $k < n$.

2°. Неопределённость ∞/∞ в отношении алгебраических функций, содержащих иррациональности, $x \to +\infty$. Неопределённость раскрывается

в результате выделения в обоих членах дроби старшей степени x.

Пример **5.1.** Найти
$$\lim_{x \to +\infty} \frac{\sqrt{x^3 + x} + x}{\sqrt{x^2 - 3x} + 5x}$$
.

ightharpoonup Вынесем из-под знака радикала старшие степени x, после чего вынесем их за скобку в обоих членах дроби:

$$\frac{\sqrt{x^3 + x} + x}{\sqrt{x^2 - 3x + 5x}} = \frac{x^{3/2}\sqrt{1 + 1/x^2} + x}{x\sqrt{1 - 3/x} + 5x} = \frac{x^{3/2}(\sqrt{1 + 1/x^2} + x^{-1/2})}{x(\sqrt{1 - 3/x} + 5)} = x^{1/2}\frac{\sqrt{1 + 1/x^2} + x^{-1/2}}{\sqrt{1 - 3/x} + 5}.$$

В силу теоремы 4.6
$$\lim_{x\to +\infty} \frac{\sqrt{x^3+x}+x}{\sqrt{x^2-3x}+5x} = \lim_{x\to \infty} x^{1/2} \frac{\sqrt{1+1/x^2}+x^{-1/2}}{\sqrt{1-3/x}+5} = +\infty$$
, так как

 $x^{1/2}$ → +∞ при x → +∞ (пример 4.3), а второй сомножитель стремится к 1/6 (теорема 2.2 и пример 1.6). \blacktriangleleft

3°. Неопределённость 0/0 **в отношении многочленов,** $x \rightarrow a$, $a \in \mathbb{R}$. Метод раскрытия таких неопределённостей состоит в разложении на множители обеих членов дроби и последующего сокращения на разность x-a. При этом используется следующая теорема: "если число x=a является корнем многочлена $P_n(x)$, то этот многочлен делится на разность x-a без остатка".

Пример 5.2. Найти $\lim_{x\to 2} \frac{x^3 - 3x^2 + 4}{x^2 - 5x + 6}$.

► Многочлен $P_3(x) = x^3 - 3x^2 + 4$ делится на разность x - 2, ибо x = 2 - его корень, имеем: $\lim_{x \to 2} \frac{P_3(x)}{x^2 - 5x + 6} = \lim_{x \to 2} \frac{(x^2 - x - 2)(x - 2)}{(x - 2)(x - 3)} = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 3}$.

При вычислении предела x принадлежит проколотой окрестности точки x=2 ($x\neq 2$), поэтому оба члена дроби под знаком предела можно разделить на x-2. Дробь из правой части последнего равенства не даёт неопределённости при $x \to 2$, её предел вычисляем по теореме 2.2. Окончательно получаем: $\lim_{x\to 2} \frac{x^3-3x^2+4}{x^2-5x+6} = \frac{0}{-1} = 0$.

4°. Неопределённость 0/0 **в отношении алгебраических функций, содержащих иррациональности,** $x \rightarrow a$, $a \in \mathbb{R}$. Неопределённость раскрывается путём перенесения иррациональности из одного члена дроби в другой и последующем разложении полученных многочленов на множители с целью сокращения на разность x-a.

Пример 5.3. Найти
$$\lim_{x\to 2} \frac{\sqrt{x^3+4}-x\sqrt{3}}{x^2-4x+4}$$
 .

▶ Перенесём иррациональность из числителя дроби в знаменатель:

$$\frac{\sqrt{x^3+4}-x\sqrt{3}}{x^2-4x+4} = \frac{(\sqrt{x^3+4}-x\sqrt{3})(\sqrt{x^3+4}+x\sqrt{3})}{(x-2)^2(\sqrt{x^3+4}+x\sqrt{3})} = \frac{x^3-3x^2+4}{(x-2)^2(\sqrt{x^3+4}+x\sqrt{3})} = \frac{(x^2-x-2)(x-2)}{(x-2)^2(\sqrt{x^3+4}+x\sqrt{3})} = \frac{(x-2)^2(x+1)}{(x-2)^2(\sqrt{x^3+4}+x\sqrt{3})},$$

многочлен $x^3 - 3x^2 + 4$ разложен на множители как в примере 5.2. Имеем:

$$\lim_{x \to 2} \frac{\sqrt{x^3 + 4} - x\sqrt{3}}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{(x - 2)^2 (x + 1)}{(x - 2)^2 (\sqrt{x^3 + 4} + x\sqrt{3})}.$$

Сократим оба члена дроби в правой части последнего равенства на $(x-2)^2$:

$$\lim_{x\to 2}\frac{\sqrt{x^3+4}-x\sqrt{3}}{x^2-4x+4}=\lim_{x\to 2}\frac{x+1}{\sqrt{x^3+4}+x\sqrt{3}}\,.$$
 Теперь, в силу теоремы 2.2, приходим к

равенству:
$$\lim_{x\to 2} \frac{\sqrt{x^3+4}-x\sqrt{3}}{x^2-4x+4} = \frac{3}{4\sqrt{3}} = \frac{\sqrt{3}}{4}$$
. ◀

5°. Неопределённость $\infty - \infty$. Общий принцип — трансформация данной неопределённости в неопределённость ∞ / ∞ или 0/0.

Пример 5.4. Найти
$$\lim_{x\to +\infty} (\sqrt{x^2+3x}-\sqrt{x^2-4})$$
.

▶ Разность радикалов под знаком предела умножим и разделим на сопряженное выражение:

$$\sqrt{x^2 + 3x} - \sqrt{x^2 - 4} = \frac{(\sqrt{x^2 + 3x} - \sqrt{x^2 - 4})(\sqrt{x^2 + 3x} + \sqrt{x^2 - 4})}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 4}} = \frac{(x^2 + 3x) - (x^2 - 4)}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 4}} = \frac{3x + 4}{\sqrt{x^2 + 3x} + \sqrt{x^2 - 4}}.$$

Теперь при $x \to \infty$ имеем неопределённость ∞/∞ . Аналогично примеру 5.1:

$$\frac{3x+4}{\sqrt{x^2+3x}+\sqrt{x^2-4}} = \frac{x(3+4/x)}{x(\sqrt{1+3/x}+\sqrt{1-4/x})} = \frac{3+4/x}{\sqrt{1+3/x}+\sqrt{1-4/x}}$$
 и

$$\lim_{x \to +\infty} (\sqrt{x^2 + 3x} - \sqrt{x^2 - 4}) = \lim_{x \to +\infty} \frac{3 + 4/x}{\sqrt{1 + 3/x} + \sqrt{1 - 4/x}} = \frac{3}{2}. \blacktriangleleft$$

6°. Вычисление пределов степенно-показательных выражений.

Функция вида $y = u(x)^{v(x)}$ называется степенной-показательной. С помощью основного логарифмического тождества она может быть представлена в виде:

$$y = u(x)^{v(x)} = (e^{\ln u(x)})^{v(x)} = e^{v(x)\ln u(x)}.$$
 (5.1)

При вычислении $\lim_{x\to a} u(x)^{v(x)}$ могут встретиться следующие случаи.

1. $\lim_{x\to a} u(x)^{v(x)} = A^B$, если существуют конечные пределы $\lim_{x\to a} u(x) = A$, A>0,

 $\lim_{x\to a}v(x)=B$. Действительно, в силу замечания 2.2, $\lim_{x\to a}v(x)\ln u(x)=B\ln A$ и

$$\lim_{x \to a} u(x)^{v(x)} = e^{\lim_{x \to a} v(x) \ln u(x)} = e^{B \ln A} = (e^{\ln A})^B = A^B.$$

$$2. \lim_{x \to a} u(x)^{v(x)} = \begin{cases} 0, & \text{если } \lim_{x \to a} v(x) \ln u(x) = -\infty, \\ +\infty, & \text{если } \lim_{x \to a} v(x) \ln u(x) = +\infty. \end{cases}$$

Это утверждение следует из формулы (5.1), а также из равенств:

 $\lim_{z\to +\infty}e^z=+\infty$, $\lim_{z\to -\infty}e^z=0$, которые следуют из примера 4.2 и теоремы 4.4.

3. Выражение $u(x)^{v(x)}$ является неопределённым, когда $v(x) \ln u(x)$ неопределённость $0 \cdot \infty$, т.е. если

a).
$$\lim_{x \to a} v(x) = 0$$
, $\lim_{x \to a} \ln u(x) = -\infty \Leftrightarrow \lim_{x \to a} u(x) = 0$;

6).
$$\lim_{x \to a} v(x) = 0$$
, $\lim_{x \to a} \ln u(x) = +\infty \Leftrightarrow \lim_{x \to a} u(x) = +\infty$;

B).
$$\lim_{x \to a} v(x) = \infty$$
, $\lim_{x \to a} \ln u(x) = 0 \Leftrightarrow \lim_{x \to a} u(x) = 1$.

В этих случаях говорят, что выражение $u(x)^{\nu(x)}$ представляет из себя неопределённость вида $0^0, \infty^0, 1^\infty$.

Пример 5.5. Найти $\lim_{x \to +\infty} \left(\frac{2x+1}{x-1} \right)^{\sqrt{x^2+3x}-\sqrt{x^2-4}}$.

▶Имеем
$$\lim_{x \to +\infty} \frac{2x+1}{x-1} = 2$$
 (пункт 1), $\lim_{x \to +\infty} (\sqrt{x^2+3x} - \sqrt{x^2-4}) = 3/2$ (пример 5.4), следовательно, $\lim_{x \to +\infty} \left(\frac{2x+1}{x-1}\right)^{\sqrt{x^2+3x} - \sqrt{x^2-4}} = 2^{3/2} = 2\sqrt{2}$. ◀ Пример 5.6. Найти $\lim_{x \to +\infty} \left(\frac{2x+1}{x-1}\right)^{\sqrt{x^2+3x}}$.

►В силу формулы (5.1) имеем
$$\left(\frac{2x+1}{x-1}\right)^{\sqrt{x^2+3x}} = e^{\sqrt{x^2+3x}\ln((2x+1)/(x-1))}$$
. Так

как
$$\lim_{x \to +\infty} \frac{2x+1}{x-1} = 2$$
 (пункт 1), $\lim_{x \to +\infty} \sqrt{x^2+3x} = \lim_{x \to +\infty} x\sqrt{1+3/x^2} = +\infty$, то

$$\lim_{x \to +\infty} \sqrt{x^2 + 3x} \ln \frac{2x + 1}{x - 1} = +\infty \text{ M } \lim_{x \to +\infty} \left(\frac{2x + 1}{x - 1} \right)^{\sqrt{x^2 + 3x}} = +\infty. \blacktriangleleft$$

Пример 5.7. Найти $\lim_{x\to 1} (2x-1)^{1/(x-1)}$.

▶ Выражение $(2x-1)^{1/(x-1)}$ при $x \to 1$ – неопределённость 1^{∞} . Имеем

$$(2x-1)^{1/(x-1)} = e^{\ln(2x-1)/(x-1)},$$

следовательно, $\lim_{x\to 1} (2x-1)^{1/(x-1)} = e^{\lim_{x\to 1} \ln(2x-1)/(x-1)}$ (см. замечание 2.2). Так как

$$\frac{\ln(2x-1)}{x-1} = \frac{\ln(1+2x-2)}{x-1} = \frac{\ln(1+2(x-1))}{2(x-1)} \cdot 2, \text{ To } \lim_{x \to 1} \frac{\ln(2x-1)}{x-1} = 2$$

$$(\lim_{x\to 1} \frac{\ln(1+2(x-1))}{2(x-1)} = 1$$
, см. §3), поэтому $\lim_{x\to 1} (2x-1)^{1/(x-1)} = e^2$.