Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 1/6

Algorithmen und Datenstrukturen II SoSe 2024 – Serie 1

1 Ungerichtete Graphen

Gegeben sei der folgende ungerichtete gewichtete Graph G.

a) Finden Sie einen minimalen Spannbaum von G mit dem Algorithmus von Kruskal (vgl. ADS2-V1 Folie 17ff). Geben Sie die nach Gewichten sortierte Liste L der Kanten aus und schreiben Sie die Kanten des Baums in der Reihenfolge hin, in der sie hinzugefügt werden. Wenn eine Kante aus L <u>nicht</u> in den Spannbaum aufgenommen wird, so geben Sie den bereits im Spannbaum enthaltenen Pfad an, der die beiden Knoten der Kante verbindet (z.B. Kante $\{1,3\}$ könnte durch den Pfad $1 \rightarrow 2 \rightarrow 3$ schon enthalten sein).

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 2/6

Sortierte Liste der Kanten
$$L = [\{5,7\}, \{4,7\}, \{5,6\}, \{2,3\}, \{7,8\}, \{5,8\}, \{4,5\}, \{1,3\}, \{1,2\}, \{6,8\}, \{3,5\}]$$

Spannbaum in Reihenfolge des Einfügens:

$$\{5,7\},\{4,7\},\{5,6\},\{2,3\},\{7,8\},\{1,3\},\{3,5\}$$

Pfade die Einfügen verhindern:

$$\{5,8\} = 5 \to 7 \to 8$$

$$\{4,5\} = 4 \rightarrow 7 \rightarrow 5$$

$$\{1,2\} = 1 \to 3 \to 2$$

$$\{6,8\} = 6 \rightarrow 5 \rightarrow 7 \rightarrow 8$$

Anmerkungen: Reihenfolge von $\{2,3\}$ und $\{7,8\}$ ist beliebig. Richtung der Pfade ist belieb (z.B. von 5 -> 8 oder 8 -> 5).

Der resultierende Spannbaum musste nicht gemalt worden sein.

b) Ist der in Aufgabenteil a) gefundene minimale Spannbaum eindeutig? Falls ja: begründen Sie dies. Falls nein: wieviele minimale Spannbäume hat G?

Lösung:

Ja, er ist eindeutig. Die Reihenfolge mit der die Kanten mit Gewicht 0.8 in den Spannbaum aufgenommen werden ist beliebig. Es werden aber alle 0.8-Kanten aufgenommen und alle anderen Kantengewichte sind unterschiedlich und deren Betrachtungsreihenfolge somit wohl definiert.

c) Der Algorithmus von Kruskal werde auf einen nicht-zusammenhängenden gewichteten Graphen G=(V,E,w) mit n=|V| Knoten angewendet und liefere eine Kantenmenge T mit r=|T| Kanten. Ist (V,T) ein Spannbaum von G? Begründen Sie ihre Aussage. Welche Information über G entnehmen Sie r und n?

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 3/6

(V,T) ist kein Spannbaum. Es gibt keinen, denn G ist nicht zusammenhängend. n-r ist die Anzahl der Zusammenhangskomponenten von G (wenn n-r=1 dann ist (V,T) ein Spannbaum).

d) Betrachten Sie nun einen allgemeinen gewichteten Graphen G = (V, E, w), einen minimalen Spannbaum (V, T) von G und einen Zyklus C auf G. Sei e eine Kante von C mit strikt maximalem Gewicht. Für alle Kanten $f \in C$, $f \neq e$, gelte also w(f) < w(e). Zeigen Sie: $e \notin T$.

Lösung:

per Widerspruchsbeweis: Annahme $e \in T$. Entfernen der Kante e aus T erzeugt die Kantenmenge eines Waldes aus zwei disjunkten Bäumen (V_1, T_1) und (V_2, T_2) . Da C ein Zyklus ist, der nur Knoten aus V_1 und V_2 enthält, muss es ausser e noch mindestens eine weitere Kante $f \in C$ geben, die einen Knoten aus V_1 mit einem Knoten aus V_2 verbindet. Nun ist $(V, T \cup \{f\} - \{e\})$ wieder ein Spannbaum von G, allerdings mit einer echt geringeren (um w(e) - w(f) > 0 reduzierten) Summe von Kantengewichten. Widerspruch dazu, dass (V, T) minimaler Spannbaum ist.

e) Formulieren sie ein möglichst einfaches <u>hinreichendes</u> Kriterium dafür, dass der minimale Spannbaum eindeutig ist. Geben sie ein möglichst kleines Beispiel, dass ihr Kriterium nicht <u>notwendig</u> ist. Letzteres heißt, dass es einen eindeutigen min. Spannbaum geben kann, ohne dass ihr Kriterium erfüllt ist.

Lösung:

Es ist hinreichend, dass alle Gewichte unterschiedlich sind. Beispiel für <u>nicht</u> notwendig: "Dreieck", 2 Kantengewichte sind gleich, das dritte ist größer.

2 Gerichtete Graphen

Ein gerichteter Graph sei wie folgt gegeben:

a) Geben sie die Kantenliste des Graphen an.

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 4/6

```
6, \quad 8, \quad 1, 2, \ 2, 5, \ 3, 2, \ 3, 4, \ 4, 1, \ 5, 4, \ 5, 6, \ 6, 3,
```

b) Geben sie die Knotenliste des Graphen an.

Lösung:

```
6, 8, 1,2, 1,5, 2,2,4, 1,1, 2,4,6, 1,3,
```

c) Geben sie die Adjazenzmatrix des Graphen an.

Lösung:

```
\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}
```

d) Beschreiben sie kurz wie sich Ausgangs- und Eingangsgrad der jeweiligen Knoten mit Hilfe der Adjazenzmatrix bestimmen lassen.

Lösung:

e) Besitzt dieser Graph einen Hamiltonschen Zyklus? Falls ja: Geben Sie einen an. Falls nein: Begründen Sie dies möglichst kurz.

Lösung:

Ja, es gibt einen Hamiltonschen Zyklus in diesem Graphen. Ein möglicher HZ ist (5,6,3,4,1,2,5) oder man beginnt mit einem beliebigen anderen Knoten und folgt dieser Knotenfolge (z.B. 3,4,1,2,5,6,3 oder 1,2,5,6,3,4,1).

Anmerkung: Fuer die gegebene Definition des Hamiltonschen Zyklus ist entscheidend, dass Zyklen keine Knoten doppelt enthalten (bis auf $v_0 = v_\ell$).

f) Betrachten Sie die Knotenfolgen

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 5/6

(3,2,5,6,3,4), (2,5,4,1,2,5,6), (3,4,1,2,5,6,3), (1,2,3,4)

Geben Sie zu jeder Knotenfolge an, ob sie für den gegebenen Graphen

- eine Kantenfolge
- ein Kantenzug
- ein Pfad
- ein Zyklus

ist.

Lösung:

	(3,2,5,6,3,4)	(2,5,4,1,2,5,6)	(3,4,1,2,5,6,3)	(1,2,3,4)
Kantenfolge	ja	ja	ja	nein^1
Kantenzug	ja	nein^2	ja	nein
Pfad	nein^3	nein^4	nein^5	nein
Zyklus	nein^6	$ m nein^6$	ja	nein

 $^1:2\rightarrow 3$ existiert nicht G

 $^2:2\rightarrow 5$ mehrfach besucht

 $^3:3$ zweimal enthalten

 $^4:2,5$ zweimal enthalten

5:3 zweimal enthalten

 $6: v_0 \neq v_l$

g) Betrachten den folgenden durch seine Kantenliste gegebenen Graphen:

$$G = 5, 6, 1, 2, 1, 4, 1, 3, 3, 5, 4, 2, 4, 5,$$

Geben Sie für jeden der folgenden Graphen G', G'' und G''' an, ob dieser für G ein

- Teilgraph
- aufspannender Teilgraph
- induzierter Teilgraph

ist.

$$G' = 4, 4, 1, 2, 1, 4, 4, 2, 4, 5,$$
 $G'' = 5, 5, 1, 2, 1, 4, 1, 5, 4, 2, 4, 5,$
 $G''' = 5, 4, 1, 2, 1, 4, 3, 5, 4, 5,$

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 1		
P.F. Stadler, T. Gatter	Ausgabe am 02.04.2024	Lösung am 09.04.2024	Seite 6/6

	G'	G''	G'''
Teilgraph	ja	$nein^1$	ja
aufspannender Teilgraph	$nein^2$	nein	ja
induzierter Teilgraph	ja	nein ³	nein ⁴

^{1: (1,5)} nicht in G enthalten
2: 3 ist nicht in G'' enthalten
3: kein Teilgraph
4: (4,2),(1,3) fehlen