Verdichtermodellierung

Das Kennfeld ist abhängig von diversen Konstanten und vom augenblicklichen Vordruck.

 π ist das Verhältnis aus Hinterdruck und Vordruck, im Kennfelddiagramm (siehe Abb. 1) also eine konstante Funktion von φ .

$$\pi := \frac{p_{\text{out}}}{p_{\text{in}}} \tag{1}$$

Der Dispatcher-Agent darf sich wünschen, ob der Verdichter V aktiv ist oder nicht. Dem Wunsch auf Inaktivität wird immer entsprochen, dem auf Aktivität nicht.

Der Arbeitspunkt A eines aktiven Verdichters liegt immer im Kennfeld K und immer auf π . Falls diese beiden Menge disjunkt sind, so ist der Verdichter inaktiv.

Der Wunsch auf Aktivität muss immer mit einer Wunschleistung W verbunden sein. W liegt zwischen 0% und 100% und wird vom Simulator auf eine Leistung L im Kennfelddiagramm umgerechnet.

Es gibt immer einen Schnittpunkt S von L und π . Liegt S in K, so ist A = S.

Liegt S nicht in K, so ist S der nächstgelegene Randpunkt von K, der auf π liegt. Per Konstruktion muss es einen solchen Punkt geben.

Oder anders gesagt:

- Bilde D als Schnittstrecke von π und K.
- Bilde S als Schnittpunkt von π und L
- ullet Dann ist A der S nächstgelegene Punkt aus D.

Abbildung 1: Verdichterkennfeld bla blubb