Graph Theory and Optimization Introduction on Graphs

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

Outline

- Vertex/Edge
- Neighbor/Degree
- Path/Cycle
- **Trees**
- SubGraph

Graph: terminology and notations (Vertex/Edge)

A graph G = (V, E)

Vertices: V = V(G) is a finite set

circles

Edges: $E = V(E) \subseteq \{\{u, v\} \mid u, v \in V\}$ is a binary relation on V

lines between two circles

Example: G = (V, E) with $V = \{a, b, c, d, e, f, g, h, i, j\}$ and

 $E = \{\{a,b\},\{a,c\},\{a,f\},\{b,g\},\{b,h\},\{c,f\},\{c,d\},\{d,g\},\{d,e\},\{e,j\},\{f,g\},\{f,i\},\{g,h\},\{h,i\},\{h,j\},\{i,j\}\}\}.$

Graph: terminology and notations (Vertex/Edge)

A graph G = (V, E)

Vertices: V = V(G) is a finite set

circles

Edges: $E = V(E) \subseteq \{\{u, v\} \mid u, v \in V\}$ is a binary relation on V

lines between two circles

Example: G = (V, E) with $V = \{a, b, c, d, e, f, g, h, i, j\}$ and

 $E = \{\{a,b\},\{a,c\},\{a,f\},\{b,g\},\{b,h\},\{c,f\},\{c,d\},\{d,g\},\{d,e\},\{e,j\},\{f,g\},\{f,i\},\{g,h\},\{h,i\},\{h,j\},\{i,j\}\}\}$

Exercise: What is the maximum number of edges of a graph with *n* vertices?

Outline

- Vertex/Edge
- Neighbor/Degree
- Path/Cycle
- **Trees**
- SubGraph

Graph: terminology and notations (Neighbor/Degree)

- two vertices $x \in V$ and $y \in V$ are adjacent or neighbors if $\{x, y\} \in E$ i.e. there is an edge $\{x, y\}$
- N(x): set of neighbors of $x \in V$

• degree of $x \in V$: number of neighbors of x

$$ex: N(g) = \{b, d, f, h\} \subseteq V$$

i.e., deg(x) = |N(x)|

Exercise: Prove that, for any graph G = (V, E),

$$\sum_{x \in V} deg(x) = 2|E|$$

Graph: terminology and notations (Neighbor/Degree)

- two vertices $x \in V$ and $y \in V$ are adjacent or neighbors if $\{x, y\} \in E$ i.e. there is an edge $\{x, y\}$
- N(x): set of neighbors of $x \in V$

ex: $N(g) = \{b, d, f, h\} \subseteq V$

degree of $x \in V$: number of neighbors of x

i.e., deg(x) = |N(x)|

Exercise: Prove that, for any graph G = (V, E), $\sum_{x \in V} deg(x) = 2|E|$

$$\sum_{x\in V} deg(x) = 2|E|$$

Outline

- Vertex/Edge
- Neighbor/Degree
- Path/Cycle
- **Trees**
- SubGraph

Graph: terminology and notations (Path/Cycle)

• Path: sequence (v_1, \cdots, v_ℓ) of <u>distinct</u> vertices such that consecutive vertices are adjacent, i.e., $\{v_i, v_{i+1}\} \in E$ for any $1 \le i < \ell$ ex: $P_1 = (a, b, g, h, i)$

Graph: terminology and notations (Path/Cycle)

• Path: sequence (v_1, \dots, v_ℓ) of <u>distinct</u> vertices such that consecutive vertices are adjacent, i.e., $\{v_i, v_{i+1}\} \in E$ for any $1 \le i < \ell$ **ex:** $P_1 = (a, b, g, h, i), P_2 = (a, c, f, g, b, h, i, j, e)$

Graph: terminology and notations (Path/Cycle)

- Path: sequence (v_1, \cdots, v_ℓ) of <u>distinct</u> vertices such that consecutive vertices are adjacent, i.e., $\{v_i, v_{i+1}\} \in E$ for any $1 \le i < \ell$
- Cycle: path (v_1, \dots, v_ℓ) such that $\ell \ge 3$ and $\{v_1, v_\ell\} \in E$ ex: $C_1 = (d, e, j, i, h, g), C_2 = (a, c, f)$

Graph: terminology and notations (Path/Cycle)

- Path: sequence (v_1, \dots, v_ℓ) of <u>distinct</u> vertices such that consecutive vertices are adjacent, i.e., $\{v_i, v_{i+1}\} \in E$ for any $1 \le i < \ell$
- Cycle: path (v_1, \dots, v_ℓ) such that $\ell \geq 3$ and $\{v_1, v_\ell\} \in E$
- G = (V, E) is connected if, for every two vertices $x \in V$ and $y \in V$, there exists a path from x to y.

Graph: terminology and notations (Path/Cycle)

- Path: sequence (v_1, \dots, v_ℓ) of <u>distinct</u> vertices such that consecutive vertices are adjacent, i.e., $\{v_i, v_{i+1}\} \in E$ for any $1 \le i < \ell$
- Cycle: path (v_1, \dots, v_ℓ) such that $\ell \geq 3$ and $\{v_1, v_\ell\} \in E$
- G = (V, E) is connected if, for every two vertices $x \in V$ and $y \in V$, there exists a path from x to y.

Exercise: Prove that if |E| < |V| - 1 then G = (V, E) is NOT connected

Outline

- Vertex/Edge
- Neighbor/Degree
- Path/Cycle
- **Trees**
- SubGraph

Graph: terminology and notations (Tree)

- Tree: connected graph without cycles
- Leaf: vertex of degree 1 in a tree

Graph: terminology and notations (Tree)

- Tree: connected graph without cycles
- Leaf: vertex of degree 1 in a tree

Trees are important because:

"simple" structure + "minimum" structure ensuring connectivity

Theorem:

$$T = (V, E)$$
 is a tree $\Leftrightarrow T$ connected and $|V| = |E| + 1$

Graph: terminology and notations (Tree)

Theorem: T = (V, E) is a tree $\Leftrightarrow T$ connected and |V| = |E| + 1

⇒ By contradiction:

- if T not a tree, then \exists a cycle (v_1, \dots, v_ℓ)
- Let T' be obtained from T by removing edge $\{v_1, v_\ell\}$
- T' is connected.

"technical" part, to be proved

- |E(T')| = |E| 1 = |V| 2 = |V(T')| 2
- so |E'| < |V'| 1 and T' is not connected by previous Exercise

A contradiction

Graph: terminology and notations (Tree)

Theorem: T = (V, E) is a tree $\Leftrightarrow T$ connected and |V| = |E| + 1

 \Rightarrow Induction on |V|

OK if
$$|V| = 1$$

- Let $P = (v_1, \dots, v_\ell)$ be a longest path in T (ℓ max., in particular $\ell \ge 2$)
- v₁ is a leaf. By contradiction:
 - assume $deg(v_1) > 1$, and $x \in N(v_1) \setminus \{v_2\}$
 - $x \notin V(P)$ otherwise there is a cycle in T
 - then, (x, v_1, \dots, v_ℓ) path longer than P, a contradiction
- then $S = T \setminus \{v_1\}$ is a tree

"technical" part, to be proved

- |V(S)| < |V| so, by induction |V(S)| = |E(S)| + 1
- |V| = |V(S)| + 1 and |E| = |E(S)| + 1, so |V| = |E| 1

Outline

- Vertex/Edge
- Neighbor/Degree
- Path/Cycle
- **Trees**
- SubGraph

Graph: terminology and notations (subgraph)

Graph: terminology and notations (subgraph)

Graph: terminology and notations (subgraph)

Graph: terminology and notations (subgraph)

Graph: terminology and notations (subgraph)

Graph: terminology and notations (subgraph)

- Subgraph: H = (V', E') with $V' \subseteq V$ and $E' \subseteq \{\{x, y\} \in E \mid x, y \in V'\}$
- Spanning subgraph of G: subgraph H = (V', E') where V' = V obtained from G by removing only some edges

Graph: terminology and notations (subgraph)

- Subgraph: H = (V', E') with $V' \subseteq V$ and $E' \subseteq \{\{x, y\} \in E \mid x, y \in V'\}$
- Spanning subgraph of G: subgraph H = (V', E') where V' = V obtained from G by removing only some edges
- Spanning tree of G: spanning subgraph H = (V, E') with H a tree

Graph: terminology and notations (subgraph)

- Subgraph: H = (V', E') with $V' \subseteq V$ and $E' \subseteq \{\{x, y\} \in E \mid x, y \in V'\}$
- Spanning subgraph of G: subgraph H = (V', E') where V' = Vobtained from G by removing only some edges
- Spanning tree of G: spanning subgraph H = (V, E') with H a tree

Exercise: A graph G is connected if and only if G has a spanning tree

Summary: To be remembered

All definitions will be important in next lectures Please remember:

- graph, vertex/vertices, edge
- neighbor, degree
- path, cycle
- connected graph
- tree
- subgraph, spanning subgraph

