Ausgabe: 09. Mai 2023 _____ Kleingruppenübungen: vom 16.05 bis zum 19.05

Einführung in die angewandte Stochastik

Kleingruppenübung 4

Aufgabe 14

Sei X eine stetige Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit Dichtefunktion

$$f_X(x) = \begin{cases} \frac{1}{3}(5-4x), & x \in (0,1), \\ 0, & \text{sonst.} \end{cases}$$

Bestimmen Sie mit dem Dichtetransformationssatz die Dichtefunktion der Zufallsvariablen

$$Y = aX$$

für a > 0 sowie die Verteilungsfunktion von Y.

Aufgabe 15

Seien X und Y zwei diskrete Zufallsvariablen, wobei X die Werte -1, 0 und 1 und Y die Werte 1, 2 und 3 annimmt. Die zugehörigen Wahrscheinlichkeiten $p_{ij} = P(X = i, Y = j)$ für $i \in \{-1, 0, 1\}$, $j \in \{1, 2, 3\}$, sind in der folgenden Tabelle angegeben:

$p_{ij} = P(X = i, Y = j)$		j			
		1	2	3	
	-1			0	1/4
i	0	1/5	1/5		
	1	1/10	1/10		1/4
			1/2		

- (a) Vervollständigen Sie die Wahrscheinlichkeitstabelle.
- (b) Sind X und Y stochastisch unabhängig?
- (c) Berechnen Sie E(X), E(Y), Var(X) und Var(Y).

Aufgabe 16

Sei X eine standardnormalverteilte Zufallsvariable (d.h. $X \sim \mathcal{N}(0,1)$) mit Dichtefunktion

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

- (a) Bestimmen Sie die Dichte der Zufallsvariablen e^X .
- (b) Bestimmen Sie $E(e^X)$.

Hinweis: (a) Betrachten Sie die Verteilungsfunktion der Zufallsvariablen e^X und verwenden Sie den Hauptsatz der Differential - und Integralrechnung.

(b) Die Dichtefunktion einer Normalverteilung mit Erwartungswert $\mu \in \mathbb{R}$ und Varianz $\sigma^2 \in (0, \infty)$ (kurz: $\mathcal{N}(\mu, \sigma^2)$) ist gegeben durch

$$f_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{1}{2} \cdot \left(\frac{(x-\mu)}{\sigma}\right)^2}, \quad x \in \mathbb{R}.$$

Aufgabe 17

Gegeben seien paarweise stochastisch unabhängige Zufallsvariablen X,Y und Z auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit

$$E(X) = 2$$
, $E(X^2) = 5$, $E(Y) = 1$, $E(Y^2) = 3$, $E(Z) = 11$.

Weiter sei A := 5X - 7Y. Berechnen Sie

- (a) E(A)
- (b) Var(A)
- (c) $E(A \cdot X)$
- (d) $E(A \cdot Z)$