Analyse

Suites numériques

Question 1/14

Théorème de Bolzano-Weierstrass

Réponse 1/14

De toute suite réelle bornée on peut extraire une suite convergente

Question 2/14

Trouver une solution particulière (v_n) à la suite $u_{n+k} = a_{k-1}u_{n+k-1} + \cdots + a_0u_n + b_n$ pour un second membre $b_n = \lambda^n Q(n)$ avec $Q \in \mathbb{C}[X]$

Réponse 2/14

$$v_n = n^m \lambda^n R(n)$$
 où m est la multiplicité de λ comme racine de P le polynôme caractéristique de la suite et $\deg(R) = \deg(Q)$

Question 3/14

Explicitation des suites récurrentes linéaires d'ordre 2 où P le polynôme caractéristique admet 1 racines double r Soit $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$

Réponse 3/14

$$\exists (\lambda, \mu) \in \mathbb{K}^2, \ \forall n \in \mathbb{N}, \ u_n = (\lambda + \mu n)r^n$$

Question 4/14

Un sous-ensemble F est fermé

Réponse 4/14

Toute suite convergente d'éléments de F converge vers une limite $l \in F$

Question 5/14

L'ensemble X est dense dans $\mathbb R$

Réponse 5/14

 $\forall x \in \mathbb{R}$, il existe une suite (u_n) d'éléments de X tel que (u_n) converge vers x

Question 6/14

Explicitation de
$$u_{n+1} = au_n + \lambda^n P(n)$$
 où $\lambda \neq a$

Réponse 6/14

$$u_n = \lambda^n Q(n)$$
 avec $\deg(P) = \deg(Q)$

Question 7/14

Si (u_n) et (v_n) sont adjacentes et de limite l

Réponse 7/14

$$\forall n \in \mathbb{N}, |v_n - l| \leq |v_n - u_n|$$

Question 8/14

Polynôme caractéristique d'une récurrence linéaire

 $u_{n+k} - a_{k-1}u_{n+k-1} - \dots - a_1u_{n+1} - a_0u_n = 0$

Réponse 8/14

$$P = X^k - a_{k-1}X^{k-1} - \dots - a_1X - a_0$$

Question 9/14

Critère spécial de convergence des séries alternée

Réponse 9/14

$$\left(\sum_{n=0}^{N} ((-1)^n a_n)\right) \text{ admet une limite finie}$$

$$\text{quand } N \text{ tend vers } +\infty$$

$$\left| \sum_{n=N+1}^{+\infty} ((-1)^n a_n) \right| \leqslant a_{N+1}$$

Question 10/14

Explicitation des suites récurrentes linéaires d'ordre 2 où P le polynôme caractéristique admet 2 racines r et s Soit $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$

Réponse 10/14

$$\exists (\lambda, \mu) \in \mathbb{K}^2, \ \forall n \in \mathbb{N}, \ u_n = \lambda r^n + \mu s^n$$

Question 11/14

Explicitation des suites arithmético-géométriques

Réponse 11/14

Soit l un point fixe de la suite (u_n) , (v_n) la solution de l'équation homogène (géométrique) $u_n = v_n + l$

Question 12/14

Sous-ensemble compact

Réponse 12/14

Soit E un espace métrique et $K \subset E$ K est compact si de toute suite (u_n) d'éléments de K, on peut extraire une suite convergeant vers un élément de K

Question 13/14

Explicitation de
$$u_{n+1} = au_n + \lambda^n P(n)$$
 où $\lambda = a$

Réponse 13/14

$$u_n = n\lambda^n Q(n)$$
 avec $\deg(P) = \deg(Q)$

Question 14/14

Soit f une application contractante sur un intervalle I, de facteur de Lipschitz k < 1, et (u_n) une suite récurrente à valeurs dans I, définie par fSoit l un point fixe de f sur I

Réponse 14/14

$$|u_n - l| \leqslant k^n |u_0 - l|$$