Halogen Derivatives

EXERCISE [PAGES 231 - 233]

Exercise | Q 1.01 | Page 231

Choose the most correct option.

The correct order of increasing reactivity of C-X bond towards nucleophile in the following compounds is

(III) (CH₃)₃ C-X

(IV) (CH₃)₂ CH-X

1. | < || < || < || < ||

- 2. II < I < III < IV
- 3. ||| < ||V < || < ||
- 4. |V < |I| < |I|

Solution:

I < II < III < IV

Explanation:

Alkyl halides are more reactive than aryl halides. This is because of the partial double bond character between the benzene ring and the halogen. Further, in alkyl halides, the greater the stability of carbocation formed, the more would be the reactivity. Thus, the tertiary halide is more reactive. Nitro group which is electron-withdrawing increases the reactivity of aryl halide.

Exercise | Q 1.02 | Page 231

Choose the most correct option.

$$CH_3 - CH = CH_2 \xrightarrow{HI}$$

The major product of the above reaction is, _____.

$$I - CH_2 - CH = CH_2$$
 $CH_3 - CH_2 - CH_2I$
 $CH_3 - CH - CH_3$
 $|$
 $CH_3 - CH - CH_2$
 $|$
 $CH_3 - CH - CH_2$
 $|$

Solution:

Exercise | Q 1.03 | Page 231

Choose the most correct option.

OH

Which of the following is likely to undergo racemization during alkaline hydrolysis?

Which of the following (I)
$$CH_3-CH-C_2H_5$$
 CI (III) CH_2CI (III)

- 1. Only I
- 2. Only II
- 3. II and IV
- 4. Only IV

Solution: Only I

Exercise | Q 1.04 | Page 231

Choose the most correct option.

The best method for the preparation of alkyl fluorides is _____.

- 1. Finkelstein reaction
- 2. Swartz reaction
- 3. Free radical fluorination
- 4. Sandmeyer's reaction

Solution: The best method for the preparation of alkyl fluorides is **Swartz reaction**.

Exercise | Q 1.04 | Page 231

Choose the most correct option.

The best method for the preparation of alkyl fluorides is _____.

- 1. Finkelstein reaction
- 2. Swartz reaction
- 3. Free radical fluorination
- 4. Sandmeyer's reaction

Solution: The best method for the preparation of alkyl fluorides is **Swartz reaction**.

Exercise | Q 1.05 | Page 231

Choose the most correct option.

Identify the chiral molecule from the following.

- a. 1 Bromobutane
- b. 1,1-Dibromobutane
- c. 2,3-Dibromobutane
- d. 2-Bromobutane

Solution: c) 2,3-Dibromobutane and d) 2-Bromobutane

Exercise | Q 1.06 | Page 231

Choose the most correct option.

An alkyl chloride on Wurtz reaction gives 2,2,5,5-tetramethylhexane. The same alkyl chloride on reduction with a zinc-copper couple in alcohol gives hydrocarbon with molecular formula C₅H₁₂. What is the structure of alkyl chloride?

Options

$${
m CH_3}$$
 | ${
m CH_3-C-CH_2Cl}$ | ${
m CH_3}$ ${
m CH_3}$ ${
m CH_3}$ ${
m CH_3}$ | ${
m CH_3-C-CH_2CH_3}$ | ${
m Cl}$ ${
m Cl}$ ${
m CH_3-CH_2-CH-Cl}$ | ${
m CH_3}$ ${
m CH_3}$ ${
m CH_3-CH-CH-CHCl}$ | ${
m CH_3}$ ${
m CH_3-CH-CH-CHCl}$ | ${
m CH_3-CH_3-CH_3}$

Solution:

$$\mathrm{CH_3}$$
 $|$ $\mathrm{CH_3-C-CH_2Cl}$ $|$ $\mathrm{CH_3}$

Exercise | Q 1.07 | Page 231

Choose the most correct option.

Butanenitrile may be prepared by heating _____.

- 1. propanol with KCN
- 2. butanol with KCN
- 3. n-butyl chloride with KCN

4. n-propyl chloride with KCN

Solution: Butanenitrile may be prepared by heating <u>n-propyl chloride with KCN.</u>

Exercise | Q 1.08 | Page 232

Choose the most correct option.

Choose the compound from the following that will react fastest by S_N1 mechanism

- 1. 1-lodobutane
- 2. 1-lodopropane
- 3. 2-lodo-2 methylbutane
- 4. 2-lodo-3-methylbutane

Solution: 2-lodo-2 methylbutane

Exercise | Q 1.09 | Page 232

Choose the most correct option.

$$\bigcirc$$
 Cl + Mg $\xrightarrow{\text{dry}}$ A $\xrightarrow{\text{H}_2\text{O}}$

The product 'B' in the above reaction sequence is, _____.

Options

Exercise | Q 1.1 | Page 232

Choose the most correct option.

Which of the following is used as a source of dichlorocarbene?

- 1. tetrachloromethane
- 2. chloroform
- 3. iodoform
- 4. DDT

Solution: chloroform

Exercise | Q 2.1 | Page 232

Write IUPAC name of the following compound.

Solution:

2-Bromo-3-methylpent-3-ene

Exercise | Q 2.1 | Page 232

Write IUPAC name of the following compound.

$$\begin{array}{c|c} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ & | & | \\ & \mathrm{Cl} & \mathrm{CH_3} \end{array}$$

Solution:

2-Chloro-3-methylpentane

Exercise | Q 2.1 | Page 232

Write IUPAC name of the following compound.

Solution: 1-Chloro-4-ethylcyclohexane

Exercise | Q 2.1 | Page 232

Write IUPAC name of the following compound.

Solution: 1,4-Dichloro-2-methylbenzene

Exercise | Q 2.2 | Page 232

Write the structure and IUPAC name of the major product in the following reaction.

$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2Cl} + \mathrm{NaI} \xrightarrow{\mathrm{Acetone}}$$

$$\mid$$
 $\mathrm{CH_3}$

Solution:

$$\begin{array}{c} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2Cl} + \mathrm{NaI} \xrightarrow{\mathrm{Acetone}} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{I} + \mathrm{NaCl} \downarrow \\ & | & | \\ \mathrm{CH_3} & \mathrm{CH_3} \\ \text{1-Chloro-2-methylpropane} & \text{1-Iodo-2-methylpropane} \end{array}$$

Exercise | Q 2.2 | Page 232

Write the structure and IUPAC name of the major product in the following reaction.

$$CH_3 - CH_2Br + SbF_3 \rightarrow$$

Solution:

$$\begin{array}{ccc} 2\operatorname{CH_3CH_2Br} + \operatorname{SbF_3} & \longrightarrow & 3\operatorname{CH_3CH_2F} + \operatorname{SbBr_3} \downarrow \\ \text{Bromoethane} \end{array}$$

Exercise | Q 2.2 | Page 232

Write the structure and IUPAC name of the major product in the following reaction.

$$\begin{array}{c} \mathrm{CH_{3}}-\mathrm{CH}-\mathrm{CH}=\mathrm{CH_{2}}+\mathrm{HBr} \xrightarrow{\mathrm{peroxide}} \\ | \\ \mathrm{CH_{3}} \end{array}$$

Solution:

$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH} = \mathrm{CH_2} + \mathrm{HBr} \xrightarrow{\mathrm{peroxide}} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_2}$$

$$\mid \qquad \qquad \qquad \mid \qquad \qquad \mid$$
 $\mathrm{CH_3} \qquad \qquad \mathrm{CH_3} \qquad \qquad \mathrm{Br}$
1-Bromo-3-methylbutane (Major product)

Exercise | Q 2.2 | Page 232

Write the structure and IUPAC name of the major product in the following reaction.

$$\begin{array}{c} OH \\ + SOCl_2 \\ \hline \\ Cyclohexanol \\ \end{array} \begin{array}{c} Cl \\ + SO_2 \\ \uparrow + HCl \\ \hline \end{array}$$

Exercise | Q 2.2 | Page 232

Write the structure and IUPAC name of the major product in the following reaction.

Solution:

$$CH_3$$
 $+ Cl_2$
 $\xrightarrow{Dark Fe}$
 Cl

1-Chloro-4-methylbenzene
(Major product)

Exercise | Q 2.3 | Page 232

Identify chiral molecule/s from the following.

d.
$$\begin{aligned} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ | \\ \mathrm{CH_3} \end{aligned}$$

2-Hydroxybutane is a chiral molecule amongst the given.

Exercise | Q 2.4 | Page 232

from the following pair would undergo S_N2 faster from the other?

Solution: Compound (a) will undergo S_N2 mechanism faster than (b).

Exercise | Q 2.4 | Page 232

from the following pair would undergo S_N2 faster from the other?

a. CH₃CH₂CH₂I b. CH₃CH₂CH₂CI

Solution: Compound (a) will undergo S_N2 mechanism faster than (b).

Exercise | Q 2.5 | Page 232

Complete the following reaction giving major products.

$$\mathrm{CH_3}-\mathrm{CH}=\mathrm{CH_2} \xrightarrow{\mathrm{peroxide}} \mathrm{A} \xrightarrow{\mathrm{alc} \cdot \mathrm{KOH}} \mathrm{B}$$

Solution:

$$\begin{array}{c} \mathrm{CH_{3}-CH} = \mathrm{CH_{2}} \xrightarrow{\mathrm{HBr}} & \mathrm{CH_{3}CH_{2}CH_{2}Br} \xrightarrow{\mathrm{Alc} \cdot \mathrm{KOH}} \mathrm{CH_{3}CH} = \mathrm{CH_{2}} \\ \mathrm{Propene} & \mathrm{1-Bromopropane} \ (\mathrm{A}) \ (\mathrm{major} \ \mathrm{product}) & \xrightarrow{\mathrm{propene}(\mathrm{B})} \end{array}$$

Exercise | Q 2.5 | Page 232

Complete the following reaction giving major products.

$$\begin{array}{c} \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH_2} \xrightarrow{\mathrm{Red} \ P/\mathrm{Br_2}} \mathrm{A} \xrightarrow{\mathrm{Ag_2O/H_2O}} \mathrm{B} \\ | & | \\ \mathrm{OH} \end{array}$$

$$\begin{array}{c} CH_3-CH=CH_2 \xrightarrow{Red\ P/Br_2} 3\ CH_3-CH-CH_3+H_3PO_3 \xrightarrow{Ag_2O/H_2O} 3\ CH_3-CH-CH_3 \\ | & | & | \\ OH & Br & OH \\ 2\text{-Hydroxypropane} & 2\text{-Bromopropane(A)} & Propan-2\text{-ol(B)} \end{array}$$

Exercise | Q 2.5 | Page 232

Complete the following reaction giving major products.

$$\operatorname{CH_3}$$
 $|$ $\operatorname{CH_3} - \operatorname{C} - \operatorname{CH_2} - \operatorname{Cl} \xrightarrow{\operatorname{Na/dry\ ether}}$ $|$ $\operatorname{CH_3}$

Solution:

Exercise | Q 2.5 | Page 232

Complete the following reaction giving major products.

Exercise | Q 2.6 | Page 233

Name the reagent used to bring about the following conversion.

Bromoethane to ethoxyethane

Solution: Sodium ethoxide (NaOC₂H₅)

Exercise | Q 2.6 | Page 233

Name the reagent used to bring about the following conversion.

1-Chloropropane to 1-nitropropane

Solution: Silver nitrite (AgNO₂)

Exercise | Q 2.6 | Page 233

Name the reagent used to bring about the following conversion.

Ethyl bromide to ethyl isocyanide

Solution: Alcoholic silver cyanide (AgCN)

Exercise | Q 2.6 | Page 233

Name the reagent used to bring about the following conversion.

Chlorobenzene to biphenyl

Solution: Na metal in dry ether

Exercise | Q 2.7 | Page 233

Arrange the following in the increasing order of boiling points.

- a. 1-Bromopropane
- b. 2- Bromopropane
- c. 1- Bromobutane
- d. 1-Bromo-2-methylpropane

Solution: 2-Bromopropane < 1-bromo-2-methylpropane < 1-bromobutane.

Exercise | Q 2.8 | Page 233

Match the pairs.

Column I	Column II	
$ m CH_3CH-CH_3$		
X	vinyl halide	
$CH_2 = CH - CH_2X$	alkyl halide	
$CH_2 = CH - X$	allyl halide	
	benzyl halide	
	aryl halide	

Column I	Column II	
$ m CH_3CH-CH_3$	alkyl halide	
X		
$CH_2 = CH - CH_2X$	allyl halide	
CH ₂ = CH - X	Vinyl halide	

Exercise | Q 3.1 | Page 233

Give reasons:

Haloarenes are less reactive than haloalkanes.

Solution:

- 1. The low reactivity of aryl halides is due to resonance effect and sp2 hybrid state of carbon to which halogen atom is attached.
- 2. In aryl halides, one of the lone pairs of electrons on halogen atom is in conjugation with π-electrons of the ring. Due to resonance, the C–X bond acquires partial double bond character. Thus, the C–X bond in haloarenes is stronger and shorter than haloalkanes. Hence, it is difficult to break C–X bond in haloarenes. (e.g. C–Cl bond length in chlorobenzene is 169 pm as compared to C–Cl bond length in alkyl chloride which is 178 pm).

Therefore, haloarenes are less reactive than haloalkanes.

Exercise | Q 3.2 | Page 233

Give reason:

Alkyl halides though polar are immiscible with water.

Solution:

- 1. Alkyl halides cannot form hydrogen bonds with water.
- 2. In addition to this, the attraction between alkyl halide molecules is stronger than the attraction between alkyl halide and water.

Hence, alkyl halides though moderately polar are immiscible with water.

Exercise | Q 3.3 | Page 233

Give reason:

Reactions involving Grignard reagent must be carried out under anhydrous condition.

Solution:

- 1. Grignard reagents are highly reactive compounds.
- 2. They react with water or compounds containing hydrogen attached to the electronegative element.

Hence, reactions involving the Grignard reagent must be carried out under anhydrous condition.

Exercise | Q 3.4 | Page 233

Give reason:

Alkyl halides are generally not prepared by free radical halogenation of alkanes.

Solution:

Free radical halogenation of alkanes leads to the formation of a mixture of mono and poly halogen compounds. Hence, free radical halogenation of alkanes is not suitable for the preparation of alkyl halides.

Exercise | Q 4 | Page 233

Distinguish between S_N1 and S_N2 mechanism of substitution reaction.

Factor	S _N 1	S _N 2
Kinetics	2 nd order	1 st order
Molecularity	Bimolecular	Unimolecular
Number of steps	One step	Two steps

Bond making and bond breaking	Simultaneous	First the bond in the reactant breaks and then a new bond in the product is formed
Transition state	One step, one transition state	Two steps, two transition states
Direction of attack of nucleophile	Only back side attack	Back side attack and front side attack
Stereochemistry	Inversion of configuration (If the substrate is optically active)	Racemisation (If the substrate is optically active)
Type of substrate	Mainly 1° substrate	Mainly 3° substrates
Polarity of solvent	Aprotic (non-polar) or solvent with low polarity favourable	Polar protic solvent favorable
Intermediate	No intermediate	Intermediate involved

Exercise | Q 6.1 | Page 233

Convert the following:

Propene to propan-1-ol

Solution:

$$\begin{array}{l} H_3C-CH=CH_2+HBr \xrightarrow{Peroxide} H_3C-CH_2-CH_2Br+NaOH \xrightarrow{\triangle} CH_3CH_2CH_2OH+NaBr \\ Propene \end{array}$$

Exercise | Q 6.2 | Page 233

Convert the following:

Benzyl alcohol to benzyl cyanide

$$CH_2OH$$
 $+ SOCl_2$
 $+ SO_2 \uparrow + HCl \uparrow$

Benzyl alcohol

 CH_2Cl
 $+ KCN$
 CH_2Cl
 $+ KCN$
 CH_2CN
 $+ KCN$
 $- CH_2CN$
 $+ CH_2CN$
 $+$

Exercise | Q 6.3 | Page 233

Convert the following:

Ethanol to propane nitrile

Solution:

$$\begin{array}{c} CH_{3}CH_{2}OH + HCl \xrightarrow{Groove's} CH_{3}CH_{2}Cl \xrightarrow{Alc \cdot KCN, \triangle} CH_{3}CH_{2}CN \\ Ethanol & Chloroethane \end{array} \xrightarrow{CH_{2}O} \begin{array}{c} CH_{3}CH_{2}CN \\ Propane nitrile \end{array}$$

Exercise | Q 6.4 | Page 233

Convert the following:

But-1-ene to n-butyl iodide

Solution:

$$\begin{array}{c} \mathrm{CH_{3}-CH_{2}-CH_{2}-CH_{2}+HBr} \xrightarrow{\mathrm{Peroxide}} \mathrm{CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}Br} \\ \mathrm{But\text{-}1\text{-}ene} & \longrightarrow \\ \mathrm{CH_{3}-CH_{2}-CH_{2}-CH_{2}Br} + \mathrm{NaI} \xrightarrow{\mathrm{Acetone}} \mathrm{CH_{3}-CH_{2}-CH_{2}-CH_{2}I} + \mathrm{NaBr} \downarrow \\ \mathrm{1\text{-}Bromobutane} & \longrightarrow \\$$

Exercise | Q 6.5 | Page 233

Convert the following:

2-Chloropropane to propan-1-ol

Solution:

$$\begin{array}{c} H_3C-CH-CH_3 \xrightarrow{Alc \cdot KOH} H_3C-CH = CH_2 \xrightarrow{Peroxide} H_3C-CH_2-CH_2-CH_2Br \xrightarrow{NaOH(aq \cdot)} H_3C-CH_2-CH_2OH \\ | & \\ Cl \\ \text{2-Chloropropane} \end{array}$$

Exercise | Q 6.6 | Page 233

Convert the following:

tert-Butyl bromide to isobutyl bromide

Exercise | Q 6.7 | Page 233

How the following conversions can be carried out?

Aniline to chlorobenzene

Solution:

Exercise | Q 6.8 | Page 233

How will you bring about the following conversions?

Propene to 1-nitropropane

Solution:

$$\begin{array}{c} \text{CH}_3 - \text{CH} = \text{CH}_2 + \text{HBr} \xrightarrow{\text{Peroxide}} \text{CH}_3 - \text{CH}_2 - \text{CH}_2 \text{Br} + \text{Ag} - \text{O} - \text{N} = \text{O} \\ \text{Propens} & \text{Silver nitrite} \end{array} \xrightarrow{\text{1-Nitropropane}} \begin{array}{c} \text{CH}_3 - \text{CH}_2 - \text{CH}_2 \text{NO}_2 + \text{AgBr} \downarrow \\ \text{1-Nitropropane} \end{array}$$

Exercise | Q 7.1 | Page 233

HCl is added to a hydrocarbon 'A' (C₄H₈) to give a compound 'B' which on hydrolysis with aqueous alkali forms tertiary alcohol 'C' (C₄H₁₀O). Identify 'A', 'B' and 'C'.

Exercise | Q 7.2 | Page 233

Complete the following reaction sequence by writing the structural formulae of the organic compound 'A', 'B' and 'C'.

$$\text{2-Bromobutane} \xrightarrow{\text{alc} \cdot \text{KOH}} A \xrightarrow{\text{Br}_2} B \xrightarrow{\text{NaNH}_2} C$$

Solution:

$$\begin{array}{c} Br \\ | \\ H_3C-CH-CH_2CH3 \xrightarrow{Alc \cdot KOH} \\ & -KBr \end{array} \\ \begin{array}{c} H_3C-CH=CH-CH_3 \xrightarrow{Br_2} \\ & H_3C-CH-CH-CH-CH_3 \xrightarrow{NaNH_2} \\ & But\text{-}2\text{-ene} \end{array} \\ \begin{array}{c} (A) \\ (Major) \end{array} \\ \begin{array}{c} | \\ Br \\ & 2,3\text{-Dibromobutane (B)} \end{array}$$

Exercise | Q 7.2 | Page 233

Complete the following reaction sequence by writing the structural formulae of the organic compound 'A', 'B' and 'C'.

Isopropyl alcohol
$$\xrightarrow{\triangle}$$
 A $\xrightarrow{NH_3 \text{ excess}}$ B

Solution:

Exercise | Q 7.3 | Page 233

Observe the following and answer the question given below.

$$\overrightarrow{CH}$$
,= \overrightarrow{CH} - \overrightarrow{X} : \longleftrightarrow \overrightarrow{CH} ,- \overrightarrow{CH} - \overrightarrow{X} :

Name the type of halogen derivative.

Solution: Vinylic halide

Exercise | Q 7.3 | Page 233

Observe the following and answer the question given below.

$$\overrightarrow{CH}$$
=CH- $\overset{\oplus}{X}$: \longleftrightarrow CH,-CH= $\overset{\oplus}{X}$:

Comment on the bond length of C-X bond in it.

Solution: The bond length of C - X bond is expected to be shorter than C - X bond in haloalkanes.

Exercise | Q 7.3 | Page 233

Observe the following and answer the question given below.

$$\overrightarrow{CH}$$
,= \overrightarrow{CH} - \overrightarrow{X} : \longleftrightarrow \overrightarrow{CH} ,- \overrightarrow{CH} = \overrightarrow{X} :

Can it react by S_N1 mechanism? Justify your answer.

Solution:

It will not react by S_N1 mechanism. The bond between sp^2 hybridized carbon atom and halogen is a strong bond. Also, the electrons of the -X atom are in conjugation with the π bond. Thus, C-X bond acquires a double bond character. Thus, when nucleophile approaches the sp^2 carbon, it gets repelled by the π -electrons of the double bond.