# Variational Autoencoders (VAE)

Prashant Shekhar

March 5, 2023

ERAU DS625 1 / 22

#### Table of Contents

- 1 Generative modeling applications
- 2 Idea of Variational Autoencoder
- 3 Performance measure of a VAE:ELBO
- 4 Optimizing ELBO
- **6** Moving forward

ERAU DS625 2 / 22

### Generative modeling example



Figure 1: Generative modeling and sampling

Image credits: http://www.lherranz.org/2018/08/07/imagetranslation/

ERAU DS625 3 / 22

## Motivation for generative modeling

- **Generative model** as a discriminator: For instance, we have a generative model for an earthquake of type A and another for type B, then seeing which of the two describes the data best we can compute a probability for whether earthquake A or B happened.
- **Generative models to assist classifiers**: For instance, one may have few labeled examples and many more unlabeled examples. In this semi-supervised learning setting, one can use the generative model of the data to improve classification.
- **Generative model as a regularizer**: By forcing the representations/generative model to be as a meaningful as possible, we bias the inverse of that process, which maps from input to representation, into a certain mould.

ERAU DS625 4 / 22

**Figure 2:** A typical VAE for synthesizing handwritten digits. The VAE can be viewed as two coupled, but independently parameterized models: the **encoder/inference/recognition** model, and the **decoder/generative model**. These two models support each other and are jointly optimized.

Image credits: https://theaisummer.com/Autoencoder/

ERAU DS625 5 / 22

## The problem solved by VAEs

• We often collect dataset D consisting of  $n \ge 1$  samples:

$$D = \{x_1, x_2, ..., x_n\} \equiv \{x_i\}_{i=1}^n$$

these samples  $x_i$  are independent and identically distributed (i.i.d)

- We assume the observed samples  $x_i$  are random samples from an unknown underlying process, whose true (probability) distribution  $p^*(x)$  is unknown.
- We attempt to approximate this underlying process with a chosen model  $p_{\theta}(x)$  with parameters  $\theta$  such that:

$$x_i \sim p_{\theta}(x)$$

• Hence, training a VAE is equivalent to find the best value of  $\theta$  such that for any observed sample  $x_i$ 

$$p_{\theta}(x_i) \approx p^*(x_i)$$

• Once you have found such a  $\theta$ , you can use  $p_{\theta}(x)$  to even draw a new sample  $x_j$  which was not a part of the training set used to fit the VAE.

ERAU DS625 6 / 22

#### Whats a latent variable?

- Latent variables are variables that are part of the model, but which we don't observe, and are therefore not part of the dataset *D*. We typically use *z* to denote such latent variables.
- For VAEs or autoencoders, z represents the underlying 'simpler' latent representations that map to samples x. This relationship prescribes a joint distribution over x and z: p(x,z). We need z to account for complicated things that might occur in this world.
- Hence the distribution which VAE is trying to learn  $(p_{\theta}(x))$  is a marginal distribution:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz \tag{1}$$

 $p_{\theta}(x)$  is also referred to as (single datapoint) marginal likelihood.

ERAU DS625 7 / 22

## Marginal likelihood

• Because of the i.i.d assumption the *marginal likelihood* of the dataset *D* is given as:

$$p_{\theta}(D) = \prod_{i=1}^{n} p_{\theta}(x_i) \tag{2}$$

or the log marginal likelihood

$$\log p_{\theta}(D) = \sum_{i=1}^{n} \log p_{\theta}(x_i)$$
 (3)

• However, we dont have an efficient estimator for  $p_{\theta}(x) = \int p_{\theta}(x, z) dz$ . Even with the below mentioned **monte carlo estimate**, we will potentially need a lot of z samples to approximate  $p_{\theta}(x)$ :

$$p_{\theta}(x) = \frac{1}{m} \sum_{i=1}^{m} p_{\theta}(x|z^{m})$$

hence we cannot compute or directly optimize the log-marginal likelihood (3) for optimizing the parameters  $\theta$ . Hence the log-marginal likelihood is intractable.

ERAU DS625 8 / 22

# Dealing with Intractability

• Source of intractability (can't be accurately computed):

$$p_{\theta}(z|x) = \frac{p_{\theta}(x,z)}{p_{\theta}(x)}$$

- $p_{\theta}(z|x)$ : Intractable
- $p_{\theta}(x,z)$ : Tractable
- $p_{\theta}(x)$ : Intractable

Hence the intractability of  $p_{\theta}(z|x)$  and  $p_{\theta}(x)$  are related to each other.

• Approximate inference techniques will allow us to approximate the posterior  $p_{\theta}(z|x)$ . For this, we introduce a parametric inference model  $q_{\phi}(z|x)$  and **optimize**  $\phi$  **such that**:

$$q_{\phi}(z|x) \approx p_{\theta}(z|x)$$

- This also helps us optimize marginal likelihood  $p_{\theta}(x)$  to get the best parameters  $\theta$ .
- From now we will call  $\theta$  as **model parameters** and  $\phi$  as **variational parameters**.

ERAU DS625 9 / 22

### Overall picture till now: VAE

- A VAE learns stochastic mappings between an observed x - space, whose empirical distribution is typically complicated, and a latent z - space, whose distribution can be relatively simple (such as spherical, as in this figure).
- The generative model learns a joint distribution  $p_{\theta}(x,z)$  that is often (but not always) factorized as  $p_{\theta}(x,z) = p_{\theta}(z)p_{\theta}(x|z)$ , with a prior distribution over latent space  $p_{\theta}(z)$ , and a stochastic decoder  $p_{\theta}(x|z)$ .
- The stochastic encoder  $q_{\phi}(z|x)$ , also called inference model, approximates the true but intractable posterior  $p_{\theta}(z|x)$  of the generative model.

Prior distribution: pe(z) z-space Encoder:  $q_{\varphi}(\mathbf{z}|\mathbf{x})$ Decoder:  $p_{\theta}(\mathbf{x}|\mathbf{z})$ x-space Dataset: D

Image credits: https://arxiv.org/pdf/1906.02691.pdf

**ERAU DS625** 10 / 22