Voice of the Customer (VOC)

Customer	Voice of the Customer	Key Customer Issue(s)	(CTQ) Critical Customer Requirement
Who is the Customer?	What does the customer want from us?	What does the customer want from us? We need to identify the issue(s) that prevent us from satisfying our customers.	We should summarize key issues and translate them into specific and measurable requirements
Wendy's plant location (Green Forest)	Replace the need for manual checks conducted by the FSQA team in favor of an automated approach that will show measurements in real time	Manual thickness measurements of the raw filet are taken every 30 minutes by the plant FSQA team members who take a sample of product after it exits the press. Measurement is needed to ensure that the product is produced to specification, which helps ensure the meat will be cooked at the restaurant correctly.	Calipers are used to measure the thickness of the chicken filet. Example of a target thickness can range from 9-11mm. There is a high degree of variability that comes with measuring the filet. It is possible to end up with 10 different measurements taken by 10 different people.
			A target thickness should range between 8-12 mm

SIPOC Map

Process Steps

Thought Process Map

Communication Plan

- Team will use Teams/Zoom for meetings
- Team will also use Outlook e-mail for both internal and external (vendor) communication
- JIRA Roadmap will be available to all stakeholders through out product development process
- Project Manager will work with team to build weekly status report that will be presented to the leadership

Risk Analysis

Risk	Risk Description	Impact Type	Probability of Occurrence Rating	Impact Rating	Priority Rating	Risk Respo	nse	Owner
#		Scope Cost Time	1 - None 2 - Low 3 - Medium 4 - High	1 - None 2 - Little 3 - Moderate 4 - Heavy	(Probability x Impact)	Accept Avoid Mitigate - Minimize Probability Mitigate - Minimize Rating	Identify and Describe Risk Response	
1	Wiring of cameras must not interfere with daily processes		2	4	0	Avoid		Vendor/Tyson Team
2	Camera has unobstructed view of the product coming out of the press.		2	2	0	Mitigate – Minimize Probablity		Vendor/Tyson Team

Operational Definitions

CTQC Tree - Wendy Breast Meat Project

Initial Data Collection Plan

Measure	Type of Measure	Operational Definition	Sample (In mm)
Breast	Thickness		11.4
Breast	Thickness		13.2
Breast	Thickness		13.8
Breast	Thickness		9.6
Breast	Thickness		14.1
Breast	Thickness		15
Breast	Thickness		11.4
Breast	Thickness		13.3
Breast	Thickness		13.6
Breast	Thickness		9.7
Breast	Thickness		14
Breast	Thickness		14.8

This is a sample data. Actual data resides on Confidential Excel File.

Baseline Performance

CTQ	Sigma Level	Yield (Current Performance)
Less degree of variability in measurement	3.2	95.5% or less
Automated measurement capture		
Camera has unobstructed view		
Camera wirings must not interfere with daily processes		
Reduced labor for an audit		

Key Takeaways

The Sigma Level 3.2 indicates that there will be 44,600 defects in 1 million opportunities. The percentage of product that is free of defects is 95.5% or less.

Baseline Data/Current Process Performance - Summary

Key Takeaways

- 1160 data points collected or counts.
- The current process has high variability in measurement pf breast meat thickness.
- If we look at the histogram, we have more than 800 counts of breast meat that measures either less than 7.80mm or higher than 12.20mm.
- The goal is to have between
 =7.80 mm and <=12.20 mm.

Baseline Data -Control Chart

Key Takeaways

- The current
 measurement is stable
 over time with
 experiencing common
 cause variation.
 However, the goal is to
 have thickness level
 between 8mm -12mm
 thus there is high
 variation if the goal is
 considered.
- 1160 data points collected with zero subgroups, thus the I&MR control chart selected.

Root-Cause Identification

Problem Statement:

Customers complaining about Breast meats not cooked well.

<u>Suspected Root Cause:</u> No consistent/automated measurement system that will alert the team member to readjust the press

Hypothesis Testing Analysis

What is the purpose of the test?

Test to determine (at alpha = 0.05) whether the sample mean measurement is significantly greater than 12.

What are the null and alternate hypotheses?

Null hypothesis <= 12

Alternative hypothesis > 12

t-Test

t-Test: One-Sample	
	Breast Thickness
Mean	12.62978017
Variance	1.66885062
Observations	2320
Hypothesized Mean Difference	12
df	2319
t Stat	23.4814139
P(T<=t) one-tail	7.2732E-110
t Critical one-tail	1.645510971
P(T<=t) two-tail	1.4546E-109
t Critical two-tail	1.960987481

Key Takeaways

Rejection Region: Reject Null hypothesis if t>1.65

Test Statistics: t = 23.48

p-value = 7.27e-110

Decision/Conclusion:

Because t = 23.48 > 1.65 &

p-value = 7.27e-110

< 0.05, thus reject null hypothesis. This means, there is enough evidence to infer that mean Breast Thickness is significantly greater than 12.

Solution Identification

Vendor Solution

Ignition dashboard example:

Architecture diagram:

To-Be Process Map

Future State

Key Takeaways

Cost/Benefit Analysis

			- 6:		
Cost			Benefit		
	CAPEX 🔻	OPEX 🔻			
LMI Gocator 2180 + GoMax kit	\$10,272		Projected Labor Cost/ Hour	\$ 5.33	
APG Gocator 2180 enclosure	\$774		Hours of Production	16	
LMI equipment integration	\$2,975		Daily Savings per plant	\$ 85.28	
Cabling and conduit	\$10,000		Annual Savings per plant	\$25,584.00	Assuming 300 working days
HMI display + enclosure	\$2,600				
HMI development (160 hours)		\$10,240	Scalable to other plants such	as Prepared	Foods and Case Ready Plants.
Project mgmt & go-live support (320 hours)		\$20,480			
Sub total	\$26,621	\$30,720			
Total Investment	\$57,	341			

Solution Implementation Plan

Product Project Lifecycle

WBS ≒	Name	Start	Finish	Status	% Com
1	Project Management - Expense	9/21/22	8/14/23	Started	0%
2	Analysis - Expense: Define Project Goals/ Objecti	9/21/22	3/23/23	Completed	100%
3	Design - Capital: Technical Reqts; Architecture Rv	10/11/22	5/9/23	Completed	100%
4	Develop - Capital: Build Solution; Unit Testing; Ar	10/14/22	7/21/23	Completed	100%
5	Test - Capital: Perform Integration, Regression a	3/17/23	3/17/23	Completed	100%
6	Deploy - Capital: Cutover & Rollback Plan; Contr	11/21/22	8/14/23	Started	95%
7	Deploy - Expense: Conduct Go Live; Hypercare; E	11/21/22	8/14/23	Started	95%
8	Maintain - Expense: Support Turnover Signoff; Cl	11/21/22	8/14/23	Started	75%
_					

Current Process Performance

Before the solution

Defect	312
Count if between 8-12	850
Defect Opportunities per breast	People, Process, Equipment, Environment, Management
Unit (U)	2320
Total Defects (D)	469
Opportunity (O)	5
Defects Per Unit (DPU) = D/U	0.2022
Defects Per Opportunity (DPO)	0.0404
Defects Per Million Opportunities	40431.03
Rolled Yield	95.96
Sigma Level	3.25

After the solution

Count if between 7.80 - 12.20	47
Unit (U)	50
Defects (D)	3
Opportunity (O)	5
Defects Per Unit (DPU)	0.06
Defects Per Opportunity (DPC	0.012
Defects Per Million Oppor.	12000
Rolled Yield	98.8
Sigma Level	3.757129244

3.2 Sigma level indicates 44,600 DPMO.

3.8 Sigma level indicates 10,700 DPMO.

Key Takeaways

Above, we can observe that the defects are significantly lower after the new solution in place with only 10,700 defects/million opportunities compared to 44,600 defects/million opportunities.

The percentage of product free of defects was 95.5% or less whereas after the new solution, the percentage of product free of defects is 98.9% or more.

Current Process Performance Before the solution

After the solution

• If we look at the histogram, out of 50 counts, we have only 3 counts of breast meat that measures either less than 7.80mm

Process Monitoring Plan

CTQ	Data Collection Method	Data Collection Frequency	Owner Responsible for Collection
Less degree of variability in measurement	Automated in PlantView application.	Real-time	Plant team member/Supervisor
Automated measurement capture			Plant team member/Supervisor
Camera has unobstructed view			Plant team member/Supervisor
Camera wirings must not interfere with daily processes			Plant team member/Supervisor

Response Plan

Measure	Action	Timing	Owner
Monitor average thickness in Dashboard	If RED, then adjust the Press		Plant team member/Supervisor

ime	Center	Left	Right	Average Thickness Dashboard Message	
1.69E+12	8.85	6.63	10.23	8.57 Everythings's Perfect!!!	
1.69E+12	4.92	10.14	• 9.50	8.19 Everythings's Perfect!!!	
1.69E+12	3.40	11.14	10.24	8.26 Everythings's Perfect!!!	
1.69E+12	9.49	10.79	9.28	9.85 Everythings's Perfect!!!	
1.69E+12	9.26	8.25	7.23	8.24 Everythings's Perfect!!!	
1.69E+12	8.34	10.07	6.31	8.24 Everythings's Perfect!!!	
1.69E+12	9.60	8.44	10.25	9.43 Everythings's Perfect!!!	
1.69E+12	10.22	9.36	6.36	8.65 Everythings's Perfect!!!	
1.69E+12	3.26	6.82	3.84	4.64 RED	Adjust The Press
1.69E+12	7.54	8.40	8.34	8.09 Everythings's Perfect!!!	
1.69E+12	6.56	10.29	7.58	8.14 Everythings's Perfect!!!	
1.69E+12	8.95	8.46	11.84	9.75 Everythings's Perfect!!!	
1.69E+12	6.98	9.37	10.25	8.87 Everythings's Perfect!!!	
1.69E+12	6.31	15.92	5.77	9.33 Everythings's Perfect!!!	
1.69E+12	9.25	8.06	7.98	8.43 Everythings's Perfect!!!	
1.69E+12	6.58	10.56	7.54	8.23 Everythings's Perfect!!!	
1.69E+12	9.92	7.57	9.25	8.91 Everythings's Perfect!!!	
1.69E+12	5.56	13.26	6.49	8.44 Everythings's Perfect!!!	
1.69E+12	5.95	8.02	12.33	8.77 Everythings's Perfect!!!	
1.69E+12	13.2	9.65	6.24	9.70 Everythings's Perfect!!!	
1.69E+12	6.89	12.54	11.69	10.37 Everythings's Perfect!!!	
1.69E+12	7.79	14.12	5.13	9.01 Everythings's Perfect!!!	
1.69E+12	8.11	13.51	11.97	11.20 Everythings's Perfect!!!	
1.69E+12	9.74	7.89	8.18	8.60 Everythings's Perfect!!!	
1.69E+12	11.52	7.12	6.48	8.37 Everythings's Perfect!!!	
1.69E+12	6.15	8.09	5.06	6.43 RED	Adjust The Press
1.69E+12	7.29	9.52	11.3	9.37 Everythings's Perfect!!!	
1.69E+12	7.21	9.40	13.38	10.00 Everythings's Perfect!!!	
1.69E+12	14.32	10.88	10.34	11.85 Everythings's Perfect!!!	
1.69E+12	9.98	8.40	11.27	9.88 Everythings's Perfect!!!	
1.69E+12	5.66	15.46	6.57	9.23 Everythings's Perfect!!!	
1.69E+12	7.24	22.38	6.46		

Process Performance Metrics

The following key process performance metrics will be monitored on an ongoing basis:

Performance Metric

- Data Collection: Plant Supervisor, PlantView Application, Real-time basis, and Automated
- Performance Review: Plant Manager, PlantView Application, Weekly, and Use Report

Dashboard-MVP-Prototype

Replication Opportunities

Replication Opportunity (Description)	Location(s)	Planned Actions	Responsible	Schedule
This solution is scalable beyond the Wendy's plants.	Big Bird Value AddedPrepared FoodsCase ReadySmall Bird Value Added	• N/A • N/A	• N/A • N/A	• N/A • N/A

Key Takeaways

Currently, annual saving from one plant where the POC is being implemented would equate to roughly \$22,000 in labor. If implemented in other locations as mentioned above, Tyson could save potentially more than \$1 million.

Transition to Process Owner

Items transitioned to the Process Owner:

- Final Charter
- Analysis Summary
 - What was measured?
 - · Root cause summary
- Improvements Summary
 - Revised 'To-Be' Process Map
 - Specific solutions, by root cause
 - Results from the solution
- Financial Benefits Summary
- Implementation Plan
 - Risk/Process monitoring plan
 - Response Plan
 - Process Performance Metrics
 - Implementation work plan

Solution Transfer Plan

Steps Required for Completion / Handoff to the Business	Owner	Scheduled Completion
Recalibrate Gocator equipment each week because processing line is physically dismantled and reassembled after sanitation on the weekend		7/24/23
Publish a weekly work order to calibrate the Gocator every Sunday night before processing begins		7/28/23

Lessons Learned

- The development took longer than estimated
- Team were not aware of recalibration of Gocator until late in the project