AN EXPERIMENTAL STUDY ON AUDIO REPLAY ATTACK DETECTION USING DEEP NEURAL NETWORKS

Bekir Bakar, Cemal Hanilçi

Bursa Technical University

Department of Electrical and Electronics Engineering

Bursa, Turkey

Replay Attack Detection

- Given a speech signal S, spoofing detection is a hypothesis test:
 - $> H_0$: S is genuine speech signal
 - $> H_1$: S is re-played/spoof speech signal
- Using the feature vectors extracted from speech signal *S*, log-likelihood ratio (*LLR*) test can be applied to decide between two hypothesis:
 - $\geq LLR(X) = logp(X|\lambda_{H_0}) logp(X|\lambda_{H_1})$
- $\mathbf{X} = \{x_1, x_2, \dots x_T\}$ are the feature vectors.
- λ_{H_0} and λ_{H_1} are the acoustic models representing natural/genuine and re-played/spoof speech classes.

Features

• CQCC

- > 18 dimensional $(c_1 c_{19})$ static constant Q cepstral coefficients [1] are computed using constant-Q transform.
- For Greater time resolution for the higher frequencies and greater frequency resolution for the lower frequencies.

• MFCC

- > Mel-frequency cepstral coefficients are extracted from the pre-emphasized speech signal [2].
- > 20 ms frames in 10 ms overlap, Hamming window.
- > 27-channel mel-filterbank.

• LTAS

- The **514** dimensionel **long-term** average spectrum [3].
- Represents an utterance in a long-term rather than short-term.
- > 20 ms frames in 10 ms overlap.
- > 512 point discrete Fourier transform
- Concatenation of the mean and standard deviation statistics of logarithmic magnitude spectrum.

Classifiers

• GMM

- > 512 component Gaussian mixture model.
- > Expectation maximization (EM) algorithm.
- Genuine and replay clases $(\lambda_{replay}, \lambda_{genine})$ replay attack detection score is computed as:

$$LLR_{GMM}(X) = logp(X|\lambda_{genuine}) - logp(X|\lambda_{replay})$$

• DNN

- Fully-connected feed-forward neural network.
- ➤ Batch training, batch normalization and dropout.
- > The softmax function.
- The posteriors obtained at the output layer (two units) of deep neural network is transformed into LLR score as:

$$LLR_{GMM}(X) = logp(X|\lambda_{genuine}) - logp(X|\lambda_{replay})$$

	CQCC	MFCC	LTAS	
Input Size	18	57	514	Optimized empirically.
Hidden Layers	3	3	5	optimized empirically.
Unit Size	256	256	1024	
Dropout	0.2	0.2	0.5	

These values are highly depend on data (features).

Results

• Development Set

System	EER (%)
CQCC-GMM	8.18
MFCC-GMM	5.54
CQCC-DNN	10.05
MFCC-DNN	6.44
LTAS-DNN	4.10

System	EER (%)
$CQCC_{CMVN}$	15.15
$MFCC_{CMVN}$	13.40
$CQCC_{CMVN}$	17.18
$MFCC_{CMVN}$	12.51
$LTAS_{CMVN}$	6.05

Short-term are inferior to long-term features independent of the classifier.

Cepstral mean and variance normalization reduces performance

High-frequency components convey more discriminative information.

Evaluation Set

System	EER (%)
$CQCC_{CMVN}$	15.15
$MFCC_{CMVN}$	13.40
$CQCC_{CMVN}$	17.18
$MFCC_{CMVN}$	12.51
$LTAS_{CMVN}$	6.05

DNN slightly improves the performans in comparison to GMM classifier for MFCC features.

GMM classifier is superior to DNN back-end for CQCC features.

Det Curves

References

- [1] Massimiliano Todisco, Hector Delgado, and Nicholas Evans, "A new feature for automatic speaker verification anti-spoofing: Constant Q cepstral coefficients," in Proc. Speaker Odyssey Workshop, 2016, pp. 249–252.
- [2] S. Davis and P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences," IEEE Transactions on Acoustics, Speech, and Signal Processing, pp. 357–366, Aug. 1980.
- [3] H. Muckenhirn, M. Magimai-Doss, and S. Marcel, "Presentation attack detection using long-term spectral statistics for trustworthy speaker verification," in Proc. BIOSIG, 2016, pp. 1–6.
- [4] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, "Speaker verification using adapted Gaussian mixture models", *Digital Signal Processing*, vol. 10, no. 1-3, pp. 19-41, 2000.