Sistemi e Applicazioni Cloud

Appello del 16 gennaio 2024 [Tempo consegna: 2h 30m]

Parte 1: rete base

Si usi un simulatore per studiare il comportamento di un sistema di Edge computing che:

- esegue localmente una parte delle elaborazioni
- scarica una parte delle elaborazioni verso un sistema Cloud remoto che opera secondo un paradigma FaaS

Il sistema è mostrato nella figura.

Figure 1: Modello di rete

Il carico in ingresso è $\lambda=10$ richieste al secondo. Una frazione f_l delle richieste sono processate localmente (quindi $\lambda_l=\lambda f_l$ dove λ_l è il tasso di arrivo nel ramo Local della figura), con un server locale che ha un processing rate μ di 10 richieste al secondo. Le rimanenti richieste sono inviate al sistema Cloud ($\lambda_c=\lambda(1-f_l)$ dove λ_c è il tasso di arrivo nel ramo Cloud della figura). Il sistema Cloud opera in modalità FaaS e il tempo di risposta si può modellare come una coppia di delay center che simulano il ritardo di rete $\delta_c=100$ ms e il tempo di esecuzione della funzione Cloud $T_c=1/\mu$.

Identificare il tempo di risposta complessivo T_r nel caso in cui $f_l = 0.7$. Indicare anche l'intervallo di confidenza del 67% per tali valori [Valore atteso: 0.296 sec].

Nota: Se non si svolge correttamente questo punto del compito, l'esame non è superato.

Parte 2: dimensionare il bilanciamento

Identificare mediante la teoria delle reti di code il valore di f_l tale per cui il tempo di esecuzione del ramo Local è pari al tempo di esecuzione del ramo Cloud.

Parte 3: verifica

Eseguire un'analisi del tempo di risposta T_r per un range di valori di $f_l \in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].$

Punto bonus: plottare il grafico adattando lo script python fornito.

