

→목차

[1] 아이소제니 기반 암호 소개

[2] Supersingular Isogeny Diffie-Hellman

History

- 아이소제니 기반 암호는 2006년 Couveignes,
 Rostovtsev, Stolbunov 에 의해 처음으로 제안 (CRS)
- Ordinary curve를 사용한 DH 기반 암호
- 하지만 ordinary curve의 endomorphism ring의 commutative 한 성질을 활용한 Childs 등에 공격으로 subexponential complexity를 가지게 됨
- 또한 매우 느린 속도로 효율성이 저하됨

History

- 2011년 De Feo와 Jao의 supersingular를 사용한
 DH 기반 키 교환 프로토콜로 다시 주목을 받음
 - Supersingular isogeny Diffie-Hellman (SIDH)
- Supersingular curve는 endomorphism ring이
 noncommutative 하기 때문에 Childs 등의 공격에 안
 전

ordinary curves

- subexponential,
- inefficient

2006 CRS Scheme Costello et al. Practical implementation

> 2016 SIDH Library

Castryck et al. CRS using supersingular curve

2018 CSIDH

2011

SIDH

Jao, De Feo supersingular curves

- exponential

2017

SIKE

NIST PQC Submission Round 3 alternative candidate

Security base

- Isogeny problem
 - Let E_1 , E_2 be elliptic curves over F_q , $\#(E_1) = \#(E_2)$
 - Find an isogeny ϕ such that $\phi: E_1 \to E_2$
- Ramanujan Graph
 - Spectral gap 이 최대인 regular graph

그래프의 모든 vertex가 동일한 degree

Security base

- Isogeny problem
 - Let E_1 , E_2 be elliptic curves over F_q , $\#(E_1) = \#(E_2)$
 - − Find an isogeny ϕ such that $\phi: E_1 \to E_2$
- Ramanujan Graph
 - Isogeny graph는 Ramanujan graph의 한 종류 → 가 장 많이 퍼지는 그래프
 - 연속된 ℓ-isogeny → ℓ + 1 가지 neighbor 존재
 - Example: 연속된 2-isogeny

- Velu formula : 타원곡선과 subgroup 이 주어지면 isogeny
 연산 가능
 - 공개정보: 두 타원곡선
 - 비밀정보: Kernel (subgroup) (isogeny)
 - 비밀정보를 가진 사용자는 Velu의 공식으로 isogeny 연 산 가능

- Supersingular elliptic curves E over F_p
 - $E[p] \cong \{0\}$
 - Endomorphism ring ≅ Quaternion algebra
 - j-invariant 는 F_{p^2} $(or F_p)$ 에 존재

	SIDH	ECC
Prime	$p = 2^{e_A} 3^{e_B} - 1$	$p = 2^{256} - 2^{224} + 2^{192} + 2^{96} + 1$
Field	F_{p^2}	F_p
Curve	Supersingular elliptic curve	Ordinary curve
Order of a curve	$(2^{e_A}3^{e_B})^2$	Near prime
Security	Hardness of finding isogeny between given two elliptic curve	Hardness of solving ECDLP
Private key	Isogeny (kernel)	d

Protocol Outline

M Diffie-Hellman 과의 비교

- 장점
 - 다른 PQC 암호에 비해 키 사이즈가 작다

- 단점
 - 다른 PQC 암호에 비해 느리다

Performance

Performance

