Университет ИТМО

Отчёт по лабораторной работе №5 «Определение изобарной, изохорной теплоемкостей и коэффициента Пуассона воздуха в процессе адиабатного сжатия»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверил: Пшеничников В. Е.

Цель работы

По результатам комбинированного термодинамического процесса, проведенного над газом (воздухом), рассчитать значения изобарной, изохорной теплоемкостей, а также коэффициента Пуассона.

Теоретические основы лабораторной работы

В данной работе над газом проводится комбинированный термодинамический процесс, состоящий из последовательно протекающих адиабатного и изохорного процессов. Диаграмма процессов:

Вначале газ с параметрами $p_{\text{атм}}$ и $T_{\text{в}}$ находится состоянии 1. В результате адиабатного сжатия (процесс 1-2) давление газа в сосуде увеличивается относительно атмосферного давления на величину Δp_s , а температура становится больше температуры внешней среды на величину ΔT_s , следовательно газ переводится в новое состояние 2 с параметрами $(p_{\text{атм}} + \Delta p_s)$, $(T_{\text{в}} + \Delta T_s)$. Затем он изохорно охлаждается до начальной температуры $T_{\text{в}}$ (процесс 2-3). Давление газа при этом становится равным $p_{\text{атм}} + \Delta p_T$. Очевидно, что попасть в состояние 3 можно было и непосредственно из состояния 1 в результате изотермического процесса 1-3. Важно подчеркнуть, что изменения объемов в адиабатном процессе 1-2 ΔV_s и в изотермическом процессе 1-3 ΔV_T равны по величине.

Последнее обстоятельство использовано при выводе расчетных соотношений. Приведём их (сам вывод опущен):

$$C_{vyg} = \frac{R\Delta p_T}{\mu(\Delta p_S - \Delta p_T)} \tag{1}$$

$$C_{\text{руд}} = \frac{R\Delta p_S}{\mu(\Delta p_S - \Delta p_T)} \tag{2}$$

Из двух последних равенств легко находится коэффициент Пуассона

$$\gamma = \frac{\Delta p_S}{\Delta p_T} \tag{3}$$

Так как изменение давления Δp рассчитывается по формуле:

 $\Delta p = \rho_{\rm B} g \Delta h$,

где $\rho_{\rm B}=1000$ кг/м² — плотность воды, g=9,81м/с² — ускорение свободного падения, то из формул (1)–(3) получим:

$$C_{vyg} = \frac{R\Delta h_T}{\mu(\Delta h_S - \Delta h_T)} \tag{4}$$

$$C_{pyg} = \frac{R\Delta h_S}{\mu(\Delta h_S - \Delta h_T)} \tag{5}$$

Из двух последних равенств легко находится коэффициент Пуассона:

$$\gamma = \frac{\Delta h_S}{\Delta h_T} \tag{6}$$

Экспериментальные данные

Таблица 1. Зависимость уровня жидкости от прошедшего времени

	•				<i>J</i> 1		,	,		1	, ,		1		
<i>t</i> , c	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
h_S , MM	200	50	55	58	60	62	63	64	65	65	65	65	65	65	65
	200	40	43	48	50	52	54	55	56	57	58	58	58	58	59
	200	45	50	53	55	57	60	60	61	61	62	63	63	63	63

 $h_T = 62 \text{ MM}.$

Обработка результатов

1. По результатам трех опытов рассчитаем для каждого момента времени среднее значение уровня $\overline{h}_s(t)$. Результаты занесём в таблицу 2:

\overline{h}_S , mm	200	45	49.33	53	55	57	59	59.67	60.67	61	61.67	62	62	62	62.33
$\Delta \overline{h}$, mm	125.00	30	25.67	22	20	18	16	15.33	14.33	14	13.33	13	13	13	12.67
$ln(\Delta \overline{h})$, mm	4.83	3.40	3.25	3.09	3	2.89	2.77	2.73	2.66	2.64	2.59	2.56	2.56	2.56	2.54

 $h_T = 62$ MM.

2. Рассчитаем для каждого момента времени изменение высоты столба жидкости в левом колене манометра по формуле: $\Delta \overline{h} = h_T - \overline{h}_s(t).$

4. Построим график зависимости $f(t) = ln(\Delta \overline{h})$.

Рис.4. График зависимости $ln(\Delta \overline{h})$ от t. График представляет собой прямую линию, которою необходимо продолжить. Этот график пересекает ось ординат в точке K=3.4

- 5. Вычислим искомое значение h_S по формуле: $h_S = h_T e^K = 32,04 ({
 m MM});$
- 6. Рассчитаем значение величин Δh_s и Δh_T :

$$\Delta h_s = \Delta h_S = h_0 - h_S = 167,96$$
 mm; $\Delta h_T = h_0 - h_T = 138$ mm.

7. Рассчитаем удельные теплоемкости $C_{vyд}$ и $C_{pyд}$, а также коэффициент Пуассона γ с помощью формул 4-6, принимая R=8,31 1/моль, $\mu=28,98$ г/моль:

$$C_{vyд} = \frac{R\Delta h_T}{\mu(\Delta h_S - \Delta h_T)} = 1321, 34$$
Дж/(кг·К)
 $C_{pyд} = \frac{R\Delta h_S}{\mu(\Delta h_S - \Delta h_T)} = 1608, 24$ Дж/(кг·К)
 $\gamma = \frac{\Delta h_S}{\Delta h_T} = 1, 217$

Вывод

В результате комбинированного термодинамического процесса, проведенного над газом (воздухом), были рассчитаны значения изобарной, изохорной теплоемкостей, а также коэффициента Пуассона. Мы экспериментально подтвердили зависимость между изобарной и изохорной теплоёмкостями (Изобарная теплоёмкость численно превосходит изохорную на величину R).