K-means聚类的实现以及案例讲解

目录

- 1 k-means聚类步骤
- 2. 案例联系
- 3. K-means的api初步使用
- 3.1 api 介绍
- 4. 案列
- 4.1 流程分析
- 4.2 代码实现
- 4.3 完整代码
- 4.4 实验结果

1 k-means聚类步骤

- 1、随机设置K个特征空间内的点作为初始的聚类中心
- 2、对于其他每个点计算到K个中心的距离 , 未知的点选择最近的一个聚类中心点作为标记类别
- 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
- 4、如果计算得出的新中心点与原中心点一样(质心不再移动) ,那么结束 ,否则重新进行第二步 过程

通过下图解释实现流程:

2. 案例联系

	X值	Y值
P1	7	7
P2	2	3
Р3	6	8
P4	1	4
P5	1	2
P6	3	1
P7	8	8

	X值	Y值
P8	9	10
P9	10	7
P10	5	5
P11	7	6
P12	9	3
P13	2	8
P14	5	11
P15	5	2

https://blog.csdn.net/A496608119

1、 随机设置K个特征空间内的点作为初始的聚类中心 (本案例中设置p1和p2)

2、 对于其他每个点计算到K个中心的距离 , 未知的点选择最近的一个聚类中心点作为标记类别

	P1 (7,7)	P2 (2,3)
Р3	1.41	6.40
P4	6.71	1.41
P5	7.81	1.41
P6	7.21	2.24
P7	1.41	7.81
P8	3.61	9.90

	P1 (7,7)	P2 (2,3)
P9	3	8.94
P10	2.83	3.61
P11	1	5.83
P12	4.47	7.00
P13	5.10	5.00
P14	4.47	8.54
P15	5.39 tps://blog.csdn.n	et/A4 356 8119

P1	P3	P7	P8	P9	P10	P11	P12	P14
P2	P4	P5	P6	P13	P15			

3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)

4、 如果计算得出的新中心点与原中心点一样(质心不再移动) ,那么结束 ,否则重新进行第二步过程 【经过判断 ,需

要重复上述步骤,开始新一轮迭代。

	P' ₁ (7.3,7.2)	P' ₂ (1.8,4.6)
P1	0.36	5.73
P2	6.75	1.61
Р3	1.39	5.40
P4	7.02	1.00
P5	8.16	2.72
P6	7.57	3.79
P7	1.06	7.07

	P' ₁ (7.3,7.2)	P' ₂ (1.8,4.6)
P8	3.24	9.00
P9	2.82	8.54
P10	3.18	3.22
P11	1.32	5.39
P12	4.66	7.38
P13	5.25	3.41
P14	4.30	7.16
P15	5.25	3.41

P' ₁	P1	Р3	P7	P8	P9	P10	P11	P12	P14
P' ₂	P2	P4	P5	P6	P13	P15			

https://blog.csdn.net/A496608119

5、 当每次迭代结果不变时, 认为算法收敛, 聚类完成, K-Means一定会停下, 不可能陷入一直选质心的过程。

3. K-means的api初步使用

3.1 api 介绍

- sklearn.cluster.KMeans(n_clusters=8)
 - o 参数:
 - n_clusters:开始的聚类中心数量
 - 整型,缺省值=8,生成的聚类数,即产生的质心 (centroids) 数。
 - 。 方法:
 - estimator.fit(x)
 - estimator.predict(x)
 - estimator.fit_predict(x)
 - 计算聚类中心并预测每个样本属于哪个类别,相当于先调用ftt(x),然后再调用predict(x)。

4. 案列

随机创建不同二维数据集作为训练集, 并结合k-means算法将其聚类, 你可以尝试分别聚类不同数量的 簇, 并观察聚类

效果:

聚类参数n_cluster传值不同,得

到的聚类结果不同

4.1 流程分析

4.2 代码实现

1. 创建数据集

- 1. import matplotlib.pyplot as plt
- 2. from sklearn.datasets.samples generator import make blobs
- 3. from sklearn.cluster import KMeans
- 4. from sklearn.metrics import calinski harabaz score
- 5. # 创建数据集
- 6. # X为样本特征, Y为样本簇类别, 共1000个样本, 每个样本2个特征, 共4个簇,
- 7. # 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
- 8. X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
- 9. cluster std=[0.4, 0.2, 0.2, 0.2],
- 10. random state=9)
- 11. # 数据集可视化
- 12. plt.scatter(X[:, 0], X[:, 1], marker='o')
- 13. plt.show()

2.使用K-means进行聚类,并使用CH 方法进行评估

CH 系数 (Calinski-Harabasz Index

类别内部数据的协方差越小越好,类别之间的协方差越大越好(换句话说:类别内部数据的 距离平方和越小越好,类别之间的距离平方和越大越好),这样的Calinski-Harabasz分数s会 高,分数s高则聚类效果越好。

这样的Calinski-Harabasz分数s会高 , 分数s高则聚类效果越好。

$$s(k) = \frac{tr(B_k)}{tr(W_k)} \frac{m - k}{k - 1}$$

tr为**矩阵的迹**, B_k 为类别之间的协方差矩阵, W_k 为类别内部数据的协方差矩阵;m为训练集样本数,k为类别数。

迹, 定义为: $a_{11} + a_{22} + \cdots + a_{nn}$

使用矩阵的迹进行求解的理解:矩阵的对角线可以表示一个物体的相似性 在机器学习里 ,主要为了获取数据的特征值 ,那么就是说 ,在任何一个矩阵计算出来之后 , 都可以简单化 ,只要获取矩阵的迹 ,就可以表示这一块数据的最重要的特征了 ,这样就可以 把很多无关紧要的数据删除掉 ,达到简化数据 ,提高处理速度。 CH需要达到的目的:

用尽量少的类别聚类尽量多的样本,同时获得较好的聚类效果。

4.4 实验结果

原始数据 K=2 K=3

K = 4

CH:2931.625030199556

CH:3116.1706763322227 CH: 5924.050613480169