

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 3

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger libremente cinco ejercicios completos de los diez propuestos. Se expresará claramente cuales son los elegidos. Si se resolvieran más, sólo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

E1 .- (Álgebra)

a) Discutir según los valores del parámetro λ el sistema de ecuaciones lineales siguiente:

$$\begin{cases} x + y + z = 0 \\ x - \lambda y = 1 \\ 2x + \lambda z = 1 \end{cases}$$
 (1,2 puntos)

b) Resolverlo para $\lambda=1$. (0,8 puntos)

E2.- (Álgebra)

Dadas las matrices $M = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$ y $N = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, hallar la matriz P que verifica que $M^{-1}PM = N$. (2 puntos)

E3. (Geometría)

Dadas las rectas $r \equiv x = y + 1 = \frac{z-2}{2}$ y $s \equiv \begin{cases} x - y + 3 = 0 \\ 2x - z + 3 = 0 \end{cases}$, se pide:

a) Determinar la posición relativa de r y s. (1 punto)

b) Hallar la ecuación del plano que contiene a r y s. (1 punto)

E4.- (Geometría)

Dada la recta $r \equiv x - 1 = \frac{y-2}{-1} = \frac{z-1}{2}$

a) Calcular el plano π_1 que pasa por A=(1,2,3) y es perpendicular a la recta r. (0,5 puntos)

b) Calcular el plano π_2 que pasa por B = (-1,1,-1) y contiene a la recta r. (1,5 puntos)

E5.- (Análisis)

Dada la función $f(x) = x^5 - 5x - 1$, determínense sus intervalos de crecimiento y decrecimiento, sus extremos relativos, sus intervalos de concavidad y convexidad y sus puntos de inflexión. (2 puntos)

E6.- (Análisis)

Calcular el valor de m > 0 para el cual se verifica que $\lim_{x \to 0} \frac{1 - \cos(mx)}{x^2} = 2$. (2 puntos)

E7.- (Análisis)

- a) Estudiar la continuidad de la función definida por $f(x) = \begin{cases} \frac{1-\cos x}{x}, & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases}$ (1 punto)
- **b)** Calcular $\int x \ln(x^2) dx$. (1 punto)

E8.- (Análisis)

Se considera la función $f(x) = x - \cos(x)$

a) Demostrar que la ecuación f(x) = 0 tiene al menos una solución en el intervalo $[0,\pi/2]$.

(1 punto)

b) Probar que la ecuación f(x) = 0 solo puede tener una solución en el intervalo $[0,\pi/2]$, de modo que la solución del apartado anterior es la única. (1 punto)

E9.- (Probabilidad y Estadística)

Dentro de una caja hay bolas de varios colores que tienen todas el mismo tamaño y aspecto, siendo algunas de madera y las otras de metacrilato. Concretamente:

- El 48% son blancas y entre ellas dos tercios son de madera.
- El 24% son rojas, y de ellas las tres cuartas partes son de madera.
- El 28% son verdes, de las cuales la mitad son de madera.

Considerando los sucesos: B = "ser blanca", R = "ser roja", V = "ser verde" y M = "ser de madera"

- a) Indicar cuales son los valores de P(M/B), P(M/R) y P(M/V). (0'3 puntos)
- **b**) Calcular la probabilidad de que al sacar al azar una de las bolas de la caja, sea de madera.

(0'7 puntos)

c) Si solo sabemos que una de las bolas de la caja, elegida al azar, es de madera, ¿cual es la probabilidad de que sea blanca? (1 punto)

E10.- (Probabilidad y Estadística)

Se sabe que el coeficiente intelectual de la población adulta española sigue una distribución normal de media 100 y desviación típica 20.

- **a)** ¿Qué porcentaje de españoles adultos se espera que tengan un coeficiente intelectual entre 95 y 105? (1 punto)
- **b**) Si se considera que una persona es superdotada cuando su coeficiente intelectual es mayor que 160, calcular el porcentaje de españoles adultos que son superdotados. (1 punto)

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9014
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9318
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999