EMC TEST REPORT

Report No.: 15020319-FCC-E Supersede Report No.: N/A

ouporoous report non runt			
Applicant	Watchdata Technologies Pte. Ltd.		
Product Name	WatchQRO		
Main Model	P8-3		
Test Standard	FCC Part 15 Subpart B Class B:2014, ANSI C63.4: 2014		
Test Date	April 16 to April 17, 2015		
Issue Date	April 21, 2015		
Test Result	Test Result Pass Fail		
Equipment complied	I with the specification		
Equipment did not comply with the specification			
Deon	Dai Dave Stoke		
Deon Da Test Engin	\$\$\pi_1\pi_2\pi_2\pi_3\pi_3\pi_3\pi_3\pi_3\pi_3\pi_3\pi_3		
This test report may be reproduced in full only			
Test resu	It presented in this test report is applicable to the tested sample only		

Issued by: SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Test Report No.	15020319-FCC-E
Page	2 of 28

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

riodroditations for conformity riodecoment		
Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report No.	15020319-FCC-E
Page	3 of 28

This page has been left blank intentionally.

Test Report No.	15020319-FCC-E
Page	4 of 28

<u>CONTENTS</u>

1	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 <i>F</i>	C POWER LINE CONDUCTED EMISSIONS	8
6.2 F	RADIATED EMISSIONS	12
ANN	EX A. TEST INSTRUMENT	15
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	16
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	24
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	27
ANN	EX E. DECLARATION OF SIMILARITY	28

Test Report No.	15020319-FCC-E
Page	5 of 28

1. Report Revision History

Report No.	Report Version	Description	Issue Date
15020319-FCC-E	NONE	Original	April 21, 2015

2. <u>Customer information</u>

Applicant Name	Watchdata Technologies Pte. Ltd.
Applicant Add	84 Genting Lane, #02-01 Cityneon Design Centre, Singapore
Manufacturer	Watchdata Technologies Pte. Ltd.
Manufacturer Add	84 Genting Lane, #02-01 Cityneon Design Centre, Singapore

3. Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China
FCC Test Site No.	986914
IC Test Site No.	4842B-1
Test Software	Labview of SIEMIC version 1.0

Test Report No.	15020319-FCC-E
Page	6 of 28

4. Equipment under Test (EUT) Information

Description of EUT: WatchQRO

Main Model: P8-3

Serial Model: N/A

Date EUT received: April 13, 2015

Test Date(s): April 16 to April 17, 2015

Input Power: Battery: 180mAh

Trade Name : N/A

Port Mini USB Port

FCC ID: Y97QROP8-3-1

Test Report No.	15020319-FCC-E
Page	7 of 28

5. <u>Test Summary</u>

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.107; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
§15.109; ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Test Item	Description	Uncertainty
Radiated Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	3.952dB

Test Report No.	15020319-FCC-E
Page	8 of 28

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	April 16, 2015
Tested By:	Deon Dai

Requirement(s): Item Spec **Applicable** Requirement For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mulH/50 ohms line impedance stabilization network 47CFR§15.10 굣 a) (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges Limit (dBµV) (MHz) QP Average 0.15 ~ 0.5 66 – 56 56 - 46 $0.5 \sim 5$ 56 46 5 ~ 30 60 50 Vertical Ground Reference Plane EUT 80cm Test Setup LISN Horizontal Ground Note: 1.Support units were connected to second LISN 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. 4. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 5. All other supporting equipment were powered separately from another main supply. Procedure The EUT was switched on and allowed to warm up to its normal operating condition. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over 7. the required frequency range using an EMI test receiver. High peaks, relative to the limit line, were then selected, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10kHz.

Steps 6-7 were repeated for the LIVE line (for AC mains) or DC line (for DC power).

Test Report No.	15020319-FCC-E
Page	9 of 28

Remark		
Result	Pass	Fail
Test Data	Yes	□ _{N/A}
Test Plot	Yes	□ _{N/A}

Data sample

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Factors (dB)
XXX	56.21	66.00	-9.79	39.20	56.00	-16.80	12.22

Frequency (MHz) = Emission frequency in MHz

Quais-Peak/Average (dB μ V/m)=Receiver Reading(dB μ V/m)+ Factor(dB)

 $Limit(dB\mu V/m)=Limit$ stated in standard

Factor (dB)= cable loss+ Insertion loss of LISN+ Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Calculation Formula:

Margin (dB)=Quasi Peak / Average (dB μ V/m) – limit (dB μ V/m)

Test Report No.	15020319-FCC-E
Page	10 of 28

Test Mode: Normal Working

Test Data

Phase Line Plot 120V

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.16	53.36	65.36	-12.00	36.11	55.36	-19.25	12.05
0.67	37.09	56.00	-18.91	33.09	46.00	-12.91	10.95
0.57	33.74	56.00	-22.26	25.04	46.00	-20.96	11.03
4.06	27.69	56.00	-28.31	16.20	46.00	-29.80	10.89
0.25	41.15	61.76	-20.61	29.04	51.76	-22.72	11.45
0.74	31.17	56.00	-24.83	25.49	46.00	-20.51	10.89

Test Report No.	15020319-FCC-E
Page	11 of 28

Test Mode: Normal Working

Test Data

Phase Neutral Plot 120V

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.16	53.32	65.36	-12.05	34.54	55.36	-20.82	12.04
0.65	35.96	56.00	-20.04	31.80	46.00	-14.20	10.95
0.56	33.71	56.00	-22.29	24.14	46.00	-21.86	11.01
3.95	28.86	56.00	-27.14	17.92	46.00	-28.08	10.94
3.58	27.72	56.00	-28.28	19.03	46.00	-26.97	10.94
0.73	32.30	56.00	-23.70	23.78	46.00	-22.22	10.89

Test Report No.	15020319-FCC-E
Page	12 of 28

6.2 Radiated Emissions

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	April 17, 2015
Tested By:	Deon Dai

Requirement(s):

Test Setup Item Requirement Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges Frequency range (MHz) Field Strength (µV/m)	>						
Test Setup 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT chamber and polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
Test Setup 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT chamber and polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
Test Setup 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
Test Setup 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT chamber of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
Test Setup 1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT cha Maximization of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT cha Maximization of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
1. The EUT was switched on and allowed to warm up to its normal operating condition. 2. The test was carried out at the selected frequency points obtained from the EUT cha Maximization of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT cha Maximization of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
2. The test was carried out at the selected frequency points obtained from the EUT characters. Maximization of the emissions, was carried out by rotating the EUT, changing the an polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarisation (whichever gave the higher emission lever rotation of the EUT) was chosen.							
c. Finally, the antenna height was adjusted to the height that gave the maxim 3. For emission frequencies measured below and above 1GHz, set the spectrum analy and 1MHz resolution bandwidth respectively for each frequency measured. 4. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency measured.	aracterisation. ntenna rel over a full on. num emission. yzer on a 100kHz						
Remark The EUT antenna was pre-tested under the following modes: X-Y axis; Y-Z axis only recorded the worst case X-Y axis in this report.	s; X-Z axis. We						
Result Pass Fail	Pass Fail						
Test Data Yes □N/A							
Test Plot Yes (See below)							

Test Report No.	15020319-FCC-E
Page	13 of 28

Data sample

Frequency (MHz)	Quasi Peak (dBμV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
XXX	32.23	181.00	Н	350.00	-38.23	40.00	-7.77

Frequency (MHz) = Emission frequency in MHz

Quais-Peak ($dB\mu V/m$)= Receiver Reading($dB\mu V/m$)+ Factor(dB)

Azimuth=Position of turn table

Polarity=Polarity of Receiver antenna

Height(cm)= Height of Receiver antenna

Factor (dB)=Antenna factor + cable loss- antenna gain

Limit (dB μ V/m)=Limit stated in standard

Calculation Formula:

Margin (dB)=Quasi Peak (dB μ V/m) – limit (dB μ V/m)

Test Report No.	15020319-FCC-E
Page	14 of 28

Test Mode:	Normal Working
------------	----------------

(Below 1GHz)

Test Data

Vertical & Horizontal Polarity Plot @3m

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
239.99	42.14	301.00	Н	131.00	-29.90	46.00	-3.86
216.41	37.05	103.00	Ι	127.00	-31.16	46.00	-8.95
144.00	34.17	347.00	V	100.00	-31.11	43.50	-9.33
732.96	22.97	354.00	V	99.00	-19.32	46.00	-23.03
60.00	28.72	232.00	V	101.00	-37.42	40.00	-11.28
721.42	31.93	38.00	V	108.00	-19.46	46.00	-14.07

Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1 GHz.

Test Report No.	15020319-FCC-E
Page	15 of 28

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted Emission	ns				
R&S EMI Test Receiver	ESPI3	101216	11/04/2014	11/03/2015	>
V-LISN	ESH3-Z5	838979/005	09/27/2014	09/26/2015	V
SIEMIC Labview Conducted Emissions software	V1.0	N/A	N/A	N/A	(
Radiated Emissions					
Hp Spectrum Analyzer	8563E	3821A09023	10/09/2014	10/08/2015	>
R&S EMI Receiver	ESPI3	101216	11/04/2014	11/03/2015	<
Antenna (30MHz~6GHz)	JB6	A121411	04/14/2015	04/13/2016	<
Hp Agilent Pre-Amplifier	8447F	1937A01160	10/27/2014	10/26/2015	~
SIEMIC Labview Radiated Emissions software	V1.0	N/A	N/A	N/A	>

Test Report No.	15020319-FCC-E
Page	16 of 28

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph EUT Internal Photo

Front View of EUT

Rear View of EUT

Test Report No.	15020319-FCC-E
Page	17 of 28

Top View of EUT

Bottom View of EUT

Test Report No.	15020319-FCC-E
Page	18 of 28

Left View of EUT

Right View of EUT

Test Report No.	15020319-FCC-E
Page	19 of 28

Annex B.ii. Photograph EUT Internal Photo

Uncover- Front View

EUT PCBA – Front View

Test Report No.	15020319-FCC-E
Page	20 of 28

EUT PCBA - Rear View

Battery – Front View

Test Report No.	15020319-FCC-E
Page	21 of 28

Battery – Rear View

Test Report No.	15020319-FCC-E
Page	22 of 28

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Setup Front View

Conducted Emissions Setup Side View

Test Report No.	15020319-FCC-E
Page	23 of 28

Radiated Emissions Setup Below 1GHz Front View

Test Report No.	15020319-FCC-E
Page	24 of 28

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.i. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report No.	15020319-FCC-E
Page	25 of 28

Block Configuration Diagram for Radiated Emissions

Test Report No.	15020319-FCC-E
Page	26 of 28

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Calibration Date
Gateway	Gateway Laptop	MS2288 & LXWHF02013951C3CA92200	N/A

Test Report No.	15020319-FCC-E
Page	27 of 28

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see Attachment

Test Report No.	15020319-FCC-E
Page	28 of 28

Annex E. DECLARATION OF SIMILARITY

N/A