Vorlesung Kognition 1: 11. Arbeitsgedächtnis I

Klaus Oberauer

Lernziele heute

- Die Bedeutung des Arbeitsgedächtnisses für die Kognition verstehen
- Verfahren zur Messung der Arbeitsgedächtnis-Kapazität kennenlernen
- Die Arbeitsgedächtnis-Modelle von Baddeley und von Cowan erklären können
- Forschung zum Fokus der Aufmerksamkeit im Arbeitsgedächtnis verstehen

Wiederholung: Das Standard-Modell

(Atkinson & Shiffrin, 1968)

Arbeitsgedächtnis

- "Schreibtisch des Denkens"
- Hält Repräsentationen für Verarbeitung bereit
- Begrenzte Kapazität

Messung der AG-Kapazität: Gedächtnisspanne

- Spanne = längste Liste, die in 50% der Versuche korrekt wiedergegeben werden kann
- Einheit der Kapazität: "Bits"? Listenelemente?
- "Chunks" (Miller, 1956): Der Person vertraute Sinneinheiten
- "Magical number 7 (plus or minus 2)"

Eine komplexe Spannen-Aufgabe

Alle Kinder haben einen Vater - B In der Post kauft man Schnitzel - K Der Himmel hat eine Ecke - S Jede Autobahn führt ans Meer - F

BKSF

Räumliche AG-Kapazität

Warum ist das Arbeitsgedächtnis wichtig?

Zusammenhang mit Denkfähigkeit

Wodurch ist AG-Kapazität begrenzt?

- Spurenzerfall über die Zeit ?
- Begrenzte kognitive Ressource ?
- Interferenz ?

Theoretische Modelle des AG

- Mehr-Komponenten-Modell
 - Baddeley und Hitch (1974), Baddeley (1986)
- Arbeitsgedächtnis als Teil des LZG
 - Cowan (1995)

Das Mehr-Komponenten-Modell von Baddeley und Hitch (1974)

Visual spatial sketch pad

Phonological loop

Visuell-räumliches und phonologisches Subsystem:

Doppelte Dissoziation mittels Doppelaufgaben

Primäraufgabe

Kurzfristiges Behalten von sprachlichem Material

Kurzfristiges Behalten von räumlicher Information

Sekundäraufgabe

Sprachliche Zweitaufgabe

Räumliche Zweitaufgabe

Doppelte Dissoziation von sprachlichem und räumlichem AG

(Myerson et al., 1999)

- "Komplexe Spannen"-Prozedur
 - abwechselnd Listenelement enkodieren und Verarbeitungsaufgabe erledigen
- Sprachliche vs. r\u00e4umliche Liste
- Sprachliche vs. r\u00e4umliche Verarbeitungsaufgabe

Doppelte Dissoziation von sprachlichem und räumlichem AG

(Myerson et al., 1999)

Ergebnisse

Secondary Task

Das Mehr-Komponenten-Modell von Baddeley und Hitch (1974)

Visual spatial sketch pad

Phonological loop

Die phonologische Schleife

- 2 Komponenten
 - Phonologischer Speicher: hält Spuren für ~ 2 s
 - Artikulatorischer Kontrollprozess:
 Wiederauffrischung ("rehearsal")
 - → Kapazität = was in 2 s artikuliert werden kann ("magic spell")
- Gesprochene Sprache hat obligatorischen Zugang zum phon. Speicher
- Visuelle Stimuli können durch Artikulation in phon. Speicher gelesen werden

Phonologische Schleife: Schema

4 wichtige Phänomene

(1) Effekt der phonologischen Ähnlichkeit

- (2) Effekt der Wortlänge
 - Tschad vs. Nicaragua
- (3) Irrelevante Sprache (nicht Lärm!) beeinträchtigt Spanne für verbales Material
- (4) Artikulatorische Suppression ("bababa") eliminiert (1) und (2) bei visueller Präsentation

Probleme für das Modell der phonologischen Schleife

- Phonologischer Speicher?
 - auch semantische Eigenschaften beeinflussen Kurzzeitgedächtnis für Wörter
 - semantische Ähnlichkeit (hilfreich)
 - Konkretheit
 - Häufigkeit

Genten, Hirpontal

- Lexikalität (Wörter vs. Nichtwörter)
- → Die "phonologische Schleife" ist nicht isoliert vom LZG

Probleme für das Modell der phonologischen Schleife

- Wortlängeneffekt
 - Wortlänge konfundiert mit Anzahl orthographischer Nachbarn (Jalbert et al., 2011)

Hut: ?

Rhinozeros: ?

 Silbenzahl, nicht Sprechdauer, ist entscheidend (Service, 1998)

tepa_teeppa>tepalo

Zwischenfazit: Die Theorie von Baddeley

- Drei getrennte Teilsysteme
 - erklärt doppelte Dissoziation von sprachlichem und visuell-räumlichem AG
- Phonologische Schleife
 - Erklärt 4 wichtige Phänomene
 - Neuere Daten zeigen Schwierigkeiten auf

Das "embedded components"- Modell von Cowan (1995)

Arbeitsgedächtnis =

Aktivierte Repräsentationen im LZG +

Aufmerksamkeit auf LZG-Repräsentationen

Das "embedded components"- Modell (Cowan, 1995)

Aktivierter Teil des LZG

- erleichtert Abruf
- Aktivierung vergeht über die Zeit

Fokus der Aufmerksamkeit

- Begrenzte Kapazität: "magical number 4"
- schützt vor Vergessen

Exekutives System

steuert Fokus

Cowan zu Spannen-Aufgaben

Die "magische Zahl 4" (+/- 1)

- Die "reine" Kapazität des AG
- Messbar, wenn Unterstützung durch aktiviertes LZG minimiert wird
 - schnelle Präsentation
 - Material kann nicht per "rehearsal" aktiv gehalten werden

Beispiel 1: "Running Span"

(Bunting, Cowan, & Saults, 2006)

Merken Sie sich die letzten 5 Ziffern

7 4 2 5 9 7 6 _ _ _ _

Beispiel 1: "Running Span"

(Bunting, Cowan, & Saults, 2006)

Beispiel 2: "Change Detection"

(Luck & Vogel, 1997)

Gedächtnisleistung für Objekte

(Luck & Vogel, 1997)

Gedächtnisleistung für Objekte

(Luck & Vogel, 1997)

$$P(Treffer) = \frac{K}{N} + \left(1 - \frac{K}{N}\right)g$$

$$P(Falsch - Alarme) = g$$

$$K = N \left(\frac{P(Treffer) - P(FA)}{1 - P(FA)} \right)$$

Wie konstant ist die "magische Zahl 4"?

Eine Untersuchung zum Fokus der Aufmerksamkeit:

(Oberauer, Wendland & Kliegl, 2003)

Objektwechselkosten

Retro-Cues

(Griffin & Nobre, 2003)

Retro-Cues

Eine Erweiterung des Modells von Cowan

(Oberauer, 2002)

- Aktivierter Teil des LZG
- leicht zu erinnern
- keine Kapazitätsbegrenzung

Bereich des direkten Zugriffs

(= Cowan's "focus")

- hält 3-4 Objekte
- begrenzte Kapazität

Fokus der

Aufmerksamkeit

 wählt jeweils 1 Objekt für Verarbeitung aus

Zusammenfassung: Arbeitsgedächtnis

- Modell von Baddeley: separate Subsysteme
 - sprachlich vs. räumlich
 - zentrale Exekutive
- Modell von Cowan/Oberauer: LZG-Repräsentationen, die aktiviert bzw. fokussiert werden
 - ca. 4 Objekte im "weiten Fokus"
 - 1 Objekt im "engen Fokus"

Literatur

- Pflichtlektüre:
- Oberauer, K., & Hein, L. (2012). Attention to information in working memory. *Current Directions in Psychological Science*, 21, 164-169.
- Empfohlen zur Vertiefung:
- Spada, H. (2006). Lehrbuch Allgemeine Psychologie. Heidelberg: Spektrum. – Kapitel 3.
- Baddeley, A., Eysenck, M. W., Anderson, M. C. (2009). Memory.
 Hove: Psychology Press. Kapitel 3.

Zitierte Literatur

- Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106-111.
- Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 90-195). New York: Academic Press.
- Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), Recent advances in learning and motivation (Vol. VIII, pp. 47-90). New York: Academic Press.
- Bunting, M. F., Cowan, N., & Saults, J. S. (2006). How does running memory span work? *Quarterly Journal of Experimental Psychology*, 59, 1691-1700.
- Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.
- Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W., & Schmitt, M. (2008). Working memory capacity and self-regulatory behavior: Toward an individual differences perspective on behavior determination by automatic versus controlled processes. *Journal of Personality and Social Psychology, 95, 962-977.*
- Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. *Nature, 390, 279-281.*
- Myerson, J., Hale, S., Rhee, S. H., & Jenkins, L. (1999). Selective interference with verbal and spatial working memory in young and older adults. *Journals of Gerontology: Psychological Sciences*, *54B*, P161-P164.
- Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 28,* 411-421.
- Oberauer, K., Süss, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? *Intelligence*, *36*, 641-652
- Oberauer, K., Wendland, M., & Kliegl, R. (2003). Age differences in working memory: The roles of storage and selective access. *Memory & Cognition, 31*, 563-569.
- Service, E. (1998). The effect of word length on immediate serial recall depends on phonological complexity, not articulatory duration. *Quarterly Journal of Experimental Psychology, 51A*, 283-304.
- Shute, V. J. (1991). Who is likely to acquire programming skills? *Journal of Educational Computing Research, 7, 1-24.*
- Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working memory: Attending to one item frees capacity. Journal of Experimental Psychology: Human Perception and Performance, 40, 1237-1256.