实验二 组合逻辑电路分析

台号___- ___ 日期_2020-06-15__ 实验成绩 _____

一、实验目的

- (1)掌握组合逻辑电路的功能测试。
- (2)验证半加器和全加器的逻辑功能。
- (3)学会组合逻辑电路的设计方法。

二、实验仪器

(1) YLSD 数字电路实验台。

(2)芯片:

74LS00	二输入端四与非门	3 片
74LS54	四输入端与或非门	1 片
74LS86	二输入端四异或门	1 片

三、实验电路图

(1) 实验内容 1-4 逻辑表达式推导的详细过程

3. 侧试全层的塑弹功能 孔天欣

(1) 選輯表式

$$Y = (\overline{A_i B_i A_i})(\overline{A_i B_i B_i})$$

$$= \overline{A_i B_i} (\overline{A_i + B_i})$$

$$= \overline{A_i B_i} + \overline{A_i B_i}$$

$$= A_i \oplus B_i$$

$$Z = C_{i-1}$$

$$X_1 = (\overline{A_i \oplus B_i})C_{i-1}$$

$$= \overline{A_i \oplus B_i} \oplus C_{i-1}$$

$$= (\overline{A_i \oplus B_i})C_{i-1}(\overline{A_i \oplus B_i})$$

(2) 实验内容 4 自行设计电路 b

四、预习内容

- 1. 半加器和全加器的区别
- 2.74LS54 使用时需要注意哪些问题

孔天欣

(1) 半加器和全加器的区别

加数与被加数作为输入,和数和进位为输出的装置 为半加器,若加数、被加数和低位的进位数作为输入以和数 与进位作为输出的是全加器

半加男 有两个二班制 的输入其将输入的值相加,并输出 结果到和和维它。半加强虽能产生进制值,但本身不能处理进制值.

全加器有三个二进制输入其中一个是进制输入,所以全加器可以处理进制值。全加器可以由两个十加器结合而成。

(2): 74LS54使用时需更压急哪些问题?

核线时如果与门有一个或几个31.脚不被使用则隔陷它们都接高电平;如果整个与门不被使用则需将此与门的至少一个输入31.脚接地。

五、实验原始数据记录

1. 组合逻辑电路功能测试(填表 7-43)。

表 7-43 组合逻辑电路功能测试输出结果

输入			计算统	输出	实验输出		
A	В	С	Y1	Y2	Y1	Y2	
0	0	0	0	0	0	0	
0	0	1	0	1	0	0	
0	1	1	1	1	1	1	
1	1	1	1	0	1	0	
1	1	0	1	0	1	0	
1	0	0	1	0	1	0	
1	0	1	1	1	1	1	
0	1	0	1	1	1	1	

2. 测试用异或门(74LS86)和与非门(74LS00)组成的半加器的逻辑功能(填表 7-44)。

表 7-44 半加器测试输出显示

输入端	A	0	1	0	1
	В	0	0	1	1
输出端	Y	0	1	1	0
	Z	0	0	0	1

- 3. 测试全加器的逻辑功能。
 - (2) 根据逻辑表达式列真值表,填写到表 7-45 中。

表 7-45 全加器真值表

Ai	\mathbf{B}_{i}	C _{i-1}	Y	Z	X_1	X_2	X_3	S_{i}	C_{i}
0	0	0	0	0	1	1	1	0	0
0	1	0	1	0	1	0	1	1	0
1	0	0	1	0	1	0	1	1	0
1	1	0	0	0	1	1	1	0	1
0	0	1	0	1	1	1	0	1	0
0	1	1	1	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0	1
1	1	1	0	1	1	1	0	1	1

(3) 根据真值表画逻辑函数 S_iC_i的卡诺图。

 $Si=\overline{A}\overline{B}C + ABC + A\overline{B}\overline{C} + \overline{A}B\overline{C}$

Ci = AC + AB + BC

全加器卡诺图

(4) 按原理图选择与非门并接线进行测试,将测试结果记入表 7-46,并与表 7-8 进行比较看逻辑功能是否一致。

~ · · · · · · · · · · · · · · · · · · ·									
Ai	Bi	Ci-1	Si	Ci					
0	0	0	0	0					
0	1	0	1	0					
1	0	0	1	0					
1	1	0	0	1					
0	0	1	1	0					
0	1	1	0	1					
1	0	1	0	1					
1	1	1	1	1					

表 7-46 全加器输出显示

4. 用一块异或门(74LS86)、一块与或非门(74LS54)和一个与非门(74LS00)设计构成一位全加器并测试逻辑功能(填表 7-47)。

	Ai	0	0	0	0	1	1	1	1
输入端	Bi	0	0	1	1	0	0	1	1
	Ci-1	0	1	0	1	0	1	0	1
输出端	Si	0	1	1	0	1	0	0	1
	Ci	0	0	0	1	0	1	1	1

表 7-47 全加器的设计输出显示

六、误差分析与实验结论

本次实验成功测试了半加器和全加器的性质,同时自行设计了全加器电路。可得如下结论:

1. 半加器以加数和被加数作为输入,以和数和进位作为输出。不能考虑来自低位的进

位。

- 2. 全加器以被加数、加数和来自上一位的进位作为输入,以合数和进位作为输出。可以考虑来自低位的进位。
- 3. 可以使用真值表得出逻辑表达式,并用卡诺图对逻辑表达式进行化简,获得效率更高或成本更低的电路。以上两种器件都可以由各种不同结构的门电路组成,实验截图如下:

