
Centro Tecnológico Departamento de Engenharia Elétrica

Laboratório de Circuitos Elétricos I

ELE08475 - 2022/2

Experiência Nº 06

Teoremas de Thévenin e Norton

1. OBJETIVOS

- Aplicar o teorema de Thévenin para reduzir qualquer circuito em série-paralelo de dois terminais com qualquer número de fontes a uma única fonte de tensão e um resistor em série.
- Familiarizar-se com o teorema de Norton e com o modo com que ele pode ser usado para reduzir qualquer circuito em série-paralelo de dois terminais com qualquer número de fontes a uma única fonte de corrente e um resistor em paralelo.

2. INTRODUÇÃO

2.1. Teorema de Thévenin

O teorema de Thévenin permite a redução de circuitos complexos para uma forma mais simples de análise e projeto. Este teorema afirma que qualquer circuito de corrente continua de dois terminais pode ser substituído por um circuito equivalente que consista somente de uma fonte de tensão (E_{Th}) e de um resistor em série (R_{Th}), como apresentado na Figura 6.1.

Figura 6.1. Substituição de um circuito complexo pelo circuito equivalente de Thévenin.

Se a substituição for realizada adequadamente, a corrente e a tensão que atravessam o resistor R_L serão as mesmas em cada circuito. Os passos para obter o equivalente são:

- Remover a parte do circuito para a qual se deseja obter o equivalente de Thévenin;
- Assinalar os terminais do circuito remanescente R_{Th} , conforme exemplificado na Figura 6.1 pelos terminais a e b;
- Calcular R_{Th} "zerando" todas as fontes (substituindo as fontes de tensão por curtoscircuitos e as fontes de corrente por circuitos abertos) e determinar a resistência equivalente entre os dos terminais escolhidos (se o circuito original inclui as resistências internas das fontes, essas resistências devem ser mantidas quando as fontes forem reduzidas a zero);
- Retornar todas as fontes às suas posições originais e calcular a tensão E_{Th} sobre os terminais assinalados;
- Desenhar o circuito equivalente de Thévenin e reconectar a parte removida no primeiro passo nos terminais do circuito equivalente;

Experiência No 06 - Teoremas de Thévenin e Norton

Figura 6.2. Exemplo circuito equivalente de Thévenin. Circuito complexo (a), Resistencia (b), Tensão (c), e Circuito equivalente de Thévenin (d).

2.2. Teorema de Norton

Este teorema afirma que qualquer circuito de corrente contínua linear bilateral de dois terminais pode ser substituído por um circuito equivalente formado por uma fonte de corrente e por um resistor em paralelo, como mostra na Figura 6.3. Os passos para obter o equivalente são:

- Remover a parte do circuito para a qual se deseja obter o equivalente de Norton;
- Assinalar os terminais do circuito remanescente R_N ;
- Calcular R_N configurando todas as fontes em zero (substituindo as fontes de tensão por curto-circuitos e as fontes de corrente por circuitos abertos). Note que $R_N = R_{Th}$;
- Calcular I_N retornando todas as fontes às suas posições originais no circuito e medir a corrente de curto-circuito entre os dois terminais assinalados. Essa corrente é a mesma que seria medida por um amperímetro conectado entre os terminais;
- Desenhar o circuito equivalente de Norton e reconectar a parte removida no primeiro passo nos terminais do circuito equivalente;

Figura 6.3. Circuito equivalente de Norton.

Podemos também obter o circuito equivalente de Norton a partir do circuito equivalente de Thévenin e vice-versa, utilizando as técnicas de transformação de fontes, como apresentado na Figura 6.4.

Figura 6.4. Conversão entre os circuitos equivalentes de Norton e de Thévenin.

ELE08475 - Laboratório de Circuitos Elétricos I

Experiência No 06 - **Teoremas de Thévenin e Norton**

Figura 6.5. Exemplo circuito equivalente de Norton. Circuito complexo (a), Resistencia (b), Corrente (c), e Circuito equivalente de Norton (d).

3. PROCEDIMENTO

3.1. Montar o circuito da Figura 6.6 e, na sequência, realizar as medições necessárias para montar o equivalente de Thévenin e Norton visto pelo resistor R_4 . Considere os seguintes valores de resistências: $R1 = 270 \Omega$, $R2 = 120 \Omega$, $R3 = 390 \Omega$ e $R4 = 470 \Omega$. Use E = 5 VDC.

Figura 6.6. Circuitos experimentais: (a) circuito série-paralelo, (b) circuito equivalente de Thévenin.

- **3.2.** Medir a tensão V_4 e a corrente I_4 do resistor R_4 .
- **3.3.** Medir V_{Th} . Faça o esquema do procedimento.
- **3.4.** Medir R_{Th} . Faça o esquema do procedimento.
- **3.5.** Medir I_N . Faça o esquema do procedimento.
- **3.6.** Verificar a relação entre os valores medidos de V_{Th} , R_{Th} e I_N .
- **3.7.** Montar o equivalente de Thévenin e verificar o efeito em R_4 .
- **3.8.** Calcular os valores teóricos $(V_{Th}, R_{Th} e I_N)$ e comparar com os valores medidos.

Tabela 4.1 – Valores calculados do circuito experimental da Figura 6.6(b).

V_4	I_4	R_{Th}	V_{Th}	I_N	
					Medido
					Calculado

4. RESULTADOS E CONCLUSÕES

- **4.1.** Compare os valores calculados, simulados e medidos na Tabela 4.1 e calcule o erro dos valores medidos. Os valores de erro são aceitáveis? Quais os seus possíveis motivos?;
- **4.2.** Foi possível comprovar experimentalmente a equivalência entre os dois circuitos equivalentes? (Justifique sua resposta).