

74LVC245A

LOW VOLTAGE CMOS OCTAL BUS TRANSCEIVER (NOT INVERTED) HIGH PERFORMANCE

- **■** 5V TOLERANT INPUTS
- HIGH SPEED: $t_{PD} = 6.3$ ns (MAX.) at $V_{CC} = 3V$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN) at V_{CC} = 3V
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 1.65V to 3.6V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 245
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LVC245A is a low voltage CMOS OCTAL BUS TRANSCEIVER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology. It is ideal for 1.65 to 3.6 V_{CC} operations and low power and low noise applications.

This IC is intended for two-way asynchronous communication between data buses and the

ORDER CODES

PACKAGE	TUBE	T & R
SOP	74LVC245AM	74LVC245AMTR
TSSOP		74LVC245ATTR

direction of data transmission is determined by DIR input. The enable input G can be used to disable the device so that the buses are effectively isolated.

It has more speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

All floating bus terminals during High Z State must be held HIGH or LOW.

PIN CONNECTION AND IEC LOGIC SYMBOLS

February 2002 1/9

.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	DIR	Directional Control
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs/Outputs
18, 17, 16, 15, 14, 13, 12, 11	B1 to B8	Data Inputs/Outputs
19	G	Output Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

INP	UTS	FUNC	FUNCTION				
G	DIR	A BUS B BUS		Yn			
L	L	OUTPUT	INPUT	A = B			
L	Н	INPUT	OUTPUT	B = A			
Н	Х	Z	Z	Z			

X : Don't Care Z : High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (High Impedance or V _{CC} = 0V)	-0.5 to +7.0	V
V _O	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
Io	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied 1) $I_{\rm O}$ absolute maximum rating must be observed 2) $V_{\rm O}$ < GND

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	1.65 to 3.6	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (High Impedance or V _{CC} = 0V)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7 to 3.0V)	± 12	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.3 to 2.7V)	± 8	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 1.65 to 2.3V)	± 4	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.2V to 3.6V 2) V_{IN} from 0.8V to 2V at V_{CC} = 3.0V

DC SPECIFICATIONS

		Test	Condition	Value					
Symbol	Parameter	V _{CC}		-40 to	85 °C	-55 to	125 °C	Unit	
		(v)		Min.	Max.	Min.	Max.		
V _{IH}	High Level Input	1.65 to 1.95		0.65V _{CC}		0.65V _{CC}			
	Voltage	2.3 to 2.7		1.7		1.7		V	
		2.7 to 3.6		2		2			
V_{IL}	Low Level Input	1.65 to 1.95			0.35V _{CC}		0.35V _{CC}		
	Voltage	2.3 to 2.7			0.7		0.7	V	
		2.7 to 3.6			0.8		0.8		
V_{OH}	High Level Output	1.65 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2			
	Voltage	1.65	I _O =-4 mA	1.2		1.2			
		2.3	I _O =-8 mA	1.7		1.7		V	
		2.7	I _O =-12 mA	2.2		2.2		V	
		3.0	I _O =-18 mA	2.4		2.4			
		3.0	I _O =-24 mA	2.2		2.2			
V _{OL}	Low Level Output	1.65 to 3.6	I _O =100 μA		0.2		0.2		
	Voltage	1.65	I _O =4 mA		0.45		0.45		
		2.3	I _O =8 mA		0.7		0.7	V	
		2.7	I _O =12 mA		0.4		0.4		
		3.0	I _O =24 mA		0.55		0.55		
I _I	Input Leakage Current	3.6	$V_{I} = 0 \text{ to } 5.5V$		± 5		± 5	μΑ	
I _{off}	Power Off Leakage Current	0	V_I or $V_O = 5.5V$		10		10	μΑ	
l _{OZ}	High Impedance Output Leakage Current	3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 5.5 \text{ V}$		± 10		± 10	μΑ	
I _{CC}	Quiescent Supply		$V_I = V_{CC}$ or GND		10		10		
	Current	3.6	$V_{\rm I}$ or $V_{\rm O} = 3.6$ to 5.5V		± 10		± 10	μΑ	
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500		500	μΑ	

DYNAMIC SWITCHING CHARACTERISTICS

		Tes	st Condition		Value		
Symbol	Parameter V _{CC}			7	Γ _A = 25 °C		Unit
		(V)		Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Level Quiet	3.3	$C_L = 50pF$ $V_{IL} = 0V, V_{IH} = 3.3V$		0.8		V
V _{OLV}	Output (note 1)	ა.ა	$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		٧

¹⁾ Number of output defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS

		Tes	t Cond	ition		Value				
Symbol	Parameter	V _{CC}	CL	R _L	$t_s = t_r$	-40 to	85 °C	-55 to	125 °C	Unit
		(V) (pF) (Ω)	(ns)	Min.	Max.	Min.	Max.			
t _{PLH} t _{PHL}	Propagation Delay	1.65 to 1.95	30	1000	2.0	2.0	9.0	2.0	12	
	Time	2.3 to 2.7	30	500	2.0	2.0	8.0	2.0	10.5	20
		2.7	50	500	2.5	1.5	7.3	1.5	8.8	ns
		3.0 to 3.6	50	500	2.5	1.0	6.3	1.0	7.6	
t _{PZL} t _{PZH}	Output Enable Time	1.65 to 1.95	30	1000	2.0	2.0	12	2.0	16	
		2.3 to 2.7	30	500	2.0	2.0	9.5	2.0	12.5	20
		2.7	50	500	2.5	1.0	9.0	1.0	11	ns
		3.0 to 3.6	50	500	2.5	1.0	8.5	1.0	10	
t _{PLZ} t _{PHZ}	Output Disable Time	1.65 to 1.95	30	1000	2.0	2.0	11	2.0	14	
		2.3 to 2.7	30	500	2.0	2.0	9.0	2.0	12	nc
		2.7	50	500	2.5	2.0	8.5	2.0	10	ns
		3.0 to 3.6	50	500	2.5	2.0	7.5	2.0	9.0	
t _{OSLH} t _{OSHL}	Output To Output Skew Time (note1, 2)	2.7 to 3.6					1		1	ns

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tosh = | tphhm - tphhm|, tosh = | tphhm - tphhm| tosh = | tphhm - tphhm| tosh = | tphhm - tphhm|

CAPACITIVE CHARACTERISTICS

		Tes	Value				
Symbol	Parameter	V _{CC} T _A =		Γ _A = 25 °C		Unit	
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance				4		pF
C _{PD}	Power Dissipation Capacitance	1.8	f _{IN} = 10MHz		28		
	(note 1)	2.5			30		pF
		3.3			34		

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/n$ (per circuit)

TEST CIRCUIT

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

TEST CIRCUIT AND WAVEFORM SYMBOL VALUE

Symbol	V _{CC}							
Symbol	1.65 to 1.95V	2.3 to 2.7V	2.7V	3.0 to 3.6V				
C _L	30pF	30pF	50pF	50pF				
$R_L = R_1$	1000Ω	500Ω	500Ω	500Ω				
V _S	2 x V _{CC}	2 x V _{CC}	6V	6V				
V _{IH}	V _{CC}	V _{CC}	2.7V	2.7V				
V _M	V _{CC} /2	V _{CC} /2	1.5V	1.5V				
V _{OH}	V _{CC}	V _{CC}	3.0V	3.0V				
V _X	V _{OL} + 0.15V	V _{OL} + 0.15V	V _{OL} + 0.3V	V _{OL} + 0.3V				
V_{Y}	V _{OH} - 0.15V	V _{OH} - 0.15V	V _{OH} - 0.3V	V _{OH} - 0.3V				
$t_r = t_r$	<2.0ns	<2.0ns	<2.5ns	<2.5ns				

WAVEFORM 1: PROPAGATION DELAYS (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1			45°	(typ.)		
D	12.60		13.00	0.496		0.512
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050
М			0.75			0.029
S		ı	8° (r	max.)	ı	

TSSOP20 MECHANICAL DATA

DIM.		mm.		inch		
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

