## (Loan Data from Prosper)

## by (Ahmed Tarek)

## **Preliminary Wrangling**

This data set contains 113,937 loans with 81 variables on each loan, including loan amount, borrower rate (or interest rate), current loan status, borrower income, and many others.

```
In [1]: # import all packages and set plots to be embedded inline
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sb

%matplotlib inline
```

## Assessing data

In [2]: df = pd.read\_csv('prosperLoanData.csv')
df

### Out[2]:

|        | ListingKey              | ListingNumber | ListingCreationDate              | CreditGrade | Term |         |
|--------|-------------------------|---------------|----------------------------------|-------------|------|---------|
| 0      | 1021339766868145413AB3B | 193129        | 2007-08-26<br>19:09:29.263000000 | С           | 36   |         |
| 1      | 10273602499503308B223C1 | 1209647       | 2014-02-27<br>08:28:07.900000000 | NaN         | 36   |         |
| 2      | 0EE9337825851032864889A | 81716         | 2007-01-05<br>15:00:47.090000000 | HR          | 36   |         |
| 3      | 0EF5356002482715299901A | 658116        | 2012-10-22<br>11:02:35.010000000 | NaN         | 36   |         |
| 4      | 0F023589499656230C5E3E2 | 909464        | 2013-09-14<br>18:38:39.097000000 | NaN         | 36   |         |
|        |                         |               |                                  |             |      |         |
| 113932 | E6D9357655724827169606C | 753087        | 2013-04-14<br>05:55:02.663000000 | NaN         | 36   |         |
| 113933 | E6DB353036033497292EE43 | 537216        | 2011-11-03<br>20:42:55.333000000 | NaN         | 36   | FinalPa |
| 113934 | E6E13596170052029692BB1 | 1069178       | 2013-12-13<br>05:49:12.703000000 | NaN         | 60   |         |
| 113935 | E6EB3531504622671970D9E | 539056        | 2011-11-14<br>13:18:26.597000000 | NaN         | 60   |         |
| 113936 | E6ED3600409833199F711B7 | 1140093       | 2014-01-15<br>09:27:37.657000000 | NaN         | 36   |         |
| 440007 |                         |               |                                  |             |      |         |

113937 rows × 81 columns

### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 113937 entries, 0 to 113936
Data columns (total 81 columns):

| Data | columns (total 81 columns):        |                 |         |
|------|------------------------------------|-----------------|---------|
| #    | Column                             | Non-Null Count  | Dtype   |
|      |                                    |                 |         |
| 0    | ListingKey                         | 113937 non-null | object  |
| 1    | ListingNumber                      | 113937 non-null | int64   |
| 2    | ListingCreationDate                | 113937 non-null | object  |
| 3    | CreditGrade                        | 28953 non-null  | object  |
| 4    | Term                               | 113937 non-null | int64   |
| 5    | LoanStatus                         | 113937 non-null | object  |
| 6    | ClosedDate                         | 55089 non-null  | object  |
| 7    | BorrowerAPR                        | 113912 non-null | float64 |
| 8    | BorrowerRate                       | 113937 non-null | float64 |
| 9    | LenderYield                        | 113937 non-null | float64 |
| 10   | EstimatedEffectiveYield            | 84853 non-null  | float64 |
| 11   | EstimatedLoss                      | 84853 non-null  | float64 |
| 12   | EstimatedReturn                    | 84853 non-null  | float64 |
| 13   | ProsperRating (numeric)            | 84853 non-null  | float64 |
| 14   | ProsperRating (Alpha)              | 84853 non-null  | object  |
| 15   | ProsperScore                       | 84853 non-null  | float64 |
| 16   | ListingCategory (numeric)          | 113937 non-null | int64   |
| 17   | BorrowerState                      | 108422 non-null | object  |
| 18   | Occupation                         | 110349 non-null | object  |
| 19   | EmploymentStatus                   | 111682 non-null | object  |
|      |                                    | 106312 non-null | float64 |
| 20   | EmploymentStatusDuration           |                 | bool    |
| 21   | IsBorrowerHomeowner                | 113937 non-null | bool    |
| 22   | CurrentlyInGroup                   | 113937 non-null |         |
| 23   | GroupKey                           | 13341 non-null  | object  |
| 24   | DateCreditPulled                   | 113937 non-null | object  |
| 25   | CreditScoreRangeLower              | 113346 non-null | float64 |
| 26   | CreditScoreRangeUpper              | 113346 non-null | float64 |
| 27   | FirstRecordedCreditLine            | 113240 non-null | object  |
| 28   | CurrentCreditLines                 | 106333 non-null | float64 |
| 29   | OpenCreditLines                    | 106333 non-null | float64 |
| 30   | TotalCreditLinespast7years         | 113240 non-null | float64 |
| 31   | OpenRevolvingAccounts              | 113937 non-null | int64   |
| 32   | OpenRevolvingMonthlyPayment        | 113937 non-null |         |
| 33   | InquiriesLast6Months               | 113240 non-null | float64 |
| 34   | TotalInquiries                     | 112778 non-null | float64 |
| 35   | CurrentDelinquencies               | 113240 non-null | float64 |
| 36   | AmountDelinquent                   | 106315 non-null | float64 |
| 37   | DelinquenciesLast7Years            | 112947 non-null | float64 |
| 38   | PublicRecordsLast10Years           | 113240 non-null | float64 |
| 39   | PublicRecordsLast12Months          | 106333 non-null | float64 |
| 40   | RevolvingCreditBalance             | 106333 non-null | float64 |
| 41   | BankcardUtilization                | 106333 non-null | float64 |
| 42   | AvailableBankcardCredit            | 106393 non-null | float64 |
| 43   | TotalTrades                        | 106393 non-null | float64 |
| 44   | TradesNeverDelinquent (percentage) | 106393 non-null | float64 |
| 45   | TradesOpenedLast6Months            | 106393 non-null | float64 |
| 46   | DebtToIncomeRatio                  | 105383 non-null | float64 |
| 47   | IncomeRange                        | 113937 non-null | object  |
| 48   | IncomeVerifiable                   | 113937 non-null | bool    |
| 49   | StatedMonthlyIncome                | 113937 non-null | float64 |
|      |                                    |                 |         |

| 50   | LoanKey                              | 113937 non-null | object  |
|------|--------------------------------------|-----------------|---------|
| 51   | TotalProsperLoans                    | 22085 non-null  | float64 |
| 52   | TotalProsperPaymentsBilled           | 22085 non-null  | float64 |
| 53   | OnTimeProsperPayments                | 22085 non-null  | float64 |
| 54   | ProsperPaymentsLessThanOneMonthLate  | 22085 non-null  | float64 |
| 55   | ProsperPaymentsOneMonthPlusLate      | 22085 non-null  | float64 |
| 56   | ProsperPrincipalBorrowed             | 22085 non-null  | float64 |
| 57   | ProsperPrincipalOutstanding          | 22085 non-null  | float64 |
| 58   | ScorexChangeAtTimeOfListing          | 18928 non-null  | float64 |
| 59   | LoanCurrentDaysDelinquent            | 113937 non-null | int64   |
| 60   | LoanFirstDefaultedCycleNumber        | 16952 non-null  | float64 |
| 61   | LoanMonthsSinceOrigination           | 113937 non-null | int64   |
| 62   | LoanNumber                           | 113937 non-null | int64   |
| 63   | LoanOriginalAmount                   | 113937 non-null | int64   |
| 64   | LoanOriginationDate                  | 113937 non-null | object  |
| 65   | LoanOriginationQuarter               | 113937 non-null | object  |
| 66   | MemberKey                            | 113937 non-null | object  |
| 67   | MonthlyLoanPayment                   | 113937 non-null | float64 |
| 68   | LP_CustomerPayments                  | 113937 non-null | float64 |
| 69   | LP_CustomerPrincipalPayments         | 113937 non-null | float64 |
| 70   | LP_InterestandFees                   | 113937 non-null | float64 |
| 71   | LP_ServiceFees                       | 113937 non-null | float64 |
| 72   | LP_CollectionFees                    | 113937 non-null | float64 |
| 73   | LP_GrossPrincipalLoss                | 113937 non-null | float64 |
| 74   | LP_NetPrincipalLoss                  | 113937 non-null | float64 |
| 75   | LP_NonPrincipalRecoverypayments      | 113937 non-null | float64 |
| 76   | PercentFunded                        | 113937 non-null | float64 |
| 77   | Recommendations                      | 113937 non-null | int64   |
| 78   | InvestmentFromFriendsCount           | 113937 non-null | int64   |
| 79   | InvestmentFromFriendsAmount          | 113937 non-null | float64 |
| 80   | Investors                            | 113937 non-null | int64   |
| dtyp | es: bool(3), float64(50), int64(11), | object(17)      |         |

dtypes. boot(5), 110ato4(50), 111to4(11), 00jett(17)

memory usage: 68.1+ MB

## In [4]: df.describe()

### Out[4]:

|       | ListingNumber | Term          | BorrowerAPR   | BorrowerRate  | LenderYield   | EstimatedEffect |
|-------|---------------|---------------|---------------|---------------|---------------|-----------------|
| count | 1.139370e+05  | 113937.000000 | 113912.000000 | 113937.000000 | 113937.000000 | 84853           |
| mean  | 6.278857e+05  | 40.830248     | 0.218828      | 0.192764      | 0.182701      | 0               |
| std   | 3.280762e+05  | 10.436212     | 0.080364      | 0.074818      | 0.074516      | 0               |
| min   | 4.000000e+00  | 12.000000     | 0.006530      | 0.000000      | -0.010000     | -0              |
| 25%   | 4.009190e+05  | 36.000000     | 0.156290      | 0.134000      | 0.124200      | C               |
| 50%   | 6.005540e+05  | 36.000000     | 0.209760      | 0.184000      | 0.173000      | 0               |
| 75%   | 8.926340e+05  | 36.000000     | 0.283810      | 0.250000      | 0.240000      | 0               |
| max   | 1.255725e+06  | 60.000000     | 0.512290      | 0.497500      | 0.492500      | 0               |
|       |               |               |               |               |               |                 |

8 rows × 61 columns

```
In [5]: # checking if there is duplicated data
         sum(df.duplicated())
Out[5]: 0
In [6]: # checking null values
         df.isnull().sum()
Out[6]: ListingKey
                                              0
                                              0
         ListingNumber
         ListingCreationDate
                                              0
         CreditGrade
                                          84984
         Term
                                              0
         PercentFunded
                                              0
         Recommendations
                                              0
         InvestmentFromFriendsCount
                                              0
                                              0
         InvestmentFromFriendsAmount
         Investors
         Length: 81, dtype: int64
In [7]: df.columns
Out[7]: Index(['ListingKey', 'ListingNumber', 'ListingCreationDate', 'CreditGrade',
                 'Term', 'LoanStatus', 'ClosedDate', 'BorrowerAPR', 'BorrowerRate',
                'LenderYield', 'EstimatedEffectiveYield', 'EstimatedLoss',
                 'EstimatedReturn', 'ProsperRating (numeric)', 'ProsperRating (Alpha)',
                 'ProsperScore', 'ListingCategory (numeric)', 'BorrowerState',
                 'Occupation', 'EmploymentStatus', 'EmploymentStatusDuration',
                 'IsBorrowerHomeowner', 'CurrentlyInGroup', 'GroupKey',
                'DateCreditPulled', 'CreditScoreRangeLower', 'CreditScoreRangeUpper',
                 'FirstRecordedCreditLine', 'CurrentCreditLines', 'OpenCreditLines',
                'TotalCreditLinespast7years', 'OpenRevolvingAccounts',
                 'OpenRevolvingMonthlyPayment', 'InquiriesLast6Months', 'TotalInquiries',
                 'CurrentDelinquencies', 'AmountDelinquent', 'DelinquenciesLast7Years',
                'PublicRecordsLast10Years', 'PublicRecordsLast12Months',
                 'RevolvingCreditBalance', 'BankcardUtilization',
                 'AvailableBankcardCredit', 'TotalTrades',
                'TradesNeverDelinquent (percentage)', 'TradesOpenedLast6Months', 'DebtToIncomeRatio', 'IncomeRange', 'IncomeVerifiable',
                 'StatedMonthlyIncome', 'LoanKey', 'TotalProsperLoans',
                 'TotalProsperPaymentsBilled', 'OnTimeProsperPayments',
                'ProsperPaymentsLessThanOneMonthLate',
                'ProsperPaymentsOneMonthPlusLate', 'ProsperPrincipalBorrowed',
                'ProsperPrincipalOutstanding', 'ScorexChangeAtTimeOfListing',
                'LoanCurrentDaysDelinquent', 'LoanFirstDefaultedCycleNumber', 'LoanMonthsSinceOrigination', 'LoanNumber', 'LoanOriginalAmount',
                'LoanOriginationDate', 'LoanOriginationQuarter', 'MemberKey',
                'MonthlyLoanPayment', 'LP_CustomerPayments',
                'LP CustomerPrincipalPayments', 'LP InterestandFees', 'LP ServiceFees',
                 'LP CollectionFees', 'LP GrossPrincipalLoss', 'LP NetPrincipalLoss',
                 'LP_NonPrincipalRecoverypayments', 'PercentFunded', 'Recommendations',
                 'InvestmentFromFriendsCount', 'InvestmentFromFriendsAmount',
                 'Investors'],
               dtype='object')
```

### Quality:

· There are null values some can be droped others no

### **Tidiness:**

· Some columns wont be necessary

## Cleaning data

```
In [8]: # droping columns that are not necessary
         cols = ['ListingKey', 'ListingNumber', 'ListingCreationDate', 'CreditGrade', 'Cle
                  'EstimatedEffectiveYield', 'EstimatedLoss', 'EstimatedReturn', 'ProsperRa
                 'BorrowerState', 'EmploymentStatusDuration','IsBorrowerHomeowner', 'Curre
                 'FirstRecordedCreditLine', 'CurrentCreditLines', 'OpenCreditLines', 'Tota
                 'OpenRevolvingAccounts', 'OpenRevolvingMonthlyPayment', 'InquiriesLast6Mo
                 'CurrentDelinquencies', 'AmountDelinquent', 'DelinquenciesLast7Years', 'F
                 'PublicRecordsLast12Months','RevolvingCreditBalance', 'BankcardUtilizatid
                 'TradesNeverDelinquent (percentage)', 'TradesOpenedLast6Months', 'DebtTol
                 'StatedMonthlyIncome', 'LoanKey', 'TotalProsperLoans', 'OnTimeProsperPaym
                 'ProsperPaymentsOneMonthPlusLate', 'ProsperPrincipalBorrowed', 'ProsperPr
                 'ScorexChangeAtTimeOfListing', 'LoanCurrentDaysDelinquent', 'LoanFirstDef
                 'LoanMonthsSinceOrigination', 'LoanNumber', 'LoanOriginationDate', 'LoanO
                 'MonthlyLoanPayment', 'LP CustomerPayments', 'LP CustomerPrincipalPayment
                 'LP_CollectionFees', 'LP_GrossPrincipalLoss', 'LP_NetPrincipalLoss', 'LP_
                 'PercentFunded', 'Recommendations', 'InvestmentFromFriendsCount', 'Invest
         df.drop(cols, axis =1, inplace=True)
 In [9]: # replacing null values with 0 in TotalProsperPaymentsBilled because we cant drop
         # number of on time payments the borrower made on Prosper loans at the time they
         # will be null if the borrower had no prior loans.
         df.TotalProsperPaymentsBilled.fillna(0, inplace = True)
In [10]: # droping null values
         df.dropna(inplace = True)
```

In [11]: df

### Out[11]:

| ro |   | ating<br>lpha) | ProsperRat<br>(Alp | R F | BorrowerAPR | Status  | LoanS             |  | Term |        | _ |
|----|---|----------------|--------------------|-----|-------------|---------|-------------------|--|------|--------|---|
|    |   | Α              |                    | 6   | 0.12016     | Current | Cı                |  | 36   | 1      |   |
|    |   | Α              |                    | 8   | 0.12528     | Current | Cu                |  | 36   | 3      |   |
|    | ) | D              |                    | 4   | 0.24614     | Current | Cu                |  | 36   | 4      |   |
|    | } | В              |                    | 5   | 0.15425     | Current | Cı                |  | 60   | 5      |   |
|    |   | E              |                    | 2   | 0.31032     | Current | Cı                |  | 36   | 6      |   |
|    |   |                |                    |     |             |         |                   |  |      |        |   |
|    | ; | С              |                    | 4   | 0.22354     | Current | Cu                |  | 36   | 113932 |   |
|    |   | Α              |                    | 0   | 0.13220     | ogress  | FinalPaymentInPro |  | 36   | 113933 |   |
|    | ) | D              |                    | 4   | 0.23984     | Current | Cı                |  | 60   | 113934 |   |
|    | ; | С              |                    | 8   | 0.28408     | npleted | Comp              |  | 60   | 113935 |   |
|    |   | Α              |                    | 9   | 0.13189     | Current | Cı                |  | 36   | 113936 |   |

83520 rows × 12 columns

```
In [12]: # check if there are duplicates
sum(df.duplicated())
```

Out[12]: 2461

```
In [13]: # droping duplicates
df.drop_duplicates(inplace = True)
```

In [14]: df

Out[14]:

|        | Term | LoanStatus             | BorrowerAPR | ProsperRating<br>(Alpha) | ProsperScore | Occupation                 | Em |
|--------|------|------------------------|-------------|--------------------------|--------------|----------------------------|----|
| 1      | 36   | Current                | 0.12016     | А                        | 7.0          | Professional               |    |
| 3      | 36   | Current                | 0.12528     | А                        | 9.0          | Skilled Labor              |    |
| 4      | 36   | Current                | 0.24614     | D                        | 4.0          | Executive                  |    |
| 5      | 60   | Current                | 0.15425     | В                        | 10.0         | Professional               |    |
| 6      | 36   | Current                | 0.31032     | Е                        | 2.0          | Sales -<br>Retail          |    |
|        |      |                        |             |                          |              |                            |    |
| 113931 | 60   | Current                | 0.15016     | В                        | 6.0          | Analyst                    |    |
| 113932 | 36   | Current                | 0.22354     | С                        | 5.0          | Food Service<br>Management |    |
| 113933 | 36   | FinalPaymentInProgress | 0.13220     | А                        | 8.0          | Professional               |    |
| 113935 | 60   | Completed              | 0.28408     | С                        | 5.0          | Food Service               |    |
| 113936 | 36   | Current                | 0.13189     | А                        | 7.0          | Professor                  |    |

81059 rows × 12 columns

```
In [15]: # saving cleaned data to another file
df.to_csv('prosperLoanData_cleaned.csv', encoding='utf-8',index=False)
```

### What is the structure of your dataset?

- 113937 loans (rows)
- 81 attributes (columns)

## What is/are the main feature(s) of interest in your dataset?

- The Borrower's Annual Percentage Rate (APR) for the loan
- · The loan statues and what attributes affect it

## What features in the dataset do you think will help support your investigation into your feature(s) of interest?

- ProsperScore
- · ProsperRating (Alpha)
- Occupation
- CreditScoreRangeLower and CreditScoreRangeUpper
- Term
- LoanOriginalAmount
- TotalProsperPaymentsBilled
- IncomeRange
- EmploymentStatus

## **Univariate Exploration**

### Lets take a look at the BorrowerAPR

```
In [16]: # reading data
    df_loans = pd.read_csv('prosperLoanData_cleaned.csv')

In [17]: # counts for BorrowerAPR values
    bins = np.arange(0, df_loans.BorrowerAPR.max(), 0.005)
    plt.figure(figsize=[8, 5])
    plt.hist(data = df_loans, x = 'BorrowerAPR', bins = bins)
    plt.xticks(np.arange(0, df_loans.BorrowerAPR.max()+0.05, 0.05))
    plt.ylabel('Count')
    plt.title('BorrowerAPR histogram');
```



It appears that this distribution is multimodal with several peaks. A peak at 0.08, 0.2, 0.28, and an exceptionally high peak at 0.36.

## Let's look at Prosper Score which is a custom risk score built using historical Prosper data.

```
In [18]: # Bar Chart ProsperScore
def plot1():
    df_loans.ProsperScore.value_counts().plot(kind='bar')
    plt.ylabel('Count')
    plt.title('Prosper Score');
plot1()
```



This shows that there are scores above 10 which is not possible since the score is from 1-10. This data must be removed.

```
In [19]: # excluding all borrowers with a Prosper Score of 11
df_loans = df_loans[df_loans.ProsperScore != 11]
```





customers with a low risks score of 1 or 2 did get a loan. Not many borrowers received the highest score of 10.

### Now lets look at ProsperRating (Alpha) and Occupation

Before plotting, the ProsperRating (Alpha) should be ordered from low to high so there won't be any misleading visualization about the rating order

```
In [21]: # Convert ProsperRating into ordered categorical types
    rate_order = ['HR','E','D','C','B','A','AA']
    ordered_var = pd.api.types.CategoricalDtype(ordered = True, categories = rate_ord
    df_loans['ProsperRating (Alpha)'] = df_loans['ProsperRating (Alpha)'].astype(ordered)
```

```
In [22]: fig, ax = plt.subplots(nrows=2, figsize = [15,15])
    default_color = sb.color_palette()[0]
    sb.countplot(data = df_loans, x = 'ProsperRating (Alpha)', color = default_color,
    sb.countplot(data = df_loans, x = 'Occupation', color = default_color, ax = ax[1]
    plt.xticks(rotation=90);
```





It appears that most borrowers were rated from C to A, and students are the least to take loans

Now, let's compare the Prosper rating (Alpha) mean with the Borrower APR mean

```
In [23]: # ploting bar chart for ProsperRating vs BorrowerAPR mean
ProsperRatingAlpha_mean = df_loans.groupby('ProsperRating (Alpha)').BorrowerAPR.m

plt.pie(ProsperRatingAlpha_mean, labels = ProsperRatingAlpha_mean.index, startang plt.axis('square')
   plt.title('ProsperRating (Alpha) VS. BorrowerAPR mean');
```





Notice that the highest rating of AA received the lowest BorrowerAPR (5.68), while the lowerest rating of HR received the highest BorrowerAPR (22.11). This shows that borrowers with higher ratings received lower BorrowerAPR.

### I am interested in knowing more about the LoanOriginalAmount

```
In [24]:
         # getting overview over the loan amount
         df_loans.LoanOriginalAmount.describe()
Out[24]:
         count
                   79645.000000
         mean
                    9021.664034
         std
                    6203.914172
         min
                    1000.000000
         25%
                    4000.000000
         50%
                    7500.000000
         75%
                   13000.000000
                   35000.000000
         max
         Name: LoanOriginalAmount, dtype: float64
```

```
In [25]: # Histogramm for The origination amount of the Loan
binsize = 400
bins = np.arange(0, df_loans.LoanOriginalAmount.max()+binsize, binsize)

plt.figure(figsize=[8, 5])
plt.hist(data = df_loans, x = 'LoanOriginalAmount', bins = bins)
plt.ylabel('Count')
plt.title('Amount of the Loan')
plt.xticks([0,2500,5000,7500,10000,12500,15000,17500,20000,22500,25000,30000,3500]
```



The histogram has serval peaks at around 4,000, 10,000, and 15,000. But most of the values are in the lower end between 2500 and 10,000. The most loaned amounts are 4,000 and 15,000.

Now lets see if there is a relation between the LoanOriginalAmount and Term

```
In [26]: # Bar chart of the length of the loan in months
base_color = sb.color_palette()[0]
sb.countplot(data = df_loans, x='Term', color = base_color, order = df_loans.Term
plt.title('Term of the loan');
```



Most of the loans have a length of 36 months. The fact that most of the loans have a length of just 36 months might be correlated to the fact the average loan amount is around 9000 which can be paid back quickly.

Lets look at the CreditScoreRangeLower and CreditScoreRangeUpper

```
In [27]: # Histogram for CreditScoreRangeLower and CreditScoreRangeUpper
plt.figure(figsize = [13, 5])

plt.subplot(1, 2, 1)
bins = np.arange(550, df_loans.CreditScoreRangeLower.max(), 20)
plt.hist(data = df_loans, x = 'CreditScoreRangeLower', bins = bins)
plt.xticks(np.arange(550, 1000, 100))
plt.title('Credit Score Range Lower')
plt.ylabel('count');

plt.subplot(1, 2, 2)
bins = np.arange(550, df_loans.CreditScoreRangeUpper.max(), 20)
plt.hist(data = df_loans, x = 'CreditScoreRangeUpper', bins = bins)
plt.xticks(np.arange(550, 1000, 100))
plt.title('Credit Score Range Upper')
plt.ylabel('count');
```



The two histograms show similar trends, and there are no outliers that fall out of the range.

### Now lets take a look at the loan status

```
In [28]: # bar chart LoanStatus for the current status of the Loan
def plot2():
    base_color = sb.color_palette()[0]
    sb.countplot(data = df_loans, x = 'LoanStatus', color = base_color)
    plt.xlabel('Current loan status')
    plt.xticks(rotation = 90);

plot2()
```



Combining the past dues into one column since it is not important to show that much information

## In [30]: # plotting the bar chart of LoanStatus again plot2()



Most of the loans are current or completed.

### Now the IncomeRange

```
In [31]: # Bar chart of the borrowers income range
    sb.countplot(data= df_loans, x= 'IncomeRange', color= base_color, order = df_loan
    plt.xticks(rotation=90)
    plt.ylabel('Count')
    plt.title('Borrowers income range ($)');
```



The income range of the borrowers shows that most of the loans were given to customers with an income between 25,000 and 74,999. Notice that people that are not employed, or have an income of 0 received a loan as well. They might be other criteria than the income that qualifies one to get a loan like being a student.

### Lets check the EmploymentStatus to find out

```
In [32]: # plotting the borrowers employment status
    sb.countplot(data= df_loans, x= 'EmploymentStatus', color= base_color, order = df
    plt.xticks(rotation=90)
    plt.ylabel('Count')
    plt.title('Employment Status');
```



Of course, most of the borrowers are employed, but the data shows that retired persons got a loan too.

Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

- The distribution of borrowers' APR most of the values are between 0.05 and 0.4. but there is one value that was higher than the rest there might be a reason that this value is used that much. Therefore, there is no need to perform any transformations.
- Most of the loans are current or completed. However, there are a fairly significant number of loans that are charged off, defaulted, or past due.
- The income range of the borrowers shows that most of the loans were to give to customers with an income between 25,000 and 74,999.
- Most of the borrower got Prosper Score of 6 that means they are safe to loan.
   Notice that even customers with a low risks score of 1 or 2 did get a loan. Not many borrowers received the highest score of 10.
- Most of the loans have a length of 36 months. The fact that most of the loans have a length of just 36 months might be correlated to the fact the average loan amount is around 9000 which can be paid back quickly.

# Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

- Notice in the distribution of the Employment status that people that are not employed, or have an income of 0 received a loan. There might be other criteria than that qualifies one to get a loan like being a student or retired.
- The bar chart of the Prosper Score showed that there are customers in the data set that have a score of 11 which is not possible since the score is from 1-10, this data was removed.
- Combining the past dues into one column since it is not important to show that much information.

## **Bivariate Exploration**

Lets look at the numeric variables

```
In [33]: # correlation plot for numeric variables
    num_var = ['ProsperScore', 'BorrowerAPR', 'TotalProsperPaymentsBilled', 'CreditSo
    plt.figure(figsize = [8, 5])
    sb.heatmap(df_loans[num_var].corr(), annot = True, fmt = '.3f', cmap = 'vlag_r',
    plt.title('Correlation Plot');
```



There are no strong positive relationships between any pairs. BorrowerAPR and ProsperScore are negative because borrowers with a lower score are more likely to pay higher APR. CreditScore and BorrowerAPR are also negative because the higher the borrowers CreditScore the more trustworthy they are, therefore they received lower APR.

```
In [34]: # heat plot for comparing ProsperScore and BorrowerAPR
plt.figure(figsize = [15, 5])

plt.subplot(1, 2, 2)
bins_x = np.arange(0, df_loans.BorrowerAPR.max()+0.05, 0.03)
bins_y = np.arange(0, df_loans.ProsperScore.max()+1, 1)
plt.hist2d(data = df_loans, x = 'BorrowerAPR', y = 'ProsperScore', bins = [bins_> plt.colorbar()
plt.title('BorrowerAPR vs. ProsperScore')
plt.xlabel('BorrowerAPR')
plt.ylabel('ProsperScore');
```



This also proves that people with higher ratings tend to be more trustworthy and therefore given lower BorrowerAPR.

Now BorrowerAPR vs. CreditScoreRangeUpper

```
In [35]: # heat plot for comparing ProsperScore and BorrowerAPR
plt.figure(figsize = [15, 5])

plt.subplot(1, 2, 2)
bins_x = np.arange(0, df_loans.BorrowerAPR.max()+0.05, 0.02)
bins_y = np.arange(500, df_loans.CreditScoreRangeUpper.max()+100, 20)
plt.hist2d(data = df_loans, x = 'BorrowerAPR', y = 'CreditScoreRangeUpper', bins plt.colorbar()
plt.title('BorrowerAPR vs. CreditScoreRangeUpper')
plt.xlabel('BorrowerAPR')
plt.ylabel('CreditScoreRangeUpper');
```



We can see the trend that the higher the CreditScore the lower the APR.

let's look at relationships between the categorical features.

```
In [36]: plt.figure(figsize = [10, 30])
         # Prosper rating vs. term
         plt.subplot(4, 1, 1)
         sb.countplot(data = df_loans, x = 'ProsperRating (Alpha)', hue = 'Term', palette
         plt.xlabel('Prosper rating')
         plt.title('Prosper rating vs. term')
         # employment status vs. term
         ax = plt.subplot(4, 1, 2)
         sb.countplot(data = df loans, x = 'EmploymentStatus', hue = 'Term', palette = 'B]
         plt.xticks(rotation = 15)
         plt.xlabel('employment status')
         plt.title('employment status vs. term')
         # Prosper rating vs. employment status
         ax = plt.subplot(4, 1, 3)
         sb.countplot(data = df_loans, x = 'EmploymentStatus', hue = 'ProsperRating (Alpha
         ax.legend(loc = 1, ncol = 2)
         plt.xticks(rotation = 15)
         plt.xlabel('employment status')
         plt.title('Prosper rating vs. employment status');
```







We can see that there is an interaction between term and Prosper rating. The most popular term was 36 and most of the employed especially with full-time jobs took that kind of loan. And of course, the higher proper ratings were given to the employed personnel.

### Lets see how borrower APR and loan original amount are related

In [37]: # how borrower APR and Loan original amount are related
plt.figure(figsize = [8, 6])
sb.regplot(data = df\_loans, x = 'LoanOriginalAmount', y = 'BorrowerAPR', scatter\_
plt.title('BorrowerAPR vs. LoanOriginalAmount');



This relation shows that the range of APR decreases with the increase in the loan amount. Overall, the borrower's APR is negatively correlated with the loan amount.

Now the relation between LoanStatus and LoanOriginalAmount

```
In [38]: # plotting original loan amount with a violinplot against LoanStatus
plt.figure(figsize = [25, 18])

plt.subplot(2, 2, 2)
sb.violinplot(data = df_loans, x = 'LoanStatus', y = 'LoanOriginalAmount', color
plt.xticks(rotation=45)
plt.xlabel('Status of the Loan')
plt.ylabel('Original Loan Amount')
plt.title('LoanStatus vs. LoanOriginalAmount');
```



The original loan amount is about the same on average for loans that are completed, current. However, loans with past due payments have on average a higher original loan amount.

### Now the relation between loan status and loan total prosper payments billed

```
In [39]: # plotting TotalProsperPaymentsBilled (On time Payments) with a violinplot agains
plt.figure(figsize = [25, 18])

plt.subplot(2, 2, 2)
sb.violinplot(data = df_loans, x = 'LoanStatus', y = 'TotalProsperPaymentsBilled'
plt.xticks(rotation=45)
plt.xlabel('Status of the Loan')
plt.ylabel('On time Payments')
plt.title('LoanStatus vs. TotalProsperPaymentsBilled');
```



Current loans have on average the highest number of on time payments while loans with the status charged-off and defaulted have the lowest.

#### Relation between loan status and term

```
In [40]: # plotting length of the Loans against LoanStatus a clusterd bar chart
plt.figure(figsize = [20,10])

ax = sb.countplot(data = df_loans, x = 'LoanStatus', hue = 'Term', palette = "GnE
plt.legend(loc = 1, ncol = 3, title = 'Length of the Loan')
plt.xticks(rotation = 25)
plt.xlabel('Status of the Loan')
ax.set_ylabel('Count')
plt.title('LoanStatus vs. Term');
```



No matter what status a loan has, the most common length is 36 months and the least common is 60 months.

### Relation between loan status and employment status

```
In [41]: # plotting EmploymentStatus against LoanStatus
plt.figure(figsize = [20,10])

sb.countplot(data = df_loans, x = 'LoanStatus', hue = 'EmploymentStatus', order = plt.legend(loc = 1, ncol = 8, title = 'Status of Employment')
plt.xticks(rotation = 25)
plt.xlabel('Status of the Loan')
plt.title('LoanStatus vs. EmploymentStatus');
```



The status of the employment of the borrower seems not to have an impact on the outcome of the loan. but again the ones who take loans mostly are employed as also the ones who completed their loans are the full-time employed.

### Relation between loan status and income range

```
In [42]: # plotting Income Range against LoanStatus
plt.figure(figsize = [20,10])

sb.countplot(data = df_loans, x = 'LoanStatus', hue = 'IncomeRange', order = df_l
plt.legend(loc = 1, ncol = 8, title = 'Income Range')
plt.xticks(rotation = 25)
plt.xlabel('Status of the Loan')
plt.title('LoanStatus vs. IncomeRange');
```



The borrowers who have an Income Range of (25000 - 74999) seem to be the ones who get more loans and pay them on time.

### Relation between prosper score and loan status

```
In [43]: # first I need to reshape the data
    reshape = df_loans.groupby(['LoanStatus', 'ProsperScore']).size()
    reshape = reshape.reset_index(name = 'count')
    reshape = reshape.pivot(index = 'ProsperScore', columns = 'LoanStatus', values = reshape
```

### Out[43]:

| LoanStatus   | Chargedoff | Completed | Current | Defaulted | FinalPaymentInProgress | Past Due |
|--------------|------------|-----------|---------|-----------|------------------------|----------|
| ProsperScore |            |           |         |           |                        |          |
| 1.0          | 234        | 341       | 331     | 37        | 2                      | 40       |
| 2.0          | 374        | 837       | 3696    | 70        | 22                     | 248      |
| 3.0          | 396        | 1046      | 5302    | 74        | 20                     | 250      |
| 4.0          | 727        | 1755      | 8639    | 118       | 28                     | 354      |
| 5.0          | 860        | 2121      | 5823    | 162       | 24                     | 278      |
| 6.0          | 911        | 2823      | 7602    | 173       | 25                     | 325      |
| 7.0          | 660        | 2347      | 6924    | 135       | 16                     | 217      |
| 8.0          | 664        | 3692      | 7014    | 139       | 39                     | 229      |
| 9.0          | 308        | 2824      | 3547    | 71        | 13                     | 70       |
| 10.0         | 57         | 1569      | 2979    | 20        | 11                     | 32       |

```
In [44]: # plotting ProsperScore against LoanStatus with a heat map
plt.figure(figsize = [15,7])

sb.heatmap(reshape, annot = True, fmt = '.3f', cmap = 'vlag_r', center = 0)
plt.xlabel('Status of the Loan')
plt.ylabel('Prosper Score')
plt.title('LoanStatus vs. ProsperScore');
```



The Prosper Score seems to affect the outcome of the loan. So the highest number of borrowers with completed loans has a prosper score of 8, while the highest number of borrowers with defaulted and charged-off loans have a prosper score of 6. Notice that the most common prosper score for borrowers with loans that are past due payments is 6.

Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

- BorrowerAPR and ProsperScore are negative because borrowers with a lower score are more likely to pay higher APR. CreditScore and BorrowerAPR are also negative because the higher the borrowers CreditScore the more trustworthy they are, therefore they received lower APR.
- People with higher ratings tend to be more trustworthy and therefore given lower BorrowerAPR.
- We can see the trend that the higher the CreditScore the lower the APR.
- We can see that there is an interaction between term and Prosper rating. The
  most popular term was 36 and most of the employed especially with full-time
  jobs took that kind of loan. And of course, the higher proper ratings were given
  to the employed personnel.
- The range of APR decreases with the increase of loan amount. Overall, the borrower's APR is negatively correlated with the loan amount. This means the more the loan amount the lower the APR
- The original loan amount is about the same on average for loans that are completed, current. However, loans with past due payments have on average a higher original loan amount.
- Current loans have on average the highest number of on time payments while loans with the status charged-off and defaulted have the lowest.
- No matter what status a loan has, the most common length is 36 months, and the least common is 60 months.
- The status of the employment of the borrower seems not to have an impact on the outcome of the loan. but again the ones who take loans mostly are employed as also the ones who completed their loans are the full-time employed.
- The Prosper Score seems to affect the outcome of the loan. So the highest number of borrowers with completed loans has a prosper score of 8, while the highest number of borrowers with defaulted and charged-off loans have a prosper score of 6. Notice that the most common prosper score for borrowers with loans that are past due payments is 6.
- The borrowers who have an Income Range of (25000 74999) seem to be the ones who get more loans and pay them on time.

## Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

 There is an interaction between prospering rating and term. There are more 60-month loans on B and C ratings, while there are only 36 months loans for HR rating.

## **Multivariate Exploration**

Prosper rating effect on relationship between borrower APR and loan original amount

In [45]: # Prosper rating effect on relationship of APR and Loan amount
 g=sb.FacetGrid(data = df\_loans, aspect = (14.70/4)/(10.27/2), height = 10.27/2, or
 g.map(sb.regplot, 'LoanOriginalAmount', 'BorrowerAPR', x\_jitter=0.04, scatter\_kws
 g.add\_legend();
 plt.suptitle('Borrower APR and loan original amount by credit rating'.title(), y=
 plt.tight\_layout();





The loan amount increases with a better rating, the borrower's APR decreases with a better rating. The relationship between borrower APR and loan amount raises from negative to slightly positive when the prosper ratings are increased from HR to A or better. Maybe because people with A or AA ratings tend to borrow more money, and pay on time.

### BorrowerAPR considering rating and term

```
In [46]: # BorrowerAPR considering rating and term
fig = plt.figure(figsize = [8,6])

ax = sb.pointplot(data = df_loans, x = 'ProsperRating (Alpha)', y = 'BorrowerAPR
plt.title('BorrowerAPR considering rating and term')
plt.ylabel('Mean Borrower APR')
ax.set_yticklabels([],minor = True);
```



Notice that for prosper rating from HR to D the borrower APR increases with the decrease of borrow term, then it starts to shift from C to AA rating.

### The rating and term effects on loan original amount



Notice that with a better prosper rating, the loan amount of all three terms increases.

### BorrowerAPR considering CreditScoreRangeUpper and ProsperScore



Notice that CreditScoreRangeUpper increase as BorrowerAPR decrease in the plots, this proves that CreditScoreRangeUpper and ProsperScore negatively correlated to BorrowerAPR.

Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

- The loan amount increases with a better rating, the borrower APR decreases
  with a better rating. The relationship between borrower APR and loan amount
  raises from negative to slightly positive when the prosper ratings are increased
  from HR to A or better and pay on time.
- Notice that for prosper rating from HR to D the borrower APR increases with the decrease of borrow term, then it starts to shift from C to AA rating.
- Notice that with a better prosper rating, the loan amount of all terms increases.
- Notice that CreditScoreRangeUpper increase as BorrowerAPR decrease in the plots, This proves that CreditScoreRangeUpper and ProsperScore negatively correlated to BorrowerAPR.

## Were there any interesting or surprising interactions between features?

 The borrower APR increases with the decrease of borrow term for people with HR to D ratings. Then it starts to shift for people with C to AA ratings, the APR decreases with the increase of borrow term.

|--|