Analysemuster

Marc Monecke monecke@informatik.uni-siegen.de

Praktische Informatik Fachbereich Elektrotechnik und Informatik Universität Siegen, D-57068 Siegen

12. Mai 2003

Inhaltsverzeichnis

1	Grundlagen		
	1.1	Was sind Muster?	2
	1.2	Charakteristika eines Musters	3
	1.3	Beziehungen zwischen Klassen	
2	Eini	ge Analysemuster mit Beispielen	3
	2.1	Muster 1: Liste, Kompositum	3
	2.2	Muster 2: Exemplartyp	4
	2.3	Muster 3: Baugruppe	4
	2.4	Muster 4: Stückliste	5
	2.5	Muster 5: Koordinator	5
	2.6	Muster 6: Rollen	6
	2.7	Muster 7: Wechselnde Rollen	6
	2.8	Muster 8: Historie	7
	2.9	Muster 9: Gruppe	7
			8
3	Zusa	ammenfassung	8

1 Grundlagen

- Muster (pattern) gehen zurück auf den Musterbegriff des Architekten Christopher Alexander (70er Jahre) für Bauwerke, Städteplanung
- in der **Softwaretechnik**: Suche nach einem **Architekturhandbuch** für den Software-Entwurf (90er Jahre)
- Einsatz in Analyse, Entwurf, Codierung
- 1995: Erich Gamma et al. schreiben Informatik-Bestseller
 Design Patterns Elements of Reusable Object-Oriented Software
- darin werden 23 Entwurfsmuster beschrieben und klassifiziert

1.1 Was sind Muster?

Umgangssprachlich:

Muster == Vorlage, Vorbild, sich wiederholende Struktur

in der Softwaretechnik:

- Vorlage für die Konstruktion von Problemlösungen
- Vorbild für die Beschreibung und Dokumentation von Entwürfen
- Struktur, die bei der Orientierung in komplexen Systemen hilft

Musterbücher enthalten Katalog von Mustern

- allgemeine Muster
- anwendungsspezifische Muster

ermöglichen das Auffinden des passenden Musters, um ein gegebenes Problem zu lösen

Beschreibung von Mustern

- Name, möglichst sprechend
- Kategorie
- Beschreibung
- Beispiele (abstrakt und konkret)

Einsatzbereiche

- Systemanalyse
- Entwurf
- Codierung

entsprechend wechselnder Abstraktionsgrad

1.2 Charakteristika eines Musters

- beschreibt **erprobte**, bewährte Lösungsstruktur für **wiederkehrendes** Problem
- ist uncodiert (im Ggs. z.B. zu Klassenbibliothek)
- dokumentiert eine **Problemlösung**
- erleichtert die **Kommunikation** zwischen Entwicklern
- hält **Wissen und Erfahrung** von Experten fest, macht beides **zugänglich** für andere
- enthält nicht nur Einzelklassen, sondern Konfigurationen von Klassen
 - \rightarrow Wiederverwendung kommunizierender Gruppen von Klassen (Mikro-Architekturen)

1.3 Beziehungen zwischen Klassen

- → halten Klassen im Muster zusammen
- Generalisierung/Spezialisierung \rightarrow Klasse ist spezieller als andere
- Aggregation/Komposition \rightarrow Klasse umfaßt andere
- Assoziation → Kommunikation, Dienstaufruf

beachte: Objekt- vs. Klassenbeziehungen!

Muster geben vor

- **Interaktionen** zwischen Klassen
- Verantwortlichkeiten der Klassen

2 Einige Analysemuster mit Beispielen

Eingesetzt in der Systemanalyse

nach Heide Balzert: Lehrbuch der Objektmodellierung; LE 5

diese und weitere Beispiele auch in Helmut Balzert: Lehrbuch der Software-Technik; LE 12; Seite 349ff

2.1 Muster 1: Liste

Komposition (Rechnungsposition kann nicht allein existieren)

- gleichartige Teile → nur eine Teil-Klasse
- Teile sind **einem** Aggregat fest zugeordnet
- Attributwerte des Aggregats gelten auch für Teile (Nummer der Rechnung)
- Aggregat enthält i.a. mindestens ein Teil (1..∗)

2.2 Muster 2: Exemplartyp

- Ziel: Redundanz vermeiden (Flugzeugeigenschaften)
- Instanzen, Exemplare vs. **-typ**, -gruppe, -beschreibung
- einfache Assoziation
- Verbindungen nicht verändert, nur gelöscht (Flugzeug verschrotten)
- Beschreibung auch ohne Exemplare möglich (*)

2.3 Muster 3: Baugruppe

- physische Objekte
- Komposition
- Objektverbindungen bestehen (meist) über längeren Zeitraum
- Trennen der Objekte möglich (Bildschirm an anderen Rechner anschließen)

2.4 Muster 4: Stückliste

- Aggregat kann aus mehreren Objekten der anderen Klassen zusammengesetzt sein
- Aggregat und Teile einzeln **und** als Einheit handhabbar (kopieren, verschieben, löschen)
- Komposition
- Kardinalität an Aggregat: $0..1 \rightarrow \text{Teil}$ kann auch allein existieren
- Sonderfall: nur ein Teile-Typ

2.5 Muster 5: Koordinator

- Koordinator ersetzt n-äre Assoziation $(n \ge 2)$ mit assoziativer Klasse (hier: Bestellung)
- einfache Assoziationen
- bei Koordinator **Beziehungen** wichtig, nicht Attribute

2.6 Muster 6: Rollen

- Objekt kann in Bezug zu Objekten der anderen Klasse **mehrere Rollen** zur gleichen Zeit einnehmen
- $-n \ge 2$ Assoziationen zwischen beiden Klassen
- Objekte haben, unabhängig von der Rolle, jeweils gleiche Eigenschaften

2.7 Muster 7: Wechselnde Rollen

- Objekt kann für bestimmten Zeitraum unterschiedliche Rollen annehmen
- dabei $\ddot{a}ndern$ sich seine $Eigenschaften \rightarrow Subklassen$
- Verbindungen zwischen Objekten nur **erweitern**, nicht löschen oder zu anderen Objekten umbiegen ('Geschichte' aufzeichnen)

2.8 Muster 8: Historie

- für ein Objekt mehrere Fakten, Vorgänge, Zustände über Zeitraum dokumentieren
- einfache Assoziation, nur erweitern
- Zeitliche Einschränkung möglich ({t=k})
- hier {t=1}, weil sich Ordner jeweils nur an einem Ort befinden kann

2.9 Muster 9: Gruppe

- mehrere Objekte (zeitweise) zusammenfassen (1..* oder *)
- einfache Assoziation
- Objektverbindungen können auf- und abgebbaut werden

2.10 Muster 10: Gruppenhistorie

- Zugehörigkeit zur Gruppe über **Zeitraum** dokumentieren
- Zuordnung Einzelobjekt/Gruppe wegen assoziativer Klasse deutlich sichtbar
- nur Verbindungen hinzufügen

3 Zusammenfassung

- Muster beschreiben häufig auftretende Probleme und bewährte Lösungen
- Analysemuster helfen beim Aufstellen von **Analysemodellen**
- allgemeine vs. anwendungsspezifische Muster
- Muster in Katalogen zusammengefaßt und dokumentiert