

MADRID AIRBNB PRICES

Camila Barbagallo, Ryan Daher, Paula García and Rocío González

TABLE OF CONTENTS

BUSINESS UNDERSTANDING

01

02

03

DATA UNDERSTANDING

DATA PREPARATION

04 **MODELLING**

EVALUATION

06 **DEPLOYMENT**

05

- Began in 2008
- Two designers who had space to share hosted three travelers looking for a place to stay.
- List spaces and book unique accommodations anywhere in the world.
- Make sharing easy, enjoyable, and safe.

ABOUT AIRBNE

AirBed&Breakfast

Book rooms with locals, rather than hotels.

AIRBNB PRICE IMPACTORS

LOCATION

Areas closer to tourist hot-spots, or in prime locations take higher rent.

HOUSE DETAILS

Number of Rooms and Bathrooms and Size have direct impacts on the price.

Bookings closer to events or holidays tend to be overbooked and cause price spikes.

Certain additional amenities increase the price.

ADDITIONAL PRICE INFLUENCERS

SuperHosts

Places that are booked often, may push the landlord to increase prices to reach optimum.

Guest Accommodations Better reviews may encourage a landlord to boost prices.

SuperHosts may be less likely to post smaller, less expensive homes.

Overall Availability Amount of guests accommodatable, and the addition of any extra guests.

Positive Reviews

02 DATA UNDERSTANDING

DATASET OVERVIEW

Dataset Obtained from the airbnb website

107

Variables

21,845

Observations

CORRELATIONS & MULTI-COLLINEARITY

Potential Multicollinearity:

- Guests Included Accommodates Beds
- Private Room Type Accommodates

Low correlation between any variable and price

HIGH SKEWNESS & IMBALANCES

Availability Bracket

200015001000500

VARIABLE IMPACT ON PRICE

Time as Host

Total Accommodation

O3 DATA PREPARATION

DATA CLEANING & TRANSFORMATIONS

Dropping Variables

- Re-Computed Variables
- Irrelevant Extra Information
- Inconsistent Data

Data Formatting

- Re-formatting inconsistent data
- Removal of improper strings

Cleaning And Imputing

- Manual Imputations
- Averaging
- Worst Case Scenario

KBest: Chi-Square

Measure independence, look for ones that were dependent on target

FEATURE SELECTION

ExtraTrees Classifier

Feature Importance

LightGBM RFE

Feature Importance

24 Features

PCA + LDA

Number of components -> Number of features

POOR PERFORMING MODELS

Multiple Linear Regression Benchmark Model

Random Forest

XGBoost

BETTER PERFORMING MODELS

Voting Ensemble: SVR + XGBoost

Train:51.79 Test: 57.22

SVR

Train: 42.67 Test: 42.50

Average Ensemble: SVR, XGBoost, MLP

Train: 42.87 Test: 44.30

Bagging Regressor with SVR

Train: 42.54 Test: 42.40

SUPPORT VECTOR REGRESSOR

- Minimize l2-norm of the coefficient vector — not the squared error.
- Error term handled in the constraints, where the absolute error is less than or equal to a specified margin.

PARAMETER TUNING

Kernel

0.01

How much error we are willing to allow per training data instance.

C

RBF

is a real-valued function whose value depends only on the distance between the input and some fixed point, either the origin or some other fixed point. **E**psilon

Regularization parameter.

The strength of the regularization is inversely proportional to this value.

05 EVALUATION

MAPE Average of absolute percentage errors

BAGGING REGRESSOR with SVR	
SVR	42.50%
AVERAGE ENSEMBLE: SVR + XGBOOST + MLP	44.30%
VOTING ENSEMBLE: SVR + XGBOOST	57.22%

06 DEPLOYMENT

RECOMMENDATIONS

New Features

Average price of hotels in the area, income per capita, distance to the city center/ airport/ train.

Ranking

Mantain Validity of the Model

Log(Price)

Standardized Easy to interpret

Camila Barbagallo, Ryan Daher, Paula García and Rocío González