VII. Problem Index

Yuxi Fu

BASICS, Shanghai Jiao Tong University

Motivation

By Church-Turing Thesis one may study computability theory using any of the computation models.

It is much more instructive however to carry out the study in a model independent manner.

The first step is to assign index to computable function.

Agenda

We shall study three fundamental theorems about indexing.

Synopsis

- 1. Gödel Index
- 2. S-m-n Theorem
- 3. Enumeration Theorem
- 4. Recursion Theorem

1. Gödel Index

Basic Idea

We see a number as an index for a problem/function if it is the Gödel number of a programme that solves/calculates the problem/function.

Definition

Suppose $a \in \omega$ and $n \geq 1$.

$$\phi_{a}^{(n)} = \text{ the } n \text{ ary function computed by } P_{a}$$

$$= f_{P_{n}}^{(n)},$$

$$W_{a}^{(n)} = \text{ the domain of } \phi_{a}^{(n)} = \{(x_{1}, \dots, x_{n}) \mid P_{a}(x_{1}, \dots, x_{n}) \downarrow\},$$

$$E_{a}^{(n)} = \text{ the range of } \phi_{a}^{(n)}.$$

The super script (n) is omitted when n = 1.

Example

Let
$$a = 4127$$
. Then $P_{4127} = S(2)$; $T(2,1)$.

If the program is seen to calculate a unary function, then

$$\phi_{4127}(x) = 1,
W_{4127} = \omega,
E_{4127} = \{1\}.$$

If the program is seen to calculate an *n*-ary function, then

$$\phi_{4127}^{(n)}(x_1,\ldots,x_n) = x_2 + 1,$$

$$W_{4127}^{n} = \omega^n,$$

$$E_{4127}^{n} = \omega^+.$$

Gödel Index for Computable Function

Suppose f is an n-ary computable function.

A number a is an index for f if $f = \phi_a^{(n)}$.

Padding Lemma

Padding Lemma. Every computable function has infinite indices. Moreover for each x we can effectively find an infinite recursive set A_x of indices for ϕ_x .

Proof.

Systematically add useless instructions to P_x .

Computable Functions are Enumerable

We may list for example all the elements of $\ensuremath{\mathcal{C}}$ as

$$\phi_0, \phi_1, \phi_2, \dots$$

Diagonal Method

Fact. There is a total unary function that is not computable.

Proof.

Suppose $\phi_0, \phi_1, \phi_2, \dots$ is an enumeration of C. Define

$$f(n) = \begin{cases} \phi_n(n) + 1, & \text{if } \phi_n(n) \text{ is defined,} \\ 0, & \text{if } \phi_n(n) \text{ is undefined.} \end{cases}$$

By Church-Turing Thesis the function f(n) is not computable.

2. S-m-n Theorem

How do different indexing systems relate?

S-m-n Theorem, the Unary Case

Given a binary function f(x, y), we get a unary computable function f(a, y) by fixing a value a for x.

Let e be an index for f(a, y). Then

$$f(a, y) \simeq \phi_e(y).$$

S-m-n Theorem states that the index e can be computed from a.

S-m-n Theorem, the Unary Case

Fact. Suppose that f(x, y) is a computable function. There is a primitive recursive function k(x) such that

$$f(x,y) \simeq \phi_{k(x)}(y).$$

S-m-n Theorem, the Unary Case

Let F be a program that computes f. Consider the following

$$T(1,2)$$
 $Z(1)$
 $S(1)$
 \vdots
 $S(1)$
 F
 $A \text{ times}$

The above program can be effectively constructed from a.

Let k(a) be the Gödel number of the above program. It can be effectively computed from the above program.

Example

- 1. Let $f(x,y) = y^x$. Then $\phi_{k(x)}(y) = y^x$. For each fixed n, k(n) is an index for y^n .
- 2. Let $f(x,y) \simeq \begin{cases} y, & \text{if } y \text{ is a multiple of } x, \\ \uparrow, & \text{otherwise.} \end{cases}$. Then $\phi_{k(n)}(y)$ is defined if and only if y is a multiple of n.

S-m-n Theorem.

For m, n, there is an injective primitive recursive (m+1)-function $s_n^m(x, \tilde{x})$ such that for all e the following holds:

$$\phi_e^{m+n}(\widetilde{x},\widetilde{y}) \simeq \phi_{s_n^m(e,\widetilde{x})}^n(\widetilde{y}).$$

S-m-n Theorem is also called **Parameter Theorem**.

Proof of S-m-n Theorem

Proof. Given e, x_1, \ldots, x_m , we can effectively construct the following program and its index

$$T(n, m + n)$$

 \vdots
 $T(1, m + 1)$
 $Q(1, x_1)$
 \vdots
 $Q(m, x_m)$
 P_e

where
$$Q(i,x)$$
 is the program $Z(i),\underbrace{S(i),\ldots,S(i)}_{x \text{ times}}$.

The injectivity is achieved by padding enough useless instructions.

3. Enumeration Theorem

General Remark

There are universal programs that embody all the programs.

A program is universal if upon receiving the Gödel number of a program it simulates the program indexed by the number.

Intuition

Consider the function $\psi(x,y)$ defined as follows

$$\psi(x,y) \simeq \phi_x(y).$$

In an obvious sense $\psi(x, _)$ is a universal function for the unary functions

$$\phi_0, \phi_1, \phi_2, \phi_3, \ldots$$

Universal Function

The universal function for n-ary computable functions is the (n+1)-ary function $\psi_U^{(n)}$ defined by

$$\psi_U^{(n)}(e,x_1,\ldots,x_n)\simeq\phi_e^{(n)}(x_1,\ldots,x_n).$$

We write ψ_U for $\psi_U^{(1)}$.

Question: Is $\psi_U^{(n)}$ computable?

Enumeration Theorem.

For each n, the universal function $\psi_U^{(n)}$ is computable.

Proof.

Given a number e, decode the number to get the program P_e ; and then simulate the program P_e . If the simulation ever terminates, then return the number in R_1 . By Church-Turing Thesis, $\psi_U^{(n)}$ is computable.

Application: Undecidability

Proposition. The problem ' ϕ_x is total' is undecidable.

Proof.

If ' ϕ_X is total' were decidable, then by Church's Thesis

$$f(x) = \left\{ \begin{array}{ll} \psi_U(x,x) + 1, & \text{if } \phi_x \text{ is total,} \\ 0, & \text{if } \phi_x \text{ is not total.} \end{array} \right.$$

would be a total computable function that differs from every total computable function.

Application: Effectiveness of Function Operation

Proposition. There is a total computable function s(x, y) such that $\phi_{s(x,y)} = \phi_x \phi_y$ for all x, y.

Proof.

Let
$$f(x, y, z) \simeq \phi_X(z)\phi_Y(z) \simeq \psi_U(x, z)\psi_U(y, z)$$
.

By S-m-n Theorem there is a total function s(x, y) such that $\phi_{s(x,y)}(z) \simeq f(x,y,z)$.

Application: Effectiveness of Set Operation

Proposition. There is a total computable function s(x, y) such that $W_{s(x,y)} = W_x \cup W_y$.

Proof.

Let

$$f(x, y, z) = \begin{cases} 1, & \text{if } z \in W_x \text{ or } z \in W_y, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

By S-m-n Theorem there is a total function s(x,y) such that $\phi_{s(x,y)}(z) \simeq f(x,y,z)$. Clearly $W_{s(x,y)} = W_x \cup W_y$.

Application: Effectiveness of Recursion

Consider f defined by the following recursion

$$f(e_1, e_2, \widetilde{x}, 0) \simeq \phi_{e_1}^{(n)}(\widetilde{x}) \simeq \psi_U^{(n)}(e_1, \widetilde{x}),$$

and

$$\begin{array}{lcl} f(e_{1},e_{2},\widetilde{x},y+1) & \simeq & \phi_{e_{2}}^{(n+2)}(\widetilde{x},y,f(e_{1},e_{2},\widetilde{x},y)) \\ & \simeq & \psi_{U}^{(n+2)}(e_{2},\widetilde{x},y,f(e_{1},e_{2},\widetilde{x},y)). \end{array}$$

By S-m-n Theorem, there is a total computable function $r(e_1,e_2)$ such that

$$\phi_{r(e_1,e_2)}^{(n+1)}(\widetilde{x},y)\simeq f(e_1,e_2,\widetilde{x},y).$$

Application: Non-Primitive Recursive Total Function

Theorem. There is a total computable function that is not primitive recursive.

Proof.

- 1. The primitive recursive functions have a universal function.
- 2. Such a function cannot be primitive recursive by diagonalisation.

4. Recursion Theorem

Recursion Theorem (Kleene, 1938).

Let f be a total unary computable function. Then there is a number n such that $\phi_{f(n)} = \phi_n$.

Proof.

By S-m-n Theorem there is an injective primitive recursive function s(x) such that for all x

$$\phi_{s(x)}(y) \simeq \begin{cases} \phi_{\phi_x(x)}(y), & \text{if } \phi_x(x) \downarrow; \\ \uparrow, & \text{otherwise.} \end{cases}$$
(1)

Let v be such that $\phi_v = s$; f. Obviously ϕ_v is total and $\phi_v(v) \downarrow$. It follows from (1) that

$$\phi_{s(v)} = \phi_{\phi_v(v)} = \phi_{f(s(v))}.$$

We are done by letting n be s(v).

More about Recursion Theorem

Fact. If f is partial then $\phi_{f(n)} = \phi_n$ whenever $f(n) \downarrow$.

Fact. The fixpoint n can be computed from an index of f by an injective primitive recursive function.

Proof.

Let v(z) be an injective primitive recursive function such that $\phi_{v(z)} \simeq s$; ϕ_z . Then let $n(z) \simeq s(v(z))$.

Fact. There is an infinite set of fixpoints for f.

Proof.

By Padding Lemma there is an infinite set of indices v such that $\phi_v \simeq s$; f.

Fact. If f is a total computable function, there is a number n such that $W_{f(n)} = W_n$ and $E_{f(n)} = E_n$.

Self Referential Definition

Fact. Let f(x, y) be a computable function. Then there is an index e such that

$$\phi_e(y) \simeq f(e, y).$$

Proof.

By S-m-n Theorem there is a total computable function s(x) such that $\phi_{s(x)}(y) \simeq f(x,y)$. We are done by applying Recursion Theorem.

Self Referential Definition

The previous corollary makes it meaningful to define a computable function $\phi_e(y)$ by a computable function f(e, y).

Self Referential Definition

There is a number n such that $\phi_n(x) = x^n$.

There is a number n such that $W_n = \{n\}$. This number is obtained by applying the above corollary to the function

$$f(x,y) = \begin{cases} 0, & \text{if } x = y, \\ \uparrow, & \text{otherwise.} \end{cases}$$

Self Printing Program

Fact. There is a program P such that for all x, $P(x) \downarrow \gamma(P)$.

Proof.

It says that there is a number *n* such that

$$\phi_n(x) = n$$

for all x. Simply apply one of the corollaries to f(z,x)=z.

Applying Recursion Theorem

Theorem. Suppose that f is a total increasing function such that

- if $m \neq n$ then $\phi_{f(m)} \neq \phi_{f(n)}$,
- f(n) is the least index of the function $\phi_{f(n)}$.

Then f is not computable.

Proof.

Suppose f satisfies the conditions of the theorem.

By the first condition f(n) > n if n is large enough.

By the second condition $\phi_{f(n)} \neq \phi_n$ for all large enough n.

This contradicts to Recursion Theorem.

Diagonalisation Implicit in Recursion Theorem

We may think of ϕ_{X} as providing an effective enumeration of

$$\phi_{\phi_{\mathbf{x}}(\mathbf{0})}, \phi_{\phi_{\mathbf{x}}(\mathbf{1})}, \phi_{\phi_{\mathbf{x}}(\mathbf{2})}, \dots, \phi_{\phi_{\mathbf{x}}(i)}, \dots$$

The diagonal function $\phi_X(x)$ enumerates

$$\phi_{\phi_0(0)}, \phi_{\phi_1(1)}, \phi_{\phi_2(2)}, \dots$$

Let f be total computable. There is some total computable s(x), due to S-m-n Theorem, and some index m for s(x) such that

$$\phi_{\phi_m(x)}(y) \simeq \phi_{s(x)}(y) \simeq \phi_{f(\phi_x(x))}(y).$$

Both ϕ_m and $f(\phi_x(x))$ enumerate the following

$$\phi_{\phi_m(0)}, \phi_{\phi_m(1)}, \phi_{\phi_m(2)}, \ldots, \phi_{\phi_m(i)}, \ldots$$

Diagonalisation Implicit in Recursion Theorem

The diagonal intersects the *m*-row at $\phi_{\phi_m(m)} = \phi_{f(\phi_m(m))}$. It is important that $\phi_m(m)$ must be defined.

Diagonalisation offers an intuition about Recursion Theorem. It also explains the power of Recursion Theorem.

Generalized Recursion Theorem. Suppose f(x,z) is a total computable function. There is an injective primitive recursive function n(z) such that $\phi_{f(n(z),z)} = \phi_{n(z)}$ for all z.

Proof.

By S-m-n Theorem there is an injective primitive recursive function s(x,z) such that

$$\phi_{f(\phi_x(x),z)} = \phi_{s(x,z)}.$$

By the same theorem there is an injective primitive recursive function m(z) such that $s(x,z) = \phi_{m(z)}(x)$. So

$$\phi_{f(\phi_{x}(x),z)} = \phi_{\phi_{m(z)}(x)}.$$

We are done by letting x = m(z) and $n(z) = \phi_{m(z)}(m(z))$.

It is clear that n is an injective primitive recursive function.

Basic recursion theory can be developed from

S-m-n Theorem and Enumeration Theorem.

Advanced recursion theory makes frequent use of

Recursion Theorem.