S	a	S	~	P(sirls,a)
bah	2845	h	$\mathcal{T}_{\sphericalangle}$	×
h.	9	2	Ts	1-0
h	W	h	Tw.	1
ļ	\$	K	/ ₄ - 3 . ⁹	IBB
	9	1	75	β
2	w	2	rw	1 1
L	8	h	0	¹ I

For S, h -> high

L -> low

For a, S -> search

w -> wait

r -> relahorge

For S', h -> high

L -> low

To obtain the terble
it took all the passible
s, a, S, T' values. and
then - so found the
prob. with which they
will occur,

3. 3.15

usuld affect overall expected sum reviewed.

:GH = R++1+ Y R++2++ Y2R++3+ -- -

Adding constant 'c' to each reward,

Git = (R+1+C) + N(R+2+C)+ ----

But retteviley action value and remain summer. N There, tage want drange N N 5. V4(8) is the optimal state value function N 2x(sia) is the optimal of action-value for V Thus, Vx(s) = max {2x (5,a)} N Since, we weed cost would greedily chose Optimal. action. Pour optimal state value N function. N 3. 3.16 * The constant were varys with. the time cfi-ym1 Mis the no. of step left 3 -Thus, as we go forward the this toward -& a would decrease returns. eg = For a girl we orewerd 1 for 7 each, steps would nave lærgen return as Mis lærgen. and one will also be larger. H 3915 11 Megative rewards can be offset by a constant their effect will be nullified.