Cyclone V Signaling Sys.

Maxwell Stonham
Dylan Cazares

Cyclone V Chip (5CGXFC5C6F23C6N)

- Bipolar differential signaling system (LVDS)
- Receiver voltage: 1.0V to 1.6V (> 700Mbps), 0V to 1.85V (< 700Mbps)</p>
- Common mode voltage: 1.25V
- 484 Pin FBGA Package
 - Top RX, TX pins: 28
 - Right RX, TX pins: 8
 - Bottom RX, TX pins: 24
- Ball Diameter: 0.34mm
- Ball Pitch: 0.80mm

Board Stack-up and Parameters

Layer stac-kup: 4 layers

Width: 3.5mil (0.09mm)

Spacing (per line): 3.5mil (0.09mm)

Spacing (per pair): 20.5mil (0.52mm)

Material: FR-4, Copper Core

7628 Prepreg (Dielectric constant = 4.4)

PCB Thickness = 78.7mil (2mm)

35 differential signals on layer 1 and 35 differential signals on layer 2

Overall Design

Noise Budget

	K	mV
Signal Swing (dp-dn)		400
Gross Margin		200
Crosstalk	0.045	18
/ Reflections	0.045	18
Kn	0.215	86
Receiver offset		40
Gaussian Noise (Vrms)		5
Net Margin		38
V_{SNR}		7.6
Bit Error Rate		2.86x10 ⁻¹³
Mean Time Between Failure		0.222 yrs

Timing System and Budget

- Closed-loop timing system
- Removes skew, still take jitter into consideration

Timing Parameter	Time
Skew	Os
Rise time	400ps
Aperture	20ps
Cycle time	2ns
Delay	1ns
Uncertainty	

Tbit >
$$ta + tr + tu = 420ps$$

Calculated Parameters

	Value	Equation
Stray Capacitance (C _c)	172pF/m	$C = \frac{we}{d} + \left(\frac{2\pi e}{\ln\left(\frac{s}{h}\right)}\right)$
Coupling Capacitance (C _d)	15pF/m	$C = \frac{8.554pF/m\varepsilon_{\rm r}A}{\rm d}$
Inductance of Line (L)	285nH/m	$L = \frac{\varepsilon \mu}{C}$
Mutual Inductance (M)	25.83nH/m	$\frac{C_d}{C} = \frac{M}{L}$
Characteristic Impedance (Z ₀)	40.7Ω	$Z_0 = \sqrt{\frac{L}{C}}$
Resistance of Line (R)	1.25Ω/m	$R = \frac{\rho L}{A}$
Z _{odd}	37.18Ω	$Z_{odd} = \sqrt{\frac{M - L}{C_d + C}}$
Velocity (v)	1.4x10 ⁻⁸	$v = \frac{1}{\sqrt{LC}}$
Transmission Line Delay (†)	2.8ns	$t = \frac{d}{v}$
Inductive Crosstalk Coeffecient (k _{lx})	0.09	$\frac{M}{L}$
Capacitive Crosstalk Coeffecient (k _{cx})	0.09	$\frac{C_d}{C}$
Near end Cross Talk (k _{rx})	0.045	$k_{rx} = \frac{kcx - klx}{4}$
Far-end Cross Talk (k _{fx})	0	$k_{rx} = \frac{kcx - klx}{3}$

Performance Results

Power & Cost

- Cyclone V 5CGXFC5C6F23C6N: \$244.00
- PCB Cost: \$25.40 (\$0.37/in²)

Future Improvements