Pannon Egyetem Villamosmérnöki és Információs Tanszék

Számítógép Architektúrák II. (MIVIB344ZV)

3. előadás: Aritmetikai műveletvégző egységek – összeadás, kivonás

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@mik.uni-pannon.hu

Jegyzetek, segédanyagok:

- Könyvfejezetek:
 - □ http://www.virt.uni-pannon.hu → Oktatás → Tantárgyak → Számítógép Architektúrák II.
 - □ (chapter03.pdf)
- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

Ismétlés

- Korai számítógépek teljesítményét főként ballisztikus számításoknál (hadászatban)
- Információ ábrázolás
- Használt utasításkészlet (RISC vs. CISC)
- Adatkezelő / műveletvégző egység: Alapvető ALU (Aritmetikai és Logikai funkciók)
 - Univerzális / funkcionális teljesség
 - Aritmetikai operátorok: + → -,*,/ (alapműveletek)
 - Logikai operátorok:
 NAND,NOR → NOT, AND, OR, XOR (AV), NXOR
 (EQ) mai CMOS VLSI technológia esetén

ALU felépítése

- Utasítások hatására a (S_m-S₀) "vezérlőjelek" jelölik ki a végrehajtandó aritmetikai / logikai műveletet.
- További adatvonalak kapcsolódhatnak közvetlenül a státusz regiszterhez, amelyben fontos információkat tárolunk: pl.
 - □ zero bit
 - □ carry-in, carry-out átviteleket,
 - □ *előjel* bitet (sign),
 - túlcsordulást (overflow), vagy alulcsordulást (underflow) jelző biteket,
 - □ Paritás, stb.

Státusz- (flag) jelzőbitek

- Az aritmetikai műveletek eredményétől függően hibajelzésre használatos jelzőbitek. Ezek megváltozása az utasításkészletben előre definiált utasítások végrehajtásától függ.
 - □ a.) Előjelbit (sign): 2's komplemens (MSB)
 - □ b.) Átvitel kezelő bit (carry in/out): helyiértékes átvitel
 - □ c.) Alul / Túlcsordulás jelzőbit (underflow / overflow)
 - □ d.) Zero bit: kimeneten az eredmény 0-e?
 - PI: 0-val való osztás!
 - (szorzásnál egyszerűsíthetőség adatfüggés)
 - □ e.) Paritás bit: páros, páratlan
 - ...

- Két N=4-bites operandus (A, B)
- Eredmény (F) bitszélessége:
 - □ N+(1 CarryOut) bit, ha +;-
 - □ 2×N bites, ha *
- H.értékes átvitel: Carryln/ Out
- S2: Aritmetikai/ logikai mód választó (MUX)
- S0, S1: művelet kiválasztó
 (S2 értékétől függően
 - Aritmetikai vs. Logikai

IC: '181 ALU 4-bites (74LS181)

4-bites ALU szimbolikus rajza

ALU működését leíró függvénytáblázat

(egy lehetséges működés, a funkciók bővíthetők):

Művelet kiválasztás:				Művelet:	Megvalósított függvény:	
S2	s1	S0	Cin			
0	0	0	0	F=A	'A' átvitele	
0	0	0	1	F=A+1	'A' értékének növelése 1-el (increment)	
0	0	1	0	F=A+B	Összeadás	
0	0	1	1	F=A+B+1	Összeadás carry figyelembevételével	
0	1	0	0	$F = A + \overline{B}$	A + 1's komplemens B	
0	1	0	1	$F = A + \overline{B} + 1$	Kivonás = 2's összeadás!	
0	1	1	0	F=A-1	'A' értékének csökkentése 1-el (decrement)	
0	1	1	1	F=B	'B' átvitele	
1	0	0	×	$F = A \wedge B$	AND	
1	0	1	×	$F = A \vee B$	OR	
1	1	0	×	$F = A \oplus B$	XOR	
1	1	1	x	$F = \overline{A}$	'A' negáltja (NOT A)	

^{*} Forrás: Könyv függeléke (appendix)

ALU felépítése:

Lebegőpontos műveletvégző egységek

Lebegőpontos műveletvégző egységek

- Probléma:
 - Mantissza igazítás → Exponens beállítás
 - □ Normalizálás, Utó-(Post) Normalizálás
 - (DEC-32, IEEE-32, IBM-32)
- Műveletvégző elemek:
 - □ Összeadó (adder)-,
 - □ Kivonó (subtractor)-,
 - □ Szorzó (multiplier)-,
 - □ Osztó (divider) áramkörök.

M

a.) Lebegőpontos összeadó

- Művelet: $A=B+C=M_B\times r^{E_B}+M_C\times r^{E_C}=(M_B\times r^{|E_B-E_C|}+M_C)\times r^{E_C}$
 - Komplex feladat: a mantisszák hosszát egyeztetni kell (MSB bitek azonos helyiértéken legyenek)
 - □ Legyen: 0<B<C
 - □ B → C vagyis |E_B-E_C|
 pozícióval jobbra
 igazítjuk az M_B
 mantisszát; ez változás
 az exponensben is
 - ALU: Összeadás!: sign-magnitude formátumban
 - Végül minimális postnormalizáció kell

ÞΑ

Példa: Lebegőpontos összeadás (kivonás)

```
r<sub>b</sub>=2, IEEE-754 (bináris 32-bites rendszer):
```

■ A = B + C =
$$10.0001 + 1101.1 = //B < C//$$
 $(1.00001 \times 2^{1}) + (1.1011 \times 2^{3}) =$
 $(0.0100001 \times 2^{3}) + (1.1011 \times 2^{3}) =$
 $(0.0100001 + 1.1011) \times 2^{3} =$

■ 1.1111001 × 2[^]3 = A (itt éppen nem kell post-normalizálás)

b.) Lebegőpontos kivonó

- Művelet: $A = B C = M_B \times r^{E_B} M_C \times r^{E_C} = (M_B \times r^{|E_B E_C|} M_C) \times r^{E_C}$
 - Komplex feladat: a mantisszák hosszát egyeztetni kell (MSB bitek azonos helyiértéken legyenek)
 - □ Legyen: 0<B<C
 - □ B → C vagyis |E_B-E_C|
 pozícióval jobbra
 igazítjuk az M_B
 mantisszát, ez
 változás az
 exponensben is
 - ☐ Kivonás! (ALU)

c.) Lebegőpontos szorzó

- Művelet: $A=B\times C=M_B\times r^{E_B}\times M_C\times r^{E_C}=(M_B\times M_C)\times r^{E_B+E_C}$
 - □ A: szorzat
 - □ B: szorzandó
 - □ C: szorzó
 - □ Könnyű végrehajtani
 - Nincs szükség az operandusok beállítására
 - Minimális postnormalizációt kell csak végezni
 - □ ALU: szorzás!

d.) Lebegőpontos osztó

- Művelet: $A=B/C=M_B\times r^{E_B}/M_C\times r^{E_C}=(M_B/M_C)\times r^{E_B-E_C}$
 - □ A: hányados
 - □ B: osztandó
 - □ C: osztó
 - □ Könnyű végrehajtani
 - Nincs szükség az operandusok beállítására
 - Minimális postnormalizációt kell csak végezni
 - □ Osztás! (ALU)

Összeadó áramkörök

a.) Fél-összeadó – Half Adder

■ HA: 1-bites Half Adder

igazságtáblázat

Ai	Bi	Cout	Si
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Nem kezeli a Cin-t!

$$A + B = Cout | S$$

Kimeneti fgv-ei:

$$S_i = A_i \oplus B_i$$

1 bites FA felépítése 2 db HA segítségével:

b.) Teljes összeadó – Full Adder

■ FA: 1-bites Full Adder

igazságtáblázat

A _i	B _i	Cin	Cout	Sum _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

szimbólum

Kimeneti fgv-ei:

$$C_{out} = A_i \cdot B_i + A_i \cdot C_{in} + B_i \cdot C_{in}$$

Ez a FA egy lehetséges CMOS kapcsolási rajza: (itt $T_{FA} = 3G$!)

$$A + B + Cin = Cout | S$$

$$S_i = A_i \oplus B_i \oplus C_{in}$$

c.) Átvitelkezelő összeadó – Ripple Carry Adder (RCA)

Példa: 6-bites RCA: [5..0] (LSB Cin = GND!)

Számítási időszükséglet (RCA):

 $T_{(RCA)} = N^*T_{(FA)} = N^*(2^*G) = 12 G$ (6-bites RCA esetén) ahol a min. 2G az 1-bites FA kapukésleltetése ([ns], [ps])

d.) LACA: Look Ahead Carry Adder Átvitelgyorsító összeadó

Képlet (FA) átalakításából kapjuk:

$$\begin{split} C_{out} &= A_i \cdot B_i + A_i \cdot C_{in} + B_i \cdot C_{in} \\ \Rightarrow \underbrace{A_i \cdot B_i}_{CarryGenerate} + C_{in} \cdot \underbrace{(A_i + B_i)}_{CarryPropagate} = C_G + C_{in} \cdot C_P \\ S_i &= A_i \oplus B_i \oplus C_{in} \end{split}$$

<u>LACG</u>: Look Ahead Carry Generator egy **b** bites ALU-hoz kapcsolódik, mindenegyes állapotban a Cin generálásáért felel a CP és CG (LACA-tól) érkező jeleknek megfelelően ("LACG looks at CP and CG from adders").

N-bites LACA számítási időszükséglete: $T_{LACA} = 2 + 4 \times (\lceil \log_b(N) \rceil - 1)$

ahol N: bitek száma, b: LACG bitszélessége (hány LACA-hoz tartozik egy LACG)

Megjegyzés: LACA – CG átírása XOR kapcsolatra (nem triviális forma)

 CG előállítása: alkalmazott másik érvényes forma a XOR kapcsolattal megadott kifejezés

igazságtáblázat

A _i	B _i	Cin	Cout	Sum _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Karnaugh tábla:

Kimeneti fgv:

$$C_{out} = \overline{A_i} \cdot B_i \cdot C_{in} + A_i \cdot \overline{B_i} \cdot C_{in} + A_i \cdot B_i =$$

$$= A_i \cdot B_i + C_{in} \cdot (A_i \oplus B_i) =$$

$$= C_C + C_{in} \cdot C_P$$

Példa: 4-bites LACA

Legyen b=4 (LACG), és N=4 (LACA). Áramkör felépítése, és időszükséglete?

M

Példa (folyt.): 4-bites LACA számítási műveletei (carry terjesztés)

■ LSB → MSB felé az összeadások

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_2 = G_1 + P_1 \cdot C_1$$

$$C_3 = G_2 + P_2 \cdot C_2$$

$$C_4 = G_3 + P_3 \cdot C_3$$

Behelyettesítések: adott C_i -t → a C_{i+1} -be

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_2 = G_1 + G_0 \cdot P_1 + C_0 \cdot P_0 \cdot P_1$$

$$C_3 = G_2 + G_1 \cdot P_2 + G_0 \cdot P_1 \cdot P_2 + C_0 \cdot P_0 \cdot P_1 \cdot P_2$$

$$C_4 = G_3 + G_2 \cdot P_3 + G_1 \cdot P_2 \cdot P_3 + G_0 \cdot P_1 \cdot P_2 \cdot P_3 + C_0 \cdot P_0 \cdot P_1 \cdot P_2 \cdot P_3$$

 Magasabb b-bites LACG hierarchia szintek felé GP (group propagate) és GG (group generate) számítása:

$$GG = G_3 + G_2 \cdot P_3 + G_1 \cdot P_3 \cdot P_2 + G_0 \cdot P_3 \cdot P_2 \cdot P_1$$

$$PG = P_0 \cdot P_1 \cdot P_2 \cdot P_3$$

Példa: 4x16-bites LACA

Legyen b=64 (LACG), és N=4x16 (LACA). Áramkör felépítése, és időszükséglete?

64-bites (16×4) LACA összeadó

64 BIT RESULT

$$T_{LACA} = 2 + 4 \times (\underbrace{\log_4(64)}_{3} - 1) = 10$$

- Komponensek:
 - '182 = SN74LS181: **N=4-**bites ALU (összeadás)
 - '181 = SN74LS182: **b=4** bites LACG generátor

Kivonó áramkörök

Teljes kivonó - Full Subtractor (FS)

FS: 1-bites Full Subtractor

igazságtáblázat

X _i	Y _i	Bin	Bout	F _i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

X

0

szimbólum

10

0

11

Logikai kapcsolási rajz Bout-ra (F előállítása ugyanaz, mint FA-nál):

 $F_i = X_i \oplus Y_i \oplus B_{in}$

Kimeneti fgv-ei:

Karnaugh

táblái:

$$B_{out} = \overline{X_i} \cdot Y_i + \overline{X_i} \cdot B_{in} + Y_i \cdot B_{in}$$

0

М

Bináris kivonás módszerei

I. módszer:

Bináris kivonás *FS* segítségével

- II. módszer: Kivonás visszavezetése az univerzálisan teljes bináris összeadás segítségével (2's komplemens alak – korábban tanultuk):
 - ☐ FA, RCA, vagy LACA

$$F_i = X_i + 2 's comp(Y_i)$$

* * * * *

^{*:} azt jelöli, amikor az adott helyiértéken '1'-et kell kivonni még az X_i értékéből (borrow from X_i)