ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа 2.3.1A Современные средства получения и измерения вакуума Работа 2.3.1А 1 Введение.

Цель работы: Изучить принципы получения и измерения вакуума в экспериментальном стенде. В работе используются: компактный высоковакуумный откачной пост Edwards серии EXPT, вакууметр Edwards и вакуумные компоненты типа ISO-KF.

1 Введение.

В данной работе используются 2 насоса: пластинчато-роторный и турбомолекулярный.

Рис. 1: Конструкция одноступенчатого пластинчато-роторного насоса

Рис. 2: Конструкция турбомолекулярного насоса. 1 — ротор, 2 — статор, 3 — корпус насоса, 4 — электродвигатель, 5 — нижний шарикоподшипник, 6 — высоковакуумный входной фланец, 7 — выпускной форвакуумный фланец

2 Обработка данных:

2.1 Измерение вязкости воды

1. Измерим параметры капиляра:

- 2. Дождавшись установившегося режима вытекания воды через капиляр (появились первые пузырьки на нижнем конце трубки B), мы провели 2 измерения времени, за которое мензурка заполняется на 25 мл. $t_1=185c, t_2=180c(h=85 \text{мм})$. Такие данные убеждают нас в том, что скорость истечения не зависит от количества воды в сосуде, а определяется глубиной погружения трубки B.
- 3. Приступим к основной серии измерений. Мы будем менять глубину погружения трубки В и измерять время, за которое через капилляр вытечет 20 мл воды.

Таблица 1: Результаты измерений

h, мм	29	38	44	57	62
t, c	576	383	327	248	213

4. Будем вычислять расход воды Q, оценивать число Рейнольдса Re (взяв вязкость воды $\eta \approx 0,01\Pi$) и длину участка копиляра, на котором устанавливается ламинарное течение, по следующим формулам:

$$Q = \frac{V}{t}$$

$$Re = \frac{QR\rho}{S\eta}$$

$$a \approx 0, 2R \cdot Re$$

Таблица 2: Полученные данные

h, мм	29	38	44	57	62
\mathbf{Q} , мкл/ \mathbf{c}	35	52	61	81	94
Re	2,5	3,69	4,3	5,73	6,65
а, мм	2,25	3,32	3,87	5,16	5,98

По полученным данным построим график:

Рис. 3

Получена линейная зависимость $y=(1,7\pm0,1)x-(14\pm1)$. По углу наклона графика определим вязкость воды:

$$\eta = \frac{\pi R^4 \rho g}{8lQ'(h)} \approx (7, 2 \cdot 10^{-3})\Pi$$

Табличное значение: 0.011П

2.2 Измерение вязкости раствора глицерина вискозиметром Освальда

Измерим время протекания жидкостей между отметками вискозиметра.

Таблица 3: Результаты измерений

Номер опыта	1	2	3	4	5	Ср. знач.	Погрешность
t воды, с	5,91	5,87	5,84	5,89	6,09	5,92	0,04
t глицерина 10%, с	8,32	8,36	8,33	8,68	8,86	8,51	0,3
t глицерина 20%, с	10,72	11,35	10,65	10,75	11,17	10,94	0,4
t глицерина 30%, с	15,15	15,18	15,49	15,19	15,18	15,2	0,1

Вязкость растворов глицерина получем с помощью формулы:

$$\eta_x = \eta_0 \frac{\rho_x \cdot t_x}{\rho_0 \cdot t_0}$$

Работа 2.3.1А 3 Вывод

Полученные значения:

Глицерин, %	$\eta, \Pi \cdot c$
10	1,1
20	1,4
30	2

Значения достаточно точно совпадают с табличными:

Глицерин, %	$\eta, \Pi \cdot c$
10	1,0
20	1,31
30	2,5

3 Вывод

В ходе лабораторной работы нам удалось измерить вязкость жидкдостей двумя разными способами:

- 1) Определили вязкость воды через скорость истечения жидкости через капиляр из сосуда Мариотта по формуле Пуазейля. Полученное значение получилось довольно близким к табличному.
- 2) Далее мы наблюдали за скоростью протекания жидости через вискозиметр Оствальда и через зависимость вязкости от времени протекания и плотности получали плотность растворов глицерина. Полученные данные хорошо совпадали с табличными.