DEVOIR À LA MAISON N°18

Problème 1 –

Pour $n \in \mathbb{N}$, on pose $U_n = \left(X^2 - 1\right)^n$ et $P_n = \frac{1}{2^n n!} U_n^{(n)}$.

On note L l'application qui à $P \in \mathbb{R}[X]$ associe le polynôme $L(P) = \left[\left(X^2 - 1\right)P'\right]'$.

Partie I - Un endomorphisme auto-adjoint

Pour $(P,Q) \in \mathbb{R}[X]^2$, on pose $\langle P,Q \rangle = \int_{-1}^1 P(t)Q(t) \ dt$.

- Montrer que ⟨.,.⟩ est un produit scalaire sur R[X].
 Dans la suite, on supposera R[X] muni de ce produit scalaire et on notera ||.|| sa norme euclidienne associée.
- **2.** Montrer que L est un endomorphisme de $\mathbb{R}[X]$.
- 3. a. Montrer que $\mathbb{R}_n[X]$ est stable par L. On note L_n l'endomorphisme induit de $\mathbb{R}_n[X]$ induit par L.
 - **b.** Déterminer le noyau de L_n et en déduire le rang de L_n.
- **4.** Soit $(P, Q) \in \mathbb{R}[X]^2$. Montrer que $\langle L(P), Q \rangle = \langle P, L(Q) \rangle$.

Partie II - Etude d'une famille de polynômes

- **1.** Calculer P_0, P_1, P_2, P_3 .
- 2. a. Montrer que deg $P_n = n$ et déterminer le coefficient dominant a_n de P_n . On exprimera a_n à l'aide de factorielles.
 - **b.** Justifier que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
- 3. a. En utilisant la formule de Leibniz, établir que

$$P_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^{n-k} (X+1)^k$$

- **b.** En déduire les valeurs de $P_n(1)$ et $P_n(-1)$.
- 4. a. Vérifier les relations

$$\label{eq:unitary_equation} \begin{split} U_{n+1}' &= 2(n+1)XU_n \\ \left(X^2 - 1\right)U_n' &= 2nXU_n \end{split}$$

b. En dérivant n+1 fois les relations précédentes, montrer que

$$P'_{n+1} = XP'_n + (n+1)P_n$$

 $L(P_n) = n(n+1)P_n$

- **5.** En déduire à l'aide de la question **I.4** que $\langle P_m, P_n \rangle = 0$ pour tout couple $(m, n) \in \mathbb{N}^2$ tel que $m \neq n$.
- **6. a.** Montrer que pour tout $Q \in \mathbb{R}_n[X]$, $\langle P_{n+1}, Q \rangle = 0$.
 - $\textbf{b.} \ \ \text{On note } \mathcal{I} \ l\text{'ensemble des racines de P}_{n+1} \ de \ multiplicit\'e \ impaire appartenant \`a \ l'intervalle \]-1,1[$ et on pose $R=\prod (X-r).$

Montrer que $RP_{n+1}^{r\in\mathcal{I}}$ est de signe constant sur [-1,1].

- **c.** En déduire que P_{n+1} possède exactement n+1 racines distinctes, toutes dans l'intervalle]-1,1[.
- 7. Pour $n \in \mathbb{N}$, on note a_n le coefficient dominant de P_n .
 - $\textbf{a.} \ \text{Montrer que} \ \left\langle P_{n+1}', P_n \right\rangle = (n+1) \frac{\alpha_{n+1}}{\alpha_n} \left\| P_n \right\|^2.$
 - b. A l'aide d'une intégration par parties, établir que

$$||P_n||^2 = 2 - 2 \int_{-1}^1 t P_n(t) P'_n(t) dt$$

- **c.** En déduire que $\|P_n\|^2 = \frac{2}{2n+1}$ en utilisant la question **II.4.b**.
- 8. Pour $n \in \mathbb{N}$, on pose $T_n = \sqrt{\frac{2n+1}{2}}P_n$.
 - a. Montrer que $(T_k)_{0\leqslant k\leqslant n}$ est une base orthonormée de $\mathbb{R}_n[X].$
 - **b.** Calculer la distance du polynôme X^{n+1} au sous-espace vectoriel $\mathbb{R}_n[X]$.