Untitled

Prashant Jha

2024-05-31

##question 7

```
library(tidyverse)
aq <- airquality
wind_by_month <- sapply(split(aq, aq$Month), FUN = function(x) c(mean(x$Wind), sd(x$Wind)))
wind_by_month_df <- as.data.frame(t(wind_by_month))
colnames(wind_by_month_df) <- c('Mean', 'SD')
print(wind_by_month_df)</pre>
```

```
## Mean SD

## 5 11.622581 3.531450

## 6 10.266667 3.769234

## 7 8.941935 3.035981

## 8 8.793548 3.225930

## 9 10.180000 3.461254
```

This table is showing the Mean and Standard Deviation of the speed of wind of everyday from month May to September (represented by 5 to 9) in the year 1973.

a.

I am using Shapiro-Wilk test to perform goodness-of-fit test on wind variable to check if it follows normal distribution or not.

```
library(stats)
hist(aq$Wind)
```

Histogram of aq\$Wind


```
shapiro.test(aq$Wind)
```

```
##
## Shapiro-Wilk normality test
##
## data: aq$Wind
## W = 0.98575, p-value = 0.1178
```

Since the W value is closer to 1 and p-value is >0.05, I conclude that the variable Wind is normally distributed.

b.

Goodness-of-fit test to check if variances among different groups(months) are equal or not.

```
library(car)
aq$Month <- factor(aq$Month)
leveneTest(aq$Wind ~ aq$Month, data = aq, center = mean)</pre>
```

```
## Levene's Test for Homogeneity of Variance (center = mean)
         Df F value Pr(>F)
## group
         4 0.1859 0.9454
        148
##
```

Since p-value > 0.05, we accept the null hypothesis that means equal variance among months.

C.

Normality test of each month.

```
with(aq, shapiro.test(Wind[Month == 5]))
##
##
    Shapiro-Wilk normality test
## data: Wind[Month == 5]
## W = 0.968, p-value = 0.4659
with(aq, shapiro.test(Wind[Month == 6]))
##
    Shapiro-Wilk normality test
##
##
## data: Wind[Month == 6]
## W = 0.96858, p-value = 0.501
with(aq, shapiro.test(Wind[Month == 7]))
##
##
    Shapiro-Wilk normality test
##
## data: Wind[Month == 7]
## W = 0.95003, p-value = 0.1564
with(aq, shapiro.test(Wind[Month == 8]))
##
##
    Shapiro-Wilk normality test
##
## data: Wind[Month == 8]
## W = 0.98533, p-value = 0.937
with(aq, shapiro.test(Wind[Month == 9]))
```

```
##
## Shapiro-Wilk normality test
##
## data: Wind[Month == 9]
## W = 0.97853, p-value = 0.7852
```

Since the W value is closer to 1 and p-value is >0.05 in each month, I conclude that variable Wind in each Month is normally distributed. So classical one-way anova must be used.

```
dataset <- iris
dataset
```

,, LOL 1, OO	.01			0.1	ititiou	
##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
## 1	5.1	•	_	0.2	•	
## 2	4.9	3.0	1.4	0.2	setosa	
## 3	4.7	3.2	1.3	0.2	setosa	
## 4	4.6	3.1	1.5	0.2	setosa	
## 5	5.0	3.6	1.4	0.2	setosa	
## 6	5.4				setosa	
## 7	4.6				setosa	
## 8	5.0				setosa	
## 9	4.4			0.2	setosa	
## 10	4.9		1.5	0.1	setosa	
## 11	5.4		1.5	0.2	setosa	
## 12	4.8			0.2	setosa	
## 13	4.8			0.1	setosa	
## 14	4.3				setosa	
## 15	5.8			0.2	setosa	
## 16	5.7			0.4	setosa	
## 17	5.4			0.4	setosa	
## 18	5.1			0.3	setosa	
## 19	5.7				setosa	
## 20	5.1			0.3	setosa	
## 21	5.4			0.2	setosa	
## 22	5.1		1.5	0.4	setosa	
## 23	4.6		1.0	0.2	setosa	
## 24	5.1		1.7	0.5	setosa	
## 25	4.8				setosa	
## 26	5.0			0.2	setosa	
## 27	5.0	3.4	1.6	0.4	setosa	
## 28	5.2	3.5	1.5	0.2	setosa	
## 29	5.2	3.4	1.4	0.2	setosa	
## 30	4.7		1.6	0.2	setosa	
## 31	4.8	3.1	1.6	0.2	setosa	
## 32	5.4	3.4	1.5	0.4	setosa	
## 33	5.2		1.5	0.1	setosa	
## 34	5.5		1.4	0.2	setosa	
## 35	4.9		1.5	0.2	setosa	
## 36	5.0		1.2	0.2	setosa	
## 37	5.5		1.3	0.2	setosa	
## 38	4.9		1.4	0.1	setosa	
## 39	4.4		1.3	0.2	setosa	
## 40	5.1		1.5	0.2	setosa	
## 41	5.0	3.5	1.3	0.3	setosa	
## 42	4.5		1.3	0.3	setosa	
## 43	4.4		1.3	0.2	setosa	
## 44	5.0		1.6	0.6	setosa	
## 45	5.1		1.9	0.4	setosa	
## 46	4.8		1.4	0.3	setosa	
## 47	5.1		1.6	0.2	setosa	
## 48	4.6		1.4	0.2	setosa	
## 49	5.3		1.5	0.2	setosa	
## 50	5.0		1.4	0.2		
## 51	7.0		4.7		versicolor	
-		- · -	• • •		. —	

## 5	2 6.	4 3.	. 2	4.5	1.5	versicolor
## 5	3 6.	9 3.	. 1	4.9	1.5	versicolor
## 5	4 5.	5 2.	. 3	4.0	1.3	versicolor
## 5	5 6.	5 2.	. 8	4.6	1.5	versicolor
## 5	6 5.	7 2.	. 8	4.5	1.3	versicolor
## 5	7 6.			4.7	1.6	versicolor
## 5					1.0	versicolor
## 5						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 6						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 7						versicolor
## 8						versicolor
## 8						versicolor
## 8						versicolor
## 8						versicolor
## 8						versicolor
						versicolor
## 8						versicolor
						versicolor
## 8						versicolor
## 8						versicolor
## 9						versicolor
## 9						versicolor
## 9						versicolor
## 9						versicolor
## 9						versicolor versicolor
## 9						
## 9						versicolor
## 9						versicolor
## 9						versicolor
## 9						versicolor
## 1						versicolor
## 1					2.5	virginica
## 1					1.9	virginica
## 1	03 7.	1 3.	. •	5.9	2.1	virginica
1						

1031202	4, 09.01				Ont	illeu
##	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
##	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8	1.8	virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
	112	6.4	2.7	5.3	1.9	virginica
	113	6.8	3.0	5.5	2.1	virginica
	114	5.7	2.5	5.0	2.0	virginica
	115	5.8	2.8	5.1	2.4	virginica
	116	6.4	3.2	5.3	2.3	virginica
	117	6.5	3.0	5.5	1.8	virginica
	118	7.7	3.8	6.7	2.2	virginica
	119	7.7	2.6	6.9	2.3	virginica
	120	6.0	2.2	5.0	1.5	virginica
	121	6.9	3.2	5.7	2.3	virginica
	122	5.6	2.8	4.9	2.0	virginica
	123	7.7	2.8	6.7	2.0	virginica
	124	6.3	2.7	4.9	1.8	virginica
	125	6.7	3.3	5.7	2.1	virginica
	126	7.2	3.2	6.0	1.8	virginica
	127	6.2	2.8	4.8	1.8	virginica
	128	6.1	3.0	4.9	1.8	virginica
	129	6.4	2.8	5.6	2.1	virginica
	130	7.2	3.0	5.8	1.6	virginica
	131	7.4	2.8	6.1	1.9	virginica
	132	7.9	3.8	6.4	2.0	virginica
	133	6.4	2.8	5.6	2.2	virginica
	134	6.3	2.8	5.1	1.5	virginica
	135	6.1	2.6	5.6		virginica
	136	7.7	3.0	6.1	2.3	virginica
		6.3	3.4	5.6	2.4	virginica
	137 138	6.4	3.1	5.5	1.8	virginica
	139	6.0	3.0	4.8	1.8	virginica
	140	6.9	3.1	5.4	2.1	virginica
		6.7				
	141 142	6.9	3.1 3.1	5.6 5.1	2.4	virginica virginica
						-
	143	5.8	2.7	5.1	1.9	virginica
	144	6.8	3.2	5.9	2.3	virginica
	145	6.7	3.3	5.7	2.5	virginica
	146	6.7	3.0	5.2	2.3	virginica
	147	6.3	2.5	5.0	1.9	virginica
	148	6.5	3.0	5.2	2.0	virginica
	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

10.a),b),c)

Putting the iris data set and creating a hierarchical clustering using these methods.

```
hcasingle <- hclust(dist(dataset), method = "single")

## Warning in dist(dataset): NAs introduced by coercion

hcacomplete <- hclust(dist(dataset), method = "complete")

## Warning in dist(dataset): NAs introduced by coercion

hcaaverage <- hclust(dist(dataset), method = "average")

## Warning in dist(dataset): NAs introduced by coercion</pre>
```

Getting the dendrogram using three different models i.e. single linkage, complete linkage,

average linkage

```
plot(hcasingle, main = "Single Linkage",xlab="",sub="",cex = 0.6)
```

Single Linkage

plot(hcacomplete, main = "Complete Linkage",xlab="",sub="",cex = 0.6)

Complete Linkage

plot(hcaaverage, main = "Average Linkage",xlab="",sub="",cex = 0.6)

Average Linkage

