

51.505 – Foundations of Cybersecurity

Week 5 - Symmetric Encryption

Created by **Pawel Szalachowski** (2017) Modified by **Jianying Zhou** (2018)

Last updated: 23 Sept 2018

Review of Exercises

- Mid-term exam (Week 6): Fri 19 Oct, 7:30 PM (covering Part I Foundations: Week 1 Week 4)
- Let's review some exercises from Week 1 to Week 4.

Cryptography

- Cryptography: art and science of encryption (ciphers)
- More than encryption (other primitives)
 - ✓ hash functions, MACs, (P)RNG, RSA, DH
- Higher-level constructions
 - ✓ secure channel, key server, PKI
- Real-world systems?

Cryptography

- Threat model
 - ✓ Understand what and against whom you are trying to protect
- Cryptography is very difficult.
 - ✓ Proofs but with many assumptions, implementation issues, side-channel attacks, security vs. performance
- Cryptography is the easy part.
 - ✓ Systems are very complex, while a cryptographic component has fairly well-defined boundaries and requirements.
- Cryptography only solves some security problems.

How it happens?

- Secure communication
 - ✓ Client-Server via HTTPS

Symmetric Encryption

- Encryption scheme
 - \checkmark Encryption and decryption algorithms: E() and D()
- Alice, Bob, and Eve
 - ✓ Alice and Bob share a secret (symmetric) key: **K**
 - ✓ Eve sees all (encrypted) communication.

$$ctxt = E_K(ptxt)$$
Alice
$$ptxt = D_K(ctxt)$$
Eve

- Kerckhoffs' Principle
 - ✓ The security of the encryption scheme must depend only on the secrecy of the key, and not on the secrecy of the algorithm.

Caesar Cipher

- A substitution cipher, where each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet.
 - ✓ This fixed number of positions is the secret key.
 - ✓ What's the key in the following example?

Other Substitution Ciphers

Monoalphabetic

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Key: PDKIFMRBHSONCGXUTJWEYLQAZV

Trivial to break with letter frequency

One-Time Pad

Key is random, as long as plaintext (at least), and is used only once.

- This scheme cannot be broken.
 - ✓ No matter how strong an adversary is, she cannot learn anything about plaintext.
- Disadvantages?

Attacks

Goal: to discover the key.

- Ciphertext-Only Attack (COA)
 - ✓ Eve knows only ciphertexts (without the corresponding plaintexts).
- Known-Plaintext Attack (KPA)
 - ✓ Eve knows some (plaintext, ciphertext) pairs.
- Chosen-Plaintext Attack (CPA)
 - ✓ Eve can select plaintexts and obtain the corresponding ciphertexts.
- Chosen-Ciphertext Attack (CCA)
 - ✓ Eve can select plaintexts and/or ciphertexts and obtain the corresponding ciphertexts and/or plaintexts.

More powerful attacks

Security Level

- Exhaustive search (brute-force) attack: an adversary tries all possible values for some target object (like the key).
- If an attack requires 2ⁿ steps of work, then it is corresponding to an exhaustive search for a n-bit value. Example via keylength.com:

Dat	Date Symmetric		Factoring Modulus	Discrete Logarithm Key Group		Elliptic Curve	Hash	
2017 -	2022	128	2000	250	2000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512
> 20)22	128	3000	250	3000	250	SHA-256 SHA-512/256 SHA-384 SHA-512	SHA3-256 SHA3-384 SHA3-512

• The level of security is usually a function of the access of the adversary (e.g. how many encrypted messages she sees).

Modern Ciphers

- Block ciphers
 - ✓ Operate on data blocks
 - ✓ AES, DES, Serpent, ...
- Stream ciphers
 - ✓ Operate on data streams
 - ✓ RC4, Salsa20, ...

Block Cipher

- An encryption/deception function for fixed-size blocks of data.
 - ✓ Encryption function (E_K) for a secret key and a plaintext block returns the cipertext (one block).

✓ Decryption function (D_K) for the secret key and the ciphertext block *reverts* the plaintext block.

✓ Currently, 128 bits is the most common block size and key lengths are usually between 128 - 512 bits.

AES (Rijndael)

- The Advanced Encryption Standard (AES)
 - ✓ Standardized (2001) and the most popular
 - ✓ Hardware support in recent CPUs
 - ✓ Blocks are 128-bit long
 - √ Keys can be 128-, 192-, or 256-bit long

```
AddRoundKey(0)

for round in range(1, Nr):
    SubBytes()
    ShiftRows()
    MixColumns()
    AddRoundKey(round)

SubBytes()
ShiftRows()
AddRoundKey(Nr)
```

- Substitution-permutation network.
- Number of rounds (N_r) depends on key length.
 - $\sqrt{N_r}$ = 10 for 128-bit keys
 - $\sqrt{N_r}$ = 12 for 192-bit keys
 - \checkmark N_r = 14 for 256-bit keys
- Before execution the key expansion procedure is called to derive N_{r+1} subkeys.
- A set of reverse rounds is applied to transform a ciphertext back into the plaintext.

AddRoundKey (0)

```
for round in range(1, Nr):
    SubBytes()
    ShiftRows()
    MixColumns()
    AddRoundKey(round)
```

```
SubBytes()
ShiftRows()
AddRoundKey(Nr)
```


 Each byte of the state is combined (XORed) with a byte of the round subkey.

```
AddRoundKey(0)

for round in range(1, Nr):
    SubBytes()
    ShiftRows()
    MixColumns()
    AddRoundKey(round)
```


SubBytes()

ShiftRows()
AddRoundKey(Nr)

- Each byte in the state is replaced with its entry in a fixed 8-bit lookup table S.
- The goal is to provide the *non-linearity* in the cipher.

```
AddRoundKey(0)

for round in range(1, Nr):
    SubBytes()
    ShiftRows()
    MixColumns()
    AddRoundKey(round)
```

- Bytes in each row of the state are shifted cyclically to the left.
- The goal is to avoid the columns being encrypted independently, in which case AES degenerates into four independent block ciphers.

SubBytes()
ShiftRows()
AddRoundKey(Nr)


```
AddRoundKey(0)

for round in range(1, Nr):
    SubBytes()
    ShiftRows()
    MixColumns()
    AddRoundKey(round)
```



```
SubBytes()
ShiftRows()
AddRoundKey(Nr)
```

- Each column of the state is multiplied with a fixed polynomial c(x).
- The goal is to provide diffusion in the cipher.

Block Cipher Modes

- How to encrypt variable-length messages with a block cipher?
- Naive approach:
 - ✓ Divide a message into blocks and encrypt each block.
- Padding: Encoding is up to the upper layer but must be <u>reversible</u>, e.g.
 - ✓ Add a single fixed byte (0x80) and pad the rest with 0x00, or
 - ✓ Determine number of padding bytes *n*, and pad with *n* bytes, each with value *n*.

Electronic Codebook (ECB)

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

ECB Properties

- Simple!
- Encryption/Decryption can be done in parallel.
- Padding is needed.
- Identical plaintext blocks are encrypted into identical ciphertext block.
 - \checkmark if $P_i = P_j$ then $C_i = C_j$

Plaintext

ECB's ciphertext

Expected

Cipher Block Chaining (CBC)

• $C_i = E_K(P_i \oplus C_{i-1})$ $C_0 = IV$

Cipher Block Chaining (CBC) mode encryption

• $P_i = D_K(C_i) \oplus C_{i-1}$ $C_0 = IV$

Cipher Block Chaining (CBC) mode decryption

CBC Properties

- Eliminates the problems of ECB.
 - ✓ Involves initialization vector (IV) to randomize inputs.
 - ✓ IV's length is the block size.
- Sequential encryption, but decryption can be parallelized.
- A receiver needs to know IV.
- If $C_i = C_j$ then $P_i \oplus P_j = C_{i-1} \oplus C_{j-1}$

Initialization Vector (IV)

- Fixed IV
 - ✓ CBC with a fixed IV has similar properties as ECB.

- Counter IV
 - \checkmark $|V_{i+1}| = |V_i|$

✓ Can reveal information about the plaintext (e.g., when the first plaintext blocks have small differences).

Random IV

- ✓ A random IV is generated for every message and sent with the ciphertext.
- ✓ Increases communication overhead.

Nonce-generated IV

- ✓ Nonce (number used **once**) is used to generate an IV, e.g. $IV = E_K(nonce)$.
- ✓ Nonce could be a message number (or any other unique number).
- ✓ It can help to minimize the communication overhead of random IV.

Output Feedback (OFB)

•
$$C_i = P_i \oplus T_i$$

 $T_i = E_K(T_{i-1})$
 $T_0 = IV$

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

OFB Properties

- Eliminates the problems of ECB by producing a key stream.
 - ✓ Involves IV to randomize key stream.
- Sequential encryption/decryption (cannot be parallelized).
- Only encryption operation is used (no decryption operation).
- No padding is needed.
- A receiver needs to know IV (as in CBC).
- Reused IV is very dangerous.
 - ✓ If IV = IV', then $T_i = T_i'$, $C_i \oplus C_i' = (P_i \oplus T_i) \oplus (P_i' \oplus T_i) = P_i \oplus P_i'$
 - If C_i , C_i , P_i are known, it is trivial to find P_i .
- Cycles in key streams are possible (although, not very likely).
 - ✓ Suppose block size is 128 bits.
 - ✓ After how many blocks of encryption, such a collusion may happen?

Counter (CTR)

• $C_i = E_K(Nonce || i) \oplus P_i$

Counter (CTR) mode encryption

• $P_i = E_K(Nonce || i) \oplus C_i$

Counter (CTR) mode decryption

CTR Properties

- Eliminates the problems of ECB by producing a key stream.
 - ✓ Involves Nonce and counter to randomize key stream.
 - ✓ Typical setting for 128-bit block: 64-bit *Nonce* + 64-bit counter *i*.
- Encryption/decryption can be parallelized (as in ECB).
- Only encryption operation is used (as in OFB).
- No padding is needed (as in OFB).
- A receiver needs to know Nonce.
- Reused (Nonce, counter) pair is very dangerous.

Other Issues

- Usually CBC or CTR mode is used.
 - ✓ ECB is not secure.
 - ✓ CTR is better than OFB.
- CBC, CTR, and OFB provide CPA security, is it enough?
 - ✓ It guarantees that Eve will not learn anything about plaintexts (except their lengths).
 - ✓ What else can go wrong?
 - Let's assume that Eve can manipulate communication... → authentication.
 - ✓ All the modes presented are **not** CCA-secure.
- Limit the amount of data to be encrypted by one key.

Key Points

- Kerckhoffs' principle
- Types of attacks to symmetric ciphers
- Security level of a cipher
- Block cipher & AES
- Padding in block cipher
- Block cipher modes (ECB, CBC, OFB, CTR)

Exercises & Reading

- Classwork (Exercise Sheet 5): due on Fri Oct 12, 10:00 PM
- Homework (Exercise Sheet 5): due on Fri Oct 26, 6:59 PM
- Reading: FSK [Ch2, Ch3, Ch4]
- Mid-term exam (Week 6): Fri 19 Oct, 7:30 PM (covering Part I Foundations: Week 1 Week 4)

End of Slides for Week 5