$$=\frac{1}{10}\cdot \left(260.8^{2}+246.9^{2}+299.5^{2}+378.4^{2}\right)-\frac{1}{4.10}\cdot \left(1145.6^{2}\right)$$

$$= \frac{2}{101} = \frac{1}{101}$$

$$= \frac{1072.256}{250} = \frac{5577455}{250}$$

$$MST_r = \frac{SST_r}{I-1} = 169.7073$$
 $MSE = \frac{SSE}{I(J-1)} = 15.6426$

$$MSE = \frac{8SE}{I(J-1)} = 15.6426$$

(0,85>4.51, réjout Ho.

Source of Variation	d f	Sum ot Squares	Mean Square	f
Treatment	3	509.122	169.7073	10.8090
Evror	36	563,134	15.6426	
Total	39	1072.256		

a)
$$SST = \sum_{i=1}^{J} \sum_{j=1}^{J_i} x_{ij}^2 - \frac{1}{n} x_{ij}^2 = 113,6446$$

$$SS7_r = \frac{1}{5} \frac{1}{J_1} x_{11}^2 - \frac{1}{5} x_{11}^2 = 108, 1851$$

$$MST_{r} = \frac{SST_{r}}{I-1} = 21.6370$$
 If $T_{r} = 5$

$$MSE = \frac{SSE}{n-1} = 0.2730$$
 $JE = 20$

$$f = \frac{mstr}{msE} = 79.2638$$

Assume test at 0.01 level

b)
$$W_{ij} = Q_{x,1,n-1} \cdot \int_{Q}^{M_{ij}} (\frac{1}{J_{i}} + \frac{1}{J_{i}})$$

of $x = 0.01$, $I = 6$, $n-1 = 20$,

 $Q = Q_{0.001,620} = 5.51$

O1: $(M_{i} - M_{j}) + W_{ij}$

			~		$\overline{}$
ì	J	M; - M;	M -:	<i>C</i> .	I
1.0000	2.0000	1.3000	1.3655	-0.0655	2.6655
1.0000	3.0000	0.2750	1.4394	-1.1644	1.7144
1.0000	4.0000	1.0000	1.4394	-0.4394	2.4394
1.0000	5.0000	-3.0400	1.3655	-4.4055	-1.6745
1.0000	6.0000	-4.0000	1.4394	-5.4394	-2.5606
2.0000	3.0000	-1.0250	1.3655	-2.3905	0.3405
2.0000	4.0000	-0.3000	1.3655	-1.6655	1.0655
2.0000	5.0000	-4.3400	1.2874	-5.6274	-3.0526
2.0000	6.0000	-5.3000	1.3655	-6.6655	-3.9345
3.0000	4.0000	0.7250	1.4394	-0.7144	2.1644
3.0000	5.0000	-3.3150	1.3655	-4.6805	-1.9495
3.0000	6.0000	-4.2750	1.4394	-5.7144	-2.8356
4.0000	5.0000	-4.0400	1.3655	-5.4055	-2.6745
4.0000	6.0000	-5.0000	1.4394	-6.4394	-3.5606
5.0000	6.0000	-0.9600	1.3655	-2.3255	0.4055
		2.2000			211022

C)
$$(\bar{x}_1 + \bar{x}_2 + \bar{x}_3 + \bar{x}_4) - (\bar{x}_5 + \bar{x}_6) = \hat{\theta} = -4.1638$$

$$\leq \frac{C_1^2}{71} = \frac{\binom{12}{7}}{4} \cdot \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{4}\right) + \frac{\binom{12}{2}}{5} \cdot \left(\frac{1}{5} + \frac{1}{4}\right) = 0.1719$$

10.38
$$\overline{X}_{1}$$
, $\Sigma\Sigma X_{1}^{2}$ $I=5$, $J=6$, $n=30$ \overline{X}_{1} , $=\frac{1}{5}\Sigma\overline{X}_{1}^{2}$, $=3.448$

$$557 = \sum_{i} \sum_{j} x_{ij}^{2} - \left(\frac{\sum_{i} \sum_{j} x_{ij}}{2}\right)^{2}$$

$$= 183.4 - \frac{(2.848 \times 30)^{2}}{30}$$

$$= 3.6189$$

$$SE = \sum_{i} \sum_{j} x_{ij}^{2} - \sum_{i} \frac{\sum_{j} x_{ij}^{2}}{J_{i}}$$

$$= 183.4 - \sum_{i} \frac{(x_{i}...6)^{2}}{6}$$

$$= 2.6896$$

$$MST_{n} = \frac{SST_{n}}{I-1} = 0.2323$$

$$MSE = \frac{SSE}{n-I} = 0.1076$$

$$f = \frac{MSI_{r}}{MSE} = 2.1594$$

$$df_{n} = 1-1 = 4$$

$$df_{n} = 1-1 = 4$$

Source	af	55	$M \leq$	f
Tr	4	0.9293	0.2323	2-1594
EN	25	2.6896	0.1676	,
Total	29	3,6189		

at <= 0.05.

 $f_{0.05,4,25} = 2.7587 > 2.1594$. Not enough endence to reject H_0

True average DNA content 3 inaffected by type of carbonhydrates in the diet.

$$\begin{array}{ll}
0.39 \\
\theta = \mu_{1} - (\mu_{2} + \mu_{3} + \mu_{4} + \mu_{5})/4 \\
\hat{\theta} = \bar{\chi}_{1} - (\bar{\chi}_{2} + \bar{\chi}_{3} + \bar{\chi}_{4} + \bar{\chi}_{5})/4 = 0.7650 \\
\sum G_{1}^{2} = \frac{1}{6} + \frac{1}{4}^{2} (\frac{1}{6} \cdot 4) = 0.2083 \\
\text{for } x = 205, \quad 60.025, 25 = 2.0595$$

$$C1: 0.1650 + 2.0595 \cdot \sqrt{0.1076 \cdot 0.2083} \\
= (-0.1433, 0.4733)$$

The interval include Zero.

The IQR of both x & y one quite similar, but the median of x is larger than that if y. Both sets of data have the same number of outliers on the top/larger side.

× & y show a roughly Thear correlation, with some outliers

$$\alpha)$$
 $0 \times = 1 \text{ Sm}$

sy= 0.095 m3/m2. It is the stope of the regression line.

()
$$X = 10$$
, $X = 15$
 $My = 0.83$ $My = 1.305$

$$\frac{1}{2} \left(\frac{1}{2} \right) = 1 - \frac{1}{2} \left(\frac{0.835 - 0.83}{0.0005} \right)$$

$$= 1 - 0.5793$$

$$= 0.4267$$

$$PLY>0.84) = 1-\overline{\Phi}(\frac{0.01}{0.025})$$

e)
$$P(y_{10} > y_{11}) = P(y_{10} - y_{11} > 0)$$

= $1 - \frac{\Phi}{\Phi} \left(\frac{\alpha_{10} c_{15}}{\alpha_{10} 354} \right)$
= 0.0036

$$M_{3/1} = 0.925$$
 $E(Y_1 - Y_2) = M_{3/10} - M_{3/11} = -0.095$
 $V(Y_1 - Y_2) = 0.025^2 \cdot 2 = 0.00125$
 $S' = \sqrt{0.0005} = 0.0354$