

Cointegración y vector de corrección de errores (VECM)

Randall Romero Aguilar, PhD randall.romero@ucr.ac.cr

EC4301 - Macroeconometría

Última actualización: 22 de junio de 2020

Tabla de contenidos

- 1. Cointegración
- 2. Vector de Corrección de Errores (VECM)

1. Cointegración

Motivation

➤ A continuación estudiamos la manera de estimar un VAR cuyas series no son estacionarias.

Motivation

- ➤ A continuación estudiamos la manera de estimar un VAR cuyas series no son estacionarias.
- ► En procesos univariados, basta con diferenciar la serie y aplicar técnicas de Box-Jenkins.

Motivation

- ➤ A continuación estudiamos la manera de estimar un VAR cuyas series no son estacionarias.
- En procesos univariados, basta con diferenciar la serie y aplicar técnicas de Box-Jenkins.
- En proceso multivariados, es necesario determinar si las series están cointegradas.

Considere el modelo monetario

$$m_t = \beta_0 + \beta_1 p_t + \beta_2 y_t + \beta_3 r_t + \underset{\text{brecha}}{\epsilon_t}$$

Considere el modelo monetario

$$m_t = \beta_0 + \beta_1 p_t + \beta_2 y_t + \beta_3 r_t + \epsilon_t \\ \text{oferta} \\ \text{orecha}$$

Para que la noción de equilibrio tenga sentido, la brecha ϵ_t debe ser estacionaria, es decir, I(0)

Considere el modelo monetario

$$m_t = eta_0 + eta_1 p_t + eta_2 y_t + eta_3 r_t + \epsilon_t$$
 oferta demanda

- Para que la noción de equilibrio tenga sentido, la brecha ϵ_t debe ser estacionaria, es decir, I(0)
- Esto a pesar de que m_t , p_t , y_t y r_t sean I(1).

Considere el modelo monetario

$$m_t = \beta_0 + \beta_1 p_t + \beta_2 y_t + \beta_3 r_t + \underset{\text{demanda}}{\epsilon_t}$$
 oferta

- Para que la noción de equilibrio tenga sentido, la brecha ϵ_t debe ser estacionaria, es decir, I(0)
- **E**sto a pesar de que m_t , p_t , y_t y r_t sean I(1).
- Esto implica que la combinación lineal de variables I(1)

$$\begin{bmatrix} 1 & -\beta_1 & -\beta_2 & -\beta_3 \end{bmatrix} \begin{bmatrix} m_t \\ p_t \\ y_t \\ r_t \end{bmatrix} = \beta_0 + \epsilon_t$$

resulta en un proceso I(0)

Considere el modelo monetario

$$m_t = eta_0 + eta_1 p_t + eta_2 y_t + eta_3 r_t + \epsilon_t$$
 oferta demanda

- Para que la noción de equilibrio tenga sentido, la brecha ϵ_t debe ser estacionaria, es decir, I(0)
- Esto a pesar de que m_t , p_t , y_t y r_t sean I(1).
- Esto implica que la combinación lineal de variables I(1)

$$\begin{bmatrix} 1 & -\beta_1 & -\beta_2 & -\beta_3 \end{bmatrix} \begin{bmatrix} m_t \\ p_t \\ y_t \\ r_t \end{bmatrix} = \beta_0 + \epsilon_t$$

resulta en un proceso I(0)

▶ Decimos que m_t , p_t , y_t y r_t están cointegradas, con vector de cointegración $\begin{bmatrix} 1 & -\beta_1 & -\beta_2 & -\beta_3 \end{bmatrix}$.

➤ Teorías de equilibrio con variables no estacionarias requieren la existencia de una combinación lineal de las variables que sea estacionaria

- Teorías de equilibrio con variables no estacionarias requieren la existencia de una combinación lineal de las variables que sea estacionaria
- Otros ejemplos:

(cont'n)

- Teorías de equilibrio con variables no estacionarias requieren la existencia de una combinación lineal de las variables que sea estacionaria
- Otros ejemplos:
 - Teoría de la función de consumo:

$$c_t = \beta y_t^p + c_t^t \quad \Rightarrow \begin{bmatrix} 1 & -\beta \end{bmatrix} \begin{bmatrix} c_t \\ y_t^p \end{bmatrix} = c_t^t \quad ext{es estacionario}$$

- Teorías de equilibrio con variables no estacionarias requieren la existencia de una combinación lineal de las variables que sea estacionaria
- Otros ejemplos:
 - Teoría de la función de consumo:

$$c_t = \beta y_t^p + c_t^t \quad \Rightarrow \begin{bmatrix} 1 & -\beta \end{bmatrix} \begin{bmatrix} c_t \\ y_t^p \end{bmatrix} = c_t^t \quad ext{es estacionario}$$

► Teoría de la paridad del poder de compra:

$$e_t + p_t^* - p_t = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} e_t \\ p_t^* \\ p_t \end{bmatrix} \quad \text{es estacionario}$$

Regresión espuria

► Considere dos caminatas aleatorias independientes

$$y_t = y_{t-1} + u_t$$
 u_t ruido blanco $x_t = x_{t-1} + v_t$ v_t ruido blanco

л

Regresión espuria

Considere dos caminatas aleatorias independientes

$$y_t = y_{t-1} + u_t$$
 u_t ruido blanco $x_t = x_{t-1} + v_t$ v_t ruido blanco

ightharpoonup Como y_t es independiente de x_t , uno esperaría que en la regresión

$$y_t = \beta_0 + \beta_1 x_t + \epsilon_t$$

el R^2 y el β_1 tendieran a cero.

Regresión espuria

Considere dos caminatas aleatorias independientes

$$y_t = y_{t-1} + u_t$$
 u_t ruido blanco $x_t = x_{t-1} + v_t$ v_t ruido blanco

ightharpoonup Como y_t es independiente de x_t , uno esperaría que en la regresión

$$y_t = \beta_0 + \beta_1 x_t + \epsilon_t$$

- el R^2 y el β_1 tendieran a cero.
- Pero este no es el caso. Con series no estacionarias, la correlación espuria puede persistir aún en muestras grandes.

Ejemplo 1: Regresión espuria

Jupyter 05 Relacion espuria.ipynb Regresión con series I(1):

$$\log(\mathsf{GDP}.\mathsf{COSTA}.\mathsf{RICA}_t) = \beta_0 + \beta_1 \log(\mathsf{GDP}.\mathsf{MALTA}_t) + \epsilon_t$$

OLS Regression Results

				=====				
Dep. Variable:			CRI		R-sq	uared:		0.806
Model:			OLS			R-squared:		0.802
Method:		Leas	Least Squares			atistic:		195.0
Date:	Thu, 02		2 Jan 2020		Prob	(F-statistic):		2.40e-18
Time:	14		14:0	7:58	Log-Likelihood:			34.197
No. Observations:				49	AIC:			-64.39
Df Residuals:				47	BIC:			-60.61
Df Model:				1				
Covariance Typ	1	nonro	bust					
	coe	std	err		t	P> t	[0.025	0.975]
Intercept	4.481	1 0	.300	14	.916	0.000	3.877	5.086
MLT	0.443	2 0	.032	13	.966	0.000	0.379	0.507
Omnibus:		57.494		. 494	Durbin-Watson:			0.064
Prob(Omnibus):				Jarque-Bera (JB):			5.218	
Skew:				.156		(JB):		0.0736
Kurtosis:				.432	Cond			164.

Regresión con series I(0):

$\Delta \log(\mathsf{GDP}.\mathsf{COSTA}.\mathsf{RICA}_t) = \beta_0 + \beta_1 \Delta \log(\mathsf{GDP}.\mathsf{MALTA}_t) + \epsilon_t$

OLS Regression Results

Dep. Variable:		CRI	R-square	R-squared:									
Model:		OLS	Adj. R-s	Adj. R-squared:									
Method:		Least Squares	F-statis	1.537									
Date:	Th	u, 02 Jan 2020											
Time:		14:09:30	Log-Like	Log-Likelihood:									
No. Observation	ons:	48		_									
Df Residuals:		46	BIC:	BIC:									
Df Model:		1											
Covariance Type: nonrobust													
	coef	std err	t	P> t	[0.025	0.975]							
Intercept	0.0143	0.006	2.269	0.028	0.002	0.027							
MLT	0.1378	0.111	1.240	0.221	-0.086	0.362							
Omnibus:	:======	27.205	Durbin-W	atson:	=======	1.244							
Prob(Omnibus):		0.000	Jarque-B	58.241									
Skew:		-1.586	1	-									
Kurtosis:		7.365		Cond. No.									
	.=======	.=======				========							

Definición de cointegración (Engle y Granger

Se dice que los componentes del vector $x_t = (x_{1t}, x_{2t}, \dots, x_{nt})'$ están cointegrados de orden (d, b), denotado por $x_t \sim CI(d, b)$, si

- 1. Todos los componentes de x_t son integrados de orden d.
- 2. Existe al menos un vector $\beta=(\beta_1,\beta_2,\ldots,\beta_n)$ tal que la combinación lineal $\beta x_t=\beta_1 x_{1t}+\beta_2 x_{2t}+\cdots+\beta_n x_{nt}$ es integrada de orden (d-b), donde b>0.

A β se le llama vector de cointegración

1. Cointegración se refiere a combinaciones *lineales* de variables no estacionarias

- 1. Cointegración se refiere a combinaciones *lineales* de variables no estacionarias
- 2. Si existe, el vector de cointegración no es único

- 1. Cointegración se refiere a combinaciones *lineales* de variables no estacionarias
- 2. Si existe, el vector de cointegración no es único
- Cointegración se refiere a variables del mismo orden; aunque es posible encontrar relaciones de equilibrio entre variables de distinto orden

- 1. Cointegración se refiere a combinaciones *lineales* de variables no estacionarias
- 2. Si existe, el vector de cointegración no es único
- Cointegración se refiere a variables del mismo orden; aunque es posible encontrar relaciones de equilibrio entre variables de distinto orden
- 4. Pueden existir varios vectores de cointegración independientes para un conjunto de variables \boldsymbol{x}_t

- 1. Cointegración se refiere a combinaciones *lineales* de variables no estacionarias
- 2. Si existe, el vector de cointegración no es único
- Cointegración se refiere a variables del mismo orden; aunque es posible encontrar relaciones de equilibrio entre variables de distinto orden
- 4. Pueden existir varios vectores de cointegración independientes para un conjunto de variables x_t
- 5. En la mayor parte de la literatura se entiende cointegración como el caso CI(1,1).

Una receta para determinar si las series están cointegradas:

Ingredientes: series de tiempo, software econométrico

Una receta para determinar si las series están cointegradas:

Ingredientes: series de tiempo, software econométrico

Paso 1: Determinar orden de integración de las series

Una receta para determinar si las series están cointegradas:

Ingredientes: series de tiempo, software econométrico

Paso 1: Determinar orden de integración de las series

Paso 2: Estimar la relación de equilibrio de largo plazo

Una receta para determinar si las series están cointegradas:

Ingredientes: series de tiempo, software econométrico

Paso 1: Determinar orden de integración de las series

Paso 2: Estimar la relación de equilibrio de largo plazo

Paso 3: Estimar el modelo de corrección de errores

Una receta para determinar si las series están cointegradas:

Ingredientes: series de tiempo, software econométrico

Paso 1: Determinar orden de integración de las series

Paso 2: Estimar la relación de equilibrio de largo plazo

Paso 3: Estimar el modelo de corrección de errores

Paso 4: Evaluar si el modelo es adecuado

En la prueba (aumentada) de Engle y Granger,

$$\Delta \hat{\epsilon}_t = \frac{\gamma}{\epsilon_{t-1}} + \sum_{i=1}^n a_i \Delta \hat{\epsilon}_{t-i} + \varepsilon_t \tag{nc}$$

$$\Delta \hat{\epsilon}_t = \alpha_0 + \frac{\gamma}{\hat{\epsilon}_{t-1}} + \sum_{i=1}^n a_i \Delta \hat{\epsilon}_{t-i} + \varepsilon_t$$
 (c)

$$\Delta \hat{\epsilon}_t = \alpha_0 + \alpha_1 t + \frac{\gamma}{\hat{\epsilon}_{t-1}} + \sum_{i=1}^n a_i \Delta \hat{\epsilon}_{t-i} + \varepsilon_t$$
 (ct)

$$\Delta \hat{\epsilon}_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \gamma \hat{\epsilon}_{t-1} + \sum_{i=1}^n a_i \Delta \hat{\epsilon}_{t-i} + \varepsilon_t$$
 (ctt)

si $\gamma=0$ los residuos $\hat{\epsilon}_t$ presentan raíz unitaria, y por ello las series no estaría cointegradas.

Los valores críticos de MacKinnon

Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .

Los valores críticos de MacKinnon

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.

Los valores críticos de MacKinnon

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.
- Dado que no es posible derivar la distribución de t_γ analíticamente, es necesario aproximarla con simulaciones de Monte Carlo.

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.
- Dado que no es posible derivar la distribución de t_{γ} analíticamente, es necesario aproximarla con simulaciones de Monte Carlo.
- ► A partir de tales simulaciones, MacKinnon (2010) presenta valores críticos, que dependen de

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.
- Dado que no es posible derivar la distribución de t_{γ} analíticamente, es necesario aproximarla con simulaciones de Monte Carlo.
- ► A partir de tales simulaciones, MacKinnon (2010) presenta valores críticos, que dependen de
 - la especificación determinística (nc, c, ct, ctt),

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.
- Dado que no es posible derivar la distribución de t_γ analíticamente, es necesario aproximarla con simulaciones de Monte Carlo.
- ► A partir de tales simulaciones, MacKinnon (2010) presenta valores críticos, que dependen de
 - la especificación determinística (nc, c, ct, ctt),
 - del número de series en el vector de cointegración

- Para probar la hipótesis nula $H_0: \gamma = 0$ contra la alternativa $H_1: \gamma < 0$, se utiliza el estadístico t_{γ} .
- No obstante, t_{γ} no tiene la distribución t-student, ni siquiera asintóticamente.
- Dado que no es posible derivar la distribución de t_γ analíticamente, es necesario aproximarla con simulaciones de Monte Carlo.
- ► A partir de tales simulaciones, MacKinnon (2010) presenta valores críticos, que dependen de
 - la especificación determinística (nc, c, ct, ctt),
 - del número de series en el vector de cointegración
 - y del tamaño de muestra T.

lackbox Los valores se obtienen evaluando un polinomio en $\frac{1}{T}$

$$C(p) = \beta_{\infty} + \beta_1 T^{-1} + \beta_2 T^{-2} + \beta_3 T^{-3}$$

lackbox Los valores se obtienen evaluando un polinomio en $\frac{1}{T}$

$$C(p) = \beta_{\infty} + \beta_1 T^{-1} + \beta_2 T^{-2} + \beta_3 T^{-3}$$

Por ejemplo, para probar la cointegración de N=3 variables, con constante y tendencia (ct), la tabla es

Nivel	eta_{∞}	eta_1	eta_2	β_3
1 %	-4.663	-18.769	-49.793	104.244
5 %	-4.119	-11.892	-19.031	77.332
10%	-3.835	-9.072	-8.504	35.403

 \blacktriangleright Los valores se obtienen evaluando un polinomio en $\frac{1}{T}$

$$C(p) = \beta_{\infty} + \beta_1 T^{-1} + \beta_2 T^{-2} + \beta_3 T^{-3}$$

Por ejemplo, para probar la cointegración de N=3 variables, con constante y tendencia (ct), la tabla es

Nivel	eta_{∞}	eta_1	eta_2	β_3
1 %	-4.663	-18.769	-49.793	104.244
5 %	-4.119	-11.892	-19.031	77.332
10%	-3.835	-9.072	-8.504	35.403

► Así, si tenemos 50 observaciones:

$$C(5\%) = -4.119 - \frac{11.892}{50} - \frac{19.031}{50^2} + \frac{77.332}{50^3} = -4.3637$$

Ejemplo 2: Valores críticos de Mackinnon

- ► En el cuaderno de Jupyter Mackinnon valores críticos para test de cointegración se presentan más ejemplos.
- Se muestra cómo los valores críticos cambian con el tamaño de muestra, el número de series que conforman el vector, y la especificación de los componentes determinísticas de las series.

Nota: Factorización de rango

Suponga que A es una matriz $n \times n$ con rango r < n. Existen las matrices X y Y de dimensión $r \times n$ tal que:

$$A = X'Y$$

2. Vector de Corrección de Errores (VECM)

$$y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \Phi_3 y_{t-3} + \epsilon_t$$

$$y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \Phi_3 y_{t-3} + \epsilon_t$$
$$\Delta y_t = (\Phi_1 - I) y_{t-1} + \Phi_2 y_{t-2} + \Phi_3 y_{t-3} + \epsilon_t$$

$$y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$\Delta y_{t} = (\Phi_{1} - I)y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$= (\Phi_{1} - I)y_{t-1} + (\Phi_{2} + \Phi_{3})y_{t-2} + \Phi_{3}(y_{t-3} - y_{t-2}) + \epsilon_{t}$$

$$y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$\Delta y_{t} = (\Phi_{1} - I) y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$= (\Phi_{1} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) y_{t-2} + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}$$

$$= \frac{(\Phi_{1} + \Phi_{2} + \Phi_{3} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) (y_{t-2} - y_{t-1}) + \cdots + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}}{\cdots + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}}$$

$$y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$\Delta y_{t} = (\Phi_{1} - I) y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$= (\Phi_{1} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) y_{t-2} + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}$$

$$= \frac{(\Phi_{1} + \Phi_{2} + \Phi_{3} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) (y_{t-2} - y_{t-1}) + \cdots}{\cdots + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}}$$

$$= (\Phi_{1} + \Phi_{2} + \Phi_{3} - I) y_{t-1} - (\Phi_{2} + \Phi_{3}) \Delta y_{t-1} - \Phi_{3} \Delta y_{t-2} + \epsilon_{t}$$

$$\begin{aligned} y_t &= \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \Phi_3 y_{t-3} + \epsilon_t \\ \Delta y_t &= (\Phi_1 - I) y_{t-1} + \Phi_2 y_{t-2} + \Phi_3 y_{t-3} + \epsilon_t \\ &= (\Phi_1 - I) y_{t-1} + (\Phi_2 + \Phi_3) y_{t-2} + \Phi_3 \left(y_{t-3} - y_{t-2} \right) + \epsilon_t \\ &= \frac{(\Phi_1 + \Phi_2 + \Phi_3 - I) y_{t-1} + (\Phi_2 + \Phi_3) \left(y_{t-2} - y_{t-1} \right) + \cdots + \Phi_3 \left(y_{t-3} - y_{t-2} \right) + \epsilon_t}{\cdots + \Phi_3 \left(y_{t-3} - y_{t-2} \right) + \epsilon_t} \\ &= (\Phi_1 + \Phi_2 + \Phi_3 - I) y_{t-1} - (\Phi_2 + \Phi_3) \Delta y_{t-1} - \Phi_3 \Delta y_{t-2} + \epsilon_t \\ &= \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \Gamma_2 \Delta y_{t-2} + \epsilon_t \end{aligned}$$

$$y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$\Delta y_{t} = (\Phi_{1} - I) y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$= (\Phi_{1} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) y_{t-2} + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}$$

$$= \frac{(\Phi_{1} + \Phi_{2} + \Phi_{3} - I) y_{t-1} + (\Phi_{2} + \Phi_{3}) (y_{t-2} - y_{t-1}) + \cdots + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}}{\cdots + \Phi_{3} (y_{t-3} - y_{t-2}) + \epsilon_{t}}$$

$$= (\Phi_{1} + \Phi_{2} + \Phi_{3} - I) y_{t-1} - (\Phi_{2} + \Phi_{3}) \Delta y_{t-1} - \Phi_{3} \Delta y_{t-2} + \epsilon_{t}$$

$$= \Pi y_{t-1} + \Gamma_{1} \Delta y_{t-1} + \Gamma_{2} \Delta y_{t-2} + \epsilon_{t}$$

Si hay 0 < r < n vectores de cointegración, entonces Π puede ser descompuesta como el producto de los vectores de cointegración β y los coeficientes de corrección de errores α :

$$y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$\Delta y_{t} = (\Phi_{1} - I)y_{t-1} + \Phi_{2}y_{t-2} + \Phi_{3}y_{t-3} + \epsilon_{t}$$

$$= (\Phi_{1} - I)y_{t-1} + (\Phi_{2} + \Phi_{3})y_{t-2} + \Phi_{3}(y_{t-3} - y_{t-2}) + \epsilon_{t}$$

$$= \frac{(\Phi_{1} + \Phi_{2} + \Phi_{3} - I)y_{t-1} + (\Phi_{2} + \Phi_{3})(y_{t-2} - y_{t-1}) + \cdots + \Phi_{3}(y_{t-3} - y_{t-2}) + \epsilon_{t}}{\cdots + \Phi_{3}(y_{t-3} - y_{t-2}) + \epsilon_{t}}$$

$$= (\Phi_{1} + \Phi_{2} + \Phi_{3} - I)y_{t-1} - (\Phi_{2} + \Phi_{3})\Delta y_{t-1} - \Phi_{3}\Delta y_{t-2} + \epsilon_{t}$$

$$= \Pi y_{t-1} + \Gamma_{1}\Delta y_{t-1} + \Gamma_{2}\Delta y_{t-2} + \epsilon_{t}$$

Si hay 0 < r < n vectores de cointegración, entonces Π puede ser descompuesta como el producto de los vectores de cointegración β y los coeficientes de corrección de errores α :

VEC

$$\Delta y_t = \alpha \beta' y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_{p-1} \Delta y_{t-p+1} + \epsilon_t$$

Ejemplo 3:

VEC

Inflación y depreciación en un modelo

Suponga que en el largo plazo se cumple la PPP: $p_t = e_t + p_t^* + \operatorname{error}_t y$ que las tres variables son I(1) y relacionadas como un VAR(2)

- Suponga que en el largo plazo se cumple la PPP: $p_t = e_t + p_t^* + \operatorname{error}_t y$ que las tres variables son I(1) y relacionadas como un VAR(2)
- ► La representación VECM es

$$\Delta p_t^* = \alpha_1 \left(p_t - e_t - p_t^* \right) + \gamma_{11} \Delta p_{t-1}^* + \gamma_{12} \Delta e_{t-1} + \gamma_{13} \Delta p_{t-1} + \epsilon_{1t}$$

$$\Delta e_t = \alpha_2 \left(p_t - e_t - p_t^* \right) + \gamma_{21} \Delta p_{t-1}^* + \gamma_{22} \Delta e_{t-1} + \gamma_{23} \Delta p_{t-1} + \epsilon_{2t}$$

$$\Delta p_t = \alpha_3 \left(p_t - e_t - p_t^* \right) + \gamma_{31} \Delta p_{t-1}^* + \gamma_{32} \Delta e_{t-1} + \gamma_{33} \Delta p_{t-1} + \epsilon_{3t}$$

- Suponga que en el largo plazo se cumple la PPP: $p_t = e_t + p_t^* + \operatorname{error}_t y$ que las tres variables son I(1) y relacionadas como un VAR(2)
- La representación VECM es

$$\begin{split} \Delta p_t^* &= \alpha_1 \left(p_t - e_t - p_t^* \right) + \gamma_{11} \Delta p_{t-1}^* + \gamma_{12} \Delta e_{t-1} + \gamma_{13} \Delta p_{t-1} + \epsilon_{1t} \\ \Delta e_t &= \alpha_2 \left(p_t - e_t - p_t^* \right) + \gamma_{21} \Delta p_{t-1}^* + \gamma_{22} \Delta e_{t-1} + \gamma_{23} \Delta p_{t-1} + \epsilon_{2t} \\ \Delta p_t &= \alpha_3 \left(p_t - e_t - p_t^* \right) + \gamma_{31} \Delta p_{t-1}^* + \gamma_{32} \Delta e_{t-1} + \gamma_{33} \Delta p_{t-1} + \epsilon_{3t} \end{split}$$

o bien

$$\begin{bmatrix} \Delta p_t^* \\ \Delta e_t \\ \Delta p_t \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1}^* \\ e_{t-1} \\ p_{t-1} \end{bmatrix} + \Gamma_1 \begin{bmatrix} \Delta p_{t-1}^* \\ \Delta e_{t-1} \\ \Delta p_{t-1} \end{bmatrix} + \epsilon_t$$

- Suponga que en el largo plazo se cumple la PPP: $p_t = e_t + p_t^* + \operatorname{error}_t y$ que las tres variables son I(1) y relacionadas como un VAR(2)
- La representación VECM es

$$\Delta p_t^* = \alpha_1 \left(p_t - e_t - p_t^* \right) + \gamma_{11} \Delta p_{t-1}^* + \gamma_{12} \Delta e_{t-1} + \gamma_{13} \Delta p_{t-1} + \epsilon_{1t}$$

$$\Delta e_t = \alpha_2 \left(p_t - e_t - p_t^* \right) + \gamma_{21} \Delta p_{t-1}^* + \gamma_{22} \Delta e_{t-1} + \gamma_{23} \Delta p_{t-1} + \epsilon_{2t}$$

$$\Delta p_t = \alpha_3 \left(p_t - e_t - p_t^* \right) + \gamma_{31} \Delta p_{t-1}^* + \gamma_{32} \Delta e_{t-1} + \gamma_{33} \Delta p_{t-1} + \epsilon_{3t}$$

o bien

$$\begin{bmatrix} \Delta p_t^* \\ \Delta e_t \\ \Delta p_t \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1}^* \\ e_{t-1} \\ p_{t-1} \end{bmatrix} + \Gamma_1 \begin{bmatrix} \Delta p_{t-1}^* \\ \Delta e_{t-1} \\ \Delta p_{t-1} \end{bmatrix} + \epsilon_t$$

Este modelo explica la inflación internacional, la depreciación, y la inflación doméstica en función de sus propios rezagos y la desviación de los precios y tipo de cambio respecto a su equilibrio de largo plazo.

Pruebas de cointegración: Johansen

La prueba de Johansen puede verse como una generalización multivariada de la prueba aumentada de Dickey-Fuller

Pruebas de cointegración: Johansen

- La prueba de Johansen puede verse como una generalización multivariada de la prueba aumentada de Dickey-Fuller
- ► La prueba y estrategia de estimación permiten estimar *todos* los vectores de cointegración

Pruebas de cointegración: Johansen

- La prueba de Johansen puede verse como una generalización multivariada de la prueba aumentada de Dickey-Fuller
- ► La prueba y estrategia de estimación permiten estimar *todos* los vectores de cointegración
- ➤ Similar a la prueba ADF, la existencia de raíces unitarias implican que la teoría asintótica estándar no es apropiada.

Raíces unitarias: modelo univariado versus multivariado

Comparemos la prueba ADF con el VECM

$$\Delta y_t = \pi y_{t-1} + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(univariado)}$$

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(multivariado)}$$

Raíces unitarias: modelo univariado versus multivariado

Comparemos la prueba ADF con el VECM

$$\Delta y_t = \pi y_{t-1} + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(univariado)}$$

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(multivariado)}$$

lackbox En la prueba ADF, probamos si y_t tiene raíz unitaria con $H_0:\pi=0$

Raíces unitarias: modelo univariado versus multivariado

Comparemos la prueba ADF con el VECM

$$\Delta y_t = \pi y_{t-1} + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(univariado)}$$

$$\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_p \Delta y_{t-p} + \epsilon_t \qquad \text{(multivariado)}$$

- En la prueba ADF, probamos si y_t tiene raíz unitaria con $\mathsf{H}_0:\pi=0$
- ightharpoonup En el caso multivariado, Johansen determina si las series están cointegradas a partir del rango de Π

Rango de una matriz vectores de cointegración

Posibles casos del rango:

0: implica $\Pi=0$, todas las series son l(1) pero no están cointegradas. VAR en diferencias

Rango de una matriz vectores de cointegración

Posibles casos del rango:

- 0: implica $\Pi=0$, todas las series son l(1) pero no están cointegradas. VAR en diferencias
- 0 < r < N: hay r vectores de cointegración, y escribimos $\Pi = \alpha \beta'.$ VECM

Rango de una matriz vectores de cointegración

Posibles casos del rango:

- 0: implica $\Pi=0$, todas las series son I(1) pero no están cointegradas. VAR en diferencias
- 0 < r < N: hay r vectores de cointegración, y escribimos $\Pi = \alpha \beta'.$ VECM
 - N: cualquier combinación lineal es estacionaria, lo que implica que las series originales eran estacionarias.

Usando los eigenvalores para determinar el rango

► El rango de una matriz es igual al número de sus eigenvalores distintos de cero.

Usando los eigenvalores para determinar el rango

- ► El rango de una matriz es igual al número de sus eigenvalores distintos de cero.
- Por ello, las pruebas de Johansen están basadas en los eigenvalores de una matriz Π^* semidefinida positiva, derivada a partir de Π .

Usando los eigenvalores para determinar el rango

- ► El rango de una matriz es igual al número de sus eigenvalores distintos de cero.
- Por ello, las pruebas de Johansen están basadas en los eigenvalores de una matriz Π^* semidefinida positiva, derivada a partir de Π .
- \blacktriangleright Suponga que obtenemos Π^* y ordenamos sus eigenvalores de manera tal que

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$$

Prueba de la traza y del máximo eigenvalor

Prueba de la traza

$$\lambda_{\mathsf{traza}}(r) = -T \sum_{i=r+1}^{N} \ln \left(1 - \hat{\lambda}_i \right)$$

Prueba del máximo eigenvalor

$$\lambda_{\max}(r, r+1) = -T \ln \left(1 - \hat{\lambda}_{r+1}\right)$$

Prueba de la traza y del máximo eigenvalor

Prueba de la traza

$$\lambda_{\mathsf{traza}}(r) = -T \sum_{i=r+1}^{N} \ln \left(1 - \hat{\lambda}_i\right)$$

Prueba del máximo eigenvalor

$$\lambda_{\max}(r, r+1) = -T \ln \left(1 - \hat{\lambda}_{r+1}\right)$$

Note que $\lambda_i \geq 0 \Rightarrow \ln{(1 - \lambda_i)} \leq 0$. Ambos estadísticos son no-negativos

Prueba de la traza y del máximo eigenvalor

Prueba de la traza

$$\lambda_{\mathsf{traza}}(r) = -T \sum_{i=r+1}^{N} \ln \left(1 - \hat{\lambda}_i\right)$$

Prueba del máximo eigenvalor

$$\lambda_{\max}(r, r+1) = -T \ln \left(1 - \hat{\lambda}_{r+1}\right)$$

- Note que $\lambda_i \geq 0 \Rightarrow \ln(1 \lambda_i) \leq 0$. Ambos estadísticos son no-negativos
- Valores grandes de los estadísticos apuntan a que los eigenvalores son positivos, implicando la existencia de cointegración.

Ejemplo 4: Pruebas de Johansen

▶ Johansen y Juselius (1990) analizan la cointegración de $\begin{bmatrix} m2_t & y_t & i_t^d & i_t^b \end{bmatrix}$, con datos trimestrales de Dinamarca para el período 1974:1 a 1987:3 (T=53).

H_0	$\hat{\lambda}_i$	$\lambda_{ m max}$	λ_{traza}
r = 0	0.4332	30.09	49.14
r = 1	0.1776	10.36	19.05
r=2	0.1128	6.34	8.69
r = 3	0.0434	2.35	2.35

Referencias I

Engle, Robert F. y C.W.J. Granger (mar. de 1987). "Co-integration and Error Correction: Representation, Estimation, and Testing". En: *Econometrica* 55.2, págs. 251-276.

MacKinnon, James G. (2010). *Critical values for cointegration tests*.

Queen's Economics Department Working Paper 1227. Kingston, Ont.