Contents

- AMSC 460 HW11
- Problem 1
- Problem 2 (

AMSC 460 - HW11

clear all; format compact; close all; syms f(x) x y z

Problem 1

Suppose in designing a natural logarithm function for a calculator on the interval [1, e], we are using a Chebyshev polynomial approximation. What is the smallest degree n of the polynomial that ensures an accuracy of 10^{-6} over the interval [1, e]?

From Chebyshev polynomial we have [a,b]=[1,e] and $f(x)=\ln x$. The maximum will be (n-1)! where

because the maximum of 1/z on [1, e] occurs at z=1. We now look for an integer d such that the error is strictly smaller than $10^{\circ}6$

$$\left(\frac{1}{n*2(n-1)}*\left(\frac{e-1}{2}\right)^n\right) < 10^{(-a)}$$

 $n = 10 \text{ error } 1.7*10^5$

 $n = 13 \text{ error } 1.04*10^6$

 $n = 14 \text{ error } 4.17 \cdot 10^7$

Thus n = 14 is required, the (n-1)th degree polynomial so 13.

Therefore we need at least n = 15

Problem 2

(a) Show that $|J(x)| \le 1$, $|J'(x)| \le 1$, $|J''(x)| \le 1$, and in general that $|J^{(k)}(x)| \le 1$ for any positive integer k.

n is from the even number above 0 that \cos and \sin both fluctuate bewteen 0 and 1 which meaning both \sin and \cos will be bounded between 0 and 1, \sin similarly for odd numbers that will also be bounded by 1 and 0

$$|J(x)| \le 1$$

(b)Suppose we would like to approximate J with a Chebyshev interpolant. Determine how many interpolation points are required on the interval [0, 10] so that the error (in the max-norm) is no more than 10^{-6} . [You don't have to write down the interpolant.]

Since $|J(x)| \leq 1$ Given values smaller than $10^{(}-6).for\frac{5^{n}}{(n!)(2^{(}n-1))}$

for
$$(n = 0; (5^n)/(factorial(n)(2^(n-1))) > 10^(-6); n++)$$

```
f(x) = (\exp(3*x)*\sin(200*x^2))/(20*x^2 + 1)
```

$$z =$$
 $n = 16$