TFA per cambiamenti di coordinate

Filippo \mathcal{L} . Troncana

A.A. 2023/2024

Sommario

Uno dei più importanti risultati della teoria geometrica della misura è la formula dell'area, strumento fondamentale per il calcolo delle misure di sottovarietà regolare di \mathbb{R}^n e degli integrali su di esse.

La dimostrazione classica, ad esempio quella riportata in [EvansGariepy1991] fa uso di diverse stime estremamente tecniche, ma credo¹ che fare un giro leggermente più largo possa portare a una dimostrazione meno traumatica. Alcune fondamentali idee, come quella di considerare spazi misurabili "migliorati" (che noi chiameremo rinforzati), ovvero dotati di una famiglia di insiemi considerati trascurabili o nulli, per un'idea più "naturale" di equivalenza quasi ovunque vengono da [Fremlin2000].

Indice

1	Teoria astratta della misura indotta
	1.1 Richiami di teoria della misura
	1.2 σ -algebre e misure esterne indotte da funzioni
	1.3 Sottospazi misurabili
	1.4 Spazi misurabili rinforzati
2	Teoria dell'integrazione 2.1 Integrazione indotta
3	Derivata di Radòn-Nikodym
4	Il viaggio verso il TFA

Notazione

Useremo le seguenti convenzioni:

- Dato un insieme X, indicheremo con 2^X il suo insieme delle parti.
- Dato un insieme X e un sottoinsieme $E \subset X$, indicheremo con E^c il suo complementare $X \setminus E$.
- Dato un insieme X e una sua famiglia di sottoinsiemi $\mathcal{F} \subset 2^X$, la notazione $\{A_i\}_{i \in I} \subset \mathcal{F}$ rappresenta una funzione $\varphi : I \to \mathcal{F}$ che a ciascun indice mappa un insieme di \mathcal{F} e indichiamo:

$$\cup_I E_i := \bigcup_{i \in I} E_i \qquad , \qquad \cap_I E_i := \bigcap_{i \in I} E_i \qquad \mathrm{e} \qquad \Pi_I E_i := \prod_{i \in I} E_i$$

In particolare, quest'ultimo è definito se I è finito (non ci occuperemo di prodotti cartesiani infiniti) e se $E_i = E_j = E$ per ogni i, j, allora $\Pi_I E_i := E^{\#I}$

• Dato un campo K e una successione di elementi del campo $\{a_i\}_{i\in I}\subset K$, indichiamo

$$\Sigma_I a_i := \sum_{i \in I} a_i$$
 e $\Pi_I a_i := \prod_{i \in I} a_i$

Almeno a livello formale, indipendentemente dalla loro esistenza o definizione.

¹o meglio, spero

1 Teoria astratta della misura indotta

1.1 Richiami di teoria della misura

Definizione 1.1: σ -algebra

Sia X un insieme. Una σ -algebra su X è una famiglia $\Sigma \subset 2^X$ tale che:

- 1. $X \in \Sigma$
- 2. $\forall E \in \Sigma, E^c \in \Sigma$.
- 3. Data $\{E_i\}_{i\in\mathbb{N}}$ una famiglia numerabile di insiemi di Σ , la loro unione $\cup_{\mathbb{N}} E_i$ appartiene a Σ .

Definizione 1.2: Spazio misurabile

Un insieme X dotato di una σ -algebra Σ si dice $spazio \ misurabile$

Definizione 1.3: Misura esterna

Sia X un insieme e sia $\mu: 2^X \to [0, +\infty]$ una funzione tale che:

- 1. $\mu(\emptyset) = 0$.
- 2. Per ogni $E \subset F \subset X$ vale $\mu(E) \leq \mu(F)$.
- 3. Per ogni $A, B \subset X$ vale $\mu(A \cup B) \leq \mu(A) + \mu(B)$.

Allora μ si dice *misura esterna* su X.

Definizione 1.4: Insiemi misurabili

Sia X un insieme e sia $\mu: 2^X \to [0, +\infty]$ una misura esterna su X.

Si dice **sottoinsieme misurabile** di X rispetto a μ un insieme E tale che

$$\forall A \in 2^X, \mu(A) = \mu(A \cap E) + \mu(A \cap E^c)$$

La famiglia dei sottoinsiemi misurabili di X rispetto a μ è indicata con \mathcal{M}_{μ} e ha una struttura di σ -algebra.

Definizione 1.5: Spazio con misura

Sia X un insieme, $\mathcal{A} \subset 2^X$ una σ -algebra e $\mu : \mathcal{A} \to [0, +\infty]$ una funzione tale che:

- 1. $\mu(\emptyset) = 0$.
- 2. Per una famiglia di numerabile insiemi a due a due disgiunti $\{E_i\}_{i\in\mathbb{N}}\subset\mathcal{A}$ vale $\mu(\cup_{\mathbb{N}}E_i)=\Sigma_{\mathbb{N}}\mu(E_i)$.

La terna (X, \mathcal{A}, μ) si dice **spazio con misura**.

Evidentemente, se μ è una misura esterna su X allora $(X, \mathcal{M}_{\mu}, \mu|_{\mathcal{M}_{\mu}})$ è uno spazio con misura.

Definizione 1.6: Funzione misurabile

Siano (X, \mathcal{A}) e (Y, \mathcal{B}) due spazi misurabili.

Una funzione $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ si dice *misurabile* se per ogni $E\in\mathcal{B}$ allora $f^{-1}(E)\in\mathcal{A}$.

Definizione 1.7: Validità μ -quasi ovunque

Sia X un insieme e sia $\mu: 2^X \to [0, +\infty]$.

Una proprietà P sugli elementi di X si dice **valida** μ -quasi ovunque se $\mu(\{x \in X : \neg P(x)\}) = 0$

1.2 σ -algebre e misure esterne indotte da funzioni

Analogamente alle costruzioni di topologia iniziale e finale, definiamo

Definizione 1.8: σ -algebre indotte

Siano X e Y due insiemi, sia $f: X \to Y$ una funzione, sia \mathcal{A} una σ -algebra su X e sia \mathcal{B} una σ -algebra su Y. Definiamo le seguenti famiglie:

$$f_{\sharp}\mathcal{A} := \{ E \in 2^Y : f^{-1}(E) \in \mathcal{A} \}$$
 e $f_{\flat}\mathcal{B} := \{ f^{-1}(E) \in 2^X : E \in \mathcal{B} \}$

Esse si dicono rispettivamente σ -algebra finale e iniziale di f rispetto a \mathcal{A} e \mathcal{B} .

Proposizione 1.1

Nella situazione della definizione 1.8, $f_{\sharp}A$ e $f_{\flat}\mathcal{B}$ sono σ -algebre.

Dimostrazione

Segue banalmente dalla commutatività tra operatori insiemistici, immagine e preimmagine.

Osservazione 1.1

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Ω tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile. La σ -algebra iniziale di f rispetto a \mathcal{B} è la più piccola σ -algebra Σ tale che $f:(X,\Sigma)\to (Y,\mathcal{B})$ sia misurabile.

Dimostrazione

Sia $\Omega \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Omega)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Omega$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Omega \subset f_{\sharp}\mathcal{A}$.

Sia $\Sigma \subset 2^X$ tale che $f:(X,\Sigma) \to (Y,\mathcal{B})$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in f_b\mathcal{B}$ si ha che $E = f^{-1}(F)$ con $F \in B$ e quindi che $E \in \Sigma$, dunque $f_b\mathcal{B} \subset \Sigma$.

Definizione 1.9: Misure esterne indotte

Siano X e Y due insiemi, siano μ e ν due misure esterne rispettivamente su X e su Y e sia $f:X\to Y$ una funzione.

La $misura\ esterna\ finale$ di f rispetto a μ è la funzione

$$f_{\sharp}\mu: 2^Y \to [0, +\infty] \quad \text{con} \quad f_{\sharp}\mu(E) := \mu(f^{-1}(E))$$

La $misura\ esterna\ iniziale\ di\ f$ rispetto a ν è la funzione

$$f_{\flat}\nu: 2^X \to [0, +\infty] \quad \text{con} \quad f_{\flat}\nu(E) := \nu(f(E))$$

Proposizione 1.2

Nella situazione della definizione 1.9, $f_{\sharp}\mu$ è una misura esterna su Y e $f_{\flat}\nu$ è una misura esterna su X.

Dimostriamo i tre assiomi di misura esterna per $f_{\sharp}\mu$:

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f_{\sharp}\mu(\varnothing) = 0$.
- 2. Siano $E \subset F \subset Y$, allora $f^{-1}(E) \subset f^{-1}(F)$, dunque la monotonia di $f_{\sharp}\mu$ segue dalla monotonia
- 3. Siano $A, B \subset Y$, allora $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ e la subaddittività segue da quella di μ

Ora per $f_b \nu$:

- 1. $f(\emptyset) = \emptyset \Rightarrow f_{\flat}(\emptyset) = 0$.
- 2. Siano $E \subset F \subset X$, allora $f(E) \subset f(F)$, dunque la monotonia di $f_{\flat}\nu$ segue dalla monotonia di ν .
- 3. Siano $A, B \subset X$, allora $f(A \cup B) = f(A) \cup f(B)$ e la subaddittività segue da quella di ν .

Osservazione 1.2: TOCORRECT: Bidualità delle σ -algebre

Nella situazione della definizione 1.8, $f_{\flat}f_{\sharp}\mathcal{A}=\mathcal{A}$ e $f_{\sharp}f_{\flat}\mathcal{B}=\mathcal{B}$ SONO INCLUSIONI NON UGUAGLIANZE PER L'UGUAGLIANZA VUOI INIETTIVITÀ E SURIETTIVITÀ.

Per definizione

$$f_{\flat}f_{\sharp}\mathcal{A} = \{f^{-1}(E) \in 2^{X} : E \in f_{\sharp}\mathcal{A}\} = \{f^{-1}(E) \in 2^{X} : f^{-1}(E) \in \mathcal{A}\} = \{E \in 2^{X} : E \in \mathcal{A}\} = \mathcal{A}$$

Allo stesso modo

$$f_{\sharp}f_{\flat}\mathcal{B} = \{E \in 2^{Y} : f^{-1}(E) \in f_{\flat}\mathcal{B}\} = \{E \in 2^{Y} : E \in \mathcal{B}\} = \mathcal{B}$$

Proposizione 1.3: Bidualità delle misure esterne indotte

Nella situazione della definizione 1.9, $f_{\flat}f_{\sharp}\mu \geq \mu$ e $f_{\sharp}f_{\flat}\nu \leq \nu$. In particolare, se f è iniettiva vale $f_{\flat}f_{\sharp}\mu = \mu$ e se f è suriettiva vale $f_{\sharp}f_{\flat}\nu=\nu$

Dimostrazione

Abbiamo che $f_{\flat}f_{\sharp}\mu(E) = f_{\sharp}\mu(f(E)) = \mu(f^{-1}(f(E))) \ge \mu(E)$ per monotonia di μ .

Allo stesso modo, $f_{\sharp}f_{\flat}\nu(E) = f_{\flat}\nu(f^{-1}(E)) = \nu(f(f^{-1}(E))) \leq \nu(E)$

L'uguaglianza nei casi particolari segue banalmente.

Corollario 1.1

Sotto le ipotesi della proposizione 1.3, se f è una funzione biettiva vale l'uguaglianza.

Analogamente alle costruzioni topologiche, usiamo questa teoria per parlare di sottospazi misurabili

1.3 Sottospazi misurabili

Sia (X, \mathcal{A}) uno spazio misurabile e $Z \subset X$. Allora, definita la famiglia $\mathcal{A}|_Z := \{E \cap Z \in 2^X : E \in \mathcal{A}\}, (Z, \mathcal{A}|_Z)$ si dice sottospazio misurabile di X.

Osservazione 1.3

 $(Z, \mathcal{A}|_Z)$ è effettivamente uno spazio misurabile.

Dimostrazione

La dimostrazione è banale.

Proposizione 1.4: Misurabili iniziali rispetto all'inclusione

Sia (X, \mathcal{A}) uno spazio misurabile, sia $Z \subset X$ un suo sottoinsieme e sia $i : Z \to X$ l'inclusione canonica. Allora $\mathcal{A}|_Z = i_{\flat}\mathcal{A}$.

Dimostrazione

Per $E \in i_b \mathcal{A}$ vale se e solo se $E = i^{-1}(F)$ per qualche $F \in \mathcal{A}$, ma per ogni $F \in 2^X$ vale $i^{-1}(F) = F \cap Z$, dunque $E = F \cap Z$ per qualche $F \in \mathcal{A}$ e quindi $E \in \mathcal{A}|_Z$.

Definizione 1.11: Sottomisura esterna

Sia X un insieme, $Z \subset X$ un suo sottoinsieme, $i: Z \to X$ l'inclusione canonica e sia $\mu: 2^X \to [0, +\infty]$ una misura esterna su X.

Allora $i_{\flat}\mu$ si dice **sottomisura esterna** su Z rispetto a X.

Notiamo che è effettivamente una misura esterna per la proposizione 1.2, adesso specifichiamo

Proposizione 1.5: Sottomisura esterna e restrizione

Nella situazione della definizione 1.11, vale $i_{\flat}\mu = \mu|_{2z} = \mu \cdot \chi_{Z}$.

1.4 Spazi misurabili rinforzati

Un concetto fondamentale in teoria della misura è quello proprietà valide μ -quasi ovunque, ma sorge il problema della scelta di una misura. In realtà è possibile "indebolire" questo requisito, specificando la famiglia degli insiemi nulli di uno spazio misurabile e imponendo un requisito di "fedeltà" per le misure che vorremo definire su di esso.

Definizione 1.12: σ -ideale

Sia X un insieme e $I \subset 2^X$ una famiglia di insiemi tale che:

- 1. $\varnothing \in I$.
- 2. Se $N \in I$ e $M \subset N$ allora $M \in I$.
- 3. Se $\{N_i\}_{i\in\mathbb{N}}\subset I$ allora $\cup_{\mathbb{N}}N_i\in I$.

Allora I si dice σ -ideale su X. In particolare, se $X \notin I$, allora I si dice σ -ideale proprio, altrimenti improprio^a.

Definizione 1.13: Spazio misurabile rinforzato

Sia X un insieme, \mathcal{A} una σ -algebra su X e \mathcal{N} un σ -ideale su X tale che $\mathcal{N} \subset \mathcal{A}$. Allora (X, A, \mathcal{N}) si dice **spazio misurabile rinforzato** e gli insiemi di \mathcal{N} si dicono **nulli** o trascurabili.

 $^{{}^}a {\rm In}$ quanto avremmo $I=2^X,$ non particolarmente utile nel migliore dei casi.

2 Teoria dell'integrazione

2.1 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

Dove \mathcal{L} è la misura di Lebesgue sui numeri reali.

Teorema 2.1: Integrazione indotta

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme, sia $f: X \to Y$ una funzione biettiva e sia $g: (Y, f\mathcal{A}, f\mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L}^1)$ una funzione $f\mathcal{A}$ -misurabile. Allora $g \in f\mu$ -integrabile se e solo se $g \circ f \in \mu$ -integrabile, e vale l'identità

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Dimostrazione

Assumiamo che g sia $f\mu$ -integrabile. Allora vale

$$\int g \, \mathrm{d}f\mu = \int_* g \, \mathrm{d}f\mu = \sup \{ I_{f\mu}(\varphi) : \varphi \in \Sigma_-(g) \} = \sup \left\{ \sum_i a_i f\mu(\varphi^{-1}(\{a_i\})) : \varphi \in \Sigma_-(g) \right\} =$$

$$= \sup \left\{ \sum_i a_i \mu(f^{-1}(\varphi^{-1}(\{a_i\}))) : \varphi \in \Sigma_-(g) \right\} = \sup \left\{ \sum_i a_i \mu((\varphi \circ f)^{-1}(\{a_i\})) : \varphi \circ f \in \Sigma_-(g \circ f) \right\}$$

$$\operatorname{con} \psi := \varphi \circ f, \quad \int_* g \, \mathrm{d}f\mu = \sup \{ I_\mu(\psi) : \psi \in \Sigma_-(g \circ f) \} = \int_* g \circ f \, \mathrm{d}\mu$$

La dimostrazione è assolutamente analoga per l'integrale superiore e nella direzione opposta assumendo l'integrabilità di $g \circ f$. Le varie uguaglianze seguono dalla biettività di f.

Osservazione 2.1: Girotondone per il TFA

L'obiettivo di questo scherzetto è dimostrare il TFA per cambiamenti di coordinate, ovvero

$$\int g \, \mathrm{d}\mathcal{L}^n = \int (g \circ f) \cdot J_f \, \mathrm{d}\mathcal{L}^n$$

Ma c'è un problema: noi abbiamo dimostrato un risultato dalla forma leggermente diversa, ovvero

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Osservando il TFA ci aspettiamo che la nostra d $f\mu$ corrisponda a J_f d \mathcal{L}^n , dunque dobbiamo fare un piccolo giretto usando la biettività di f:

$$\int g \, d\lambda = \int g \circ f \circ f^{-1} \, d\lambda = \int g \circ f \, df^{-1} \lambda$$

In questo modo ci basta riuscire a far corrispondere $J_f d\mathcal{L}^n$ a $df^{-1}\mathcal{L}^n$

3 Derivata di Radòn-Nikodym

Teorema 3.1: Teorema di Radòn-Nikodym

Sia (X, \mathcal{A}) uno spazio misurabile e siano ν, μ misure su (X, \mathcal{A}) tali che μ sia σ -finita e ν sia assolutamente continua rispetto a μ . Allora esiste una funzione \mathcal{A} -misurabile $f: X \to [0, +\infty[$ tale che per ogni $E \in \mathcal{A}$ si abbia

$$\nu(A) = \int_A f \, \mathrm{d}\mu$$

E per una funzione ν -integrabile $g:(X,\mathcal{A},\nu)\to\mathbb{R}$ vale

$$\int g \, \mathrm{d}\nu = \int g \cdot f \, \mathrm{d}\mu$$

Definizione 3.1: Derivata di Radòn-Nikodym

Nella situazione precedente, la funzione f si dice derivata~di~Radòn-Nikodym di ν rispetto a μ e si indica con

$$f = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$$

Definizione 3.2: Funzioni R-N

Siano (X, \mathcal{A}, μ) e (Y, \mathcal{B}, ν) due spazi con misure σ -finite. Una funzione $f: (X, \mathcal{A}, \mu) \to (Y, \mathcal{B}, \nu)$ si dice **funzione** R-N se:

- 1. f è misurabile
- 2. Per ogni $E \in \mathcal{B}$ tale che $\nu(E) = 0$ si ha $\mu(f^{-1}(E)) = 0$

Osservazione 3.1: Categoria degli spazi con misure σ -finite e delle funzioni R-N

La classe degli spazi con misure σ -finite con la classe delle funzioni R-N e l'usuale composizione di funzioni è una categoria, che chiamiamo \mathbf{Mea}_{R-N} .

Dimostrazione

Controlliamo le varie proprietà:

- Sia (X, \mathcal{A}, μ) uno spazio con misura σ -finita. La funzione identità id $_X$ è evidentemente una funzione R-N.
- Siano $f:(X,\mathcal{A},\lambda)\to (Y,\mathcal{B},\mu)$ e $g:(Y,\mathcal{B},\mu)\to (Z,\mathcal{C},\nu)$ due funzioni R-N. Notiamo che per ogni $E\in\mathcal{C}$ tale che $\nu(E)=0$ si ha $(g\circ f)^{-1}=f^{-1}(g^{-1}(E))$ e $\mu(g^{-1}(E))=0$, dunque $\lambda((g\circ f)^{-1}(E))=0$.
- La composizione eredita l'associatività dalla composizione di funzioni in **Set**.

Proposizione 3.1: Derivata di R-N per Lipschitziane

Sia (X, d, μ) uno spazio metrico di dimensione $n \in \mathbb{Z}_+$ con una misura μ di Radòn (rispetto alla σ -algebra Boreliana indotta dalla metrica) invariante per traslazioni (ovvero, $\mu(B_r(x)) = \mu(B_r(y))$ per ogni x, y in $X)^a$ e sia $F: X \to X$ una funzione biettiva di Lipschitz con costante di Lipschitz L > 0.

Allora $F^{-1}\mu \ll \mu$ e L^n e la derivata di Radòn-Nikodym di $F^{-1}\mu$ rispetto a μ è maggiorata μ -quasi ovunque da L^n .

Dimostrazione

È sufficiente dimostrarlo sulle palle aperte, dato che queste costituiscono una base della topologia e dunque della σ -algebra Boreliana.

Per ogni r > 0 e ogni $x \in X$ abbiamo che $F(B_r(x)) \subset B_{Lr}(F(x))$ che implica $\mu(F(B_r(x))) \leq \mu(B_{Lr}(F(x))) = L^n \mu(B_r(F(x)))$ il che implica che per ogni insieme, $F^{-1}(E) \leq \mu(E)$, dunque sappiamo che deve esistere $g: (X, d, \mu) \to [0, +\infty[$ tale che

$$F^{-1}\mu(E) = \int_E g \, \mathrm{d}\mu$$

Ancora una volta lavoriamo sulle palle

$$\forall r > 0, \forall x \in X, 0 \leq \int_{B_r(x)} g(y) \ \mathrm{d}\mu(y) \leq \int_{B_r(x)} L^n \ \mathrm{d}\mu(y) \Rightarrow g \leq_{\mu} L^n$$

^aOnestamente non so se questa "uniformità" vada codificata come una proprietà dello spazio o della misura, dato che il nostro fine è quello di applicarlo alla misura di Lebesgue su \mathbb{R}^n non ci poniamo troppi problemi in quanto \mathbb{R}^n è tutto piatto e \mathcal{L}^n è invariante per traslazioni.

4 Il viaggio verso il TFA

Cercheremo di dimostrare il TFA per cambiamenti di coordinate *lineari* con la speranza di estendere questo ragionamento a cambiamenti di coordinate *differenziabili*, ovvero localmente lineari. Per fare questo, ci permetteremo di sostituire i plurirettangoli nella definizione della misura di Lebesgue ai pluriparallelogrammi

Lemma 4.1: Misura indotta da un cambiamento di coordinate lineare

Sia $F: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ una mappa lineare invertibile. Allora $F^{-1}\mathcal{L}^n = |\det F| \cdot \mathcal{L}^n$ e dunque

$$F^{-1}\mathcal{L}^n(E) = \int_E |\det F| \, d\mathcal{L}^n$$

Dimostrazione

Sia $E \in F\mathcal{M}_{\mathcal{L}}$. Per definizione di misura indotta, abbiamo che $F^{-1}\mathcal{L}^n(E) = \mathcal{L}^n(F(E))$ e che, come visto nel corso di Geometria A è uguale a $|\det F| \cdot \mathcal{L}^n(E)$.

Teorema 4.1: TFA per cambiamenti di coordinate lineari

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare invertibile e sia $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale il seguente fatto:

$$\int g \, d\mathcal{L}^n = \int (g \circ F) \cdot |\det F| \, d\mathcal{L}^n$$

Teorema 4.2: Derivata R-N di una misura finale di diffeomorfismi

Sia $\varphi: (\mathbb{R}^n, \mathcal{M}_{\mathcal{L}}, \mathcal{L}^n) \to \mathbb{R}^n$ un diffeomorfismo locale e sia $E \subset \mathbb{R}^n$ un aperto. Allora

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Equivalentemente

$$\frac{\mathrm{d}\varphi^{-1}\mathcal{L}^n}{\mathrm{d}\mathcal{L}^n} = |\det D_\varphi|$$

Nel senso della definizione 3.1 della derivata di Radòn-Nikodym.

Dimostrazione

Il fatto che $\varphi^{-1}\mathcal{L}^n \ll \mathcal{L}^n$ segue dalla proposizione 3.1, infatti se φ è un diffeomorfismo è almeno localmente lipschitziana e in ogni insieme limitato V ha costante di Lipschitz $\sup_V |\det D_{\varphi}|$. Poniamo $|\det D_{\varphi}(x)| =: J(x)$.

Sia $E \subset \mathbb{R}^n$ un aperto. Localmente la trasformazione φ agisce come una trasformazione lineare D_{φ} , dunque in intorni V_i sufficientemente piccoli di punti $x_i \in E$ indicizzati su un insieme numerabile I applichiamo il lemma 4.1 e abbiamo $\varphi^{-1}\mathcal{L}^n \sim D_{\varphi}\mathcal{L}^n = J(x) \cdot \mathcal{L}^n$. Dunque posti possiamo scrivere

$$\varphi^{-1}\mathcal{L}^n(E) = \sum_{i \in I} \int_{V_i} J(x_i) \, d\mathcal{L}^n = \sum_{i \in I} \int_E J(x_i) \chi_{V_i}(y) \, d\mathcal{L}^n(y)$$

Facendo una mossa alla Gottinga riconosciamo una regolarità sufficiente ad applicare uno strano genere di integrale di Riemann rendendo sempre più piccoli i nostri intorni aumentando il loro numero e otteniamo

$$\varphi^{-1}\mathcal{L}^n(E) = \int_E J \, d\mathcal{L}^n = \int_E |\det D_{\varphi}| \, d\mathcal{L}^n$$

Teorema 4.3: TFA

Sia $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ un diffeomorfismo locale e $g: \mathbb{R}^n \to \mathbb{R}$ una funzione \mathcal{L}^n -integrabile. Vale

$$\int g \, d\mathcal{L}^n = \int (g \circ \varphi) \cdot |\det D_{\varphi}| \, d\mathcal{L}^n$$

Dimostrazione

La dimostrazione è banale combinando i non banali teoremi 2.1, 3.1 e ??.