МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА СУПЕРКОМПЬЮТЕРОВ И КВАНТОВОЙ ИНФОРМАТИКИ

СИСТЕМЫ И СРЕДСТВА ПАРАЛЛЕЛЬНОГО ПРОГРАММИРОВАНИЯ ЗАДАНИЕ 4: ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ УМНОЖЕНИЯ МАТРИЦЫ НА ВЕКТОР

Выполнил: Алёшин Н.А.

Постановка задачи и формат данных.

<u>Задача:</u> разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор Ab = c. Тип данных – float. Провести исследование эффективности разработанной программы на системе BlueGene/P.

<u>Формат командной строки:</u> <имя файла матрицы A размером N x M> <имя файла вектора B длиной M> <имя файла вектора C длиной N>

<u>Формат файла-матрицы:</u> матрицы представляются в виде бинарного файла следующего формата:

Tun	Значение	Описание		
Число типа char	T – f (float)	Тип элементов		
Число типа size_t	N – натуральное число	Число строк матрицы		
Число типа size_t	M – натуральное число	. Число столбцов матрицы		
Массив чисел типа Т	N w M a varyantan (varyanan varyanya)	Массив элементов		
	и × и элементов (хранятся построчно)	матрицы		

<u>Формат файла-вектора:</u> векторы представляются в виде бинарного файла следующего формата:

Tun	Значение	Описание		
Число типа char	T – f (float)	Тип элементов		
Число типа size_t	N – натуральное число	Длина вектора		
Массив чисел типа Т	<i>N</i> элементов	Массив элементов вектора		

Результат выполнения.

Время работы:

Размеры м	иатрицы	Количество потоков					
M	N	32	64	128	256	512	512 map.
512	512	0.000519	0.000262	0.000134	0.000070	0.000038	
1024	1024	0.002066	0.001037	0.000523	0.000266	0.000138	
2048	2048	0.009202	0.004149	0.002305	0.001048	0.000577	
4096	4096	0.033518	0.016786	0.008403	0.004214	0.002120	
4096	1024	0.009163	0.004581	0.002066	0.001037	0.000523	
1024	4096	0.016494	0.006716	0.002764	0.001411	0.000717	

Ускорение:

Размеры матрицы		Количество потоков					
M	N	32	64	128	256	512	512 map.
512	512	1	1,980916031	3,873134	7,414286	13,65789	
1024	1024	1	1,992285439	3,950287	7,766917	14,97101	
2048	2048	1	2,217883827	3,992191	8,780534	15,94801	
4096	4096	1	1,996783033	3,988814	7,953963	15,81038	
4096	1024	1	2,000218293	4,43514	8,836066	17,52008	
1024	4096	1	2,455926147	5,967438	11,68958	23,00418	

Эффективность:

Размеры	матрицы	Количество потоков					
M	N	32	64	128	256	512	512 map.
512	512	1	0,990458015	0,968284	0,926786	0,853618	
1024	1024	1	0,996142719	0,987572	0,970865	0,935688	
2048	2048	1	1,108941914	0,998048	1,097567	0,99675	
4096	4096	1	0,998391517	0,997203	0,994245	0,988149	
4096	1024	1	1,000109146	1,108785	1,104508	1,095005	
1024	4096	1	1,227963073	1,49186	1,461198	1,437762	

Выводы.

Исследования показывают, что для любых размеров матриц ускорение растет при увеличении числа процессов. Все это означает что данная задача хорошо распараллеливается.