

"Año de la unidad, la paz y el desarrollo"

PRÁCTICA CALIFICADA

Curso: GESTIÓN DE TOMA DE DECISIONES

Docente: MAGNO TEOFILO BALDEON TOVAR

Alumno: Gonzales Chavez Kieffer

Ciclo: III

Sección: A1

HYO 2023

Práctica Calificada

Solución con software libre:

47. Se pretende cultivar en un terreno dos tipos de olivos: A y B. No se puede cultivar más de 8 hectáreas con olivos de tipo A, ni más de 10 hectáreas con olivos del tipo B. Cada hectárea de olivos de tipo A necesita 4 m3de agua anual y cada una de tipo B, 3 m3. Se dispone anualmente de 44 m3 de agua. Cada hectárea de tipo A requiere una inversión de 500 € y cada una de tipo B, 225 €. Se dispone de 4500 € para realizar dicha inversión. Si cada hectárea de olivos de tipo A y B, son 500 y 300 litros anuales de aceite. Obtener razonadamente las hectáreas de cada tipo de olivo que se deben plantar para maximizar la producción de aceite.

os el problema a la forma estándar, añadiendo variables de exceso, holgura, y artificiales según corresponda (mostrar/ocultar detalles)

- Como la restricción 1 es del tipo '≤' se agrega la variable de holgura X3.
 Como la restricción 2 es del tipo '≤' se agrega la variable de holgura X4.
 Como la restricción 3 es del tipo '≤' se regrega la variable de holgura X6.
 Como la restricción 4 es del tipo '≤' se agrega la variable de holgura X6.

MAXIMIZAR: $Z = 500 X_1 + 300 X_2$

 $\begin{array}{l} 4\;X_1+3\;X_2\leq 44\\ 500\;X_1+225\;X_2\leq 4500\\ 1\;X_1+0\;X_2\leq 8\\ 0\;X_1+1\;X_2\leq 10 \end{array}$

 $X_1, X_2 \ge 0$

4 X₁ + 3 X₂ + 1 X₃ = 44 500 X₁ + 225 X₂ + 1 X₄ = 4500 $1 X_1 + 1 X_5 = 8$ $0 X_1 + 1 X_2 + 1 X_6 = 10$ $X_1, X_2, X_3, X_4, X_5, X_6 \ge 0$

MAXIMIZAR: $Z = 500 X_1 + 300 X_2 + 0 X_3 + 0 X_4 + 0 X_5 + 0 X_6$

Tabla 1			500	300	0	0	0	0
Base	Сь	\mathbf{P}_0	Pı	P2	P 3	P 4	P5	P 6
P 3	0	44	4	3	1	0	0	0
P4	0	4500	500	225	0	1	0	0
P 5	0	8	1	0	0	0	1	0
P6	0	10	0	1	0	0	0	1
Z		0	-500	-300	0	0	0	0

Tabla 2			500	300	0	0	0	0
Base	Сь	\mathbf{P}_0	Pı	P2	P 3	P 4	P5	P6
P ₃	0	12	0	3	1	0	-4	0
P ₄	0	500	0	225	0	1	-500	0
Pı	500	8	1	0	0	0	1	0
P ₆	0	10	0	1	0	0	0	1
Z		4000	0	-300	0	0	500	0

Tabla 3			500	300	0	0	0	0
Base	Сь	P 0	P 1	P2	P 3	P4	Ps	P 6
P 3	0	5.33333333333333	0	0	1	-0.013333333333333	2.6666666666667	0
P 2	300	2.22222222222	0	1	0	0.0044444444444444	-2.222222222222	0
P 1	500	8	1	0	0	0	1	0
P6	0	7.777777777778	0	0	0	-0.0044444444444444	2.22222222222	1
Z		4666.666666667	0	0	0	1.3333333333333	-166.6666666667	0

Tabla 4			500	300	0	0	0	0
Base	Сь	P 0	Pı	P2	P3	P4	P5	P 6
\mathbf{P}_5	0	2	0	0	0.375	-0.005	1	0
\mathbf{P}_2	300	6.666666666667	0	1	0.83333333333333	-0.0066666666666667	0	0
Pı	500	6	1	0	-0.375	0.005	0	0
P ₆	0	3.3333333333333	0	0	-0.83333333333333	0.0066666666666667	0	1
Z		5000	0	0	62.5	0.5	0	0

Punto	Coordenada X (X1)	Coordenada Y (X2)	Valor de la función objetivo (Z)
О	0	0	0
A	0	14.666666666667	4400
В	11	0	5500
С	6	6.666666666667	5000
D	8	4	5200
E	3.5	10	4750
F	0	20	6000
G	9	0	4500
Н	8	2.222222222222	4666.666666667
I	4.5	10	5250
J	8	0	4000
K	8	10	7000
L	0	10	3000

Solución con software POM QM v.5:

(untitled)					
	X1	X2		RHS	
Maximize	500	300			Max 500X1 + 300X2
Constraint 1	4	3	<=	44	4X1 + 3X2 <= 44
Constraint 2	500	225	<=	4500	500X1 + 225X2 <= 4500
Constraint 3	1	0	<=	8	X1 <= 8
Constraint 4	0	1	<=	10	X2 <= 10
Variable type (click to set)	Integer	Integer			
				'	

untitled) Solution							
Iteration	Level	Added constraint	Solution type	Solution Value	X1	X2	
			Optimal	4900	5	8	
1	0		NONinteger	5000	6	6.67	
2	1	X2<= 6	NONinteger	4950	6.3	6	
3	2	X1<= 6	INTEGER	4800	6	6	
4	2	X1>= 7	NONinteger	4833.33	7	4.44	
5	3	X2<= 4	NONinteger	4800	7.2	4	
6	4	X1<= 7	Suboptimal	4700	7	4	
7	4	X1>= 8	Suboptimal	4666.67	8	2.22	
8	3	X2>= 5	Infeasible				
9	1	X2>= 7	NONinteger	4975	5.75	7	
10	2	X1<= 5	INTEGER	4900	5	8	
11	2	X1>= 6	Infeasible				

48. Una fábrica elabora tres tipos de tornillos grandes, medianos y pequeños de los cuales se debe producir no más de 800.000 tornillos grandes y entre medianos y pequeños no más de 100.000 para satisfacer las demandas de las siguientes 4 semanas. Estos tornillos se pueden producir en una máquina que está disponible 80 horas a la semana. Los requerimientos de costo y tiempo son: