3 Arithmétique

3.1 Principes fondamentaux

Définition 3.1 Soit $a, b \in \mathbb{Z}$. On dit que e	et on note
On dit également que a est un multiple de b.	
Exemples	
• 7 21, -6 24	
• Pour tout $a \in \mathbb{Z}$ on a $a 0$ et $1 a$	
• Pour tout $a \in \mathbb{Z}$ on a $a a$ (Réflexivité)	
• Si $a b$ et $b a$ alors (pas antisymétrique dan dans \mathbb{N}^*)	ns $\mathbb Z$ mais antisymétrique
• Si $a b$ et $b c$ alors (transitivité)	
Théorème de la division euclidienne dans \mathbb{Z} Soit $a \in \mathbb{Z}, b \in \mathbb{Z}^*$. Il existe un unique couple $(q, r) \in \mathbb{Z}$	\times N tel que :
Les entiers q et r sont appelés, respectivement, le	et le de la
division euclidienne de a par b . Cas particulier de la division euclidienne dans $\mathbb N$	
Soit $a \in \mathbb{N}, b \in \mathbb{N}^*$. Il existe un unique couple $(q, r) \in \mathbb{N}$	$\sqrt[3]{2}$ tel que :
On va apporter la preuve de cette deuxième version.	La preuve de la première s'obte-

nant ensuite en considérant des disjonctions de cas notamment suivant le signe de b.

PREUVE DE L'EXISTENCE : Soit $E = \{n \in \mathbb{N} | bn \leq a\}$. C'est un ensemble non vide car $n = 0 \in E$. De plus pour $n \in E$ comme on a $b \geq 1$, on en déduit que $n \leq nb \leq a$. Il y a donc un nombre fini d'éléments dans E. Notons q = max(E) le plus grand élément.

Alors $qb \le a$ car $q \in E$, et (q+1)b > a car $q+1 \notin E$, donc :

$$qb \le a < (q+1)b = qb + b$$

On définit alors r = a - bq qui vérifie bien : $0 \le r = a - bq < b$.

Preuve de l'unicité :

Supposons que (q, r) et (q', r') soient deux couples d'entiers qui vérifient les conditions du théorème et montrons que ces couples sont alors nécessairement égaux.

Tout d'abord a = bq + r = bq' + r' et donc b(q - q') = r' - r. D'autre part $0 \le r' < b$ et $0 \le r < b$ (ou encore $-b < -r \le 0$) et on en déduit que -b < r' - r < b soit -b < b(q - q') < b. On peut diviser par b (car b > 0) et on obtient -1 < q - q' < 1. Comme q - q' est entier, la seule possibilité est que q - q' = 0 soit q = q'. En exploitant encore la relation b(q - q') = r' - r, on obtient finalement r = r'.

Définition 3.2 (PGCD, PPCM) Le plus grand commun diviseur de deux entiers a et b non nuls est le plus grand entier qui les divise simultanément. On le note PGCD(a,b) ou $a \wedge b$.

Le plus petit commun multiple de deux entiers a et b est le plus petit entier naturel qui soit multiple de ces deux nombres. On le note PPCM(a,b) ou $a \lor b$.

Exemples

- PGCD(90, 12) = et PPCM(90, 12) =
- Si b|a, alors PGCD(a,b) =

Algorithme d'Euclide dans \mathbb{N}

Pour deux entiers naturels a et b non nuls avec a > b, en écrivant la division euclidienne de a par b: a = bq + r, on obtient aisément que _____. En exploitant ceci on obtient par l'algorithme, décrit schématiquement ci-après, le PGCD de a et b.

Identité de Bézout dans \mathbb{N}

Soient a,b deux entiers naturels non nuls. Soit d le PGCD de a et b.

Alors il existe au moins un couple d'entiers relatifs (u,v) tel que

Les entiers u et v sont des coefficients de Bézout. Ils peuvent s'obtenir en "remontant" l'algorithme d'Euclide ou, comme c'est illustré ci-après, en mettant en place l'algorithme d'Euclide étendu où chaque reste est exprimé comme combinaison linéaire de a et b

Algorithme d'Euclide étendu pour (a, b) = (210, 55)

On obtient donc le fait que le PGCD de 210 et 55 _____ (grâce à l'algorithme d'Euclide sur la partie gauche) et on obtient les coefficients de Bézout _____ sur la partie droite.

On remarque par ailleurs que pour exprimer un reste à une étape quelconque (i=2) comme combinaison linéaire de a et b il nous faut pouvoir faire appel aux deux expressions précédentes (i=0 et i=1) pour les restes apparaissant dans l'algorithme d'Euclide. En posant les notations suivantes $r_i=a\times u_i+b\times v_i$, on obtient l'algorithme d'Euclide étendu:

Théorème de Bézout

Soient a.b	$\in \mathbb{N}$. Les	assertions	suivantes	sont	équivalentes	
Solcin a, b	C 11	. L Cb	asset fields	Buivanics	50110	cquivaiches	•

- •
- •

Un corollaire : Théorème de Gauss

Soient
$$a, b, c \in \mathbb{Z}$$

Si et alors

Définition 3.3 Soit $n \in \mathbb{N}^*$, $(a,b) \in \mathbb{Z}^2$; on dit que a est note si et seulement si

Propriété

Pour tout $n \in \mathbb{N}^*$, la relation $\equiv [n]$ est

Notation

Pour tout $n \in \mathbb{N}^*$, on note $\mathbb{Z}_{/n\mathbb{Z}}$

Pour tout $x \in \mathbb{Z}$, on note \overline{x} la classe de x dans $\mathbb{Z}_{/n\mathbb{Z}}$:

Propriété

Soit $n \in \mathbb{N}^*$. On a, pour tout $(a, b, c, d) \in \mathbb{Z}^4$:

$$\left. \begin{array}{l} a \equiv b[n] \\ c \equiv d[n] \end{array} \right\} \Rightarrow \dots$$

et:

En particulier si $a \equiv b[n]$, alors

Exemples d'exploitation

• La preuve par neuf

Principe : chaque nombre en écriture décimale étant congru modulo 9 à la somme des chiffres le composant, on peut montrer que le résultat d'un calcul est faux si les règles de compatibilité modulo 9 ne sont pas respectées. L'assertion suivante $137 \times 55 + 58^3 = 202647$ est peut-être vraie car :

$$\begin{array}{l} --137\times55+58^3\equiv\\ --202647\equiv \end{array}$$

• L'arithmétique de l'horloge

Principe : Une horloge avec aiguilles s'est arrêtée 50 heures plus tôt. Pour évaluer le déplacement à effectuer sur la petite aiguille on évalue

• Montrer que $2^{345}+5^{432}$ est divisible par 3. Démonstration : $2^{345}+5^{432}\equiv$

Théorème des restes chinois

Soient n_1, n_2, \dots, n_k des entiers deux à deux premiers entre eux (ie $\forall i, j$ tels que $i \neq j$ on a $n_i \wedge n_j = 1$).

Alors pour tout k-uplet d'entiers (a_1, a_2, \dots, a_k) , il existe un entier x unique modulo $n = \prod_{i=1}^k n_i$, tel que :

Une solution algorithmique

Pour tout $i \in [1; k]$, on définit $\hat{n_i} = \frac{n}{n_i} = \prod_{\substack{1 \leq l \leq k \\ l \neq i}} n_l$. Avec l'algorithme d'Euclide étendu on obtient les (u_i, v_i) tels que $u_i n_i + v_i \hat{n_i} = 1$. En posant $e_i = v_i \hat{n_i}$, on a alors : $e_i \equiv 1[n_i]$ et $e_i \equiv 0[n_j]$ pour $j \neq i$ Une solution du système est alors : $x = \sum_{i=1}^k a_i e_i$.

Propriété

Soit $x \in \mathbb{N}$ tel que $0 \le x \le n-1$. Les affirmations suivantes sont équivalentes :

- •
- •
- •

Théorème fondamental de l'arithmétique

Tout entier strictement positif peut être écrit (on dira aussi décomposé) comme un unique produit fini de nombre premiers. Ainsi pour tout $m \in \mathbb{N}^*$, il existe un seul n-uplet $(v_i)_{1 \leq i \leq n}$ représentant des exposants associés à n nombre premiers distincts p_i (unicité à l'ordre près) :

$$m = \prod_{1 \le i \le n} p_i^{v_i}$$

Exemple

- 924 =
- 630 =

Petit théorème de Fermat

Soit p un nombre premier et $a \in \mathbb{Z}$.

Alors $a^p \equiv a[p]$

Et si a est un nombre premier avec p (c'est-à-dire tel que PGCD(a,p)=1), alors $a^{p-1}\equiv 1[p]$

Démonstration :

Si a est multiple de p alors a^p l'est aussi (nullité modulo p), donc $a^p \equiv a[p]$ Supposons à présent que a ne soit pas un multiple de p.

L'application, qui au nombre n compris entre 0 et p-1, fait correspondre le produit na[p], est une application de [0; p-1] dans lui-même.

Si deux nombres sont différents modulo p, alors leurs images par l'application sont aussi différentes (raisonnement par l'absurde en s'appuyant sur l'existence d'un inverse pour a). L'ensemble des p-1 images $a[p]; 2a[p]; \ldots; (p-1)a[p]$ coïncide donc avec les p-1 valeurs de l'ensemble d'arrivée $1; 2; \ldots; p-1$ (non nécessairement dans le même ordre). On a donc en faisant les produits modulo p:

$$1 \times 2 \times \cdots \times (p-1) \equiv a \times 2a \times \cdots \times (p-1)a[p]$$

Chaque élément de [0; p-1], étant premier avec p, possède un inverse modulo p et en multipliant successivement par ces inverses on obtient :

$$1 \equiv a^{p-1}[p]$$

3.2 Numération

Un **système de numération** se définit par deux éléments :

- La base du système
- Les symboles du système

Pour des applications en informatique, les systèmes les plus utilisés sont les suivants :

Système	Base	Symboles	Nb de symboles
Décimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	10
Binaire	2	0, 1	2
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	8
Hexadécimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	16

Notation et signification

Soit N un entier quelconque exprimé dans une base b avec comme ensemble de symboles les éléments a_i pour i allant de 0 à n-1 et avec chaque $a_i < b$. N sera alors noté comme suit :

$$N = \overline{a_{n-1}a_{n-2}\cdots a_{0}}_{b}$$

On peut alors retrouver la valeur de N avec la relation suivante :

. - - - - - -

où la suite des coefficients $(c_i)_{0 \le i \le n-1}$ correspond aux valeurs associées aux symboles a_i . Il y a unicité d'écriture d'un nombre dans une base.

Exemples

- $\bullet \ \overline{1011}_2 =$
- $\bullet \ \overline{A3F}_{16} =$

Conversion d'un nombre décimal en binaire On va ici utiliser la méthode par divisions euclidiennes successives avec N=172. On divise par 2 sur les quotients obtenus successivement :

On peut traduire ceci par les égalités suivantes :

On obtient donc bien la conversion en binaire en « remontant » les divisions successives.