Machine Learning

Personal Formula Collection

Patrick Bucher

December 22, 2020

Contents

1	Linear Regression						
	1.1	One Variable	1				
	1.2	Multiple Variables	2				
	1.3	Normalization	2				
2	Classification						
	2.1	Logistic Regression	3				
		2.1.1 Regularization (Gradient Descent)	4				
		2.1.2 Regularization (Normal Equation)	4				
3	Neural Networks						
	3.1	Activation	5				
		3.1.1 Vectorization	5				
	3.2	Cost Function	5				
	3.3	Forward Propagation	6				
	3.4	Backpropagation	6				
	3.5	Gradient Checking	7				
	3.6	Random initialization	7				
4	Erro	or Metrics	7				
5	Support Vector Machines						
	5.1	Kernels	8				
	5.2	Choice of Parameters	8				

1 Linear Regression

1.1 One Variable

Prediction:

$$y = h(x) = \theta_0 + \theta_1 x = \theta^T x$$

Cost Function (Squared Error):

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Gradient Descent:

$$\theta = \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

1.2 Multiple Variables

Prediction:

$$y = h(x) = \theta_0 + \theta_1 x_1 = + \dots + \theta_n x_n = \theta^T x$$

Cost Function:

$$J(\theta_j) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_j^{(i)}) - y_j^{(i)})^2$$

Gradient Descent:

$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}, j := 0 \dots n$$

An additional feature $x_0 = 1$ is introduced, so that the vector x becomes n + 1 dimensional, which simplifies the matrix calculations.

Normal Equation:

$$\theta = (X^T X)^{-1} X^T y$$

Octave (Complexity with n features: $O(n^3)$):

theta =
$$pinv(X'*X)*X'*y$$

1.3 Normalization

$$x_i = \frac{x_i - \mu_i}{s_i}$$

Octave:

$$X = (X - mean(X)) ./ std(X)$$

2 Classification

Binary Classification: $y \in \{0, 1\}$, where 0 signifies negative or absent, and 1 signifies positive or present.

2.1 Logistic Regression

$$0 \le h_{\theta(x)} \le 1$$

Sigmoid Activation Function g (with asymptotes at y 0 and 1, to be interpreted as probabilities):

$$h_{\theta} = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function: $-log(h_{\theta}(x))$ for y=1 and $-log(1-h_{\theta}(x))$ for y=0, combined:

$$C(h_{\theta}(x), y) = -y \cdot log(h_{\theta}(x)) - (1 - y) \cdot log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h_{\theta}(x^{(i)}), y^{(i)})$$

With maximum likelihood estimation:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right]$$

Prediction:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent (for each j in θ):

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Vectorized:

$$\theta := \theta - \frac{\alpha}{m} \sum_{i=1}^{m} \left[(h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} \right]$$
$$\theta := \theta - \frac{\alpha}{m} X^{T} (g(X\theta) - \vec{y})$$

2.1.1 Regularization (Gradient Descent)

Regularization mitigates the problem of overfitting for higher-order polynomials. Regularization term (only regularize θ_j for $j \ge 1$, but not θ_0):

$$\lambda \sum_{j=1}^{m} \theta_j^2$$

Regularized Cost Function:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

Regularized Gradient Descent (for θ_i with $j \geq 1$):

$$\theta_0 := \theta_0 - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left((h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right]$$

2.1.2 Regularization (Normal Equation)

To regularize using the normal equation, (n+1)(n+1) matrix L with i rows and j columns and the values 1 (for $i=j \land i \geq 1 \land j \geq 1$) and 0 (all the other indices), respectively, has to be created. (This is an identity matrix of size n+1 with the value at (0,0) set to 0.)

$$\theta = (X^T X + \lambda L)^{-1} X^T y$$

With regularization, the matrix is always inversible.

3 Neural Networks

Definitions:

- x_0 : bias unit
- $a_i^{(j)}$: activation unit i of layer j
- $\Theta^{(j)}$: weight matrix between layer j and j+1

Given layer j with s_j units, and layer j+1 with s_{j+1} units, the matrix $\Theta^{(j)}$ has the dimensions $s_{j+1} \times (s_j+1)$.

3.1 Activation

Neural network with three units in the one hidden layer:

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \dots)$$

$$a_2^{(2)} = g(\Theta_{20}^{(2)}x_0 + \Theta_{21}^{(2)}x_1 + \dots)$$

$$a_3^{(2)} = g(\Theta_{30}^{(3)}x_0 + \Theta_{31}^{(3)}x_1 + \dots)$$

$$h_{\Theta}(x) = a_1^3 = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \dots)$$

3.1.1 Vectorization

With (forward propagation):

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

And:

$$z_1^{(2)} = \Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3$$

Follows:

$$a_1^{(2)} = g(z_1^{(2)})$$

So that:

$$z^{(2)} = \Theta^{(1)}x = \Theta^{(1)}a^{(1)}$$

Output layer:

$$h_{\Theta} = a^{(3)} = q(z^{(3)})$$

3.2 Cost Function

$$J(\Theta) = -\frac{1}{m} \Bigg[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) log(1 - (h_{\Theta}(x^{(i)}))_k \Bigg] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2 + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{l} \sum_{j=1}^{l} (\Theta_{ji}^{(l)})^2 + \frac{\lambda}{2m} \sum_{l=1}^{l} \sum_{i=1}^{l} \sum_{j=1}^{l} (\Theta_{ji}^{(l)})^2 + \frac{\lambda}{2m} \sum_{l=1}^{l} (\Theta_{ji}^{($$

With $(h_{\Theta}(x))_i$ being the i^{th} output. Note that regularization is *not* added to the bias unit, i.e. only for $j \geq 1$.

3.3 Forward Propagation

With a single training example (x, y). The first activation is the input (a bias unit $a_0^{(1)} = 1$ must be added before):

$$a^{(1)} = x$$

The second activation is computed using Θ and the sigmoid function g(z):

$$z^{(2)} = \Theta^{(2)}a^{(2)}$$

$$a^{(2)} = g(z^{(2)})$$

The bias unit $a_0^{(2)}=1$ must be added again, then the further activations (l) are computed:

$$z^{(l)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l)} = g(z^{(l)})$$

Finally, the output (layer L) is computed:

$$z^{(L)} = \Theta^{(L)} a^{(L)}$$

$$a^{(L)} = g(z^{(L)}) = h_{\Theta}(x)$$

3.4 Backpropagation

The δ for the rightmost layer L is computed as:

$$\delta^L = a^{(L)} - y$$

The further δ values are computed from right to left, down to l=2 (no δ for the input layer):

$$\delta^{(l)} = \delta^{(l+1)} \Theta^{(l)} q'(z^{(l)})$$

With (bias unit included in $a^{(l)}$):

$$q'(z^{(l)}) = a^{(l)}(1 - a^{(l)})$$

The Δ values are computed as ($a^{(l)}$ without bias unit):

$$\Delta^{(l)} = (\delta^{(l+1)})^T a^{(l)}$$

Finally, the gradients D for $j \ge 1$ are computed as follows:

$$D_{ij}^{(l)} = \frac{1}{m} (\Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)})$$

And without regularization for j = 0, respectively:

$$D_{ij}^{(l)} = \frac{1}{m} (\Delta_{ij}^{(l)})$$

Which is the partial derivative of the cost function:

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)}$$

3.5 Gradient Checking

Estimate the derivative of $J(\Theta)$ with $\varepsilon \approx 10^{-4}$ (two-sided difference):

$$\frac{d}{d\Theta}J(\Theta)\approx\frac{J(\Theta+\varepsilon)-J(\Theta-\varepsilon)}{2\varepsilon}$$

The result should only deviate from the D values by a rounding margin.

3.6 Random initialization

When working with neural networks, Θ must be initialized to a random value symmetrically around 0. A (10×11) matrix is initialized as follows (Octave):

4 Error Metrics

Confusion Matrix:

		actual		
		1	0	
п	1	true	false	
ction		positive	positive	
edio	0	false	true	
pre		negative	negative	

Precision ($0 \le P \le 1$):

$$P = \frac{tp}{tp + fp}$$

Recall $(0 \le R \le 1)$:

$$R = \frac{tp}{tp + fn}$$

 F_1 Score $(0 \le F_1 \le 1)$:

$$F_1 = 2\frac{PR}{P+R}$$

Some rules of thumb:

- A higher classification threshold leads to a higher precision and a lower recall.
- A lower classification threshold leads to a lower precision and a higher recall.
- Many features can help to lower the bias.
- Many training examples can help to lower the variance.
- If a human expert can predict y based on x, more training data can help.

5 Support Vector Machines

The prediction yields 0 and 1 rather than probabilities. Cost Functions with Safety Margins (*Large Margin Classifier*):

$$cost_0(\theta^T x^{(i)}) : 1 \quad \text{if} \quad \theta^T x \le -1, \quad \text{else} \quad 0$$

$$cost_1(\theta^T x^{(i)}) : 1 \quad \text{if} \quad \theta^T x \ge +1, \quad \text{else} \quad 0$$

Minimize θ ($C = \frac{1}{\lambda}$):

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \mathsf{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \mathsf{cost}_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

5.1 Kernels

Calculate features depending on proximity (similarity function) using landmarks ($l^{(i)} = x^{(i)}$) with the *Gaussian kernel* (squared euclidian distance $||x - l^{(i)}||^2$):

$$f_1 = \sin(x, l^{(i)}) = \exp\left(-\frac{||x - l^{(i)}||^2}{2\sigma^2}\right)$$

5.2 Choice of Parameters

- C
- large C: low bias, high variance (small λ)
- small C: high bias, low variance (large λ)
- σ^2
 - large σ^2 : high bias, low variance (flat gaussian curve)
 - small σ^2 : low bias, high variance (abrupt gaussian curve)