Prueba N1

Nombre: Daniel Galarza

Fecha: 09/04/2024

1. Creación del ambiente llamado Prueba

- Use el dataset Titanic.xlsx
- 3. Aplique el algoritmo de clasificación

Elimino las variables independientes que no me sirven

Los elimino porque el Name no me sirve, la cabina tampoco y el bote salvavidas tiene demasiados valores nulos que no podre controlar solo usando la media.

Verificamos que existen valores nulos Llenamos con la media esos valores para no que no exista sesgo

	Passenger Class	Sex	Age	No of Siblings or Spouses on Board	No of Parents or Children on Board	Ticket Number	Passenger Fare	Port of Embarkation
0	First	Female	29.0000	0	0	24160	211.3375	Southampton
1	First	Male	0.9167	1	2	113781	151.5500	Southampton
2	First	Female	2.0000	1	2	113781	151.5500	Southampton
3	First	Male	30.0000	1	2	113781	151.5500	Southampton
4	First	Female	25.0000	1	2	113781	151.5500	Southampton
1304	Third	Female	14.5000	1	0	2665	14.4542	Cherbourg
1305	Third	Female	NaN	1	0	2665	14.4542	Cherbourg
1306	Third	Male	26.5000	0	0	2656	7.2250	Cherbourg
1307	Third	Male	27.0000	0	0	2670	7.2250	Cherbourg
1308	Third	Male	29.0000	0	0	315082	7.8750	Southampton
D ~	# completar	los val	ores que	me faltan con l	a media		·= V1 V↓	

	Passenger Class	Sex	Age	No of Siblings or Spouses on Board	No of Parents or Children on Board	Ticket Number	Passenger Fare	Port of Embarkation		
0	First	Female	29.000000	0	0	24160	211.3375	Southampton		
1	First	Male	0.916700	1	2	113781	151.5500	Southampton		
2	First	Female	2.000000	1	2	113781	151.5500	Southampton		
3	First	Male	30.000000	1	2	113781	151.5500	Southampton		
4	First	Female	25.000000	1	2	113781	151.5500	Southampton		
1304	Third	Female	14.500000	1	0	2665	14.4542	Cherbourg		
1305	Third	Female	29.881135	1	0	2665	14.4542	Cherbourg		
1306	Third	Male	26.500000	0	0	2656	7.2250	Cherbourg		
1307	Third	Male	27.000000	0	0	2670	7.2250	Cherbourg		
1308	Third	Male	29.000000	0	0	315082	7.8750	Southampton		
1309 rows × 8 columns										

Renombrar etiquetas

Transformamos valores nominales a números

```
> ×
        X.Embarcacion.value_counts()
      ✓ 0.0s
     Embarcacion
     Southampton
                    914
     Cherbourg
                    270
     Queenstown
                    123
     Name: count, dtype: int64
                                                                                   © D₁ D↓ E
> <
        # transformamos valores nominales a numeros
        atributos = list(dataset.columns)
        for atri in atributos:
            if atri == 'Clase':
                X[atri] = X[atri].map({'Third':0, 'First':1, 'Second':2})
            elif atri == 'Sexo':
                X[atri] = X[atri].map({'Male':0, 'Female':1})
            elif atri == 'Embarcacion':
                X[atri] = X[atri].map({ | Southampton':0, 'Cherbourg':1, 'Queenstown':2})
      ✓ 0.0s
```

División de datos de Prueba y Entrenamiento:

Aplicamos el algoritmo con un 25% de datos solamente sean Test y el resto con 75 de entrenamiento.

```
# Division de datos de Prueba y Entrenamiento
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
print("75% para train y 25% para Test")
print(X_train.shape)
print(X_test.shape)

> 0.0s

Python

75% para train y 25% para Test
(981, 8)
(328, 8)
```

4. Aplique el algoritmo de clasificación

Para ello usamos las variables de x en entrenamiento y y en entrenamiento dado eso calculamos la predicción.

4. Determine el score

```
# Score
clasificador.score(X_test, y_test)
clasific
```

5. Genere la Matriz de Confusión

6. Grafique el árbol

Obtención de variables independientes pata crear el árbol y creación del árbol usando max_depth para hacerlo más pequeño usando 3.

```
vi = [col for col in columnas if col != 'Survived']
        νi
     ✓ 0.0s
     ['Clase', 'Sexo', 'Edad', 'noSibling', 'noNiños', 'Tarifa', 'Embarcacion']
> ×
        from sklearn import tree
        import pydotplus
        import matplotlib.pyplot as plt
        import matplotlib.image as pltimg
        clase = ['No', 'Si']
        datos = tree.export_graphviz(clasificador,
                                     class_names=clase,
                                     feature_names=vi,
                                     filled=True,
                                     max depth=3
        graph = pydotplus.graph_from_dot_data(datos)
        graph.write_png('arbol.png')
        imagen = pltimg.imread('arbol.png')
        plt.imshow(imagen)
        plt.show
      ✓ 1.3s
```

Me sale un árbol grande:

Por ello aplicaremos una reducción con un max depth = 2:

7. Utilice Weka y compare el resultado obtenido en Python