IN NUMERICAL MOTHODISE
LU Decomposition metersol.
-> Som of Linear Systems - Gaus Eliminah ",
Gouss Schoel "?
Bisection meteral.
-> Rooks of Earns foxo=0 (Regula-Falsi"
Secont "
Mewten Romphson"
Numerical Integeration (Conditation): T= feardse Siropsons Rule. Siropsons Rule.
(Quadrature) I= fearder Siropsons Rul.
(Quadrature) Siropsons Ruli.
andre de la companya de la companya La companya de la co
=> methods of salving
Analytical Mineneorical.
> Roundoffers Elman (Italian) Paulotra
> Roundoffers Elman (Italian) Pallotia
-ve: onestimate
Essor = Exact-Approximate (Br-AP)
tipe ordinary
Relative Essor = Ex-Ap)
1. Relative 8000 = 1 Ex-AP xeroo.

1) -> LUDecomposition & eg: 3x + 4y - 2x = 4 x - y + 3x = -6. 4x - 2y - 7z = 5. $\begin{bmatrix}
3 & 4 - 2 \\
1 & -4 & 3 \\
4 - 2 & -7
\end{bmatrix}
\begin{bmatrix}
x & 7 & -6 \\
7 & 5
\end{bmatrix}$ A-7=B [LU7]=B. はし、第三之一のし、 Ars LV decorrpalableiff. growing all bejunths wings on: Pointelling and mon-zoon 1ê 70. -materiary with printed diaporal of materix, Principle mixe No principle source should be singular 131=3 = 134 = 3-4=7 70 34-2 = 91.80 Ail 1-13 W decomposible, A=LU $\begin{bmatrix} 3 & 4 - 2 \\ 4 - 2 & -7 \end{bmatrix} = \begin{bmatrix} 101 & 0 & 0 \\ 101 & 102 & 0 \\ 181 & 182 & 183 \end{bmatrix} \begin{bmatrix} 0 & 0 & 112 & 1123 \\ 0 & 0 & 1123 \end{bmatrix}$ V= 6+6=12 controvers. 2 use havos, 3x3=9 Egns. So, wedomt have enique som, Do wer well apply extrao bo littles metrod OF CROUPS method.

- balithe method = march = (115/2== 132=1. (Rouct's mothod) = U11= U22= U3'3= 1. So, Now we have gunknowns (V) & gepts. So we carry solve, so be little method, 12 M12 W13 Cerel 42k 13/13/17 W1=3 W12=4 U13=-2 L= 221 × U11, 221=1/8. 1-1 = lal·U12+ U22 > U22=-1-1/2* 3 = 131 413 + 128 + 133, 12 10 413 + 428 : 428 = 3-16-12 = 3+2=1/3, Broneloody 3 121. 411=4 131=4/2 => SIN LUZ+ 232. U22=-2 5) De=22/3 A= 1000 34-25 1/3 100 0 731/3 4/2 29/2 1 0 0 -Then bosedie UR = 2 bogetx, y.Z.

1.0

IF a matrix is Not LU decomposable.

"exprange James (to mall non-zero).

IF all minore our zero, then we comet adjust adjust. No salution salution courses.

AND Solvetoget & S

course Ri Rs.

=> Gauss-Scialel materiale (Commers Rule = 0(n4)) Gauss seidal metersel es fastes than Gauss clergination method cohen cofficient madrix is sparse. suchas in tri-deep and motifix. 2 insteroof > Gauss Seidal has -> manual method = for saluting tull 2003 statem. Haspersable -> mouth x method To cheek aphathar Josephie ? the = councidere > Rate cof convergence? -ne = Divorgen e :- x=(4-4y+27)/3 3x+4y-22=4. · y=6+2+32 X-y +37=-6, 4x-2y-72 =5 · 2=(5+42-4)/7, Thats 2 if not guer use 0,000 NO. ĪŌ by defeull, (X-Y)=Relative @ DOS iè est each step Relative Door = cates - Beard $\chi = (4 - 00)/2 = 4/2$ 7= B+ 84/3= 22/3 2= (-5+4+/h-2+2/3)/7=

celso mon be or second

Tig (H)= { 0, -1/2} PCH) = 1/2 < 1 => So, villes convergent. - Ge fcH) Rate of convergent = V(H). = -(on pch) =-400 (1/12) Any Liagorally booninat Bystern is always Every Leagonal element es greator in curry of desponal element every of desponal 9: [0:1] 3) Divorgence. egi- [3 5] Divergence 3) 3) contemporal as one deaperal 2) 4>3 2 apriso el 203 So cont sour Then VCH2>0 for > < 1 quen VCHD <0 fcH) >1

⇒ Gauss 2	Seidal 27	acobie							
Gauss Seidal -> 70 derviel New values, (new sows-use rese talest update valuel.									
Jacobi -> Modernie neur seen un feely use cold seen.									
30 gaves saided is faster than Jacobi's									
\\ \(\) (\(\)	Paus-Seidal 10 Rate	=27	(Jacob	thooles faster	j terong				
•	1) P (Gaus	s-seidal)	$= f^2$	Jawbi) ((,				
J (Gauss-seidal) = f (Tawbi) 80, spectral fadius in 4.2. is square of spectral Radius in Jacobi=									
			`	1					
					•				
2000 R	oats o	f Egr		[fex)=0],				
1	questalul pequine	Convisions	Compless 12	Cornella	1				
BISECTION F	2	1	1	72=20124 2	# 6 B CO				
REGIOLA- FALSI	2	1		20=fixo-form	2062/				
SEEANT	2	1.62,	\sim	,,,	210-22				
NGTON- RAMPHSON.	1,	2.	\times	7612 20 - (Fee	200 200				
Interned	liste value 9	1-60// 1 L) <0 C { a }	⊃ ?					

MOIDE DE DE CONTRA

BISECTION 8

$$eg = 2e^2 - 2e^2$$
, $e_1 = 2$.

Divata	200 1	21	22	fo	C v	6.
1	1	2.	1.5		+2	0:52
2	1	1.5	1.25	<u> </u>	0.25	
	1025	7.5	1.375	-0.1	0.25	
•	I	1				

Guss of Root is done en ocen sy sering belantour of Fernation Re-volume for manger its value for pastive to negetive

3) Rogul	$22 = f_{1}20 - fox$					
Depation	De 1	24	2	Fo \	A	2_
	1	2	1083	-1	+2	
2						
Seean						·
2		62 K	1-33		72	
3		·				A

> Newton Komphone xe (1,2) Storotz=1.5 (it Not Given). Iteraty 200 let re-ell Given 24= 20-fexo) 1.418 Perco) => (De1= x0-(x02-2) Seuthing elyronala 2/+1= (2/2+2) conjunton Rossi phison, Thewton Ramphson - after every iteation Supits is acuracy of doubled, ie. after 1 elpateon 1 difit 2 dept 2 iteration Subsellon n'ultration 2001 depit. IF ECH & Einder Riscetton > Eit1 = KEr For Rogula Politics Ei+1= RE0 1082 for Newton-phlons Eit 1= KEP2

Losso formula for Besentino method. 1 29=10 If No=a Enmaro = 10-9 (max. cross in thi). .. Eo= b=9 G = 5-9 B = Ba Ours - 2003) i more even affer to iterations $\frac{5-0}{27} = \frac{3-1}{510} = \frac{2}{30} = \frac{1}{33} = \frac{1}{512}$ Quelse How many subscitions for Reseation acc (1.3) must be professed to order be unflish \$105 TOZ = 3-4 = 27 = 2 × 105 n=[92 2 \$105] = [27.628] = 20 Ourse Hornmay Hosations orequired to pooporn psection (a,b) to be esses within £E ⇒2n=b=0. ≯n=[92 (b=0)]

> Numerical Integerations

19/11/2012

Simple Proposon's Rule-3 points; Complex J.R. = Any #efroms Simple 3 impson's Rule-3 points; Complex S.R. = Add #efroin Cerem #off-of

(M(= OP-1) (Hof interal= #of points-1).

Frategoral value

S.T.R = I= 1/2 (fo+fi):

8:S.R. = I= & (fo+4fi+fi)

C.S.R.=I= to (fo +4fi+2fi+4fs+2fi+4fs+4f) + 2fi+4fs+f) + 2fi+f(f) +

Step & izz = $\frac{b-a}{n_i}$; $n_i = no \cdot of interval,$ where $(n_i = np-1)$ $\dots np = no \cdot of points$

Esses in aurora (Douragion Esser)

in performed by alcerning expangut luice

assimple drapatic

untigenettor is performed by

C. T. R = O(h2) - stopsizeu Suduead dynamicalle I dques min essor.

Lever de l'en le peur le peur le peur le lever l

20 | O-1

MOUTHS PIA

PI - 45C PIZ-

SC PIZZ. DCP V

Truncation Errors =
$$-\frac{12}{12}\pi_0$$
, $f''(\xi)$ T.R.

(max. errors) = $-\frac{12}{12}\pi_0$, $f''(\xi)$

= $-\frac{12}{12}\pi_0$ by $f''(\xi)$

= $-\frac{12}{90}\pi_0$ $f''(\xi)$

S.R.

= $-\frac{12}{90}\pi_0$ Over estimate

Errors > $-\frac{12}{12}\pi_0$ man $f''(\xi)$

= $-\frac{12}{12}\pi_0$ man $f''(\xi)$

= $-\frac{12}{12}\pi_0$ man $f''(\xi)$

Abs. Proof = $-\frac{12}{90}\pi_0$ man $-\frac{12}{12}\pi_0$ man $-\frac{12}{12}\pi_0$

> Prapezoial Rule produces exact onseun for for upilo-

-> Simpson's Rule product once answer for for upto palynomial ordige 2.

=> TR upto leniar for bear f'(ces for scriberia S.R. upto cubic for become fixes for x=cubic fixes=0

Downer of $\frac{1}{1+x} dx$ using simple Bapezoidal. $1 \quad m = 2points$ $n_p = 1$. $e^{-\frac{1}{2}} = \frac{2-1}{1} = 1$

$$\frac{\chi}{1} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{3} \right) = \frac{5}{12}$$

S-S-R=
$$mp+=3$$

 $m_1=2$
 $n_2=\frac{5-9}{2}=\frac{2-1}{2}=0.5$

CSCR.

$$\frac{7}{1} \frac{1}{1/2} \times 1$$

$$1.57 \frac{1}{2.5} \times 4$$

$$2.0 \frac{1}{3} \times 1$$

$$1 = \frac{4}{3} \left(\frac{1}{2} + \frac{40}{25} + \frac{1}{3} \right)$$

$$= \frac{0.5}{3} \left(\frac{1}{2} + \frac{40}{25} + \frac{1}{3} \right)$$

$$\Rightarrow$$
 coordood \Rightarrow points $\eta_{i=4}$.
 $e = \frac{2-1}{4} = 0.28$.

L	7	1-28	1.5	254	2,0	
fex) c.T.R.	1/2	1/2:28	1.12	271		
feren cisiR.	11	11		s	.,	
			· '	<u> </u>		

$$C \cdot S \cdot R = \frac{1}{3} \left(\frac{1}{2} + 4 \left(\frac{1}{2} \cdot 2 \cdot S \right) + 2 \left(\frac{1}{2} \cdot S \right) + 2 \left($$

Exort = Un (1+x)

Ja 3-1912

Error Exact - Approx,

BE T. E. beernd

T. E bound = +82 (b-0) man (f'100)

 $= \frac{(0.28)^2}{12} (2-1)^{1/4},$

fers=/1+x

P(X)= -1/(+X)2

 $f''(\infty) = \frac{2}{(1+x)^3} - \frac{2}{(1+x)^3} = \frac{2}{2} = \frac{1}{4}$

mas-will be at

bean first is a decreasing

JF T.E. is gueen. centre ni= 0

201 se . 3. P. tu

 $10-5=\frac{42}{12}(2-1)*14$

now using li; ni com be calculated.

Porvid

Some for S.R.

$$10^{-5} = \frac{t_0 t_0}{30}$$
. $\frac{5-9}{21 \times 10^{-5}}$ max | $f''(x)$ |.

 $10^{-5} = \frac{t_0 t_0}{100}$ (34)

For | $f''(x) = \frac{2}{1+x}$ | $f''(x) = \frac{$