Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 21 de agosto de 2022

Tarea 12

Problemas 3, 6, 7, 8, 10 y 12, sección 3.2.

Sección 3.2

R is a ring in all the problems.

Problema 1 (Problema 3). Find the form of the binomial theorem in a general ring; in other words, find an expression for $(a + b)^n$, where n is a positive integer.

Solución. Tenemos 2 casos:

1. Si el anillo es conmutativo, se tiene la definición usual del teorema binomial:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

2. Si el anillo no es conmutativo, tenemos que

$$(a+b)^n = \sum_{k=0}^n (x_1 \cdots x_n),$$

en donde la sumas van sobre todos los elementos de longitud n con $x_i = a$ o $x_i = b$.

Problema 2 (Problema 6). If D is an integral domain and D is of finite characteristic, prove that the characteristic of D is a prime number.

Demostración. Debemos probar que el característico de D es un número primo. Por hipotesis, D es un dominio entero y D es de característica finita \Longrightarrow por definición, p es el entero más pequeño tal que $pa = 0 \quad \forall a \in D$. Por reducción al absurdo, supóngase que p no es un número primo, es decir es un número compuesto $\Longrightarrow \exists z_1, z_2 \in \mathbb{Z}^+ \ni p = z_1 z_2$.

Nótese entonces que $(z_1z_2)a = 0 \quad \forall a \in D \implies$ pero esto también nos permite asegurar $(z_1z_2)a^2 = (z_1a)(z_2a) = 0 \implies (z_1a) = 0$ o $(z_2a) = 0.(\rightarrow \leftarrow)$ Pero es una contradicción ya que p es el entero más pequeño y no puede ser 0. Por lo tanto, el característico p de p es un número primo.

Problema 3 (Problema 7). Give an example of an integral domain which has an infinite number of elements, yet is of finite characteristic.

Solución. Basándonos en los ejemplos usuales del libro, J_p (el anillo de enteros mód p) un ejemplo claro sería $J_p[X]$ el anillo de polinomios sobre el anillo J_p .

Problema 4 (Problema 8). If D is an integral domain and if na = 0 for some $a \neq 0$ in D and some integer $n \neq 0$, prove that D is of finite characteristic.

Demostración. Debemos probar que D es de característica finita. Sea entonces $x \in D \ni$

$$(na)x = a(nx) = 0, \quad a \neq 0.$$

 $\implies (nx) = 0 \quad \forall x \in D$, cumpliendo la definición de característico finito para D.

Problema 5 (Problema 10). Show that the commutative ring D is an integral domain if and only if for $a, b, c \in D$ with $a \neq 0$ the relation ab = ac implies that b = c.

Demostración. Tenemos dos implicaciones:

 \bullet (\Longrightarrow) Por hipótesis, D es un dominio entero, tenemos que $a \neq 0$, tal que:

$$ab = ac$$

$$(ab - ac) = 0$$

$$a(b - c) = 0$$

$$b - c = 0$$

$$b = c$$

• (\iff) Por hipótesis, $a, b, c \in D$ con b = c. Por reducción al absurdo, supóngase D no es de dominio entero, es decir $\exists a, b \in D - \{0\} \ni ab = 0$. Pero

$$0 = ab = a \cdot 0 \implies a(b-0) \implies b-0 = 0 \implies b = 0 \rightarrow (b-1)$$
.

Por lo tanto, D es un dominio entero.

Problema 6 (Problema 12). Prove that any field is an integral domain.

Demostración. Sea D un campo \implies es un anillo conmutativo divisible \implies cada elemento no cero de D es invertible. Por reducción al absurdo, supóngase que D no es de dominio entero, entonces $m, a \in D - \{0\} \ni ma = 0 \implies m, a \neq 0, m$ es invertible, es decir que m^{-1} existe, tal que:

$$m^{-1}(ma) = m^{-1}0$$
$$(m^{-1}m)a = 0$$
$$(e)a = 0$$
$$a = 0(\rightarrow \leftarrow)$$

Por lo tanto, m, a = 0 y D es de dominio entero.