Pseudomonas syringae Type-III Secreted Effectors Elicit Unique Transcriptional Responses in Arabidopsis thaliana

Nicholas Garcia, Pauline Wang^{1,2}, Darrell Desveaux¹, David Guttman^{1,2}

- ¹ Centre for the Analysis of Genome Evolution and Function, University of Toronto
- ² Department of Cell & Systems Biology, University of Toronto

Introduction

The bacterium *Pseudomonas syringae* destroys millions of dollars of crops as a hemibiotrophic phytopathogen.

P. syringae enters the stomata and injects its type-III secreted effector proteins^[1] into the symplast to disable host immunity. The plant responds with a transcriptional counter-attack (PAMP-triggered immunity, or *PTI*).

But does each effector induce a *unique* transcriptional response in the plant?

We've adapted a system developed by Wei et. al^[2] to answer that question:

Isolated effectors > overexpression

Methods

Infection:

- Pressure infiltrate the following well-characterised *P. syringae* effectors, suspended in 10 mM MgSO4 at OD = 0.0002, in into *A. Thaliana* in biological triplicate:
 - D36E::**HopN1**a
 - Cleaves PsbQ in chloroplast's photosystem II to suppress SA signalling
 - D36E::**HopB1**a
 - Cleaves BAK1 at the membrane to suppresses
 PTI
 - D36E::**HopAB1**j
 - Ligates ubiquitin to FLS2 at membrane to suppress PTI
- With D36E::EV and 10 mM MgSO4 as controls, leaves were frozen 1h and 8h post-infiltration.

RNA Extraction & Sequencing:

- Frozen leaves were ground in LN2 via mortar & pestle, then suspended in TRIzol.
- Centrifuged then supernatant was mixed with chloroform
- Centrifuged again and span down through RNEasy spin column kit
- Samples were stored at -80°C
- Samples were sequenced on an Illumina NextSeq 2000

Computational Pipeline

DEG Patterns: 8h Treatments

lopAB1j

Results

Genes with significantly-altered expression						
Data comparison	Timepoint post-infection	Total	Induced	Repressed		
D36E::HopN1a vs D36E::EV	1 hour	2	1	1		
D36E::HopN1a vs D36E::EV	8 hours	14	4	10		
D36E::HopB1a vs D36E::EV	1 hour	1	1	0		
D36E::HopB1a vs D36E::EV	8 hours	960	659	301		
D36E:: HopAB1j vs D36E::EV	1 hour	5	4	1		
D36E:: HopABj vs D36E::EV	8 hours	543	474	69		

Results cont.

DEGs at 1 hour post-infection by effector treatment						
Effector	Locus	Locale	Regu- lation	Product		
HopN1a	AT1G53035	Chloroplast	Up	Transmembrane protein		
HopN1a	AT5G51720	Chloroplast	Down	NEET, involved in ROS homeostasis		
HopB1a	AT2G45080	Cytoplasm	Up	Cyclin P3, enables protein kinase binding		
HopAB1j	AT1G08630	Cytosol	Up	THA1, degrades Thr → Gly		
HopAB1j	AT1G68050	Cytosol & nucleus	Up	Part of SCF uqituitin ligase complex		
HopAB1j	AT1G06160	Nucleus	Up	ORA59, master regulator of JA pathway		
HopAB1j	AT4G33980	Nucleus	Up	COR28		
HopAB1j	AT3G48360	Nucleus	Down	BT2, part of TAC1- mediated telomerase pathway		

Discussion

- 1 hour post-infection
- HopN1 demonstrates locale specificity, HopAB1 & HopB1 less so
- HopN1 NEET and HopAB1j ORA59, SCF demonstrate functional specificity, HopB1 less so
- 8 hour post-infection
- Unique expression patterns visible across all treatments
- Stress response activation and auxin

Conclusion

D36E::HopAB1j, D36E::HopB1a, and D36E::HopN1a induce unique transcriptional responses in A. Thaliana.

Their "transcriptonal fingerprints" are partially capable of characterising localisation and/or functional outcomes.

References

1.Xin X, Kvitko B, He SY. "Pseudomonas syringae: what it takes to be a pathogen". Nat Rev Microbiol, 16, 5, 2018, pp. 316-318. 10.1038/nrmicro.2018.17

2. Wei H, Chakravarthy S, Mathieu J, Swingle B, Martin G, Collmer A. "Pseudomonas syringae pv. tomato DC3000 Type III Secretio Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB". Cell Host & Microbe, 17, 2015, pp. 752-762. 10.1016/j.chom.2015.05.007

