Joulukuun helpommat valmennustehtävät – ratkaisut

1. Tapa 1. Olkoon $x_n = a^n + b^n$, kun n = 0, 1, 2, ... Auki kertomalla havitaan kaava

$$a^{n+2} + b^{n+2} = (a+b)(a^{n+1} + b^{n+1}) - ab(a^n + b^n).$$

Koska a+b=2 ja ab=-1, saadaan $x_{n+2}=2x_{n+1}-x_n$. Tästä reukrsiokaavasta voidaan laskea vain peruslaskutoimitusten avulla $x_{10}=6726$.

Tapa 2. Kaikilla x pätee $(x-a)(x-b)=x^2-(a+b)x+ab=x^2-2x-1$. Siispä a ja b ovat yhtälön x^2-2x-1 ratkaisut, eli $1\pm\sqrt{2}$ toisen asteen yhtälön ratkaisukaavalla. Vastaus on siis $(1+\sqrt{2})^{10}+(1-\sqrt{2})^{10}$. Keromalla auki binomikaavalla se sievenee muotoon

$$\begin{aligned} 2 \cdot \sqrt{2}^{10} + 2 \cdot \frac{10 \cdot 9}{2 \cdot 1} \cdot \sqrt{2}^8 + 2 \cdot \frac{10 \cdot 9 \cdot 8 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \sqrt{2}^6 + 2 \cdot \frac{10 \cdot 9 \cdot 8 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \sqrt{2}^4 \\ + 2 \cdot \frac{10 \cdot 9}{2 \cdot 1} \cdot \sqrt{2}^2 + 2 &= 6726, \end{aligned}$$

koska joka toinen termi kumoutuu binomikaavassa.

- 2. Reunaruutuja on 2a+2b-4, ja ruutuja on yhteensä ab. Saadaan yhtälö ab=3(2a+2b-4) eli ab-6a-6b+12=0. Tämän voi jakaa tekijöihin: (a-6)(b-6)=24. Luvun 24 positiiviset ja negatiiviset tekijät ovat $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm 24$. Luvut a-6 ja b-6 ovat siis joitain näistä luvuista, ja koska a,b>0, ne ovat itse asiassa joitain luvuista $\pm 1, \pm 2, \pm 3, \pm 4, 6, 12, 24$. Kahden negatiivisen luvun tulo tästä joukosta ei voi olla 24, joten a-6 ja b-6 ovat joitain luvuista 1,2,3,4,6,12,24. Siispä ratkaisuiksi saadaan $\{a,b\}=\{7,30\},\{8,18\},\{9,14\},\{10,12\}$.
- 3. Jälkimmäinen pelaaja pystyy pakottamaan voiton itselleen. Jos aloittava pelaaja ottaa jollain siirrolla k kiveä, hän ottaa 5-k kiveä. Näin ollen toisella pelaajalla on joka kierroksen alussa viidellä jaollinen määrä kiviä. Voittaakseen on päästävä tilanteeseen, jossa oman vuoron alussa on 1,2,3

tai 4 kiveä. Aloittaja ei siis pääse tähän tilanteeseen, joten jälkimmäinen pelaaja pääsee siihen ja voittaa.

- 4. Olkoon $\alpha = \angle MBA$. Kosinilauseella $QA^2 = QB^2 + AB^2 2QB \cdot AB\cos\alpha$ ja $QM^2 = QB^2 \left(\frac{AB}{2}\right)^2 QB \cdot AB\cos\alpha$. Nyt $QA^2 2QM^2 = -QB^2 + \frac{AB^2}{2}$, ja väite seuraa.
- 5. Tapa 1. Aritmeettis-geometrisen epäyhtälön nojalla

$$x^5 + x + 1 \ge 3\sqrt[3]{x^5 \cdot x \cdot 1} = 3x^2,$$

 $kun \ x \ge 0.$

Tapa 2. Tarkastellaan polynomia $P(x) = x^5 + x + 1 - 3x^2$. Pätee P(1) = 0, joten P(x) = (x-1)Q(x) jollakin toisella polynomilla Q(x). Jakokulmassa saadaan $Q(x) = x^4 + x^3 + x^2 - 2x - 1$. Edelleen Q(1) = 0, joten Q(x) = (x-1)R(x) jollakin polynomilla R(x). Jakokulmassa saadaan $R(x) = x^3 + 2x^2 + 3x + 1$. Näin ollen

$$x^5 + x + 1 - 3x^2 = (x - 1)^2(x^3 + 2x^2 + 3x + 1) \ge 0$$

 $kun x \ge 0.$

6. Symmetrian nojalla riittää tarkastella tapauksia $a \leq b$. Oletetaan aluksi, että a on pariton, santoaan a=2k+1. Tällöin yhtälö $2^a+2^b=x^2$ sievenee muotoon $2+2^{b-2k-1}=\left(\frac{x}{2^k}\right)^2$. Nyt luku $2+2^{b-2k-1}$ on parillinen muttei neljällä jaollinen, mikä on mahdotonta neiöluvulle. Siispä a on parillinen, sanotaan a=2k. Tällöin $1+2^{b-2k}=\left(\frac{x}{2^k}\right)^2$. Tämä voidaan kirjoittaa muodossa $\left(\frac{x}{2^k}+1\right)\left(\frac{x}{2^k}-1\right)=2^{b-2k}$. Aritmetiikan peruslauseen nojalla on nyt oltava

$$\frac{x}{2^k} + 1 = 2^\ell, \quad \frac{x}{2^k} - 1 = 2^{\ell'}$$

jollakin kokonaisluvuilla $\ell, \ell' \geq 0$, joille $\ell + \ell' = b$. Vähentämällä yhtälöt saadaan $2^{\ell} - 2^{\ell'} = 2$. Ainoat kakkosen potenssit, joiden erotus on 2, ovat 4 ja 2. Siten $\ell = 2, \ell' = 1$ ja $x = 3 \cdot 2^k$. Tällöin $b = \ell + \ell' + 2k = 2k + 3$. Mahdolliset ratkaisut ovat siis a = 2k, b = 2k + 3 ja ne, joissa a ja b vaihtavat paikkoja. Nämä tosiaan kelppavat, koska $2^{2k} + 2^{2k+3} = (3 \cdot 2^k)^2$.

7. **Tapa 1.** Kiinnitetään yksi pelaaja, sanotaan A. A:lle voi valita parin 2n-1 tavalla. Kiinnitetään jäljelle jääneistä jokin pelaaja B. Hänelle voi

valita parin 2n-3 tavalla. Jatketaan tällä tavalla. Aloituskierrosten lukumäärä saadaan kertomalla eri vaiheiden lukumäärät, eli se on $(2n-1)(2n-3)(2n-5)\cdot ...\cdot 1$.

Tapa 2. Pelaajista voidaan muodostaa pari $\binom{2n}{2}$ tavalla. Lopuista pelaajista voidaan muodostaa pari $\binom{2n-2}{2}$ tavalla jne.. Aloituskierroksia on siis yhteensä

$$\binom{2n}{2} \binom{2n-2}{2} \dots \binom{2}{2} = \frac{2n(2n-1)(2n-3)(2n-4)\dots \cdot 2 \cdot 1}{2^n}$$
$$= (2n-1)(2n-3)\dots \cdot 1.$$

- 8. Sovelletaan neliöön 90 asteen kiertoa pisteen A suhteen. Tällöin pisteet A, B, C, D, P kuvautuvat pisteiksi A', B', C', D', P'. Janat AP ja AP' ovat kohtisuorat ja yhtä pitkät. Siispä $\angle APP' = 45^{\circ}$. Koska AP = 2, pätee $PP' = \sqrt{2}$. Koska $\sqrt{2}^2 + 1 = \sqrt{3}^2$, suorat PP' ja PD ovat kohtisuorassa. Siten $\angle APD = \angle APP' + \angle P'PD = 135^{\circ}$.
- 9. Jos a on pariton, niin p=2. Silloin kuitenkin p+2a on parillinen ja suurempi kuin 2 eli ei alkuluku. Siispä a on parillinen. Jos a on jaoton kolmella, niin jokin luvuista p+2a, p+3a, p+4a on jaollinen kolmella. Nämä luvut ovat suurempi kuin 3, joten tämäkään tapaus ei käy. Luku a on siis jaolinen kolmella. Jos luku a on jaollinen myös viidellä, on $a\geq 30$. Oletetaan siis, että a on jaoton viidellä. Tällöin yksi luvuista p, p+a, ..., p+4a on jaollinen viidellä. Koska nämä luvut ovat alkukukuja, sen on oltava ensimmäinen niistä, eli p=5. Kun p=5, niin vainta a=6 tosiaan tuottaa alkuluvut 5,11,17,23,29. Vastaus on siis p=5.
- 10. Tarkastellaan suurinta kuperaa monikulmiota, jonka kärjet ovat joukosta A_1, A_2, A_3, A_4, A_5 (tätä sanotaan joukon konveksiverhoksi). Jos kyseinen monikulmio on viisikulmio, niin kuviossa on viisi kulmaa, joiden summa on $\frac{3}{2} \cdot 360^{\circ} = 540^{\circ}$. Siipä jokin näistä kulmista on enintään $\frac{540}{5} = 108$ astetta. Olkoon tämän kulma arvoltaan α . Kuviosta löytyy kolme kulmaa, joiden summa on α , joten jokin niistä on enintään $\frac{\alpha}{3} \leq 36^{\circ}$. Oletetaan seuraavaksi, että suurin kupera monikulmio on nelikulmio. Tällöin vaikkapa pisteet A_1, A_2, A_3, A_4 muodostavat kuperan nelikulmion, jonka sisällä A_5 on. Tarkastellaan nejää kulmaa, joiden kärki on A_5 . Niiden summa on 360° , joten jokin niistä on vähintään 90° . Olkoon $\angle A_1A_5A_4 \geq 90^{\circ}$. Nyt kolmiossa $A_1A_4A_5$ on jokin kulma, jonka arvo on enintään 45° . Olkoon lopuksi suurin kupera monikumio kolmio. Tällöin vaikkapa A_4 ja A_5 ovat kolmion $A_1A_2A_3$ sisällä. Tarkastellaan kulmia, joiden kärki on A_4 ja sivupisteet joukosta A_1, A_2, A_3 .

Näiden kulmien summa on 360°, joten jonkin niistä arvo on $\beta \geq 120$ °. Sanotaan vaikkapa $\angle A_1A_4A_2=\beta$. Nyt kolmiossa $A_1A_2A_4$ on yksi kulma, jonka arvo on vähintään 120°. Siispä jonkin sen kulman arvo on enintään 30°. Kaikissa tapauksissa siis pinenin kuma on enintään 45°. Tämä arvo saavutetaan, kun $A_1A_2A_3A_4$ on neliö ja A_5 sen keskipiste.