Hybrid Control and Switched Systems

Lecture #11 Stability of switched system: Arbitrary switching

João P. Hespanha

University of California at Santa Barbara

Summary

Stability under arbitrary switching

- Instability caused by switching
- Common Lyapunov function
- Converse results
- Algebraic conditions

Switched system

parameterized family of vector fields $\equiv f_p \colon \mathbb{R}^n \to \mathbb{R}^n$ $p \in Q$ switching signal \equiv piecewise constant signal $\sigma : [0,\infty) \to Q$ parameter set

 $S \equiv$ set of admissible pairs (σ, x) with σ a switching signal and x a signal in \mathbb{R}^n

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

A *solution* to the switched system is a pair $(x, \sigma) \in S$ for which

1. on every open interval on which σ is constant, x is a solution to

$$\dot{x} = f_{\sigma(t)}(x)$$
 time-varying ODE

2. at every switching time t, $x(t) = \rho(\sigma(t), \sigma^{-}(t), x^{-}(t))$

Time-varying systems vs. Hybrid systems vs. Switched systems

Time-varying system \equiv for each initial condition x(0) there is only one solution

$$\dot{x} = f_{\sigma(t)}(x)$$
 (all f_p locally Lipschitz)

Hybrid system \equiv for each initial condition q(0), x(0) there is only one solution

$$\dot{x} = f(q, x)$$
 $(q, x) = \Phi(q^-, x^-)$

Switched system \equiv for each x(0) there may be several solutions, one for each admissible σ

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

the notions of stability, convergence, etc. must address "uniformity" over all solutions

Three notions of stability

Definition (class \mathcal{K} function definition):

 α is independent

The equilibrium point x_{eq} is *stable* if $\exists \alpha \in \mathcal{K}$:

of $x(t_0)$ and σ

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \ \forall t \ge t_0 \ge 0, ||x(t_0) - x_{eq}|| \le c$$

along any solution $(x, \sigma) \in S$ to the switched system

Definition:

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is *asymptotically stable* if it is Lyapunov stable and for every solution that exists on $[0,\infty)$

$$x(t) \to x_{\rm eq} \text{ as } t \to \infty.$$

Definition (class **KL** function definition):

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is *uniformly asymptotically stable* if $\exists \beta \in \mathcal{KL}$:

 $||x(t) - x_{\text{eq}}|| \leq \beta(||x(t_0) - x_{\text{eq}}|/, t - t_0) \ \forall \ t \geq t_0 \geq 0$ along any solution $(x, \sigma) \in \mathcal{S}$ to the switched system

β is independent of $x(t_0)$ and σ

exponential stability when $\beta(s,t) = c e^{-\lambda t} s$ with $c,\lambda > 0$

Stability under arbitrary switching

$$\dot{x} = f_{\sigma}(x)$$
 $x = \rho(\sigma, \sigma^{-}, x^{-})$ $(\sigma, x) \in \mathcal{S}$

 $S_{\text{all}} \equiv \text{set of all pairs } (\sigma, x) \text{ with } \sigma$ piecewise constant and x piecewise continuous

 $\rho(p, q, x) = x \ \forall \ p, q \in Q, x \in \mathbb{R}^n$

no resets

ous any switching signal is admissible

If one of the vector fields f_q , $q \in Q$ is unstable then the switched system is unstable

Why?

- 1. because the switching signals $\sigma(t) = q \ \forall \ t$ is admissible
- 2. for this σ we cannot find $\alpha \in \mathcal{K}$ such that

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \ \forall t \ge t_0 \ge 0, \ ||x(t_0) - x_{eq}|| \le c$$
 (must less for all σ)

But even if all f_q , $q \in Q$ are stable the switched system may still be unstable ...

Lyapunov's stability theorem (ODEs)

$$\dot{x} = f(x)$$
 $x \in \mathbb{R}^n$

Definition (class \mathcal{K} function definition):

The equilibrium point $x_{eq} \in \mathbb{R}^n$ is (*Lyapunov*) *stable* if $\exists \alpha \in \mathcal{K}$:

$$||x(t) - x_{eq}|| \le \alpha(||x(t_0) - x_{eq}||) \ \forall t \ge t_0 \ge 0, ||x(t_0) - x_{eq}|| \le c$$

Theorem (Lyapunov):

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f(z) \le 0 \qquad \forall z \in \mathbb{R}^n$$

Then $x_{\rm eq}$ is a Lyapunov stable equilibrium and the solution always exists globally. Moreover, if = 0 only for $z = x_{\rm eq}$ then $x_{\rm eq}$ is a (globally) asymptotically stable equilibrium.

Why?

V can only stop decreasing when x(t) reaches $x_{\rm eq}$ but V must stop decreasing because it cannot become negative Thus, x(t) must converge to $x_{\rm eq}$

Common Lyapunov function

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

The same V could be used to prove stability for all the unswitched systems

$$\dot{x} = f_q(x)$$

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point $x_{\rm eq}$ is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$) 1st Take an arbitrary solution (σ, x) and define $v(t) := V(x(t)) \ \forall \ t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le 0$$

$$v(t) := V(x(t)) \le v(0) := V(x(0))$$
 $\forall t \ge 0$

V(x(t)) is always bounded

Some facts about functions of class $\mathcal{K}, \mathcal{KL}$

class $\mathcal{K} \equiv \text{ set of functions } \alpha : [0,\infty) \rightarrow [0,\infty) \text{ that are }$

- 1. continuous
- 2. strictly increasing
- 3. $\alpha(0)=0$

 $\alpha(s) \in \mathcal{K}_{\infty}$ $\alpha(s) \in \mathcal{K}$

class $\mathcal{K}_{\infty} \equiv$ subset of \mathcal{K} containing those functions that are unbounded

Lemma 1: If $\alpha_1, \alpha_2 \in \mathcal{K}$ then $\alpha(s) := \alpha_1(\alpha_2(s)) \in \mathcal{K}$ (same for \mathcal{K}_{∞})

Lemma 2: If $\alpha\in\mathcal{K}_{\!_{\infty}}$ then α is invertible and $\alpha^{\text{--}\!\!1}\!\in\mathcal{K}_{\!_{\infty}}$

Lemma 3: If $V: \mathbb{R}^n \to \mathbb{R}$ is positive definite and radially unbounded function then $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$: $\alpha_1(||x||) \le V(x) \le \alpha_2(||x||) \quad \forall x \in \mathbb{R}^n$

$$||x|| \le \alpha_1^{-1} (V(x))$$
 $\alpha_2^{-1} (V(x)) \le ||x||$

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point $x_{\rm eq}$ is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$) $||x|| \le \alpha_1^{-1} (V(x))$

$$v(t) := V(x(t)) \le v(0) := V(x(0)) \qquad \forall t \ge 0$$

Therefore
$$v(t) := V\big(x(t)\big) \leq v(0) := V\big(x(0)\big) \qquad \forall t \geq 0$$

$$3^{\mathrm{rd}} \operatorname{Since} \exists \ \alpha_1, \alpha_2 \in \mathcal{K}_{\infty} \colon \qquad \alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$$

$$V(x(t)) \text{ is always bounded}$$

$$||x(t)|| \leq \alpha_1^{-1}\big(V(x(t))\big) \leq \alpha_1^{-1}\big(V(x(0))\big) \leq \alpha_1^{-1}\big(\alpha_2(||x(0)||)\big) \qquad \forall t \geq 0$$

$$\alpha_1^{-1} \text{ monotone}$$

Common Lyapunov function

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{\text{eq}} = 0$)
3rd Since $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$

$$||x(t)|| \le \alpha_1^{-1} (V(x(t))) \le \alpha_1^{-1} (V(x(0))) \le \alpha_1^{-1} (\alpha_2(||x(0)||))$$
 $\forall t \ge 0$

 4^{th} Defining $\alpha(s) := \alpha_1^{-1}(\alpha_2(s)) \in \mathcal{K}$ then

$$||x(t)|| \le \alpha(||x(0)||) \quad \forall t \ge 0$$

stability! (1. is proved)

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$, $W(z) \rightarrow 0$ as $z \rightarrow \infty$) $\alpha_2^{-1}(V(x)) \le ||x||$ 1st As long as $W \rightarrow 0$ as $z \rightarrow \infty$, $\exists \alpha_3 \in \mathcal{K}$

$$W(x) \le -\alpha_3(||x||) \le -\alpha_3(\alpha_2^{-1}(V(x)))$$

 2^{nd} Take an arbitrary solution (σ, x) and define $v(t) \coloneqq V(x(t)) \ \forall \ t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \leq W(x(t)) \leq -\alpha(v)$$

$$\alpha(s) := \alpha_{3}(\alpha_{2}^{-1}(s)) \in \mathcal{K}$$

Some more facts about functions of class K, KL

class $\mathcal{KL} \equiv \text{set of functions } \beta:[0,\infty)\times[0,\infty)\to[0,\infty) \text{ s.t.}$

- 1. for each fixed t, $\beta(\cdot,t) \in \mathcal{K}$
- 2. for each fixed s, $\beta(s, \cdot)$ is monotone decreasing and $\beta(s,t) \to 0$ as $t \to \infty$

Lemma 3: Given $\alpha \in \mathcal{K}$, in case

$$\dot{v} \le -\alpha(v)$$

then $\exists \beta \in \mathcal{KL}$ such that

$$v(t) \le \beta(v(t_0), t - t_0)$$
 $t \ge t_0$

 $\text{After some work} \ \dots \qquad \beta(s,t) = \begin{cases} \eta^{-1} \big(\eta(s) + t \big) & s > 0 \\ 0 & s = 0 \end{cases} \qquad \eta(s) := - \int_1^s \frac{dr}{\alpha(r)}$

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Suppose there exists a continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{\rm eq})f_q(z) \le W(z) \le 0 \qquad \forall z \in \mathbb{R}^n, \ q \in \mathcal{Q}$$

Then

- 1. the equilibrium point x_{eq} is Lyapunov stable
- 2. if W(z) = 0 only for $z = x_{eq}$ then x_{eq} is (glob) uniformly asymptotically stable.

Why? (for simplicity consider $x_{eq} = 0$, $W(z) \rightarrow 0$ as $z \rightarrow \infty$)

 2^{nd} Take an arbitrary solution (σ, x) and define $v(t) := V(x(t)) \forall t \ge 0$

$$\dot{v} = \frac{\partial V}{\partial x}(x)\dot{x} = \frac{\partial V}{\partial x}(x)f_{\sigma}(x) \le W(x(t)) \le -\alpha(v)$$

3rd Then

$$v(t) \leq \beta(v(0), t)$$
 $t \geq 0$ class \mathcal{KL} func
 $(check !!!)$

 4^{th} Going back to x...

independent of σ

$$||x(t)|| \le \alpha_1^{-1} (\beta(\alpha_2(||x(0)||), t))$$
 $t \ge 0$

Example

$$\dot{x} = A_{\sigma} x$$

Defining $V(x_1,x_2) := x_1^2 + x_2^2$

common Lyapunov function

$$\frac{\partial V}{\partial x} A_1 x = -x_1^2 - 1.4375 x_2^2 - (x_1 + .75 x_2)^2 < 0$$

$$\frac{\partial V}{\partial x} A_2 x = -x_1^2 - 1.4375 x_2^2 - (x_1 + .75 x_2)^2 < 0$$

uniform asymptotic stability

stable.m

Converse result

$$\dot{x} = f_{\sigma}(x) \qquad (\sigma, x) \in \mathcal{S}_{\text{all}}$$

Theorem:

Assume Q is finite. The switched system is uniformly asymptotically stable (on $S_{\rm all}$) if and only if there exists a common Lyapunov function, i.e., continuously differentiable, positive definite, radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial V}{\partial x}(z - x_{eq})f_q(z) \le W(z) < 0 \qquad \forall z \in \mathbb{R}^n \setminus \{0\}, \ q \in \mathcal{Q}$$

Note that...

- 1. This result generalized for infinite Q but one needs extra technical assumptions
- 2. The sufficiency was already established. It turns out that the existence of a common Lyapunov function is also necessary.
- 3. Finding a common Lyapunov function may be difficult. E.g., even for linear systems *V* may not be quadratic

The switched system is uniformly exponentially stable for arbitrary switching but there is no common quadratic Lyapunov function

stable.m

Algebraic conditions for stability under arbitrary switching

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

Suppose $\exists m \geq n, M \in \mathbb{R}^{m \times n}$ full rank & { $\mathbf{B}_{\mathbf{q}} \in \mathbb{R}^{m \times m} : q \in \mathbf{Q}$ }:

$$MA_q = B_q M \qquad \forall q \in Q$$

Defining z := M x

$$\dot{z} = M\dot{x} = MA_{\sigma}x = B_{\sigma}Mx = B_{\sigma}z$$

Theorem: If V(z) = z' z is a common Lyapunov function for

$$\dot{z} = B_{\sigma}z \qquad \left(\frac{\partial V}{\partial z}B_{q}z = z'(B_{q} + B'_{q})z\right)$$

i.e., $B_q' + B_q < 0 \qquad \forall q \in \mathcal{Q}$

then the original switched system is uniformly (exponentially) asymptotically stable

Why?

- 1. If V(z) = z' z is a common Lyapunov function then z converges to zero exponentially fast
- 2. $z := M x \Rightarrow M' z = M' M x \Rightarrow (M' M)^{-1} M' z = x \Rightarrow x$ converges to zero exponentially fast

Algebraic conditions for stability under arbitrary switching

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

Suppose $\exists m \geq n, M \in \mathbb{R}^{m \times n}$ full rank & { $B_q \in \mathbb{R}^{m \times m} : q \in Q$ }:

$$MA_q = B_q M \qquad \forall q \in Q$$

Defining z := M x

$$\dot{z} = M\dot{x} = MA_{\sigma}x = B_{\sigma}Mx = B_{\sigma}z$$

Theorem: If V(z) = z' z is a common Lyapunov function for

i.e.,
$$\dot{z}=B_\sigma z \\ B_q'+B_q<0 \qquad \forall q\in\mathcal{Q}$$

then the original switched system is uniformly (exponentially) asymptotically stable

It turns out that ...

If the original switched system is uniformly asymptotically stable then such an M always exists (for some $m \ge n$) but may be difficult to find...

Commuting matrices

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

$$\begin{split} x(t) &= \Phi_{\sigma}(t,\tau) x(\tau) & \text{state-transition matrix } (\sigma\text{-dependent}) \\ &\Phi_{\sigma}(t,\tau) := e^{A_{\sigma(t_k)}(t-t_k)} e^{A_{\sigma(t_{k-1})}(t_k-t_{k-1})} \dots e^{A_{\sigma(\tau)}(t_1-\tau)} & t > \tau \end{split}$$

 $t_1, t_2, t_3, ..., t_k \equiv$ switching times of σ in the interval $[t, \tau)$

Recall: in general $e^M e^N \neq e^{M+N} \neq e^N e^M$ unless M N = N M

Suppose that for all $p,q \in Q$, $A_p A_q = A_q A_p$

$$\begin{split} \Phi_{\sigma}(t,\tau) &= e^{A_{\sigma(t_k)}(t-t_k) + A_{\sigma(t_{k-1})}(t_k-t_{k-1}) + \dots + A_{\sigma(\tau)}(t_1-\tau)} \\ &= e^{\sum_{q \in \mathcal{Q}} A_q T_q} = \prod_{q \in \mathcal{Q}} e^{A_q T_q} \\ &= \prod_{q \in \mathcal{Q}} T_q \equiv \text{total time } \sigma = q \text{ on } (t,\tau) \end{split}$$
 all A_a are asymptotically stable: $\exists \ c, \lambda_0 > 0 \ \|e^{A_q t}\| \le c \ e^{-\lambda_0 t} \end{split}$

Assuming all A_q are asymptotically stable: $\exists \ c, \lambda_0 > 0 \ || e^{A_q \ t} || \le c \ e^{-\lambda_0 \ t}$

$$\|\Phi_{\sigma}(t,\tau)\| \le c^{|Q|} e^{-\lambda \sum_{q} T_q} = c^{|Q|} e^{-\lambda (t-\tau)}$$

 $|Q| \equiv \#$ elements in Q

Commuting matrices

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

$$x(t) = \Phi_{\sigma}(t, \tau)x(\tau)$$
 state-transition matrix (σ -dependent)

$$\Phi_{\sigma}(t,\tau):=e^{A_{\sigma(t_k)}(t-t_k)}e^{A_{\sigma(t_{k-1})}(t_k-t_{k-1})}\dots e^{A_{\sigma(\tau)}(t_1-\tau)} \qquad t\geq \tau$$

 $t_1, t_2, t_3, ..., t_k \equiv$ switching times of σ in the interval $[t, \tau)$

Recall: in general $e^M e^N \neq e^{M+N} \neq e^N e^M$ unless MN = NM

Theorem:

If Q is finite all A_q , $q \in Q$ are asymptotically stable and

$$A_p A_q = A_q A_p \qquad \forall p, q \in G$$

 $A_p\,A_q=A_q\,A_p\qquad\forall\,p,q\in Q$ then the switched system is uniformly (exponentially) asymptotically stable

Triangular structures

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\text{all}}$ linear switched system

Theorem:

If all the matrices $A_q, q \in \mathcal{Q}$ are asymptotically stable and upper triangular or all lower triangular then the switched system is uniformly (exponentially) asymptotically stable

Why?

One can find a common quadratic Lyapunov function of the form V(x) = x' P xwith P diagonal... check!

Triangular structures

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\mathrm{all}}$ linear switched system

Theorem:

If all the matrices A_q , $q \in Q$ are asymptotically stable and upper triangular or all lower triangular then the switched system is uniformly (exponentially) asymptotically stable

Theorem:

If there is a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ such that all the matrices common similarity

$$B_q = T A_q T^{-1}$$
 $(T^{-1}B_q T = A_q)$

 $B_q=T\,A_q\,T^{-1} \qquad (T^{-1}B_q\,T=A_q) \qquad {\rm trans}$ are upper triangular or all lower triangular then the switched system is uniformly (exponentially) asymptotically stable

1st The B_q have a common quadratic Lyapunov function V(x) = x' P(x), i.e., $P(B_q + B_q) P < 0$ $Q(x) = A_q + A_q$

$$PB_q + B_q'P < 0$$

Of Therefore

Q := T'PT is a common Lyapunov function

Commuting matrices

$$\dot{x} = A_{\sigma}x$$
 $(\sigma, x) \in \mathcal{S}_{\mathrm{all}}$ linear switched system

Theorem:

If Q is finite all A_q , $q \in Q$ are asymptotically stable and

$$A_p A_q = A_q A_p \qquad \forall p, q \in Q$$

then the switched system is uniformly (exponentially) asymptotically stable

Another way of proving this result...

From Lie Theorem if a set of matrices commute then there exists a common similarity transformation that upper triangularizes all of them

> There are weaker conditions for simultaneous triangularization (Lie Theorem actually provides the necessary and sufficient condition \equiv Lie algebra generated by the matrices must be solvable)

Commuting vector fields

$$\dot{x} = f_{\sigma}(x)$$
 $(\sigma, x) \in \mathcal{S}_{\mathrm{all}}$ nonlinear switched system

Theorem: If all unswitched systems

$$\dot{x} = f_q(x) \qquad q \in \mathcal{Q}$$

are asymptotically stable and

$$\frac{\partial f_p}{\partial x}f_q=\frac{\partial f_q}{\partial x}f_p \qquad \forall p,q\in\mathcal{Q}$$
 then the switched system is uniformly asymptotically stable

For linear vector fields becomes: $A_p A_q x = A_q A_p x \quad \forall x \in \mathbb{R}^n$, $p,q \in Q$

Next lecture...

Controller realization for stable switching Stability under slow switching

- Dwell-time switching
- Average dwell-time
- Stability under brief instabilities