Activity: MLP Structure

ML for Health, Week 3

For each of the models on the pages to follow:

- Specify the number and size(s) of hidden layers.
- Determine how many parameters the model contains, in total.
- Write the output as a function of the input. In other words, write the equation defined by this model.

Note: I am using the symbol at right to denote fully connected layers with activation function σ :

An **example** of this notation:

$$\boldsymbol{h} = \sigma(W\boldsymbol{x} + \boldsymbol{b})$$

Logistic Regression

- Specify the number and size(s) of hidden layers.
- Determine how many parameters the model contains, in total.
- Write the output as a function of the input. In other words, write the equation defined by this graph/model.

Shallow MLP

(with σ activations)

- Specify the number and size(s) of hidden layers.
- Determine how many parameters the model contains, in total.
- Write the output as a function of the input. In other words, write the equation defined by this model.

Slightly Deeper MLP

(with σ activations)

- Specify the number and size(s) of hidden layers.
- Determine how many parameters the model contains, in total.
- Write the output as a function of the input. In other words, write the equation defined by this model.

Which model contains more parameters?

Challenge

- In the logistic regression model (left), consider how to quantify the effect of increasing the first feature (x_1) on p. Other than the structure of the model, what information do you need?
- Similarly, in the MLP (right), consider how to quantify the effect of increasing $h_{2,1}$ on p
- Finally, in the MLP (right), consider how to quantify the effect of increasing x_1 on p

