Задача А. Постфиксная запись

 Имя входного файла:
 postfix.in

 Имя выходного файла:
 postfix.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

В постфиксной записи (или обратной польской записи) операция записывается после двух операндов. Например, сумма двух чисел A и B записывается как A B +. Запись B C + D * обозначает привычое нам (B+C) * D, а запись A B C + D * + означает A + (B+C) * D. Достоинство постфиксной записи в том, что она не требует скобок и дополнительных соглашений о приоритете операторов для своего чтения.

Дано выражение в обратной польской записи. Определите его значение.

Формат входного файла

В единственной строке записано выражение в постфиксной записи, содержащее однозначные числа и операции +, -, *. Строка содержит не более 100 чисел и операций.

Формат выходного файла

Необходимо вывести значение записанного выражения. Гарантируется, что результат выражения, а также результаты всех промежуточных вычислений по модулю меньше 2^{31} .

Пример

postfix.in	postfix.out
8 9 + 1 7 - *	-102

Задача В. Хипуй!

Имя входного файла: heap.in
Имя выходного файла: heap.out
Ограничение по времени: 2 секунда
Ограничение по памяти: 64 мегабайт

В этой задаче вам необходимо организовать структуру данных Неар для хранения целых чисел, над которой определены следующие операции:

- а) Insert(N) добавить в Неар число N
- b) Extract достать из Неар наибольшее число (удалив его при этом)

Формат входного файла

Во входном файле записано количество команд N ($1 \le N \le 100000$), потом последовательность из N команд, каждая в своей строке. Каждая команда имеет такой формат: "0 <число>" или "1", обозначающие соответственно операции Insert(<число>) и Extract. Гарантируется, что при выполенении команды Extract в структуре находится по крайней мере один элемент.

Формат выходного файла

В выходной файл необходимо для каждой команды извлечения необходимо отдельной вывести число, полученное при выполнении команды Extract.

Пример

heap.in	heap.out
neap.in	neap.out
7	100
0 100	50
0 10	
1	
0 5	
0 30	
0 50	
1	

Задача С. Коллекция

 Имя входного файла:
 collect.in

 Имя выходного файла:
 collect.out

 Ограничение по времени:
 2 секунда

 Ограничение по памяти:
 16 мегабайт

Имеется две коллекции натуральных чисел размеров N и M соответсвенно. Каждое число в этих коллекциях не превосходит $2\cdot 10^8$. Для каждого числа K из второй коллекции нужно узнать, содержится ли оно в первой коллекции или нет.

Формат входного файла

В первой строке входного файла содержится число N ($1 \le N \le 100000$) — размер первой коллекции. В следующей строке записаны N чисел первой коллекции, упорядоченные по возрастанию. Все числа первой коллекции различны.

В третьей строке файла записан размер второй коллекции M ($1 \leq M \leq 100000$). В последней строке входного файла записаны M чисел второй коллекции.

Формат выходного файла

Выходной файл должен содержать M строк. Для каждого запроса выведите число 1, если данное число второй коллекции содержится в первой, и 0 в противном случае.

Пример

collect.in	collect.out
5	0
2 3 4 7 9	1
3	0
1 3 1000000	

Задача D. Минимум на отрезке

 Имя входного файла:
 interval.in

 Имя выходного файла:
 interval.out

 Ограничение по времени:
 2 секунда

 Ограничение по памяти:
 16 мегабайт

Рассмотрим последовательность целых чисел длины N. По ней с шагом 1 двигается "окно" длины K, то есть сначала в "окне" видно первых K чисел, на следующем шаге в "окне" уже будут находиться K чисел начиная со второго и так далее до конца последовательности. Требуется для каждого положения "окна" определить минимум в нём.

Формат входного файла

В первой строке входного файла содержаться два числа N и K ($1 \le N \le 150000$, $1 \le K \le 10000$, $K \le N$) — длины последовательность и "окна" соответственно. На следующей строке находятся N чисел — сама последовательность.

Формат выходного файла

Выходной файл должен содержать N-K+1 строк — минимумы для каждого положения "окна".

Пример

interval.in	interval.out
7 3	1
1 3 2 4 5 3 1	2
	2
	3
	1