隐马尔科夫链模型 理论及其在R中的应用

陆银波

中国人民大学统计学院

第5届R语言会议, 2012

大纲

- 1 简介
 - 引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- ③ 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

Outline |

- 1 简介
 - 引入
 - 模型设定
- ② 模型讨论
 - 。 估计
 - 自相关性
 - 预测
 - 检验
- 3 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

从伯努利到隐马氏

- 伯努利模型: 抛一枚硬币,记下结果,重复实验,估计参数p
- 混合模型: 从若干枚硬币中选出一枚,抛出,记下结果,重复实验,估计参数p 和 π
- 隐马氏模型:从若干枚硬币中,以马尔可夫过程(未知)选择 一枚,抛出...,估计参数...

从伯努利到隐马氏

- 伯努利模型: 抛一枚硬币,记下结果,重复实验,估计参数p
- 混合模型: 从若干枚硬币中选出一枚,抛出,记下结果,重复实验,估计参数p 和 π
- 隐马氏模型:从若干枚硬币中,以马尔可夫过程(未知)选择 一枚,抛出...,估计参数...

从伯努利到隐马氏

- 伯努利模型: 抛一枚硬币,记下结果,重复实验,估计参数p
- 混合模型: 从若干枚硬币中选出一枚,抛出,记下结果,重复实验,估计参数p 和 π
- 隐马氏模型:从若干枚硬币中,以马尔可夫过程(未知)选择 一枚,抛出...,估计参数...

Outline |

- 1 简介
 - 。引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- 3 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

示意图

- X_i均取值于离散状态空间{1,2,...k}k 事先给定
- X₀由初始状态分布(多项式分布)产生,之后以状态转移矩阵A产生X₁...X_{T-1}
- B表示不同状态下,观测值所服从的分布的参数
- 通常假定马氏过程具有平稳分布: $\pi A = \pi$

示意图

- X_i均取值于离散状态空间{1,2,...k}k 事先给定
- X₀由初始状态分布(多项式分布)产生,之后以状态转移矩阵A产生X₁...X_{T-1}
- B表示不同状态下,观测值所服从的分布的参数
- 通常假定马氏过程具有平稳分布: $\pi A = \pi$

小结

- 一个简单的隐马氏模型由以下5个要素定义
 - k 状态数
 - 0观测序列
 - π初始状态分布
 - A状态转移矩阵
 - B依赖于状态的分布参数
- k, 0 已知。 π , A, B, 需要估计, 被称为模型参数

Outline |

- 1 简介
 - 。 引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- 3 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

3个问题

问题1

已知模型参数, 计算似然函数

问题2

估计最优模型参数(最大似然)

问题

已知模型参数,估计最优状态序列X

3个问题

问题1

已知模型参数, 计算似然函数

问题2

估计最优模型参数(最大似然)

已知模型参数,估计最优状态序列X

3个问题

问题1

已知模型参数,计算似然函数

问题2

估计最优模型参数(最大似然)

问题3

已知模型参数,估计最优状态序列Xi

算法

- 前向行算法; 递推过程
- BaumWelch算法;即EM算法
- Viterbi算法; 动态规划过程

Outline []

- 1 简介
 - 。引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- 3 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

Fact

在平稳分布的假定下,观测值边际分布为混合分布;混合比例为初始状态分布均值,方差等各级矩均易求得。

$$\begin{split} & \text{cov}(g(0_t), g(0_{t+k})) = \\ & \text{cov}(g(0_t), g(0_{t+k})|X_t, X_{t+k}) \text{Pr}(X_t) \text{Pr}(X_{t+k}|X_t) = \\ & \text{E}(g(0_t)|X_t) \text{E}(g(0_{t+k})|X_{t+k}) \text{Pr}(X_t) A^k_{X_t X_{t+k}} - ... \end{split}$$

Fact

在平稳分布的假定下,观测值边际分布为混合分布;混合比例为初始状态分布均值,方差等各级矩均易求得。

Fact

$$\begin{array}{l} cov(g(0_t),g(0_{t+k})) = \\ cov(g(0_t),g(0_{t+k})|X_t,X_{t+k})Pr(X_t)Pr(X_{t+k}|X_t) = \\ E(g(0_t)|X_t)E(g(0_{t+k})|X_{t+k})Pr(X_t)A^k_{X_tX_{t+k}} - ... \end{array}$$

Outline

- 1 简介
 - 。 引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- 3 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

对缺失值的估计

$$Pr(0_t|0^{(-t)}) = Pr(0|$$
模型参数)/ $pr(0^{(-t)}|$ 模型参数)

对未来值的预测

 $Pr(0_{T+k}|0)=Pr(0_{T+k}|模型参数)/Pr(0|模型参数$

对缺失值的估计

$$Pr(0_t|0^{(-t)}) = Pr(0|$$
模型参数)/ $pr(0^{(-t)}|$ 模型参数)

对未来值的预测

 $Pr(0_{T+k}|0)$ = $Pr(0_{T+k}|模型参数)/Pr(0|模型参数)$

Outline |

- 1 简介
 - 。 引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- ③ 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

Theorem

$$\Phi^{-1}(\mathbf{F}(\mathbf{X})) \sim \mathbf{N}(0,1)$$

$$\text{residual=}\Phi^{-1}(F_{t}(X_{t}\leq x_{t}))$$

Outline

- 1 简介
 - 。引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- ③ 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

数据

数据: 1900-2005年世界范围内震级7级以上地震发生数

数据来源: http://neic.usgs.gov/neis/eqlists

特点:简单,直观,用于处理简单的隐马氏模型;

观测序列为单变量;

边际分布为一些常见的混合分布,如泊松,伯努利,高斯,指数等

状态转移矩阵小随时间变化。

数据

数据: 1900-2005年世界范围内震级7级以上地震发生数

数据来源: http://neic.usgs.gov/neis/eqlists

R包: HiddenMarkov

特点:简单,直观,用于处理简单的隐马氏模型;

观测序列为单变量;

边际分布为一些常见的混合分布,如泊松,伯努利,高斯,指数等;

状态转移矩阵不随时间变化;

主要的函数

- dthmm():设定模型参数的初始值,数据
- BaumWelch():估计模型参数
- forward():前向型算法,预测时需要用到一些中间值
- simulate():给出数据拟合值
- residuals(): 计算残差

主要的函数

- dthmm():设定模型参数的初始值,数据
- BaumWelch():估计模型参数
- forward():前向型算法,预测时需要用到一些中间值
- simulate():给出数据拟合值
- residuals(): 计算残差

主要的函数

- dthmm():设定模型参数的初始值,数据
- BaumWelch():估计模型参数
- forward():前向型算法,预测时需要用到一些中间值
- simulate():给出数据拟合值
- residuals(): 计算残差

最优状态数

	均值	方差	AIC	
样本	19. 364	51. 573		
1状态	19. 364	19. 364	785. 8	
2状态	19. 086	44. 523	692. 6	
3状态	18. 322	50. 709	676. 9	
4状态	18. 021	49. 837	687. 7	
5状态	18. 011	48. 956	701.5	

Table: 选择合适的状态空间

状态数选为3

预测

	2007	2008	2009	2010	2011
Pr([15, 20])	0. 247	0. 251	0. 255	0. 258	0. 260
真实值	18	12	17	24	20

Table: 预测2007-2011年发生15-20次的地震的概率

自相关性

Figure: 自相关性比较

残差检验

Poisson HMM: Q-Q Plot of Pseudo Residuals

Figure: 模性拟合优度检验

残差检验

Figure: 自相关性检验

Outline

- 1 简介
 - 。 引入
 - 模型设定
- ② 模型讨论
 - 。 估计
 - 自相关性
 - 预测
 - 检验
- ③ 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

数据

数据: ALV, DBK, DCX, SIE股票日收益率 从2003年3月4日至2005年2月17日

数据来源: http://finance.yahoo.com/q?s=□gdaxi

R包: depmixS4

特点:功能更为强大;不够直观 则感到可以为多恋量(例2)。

边际分布可以为一些不常见的混合分布, 如广义t分布, 指数高斯 ^{公东笑,}

状态转移矩阵可以随时间变化(例3);

数据: ALV, DBK, DCX, SIE股票日收益率 从2003年3月4日至2005年2月17日

数据来源: http://finance.yahoo.com/q?s=□gdaxi

R包: depmixS4

特点:功能更为强大;不够直观

观测序列可以为多变量(例2);

边际分布可以为一些不常见的混合分布,如广义t分布,指数高斯

分布等;

状态转移矩阵可以随时间变化(例3);

主要的函数

● depmix():设定初始模型

• fit():估计参数

• transInit:设置转移概率矩阵及初始状态分布

response:设置边际分布

makeDepmix():设定初始模型

• fit():估计参数

主要的函数

● depmix():设定初始模型

• fit():估计参数

● transInit:设置转移概率矩阵及初始状态分布

• response:设置边际分布

makeDepmix():设定初始模型

fit():估计参数

模型

Figure: 多变量隐马氏图示

给定状态下, 观测值服从多元正太分布

	ALV	DBK	DCX	SIE
状态1下均值	0. 05	0.03	0. 01	0. 02
状态2下均值	0. 12	0. 25	0. 16	0. 22

Table: 均值比较

	ALV	DBK	DCX	SIE
状态1下方差	1. 77	1. 38	1. 28	1. 45
状态2下方差	9. 43	5. 62	5. 04	4. 53

Table: 方差比较

协方差

状态1下协方差在0.71-0.77之间 Table:

状态2下协方差在0.61-0.70之间 Table:

Outline |

- 1 简介
 - 。 引入
 - 模型设定
- ② 模型讨论
 - 估计
 - 自相关性
 - 预测
 - 检验
- ③ 一些应用
 - 应用1: 地震
 - 应用2:股票收益率
 - 应用3:反应时间

实验数据

每次判定一串字母是否为英文单词;

每次要求不一,可能要求以最短的时间,也可能要求以最高的准 确度

数据变量: rt(反应时间); corr(0-1, 答对与否); Pacc(时间与准确度的权衡)

目的

当对时间的要求越来越高时,是否有一个临界点,使得准确度从 思考水平到猜谜水平

R句: depmixS4

运用协变量

实验数据

每次判定一串字母是否为英文单词;

每次要求不一,可能要求以最短的时间,也可能要求以最高的准 确度

数据变量: rt(反应时间); corr(0-1, 答对与否); Pacc(时间与准确度的权衡)

目的

当对时间的要求越来越高时,是否有一个临界点,使得准确度从 思考水平到猜谜水平

R包: depmixS4

运用协变量

实验数据

每次判定一串字母是否为英文单词;

每次要求不一,可能要求以最短的时间,也可能要求以最高的准 确度

数据变量: rt(反应时间); corr(0-1, 答对与否); Pacc(时间与准确度的权衡)

目的

当对时间的要求越来越高时,是否有一个临界点,使得准确度从 思考水平到猜谜水平

R包: depmixS4

运用协变量

Figure: 图示: 2观测变量条件独立, 转移矩阵与变量pacc有关

Fact

$${}_{t}\mathsf{A} = \left[\begin{array}{cc} {}_{t}\mathsf{a}_{11} & {}_{t}\mathsf{a}_{12} \\ {}_{t}\mathsf{a}_{21} & {}_{t}\mathsf{a}_{22} \end{array} \right] = \left[\begin{array}{cc} \frac{1}{1 + \exp(\mathsf{a}1 + \mathsf{b}1 * \mathsf{y}_{\mathsf{t}})} & \frac{\exp(\mathsf{a}1 + \mathsf{b}1 * \mathsf{y}_{\mathsf{t}})}{1 + \exp(\mathsf{a}1 + \mathsf{b}1 * \mathsf{y}_{\mathsf{t}})} \\ \frac{1}{1 + \exp(\mathsf{a}2 + \mathsf{b}2 * \mathsf{y}_{\mathsf{t}})} & \frac{\exp(\mathsf{a}2 + \mathsf{b}2 * \mathsf{y}_{\mathsf{t}})}{1 + \exp(\mathsf{a}2 + \mathsf{b}2 * \mathsf{y}_{\mathsf{t}})} \end{array} \right]$$

Fact

给定t时刻状态; rt服从正太分布, corr服从0-1分布; rt与corr独立

	rt均值	rt标准差	答错概率	答对概率
状态1	5. 51	0. 19	0. 47	0. 53
状态2	6. 39	0. 23	0. 09	0. 91

Table: 结果展示

思考状态的时间区间(2倍标准差)大概为[5.93,6.85] 猜谜状态的时间区间(2倍标准差)大概为[5.13,5.89]

总结

- 隐马氏模型的模型参数: $\tau = \{\pi, A, B\}$;
- forward, BaumWelch算法
- 简单隐马氏模型可以用HiddenMarkov包;复杂的用depmixS4

参考资料:

- A Revealing introduction to Hidden Markov Models
 Mark Stamp , 2003
- Hidden Markov Models for Time Series An Introduction Using R, Walter Zucchini & Lain L. MacDonald, 2009.
- depmixS4_A R package for hidden markov model , Ingmar Visser, 2010
- Hidden Markov Models application to Financial Economics.
- Hidden Markov models for bioinformatics.
- Image segmentation and compression using hidden Markov models.

