City University

Faculty of Science & Engineering

Department of Computer Science and Engineering Program: B.Sc. in CSE

Final Examination Semester: Spring 2018 Course Code: CSE 417 Course Title: Artificial Intelligence

Total Marks: 40 Duration: 2 hours

Answer any 4(four) questions

4 X 10 = 40

1(a) Convert the following expression into clausal form.

5

 $\exists x \ \forall y \ (\forall z \ P(f(x),y,z) {\rightarrow} (\exists u \ Q(x,u) \ \& \exists v \ R(y,v)))$ (b) Show that-

5

3

4

- i) $P \leftrightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$.
 - ii) $\neg (Q \rightarrow P) \vee (P \land Q)$ is equivalent to Q.
- 2(a) Given the grammar and lexicon below

$S \rightarrow NP VP$	Det → The
$NP \rightarrow N 6 =$	N→rain
$NP \rightarrow DT N$	$N \rightarrow rains$
$VP \rightarrow V ADVP$	ADVP → down
$ADVP \rightarrow ADV$	V→rain
	$V \rightarrow rains$

i) Show one possible top-down parsing for the following sentence using above 3 grammar and lexicon.

The rain rains down

- ii) Draw a Syntactic Tree representing one parse of the above sentence.
- (b) Translate the following sentences in English to sentences in first order predicate logic
 - i. All purple mushrooms are poisonous.
 - ii. No student loves Bill..
 - iii. There is a student who is loved by every other student
 - iv. Every gardener likes the sun..
- 3(a) First Order Predicate Logic has two quantifiers- Universal and Existential. Explain these 2 terms with suitable examples.
- (b) Consider the following tree

- i) Evaluate and fill the heuristic values for all the empty states in the game tree 2 above. Assume that the minimax algorithm is being used, according to the labels on the right.
- ii) On the same diagram above, indicate which states will not be explored if 4 alpha-betapruning is used. Show your work by showing the alpha and beta values associated with each node (you can redraw the tree below if necessary).
- (c) Prove that $\neg(p \land q) \land \neg(\neg p \lor \neg q)$ is unsatisfiable.

2

4(a) Consider the following graph with 6 square-shaped vertices and 7 undirected edges. In this problem, you can color each vertices using one color from the following set of 3 colors, { Red, Green, Blue }. No two adjacent variable has the same color.

i) You are asked to solve this graph-coloring problem as constraint satisfaction problem. Assign values for each variable.

3

2

2

- ii) Assume that you have not assigned any variables yet. List all variables that might be selected by the Degree Heuristic
- iii) Consider the assignment below. V2 is assigned R. Cross out all the values that would be eliminated by forward checking:

V1	V2	V3	V4	V5	V6	V7
RGB	R	RGB	RGB	RGB	RGB	RGB

(b) Let's consider the Sudoku puzzle as pictured below. The objective of the game is just to 3 fill a 9 x 9 grid with numerical digits so that each column, each row, and each of the nine 3 x 3 sub-grids (also called boxes) contains one of all of the digits 1 through 9.

Can this be represented as a constraints satisfaction problem? How?

- Consider the following binary constraint network: There are 4 variables: X1, X2, X3, X4, 4 with domains: D1 = $\{1, 3, 4\}$, D2 = $\{3, 8, 9\}$, D3 = $\{2, 3, 5\}$, D4 = $\{3, 5, 9\}$. The three binary constraints are: $(X1 \ge X2)$, (X2 > X3 or X3 X2 = 2), $(X3 \ne X4)$. Does the CSP have a solution? If yes, give a solution. (You don't have to explain how you found the solution; just provide an assignment that satisfies all the constraints).
- (b) In dealing with natural language, a computer system needs to be able to process and 4 manipulate language at a number of levels. Now mention the name of the levels. Why we need pragmatic analysis in natural language processing? Explain with proper example.
- need pragmatic analysis in natural language processing? Explain with proper example.

 (c) B A S E

 B A L L

 =G A M E S

Solve the above crypt arithmetic problem by assigning value for each letter.