Suma de Riemann Algoritmos paralelos

Peto Gutiérrez Emmanuel

9 de julio de 2021

Se tiene la función $f(x) = 100 - (x - 10)^4 + 50(x - 10)^2 - 8x$. Se calculará su forma expandida, expandiendo los binomios $-(x - 10)^4$ y 50(x - 10).

$$-(x-10)^4 = -x^4 + 40x^3 - 600x^2 + 4000x - 10000$$

$$50(x-10)^2 = 50x^2 - 1000x + 5000$$

Sustituyendo los binomios expandidos en f(x) se obtiene

$$f(x) = 100 - x^4 + 40x^3 - 600x^2 + 4000x - 10000 + 50x^2 - 1000x + 5000 - 8x$$
$$f(x) = -x^4 + 40x^3 - 550x^2 + 2992x - 4900$$

Considere las siguientes propiedades de integración:

- fcf(x) = c ff(x)
- $f(f(x) + g(x)) = \int f(x) + \int g(x)$

Se calcula la integral indefinida de f(x).

$$\int f(x) = -\frac{x^5}{5} + 10x^4 - \frac{550}{3}x^3 + 1496x^2 - 4900x = g(x)$$

La integral definida es g(17) - g(3).

$$g(17) = -\frac{17^5}{5} + 10(17)^4 - \frac{550}{3}(17)^3 + 1496(17)^2 - 4900(17) = -434.067$$

$$g(3) = -\frac{3^5}{5} + 10(3)^4 - \frac{550}{3}(3)^3 + 1496(3)^2 - 4900(3) = -5424.6$$

$$g(17) - g(3) = -434.067 + 5424.6 = 4990.533$$

Entre los números de 1 a 99, el número óptimo de hilos ¹ es 99. Entre mayor sea el número de hilos más particiones se realizan, por eso se incluye el resultado con 25,000 hilos que coincide con el resultado real hasta las primeras dos cifras decimales.

 $^{^{1}\}mathrm{Es}$ decir, el que tiene el error relativo más pequeño.

n	Valor calculado	Valor real	Error relativo
1	4297.937	4990.533	0.13878
5	4986.816	4990.533	7.448×10^{-4}
10	4997.435	4990.533	1.383×10^{-3}
25	4995.400	4990.533	9.752×10^{-4}
50	4993.318	4990.533	5.581×10^{-4}
75	4992.467	4990.533	3.875×10^{-4}
99	4992.027	4990.533	2.993×10^{-4}
25000	4990.539	4990.533	1.202×10^{-6}

Cuadro 1: Valores calculados por la suma de Riemann.