Model identification and flight control design for the Prometheus mapping drone

Nicola Dal Lago

Corso di Laurea Magistrale in Ingegneria dell'Automazione Dipartimento di Ingegneria dell'Informazione

10 ottobre 2016

Prometheus mapping drone

Scopo del progetto

Realizzazione di un UAV per navigazione e mappatura 3D in autonomo

Progetto diviso in 3 parti:

- 1 Design e costruzione della parte meccanica
- 2 Modello matematico, system identification, traiettorie e controllo
- 3 Algoritmi di navigazione e mapping

Design

- Telaio di un quadricottero standard
- Uso di un sensore laser Lidar, mapping in 2D
- Aggiunta di una piattaforma rotante per mapping in 3D

Modello matematico

Cinematica di Newton-Eulero

$$\begin{bmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{bmatrix} = \begin{bmatrix} m \cdot I_3 & \mathbf{0} \\ \mathbf{0}^T & I_{cm} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}}_{\mathbf{B}} \\ \dot{\boldsymbol{\omega}}_{\boldsymbol{B}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\omega}_{\boldsymbol{B}} \times I_{cm} \cdot \boldsymbol{\omega}_{\boldsymbol{B}} \end{bmatrix}$$

$$\mathbf{f}_{i}(t) = a_{f,i}\Omega_{i}^{2}\mathbf{n}_{i} = a_{f,i}\Omega_{max,i}^{2}u_{i}(t)^{2}\mathbf{n}_{i}$$
$$\boldsymbol{\tau}_{i}(t) = -\operatorname{sgn}(\Omega_{i})b_{f,i}\Omega_{max,i}^{2}u_{i}(t)^{2}\mathbf{n}_{i}$$
$$u_{i}(t) \approx \frac{1}{\tau_{i}s+1}u_{in,i}(t)$$

$$\begin{bmatrix} \mathbf{f}_{total} \\ \boldsymbol{\tau}_{total} \end{bmatrix} = \begin{bmatrix} \sum\limits_{i=1}^{4} \mathbf{f}_{i}(u_{i}^{2}) \\ \sum\limits_{i=1}^{4} \mathbf{l}_{i} \times \mathbf{f}_{i}(u_{i}^{2}) + \boldsymbol{\tau}_{i}(u_{i}^{2}) \end{bmatrix}$$

Dinamica complessiva

$$\begin{bmatrix} \ddot{\mathbf{x}}_{B} \\ \dot{\boldsymbol{\omega}}_{B} \end{bmatrix} = \begin{bmatrix} \dots & \frac{a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i}}{m} & \dots \\ \dots & I_{cm}^{-1} \Big[(\mathbf{l}_{i} + \Delta \boldsymbol{l}) \times a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} - \operatorname{sgn}(\Omega_{i})b_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} \Big] & \dots \end{bmatrix} \begin{bmatrix} \vdots \\ u_{i}^{2} \\ \vdots \end{bmatrix} + \\ + \begin{bmatrix} \mathbf{0} \\ I_{cm}^{-1}(\boldsymbol{\omega}_{B} \times I_{cm}\boldsymbol{\omega}_{B}) \end{bmatrix} + \frac{1}{m_{cart}} \begin{bmatrix} \mathbf{f}_{cart} \\ \mathbf{0} \end{bmatrix}$$

System identification

Semplificazioni

$$a_{f,i}\Omega_{max,i}^2 \approx a_f$$

 $b_{f,i}\Omega_{max,i}^2 \approx b_f$
 $\tau_i \approx \tau$

Linearizzazione

- $I_{cm}^{-1}(\boldsymbol{\omega}_B \times I_{cm}\boldsymbol{\omega}_B) \approx 0$
- muovere il quadrato degli ingressi al modello del motore

Definisco nuovo stato aumentato

$$\mathbf{x}_{est} = \begin{bmatrix} \boldsymbol{\omega}_B & \mathbf{u}_{in} & \boldsymbol{\beta} & \boldsymbol{\tau} \end{bmatrix}^T \in \mathbb{R}^{15}, \quad \boldsymbol{\beta} = \begin{bmatrix} \frac{a_f}{m} & \frac{a_f}{I_{xx}} & \frac{a_f}{I_{yy}} & \frac{a_f}{I_{zz}} & \frac{b_f}{I_{zz}} & \Delta l_x & \Delta l_y \end{bmatrix}^T$$

Discretizzazione

Filtro di Kalman

Risultati

- Carrello non in movimento
- Identificazione dei parametri anche con condizioni iniziali molto sbagliate

Generatore di traiettorie