Portaria nº 590, de 02 de dezembro de 2013

O PRESIDENTE DO INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA - INMETRO, no uso de suas atribuições legais,

Considerando o que estabelece a Resolução Conmetro nº 12, de 12 de outubro de 1988, do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial, sobre unidades de medidas legais no País e sobre o Sistema Internacional de Unidades de Medida (SI), da Conferência Geral de Pesos e Medidas (CGPM);

Considerando que o Sistema Internacional de Unidades de Medida é dinâmico e evolui de forma contínua, refletindo as melhores práticas de medição, aperfeiçoadas com o decorrer do tempo; e

Considerando o disposto na Resolução Conmetro nº 04, de 5 de dezembro de 2012, delegando competência ao Inmetro para atualizar o Quadro Geral de Unidades de Medida no País,

RESOLVE:

Art. 1º Aprovar a atualização do Quadro Geral de Unidades de Medida adotado pelo Brasil, na forma do Anexo a esta Resolução, disponibilizado no sitio www.inmetro.gov.br, que substitui o Anexo da Resolução Conmetro nº 12, de 12 de outubro de 1988.

Art. 2º Esta Portaria entra em vigor nesta data e será publicada no Diário Oficial da União.

JOÃO ALZIRO HERZ DA JORNADA Presidente do Inmetro

ANEXO

Quadro Geral de Unidades de Medida no Brasil

O Quadro Geral de Unidades (QGU), para uso no País, baseia-se na 1ª Edição Brasileira, elaborada pelo Inmetro no ano de 2012, da tradução autorizada da 8ª Edição do Sistema Internacional de Unidades (SI), publicado pelo Bureau Internacional de Pesos e Medidas (BIPM) em 2006 e compreende:

- 1. Sete unidades de base do SI;
- 2. Prefixos do SI (múltiplos e submúltiplos decimais das unidades SI);
- 3. Regras para grafia e pronúncia de nomes, símbolos das unidades e expressão dos valores das grandezas;
- 4. Outras unidades não pertencentes ao SI; e
- 5. Tabela geral de unidades de medida

1. Sete unidades de base do SI

Grandeza	Nome da unidade singular (plural)	Símbolo da unidade	Observações
comprimento	metro (metros)	m	O metro é o comprimento do trajeto percorrido pela luz no vácuo durante um intervalo de tempo de 1/299 792 458 de segundo. 17ª CGPM, 1983. Essa definição tem o efeito de fixar a velocidade da luz no vácuo em 299 792 458 metros por segundo exatamente, c ₀ = 299 792 458 m/s.
massa	kilograma ou quilograma (kilogramas ou quilogramas)	kg	O kilograma ou quilograma é a unidade de massa; ele é igual à massa do protótipo internacional do kilograma ou quilograma 3ª CGPM, 1901.
tempo	segundo (segundos)	s	O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133. 13ª CGPM, 1967/68.
corrente elétrica	ampere (amperes)	A	O ampere é a intensidade de uma corrente elétrica constante que, se mantida em dois condutores paralelos, retilíneos, de comprimento infinito, de seção circular desprezível, e situados à distância de 1 metro entre si, no vácuo, produz entre estes condutores uma força igual a 2 x 10 ⁻⁷ newton por metro de comprimento. 9ª CGPM, 1948.
temperatura termodinâmica	kelvin (kelvins)	K	O kelvin, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água. 13ª CGPM, 1967/68.
quantidade de substância	mol (mols)	mol	O mol é a quantidade de substância de um sistema que contém tantas entidades elementares quantos átomos existem em 0,012 kilograma de carbono 12. Quando se utiliza o mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, elétrons, assim como outras partículas, ou agrupamentos especificados de tais partículas. 14ª CGPM, 1971.
intensidade luminosa	candela (candelas)	cd	A candela é a intensidade luminosa, numa dada direção, de uma fonte que emite uma radiação monocromática de frequência 540 x 10 ¹² hertz e que tem uma intensidade radiante nessa direção de 1/683 watt por esferorradiano. 16 ^a CGPM, 1979.

2. Prefixos do SI

Nome	Símbolo	Fator pelo qual a Unidade é Multiplicada
yotta	Y	$10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\$
zetta	Z	$10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$
exa	Е	10 ¹⁸ = 1 000 000 000 000 000 000
peta	P	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$
tera	Т	10 ¹² = 1 000 000 000 000

giga	G	10 ⁹ = 1 000 000 000
mega	M	$10^6 = 1\ 000\ 000$
kilo ou quilo	k	$10^3 = 1000$
hecto	h	$10^2 = 100$
deca	da	10
deci	d	$10^{-1} = 0.1$
centi	с	$10^{-2} = 0.01$
mili	m	$10^{-3} = 0,001$
micro	μ	$10^{-6} = 0,000\ 001$
nano	n	$10^{-9} = 0,000\ 000\ 001$
pico	p	$10^{-12} = 0,000\ 000\ 000\ 001$
femto	f	$10^{-15} = 0,000\ 000\ 000\ 000\ 001$
atto	a	$10^{-18} = 0,000\ 000\ 000\ 000\ 001$
zepto	Z	$10^{-21} = 0,000\ 000\ 000\ 000\ 000\ 000\ 001$
yocto	у	$10^{-24} = 0,000\ 000\ 000\ 000\ 000\ 000\ 000\ $

Observações:

- a) Por motivos históricos, o nome da unidade SI de massa (kilograma ou quilograma) contém um prefixo (kilo ou quilo). Excepcionalmente e por convenção os múltiplos e submúltiplos dessa unidade são formados pela junção de outros prefixos SI à palavra grama.
- b) Os prefixos desta tabela podem ser também empregados com unidades que não pertencem ao SI. Porém não são usados com as unidades de tempo: minuto símbolo min; hora símbolo h; dia símbolo d.
- c) Com relação às unidades de ângulo plano, os astrônomos usam miliarcossegundo, cujo símbolo é "mas", e o microarcossegundo, símbolo "µas", como unidades para a medida de ângulos muito pequenos.

3. Regras para grafia e pronúncia de nomes, símbolos das unidades e expressão dos valores das grandezas

3.1 Grafia dos nomes de unidades

3.1.1 Quando escritos por extenso, os nomes de unidades começam por letra minúscula, mesmo quando têm o nome de um cientista (por exemplo, ampere, kelvin, newton, etc.).

O nome da unidade de temperatura grau Celsius, símbolo °C, não é uma exceção à regra de se escrever o nome das unidades com letra minúscula, visto que a unidade grau começa pela letra "g" minúscula e o adjetivo "Celsius" começa pela letra "C" maiúscula, pois este é um nome próprio.

A exceção para que o nome de uma unidade comece com letra maiúscula, ocorre tão somente quando estiver localizado no início da frase ou em sentença com letras maiúsculas, como em um título

3.1.2 Quando o nome da unidade é justaposto ao nome de um prefixo, não há espaço, nem hífen entre o nome do prefixo e o nome da unidade. O conjunto formado pelo nome do prefixo e o nome da unidade constitui uma única palavra.

Notas: Esta regra contraria o que prevê o Acordo Ortográfico da Língua Portuguesa em dois casos:

- a) não se usa o hífen quando o segundo elemento começa por h ou quando o segundo elemento começa pela mesma vogal com que o prefixo ou pseudoprefixo termina. Por exemplo, escreve-se: kilohertz ou quilohertz, microoersted, nanoohm e não kilo-hertz ou quilo-hertz, micro-oersted ou nano-ohm;
- b) não se dobra a letra s na formação de nome de unidades empregando a regra de dobrar o r ou s quando o prefixo termina em vogal e o nome da unidade inicia com a letra r ou s. Assim, por exemplo, escreve-se: miliradiano, milisegundo, nanosegundo e não miliradiano, milisegundo e nanossegundo.
- 3.1.3 Na expressão do valor numérico de uma grandeza, a respectiva unidade pode ser escrita por extenso ou representada pelo seu símbolo (por exemplo, milivolts por milimetro ou mV/mm), não sendo admitidas combinações de partes escritas por extenso com partes expressas por símbolo.
- 3.1.4 Quando o nome de uma unidade derivada é constituído pela multiplicação de nomes de unidades, convém utilizar-se um espaço ou um hífen para separar os nomes das unidades. Por exemplo: pascal segundo ou pascal-segundo, megawatt hora ou megawatt-hora.
- 3.1.5 Quando o nome de uma unidade derivada for composto com o nome de uma unidade elevada à potência 2 ou 3, as palavras "quadrado" ou "cúbico" são colocadas após o nome da unidade. Por exemplo: metro por segundo quadrado, metro cúbico por segundo.

3.2 Plural dos nomes de unidades

Quando os nomes de unidades são escritos ou pronunciados por extenso, a formação do plural obedece às seguintes regras básicas:

- a) os prefixos SI são invariáveis;
- b) exceto nos casos da alínea c), os nomes de unidades recebem a letra "s" no final de cada palavra:
 - quando são palavras simples. Por exemplo: amperes, becquerels, candelas, curies, decibels, farads, grays, henrys, joules, kelvins, mols, parsecs, pascals, kilogramas ou quilogramas, roentgens, volts, webers, etc.;
 - Nota: Segundo esta regra, o plural do nome da unidade não desfigura o nome que a unidade tem no singular, não se aplicando aos nomes de unidades, certas regras usuais de formação do plural de palavras, como por exemplo, becquerels e não "becqueréis", decibels e não "decibéis", mols e não "moles", pascals e não "pascais", etc.
 - quando são palavras compostas em que o elemento complementar de um nome de unidade não é ligado a este por hífen. Por exemplo: metros quadrados, milhas marítimas, unidades astronômicas, etc.;
 - quando o nome da unidade é um termo composto por multiplicação, em que os componentes podem variar independentemente um do outro, o plural do nome da unidade pode ser feito de duas maneiras. Os nomes das unidades devem ser separados por hífen ou um espaço, podendo ser indicados de duas maneiras:

Singular	Plural	Plural
ampere-hora	amperes-horas	amperes-hora
ampere hora	amperes horas	amperes hora
ohm-metro	ohms-metros	ohms-metro
ohm metro	ohms metros	ohms metro
newton-metro	newtons-metros	newtons-metro
newton metro	newtons metros	newtons metro
pascal-segundo	pascals-segundos	pascals-segundo
pascal segundo	pascals segundos	pascals segundo
watt-hora	watts-horas	watts-hora
watt hora	watts horas	watts hora

- c) os nomes ou partes dos nomes de unidades não recebem a letra "s" no final,
 - quando terminam pelas letras s, x ou z. Por exemplo, siemens, lux, hertz, etc.;
 - quando correspondem ao denominador de unidades compostas por divisão. Por exemplo, kilometros por hora ou quilômetros por hora, lumens por watt, watts por esferorradiano, etc.;
 - quando, em palavras compostas, são elementos complementares de nomes de unidades e ligados a estes por hífen ou preposição. Por exemplo, anos-luz, unidades (unificadas) de massa atômica, etc.

3.3 Pronúncia dos múltiplos e submúltiplos decimais das unidades

Na forma oral, os nomes dos múltiplos e submúltiplos decimais das unidades devem ser pronunciados por extenso, prevalecendo a sílaba tônica da unidade.

Assim sendo, os múltiplos e submúltiplos decimais do metro devem ser pronunciados com acento tônico na penúltima sílaba (mé), por exemplo, megametro, kilometro, hectometro, decametro, decimetro, centimetro, milimetro, micrometro (distinto de micrômetro, instrumento de medição), nanometro, etc.

No entanto, no Brasil, as únicas exceções a esta regra, que admitem dupla pronúncia, consagradas pelo uso com o acento tônico deslocado para o prefixo, são as palavras quilômetro, hectômetro, decâmetro, centímetro e milímetro.

3.4 Grafia dos símbolos de unidades

- 3.4.1 A grafia dos símbolos de unidades obedece às seguintes regras básicas:
 - a) os símbolos das unidades, qualquer que seja o tipo empregado no texto onde eles aparecem, devem ser impressos em alfabeto latino (na vertical);
 - b) os símbolos são invariáveis, não sendo admitido colocar, após o símbolo, seja ponto de abreviatura, seja "s" de plural, sejam sinais, letras ou índices. Por exemplo, o símbolo do watt é sempre W, qualquer que seja o tipo de potência a que se refira: mecânica, elétrica, térmica, acústica, etc.

Nota: O símbolo do litro constitui uma exceção a essa regra. A 16ª CGPM (1979, Resolução nº 6) aprovou a utilização das letras L (maiúscula) ou l (minúscula) como símbolo do litro a fim de evitar confusão entre o algarismo 1 (um) e a letra l (ele);

- c) somente é utilizado um prefixo SI justaposto a uma unidade de medida. Por exemplo, a unidade GW·h (gigawatt-hora) não deve ser escrita como "MkW·h (megakilowatt-hora ou megaquilowatt-hora)". Assim, não devem ser usados termos com dois prefixos como milimicro:
- d) o símbolo de uma unidade composta por multiplicação pode ser formado mediante a colocação de um ponto entre os símbolos componentes na meia altura da linha (N·m, m·s⁻¹, V·A, kW·h, etc.) ou por um espaço entre os símbolos componentes, desde que não cause ambiguidade (N m, m s⁻¹, V A, kW h, etc.). Um caso de ambiguidade é o metro-kelvin (m·K) que sem o ponto pode ser confundido com o milikelvin (mK);
- e) os prefixos SI podem coexistir num símbolo composto por multiplicação ou divisão. Por exemplo, mN·m (milinewton-metro), p Ω ·mA (picoohm-miliampere), MV/m (megavolt por metro), M Ω m (megaohm-metro), mV/ μ s (milivolt por microsegundo), μ W/m (microwatt por metro quadrado), etc.;
- f) os símbolos de uma mesma unidade podem coexistir num símbolo composto por divisão. Por exemplo, Ω·mm²/m, kW·h/h, etc.;
- g) o símbolo é escrito no mesmo alinhamento do número a que se refere e não como expoente ou índice. São exceções, os símbolos das unidades não SI de ângulo plano grau (°), minuto (') e segundo ("), os expoentes dos símbolos que têm expoente, o sinal o do símbolo do grau Celsius e os símbolos que têm divisão indicada por traço de fração horizontal;
- h) o símbolo de uma unidade que contém divisão pode ser formado por qualquer das três maneiras exemplificadas a seguir:

$$W/(sr \cdot m^2)$$
, $W \cdot sr^{-1} \cdot m^{-2}$, $\frac{W}{sr \cdot m^2}$

A última forma não deve ser empregada quando o símbolo, escrito em duas linhas diferentes, puder causar confusão.

3.4.2 Quando um símbolo com prefixo tem expoente, deve-se entender que o expoente afeta o conjunto prefixo e unidade, como se o conjunto estivesse entre parênteses. Por exemplo:

$$dm^3 = 10^{-3} m^3$$

 $mm^3 = 10^{-9} m^3$

3.5 Grafia dos números

As prescrições desta seção não se aplicam aos números que não representam quantidades (por exemplo, numeração de elementos em sequência, códigos de identificação, datas, números de telefones, etc.).

3.5.1 Para separar a parte inteira da parte decimal de um número, deve ser sempre empregada uma vírgula. Quando o valor absoluto do número é menor que 1, coloca-se 0 à esquerda da vírgula.

3.5.2 Os números que representam quantias em dinheiro, ou quantidades de mercadorias, bens ou serviços em documentos para efeitos fiscais, jurídicos e/ou comerciais, devem ser escritos com os algarismos separados em grupos de três, a contar da vírgula para a esquerda e para direita, com pontos separando esses grupos entre si.

Nos demais casos recomenda-se que os algarismos da parte inteira e os da parte decimal dos números sejam separados em grupos de três, a contar da vírgula para a esquerda e para a direita, com pequenos espaços entre esses grupos, como, por exemplo, em trabalhos de caráter técnico ou científico. Também é admitido que os algarismos da parte inteira e os da parte decimal sejam escritos seguidamente (isto é, sem separação em grupos).

- 3.5.3 Expressão de números sem escrever ou pronunciar todos os seus algarismos:
 - a) para os números que representam quantias em dinheiro, ou quantidades de mercadorias, bens ou serviços, são empregadas de uma maneira geral as palavras:

```
\begin{aligned} &\text{mil} = 10^3 = 1.000 \\ &\text{milhão} = 10^6 = 1.000.000 \\ &\text{bilhão} = 10^9 = 1.000.000.000 \\ &\text{trilhão} = 10^{12} = 1.000.000.000.000 \\ &\text{opcionalmente em casos especiais (por exemplo, em cabeçalhos de tabelas) pode-se empregar os prefixos SI ou os fatores decimais da Tabela 1;} \end{aligned}
```

b) para trabalhos de caráter técnico ou científico, é recomendado o emprego dos prefixos SI ou fatores decimais indicados no tópico 2.

3.6 Espaçamentos entre número e símbolo

O valor de uma grandeza deve ser expresso como o produto de um número por uma unidade. Entre o número e a unidade deve haver um espaço, que deve atender à conveniência de cada caso. Por exemplo, em frases de textos correntes, é dado normalmente o espaçamento correspondente a uma ou a meia letra.

Nota: Quando houver possibilidade de fraude, não se deve usar espaçamento.

3.7 Grandezas expressas por valores relativos

Quando conveniente, as grandezas podem ser expressas em valores relativos, isto é, através da razão entre dois valores da mesma grandeza, de modo que o valor obtido é adimensional ou de dimensão 1. Geralmente o denominador é um valor de referência.

4. Outras unidades não pertencentes ao SI

É reconhecido, no entanto, que algumas unidades fora do SI ainda são utilizadas em publicações científicas, técnicas e comerciais, e continuarão em uso ainda por muitos anos. Algumas unidades fora do SI são importantes sob o ponto de vista histórico na literatura tradicional. Outras unidades fora do SI, como as unidades de tempo e de ângulo, estão tão enraizadas na história e na cultura humana que continuarão a ser usadas no futuro. Por outro lado, os cientistas, caso achem alguma vantagem particular em seu trabalho, devem ter a liberdade de utilizar, às vezes, unidades fora do SI. Um exemplo disso é a utilização das unidades CGS para a teoria do eletromagnetismo aplicada à eletrodinâmica quântica e à relatividade.

4.1 Unidades fora do SI

As unidades fora do SI estão agrupadas neste QGU da seguinte forma:

- 4.1.1 unidades fora do SI em uso com o SI (ver Tabela 6 do SI);
- 4.1.2 unidades fora do SI relacionadas às constantes fundamentais e valores determinados experimentalmente (ver Tabela 7 do SI);
- 4.1.3 outras unidades fora do SI (ver Tabela 8 do SI)
- 4.1.4 unidades fora do SI associadas com o sistema CGS em uso com o SI (ver Tabela 9 do SI);

4.1.1 - Unidades fora do SI, em uso com o SI

Grandeza	Nome da unidade singular (plural)	Símbolo da unidade	Valor em unidades SI
	minuto (minutos)	min	$1 \min = 60 \text{ s}$
tempo	hora (horas)	h	1 h = 60 min = 3 600 s
	dia (dias)	d	1 d = 24 h = 86 400 s
	grau (graus)	٥	$1^{\circ} = (\pi/180) \text{ rad}$
ângulo plano	minuto (minutos)	,	$1' = (1/60)^{\circ} = (\pi/10\ 800)$ rad
	segundo (segundos)	"	$1'' = (1/60)' = (\pi/648\ 000)$ rad
área	hectare (hectares)	ha	O hectare é utilizado para exprimir áreas agrárias. $1 \text{ ha} = 1 \text{ hm}^2 = 10^4 \text{ m}^2$
volume	litro (litros)		O símbolo L (ele maiúsculo) foi adotado como alternativa para evitar o risco de confusão entre a letra l e o algarismo um (1). $1 L = 1 l = 1 dm^3 = 10^3 cm^3 = 10^{-3} m^3$
massa	tonelada (toneladas)	t	$1 t = 10^3 kg$

4.1.2 - Unidades fora do SI, relacionadas às constantes fundamentais e valores determinados experimentalmente

Unidades em uso com o SI						
Grandeza	Nome da unidade singular (plural)	Símbolo da unidade	Valor em unidades SI			
energia	elétron-volt (elétrons-volt e elétrons-volts)	eV	1 eV = 1,602 176 53 (14) x 10 ⁻¹⁹ J			
mosso	dalton (daltons)	Da	1 Da = 1,660 538 86 (28) x 10 ⁻²⁷ kg			
massa	unidade de massa atômica unificada (unidades de massa atômica unificada) u		1 u = 1 Da			
comprimento	unidade astronômica (unidades astronômicas)	ua	1 ua = 1,495 978 706 91 (6) x 10 ¹¹ m			
	Unidades naturais (u.1	n.)				
velocidade (velocidade da luz no vácuo)	unidade natural de velocidade (unidades naturais de velocidade)	c_0	299 792 458 m/s (exato)			
ação (constante de Planck reduzida)	unidade natural de ação (unidades naturais de ação)		1,054 571 68 (18) x 10 ⁻³⁴ J·s			
massa (massa do elétron)	unidade natural de massa (unidades naturais de massa)	m _e	9,109 3826 (16) x 10 ⁻³¹ kg			
tempo	unidade natural de tempo (unidades naturais de tempo)	$\hbar/\mathrm{m_e c_0}^2$	1,288 088 6677 (86) x 10 ⁻²¹ s			

Unidades atômicas (u.a.)					
carga (carga elétrica elementar)	unidade atômica de carga (unidades atômicas de carga)	e	1,602 176 53 (14) x 10 ⁻¹⁹ C		
massa (massa do elétron)	unidade atômica de massa (unidades atômicas de massa)	m _e	9,109 3826 (16) x 10 ⁻³¹ kg		
ação (constante de Planck reduzida)	unidade atômica de ação (unidades atômicas de ação)	ħ	1,054 571 68 (18) x 10 ⁻³⁴ J·s		
comprimento (raio de Bohr)	unidade atômica de comprimento (unidades atômicas de comprimento)	a_0	0,529 177 2108 (18) x 10 ⁻¹⁰ m		
energia (energia de Hartree)	unidade atômica de energia (unidades atômicas de energia)	E _h	4,359 744 17 (75) x 10 ⁻¹⁸ J		
tempo	unidade atômica de tempo (unidades atômicas de tempo)	$\hbar/E_{\rm h}$	2,418 884 326 505 (16) x 10 ⁻¹⁷ s		

4.1.3 - Outras unidades fora do SI

Grandeza	Nome da unidade	Símbolo da unidade	Valor em unidades SI
pressão	bar	bar	$1 \text{ bar} = 0.1 \text{ MPa} = 100 \text{ kPa} = 10^5 \text{ Pa}$
pressão	milimetro de mercúrio ou milímetro de mercúrio (milimetros de mercúrio ou milímetros de mercúrio)	mmHg	1 mmHg = 133,322 Pa
comprimento	angstrom	Å	$1 \text{ Å} = 0.1 \text{ nm} = 100 \text{ pm} = 10^{-10} \text{ m}$
distância	milha náutica	M	Não há um símbolo internacionalmente aceito. São utilizados os símbolos M, NM, Nm e nmi (NM de nautical mile). Na tabela foi utilizado o símbolo M. 1 M = 1 852 m
área	barn	b	Unidade de área utilizada em física nuclear $1 \text{ b} = 100 \text{ fm}^2 = (10^{-12} \text{ cm})^2 = 10^{-28} \text{ m}^2$
velocidade	nó	kn	Velocidade igual a 1 milha náutica por hora 1 kn = (1 852/3 600) m/s
grandezas de razão logarítmicas	neper bel decibel		Raramente é necessário se especificar os valores numéricos do neper, bel e decibel, ou a relação do bel e do decibel ao neper. Isto depende da maneira como as grandezas logarítmicas são definidas.

4.1.4 - Unidades fora do SI associadas com o sistema CGS em uso com o SI

Grandeza	Nome da unidade	Símbolo da unidade	Valor em unidades SI	Observações
energia	erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$	
força	dina	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$	
viscosidade dinâmica	poise	P	$1 \text{ P} = 1 \text{ dyn/cm}^2 = 0.1 \text{ Pa s}$	
viscosidade cinemática	stokes	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$	
luminância	stilb	sb	$1 \text{ sb} = 1 \text{ cd cm}^{-2} = 10^4 \text{ cd m}^{-2}$	
iluminância	phot	ph	$1 \text{ ph} = 1 \text{ cd sr cm}^{-2} = 10^4 \text{ lx}$	
aceleração	gal	Gal	2 2 2	O gal é uma unidade empregada em geodésia e geofísica para expressar a aceleração devida à gravidade
fluxo magnético	maxwell	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{ Wb}$	
indução magnética	gauss	G	$1 \text{ G} = 1 \text{ Mx/cm}^2 = 10^{-4} \text{ T}$	
campo magnético	oersted	Oe	1 Oe $\triangleq (10^3/4\pi) \text{ A m}^{-1}$	O símbolo de equivalência (\triangleq) é utilizado para indicar que quando H (não racionalizado) = 1 Oe, H (racionalizado) = $(10^3/4\pi) \text{ A m}^{-1}$

5. Tabela Geral de Unidades de Medida

A Tabela Geral de Unidades de Medida está subdividida nas Tabelas 5a até 5g. Não obstante certas grandezas enquadrarem-se em mais de uma área, esta divisão objetiva agrupá-las nas seguintes áreas: grandezas espaciais e temporais, grandezas mecânicas, grandezas químicas, grandezas térmicas, grandezas elétricas, grandezas acústicas, grandezas atômicas e da física nuclear.

Tabela 5a - Grandezas espaciais e temporais

Grandeza	Nome da unidade	Símbolo da unidade	Observações
comprimento	metro	m	Unidade de base do SI
	metro quadrado	m^2	
área	hectare	ha	Unidade fora do SI, em uso com o SI, usada em medidas agrárias. 1 ha = $100 \text{ a} := 10\ 000 \text{ m}^2$
	metro cúbico	m ³	
volume	litro	L, 1	Unidade fora do SI, em uso com o SI. O símbolo L (ele maiúsculo) foi adotado como alternativa para evitar o risco de confusão entre a letra l e o algarismo um (1). $1 L = 1 1 = 1 dm^3 = 10^3 cm^3 = 10^{-3} m^3$
	radiano	rad	
ângulo plano	grau minuto segundo	· ,	Unidades fora do SI, em uso com o SI. $1^{\circ} = (\pi/180) \text{ rad}$ $1' = (1/60)^{\circ} = (\pi/10~800) \text{ rad}$ $1'' = (1/60)' = (\pi/648~000) \text{ rad}$
	gon	gon	Unidade fora do SI, em uso com o SI, usada na navegação. 1 gon ≔ (π/200) rad
ângulo sólido	esferorradiano	sr	
	segundo	S	Unidade de base do SI
	minuto	min	1 min = 60 s (unidade fora do SI, em uso com o SI)
tempo	hora	h	1 h = 60 min = 3 600 s (unidade fora do SI, em uso com o SI)
	dia	d	1 d = 24 h = 1 440 min = 86 400 s (unidade fora do SI, em uso com o SI)
velocidade	metro por segundo	m/s	
velocidade angular	radiano por segundo	rad/s	
	metro por segundo quadrado	m/s ²	
aceleração	gal	Gal	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. $1 \text{ Gal} = 1 \text{ cm} \cdot \text{s}^{-2} = 0,01 \text{ m} \cdot \text{s}^{-2}$
aceleração angular	radiano por segundo ao quadrado	rad/s ²	
frequência	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$

Tabela 5b - Grandezas mecânicas

Grandeza Nome da unidade		Símbolo da unidade	Observações
magga	kilograma ou quilograma	kg	Unidade de base do SI
massa	tonelada	t	Unidade fora do SI, em uso com o SI 1 t = 1 000 kg
densidade, massa específica	kilograma por metro cúbico ou quilograma por metro cúbico	kg/m ³	

Grandeza	Nome da unidade	Símbolo da unidade	Observações
densidade relativa	um	1	Grandeza adimensional ou de dimensão 1. Definida por $d = \rho/\rho_0$ onde ρ é a massa específica de uma substância e ρ_0 é a massa específica de uma substância de referência em condições especificadas, geralmente a da água a 4 °C, 1 000 kg·m ⁻³
volume específico	metro cúbico por kilograma ou metro cúbico por quilograma	m ³ /kg	O inverso da massa específica
densidade superficial	kilograma por metro quadrado ou quilograma por metro quadrado	kg/m ²	
densidade linear	kilograma por metro ou quilograma por metro	kg/m	
momento de inércia	kilograma metro quadrado ou quilograma metro quadrado	kg m² kg·m²	
quantidade de movimento	kilograma metro por segundo ou quilograma metro por segundo	kg·m/s	
	newton	N	$1 \text{ N} := 1 \text{ kg·m/s}^2$
força	dina	dyn	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 dyn = 10 ⁻⁵ N
impulso	newton segundo	N·s	
momento angular	kilograma metro quadrado por segundo ou quilograma metro quadrado por segundo	kg m ² /s kg·m ² /s	Esta grandeza é também chamada quantidade de movimento angular.
momento de uma força, torque	newton metro	N m N·m	
impulso angular	newton metro segundo	N·m·s	
pressão, tensão	pascal	Pa	Pascal é também unidade de tensão mecânica (tração, compressão, cisalhamento, tensão tangencial e suas combinações). 1 Pa = 1 N/m^2 .
vazão mássica	kilograma por segundo ou quilograma por segundo	kg/s	
vazão volumétrica	metro cúbico por segundo	m ³ /s	
	pascal segundo	Pa s Pa·s	
viscosidade dinâmica	poise	Р	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 P = 1 dyn·s·cm ⁻² = 0,1 Pa·s
	metro quadrado por segundo	m ² /s	
viscosidade cinemática	stoke	St	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 St = 1 cm 2 s ⁻¹ = 10 4 m 2 s ⁻¹ s
concentração mássica	kilograma por metro cúbico ou quilograma por metro cúbico	kg/m ³	
potência	watt	W	
	joule	J	
trabalho, energia	erg	erg	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. $1 \text{ erg} = 10^{-7} \text{ J}$

Tabela 5c - Grandezas químicas

Grandeza	Nome da unidade	Símbolo da unidade	Observações
atividade catalítica	katal	kat	$1 \text{ kat} = 1 \text{ mol·s}^{-1}$
capacidade térmica molar	joule por mol kelvin	J/(mol·K)	
concentração de atividade catalítica	katal por metro cúbico	kat/m ³	
concentração de quantidade de substância	mol por metro cúbico	mol/m ³	No campo de química clínica, essa grandeza é também chamada de concentração de substância.
condutividade eletrolítica	siemens por metro	S/m	
condutividade molar	siemens metro quadrado por mol	S·m ² /mol	
energia interna molar	joule por mol	J/mol	
entropia molar	joule por mol kelvin	J/(mol·K)	
massa molar	kilograma por mol ou quilograma por mol	kg/mol	
quantidade de substância	mol	mol	Unidade de base do SI
volume molar	metro cúbico por mol	m ³ /mol	

Tabela 5d - Grandezas elétricas e magnéticas

Para as unidades elétricas e magnéticas, o SI é um sistema de unidades racionalizado, para o qual foi definido o valor da constante magnética. $\mu_o=4\pi x\ 10^{-7}$ henry por metro

Grandeza	Nome da unidade	Símbolo da unidade	Observações
campo elétrico	volt por metro	V/m	A intensidade de campo elétrico pode ser também expressa em newtons por coulomb
	ampere por metro	A/m	T
campo magnético	oersted	Oe	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. $1 \text{ Oe} \triangleq (10^3/4\pi) \text{ A m}^{-1}$
capacitância	farad	F	
carga elétrica	coulomb	C	
condutância elétrica	siemens	S	
condutividade elétrica	siemens por metro	S/m	
corrente elétrica	ampere	A	
densidade de carga elétrica	coulomb por metro cúbico	C/m ³	
densidade de carga superficial	coulomb por metro quadrado	C/m ²	
densidade de corrente elétrica	ampere por metro quadrado	A/m^2	
	weber	Wb	
fluxo magnético	maxwell	Mx	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. $1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{ Wb}$
indução elétrica	coulomb por metro quadrado	C/m ²	
indução magnética	tesla	T	
, ,	gauss	G	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 G = 1 Mx/cm ² = 10 ⁻⁴ T
indutância	henry	Н	
momento de dipolo elétrico	coulomb metro	C⋅m	
permeabilidade	henry por metro	H/m	
permissividade	farad por metro	F/m	
potência	watt	W	1 W = 1 J/s
potência aparente	volt-ampere	V·A	
potência reativa	volt-ampere	V·A	

relutância	henry a menos um	H^{-1}	
resistência elétrica	ohm	Ω	O ohm é também unidade de impedância e de reatância em elementos de circuito percorridos por corrente alternada.
resistividade	ohm metro	Ω m Ω·m	
tensão elétrica, diferença de potencial elétrico, força eletromotriz	volt	V	

Tabela 5e - Grandezas térmicas

Grandeza	Nome da unidade	Símbolo da unidade	Observações
temperatura termodinâmica	kelvin	K	Unidade de base do SI.
temperatura Celsius	grau Celsius	°C	Nome especial para o kelvin usado para declarar valores de temperatura na escala Celsius. 1°C = 1 K
calor, energia, quantidade de calor	joule	J	
fluxo térmico	watt	W	
densidade de fluxo térmico	watt por metro quadrado	W/m^2	
gradiente de temperatura	kelvin por metro	K/m	Grandeza que descreve a taxa de variação de temperatura em uma área numa direção em particular.
condutividade térmica	watt por metro kelvin	W/(m·K)	
capacidade térmica	joule por kelvin	J/K	
capacidade térmica específica (calor específico)	joule por kiilograma kelvin ou joule por quilograma kelvin	J/(kg·K)	

Tabela 5f - Grandezas ópticas

Grandeza	Nome da Unidade	Símbolo da unidade	Observações
eficácia luminosa espectral	lúmen por watt	lm/W	
emissividade	um	1	
excitância radiante	watt por metro quadrado	W/m ²	
exitância luminosa	lúmen por metro quadrado	lm/m ²	Esta grandeza era denominada "emitância luminosa".
fluxo luminoso	lúmen	lm	
fluxo radiante	watt	W	
iluminância	lux	lx	
iluminância	phot	ph	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 ph = 1 cd sr cm ⁻² = 10^4 lx
índice de refração	um	1	
intensidade radiante	watt por esferorradiano	W/sr	
irradiância	watt por metro quadrado	W/m ²	
luminância	candela por metro quadrado	cd/m ²	Luminância de uma fonte com 1 metro quadrado de área e com intensidade luminosa de 1 candela.
luminância	stilb	sb	Unidade fora do SI, do antigo sistema CGS, utilizada para atender necessidade específica de determinados grupos, por diferentes motivos. 1 sb = 10 ⁴ cd m ⁻²
número de onda	1 por metro	m ⁻¹	
radiância	watt por metro quadrado esferorradiano	W/(m ² sr)	

Tabela 5g - Grandezas atômicas e da física nuclear

Grandeza	Nome da unidade	Símbolo da unidade	Observações
atividade de um radionuclídeo	becquerel	Bq	
dose absorvida, energia específica (cedida), kerma	gray	Gy	
equivalente de dose, equivalente de dose ambiental, equivalente de dose direcional, equivalente de dose individual	sievert	Sv	
exposição (raios X e raios γ)	coulomb por kilograma ou coulomb por quilograma	C/kg	
taxa de dose absorvida	gray por segundo	Gy/s	