Big Self-Supervised Models are Strong

Semi-Supervised Learners

Размеченные данные

- Очень дорого размечать большие датасеты
- Специфичные области поставленных задач

Transfer learning

Transfer Learning

 Тело модели отдаем другой задаче

Данные для двух разных задач могут очень сильно отличаться и тогда

Simple Framework for Contrastive Learning of Visual Representations

• Хотим получить представление картинок

• Для одного изображения применяются два разных типа аугментации

 Получаем положительные пары (две версии картинки после разных аугментаций/или оригинал) и отрицательные (оригинальная картинка остальные в батче)

Особенности

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
$$= \hat{\mathbf{u}}^T \hat{\mathbf{v}}$$

Normalized temperature-scaled cross-entropy loss

минимизируем его для положительных пар

$$l_{i,j} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z_i}, \mathbf{z_j})/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\mathbf{z_i}, \mathbf{z_k})/\tau)}$$

 По умолчанию настройки сети: ResNet-50 для энкодера f(). Для декодера g() - MLP 2 слоя ReLU

Работы с данными

Случайно выбирается тип аугментации

Композиция аугментаций улучшает работу

(g) Cutout (h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

Архитектура

Больше модели (для энкодера) - лучше

Нелинейность улучшает репрезентативные качества

Обучение

Больше batch size. Дольше обучение

Результаты

- При semi-supervised подходе на ImageNet
- При fine-tuning на 12-ти разных датасетах

		Label fraction			
Method	Architecture	1%	10%		
		Top 5			
Supervised baseline	ResNet-50	48.4	80.4		
Methods using other labe	l-propagation:	27-25-10-10-10-1	1000000		
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		
UDA (w. RandAug)	ResNet-50	-	88.5		
FixMatch (w. RandAug)	ResNet-50	-	89.1		
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2		
Methods using representa	tion learning only:				
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 (4×)	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 (2×)	83.0	91.2		
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6		

A Simple Framework for Contrastive Learning of Visual Representations

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	n:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:			200000	1-0-101	50-950			550.0			(5)(50)	
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0

SimCLRv2

 Модель стала глубже. Вместо ResNet-50, 152-layer ResNet.

Projection head на один слой больше.

• Дистилляция

Итоги

 В CV решение такие решения новые. Многое подсмотрели в NLP подходах

Статья 17-го июня 2020

Mala I			p-1	Top-5	
Method	Architecture	Label fraction 1% 10%		Label fraction 1% 10%	
Supervised baseline [30]	ResNet-50	25.4	56.4	48.4	80.4
Methods using unlabeled data in a ta	sk-specific way:				
Pseudo-label [11, 30]	ResNet-50	-	-	51.6	82.4
VAT+Entropy Min. [37, 38, 30]	ResNet-50	2	-	47.0	83.4
UDA (w. RandAug) [14]	ResNet-50	-	68.8	-	88.5
FixMatch (w. RandAug) [15]	ResNet-50	2	71.5	-	89.1
S4L (Rot+VAT+Entropy Min.) [30]	ResNet-50 (4 \times)	-	73.2	-	91.2
MPL (w. RandAug) [2]	ResNet-50	_	73.8	-	-
Methods using unlabeled data in a ta	sk-agnostic way:				
BigBiGAN [39]	RevNet-50 $(4\times)$	-	-	55.2	78.8
PIRL [40]	ResNet-50	Ψ.	-	57.2	83.8
CPC v2 [19]	ResNet-161(*)	52.7	73.1	77.9	91.2
SimCLR [1]	ResNet-50	48.3	65.6	75.5	87.8
SimCLR [1]	ResNet-50 $(4\times)$	63.0	74.4	85.8	92.6
Methods using unlabeled data in both	h ways:				
SimCLRv2 distilled (ours)	ResNet-50	73.9	77.5	91.5	93.4
SimCLRv2 distilled (ours)	ResNet-50 ($2\times+SK$)	75.9	80.2	93.0	95.0
SimCLRv2 self-distilled (ours)	ResNet-152 ($3\times$ +SK)	76.6	80.9	93.4	95.5

Вопросы

- Cxema SimCLR
- Какие подходы аугментации используются для обучения?
- Лосс для contrastive learning