Day-2 Session-2: Strategy BIGS-IWE

 $oxed{Li-Chun} oxed{Zhang}^{\scriptscriptstyle{1,2,3}} ext{ and } oxed{Melike} oxed{Oguz-Alper}^{\scriptscriptstyle{2}}$

 $^1University\ of\ Southampton\ (L.Zhang@soton.ac.uk)$ $^2Statistisk\ sentralbyraa,\ Norway$ $^3Universitetet\ i\ Oslo$

Observation links under graph sampling

Let Ω consist of the study units defined in G, such as nodes, case networks, triangles, whose total of interest is

$$\theta = \sum_{\kappa \in \Omega} y_{\kappa}$$

Let $F \subseteq U$ be the sampling frame for an *initial* sample s_0 , following which Ω_s is observed from Ω by some specified observation procedure, such as under ACS

 $\forall \kappa \in \Omega$, let $\beta_{\kappa} \subseteq F$ be such that, for any $i \in \beta_{\kappa}$, we have

$$\Pr(\kappa \in \Omega_s | i \in s_0) = 1 \tag{1}$$

i.e. under sampling from valued graph G with associated F and Ω , the study unit κ is observed in the sample Ω_s whenever node i in β_{κ} is included in the initial sample s_0 Observation links: $H = \bigcup_{\kappa \in \Omega} \beta_{\kappa} \times \kappa$ and $\mathcal{B} = (F, \Omega; H)$

Strategy BIGS-IWE using β_{κ}

Theorem (Zhang and Oguz-Alper, 2020)*
Strategy BIGS-IWE defined for $\mathcal{B} = (F, \Omega; H)$ subjected to (1) and $\sum_{i \in \beta_{\kappa}} E(W_{i\kappa} | \delta_i = 1) = 1$ is unbiased for θ , under sampling from valued graph G = (U, A), provided

- (i) $\forall \kappa \in \Omega$, we have $\beta_{\kappa} \neq \emptyset$ such that $\bigcup_{i \in F} \alpha_i = \Omega$ in \mathcal{B} ;
- (ii) the observation procedure of sampling from G ensures the ancestry knowledge of Ω_s in \mathcal{B} .

Proof Given (i), every κ in Ω has a positive probability of being included in Ω_s under BIGS from $\mathcal{B} = (F, \Omega; H)$. Given (ii), the IWE can be defined with respect to BIGS from \mathcal{B} by virtue of (1). Given $\sum_{i \in \beta_{\kappa}} E(W_{i\kappa} | \delta_i = 1) = 1$ in addition, the IWE is unbiased for θ .

Indirect sampling: BIGS directly

- F = clinics, $\Omega = \text{patients of a certain disease}$ (e.g. Birnbaum and Sirken, 1965)
 - (i) if excluding undiagnosed, (ii) if $\beta_{\kappa} \setminus s_0$ observed
- $F = \text{parent (mother or father)}, \Omega = \text{children}$ (e.g. Lavalleè, 2007)
 - (i) if excluding orphans, (ii) given Birth Register
- $F = \text{Twitter accounts}, \Omega = \text{followers (Twitter accounts)}$
 - (i) and (ii) guaranteed if BIGS by Twitter the company Depends on API provided by Twitter for the others

NB. as finite population sampling: potential non-sampling errors associated with frame, observation, operation, etc.

Network sampling (e.g. Sirken, 2005)

Sampling of siblings (•) e.g. via households (\$): siblings reporting each other, sibling network exhausted

ACS (e.g. Thomspon, 1990; Zhang, 2020)

Baseline

Four systematic samples A, B, C and D, each containing 3 positions, are drawn on the baseline that is equally divided into 3 sections of length 12 miles each Follow the lines and any intercepting wolverine track (dashed) $\kappa = 1, ..., 4$ Let $y_{\kappa} = \text{no.}$ wolverines, $L_{\kappa} = \text{length of } projection$ on the baseline: $(y_1, L_1) = (1, 5.25), (y_2, L_2) = (2, 7.5), (y_3, L_3) = (2, 2.4), (y_4, L_4) = (1, 7.05)$ Interest of estimation: $\theta = \text{total no.}$ wolverines in the area

Baseline

 $\mathcal{B}^* = (F^*, \Omega_s; H^*)$ by (1) based on observed Ω_s under LIS

Partition baseline into projection segments $i_1, ..., i_7$ of length x_i and $p_i = \frac{x_i}{12}$:

$$i_1 \leftrightarrow \kappa_1 \quad \dots \quad i_1 \cup i_2 \leftrightarrow \kappa_2 \quad \dots \quad i_4 \leftrightarrow \kappa_3 \quad \dots \quad i_6 \leftrightarrow \kappa_4 \quad \dots$$

Let $\Omega = \{1, ..., \kappa, ..., |\Omega|\}$ contain <u>all</u> the wolverine tracks in the area, $|\Omega| \ge 4$ Let $F = \{1, ..., i, ..., m_F\}$ consist of the corresponding projection segments Let $H = \{(i\kappa); i \in F, \kappa \in \Omega\}$ and $\mathcal{B} = (F, \Omega; H)$

Only \mathcal{B}^* can be constructed (given Ω_s) but not \mathcal{B}

In reality, field observation along a line has an actual width of detectability... yielding known F' of detectability partitions and $\mathcal{B}' = (F', \Omega; H')$ by (1)

Given (i) and (ii), strategy BIGS-IWE applicable with \mathcal{B}'

As along as the unit of detectability is negligible in scale compared to the baseline, one can assume the elements of F' to be <u>nested</u> in those of F^* (or F), such that the selection probability of each observed track κ with respect to BIGS from \mathcal{B}' can be correctly calculated using \mathcal{B}^* (or \mathcal{B})

Strategy BIGS-IWE for \mathcal{B}' applicable using the observed \mathcal{B}^* , as well as \mathcal{B} if it were known

	$\hat{ heta}_y$	$\hat{ heta}_{zeta}$	$\hat{\theta}_{z\alpha0}$	$\hat{\theta}_{zlpha.5}$
Estimate of θ	7.57	8.99	9.44	9.27
Variance Estimate	5.27	2.46	1.70	1.97

HTE $\hat{\theta}_y$ (Thompson, 2012), where

$$\pi_{(\kappa)} = 1 - (1 - p_{(\kappa)})^{4}$$

$$\pi_{(\kappa\ell)} = 1 - \left(\Pr(\kappa \not\in \Omega_{s}) + \Pr(\ell \not\in \Omega_{s}) - \Pr(\kappa \not\in \Omega_{s}, \ell \not\in \Omega_{s})\right)$$

$$= \pi_{(\kappa)} + \pi_{(\ell)} - 1 + \left(1 - p_{(\kappa \cup \ell)}\right)^{4}$$

Multiplicity estimator $\hat{\theta}_{z\beta}$ using equal weights $\omega_{i\kappa}$ where

$$\omega_{11} = \omega_{43} = \omega_{64} = 1$$
 and $\omega_{12} = \omega_{22} = 0.5$

HH-type $\hat{\theta}_{z\alpha\gamma}$ with PIDA weights, where $\hat{\theta}_{z\alpha0}$ with $\gamma = 0$ is the with-replacement Hansen-Hurwitz (HH) estimator used by Becker (1991):

$$\hat{\theta}_{HH} = \frac{1}{4} \sum_{r=1}^{4} \tau_r$$
 and $\tau_r = \sum_{\kappa \in \Omega_r} \frac{y_\kappa}{p_{(\kappa)}}$

REFERENCES

[1] Becker, E.F. (1991). A terrestrial furbearer estimator based on probability sampling. The Journal of Wildlife Management, 55:730–737.

- [2] Birnbaum, Z.W. and Sirken, M.G. (1965). Design of Sample Surveys to Estimate the Prevalence of IRareDiseases: Three Unbiased Estimates. Vital and Health Statistics, Ser. 2, No.11. Washington:Government Printing Office.
- [3] Lavalleè, P. (2007). Indirect Sampling. Springer.
- [4] Patone, M. and Zhang, L.-C. (2020). Incidence weighting estimation under bipartite incidence graph sampling. https://arxiv.org/abs/2004.04257
- [5] Sirken, M.G. (2005). Network Sampling. In Encyclopedia of Biostatistics, John Wiley & Sons, Ltd. DOI: 10.1002/0470011815.b2a16043
- [6] Thompson, S.K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85:1050–1059.
- [7] Thompson, S.K. (2012). Sampling. John Wiley & Sons, Inc.
- [8] Zhang, L.-C. (2020). Sampling designs for epidemic prevalence estimation. https://arxiv.org/abs/2011.08669
- [9] Zhang, L.-C. and Oguz-Alper, M. (2020). Bipartite incidence graph sampling. https://arxiv.org/abs/2003.09467