Operacões

Faça um programa que leia a matriz A de inteiros e de dimensão NxN. Calcule a Matriz B = AxA e depois calcule a matriz $C = B+A^T$, onde A^T é a matriz transposta de A. No fim, imprima a matriz C.

<u>Definição</u>: matriz transposta é a matriz que se obtém da troca de linhas por colunas de uma dada matriz.

$$A = egin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} \Leftrightarrow A^{\mathrm{T}} = egin{bmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \ a_{1,2} & a_{2,2} & \dots & a_{m,2} \ dots & dots & \ddots & dots \ a_{1,n} & a_{2,n} & \dots & a_{m,n} \end{bmatrix}$$

Exemplo:

n=3

recebe matriz A

4	0	1
0	5	1
1	4	5

Calcula B = AxA

17	4	9
1	29	10
9	40	30

Calcula A^T

4	0	1
0	5	4
1	1	5

Calcula C=B+AT

21	4	10
1	34	14
10	41	35

ENTRADA: inteiro N>=2 (pode acreditar) seguidos por N*N inteiros que irão compor a matriz (primeiros N elementos são a primeira linha, os próximos N elementos são a segunda, ...)

SAIDA: matriz de inteiros calculada C=B+A^T (formato padrão do python)

EXEMPLO:

ENTRADA

3	
4	
0	
1	
0	
5	
1	
1	
4	
5	

SAÍDA

[[21, 4, 10], [1, 34, 14], [10, 41, 35]]

* No exemplo acima (em azul) temos o exemplo descrito no enunciado da questão.

ENTRADA

- 2
- 4
- 4
- 5

SAÍDA

[[22, 32], [32, 46]]

Os exercícios de vetores devem ser feitos com o pequeno python, isto é, usando apenas as funções vistas em sala de aula, sem usar funções prédefinidas na linguagem que podem facilitar a programação (porém dificultar o aprendizado)