

MÉTHODE DU MAXIMUM DE VRAISEMBLANCE

Soit (X_1, \ldots, X_n) un n-échantillon d'une v.a X suit une loi $\mathcal{L}(\theta)$ (continue ou discrète) et qui dépend d'un paramètre $\theta \in \mathbb{R}$ et (x_1, \ldots, x_n) une n-réalisation. On définit une fonction f telle que:

$$f(x) = f_{\theta}(x)$$

est la fonction densité de probabilité si X est une variable aléatoire continue.

$$f(x) = P(X = x)$$

est la probabilité si X est une variable aléatoire discrète.

Vraisemblance

Fonction vraisemblance

La fonction de vraisemblance est un produit de valeurs de la fonction f pour un n-réalisation (x_1, x_2, \ldots, x_n) elle vaut :

$$L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i)$$

Log-vraisemblance

La fonction Log-vraisemblance notée $l(x_1, \ldots, x_n; \theta)$ est le logarithme de la fonction vraisemblance:

$$l(x_1, ..., x_n; \theta) = \ln(L(x_1, ..., x_n; \theta))$$

= $\ln(\prod_{i=1}^n f(x_i)) = \sum_{i=1}^n \ln(f(x_i))$

Estimation par la méthode du MV

L'estimation du maximum de vraisemblance de θ est la valeur $\widehat{\theta}_n$ qui rend maximale la fonction de vraisemblance. Alors $\widehat{\theta}_n$ est solution du système

$$\begin{cases} \frac{\partial L}{\partial \theta} = 0; & \iff & \begin{cases} \frac{\partial \ln(L)}{\partial \theta} = 0; \\ \frac{\partial^2 L}{\partial \theta^2} < 0. & \begin{cases} \frac{\partial^2 \ln(L)}{\partial \theta} = 0; \end{cases} \end{cases}$$

Soient (X_1, \ldots, X_n) un n-échantillon d'une v.a $X \sim \mathcal{B}(p); p \in]0, 1[$; et (x_1, \ldots, x_n) une n-réalisation. La variable X est discrète dans ce cas la fonction f est

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}$$

Soient (X_1, \ldots, X_n) un n-échantillon d'une v.a $X \sim \mathcal{B}(p); p \in]0, 1[$; et (x_1, \ldots, x_n) une n-réalisation. La variable X est discrète dans ce cas la fonction f est

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}$$

Objectif: Estimer p

Soient (X_1, \ldots, X_n) un n-échantillon d'une v.a $X \sim \mathcal{B}(p); p \in]0, 1[$; et (x_1, \ldots, x_n) une n-réalisation. La variable X est discrète dans ce cas la fonction f est

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}$$

Objectif: Estimer p

Vraisemblance

$$L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n (1-x_i)}$$

Soient (X_1, \ldots, X_n) un n-échantillon d'une v.a $X \sim \mathcal{B}(p); p \in]0, 1[$; et (x_1, \ldots, x_n) une n-réalisation. La variable X est discrète dans ce cas la fonction f est

$$f(x) = P(X = x) = p^{x}(1-p)^{1-x}$$

Objectif: Estimer p

Vraisemblance

$$L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n (1-x_i)}$$

Log-vraisemblance

$$l(x_1, \dots, x_n; \theta) = \ln(p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n (1-x_i)})$$

$$= \ln(p) \sum_{i=1}^n x_i + \ln(1-p) \sum_{i=1}^n (1-x_i)$$

Dérivée de Log-vraisemblance

$$\frac{\partial l}{\partial p}(x_1, \dots, x_n; \theta) = \frac{1}{p} \sum_{i=1}^n x_i - \frac{1}{1-p} (n - \sum_{i=1}^n x_i)$$

Elle s'annule pour

Dérivée de Log-vraisemblance

$$\frac{\partial l}{\partial p}(x_1, \dots, x_n; \theta) = \frac{1}{p} \sum_{i=1}^n x_i - \frac{1}{1-p} (n - \sum_{i=1}^n x_i)$$

Elle s'annule pour

$$p = \frac{1}{n} \sum_{i=1}^{n} x_i$$

On peut vérifier que: $\frac{\partial^2 l}{\partial p^2}(x_1,\ldots,x_n;\theta) < 0$

Dérivée de Log-vraisemblance

$$\frac{\partial l}{\partial p}(x_1, \dots, x_n; \theta) = \frac{1}{p} \sum_{i=1}^n x_i - \frac{1}{1-p} (n - \sum_{i=1}^n x_i)$$

Elle s'annule pour

$$p = \frac{1}{n} \sum_{i=1}^{n} x_i$$

On peut vérifier que: $\frac{\partial^2 l}{\partial p^2}(x_1,\ldots,x_n;\theta) < 0$

Conclusion

L'estimateur de p par la méthode de MV est

$$\hat{p}_{MV} = \frac{1}{n} \sum_{i=1}^{n} X_i$$