Lecture Summary: Lengths and Angles in Vector Spaces

Source: Lec46.pdf

Key Points

- Dot Product in \mathbb{R}^n :
 - The dot product of two vectors in \mathbb{R}^n , $u=(u_1,u_2,\ldots,u_n)$ and $v=(v_1,v_2,\ldots,v_n)$, is defined as:

$$u \cdot v = \sum_{i=1}^{n} u_i v_i.$$

- Example in \mathbb{R}^2 : For u = (3,4) and v = (2,7):

$$u \cdot v = 3 \cdot 2 + 4 \cdot 7 = 6 + 28 = 34.$$

- Length (Norm) of a Vector:
 - The length (or norm) of a vector $v = (v_1, v_2, \dots, v_n)$ is:

$$||v|| = \sqrt{v \cdot v} = \sqrt{\sum_{i=1}^{n} v_i^2}.$$

- Example in \mathbb{R}^2 : For v = (3, 4):

$$||v|| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5.$$

- Example in \mathbb{R}^3 : For v = (4,3,3):

$$||v|| = \sqrt{4^2 + 3^2 + 3^2} = \sqrt{16 + 9 + 9} = \sqrt{34}.$$

- Angle Between Two Vectors:
 - The angle θ between two vectors u and v in \mathbb{R}^n is given by:

$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}.$$

 $-\theta$ can be calculated as:

$$\theta = \cos^{-1}\left(\frac{u \cdot v}{\|u\| \|v\|}\right).$$

- Example in \mathbb{R}^3 : For u = (1, 0, 0) and v = (1, 0, 1):

$$u \cdot v = 1$$
, $||u|| = 1$, $||v|| = \sqrt{2}$.

$$\cos(\theta) = \frac{1}{1 \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}.$$

• Key Observations:

- The length of a vector v is the square root of the dot product of v with itself:

$$||v|| = \sqrt{v \cdot v}.$$

- The dot product and angle are related through cosine, providing a geometric interpretation of their relationship.

Simplified Explanation

Dot Product The dot product of two vectors is a scalar obtained by multiplying their corresponding components and summing them:

$$u = (3,4), v = (2,7) \implies u \cdot v = 3 \cdot 2 + 4 \cdot 7 = 34.$$

Length of a Vector The length (norm) of a vector is computed as the square root of the sum of the squares of its components:

$$v = (3,4) \implies ||v|| = \sqrt{3^2 + 4^2} = 5.$$

Angle Between Vectors The angle between two vectors is computed using the cosine formula:

$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}.$$

For u = (1, 0, 0) and v = (1, 0, 1):

$$\cos(\theta) = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}.$$

Conclusion

In this lecture, we:

- Defined the dot product, length, and angle between vectors in \mathbb{R}^n .
- Demonstrated the geometric significance of these operations.
- Provided examples to compute lengths and angles in various dimensions.

These concepts are foundational in linear algebra, bridging algebraic and geometric interpretations of vector spaces.