

Heritability of subcortical volumes in the adolescent brain

Christian Coffman Advised by: Dr. Saonli Basu and Dr. Eric Feczko

Division of Biostatistics, University of Minnesota

Introduction and Objectives

Clinically diagonosoed psychological disorders are associated with heritable regional subcortical brain volumes (rSBVs) in adults [2, 4]. To see if the same regions are heritable in adolescents, we analyzed rSBVs in the Adolescent Brain Cognitive Development study (ABCD) while has 10,000+ structrural fMRI scans. Estimating Imaging derived phenotypes taken across multiple sites is complicated by confounding differences between sites [1]. In addition, sites have different distributions of subjects with respect to their genetic ancestries. Currently, no method of moments (MOM) estimator accounts for both influences which is important to get unbiased estimates.

Methods

• AdjHE is closed form solution to 2nd moment [3]

$$EY^* = X_C \beta_C + X_G \beta_G + X_s \beta_S$$
 (1st Moment)
 $Y = Q_c Y = Y - X_C \hat{\beta}_C$ (Residualize)
 $YY' = A\sigma_G^2 + S\sigma_S^2 + I\sigma_E^2$ (2nd Moment)

² Compared to existing methods for site effects theoretically and via simulations see (Figure 2)

$$E\hat{h}^2 = \frac{tr(A-I)T(EYY)T}{tr(A-I)T}$$

3 Estimated on rSBV's in ABCD (see Figure 1)

Existing methods compared

Site wise de-meaning

$$T := Q_s$$

Adjusted residual adjustment

$$T := Q_{C,S}$$

Combat

$$T = T_1 T_2$$
 $T_2 \stackrel{p}{
ightarrow} Q_S$
 $T_1 \stackrel{p}{
ightarrow} I$

 Covbat- Same as Combat followed by additional transformation

Simulations

Figure 2:(Left) Simulation estimates under 2 and 25 sites (left and right columns) and 1 and 2 genetic ancestries (top and bottom rows). Estimates are compared between the proposed method "AdjHE_RE" and multiple other methods including GCTA. (Right) Time for analysis for multiple sample sizes for AdjHE (blue), AdjHE with random site effect (light blue), and GCTA (red).

Contact

Email: coffm049@umn.edu
Github: https://github.com/coffm049

Discussion

The new estimator **broadens unbiased estimation** to conditions where genetic ancestries and site effects vary between sites. We've shown the new estimator is unbiasedness theoretically and through simulations while providing at least **3x speed up** in estimation. In addition, we found **multiple regions with significant heritability** in the adolescent brain. We next hope to extend this method to multivariate traits.

ABCD Demographics

Characteristic	N = 11,878 ¹	Characteristic N = 11,878	
Household.Income		Race	
<50k	3,224 (27%)	Asian	252 (2.1%
>=50k&<100k	3,071 (26%)	Black	1,784 (15%
100k+	4,565 (38%)	Hispanic	2,411 (20%
Unknown	1,018 (8.6%)	Other	1,247 (10%
Female	5,862 (49%)	Unknown	2 (<0.1%)
¹ n (%)		White	6,182 (52%
		¹ n (%)	

Figure 3:Descriptions of key demographic variables in the ABCD dataset.

References

- [1] J. M. M. Bayer, P. M. Thompson, C. R. K. Ching, M. Liu, A. Chen, A. C. Panzenhagen, N. Jahanshad, A. Marquand, L. Schmaal, and P. G. Sämann.
- Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses.

 Frontiers in Neurology, 13, 2022.
- [2] P. C. M. P. Koolschijn, N. E. M. van Haren, G. J. L. M. Lensvelt-Mulders, H. E. Hulshoff Pol, and R. S. Kahn.
- R. S. Kann.
 Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies.
- Human Brain Mapping, 30(11):3719–3735, Nov. 2009.
- [3] Z. Lin, S. Seal, and S. Basu. Estimating SNP heritability in presence of population substructure in biobank-scale datasets. Genetics, 220(4), Apr. 2022.
- [4] B. Zhao, J. G. Ibrahim, Y. Li, T. Li, Y. Wang, Y. Shan, Z. Zhu, F. Zhou, J. Zhang, C. Huang, H. Liao, L. Yang, P. M. Thompson, and H. Zhu.
- Heritability of Regional Brain Volumes in Large-Scale Neuroimaging and Genetic Studies. Cerebral Cortex (New York, NY), 29(7):2904–2914, July 2019.

Acknowledgements

This research was funded through an NIH T32 grant (GM132063).