

Report No.: EED32L00271801 Page 1 of 63

TEST REPORT

Product Digital Blood Pressure Monitor

Trade mark microlife

Model/Type reference BP3MX1-3C, WhatchBP Home A BT

Serial Number N/A

: EED32L00271801 **Report Number** FCC ID : U7I-BP3MX1-3C

Date of Issue : Nov. 14, 2019

Test Standards 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Mark Chen

Compiled by:

Approved by:

Report Seal

Sunlight Sun

Reviewed by:

More Xm

Ware Xin

Jim Kevin Yang

Date: Nov. 14, 2019

Check No.:3970320087

Page 2 of 63

2 Version

Version No.	Date	(6)	Description	9
00	Nov. 14, 2019		Original	
	*	A*5	/5	/15
((6,5)	(642)	(6/2)

Report No. : EED32L00271801 Page 3 of 63

3 Test Summary

, rest Gairmany			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: BP3MX1-3C, WatchBP Home ABT

Only the model WatchBP Home ABT was tested, Their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical. Only the model names are different. The tested product has two model names, WatchBP Home A BT is the market model name; BP3MX1-3C is the factory internal model name.

Report No. : EED32L00271801 Page 4 of 63

4 Content

1 COVER PAGE		•••••		•••••	•••••	1
2 VERSION	•••••	•••••	•••••	•••••	•••••	2
3 TEST SUMMARY						
4 CONTENT						
5 TEST REQUIREMEN	Т		•••••			5
5.1 TEST SETUP 5.1.1 For Conductor 5.1.2 For Radiated 5.1.3 For Conductor 5.2 TEST ENVIRONMEN 5.3 TEST CONDITION 6 GENERAL INFORMA 6.1 CLIENT INFORMATI 6.2 GENERAL DESCRIP	ed test setup Emissions test setue ed Emissions test se T TION ON	ptup				5
6.3 PRODUCT SPECIFIC 6.4 DESCRIPTION OF S 6.5 TEST LOCATION 6.6 DEVIATION FROM S 6.7 ABNORMALITIES FF 6.8 OTHER INFORMATI 6.9 MEASUREMENT UN 7 EQUIPMENT LIST	SUPPORT UNITSSTANDARDSROM STANDARD CONDON REQUESTED BY THIS CERTAINTY (95% COLUMN (95% COLU	DITIONSHE CUSTOMER NFIDENCE LEVE	LS, K=2)			999999
8 RADIO TECHNICAL I						
Appendix B): Cond Appendix C): Band Appendix D): RF C Appendix E): Powe Appendix F): Anter Appendix G): AC F Appendix H): Rest	Occupied Bandwidth ducted Peak Output deed Peak Output deed Peak Output deed Spurious le Spectral Density Power Line Conductericted bands around ded Spurious Emissic	Power Incted Emissions Emissions Emissions Ed Emission fundamental fr	sequency (Rac	diated)		20 23 26 31 34 35
PHOTOGRAPHS OF TI	EST SETUP	••••••	•••••	•••••	•••••	54

Report No. : EED32L00271801 Page 5 of 63

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	55 % RH	Daniel Carro		
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١		TA/NX	Low(L)	Middle(M)	High(H)	
l	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	
			1.00			

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

6.2 General Description of EUT

Product Name:	Digital Blood Pressure Monitor					
Model No.(EUT):	BP3MX1-3C,WhatchBP Home A BT					
Test Mode No:		WhatchBP Home A BT				
Trade mark:	microlife					
EUT Supports Radios application:	4.2 BT Single mode					
Power Supply:	Battery	DC1.5V*4 SIZE AAA	/5			
	:Adapter:	MODEL:DSA-6E-05 US 060060 INPUT:100-240V~50/60Hz 0.3A OUTPUT:+6V 0.6A				
Sample Received Date:	Sep. 24, 201	9				
Sample tested Date:	Sep. 24, 201	9 to Nov. 13, 2019		/07		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	4.2	
Modulation Technique:	DSSS	TO'S
Modulation Type:	GFSK	5")
Number of Channel:	40	
Test Power Grade:	Default	
Test Software of EUT:	Default	
Antenna Type and Gain:	Type: Chip ANT antenna	(3)
	Gain:-1 dBi	
Test Voltage:	DC 6V	

Page 8	of 63
--------	-------

Operation i	requency eac	n of cnanne ⊤	 	(6)	/	100	/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No. : EED32L00271801 Page 9 of 63

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
94	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
	1627	A COST

Report No. : EED32L00271801 Page 10 of 63

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

Report No. : EED32L00271801 Page 11 of 63

100						
	3M Semi	3M Semi/full-anechoic Chamber				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020	
Microwave Preamplifier	Agilent	nt 8449B	3008A024 25	07-12-2019	07-11-2020	
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020	
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107 11112	<u></u>	01-09-2019	01-08-2020	
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020	
LISN	Schwarzbeck	NNBM8125	81251547	05-08-2019	05-07-2020	
LISN	Schwarzbeck	NNBM8125	81251548	05-08-2019	05-07-2020	
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020	
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4	(01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	<u> </u>	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001	/	01-09-2019	01-08-2020	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32L00271801 Page 12 of 63

	3M full-a	nechoic Cham				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020	
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020	
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020	
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021	
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020	
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021	
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020	
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020	
Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-11-2020	
emperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020	
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020	
Fully Anechoic Chamber	TDK	FAC-3	/ //	01-17-2018	01-15-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021	
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020	
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020	
Cable line	Times	HF160- KMKM-	393493-0001	01-09-2019	01-08-2020	

Page 13	ot	63
---------	----	----

	(Conducted dist	urbance Tes	st	
Equipment	Sorial	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	152394	03-01-2019	02-29-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power		Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00271801 Page 15 of 63

EUT DUTY CYCLE

	Cycle		
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE 🧷	2.120	2.2158	95.68%

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

L	imit	Shall be at least 500kHz
- 1		

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 17 of 63

Test Result

Mode Channel		6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6081	1.5180	PASS
BLE	MCH	0.6040	1.2846	PASS
BLE	HCH	0.5294	0.9507	PASS

Test Graphs

-6dB Down Bandwidth

Report No. : EED32L00271801 Page 20 of 63

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	 ✓ Antenna not exceed 6 dBi : 30dBm ☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] ☐ Point-to-point operation 	É
-------	---	---

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Page 21 of 63

Test Result

Mode		Channel	Conduct Peak Power[dBm]	Verdict
	BLE	LCH	-6.243	PASS
	BLE	MCH	-5.493	PASS
	BLE	HCH	-5.308	PASS

Test Graphs

Report No. : EED32L00271801 Page 23 of 63

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-6.486	-57.716	-26.49	PASS
BLE	HCH	-5.538	-58.231	-25.54	PASS

Test Graphs

Report No. : EED32L00271801 Page 26 of 63

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 27 of 63

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-6.406	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-5.686	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-5.528	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32L00271801 Page 31 of 63

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation : 	

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

Page 32 of 63

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.999	PASS
BLE	MCH	-16.626	PASS
BLE	HCH	-16.872	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1 dBi.

Report No. : EED32L00271801 Page 35 of 63

Appendix G): AC Power Line Conducted Emission

	7 26 7 7
Test Procedure:	Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

[[[] [] [] [] [] [] [] [] []	Limit (dBμV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

Page 36 of 63

Monitor

Temperature : 24 °C Humidity : 52%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	22.57	9.97	32.54	66.00	-33.46	QP	
2		0.1500	7.22	9.97	17.19	56.00	-38.81	AVG	
3	*	0.3840	25.10	10.02	35.12	58.19	-23.07	QP	
4		0.3885	5.19	10.01	15.20	48.10	-32.90	AVG	
5		0.5235	21.03	10.03	31.06	56.00	-24.94	QP	
6		0.5235	6.61	10.03	16.64	46.00	-29.36	AVG	
7		1.3470	16.67	9.88	26.55	56.00	-29.45	QP	
8		1.3605	-0.07	9.88	9.81	46.00	-36.19	AVG	
9		2.5125	-1.05	9.83	8.78	46.00	-37.22	AVG	
10		2.5260	15.97	9.83	25.80	56.00	-30.20	QP	
11		7.2735	15.75	9.86	25.61	60.00	-34.39	QP	
12		7.5840	-1.52	9.87	8.35	50.00	-41.65	AVG	

Page 37 of 63

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	14.50	9.98	24.48	65.52	-41.04	QP	
2		0.1770	9.48	10.00	19.48	54.63	-35.15	AVG	
3	*	0.3795	22.38	10.02	32.40	58.29	-25.89	QP	
4		0.3840	2.71	10.02	12.73	48.19	-35.46	AVG	
5		0.6011	16.21	10.11	26.32	56.00	-29.68	QP	
6		0.6225	1.81	10.01	11.82	46.00	-34.18	AVG	
7		1.6215	-2.09	9.86	7.77	46.00	-38.23	AVG	
8		1.6755	15.32	9.86	25.18	56.00	-30.82	QP	
9		4.0020	0.06	9.83	9.89	46.00	-36.11	AVG	
10		4.1280	16.37	9.83	26.20	56.00	-29.80	QP	
11		7.1925	17.31	9.86	27.17	60.00	-32.83	QP	
12		7.3275	-0.55	9.86	9.31	50.00	-40.69	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test procedu		(4)			6
	at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the antenna was tuned was turned from 0 deg	on the top of a rotating table 0.8 meters above the group choic camber. The table was rotated 360 degrees to a of the highest radiation. eters away from the interference-receiving antenna, whop of a variable-height antenna tower. varied from one meter to four meters above the groun meters are set to make the measurement. mission, the EUT was arranged to its worst case and the dot heights from 1 meter to 4 meters and the rotatable grees to 360 degrees to find the maximum reading. The measurement is a set to Peak Detect Function and Specified from Hold Mode. The measure any emissions in the restricted trum analyzer plot. Repeat for each power and modula to the set of the transmit meters.				
	Bandwidth with Maxim f. Place a marker at the frequency to show con	um Hold Mode. end of the restric opliance. Also m rum analyzer plo	cted band c easure any	losest to the	ne transmit s in the restric	
	Bandwidth with Maxim f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an	um Hold Mode. end of the restrict appliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl bowest channel, forments are perford d found the X ax	eted band of easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 med the Highest rmed in X, kis positioni	closest to the community emissions for each posterior of the community and the commu	ne transmit s in the restrict ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	ambe
imit:	Bandwidth with Maxim f. Place a marker at the off frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured in the following special procedures and highest in the following special procedures in the following special procedures in the radiation measure fransmitting mode, an j. Repeat above procedures in the following special procedures in the following	um Hold Mode. end of the restrict appliance. Also m rum analyzer plot channel ure as below: ye is the test site aber change form 1 meter and tabl powest channel, ments are perfo d found the X av ares until all frequence	eted band ceasure any ot. Repeat for table 0.8 in table 1.5 meters are the Highest rmed in X, kis positionic uencies me	closest to the community emissions for each posterior of the community of	ne transmit s in the restrict ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	ambe
imit:	Bandwidth with Maxim f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an	um Hold Mode. end of the restrict appliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl bowest channel, forments are perford d found the X ax	eted band of easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me	rom Semi- meter to 1 ter). channel Y, Z axis p ng which is	ne transmit s in the restrict ower and mod Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete.	ambe
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedure. G. Different between above to fully Anechoic Chammand 18GHz the distance is how in the lowest to the EUT in the lowest term of the radiation measure. Transmitting mode, and in the lowest term of the radiation measure. Transmitting mode, and in the radiation measure. Frequency	um Hold Mode. end of the restrict inpliance. Also m rum analyzer plot channel ure as below: ye is the test site inber change form 1 meter and tabl powest channel , iments are perfo d found the X av ires until all frequency Limit (dBµV) 40.6	eted band ceasure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioniquencies med/m @3m)	rom Semimeter to 1 ter). c channel Y, Z axis prog which is easured was Rer	ne transmit s in the restrict ower and mode Anechoic Ch .5 meter(Above positioning for t is worse case as complete. mark eak Value	ambe
imit:	Bandwidth with Maxim f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	um Hold Mode. end of the restrict inpliance. Also m rum analyzer plo channel ure as below: we is the test site iber change form 1 meter and tabl bwest channel, ments are perfo d found the X av ires until all freque Limit (dBµV) 40.6 43.5	eted band of easure any ot. Repeat for table 0.8 te is 1.5 met the Highest rmed in X, tis positioning uencies med/m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which in easured wa Rer Quasi-pe	Anechoic Ch. 5 meter (Abo	ambe
imit:	Bandwidth with Maxim f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um Hold Mode. end of the restrict inpliance. Also m rum analyzer plot channel ure as below: re is the test site inber change form 1 meter and table in the same performents are performents are performents are until all frequency Limit (dBµV) 40.0 43.9	eted band of easure any ot. Repeat for table 0.8 e is 1.5 med the Highest rmed in X, kis positioni uencies med/m @3m)	rom Semi- meter to 1 ter). c channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe	Anechoic Ch. Someter (About the seak Value eak Value eak Value eak Value	ambe
imit:	Bandwidth with Maxim f. Place a marker at the of frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above procedured Transmitting mode in Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, an j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure Transmitting mode, and j. Repeat above procedured samples of the radiation measure	um Hold Mode. end of the restrict inpliance. Also m rum analyzer plot channel ure as below: ye is the test site iber change form 1 meter and tabl pwest channel , ments are perfo d found the X av res until all freque Limit (dBµV) 40.6 43.6 54.6	eted band ceasure any ot. Repeat for table 0.8 re is 1.5 ment the Highest rmed in X, kis positioning uencies ment the Highest rmed (m @3m)	losest to the emissions for each posterior or ea	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anachoic Ch. 5 meter (About 15 meter) Anachoic Ch. 5 meter (About 15 meter) Anachoic Ch. 6 meter (About 15 meter) Anachoic Ch. 7 m	ambe
Limit:	Bandwidth with Maxim f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um Hold Mode. end of the restrict inpliance. Also m rum analyzer plot channel ure as below: re is the test site inber change form 1 meter and table in the same performents are performents are performents are until all frequency Limit (dBµV) 40.0 43.9	eted band ceasure any ot. Repeat for table 0.8 te is 1.5 meter the Highest rmed in X, kis positioning the median (m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch. Someter (About the seak Value eak Value eak Value eak Value	ambe

Page 39 of 63

Test plot as follows:

Mode:	Mode: GFSK Transmitting		2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.42	52.60	74.00	21.40	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	79.94	83.08	74.00	-9.08	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.30	53.48	74.00	20.52	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	67.43	70.57	74.00	3.43	Pass	Vertical

Report No. : EED32L00271801 Page 41 of 63

0.7 1	10.7	*178 I	1637
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.27	41.45	54.00	12.55	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	77.17	80.31	54.00	-26.31	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.28	41.46	54.00	12.54	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	64.21	67.35	54.00	-13.35	Pass	Vertical

Page	13	٥f	63
raue	4.)	()I	\cdot

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7622	32.37	13.39	-42.39	70.48	73.85	74.00	0.15	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.81	53.17	74.00	20.83	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	58.46	61.83	74.00	12.17	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.46	51.82	74.00	22.18	Pass	Vertical

Page	15	Ωf	63
	7.,		()()

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	41.99	45.36	54.00	8.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.24	39.60	54.00	14.40	Pass	Horizontal

Report No. : EED32L00271801 Page 46 of 63

27.71	18.7	125.75	127.75
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	39.36	42.73	54.00	11.27	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.23	39.59	54.00	14.41	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Ab 4011-	Peak	1MHz	3MHz	Peak	
Above 1GHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
1	0.009MHz-0.490MHz	2400/F(kHz)	-	(A)	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(0.5)	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32L00271801 Page 48 of 63

Radiated Spurious Emissions test Data:

Mode	Mode:		BLE GFSK Transmitting					Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	43.9694	13.01	0.74	-32.11	53.79	35.43	40.00	4.57	Pass	Н	PK	
2	132.0542	7.60	1.34	-32.01	57.11	34.04	43.50	9.46	Pass	Н	PK	
3	156.0156	7.76	1.46	-31.99	61.29	38.52	43.50	4.98	Pass	Н	PK	
4	299.9780	13.20	2.06	-31.85	51.42	34.83	46.00	11.17	Pass	Н	PK	
5	467.9988	16.49	2.58	-31.87	52.53	39.73	46.00	6.27	Pass	Н	PK	
6	852.0602	21.52	3.51	-31.74	38.33	31.62	46.00	14.38	Pass	Н	PK	
7	40.3800	12.37	0.72	-32.11	55.17	36.15	40.00	3.85	Pass	V	PK	
8	131.9572	7.60	1.34	-32.01	46.77	23.70	43.50	19.80	Pass	V	PK	
9	179.9770	9.00	1.58	-31.99	50.89	29.48	43.50	14.02	Pass	V	PK	
10	276.0166	12.72	1.98	-31.91	47.52	30.31	46.00	15.69	Pass	V	PK	
11	467.9988	16.49	2.58	-31.87	44.98	32.18	46.00	13.82	Pass	V	PK	
12	839.5460	21.37	3.50	-31.89	43.46	36.44	46.00	9.56	Pass	V	PK	

Page 49 of 63

		/** /**							/ 1		
Mode	: :	BLE GFSK Transmitting				Channel:			2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	43.3873	12.91	0.74	-32.11	54.80	36.34	40.00	3.66	Pass	Н	PK
2	132.0542	7.60	1.34	-32.01	58.35	35.28	43.50	8.22	Pass	Н	PK
3	156.0156	7.76	1.46	-31.99	62.55	39.78	43.50	3.72	Pass	Н	PK
4	299.9780	13.20	2.06	-31.85	52.17	35.58	46.00	10.42	Pass	Н	PK
5	467.9988	16.49	2.58	-31.87	53.25	40.45	46.00	5.55	Pass	Н	PK
6	876.1186	21.81	3.55	-31.69	38.47	32.14	46.00	13.86	Pass	Н	PK
7	37.5668	11.52	0.69	-32.12	56.11	36.20	40.00	3.80	Pass	V	PK
8	132.0542	7.60	1.34	-32.01	48.75	25.68	43.50	17.82	Pass	V	PK
9	179.9770	9.00	1.58	-31.99	53.38	31.97	43.50	11.53	Pass	V	PK
10	276.0166	12.72	1.98	-31.91	50.68	33.47	46.00	12.53	Pass	V	PK
11	467.9988	16.49	2.58	-31.87	47.93	35.13	46.00	10.87	Pass	V	PK
12	839.1579	21.37	3.50	-31.90	46.32	39.29	46.00	6.71	Pass	V	PK

Mode	Mode:		BLE GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	42.9993	12.84	0.74	-32.12	54.90	36.36	40.00	3.64	Pass	Н	PK	
2	132.0542	7.60	1.34	-32.01	58.43	35.36	43.50	8.14	Pass	Н	PK	
3	156.0156	7.76	1.46	-31.99	62.18	39.41	43.50	4.09	Pass	Н	PK	
4	299.9780	13.20	2.06	-31.85	52.04	35.45	46.00	10.55	Pass	Н	PK	
5	467.9988	16.49	2.58	-31.87	53.41	40.61	46.00	5.39	Pass	Н	PK	
6	876.1186	21.81	3.55	-31.69	38.12	31.79	46.00	14.21	Pass	Н	PK	
7	42.2232	12.70	0.73	-32.11	55.29	36.61	40.00	3.39	Pass	V	PK	
8	132.0542	7.60	1.34	-32.01	49.71	26.64	43.50	16.86	Pass	V	PK	
9	179.9770	9.00	1.58	-31.99	53.78	32.37	43.50	11.13	Pass	V	PK	
10	276.0166	12.72	1.98	-31.91	50.55	33.34	46.00	12.66	Pass	V	PK	
11	467.9988	16.49	2.58	-31.87	48.29	35.49	46.00	10.51	Pass	V	PK	
12	927 6059	24.25	2.40	21.01	16 01	20.74	46.00	6.26	Door	17	DV	

ge 51 of 63

Report No.: EED32L00271801

Page 51 of 63

	1 2						A .					
Mode	Mode:		BLE GFSK Transmitting					Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1955.6956	31.41	3.43	-42.64	50.75	42.95	74.00	31.05	Pass	Н	PK	
2	3875.0583	33.70	4.35	-41.04	50.65	47.66	74.00	26.34	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	54.53	52.92	74.00	21.08	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	50.81	51.91	74.00	22.09	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	46.59	50.10	74.00	23.90	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.21	46.07	51.77	74.00	22.23	Pass	Н	PK	
7	1998.8999	31.69	3.47	-42.61	50.83	43.38	74.00	30.62	Pass	V	PK	
8	3738.0492	33.59	4.32	-41.32	49.04	45.63	74.00	28.37	Pass	V	PK	
9	4804.0000	34.50	4.55	-40.66	51.39	49.78	74.00	24.22	Pass	V	PK	
10	7206.0000	36.31	5.81	-41.02	51.11	52.21	74.00	21.79	Pass	V	PK	
11	9608.0000	37.64	6.63	-40.76	47.71	51.22	74.00	22.78	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.21	46.39	52.09	74.00	21.91	Pass	V	PK	

Page 52 of 63

ity Remark
DIC
PK

Report No. : EED32L00271801 Page 53 of 63

						5,019			100			
Mode	Mode:		BLE GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3106.0071	33.24	4.70	-42.05	50.52	46.41	74.00	27.59	Pass	Н	PK	
2	4510.1007	34.50	4.65	-40.90	50.05	48.30	74.00	25.70	Pass	Н	PK	
3	4960.0000	34.50	4.82	-40.53	51.72	50.51	74.00	23.49	Pass	Н	PK	
4	7440.0000	36.54	5.85	-40.82	48.51	50.08	74.00	23.92	Pass	Н	PK	
5	9920.0000	37.77	6.79	-40.48	47.61	51.69	74.00	22.31	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.12	47.38	53.66	74.00	20.34	Pass	Н	PK	
7	3217.0145	33.29	4.58	-41.99	50.20	46.08	74.00	27.92	Pass	V	PK	
8	4364.0909	34.31	4.52	-40.87	49.42	47.38	74.00	26.62	Pass	V	PK	
9	4960.0000	34.50	4.82	-40.53	52.87	51.66	74.00	22.34	Pass	V	PK	
10	7440.0000	36.54	5.85	-40.82	52.20	53.77	74.00	20.23	Pass	V	PK	
11	9920.0000	37.77	6.79	-40.48	46.71	50.79	74.00	23.21	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.12	47.40	53.68	74.00	20.32	Pass	V	PK	
		5.30	. 70									

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

