Discrete Mathematics

-- Chapter 7: Relations: The Second Time Round

Hung-Yu Kao (高宏宇)

Department of Computer Science and Information Engineering, National Cheng Kung University

Outline

- Relations Revisited: Properties of Relations
- Computer Recognition: Zero-One Matrices and Directed Graphs
- Partial Orders: Hasse Diagrams
- Equivalence Relations and Partitions
- Finite State Machine: The Minimization Process
 - Application of equivalence relation
 - Minimization process: find a machine with the same function but fewer internal states

7.1 Relations Revisited: Properties of Relations

• Definition 7.1: For sets A, B, any subset of A × B is called a (binary) relation from A to B. Any subset of A × A is called a (binary) relation on A.

$\bullet \qquad \mathbf{Ex} \ \mathbf{7.1}$

- Define the relation \Re on the set Z by $a\Re b$, if $a \le b$.
- For x, y \in Z and $n\in$ Z⁺, the modulo n relation \Re is defined by x \Re y if x y is a multiple of n, e.g., with n=7, 9 \Re 2, -3 \Re 11, but 3 \Re 7
- Ex 7.2: Language $A \subseteq \Sigma^*$. For x, y $\in A$, define x \Re y if x is a prefix of y.

Relations Revisited: Properties of Relations

- Finite state machine M = (S, I, O, v, w)
 - Reachability
 - $s_1\Re s_2$ if $v(s_1, x) = s_2$, $x \in I$. \Re denotes the first level of reachability.
 - $s_1\Re s_2$ if $v(s_1, x_1x_2) = s_2, x_1x_2 \in I^2$. \Re denotes the second level of reachability.
 - Equivalence
 - 1-equivalence relation: $s_1 E_1 s_2$ if $w(s_1, x) = w(s_2, x)$ for $x \in I$.
 - k-equivalence relation: $s_1 E_k s_2$ if $w(s_1, y) = w(s_2, y)$ for $y \in I^k$.
 - If two states are k-equivalent for all $k \in \mathbb{Z}^+$, they are called equivalent.

Reflexive

- Definition 7.2: A relation \Re on a set A is called <u>reflexive</u> if $(x, x) \in \Re$, for all $x \in A$.
- Ex 7.4: For $A = \{1, 2, 3, 4\}$, a relation $\Re \subseteq A \times A$ will be reflexive if and only if $\Re \subseteq \{(1, 1), (2, 2), (3, 3), (4, 4)\}$. But $\Re_1 = \{(1, 1), (2, 2), (3, 3)\}$ is not reflexive, $\Re_2 = \{(x, y) | x \le y, x, y \in A\}$ is reflexive.
- Ex 7.5: Given a finite set A with |A| = n, we have $|A \times A| = n^2$, so there are 2^{n^2} relations on A. Among them $2^{(n^2-n)}$ are reflexive.
 - $A = \{a_1, a_2, ..., a_n\}$
 - $A \times A = \{(a_i, a_j) | 1 \le i, j \le n\} = A_1 \cup A_2$
 - $A_1 = \{(a_i, a_i) | 1 \le i \le n\}$
 - $A_2 = \{(a_i, a_j) | i \neq j, 1 \leq i, j \leq n\}$

Symmetric

- Definition 7.3: A relation \Re on a set A is called <u>symmetric</u> if for all $x, y \in A$, if $(x, y) \in \Re \Rightarrow (y, x) \in \Re$.
- $\mathbf{Ex} \ 7.6 : A = \{1, 2, 3\}$
 - $\mathfrak{R}_1 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$, symmetric, but not reflexive.
 - $\Re_2 = \{(1, 1), (2, 2), (3, 3), (2, 3)\}$, reflexive, but not symmetric.
 - $\Re_3 = \{(1, 1), (2, 2), (3, 3)\}$ and $\Re_4 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$, both reflexive and symmetric.
 - $\Re_5 = \{(1, 1), (2, 3), (3, 3)\}$, neither reflexive nor symmetric.

Symmetric

- To count the symmetric relations on $A = \{a_1, a_2, ..., a_n\}$.
 - $A \times A = A_1 \cup A_2, A_1 = \{(a_i, a_i) | 1 \le i \le n\}, A_2 = \{(a_i, a_i) | i \ne j, 1 \le i, j \le n\}$
 - A_1 contains n pairs, and A_2 contains n^2 -n pairs.
 - A_2 contains $(n^2-n)/2$ subsets $S_{i,j}$ of the form $\{(a_i, a_j), (a_j, a_i) | i < j\}$.
 - So, we have totally $2^n \times 2^{(1/2)(n^2-n)}$ symmetric relations on A.
- If the relations are both reflexive and symmetric, we have $2^{(1/2)(n^2-n)}$ choices.

Transitive

- Definition 7.4: A relation \Re on a set A is called <u>transitive</u> if $(x, y), (y, z) \in \Re \Rightarrow (x, z) \in \Re$ for all $x, y, z \in A$.
- Ex 7.8: Define the relation \Re on the set Z^+ by $a\Re b$ if a divides b. This is a transitive and reflexive relation but not symmetric.
- Ex 7.9: Define the relation \Re on the set Z by $a\Re b$ if $a \times b \ge 0$. What properties do they have?
 - Reflexive, symmetric
 - Not transitive, e.g., $(3,0),(0,-7) \in \Re$, but (3,-7) not

- Definition 7.5: A relation \Re on a set A is called **antisymmetric** if $(x, y) \in \Re$ and $(y, x) \in \Re \Rightarrow x = y$ for all $x, y \in A$.
 - Both **a** related to **b** and **b** related to **a**, if **a** and **b** are one and the same element from A
- Ex 7.11 : Define the relation $(A, B) \in \Re$ if $A \subseteq B$. Then it is an antisymmetric relation.
- Note that "not symmetric" is different from anti-symmetric.
- $Ex 7.12 : A = \{1, 2, 3\}$, what properties do the following relations on A have?
 - $\Re = \{(1, 2), (2, 1), (2, 3)\}$ (not symmetric, not antisymmetric)
 - $\Re = \{(1, 1), (2, 2)\}$ (symmetric and antisymmetric)

Antisymmetric

- To count the antisymmetric relations on $A = \{a_1, a_2, ..., a_n\}$.
 - $A \times A = A_1 \cup A_2$, $A_1 = \{(a_i, a_i) | 1 \le i \le n\}$, $A_2 = \{(a_i, a_j) | i \ne j, 1 \le i, j \le n\}$
 - A_1 contains n pairs, and A_2 contains n^2 -n pairs.
 - A_2 contains $(n^2-n)/2$ subsets $S_{i,j}$ of the form $\{(a_i, a_j), (a_j, a_i) | i < j\}$.
 - Each element in A_1 can be selected or not.
 - Each element in $S_{i,j}$ can be selected in three alternatives: either (a_i, a_j) , or (a_i, a_i) , or none.
 - So, we have totally $2^n \times 3^{(1/2)(n^2-n)}$ anti-symmetric relations on A.

Antisymmetric

- Ex 7.13: Define the relation \Re on the functions by $f \Re g$ if f is dominated by g (or $f \in O(g)$). What are their properties?
 - Reflexive
 - Transitive
 - not symmetric (e.g., g=n, $f=n^2$, g=O(f), but $f \neq O(g)$)
 - not antisymmetric (e.g., g(n) = n, f(n) = n+5, $f\Re g$ and $g\Re f$, but $f \neq g$)

Example

- $A=\{a_1,a_2,...a_n\}$, students in class discrete math.
- a relation R on a set A, if (ai, aj) $\in \Re$, the midterm score (ai) \geq midterm score (aj)
 - No equal score
- R is reflexive
- R is transitive
- R is not symmetric
- R is antisymmetric

• Definition 7.6: A relation \Re is called a <u>partial order</u> (<u>partial ordering relation</u>), if \Re is *reflexive*, *anti-symmetric* and transitive.

- (A,R) is a partially ordered set / poset if R is a partial ordering on A. Typical notation: (A,≤);
 - "no loops"
- If $a \le b$ or $b \le a$, the elements a and b are comparable.
- If all pairs are comparable, ≤ is a total ordering or chain.

Partial Order

- Ex 7.15: Let A be the set of positive integers divisors of n, the relation \Re on A by $a\Re b$ if a divides b, it defines a partial order. How many ordered pairs does it occur in \Re .
 - E.g. n=12, $A = \{1, 2, 3, 4, 6, 12\}$, $\Re = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 12), (2, 2), (2, 4), (2, 6), (2, 12), (3, 3), (3, 6), (3, 12), (4, 4), (4, 12), (6, 6), (6, 12), (12, 12)\}$
 - If $(a, b) \subseteq \Re$, then $a = 2^m \cdot 3^n$ and $b = 2^p \cdot 3^q$ with $0 \le m \le p \le 2$, $0 \le n \le q \le 1$.
 - Selection of size 2 from a set of size 3, with **repetition**.

$$\binom{3+2-1}{2} = \binom{4}{2} = 6 \text{ for } m, p; \binom{2+2-1}{2} = \binom{3}{2} = 3 \text{ for } n, q$$

 \therefore total = $6 \cdot 3$ = 18 ordered pairs

For $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \Rightarrow$ the number of ordered pairs $= \prod_{i=1}^k \binom{(e_i+1)+2-1}{2} = \prod_{i=1}^k \binom{e_i+2}{2}$ Maximal element

Equivalence relation

- Definition 7.7. A relation \Re is called an <u>equivalence relation</u>, if \Re is reflexive, symmetric and transitive.
- Given an equivalence relation R on A, for each $a \in A$ the equivalence class [a] is defined by $\{x \mid (x,a) \in R \}$.
 - E.g., Modulo 3 equivalences on **Z**, such that $[0] = \{...,-6,-3,0,3,6,...\}$ and $[1] = \{...,-5,-2,1,4,7,...\}$
- Ex 7.16 (b): If $A = \{1, 2, 3\}$, the following are all equivalence relations
 - $\Re_1 = \{(1, 1), (2, 2), (3, 3)\}$
 - $\Re_2 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$
 - $\Re_3 = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$
 - $\Re_4 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

- Ex 7.16 (c): For a finite set A, $A \times A$ is the largest equivalence relation on A. If $A = \{a_1, a_2, ..., a_n\}$, then the equality relation $\Re = \{(a_i, a_i) | 1 \le i \le n\}$ is the smallest equivalence relation on A.
- Ex 7.16 (d): Let $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{x, y, z\}$, and $f: A \rightarrow B$ be the onto function. $f = \{(1, x), (2, z), (3, x), (4, y), (5, z), (6, y), (7, x)\}$. Define the relation \Re on A by $a\Re b$ if $\underline{f(a) = f(b)}$. \Re is reflexive, symmetric, and transitive, so it is an equivalence relation. (e.g., f(a) = f(b), f(b) = f(c) = f(a) = f(c))
- Ex 7.16 (e): If \Re is a relation on A, then \Re is both an equivalence relation and a partial order relation iff \Re is the <u>equality relation</u> on A.
 - equality relation $\{(a_i, a_i) | a_i \in A\}$

7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

• Definition 7.8: Let relations $\Re_1 \subseteq A \times B$ and $\Re_2 \subseteq B \times C$. The <u>composite</u> relation $\Re_1 \circ \Re_2$ is a relation defined by $\Re_1 \circ \Re_2 = \{(x, z) | \exists y \in B \text{ such that } (x, y) \in \Re_1 \text{ and } (y, z) \in \Re_2$.

(Note the different ordering with function composition.) $f: A \rightarrow B, g: B \rightarrow C, g \circ f: A \rightarrow C$

- **Ex 7.17**: Consider $\Re_1 = \{(1, x), (2, x), (3, y), (3, z)\}$ and $\Re_2 = \{(w, 5), (x, 6)\}$, and $\Re_3 = \{(w, 5), (w, 6)\}$. $\Re_1 \circ \Re_2 = \{(1, 6), (2, 6)\}$, and $\Re_1 \circ \Re_3 \not \in \{(1, 6), (2, 6)\}$?
- Ex 7.18: Let A be the set of employees {L. Alldredge,...} at a computer center, while B denotes a set of programming language {C++, Java,...}, and C is a set of projects $\{p_1, p_2,...\}$, consider $\Re_1 \subseteq A \times B$, $\Re_2 \subseteq B \times C$. What is the means of $\Re_1 \circ \Re_2$?

join operation in database

Composite Relation

- Theorem 7.1: $\Re_1 \subseteq A \times B$, $\Re_2 \subseteq B \times C$, and $\Re_3 \subseteq C \times D \Rightarrow \Re_1 \circ (\Re_2 \circ \Re_3) = (\Re_1 \circ \Re_2) \circ \Re_3$
- Definition 7.9. We define the powers of relation \Re by (a) $\Re^1 = \Re$; (b) \Re^n $^{+1} = \Re \circ \Re^n$.
- $\underline{\mathbf{Ex} \ 7.19}$: If $\Re = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$, then $\Re^2 = \{(1, 4), (1, 2), (3, 4)\}$, $\Re^3 = ?$ and $\Re^4 = ?$ $\Re^3 = \{(1, 4)\}$

and for $n \ge 4$, $\Re^n = \emptyset$

- Definition 7.10: An $\underline{m \times n}$ zero-one matrix $E = (e_{ij})_{m \times n}$ is a rectangular array of numbers arranged in m rows and n columns, where each e_{ij} denotes the entry in the ith row and jth column of E, and each such entry is 0 or 1.
- Relation matrix: A relation can be represented by an $m \times n$ zero-one matrix.
- Ex 7.21 : Consider $\Re_1 = \{(1, x), (2, x), (3, y), (3, z)\}, \Re_2 = \{(w, 5), (x, 6)\}, \text{ and } \Re_1 \Re_2 \text{ to be represented by relation matrices?}$

$$M(\mathcal{R}_{1}) = \begin{pmatrix} (w) & (x) & (y) & (z) \\ (1) \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad M(\mathcal{R}_{2}) = \begin{pmatrix} (w) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ (z) \begin{bmatrix} (w) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ (z) \begin{bmatrix} (w) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{bmatrix}$$

$$M(\mathcal{R}_{1}) \cdot M(\mathcal{R}_{2}) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{pmatrix} (1) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = M(\mathcal{R}_{1} \circ \mathcal{R}_{2}).$$

Boolean addition' with 1+1=1

• Ex 7.22: If $\Re = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$, then what are the relation matrices of \Re^2 , \Re^3 and \Re^4 ?

$$M(\mathcal{R}) = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(M(\mathcal{R}))^2 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- Let A be a set with |A| = n and \Re be a relation on A. If $M(\Re)$ is the relation matrix for \Re , then
 - $M(\mathfrak{R}) = \mathbf{0}$ if and only if $\mathfrak{R} = \phi$.
 - $M(\Re) = 1$ if and only if $\Re = A \times A$.
 - $M(\mathfrak{R}^m) = [M(\mathfrak{R})]^m$
- Definition 7.11: Let $E = (e_{ij})_{m \times n}$, $F = (f_{ij})_{m \times n}$ be two mxn ero-one matrices. We say that E precedes, or is less than, F, written as $E \le F$, if $e_{ij} \le f_{ij}$ for all i, j.
- $Ex 7.23 : E \le F$. How many zero-one matrices G do have the results of $E \le G$?

$$E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$2^{3}=8$$

- Definition 7.12: $I_n = (\delta_{ij})_{n \times n}$ is the $n \times n$ zero-one matrix, where $\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases}$
- Definition 7.13: $A = (a_{ij})_{m \times n}$ is a zero-one matrix, the transpose of A, written A^{tr} , is the matrix $(a_{ji}^*)_{n \times m}$ where $a_{ji}^* = a_{ij}$
- $\mathbf{E} \times 7.24$: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$ $A^{\text{tr}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
- Theorem 7.2: If M denote the relation matrix for \Re on A, then (A) \Re is reflexive if and only if $I_n \le M$.
 - (B) \Re is symmetric if and only if $M = M^{tr}$.
 - (C) \Re is transitive if and only if $M^2 \le M$.
 - (D) \Re is anti-symmetric if and only if $M \cap M^{tr} \leq I_n$.

- Definition 7.14. A <u>directed graph</u> can be denoted as G = (V, E), where V is the <u>vertex set</u> and E is the <u>edge set</u>.
 - (a, b): if $a, b \in V(a, b) \in E$, then there is a edge from a to b. Vertex a is called source (origin) of the edge, and b is terminating vertex.
 - (a, a): is called a <u>loop</u>.
- $V = \{1, 2, 3, 4, 5\}, E = \{(1, 1), (1, 2), (1, 4), (3, 2)\}$
 - Isolated vertex: vertex 5 in Fig. 7.1.
- Single undirected edge $\{a, b\} = \{b, a\}$ in Fig. 7.2 (b) is used to represent the two directed edges shown in Fig. 7.2 (a).

Figure 7.1

Figure 7.2

• Ex 7.26 precedence graph

Figure 7.3

- $\mathbf{Ex} \ 7.27 : \mathbf{R} = \{(1,1),(1,2),(2,3),(3,2),(3,3),(3,4),(4,2)\}$
 - directed graph in Fig. 7.4 (a)
 - (associated) undirected graph in Fig. 7.4 (b)
 - path: In the connected graph, any two vertices x, y, with $x \ne y$, there is a path starting at x and ending at y.
 - cycle: a closed path starts and terminates at the same vertex, containing at least three edges.
 - E.g.: {3, 4}, {4, 2}, and {2, 3}

No repeated vertex

Figure 7.4

- Definition 7.15: A directed graph G on V is called **strongly connected**, if for all $x, y \in V$, where $x \neq y$, there is a path (in G) of directed edges from x to y.
 - e.g., Fig. 7.5
- **Disconnected graph**: is the union of two connected pieces called the components of the graph.
 - e.g., Fig. 7.6

Figure 7.6

• Complete graph: the graphs of undirected graphs that are loop-free and have an edge for every pair of distinct vertices, which are denoted by K_n .

• e.g., Fig. 7.7

Figure 7.7

- Ex 7.30: \Re is reflexive if and only if its directed graph contains a loop at each vertex.
 - e.g., Fig 7.8, $A = \{1, 2, 3\}$ and $\Re = \{(1,1), (1, 2), (2, 2), (3, 3), (3, 1)\}$
- $Ex 7.31 : \Re$ is symmetric if and only if its directed graph may be drawn only by loops and undirected edges.
 - e.g., Fig 7.9, $A = \{1, 2, 3\}$ and $\Re = \{(1,1), (1, 2), (2, 1), (2, 3), (3, 2)\}$
- Ex 7.32: \Re is <u>anti-symmetric</u> if and only if for any $x \neq y$ the graph contains at most one of the edges (x, y) or (y, x)
 - e.g., Fig 7.10, $A = \{1, 2, 3\}$ and $\Re = \{(1,1), (1, 2), (2, 3), (1, 3)\}$

Figure 7.8

Figure 7.9

Figure 7.10

- Ex 7.32: \Re is <u>transitive</u> if and only if for all $x, y \in A$, if there is a <u>path</u> from x to y in the associated graph, then there is an <u>edge</u> (x, y) also.
 - e.g., Fig 7.10, $A = \{1, 2, 3\}$ and $\Re = \{(1, 1), (1, 2), (2, 3), (1, 3)\}$
- Ex 7.33: Fig 7.11, a relation is an <u>equivalence relation</u> if and only if its graph is one <u>complete graph</u> <u>augmented by loops</u> at every vertex or consists of <u>disjoint union of complete graphs augmented by loops</u> at each vertex.
 - e.g., Fig 7.11, $A = \{1, 2, 3, 4, 5\}$ and $\Re_1 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5)\}$, $\Re_2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4), (4,5), (5,4), (5,5)\}$.

Figure 7.10

Figure 7.11

reflexive: loop on each vertex
symmetric: undirected edge + loops
transitive: one path → one edge
equivalence: disjoint union of complete graphs +
loops at every vertex

adjacency matrices relation matrices

7.3 Partial Orders: Hasse Diagrams

- Definition: Let A be a set with \Re a relation on A. The pair (A, \Re) is called a **partially ordered set**, or <u>poset</u>, if relation \Re on A is partially ordered.
 - If A is called a poset, we understand that there is a partially order \Re on A that makes A into this set.

natural counting: N

$$x+5=2$$
 : **Z**

$$2x+3=4$$
 : **Q**

$$x^2$$
-2=0 : **R**

$$x^2+1=0$$
 : **C**

Something was lost when we went from **R** to **C**. We have lost **the ability to "order"** the elements in **C**.

$$2+i < 1+2i$$
?

7.3 Partial Orders: Hasse Diagrams

- Ex 7.34: Let A be the set of courses offered at a college. Define the relation \Re on A by $x\Re y$ if x, y are the same course or if x is a prerequisite for y.
- Ex 7.35: Define \Re on $A = \{1, 2, 3, 4\}$ by $x\Re y$ if x divide y. Then $\Re = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}$ is a partial order, and (A, \Re) is a poset.
- Ex 7.36: PERT (Program Evaluation and Review Technique) network is first used by U.S. Navy in 1950.
 - E.g., Let A be the set of tasks that must be performed to build a house. Define the relation \Re on A by $x\Re y$ if x, y are the same task or if x must be performed before y.

Partial Orders: Hasse Diagrams

• Ex 7.37: Figure 7.17 (b) illustrates a simpler diagram for (a), called the **Hasse diagram**. The directions are assumed to go from the bottom to the top.

Figure 7.17

Hasse Diagram

- If (A, \Re) is a poset, we construct a Hasse diagram for \Re on A by drawing a line segment from x up to y, if
 - $x\Re y$
 - there is no other z such that $x\Re z$ and $z\Re y$. (in between x and y)
- Ex 7.38: In Fig. 7.18 we have the Hasse diagrams for the following four posets.
 - (a) \Re is the <u>subset relation</u> on A is the power set of \boldsymbol{U} with $\boldsymbol{U} = \{1, 2, 3\}$
 - (b), (c), and (d) are the <u>divide relations</u>.

Figure 7.18

• Definition 7.16. If (A, \Re) is a poset, we say that A is **totally ordered** (<u>linearly ordered</u>) if for all $x, y \in A$ either $x\Re y$ or $y\Re x$. In this case, \Re is called a total order.

• Ex 7.40

- on the set N, the relation \Re defined by $x\Re y$ if $x \le y$ is a total order.
- The subset relation is a partial order but not total order, e.g., $\{1, 2\}$, $\{1, 3\} \in A$, but $\{1, 2\} \not\subset \{1, 3\}$ or $\{1, 3\} \not\subset \{1, 2\}$.
- c) Fig 7.19 is a total order.

Figure 7.19

Topological Sorting

• Given a Hasse diagram for a partial order relation \Re , how to find a total order \Im for which $\Re \subseteq \Im$.

Figure 7.21

Not unique, 12 answers

Topological Sorting

- For a partial order \Re on a set A with |A| = n
 - Step 1: Set k = 1. Let H_1 be the Hasse diagram of the partial order.
 - Step 2: Select a vertex v_k in H_k such that no edge in H_k starts at v_k .
 - Step 3: If k = n, the process is completed and we have a total order

$$\Im: v_n < v_{n-1} < \dots < v_1$$
 that contains \Re .

• If k < n, then remove from H_k the vertex v_k and all edges of H_k that terminate at v_k . Call the result H_{k+1} . Increase k by 1 and return to step (2).

• Ex 7.41

Figure 7.22

More practices, exercise7.27

2015 Spring Discrete Mathematics – CH7 39

Maximal and Minimal

- Definition 7.17: If (A, \Re) is a poset, then x is a <u>maximal</u> element of A if for all $a \in A$, $a \neq x \Rightarrow x \Re a$. Similarly, y is a <u>minimal</u> element of A if for all $b \in A$, $b \neq y \Rightarrow b \Re y$.
- $\mathbf{Ex 7.42} : \mathbf{\textit{U}} = \{1, 2, 3\}, A = P(\mathbf{\textit{U}}).$
 - For the poset (A, \subseteq) , $\boldsymbol{\mathcal{U}}$ is the maximal and ϕ is the minimal.
 - Let *B* be the <u>proper subsets</u> of $\{1, 2, 3\}$. Then we have multiple maximal elements $\{1, 2\}, \{1, 3\}, \text{ and } \{2, 3\} \text{ for the poset } (B, \subseteq),$ and ϕ is still the only minimal element.

• Ex 7.43: For the poset (Z, \le) , we have neither a maximal nor a minimal element. The poset (N, \le) , has no maximal element but a minimal element 0.

Maximal and Minimal

- Ex 7.44: How about the poset in (b), (c), and (d) of Fig. 7.18? Do they have maximal or minimal elements?
- Theorem 7.3: If (A, \Re) is a poset and \underline{A} is finite, then A has both a maximal and a minimal element.

- Definition 7.18: If (A, \Re) is a poset, then x is a **least** element of A if for all $a \in A$, $x \Re a$. Similarly, y is a **greatest** element of A if for all $a \in A$, $a \Re y$.
- $\mathbf{Ex} \ 7.45 : \mathbf{\textit{U}} = \{1, 2, 3\}, A = P(\mathbf{\textit{U}}).$
 - For the poset (A, \subseteq) , $\boldsymbol{\mathcal{U}}$ is the greatest and ϕ is the least.
 - Let B be the <u>nonempty subsets</u> of U. Then we have U as the greatest element and three minimal elements for the poset (B, \subseteq) , but no least element.
- Theorem 7.4: If poset (A, \Re) has a greatest **or** a least element, then that element is unique.
 - Proof: Assume x and y are both greatest elements. Since x is a greatest element, $y\Re x$. Likewise, $x\Re y$ while y is a greatest element. As \Re is antisymmetric, it follows x = y.

- Definition 7.19: If (A, \Re) is a poset with $B \subseteq A$, then
 - $x \in A$ is called a **lower bound** of B if $x \Re b$ for all $b \in B$
 - $y \in A$ is called an **upper bound** of B if $b\Re y$ for all $b \in B$
- An element $x' \in A$ is called a *greatest lower bound* (**glb**) of B if for all other lower bounds x'' of B we have $x''\Re x'$. Similarly, an element $x'\in A$ is called a *least upper bound* (**lub**) of B if for all other upper bounds x'' of B we have $x'\Re x''$.
- Theorem 7.5: If (A, \Re) is a poset and $B \subseteq A$, then B has **at most one** lub (glb).

Lower and Upper Bound

- Ex 7.47: Let $U = \{1, 2, 3, 4\}$ with A = P(U) and let \Re be the subset relation on B. If $B = \{\{1\}, \{2\}, \{1, 2\}\}$, then what are the upper bounds of B, lower bounds of B, the greatest lower bound and the least upper bound?
 - Upper bounds: {1, 2}, {1, 2, 3}, {1, 2, 4}, and {1, 2, 3, 4}
 - lub: {1, 2}
 - $glb = \phi$

- {2, 3, 4} is not.
- Ex 7.48: Let \Re be the "\leq" relation on A. What are the results for the following cases?
 - $A = \mathbf{R} \text{ and } B = [0, 1] => \text{lub:1}, \text{ glb:0}$
 - A = **R** and B = { $q \in \mathbf{Q} \mid q^2 < 2$ } => lub: $\sqrt{2}$, glb: $-\sqrt{2}$
 - A = Q and $B = \{q \in Q \mid q^2 < 2\} => ?$ No lub and glb

Lattice

- Definition 7.20. The poset (A, \Re) is called a **lattice** if for *all* x, $y \in A$ the elements lub $\{x, y\}$ and glb $\{x, y\}$ both exist in A.
- $\mathbf{Ex 7.49}$: For $A = \mathbf{N}$ and $x, y \in \mathbf{N}$, define $x \Re y$ by $x \le y$. Then $\mathsf{lub}\{x, y\} = \mathsf{max}\{x, y\}$, $\mathsf{glb}\{x, y\} = \mathsf{min}\{x, y\}$, and (\mathbf{N}, \le) is a lattice.
- Ex 7.50 : For the poset $(P(U), \subseteq)$, if $S, T \subseteq U$, we have $lub\{S, T\} = S \cup T$ and $glb\{S, T\} = S \cap T$ and it is a lattice.
- Ex 7.51: consider the poset in Example 7.38(d). Here we find that $lub\{2, 3\} = 6$ exists, but there is no glb for the elements 2 and 3.
 - This partial order is not a lattice.

7.4 Equivalence Relations and Partitions

- Equivalence relation: reflexive, symmetric, and transitive
- Examples:
 - For any set $A \neq \phi$, the relation of equality is an equivalence relation on A.
 - "sameness" among the elements of A
 - Let the relation on \mathbb{Z} defined by $x\Re y$ if x-y is a multiple of 2, then \Re is an equivalence relation on \mathbb{Z} , where all even integers are related, as are all odd integers.
 - The above relation **splits Z** into two subsets: $\{..., -3, -1, 1, 3, ...\} \cup \{..., -4, -2, 0, 2, 4, ...\}$

Partition

- Definition 7.21. Given a set A and index set I, let $\phi \neq A_i \subseteq A$ for $i \in I$.
 - Then $\{A_i\}_{i\in I}$ is a partition of A if (a) $A = \bigcup_{i\in I}A_i$ and (b) $A_i\cap A_j = \phi$ for $i \neq j$.
 - Each subset A_i is called a cell (block) of the partition.
- $\mathbf{Ex 7.52} : A = \{1, 2, ..., 10\}$
 - $A_1 = \{1, 2, 3, 4, 5\}, A_2 = \{6, 7, 8, 9, 10\}.$
 - $A_i = \{i, i+5\}, 1 \le i \le 5.$
- $\underline{\mathbf{Ex} \ 7.53}$: Let $A = \mathbf{R}$, for each $i \in \mathbf{Z}$, let $A_i = [i, i+1)$. Then $\{A_i\}_{i \in \mathbf{Z}}$ is a partition of \mathbf{R} .

Equivalence Class

- Definition 7.22: Let \Re be an equivalence relation on a set A. For each $x \in A$, the **equivalence class** of x, denoted [x], is defined by $[x] = \{y \in A \mid y \Re x\}$
- Ex 7.54 : Define the relation \Re on **Z** by $x\Re y$ if $4\mid (x-y)$.

(2) [x]=[y]?

- $[0] = \{..., -8, -4, 0, 4, ...\} = \{4k | k \in \mathbb{Z}\}$
- $[1] = {..., -7, -3, 1, 5, ...} = {4k+1|k \in \mathbb{Z}}$
- $[2] = \{..., -6, -2, 2, 6, ...\} = \{4k+2 | k \in \mathbb{Z}\}$
- $[3] = \{..., -5, -1, 3, 7, ...\} = \{4k+3 | k \in \mathbb{Z}\}$
- Ex 7.55: Define the relation \Re on **Z** by a \Re b if $a^2=b^2$, \Re is an equivalence relation.
 - $[n] = [-n] = \{-n, n\}$ $Z = \{0\} \cup (\bigcup_{n \in \mathbb{Z}^+} \{-n, n\})$

- **Theorem 7.6**: If \Re is an equivalence relation on a set A and x, $y \in A$, then
 - (a) $x \in [x]$
 - (b) $x\Re y$ if and only if [x] = [y]
 - (c) [x] = [y] or $[x] \cap [y] = \emptyset$. (identical or disjoint)
- Ex 7.56:
 - Let $A = \{1, 2, 3, 4, 5\}$, $\Re = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)\}$. $[1] = \{1\}$, $[2] = \{2, 3\} = [3]$, $[4] = \{4, 5\} = [5]$. Then, we have $A = [1] \cup [2] \cup [4]$.
 - Consider an onto function $f: A \rightarrow B$. $f(\{1, 3, 7\}) = x$; $f(\{4, 6\}) = y$; $f(\{2, 5\}) = z$. The relation \Re defined on A by $a\Re b$ if f(a) = f(b).
 - $A = [1] \cup [4] \cup [2] = f^{-1}(x) \cup f^{-1}(y) \cup f^{-1}(z)$.
- **Ex 7.58**: If an equivalence relation \Re on $A = \{1, 2, 3, 4, 5, 6, 7\}$ induces the partition $A = \{1, 2\} \cup \{3\} \cup \{4, 5, 7\} \cup \{6\}$, what is \Re ? [2007台大資工]
 - $[1] = \{1, 2\} = [2] = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$
 - $\Re = (\{1,2\} \times \{1,2\}) \cup (\{3\} \times \{3\}\}) \cup (\{4,5,7\} \times \{4,5,7\}) \cup (\{6\} \times \{6\})$
 - $|\Re|=2^2+1^2+3^2+1^2=15$ {(1,1), (2,2)} v.s. {1,2}x{1,2}

Equivalence and Partition

- **Theorem 7.7**: If *A* is a set, then
 - (a) any equivalence relation \Re on A induces a partition of A; and
 - (b) any partition of A gives rise to an equivalence relation \Re on A.
- Theorem 7.8: For any set A, there is one-to-one correspondence between the set of equivalence relations on A and the set of partitions of A.

$\bullet \quad \mathbf{Ex} \ \mathbf{7.59} :$

- (a) If A= {1, 2, 3, 4, 5, 6}, how many relations on A are equivalence relations? (identical containers)
 - a partition of A: a distribution of the (distinct) elements of A into identical containers with no container left empty $\sum_{i=1}^{6} S(6,i) = 203$
- (b) How many of the equivalence relations in part (a) satisfy $1, 2 \in [4]$?

$$\sum_{i=1}^{4} S(4,i) = 15$$

$$k=10$$

$$2^2+(k-2)^24+64=68$$

r partitions?

7.5 Finite State Machines: The Minimization Process

- Two finite state machines of the same function may have different number of internal states.
 - Some of these states are <u>redundant</u>.
- A process of transforming a given machine into one that has *no redundant internal states* is called the minimization process.
 - Rely on the concepts of *equivalence relation* and *partition*.

Finite State Machines: The Minimization Process

- 1-Equivlence: Given the finite state machine $M = \{S, I, O, v, w\}$, we define the *relation* E_1 on S by $s_1E_1s_2$ if $w(s_1, x) = w(s_2, x)$ for all $x \in I$.
- The relation E_1 is an equivalence relation on S, and it partitions S into subsets such that two states are in the same subset if they produce the same output for each $x \in I$.

• Here s_1 and s_2 are called 1-equivlent.

Finite State Machines: The Minimization Process

- For the states S, we define the <u>k-equivalence</u> relation E_k on S by $s_1 E_k s_2$ if $w(s_1, x) = w(s_2, x)$ for all $x \in I^k$.
- The relation E_k is an equivalence relation on S, and it partitions S into subsets such that two states are in the same subset if they produce the same output for each $x \in I^k$.

• We call two states s_1 and s_2 equivalent if they are kequivalent for all $k \ge 1$.

Finite State Machines: The Minimization Process

- Goal: Determine the partition of S induced by E and select one state for each equivalent class.
- Observations:
 - If two states are not 2-equivalent, they can not be 3-equivalent.
 - For $s_1, s_2 \in S$, where $s_1 E_k s_2$, we find that $s_1 E_{k+1} s_2$ if and only if $v(s_1, x) E_k v(s_2, x)$ for all $x \in I$.

An Algorithm for the Minimization of a Finite State Machine

- 1. Set k = 1. $s_1 E_1 s_2$ when s_1 and s_2 have the same output rows. (P_i be the partitions of S induced by E_i)
- Having determined P_k , we want to obtain P_{k+1} . Determine the states that are (k+1)-equivalent. Note that if $s_1 E_k s_2$, then $s_1 E_{k+1} s_2$ if and only if $v(s_1, x) E_k v(s_2, x)$ for all $x \in I$.
- If $P_{k+1} = P_k$, the process is completed. If $P_{k+1} \neq P_k$, k = k+1, goto step 2.

Minimization of a Finite State Machine

- **Ex 7.60**: *M* is given by the state table shown in Table 7.1.
 - Looking at the output rows: which states are 1-equivalent?
 - P_1 partitions S as $P_1:\{s_1\}, \{s_2, s_5, s_6\}, \{s_3, s_4\}$
 - P_2 : $\{s_1\}$, $\{s_2, s_5\}$, $\{s_6\}$, $\{s_3, s_4\}$ (Table 7.2), $P_2 \neq P_1$, continue
 - P_3 : $\{s_1\}$, $\{s_2, s_5\}$, $\{s_6\}$, $\{s_3, s_4\}$, $P_3 = P_2$, stop

Table 7.1

	1	υ	Ú	υ
	0	l	0	1
81	<i>s</i> ₄	<i>s</i> ₃	0	1
<i>s</i> ₂	\$5	<i>s</i> ₂ .	1	0
s 3	\$2	\$4	0	0
S 4	\$5	<i>5</i> 3	0	0
S ₄ S ₅ S ₆	s_2	S5.	1	0
<i>S</i> ₆	s_1	56.	1	0

Table 7.2

	1	ע	a	υ υ
	0	1	0	1
s_1	<i>S</i> 3	<i>S</i> 3	0	1
s_2	s_2	s_2	1	0
83	s_2	5 3	0	0
86	s_1	86	1	0

See also 15.2 Karnaugh Maps, a similar idea

More Minimization example

• <u>In Ex 6.20</u>: Construct a machine that recognizes each occurrence of the sequence 111.

	1	V	ν	V
	0	1	0	1
s_0	s_0	s_1	0	0
s_1	s_0	s_2	0	0
S_2	s_0	S_3	0	1
S_3	S_0	S_3	0	1

$$P_1$$
: { s_0 , s_1 }, { s_2 , s_3 }
 P_2 : { s_0 }, { s_1 }, { s_2 , s_3 }
 P_3 : { s_0 }, { s_1 }, { s_2 , s_3 }

- Definition 7.23: If P_1 and P_2 are partitions of set A, then P_2 is called a refinement of P_1 , denoted as $P_2 \le P_1$, if every cell of P_2 is contained in a cell of P_1 .
- When $P_2 \le P_1$ and $P_2 \ne P_1$, we write $P_2 \le P_1$.
 - In Example 7.60, $P_3 = P_2 < P_1$
- Theorem 7.9: In the minimization process, if $P_{k+1} = P_k$, then $P_{r+1} = P_r$ for all $r \ge k+1$.

Distinguishing String

- If $s_1 \to s_2$ but $s_1 \to s_2$, then we have a string $x = x_1 x_2 \dots x_k x_{k+1} \in I^{k+1}$ such that $w(s_1, x) \neq w(s_2, x)$ but $w(s_1, x_1 x_2 \dots x_k) = w(s_2, x_1 x_2 \dots x_k)$. We call this string x as **distinguishing string**.
- $s_1 \not \! E_{k+1} s_2 \Rightarrow \exists x_1 \in I$, $[v(s_1, x_1) \not \! E_k v(s_2, x_1)]$

Distinguishing String

- Ex 7.61: From Example 7.60, $s_2 E_1 s_6$ but $s_2 E_2 s_6$, so we seek a distinguishing string of length 2.
- x = 00 is the minimal distinguishing string for s_2 and s_6
 - $w(s_2, 00) = 11 \neq 10 = w(s_6, 00)$

Table 7.1

	1	v	ú	υ ———
	0	1	0	1
81	<i>s</i> ₄	<i>S</i> 3	0	1
<i>s</i> ₂	S5	s_2	1	0
<i>s</i> ₃	<i>s</i> ₂	s_4	0	0
<i>S</i> ₄	\$5	s 3	0	0
\$5	<i>s</i> ₂	S5	1	0
86	s_1	56	1	0

Distinguishing String

- Ex 7.62: s_1 and s_4 are 2-equivalent but are not 3-equivalent.
- x = 111 is the minimal distinguishing string for s_1 and s_4
 - $w(s_1, 111) = 100 \neq 101 = w(s_4, 111)$

Table 7.3

(a)

	!	υ υ	C	ง
	0	1	0	1
s_1	<i>S</i> 4	<i>s</i> ₂	0	1
s_2	\$5	s_2	0	0
<i>s</i> ₃	<i>S</i> 4	s_2	0	1
84	83	s_5	0	1
\$5	s_2	s 3	0	0

can't choose '0'

(b) X=11 to distinguish s2 and s5

- typo
- 2) Then $v(s_1, 1) \not\equiv_2 v(s_4, 1) \Rightarrow \exists x_2 \in \mathcal{F} (\text{here } x_2 = 1) \text{ with } (v(s_1, 1), 1) \not\equiv_1 v(s_4, 1), 1),$ or $v(s_1, 11) \not\equiv_1 v(s_4, 11)$. We used the partitions P_2 and P_1 to obtain $x_2 = 1$.
- 3) Now we use the partition P_1 where we find that for $x_3 = 1 \in \mathcal{I}$,