

ÉWICZENIE53

PRAWO OHMA DLA PRADU PRZEMIENNEGO

Instrukcja wykonawcza

1 Wykaz przyrządów

- a. Generator napięcia sinusoidalnego PO 21.
- b. Woltomierz napięcia przemiennego.
- c. Miliamperomierz prądu przemiennego.
- d. Zestaw składający się z oporników, cewek indukcyjnych i kondensatorów.

2 Cel ćwiczenia

Wyznaczenie wartości indukcyjności cewki i pojemności kondensatora przy zastosowaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa Ohma dla prądu przemiennego dla szeregowego układu złożonego z opornika, cewki indukcyjnej i kondensatora.

3 Schemat układu pomiarowego

Rys. 1 Układ do sprawdzania prawa Ohma dla szeregowego obwodu RLC prądu przemiennego.

4 Przebieg pomiarów

Połączyć układ zgodnie z Rys. 1. Wraz z prowadzącym wybrać elementy R, L i C. Korzystając z informacji zawartych w pkt. 6 dobrać odpowiednią częstotliwość f generatora.

4.1 Wyznaczanie pojemności kondensatora

Do układu z Rys. 1 włączamy tylko wybrany opornik R, którego opór jest znany i kondensator C, którego pojemność trzeba wyznaczyć – Rys. 2. Upewniamy się, że pokrętło regulacji amplitudy napięcia ustawione jest na wartość V – znajduje się w lewym skrajnym położeniu. Ustalamy

maksymalną wartość napięcia na generatorze wciskając przełącznik (czerwony) opisany wartością 25V. Włączamy generator i odczekujemy 2-3 min. aż się nagrzeje. Na generatorze ustalamy żądaną częstotliwość f – dopasowaną do wybranej pojemności C (patrz pkt. 6 instrukcji). Amplitudę napięcia podawanego przez generator mierzymy woltomierzem V. Amplituda prądu w układzie wyznaczana jest przez miliamperomierz mA. Należy sprawdzić, czy urządzenia działają w trybie prądu przemiennego. Dla ustalonej częstotliwości f dokonujemy pomiaru prądu $I_{\rm sk}$ w zależności od napięcia podawanego przez generator $U_{\rm sk}$ dla wcześniej określonego przedziału napięć, np. od 0 do 20V co 2V. Określamy niepewności u(f), $u(I_{\rm sk})$ oraz $u(U_{\rm sk})$.

Rys. 2 Schemat układu RC. Przykładowo podłączono opornik R_2 i kondensator C_3 .

4.2 Wyznaczanie indukcyjności cewki

Schemat układu do wyznaczania indukcyjności cewki przedstawia Rys. 3 – układ RL. W układzie znana jest wartość obciążenia R (taka sama jak w poprzednim punkcie) oraz opór wewnętrzny cewki R_L . Dla tej samej co poprzednio częstotliwości f dokonujemy pomiaru prądu $I_{\rm sk}$ w zależności od napięcia podawanego przez generator $U_{\rm sk}$ dla wcześniej określonego przedziału napięć.

Rys. 3 Schemat układu RL. Przykładowo podłączono opornik R_2 i cewkę L_2 .

4.3 Sprawdzenie słuszności prawa Ohma dla prądu przemiennego

Schemat układu do wyznaczenia zawady obwodu szeregowego RLC przedstawia Rys. 4. Ponownie dla ustalonej częstotliwości f dokonujemy pomiaru prądu $I_{\rm sk}$ w zależności od napięcia podawanego przez generator $U_{\rm sk}$ dla wcześniej określonego przedziału napięć.

Rys. 4 Schemat układu RLC. Przykładowo podłączono opornik R_2 , cewkę L_2 i kondensator C_3 .

5 Opracowanie wyników

5.1 Wyznaczanie pojemności kondensatora

a. Zmierzone wartości $U_{\rm sk}$ i $I_{\rm sk}$ nanieść na wykres punktowy, lecz dla wygody późniejszych obliczeń narysować wykres $U_{\rm sk}(I_{\rm sk})$ – patrz Rys. 5. Dla poprawności dalszych obliczeń

napięcie na wykresie powinno być w V (woltach) natomiast natężenie prądu w A (amperach).

Rys. 5 Przykład zależności napięcia skutecznego od natężenia skutecznego prądu.

- b. Metodą regresji liniowej określić współczynnik kierunkowy zależności $U_{\rm sk}(I_{\rm sk})$ jest to zawada szeregowego układu RC, którą oznaczamy $Z_{\rm C}$. Za niepewność $Z_{\rm C}$ przyjmujemy niepewność współczynnika kierunkowego otrzymanego z regresji.
- c. Uzupełnić wykres o linię odpowiadającą wyznaczonej zależności $U_{\rm sk} = Z_{\rm C} \; I_{\rm sk}$.
- d. Z zależności

$$C = \frac{1}{2\pi f \sqrt{Z_C^2 - R^2}} \tag{1}$$

gdzie f jest ustaloną na generatorze częstotliwością a R oporem wybranego opornika, wyznaczyć pojemność C badanego kondensatora oraz jej niepewność złożoną $u_c(C)$.

5.2 Wyznaczanie indukcyjności cewki

- a. Podobnie jak w punkcie poprzednim narysować wykres $U_{\rm sk}(I_{\rm sk})$ i przeprowadzić regresję liniową. Otrzymana wartość odpowiada zawadzie szeregowego układu RL oznaczamy ją $Z_{\rm L}$. Analogicznie jak poprzednio określamy niepewność $Z_{\rm L}$.
- b. Uzupełnić wykres o linię odpowiadającą wyznaczonej zależności $U_{\rm sk} = Z_{\rm L} \; I_{\rm sk}.$
- c. Z zależności

$$L = \frac{\sqrt{Z_L^2 - (R + R_L)^2}}{2\pi f} \tag{2}$$

gdzie R_L jest oporem cewki indukcyjnej, wyznaczyć indukcyjność L oraz jej niepewność $u_c(L)$.

5.3 Sprawdzenie słuszności prawa Ohma dla prądu przemiennego

- a. Podobnie jak w punktach poprzednich narysować wykres $U_{\rm sk}(I_{\rm sk})$ i przeprowadzić regresję liniową. Otrzymana wartość odpowiada zawadzie szeregowego układu RLC oznaczamy ją Z_1 . Analogicznie jak poprzednio określamy niepewność Z_1 .
- b. Uzupełnić wykres o linię odpowiadającą wyznaczonej zależności $U_{sk}=ZI_{sk}$.
- c. Z zależności

$$Z_2 = \sqrt{(R + R_L)^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}$$
 (3)

gdzie L i C są wyznaczonymi wcześniej indukcyjnością cewki i pojemnością kondensatora, wyznaczyć zawadę Z_2 oraz jej niepewność $u_c(Z_2)$. Porównać wielkości Z_1 i Z_2 . Skomentować prawdziwość prawa Ohma dla prądu przemiennego.

6 Informacje dodatkowe

Oporności oporników

$$R_1 = (150 \pm 3) \Omega$$
, $R_2 = (215 \pm 5) \Omega$, $R_3 = (315 \pm 10) \Omega$

Oporności cewek indukcyjnych

$$R_{\rm L1} = (0.35 \pm 0.05)~\Omega,~R_{\rm L2} = (0.60 \pm 0.05)~\Omega,~R_{\rm L3} = (1.3 \pm 0.1)~\Omega$$

Przedziały częstotliwości pomiarowej dla różnych pojemności C

dla C_1 – od 200 Hz do 900 Hz

dla C_2 – od 50 Hz do 400 Hz

dla C_3 – od 50 Hz do 350 Hz

7 Proponowane tabele (do zatwierdzenia u prowadzącego)

Częstotliwość: f = Wybrany opornik: $R_i =$ Wybrany kondensator: $C_i =$ Wybrana cewka: $L_i =$

 $R_{Li} =$

<i>U</i> _{sk} [V]	<i>u(U</i> _{sk}) [∨]	I _{sk} [A]	<i>u(I_{sk})</i> [A]
$\mathbf{Z}_{i}\left[\Omega\right]$			
$u_{c}(Z_{i})[\Omega]$			

⁻ jako Z_i może być Z_C , Z_L lub Z_1 .