HIPOTESA SATU SAMPEL

Dosen: Arya Yudhi Wijaya

Teknik Informatika, Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya

Apakah Hipotesa?

- Hipotesa adalah sebuah klaim mengenai parameter populasi
 - Contoh nilai mean atau proporsi dari populasi
 - parameter harus
 diidentifikasikan sebelum
 analisa

Klaim mean GPA dari kelas ini $\mu = 3.5$!

Definisi Null Hipotesa, H₀

- Menyatakan asumsi klaim yang akan diuji dalam bentuk numerik
 - □ Misal rata-rata jumlah kepemilikan kendaraan bermotor setiap rumah tangga di Surabaya untuk ekonomi menengah setidaknya = 3 (H_0 : $\mu \ge 3$)
- Null Hipotesa selalu mengenai Parameter Populasion ($H_0: \mu \ge 3$), bukan tentang statistik sampel ($H_0 = \overline{X} \ge 3$)

Definisi Null Hipotesa, H₀

(continued)

- Diawali dengan menerima bahwa asumsi pada Null Hipotesa adalah benar
 - □ analogi dengan bahwa terdakwa belum dinyatakan sebagai tahanan sampai hakim memutuskan bersalah
- Sama dengan Status Quo
- Selalu terdapat simbol "=" (bisa juga ≤ atau ≥)
- Null Hipotesa memiliki kemungkinan untuk ditolak

Definisi Alternatif Hipotesa, H₁

- Kebalikan dari Null Hipotesa
 - □ Misal rata-rata jumlah kepemilikan kendaraan bermotor setiap rumah tangga di Surabaya untuk ekonomi menengah kurang dari 3 $(H_1 : \mu < 3)$
- Berusaha menolak Status Quo
- Tidak pernah ditemui simbol "="
- Alternatif Hipotesa memiliki kemungkinan diterima
- Pada umumnya jenis hipotesa yang akan diklaim team riset

Proses Uji Hipotesa

Asumsi populasi dengan rata-rata usia 50 $(H_0: \mu = 50)$

Identifikasikan Populasi

No, not likely!

REJECT

Null Hipotesa

$$(\bar{X}=20)$$

Alasan untuk Menolak H₀

Distribusi Sampel \overline{X}

Level Signikan, α

- Menentukan nilai yang tidak mungkin dari sampel jika Null Hipotesa adalah benar
 - □ Disebut dengan *rejection region* dari distribusi sampel
- Dinotasikan sebagai α dengan nilai yang sering digunakan adalah ...
 - □ 0.01, 0.05, 0.10
- Telah ditentukan di awal oleh tim riset
- Memberikan nilai kritikal untuk pengujian

Level Signikan, α dan Rejection Region

*H*₀: μ ≥ 3

 $H_1: \mu < 3$

 $H_0: \mu \leq 3$

 $H_1: \mu > 3$

 $H_0: \mu = 3$

 H_1 : $\mu \neq 3$

Langkah-Langkah Uji Hipotesa

Misal rata-rata jumlah #TV sets setiap rumah tangga di Surabaya untuk ekonomi menengah setidaknya = 3 (asumsi σ diketahui)

$$H_0: \mu \ge 3$$

$$H_1: \mu < 3$$

3. Pilih nilai
$$\alpha$$

$$\alpha$$
=.05

$$n = 100$$

Langkah-Langkah Uji Hipotesa,

6. Set nilai kritikal

- 7. Kumpulkan data
- 8. Hitung uji statistik dan pvalue
- 9. Buat keputusan
- 10. Nyatakan hasil

Survey 100 rumah

Sampel mean =2,

p-value = .0228

Tolak null hipotesa

Nilai mean < 3

Uji Z (one-tail) untuk Mean (σ diketahui)

- Asumsi
 - Populasi terdistribusi secara normal
 - □ Jika populasi tidak normal, gunakan sampel besar
 - □ Pada Null hipotesa hanya terdapat simbol ≤ dan ≥
- Nilai statistik untuk uji Z

$$Z = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Rejection Region

 H_0 : $\mu \geq \mu_0$

 $H_1: \mu < \mu_0$

 $H_0: \mu \leq \mu_0$ $H_1: \mu > \mu_0$

Nilai Z tidak berlawanan dengan H₀, terima H₀!

Q. Apakah rata-rata kotak sereal berisi lebih dari 368 gr sereal?

Random sampel dari 25 kotak menunjukkan $\overline{X}=372.5$. Perusahaan menetapkan $\sigma=15$ gr. Uji pada signifikan level $\alpha=0.05$.

 H_0 : $\mu \leq 368$

 $H_1: \mu > 368$

Mencari Nilai Kritikal: Uji Z (one-tail)

Berapa nilai Z untuk $\alpha = 0.05$?

Contoh Tabel Kumulatif Distribusi Normal yang Standar

Solusi: Uji Z untuk µ (one-tail)

 $H_0: \mu \leq 368$

 $H_1: \mu > 368$

$$\alpha = 0.5$$

$$n=25$$

Nilai Kritikal: 1.645

Test Statistic:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = 1.50$$

Keputusan:

Tidak menolak pada $\alpha = .05$ Kesimpulan :

Tidak ada bukti yang cukup kuat bahwa mean > 368

Solusi: *p* -Value untuk μ (one-tail)

Nilai *p*-Value adalah $P(Z \ge 1.50) = 0.0668$

TM 11 HIPOTESA SATU SAMPEL

1.50 untuk mendapat .9332

17

sampel

Solusi: p -Value untuk μ (one-tail)

$$(p\text{-Value} = 0.0668) \ge (\alpha = 0.05)$$

tidak ditolak → diterima

Nilai 1.50 berada di daerah not Reject Region

Uji Z (one-tail) untuk Mean (σ diketahui) dengan Microsoft Excel

Z Test of Hypothesis for the Mea	n
Null Hypothesis μ=	368
Level of Significance	0,05
Population Standard Deviation	15
Sample Size	25
Sample Mean	372,5
Standard Error of the Mean	3
Z Test Statistic	1,5
Upper-Tail Test	
Upper Critical Value	1,644853
p-Value	0,066807229
Do not reject the null hyp	othesis

Contoh: Uji Z untuk µ (two-tail)

Q. Apakah rata-rata kotak sereal berisi 368 gr sereal?

Random sampel dari 25 kotak menunjukkan = 372.5. Perusahaan menetapkan σ = 15 gr. Uji pada signifikan level α = 0.05.

 H_0 : $\mu = 368$

 $H_1: \mu \neq 368$

Solusi: Uji Z untuk µ (two-tail)

 H_0 : $\mu = 368$

 H_1 : $\mu \neq 368$

$$\alpha = 0.05$$

$$n=25$$

Nilai Kritikal: ±1.96

Uji statistik:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{372.5 - 368}{15 / \sqrt{25}} = 1.50$$

Keputusan:

Tidak menolak pada $\alpha = .05$

Kesimpulan:

Tidak ada bukti yang cukup kuat bahwa mean ≠ 368

Solusi: *p* -Value untuk μ (*two-tail*)

 $(p\text{-Value} = 0.1336) \ge (\alpha = 0.05)$ tidak ditolak → diterima.

Nilai 1.50 berada di daerah not Reject Region

Hubungan dengan Confidence Interval

For
$$\bar{X} = 372.5$$
, $\sigma = 15$ and $n = 25$,

the 95% confidence interval is:

$$372.5 - (1.96)15 / \sqrt{25} \le \mu \le 372.5 + (1.96)15 / \sqrt{25}$$

or

$$366.62 \le \mu \le 378.38$$

If this interval contains the hypothesized mean (368),

we do not reject the null hypothesis.

It does. Do not reject.

Uji t (one-tail) untuk Mean (σ tidak diketahui)

- Assumption
 - Populasi terdistribusi secara normal
 - □ Jika populasi tidak normal, gunakan sampel besar
- Statistik uji t dengan n-1 derajat kebebasan

Contoh: Uji t untuk µ (one-tail)

Q. Apakah rata-rata kotak sereal berisi lebih dari 368 gr sereal?

Random sampel dari 36 kotak menunjukkan $\overline{X} = 372.5$ dan s = 15 gr. Uji pada signifikan level $\alpha = 0.01$.

 σ tidak diketahui

 H_0 : $\mu \le 368$ H_1 : $\mu > 368$

Solusi: Uji t untuk µ (one-tail)

$$H_0: \mu \leq 368$$

$$H_1$$
: $\mu > 368$

$$\alpha = 0.01$$

$$n = 36$$
, df = 35

Nilai Kritikal: 2.4377

Uji statistik:

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{372.5 - 368}{\frac{15}{\sqrt{36}}} = 1.80$$

Keputusan:

Tidak menolak pada $\alpha = .01$ (menerima)

Kesimpulan:

Tidak ada bukti yang cukup kuat bahwa mean > 368

Solusi: *p* -Value untuk μ (one-tail)

(p-Value diantara .025 dan .05) $\geq (\alpha = 0.01)$. Jangan tolak, terima.

Nilai 1.80 berada di daerah non Reject Region

Uji t (*one-tail*) untuk Mean (σ tidak diketahui) dengan Microsoft Excel

t Test of Hypothesis for the Mean		
Null Hypothesis μ=	368	
Level of Significance	0,01	
Sample Size	36	
Sample Mean	372,5	
Sample Standard Deviation	15	
Standard Error of the Mean	2,5	
Degrees of Freedom	35	
t Test Statistic	1,8	
Upper-Tail Test		
Upper Critical Value	2,437718649	
p-Value	0,040242738	
Do not reject the null hypothesis		

Proporsi

- Terdapat variabel yang bernilai kategorikal
- Terdapat 2 kemungkinan hasil
 - □ "success" (memiliki karakteristik tertentu) dan
 - "failure" (tidak memiliki karakteristik tertentu)
- Dinotasikan dengan p

 □ Untuk sampel proporsi sbb $p_s = \frac{X}{n} = \frac{\text{Number of Successes}}{\text{Sample Size}}$
- Pendekatan secara Normal digunakan jika

$$p = 5 \text{ dan } n(1-p) \ge 5$$

$$\mu_{p_s} = p$$

$$\sigma_{p_s} = \sqrt{\frac{p(1-p)}{n}}$$

Contoh: Uji Z untuk p (one-tail)

Q. Bagian pemasaran mengklaim bahwa sebuah survey akan memiliki tingkat respon 4%.

Untuk mengujinya, random sampel dari 500 obyek disurvey dengan response 25 orang.

Uji pada signifikan level $\alpha =$.05.

Check:

$$np = 500(.04) = 20$$
$$\geq 5$$

$$n(1-p) = 500(1-.04)$$
$$= 480 \ge 5$$

Contoh: Uji Z untuk p (two-tail)

$$H_0$$
: $p = .04$

$$H_1: p \neq .04$$

$$\alpha = .05$$

$$n = 500$$

Nilai kritikal: ± 1.96

Uji statistik:

$$Z \cong \frac{p_S - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{.05 - .04}{\sqrt{\frac{.04(1-.04)}{500}}} = 1.14$$

Keputusan:

Tidak menolak pada $\alpha = .05$

Kesimpulan:

Tidak ada bukti yang cukup kuat untuk menolak klaim bahwa respon dari survey sebesar 4%

Solusi: p -Value untuk p (two-tail)

 $(p\text{-Value} = 0.2542) \ge (\alpha = 0.05).$ Jangan tolak, terima.

Nilai 1.14 berada di daerah not Reject Region

Uji Z (one-tail) untuk Proporsi dengan Microsoft Excel

Z Test of Hypothesis for	the Proportio	
Null Hypothesis p=	0,04	
Level of Significance	0,05	
Number of Successes	25	
Sample Size	500	
Sample Proportion	0,05	
Standard Error	0,008763561	
Z Test Statistic	1,141088661	
Two-Tailed Test		
Lower Critical Value	-1,959961082	
Upper Critical value	1,959961082	
p-Value	0,253833132	
Do not reject the null hypothesis		

Tugas

10.23, 10.24, 10.25