Ancient DNA from 120-Million-Year-Old Lycoptera Fossils Reveals Evolutionary Insights

Wan-Qian Zhao^{1,11*}, Zhan-Yong Guo², Zeng-Yuan Tian¹, Tong-Fu Su³, Gang-Qiang Cao¹, Zi-Xin Qi⁴, Tian-Cang Qin⁵, Wei Zhou⁶, Jin-Yu Yang⁷, Ming-Jie Chen⁸, Xin-Ge Zhang⁹, Chun-Yan Zhou^{10,15}, Chuan-Jia Zhu¹¹, Meng-Fei Tang¹, Di Wu¹, Mei-Rong Song³, Yu-Qi Guo^{11*}, Li-You Qiu^{12*}, Fei Liang¹³, Mei-Jun Li^{14*}, Jun-Hui Geng¹, Li-Juan Zhao¹¹, Shu-Jie Zhang¹¹

Affiliations:

¹School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China

²College of Agronomy, Henan Agricultural University, Zhengzhou, China

³College of Sciences, Henan Agricultural University, Zhengzhou, China

⁴College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China

⁵Zhengzhou ToYou Bioengineering Co., Ltd, Zhengzhou, China

⁶Jiangsu Institute of Product Quality Supervision and Inspection, Nanjing, China

⁷Haining BoShang Biotechnology Co., Ltd, Haining, China

⁸NewCore Biotechnology Co., Ltd, Shanghai, China

⁹College of Tobacco, Henan Agricultural University, Zhengzhou, China

¹⁰Jiesai Biotechnology Co., Ltd, Haining, China

¹¹School of Life Sciences, Zhengzhou University, Zhengzhou, China

¹²College of Life Sciences, Henan Agricultural University, Zhengzhou, China

¹³College of Paleontology, Shenyang Normal University, Shenyang, China

¹⁴National Key Laboratory of Petroleum Resources and Engineering, College of Geosciences, China University of Petroleum (Beijing), Beijing, China

¹⁵Jiangsu Jiayu Biomedical Technology Co., Ltd, Jiangyin, China

*Corresponding authors and emails:

wqzhao@zzu.edu.cn; guoyuqi@zzu.edu.cn; qliyou@henau.edu.cn; meijunli@cup.edu.cn

Abstract: High-quality ancient DNA (aDNA) is essential for molecular paleontology. Due to DNA degradation and contamination by environmental DNA (eDNA), current research is limited to fossils less than 1 million years old. The study successfully extracted DNA from *Lycoptera davidi* fossils from the Early Cretaceous period, dating 120 million years ago. Using high-

throughput sequencing, 1,258,901 DNA sequences were obtained. We established a rigorous protocol known as the "mega screen method." Using this method, we identified 243 original *in situ* DNA (oriDNA) sequences, likely from the Lycoptera genome. These sequences have an average length of over 100 base pairs and show no signs of "deamination". Additionally, 10 transposase coding sequences were discovered, shedding light on a unique self-renewal mechanism in the genome. This study provides valuable DNA data for understanding ancient fish evolution and advances paleontological research.

Keywords: ancient DNA, environmental DNA, original in situ DNA, deamination, transposase

Introduction

The acquisition of high-quality aDNA data is crucial for molecular paleontological research. While scientists have successfully extracted DNA from fossils dating back about 1 million years, extracting amplifiable DNA from most fossils remains a huge challenge¹. Much of the oriDNA has been lost, degraded, or crosslinked with macromolecules, rendering it unsuitable for use as amplification templates. Lithological fossils can adsorb external DNA molecules; some adsorbed molecules may be further embedded or replaced by eDNA^{2,3,4}. Most fossils contain predominately bacterial eDNA, which can overshadow oriDNA sequencing signals^{5,6}. Furthermore, studies of fossilized ancient primates and environmental samples have shown that due to unfavorable burial conditions, "deamination" of bases on the side chains of DNA molecules often occurs, leading to distortion of sequencing information^{7,8}.

The conditions under which fossils are buried and the mechanisms of their formation are crucial for the preservation of oriDNA. Research has shown that certain fossilized volcanic tuffs, rapidly encased by volcanic ash and formed from living organisms, still contain intact nuclei of in situ organisms preserved at the outlines of their remains. For instance, intact nuclear structures are commonly found in fossils such as Jurassic plants and the Jehol Biota; nucleic acid stains reveal the presence of nucleic acid material in the nucleus location 9,10,11,12,13. While these findings are fascinating, they also give rise to important questions. For instance, if the nucleus tests positive for nucleic acids, are these derived from oriDNA or eDNA? Moreover, if the nucleus still contains oriDNA, has it been cross-linked with other macromolecules or degraded to short-stranded DNA (< 40 bp), making it unusable as a valid amplification template? Or could it consist of longstranded DNA sequences (>100 bp) that are still suitable as amplification templates? Addressing these questions is key to driving the most critical technological advancements in molecular paleontology¹⁴. Lycoptera davidi is an extinct ancient freshwater ray-finned fish belonging to the family Lycopteridae and the order Osteoglossiformes. This fish lived during the early Cretaceous period in present-day northeastern China. As prominent fossils of the Jehol Biota, it holds significant biostratigraphic importance for the early Cretaceous period (J3-K1). The fossil discussed in this study was discovered in the lower strata of the Yixian Formation in Shangyuan Town, Beipiao City, northeastern China, dating back approximately 120 million years ago. The fossil was preserved in sedimentary rock and formed under hydrostatic conditions when the fish body was quickly encapsulated by volcanic ash^{15,16}.

Fossil DNA extraction was conducted using nanoparticle affinity beads¹⁷, leading to the establishment of a DNA library. Subsequently, second-generation sequencing yielded 1,258,901

DNA fragments (see Materials and Methods). To select oriDNA, it is necessary to remove eDNA contamination. This contamination can come from eDNA incorporated into fossils during the prelithification or post-lithification stages (paeDNA), and DNA from recent or present times (preDNA). Using the "Mega screening method", 243 oriDNA fragments were identified (Figure 1, Tables S3A and S4). These fragments are characterized by an average length exceeding 100 base pairs, rendering them suitable as templates for amplification. Further analysis revealed no identifiable "deamination" of the side-strand bases of these DNA sequences. Although the number of oriDNA obtained in this study is limited, it offers a rare glimpse into the deep-ancient fish genome. This includes insights into the genomic relationship between *Lycoptera* and local freshwater fishes, a transposase gene self-renewal mechanism known as "coding region sliding replication and recombination", and the mechanisms underlying the rapid diversification of Cretaceous fish species. With the improvement of aDNA extraction methods and the increase of fossil samples, we can obtain more oriDNA sequences, which are expected to bring us more knowledge about ancient life.

Results and Discussion

DNA information extraction using the "Mega screening method"

Utilizing the "Mega screen method," 1,258,901 DNA fragments of diverse origins spanning different periods were classified, and relevant biological information was extracted. This methodology involves two steps outlined in Materials and Methods and Figure S1.

All sequences were divided into subsets based on lineage

Initially, as the Lycoptera genome data was unavailable, we conducted a BLAST search to align the fossil DNA sequences with all sequences in the NCBI database (Version 5, Nucleotide sequence Database) using the "minimum E-value mode". We processed data from the 1,258,901 reads, creating subsets based on genealogical lineages and determining the total number of sequences (TS) within each subset. Among these, 674,472 total sequences (TS) were classified as bacterial sequences, 131,312 TS as primate sequences, 30,211 TS as angiosperm sequences, and 26,852 TS as fungal sequences. Additionally, 19,747 TS were categorized in the arthropod sequence subset. With the 10,000 Fish Genomes Project (F10K) nearing completion, the genomes of representative species have all been sequenced, providing a more comprehensive reference database for fish sequence matching. Leveraging these advancements, we have identified 11,313 sequences, aligning with the subset of ray-finned fish sequences (Table S1).

The ray-finned fish subset dominated by aDNA

To establish the sequence screening threshold, we initially set the E-value below 1E-07 and identified the sequences that met this criterion as qualified sequences (QS). Among the screened sequences, 693 met the threshold, while 10,620 did not. We hypothesize that the inability of certain *Lycoptera* sequences to meet the threshold could be attributed to the absence of *Lycoptera* genome data, inadequate matches, and limited similarity to contemporary fish genomes. Moreover, some unaligned sequences might have origins in non-fish species that have not been sequenced. Indeed, each species possesses its distinctive significance. Due to these limitations, we couldn't analyze these sequences in greater detail in this work.

To further assess the closeness of a subset to the respective modern genomes, we introduced the metrics, Affinity Index, and set the thresholds at 90% and 97.5%, respectively (see Materials and

Methods). The percentage of the ray-finned fish subset passing the two threshold sequences was 8.51% and 4.91%, respectively. Compare this to other subsets; for example, the two percentage values for the human subset were 94.78% and 91.56%, respectively; while the percentages for amphibians and reptiles were 15.15%, and 12.12%, respectively. In addition, our analysis should introduce some other factors, such as geographical factors; the local geography is as follows: The cold climate and hilly topography of the region result in a sparse distribution of amphibians and reptiles, which limits their contribution to the local eDNA; therefore, the Affinity Index of this subset can be used as a background value to screen the corresponding lineages. From the above, it can be assumed that the ray-finned fish subset meets our criteria and most of the sequences in this subset do not come from the local environment, and they are aDNA or oriDNA. The Affinity Index for the human subset is high (Table S1), and most of the DNA fragments in this subset are recently contaminated preDNA sequences. As many extant species have yet to be sequenced, the values of the Affinity index for some subsets are correlational and may fluctuate in future studies.

Some features of ray-finned fish DNA sequences

When comparing the DNA sequences of 243 ray-finned fish (Tables S3A and S4) to the sequences in the human subset, it was observed that they are similar in length and GC content. However, there were notable differences in metrics such as Per Identity, Query Cover, average number of base deletions, and QS/TS (%). The human subset displayed a lower frequency of insertions/deletions when compared to that of ray-finned fish, due to the sequence differences between preDNA and aDNA. The DNA sequences within the fish subset demonstrated aDNA characteristics overall, as depicted in Table S2, providing a sound basis for effectively distinguishing the ray-finned fish subset (Subset Affinity: 52.87%; see Materials and Methods) from the preDNA-dominated human subset (Subset Affinity: 97.15%).

Identification of each sequence in the ray-finned fish subset

In the subset of ray-finned fish, we utilized the "lowest E-value mode" to identify 693 high-quality matches. However, some of these matches had the same E-value when hitting genomes of different species, which made it difficult to determine their genealogical affiliation. The "MS mode" for analysis was used to enhance the hit reliability and the uniqueness of the search result (see Materials and Methods). As a result, we confirmed that 243 DNA sequences were specifically mapped to the ray-finned fish genome. Consequently, we concluded that the only genealogical origin of these sequences was the ray-finned fish genome.

It is reasonable to deduce that the sequences of the ray-finned fish subset can be divided into three parts: oriDNA sequences, paeDNA sequences, and preDNA sequences. By excluding paeDNA and preDNA sequences, oriDNA sequences can be recognized. These 243 sequences were then categorized into three groups: the "local fish group", consisting of 180 sequences (Table S4); and the "non-local fish group (including marine fish)," which contains 49 sequences. The third group, the "other ray-finned group," comprises 14 sequences that could not be classified at the order level, and its Affinity Index value is only 77.51%, indicating a notable distinction from the known genome.

The Lycoptera oriDNA: We further determined the source of the sequences of the ray-finned fish subset by combining the influence of geographical factors, geological changes, and evolutionary laws. Since there has been no marine transgression since the Cretaceous, the 49 sequences of the non-local fish group should be oriDNA. This result also shows a genomic connection between the *Lycoptera* and modern marine fish. In the local fish group, the 180 sequences mainly belong to

Cypriniform genomes. The average values of the Affinity Index of the above two groups of sequences are 80.34% and 83.85%, respectively, and their conservation levels (average values) are almost equal. In addition, the fossil site is currently a hilly area without lakes and rivers. These conditions indicate that most of the sequences in the local fish group cannot be preDNA. At the same time, considering freshwater fish eventually become prey to other species, it is difficult for their DNA to enter the environment and become eDNA. Therefore, we can roughly infer that most of the 180 sequences in the local fish group and the 14 sequences in the non-order group could be oriDNA (Tables S3 and S4).

Fossil DNA: The multiple resources hypothesis

The Lycoptera fossil can be defined as a rock that contains internal voids. We have developed a method to quantify the percentage of these internal spaces about the total volume of the rock, which ranges from 10.8% to 11.3% (see Materials and Methods). Due to diffusion and osmosis, when the surrounding environment becomes arid, various molecules not embedded in the fossil may be lost as internal liquid water drains away. Subsequently, when water returns to the environment, DNA molecules may be transported into the dry voids within the fossil and become trapped. Furthermore, some molecules might be encased by minerals in the water and deposited onto the inner surfaces of the rock. However, if the environment dries out again, free molecules could escape.

Given that advanced primates exhibit the social behavior of burying their dead, DNA from the genomes of these primates, as well as from associated species such as scavenging animals, prey, and surrounding vegetation, can continuously be introduced into the environment of long-term settlements, contributing to environmental DNA (eDNA). Consequently, eDNA can infiltrate a fossil after its formation, and some of this DNA may also become buried in minerals within the water and permanently retained in the fossil. Thus, it is reasonable to conclude that eDNA from later periods can enter the internal voids of fossils formed during the Cretaceous period.

The mechanism of DNA preservation in Lycoptera fossils remains unclear. Water is the primary factor in DNA deamination reactions¹⁸. Fossils in sedimentary rocks are formed when organisms are rapidly covered by volcanic ash in a calm water environment (Figure 2). This forms a protective shell around the organism, which prevents the chemical groups on the DNA molecules from coming into contact with water, allowing nucleic acids to be preserved for a long time and possibly protecting them from external elements such as oxygen and chemicals. Although some oriDNA fragments may be lost or degraded due to geological processes, remnants may still exist. The eDNA in fossils comes from the environment, adsorbed on rock surfaces, cavities, and cracks; part of it has become permanent sediment^{2,3,4,5}.

Our proposal delineates three sources of fossil DNA, as illustrated in Figure 2: the first being oriDNA before fossil formation, including the fish DNA and DNA from *in situ* species, such as food found in the stomachs of fishes, small aquatic organisms, and fish parasites. The second source is paeDNA, and the third is preDNA primarily originates from plants and animals associated with human activities and parasites, bacteria, and viruses. Historically, the Beipiao area was a center of agriculture and animal husbandry in Chaoyang City and likely served as the main source of preDNA due to human urban settlement, burial practices, and large-scale cultivation of angiosperm crops. Ancient eDNA has infiltrated fossils since the remains were buried in mud under hydrostatic conditions, particularly during periods of considerable lacunae before the fossilization of dense formations. Following full petrification, the impermeability of shale presents

challenges for water-soluble compounds to permeate the pores. Despite these, the possibility remains that minuscule quantities of matter continue to seep into the fossils.

To elucidate the origin of DNA in fossils, we developed a model diagram based on our hypotheses and speculations (Figure 1, right): (1) Before the fossil forms a dense structure, the internal DNA fragments are primarily composed of oriDNA. At the same time, paeDNA molecules gradually enter the pores and remain inside. (2) As the fossilization process progresses, the interior becomes denser, causing the voids that can accommodate foreign molecules to decrease and sometimes disappear entirely. Concurrently, the ingress and egress of internal DNA molecules are obstructed, embedding the DNA within the rock formation and rendering it immobile. (3) Following this process, the surface area of the internal pores continuously decreases, reducing their capacity to accommodate foreign molecules. The remaining open gaps are relatively robust and resistant to collapse or blockage. Subsequent generations of external paeDNA can still enter and adsorb to the surface of the pores but are rarely embedded and remain predominantly mobile. (4) These mobile DNA fragments are displaced over time by later generations of external molecules. This replacement process persists over time, with older molecules being supplanted by newer ones up to the present day. (5) The oriDNA and paeDNA embedded within the fossils undergo continuous degradation. Consequently, this leads to a decrease in oriDNA and paeDNA and an increase in preDNA. In this study, a limited number of fish fragments (11,313 TS) were detected, whereas a larger quantity of human DNA fragments (127,977 TS) was identified, predominantly originating from preDNA (Table S1). This exemplifies the phenomenon of so-called "fewer old DNA molecules and more new ones" in fossils (Figure 1).

Figure 1 The fossil formation process and the DNA contained therein

The Lycoptera fossils were found in Beipiao City, Chaoyang City, Liaoning Province. The longitude is 120.84 and the latitude is 41.60. The process of fossil formation and preservation of DNA: During early lithification (α), a significant amount of volcanic ash descends into the water, rapidly forming a thick, viscous paste that envelops and buries the fish within a tranquil, undisturbed water environment. This results in enclosed inclusions isolated from their surroundings, allowing some paeDNA to become trapped within them. As lithification progresses

(β), these inclusions gradually desiccated and were compressed into a thin, dense layer known as the "fish layer", each approximately 1 mm thick. The brown sections in the shape of fish within a plate represent the fish remains, with the surrounding whitened sections acting as the cofferdam area. Additionally, there is the "non-residual layer" without any fish remains. After complete lithification (δ), the "fish layer" and the "non-residual layer" are mixed and overlapped in multiple layers to form dense tuff plates and are further petrified into lithological fossils. After the soft tissue has decayed, the area between the skeletal remains becomes very porous, with many tiny cavities connected to surface cracks in the fossil rock. This allows for the transfer and exchange of internal and external molecules, providing a pathway for eDNA to enter the fossil.

The "deamination" did not occur in Lycoptera oriDNA and some paeDNA sequences

Although the "deamination" phenomenon is one of the ubiquitous damages of aDNA, can it be used as the primary condition for judging ancient DNA, that is, a fragment without "deamination" is not aDNA/oriDNA^{7,8}? However, this phenomenon was not seen in the 243 oriDNA sequences evaluated in this study (Tables S3A and S4). This difference may be attributed to the closed structure of fossils after diagenesis, which may limit the exposure of organisms to external conditions, thereby protecting oriDNA from the influence of "deamination" factors. However, it is worth noting that some DNA fragments distributed on the surface of fossils, such as paeDNA fragments or preDNA fragments, may still be exposed to the environment without rock protection. These fragments may have undergone "deamination", which could further increase the gap between their sequences and modern genomes. The seriously distorted sequences have been removed by examining the MS pattern.

We identified numerous fragments that aligned with the Pan-genome in our DNA extracts. The affinity values for these fragments range from 38% to 90%, and the "Mega screen method" suggests a "unique" relationship between some sequences (IDs: 534-555) and the Pan-genome (Table S3B). Additionally, several facts support an opinion: these fragments likely originate from unsequenced genomes of Pan or other Hominoidea species, potentially representing extinct ancestral species; e.g. (1) The Pan lineage is not distributed throughout the East Asia region, and there are no fossil records of Pan species in the fossil production area, indicating these fragments are not a result of eDNA contamination; (2) our laboratory has never been exposed to samples containing Pan DNA. Furthermore, these fragments do not fully align with known Pan-genomes, and there is no existing sequencing record, ruling out experimental contamination; (3) Pan genomes have been extensively sequenced, and the observed affinity gaps between the known ape species and the sequenced genomes should not be so pronounced. (4) No discernible "deamination" phenomena were observed in these sequences.

The "deamination" is not suitable as the primary criterion for identifying aDNA fragments In the method developed by the Pääbo team, "deamination" is the main criterion for identifying aDNA fragments ^{19,20,21,22,23,24}. However, several points challenge this perspective: (1) The assumption that the fossil oriDNA originates from a single individual of the corresponding species overlooks the potential for environmental eDNA contamination from either the same or different species over time following the formation of the fossils; (2) The selection process involves only a limited number of closely related genomes as BLAST references, failing to consider the broader influence of numerous environmental species and neglecting to utilize all available genome sequencing databases; (3) There is insufficient consideration of the unreliability of BLAST results, particularly when the E-value is excessively high, rendering them outside a credible interval; (4) The oriDNA fragments that matched the Pan-genomes we identified did not display

"deamination," suggesting that this characteristic is not a necessary condition for the identification of oriDNA (Table S3A and S3B). Consequently, the genomes of Neanderthals, Denisovans, and several species assembled by Pääbo's team likely represent "mixed genomes." The belief that "deamination" is necessary for identifying aDNA/oriDNA is incorrect which has hindered the search for long-chain aDNA or oriDNA, which could offer more comprehensive genetic information. As a result, several significant flaws in the literature concerning Pääbo's research on ancient species should be addressed, and these works should be re-evaluated.

Genomic links between the *Lycoptera* and other fishes

The relationship between the genomes of ray-finned fish and their morphological development is not fully understood. The classification of these fish is mostly based on their physical characteristics. A study by Zhang concluded that *Lycoptera* belongs to the order Osteoglossiformes²⁵. Early researchers, such as Cockerell and Berg, suggested that species of the Cypriniformes order originated from Jurassic *Lycoptera* ^{26,27}, while Rosen proposed that they may have originated from Gonorynchiformes²⁸. The oldest known carp fossils date back about 60 million years ago. Carp fishes are found in freshwater environments worldwide, except Antarctica, South America, and Australia, indicating that their origins predate the breakup of the Pangaea continent. Molecular paleontological studies have provided valuable insights into the origins of carp fishes. Tao's research suggests that the genomes of carp fishes can be traced back to the early Jurassic period, around 193 million years ago²⁹. Over 75% of the more than 180 sequences of *Lycoptera* oriDNA in the present study align with the carp genome, indicating a genomic connection between them. Furthermore, the genetic relationship of *Lycoptera* with carp fishes and other native fishes requires further investigation. Although the total length of the oriDNA obtained in this study is limited, further exploration is necessary for a comprehensive phylogenetic analysis.

Decoding fossil DNA: Revealing parasites and prey

In the fossil DNA, the ID: 282 sequence (Table S3) corresponds to the 28S rDNA sequence of the class *Ichthyosporea*. These are flagellated microorganisms that belong to the Opisthokonta (unranked). This small fish parasite's taxonomic position lies between animals and fungi³⁰. Additionally, we have identified 4 DNA sequences corresponding to the *Macrobrachium nipponense* genome (IDs: 285-287) with a Subset Affinity value of 83.24%, of which 3 DNA sequences were highly divergent from the genomes of existing species. Two other sequences corresponding to *Penaeus vannamei* and *Rhynchothorax monnioti* (sea spider) genomes, both nonnative species, were hypothesized to be derived from close relatives in their ancient decapod relatives (Table S3A, ID: 283, ID: 289). Upon using 3D X-ray computed tomography to scan the fossils, we found no remains of other animals. This result suggests that these fragments originated from the parasites and prey of the *Lycoptera* and that they are oriDNA rather than eDNA (Figure S1). It also brings new insights for studying the evolution of them.

New mechanism for generating transposase-encoding sequences

Transposons comprise over 40% of the fish genome. The transposition process relies on transposase as a crucial component 31,32. According to Frith's study, the transposon sequences in modern genomes can be likened to "protein fossils" Their sequences exhibit significant similarity across various organisms, including prokaryotes, arthropods, and mammals. Transposons can introduce new DNA sequences into the genome. The discovery of 10 transposase gene fragments in the fossil DNA has uncovered a novel mechanism for coding region formation, termed "coding region sliding replication and recombination". This mechanism differs from

known conventional mechanisms such as horizontal transfer, vertical inheritance, and gene and chromosome duplication³⁴.

This mechanism comprises three distinct forms of coding: (1) initial sliding replication in a segment of the coding region, where two distinct fragments are generated by shifting the reading frame and then combined into a new coding sequence with coding fragments from other transposase genes (Figure 2A); (2) sliding replication followed by the creation of distinct fragments, which are then assembled in tandem with each other, or with other transposase gene coding fragments, to form the coding sequence of the new enzyme (Figures 2B and 2C); (3) "Indel" events occurring at a single locus: when an insertion or deletion of a base in a gene's coding region results in a shift in the reading frame, directly impacting the transcription process by DNA. Figure 2D suggests a "deletion-correction mechanism" within the genome that can utilize the coding region where the "Indel" has occurred to generate a novel transposase coding sequence.

В

Figure 2 Proposed model for New mechanism for generating transposase-encoding sequences.

A, Multiple fragments produced by sliding replication are spliced and fused with other gene fragments separately to form a new enzyme. B, the two fragments generated by sliding duplication were spliced together with other gene fragments to constitute the coding region of a new enzyme. C, the two fragments generated by sliding duplication are joined together and spliced with other gene fragments to form the coding region of a new enzyme. D, A site in the coding region of the transposase undergoes "Indel", but still passages clips to constitute the coding region of the new enzyme.

During the Mesozoic period, a significant evolution of ray-finned fish occurred, leading to the emergence of numerous new species³⁵. The genomes were able to generate a great amount of new transposase sequences through the process of "coding region sliding replication and recombination", without relying on external DNA input. This capability likely resulted in the rapid expansion and divergence of the genomes, contributing to the quick emergence of new species. Additionally, transposases can be integrated into the coding regions of functionally regulated proteins. For instance, the ID: 011 sequence, identical to Tcb2, was inserted into the growth inhibitory specific protein 2 (GAS2) gene of the ancestor of *Anabarilius grahami*. The N-terminus of Tcb2 and GAS2 share a common sequence of 52 amino acids and the C-terminus matches the conserved GAS2 sequence (Figure 3). These findings indicate that this translocation likely occurred before fossilization and is evidence of the early fish genome's evolution, and the pathway for expanding genome content. This also serves as molecular evidence for the early divergence of carp ancestral genomes.

Figure 3 Transposase sequence fused in the GAS2 coding region

We established a new protocol the "mega screen method" to select aDNA fragments. Using this method, we have successfully identified 243 oriDNA fragments from *Lycoptera davidi*, which date back to the early Cretaceous period, about 120 million years ago. The findings enhance our understanding of fossil DNA composition, set the groundwork for creating a DNA database of ancient species, and present potential avenues for bringing back ancient species. Additionally, they offer clear reference points for exploring the evolutionary connections between ancient and contemporary species. In addition, we have discovered a new mechanism for transposase gene formation, revealing the intrinsic dynamics of rapid genome expansion despite not relying on exogenous DNA input. We hypothesize that this mechanism is closely related to the swift emergence of new ray-finned fish species in the Cretaceous period.

Surprisingly, this research provides a new perspective on "Panspermia," the theory for exploring the origin of Earth life. Inspired by the study of extraterrestrial nucleobases in the Murchison meteorite³⁶, we propose the possibility that if rock fossils, such as the *Lycoptera* fossils, are transported into space, the DNA inside could potentially remain dormant, effectively and uniquely preserving life. Until these fossils land in a suitable extraterrestrial environment and release the contents, becoming the seeds of life, catalyzing the colonization of the planet.

References and notes

- 1. Orlando, L. et al. Ancient DNA analysis. *Nat Rev Methods Primers* 1, 14 (2021).
- 2. Pedersen, M. W. et al. Ancient and modern environmental DNA. *Phil. Trans. R. Soc.* B370:20130383 (2015)
- 3. Foucher, A. et al. Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes. *Sci Rep* 10, 10502 (2020).
- 4. Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. *Biodiversity and Conservation* 29, 2089-2121 (2020).
- 5. Miao, B. et al. Assessment of contaminants associated with gold-standard ancient DNA protocols. *Science Bulletin* 68:5-9 (2023).
- 6. Liang, R. et al. Genome-centric resolution of novel microbial lineages in an excavated Centrosaurus dinosaur fossil bone from the Late Cretaceous of North America. *Environmental Microbiome* 15, 8 (2020).
- 7. Briggs, A. W. et al. Removal of deaminated cytosines and detection of *in vivo* methylation in ancient DNA. *Nucleic Acids Res.* 38(6):e87 (2010).

- 8. Kjær, K.H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. *Nature*. 612(7939):283-291 (2022).
- 9. Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. *Geobiology* 11, 499-510 (2013).
- 10. Bomfleur, B., McLoughlin, S. & Vajda, V. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. *Science* 343, 1376-1377 (2014).
- 11. Yin, Z. et al. Nuclei and nucleoli in embryo-like fossils from the Ediacaran Wengan Biota. *Precambrian Research* 301, 145-151 (2017).
- 12. Bailleul, A. M. & Li, Z. DNA staining in fossil cells beyond the Quaternary: Reassessment of the evidence and prospects for an improved understanding of DNA preservation in deep time. *Earth Science-Reviews* 216 (2021).
- 13. Zheng, X. et al, Z. Nuclear preservation in the cartilage of the Jehol dinosaur *audipteryx*. *Commun Biol* 4, 1125 (2021).
- 14. Black, R. Possible Dinosaur DNA Has Been Found. Scientific American April 17 (2020).
- 15. Grabau, A. Stratigraphy of China. Part 2 Mesozoic. Beijing: Geological Survey of China 1-774 (1928).
- 16. Gu, Z. Jurassic and Cretaceous of China. Beijing: Science Press 1–84 (1962).
- 17. Su, T. et al. Development of nucleic acid isolation by non-silica-based nanoparticles and real-time PCR kit for edible vegetable oil traceability. *Food Chem* 300, 125205 (2019).
- 18. Lindalh, T. Instability and decay of the primary structure of DNA. *Nature* **362**, 709-715 (1993).
- 19. Fu, Q. et al., DNA analysis of an early modern human from Tianyuan Cave, China. *Proceedings of the National Academy of Sciences* 110, 2223-2227 (2013).
- 20. Wang, H. et al., 12 Human genetic history on the Tibetan Plateau in the past 5100 years. *Science Advances* 9, eadd5582 (2023).
- 21. Dabney, J. et al., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. *Proceedings of the National Academy of Sciences* 110, 15758-15763 (2013).
- 22. Mao, X. et al., The deep population history of northern East Asia from the Late Pleistocene to the Holocene. *Cell* 184, 3256-3266.e3213 (2021).
- 23. Bai, F. et al., Ancient genomes revealed the complex human interactions of the ancient western Tibetans. *Current Biology* 34, 2594-3605.e2597 (2024).
- 24. Zhang, D. *et al.*, Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau *Science* **370**, 584-587 (2020).
- 25. Zhang, J.Y. Phylogeny of Osteoglossomorpha. Vertebrata PalAsiatica. 44(1): 43-59. (2006).
- 26. Cockerell, T. D. A. The Affinities of the Fish Lycoptera Middendorffi. *Bull Amer Mus Nat Hist* 51, 313–318 (1925).
- 27. Berg LS. Classification of fishes both recent and fossil. *Trudy Zoologischeskogo Instituta* 5, 85–517 (1940).
- 28. Rosen, D. G., Anderson, S. & Weitzman S. Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform Fishes. *American Museum Novitates*. *Environmental Science* 2428, 1-25 (1970).
- 29. Tao, W. et al. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. *Sci China Life Sci* 62, 553-565 (2019).
- 30. Mendoza, L., Taylor, J. W. & Ajello L. The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. *Annu Rev Microbiol*. 56:315-44 (2002).
- 31. Etchegaray, E. et al. Transposable element-derived sequences in vertebrate development. *Mob DNA* 12, 1 (2021).

- 32. Tafalla, C., Estepa, A. & Coll, J. M. Fish transposons and their potential use in aquaculture. *J Biotechnol* 123, 397-412 (2006).
- 33. Frith, M. C. Paleozoic Protein Fossils Illuminate the Evolution of Vertebrate Genomes and Transposable Elements. *Mol Biol Evol* 39 (2022).
- 34. Gilbert, C. & Feschotte, C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. *Curr Opin Genet Dev* 49, 15-24 (2018).
- 35. Hughes, L.C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. *Proc Natl Acad Sci USA*. 115:6249-6254 (2018).
- 36. Martins, Z. et al. Extraterrestrial nucleobases in the Murchison meteorite. *Earth and Planetary Science Letters*. 270(1–2):130-136 (2008).
- 37. Gilbert, M. T. P., et al, Assessing ancient DNA studies. *TRENDS in Ecology and Evolution*. 20(10):541-544 (2005).

Acknowledgments: We extend our gratitude to the "Chao-Xiang Talent Program" foundation of Haining City, the support that covers the costs of fossil collection, DNA extraction, and DNA sequencing from 2020 to 2021. We extend our heartfelt appreciation to the following individuals for their invaluable contributions to this project: Dr. H. J. Zheng from the Shanghai Institute for Biomedical and Pharmaceutical Technologies, Dr. J. Y. Ma from the Nanjing Institute of Geology and Paleontology, at the Chinese Academy of Sciences, Dr. A. M. Bailleul from the Institute of Vertebrate Paleontology and Paleoanthropology, at the Chinese Academy of Sciences, and Dr S. P. He from the Institute of Hydrobiology, also at Chinese Academy of Sciences. Their stimulating discussions regarding the manuscript have greatly enriched our work.

Author contributions: The study was conceptualized and designed by W.Q.Z. and Y.Q.G. The fossils were collected and overseen by F.L. and W.Q.Z. The DNA extraction from the fossil was carried out by W.Q.Z., C.Y.Z., and J.Y.Y. Alignment between the sequences and present genomes was completed by Z.Y.G. and M.J.C. DNA laboratory analysis, interpretations, taxonomic profiling, and annotation were conducted by Z.Y.G., Z.Y.T., L.J.Z., S.J.Z. and W.Q.Z. Statistical analyses were performed and completed by G.Q.C J.H.G, and X.G.Z. Phylogenetic analyses of mitogenomic DNA sequences were performed by Z.X.Q., W.Z., C.J.Z., M.F.T., and D. W. under the supervision of G.Q.C. and W.Q.Z. Figures were designed and finished by F.L., L.Y.Q., T.F.S., and M.R.S. Project coordination was managed by T.C.Q. W.Q.Z., Z.Y.T., M.J.L., and L.Y.Q wrote the manuscript.

Competing interests: The authors declare that they have no competing interests.

Data and materials availability: All data is available in the main text or the supplementary materials.

Supplementary Materials Figures S1 to S2; Tables S1 to S5

Supplementary Materials for

Ancient DNA from 120-Million-Year-Old *Lycoptera* Fossils Reveals Evolutionary Insights

Wan-Qian Zhao 1,11* , Zhan-Yong Guo 2 , Zeng-Yuan Tian 1 , Tong-Fu Su 3 , Gang-Qiang Cao 1 , Zi-Xin Qi 4 , Tian-Cang Qin 5 , Wei Zhou 6 , Jin-Yu Yang 7 , Ming-Jie Chen 8 , Xin-Ge Zhang 9 , Chun-Yan Zhou 10,15 , Chuan-Jia Zhu 11 , Meng-Fei Tang 1 , Di Wu 1 , Mei-Rong Song 3 , Yu-Qi Guo 11* , Li-You Qiu 12* , Fei Liang 13 , Mei-Jun Li 14* , Jun-Hui Geng 1 , Li-Juan Zhao 11 , Shu-Jie Zhang 11

Corresponding author: wqzhao@zzu.edu.cn; guoyuqi@zzu.edu.cn; qliyou@henau.edu.cn; meijunli@cup.edu.cn

The PDF file includes:

Materials and Methods Figs. S1 to S2 Tables S1 to S5

Materials and Methods

The experimental procedure for the wet lab

X-ray 3D photography: The fossils originated from Beipiao City, Chaoyang City, Liaoning Province. They underwent a cleaning process involving tap water, deionized water, and precise cutting. Subsequently, the complete fish fossil underwent 3D X-ray scanning using a Zeiss Xradia 620 Versa scanner (Carl Zeiss AG, Germany) to ensure the absence of co-deposited species. The initial scan was conducted at a resolution of 45 μm to capture the overall structure. Specific areas such as the head, thorax, tail, and periphery were scanned at a higher resolution of 6 μm for detailed examination. The ZEISS 3D Viewer software was used to examine and reconstruct 2D orthogonal slices of the scans, helping to identify any additional species present in the scans and reconstructions.

Method for evaluating the internal volume ratio of fossils

After cleaning the fossils, dry them in a dryer (56° C, 72 hours) and weigh them (W1). Immerse the fossils in pure water for ultrasonic treatment (10 W, 2 hours). After taking them out, quickly wipe off the attached water and weigh them (W2). Immediately put the wet fossils in a graduated container and immerse them in water. Calculate the total volume of the fossils (V2) by reading the increased scale.

Internal volume of fossils $(V_1) = (W_2 - W_1) \times$ density of water Internal volume ratio of fossils = $V_1/V_2 \times 100\%$

The internal volume ratios of four Lycoptera fossil samples are 10.8%, 10.4%, 11.3%, and 10.8%.

DNA Extraction, DNA Library Construction, and Sequencing

The procedure was conducted in a BSL-2 industrial laboratory (Biosafety Level 2), following rigorous ancient DNA extraction protocols³⁷. The process involved UV sterilization of all items used and the utilization of Geobio[®] DNA Remover (Jiaxing Jiesai Biotechnology Co., Ltd., Jiaxing, China) on clean benches and solid equipment. It is important to note that this laboratory has never been exposed to fish, non-human primates, or plant samples before this work.

The stone was cleaned with tap water and deionized water, and the surface was clean. Immerse it in Geobio® DNA Remover for a few seconds and then quickly remove it and soak it 3 times in deionized water. The stone was washed with deionized water to remove additional detergent solution. After drying, the stone was cut into $10 \times 10 \times 5.0$ (cm³) raw materials, and the multilayered stone was divided into single layers approximately 0.8-1.2 mm thick. The textured portion of the fish was scraped off and the dropped particles were collected in a clean tube. Scrape off the contoured portion at least 1.0 cm from the textured portion and collect the dropped particles in a separate tube. Harvest the same weight of fine powder from the non-textured (coffered) portion of the fossil at least 1.0 cm from the textured portion. Use a set of mortar and pestle and a mortar and pestle to grind the small particles into a fine powder. Fossil DNA was extracted from the above fine powdered material using the Geobio® DNA (Solid State Matter) Extraction Kit (Jiaxing Jiesai Biotechnology Co., Ltd., Jiaxing, China) 17 .

During long-term geological evolution, some *in situ* DNA molecules within the fossils undergo cross-linking reactions with other macromolecules (e.g., proteins and polysaccharides) as a result of the action of physicochemical and biological factors, to assess the concentration of the extracts,

we examined the optical density (OD) values of the DNAmix, which contains both DNA-linking complexes and free DNA molecules, at the peak of the UV 260 nm. Five replicate extractions were performed on the textured portion of the sample and two replicate extractions were performed on the non-textured portion, so-called the cofferdam portion (Table <u>S3</u>).

The DNA extracted was repaired using NEB PreCR® Mix (M0309S). Next-generation sequencing (NGS) DNA libraries were prepared following the SSDLSP standard program (Sangon Biotech, CORP). Sequencing was conducted on an Illumina NovaSeq 6000 (S-4 kit) using the "Dual Label Sequencing" standard procedure. The reads met quality control standards and exhibited a satisfactory quality distribution. Occasionally, it may be necessary to manually remove excess adapters from both ends of the reads (sequences) to obtain accurate information. Combining forward reads with their corresponding reverse reads resulted in 1,259,658 paired sequences for the fossil textured portion (including 757 unnamed sequences) and 635 sequences for the fossil non-textured potions (cofferdam).

The experimental procedure for the dry lab

The mega screen method consists of two main steps. First, we employed the "minimum E-value mode" to group sequences by aligning fossil DNA with known sequences from the NCBI database (Version 5, Nucleotide Sequence Database). We applied an E-value cutoff below 1E-07 to filter for qualified sequences (QS) and identify the best match at a specific taxonomic level. In the second step, we used the "MS mode" by selecting the "exclude" option to conduct a search that omits the top result. If the E-value difference between two search results at the same taxonomic level (species, genus, family, order, and class) exceeds 1E-02, it suggests that the test sequence (query) belongs to the species identified in the first search result, indicating a unique origin. Conversely, if the difference does not exceed this threshold, the sequence is shared between two taxa and is not from a single lineage. In this study, when multiple hits involved both our target species (Actinopterygii) and environmentally dominant species (preDNA), and there was not a significant difference in E-values between them, it was impossible to confirm the true origin of the sequence. As a result, we had to abandon the test sequence without drawing any further conclusions.

In addition, the "mega screen method" can also be used to uncover relationships among similar sequences found across various genomic organisms, offering valuable insights into patterns of genome evolution.

The whole process involves the following steps:

- 1) Nucleotide Blast is employed to align sequences to the entire NCBI database without any limitation.
- 2) Creation of subsets for sorting the sequences: Using the "minimum E-value mode," results are matched and sequences are grouped into the appropriate subsets, determining the total number of sequences (TS). Subsequently, an E-value threshold of < 1E-07 is established to filter for qualified sequences (QS).
- 3) The subset primarily containing ancient DNA (aDNA) is selected.
- 4) Each sequence within this subset is screened individually using the "MS mode" to identify those originating from a single lineage, categorizing the "unique" sequences.

5) Considering various factors, including local climate shifting, geological changes, and evolutionary principles of the host species, we can ascertain if the sequence is oriDNA.

Sequence affinity (Affinity): This metric measures the similarity between subject sequences and hit genomes. It is calculated by multiplying the values of Identity and Cover obtained from NCBI Blast and then converting the result to a percentage (Identity × Cover × 100%). Mutations in the genomic and mitogenomic sequences occur continuously during the evolutionary process, leading to significant sequence differences between ancient and modern species. However, this variation is smaller in conserved sequences than in non-conserved sequences. A high-affinity value indicates that the sequence is highly coherent and related to the genome of the modern species, which is likely to be either a conserved sequence or a modern eDNA. A low-affinity value indicates a low similarity, and the sequence may be from either a distantly related species or other modern species that have not yet been sequenced. It is necessary to consider various factors, including the sequence composition and conservation, host species information, host genome sequencing data, etc., rather than relying on the Affinity value alone, when determining whether a sequence is an oriDNA.

Subset affinity: This metric refers to the average of the sequence affinities of all sequences in a subset; it indicates whether the subset consists primarily of aDNA sequences. High values (close to 100%) indicate that the DNA sequences in the subset consist mainly of preDNA.

The percentage threshold for subset affinity (Affinity Index): The number of sequences within a subset that exceed a certain threshold as a percentage of the total number of sequences. In this study, we set the thresholds at 90% (indicating limited similarity between the sequences and their hit genomes) and 97.5% (indicating high similarity between the sequences and their hit genomes), respectively. This metric reflects the closeness of the relationship between all sequences within a lineage subset and the modern genome. For a subset, a low value indicates the sequences are mostly ancient (aDNA), while a high value indicates that the sequences are mostly recent (preDNA).

Fig. S1. Selecting for the fossil oriDNA using the "Mega screen method".

Fig. S2. 3D X-ray scanning the Fossil Fish.

Table S1. Sequencing reads and their matching lineage genomes

	Textured parts					Surrounding parts			
Organisms	TS	QS	Aff 90%	Aff 97%	П	TS	QS	Aff 90%	Aff 97%
Prokaryotes	674472	597813	68.48%	61.12%		333	259	54.83%	54.00%
Fungi	26852	19372	60.91%	51.96%	\prod	15	9	77.78%	66.67%
Algae	1201	571	14.54%	8.41%					
Bryophytes	366	186	90.32%	84.41%	$\ $				
Gymnosperms	513	442	11.54%	5.20%	11				
Angiosperms	30211	20241	50.46%	39.79%		18	12	0.00%	0.00%
Protozoa	3913	2874	88.27%	78.84%					
Nematoda	1512	837	18.52%	8.12%][
Mollusca	1248	51	3.92%	1.96%	$\ \ $				
Platyhelmintha	881	406	79.56%	73.40%	$\ $				
Arthropoda	19747	2591	44.46%	41.14%][11	11	18.18%	9.09%
Decapoda	588	63	3.17%	3.17%					
Ray-finned fishes	11313	693	8.51%	4.91%					
Amphibians & Reptiles	1113	33	15.15%	12.12%					
Homo sapiens	127977	127656	94.78%	91.56%		187	187	89.30%	83.96%
Livestock	2812	2167	59.07%	45.82%					

TS, each subset's total number of sequences; QS, the number of qualified sequences.

Table S2. Some characteristics of DNA sequences in the ray-finned fish subset

Markers	Homo s	sapiens	oriDNA		
Walkers	Mean	SD	Mean	SD	
Length	135.65	23.8	139	21.28	
Per Identity	98.32%	6.46%	68.65%	21.05%	
Query cover	98.82%	6.08%	77.02%	23.37%	
Subset Affinity	97.15%	0.39%	52.87%	4.92%	
Gap(s)/Sequence	0.00	0.27	2.25	2.70	
GC%	42.05%	9.73%	44.68%	11.00%	
QS/TS (%)	99.70%		6.14%		

Table S3A. DNA sequences of the ray-finned fishes and the food web symbiotic specie

ID	Len	DNA Sequences
1	101	TGCATATTTCATTAAAGTCACCAGTGGAGGTGGGAAAGGAGTAGGTACAGCTCTCAGGGGAAGTAAAGGTTG TTTAGCTCAAGTGAATGTTACAGGAGCTG
2	111	GGGATCATTACAAGATTGTTCACTTAGCATAAGTTTTTGGAGCTCATCTGAGAAGATGCCTCACTTTACCAAAG GTGTGTGACGGTAATAAAGGAAGGTGGCAAATGTAGCA
3	149	GACCAAGCAGAAAGAACCGACCAAAAACTGAACAGAACCGACCAAAACTGACCAAAAACCGACAAAAAAAA
4	133	TTTTATTCCTCAAAAATGAGTCTTTGTAAAAAAAAAAAA
5	96	ATTGTGAGTCCTTCAGCAGTTCACAGATATCACTTCTCGTTCCTTCTCCATTGGGCAACCTGGCAGCACTGTCA TGGACTGTTTCGGAATCAGAAG
7	74	GATTTTTTGGGGTTCATCCGCAGGTTGGACATCGGGATTTTTCGTTTCTTCCAAAGCGTGCGT
8	97	GCCGTGCGCGATCTGCAATTCAAGCCGCTCACGTCCGTTCCTGTGAGCCCTGTGACCCCTGTAACCCCTGT GACCTCTGTGACCCCAGTGAGCA
9	181	GTCAACACTGAAACACAAATCAGCTCGTCAGTTACTACAGCTCGTGAGCTACTACAGCTCATCAGTTACTACA TCTCTTCAGTTACTACAGCTCGTTTGTTACTACAGCTCGTCAGTTACTACAGCTCGTCAGTCA
10	125	CAAGGTTCCATCTGAGCTAAACACAAAACATGTATTCAAAGAAGAAAAAAGGAATTTCCCTGAGCTATTTTT GCACATTCAACAAAAAGATGATCACACGTGTCATGCAAAAGAAGCACAATAT
11	269	ATATTGTTCAAAAATCTGTCTAAATCTGTGTTAGTGAGCACTTCTCCTTTGCCGAGATAATCCATCC
12	125	TGAACTAGTGACCTCATGAAAACATAGAAATGCTTGGTGGAATGACTACAAGAACATTGGCTTGTTGGGAAC ATGTTCTCTTTAACAGCAACACCTATAAAAGCCTCCTCCTTCAAGCCATTTTG
13	104	ATCGGTGACTGTATATGAAGACGATCACTGACTGTATATAAAGACGATCACTGATTGTATATAAAGACGATCG GTGACTGTATATGAAGACGATCACTGACTGT
14	68	TGTTGAATAAAAGTTGCCATACTACCAAAATGCCTGGACGCAATTAGATAGA
15	164	AAAAAGATGACAACGATCAAAAGCTGGATTTTGTGAGGACGTGTGTGT
16	163	CCTTCATCATTCCTCCTCTTCCCACACACGGTTTCAGCTGACAGTGGGGTGCTCTGGACTCCACTTACA GCCTCTGTGCGGCGGGTAAATACGAGAGTTGTTAATAATAATTCTGACCTTATGTTTTAATTTATTCCTCTATC ACAGTGATCCCCAA
17	231	GTGTGTGAGTGTGTGCCCTCATGCTTCACTCTCACCTCGTCTTCAGGGTGGTGGTTGGT

18	72	A TACAGCATGACTGGGCGGTTCTTCTGATTTCCAGTGTATAGCTATACATTTCTTTGCTGCTATCAGAGCCA
19	150	AAAGACCACATGTGCAGTATATGTTGTCCTTTTTCATACTATTACAGCAGTATGTAAAAGGGACAAAAGAAA ATAATCACGAGGATAGAAAGCAGCGACTGAAAAGAGCTTTTGCCGTAGATATTCTTGTTATAACATGTGTGGT
		CTTT GCCTTCAGATCATCTGTATATTGTTGGATCGACTGTTTCTCATCTTTCTCTTGAAAATATCCCATAGATTCAGGT
20	264	CAGGCATATTGGCTGGCCAATAAAGCACAGTAATATCATGGTCAGCAAACCACTTGGAAGTGGTTTTTGCACT
		GTGGGCAGGTGCTAAAGTCCTGCTGGAAAAGGAAATCAGCATCTCCATAAAGCTTGTCAGCAGATGGAAGCA TAAAGTGCTTCAAAATCTCCTGGAAGATGGCTGCATTGACTTTG
21	96	GTGTGTGTGTGTGTGTCTTCAGATATACCCTACATTATTGGGACAAAATATCCCTACTAATATCTGAAATTGT TCACCTTGTGGGAACATTTTTT
		GTTAACTCCACATCAGCTACATAAATTCATCAACTAACCATTCAGAAACATCCTGTTGCAATCTACATGTTGTC
22	282	ACTTCTTCTTAAATCTCCCATCATCGTCCGATTCCGGTTTGAACATAAAAGGCTGAACAGTTTCTGACATTTT CAGTGAGCCTGTGTGAGGTAATCGGAGGTGCTAAAATGAGCTCTTGAAACTCTGTCCTCTTCTTGGGAGCAGC
		AGCTCATTTGCATTTAAAGGGACACACAAAATCTGAGTGTTTTTTGCTCACCCTCAAAAAGT CTACTAAAGACATATTTAAAACAGTTCATGTGACTGTTATGAAGTGACAAGAATACTTTTTGTGCGAAAAAAA
23	128	AAATGGCTTTATTCAACAATATCTAGTAATGGGCGATTTCAAAACACTGCTTCAT
24	149	AAAGGAAAAGAATTGAAAGTGGGGGGAAAAATCACATTATGAAATAAAT
		CT GCAATTATTTAAGACAATTCTCCTAACCTTTTTGGCATAAGGAGGACCTATTATGCCCCCCATCATATAAGTCT
25	276	CTGATGTCCCCAGAATGTGTCTGTGAAGTTTCAGCTCAAAATACCCCACAGATCATTTATTATAGCTTGTCAAA
23	270	TTTGCCCCTATTTGGATGTGAGCAAAAACACGGCGTTTTTGTGTGTG
		TGTTTGTGTACACATACACACATATATAAAAAATTCCTGTTTGGATTTAAATAGGCATATAATATACTTAAGAGT
26	264	CTAAGACTGGATCATTATTGCAGTGATTATTATGTTTCTAGTATGTTATATGGTTGACAACAGTTATTCTAACC CTGACTGATGGAGTGTGTAGCTTTTCATTTCTTTAACAACCATGTAGGAAGTCAAATTGTTGCCATATTCCAGG
		ATGACAATGTCAAGATTCCACAAATAGTGAAAGAATTGTTGG GAATATCTTCTCCTCCCTCTTGCAGCATCTCTTCTCT
27	240	TGAGATCCACCAATGGCAAACCACAAACATCCAGACATCCAATCAAT
	2.0	CCTACATTTTTCTTGTTAGAGAAGGCATAGGGAAAAAAAGGCTATCACAACTTCGATTCCATGCCCACTTTAA AGGAACAACAGCATTTGTGG
28	103	TGTTCGAACCACCCACTCTCTAAGTGGGACTTGAACCCAGGTCCACCAGCATGGGAGTCAGGCACTCCAACAA GGACTCTAAAGACCGCAGTCTTTACACGCA
29	133	GATGAAATGCCTTTCCGTACCAGCAGATGGCAGTAGCTGCACAGCCAATCAGAATGATCAGATGGCCCGATG
2)	133	GACCGACGAGCTCCGACGCCAATTCAACATGTGGAATCGGCCGGATAAAAGCCGACAAGGA CATCGACACAACAGCCAGTGGCACAGCTCCTCAACAAACCGTCCATACCGGTGTGATGAATACGATCCTCAAC
30	276	TGGACTGAACTGGAATAAATACTTTGAATGTTGCGATCCTATCAGACATAAGATAGCAACCTGAATCGTAACA
		AAGCACTGTTCGCCAGAGGAGAACTGGCCCCCCGACTAAGCCTGTTTTCTCCCAAGGTTTTTTTT
31	100	TGACGATTCATCTGACCCAGCTGCCCAGTCCATACTAAAGGACCCTCTTGGCGCAACCGAATTTCAGCATCCT CCAGCCCAGC
		CATCTTGGTTAAAGTTTTAGTATTTGTTTCCATGATTAATGTTTTTTGACATTTTTAATAGTTTCTTTTATACATAT
32	179	CGTCGCTGTCAAAAACCTCAATTTGAAGCTTGATTTTGGTAATAAGTGTTAGTTTCTGTCATTAATTCCTCTCCC TCATGTCGTTCCACACCCGTAAGACCTT
33	189	ACATCCCATCCGCTGGGTTAAAACAATCCAATCCCTGGGTTAAAACAACTCTATCCCTGGGTTAAAACAACCC ATTCGCTGGGTTAAAACAACCCATCCGCTGGGTTAAAACAATCCAATCCCTAGGTTAAACAACCCAATCGCTG
33	109	GGTTAAAACAACCCAACCACTGAGTTAAAACCACCCAATCGCT
34	184	CAGAAAAAGTAACTAACAGTTTACACTTTCTTCGTAACTTCAATATGGAAGGCGGTCTGGCGGAAGCTACATA TTTTACTTCATAACTTGTTAAATATGGATATTTTACACAAACGCATTGCTTTGCTTCAGAAGGCCTTTATTAACC
		CCCCGGAGCCGTGTGGAGCACATATTTATGATGGAT TGTCCCAGGTGAAAAAAAAGTGCATTTCAATAATGTACTTAAAGTGCTCTATTTTCACACACTAATTTTGTACT
35	146	TAGATGCTCTTAAGATTATCTTAAGAAGTACTAAAGAAGAATTTTTAGTATATTAAGTACAAAATTAGTGTG
36	169	TCATGATATTACGTATTAGTATTGTGCTCTCATCTAACTTGAAGAAGGGGCTATTTTACAGTACTTTTCAGTTC GTAATATTTAATGCTACAACATCTACGCACTGCACT
		GTTGTAAAATTACATTTGAGA
37	156	ACCAGCCACTTACTTGCATATATTTCGGGAGAAACTGATGAATTCACATGCTGTAAATCCGACTGACAGGACT CTGTGAACTGCAGCGCAAACTAAGATGGCGGCGCCCATCTCGCATTATAGATCAAGATAAAGATCGTTTATAA
		AGGTTTTTAA CATGCCGTTCCACACCCGTAAAACCTTCGTTAATCTTCGGAACACAAATTACGATATTTTGGTTGAAATCCAAT
38	194	GACTCAGTGAGGCCTCCATAGCCAGCAATGACATTTCCTCTCTCAAGATCCATTAATGTACTAAAAACATATTT
		AAATCAGTTCATGTGAGTACAGTGGTTCAATATTAATATTATAAAG GTTTCATCATATGCGTGCTCCTGGGAGCATTTTAGGCAGAATTGGTCACTTTTGCATGAAAAGTTACATTGCCA
39	149	CTAGAAATATGCTATTCTCACTCAGAAACGCTGTTCTGTGCTAGATATGCTTTAAAACAGCTAGTTTCATCATA T
		TTTCTTCACTCGAAAAGAAATTAAGGTTTTTGATGAAAACATTCCAGGGTTATTCTCCTTATAGTGGATTTCAA
40	225	TTGGCCCCAAACGGTTGAAGGTCAAAATTACAGTTTCAGTGCAGCTTCAAATGTATATGCTTTATAGTCACAA ATGATCGCATCACAAGTGCTTCCACCAGACCCCGATTCTGTATTCTTCAAAAAGCTTACACTGAATGTCCTACA
		CCTT

41	203	GTTACTCAATTATGTTGTTAGAGAGTCCTAAATAGAATCACTCCGGTTCTATTGTCCTGAAGTCAATGGGGTTT TTTTTACTGGGTTTTTGGTTAAAGGTGGGGTAAGCCATTTTTCAAAAATGTTTTTTGAACACTGTTGATATTTGA AATCAACCCAAACAAATCCACCCCTCTTTTCTCATTGCTCTGCCTTCAAAACTCA
42	225	TAAATGTTCATTTAATAACATATTAATGTTAATTTCCAACATATTTGGGTTCATTTTAAGCAACAATACAGTA ATTTTTAAACAATATTTGGGTTTTAAAAAAAACTACCCAGCACATTGGGGCAAATATTTAACCCAACCGCTGG GTTTGTCCATTTTCAACCAAACTTTTAGAGTGTACAAGTTCGATTAAACCATTGAAATATGAGGAAAATATTTT TATA
43	269	CTAGCCCGCAAGGTTATGATTATCGACACAATCCTCGTCAGAAAGGCAAAGGGGGAGGTGTTGCTGTAATTTA TAGTAATATTTACAGTATTAGTCAAAAGTCTTCCAAATATAATTCCTTCGAAGTGATGGTGCTTTACGTAACAT TATGTAAGTTGACATTTGTGCTGGCTACTGTATACAGGCCACCAGGACACCATACAGACTTCATCAAAGAATT TGCTGCTTTTCTTTCAGAGTTAGTACTAACTGCAGATAAAGTCCTTGTT
44	207	CCTTTCCCTTGCTGGCCTCCGTAACAGACAAAGAGCTGATCTGAGGTCCTGAAGCTTCGGGTTCTGTCCACG TACAGGTGCAGAGCCGGACGGGACAGAGCAAAGCTAGGGCTGGGTCTGCCTCCTCCGAAGGCAGCGCTTGC AGGTTCACTACCTGATCTCGAAAGGGAGTAGTAGGAACCTTGGGCACATATCCAGGCCGGG
45	239	TTCTCAGGCACTCTTTACTTAAAGCTGCAGTCCGGAACTTTTTTTT
46	216	ATACTAATAAGCAAAAATGACTTTAGATTAGATTTAGAAAGAA
47	171	TTTCCCAGCATGCTTTGCTCATGACACTCGAAAGGCCCATGCAACTGATTGCCTCAATTTTTTTGAGTTTTGCC AACTTATTCAGGTTTACAGTGT
48	91	ATAATCATGGACATGATTCGAAAAGGTTAAATGGGCCTGAAAACAAGTTACACTTGTGCTCCTCCCTGTCAAA AATGGCACATTGGAAATG
49	184	GAAAAGGGGGTTTCGGGCCAGAAAAATTGTTTCAATATATCTCCAAAAAGGACAGATGAGAGAACCAGGAGT TTAAGCCCCGGGTATACTTCGGCCGTCTGCGTTTGTGAGTAATTTCGGGACCGCGGGATGGTGCGCGTGCAA CAGCGCATGCGCAAGCAGGACAGAAGAGTACACTAGGTG
50	186	TGGAGGCCTCACAGAGCCATCGGATTTCATCAAAAATATCTTAATTTGTGTTCTGAAGATGAACGAAGGTCTT ATGGGTGTAGAACGACATGAGGGGTGAGTAATAAATGACAGAATTTTCATTTTTGGGTGAACTAACT
51	131	CTGGAGTTGTGTTTACCTAACGTTAAAAATAAGCGGGGCAGCAGAAATCTGCCCCAATGGCTCTCTTTGAGA GCGCGCTGCAGTTCCATTGTACACCACAGATTTACATAGGAAAGTTGTGGGGCCGCTGT
52	176	ATGGCGTAATAATGTAACTTCTGTTGCTGTTCACGGTCAGGGACTAATTTTTTTCCGGCGGTAGGAATGTATTA GTGAAAATGTACTTCATGAAAGTTGCATTGATATATTTTTTGGCTTTAATATTTTGTATTGTGTGGTAACCGCTTC GCATCGTGCCTAACGACAGGGAACGACA
53	210	CGAGCAGAAAAACAGCATTTTTCATGGACAAAGGAAAGG
54	157	CTCGTCAACATCACTGACTGACCTCACAAATGCGCTTCTAGAAGAATGGTCAAAAATTCCCATAAATACACTC CTAAACCTTGTGGAAAGCCTTCCCAGAAGAGTTGAAGCTGTTATAGCTGCAAAGGGTGGGT
55	149	GGAGAAGAGTAAAATTTAGCTTCAAAATCAATTGAATGTTTTTGTCGTGTGCGTGTGAGAGCACTGCTAGCATT CATTTCACTGTAAGACAGGAAAAGAGGAGCTGTCTGTGAGGATGTTGACTTTTTCCTTCGCTGATTTAATGACC TG
56	250	ATAGCAATGCAACTTATATATTTCAGGACATAATTAAAGCATCAAAACATTTAAATGCATTGAAAATCAGAGG GAACTCATATGTTAGAAAGTTTATGTGAATATGAGTAACTCAAGAGCTTAAGCTTTGAGGCTTGGACGGTACT CATTGCTGTCCACAACAGCCTTCTGTGGTGTTAAAGAGTAAAAATACCACTGAACTCAAATCCCTCTCAGAAT
57	140	TTCTGTATCCGGCATGTGTTTGATTTAACCA CATATTTAATGTCCTGATGAACGCTTCCACCTGCTGACACAGGAAAAGTGACAGAACAATACACCTCCCAACC CCCTCCATCCCTCCGTCCAGCAGCTTCAAAGCCCGTCTGCCCGGAACATCGCCATCATCAATCCAGA
58	143	TAATGACTTCACCCTTATCAGAGTTCAGTGAGAGTTCAGGGAATGCAGAGTTATTCCCTAACATTCATCCACA ACATAAAGCAGCATTCACAGCTTAATCATTCACTTTTGGTGCAGAGGAATCTTAAAATGCAATTTACAAT
59	133	TATTTCAGTGTCACATGATCCTTCAGAAATCATTCTAATATGCTGATTTGATACTCAGTTATTATCAGTTTTTGGA AACAGTTTTGCTGCTTAATATTTTTTTTGGAACCTGTGATATTTTTTTCAGGATTCTTT CATGCTGATACGGATGAGGTGACTAAACACACATACAGTACTTATGTAGAAACACAAATGATGCCCGTATAATCT
60	154	CCAAACACCAGTCTTATTCAGTTCAGGGTGTATTATCAAAGAAAATACCACCACTTTTTCATATTTCATGAACT TTAGCAT
61	153	GGATTGAGATCTGGAGAATTTGGAGGCCAAGTCAACATCTCAAACTTGTTGTTATGCTCCTTAAACCATTCCTG AACCATTTTTTCTTTGTGGCAGGGCGCATTATCCTGCTGAAAGAGACCACAGCCACCAAGGAATACCATTTCC ATGAAA
62	93	ATTTAAATCAGAGTAGGTCACAAGGCCAAAGCCTCACCATCAGTTTGAAGAGCCCCTCTATTGATCACAGATA AAATCAAGGTAAAACCATTG
63	166	GCAGGCCCATGACAGTGAACTGGGGCACAAAGATGCACTGAAGATCCTCCCCAACCTGATCATTTGTTCCAGA AGTTTCCGTCTGGCAGATGTTTCAAGCAATCCAAACCAAGACCAACAGACAACCGCACTGCCAACACTGTACA CATTCACATACATATATTCA
64	78	AAACAGAGAACCTGCAGAATGGAAACGATCACGTAGTCTTCTTTCCTGGAGACATTCAGGTTGGTGCATGTCA TCAAT

		TGTAATTCTTGCTCTTTTTCTCTGCATCTCAAGCACATTATTTCATTCA
65	177	TGCCTTTCAGCTTTCTGGCCACAAAGTCTCTGCTGTTGCTTCTCCGTTCTTTCT
		CTCATTCTCTTTGTCACTGAACCAA
		CGACGCAAAATGCACTGCGCACCTAAAAATAAATATGTATAAAACGATGTTGATTTTTTTT
66	150	TAAATCTTTCATGGCTTTCTACTACATATTTCTGTAAGAGACATAATTTACGTTATATTAAGCCATACAAGTCT
		CA
<i>(</i> 7	1.65	ACACAACAGGAAATAGCTCCATGTTTTTCCTGGGCGAGAGGGGCCAATAACTGTCACTTTAGTTTAGATGGC
67	165	TCGAGCGCAGTGGTCCAATGTCTGTTTAACAGCTTGGGTTGGAAACTTCTGCAATTAAAGAGTCCATGTGCAC ACGGAGATGCACTTCCCAG
		AACCTATGTTTATAGACCCTTTTACAGCCCACGTAATCAAATAGTCACGCGTGCATTTTGGCAACGGAAGTGG
68	171	TGTTGTTCCCCAGTGGTTCTAACGTATTCATAAACATCCAGTGATTTATATGCTCGTAATTTCTCTCGGGTGTAC
00	1/1	ACGCTCGGTTTCTCAACTAAATA
		GATGACCGAAAATCACCTGGTGAAGGACTTTTATTGACAACTTGCGAGCAGCCAGC
	225	TGAAGTCGCCTCTGTGGATCGAAACTGATGGAGAACACCTGTCCTCCCATGTGTAACAGGCGTATGCTAGTCA
69	237	GAGCTGTGCGAGTAAACCTCACTCCCCGATCTCAAGAGATGCTCTAGCGACTGACGCTAGAGGTTGCAGCCTT
		TAGCCTCTGTGTTAGAGT
		AGTCATTTAGTCCACAGCATGTTAGTTCATTAGGGAAATGAACCTAAGAGGGGAGCTAAATTTCACTAAATAT
70	167	ATGCACTATATTAGCTTATATTCATTATATTTACTTCACCTGTTAGTAATGTCTTAATTATTTAATATATGTT
		TAAATAAATTTGTCATAAA
		TGTCATGATCAGACTATCACATTGTTAGCTTAGCAGCAAGCTAACACCGAATTGGTGCAATTTTTTTT
71	181	AAGGCAAGCACAAATCCCACCTGCAGCTTATTTGTTTGGTCAACATGACCACTCAGTCACCTGTCAAGAAAAG
		TTCAGACCTCATGGATTTCAGAAATATAATGGAT
72	123	ATAAAGTAGTTTTCATTTGCGCATTTCGGCAAATTTAGCAGTTCAGTCCGTACATACA
		CATTACTACTCTTTTTGTAAATCAGTAGGTGGTATGGTA
73	115	GTATGTTATGTTAAGTTATTTAACTTTAATGGCAATTAAT
		GACTATGTTGAAGTTATTGAAGTTTAATGGCAATTAAT
74	134	GACAGGAAGAGAGACAGCACAGCTGTCTTTACAAATATGTTCAGCTGAGTCAACACAGGA
		ACTGTCCCTTAGAGCACACACACACACACACACACACACA
7.5	260	TTACAAGCGTAGCTCATTGGCACTGCACTCGTCCTTCTTACCATTATCTTTCCATCTGAACTCATTCAAAGTAA
75	260	GTCCAGCGTAGAAACATTAATCCTCAAGTTATTCCAAAACAGTTTCTTGCCATCCTGCTCATCATTTTAGCGCT
		TTGAAATGTGGGCTAGTTACACAAAGCCCCATCAAGCCT
76	134	TCATGTTGTTCCACACCCATAAAACTTTCGTTCTTCTGGAAGACAAATTAAGATATTTTTGATGACAGAATG
70	134	CTGTCAGATTTTCTTCCATTGACTGCCTTTGCAACTACCACTTTGACGCTTCAAGAACTT
		GGCGTTTAACAGGGGCATGGGCAGCTCGGGAGCTCAGGGCTTCGACTACGGCATCTCCAACAACAAAGGTGA
77	274	GAGTAAAGATCTGGGAGAGATAGAAATAAAATGTGATTTATTATTGAGTGACGCTTACATCTCTGTTTATATG
		GTTACAGTCCACCTGCCAAATGAACATTTTTTTTTCATGCCATGCTCCTGCTAAATATCTGTCATATTTAATCAG
		ATATATCTTGGTAGTTTATTGCCATATACATTCAATTGATTTCAATCCAATGGTG GTTGCCTTTCACTGAAGGGTCAGTTGAAGTCAAATCCTGTGTTCTGCTTAAGGTCACACTGATAGAAGAGACT
78	218	CATTGTGCTCAAATAGAGAAATACTGAGAAGAACTGTCACTCAC
70	210	AAAACAAGTGCTTCACAAAACCTGTTTATTTCCTCACGCTTTAAGCAGACTGGTCAGGATGCTGTGGCTCAT
		ATGAGCCACAGCATCCTGACCAGTCTGCTTAAAGCGTGAGGAAATAAACAGGTTTTGTGAAGCACTTGTTTTT
79	217	ATTTAAGGGAGAGCTTTTTATTAGTCGAGTGAGTGACAGTTCTTCTCAGTATTTCTCTATTTGAGCACAATGAG
		TCTCTTCTATCAGTGTGACCTTAAGCAGAACACAGGATTTGACTTCAACTGACCCTTCAGTGAAAGGCAA
		CTGAGGCTGGGGTCAAGGCATCAAGAGCCACCACACACAGACGTGTCAAGGAATTTGGCTACAGTTGTGGTA
80	249	TTCCTCTTGTTAAGCCACTCCTGAACCACAGACAATGTCAGAGGCGTCTTACCTGGGCTAAGGAGAAGAATAA
00	247	CTGGACTGTTGCCCAGTGGTCCAAAATCCTCTTTTCAGATGAGATCAAGTTTCGGAAACCAAGGTCCTAGAGT
		CTGGAGGAAGGTGGAGAAGTTCATCACCCA
0.1	1.62	TGAGTTATAAAGTCAGAATTCAAAGAAAAAAACAGTCTTTTTTTT
81	163	AAGTTTATATCTCACAATTCTGACTTTATAACTCGCAATTGTGATTTTATATCTTGAAATTTTGAGAAAAAAAG TCAGAATTGTGAGATA
		GAAGCCCACTAACTCTCATTGATTTTGCTTCAGTGTCTCTTTATTGAAACTTTATCAGGTGGATCTGAGCGCAT
82	144	GGAGAGGGAATCCGGAACGAGTGATGAACTTTTCTGTCTCTCCTCCTCATGCGTACACCCCGCTACATCG
		TGGAATCGAGATGAGGGCATTTCAGGGTACATGAAAGAAA
83	218	CAGCACTTCATAAAATTAAAATTACTTGTCCACAAGCAACACTGGATCTTGAGTTCAGTTCCTGAGGCAATGTTT
		TAGACATTAATATAACAAAACCATTTGGGGATAAAGTGTAGTTCAGCATGTGTGCGCGCATCTCGATTCCA
		GAGTAATTGATTTAGAGAATGTTAAAATCAATTGGCAGACAGCTGGGGTCTGGGAGATTAGAAGTGAAGTAT
84	240	AGGTGGAGTGGAGAGCAGCAGACGCCCCAGAGCAAACAGTAATCTCAGCATTATAGACCAGGGGGAGATG
04	240	TACCTGTTTCTCTTATTTCACTTTCACTCTCTCTTTGCTCCTTTTCTCCTGTTGGGGACGGTCCATAGTCTCTT
		ACACCAACCTTGTCTCCATCT
0.5	400	TTAATCATTTTCATTTATGTCACTGCTATTGCTAGACGGCATAGCGGCAAAATGTCCGAAGGAAATTATAGTG
85	192	GAGCACAAAAAAACGGAAAATACAAAGGTTAAAAGAACAACGTGAACAATATATACTGAAAAAAAA
		ATTGACTTGATACTTCAAGGCATTGCATACATCAAGACAGAGTGGCG
86	109	CCTATGCCAACATGTCCAGGTCACAGTCCAACGGGCACCATACCAACATTCCCTCACTGACACATTAACACAA TGAAACAGGTTGCAACCATTGTTAACAGCCTGCAAA
		GGAATTTGTCTAAAATTAGCCCAAGAAGAAAGAAAGAGCTAATTATTGTCAACTTCACATGTCTTATCCCACG
87	156	CAAAGATGGTGAAACACTCACCCAACGTAAAGAAATTCTGATACGTCTACCACCAATAACGCTTCCCTCTATG
		TGTTTCACAA
00	141	$\tt CTTAAATAACTTTTTAATTTTTTTTTTTTTTTGAGTGATTCCAATATTCAGCAATAATTTGCCAAATGTCTTCTTTC$
88	141	AAAATAGACCTTAGATCTGTATTCCAAAGCATTCATGAATTACAACCATTTATTT

89	276	AGCACTTACCGAATACAACAGACGAGTCAGTGCCATTGTGAGGGTACCGATAGTGACAGTAGTGGCAGCTGA AAATCTTGTCCAATGTATAAAATGAAACTCGGTGGACTGGACGAGATCATTTGTAGTCAGAGATGTTGCCTGT ATTTAGCAAGAGCTGGTCTGAGGCATGTGGTTTACAAGCACCCAATTTAAGGGTGTCCATGCCCCCTTTGCTAT CCTATGGTCGTTGACACTCTACTTTTCTGTGAAGCCCATCAAGTTTTGATTGCCGTG
90	205	AACGATGGCAGGGGAAAAACGAACCGTTTTGAAAGAGTAATTACGTTGTAGCCTACTAGAATTGATGCCGAC CATGTTTATCATAAGTGCAACAAGTCATTTGCATGTGAAAGTAGAAACATGCAATTCAGACGAAACTTCTAAA
		ACGTGCATATTAACTTTCCTCATTAAATGTGTCTGTGTGTCCGACACAGCCTCCACGACG GATCGGAAGAGATGAAGAATATACGTCATAGATTGCTTTGGAAGTCAGGCATTTTGGTACATTATCATGTGCC
91	159	AGTTTGGTACATCCATACTACAACCAGAGGTCAGGAAAGATGCCACTATTGGCCAAAAATGATGACTAAACA GGTCAAAATTATGG
92	138	TAGAGTAAAGAGACGCAATTAAGCAGGTGGTTTTCCCCTCAATCTGGCGCCCCTGTGCGGTGGGCTGTAGGGG AGGGTTGATGTCGGAGCACTAGCCCCTCTCATCCTCAAGCACATGGTCCACATTAGTGTGGAATG CAAGCCAAAAACTGTTTTTAAAGTAAACTGGTGCCTTCCACTCCTCCCATGTGCTTCTCCTTTTCACAGTCTGG
93	218	CAAAAATAATGGGTAGTTCCAAAATATGTGGTCACATGGCAATAAAAGGGTACGGTTGCTAAGATACAGGGGGGTGGGT
94	178	TCCGAAGATGAACGAAGGTCTTTTAGGTGTGGAACGACATGAGGGTGAGTAATTAAT
95	108	AGTGAATTGAATTTCACTATGTGTCTGTCTATGTGTCTCTGTGTGTG
96	141	GCCACAAGCTGTTTTGTTCCTTGCCTTCAGGCAAGCGTTATTGCACTGTCAAAGCAAAGACTAGCAGACTAAA TATTCCAACCCACTGCAGTTCATAGACTAAATAACACTTTTATAGGACATGTTCAAGGTTTTTTGCTG GCGCTTATCCGGATTGTTCAAACCGACTTAAAACTAAAAGATTATGTTCTCTTGCGCGAACTCATTCAGGAGT
97	173	GGTGACTTTCCACGTATTCCCTATTAACTTCTGAGCTGCTCAGCTGAAGTTATGGTTGATCTTCGGCTGG ATATCAACACACCCATTAATGTACTA
98	287	GAAAAAGCCGAAGGGAAGCTGGAGGGGGAAAAAAAGTTCAGATTAGTTAAATAATGATTAAAATTATTCAGA AAAATATATACTGATTATGTCTTACTTTCCCAACTGCTTTTGGAGGTCAACCATGTACTGGTAACACTGGGCGT AATACGTCATCTGAGCCTCCACAAAATCATTTAGACAGCGGAGATGATGGGCCTGGGAGAGAAATGATATGG
99	104	TTTGTTATAGGTCAGACGTTGAGTAAATCGAGGGGGGTTGTGAGATGTGGATTGGCAGGCGGCCTAGTGG GACAAGTTGAAGAAAAAATGGAAGAGAAAAGATTATTATAGATATCATTGGGTTTTTTCAACAGACATATAT
		ACAACATCAGTCCTTTAATCTGACTGGTGATA CTTCACATTTGAGAGTCACAGATGTGCTGGAGGTCCATGAGACCACAATTTCTGTTGCAATTGGTCTGTCT
100	209	AATGAAATGTTTAATGAGCAAACAGATAAAATAGATGAATTGTATATGAATAAAAATGACTCTGATATGTCT TGACTTACATTGAATAATTAATGTAAAGTTTTGGGATTTTATAGTTCCATTTTTTCTAACTA TCTCAAAATCTTACAGTCACTGCTGGAAAGGGTTCAAATATGCAGAAGATGCTGGAAAACTGAAGAATCTGC
101	113	AGGACCTGGAGGATTTTTCTGAAGAACAGAGCTCAATTTAA CATTGTTATGATTCCCTAGTCTTTACAGTAAAAGGACCTGGAGCCCTAGGGGTCAGTAGATGTTTTACAGGAC
102	146	TTCCTGTGTTGTGCGAAAGGGGGCTCTGGGGTCAGTACACATTATGCAACAAGGGGCCCGCAGGCCTAATTCTACTAGCGTTTCTGCTGAAGTTTTGCTTGTAAAAAAAA
103	213	GCACAGCTCACACAGAAGCCACTTTCAAGCAGCTTTTTGTTGGTCAATGCAATGAATTGTGAAATCTTTCCCTT GTCTGAAATTCCCAATTGTGTGGATATCTATTGGAATTACTTGATTTTGCTTGTGAAAATTCATT GCGCCAGATCGTGCCCACAGGACGTCATCGACCGGCATCAGCCCAAACTCTTCCTCTTGTCCCCCAAACATGA
104	76	GCT CTTATCCAAACGCTGCAGTGACTTGACTGAACTGTTTTTCTTTC
105	216	AGAAACCGATGTTAATATATCACCACCTTCAGTATTTTTCAGAATTTACTTGGAATGCACGTTCATCAGCGACA GCAGACAGTGTGTCTTTGTGTGGGACGTCCTGCAAAAGAACCCCACAAACTCCGTAATAAGAAACGCG TGAGAGCCATTTCCCCAAACACATTTACATCAAATTAAACATATATGCCAACATTTAAATCACGTACTGTGAA
106	165	TTTCTCTAATGGAAATGTTATTTGACATGGCTAATTTATTT
107	239	GCTGTGTGCCTGGAGCTGAGGGGCTGAGGTGAAGAGCATCCAGTGGCGTCTCACAGTTCCGCTAGGCAGCAC ACTAATTGAGAAGTCGCTCAGGGGTTGAGCGCAGGGGGGCTCGCTGCACTGTGCTCCCTATCCAAATCAAGCCC CTGTAAGTGGGGCTGACATGGACCAATCACCATCTGGAGGTTCCTCCACTAAAACTCCACCATTCCTGACTAC
108	121	CATTAAAGGATCTGCTGCTAT CACACGGACAGGTACTATTTTATGCACTGTGGCAAAATACAGTGTATTAAAAAGGAATGAGTCACTGCTGACCT TTCAGCAAGTTGTACTGCCATGTTTCCTTAAACATAGATTTGCTAAGA
109	136	TTTGGGTGGTTTCTTGGTGGGGGCTTATTGGCCCAAATGTTGCTAAGA TTTGGGTGGTTTCTTGGTGGGGGCTTATTGGCCCAAATGTTGTGAAATTTACAGGACCTTTATACAGTGCATGG CATTGTAAAGACCTTAAGTCTATCCTTCACAGCCTCTCTTCATCTGTGTACAATTCAGTATG
110	251	AAAAATTGGATGACCAGTAGTTTCCTACTTCTAATTTCAGAAAAAAACAGAGATTCTAATTTTTGGACCAAAA ACTTCACGTAATAGCCTAGAATACTGTCTAACACTTGATGGCTGCTCTGTTAAGTCTTCGTCGTCAGTTAGGAA CCTGGGTGTGCTCTTTGATACCAATCTTTCATTTGAAGGCCATGTTACTAGCATCTGTAAAAACCGCATTCTTCC ATCTTAAAAAATATATCTAAACTACGACATA
111	135	GCATGGTTATACTTTTCTCTCTAATATTGTCAATCTTGCCAGTAAAGAAGTTCATAAAGTCATTACTGTTGTGC TGTTTGGAAACATCAGAAGTTGAAGCTTTATTTCTTGTTAATTTTGTTGTTTAGATTTGTG
112	148	TTACCCTAACCAAAAGGACAAACTGTTGAGAAGGACAAAAAAGGAGACTTTTTATCCAAAAAAAGTGACCAGTT TCTGTTTTTTTTTT
113	97	TGTCTCTTTTGTCCACTTTCAACCACTTTTGTCCTGATTTCTTCGAGGGGATGGTAAATATATTGGCTTTTTCTG TTCTTTTGATCTAATGGACGAA
114	131	CACAGCGATCAGGTTATTGCCATGTCCACCTGCAAGAAAAACATAACAGTTGCATGAAAAATCCAGTGTTGGGA ACAGAGCAATCTAGCAGAAAGGTTAATTATTTATTATTGTAAGCAATCCCTGACATAT

115	133	CACTTTCTCTAATAAAAAACATCAGTATGGTGAGGATGACGTTGCTGTTTTTATCCACCGTTTGTGGCAGAATTG
		TGGTCAGGGGCTTGAAGGCTGACAGTGAGCCGTTAGTGTATATGTGCACTGAAACACGG ACAACAAAATGGAAATATTTGGATACTTTCTAACATTTACAGATGGAGAATATACCTGTGAAATGTAAGTTAT
116	133	GTACTAAGGAAAATGCCATATTTAAAATACATTTAAACAGCGCAAGTATCTGTAAGAGCAT
		AGGAAATGATATAGATAGAAAAATAAAAACATGGAATATAAATCTAGTATGGATGATGCTAGGATAATAAAAA
117	193	ACGTGCTGTGGATCCACTATTGCTCAAACAAGACTTCAGATGAAACTTTAGCAAGTTTTCTAGCAATCCATTAT
		TAGCTTATACACCAATTCTGCAATGTTTCAGCACCATCTCACAATCA
		GTTACATATGATTTCTATTTCAAATAAATGCTGTTCTTTTTGAACTTTCTGTTCAGTAAAGTTTCCTGAAAAAAA
118	221	AAAAAGTCACTGTTTCCACAAAGATTTTAAGCAGCACGACTGTTTTCGACATTGATAATAATAACCATTATTA ATAGGTGAGTACCAATATTAATTGATGATAATTGAGCACCAAATCAGCATATTAAAATGATTTCTGAAGGATC
		A
		CATATAGGTCCTATACCTATAAAACACACAAAAAAACATTTGAATGAA
119	189	CTGTTGCAATAAATCTTGCCAAGAATTTCCTAACTTTCAACGTTTCGTTTGAATTGTGAAATACATGGGACTGA
		GACAATGAGACAATCAATCAATACAATCACTACACAAAACTA
120	126	GCCAATTGGGATATACTGTAGATAAATGAATGGGGAGGATAGGCTTATATAAGACTGTATAATTTGGTGTTTC GGTGCCAACTTGAGCCATGATGGTTTCAAGCCTTTGGACAAGTAGTAATTTAT
		CATGGGTACCATGCAACGACATTCTGGACCCTAATCTACTGGACACCTTCCATTCTGCTCATCCCAACAGACCT
121	113	GCCCCTCGTGGAAGAGCACCACCACGATGTCGGGGT
		$\tt GTGTTGTGCCGAATTCTGACCCCTGTCAGATTATTAACCCCCTAGTATTGGTAGGTTTAGGATTAGATGTGGGGGGGG$
122	167	GAGAGGGGTTAGGATTAGGGGTTAGGATTAGGCAATCAGGTAGCGACTTCAACGAGGGGGGTAATAA
		TTTGGCAGCGAGTCGAAATTG CTTTTTTAAAACCAGTTGGCAACATAATGACAGAATTTTCATTTTTTGGGTGAACTGTCCCTTTAAATAAA
123	142	GTGTAATGTTCTTAACTATGATTCAAGTGGTCTGTTGTGAATTTGGGTCTTTTGATTTTGGATCTTTTAA
104	101	AAAGTATCATTCTGACTGGATTATAAGAGCAGACTGATCTCTTAGAATTCTGCTCAGAAACACTGCCATGAAT
124	121	AAAGAATGGTATAAAAACTTCCTGCAAGAGCAGCTTCTCCCAACGATA
		ACTAGTGTGCGTTACTGTACAAGTTACGGGTTTACTACAGAAACGGAGAAGGTGAATTCAGGGCAGGATAAG
125	278	GAAAAAATAAATAAAAAAAATTGTGGTTTGGGAATTTGGATACAGGAGAGAGTATCACAGAGAAATTTTTTT
		TAATTTGCAAGACCTGTCAAACTGTCGTTGCGGCAAAACAGAGTAGGGGCCATTCACACAGAATGTGTTTTTC TGGTTAAAAACATGAGACGCAGGTCTAGAGACTTGTTTTTTTAAAAAATGTAACTTATTTTA
		ATCTCTTTCAGTAGCTTAGTCGGTATAGGGTCTAACATACAT
126	171	CAATTCTTCCTCTCTATAGCAGAAAAGGAATGGAATTGTTCCTCAGGAGATCTGTAGCACGACATCTGTGAT
		ACTGTAGTAAATGGTTGCATGGTT
		CCCCATGATCCTTTTCACAGGGAAGTTGTTTGGCATCACAGAATGGGTACAGGAGGCTCAGAGTTCGATTTTA
127	224	CCTGTAAATGTATGTATAGTATTTTCTATACTACTGTAATATTTATACAAGCTAGATTTGGTACATTATTTTGGT AAAAACGACATTGTACTTCAACAAAAATACTTTACATTTACCTTTATCAGTCCATTCAAATGTTTCAAATACAT
		AG
		TTTTTCTTTGTTGCTTGATTAACATTAATGACAGACAGCAGCAGCTTTATTAGGCTGCTGTCACTTTAAGGAC
128	229	AAATGCACAGACCGAATATACTTATGGTTATTCAAAACTTTTTTAACTTATTTAAAACTGTGTTCACGAGGTCAC
120	22)	TGGCCAAAAAAAGCATTTTGACATAATTTTGTGTTTTTTGTCCATTAAAGTGCGACCAGACAGGCGCTAAACAG
		ACAGTGTG CACAATATTCTATTTCGTTCCCTCGATTTGCTAAATCGCGTACACAATTTACTATTTCGTTCCCTCGATTAGCTA
129	167	AATTGCACGCATTATTTACTATTTCGTTCCCTCGATTTGCTAAATCTTGACGACGACGATTTACTATTTCGCTCCCTC
		GATTTGCTAAATCTTGA
130	140	TTGAGCTTCAAGAAAAGACGTGCTGGAATTATAGTAAACAAAATAATAACATGAAAAACGCTTTGCTGAAGTTC
130	140	TGCTTGTCAGTGATGAAGAAATAAAAAATACTGCTCGCAGCCTCTTTCTT
131	101	ACTGTACTGCTGGTTGCTATTAGGCATTTCACATCAAGCACGATAACTATAACAATAAAGTTTTAATAAACATT GTTTCTTTGAGAATAGGGAAGTCCACA
		CCCTCAACTGTATCGTAAAAATGTTCATTACACTAATGCTGTGTTCGAAATCGCCCCCTATACCCTCATTCACT
132	141	ATTCCCTACATTACTCCACTAATATAGTCCACTTGGAGTGAATGAA
133	90	CTATCCTGACAAAAAAAAAAAATTATCCTAGTTTCCACAACTGTTTTCAACACTGATAATAATCAGAAATGTTTC
133	70	TTGAGCAGCAAATCAT
134	105	ATATAAGACTGGTTTTGTGCTTCAGGGTCACATATAACATTAATTTACTTTGTCACTTGTGTTTTAGTCTCGCCC ACAGGTGTTTGCTGGCATGTCTGATGGTCT
		ATATAAGACTGGTTTTGTGCTCCAGGGTCACATATAACATTAATTTACTTTGTCACTTGTGTTTTAGTCTCGCCC
135	105	ACAGGTGTTTGCTGGCATGTCTGATGGTCT
136	112	TGTGCGATTTGGTTGATATCCACAATTAAAACTTATTTAATACAGACTTCAGCACATCGTTTGACATGTTTTTG
130	112	CATTAGGATTTGAATGAATCGATTACCACTTGGCTGTT
137	178	TTGACTTCTGAGAGACACTGCCACTCTGAGAGGCCCCTTTTATACCCAACCATGTTGCCAATTGACCTAATAAG TTGCAAATTGGTCCTCCAGCTGTACCTTATATGTACATTTAACTTTTCCGGCCTCTTATTGCTACCTGTCCCAAC
137	176	TTGTTTGGGATGTGTAGCTATCATGAAAT
120	111	TTTTTTTCTTGTTCAAGTTAAGCATAAAAGGCAGTGCTAAATCTTTTGTCCAGTGCAGATGTTAAATTTAGGTA
138	111	GGAATATGATGGGTAATTTAACACATTATTGCAGGAA
100	150	TAATTTGGACTTCTCTGTGCATGCTCTTTGAGGTGGTGACCATAGACCTGGATTATATGAGTCACAGACAAGA
139	152	ACAGTTTGACGTAAAAATATAAAAATGGAAACTACTGCGGAAACAAAGACATCTACATCTTGGATGCCCTTG AGGTAAG
		TAAAATGGTGTAAGATTTAGGAATTTGATAATGTACTTATCCATTTTGTTGCGAATGCAGTGCACTTGCAGAG
140	116	AGAGACCGCCCACACTCTTCTGATTGGCTGTGATTTTTTGAT
1/11	240	TTTGCGTTCTCTCACAAAACTTTTGTGTTCCGCTAAGAAACTTTGTGTTCCCTCGCAAATCTTTTGCATTTCCCC
141	249	CGACAAACTTGATTTGCAGGCAACTAAAAAGTTTTGCAAGCGAACGCAGTTTCTCAGGGGAACGCAAACATTT

		TGTGAGTGAACACAAAGTTTCCTGGGGAATGCAAAAAAAA
		ATCTTTGCGTTCTCTCGCAAATTTTTTTG
		AAAATCTTGTAATAAAAGATGATGTTGTATTGGCTATGACTAGACAGCAAATACAGACTCTCCATGTTTTTTTG
142	233	AGTATTATTAAAGTACAGGCAAAAAAAAAAGTAAAAAAGTTATTAACCAGTATTTTTTCTAATCAAATCGGTT TCAGATTGGTAATAATACAGAAGGAACACATGAACAGAAACGTTAAAATACTGATTCTGCTCAGAGTGAATTT
		TTAAGCCCTGATGG
		ATATGCCAGACCCAACAATGCAGAAGAGCTGAAGGCCACTATCAGAGCAACCTGGGCTCTTATAACACCTGA
143	172	GCAGTGCCACAGACTGATAGACTCCATGCCACGCCGCATTGCTGCAGTAATTCAGGCAAAAAGGAGCCCCAAC TAAGTATTGAGTTCTGTACATGCTCATA
		CCAGGTGAGAAAAAGTAACACAACATAACATTTCCATAAAAAGTAACTATGTAACGCAGTTACTTTTTTAGGG
144	250	AGTAACACAATGTTGTAATGTATTACTTTTAAAAGTAACTTTCCCCAAAACGGGTTAAAAATAAACTCATTTA
	200	CAGCCACTTTTTCCAAATCCATTGTTTAGTTATACCGTTACTGTTAGTTGCTGTACCAGTTAGTATTGTTCTTGT CTTTGACTGTTAATTGCCAAGTTTATGTT
145	102	TATTGCAGGCAGATAATATTGGATATGTTCAGCTATTAGGATATAAAGCTTACAAAATGTTTATCATAAACTA
		GCACTAAGACCCAGAATCTGCCTGCAATA AAGCAGAATATGGCTGTTTCTAAAGCAGTGCCATCTGCTGTTAAAAACTAAGCTCAGAATCGGTTCAAGAGAG
146	119	AATCACGATGCATTTGGAAAAATCTCAGAATCGATCAGGAATCATTT
		GGTGCATCACTAATAAAAAAAATATTTAAAAAAAGCATTTTAAAAAATCTAACAGTTTTTCACTGTAAAAAACAAA
147	247	TGCAGTTTTAAGGAGCAGTGTACTAGTTTTCTTTTTTTGTTTAGATGGTTAATATTAATGCAACTATCAGCGCAC TTTTTTTTTT
		GGGGTCACCAGCGTGTGGTGTTCCG
1.40	210	CATACTGCCCTAGGTTAACAAGACCTTTAATGGAAGGGTTACCGTAATCTCCTCCTCCTTCTTTTTATTTGTAT
148	210	ATGAGTCTGGGAATAACTATGTCTTGCTATTGTCTAGTAGTGCCCTCACTGTCATCTGATTCAGGGTCTCCAGA GAGCAGTTTCCTGTCTGCTGCATCAGCACATCGTGCTCACATTACCTTCATAGTCAGGAGG
		TTTACTGTTTAAGAAGAGTATCTTCTCACCTTGACCTTCCTT
149	288	TATGGCAAAGGGACCCGATTAACCTGTGGGTTGAAGAATCATGGGTAACCTCATTAGCAGACCTAGCTGTTTG GGACAAAAGTCCAAACAAGTTAAGTCAGATGAGAGCGTCCTGAAAGAGTGCTACCAGCAACGGAGAGAATG
		GCCGCTCCCGGAGCCTCCTAGAGAAGAAAAGAAAAGAAGAGGATGTGGAAGATGTTCTTCTTAAACAGTAA
		${\tt CCTGTTCGGGCGTAGGGCCTCACTTTGTTGGAGGCCTCAGTCTGCTGTGACTCTTGCAAGAGCGCTTTTCA}$
150	248	AACCTGGAGAGCCTCTGCGTGTTTTGTGAACCTCCCTTACTCAACACACCTGATTCAGATCATCAGCTCTTTGG GAAAGAGCGCCAGTGAAGTCAGTTGAGTGCGCCTGATACGAGAAACGTACATACA
		GGTCCACGGGCGTAGAGACGTGGCAGCA
151	122	CGAATTACTTTTTTGGCTATTATTTGGCTATTTAAGCTGCTTTTTTTGCTACTCACTGCACAGAACAGGCGCAG
		AGAGAGGTGATCCTGTGCTGGGGAGTCAGACCTCACGCTTGCGGGGCA AGGGCAGACAGAAAATCCCAAATTCAGTATCTCAGAAAATTAGAATATTGTGAAAAAGGTTCAATATTGAAGA
152	229	CACCTGGTGCCACACTCTAATCAGCTAATTAACTCAAAACACCTGCAAAGGCCTTTAAATGGTCTCTCAGTCT
132	229	AGTTCTGTAGGCTACACAATCATGGGGAAGACTGCTGACTTGACAGTTGCCCAAAAGACGACCACTGACACCT
		TGCACAAGGAG TTTTAACAGACGACATACTGAACCGGTATGAAATTGGCAGAAAGCTTGGTGAGGGAGG
153	77	TGAA
		TCAACGCAGTTTTATTTTCATAAAAAACAAAACAAAAGTAAAACATAAGAACAAATAAAAAAATTGCAAAC AACAGCACAAATAAATGCAATAGAATAG
154	258	TAAGAAATACTACAGAAATTAAAGTAATCAAATGTAAAATAACACATCCAGTGTTCCCCATATGCGTCTTGTC
		TTATTATTATTATTAATAATAAGACGAACGACACA
155	113	ATCCACTCAAAAAAATATATTTTTGATATATTTTACAGTAGGAAATTTACAAAATATCTTCATGGAACATGAT CTTTACTTAATATCCTAATGATTTTTTGGCATGAAAGAAA
		AGTCCGTACAGCAAACAAATCCAAATCGTAATCCAACAAACA
156	249	AGGCAATCAATGTGGCAATGAGAAAACGCTTGGTAGAGACAGGGGTTAGCTGGCAATACTTCGCAATCTGTT
		GTACAACTGAGCTGGATTTAAACAGGAAGCTACAGGAAGTGGAGGAAGAAGAAGAGCACAGTCAGT
157	121	CGAATGTCCAATGTCAAGCCAACTTTATGCCTGTTTTTTTT
137	121	GATTGCTGATGTCTTTTACCCGGGCATAGATGTCCATCCA
158	93	CAGCTCACACTCCCAGATTCACTGTTTGATTGGTTACATGATCTGGACTGAAACACACCAGTTTCACTTCTGCT GTAGTCAAGAGATAATTCA
		${\tt GACCTCGGCCTCACTGCGCAGTGACTCGTGGCTCTGTTCCACCACATTATGGCCAATCACGGTTAATGACTAGT}$
159	192	GGTCACGGCAAATCAGAGTTAAGTGGGAGAACTGGCCATTCTCTGATCGTGCCGCACAGCGCTTGGCTGTCTC TGATAGGTTAAATTGTTTGATTCTATTATCAGTGAAAACTCTGAG
160	120	TTATCCCTATTGCTTGTACACTTTTTCTACCACACTCTTTTCCTTCC
160	130	CAGAGCTCTGTGAACAGCCAGCCTCTTTTGCAATGACCTTTTTGTGTCTTGCCCT
161	121	CTTAGATCCGGTAGTCTTACTGTTCCCAGAGCCAAATTAAAACAAAGAGGTGAATGTGCCTTTGCTGTTGCAG GCCCTAAACTGTTTACCAGTTCACAGGTCTGCACCTACATTACAGATT
		GCTTTCTCTCTCCCCATCACTCTCTCCTCCCCCATCACTCTCTC
162	164	TCTCTTTGTGACACTATCTACCTCCTTCTCCCCCTTCTCCCCCCCTCTCCGTGCTCTATCTCACTCA
163	52	TTCTCTTTCCT AGCGAAGGCTGACCCGTGTGGTTCGATCCAACAGAAGAGCTACTGTAGCTCA
		TAAACATGTTTAAACATGTTTAAACATGTTTAGCGATGTTTAGCATGCTAAACATGTTTAGCGATGTTTAGCA
164	141	TGCTTAAACATGTTTAAACATGTTTAAACATGTTTAGCGAATGTTTAGTGTGCTTAAGCATGCTTAAA
165	133	GCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTGGTGGAATGCTACAGGCGTTG

166	165	CAACGCCTGTAGCATTCCCCCAACGCCTGTAGCATTCCACCAACGCCTGTAGCATTCCACCAACGCCTGTAGCATTCCACCAACGCCTGTAGCATTCCACCAACGCCTGTAGCATTCCACCAACGCCTGTAGCATTCCACCACCACGCCTGTAGCATTCCACCACTAA
100	105	AGGAATTGCGAATAATAAT
167	84	ACGTAAGTGCAGCAGAAATGTTTTTGTAACCTTGGCCAGATCTGTGCCTTGCCACAATTCTGTCTCTGAGCTCT TCAGGCAGTT
1.00	1.61	AGCAAGCCCAAAAACACCGCCAAACATCAGCAAGCCCACAAAAATCAGCAAGCCCAGAAACACCGCCAAAC
168	161	ATCAGCAAGCCCACAAACATCAGCAAGCCCACAAATATCAGCAAGACCACAAACACCGCCCCCAAACAGCAA GACCACAAACACCGCCAA
		TGATTTTTAATGACAGCACCAAGTCTTCTAAGCATGGAATGAACAAGTTGGCAACATTTTGCAACATCTATCT
169	238	TTTCCATTCTTCAAGAATTATCTCTTTTAGAGACTGGATGCTGGATGGA
		TCTTCTTCAGAAAACCA
170	175	TGACTTGAACCCCATAGAGAATCTATGGGGTATTGTCAAGAGGAAGATGAGAGACACCAGACCCAACAATGC AGATGAGCTGAAGGCCGCTATCAAAGAAACCTGGGCTTCCATTACACCTGAGCAGTGCCACAGGCTGATCTTC
		TCCATGCCACGCTGCATTGATGCTGTAATT
171	176	GAATTACAGCATCAATGCGACGTGGCATGGAGGCAATGAGCCTGTGGCACTGCTCAGGTGTAATGGAAGCCC AGGTTGCTTTGATAGCGGCCTTCAGGTCATCTGCATTGTTGGGTCTGGTGTCTCTCATCTTCCTCTTGACAATAC
		CCCATAGATTCTCTATGGGGTTCAAGTCA
172	167	ACCCATGCATGCCATTCCTCTGCAGTGTACACCGTATTGTGTCACGGGAAATAGTCACCCCAGTTTGGCTTTCT ACTTCTTTAGATAGCTGCAGTGAACTTGCTTGCCAATTTTCTTCAACCCTTCTCATCAGAAGACGCTCCTGTCA
		AGGTGTTAACTTCTGTGGA CAGGTAAGAGACACACACGCCACACGGCCATCCACATGATGTAAAAGAAAACATGATTCATCAGACCAGGCCA
173	149	TCTTCTTCCATTACTCCAGTTCTGATGCTCACGTGTCCACTGTTTGGCTCTTTCGGCGGTGGACAGGGGTCAGCA
		TGG TCCCGTGGATGCGGATATCCATCCATCCATCCCGTGGAGGCAGATATTTATCCATCC
174	145	TCCCTCCTGTGGAGGGGATATTTATCCATCCATCCATCCCGTAGAGGGGGATATTTATCCATCC
175	164	TGGGGAGGCCTGCGTTTCGGCATCCTCATCCTCTCAGTCTCAGATGCAACCATTATCTGAGCCAGGGACTCAG ACCAGGAGACATCATGCCTGCATTTCACACACACACACCACACACA
175	101	ACGGAAACATCCGTGTGTG
176	142	ATCTCCAGTGCAGACAGAGCCTCATGACACAGCCTTCAGGGGAGAGAGA
		GA
177	147	GCTCGGAGGCAGAAAACTCAGGAGACTGGGGCTGCACGGAGGCAGAAAACTCAGGAGACTGGGGCTGCTCG GAGGCAGAAAACTCAGGAGACTGGGGCTGCACGGAGGCAGAAAACTCAGGAGACTGGGGCTGCACGGAGGC
		AGGAG TATCACTAGCCCAAACCTAAACCTAACCCTAACCCTAGCTCTAACCCTAAACCAAGAACTAACCCTA
178	152	AACCTAGAACTAACCTAAACCTAACCTAACC
		CCCTAA AACCACCCCCACCACCGCCTCCCCACTACTCCTCGCCTTGCAGAAAAGACAATGATTCTAATACTGTCACGA
179	178	CCGCTGAGATATACTTCATGTAACACATGTTCCCTCGACCTTTACGGCACGTGCTAAAGAATTAATT
		GTTTTGGGAATACATGTAAATGTGCCTGTCG CACCTAGCCTCACCCCACCTCGCCCAGCATCACATGCCACGCCTCGCCTCGCCTTATCTCGCCCCATCTCGCTC
180	159	CACCTCGTCCCGCCTCGCCTCGCCCCACCTCGTTCCGCCTCGCCCCGCCTCACCCCGCCTCGCCTTACCCCCGCCTAGCCT
181	92	TAACTCCGCTTCTCCGTGATCCTGCAGATCTTCCTCCACTTGGCGCTGCATCTGTGTGCAGTTGTTTTTGCCATC
101	92	GCAGCCATTGTGCTGTA GTGAGGACAGGAACATAGATTGACCAGTAAATTGAGAGCATTGTCTTTCGGCTCCCTCACCACAACAGACTGA
182	178	TAGAATGACCACATCACTGTAGACACCGCACTGATTCACCTCTCAATCTCACACTCTCCCTCACTCCTGATCAA
		GACCCTGAGATATTGAGCACCTTTTTCCGGT GTCCAACTAAATGCAAACTGGATGGGATG
183	230	${\tt GCCTTCAATTTTGAATGAATCCCCAACAGTGTCACCAGCAAAGCACCCCCACACCATCACACCTCCTCCAT}$
		GCTTCACGGTGGGAACCATGCATGTAGAGACCATCCGTTCAACCCAAACCAAAGATCTCAAATTTGGACTCAT CAGACCAAAG
184	110	TGGTATTACTTGCTTCCCCGGGGGAAATTAGGTCAAAAATTCCCCTTTCCCCGTTTCCCTGTATCCCTGCCTG
		TCTATCCCTGTCTATCTGTCTCTATCTGTCTCT ATCAAATCCCAAGATTTCAGGAGAGAGAGCTTGTGAGTGA
185	163	TGGTGTGTGTAGTATGTGGGGGGGTGTGGTGTGTGAGTGTGCGTGTGTGT
		CAGCGGATGGATGGATGGACGGACGGACGGATGGATGGACGACTTGCTAGATATTGATGCATTG
186	259	ATAGATATTTGTTAATTATTGCCTAACACAAATAATAATAATTCCAGATTAATGGAATGCTATTCGATATGGG ATACTTTATTATATATGCTTGGACTGGGTAGGAGTGAACGAAC
		GATGGATGGATGGATGAACAAACGGATGAATGAA
100	0.15	GTCGATGGTGCATCATAAGAGGGGTGCCACGGGAATCTTGGAGTGGGGAGGGGAATGGGGACTCTTCAAATGG AGAGGGAAACTCATGCAGGTCTACGGGTTAGGGTACAACATCTCTCCCTTATATCACTCTCTCT
188	249	CTCTCTCTCTAGGAGGTGTTAGCGTCGTTTGATAGGAGGAAGATGGGATTGATGCCACAAGCCCTGCTTCTCG
		TGTTTTTTGAGTTCGGCTCTTGGGAGGTAT GTCTCCTCAATTTATTTGGTCGTCTCTAGGCTGAGTCACTCAC
189	159	CAGCCATCCAGCCACCCAGAGTTAGATCACTCATTCACTGATTTACTCGCCCGCTCACTCA
		AGATCGGAAG

190	144	GGTAGGAAAGGTTCCACTGCAACTTTCACTTACATAACCTACTATACTTCTGTCAAAACATGTCTGCATGCA
191	117	GTAACCAAAACATAAGAGCCATGAAGATAGTTAACTTCACTTGAATGTACGGTTGTTAACATCAGCTAACATT GGCCACCAATATCCACTGGTCATACCAGACCACATCAGACTGCA
		GTCAATGTTGCCATTGCCGCCATCAAGACCAAGCGCAGCATCCAGTTTTGTGGACTGGTGCCCCACTGGTTTCA
192	247	AGGTTGGCATCAACTACCAGCCACCCACTGTGGTTCCTGGTGGAGACCTGGCCAAGGTCCAGAGGGCCGTGTGCATGCTGAGCAACACCACTGCTATCGCAGAGGCCTGGGCTCGGCTGGACCACAAGTTTGACCTGATGTACGCT
		AAGCGTGCCTTTGTTCACTGGTATGTGG ATATTTGAAAAAAAGGATCACAAGAAGGAAGGTATGGTTACTATAGTGGACGTTTAAAATATTTCTGCAGAATG
193	170	CACTCCAACATCCATTATGATTTCTGTGTATTCACTGTTTTCTTTTGTTGACCTTTCTCTTAAAGCAAGTTGTGT
		GGCATTGAAGTGAAGTCGGAGG ATTTTTCGGGCACACAGCTCATTTTTCAGGCACACAACTCACTTTTCGGGCACACAGCTCATTTTTCGGGCACA
194	206	CAGCTCATTCTTCAGGCACGCAGCTCATTTCAGGGCACACAGCCCACTTTTCGGGCACACAGCTCATTTTTCGG GCACACAGCTCATTCTTCGGGCACGCAGCTCATTTCAGGGCACACAACTCATTCTTCG
		ATTTTGGTCAGAAATCAGCATTTTTAGTTACACCCACCCA
195	111	GGTACAAACATTTTTTTTCTGATGATAAAGGAAAGT
196	118	CTTTTAGGTGACATCCACGGCCAGTACACGGACTTACTGAGGCTGTTCGAGTACGGGGGATTTCCGCCCGAGT
		CCAACTACCTGTTTCTGGGGGACTACGTGGATAGGGGCAAACAGT CTGCTGTGATAGGGGTTCACACACACACACACACACACAATCATAGACATGCACACAAACACATACACACTGAT
197	131	GCACAGGTGTGCATACACACACACACACACACACACACAC
		AGGCCCTCCTCTCTCTCGCTACCAACCTCTCAGTTGTCTCTCTTCTCTATCCCTCTCTCT
198	173	TCTCTCTCTCTATCCCTCCTCTCTAGCTGGAGGGAGATCCTCAACTCCATGACGTCTTGGGGGAGGTCATCATA
		TGAACGACGCCACAGCTCCTCCT CACACACATTCCTAGCAGCTATTGTACACACATTCGTAGCAGGTCCACACACA
199	181	TGTAGCAGGTCAACAAACCTAGACGCGCGAAGCGCGGCTAGCTCAGCACACATTGTAGCAGGTCCACACACA
		CGGCTTTAACTCATAAAATGACCGATTTCCGTTGTA
200	118	TCACTAAATGAGCCGATAAAGTGACGTTGAAATGATAAAGGTCAGAATTTAGTTCACAGATAAGATCTTCCAG
		TGTAAATCATTGTTGTCAAATGGAGTGGAATGAAATGGCTGAGGA ATCCATCCATCCATCCATCCATCCATCCATCCATCCAT
201	240	TTTGAGGAATTGCTTGAGACTTGGAATGAGACACAGTCTGTCGACCTTCTGACCTCTGAGGTGACCTTGAATG
201	248	$\tt GTCAGCCTGGCCAGGTGGCTGAGCCGTGGAACGCCGAGCAGGAGGGGACGATTCAGGACAACCGGGGTGTCG$
		CACCGACCTGAACTTTCGACCAGCACGTT
202	155	TGGTAAGCAGAACTGGCGCTGCGGGATGAACCGAACGCCGGGTTAAGGCGCCCGATGCCGACGCTCATCAGA CCCCAGAAAAGGTGTTGGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGT
202	133	
		GTAACAACTCA
203	50	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA
		ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC
203 204	50 82	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT
204	82	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC
		ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA
204	82	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGTATGTGTTTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCCAGAAT A
204	82	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGTATGTGTTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204205206	82 222 109	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGTATGTGTTTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCCAGAAT A
204205	82 222	ATCCGCTAAGGAGTGTGAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTT AAATCTAGGATGGTTGGTTGGTTGGTTGGTTGGTTGGTTG
204205206207	82 222 109 98	ATCCGCTAAGGAGTGTGAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTGTTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204205206	82 222 109	ATCCGCTAAGGAGTGTGAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTT AAATCTAGGATGGTTGGTTGGTTGGTTGGTTGGTTGGTTG
204205206207	82 222 109 98	ATCCGCTAAGGAGTGTGAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTGTTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204205206207208	82 222 109 98 160	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTT AAATCTAGGATGGTTGGTTGGTTGGTTGGTTGGTTGGTTG
204205206207	82 222 109 98	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204205206207208	82 222 109 98 160	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTTTATACCCA GAATAATTAGCATGTATTAGCATGTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204205206207208	82 222 109 98 160	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGTCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209	82 222 109 98 160 263	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCATACCTAGAATAATTAGCATGTATTAGCATT AAATCTAGGATGATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCATGTATTAGCCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209	82 222 109 98 160 263	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCCATACCTAGAATAATTAGCATGTATTAGCTTAACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209	82 222 109 98 160 263	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCATACCTAGAATAATTAGCATGTATTAGCATT AAATCTAGGATGATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCATGTATTAGCCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211	82 222 109 98 160 263 171 126	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTAACCTA AATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209	82 222 109 98 160 263	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCAAGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCTAGAATAATTAGCATGTATTAGCCTTAACCTAGAATTAGCATGTATTAGCCTTAACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211	82 222 109 98 160 263 171 126	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211	82 222 109 98 160 263 171 126	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCAAGTATTAGCTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCTAGAATAATTAGCATGTATTAGCCTTAACCTAGAATTAGCATGTATTAGCCTTAACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211 212	82 222 109 98 160 263 171 126 252	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTAACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCATGTATTAGCAT AAACTTAGGATGATTAGCATGTATTAGCATGTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211 212	82 222 109 98 160 263 171 126 252	ATCCGCTAAGGAGTGTTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGAGGAGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCATACCTAACCTAGAATAATTAGCATGTATTAGCTTAACCTA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCATGATTAGCAAGATAATTAGCATGTATTAGCCTTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211 212 213 214	82 222 109 98 160 263 171 126 252 210 127	ATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCTTTAACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCATGTATTAGCTTCATACCTAGAATAATTAGCATGTATTAGCATGTATTAGCAT AAACTTAGGATGATTAGCATGTATTAGCATGTTCATACCTAAGATAATTAGCATGTATTAGCCTTAACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT
204 205 206 207 208 209 210 211 212	82 222 109 98 160 263 171 126 252 210	ATCCGCTAAGGAGTGTGAACAACTCACCTGCCGAATCAACTAGCCCTGA GGTTGATATAGACAGCAGGACGGTGGCCATGGAAGTCGGAATCCGCTAAGGAGTGTGTAACAACTCACCTGC CGAATCAACT GCTTCATACTTAAGATAATTAGCATGTATTAGCTTCATACTTAAGATAATTAGCATGTATTAGCTTTATACCCA GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTTCATACCTAACCTAGCATGAATAATTAGCATGTATTAGCATGTATTAGCCAG GAATAATTAGCATGTATTAGCAAGTATTAGCAAGTATTAGCTCATACCTAGAATAATTAGCATGTATTAGCTT AAATCTAGGATGATTAGCATGTATTAGCATGATATGCAAGATAATTAGCATGAATAATTAGCATGTATACCCAGAAT A GGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT

216	187	GCTCTTATTGGCCTACGTCCGTTACACTCACCCCCCTAAACCTCACTCCCATCCGGGTCATGGCACCAATGTAA CCCCTCCTCTTCGAACCTTGGTGGCCAGGTCAGGGGATCAGGTGAGTTAGCCTCCATTACACTGGCAACCACC
		CACCTCACCAAGCATTGCGGTGGCACGTTTTGCATGGGAA ATGGAAAAGATACTCTTAAGATGAGACGGAAAAGTGTTTGGCCCAGTTTGTGACTACAGTTGGCTCTTAAATA ATGAGTCTTGTCACAGGCATGTAGTTAGTACCCACAAGACCTGATCCCCTGTAATTTAGAATCAGTATTCCAA
217	264	GGATAATGTCAGTTAGGATGTACACAGTAAACCTCAAAGGATATCCCCCGGTTATGCCTGAATATAACCTCTG CTATGCTTTGAATCTGCCTGTGATCAGCATGAGTATCTTTTCCAT
218	168	GATAGATAGACAGACTGATTGATTGATTGATTGATTGACAGGTAGACAGAC
219	199	AGGCAGATAGATAGATAGACAGA GTCAAGAAGGAGGTCAAGGAGGTGAGCGTTTAAATTGCATTCTTCTCATTTCACCGCAGTGTATTGTTTT GTCTAAAATCTCAATCTCAAATCCTTAGTATATTGGCTCACTGACTAAATCTTATTTTTAATTTACTCTTCCTAG
219	199	GATAAGGAACTGCGTTGGGGACTGGCGTAAGAATATTGAAGACAAG GACGTCTCAATGGTTGATTCGTTTGACCTTTGACCTTGCATTGAACGGTTGAATGATTGAAAGCGAAAC
220	157	TGATTGATGGACAGGCAATAGGGTGAGGTAGAGGAGGAGGAGGAGGAGGAGGAGGA
221	276	GGCTATGGTTGCAGATATGAGATGATACATATCGTATCATATCACATCCATC
		TTCAATCCATCCATTCATCCGTCCAATCATTCATTTTTCTTAAAATCTCAAAGCAGTTTTACAGTCAGT
222	188	GACAGCGCTGCACCCGAGGAGAGCGCTGCACCCGAGGAGAGCGCCGGAGGAGGGCCGGCC
223	62	GTTCTCCTGCTGCACGGTATGGTTCTCCTGCTACACGGTATGGTTCTCCTGCTGCACGGTAT
225	105	TGTCGTGTGTTTGCAGAGGAGGCGGTGACTCGTGTGATCGATTTTAAAGTCTGATATTCGTCAAAATATTGTGT TTCAGTTCATATTTGTTGGCGTTTAATAACT
226	90	GTGGTTTACATGTTTTAGTCTACTTGAAAACAAATTTCTTATTGCAAACCTTTGTACAAGGAATGTAAACTTTC TCTTGCATATCAGTAA CATGTGTGGAGGATCTGAGATTGCATCATCTATTTGTTGCCTGTAGATACGAAGCTCTGCGGTAGAAATGAGT
228	129	TCCTCCTCAGGGATGCTGCTGAGATTGAAGACGAAGCGCAGCGGAGTCTCCTGTGA ATCCTGAAAAAATTAATCACTGTTTCCACAAAAATATGAAGCAGCACAACTGTTTTCAACATTGAATGTAGCC
229	266	TTGGTGAGTATACAATACTTCTTTCAAAAACATTAAAAACATTTGCGGACTCCGAACTATTGAATGGTAGTGT ATATTAGGGTTGGTAACCGAGAACCGGTTCTCATCTGGAACCGGTAGTGTTTTTTGAAAAGAACCGGAACCGT
		GCAAGATTTCTAAGTTGCGGTTTCGAAAACGGTTCTGGTGCGATGGG GAGCTGCCTGAACCGAAGAAACACATTGCATTACTTAAAAATACTTACATTTTCTTCATCTGCAGCTTTGCCTC
230	236	${\tt GCTTTTGAAAACAAAATGGCAGCCCTGGGGGTGGAAATGTGCAGATTAAGGGGTGTTTAATATTATAATAAGGGGTGTTTAATATTAT$
230	230	ATCCCCTTTTTAAATCACTAGGGGAGCGAAATCGGAACGGCTCGTTTTTTCACATGCTTGTAGAGAAAGGCTT GCCAAAACAAAGGTACT
231	225	GCCGTGGGCAGTGGCGGCGTCTTGCATATCAATAGTCGGGGACCCCTGGGCCGTTTCCCCCCCACGGTAGTGC CTGGGGGTGGTTAGGGAGTTACGTGGGTGGAATGTAAGCGGAGCGGTGCCGTACAGCTGTGCAGCAGTGTGG
231	223	ATGTTATGAAGTGAGGGAGCGCCCAGTCACGGCGCTGCGCTGTGTGTG
232	202	AGATCCAGAGCACTCCGGAGCAGGTTTTCATTAAGGATGTCTCTTGACATTGCTTCATTCA
		TAGGGATGGTATTGGACAGGTGATGAGCAGTGCCTGGTTTTCTCCACACATATA AACCTGCTACCAAGAGTCGGTCTGGCACCTGACGACGCATGATAACCTCTCAGCTCTCTGCCGATACTCAGTG
233	246	ACAGACTGGAGGCTATCTGCGAGTGTTCTGTGTGTGTGTG
		ATTTCCAATGACAAAGCAAGAAGTCTA
234	118	CGTCGAATTCTCGTTCTGCCTCGTAGAGAGGCTCGAGATTCCGTCAAAACCGACGTCTCCGGTGGGACTCGAA CCCACAACCTCCGAATTGCTTTCGGATCAACCGCTAGAAGTCCAA
235	152	GATAGATAGACAGACTGATTGATTGATTGATTGATTGACAGGTAGACAGAC
226	102	ACGATAAAGAAGTTTCTAAGGGAGGAGGAGGAATCACAGGACTGGAGACACACCTGTCTCTGGTCCAGGTAAC
236	193	CTTATTTCTGATGCCATAAATTACGCTTTTAATAAGAATAACTCCAGTATACTGCTGCAAGCCATTTGGACCAT CCCCCTTTTTACTAACTAGAGATTTTCCACACAGCACAG
237	235	ATACTTTGCTTATGCACATTCTGCTCCGTTTCCGAGCTCACACACA
		CCAATCAATTGCTG CAGCAATTGATTGGACAAGAACACCACAATCATTGTTGTGCTGATTAGGGCTGTCCGATTAATCGTAATTG
238	235	ATTTTTGATTTCGGCTTCCGACGATTATGAAAACAAGATTTTTGTGTGTG
_50		GCATAAGCAAAGTATACTATGGGCATCGGATTCACACCTAAACGGTCAACTAGCACACAAAAATGTCAAAAT ACTCTTTTGCTAAGCAT
239	136	ATCCGAACTCTAACTCTTACCCTGACCCTAACCCTAACCCTAAACATAAGCCTAAATTAAACCCTAAACATAA
437	130	CCCTACCCTAACCCTACCACAACACTAACCGTAACCGTAACCCTAAACCTAACCCCAACCCTA AGCGTGACCTGCGAAGCAAAGAGACCCCAGAGAAGACGAACGTTGTGAAATCACCTGGACAGGCGGACCTGC
241	129	ATCCAGAGGAGAAGCAGCAGAGAACCGAAGAGCTTCCATACATGACAACCAGCGGACCTGC

242	116	${\tt CCTAAATAGCCAACCCAAGACTGACGTGGGTCATAGTCCACCTGTCGTATCTGTTTTTACACTAAATATCTGTACTACTGTACTACTGTACTACTGTACTACTGTACTACTGTACTACTGTACTACTACTACTGTACTACTGTACTACTGTACTACTACTACTACTACTACTACTACTACTACTACTACT$
272	110	AACATATGGTATTTCAATCAGGACCACTTCCGTCAAGTATTA
		GCTCGCTCGGCTCCACCAGAGACCATCATCCTTATGGCTCCAACAGGCTCCCTTGTCCCTCCGGCTACGCCTTG
243	271	GTCAGACGTCACTCTGCCATGGCATTGGACTTCTGAGCTGTCTGCACTCCGTCTCCACCCCTTCAGGTC
		TGTCTGGTTCCGCCTCGGATCTGACAGTCACTGCGGCTTCGCCTCAGCCTCCAGGACCTTCGGTGTTGACCAGT CGTATCTGCTGTCCGTCTGCACATAGGGCTCCACCTCCATCAGTTTCAT
		AACTAACAATCCAACTACAAGTGTCAAACCATCTGAGACAACTAACAATCCAACTACCAGTTTCAAACCATCT
244	209	GTGACAACTAACAATCTACTCACCAGTTTCAAACCAACTGTGACTATAAACAATCCAACTACCAGTTTGATTG
277	20)	TTAGTTGAACTGGTAGTTGGATTGTTTATAGTCACAGTTGGTTTGAAACTAGTGAGTAGATTG
		CCTGAATCATAAGCATCGAATATTGAATATTGCATTCTCATATTTAACAGTTCAGTAGCGGTGAGATGTGATA
245	126	CCTGTGGGGGTTTGTGAGGCTCTTGAGCCTCTTGTCCTTTGCCTGCGTTAAA
		CTCTGATGTTGACCCTGCCAACATAGCGTGCTTCAAAGCTGCATTCACAAAGGACCTAAACAGGCAAAAGGA
246	206	GAACTCAAACCTATGGTGGTTAAAGGTGGCAACCGCTCTAGATCCTAAGTTCAAAAACCTTAGGTGCTTGCCC
		AGGGCAGAGATGGGAGAGGTATGGCAAAAGCTGAGTGAGATGCTGAAGGATAGAGAACCTG
		CGATAGGTAACATTGGTTTTGCTTTGTTTCACAGAATATATGCTGTTAAAACACACAC
247	220	CTTCACTTATTGATGACATCCTACCCTCGGCCGCCTGGCACATCAGATCCTGCCATAATCATTGCTGGGGTTGC
		GTACGTATGTGTGGGGTGGCGCTATCAAAATAGGGACGAGACCCTTTTGGGGTAGGGGCGTGTTGTTTTTGGT
248	148	TCCGCGAAAAGGCGCTGTGGTTGGAAGGCGCTGTGGTTGGAAGGCGCTGTGGTTGG AAGGCGCTGTGGTTGGAAGGCGCTGTGGCGGAGAGGCTCAGTTGCCCTGGCCGACGATGTACAGATATCCGG
240	146	CGAG
		CTGAGGCCGGGGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATGGCGCCACTGCACTCCA
249	85	GCCTGGGCGACAG
250	02	ACAGTCACATAAAATCTAAAGTTAATAACTGAAGGGTCAAGATCCCAACTAAAGCAAACACTGAACACTATA
250	92	ATGGTGATACACAAATTGTG
		CTTATTCTTGTCTTGGATAACCAGGCGCTTTCGGGCAAAGTAATCAGTTTTTCCCTCTCTCT
251	172	CACCTGGTACCTCTTGAAGTAGGCCTTGTTCTTCACTACTTTAACGAATCCCATTTTGTAGACTTTTTAGTCTCC
		TAAGCCGGAGCCTGGAGTCAAA
252	128	GGCTACGTAGCTACCGCCGGCTACGGCTACGCCATGCAGCAGCCGCTGGCCACCGCCGCTCCAGGGACCGCA
		GCCGCAGCCGCCTTCGGTCAGTACCAGCCCCAGCAGCTGCAAGCCGAACGGAT GGAGGGTCAGCATACGGAGGGTCAGCATACGGAAGGTCAGCATACGGAGGGTCAGC
253	103	ATACGGAGGGTCAGCATACGGAAGGTCAGCATACGGAAGGTCAGCATACGGAGGGTCAGC
		CCCCTACACCCAGATTTTTATTAGACATTAGTCTGATTCCTATTCCACAGGCGTTTCCCCTTCCACTTTAACAC
254	144	TCAGCCACACCAGAGCCAATTTTAAAAAAGGCTCTTCTGCCTAGCCTGGAAAAAAAA
255	120	${\tt CTAGCAACTAGCCATAATGCCACTCATAGCTAGCAACTAGCCATAATGCCACTCATAGCTAGC$
255	138	AATTCCACTCATAGCTAGCAACTAGCCATAATGCCACTCATAGCTAGC
		GTCGAGAATGCCGAGCTCGCTCTCTGCCTCGTCGACGCAGAAGACAAAGTAAAGGGTCGCGTAGTGGCGGTA
256	148	GATGATTCGTAAAGGTTCTTGCGCGGTGTCGGGGTCCAGATCAAGTGCGCGACCCTTGCCCTTGAGCTGCTGC
		TGG
257	93	GACAAGATGCACAGCATAGCCATATTCTAGGTAGACATGAGTTTTTTCTTTAACTATATATA
		TATAGTCGTAGTGGTCTTG TGATGTTGATCTGAGAAACCCTGTTTTATTATAAAAAATAAAGCATTTTTATATATA
		CACCACCATCCAACAAGCCATCTGATCACACATCCATTCCTTTTACTATTCATCCATC
258	271	CATCTCAAATACACCTGAACAAAGCCAACAATAAGAGAGTTCAACAAGTGTGCAGGCGTCAGTCTTTAGCTCC
		TTCTTCCTCTCACTGTATGCATGTTAAAGAGCGTCAGTATATCATCTTAA
		TTTGTCGCACAGCAGGTAGATTTCTTCACCACCGGTAACGCAACCAGCGGTACGGTCCATACGAACGA
259	148	AGGTTAGAAGCGTTCGGAGCTTTAGAGTCGTAGATAGCGTCAGAAACAACCGGTTCCAGACGACGGGTGAAA
		GAA
260	82	GTGGTGATGGGGGTGGTGGTGATGGTGGTGGAGGTGTGGGTGATGTTGT
		AGACAAAGGT
261	177	CTTGTAATTCTTGGCAAACATGAACCCACCCTCATTGATTCCTGGTGTGTTTTGTGTTGTAGTTATTCAACTTTTA CACCACCACCCTGCAGAATTCTTTGTGTAGACATCGTTTCATCTGTGATTTTGTCCTTAAAAACAATTCTACATT
261	1//	TTGAAAGCTGAATACAGATGTTAAAATA
		TCTTAGCGTAGCCTGAACAAAACCCTGAAAATTAATTCTTTCCTTCACCCCCCATCATCCCGTCACCTCCTCCC
262	86	TCTTTATCTTCT
262	127	CATGGATTATCGGATTGTGCAAATTTAGCACCACAACCACCACAACCACCGCAACCTCCACAACCACTACTAC
263	137	TTATAGAGCCTCCACAGCCTCCACAACCACCGCAACCTCCACATCCACCACAGCCACCACTTGT
264	122	CATCTTCTTGCTTTTAGGCTAAAACAGAAGCACCCACAGCCTCCACAAACCTAGAGGAAGCAATTTTTTAGGT
201	122	TGAATGTTGACAGATGCATATTGAACTTCATCTTCCTGCAGCACATTCT
265	205	CCTGCTCAATCTTTCCGCCTCCATACGGATGTCAATCATCTGCTGGCGGTCCTTGAAGCTTCTCGATAAAAAAC
265	205	GTCCCTCTGGGGTGTAGAGGGAGCGAGTAGGAGTGAGGCACCGGATGTTGCGGACCTCCTCTGAGTCACTTTC GCCACCGACGGGACCCTCACGTTTGCGATGCGGCGGGAGCCGAGAGCAGTCATCGTCG
		AATATGCAATCAGCTTGATGGTTCAGAACATAAAACACTCTAAAAGGAATGTAAAAAGTGTTTATTCATTC
		ATTTCAAGATCGCTCATGCTTCTCTTTATCTTCCTGTAGGAGCTAGAAATGATGAGAAGGAGCGGCAAGTGGA
266	248	AGGTATGGAGAGGAACAAGTCTCTCCAAGATTACAACGAGTATTACGATTACTCAATGCAAATGCACCGCAA
		ACTGTTCTCTGGCCAGAAATTGGCAGAAT
		TTAAATTAGAAAACAACCAAAAATTCTGTTTAAAATTAAGACTTGGTTGTTAAATGTTAAATGGACCATGTCC
267	185	GTAGTTAATGTACTACACCTGTTGTTAGGACACTTCTGTAAACTTGAGGGGAATCAACTTCATACAGCTACTGT
		TACACCATTTGAATAAAAATAACAGCAAAAATGACTGA
268	134	CTGCGATCAATCAGAGAGCCGCGAGTCAGTGGAATTACTGGATCAGTGCGATCAGTGTTTATCAATCA
		CCACAACAUUCCATATUUACCUUCCUUTACUTCACAAAUTCCCCUUTATTTUTTUCAUUAUA

CCIGATCAGACGGGCTACAGAAGAGGGTAGTATAACACCGGACCCAGCTCCCAACCCTCATACACCC CGGATCACACCCATCCCTTACACCC TIG CGGATCACACCCATCCCTTACACCCTCCCTCTGCGACACGAGCCTCGGTATTGGGATATTACACCCAGCTCGGGGGGGG			
STG GATGIGTTAAAAACGGACGCATGCAAGAAGACTCGTCTGGAGTTTTACATCATCTACTCGACGTGGGT GATGIGTTAAAAACGGACCCATTTACATTCTGTGACTACAAAAAAAA			CGTCTGCAGACGGGCTACAGAAGACGGGTAGTATAACCGGACCGAACCCAGGTCCCCAGCTCTCATTACACC
Facilitation Faci	269	148	
180 GACTGTGAGCTGCATTTACATGTGGTGACAAAAACCAAATTCTAGTGTTAACAGGGTTGAGAAAAAAAA			
TRAAGCGGGGATTIGATGAAAAAATAG TAAAACCCCCCCAAAGGGGTTTIGACTGGGGGTTTGACTGAGGGATTGACTGAGGGTTTGACTGAGGGTTTGACTGAGGGTTTGACTGAGGGTTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGGTTGACTGAGGACAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGAAATCAAACCGGAAATCAGGAAATCAAACCGGAAATCAGGAAAATCAAAACACAATCAAACCGGAAATCAGGAAATCAGACACCGCAAAACACGGAAAATCAAACCGGAAATCAGGAAATCAAACCGGAAATCAGGAAATCAAACCGGAAATCAGGACAAATCAAACCCGCAAGAGGGAAACACGGAAACCGGAACCGGAACCGAGGAG			
271 110 TAAACCCCCCAAGGGGGTTTGACTGGGGGTTTGACTGAGGGTTTGACTGAGGGTTTGACTGAGGGTTGACCGA 272 108 ATCACCTCACTCTCTTGCTACTAGGGTTGACTGAGGG 273 237 ACACGAAATAAAGTATAGGCTCTGAGAGGTTT CAGCAAAATAAAGTATATGGCATCGAATGAGACGAATCAAACCGGACAAAATATAAACCATCTAGCCATTAAAA 273 237 ACACGAAAATAAAGTATAGGCATCGAATGAGACAGGCAAATCCAGACGAATCAAACCGGACTCGATTCGAGAGGTTCTC CAGAAAAAAACATAAAGAAAACCTTCGGATTGCGGAATCCAGCAGCTCTCGTTCTC GAAATGCTCTGAGTTGAGCACCGCACAGAGGACGGAAAAAACCTTTGCGGAGCCGTAACCACCCC AGACGCATGCAGTCTAAACAA CATTACTGTAACCGTCGTAATGCAATTGGTTTTGTTATCTCGTAGTCATCACCATCATCATCATCATCATCATCATCATCATCAT	270	180	
110 GGGTCTGACTGGTGTTTGACTAAGGGTTGACTGAGGG ATCACCCTCACTCTCCTGTCTCTCTGTGCTTGTGTTAGGTCACGTGCCTTCAGGACTTCTTTGGGGACGAT GACATCTTCCTCGCATGTGCCTTGTGCTTGTGTTAGGTCACGTGCCTTCAGGACTTCTTTGGGGACGAT GACATCTTCCTCGCATGTGGCTCTGAGAGGTTT CAGCAAAATAAAACTAAGGAAAAACCAATCAAACCGAACAAACCGGACAAAATATAAACCAATCAAACCGAACACGAAAATACAAAATAAAAACACAATCAAACCGGAAAATACACAAACCGGAAAATACACAAACCAGAACCGCAAAAAACTCAGCAACTCAGCAACTCAGCACCCCCAAGAGGACGAAAAAACCAAACCTTGCGGAACCACCCCC GACACGCATCAAACAA GATTTGTTAACCGTGGTAACAA GATTTGTTAACCGTGGTAATGACATGGTTTTGTTTATTCTCGTAGTTGCGGAGCCGTTAACCAACC			
272 108 ATCACCCTCACTCTCCTGTGTGTGTGCTGTCCCTGTGTAGGTGACGTGCCTTCAGGACTTCTTGGGGACGAT ATCACCCTCACTCTCCGCATGTGGCTCTGAGAGGTTT CAGCAAAATAAAGTATGGCATTCGCAATTAAAACCCAATCAAACCGGACAAAAATATAACCATCTAGCCATTAAAA 273 237 ACACGAAAAATCAAGGAAAAAACGCAATCAAACCGGACAAAAAACCTTGCGCATTCAAACCA AGACGCATGCAGGACAGGA	271	110	
273 237 ACACAATATAAGTATGGCATCGAGAGGTTT CAGCAAAATAAAGTATGGCATCGAATAAACACAATCAAACCGGACAAAATATAACCATCTAGCCATTAAAA 273 237 ACACAAAATAAAGTATGGCATCGCAATAAACACAATCCAGCGACCGAC	271	110	
273 237 ACACGANATAAGGATAGGATCGCATTAAACACAATCAAACCGGACAAAATTAACCATCTAGCCATTAAAA 274 257 ACACGAAAAATCAAGGAAAAAACGCAAACACAATCACGGACAGGACAGAACCGAATCAGCAGCTTCGCTTCT 275 267 CAACGGAAAAATCAAGGAAAAAAACCTTAGCACAGGACAGGACAGAAAAACCTTTGCGGACCGCAACCAGA 276 277 187 CATTACTGTAACAACGTTTACATCATTCATCATCATCATCATCATCATCATCATCA	272	108	
273 237 ACACGAAAAATCAAGGAAAAACGTCAGACAGGCAAATCTCGTGGTCTCGGGAATCCAGCAGCTTCGCTTCT GAAATGCTTCTGGTGTGTGTGTGTGACACCGCACAGAGGACGAAAAACCTTGTCCGGAATCCAGCCGTAAACAA GATTIGTTAACCGTCGTAAACAA 274 184 CATTACTGTACACACGTGTTCAAACTATCATTATCTCTCTAGTCATCATCATCATCATCATCATCATCATCATCATCATCAT			
273 23 GAAATGCTTCTGGTGTGAGTTGACACCGCACAGAGGACGGAACAAAACCTTGTCGGAGCCGTAACACACCGC AGACGCATGCAGTCTAAACAA 274 184 CATTACTGTAACCAGTGTTTCCAACTCTTCCAAATGTAAAGCCACTACACTCATCATCATCATCATC 275 167 AAAGCTTCTGCTTTACATTCATTCTTTTTTTTTTTTTTT			
AGACGCATICAGTCTAAACAA GATTIGTTAACCGTCGTAATGCATTGGTTTTGTTATTCTCGTAGTCATCATCATCATCATCATCATCATCATCATCATCATCAT	273	237	
274 184 CATTACTGTAACCGTCGTAATGCATTGGTTTTGTTATTCTCGTAGTCATCATCATCATCATCATCATCATCATCATCATCATCAT			
274 184 CATTACTGTAACACGTGTTCCAACTCTTCCAAATGTAAGGCACATAAACTCTTCCAAGGCCACGTGACTCCAG CAGCCTTGCCTT			
275 167 AAAGCTTTGCCTTTATCATTATCATCATTATTCGT AAAGCTTTTACGTTAAAGATGATGATGATGATTATAAGTCTCAAATTTTTCCTTCAGGTCGCTAAATCTGATCTTGC AAAGCTTTCGTGTGTTTACTGGATGCTTCCAGAATCAGCCCTCCTAACAGGTACTGAAAACCTCTAAATGTA ACTTTGGTTTCCTGAGATG CACAGAACTTATTTACTGCATGCTTCCAGAATCAGCCCTCTAACAGGTACTGAAAACCTCTAAATGTA ACTTTGGTTTCCTGAGATG CACAGAACTTATTTACTCTTAAAATTCAAGGAACTCATTAAACCCCATTAAGAAAAATCTTGAGGGAACCAGGG GTGGGGTTTTGACATCAGACTTCCTCCACTCTATTTCTTA CACAGAACATTATTTACACTACAAGCTTCCTCCACCTCTATTTCTTA AGTAGGTTCGATTAGCATCAGACTTCCCCCACAGGTCGGACCGAGTCAGAGCGAGTCAGAGCAGACCGATTTGCACGAGACCGACC	27.4	104	
275 167 AAGCTITAAAGATGATAGATGTTATTAAAGTCTCAATTITTTCCTTCAGGTCGCTAATCTGATCTTGC AAAGCTTCTGTGTTTACTGAGATG ACTITGGTTTCCTGAGATG 276 113 CACAGAACTTATTTACTCTAAATTCAAGGACTCATAAACCCCATTAAAACCTGAAAAACCTCTAAATGTA 277 65 AGTACTAAACCAGGCCCGACTCTGCTTAGCTTCCAGATCAGACCGAGACCAGGGGGGGTGCTCAGAGTG 278 117 TAGATGGTTTCGTTTGCTCTCACTCTATTCTTA 279 113 CTGCTGCACAGAGTTCGCTTAGCTTCCGCAGATCAGACGACGACGACTGAGTTGCACGACGACCCCCCCACCAGAGTTCCTCTCGGCTTCAGCTTGCAGCTAGACCAGGACGACGACTGGGACGACGACGACGACGACGACGACGACGACGACGACGA	2/4	184	
275 167 AAAGCTTCTGTCTGTTTACTGGATGCTTCCAGAATCAGCCCTCCTAACAGGTACTGAAAACCTCTAAATGTA 276 113 GCACAGAACTTATTTTACTCTTAAATTCAAGGAACTCATTAAACCCCATTAAGAAAATCTTGAGGGAACCAGGG 277 65 AGTACTAACCAGGCCCGACTCTGCTTAGCCTCAGTTTCTTA 278 117 TAGATGGTTCGATTAGTCTTTCGCCCCTATTCTTA 279 113 GCACAGAACTTATGTCTTCTGGCCCCTATTCCAGAGCGAGC			
ACTITGGTTICCIGAGATG CACAGAACTTATITIACICTTAAATTCAAGGAACTCATTAAACCCCATTAAGAAAATCTTGAGGGAACCAGGG GTGGGGTTTTGACATCAGACTTCCTCCACTCTATTICTTA 277 65 AGTACTAACCAGGCCCGACTCTGCTTAGCTTCCGAGATCAGACGAGACCGGGCTGCTCAGAGTG TAGATGGTTCGATTAGTCTTCGCCCCTATACCCAGGTCGGACCAGCTCAGGACCGCTCAGAGTG CCTCCACCAGAGTTTCCTCTGGGCTCGCCCCAGGCATAGT CTGCTGTCTATATCAACCAACACCTTTTCTGGGGTCTGAGAGTG CATGCGGACCAAGAATTAATCAAATCTTTCTGGGGTCTGAAAAATGTTAACACAAGAGTATGTAT	275	1.67	
276113CACAGAACTTATTTTACTCTTAAATTCAAGGAACTCATTAAACCCCATTAAGAAAATCTTGAGGGAACCAGGG GTGGGGTTTTTGACTACAGACTTCCTCCACTCTATTTCTTTA27765AGTACTAACCAGGCCCGACTCTGCTTAGCTTCCGAGTCAGACGAGCGGGTGCTCAGAGTG CTGACTAGCCAGGCCCGACCTTGCCTTAGCTTCCGAGTCAGACCGATTTGCACGTCAGAGTG CCTCCACCAGAGTTTCCTCTGGCCTTGCCCAGGCCAGACCAATGT279113CTGCTGTCTATATCAACCAACACCTTTTCTGGGGTCTGAGAGCGTCGGCATCGGGCGCCTTAACCCGGCGTTC GGTTCATCCCGCAGCCCAGCACACACCTTTTTCTTGAGGTGTCTAATGAGCACACACCTTTTCTCAGGTGAAAAATCTCTTCAGGTGAAAAATCTCTTCAAGTGAAAAATCTCAAAAATCTCTTCAAGTGAAAAATCCAAAATCTCAACACACAC	213	107	
276 113 GTGGGGTTTTGACATCAGACTTCCTCCACTCTATTTCTTA 277 65 AGTACTAACCAGGCCCGACTCTGCTTAGCTTCCGAGATCAGACGAGCTGGTCCAGAGTG 278 117 CTGATGGTTCGATTAGTCTTCCGCTTAGCCTCAGACTAGACCAGCTCGGCCTCAGGACCGCTACGGA 279 113 CTGCTGTCTATACCAGCACACACCTTTCTTCTGGGTCGATGAGCACCGATTTGCACGTCAGGACCGCTTAACCCAGGACCGGTCTGGCCCAGGACCGCTTCACCCAGAGATTCCGCCTTACCCAAAAGTGG 280 100 CATGCGGACCAGAAAATAATCAAAATCCTCTCAGAGTGAAAAATGTTAACACAACAACACTTTTCCCCAA 281 73 TGTAATAAAATACCTCACCAGGTCGGAATAATAAAAAACTCCATCATCACCGGCATCACTTTTACAACAATTTT 281 ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGGATTGGTCTAAAGGGTTGGGTACATCAGGGCCCTGGTTGG 282 149 AAGCCGCTGATGCTGGCTTGGACTGCGGAACAAGCTGGGTGGACCAGGCCGGCC			
277 65 AGTACTAACCAGGCCCGACTCTGCTTAGCTTCCGAGATCAGACGAGATCGGGCGTGCTCAGAGTG 278 117 CAGATGGTTCGATTAGTCTTTCGCCCCTATACCCAGGTCGGACCGATTTGCACGTCAGGACCGCTACGGA 279 113 CTGCTGTCTATATCAACCAACACCTTTTCTGGGTCTGATGAGCGTCGGCATCGGCCTCCACCAGAGACCGCTTC 279 113 CTGCTGTCTATATCAACCAACACCTTTTCTGGGTCTGATGAGCGTCGGCATCGGGCGCCTTAACCCGGCGTTC 280 100 CATGCGGACCAAGAAATAATCAAAATCTTCTCAAGTGAAAAATGTTAACACAGAGTATGTAT	276	113	
278 117 TAGATGGTTCGATTAGTCTTTCGCCCCTATACCCAGGTCGGACGACCGATTTGCACGTCAGGACCGCTACGGA CCTCCACCAGAGTTTCCTCGGCTCCCCAGGCATAGT CCTGCCACCAGAGTTTCCTCGCCCAGGCATAGT CCTGCTGTCTATATCAACCAACACCTTTTCTGGGGTCCGAGCATGAGCGTCGGCATCGGCCATCGGCGCTTC GGTTCATCCCGCAGCGCCAGTTCTGCTTACCAAAAGTGG 280 100 ATGAGGGGCCCAAGTATATCAACACACCTTCTACCAAAAGTGG 281 73 TGTAATAAAATACCTCACCACCAGGAATAATTAAAAAACTCCATCATCACCGCATCACTTTTACAACATTTT ATTCGGCAAATTGGATCCGTAACTTCGGGACCAAGAATAATAAAAAACTCCATCATCACCGCATCACTTTTACAACATTTT ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGGATTGGCTCTAAGGGTTGGGTACATCGGGCCCTGGTTGG 282 149 AAGCCGCTGATGCTGGCTTGGACTGCTGCGGGAACATGCGGTGGACCGAGCCGGCGTCGGCGTTGGACG GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAGCCGGCA CACTT ACGCAAGGCCTGAATTAGTGACACCCAATAGATTTCTCCGGTGGAACAGGACCAGGGCTGCCATCGACACGAACA GACTT ACGCAAGGCCTGAATTAGTGACACCCAATAGATTTCTCCGGTGGAACAAGGTCGTCAAGACAAGGAAGAAGACAGGAACAAGACAGGAACAAGACACACTTC TTGTTGGACGAAGCAAGAAGACAGGAGAACACCATTTTGTTGTGCAGTCCAACACCTTC TTGTTGGTAAAAGCACTTTTTTTAAATTTCTTTAAACCCCCAATAAAACCTTCTCTTTCTGTTGTACTATAAGTTTCT T CGTGAAAAAAGCATTCAGTTTAGAATATACACTTAAGTCCCAAATGGGTTTTGTACTATAACCTTTATGACC 285 150 TAAAAAGTATGTGTTTAAATTTCATTAAATTTCATTAAAACACACCTTCTTTCTTTTTT	277	65	
117 CCTCCACCAGAGTTTCTCTGGCTTCGCCCTGCCCAGGCATAGT 279 113 CGCTGTCTATATCAACCAACACCTTTTCTGGGGTCTGATAGAGCGTCGGCATCGGGCGCTTAACCCGGCGTTC GGTTCATCCCGCAGCGCCAGTTCTGCTTACCAAAAGTGG 280 100 CATGCGGACCAAGAAATAATCAAAAATCTCTTCAGGTGAAAAATGTTAACACAGAGTATGTAT	211	03	
279 113 CTGCTGTCTATATCAACCAACACCTTTTCTGGGGTCTGATGAGCGTCGGCATCGGGCGCCTTAACCCGGCGTTC GGTTCATCCCGCAGCGCCAGTTCTGCTTACCAAAAGTGG 280 100 ATGAGGGGGTCTCAATGTTTCCTCCAA 281 73 TGTAATAAAATACCTCACCGGTCAAATAATAAAAACTCCATCATCACCGCATCACTTTTACAACATTTT ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGATTGGCTCAAGGGTGGGT	278	117	
280 100 CATGCGCAGCGCCAGTTCTGCTTACCAAAAGTGG 281 73 TGTAATAAAATACCACCGCAGGTCAAATAATAAAAACTCCATCATCACCGCATCACTCTTACAACACTTTT ATTCGGCAAATTGGATCGGTCAACTTCGGGATAAGGATTGGTACACTGGTTGG 282 149 AAGCCGCTGATGCTGGACTGCGTGGAACATGCGGTGGACCGAGCCGGCGTCGGCTGTGGACG 283 150 ACCATTAGTTCCAGGTAACTTCTCCGGAACACACCACCACACACA			
280 100 CATGCGGACCAAGAAATAATCAAAATCTCTTCAGGTGAAAATGTTAACACAGAGTATGTAT	279	113	
281 73 TGTAATAAATACCTCACCGGTCAAATAATAAAAACTCCATCATCACCGCATCACTTTTACAACATTTT ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGGATTGGCTCTAAGGGTTGGGTACATCGGGCCCTGGTTGG 282 149 AAGCCGCTGATGCTGGCTGGACTGCGCGTGGGAACATGCGGTGGACCGAGCCGGCGTCGGCGTGGACG GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAGCGTGCTG 283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCCGGTGGAGGTAGCAGCAGCCGGCTGCCATCGACACACA GACTT ACGCAAGGCCTGAATTAGTGACACCCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGAACAAGAAGAAGAAGAAGAAGAAGAAGACGAACACAATTTAGTGACAACACCACTTC TTGTTGGTAAAAGCAGAAGAAGAAGAAGAAGACGAAGAACACAAATGGGTTTGTGATCGGTATGCACACTTC TTGTTGGTAAAAGCATTAAATTTCTTTAGACCCCCATATAAAACTATGCACAACACACATTAACCTTATGACC 285 150 TAAAAGTATGTGTTTAAATTTCTTTAGACCCCCATATAAAGCTAAACACTCTCTTTCTGTTGTACTATAGTTTCT T 286 100 GTGAAAAAGCATTCAGTTTAGAGGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAAACAGAAAGAA			
281 73 TGTAATAAAATACCTCACCGGTCAAATAATAAAAAACTCCATCACCGCATCACTTTTACAACATTTT ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGGATTGGCTCTAAGGGTTGGGTACATCGGGCCCTGGTTGG 282 149 AAGCCGCTGATGCTGGCTTGGACTGCTGCGGGAACATGCGGTGGACCGAGCCGGCGTCGGCGTGGACG GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAGCGTGCTG 283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGCAGCAGCCGCGCTGCACCACCACCACCACCACCACCACCACCACCACCACCAC	280	100	
ATTCGGCAAATTGGATCCGTAACTTCGGGATAAGGATTGGCTCTAAGGGTTGGGTACATCGGGCCCTGGTTGG AAGCCGCTGATGCTGGCTTGGACTGCTGCGTGGGAACATGCGGTGGACCGAGCCGAGCCGGCGTCGGCGTGGACC GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAGCGTGCTG ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGCAGTAACGGGGCTGCCATCGACACACA GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGAACAGACACAGACACAGACACAGACACAGACAGACAGACAGACAGACAGACAGACAGACAGACAGACACACCAC	281	73	
282 149 AAGCCGCTGATGCTGGCTTGGACTGCGTGGGAACATGCGGTGGACCGAGCCGGCGTCGGCGTTGGACG GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAGCGTGCTG 283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGTAACGGGGCTGCCATCGACACGAACA GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCAGGAACAGGTCGTCAAGACAAGGAAGG	201	13	
GCCA TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAAGCGTGCTG 283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGTAACGGGGCTGCCATCGACACGAACA GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	282	1/10	
TTGTGCAACAGCGATAAAGTCGGTAGGAACAAGACGGGTGCCCTGATGCAGTAGCTGGTAGAAAAGCGTGCTG 283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGTAACGGGGCTGCCATCGACACGAACA GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	202	149	
283 150 ACCATTAGTTCCAGGTTCACCCCAATAGATTTCTCCGGTGGAGGTAGTAACGGGGCTGCCATCGACACGAACA GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG			
GACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	283	150	
284 121 ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	203	150	
TCTGTGACGAAGCAGAAGACGAGGACACCACGATGACGTCACACCTTC TTGTTGGTAAAAGGCTCTTTTTTTAAATAAGTCCCAAATGGGTTTGTATCGACACACTTATGACC 285 150 TAAAAGTATGTGTTTAAATTTCTTTAGACCCCCATATAAAGCTAAACACTCTCTTTCTGTTGTACTATAGTTTCT T 286 100 GTGAAAAAGCATTCAGTTTAGAGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAAGAACGGATTTCAG TACCTGGTATTTCTAATATTCATGACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGAAGGATTTG 287 150 TCTGTGACGAAGCAGAAGACGGAGGACACACGATGACGTCCAGGAACACCACACAC ATACAACACAATTTAGATATATTTTTTTTATTTTTATGATCTTTATATGATAGTAAAAAATAACTATGCACAAACA 288 150 TTCTACATGCATGCATCTACTTATCAATATATATATATAT			
TTGTTGGTAAAGGCTCTTTTTTTAAATAAGTCCCAAATGGGTTTGTGATCGGTATGCACATTAACCTTATGACC TAAAAGTATGTGTTTAAATTTCTTTAGACCCCCATATAAAGCTAAACACTCTCTTTCTGTTGTACTATAGTTTCT T GTGAAAAAGCATTCAGTTTAGAGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAAGAACGGATTTCAG TACCTGGTATTTCTAATATTCATGACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	284	121	
T GTGAAAAAGCATTCAGTTTAGAGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAACGGATTTCAG TACCTGGTATTTCTAATATTCATGACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG			
T GTGAAAAAGCATTCAGTTTAGAGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAACGGATTTCAG TACCTGGTATTTCTAATATTCATGACTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	285	150	
TACCTGGTATTTCTAATATTCATGACTT ACGCAAGGCCTGAATTAGTGACCTT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG			
TACCIGGIATITCIAAIAITCAIGACIT ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG	206	100	GTGAAAAAGCATTCAGTTTAGAGATATCAGCTACTTAGGATATGAATAGTCAAACAGAAGAACGGATTTCAG
287 150 TCTGTGACGAAGCAGAAGACGGAGGACACACGATGACGTCACACCTACAAAACGAAAAGCCCCCCGCAGGA CCACAC ATACAACACACATTTAGATATTTTTTTATTTTTATGATCTTTATATGTATG	286	100	TACCTGGTATTTCTAATATTCATGACTT
CCACAC ATACAACACAATTTAGATATTTTTTTATTTTTATGATCTTTATATGTATG			ACGCAAGGCCTGAATTAGTGACACCATTTTGTTGTGCAGTCCAGGAACAGGTCGTCAAGACAAGGAAGG
ATACAACACAATTTAGATATTTTTTTATTTTATGATCTTTATATGTATG	287	150	TCTGTGACGAAGCAGAAGACGGAGGACACACGATGACGTCACACACA
288 150 TTCTACATGCATGCATCTACTTATCAATATATATATATAT			CCACAC
T CAGCGGCTGCCCGGGCGCAAGGAGGCCTGCCGACGCAGCGGCCTCGTCCAACTCCTTCCCGTTGTATCCC			ATACAACACAATTTAGATATATTTTTTTATTTTTTATGATCTTTATATGTATG
289 109 CAGCGGCTGCCCGGGCGCAAGGAGGCCTGCCGACGCAGCGGCCTCGTCCAACTCCTTCCCGTTGTATCCC	288	150	
ACGGCTCCTTCGACCTCGGCCCCGGCGCCC	289	109	
		107	ACGGCTCCTTCGACCTCGGACTCCGCCCCGGCGCCC

Table S3B. Alignment of DNA sequences to Pan-genomes

ID	Len	DNA Sequences
290	150	GCCCACTTCCGCGGCCACCGGTGCAGGGCATGCCCCCGGGCCGTGGAGGTGAGGGAAACAGGCGCGAGTCGC GGTTTAACAACCCCCCCCCC
291	150	ATCTTAGAGACCAATGACATATAGGATCTCAGCATTTTGTAATATTGAAAGGAGCAGGTAATTTTTCAACTAA ATCAAAATACATAAAAGCTTGCTCATGAAATACCACCATCTTAGACAACACAGTTCTCTTGGGTGTCTTAAAT ATGA
292	150	AGTCGCTCCAGCTCTGAGACTTCATCTCCCTTCTGTAATGTGAAGGATCATGCTTGTCCTCACAGGATTACAAA GTCAAGTACAGACATACTGCTTTTTGTTTCCATAATGGTCTCCTGGAAACCACATTTTGGGTCATATTAATGAT TT
293	150	TAACCGAAGAATCACAAAAGAAGTGAAAATGGCCTGTTCCTGCCTTAACTGATGACATTACCTTGTGAAATTC CTTCTCCTGGCTCATCCTGGCTCAAAAGCTCCCCCCCTGAGCCCCTTGTGACCCCCGCCCCCCCC

294	149	GAGCTGAGATCACACCATTGCACTCCAGCTTGGGCCACCGAGTGAGACTCCGTCTCAAAAAAAA
295	109	CCAGGAAGTTTAGAAAGTTGCTTTAACCAGGGCACATGCTCTGGAGACTGTGTGGTTAATAATGACATTTAGT ACTTTCTTATTCTTTACACCCTCCTCACGGGGCATT
		AGAAAGCACACTGTACAACTTCAACAAGGACAGGTCAGTTTTCTTGTTTAAAACCACAGTTGGTGCCGGGCAT
296	150	GGTGGCTCACGCCTCTAATCCTAGCACTTTGGGAGGCCGAGATCGGAGGATCACAAGGCAGAGAGCAAGTCA CGACA
297	150	AATTATCCAATGTAATAAAAAATACTAAAAACTGAAGCTCAACAAACTCCATCTTGGATAAAAATAACAAT AACAAGACACAATCAAAGCAAAG
298	74	GTCTCACCTGTCACCCAGGCTGGAGGGCAGTGGTGTGATCTCGGCTCACCCCAACTTCTGCCTCCCAGGCTCA
299	119	ATAAATATTTGAGGTGATGAGAACATTTGAAATCCTCTCTTTTTAGCTGTTTTTGAAATATACATTATTTTTAAGT ATAATCATTATGCTGTGTCATTGCACAGCATGGTGACTATAGCAA
300	72	GGTTAGATCACTCCCACTGCACCAACGAGCACAGGGTAGGTCTCAGAGCAAGTCAGGGGAAGTGATCTAACC
301	150	GTCTCTAGCACGTCTTTATCTCCAACCCTCAGGGACTCTCCTGTGTGTCCCAGCTACTCTCCAACCACGCCCAC AATTCAGCGGGGGTCAGATCCAGGCACCAATCAAAAAAACAACCAGATCCCACAATACACACAC
202	4.50	AGCA CGATTCCATTCCATTCCATTCCATTCCATTCCATT
302	150	CCGGATGATTCCATTCCATTCCATTCCATTCCATTCCAT
303	131	GCCGAGACTGAGCAAGACTCTATCTCAAAAAAAAAAAAA
304	148	CTTTTTTTTTCCTCTCCGCGCCCCCGCGGGCCCCTCCCT
		ATTTGTATTCTTCCAAAATTCCTATGTTGAAACCCTAATCCCCAGTGGGATGCTGTTTGGAGATGGGGCCTTTG
305	87	GAAGAATACAAAT
		GGCAACAAGAGTGAAACTCTGTCTCAAAAAAAAAAAAAA
306	150	GGTTGGGGTGGGGTCTAAAGGGAGAAAGATAAACCAAATGGCAGATCCATAATGAAAGGCGTTGTGTTTTCC TCACATT
		ACTCTCCAAATGAAGTTTCCACCTATCAATCCCTCTCCACTCAAGGCAGATGGTTCTTAGACCAAAAAAAA
307	150	AAAAAAAAAATGTCCCACCACCACACAAGCCCCATAAATTATGTTGTGAATTAAAAAAACAATTACAAGTA
		GGTTA
308	146	TCATAGTCAAACTGCTAAAATGCAATGATAATGAGAACATCTTGACAACCAGAGAAAAATAATCCATTTCACA
		CACAGGAACAATGATATGAATAACAGCTGCCTTCCCTCTCACCTCAGCCGCCCCGGAAGGTGGGTCGAGGGTC GATATATACAAGAATATTCATAGCAGCTTATTTCACAACAGCTCCAAACTGGAAACAACTCAAATGTCCATCC
309	149	ATATGGTAACAAGATCAACAAACTGTGGTATATTAACACTGGTATACTAACACAGTGGAATACCATACAGCA
207	1.,,	GTAA
310	150	AAAACTTTTCCTATTTGAGCCATAAACCCTTCCTTTGTTCTTCGGTGCACACACTTTCATTTGTGCTTCCCCAGT CTGCGGGAGTTTTTTTTTT
		TTACCGGCGTGAGCCACTGCACCCGGCCTGAGTCTTTTTTTT
311	150	TCTCAGTGGCCCGAGCGGGAGTGGGTGGCTCAAACTAAGCTCACAGCAAAATAAGCCACCGGGGGTCAAGA
		GAATAATCAATCTTTTGTTTACGAAGCACTTCCACAATTATTACTTTTTTTT
312	150	CATTTCACTATGTAGGCAAGGCAAGTATTGAAATTATAATTATAATTTCATTGATGAGGAAATATCGTAAGTG CA
		CACATTTTCTCTAAACTCATATAATATTTTACTTCTTTTTT
313	150	GCGATACCTGGATGCCCAAAGATGGATGCCACGCTCCCTGCCGTGGAGGGGGTCTCAGTCTATGCTATGTATT TA
		CCAGGATGGTCTCGATATCCTGACCTCGTGATCCGCCTGCCT
314	149	GAGCCACCGCCCCTGCCCCTCATCCCGTTTCTTTTCCTCCCGCCCCCCCC
215	1.47	GGCTGGCATGATGCCTCTATACCAACACTTTAGAAGGCCAAGGCAAGCGGATCACTTGAGGTCT
315	147	GGAGTTTGAGACCAGCCTCATCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAGCATTAGCTGG GC
316	89	CGGTCCCTGTCCTCTGTTGCGATTTGGCAGGCAGCTCCAAGGATGTACGGAGGCACCCCTCCCT
317	94	AGCAAGTTTATAACAATAAACTTGACAACTTTGGTGAAATACATCAATTCCTTCAAAAAACAAATTACCAAATCAATCAATCAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATTACCAAATCAATCAATCAATCAATTACCAAATCAATCAATCAATCAATTACCAAATCAAATTACCAAATCAATCAATCAATCAATCAATCAATCAATCAATCAATCAATTACCAAATCAAATC
317	74	CAACTAGTAGTTGGATTTGGT
210	150	AAACTCCGTCTCAGAAAAAAAAAAAAAAAAAAAAAAAAGAATGTATTTTGCGGGGAAGGGGTAATTTGAAC ATAGAGTAACAAGGCAAAAATACAAGCAAATGCAAGGAAGCTGGAAAGGATACACCGGAGTTGCGGGAA
318	150	ATACATGA
		ACTGTATTTTCCAGGGAAAAGAATGTCTAGCATCTCCAAAATCATCTCTCTGAGCTAAAATGGCATCATGCAA
319	150	AAGGAAACTTACTCATTCCCTGGGAAATCCAAGACAGAGACCTTTCTGAGAGCGACCTGAAGTGAGGTTTGAC
		AAGA GGATGTGGGCATTTCAGTTTCCCAGGCCCCTCTATTTAGGAAGAAAACTCCAGGCTCCACCCAGATAAATACA
320	150	GACTCCTCCTTCCTACCTAATCCAGGCTCAGGATGGGAGGCCCAGCCTCCACATCCAGAACACCACACTACGT
		TCAC TTTGGCAGTTTCTAATTTTCGAAGAATTGGTCCATTTCATCCAAGTTGTTGAATTTACCATATGTATATACAAA
321	112	GTATATCTTTAATATCCATGGGAAATTTGAAAA

322	62	AAATGAAGAATGTTAGATGTCTCCACTGACCTACTGAGCCTACATCTCAACATTCTTCATTT
323	150	CTGGGATATTTTGTTTTTCACTATAGGCCTCAGTGAGCTCAAAAATGTCCATTTGCAGATTCTTCAAAAATAGA GTATCCACAAAGCGGAAACAGACGAAAGCTATAACTATGACAGATGAAACCAAACATAAAAAAGAAGTTTCA CAGA
224	140	GAGACTCCATCTTAAAAAAAAAAAAAAAAAAAAAAAAAA
324	149	AAAAAAAACCAATGATCTAAAAGATAACACAGGAATATTCAACAAACA
325	141	AATGTTTCTTTTTATTTATTTCTTTTTTTTTTTTTTTAGACAAGGTATCACAAATTCCCCCAGGCAGTAGTGAA GTTGCACAATAAAGGCTCAAAACAACCATTACCAACTGCCAAAGCCACCCAACTAGCTGTGACTAC TAGGTTAAATTGTGTCACCACCACCCCCACCCCA
326	150	CAAGTGAAATTAAAATTTTAAAATAGGCTTTTCAGATGTAATCAAAATTATCAGAGATAAGAATGGATA AGGGT TAATGCATCACTGAATCAGGAAATGTTAGGAGCTTTGCTCACACATAGGTAAACCGTGTAACTTCTGGAGTCA
327	150	TTGAAAAATAATATTTCTTAATATCTGACAAGTCGTCAGCTATGCACTTAGGACAAGCCTCAAAAACACTTGT TTGA
328	150	GGAAAATGCAGTCTCTGGGGTAATTTTATGAGAAATACAGCTTCCTTGAGTTAACAATGAAGAGCTTTAAAAT CAAATCTCATGTTGATTTCATCTTTTTTTTTT
329	150	CCAGCGCTCTGTATCCCCTCTTACCTTGGTAATGATGTCCTTGAACTGACCCTCCTTCCAGGCCTCAGTGGGAG
330	150	ACAGGAAGGGGAACATCACACACTGGGGACTGTTGTGGGGTGGGGAGAGGGGGGGG
331	150	GATTCAGAGGAGATGCTTCCCAGAGGGCTCAGTCCTGGAGTCAGAGATGCTTCCTGGAGGGCTCAGTCCTGGA GTCAGAGATGCTTCCTGGAGGGCTCAGTCCTGGAGTCAGAGAAGATGCTTGGCGGGCG
332	79	ACACTATGGGGACTCCAACAGAGCCATACCTTCCTGTCTACGGCGGTTGGACCTCCTGGCTCCGGGCACCAGC TTCTCC
333	145	GTGTCTAGGGCTTCACCAATTGTATGTTCATTCATTCAATCTTGATGGCTTGCTT
334	148	TGTACAGTATGGAAAAATGAAGTGATTGAAATCGTGACTGAC
335	149	AATCAAACCGAGTGGAATGGAATGGAATGGAATGGAATG
336	149	CCTTAATAAATCTGCCCTTGACTTATGGCCGAACCTCATTCAAGATCGGAAGGAGCACACGTCTGAACTCCAG TCAC
337	150	AGGGAGTAATTAAACCTTTTTTTCCCACATGATAACAAGTATGATCGTTCACACTTGATATCATGTGGGAAAAA AGGTTTAATTACTCCCTAATTGTCTGGGAAACAAAAGATTTCAAAATACGGAGCTCCTGGGGGAAGGAGGTT AATA
338	150	TAACAGATTCAGGATTGAATAAAAAAGAAGTTATGGGCATAAGTAGTGCAACATGAAAAGGTACATTACAAA CAGTGTCACGGGTGGAAAAGGGCAATGCATGGTAGCTCCTAGTTTCCAAACGGGTTTCAGAAAGTATGTCACACTTT
339	150	CAAAGCATAAAAAAAATAAAAAAGGTAAAGAGTACTAAGATCCAGAAAATTAACAAGTAGTAAAATTTTTGT TTCAGTCTGTCAAGATTATCATTCCATTAAGCATCCAAAAATTTTACTACTTGTTAATTTTCTGGAGCTTAGTA ATCT
340	96	$TAGTCTTGATAGTTTGTTTTTTATGAAAATTTGTGCATTTCATTTAGGCTAATTTATTGGCATGTAATTGTTTA\\ TATAATTCCCTTATGTATACC$
341	125	TTATTCAATTCAAAATTGATGACCTTCTACTCTGTAGTCCCTCCTTTGAGTCTTCTCAAGCAGATACCCTCCTGC TCCTTCAACATTTATACACTGGAGAATAAAAGTTGAAGGAGGAGGAGGGT
342	84	AACTTCAAAGCAAAATGAAGCTCTTTTGGTTGCTTTTCACCATTGGGTTCTGCTGGGCTCTAAGATCTCAGGCC AGATTCTCCT
343	143	ATAACTGTTTTGTCTTTCCCTCCCCGCTTCGTTCCCAGGTTTCGGTCTAAGTACCACCCAGATGAGGTGGGGA AGCGTCGGCAGGAGGCCCGGGGGGCCCTCGAGGCCCAGGGGGACCAGGAGGTCCTGGAGGGCCTGGGAT TATCAAGGAGTGACTGATAGTAATATTCTTTTTTTTTT
344	150	TGGCTGGAGTGCAGTGGCTTTATCTCGGGTCACAGCAAGAAAGGAAGAGCACACCTAGGAAAAACAGTAAAG ACA
345	150	CTTGCTTGGTTTCTTTCAGAAATTGTTGCCAAGGTCAGAGAAGTCTCCCAGCCCGACTGGACGCCCCACCAGA AGTCACGCTTGTGTTGACCAAAGAGAACTTTGACATCATTATGAATCTGTTTTACTCTTCCCAGTGCCTTGAAA AAA
346	105	ATACATGGGGCCTTCAGAGTTCATGGAAAAAAGATTATTATGAAAAAAGTATGCATGGATTTCAATTTTTTTG CACCAAAACAAATATATCTCATTTCCGTTTTC TGCATCTTTTATGGCAGGGAGTCGTCGCATGGTGGATGTCATGGACGTGAACACACAGAAAGGCATTGAAATG
347	148	ACCATGGCTCAGTGGACACGCTACTATGAGAGGGGGTGGCCTGGGCGGCTCCTGCAGCCTGGAACATGGCTCGTT
348	150	GACAGAGCGAGACTCCATCTCAAAAAAAAAAAAAAAAAA

349	118	AAGTGTCTGAAATGCCGTGGCAGTGGAGACACTTGATTTGAGATCTCCAGTAGCCTCCAAATATTTGGTGGAT GAGGGTGGTAGAAGCAGCAGAAGGGGATGGCCTTGGCAAGGTGGT
350	150	AGAAAGCACACTGTACAACTTCAACAAGGACAGGTCAGTTTTCTTGTTTAAAACCACAGTTGGAGCCCGGCAT GGTGGCAAAACCCTCTAAACCCACCACATTGGGAGGCCCAGGAGCGAAGAACACCACGTCTGAAGTAAGT
351	150	CCCCATTCTTCCCTCTCTGTCCTCAGAACACTGCCTCATATCCTTCCCTGGTCCCTGGCTCTCTGAGTCCCGC GGTTTTTTTTTT
352	150	CTCACACCTATAATCCCAGCACTTTGGGGGGGATCGCAAGCACTTGCTTCCAAACTTGGATCAATGAATG
353	108	TTTTTAGTGACAAAACATAAAGGTACTGAGAAAAGAGAATCCCCTTCACCAGCACCGAAGCCTAGAAAGTAG AGACTAATGTTGGAATCTTCAAATTCTAATTCCTTT
354	149	TCTTAAAAACATTTTTTTTTTTTTTTTTTTGGCCAGGCATGGTGGCAAACCCCAGTAAAACCAGCAATTTGG GAGGCCGAGGCAGGAAAAGCTAAGGTAAGG
355	148	TCCAATCTGCTATCTGCTTGTGCCTGAGTTTGTGCAATATCCTCCTCATTGAGCTTCCTGCCTCTTCTCTTGCCT ACCCCACGACCCGCCCCATGTTTTTTATTCCGCACGGGGGGGG
356	92	AGGAAGTGCTGGTGGATTATTACATCGACCCGGCCGATGCAAGCCCTGACCAAGAGATCAGCAAGATTAGCC TGCAAGCCAAGAGCCAGCTC
357	100	CTTAGTTTTCTATATACTCATTGGCCAATTAAGCAACCACACAAATCAATGCTTCACTACAATATCTTAGGCCT AGACTTGAAGTTAGGATTTCAATTTT
358	150	CAATCCTTCACTCGGCTTTCTTTTTCCTTCATGGTACTTAAAGCTGATATTAGACGGTCATTACTTGTCTGTAAG TTCCCGCAGTGTCTTCACCTACGAGATCGGAAAGAGCACACGTCTGAACTCCAGTCACGACAAGAGATCTCGT AT
359	149	GAATCTCTTCATATAAAATCAAGACAGAAGCATTCTCGGAAACATCTCTGTGATGTTTGCATTCAAGTCACAG TATTGAACAAAAAAATTCATAGGGCAGGTTTGGAAAAAACGTTCGTT
360	114	TCTCATAAACTGATGAGGCTGTGATATCAGGCTCACTTGACAGTCGTCCTCAGCTGAGAAGGAAG
361	149	ACAGGATGCCGAGTTGCAAAGCCCACAGATTAATCCGGAACAAATAGCGCCACAAAAAAATAATTTCACCAGG TCAT
362	150	TTCCTTCTAACAGACAGGACTCTCAGATGCAGGTATGTAGGAGTTTTCTAGAGGTCAAATCAAGAACCTGTTT GCCTGGGTATCAGCAGCGGTGTCTGAAGAAAATAGGAGATCGGAAGATCACACGAATTAACTCAATTCACGA CACGA
363	150	AGGCCTTTTAAATATACCTATAGTTTGGATATCCTCCATCTTTAATTAA
364	118	AGGCTGGAGTGTAGTGGTACAATCTCGGCTCACTGAAATCTCTGCCACCCGGGTTCAAGGGATTATCCTGCCG CAGGAGGCTGAGGCAGGAGAATACCGTGAACCCGGGGGGGCAGAGA AGACCAGCCTGGGCAACATGGCAAAACCCTACCTCTACAAAAAATACAAAAATTAGCTGAGGGTGATGGCAC
365	150	ATGCCATTCCCCAGCTGGGTGACCTTGGGTTAGGGCCCTCTCCTGTCTCAAAGAGCAGACACGCCACATGCTG GGTCT
366	150	CGGCGGGGCCAAGGGGAGCATGAACCGGCACGTGGCGGCCATCGGGCCCCGCTTCAAGTGAGGGCCCTCTTC CTGGGGAGCACAGGGCCCCGTTCTTGCCGATGCCCATGTTCTGGGACACAGCGACGATGCAGTTTAGCGAACC AACCA
367	150	AGAATGTAGCGCCTGCTTCCCCCAACCCCCAACAGATTTCCTGTTTTTTTT
368	86	TGTCCCTTATTTGCCCTGGCCCTTCCCTGGCTCTGCCATACCCCTTCTCTGGATTTGGATGTCCTGTCCCTTA TTTGCCCTGGC
369	150	TCCACTTGAGGTGATTCCATTCCATTCCATTCCATTCCA
370	150	CTTGGCCAGGCTGGGGTGGAGCGCGCCCAGGGGGGCCACACCACCCAC
371	150	TGACGTTTCTGTGTCCAAGGCCTGAACTGAGGTGTCCGCGCCCTTGTAAGCGTGCTGGCTCTGTTTCCAGTTGGA AGATATAGCAGACAAGATCGGGAAGAGCACACGTCTGAACTCCAGTCACGACAAGAGATCTCGTATGCCGTC TTCT
372	125	CCTCATTCTTTTCTAAGACATTACCCTGCCACAGGGAAAATTAAGAAAGA
373	150	ATTTTGATTTGAGGTTTTTATATGTTTATCAAACCAATATGTGCACATGGTTAAAAAAAGTCAAACTATCGAAA GA
374	150	GGATCTCATTATATTGCTCAGGCTGGTCAAGAACTCCTGGCCTCAAATGATCCTCCCACCTTGGCTTCCCAGAG TGCTAGGAGTTCTTGACCAGCCTGAGCAATATAATGAGATCCCATCTCTACAAAAAATTTTTTTT
375	150	ACAACCTCATCTCAAGACCCTTAACTAATTACATCTGCATTCACCCTATTTCTTTTTTTT

376	150	TTGTGCCAGCCACAGCGCTAGACATGGGCATACGGCAGCTTTACTGCTGCTCAGCTCCTGTGTGCCCCATCCTG GAGCAATTGTTCTTTTTTTTTT
377	150	AAAATCTATAGAGACAAAAAAATTAGTGATTGCCTAGGGCTGGGAATTTTTTTT
378	148	GATCGGAATAGCACACGACTGAACACCATACAAGACAGTACATCTCCAATGACAGCGTCTGGTGTGAAGGGT GCGGCGGCAGAGGGCGGCGGGCTGGCGAGTGGAGTCATGGAGAGAACGCGGGACTCGTCGCCTGGGGCCGG GCGGC
379	78	AGGAGCTGCTAAGAGAAAAACAGAAGGAGCAGCAGCAAATGATGGAGGCTCAAGAGAGAAGCTTCCAGGAC CTGAAAC
380	116	TGGAGCTCAGCGAGGGGAAGGTGCTTTCCTTACCTCTAAACAGCAGTGCAGTCGTGAACTGCTCCGTGCACGG CCTGCCCACCCCTGCCCTACGCTGGCCCAAGGGGTCCAGATCT
381	132	CAGGACTTTATATTGCCTAAGGTTAGGAGAACGGAAGCTCTCTGGTTCCAAGCTGGGCTCTGAGCGGTAGCTG GGGTGACGGCTGCTCTCTGCAATTGAGGTTGGCTCCTTCAAGCTGTCCCCACGACTCAA CTTTCTTTTTTTTTT
382	150	CTCATGACCTTATTTGATCCACCCACCTTGGCCACACCGAGAGCTGGGATTAATCCTTGAGCCACCGCACTCA A
383	150	TGAAAAACTGGTCCAGCGGCGGCGGACAAAAGTTTCCGAGCGCGCTCCACAGCTGGGCGGCGGAGCGGGCC CCGGCGGCCGGCCCGCCTCGGATGCTCCCGGCCTCCTTCCT
384	131	AACTTAATATAACAAACAAATTGAAATAGCTTATTAAAAAGTGTCCGTATATAAAAATGGCCTTGTGATGTACA GTAAAATGCAATAAAAATTATCCTCCTTTGTTCCGGCAGCCCACCCCCCGGACCGACA
385	150	ATTACAGGCGTGTGCCACCACGCCCCGCCAAATCAGCAGTTTATGTAAAAATTCTTTAACCAGGGAGGTGGAT GTTGCAGTGATCTGGGATCGCACCACTGCACTCCAGCCAG
386	150	GACCGCCAGCAGCCCTGTACTCTCAGCCAGACCCCCACGTACCAGGCGGGAGATGAAGATTCCTAGAACCCG CTCCAGGCCCGGCTCAGCCACCCGCACGCACCTGCAATCACGCATGAACAAGCCGAGGTGGCGGTCTCAAGC ATGCTT
387	79	GCACCAACGTCCGGAGAAACCTGGCCTTCCACACACTCAGCCAAGAAGTCCTGCTCAAGGAGTTCTCCACCAC CTTCTC
388	150	AGGAGCTGGACAGCCTTCTCCACCTCCTCATCTTCTCCTGGAACTCCTTTGTCTCCTGGAAACCCATTTTCCCCT GGAACCCCCATTTCCCCAGGGCCCATAGTCCCCAACACATCACCCCCAAGGCAACCCCACCCCCCCC
389	74	GTCTCACCTGTCACCCAGGCTGGAGGGCAGTGGTGTGATCTCGGCTCACACCAACTTCTGCCTCCCAGGCTCA A
390	95	TCTTCAACTGATGCAGCTACATCTGAGTCCAAGGAGACCCTTGGCACTCTGCAATCCTCACAACAGCAACCAA CACTCCCAACACGTCTAGACCT
391	120	GGCTGCGGCCCGGGCGGCGATGCTGTGGCCGCGGCTGGCGGCGGCGGCGGCGGCGCCTGGCCTGGGA GCTGCTGGGCGCCTCGGTGCTGCTGATCTGCTGGTACTCGCAGTCCTT
392	150	CTGAGACCAGGTCACACAGTCCTCCCATCTTCACTTCTTTGATCACCACCACAGAGACCACCTCACACAGTACT CCCATATTCACTTCTTCGATCACCACCACCGAGACCACCTCACACAGTACTCCAAGCTTCACTTAATCGATCAC CA
393	89	GTGTACGGCACCCTTGAAAACAAGCAGGCGCTAAGTTTGAATCTTGAAACTTCCTAGCTTTCAGCCACTTCCTC AGCTCTATAAATTCA
394	44	AAGTTGCCGAGTGATGGGGTGGGGGGACATTCAGACGGCAACTT ACCTTTAAAGGTTTGGCAGTTGCAGAGGAAGGAGCCGAACACGTTCACGCAGGAGCCTCCGTTCTCACACTCC
395	97	TCTCGTTCGCACTCATTGATGTCC TCTCGTTCGCACTCATTGATGTCC
396	80	GCGGTGTATGCCTACCGCCACCAGATTCATCGCCGGAGCCATCAGCATATGTCTCCTCTTGCTGCCTCATAATC CTTTAT
397	89	CCTCAAGTTCCGGAATACTCACCTAGGCAAGAAAGGATCCGAGATCTAAGTGGCAATCTTTGGGAGCGTTCCA GGAGGCCCAAGGAGGT
398	150	ATGCGGATGGCCATTGAGTCGGCAGGTGAGACTCCAGTTCCTCCAGTTAAATGCTGCGTTCGCCCCGTGGGTC AGGGTCTTCACCGGTGGGTTCACCAACTCCCATTTTCCTTCC
399	149	GTGGGCGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGATAATGGCGTGAACCCGGGAGGCGGATCTT ACGGTCACACATCTCGCCACACTTCACTACAGCAGAGGCGACAGAGGGAGACTCTGTCGCAAAAAAGAGGGG GGTTA
400	90	GTCAGACCTCCAGGACTAAGATGAAGTCAAAGAGCGACCACAGCTCTCGGAGGTTATTTTGCATCGGTGAGCC AGACAGAATGATCCGAT ATTCGGGATTGGGGAGTTGAAGTCAAGTTGAAGTTGAAAATGCTCGGAGGTTGGGTGGG
401	150	ATGCGGATGGCCATTGAGTCGGCAGGTGAGACTCCAGTTCCTCCAGTTAAATGCTGCGTTCGCCCCGTGGGTC AGGGTCTTCACCGGTGGGTTCACCAACTCCCATGTTCCTTCTTTATTTTCTTCACAGAAGCACATGCCCAG AGA
402	86	ATTAAAGGATGTTCTTGAAGAATTCCATGGGGCTATTTTTTTGATCTACTGAGGGAATCTGATGTTCTTGGAGAA CTAACTGCTTCT
403	126	CCTACTGATGAGTATTCTTTCTTCCTTCCCAGGATATTCTCCAGGGAAGATGCCATCCAAATGCAGGACTCCAA GATTGTATGACGCATTGGGTTCCCCATTTCTTCTGCTTTTAACCAGTACTTT
404	81	TGGACGTGGATAAATCACTTTGTGATTTGGGGTTCTTTAGCCTTCTATGTATTTTTCTCATTCCTCCCCAGAAGA ATGAGA

405	103	CCATTCCTAATTCTCCAGTCCACGATATTGAGTTCAACAGCAGCAAACCACTTCCACAGCCAGTGCCACCTAA AGGGCCCGTCTGGGCTGGG
406	116	CGGAATCAAACACATTATGCTTTGCAGGCATCACTGAAGCTACTTGATTTTTATGAAAAGTACTTTGATATCTA CTATCCACTCTCCAAAACTTTTCCTCCCTTAGAAAGTGGAAA
407	149	GATCTTTTATTAAAGTTATGGAAACTGAACTAAAAAGGATTTATAAAATTTTACAAGATGGATTTGTTTTCTCAT GGTGCCCCTATCTTTTCAGAGCAGATATCTTCCCTCCAAAAGGCAAAGAAACCAACTTGCAAATCTAGTCCTC
		AA AGATGGCTCCTGTGGGCTTGTGTACGAGCATGCTGCAGCGGAGGGGCCCCCTATTGTCACCCTTCTGGACTAT
408	102	GTCATTAGATTATGCTTGGCTTTCACTGA TCCTGCAGGGTGATTCTGGGGGTCCGCTGGTATGTCAGTTCAAGAAGAATGGTCAGCAAAAAAGCTGACACAG
409	76	ATGA
410	150	GAATGCACTTTTGGTTTTTGGTCATGTTCGGTTGGTCAAAGATAAAAACTAAGTTTGAGAGATGAATGCAAAG GAAAAAAATATTTTCCAAAGTCCATGTGAAATTGTCTCCCAGATCGGAAGACACACGACTGAACTCCAGTCAC GACA
411	83	ATTCCCCAACTGGCATTGACTTTTCTGTATTAAGCTTGAACTTATTCATGCAATCTTCTGCTAAGTTAAGATGG ACAACTTGC
412	132	AATGCTGATCCAGCCCCTATTTATGTTTGGAGTCCTACTGGGATCGGGGTACTTAGGAGTTTGTGAGGAAGGA
413	118	GGAATGGACTTTGTTGCCCAACAGAAAATGAGAACTCAAACAGAGGAGCTACACTATAAATACACTGTATGT GATAAAAGCTTCCACCCTCTCCTCCTCCACCCTCAGTGGATGATAA
414	149	CTCTGCCCAGGCCCGGGCACATGCCCCCGCCCAGCCGGCGGCGACAGCAGCAGCCAGACCAGTCCCTGCGAC CCCACCTCGGAGGCAACTCCATTTCGGACCTGGGACTTCTGACGCGGATCCTCAGCTACTTCTCACCTCGGGG CTGT
415	78	GAAGTTTTGCTATTACACAACAATGACCAGAACGCAGAGGAAGATCAAGATCATTTCCACGTGCATGGAATC
416	109	GTGGCC GGAGCTGAAAAGATTGCAGGATTAAGCCAGATTTACAAAAATGGGAAGCTTGCCTGAAGCTGTTGATGCTGCC
417	137	AGGCCGAAGTCAAAGCGGCATTGCTCGTTCATGGAGT TACGAGGGCCTTTGATGCTTAGTGGAATGTGTGTCTAACTTGACTCTCTTCCTCTTTTGGGCCCGAAGAATTCAT
		AGGTTCATTTTTAATTTCTTTCTCATAGACATAGTCAGAGGGTCTGAGTAGTTGACTATGAAA CATTCCATAGTATTGATGGTAATTACCACTGGTTCTGAACCCAGTTTTGTCCATGGTACATGAATCCTCAATTC
418	148	ATGAATATGTCCACTTAAAAAAGTGAATGGTAATTACCATCAATACTATGGAATGCATTTTGAAACTTAAGGA T
419	150	GCATAGAAACATGATCGAAGTGATCATTTACTTTATCATGTCATAAAACACAAGTGCTTATTGTAGAACAGTG ATATAATTTAAATGGCAAGGAAATTTGTTATGAATCACAAATTTCCTTGCCATTTAAATTATATCACTGTTCTA CAA
420	111	ACCAAGCTCAAACCTGTGGGTGACAAGTCTGGTTTCTCTGCAACACAACTGAACCCGTGACCACGTCTCCTGT ATGGACAGGGACTGGGTCGTCCATCATGAACAGCGTCT
421	85	CCATCTGCAGGTACCTGGTGGACGTGCGGCAGGAGCAGTGGCTGCCCGGAGCCGTACCGAGGCAGTGGC ATGGTCAGCTGCT
422	140	CACCACGCAAAGTGATGTGTAAGTGTGGGTGTTGCTCTCTTGGGGTGAGTGTGGGGGGAGAGAGGGTCATCCTC ACGAGCACAGGCATCTCGTCCGACCATCGAGCTGGCTGGC
423	150	ATATGATGGAATTGACAGCAACTTTGAACCTGAGGTTTGTAAAGAGCCATCACTGACCATGTGACAAATTTTG CCAAACGCATCATCAACTAAGCGTATTTCTTCATTAGAAGAAGGAATTGGGACAATGCTAAATTAAAAGAAA
424	150	AGAAA GAAATAATCTGGTTACCATCTACTCCTTCATGAGTCTGTTCTAAAGTCACAGGGATTCTCTGGCAGGGGCGTGT TGGGAATCTGACCGCCCATGTGCATCCGAATATGTTGCTGCAGCATCACGGCATTAGTGAACTTCTTCTGGCA
105	124	GAT CAGGAACAGGACTCTGCCCCAACACACCTTGACCTATGACACACTTTCCATAGGCCTTCCTCACCACATC
425	134	ACAGAACTCAGAGAAGAGGCTGTCTTCTTGTTTGATACACAGCTCGTCTCTTAGGAACACC AATTTCTTCTAGGTAATTGATCTGGGTGGTGAGCCAATTAAAAGCAGTGACTACTTTGGTAGGAGGGATGTCT
426	150	GTAGAGAAAAGGTCTATTTCAGTATCAGCCAGCAAAACAGCCTTCATTCCCCTAGAGCTGAGCACTTGTTTAC AGAA
427	150	GCTGCCAATTCTGCAACAACTCAGGTTCTGATTGGGAACAACATTCGATTAACTGTACCTTCTGACTCATACAT CCTCTTCTGCACATCTTTTAATGCATCTTCTAATTGCTTTATCTGTTCATCTGAATCCTCCTTGACCCTTTCACAT
428	150	CCCAGGAGCGTCTGGCAACAGCTTTGCAGAAGCTGGAGGAAGCTGAGAAGGCAGATGTAAAAAGGAAGCAGG TTATGACAGGCCATCCTATATTCTTCATATTGGGAACTACAGTTCCCAAAGCTGCCATCAAGCAGTGCTTCAGA AACCT
429	93	TGGTGGCCCATCCTGTTTTTTAAAGTTTCAGCTGTAAAACATATCCATGGAAAATACTTCACTCCAAAGATATC CATAATATTGGCCATCGTA
430	76	AGAAGTCAGCTTCTAAGTTGAGTATGTTGGTGAGACCAATTTGGGGAAGTATGAAGGTTTAAAAAAAGGTATGC AAT
431	85	GCTCCCAGCATGTCCTCGCTCAACTCCTTGGCCTCTTCTTGCCTTTCAGTCTCTGGCGAGCAAAGTCCTCAAAT ACAATGTCGTC
432	111	CCTGCCCAACTGGTCTCCACCTACCACCACCTGGAGTCTGTCATCAACACAGCCTGTTTCACCCTCTGGACCCA
		GCCTGACCCGAGGCTCCTCCACCACCTCCCACAGCTC GGACATATTTGACAGTGATTGGTACACTTCTCGAAATCTAATTGGGGGCGCTGAATCATTGTGATCAAATACA
433	150	ACGTTAATGACAAGTTTTCATTCCATGAAGTCATCATAGAGACAGCGTTGACGCTTGGAGAGCCTGCAGCGGA TAAC
434	104	ATGTGCAGGCCATGACTGCTCCCTGCGTCTCTGGAGCCTGGACATCCACAAACTCCTCAAAGATCCTATGGGC CTTAGAGACCAGTTTTGCAGTTGACCTGGTC

435	68	AGTCACCCCAGCCTGCAGGAACCAGGTGGAGGCTGATCAGTGGCTTGTCCATCTCTTCTGGCATTTT
436	137	CTTGGTCCTGAGCAGCCAACACACCAGCCCAGACAGCTGCAAGTCACCATGGATCTAGCTCAGGTCATTCCTC TACCCATGGGCAACATGGTTCTACATCAGGACAGTCATCGAGCTGTGGCCAACATGGAGCTAGT
437	70	GAGGCTCAAGAAGCAGAATGTCAGGCGTTGAGCAGCTCCATTTCCTGCTGGAGCTGTAGCCTCAAGGCCT
438	88	ATCAAAGTATGAGGGGAAATGGCAGAAAACAGTATCAAGATTCACCTAATCAAAAGAAAAAATATACAACAA
439	113	AGGGAACAAGAAAGGTA ATCTCCTCGGCATAAAAAAAGTGATTCTTCAGGTCAGG
440	116	ATTTTGTTTTAGCTTCCTCCCAAGGCTGACTCCCTGGATAGTGGAGTGGTGAGCACCATTGATTTTAGTG
770		TTACTGTGCAAAGGTGATAATGAGAAAGAATTAGTTCTGTGT AAAAGTTTATCCAGGAAAACATGTGAGTACTTCTTTGTATCTTGTCTGTC
441	94	AGAACTCTTCTTCATTAATCA
442	141	TGGGCCTGGCATGTGTCTTGTCCCTTTGGAACACAGGTGGGTCTAGCTGGAGTTCTCCTTGACCTTGTGTGACA TCCCTACAGAACCGGGATCCATTTCTTGTCCTCGTTGTAGAGGAAGGA
443	150	TGAAACCTGTAGCAAGCCAGGCTGGACTTGGCTTTATTGATCAGCTGTCCTGCATGGCTTGCTACAGGTTTCAC CAGTCAGTGCTTGCAAAACCTTTGTCATTTTCTAAAAATAAAAAAGCTAAAAGTTATTGTAGAAGAAGGGGCT TTT
444	150	AAAAGAGAATGTAATCTTTTTTCAGCAAGGAATGCTCCCCGCCATGAGTTTTGATGGGAAAATTATTTTGGAA GAGAAGAACAAAGTTTCTATGGCTCCAGGCATCAGTGGAGAGCTGATGAAGGAAG
445	150	ACCAGGTGACTGATATTTTCCAGCATCACATCTCTGTACAAGGCCCTCTCGGCAGGCA
446	143	GACACGTGCTGCACTTTCACTTGCTTGTTAATGATGCTGTGTTACAGGCTCTTCTCACAGCCTTCCTGCTG AGCACACACACACAGGCCGTATCTATCCGGATAAACCGCCAGGCAGCCTGCTTGCCATCCAT
447	73	AATGGATCTCTTTCTCCACCCATCCCGAGACAGGGCTTGGAGATGCTCATCTGTTAATGGCTACTCAAAGTGT GGTTACCACTACAGATGGCACAGGGTATTCTGCACAAAAGGTAAGAGCTAGGGCAGTTGGGCTAGCTGCTCC
448	149	AGTTCCTGCTCCATATGCTCCTGCAGCTCACTGGGCCTCAGCAGGACCTGGCAGATGGGGCAAATTGGGGCCT GGCT
449	57	ATCTACGAATTCTGAATGAACTTCCTACCTTCACGGGCACCGTCCGCCCATCATGCA ATACTTTGGTTGTTCCTTTGATCTGACCAAAGTGAAGGATTCCAGTTTTTGAACAACACAGTGTCCAAATAATGG
450	149	TCAAGGATAATGCAGGAAAAATTAGATCGGAAAGAGCACACGACTGAACTCCAGTCACGACAAGAGATCTCG TAT
451	73	GAAAGAGGAATGTGGTACCTTGAAGGCAGTAGATCCACTGCAATCCAAAGACGTCAGTCCTGCCTG
452	96	AGGACCAACCATGGGCCTGGGGAAAACGTTCAGCATTGGTAAAATTGCTGTAGCTGTATTAGAAGAAACCAC AAGAGAGAGGACAGATGTTATTGA
453	58	GAGCCATAATGTCGACCTGCCGGAGTCGAGGATTCAGGATAAGAGAGAG
454	127	CAGAGGCAACCGTTTCTAAGTTCCAGCCACTCTTCATAGAGCTCTCCACCTTGGCTGAATCCTGCGTGGGGAT GTCAGAGAGGTTTAGTGTCTTAAGAAACTCATCCTTCATGCTCTGGAGCAGTGT TACACTGTCCGTGTCACCTGCCTCTACCCTGGGGGTGGCTCCTCTACGCTGACTGGCCGGAAGTCCTCATTGAT
455	150	GTAGGTGAAGCTGGCTGTACCCTGGGGGTGGCTCCTCTACGCTGACTGGCCGGAAGTCCTCATTGAT GTAGGTGAAGCTGGTGACAGGGACAGCCTTCCTAGGGGGGCACAGCTGGCACAGCGGCTCCTGTGCCTCATA GCCA
456	150	GCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGTCAGGCTGGTCTCGATCTCGTGAC CTCGTGATCCACCCGCCTCGGCCTCACGAACTGAAGAGAAAACAGCAATAATCCACACACCCACC
457	120	ATGTGTTTCCATTGATTGTTTTCTCATTTCTTTGAAGACATGTGGTCCTCTGTGGGCTGTCCAGCAGGAGGTGC CTGAGGCTGCTGGGGATTGCCTCCTGCTGGAGGTGGGGGACCTTGA
458	150	ATTATTTTCTTTAGTATGATTCTGACTGAAATGGAAACTCATGAGGATGCATGGCCTTTTCTACATTCATT
459	88	T CCCCAAGGAGAGCAGCCCATCATCATCCAGCTGCTGTCAGACAGGTGTCTGCTCCTTGCTCAGGCCTGG GGGCAGTGCCTTGTT
460	106	CTGCCCTTTTGTTAACAGGAAGGCCTAGGGAGTCAGGTAAAAAACGGGGGATCTACATGGGTGTTTTCTGCTTC
461	122	GACTTTCAGAGTATAAAGTCTTCGGCTCTCATA CAGACCCCGTGGAGGCAGGGAGGAAGTTAAGGTGAGAATGGACCTGCTGCCGCTCCACATGGGCCTCCACA AGCTGTGCAAGGGCTCCTGGGCTTGGCCCAGTGCCAACCCCAGGGATTCC
462	81	TATTCGGATGATAGTCAGAGGGACTCTTGGCAGCTGTAGCAGCAGCAGAGAAAGGAAAGCATTCATT
463	139	${\tt CCCAATGACCACCTCAGTCTCCCTAAGTGCCTCCCAGCACCAGAACCTTCCCTTCCCCTAGAACACCCCT}$
464	64	CACCCTCACCCACCTGGAAGGCCAGGGCCAGGATGCTCCTTGCTGCAGGCACATCCCCTGCCAGC CGATGTGTGCTGAAATCTTGCATTTGTTGCCTTTGTCCTGGACTGCCTCAAACACCAGGTCATT
465	150	GGAGAAGGCGGTGCTGGACGAGCTGGGCCGACGCACGGGGACCCGGCTGCAGCCCCTGACCCGGGGCCTCTT CGGAGGGAGCTGAGGGCCGCCCAGGGCGGCAAGCGCTGGGGGAAGCCTACTCCGCATCCTTGGCCTCCGA GCTAGA
466	118	CAAGCATGTCCCCGGGCCAGGCAAGCCGGCTCTGTCTAAAAAGAACCCCGGCGTGGTGGCCTACCAAGGAGG CTACTGGAGATCTCAAATCAAGTGTCTCCACTGCCACGGCATTTCA
467	149	CTTCCAAGAGCCTTTCCTCCCCATATCCACTTTGATGGCTGGAGTCATGGCTATGATTTCTGGTACTCCACTCTT GCCAAGAACCCTCTGCACATGGCCTGGGTTCGGGTAATCAGCTGGGCCAGCTTCTCATCTCGCATCTCCTCTAA

468	106	GGACCAAAGTGGTTCCCTGCCCTGCCTGCTCCTGGCCAAGCACTCTCAACCCCTCAGTGACCCACTTCGAAGC
	72	ACTTCTGTTCACCTTGTTGATGATACAGTTTTT ACAATTGAAAAGGTTTCCTGTGAAATGAGATACAAGGCTACAACTTACGGGTGCAGGGCATAGAGGCAGCAT
469		ACGCTTCCAGAACGCCTGCCGCGACGGCCGCTCGGAAATCGTAAGTCGGCTGGCCCGGACAGGAAATCCCGC
470	125	CCACAGGGCAGGAAGTCCCGCCAAACGCTCCAGTCGCCGGCGTAGCGGTT
471	89	ATGGAGATGCCCAGAGTGCTACCCTCAACTTTCTACAGGCCGCGGCTGCCCACTTTGTGACCTGGGAGAAAAG AGGGTGAGAATGTTTA
		CCCACAGTCCAGCCACAACTTTTAGGTCCCGCCCACAGCCGCCCAGGCTCTGGCCACGCCCCCCCC
472	150	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		CACA TCTCTTTGTCGAAGCGGAGGTTGTGGAGTCTCAGCAGGCAATGGAAAAGGAGTTAGGATTGAATTTGATGATG
473	150	AAAATGATATAAATGTTGATGATCTTAAAGCAAGTTCTAAGATTTTCTGAACTTAGTTCTGCCAAAACAATAA
		ATGT
474	150	TTCTCACCCTGTCTGCTTTTACTTTTTCTCTTCTTCCTCCCTTTCTCCCCCTCCT
475	137	CATAATTCTGCCTTCAAACAAGCCATTCAAGCCTCTCACAAAAAGGTATCAAAAAATGGCTTGTTTGAAGGCAG
175		AATTATGGTTGATATTTTCACTTCTCTTTTGAGGAATAAAAAATTGATACACTGAAAGAGCTCCC TTTCACCTCCTGGCCAGACCACGGTGTTCCCGACACCACTGACCTGCTCATCAACACCTACCCCAAGTCTGGTA
476	91	AGTGAGGAGGGCCACCC
477	121	CCGGCGGCTAGGCGCGGGAGAAGTGCGGAGGAGCCATGGGCGCCGGGAGCTCCCTGCGTCCCCTCAGCCAT
		GTGGCCCCTGGACCTGCCCTGCAGCCGCCGCCTGCCAGGTCCGGAGCGC GTCTCAAATTCCTAGCCTCAAGTGATCCTCCCATCTTGGCCTCCTAAAGTGCTGGGATTACAGGCATGAGCCAC
478	150	TGTGCCCCGCCAAGAGTATAATATTTAATTATACTAGATTTTATTTA
		GA TGAAAAGGCATTATGTGAAGGCGAAATAATTGATAAGCGAAGAGAGAG
479	120	AAAACGCCTAGAGGCACGTGGAGTAGCCCCAGACAATTGATAAACCGAAGAGAGAG
400	4.40	GCGGTTTCCTGCTTGCTGATTGCGTACGGAGCAAGTAAACCAAACGGTGAGTGTCCTCTCCCTCC
480	149	CAGGTTCAGCTTCCCATTGGCGAACGCCCGTCTGGTGAACTCGCCTGCCT
		AGAGATCGCGCCACTGCACACCAGCCTGGGCGACAGAGTGAGACTCTGTCTCAAAAAAAA
481	149	AAAAAAACAAAAAAAAAGAAAGCAAAAGACCACGACTGAACACCACTAACGACACGAGAGGAAGGA
402	107	CTCACTGTTGGCTCTCTTAACTGTGTCCACTCCTTCATGGTGTCAGAGCACTGAAGCATCTCCTGATTAATTTTT
482	107	AGTTCTTCTCCTGGTCCACTTTCCTTATGAAT
483	150	GGCTCCGGCTGGCCCTGAGTAGCCGAGAGGATGAGCTGGTCCGCACGCA
103	150	GCTGGAT
484	150	AAGAACTCAACATTCACGTATTTCACCTCTGACCATGGAGGACATTTAGAGGCAAGAGATGGACACAGCCAG TTAGGGGGGATGGAACACGTAGGAAACATACAGAGGGACTCGAAGGGTCACATAGGACTGCACTAGGTTTAGG
+0+	130	ACCTAA
405	150	ACTTCGGGCACGGATGGCCAGCCTGCGTCAGGGCTGCGGGGACCTCCGAGGTTTGGTCAGCACCTTTACCCAG
485	150	AGCTGTCAGGGTTCTTACAGGTTTCTATCCACCAGCGGTGAGGTGTCTCCTCTGTGTCCTCTCCCACCTGAAAA ATA
486	102	CAAACTCAAGTATTTTTTTGCTGTGGACACAGCCTACGTGGCCAAGAAGCTAGGGCTGCAGGGTACAAAAAGC
.00	102	CAATTTCAGAAGTAAGTGGACAAGGCAGA GAGCCTGTCGGTGATGCTGGTGCGAAACCGCGACGAGGTGCAGGCGCTGGCCTTCGACGAGCAGCGGCGGCC
487	150	ACTCCCGCGCGCGCAGCGAGGGAGACGCGACGAATGCCCGGGGCAGCGTACAAAAACTAAAGAGGACGA
		AACAGCA
488	113	CATCAGATGCCGAGCATCAGTGTCAGTCCCCCAACACGAGCCCCTTCAGCTCCCTGCACCTGTTCGGGTGCT CCGTGCTGTTCCGCCATCTCCCCAGGAACACCTCTGGCTT
489	125	TGCCTCCAGCACCCTGAAGATGCTGTGATATGTCCTCCTTACCAAGTTGGTGATGGCTGCCTCAGTGGTACT
.07	120	TAATGCTGATATGCTCACAATTTCTGTATAAAATAGAAGTTGAGAAAGGGA AGTTGTGTGGCCGGGACCCTACTCTCACTGATGAGCTGCTGAATATTCTCACAGAGCTAACTCAACTCAGTAA
490	150	GACCACCAATGAAACAAAATTTTAGCACACACACATACCTGTGGAACCATTGCAACCCTCTGGTTTCTTTTAGGT
		GACC
491	122	AAACATGGCAGAAATGGAGAAAGAAGGGAGACCTCCCGAAAATAAACGGAGCAGGAAGCCGGCTCACCGCG ATCAAGTTCAACACCAACAGCACTTTGACTCTTCTCAGTGAAGCCATCAAA
		GCGTCCAGTTGGTACGCAAGTTTGCCCAGTCCATCTTGCAATCTTTGGATGCCCTCCACAAAAATAAGATTATT
492	149	CACTGCGATAGATCGGGAAGAGCACACGTCTGAACTCCAGTCACGACACGAGATCGCGTATGCCGTCTTCTGC GT
		CCACTGCTCTTTCCTCCCCAGCTGAACCTCCACAGTCCTCTACACTCTTCCAGGAGCAGCAGAAAATGAAC
493	150	ATAAATGTCCCCGCAAAACAACAAAAAAACATCCAATCAGGGTTTGTCCCCAGCTGCACTGCAATACAAGTTC
40.4	114	CAA TTATAAATGTAGCAAATGTGAGAAGAGCTTTTGGCATCACTTAGCGCTTTCAGGACATCAGAGCAGGCGGGAC
494	114	AGCGGGTGGCTCCAGGGCTCCAATCAGCTCCGAGCAGGC
495	150	CAACTGAGTTTGAATTCAATCTCTATTACTTAAAGTTCTTGGCTTTCCACTATGTGTCTAATCGCTTTAAAACAT TTCTCCTTGCGCACCTGCTGCATGCAAAATCTTCAAAAGCGGCAGTTTTGGTCGTACCTGATATAAACATAAA
773	150	AT

496	150	TGCATTGGATAAAACAGAAGAGCTCGAGGTGAGCAACGGCCACTTAGTGAAGCGTCTGGAAAAAATGAAAGC AAATCAATAACCTCTCTCTTATCTACCACAGGACTTGAGTCAGCATTATCCATCAAAGGAATATAAGTAGTTG CATGA
497	100	GAGAAATAGTCAGCCTAGCAGTTCTACCATGATCAGCGTGCTTCGAGCGGGTGGCGCCGCTCGGCCAGGCCCC CGCGGCCCAGCACTTCGCCGCTGAACT
498	150	GAGAGGAAGCCGAAGCTAAAGAGGAAAAGAGAGGGAAAAGAGTGAGGAAGTGGCTACCAAGGAGGA GCTGGTGGCAATGGAGGGTCTGCAATAATCTGAATAGCCTCTTCCTCTGAAATTGGCTGCATTGGAGACAATG
499	150	GAGGCAA GTCAATAATTTTGACCAAGACTTTACCCGGGAAGAGCCGGTACTCACCCTTGTGGACGAAGCAATTGTAAAGC AGGGTCAGAGCAGTCACTGGGTTTACCCGGAGGTACTTGCAGTTGGGCTGACCATAGTCAGCAAGGTAGGT
500	150	ACCA GCTATATATGATTTCTTCCAAGTGGCCTCCAGCAAGGAGCGGTATAAGCTGACAGTTGGGAAATACAGAGGCA CGGCAGGAAAGGCGGCCCGAACCCGCCGCCGCCGCTGCCGCTAACGCCAACAACACCAGCAACGCTGCTCGCCCC
501	122	GGGGC CCAGAAGCCGGGCCTGGAGCTGGCCCCGGCCGAGCCCGCGTACCCGCCGGCGCGCGC
		TGATGTTCAGCAGAATGTCCCACGCCACCACCTGGAGCTCCTTCCT
502	150	TGGGAAAAAAAAAATGTCCTAAATGAAAAAAAAAAATTTTCTAAAACGGAAGAGCACACGTATTAACACCA GAACCCA GAGTATGTGAATTCTGTCAAGCAGTTTTCCCACCATCCAT
503	150	TCACTAATAAAAGTCTCGAAGTAACCCCAATCCTGATTGGAATTTGCAAGCAA
504	150	GATCCAAACAGCACCAATGAACTCAACTCACGACACGAGATCTCCTGTGCCGTCGTCAGCATCCTAGACCA GCCGGTGGCCAGGGGGGTGCGCGGTGTACGCGGGAGCGGGGTAGGGATAGGGGTGAGGCGGCGGGTGCCGC TGCTCC
505	150	CTGGACTTGAGCAAGCTGTCACCATCTTCTTCTTCTTCCTCATCCTCATCCAGCTCCAGCTCCCGGCGTGGGCT GTCCGGGGGGCCGCCCCCAGGGGCGGCGGGGAGAGCACACGTCGGAACGACAGTAACGACCACAGAGAAG GTTAT
506	104	AGAATTTTCTATTTTTCTACACTACTCTGTGCTATATGTCATCCCATTTAAAAAAAA
507	150	GCCTGTAATCCCAGCACTTTGGGAGGCCAAGGAGGGGGGGATCATTAGGTCAGGAGTTAGAGAGCACCATCTC AATAAT
508	66	CATAGCAAATTACAGAAACGGAGTAAGAACGTAAGAAATCGCAAAGCACGTGACGTAATTTGCTAT GTCTCTTCAGTGGGGATGGTGGGTTTTTCCGTGGGGATGGTGGGTTTTTCCGTGGAGATGGTGGGTTTTTCTGT
509	150	${\tt GGGAATGGTGGGCTTTTCTTTGGGGACTGTGGGCTTTTCTGTTGTGACACTGGGTTTTTCTATGGAAACTGTAGAT}$
510	150	GACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGTCAAT AAAGGACTCTTAAATCGTCTCAAAGTGTGGCGTTCTCTCTAACACCCCTGGGCACAACAAGAGGTTGTGGTGA GCGA
511	140	GTCTTAAGACAGTTGCAGCTTTTTAACTGTTACTAGTTTTAAGAATAAAAATTTACGTTTGACCTTTGTAACAG GAGTACAGTAATCAGAGGATTGTATTTTCCCAGATGGATG
512	150	GGGGCAACAACTGAGTGCAACTGAGATTCTGTTGGAAGGAA
513	123	AAGAACAATCTGCCAGTTATCAAGACAGGAGGCAAATGAAGGGACTTCGACTGAAGTCTTTCCTGGTGGCTG AGATCACAATTTCCCCCTTTTTTAGGGCTAGAGCCAAGGTGAATTCTTTCC
514	149	CTTATAGCAGCAGCCAGTCTAGACTGATAAGATTCAATGTCAGCTTCCAGTCTTTTCTTGCTTTCTTT
515	123	CAAGTGATGGCACATTCCTCCAGTGAGTCCTCAGGGACTTTGCTTCCTCCTTCGTTGGAGACTTGGCCTTTTCC GGGGACTTGACCTCAGCTGGAGATTTTGCTTCTTCCTTCACTGGGGACT
516	139	CCACAAGGGAATTTGAAGAGATTCTGTGAGAGAGATATGAAATATTTTATAGTTAAAACACCAATATATTCAA CTTTACACTTCTTGTGTTTTTCATAAACATTCCTGTTCTTTTCCTTTCAGTAATAAAATTTAAAAA CATCCCCCAGAGTGCCGAAGCTGCAGCCGAGGCCACCAAGAATATGGAAGCTGGAGCCGGAAGAGCTTGGCC
517	87	ACGCGCCACACACCC CCCACACTGGGTTAGTTGATCCTCTGGGGTCCTCTGCCTGGCCATCTTCCTCTCAAGATTTGCCCTAAGGGTCA
518 519	118 110	CGGCCTCTATGAAGCTTTCCCTGACCCTCCCACACTGGGTTAGT ATTATTTTTTTAGTAAAATTGTTTGAAGTTATTGAAACAAGAGAGTCAGACATTTGCAAAATATTACAATATAC
520	113	AGAATCCACCATCTTTTGGAGGTTTTTTCCAGTATA CCACACACCAACAATTATAGCAGGTCCACAGAACATAACAACATCTCTTCATCAGACTGTAGTTTTGGAATGC
		ATGGCCACAGCCTTTCCCCCAGAAGCAGCATCTTTGAA
521 522	65 150	ACGCCCTCTGGCCTTTCCTCGGTTCCTTCCTCCCCCATGTCCAGGAAGGGCCTGGGGGGGCGGCTC TCCAATGAAACAACAAGAATCATATTTCTTGGCCACCATTTTAAATCATGTTAATCCATTTCTCAGAATACTGC ATCTGCAAAAAAAAAA
		AACCC AAGTACTGGAAACCGAAACCCTGGGAGCTCTGGGGTCTGGCTGCCTCACACTTGGGGTGGAGAATGTGGCAT
523	103	CCCTCGCTGACAGGATGGAGAGTCCCGGCCC
524	104	TGACCGGGTTTCTTTGATGCGACCTCAGGAAGGAGATGAGATTTGTGGCTCTTGATTCCTCTTTGAAGTCTCAGT TTTGATCAAATCTTCTTTAGAGTGTGATTT

		CCAGGAACAACGGCCACCAGACGACAGGCCCACGTCCAACCCCAGCAAGCA
525	150	CAGCCAGGACAACCCACGAGGCCCACGGAAACGCTCTGTGGAAGACACAAAGCCTTTGGCCTGCTGGGCTCT
		CCGGGA
526	137	GATCTGGGGCTAGTGTAGAAGGTGGTTGATTTCTCACTGAGGCTTGGTGTTGTGGGACTGCCGGGGCAAGAGA
320	137	AGACTGCCTAGAATTAAGTGTGGAGGGTCTTATAGGATACTCTTCGTTTTGTACATTTCCAGCA
527	87	GAAGGTCAGGATTTTAAGAAGAAGAAATGGAGCAGAATGCATCCTAGATCTGGGCTACCATATGAGACAGCC
327	07	CAGATCTAGGATGCA
53 0	4.50	CCTCTCAAAGTGCTAGGATTATAGGCGTGAGCCACTGAGGCCTGCCT
528	150	TTTTTTTTTTTTTTTTTTTATACGGAGGAGTAAAAAGTACCCCAAGCAGGAGGACAGTGGCAGTAAAATTGC
		TC
		ACTTCTTTGTGATGTGTGTATTCAACTCACAGAGTTTAACCTAACTTTACAAAGAGCAGATTTGAAACACACTG
529	150	TTTGTAAAGTATGCAAGTGGAGATATCAACCGAAGAGACACATCTGAACACCAGGCACTAACATAAAAAAA
		AAAC
700	4.50	ACTGAGATCCTACCATTGCACCCCGGCTTGGGAGACAGAGAGAG
530	150	AAAAAAGGGGAAAGTAATTGTTGGAAGGGGAGGGAAGGGCAACACTGGGAAAAACCTGACACCACAGGAGA
		GGGGTT
		TCAGTGGGATGTACATGGGGGAGCTGGTGAGGCTTATCCTGGTGAAGATGGCCAAGGAGGAGCTGCTGAAGG
531	149	AGCCGTTCGATGATGTTCAGCAGAATGTCCCACGCCACCACCTGGAGCTCCTTCCT
		GGT
532	102	GTTTTATCCTGGGTGTCATTTTGGATCAAAAAAGATGCTACGCCAGCAAGAACAGCATTATAAGGCCAGACGT
		GACAATAGGAGAGATCCCTAGCTCCATCA
522	150	TTTCTCTGGAAGCTCACCCACTGCAGCCTTCAGCCGAGTCAGCTCCTGGTAGATCTCCTGCATCTTAGATTTCT
533	150	CTGGAAGCTCTCTGGGATGTCGCAAACATCCAGCTGTGACCACTGGCTGAATTCAAAGGTGAAATTGTTATTA
		ACT
534	149	TGGGGTTGTTTGTTTTTTCCTGTAAATTAGTCTGAGTTCATTGTAGATTCCTGATATTAGCCCTTTGTCAGATG
		GATAGACTGAGAAGTTTTCTCCCATTCTGTAGGATGTCTGTTCACTCTGATTAAAGTTTCTTTTGATGTGCGAA
525	150	AGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTCGATCTCCTGACCTCGTGATCCACCTGCCTCAGCCTC
535	150	CCAAAGTGCTGAGATGACAGGCGTGAGGCACCGCACCAGTCCTTTTTTTT
		CTA
536	149	GTGTAAGGAAGGACTCACATTCTTTTTTTTTTTTTTTTT
527	72	GCAATTGTTTTATCATGGCTTACATCAGCCATTGTCTTATGGGCCCAATCAACATCATGCCTCACCCTCCAGA
537	73	CCACTCACTGCAACCTCTGCCTCCCAGCTTCAAGCAATTCTCCTGCCTCAGCTTCTGGAGTGGCTGGGAGCAC
7.0 0	4.50	ATCCTATGCCAGAATAACAGAGATAGATAGATAGATAGAT
538	150	AGATAGATAGACAGATGATAGATAGATAGATAGATAGATA
		ACCACA
520	150	TAATATCTCTTAATAAATCCCTTTCTGTGACCTGCACGTACACACATCCAGATGGCCGGTTCCTGCCTTAACTGAT
539	150	GACATTCCACCACAAAAGAAGTGAAAATGGCCTGTTCCTGCCTTAACTGATGATATTACCTTGTGAAATTCCTT
		CT TCTTCCTCAAAATTTTCCATCTTCCACCATTCCACCATTCCACTCTTTTTT
540	150	TCTTGCTCAAATTTTCCATCTTGGACCATTGGACTCTCTTTCGGTTGGCTCCTGTGTCCTTTGTCCTTTTTTT
		GTGTAAGGAAGGACTCACATTCTTTTTTTTTTTTTTTTT
541	149	TTAAAAGGTTTTATAAATGCATACAGCAGCCATTGTCTTCTTGGGCCCAAGCAAACATAAAGCCACAGCCACCA
341	149	GA
		CCCTCCATATATGTATATACATGCACACATCCTCTCATCTACCAATCTATCATCCATC
542	150	CTTTTATTCATCCATCCTCCCATCCATCATATATATATA
		CATTCCACTCCATTCCATTCCATTCCACTCCATTCCATTCCATCCCAATCGGGTTGATTCCATTCCATTC
543	150	CATTCCATTCCATTCCATTCCTTTCCATTCCGTTCCATTCCATTAGGGTTGATTCGATCGCAATAGAAAA
		AAACCTTTTTTCATTCAGCAGTTTGGAATCACTGATTTGTTAGGATCAGAGACGAGAAAGGTAGTAGAAT
544	149	AAATGAGCCTTAAGGTGAAAAAGCAAATATTTCAGATAAGAGCTAGAACGAAGCTGTCTGAGAACCTGCTGG
		GTGA
		CTCAGTGCAGATCACTGGTTTTATCAGAAGGTCAGTGGTTGGAGACATCCATTTTCTGAAATCAGGTAAAGTG
545	150	TTGAATGCTGTATATAGCACCCGAGAGGTGAGGCAGATATTTATCAATTTAGGTACACAGGTGTCAGTTTGAT
		TATT
		CTTTTTCATCTCTTATGCCAGTATATAGTTGGTTTTTGAAGTCAGGTGTGTAGGCAGGC
546	150	TCATGACAGGAAAATGAAGAACGCTTTTTTTTTTTTTTT
	1.10	CAGGTTATGAAACCAGTTAGTTTTTGTAATTTTTTTTTT
547	149	TAACCGTTTTGCCAAGGCTTGGTCCGAGGGAACCACCGGCCCGCGGCCACAAAACGGAAGAGCACCCGACA
		GGCGGAGGTTGCAGTGAGCTGAGATCGCGGCCACTCCACTCCAGCCTGGGCGACAGAGCGAGACTCTGTCTC
548	150	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGAAACAAC
		GGAACAAC
540	150	CCCCATTCTTCCCTCTCTGTCCTCAGAACACTGCCTCATATCCTTCCCTGGTCCCTGGCTCTCTGAGTCCCTC
549	150	GTTTTTTTTTTTTTTTTTTTTTTTAGATAGATAGGAAAAGCAAACCTCTGAAAAACACTCACAACCACAGA
		GGCAGAGTTAGACTGTCGGAAAAAAAAAAAAAAAAAAAGAAATGTATTGAAGTAAAAAA
550	150	TTTTAAAATTGGAGAGTAATTTTGATAAATTCTGAGGGCAGTTGGAGAAGAGAACGGAAAAAGCAAAATTAAG
		AACTCCA
		CAACTCAATAAGGTGAAAAGTCCAAACCTGACAGGTCGAGAATAAATA
551	149	TGCCAGGGGAAAAACTGGAAAAACTGACTTAGACATTGGCATTAAACTTTAATATCTAACGGGGGCTTTGGTT
		TTGA

552	148	ACTCGATTGTTATGGAATGGAATGGAATGGAATGGAATG
		GGAAT
		TCTTCCCAAGGGAGGAGGAGCTCAAGTGTCGGGAACTGTCTAACTTCAGGTTGTGAGTGCGTTAAAAAAA
553	147	AAAAAAAAGAAGCCAAAAACAACATTTTTAAAACGAAATACCAACCGAATAAAAACCAGACACAACAAGA
		GAA
		ACTTCAGTACCACAGGTTAAGGGAGTGGTAGTTGAGTGACAGCTATGCTTCTGCTGTGTAACCTTTAGCAAAC
554	149	${\tt CAAATAATTTTCTAATGCAAAACTTTTTTTCTGATCAAATCTACAGTACTATTATTCTAAATTCCTTTTCAATATTCTAAATTCCTTTTCAATATATTCTAAATTCCTAAATTCCTTTTCAATATATTCTAAATTCCTAAATTCCTTTTCAATATATTCTAAATTCCTAAATTCCTTTTCAATATATATTCTAAAATTCCTTTTTCAATATATTCTAAATTCCTAAATTCCTTTTTCAATATATTCTAAATTCCTTTTTCAATATATTCTAAATTCCTAAAATTCCTTTTTCAATATATTCTAAATTCCTAAATTCCTAAATTCCTAAATTCCTAAATTCCTAAATATATTCTAAAATTCCTTTTTCAATATATTCTAAAATTCCTTTTTCAATATATTCTAAAATTCCTTTTTCAATATATTCTAAAATTCCTTTTTCAATATATTCTAAAATTCCTTTTTCAATATATTCTAAAATTCCTTTTTT$
		A
		CCAGTCCTCCATCTCTGGAGTGACATGGTCAATGCTGCATCTTCACAAAGCAGGGACACTAATCCCATTTAAG
555	150	AGGGCTCCATCTTCAGACCTAATTATCTTGCAAAGGCACCACCTTTAACATATGAATCAGGAGGGTGGGAAT
333	150	CACT
		CACI

Table S4. Geographical classification of DNA sequences from the subset of ray-finned fishes

Group	Sequence ID	Number	Average affinity	E-value	Blast Mode
Non-native	#001 #002 #003 #007 #009 #010 #012 #013 #014 #015 #016 #164 #165 #166 #168 #169 #017 #049 #176 #179 #180 #181 #182 #183 #190 #191 #192 #193 #194 #195 #196 #199 #205 #208 #223 #225 #226 #233 #236 #240 #246 #253 #254 #258 #259 #260 #261 #262 #272	49	80.34%	≤ 4.00E-9	
Native	#004 #011 #018 #019 #020 #021 #022 #023 #024 #025 #026 #207 #028 #029 #030 #031 #032 #033 #034 #035 #036 #037 #038 #039 #040 #041 #042 #043 #044 #045 #046 #047 #048 #050 #051 #052 #053 #055 #056 #057 #058 #059 #060 #061 #062 #063 #064 #065 #066 #067 #068 #069 #070 #071 #072 #073 #074 #075 #076 #077 #078 #079 #080 #081 #082 #083 #084 #085 #086 #087 #088 #089 #090 #091 #092 #093 #094 #096 #097 #098 #099 #100 #101 #102 #103 #104 #105 #106 #107 #108 #109 #110 #111 #112 #113 #114 #115 #116 #117 #118 #119 #120 #121 #122 #123 #124 #125 #126 #127 #128 #129 #130 #131 #132 #133 #134 #135 #136 #138 #139 #140 #141 #142 #143 #144 #145 #146 #147 #148 #149 #151 #152 #153 #154 #155 #156 #157 #158 #159 #161 #170 #171 #172 #173 #177 #200 #207 #209 #210 #213 #215 #216 #217 #219 #228 #229 #241 #242 #230 #237 #238 #243 #244 #245 #247 #250 #251 #252 #264 #265 #266 #267 #268 #269 #270 #273 #275 #276 #280 #281	180	83.85%	≤ 3.00E-14	the MS mode
Other ray- finned	#008 # <u>054</u> #137 #150 # <u>160</u> #162 #163 # <u>167</u> #174 #211 #218 #227 #232 # 277	14	77.51%	≤ 5.00E-12	
Non-specific	#175 #178 #184 #197 #198 # 202 #203 #204 #206 #212 #220 #221 #222 #235 #248 # 278	16	65.45%	≤ 3.00E-9	the lowest mode

The transposase sequences are underlined in the table while the mitogenomic and ribosomal sequences are presented in bold. All sequences can be found in Table S3.

Table S5. Results from DNA Extraction and Sequencing

ID	Fossil portions	Sample weight (g)	aDNAmix (ng/mL)	Sequences amount
1	texture	30	33	22253
2	texture	28	54	30932
3	texture	40	99	445752
4	texture	50	141	735110
5	texture	25	35	24976
6	non-texture	50	73	52
7	non-texture	50	82	583