

ИССЛЕДОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НЕБЕСНЫХ ТЕЛ СПЕКТРАЛЬНЫЙ АНАЛИЗ В АСТРОНОМИИ

Начальный уровень

- 1. Какие сведения о планетах могут быть получены методом радиолокации? Укажите правильные ответы:
 - А) Рельеф поверхности планеты.
 - Б) Скорость вращения и орбитального движения планеты.
 - В) Химический состав планеты.
- 2. Какое физическое явление лежит в основе спектрального анализа? Укажите правильный ответ:
 - А) Интерференция.
 - Б) Дисперсия.
 - В) Дифракция.
- 3. Какие тела дают линейчатый спектр излучения? Укажите правильный ответ:
 - А) Раскалённые твёрдые тела.
 - Б) Нагретые жидкости.
 - В) Нагретые разряжённые газы и пары.
- 4. Укажите правильные утверждения о применении спектрального анализа в астрономии:
 - А) По спектру можно определить температуру звезды.
 - Б) По спектру можно определить химический состав звезды.
 - В) По спектру можно определить характер рельефа поверхности планет.
- 5. Отличие вида спектров звёзд определяется в первую очередь различием их ... (укажите правильное утверждение)
 - А) ...возрастов.
 - Б) ...радиусов.
 - В) ...температур.
- 6. С помощью каких инструментов производят наблюдения в радиодиапазоне? Укажите правильный ответ:
 - А) С помощью телескопов-рефракторов.
 - Б) С помощью телескопов-рефлекторов.
 - В) С помощью радиотелескопов.

Средний уровень

- 1. Что можно узнать о Вселенной, используя радиотелескопы?
- 2. Объясните, почему, наблюдая звёзды, мы видим Вселенную такой, какой она была много лет назад.
- 3. В чём преимущества телескопов, установленных на космических аппаратах?
- 4. Предположим, что вы наблюдаете на небе две звезды: голубую и красную. Объясните, как можно узнать, какая из них горячее.
- 5. Почему современную астрономию называют всеволновой?
- 6. Для каких целей используется в астрономии фотография?

Достаточный уровень

- 1. а) Как можно установить состав атмосфер Солнца и звёзд?
 - б) Линии спектра наблюдаемого объекта растянуты в спектральную часть, соответствующую красным лучам. К нам или от нас движется объект? Ответ поясните формулами.
- 2. а) Назовите основные типы телескопов, их предназначение.
 - б) Каким образом можно установить движение звезды в пространстве?
- 3. а) Охарактеризуйте роль метода спектрального анализа в изучении небесных тел.
 - **б)** Какие изменения происходят в спектре объекта, который движется по лучу зрения от наблюдателя?
- 4. а) Какие характеристики спектра звезды используются для определения её температуры?
 - **б)** Будет ли наблюдаться доплеровское смещение спектральных линий, если исследуемая звезда движется поперёк луча зрения?
- 5. а) Как по виду спектра можно определить, приближается к нам или удаляется от нас звезда? Сделайте пояснительный чертёж
 - б) К какому виду относятся спектры Солнца и звёзд? Чем объясняется такой вид спектра?
- 6. **a)** Можно ли с поверхности Земли выполнять наблюдения в рентгеновских и гамма-лучах? Ответ поясните.
 - **б)** Будет ли наблюдаться доплеровское смещение спектральных линий, если исследуемая звезда неподвижна (её пространственная скорость равна нулю)?

Высокий уровень

- 1. Каковы значение и направление смещения линии в спектре звезды, удаляющейся от наблюдателя со скоростью $15 \, \mathrm{km/c}$, если соответствующая этой линии спектра длина волны равна $600 \, \mathrm{hm?}$
- 2. В спектре звезды доплеровское смещение линии водорода ($\lambda_0 = 4883,7$ Å) в сторону ультрафиолетовой части спектра равно 0,07 нм. Вычислите модуль и направление лучевой скорости звезды.
- 3. Найдите смещение линий метана CH_4 ($\lambda_0=6,19\cdot 10^{-7}$ м) в спектре экваториальной области Юпитера, имеющий линейную скорость вращения 12,2 км/с.
- 4. Вычислите модуль и направление лучевой скорости звезды, если в её спектре линия, соответствующая длине волны 0,55 мкм, смещена к фиолетовому концу на расстояние 0,055 нм.
- 5. Солнце движется вокруг центра Галактики со скоростью 247 км/с. Каковы значение и направления смещения линий водорода H_{β} ($\lambda_0=4861$ Å) в спектре Солнца для постороннего наблюдателя, например, инопланетян?
- 6. На фотографии спектра звезды её линия смещена относительно своего нормального положения на 0,02 мм. На сколько изменилась длина волны, если в спектре расстояние в 1 мм соответствует изменению длины волны на 0,004 мкм? С какой скоростью движется звезда? Длина волны неподвижного источника света равна 0,5 мкм.