When Does Wealth Inequality Matter for Asset Pricing?

Riccardo A. Cioffi (Science Po) Galo Nuño (BIS, Banco de España) Samuel Hurtado (Banco de España)

Lausanne, August 24th 2023

Disclaimer: the views expressed in this presentation are those of the authors and **do not** necessarily represent the views of Banco de España, the ECB, the Eurosystem or the BIS

Caveat: This is very preliminary work

- Work in progress: today more focus on methodology than in economics
- General question: does market incompleteness affect asset prices?
 - Under certain particular circumstances, the answer is no (Krueger and Lusting, JET 2009).
- In general, it is unknown.

The challenge

- ► HALT: Heterogeneous-Agent Lucas Tree model.
 - Hard to solve, the income-wealth density is an infinite-dimensional stochastic state.
- Proposal: employ the extension of Krusell-Smith to neural networks by Fernández-Villaverde, Hurtado, and Nuno (ECTA, 2023).

Warm-up: representative agent

The Lucas tree

- \triangleright There is one unit of a tree which generates dividends Y_t each time period.
 - ► The dividend follows a diffusion process

$$dY_t = \mu_Y(Y_t)dt + \sigma_Y(Y_t)dW_t^Y$$

► The tree trades at price q_t .

Households and equilibrium

The representative agent has preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(C_t) dt,$$

Her budget constraint is

$$q_t \dot{K}_t = Z + Y_t K_t - C_t,$$

where *Z* is a constant endowment.

In equilibrium

$$K_t = 1,$$
 $C_t = Z + Y_t.$

Hamilton-Jacobi-Bellman (HJB) equation

- Let's work with asset holdings K as a state variable (rather than wealth gK).
- \triangleright The equilibrium asset price will be a function of Y_t ,

$$q_t = Q(Y_t)$$

for a function Q that is to be determined.

- ▶ Given that Y_t follow a diffusion process, so will q_t .
- The representative consumer solves

$$\rho V(K,Y) = \max_{C} u(C) + V_{K}(K,Y)(Z+YK-C)/Q(Y) + V_{Y}(K,Y)\mu(Y) + \frac{1}{2}V_{YY}(K,Y)\sigma^{2}(Y).$$

Solution

$$q_t = \mathcal{Q}(Y_t) = \mathbb{E}_t \int_t^\infty \mathrm{e}^{-
ho(s-t)} rac{u'(Z+Y_s)}{u'(Z+Y_t)} Y_s ds.$$

Asset pricing with heterogeneous agents

Heterogeneous agents

Assume instead a continuum of individuals with preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{it}) dt,$$

Budget constraint:

$$q_t \dot{a}_{it} = z_{it} + Y_t a_{it} - c_{it}.$$

- ▶ Here z_{it} is idiosyncratic income risk \rightarrow Poisson process $z_{it} \in \{z_1, z_2\}$ with intensities λ_1 and λ_2 .
- ► No-short-selling constraint

$$a_{it} \geq 0$$
.

Kolmogorov Forward (KF) equation

Let $f_t(a, z)$ be the cross-sectional distribution. It follows the KF equation:

$$\partial_t f = \mathcal{A}^* f \equiv -\partial_a (s_t(a,z)f_t(a,z)) - \lambda_z f_t(a,z) + \lambda_{z'} f_t(a,z'),$$

where

$$s_t(a,z)\equiv rac{z_{it}+Y_ta_{it}-c_{it}}{q_t}.$$

Asset prices

The equilibrium asset price will now be given by

$$q_t = Q(Y_t, f_t),$$

that is, f will be a state variable in individual's Bellman equation.

Hamilton-Jacobi-Bellman equation

$$\rho V(a, z; Y, f) = \max_{c} u(c) + \partial_{a} V(a, z; Y, f)(z + Ya - c)/Q(Y, f) + \lambda_{z}(V(a, z'; Y, f) - V(a, z; Y, f))$$

$$+ \mu(Y)\partial_{Y} V(a, z; Y, f) + \frac{1}{2}\sigma^{2}(Y)\partial_{YY} V(a, z; Y, f)$$

$$+ \int \frac{\delta V(a, z; Y, f)}{\delta(\tilde{a}, \tilde{z})} \mathcal{A}^{*} f_{t}(\tilde{a}, \tilde{z}) d\tilde{a}d\tilde{z},$$

where $\delta V/\delta f$ is the functional derivative of V with respect to f.

Bounded Rationality

- ► The problem above is not only impossible to compute but also crazy:
 - it assumes that individuals keep track of the entire cross-sectional distribution. So it seems natural to instead assume some bounded rationality.
- A natural assumption is that individuals form beliefs about prices directly:

$$dq_t = \mu^q(q_t, Y_t)dt + \sigma^q(q_t, Y_t)dW_t$$

for some unknown functions μ^q and σ^q that can potentially be very complicated and non-linear.

HJB under bounded rationality

Under this assumption the HJB simplifies to

$$\rho V(a, z; q, Y) = \max_{c} u(c) + \partial_{a} V(a, z; q, Y)(z + Ya - c)/q + \lambda_{z}(V(a, z'; q, Y) - V(a, z; q, Y))$$

$$+ \mu(Y)\partial_{Y} V(a, z; q, Y) + \frac{1}{2}\sigma^{2}(Y)\partial_{YY} V(a, z; q, Y)$$

$$+ \mu^{q}(q, Y)\partial_{q} V(a, z; q, Y) + \frac{1}{2}\sigma^{q}(q, Y)^{2}\partial_{qq} V(a, z; q, Y)$$

$$+ \sigma(Y)\sigma^{q}(q, Y)\partial_{qY} V(a, z; q, Y).$$

Enter neural networks

- ▶ We can approximate the unknown functions $\mu^q(q, Y)$ and $\sigma^q(q, Y)$ using a neural network.
- This is a low-dimensional problem, so other function approximation schemes could be used as well.
- However, neural networks are convenient for two reasons:
 - Good extrapolation properties (in contrast to Chebyshev, for instance)
 - Richness in software tools

Algorithm

- Make an initial guess of the perceived law of motion $\mu^q(q, Y; \theta^0)$ and $\sigma^q(q, Y; \phi^0)$, n = 0.
- \bigcirc Then, for n := n + 1:
 - Solve the HJBusing $\mu^{q}\left(q,Y;\theta^{n-1}\right)$ and $\sigma^{q}\left(q,Y;\phi^{n-1}\right)$
 - ② Simulate samples of Y_t and q_t
 - **1** Train two neural networks, one on $\mu^q(q, Y; \theta^n)$ and the other on $\sigma^q(q, Y; \phi^n)$
 - $\textbf{ Oheck the norms } \left\| \mu^q \left(q, Y; \boldsymbol{\theta^n} \right) \mu^q \left(q, Y; \boldsymbol{\theta^{n-1}} \right) \right\| \text{ and } \left\| \sigma^q \left(q, Y; \boldsymbol{\theta^n} \right) \sigma^q \left(q, Y; \boldsymbol{\theta^{n-1}} \right) \right\|$

Next steps

- Compare HA and RA models.
- Extend the number of assets to risky bonds
- Consider realistic asset allocation rules
- Stay tuned!