CPE201 Digital Design

By Benjamin Haas

Class 21: Shift Registers

Outline

- Flip-Flop Review
- Shift Register Intro
- 5 Types of shift register configurations
- Notes on real chips

Flip-Flop Applications

- Data Storage
 - Ch8
- Frequency Division
- Counting
 - Ch9

D Flip-Flop

(b) *D* = 0 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

Truth table for a positive edge-triggered D flip-flop.

Inputs		Outputs		
\boldsymbol{D}	CLK	Q	$\overline{oldsymbol{arrho}}$	Comments
0	↑ ↑	0	1 0	RESET SET

↑ = clock transition LOW to HIGH

Shift Registers

- No set state machine
- Shift data in from external sources
- A series of flip-flops

Register

- A digital circuit with 2 functions
 - Data storage

Register

Data movement (4-bit examples)

Serial vs. Parallel

- Serial is one line
 - Connection count is small and takes little space
 - Used in long distance comms
- Parallel is one line per bit
 - Very fast because all bits are xferred at once
 - Takes up much more space than serial
 - Used in short distance comms (moving

variables)

Serial in / Serial out (SISO)

- Like a queue or buffer
 - Buffering in a long xfer line
- Destructive readout (all these regs do this)

SISO Circuit

SRG8

• Simplest versio Data in CLK

SISO Data Table Example

Shifting a 4-bit code into the shift register Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q_3)			
Initial	0	0	0	0			
1	0	0	0	0			
2	1	0	0	0			
3	0	1	0	0			
4	1	0	1	0			

Shifting a 4-bit code out of the shift register Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q_3)
Initial	1	0	1	0
5	0	1	0	1
6	0	0	1	0
7	0	0	0	1
8	0	0	0	0

SISO Signal Example

Serial in / Parallel out (SIPO)

Converts data format

Receives data from serial bus and stores

into variable

Serial in/parallel out

SIPO Circuit

Read all outputs at any time

SIPO Signal Example

Parallel in / Serial out (PISO)

Converts data format

Gets data ready to be xferred on serial

bus

Parallel in/serial out

PISO Circuit

PISO Signal Example

• || data is 0101

Parallel in / Parallel out (PIPO)

- Move variables around
 - Between registers
 - Into/out of memory

PIPO Circuit

PIPO Signal Example

Bit Rotation

- Usually bidirectional (data can go both directions)
 - Using direction input line

Bit Rotation

- Shift 0100 to the left, get 1000 (0100 <<
 1)
 - What is that equivalent to?
- Shift 0100 to the right, get 0010 (0100 >> 1)
 - What is that equivalent to?
- What is 5<<1? 7>>18 9>>2? 1<<4? 3>>3?

Signal Example

Circuit

Real Chips

- The real chips have additional functionality
 - PIPO and SIPO in one chip
 - SISO and PISO in one chip
 - SISO, SIPO, PISO, and PIPO in one chip
 - Universal shift register

Reading

- This lecture
 - Sections 8.1-8.3
- Next lecture
 - Sections 8.4-8.7