Theoretische Mechanik

Till Hanke

Letzte Aktualisierung: 19. Juli 2015

Inhaltsverzeichnis

1	Rau	Raum und Zeit 2					
	1.1	Raum	2				
	1.2	Koordinatensysteme	2				
	1.3	Zeit	4				
		1.3.1 Ereignis	4				
	1.4	Kinematik	5				
	1.5	Bewegte Bezugssysteme und Inertialsysteme	7				
		1.5.1 Inertialsysteme	8				
	1.6	Galilei- und Lorenztransformationen	9				
2	Newtonsche Mechanik 12						
	2.1	Newtonsche Bewegungs-Gleichung	3				
	2.2	Arbeit und Energie	4				
		2.2.1 Beispiele konservativer Kraftfelder	4				
		2.2.2 Gegenbeispiel	5				
		2.2.3 Bemerkung	5				
	2.3	Systeme mehreren (N) Teilchen	5				
	2.4	N-Teilchenproblem	6				
	2.5	Impuls und Drehimpuls	8				
		2.5.1 Drehimpuls	8				
	2.6	Nicht-Inertialsysteme und Scheinkräfte	0				
3	Sec	cion 3 – To be composed 2	2				
4	Lag	range-Formalismus 2	2				
	4.1	Lagrange I	2				
	4.2	Lagrange II	2				
5	kleine Schwingungen 26						
		Lineare Differenzialgleichungen (2.Ordnung)	7				
		·	7				

6	Hamiltonsche Mechanik		
	6.1	Poisson-Klammer	27
	6.2	Kanonische Transformationen	28
	6.3	3 (Form-)Invarianz der Hamiltonschen Bewegungsgleichungen unter kanoni-	
		schen Transformationen	29
	6.4	Erzeugende von kanonischen Transformationen	29

1 Raum und Zeit

1.1 Raum

Die Mechanik spielt sich im dreidimensionalen Raum ab. Affiner Raum \mathbb{E}^3 : Menge aller Punkte im Raum. Ein Punkt $P \in \mathbb{E}^3$ wird durch Angabe eines Ortsvektors $\vec{r} \in \mathbb{R}^3$ (3D-Vektorraum) relativ zu einem Ursprung $O \in \mathbb{E}^3$ Festgelegt: $\vec{OP} = \vec{P}$.

Abbildung 1:

Ein Skalarprodukt $\vec{r} \cdot \vec{r'} \in \mathbb{R}^3$ liefert Längen $\Rightarrow |\vec{r}| = \sqrt{\vec{r} \cdot \vec{r}}$ und Abstände $d(P, P') = |\vec{a}| = |\vec{r} - \vec{r'}| = \sqrt{(\vec{r} - \vec{r'}) \cdot \vec{r} - \vec{r'}}$ 'Euklidischer' Raum \mathbb{E}^3 : affine, 3D Räume mit d(P, P')

Bemerkung

- \rightarrow Die Wahl von O ist beliebig; eine andere Wahl O' mag zweckmäßiger sein, "ändert nichts an der Physik". Insbesondere gilt: $d_O(P, P') = d_{O'}(P, P')$
- \rightarrow Übergang $O \rightarrow O'$: Wechsel des Bezugssystems

1.2 Koordinatensysteme

Für $P \in \mathbb{E}^3$ muss angegeben werden: Ursprung O und Koordinaten (x, y, z) bzgl. einer kartesischen OB (e_1, e_2, e_3) – Da OB: $e_i \cdot e_j = \delta_{ij}$ sowie $|e_i| = 1$

Für den Punkt P folgt dann:

$$\vec{OP} = \vec{r} = x\vec{e_1} + y\vec{e_2} + z\vec{e_3} = \sum_{i=1}^{3} x_i \vec{e_i}$$

Dem Punkt P ordnen wir den Spaltenvektor $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, bezogen auf $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$, zu.

Bemerkungen

- 1. Die Wahl von $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ ist beliebig. Es gilt: $(\vec{e_1}, \vec{e_2}, \vec{e_3}) \rightarrow (\vec{e_1'}, \vec{e_2'}, \vec{e_3'})$ $\vec{e_k} = \sum_i R_{ki} \vec{e_i}$ mit einer orthogonalen Transformation $R \in O(3)$ Drehungsmatrix $R^{-1} = R^T$; $(\det R = 1)$
- 2. Transformation der Koordinaten bezogen auf $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$

Aktive Transformation

 \rightarrow die Rel. GL(") definiert bzgl. eines festen Koordinatensystems (O, e, e, e) eine aktive Drehung R des Vektors $\vec{r} = \sum_k x_k \vec{e_k} \rightarrow \vec{r'} = \sum_k x_k' \vec{e_k} = R\vec{r}$

Abbildung 2:

Achtung:

Für die Basisvektoren aus Bemerkung 2 gilt: $\vec{e_k'} = (R^{-1})\vec{e_k}$ (siehe Vorübung).

Transformation Die Trafo GL(") definiert allgemein das Transformationsverhalten eines Vektors (Tensor 1.Stufe)

Beispiele: $\vec{v} = \frac{d\vec{r}}{dt} \rightarrow v_k' = \sum_i R_{ki} v_i$; Geschwindigkeit, Beschleunigung, etc. Bedeutung: Physikalische Grundgleichungen müssen das Trafo Verhalten respek-

Bsp: $m\ddot{\vec{r}} = \vec{F}$. In (O, e, e, e): $m\ddot{x_i} = F_i \Rightarrow \text{in } (O, e', e', e')$: $m\ddot{x_i'} = F_i'$

Krummliniges Koordinatensystem in dem $x_i = x_i(q_1, q_2, q_3), i \in \{1, 2, 3\}$ mag sinnvoll sein.

Beispiele: Zylinder- (r,φ,z) oder Kugelkoordinaten (r,Θ,φ)

Achtung: $\vec{e_i} \rightarrow \vec{e_i}(q_1, q_2, q_3)$

1.3 Zeit

1.3.1 Ereignis

E ist ein Punkt der Raum-Zeit mit Koordinaten (t, x, y, z) bezogen auf (O, e, e, e)

Abbildung 3:

Ort räumliche Koordinaten (x, y, z) werden abgelesen durch Maßstäbe.

Zeit zeitliche Koordinate t (Koordinatenzeit): abgelesen von einer Uhr

- \rightarrow Festlegung der Zeit teines Ereignisses durch gleichzeitiges betrachten von E und der Uhr
- \rightarrow Nur lokal möglich
- $\rightarrow\,$ Wir denken uns den gesamten Raum ausgestattet mit Uhren, die alle synchronisiert sind.

Die Koordinatenzeit t des Ereignisses E mit (t, x, y, z) wird von der Uhr mit räumlichen Koordinaten (x, y, z) abgelesen!

Bemerkung

1. Die absolute Uhrzeit t ist beliebig, eine andere Wahl $t' = t + t_0$ mag zweckmäßiger sein. "Ändert nichts an der Physik"

- 2. Uhrensynchronisation kann durch Lichtpulse realisiert werden ("Einstein-Synchronisation"), etwa vom Mittelpunkt zwischen zwei Uhren. es zeigt sich: Äquivalent dazu (sehr langsamer) Uhrentransport
- 3. Vorsicht ist geboten beim Vergleich von Uhren in relativ zueinander bewegten Bezugssystemen

1.4 Kinematik

Hier betrachtet: Kinematik der klassischen Mechanik Kinematik ist die "Beschreibung der Bewegung" – zunächst ohne auf Ursachen einzugehen.

Bahnkurve $\vec{r}(t)$

Ortsvektor

$$\begin{split} \textbf{Geschwindigkeit} & \ \text{o} \vec{v}(t) = \frac{d}{dt} \vec{r}(t) \\ & \vec{v}(t) = \vec{v}(t) \cdot \vec{T}(t) \ \text{mit} \ |\vec{T}| = 1; v(t) = |\vec{v}(t)| \end{split}$$

Beschleunigung $\vec{a}(t) = \frac{d}{dt} \vec{v}(t) = \dot{t} \vec{T} + v(t) \dot{\vec{T}}(t)$

Abbildung 4:

 $\vec{N}=\frac{\dot{\vec{T}}(t)}{|\dot{\vec{T}}(t)|}$ steht senkrecht auf \vec{T} und $|\vec{N}|=1$ ("Normalenvektor)

(T,N) definieren "Schmiegeebene", in der lokal die Bahnkurve durch einen Kreis mit Krümmungsradius $R=\frac{v}{|\vec{T}|}$ beschrieben werden kann (siehe Übung).

Es folgt $\vec{a} = \dot{v}\vec{T} + \frac{v^2}{R}\vec{N}$ als Summe von zwei orthogonalen Beiträgen – wobei

- $\rightarrow\,$ Der erste: Eine Tangentialbeschleunigung und
- \rightarrow Der zweite: Eine Normal- oder Zentripetalbeschleunigung

ist.

Beispiel

1. Geradlinig-gleichförmige Bewegung

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t \quad \Rightarrow \vec{a} = 0 \qquad (\dot{v} = 0, R = \infty)$$

Abbildung 5:

2. Geradlinige Bewegung (allgemein)

$$\vec{r}(t) = \vec{r_0} + l(t)\vec{T_0}, \qquad \vec{v} = \dot{l}\,\vec{T_0} \Rightarrow v = \dot{l}, \quad \vec{T} = \vec{T_0} \qquad (\dot{v} = \ddot{l}; R = \infty)$$

Abbildung 6:

3. Gleichförmige Kreisbewegung

$$v = \frac{2\pi R}{\tau} = const.$$

$$\dot{v} = 0$$

$$\vec{a} = \frac{v^2}{R} \cdot \vec{N} = 4\pi^2 \frac{R}{\tau^2} \vec{N}$$

Mit τ Umlaufzeit

Abbildung 7:

Anwendung auf Kepler-Bahnen für Planeten $\tau^2 \sim R^3$ (3.Keplergesetz): $\Rightarrow \vec{a} \sim \frac{1}{R^2} \vec{N} \ (\vec{F} = m\vec{a}) \Rightarrow$ Planetenbewegung $\vec{F} \sim \frac{1}{R^2} \vec{N}$

1.5 Bewegte Bezugssysteme und Inertialsysteme

- $\rightarrow\,$ Bezeichne RS das Ruhesystem
- \rightarrow Wie wählen wir (O, e_1, e_2, e_3) geeignet? \Rightarrow Nahe liegend: Laborsystem (Labortisch ruht im LS)
- \rightarrow Beispiel elastischer Stoß im LS (m ruht)

Wechsle ins Ruhesystem der Masse M

Die Betrachtung wird eindeutig und trivial bei $M\gg m$

Übergang von System Labortisch (O,e,e,e, Uhren) in RS der großen Masse M (O',e',e',e', Uhren') gilt:

$$\vec{r'} = \vec{r} - \vec{v}t$$
$$t' = t$$

Abbildung 8:

Abbildung 9:

Die Galilei-Transformation beschreibt Transformationsgesetz von BS zu BS', das sich mit Geschwindigkeit v relativ zu BS bewegt. Zur Beschreibung sind $BS = RS_m$ und $BS' = RS_M$ völlig gleichwertig (hier BS' transparenter).

Bemerkungen

- 1. Zustand "in Ruhe" hat keine Absolute Bedeutung sondern hängt von der Wahl des Bezugssystems ab. (Bewegung ist *relativ* zu sehen)
- Frage vor 400 Jahren: Ruht die Erde und die Sonne bewegt sich?
 Galilei: Frage ist bedeutungslos, nicht entscheidbar
 ⇒ Galilei-Transformationen
- 3. Relativität kommt zum Ausdruck im 1. Newtonschen Gesetz:("Trägheitssatz") Ein Körper verharrt im Zustand der Ruhe oder der geradlinig-gleichförmigen Bewegung sofern er nicht durch Kräfte zur Änderung gezwungen wird.

1.5.1 Inertialsysteme

(IS) sind BS, die durch die Gültigkeit des 1. Newtonschen Gesetzes ausgezeichnet sind. Ausgehend von einem IS findet man weitere IS' durch geradlinig-gleichförmige Bewegung des IS' relativ zu IS. (häufig IS='ruhend bzgl. des Fixsternhimmels'; in der Praxis LS≈IS (gute Näherung)).

in einem relativ zu IS <u>beschleunigten</u> BS treten <u>Scheinkräfte</u> auf, die nicht auf fundamentalen Wechselwirkungen (Coulombkraft, etc) beruhen.

 \Rightarrow physikalische Grundgesetze werden bzgl. eines IS formuliert, dabei sind <u>alle</u> IS völlig gleichwertig; IS \rightarrow IS' durch:

- 1. "Boost" mit Richtung \vec{v} $t' = r(t \frac{\vec{v}\vec{r}}{c^2})$
- 2. Gleichförmig-geradlinige Bewegung: $\vec{r'} = \vec{r} \vec{v}t$ (3 Parameter) (Galilei-Relativität)
- 3. Räumliche Verschiebung: $\vec{r'} = \vec{r} + \vec{r_0}$ (3 Parameter) (Homogenität des Raumes)
- 4. Räumliche Drehung: $\vec{r'} = R\vec{r}$ (3 Parameter) (Isotropie des Raumes)
- 5. Zeitgleiche Verschiebung: $t' = t + t_0$ (1 Parameter) (Homogenität der Zeit)

Die Kombination all dieser Transformationen definieren die 'Galilei-Gruppe' der klassischen Raum-Zeit mit 10 freien Parametern.

1.6 Galilei- und Lorenztransformationen

Die Naturgesetze müssen von einer Art sein, die (Form-)invariant sind unter Transformation zwischen IS

Bsp.: IS→IS', dann gilt für Newton:

$$m\frac{d^2\vec{r}}{dt^2} = \vec{F} \Leftrightarrow m\frac{d^2\vec{r'}}{dt'^2} = \vec{F'}$$

 \rightarrow Relativitätsprinzip! Insbesondere gilt:

geradlinig-gleichförmige Bewegung in IS mit Koordinaten(t,x,y,z) ist auch eine geradlinig-gleichförmige Bewegung in einem anderen IS' mit (t',x',y',z').

Bsp: Galilei-Transformaiton: mit \vec{v} rel. zu IS bew. IS' gilt $\vec{r'} = \vec{r} - \vec{v}t$, $t' = t + t_0$ in IS: $\vec{r}(t) = \vec{r_0} + \vec{u}t$ $\Rightarrow IS': \vec{r'}(t') = \vec{r_0} + (\vec{u} - \vec{v})t'$

Umkehrung? folgt aus der Forderung (s.o.) dass $t, \vec{r} \to t', \vec{r'}$ eine Galilei-Trafo? Frage: 'wie sieht allgemein eine Trafo $(t, x, y, z) \to (t', x', y', z')$ aus, die die Forderung (s.o.) erfüllt für IS \to IS', das sich mit \vec{v} (vorgegeben) relativ zu IS bewegt?

$$\rightarrow \text{ lineare Trafo der Raum-Zeit!} \begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & & & \cdot \\ \cdot & 4 & \times & 4 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Abbildung 10:

- $\rightarrow\,$ bzgl. räumlicher Anteile \vec{r} Vektorcharakter muss erhalten bleiben: $\vec{r'}\sim\vec{r},\vec{v}$
- \rightarrow Ansatz:

$$t' = a(v)t + b(v)(\vec{v} \cdot \vec{r})$$
$$\vec{r'} = c(v)\vec{r} + \frac{d(v)}{v^2}(\vec{v} \cdot \vec{r})\vec{v} + e(v)\vec{v}t$$

mit beliebigen Funktionen $a(v), \cdots, e(v),$ die bestimmen weitere Forderungen:

- 1. für $\vec{r} = \vec{v}t \Rightarrow \vec{r'} = 0 \Rightarrow c + d + e = 0$
- 2. Relativität (I) Vertausche Rolle IS \leftrightarrow IS' ($\vec{v} \rightarrow -\vec{v})$

$$\Rightarrow t = a(v)t' - b(v)(\vec{v}\vec{r'})$$

$$\vec{r} = c(v)\vec{r'} + \frac{d(v)}{v^2}(\vec{v} \cdot \vec{r'})\vec{v} + e(v)\vec{v}t'$$

ersetze t' und $\vec{r'}$ auf der rechten Seite durch Ansatz

$$\Rightarrow t = a(v)(a(v)t + b(v)(\vec{v}\vec{r}) - \dots$$
$$\vec{r} = c(v)(c(v)\vec{r} + \dots) + \dots \vec{v} \dots$$
$$\Rightarrow c^2 = 1; a = c + d; a^2 = 1 + ebv^2; e = -a$$
$$\Rightarrow c = 1; e = -a; d = a - 1; b = \frac{1 - a^2}{av^2}$$

Wähle Koordinatensystem so, dass x in Richtung \vec{v} zeigt. $\Rightarrow \vec{v} = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix}$

$$t' = a(v)t + \frac{1 - a^{2}(v)}{a(v)v}x$$
$$x' = a(v)(x - vt); y' = y; z' = z$$

3. Relativitätsprinzip: $IS \rightarrow^v IS' \rightarrow^u IS"$

$$t'' = a(u)t' + \frac{1 - a^2(u)}{a(u)u}x' = a(u)(a(v)t + \frac{1 - a^2(v)}{a(v)v}x) + \frac{1 - a^2(u)}{a(u)u}(a(v)(x - vt))$$
$$x'' = a(u)(x' - ut') = a(u)(a(v) - u\frac{1 - a^2(v)}{a(v)v})x + \dots t$$

außerdem muss gelten IS \rightarrow^w IS" woraus folgt, dass

$$t'' = a(w)t + (w)x$$
$$x'' = a(w)(x - wt)$$

woraus dann folgt:

$$[a(u)a(v) - \frac{va(v)}{ua(u)}(1 - a^2(u)]t + \dots x$$

$$a(u)a(v) - \frac{va(v)}{ua(u)}(1 - a^2(u)) = a(w)$$

$$\Rightarrow \frac{a^2(u) - 1}{u^2a^2(u)} = \frac{a^2(v) - 1}{v^2a^2(v)}$$

$$\Rightarrow \frac{a^2(v) - 1}{v^2a^2(v)} = const. = K$$

$$\Rightarrow a(v) = \frac{1}{\sqrt{1 - Kv^2}}$$

$$k = 0 \Rightarrow a = 1 \Rightarrow \text{ ist Galilei Trafo}$$

$$k \neq 0?[k] = \frac{1}{\text{Geschwindigkeit}^2} = \frac{1}{c^2} = const.$$

$$\Rightarrow t' = a(v)(t - \frac{vx}{c^2})$$
$$x' = a(v)(x - vt)$$

Die Lorentz-Transformation mit $a(v) \to \gamma(v) = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$ Bedeutung von c?

Man betrachte die 'Addition' von Geschwindigkeiten: w = u + v?

$$a(w) = a(v)a(u)(1 + kuv)$$

$$1 - kw^{2} = \frac{(1 - kv^{2})(1 - ku^{2}) + (1 + kuv)^{2} - (1 + kuv)^{2}}{(1 + kuv)^{2}}$$

$$= 1 - k \frac{(u + v)^{2}}{(1 + kuv)^{2}}$$

$$\Rightarrow w = \frac{u + v}{1 + kuv} \Leftrightarrow (\frac{w}{c})^{2}$$

$$= \frac{(\frac{u}{c} + \frac{v}{c})^{2}}{(1 + \frac{uv}{c^{2}})^{2}}$$

$$= 1 - \frac{(1 - \frac{u^{2}}{c})(1 - \frac{v^{2}}{c})}{(1 + \frac{u}{c})^{2}}$$

Folgerungen:

- a) für $u = c \Rightarrow w = c$
- b) für $v = c \Rightarrow w = c$
- c) für $u < c; v < c \Rightarrow w < c$
- d) für $u \ll c$; $v \ll v \Rightarrow w \approx u + v$

c ist Lichtgeschwindigkeit

Abbildung 11:

2 Newtonsche Mechanik

- ightarrow basiert auf Galilei-Raum-Zeit (gültig für $v \ll c$) $m\ddot{\vec{r}} = \vec{F}(\vec{r})$ 'Fernwirkung' der Kraft \leftrightarrow Widerspruch zur Vorstellung einer endlichen Ausbreitungsgeschwindigkeit von Wirkungen.
- $\rightarrow\,$ relativistische Mechanik folgt in Kap.7

2.1 Newtonsche Bewegungs-Gleichung

zunächst phänomenologisch; Erfahrung: durch angabe des Anfangsortes $\vec{r}(t_0) = \vec{r}$ und der Anfangsgeschwindigkeit $\dot{\vec{r}}(t_0) = \vec{v_0}$ die Bahnkurve $\vec{r}(t)$ festgelegt ist \Rightarrow wir erwarten eine Relation $\ddot{\vec{r}}(t) \sim \vec{F}(\vec{r},\dot{\vec{r}})$, gewöhnliche Differentialgleichung 2. Ordnung zur Bestimmung der Bahnkurve $\vec{r}(t)$ (Dynamik)

 \rightarrow Newton (2. Newton-Gesetz); Impuls $\vec{p} = v\vec{v} = \dot{\vec{r}}$ $\frac{d}{dt}\vec{p} = \vec{F}$, bei konstanter (träger) Masse $m\vec{r} = \vec{F}$ wobei \vec{F} die Kraft ist, die auf den Körper wirkt.

Beispiel:

- 1. gglf. Bew. $\vec{F} = 0 \Leftrightarrow \ddot{\vec{r}} = 0 \Rightarrow \vec{r}(t) = \vec{r_0} + \vec{v_0}(t t_0)$
- 2. $\vec{F} = \vec{F_0}$ konstant (Gewichtskraft in der Nähe der Erdoberfläche) $\vec{r}(t) = \vec{r_0} + \vec{v_0}(t-t_0) + 0, 5\frac{\vec{F_0}(t-t_0)}{m}$ (Wurfparabel)
- 3. Federkraft (1Dim) $m\ddot{x}=-kx, F(x)=-kx, w^2=\tfrac{k}{m}\Rightarrow x(t)=x_0cosw(t-t_0)+\tfrac{v_0}{w}sinw(t-t_0)$
- 4. Lorenzkraft geschwindigkeits-abhängig $\vec{F} = q(\vec{E} + \frac{\dot{\vec{r}}}{c} \times \vec{B}); \vec{E} = \vec{E}(\vec{r}, t); \vec{B} = \vec{B}(\vec{r}, t)$
- 5. Reibungskräfte (phänomenologisch) $\vec{F_R} = -\alpha \dot{\vec{r}}; \alpha > 0$ Reibungskoeffizient.
- 6. Coulombkraft $\vec{F} = cqQ \frac{\vec{r} \vec{R}}{|r R|^3}$

Abbildung 12:

qQ < 0: anziehend qQ > 0: abstoßend

c: Konstante, abhängig von der Einheit Ladung

2.2 Arbeit und Energie

$$\begin{split} m\ddot{\vec{r}}\,\dot{\vec{r}} &= \vec{F}\,\dot{\vec{r}}\\ \frac{d}{dt}\left(\frac{m}{2}\dot{\vec{r}}^2\right) \Rightarrow \int_{t_1}^{t_2} dt (\frac{d}{dt}(\frac{m}{2}\dot{\vec{r}}^2)) = \int_{t_1}^{t_2} dt \vec{F}\dot{\vec{r}}\\ \Rightarrow T(t_2) - T(t_1) = \int_{t_1}^{t_2} \vec{F}\frac{d\vec{r}}{dt}dt = \int_{t_1}^{t_2} \vec{F}d\vec{r}(t) \end{split}$$

Entlang der Kurve L $\vec{r}(t)$ mit $r(t_1)=r_1...$ Wir definieren die am Teilchen geleistete

Abbildung 13:

Arbeit entlang L durch $W_e(r_1 \to r_2) = \int_L \vec{F} d\vec{r} = \int_{t_1}^{t_2} \vec{F} \dot{\vec{r}} dt$

Wir nennen ein Kraftfeld \vec{F} konservativ, wenn W_e nur von r_1 und r_2 , aber nicht vom Weg r(t) abhängt.

Theorem $\vec{F}(\vec{r})$ konservativ \Leftrightarrow es existiert ein skalares Potential $U(\vec{r})$ mit $\vec{F}(\vec{r}) = -\nabla U(\vec{r})$

$$\Leftrightarrow \oint \vec{F}(\vec{r}) d\vec{r} = 0 \Leftrightarrow \nabla \times \vec{F} = 0$$

, Kraftfeld ist Wirbelfrei.

Für konservative Kraftfelder gilt: $\int_L F(r)dr = -U(r_2) + U(r_1) = W(r_1 \to r_2)$ $\Rightarrow T(t_2) + U(r_2) = T(t_1) + U(r_1)$ wir sehen für konservative Kräfte $F = -\nabla U(r)$ folgt: $\frac{\text{Energieerhaltung}}{\text{denn } \frac{d}{dt}E = m\dot{r}\ddot{r} + \nabla U(r(t))\dot{r}(t) = \dot{r}(t)(m\ddot{r} + \nabla U) = 0 \text{ (Newton-Gleichung)}$

2.2.1 Beispiele konservativer Kraftfelder

$$F = -\nabla U$$

- 1. $F = F_0 \Rightarrow U(r) = -F_0 r$
- 2. Federkraft $F = -kr \Rightarrow U(r) = 0, 5f(r \cdot r) = 0, 5kr^2$ (harmonischer Oszilator)
- 3. Coulombkraft, $U(r) = cqQ \frac{1}{|r-R|}$

2.2.2 Gegenbeispiel

4. Reibungskraft $F=-\alpha \dot{r}$ konservativ? berechne Arbeit entlang einer geschlossenen Bahn: $\oint F dr = -\alpha \oint \dot{r} dr = -\alpha \oint \dot{r}^2 dt \neq 0, > 0$ (außer $\dot{r}=0$)

2.2.3 Bemerkung

1. $E=T+U; T=0,5m\dot{r}^2$ Kinetische Energie; U=U(r) potentielle Energie, nur bis auf additive Konstante festgelegt (definiert das Energie-Nullniveau)

Abbildung 14:

2. E=const wichtiger Energieerhaltungssatz. (hängt zusammen mit Symmetrien!)

2.3 Systeme mehreren (N) Teilchen

Dynamik: N
 Punkteilchen mit Ortsvektoren $r;\,i=1,\,N$ und trägen Masse
nm;es gelten Newtons Gleichungen

$$m_i \ddot{r}_i = F_i(r_1, ...r_N, \dot{r}_1, ...\dot{r}_N, t)$$

Abbildung 15:

N gekoppelte Diff.-Gl. für die $r_i(t)$; Anfangsbed. r(0); $\dot{r}(0)$ müssen gegeben sein. Häufig: konservative Kräfte: $F_i = -\nabla_i U(r_1, ..., r_N)$ es folgt Energieerhaltung (Gesamtenergie).

$$E = \sum_{i=1}^{N} 0.5 m_i \dot{r}_i^2(t) + U(r_1(t), ..., r_N(t)) = const$$

$$\nabla_i = \frac{\delta}{\delta r_i}$$

häufig setzt sich die Kraft F_i zusammen aus 'äußeren' Kräften $F_i^{(a)}$ und paarweise auftretenden 'inneren' Kräften F_{ij} zwischen den N Teilchen.

$$F_i = F_i^{(a)}(r_i) + \sum_{j=1; j \neq i}^{N} F_{ij}(r_i, r_j)$$

konservative Kräfte: $F_i^{(a)}(r_i) = -\nabla_i U^{(a)}(r_1,...,r_N)$ und $F_{ij} = -\nabla_i \sum_{j=1; i \neq j}^N V_{ji}(|r_i-r_j|)$ für abstandsabh. Zweiwechselwirkung $(F_{ij} = -F_{ji})$ es folgt Energieerhaltung in der Form:

$$E = \sum_{i=1}^{N} 0.5 m_i \dot{r_i}^2 + U^{(a)}(r_1, ..., r_N) + 0.5 \sum_{i,j=1; i \neq j}^{N} V_{ij}(|r_i - r_j|)$$

kin Energie + äußere Pot. Energie + innere Energie

2.4 N-Teilchenproblem

$$m_i \ddot{\vec{r_i}} = F_i^{(a)}(\vec{r_i}) + \sum_{i=1, i \neq i}^{N} F_{ij}(\vec{r_i} - \vec{r_j})$$

Error 404 Skizze not found

Abbildung 16: innere und äußere Kräfte

für konservative Kräfte

$$\begin{split} F_i^{(a)} &= -\vec{\nabla_i} U_i(\vec{r_i}) \\ \vec{F_{ij}} &= -\vec{\nabla_i} V_{ij} (|\vec{r_i} - \vec{r_j}|) \end{split}$$

Gesamtenergieerhaltung: $E = T + U^{(a)} + v^{WW}$

Bemerkungen:

- 1. Abgeschlossene Systeme sind solche ohne äußere Kräfte, also $\vec{F_i^{(a)}}=0, U^{(a)}={\rm const.}$
- 2. Schwerpunkt des Systems:

$$\vec{R_{CM}} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r_i}, M = \sum_{i} m_i$$

3. Trennung der Energie in Schwerpunkt und Relativteil:

$$\dot{\vec{r_i}} = R_{CM}^{\dot{}} + \dot{\vec{\rho_i}} \text{ Definition von} \vec{\rho_i}$$

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i \dot{\vec{r_i}}^2 = \frac{1}{2} M R_{CM}^{\dot{\vec{z}}} + R_{CM}^{\dot{}} \cdot \sum_{i=1}^{N} m_i \dot{\vec{\rho_i}}^i + \sum_{i=1}^{N} \frac{1}{2} m_i \dot{\vec{\rho_i}}^2$$

$$\sum_{i=1}^{N} m_i \vec{r_i} = \sum_{i=1}^{N} m : i (R_{CM}^{\dot{}} + \vec{\rho_i}) = M R_{CM}^{\dot{}} + \sum_{i=1}^{N} m_i \vec{\rho_i}$$

$$T = \underbrace{T_{CM}}_{=0} + Trel$$

$$\frac{1}{2} M \dot{\vec{R}_{CM}^2}$$

für abgeschlossene Systeme

$$E = E_{CM} \cdot E_{rel}$$
$$= T_{CM} + (T_{rel} + V^{WW})$$

2.5 Impuls und Drehimpuls

Gesamtimpuls:

$$\vec{P}_{CM} = \sum_{i=1}^{N} m_i \dot{\vec{r}}_i = M \dot{\vec{R}}_{CM}$$

Änderung:

$$\frac{\mathrm{d}}{\mathrm{d}t} P_{CM}^{\vec{}} = \sum_{i=1}^{N} (\vec{F_i}^{(a)} + \sum_{j=1; j \neq i}^{N} \vec{F_{ji}})$$

$$= \sum_{i=1}^{N} \vec{F_i}^{(a)} + \sum_{i,j=1; i \neq j}^{N} \vec{F_{ji}} = \sum_{i=1}^{N} \vec{F_i}^{(a)}$$

$$= \sum_{i=1}^{N} \vec{F_i}^{(a)} + \sum_{i,j=1; i \neq j}^{N} \vec{F_{ji}} = \sum_{i=1}^{N} \vec{F_i}^{(a)}$$

Bemerkungen:

1. für abgeschlossene Systeme gilt Gesamtimpulserhaltung:

$$\vec{P_{CM}}(t) = \vec{P_{CM}}(0) = \text{const.}$$

falls: $\vec{F_i}^{(a)} = 0$

2. für $\overrightarrow{R_{CM}}$ folgt für abgeschlossene Systeme: 'Schwerpunktsatz'

$$\vec{R_{cm}}(t) = \vec{R_{CM}}(t_0) + \frac{PCM(t_0)}{M}(t - t_0)$$

Schwerpunkt bewegt sich geradlinig-gleichförmig (für abgeschlossene Systeme)

- 3. Beschreibung der Dynamik ausgedehnter Pbjekte durch Punktteilchen (Schwerpunkt) ist gerechtfertigt
- 4. $\vec{P_{CM}} = \text{const. sehr wichtig für Stoßprozesse gültig für } \begin{cases} \text{elastische Stoßprozesse:} & E \\ \text{inelastischer Stoß:} & \text{ein Teil der Enerdie} \end{cases}$
- 5. häufig Wahl des Schwerpunktsystem
s $O \rightarrow \vec{R_{CM}}$ (Ursprung) als Bezugssystem

2.5.1 Drehimpuls

$$\underbrace{\vec{L} = \vec{r} \times \vec{p}}_{\text{(hängt von der Wahl des Ursprungs ab)}}; \vec{p} = m \dot{\vec{r}}$$

zeitliche Änderung:

für N-Teilchen: Gesamtdrehimpuls

$$\vec{L_{\text{ges}}} = \sum_{i=1}^{N} \vec{L_i} = \sum_{i=1}^{N} m_i (\vec{r_i} \times \vec{r_i})$$

Zeitliche Änderung:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{L}_{\mathrm{ges}} = \sum_{i=1}^{N} (\vec{r_i} \times \vec{F_i}) = \sum_{i=1}^{N} (\vec{r_i} \times \vec{F_i}^{(a)} + \sum_{i,j=1;j\neq i}^{N} \vec{F_i}j)$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\vec{L}_{\mathrm{ges}} = \sum_{i=1}^{N} \vec{M_i}^{(a)} + \sum_{i,j=1;j\neq i}^{N} (\vec{r_i} \times \vec{F_i}j)$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\vec{L}_{\mathrm{ges}} = \vec{M}^{(a)} = \sum_{i=1}^{N} \vec{M}_i^{(a)}$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\vec{L}_{\mathrm{ges}} = \vec{M}^{(a)} = \sum_{i=1}^{N} \vec{M}_i^{(a)}$$

Bemerkung:

1. für geschlossene Systeme $(\vec{M_i}^{(a)} = 0)$ gilt Gesamtdrehimpulserhaltungssatz:

$$L_{ges} = \sum_{i=1}^{N} \vec{L_i} = \text{const.}$$

2. Zerlegung in Schwerpunkt und Relativ
teil: $\vec{r_i} = \vec{R_{CM}} + \vec{\varrho_i}$

$$ec{L} = \sum_{i=1}^{N} (ec{r_i} imes ec{p_i}) = \underbrace{ec{R_{CM}} imes P_{CM}^{ec{}}}_{ec{L}_{CM}} + \underbrace{\sum_{i=1}^{N} (ec{arrho_i} imes ec{p_i})}_{ec{L}_{rel}}$$

3. diese Erhaltungssätze für abgeschlossene N-Teilchensysteme gelten:

E	Energie	$1 \times$
$\vec{P_{CM}}$	Gesamtimpuls	$3 \times$
$\vec{L_{\text{ges}}}$	Gesamtdrehimpuls	$3 \times$

$\vec{R_{CM}}(0) = \vec{R_{CM}}(t) - \frac{\vec{P}t}{M}$

Schwerpunktsatz (1)

 \Rightarrow 10 Erhaltungsgrößen für dynamik eines abgeschlossenen Systems \leftrightarrow verknüpft mit der Homogenität der Zeit $(t \to t + t_0)$, Homogenität des Raumes $(\vec{r} \to \vec{r} + \vec{r_0})$, Isotopie des Raumes $(\vec{r} \to R\vec{r})$ Galilei-Transformation:

$$r' \to \vec{r} - \vec{v}t$$
$$t \to t$$

4. für abgeschlossene Systeme gelten die Newtonschen-Gleichungen

$$m_i \ddot{\vec{r_i}} = \sum_{i,j=1; j \neq i}^{N} \vec{F_{ij}} (|r_i - r_j|)$$
 in IS beim Übergang in IS'

 \Rightarrow in IS' gelten Newtonsche-Bewegungs Gleichungen.

$$\Rightarrow m_i \frac{\mathrm{d}^2 \vec{r_i'}}{\mathrm{d}t'^2} = \vec{F_{ij}}' (|\vec{r_i'} - \vec{r_j}'|)$$
$$\vec{F'} = \vec{F}$$

 \Rightarrow Newtonsche Mechanik eines abgeschlossenen Systems ist invariant unter Galilei-Gruppe

2.6 Nicht-Inertialsysteme und Scheinkräfte

Sei $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$ IS

 \rightarrow gehe über zu beschleunigtem (rotierendem) BS

 $\rightarrow \min (O(t), \vec{e_1}'(t), \vec{e_2}'(t), \vec{e_3}'(t))$

Einführung einer zeitabhängigen Rotation:

$$\vec{e_i}'(t) = R(t)\vec{e_i}$$

$$RR^T = 1$$

in BS' $\vec{r}'(t) = \sum_{i=1}^{N} x_i'(t) \vec{e_i}'(t)$ für Geschwindigkeit folgt:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}'(t)) = \sum_{i=1}^{N} \dot{x}_{i}'(t)\vec{e}_{i}'(t) + \sum_{i=1}^{N} x_{i}'(t)\dot{\vec{e}}_{i}'(t) = \underbrace{\dot{\vec{r}}_{i}'}_{\mathrm{Geschwindigkeit gemessen in BS'}} + \sum_{i=1}^{N} x_{i}'(t)\dot{\vec{e}}_{i}'(t)$$

$$\vdash \dot{\vec{e}}_{i}' = \dot{R}(t)\vec{e}_{i} = \dot{R}R^{T}\vec{e}_{i}' \rfloor$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\vec{r}' = V_{BS}^{T} + \sum_{i=1}^{N} x_{i}'(t)(\dot{R}R^{T})\vec{e}_{i}'$$

$$\overline{(O, \{\vec{e_i}\})IS \to (O'(t), \{\vec{e_i}'(t)\})BS'}$$

Error 404 Skizze not found

Abbildung 17: Karusselmit zeitabhängiger Drehung

Beispiel Änderung der Basisvektoren:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{e_i}'(t) = (\frac{\mathrm{d}}{\mathrm{d}t}R)\vec{r_i} = ((\frac{\mathrm{d}}{\mathrm{d}t}R)R^T)\vec{e_i}' = M\vec{e_i}'$$
mit $M(t) = (\frac{\mathrm{d}}{\mathrm{d}t}R)R^T = -M^T(t) = \begin{pmatrix} 0 & -\Omega_3 & \Omega_2\\ \Omega_3 & 0 & -\Omega_1\\ -\Omega_2 & \Omega_1 & 0 \end{pmatrix}$

Definition von $\vec{\Omega} = \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix}$

wir sehen $M\vec{b} = \vec{\Omega} \times \vec{b}$, Bewegung im rotierenden BS'

$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \dot{\vec{r}}' + \vec{\Omega} \times \vec{r}' \tag{2}$$

$$\frac{d\vec{r}'}{dt} = \frac{d}{dt} \sum_{i=1}^{N} x_i'(t)\vec{e_i}(t) = \sum_{i=1}^{N} \frac{dx_i'(t)}{dt} \vec{e_i}'(t) + \sum_{i=1}^{N} \vec{x_i}'(t)(\vec{\Omega} \times \vec{e_i}'(t))$$

Geschwindigkeit gemessen in BS'=: *\ddry{t}'

ODER:

$$\frac{\mathrm{d}}{\mathrm{d}t} \dots = \dot{\dots} + \vec{\Omega}x \tag{3}$$

Bedeutung von $\vec{\Omega}(t)$ $\left\{\begin{array}{c} |\vec{\Omega}| \text{ momentane Winkelgeschwindigkeit} \\ \text{Richtung der momentanen Drehachse} \end{array}\right\}$ der Drehung

Bsp.: Karusell
$$R(t) = \begin{pmatrix} \cos \omega t & \sin \omega t & 0 \\ -\sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \Omega - \begin{pmatrix} o \\ o \\ \omega \end{pmatrix}$$
 Drehachse

Beschleunigung:

$$\frac{\mathrm{d}^{2}\vec{r}'}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\dot{\vec{r}}' + \vec{\Omega} \times \vec{r}')$$

$$= \ddot{\vec{r}}' + 2\vec{\Omega} \times \dot{\vec{r}}' + \vec{\Omega} \times (\vec{\Omega} \times \vec{r}') + \dot{\vec{\Omega}} \times \vec{r}'$$

Beschleinigter Bezugspunkt O'(t)

3 Section 3 – To be composed

4 Lagrange-Formalismus

4.1 Lagrange I

4.2 Lagrange II

Betrachte folgend ein System mit f Freiheitsgraden.

- $\rightarrow (q_1, \cdots, q_f)$ "Generalisierte real.(?) Koordinaten"
- $\rightarrow q_L,\, L=1,\cdots,f$ generalisierte Koordinate (?)
- $\rightarrow (\dot{q_1} \cdots, \dot{q_f})$ "Verallgemeinerte Geschwindigkeiten"
- \rightarrow Lagrange-Funktion: $L := T U^1$

$$\rightarrow L = L(\underbrace{q_1, \cdots, q_f}_f, \underbrace{\dot{q_1}, \cdots, \dot{q_f}}_f, t) = L(q_L, \dot{q_L}, t) = L(q, \dot{q}, t)$$

 \rightarrow Euler-Lagrange-Gleichungen:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q_L}}\frac{\partial L}{\partial q_L} = 0 \qquad \qquad \mathcal{L} \in \{1, \cdots, f\}$$

 \rightarrow Führt zu f gekoppelten DGLs 2. Ordnung

Beispiele:

¹Anm.d.Skr.: im Englischen Wird die Potentielle Energie häufig mit V bezeichnet, weswegen man oft (vor Allem auf Wikipedia) auf L = T - V trifft.

Teilchen in 3D unter Einfluss eines Ortsabhängigen Potentials

 \rightarrow Keine Zwangsbedingungen $\Rightarrow T = \frac{1}{2} \vec{mr}, U = U(\vec{r})$

$$\rightarrow f = 3$$

 \rightarrow Wir wählen kartesische Koordinaten: $(q_1, q_2, q_3) = (x, y, z)$

$$\rightarrow \Rightarrow T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2), U = U(x, y, z) \text{ mit } \vec{r} = \vec{r}(q) = (x, y, z)^T$$

$$\rightarrow \Rightarrow \text{ für } \mathcal{L} \in \{1, 2, 3\} \ L = L(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - U(x, y, z)$$

 \rightarrow Euler-Lagrange-Gleichungen: Sei $\mathcal{L}=1$

$$\begin{split} \Leftrightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \frac{\partial L}{\partial x} &= 0 \\ \frac{\partial L}{\partial \dot{x}} &= m \dot{x} \frac{\partial L}{\partial x} &= -\frac{\partial U}{\partial x} \\ \frac{d}{dt} m \dot{x} + \frac{\partial U}{\partial x} &= 0 \Leftrightarrow m \ddot{x} &= -\frac{\partial U}{\partial x} \end{split}$$

- $\rightarrow\,$ Entsprechender Ansatz für y,z führt insgesamt zu $\Bar{mr} = \nabla U$
- \rightarrow Wie erwartet: Newton-Ansatz bestätigt!

Mit Zwangsbedingungen: Mehre Beispiele

1. Rolle

Error 404 Skizze not found

Abbildung 18: skizze

- \rightarrow Hier: f = 1, da (1D+1D)-Bewegung gekoppelt
- \rightarrow Wähle Höhe $q_1=h$ (alternativ: Winkel $\varphi)$ als generalisierte Koordinate

$$\rightarrow L = L(h, \dot{h}) = T - U = T_{Rolle} + T_{Masse} - mgh$$

$$\begin{split} T_{Masse} &= \frac{1}{2} m \dot{h}^2 \\ T_{Rolle} &= \frac{1}{2} \theta \dot{\varphi}^2, & \varphi &= \varphi(h) = 2 \pi \frac{h}{2 \pi R} = \frac{h}{R}; \quad \dot{\varphi} &= \frac{\dot{h}}{R} \\ \Rightarrow L(h, \dot{h}) &= \frac{1}{2} \left(\frac{1}{2 R^2} \theta + m \right) \dot{h}^2 + m g h \end{split}$$

Error 404 Skizze not found

Abbildung 19: skizze

2. Gedöns

$$f=2$$
. z.B. $(q_1,q_2)=(x,y)$. Besser: $(q_1,q_2)=(\rho,\varphi)$ mit
$$\begin{aligned} \rho&=\sqrt{x^2+y^2}\\ x&=\rho\cos\varphi\\ y&=\rho\sin\varphi \end{aligned} \Rightarrow L=L\left(\rho,\varphi,\dot{\rho},\dot{\varphi}\right)$$

3. Masse mit Loch auf Stange

Error 404 Skizze not found

Abbildung 20: skizze

Hier
$$f = 2$$
 z.B. $(q_1, q_2) = (x, \varphi)$

Zur Erinnerung: In Lagrange I

$$m_1 \ddot{\vec{r_1}} = \vec{F_1} + \vec{Z_1}$$

 $2 = f = 3n - k = 6 - 4$

(f = 6 wenn nicht gekoppelt).

 \Rightarrow 4 Zwangsbedingungen:

$$g_{1}(\vec{r_{1}}, \vec{r_{2}}) = z_{1} = 0$$

$$g_{2}(\vec{r_{1}}, \vec{r_{2}}) = y_{1} = 0$$

$$g_{3}(\vec{r_{1}}, \vec{r_{2}}) = y_{2} = 0$$

$$g_{4}(\vec{r_{1}}, \vec{r_{2}}) = \underbrace{(r_{1} - r_{2})^{2}}_{\text{Abstand}} - l^{2} = 0$$

$$\Rightarrow \vec{z_1} = \sum_{m=1}^{4} \lambda_m(t) \vec{\nabla}_i g_m(\vec{r_1}, \vec{r_2}) \quad i = 1, 2$$

Lagrange II $f = 2; (q_1, q_2) = (x, \varphi)$

$$\vec{r_1} = \vec{r_1}(x, \varphi) = r_1(x)$$
 $= \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$ für m_1 $\vec{r_2} = \vec{r_2}(x, \varphi)$ $= \begin{pmatrix} x + l \sin \varphi \\ 0 \\ -l \cos \varphi \end{pmatrix}$ für Pendelmasse

$$T = \frac{1}{2}m_1\vec{r}_1^2 + \frac{1}{2}m_2\vec{r}_2^2 \qquad = T(x,\varphi,\dot{x},\dot{\varphi})$$

$$\dot{\vec{r}}_1 = \begin{pmatrix} \dot{x} \\ 0 \\ 0 \end{pmatrix} \qquad \dot{\vec{r}}_2 = \begin{pmatrix} \dot{x} + l\dot{\varphi}\cos\varphi \\ 0 \\ l\dot{\varphi}\sin\varphi \end{pmatrix}$$

$$T = \frac{1}{2}m_1\dot{x}^2 + \frac{1}{2}m_2\left((\dot{x} + l\dot{\varphi}\cos\varphi)^2 + l^2\varphi^2\sin^2\varphi\right) \qquad = T(x,\varphi,\dot{x},\dot{\varphi})$$

$$= \frac{1}{2}(m_1 + m_2)\dot{x}^2 + m_2l\dot{x}\dot{\varphi}\cos\varphi + \frac{1}{2}ml^2\dot{\varphi}^2$$

$$U(\vec{r}_1,\vec{r}_2) = mgz_2 = -mgl\cos\varphi = U(x,\varphi) \qquad L = L(x,\varphi,\dot{x},\dot{\varphi})$$

Bewegungsgleichung: $\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$. Hier:

$$\frac{\partial L}{\partial \dot{x}} = (m_1 + m_2)\dot{x} + m_2l\dot{\varphi}\cos\varphi$$
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = (m_1 + m_2)\ddot{x} + m_2l\ddot{\varphi}\cos\varphi$$

entsprechend

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = 0 \qquad \ddot{\varphi} = 0$$

mit
$$\omega^2 = \frac{m_1 + m_2}{m_1} \frac{l}{g}$$

 \Rightarrow für kleinere Auslenkungen $\varphi << 1$: $\ddot{\varphi} + \omega^2 \varphi = 0$

Bemerkungen \rightarrow Lagrange II sehr nützlich. Beweis: klar.

 \rightarrow Euler-Lagrange-Gleichungen invariant unter Koordinatentransformation

$$\vec{r}_i(q_1, \dots, q_p, t) \leftrightarrow \vec{r}_i(Q_1, \dots, Q_p, t)$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_L} = 0 \Leftrightarrow \frac{d}{dt} \frac{\partial L'}{\partial \dot{Q}_\beta} - \frac{\partial L'}{\partial Q_\beta}$$

Wobei $L(q, \dot{q}, t) f L'(Q, \dot{Q}, t - = L'(Q_{\beta}(q_1, \dots, q_p), \dot{Q}_{\beta}(q_1, \dots, q_p, \dot{q}_1, \dots, \dot{q}_p), t)$ Transformation $\{q_L\} \to \{Q_{\beta}\}; Q_{\beta} = Q_{\beta}(q_1, \dots, q_p), \beta = 1, \dots, f$ Im Gegensatz zu Newton! Es gilt $m\ddot{x} = -\frac{\partial U}{\partial x}$ bei Übergang zu Kugelkoordinaten $(x, y, z) \to (r, \theta, \varphi)$ es gilt $nicht \ m\ddot{\varphi}\theta \neq -\frac{\partial U}{\partial \varphi}$ Widersp.

 \to Bisher $\vec{F}_i=\vec{\nabla}_i U(\vec{r}_1,\cdot,\vec{r}_N)$ analog für verallgemeinerte Kräfte \vec{K}_i , für die gilt:

$$\vec{K}_i = -\vec{\nabla}_{\vec{r}_i} \tilde{U}(\vec{r}, \dot{\vec{r}}) + \frac{d}{dt} \vec{\nabla}_{\dot{r}_i} \tilde{U}(\vec{r}, \dot{\vec{r}})$$

es folgt wieder $m\ddot{\vec{r}}_i = \vec{K}_i \Leftrightarrow \frac{d}{dt} \frac{\partial L}{\partial q_L} = 0, \qquad L = T - \tilde{U}(\vec{r}, \dot{\vec{r}})$

Beispiel Loretzkraft:

$$\tilde{U}(\vec{r}, \dot{\vec{r}}) = e \underbrace{\phi(\vec{r}, t)}_{\text{Skalares Pot.}} - e \frac{\dot{\vec{r}}}{c} \cdot \underbrace{\vec{A}(\vec{r}, t)}_{\text{Vektorpot.}}$$

5 kleine Schwingungen

 \rightarrow Resonanzphänomene:

Resonanz: bei einer bestimmten Frequenz schwingt ein gekoppeltes Vielteilchensystem besonders stark. Beispiele:

- 1. mechanische konstruktionen (Fahrzeugbau) sollten keine Resonanzen aufweisen (\rightarrow Hubschrauber-Boden-Resonanz²)
- 2. Brücke
- 3. Wolf (Streichinstrumente)

Problem: Es gibt kollektive Schwingungen einer Frequenz bei kopplung einzelner schwingungsfähiger Freiheitsgrade

- \rightarrow 'Eigenfrequenzen' des gekoppelten Systems
- \rightarrow Eigenmoden -

Error 404 Skizze not found

Abbildung 21: schwingungen gleich und gegenphasig

²https://www.youtube.com/watch?v=bs2rNBJ6D3A

5.1 Lineare Differenzialgleichungen (2. Ordnung)

5.1.1 Beispiel

$$\ddot{x} + a\dot{x} + bx = f(t) \tag{4}$$

linear

x tritt nur linear auf

2.Ordnung

 $\ddot{x} = \frac{\mathrm{d}r}{\mathrm{d}t^2}x$ zweite Ableitunga

homogen

$$f(t) = 0$$

inhomogen

$$f(t) \neq 0$$

wichtig

für lineare, homogene Differentialgleichungen gilt ein Superpositionsprinzip mit $x_1(t), x_2(t)$ auch $\alpha x_1(t) + \beta x_2(t)$ für beliebige $\alpha, \beta \in \mathbb{R}$ eine Lösung der Differentialgleichung

6 Hamiltonsche Mechanik

$$q(t) \rightarrow (q(t), p(t))q\dot{q}$$

6.1 Poisson-Klammer

- ightarrow Zwei Phasenraumfunktionen $f(q,p), g(q_{\alpha},p_{\alpha})$ wird eine neue Phasenraumfunktion $\{f,g\} (q_{\alpha},p_{\alpha}) := \sum_{\alpha} \left(\frac{\partial f}{\partial q_{\alpha}} \frac{\partial q}{\partial p_{\alpha}} \frac{\partial f}{\partial p_{\alpha}} \frac{\partial q}{\partial q_{\alpha}} \right)$ zugeordnet
- $\rightarrow\,$ Diese hat zuvorkommende Eigenschaften:
 - Zeitabhängigkeit: A(q, p, t) entlang einer Trajektorie bzw. Lösung der Hamiltonschen Bewegungsgleichung A(q(t), p(t), t)

$$\frac{d}{dt}A = \{A, H\} + \frac{\partial}{\partial t}A$$

- Insbesondere: A(q,p) Erhaltungsgröße $\Rightarrow \{A,H\} = 0$. Sehr praktisch, um zu prüfen, ob etwas eine Erhaltungsgröße ist.
- -(H(q,p)) Erhaltungsgröße, da $\forall f: \{f,f\} = 0$
- \rightarrow Eigenschaften der Poisson-Klammer:

- 1. $\{f,g\} = -\{g,f\}$
- 2. $\{f, g+h\} = \{f, g\} + \{f, h\}$
- 3. $\{f,gh\} = g\{f,h\} + \{f,g\}h$
- 4. $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g\{h, f\}\} = 0$ Bemerkung.: Ist f und g Erhaltungsgröße $\Rightarrow \{f, g\}$ Erhaltungsgröße
- 5. Elementare Poisson-Klammern: $\{q, p\} = 1, \{q, q\} = \{p, p\} = 0.$
- 6. Anwendung: $\{q^2, p\} q = q \{q, p\} + \{q, p\} q = 2q$

6.2 Kanonische Transformationen

- \rightarrow Bislang (Lagrange): $\{q_{\alpha}\} \rightarrow \{Q_{\alpha}(q_1, \cdots, q_f, t)\}$ Koordinatentransformationen
- $\rightarrow \text{ Jetzt (Hamilton): } \{q_\alpha,p_\alpha\} \rightarrow \{Q_\alpha(q,p,t),P_\alpha(q,p,t)\} \text{ } Phasenraum \text{transformationen}$
- \rightarrow Falls $\dot{q_{\alpha}} = \frac{\partial H}{\partial p_{\alpha}}\dot{p_{\alpha}} = -\frac{\partial H}{\partial q_{\alpha}} \Rightarrow \dot{Q_{\alpha}} = \frac{\partial K}{\partial P_{\alpha}}\dot{P_{\alpha}} = -\frac{\partial K}{\partial Q_{\alpha}}$. Ein solches K existiert \Leftrightarrow Transformation $(q, p) \rightarrow (Q, P)$ Kanonisch
- $\rightarrow\,$ Betrachte Phasenraumvolumina:

Error 404 Skizze not found

Abbildung 22: skizze

$$F_S = \int dQ \int dP = \int dq \int dp \begin{vmatrix} \frac{\partial Q}{\partial q} & \frac{\partial P}{\partial p} \\ \frac{\partial Q}{\partial p} & \frac{\partial P}{\partial q} \end{vmatrix}$$

- \rightarrow Phasenraumvolumen bleibt erhalten: $F_R = F_S \Leftrightarrow |\cdot| = 1 = \cdots = \{Q,P\}$
- \rightarrow Definition: Eine Phasenraum transformation $T:(q_{\alpha},p_{\alpha}\rightarrow (Q_{\alpha}(q,p,t),P_{\alpha}(q,p,t))$ heißt $kanonisch\Leftrightarrow das$ Phasenraum volumen bleibt erhalten $(\Leftrightarrow V_R=V_S)$.
- \rightarrow Es gilt: kanonisch $\Leftrightarrow \{Q_{\alpha}, P_{\beta}\} = \delta_{\alpha\beta} \left(f 1: \{Q, P\}_{(q,p)} = 1\right) \{Q_{\alpha}, Q_{\beta}\} = 0$ $\{P_{\alpha}, P_{\beta}\} = 0$
- \rightarrow Alles dreis: für $\alpha,\beta=1,2,\cdots,f\rightarrow$ (Hier kommt irgendwas hin, keine Ahnung was)
- \rightarrow Bemerkung zur Poisson-Klammer: es gilt auch $\{Q,P\}_{(Q,P)}=1$; dahinter steckt die Invarianz der Poisson-Klammer unter kanonischen Transformationen

$$T: d\, \{f,g\}_{(q,p)} = \{f,g\}_{(Q,P)} \qquad \qquad (f(q,p) \to f(q(Q,P),p(Q,P)))$$

6.3 (Form-)Invarianz der Hamiltonschen Bewegungsgleichungen unter kanonischen Transformationen

- \rightarrow Ausgangspunkt: $\dot{q_{\alpha}} = \frac{\partial H(q,p)}{\partial p_{\alpha}}; \quad \dot{p_{\alpha}} = -\frac{\partial H}{\partial q_{\alpha}}$
- \rightarrow Betrachte die kanonische Transformation

$$T: (q,p) \mapsto (Q,P) = (Q_{\alpha}(q_1, \dots, q_f, p_1, \dots, p_f), P_{\alpha}(q_1, \dots, q_f, p_1, \dots, p_f))$$

 \rightarrow Für Zeitabhängigkeit der (Q_{α}, P_{α}) gilt

$$\begin{split} \dot{Q}_{\alpha} &= \{Q_{\alpha}, H\}_{(q,p)} \overset{\text{kanT}}{=} \{Q_{\alpha}, H\}_{(Q,P)} \\ &= \frac{\partial Q_{\alpha}}{\partial Q_{\alpha}} \frac{\partial H}{\partial P_{\alpha}} - \frac{\partial Q_{\alpha}}{\partial P_{\alpha}} \frac{\partial H}{\partial Q_{\alpha}} = \frac{\partial H(q,p)}{\partial P_{\alpha}} \\ &= \frac{\partial K(Q,P)}{\partial P_{\alpha}} \end{split}$$

 \rightarrow Mit K(Q, P) = H(q(Q, P), p(Q, P)) ist genauso:

$$\dot{P}_{\alpha} = \{P_{\alpha}, H\}_{(q,p)} = \{P_{\alpha}, H\}_{(Q,P)} = -\frac{\partial K(Q, P)}{\partial Q_{\alpha}}$$

→ Wie erwartet und erwünscht: Die klassischen Bewegungsgleichungen greifen!

6.4 Erzeugende von kanonischen Transformationen

 \rightarrow Ausgangspunkt: Hamiltonsches Prinzip $\delta S \stackrel{!}{=} 0$

$$\to S = \int_{t_1}^{t_2} dt \, \{ \dot{q}p - H(q, p) \} = \int_{t_1}^{t_2} dt \, \left(\dot{Q}P - K(Q, P) \right)$$

$$\rightarrow$$
 Linke Seite $pdq - Hdt = \underbrace{PdQ - K(Q, P)dt}_{\text{Rechte Seite}} + \underbrace{dF}_{\text{Freiheit}}$

→ Bei Variation liefern Beiträge des Randes keinen Beitrag!

$$\rightarrow$$
 Hier ist $F = F(q,p,\underbrace{Q}_{Q(q,p),P(q,p)},P,t) \stackrel{?}{=} F(q,Q,t)$

 \rightarrow Fasse $F = F_1(q, Q, t)$ als Funktion dar alten und neuen Koordinaten auf:

$$dF_{1} = \frac{\partial F_{1}}{\partial q} dq + \frac{\partial F_{1}}{\partial Q} dQ + \frac{\partial F_{1}}{\partial t} dt$$

$$\Rightarrow pdq - Fdt = PdQ - Kdt + \frac{\partial F_{1}}{\partial q} dq + \frac{\partial F_{1}}{\partial Q} dQ + \frac{\partial F_{1}}{\partial t} dt$$

$$p = \frac{\partial F_1}{\partial q}$$

$$P = -\frac{\partial F_1}{\partial Q}$$

$$K = H + \frac{\partial F_1}{\partial t}$$

- \rightarrow Jede Funktion $F_1(q,Q,t)$ erzeugt durch (*) (TODO label) eine kanonische Transformation
- \rightarrow Entsprechend lassen sich kanonische Transformationen erzeugen durch Erzeugende vom Typ

$$F_{2} = F_{2}(q, P, t) \Rightarrow \qquad p = -\frac{\partial F_{2}}{\partial q}, Q = \frac{\partial F_{2}}{\partial P}, k = H + \frac{\partial F_{2}}{\partial t}$$

$$F_{3} = F_{3}(q, P, t) \Rightarrow \qquad p = -\frac{\partial F_{3}}{\partial q}, Q = \frac{\partial F_{3}}{\partial P}, k = H + \frac{\partial F_{3}}{\partial t}$$

$$F_{4} = F_{4}(q, P, t) \Rightarrow \qquad p = -\frac{\partial F_{4}}{\partial q}, Q = \frac{\partial F_{4}}{\partial P}, k = H + \frac{\partial F_{4}}{\partial t}$$