PRELUCRAREA
SEMNALELOR -
CURS 04

CONTINUARE TRANFORMATA FOURIER, ALIERE

Cristian Rusu

CUPRINS

- recapitulare
- procesul de eşantionare
- aliere
- referințe bibliografice

DFT pentru un vector x:

$$X = Fx$$

- F se numește matricea Fourier
- X se numește transformata Fourier a lui x
- în anumite situații vedeți $\mathbf{X} = \mathcal{F}(\mathbf{x})$
- complexitatea $O(n^2)$
- FFT

$$X = FFT(x)$$

- se numeşte transformarea Fourier rapidă
- FFT e echivalent cu DFT, dar FFT e mai rapid
- complexitatea $O(n \log_2 n)$

- matricea Fourier F
 - este liniară, este pătrată, este complexă, este unitară
 - inversa este $\mathbf{F}^{-1} = \mathbf{F}^H$ (transpus și complex conjugat)
 - Fx este FFT(x), $F^{-1}x = F^{H}x$ este IFFT(x)
 - ambele operații sunt $O(n \log_2 n)$
 - Fx ar fi trebuit să fie???
 - $F^{-1}x$ ar fi trebuit să fie ???

- matricea Fourier F
 - este liniară, este pătrată, este complexă, este unitară
 - inversa este $\mathbf{F}^{-1} = \mathbf{F}^H$ (transpus și complex conjugat)
 - Fx este FFT(x), $F^{-1}x = F^{H}x$ este IFFT(x)
 - ambele operații sunt $O(n \log_2 n)$
 - Fx ar fi trebuit să fie $O(n^2)$
 - $\mathbf{F}^{-1}\mathbf{x}$ ar fi trebuit să fie $O(n^3)$
- pentru noi, x este un vector real
 - $\mathcal{F}(\mathbf{x})$ este în general complex (asta nu ne convine mereu)
 - atunci $\mathcal{F}(\mathbf{x})$ are o simetrie
 - prima componentă Fourier este media
 - unele limbaje de programare au RFFT (FFT pentru x real)
 - cel mai mult ne interesează abs $(\mathcal{F}(\mathbf{x}))$

ideea de transformare

.

ideea de transformare: cazul Fourier

ideea: este mai ușor să rezolvi problema într-un alt domeniu atenție: inclusiv operația de transformare trebuie să fie ușoară (aici domină)

.

ideea de transformare: cazul Laplace (foarte folositor în inginerie)

legătura în Fourier și Laplace?

ideea de transformare: cazul Laplace (foarte folositor în inginerie)

Fourier este un caz special de Laplace când $s=i\omega$

PROCESUL DE EȘANTIONARE

funcția/fenomenul din realitate f(t), cu o frecvență naturală f_0 Hz

la t = 0,
$$f(t)$$
?
la t = 0.005, $f(t)$?
la t = 0.01, $f(t)$?
$$f(0.005)$$

$$f(0.005)$$

algoritmul/aparatul care eșantionează cu viteza $f_{\rm s}$ Hz

| f[0] la momentul t = 0 | f[1] la momentul t = 0.005 | f[2] la momentul t = 0.01

întrebare fundamentală.

ce relație trebuie să fie între f_0 și f_s că să nu pierdem nimic din f(t)?

.

REFERINȚE BIBLIOGRAFICE GENERALE

- A. V. Oppenheim şi R. W. Schafer, Discrete-time signal processing, Pearson, 2014
- R. G. Lyons, Understanding digital signal processing, Prentice Hall, 2004
- S. Mallat, A wavelet tour of signal processing: the sparse way, Academic Press, 2008

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t) \tag{1}$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) \tag{2}$$

unde

- $ightharpoonup f_0$ frecvența (Hz) măsoară numărul de oscilații într-o secundă
- \triangleright n eşantionul, indexul în şirul de timpi $0, 1, 2 \dots$
- ▶ t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- ▶ f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)

Frecvență

În analiza semnalelor suntem interesați adesea de frecvență.

Motivatie:

- sinusoida are o singură componentă f₀ în frecvență, numită și componentă spectrală
- ▶ suma a două sinusoide de frecvență f_1 , respectiv, f_2 are două componente spectrale f_1 , f_2 în domeniul frecvenței
- suma a n sinusoide de frecvență f_1, \ldots, f_n va avea n componente spectrale în domeniul frecvenței
- invers, putem analiza un semnal uitându-ne în frecvență și analizând din ce sinusoide este compus și la ce frecvențe acționează aceste componente

Frecvență

Source: (Lyons 2004)

Recuperarea frecvenței

Cum determin frecvența semnalului real f_0 în funcție de măsurători?

$$T = \frac{\text{eṣantioane}}{\text{perioadă}} \times \underbrace{\frac{\text{timp}}{\text{eṣantion}}}_{f_s} = 20 \times 0.05 = 1s \implies f_0 = 1Hz$$
 (3)

Frecvența de eșantionare

Remarcă

Frecvența de eșantionare este inversul perioadei de eșantionare t_s

$$f_s = \frac{1}{t_s},\tag{4}$$

iar ea afectează direct determinarea frecvenței absolute f₀, frecvența semnalului real (original)

Ce se întâmplă cu calculul frecvenței absolute f_0 dacă modific frecvența de eșationare f_s în (3)?

Ghici, ciupercă, ce-i?

$$x(0) = 0.00$$
 $x(1) = 0.78$
 $x(2) = 0.97$
 $x(3) = 0.43$
 $x(4) = -0.43$
 $x(5) = -0.97$
 $x(6) = -0.78$
 $x(7) = -0.00$
 $x(n) = \sin(2\pi \ln t_s), f_s = 7, nt_s = 0: 1, n = 8$
 $x(n) = \sin(2\pi \ln t_s), f_s = 7, nt_s = 0: 1, n = 8$
 $x(n) = \sin(2\pi \ln t_s), f_s = 7, nt_s = 0: 1, n = 8$
 $x(n) = \sin(2\pi \ln t_s), f_s = 7, nt_s = 0: 1, n = 8$
 $x(2) = 0.78$
 $x(3) = 0.43$
 $x(4) = -0.43$
 $x(5) = -0.43$
 $x(6) = -0.43$
 $x(7) = -0.00$

Poate cineva cu mai multă imaginație ghicește:

Este adevărat?

Ambele soluții sunt adevărate: fenomenul de aliere (aliasing).

Există o infinitate de sinusoide care trec prin cele 8 puncte!

Aliasing

Fenomenul de aliere (aliasing) apare când:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$
 (5)

Teoremă

Fie frecvența de eșantionare f_s (eșantioane / secundă) și k un număr întreg nenul. Atunci nu putem distinge eșantioanele unei sinusoide de frecvență f_0Hz de eșantioanele unei siunsoide de $f_0 + kf_sHz$.

Cum putem fi siguri că ce am măsurat reprezintă realitatea?

Demonstrație aliasing

Fie semnalul $x(t)=\sin(2\pi f_0t)$ cu frecvența f_0 pe care îl eșantionăm cu o rată de f_s eșantioane pe secundă la perioade de timp constante $t_s=\frac{1}{f_s}$ $(0t_s,1t_s,2t_s,3t_s,\dots)$:

 $x(0) = \sin(2\pi 0t_s)$

$$x(1) = \sin(2\pi 1t_s)$$

$$x(2) = \sin(2\pi 2t_s)$$

$$x(3) = \sin(2\pi 3t_s)$$

$$\vdots$$

$$x(n) = \sin(2\pi nt_s)$$
(6)

Astfel încât eșantionul x(n) are valoarea sinusoide originale la momentul nt_s .

Demonstrație aliasing

Ştim că $sin(\alpha) = sin(\alpha + 2\pi m)$ deci (6) devine:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi f_0 n t_s + 2\pi m) =$$
 (7)

$$= \sin\left(2\pi\left(f_0 + \frac{m}{nt_s}\right)nt_s\right) \tag{8}$$

Fie m = kn a.î. putem înlocui fracția cu k

$$x(n) = \sin\left(2\pi \left(f_0 + \frac{k}{t_s}\right) n t_s\right),\tag{9}$$

apoi folosind $f_s = \frac{1}{t_s}$ relația devine

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s).$$
 (10)

Aliasing:
$$f_0 = 1, f_s = 7, k = 1 \implies f = f_0 + kf_s = 8$$

$$x(0) = 0.00$$

 $x(1) = 0.78$
 $x(2) = 0.97$
 $x(3) = 0.43$
 $x(4) = -0.43$
 $x(5) = -0.97$
 $x(6) = -0.78$
 $x(7) = -0.00$
 $x(n) = \sin(2\pi f_0 nt_s), f_0 = \{1, 8\}, f_s = 7, nt_s = 0:1, n = 8$
 0.75
 0.75
 0.50
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

Ambiguitate în domeniul frecvenței

Duplicare (replici) în domeniul frecvenței

Semnalul $f_0 = 7kHz$ eșantionat cu $f_s = 6kHz$ produce o secvență a cărui spectru reprezintă simultan semnalele (tonurile): 1kHz, 7kHz, 13kHz, 19kHz,

Semnale trece-jos (lowpass)

Definiție

Semnalele limitate în bandă sunt semnalele a căror amplitudine spectrală este nulă în afara intervalului [-BHz,+BHz]. Altfel spus, semnalul are o frecvență maximă.

Definiție

Un semnal trece-jos este un semal limitat în bandă și centrat în jurul frecvenței zero.

Semnale trece-jos: de la analog la digital

Semnalul continuu este discretizat apărând duplicatele în spectrul fercvenței.

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s).$$

Source: (Lyons 2004)

Se observă că $f_s \geq 2B$ a.î. duplicatele sunt separate la $\pm \frac{f_s}{2}$.

Semnale trece-jos (lowpass): frecvența Nyquist

Definitie

Frecvența de eșantionare $f_s \ge 2B$ este criteriul Nyquist de eșantionare, rezultat din teorema Nyquist-Shannon, ce asigură separarea duplicatelor în domeniul frecvenței.

Definitie

Frecvențele $\pm \frac{f_s}{2}$ se numesc frecvențe de pliere (folding frequencies) sau frecvențe Nyquist.

Ce se întâmplă când eșantionăm sub frecvența Nyquist?

Semnale trece-jos (lowpass): eșantionare sub Nyquist

Ce se întâmplă când eșantionăm sub frecvența Nyquist?

Semnale trece-jos (lowpass): observații

- ▶ informația în interavul $[-B, -\frac{B}{2}] \cup [\frac{B}{2}, B]$ este coruptă
- valorile amplitudinilor în cazul suprapunerii sunt nedefinite
- informația spectrală a semnalului original continuu este conținută complet în banda $\left[-\frac{f_s}{2},\frac{f_s}{2}\right]$
- ultima observație este foarte importantă în practică

Zgomot

Ce se întâmplă dacă semnalul continuu este însoțit de zgomot?

Semnale trece-jos (lowpass): zgomot

Pentru un semnal trece-jos eșantionat corect:

- nu avem suprapuneri are duplicatelor în banda B
- dar duplicate ale zgomotului sfârșesc și ele în banda de interes!

Source: (Lyons 2004)

Semnale trece-jos (lowpass): eliminarea zgomotului

Profităm de faptul că avem de a face cu semnal trece-jos și eliminăm cu un filtru trece-jos orice este în afara benzii *B*Hz după care discretizăm.

Source: (Lyons 2004)