An Analysis of Pre-trained Word2Vec and FastText Tagalog Word Embeddings

Jean Philip L. Juachon

De La Salle University, Manila jean_juachon@dlsu.edu.ph

Abstract

There are different methodologies that were created in an aim to represent words as vectors. In this paper, analyzed two models namely word2vec and FastText on a Tagalog corpus trained from the Wikipedia database. By comparing the results of word2vec and FastText on the specified tasks, it was found out that word2vec outperforms the fastText implementation for a Tagalog corpus.

1 Introduction

In the recent years, research about representation of texts have been increasingly popular. This has led to various methodologies on how to develop vector representations of words such as the Term Frequency – Inverse Document Frequency which is a technique used to reflect the importance of a word to a given document in a corpus. However, methods like TF-IDF^[1] encounter problems such as the inefficiency as the vector length of each word is based on a vocabulary and is usually sparse. Thus, various methods have been developed to solve this problem such as word2vec^[2] and FastText[3]. Both methodologies aim to represent words to vectors while decreasing its length and reducing its sparsity. While their differences are summarized to as the word2vec operates by using before and after words to predict the target word, while the FastText model on the other hand operates by character n-grams, where words are represented by the total sum of a character's n-gram vectors[4].

In this paper, we aim to compare the difference and effectiveness of both models towards the Tagalog language by testing it on different tasks such as finding the most similar words based on a given word, and solving an incomplete word analogy.

2 Methodology

Pre-trained models[5] from the same corpus, Tagalog Wikipedia, that were trained via word2vec and fasttext were used to answer the following questions: a) Given a random word, what are the top ten most similar or related words for both the word2vec and fasttext model, and b) Given a random and incomplete analogy, what are the top ten possible words that could complete the analogy for both the word2vec and fasttext model. Furthermore, each word for both models are in vector size 100, a corpus size of 38 million, and vocabulary size of 10,068. For consistency purposes, the Gensim[6] library was used for all the processing of the models. For loading both the word2vec and fasttext models, the Word2Vec.load and FastText.load fasttext format functions were used respectively. On the other hand, to answer the questions, the most similar function was used.

3 Results and Discussions

To test the effectiveness of the pre-trained word embeddings, two tasks were performed, the first task involves finding the most similar or related word of a given random word, and the second task involves solving an incomplete analogy.

A. Top 10 related words given a random word

For the first task which is to determine the top 10 most similar words of a given random word, the random words were chosen to represent at least five parts of speech of the Tagalog/Filipino language namely: Pangngalang Pantangi (Proper Noun), Pangngalanga Pambalana (Common Noun), Panghalip (Pronoun), Pangukol (Preposition), and Pang-uri (Adjective). The words are the following: marcos (Proper Noun), kabayo (Common Noun), ako (Pronoun), nina (Preposition), and maganda (Adjective). The following words were then fed into the most_similar function of Gensim to determine the top ten related words. The most_similar function of Gensim computes for the cosine similarity of

the input word towards the words in its vocabulary[6].

As seen on Figure 1, for both word2vec and fastText, the most similar/related words are words about politics, president, the Marcos and Aquino family. For this particular word, generally, both models have results that make sense, however, based on the rankings, more sensible words are present in the word2vec embedding as the words in this model are all about politics compared to the fastText model where there are words such as lucas, mateo, and marco which are somewhat not related to the given word.

marcos (word2vec)		marcos (fastText)	
Word	% Similarit	Word	% Similarit
pangulong	75.88%	ferdinand	74.80%
ferdinand	72.92%	Imelda	69.06%
estrada	72.53%	marco	65.94%
aquino	72.33%	Aquino	61.34%
arroyo	72.15%	cojuangc o	60.59%
ninoy	71.73%	lucas	58.97%
imelda	69.82%	mateo	58.70%
corazon	68.44%	corazon	57.94%
napoles	68.20%	ponce	57.09%
macapagal -arroyo	66.66%	elpidio	54.48%

Figure 1: word2vec and fastText comparison for Proper Noun ("marcos")

On Figure 2, for the word "kabayo" (horse), more meaningful words came from the word2vec model as the results of this model are mostly about animals. On the other hand, the results from the fastText model contained a small count of words related to animals or their body parts, we can see that the top two words are afflicted words of the given word. However, there were also interesting results from the fastText model as it gave out words that are related to a horse such as "palayok" (pot) which can be overlooked as not related however, on a deeper understanding, a palayok/pot can be used as a piñata, and a piñata is oftentimes resembled as a horse. Other than that, the word "odiseo" was

given by the fastText model as well, upon translating, the English word for Odiseo is Odysseus who is a Greek king and is part of the Trojan War – which is resembled by a horse.

kabayo (word2vec)		kabayo (fastText)	
Word	0/0	Word	0/0
	Similarity		Similarity
tupa	83.24%	kabayong	89.03%
aso	82.38%	kabayo-	80.29%
		kabayohan	
paa	78.82%	tupa	67.52%
ahas	78.50%	kambing	67.27%
puting	78.24%	kahugis	62.02%
buhok	78.03%	nakasakay	61.68%
kambing	77.28%	palayok	60.71%
ibon	77.23%	sungay	60.65%
itlog	76.46%	odiseo	60.54%
sungay	76.45%	aso	59.68%

Figure 2: word2vec and fastText comparison for Common Noun ("kabayo")

The results for the pronoun "ako" can be seen on Figure 3. For this word, both the word2vec and fastText results are words that are related to pronouns, however, the fastText's most similar word is "ako'y", which is just an afflicted form of the input word.

ako (word2vec)		ako (fastText)	
Word	% Similarity	Word	% Similarity
ka	86.80%	ako'y	81.86%
ikaw	86.36%	ko	78.61%
kami	85.93%	akong	78.39%
kayo	85.73%	akin	74.45%
inyo	84.79%	aking	72.63%
po	81.98%	ikaw	72.16%
akin	81.53%	kayo	71.68%
tayo	81.27%	po	69.39%
iyo	81.17%	inyo	67.48%
ninyo	79.98%	siguro	66.40%

Figure 3: word2vec and fastText comparison for Pronoun ("ako")

Figure 4 shows the results for the word "nina" which is a preposition. The results of fastText and word2vec are somehow identical in this aspect, where the results are mixed prepositions and proper nouns. In this example, both the words "sina" and "ni" are the most similar for both models, however, their similarity percentage are different, this is because fastText operates on a more granular level, which is an n-gram based on characters and not words.

nina (w	vord2vec)	nina (fastText)	
Word	% Similarit y	Word	% Similarit y
sina	70.96%	sina	80.13%
ni	68.66%	ni	74.22%
kina	68.09%	pinagbibidah an	68.50%
mag- asawan g	60.55%	kina	65.60%
michae 1	58.07%	pinagbidahan	65.39%
john	57.86%	lloyd	64.20%
martin	55.89%	rogelio	63.90%
leon	55.57%	eddie	63.63%
albert	55.02%	edgar	63.43%
joseph	54.94%	si	63.09%

Figure 4: word2vec and fastText comparison for Preposition ("nina")

Figure 5 shows the most similar words to the adjective "maganda", based on the table, the results based on the fastText model are usually based on the afflicted/base word of the input word, unlike the word2vec results where the related words are usually "ma" + the base form of the word resulting to an adjective.

maganda (word2vec)		maganda (fastText)	
Word	% Similarit	Word	% Similarit
	y		y
mabuti	80.89%	magandang	85.59%
pangit	79.69%	magaganda	68.25%
		ng	
masaya	78.59%	ganda	67.66%

maadli	78.03%	akala	59.86%
interesad	77.31%	masyadong	59.43%
О			
marunon	75.45%	mabait	59.27%
g			
gusto	73.42%	madali	58.88%
akin	73.00%	mahilig	58.75%
mahirap	72.58%	mabuti	58.56%
masama	72.56%	ganoon	58.22%

Figure 5: word2vec and fastText comparison for Adjective ("maganda")

B. Incomplete Word Analogies

For the second tasks which is to solve an incomplete word analogy where the first three words word1: word2:: word3:?. The most_similar function of the Gensim library was used where the positive and negative parameters were stated. The most_similar function of gensim performs vector arithmetic where the values of the positive vector inputs are added and the values of the negative vector inputs are subtracted, then, given the result, the word vectors closest to the angle are then returned by the function[6]. Specifically, given an incomplete word analogy word1: word2:: word3:?, the formula will be word2 + word3 - word1 = word4. The analogies performed in this experiment aims to cover the following word relations: Synonyms, Antonyms, Related Words, Similar Words, and Part-Whole.

Figure 6 shows the incomplete analogy results for synonymous words, aklat and libro are synonymous as both words can be translated to the word "book" in English. On the other hand, bughaw is a tagalog word that translates to the color blue. On this aspect, the best answer in this analogy is "asul", even though it is not originally a Tagalog word, "asul" is commonly used a Tagalog environment. On this aspect, the word2vec model was able to capture this relationship as it generated the word "asul" as the top 2 result with a word similarity of 67.86%, and the fastText was able to capture this word as well on the 5th top word with 54.65% similarity. Other than that, both models also generated words with regards to other colors.

aklat : libro ::	aklat : libro ::
bughaw:?	bughaw:?
(word2vec)	(fastText)

Word	%	Word	%
	Similarit		Similarit
	у		y
kahel	72.89%	kulay	62.92%
asul	67.86%	berde	59.32%
dilaw	66.26%	lila	58.92%
rosas	64.64%	dilaw	56.73%
puti	60.20%	asul	54.65%
saging	60.10%	puti	54.23%
lila	60.04%	kayumang	53.34%
		gi	
pinaghalo	59.44%	emu	51.53%
ng			
tsokolate	59.32%	lunti	51.05%
lunti	59.26%	pula	50.58%

Figure 6: word2vec and fastText analogy for Synonyms("aklat:libro :: bughaw:?")

Figure 7 shows the analogy results for Similar words. Kotse and Eroplano are both transportation vehicles which translates to car and airplane, itlog on the other hand is a vague word that could mean an egg as a product of reproduction, and an egg as a food. For this analogy, the best expected answer are words related to food. Both fastText and word2vec were able to capture this analogy, the fastText model was also able to capture colloquial relations such as the relationship of "itlog" to "bayag" or testicles.

kotse : eroplano :: itlog : ? (word2vec)		kotse : eroplano :: itlog : ? (fastText)	
Word	%	Word	%
	Similarity		Similarity
butong	72.65	munggo	56.47
usok	71.39	dagat	56.05
baboy	70.34	hipon	55.81
isda	69.61	gatas	54.82
katas	69.21	bayag	54.54
kambing	68.82	suka	54.25
karne	68.40	harina	53.31
tuyong	68.34	karneng	51.95
buto	67.92	bungang	51.42
alikabok	67.81	suso	51.33

Figure 7: word2vec and fastText analogy for Similar Words("kotse:eroplano::itlog:?")

Figure 8 shows the analogy results for the Part-whole relationship of words. The words "pinto" and "bahay" represent part-whole relationship as pinto transalates to door and bahay translates to a house in English. For this experiment, the word gulong is a part of a vehicle as it translates to wheels in English. Only the word2vec model was able to capture this relation as the fastText model was not able to give any related word, it can also be seen that the similarity scores of the words on the fastText model are all below 50%, thus, is very far from the projected analogy.

pinto : bahay :: gulong : ?		pinto: bahay:: gulong:? (fastText)	
(word2vec)			
Word	%	Word	%
	Similarit		Similarit
	у		y
sasakyan	66.41%	unti-	49.05%
		unting	
puwang	59.23%	lubid	48.86%
tubig	58.26%	pagawaan	46.06%
pagawaan	58.03%	gulo	44.82%
tubo	57.35%	unti-unti	44.59%
malalakin	56.90%	yaon	44.41%
g			
bag	56.49%	kagamitan	44.34%
		g	
tubong	56.34%	bakteryan	43.97%
		g	
pakpak	56.13%	yari	43.83%
yelo	56.08%	uling	43.63%

Figure 8: word2vec and fastText analogy for Part-Whole("pinto:bahay :: gulong:?")

Figure 9 shows the word analogy for Antonyms. "maliwanag" and "madilim" translates to bright and dark respectively, on the other hand, "bago" translates to new, thus, the expected antonym of this word is "luma" or old. For this analogy, both the word2vec and fastText models were not able to capture any similar or acceptable word for this analogy.

maliwanag : madilim :: bago : ? (word2vec)		maliwanag : madilim :: bago : ? (fastText)	
Word	% Similarit	Word	% Similarit
	y		y
pagdaan	53.36%	sumapit	56.99%
taglagas	49.67%	matapos	48.81%
magmula	45.54%	pagkaraan	48.81%
tag-araw	44.20%	pagsapit	48.38%
pagkaraan	44.18%	pagkatapo s	48.05%
taglamig	44.05%	magsimul a	47.02%
pagkaraan g	44.02%	hatinggabi	46.39%
tagsibol	43.36%	kailan	46.30%
tag-ulan	43.35%	pagkaraan g	46.27%
yelo	42.70%	muli	46.00%

Figure 9: word2vec and fastText analogy for Antonyms("maliwanag:madilim :: bago:?")

Figure 10 shows the result of Related word relations. For this relation, "kotse" and "lupa" as related because kotse translates to "car" in English and "lupa" translates to land, thus, a car can only function and move on a flat solid surface which is land, on the other hand, "bangka" is a word that can be translated to a boat, thus, a boat can only travel on bodies of water. This was accurately captured by the word2vec model as the highest words for the word2vec model are "lawa" and "ilog" which translates to lake and river respectively, furthermore, other bodies of water were also shown by the word2vec model, each of these words has >70% word similarity. On the other hand, the fastText model was also able to capture four words relating to bodies of water, however, the the top 3 words of the fastText model were about the afflicted forms of word2. A body of water was only shown on the 4th rank with a similarity score of 60%, which is lower compared to the computed scores of the word2vec model.

kotse : lupa :: bangka : ? (word2vec)		kotse : lupa :: bangka : ? (fastText)	
Word	% Similarit y	Word	% Similarit y
lawa	74.23%	lupang	63.88%
ilog	73.57%	lupain	62.74%
burol	71.84%	lupaing	62.15%
dalampasiga	71.46%	katubiga	60.01%
n		n	
katubigan	70.37%	dagat	59.42%
gubat	70.00%	gubat	56.74%
lambak	69.46%	ilog	56.62%
kabunduka	69.45%	kagubata	56.47%
n		n	
dumadaloy	69.34%	bungang	56.42%
		a	
hardin	69.16%	karagata	56.23%
		n	

Figure 10: word2vec and fastText analogy for Related Words("kotse:lupa:: bangka:?")

4 Conclusion

In conclusion, both the word2vec and fastText produce the desired word relations or similarity based on the Top 10. However, for the words analyzed on this paper, the word2vec outperformed the fastText model based on the highest similarity score. This is because word2vec operates by using words to predict other words. For example, a word that we would like to predict will make use of the words before and after it. On the other hand, the fastText model operates on a more granular level using the character n-grams, thus, the words for fastText are represented by the sum of the character n-grams which is notable in this analysis as some of the word inputs such as "kabayo", "maganda", and "ako'y" resulted to words where it is an afflicted input word, or the base form of the input word. Thus, for a Tagalog corpus, it is better to use word2vec as the Tagalog language has a lot of possible affixes for a particular word. For example, for the word "kabayo" which is a noun, it can be translated to a verb by adding the prefix "kina-" which results to "kinakabayo", on the other hand, this form of word cannot be translated directly to an English word. Thus, if we were to use fastText for a

Tagalog corpus, the most similar words will be words that are afflicted based on the input word.

5 References

- [1] Ramos, J. (2003). Using TF-IDF to Determine Word Relevance in Document Oueries.
- CiteSeerX. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf
- [2] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. https://arxiv.org/abs/1301.3781
- [3] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with Subword information. *Transactions of the Association for Computational Linguistics*, *5*, 135-146. https://doi.org/10.1162/tacl a 00051
- [4] Ganesan, K. (2021, July 9). FastText vs. Word2vec: A quick comparison. Kavita Ganesan, Ph.D. https://kavita-ganesan.com/fasttext-vs-word2vec/#.YSt3f73isII
- [5] Park, K. (n.d.). *Kyubyong/wordvectors: Pre-trained word vectors of 30+ languages*. GitHub. https://github.com/Kyubyong/word vectors
- [6] RARE Technologies. (n.d.). Raretechnologies/gensim: Topic modelling for humans. GitHub. https://github.com/RaRe-Technologies/gensim

For this homework, I have used the pre-trained word embeddings by Github user @Kyubyong.

The word embeddings were trained via word2vec and fasttext. The vector size of the word embeddings is 100 based on a corpus size of 38m and vocabulary size of 10,068.

I have used the gensim library for loading the word embeddings rather than using the original fasttext for consistency.

Task One: Top 10 most similar of 5 words

In [1]:

```
import gensim
from gensim.models import KeyedVectors
from gensim.models import Word2Vec, FastText
import pandas as pd
```

In [2]:

```
wv_model = Word2Vec.load("/Users/philip/Desktop/tagalog-word-embeddings/tl.bin") #L
oad the pretrained word2vec
ft_model = FastText.load_fasttext_format("/Users/philip/Desktop/tagalog-word-embedd
ings/tlf.bin") #Load the fasttext model
```

/Users/philip/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launc her.py:2: DeprecationWarning: Call to deprecated `load_fasttext_format` (use load_facebook_vectors (to use pretrained embeddings) or load_facebook_model (to continue training with the loaded full model, more RAM) i nstead).

In [3]:

```
def simGen(string):
    wv_results = wv_model.wv.most_similar(string)
    ft_results = ft_model.wv.most_similar(string)
    wvDF = pd.DataFrame(wv_results,columns=["Word","%Similarity"]).rename(index = 1)
ambda x: x+1)
    wvDF['%Similarity'] = round(wvDF['%Similarity'] * 100, 2)
    ftDF = pd.DataFrame(ft_results,columns=["Word","%Similarity"]).rename(index = 1)
ambda x: x+1)
    ftDF['%Similarity'] = round(ftDF['%Similarity'] * 100, 2)
    print(f"Word2Vec Results: \n{wvDF}'")
    #print(f"Similarities w2v: \n{wvDF['%Similarity']}")
    print(f"FastText Results: \n{ftDF}")
    #print(f"Similarities fastText: \n{ftDF['%Similarity']}")
```

localhost:8890/lab 1/30

In [4]:

```
simGen("marcos") #pangngalang pantangi, proper noun
```

Word2Vec Results:

	Word	%Similarity
1	pangulong	75.88
2	ferdinand	72.92
3	estrada	72.53
4	aquino	72.33
5	arroyo	72.15
6	ninoy	71.73
7	imelda	69.82
8	corazon	68.44
9	napoles	68.20
10	macapagal-arroyo	66.66

FastText Results:

- 00	CICILC ICCDUI	CD •
	Word	%Similarity
1	ferdinand	74.80
2	imelda	69.06
3	marco	65.94
4	aquino	61.34
5	cojuangco	60.59
6	lucas	58.97
7	mateo	58.70
8	corazon	57.94
9	ponce	57.09
10	elpidio	54.48

localhost:8890/lab

In [5]:

```
simGen("kabayo") #pangngalan pambalana, common noun
```

Wor	d2Vec Res	ults:
	Word	%Similarity
1	tupa	83.24
2	aso	82.38
3	paa	78.82
4	ahas	78.50
5	puting	78.24
6	buhok	78.03
7	kambing	77.28
8	ibon	77.23
9	itlog	76.46
10	sungay	76.45

FastText Results:

	Word	%Similarity
1	kabayong	89.03
2	kabayo-kabayohan	80.29
3	tupa	67.52
4	kambing	67.27
5	kahugis	62.02
6	nakasakay	61.68
7	palayok	60.71
8	sungay	60.65
9	odiseo	60.54
10	aso	59.68

3/30 localhost:8890/lab

In [6]:

simGen("ako") #panghalip, pronoun

Word2Vec Results:

	Word	%Similarity
1	ka	86.80
2	ikaw	86.36
3	kami	85.93
4	kayo	85.73
5	inyo	84.79
6	po	81.98
7	akin	81.53
8	tayo	81.27
9	iyo	81.17
10	ninyo	79.98

FastText Results:

	Word	%Similarity
1	ako'y	81.86
2	ko	78.61
3	akong	78.39
4	akin	74.45
5	aking	72.63
6	ikaw	72.16
7	kayo	71.68
8	po	69.39
9	inyo	67.48
10	siguro	66.40

localhost:8890/lab

In [7]:

```
simGen("nina") #pang-ukol, preposition
```

Word2Vec	Results	:
	Word	%Similarity
1	sina	70.96
2	ni	68.66
3	kina	68.09
4 mag-a	sawang	60.55
5 m	ichael	58.07
6	john	57.86
7	martin	55.89

8 leon 55.57 9 albert 55.02 10 joseph 54.94

FastText Results:

	Word	%Similarity
1	sina	80.13
2	ni	74.22
3	pinagbibidahan	68.50
4	kina	65.60
5	pinagbidahan	65.39
6	lloyd	64.20
7	rogelio	63.90
8	eddie	63.63
9	edgar	63.43
10	si	63.09

localhost:8890/lab

In [8]:

```
simGen("maganda") #pang-uri, adjective
Word2Vec Results:
          Word %Similarity
1
        mabuti
                        80.89
        pangit
2
                        79.69
3
                        78.59
        masaya
                        78.03
4
        madali
5
    interesado
                        77.31
                        75.45
6
      marunong
                        73.42
7
         gusto
           akin
                        73.00
8
                        72.58
9
       mahirap
10
        masama
                        72.56
FastText Results:
            Word %Similarity
1
      magandang
                         85.59
                         68.25
2
    magagandang
3
          ganda
                         67.66
4
           akala
                         59.86
                         59.43
5
      masyadong
6
         mabait
                         59.27
7
         madali
                         58.88
        mahiliq
                         58.75
8
9
                         58.56
         mabuti
10
                         58.22
         ganoon
```

Task Two: Incomplete word analogy (5 words)

In [9]:

```
def analogy(worda, wordb, wordc):
    wv_analogy = wv_model.wv.most_similar(negative = [worda], positive = [wordb, wo rdc])
    wv_analogyDF = pd.DataFrame(wv_analogy,columns=["Word","Similarity %"]).rename(index = lambda x: x+1)
    wv_analogyDF['Similarity %'] = round(wv_analogyDF['Similarity %'] * 100, 2)
    print(f"Word2Vec Result: \n{wv_analogyDF}\n")
    ft_analogy = ft_model.wv.most_similar(negative = [worda], positive = [wordb, wo rdc])
    ft_analogyDF = pd.DataFrame(ft_analogy,columns=["Word","Similarity %"]).rename(index = lambda x: x+1)
    ft_analogyDF['Similarity %'] = round(ft_analogyDF['Similarity %'] * 100, 2)
    print(f"FastText Result: \n{ft_analogyDF}\")
```

localhost:8890/lab 6/30

In [66]:

In [67]:

```
analogy("aklat", "libro", "bughaw") #Synonyms
```

```
Word2Vec Result:
           Word
                 Similarity %
                          72.89
1
          kahel
2
            asul
                          67.86
                          66.26
3
          dilaw
4
                          64.64
          rosas
5
            puti
                          60.20
6
                          60.10
         saging
7
            lila
                          60.04
    pinaghalong
                          59.44
8
      tsokolate
                          59.32
9
           lunti
                          59.26
10
```

FastText Result:

	Word	Similarity %
1	kulay	62.92
2	berde	59.32
3	lila	58.92
4	dilaw	56.73
5	asul	54.65
6	puti	54.23
7	kayumanggi	53.34
8	emu	51.53
9	lunti	51.05
10	pula	50.58

localhost:8890/lab 7/30

In [68]:

```
#analogy("isda","ilog","ibon") #related words
analogy("kotse","eroplano","itlog") #Similar words
```

Word2Vec Result:

Word	Similarity %
butong	72.65
usok	71.39
baboy	70.34
isda	69.61
katas	69.21
kambing	68.82
karne	68.40
tuyong	68.34
buto	67.92
alikabok	67.81
	butong usok baboy isda katas kambing karne tuyong buto

FastText Result:

	Word	Similarity %
1	munggo	56.47
2	dagat	56.05
3	hipon	55.81
4	gatas	54.82
5	bayag	54.54
6	suka	54.25
7	harina	53.31
8	karneng	51.95
9	bungang	51.42
10	suso	51.33

localhost:8890/lab

In [69]:

```
analogy("pinto","bahay","gulong") #part-whole
```

Wor	d2Vec Result:	
	Word	Similarity %
1	sasakyan	66.41
2	puwang	59.23
3	tubig	58.26
4	pagawaan	58.03
5	tubo	57.35
6	malalaking	56.90
7	bag	56.49
8	tubong	56.34
9	pakpak	56.13
10	yelo	56.08
Fas	tText Result:	
	Word	Similarity %
4		-
1	unti-unting	49.05
2	unti-unting lubid	-
		49.05
2	lubid	49.05 48.86
2 3	lubid pagawaan	49.05 48.86 46.06
2 3 4	lubid pagawaan gulo	49.05 48.86 46.06 44.82
2 3 4 5	lubid pagawaan gulo unti-unti	49.05 48.86 46.06 44.82 44.59
2 3 4 5 6	lubid pagawaan gulo unti-unti yaon	49.05 48.86 46.06 44.82 44.59
2 3 4 5 6 7	lubid pagawaan gulo unti-unti yaon kagamitang	49.05 48.86 46.06 44.82 44.59 44.41 44.34

localhost:8890/lab 9/30

In [70]:

```
analogy("maliwanag", "madilim", "bago") #antonmys, expecting for luma
```

Word	d2Vec Result	:
	Word	Similarity %
1	pagdaan	53.36
2	taglagas	49.67
3	magmula	45.54
4	tag-araw	44.20
5	pagkaraan	44.18
6	taglamig	44.05
7	pagkaraang	44.02
8	tagsibol	43.36
9	tag-ulan	43.35
10	yelo	42.70
Fast	tText Result	:
	Word	Similarity %
1	sumapit	56.99
2	matapos	48.81
3	pagkaraan	48.81
4	pagsapit	48.38
5	pagkatapos	48.05
6	magsimula	47.02
7	hatinggabi	46.39
8	kailan	46.30
9	pagkaraang	46.27
10	muli	46.00

localhost:8890/lab 10/30

In [71]:

Word2Vec Result:

analogy("kotse","lupa","bangka") #related

```
Word
                  Similarity %
1
            lawa
                          74.23
2
                          73.57
            ilog
                          71.84
3
           burol
4
    dalampasigan
                          71.46
5
       katubigan
                          70.37
6
           gubat
                          70.00
7
          lambak
                          69.46
      kabundukan
8
                          69.45
       dumadaloy
                          69.34
9
          hardin
10
                          69.16
FastText Result:
         Word
               Similarity %
1
       lupang
                       63.88
2
       lupain
                       62.74
3
      lupaing
                       62.15
4
    katubigan
                       60.01
5
        dagat
                       59.42
6
        gubat
                       56.74
7
         ilog
                       56.62
    kagubatan
8
                       56.47
9
     bunganga
                       56.42
   karagatan
                       56.23
10
In [72]:
# Extra (I did the manual cosine similarity of "maganda", and "mabuti")
import numpy as np
w1 vec = wv model.wv.get vector("lalaki")
w2 vec = wv model.wv.get vector("hari")
def dot product(vector1, vector2):
    return vector1 @ vector2
def magnitude(word_vector): #solver for the magnitude of word vector
    return np.sqrt(np.sum(np.square(word vector)))
def cos sim(dot prod, mag1, mag2):
    return (dot prod) / (mag1* mag2)
```

localhost;8890/lab 11/30

In [73]:

```
numerator = dot_product(w1_vec, w2_vec)
magnitude1 = magnitude(w1 vec)
magnitude2 = magnitude(w2 vec)
cosine_sim = cos_sim(numerator, magnitude1, magnitude2)
print(f"Dot product (numerator): {numerator}")
print(f"Magnitudes (denominators): {magnitude1}, {magnitude2}")
print(cosine sim)
Dot product (numerator): 48.79785919189453
Magnitudes (denominators): 11.26809310913086, 10.900785446166992
0.39727622
In [74]:
#hari:lalaki :: reyna:?
#hari:lalaki :: reyna:? = babae
wv model.wv.most_similar(positive = ['reyna', 'lalaki'], negative = ["hari"])
Out[74]:
[('babae', 0.7392164468765259),
 ('babaeng', 0.707935094833374),
 ('batang', 0.6850568652153015),
 ('lalaking', 0.6792464256286621),
 ('ina', 0.6285486817359924),
 ('kapatid', 0.6119673252105713),
 ('nakatatandang', 0.6075147390365601),
 ('aktor', 0.6047272682189941),
 ('lalake', 0.598362386226654),
 ('pilipina', 0.5968809127807617)]
In [75]:
w1 vec = wv model.wv.get vector("hari")
w2 vec = wv model.wv.get vector("lalaki")
w3 vec = wv model.wv.get vector("reyna")
```

12/30 localhost:8890/lab

```
In [19]:
vec = (w3_vec + w2_vec) - w1_vec
vec
Out[19]:
array([ 1.980848 , -1.0779285 , 0.09271973, 0.8678707 , -1.9782072 ,
       1.7537644 , -0.7765211 , -2.136334 , 0.30188447 , -0.28930473 ,
       0.68389446, -1.4410336 , 0.8796174 , 2.2108216 , 2.4252014 ,
      -1.0783155 , 2.418281 , -1.2244966 , 0.34204695 , 2.1893706 ,
      -0.66234577, -2.526125 , -0.47509235, -0.2607782 , -2.3952792 ,
       1.2119874 , -0.5471051 , -0.40477008, 0.86579525, 2.676379
      -0.6534424 , -1.4619862 , 0.80614924, 0.60152006,
                                                          0.45867538,
       0.8882272 , -2.3444588 , -0.5608117 , 0.28402844 , -2.0691013 ,
      -0.28398585, 1.4977462, -1.4276516, -1.5042715, -0.77241933,
       1.4725615 , 1.5743334 , 0.47296566, 0.04112101,
                                                          0.43304265,
      -1.6315625, 0.08503836, -0.8721514, 0.78358126, 1.581552
                   1.3549744 , -0.7528177 , -2.2347038 ,
      -2.061219 ,
                                                          0.83104604,
      -0.25596216, -1.4678438, -0.7331305, -0.16097316, 0.7010161,
      -0.85828084, -0.37374306, 2.9011388, 0.9919684, -0.2840498,
       0.7401963 , -0.40388697 , 1.0865097 , -0.3780217 , 1.3681927 ,
       0.65111566, 0.13447885, 0.01620224, -2.3029685, -0.64401484,
      -0.92251694, 0.70359206, 0.46830064, -0.7494815 , -1.1167228 ,
      -1.1977439 , -0.8397939 , 1.1794984 , 0.01087422 , -1.746084
      -1.4172264 , -1.3562765 , 0.5577493 , -1.6724285 , 0.15558136 ,
       2.6232533 , 1.3774316 , -1.0697366 , 1.7140007 , -0.5912959
],
     dtype=float32)
In [20]:
wv model.wv.most similar(positive = [vec], topn = 1)
Out[20]:
[('lalaki', 0.7826639413833618)]
```

Demo Day 08/31/2021

Word Embeddings

localhost:8890/lab 13/30

In [76]:

```
#word1
simGen("baba")
```

Word2Vec Results:

	Word	%Similarity
1	babang	68.49
2	sakong	67.70
3	kuko	67.39
4	tenga	66.49
5	lapad	66.17
6	lila	65.52
7	biyas	65.05
8	balikat	64.59
9	sentimetro	64.37
10	kaliwa	64.34

FastText Results:

	Word	%Similarity
1	bababa	64.05
2	ibaba	58.45
3	babang	57.01
4	taas	56.32
5	itaas	54.62
6	baywang	53.58
7	balakang	52.69
8	sentimetro	50.99
9	noo	50.85
10	kanang	49.81

localhost:8890/lab 14/30

In [28]:

```
#word2
simGen("basa")
```

Word2Vec Results:

	Word	%Similarity
1	hinog	68.32
2	matapang	67.41
3	lila	66.64
4	transparent	66.12
5	mura	66.09
6	niluluto	65.81
7	patak	64.57
8	nil	64.38
9	tuyo	64.36
10	replace	64.33

FastText Results:

raberene nebareb.		
	Word	%Similarity
1	mabasa	64.40
2	nabasa	60.13
3	binabasa	52.55
4	mababasa	51.32
5	basal	49.75
6	pagbasa	48.84
7	binasa	48.70
8	amino	47.64
9	buhangin	46.85
10	marinig	46.27

localhost:8890/lab 15/30

In [29]:

```
#word3
simGen("babae")
```

Word2Vec Results:

	Word	%Similarity
1	lalaki	92.49
2	lalake	81.75
3	babaeng	77.86
4	lalaking	75.26
5	batang	72.59
6	anak	72.32
7	dalaga	68.58
8	kapatid	67.60
9	sanggol	66.68
10	kalalakihan	65.58

FastText Results:

		=
	Word	%Similarity
1	lalaki	89.24
2	babaeng	81.45
3	lalake	79.75
4	lalaking	78.30
5	kalalakihan	71.21
6	kababaihan	68.79
7	lalakeng	67.87
8	pambabae	66.12
9	batang	66.03
10	pambabaeng	65.84

localhost:8890/lab

In [30]:

```
#word4
simGen("ako")
```

Word2Vec Results:

Word	%Similarity
ka	86.80
ikaw	86.36
kami	85.93
kayo	85.73
inyo	84.79
po	81.98
akin	81.53
tayo	81.27
iyo	81.17
ninyo	79.98
	ka ikaw kami kayo inyo po akin tayo iyo

FastText Results:

	Word	%Similarity
1	ako'y	81.86
2	ko	78.61
3	akong	78.39
4	akin	74.45
5	aking	72.63
6	ikaw	72.16
7	kayo	71.68
8	po	69.39
9	inyo	67.48
10	siguro	66.40

localhost:8890/lab

In [31]:

```
#word5
simGen("ospital")
```

Word2Vec Results:

	Word	%Similarity
1	hayskul	68.09
2	kolehiyo	67.80
3	elementarya	67.32
4	tahanan	66.64
5	bilangguan	63.86
6	bahay	63.77
7	kumbento	63.14
8	paaralan	62.64
9	bakuran	61.91
10	kulungan	61.70

FastText Results:

Las	CICKE REBUIES.	
	Word	%Similarity
1	hospital	86.61
2	duktor	61.34
3	tahanan	60.40
4	nars	59.82
5	medical	59.49
6	sementeryo	58.07
7	medikal	57.75
8	siruhiya	57.20
9	seminaryo	57.05
10	pagtatrabaho	56.55

localhost:8890/lab 18/30

In [32]:

```
#word6
simGen("hospital")
```

Word	d2Vec Results:	
	Word	%Similarity
1	illinois	85.53
2	michigan	84.27
3	dame	83.13
4	memorial	82.67
5	municipal	82.58
6	general	81.64
7	beach	81.47
8	indiana	81.43
9	police	81.42
10	${\tt massachusetts}$	81.31

FastText Results:

rastiext Results:			
	Word	%Similarity	
1	ospital	86.61	
2	medical	71.76	
3	children's	62.05	
4	children	60.96	
5	school	60.08	
6	princeton	59.21	
7	training	58.79	
8	nars	57.96	
9	headquarters	57.41	
10	seminaryo	57.33	

localhost:8890/lab

```
In [33]:
```

```
#word7
simGen("Marcos") #Marcos will return an out of vocabulary error as all of the words
in my pretrained word embeddings are encoded in lower case, but "marcos" will run
```

```
KeyError
                                          Traceback (most recent call 1
ast)
<ipython-input-33-b679b49c2f1f> in <module>
      1 #word7
---> 2 simGen("Marcos") #Marcos will return an out of vocabulary error
as all of the words in my pretrained word embeddings are encoded in low
er case, but "marcos" will run
<ipython-input-3-8f9d6d02e800> in simGen(string)
      1 def simGen(string):
           wv results = wv model.wv.most similar(string)
---> 2
            ft results = ft model.wv.most similar(string)
           wvDF = pd.DataFrame(wv results,columns=["Word","%Similarit
y"]).rename(index = lambda x: x+1)
            wvDF['%Similarity'] = round(wvDF['%Similarity'] * 100, 2)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in most similar(self, positive, negative, topn, restrict vocab, inde
xer)
                        mean.append(weight * word)
    551
    552
                    else:
--> 553
                        mean.append(weight * self.word vec(word, use no
rm=True))
                        if word in self.vocab:
    554
    555
                            all words.add(self.vocab[word].index)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in word vec(self, word, use norm)
    466
                    return result
    467
                else:
                    raise KeyError("word '%s' not in vocabulary" % word
--> 468
)
    469
    470
            def get vector(self, word):
KeyError: "word 'Marcos' not in vocabulary"
```

localhost;8890/lab 20/30

In [34]:

```
#Rerun of word7 in lower case
simGen("marcos")
```

Word2Vec Results:

	Word	%Similarity
1	pangulong	75.88
2	ferdinand	72.92
3	estrada	72.53
4	aquino	72.33
5	arroyo	72.15
6	ninoy	71.73
7	imelda	69.82
8	corazon	68.44
9	napoles	68.20
10	macapagal-arroyo	66.66

FastText Results:

	Word	%Similarity
1	ferdinand	74.80
2	imelda	69.06
3	marco	65.94
4	aquino	61.34
5	cojuangco	60.59
6	lucas	58.97
7	mateo	58.70
8	corazon	57.94
9	ponce	57.09
10	elpidio	54.48

localhost:8890/lab 21/30

```
In [35]:
```

```
#word8
simGen("Piolo")
KeyError
                                          Traceback (most recent call 1
ast)
<ipython-input-35-23aa6e56e387> in <module>
      1 #word8
---> 2 simGen("Piolo")
<ipython-input-3-8f9d6d02e800> in simGen(string)
      1 def simGen(string):
            wv results = wv model.wv.most similar(string)
---> 2
            ft_results = ft_model.wv.most_similar(string)
            wvDF = pd.DataFrame(wv results,columns=["Word","%Similarit
y"]).rename(index = lambda x: x+1)
            wvDF['%Similarity'] = round(wvDF['%Similarity'] * 100, 2)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in most similar(self, positive, negative, topn, restrict vocab, inde
xer)
                        mean.append(weight * word)
    551
    552
                    else:
--> 553
                        mean.append(weight * self.word vec(word, use no
rm=True))
                        if word in self.vocab:
    554
    555
                            all words.add(self.vocab[word].index)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in word vec(self, word, use norm)
                    return result
    466
    467
                else:
--> 468
                    raise KeyError("word '%s' not in vocabulary" % word
    469
            def get vector(self, word):
    470
KeyError: "word 'Piolo' not in vocabulary"
```

localhost:8890/lab 22/30

In [36]:

```
#rerun word8 in lowercase
simGen("piolo")

----
KeyError
Traceback (most recent call 1
```

```
ast)
<ipython-input-36-cba7dabe2b8b> in <module>
----> 1 simGen("piolo")
<ipython-input-3-8f9d6d02e800> in simGen(string)
      1 def simGen(string):
---> 2
            wv results = wv model.wv.most similar(string)
            ft results = ft model.wv.most similar(string)
      3
            wvDF = pd.DataFrame(wv_results,columns=["Word","%Similarit
y"]).rename(index = lambda x: x+1)
            wvDF['%Similarity'] = round(wvDF['%Similarity'] * 100, 2)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in most similar(self, positive, negative, topn, restrict vocab, inde
xer)
    551
                        mean.append(weight * word)
    552
                    else:
--> 553
                        mean.append(weight * self.word_vec(word, use_no
rm=True))
    554
                        if word in self.vocab:
    555
                            all words.add(self.vocab[word].index)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in word_vec(self, word, use_norm)
    466
                    return result
    467
                else:
                    raise KeyError("word '%s' not in vocabulary" % word
--> 468
    469
    470
            def get vector(self, word):
```

KeyError: "word 'piolo' not in vocabulary"

localhost:8890/lab 23/30

In [38]:

```
#word9
simGen("umaga")
```

Word2Vec Results:

city
7.19
7.09
5.05
1.01
2.70
2.63
L.41
9.51
3.77
3.25

FastText Results:

Tuberene Reputeb.		
	Word	%Similarity
1	hatinggabi	79.18
2	alas-	75.97
3	gabi	73.25
4	sabado	69.23
5	alas	67.20
6	tanghali	65.73
7	huwebes	65.07
8	miyerkules	64.87
9	biyernes	64.15
10	lunes	61.62

localhost:8890/lab 24/30

In [39]:

```
#word10
simGen("kape")
```

Word2Vec Results:

	Word	%Similarity	
1	bigas	90.87	
2	harina	89.76	
3	saging	89.71	
4	suka	88.75	
5	pampalasa	88.61	
6	karne	88.39	
7	tsaa	88.17	
8	niyog	88.16	
9	asukal	87.98	
10	gulay	87.97	

FastText Results:

	Word	%Similarity
1	gulay	76.32
2	niyog	75.54
3	sarsa	73.35
4	sibuyas	73.31
5	mais	73.30
6	patatas	72.19
7	niluluto	72.07
8	sahog	71.18
9	bigas	70.24
10	mantika	69.51

Analogy

localhost:8890/lab 25/30

```
In [40]:
```

```
analogy("umaga","breakfast","gabi")
KeyError
                                          Traceback (most recent call 1
ast)
<ipython-input-40-a5a6d6668379> in <module>
---> 1 analogy("umaga", "breakfast", "gabi")
<ipython-input-9-7780d10ceadf> in analogy(worda, wordb, wordc)
      1 def analogy(worda, wordb, wordc):
           wv_analogy = wv_model.wv.most_similar(negative = [worda], p
ositive = [wordb, wordc])
           wv analogyDF = pd.DataFrame(wv analogy,columns=["Word","Sim
ilarity %"]).rename(index = lambda x: x+1)
           wv analogyDF['Similarity %'] = round(wv analogyDF['Similari
ty %'] * 100, 2)
            print(f"Word2Vec Result: \n{wv_analogyDF}\n")
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in most similar(self, positive, negative, topn, restrict vocab, inde
xer)
                        mean.append(weight * word)
    551
    552
                    else:
                        mean.append(weight * self.word_vec(word, use no
--> 553
rm=True))
                        if word in self.vocab:
    554
    555
                            all words.add(self.vocab[word].index)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in word vec(self, word, use norm)
                    return result
    466
    467
                else:
--> 468
                    raise KeyError("word '%s' not in vocabulary" % word
    469
    470
            def get vector(self, word):
KeyError: "word 'breakfast' not in vocabulary"
```

localhost:8890/lab 26/30

In [77]:

```
analogy2("umaga","breakfast","gabi")
```

FastText Result:

	Word	Similarity %
1	breaking	70.73
2	break	67.73
3	breakingnews	63.46
4	last	61.55
5	years	60.59
6	breaking-news-world	59.70
7	competition	58.35
8	world's	58.31
9	can't	57.84
10	everything	57.73

In [41]:

```
analogy("lalaki","tatay","babae")
```

Word2Vec Result:

	Word	Similarity %
1	nanay	82.68
2	lolo	81.47
3	kasintahan	80.30
4	ate	79.66
5	minamahal	77.94
6	pinakasalan	76.63
7	kaibigang	76.62
8	tiyuhin	76.52
9	lola	76.02
10	kuya	73.51

FastText Result:

	Word	Similarity %
1	nanay	67.15
2	kasintahan	64.54
3	lolo	62.79
4	lola	62.12
5	tita	61.75
6	pinsan	61.36
7	ina	60.66
8	asawang	58.64
9	mercado	58.57
10	velasquez	58.04

localhost:8890/lab 27/30

In [48]:

```
analogy("ospital", "sakit", "bahay")
```

Word2Vec Result:

	Word	Similarity %
1	balat	72.90
2	pakpak	70.78
3	sugat	69.65
4	buhok	68.86
5	mata	67.82
6	laman	67.75
7	lason	66.77
8	buto	66.42
9	amoy	65.81
10	titi	65.35

FastText Result:

	Word	Similarity %
1	nagdudulot	53.75
2	nagbubunga	53.43
3	tenga	52.84
4	bunga	52.80
5	mukhang	50.83
6	bubuyog	50.29
7	uod	50.14
8	alimango	49.80
9	nagreresulta	49.78
10	leeg	49.65

localhost:8890/lab 28/30

```
In [64]:
```

```
analogy("kape", "mainit", "kain")
KeyError
                                          Traceback (most recent call 1
ast)
<ipython-input-64-f9c391a0979e> in <module>
---> 1 analogy("kape", "mainit", "kain")
<ipython-input-54-7780d10ceadf> in analogy(worda, wordb, wordc)
      1 def analogy(worda, wordb, wordc):
           wv_analogy = wv_model.wv.most_similar(negative = [worda], p
ositive = [wordb, wordc])
           wv analogyDF = pd.DataFrame(wv analogy,columns=["Word","Sim
ilarity %"]).rename(index = lambda x: x+1)
           wv analogyDF['Similarity %'] = round(wv analogyDF['Similari
ty %'] * 100, 2)
            print(f"Word2Vec Result: \n{wv_analogyDF}\n")
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in most similar(self, positive, negative, topn, restrict vocab, inde
xer)
                        mean.append(weight * word)
    551
    552
                    else:
                        mean.append(weight * self.word_vec(word, use no
--> 553
rm=True))
                        if word in self.vocab:
    554
    555
                            all words.add(self.vocab[word].index)
~/opt/anaconda3/lib/python3.7/site-packages/gensim/models/keyedvectors.
py in word vec(self, word, use norm)
                    return result
    466
    467
                else:
--> 468
                    raise KeyError("word '%s' not in vocabulary" % word
    469
    470
            def get vector(self, word):
KeyError: "word 'kain' not in vocabulary"
```

localhost:8890/lab 29/30

```
In [65]:
```

```
analogy2("kape","mainit","kain")
FastText Result:
```

```
Word Similarity %
1
    sariwang
                       60.22
2
                       59.92
      kainin
3
      kinain
                       57.40
                       57.15
4
    kumakain
5
    kinakain
                       55.32
    nakakain
                       55.10
6
7
      kumain
                       54.46
     maiinit
8
                       53.65
     pagkain
                       52.93
9
10
       hayop
                       52.36
```

In [44]:

```
analogy("ulan","bagyo","araw")
```

Word2Vec Result:

```
Word
                      Similarity %
              buwan
                              74.42
1
2
                              73.89
             linggo
3
                              64.63
               gabi
4
               oras
                              64.53
5
             buwang
                              63.58
6
       pagdiriwang
                              62.50
7
              umaga
                              59.53
8
               taon
                              58.43
9
                              57.76
          kaganapan
10
    ipinagdiriwang
                              56.53
```

FastText Result:

```
Word
                   Similarity %
        bisyesto
1
                           57.02
2
                           56.14
        bisperas
3
       paggunita
                           54.02
4
                           52.63
      pagkabuhay
5
           buwan
                           52.03
6
    kalendaryong
                           51.17
7
            pasko
                           50.41
                           50.32
8
        kaarawan
9
                           49.60
            umaga
                           49.52
10
         eklipse
```

In []:

localhost:8890/lab 30/30