Propagators: An Introduction

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

November 7, 2017

What?

Why?

Roots as early as the 1970's at MIT

- Guy L. Steele Jr.
- Gerald J. Sussman
- Richard Stallman

More recently:

Alexey Radul

And then

• Edward Kmett

$$x \le y \implies f(x) \le f(y)$$

Propagators

The <i>propagator model</i> is a model of computation	
We model computations as propagator networks	

A propagator network comprises

- cells
- propagators
- connections between cells and propagators

 $y \leftarrow z - x$

Propagators let us express multidirectional relationships!

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

75.2

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

 $^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$

43.2

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

24.0

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

43.2

$$^{\circ}C = (^{\circ}F - 32) \div \frac{9}{5}$$

24.0

We can combine networks into larger networks!

What types are the values of the cells?

data Maybe a = Nothing | Just a

(

. /

Contradiction

data Perhaps a = Unknown | Known a | Contradiction

```
data Perhaps a = Unknown | Known a | Contradiction
instance Eq a => Monoid (Perhaps a) where
 mempty = Unknown
 mappend Unknown x = x
 mappend x Unknown = x
 mappend Contradiction _ = Contradiction
 mappend _ Contradiction = Contradiction
 mappend (Known a) (Known b) =
   if a == b
     then Known a
     else Contradiction
```


Will other monoids work?

Will other monoids work?

What about List?

We need commutativity!

 $x \oplus y = y \oplus x$

We need commutativity!

$$x \oplus y = y \oplus x$$

$$[1,2,3] \iff [4,5,6] == [1,2,3,4,5,6]$$

 $[4,5,6] \iff [1,2,3] == [4,5,6,1,2,3]$

We need a commutative monoid

What about addition?

x + y = y + x

We need idempotence!

 $x \oplus x = x$

We need an idempotent, commutative monoid. This structure is called a *join-semilattice*

Associativity
$$(x \lor y) \lor z = x \lor (y \lor z)$$

Commutativity
$$x \lor y = y \lor x$$

Idempotence $x \lor x = x$

Partial information that supports merging!

[1, 5]

[1,5]	<>	[2, 7]	=[2]	[2, 5]

$\{True, False\}$

