Wialon Combine

Коммуникационный бинарный протокол Wialon Combine (v. 1.1.6) разработан компанией Gurtam для использования в персональных и автомобильных GPS- и ГЛОНАСС-трекерах, передающих данные на сервер системы спутникового мониторинга по протоколу TCP или UDP.

Спецификация

- Big-Endian порядок байтов.
- Имя_поля* расширяемое поле 1 байт. Старший бит указывает на наличие второго байта.
- Имя_поля** расширяемое поле 2 байта. Старший бит указывает на наличие дополнительных двух байт.
- Имя_поля*** расширяемое поле 4 байта. Старший бит указывает на наличие дополнительных четырех байт.
- Все данные приходят в бинарном формате.
- Передача данных осуществляется по протоколу ТСР и UDP.

Оглавление

Общая структура данных	4
Обязательный ответ сервера	4
Типы данных	5
Пакет «Login»	5
Пакет «Keep-Alive»	6
Пакет «АСК»	6
Пакет «Data»	7
Тип записи «Custom Parameters»	8
Тип записи «Position Data»	9
Тип записи «Extended Position Data»	10
Тип записи «I/O»	11
Тип записи «Picture»	11
Тип записи «LBS Parameters»	11
Тип записи «Fuel Parameter»	12
Тип записи «Temperature Parameters»	13
Тип записи «CAN Parameters»	13
Тип записи «Counter Parameters»	13
Тип записи «Analog Parameters (ADC)»	14
Тип записи «Driver code Parameters»	14
Тип записи «Tacho File»	14
Тип записи «Driver Message»	15
Тип записи «Wi-Fi Parameters»	15
Тип записи «Named Parameters»	15
Тип записи «Extended LBS Parameters»	16
CRC 16 (Пример кода на языке C):	18
Команды	19
Формат команды на устройство	19
Команда «Firmware/Config Block»	20

Примеры сообщений	20
Пример сообщения «Login»	20
Пример сообщения «Ответ от сервера»	21
Пример сообщения «Keep-Alive»	21
Пример сообщения «Команда Firmware Block»	21
Пример сообщения «ACK (Firmware/Config)»	22
Пример сообщения «Data»	22
Сообщение №1:	22
Сообщение №2:	25
Пример сообщения «Picture/Tachograph File»	28
Пример сообщения «UDP»	30

Общая структура данных

Size	2	1-2	2	2-4			
(Bytes)							
Section	Head	Type*	Seq	Len**	Login (for	Data	CRC1
			-		UDP)		6

Head — 0x2424.

Type*:

0 — Login,

1 — Data,

2 — Keep-Alive,

3 — ACK.

Seq — порядковый номер (циклический 0 — 65535).

Len** — длина поля «Data».

Data — полезные данные. Зависит от типа пакета.

Login (for UDP) — поле передается только при использовании UDP.

CRC16 — контрольная сумма. Рассчитывается от начала заголовка (Head) до последнего байта полезных данных (Data).

Обязательный ответ сервера

Сервер отвечает на каждый полученный пакет. Ответ сервера имеет следующий вид:

Size (Bytes)	2	1	2
Section	Head	Code	Seq

Head — 0x4040.

Code — код ответа.

Seq — порядковый номер полученного пакета.

Код ответа Расшифровка	
------------------------	--

0	Пакет успешно зарегистрирован
1	Ошибка авторизации
3	Пакет не зарегистрирован
4	Ошибка CRC
255	Команда на устройство

Типы данных

Значение	Тип ID
1	unsigned short (2 байта)
2	unsigned int (4 байта)
3	unsigned long (8 байт)
4	string (последний байт 0х00)

Значение	Тип Pwd
0	пароль отсутствует
1	unsigned short (2 байта)
2	unsigned int (4 байта)
3	unsigned long (8 байт)
4	string (последний байт 0х00)

Пакет «Login»

Пакет «Login» имеет следующий вид:

Size (Bytes)	1-2	1		
Section	Protocol version*	Flags	ID	Pwd

Protocol version* (версия протокола): сейчас 1.

Flags (битовое поле):

● старшие 4 бита отвечают за тип и размер поля «ID».

■ младшие 4 бита отвечают за тип и размер поля «Pwd».

Пакет «Keep-Alive»

Пакет «Keep-Alive» содержит только 3 первых поля пакета («Head», «Туре», «Seq») и имеет следующий вид:

Size (Bytes)	2	1-2	2
Section	Head	Type*	Seq

Пакет «АСК»

Пакет данного типа необходим для подтверждения приема блока прошивки.

Size	1	1
Bytes		
Section	Type	Code

Туре — тип команды, на которую выслан ответ.

Code — код ответа.

Код ответа	Расшифровка
0	Пакет успешно принят
1	Ошибка приема (прерывает передачу)
2	Повтор передачи последнего блока
3	Некорректный файл (прерывает передачу)

Тип команды	Расшифровка
0	Custom command
1	Firmware block

2	Config block

Пакет «Data»

Пакет данного типа может содержать в себе несколько сообщений.

Каждое сообщение содержит время, длину, а также набор записей.

В общем виде сообщение имеет следующий вид:

Size	4-8	1	1-2			1-2	
(Bytes)					•••	1-2	
Section	Time***	Count	Sub-	Sub-		Type sub-	Sub-
			record	record		record N	recordN
			type*				

Time*** — время формирования сообщения.

Время должно быть приведено к виду UTC:0, то есть без учёта локального часового пояса устройства. Это необходимо для корректного отображения времени конечному пользователю.

UTC определяется как количество секунд/наносекунд, прошедших с полуночи (00:00:00 UTC) 1 января 1970.

Count — количество записей.

Sub-record type* — поле, содержащее код типа записи.

Реализованы следующие типы записей:

Значение	Тип записи		
0	Custom Parameters		
1	Position Data		
2	I/O Data		
3	Picture		

4	LBS Parameters
5	Fuel Parameters
6	Temperature Parameters
7	CAN Parameters
8	Counter Parameters
9	Analog Parameters (ADC)
10	Driver Code Parameters
11	Tacho File
12	Driver message
13	Wi-Fi Parameters
14	Extended Position Data
15	Named Parameters
16	Extended LBS Parameters

Subrecord — структура данных. Набор полей записей зависит от ее типа.

Тип записи «Custom Parameters»

Набор данных произвольных полей. Запись имеет следующий вид:

Size (Bytes)	1-2	
Section	Count*	Params

Count* — количество произвольных полей в записи.

Params — набор нумерованных параметров. Каждый параметр будет зарегистрирован как рагат№. Имеет следующий вид:

Bytes	1-2	1	
Section	Nº*	Sensor type	Value

№* — номер датчика.

Sensor type — поле, указывающее тип датчика для данных в

«Value». Имеет следующую структуру (только для целочисленных типов):

Size (Bits)	3	5		
Section	10**X	Sensor type		

Для типов 8 и более первые 3 бита всегда равны 0.

10**X — Степень числа 10. Число, на которое будет разделено значение параметра «Value».

Тип датчика:

Значение	Тип датчика
0	unsigned byte (1 байт)
1	unsigned short (2 байта)
2	unsigned int (4 байта)
3	unsigned long (8 байт)
4	signed byte (1 байт)
5	signed short (2 байта)
6	signed int (4 байта)
7	signed long (8 байта)
8	float (4 байта)
9	double (8 байт)
10	String (последний байт 0х00)

Value — значение датчика согласно выбранному типу.

Тип записи «Position Data»

Навигационные данные. Запись имеет следующий вид:

Size (Bytes)	4	4	2	2	2	1	2
Section	Lat	Lon	Speed	Course	Alt	Sats	HDO
							Р

Lat — широта.

Lon — долгота.

Значение координаты имеет тип «double». Пример формирования: значение градусов с плавающей точкой, умноженное на 1 000 000.

Speed — скорость (км/ч).

Course — направление движения (от 0 до 359 градусов).

Alt — высота над уровнем моря. Тип «знаковое целое».

Sats — количество видимых спутников.

HDOP (Horizontal dilution of precision) — значение снижения точности в горизонтальной плоскости, умноженное на 100. Показывает точность передаваемых устройством координат. Чем меньше значение данного параметра, тем более достоверными являются координаты.

Тип записи «Extended Position Data»

Навигационные данные. Запись имеет следующий вид:

Size (Bytes)	8	8	2	2	8	1	2
Section	Lat	Lon	Speed	Course	Alt	Sats	HDO
							Р

Значение координат и высоты имеет тип «signed long». Пример формирования: значение градусов с плавающей точкой, умноженное на 10^16. Значение высоты над уровнем моря умножается на 10^14.

Lat — широта.

Lon — долгота.

Speed — скорость (км/ч).

Course — направление движения (от 0 до 359 градусов).

Alt — высота над уровнем моря.

Sats — количество видимых спутников.

HDOP (Horizontal dilution of precision) — значение снижения точности в горизонтальной плоскости, умноженное на 100. Показывает точность передаваемых устройством координат. Чем меньше значение данного параметра, тем более достоверными являются координаты.

Тип записи «I/O»

Битовое поле. Значения цифровых входов и выходов. Каждый бит числа соответствует одному входу или выходу. Запись «I/O» имеет следующий вид:

Size (Bytes)	4	4
Section	Inputs	Outputs

Тип записи «Picture»

Часть фотоизображения, снятого камерой прибора. Запись «Picture» имеет следующий вид:

Size (Bytes)	1	2-4	1-2		Len
Section	Ind*	Len**	Count*	Name	Bin

Ind* — порядковый номер передаваемого блока (нумерация с нуля).

Len** — размер блока фотоизображения.

Count* — номер последнего блока при нумерации с нуля.

Name — имя передаваемого изображения. Текстовое поле, заканчивающееся 0x00.

Bin — бинарный блок изображения.

Тип записи «LBS Parameters»

LBS-параметры. Запись «LBS Parameters» имеет следующий вид:

Size (Bytes)	1		
Section	Count	LBS params	

Count — количество структур «LBS params».

LBS params:

Size (Bytes)	2	2	2	2	2	2
Section	MCC	MNC	LAC	Cell ID	Rx level	TA

MCC (Mobile Country Code) — код страны.

MNC (Mobile Network Code) — код сотовой сети.

LAC (Local Area Code) — код локальной зоны. Локальная зона — это совокупность базовых станций, которые обслуживаются одним контроллером базовых станций.

Cell ID — идентификатор соты; присваивается оператором каждому сектору каждой базовой станции.

Rx level — уровень принимаемого по данному каналу радиосигнала на входе в приёмник GSM-модема.

TA (Timing Advance) — параметр компенсации времени прохождения сигнала от GSM-модема до базовой станции. Фактически означает расстояние до базовой станции.

Тип записи «Fuel Parameter»

Параметры для передачи значений топлива. Запись «Fuel Parameter» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Fuel (аналог структуры Params)

Count — количество структур Fuel.

Все параметры этого поля будут зарегистрированы с именем fuel№.

Тип записи «Temperature Parameters»

Данные для передачи значений температуры. Запись «Temperature Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Temp (аналог структуры Params)

Count — количество структур Temp.

Все параметры этого поля будут зарегистрированы с именем temp№.

Тип записи «CAN Parameters»

Данные с CAN-шины. Запись «CAN Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	CAN (аналог структуры Params)

Count — количество структур CAN.

Все параметры этого поля будут зарегистрированы с именем can№.

Тип записи «Counter Parameters»

Данные счетчиков. Запись «Counter Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Counter (аналог структуры Params)

Count — количество структур Counter.

Все параметры этого поля будут зарегистрированы с именем counter№.

Тип записи «Analog Parameters (ADC)»

Данные аналоговых датчиков. Запись «Analog Parameters (ADC)» имеет следующий вид:

Size (Bytes)	1	
Section	Count	ADC (аналог структуры Params)

Count — количество структур ADC.

Все параметры этого поля будут зарегистрированы с именем adc№.

Тип записи «Driver code Parameters»

Данные, предназначенные для идентификации водителя. Запись «Driver code Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Driver code (аналог структуры Params)

Count — количество структур «Driver code».

Все параметры этого поля будут зарегистрированы с именем driver code№ *.

Тип записи «Tacho File»

Файл, записанный тахографом. Имеет следующий вид:

Size (Bytes)	1	2-4	1	Len
Section	Ind*	Len**	Count*	Bin

Ind* — порядковый номер передаваемого блока (нумерация с нуля).

Len** — размер блока файла.

Count* — номер последнего блока при нумерации с нуля.

Bin — бинарный блок файла с тахографа.

Тип записи «Driver Message»

Сообщение водителю. Имеет следующий вид:

Size (Bytes)	Endian 0x00	
Section	Text	

Text — сообщение водителю. Строка, заканчивающаяся на 0x00.

Тип записи «Wi-Fi Parameters»

Wi-Fi - параметры. Запись «Wi-Fi Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Wi-Fi params

Count — количество структур «Wi-Fi params».

Wi-Fi params:

Size (Bytes)	6	1		
Section	MAC	Rssi		

MAC (Media Access Control) — уникальный идентификатор, присваиваемый каждой единице активного оборудования.

Rssi (Received signal strength indicator) — индикатор уровня мощности принимаемого модемом сигнала. Значение измеряется в дБм. Тип «знаковое целое» от -128 до 127.

Тип записи «Named Parameters»

Набор данных произвольных полей. Запись имеет следующий вид:

Size (Bytes)	1-2	
Section	Count*	Params

Count* — количество произвольных полей в записи.

Params — набор именованных параметров. Имеет следующий вид:

Bytes		1	
Section	Param name	Param type	Param value

Param name — имя параметра, String (последний байт 0x00). В нижнем регистре. Максимальное количество символов — 38. Недопустимые символы: пробел, запятая, двоеточие, решетка, перевод строки и возврат каретки (\r\n).

Param type — поле, указывающее тип данных «Param value». (Таблица «Тип датчика» описана в разделе Тип записи «Custom Parameters»)

Если значение не соответствует типу параметра, параметр не будет зарегистрирован. Максимальное количество параметров, которое можно зарегистрировать в Wialon, — 200. Протокол не ограничивает количество передаваемых параметров.

Тип записи «Extended LBS Parameters»

Расширенные LBS-параметры. Запись «Extended LBS Parameters» имеет следующий вид:

Size (Bytes)	1	
Section	Count	Ext LBS params

Count — количество структур «Ext LBS params».

Ext LBS params:

Size (Bytes)	2	2	2	4	2	2
Section	MCC	MNC	LAC	Cell ID	Rx level	TA

MCC (Mobile Country Code) — код страны.

MNC (Mobile Network Code) — код сотовой сети.

LAC (Local Area Code) — код локальной зоны. Локальная зона — это совокупность базовых станций, которые обслуживаются одним контроллером базовых станций.

Cell ID — идентификатор соты; присваивается оператором каждому сектору каждой базовой станции.

Rx level — уровень принимаемого по данному каналу радиосигнала на входе в приёмник GSM-модема.

TA (Timing Advance) — параметр компенсации времени прохождения сигнала от GSM-модема до базовой станции. Фактически означает расстояние до базовой станции.

CRC 16 (Пример кода на языке C):

```
static const unsigned short crc16 table[256] =
  0x0000,0xC0C1,0xC181,0x0140,0xC301,0x03C0,0x0280,0xC241,
  0xC601,0x06C0,0x0780,0xC741,0x0500,0xC5C1,0xC481,0x0440,
  0xCC01,0x0CC0,0x0D80,0xCD41,0x0F00,0xCFC1,0xCE81,0x0E40,
  0x0A00,0xCAC1,0xCB81,0x0B40,0xC901,0x09C0,0x0880,0xC841,
  0xD801,0x18C0,0x1980,0xD941,0x1B00,0xDBC1,0xDA81,0x1A40,
  0x1E00,0xDEC1,0xDF81,0x1F40,0xDD01,0x1DC0,0x1C80,0xDC41,
  0x1400,0xD4C1,0xD581,0x1540,0xD701,0x17C0,0x1680,0xD641,
  0xD201,0x12C0,0x1380,0xD341,0x1100,0xD1C1,0xD081,0x1040,
  0xF001,0x30C0,0x3180,0xF141,0x3300,0xF3C1,0xF281,0x3240,
  0x3600,0xF6C1,0xF781,0x3740,0xF501,0x35C0,0x3480,0xF441,
  0x3C00,0xFCC1,0xFD81,0x3D40,0xFF01,0x3FC0,0x3E80,0xFE41,
  0xFA01,0x3AC0,0x3B80,0xFB41,0x3900,0xF9C1,0xF881,0x3840,
  0x2800,0xE8C1,0xE981,0x2940,0xEB01,0x2BC0,0x2A80,0xEA41,
  0xEE01,0x2EC0,0x2F80,0xEF41,0x2D00,0xEDC1,0xEC81,0x2C40,
  0xE401,0x24C0,0x2580,0xE541,0x2700,0xE7C1,0xE681,0x2640,
  0x2200,0xE2C1,0xE381,0x2340,0xE101,0x21C0,0x2080,0xE041,
  0xA001,0x60C0,0x6180,0xA141,0x6300,0xA3C1,0xA281,0x6240,
  0x6600,0xA6C1,0xA781,0x6740,0xA501,0x65C0,0x6480,0xA441,
  0x6C00,0xACC1,0xAD81,0x6D40,0xAF01,0x6FC0,0x6E80,0xAE41,
  0xAA01,0x6AC0,0x6B80,0xAB41,0x6900,0xA9C1,0xA881,0x6840,
  0x7800,0xB8C1,0xB981,0x7940,0xBB01,0x7BC0,0x7A80,0xBA41,
  0xBE01,0x7EC0,0x7F80,0xBF41,0x7D00,0xBDC1,0xBC81,0x7C40,
  0xB401,0x74C0,0x7580,0xB541,0x7700,0xB7C1,0xB681,0x7640,
  0x7200,0xB2C1,0xB381,0x7340,0xB101,0x71C0,0x7080,0xB041,
  0x5000,0x90C1,0x9181,0x5140,0x9301,0x53C0,0x5280,0x9241,
  0x9601,0x56C0,0x5780,0x9741,0x5500,0x95C1,0x9481,0x5440,
  0x9C01,0x5CC0,0x5D80,0x9D41,0x5F00,0x9FC1,0x9E81,0x5E40,
  0x5A00,0x9AC1,0x9B81,0x5B40,0x9901,0x59C0,0x5880,0x9841,
  0x8801,0x48C0,0x4980,0x8941,0x4B00,0x8BC1,0x8A81,0x4A40,
  0x4E00,0x8EC1,0x8F81,0x4F40,0x8D01,0x4DC0,0x4C80,0x8C41,
  0x4400,0x84C1,0x8581,0x4540,0x8701,0x47C0,0x4680,0x8641,
  0x8201,0x42C0,0x4380,0x8341,0x4100,0x81C1,0x8081,0x4040
};
unsigned short crc16 (const void *data, unsigned data_size)
  if (!data || !data_size)
    return 0;
  unsigned short crc = 0;
  unsigned char* buf = (unsigned char*)data;
  while (data size--)
    crc = (crc >> 8) ^ crc16_table[(unsigned char)crc ^ *buf++];
  return crc;
       }
```


Команды

Формат команды на устройство

Size (Bytes)	2	1	2-4	4	1-2		2
Section	Head	Code	Len**	Time	Type*	Data	CRC16

Head — 0x4040.

Code — 0xFF.

Len — длина пакета (поля «Time», «Type», «Data»).

Time — время отправки сообщения.

Туре — тип команды.

Data — дополнительные параметры команды.

CRC16 — контрольная сумма. Рассчитывается от начала заголовка (head) до последнего байта полезных данных (data).

Тип команды	Расшифровка	
0	Custom command	
1	Firmware block	
2	Config block	

Как подтверждение на команду от устройства можно сформировать сообщение типа «АСК» с полями типа подтверждения и кода результата или типа «Custom Parameters» с перечнем необходимых параметров и, в последующем, ориентируясь на них, создать необходимые уведомления. Также можно использовать тип записи «Driver message». В этом случае полученное сообщение будет показываться в чате переписки с водителем.

В случае команды «Firmware/Config block» необходимо подтверждение от устройства (Пакет «АСК»).

Команда «Firmware/Config Block»

Часть файла прошивки. Запись «Firmware/Config block» имеет следующий вид:

Size (Bytes)	1	2-4	1-2	Len
Section	Ind*	Len**	Count*	Bin

Ind* — порядковый номер передаваемого блока (нумерация с нуля).

Len** — размер блока файла (не более 1024 байт).

Count* — номер последнего блока при нумерации с нуля.

Bin — бинарный блок файла.

В случае прерывания связи, передача продолжается с последнего непринятого пакета данных. Если устройство не ответило в течении 60 секунд, передача прерывается.

Примеры сообщений

Пример сообщения «Login»

Исходное сообщение:

242400004000130144737472696E675F646576696365696400009B93

2424 — заголовок пакета;

00 — тип сообщения (0 — login);

0040 — порядковый номер сообщения;

0013 — длина сообщения (поле расширяемое, но т. к. отсутствует старший бит длина равна 2 байтам, в противном случае была бы 4);

01 — версия протокола.;

44 — flag. Бинарное представление (0100 0100), тип id — 4 String, тип pwd — 4 String);

737472696E675F646576696365696400 — ID устройства. Последний

байт после string поля 0x00 согласно протоколу, чтобы понимать, где граница текстовых данных;

00 — байт окончания пароля, т. к. согласно флагу передаётся пароль. Независимо от того, есть ли значение пароля, байт окончания должен быть, т. к. согласно флагу пароль присутствует;

9B93 — CRC.

Пример сообщения «Ответ от сервера»

Исходное сообщение: 4040000040

4040 — заголовок пакета;

00 — код ответа (пакет успешно зарегистрирован);

0040 — порядковый номер сообщения.

Пример сообщения «Keep-Alive»

Исходное сообщение: 2424020011

2424 — заголовок пакета;

02 — тип сообщения (Keep-Alive);

0011 — порядковый номер сообщения.

Пример сообщения «Команда Firmware Block»

Исходное сообщение:

4040FF035D5E4FAA5C01010354015FEA4C0C404141EB010111F4801FA
4F10104E9D191F0000F04BF01460020B1FA81F308BF2033A3F10B03B3F12002
0CDA0C3208DD02F1140CC2F10C0201FA0CF021FA02F10CE002F11402D8BFC2
F1200C01FA02F120FA0CFCDCBF41EA0C019040E41AA2BF01EB0451294330BD
6FEA04041F3C1CDA0C340EDC04F11404C4F1200220FA04F001FA02F340EA030
021FA04F345EA030130BDC4F10C04C4F1200220FA02F001FA04F340EA030029
4630BD21FA04F0294630BD94F0000F83F4801306BF81F480110134013D4EE77
FEA645C18BF7FEA655C29D094EA050F08BF90EA020F05D054EA000C04BF194
6104630BD91EA030F1EBF0021002030BD5FEA545C05D14000494128BF41F00
04130BD14F580043CBF01F5801130BD01F0004545F0FE4141F470014FF00000
30BD7FEA645C1ABF194610467FEA655C1CBF0B46024650EA013406BF52EA03
3591EA030F41F4002130BD00BF90F0000F04BF0021704730B54FF4806404F13
2044FF000054FF0000150E700BF90F0000F04BF0021704730B54FF4806404F13
20410F0004548BF40424FF000013EE700BF42004FEAE2014FEA31014FEA0270
1FBF12F07F4393F07F4F81F06051704732F07F4208BF704793F07F4F04BF41F4

0021704730B54FF4607401F0004521F000411CE700BF50EA010208BF704730B
54FF000050AE050EA010208BF704730B511F0004502D5404261EB41014FF480
6404F132045FEA915C3FF4D8AE4FF003025FEADC0C18BF03325FEADC0C18BF
033202EBDC02C2F1200300FA03FC20FA02F001FA03FE40EA0E0021FA02F1144
4BDE600BF70B54FF0FF0C4CF4E06C1CEA11541DBF1CEA135594EA0C0F95EA0
C0F00F0DEF82C4481EA030621EA4C5123EA4C5350EA013518BF52EA033541F
4801143F4801338D0A0FB02CE4FF00005E1FB02E506F00042E0FB03E54FF000
06E1FB03569CF0000F18BF4EF0010EA4F1FF04B6F5007F64F5407404D25FEA4
E0E6D4146EB060642EAC62141EA55514FEAC52040EA5E504FEACE2EB4F1FD0
C88BFBCF5E06F1ED8BEF1004F08BF5FEA500E50F1000041EB045170BD06F000
4646EA010140EA020081EA0301B4EB5C04C2BFD4EB0C0541EA045170BD41F4
80114FF0000E013C00F3AB8014F1360FDEBF002001F0004170BDC4F10004203
C35DA0C341BDC04F11404C4F1200500FA05F3475FD6694BD8

```
4040 — заголовок пакета;

FF — код ответа (команда на устройство);

035D — длина пакета (523 байт);

5E4FAA5C — время отправки;

01 — тип команды «Firmware block»;

01 — порядковый номер блока (2 блок);

0354 — размер блока файла (512 байт);

01 — номер последнего блока (43);

5FEA4C0C404141EB010... — бинарный блок файла;

4BD8 — CRC16.
```

Пример сообщения «ACK (Firmware/Config)»

```
Исходное сообщение: 24240302FC000201004C6A 2424 — заголовок пакета; 03 — тип сообщения (АСК (Firmware)); 02FC — порядковый номер сообщения; 0002 — длина полезных данных; 01 — тип команды 00 — код ответа (пакет успешно принят); 4C6A — CRC.
```


Пример сообщения «Data»

Исходные сообщения:

Сообщение №1:

24240149F3006F5CF6150303010350A6EC023C5938000F012C01060B0064020 00000010000000050100000200070300040861367E09610FEF5CF6150204 010350A6C8023C59880000011F01060C005E02000000010000000000501000 00200070300050861367409610FEC0D010A0B0C0D0E0F81B913

```
2424 — заголовок пакета;
01 — тип сообщения;
49F3 — порядковый номер сообщения;
006F — длина полезных данных;
5CF61503 — время в секундах;
03 — количество записей;
01 — тип записи «Position Data»;
350A6EC – широта 55.61726 градусов. Значение получено путем
перевода в десятичную систему (55617260) и деления на 1 000 000;
23С5938 – долгота 37.509432 градусов. Значение получено путем
перевода в десятичную систему (37509432) и деления на 1 000 000;
000F — скорость 15 км/ч;
012С — курс 300 градусов;
0106 — высота 262 метра;
ОВ — 11 спутников;
0064 – 1 HDOP. Значение получено путем перевода в десятичную
систему (100) и деления на 100;
02 — тип записи «I/O Data»;
00000001 — Inputs;
0000000 — Outputs;
```

00 — тип записи «Custom Parameters»;


```
05 — количество записей;
      01 — номер датчика;
      00 — тип датчика (0 — unsingned byte (1 байт));
      00 — значение датчика;
      Итоговый вид параметра в Wialon: param1=0.
      02 00 07 — param2=7;
      03 00 04 — param3=4;
      08 — номер датчика;
      61 — тип датчика. Здесь тип датчика имеет дополнительный
множитель — старшие 3 бита 'X'. В бинарном представлении 0x61 => 0110
0001. Согласно протоколу 10**Х — степень числа 10. На 10**Х будет
разделено значение параметра;
      367E — param8=13.95;
      09 61 0FEF — param9=4.079;
      5CF61501 — время;
      04 — количество записей;
      01 — тип записи «Position Data»;
      0350A6C8 — широта 55.617224 градусов. Значение получено путем
      перевода в десятичную систему (55617224) и деления на 1 000 000;
      023С5988 — долгота 37.509512 градусов. Значение получено путем
перевода десятичную систему (37509512) и деления на 1 000 000;
      0000 — скорость;
      011F —курс 287 градусов;
      0106 — высота 262 м;
      ОС — 12 спутников;
      005E — 0.94 HDOP;
```

02 — тип записи «I/O Data»;


```
00000001 — Inputs;
00000000 — Outputs;
00 — тип записи «Custom Parameters»;
05 — количество записей;
01 — номер датчика;
00 — тип датчика (0 — unsingned byte (1 байт));
00 — значение датчика;
02 00 07 — param2=7;
03 00 05 — param3=5;
08 61 3674— param8=13.94;
09 61 0FEC - param9=4.076;
0D — тип записи «Wi-Fi Parameters»;
01 — количество записей;
0A0B0C0D0E0F — MAC-адрес (0a:0b:0c:0d:0e:0f);
81 - RSSI (-127);
B913 – CRC.
```

Сообщение №2:

24240149F3006F95A4EC3AA1A54D3F03010350A6EC023C5938000F012C0 1060B00640200000001000000000050100000200070300040861367E09 610FEF5CF6150204010350A6C8023C59880000011F01060C005E0200000 0010000000050100000200070300050861367409610FEC0D010A0B0C 0D0E0F81413C

```
2424 — заголовок пакета;01 — тип сообщения;49F3 — порядковый номер сообщения;
```



```
006F — длина полезных данных;
95A4EC3AA1A54D3F — время в наносекундах;
03 — количество записей;
01 — тип записи «Position Data»;
350A6EC – широта 55.61726 градусов. Значение получено путем
перевода в десятичную систему (55617260) и деления на 1 000 000;
23С5938 – долгота 37.509432 градусов. Значение получено путем
перевода в десятичную систему (37509432) и деления на 1 000 000;
000F — скорость 15 км/ч;
012С — курс 300 градусов;
0106 — высота 262 метра;
ОВ — 11 спутников;
0064 – 1 HDOP. Значение получено путем перевода в десятичную
систему (100) и деления на 100;
02 — тип записи «I/O Data»;
00000001 — Inputs;
00000000 — Outputs;
00 — тип записи «Custom Parameters»;
05 — количество записей;
01 — номер датчика;
00 — тип датчика (0 — unsingned byte (1 байт));
00 — значение датчика;
Итоговый вид параметра в Wialon: param1=0.
02 00 07 — param2=7;
03 00 04 — param3=4;
08 — номер датчика;
61 — тип датчика. Здесь тип датчика имеет дополнительный
```

GURTAM

```
множитель — старшие 3 бита 'X'. В бинарном представлении 0x61 => 0110
0001. Согласно протоколу 10**Х — степень числа 10. На 10**Х будет
разделено значение параметра;
      367E — param8=13.95;
      09 61 0FEF — param9=4.079;
      5CF61501 — время;
      04 — количество записей;
      01 — тип записи «Position Data»;
      0350A6C8 — широта 55.617224 градусов. Значение получено путем
      перевода в десятичную систему (55617224) и деления на 1 000 000;
      023С5988 — долгота 37.509512 градусов. Значение получено путем
перевода десятичную систему (37509512) и деления на 1 000 000;
      0000 — скорость;
      011F — курс 287 градусов;
      0106 — высота 262 м;
      ОС — 12 спутников;
      005E — 0.94 HDOP;
      02 — тип записи «I/O Data»;
      00000001 — Inputs;
      0000000 — Outputs;
      00 — тип записи «Custom Parameters»;
      05 — количество записей;
      01 — номер датчика;
      00 — тип датчика (0 — unsingned byte (1 байт));
      00 — значение датчика;
      02 00 07 — param2=7;
```



```
03 00 05 — param3=5;

08 61 3674— param8=13.94;

09 61 0FEC – param9=4.076;

0D — тип записи «Wi-Fi Parameters»;

01 — количество записей;

0A0B0C0D0E0F — MAC-адрес (0a:0b:0c:0d:0e:0f);

81 – RSSI (-127);

B913 – CRC.
```

Пример сообщения «Picture/Tachograph File»

Исходные сообщения:

Сообщение №1:

242401000102155CF78ACF010300020002746573745F696D61676500ffd8ffe00 0104a46494600010101004800480000fffe00134372656174656420776974682 047494d50ffdb0043002016181c1814201c1a1c24222026305034302c2c306246 4a3a5074667a787266706e8090b89c8088ae8a6e70a0daa2aebec4ced0ce7c9a e2f2e0c8f0b8cacec6ffdb004301222424302a305e34345ec6847084c6c6c6c6c6c 6c6c6c6c6c6c6c6c6c6fc20011080019008503011100021101031101ffc4001 5811adce38bd8a080b5916640cde84eb3c664a23a4686e79b37bd6235598dc68 62fa056496623417408822eaccc5025d8000000000000fffc4001f100001030403 010000000000000000000110001102131414220223040ffda00080101000105 025656815f0c0a8ac383b2cd99d34611ec9edb6dc0ba28c98307e6ffc400281100 02020201020309000000000000000010200110312311021134161202232334 051627181ffda0008010301013f0188e1c5888e1c58e8737ba5ab8f6d8d0b8a6c 5c0f6c57ed0640537872009bf5c2ae50534b2300a8aacac0815fd8df2dff007080f 908698792a3899bb534b201fca3282e10f13efcea

Сообщение №2:

242401000202155CF78AD0010301020002746573745F696D6167650012ca38a 8100c5b7a4ad8aab71530f676a8a8462d632138b5eaaa145081140d60c280d81 3c35a2236357e62a85142328614614535e91915f9831a81426a2b5871a91462a 0000110112031305071ffda0008010100063f02e6a2a751b161e162862e9bffc40 02010010101000201040300000000000000011100213141102051814061a1 ffda0008010100013f21c953254f4ea2f67bc2b32466481f9cc7b00e96bef4af288 dafac7f3d629ba8f9773a7ceed30790eeeeee9eee6a3c5dd08eefa453961397aad6 bab6f9cb79d547e308e9cabde18d3573fbc29d6a5b75e6e10db957bd5b7ceadbe 7f0fffda000c03010002000300000010925564b600d294d3066c124b720bff0002 6e16fe4924924924924fffc40026110100020103030305010000000000000010 011213141a15171c110b1f12040618191d1ffda0008010301013f108074980749 f4a37456bdbebbfe92e53f5973176ce6549a678972698e7d56aa338a1de1d6a6b a6eef2806bce0d9394f723b78028f7660a5871e665e9bc32ccea39bff0018c3e07f 58837d47b31c6e7c2036a0f76002acc7997d99a79b87499a38af50474128231d2 6be1174985b7bcd3b7298d1101d8cca0fc21913f6

Сообщение №3:

242401000301345CF78AD2010302011F02746573745F696D6167650046e3f2c 3362c557ea1e2c1a4554d5f89441f29649f0fb3ffc4001d1100020202030100000 0000000000000000110110213120304140ffda0008010201013f10232453ea6 3c3b8d1e08f24dc904d7a6858a8d8b02c7150213e0854a2d7c7ffc40023100101 0002020202010500000000000001110021315141611071204081a1e1f0ffda 0008010100013f10c755298eaa53af82bb42cfce0f66651ae199b4bcb589525a18 27716a7c90aaef4c455e0a6bd60153346b33fcbe9c109dab599ba881bcd1d6d7d e401e1cfe3fac60cdf97595269a6f6620691c7f7c54b7297a31aba4778e9baa386 bbaabf28c95716bbf6c022a60346c433c5988d55c424898068fb7bc76a9888a93 8cae6ddb8b042f38282b38c5aefdb029bf6fd1ff00ffd9684f

В качестве примера разбора данных для передачи файла используется сообщение №1. Для остальных сообщений (№2 и №3) принцип остаётся неизменным.

Разбор данных:

2424 — заголовок пакета;

01 — тип сообщения (Data);

0001 — порядковый номер (циклический 0 — 65535);

0215 — длина поля Data;

5CF78ACF — время формирования сообщения;

01 — количество записей:

03 — тип записи «Picture»;

00 — порядковый номер передаваемого блока (нумерация с нуля);

0200 — размер блока фотоизображения (только бинарная часть части изображения);

02 — номер последнего блока при нумерации с нуля;

746573745F696D61676500 — имя передаваемого изображения.

Текстовое поле, заканчивающееся на 0х00;

ffd8ffe000104a4649 ... f13e — бинарная часть изображения;

fcea — контрольная сумма.

Пример сообщения «UDP»

Пример сообщения представлен на базе типа «Data».

2424 01 49F3 0066 0144737472696E675F64657669636569640000 5CF6150303010350A6EC023C5938000F012C01060B006402000000010000000 000050100000200070300040861367E09610FEF5CF6150103010350A6C8023C 59880000011F01060C005E0200000001000000000050100000200070300050 861367409610FEC3EA9

2424 — заголовок пакета;

01 — тип сообщения («Data»);

49F3 — порядковый номер сообщения;

0066 — длина поля «Data»;

01 44 737472696E675F646576696365696400 00 — структура login.

(Содержит:

01 — версия протокола;

44 — flag;

737472696E675F646576696365696400 - ID;

00 — пароль).

Далее следует структура данных без изменений. Login также входит в расчёт CRC.

