from google.colab import drive

▼ New Section

data.head()

```
drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

import pandas as pd

data = pd.read_csv('/content/drive/MyDrive/Hyderabad-Data2.csv')

from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
    from sklearn.impute import SimpleImputer
```

amenities balconies bathroom combineDescription completeStreetName deposit facing facing active Shreya carnation, True {"LIFT":true,"GYM":false,"INTERNET":false,"AC"... 3 Block I, NCB Enclave, 90000 W Gachib... Inner Ring Rd, near True {"LIFT":false,"GYM":false,"INTERNET":false,"AC... 2 45000 F RTO Bandlaguda NaN South Zone Rd Number 2, Shirdi True {"LIFT":true,"GYM":true,"INTERNET":false,"AC":... 80000 Ε Sai Nagar, Manikonda, Hyde... Plot No. 44, Road No. True {"LIFT":false,"GYM":false,"INTERNET":false,"AC... 2 18000 NaN 1/A, kakatiya colony, W LB... Madhapur HUDA True {"LIFT":true,"GYM":false,"INTERNET":false,"AC"... 2 NaN Techno Enclave, Near 80000 Ε MaxCure Su... 5 rows × 36 columns

data.describe()

∃		bathroom	combineDescription	deposit	floor	property age	property size	rent amount	totalFloor	weight
_		Da CIII OOIII	COMBINEDESCI IPCION	иерозіс	11001	proper ty_age	proper ty_312e	Terre_amount	totali 100i	weight
	count	9820.000000	0.0	9.820000e+03	9820.000000	9820.000000	9820.000000	9820.000000	9820.000000	0.0
	mean	1.934216	NaN	3.426805e+04	2.184725	3.759165	1087.364460	15291.173931	4.044501	NaN
	std	0.747437	NaN	4.276260e+04	2.533791	3.477064	542.146286	9587.311735	4.199083	NaN
	min	1.000000	NaN	1.000000e+00	0.000000	-1.000000	0.000000	0.000000	0.000000	NaN
	25%	1.000000	NaN	1.600000e+04	1.000000	1.000000	720.000000	9000.000000	2.000000	NaN
	50%	2.000000	NaN	2.600000e+04	2.000000	3.000000	1030.000000	13000.000000	3.000000	NaN
	75%	2.000000	NaN	4.000000e+04	3.000000	5.000000	1350.000000	19000.000000	5.000000	NaN
	max	8.000000	NaN	2.000000e+06	31.000000	10.000000	10000.000000	100000.000000	80.000000	NaN

```
# after removing irrelevant columns
New_Data.info()
```

memory usage: 690.6+ KB

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 9820 entries, 0 to 9819
Data columns (total 9 columns):
                      Non-Null Count Dtype
# Column
---
0
    bathroom
                      9820 non-null
                                      int64
    floor
                      9820 non-null
                                      int64
    locality
                       9814 non-null
                                      object
    maintenanceAmount 9820 non-null
                                      object
                       9820 non-null
    property_age
                       9820 non-null
5
    property_size
                                      int64
6
    rent_amount
                       9820 non-null
                                      int64
   totalFloor
                       9820 non-null
                                      int64
8 type_bhk
                       9820 non-null
                                      object
dtypes: int64(6), object(3)
```

```
New_Data.replace({'parking':{'BOTH':0,'TWO_WHEELER':1,'FOUR_WHEELER':2,'NONE':3}},inplace=True)
New_Data.replace({'type_bhk':{'RK1':0.5,'BHK1':1,'BHK2':2,'BHK3':3,'BHK4':4,'BHK4PLUS':5}},inplace=True)
New_Data.replace({'maintenanceAmount':{'None':int(0)}},inplace=True)
New_Data.replace({'furnishingDesc':{'Unfurnished':0,'Semi':1,'Full':2}},inplace=True)
```

Assuming 'object_column' contains strings and 'int_column' contains integ

New_Data['total_price'] = New_Data['maintenanceAmount'].astype(str) + New_Data['rent_amount'].astype(str)

```
New_Data['total_price']
```

```
0
        200028000
1
           015000
        100016000
2
          5009000
        200032500
           013000
9815
9816
            05000
9817
          2008500
            08000
9818
9819
            17000
Name: total price, Length: 9820, dtype: object
```

New_Data = pd.concat([New_Data.iloc[:, :-1], New_Data['total_price']], axis=1)

New_Data.head()

	bathroom	floor	locality	maintenanceAmount	property_age	property_size	rent_amount	totalFloor	type_bhk	total_price
0	3	3	Gachibowli	2000	5	2200	28000	5	3.0	200028000
1	2	2	Chandrayangutta	0	1	1200	15000	2	3.0	015000
2	3	0	Manikonda	1000	0	1800	16000	3	3.0	100016000
3	2	2	LB Nagar	500	0	750	9000	2	2.0	5009000
4	2	2	HITEC City	2000	5	1250	32500	5	2.0	200032500

New_Data = New_Data.drop(['rent_amount', 'maintenanceAmount'],axis=1)

New_Data.head()

	bathroom	floor	locality	property_age	property_size	totalFloor	type_bhk	total_price
0	3	3	Gachibowli	5	2200	5	3.0	200028000
1	2	2	Chandrayangutta	1	1200	2	3.0	015000
2	3	0	Manikonda	0	1800	3	3.0	100016000
3	2	2	LB Nagar	0	750	2	2.0	5009000
4	2	2	HITEC City	5	1250	5	2.0	200032500

```
# after removing irrelevant columns
New_Data.isnull().sum()
     bathroom
     floor
                      0
     locality
                      6
     property_age
                      0
     property_size
                      a
     totalFloor
                      0
     type_bhk
                      0
     total_price
                      0
     dtype: int64
# Fill missing values in the "locality" column with 0
New_Data['locality'].fillna(0, inplace=True)
# Check for missing values after filling
missing_values = New_Data.isnull().sum()
# Print the updated DataFrame with missing values filled
print(New_Data)
# Print the count of missing values in each column
print("Missing Values Count:\n", missing_values)
           bathroom floor
                                                   locality property_age
     0
                  3
                         3
                                                 Gachibowli
                                                                         5
     1
                  2
                         2
                                            Chandrayangutta
                                                                         1
                  3
                                                  Manikonda
     3
                  2
                         2
                                                   LB Nagar
                                                                         0
                  2
                         2
                                                  HITEC City
     4
                                                                         5
                  2
     9815
                                                   King Koti
                                                                        5
     9816
                  1
                         0
                                            Jagadgiri Gutta
     9817
                            Jyothi Nagar, Ramachandra Puram
                                                                        10
                  1
                         0
     9818
                  1
                         1
                                                  Kukatpally
                                                                        10
     9819
                                                   Yusufguda
                                                                        10
           property_size totalFloor
                                      type_bhk total_price
     0
                    2200
                                           3.0
                    1200
                                   2
                                           3.0
                                                    015000
     1
     2
                    1800
                                   3
                                           3.0
                                                 100016000
                     750
                                           2.0
                                                    5009000
                    1250
                                   5
                                           2.0
                                                 200032500
     4
                                                     013000
     9815
                     800
                                   2
                                           2.0
     9816
                     150
                                   0
                                           0.5
                                                      05000
                                                    2008500
     9817
                                           1.0
                     550
                                   3
     9818
                     500
                                           1.0
                                                      08000
     9819
                     560
                                                      17000
     [9820 rows x 8 columns]
     Missing Values Count:
     bathroom
                      0
     floor
     locality
                      0
     property_age
                      0
     property_size
     totalFloor
                      0
     type_bhk
                      0
     total price
                      0
     dtype: int64
New_Data.isnull().sum()
     bathroom
     floor
     locality
                      0
     property_age
                      0
     property_size
     totalFloor
                      0
     type_bhk
                      0
     total_price
                      0
     dtype: int64
```

https://colab.research.google.com/drive/1EZtf14vKgYbq ny4SXloYkcDlghluZqT#scrollTo=J53AqPpLcMWn

New_Data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9820 entries, 0 to 9819 Data columns (total 8 columns): # Column Non-Null Count Dtype -------------0 bathroom 9820 non-null int64 9820 non-null int64 floor 2 locality 9820 non-null object 3 property_age 9820 non-null int64 4 property_size 9820 non-null int64 totalFloor 9820 non-null int64 type_bhk 9820 non-null float64 7 total_price 9820 non-null object

dtypes: float64(1), int64(5), object(2)

memory usage: 613.9+ KB

New_Data.head()

	bathroom	floor	locality	property_age	property_size	totalFloor	type_bhk	total_price
0	3	3	Gachibowli	5	2200	5	3.0	200028000
1	2	2	Chandrayangutta	1	1200	2	3.0	015000
2	3	0	Manikonda	0	1800	3	3.0	100016000
3	2	2	LB Nagar	0	750	2	2.0	5009000
4	2	2	HITEC City	5	1250	5	2.0	200032500

Assuming 'data' is your DataFrame
New_Data = pd.get_dummies(New_Data, columns=['locality'], prefix='locality')

New_Data.head()

	bathroom	floor	property_age	property_size	totalFloor	type_bhk	total_price	locality_0	locality_ Chanda Nagar	locality_ Nacharam		locality_
0	3	3	5	2200	5	3.0	200028000	0	0	0		
1	2	2	1	1200	2	3.0	015000	0	0	0		
2	3	0	0	1800	3	3.0	100016000	0	0	0		
3	2	2	0	750	2	2.0	5009000	0	0	0		
4	2	2	5	1250	5	2.0	200032500	0	0	0		
5 rc	5 rows × 1779 columns											

```
X = New_Data.drop(columns=['total_price'], axis=1)
```

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

 $from \ sklearn.linear_model \ import \ LinearRegression$

Create a Linear Regression model
model = LinearRegression()

Train the model on the training data
model.fit(X_train, y_train)

* LinearRegression
LinearRegression()

y = New_Data['total_price']

```
# Make predictions
predictions = model.predict(X_test)
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import numpy as np
# Evaluate the model
mae = mean_absolute_error(y_test, predictions)
mse = mean_squared_error(y_test, predictions)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, predictions)
print(f"Mean Absolute Error: {mae}")
print(f"Mean Squared Error: {mse}")
print(f"Root Mean Squared Error: {rmse}")
print(f"R-squared: {r2}")
     Mean Absolute Error: 331739597084320.9
     Mean Squared Error: 1.0515424152685784e+31
     Root Mean Squared Error: 3242749474240306.5
     R-squared: -527799281337713.7
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# Split your data into features (X) and the target variable (y)
X = New_Data.drop('total_price', axis=1)
y = New_Data['total_price']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a Linear Regression model
model = LinearRegression()
# Train the model on the training data
model.fit(X_train, y_train)
# Now, the model is fitted, and you can make predictions on new data
# Example usage:
input_features = X_test.sample(1) # Get a random sample from your test data
predicted_rent = model.predict(input_features)
print(f"Predicted Rent Price: {predicted_rent[0]}")
```

Predicted Rent Price: -920311959769818.2