Homework 1 for **MATH 561**, Set Theory

Due: Thursday Jan 26

Problem 1

Let \mathcal{L} be a finite language and let \mathcal{M} be a finite \mathcal{L} -structure. Show that there is an \mathcal{L} -sentence σ such that $\mathcal{N} \models \sigma$ if and only if $\mathcal{N} \cong \mathcal{M}$.

Problem 2

Let \mathcal{M} be an \mathcal{L} -structure and suppose $X \subseteq M$. We say $b \in M$ is algebraic over X if there exist an \mathcal{L} -formula φ and $a_1, \ldots, a_m \in X$ such that $\mathcal{M} \models \varphi[b, a_1, \ldots, a_n]$ and $\{y \in M : \mathcal{M} \models \varphi[y, a_1, \ldots, a_m]\}$ is finite.

Let $acl(X) = \{b \in M : b \text{ is algebraic over } X\}$ be the algebraic closure of X.

- (a) Suppose that $x \in \operatorname{acl}(A)$. Show that there are x_1, \ldots, x_m such that if σ is an automorphism of \mathbb{M} with $\sigma(a) = a$ for all $a \in A$, then $\sigma(x) = x_i$ for some i. In other words, there are only finitely many conjugates for x under automorphisms of \mathbb{M} fixing A.
- (b) Show that acl(acl(X)) = acl(X).
- (c) Show that if $x \in acl(A)$, then $x \in acl(A_0)$ for some finite $A_0 \subseteq A$.
- (d) Show that if $A \subseteq B$, then $acl(A) \subseteq acl(B)$.

Problem 3

Suppose that $\mathcal{M} \preceq \mathcal{N}$ and $A \subseteq M$.

- (a) Show that acl(A) in \mathcal{M} is equal to acl(A) in \mathcal{N} .
- (b) Give examples showing that this is not true if we only have $\mathcal{M} \equiv \mathcal{N}$ and $\mathcal{M} \subseteq \mathcal{N}$.

Problem 4

An ultrafilter \mathcal{U} over \mathbb{N} is *Ramsey* if for any infinite partition $(A_n : n \in \mathbb{N})$ of \mathbb{N} so that $A_n \notin \mathcal{U}$ for all n, there exists $X \in \mathcal{U}$ with $|X \cap A_n| = 1$ for all n.

Show that an ultrafilter \mathcal{U} over \mathbb{N} is Ramsey if and only if every function $f: \mathbb{N} \to \mathbb{N}$ is either one-one on a set in \mathcal{U} or constant on a set in \mathcal{U} .