Titanic EDA

Name: Harsh Sharma

Task: Task 5 – Exploratory Data Analysis

Dataset: train.csv

```
In [6]: # Cell: imports and settings
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

sns.set_style('whitegrid')
pd.set_option('display.max_columns', None)

# Load
df = pd.read_csv('train.csv')
```

```
In [7]: # Basic inspection
    print("Shape:", df.shape)
    display(df.head())
    display(df.info())
    display(df.describe(include='all').T)
    print("\nMissing values:")
    display(df.isnull().sum().sort_values(ascending=False))
```

Shape: (891, 12)

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
dtyp	<pre>dtypes: float64(2), int64(5), object(5)</pre>						

None

memory usage: 83.7+ KB

	count	unique	top	freq	mean	std	min	25%	50%	7!
Passengerld	891.0	NaN	NaN	NaN	446.0	257.353842	1.0	223.5	446.0	668
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0	•
Pclass	891.0	NaN	NaN	NaN	2.308642	0.836071	1.0	2.0	3.0	;
Name	891	891	Braund, Mr. Owen Harris	1	NaN	NaN	NaN	NaN	NaN	N
Sex	891	2	male	577	NaN	NaN	NaN	NaN	NaN	Ν
Age	714.0	NaN	NaN	NaN	29.699118	14.526497	0.42	20.125	28.0	38
SibSp	891.0	NaN	NaN	NaN	0.523008	1.102743	0.0	0.0	0.0	٠
Parch	891.0	NaN	NaN	NaN	0.381594	0.806057	0.0	0.0	0.0	(
Ticket	891	681	347082	7	NaN	NaN	NaN	NaN	NaN	Ν
Fare	891.0	NaN	NaN	NaN	32.204208	49.693429	0.0	7.9104	14.4542	3
Cabin	204	147	B96 B98	4	NaN	NaN	NaN	NaN	NaN	N
Embarked	889	3	S	644	NaN	NaN	NaN	NaN	NaN	N

Missing values:

Cabin	687
Age	177
Embarked	2
PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
SibSp	0
Parch	0
Ticket	0
Fare	0

dtype: int64

```
In [8]: # Fill Embarked with mode
df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])

# HasCabin
df['HasCabin'] = df['Cabin'].notnull().astype(int)

# Extract Title from Name
df['Title'] = df['Name'].str.extract(r',\s*([^\\.]+)\\.', expand=False)
# Map rare titles to "Other"
rare_titles = ['Lady','Countess','Capt','Col','Don','Dr','Rev','Sir','Jonkfdf['Title'] = df['Title'].replace(rare_titles, 'Other')
df['Title'] = df['Title'].replace({'Mlle':'Miss','Ms':'Miss','Mme':'Mrs'})

# Family size
df['FamilySize'] = df['SibSp'] + df['Parch'] + 1
df['IsAlone'] = (df['FamilySize']==1).astype(int)

# Quick check
display(df[['HasCabin','Title','FamilySize','IsAlone']].head())
```

	HasCabin	Title	FamilySize	IsAlone
0	0	Mr	2	0
1	1	Mrs	2	0
2	0	Miss	1	1
3	1	Mrs	2	0
4	0	Mr	1	1

```
In [9]: # Impute Age by median age per Title
title_age_median = df.groupby('Title')['Age'].median()
def fill_age(row):
    if pd.isnull(row['Age']):
        return title_age_median.get(row['Title'], df['Age'].median())
    else:
        return row['Age']

df['Age'] = df.apply(fill_age, axis=1)
```

```
In [10]: print("Missing after imputation:")
display(df.isnull().sum())

# Drop columns not needed for EDA/report (keep them if you want to engineer
# e.g. drop Ticket, Cabin (already used HasCabin)
df_clean = df.drop(columns=['Ticket','Cabin','Name','PassengerId'])
display(df_clean.head())
```

Missing after imputation:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	0
HasCabin	0
Title	0
FamilySize	0
IsAlone	0
dtype: int64	

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	HasCabin	Title	Famil
0	0	3	male	22.0	1	0	7.2500	S	0	Mr	
1	1	1	female	38.0	1	0	71.2833	С	1	Mrs	
2	1	3	female	26.0	0	0	7.9250	S	0	Miss	
3	1	1	female	35.0	1	0	53.1000	S	1	Mrs	
4	0	3	male	35.0	0	0	8.0500	S	0	Mr	

```
In [11]: # Survived counts
         sns.countplot(x='Survived', data=df)
         plt.title('Survived counts')
         plt.show()
         # Pclass, Sex, Embarked counts
         fig, axes = plt.subplots(1,3, figsize=(15,4))
         sns.countplot(x='Pclass', data=df, ax=axes[0]); axes[0].set_title('Pclass')
         sns.countplot(x='Sex', data=df, ax=axes[1]); axes[1].set_title('Sex')
         sns.countplot(x='Embarked', data=df, ax=axes[2]); axes[2].set_title('Embarked')
         plt.tight_layout()
         plt.show()
         # Age histogram
         plt.figure(figsize=(8,4))
         sns.histplot(df['Age'], bins=30, kde=True)
         plt.title('Age distribution')
         plt.show()
```

Survived counts


```
In [12]: # Survival rate by Sex
display(pd.crosstab(df['Sex'], df['Survived'], normalize='index')*100)

# Plot survival rate by Sex, Pclass, Embarked
fig, axes = plt.subplots(1,3, figsize=(15,4))
sns.barplot(x='Sex', y='Survived', data=df, ax=axes[0])
sns.barplot(x='Pclass', y='Survived', data=df, ax=axes[1])
sns.barplot(x='Embarked', y='Survived', data=df, ax=axes[2])
axes[0].set_title('Survival rate by Sex')
axes[1].set_title('Survival rate by Pclass')
axes[2].set_title('Survival rate by Embarked')
plt.ylim(0,1)
plt.tight_layout()
plt.show()
```



```
In [13]: # Boxplots
fig, axes = plt.subplots(1,2, figsize=(12,5))
sns.boxplot(x='Survived', y='Age', data=df, ax=axes[0])
sns.boxplot(x='Survived', y='Fare', data=df, ax=axes[1])
axes[0].set_title('Age vs Survived')
axes[1].set_title('Fare vs Survived')
plt.tight_layout()
plt.show()
```



```
In [14]: # Correlation heatmap
    num_cols = ['Survived','Pclass','Age','SibSp','Parch','Fare','FamilySize','
    plt.figure(figsize=(10,8))
    sns.heatmap(df[num_cols].corr(), annot=True, fmt=".2f", cmap='coolwarm', sc
    plt.title('Correlation matrix')
    plt.show()

# Pairplot (small sample to speed up)
    sns.pairplot(df.sample(300), vars=['Age','Fare','SibSp','Parch'], hue='Surv
    plt.show()
```


C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserW
arning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)


```
In [15]: # Chi-square test for Sex vs Survived
   import scipy.stats as stats
   cont_table = pd.crosstab(df['Sex'], df['Survived'])
   chi2, p, dof, ex = stats.chi2_contingency(cont_table)
   print("Chi2 test for Sex vs Survived -> p-value:", p)

# t-test for Age by survival groups
   survived_age = df[df['Survived']==1]['Age']
   nonsurvived_age = df[df['Survived']==0]['Age']
   tstat, p_age = stats.ttest_ind(survived_age, nonsurvived_age, equal_var=Fal
   print("t-test Age by Survived -> p-value:", p_age)
```

Chi2 test for Sex vs Survived -> p-value: 1.1973570627755645e-58 t-test Age by Survived -> p-value: 0.021490175388249624

```
In [16]: # VIF (on numeric columns)
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    X = df[num_cols].drop(columns=['Survived']) # exclude target
    X = X.fillna(0)
    vif_data = pd.DataFrame()
    vif_data['feature'] = X.columns
    vif_data['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.display(vif_data)
```

	feature	VIF
0	Pclass	2.669450
1	Age	1.247118
2	SibSp	71.060873
3	Parch	38.606138
4	Fare	1.615440
5	FamilySize	272.321098
6	HasCabin	2.168795
7	IsAlone	2.081842

Summary of findings

- Key finding 1: Females had much higher survival rate.
- Key finding 2: Higher class (Pclass=1) had much better survival.
- Key finding 3: Having a cabin (HasCabin) correlates with higher fare/likely Pclass and survival.
- Key finding 4: Family size effects...
- Limitations: missing Cabin, possible imputation bias for Age, etc.

```
In [17]: # Save cleaned data
    df.to_csv('train_cleaned.csv', index=False)

# Save key figures programmatically (example)
    # plt.savefig('fig_survived_counts.png', dpi=150) # call after each plot

In [ ]:
```