1 Allgemeines

Ein **Graph** G wird beschrieben durch G = (V, E).

Ein Graph $K_n = (V, E)$ ist **vollständig** wenn alle möglichen Kanten für die Knoten V in E enthalten sind. Ein Knoten x hat den **Grad** n =: deg(x) wenn er genau n Nachbarn hat. Ist deg(x) = 0 so ist x ein **isolierter Knoten**. Ist deg(x) = 1 so ist x ein **Blatt**.

Ein Graph G ist genau dann **zusammenhängend** wenn jeder Knoten direkt oder indirekt mit jedem anderen Verbunden ist.

Ein Graph $C_n = (V, E)$ ist ein **Kreisgraph** wenn alle Knoten den Grad zwei haben und der Graph zusammenhängend ist.

Eine **Clique** in einem Graphen G ist ein Subgraph dieses Graphen der isomorph zu einem Graphen K_n ist (für ein beliebiges n). Das größtmögliche $n =: \omega(G)$ ist die **Cliquenzahl**

Eine **Stabile Menge** in einem Graphen G ist ein Subgraph dieses Graphen der isomorph zu einem Graphen E_n ist (für beliebiges n). Das größtmögliche n =: (g) ist die **Stabilitätszahl**

Der Graph $E_n = (V, \emptyset)$ ist der **leere Graph**.

Ein Matching ist eine Auswahl an eindeutigen Zuordnungen von Elementen einer Menge.

Eine Knotenüberdeckung (Vertex Cover) für einen Graphen G = (V, E) ist eine Menge $V' \subset V$ wobei es für jedes $e \in E$ ein $v \in V'$ gibt für das $v \in e$.

2 Färbung

Chromatische Zahl ist $\chi(G) := min\{k \in \mathbb{N} : G \text{ hat k F\"{a}rbung}\}.$

Für jeden Graphen G(V, E) gilt $\omega(g) \leq \chi(g)$ und $\frac{|V|}{\alpha(G)} \leq \chi(g)$.

Ein Graph G ist **bipartit** wenn $\chi(G) \leq 2$.

Graph ist bipartit ⇔ ∄ Kreis ungerader Länge in G

2.1 Greedy

Für alle Knoten $v \in V$ aus G = (V, E): nehme ausschließlich bekannte Knotenfärbungszahlen aller verbundenen Knoten in eine Menge N, Knotenfärbung von v ist die kleinste Zahl aus den natürlichen Zahlen ohne N.

3 Planarität

Ein Graph ist genau dann planar, wenn er keine Unterteilung des $K_5 oder des K_3$, 3besitzt Eulersche Polyederformel: (R sei die Anzahl der Regionen inkl. Außenregion)

$$|V| - |E| + |R| = 2$$

Weiterhin: $|E| \le 3n - 6$ $2|E| \le 3|R|$

4 Netzwerke

4.1 Minimaler Spannbaum

Kruskal, Gewichte aufsteigend betrachten und nur inkludieren wenn neuer Knoten eingebunden wird oder Partitionen verbunden werden.

4.2 Floyd, Dajkstra, Kruskal

4.2.1 Floyd, Kürzeste Pfade

d(i,j) initialisieren. Für alle $k \in 1$ bis n: Für alle Knotenpaare i,j sei d(i,j) = min(d(i,j),d(i,k)+d(k,j)).

4.2.2 Dajkstra, Kürzeste Pfade bei nichtnegativen Kanten

Nehme Knoten mit minimaler Distanz zum Startknoten - hinzufügen. (Nachbarknoten ggf. updaten.)

4.2.3 Kruskal, Minimaler Spannbaum

Aus unbenutzten Kanten die kürzeste wählen, die mit den gewählten keinen Kreis bildet. Wiederholen.

Komplexitäten (vereinfacht) **5**

Abschätzung nach oben

$$f \in O(g) \Leftrightarrow \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty \qquad \qquad f(n) = O(g(n)) \Leftrightarrow f(n) \leq c \cdot g(n)$$

Abschätzung 5.2

$$f \in \Theta(g) \Leftrightarrow 0 < \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$$
$$f(n) = \Theta(g(n)) \Leftrightarrow c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Abschätzung nach unten

$$f \in \Omega(g) \Leftrightarrow 0 < \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| \qquad \qquad f(n) = \Omega(g(n)) \Leftrightarrow f(n) \geq c \cdot g(n)$$

6 Matroide

TODO

Linear Programming

- LP7.1
- **Dual Problem**
- 8 SAT

k-SAT mit $k \geq 3$ sind NP-schwer. $SAT \leq 3 - SAT \leq Clique$

9 Misc

$$\sum_{e \in V} deg(v) = 2 \cdot |E|$$

 $\sum_{v \in V} deg(v) = 2 \cdot |E|$ Ungewichtetes Scheduling: Tasks mit größter Penalty auf ihre Deadline oder davor setzen, abwärts.