Power Analysis

02/16/2025

```
library(ggplot2)
set.seed(123)
# Function to generate random user IDs
generate_user_id <- function(n) {</pre>
  replicate(n, paste0(sample(c(0:9, letters, LETTERS), 12, replace = TRUE), collapse = ""))
n <- 30000
# Define baseline conversion rates and lifts
baseline_rate <- 0.24 # 24% of users apply again in the same session
effect_sizes <- c(0.10, 0.18, 0.25) # 10%, 18%, and 25% increases
# Dataframe to store power results
power_results <- data.frame()</pre>
# Nested loops for different effect sizes
for (effect_size in effect_sizes) {
  # Create the dataframe for each scenario
  df <- data.frame(
   user_id = generate_user_id(n),
   test_group = sample(c("treatment", "control"), n, replace = TRUE),
   applied = NA
  # Apply baseline conversion for the control group
  df$applied[df$test_group == "control"] <- rbinom(sum(df$test_group == "control"), 1, baseline_rate)</pre>
  # Apply lift for the treatment group (baseline * (1 + effect_size))
  df$applied[df$test_group == "treatment"] <- rbinom(sum(df$test_group == "treatment"), 1, baseline_rat
  # Initialize vector to store power by sample size
  power_by_size <- numeric(length = length(seq(0.01, 1, by = 0.05)))</pre>
  percentages_to_sample <- seq(0.01, 1, by = 0.05) # Adjust granularity
  # Loop through different sample sizes
  for (i in seq_along(percentages_to_sample)) {
    sample_size <- floor(percentages_to_sample[i] * nrow(df)) # Actual sample size</pre>
   if (sample_size == 0) next # Skip iteration if sample size is zero
    t_test_p_values <- rep(NA, 100) # Store p-values
```

```
for (j in 1:100) {
      # Ensure treatment and control sample sizes are balanced
      treatment_sample_size <- floor(sample_size / 2)
      control_sample_size <- sample_size - treatment_sample_size
      # Sample treatment and control data
      treatment_sample <- df[df$test_group == "treatment", ]
      control sample <- df[df$test group == "control", ]
      treatment_sample <- treatment_sample[sample(1:nrow(treatment_sample),</pre>
                                                   size = min(treatment_sample_size, nrow(treatment_samp
                                                   replace = TRUE), ]
      control_sample <- control_sample(sample(1:nrow(control_sample),</pre>
                                               size = min(control_sample_size, nrow(control_sample)),
                                               replace = TRUE), ]
      # Combine treatment and control samples
      sampled_data <- rbind(treatment_sample, control_sample)</pre>
      # Perform t-test on the sampled data
      t_test <- t.test(applied ~ test_group, data = sampled_data)
      t_test_p_values[j] <- t_test$p.value
    # Calculate proportion of rejections (power) for this sample size
    t test rejects <- t test p values < 0.05
    power_by_size[i] <- mean(t_test_rejects)</pre>
  # Store power results
  power_results <- rbind(power_results, data.frame(</pre>
    Sample Size = percentages to sample * n,
   Power = power_by_size,
   Effect_Size = paste0(effect_size * 100, "%")
 ))
}
# Plot power by sample size
p <- ggplot(power_results, aes(x = Sample_Size, y = Power, color = Effect_Size)) +
  geom_line(size = 1.2) +
  geom_point(size = 2) +
  labs(
    title = "Power Analysis: Sample Size vs. Achieved Power",
   x = "Sample Size",
   y = "Power",
   color = "Effect Size"
  geom_hline(yintercept = 0.8, linetype = "dashed", color = "red") +
  annotate("text", x = max(power results $Sample Size) * 0.7, y = 0.82,
           label = "80% Power Threshold", color = "red") +
  theme minimal()
print(power_results)
```

##		Sample_Size	Power	Effect_Size
##	1	300	0.08	10%
##	2	1800	0.18	10%
##	3	3300	0.37	10%
##	4	4800	0.45	10%
##	5	6300	0.46	10%
##	6	7800	0.64	10%
##	7	9300	0.70	
##	8	10800	0.81	10%
##	9	12300	0.77	10%
##	10	13800	0.79	10%
##	11	15300	0.89	10%
##	12	16800	0.92	10%
##	13	18300	0.95	10%
##	14	19800	0.91	10%
##	15	21300	0.95	10%
##	16	22800	0.98	10%
##	17	24300	0.98	10%
##	18	25800	0.98	10%
##	19	27300	0.97	10%
##	20	28800	0.95	10%
##	21	300	0.07	18%
##	22	1800	0.31	18%
##	23	3300	0.57	18%
##	24	4800	0.77	18%
##	25	6300	0.94	18%
##	26	7800	0.91	18%
##	27	9300	0.96	18%
##	28	10800	1.00	18%
##	29	12300	0.99	18%
##	30	13800	1.00	18%
##	31	15300	0.99	18%
##	32	16800	1.00	18%
##	33	18300	0.99	18%
##	34	19800	1.00	18%
##	35	21300		18%
##	36	22800		18%
##	37	24300	1.00	18%
	38	25800	1.00	18%
	39	27300		18%
	40	28800		18%
	41	300		25%
	42	1800		25%
	43	3300		25%
	44	4800		25%
##		6300		25%
##		7800		25%
	47	9300		25%
	48	10800		25%
	49	12300		25%
##		13800		25%
##		15300		25%
##		16800		25%
##	53	18300	1.00	25%

##	54	19800	1.00	25%
##	55	21300	1.00	25%
##	56	22800	1.00	25%
##	57	24300	1.00	25%
##	58	25800	1.00	25%
##	59	27300	1.00	25%
##	60	28800	1.00	25%

print(p)

Key takeaways:

- If we expect a small lift (~10%) in applications, we should aim for at least 10,800 job seekers in our experiment.
- If we expect a moderate lift (~18%), a sample size of 4,800 job seekers should be sufficient.
- If we anticipate a strong effect (~25%), we can obtain reliable results with just 1,800 job seekers.