EXERCICE 1.**

On appelle $nombre\ parfait$ tout entier $\mathfrak n$ dont la somme des diviseurs vaut $2\mathfrak n$ ou de manière équivalente tout entier $\mathfrak n$ dont la somme des diviseurs stricts (i.e. $\mathfrak n$ non compris) vaut $\mathfrak n$.

- 1. Pour $n \in \mathbb{N}^*$, on notera S(n) la somme des diviseurs de S. Montrer que la fonction S est multiplicative i.e. si $m \wedge n = 1$ alors S(mn) = S(m)S(n).
- **2.** Soit $p \in \mathbb{N}$ tel que $2^p 1$ soit premier.
 - \mathbf{a} . Montrer que \mathbf{p} est premier.
 - **b.** Montrer que $n = 2^{p-1}(2^p 1)$ est parfait (i.e. S(n) = 2n).
- 3. Montrer que tout nombre parfait pair est de la forme $2^{p-1}(2^p-1)$ où p est premier.

EXERCICE 2.

- 1. Soit $m \in \mathbb{N}^*$ tel que $2^m + 1$ soit premier. Montrer que $m = 2^n$ où $n \in \mathbb{N}$.
- 2. Notons $F_n = 2^{2^n} + 1$. Montrer que si $n \neq m$, F_n et F_m sont premiers entre eux.

EXERCICE 3.

Soit p un nombre premier.

- 1. Montrer que pour tout $k \in [1, p-1], \binom{p}{k}$ est divisible par p.
- 2. En déduire que pour tout entier $\mathfrak{n}\in\mathbb{N},$ $\mathfrak{n}^p-\mathfrak{n}$ est divisible par \mathfrak{p} (i.e. $\mathfrak{n}^p\equiv\mathfrak{n}[\mathfrak{p}]).$

EXERCICE 4.

Soient $\mathfrak a$ et $\mathfrak r$ deux entiers supérieurs ou égaux à 2. On suppose que $\mathfrak a^{\mathfrak r}-1$ est premier.

- 1. Montrer que a vaut 2 puis que r est premier.
- 2. La réciproque est-elle vraie?

EXERCICE 5.

Pour $n \in \mathbb{N}^*$, on appelle $n^{\text{ème}}$ nombre de Mersenne l'entier $M_n = 2^n - 1$.

- 1. a. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{N}^*$ un diviseur positif de n. Montrer que $2^{\alpha}-1$ divise M_n .
 - **b.** En déduire que si M_n est un nombre premier, alors n est un nombre premier.
- 2. Soient $\mathfrak{p},\mathfrak{q}$ des nombres premiers avec \mathfrak{p} impair. On suppose que \mathfrak{q} divise $M_{\mathfrak{p}}.$
 - a. Montrer que \mathfrak{q} est impair. En déduire que $2^{\mathfrak{q}-1}\equiv 1[\mathfrak{q}]$ en utilisant le petit théorème de Fermat.
 - **b.** Soit $A = \{n \in \mathbb{N}^* \mid 2^n \equiv 1[q]\}$. Montrer que A admet un minimum que l'on notera m.
 - **c.** En effectuant la division euclidienne de $\mathfrak p$ par $\mathfrak m$, montrer que $\mathfrak m$ divise $\mathfrak p$ puis que $\mathfrak m=\mathfrak p$.
 - **d.** En effectuant la division euclidienne de q-1 par $\mathfrak{p},$ montrer que $q\equiv 1[\mathfrak{p}].$
 - **e.** Montrer que $q \equiv 1[2p]$.
- 3. Soient p un nombre premier impair et $n \in \mathbb{N}^*$ divisant M_p . En utilisant la décomposition en facteurs premiers de n et la question précédente, montrer que $n \equiv 1[2p]$.

EXERCICE 6.

Montrer que la somme de deux nombres premiers consécutifs ne peut pas être égal au produit de deux nombres premiers.

EXERCICE 7.

Soient a et b des entiers naturels non nuls premiers entre eux tels que ab soit une puissance $n^{\grave{\mathrm{e}}\mathrm{me}}$ d'entier $(n \in \mathbb{N})$. Montrer que a et b sont des puissances $n^{\grave{\mathrm{e}}\mathrm{me}\mathrm{s}}$ d'entiers.

EXERCICE 8.

Montrer que pour tout entier $n \ge 2$ et tout entier a impair

$$a^{2^{n-1}} \equiv 1 \left[2^n \right]$$

EXERCICE 9.

Résoudre le système d'inconnue $x \in \mathbb{Z}$: $\begin{cases} x \equiv 2[10] \\ x \equiv 5[13] \end{cases}$

EXERCICE 10.

- 1. Le système $\begin{cases} x \equiv 3[10] \\ x \equiv 4[8] \end{cases}$ d'inconnue $x \in \mathbb{Z}$ admet-il des solutions?
- **2.** Soit $(a,b) \in \mathbb{Z}^2$. A quelle condition le système $\begin{cases} x \equiv a[10] \\ x \equiv b[8] \end{cases}$ admet-il des solutions?
- 3. Déterminer les solutions du système $\begin{cases} x \equiv 4[10] \\ x \equiv 2[8] \end{cases}$

EXERCICE 11.

- 1. Soit n un entier impair. Montrer que $n^2 \equiv 1 \mod 8$.
- 2. Soit p > 3 un nombre premier. Montrer que $p^2 1$ est multiple de 24.

EXERCICE 12.

Soit (u_n) la suite définie par $u_0 = 9$ et par la relation de récurrence $u_{n+1} =$ $3u_n^4 + 4u_n^3$ pour $n \in \mathbb{N}$. Montrer que l'écriture décimale de u_{11} comporte plus de 2010 chiffres 9.

EXERCICE 13.

Soit $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in \mathbb{Z}$. Montrer qu'il existe $k \in [1, n]$ et i_1, \ldots, i_k dans [1,n] deux à deux distincts tels que n divise $\sum_{i=1}^k x_{i_i}$.

EXERCICE 14.

Soit b un entier naturel supérieur ou égal à 2. Soit $n \in \mathbb{N}$. Montrer que l'application

$$\phi: \left\{ \begin{array}{ccc} [\![0,b-1]\!]^n & \longrightarrow & [\![0,b^n-1]\!] \\ (a_0,\ldots,a_{n-1}) & \longmapsto & \sum_{k=0}^{n-1} a_k b^k \end{array} \right.$$

est bien définie et bijective.

EXERCICE 15.

Parmi les entiers qui s'écrivent en base 10 sous la forme (aabb)₁₀, déterminer ceux qui sont des carrés d'entiers.

Exercice 16.

Déterminer le reste de la division euclidienne de

- 1. $2^{2^{10}}$ par 7.
- **2.** 3^{2189} par 25.

EXERCICE 17.

Soient $a, m, n \in \mathbb{N}^*$ avec $a \ge 2$ et $d = (a^n - 1) \land (a^m - 1)$.

- 1. Soit n = qm + r la division euclidienne de n par m. Démontrer que $a^n \equiv$ $a^{r}[a^{m}-1].$
- **2.** En déduire que $d = (a^r 1) \wedge (a^m 1)$, puis $d = a^{n \wedge m} 1$.
- **3.** A quelle condition $a^m 1$ divise-t-il $a^n 1$?

EXERCICE 18.

Soit $a \in \mathbb{Z}$. Montrer que le reste de la division euclidienne de a^2 par 8 est 0, 1 ou 4.

EXERCICE 19.

Soient $a, b \in \mathbb{N}^*$. On note q le quotient de la division euclidienne de a-1 par b. Pour $n \in \mathbb{N}$, déterminer le quotient de la division euclidienne de $\mathfrak{ab}^n - 1$ par b^{n+1} .

EXERCICE 20.

Déterminer tous les entiers $n \in \mathbb{N}$ tels que n + 1 divise $n^2 + 1$.

EXERCICE 21.

Quel est le reste de la division euclidienne de 2^{2009} par 7.

EXERCICE 22.

Soient a et b deux entiers naturels premiers entre eux avec $b \ge 2$. Montrer qu'il existe un unique couple $(u_0, v_0) \in \mathbb{N}^2$ vérifiant :

$$u_0 a - v_0 b = 1$$
 $u_0 < b$

$$u_0 < t$$

$$v_0 < a$$

EXERCICE 23.

Résoudre les systèmes

1.
$$\begin{cases} x \land y = 3 \\ x \lor y = 135 \end{cases}$$

2.
$$\begin{cases} x + y = 100 \\ x \land y = 10 \end{cases}$$

EXERCICE 24.★

On considère la suite (F_n) définie par ses premiers termes $F_0=0$ et $F_1=1$ et par la relation de récurrence $F_{n+2}=F_n+F_{n+1}$ pour $n\in\mathbb{N}$.

- 1. Montrer que pour tout entier $n \in \mathbb{N}^*$, $F_{n-1}F_{n+1} F_n^2 = (-1)^n$. Déduisez-en que F_n et F_{n-1} sont premiers entre eux.
- **2.** Montrer que pour tout couple $(n,p) \in \mathbb{N} \times \mathbb{N}^*$, $F_{n+p} = F_p F_{n+1} + F_{p-1} F_n$. En déduire que $F_n \wedge F_p = F_{n+p} \wedge F_p$.
- **3.** Démontrer que pour tout $(m,n) \in \mathbb{N}^2$, $F_m \wedge F_n = F_{m \wedge n}$.

EXERCICE 25.

Soient $a, b, c \in \mathbb{Z}$ avec $a \wedge b = 1$. Montrer que $a \wedge bc = a \wedge c$.

EXERCICE 26.

Soient $a, b \in \mathbb{Z}$. On note $d = a \wedge b$ et $m = a \vee b$. Que vaut $(a + b) \wedge m$?

EXERCICE 27.

Soient $\mathfrak m$ et $\mathfrak n$ deux entiers naturels non nuls. Montrer que

$$a \wedge b = a + b - ab + 2\sum_{k=1}^{b-1} \left\lfloor \frac{ka}{b} \right\rfloor$$

EXERCICE 28.

Soient x,y deux entiers. Montrer que x^2+y^2 est divisible par 7 si et seulement si x et y le sont.

EXERCICE 29.

Montrer que pour tout $n \in \mathbb{N}$ on a

- 1. $17 | 7^{8n+1} + 10(-1)^n$
- **2.** $11 | 9^{5n+2} 4$
- 3. $6 | 10^{3n+2} 4^{n+1}$

EXERCICE 30.

On considère la suite $a_n = \sum_{k=1}^n k!$ pour tout $n \ge 1$. Est-ce que, à partir d'un certain rang, tous les a_n sont divisibles par 9 et non-divisibles par 27?

EXERCICE 31.

Montrer que pour tout $n \in \mathbb{N}$, n^2 divise $(n+1)^n - 1$.

EXERCICE 32.

Montrer que la plus grande puissance de 2 divisant $5^{2^n} - 1$ est 2^{n+2} .

EXERCICE 33.

Démontrer les critères de divisibilité suivants.

- 1. Un entier est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3.
- 2. Un entier est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9.
- **3.** Un entier est divisible par 11 *si et seulement si* la somme alternée de ses chiffres de rang pair moins la somme de ses chiffres de rang impair est divisible par 11.

EXERCICE 34.

- 1. Montrer que pour tout $n \in \mathbb{N}$, 5 divise $2^{3n+5} + 3^{n+1}$.
- **2.** Montrer que pour tout entier $n \in \mathbb{N}$, 30 divise $n^5 n$.

EXERCICE 35.

Montrer que si p est un entier premier différent de 2 et 5, alors il divise un des entiers de l'ensemble $\{1, 11, 111, 1111, \ldots\}$.

EXERCICE 36.

- 1. Montrer qu'un entier naturel est divisible par 5 si et seulement si son chiffre des unités est 0 ou 5.
- 2. Montrer qu'un entier naturel est divisible par 4 si et seulement si l'entier formé par ses deux derniers chiffres est divisible par 4.

EXERCICE 37.

Résoudre dans \mathbb{Z}^2 les équations suivantes :

- 1. 221x + 247y = 52.
- **2.** 323x 391y = 612.
- 3. 198x + 216y = 36.

EXERCICE 38.

Résoudre dans $(\mathbb{N}^*)^3$ l'équation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.

EXERCICE 39.

Résoudre dans \mathbb{Z}^2 l'équation $5x^2 + 2xy - 3 = 0$.

EXERCICE 40.

Résoudre dans \mathbb{N}^2 l'équation

$$n(n+1)(n+2) = m^2$$

EXERCICE 41.

On se propose de résoudre l'équation (E) : $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ d'inconnue $(a,b,c) \in (\mathbb{N}^*)^3$.

- 1. Soit $(a,b,c) \in (\mathbb{N}^*)^3$ vérifiant (E). On suppose a,b,c premiers entre eux dans leur ensemble.
 - a. On pose $\alpha = \alpha c$ et $\beta = b c$. Monter que α, β, c sont premiers entre eux dans leur ensemble puis que α et β sont premiers entre eux.
 - **b.** En déduire que α et β sont des carrés d'entiers puis qu'il existe $(u, v) \in (\mathbb{N}^*)^2$ tel que $\alpha = (u + v)u$, b = (u + v)v et c = uv.
- 2. Résoudre (E).

EXERCICE 42.

Résoudre l'équation $2^n + 1 = m^3$ d'inconnue $(n, m) \in \mathbb{N}^2$.

EXERCICE 43.

Soient r un entier naturel supérieur ou égal à 2 et a_1, \ldots, a_r des entiers relatifs. Pour tout $i \in [\![1,r]\!]$, on pose $b_i = \prod_{1 \le i \le r} a_j$.

Montrer que les a_i sont premiers entre eux deux à deux si et seulement si les b_i sont premiers entre eux dans leur ensemble.

EXERCICE 44.

Soit $\alpha \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on considère l'application $f_n : \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{C}^* \\ \mathfrak{p} & \longmapsto & e^{2i\pi n \mathfrak{p} \alpha} \end{array} \right.$

- 1. Montrer que f_n est un morphisme du groupe $(\mathbb{Z},+)$ dans le groupe (\mathbb{C}^*,\times) .
- **2.** Montrer que $\operatorname{Im} f_{\mathfrak{n}} \subset \mathbb{U}$.
- **3.** En considérant le noyau de f_n , montrer que f_n est injective si et seulement si $\alpha \notin \mathbb{Q}$.
- **4.** A partir de maintenant, on suppose que $\alpha \in \mathbb{Q}$. On écrit α sous forme de fraction irréductible, c'est-à-dire sous la forme $\alpha = \frac{r}{s}$ avec $r \in \mathbb{Z}$ et $s \in \mathbb{N}^*$ tels que $r \wedge s = 1$.
 - **a.** Montrer que Im $f_1 \subset \mathbb{U}_s$.
 - **b.** En écrivant une relation de Bézout entre r et s, montrer que $e^{\frac{2i\pi}{s}} \in \operatorname{Im} f_1$. En déduire que $\mathbb{U}_s \subset \operatorname{Im} f_1$.
 - $\mathbf{c.}\ \mathrm{Montrer}\ \mathrm{que}\ \mathrm{Ker}\, f_1=s\mathbb{Z}.$
- **5.** On pose $\mathfrak{m} = \frac{s}{\mathfrak{n} \wedge s}$.
 - a. Justifier que m est entier.
 - **b.** Montrer que $nr \wedge s = n \wedge s$.
 - **c.** Montrer que $\operatorname{Im} f_n \subset \mathbb{U}_m$.
 - d. En écrivant une relation de Bézout entre nr et s, montrer que $e^{\frac{2i\pi}{m}} \in \operatorname{Im} f_n$. En déduire que $\mathbb{U}_m \subset \operatorname{Im} f_n$.
 - e. Montrer que $\operatorname{Ker} f_n = m\mathbb{Z}$.