Assignment #3

Katie Levesque, Sarah Unbehaun, Meerim Ruslanova April 14, 2016

Quick Recap

This project aims to investigate the relationship between happiness levels across German federal states (Bundeslaender) and among individuals over the time horizon from 1990 to 2012. More specifically, this project explores whether the state level emissions, as well as some personal characteristics, affect life satisfaction of German citizens. The hypotheses state:

H1: Bundeslaender with higher emissions inversely affect reported levels of life satisfaction.

H2: Reported individual concerns with the environment are, likewise, negatively reflected in the life satisfaction.

Model 1 combines these two hypotheses: $satis = \beta_0 - \beta_1 * Emissions + \beta_2 * EnvironConcerns + u_j + r_i$ The relationship between the independent and dependent variables will be explored on both individual and state level via the multilevel modelling.

Data

The individual-level data is provided by the German Socio-Economic Panel Data GSOEP conducted by the German Institute for Economic Research DIW. Due to confidentiality restrictions, DIW could only supply a shortened sample with prior specified variables in a .dta format. Therefore, the GSOEP dataset is stored on the local drives and GitHub Climate-Happiness Repository. The original GSOEP file is cleaned and transformed into a shorter dataset with the help of the Stata Do-File. The short dataset contains the information on the main satisfaction and personal characteristic variables: reported levels of life satisfaction (on a scale from 0 to 10), subjective concerns about the environment, age, gender, employment, family status, and state residence of a respondent. Detailed labels and descriptions of the variables are given in the GSOEP codebook. All GSOEP-related files are stored on the GitHub server.

The state-level data, on the other hand, is gathered from three web-based sources: State Initiative for Core Indicators LIKI, Statista.com, Environmental-Economic Accounting of the Bundeslaender UGRdL and Agency for Renewable Agency of North Rhine-Westphalia AfEE.

A university subscription to Statista.com enabled access to historic state emissions from 1990 to 2012 for most of the Bundeslaender, except North Rhine-Westphalia (NRW). Since the website allows data downloads only in Excel and provides no unique URLs for each of them, 15 individual files were downloaded manually on a local machine, while manipulations were conducted with the help of R loops. The information on NRW involved more intensive research and data handling but were finally gathered and combined from the UGRdL (from 1990 to 2000) and AfEE (from 2000 to 2012) with R web-scraping functions. Fortunately, emissions are measured in the same units (annually emitted Carbon dioxide tons per capita). Hence, the yielded data frame of emissions is comprehensive and consistent, although there are missing observations on some years.

Simultaneously, the state efforts to curb their emissions and preserve local environment are reflected in their renewable energy indicators. This information is measured in percentage of renewables in the annual primary energy consumption, final energy consumption, and electricity consumption. The indicators had to be downloaded manually from LIKI in three separate excel files, which later on were cleaned, transformed and reshaped into suitable data frames in R.

Once the names of the Bundeslaender and the time frame of the three produced data frames match, they are easily merged in R into a final data set.

Descriptive Statistics

##	Baden-Wuerttemberg	Bayern	Berlin
##	15935	20889	6328
##	Brandenburg	Bremen	Hamburg
##	8334	1075	1468
##	Hessen	Mecklenburg-Vorpommern	Niedersachsen
##	10886	4073	7930
##	Nordrhein-Westfalen	Rheinland-Pfalz	Saarland
##	22048	7460	1208
##	Sachsen	Sachsen-Anhalt	Schleswig-Holstein
##	11955	8765	4317
##	Thueringen		
##	8159		

The data has a wide range in terms of the number of observations for each federal state. If we look a little closer, separating them by year, we see that some states are missing observations for a few years. Using Saarland, Nordrhein-Westfalen, and Hamburg in our analysis may require some adjustment with the missing years in mind.

##	7	l'ear									
##	State	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
##	Baden-Wuerttemberg		378	344	335	355	378	537	524	570	530
##	Bayern	536	517	512	492	515	561	643	596	692	652
##	Berlin	251	233	234	233	226	233	225	215	222	212
##	Brandenburg	371	337	315	307	294	276	273	262	275	268
##	Bremen	34	32	33	30	32	35	32	31	34	24
##	Hamburg	41	37	37	33	36	33	42	41	0	0
##	Hessen	361	336	329	312	300	325	360	330	390	353
##	Mecklenburg-Vorpommern	219	204	178	170	175	172	157	153	171	165
##	Niedersachsen	368	347	0	0	310	0	403	0	462	0
##	Nordrhein-Westfalen	768	0	0	0	0	738	0	0	0	0
##	Rheinland-Pfalz	263	252	241	241	262	284	287	293	330	300
##	Saarland	0	0	0	0	0	0	0	0	0	0
##	Sachsen	568	522	491	472	457	428	419	395	432	419
##	Sachsen-Anhalt	433	407	396	372	353	335	309	308	318	317
##	Schleswig-Holstein	101	109	98	97	100	93	100	96	129	111
##	Thueringen	382	356	346	329	327	314	317	321	347	331
##	`	lear									
##	State	2000	2001		2003		2005		2007		2009
##	Baden-Wuerttemberg	1116	970	1055	957	887	862	965	847	789	851
##	Bayern	1449	1243	1387	1265	1189	1088	1187	1098	1010	1142
##	Berlin	377	344	361	346	323	305	300	291	276	299
##	Brandenburg	462	451	463	453	434	399	416	394	366	409
##	Bremen	71	53	74	74	69	54	47	48	48	64
##	Hamburg	0	0	0	127	125	122	127	117	111	110
##	Hessen	750	625	726	629	585	541	587	528	505	558
##	Mecklenburg-Vorpommern	239	207	223	221	207	195	235	204	200	202
##	Niedersachsen	843	0	849	0	743	0	778	0	694	773
##	Nordrhein-Westfalen	2156	1895	2034	1859	1747	1616	1719	1575	1482	1567
##	Rheinland-Pfalz	489	432	442	392	382	353	370	322	310	317
##	Saarland	133	113	114	108	100	97	97	86	73	73
##	Sachsen	716	632	640	614	595	552	586	543	510	550
##	Sachsen-Anhalt	503	481	469	436	424	406	410	399	357	361

##	Schleswig-Holstein	295	266	318	272	274	256	271	246	209	222
##	Thueringen	496	436	420	404	390	357	367	341	324	338
##	•	Year									
##	State	2010	2011	2012							
##	Baden-Wuerttemberg	730	731	817							
##	Bayern	998	995	1122							
##	Berlin	268	259	295							
##	Brandenburg	358	363	388							
##	Bremen	58	46	52							
##	Hamburg	109	106	114							
##	Hessen	488	450	518							
##	Mecklenburg-Vorpommern	176	0	0							
##	Niedersachsen	700	660	0							
##	Nordrhein-Westfalen	1410	0	1482							
##	Rheinland-Pfalz	281	289	328							
##	Saarland	66	72	76							
##	Sachsen	475	453	486							
##	Sachsen-Anhalt	319	314	338							
##	Schleswig-Holstein	198	211	245							
##	Thueringen	304	291	321							

Because we are looking at emissions and happiness over a period of years, the values of emissions for each state also vary, which we can see by state and over time. The colors are coordinated between the box plots and line graphs.

The main explanatory variable of interest is life satisfaction. As with emissions, there is variation within each state and the variation in life satisfaction across years. The following charts use the mean of the individual observations from each state.

Again using the means of each state, we can create some scatterplots showing correlation between variables.

Life satisfaction appears to be positively correlated with age, energy use, and concern about the environment, but does not show a strong correlation with emissions.

Inferential Statistics

To run inferential statistics, we first create "pdataind" as panel data. For the models below, X1 represents the explanatory variables of interest: emissions, energy use, concern for the environment, gender, and age. Emissions has a wide range: from 4.5 up to 31.6 annual tons of CO2 per capita. Observations in the upper range may be outliers that need to be removed; half of the observations fall between 6.5 and 13.7 tons, and the median is 7.6 compared to a mean of 10.2 tons. Energy use also varies widely, from 79.3 to 337.0 annual gigajoules (GJ) per capita, with a median of 164.0 and mean of 172.3 GJ. Concern for the environment, measured on a scale from 1 (very) to 3 (not very), has an average of 1.8. Gender is almost evenly split between males and females, and the average age is about 50 years old.

##	Emissions	Use	environ	gender	age	
##	Min. : 4.5	Min. : 79	Min. :1.0	Min. :1.0	Min. : 17	
##	1st Qu.: 6.5	1st Qu.:149	1st Qu.:2.0	1st Qu.:1.0	1st Qu.: 38	
##	Median: 7.6	Median :164	Median :2.0	Median :2.0	Median : 51	
##	Mean :10.2	Mean :172	Mean :2.2	Mean :1.5	Mean : 50	
##	3rd Qu.:13.7	3rd Qu.:211	3rd Qu.:3.0	3rd Qu.:2.0	3rd Qu.: 64	
##	Max. :31.6	Max. :337	Max. :3.0	Max. :2.0	Max. :102	

Y1 represents "satis" (life satisfaction), measured on a scale ranging from 0 (low) to 10 (high). The data is skewed toward the upper range, with the majority of responses being more than 6 and with a mean of 6.9.

```
## satis
## Min. : 0.0
## 1st Qu.: 6.0
```

```
## Median: 7.0
## Mean: 6.9
## 3rd Qu:: 8.0
## Max: :10.0
```

Below, we tested various types of panel data models on our individual-level data. The data set is unbalanced because we don't have information for all years in all the states.

```
## Oneway (individual) effect Pooling Model
##
## Call:
## plm(formula = Y1 ~ X1, data = pdataind, model = "pooling")
## Unbalanced Panel: n=22285, T=1-23, N=140830
##
## Residuals :
     Min. 1st Qu. Median 3rd Qu.
##
                                   Max.
   -7.700 -1.110
                  0.342 1.110
                                  4.020
##
## Coefficients :
##
                Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 6.43347006 0.03328325 193.2945
                                              <2e-16 ***
## X1Emissions -0.09340835 0.00167109 -55.8968
                                              <2e-16 ***
## X1Use
              0.01104070 0.00018611 59.3239
                                              <2e-16 ***
## X1environ
             -0.06628195
                         0.00769927
                                    -8.6089
                                              <2e-16 ***
## X1gender
             -0.01355593 0.00958703 -1.4140
                                              0.1574
             -0.00534866 0.00027374 -19.5394
## X1age
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                          465260
## Residual Sum of Squares: 452070
## R-Squared:
                 0.028347
## Adj. R-Squared: 0.028346
## F-statistic: 821.692 on 5 and 140824 DF, p-value: < 2.22e-16
## Oneway (individual) effect Between Model
##
## Call:
## plm(formula = Y1 ~ X1, data = pdataind, model = "between")
## Unbalanced Panel: n=22285, T=1-23, N=140830
##
## Residuals :
     Min. 1st Qu. Median 3rd Qu.
## -7.3400 -0.5390 0.0669 0.7110 3.8700
##
## Coefficients :
                Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 6.58648647 0.07294836 90.2897 < 2.2e-16 ***
## X1Emissions -0.09277665 0.00282401 -32.8528 < 2.2e-16 ***
## X1Use
              ## X1environ
```

```
## X1gender
              0.02326979 0.02441911
                                     0.9529
              ## X1age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                          31990
## Total Sum of Squares:
## Residual Sum of Squares: 30206
## R-Squared:
                 0.05576
## Adj. R-Squared: 0.055745
## F-statistic: 263.128 on 5 and 22279 DF, p-value: < 2.22e-16
## Oneway (individual) effect First-Difference Model
##
## Call:
## plm(formula = Y1 ~ X1, data = pdataind, model = "fd")
## Unbalanced Panel: n=22285, T=1-23, N=140830
##
## Residuals :
##
       Min.
            1st Qu.
                        Median
                                3rd Qu.
## -10.30000 -1.77000 0.00251
                                1.75000 10.20000
##
## Coefficients :
                Estimate Std. Error t-value Pr(>|t|)
## (intercept) -0.00558269 0.00728448 -0.7664
                                               0.44345
                                     -2.1738
## X1Emissions -0.07466170 0.03434678
                                               0.02973 *
## X1Use
              0.01404905 0.00324545
                                     4.3288 1.500e-05 ***
## X1environ
            -0.05554390 0.00851167 -6.5256 6.799e-11 ***
## X1gender
              0.01223 *
              -0.00586130 0.00030099 -19.4736 < 2.2e-16 ***
## X1age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                          748530
## Residual Sum of Squares: 745660
## R-Squared:
                 0.0038401
## Adj. R-Squared: 0.0038399
## F-statistic: 91.391 on 5 and 118539 DF, p-value: < 2.22e-16
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = Y1 ~ X1, data = pdataind, model = "within")
##
## Unbalanced Panel: n=22285, T=1-23, N=140830
##
## Residuals :
##
     Min. 1st Qu. Median 3rd Qu.
                                   Max.
  -7.880 -0.903 0.128 1.080
                                   5.170
##
## Coefficients :
                Estimate Std. Error t-value Pr(>|t|)
## X1Emissions -0.08841148  0.01626967  -5.4341  5.517e-08 ***
              0.01276929 0.00152923
                                     8.3501 < 2.2e-16 ***
## X1Use
```

```
-0.05866414
                            0.00851204
                                        -6.8919 5.533e-12 ***
## X1environ
                                        -1.8896
## X1gender
               -0.01951174
                            0.01032560
                                                   0.05881 .
               -0.00587612
## X1age
                            0.00030079 -19.5359 < 2.2e-16 ***
## ---
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                            374420
## Residual Sum of Squares: 372810
## R-Squared:
                   0.0043051
## Adj. R-Squared: 0.0036237
## F-statistic: 102.507 on 5 and 118540 DF, p-value: < 2.22e-16
```

In terms of explanatory power, the first difference and within estimators might be less useful than the between or pooled OLS estimators, based on their low R-squared and adjusted R-squared Values. Interestingly, gender does not appear to have a significant effect on reported life satisfaction in any of the models. The other variables are statistically significant in all the models. For variables other than gender, the directions of the relationships are also the same across models: emissions and age have negative coefficients, while concern about the environment and energy use have positive coefficients.

We can compare the fixed effects/within and pooled OLS models using an F-test for individual and/or time effects:

```
##
## F test for individual effects
##
## data: Y1 ~ X1
## F = 1.131, df1 = 22284, df2 = 118540, p-value < 2.2e-16
## alternative hypothesis: significant effects</pre>
```

The test is set up so that the null hypothesis is that OLS pooled is better than the within estimator. The small resulting p-value indicates that despite the larger R-squared values with OLS pooling, we should reject the null hypothesis that OLS pooling is better.

Multilevel Analysis: Basic Steps

Multilevel Coefficient Models (MCM, *multilevel* and *nlme* packages) appear as one of the options to proceed with the multilevel analysis. MCM examines individual variation within and across groups, as well as permits non-independence of individual factors from the group level variables. The first step of the MCM investigates whether statistically significant variation between Bundeslaender in terms of mean individual satisfaction exists. Otherwise, simpler OLS and panel-data models are more applicable for the given research.

An unconditional model, *Null.Model*, serves the first purpose: the model only controls for the State that specifies that the variation intercept is a function of residence.

```
## Stateid = pdLogChol(1)
## Variance StdDev
## (Intercept) 0.1909161 0.4369395
## Residual 3.1680043 1.7798888
```

The model examines how much of the average individual life satisfaction is explained by the residence of a respondent through R's general purpose optimization routine (opt="optim"). According to the *Null.Model*, the Bundesland variation (intercept variance) is 0.19, while the within-State residual is 3.17.

```
## [1] "ICC" "Group" "GrpSize" "MeanRel"
## [1] 0.9958663
## 'log Lik.' 567965.4 (df=2)
## 'log Lik.' 562146.4 (df=3)
```

Furthermore, the *GmeanRel* function (*multilevel* package) yields the mean reliability of 16 Bundeslaender, which, in this case, is substantially high (0.996). As the cut-off point for acceptable reliability is 0.7, Bindeslaeander group reliability meets the threshold. The difference between the -2 log likelihood values of *Null.Model* and *Null.Model.2* tests whether the between-State effect is present compared to the random variation in life satisfaction without any control variables. According to the results, the difference is significantly large based on the Chi-Squared distribution with 2 degrees of freedom (5819.047). These results suggest that there is significant State variation in happiness level, which justifies the usage of the MCM.

The second step of the MCM looks into how both Bundesland emissions and subjective concerns about the environment influence reported individual life satisfaction. *Model.1* (*lme* function) for the time being does not control for individual characteristics, such as gender, age, employment and family status. Moreover, percentage of the renewables (which is anticipated to directly relate to the life satisfaction) will be also examined in the later phase of the research. *Model.1* serves as the basic tool to understand relationship between the group- and individual-level factors representing the environment.

```
Linear mixed-effects model fit by REML
##
    Data: finaldata
##
          AIC
                   BIC
                           logLik
     611544.6 611593.9 -305767.3
##
##
##
  Random effects:
##
    Formula: ~1 | Stateid
##
           (Intercept) Residual
##
  StdDev:
             0.2752213 2.121016
##
## Fixed effects: satis ~ environ + Emissions
##
                   Value Std.Error
                                         DF
                                              t-value p-value
## (Intercept)
                8.550986 0.07522865 140812 113.66662
               -0.044112 0.00909175 140812
## environ
                                             -4.85189
## Emissions
               -0.000055 0.00027583 140812
                                             -0.19851
##
    Correlation:
##
             (Intr) envirn
##
   environ
             -0.266
##
  Emissions -0.284
                     0.003
##
## Standardized Within-Group Residuals:
##
                      Q1
                                 Med
                                             Q3
                                                        Max
  -3.7759454 -0.5416871 0.2151472 0.6835521 1.4327174
##
## Number of Observations: 140830
## Number of Groups: 16
```

The output demonstrates that the State emissions are indeed negatively related to the individual happiness. However, after controlling for the individual environmental concerns, the coefficient (-0.005) is not statistically significant. Consequently, the group-level effect does not significantly differ from the individual-level. On

the other hand, the coefficient of environmental concerns statistically differs from 0, but the direction is oddly positive counter the expectations. These results point at the omitted variables (absence of the demographic characteristics) that should be included in the further model. Similarly, the surprising direction of the environmental coefficient demands investigation of endogeneity between reported happiness and environmental concerns.

A brief overview of *Model.2*, which covers demographic characteristics, reassures the anticipation about the State emissions: the coefficient became significant after controlling for other individual factors. As a result, the difference between State- and individual-level slopes exists and permit multilevel analysis. However, the coefficient of environmental concerns is still positive, which is to be discussed together with other factors in the final paper.

```
Linear mixed-effects model fit by REML
##
    Data: finaldata
          AIC
##
                   BIC
                           logLik
##
     609547.6 609636.3 -304764.8
##
   Random effects:
##
    Formula: ~1 | Stateid
##
##
           (Intercept) Residual
             0.2799221 2.105731
##
  StdDev:
##
## Fixed effects: satis ~ environ + Emissions + age + fam + gender + emp
##
                   Value Std.Error
                                         DF
                                              t-value p-value
## (Intercept)
                8.599703 0.07863972 140808 109.35572
                                                        0.0000
                                             -5.56977
  environ
               -0.050416 0.00905164 140808
##
                                                        0.0000
## Emissions
               -0.000356 0.00027410 140808
                                             -1.29811
##
  age
               -0.007657 0.00037522 140808 -20.40679
                                                        0.0000
##
  fam2
                0.201748 0.01242550 140808
                                             16.23662
                                                        0.0000
                                             -2.71303
##
  gender2
               -0.030859 0.01137446 140808
                                                        0.0067
                0.310966 0.01279972 140808
                                             24.29476
##
  emp2
                                                        0.0000
    Correlation:
##
##
             (Intr) envirn Emssns age
                                          fam2
                                                  gendr2
## environ
             -0.252
## Emissions -0.276
                     0.004
             -0.205
                     0.029
                             0.033
##
##
  fam2
             -0.021 -0.026 -0.012 -0.316
                            0.000 0.004
  gender2
             -0.074 - 0.067
                                          0.043
##
  emp2
             -0.163 0.003 0.006 0.456 -0.182 0.119
##
##
  Standardized Within-Group Residuals:
##
          Min
                       Q1
                                 Med
                                             Q3
                                                        Max
  -3.8912559 -0.4798106
                          0.2541150
                                      0.7047883
##
                                                 1.6879033
##
## Number of Observations: 140830
## Number of Groups: 16
```