UNIVERSIDAD DEL SALVADOR FACULTAD DE INGENIERÍA

Ingeniería en Informática

Tecnologías Emergentes

Sistema de Domótica

Índice:

Índice:	2
Casos de uso	3
Diagrama MQTT	4
Sensor de luz	5
Definición de Requerimientos	5
Diagrama SBE	6
Sensor de Humo y CO	8
Definición de Requerimientos	8
Diagrama SBE	9
Sensor de Temperatura	10
Definición de Requerimientos	10
Diagrama SBE	12
Sensor de Riego	15
Definición de Requerimientos	15
Diagramas SBE	16
Requerimiento: Apto para todos los requerimientos	17
Definición de Tópicos	18
MQTT Explorer	19
Parametros de conexion	19
API Clima	20
Repositorios	22
Diseño pantalla / Dashboard	22

Casos de uso

Diagrama MQTT

Esquema de conexión básico de MQTT

Sensor de luz

Definición de Requerimientos

Conexión arduino y sensor fotoresistivo

Tareas:

- Cablear el sensor a un arduino d1
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Tratamiento del mensaje

Tareas:

- A partir de la información tomada por el sensor, enviar una señal (mensaje en un tópico).
- Registrar en la B.D.

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Formato del mensaje:

- topic:/casa/interior/sensores/luces
- status: 0
- timestamp: (tiempo cuando se procesa msg)
- datetime: (tiempo cuando llega el msg)

Rutina de encendido y apagado de las luces

Tareas:

- Configuración del equipo que escuche el mensaje enviado por el tópico.
- A partir del mensaje recibido, tomar acción (encender/apagar las luces).

Criterios de aceptación:

- Poder leer el mensaje
- Interpretación del mensaje
- Toma de decisión

Crear rutina que conecte con controlador luces

Tareas:

- Cablear las luces al sensor a un arduino d1.
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Diagrama SBE

Sensor Sensor

Especificacion Ejemplo Rutina Luces

Característica: Sensor de Luces Funcionamiento del Sensor de Luces

Escenario: El Sensor está Apagado **Dado** No llega voltaje al sensor **Entonces** se setea el status con 0

Y se construye el mensaje con el siguiente formato

"topic:/casa/interior/sensores/luces

status: 0

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection **y** se suscriben a la base de datos de mongodb **y** se envía mensaje a usuario que está "apagado"

Escenario: El Sensor funciona correctamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté dentro del rango de aceptabilidad

Entonces se verifica hora de luz

Dado Rutina determinada (encendido/apagado)

Entonces se setea el status con 1

Y se construye el mensaje con el siguiente formato

"topic:/casa/interior/sensores/luces

status: 1

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de encender/apagar

Escenario: El Sensor funciona erráticamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté fuera del rango de aceptabilidad

Entonces se setea el status con 2

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/temperatura

status: 2

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de encender/apagar

Sensor de Humo y CO

Definición de Requerimientos

Establecer conexión entre placa arduino y sensor

Tareas:

- Cablear el sensor a un arduino d1
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Tratamiento del mensaje

Tareas:

- A partir de la información tomada por el sensor, enviar una señal (mensaje en un tópico).
- Registrar en la B.D.

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Crear rutina que conecte con controlador luces

Tareas:

- Cablear las luces al sensor a un arduino d1.
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Crear rutina que conecte con la alarma

Tareas:

- Cablear la alarma al sensor a un arduino d1.
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Activación de una alarma en caso de detectar niveles de monóxido altos

Tareas:

 A partir de la información tomada por el sensor, enviar una señal a luces y alarma

Criterios de aceptación:

Interpretación del mensaje y tomar acción

Diagrama SBE

Sensar información Set status=1 Rutina Encendido Hav hun server ` Armar msg MQTT MOTT broke envio aviso a cliente Front User abre Dashboard

Especificacion Ejemplo Rutina Humo

Característica: Sensor de Humo Funcionamiento del Sensor de Humo

Escenario: El Sensor funciona correctamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté dentro del rango de aceptabilidad

Entonces se verifica existencia de humo

Dado Rutina determinada (encendido/apagado)

Entonces se verifica si hay hubo mayor a 50

Dado Rutina determinada (encendido/apagado)

Entonces se setea el status con 1

Y se construye el mensaje con el siguiente formato

"topic:/casa/interior/sensores/humo

status: 1

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker Dado el mensaje publicado
Entonces se suscriben valores a una Collection
y se suscriben a la base de datos de mongodb
y se envía mensaje a usuario con el valor de encender/apagar

Escenario: El Sensor está Apagado Dado No llega voltaje al sensor Entonces se setea el status con 0

Y se construye el mensaje con el siguiente formato

"topic:/casa/interior/sensores/humo

status: 0

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario que está "apagado"

Escenario: El Sensor funciona erráticamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté fuera del rango de aceptabilidad

Entonces se setea el status con 2

Y se construye el mensaje con el siguiente formato

"topic:/casa/interior/sensores/humo

status: 2

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de encender/apagar

Sensor de Temperatura

Definición de Requerimientos

Establecer conexión entre placa a definir y sensor temperatura

Tareas:

- Cablear el sensor a un arduino d1
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Tratamiento del mensaje

Tareas:

- A partir de la información tomada por el sensor, enviar una señal (mensaje en un tópico).
- Registrar en la B.D.

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Establecer valores mínimos y máximos de temperatura

Tareas:

- Definir valores mínimos y máximos de temperatura.
- Establecer tiempo de sensado
- Realizar la configuración de los márgenes de temperatura mínimo y máximo.

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Diagrama SBE

Característica: Sensor de Temperatura Funcionamiento del Sensor de Temperatura

Escenario: El Sensor funciona correctamente (límite de temperatura a 25 °C)

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté dentro del rango de aceptabilidad

Entonces se setea el status con 1

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/temperatura

value: valor en °C

status: 1

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de la temperatura en °C

Escenario: El Sensor funciona correctamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté dentro del rango de aceptabilidad

Entonces se setea el status con 1

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/temperatura

value: valor en °C

status: 1

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de la temperatura en °C

Escenario: El Sensor está Apagado Dado No llega voltaje al sensor Entonces se setea el status con 0

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/temperatura

value: valor en °C

status: 0

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection **y** se suscriben a la base de datos de mongodb **y** se envía mensaje a usuario que está "apagado"

Escenario: El Sensor funciona erráticamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté fuera del rango de aceptabilidad

Entonces se setea el status con 2

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/temperatura

value: valor en °C

status: 2

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Sensor de Riego

Definición de Requerimientos

Establecer conexión entre placa a definir y dispositivo de encendido

Tareas:

- Cablear el sensor a un arduino d1
- Transmitir la información de sensado a una cola MQTT.

Criterios de aceptación:

- Conexión establecida
- Transmisión exitosa

Tratamiento del mensaje

Tareas:

- A partir de la información tomada por el sensor, enviar una señal (mensaje en un tópico).
- Registrar en la B.D.

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Crear rutina que encienda regularmente el riego

Tareas:

- Establecer horario de riego.
- A FUTURO: Pronóstico + Humedad (ver).
- A partir de la información, enviar una señal.

Criterios de aceptación:

• Interpretación del mensaje y tomar acción.

Diagramas SBE

Especificacion Ejemplo Sistema de Riego

Característica: Sensor de Riego Funcionamiento del Sensor de Riego

Escenario: El Sensor está Apagado **Dado** No llega voltaje al sensor **Entonces** se setea el status con 0

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/riego

status: 0

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario que está "apagado"

Escenario: El Sensor funciona erráticamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté fuera del rango de aceptabilidad

Entonces se setea el status con 2

Y se construye el mensaje con el siguiente formato

" topic:/casa/exterior/sensores/riego

status: 2

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de encender/apagar

Escenario: El Sensor funciona correctamente

Dado que llega voltaje al sensor

Entonces se verifica que el valor del sensor esté dentro del rango de aceptabilidad

Entonces se verifica hora de riego

Dado Rutina determinada (encendido/apagado)

Entonces se setea el status con 1

Y se construye el mensaje con el siguiente formato

"topic:/casa/exterior/sensores/riego

status: 1

timestamp: (tiempo cuando se procesa msg) datetime: (tiempo cuando llega el msg)"

Entonces se publica el mensaje construido al MQTT broker

Dado el mensaje publicado

Entonces se suscriben valores a una Collection

y se suscriben a la base de datos de mongodb

y se envía mensaje a usuario con el valor de encender/apagar

Requerimiento: Apto para todos los requerimientos

Notificación al usuario por correo electrónico

Tareas:

- A partir de la información registrada en la B.D. remitir un correo electrónico al usuario donde se informen las acciones tomadas por los distintos módulos:
 - En caso de temperatura, se envía notificación cuando este por debajo del valor mínimo o por encima del máximo.
 - En el caso del sistema de riego, se envía informe del encendido/apagado del sistema de riego.
 - Para el módulo del sensor de luces, se debe informar sobre el encendido/apagado de las mismas.

 Por último, en el caso de la detección de Monóxido de Carbono se envía una notificación cuando se detecte la presencia de CO (Encendido o parpadeo de luces según la tarea que tenemos) y cuando se disipe el CO (Estado 0 de Encendido o parpadeo de luces por CO),

Criterios de aceptación:

• Publicación del mensaje en el tópico.

Definición de Tópicos

Sensado de temperatura >25 Encender y apagar luces {0,1} Encender y apagar ventilación {0,1}

- /casa/interior/ambiente1/luz
- /casa/interior/ambiente1/temperatura
- /casa/interior/ambiente1/ventilador
- /casa/interior/ambiente2/luz
- /casa/interior/ambiente2/temperatura
- /casa/interior/ambiente2/ventilador
- /casa/interior/ambiente3/luz
- /casa/interior/ambiente3/temperatura
- /casa/interior/ambiente3/ventilador
- /casa/interior/ambiente4/luz
- /casa/interior/ambiente4/temperatura
- /casa/interior/ambiente4/ventilador

JSON

```
{"ambiente":1/2/3/4 , "tipo":"TEMPERATURA" , "value":-30.99/300.99 } 
{"ambiente":1/2/3/4 , "tipo":"LUZ"/"VENTILADOR" , "value":1/0 }
```

Encender alarma {0,1} Sensar nivel humo >50 Sensar nivel monoxido >1200

- /casa/interior/cocina/luz
- /casa/interior/cocina/humo
- /casa/interior/cocina/monoxido

JSON

```
{"ambiente":"COCINA", "tipo":"LUZ", "value":1/0 }
{"ambiente":"COCINA", "tipo":"HUMO", "value":0/50/500 }
{"ambiente":"COCINA", "tipo":"MONOXIDO", "value":0/1200/2500 }
```

Encender regador {0,1}
Sensar nivel humedad <300 BAJA

- casa/exterior/regador
- casa/exterior/humedad

JSON

```
{"ambiente":"EXTERIOR", "tipo":"REGADOR", "value":1/0 }
{"ambiente":"EXTERIOR", "tipo":"HUMEDAD", "value":0/300/750 }
```

MQTT Explorer

Parametros de conexion

Name: 192.241.178.194 / mqtt.nerdingland.com

Validate certificate: off

Encryption (tls): on

Protocol: mqtt://

Host: 192.241.178.194

Port: 2095

API Clima

Json de respuesta:

```
{
    "lat": -34.5742,
    "lon": -58.535,
    "timezone": "America/Argentina/Buenos_Aires",
    "timezone_offset": -10800,
    "current": {
        "dt": 1631036916,
        "sunrise": 1631009078,
        "sunset": 1631050795,
        "temp": 14.96,
        "feels_like": 14.91,
        "pressure": 1011,
```

"humidity": 92,

```
"dew_point": 13.67,
        "uvi": 0.7,
        "clouds": 90,
        "visibility": 9000,
        "wind_speed": 4.02,
        "wind_deg": 180,
        "wind_gust": 6.71,
        "weather": [
                {
                "id": 804,
                "main": "Clouds",
                "description": "overcast clouds",
                "icon": "04d"
                }
        ]
},
"hourly": [
        {
        "dt": 1631203200,
        "temp": 11.98,
        "feels_like": 11.66,
        "pressure": 1011,
        "humidity": 93,
        "dew_point": 11.08,
        "uvi": 0.72,
        "clouds": 100,
        "visibility": 10000,
        "wind_speed": 7.3,
        "wind_deg": 186,
        "wind_gust": 15.64,
        "weather": [
```

```
{
                        "id": 804,
                        "main": "Clouds",
                        "description": "overcast clouds",
                        "icon": "04d"
                }
        ],
        "pop": 0.5
        }
        ],
        "alerts": [
                {
                "sender_name": "Servicio Meteorologico Nacional",
                "event": "Tormentas",
                "start": 1631037600,
                "end": 1631059199,
                "description": "El área será afectada por puntual.",
                "tags": [ "Wind" ]
                }
       ]
}
```

Repositorios

Backend:

https://github.com/chrislig95/sistemasEmergentes2021

Frontend compilado:

https://github.com/augusv123/front-emergentes.git

Frontend:

https://github.com/chrislig95/sistemasEmergentes2021/tree/main/codigo%20fuente%20front

Diseño pantalla / Dashboard

Dashboard: https://emergentes.nerdingland.com/

Credenciales

Usuario: emergentes

Pass: USAL2021

Sensores para seleccionar:

Pantalla completa:

API Clima Celular

