Homework 1 of Computational Mathematics

AM15 黃琦翔 111652028

March 7, 2024

1. $f(x) = x^3 + 2x + k$, then $f'(x) = 3x^2 + 2 > 0$ for all x. Thus, we assume there are two points $a, b \in \mathbb{R}$ s.t. f(a) = f(b) = 0. By Rolle's Theorem, there exists a point c in [a,b](or [b,a]) s.t. f'(c) = 0(Contradiction).

And since $f(x) \to \infty$ as $x \to \infty$ and $f(x) \to -\infty$ as $x \to -\infty$, by IVT, there exists at least one x s.t. f(x) = 0. Thus, the graph of f(x) crosses the x-axis exactly once whatever k is.

- 2. By EVT, we know that the maximum occurs either f'(x) = 0 or a, b.
 - (a) $f'(x) = \frac{1}{3}(2 e^x) = 0$ when $x = \ln(2)$. And since f'(x) > 0 when $x \in (0, \ln(2))$ and f'(x) < 0 when $x \in (\ln(2), 1)$, $f(\ln(2)) = \frac{1}{3}(2 2 + 2\ln 2) = \frac{2\ln(2)}{3}$ is the maximun.

(b)
$$f'(x) = \frac{4x^2 - 8x - (4x - 3)(2x - 2)}{x^4 - 4x^3 + 4x^2} = \frac{-4x^2 + 6x - 8}{x^4 - 4x^3 + 4x^2} < 0 \text{ for } x \in [0.5, 1]. \text{ Thus,}$$

$$f(0.5) = \frac{2 - 3}{0.25 - 2} = \frac{4}{7}.$$

- (c) $f'(x) = 2\cos(2x) 4x\sin(2x) 2x + 4 = 0$
- (d) $f'(x) = \sin(x-1)e^{-\cos(x-1)}$ since $\sin(x) > 0$ for 0 < x < 1 and e^x is always positive, the maximum is $f(2) = 1 + e^{-\cos(1)}$.
- 3. $f'(x) = e^x(\cos(x) \sin(x)), f''(x) = -2e^x\sin(x), \text{ and } f^{(3)}(x) = -2e^x(\sin(x) + \cos(x)).$ Then, $P_2(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 = 1 + x \text{ and } R_2 = \frac{f^{(3)}(\xi(x))}{6}x^3 = \frac{-1}{3}x^3e^{\xi(x)}(\sin(\xi(x)) + \cos(\xi(x))).$ Thus, we have $f(x) = e^x\cos(x) = 1 + x \frac{1}{3}x^3e^{\xi(x)}(\sin(\xi(x)) + \cos(\xi(x)))$

(a)
$$P_2(\frac{1}{2}) = 1 + \frac{1}{2} = \frac{3}{2}$$
. And

$$|f(\frac{1}{2}) - P_2(\frac{1}{2})| = |R_2(\frac{1}{2})|$$

$$= \frac{1}{3} \frac{1}{2^3} e^{\xi(\frac{1}{2})} (\sin(\xi(\frac{1}{2})) + \cos(\xi(\frac{1}{2})))$$

$$\leq \frac{1}{24} e^{\frac{1}{2}} (\sin(\frac{1}{2}) + \sin(\frac{1}{2}))$$

$$= 0.09322200499$$

And the actual error is 0.05311086942(calculated by the calculator of google).

- (b) The bound is the maximum of $|R_2(x)|$ for $x \in [0,1]$. Thus, the bound $= |R_2(x)| \le \frac{1}{3} 1^3 e(\sqrt{2}) = 1.28141034272$.
- (c)