Assignment 08

Dep. Al Convergence Engineering

Student ID: 2023214019

Name: Md Habibur Rahman

1. Q1. Compare geometric and Poisson distributions by using numerical computations and graphs.

Answer:

Geometric Distribution:

The geometric distribution represents the number of trials needed to get the first success in a series of Bernoulli trials (where each trial is independent and has a constant probability of success q).

The probability mass function (PMF) for a geometric distribution is given by:

$$P(X = n) = (1 - q)^{n-1}q$$

where q is the probability of success on each trial and n is the trial number on which the first success occurs.

Poisson Distribution:

The Poisson distribution represents the number of events occurring in a fixed interval of time or space, with these events happening at a constant rate λ and independently of the time since the last event.

The probability mass function (PMF) for a Poisson distribution is given by:

$$P(X = n) = \frac{\lambda^n e^{-\lambda}}{n!}$$

where λ is the average number of events in the interval and n is the number of occurrences.

Comparison Using Numerical Computations and Graphs:

Let's perform numerical computations and plot the graphs for both distributions.

- 1. Parameters:
 - a. For the geometric distribution, choose q=0.5.
 - b. For the Poisson distribution, choose $\lambda=2$.
- Computation and Plotting:

We'll use Python to compute and plot these distributions.

2. Check whether convergence distribution of X_n (i.e. Concept 3) holds or not if f is a real valued constant function. Prove your result.

Answer:

Concept 3 states that a sequence of random variables X_n converges in distribution to a random variable X if for any bounded continuous function $f: \lim_{n\to\infty} E[f(X_n)] = E[f(X)]$ If f is a constant function, say f(X) = c, where c is a constant, then:

$$E[f(X_n)] = E[c] = c$$

and
 $E[f(X)] = E[c]$

Since the expectation of a constant function is the constant itself, we have:

$$f: \lim_{n \to \infty} E[f(X_n)] = c = E[f(X)]$$

Thus, the convergence distribution (Concept 3) holds for a real-valued constant function f.

3. Q3. Start from probabilistic convergence (Concept 1) and derive to Almost-Sure-Convergence (Concept 2) by using limiting value $\epsilon \rightarrow 0$.

Answer:

Concept 1 (Probabilistic Convergence):

A sequence of random variables X_n converges in probability to a random variable X if for every $\epsilon>0$:

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

Concept 2 (Almost-Sure Convergence):

A sequence of random variables X_n converges almost surely to a random variable X if:

$$P(\lim_{n\to\infty}X_n=X)=1$$

To derive almost-sure convergence from probabilistic convergence as $\epsilon \rightarrow 0$.

For almost-sure convergence, we need:

$$P(|X_n - X| \ge \epsilon \text{ for infinitely many } n) = 0$$

By the Borel-Cantelli lemma, if $\sum_{n=1}^{\infty} P(|X_n - X| \ge \epsilon) < \infty$ for every $\epsilon > 0$ then,

$$P(|X_n - X| \ge \epsilon infinitely often) = 0$$

Given probabilistic convergence:

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

this implies that for large n, $P(|X_n - X| \ge \epsilon) = 0$ becomes arbitrarily small.

Thus, if $P(|X_n - X| \ge \epsilon)$ decreases rapidly enough so that the series $\sum_{n=1}^{\infty} P(|X_n - X| \ge \epsilon)$

converges for every $\epsilon>0$, then by the Borel-Cantelli lemma, we get almost-sure convergence:

$$P(|X_n - X| \ge \epsilon \text{ for infinitely many } n) = 0$$

Hence, starting from probabilistic convergence and considering the limit as $\epsilon \rightarrow 0$., we derive almost-sure convergence.