..continuing

The agenda:

- λ Choosing the logic
- λ Making a dataset: proofs and lexical type assignments
- λ Learning the type assignment process
- λ Navigating the proof space
- λ Syntax-aware & type-correct text representations

Lexical type ambiguity

Type assignments are often *ambiguous* and context-dependent:

very realistic lexicon

Lexical type ambiguity

generally:

$$w :: t_1 \& t_2 \& t_3 \& \dots \& t_n$$

more refined grammar \implies

- \odot harder lexical disambiguation (more n per word)
- © easier parsing (if one starts from correct type)

Lexical type ambiguity

types (log2-transformed) per word

Supertagging

General idea

Given a sentence w_1, w_2, \ldots, w_n find the type sequence $t_1, t_2, \ldots t_n$ that maximimizes

$$p(t_1,t_2,\ldots t_n|w_1,w_2,\ldots w_n,\theta)$$

where θ the trainable parameter space

Discriminative approach

Markov assumption

$$p(t_1, t_2, \dots t_n | w_1, w_2, \dots w_n, \theta)$$

$$\approx \prod_{i=1}^n p(t_i | w_1, w_2, \dots w_n, \theta)$$

- contextualized token classification
- © single answer
- © sample sparsity
- © closed codomain assumption

Generative approach

Markov assumption

$$p(t_1, t_2, \dots t_n | w_1, w_2, \dots w_n, \theta)$$

$$\approx \prod_{i=1}^n p(t_i | t_1, t_2, \dots, t_{i-1}, w_1, w_2, \dots w_n, \theta)$$

- © seq2seq translation
- many answers
- © sample sparsity
- © closed codomain assumption

Generative approach: one more step

The type syntax:

$$cod(\mathcal{L}) := A \mid \stackrel{d}{\diamondsuit} T \multimap T' \mid \stackrel{d}{\Box} (T \multimap T')$$

corresponds to a simple cfg (in prefix notation) with meta-rules:

$$\begin{array}{ll} S \to A & \forall A \in \mathcal{A} \\ S \to \overset{d}{\diamondsuit} S \ S & \forall d \in \text{comps} \\ S \to \overset{d}{\Box} S \ S & \forall d \in \text{adjns} \end{array}$$

i.e. each type t_i can be written as a sequence of primitive symbols $ec{\sigma}$

Generative approach: one more step

The type syntax:

$$cod(\mathcal{L}) := A \mid \stackrel{d}{\diamondsuit} T \multimap T' \mid \stackrel{d}{\Box} (T \multimap T')$$

corresponds to a simple cfg (in prefix notation) with meta-rules:

$$S \to A$$
 $\forall A \in \mathcal{A}$ $S \to {}^d \! S S$ $\forall d \in \text{comps}$ $S \to {}^d \! S S$ $\forall d \in \text{adjns}$

i.e. each type t_i can be written as a sequence of primitive symbols $\vec{\sigma}$

$$p(t_1, t_2, \dots t_n | w_1, w_2, \dots w_n, \theta)$$

$$\approx \prod_{i=1}^m p(\sigma_i | \sigma_1, \sigma_2, \dots, \sigma_{i-1}, w_1, w_2, \dots w_n, \theta)$$

- each type contains many subtypes (less sparsity)
- any valid types can be inductively constructed (open codomain) \bigcirc

RNNs

- ▶ single state compresses entire sentence (lossy)
- temporal dependence during training (slow)

RNNs /w attention

- one vector per sequence element (lossless)
- temporal dependence during training (slow)

just attention

- one vector per sequence element (lossless)
- fully parallel training (fast)

just attention

- one vector per sequence element (lossless)
- fully parallel training (fast)

open questions

```
? explicit tree structure (tree-shaped decoders)
? decoding order (linear order vs. easy first)
? ultra-long types (two-step decoding, generic vs. concrete instances)
? inference time delay (linearization via kernel methods)
? logical constraints (reinforcement learning)
```

Proof Ambiguity

The type system (being non-directional) permits too many parses:

Proof Ambiguity

The type system (being non-directional) permits too many parses:

How can we select the correct one?

the berries that blackbirds steal

1. pass the sentence through the supertagger

$$\Box^{det}, \textit{np}, \textit{np}, \#, \textit{np}, \#, \diamondsuit^{body}, \diamondsuit^{dobj}, \textit{np}, \textit{s}, \Box^{mod}, \textit{np}, \textit{np}, \#, \diamondsuit^{dobj}, \textit{np}, \diamondsuit^{su}, \textit{np}, \textit{s}$$

$$\uparrow \\ \text{the berries that blackbirds steal}$$

2. parse types to trees and assign polarity information

3. find conclusion as the singleton $\mathcal{A}^+ - \mathcal{A}^-$

4. index pos/neg occurrences and arrange in a table

5. fill table with pair-wise agreement scores

6. discretize result with Sinkhorn

7. train against ground-truth axiom links

7. train against ground-truth axiom links

open questions

- ? structural ambiguity (sampling with noise)
- ? polymorphic linking (coherent chunks as single atom)