Course	Title of the	Program Core Total Number of contact hours					Credit	
Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
ECC01	Basic Electronics	PCR	2	1	0	3	3	
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment (EA))						
(10+2) Level		CT+EA						
	tics and Physics							
Course		Knowledge of Semiconductor Physics and Devices.						
Outcomes	002	• CO2: Have an in depth understanding of basic electronic circuit, construction and operation.						
	_	ation. 3: Ability to make proper designs using these circuit elements for different ications.						
	* *	04: Learn to analyze the circuits and to find out relation between input and output.						
Topics		ductors [3 Hours		and to find c	out relation of	etween inpu	t and output.	
Covered		1.1. Concept of band formation in solids; Fermi-Dirac distribution function, concept of						
Covered		Fermi level, invariance of Fermi level in a system under thermal equilibrium						
		1.2. Definitions of insulator, conductor and semiconductor using band diagram						
	1.3. Crys	1.3. Crystalline structure of semiconductor						
		. Covalent bond						
		1.3.2. Generation of holes and electrons						
		1.3.3. Effect of temperature on semiconductor						
		1.4 Intrinsic semiconductor1.5 Doping and Extrinsic semiconductor						
	_	1.5 Doping and Extrinsic semiconductor 1.5.1 n-Type semiconductor and band diagram						
		1.5.2 p-Type semiconductor and band diagram						
		1.5.3 Mass-action law of semiconductor						
	1.6. Cond	1.6. Conductivity of semiconductor (including mathematical expression)						
		1.7 Carrier transport phenomenon						
		Diodes [2 Hours]						
		2.1. Construction 2.2. Unbiased diode: Depletion layer and Barrier potential: junction capacitance						
		2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance						
		(expression only) 2.3. Principle of operation with forward biasing and reverse biasing						
		2.4. Characteristics						
		2.5 Diode's three models/equivalent circuits						
	Diode Cir	Diode Circuits [3 Hours]						
		3.1.1 Half wave rectifier						
		3.1.2 Full wave rectifier: centre tap and bridge rectifier 3.1.3 Capacitive filter and DC power supply (Numerical problems)						
		3.1.3 Capacitive filter and DC power supply (Numerical problems) 3.2 Special Diodes						
		3.2.1 Zener diode: Avalanche breakdown and Zener breakdown and characteristics.						
		3.2.2 Zener diode as a voltage regulator						
		3.2.3 Display devices : LED and LCD						
	Bipolar J	Bipolar Junction Transistor (BJT) [4 Hours]						
		r r						
		4.2 Principle of operation						
		4.3 Transistor configuration: common base, common emitter, and common collector						
		4.4 Transistor characteristics: input and output characteristics of CB and CE						
		configurations. 4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region						
		4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region 4.6 Amplifier: Principle of operation						
		4.7 Transistor as a switch						

Transistor Biasing [2 Hours]

- 5.1 Need of biasing
- 5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing
- 5.3 Stability of Q-point (qualitative discussions)
- 5.4 (Numerical problems)

Single Stage Amplifier [2 Hours]

Classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only)

Feedback Amplifier [3 Hours]

- 7.1 Positive and negative feedback
- 7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems.

Other Semiconductor Devices [2 Hours]

- 8.1 JFET: Construction, principle of operation, characteristics
- 8.2 MOSFET: Construction, principle of operation, characteristics
- 8.3 Power Electronic Device-SCR : Brief discussions

Operational Amplifier [4 Hours]

- 9.1 Characteristics of ideal operational amplifier
- 9.2 Pin Configuration of IC 741
- 9.3 Analysis of simple operational amplifier circuits: concept of virtual ground; noninverting amplifier and inverting amplifier.
- 9.4 Applications: voltage follower, summer, differentiator, integrator, and comparator

Oscillator [2 Hours]

- 10.1 Positive feedback and condition of oscillation
- 10.2 R-C phase-shift oscillator, Wien bridge oscillator

Boolean Algebra [1 Hour]

- 11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean expressions
- 11.2 Number system, range extension of numbers, overflow
- 11.3 Different codes: Gray code, ASCII code and BCD codes and their Applications

Logic Gates [1 Hour]

- 12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates
- 12.2 Simplification of logic functions
- 12.3 Realizations of logic expressions using logic gates

CRO and its applications and other test and measurement instruments [1 Hour]

Text Books, and/or reference material

TEXT BOOKS

- Introduction Electronic Devices & Circuit Theory, 11/e, 2012, Pearson: Boylestad & Nashelsky
- 2. Integrated Electronics: Millman & Halkias

REFERENCE BOOKS

- 1. The Art of Electronics 3e, by Paul Horowitz, Winfield Hill
- 2. Electronics Circuits and Systems, Fourth Edition by Owen Bishop
- 3. Electronics Fundamentals: Circuits, Devices & Applications (8e) by Thomas L. Floyd
- & David M. Buchla.
- 4. Electronic Principles, by Albert Paul Malvino Dr. and David J. Bates