Topologie Algébrique

Muriel Livernet

6 février 2024

Table des matières

Ι	CW-Complexes	1
1	Définitions	1
2	 La Catégorie Top 2.1 Notions de Colimites dans une Catégorie	2 2 3
3	CW-Complexe	5
Π	Homotopie	8
4	Homotopie des Applications	8

Première partie

CW-Complexes

1 Définitions

Définition 1.1: Catégorie

Une catégorie ${\mathcal C}$ est constituée de trois entités :

- Un ensemble $ob(\mathcal{C})$ dont les éléments sont des objets
- Un ensemble $hom(\mathcal{C})$ de morphismes
- Une opération binaire unitaire associative \circ appelée composition de morphismes telle que $\forall x \in ob(\mathcal{C}), \exists 1_x : x \to x$ tel que pour tout $f : a \to b, 1_b \circ f = f = f \circ 1_a$.

Définition 1.2: Foncteur

Un foncteur F est une application préservant la structure entre deux catégories C et D:

- $\forall x \in ob(C), F(x) \in ob(D)$
- $\forall f: x \to y \in hom(C), F(f): F(x) \to F(y) \in hom(D)$

et tels que

- $\forall x \in C, F(1_x) = 1_{F(x)}$
- $\forall f: x \to y, g: y \to z, F(g \circ f) = F(g) \circ F(f)$

Définition 1.3: Quelques Catégories

 \mathcal{E} ns Les objets sont les ensembles et les morphismes les applications.

 \mathcal{T} op Les objets sont les espaces topologiques et les morphismes les applications continues.

 \mathcal{T} op $_*$ Les objets sont les espaces topologiques pointés (i.e. avec un point de référence) et applications continues pointées.

 \mathcal{G} d Les objets sont les groupes et les morphismes les morphismes de groupes.

Ab Les objets sont les groupes abéliens et les morphismes les morphismes de groupes.

2 La Catégorie \mathcal{T} op

Dans la suite, on notera \mathbb{D}^n ou \mathbb{B}^n la boule fermée de dimension n dans l'espace euclidien, \mathbb{S}^{n-1} la sphère unité. On rappelle que \mathbb{D}^n est homéomorphe au cube $I^n = [0, 1]^n$.

2.1 Notions de Colimites dans une Catégorie

On se donne $F:I\to\mathcal{C}$ un foncteur où I est une petite catégorie et F s'appelle un diagramme dans $\mathcal{C}.$

On considèrera principalement les catégories suivantes :

- 1. La catégorie discrète {1}, {2} (deux objets, les seuls morphismes sont les identités).
- 2. La catégorie ayant trois objets $\{0\}, \{1\}, \{2\}$ et les seuls morphismes non triviaux sont $0 \to 1$ et $0 \to 2$. Un foncteur de cette catégorie dans \mathcal{C} consiste en la donnée d'un diagramme dans \mathcal{C} de type :

$$A \xrightarrow{f} B$$

$$\downarrow^{g}$$

$$C$$

3. La catégorie $\mathbb N$ où les objets sont en bijection avec $\mathbb N$ et

$$Hom_{\mathbb{N}}(i,j) = \begin{cases} \{\star\} & \text{si} i \leq j \\ \emptyset & \text{sinon} \end{cases}$$

Un foncteur de cette catégorie dans C consiste en la donnée d'une famille d'objets $(X_n)_{n\in\mathbb{N}}$ et de morphismes $\varphi_n: X_n \to X_{n+1}, n \geq 0$.

Définition 2.1: Cocone

Un cocone est la donnée d'un object $c \in \mathcal{C}$ et d'une collection de morphismes $\alpha_i : F(i) \to c$ dans \mathcal{C} pour $i \in I$ vérifiant $\forall f : i \to j \in hom(I), \alpha(j) \circ F(f) = \alpha_i$

2

Définition 2.2: Colimite

Une colimite de F est un cocone universel par rapport aux cocones, i.e. si $(c, \alpha_i), (d, \beta_i)$ sont deux cocones, alors il existe un unique morphisme : $g: c \to d$ tel que pour tout $i \in I$, $g \circ \alpha_i \beta_i$. On note alors $c = \operatorname{colim}_I F$

Proposition 2.1: Unicité de la Colimite

Si $\operatorname{colim}_I F$ existe, elle est unique à isomorphisme près.

Définition 2.3: Colimite pour un Diagramme

La colimite pour un diagramme de type 1 s'appelle coproduit ou somme, pour un diagramme de type 2 on parle de pushout ou de somme amalgamée. Un diagramme dans $\mathcal C$ de type

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \downarrow^g & & \downarrow \\ C & \longrightarrow & D \end{array}$$

où D est la somme amalgamée de B et C au-dessus de A s'appelle un carré cocartésien.

Proposition 2.2: Colimites dans \mathcal{T}_{op}

Les colimites ci-dessus existent dans \mathcal{T} op et sont obtenues à l'aide des colimites dans les ensembles munis de la topologie finale. En particulier, le coproduit $X \sqcup Y$ de deux espaces topologiques X et Y est l'ensemble $X \sqcup Y$ muni de la topologie finale par rapport aux inclusions.

2.2 Cas Particulier : Recollement d'Espaces Topologiques, Adjonctions Cellulaires, Bouquets

Définition 2.4: Recollement

Soient X,Y des espaces topologiques et $A\subseteq Y$ muni de la topologie induite. On considère le diagramme suivant

$$\begin{array}{c} A \xrightarrow{\varphi} X \\ \downarrow^{\iota} \\ Y \end{array}$$

On a vu que la colimite dans \mathcal{T} op de ce diagramme existe, elle est notée $X \cup_f Y$ et s'appelle pushout ou recollement le long de φ . On a alors le carré cocartésien suivant :

$$\begin{array}{ccc} A & \stackrel{\iota}{\longrightarrow} X \\ \downarrow^{\varphi} & & \downarrow_{i_X} \\ Y & \stackrel{\Phi}{\longrightarrow} X \cup_{\varphi} Y \end{array}$$

3

L'application φ s'appelle le morphisme caractéristique du recollement.

Proposition 2.3: Construction Explicite

On a:

$$X \sqcup Y \xrightarrow{X} \sqcup Y / \sim$$

où \sim est engendrée par $a \sim \varphi(a)$ pour tout $a \in A$ et q désigne l'application quotient.

Proposition 2.4: Ensemblistement

En terme d'ensemble, on a une bijection entre $X \cup_{\varphi} Y$ et $X \sqcup (Y \setminus A)$. La projection canonique $q: X \sqcup Y \to X \cup_f Y$ vérifie $q(x) = x, \forall x \in X, \ q(a) = \varphi(a), \forall a \in A \text{ et } q(y) = y \forall y \in Y \setminus A$. De plus, si A est fermé dans Y alors;

- i_X réalise un homéomorphisme de X sur son image.
- φ restreint à $Y \setminus A$ réalise un homéomorphisme sur son image.

Définition 2.5: Attachement Cellulaire

Si $Y = \mathbb{D}^n$, $A = \mathbb{S}^{n-1}$ on note le recollement précédent $X \cup_{\varphi} e^n$ et ce recollement s'appelle attachement cellulaire. e^n s'appelle une n-cellule. Comme $\mathbb{S}^{n-1} = \partial \mathbb{D}^n$ est fermé, la proposition précédente s'applique.

Remarque 2.1: Construction Explicite de l'Attachement

 $X \cup_{\varphi} e^n \simeq X \sqcup \mathbb{D}^n/\mathcal{R}$ où \mathcal{R} est la relation d'équivalence engendrée par $a\mathcal{R}\varphi(a)$ sur \mathbb{S}^{n-1} . Ainsi, pour $x \in X$, on a $[x] = \{x\} \cup \{\varphi^{-1}(x)\}$ et pour $y \in \mathring{\mathbb{D}}^n$ on a $[y] = \{y\}$.

Proposition 2.5: Topologie produit et Surjection

Soit $f: X \to Q$ une application continue surjective, et Q muni de la topologie finale par rapport à f. Si K est compact alors la topologie produit sur $Q \times K$ coïncide avec la topologie finale induite par la surjection $f \times Id: X \times K \to Q \times K$.

Autrement dit, en considérant le quotient par f de X et donc de $X \times K$ par $f \times id$, on écrit ainsi qu'on a un homéomorphisme, pour la topologie quotient :

$$(X \times K)/(f \times id) \xrightarrow{q \times id} X/f \times K$$

Lemme 2.1: Projection à côté d'un Compact

La projection de $X \times K$ dans X où K est compacte est fermée.

Corollaire 2.1: Isomorphisme de Surjection

Soit $\varphi: \mathbb{S}^{n-1} \to X$ une application continue. On a :

$$(X \cup_{\varphi} e^n) \times I \simeq (X \times I) \cup_{\varphi \times id_I} (\mathbb{D}^n \times I)$$

Définition 2.6: Bouquet

Soient X, x_0 et Y, y_0 deux espaces topologiques. Le bouquet $X \vee Y$ est l'espace topologique en prenant $A = \{*\}$ et les deux applications $A \to X$ et $A \to Y$ envoyant * sur les points bases. Il est naturellement pointé par $\{x_0 = y_0\}$.

Proposition 2.6: Bouquet et coproduit

Le bouquet de deux espaces correspond à leur coproduit dans la catégorie des espaces topologiques pointés.

Proposition 2.7: Bouquet avec la Sphère

Si $\varphi: \mathbb{S}^{n-1} \to X$ est une application constante alors $X \cup_{\varphi} e^n$ est homéomorphe à $X \vee \mathbb{S}^n$.

Proposition 2.8: Homéomorphisme de Bouquets

 \mathbb{S}^n est homéomorphe à $\mathbb{D}^p \times \mathbb{S}^q \cup_{\mathbb{S}^{p-1} \times \mathbb{S}^q} \mathbb{S}^{p-1} \times \mathbb{D}^{q+1}$ pour tout p,q de somme n.

3 CW-Complexe

Définition 3.1: CW-Complexe

Un CW-complexe est un espace topologique X muni d'une suite de sous-espace topologiques croissante (X_i) telle que :

- 1. X_0 est un ensemble de points (topologie discrète)
- 2. Pour $n \geq 1$, il existe un ensemble d'indices I_n telle que :

$$\bigsqcup_{\alpha \in I_n} \mathbb{S}^{n-1} \xrightarrow{\sqcup \varphi_{\alpha}^n} X_{n-1} \downarrow \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \bigsqcup_{\alpha \in I_n} \mathbb{D}^n \xrightarrow{\sqcup \Phi_{\alpha}^n} X_n = X_{n-1} \cup_{\alpha \in I_n} e_{\alpha}^n$$

3. $X = \bigcup X_n$ pour la topologie finale.

Terminologie:

- X_n est le n-squelette de X.
- La dimension de X est finie s'il existe N tel que $\forall n \geq N, X_n = X_N = X$ et alors $\dim X$ est le plus petit des N convenables.
- On dit que X est fini si $|\bigcup_n I_n \cup X_0| < \infty$.
- Si $\dim X = 1$, X s'appelle un graphe.
- L'application $\Phi_{\alpha^n}: \mathbb{D}^n \to X_n \to X$ est appelée application caractéristique. Elle envoie homéomorphiquement $\mathring{\mathbb{D}}^n$ sur e^n_{α}

Proposition 3.1: Structure Cellulaire sur \mathbb{S}^n

On prend une 0-cellule X_0 , $X_1 = X_0$ et $X_2 = \{*\} \cup_{\varphi} e^2$:

Plus généralement, on peut décomposer \mathbb{S}^n avec 1 k-cellule pour tout $k \leq n$.

Autre Décomposition : On prend 2 0-cellule, 2 1-cellules et 2 2-cellules. On peut continuer

On a une structure cellulaire de \mathbb{S}^n avec deux k cellules pour $k \leq n$.

On montre ainsi que le k-squelette de \mathbb{S}^n vérifie $\mathbb{S}^n_k \simeq S^k$.

On obtient alors une décomposition cellulaire de $\mathbb{S}^{\infty} = \lim_{n \to \infty} \mathbb{S}^0 \hookrightarrow \ldots \hookrightarrow \mathbb{S}^n$ dont le k-squelette est \mathbb{S}^k

Proposition 3.2

Si X est un CW-Complexe alors $X_{n+1}/X_n \sim \bigvee_{\alpha \in I_{n+1}} \mathbb{S}^{n+1}$

Démonstration. Le diagramme

$$\bigsqcup_{\alpha \in I_{n+1}} \mathbb{S}^n \longrightarrow X_n \longrightarrow *$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigsqcup_{\alpha \in I_{n+1}} \mathbb{D}^n \longrightarrow X_{n+1} \longrightarrow X_{n+1}/X_n$$

implique que

$$\downarrow \mathbb{S}^n \longrightarrow *
\downarrow \qquad \qquad \downarrow
\sqcup \mathbb{D}^n \longrightarrow X_{n+1}/X_n$$

et

$$\bigsqcup_{\alpha \in I_{n+1}} \mathbb{D}^{n+1} / \bigsqcup_{\alpha \in I_{n+1}} \mathbb{S}^n \simeq \bigvee_{\alpha \in I_{n+1}} \mathbb{S}^{n+1}$$

en pushout.

Proposition 3.3: Fermeture du Squelette

Soit X un CW-complexe. X_n est fermé dans X_{n+1} et dans X.

 $D\acute{e}monstration$. On a une bijection $q: X_n \sqcup \bigsqcup_{\alpha \in I_{n+1}} \mathbb{D}^{n+1}_{\alpha} \xrightarrow{q} X_{n+1}$. On veut montrer que X_{n+1} X_n est ouvert.

Pour $x \in X_{n+1} \setminus X_n$, $\exists \alpha \in I_{n+1}, x \in q(\mathring{\mathbb{D}}_{\alpha}^{n+1})$. Donc $\exists U = q(V)$ ouvert tel que $x \in U \subseteq X_{n+1} \setminus X_n$

Proposition 3.4: Décomposition du Tore

On a : $\mathbb{T} \simeq \mathbb{S}^1 \times \mathbb{S}^1$. On en trouve ainsi une décomposition avec 1 0-cellule T_0 , 2 1-cellules $T_1 = \mathbb{S}^1 \vee \mathbb{S}^1$, et 1 2-cellule T_2 .

Définition 3.2: Sous CW-Complexe

Soit X un CW-Complexe, $A\subset X$ un sous-espace topologique. On dit que A est un sous-CW-Complexe si :

- \bullet A est fermé dans X
- A est une union de cellules dans X.

Proposition 3.5: Structure Cellulaire Induite

Si A est un sous-CW-complexe de X, alors A est un CW-complexe

 $D\acute{e}monstration.$ Soit e^n_α une cellule de X qui est dans A. On a le diagramme suivant :

$$\mathbb{S}_{\alpha}^{n-1} \xrightarrow{\varphi_{\alpha}^{n}} X_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{D}_{\alpha}^{n} \xrightarrow{\Phi_{\alpha}^{n}} X_{n}$$

et on sait que $\Phi_{\alpha}^{n}\left(\mathring{\mathbb{D}}_{\alpha}^{n}\right)\subseteq A$ et A fermé implique $\Phi_{\alpha}^{n}\left(\mathbb{D}_{\alpha}^{n}\right)\subset A$.

Proposition 3.6: Compact dans un CW-Complexe

Soit X un CW-complexe et K un quasi-compact de X. Alors K rencontre un nombre fini de cellules.

Outils Techniques que l'on va retenir :

 $\bullet \ \mathbb{D}^n \simeq \mathbb{D}^n \cup_{\mathbb{S}^{n-1} \times \{0\}} \big(S^{n-1} \times I\big).$

Deuxième partie

Homotopie

4 Homotopie des Applications

Définition 4.1: Homotopie d'Applications

Soient $f, g: X \to Y$ continues.

- On dit que f est homotopie à g et on note $f \simeq g$ s'il existe une application H: $X \times I \to Y$ telle que H(x,0) = f(x), H(x,1) = g(x) pour tout x.
- Si $A \subseteq X$ et $f_{|A} = g_{|A}$ on dit que f est homotope à g relativement à A s'il existe une application H telle que la propriété ci-dessus est vérifiée et de plus H(a,t) = f(a) = g(a) pour tout a. On note alors $f \simeq_A g$

Proposition 4.1: Equivalence et Homotopie

Les relations \simeq et \simeq_A sont des relations d'équivalences.

Proposition 4.2: Exemples

- $id_{\mathbb{R}^n}$ est homotope à $c_0: x \mapsto 0$ par H(x,t) = tx.
- Toute application continue non surjective est homotope à une application constante.

Définition 4.2

Soit X, Y deux espaces topologiques, $A \subseteq X, \psi : A \to Y$. On note

$$\mathcal{C}(X,Y)_{\psi} = \left\{ f : X \to Y \mid f_{|_A} = \psi \right\}$$

On a:

$$[X,Y]_{\psi} = \mathcal{C}(X,Y)_{\psi}/\simeq_A$$

Si $A = \emptyset$, on le note simplement [X, Y].

Proposition 4.3: Catégorie Homotopique

On définit \mathcal{C} la catégorie dont les objets sont les espaces topologiques et les morphismes $\mathcal{C}(X,Y) = [X,Y]$. C'est la catégorie homotopique forte de \mathcal{T} op.

Démonstration. Il faut montrer que si $f \simeq g, \ h: Y \to Z, \ k: U \to X$ alors : $hf \simeq hg, \ fk \simeq gk$ et $[f] \circ [g] = [f \circ g]$

Définition 4.3

On dit que deux espaces X,Y sont homotopiquement équivalents s'il existe $f:X\to Y,$ $g:Y\to X$ continues tel que $gf\simeq id_X$ et $fg\simeq id_Y.$

8