Abstract Algebra - Assignment 2

Jaan Tollander de Balsch

January 16, 2019

Definitions

A **group** is a triple (G, \cdot, e) where G is a set, \cdot is a binary operation on G and the indentity e, such that the following hold

a) Closure: For all $x, y \in G$ the result operation

$$x \cdot y \in G$$
.

b) **Associativity**: For all $x, y, z \in G$,

$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

c) Indentity element: There exists an identity element e such that for all $x \in G$

$$e \cdot x = x \cdot e = x$$
.

d) **Inverse element**: For every $x \in G$ there exists $y \in G$ such that

$$x \cdot y = y \cdot x = e$$
.

Semigroup: Only (a), (b) holds.

Monoid Only (a), (b), and) hold.

G is called **Abelian group** if the following also holds

d) Commutativity: For all $x, y \in G$ we have $x \cdot y = y \cdot x$.

Let G be a group and $\emptyset = H \subseteq G$ a subset of G. We say H is a **subgroup** of G, formally $H \subseteq G$, it is closed under the operation on G and satisfies all group axioms

A subset H of a group G is a subgroup, if and only if the following hold

- a) Nonempty: The subgroup is non-empty $H \neq \emptyset$.
- b) Closed under operation: For all $a, b \in H$

$$a \cdot b \in H$$
.

c) Closed under inverse: For all $a \in H$

$$a^{-1} \in H$$
.

Alternatively

- I) $H \neq \emptyset$
- II) $a, b \in H$ implies $a \cdot b^{-1} \in H$.

For a group G and a subset $T\subseteq G$ define

$$\langle T \rangle := \bigcap \{ H \subseteq G \mid T \subseteq H \},$$

the intersection of all subgroups that contain T.

- Group
- Subgroup
- Cayley table

Problem 1

a)

For a group G, show by induction, that

$$(a_1\cdot a_2\cdot\ldots\cdot a_n)^{-1}=a_n^{-1}\cdot\ldots\cdot a_2^{-1}\cdot a_1^{-1}$$

for arbitrary $a_i \in G, i = 1, ..., n$ and $n \in \mathbb{N}$.

Trivial case n = 1: From *inverse element* axiom

$$a_1\cdot a_1^{-1}=e.$$

Base case n=2: From closure axiom $x=a_1\cdot a_2\in G$ then

$$\begin{split} x \cdot x^{-1} &= e \\ (a_1 \cdot a_2) \cdot (a_1 \cdot a_2)^{-1} &= e \\ a_1 \cdot (a_2 \cdot (a_1 \cdot a_2)^{-1}) &= e \\ a_2 \cdot (a_1 \cdot a_2)^{-1} &= a_1^{-1} \cdot e \\ (a_1 \cdot a_2)^{-1} &= a_2^{-1} \cdot a_1^{-1} \cdot e \\ (a_1 \cdot a_2)^{-1} &= a_2^{-1} \cdot a_1^{-1}. \end{split}$$

General case n: Using closure and transitivity axioms

$$x = a_1 \cdot a_2 \cdot \ldots \cdot a_{n-1} \cdot a_n = a_1 \cdot (a_2 \cdot \ldots \cdot (a_{n-1} \cdot a_n)) \in G.$$

Then using the same process as in the base case

$$(a_1 \cdot a_2 \cdot \ldots \cdot a_{n-1} \cdot a_n)^{-1} = a_n^{-1} \cdot a_{n-1}^{-1} \cdot \ldots \cdot a_2^{-1} \cdot a_1^{-1}.$$

b)

Write down the Caley table for the group $\mathbb{Z}_7^{\times} := \{1, 2, 3, 4, 5, 6\}$ with multiplication modulo 7.

×	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Julia code:

print(reshape([mod(i*j, 7) for i in 1:6 for j in 1:6],(6,6)))

Problem 2

Let G be a group, and let H and K be subgroups of G. Show that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

Subgroup axioms for H.

- a) $H \neq \emptyset$
- b) $h_1,h_2\in H$ implies $h_1\cdot h_2\in H$ c) If $h\in H$ then $h^{-1}\in H$

Subgroup axioms for K.

- a) $K \neq \emptyset$
- b) $k_1,k_2\in K$ implies $k_1\cdot k_2\in K$ c) If $k\in K$ then $k^{-1}\in K$

Lets test subgroup axioms for $H \cup K$. There are three cases in which the group $H \cup K$ is a subgroup of G. In all of these, the subgroup axioms of $H \cup K$ reduce to either subgroup axioms of H or K.

- 1) If H = K then $H \cup K = H = K$. Reduces to the subgroup axioms of H or K.
- 2) If $K \subseteq H$ then $H \cup K = H$. Reduced to the subgroup axioms of H.
- 3) If $H \subseteq K$ then $H \cup K = K$. Reduces to the subgroup axioms of K.

In the fourth case, $H \subseteq K$ and $K \subseteq H$, $H \cup K$ is not a subgroup of G.

Proof: This proof provides a counterexample that $H \cup K$ is not closed under operation if $H \subsetneq K$ and $K \subsetneq H$ which implies that $H \cup K$ is not a subgroup of G.

- 1) Let $a, b \in H \cup K$ such that $a \in H$, $a \notin K$, $b \in K$, and $b \notin H$
- 2) Implies that $a \cdot b \in H \cup K$
- 3) Implies that $a \cdot b \in H$ or $a \cdot b \in K$
- 4) If $a \cdot b \in H$ then $a, b \in H$ or if $a \cdot b \in K$ then $a, b \in K$
- 5) These are in conflict with the assumptions and therefore $a \cdot b \notin H \cup K$ and $H \cup K$ is not a subgroup of G.

Problem 3

Let G be a group and let H be a subset of G.

 \mathbf{a}

If H is finite and non-empty, then H is a subgroup of G if and only if H is closed under the operation on G.

The axiom for being non-empty $H \neq \emptyset$ is already satisfied. The existence of inverse element can be proven using the existence of identity element, which is always included in the subgroup. Lets assume that H is **closed under operation**, which means that all elements $a \in H$ are products $a = b \cdot c$ under the operation on elements $b, c \in H$.

TODO: Cayley table, finite, For all $a \in H$ there exists $b \in H$ such that

$$a\cdot b=ea^{-1}=b.$$

b

Let the group G be $(\mathbb{Z}, +, 0)$. Then infinite subset $H = (\mathbb{N}, +, 0)$ of G is closed under the operation + on G, but **not a subgroup** of G because its not **closed under inverse**, i.e. $a \in H$ does not imply $a^{-1} \in H$.

Problem 4

Let G be a group. For $g \in G$ define the centralizer $C_G(g) := \{x \in G \mid x \cdot g = g \cdot x\}$ of g in G, and prove that $C_G(g)$ is a subgroup for every g.

Nonempty: For all g,

$$C_G(g) \neq \emptyset$$
.

Proof: For every g if x = g then

$$x \cdot g = g \cdot g = g \cdot x$$

therefore the centralizer always contains at least the element g.

Closure under operation: For all $a, b \in C_G(g)$

$$a \cdot b \in C_G(g)$$

Proof: Let $a,b \in C_G(g)$ then $a \cdot g = g \cdot a$ and $b \cdot g = g \cdot b$. It can be shown that $a \cdot b$ belongs to $C_G(g)$ if it satisfies the property $x \cdot g = g \cdot x$.

$$(a \cdot b) \cdot g = a \cdot (b \cdot g)$$

$$= a \cdot (g \cdot b)$$

$$= (a \cdot g) \cdot b$$

$$= (g \cdot a) \cdot b$$

$$= g \cdot (a \cdot b).$$

Closure under inverse: For all $a \in C_G(g)$ there exists $a^{-1} \in C_G(g)$

Proof: Let $a \in C_G(g)$ then $a \cdot g = g \cdot a$. It can shown that a^{-1} belongs to $C_G(g)$ if it satisfies the property $x \cdot g = g \cdot x$.

$$a^{-1} \cdot g = g \cdot a^{-1}$$

$$a^{-1} \cdot g \cdot a = g$$

$$g \cdot a = a \cdot g$$

$$a \cdot g = g \cdot a.$$

Problem 5