Brain Inspired Computing - Problem Set 1

Sven Bordukat, Paul Meehan

May 14, 2019

Exercise 1

a) Let $A := F_u + G_w$, $B := F_u G_w - F_w G_u$ and $C := (F_u + G_w)^2 - 4(F_u G_w - F_w G_u)$. Assume A > 0. From the eigenvalue equation

$$\lambda_{\pm} = \frac{1}{2} (F_u + G_w \pm \sqrt{(F_u + G_w)^2 - 4(F_u G_w - F_w G_u)})$$
$$= \frac{1}{2} (A \pm \sqrt{A^2 - 4B})$$

we derive that if $C \geq 0$, $\lambda_+ > 0$ as well. If C < 0, λ_\pm can be expressed through $\lambda_\pm = r \pm i * \omega$ with r = A/2 > 0. However, any positive λ leads to growth, which means that the model is not stable under these conditions. In the case of C > 0, we have a saddle or an unstable situation, depending on whether λ_- is positive or negative; in the case of C < 0 we have a growing spiral. Therefore, A < 0 must hold true. In the case of C < 0, this is enough, as any solution that satisfies A < 0 will lead to $\lambda_\pm = r \pm i * \omega$ with r < 0. However, for C > 0, we need to make sure that $\lambda_+ < 0$ in any case. To satisfy this condition, $\sqrt{C} < abs(A) = \sqrt{A^2}$ must hold true. Expansion of C leads to $\sqrt{A^2 - 4B} < \sqrt{A^2}$. From this we can easily see that $F_u G_w - F_w G_u = B > 0$ must hold true.

b) The fixpoints are $\left(-\frac{3}{2}, -\frac{3}{8}\right)$ and $\left(0, \frac{15}{8}\right)$, respectively. For the case of I=0 we can simply calculate the conditions given above. We have

$$F_u = 1 - u^2$$

$$F_w = -1$$

$$G_u = \epsilon * b$$

$$G_w = -\epsilon * w$$

which gives us

$$F_u + G_w = 1 - u^2 - \epsilon * w$$

$$= 1 - \frac{9}{4} + 0.1 * \frac{3}{8}$$

$$= \frac{8 - 18 + 0.3}{8}$$

$$= -\frac{9.7}{8} < 0$$

and

$$F_u * G_w - F_w * G_u = (1 - u^2) * (-\epsilon * w) - (-1 * \epsilon * b)$$

$$= \epsilon (-\frac{5}{8} * \frac{3}{8} + \frac{3}{2})$$

$$= \epsilon (\frac{3}{2} - \frac{15}{64}) > 0$$

Therefore the fixpoint for I=0 is stable.

The nullcline of w is given through $G=0 \Leftrightarrow w=a+b*u$. For I=15/8 lets look at a point on the nullcline of w at coordinates $(u_0+\delta u,a+b*(u_0+\delta u))$ with $\delta u>0, \delta u\ll 1$. As $u_0=0$, we get

$$F = \delta u - \frac{\delta u^{3}}{3} - \frac{15}{8} + \delta u * \frac{3}{2} + \frac{15}{8}$$
$$\approx \frac{5}{2} \delta u > 0$$

This means that the arrows point away from the fixpoint (at least on the nullcline) and the fixpoint is therefore not stable.

Exercise 2