Multi-Instance Multi-label Learning in the Presence of Novel Class Instances

By Anh Pham, Raviv Raich, Xiaoli Fern

Presented By -Akhil Gupta Rohit Dayama Suryansh Agnihotri Sunit Pujari

Multi-Instance Multi-label learning (MIML)

MIML learning with novel instances

Known Classes

- Building,Sky,Bird
- Dog,RoadNovel Classes
- Grass
- Others (void)

 The boxed images contain grass segments but have no label for grass

Problem formulation

- Training data: B bags, denoted by $\{(X_b, Y_b)\}_{b=1}^{b}$
- \mathbf{X}_{b} is a set of \mathbf{n}_{b} instances for the \mathbf{b}^{th} bag $\{\mathbf{x}_{b1}, \mathbf{x}_{b2}, ..., \mathbf{x}_{bnb}\}$, where $\mathbf{x}_{bi} \in \underline{X} = \mathbf{R}^{d}$
- Each instance x_{bi} is associated with a label y_{bi} ∈ {0, 1, ..., C}, where C is the number of classes and 0 denotes novel class
- Y_b is the bag label for the bth bag and a subset of known labels $Y = \{1,2,...C\}$

Goals

- Instance annotation: map an instance in X to a label in {0,1,2,...,C}
- Novelty detection: map an instance in X to
- {0, Y}
- Bag label prediction: map a bag in 2^x to 2^x

Related work

- Novelty detection in SISL learning
- Novel instances are not in training (Saligrama & Zhao, 2012)
- Novelty detection in MIML learning
- Novel instances are in training, however, their labels are not available
- A threshold approach can be use with other MIML instance annotation Algorithms
- Approach in Paper: a discriminative framework with a built-in novel classmodel

Graphical model

Multiclass Logistic regression

Union relation

$$y_{21} = grass', y_{22} = dog' \rightarrow Y_2^2 = grass', dog'$$

Instance labels are 0,1,2, ..., C where 0 is the novel class label

$$p(\mathbf{Y}_b|\mathbf{Y}_b^{n_b}) = I(\mathbf{Y}_b = \mathbf{Y}_b^{n_b}) + I(\mathbf{Y}_b \bigcup \{0\} = \mathbf{Y}_b^{n_b})$$

 $\mathbf{Y}_b^{n_b}$ may include the novel class label 0 : $\mathbf{Y}_b^{n_b} \subseteq \{0,1,2,\dots,C\}$

 \mathbf{Y}_b removes the novel label 0 from $\mathbf{Y}_b^{n_b}$: $\mathbf{Y}_b^{n_b} \to \mathbf{Y}_b \subseteq \{1, ..., C\}$

Graphical model for the problem

Graphical Model (Example 1)

Graphical model for the problem

$$p(\mathbf{Y}_b|\mathbf{Y}_b^{n_b}) = I(\mathbf{Y}_b = \mathbf{Y}_b^{n_b}) + I(\mathbf{Y}_b \bigcup \{0\} = \mathbf{Y}_b^{n_b})$$

$$\mathbf{1}$$

Graphical Model (Example 2)

$$p(\mathbf{Y}_b|\mathbf{Y}_b^{n_b}) = I(\mathbf{Y}_b = \mathbf{Y}_b^{n_b}) + I(\mathbf{Y}_b \bigcup \{0\} = \mathbf{Y}_b^{n_b})$$

9

Inference

Maximum likelihood inference

$$p(\mathbf{Y}_D, \mathbf{X}_D | \mathbf{w}) = p(\mathbf{X}_D) \prod_{b=1}^B p(\mathbf{Y}_b | \mathbf{X}_b, \mathbf{w}) \text{ where }$$

$$p(\mathbf{Y}_b|\mathbf{X}_b,\mathbf{w}) = \sum_{y_{b1}=0}^{C} \cdots \sum_{y_{bn_b}=0}^{C} [\{I(\mathbf{Y}_b = \bigcup_{j=1}^{n_b} y_{bj}) + I(\mathbf{Y}_b \bigcup \{0\} = \bigcup_{j=1}^{n_b} y_{bj})\} \times \prod_{i=1}^{n_b} p(y_{bi}|\mathbf{x}_{bi},\mathbf{w})] \rightarrow O((C+1)^{n_b})$$

Generalized Expectation Maximization

Surrogate function

$$g(\mathbf{w}, \mathbf{w}') = E_{\mathbf{y}}[\log p(\mathbf{Y}_D, \mathbf{X}_D, \mathbf{y} | \mathbf{w}) | \mathbf{Y}_D, \mathbf{X}_D, \mathbf{w}'] = \sum_{b=1}^{B} \sum_{i=1}^{n_b} [\sum_{c=0}^{C} p(y_{bi} = c | \mathbf{Y}_b, \mathbf{X}_b, \mathbf{w}') \mathbf{w}_c^T \mathbf{x}_{bi} - \log(\sum_{c=0}^{C} e^{\mathbf{w}_c^T \mathbf{x}_{bi}})] + \zeta,$$

E-step

Compute
$$p(y_{bi} = c|\mathbf{Y}_b, \mathbf{X}_b, \mathbf{w}^{(k)})$$
 \rightarrow Still $O((C+1)^{n_b})$ for brute force marginalization

M-step

Find
$$\mathbf{w}^{(k+1)}$$
 such that $g(\mathbf{w}^{(k+1)}, \mathbf{w}^{(k)}) \geq g(\mathbf{w}^{(k)}, \mathbf{w}^{(k)})$

E-step: Compute $p(y_{bi} = c|\mathbf{Y}_b, \mathbf{X}_b, \mathbf{w}^{(k)})$

Conditional rule:

$$p(y_{bi} = c | \mathbf{Y}_b = \mathbf{L}, \mathbf{X}_b, \mathbf{w}) = \frac{p(y_{bi} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w})}{\sum_{c \in \mathbf{L} \cup \{0\}} p(y_{bi} = c, \mathbf{Y}_b = \mathbf{L} | \mathbf{X}_b, \mathbf{w})}$$

• Compute $p(y_{bn_b} = c, \mathbf{Y}_b = \mathbf{L}|\mathbf{X}_b, \mathbf{w})$ for c in $\{\mathbf{Y}_b \cup \{0\}\}$

Introduce a partial bag label

$$\begin{split} \mathbf{Y}_b^i &= \bigcup_{k=1}^i y_{bk} \ \Rightarrow \ \mathbf{Y}_b^i = \mathbf{Y}_b^{i-1} \cup \{y_{bi}\} \\ \text{Recall:} \ p(\mathbf{Y}_b|\mathbf{Y}_b^{n_b}) &= I(\mathbf{Y}_b = \mathbf{Y}_b^{n_b}) + I(\mathbf{Y}_b \bigcup \{0\} = \mathbf{Y}_b^{n_b}) \end{split}$$

- Allows for a recursive computation as follows
 - Compute $p(\mathbf{Y}_b^1)$
 - Compute p(Y_b²)
 - ...
 - Compute $p(\mathbf{Y}_b^{n_b-1})$
 - Finally, from $p(\mathbf{Y}_b^{n_b-1})$ and $p(y_{bn_b}) o p(y_{bn_b}, \mathbf{Y}_b)$

→ Linear computation time w.r.t. n_b

M Step

We apply gradient ascent to maximize g(w, w') w.r.t. w as follows:

$$\mathbf{w}_{c}^{(k+1)} = \mathbf{w}_{c}^{(k)} + \frac{\partial g(\mathbf{w}, \mathbf{w}^{(k)})}{\partial \mathbf{w}_{c}} \bigg|_{\mathbf{w} = \mathbf{w}^{(k)}} \times \eta$$

where the gradient w.r.t. \mathbf{w}_c , for all $c \in \{0, 1, 2, \dots, C\}$, $\frac{\partial g(\mathbf{w}, \mathbf{w}^{(k)})}{\partial \mathbf{w}_c}$, is

$$\sum_{b=1}^{B} \sum_{i=1}^{n_b} [p(y_{bi} = c | \mathbf{Y}_b, \mathbf{X}_b, \mathbf{w}^{(k)}) \mathbf{x}_{bi} - \frac{e^{\mathbf{w}_c^T \mathbf{x}_{bi}} \mathbf{x}_{bi}}{\sum_{c=0}^{C} e^{\mathbf{w}_c^T \mathbf{x}_{bi}}}]$$

Predictions

1. Instance Annotation

$$\hat{y}_{ti} = \arg\max_{0 \le k \le C} \mathbf{w}_k^T \mathbf{x}_{ti}.$$

2. Bag Label Prediction

$$\hat{\mathbf{Y}}_t = (\bigcup_{i=1}^{n_t} \hat{y}_{ti}) \setminus \{0\}$$

3. Novelty Detection

$$p(y_{ti} = 0 | \mathbf{x}_{ti}, \mathbf{w}) \ge \theta$$

Experimental Result

EM Iterations	Mean Accuracy
2	0.33
10	0.36
20	0.41
50	0.48
100	0.58
200	0.66