Censored Semi-Bandits: A Framework for Resource

Allocation with Censored Feedback

Arun Verma
IIT Bombay, India
v.arun@iitb.ac.in

Manjesh K. Hanawal IIT Bombay, India mhanawal@iitb.ac.in

Arun Rajkumar IIT Madras, India arunr@cse.iitm.ac.in

Raman Sankaran LinkedIn India rsankara@linkedin.com

Resource Allocation Problem

• A fix amount of resources need to be allocated among different activities such that the total expected loss is minimized.

Resource Allocation Problem.

• Examples: advertisement budget allocation, police patrolling, supplier selection, etc.

Problem Setup

- Amount of resources: Q
- Number of arms (activities): K
- $a := \{a_i : i \in \{1, 2, ..., K\}\}$, where $a_i \in [0, 1]$, denotes the resource allocated to arm i.
- Allocation a is feasible if $\sum_{i \in [K]} a_i \leq Q$. The set of all feasible allocations is denoted by \mathcal{A}_Q .
- Expected loss observed from arm i is:

$$\mathbb{E}\left[l_i(\mu_i, \theta_i, a_i)\right] = \begin{cases} \mu_i & \text{if } a_i < \theta_i \\ 0 & \text{otherwise} \end{cases}$$

where μ_i is the mean loss of arm i and θ_i is the associated threshold with arm i.

- Note that both μ_i and θ_i are unknown.
- \bullet Environment-Learner interaction in round t:
- 1. **Environment** generates a loss vector $X_t = (X_{t,1}, X_{t,2}, \dots, X_{t,K}) \in \{0,1\}^K$, where $\mathbb{E}[X_{t,i}] = \mu_i$ and sequence $(X_{t,i})_{t \geq 1}$ is i.i.d. for all $i \in [K]$ where $[K] := \{1, 2, \dots, K\}$.
- 2. Learner picks an allocation vector $\mathbf{a}_t \in \mathcal{A}_Q$.
- 3. Feedback and Loss: The learner observes a random censored feedback $Y_t = \{Y_{t,i} : i \in [K]\}$, where $Y_{t,i} = X_{t,i} \mathbb{1}_{\{a_{t,i} < \theta_i\}}$ and incurs loss $\sum_{i \in [K]} Y_{t,i}$.
- Goal: Find an allocation that minimizes the total expected loss.

Performance Measure: Regret

• Expected (pseudo) regret over a period of T:

$$\mathbb{E}\left[\mathcal{R}_{T}\right] = \sum_{t=1}^{T} \sum_{i=1}^{K} \mu_{i} \left(\mathbb{1}_{\{a_{t,i} < \theta_{i}\}} - \mathbb{1}_{\{a_{i}^{\star} < \theta_{i}\}}\right)$$

where $\boldsymbol{a}^* \in \arg\min_{\boldsymbol{a} \in \mathcal{A}_Q} \sum_{i=1}^K \mu_i \mathbb{1}_{\{a_i < \theta_i\}}$.

• A good policy should have sub-linear expected regret, i.e., $\mathbb{E}[\mathcal{R}_T]/T \to 0$ as $T \to \infty$.

Allocation Equivalent

• θ and $\hat{\theta}$ are allocation equivalent iff:

$$\min_{\boldsymbol{a} \in \mathcal{A}_Q} \sum_{i=1}^K \mu_i \mathbb{1}_{\{a_i < \theta_i\}} = \min_{\boldsymbol{a} \in \mathcal{A}_Q} \sum_{i=1}^K \mu_i \mathbb{1}_{\{a_i < \hat{\theta}_i\}}.$$

CSB-ST: Same Threshold Case

- $\forall i \in [K] : \theta_i = \theta_c \text{ where } \theta_c \in \mathbb{R}^+ \text{ and } Q \geq \theta_c.$
- Let $M = \min\{\lfloor Q/\theta_c \rfloor, K\}$. Then the optimal allocation allocates the θ_c fraction of resources to top M arms with highest mean loss.
- Let $\Theta = \{Q/K, Q/(K-1), \dots, Q\}$. Then the allocation equivalent of θ_c is $\hat{\theta}_c$ where $\hat{\theta}_c \in \Theta$.
- Though $\theta_c \in \mathbb{R}^+$ but its allocation equivalent can be found in finite set Θ with high probability δ using binary search on Θ .
- Let for all $i \in [K]$, $\mu_i \ge \epsilon > 0$. Then with probability at least 1δ , the number of rounds needed to find an allocation equivalent threshold of θ_c is bounded as

$$T_{\theta_s}(\delta) \le \frac{\log(\log_2(|\Theta|)/\delta)\log_2(|\Theta|)}{\max\{1, |Q|\}\log(1/(1-\epsilon))}.$$

- Once $\hat{\theta}_c$ is known, μ needs to be estimated.
- Using Thomson Sampling (TS) based algorithm [1], bottom K-M arms with the least mean loss are selected and no resources are allocated to them. Observe their losses and update empirical estimate of mean loss.

CSB-DT: Different Threshold Case

- Threshold may not be the same for all arms.
- Optimal allocation is the solution of 0-1 knapsack having capacity Q and K items where item i has weight θ_i and value μ_i .
- Define $\gamma := \left(Q \sum_{a_i^* \ge \theta_i} \theta_i\right) / K > 0$ and $\forall i \in [K] : \hat{\theta}_i \in [\theta_i, \theta_i + \gamma]$ where $\theta_i \in [0, 1]$. Then $\hat{\boldsymbol{\theta}}$ is allocation equivalent of $\boldsymbol{\theta}$.
- Each $\hat{\boldsymbol{\theta}}_i$ is estimated by using binary search in [0,1] interval.
- Let $\gamma > 0$ and for all $i \in [K]$, $\mu_i \ge \epsilon > 0$. Then with probability at least $1 - \delta$, the number of rounds needed to find an allocation equivalent of $\boldsymbol{\theta}$ is bounded as

$$T_{\theta_d}(\delta) \le \frac{K \log_2(\lceil 1 + \frac{1}{\gamma} \rceil)}{\max\{1, \lfloor Q \rfloor\} \log\left(\frac{1}{1 - \epsilon}\right)}.$$

• Once $\hat{\theta}$ is known, a subset of arms is selected using TS based algorithm [2] and no resources are allocated to them. Observe their losses and update empirical estimate of mean loss.

Regret Bounds

• Let $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_{K-M} < \mu_{K-M+1} \leq \ldots \leq \mu_K$, $\Delta_a = \sum_{i=1}^K \mu_i (\mathbb{1}_{\{a_i < \theta_i\}} - \mathbb{1}_{\{a_i^* < \theta_i\}})$, $\Delta_m = \max_{\boldsymbol{a} \in \mathcal{A}_Q} \Delta_a$, and $\delta = 1/T$. Then the expected regret of CSB-ST over a period of T is given by

$$\mathbb{E}\left[\mathcal{R}_T\right] \le O\left(\sum_{i \in [K] \setminus [K-M]} \frac{(\mu_i - \mu_{K-M}) \log T}{d(\mu_{K-M}, \mu_i)}\right).$$

• Let $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_K$, $\gamma > 0$, $S_a = \{i : a_i < \theta_i\}$ for any feasible allocation a, and $k^* = |S_{a^*}|$. Then for any η such that $\forall \boldsymbol{a} \in \mathcal{A}_Q, \Delta_a > 2(k^{*2} + 2)\eta$, the expected regret of CSB-DT over a period of T is given by

$$\mathbb{E}\left[\mathcal{R}_T\right] \le O\left(\sum_{i \in [K]} \max_{S_a: i \in S_a} \frac{8|S_a| \log T}{\Delta_a - 2(k^{*2} + 2)\eta}\right)$$

Experiment Results

- Same Threshold Problem Instance: It has $K = 50, C = 20, \theta_c = 0.7, \delta = 0.1$ and $\epsilon = 0.1$. The mean loss of arm $i \in [K]$ is 0.25 + (i-1)/100.
- Different Threshold Problem Instance: It has $K = 5, \delta = 0.1, \epsilon = 0.1, \gamma = 10^{-3}, \mu = [0.9, 0.89, 0.87, 0.6, 0.3],$ and $\theta = [0.7, 0.7, 0.7, 0.58, 0.35].$

Cumulative Regret of CSB-ST v/s Amount of Resource (Leftmost Figure) and Different Values of Same Threshold (Middle Figure). Cumulative regret of CSB-DT v/s Amount of Resource (Rightmost Figure).

Future Directions

- We decoupled the problem of threshold and mean loss estimation. It can be done jointly, leading to better performance guarantees.
- Another extension of our work is to relax the assumptions that mean losses are strictly positive, and time horizon T is known.

References

- [1] Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays. In International Conference on Machine Learning, pages 1152–1161, 2015.
- [2] Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In *International Conference on Machine Learning*, pages 5101–5109, 2018.
- [3] Arun Verma, Manjesh K Hanawal, Arun Rajkumar, and Raman Sankaran. Censored semi-bandits: A framework for resource allocation with censored feedback. Appearing in Neural Information Processing Systems (NeurIPS), 2019.