ZMA - BI-SPOL-36

Číselné řady (konvergence číselné řady, kritéria konvergence, odhadování rychlosti růstu řad pomocí určitého integrálu).

Obsah

1	Pos	$\operatorname{loupnost}$
	1.1	Definice
	1.2	Limita
	1.3	Konvergence
2	Řad	la
	2.1	20mmee 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2.2	Konvergence řady
		2.2.1 Nutná podmínka konvergence
		2.2.2 Bolzano-Cauchy
		2.2.3 Absolutní konvergence
		2.2.4 Leibnizovo kritérium
		2.2.5 Srovnávací kritérium
		2.2.6 d'Alembertovo kritérium
	2.3	Odhadování růstu
		2.3.1 Integráln kritérium

1 Posloupnost

1.1 Definice

Zobrazení množiny $\mathbb N$ do množiny $\mathbb R$ nazýváme reálná posloupnost.

1.2 Limita

Reálná posloupnost $(a_n)_{n=1}^{\infty}$ má limitu $\alpha \in \overline{\mathbb{R}}$, právě když pro každé okolí H_{α} bodu α lze nalézt $n_0 \in \mathbb{N}$ takové, že pro všechna $n \in \mathbb{N}$ větší než n_0 platí $a_n \in H_{\alpha}$. V symbolech

$$(\forall H_{\alpha})(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n > n_0 \Rightarrow a_n \in H_{\alpha}).$$

Tuto skutečnost můžeme zapsat několika možnými ekvivalentními způsoby:

$$\lim_{n \to \infty} a_n = \alpha \quad \text{nebo} \quad \lim a_n = \alpha \quad \text{nebo} \quad a_n \to \alpha.$$

1.3 Konvergence

Buď $(a_n)_{n=1}^{\infty}$ posloupnost. Pokud pro její limitu platí $\lim_{n\to\infty} a_n \in \mathbb{R}$, pak se nazývá konvergentní. V ostatních případech ji nazýváme divergentní.

2 Řada

2.1 Definice

Formální výraz tvaru

$$\sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + \cdots,$$

kde $(a_k)_{k=0}^{\infty}$ je zadaná číselná posloupnost, nazýváme číselnou řadou. Pokud je posloupnost částečných součtů

$$s_n := \sum_{k=0}^n a_k, \quad n \in \mathbb{N}_0,$$

konvergentní, nazýváme příslušnou řadu také konvergentní. V opačném případě mluvíme o divergentní číselné řadě. Součtem konvergentní řady $\sum_{k=0}^{\infty} a_k$ nazýváme hodnotu limity $\lim_{n\to\infty} s_n$

2.2 Konvergence řady

2.2.1 Nutná podmínka konvergence

Pokud řada $\sum_{k=0}^\infty a_k$ konverguje, potom pro limitu jejích sčítanců platí $\lim_{k\to\infty} a_k=0.$

Důsledek Pokud limita posloupnosti $(a_k)_k = 0$ je nenulová nebo neexistuje, potom řada $\sum_{k=0}^{\infty} a_k$ není konvergentní.

2.2.2 Bolzano-Cauchy

Řada $\sum_{k=0}^{\infty} a_k$ konverguje právě tehdy, když pro každé $\epsilon > 0$ existuje $n_0 \in \mathbf{R}$ tak, že pro každé $n \geq n_0$ a $p \in \mathbb{N}$ platí

$$|a_n + a_{n+1} + \dots + a_{n+p}| < \epsilon.$$

2.2.3 Absolutní konvergence

Číselnou řadu $\sum_{k=0}^{\infty} a_k$ nazýváme absolutně konvergentní, pokud číselná řada $\sum_{k=0}^{\infty} |a_k|$ konverguje. Pokud řada absolutně konverguje, potom tato řada konverguje.

2.2.4 Leibnizovo kritérium

Buď $(a_k)_{k=0}^{\infty}$ klesající posloupnost s nezápornými členy konvergující k nule. Potom je řada

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

konvergentní.

2.2.5 Srovnávací kritérium

Buďte $\sum_{k=0}^{\infty}a_k$ a $\sum_{k=0}^{\infty}b_k$ číselné řady. Potom platí následující dvě tvrzení.

- Nechť pro každé $k \in \mathbb{N}$ platí nerovnost $0 \le |a_k| \le b_k$ a nechť řada $\sum_{k=0}^{\infty} a_k$ konverguje. Potom řada $\sum_{k=0}^{\infty} b_k$ absolutně konverguje.
- Nechť pro každé $k \in \mathbb{N}$ platí nerovnosti $0 \le a_k \le b_k$ a $\sum_{k=0}^{\infty} a_k$ diverguje. Potom i řada $\sum_{k=0}^{\infty} b_k$ diverguje.

2.2.6 d'Alembertovo kritérium

Nechť $a_k > 0$ pro každé $k \in \mathbb{N}_0$. Pokud

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} > 1,$$

potom řada $\sum_{k=0}^{\infty}a_k$ diverguje. Pokud ovšem

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1,$$

potom řada $\sum_{k=0}^{\infty} a_k$ konverguje.

2.3 Odhadování růstu

Necht f je spojitá funkce na $(1, +\infty)$ a $n \in \mathbb{N}$. Je-li f klesající, pak

$$f(n) + \int_{1}^{n} f(x) dx \le \sum_{k=1}^{n} f(k) \le f(1) + \int_{1}^{n} f(x) dx.$$

Je-li f rostoucí, pak

$$f(1) + \int_{1}^{n} f(x) dx \le \sum_{k=1}^{n} f(k) \le f(n) + \int_{1}^{n} f(x) dx.$$

2.3.1 Integráln kritérium

Buď $\sum_{n=1}^{\infty} a_n$ číselná řada s kladnými členy taková, že existuje spojitá a monotónní funkce definovaná na $(1, +\infty)$ taková, že $f(n) = a_n$ pro každé n. Potom

- Pokud integrál $\int_1^\infty f(x) \, \mathrm{d}x$ konverguje, pak číselná řada $\sum_{n=1}^\infty a_n$ konverguje.
- Pokud integrál $\int_1^\infty f(x)\,\mathrm{d}x$ diverguje, pak číselná řada $\sum_{n=1}^\infty a_n$ diverguje.