THE TYPED λ -CALCULUS IS NOT ELEMENTARY RECURSIVE

Richard STATMAN

Department of Philosophy, The University of Michigan, Ann Arbor, MI 48109, U.S.A.

Communicated by A. Meyer Received May 1977 Revised June 1978

Abstract. We prove that the problem of deciding for closed terms t_1 , t_2 of the typed λ -calculus whether t_1 β -converts to t_2 is not elementary recursive.

1. Introduction

Historically, the principal interest in the typed λ -calculus is in connection with Gödel's functional ("Dialectica": see Gödel [4]) interpretation of intuitionistic arithmetic. However, since the early sixties interest has shifted to a wide variety of applications in diverse branches of logic, algebra and computer science. For example, in proof-theory (see for example, Tait [20]), in constructive logic (see for example, Lauchli [10]), in the theory of functionals (see for example, Friedman [3]), in cartesian closed categories (see for example, Mann [11]), in automatic theorem proving (see for example, Huet [8]), in the semantics of natural languages (see for example, Montague [14]), and in the semantics of programming languages (see for example, Milner [12]).

In almost all such applications there is a point at which one must ask, for closed terms t_1 and t_2 , whether t_1 β -converts to t_2 . We shall show that in general this question cannot be answered by a Turing machine in elementary time.

2. Type theory

The language of type theory, Ω , is the language of set-theory where each variable has a natural number type and there are two constants 0, 1 of type 0. We require that prime formulae be "stratified", i.e., each prime formula has one of the forms $0 \in x^1$, $1 \in x^1$ and $y^n \in z^{n+1}$. Arbitrary formulae are built-up from prime ones by \neg , \wedge , and \forall . The intended interpretation of Ω has 0 denoting 0, 1 denoting 1 and x^n ranging

over \mathcal{D}_n where $\mathcal{D}_0 = \{0, 1\}$ and $\mathcal{D}_{n+1} = \text{powerset } (\mathcal{D}_n)$. If $A = A(x_1^{n_1} \cdots x_m^{n_m})$ and $\alpha_i \in \mathcal{D}_{n_i}$ for $1 \le i \le m$ we write $A[\alpha_1 \cdots \alpha_m]$ for A with $x_i^{n_i}$ denoting α_i .

The problem of deciding whether an arbitrary Ω -sentence is true is recursive. In fact there is a quantifier-elimination for Ω -sentences (see Henkin [6]). Briefly, if one extends the language by adding $\{\ ,\ \}$ and defines $x^k =_k y^k \Leftrightarrow \forall z^{k-1}(z^{k-1} \in x^k \Leftrightarrow z^{k-1} \in y^k)$ for k > 0, each $\alpha \in \mathcal{D}_n$ can be defined by $\{x^{n-1}: t_1 =_{n-1} x^{n-1} \lor \cdots \lor t_l =_{n-1} x^{n-1}\}$, where $t_1 \cdots t_l$ define the elements of α and $t^{m-1} \in \{y^m: A(y^m)\} \Leftrightarrow_{\mathrm{df}} A(t^{m-1})$, when n > 0. Thus $\forall x^n A(x^n) \Leftrightarrow A(t_1) \land \cdots \land A(t_p)$ for $t_1 \cdots t_p$ definitions of the members of \mathcal{D}_n .

Proposition 1 (Fischer and Meyer, Statman). The problem of determining if an arbitrary Ω -sentence is true cannot be solved in elementary time (see Meyer [13, p. 479 no. 7]).

We shall use the above proposition together with a coding argument to prove our principal result (see below).

Let $V_0 = \emptyset$ and $V_{n+1} =$ powerset $(V_n) \cup V_n$. We note in passing the following:

Corollary (for logicians). Let \mathcal{L} be the language of set theory supplemented by a constant for each V_n ; then the problem of determining if an arbitrary Δ_0 -sentence of \mathcal{L} is true cannot be solved in elementary time.

3. Typed λ -calculus

We consider the typed λ -calculus Λ with a single ground type 0, no constants, only power types (\rightarrow) and β -conversion. The reader not familiar with the typed λ -calculus should consult Hindley *et al.* [7].

We shall adopt the usual convention of ignoring α -conversion (change of bound variables) deleting type superscripts except where important and omitting parentheses selectively (association to the left). We shall also make use of the substitution prefix [/] both for substituting a term for a variable and for substituting a type for 0.

 $\mathcal{B} =_{df} (0 \rightarrow 0) \rightarrow (0 \rightarrow 0)$ is the type of Λ -numbers. It is easy to verify that the closed (i.e., with no free variables) β -normal terms of type \mathcal{B} are just λxx and for each n,

$$\lambda x y \underbrace{x(\cdot \cdot \cdot (xy) \cdot \cdot \cdot)}_{n}$$
.

Letting

$$n =_{\mathrm{df}} \lambda x y \underbrace{x(\cdots (xy)\cdots)}_{n},$$

if t is a closed term of type $\underbrace{\emptyset \to (\cdots (\cancel{D}) \to \emptyset) \cdots}_{m}$ for each $n_1 \cdots n_m$ there is a unique n such that $m_1 \cdots n_m \beta \eta - \text{conv. } n$. In this way t defines an m-ary number-theoretic function.

An extended polynomial is a polynomial built up from $0, 1, +, \cdot$, sg and \overline{sg} (see Kleene [9, p. 223, no. 9 and no. 10).

Proposition 2 (Schwichtenberg [16], Statman). The λ -definable m-ary number theoretic functions are just the extended polynomials.

In particular, there are closed terms +, \cdot , sg and \overline{sg} which λ -define resp. +, \cdot , sg, and \overline{sg} .

There are some very short definitions of very large numbers in Λ . Set s(0) = 1 and $s(n+1) = 2^{s(n)}$ and set $a_1 = 2$ and $a_{n+1} = ([0 \rightarrow 0/0]a_n)a_1$; by a computation of Church [2, p. 30] $a_n\beta$ —conv. s(n).

The λ -definability of the extended polynomials allows us to code the Boolean operations into Λ . The short definitions of large numbers allow us to iterate λ -definable operations a very large (but fixed) number of times. These are precisely the conditions that permit us to simulate the quantifier-elimination for Ω by β -conversion.

The problem of determining for arbitrary closed terms t_1 , t_2 of the same type whether $t_1 \beta$ -conv. t_2 is decidable. By analyzing the normal form algorithm (see [7, p. 73]) it is easy to see that the problem can be solved in \mathcal{E}^4 time (here, \mathcal{E}^4 is the 5th level of the Grzegorczyk hierarchy; see Grzegorczyk [5]). Thus with respect to this crude classification our lower bound (\mathcal{E}^3 = elementary) is best possible.

4. Translation of Ω into Λ

We define recursively $N_0 = \emptyset$ and $N_{n+1} = N_n \to \emptyset$. The following definitions are central to what follows.

(1) $e_0 =_{\mathrm{df}} \lambda xy + (\cdot (\operatorname{sg} x)(\overline{\operatorname{sg}} y))(\cdot (\operatorname{sg} y)(\overline{\operatorname{sg}} x)).$

For all n, m, $(e_0 nm)\beta$ -conv. $0 \Leftrightarrow n = 0 = m$ or 0 < n, m, and $(e nm)\beta$ -conv. 0 or 1. e_0 has type $\emptyset \to (\emptyset \to \emptyset)$.

(2) $\forall_0 =_{df} \lambda h + (h0)(h1)$,

 \forall_0 has type $\mathbb{N}_1 \rightarrow \emptyset$.

(3) $C =_{\mathrm{df}} \lambda g + (g(\lambda x \mathbf{1}))(g(\lambda x x)),$

C has type $\mathbb{N}_2 \to \emptyset$.

(4) $p_{n+1}(x, z) =_{\mathrm{df}} C(\lambda f(\forall_n (\lambda w(z(\lambda y \cdot (f(e_n w y);(x y)))))).$

Here x has type $\mathbb{N}_n \to \emptyset$, y has type \mathbb{N}_n , w has type \mathbb{N}_n , z has type $\mathbb{N}_n \to \emptyset$, and f has type $\widetilde{\emptyset} \to \emptyset$. We have $p_{n+1}(x,z)\beta$ -conv. $+(\forall_n(\lambda w(z(\lambda y \cdot ((\lambda xx)e_nwy)(xy)))))$. "C" stands for "choice (for f)". " p_{n+1} " stands for "prime constituent for building definitions of type n+1 objects".

(5) $e_{n+1} =_{\mathrm{df}} \lambda xy \forall_n (\lambda z (e_0(xz)(yz))),$ e_{n+1} has type $\mathbb{N}_{n+1} \to (\mathbb{N}_{n+1} \to \emptyset).$

(6)
$$\forall_{n+1} =_{df} \lambda y((([N_{n+2}/0]a_{n+1})(\lambda zxp_{n+1}(x,z))y)\lambda w1),$$

 \forall_{n+1} has type $N_{n+2} \rightarrow \emptyset$.
We now define the translation *:
 $0^* = 0$
 $1^* = 1$
 $(x^n)^* = x^{N_n}$
 $(t_1 \in t_2)^* = sg(t_2^*t_1^*)$
 $(A \wedge B)^* = sg(+A^*B^*)$

We shall show that for Ω -sentences A, A is true $\Leftrightarrow A^*\beta$ -conv. \emptyset and $\neg A$ is true $\Leftrightarrow A^*\beta$ -conv. 1. The key idea is that the β -reductions of \forall_n simulate the quantifier-elimination for Ω -sentences. Here + plays the role of \wedge so • plays the role of \vee . In addition, e_n plays the role of equality between type n objects. This motivates the definitions below.

5. Verification that the translation is correct

 $(\forall x^n A)^* = \operatorname{sg}(\forall_n \lambda x^{\mathbf{N}_n} A^*).$

 $(\neg A)^* = \overline{sg}A^*$

We define the notion of a definition of an object of type n as follows.

- (a) $def^{0}(0) = \{0\}.$
- (b) $def^{0}(1) = \{1\},\$
- (c) if $\alpha \in \mathcal{D}_{n+1}$, then $\operatorname{def}^{n+1}(\alpha) = \{\lambda y \cdot r_1(\cdots (r_{s(n+1)}((\lambda w 1)y))\cdots): y, w \text{ have type } \mathbf{N}_n, r_i = 1 \text{ or } r_i = e_n ty \text{ for } t \in \operatorname{def}^n(\beta) \text{ and } \beta \in \alpha, \text{ for each } \beta \in \alpha \text{ for some } t \in \operatorname{def}^n(\beta) \text{ there is some } i \text{ s.t. } r_i = e_n ty \}.$ We set $\operatorname{def}_n = \bigcup_{\alpha \in \mathcal{D}_n} \operatorname{def}^n(\alpha)$.

Below we define sets N_n , orders $\underset{n}{\smile}$ and functions $d_n: N_n \to \operatorname{def}_n$. The members of N_n code various processes of constructing members of def_n and for $\eta \in N_\eta$, $d_n(\eta)$ is the member of def_n constructed by the process coded by η . The order $\underset{n}{\smile}$ describes a fixed process for generating the processes coded by members of N_n . First some set theoretic preliminaries.

If X and Y are sets then $X \otimes Y = \{(x, y) : x \in X \text{ and } y \in Y\}$ and $XY = \{\eta : \eta : X \to Y\}$. $\pi_1 : X \otimes Y \to X$ is defined by $\pi_1(x, y) = x$ and $\pi_2 : X \otimes Y \to Y$ is defined by $\pi_2(x, y) = y$. If ρ is an ordering of X and γ an ordering of Y, then $\delta = \rho \otimes \gamma$ is the ordering of $Z = X \otimes Y$ defined by $z_1 \delta z_2$ if $\pi_2 z_1 \gamma \pi_2 z_2$ or $\pi_2 z_1 = \pi_2 z_2$ and $\pi_1 z_1 \rho \pi_1 z_2$. $[1, n] = \{k : 1 \le k \le n\}$. ρ^n is the ordering of [1, n]X defined by $\eta_1 \rho^n \eta_2$ if $\eta_1 \ne \eta_2$ and for $m = \max\{k : 1 \le k \le n \text{ and } \eta_1(k) \ne \eta_2(k)\}$, $\eta_1(m) \gamma \eta_2(m)$.

Define for all n and $1 \le m \le s(n)$, N_n^m as follows; $N_0^1 = \{0, 1\}$ and $N_{n+1}^m = [1, m](N_n^{s(n)} \otimes N_0^1)$. Set $N_n = N_n^{s(n)}$ and define $\frac{m}{n}$ by $\frac{1}{n}$ is the natural order on N_0^1 ,

$$\underset{n+1}{\overset{m}{\smile}} = (\underset{n}{\overset{s(n)}{\smile}} \otimes \underset{0}{\overset{1}{\smile}})^m$$
. Set $\underset{n}{\smile} = \underset{n}{\overset{s(n)}{\smile}}$.

Define d_n^m or N_n^m as follows: $d_0^1(0) = 0$, $d_0^1(1) = 1$ and for $\eta \in N_{n+1}^m$, $d_{n+1}^m(\eta) = \lambda y \cdot r_1(\dots(r_m(xy))\dots)$ where $r_i = 1$ if $\pi_2 \eta(i) = 0$ and $r_i = e_n([\lambda z 1/x]d_n^{s(n)}(\pi_1 \eta(i)))y$ if $\pi_2 \eta(i) = 1$. Set $d_n = [\lambda z 1/x]d_n^{s(n)}$.

Now suppose that X is a set of occurrences of terms of type σ ordered by ρ , |X| is a power of 2 and $X = X_1 \cup X_2$ is a partition of X with $|X_1| = |X_2|$ and $t_1 \in X_1$ and $t_2 \in X_2 \Rightarrow t_1 \rho t_2$. Let z be a variable of type $\sigma \rightarrow \emptyset$; we define the term $\sum_{t \in X} zt$ recursively by

$$\sum_{t \in X} zt = + \left(\sum_{t_1 \in X_1} zt_1\right) \left(\sum_{t_2 \in X_2} zt_2\right).$$

We shall prove the

Proposition 3. $\forall_n \beta$ -conv. $\lambda y \sum_{\eta \in N_n} y d_n(\eta)$.

Think of

$$\sum_{n\in N_{n+1}} zd_{n+1}^m(\eta)$$

as a symmetric binary tree (branching upwards) with a member of N_{n+1}^m at each leaf.

The order of the members from left to right is $\frac{m}{n+1}$. If we think of a member of N_{n+1}^m as a sequence of pairs then a member of N_{n+1}^{m+1} can be obtained by adding a member of N_{n+1}^{1} at the end. Moreover if $\xi \in N_{n+1}^{m}$ and $\eta \in N_{n+1}^{1}$, then $[d_{n+1}^{1}(\eta)/x]d_{n+1}^{m}(\xi)\beta$ -conv. $d_{n+1}^{m+1}(\xi \eta)$. In addition if $\xi_1, \xi_2 \in N_{n+1}^{m}$ and $\eta_1, \eta_2 \in N_{n+1}^{1}$, then $\widehat{\xi_1, \eta_1} \xrightarrow[n+1]{m+1} \widehat{\xi_2, \eta_2} \Leftrightarrow \eta_1 \xrightarrow[n+1]{1} \eta_2$ or $\eta_1 = \eta_2$ and $\xi_1 \xrightarrow[n+1]{m} \xi_2$. From these remarks it is easy to see the

Fact.
$$\sum_{\eta \in N_{n+1}} \left(\sum_{\xi \in N_{n+1}^k} z[d_{n+1}^1(\eta)/x] d_n^m(\xi) \right) \beta$$
-conv. $\sum_{\eta \in N_{n+1}^{k+1}} z d_{n+1}^{k+1}(\eta)$.

The members of N_1^1 are (0,0)(1,0)(0,1)(1,1) in the $\frac{1}{1}$ ordering. We have $\lambda zxp_1(x,z)\beta$ -conv. $\lambda zxC\lambda f(+(z(\lambda y\cdot f(e_0\theta y)(xy)))(z(\lambda y\cdot f(e_0\mathbf{1}y)(xy))))$ β -conv. $\lambda zx+(+(z(\lambda y\cdot \mathbf{1}(xy)))(z(\lambda y\cdot \mathbf{1}(xy))))(+(z(\lambda y\cdot (e_0\theta y)(xy))))(z(\lambda y\cdot (e_0\mathbf{1}y)\cdot (xy))))$. The last term is $\lambda zx\sum_{\eta\in N_1^1}zd_1^1(\eta)$ since $d_1^1((0,0))=\mathbf{1}$, $d_1^1((1,0))=\mathbf{1}$, $d_1^1((1,0))=\mathbf{1}$, $d_1^1((1,0))=\mathbf{1}$, where $d_1^1((1,0))=\mathbf{1}$ is the same of $d_1^1((1,0))=\mathbf{1}$.

Lemma. For $1 \le m \le s(n+1)([\mathbb{N}_{n+2}/0]m)\lambda zx\rho_{n+1}(x,z)\beta$ -conv.

$$\lambda zx \sum_{\eta \in N_{n+1}^m} zd_{n+1}^m(\eta).$$

Proof. By induction on (n, m) ordered lexicographically. Basis: n = 0.

Case: m = 1. ([N₂/0]1) $\lambda zxp_1(x, z)\beta$ -conv. $\lambda zxp_1(x, z)$ so by the above computation ([N₂/0]1) $\lambda zxp_1(x, z)\beta$ -conv. $\lambda zx \sum_{n \in \mathbb{N}^1} zd_1^n(n)$.

Case: m = 2. $([N_2/0]2)\lambda zxp_1(x, z)\beta$ -conv. $\lambda w\lambda zxp_1(x, z)(\lambda zxp_1(x, z)w)\beta$ -conv. $\lambda xw \sum_{n \in N_1^1} (\lambda yp_1(y, w))d_1^1(\eta)$ by case m = 1 β -conv.

$$\lambda zx \sum_{\eta \in N_1^1} \left(\sum_{\xi \in N_1^1} z [d_1^1(\eta)/x] d_1^1(\xi) \right) \beta \text{-conv. } \lambda zx \sum_{\eta \in N_1^2} z d_1^2(\eta) \text{ by the fact.}$$

Induction step: n > 0.

Case: m = 1. $([N_{n+2}/0]1)\lambda zxp_{n+1}(x, z)\beta$ -conv. $\lambda zxp_{n+1}(x, z)\beta$ -conv. $\lambda zxC\lambda f$ $\sum_{n \in N_n} (\lambda wz(\lambda y \cdot (f(e_n wy))(xy)))d_n(\eta)$ by induction hypothesis β -conv.

$$\lambda zx + \left(\sum_{\eta \in N_n} z(\lambda y \cdot \mathbf{1}(xy))\right) \left(\sum_{\eta \in N_n} z(\lambda y \cdot (e_n d_n(\eta)y)(xy))\right) = \lambda zx \sum_{\eta \in N_{n+1}^1} zd_{n+1}^1(\eta).$$

Case: m = k + 1. $([N_{n+2}/0]m)\lambda zxp_{n+1}(x, z)\beta$ -conv. $\lambda w_1\lambda zxp_{n+1}(x, z)$ $([N_{n+2}/0]k)\lambda zxp_{n+1}(x, z)w_1)\beta$ -conv. $\lambda w_1\lambda zxp_{n+1}(x, z)(\lambda x\sum_{\eta\in N_{n+1}^k}w_1d_{n+1}^k(\eta))$ by induction hypothesis β -conv.

$$\lambda z w_{2} + \left(\sum_{\eta \in N_{n+1}^{1}} \left(\lambda x \sum_{\xi \in N_{n+1}^{k}} z d_{n+1}^{k}(\xi) \right) (\lambda y \cdot I(w_{2}y)) \right)$$

$$\left(\sum_{\eta \in N_{n+1}^{1}} \left(\lambda x \sum_{\xi \in N_{n+1}^{k}} z d_{n+1}^{k}(\xi) \right) (\lambda y \cdot (e_{n} d_{n+1}^{1}(\eta)y)(w_{2}y)) \right)$$

by case $m = 1 \beta$ -conv. $\lambda zx \sum_{\eta \in N_{n+1}^m} zd_{n+1}^m(\eta)$ by the fact.

Proof of Proposition 3.

$$\forall_{n+1}\beta$$
-conv. $\lambda y \left(\lambda zx \sum_{\eta \in N_{n+1}} zd_{n+1}^{s(n+1)}(\eta)\right) y \lambda w \mathbf{1}$

by the

lemma
$$\beta$$
-conv. $\lambda y \sum_{\eta \in V_{n+1}} y[\lambda w \mathbf{1}/x] d_{n+1}^{s(n+1)}(\eta) = \lambda y \sum_{\eta \in N_{n+1}} y d_{n+1}(\eta)$.

The proposition would be useless without the following easy

Observation. If $\eta \in N_n$, then $d_n(\eta) \in \text{def}^n$ and for each $\alpha \in \mathcal{D}_n$ there is an $\eta \in N_n$ such that $d_n(\eta) \in \text{def}^n(\alpha)$.

The members of def₁ are

$$\lambda y \cdot \mathbf{1}(\cdot \mathbf{1}((\lambda w 1)y)), \lambda y \cdot \mathbf{1}(\cdot (e_0 \mathbf{0}y)(\lambda w 1)y)),$$
 $\lambda y \cdot \mathbf{1}(\cdot (e_0 \mathbf{1}y)((\lambda w 1)y)), \lambda y \cdot (e_0 \mathbf{0}y)(\cdot \mathbf{1}((\lambda w 1)y)),$
 $\lambda y \cdot (e_0 \mathbf{1}y)(\cdot \mathbf{1}((\lambda w 1)y)),$
 $\lambda y \cdot (e_0 \mathbf{0}y)(\cdot (e_0 \mathbf{0}y)((\lambda w 1)y)),$
 $\lambda y \cdot (e_0 \mathbf{0}y)(\cdot (e_0 \mathbf{1}y)((\lambda w 1)y)), \lambda y \cdot (e_0 \mathbf{1}y)(\cdot (\varepsilon_0 \mathbf{0}y)((\lambda w 1)y))$

and

$$\lambda y \cdot (e_0 \mathbf{1} y) (\cdot (e_0 \mathbf{1} y) ((\lambda w \mathbf{1}) y))$$

so if $\gamma \in \mathcal{D}_1 \alpha$, $\beta \in \mathcal{D}_0 t_1 \in \text{def}^0(\beta) t_2 \in \text{def}^0(\alpha)$ and $t_3 \in \text{def}^1(\gamma)$, then $\beta \in \gamma \Leftrightarrow (t_3 t_1 \beta - \text{conv. } 0)$ and $\alpha = \beta \Leftrightarrow (e_0 t_1 t_2 \beta - \text{conv. } 0)$. More generally we have the

Proposition 4. Suppose $\alpha, \beta \in \mathcal{D}_n$, $\gamma \in \mathcal{D}_{n+1}$, $t_1 \in \text{def}^n(\beta)$, $t_2 \in \text{def}^n(\alpha)$, and $t_3 \in \text{def}^{n+1}(\gamma)$, then

- (a) $\beta = \alpha \Leftrightarrow (e_n t_1 t_2 \beta \text{conv. } \theta)$, and
- (b) $\beta \in \gamma \Leftrightarrow (t_3t_1\beta\text{-conv. }\theta)$.

Proof. By induction on n.

Basis: n = 0. This is the preceding remark.

Induction step: n = m + 1.

- (a) We have $e_n t_1 t_2 \beta$ -conv. $\sum_{\eta \in N_m} e_0(t_1 d_m(\eta))(t_2 d_m(\eta))$ by the previous proposition. If $\beta = \alpha$ and $d_m(\eta) \in \operatorname{def}^n(\beta)$ by hyp. ind. on (b) $e_0(t_1 d_m(\eta))(t_2(d_n(\eta)))$ β -conv. θ and if $d_m(\eta) \notin \operatorname{def}^n(\beta)$ by hyp. ind. on (b) $t_1 d_m(\eta)$, $t_2 d_m(\eta) \neg (\beta$ -conv.) θ so $e_0(t_1 d_m(\beta))(t_2 d_n(\beta))$ β -conv. θ . If $\beta \neq \alpha$ w.l.o.g. assume $\delta \in \beta$ and $\delta \notin \alpha$. By the above observation there is an $\eta \in N_m$ such that $d_m(\eta) \in \operatorname{def}^m(\delta)$. By hyp. ind. on (b) $t_1 d_m(\eta)$ β -conv. θ and $t_2 d_m(\eta) \neg (\beta$ -conv.) θ so $e_0(t_1 d_m(\eta))(t_2 d_m(\eta))$ β -conv. θ . Thus in either case we have (a).
- (b). Let $t_3 = \lambda y \cdot r_1(\cdots (r_{s(n+1)}((\lambda w \mathbf{1})y))\cdots)$. If $\beta \in \gamma$, then for some $t_4 \in \text{def}^n(\beta)$ and some i, $r_i = e_n t_4 y$. By case (a) $e_n t_4 t_1 \beta$ -conv. $\boldsymbol{\theta}$ so $t_3 t_1 \beta$ -conv. $\boldsymbol{\theta}$. If $\beta \notin \gamma$, then for each $r_i = e_n t_4 y$ $t_4 \notin \text{def}^n(\beta)$ so by case (a) $e_n t_4 t_1 \neg (\beta$ -conv.) $\boldsymbol{\theta}$. Thus in either case we have (b).

The two propositions taken together tell us that our definitions of e_n and \forall_n work correctly. This is summarized in the following

Theorem 1. Suppose $A = A(x_1^{n_1}, \ldots, x_m^{n_m})$ is an Ω -formula, $\alpha_i \in \mathcal{D}_{n_i}$ and $t_i \in \text{def}^{n_i}(\alpha_i)$ for $1 \le i \le m$, then $A[\alpha_1, \ldots, \alpha_m]$ is true $\Leftrightarrow (\lambda x_1^{\mathbf{N}_n}, \ldots, x_{m_m}^{\mathbf{N}_n} A^*) t_1 \cdots t_m \beta$ -conv. **0**.

Proof. By induction on A.

Basis: A is atomic. This is just the previous proposition case (b)

Induction step. Cases: $A = B \land C$, $A = \neg B$. Immediate by hyp. ind.

Case: $A = \forall x^n B$. We have $A[\alpha_1, \dots, \alpha_m] \Leftrightarrow \forall \beta \in \mathcal{D}_n B[\alpha_1, \dots, \alpha_m \beta] \Leftrightarrow \forall t \in \operatorname{def}_n(\lambda x_1^{N_{n_1}} \cdots x_m^{N_{n_m}} x^{N_n} B^*) t_1 \cdots t_m t$ β -conv. θ by hyp. ind. $\Leftrightarrow \operatorname{sg} \sum_{\eta \in N_n} (\lambda x_1^{N_{n_1}} \cdots x_m^{N_{n_m}} x^{N_n} B^*) t_1 \cdots t_m d_n(\eta) \beta$ -conv. θ by the observation

$$(\lambda x_1^{\mathbf{N}_{n_1}} \cdots x_{m_m}^{\mathbf{N}_{n_m}} \mathbf{sg} \sum_{\eta \in N_m} (\lambda x_m^{\mathbf{N}_n} B^*) d_m(\eta)) t_1 \cdots t_m \beta$$
-conv. $\mathbf{0}$

$$(\lambda x_1^{\mathbf{N}_{n_1}} \cdots x_m^{\mathbf{N}_{n_m}} A^*) t_1 \cdots t_m \beta$$
-conv. **0**.

Corollary. For each type $\sigma \neq 0 \rightarrow 0$ which is the type of a closed term there is a closed term t^{σ} such that the problem of determining for arbitrary closed terms r of type σ whether $r\beta$ -conv. t^{σ} , $r\beta$ -red t^{σ} , or t^{σ} is the β -normal form of r cannot be solved in elementary time. $(0 \rightarrow 0$ is anomalous because it contains only one β -normal closed term, viz. λxx .)

Proof. The above theorem establishes the corollary for $\sigma = \emptyset$ with $t^{\sigma} = 0$. Note that for Ω -sentences A, $\neg A$ is true $\Leftrightarrow A^*\beta$ -conv. 1.

Case: $\sigma = 0 \rightarrow (\cdot \cdot \cdot \cdot (0 \rightarrow 0) \cdot \cdot \cdot)$ for m > 1. We have for closed r of type \emptyset , $r\beta$ -conv. $\emptyset \Leftrightarrow r(\lambda v_0^0 v_1^0) v_2^0 \beta$ -conv. $v_2^0 \Leftrightarrow \lambda v_1^0 \cdot \cdot \cdot v_m r(\lambda v_0^0 v_1^0) v_2^0 \beta$ -conv. $\lambda v_1^0 \cdot \cdot \cdot v_m^0 v_2^0$ so we can set $t^{\sigma} = \lambda v_1^0 \cdot \cdot v_m^0 v_2^0$.

Case: otherwise. We say that σ contains a splinter if there is a closed term t of type σ and a closed term s of type $\sigma \to \sigma$ such that the β -normal forms of $t, st, \ldots, s(\cdots(st)\cdots)$, ... are all distinct. It is easy to prove that σ contains a splinter $\Leftrightarrow \sigma$ contains a closed term and σ does not have the form $0 \to (\cdots(0 \to 0)\cdots)$. Suppose σ contains a splinter generated by t and s; we have for closed r of type 0, $r\beta$ -conv. $0 \Leftrightarrow [\sigma/0]r\beta$ -conv. $[\sigma/0]0 \Leftrightarrow ([\sigma/0]r)st$ β -conv. t so we can set $t^{\sigma} = t$.

6. Extensions and refinements

By a consistent extension Λ^+ of Λ we mean an extension of Λ with a model whose ground domain has ≥ 2 elements (note that Λ^+ need not be closed under the inductive definition of β -conversion and the model need not be extensional). If Λ^+ is an extension of Λ and $\Lambda^+ \vdash 0 = 1$, then $\Lambda^+ \vdash v_1^0 = v_2^0$ so Λ^+ is not consistent. Thus if Λ^+ is a consistent extension of Λ , for Ω -sentences A, A is true $\Leftrightarrow \Lambda^+ \vdash A^* = 0$. More generally we have the

Theorem 2. If σ is the type of a closed term and σ contains no positive occurrence of a subtype of the form $\sigma_1 \rightarrow (\sigma_2 \rightarrow \sigma_3)$ (see Prawitz [15, p. 43 and read \rightarrow for \supset]), then there is a closed term t^{σ} of type σ such that the problem of determining for an arbitrary closed term t^{σ} of type σ whether t^{σ} or t^{σ} or t^{σ} is the β -normal form of t^{σ} cannot be solved in elementary time.

Our proof of this theorem uses the model theory of Statman [18] and is proved there.

The rank of a type is defined as follows: $\operatorname{rnk}(0) = 0$ and $\operatorname{rnk}(\sigma \to \tau) = \max\{\operatorname{rnk}(\sigma) + 1, \operatorname{rnk}(\tau)\}$. Set $T_n = \{t \in \Lambda : \operatorname{each subterm of } t \text{ has type with rnk} \le n\}$. It is easy to see (by analysis of the normal form algorithm) that the problem for arbitrary closed terms $t_1, t_2 \in T_n$ of the same type of whether $t_1\beta$ -conv. t_2 can be solved in elementary time. By modifying the above construction (using Meyer's

result for the monadic predicate calculus instead of Ω ; see Meyer [13, p. 478]) it is easy to find an n such that

Proposition 5. The problem for arbitrary closed $t \in T_n$ of whether $t \beta$ -conv. **0** cannot be solved in polynomial time.

If F is a finite set of types let $T_F = \{t \in \Lambda : \text{ each subterm of } t \text{ has type } \in F\}$. By modifying the above construction (using the Meyer-Stockmeyer result for B_{ω} instead of Ω ; see Stockmeyer [19, p. 12]) it is easy to find an F such that

Proposition 6. The problem for arbitrary closed $t \in T_F$ of whether $t \mid \beta$ -conv. **0** is polynomial-space hard.

References

- [1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA, 1974).
- [2] A. Church, The Calculi of Lambda-Conversion, Annals of Math. Studies No. 6 (Princeton, 1941).
- [3] H. Friedman, Equality between functionals, in: R. Parikh, ed., Lecture Notes in Math. 453 (Springer-Verlag, Berlin, 1974).
- [4] K. Gödel, On an extension of finitary mathematics which has not yet been used, *Dialectica* 12 (1958).
- [5] A. Grzegorczyk, Some classes of recursive functions, Rozprawy Mat. 4 (1953) 46.
- [6] L. Henkin, A theory of propositional types, Fund. Math. 52 (1963) 323-344.
- [7] J.R. Hindley, B. Lercher and J.P. Seldin, *Introduction to Combinatory Logic*, London Math. Soc. Lecture Note No. 7 (Cambridge University Press, 1972).
- [8] G. Huet, A unification algorithm for typed λ-calculus, Theoret. Comput. Sci. 1 (1975) 27–57.
- [9] S.L. Kleene, Introduction to Mathematics (Van Nostrand, New York, 1952).
- [10] H. Lauchli, An abstract notion of realizability for which the intuitionistic predicate calculus is complete, in: A. Kino, J. Myhill and P.E. Vesley, eds., *Intuitionism and Proof Theory* (North-Holland, Amsterdam, 1968).
- [11] C. Mann, The connection between equivalence of proofs and cartesian closed categories, *Proc. London Math. Soc.* (3) 31 (3) (1975).
- [12] R. Milner, Fully abstract models of typed λ-calculi, Theoret. Comput. Sci. 4 (1977) 1-22.
- [13] A.R. Meyer, The inherent computational complexity of theories of ordered sets, in: *Proc. Int. Congr. of Math.* (C.M.C., 1974).
- [14] R. Montague, The proper treatment of quantification in ordinary English, in: J. Hintikka, J. Moravcsik and P. Suppes, eds., *Approaches to Natural Language* (Reidel, 1973).
- [15] D. Prawitz, Natural Deduction (Almqvist and Wiksell, 1965).
- [16] H. Schwichtenberg, Definierbare Functionem im λ-Kalkul mit Typen. Arch. Math. Logic 17 (3-4) (1975-76).
- [17] R. Statman, Intuitionistic propositional logic is polynomial-space complete, *Theoret. Comput. Sci.* 9 (1979) 67–72.
- [18] R. Statman, Completeness, invariance and λ -definability, J. Symbolic Logic, to appear.
- [19] L. V. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1976) 1-22.
- [20] W.W. Tait, A realizability interpretation of the theory of species, in: R. Parikh, ed., Lecture Notes in Math. 453 (Springer-Verlag, Berlin, 1974).