- 1. Create a matrix to transform a paralleliped defined by t=1, b=0, r=-1, l=-3, n=-2, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 2. Given a camera position of [3 3 4], a gaze vector of [2 -1 0], and an up vector of [-4 3 0], what is the resulting camera transformation matrix?
- 3. The viewport transformation transforms 2d space into _____ space.
- 4. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 5. The _____ transformation transforms object coordinates into world coordinates.
- 6. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 7. Project point [-4 -1 -3 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 8. Project point [2-501] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 9. Perspective division transforms _____ space into 2d space.
- 10. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 11. The view transformation transforms world space into _____ space.
- 12. Create a matrix to transform a paralleliped defined by t=3, b=1, r=2, l=-4, n=1, and f=0 into the canonical view volume (an orthographic projection matrix).
- 13. Create a matrix to transform a paralleliped defined by t=-3, b=3, r=2, l=-4, n=-5, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 14. Create a matrix to transform a paralleliped defined by t=-2, b=0, r=4, l=2, n=0, and f=4 into the canonical view volume (an orthographic projection matrix).
- 15. Given a camera position of [2 0 -5], a gaze vector of [2 1 -5], and an up vector of [2 0 4], what is the resulting camera transformation matrix?
- 16. Project point [0 4 -2 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 17. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.

- 18. Create a matrix to transform a paralleliped defined by t=-3, b=2, r=1, l=2, n=-4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 19. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 20. Create a matrix to transform a paralleliped defined by t=-1, b=2, r=-1, l=-5, n=3, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 21. The viewport transformation transforms _____ coordinates into screen coordinates.
- 22. The _____ transformation transforms eye space into clip space.
- 23. Given a camera position of [0-5-4], a gaze vector of [0-5-3], and an up vector of [-4-5-5], what is the resulting camera transformation matrix?
- 24. The _____ transformation transforms ____ coordinates into world coordinates.
- 25. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 26. The _____ transformation transforms 2d space into screen space.
- 27. Given a camera position of [-1 0 -5], a gaze vector of [-1 -4 0], and an up vector of [0 1 4], what is the resulting camera transformation matrix?
- 28. The projection transformation transforms eye space into _____ space.
- 29. Given a camera position of [-1 -1 -1], a gaze vector of [-4 -3 3], and an up vector of [3 -4 -3], what is the resulting camera transformation matrix?
- 30. Create a matrix to transform a paralleliped defined by t=-4, b=-2, r=-5, l=1, n=0, and f=3 into the canonical view volume (an orthographic projection matrix).
- 31. Project point $[0\ 2\ 0\ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 32. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 33. The _____ transformation transforms 2d coordinates into screen coordinates.
- 34. Given a camera position of [-2 -4 2], a gaze vector of [4 -3 2], and an up vector of [0 0 4], what is the resulting camera transformation matrix?
- 35. Create a matrix to transform a paralleliped defined by t=0, b=-2, r=4, l=-4, n=-2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 36. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=2, l=-5, n=-1, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 37. Create a matrix to transform a paralleliped defined by t=-3, b=0, r=2, l=-1, n=4, and f=-3 into the canonical view volume (an orthographic projection matrix).

- 38. The viewport transformation transforms _____ coordinates into screen coordinates.
- 39. Project point $[-2 \ 4 \ 4 \ 1]$ onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 40. The projection transformation transforms _____ space into the canonical view volume.
- 41. The _____ transformation transforms ____ space into world space.
- 42. Create a matrix to transform a paralleliped defined by t=-3, b=-5, r=1, l=-3, n=4, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 43. Project point $[-1 -2 -2 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 44. Project point [-4 -1 0 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 45. Given a camera position of [-1 -2 2], a gaze vector of [2 -1 2], and an up vector of [2 1 -3], what is the resulting camera transformation matrix?
- 46. The _____ transformation transforms clip space into 2d space.
- 47. Project point [-2 1 -5 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 48. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 49. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 50. The _____ transformation transforms clip space into 2d space.
- 51. The _____ transformation transforms world coordinates into camera coordinates.
- 52. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 53. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=3, l=2, n=2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 54. Perspective division transforms clip coordinates into _____ coordinates.
- 55. Create a matrix to transform a paralleliped defined by t=-1, b=-5, r=3, l=0, n=0, and f=1 into the canonical view volume (an orthographic projection matrix).

- 56. Project point [1-411] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 57. The projection transformation transforms _____ space into the canonical view volume.
- 58. Create a matrix to transform a paralleliped defined by t=-2, b=2, r=2, l=-2, n=-2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 59. The _____ transformation transforms the canonical view volume into 2d space.
- 60. Project point $[4 \ 0 \ -4 \ 1]$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 61. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 62. Given a camera position of [2 3 4], a gaze vector of [4 -4 -2], and an up vector of [4 -4 3], what is the resulting camera transformation matrix?
- 63. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 64. Create a matrix to transform a paralleliped defined by t=1, b=-1, r=4, l=3, n=-2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 65. Perspective division transforms _____ space into 2d space.
- 66. Create a matrix to transform a paralleliped defined by t=0, b=-4, r=-2, l=-5, n=-4, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 67. Project point $[0 \ 3 \ -2 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 68. Project point $[0\ 1\ -5\ 1]$ onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 69. Create a matrix to transform a paralleliped defined by t=4, b=-3, r=-2, l=-1, n=4, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 70. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 71. The _____ transformation transforms world coordinates into camera coordinates.
- 72. Create a matrix to transform a paralleliped defined by t=2, b=-1, r=-1, l=4, n=-5, and f=0 into the canonical view volume (an orthographic projection matrix).

- 73. The projection transformation transforms _____ coordinates into the canonical view volume.
- 74. Project point [1 401] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 75. Project point [3-441] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 76. Given a camera position of [-1 -1 -3], a gaze vector of [-5 1 3], and an up vector of [0 2 -3], what is the resulting camera transformation matrix?
- 77. Project point [4 1 -4 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 78. Given a camera position of [1 1 -2], a gaze vector of [-3 0 -5], and an up vector of [1 -1 -1], what is the resulting camera transformation matrix?
- 79. Project point [4-541] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 80. Create a matrix to transform a paralleliped defined by t=3, b=-2, r=-4, l=-2, n=2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 81. Project point $\begin{bmatrix} 4 5 3 \end{bmatrix}$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 82. Project point [-4 -1 -5 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 83. Create a matrix to transform a paralleliped defined by t=2, b=-3, r=-4, l=-5, n=4, and f=1 into the canonical view volume (an orthographic projection matrix).
- 84. Given a camera position of [-4 -2 1], a gaze vector of [4 1 1], and an up vector of [2 1 -3], what is the resulting camera transformation matrix?
- 85. The view transformation transforms world space into _____ space.
- 86. Given a camera position of [-5 4 -1], a gaze vector of [0 -1 4], and an up vector of [-5 1 -2], what is the resulting camera transformation matrix?

- 87. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 88. Given a camera position of [0 -1 4], a gaze vector of [4 3 3], and an up vector of [3 4 -1], what is the resulting camera transformation matrix?
- 89. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 90. The _____ transformation transforms ____ space into world space.
- 91. Project point $[-1\ 0\ -4\ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 92. Project point $[-4 4 1 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 93. Project point $[2 \ 1 \ -5 \ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 94. Project point [4-2-11] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 95. Given a camera position of [0 -4 -4], a gaze vector of [-5 -2 -4], and an up vector of [-2 -4 4], what is the resulting camera transformation matrix?
- 96. Given a camera position of [0-14], a gaze vector of [-5-5-1], and an up vector of [3 40], what is the resulting camera transformation matrix?
- 97. Project point [4 0 0 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 98. Given a camera position of [3-3-3], a gaze vector of [-3-42], and an up vector of [2-5-5], what is the resulting camera transformation matrix?
- 99. Project point $[-3 \ 0 \ 2 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 100. Given a camera position of [3 -4 -2], a gaze vector of [2 -1 -3], and an up vector of [-2 -5 3], what is the resulting camera transformation matrix?

- 101. Project point [4-401] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 102. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 103. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 104. Project point [3-2-31] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 105. The projection transformation transforms camera space into _____ space.
- 106. Project point [-1 -2 -5 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 107. The _____ transformation transforms world space into ____ space.
- 108. Project point [4 1 2 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 109. Perspective division transforms _____ coordinates into 2d coordinates.
- 110. Create a matrix to transform a paralleliped defined by t=4, b=3, r=-1, l=3, n=0, and f=4 into the canonical view volume (an orthographic projection matrix).
- 111. Given a camera position of [-5 4 1], a gaze vector of [-1 -1 -2], and an up vector of [-2 0 4], what is the resulting camera transformation matrix?
- 112. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 113. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 114. Given a camera position of [0-22], a gaze vector of [-3-3-1], and an up vector of [-2-2-3], what is the resulting camera transformation matrix?
- 115. Create a matrix to transform a paralleliped defined by t=0, b=1, r=4, l=-2, n=-4, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 116. Given a camera position of [-2 3 -5], a gaze vector of [-4 0 -4], and an up vector of [-1 3 -3], what is the resulting camera transformation matrix?
- 117. Given a camera position of [-4 1 -5], a gaze vector of [-2 4 3], and an up vector of [0 3 -5], what is the resulting camera transformation matrix?

- 118. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 119. Given a camera position of [3 3 3], a gaze vector of [-1 0 4], and an up vector of [-1 -4 -3], what is the resulting camera transformation matrix?
- 120. Given a camera position of [-1 3 4], a gaze vector of [1 3 -2], and an up vector of [-5 4 0], what is the resulting camera transformation matrix?
- 121. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 122. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 123. Perspective division transforms _____ space into 2d space.
- 124. Given a camera position of [-5 -2 -1], a gaze vector of [4 -3 -2], and an up vector of [-1 3 -3], what is the resulting camera transformation matrix?
- 125. The model transformation transforms model coordinates into _____ coordinates.
- 126. The _____ transformation transforms ____ coordinates into world coordinates.
- 127. Create a matrix to transform a paralleliped defined by t=-4, b=-2, r=-4, l=-3, n=4, and f=3 into the canonical view volume (an orthographic projection matrix).
- 128. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 129. Create a matrix to transform a paralleliped defined by t=-4, b=-1, r=2, l=-3, n=5, and f=4 into the canonical view volume (an orthographic projection matrix).
- 130. Project point [3-4-41] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 131. Create a matrix to transform a paralleliped defined by t=4, b=-1, r=2, l=0, n=-1, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 132. Given a camera position of [-1 2 -2], a gaze vector of [-3 1 -1], and an up vector of [4 3 -4], what is the resulting camera transformation matrix?
- 133. Create a matrix to transform a paralleliped defined by t=1, b=-1, r=3, l=-3, n=0, and f=1 into the canonical view volume (an orthographic projection matrix).
- 134. Create a matrix to transform a paralleliped defined by t=4, b=-5, r=-3, l=-1, n=2, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 135. Create a matrix to transform a paralleliped defined by t=2, b=-5, r=-1, l=-2, n=-1, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 136. The _____ transformation transforms camera space into clip space.

- 137. The viewport transformation transforms 2d space into _____ space.
- 138. Project point $[-2 \ 3 \ -4 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 139. Given a camera position of [4-53], a gaze vector of [-2-2-5], and an up vector of [-54-5], what is the resulting camera transformation matrix?
- 140. The viewport transformation transforms _____ space into screen space.
- 141. Project point [-2 2 0 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 142. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 143. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 144. Given a camera position of [-5 0 4], a gaze vector of [3 3 0], and an up vector of [3 1 -5], what is the resulting camera transformation matrix?
- 145. Given a camera position of [3 0 2], a gaze vector of [1 -4 -5], and an up vector of [-1 4 3], what is the resulting camera transformation matrix?
- 146. Project point [4-521] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 147. Given a camera position of [0 3 -2], a gaze vector of [-5 0 -2], and an up vector of [-1 3 2], what is the resulting camera transformation matrix?
- 148. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 149. The _____ transformation transforms world space into ____ space.
- 150. Project point $[-2 -4 \ 1 \ 1]$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 151. The camera transformation transforms world coordinates into _____ coordinates.
- 152. Create a matrix to transform a paralleliped defined by t=4, b=3, r=1, l=3, n=3, and f=0 into the canonical view volume (an orthographic projection matrix).

- 153. Project point [4-2-31] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 154. Given a camera position of [1-43], a gaze vector of [3-41], and an up vector of [1-14], what is the resulting camera transformation matrix?
- 155. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 156. The _____ transformation transforms 2d coordinates into screen coordinates.
- 157. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 158. Given a camera position of [-2 2 1], a gaze vector of [1 -3 -1], and an up vector of [2 -4 2], what is the resulting camera transformation matrix?
- 159. The projection transformation transforms eye coordinates into _____ coordinates.
- 160. Given a camera position of [-2 -2 -3], a gaze vector of [3 3 1], and an up vector of [-1 3 2], what is the resulting camera transformation matrix?
- 161. Project point [1 1 -1 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 162. Given a camera position of [3 3 -2], a gaze vector of [2 -2 3], and an up vector of [-3 -4 2], what is the resulting camera transformation matrix?
- 163. Project point $[-1 3 4 \ 1]$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 164. Project point [4 4 3 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 165. The _____ transformation transforms world coordinates into _____ coordinates.
- 166. Perspective division transforms the canonical view volume into _____ space.
- 167. The _____ transformation transforms 2d space into screen space.
- 168. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 169. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.

- 170. Create a matrix to transform a paralleliped defined by t=-2, b=-3, r=1, l=2, n=1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 171. The projection transformation transforms camera space into _____ space.
- 172. Project point [4-101] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 173. The _____ transformation transforms world coordinates into camera coordinates.
- 174. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=-2, l=1, n=-2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 175. Project point [1-331] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 176. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 177. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 178. Given a camera position of [2 -5 0], a gaze vector of [-5 -4 3], and an up vector of [1 -2 1], what is the resulting camera transformation matrix?
- 179. Given a camera position of [4 0 4], a gaze vector of [4 3 -5], and an up vector of [1 -1 -4], what is the resulting camera transformation matrix?
- 180. Create a matrix to transform a paralleliped defined by t=4, b=-3, r=4, l=1, n=-2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 181. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=-5, l=0, n=0, and f=4 into the canonical view volume (an orthographic projection matrix).
- 182. Create a matrix to transform a paralleliped defined by t=-2, b=-5, r=-3, l=-4, n=-5, and f=3 into the canonical view volume (an orthographic projection matrix).
- 183. Create a matrix to transform a paralleliped defined by t=0, b=3, r=1, l=-3, n=-2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 184. Given a camera position of [2 0 -2], a gaze vector of [-3 4 -4], and an up vector of [4 -2 -1], what is the resulting camera transformation matrix?
- 185. Project point [4-111] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 186. Project point [3 1 -3 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 187. Given a camera position of [-2 1 -4], a gaze vector of [-2 -5 4], and an up vector of [-2 -5 3], what is the resulting camera transformation matrix?
- 188. The _____ transformation transforms world space into camera space.
- 189. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=4, l=2, n=-4, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 190. The projection transformation transforms _____ coordinates into clip coordinates.
- 191. Given a camera position of [-5 -1 3], a gaze vector of [4 -5 -1], and an up vector of [-3 0 -3], what is the resulting camera transformation matrix?
- 192. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 193. Create a matrix to transform a paralleliped defined by t=-4, b=1, r=2, l=-5, n=0, and f=2 into the canonical view volume (an orthographic projection matrix).
- 194. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 195. Given a camera position of [3 -4 -4], a gaze vector of [-4 -5 -4], and an up vector of [-2 -2 4], what is the resulting camera transformation matrix?
- 196. Project point [-4 -3 1 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 197. Given a camera position of [1-31], a gaze vector of [-3-4-3], and an up vector of [-5-1-4], what is the resulting camera transformation matrix?
- 198. Given a camera position of [2 0 0], a gaze vector of [-4 2 3], and an up vector of [2 -5 -5], what is the resulting camera transformation matrix?
- 199. Project point [3-1-31] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 200. Perspective division transforms _____ coordinates into 2d coordinates.
- 201. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 202. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=-3, l=1, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).

- 203. Create a matrix to transform a paralleliped defined by t=0, b=-4, r=0, l=-2, n=3, and f=1 into the canonical view volume (an orthographic projection matrix).
- 204. Project point $[-3 \ 0 \ -1 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 205. Project point $\begin{bmatrix} -2 & -4 & -5 & 1 \end{bmatrix}$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 206. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 207. Given a camera position of [0-10], a gaze vector of [2-3-1], and an up vector of [-2-33], what is the resulting camera transformation matrix?
- 208. Perspective division transforms _____ space into 2d space.
- 209. Given a camera position of [3 4 1], a gaze vector of [-2 -1 -1], and an up vector of [-4 3 3], what is the resulting camera transformation matrix?
- 210. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 211. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 212. Given a camera position of [-3 -5 -3], a gaze vector of [3 -3 2], and an up vector of [-4 3 3], what is the resulting camera transformation matrix?
- 213. Project point $[-4 \ 0 \ -4 \ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 214. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 215. The projection transformation transforms camera coordinates into _____ coordinates.
- 216. The projection transformation transforms eye space into _____ space.
- 217. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 218. Project point [4-541] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 219. Given a camera position of [4 3 -2], a gaze vector of [1 -4 3], and an up vector of [0 -5 -5], what is the resulting camera transformation matrix?
- 220. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 221. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 222. Given a camera position of [3 0 0], a gaze vector of [1 -5 -5], and an up vector of [4 -4 -3], what is the resulting camera transformation matrix?
- 223. Project point [0 1 3 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 224. Project point [2 1 3 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 225. Given a camera position of [-5 -1 -5], a gaze vector of [-5 2 0], and an up vector of [-3 -1 -1], what is the resulting camera transformation matrix?
- 226. Project point [1 1 3 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 227. Given a camera position of [3 -4 1], a gaze vector of [-5 3 0], and an up vector of [3 0 -5], what is the resulting camera transformation matrix?
- 228. Perspective division transforms the canonical view volume into _____ coordinates.
- 229. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 230. Create a matrix to transform a paralleliped defined by t=-3, b=-1, r=-1, l=-2, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 231. Given a camera position of [-4 2 -3], a gaze vector of [-1 0 -2], and an up vector of [-5 0 -2], what is the resulting camera transformation matrix?
- 232. The model transformation transforms object coordinates into _____ coordinates.
- 233. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 234. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.

- 235. Project point [-1 -4 -2 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 236. Project point [-4 4 -3 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 237. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 238. Project point [4-231] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 239. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 240. The _____ transformation transforms object space into world space.
- 241. Project point [-2 1 2 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 242. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 243. Given a camera position of [0-52], a gaze vector of [4-3-1], and an up vector of [5-4-3], what is the resulting camera transformation matrix?
- 244. Project point [4 2 -4 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 245. Create a matrix to transform a paralleliped defined by t=-3, b=-4, r=-4, l=3, n=1, and f=3 into the canonical view volume (an orthographic projection matrix).
- 246. Given a camera position of [-4 1 4], a gaze vector of [0 2 -2], and an up vector of [3 4 0], what is the resulting camera transformation matrix?
- 247. The model transformation transforms object space into _____ space.
- 248. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 249. Given a camera position of [0-5-4], a gaze vector of [3-32], and an up vector of [-10-4], what is the resulting camera transformation matrix?

- 250. The _____ transformation transforms eye coordinates into the canonical view volume.
- 251. The projection transformation transforms camera space into _____ space.
- 252. Given a camera position of [3 -42], a gaze vector of [1 3 -4], and an up vector of [1 0 -5], what is the resulting camera transformation matrix?
- 253. The camera transformation transforms world space into _____ space.
- 254. Project point [0 2 -2 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 255. Project point [-5 -2 -1 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 256. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 257. Project point [-3 3 -1 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 258. The projection transformation transforms _____ space into the canonical view volume.
- 259. Project point [-1 1 1 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 260. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 261. Project point [-3 -3 -5 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 262. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 263. Create a matrix to transform a paralleliped defined by t=-3, b=3, r=3, l=2, n=1, and f=2 into the canonical view volume (an orthographic projection matrix).
- 264. Given a camera position of [-5 -3 3], a gaze vector of [-3 -1 -1], and an up vector of [-3 0 2], what is the resulting camera transformation matrix?

- 265. Project point [4 1 -5 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 266. The _____ transformation transforms eye space into clip space.
- 267. Given a camera position of [0-2-2], a gaze vector of [4-1-1], and an up vector of [-3 1 2], what is the resulting camera transformation matrix?
- 268. Project point [3 1 4 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 269. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 270. Create a matrix to transform a paralleliped defined by t=3, b=-5, r=2, l=-5, n=-5, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 271. Project point $[2 \ 3 \ -5 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 272. Create a matrix to transform a paralleliped defined by t=-1, b=4, r=-2, l=4, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 273. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 274. Given a camera position of [-4 4 0], a gaze vector of [0 3 -2], and an up vector of [4 -4 -5], what is the resulting camera transformation matrix?
- 275. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=-5, l=4, n=-5, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 276. Project point $[-3 -2 -2 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 277. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 278. Project point [-5 -3 4 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 279. Create a matrix to transform a paralleliped defined by t=-5, b=4, r=-4, l=4, n=-2, and f=4 into the canonical view volume (an orthographic projection matrix).

- 280. Create a matrix to transform a paralleliped defined by t=3, b=-4, r=-2, l=3, n=0, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 281. Perspective division transforms _____ space into 2d space.
- 282. Project point [-1 1 3 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 283. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 284. The _____ transformation transforms object coordinates into world coordinates.
- 285. Given a camera position of [-5 0 3], a gaze vector of [-5 4 1], and an up vector of [-3 3 4], what is the resulting camera transformation matrix?
- 286. The _____ transformation transforms the canonical view volume into 2d space.
- 287. Create a matrix to transform a paralleliped defined by t=0, b=2, r=-3, l=0, n=1, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 288. Given a camera position of [-4 3 -4], a gaze vector of [0 -1 -3], and an up vector of [-4 -3 3], what is the resulting camera transformation matrix?
- 289. Create a matrix to transform a paralleliped defined by t=-3, b=-4, r=1, l=-2, n=-4, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 290. Project point [-5 -3 4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 291. Project point [2 4 0 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 292. Perspective division transforms _____ coordinates into 2d coordinates.
- 293. The model transformation transforms _____ space into world space.
- 294. Create a matrix to transform a paralleliped defined by t=-1, b=3, r=0, l=-4, n=-4, and f=4 into the canonical view volume (an orthographic projection matrix).
- 295. Project point [-3 4 4 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 296. Project point [-5 1 -4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 297. The view transformation transforms world coordinates into _____ coordinates.
- 298. Create a matrix to transform a paralleliped defined by t=1, b=-2, r=-1, l=4, n=4, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 299. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 300. The _____ transformation transforms world space into ____ space.
- 301. The viewport transformation transforms _____ coordinates into screen coordinates.
- 302. Project point $[-5 \ 0 \ 1 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 303. Given a camera position of [-4 2 -3], a gaze vector of [-1 2 4], and an up vector of [2 -3 2], what is the resulting camera transformation matrix?
- 304. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 305. Create a matrix to transform a paralleliped defined by t=-1, b=-4, r=-5, l=-3, n=2, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 306. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 307. Given a camera position of [-4 -5 1], a gaze vector of [-3 -4 1], and an up vector of [3 4 -3], what is the resulting camera transformation matrix?
- 308. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 309. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 310. Given a camera position of [1 3 -2], a gaze vector of [0 -2 3], and an up vector of [-3 1 -3], what is the resulting camera transformation matrix?
- 311. Project point $[0\ 2\ 4\ 1]$ onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 312. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 313. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 314. Given a camera position of [2-4-5], a gaze vector of [3-34], and an up vector of [2-32], what is the resulting camera transformation matrix?

- 315. Project point $\begin{bmatrix} -4 & 2 & -2 & 1 \end{bmatrix}$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 316. Project point [4-2-51] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 317. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 318. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 319. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 320. Given a camera position of [0 -4 0], a gaze vector of [-3 -1 -1], and an up vector of [2 2 1], what is the resulting camera transformation matrix?
- 321. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 322. Create a matrix to transform a paralleliped defined by t=0, b=-4, r=-2, l=4, n=-1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 323. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 324. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 325. Given a camera position of [-4 -3 1], a gaze vector of [-3 -4 3], and an up vector of [-3 -4 -5], what is the resulting camera transformation matrix?
- 326. Project point [-5 -3 -3 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 327. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 328. Given a camera position of [-4 1 1], a gaze vector of [-5 4 -3], and an up vector of [-4 0 1], what is the resulting camera transformation matrix?
- 329. The viewport transformation transforms _____ coordinates into screen coordinates.
- 330. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 331. The viewport transformation transforms 2d coordinates into _____ coordinates.

- 332. The _____ transformation transforms object coordinates into world coordinates.
- 333. Project point $[-5 -2 \ 4 \ 1]$ onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 334. Create a matrix to transform a paralleliped defined by t=2, b=4, r=-1, l=4, n=2, and f=0 into the canonical view volume (an orthographic projection matrix).
- 335. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 336. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 337. Project point $[-5 -4 \ 0 \ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 338. The _____ transformation transforms the canonical view volume into 2d space.
- 339. Project point $[-2\ 2\ -3\ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 340. Create a matrix to transform a paralleliped defined by t=-4, b=0, r=2, l=1, n=2, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 341. Project point $\begin{bmatrix} 4 & 0 & -3 & 1 \end{bmatrix}$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 342. Create a matrix to transform a paralleliped defined by t=1, b=-1, r=-5, l=-4, n=-4, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 343. Create a matrix to transform a paralleliped defined by t=2, b=-3, r=-4, l=-3, n=1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 344. Perspective division transforms clip coordinates into _____ coordinates.
- 345. Given a camera position of [-3 -1 4], a gaze vector of [-3 4 -5], and an up vector of [3 -1 1], what is the resulting camera transformation matrix?
- 346. Given a camera position of [0 3 -5], a gaze vector of [2 2 -3], and an up vector of [3 -3 2], what is the resulting camera transformation matrix?
- 347. The _____ transformation transforms world coordinates into _____ coordinates.
- 348. Create a matrix to transform a paralleliped defined by t=1, b=3, r=2, l=-2, n=-5, and f=-4 into the canonical view volume (an orthographic projection matrix).

- 349. Given a camera position of [-3 0 -4], a gaze vector of [3 -5 3], and an up vector of [2 -4 -5], what is the resulting camera transformation matrix?
- 350. Create a matrix to transform a paralleliped defined by t=2, b=-2, r=-2, l=-3, n=0, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 351. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 352. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 353. Create a matrix to transform a paralleliped defined by t=4, b=-1, r=4, l=2, n=-5, and f=2 into the canonical view volume (an orthographic projection matrix).
- 354. The camera transformation transforms world coordinates into _____ coordinates.
- 355. Project point [1 0 4 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 356. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 357. Create a matrix to transform a paralleliped defined by t=-5, b=4, r=3, l=-5, n=-4, and f=0 into the canonical view volume (an orthographic projection matrix).
- 358. The viewport transformation transforms _____ space into screen space.
- 359. Project point [-3 -2 3 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 360. Given a camera position of [-5 -3 1], a gaze vector of [2 4 -1], and an up vector of [-3 -5 1], what is the resulting camera transformation matrix?
- 361. Create a matrix to transform a paralleliped defined by t=-4, b=-5, r=0, l=-3, n=-4, and f=3 into the canonical view volume (an orthographic projection matrix).
- 362. Given a camera position of [3 -1 0], a gaze vector of [-3 -3 -4], and an up vector of [-1 2 3], what is the resulting camera transformation matrix?
- 363. Create a matrix to transform a paralleliped defined by t=1, b=0, r=0, l=-2, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 364. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 365. Project point [-1 0 -3 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 366. Project point [0-231] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 367. Given a camera position of [1-2-3], a gaze vector of [4-14], and an up vector of [2 1 0], what is the resulting camera transformation matrix?
- 368. Given a camera position of [1 4 -2], a gaze vector of [2 -3 1], and an up vector of [2 -4 -2], what is the resulting camera transformation matrix?
- 369. The _____ transformation transforms ____ space into world space.
- 370. The _____ transformation transforms world coordinates into eye coordinates.
- 371. Given a camera position of [1 4 4], a gaze vector of [4 -1 3], and an up vector of [-2 -1 1], what is the resulting camera transformation matrix?
- 372. Given a camera position of [2 1 3], a gaze vector of [-1 -1 -4], and an up vector of [1 -4 3], what is the resulting camera transformation matrix?
- 373. Given a camera position of [0 4 -5], a gaze vector of [4 0 -3], and an up vector of [2 0 -1], what is the resulting camera transformation matrix?
- 374. Project point [4-341] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 375. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 376. Create a matrix to transform a paralleliped defined by t=2, b=1, r=-4, l=1, n=-5, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 377. Project point [-2 -1 0 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 378. The _____ transformation transforms world coordinates into _____ coordinates.
- 379. The _____ transformation transforms ____ coordinates into world coordinates.
- 380. Project point $[-1 5 3 \ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 381. Create a matrix to transform a paralleliped defined by t=4, b=3, r=3, l=-2, n=1, and f=3 into the canonical view volume (an orthographic projection matrix).
- 382. The model transformation transforms _____ coordinates into world coordinates.

- 383. Given a camera position of [4-40], a gaze vector of [22-2], and an up vector of [-5-2-2], what is the resulting camera transformation matrix?
- 384. Create a matrix to transform a paralleliped defined by t=-2, b=4, r=1, l=-4, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 385. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 386. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 387. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 388. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 389. Given a camera position of [-3 1 1], a gaze vector of [4 1 -4], and an up vector of [-4 0 0], what is the resulting camera transformation matrix?
- 390. The _____ transformation transforms 2d coordinates into screen coordinates.
- 391. Create a matrix to transform a paralleliped defined by t=0, b=3, r=4, l=1, n=-4, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 392. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 393. Given a camera position of [-1 4 -5], a gaze vector of [-5 4 0], and an up vector of [1 2 2], what is the resulting camera transformation matrix?
- 394. Given a camera position of [-2 -5 2], a gaze vector of [-1 -1 4], and an up vector of [0 -2 -4], what is the resulting camera transformation matrix?
- 395. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 396. Project point [-5 -2 -5 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 397. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 398. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 399. Create a matrix to transform a paralleliped defined by t=-1, b=-3, r=-4, l=1, n=-2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 400. The projection transformation transforms eye coordinates into _____ coordinates.

- 401. The view transformation transforms _____ space into camera space.
- 402. Given a camera position of [-4 -2 1], a gaze vector of [0 -2 -2], and an up vector of [-3 -5 3], what is the resulting camera transformation matrix?
- 403. The _____ transformation transforms camera coordinates into the canonical view volume.
- 404. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 405. The _____ transformation transforms camera space into the canonical view volume.
- 406. The _____ transformation transforms world coordinates into eye coordinates.
- 407. Create a matrix to transform a paralleliped defined by t=-1, b=1, r=4, l=-5, n=0, and f=4 into the canonical view volume (an orthographic projection matrix).
- 408. Project point [-1 -2 4 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 409. Project point [4 1 3 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 410. The _____ transformation transforms clip coordinates into 2d coordinates.
- 411. Given a camera position of [1-4-1], a gaze vector of [-2-52], and an up vector of [-2-21], what is the resulting camera transformation matrix?
- 412. Given a camera position of [-1 2 2], a gaze vector of [-5 3 -1], and an up vector of [-5 -2 3], what is the resulting camera transformation matrix?
- 413. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 414. Project point $\begin{bmatrix} -5 & -5 & -1 & 1 \end{bmatrix}$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 415. Project point $[-2 -5 \ 1 \ 1]$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 416. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 417. The viewport transformation transforms _____ coordinates into screen coordinates.

- 418. Create a matrix to transform a paralleliped defined by t=-2, b=-5, r=-1, l=-5, n=-4, and f=1 into the canonical view volume (an orthographic projection matrix).
- 419. Given a camera position of [-2 -1 0], a gaze vector of [3 4 -3], and an up vector of [2 -5 1], what is the resulting camera transformation matrix?
- 420. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 421. The _____ transformation transforms 2d coordinates into screen coordinates.
- 422. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 423. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 424. The camera transformation transforms _____ space into camera space.
- 425. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 426. The projection transformation transforms _____ space into the canonical view volume.
- 427. Project point [0 3 0 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 428. Given a camera position of [-2 3 -3], a gaze vector of [2 -5 -1], and an up vector of [4 4 3], what is the resulting camera transformation matrix?
- 429. Project point [-2 -2 4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 430. Project point $[0\ 3\ -2\ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 431. The projection transformation transforms _____ coordinates into clip coordinates.
- 432. The viewport transformation transforms 2d space into _____ space.
- 433. Given a camera position of [-5 -3 4], a gaze vector of [-3 0 1], and an up vector of [0 1 -1], what is the resulting camera transformation matrix?
- 434. The viewport transformation transforms 2d space into _____ space.
- 435. Given a camera position of [0-1-5], a gaze vector of [1-2-3], and an up vector of [-4-2-3], what is the resulting camera transformation matrix?

- 436. Create a matrix to transform a paralleliped defined by t=0, b=3, r=0, l=2, n=-2, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 437. Perspective division transforms _____ coordinates into 2d coordinates.
- 438. Given a camera position of [-2 1 3], a gaze vector of [0 -4 -3], and an up vector of [0 -3 -1], what is the resulting camera transformation matrix?
- 439. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 440. Create a matrix to transform a paralleliped defined by t=1, b=-5, r=3, l=-4, n=-3, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 441. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 442. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 443. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 444. The _____ transformation transforms world space into eye space.
- 445. Given a camera position of [-4 -5 -4], a gaze vector of [-5 -2 3], and an up vector of [-2 -3 1], what is the resulting camera transformation matrix?
- 446. Given a camera position of [-3 2 2], a gaze vector of [-4 4 -5], and an up vector of [-2 1 1], what is the resulting camera transformation matrix?
- 447. Project point [3-5-41] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 448. Given a camera position of [-5 -3 0], a gaze vector of [2 2 -1], and an up vector of [-5 1 -3], what is the resulting camera transformation matrix?
- 449. The view transformation transforms world coordinates into _____ coordinates.
- 450. Project point [2-4-41] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 451. Given a camera position of [-4 -2 2], a gaze vector of [3 0 -4], and an up vector of [1 -1 1], what is the resulting camera transformation matrix?
- 452. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 453. Create a matrix to transform a paralleliped defined by t=4, b=1, r=-3, l=-1, n=0, and f=-5 into the canonical view volume (an orthographic projection matrix).

- 454. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 455. Project point $[-1 \ 2 \ -4 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 456. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 457. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 458. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 459. Given a camera position of [3 3 3], a gaze vector of [-4 2 -2], and an up vector of [3 -3 -4], what is the resulting camera transformation matrix?
- 460. Project point [-4 -1 3 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 461. Project point [-1 -4 -5 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 462. Create a matrix to transform a paralleliped defined by t=0, b=2, r=-3, l=0, n=-4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 463. Given a camera position of [-3 -1 -2], a gaze vector of [-2 0 2], and an up vector of [3 2 1], what is the resulting camera transformation matrix?
- 464. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 465. The viewport transformation transforms _____ coordinates into screen coordinates.
- 466. The viewport transformation transforms _____ space into screen space.
- 467. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 468. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 469. Create a matrix to transform a paralleliped defined by t=0, b=-2, r=2, l=1, n=-2, and f=3 into the canonical view volume (an orthographic projection matrix).
- 470. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.

- 471. Project point [1 0 -4 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 472. Project point [-3 -5 3 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 473. The model transformation transforms model space into _____ space.
- 474. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 475. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 476. Project point [-3 0 4 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 477. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 478. Given a camera position of [-5 1 0], a gaze vector of [1 -2 2], and an up vector of [-2 4 -1], what is the resulting camera transformation matrix?
- 479. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 480. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 481. Create a matrix to transform a paralleliped defined by t=-2, b=1, r=-3, l=-5, n=1, and f=4 into the canonical view volume (an orthographic projection matrix).
- 482. Project point [-4 -1 -1 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 483. Project point [-5 -4 -4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 484. The _____ transformation transforms ____ coordinates into world coordinates.
- 485. Project point [2-501] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 486. Project point [-5 -5 1 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 487. The _____ transformation transforms 2d coordinates into screen coordinates.
- 488. Project point [-4 -2 -1 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 489. The _____ transformation transforms world coordinates into eye coordinates.
- 490. Project point [4 2 3 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 491. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 492. The model transformation transforms model space into _____ space.
- 493. Given a camera position of [1-4-1], a gaze vector of [2 3-5], and an up vector of [-4-12], what is the resulting camera transformation matrix?
- 494. Create a matrix to transform a paralleliped defined by t=-3, b=-1, r=5, l=4, n=3, and f=1 into the canonical view volume (an orthographic projection matrix).
- 495. Create a matrix to transform a paralleliped defined by t=-3, b=-1, r=1, l=0, n=-3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 496. Create a matrix to transform a paralleliped defined by t=2, b=1, r=3, l=-2, n=-5, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 497. Given a camera position of [-1 4 -3], a gaze vector of [-1 -1 4], and an up vector of [0 2 -5], what is the resulting camera transformation matrix?
- 498. Project point [-1 -5 1 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 499. Project point $[-3 \ 2 \ 3 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 500. Create a matrix to transform a paralleliped defined by t=-2, b=4, r=-2, l=-1, n=3, and f=-1 into the canonical view volume (an orthographic projection matrix).

- 501. Project point [-1 0 -2 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 502. Project point $[-3 \ 4 \ -5 \ 1]$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 503. Given a camera position of [3 -4 -2], a gaze vector of [-1 2 3], and an up vector of [2 2 1], what is the resulting camera transformation matrix?
- 504. Project point [-2 2 2 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 505. Given a camera position of [-2 -1 0], a gaze vector of [0 2 -4], and an up vector of [3 -1 1], what is the resulting camera transformation matrix?
- 506. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 507. Project point [-3 -2 -5 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 508. The _____ transformation transforms clip coordinates into 2d coordinates.
- 509. Project point [1-211] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 510. Create a matrix to transform a paralleliped defined by t=-4, b=2, r=-5, l=0, n=3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 511. Given a camera position of [4-4-4], a gaze vector of [3 2-4], and an up vector of [-1 0-3], what is the resulting camera transformation matrix?
- 512. Given a camera position of [2 2 -1], a gaze vector of [0 -4 2], and an up vector of [4 -3 -3], what is the resulting camera transformation matrix?
- 513. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 514. Create a matrix to transform a paralleliped defined by t=1, b=-3, r=1, l=-5, n=-3, and f=-1 into the canonical view volume (an orthographic projection matrix).

- 515. Project point [0 -3 -3 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 516. Given a camera position of [3 2 -5], a gaze vector of [4 3 2], and an up vector of [4 3 0], what is the resulting camera transformation matrix?
- 517. The _____ transformation transforms world coordinates into eye coordinates.
- 518. Project point $\begin{bmatrix} -5 & 4 & 3 & 1 \end{bmatrix}$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 519. Given a camera position of [-3 -2 1], a gaze vector of [-1 -5 -1], and an up vector of [0 -2 1], what is the resulting camera transformation matrix?
- 520. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 521. Given a camera position of [-2 -4 1], a gaze vector of [4 0 -3], and an up vector of [-1 3 3], what is the resulting camera transformation matrix?
- 522. Project point [-3 3 4 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 523. Given a camera position of [-2 3 -2], a gaze vector of [-5 -3 -2], and an up vector of [-2 -3 -2], what is the resulting camera transformation matrix?
- 524. Project point [-5 1 -2 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 525. Given a camera position of [-5 2 2], a gaze vector of [-4 1 2], and an up vector of [0 0 0], what is the resulting camera transformation matrix?
- 526. Given a camera position of [0 4 -1], a gaze vector of [4 4 2], and an up vector of [1 -3 -3], what is the resulting camera transformation matrix?
- 527. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 528. Project point [1-4-11] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 529. Given a camera position of [-3 -5 -2], a gaze vector of [0 -4 4], and an up vector of [-5 -4 2], what is the resulting camera transformation matrix?

- 530. The _____ transformation transforms the canonical view volume into 2d coordinates.
- 531. Project point $[-2\ 0\ 1\ 1]$ onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 532. The projection transformation transforms _____ space into the canonical view volume.
- 533. The _____ transformation transforms camera coordinates into clip coordinates.
- 534. Project point [-5 1 -5 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 535. Create a matrix to transform a paralleliped defined by t=-1, b=-5, r=-1, l=-5, n=-4, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 536. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 537. Project point [3 1 4 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 538. The _____ transformation transforms 2d coordinates into screen coordinates.
- 539. The _____ transformation transforms world space into camera space.
- 540. Given a camera position of [-3 4 -4], a gaze vector of [4 -2 0], and an up vector of [4 -5 -5], what is the resulting camera transformation matrix?
- 541. Given a camera position of [-3 0 -4], a gaze vector of [-1 0 4], and an up vector of [2 3 -3], what is the resulting camera transformation matrix?
- 542. Given a camera position of [2 -4 -3], a gaze vector of [2 4 3], and an up vector of [-1 -5 1], what is the resulting camera transformation matrix?
- 543. Create a matrix to transform a paralleliped defined by t=-1, b=-3, r=2, l=-4, n=-3, and f=0 into the canonical view volume (an orthographic projection matrix).
- 544. The model transformation transforms model space into _____ space.
- 545. Project point $[3 \ 0 \ -1 \ 1]$ onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 546. Create a matrix to transform a paralleliped defined by t=4, b=3, r=-3, l=1, n=2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 547. The viewport transformation transforms 2d coordinates into _____ coordinates.

- 548. Perspective division transforms _____ space into 2d space. 549. Project point $\begin{bmatrix} -2 & 1 & -1 & 1 \end{bmatrix}$ onto the plane n=-4. a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation) b) What will px, py be after perspective division? 550. The _____ transformation transforms the canonical view volume into 2d coordinates. 551. The viewport transformation transforms 2d coordinates into _____ coordinates. 552. Given a camera position of [-5 0 0], a gaze vector of [4 1 3], and an up vector of [-2 1 4], what is the resulting camera transformation matrix? 553. Perspective division transforms _____ coordinates into 2d coordinates. 554. The _____ transformation transforms world coordinates into _____ coordinates. 555. Project point [-3 4 4 1] onto the plane n=-4. a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation) b) What will px, py be after perspective division? 556. Create a matrix to transform a paralleliped defined by t=-1, b=3, r=-5, l=-2, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix). 557. Given a camera position of [3 2 2], a gaze vector of [0 0 -4], and an up vector of [1 -3 1], what is the resulting camera transformation matrix? 558. Given a camera position of [-3 -2 2], a gaze vector of [4 0 3], and an up vector of [3 -1 3], what is the resulting camera transformation matrix? 559. The _____ transformation transforms _____ space into world space. 560. Create a matrix to transform a paralleliped defined by t=-3, b=-5, r=-1, l=-4, n=4, and f=-2 into the canonical view volume (an orthographic projection matrix). 561. The viewport transformation transforms 2d coordinates into _____ coordinates. 562. The view transformation transforms world space into _____ space. 563. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*. 564. Project point [4-531] onto the plane n=-3. a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation) b) What will px, py be after perspective division? 565. The _____ transformation transforms ____ coordinates into world coordinates.
 - and translation of the orthographic transformation) b) What will px, py be after perspective division?

566. Project point [3-2-21] onto the plane n=-1.

a) What will px, py, pw be after the perspective transformation is applied? (before the scaling

- 567. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 568. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 569. The projection transformation transforms eye coordinates into _____ coordinates.
- 570. Given a camera position of [4 0 -1], a gaze vector of [-3 -4 4], and an up vector of [1 2 -5], what is the resulting camera transformation matrix?
- 571. Given a camera position of [-2 4 4], a gaze vector of [-3 -1 2], and an up vector of [1 4 2], what is the resulting camera transformation matrix?
- 572. Given a camera position of [-5 4 0], a gaze vector of [-5 2 -2], and an up vector of [-1 4 2], what is the resulting camera transformation matrix?
- 573. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 574. Create a matrix to transform a paralleliped defined by t=2, b=-2, r=-2, l=-3, n=-1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 575. The viewport transformation transforms _____ space into screen space.
- 576. The projection transformation transforms _____ coordinates into clip coordinates.
- 577. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 578. The viewport transformation transforms 2d space into _____ space.
- 579. Project point [1 401] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 580. Create a matrix to transform a paralleliped defined by t=-4, b=4, r=-2, l=1, n=3, and f=2 into the canonical view volume (an orthographic projection matrix).
- 581. Project point $[-5 -4 \ 0 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 582. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=2, l=4, n=-3, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 583. Given a camera position of [1 -2 2], a gaze vector of [-3 4 -4], and an up vector of [-3 2 4], what is the resulting camera transformation matrix?
- 584. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.

- 585. Project point [0-531] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 586. Create a matrix to transform a paralleliped defined by t=2, b=-4, r=2, l=0, n=3, and f=4 into the canonical view volume (an orthographic projection matrix).
- 587. Create a matrix to transform a paralleliped defined by t=1, b=0, r=4, l=2, n=0, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 588. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 589. The _____ transformation transforms 2d space into screen space.
- 590. Project point [2-2-21] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 591. Project point [2-1-41] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 592. Given a camera position of [1 0 4], a gaze vector of [-1 -1 2], and an up vector of [0 -4 -5], what is the resulting camera transformation matrix?
- 593. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 594. The _____ transformation transforms world space into ____ space.
- 595. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 596. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 597. Given a camera position of [1-51], a gaze vector of [-53-1], and an up vector of [2-12], what is the resulting camera transformation matrix?
- 598. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 599. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 600. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 601. Project point $[-1 \ 0 \ -5 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 602. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 603. The model transformation transforms object space into _____ space.
- 604. Project point $[-4 3 4 \ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 605. Given a camera position of [0 -2 4], a gaze vector of [-3 2 -1], and an up vector of [2 -5 4], what is the resulting camera transformation matrix?
- 606. Create a matrix to transform a paralleliped defined by t=-4, b=-3, r=-3, l=-2, n=-5, and f=1 into the canonical view volume (an orthographic projection matrix).
- 607. Given a camera position of [4-31], a gaze vector of [-121], and an up vector of [-51-1], what is the resulting camera transformation matrix?
- 608. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 609. Project point [3 2 4 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 610. Create a matrix to transform a paralleliped defined by t=-4, b=0, r=2, l=-3, n=4, and f=3 into the canonical view volume (an orthographic projection matrix).
- 611. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 612. The model transformation transforms object space into _____ space.
- 613. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 614. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 615. Project point $[-5 -1 -4 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 616. Given a camera position of [0 0 -4], a gaze vector of [-3 2 -1], and an up vector of [0 -3 2], what is the resulting camera transformation matrix?
- 617. Create a matrix to transform a paralleliped defined by t=4, b=0, r=3, l=-5, n=4, and f=3 into the canonical view volume (an orthographic projection matrix).
- 618. Create a matrix to transform a paralleliped defined by t=-3, b=-4, r=-4, l=-2, n=-1, and f=-5 into the canonical view volume (an orthographic projection matrix).

- 619. Given a camera position of [0 3 -4], a gaze vector of [4 1 4], and an up vector of [-3 3 -4], what is the resulting camera transformation matrix?
- 620. The view transformation transforms world space into _____ space.
- 621. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 622. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 623. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 624. Project point [4 2 2 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 625. Create a matrix to transform a paralleliped defined by t=-3, b=4, r=-2, l=-5, n=3, and f=4 into the canonical view volume (an orthographic projection matrix).
- 626. Perspective division transforms _____ coordinates into 2d coordinates.
- 627. Create a matrix to transform a paralleliped defined by t=-4, b=-1, r=3, l=0, n=2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 628. The _____ transformation transforms ____ space into world space.
- 629. Create a matrix to transform a paralleliped defined by t=-5, b=0, r=-4, l=-5, n=2, and f=3 into the canonical view volume (an orthographic projection matrix).
- 630. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 631. The _____ transformation transforms ____ space into world space.
- 632. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 633. Create a matrix to transform a paralleliped defined by t=-2, b=-5, r=-3, l=2, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 634. The view transformation transforms world coordinates into _____ coordinates.
- 635. Create a matrix to transform a paralleliped defined by t=-2, b=0, r=-1, l=-5, n=-1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 636. Given a camera position of [1 -2 0], a gaze vector of [-2 -1 3], and an up vector of [2 -3 4], what is the resulting camera transformation matrix?
- 637. Given a camera position of [0-5-3], a gaze vector of [1-2-2], and an up vector of [10-4], what is the resulting camera transformation matrix?
- 638. The model transformation transforms object space into _____ space.

- 639. Perspective division transforms clip space into _____ space.
- 640. Project point $[-2 -5 \ 4 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 641. The model transformation transforms model space into _____ space.
- 642. Project point [0-1-21] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 643. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 644. Create a matrix to transform a paralleliped defined by t=1, b=2, r=-1, l=-2, n=3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 645. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 646. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 647. Given a camera position of [0 0 0], a gaze vector of [2 -3 -3], and an up vector of [-1 -1 4], what is the resulting camera transformation matrix?
- 648. Create a matrix to transform a paralleliped defined by t=1, b=-3, r=1, l=-1, n=-5, and f=1 into the canonical view volume (an orthographic projection matrix).
- 649. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=2, l=0, n=-3, and f=3 into the canonical view volume (an orthographic projection matrix).
- 650. Create a matrix to transform a paralleliped defined by t=2, b=-4, r=1, l=2, n=3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 651. Given a camera position of [1-13], a gaze vector of [-14-3], and an up vector of [044], what is the resulting camera transformation matrix?
- 652. Create a matrix to transform a paralleliped defined by t=-2, b=1, r=2, l=-5, n=1, and f=3 into the canonical view volume (an orthographic projection matrix).
- 653. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 654. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 655. The _____ transformation transforms ____ coordinates into world coordinates.
- 656. Create a matrix to transform a paralleliped defined by t=-3, b=-1, r=-3, l=3, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix).

- 657. Project point [-4 1 1 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 658. Project point [-1 -1 -4 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 659. Create a matrix to transform a paralleliped defined by t=-4, b=1, r=4, l=1, n=-5, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 660. The _____ transformation transforms object space into world space.
- 661. The _____ transformation transforms 2d coordinates into screen coordinates.
- 662. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=-4, l=-2, n=3, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 663. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 664. Given a camera position of [-5 -5 -1], a gaze vector of [-5 0 -4], and an up vector of [2 3 -3], what is the resulting camera transformation matrix?
- 665. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 666. Project point [-1 -4 3 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 667. Perspective division transforms _____ space into 2d space.
- 668. Given a camera position of [4-40], a gaze vector of [-14-5], and an up vector of [223], what is the resulting camera transformation matrix?
- 669. Create a matrix to transform a paralleliped defined by t=-2, b=-5, r=-2, l=-1, n=-4, and f=1 into the canonical view volume (an orthographic projection matrix).
- 670. The projection transformation transforms _____ space into the canonical view volume.
- 671. Create a matrix to transform a paralleliped defined by t=-4, b=-5, r=-2, l=2, n=-3, and f=3 into the canonical view volume (an orthographic projection matrix).
- 672. Given a camera position of [-4 1 1], a gaze vector of [0-3-1], and an up vector of [-4-2-4], what is the resulting camera transformation matrix?
- 673. Project point [-3 2 0 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 674. Create a matrix to transform a paralleliped defined by t=-3, b=-4, r=3, l=-2, n=3, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 675. The _____ transformation transforms clip space into 2d space.
- 676. Project point [4-2-11] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 677. Project point [-3 2 -4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 678. The view transformation transforms world coordinates into _____ coordinates.
- 679. Given a camera position of [3 -1 -5], a gaze vector of [1 -4 0], and an up vector of [-4 2 4], what is the resulting camera transformation matrix?
- 680. Create a matrix to transform a paralleliped defined by t=-3, b=-5, r=2, l=1, n=1, and f=0 into the canonical view volume (an orthographic projection matrix).
- 681. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 682. Create a matrix to transform a paralleliped defined by t=-4, b=-3, r=3, l=2, n=2, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 683. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 684. Project point $[2\ 4\ 2\ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 685. Create a matrix to transform a paralleliped defined by t=-1, b=-4, r=-3, l=-2, n=3, and f=2 into the canonical view volume (an orthographic projection matrix).
- 686. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 687. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 688. Create a matrix to transform a paralleliped defined by t=-3, b=-1, r=3, l=-2, n=2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 689. Given a camera position of [-4 -2 3], a gaze vector of [3 -5 3], and an up vector of [-1 3 3], what is the resulting camera transformation matrix?

- 690. Project point [4 2 -3 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 691. Create a matrix to transform a paralleliped defined by t=1, b=2, r=-5, l=-4, n=-1, and f=0 into the canonical view volume (an orthographic projection matrix).
- 692. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 693. Project point [-5 -5 -5 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 694. The _____ transformation transforms camera coordinates into clip coordinates.
- 695. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 696. Create a matrix to transform a paralleliped defined by t=0, b=-5, r=3, l=-1, n=-5, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 697. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 698. Create a matrix to transform a paralleliped defined by t=-5, b=4, r=0, l=2, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 699. Create a matrix to transform a paralleliped defined by t=-4, b=-5, r=-1, l=-3, n=1, and f=2 into the canonical view volume (an orthographic projection matrix).
- 700. Create a matrix to transform a paralleliped defined by t=-3, b=2, r=-3, l=1, n=-5, and f=3 into the canonical view volume (an orthographic projection matrix).
- 701. Create a matrix to transform a paralleliped defined by t=1, b=3, r=1, l=0, n=-4, and f=0 into the canonical view volume (an orthographic projection matrix).
- 702. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 703. Given a camera position of [-3 -3 2], a gaze vector of [-5 -1 2], and an up vector of [3 -4 -4], what is the resulting camera transformation matrix?
- 704. The projection transformation transforms eye space into _____ space.
- 705. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 706. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.

- 707. Create a matrix to transform a paralleliped defined by t=3, b=-5, r=3, l=-4, n=-4, and f=4 into the canonical view volume (an orthographic projection matrix).
- 708. Create a matrix to transform a paralleliped defined by t=-4, b=-5, r=-2, l=2, n=2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 709. Project point [3 4 1 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 710. Project point [0-4-11] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 711. Project point $[-2\ 0\ -4\ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 712. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 713. Project point $[0\ 1\ -4\ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 714. The _____ transformation transforms eye space into clip space.
- 715. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 716. Project point [-5 1 4 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 717. Project point [-2 1 -2 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 718. Create a matrix to transform a paralleliped defined by t=3, b=1, r=-3, l=0, n=2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 719. Project point [-3 0 -1 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 720. The _____ transformation transforms object coordinates into world coordinates.

- 721. Given a camera position of [2 3 -1], a gaze vector of [2 3 -2], and an up vector of [-5 -2 -1], what is the resulting camera transformation matrix?
- 722. Given a camera position of [1 -2 -2], a gaze vector of [-3 2 4], and an up vector of [-5 -3 1], what is the resulting camera transformation matrix?
- 723. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 724. Create a matrix to transform a paralleliped defined by t=4, b=3, r=0, l=-4, n=-3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 725. Project point [-5 0 0 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 726. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 727. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 728. Given a camera position of [-2 -3 1], a gaze vector of [2 -4 2], and an up vector of [-5 3 -2], what is the resulting camera transformation matrix?
- 729. Project point $[-5 4 4 \ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 730. Given a camera position of [4 -2 3], a gaze vector of [4 0 -2], and an up vector of [-4 2 -3], what is the resulting camera transformation matrix?
- 731. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 732. Project point [-1 1 1 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 733. The _____ transformation transforms world space into eye space.
- 734. Given a camera position of [-5 0 -1], a gaze vector of [3 0 0], and an up vector of [-4 3 3], what is the resulting camera transformation matrix?
- 735. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 736. The view transformation transforms world space into _____ space.
- 737. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.

- 738. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 739. The _____ transformation transforms 2d coordinates into screen coordinates.
- 740. Create a matrix to transform a paralleliped defined by t=4, b=1, r=1, l=-3, n=2, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 741. Create a matrix to transform a paralleliped defined by t=-2, b=0, r=4, l=-2, n=1, and f=4 into the canonical view volume (an orthographic projection matrix).
- 742. The projection transformation transforms _____ space into clip space.
- 743. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 744. The camera transformation transforms world coordinates into _____ coordinates.
- 745. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 746. The _____ transformation transforms ____ space into world space.
- 747. Project point $\begin{bmatrix} 3 & 1 & -5 & 1 \end{bmatrix}$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 748. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 749. Project point $\begin{bmatrix} 1 1 3 \end{bmatrix}$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 750. Project point [20 41] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 751. Project point $[2\ 0\ -1\ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 752. Given a camera position of [-5 -4 -3], a gaze vector of [-2 -5 -2], and an up vector of [1 -2 0], what is the resulting camera transformation matrix?
- 753. Create a matrix to transform a paralleliped defined by t=2, b=4, r=2, l=-2, n=3, and f=-1 into the canonical view volume (an orthographic projection matrix).

- 754. Project point [0-2-41] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 755. The projection transformation transforms camera space into _____ space.
- 756. Create a matrix to transform a paralleliped defined by t=-2, b=4, r=-2, l=1, n=4, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 757. Project point [-4 -2 3 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 758. Project point $[-3 \ 0 \ 2 \ 1]$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 759. Create a matrix to transform a paralleliped defined by t=-5, b=-3, r=-4, l=-2, n=0, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 760. Create a matrix to transform a paralleliped defined by t=-3, b=3, r=4, l=-1, n=-3, and f=3 into the canonical view volume (an orthographic projection matrix).
- 761. Given a camera position of [4-4-3], a gaze vector of [-5-5-4], and an up vector of [1-1-4], what is the resulting camera transformation matrix?
- 762. Perspective division transforms _____ space into 2d space.
- 763. Create a matrix to transform a paralleliped defined by t=2, b=-3, r=3, l=4, n=-2, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 764. Given a camera position of [-5 2 3], a gaze vector of [2 2 -1], and an up vector of [0 1 -2], what is the resulting camera transformation matrix?
- 765. The projection transformation transforms camera coordinates into _____ coordinates.
- 766. Given a camera position of [-4 4 -5], a gaze vector of [0 -1 3], and an up vector of [-5 0 -1], what is the resulting camera transformation matrix?
- 767. Given a camera position of [2 -3 2], a gaze vector of [-5 -4 0], and an up vector of [-1 0 3], what is the resulting camera transformation matrix?
- 768. Project point $[-5 4 1 \ 1]$ onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 769. Project point [-4 -1 4 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 770. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 771. Given a camera position of [-2 -4 0], a gaze vector of [1 1 -1], and an up vector of [2 2 2], what is the resulting camera transformation matrix?
- 772. Project point [3 -4 0 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 773. Project point $\begin{bmatrix} -4 & 3 & 1 & 1 \end{bmatrix}$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 774. Given a camera position of [-1 -3 -1], a gaze vector of [0 -4 1], and an up vector of [-3 4 4], what is the resulting camera transformation matrix?
- 775. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 776. Project point [-3 -3 -5 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 777. The view transformation transforms world coordinates into _____ coordinates.
- 778. Project point $\begin{bmatrix} 3 & 0 & 3 & 1 \end{bmatrix}$ onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 779. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 780. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 781. Create a matrix to transform a paralleliped defined by t=4, b=-5, r=3, l=-3, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 782. Create a matrix to transform a paralleliped defined by t=0, b=-1, r=3, l=1, n=-2, and f=2 into the canonical view volume (an orthographic projection matrix).
- 783. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 784. Create a matrix to transform a paralleliped defined by t=4, b=-4, r=4, l=-2, n=1, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 785. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.

- 786. Project point [4 3 -3 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 787. Perspective division transforms the canonical view volume into _____ space.
- 788. The projection transformation transforms _____ space into clip space.
- 789. The view transformation transforms world coordinates into _____ coordinates.
- 790. Project point [-3 -3 -4 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 791. The view transformation transforms world coordinates into _____ coordinates.
- 792. Create a matrix to transform a paralleliped defined by t=2, b=4, r=-5, l=-2, n=4, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 793. Create a matrix to transform a paralleliped defined by t=-1, b=1, r=3, l=4, n=2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 794. Given a camera position of [-2 4 0], a gaze vector of [-4 3 4], and an up vector of [-4 1 -4], what is the resulting camera transformation matrix?
- 795. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 796. The _____ transformation transforms eye space into the canonical view volume.
- 797. Project point $\begin{bmatrix} 4 & 2 & 1 & 1 \end{bmatrix}$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 798. Given a camera position of [-4 0 -3], a gaze vector of [2 2 2], and an up vector of [0 1 -1], what is the resulting camera transformation matrix?
- 799. The _____ transformation transforms world space into _____ space.
- 800. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 801. The projection transformation transforms _____ coordinates into the canonical view volume.
- 802. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 803. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.

- 804. Create a matrix to transform a paralleliped defined by t=3, b=-4, r=-5, l=2, n=-3, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 805. Create a matrix to transform a paralleliped defined by t=3, b=-3, r=3, l=-2, n=-2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 806. The _____ transformation transforms object space into world space.
- 807. Project point [4-5-11] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 808. Given a camera position of [4 2 2], a gaze vector of [-3 3 -5], and an up vector of [2 3 1], what is the resulting camera transformation matrix?
- 809. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 810. Perspective division transforms clip coordinates into _____ coordinates.
- 811. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 812. Given a camera position of [-5 2 2], a gaze vector of [-3 2 -5], and an up vector of [0 -2 -5], what is the resulting camera transformation matrix?
- 813. Given a camera position of [-5 3 -4], a gaze vector of [3 0 0], and an up vector of [-4 3 0], what is the resulting camera transformation matrix?
- 814. The viewport transformation transforms _____ space into screen space.
- 815. Project point [-3 -3 2 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 816. Project point $\begin{bmatrix} 2 & 0 & 2 & 1 \end{bmatrix}$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 817. The model transformation transforms model space into _____ space.
- 818. Create a matrix to transform a paralleliped defined by t=0, b=1, r=-1, l=4, n=3, and f=2 into the canonical view volume (an orthographic projection matrix).
- 819. Create a matrix to transform a paralleliped defined by t=-3, b=0, r=3, l=2, n=-2, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 820. Create a matrix to transform a paralleliped defined by t=-4, b=1, r=0, l=-1, n=0, and f=-1 into the canonical view volume (an orthographic projection matrix).

- 821. Project point [-1 -4 4 1] onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 822. Create a matrix to transform a paralleliped defined by t=-2, b=1, r=-2, l=0, n=2, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 823. Create a matrix to transform a paralleliped defined by t=2, b=-5, r=1, l=-2, n=-2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 824. The _____ transformation transforms ____ space into world space.
- 825. Project point [-3 -3 -5 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 826. Create a matrix to transform a paralleliped defined by t=3, b=-3, r=-2, l=1, n=4, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 827. Given a camera position of [0 1 2], a gaze vector of [0 -3 -5], and an up vector of [-2 3 4], what is the resulting camera transformation matrix?
- 828. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 829. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 830. Create a matrix to transform a paralleliped defined by t=3, b=0, r=-3, l=2, n=-5, and f=0 into the canonical view volume (an orthographic projection matrix).
- 831. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 832. Create a matrix to transform a paralleliped defined by t=-2, b=3, r=4, l=3, n=4, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 833. Create a matrix to transform a paralleliped defined by t=0, b=-4, r=-4, l=-5, n=-3, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 834. Given a camera position of [-2 -3 1], a gaze vector of [-5 2 2], and an up vector of [1 -1 -5], what is the resulting camera transformation matrix?
- 835. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 836. The _____ transformation transforms 2d space into screen space.
- 837. Project point $[0\ 2\ -3\ 1]$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 838. Create a matrix to transform a paralleliped defined by t=1, b=0, r=-5, l=-2, n=-3, and f=0 into the canonical view volume (an orthographic projection matrix).
- 839. Create a matrix to transform a paralleliped defined by t=4, b=-5, r=3, l=-4, n=-3, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 840. The _____ transformation transforms camera coordinates into clip coordinates.
- 841. Given a camera position of [1 1 3], a gaze vector of [-3 -1 -5], and an up vector of [4 4 -2], what is the resulting camera transformation matrix?
- 842. Create a matrix to transform a paralleliped defined by t=3, b=2, r=-5, l=-1, n=-1, and f=4 into the canonical view volume (an orthographic projection matrix).
- 843. The model transformation transforms model space into _____ space.
- 844. Perspective division transforms _____ coordinates into 2d coordinates.
- 845. Create a matrix to transform a paralleliped defined by t=-2, b=0, r=-3, l=4, n=-3, and f=0 into the canonical view volume (an orthographic projection matrix).
- 846. The model transformation transforms _____ coordinates into world coordinates.
- 847. Project point [-3 -4 3 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 848. The view transformation transforms _____ space into eye space.
- 849. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 850. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 851. The _____ transformation transforms 2d space into screen space.
- 852. Project point [3 3 1 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 853. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 854. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 855. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 856. The _____ transformation transforms camera space into clip space.

- 857. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 858. Create a matrix to transform a paralleliped defined by t=0, b=-5, r=-2, l=-5, n=-3, and f=2 into the canonical view volume (an orthographic projection matrix).
- 859. The projection transformation transforms _____ coordinates into the canonical view volume.
- 860. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 861. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 862. Given a camera position of [4 3 4], a gaze vector of [2 -3 -2], and an up vector of [1 -5 2], what is the resulting camera transformation matrix?
- 863. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 864. The projection transformation transforms _____ coordinates into clip coordinates.
- 865. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 866. Given a camera position of [-3 -2 1], a gaze vector of [0 3 1], and an up vector of [-3 3 0], what is the resulting camera transformation matrix?
- 867. Perspective division transforms _____ coordinates into 2d coordinates.
- 868. The view transformation transforms world coordinates into _____ coordinates.
- 869. Project point [2 4 -1 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 870. Project point $[2\ 3\ 0\ 1]$ onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 871. The view transformation transforms _____ space into camera space.
- 872. Given a camera position of [1-14], a gaze vector of [-5-33], and an up vector of [-5-5-2], what is the resulting camera transformation matrix?
- 873. Create a matrix to transform a paralleliped defined by t=0, b=-2, r=-5, l=0, n=2, and f=1 into the canonical view volume (an orthographic projection matrix).
- 874. Create a matrix to transform a paralleliped defined by t=0, b=-4, r=-2, l=4, n=2, and f=-2 into the canonical view volume (an orthographic projection matrix).

- 875. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 876. Project point $[-1\ 3\ -5\ 1]$ onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 877. Project point $\begin{bmatrix} -2 & 2 & -5 & 1 \end{bmatrix}$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 878. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors all are in the same projection *direction*.
- 879. Create a matrix to transform a paralleliped defined by t=-1, b=4, r=3, l=4, n=4, and f=-2 into the canonical view volume (an orthographic projection matrix).
- 880. Project point [-3 4 3 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 881. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 882. Create a matrix to transform a paralleliped defined by t=-3, b=1, r=-5, l=1, n=1, and f=0 into the canonical view volume (an orthographic projection matrix).
- 883. Project point [-3 -2 4 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 884. Project point [44 11] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 885. Project point $[-2 -5 \ 2 \ 1]$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 886. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 887. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.

- 888. Project point $[-1 -5 \ 4 \ 1]$ onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 889. The _____ transformation transforms world coordinates into camera coordinates.
- 890. Given a camera position of [-2 -2 4], a gaze vector of [-1 2 -4], and an up vector of [-2 1 -1], what is the resulting camera transformation matrix?
- 891. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 892. Given a camera position of [0 1 -2], a gaze vector of [-2 4 -4], and an up vector of [-5 4 -2], what is the resulting camera transformation matrix?
- 893. Create a matrix to transform a paralleliped defined by t=4, b=-2, r=-4, l=-3, n=2, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 894. Given a camera position of [-5 -3 -3], a gaze vector of [4 4 1], and an up vector of [1 3 4], what is the resulting camera transformation matrix?
- 895. The viewport transformation transforms 2d space into _____ space.
- 896. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 897. Project point [3-341] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 898. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 899. Given a camera position of [-2 -5 0], a gaze vector of [1 -2 -1], and an up vector of [4 1 -3], what is the resulting camera transformation matrix?
- 900. The _____ transformation transforms clip coordinates into 2d coordinates.
- 901. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 902. Project point [4 3 -4 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 903. Create a matrix to transform a paralleliped defined by t=-3, b=-5, r=5, l=4, n=1, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 904. Given a camera position of [-1 -5 -1], a gaze vector of [2 2 4], and an up vector of [-3 -1 -3], what is the resulting camera transformation matrix?

- 905. Given a camera position of [-1 -1 3], a gaze vector of [-2 -2 3], and an up vector of [2 3 1], what is the resulting camera transformation matrix?
- 906. The viewport transformation transforms _____ coordinates into screen coordinates.
- 907. The projection transformation transforms eye space into _____ space.
- 908. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 909. Given a camera position of [-5 1 3], a gaze vector of [-5 1 2], and an up vector of [3 1 4], what is the resulting camera transformation matrix?
- 910. Create a matrix to transform a paralleliped defined by t=1, b=-5, r=-3, l=-5, n=0, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 911. Create a matrix to transform a paralleliped defined by t=3, b=2, r=-2, l=3, n=-1, and f=1 into the canonical view volume (an orthographic projection matrix).
- 912. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 913. Project point [-2 1 3 1] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 914. Given a camera position of [-3 3 -3], a gaze vector of [-4 -5 -5], and an up vector of [0 4 1], what is the resulting camera transformation matrix?
- 915. The _____ transformation transforms 2d coordinates into screen coordinates.
- 916. Project point $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 917. Create a matrix to transform a paralleliped defined by t=-3, b=3, r=1, l=0, n=-2, and f=4 into the canonical view volume (an orthographic projection matrix).
- 918. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 919. Given a camera position of [-3 -3 -1], a gaze vector of [-3 0 -5], and an up vector of [-4 2 2], what is the resulting camera transformation matrix?
- 920. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 921. Create a matrix to transform a paralleliped defined by t=-1, b=-2, r=-2, l=-1, n=1, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 922. Create a matrix to transform a paralleliped defined by t=-3, b=3, r=-2, l=-5, n=3, and f=2 into the canonical view volume (an orthographic projection matrix).

- 923. Project point $\begin{bmatrix} -4 & -2 & 3 & 1 \end{bmatrix}$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 924. Create a matrix to transform a paralleliped defined by t=4, b=-5, r=0, l=-2, n=2, and f=0 into the canonical view volume (an orthographic projection matrix).
- 925. Project point [-4 0 3 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 926. Create a matrix to transform a paralleliped defined by t=-5, b=2, r=2, l=0, n=0, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 927. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 928. Project point [2 1 -3 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 929. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Looks more natural.
- 930. The viewport transformation transforms _____ space into screen space.
- 931. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 932. Create a matrix to transform a paralleliped defined by t=-4, b=3, r=1, l=0, n=-2, and f=3 into the canonical view volume (an orthographic projection matrix).
- 933. The _____ transformation transforms clip coordinates into 2d coordinates.
- 934. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 935. Perspective division transforms _____ space into 2d space.
- 936. Project point [-5 -2 1 1] onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 937. Create a matrix to transform a paralleliped defined by t=3, b=-1, r=-3, l=3, n=-1, and f=-3 into the canonical view volume (an orthographic projection matrix).
- 938. Project point $[0\ 0\ -5\ 1]$ onto the plane n=3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?

- 939. Create a matrix to transform a paralleliped defined by t=-2, b=-3, r=-4, l=-5, n=-5, and f=1 into the canonical view volume (an orthographic projection matrix).
- 940. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Useful for architectural drawings.
- 941. The viewport transformation transforms 2d coordinates into _____ coordinates.
- 942. The viewport transformation transforms 2d space into _____ space.
- 943. Given a camera position of [4 3 1], a gaze vector of [-1 -4 -2], and an up vector of [3 1 1], what is the resulting camera transformation matrix?
- 944. The _____ transformation transforms 2d coordinates into screen coordinates.
- 945. The viewport transformation transforms _____ coordinates into screen coordinates.
- 946. Project point [-3 0 -1 1] onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 947. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 948. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 949. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.
- 950. Create a matrix to transform a paralleliped defined by t=0, b=1, r=-3, l=-4, n=1, and f=-4 into the canonical view volume (an orthographic projection matrix).
- 951. Project point $\begin{bmatrix} -4 & 2 & 3 & 1 \end{bmatrix}$ onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 952. Create a matrix to transform a paralleliped defined by t=-2, b=0, r=4, l=1, n=-3, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 953. Given a camera position of [3 2 -4], a gaze vector of [-1 -1 2], and an up vector of [0 -1 -3], what is the resulting camera transformation matrix?
- 954. Project point [0 -3 -5 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 955. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.

- 956. Create a matrix to transform a paralleliped defined by t=-3, b=-2, r=4, l=-3, n=-2, and f=-5 into the canonical view volume (an orthographic projection matrix).
- 957. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 958. Given a camera position of [4 1 1], a gaze vector of [0 4 -1], and an up vector of [3 -3 0], what is the resulting camera transformation matrix?
- 959. Create a matrix to transform a paralleliped defined by t=-5, b=1, r=-2, l=0, n=-2, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 960. Given a camera position of [1 3 -3], a gaze vector of [0 -4 -2], and an up vector of [-5 0 -4], what is the resulting camera transformation matrix?
- 961. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a frustum.
- 962. Given a camera position of [3 2 -1], a gaze vector of [4 -2 4], and an up vector of [3 0 -4], what is the resulting camera transformation matrix?
- 963. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Further objects are smaller.
- 964. Given a camera position of [4 -1 4], a gaze vector of [-1 -3 1], and an up vector of [-4 -2 4], what is the resulting camera transformation matrix?
- 965. Project point [1 4 3 1] onto the plane n=1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 966. Given a camera position of [-4 2 1], a gaze vector of [1 2 -1], and an up vector of [-2 1 3], what is the resulting camera transformation matrix?
- 967. Given a camera position of [2 0 4], a gaze vector of [3 2 3], and an up vector of [2 -5 -2], what is the resulting camera transformation matrix?
- 968. Create a matrix to transform a paralleliped defined by t=4, b=3, r=4, l=-5, n=-3, and f=-1 into the canonical view volume (an orthographic projection matrix).
- 969. Project point [-4 -5 4 1] onto the plane n=4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 970. Given a camera position of [2 1 4], a gaze vector of [4 0 2], and an up vector of [2 2 4], what is the resulting camera transformation matrix?
- 971. Given a camera position of [-2 -1 -3], a gaze vector of [-3 3 3], and an up vector of [0 1 3], what is the resulting camera transformation matrix?
- 972. Create a matrix to transform a paralleliped defined by t=-4, b=-2, r=-5, l=2, n=-1, and f=-2 into the canonical view volume (an orthographic projection matrix).

- 973. The model transformation transforms model space into _____ space.
- 974. Create a matrix to transform a paralleliped defined by t=5, b=4, r=4, l=3, n=-5, and f=0 into the canonical view volume (an orthographic projection matrix).
- 975. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 976. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Parallel lines are preserved.
- 977. Given a camera position of [0-3-3], a gaze vector of [-1-5-2], and an up vector of [-5-10], what is the resulting camera transformation matrix?
- 978. The _____ transformation transforms 2d coordinates into screen coordinates.
- 979. Create a matrix to transform a paralleliped defined by t=-2, b=-1, r=-5, l=-1, n=4, and f=1 into the canonical view volume (an orthographic projection matrix).
- 980. Project point $[0\ 0\ -5\ 1]$ onto the plane n=-5.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 981. Project point [-3 -4 0 1] onto the plane n=2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 982. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Projectors pass through a *viewpoint*.
- 983. Project point $[-5 \ 4 \ 2 \ 1]$ onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 984. Given a camera position of [-2 -4 2], a gaze vector of [3 -5 2], and an up vector of [-2 -3 -2], what is the resulting camera transformation matrix?
- 985. Given a camera position of [-4 -5 3], a gaze vector of [0 1 4], and an up vector of [-5 -5 -4], what is the resulting camera transformation matrix?
- 986. Project point $\begin{bmatrix} 1 1 4 \end{bmatrix}$ onto the plane n=-3.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 987. The _____ transformation transforms 2d coordinates into screen coordinates.
- 988. For which kind of projection is the following statement true? Answer 'p' for perspective or 'o' for orthographic. Viewing volume is shaped like a parallelipiped.

- 989. Project point [1-4-11] onto the plane n=-1.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 990. Create a matrix to transform a paralleliped defined by t=-1, b=4, r=2, l=-1, n=3, and f=4 into the canonical view volume (an orthographic projection matrix).
- 991. Create a matrix to transform a paralleliped defined by t=-5, b=4, r=-1, l=-2, n=4, and f=2 into the canonical view volume (an orthographic projection matrix).
- 992. Given a camera position of [4-2-4], a gaze vector of [-3-4-2], and an up vector of [4-2-3], what is the resulting camera transformation matrix?
- 993. Perspective division transforms _____ space into 2d space.
- 994. Project point [-4 2 -2 1] onto the plane n=-2.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 995. Project point [1 4 1 1] onto the plane n=-4.
 - a) What will px, py, pw be after the perspective transformation is applied? (before the scaling and translation of the orthographic transformation)
 - b) What will px, py be after perspective division?
- 996. Given a camera position of [-2 1 0], a gaze vector of [0 -2 -2], and an up vector of [0 4 -2], what is the resulting camera transformation matrix?
- 997. Given a camera position of [-2 -1 4], a gaze vector of [2 -4 1], and an up vector of [3 -1 -5], what is the resulting camera transformation matrix?
- 998. Given a camera position of [-1 -5 2], a gaze vector of [1 -1 -3], and an up vector of [1 0 1], what is the resulting camera transformation matrix?
- 999. The view transformation transforms _____ space into eye space.
- 1000. Given a camera position of [-5 4 -4], a gaze vector of [-3 0 -2], and an up vector of [1 3 3], what is the resulting camera transformation matrix?