Lab 13 – Part A

How Does a Large Language Model (LLM) Work?

Overview

Tokenizer

Converts words into tokens (numeric IDs).

Embedding Layer

Maps tokens to dense vectors representing meaning.

Tokenizer

Converts words into tokens (numeric IDs)

Embedding Layer

Maps tokens to dense vectors representing meaning

Transformer (Attention Layers)

• Self-Attention:

Helps the model focus on relevant words (e.g, resolving pronouns)

• Multi-Head Attention:

Multiple perspectives on the input simultaneously

Output Probabilities

Predicts the next word/token based on learned probabilities

Final Text Output

Output Probabilitoient

Transformer Architecture (Core)

- **Self-Attention:** Helps the model focus on relevant words (e.g., resolving pronouns).
- Multi-Head Attention: Multiple perspectives on the input simultaneously.
- Feedforward Layers: Adds depth and learning power.
- Stacked Layers: More layers = deeper understanding.

Tokenizer Converts words into tokens (numeric IDs) **Embedding Layer** Maps tokens to dense vectors representing meaning Transformer (Attention Layers) Self-Attention: Helps the model focus on relevant words (e.g., resolving pronouns) Multi-Head Attention: Multiple perspectives on the input simultaneously **Output Probabilities** Predicts the next word/token based on learned probabilities **Final Text Output** Output Probabilitoient

Output Layer

Predicts the next word/token based on learned probabilities.

Training Principle

Learns by predicting the next word in a sentence—adjusts weights using massive datasets (unsupervised learning).

Tokenizer

Converts words into tokens (numeric IDs)

Embedding Layer

Maps tokens to dense vectors representing meaning

Transformer (Attention Layers)

- Self-Attention:
 - Helps the model focus on relevant words (e.g, resolving pronouns)
- Multi-Head Attention:
 Multiple perspectives on the input simultaneously

Output Probabilities

Predicts the next word/token based on learned probabilities

Final Text Output

Output Probabilitoient

Important Concepts

- Context Window: The amount of input text LLM can "remember."
- **Temperature & Top-p:** Control randomness and creativity of output.