EECS240 - Spring 2010

Advanced Analog Integrated Circuits Lecture 1: Introduction

Elad Alon Dept. of EECS

Administrative

Course web page:

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee240 sp10

Webcast link:

http://webcast.berkeley.edu

- Office hours
 - 519 Cory Hall
 - Tues. and Thurs. 11am-12pm (right after class)
- All announcements made through web page
 - · Check back often

EECS240 Lecture 1

Course Focus

- Focus is on analog design
 - Typically: Specs → circuit topology → layout
- · Will learn spec-driven approach
 - · But will also look at where specs come from
- · Key point:
 - · Especially in analog, some things are much "easier" to do than others
 - · Sometimes (often) the right thing to do is change the specs

EECS240 Lecture 1

Lecture Notes

- · Based on material from me, Prof. Bernhard Boser, and Prof. Ali Niknejad
- · Primary source of material for the class
 - · No required text reference texts on next slide
- · Notes posted on the web at least 1 hour before lecture
 - · Will hand out limited # of hard copies in class

EECS240 Lecture 1

Course Goal

- Learn how to create systematic approaches to analog design
 - · Based on fundamental principles
 - · For a wide variety of applications
- · Will show specific design methodology example
 - OTA designs embedded in ADCs
- · And then move on to a more complex system

EECS240 Lecture 1

Reference Texts

- Analysis and Design of Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, 4th Ed., Wiley, 2001.
- Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000.
- The Design of CMOS Radio-Frequency Integrated Circuits, Thomas H. Lee, 2nd Ed., Cambridge University Press, 2003.
- Analog Integrated Circuit Design, D. Johns and K.Martin, Wiley, 1997.
- The Designers Guide to SPICE & SPECTRE, K. S. Kundert, Kluwer Academic Press, 1995.
- Operation and Modeling of the MOS Transistor, Y. Tsividis, McGraw-Hill, 2nd Edition, 1999.

EECS240

Grading

- Grading:
 - HW: 20%
 - · One HW roughly every two weeks
 - Essential for learning the class material
 - Need to setup HSPICE or equivalent simulator (SpectreRF, Eldo, or other favorite tool)
 - Project: 25%
 - Groups of 2 find a partner ahead of time
 - Midterm: 20%Final Exam: 35%

EECS240 Lecture 1 7

"Analog ICs in a Digital World?"

Digital circuitry: cost of Cost/function decreases by 29% each year 0.0001

30X in 10 years 0.00001

Analog circuitry: 1982 1985 1988 1991 1994 1997 2000 2003 2005 2009 20

- · Cost/function may not scale very well
- Common complaints about scaling analog:
 - Supply voltage is too low, device gain is low, horrible matching...
- "Analog will die everything will be digital!"
- · Who agrees?

EECS240 Lecture 1 10

Homework

- · Homework:
 - · Can discuss/work together
 - · But write-up must be individual
 - Drop in box outside Elad's office (519 Cory)
 - · Generally due 5pm on Thursdays
- No late submissions
 - Start early!

EECS240 Lecture 1 8

(Good) Digital Design Needs Analog Insights

- Can synthesize large blocks at "medium" frequencies in ASIC flow, but
 - · Need to know transistors to design the cells
 - Really need to know transistors to design memories
- Lots of analog issues to deal with when push digital performance, power, etc.
 - Charge sharing, interconnect parasitics, etc.
- Matching growing concern in advanced CMOS technologies
 - Especially in memories

EECS240 Lecture 1 11

Schedule Notes

• ISSCC Week: 2/8 - 2/12 (no lectures)

• Midterm: March 11 (tentative)

• Spring break: 3/22 - 3/26

• Project:

• Part 1 due Apr. 15

Part 2 due Apr. 27

• Part 3 due May 6 (tentative)

• Final: Wed., May 12, 11:30am-2:30pm

EECS240 Lecture 1 9

Another Example

 Look at interface between two digital chips

• Is received bit a "1" or a "0"?

 Analog circuits critical for receiving bits correctly

EECS240

Lecture 1

The More Fundamental Reason

- The "real" or "physical" world is analog
 - · Analog is required to interface to just about anything
 - Digital signals have analog characteristics too...
 - · In many applications, analog is in the critical path
- Examples:
 - · Wireline, optical communications
 - RF transceivers (receiver + transmitter)
 - Sensors and actuators (e.g., MEMS)

EECS240 Lecture 1

RF Receiver

- Why so many RF and analog building blocks?
- Why not just put the ADC right after the anténna?

EECS240 Lecture 1

Digital Versus Analog Design

- Abstraction in digital is Boolean logic (1's, 0's)
 - · Works because of noise margins
- · At a higher level, it's gates and registers (RTL)
- · Digital layout is often automated
- Abstraction in analog is the device model
 - (BSIM is a few thousand lines long)
- At a higher level, it's the (opamps) (filters) (comparators)
 - Abstraction depends on the problem you're solving
- · Analog layout is usually hand crafted

EECS240 Lecture 1

RF Transceiver Layout

Source: Mehta et al, "An 802.11g WLAN SoC", JSSC Dec. 2005

- Analog building blocks take up significant die area
 - Even in 0.18um...

EECS240

Lecture 1

"Analog" versus "RF"

- RF = "Analog with inductors"
- RF signal is usually narrowband (i.e., sinusoidal)
 - · Tuned circuit techniques used for signal
- · RF impedance levels are relatively low
 - · Can't make antenna impedance too high
- Analog impedances are high (low) for voltage (current) gain.
 - · Voltage/current gain versus power gain.
- "Mixed-signal" analog is often discrete time (sampled).

RF Shifting Toward Analog

- Classic RF uses inductors to tune the circuits
 - · Inductors are big would be nice to get rid of them
- With increasing f_T , moving towards wideband analog & feedback
 - · What's the penalty?

EECS240 Lecture 1

Syllabus

- · Devices (both passive and active):
 - . Models, simulation, layout, and matching
- · Electronic noise
- Basic support functions:
 - · Current sources, references, biasing
- Basic analog "gate": amplifier
 - Opamps, OTAs, feedback, settling time, commonmode feedback
- · Application driver: high-speed links
 - · Motivates additional building blocks
 - As well as why you care about certain specs
 - Data converters, comparators, offset cancellation, filters, sample & hold, oscillators, PLLs

EECS240 Lecture 1 22

Mixed-Signal Design

- Many building blocks involve analog and digital circuit co-design
 - PLLs, ADCs, etc.
- Sometimes hard to even distinguish between analog and digital
 - Is VCO analog, or digital?

EECS240 Lectur

EECS 240 versus 247

- EECS 240
 - · Transistor level building blocks
 - · Device and circuit fundamentals
 - A lot of the class at a low level of abstraction
 - SPICE
- EECS 247
 - Macro-models, behavioral simulation, large systems
 - · Signal processing fundamentals
 - · High level of abstraction
 - Matlab

20

EECS240 Lecture 1

23

Digitally-Assisted Analog

- In 90nm, one RF inductor (200μx 200μ) takes same area as a microprocessor!
 - Leverage digital processing to improve analog circuits
- · Good analog design doesn't go away though
 - . Need to find right partitioning to maximize the benefit

EECS240 Lecture 1 2

240 versus 242/142

- 142/242 mostly concerned with narrowband circuits operating at a "high" carrier frequency
 - Signals mostly look like sinusoids
 - Inductors ubiquitous
 - · Use of feedback is rare
- 240 focuses on more "wideband", generalpurpose analog and mixed-signal
 - · Signals are "arbitrary"
 - · Spend a lot of time worrying about capacitance
 - Feedback common

EECS240 Lecture 1 24

240 versus 231

- 231 concentrates on device physics
- 240: device physics abstracted to the extent possible

 - Device models from a "circuit designer's perspective"
 Treat transistor as black box described by complex equations
 - Equations relevant for biasing, nonlinear effects (output swing), and some charge storage effects
 Mostly outside design loop

 - → "small signal analysis"

EECS240 Lecture 1