523414:

Artificial Neural Networks (ANN) trimester 1/2561

Lecture 02:

Perceptron Learning

Institute of Engineering School of Computer Engineering Suranaree University of Technology

Single-Neuron Perceptron

Fig. Ref. NN Toolbox User's Guide Version 6

523414: ANN, CPE, SUT

Multi-Neuron Perceptron

Where

R = number of elements in input

S = number of neurons in layer

Fig. Ref. NN Toolbox User's Guide Version 6

Multi-Neuron Perceptron

พิจารณาเมตริกซ์น้ำหนักประสาท

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1R} \\ w_{21} & w_{22} & \cdots & w_{2R} \\ \vdots & \vdots & & \vdots \\ w_{S1} & w_{S2} & \cdots & w_{SR} \end{bmatrix}$$

เพื่อความสะดวกในบางครั้ง เราจะเขียนแยกให้อยู่ในรูปเมตริกซ์แถวที่ i ของ ${f W}$ คือ

$$_{i}\mathbf{w} = \left[\begin{array}{cccc} w_{i1} & w_{i2} & \cdots & w_{iR} \end{array} \right]$$

ดังนั้นสามารถเขียนเมตริกซ์น้ำหนักประสาท ${f W}$ ในรูปของเมตริกซ์แถว ${}_i{f w}$ ได้ดังนี้

$$\mathbf{W} = \begin{bmatrix} 1\mathbf{W} \\ 2\mathbf{W} \\ \vdots \\ S\mathbf{W} \end{bmatrix}$$

หรือ $a_{\mathbf{i}}$

Single - Neuron Perceptron: Example

รูปที่ 9.2: เพอร์เซ็พตรอนนิวรอนเดียวแบบ 2 อินพุต

รูปที่ 9.3: ตัวอย่างเส้นแบ่งพื้นที่ในกรณี $_1 {
m w} = [1 \ 1]$

$$y$$
 = hardlim (n) = hardlim $(\mathbf{Wp} + b)$
 = hardlim $(\mathbf{1Wp} + b)$
 = hardlim $(w_{11}p_1 + w_{12}p_2 + b)$

$$n=_1 \mathbf{wp}+b=w_{11}p_1+w_{12}p_2+b=0$$

When $w_{11}=1$ $w_{12}=1$ และ $b=-1$ $n=_1 \mathbf{wp}+b=p_1+p_2-1=0$

__ เส้นแบ่งพื้นที่ตั้งฉากกับเมตริกซ์น้ำหนักประสาทเสมอ

Fig. Ref. ปัญญาเชิงคำนวณ, ผศ.ดร. อาทิตย์ ศรีแก้ว

Single - Neuron Perceptron: Example

If input patterns are linear separable, perceptron can use only 1 neuron to separate input into 2 class as follow

Single Neuron--Linear Separable Problem

(a) Two-input perceptron.

(b) Three-input perceptron.

Fig. Ref. Negnevitsky, Pearson Education, 2005

Basic Logical Operation

- ➤ A perceptron can learn the operations *AND* and *OR*, but not *Exclusive-OR (XOR)*.
- > XOR is non-linear separable problem

Fig. Ref. Negnevitsky, Pearson Education, 2005

Single Neuron Perceptron

➤ The decision boundary at line L is always perpendicular to the weight matrix **W** and shifted according to the bias b

Fig. Ref. NN Toolbox User's Guide Version 6

Linear Separable Problem

Data	X ₁	X ₂	Group
p ₁	-3	-0.5	0
p ₂	-2	-1.2	0
p_3	-1.5	0.7	1
p ₄	-1	3	1
p ₅	-1	-3.5	0
p ₆	0	2	1
p ₇	0	-2.5	0
p ₈	1	0.7	1

Fig. Ref. 2005 Systems Sdn. Bhd.

Linear or Non-Linear Separable

Perceptron Learning Rule

Input : each pair of $\{\mathbf{p}_1,\mathbf{t}_1\}\{\mathbf{p}_2,\mathbf{t}_2\}\dots\{\mathbf{p}_Q,\mathbf{t}_Q\}$ Output : y

(Error)
$$e = t - y$$

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{ep}$$
 $\mathbf{b}^{new} = \mathbf{b}^{old} + \mathbf{e}$

นั่นคือ

ก้า
$$e=1$$
 แล้ว ${}_1\mathbf{w}^{new}=_1\mathbf{w}^{old}+\mathbf{p}$ ก้า $e=-1$ แล้ว ${}_1\mathbf{w}^{new}=_1\mathbf{w}^{old}-\mathbf{p}$ ก้า $e=0$ แล้ว ${}_1\mathbf{w}^{new}=_1\mathbf{w}^{old}$

523414: ANN, CPE, SUT

Example (9.1 from student ref.)

พิจารณาปัญหาการฝึกสอนเพื่อแยกแยะของตัวปฏิบัติการ OR โดยมีเวกเตอร์ อินพุตและเวกเตอร์เป้าหมายดังนี้

$$\begin{cases}
\mathbf{p_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{t_1} = [0] \\
\\
\mathbf{p_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{t_2} = [1] \\
\\
\mathbf{p_3} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{t_3} = [1] \\
\\
\mathbf{p_4} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{t_4} = [1] \\
\end{cases}$$

เวกเตอร์น้ำหนักประสาท ₁w มีการ กำหนดค่าเริ่มต้นคือ ₁w = [−1.2,−0.5]^т

และใบอัส b มีค่า เริ่มต้นเท่ากับ 1.0

ข้อจำกัดของเพอร์เช็พตรอน

523414: ANN, CPE, SUT

การปรับแต่งกฎการเรียนรู้แบบเพอร์เช็พตรอน

อัลกอริทึมการปรับส่วนเพิ่ม (increment adaptation algorithm)

$$\mathbf{w}^{new} = \begin{cases} \mathbf{w}^{old} + \alpha e \frac{\mathbf{p}}{\|\mathbf{p}\|^2} & \text{ถ้า } |n| \ge \gamma \\ \mathbf{w}^{old} + \alpha t \frac{\mathbf{p}}{\|\mathbf{p}\|^2} & \text{ถ้า } |n| < \gamma \end{cases}$$

อัลกอริทึมปรับปรุงการผ่อนคลาย (modified relaxation)

$$\mathbf{w}^{new} = \left\{ egin{array}{ll} \mathbf{w}^{old} & & ext{ถ้า } |n| \geq \gamma \; \text{และ} \; e = 0 \ \mathbf{w}^{old} + lpha \hat{e} rac{\mathbf{p}}{\|\mathbf{p}\|^2} & ext{อิ่นๆ} \end{array}
ight.$$