# **SI231** Matrix Analysis and Computations Sparse Optimization

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

#### **Sparse Optimization**

- Part I: sparsity pursuit in linear system and least squares problems
  - $\ell_0$  minimization
  - greedy pursuit,  $\ell_1$  minimization, and variations
  - majorization-minimization for  $\ell_2$ – $\ell_1$  minimization
  - dictionary learning

# Part I: Sparsity Pursuit in Linear System and Least Squares Problems

#### **The Sparse Recovery Problem**

**Problem:** given  $\mathbf{y} \in \mathbb{R}^m$ ,  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , m < n, find a sparsest  $\mathbf{x} \in \mathbb{R}^n$  such that

$$y = Ax$$
.



ullet by sparsest, we mean that  ${\bf x}$  should have as many zero elements as possible.

#### **A Sparsity Optimization Formulation**

let

$$\|\mathbf{x}\|_0 = \sum_{i=1}^n \mathbb{1}\{x_i \neq 0\}$$

denote the cardinality function

- commonly called the " $\ell_0$ -norm", though it is not a norm.
- Minimum  $\ell_0$ -norm formulation:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_0$$
s.t.  $\mathbf{y} = \mathbf{A}\mathbf{x}$ . (\*)

- Question: suppose that  $y = A\bar{x}$ , where  $\bar{x}$  is the vector we seek to recover. Can the min.  $\ell_0$ -norm problem recover  $\bar{x}$  in an exact and unique fashion?
  - an answer lies in the notion of spark, which may be seen as a strong definition of rank

#### **Spark**

Spark: the spark of A, denoted by  $\operatorname{spark}(A)$ , is the minimal number of linearly dependent columns of A, i.e.,

$$\operatorname{spark}(\mathbf{A}) = \min_{\mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\|_0 \text{ s.t. } \mathbf{A}\mathbf{x} = \mathbf{0}.$$

- let  $\operatorname{spark}(\mathbf{A}) = k$ . Then, k is the smallest number such that there exists a linearly dependent  $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$  for some  $\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}^1$ .
  - $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_{k-1}}\}$  is linearly independent for any  $\{i_1,\ldots,i_{k-1}\}\subseteq\{1,\ldots,n\}$
- Comparison with rank: the rank of A, denoted by rank(A), is the maximal number of linearly independent columns of A.
- let  $rank(\mathbf{A}) = r$ . Then, r is the largest number such that there exists a linearly independent  $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_r}\}$  for some  $\{i_1, \dots, i_r\} \subseteq \{1, \dots, n\}$ .
  - $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_{r+1}}\}$  is linearly dependent for any  $\{i_1,\ldots,i_{r+1}\}\subseteq\{1,\ldots,n\}$
- Kruskal rank: this is an alternative definition of rank. The Kruskal rank of  $\mathbf{A}$ , denoted by  $\operatorname{krank}(\mathbf{A})$ , has its definition equivalent to  $\operatorname{krank}(\mathbf{A}) = \operatorname{spark}(\mathbf{A}) 1$ .

<sup>&</sup>lt;sup>1</sup>We leave it implicit that  $i_k \neq i_j$  for any  $k \neq j$ .

#### **Spark**

• if any collection of m vectors in  $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subseteq\mathbb{R}^m$ , with  $n\geq m$ , is linearly independent, then

$$\operatorname{spark}(\mathbf{A}) = m + 1, \quad \operatorname{rank}(\mathbf{A}) = m.$$

- an example is Vandemonde matrices with distinct roots
- some specifically designed bases also have this property
- but there also exist instances in which rank and spark are very different
  - let  $\{\mathbf v_1,\dots,\mathbf v_r\}\in\mathbb R^m$  be linearly independent, and let  $\mathbf A=[\ \mathbf v_1,\dots,\mathbf v_r,\mathbf v_1\ ].$
  - we have  $rank(\mathbf{A}) = r$ , but  $spark(\mathbf{A}) = 2$
- to conclude, spark may be seen as a stronger definition of rank, and

$$\operatorname{krank}(\mathbf{A}) = \operatorname{spark}(\mathbf{A}) - 1 \le \operatorname{rank}(\mathbf{A})$$

#### Perfect Recovery Guarantee of the Min. $\ell_0$ -Norm Problem

**Theorem 8.1.** Suppose that  $y = A\bar{x}$ . Then,  $\bar{x}$  is the unique solution to the minimum  $\ell_0$ -norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2} \operatorname{spark}(\mathbf{A}).$$

- Implication: any collection of  $2\|\bar{\mathbf{x}}\|_0$  columns of  $\mathbf{A}$  is linearly independent
  - for  $\bar{\mathbf{x}}'$  with  $\|\bar{\mathbf{x}}'\|_0 = \|\bar{\mathbf{x}}\|_0$ ,  $\mathbf{A}\bar{\mathbf{x}}' \neq \mathbf{A}\bar{\mathbf{x}}$
- Implication: if  $\bar{\mathbf{x}}$  is sufficiently sparse, then the minimum  $\ell_0$ -norm problem (\*) perfectly recovers  $\bar{\mathbf{x}}$
- Proof sketch:
  - 1. let  $\mathbf{x}^*$  be a solution to the min.  $\ell_0$ -norm problem. Let  $\mathbf{e} = \bar{\mathbf{x}} \mathbf{x}^*$ .
  - 2.  $\mathbf{0} = \mathbf{A}\bar{\mathbf{x}} \mathbf{A}\mathbf{x}^* = \mathbf{A}\mathbf{e}; \|\mathbf{e}\|_0 \le \|\bar{\mathbf{x}}\|_0 + \|\mathbf{x}^*\|_0 \le 2\|\bar{\mathbf{x}}\|_0.$
  - 3. suppose  $e \neq 0$ . Then, Ae = 0,  $\|e\|_0 \le 2\|\bar{x}\|_0 \implies \operatorname{spark}(A) \le \|e\|_0 \le 2\|\bar{x}\|_0$

#### Perfect Recovery Guarantee of the Min. $\ell_0$ -Norm Problem

• coherence: the coherence of A is defined as

$$\mu(\mathbf{A}) = \max_{j \neq k} \frac{|\mathbf{a}_j^T \mathbf{a}_k|}{\|\mathbf{a}_j\|_2 \|\mathbf{a}_k\|_2}.$$

- measures how similar the columns of A are in the worst-case sense.
- a weaker version of Theorem 8.1:

**Corollary 8.1.** Suppose that  $y = A\bar{x}$ . Then,  $\bar{x}$  is the unique solution to the minimum  $\ell_0$ -norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

- Implication: perfect recovery may depend on how incoherent A is.
- proof idea: show that  $\operatorname{spark}(\mathbf{A}) \geq 1 + \mu(\mathbf{A})^{-1}$

#### On Solving the Minimum $\ell_0$ -Norm Problem

**Question:** How should we solve the minimum  $\ell_0$ -norm problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0$$
  
s.t.  $\mathbf{y} = \mathbf{A}\mathbf{x}$ ,

or can it be efficiently solved?

- $\ell_0$ -norm minimization does not lead to a simple solution as in 2-norm min.
- ullet the minimum  $\ell_0$ -norm problem is NP-hard in general
  - what does that mean?
    - \* given any  $\mathbf{y}, \mathbf{A}$ , the problem is unlikely to be exactly solvable in polynomial time (i.e., in a complexity of  $\mathcal{O}(n^p)$  for any p > 0)

#### Brute Force Search for the Minimum $\ell_0$ -Norm Problem

- ullet notation:  ${f A}_{\mathcal I}$  denotes a submatrix of  ${f A}$  obtained by keeping the columns indicated by  ${\mathcal I}$
- we may solve the  $\ell_0$ -norm minimization problem via brute force search:

```
 \begin{array}{l} \text{input: } \mathbf{A}, \mathbf{y} \\ \text{for all } \mathcal{I} \subseteq \{1, 2, \dots, n\} \text{ do} \\ \text{ if } \mathbf{y} = \mathbf{A}_{\mathcal{I}} \tilde{\mathbf{x}} \text{ has a solution for some } \tilde{\mathbf{x}} \in \mathbb{R}^{|\mathcal{I}|} \\ \text{ record } (\tilde{\mathbf{x}}, \mathcal{I}) \text{ as one of candidate solutions} \\ \text{end} \\ \text{output: a candidate solution } (\tilde{\mathbf{x}}, \mathcal{I}) \text{ whose } |\mathcal{I}| \text{ is the smallest} \\ \end{array}
```

- example: for n=3, we test  $\mathcal{I}=\{1\}, \mathcal{I}=\{2\}, \mathcal{I}=\{3\}, \mathcal{I}=\{1,2\}, \mathcal{I}=\{2,3\}, \mathcal{I}=\{1,3\}, \mathcal{I}=\{1,2,3\}$
- ullet manageable for very small n, too expensive even for moderate n
- how about a greedy search that searches less?

#### **Greedy Pursuit**

• consider a greedy search called the orthogonal matching pursuit (OMP)

```
 \begin{array}{ll} \textbf{Algorithm:} & \mathsf{OMP} \\ \textbf{input:} & \mathbf{A}, \mathbf{y} \\ \mathsf{set} \ \mathcal{I} = \emptyset, \ \hat{\mathbf{x}} = \mathbf{0} \\ \mathsf{repeat} \\ & \mathbf{r} = \mathbf{y} - \mathbf{A}\hat{\mathbf{x}} \\ & k = \arg\max_{j \in \{1, \dots, n\}} \|\mathbf{a}_j^T \mathbf{r}| / \|\mathbf{a}_j\|_2 \\ & \mathcal{I} := \mathcal{I} \cup \{k\} \\ & \hat{\mathbf{x}} := \arg\min_{\mathbf{x} \in \mathbb{R}^n, \ x_i = 0 \ \forall i \notin \mathcal{I}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \\ \mathsf{until a stopping rule is satisfied, e.g., } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \ \mathsf{is sufficiently small} \\ & \mathbf{output:} \ \hat{\mathbf{x}} \\ \end{array}
```

note: there are many other greedy search strategies

#### Perfect Recovery Guarantee of Greedy Pursuit

- again, a key question is the conditions under which OMP admits perfect recovery
- there are many such theoretical conditions, not only for OMP but also for other greedy algorithms
- one such result is as follows:

**Theorem 8.2.** Suppose that  $y = A\bar{x}$ . Then, OMP recovers  $\bar{x}$  if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

 proof idea: show that OMP is guaranteed to pick a correct column at every stage.

#### Convex Relexation: $\ell_1$ -Norm Heuristics

Another approximation approach is to replace  $\|\mathbf{x}\|_0$  by a convex function:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
  
s.t.  $\mathbf{y} = \mathbf{A}\mathbf{x}$ .

- also known as basis pursuit in the literature
- convex, a linear program
- no closed-form solution (while the minimum 2-norm problem has)
- but the success of this minimum 1-norm problem, both in theory and practice, has motivated a large body of work on computationally efficient algorithms for it

#### **Illustration of 1-Norm Geometry**



- ullet Fig. A shows the 1-norm ball of radius r in  $\mathbb{R}^2$ . Note that the 1-norm ball is "pointy" along the axes.
- Fig. B shows the 1-norm recovery solution. The point  $\bar{\mathbf{x}}$  is a "sparse" vector; the line  $\mathcal{H}$  is the set of all  $\mathbf{x}$  that satisfy  $\mathbf{y} = \mathbf{A}\mathbf{x}$ .

#### **Convex Relexation**

if replace  $\|\mathbf{x}\|_0$  by the  $\|\mathbf{x}\|_2$ :

$$\min_{\mathbf{x}} \|\mathbf{x}\|_2$$
  
s.t.  $\mathbf{y} = \mathbf{A}\mathbf{x}$ .

- also known as method of frames
- convex, a quadratic program
- closed-form solution (the minimum energy solution)
- but cannot promote sparsity

#### **Illustration of 1-Norm Geometry**



- The 1-norm recovery problem is to pick out a point in  ${\mathcal H}$  that has the minimum 1-norm. We can see that  $\bar{\mathbf x}$  is such a point.
- Fig. C shows the geometry when 2-norm is used. We can see that the solution  $\hat{\mathbf{x}}$  may not be sparse.

#### Perfect Recovery Guarantee of the Min. 1-Norm Problem

- again, researchers studied conditions under which the minimum 1-norm problem admits perfect recovery
- this has been an exciting topic, with many provable conditions such as the restricted isometry property (RIP), the nullspace property (NSP), ...
  - see the literature for details, and here is one: [Yin'13]
- a simple one is as follows:

**Theorem 8.3.** Suppose that  $y = A\bar{x}$ . Then,  $\bar{x}$  is the unique solution to the minimum 1-norm problem if

$$\|\bar{\mathbf{x}}\|_0 < \frac{1}{2}(1 + \mu(\mathbf{A})^{-1}).$$

#### **Toy Demonstration: Sparse Signal Reconstruction**

- Sparse vector  $\mathbf{x} \in \mathbb{R}^n$  with n = 2000 and  $\|\mathbf{x}\|_0 = 50$ .
- m=400 noise-free observations of  $\mathbf{y}=\mathbf{A}\mathbf{x}$ ,  $a_{ij}$  is randomly generated.





(a) Sparse source signal

(b) Recovery by 1-norm minimization





(c) Sparse source signal

(d) Recovery by 2-norm minimization

# **Application: Compressive sensing (CS)**

• Consider a signal  $\tilde{\mathbf{x}} \in \mathbb{R}^n$  that has a sparse representation  $\mathbf{x} \in \mathbb{R}^n$  in the domain of the representation matrix  $\mathbf{\Psi} \in \mathbb{R}^{n \times n}$  (e.g. DCT or wavelet), i.e.,

$$\tilde{\mathbf{x}} = \mathbf{\Psi} \mathbf{x}$$

where x is sparse.





Left: the original image  $\tilde{\mathbf{x}}$ . Right: the corresponding coefficient  $\mathbf{x}$  in the wavelet domain, which is sparse. Source: [Romberg-Wakin'07]

• compressive sensing is also called compressive sampling

#### **Application: CS**

ullet To acquire  ${f x}$ , we use a sensing matrix  ${f \Phi} \in \mathbb{R}^{m imes n}$  to observe  ${f x}$ 

$$y = \Phi \tilde{x} = \Phi \Psi x$$
.

Here, we have  $m \ll n$ , i.e., much few observations than the no. of unknowns

- ullet Such a y will be good for compression, transmission and storage.
- $\tilde{\mathbf{x}}$  is recovered by recovering  $\mathbf{x}$ :

$$\min \|\mathbf{x}\|_0$$
  
s.t.  $\mathbf{y} = \mathbf{A}\mathbf{x}$ ,

where  $\mathbf{A}=\mathbf{\Phi}\mathbf{\Psi}$ 

ullet how to choose  $\Phi$ ? CS research suggests that i.i.d. random  $\Phi$  (a universial sensing matrix) will work well!

#### **Application: CS**

(a) measurements  $(y_i = \langle ilde{\mathbf{x}}, \mathbf{\Phi}(i,:) 
angle)$  via i.i.d. random  $\mathbf{\Phi}$ 

Source: [Romberg-Wakin'07]



original (25k wavelets)

(b) original image



perfect recovery

(c)  $\ell_1$  recovery

#### **Variations**

- when y is contaminated by noise, or when y = Ax does not exactly hold, some variants of the previous min. 1-norm formulation may be considered:
  - basis pursuit denoising: given  $\epsilon > 0$ , solve

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le \epsilon$$

-  $\ell_1$ -penalized LS: given  $\lambda > 0$ , solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

- Lasso: given  $\tau > 0$ , solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t. } \|\mathbf{x}\|_{1} \le \tau$$

• when outliers exist in y (i.e., some elements of y are badly corrupted), we also want the residual r = y - Ax to be sparse; so,

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_1 + \lambda \|\mathbf{x}\|_1.$$

#### **Toy Demonstration: Noisy Sparse Signal Reconstruction**

- Sparse signal  $\mathbf{x} \in \mathbb{R}^n$  with n = 2000 and  $\|\mathbf{x}\|_0 = 20$ .
- m=400 noisy observations of  $\mathbf{y}=\mathbf{A}\mathbf{x}+\boldsymbol{\nu}$ , both  $a_{ij}$  and  $\nu_i$  are randomly generated.
- 1-norm regularized LS  $\min_{\mathbf{x}} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$  is used with  $\lambda = 0.1$ .





#### **Toy Demonstration: Curve Fitting**



The same curve fitting problem in Topic: Least Squares. The guessed model order is n=18.

 $\begin{array}{ll} \ell_2\text{-}\ell_2 \text{ min.:} & \min \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_2^2 \\ \ell_1\text{-}\ell_1 \text{ min.:} & \min \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_1 + \lambda \|\mathbf{x}\|_1 \end{array}$ 

# **Total Variation (TV) Denoising**

#### • Scenario:

- estimate  $\mathbf{x} \in \mathbb{R}^n$  from a noisy measurement  $\mathbf{x}_{\mathrm{cor}} = \mathbf{x} + \boldsymbol{\nu}$ .
- $-\mathbf{x}$  is known to be piecewise linear, i.e., for most i we have

$$x_i - x_{i-1} = x_{i+1} - x_i \iff -x_{i+1} + 2x_i - x_{i+1} = 0.$$

- equivalently,  $\mathbf{D}\mathbf{x}$  is sparse, where

$$\mathbf{D} = \begin{bmatrix} -1 & 2 & 1 & 0 & \dots \\ 0 & -1 & 2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & -1 & 2 & 1 \end{bmatrix}.$$

TV denoising: estimate x by solving

$$\min_{\mathbf{x}} \|\mathbf{x}_{cor} - \mathbf{x}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1$$



Ziping Zhao

28



TV denoised signals for various  $\lambda$ 's.



TV denoised signals via  $\ell_2$  regularization and for various  $\lambda$ 's.

#### **Application: Magnetic Resonance Imaging (MRI)**

Problem: MRI image reconstruction.



Fig. a shows the original test image. Fig. b shows the sampling region in the frequency domain. Fourier coefficients are sampled along 22 approximately radial lines. Source: [Candès-Romberg-Tao'06]

## **Application: MRI**



Fig. c is the recovery by filling the unobserved Fourier coefficients to zero. Fig. d is the recovery by a TV minimization problem. Source: [Candès-Romberg-Tao'06]

#### Efficient Computations of the $\ell_2-\ell_1$ Minimization Solution

ullet consider the  $\ell_2-\ell_1$  minimization problem

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

- as mentioned, the problem is convex and there are many optimization algorithms custom-designed for it
  - some keywords for such algorithms: subgradient descent, majorization-minimization (MM) (a.k.a. surrogate minimization), successive convex approximation (SCA), ADMM, fast proximal gradient (or the so-called FISTA), forward backward splitting, Frank-Wolfe, coordinate descent,...
- Aim: get some flavor of one particular algorithm, namely, MM, that is sufficiently "matrix analysis and computations" and is suitable for large-scale problems

#### MM for $\ell_2 - \ell_1$ Minimization: LS as an Example

to see the insight of MM, we start with the plain old LS

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2.$$

• observe that for a given  $\bar{\mathbf{x}}$ , one has

$$\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}} - \mathbf{A}(\mathbf{x} - \bar{\mathbf{x}})\|_{2}^{2}$$

$$= \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + \|\mathbf{A}(\mathbf{x} - \bar{\mathbf{x}})\|_{2}^{2}$$

$$\leq \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2}$$

for any  $\mathbf{x} \in \mathbb{R}^n$  and for any  $c \geq \sigma_{\max}^2(\mathbf{A})$ 

#### MM for $\ell_2 - \ell_1$ Minimization: LS as an Example

• let  $c \ge \sigma_{\max}^2(\mathbf{A})$ , and let

$$g(\mathbf{x}, \bar{\mathbf{x}}) = \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2}$$

we have

$$\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le g(\mathbf{x}, \bar{\mathbf{x}}), \quad \text{for any } \mathbf{x}, \bar{\mathbf{x}} \in \mathbb{R}^n$$
  
 $\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 = g(\mathbf{x}, \mathbf{x}), \quad \text{for any } \mathbf{x} \in \mathbb{R}^n$ 

also,

$$\arg\min_{\mathbf{x}\in\mathbb{R}^n} g(\mathbf{x},\bar{\mathbf{x}}) = \frac{1}{c}\mathbf{A}^T(\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + \bar{\mathbf{x}}$$

• Idea: given an initial point  $\mathbf{x}^{(0)}$ , do

$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \ g(\mathbf{x}, \mathbf{x}^{(k)}) = \frac{1}{c} \mathbf{A}^T (\mathbf{y} - \mathbf{A} \mathbf{x}^{(k)}) + \mathbf{x}^{(k)}, \quad k = 1, 2, \dots$$

– note: not very interesting at this moment as the above iteration is the same as gradient descent with step size 1/c

#### MM for $\ell_2 - \ell_1$ Minimization: General MM Principle

- the example shown above is an instance of MM
- general MM principle:
  - consider a general optimization problem

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$$

and suppose that f is hard to minimize directly

- let  $g(\mathbf{x}, \bar{\mathbf{x}})$  be a surrogate function that is easy to minimize and satisfies

$$f(\mathbf{x}) \le g(\mathbf{x}, \bar{\mathbf{x}})$$
 for all  $\mathbf{x}, \bar{\mathbf{x}}, \qquad f(\mathbf{x}) = g(\mathbf{x}, \mathbf{x})$  for all  $\mathbf{x}$ 

- MM algorithm:  $\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathcal{C}} g(\mathbf{x}, \mathbf{x}^{(k)}), k = 1, 2, \dots$ 
  - \* iteratively minimizing a surrogate function  $g(\mathbf{x},\mathbf{x}^{(k)})$  at each iteration
- as a basic result,  $f(\mathbf{x}^{(0)}) \geq f(\mathbf{x}^{(1)}) \geq f(\mathbf{x}^{(2)}) \dots$
- suppose that f is convex and C is convex. MM is guaranteed to converge to an optimal solution under some mild assumption [Razaviyayn-Hong-Luo'13]
- tricks on finding a nice surrogate function g [Sun-Babu-Palomar'16]

## MM for $\ell_2 - \ell_1$ Minimization: General MM Principle



#### MM for $\ell_2 - \ell_1$ Minimization

ullet now consider applying MM to the  $\ell_2-\ell_1$  minimization problem

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

• let  $c \ge \sigma_{\max}^2(\mathbf{A})$ , and let

$$g(\mathbf{x}, \bar{\mathbf{x}}) = \frac{1}{2} \left( \|\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}\|_{2}^{2} - 2(\mathbf{x} - \bar{\mathbf{x}})^{T} \mathbf{A}^{T} (\mathbf{y} - \mathbf{A}\bar{\mathbf{x}}) + c\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}^{2} \right) + \lambda \|\mathbf{x}\|_{1}$$

- simply plug the same surrogate for  $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$  we saw previously
- it can be shown that

$$\mathbf{x}^{(k+1)} = \operatorname{soft}\left(\frac{1}{c}\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\mathbf{x}^{(k)}) + \mathbf{x}^{(k)}, \lambda/c\right)$$

where soft is called the soft-thresholding operator and is defined as follows: if  $\mathbf{z} = \operatorname{soft}(\mathbf{x}, \delta)$  then  $z_i = \operatorname{sign}(x_i) \max\{|x_i| - \delta, 0\}$ 

#### **Dictionary Learning**

- previously A is assumed to be given
- how about learning a fat A from data, as in matrix factorization?
- Dictionary learning (DL): given  $\tau > 0$  and  $\mathbf{Y} \in \mathbb{R}^{m \times n}$ , solve

$$\min_{\mathbf{A} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}} \sum_{i=1}^{n} \|\mathbf{y}_i - \mathbf{A}\mathbf{b}_i\|_2^2$$
s.t.  $\|\mathbf{b}_i\|_0 \le \tau$ ,  $i = 1, \dots, n$ 

- DL considers  $k \geq m$ , and **A** is called an overcomplete dictionary
- DL is handled by alternating optimization—the same approach in matrix fac.

## **Dictionary Learning**



A collection of n=500 random image blocks of size  $m=8\times 8$ . Source: [Aharon-Elad-Bruckstein'06].

## **Dictionary Learning**



The learned dictionary (k=421). Source: [Aharon-Elad-Bruckstein'06].

#### References

[Yin'13], W. Yin, Sparse Optimization Lecture: Sparse Recovery Guarantees, 2013. Available online at http://www.math.ucla.edu/~wotaoyin/summer2013/slides/Lec03\_SparseRecoveryGuarantees.pdf

[Romberg-Wakin'07] J. Romberg and M. Walkin, Compressed Sensing: A tutorial, in IEEE SSP Workshop, 2017. Available online at http://web.yonsei.ac.kr/nipi/lectureNote/Compressed%20Sensing%20by%20Romberg%20and%20Wakin.pdf

[Candès-Romberg-Tao'06] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Information Theory*, vol. 52, no. 2, pp. 489–509, 2006.

[Aharon-Elad-Bruckstein'06] M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," *IEEE Trans. Image Process.*, vol. 54, no. 11, pp. 4311–4322, 2006.

[Razaviyayn-Hong-Luo'13] M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," *SIAM Journal on Optimization*, vol. 23, no. 2, pp. 1126–1153, 2013.

[Sun-Babu-Palomar'16] Y. Sun, P. Babu, and D. P. Palomar, "Majorization-minimization algorithms in signal processing, communications, and machine learning," *IEEE Trans. on Signal Process.*, vol. 65, no. 3, pp. 794–816, 2016.