

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Gerwin Klein, June And Ponick, Miki Tanaka, Johannes Åman Pohjola https://tut372022m

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Last Time on HOL

程序代写代做 CS编程辅导

→ Defining HOL

→ Higher Order Abs

→ Deriving proof rul

→ More automation ■ →

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Term Rewriting Assignment Project Exam Help

The Problem

程序代写代做 CS编程辅导

WeChat: cstutorcs $l_n = r_n$

doesigament Project Foram Help

Applications in:

Email: tutorcs@163.com

- → Mathematics (algebra, ⁊group գիթ թւթ., etc)
- → Functional Programming (model of execution)
- → Theorem Provingt(peal/hgtwith equations, simplifying statements)

Term Rewriting: The Idea

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help decide l = r by deciding $l \longleftrightarrow r$

Email: tutorcs@163.com

QQ: 749389476

Arrow Cheat Sheet

程序代写代做 CS编程辅导

How to Decide $/ \stackrel{*}{\longleftrightarrow} r$

程序代写代做 CS编程辅导

Same idea as for β : leave for n such that $I \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always w

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{\text{left}}{\longrightarrow} l \stackrel{*}{\longleftrightarrow} l \stackrel{\text{oh}}{\longleftrightarrow} r$. Ok.

If $l \leftrightarrow r$, will there always be a suitable n? **No!**

Example:

WeChat: cstutorcs

Rules: $f \times \longrightarrow Assignment Project (Exain Help$

$$f \times \stackrel{*}{\longleftrightarrow} g \times \text{ because } f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times$$
But: $f \times \longrightarrow a \xrightarrow{\text{Email: tutorcy@and3a;pm}} normal form$

Works only for systems with **Church-Rosser** property:

$$1 \leftarrow \frac{*}{\text{https://tuttorcs.com}} \land r \xrightarrow{*} n$$

Fact: → is Church-Rosser iff it is confluent.

Confluence

程序代写代做 CS编程辅导

undecidable WeChat: cstutorcs

Local Confluence

Assignment Project Exam Help

Email: tutor&@163.com

QQ: 749389476^y

https://tutores.com

Fact: local confluence and termination ⇒ confluence

Termination

程序代写代做 CS编程辅导

- → is **termination** are no infinite reduction chains
- \longrightarrow is **normalizi** element has a normal form
- → is **converge** is **converge** and confluent

Example:

WeChat: cstutorcs

 \longrightarrow_{β} in λ is not tarminating by confluent Help \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Email: tutorcs@163.com

Problem: is a **Quentile 18** Problem: is a **Quentile 28** Problem: is a **Quentile 28**

When is \longrightarrow Terminating?

程序代写代做 CS编程辅导

Basic idea: when each polication makes terms simpler in some way.

More formally: \longrightarrow ating when there is a well founded order < on terms s < t whenever $t \longrightarrow s$ (well founded s < t < t whenever s < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t < t whenever s < t < t < t < t < t whenever s < t < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t < t whenever s < t < t < t whenever s < t < t < t < t whenever s < t < t < t < t whenever s < t < t <

Example: $f(g x) \longrightarrow g(x, g(f x)) \longrightarrow f(x)$

This system always terminates. Reduction Exam. Help

 $s <_r t$ iff size(s) Exize(t) with @ 163.com size(s) = number of function symbols in s

- QQ: 749389476① Both rules always decrease *size* by 1 when applied to any term t
- $2 <_r$ is well founded the calutatorics well founded on \mathbb{N}

Termination in Practice

程序代写代做 CS编程辅导

In practice: often easier to consider just the rewrite rules by

themselves.

rather than their a

i to an arbitrary term *t*.

Show for each rule I $t r_i < l_i$.

Example:

we Chat: cstutorcs
$$g \times f(g \times)$$
 and $f \times f(g \times)$

Requires

Assignment Project Exam Help

u to become smaller whenever any subterm of u is made smaller.

Formally:

Requires < to be **ponotionio** with respect to the structure of terms:

$$s < t \longrightarrow u[s]$$
 https://tutorcs.com

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

程序代写代做 CS编程辅导

Problem: Rewrite fc ntaining \neg , \land , \lor and \longrightarrow , so that they don't contain an tions and \neg is applied only to variables and constant.

Rewrite Rules:

→ Remove implications → Remove implications

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

Assignment Project Exam Help

→ Push ¬s down past other operators:

notnot: (¬¬Þ<u>mail</u>: tutorcs@163.com

notand: $(\neg (A(0)) 749(384)4768)$

notor: (¬(AhttB))/\talta\delta\chi.\cap\bar{B}\)

We show that the rewrite system defined by these rules is terminating.

Order on Terms

程序代写代做 CS编程辅导

Each time one of our rules is applied, either:

- → an implication is
- → something that is hoisted upwards in the term.

This suggests a 2-pa $\blacksquare \square \square r$: $s <_r t$ iff:

- → num_imps s < num_imps t, or Wethat: cstutorcs
- → num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

Assignment Project Exam Help

- → $s <_i t \equiv \text{num_imps } s <_i \text{num_imps } t$ and Email: tutores@163.com
- \Rightarrow $s <_n t \equiv \text{osize } s < \text{osize } t$

https://tutorcs.com $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

程序代写代做 CS编程辅导

imp clearly decreases

osize adds up all non work or and variables/constants, weights each one according to the within the term.

The other rules decrease the depth of the things osize counts, so decrease osize. https://tutorcs.com

Term Rewriting in Isabelle

程序代写代做 CS编程辅导

Term rewritin n Isabelle is called **Simplifier** ply simp

- → uses simplification wules hat: cstutores
- → (almost) blindly from left to right
- → until no rule is apalicaiglement Project Exam Help

Email: tutorcs@163.com

termination: not guaranteed

(mQQio7f)9389476

confluence: notigpara/htttedcs.com

(result may depend on which rule is used first)

Control

程序代写代做 CS编程辅导

- → Equations turned fication rules with [simp] attribute
- → Using only the specified set of equations:

 apply (simp only: <rules>)

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

We have seen today...

程序代写代做 CS编程辅导

- → Equations and Te
- → Confluence and The state of reduction systems
- → Term Rewriting ir

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Exercises

程序代写代做 CS编程辅导

→ Show, via a pen-a proof, that the osize function is monotonic with relative the structure of terms from that example.

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476