# Elliptic Curve Key Exchange and AES

By Tommy He, mentor Ileana Vasu

## **ECIES (Elliptic Curve Integrated Encryption Scheme)**

- Symmetric Key Encryption System such as AES
- Method of public-key cryptography ECC for safe Diffie-Hellman Key Exchange
- Good balance between speed/security

$$y^2 = x^3 + ax + b$$

Symmetric Key Encryption: able to encrypt and decrypt a message using the same cipher



#### ECC vs. RSA

ECC and RSA bit size equivalence to obtain similar security:

160 1024

256 3072

384 7680

BUT, ECC is harder to implement and program slower



http://royalforkblog.github.io/2014/0 9/04/ecc/

## **Sample Curve**

Point Addition/Doubling in the curve

$$y^2=x^3-3x+4$$

# **Point Addition, Doubling**

$$y^2 = x^3 + ax + b$$









**Point Addition** 

#### Point Doubling

-P is P reflected across x-axis

$$3P = P + 2P$$

$$4P = P + 3P...$$



# **Point at Infinity**



P + (-P) gives 
$$\mathcal{O}$$
  
If derivative at P = 0, also  $\mathcal{O}$ 

## The Graph, why it works

- The graph of  $y^2=x^3+ax+b$
- The graph will become a singularity if discriminant equals 0:

$$\Delta = -16(4a^3 + 27b^2) = 0$$

- All (x,y) on the curve restricted over  $\mathbb{Z}_p$  (all integers taken mod prime p)
- Initial Generator point G
- Order of G is least n such that nG becomes (2)
- Properties:
  - -a(bP) = b(aP)
  - P + Q = Q + P

A "Point at Infinity" called  $\mathcal{O}$  (the vertical line "point") from P + (-P)

The curve 
$$\,y^2=x^3+7\,$$
 is used in Bitcoin



Starting Point A Not restricted to  $\mathbb{Z}_p$ 



$$y^2 = x^3 - x + 1 \pmod{97}$$



#### **Parameters**

- We now have {p, a, b, G, n}
- p to determine our field for the curve  $\mathbb{Z}_p$
- a, b are parameters for the curve itself  $y^2 = x^3 + ax + b$
- Known to everyone
- n is ord(G)



## Elliptic Curve Diffie-Hellman Key Exchange Goal

- Bob wants to send message to Alice
- Create a shared private key for Alice/Bob, Eve no access
- With this shared key, Alice/Bob can use a symmetric encryption system (like AES)

## Elliptic Curve Diffie Hellman Key Exchange

Elliptic Curve Discrete Logarithm Problem acts as the Trapdoor function

#### Alice:

- Private Key:  $\, lpha \in [1, n-1] \,$
- Public: A=lpha G
- A released to everyone
- Finds lpha B = lpha (eta G) = P

#### Bob:

- Private Key:  $eta \in [1,n-1]$
- Public: B=eta G
- $oldsymbol{B}$  released to everyone
- Finds eta A = eta(lpha G) = P

#### Eve (Outsider):

- Has AB
- ECDLP prevents Eve from easily finding  $lpha\,eta$
- No access to P

#### ECDLP:

Hard to find n given initial point nG and generator point G

#### Elliptic Curve Diffie-Hellman

# Bob



Bob picks private key  $oldsymbol{eta}$ 

$$1 \leq \beta \leq n-1$$

Computes

$$B = \beta G$$

Receives

$$A = (x_A, y_A)$$

Computes

$$P = \beta \alpha G$$





$$y^2 = x^3 + ax + b$$

$$\frac{G}{n}$$





Alice picks private key lpha

$$1 \leq \alpha \leq n-1$$

Computes

$$A = \alpha G$$

Receives

$$B = (x_B, y_B)$$

Computes

$$P = \alpha \beta G$$

## **Symmetric Encryption**

- Let mk (masterkey) be our x-coord of lphaeta G
- Encrypt/Decrypt with symmetric encryption system
- Ex. AES

- Put mk through a Key Derivation Function (stretch/strengthen)
- Alice/Bob have access to mk and will produce the same cipher key from the KDF, Eve can not

## **Other Uses of Elliptic Curves**

- Elliptic Curve Digital Signature Algorithm (ECDSA)
- Edwards-curve Digital Signature Algorithm (EcDSA)
- Elliptic Curve MQV
- ElGamal (uses curve for the encryption)

# Thank You!

#### **AES-128**

| 32 | 88 | 31 | e0 |
|----|----|----|----|
| 43 | 5a | 31 | 37 |
| f6 | 30 | 98 | 07 |
| a8 | 8d | a2 | 34 |

- 1 bit is a binary digit (either 1 or 0)
- 1 byte is essentially 8 bits
- AES-128 uses 128 bit (16 byte) keys and states
- We first want to convert our input string into a state (4 by 4 block of bytes). We may use the ASCII conversion table, which works perfectly with hexadecimal bytes since it has 128 conversions
- Every 2 digit hexadecimal is 1 byte

### **ASCII/Unicode**

Used to convert strings of text into numbers, which can then go through the cryptological system

#### ASCII:

- Works for English language only
- Converts 2<sup>^</sup>7 (128) of the symbols into integers 0 to 127.
- Smaller memory required than unicode

#### Unicode:

- Works for most characters in the world
- Has 2<sup>16</sup> conversions
- More universal
- Because of its large size, unicode might require the message to be broken up into smaller parts, which would each separately go through the cryptography

| Dec | Bin       | Hex | Char  | Dec |           |            |       | Dec | Bin       | Hex        | Char | Dec Bin       | Hex        | Char  | T w                     | , ,   | $\overline{\Box}$    |                | О               | 10          | _            |     | N   | ;    | 10           |       |              | T        | 77.        |
|-----|-----------|-----|-------|-----|-----------|------------|-------|-----|-----------|------------|------|---------------|------------|-------|-------------------------|-------|----------------------|----------------|-----------------|-------------|--------------|-----|-----|------|--------------|-------|--------------|----------|------------|
| 0   | 0000 0000 | 00  | [NUL] | 32  | 0010 0000 | 20         | space | 64  | 0100 0000 | 40         | 6    | 96 0110 0000  | 60         |       | $\ T\ W$                | /   ( | $\cap$               | -   '          | $\cup$          | n           | е            |     | IN  | 1    | n            | e     |              | 1        | WO         |
| 1   | 0000 0001 | 01  | [SOH] | 33  | 0010 0001 | 21         | !     | 65  | 0100 0001 | 41         | A    | 97 0110 0001  | 61         | a     | E 1 7                   | 76    | 176                  | 20 /           | 177             | c           | CE           | 20  | 417 | CO   | $c$ $\Gamma$ | CE    | 20           | <u> </u> | 77 G L     |
| 2   | 0000 0010 | 02  | [STX] | 34  | 0010 0010 | 22         | п     | 66  | 0100 0010 | 42         | В    | 98 0110 0010  | 62         | b     | 54 7                    | 10    | $\Gamma \mid \angle$ | ZU 4           | $^{ m L}\Gamma$ | $0^{\circ}$ | CO           | 20  | 4L  | 09   | $0^{\circ}$  | CO    | $ \Delta U $ | 04 a     | 101        |
| 3   | 0000 0011 | 03  | [ETX] | 35  | 0010 0011 | 23         | #     | 67  | 0100 0011 | 43         | С    | 99 0110 0011  | 63         | c     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 4   | 0000 0100 | 04  | [EOT] | 36  | 0010 0100 | 24         | \$    | 68  | 0100 0100 | 44         | D    | 100 0110 0100 | 64         | d     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 5   | 0000 0101 | 05  | [ENQ] | 37  | 0010 0101 | 25         | 8     | 69  | 0100 0101 | 45         | E    | 101 0110 0101 | 65         | e     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 6   | 0000 0110 | 06  | [ACK] | 38  | 0010 0110 | 26         | &     | 70  | 0100 0110 | 46         | F    | 102 0110 0110 | 66         | £     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 7   | 0000 0111 | 07  | [BEL] | 39  | 0010 0111 | 27         | •     | 71  | 0100 0111 | 47         | G    | 103 0110 0111 | 67         | g     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 8   | 0000 1000 | 80  | [BS]  | 40  | 0010 1000 | 28         | (     | 72  | 0100 1000 | 48         | н    | 104 0110 1000 | 68         | h     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 9   | 0000 1001 | 09  | [TAB] | 41  | 0010 1001 | 29         | )     | 73  | 0100 1001 | 49         | I    | 105 0110 1001 | 69         | i     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 10  | 0000 1010 | 0A  | [LF]  | 42  | 0010 1010 | 2A         | *     | 74  | 0100 1010 | 4A         | J    | 106 0110 1010 | 6A         | j     |                         | 1.    |                      |                |                 |             | 16000000     |     |     | 17   | 100000       |       | 200          |          |            |
| 11  | 0000 1011 | 0в  | [VT]  | 43  | 0010 1011 | 2B         | +     | 75  | 0100 1011 | 4B         | K    | 107 0110 1011 | 6B         | k     | $\parallel 1 \parallel$ | h     | a                    | T              | $\mathbf{S}$    |             | $\mathbf{m}$ | У   |     | K    | u            | n     | g            |          | $F \mid u$ |
| 12  | 0000 1100 | 0C  | [FF]  | 44  | 0010 1100 | 2C         | ,     | 76  | 0100 1100 | 4C         | L    | 108 0110 1100 | 6C         | 1     | F 4 C                   | 30    | 01                   | <del>-</del> , | 70              | 20          |              | 70  | 00  | 10   |              |       | -            | 00       | 10 7       |
| 13  | 0000 1101 | 0D  | [CR]  | 45  | 0010 1101 | 2D         | -     | 77  | 0100 1101 | 4D         | M    | 109 0110 1101 | 6D         | m     | 15410                   | 081   | 11c                  | 74             | 13              | 20          | 6D           | 179 | 120 | 14B  | 175          | 6E    | 61           | 20       | 46 75      |
| 14  | 0000 1110 | 0E  | [so]  | 46  | 0010 1110 | 2E         |       | 78  | 0100 1110 | 4E         | N    | 110 0110 1110 | 6E         | n     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 15  | 0000 1111 | 0F  | [SI]  | 47  | 0010 1111 | 2F         | /     | 79  | 0100 1111 | 4F         | 0    | 111 0110 1111 | 6 <b>F</b> | 0     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 16  | 0001 0000 | 10  | [DLE] | 48  | 0011 0000 | 30         | 0     | 80  | 0101 0000 | 50         | P    | 112 0111 0000 | 70         | р     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 17  | 0001 0001 | 11  | [DC1] | 49  | 0011 0001 | 31         | 1     | 81  | 0101 0001 | 51         | Q    | 113 0111 0001 | 71         | q     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 18  | 0001 0010 | 12  | [DC2] | 50  | 0011 0010 | 32         | 2     | 82  | 0101 0010 | 52         | R    | 114 0111 0010 | 72         | r     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 19  | 0001 0011 | 13  | [DC3] | 51  | 0011 0011 | 33         | 3     | 83  | 0101 0011 | 53         | s    | 115 0111 0011 | 73         | s     |                         | i.    |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 20  | 0001 0100 | 14  | [DC4] | 52  | 0011 0100 | 34         | 4     | 84  | 0101 0100 | 54         | T    | 116 0111 0100 | 74         | t     |                         | Pla   | aint                 | text           | : st            | ring        | र to         | he  | xac | leci | ma           | l sta | ate          |          |            |
| 21  | 0001 0101 | 15  | [NAK] | 53  | 0011 0101 | 35         | 5     | 85  | 0101 0101 | 55         | υ    | 117 0111 0101 | 75         | u     |                         |       |                      |                |                 | •           | <b>,</b>     |     |     |      |              |       |              |          |            |
| 22  | 0001 0110 | 16  | [SYN] | 54  | 0011 0110 | 36         | 6     | 86  | 0101 0110 | 56         | v    | 118 0111 0110 | 76         | v     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 23  | 0001 0111 | 17  | [ETB] | 55  | 0011 0111 | 37         | 7     | 87  | 0101 0111 | 57         | W    | 119 0111 0111 | 77         | w     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 24  | 0001 1000 | 18  | [CAN] | 56  | 0011 1000 | 38         | 8     | 88  | 0101 1000 | 58         | x    | 120 0111 1000 | 78         | x     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 25  | 0001 1001 | 19  | [EM]  | 57  | 0011 1001 | 39         | 9     | 89  | 0101 1001 | 59         | Y    | 121 0111 1001 | 79         | У     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 26  | 0001 1010 | 1A  | [SUB] | 58  | 0011 1010 | 3 <b>A</b> | :     | 90  | 0101 1010 | 5 <b>A</b> | z    | 122 0111 1010 | 7 <b>A</b> | z     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 27  | 0001 1011 | 1B  | [ESC] | 59  | 0011 1011 | 3B         | ;     | 91  | 0101 1011 | 5B         | [    | 123 0111 1011 | 7B         | {     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 28  | 0001 1100 | 1C  | [FS]  | 60  | 0011 1100 | 3C         | <     | 92  | 0101 1100 | 5C         | \    | 124 0111 1100 | 7C         | 1     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 29  | 0001 1101 | 1D  | [GS]  | 61  | 0011 1101 | 3D         | =     | 93  | 0101 1101 | 5D         | ]    | 125 0111 1101 | <b>7</b> D | }     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 30  | 0001 1110 | 1E  | [RS]  | 62  | 0011 1110 | 3E         | >     | 94  | 0101 1110 | 5E         | ^    | 126 0111 1110 | 7E         | ~     |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
| 31  | 0001 1111 | 1F  | [US]  | 63  | 0011 1111 | 3 <b>F</b> | ?     | 95  | 0101 1111 | 5 <b>F</b> |      | 127 0111 1111 | 7 <b>F</b> | [DEL] |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
|     |           |     |       | •   |           |            |       |     |           |            | _    |               |            |       |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
|     |           |     |       |     | _         |            |       |     |           |            |      |               |            |       |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
|     |           |     |       |     | Y         |            |       |     |           |            |      |               |            |       |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          | 0          |
|     |           |     |       |     |           |            |       | _   |           |            |      |               | (          |       |                         |       |                      |                |                 |             |              |     | 1   |      |              |       |              |          | Ţ          |
|     |           |     |       |     |           |            | /     |     | <u> </u>  |            |      |               |            |       |                         |       | •                    |                |                 |             |              |     |     |      |              |       |              |          |            |
|     |           |     |       |     |           |            |       |     |           |            |      |               |            |       |                         |       |                      |                |                 | <b>\</b>    |              |     | 1   |      |              |       |              |          |            |
|     |           |     |       |     |           |            |       |     |           |            |      |               |            |       |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |
|     |           |     |       |     |           |            |       |     |           |            | -    | •             |            |       |                         |       |                      |                |                 |             | \ <u></u>    |     |     |      |              |       |              |          |            |
|     |           |     |       |     |           |            |       |     |           |            |      |               |            |       |                         |       |                      |                |                 |             |              |     |     |      |              |       |              |          |            |

## **AES Encryption**

| Rcon Constants (Base 16) |                |       |                |  |  |
|--------------------------|----------------|-------|----------------|--|--|
| Round                    | Constant(Rcon) | Round | Constant(Rcon) |  |  |
| 1                        | 01 00 00 00    | 6     | 20 00 00 00    |  |  |
| 2                        | 02 00 00 00    | 7     | 40 00 00 00    |  |  |
| 3                        | 04 00 00 00    | 8     | 80 00 00 00    |  |  |
| 4                        | 08 00 00 00    | 9     | 1B 00 00 00    |  |  |
| 5                        | 10 00 00 00    | 10    | 36 00 00 00    |  |  |

#### S-box (Substitution Box) for AES

Key Schedule- recursively created with the resulting cipher key and contains every round key.

- 1. Last column of every key is first SubByted, then RotWorded (shifted one by up), Xored with the first column and Xored with respective column in the Rcon
- 2. The newly generated column i is Xored with the column i-3 to get the next column



#### **AES Process**



Add Initial round key (input cipher) Xor each column with each other

| 32 | 88 | 31 | e0 |
|----|----|----|----|
| 43 | 5a | 31 | 37 |
| f6 | 30 | 98 | 07 |
| a8 | 8d | a2 | 34 |

| 2b | 28 | ab | 09 |
|----|----|----|----|
| 7e | ae | f7 | cf |
| 15 | d2 | 15 | 4f |
| 16 | a6 | 88 | 3с |

State (to be encrypted)

Cipher key

| 19 | a0 | 9a | e9 |
|----|----|----|----|
| 3d | f4 | c6 | f8 |
|    |    |    | 48 |
| be | 2b | 2a | 08 |

Number of rounds used is based on the key size: 128 bit: 10 192 bit: 12

256 bit: 14





#### ShiftRows (row i moves to the left by i)

| d4 | e0 | b8 | 1e |
|----|----|----|----|
| 27 | bf | b4 | 41 |
| 11 | 98 | 5d | 52 |
| ae | f1 | e5 | 30 |

| d4 | e0 | b8 | 1e |
|----|----|----|----|
| bf | b4 | 41 | 27 |
| 5d | 52 | 11 | 98 |
| 30 | ae | f1 | e5 |

## MixColumns (mult each column by Matrix)

| d4 | e0 | b8 | 1e |
|----|----|----|----|
| bf | b4 | 41 | 27 |
| 5d | 52 | 11 | 98 |
| 30 | ae | f1 | e5 |

| 04 | e0 | 48 | 28 |
|----|----|----|----|
| 66 | cb | f8 | 06 |
| 81 | 19 | d3 | 26 |
| e5 | 9a | 7a | 4c |





### Add round specific keys (Xor each column again)

| 04 | e0 | 48 | 28 |
|----|----|----|----|
| 66 | cb | f8 | 06 |
| 81 | 19 | d3 | 26 |
| e5 | 9a | 7a | 4c |



| a0 | 88 | 23 | 2a |
|----|----|----|----|
| fa | 54 | a3 | 6c |
| fe | 2c | 39 | 76 |
| 17 | b1 | 39 | 05 |

#### Round key 1

| a4 | 68 | 6b | 02 |
|----|----|----|----|
| 9c | 9f | 5b | 6a |
| 7f | 35 | ea | 50 |
| f2 | 2b | 43 | 49 |



# **AES Decryption**

- Same key is still used
- ^^ Allows Bob to encrypt the message and Alice to decrypt it (both have the right cipher key)
- The order is simply reversed and steps inversed

