B. M.S. COLLEGE OF ENGINEERING, BANGALORE-19

(Autonomous Institute, Affiliated to VTU)

Department Name: CSE

Third INTERNALS - Online				
AAG Course Title : Advanced Algorithms				
Maximum Marks: 40	Date: 6-01-2021			
NN,GRP				
j	Course Title : Advanced Algo Maximum Marks: 40			

Instructions: Internal choice is provided in Part C.

PART-A

Total 5 Marks (No choice)

No	Question	Mark	CO	Leve
		S	No.	l
1a	Describe the Jarvis's march technique of computing the convex hull. Answer: given at the end.	5M	3	2
	_			

PART-B

Total 15 Marks (No Choice)

No	Question	Mar	CO	Le
•		ks	No.	vel
2a	Convert the below LPP to standard form	5M	2	3
Za	Convert the below LPP to standard form	SIVI	2	3
	Minimize: 8 x+7y			
	Subjected to:			
	4x+2y > =20			
	$-6x+4y \le =6$			
	x+y>=4			
	2x-y=2			
	With non negativity constraint : x,y>=0			
	Ans:			
	Z=-8x-7y			
	-4x-2y < =-20			
	$-6x+4y \le 6$			
	-x-y<=4			
	$2x-y \le 2$			
	$-2x+y \le -2$			
2b	How does using the cross product help in determining if a point is in	5M	3	3
	clockwise/counter clockwise from another point? Show with an example.			
	Answer:			
	Cross product of the two points is defined by			
	$p_1 \times p_2 = $ the determinant of a matrix $x_1 \times x_2$			
	y_1 y_2			

	 = x₁y₂ - x₂y₁ = the signed area of the parallelogram of four points:(0,0),p₁,p₂, p₁+p₂ • If p₁ x p₂ is positive then p₁ is clockwise from p₂ • If p₁ x p₂ is negative then p₁ is counterclockwise from p₂ Explanation: 3marks + Example diagram: 2 marks 			
2c	A baker bakes two types of cakes: cake A and cake B. He requires for baking: Cake A – 1 units of butter and 3 units of flour Cake B – 1 units of butter and 2 units of flour Totally he has 5 units of butter and 12 units of floor in store. He makes a profit of Rs 6 for each cake A sold and Rs 5 for each cake B sold. Given the above linear programming problem, determine the expressions for constraints and objective in order to maximize the profit. Answer: Objective: Maximize z=6x+5y Constraints: x+y<=5 3x+2y<=12 With non negativity constraint: x,y>=0	5M	1	3

PART- C
Total 20 Marks (Choice)

No	Question	Mark	CO	Leve
•		S	No.	l
3a	Solve the below LPP using Simplex method.	10M	2,3	2,3
	Maximize $3x_1+x_2$			
	Subject to: $x_1 + x_2 \le 30$			
	$2x_1 + 2x_2 \le 24$			
	$4x_1 + x_2 \le 36$			
	With non negativity constraint : $x_1, x_2 \ge 0$			
	Answer:			
	For x1=8 and x2=4 max of z=28			
	OR	'		
3b	Solve the below LPP using Simplex method.	10M	2,3	2,3
	Maximize $2x_1+x_2+3x_3$			
	Subject to: $x_1 + x_2 + 3 x_3 \le 36$			
	$2x_1 + 2x_2 + 5x_3 \le 12$			
	$2x_1 + x_2 + 4x_3 \le 48$			
	With non negativity constraint : $x_1, x_2, x_3 \ge 0$			
	Answer:			
	For $x1=6$ max of $z=12$			

4a	Apply Graham scan algorithm to find convex hull for the points : $\{(0,0), (4,4), (0,3), (1,2), (3,1), (3,3)\}$ Answer:	10M	2,3	2,3
	{(0,0),(3,1),(4,4),(0,3)} OR			
4b	Design pseudo code/ program for checking whether a pair of line segments intersects or not. Apply the same to check line segment (p1,p2) intersects with(p3,p4). p1=(15,10) p2=(45,25), p3=(20,35) and p4=(30,10) Answer: Yes they intersect.	10M	2,3	2,3

1.a) Answer:

Figure 33.9 The operation of Jarvis's march. We choose the first vertex as the lowest point p_0 . The next vertex, p_1 , has the smallest polar angle of any point with respect to p_0 . Then, p_2 has the smallest polar angle with respect to p_1 . The right chain goes as high as the highest point p_3 . Then, we construct the left chain by finding smallest polar angles with respect to the negative x-axis.

4.b) Answer:

```
SEGMENTS-INTERSECT(p_1, p_2, p_3, p_4)
     d_1 = DIRECTION(p_3, p_4, p_1)
     d_2 = \text{DIRECTION}(p_3, p_4, p_2)
     d_3 = \text{DIRECTION}(p_1, p_2, p_3)
 3
     d_4 = \text{DIRECTION}(p_1, p_2, p_4)
if ((d_1 > 0 \text{ and } d_2 < 0) \text{ or } (d_1 < 0 \text{ and } d_2 > 0)) and
 5
           ((d_3 > 0 \text{ and } d_4 < 0) \text{ or } (d_3 < 0 \text{ and } d_4 > 0))
           return TRUE
 7
      elseif d_1 == 0 and ON-SEGMENT (p_3, p_4, p_1)
 8
           return TRUE
      elseif d_2 == 0 and ON-SEGMENT (p_3, p_4, p_2)
 9
10
           return TRUE
      elseif d_3 == 0 and ON-SEGMENT(p_1, p_2, p_3)
11
           return TRUE
12
     elseif d_4 == 0 and ON-SEGMENT(p_1, p_2, p_4) return TRUE
13
14
15
     else return FALSE
DIRECTION (p_i, p_j, p_k)
  return (p_k - p_i) \times (p_j - p_i)
ON-SEGMENT(p_i, p_j, p_k)
    if \min(x_i, x_j) \le x_k \le \max(x_i, x_j) and \min(y_i, y_j) \le y_k \le \max(y_i, y_j) return TRUE
    else return FALSE
```