Progetto Elaborazione Dati Scientifici

"Fat detection su immagini di carne"

1. Descrizione dataset

- 2. Obiettivi del progetto
- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

1. Descrizione dataset

Il dataset è composto da due immagini R,G,B che rappresentano due pezzi di carne

500 x 348 px

431 x 341 px

1. Descrizione dataset

- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

• Analisi Esplorativa: estrapolazione di informazioni tramite l'utilizzo di tecniche come la scomposizione per canale e la conversione in scala di grigi (con i relativi istogrammi)

- Analisi Esplorativa: estrapolazione di informazioni tramite l'utilizzo di tecniche come la scomposizione per canale e la conversione in scala di grigi (con i relativi istogrammi)
- PCA Esplorativa: usata per capire se proiettando i dati in uno spazio dimensionalmente più piccolo è possibile distinguere le due categorie carne e grasso

- Analisi Esplorativa: estrapolazione di informazioni tramite l'utilizzo di tecniche come la scomposizione per canale e la conversione in scala di grigi (con i relativi istogrammi)
- PCA Esplorativa: usata per capire se proiettando i dati in uno spazio dimensionalmente più piccolo è possibile distinguere le due categorie carne e grasso
- Clustering: confronto tra metodi di clustering implementati con l'obiettivo di individuare "sfondo", "carne" e "grasso" nell'immagine su cui sono applicati

- Analisi Esplorativa: estrapolazione di informazioni tramite l'utilizzo di tecniche come la scomposizione per canale e la conversione in scala di grigi (con i relativi istogrammi)
- PCA Esplorativa: usata per capire se proiettando i dati in uno spazio dimensionalmente più piccolo è possibile distinguere le due categorie carne e grasso
- Clustering: confronto tra metodi di clustering implementati con l'obiettivo di individuare "sfondo", "carne" e "grasso" nell'immagine su cui sono applicati
- Previsione del grasso: creazione di un modello PCA (basato solo sui pixel che definiscono il cluster del grasso) in grado di identificare il grasso su un'immagine di test mai vista

- 1. Descrizione dataset
- 2. Obiettivi del progetto
- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

Analisi svolta solo su "steak1"

Canali R G B

Canali R G B

- ROSSO: distingue carne da sfondo
- VERDE / BLU: risalta grasso dal resto

Rappresentazione immagine in scala di grigi con relativo istogramma di frequenze

Rappresentazione immagine in scala di grigi con relativo istogramma di frequenze

- 1. Descrizione dataset
- 2. Obiettivi del progetto
- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

Scelta numero delle componenti modello PCA

Numero PC ottimale trovato è 1

Scelta numero delle componenti modello PCA

Numero PC ottimale trovato è 1

Scelta numero delle componenti modello PCA

Numero PC ottimale trovato è 1

Scelta numero delle componenti modello PCA

PC1 cattura una varianza del 94.58%

Scelta numero delle componenti modello PCA

Immagini degli score per ogni PC.

Scelta numero delle componenti modello PCA

Immagini degli score per ogni PC.

Loadings PC1

Residui modello PCA

Residui modello PCA

Immagine score PC1

Grafico **Q-T^2**Ogni elemento è colorato in base al valore di **score**

Selezione soglie score di PC1 per distinguere le categorie

Selezione soglie score di PC1 per distinguere le categorie

Istogramma score PC1

Selezione soglie score di PC1 per distinguere le categorie

Selezione soglie score di PC1 per distinguere le categorie

- 1. Descrizione dataset
- 2. Obiettivi del progetto
- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

5. Clustering

5. Clustering

Per questa analisi sono stati presi in considerazione 2 metodi di clustering:

- KMeans
- DBScan

5. Clustering

Per questa analisi sono stati presi in considerazione 2 metodi di clustering:

- KMeans
- DBScan

OBIETTIVO: individuare i cluster di "sfondo", "carne", "grasso"

Parametri KMeans:

- $\bullet K = 3$
- Distance = EuclideanSq / Manhattan

Parametri KMeans:

- $\bullet K = 3$
- Distance = EuclideanSq / Manhattan

Obiettivo: confronto cluster KMeans con diversi metodi per il calcolo della distanza (EuclideanSq e Manhattan)

Parametri KMeans:

- $\bullet K = 3$
- Distance = EuclideanSq / Manhattan

Obiettivo: confronto cluster KMeans con diversi metodi per il calcolo della distanza (EuclideanSq e Manhattan)

Parametri KMeans:

- $\bullet K = 3$
- Distance = EuclideanSq / Manhattan

Obiettivo: confronto cluster KMeans con diversi metodi per il calcolo della distanza (EuclideanSq e Manhattan)

PC1 con soglie

PC1 con soglie

KMeans (EuclideanSq)

PC1 con soglie

KMeans (EuclideanSq)

KMeans (Manhattan)

Parametri

- **distance** = Manhattan
- minPts = 6
- eps = [3, 4, 5]

Parametri

- **distance** = Manhattan
- minPts = 6
- eps = [3, 4, 5]

2 * dimensionalità dataset

K Distance Graph

K Distance Graph

2 *	dimensionalità	dataset

minPts = 6			
eps	Numero Cluster		
3	159		
4	58		
5	24		

K Distance Graph

Parametri

• **distance** = Manhattan

• minPts = 6

eps = [3, 4, 5]

2 * dimensionalità dataset

Troppi cluster trovati

I parametri (minPts e eps) sembrano non essere adatti al dataset.

minPts = 6		
eps	Numero Cluster	
3	159	
4	58	
5	24	

Parametri

- **distance** = Manhattan
- minPts = 50
- eps = [7, 8, 9]

Parametri

- **distance** = Manhattan
- minPts = 50
- eps = [7, 8, 9]

Dataset soggetto ad avere duplicati e rumore

K Distance Graph

K Distance Graph

Parametri

• **distance** = Manhattan

• minPts = (50)

eps = [7, 8, 9]

Dataset soggetto ad avere duplicati e rumore

minPts = 50			
eps	Numero Cluster		
7	4		
8	4		
9	5		

K Distance Graph

K Distance Graph

• **distance** = Manhattan

Dataset soggetto ad avere duplicati e rumore

K Distance Graph

Parametri

- **distance** = Manhattan
- minPts = 50
- eps = [7, 8, 9]

Dataset soggetto ad avere duplicati e rumore

Parametri migliori trovati

- **distance** = Manhattan
- minPts = 50
- eps = 8

Parametri migliori trovati

- **distance** = Manhattan
- minPts = 50
- eps = 8

Scatter 3 del cluster

Immagine colorata per cluster

Parametri migliori trovati

- **distance** = Manhattan
- minPts = 50
- eps = 8

Scatter 3 del cluster

Immagine colorata per cluster

Confronto tra KMeans e DBScan

Confronto tra KMeans e DBScan

Confronto tra KMeans e DBScan

Il valore di **Silhouette del KMeans** è **maggiore** rispetto a quello del DBScan

KMeans riesce a creare cluster migliori rispetto al DBScan

- 1. Descrizione dataset
- 2. Obiettivi del progetto
- 3. Analisi esplorativa
- 4. PCA esplorativa
- 5. Clustering
- 6. Previsione grasso

L'obiettivo è adesso la previsione del grasso su una nuova immagine (steak2). Per farlo sono stati seguiti i seguenti passaggi:

- A. Creazione di un modello PCA sulla base dei soli pixel del grasso trovati dal metodo di clustering migliore (KMeans in questo caso) su steak1
- B. Proiezione dei pixel di steak2 nello spazio PCA
- C. Tutti quei punti con valore Q<Qlim e T^2<T^2lim sono considerati come grasso

A. Creazione modello PCA

Selezionare solo pixel del cluster di grasso di KMeans di
Steak 1

Mean Centering
Preprocessing

PCA

Cluster grasso KMeans

5480 x 3
(Solo pixel grasso)

174000 x 3
(Unfold con tutti i pixel)

A. Creazione modello PCA

Numero PC = 1

PC1 cattura più del 95% di varianza

A. Creazione modello PCA

PC1 cattura più del 95% di varianza

A. Creazione modello PCA

Numero PC = 1

PC1 cattura più del 95% di varianza

Immagine originale

Immagine originale

Immagine proiettata (Score PC1)

Immagine originale

Immagine proiettata (Score PC1)

Q-T^2 plot colorato in base al valore degli scores

C. Previsione

C. Previsione

I punti di steak2 che hanno valori Q<Qlimit e T^2<T^2limit sono considerati come grasso e sono riportati di seguito in giallo

Grazie per l'attenzione