

4. 6.) Electrostatic discharge requirements (ESD) EPOSA 04.50

Type of test	charging voltage	Basic standard	Test set-up	Comment	Performance criteria
Electrostatic discharge Air discharge	20 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В
Electrostatic discharge Contact discharge	8 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В

Operating mode	Test positions	Criteria of compliance
Normal operation	The 20 test positions are shown in the following graphic.	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice or data links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test positions for ESD on the EPOSA 04.50

Test result for the EPOSA 04.50

Test position	Charging voltage	Type of discharge	Positive discharge	Negative discharge
1	8 kV	contact	OK	OK
2	8 kV	contact	OK	OK
3	20 kV	air	OK	OK
4	20 kV	air	OK	OK
5	20 kV	air	OK	OK
6	20 kV	air	OK	OK
7	20 kV	air	OK	OK
8	20 kV	air	OK	OK
9	20 kV	air	OK	OK
10	20 kV	air	OK	OK
11	20 kV	air	OK	OK
12	20 kV	air	OK	OK
13	20 kV	air	OK	OK
14	8 kV	contact	OK	OK
15	20 kV	air	OK	OK
16	20 kV	air	OK	OK
17	20 kV	air	OK	OK
18	20 kV	air	OK	OK
19	20 kV	air	OK	OK
20	20 kV	air	OK	OK
ok Nok	EUT passed EUT failed			

checked by:

Date: 16,10,2006

4. 7.) Radiated electromagnetic field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Radiated electromagnetic field	80 MHz – 1000 MHz Fieldstrength: 10 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	EN 61000-4-3	EN 61000-4-3		A

Operating mode	Criteria of compliance
Normal operation	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice or data links shall occur. On the handsets there shall be no more noise level than 75 dBA over the whole frequency range (55dBA at 900 MHz). After the test there shall be no degradation of performance.

Test result

Type of test	Test parameters	Performance criteria	Result
Radiated electromagnetic field	80 MHz – 1000 MHz Fieldstrength: 10 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	A	OK
OK NOK	The state of the s		

4. 8.) Induced RF-field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
RF-current common mode	0,15 MHz – 80 MHz 10 Vrms (unmodulated) Modulation 80%/1 kHz AM Stepsize 1 % Source impedance 150 Ohm	EN 61000-4-6	EN 61000-4-6		A

Operating mode	Criteria of compliance
Normal operation	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice or data links shall occur. On the handsets there shall be no more noise level than 55 dBA over the whole frequency range. After the test there shall be no degradation of performance.

Test result

Measured line		Type of coupling	Performance criteria	Result
PCM 30 line EPOSA 04.40		Clamp Injection	А	OK
PCM 30 line E	POSA 04.50	Clamp Injection	А	OK
OK EUT passed NOK EUT failed				

4. 9.) Electrical fast transients/burst requirements

				criteria
50 ns t _r /t _n -Iz Burst frequency ms Burst time -Iz Repetition frequency larity: positive/negative	EN 61000-4-4	EN 61000-4-4 Coupling clamp		В
-	lz Burst frequency ms Burst time Iz Repetition frequency	Iz Burst frequency ms Burst time Iz Repetition frequency	Hz Burst frequency ms Burst time lz Repetition frequency	Hz Burst frequency ms Burst time lz Repetition frequency

Operating mode	Criteria of compliance
Normal operation	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice or data links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test result

4. 9. 1.) Measurement on other lines (coupling clamp)

	Measured line	Test voltage	Performance criteria	Positive pulse	Negative pulse
	PCM30 - EPOSA 04.50	2 kV	В	OK	OK
	PCM30 - EPOSA 04.40	2 kV	В	OK	OK
OK EUT F		passed failed			

Appendix 1 Test equipment used

	Anechoic Chamber with 3m measurement distance	NT-100	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
	Stripline according to ISO 11452-5	NT-108	Digital Radio Tester CTS55	NT-208
\boxtimes	MA 240 - Antenna mast 1 - 4 m height	NT-110	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
\boxtimes	DS 412 - Turntable 0 - 400 ° Azimuth	NT-111	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
\boxtimes	HD 100 Controller Mast+Turntable	NT-112	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
	HUF-Z2 - Bicon. Antennna 20 - 300 MHz	NT-120	Radiocommunicationanalyzer Marconi 2945A	NT-212
	HUF-Z3 - Log. Per, Antenna 200 - 1000 MHz	NT-121	2855S - Communication analyzer	NT-213
	HFH-Z2 - Loop Antenna. 9 kHz - 30 MHz	NT-122	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Diode Detector 0,01 GHz - 26,5 GHz	NT-215
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	RubiSource T&M Timing reference	NT-216
\boxtimes	3115 - Horn Antenna 1 - 18 GHz	NT-125	Radiocommunicationanalyzer SWR 1180 MD	NT-217
	3116 - Horn Antenna 18 - 40 GHz	NT-126	Mixer M19HWD 40 GHz – 60 GHz	NT-218
	SAS-200/543 - Bicon, Ant. 20 MHz - 300 MHz	NT-127	Mixer M12HWD 60 GHz – 90 GHz	NT-219
\boxtimes	AT-1080 - Log. Per. Ant. 80 - 1000 MHz	NT-128	TDS - 540 DSO Digital scope	NT-220
\boxtimes	HK-116 - bicon. Ant. 20 MHz - 300 MHz	NT-129	PM97 Scopemeter	NT-221
	HK-116 - bicon. Ant. 20 MHz - 300 MHz	NT-130	TPS 2014 Digital scope	NT-222
\boxtimes	3146 - Log. Per. Ant. 200 - 1000MHz	NT-131	Artificial Ear according to IEC 60318	NT-224
	Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225
	Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232
	Log, per. Antenna 800 MHz - 2500 MHz	NT-134	SRM-3000 Spectrumanalyzer	NT-233
	Log, per. Antenna 800 MHz - 2500 MHz	NT-135	E-field probe SRM 75 MHz – 3 GHz	NT-234
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Hall-Teslameter ETM-1	NT-241
	Conical Dipol Antenna PCD8250	NT-138	EFA-3 H-field- / E-field probe	NT-243
	HZ-1 Antenna tripod	NT-150	E-field measuring instrument EMR-200; 100 kHz – 3 GHz	NT-244
	BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245
\boxtimes	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	Magneticfield-Sensor 300 kHz – 30 MHz	NT-246
	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	E-field probe 3 MHz – 18 GHz	NT-247
	ESVP - Test receiver 20 - 1000 MHz	NT-201	H-field probe 27 MHz – 1 GHz	NT-248
	ESPC - Test receiver 9 kHz - 2,5 GHz	NT-203	ELT-400 1 Hz – 400 kHz	NT-249

Division Medical Technology/ Communication Technology/ EMC

Department: EMV

Test report number: M/EMV-06/231

Page: 1 of 3

Date: 16.10.2006

Checked by:

Appendix 1 (continued) Test equipment used

	MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250		AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
\boxtimes	FCC-203I EM Injection clamp	NT-251		APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
	FCC-203I-DCN Ferrite decoupling network	NT-252		Preamplifier 1 GHz - 4 GHz	NT-335
	PR50 Current Probe	NT-253		Preamplifier for GPS MKU 152 A	NT-336
	PR630 Current Probe	NT-254		Preamplifier 100 MHz – 23 GHz	NT-337
	Fluke 87 V True RMS Multimeter	NT-260		DC Block 10 MHz – 18 GHz Model 8048	NT-338
	Model 2000 Digital Multimeter	NT-261		2-97201 Electronic load	NT-341
	Fluke 79 Digital Multimeter	NT-262		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
	ESH2-Z5 Artificial mains network 4x25A	NT-300		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
	ESH3-Z5 Artificial mains network 2×10A	NT-301		VDS 200 Mobil-impuls-generator	NT-350
	ESH3-Z6 Artificial mains network 1×100A	NT-302		LD 200 Mobil-impuls-generator	NT-351
	ESH3-Z4 T-Artificial network	NT-303		MPG 200 Mobil-Impuls-Generators	NT-352
	PHE 4500/B Power amplifier	NT-304		EFT 200 Mobil-impuls-generator	NT-353
	EZ10 T-Artificial Network	NT-305		AN 200 S1 Artificial Network	NT-354
	ENY22 Artificial Network	NT-308		FP 16/3-1 3 ph. Coupling filter (Burst)	NT-400
	ENY41 Artificial Network	NT-309		PHE 4500 - Mains impedance network	NT-401
\boxtimes	SMG - Signal generator 0,1 - 1000 MHz	NT-310		IP 6.2 Coupling filter for data lines (Surge)	NT-403
	PM 5518 TXVPS Video generator	NT-311		ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
	RefRad Reference generator	NT-312	\boxtimes	IP 4 - Capacitive clamp (Burst)	NT-411
	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313		Highpass-Filter 100 MHz – 3 GHz	NT-412
	40 MHz Arbitrary Generator T1241	NT-315		Highpass-Filter 600 MHz – 4 GHz	NT-413
	PEFT - Burst generator up to 4 kV	NT-320		Highpass-Filter 1250 MHz – 4 GHz	NT-414
\boxtimes	ESD 30 System up to 25 kV	NT-321		Highpass-Filter 1800 MHz – 16 GHz	NT-415
	PSURGE 4.1 Surge generator	NT-324		Highpass-Filter 3500 MHz – 18 GHz	NT-416
	TRANSIENT 1000 Immunity test system	NT-325		RF-Attenuator 20 dB 0,1 - 1000 MHz / 25 W	NT-421
	VCS 500-M6 Surge-Generator	NT-326		RF-Attenuator 10 dB 0,1 - 1000 MHz / 20 W	NT-422
\boxtimes	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330		RF-Attenuator 30 dB 0,1 - 1000 MHz / 1 W	NT-423
	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331		RF-Attenuator 30 dB	NT-424
\boxtimes	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332		RF-Attenuator 6 dB 0,1 - 1000 MHz / 1 W	NT-425

Division Medical Technology/ Communication Technology/ EMC

Department: EMV

Test report number: M/EMV-06/231

Page: 2 of 3

Date: 16.10.2006

Checked by: __/4

Appendix 1 (continued) Test equipment used

	RF-Attenuator 6 dB 0,1 - 1000 MHz / 1 W	NT-426		ES-K1 Version 1.71 Test software	NT-520
	RF-Attenuator 6 dB	NT-428		SRM-TS Version 1.3 software for SRM-3000	NT-522
	RF-Attenuator 0 dB - 81 dB	NT-429		SPS-PHE Test software V2,32 voltage fluctuations/harmonics	NT-525
	WRU 27 - Band blocking 27 MHz	NT-430		SPS-EM Test software V2.32 for PHE 4500/B	NT-527
	WHJ450C9 AA - High pass 450 MHz	NT-431		Noise power test apparatus according to EN 55014	NT-530
	WHJ250C9 AA - High pass 250 MHz	NT-432		Vertical coupling plane (ESD)	NT-531
	RF-Load 150 W	NT-433	\boxtimes	Test cable #4 for EN 61000-4-6	NT-553
	Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435	\boxtimes	Test cable #3 for conducted emission	NT-554
	RF-Attenuator DC – 18 GHz 6 dB	NT-436		Test cable #5 ESD-cable (2×470k)	NT-555
	RF-Attenuator DC – 18 GHz 6 dB	NT-437		Test cable #6 ESD-cable (2×470k)	NT-556
	RF-Attenuator DC – 18 GHz 10 dB	NT-438		Test cable #8 Sucoflex 104EA	NT-559
	RF-Attenuator DC – 18 GHz 20 dB	NT-439		Test cable #9 (for outdoor measurements)	NT-580
	I+P 7780 Directional coupler 100 - 2000 MHz	NT-440		Test cable #10 (for outdoor measurements)	NT-581
	ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #13 Sucoflex 104PE	NT-584
	Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #21 for SRM-3000	NT-592
	Directional coupler 0,1 MHz – 70 MHz	NT-444		Shield chamber	NT-600
	Directional coupler 0,1 MHz – 70 MHz	NT-445		Climatic chamber -55°C to +180°C	M-512
	Tube imitations according to EN 55015	NT-450		Control and simulation equipment for EUT	
	FCC-801-M2-50A Coupling decoupling network	NT-459			
	FCC-801-M5-25 Coupling decoupling network	NT-460			
	FCC-801-AF10 Coupling decoupling network	NT-461			
	FCC-801-S25 Coupling decoupling network	NT-462			
	FCC-801-T4 Coupling decoupling network	NT-463			
	FCC-801-C1 Coupling decoupling network	NT-464			
	F-16A - Current probe 1kHz - 70MHz	NT-465			
	95242-1 – Current probe 10 MHz – 400 MHz	NT-468			
	PC P4 3 GHz Test computer	NT-500			
\boxtimes	PC P4 1700 MHz Notebook	NT-505			
	PC Intel Centrino 1600 MHz Notebook	NT-506			
	Monitoring camera with Monitor	NT-511			

Division Medical Technology/ Communication Technology/ EMC

Department: EMV

Test report number: M/EMV-06/231

Page: 3 of 3

Date: 16.10.2006

Checked by:

Measurement diagram:

of 5

Date: 16.10.2006

checked by:

Department: EMC
Test report reference: M/EMV-06/231

Measurement diagram:
of 5

Date: 16.10.2006
checked by:

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

Test report reference: M/EMV-06/231

EN 55022 F QP

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

EN 55022 F QP

FREQUENTIS Operator Positions (HCR1179 implemented) EPOSA 04.40, EPOSA 04.50 Information in respect to EMC testing

Device Under Test:

Operator Positions: EPOSA 04.40, EPOSA 04.50

Short description:

The FREQUENTIS Operator Positions EPOSA 04.40 and EPOSA 04.50 conists of the touch entry device and the control electronic covered in a single housing. The Operator Positions form the human interface to operate the full digital Voice Communication System (VCS).

Depending on the business field, the Operator Positions together with the digital switch provide high secure voice and data services to be used in fields of e.g. air traffic management, public transport, public safety, martime and further more applications.

Dimensions:

The Operator Positions are designed for integration into working consoles.

(mm)	EPOSA 04.40	EPOSA 04.50
length	253	326
width	253	254
high	75	70
weight	3,5kg	4,5kg

System configuration:

The Operator Positions EPOSA 04.40 and EPOSA 04.50 were connected via shielded CAT5 cable to the digital switch (GATE X). Outside the EMC absorber chamber, a third Operator Position and the TMCS were connected to the same digital switch.

The following hardware components were used during testing:

Insider EMC absorber chamber:

1 x MOD EPOSA 04.40

1 x MOD EPOSA 04.50

2 x MOD PLSP 03.00

1 x MOD POT 03.00

1 x.MOD POT 03.10

2 x MOD PIPA 04.00

2 x Handset (TAS VT3 PTT)

AKTENNOTIZ File Q-FM 01001 Rev.11 Nr:

File: EPOSA_IVSR_HCR1179.DOC

Autor: Frequentis

Seite: 1 von 3

Datum: 2006-09-08

2 x Power Supply MeanWell P66A

Outside absorber chamber:

1 x GATE X (1 HU Switch)

1 x TMCS

1 x MOD EPOSA 04.40

1 x PIPA 04.00

1 x POT 03.00

1 x PLSP 03.00

1 x Handset

1 x Power Supply Mean Well P66A

Serial numbers and software of the tested hardware:

Test item inside EMC absorber chamber

Unit Softwarelevel		Serial Number
MOD EPOSA 04.40	IVSR Rel. 4.1 Rev 2.0	30-0400204-PT
MOD EPOSA 04.50	IVSR Rel. 4.1 Rev 2.0	30-0400205-PT
MOD PLSP 03.00	IVSR Rel. 4.1 Rev 2.0	30-0401200-00008
MOD POT 03.10	IVSR Rel. 4.1 Rev 2.0	30-0401401-00007
MOD PIPA 04.00	IVSR Rel. 4.1 Rev 2.0	30-0401000-00080
MOD PLSP 03.00	IVSR Rel. 4.1 Rev 2.0	30-0401200-00006
MOD POT 03.00	IVSR Rel. 4.1 Rev 2.0	30-0401400-00007
MOD PIPA 04.00	IVSR Rel. 4.1 Rev 2.0	30-0401000-00081
Handset TAS		30-0013802
Handset TAS		30-0013802
Power Supply	MeanWell P66A-6P5M	EJ103594-0526
Power Supply	MeanWell P66A-6P5M	EJ103601-0526

Item outside EMC absorber chamber

Unit	Softwarelevel	Serial Number	
MOD EPOSA 04.40	IVSR Rel. 4.1 Rev 2.0	30-0400204-PT	
MOD PLSP 03.00	IVSR Rel. 4.1 Rev 2.0	30-0401200-00001	
MOD POT 03.00	IVSR Rel. 4.1 Rev 2.0	30-0401400-00005	
MOD PIPA 04.00	IVSR Rel. 4.1 Rev 2.0	30-0401000-00072	
Handset TAS		30-0013802	
Power Supply	MeanWell P66A-6P5M	EJ103670-0526	
MOD GATE X	IVSR Rel. 4.1 Rev 2.0	30-0403601-PT	
TMCS	IVSR Rel. 4.1 Rev 2.0	HP Compaq	
TIVICS	(WINDOWS XP)	DC7100 CMP	

16.10.2006

Seite: 2 von 3 Datum: 2006-09-08

AKTENNOTIZ File Q-FM 01001 Rev.11 Nr:

File: EPOSA_IVSR_HCR1179.DOC

Autor: Frequentis

Seld diagnostic:

The FREQUENTIS Operator Positions EPOSA 04.40 and EPOSA 04.50 were supervised via a PC based Technical Monitoring and Control System (TMCS) developed by FREQUENTIS.

The TMCS has two main tasks to perform:

- 1. Providing the possibility to configure and control the Operator Positions and the digital switch.
- 2. Monitor the status (e.g. ok, not ok) of the HW and SW modules.

For self-diagnostic purposes state changes (e.g. "ok -> not ok" or "not ok -> ok") will be reported to the TMCS which displays the actual state and documents the occurred events in log files.

Test Setup:

The proper function of the DUT during testing was monitored by the VCS operator positions and the TMCS. In order to evaluate the performance of the system during testing, active connections were set up. Using the VCS operator positions and TMCS outside the absorber room, active calls and data connections were monitored. These connections were not to be interrupted nor affected.

The following connections were set up:

1) Active TMCS connection

The Technical Monitoring and Control System (outside the absorber room) was permanently connected via shielded CAT 5 cable to the digital switch (GATE-X). The TMCS shows the current system status. The system status was montitored before, during and after testing

2) Active Call connection: Operator Position No.:1(OP1) to Operator Position No.:2 (OP2) to Operator Position No.:3 (OP3)

Operator Positions were connected to the digital switch (GATE-X) via shielded CAT 5 cables. An active call connection was setup from OP1 (inside absorber chamber) to OP2 (inside absorber chamber) and to OP3 (outside absorber chamber). The operator positions were switched together via conference feature. During testing the active call was monitored. Additionally the system status was monitored over the connected TMCS. During immunity testing the handset voice level on OP3 was measured and recorded with an artificial ear device.

16.10.2006

Seite:/3 von 3 Datum: 2006-09-08

AKTENNOTIZ File
Q-FM 01001 Rev.11 Nr:

File: EPOSA_IVSR_HCR1179.DOC

Autor: Frequentis