Постановка

В стране n городов. Каждый город имеет номер — целое число от 1 до n. Столица имеет номер g_1 . Дороги между городами двухсторонние, причем есть только один путь от столицы до каждого города.

Карта хранится в следующем виде: для каждого не столичного города i хранится число r_i - номер последнего города на пути из столицы в город i.

Было решено перенести столицу из города g_1 в город g_2 . После этого старое представление карты перестало быть верным. Необходимо найти новое представление карты дорог в описанном выше виде.

Входные данные

Первая строка содержит следующие 3 числа: n, g_1, g_2 , ограниченные следующими условиями $2 \le n \le 5 \cdot 10^4$ и $1 \le g_1 \ne g_2 \le n$. количество городов, номер старой столицы и номер новой столицы соответственно.

Следующая строка содержит n-1 чисел - старое представление карты дорог.

Для всех городов за исключением g_1 задано целое число p_i (номер последнего города на пути из столицы в город i). Все города описаны в порядке увеличения номеров.

Выходные данные

Выведите n-1 чисел — новое представление карты дорог в том же формате.

Пример 1

Входные данные	Выходные данные
3 2 3	2 3
2 2	

Входные данные	Выходные данные
6 2 4	6 4 1 4 2
6 1 2 4 2	04142

Постановка

Рассматривается n людей. Они общаются в m группах. Человек x заболевает Covid-19. Не зная о своей болезни он идет встречаться со своими друзьями (друзья если оба общаются в какой-нибудь группе). Друзья встречаются со своими друзьями и тд. Это происходит до того, как не останется пары друзей, в которой один заразившийся, а другой - нет.

Для каждого человека необходимо узнать сколько людей заболело(включая его самого), если он заболел первый.

Входные данные

В первой строке записаны два целых числа n и m $(1 \le n, m \le 5 \cdot 10^5)$ — количество людей и групп, соответственно.

Далее следуют m строк с описанием групп. Строка i начинается целым числом $0 \le g_i \le n$ — количество пользователей в группе i. Далее следуют g_i чисел, обозначающих людей. $\sum_{i=1}^m k_i \le 5 \cdot 10^5$.

Выходные данные

Выведите n целых чисел равных количеству зараженных для каждого человека.

Входные данные	Выходные данные
7 5	
3 2 5 4	
0	4 4 1 4 4 9 9
2 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1	
2 6 7	

Постановка

Учитель нарисовал на доске п точек и соединил их в определенном порядке. Порядок представляет собой список точек в процессе их соединения. Точки пронумерованы от 1 до n. Ученикам неоходимо, зная последовательность в которой были соединены точки, соединить их так же(сохранив связи), но изменив порядок их соединения. Начинать рисовать нужно всегда из точки 1, и рисовать не прерываясь пока не востановятся все соединения. Новый список должен быть лексикографически наименьший, но строго больше предыдущего. Помогите ученикам решить поставленную задачу.

Входные данные

В первой строке - два целых числа n и m $(3 \le n \le 10^2, 3 \le m \le 2 \cdot 10^3)$ — количество точек и соединений между ними. В следующей строке записано m+1 чисел, не превышающих n: описание старого маршрута в виде списка точек, которые он посещал. Гарантируется, что последнее число в этом списке совпадает с первым.

Можете предполагать, что ни одна точка не соединена сама с собой, и если существует линия между двумя точками, то только одна. В то же время, могут существовать изолированные точки, не соединённые вообще.

Выходные данные

Выведите m+1 чисел, не превышающих n: описание нового маршрута, в соответствии с которым ученики должны соединять точки. Если такого маршрута не существует, выведите **None**.

Пример 1

Входные данные	Выходные данные
3 3 1 2 3 1	1 3 2 1

Входные данные	Выходные данные
3 3 1 3 2 1	None
1 3 2 1	

Постановка

Дан неориентированный граф.

Граф «отличный» если для каждой тройки целых чисел (l,k,r), где $1 \le l < k < r \le n$, где n - число вершин, если есть путь из вершины l в вершину r, тогда существует путь из вершины l в вершину k.

Тоесть, в «отличном» графе, если из вершины l можно по ребрам дойти до вершины r(l < r), тогда также должно быть можно дойти до вершин $(l + 1), (l + 2), \ldots, (r - 1)$.

Найдите минимальное число ребер которых надо добавить в граф, чтобы он стал «отличным».

Входные данные

В первой строке - два целых числа n-число вершин и m-число ребер $(3 \le n \le 2 \cdot 10^5)$ и $1 \le m \le 2 \cdot 10^5)$.

В следующих m строках записаны по два целых числа t_i и g_i $(1 \le t_i, g_i \le n, t_i \ne g_i)$, описывающих ребро между вершинами t и g.

Граф простой (без петель и между каждой парой вершин не более одного ребра).

Выходные данные

Минимальное количество ребер которое необходимо добавить в граф.

Входные данные	Выходные данные
14 8	
1 2	
2 7	
3 4	
6 3	1
5 7	
3 8	
6 8	
11 12	

Постановка

Дан ориентированный граф из n вершин без петель. Каждая пара вершин соединена ровно одним ребром. Для любых двух вершин u и v ($u \neq v$) либо есть ребро из u в v, либо есть ребро из v в u.

Требуется найти в нем цикл длины три.

Входные данные

В первой строке задано целое число n ($1 \le n \le 5000$). В следующих n строках задана матрица смежности графа G. $A_{ij} = 1$ если есть ребро из i в j, в противном случае ребра нет.

Выходные данные

Выведите 3 номера вершин цикла если он есть. Если цикл длины 3 отсутствует, то выведите **None**. Если решений несколько, выведите любое.

Пример 1

Входные данные	Выходные данные
5	
00100	
10000	1 3 2
01001	1 3 2
11101	
11000	

Входные данные	Выходные данные
5	
01111	
00000	None
01000	None
01100	
01110	