

Functional Analysis I

Homework Assignment 6

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 5 Points

Let E and F be normed spaces, and let $\Phi \in L(E, F)$. Prove that

$$\Phi^{**}\Lambda_E = \Lambda_E \Phi.$$

Here Φ^{**} denotes the dual (or adjoint) operator of Φ^{*} which maps from E^{**} to F^{**} . Assume now that Φ is an isomorphism, i.e. Φ is bijective and $\Phi^{-1} \in L(F, E)$. Prove the following statements:

- (i) Φ^* is also an isomorphism and $(\Phi^*)^{-1} = (\Phi^{-1})^*$.
- (ii) E is reflexive if and only if F is reflexive.

Exercise 2: 5 Points

Let E be a reflexive Banach space and F a closed linear subspace of E. Prove that $F^{\perp \perp} = \Lambda_E(F)$, where Λ_E is the canonical embedding of E in E^{**} . If E is not reflexive, is the statement then still true? Give a proof or counterexample.

Exercise 3: 4 Points

Let E and F be normed spaces, $T \in L(E, F)$. Prove that

$$\overline{\operatorname{ran}(T)} = (\ker(T^*))_{\perp}, \quad \ker(T) = (\operatorname{ran}(T^*)_{\perp}.$$

Exercise 4: 6 Points

Let X be a normed space and $Z\subseteq X^*$ a separable linear subspace. Prove that there is a separable linear subspace $Y\subseteq X$ suth that Z is isometrically isomorphic to a linear subspace of Y^* .

Bonus Exercise: +5 Points

Prove that every separable normed space (respectively Banach space) E is isometrically isomorphic to a (respectively closed) subspace of ℓ_{∞} .

Please submit your homework in the big exercise on Monday, May 27.