

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12N 15/62, 15/56, 15/55 C12N 15/53, 1/19, 11/16 // (C12N 1/19, C12R 1:865)		A1	(11) International Publication Number: WO 94/01567 (43) International Publication Date: 20 January 1994 (20.01.94)
(21) International Application Number:	PCT/EP93/01763		(71) Applicant (for all designated States except AU BB CA GB IE LK MN MW NZ SD US): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
(22) International Filing Date:	7 July 1993 (07.07.93)		(72) Inventors; and (75) Inventors/Applicants (for US only): KLIS, Franciscus, Maria [NL/NL]; Benedenlangs 102, NL-1025 KL Amsterdam (NL). SCHREUDER, Maarten, Pleun [NL/NL]; Rode Kruislaan 1220, NL-1111 XB Diemen (NL). TOSCHKA, Holger, York [NL/NL]; Coornherstraat 77, NL-3132 GB Vlaardingen (NL). VERRIPS, Clemens, Theodorus [NL/NL]; Hagedoorn 18, NL-3142 KB Maassluis (NL).
(30) Priority data: 92202080.5 8 July 1992 (08.07.92) EP (34) Countries for which the regional or international application was filed: NL et al.	92203899.7 14 December 1992 (14.12.92) EP (34) Countries for which the regional or international application was filed: NL et al.		(74) Agent: VAN DER TOORREN, Johannes; Unilever N.V., Patent Division, P.O. Box 137, NL-3130 AC Vlaardingen (NL).
(71) Applicant (for AU BB CA GB IE LK MN MW NZ SD only): UNILEVER PLC [GB/GB]; Unilever House, Blackfriars, London EC4 4BQ (GB).			(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, VN. European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
		Published With international search report.	

(54) Title: PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY PRODUCING A FUSION PROTEIN

(57) Abstract

A method is provided for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a microbial cell using recombinant DNA techniques. The enzyme is immobilized by linking it to the C-terminal part of a protein that ensures anchoring in the cell wall. Also provided is a recombinant polynucleotide comprising a structural gene encoding an enzyme protein, a part of a gene encoding the C-terminal part of a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, as well as a signal sequence, in addition to a chimeric protein encoded by the recombinant polynucleotide and a vector and a microorganism containing the polynucleotide. The microorganism is suitable for carrying out enzymatic processes on an industrial scale.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	IE	Ireland	PL	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic of Korea	RU	Russian Federation
CF	Central African Republic	KR	Republic of Korea	SD	Sudan
CC	Congo	KZ	Kazakhstan	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovak Republic
CM	Cameroon	LU	Luxembourg	SN	Senegal
CN	China	LV	Latvia	TD	Chad
CS	Czechoslovakia	MC	Monaco	TG	Togo
CZ	Czech Republic	MG	Madagascar	UA	Ukraine
DE	Germany	ML	Mali	US	United States of America
DK	Denmark	MN	Mongolia	UZ	Uzbekistan
ES	Spain			VN	Viet Nam
FI	Finland				

PROCESS FOR IMMOBILIZING ENZYMES TO THE CELL WALL OF A MICROBIAL CELL BY
PRODUCING A FUSION PROTEIN.

The present invention is in the field of conversion processes using immobilized
5 enzymes, produced by genetic engineering.

Background of the invention

In the detergent, personal care and food products industry there is a strong trend
towards natural ingredients of these products and to environmentally acceptable
10 production processes. Enzymic conversions are very important for fulfilling these
consumer demands, as these processes can be completely natural. Moreover enzymic
processes are very specific and consequently will produce minimum amounts of waste
products. Such processes can be carried out in water at mild temperatures and atmos-
pheric pressure. However enzymic processes based on free enzymes are either quite
15 expensive due to the loss of enzymes or require expensive equipment, like ultra-
membrane systems to entrap the enzyme.

Alternatively enzymes can be immobilized either physically or chemically. The latter
method has often the disadvantage that coupling is carried out using non-natural
chemicals and in processes that are not attractive from an environmental point of
20 view. Moreover chemical modification of enzymes is nearly always not very specific,
which means that coupling can affect the activity of the enzyme negatively.

Physical immobilization can comply with consumer demands, however also physical
immobilization may affect the activity of the enzyme in a negative way. Moreover, a
physically immobilized enzyme is in equilibrium with free enzyme, which means that
25 in continuous reactors, according to the laws of thermodynamics, substantial losses of
enzyme are unavoidable.

There are a few publications on immobilization of enzymes to microbial cells (see
reference 1). The present invention provides a method for immobilizing enzymes to
cell walls of microbial cells in a very precise way. Additionally, the immobilization
30 does not require any chemical or physical coupling step and is very efficient.

Some extracellular proteins are known to have special functions which they can
perform only if they remain bound to the cell wall of the host cell. Often this type of

protein has a long C-terminal part that anchors it in the cell wall. These C-terminal parts have very special amino acid sequences. A typical example is anchoring via C-terminal sequences enriched in proline (see reference 2). Another mechanism to anchor proteins in cell walls is that the protein has a glycosyl-phosphatidyl-inositol (GPI) anchor (see reference 3) and that the C-terminal part of the protein contains a substantial number of potential serine and threonine glycosylation sites.

5 O-Glycosylation of these sites gives a rod-like conformation to the C-terminal part of these proteins. Another feature of these manno-proteins is that they seem to be linked to the glucan in the cell wall of lower eukaryotes, as they cannot be extracted

10 from the cell wall with SDS, but can be liberated by glucanase treatment.

Summary of the invention

The present invention provides a method for immobilizing an enzyme, which comprises the use of recombinant DNA techniques for producing an enzyme or a functional part thereof linked to the cell wall of a host cell, preferably a microbial cell, and whereby the enzyme or functional fragment thereof is localized at the exterior of the cell wall. Preferably the enzyme or the functional part thereof is immobilized by linking to the C-terminal part of a protein that ensures anchoring in the cell wall.

15 20 In one embodiment of the invention a recombinant polynucleotide is provided comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein. Preferably the polynucleotide further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide. Such signal peptide can be derived from a glycosyl-phosphatidyl-inositol (GPI) anchoring protein, α -factor, α -agglutinin, invertase or inulinase, α -amylase of *Bacillus*, or a proteinase of lactic acid bacteria. The DNA sequence encoding a protein capable of anchoring in the cell wall can encode α -agglutinin, AGA1, FLO1 or the Major Cell Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The recombinant polynucleotide is operably linked to a promoter, preferably an inducible

25 30

promoter. The DNA sequence encoding a protein providing catalytic activity can encode a hydrolytic enzyme, e.g. a lipase, or an oxidoreductase, e.g. an oxidase. Another embodiment of the invention relates to a recombinant vector comprising a polynucleotide as described above. If such vector contains a DNA sequence encoding a protein providing catalytic activity, which protein exhibits said catalytic activity when present in a multimeric form, said vector can further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter.

5 A further embodiment of the invention relates to a chimeric protein encoded by a polynucleotide as described above.

Still another embodiment is a host cell, preferably a microorganism, containing a 10 polynucleotide as described above or a vector as described above. If the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said host cell or microorganism can further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the 15 expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter, and said second polynucleotide being present either in another vector or in the chromosome of said microorganism. Preferably the host cell or microorganism has at least one of said polynucleotides integrated in its chromosome. As a result of 20 culturing such host cell or microorganism the invention provides a host cell, preferably a microorganism, having a protein as described above immobilized on its cell wall. The host cell or microorganism can be a lower eukaryote, in particular a yeast.

25 The invention also provides a process for carrying out an enzymatic process by using 30 an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with a host cell or microorganism according to the invention.

Brief Description of the Figures

Figure 1: DNA sequence of the 6057 bp *Hind*III fragment containing the complete $\text{AG}\alpha 1$ gene of *S. cerevisiae* (see SEQ ID NO: 1 and 2). The position of the unique *Nhe*I site and the *Hind*III site used for the described constructions is specified in the

5 header.

Figure 2: Schematic presentation of the construction of pUR2969. The restriction sites for endonucleases used are shown. Abbreviations used: AG-alpha-1: Gene expressing α -agglutinin from *S. cerevisiae*

amp: β -lactamase resistance gene

10 PGKp: phosphoglyceratekinase promoter

PGKt: terminator of the same gene.

Figure 3: α -Galactosidase activity of *S. cerevisiae* MT302/1C cells and culture fluid transformed with pSY13 during batch culture:

A: U/l α -galactosidase per time; the OD_{530} is also shown

15 B: α -galactosidase activity of free and bond enzyme expressed in U/ OD_{530} .

Figure 4: α -Galactosidase activity of *S. cerevisiae* MT302/1C cells and culture fluid transformed with pUR2969 during batch culture:

A: U/l α -galactosidase per time; the OD_{530} is also shown

B: α -galactosidase activity of free and bond enzyme expressed in U/ OD_{530} .

20 Figure 5: Western analysis with anti α -galactosidase serum of extracellular fractions of cells of exponential phase ($\text{OD}_{530}=2$). The analyzed fractions are equivalent to 4 mg cell walls, (fresh weight):

A: MT302/1C expressing α -galactosidase,

lane 1, growth medium

25 lane 2, SDS extract of isolated cell walls

lane 3, glucanase extract of SDS extracted cell walls;

B: MT302/1C expressing α -Gal-AG $\alpha 1$ fusion protein,

lane 1, growth medium

lane 2, SDS extract of isolated cell walls

30 lane 3, glucanase extract of SDS-extracted cell walls

lane 4: Endo-H treated glucanase extract.

Figure 7: Schematic presentation of the construction of pUR2970A, pUR2971A,
5 pUR2972A, and pUR2973. The restriction sites for endonucleases used are indicated
in the figure. PCR oligonucleotide sequences are mentioned in the text.

Abbreviations used: AGal cds: coding sequence of α -agglutinin
 α -AGG=AGal: Gene expressing α -agglutinin from *S. cerevisiae*

α -MF:	prepro- α -mating factor sequence	a-gal:	α -galactosidase gene
LEU2d :	truncated promoter of <i>LEU2</i> gene;		
LEU2 :	<i>LEU2</i> gene with complete promoter sequence.		

Figure 8: DNA sequence of a fragment containing the complete coding sequence of lipase B of *Geotrichum candidum* strain 335426 (see SEQ ID NO: 11 and 12). The sequence of the mature lipase B starts at nucleotide 97 of the given sequence. The coding sequence starts at nucleotide 40 (ATG).

Figure 9: Schematic presentation of the construction of pUR2975 and pUR2976. The restriction sites for endonucleases used are shown. Abbreviations used:

20	a-AGG: Gene expressing α -agglutinin from <i>S. cerevisiae</i>		
	amp: β -lactamase resistance gene	Pgal7=GAL7:	GAL7 promoter
	invSS: SUC2 signal sequence	a-MF: prepro- α -mating factor sequence	
	LEU2d: truncated promoter LEU2 gene	lipolase:	lipase gene of <i>Humicola</i>
	lipaseB: lipaseB gene of <i>Geotrichum candidum</i> .		

25 Figure 10: Schematic presentation of the construction of pUR2981 and pUR2982. The restriction sites for endonucleases used are shown. Abbreviations used:

α -AGG = AG-alpha 1: Gene expressing α -agglutinin from *S. cerevisiae*

mucor lipase: lipase gene of *Rhizomucor miehei* 2u: 2μm sequence
 Pgαl7=GAL7: *GAL7* promoter invSS: *SUC2* signal sequence
α-AGG=AG-alpha 1. *Gal4* *α*

30 a-MF: prepro- α -mating factor sequence lipolase: lipase gene of *Humicola*
amp: β -lactamase resistance gene; LEU2d: truncated promoter *LEU2* gene
LEU2 : *LEU2* gene with complete promoter sequence.

Figure 11: DNA sequence (2685 bases) of the 894 amino acids coding part of the *FLO1* gene (see SEQ ID NO: 21 and 22), the given sequence starts with the codon for the first amino acid and ends with the stop codon.

5 Figure 12: Schematic presentation of plasmid pUR2990. Some restriction sites for endonucleases relevant for the given cloning procedure are shown.

Figure 13: Schematic presentation of plasmid pUR7034.

Figure 14: Schematic presentation of plasmid pUR2972B.

Figure 15: Immunofluorescent labelling (anti-lipolase) of SU10 cells in the exponential phase ($OD_{530}=0.5$) expressing the lipolase/- α -agglutinin fusion protein.

10 A: phase micrograph B: matching fluorescent micrograph

Detailed description of the invention

The present invention provides a method for immobilizing an enzyme, comprising immobilizing the enzyme or a functional part thereof to the cell wall of a host cell, 15 preferably a microbial cell, using recombinant DNA techniques. In particular, the C-terminal part of a protein that ensures anchoring in the cell wall is linked to an enzyme or the functional part of an enzyme, in such a way that the enzyme is localized on or just above the cell surface. In this way immobilized enzymes are obtained on the surface of cells. The linkage is performed at gene level and is characterized in that the structural gene coding for the enzyme is coupled to at least 20 part of a gene encoding an anchor-protein in such a way that in the expression product the enzyme is coupled at its C-terminal end to the C-terminal part of an anchor-protein. The chimeric enzyme is preferably preceded by a signal sequence that ensures efficient secretion of the chimeric protein.

25 Thus the invention relates to a recombinant polynucleotide comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein. The length of the C-terminal part of the anchoring protein may vary. Although the entire structural 30 protein could be used, it is preferred that only a part is used, leading to a more efficient exposure of the enzyme protein in the medium surrounding the cell. The

anchoring part of the anchoring protein should preferably be entirely present. As an example, about the C-terminal half of the anchoring protein could be used. Preferably, the polynucleotide further comprises a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide. The signal peptide

5 can be derived from a GPI anchoring protein, α -factor, α -agglutinin, invertase or inulinase, α -amylase of *Bacillus*, or a proteinase of lactic acid bacteria. The protein capable of anchoring in the cell wall is preferably selected from the group of α -agglutinin, AGA1, FLO1 (flocculation protein) or the Major Cell Wall Protein of lower eukaryotes, or a proteinase of lactic acid bacteria. The

10 polynucleotide of the invention is preferably operably linked to a promoter, preferably a regulatable promoter, especially an inducible promoter.

The invention also relates to a recombinant vector containing the polynucleotide as described above, and to a host cell containing this polynucleotide, or this vector. In a particular case, wherein the protein providing catalytic activity exhibits said

15 catalytic activity when present in a multimeric form, such as may be the case with oxidoreductases, dimerisation or multimerisation of the monomers might be a prerequisite for activity. The vector and/or the host cell can then further comprise a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring

20 secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter. Expression and secretion of the second polynucleotide after expression and secretion of the first polynucleotide will then result in the formation of an active multimer on the exterior of the cell wall.

25 The host cell or microorganism preferably contains the polynucleotide described above, or at least one of said polynucleotides in the case of a combination, integrated in its chromosome.

The present invention relates in particular to lower eukaryotes like yeasts that have very stable cell walls and have proteins that are known to be anchored in the cell wall, e.g. α -agglutinin or the product of gene *FLO1*. Suitable yeasts belong to the

30 genera *Candida*, *Debaryomyces*, *Hansenula*, *Kluyveromyces*, *Pichia* and *Saccharomyces*.

Also fungi, especially *Aspergillus*, *Penicillium* and *Rhizopus* can be used. For certain applications also prokaryotes are applicable.

For yeasts the present invention deals in particular with genes encoding chimeric enzymes consisting of:

- 5 a. the signal sequence e.g. derived from the α -factor-, the invertase-, the α -agglutinin- or the inulinase genes;
- b. structural genes encoding hydrolytic enzymes such as α -galactosidase, proteases, peptidases, pectinases, pectylesterase, rhamnogalacturonase, esterases and lipases, or non-hydrolytic enzymes such as oxidases; and
- 10 c. the C-terminus of typically cell wall bound proteins such as α -agglutinin (see reference 4), AGA1 (see reference 5) and FLO1 (see the non-prior published reference 6).

The expression of these genes can be under the control of a constitutive promoter, but more preferred are regulatable, i.e. repressible or inducible promoters such as the

- 15 *GAL7* promoter for *Saccharomyces*, or the inulinase promoter for *Kluyveromyces* or the methanol-oxidase promoter for *Hansenula*.

Preferably the constructs are made in such a way that the new genetic information is integrated in a stable way in the chromosome of the host cell.

- 20 The invention further relates to a host cell, in particular a microorganism, having the chimeric protein described above immobilized on its cell wall. It further concerns the use of such microorganisms for carrying out an enzymatic process by contacting a substrate for the enzyme with the microorganism. Such a process may be carried out e.g. in a packed column, wherein the microorganisms may be supported on solid particles, or in a stirred reactor. The reaction may be aqueous or non-aqueous. Where necessary, additives necessary for the performance of the enzyme, e.g. a co-factor, may be introduced in the reaction medium.
- 25 After repeated usage of the naturally immobilized enzyme system in processes, the performance of the system may decrease. This is caused either by physical denaturation or by chemical poisoning or detachment of the enzyme. A particular feature of the present invention is that after usage the system can be recovered from the reaction medium by simple centrifugation or membrane filtration techniques and that the thus collected cells can be transferred to a recovery medium in which the

cells revive quickly and concomitantly produce the chimeric protein, thus ensuring that the surface of the cells will be covered by fully active immobilized enzyme. This regeneration process is simple and cheap and therefore will improve the economics of enzymic processes and may result in a much wider application of processes based on immobilized enzyme systems.

5 However, by no means the present invention is restricted to the reusability of the immobilized enzymes.

The invention will be illustrated by the following examples without the scope of the invention being limited thereto.

10

EXAMPLE 1 Immobilized α -galactosidase/ α -agglutinin on the surface of *S. cerevisiae*.

The gene encoding α -agglutinin has been described by Lipke *et al.* (see reference 4).

The sequence of a 6057 bp *Hind*III insert in pTZ18R, containing the whole *AG α 1*

15 gene is given in Figure 1. The coding sequence expands over 650 amino acids, including a putative signal sequence starting at nucleotide 3653 with ATG. The unique *Nhe*I site cuts the DNA at position 988 of the given coding sequence within the coding part of amino acid 330, thereby separating the α -agglutinin into an N-terminal and a C-terminal part of about same size.

20 Through digestion of pUR2968 (see Figure 2) with *Nhe*I/*Hind*III a 1.4 kb fragment was released, containing the sequence information of the putative cell wall anchor. For the fusion to α -galactosidase the plasmid pSY16 was used, an episomal vector based on YEplac 181, harbouring the α -galactosidase sequence preceded by the *SUC2* invertase signal sequence and placed between the constitutive *PGK* promoter and

25 *PGK* terminator. The *Sty*I site, present in the last nine base-pairs of the open reading frame of the α -galactosidase gene, was ligated to the *Nhe*I site of the *AG α 1* gene fragment. To ensure the in frame fusion, the *Sty*I site was filled in and the 5' overhang of the *Nhe*I site was removed, prior to ligation into the *Sty*I/*Hind*III digested pSY13 (see Figure 2).

30 To verify the correct assembly of the new plasmid, the shuttle vector was transformed into *E. coli* JM109 (*recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi* Δ (*lac-proAB*) F [*traD36 proAB⁺ lacI^a lacZ Δ M15*]) (see reference 7) by the transformation protocol

described by Chung *et al.* (see reference 8). One of the positive clones, designated pUR2969, was further characterized, the DNA isolated and purified according to the Quiagen protocol and subsequently characterized by DNA sequencing. DNA sequencing was mainly performed as described by Sanger *et al.* (see reference 9), and 5 Hsiao (see reference 10), here with the Sequenase version 2.0 kit from United States Biochemical Company, according to the protocol with T7 DNA polymerase (Amersham International plc) and [³⁵S]dATP&S (Amersham International plc: 370 MBq/ml; 22 TBq/mmol).

This plasmid was then transformed into *S. cerevisiae* strain MT302/1C according to 10 the protocol from Klebe *et al.* (see reference 11). Yeast transformants were selected on selective plates, lacking leucine, on with 40 µl (20mg/ml DMF). X- α -Gal (5-bromo-4-chloro-3-indolyl- α -D-glucose, Boehringer Mannheim) was spread, to directly test for α -galactosidase activity (see reference 12). To demonstrate the expression, secretion, localization and activity of the chimeric 15 protein the following analyses were performed:

1. Expression and secretion

S. cerevisiae strain MT302/1C was transformed with either plasmid pSY13 containing the α -galactosidase gene of *Cyamopsis tetragonoloba* or plasmid pUR2969 containing the α -galactosidase/ α -agglutinin fusion construct. During batch culture α -galactosidase 20 activities were determined for washed cells and growth medium. The results are given in Figure 3 and Figure 4. The α -galactosidase expressed from yeast cells containing plasmid pSY13 was almost exclusively present in the growth medium (Figure 3A), whereas the α -galactosidase- α -agglutinin fusion protein was almost exclusively cell associated (Figure 4A). Moreover, the immobilized, cell wall-associated, α -galacto- 25 sidase- α -agglutinin fusion enzyme had retained the complete activity over the whole incubation time, while the secreted and released enzyme lost about 90% of the activity after an incubation of 65 hours. This indicates, that the immobilization of the described enzyme into the cell wall of yeast protects the enzyme against inactivation, presumably through proteinases, and thereby increases the stability significantly.

30 Further insight into the localization of the different gene products was obtained by Western analysis. Therefore, cells were harvested by centrifugation and washed in 10 mM Tris.HCl, pH 7.8; 1 mM PMSF at 0°C and all subsequent steps were performed

at the same temperature. Three ml isolation buffer and 10 g of glass beads were added per gram of cells (wet weight). The mixture was shaken in a Griffin shaker at 50% of its maximum speed for 30 minutes. The supernatant was isolated and the glass beads were washed with 1 M NaCl and 1 mM PMSF until the washes were clear. The supernatant and the washes were pooled. The cell walls were recovered by centrifugation and were subsequently washed in 1 mM PMSF.

Non-covalently bound proteins or proteins bound through disulphide bridges were released from cell walls by boiling for 5 minutes in 50 mM Tris.HCl, pH 7.8; containing 2 % SDS, 100 mM EDTA and 40 mM β -mercaptoethanol. The SDS-containing extracted cell walls were washed several times in 1 mM PMSF to remove SDS. Ten mg of cell walls (wet weight) were taken up in 20 l 100 mM sodium acetate, pH 5.0, containing 1 mM PMSF. To this, 0.5 mU of the β -1,3-glucanase (Laminarase; Sigma L5144) was used as a source of β -1,3-glucanase) was added followed by incubation for 2 hours at 37 °C. Subsequently another 0.5 mU of β -1,3-glucanase was added, followed by incubation for another 2 hours at 37 °C.

Proteins were denatured by boiling for 5 minutes preceding Endo-H treatment. Two mg of protein were incubated in 1 ml 50 mM potassium phosphate, pH 5.5, containing 100 mM β -mercaptoethanol and 0.5 mM PMSF with 40 mU Endo-H (Boehringer) for 48 hours at 37 °C. Subsequently 20 mU Endo-H were added followed by 24 hours of incubation at 37 °C.

Proteins were separated by SDS-PAGE according to Laemmli (see reference 13) in 2.2.-20% gradient gels. The gels were blotted by electrophoretic transfer onto Immobilon polyvinylidene-difluoride membrane (Millipore) as described by Towbin *et al.* (see reference 14). In case of highly glycosylated proteins a subsequently mild periodate treatment was performed in 50 mM periodic acid, 100 mM sodium acetate, pH 4.5, for several hours at 4 °C. All subsequent incubations were carried out at room temperature. The blot was blocked in PBS, containing 0.5% gelatine and 0.5% Tween-20, for one hour followed by incubation for 1 hour in probe buffer (PBS, 0.2% gelatine, 0.1% Tween-20) containing 1:200 diluted serum. The blot was subsequently washed several times in washing buffer (PBS; 0.2% gelatine; 0.5% Tween-20) followed by incubation for 1 hour in probe-buffer containing 125 I-labelled protein A

(Amersham). After several washes in washing buffer, the blot was air-dried, wrapped in Saran (Dow) and exposed to X-omat S film (Kodak) with intensifying screen at -70 °C. An Omnimedia 6cx scanner and the Adobe Photoshop programme were used to quantify the amount of labelled protein. The results of the various protein isolation procedures from both transformants are given in Figure 5. While for the transformants comprising the pSY13 plasmid the overall mass of the enzyme was localized in the medium, with only minor amounts of enzyme more entrapped than bound in the cell wall (Figure 5A) -which could completely be removed by SDS extraction- the fusion protein was tightly bound to the cell wall; with only small amounts of α-galactosidase/α-agglutinin delivered into the surrounding culture fluid or being SDS extractable. In contrast to the laminarinase extraction of cell walls from cells expressing the free α-galactosidase, where no further liberation of any more enzyme was observed, identical treatment of fusion enzyme expressing cells released the overall bulk of the enzyme. This indicates that the fusion protein is intimately associated with the cell wall glucan in *S. cerevisiae*, like α-agglutinin, while α-galactosidase alone is not. The subsequently performed EndoH treatment showed a heavy glycosylation of the fusion protein, a result, entirely in agreement with the described extended glycosylation of the C-terminal part of α-agglutinin.

2. Localization

Immunofluorescent labelling with anti-α-galactosidase serum was performed on intact cells to determine the presence and distribution of α-galactosidase/α-agglutinin fusion protein in the cell wall. Immunofluorescent labelling was carried out without fixing according to Watzele *et al.* (see reference 15). Cells of OD₅₃₀=2 were isolated and washed in TBS (10 mM Tris.HCl, pH 7.8, containing 140 mM NaCl, 5 mM EDTA and 20 µg/ml cycloheximide). The cells were incubated in TBS + anti-α-galactosidase serum for 1 hour, followed by several washings in TBS. A subsequent incubation was carried out with FITC-conjugated anti-rabbit IgG (Sigma) for 30 minutes. After washing in TBS, cells were taken up in 10 mM Tris.HCl, pH 9.0, containing 1 mg/ml p-phenylenediamine and 0.1 % azide and were photographed on a Zeiss 68000 microscope. The results of these analysis are given in Figure 6, showing clearly that the chimeric α-galactosidase/α-agglutinin is localized at the surface of the yeast cell. Buds of various sizes, even very small ones very uniformly labelled, demonstrates that

the fusion enzyme is continuously incorporated into the cell wall throughout the cell cycle and that it instantly becomes tightly linked.

3. Activity

To quantitatively assay α -galactosidase activity, 200 μ l samples containing 0.1 M sodium-acetate, pH 4.5 and 10 mM p-nitrophenyl- α -D-galactopyranoside (Sigma) were incubated at 37 °C for exactly 5 minutes. The reaction was stopped by addition of 1 ml 2% sodium carbonate. From intact cells and cell walls, removed by centrifugation and isolated and washed as described, the α -galactosidase activity was calculated using the extinction coefficient of p-nitrophenol of 18.4 cm²/mole at 410 nm.

One unit was defined as the hydrolysis of 1 μ mole substrate per minute at 37 °C.

Table 1. Distribution of free and immobilized α -galactosidase activity in yeast cells

<u>α-Galactosidase activity (U/g F.W. cells)</u>			
	Growth medium	Intact cells	Isolated cell walls
Expressed protein			
α -galactosidase	14.7	0.37	0.01
α Gal/ α AGG fusion protein	0.54	13.3	10.9

Transformed MT302/1C cells were in exponential phase ($OD_{530}=2$). One unit is defined as the hydrolysis of 1 μ mole of p-nitrophenyl- α -D-galactopyranoside per minute at 37 °C.

The results are summarized in Table 1. While the overall majority of α -galactosidase was distributed in the culture fluid, most of the fusion product was associated with the cells, primarily with the cell wall. Taking together the results shown in Figures 3 to 6 and in Table 1, it could be calculated that the enzymatic α -galactosidase activity of the chimeric enzyme is as good as that of the free enzyme. Moreover, during stationary phase, the activity of the α -galactosidase in the growth medium decreased, whereas the activity of the cell wall associated α -galactosidase α -agglutinin fusion

remained constant, indicating that the cell associated fusion protein is protected from inactivation or proteolytic degradation.

N.B. The essence of this EXAMPLE was published during the priority year by M.P.

5 Schreuder *et al.* (see reference 25).

EXAMPLE 2A Immobilized *Humicola* lipase/ α -agglutinin on the surface of *S. cerevisiae*. (inducible expression of immobilized enzyme system)

The construction and isolation of the 1.4 kb *NheI/HindIII* fragment containing the C-terminal part of α -agglutinin has been described in EXAMPLE 1. Plasmid pUR7021 contains an 894 bp long synthetically produced DNA fragment encoding the lipase of *Humicola* (see reference 16 and SEQ ID NO: 7 and 8), cloned into the *EcoRI/HindIII* restriction sites of the commercially available vector pTZ18R (see Figure 7). For the proper one-step modification of both the 5' end and the 3' end of the DNA part coding for the mature lipase, the PCR technique can be applied. Therefore the DNA oligonucleotides lipo1 (see SEQ ID NO: 3) and lipo2 (see SEQ ID NO: 6) can be used as primers in a standard PCR protocol, generating an 826 bp long DNA fragment with an *EagI* and a *HindIII* restriction site at the ends, which can be combined with the larger part of the *EagI/HindIII* digested pUR2650, a plasmid containing the α -galactosidase gene preceded by the invertase signal sequence as described earlier in this specification, thereby generating plasmid pUR2970A (see Figure 7).

PCR oligonucleotides for the in-frame linkage of *Humicola* lipase and the C-terminus of α agglutinin.

5 a: PCR oligonucleotides for the transition between *SUC2* signal sequence and the N-terminus of lipase.

10 primer lipol: *EagI* E V S Q D L F
 5'-GGG GCG GCC GAG GTC TCG CAA GAT CTG GA-3'
 15 lipase: 3'-TAA GCA GCT CTC CAG AGC GTT CTG GAC CTG TTT-5'.
 (non-coding strand, see SEQ ID NO: 4)

15 b: PCR oligonucleotides for the in frame transition between C-terminus of lipase and C-terminal part of α -agglutinin.

20 lipase: 5'-TTC GGG TTA ATT GGG ACA TGT CTT TAG TGC GA-3'.
 (cod. strand) F G L I G T C L
 primer 3'-CCC AAT TAA CCC TGT ACA GAA CGA TCG GAA TTC GAACCCC-5'.
 lipo2: NheI HindIII
 (for the part of the lipase coding strand see SEQ ID NO: 5)

25 Through the PCR method a *NheI* site will be created at the end of the coding sequence of the lipase, allowing the in-frame linkage between the DNA coding for lipase and the DNA coding for the C-terminal part of α -agglutinin. Plasmid pUR2970A can then be digested with *NheI* and *HindIII* and the 1.4 kb *NheI/HindIII* fragment containing the C-terminal part of α -agglutinin from plasmid pUR2968 can
 30 be combined with the larger part of *NheI* and *HindIII* treated plasmid pUR2970A, resulting in plasmid pUR2971A. From this plasmid the 2.2 kb *EagI/HindIII* fragment can be isolated and ligated into the *EagI*- and *HindIII*-treated pUR2741, whereby plasmid pUR2741 is a derivative of pUR2740 (see reference 17), where the second *EagI* restriction site in the already inactive *Tet* resistance gene was deleted through
 35 *NruI/SalI* digestion. The *SalI* site was filled in prior to religation. The ligation then results in pUR2972A containing the *GAL7* promoter, the invertase signal sequence, the chimeric lipase/ α -agglutinin gene, the 2 μ m sequence, the defective *Leu2* promoter and the *Leu2* gene. This plasmid can be used for transforming *S. cerevisiae* and the transformed cells can be cultivated in YP medium containing galactose as an inducer without repressing amounts of glucose being present, which causes the expression of the chimeric lipase/ α -agglutinin gene.
 40

The expression, secretion, localization and activity of the chimeric lipase/ α -agglutinin can be analyzed using similar procedures as given in EXAMPLE 1.

In a similar way variants of *Humicola* lipase, obtained via rDNA techniques, can be
5 linked to the C-terminal part of α -agglutinin, which variants can have a higher stability during (inter)esterification processes.

EXAMPLE 2B Immobilized *Humicola* lipase/ α -agglutinin on the surface of *S. cerevisiae* (inducible expression of immobilized enzyme system)

10 EXAMPLE 2A describes a protocol for preparing a particular construct. Before carrying out the work it was considered more convenient to use the expression vector described in EXAMPLE 1, so that the construction route given in this EXAMPLE 2B differs on minor points from the construction route given in EXAMPLE 2A and the resulting plasmids are not identical to those described in EXAMPLE 2A. However,
15 the essential gene construct comprising the promoter, signal sequence, and the structural gene encoding the fusion protein are the same in EXAMPLES 2A and 2B.

1. Construction

The construction and isolation of the 1.4 kb *NheI/HindIII* fragment encoding the C-terminal part of α -agglutinin cell wall protein has been described in EXAMPLE 1.
20 The plasmid pUR7033 (resembling pUR7021 of EXAMPLE 2A) was made by treating the commercially available vector pTZ18R with *EcoRI* and *HindIII* and ligating the resulting vector fragment with an 894 bp long synthetically produced DNA *EcoRI/HindIII* fragment encoding the lipase of *Humicola* (see SEQ ID NO: 7 and 8, and reference 16).

For the fusion of the lipase to the C-terminal, cell wall anchor-comprising domain of α -agglutinin, plasmid pUR7033 was digested with *EagI* and *HindIII*, and the lipase coding sequence was isolated and ligated into the *EagI*- and *HindIII*-digested yeast expression vector pSY1 (see reference 27), thereby generating pUR7034 (see Figure 13). This is a 2 μ m episomal expression vector, containing the α -galactosidase gene described in EXAMPLE 1, preceded by the invertase (*SUC2*) signal sequence under the control of the inducible *GAL7* promoter.

Parallel to this digestion, pUR7033 was also digested with *EcoRV* and *HindIII*, thereby releasing a 57 bp long DNA fragment, possessing codons for the last 15 carboxyterminal amino acids. This fragment was exchanged against a small DNA fragment, generated through the hybridisation of the two chemically synthesized

5 deoxyoligonucleotides SEQ ID NO: 9 and SEQ ID NO: 10. After annealing of both DNA strands, these two oligonucleotides essentially reconstruct the rest of the 3' coding sequence of the initial lipase gene, but additionally introduce downstream of the lipase gene a new *NheI* restriction site, followed by a *HindIII* site in close vicinity, whereby the first three nucleotides of the *NheI* site form the codon for the last amino

10 acid of the lipase. The resulting plasmid was designated pUR2970B. Subsequently, this construction intermediate was digested with *EagI* and *NheI*, the lipase encoding fragment was isolated, and, together with the 1.4 kb *NheI/HindIII* fragment of pUR2968 ligated into the *EagI*- and *HindIII*-cut pSY1 vector. The outcome of this 3-point-ligation was called pUR2972B (see Figure 14), the final lipolase- α -agglutinin

15 yeast expression vector.

This plasmid was used for transforming *S. cerevisiae* strain SU10 as described in reference 17 and the transformed cells were cultivated in YP medium containing galactose as the inducer without repressing amounts of glucose being present, which causes the expression of the chimeric lipase/ α -agglutinin gene.

20 2. Activity

To quantify the lipase activity, two activity measurements with two separate substrates were performed. In both cases, SU10 yeast cells transformed with either plasmid pUR7034 or pSY1 served as control. Therefore, yeast cell transformants containing either plasmid pSY1 or plasmid pUR7034 or plasmid pUR2972B were grown up for

25 24h in YNB-glucose medium supplied with histidine and uracil, then diluted 1:10 in YP-medium supplied with 5% galactose, and again cultured. After 24h incubation at 30°C, a first measurement for both assays was performed.

The first assay applied was the pH stat method. Within this assay, one unit of lipase activity is defined as the amount of enzyme capable of liberating one micromole of

30 fatty acid per minute from a triglyceride substrate under standard assay conditions (30 ml assay solution containing 38 mM olive oil, considered as pure trioleate, emulsified with 1:1 w/w gum arabic, 20 mM calcium chloride, 40 mM sodium chloride, 5 mM

Tris, pH 9.0, 30°C) in a radiometer pH stat apparatus (pHM 84 pH meter, ABU 80 autoburette, TTA 60 titration assembly). The fatty acids formed were titrated with 0.05 N NaOH and the activity measured was based on alkali consumption in the interval between 1 and 2 minutes after addition of putative enzyme batch. To test for immobilized lipase activity, 1 ml of each culture was centrifuged, the supernatant was saved, the pellet was resuspended and washed in 1 ml 1 M sorbitol, subsequently again centrifuged and resuspended in 200 μ l 1 M sorbitol. From each type of yeast cell the first supernatant and the washed cells were tested for lipase activity.

10 A: Lipase activity after 24h (LU/ml)

	cell bound	culture fluid
pSY1	5.9	8.8
pUR7034	24.1	632.0
pUR2972B-(1)	18.7	59.6
15 pUR2972B-(2)	24.6	40.5

B: Lipase activity after 48h (LU/ml)

	cell bound	culture fluid	OD660
pSY1	6.4	4.3	-40
20 pUR7034	215.0	2750.0	-40
pUR2972B-(1)	37.0	87.0	-40
pUR2972B-(2)	34.0	82.0	-40

The rest of the yeast cultures was further incubated, and essentially the same separation procedure was done after 48 hours. Dependent on the initial activity measured, the actual volume of the sample measured deviated between 25 μ l and 150 μ l.

This series of measurements indicates, that yeast cells comprising the plasmid coding for the lipase- α -agglutinin fusion protein in fact express some lipase activity which is associated with the yeast cell.

An additional second assay was performed to further confirm the immobilization of activity of lipase on the yeast cell surface. Briefly, within this assay, the kinetics of the PNP (=paranitrophenyl) release from PNP-butyrate is determined by measurement of the OD at 400 nm. Therefore, 10 ml cultures containing yeast cells with either pSY1,

5 pUR7034 or pUR2972B were centrifuged, the pellet was resuspended in 4 ml of buffer A (0.1 M NaOAc, pH 5.0 and 1 mM PMSF), from this 4 ml 500 μ l was centrifuged again and resuspended in 500 μ l PNB-buffer (20 mM Tris-HCl, pH 9.0, 20 mM CaCl₂, 25 mM NaCl), centrifuged once again, and finally resuspended in 400 μ l PNB buffer. This fraction was used to determine the cell bound fraction of

10 lipase.

The remaining 3500 μ l were spun down, the pellet was resuspended in 4 ml A, to each of this, 40 μ l laminarinase (ex mollusc, 1.25 mU/ μ l) was added and first incubated for 3 hours at 37°C, followed by an overnight incubation at 20°C. Then the reaction mixture, still containing intact cells, were centrifuged again and the supernatant was

15 used to determined the amount of originally cell wall bound material released through laminarinase incubation. The final pellet was resuspended in 400 μ l PNP buffer, to calculate the still cell associated part. The blank reaction of a defined volume of specific culture fraction in 4 ml assay buffer was determined, and than the reaction was started through addition of 80 μ l of substrate solution (100 mM PNP-

20 butyrate in methanol), and the reaction was observed at 25°C at 400 nm in a spectrophotometer.

		cell bound activity*	activity in the medium	laminarinase extract	laminarinase extracted cells	OD660
25	pSY1	0.001 (116 μ l)	0.001	0.028	0.000	2.6
	pUR7034	0.293 (220 μ l)	0.446	0.076	0.985	2.36
	pUR2972B-(1)	0.494 (143 μ l)	0.021	0.170	0.208	2.10

* unless otherwise mentioned, the volume of enzyme solution added was 20 μ l

This result positively demonstrates that a significant amount of lipase activity is immobilized on the surface yeast cell, containing plasmid pUR2972B. Here again,

incorporation took place in such a way, that the reaction was catalyzed by cell wall inserted lipase of intact cells, indicated into the exterior orientated immobilization. Furthermore, the release of a significant amount of lipase activity after incubation with laminarinase again demonstrates the presumably covalent incorporation of a heterologous enzyme through gene fusion with the C-terminal part of α -agglutinin.

5 3. Localization

The expression, secretion, and subsequent incorporation of the lipase- α -agglutinin fusion protein into the yeast cell wall was also confirmed through immunofluorescent labelling with anti-lipolase serum essentially as described in EXAMPLE 1, item

10 2. Localization.

As can be seen in Figure 15, the immunofluorescent stain shows essentially an analogous picture as the α -galactosidase immuno stain, with clearly detectable reactivity on the outside of the cell surface (see Figure 15 A showing a clear halo around the cells and Figure B showing a lighter circle at the surface of the cells), but neither in the medium nor in the interior of the cells. Yeast cells expressing pUR2972B, the *Humicola* lipase- α -agglutinin fusion protein, become homogeneously stained on the surface, indicating the virtually entire immobilization of a chimeric enzyme with an α -agglutinin C-terminus on the exterior of a yeast cell. In the performed control experiment SU10 yeast cells containing plasmid pUR7034 served as a control and here, no cell surface bound reactivity against the applied anti-lipase serum could be detected.

In a similar way variants of *Humicola* lipase, obtained via rDNA techniques, can be linked to the C-terminal part of α -agglutinin, which variants can have a higher stability during (inter)esterification processes.

25

EXAMPLE 3 Immobilized *Humicola* lipase/ α -agglutinin on the surface of *S. cerevisiae* (constitutive expression of immobilized enzyme system)

Plasmid pUR2972 as described in EXAMPLE 2 can be treated with *EagI* and *HindIII* and the about 2.2 kb fragment containing the lipase/ α -agglutinin gene can be isolated. Plasmid pSY16 can be restricted with *EagI* and *HindIII* and between these sites the 2.2 kb fragment containing the lipase/ α -agglutinin fragment can be ligated resulting in pUR2973. The part of this plasmid that is involved in the production of

the chimeric enzyme is similar to pUR2972 with the exception of the signal sequence. Whereas pUR2972 contains the *SUC2*-invertase-signal sequence, pUR2973 contains the α -mating factor signal sequence (see reference 18). Moreover the plasmid pUR2973 contains the *Leu2* marker gene with the complete promoter sequence, instead of the truncated promoter version of pUR2972.

5 **EXAMPLE 4 Immobilized *Geotrichum* lipase/ α -agglutinin on the surface of *S. cerevisiae***

The construction and isolation of the 1.4 kb *NheI/HindIII* fragment comprising the 10 C-terminal part of AG α -1 (α -agglutinin) gene has been described in EXAMPLE 1. For the in-frame gene fusion of the DNA coding for the C-terminal membrane anchor of α -agglutinin to the complete coding sequence of *Geotrichum candidum* lipase B from strain CMICC 335426 (see Figure 8 and SEQ ID NO: 11 and 12), the plasmid pUR2974 can be used. This plasmid, derived from the commercially available 15 pBluescript II SK plasmid, contains the cDNA coding for the complete *G. candidum* lipase II on an 1850 bp long *EcoRI/XbaI* insert (see Figure 9).

To develop an expression vector for *S. cerevisiae* with homologous signal sequences, the N-terminus of the mature lipase B was determined experimentally by standard techniques. The obtained amino acid sequence of "Gln-Ala-Pro-Thr-Ala-Val..." is in 20 complete agreement with the cleavage site of the signal peptidase on the *G. candidum* lipase II (see reference 19).

For the fusion of the mature lipase B to the *S. cerevisiae* signal sequences of *SUC2* (invertase) or α -mating factor (prepro- α MF) on one hand and the in-frame fusion to the 3' part of the AG α 1 gene PCR technique can be used. The PCR primer lipo3 25 (see SEQ ID NO: 13) can be constructed in such a way, that the originally present *EagI* site in the 5'-part of the coding sequence (spanning codons 5-7 of the mature protein) will become inactivated without any alteration in the amino acid sequence. To facilitate the subsequent cloning procedures, the PCR primer can further contain 30 a new *EagI* site at the 5' end, for the in-frame ligation to *SUC2* signal sequence or prepro- α MF sequence, respectively. The corresponding PCR primer lipo4 (see SEQ ID NO: 16) contains an extra *NheI* site behind the nucleotides coding for the

C-terminus of lipase B, to ensure the proper fusion to the C-terminal part of α -agglutinin.

5 PCR oligonucleotides for the in frame linkage of *G. candidum* lipase II to the *SUC2* signal sequence and the C-terminal part of α -agglutinin.

a: N-terminal transition to either prepro α MF sequence or *SUC2* signal sequence.

10 primer lipo3: 5'-GGG GCG GCC GCG A Q A P R P S L N
EagI A Q A P R P S L N
 ||| ||| ||| ||| ||| ||| ||| |||
lipaseII: 3'-GAC CGG GTC CGG GGT GGC GCC AGA GAG TTA-5'
 ||| ||| ||| ||| ||| ||| ||| |||
 (non-cod. strand, see SEQ ID NO: 14)

15 b: C-terminal fusion to C part of α -agglutinin

20 lipase: 5'-CA AAC TTT GAG ACT GAC GTT AAT CTC TAC GGT TAA AAC-3'
 ||| ||| ||| ||| ||| ||| ||| |||
(primer lipo4: 3'-C TGA CTG CAA TTA GAG ATG CCA CGATCG CCCC-5'
 ||| ||| ||| ||| ||| ||| ||| |||
 NheI
 (for the part of the lipase coding strand see SEQ ID NO: 15)

The PCR product with the modified ends can be generated by standard PCR
25 protocols, using instead of the normal Ampli-Taq polymerase the new thermostable VENT polymerase, which also exhibits proofreading activity, to ensure an error-free DNA template. Through digestion of the formerly described plasmid pUR2972 with *EagI* (complete) and *NheI* (partial), the *Humicola* lipase fragment can be exchanged against the DNA fragment coding for lipase B, thereby generating the final *S. cerevisiae* expression vector pUR2975 (see Figure 9).

The *Humicola* lipase- α -agglutinin fusion protein coding sequence can be exchanged against the lipase B/ α -agglutinin fusion construct described above by digestion of the described vector pUR2973 with *EagI/HindIII*, resulting in pUR2976 (see Figure 9).

35 EXAMPLE 5 Immobilized *Rhizomucor miehei* lipase/ α -agglutinin on the surface of *S. cerevisiae*

The construction and isolation of the 1.4 kb *NheI/HindIII* fragment encoding the C-terminal part of α -agglutinin has been described in EXAMPLE 1. The plasmid pUR2980 contains a 1.25 kb cDNA fragment cloned into the *SmaI* site of

40 commercially available pUC18, which (synthetically synthesizable) fragment encodes

the complete coding sequence of triglyceride lipase of *Rhizomucor miehei* (see reference 20), an enzyme used in a number of processes to interesterify triacylglycerols (see reference 21) or to prepare biosurfactants (see reference 22). Beside the 269 codons of the mature lipase molecule, the fragment also harbours 5 codons for the 24 amino acid signal peptide as well as 70 amino acids of the propeptide. PCR can easily be applied to ensure the proper fusion of the gene fragment encoding the mature lipase to the *SUC2* signal sequence or the prepro α -mating factor sequence of *S. cerevisiae*, as well as the in-frame fusion to the described *NheI/HindIII* fragment. The following two primers, lipo5 (see SEQ ID NO: 17) and 10 lipo6 (see SEQ ID NO: 20), will generate a 833 bp DNA fragment, which after Proteinase K treatment and digestion with *EagI* and *NheI* can be cloned as an 816 bp long fragment into the *EagI/NheI* digested plasmids pUR2972 and pUR2973, respectively (see Figure 7).

15 EagI A S I D G G I
 lipo5: 5'-CCC GCG GCC GCG AGC ATT GAT GGT GGT ATC-3'
 lipase (non-cod. strand): 3'-TCG TAA CTA GCA CCA TAG-5'.
 (for the part of the lipase non-coding strand see SEQ ID NO: 18)
 20 N T G L C T
 lipase (cod. strand): 5'-AAC ACA GGC CTC TGT ACT-3'
 Lipo6: 3'-TTG TGT CCG GAG ACA TGA CGATCGCGCC-5'
 (for the part of the lipase coding strand see SEQ ID NO: 19)
 25 NheI

These new *S. cerevisiae* expression plasmids contain the *GAL7* promoter, the invertase signal sequence (pUR2981) or the prepro- α -mating factor sequence (pUR2982), the chimeric *Rhizomucor miehei* lipase/ α -agglutinin gene, the 2 μ m sequence, the defective (truncated) *Leu2* promoter and the *Leu2* gene. These plasmids can be transformed into *S. cerevisiae* and grown and analyzed using protocols described in earlier EXAMPLES.

EXAMPLE 6 Immobilized *Aspergillus niger* glucose oxidase/GPI anchored cell wall proteins on the surface of *S. cerevisiae*

Glucose oxidase (β -D:oxygen 1-oxidoreductase, EC 1.1.3.4) from *Aspergillus niger* catalyses the oxidation of β -D-glucose to glucono- δ -lactone and the concomitant reduction of molecular oxygen to hydrogen peroxide. The fungal enzyme consists of a homodimer of molecular weight 150,000 containing two tightly bound FAD co-factors.

Beside the use in glucose detection kits the enzyme is useful as a source of hydrogen peroxide in food preservation. The gene was cloned from both cDNA and genomic libraries, the single open reading frame contains no intervening sequences and encodes a protein of 605 amino acids (see reference 23).

- 5 With the help of two proper oligonucleotides the coding part of the sequence is adjusted in a one-step modifying procedure by PCR in such a way that a fusion gene product will be obtained coding for glucose oxidase and the C-terminal cell wall anchor of the *FLO1* gene product or α -agglutinin. Thus, some of the plasmids described in former EXAMPLES can be utilized to integrate the corresponding sequence in-frame between one of the signal sequences used in the EXAMPLES and the *NheI/HindIII* part of the *AGα1* gene.
- 10

Since dimerisation of the two monomers might be a prerequisite for activity, in an alternative approach the complete coding sequence for glucose oxidase without the GPI anchor can be expressed in *S. cerevisiae* transformant which already contains the fusion construct. This can be fulfilled by constitutive expression of the fusion construct containing the GPI anchor with the help of the *GAPDH* or *PGK* promoter for example. The unbound not-anchored monomer can be produced by using a DNA construct comprising an inducible promoter, as for instance the *GAL7* promoter.

20

EXAMPLE 7 Process to convert raffinose, stachyose and similar sugars in soy extracts with α -galactosidase/ α -agglutinin immobilized on yeasts

- The yeast transformed with plasmid pUR2969 can be cultivated on large scale. At regular intervals during cultivation the washed cells should be analyzed on the presence of α -galactosidase activity on their surface with methods described in EXAMPLE 1. When both cell density and α -galactosidase activity/biomass reach their maximum, the yeast cells can then be collected by centrifugation and washed. The washed cells can then be added to soy extracts. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration should be above 1 g/l. The temperature of the soy extract should be < 8 °C to reduce the metabolic activity of the yeast cells. The conversion of raffinose and stachyose can be analyzed with HPLC methods and after 95 % conversion of these sugars the yeasts
- 25
- 30

cells can be removed by centrifugation and their α -galactosidase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less than 50 % of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 4 hours. Thereafter the cells can be centrifuged, washed and subsequently be used in a subsequent conversion process.

EXAMPLE 8 Production of biosurfactants using *Humicola* lipase/ α -agglutinin immobilized on yeasts.

10 The yeast transformed with plasmid pUR2972 or pUR2973 can be cultivated on large scale. At regular intervals during cultivation the washed cells can be analyzed on the presence of lipase activity on their surface with methods described in EXAMPLE 1. When both cell density and lipase/biomass reaches their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and added to a reactor tank containing a mix of fatty acids, preferably of a chain length between 12-18 carbon atoms and sugars, preferably glucose, galactose or sucrose. The total concentration of the water (excluding the water in the yeast cells) might be below 0.1 %. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N₂ and CO₂ in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts.

15 The temperature of mixture in the tank should be between 30-60 °C, depending on type of fatty acid used. The conversion of fatty acids can be analyzed with GLC methods and after 95 % conversion of these fatty acids the yeast cells can be removed by centrifugation and their lipase activity/g biomass can be measured.

20 Centrifugates with a good activity can be used in a subsequent conversion process, whereas centrifugates with an activity of less than 50 % of the original activity can be resuscitated in the growth medium and the cells can be allowed to recover for 2 to 8 hours. Thereafter the cells can be centrifuged again, washed and used in a subsequent

25 conversion process.

EXAMPLE 9 Production of special types of triacylglycerols using *Rhizomucor miehei* lipase/α-agglutinin immobilized on yeasts.

The yeast transformed with plasmid pUR2981 or pUR2982 can be cultivated on a large scale. At regular intervals during cultivation the washed cells can be analyzed on 5 the presence of lipase activity on their surface with methods described in EXAMPLE 1. When both cell density and lipase/biomass reach their maximum, the yeast cells can be collected by centrifugation and washed. The washed cells can be suspended in a small amount of water and can be added to a reactor tank containing a mix of various triacylglycerols and fatty acids. The total concentration of the water (excluding 10 the water in the yeast cells) might be below 0.1 %. The final concentration of the yeast cells can vary between 0.1 and 10 g/l, preferably the concentration is above 1 g/l. The tank has to be kept under an atmosphere of N₂ and CO₂ in order to avoid oxidation of the (unsaturated) fatty acids and to minimize the metabolic activity of the yeasts. The temperature of mixture in the tank should be between 30-70 °C, 15 depending on types of triacylglycerol and fatty acid used. The degree of interesterification can be analyzed with GLC/MS methods and after formation of at least 80 % of the theoretical value of the desired type of triacylglycerol the yeasts cells can be removed by centrifugation and their lipase activity/g biomass can be measured. Centrifugates with a good activity can be used in a subsequent conversion process, 20 whereas centrifugates with an activity of less than 50 % of the original activity is resuscitated in the growth medium and the cells should be allowed to recover 2 to 8 hours. After that the cells can be centrifuged, washed and used in a subsequent interesterification process.

Baker's yeasts of strain MT302/1C, transformed with either plasmid pSY13 or 25 plasmid pUR2969 (described in EXAMPLE 1) were deposited under the Budapest Treaty at the Centraalbureau voor Schimmelcultures (CBS) on 3 July 1992 under provisional numbers 330.92 and 329.92, respectively.

EXAMPLE 10 Immobilized *Humicola* lipase/FLO1 fusion on the surface of *S. cerevisiae*

Flocculation, defined as "the (reversible) aggregation of dispersed yeast cells into flocs" (see reference 24), is the most important feature of yeast strains in industrial

fermentations. Beside this it is of principal interest, because it is a property associated with cell wall proteins and it is a quantitative characteristic. One of the genes associated with the flocculation phenotype in *S. cerevisiae* is the *FLO1* gene. The gene is located at approximately 24 kb from the right end of chromosome I and the DNA sequence of a clone containing major parts of *FLO1* gene has very recently been determined (see reference 26). The sequence is given in Figure 11 and SEQ ID NO: 21 and 22. The cloned fragment appeared to be approximately 2 kb shorter than the genomic copy as judged from Southern and Northern hybridizations, but encloses both ends of the *FLO1* gene. Analysis of the DNA sequence data indicates that the putative protein contains at the N-terminus a hydrophobic region which confirms a signal sequence for secretion, a hydrophobic C-terminus that might function as a signal for the attachment of a GPI-anchor and many glycosylation sites, especially in the C-terminus, with 46,6 % serine and threonine in the arbitrarily defined C-terminus (aa 271-894). Hence, it is likely that the *FLO1* gene product is localized in an orientated fashion in the yeast cell wall and may be directly involved in the process of interaction with neighbouring cells. The cloned *FLO1* sequence might therefore be suitable for the immobilization of proteins or peptides on the cell surface by a different type of cell wall anchor.

Recombinant DNA constructs can be obtained, for example by utilizing the DNA coding for amino acids 271-894 of the *FLO1* gene product, i.e. polynucleotide 811-2682 of Figure 11. Through application of two PCR primers pcrf1o1 (see SEQ ID NO: 23) and pcrf1o2 (see SEQ ID NO: 26) *Nhe*I and *Hind*III sites can be introduced at both ends of the DNA fragment. In a second step, the 1.4 kb *Nhe*I/*Hind*III fragment present in pUR2972 (either A or B) containing the C-terminal part of α -agglutinin can be replaced by the 1.9 kb DNA fragment coding for the C-terminal part of the *FLO1* protein, resulting in plasmid pUR2990 (see Figure 12), comprising a DNA sequence encoding (a) the invertase signal sequence (*SUC2*) preceding (b) the fusion protein consisting of (b.1) the lipase of *Humicola* (see reference 16) followed by (b.2) the C-terminus of *FLO1* protein (aa 271-894).

PCR oligonucleotides for the in frame connection of the genes encoding the *Humicola* lipase and the C-terminal part of the *FLO1* gene product.

5 primer pcrflol 5' - GAATTC GCT AGC AAT TAT GCT GTC AGT ACC - 3'
NheI ||| ||| ||| ||| ||| ||| |||
FLO1 gene (non-coding strand) 3' - AGT TTA ATA CGA CAG TCA TGG TGA - 5'
 (for the part of the non-coding strand see SEQ ID NO: 24)

10 *FLO1* coding strand 5'-AATAA AATTCGCGTTCTTTTACG - 3'

15 [View All](#)

Plasmid pUR2972 (either A or B) can be restricted with *Nhe*I (partial) and *Hind*III and the *Nhe*I/*Hind*III fragment comprising the vector backbone and the lipase gene can be ligated to the correspondingly digested PCR product of the plasmid containing the *FLO1* sequence, resulting in plasmid pUR2990, containing the *GAL7* promoter, the *S. cerevisiae* invertase signal sequence, the chimeric lipase/*FLO1* gene, the yeast 20 μ m sequence, the defective *Leu2* promoter and the *Leu2* gene. This plasmid can be transformed into *S. cerevisiae* and the transformed cells can be cultivated in YP medium including galactose as inductor.

The expression, secretion, localization and activity of the chimeric lipase/FLO1 protein can be analyzed using similar procedures as given in Example 1.

LITERATURE REFERENCES:

30

1. Monsan, P., Combes, D. (1988) "Enzyme stabilization by immobilization"; in Meth. in Enzymol. Vol. 137 584-598.
2. Kok, J. (1990) "Genetics of proteolytic systems of lactic acids bacteria" FEMS Microbiol. Rev. 87 15-54.
3. Conzelmann, A., Fankhauser, C., Desponds, C. (1990) "Myoinositol gets incorporated into numerous membrane glycoproteins of *S. cerevisiae*: Incorporation is dependent on phosphomannomutase" (SEC53). EMBO 9 653 - 661.
- 35
4. Lipke, P.,N., Wojciechowicz, D., Kurjan, J. (1989) "AG α 1 is the structural gene for the *Saccharomyces cerevisiae* α -agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating" Mol. Cell. Biol. 9 3155-3165.

5. Roy, A., Lu, C.F., Marykwas,D., Lipke, P., Kurja, J. (1991) "The AGA1 gene product is involved in cell surface attachment of the *S. cerevisiae* cell adhesion glycoprotein α -agglutinin", Mol. Cell. Biol. 11 4196-4206.
6. Teunissen, A.W.R.H., van den Berg, J.A., Steensma, H.Y. (1993) "Physical localization of the flocculation gene *FLO1* on chromosome I of *S. cerevisiae*, Yeast 9 (1) 1-10.
- 5 7. Yanisch Perron, C., Viera, J., Messing, J. (1985) "Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13 mp18 and pUC19 vectors." Gene 33 103-119.
- 10 8. Chung, C. T., Niemela, S. L., Miller, R. H. (1989) "One step preparation of competent *E. coli*: Transformation and storage of bacterial cells in the same solution" Proc. Natl. Acad. Sci. USA 86 2172-2175.
9. Sanger, F., Nicklen, S., Coulson, A. R. (1977) "DNA sequencing with chain terminating inhibitors" Proc. Natl. Acad. Sci. USA 74 5463-5467.
- 15 10. Hsiao, K. (1991) "A fast and simple procedure for sequencing double stranded DNA with Sequenase" Nucl. Acids Res. 19 2787.
11. Klebe, R.J.J., Harriss, V., Sharp, Z.D., Douglas, M.G. (1983) "A general method for polyethylene glycol induces genetic transformation of bacteria and yeast" Gene 25 333-341.
- 20 12. Overbeeke, N., Fellinger, A. J., Toonen, M. Y., van Wassenaar, P. D., Verrips, C. T. (1989) "Cloning and nucleotide sequence of the α -galactosidase gene from *Cyanopsis tetragonoloba*" Plant Mol. Biol. 13 541-550.
13. Laemmli, U. K. (1970) "Cleavage of structural proteins during the assembly of heads of bacteriophage T4." Nature 227 680-685.
- 25 14. Towbin, H. Steahelin, T., Gordon, J. (1979) "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications" Proc. Natl. Acad. Sci. USA 76 4350-4354.
15. Watzele, M., Klis, F., Tanner, W. (1988) "The immunological and molecular characterization of α -agglutinin from *S. cerevisiae*" EMBO J. 7 1483-1488
- 30 16. Boel, E., Huge-Jensen, B., Brown, J. D. (1989) "Humicola lipase and process for the production of recombinant *Humicola* lipases" EP-A1-0 305 216.

17. Verbakel, J.M.A. (1991) "Heterologous gene expression in the yeast *Saccharomyces cerevisiae*" PhD thesis, Rijksuniversiteit Utrecht, The Netherlands
18. Kurjan, J., Herskowitz, I. (1982) "Structure of a yeast Pheromone Gene (MF α): A putative α -Factor precursor contains four tandem copiers of mature α -factor" Cell 5 30 933-943.
19. Shimada, Y., Sugihara, A., Tominaga, Y., Iizumi, T., Tsunasawa, S. (1989) "cDNA molecular cloning of Geotrichum candidum lipase" J. Biochem. 106 383-388.
20. Boel, E., Huge-Jensen, B., Christensen, M., Thim, L., Fiil, N. (1988) "Rhizomucor miehei Triglyceride Lipase is Synthesized as a Precursor" Lipids, Vol.23, No 7, 10 701-706.
21. Schuch, R., Mukherjee, K.D. (1988) in "World conference on Biotechnology for the fat and oil industry" ISBN 0-935315-21-7, 328-329.
22. Kosaric, N., Cairus, W.L., Gray, N.C.C. (editors) (1987) "Biosurfactants and Biotechnology" Marcel Dekker Inc., New York, Vol. 25.
- 15 23. Frederick, K.R., Tung, J., Emerik, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S. (1990) "Glucose oxidase from *Aspergillus niger*". J. Biol. Chem., Vol.265, No.7, 3793-3802.
24. Johnston, J.R., Reader, H.P. (1983) "Genetic control of flocculation" in 'Yeast Genetics, Fundamental and applied aspects', Spencer, J.F.T. (Editor), ISBN 0-540-90793-9, p. 205-224.
- 20 25. Schreuder, M.P., Brekelmans, S., Van den Ende, H., Klis, F.M. (1993) "Targeting of a Heterologous Protein to the Cell Wall of *Saccharomyces cerevisiae*" Yeast 9 399-409
26. Teunissen, A.W.R.H., Holub, E., Van der Hucht, J., Van Den Berg, J.A., Steensma, H.Y. (1993) "Sequence of the Open reading frame of the *FLO1* Gene 25 from *Saccharomyces cerevisiae*" YEAST 9 423-427.
27. Harmsen, M.M., Langedijk, A.C., Van Tuinen, E., Geerse, R.H.; Raue, H.A., Maat, J. (1993) Effect of a *pmr1* disruption and different signal sequences on the intracellular processing and secretion of *Cyamopsis tetragonoloba* α -galactosidase by *Saccharomyces cerevisiae* Gene 125 115-123

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: Unilever N.V.
(B) STREET: Weena 455
(C) CITY: Rotterdam
(E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP): NL-3013 AL

(A) NAME: Unilever PLC
(B) STREET: Unilever House Blackfriars
(C) CITY: London
(E) COUNTRY: United Kingdom
(F) POSTAL CODE (ZIP): EC4P 4BQ

(A) NAME: Franciscus Maria KLIS
(B) STREET: Benedenlangs 102
(C) CITY: Amsterdam
(E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP): NL-1025 KL

(A) NAME: Maarten Pleun SCHREUDER
(B) STREET: Rode Kruislaan 1220
(C) CITY: Diemen
(E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP): NL-1111 XB

(A) NAME: Holger York TOSCHKA
(B) STREET: Coornhertstraat 77
(C) CITY: Vlaardingen
(E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP): NL-3132 GB

(A) NAME: Cornelis Theodorus VERRIPS
(B) STREET: Hagedoorn 18
(C) CITY: Maassluis
(E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP): NL-3142 KB

(ii) TITLE OF INVENTION: Enzymic Processes based on naturally immobilized enzymes that can easily be separated and regenerated

(iii) NUMBER OF SEQUENCES: 26

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6057 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Saccharomyces cerevisiae*

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 3653..5605
- (D) OTHER INFORMATION: /function= "sexual agglutinisation"
/product= "alpha-agglutinin"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCTTTAGG TAAGGGAGGC AGGGGGAAAA GATACTGAAA TGACGGAAAA CGAGAATATG	60
GAGCAGGGAG CAACTTTAG AGCTTTACCC GTTAAAGGT CAAATCGAGG CTTCCCTGCCT	120
TTGTCTGATT TTAGTAGTAC CGGAAGGTTT ATTACGCCCA AGAACAGTGC TTGAATTGAG	180
TTCTCGGGAC ACGGGAAAGA CAATGGAAGA AAAATTTACA TTCAGTAGCC TTATATATGA	240
AATGCTGCCA AGCCACGTCT TTATAAGTAG ATAATGTCCC ATGAGCTGAA CTATGGGAAT	300
TTATGACGCA GTTCATTGTA TATATATTAC ATTAACTCTT TAGTTAACCA TCTGAATTGT	360
TTTATAAAAT AACTTTTGATTTTTAT GATCGCTTAG TTAAGTCTAT TATATCAGGT	420
TTTTTCATTC ATCATAATTG TTCGTTAAAT ATGAGTATAT TTAATACAG GAATTAGTAT	480

CATTTGCAGT CACGAAAAGG GCCGTTTCAT AGAGAGTTT CTTAATAAG TTGAGGGTT	540
CCGTGATAGT TTTGAGGGT TGTTGAACT AGATTTACGC TTACCTTCAT ACTGATTAAT	600
TTTTTCAGCG GGCTTATCAT AATCATCCAT CATAGCAGTC TTTCTGGACT TCGTCGAGGA	660
CTGGCTTCT GAATTTGAC GGTCCTATT AGCTCCAGTT GGAGGAATTG AGTTACCTAC	720
AACTGGCAAG AGGTCTTTGT TTGGATTCAA AATAGGACTT TGTGGTAGCA GTTTGGTTT	780
ATTCAATCTA AAGATATGAG AAACAGGTTT TAAGTAAATC GATACTATTG TACCAATGTT	840
TAGCTCCAAT TCCTCCAAA CGGTGGGATC TAATTTGTG TTCATTCTA TTAGTGGCAA	900
CTCTCCGTCC AGTACTGATT TTAAAGATT AAAAGTTATC GCGTTGATA TACGAGACGT	960
TTTCGTTAAT GACAGCAATC TCCAATACAT CAGTGTTTA TCTCTTAAGT CAGGATTATT	1020
TTCGTGATCG GTGCATCCTT TTAATAATC CATACTAAAGT TCTTCAGTTT CCTTTGTAGG	1080
ATTTCTGATG AAGAATTTTA TTGCTGAGTT CAGAATGGAA AATTGCACTT CTAGCGTCTC	1140
ATTAACATG TTTGAGGAAA AAACCTAAA TAACTCCAGG TAGTTGGAA TTACATCCGA	1200
ATATTGCGTT ATTATCCAGA TCATAGCGTT TTTGATTCA GGTTCTGTA CAACTTCAGT	1260
GTGTTTGACT AGTTCTGTTA CGTTTGCTTT AAAATTATTG GGATATTCC TCAAAATATT	1320
TCTGAAAACC GAAATAATCT CCTGGACGAC ATAATCAACA CCGAATTCTA ACAAAATCTAG	1380
TAGCACAGCG ACACAATCGT GTACAGAGTC TTCATCTAGC TIAACAGCGA GATTACCAAT	1440
GGCTCTGACT GATTTCTTG ACATTTGAAT ATCAATATCT GTAGCATATT GTTCCAATC	1500
TTCTAGAATT CTTGGTAATG TTTCTTGTT AGCTAAAAGA TATAAACACT CTAATTCGT	1560
GTCTTGATG TATATGGGGT CATTGACTC GATGAAAAAA TACGAAATGT CTAGCCTGAG	1620
TAGAGATGAC TCCCTACTCA ATAAAAGAAG AATAACGTTT CTTAATACTA AAAATTGTAA	1680
TTCAGGCCGC TTATCTAAC AAGCTATTAC AGAGTTAGAT AGCTTTCCGG CTAGAGTTTC	1740
TTTGATGACG TCAACATAAT TCAACAAGTA CATGATGAAT TTTAAAGAGT TCAACACTAC	1800
GTATGTGTTT ACTTGTGCA GGTACGGTAA AGCTAGTTCG ATCATTTCAT GGGTATCCAA	1860

ATAATGCTGC GGCACAACCG AAGTCGTCAA AACTTCCAAA ACAGTAGCCT TATTCCACTC	1920
ATTTAATTGCG GGTAAAAGTT CTAGCATGTC AAAAGCGAGT TCCAAGGGAA TCCTGAAGGT	1980
TCCATGTTAG CGTTTTTTTC GTGAATGGAA TATAAAGTAT GTAATGCAGC TACAATGACT	2040
TCTGGAGAGC TCGACTGTGC CTTTACAATG TCATGTAGAA TGCTTGATAA CCCCAATACC	2100
CTTICATGAT CAATTTCACTC TAAATCCAAC AGTGCCTAAA TTGCTGTCT CGTCACTTGT	2160
TCAGGTGGAG ACTTGTGATT TACCAATGAA ATGATACRGT CGAAGGCCTG ATCAGATAGC	2220
TCTTTCACCG GGACTAATAC CAGAGTTCTT AGTGCCATTA TTTGTAACCTT TTCATCTCTG	2280
CTTTGAAAT CGTCCATTAT AAATGGCAA GCCTCTCTGG CCTGCTGAGG TTTTAATGCG	2340
CCGATCACCC TAATATACTC ATGGCAAATT CTTTCACTT CTAGATCATC TTCATTGCG	2400
CAAAATTCA AGAGCTCAGA AACAGAAGG GACATTCGC CATA GTTTCC TAGAACAAA	2460
TTGGCGATAA TTTTCTCAG AGCATTTC CTTCTTGTAA TATTCGATTT AAACTTTTT	2520
ACTCCAAAT GTTGCAGATC TGTGACGATT TCATTTGCTT TATATCTGGC AAAAACTTTT	2580
TGATCGGACA TAAGCGAAAT ACGTCCTATT AATGAAGTGA ATGTTCTTGC TGTATTCCCT	2640
TCTTGTGCAG TAGATTAATT CTGTTCCAG GCTGCGATAC TTTGATACCC AATACTAAAA	2700
GTTGATGATT TGAACGATCT CCTATTCCT CGCACATTTC TGGAGCGATA CCCGGAAGAC	2760
AGAATCGCGA TGTAAAGAAA ATAGTTCTGA TGGCACTAAA GAGATCATGA TTAAGGAAAG	2820
GTAAGTGATA TGCATGAATG GGAATAGGCT TTGAACTTG ACGATTTAGT TCCTTATTTC	2880
TATCCATCTA ATCCTCCAAC TTCAATAGGC CTTATCTAGC TCAGAGCAGT ATTTAATTGA	2940
GAATAGTAGC TTAATTGAAA CCTTACTAAA AAAGTGTATG GTTACATAAG ATAAGGCCTT	3000
AAGAAGAGTA TACATATGCA TTATTCATTA CCAAGACCA TATGAATAGT AATACCATAT	3060
TTAGCTTTG AACTCATGT TTTCTATTGT GTTGTGCAA ATTCTCTGT TAGGCTCAAT	3120
TTAGGTTAAT TAAATTATAA AAAATATAA AAAATAAAGA AAGTTTATCC ATCGGCACCT	3180
CAATTCAATG GAGTAAACAG TTTCAACACT GAGTGGTGAA ACATTGAACA ACTACATGCA	3240

GTTCAGGTCA	3300		
TGATGACCTA	3360		
TCGCCTTGG	3420		
CGCTTAAATA	3480		
CTTCTAAAAA	3540		
CAAATGCC	3600		
CCTCGCTTAA	3655		
Met			
1			
TTC ACT TTT CTC AAA ATT ATT CTG TGG CTT TTT TCC TTG GCA TTG GCC	3703		
Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu Ala			
5	10	15	
TCT GCT ATA AAT ATC AAC GAT ATC ACA TTT TCC AAT TTA GAA ATT ACT	3751		
Ser Ala Ile Asn Ile Asn Asp Ile Thr Phe Ser Asn Leu Glu Ile Thr			
20	25	30	
CCA CTG ACT GCA AAT AAA CAA CCT GAT CAA GGT TGG ACT GCC ACT TTT	3799		
Pro Leu Thr Ala Asn Lys Gln Pro Asp Gln Gly Trp Thr Ala Thr Phe			
35	40	45	
GAT TTT AGT ATT GCA GAT GCG TCT TCC ATT AGG GAG GGC GAT GAA TTC	3847		
Asp Phe Ser Ile Ala Asp Ala Ser Ser Ile Arg Glu Gly Asp Glu Phe			
50	55	60	65
ACA TTA TCA ATG CCA CAT GTT TAT AGG ATT AAG CTA TTA AAC TCA TCG	3895		
Thr Leu Ser Met Pro His Val Tyr Arg Ile Lys Leu Leu Asn Ser Ser			
70	75	80	
CAA ACA GCT ACT ATT TCC TTA GCG GAT GGT ACT GAG GCT TTC AAA TGC	3943		
Gln Thr Ala Thr Ile Ser Leu Ala Asp Gly Thr Glu Ala Phe Lys Cys			
85	90	95	
TAT GTT TCG CAA CAG GCT GCA TAC TTG TAT GAA AAT ACT ACT TTC ACA	3991		
Tyr Val Ser Gln Gln Ala Ala Tyr Leu Tyr Glu Asn Thr Thr Phe Thr			
100	105	110	

TGT ACT GCT CAA AAT GAC CTG TCC TCC TAT AAT ACG ATT GAT GGA TCC Cys Thr Ala Gln Asn Asp Leu Ser Ser Tyr Asn Thr Ile Asp Gly Ser 115	120	125	4039
ATA ACA TTT TCG CTA AAT TTT AGT GAT GGT GGT TCC AGC TAT GAA TAT Ile Thr Phe Ser Leu Asn Phe Ser Asp Gly Gly Ser Ser Tyr Glu Tyr 130	135	140	145
GAG TTA GAA AAC GCT AAG TTT TTC AAA TCT GGG CCA ATG CTT GTT AAA Glu Leu Glu Asn Ala Lys Phe Phe Lys Ser Gly Pro Met Leu Val Lys 150	155	160	4135
CTT GGT AAT CAA ATG TCA GAT GTG GTG AAT TTC GAT CCT GCT GCT TTT Leu Gly Asn Gln Met Ser Asp Val Val Asn Phe Asp Pro Ala Ala Phe 165	170	175	4183
ACA GAG AAT GTT TTT CAC TCT GGG CGT TCA ACT GGT TAC GGT TCT TTT Thr Glu Asn Val Phe His Ser Gly Arg Ser Thr Gly Tyr Gly Ser Phe 180	185	190	4231
GAA AGT TAT CAT TTG GGT ATG TAT TGT CCA AAC GGA TAT TTC CTG GGT Glu Ser Tyr His Leu Gly Met Tyr Cys Pro Asn Gly Tyr Phe Leu Gly 195	200	205	4279
GGT ACT GAG AAG ATT GAT TAC GAC AGT TCC AAT AAC AAT GTC GAT TTG Gly Thr Gln Lys Ile Asp Tyr Asp Ser Ser Asn Asn Asn Val Asp Leu 210	215	220	4327
GAT TGT TCT TCA GTT CAG GTT TAT TCA TCC AAT GAT TTT AAT GAT TGG Asp Cys Ser Ser Val Gln Val Tyr Ser Ser Asn Asp Phe Asn Asp Trp 230	235	240	4375
TGG TTC CCG CAA AGT TAC AAT GAT ACC AAT GCT GAC GTC ACT TGT TTT Trp Phe Pro Gln Ser Tyr Asn Asp Thr Asn Ala Asp Val Thr Cys Phe 245	250	255	4423
GGT AGT AAT CTG TGG ATT ACA CTT GAC GAA AAA CTA TAT GAT GGG GAA Gly Ser Asn Leu Trp Ile Thr Leu Asp Glu Lys Leu Tyr Asp Gly Glu 260	265	270	4471
ATG TTA TGG GTT AAT GCA TTA CAA TCT CTA CCC GCT AAT GTA AAC ACA Met Leu Trp Val Asn Ala Leu Gln Ser Leu Pro Ala Asn Val Asn Thr 275	280	285	4519

ATA GAT CAT GCG TTA GAA TTT CAA TAC ACA TGC CTT GAT ACC ATA GCA Ile Asp His Ala Leu Glu Phe Gln Tyr Thr Cys Leu Asp Thr Ile Ala 290	295	300	305	4567
AAT ACT ACG TAC GCT ACG CAA TTC TCG ACT ACT AGG GAA TTT ATT GTT Asn Thr Thr Tyr Ala Thr Gln Phe Ser Thr Thr Arg Glu Phe Ile Val 310	315	320		4615
TAT CAG GGT CGG AAC CTC GGT ACA GCT AGC GCC AAA AGC TCT TTT ATC Tyr Gln Gly Arg Asn Leu Gly Thr Ala Ser Ala Lys Ser Ser Phe Ile 325	330	335		4663
TCA ACC ACT ACT GAT TTA ACA AGT ATA AAC ACT AGT GCG TAT TCC Ser Thr Thr Thr Asp Leu Thr Ser Ile Asn Thr Ser Ala Tyr Ser 340	345	350		4711
ACT GGA TCC ATT TCC ACA GTA GAA ACA GGC AAT CGA ACT ACA TCA GAA Thr Gly Ser Ile Ser Thr Val Glu Thr Gly Asn Arg Thr Thr Ser Glu 355	360	365		4759
G TG ATC AGT CAT GTG GTG ACT ACC AGC ACA AAA CTG TCT CCA ACT GCT Val Ile Ser His Val Val Thr Thr Ser Thr Lys Leu Ser Pro Thr Ala 370	375	380	385	4807
ACT ACC AGC CTG ACA ATT GCA CAA ACC AGT ATC TAT TCT ACT GAC TCA Thr Thr Ser Leu Thr Ile Ala Gln Thr Ser Ile Tyr Ser Thr Asp Ser 390	395	400		4855
AAT ATC ACA GTA GGA ACA GAT ATT CAC ACC ACA TCA GAA GTG ATT AGT Asn Ile Thr Val Gly Thr Asp Ile His Thr Thr Ser Glu Val Ile Ser 405	410	415		4903
GAT GTG GAA ACC ATT AGC AGA GAA ACA GCT TCG ACC GTT GTA GCC GCT Asp Val Glu Thr Ile Ser Arg Glu Thr Ala Ser Thr Val Val Ala Ala 420	425	430		4951
CCA ACC TCA ACA ACT GGA TGG ACA GGC GCT ATG AAT ACT TAC ATC CCG Pro Thr Ser Thr Thr Gly Trp Thr Gly Ala Met Asn Thr Tyr Ile Pro 435	440	445		4999
CAA TTT ACA TCC TCT TTC GCA ACA ATC AAC AGC ACA CCA ATA ATC Gln Phe Thr Ser Ser Ser Phe Ala Thr Ile Asn Ser Thr Pro Ile Ile 450	455	460	465	5047

TCT TCA TCA GCA GTA TTT GAA ACC TCA GAT GCT TCA ATT GTC AAT GTG Ser Ser Ser Ala Val Phe Glu Thr Ser Asp Ala Ser Ile Val Asn Val	470	475	480	5095
CAC ACT GAA AAT ATC ACG AAT ACT GCT GCT GTT CCA TCT GAA GAG CCC His Thr Glu Asn Ile Thr Asn Thr Ala Ala Val Pro Ser Glu Glu Pro	485	490	495	5143
ACT TTT GTA AAT GCC ACG AGA AAC TCC TTA AAT TCC TTC TGC ACC AGC Thr Phe Val Asn Ala Thr Arg Asn Ser Leu Asn Ser Phe Cys Ser Ser	500	505	510	5191
AAA CAG CCA TCC AGT CCC TCA TCT TAT ACG TCT TCC CCA CTC GTA TCG Lys Gln Pro Ser Ser Pro Ser Ser Tyr Thr Ser Ser Pro Leu Val Ser	515	520	525	5239
TCC CTC TCC GTA AGC AAA ACA TTA CTA AGC ACC AGT TTT ACG CCT TCT Ser Leu Ser Val Ser Lys Thr Leu Leu Ser Thr Ser Phe Thr Pro Ser	530	535	540	5287
GTG CCA ACA TCT AAT ACA TAT ATC AAA ACG GAA AAT ACG GGT TAC TTT Val Pro Thr Ser Asn Thr Tyr Ile Lys Thr Glu Asn Thr Gly Tyr Phe	550	555	560	5335
GAG CAC ACG GCT TTG ACA ACA TCT TCA GTT GGC CTT AAT TCT TTT AGT Glu His Thr Ala Leu Thr Ser Ser Val Gly Leu Asn Ser Phe Ser	565	570	575	5383
GAA ACA GCA CTC TCA TCT CAG GGA ACG AAA ATT GAC ACC TTT TTA GTG Glu Thr Ala Leu Ser Ser Gln Gly Thr Lys Ile Asp Thr Phe Leu Val	580	585	590	5431
TCA TCC TTG ATC GCA TAT CCT TCT GCA TCA GGA AGC CAA TTG TCC Ser Ser Leu Ile Ala Tyr Pro Ser Ser Ala Ser Gly Ser Gln Leu Ser	595	600	605	5479
GGT ATC CAA CAG AAT TTC ACA ACT TCT CTC ATG ATT TCA ACC TAT Gly Ile Gln Gln Asn Phe Thr Ser Thr Ser Leu Met Ile Ser Thr Tyr	610	615	620	5527
GAA GGT AAA GCG TCT ATA TTT TTC TCA GCT GAG CTC GGT TCG ATC ATT Glu Gly Lys Ala Ser Ile Phe Phe Ser Ala Glu Leu Gly Ser Ile Ile	630	635	640	5575

TTT CTG CTT TTG TCG TAC CTG CTA TTC TAAAACGGGT ACTGTACAGT	5622
Phe Leu Leu Leu Ser Tyr Leu Leu Phe	
645	650
 TAGTACATTG AGTCGAAATA TACGAAATTA TTGTTCATAA TTTTCATCCT GGCTCTTTT	5682
TTCTTCAACC ATAGTTAAAT GGACAGTTCA TATCTAAC TCTAATAATA CTTTTCTAGT	5742
TCTTATCCTT TTCCGTCTCA CGCGAGATT TATCATAGTA TTAAATTAT ATTTGTTCG	5802
TAAAAAGAAA AATTTGTGAG CGTTACCGCT CGTTTCATTA CCCGAAGGCT GTTTCAGTAG	5862
ACCACGTGATT AAGTAAGTAG ATGAAAAAT TTCATCACCA TGAAAGAGTT CGATGAGAGC	5922
TACTTTTCA AATGCTTAAAC AGCTAACCGC CATTCAATAA TGTTACGTT TCCTTCATTCT	5982
GCGGCTACGT TATCTAACAA GAGGTTTAC TCTCTCATAT CTCATTCAA TAGAAAGAAC	6042
ATAATCAAAA AGCTT	6057

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 650 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Phe Thr Phe Leu Lys Ile Ile Leu Trp Leu Phe Ser Leu Ala Leu			
1	5	10	15

Ala Ser Ala Ile Asn Ile Asn Asp Ile Thr Phe Ser Asn Leu Glu Ile		
20	25	30

Thr Pro Leu Thr Ala Asn Lys Gln Pro Asp Gln Gly Trp Thr Ala Thr		
35	40	45

Phe Asp Phe Ser Ile Ala Asp Ala Ser Ser Ile Arg Glu Gly Asp Glu		
50	55	60

Phe Thr Leu Ser Met Pro His Val Tyr Arg Ile Lys Leu Leu Asn Ser
65 70 75 80
Ser Gln Thr Ala Thr Ile Ser Leu Ala Asp Gly Thr Glu Ala Phe Lys
85 90 95
Cys Tyr Val Ser Gln Gln Ala Ala Tyr Leu Tyr Glu Asn Thr Thr Phe
100 105 110
Thr Cys Thr Ala Gln Asn Asp Leu Ser Ser Tyr Asn Thr Ile Asp Gly
115 120 125
Ser Ile Thr Phe Ser Leu Asn Phe Ser Asp Gly Gly Ser Ser Tyr Glu
130 135 140
Tyr Glu Leu Glu Asn Ala Lys Phe Phe Lys Ser Gly Pro Met Leu Val
145 150 155 160
Lys Leu Gly Asn Gln Met Ser Asp Val Val Asn Phe Asp Pro Ala Ala
165 170 175
Phe Thr Glu Asn Val Phe His Ser Gly Arg Ser Thr Gly Tyr Gly Ser
180 185 190
Phe Glu Ser Tyr His Leu Gly Met Tyr Cys Pro Asn Gly Tyr Phe Leu
195 200 205
Gly Gly Thr Glu Lys Ile Asp Tyr Asp Ser Ser Asn Asn Asn Val Asp
210 215 220
Leu Asp Cys Ser Ser Val Gln Val Tyr Ser Ser Asn Asp Phe Asn Asp
225 230 235 240
Trp Trp Phe Pro Gln Ser Tyr Asn Asp Thr Asn Ala Asp Val Thr Cys
245 250 255
Phe Gly Ser Asn Leu Trp Ile Thr Leu Asp Glu Lys Leu Tyr Asp Gly
260 265 270
Glu Met Leu Trp Val Asn Ala Leu Gln Ser Leu Pro Ala Asn Val Asn
275 280 285
Thr Ile Asp His Ala Leu Glu Phe Gln Tyr Thr Cys Leu Asp Thr Ile
290 295 300

Ala Asn Thr Thr Tyr Ala Thr Gln Phe Ser Thr Thr Arg Glu Phe Ile
305 310 315 320

Val Tyr Gln Gly Arg Asn Leu Gly Thr Ala Ser Ala Lys Ser Ser Phe
325 330 335

Ile Ser Thr Thr Thr Asp Leu Thr Ser Ile Asn Thr Ser Ala Tyr
340 345 350

Ser Thr Gly Ser Ile Ser Thr Val Glu Thr Gly Asn Arg Thr Thr Ser
355 360 365

Glu Val Ile Ser His Val Val Thr Thr Ser Thr Lys Leu Ser Pro Thr
370 375 380

Ala Thr Thr Ser Leu Thr Ile Ala Gln Thr Ser Ile Tyr Ser Thr Asp
385 390 395 400

Ser Asn Ile Thr Val Gly Thr Asp Ile His Thr Thr Ser Glu Val Ile
405 410 415

Ser Asp Val Glu Thr Ile Ser Arg Glu Thr Ala Ser Thr Val Val Ala
420 425 430

Ala Pro Thr Ser Thr Thr Gly Trp Thr Gly Ala Met Asn Thr Tyr Ile
435 440 445

Pro Gln Phe Thr Ser Ser Ser Phe Ala Thr Ile Asn Ser Thr Pro Ile
450 455 460

Ile Ser Ser Ser Ala Val Phe Glu Thr Ser Asp Ala Ser Ile Val Asn
465 470 475 480

Val His Thr Glu Asn Ile Thr Asn Thr Ala Ala Val Pro Ser Glu Glu
485 490 495

Pro Thr Phe Val Asn Ala Thr Arg Asn Ser Leu Asn Ser Phe Cys Ser
500 505 510

Ser Lys Gln Pro Ser Ser Pro Ser Ser Tyr Thr Ser Ser Pro Leu Val
515 520 525

Ser Ser Leu Ser Val Ser Lys Thr Leu Leu Ser Thr Ser Phe Thr Pro
530 535 540

Ser Val Pro Thr Ser Asn Thr Tyr Ile Lys Thr Glu Asn Thr Gly Tyr
545 550 555 560

Phe Glu His Thr Ala Leu Thr Thr Ser Ser Val Gly Leu Asn Ser Phe
565 570 575

Ser Glu Thr Ala Leu Ser Ser Gln Gly Thr Lys Ile Asp Thr Phe Leu
580 585 590

Val Ser Ser Leu Ile Ala Tyr Pro Ser Ser Ala Ser Gly Ser Gln Leu
595 600 605

Ser Gly Ile Gln Gln Asn Phe Thr Ser Thr Ser Leu Met Ile Ser Thr
610 615 620

Tyr Glu Gly Lys Ala Ser Ile Phe Phe Ser Ala Glu Leu Gly Ser Ile
625 630 635 640

Ile Phe Leu Leu Ser Tyr Leu Leu Phe
645 650

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

- (B) CLONE: primer lipol

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GGGGCGGCCG AGGTCTCGCA AGATCTGGA

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

- (B) CLONE: Part non-coding strand lipase

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

TTTGTCCAGG TCTTGCGAGA CCTCTCGACG AAT

33

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

- (B) CLONE: Part coding strand lipase

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TTCGGGTTAA TTGGGACATG TCTTTAGTGC GA

32

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:
 (B) CLONE: primer lipo2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCCAAGCTT AAGGCTAGCA AGACATGTCC CAATTAACCC

40

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 894 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Humicola lanuginosa*

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 72..884
 (D) OTHER INFORMATION: /product= "lipase"

(ix) FEATURE:
 (A) NAME/KEY: mat_peptide
 (B) LOCATION: 72..881
 (D) OTHER INFORMATION: /product= "lipase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GAATTCGTAG CGACGATATG AGGAGCTCCC TTGTGCTGTT CTTTGTCTCT GCGTGGACGG

60

CCTTGGCCAC G GCC GAG GTC TCG CAA GAT CTG TTT AAC CAG TTC AAT CTC
 Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu

110

1

5

10

TTT GCA CAG TAT TCT GCT GCC GCA TAC TGC GGA AAA AAC AAT GAT GCC
 Phe Ala Gln Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala

158

15

20

25

45

CCA GCT GGT ACA AAC ATT ACG TGC ACG GGA AAT GCC TGC CCC GAG GTA Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val	30	35	40	45	206
GAG AAG GCG GAT GCA ACG TTT CTC TAC TCG TTT GAA GAC TCT GGA GTG Glu Lys Ala Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val	50	55	60		254
GCC GAT GTC ACC GGC TTC CTT GCT CTA GAC AAC ACG AAC AAA TTG ATC Gly Asp Val Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys Leu Ile	65	70	75		302
GTC CTC TCT TTC CGT GGC TCT CGT TCC ATA GAA AAC TGG ATC GGA AAT Val Leu Ser Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn	80	85	90		350
CTT AAC TTC GAC TTG AAA GAA ATA AAT GAC ATT TGC TCC GGC TGC AGG Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg	95	100	105		398
GGA CAT GAC GGC TTC ACC TCG AGC TGG AGG TCT GTA GCC GAT ACG TTA Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp Thr Leu	110	115	120	125	446
AGG CAG AAG GTG GAG GAT GCT GTG AGG GAG CAT CCC GAC TAT CGC GTG Arg Gln Lys Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr Arg Val	130	135	140		494
G TG TTT ACC GGA CAT AGC TTG GGT GCA TTG GCA ACT GTT GCC GGA Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val Ala Gly	145	150	155		542
GCA GAC CTG CGT GGA AAT GGG TAT GAC ATC GAC GTG TTT TCA TAT GGC Ala Asp Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser Tyr Gly	160	165	170		590
GCC CCC CGA GTC GGA AAC AGG GCT TTT GCA GAA TTC CTG ACC GTA CAG Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Val Gln	175	180	185		638
ACC GGC GGT ACC CTC TAC CGC ATT ACC CAC ACC AAT GAT ATT GTC CCT Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro	190	195	200	205	686

AGA CTC CCG CCG CGC GAG TTC GGT TAC AGC CAT TCT AGC CCA GAG TAC	734
Arg Leu Pr Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro Glu Tyr	
210	220
TGG ATC AAA TCT GGA ACC CTT GTC CCC GTC ACC CGA AAC GAC ATC GTG	782
Trp Ile Lys Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp Ile Val	
225	230
235	235
AAG ATA GAA GGC ATC GAT GCC ACC GGC GGC AAT AAC CAG CCT AAC ATT	830
Lys Ile Glu Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro Asn Ile	
240	245
250	250
CCG GAT ATC CCT GCG CAC CTA TGG TAC TTC GGG TTA ATT GGG ACA TGT	878
Pro Asp Ile Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly Thr Cys	
255	260
265	265
CTT TAGTGCGAAG CTT	894
Leu	
270	

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 270 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Ala Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu Phe Ala Gln			
1	5	10	15

Tyr Ser Ala Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala Pro Ala Gly		
20	25	30

Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val Glu Lys Ala		
35	40	45

Asp Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val Gly Asp Val		
50	55	60

Thr Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys Leu Ile Val Leu Ser
65 70 75 80

Phe Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn Leu Asn Phe
85 90 95

Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg Gly His Asp
100 105 110

Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp Thr Leu Arg Gln Lys
115 120 125

Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr Arg Val Val Phe Thr
130 135 140

Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val Ala Gly Ala Asp Leu
145 150 155 160

Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser Tyr Gly Ala Pro Arg
165 170 175

Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Val Gln Thr Gly Gly
180 185 190

Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro Arg Leu Pro
195 200 205

Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro Glu Tyr Trp Ile Lys
210 215 220

Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp Ile Val Lys Ile Glu
225 230 235 240

Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro Asn Ile Pro Asp Ile
245 250 255

Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly Thr Cys Leu
260 265 270

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 55 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

ATCCCTGCGC ACCTATGGTA CTTGGGTTA ATTGGGACAT GTCTTGCTAG CCTTA

55

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 59 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

AGCTTAAGGC TAGCAAGACA TGTCCAATT AACCCGAAGT ACCATAGGTG CGCAGGGAT

59

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1828 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Geotrichum candidum
 (B) STRAIN: CMICC 335426

(ix) FEATURE:

(A) NAME/KEY: CDS
 (B) LOCATION: 40..1731
 (D) OTHER INFORMATION: /product= "lipase"

(ix) FEATURE:

(A) NAME/KEY: sig_peptide
 (B) LOCATION: 40..96

(ix) FEATURE:

(A) NAME/KEY: mat_peptide
 (B) LOCATION: 97..1728
 (D) OTHER INFORMATION: /product= "lipase"
 /gene= "lipB"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

AATTGGCAC GAGATTCTT TGATTTGCAA CTGTTAAC	ATG GTT TCC AAA AGC	54	
	Met Val Ser Lys Ser		
	-19	-15	
TTT TTT TPG GCT GCG GCG CTC AAC GTA GTG GGC ACC TTG GCC CAG GCC		102	
Phe Phe Leu Ala Ala Ala Leu Asn Val Val Gly Thr Leu Ala Gln Ala			
-10	-5	1	
CCC ACG GCC GTT CTT AAT GGC AAC GAG GTC ATC TCT GGT GTC CTT GAG		150	
Pro Thr Ala Val Leu Asn Gly Asn Glu Val Ile Ser Gly Val Leu Glu			
5	10	15	
GCC AAG GTT GAT ACC TTC AAG GGA ATC CCA TTT GCT GAC CCT CCT GTT		198	
Gly Lys Val Asp Thr Phe Lys Gly Ile Pro Phe Ala Asp Pro Pro Val			
20	25	30	
GGT GAC TTG CGG TTC AAG CAC CCC CAG CCT TTC ACT GGA TCC TAC CAG		246	
Gly Asp Leu Arg Phe Lys His Pro Gln Pro Phe Thr Gly Ser Tyr Gln			
35	40	45	50
GGT CTT AAG GCC AAC GAC TTC AGC TCT GCT TGT ATG CAG CTT GAT CCT		294	
Gly Leu Lys Ala Asn Asp Phe Ser Ser Ala Cys Met Gln Leu Asp Pro			
55	60	65	

50

GGC AAT GCC TTT TCT TTG CTT GAC AAA GTA GTG GGC TTG GGA AAG ATT		342
Gly Asn Ala Phe Ser Leu Leu Asp Lys Val Val Gly Leu Gly Lys Ile		
70	75	80
CTT CCT GAT AAC CTT AGA GGC CCT CTT TAT GAC ATG GCC CAG GGT AGT		390
Leu Pro Asp Asn Leu Arg Gly Pro Leu Tyr Asp Met Ala Gln Gly Ser		
85	90	95
GTC TCC ATG AAT GAG GAC TGT CTC TAC CTT AAC GTT TTC CGC CCC GCT		438
Val Ser Met Asn Glu Asp Cys Leu Tyr Leu Asn Val Phe Arg Pro Ala		
100	105	110
GGC ACC AAG CCT GAT GCT AAG CTC CCC GTC ATG GTT TGG ATT TAC GGT		486
Gly Thr Lys Pro Asp Ala Lys Leu Pro Val Met Val Trp Ile Tyr Gly		
115	120	125
130		
GGT GCC TTT GTG TTT GGT TCT TCT GCT TCT TAC CCT GGT AAC GGC TAC		534
Gly Ala Phe Val Phe Gly Ser Ser Ala Ser Tyr Pro Gly Asn Gly Tyr		
135	140	145
GTC AAG GAG AGT GTG GAA ATG GGC CAG CCT GTT GTG TTT GTT TCC ATC		582
Val Lys Glu Ser Val Glu Met Gly Gln Pro Val Val Phe Val Ser Ile		
150	155	160
AAC TAC CGT ACC GGC CCC TAT GGA TTC TTG GGT GGT GAT GCC ATC ACC		630
Asn Tyr Arg Thr Gly Pro Tyr Gly Phe Leu Gly Gly Asp Ala Ile Thr		
165	170	175
GCT GAG GGC AAC ACC AAC GCT GGT CTG CAC GAC CAG CGC AAG GGT CTC		678
Ala Glu Gly Asn Thr Asn Ala Gly Leu His Asp Gln Arg Lys Gly Leu		
180	185	190
GAG TGG GTT AGC GAC AAC ATT GCC AAC TTT GGT GGT GAT CCC GAC AAG		726
Glu Trp Val Ser Asp Asn Ile Ala Asn Phe Gly Gly Asp Pro Asp Lys		
195	200	205
210		
GTC ATG ATT TTC GGT GAG TCC GCT GGT GCC ATG AGT GTT GCT CAC CAG		774
Val Met Ile Phe Gly Glu Ser Ala Gly Ala Met Ser Val Ala His Gln		
215	220	225
CTT GTT GCC TAC GGT GGT GAC AAC ACC TAC AAC GGA AAG CAG CTT TTC		822
Leu Val Ala Tyr Gly Gly Asp Asn Thr Tyr Asn Gly Lys Gln Leu Phe		
230	235	240

CAC TCT GCC ATT CTT CAG TCT GGC GGT CCT CTT CCT TAC TTT GAC TCT			870
His Ser Ala Ile Leu Gln Ser Gly Gly Pro Leu Pro Tyr Phe Asp Ser			
245	250	255	
ACT TCT GTT GGT CCC GAG AGT GCC TAC AGC AGA TTT GCT CAG TAT GCC			918
Thr Ser Val Gly Pro Glu Ser Ala Tyr Ser Arg Phe Ala Gln Tyr Ala			
260	265	270	
GGA TGT GAC ACC AGT GCC AGT GAT AAT GAC ACT CTG GCT TGT CTC CGC			966
Gly Cys Asp Thr Ser Ala Ser Asp Asn Asp Thr Leu Ala Cys Leu Arg			
275	280	285	290
AGC AAG TCC AGC GAT GTC TTG CAC AGT GCG CAG AAC TCG TAT GAT CTT			1014
Ser Lys Ser Ser Asp Val Leu His Ser Ala Gln Asn Ser Tyr Asp Leu			
295	300	305	
AAG GAC CTG TTT GGT CTG CTC CCT CAA TTC CTT GGA TTT GGT CCC AGA			1062
Lys Asp Leu Phe Gly Leu Leu Pro Gln Phe Leu Gly Phe Gly Pro Arg			
310	315	320	
CCC GAC GGC AAC ATT ATT CCC GAT GCC GCT TAT GAG CTC TAC CGC AGC			1110
Pro Asp Gly Asn Ile Ile Pro Asp Ala Ala Tyr Glu Leu Tyr Arg Ser			
325	330	335	
GGT AGA TAC GCC AAG GTT CCC TAC ATT ACT GGC AAC CAG GAG GAT GAG			1158
Gly Arg Tyr Ala Lys Val Pro Tyr Ile Thr Gly Asn Gln Glu Asp Glu			
340	345	350	
GGT ACT ATT CTT GCC CCC GTT GCT ATT AAT GCT ACC ACT ACT CCC CAT			1206
Gly Thr Ile Leu Ala Pro Val Ala Ile Asn Ala Thr Thr Thr Pro His			
355	360	365	370
GTT AAG AAG TGG TTG AAG TAC ATT TGT AGC CAG GCT TCT GAC GCT TCG			1254
Val Lys Lys Trp Leu Lys Tyr Ile Cys Ser Gln Ala Ser Asp Ala Ser			
375	380	385	
CTT GAT CGT GTT TTG TCG CTC TAC CCC GGC TCT TGG TCG GAG GGT TCA			1302
Leu Asp Arg Val Leu Ser Leu Tyr Pro Gly Ser Trp Ser Glu Gly Ser			
390	395	400	
CCA TTC CGC ACT GGT ATT CTT AAT GCT CTT ACC CCT CAG TTC AAG CGC			1350
Pro Phe Arg Thr Gly Ile Leu Asn Ala Leu Thr Pro Gln Phe Lys Arg			
405	410	415	

ATT GCT GCC ATT TTC ACT GAT TTG CTG TTC CAG TCT CCT CGT CGT GTT Ile Ala Ala Ile Phe Thr Asp Leu Leu Phe Gln Ser Pro Arg Arg Val 420	425	430	1398	
ATG CTT AAC GCT ACC AAG GAC GTC AAC CGC TGG ACT TAC CTT GCC ACC Met Leu Asn Ala Thr Lys Asp Val Asn Arg Trp Thr Tyr Leu Ala Thr 435	440	445	450	1446
CAG CTC CAT AAC CTC GTT CCA TTT TTG GGT ACT TTC CAT GGC AGT GAT Gln Leu His Asn Leu Val Pro Phe Leu Gly Thr Phe His Gly Ser Asp 455	460	465	1494	
CTT CTT TTT CAA TAC TAC GTG GAC CTT GGC CCA TCT TCT GCT TAC CGC Leu Leu Phe Gln Tyr Tyr Val Asp Leu Gly Pro Ser Ser Ala Tyr Arg 470	475	480	1542	
CGC TAC TTT ATC TCG TTT GCC AAC CAC CAC GAC CCC AAC GTT GGT ACC Arg Tyr Phe Ile Ser Phe Ala Asn His His Asp Pro Asn Val Gly Thr 485	490	495	1590	
AAC CTC CAA CAG TGG GAT ATG TAC ACT GAT GCA GGC AAG GAG ATG CTT Asn Leu Gln Gln Trp Asp Met Tyr Thr Asp Ala Gly Lys Glu Met Leu 500	505	510	1638	
CAG ATT CAT ATG ATT GGT AAC TCT ATG AGA ACT GAC GAC TTT AGA ATC Gln Ile His Met Ile Gly Asn Ser Met Arg Thr Asp Asp Phe Arg Ile 515	520	525	530	1686
GAG GGA ATC TCG AAC TTT GAG TCT GAC GTT ACT CTC TTC GGT TAATCCCATT Glu Gly Ile Ser Asn Phe Glu Ser Asp Val Thr Leu Phe Gly 535	540	545	1738	
TAGCAAGTTT TGTGTATTTCAAGTATACCA GTTGATGTAA TATATCAATA GATTACAAT			1798	
TAATTAGTGA AAAAAAAAAA AAAAAAAAAC			1828	

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 563 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Val Ser Lys Ser Phe Phe Leu Ala Ala Ala Leu Asn Val Val Gly
-19 -15 -10 -5

Thr Leu Ala Gln Ala Pro Thr Ala Val Leu Asn Gly Asn Glu Val Ile
1 5 10

Ser Gly Val Leu Glu Gly Lys Val Asp Thr Phe Lys Gly Ile Pro Phe
15 20 25

Ala Asp Pro Pro Val Gly Asp Leu Arg Phe Lys His Pro Gln Pro Phe
30 35 40 45

Thr Gly Ser Tyr Gln Gly Leu Lys Ala Asn Asp Phe Ser Ser Ala Cys
50 55 60

Met Gln Leu Asp Pro Gly Asn Ala Phe Ser Leu Leu Asp Lys Val Val
65 70 75

Gly Leu Gly Lys Ile Leu Pro Asp Asn Leu Arg Gly Pro Leu Tyr Asp
80 85 90

Met Ala Gln Gly Ser Val Ser Met Asn Glu Asp Cys Leu Tyr Leu Asn
95 100 105

Val Phe Arg Pro Ala Gly Thr Lys Pro Asp Ala Lys Leu Pro Val Met
110 115 120 125

Val Trp Ile Tyr Gly Gly Ala Phe Val Phe Gly Ser Ser Ala Ser Tyr
130 135 140

Pro Gly Asn Gly Tyr Val Lys Glu Ser Val Glu Met Gly Gln Pro Val
145 150 155

Val Phe Val Ser Ile Asn Tyr Arg Thr Gly Pro Tyr Gly Phe Leu Gly
160 165 170

Gly Asp Ala Ile Thr Ala Glu Gly Asn Thr Asn Ala Gly Leu His Asp
175 180 185

Gln Arg Lys Gly Leu Glu Trp Val Ser Asp Asn Ile Ala Asn Phe Gly
190 195 200 205

Gly Asp Pro Asp Lys Val Met Ile Phe Gly Glu Ser Ala Gly Ala Met
210 215 220

Ser Val Ala His Gln Leu Val Ala Tyr Gly Gly Asp Asn Thr Tyr Asn
225 230 235

Gly Lys Gln Leu Phe His Ser Ala Ile Leu Gln Ser Gly Gly Pro Leu
240 245 250

Pro Tyr Phe Asp Ser Thr Ser Val Gly Pro Glu Ser Ala Tyr Ser Arg
255 260 265

Phe Ala Gln Tyr Ala Gly Cys Asp Thr Ser Ala Ser Asp Asn Asp Thr
270 275 280 285

Leu Ala Cys Leu Arg Ser Lys Ser Ser Asp Val Leu His Ser Ala Gln
290 295 300

Asn Ser Tyr Asp Leu Lys Asp Leu Phe Gly Leu Leu Pro Gln Phe Leu
305 310 315

Gly Phe Gly Pro Arg Pro Asp Gly Asn Ile Ile Pro Asp Ala Ala Tyr
320 325 330

Glu Leu Tyr Arg Ser Gly Arg Tyr Ala Lys Val Pro Tyr Ile Thr Gly
335 340 345

Asn Gln Glu Asp Glu Gly Thr Ile Leu Ala Pro Val Ala Ile Asn Ala
350 355 360 365

Thr Thr Thr Pro His Val Lys Lys Trp Leu Lys Tyr Ile Cys Ser Gln
370 375 380

Ala Ser Asp Ala Ser Leu Asp Arg Val Leu Ser Leu Tyr Pro Gly Ser
385 390 395

Trp Ser Glu Gly Ser Pro Phe Arg Thr Gly Ile Leu Asn Ala Leu Thr
400 405 410

Pro Gln Phe Lys Arg Ile Ala Ala Ile Phe Thr Asp Leu Leu Phe Gln
415 420 425

Ser Pro Arg Arg Val Met Leu Asn Ala Thr Lys Asp Val Asn Arg Trp
430 435 440 445

55

Thr Tyr Leu Ala Thr Gln Leu His Asn Leu Val Pro Phe Leu Gly Thr
450 455 460

Phe His Gly Ser Asp Leu Leu Phe Gln Tyr Tyr Val Asp Leu Gly Pro
465 470 475

Ser Ser Ala Tyr Arg Arg Tyr Phe Ile Ser Phe Ala Asn His His Asp
480 485 490

Pro Asn Val Gly Thr Asn Leu Gln Gln Trp Asp Met Tyr Thr Asp Ala
495 500 505

Gly Lys Glu Met Leu Gln Ile His Met Ile Gly Asn Ser Met Arg Thr
510 515 520 525

Asp Asp Phe Arg Ile Glu Gly Ile Ser Asn Phe Glu Ser Asp Val Thr
530 535 540

Leu Phe Gly

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 36 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer lipo3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGGGCGGCCG CGCAGGCCCC AAGGCGGTCT CTCAAT

36

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Part non-coding strand lipaseII

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

ATTGAGAGAC CGCCGTGGGG CCTGGGCCAG

30

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 38 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Part coding strand lipaseII

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CAAACTTTGA GACTGACGTT AATCTCTACCG GTTAAAAC

38

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer lipo4

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CCCCGCTAGC ACCGTAGAGA TTAACGTCAG TC

32

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer lipo5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CCCGCGGCCG CGAGCATTGA TGGTGGTATC

30

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Part non-coding strand lipase

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

GATACCACGA TCAATGCT

18

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

- (B) CLONE: Part coding strand lipase

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

AACACAGGCC TCTGTACT

18

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

- (B) CLONE: primer lipo6

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CCGCGCTAGC AGTACAGAGG CCTGTGTT

28

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2685 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Saccharomyces cerevisiae*

(vii) IMMEDIATE SOURCE:

(B) CLONE: pYY105

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2685

(D) OTHER INFORMATION: /product= "Flocculation protein"
/gene= "FLO1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATG ACA ATG CCT CAT CGC TAT ATG TTT TTG GCA GTC TTT ACA CTT CTG
 Met Thr Met Pro His Arg Tyr Met Phe Leu Ala Val Phe Thr Leu Leu
 1 5 10 15

48

GCA CTA ACT AGT GTG GCC TCA GGA GCC ACA GAG GCG TGC TTA CCA GCA
 Ala Leu Thr Ser Val Ala Ser Gly Ala Thr Glu Ala Cys Leu Pro Ala
 20 25 30

96

GGC CAG AGG AAA AGT GGG ATG AAT ATA AAT TTT TAC CAG TAT TCA TTG
 Gly Gln Arg Lys Ser Gly Met Asn Ile Asn Phe Tyr Gln Tyr Ser Leu
 35 40 45

144

AAA GAT TCC TCC ACA TAT TCG AAT GCA GCA TAT ATG GCT TAT GGA TAT
 Lys Asp Ser Ser Thr Tyr Ser Asn Ala Ala Tyr Met Ala Tyr Gly Tyr
 50 55 60

192

GCC TCA AAA ACC AAA CTA GGT TCT GTC GGA GGA CAA ACT GAT ATC TCG
 Ala Ser Lys Thr Lys Leu Gly Ser Val Gly Gly Gln Thr Asp Ile Ser
 65 70 75 80

240

ATT GAT TAT AAT ATT CCC TGT GTT AGT TCA TCA GGC ACA TTT CCT TGT
 Ile Asp Tyr Asn Ile Pro Cys Val Ser Ser Gly Thr Phe Pro Cys
 85 90 95

288

CCT CAA GAA GAT TCC TAT GGA AAC TGG GGA TGC AAA GGA ATG GGT GCT
 Pro Gln Glu Asp Ser Tyr Gly Asn Trp Gly Cys Lys Gly Met Gly Ala
 100 105 110

336

TGT TCT AAT AGT CAA GGA ATT GCA TAC TGG AGT ACT GAT TTA TTT GGT
 Cys Ser Asn Ser Gln Gly Ile Ala Tyr Trp Ser Thr Asp Leu Phe Gly
 115 120 125

384

TTC TAT ACT ACC CCA ACA AAC GTC ACC CTA GAA ATG ACA GGT TAT TTT	432
Phe Tyr Thr Thr Pro Thr Asn Val Thr Leu Glu Met Thr Gly Tyr Phe	
130 135 140	
TTA CCA CCA CAG ACG GGT TCT TAC ACA TTC AAG TTT GCT ACA GTT GAC	480
Leu Pro Pro Gln Thr Gly Ser Tyr Thr Phe Lys Phe Ala Thr Val Asp	
145 150 155 160	
GAC TCT GCA ATT CTA TCA GTA GGT GGT GCA ACC GCG TTC AAC TGT TGT	528
Asp Ser Ala Ile Leu Ser Val Gly Gly Ala Thr Ala Phe Asn Cys Cys	
165 170 175	
GCT CAA CAG CAA CCG CCG ATC ACA TCA ACG AAC TTT ACC ATT GAC GGT	576
Ala Gln Gln Gln Pro Pro Ile Thr Ser Thr Asn Phe Thr Ile Asp Gly	
180 185 190	
ATC AAG CCA TGG GGT GGA AGT TTG CCA CCT AAT ATC GAA GGA ACC GTC	624
Ile Lys Pro Trp Gly Gly Ser Leu Pro Pro Asn Ile Glu Gly Thr Val	
195 200 205	
TAT ATG TAC GCT GGC TAC TAT CCA ATG AAG GTT GTT TAC TCG AAC	672
Tyr Met Tyr Ala Gly Tyr Tyr Pro Met Lys Val Val Tyr Ser Asn	
210 215 220	
GCT GTT TCT TGG GGT ACA CTT CCA ATT AGT GTG ACA CTT CCA GAT GGT	720
Ala Val Ser Trp Gly Thr Leu Pro Ile Ser Val Thr Leu Pro Asp Gly	
225 230 235 240	
ACC ACT GTA AGT GAT GAC TTC GAA GGG TAC GTC TAT TCC TTT GAC GAT	768
Thr Thr Val Ser Asp Asp Phe Glu Gly Tyr Val Tyr Ser Phe Asp Asp	
245 250 255	
GAC CTA AGT CAA TCT AAC TGT ACT GTC CCT GAC CCT TCA AAT TAT GCT	816
Asp Leu Ser Gln Ser Asn Cys Thr Val Pro Asp Pro Ser Asn Tyr Ala	
260 265 270	
GTC AGT ACC ACT ACA ACT ACA ACG GAA CCA TGG ACC GGT ACT TTC ACT	864
Val Ser Thr Thr Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr	
275 280 285	
TCT ACA TCT ACT GAA ATG ACC ACC GTC ACC GGT ACC AAC GGC GTT CCA	912
Ser Thr Ser Thr Glu Met Thr Thr Val Thr Gly Thr Asn Gly Val Pro	
290 295 300	

ACT GAC GAA ACC GTC ATT GTC ATC AGA ACT CCA ACC AGT GAA GGT CTA Thr Asp Glu Thr Val Ile Val Ile Arg Thr Pro Thr Ser Glu Gly Leu 305	310	315	320	960
ATC AGC ACC ACC ACT GAA CCA TGG ACT GGC ACT TTC ACT TCG ACT TCC Ile Ser Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser 325	330	335		1008
ACT GAG GTT ACC ACC ATC ACT GGA ACC AAC GGT CAA CCA ACT GAC GAA Thr Glu Val Thr Thr Ile Thr Gly Thr Asn Gly Gln Pro Thr Asp Glu 340	345	350		1056
ACT GTG ATT GTT ATC AGA ACT CCA ACC AGT GAA GGT CTA ATC AGC ACC Thr Val Ile Val Ile Arg Thr Pro Thr Ser Glu Gly Leu Ile Ser Thr 355	360	365		1104
ACC ACT GAA CCA TGG ACT GGT ACT TTC ACT TCT ACA TCT ACT GAA ATG Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser Thr Glu Met 370	375	380		1152
ACC ACC GTC ACC GGT ACT AAC GGT CAA CCA ACT GAC GAA ACC GTG ATT Thr Thr Val Thr Gly Thr Asn Gly Gln Pro Thr Asp Glu Thr Val Ile 385	390	395	400	1200
GTT ATC AGA ACT CCA ACC AGT GAA GGT TTG GTT ACA ACC ACC ACT GAA Val Ile Arg Thr Pro Thr Ser Glu Gly Leu Val Thr Thr Thr Glu 405	410	415		1248
CCA TGG ACT GGT ACT TTT ACT TCG ACT TCC ACT GAA ATG TCT ACT GTC Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser Thr Glu Met Ser Thr Val 420	425	430		1296
ACT GGA ACC AAT GGC TTG CCA ACT GAT GAA ACT GTC ATT GTT GTC AAA Thr Gly Thr Asn Gly Leu Pro Thr Asp Glu Thr Val Ile Val Val Lys 435	440	445		1344
ACT CCA ACT ACT GCC ATC TCA TCC AGT TTG TCA TCA TCA TCT TCA GGA Thr Pro Thr Thr Ala Ile Ser Ser Ser Leu Ser Ser Ser Ser Ser Gly 450	455	460		1392
CAA ATC ACC AGC TCT ATC ACG TCT TCG CGT CCA ATT ATT ACC CCA TTC Gln Ile Thr Ser Ser Ile Thr Ser Ser Arg Pro Ile Ile Thr Pro Phe 465	470	475	480	1440

TAT CCT AGC AAT GGA ACT TCT GTG ATT TCT TCC TCA GTA ATT TCT TCC Tyr Pr Ser Asn Gly Thr Ser Val Ile Ser Ser Ser Val Ile Ser Ser 485 490 495	1488
TCA GTC ACT TCT TCT CTA TTC ACT TCT TCT CCA GTC ATT TCT TCC TCA Ser Val Thr Ser Ser Leu Phe Thr Ser Ser Pro Val Ile Ser Ser Ser 500 505 510	1536
GTC ATT TCT TCT ACA ACA ACC TCC ACT TCT ATA TTT TCT GAA TCA Val Ile Ser Ser Ser Thr Thr Ser Thr Ser Ile Phe Ser Glu Ser 515 520 525	1584
TCT AAA TCA TCC GTC ATT CCA ACC AGT AGT TCC ACC TCT GGT TCT TCT Ser Lys Ser Ser Val Ile Pro Thr Ser Ser Ser Thr Ser Gly Ser Ser 530 535 540	1632
GAG AGC GAA ACG AGT TCA GCT GGT TCT GTC TCT TCT TCC TCT TTT ATC Glu Ser Glu Thr Ser Ser Ala Gly Ser Val Ser Ser Ser Phe Ile 545 550 555 560	1680
TCT TCT GAA TCA TCA AAA TCT CCT ACA TAT TCT TCT TCA TCA TTA CCA Ser Ser Glu Ser Ser Lys Ser Pro Thr Tyr Ser Ser Ser Leu Pro 565 570 575	1728
CTT GTT ACC AGT GCG ACA ACA AGC CAG GAA ACT GCT TCT TCA TCA TTA CCA Leu Val Thr Ser Ala Thr Thr Ser Gln Glu Thr Ala Ser Ser Leu Pro 580 585 590	1776
CCT GCT ACC ACT ACA AAA ACG AGC GAA CAA ACC ACT TTG GTT ACC GTG Pro Ala Thr Thr Lys Thr Ser Glu Gln Thr Thr Leu Val Thr Val 595 600 605	1824
ACA TCC TGC GAG TCT CAT GTG TGC ACT GAA TCC ATC TCC CCT GCG ATT Thr Ser Cys Glu Ser His Val Cys Thr Glu Ser Ile Ser Pro Ala Ile 610 615 620	1872
GTT TCC ACA GCT ACT GTT ACT GTT AGC GGC GTC ACA ACA GAG TAT ACC Val Ser Thr Ala Thr Val Thr Val Ser Gly Val Thr Thr Glu Tyr Thr 625 630 635 640	1920
ACA TGG TGC CCT ATT TCT ACT ACA GAG ACA ACA AAG CAA ACC AAA GGG Thr Trp Cys Pro Ile Ser Thr Thr Glu Thr Thr Lys Gln Thr Lys Gly 645 650 655	1968

ACA ACA GAG CAA ACC ACA GAA ACA ACA AAA CAA ACC ACG GTA GTT ACA			2016
Thr Thr Glu Gln Thr Thr Glu Thr Thr Lys Gln Thr Thr Val Val Thr			
660	665	670	
ATT TCT TCT TGT GAA TCT GAC GTA TGC TCT AAG ACT GCT TCT CCA GCC			2064
Ile Ser Ser Cys Glu Ser Asp Val Cys Ser Lys Thr Ala Ser Pro Ala			
675	680	685	
ATT GTA TCT ACA AGC ACT GCT ACT ATT AAC GGC GTT ACT ACA GAA TAC			2112
Ile Val Ser Thr Ser Thr Ala Thr Ile Asn Gly Val Thr Glu Tyr			
690	695	700	
ACA ACA TGG TGT CCT ATT TCC ACC ACA GAA TCG AGG CAA CAA ACA ACG			2160
Thr Thr Trp Cys Pro Ile Ser Thr Thr Glu Ser Arg Gln Gln Thr Thr			
705	710	715	720
CTA GTT ACT GTT ACT TCC TGC GAA TCT GGT GTG TGT TCC GAA ACT GCT			2208
Leu Val Thr Val Thr Ser Cys Glu Ser Gly Val Cys Ser Glu Thr Ala			
725	730	735	
TCA CCT GCC ATT GTT TCG ACG GCC ACG GCT ACT GTG AAT GAT GTT GTT			2256
Ser Pro Ala Ile Val Ser Thr Ala Thr Ala Thr Val Asn Asp Val Val			
740	745	750	
ACG GTC TAT CCT ACA TGG AGG CCA CAG ACT GCG AAT GAA GAG TCT GTC			2304
Thr Val Tyr Pro Thr Trp Arg Pro Gln Thr Ala Asn Glu Glu Ser Val			
755	760	765	
AGC TCT AAA ATG AAC AGT GCT ACC GGT GAG ACA ACA ACC AAT ACT TTA			2352
Ser Ser Lys Met Asn Ser Ala Thr Gly Glu Thr Thr Thr Asn Thr Leu			
770	775	780	
GCT GCT GAA ACG ACT ACC AAT ACT GTA GCT GCT GAG ACC ATT ACC AAT			2400
Ala Ala Glu Thr Thr Asn Thr Val Ala Ala Glu Thr Ile Thr Asn			
785	790	795	800
ACT GGA GCT GCT GAG ACG AAA ACA GTA GTC ACC TCT TCG CTT TCA AGA			2448
Thr Gly Ala Ala Glu Thr Lys Thr Val Val Thr Ser Ser Leu Ser Arg			
805	810	815	
TCT AAT CAC GCT GAA ACA CAG ACG GCT TCC GCG ACC GAT GTG ATT GGT			2496
Ser Asn His Ala Glu Thr Gln Thr Ala Ser Ala Thr Asp Val Ile Gly			
820	825	830	

CAC AGC AGT AGT GTT GTT TCT GTA TCC GAA ACT GGC AAC ACC AAG AGT	2544		
His Ser Ser Ser Val Val Ser Val Ser Glu Thr Gly Asn Thr Lys Ser			
835	840	845	
CTA ACA AGT TCC GGG TTG AGT ACT ATG TCG CAA CAG CCT CGT AGC ACA	2592		
Leu Thr Ser Ser Gly Leu Ser Thr Met Ser Gln Gln Pro Arg Ser Thr			
850	855	860	
CCA GCA AGC AGC ATG GTA GGA TAT AGT ACA GCT TCT TTA GAA ATT TCA	2640		
Pro Ala Ser Ser Met Val Gly Tyr Ser Thr Ala Ser Leu Glu Ile Ser			
865	870	875	880
ACG TAT GCT GGC AGT GCA ACA GCT TAC TGG CCG GTA GTG GTT TAA	2686		
Thr Tyr Ala Gly Ser Ala Thr Ala Tyr Trp Pro Val Val Val			
885	890	895	

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 894 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Met Thr Met Pro His Arg Tyr Met Phe Leu Ala Val Phe Thr Leu Leu
1 5 10 15

Ala Leu Thr Ser Val Ala Ser Gly Ala Thr Glu Ala Cys Leu Pro Ala
20 25 30

Gly Gln Arg Lys Ser Gly Met Asn Ile Asn Phe Tyr Gln Tyr Ser Leu
35 40 45

Lys Asp Ser Ser Thr Tyr Ser Asn Ala Ala Tyr Met Ala Tyr Gly Tyr
50 55 60

Ala Ser Lys Thr Lys Leu Gly Ser Val Gly Gly Gln Thr Asp Ile Ser
65 70 75 80

Ile	Asp	Tyr	Asn	Ile	Pro	Cys	Val	Ser	Ser	Ser	Gly	Thr	Phe	Pro	Cys
				85				90						95	

Pro Gln Glu Asp Ser Tyr Gly Asn Trp Gly Cys Lys Gly Met Gly Ala
100 105 110

Cys Ser Asn Ser Gln Gly Ile Ala Tyr Trp Ser Thr Asp Leu Phe Gly
115 120 125

Phe Tyr Thr Thr Pro Thr Asn Val Thr Leu Glu Met Thr Gly Tyr Phe
130 135 140

Leu Pro Pro Gln Thr Gly Ser Tyr Thr Phe Lys Phe Ala Thr Val Asp
145 150 155 160

Asp Ser Ala Ile Leu Ser Val Gly Gly Ala Thr Ala Phe Asn Cys Cys
165 170 175

Ala Gln Gln Gln Pro Pro Ile Thr Ser Thr Asn Phe Thr Ile Asp Gly
180 185 190

Ile Lys Pro Trp Gly Gly Ser Leu Pro Pro Asn Ile Glu Gly Thr Val
195 200 205

Tyr Met Tyr Ala Gly Tyr Tyr Pro Met Lys Val Val Tyr Ser Asn
210 215 220

Ala Val Ser Trp Gly Thr Leu Pro Ile Ser Val Thr Leu Pro Asp Gly
225 230 235 240

Thr Thr Val Ser Asp Asp Phe Glu Gly Tyr Val Tyr Ser Phe Asp Asp
245 250 255

Asp Leu Ser Gln Ser Asn Cys Thr Val Pro Asp Pro Ser Asn Tyr Ala
260 265 270

Val Ser Thr Thr Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr
275 280 285

Ser Thr Ser Thr Glu Met Thr Thr Val Thr Gly Thr Asn Gly Val Pro
290 295 300

Thr Asp Glu Thr Val Ile Val Ile Arg Thr Pro Thr Ser Glu Gly Leu
305 310 315 320

Ile Ser Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser
325 330 335

Thr Glu Val Thr Thr Ile Thr Gly Thr Asn Gly Gln Pro Thr Asp Glu
340 345 350

Thr Val Ile Val Ile Arg Thr Pro Thr Ser Glu Gly Leu Ile Ser Thr
355 360 365

Thr Thr Glu Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser Thr Glu Met
370 375 380

Thr Thr Val Thr Gly Thr Asn Gly Gln Pro Thr Asp Glu Thr Val Ile
385 390 395 400

Val Ile Arg Thr Pro Thr Ser Glu Gly Leu Val Thr Thr Thr Glu
405 410 415

Pro Trp Thr Gly Thr Phe Thr Ser Thr Ser Thr Glu Met Ser Thr Val
420 425 430

Thr Gly Thr Asn Gly Leu Pro Thr Asp Glu Thr Val Ile Val Val Lys
435 440 445

Thr Pro Thr Thr Ala Ile Ser Ser Ser Leu Ser Ser Ser Ser Gly
450 455 460

Gln Ile Thr Ser Ser Ile Thr Ser Ser Arg Pro Ile Ile Thr Pro Phe
465 470 475 480

Tyr Pro Ser Asn Gly Thr Ser Val Ile Ser Ser Ser Val Ile Ser Ser
485 490 495

Ser Val Thr Ser Ser Leu Phe Thr Ser Ser Pro Val Ile Ser Ser Ser
500 505 510

Val Ile Ser Ser Ser Thr Thr Ser Thr Ser Ile Phe Ser Glu Ser
515 520 525

Ser Lys Ser Ser Val Ile Pro Thr Ser Ser Ser Thr Ser Gly Ser Ser
530 535 540

Glu Ser Glu Thr Ser Ser Ala Gly Ser Val Ser Ser Ser Phe Ile
545 550 555 560

Ser Ser Glu Ser Ser Lys Ser Pro Thr Tyr Ser Ser Ser Leu Pro
565 570 575

Leu Val Thr Ser Ala Thr Thr Ser Gln Glu Thr Ala Ser Ser Leu Pro
580 585 590

Pro Ala Thr Thr Lys Thr Ser Glu Gln Thr Thr Leu Val Thr Val
595 600 605

Thr Ser Cys Glu Ser His Val Cys Thr Glu Ser Ile Ser Pro Ala Ile
610 615 620

Val Ser Thr Ala Thr Val Thr Val Ser Gly Val Thr Thr Glu Tyr Thr
625 630 635 640

Thr Trp Cys Pro Ile Ser Thr Thr Glu Thr Thr Lys Gln Thr Lys Gly
645 650 655

Thr Thr Glu Gln Thr Thr Glu Thr Thr Lys Gln Thr Thr Val Val Thr
660 665 670

Ile Ser Ser Cys Glu Ser Asp Val Cys Ser Lys Thr Ala Ser Pro Ala
675 680 685

Ile Val Ser Thr Ser Thr Ala Thr Ile Asn Gly Val Thr Thr Glu Tyr
690 695 700

Thr Thr Trp Cys Pro Ile Ser Thr Thr Glu Ser Arg Gln Gln Thr Thr
705 710 715 720

Leu Val Thr Val Thr Ser Cys Glu Ser Gly Val Cys Ser Glu Thr Ala
725 730 735

Ser Pro Ala Ile Val Ser Thr Ala Thr Ala Thr Val Asn Asp Val Val
740 745 750

Thr Val Tyr Pro Thr Trp Arg Pro Gln Thr Ala Asn Glu Glu Ser Val
755 760 765

Ser Ser Lys Met Asn Ser Ala Thr Gly Glu Thr Thr Asn Thr Leu
770 775 780

Ala Ala Glu Thr Thr Asn Thr Val Ala Ala Glu Thr Ile Thr Asn
785 790 795 800

Thr Gly Ala Ala Glu Thr Lys Thr Val Val Thr Ser Ser Leu Ser Arg
805 810 815

Ser Asn His Ala Glu Thr Gln Thr Ala Ser Ala Thr Asp Val Ile Gly
820 825 830

His Ser Ser Ser Val Val Ser Val Ser Glu Thr Gly Asn Thr Lys Ser
835 840 845

Leu Thr Ser Ser Gly Leu Ser Thr Met Ser Gln Gln Pro Arg Ser Thr
850 855 860

Pro Ala Ser Ser Met Val Gly Tyr Ser Thr Ala Ser Leu Glu Ile Ser
865 870 875 880

Thr Tyr Ala Gly Ser Ala Thr Ala Tyr Trp Pro Val Val Val
885 890

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer pcrflol

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GAATTCGCTA GCAATTATGC TGTCAGTACC

30

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Part non-coding sequence FLO1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

AGTGGTACTG ACAGCATAAT TTGA

24

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Part coding sequence FLO1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

ATAAAAATTC GCGTTCTTT TACG

24

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: primer pcrflo2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

GAGCTCAAGC TTCTGTAAAAA GAACGCCAAT T

31

CLAIMS

1. A method for immobilizing an enzyme, comprising the use of recombinant DNA techniques for producing an enzyme or a functional part thereof linked to the cell wall of a host cell, preferably a microbial cell, and whereby the enzyme or functional fragment thereof is localized at the exterior of the cell wall.
2. The method of claim 1, wherein the enzyme or the functional part thereof is immobilized by linking to the C-terminal part of a protein that ensures anchoring in the cell wall.
3. A recombinant polynucleotide comprising a structural gene encoding a protein providing catalytic activity and at least a part of a gene encoding a protein capable of anchoring in a eukaryotic or prokaryotic cell wall, said part encoding at least the C-terminal part of said anchoring protein.
4. The polynucleotide of claim 3, further comprising a sequence encoding a signal peptide ensuring secretion of the expression product of the polynucleotide.
5. The polynucleotide of claim 4, wherein the signal peptide is derived from a protein selected from the group consisting of glycosyl-phosphatidyl-inositol (GPI) anchoring protein, α -factor, α -agglutinin, invertase or inulinase, α -amylase of *Bacillus*, and proteinases of lactic acid bacteria.
6. The polynucleotide of any of claims 3-5, wherein the protein capable of anchoring in the cell wall is selected from the group consisting of α -agglutinin, AGA1, FLO1, Major Cell Wall Protein of lower eukaryotes, and proteinases of lactic acid bacteria.
7. The polynucleotide of any of claims 3-6, operably linked to a promoter, preferably an inducible promoter.

8. The polynucleotide of any of claims 3-7, wherein the protein providing catalytic activity is a hydrolytic enzyme, e.g. a lipase.
9. The polynucleotide of any of claims 3-7, wherein the protein providing catalytic activity is an oxidoreductase, e.g. an oxidase.
10. A recombinant vector comprising a polynucleotide as claimed in any of claims 3-9.
11. The recombinant vector of claim 10, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said vector further comprising a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter.
12. A chimeric protein encoded by a polynucleotide as claimed in any of claims 3-9.
13. A host cell, preferably a microorganism, containing a polynucleotide as claimed in any of claims 3-9 or a vector as claimed in claim 10 or 11.
14. A host cell, preferably a microorganism, containing a polynucleotide as claimed in any of claims 3-9 or a vector as claimed in claim 10, wherein the protein providing catalytic activity exhibits said catalytic activity when present in a multimeric form, said microorganism further comprising a second polynucleotide comprising a structural gene encoding the same protein providing catalytic activity combined with a sequence encoding a signal peptide ensuring secretion of the expression product of said second polynucleotide, said second polynucleotide being operably linked to a regulatable promoter, preferably an inducible or repressible promoter and said second polynucleotide being present either in another vector or in the chromosome of said microorganism.

15. The host cell or microorganism of claim 13 or 14, having at least one of said polynucleotides integrated in its chromosome.
16. A host cell, preferably a microorganism, having a protein as claimed in claim 12 immobilized on its cell wall.
17. The host cell or microorganism of any of claims 13-16, which is a lower eukaryote, in particular a yeast.
18. A process for carrying out an enzymatic process by using an immobilized catalytically active protein, wherein a substrate for said catalytically active protein is contacted with a host cell or microorganism as claimed in any of claims 13-17.

* * * *

FIGURE 1, 1/4

1/24

DNA SEQUENCE OF ALPHA-AGGLUTENIN:

1 AAGCTTTAGG TAAGGGAGGC AGGGGGAAAA GATACTGAAA
 41 TGACGGAAAA CGAGAATATG GAGCAGGGAG CAACTTTAG
 81 AGCTTTACCC GTTAAAAGGT CAAATCGAGG CTTCCTGCCT
 121 TTGTCTGATT TTAGTAGTAC CGGAAGGTTT ATTACGCCA
 161 AGAACAGTGC TTGAATTGAG TTCTCGGGAC ACGGGAAAGA
 201 CAATGGAAGA AAAATTACA TTCAGTAGCC TTATATATGA
 241 AATGCTGCCA AGCCACGTCT TTATAAGTAG ATAATGTCCC
 281 ATGAGCTGAA CTATGGGAAT TTATGACGCA GTTCATTGTA
 321 TATATATTAC ATTAACTCTT TAGTTAACCA TCTGAATTGT
 361 TTTATAAAAT AACTTTTGA ATTTTTTAT GATCGCTTAG
 401 TTAAGTCTAT TATATCAGGT TTTTCATTC ATCATAATTG
 441 TTCGTTAAAT ATGAGTATAT TTAAATACAG GAATTAGTAT
 481 CATTGCACT CACGAAAAGG GCCGTTTCAT AGAGAGTTTT
 521 CTTAATAAAAG TTGAGGGTTT CCGTGATAGT TTTGAGGGGT
 561 TGTTTGAAC AGATTACGC TTACCTTCAT ACTGATTAAT
 601 TTTTCAGCG GGCTTATCAT AATCATCCAT CATAGCAGTC
 641 TTTCTGGACT TCGTCGAGGA CTGGCTTTCT GAATTTGAC
 681 GGTCCCTATT AGCTCCAGTT GGAGGAATTG AGTTACCTAC
 721 AACTGGCAAG AGGTCTTTGT TTGGATTCAA AATAGGACTT
 761 TGTGGTAGCA GTTGGTTT ATTCAATCTA AAGATATGAG
 801 AAACAGGTTT TAAGTAAATC GATACTATTG TACCAATGTT
 841 TAGCTCCAAT TCCTCCAAAA CGGTGGGATC TAATTTGTTG
 881 TTCATTCTA TTAGTGGCAA CTCTCCGTCC AGTACTGATT
 921 TTAAAGATTG AAAAGTTATC GCGTTTGATA TACGAGACGT
 961 TTTCGTTAAT GACAGCAATC TCCAATACAT CAGTGTGTTA
 1001 TCTCTTAAGT CAGGATTATT TTCTGTATCG GTGCATCCTT
 1041 TTAATAAAATC CATAAAAGT TCTTCAGTTT CCTTTGTAGG
 1081 ATTTCTGATG AAGAATTAA TTGCTGAGTT CAGAATGGAA
 1121 AATTGCACTT CTAGCGTCTC ATTAAACATG TTTGAGGAAA
 1161 AAACTCTAAA TAACTCCAGG TAGTTGGAA TTACATCCGA
 1201 ATATTGCGTT ATTATCCAGA TCATAGCGTT TTTGATTCA
 1241 GGTTCCGTGA CAACTTCAGT GTGTTGACT AGTTCTGTTA
 1281 CGTTGCTTT AAAATTATTG GGATATTCC TCAAAATATT
 1321 TCTGAAAACC GAAATAATCT CCTGGACGAC ATAATCAACA
 1361 CCGAATTCTA ACAAAATCTAG TAGCACAGCG ACACAAATCGT
 1401 GTACAGAGTC TTCATCTAGC TTAACAGCGA GATTACCAAT
 1441 GGCTCTGACT GATTCCTTG ACATTTGAAT ATCAATATCT
 1481 GTAGCATATT GTTCCAATC TTCTAGAATT CTTGGTAATG
 1521 TTTCCTTGTT AGCTAAAAGA TATAAACACT CTAATTCTG
 1561 GTCTTGATG TATATGGGGT CATTGTACTC GATGAAAAAA

SUBSTITUTE SHEET

FIGURE 1, 2/4

2/24

1601 TACGAAATGT CTAGCCTGAG TAGAGATGAC TCCCTACTCA
 1641 ATAAAAGAAG AATAACGTTT CTTAATACTA AAAATTGTAA
 1681 TTCAGGGCGGC TTATCTAAC AAGCTATTAC AGAGTTAGAT
 1721 AGCTTTCGG CTAGAGTTTC TTTGATGACG TCAACATAAT
 1761 TCAACAAGTA CATGATGAAT TTTAAAGAGT TCAACACTAC
 1801 GTATGTGTTT ACTTGTTGCA GGTACGGTAA AGCTAGTCG
 1841 ATCATTTCAT GGGTATCCAA ATAATGCTGC GGCACAACCG
 1881 AAGTCGTCAA AACTTCCAAA ACAGTAGCCT TATTCCACTC
 1921 ATTTAATTCG GGTAAAAGTT CTAGCATGTC AAAAGCGAGT
 1961 TCCAAGGGAA TCCTGAAGGT TCCATGTTAG CGTTTTTTTC
 2001 GTGAATGGAA TATAAAAGTAT GTAATGCAGC TACAATGACT
 2041 TCTGGAGAGC TCGACTGTGC CTTTACAATG TCATGTAGAA
 2081 TGCTTGATAA CCCCAATACC CTTTCATGAT CAATTTCATC
 2121 TAAATCCAAC AGTGCCTAAA TTGCTGTCCT CGTCACTTGT
 2161 TCAGGTGGAG ACTTGTGATT TACCAATGAA ATGATACAGT
 2201 CGAAGGCCTG ATCAGATAGC TCTTCACCG GGACTAATAC
 2241 CAGAGTTCTT AGTGCCATTA TTTGTAACCT TTCACTCTCG
 2281 CTTTGAAAT CGTCCATTAT AAATGGCAAA GCCTCTCTGG
 2321 CCTGCTGAGG TTTTAATGCG CCGATCACCC TAATATACTC
 2361 ATGGCAAATT CTTTCACTT CTAGATCATC TTCAATTGTC
 2401 CAAAATTCA AGAGCTCAGA AAACAGAAGG GACATTCGC
 2441 CATAGTTCC TAGAACCAAA TTGGCGATAA TTTTCTCAG
 2481 AGCATTTC CTTCTGTAA TATTGATTT AAACTTTTT
 2521 ACTCCAAAAT GTTGCAGATC TGTGACGATT TCATTGCTT
 2561 TATATCTGGC AAAAACTTT TGATCGGACA TAAGCGAAAT
 2601 ACGTCCTATT AATGAAGTGA ATGTTCTTGC TGTATTCCCT
 2641 TCTTGTGCAG TAGATTAATT CTGTTCCAG GCTGCGATAC
 2681 TTTGATACCC AATACTAAAA GTTGATGATT TGAACGATCT
 2721 CCTATTCCCT CGCACATTTC TGGAGCGATA CCCGGAAGAC
 2761 AGAATCGCGA TGTTAAGAAA ATAGTTCTGA TGGCACTAAA
 2801 GAGATCATGA TTAAGGAAAG GTAAGTGATA TGCATGAATG
 2841 GGAATAGGCT TTCGAACTTG ACGATTTAGT TCCTTATTTC
 2881 TATCCATCTA ATCCTCCAAC TTCAATAGGC CTTATCTAGC
 2921 TCAGAGCAGT ATTAAATTGA GAATAGTAGC TTAATTGAAA
 2961 CCTTACTAAA AAAGTGTATG GTTACATAAG ATAAGGCGTT
 3001 AAGAAGAGTA TACATATGCA TTATTCACTA CCAAGACCAC
 3041 TATGAATAGT AATACCATAT TTAGCTTTG AAAACTCATGT
 3081 TTTCTATTGT GTTGTTCAG ATTCTCTGT TAGGCTCAAT
 3121 TTAGGTTAAT TAAATTATAA AAAATATAA AAAATAAAGA
 3161 AAGTTATCC ATCGGCACCT CAATTCAATG GAGTAAACAG
 3201 TTTCAACACT GAGTGGTGAA ACATTGAACA ACTACATGCA
 3241 GTTCCCCGCC ACGAGGCAAG TGTAGGTCTT TTGTCCATT

FIGURE 1, 3/4

3/24

3281 CGCTTTGTTT TGCAGGTCA TGATGACCTA ATTAGGAAGG
 3321 TAGAACCGC TCCAGCTCAA TAAGGAAATG CTAAGGGTAC
 3361 TCGCCTTG G TGTTTACCA TACAATGGCA GCTTTATGTC
 3401 ACTTCATTCT TCAGTAACGG CGCTTAAATA TTCCCCAAAAA
 3441 CGTTACAATG GAATTGTTG ATCATGTAAC GAAATGCAAT
 3481 CTTCTAAAAA AAAAGCCATG TGAATCAAAA AAAGATTCCCT
 3521 TTTAGCATAAC TATAAATATG CAAAATGCC C TCTATTATT
 3561 CTAGTAATCG TCCATTCTCA TATCTTCCTT ATATCAGTCG
 3601 CCTCGCTTAA TATAGTCAGC ACAAAAGGAA CAACAATTCG
 3641 CCAGTTTCA AAATGTTCAC TTTCTCAAA ATTATTCTGT
 3681 GGCTTTTTC CTTGGCATTG GCCTCTGCTA TAAATATCAA
 3721 CGATATCACA TTTCCAATT TAGAAATTAC TCCACTGACT
 3761 GCAAATAAAC AACCTGATCA AGGTTGGACT GCCACTTTG
 3801 ATTTTAGTAT TGCAAGATGCG TCTTCCATTA GGGAGGGCGA
 3841 TGAATTCAAC TTATCAATGC CACATGTTA TAGGATTAAG
 3881 CTATTAAACT CATCGAAAC AGCTACTATT TCCTTAGCGG
 3921 ATGGTACTGA GGCTTCAAA TGCTATGTT CGCAACAGGC
 3961 TGCATACTTG TATGAAAATA CTACTTTCAC ATGTACTGCT
 4001 CAAAATGACC TGTCCCTCTA TAATACGATT GATGGATCCA
 4041 TAACATTTC GCTAAATTG AGTGATGGTG GTTCCAGCTA
 4081 TGAATATGAG TTAGAAAACG CTAAGTTTT CAAATCTGGG
 4121 CCAATGCTTG TTAAACTTGG TAATCAAATG TCAGATGTGG
 4161 TGAATTCGA TCCTGCTGCT TTTACAGAGA ATGTTTTCA
 4201 CTCGGCGT TCAACTGGTT ACGGTTCTT TGAAAGTTAT
 4241 CATTGGGT A TGTATTGTCC AAACGGATAT TTCCTGGGTG
 4281 GTACTGAGAA GATTGATTAC GACAGTTCCA ATAACAATGT
 4321 CGATTGGAT TGTCTTCAG TTCAGGTTA TTCAATCCAAT
 4361 GATTTAATG ATTGGTGGTT CCCGCAAAGT TACAATGATA
 4401 CCAATGCTGA CGTCACTTGT TTTGGTAGTA ATCTGTGGAT
 4441 TACACTTGAC GAAAAACTAT ATGATGGGA AATGTTATGG
 4481 GTTAATGCAT TACAATCTCT ACCCGCTAAT GTAAACACAA
 4521 TAGATCATGC GTTAGAATT CAATACACAT GCCTTGATAC
 4561 CATAGCAAAT ACTACGTACG CTACGCAATT CTCGACTACT
 4601 AGGAAATTG TTGTTTATCA GGGTCGGAAC CTCGGTACAG
 4641 CTAGGCCAA AAGCTTTT ATCTCAACCA CTACTACTGA
 4681 TTTAACAAAGT ATAAACACTA GTGCGTATTC CACTGGATCC
 4721 ATTTCCACAG TAGAAACAGG CAATCGAACT ACATCAGAAG
 4761 TGATCAGTCA TGTGGTACT ACCAGCACAA AACTGTCTCC
 4801 AACTGCTACT ACCAGCCTGA CAATTGCACA AACCAGTATC
 4841 TATTCTACTG ACTCAAATAT CACAGTAGGA ACAGATATTG
 4881 ACACCACATC AGAAGTGATT AGTGATGTGG AAACCATTAG
 4921 CAGAGAAACA GCTTCGACCG TTGTAGCCGC TCCAACCTCA

FIGURE 1, 4/4

4/24

4961 ACAACTGGAT GGACAGGCGC TATGAATACT TACATCCCGC
5001 AATTACATC CTCTTCTTTC GCAACAAATCA ACAGCACACC
5041 AATAATCTCT TCATCAGCAG TATTGAAAC CTCAGATGCT
5081 TCAATTGTCA ATGTGCACAC TGAAAATATC ACGAATACTG
5121 CTGCTGTTCC ATCTGAAGAG CCCACTTTG TAAATGCCAC
5161 GAGAAACTCC TTAAATTCCCT TCTGCAGCAG CAAACAGCCA
5201 TCCAGTCCCT CATCTTATAC GTCTTCCCCA CTCGTATCGT
5241 CCCTCTCCGT AAGCAAAACA TTACTAAGCA CCAGTTTAC
5281 GCCTTCTGTG CCAACATCTA ATACATATAT CAAAACGGAA
5321 AATACGGGTT ACTTTGAGCA CACGGCTTG ACAACATCTT
5361 CAGTTGGCCT TAATTCTTT AGTGAACAG CACTCTCATC
5401 TCAGGGAACG AAAATTGACA CCTTTTTAGT GTCATCCTTG
5441 ATCGCATATC CTTCTTCTGC ATCAGGAAGC CAATTGTCCG
5481 GTATCCAACA GAATTTCACA TCAAACCTCTC TCATGATTT
5521 AACCTATGAA GGTAAAGCGT CTATATTTC CTCAGCTGAG
5561 CTCGGTTCGA TCATTTTCT GCTTTGTCG TACCTGCTAT
5601 TCTAAAACGG GTACTGTACA GTTAGTACAT TGAGTCGAAA
5641 TATACGAAAT TATTGTTCAT AATTTTCATC CTGGCTCTT
5681 TTTTCTTCAA CCATAGTTAA ATGGACAGTT CATATCTTAA
5721 ACTCTAATAA TACTTTCTA GTTCTTATCC TTTTCCGTCT
5761 CACCGCAGAT TTTATCATAG TATTAATTT ATATTTGTT
5801 CGTAAAAAGA AAAATTGTG AGCGTTACCG CTCGTTCAT
5841 TACCCGAAGG CTGTTTCAGT AGACCACTGA TTAAGTAAGT
5881 AGATGAAAAA ATTTCATCAC CATGAAAGAG TTCGATGAGA
5921 GCTACTTTT CAAATGCTTA ACAGCTAAC GCCATTCAAT
5961 AATGTTACGT TCTCTTCATT CTGCGGCTAC GTTATCTAAC
6001 AAGAGGTTTT ACTCTCTCAT ATCTCATTCA AATAGAAAGA
6041 ACATAATCAA AAAGCTT 6057

Fig. 2.
CONSTRUCTION OF pUR2969

SUBSTITUTE COUNTER

6/24

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pSY13

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pSY13

7/24

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pUR2969

Fig. 4A

ALPHA GALACTOSIDASE ACTIVITY MT302/1c WITH pUR2969

Fig. 4B

Fig. 5.

9/24

Fig. 6. (1/2)

(2/2)

10/24

Fig. 7. (1/4)
CONSTRUCTION OF PUR2972

11/24

Fig. 7(2/4)

12/24

Fig. 7 (3/4)

13/24

Fig. 7 (4/4)

FIGURE 8, 1/2

14/24

DNA SEQUENCE OF LIPASE B:

1	AATTGGCAC	GAGATTCTT	TGATTTCAA	CTGTTAATCA
41	TGGTTCCAA	AAGCTTTTT	TTGGCTCGG	CGCTCAACGT
81	AGTGGGCACC	TTGGCCCAGG	CCCCCACGGC	CGTTCTTAAT
121	GGCAACGAGG	TCATCTCTGG	TGTCCTTGAG	GGCAAGGTTG
161	ATACCTTCAA	GGGAATCCCA	TTTGCTGACC	CTCCTGTTGG
201	TGACTTGCAGG	TTCAAGCACC	CCCAGCCTT	CACTGGATCC
241	TACCAGGGTC	TTAAGGCCAA	CGACTTCAGC	TCTGCTTGTG
281	TGCAGCTTGA	TCCTGGCAAT	GCCTTTCTT	TGCTTGACAA
321	AGTAGTGGGC	TTGGGAAAGA	TTCTTCCTGA	TAACCTTAGA
361	GGCCCTCTT	ATGACATGGC	CCAGGGTAGT	GTCTCCATGA
401	ATGAGGACTG	TCTCTACCTT	AACGTTTCC	GCCCCGCTGG
441	CACCAAGCCT	GATGCTAACG	TCCCCGTCA	GGTTTGGATT
481	TACGGTGGTG	CCTTTGTGTT	TGGTTCTTCT	GCTTCTTACC
521	CTGGTAACGG	CTACGTCAAG	GAGAGTGTGG	AAATGGGCCA
561	GCCTGTTGTG	TTTGTTCCTA	TCAACTACCG	TACCGGCC
601	TATGGATTCT	TGGGTGGTGA	TGCCATCACC	GCTGAGGGCA
641	ACACCAACGC	TGGTCTGCAC	GACCAGCGCA	AGGGTCTCGA
681	GTGGGTTAGC	GACAACATTG	CCAACCTTGG	TGGTGATCCC
721	GACAAGGTCA	TGATTTCGG	TGAGTCCGCT	GGTGCCATGA
761	GTGTTGCTCA	CCAGCTTGT	GCCTACGGTG	GTGACAACAC
801	CTACAACGGA	AAGCAGCTT	TCCACTCTGC	CATTCTTCAG
841	TCTGGCGGTG	CTCTTCCTTA	CTTGACTCT	ACTTCTGTTG
881	GTCCCGAGAG	TGCCTACAGC	AGATTGCTC	AGTATGCCGG
921	ATGTGACACC	AGTGCCAGTG	ATAATGACAC	TCTGGCTTGT
961	CTCCGCAGCA	AGTCCAGCGA	TGTCTGCAC	AGTGCAGA
1001	ACTCGTATGA	TCTTAAGGAC	CTGTTGGTC	TGCTCCCTCA
1041	ATTCCCTGGA	TTTGGTCCCA	GACCCGACGG	CAACATTATT
1081	CCCGATGCCG	CTTATGAGCT	CTACCGCAGC	GGTAGATAACG
1121	CCAAGGTTCC	CTACATTACT	GGCAACCAGG	AGGATGAGGG
1161	TACTATTCTT	GCCCCCGTTG	CTATTAATGC	TACCACTACT
1201	CCCCCATGTTA	AGAAGTGGTT	GAAGTACATT	TGTAGCCAGG
1241	CTTCTGACGC	TTCGCTTGAT	CGTGTGTTGT	CGCTCTACCC
1281	CGGCTCTTGG	TCGGAGGGTT	CACCAATTCCG	CACTGGTATT
1321	CTTAATGCTC	TTACCCCTCA	GTTCAAGCGC	ATTGCTGCCA
1361	TTTTCACTGA	TTTGCTGTT	CAGTCTCCTC	GTCGTGTTAT
1401	GCTTAACGCT	ACCAAGGACG	TCAACCGCTG	GACTTACCTT
1441	GCCACCCAGC	TCCATAACCT	CGTTCCATT	TTGGGTACTT
1481	TCCATGGCAG	TGATCTTCTT	TTTCAATACT	ACGTGGACCT
1521	TGGCCCATCT	TCTGCTTACC	GCCGCTACTT	TATCTCGTTT
1561	GCCAACCACC	ACGACCCCAA	CGTTGGTACC	AACCTCCAAC

FIGURE 8, 2/2

15/24

1601 AGTGGGATAT GTACACTGAT GCAGGCAAGG AGATGCTTCA
1641 GATTCATATG ATTGGTAACT CTATGAGAAC TGACGACTTT
1681 AGAATCGAGG GAATCTCGAA CTTTGAGTCT GACGTTACTC
1721 TCTTCGGTTA ATCCCATTAA GCAAGTTTG TGTATTTCAA
1761 GTATACCAGT TGATGTAATA TATCAATAGA TTACAAATTA
1801 ATTAGTGAAA AAAAAAAA AAAAAAAC 1828

16/24

Fig. 9. CONSTRUCTION OF PUR2975

17/24

Fig. 10 (1/2) CONSTRUCTION OF pUR2981

Fig. 10 (2/2) CONSTRUCTION OF pUR2982

FIGURE 11, 1/2

19/24

DNA SEQUENCE OF FLO1:

1	ATGACAATGC	CTCATCGCTA	TATGTTTTG	GCAGTCTTTA
41	CACTTCTGGC	ACTAACTAGT	GTGGCCTCAG	GAGCCACAGA
81	GGCGTGCTTA	CCAGCAGGCC	AGAGGAAAAG	TGGGATGAAT
121	ATAAATTTC	ACCAGTATTG	ATTGAAAGAT	TCCTCCACAT
161	ATTCAATGC	AGCATATATG	GCTTATGGAT	ATGCCTCAA
201	AACCAAAC	GGTTCTGTCG	GAGGACAAAC	TGATATCTCG
241	ATTGATTATA	ATATTCCCTG	TGTTAGTTCA	TCAGGCACAT
281	TTCCTTGTCC	TCAAGAAGAT	TCCTATGGAA	ACTGGGGATG
321	CAAAGGAATG	GGTGCTTGTT	CTAATAGTCA	AGGAATTGCA
361	TACTGGAGTA	CTGATTATT	TGGTTCTAT	ACTACCCCAA
401	CAAACGTAAC	CCTAGAAATG	ACAGGTTATT	TTTTACCACC
441	ACAGACGGGT	TCTTACACAT	TCAAGTTGC	TACAGTTGAC
481	GAATCTGCAA	TTCTATCAGT	AGGTGGTGCA	ACCGCGTTCA
521	ACTGTTGTGC	TCAACAGCAA	CCGCCGATCA	CATCAACGAA
561	CTTTACCATT	GACGGTATCA	AGCCATGGGG	TGGAAGTTG
601	CCACCTAATA	TCGAAGGAAC	CGTCTATATG	TACGCTGGCT
641	ACTATTATCC	AATGAAGGTT	GTTTACTCGA	ACGCTGTTTC
681	TTGGGGTACA	CTTCCAATT	GTGTGACACT	TCCAGATGGT
721	ACCACTGTAA	GTGATGACTT	CGAAGGGTAC	GTCTATTCC
761	TTGACGATGA	CCTAAGTCAA	TCTAACTGTA	CTGTCCTGA
801	CCCTTCAAAT	TATGCTGTCA	GTACCACTAC	AACTACAACG
841	GAACCATGGA	CCGGTAC	CACTTCTACA	TCTACTGAAA
881	TGACCACCGT	CACCGGTACC	AACGGCGTTC	CAAATGACGA
921	AACCGTCATT	GTCATCAGAA	CTCCAACCAG	TGAAGGTCTA
961	ATCAGCACCA	CCACTGAACC	ATGGACTGGC	ACTTCACTT
1001	CGACTTCCAC	TGAGGTTACC	ACCATCACTG	GAACCAACGG
1041	TCAACCAACT	GACGAAACTG	TGATTGTTAT	CAGAACTCCA
1081	ACCAGTGAAG	GTCTAACG	CACCAACACT	GAACCATGGA
1121	CTGGTACTTT	CACTTCTACA	TCTACTGAAA	TGACCACCGT
1161	CACCGGTACT	AACGGTCAAC	CAACTGACGA	AACCGTGATT
1201	GTTATCAGAA	CTCCAACCAG	TGAAGGTTG	GTTACAACCA
1241	CCACTGAACC	ATGGACTGGT	ACTTTACTT	CGACTTCCAC
1281	TGAAATGTCT	ACTGTCACTG	GAACCAATGG	CTTGCCAACT
1321	GATGAAACTG	TCATTGTTGT	CAAAACTCCA	ACTACTGCCA
1361	TCTCATCCAG	TTTGTCA	TCATCTTCAG	GACAAATCAC
1401	CAGCTCTATC	ACGTCTTCGC	GTCCAATTAT	TACCCCATTC
1441	TATCCTAGCA	ATGGAACCTTC	TGTGATTCT	TCCTCAGTAA
1481	TTTCTTCCTC	AGTCACCTCT	TCTCTATTCA	CTTCTTCTCC
1521	AGTCATTCT	TCCTCAGTCA	TTTCTTCTTC	TACAACAAC
1561	TCCACTTCTA	TATTTCTGA	ATCATCTAAA	TCATCCGTCA

20/24

FIGURE 11, 2/2

1601 TTCCAACCAAG TAGTTCCACC TCTGGTTCTT CTGAGAGCGA
1641 AACGAGTTCA GCTGGTTCTG TCTCTTCTTC CTCTTTATC
1681 TCTTCTGAAT CATCAAAATC TCCTACATAT TCTTCTTCAT
1721 CATTACCACT TGTTACCACT GCGACAACAA GCCAGGAAAC
1761 TGCTTCTTCA TTACCAACCTG CTACCAACTAC AAAAACGAGC
1801 GAACAAACCA CTTGGTTAC CGTGACATCC TGCGAGTCTC
1841 ATGTGTGCAC TGAATCCATC TCCCCTGCGA TTGTTTCCAC
1881 AGCTACTGTT ACTGTTAGCG GCGTCACAAC AGAGTATAAC
1921 ACATGGTGCC CTATTTCTAC TACAGAGACA ACAAAGCAA
1961 CCAAAGGGAC AACAGAGCAA ACCACAGAAA CAACAAAACA
2001 AACCACGGTA GTTACAATT CTTCTTGTGA ATCTGACGTA
2041 TGCTCTAAGA CTGCTTCTCC AGCCATTGTA TCTACAAGCA
2081 CTGCTACTAT TAACGGCGTT ACTACAGAAT ACACAACATG
2121 GTGTCTTATT TCCACCACAG AATCGAGGCA ACAAACAAACG
2161 CTAGTTACTG TTACTTCCTG CGAATCTGGT GTGTGTTCCG
2201 AAACTGCTTC ACCTGCCATT GTTTCGACGG CCACGGCTAC
2241 TGTGAATGAT GTTGTACGG TCTATCCTAC ATGGAGGCCA
2281 CAGACTGCGA ATGAAGAGTC TGTCACTCT AAAATGAACA
2321 GTGCTACCGG TGAGACAAACA ACCAATACTT TAGCTGCTGA
2361 AACGACTACC AATACTGTAG CTGCTGAGAC GATTACCAAT
2401 ACTGGAGCTG CTGAGACGAA AACAGTAGTC ACCTCTTCGC
2441 TTTCAAGATC TAATCACGCT GAAACACAGA CGGCTTCCGC
2481 GACCGATGTG ATTGGTCACA GCAGTAGTGT TGTTTCTGTA
2521 TCCGAAACTG GCAACACCAA GAGTCTAACCA AGTTCCGGGT
2561 TGAGTACTAT GTCGAACAG CCTCGTAGCA CACCAGCAAG
2601 CAGCATGGTA GGATATAGTA CAGCTTCTTT AGAAATTCA
2641 ACGTATGCTG GCAGTGCAAC AGCTTACTGG CCGGTAGTGG
2681 TTTAA 2685

21/24

Fig. 12.
CONSTRUCTION OF pUR2990

PCR with oligonucleotides pcrflo1 & pcrflo2

Isolate 1950 bp fragment

cut with NheI and HindIII

ligate into HindIII/ NheI (p) digested pUR2972

22/24

Fig. 13.

23/24

Fig.14.

Fig.15.

A

(1/2)

B

(2/2)

INTERNATIONAL SEARCH REPORT

PCT/EP 93/01763

International Application No

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC
 Int.C1. 5 C12N15/62; C12N15/56; C12N15/55; C12N15/53
 C12N1/19; C12N11/16; //((C12N1/19,C12R1:865))

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols
Int.C1. 5	C12N

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	<p>PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 89, April 1992, WASHINGTON US pages 2713 - 2717</p> <p>JOSEPH A. FRANCISCO ET AL 'Transport and anchoring of beta-lactamase to the external surface of Escherichia coli' see the whole document</p> <p>---</p>	<p>1-4, 7-8, 10, 12-13, 15-16, 18</p>
X	<p>JOURNAL OF BACTERIOLOGY vol. 171, no. 9, September 1989, pages 4569 - 4576</p> <p>GEORGE ET AL 'The hydrophobic domain of cytochrome b5 is capable of anchoring beta-galactosidase in Escherichia coli membranes' * the whole article especially page 4569 lines 6-20 *</p> <p>---</p>	<p>1-4, 12-13, 16, 18</p> <p>-/-</p>

¹⁰ Special categories of cited documents :¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

¹¹ T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention¹² X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step¹³ Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art¹⁴ A document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 28 SEPTEMBER 1993	Date of Mailing of this International Search Report 01-10-1993
International Searching Authority EUROPEAN PATENT OFFICE	Signature of Authorized Officer LE CORNEC N.D.R.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		Relevant to Claim No.
Category	Citation of Document, with indication, where appropriate, of the relevant passages	
X	JOURNAL OF CELL BIOLOGY vol. 107, September 1988, pages 865 - 876 SCOTT W. HIEBERT ET AL 'Cell surface expression of glycosylated, nonglycosylated, and truncated forms of a cytoplasmic protein pyruvate kinase' see the whole document ----	1-4
X	WO,A,8 907 140 (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION) 10 August 1989 see page 5, line 30 - page 6, line 22 see page 12, line 13 - line 19 ----	1-4
A	JOURNAL OF BIOLOGICAL CHEMISTRY. vol. 265, no. 6, 25 February 1990, BALTIMORE US pages 3161 - 3167 CECIL C. CHEN ET AL 'Complete nucleotide sequence of the Steptococcal C5a peptidase of Streptococcus pyogenes' see the whole document ----	
A	CHEMICAL ABSTRACTS, vol. 102, no. 3, 21 January 1985, Columbus, Ohio, US; abstract no. 18728c, EMR,SCOTT D. ET AL 'Invertase beta-galactosidase hybrid proteins fail to be transported from the endoplasmic reticulum in Saccharomyces cerevisiae' page 176 ;column L ; see abstract	
A	& MOLECULAR AND CELLULAR BIOLOGY vol. 4, no. 11, 1984, WASHINGTON US pages 2347 - 2355 ----	1,3
A	MOLECULAR AND CELLULAR BIOLOGY vol. 8, no. 4, April 1988, WASHINGTON US pages 1709 - 1714 S. VIJAYA ET AL 'Transport to the cell surface of a peptide sequence attached to the truncated C terminus of an N-terminally anchored integral membrane protein' see the whole document -----	1,3

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.

EP 9301763
SA 76719

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 28/09/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-8907140	10-08-89	AU-A-	3045389	25-08-89

FORM P009

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82