Некоторые задачи, связанные с методом анализа сингулярного спектра и его многомерным обобщением

Грязнов Святослав Игоревич

Научный руководитель: к. ф.-м. н., доцент Н.Э. Голяндина Рецензент: к. ф.-м. н., доцент А.И. Коробейников

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

2016

План

- Введение
- Задача 1: Factor-MSSA
- ullet Задача 2: $\{Q,R\}$ -разложения

Введение

Введение

Введение: Постановка задачи

 $\mathbb X$ — многомерный временной ряд (система из s временных рядов).

$$X = (X^{(1)}, \dots, X^{(s)}), X^{(k)} = (x_j^{(k)})_{j=1}^N,$$

$$X = F + G + N,$$

$$F = (F^{(1)}, \dots, F^{(s)}), F^{(k)} = (f_j^{(k)})_{j=1}^N,$$

$$G = (G^{(1)}, \dots, G^{(s)}), G^{(k)} = (g_j^{(k)})_{j=1}^N,$$

$$N = (N^{(1)}, \dots, N^{(s)}), N^{(k)} = (n_j^{(k)})_{j=1}^N,$$

где $\mathbb F$ и $\mathbb G$ – компоненты сигнала, $\mathbb N$ – шум, s – размерность рядов.

Задача: Выделить компоненты \mathbb{F} и \mathbb{G} .

Метод: Многомерный анализ сингулярного спектра (Multivariate Singular Spectrum Analysis, MSSA, [Broomhead D.S., King G.P., 1986]).

Введение: Постановка задачи

 \mathbb{X} — многомерный временной ряд (система из s временных рядов).

$$X = (X^{(1)}, \dots, X^{(s)}), X^{(k)} = (x_j^{(k)})_{j=1}^N,$$

$$X = F + G + N,$$

$$F = (F^{(1)}, \dots, F^{(s)}), F^{(k)} = (f_j^{(k)})_{j=1}^N,$$

$$G = (G^{(1)}, \dots, G^{(s)}), G^{(k)} = (g_j^{(k)})_{j=1}^N,$$

$$N = (N^{(1)}, \dots, N^{(s)}), N^{(k)} = (n_j^{(k)})_{j=1}^N,$$

где $\mathbb F$ и $\mathbb G$ – компоненты сигнала, $\mathbb N$ – шум, s – размерность рядов.

Модель: $\mathbb{F}^{(k)}$ и $\mathbb{G}^{(k)}$ удовлетворяют линейным рекуррентным соотношениям (ЛРС).

 $\mathbb{S}=(s_1,\ldots,s_N)$ удовлетворяет линейному рекуррентному соотношению порядка r, если $s_n=a_1s_{n-1}+\ldots+a_rs_{n-r},\ n=r+1,\ldots,N$; $a_r\neq 0$.

Factor-MSSA

Задача: Factor-MSSA

Factor-MSSA: SSA-вложение

 $\mathbb{X} = (x_j)_{i=1}^N$ – временной ряд.

Выберем L (длину окна), $1\leqslant L\leqslant N$ и положим K=N-L+1.

 $\mathcal{M}_{L,K}$ – пространство матриц размера $L \times K$.

 $\mathcal{M}_{L,K}^{(H)}$ – пространство ганкелевых матриц размера $L \times K$.

 $X_j = (x_j, \ldots, x_{j+L-1})^{\mathrm{T}}, \ 1 \leqslant j \leqslant K.$

 $\mathbf{X} = [X_1:\ldots:X_K]$ – траекторная матрица ряда \mathbb{X} .

Оператор вложения

Оператор $\mathcal{T}: \mathbb{R}^N \mapsto \mathcal{M}_{L,K}^{(H)}$, действующий как $\mathcal{T}(\mathbb{X}) = \mathbf{X}$.

Оператор ганкелизации

 $\mathcal{H}: \mathcal{M}_{L,K} o \mathcal{M}_{L,K}^{(H)}$ – проектор на $\mathcal{M}_{L,K}^{(H)}$ по норме Фробениуса посредством усреднения элементов на диагоналях $i+j=\mathrm{const.}$

Factor-MSSA: Метод Factor-MSSA

Алгоритм метода Factor-MSSA [Groth A., Ghil M., 2011]. Первые два шага совпадают с MSSA. Для простоты s=2.

- f 1 Вложение: Траекторная матрица $f X = [f X^{(1)}: f X^{(2)}], \ f X^{(k)} = \mathcal T \mathbb X^{(k)}.$
- **②** Сингулярное разложение: $\mathbf{X} = \sum_{k=1}^d \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}$, $\{U_k\}$, $\{V_k\}$ ортонормированы, $\lambda_1 \geqslant \lambda_2 \geqslant \dots$
- Поворот некоторых факторных векторов:
 - Выберем группу индексов $J = (j_1, \dots, j_\ell) \subset \{1, \dots, d\}$ и рассмотрим $\mathbf{X}_J = \sum\limits_{k \in J} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{V}_J = [V_{j_1} : \dots : V_{j_\ell}].$
 - Посредством метода MVarimax найдем матрицу поворота ${f R}$ матрицы ${f V}_J$.
 - ullet Повернем матрицу $oldsymbol{V}_J$ с помощью $oldsymbol{\mathsf{R}}$ и найдем новые векторы $\widetilde{oldsymbol{\mathsf{U}}}_J$:

$$\widetilde{\mathbf{V}}_J = [\widetilde{V}_{J_1} : \dots : \widetilde{V}_{J_\ell}] = \mathbf{V}_J \mathbf{R},$$
 $\widetilde{\mathbf{U}}_J = [\widetilde{U}_{J_1} : \dots : \widetilde{U}_{J_\ell}] = \mathbf{X}_J \widetilde{\mathbf{V}}_J \mathbf{\Lambda}_J^{-1}, \text{ где } \mathbf{\Lambda}_J = \text{diag}(\lambda_{j_1}, \dots, \lambda_{j_\ell}).$

Новое разложение:
$$\mathbf{X} = \sum\limits_{k \in J} \sqrt{\lambda_k} \, \widetilde{U}_k \, \widetilde{V}_k + \sum\limits_{k \in \{1, \ldots, d\} \setminus J} \sqrt{\lambda_k} \, U_k \, V_k.$$

Factor-MSSA: Метод Factor-MSSA

 Группировка: Как и в MSSA, выберем т дизъюнктных групп, просуммируем внутри каждой элементарные матрицы.

$$X = X_{I_1} + \ldots + X_{I_m}$$
.

Диагональное усреднение: В результате этого шага получим т восстановленных временных рядов.

$$\begin{split} \widetilde{\mathbf{X}}_{I}^{(k)} &= \mathcal{H} \mathbf{X}_{I}^{(k)}, \ \widetilde{\mathbb{X}}_{I}^{(k)} &= \mathcal{T}^{-1} \widetilde{\mathbf{X}}_{I}^{(k)}, \, k = 1, 2, \\ \widetilde{\mathbb{X}}_{I} &= [\widetilde{\mathbb{X}}_{I}^{(1)} : \widetilde{\mathbb{X}}_{I}^{(2)}]. \end{split}$$

Результат алгоритма: разложение $\mathbb X$ на интерпретируемые аддитивные компоненты.

$$X = X_{I_1} + \ldots + X_{I_m}$$
.

Factor-MSSA: Метод MVarimax

Метод MVarimax: Поиска поворота R на третьем шаге алгоритма. Является обобщением обычного метода многомерной статистики Varimax в факторном анализе, [Groth A., Ghil M., 2011].

s-мерный временной ряд длины N, L – длина окна, K = N - L + 1, ℓ – число выбранных для поворота компонент.

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_s \end{bmatrix}, \text{ где } \mathbf{V}_j = \begin{pmatrix} v_{j,1}(1) & v_{j,2}(1) & \cdots & v_{j,\ell}(1) \\ \vdots & \vdots & \ddots & \vdots \\ v_{j,1}(K) & v_{j,2}(K) & \cdots & v_{j,\ell}(K) \end{pmatrix}.$$

$$\operatorname{Var}_{\mathrm{K}}(\mathbf{V},\mathbf{R}) = \sum_{k=1}^{\ell} \left(\frac{1}{s} \sum_{d=1}^{s} \left(\tilde{v}_{d,k}^2 \right)^2 - \left(\frac{1}{s} \sum_{d=1}^{s} \tilde{v}_{d,k}^2 \right)^2 \right) \rightarrow \max_{\mathbf{R} \in \mathrm{SO}(\ell)},$$

$$\operatorname{Var}_{\mathrm{K}}(\mathsf{V},\mathsf{R}) = \sum_{k=1}^{\ell} \left(\frac{1}{s} \sum_{d=1}^{s} \left(\tilde{\tilde{\mathsf{v}}}_{d,k}^{2} \right)^{2} - \left(\frac{1}{s} \sum_{d=1}^{s} \tilde{\tilde{\mathsf{v}}}_{d,k}^{2} \right)^{2} \right) \to \max_{\mathsf{R} \in \mathrm{SO}(\ell)}$$

где $ilde{ ilde{v}}_{d,k}^2 = \sum_{k=1}^K ilde{v}_{d,k}^2(m)$, а $ilde{v}_{d,k}(m)$ – элементы матрицы $\widetilde{\mathbf{V}}(\mathsf{R}) = \mathbf{V}\mathsf{R}$.

5 / 16

Factor-MSSA: Разделимость

Многомерные ряды $\mathbb F$ и $\mathbb G$, $\mathbb X=\mathbb F+\mathbb G.$

 $\mathbf{X}=\mathbf{F}+\mathbf{G}$, где \mathbf{X} , \mathbf{F} и \mathbf{G} – траекторные матрицы рядов \mathbb{X} , \mathbb{F} и \mathbb{G} .

Слабая разделимость для MSSA:

Ряды \mathbb{F} и \mathbb{G} слабо MSSA-разделимы, если существует такое сингулярное разложение X на элементарные матрицы, что их можно разбить на две части: первая из которых в сумме составляет траекторную матрицу F, а вторая -G.

Слабая разделимость для Factor-MSSA:

Ряды $\mathbb F$ и $\mathbb G$ слабо Factor-MSSA-разделимы, если существует такое сингулярное разложение, такая группа J и такой поворот $\mathbf R$, что результирующее разложение $\mathbf X$ на элементарные матрицы можно разбить на две части: первая из которых в сумме составляет траекторную матрицу $\mathbf F$, а вторая $-\mathbf G$.

2016

6 / 16

Factor-MSSA: Условия разделимости

Условия достижения слабой MSSA-разделимости [Голяндина Н., Некруткин В., Степанов Д., 2003]

 ${\mathbb F}$ и ${\mathbb G}$ слабо MSSA-разделимы, тогда и только тогда, когда

- lacktriangledown Строковые пространства rowspan(F) и rowspan(G) ортогональны.
- $oldsymbol{\circ}$ Столбцовые пространства $\operatorname{colspan}(F)$ и $\operatorname{colspan}(G)$ ортогональны.

Teopema: Условия достижения слабой Factor-MSSA-разделимости

 ${\mathbb F}$ и ${\mathbb G}$ слабо Factor-MSSA-разделимы, если

- Строковое пространство каждого одномерного ряда $\mathbf{F}^{(p)}$ из системы рядов первого ряда \mathbf{F} (rowspan($\mathbf{F}^{(p)}$)) ортогонально строковому пространству rowspan($\mathbf{G}^{(q)}$), $\forall p, q$.
- ② Столбцовое пространство каждого одномерного ряда $\mathbf{F}^{(p)}$ из системы рядов первого ряда \mathbf{F} (colspan($\mathbf{F}^{(p)}$)) не совпадает со столбцовым пространством colspan($\mathbf{G}^{(q)}$), $\forall p,q$.

7 / 16

Factor-MSSA: Сравнение

$$\mathbb{X} = \mathbb{S} + \mathbb{N},$$

$$s_k = \begin{pmatrix} 10\sin(2\pi \frac{1}{8}k) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 10\sin(2\pi \frac{1}{9}k) \end{pmatrix},$$
 $L = 51, 61, 71, \ N = 110, \ K = N - L + 1.$

 \mathbb{N} – гауссовский белый шум с σ^2 , 100 испытаний, мера качества – среднее значение MSE. Для проверки значимости paired t-test.

Метод	L=51	L=61	L=71	L=51	L=61	L=71
	$(\sigma=0)$	$(\sigma=0)$	(σ = 0)	$(\sigma=5)$	$(\sigma=5)$	$(\sigma=5)$
Factor-MSSA	0	0	0	2.648	2.344	2.803
MSSA	25.020	21.979	8.631	23.481	18.351	13.355
1d-SSA	0	0	0	2.617	2.368	2.792

MSE: Factor-MSSA \approx 1d-SSA < MSSA

Factor-MSSA: Сравнение

 \mathbb{N} – гауссовский белый шум с σ^2 , 100 испытаний, мера качества – среднее значение MSE. Для проверки значимости paired t-test.

Метод	L=51	L=61	L=71	L=51	L=61	L=71
	$(\sigma=0)$	$(\sigma=0)$	(σ = 0)	$(\sigma=5)$	$(\sigma=5)$	$(\sigma=5)$
Factor-MSSA	2.196	2.915	1.974	6.603	7.098	5.535
MSSA	2.196	2.915	1.974	6.603	7.098	5.560
1d-SSA	2.234	2.971	2.003	8.083	9.226	7.157

MSE: Factor-MSSA \approx MSSA < 1d-SSA

Factor-MSSA: Результаты

- Реализован алгоритм метода Factor-MSSA, основная сложность алгоритм MVarimax.
- Получены условия разделимости для Factor-MSSA и проведено их сравнение с условиями разделимости для MSSA.
- Рассмотрена модификация метода, более устойчивая в случае приближенной MSSA-разделимости.
- Результаты проиллюстрированы численными примерами.
- Проведено численное сравнение Factor-MSSA, MSSA и одномерного SSA.

 $\{Q,R\}$ -разложения

Задача: $\{Q,R\}$ -разложения

 $\{Q,R\}$ -разложения: Постановка задачи

$$\mathbb{X}=\mathbb{S}+\mathbb{N},\ \boldsymbol{\mathsf{X}}=\mathcal{T}(\mathbb{X}).$$

Задача: выделение сигнала S конечного ранга.

Решение: метод HSLRA аппроксимации **S** (траекторной матрицы $\mathbb S$) с весами $Q \in \mathbb R^L$, $R \in \mathbb R^K$; в итерационном алгоритме метода одна итерация совпадает с SSA.

Результат: аппроксимация $\mathbb S$ по взвешенному МНК с весами W, где W – свертка Q и R, то есть $W=Q\star R$.

Обычно Q и R берутся единичными, и поэтому W неравномерные.

Проблема: найти такие Q и R, что $Q\star R=(1,\ldots,1),\ q_i\geqslant 0, r_i\geqslant 0.$

$\{Q,R\}$ -разложения: Свойства

Множество решений:

Множество всех решений для заданного N:

$$\mathcal{S}_N = \{\{Q,R\} : Q \star R = \underbrace{(1,\ldots,1)}_N, |Q| \geqslant |R|\}.$$

Свойства $\{Q,R\}$ -разложений [Zhigljavsky A., Golyandina N., Gryaznov S., 2016]:

- Q, R состоят из нулей и единиц, но не из всех единиц (кроме случая $\{1,\underbrace{1\dots 1}_N\}$). Можно сопоставлять Q и R двоичные числа.
- Q, R палиндромы.

Bin – оператор представления вектора из разложения как двоичного числа.

Доказано, что $Bin(Q) \mid (2^N - 1)$ и $Bin(R) \mid (2^N - 1)$. Поэтому будем искать Q и R с помощью делителей $2^N - 1$.

$\{Q,R\}$ -разложения: Класс решений

Класс разложений \mathcal{C} :

- $\qquad \qquad \mathbf{1},\mathbf{1}\}\in\mathcal{C}.$
- $m{Q}$ Если $\{Q,R\}\in \mathcal{C}$, то $\{(R\underbrace{0\ldots 0}_{|Q|-1})^pR,Q\}\in \mathcal{C}$, $p=1,2,\ldots$

Разложения для заданного N, лежащие в классе \mathcal{C} :

 $\mathcal{C}_N = \mathcal{S}_N \cap \mathcal{C}$, \mathcal{S}_N – множество всех $\{Q,R\}$ -разложений.

Свойства класса \mathcal{C} :

- Теорема: $\mathcal{C} \subset \bigcup_{N} \mathcal{S}_{N}$.
- Проверено перебором: $C_N = S_N$, N ≤ 600.

Гипотеза: $C_N = S_N, \forall N$.

$\{Q,R\}$ -разложения: Упорядоченные факторизации

 \mathcal{C}_N — множество $\{Q,R\}$ -разложений из класса \mathcal{C} . \mathcal{OF}_N — множество упорядоченных факторизаций [OEIS A074206].

Упорядоченная факторизация числа N – упорядоченный набор чисел (m_1,m_2,\ldots,m_k) , такой что $N=\prod\limits_{i=1}^k m_i$. Например, для N=12:

(12), (6,2), (2,6), (3,4), (4,3), (3,2,2), (2,3,2), (2,2,3).

Теорема: Между множествами \mathcal{C}_N и \mathcal{OF}_N есть биекция.

Результат: Алгоритм нахождения $\{Q,R\}$ -разложений с использованием данной биекции.

$\{Q,R\}$ -разложения: Алгоритм

Алгоритм нахождения разложений из \mathcal{C}_N по заданному N.

- Нахождение упорядоченных факторизаций \mathcal{OF}_N .
 - Нахождение делителей *N*.
 - Перебор подмножеств мультимножества делителей [Knuth D.E., 2009].
- Построение \mathcal{C}_N по \mathcal{OF}_N с помощью доказанной биекции между \mathcal{C}_N и \mathcal{OF}_N .

N	Тривиальный алгоритм (с.)	Данный алгоритм (с.)
256	35.463	0.253
10400	>10000	11.517

Результат: Web-приложение (реализация данного алгоритма)

http://0101-nightuser.rhcloud.com/

$\{Q,R\}$ -разложения: Результаты

- **①** Описан класс C, и выдвинута гипотеза о том, что класс содержит все разложения.
- Доказано, что определение класса корректно, то есть все его элементы являются разложениями.
- **③** Предложен и реализован алгоритм, находящий по заданному N все разложения из класса C, доказана его корректность.
- **①** Показано, что для небольших N ($N \le 600$) алгоритм находит все разложения, и при этом его производительность превосходит производительность наивного перебора.
- Создан web-сервис, позволяющий найти разложения для любого N:
 - http://0101-nightuser.rhcloud.com/