

#### Masterarbeit

### ENTWICKLUNG EINES ACO BASIERTEN ALGORITHMUS ZUR LÖSUNG EINES MULTIKRITERIELLEN OPTIMIERUNGSPROBLEMS IN DER AUFTRAGSPLANUNG

Leipzig, 10.06.2021 Falk Müller

# **GLIEDERUNG**

- 1. Grundlagen
- 2. Aufgabe
- 3. Umsetzung
- 4. Messung
- 5. Lokale Suche
- 6. Ausblick

# **GRUNDLAGEN**

### **AMEISENALGORITHMEN**



# **PHEROMON-UPDATE**



# **VERDUNSTUNG**



$$\tau_{ij} \leftarrow (1 - \rho) \cdot \tau_{ij}$$

### **HEURISTISCHE ANTEIL**

$$p_{ij} = \frac{\tau_{ij}^{\alpha} \cdot \eta_{ij}^{\beta}}{\sum_{j \in m \ddot{o}gliche \, Knoten} \tau_{ij}^{\alpha} \cdot \eta_{ij}^{\beta}}$$

# **AUFGABE**

# **AUFTRAGSVERTEILUNG**

- 200 Bearbeiter
- 3000 Aufträge



# **AUFTRÄGE**

- PJ<sub>i</sub>: geografische Position
- DUE<sub>i</sub>: Abgabedatum
- PR<sub>i</sub>: Bearbeitungsdauer vor Ort
- TC<sub>i</sub>: Verspätungskosten je Zeiteinheit
- PROB<sub>i</sub>: Liste der obligatorische Eigenschaften
- PROP<sub>j</sub>: Liste der optionalen Eigenschaften

#### BEARBEITER

PMi: geografische Position

CPH<sub>i</sub>: Stundenlohn

PRO: Liste von Eigenschaften



### **FUNKTIONEN**

- getDistance(i,j)
- getTravilingTime(i,j) → getDistance(i,j) \* HPK
- **GetTardinessCosts**(i, t)  $\rightarrow$  MAX(TC<sub>i</sub> \* (t DUE<sub>i</sub> + PR<sub>i</sub>),0)
- getStaffOrderCosts(i, j) → CPH<sub>i</sub> \* PR<sub>j</sub>
- getStaffTravelCosts(t, i) → CPH<sub>i</sub> \* t
- getStaffOrderPreference(i, j)
  - $\rightarrow$  (|PROB<sub>i</sub>  $\cap$  PRO<sub>i</sub>| + |PROP<sub>i</sub>  $\cap$  PRO<sub>i</sub>|) / (|PROB<sub>i</sub>| +
  - $|PROP_i|$ ), wenn  $|PROB_i| + |PROP_i| > 0$
  - $\rightarrow$  0.5, wenn |PROB<sub>i</sub>| + |PROP<sub>i</sub>| = 0

### **KOSTEN**

- KFZ: Benzin-Kosten
- Verspätungskosten
- Reisekosten
- Bearbeitungskosten
- Unzufriedenheit



### ZIEL

MIN(getTotalCosts(R))

getTotalCosts(R)=

$$\sum_{i=0}^{|M|} \frac{getTour}{TardinessCosts}(R_i,i) + \sum_{j \in R_i}^{getDistance} \frac{(i,j)*0.1}{+getStaffOrderCosts}(i,j)}{+getStaffOrderPreference}(i,j))*100 \\ + getStaffTravelCosts}(i,getTravilingTime}(i,j))$$

# **UMSETZUNG**

### ALG 1

- Bestimmung Reihenfolge
  - Eigene Pheromonmatrix
- Zuordnung zum Bearbeiter
  - Eigene Pheromonmatrix

### ALG 2

- Bestimmung Zuordnung zum Bearbeiter
- Reihenfolge je Bearbeiter
  - Matrix je Bearbeiter

### ALG<sub>3</sub>

- Bestimmung Zuordnung zum Bearbeiter
- Reihenfolge je Bearbeiter
  - Globale Matrix f
    ür Reihenfolge



# **HEURISTIK**





- Anzahl der Ameisen (K)
- Anzahl Iterationen (Ncmax)
- Initialer Pheromon-Wert то
- Pheromon Verdunstung (ρ)

- 
$$T_{ij}$$
 ←  $(1 - ρ) \cdot T_{i}$ 

Pheromon Update Δτ<sub>ij</sub>

$$-$$
 T<sub>ij</sub> = T<sub>ij</sub> +  $\Delta$ T<sub>ij</sub>

$$T_{ij} = (1-ρ) * T_{ij} + ρ * ΔT_{ij}$$

Pheromon Update Δτ<sub>ij</sub>

$$\begin{array}{ll} \Delta \tau_{ij} \! = \! \frac{1}{L_{best}} & wenn(i,j) \! \in \! bester \, L \ddot{o}sung \\ \Delta \tau_{ij} \! = \! 0 & ansonsten \end{array}$$

$$\begin{array}{ll} \Delta \, \tau_{ij}^f \! = \! \! \frac{Q}{Rank_f} & wenn(i\,,j) \! \in \! bester \, L\"{o}sung \, der \, Armeise \, mit \, Rang \, f \\ \Delta \, \tau_{ij}^f \! = \! 0 & ansonsten \end{array}$$

Pheromon Update Δτ<sub>ij</sub>

$$\Delta \tau_{ij} = \frac{1}{1 + f(S) - f(S_{best})} \quad wenn(i, j) \in bester L\"{o}sung$$
  
$$\Delta \tau_{ij} = 0 \quad ansonsten$$

$$\Delta \tau_{ij} = 1$$
 wenn $(i, j) \in bester L\"{o}sung$   
 $\Delta \tau_{ij} = 0$  ansonsten

Einfluss von Pheromon(α) und Heuristik (β)

$$p_{ij} = \frac{\tau_{ij}^{\alpha} \cdot \eta_{ij}^{\beta}}{\sum_{j \in m\ddot{o}gliche\ Knoten} \tau_{ij}^{\alpha} \cdot \eta_{ij}^{\beta}}$$

$$-\beta = (1-\alpha)$$

Übergangsfunktion-Weiche Q

$$MAX(\tau_{ij}^{\alpha} * \eta_{ij}^{\beta})$$

# **MESSUNGEN**

### **TESTDATEN**

- 200 Bearbeitern
  - Stundenlohn zwischen 10 und 20
- 3000 zuzuordnenden Aufträgen
  - Bearbeitungsdauer: 6 16h
  - Abgabe zwischen 0 und 11\*3000
  - Verspätungskosten zwischen 100 und 1000
- Koordinaten in Deutschland
- Eigenschaften {A,B,C,D,E,F,Ob1,Ob2}
- 5 verschiedene Problem-Instanzen

### **MESSDATEN**

- das Ergebnis der Kosten C
- C je einzelner Iteration
- der maximal benötigte Arbeitsspeicher in der Spitze
- das Endergebnis (Mitarbeiter-Auftrags-Zuweisung)
- die Pheromon-Matrizen nach 5%, 10%, 20%, 40%, 60%, 80% und 100% der Iterationen
- ausgeführter Algorithmus und Heuristik
- den Parametern (Anzahl Ameisen, Verdunstung, ...)
- genutzter Testdatensatz

### **VERGLEICH**

durchschnittliche Abweichung von der Untergrenze (LB Lower Bound)

$$\frac{C-LB}{LB} \times 100\%$$

#### REFERENZSET

- Algorithmus: ALG5
- Heuristik: 1/d
- Parameter:
  - Anzahl der Ameisen (K) = 10
  - Anzahl Iterationen (Ncmax) = 100
  - Pheromon-Verdunstung ( $\rho$ ) = 0.4
  - Einfluss von Pheromon( $\alpha$ ) und Heuristik ( $\beta$ ):  $\beta = 1-\alpha$
  - Übergangsfunktion-Weiche Q = 0.1

- K: 10, 30, 60, ρ: 0.2, 0.4, 0.7, α: 0.3, 0.5, 0.7
- 3\*3\*3 = 27 Messungen (je 10 Mal wiederholt)



K: 20, 30, 40, ρ: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, α: 0.1. 0.2, 0.3, 0.4





- Q: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9



Q

Kostenabweichung (%)

# **BESTIMMUNG DES ALGORITHMUS**



### Auftragsverteilung | 4. Messung

LEIPZIG



33

Auftragsverteilung

Greedy-Alg.



# Auftragsverteilung ALG6



Auftragsverteilung ALG6 nach 1,20,40,60 Iterationen



### Auftragsverteilung | 4. Messung



UNIVERSITÄT LEIPZIG

- Das Ergebnis liegt vor
- Generiere f
  ür jeden Auftrag eine Zufallszahl R [0,1]
- Wenn R <= T, T ist eine vordefinierte Konstante</li>
  - Für jede Position i (i = 1, ... N)
  - Platziere den Auftrag an Position i
  - Bestimme die Güte der neuen Lösungen
- -1T = 10/3000 = 0.3%
  - Bei 80 Iterationen zusätzliche 2,2 Mio Lösungen







Masterarbeit

42

### **AUSBLICK**

- Verteilung ausgewogener gestalten
  - Anzahl der wenigsten und meisten Aufträge je Bearbeiter nicht zu weit vom Mittel abweicht
  - Die längste Strecken minimieren
- mehrerer Pheromon Matrizen, mehrerer Kolonien und dominanter Fronten zum Update



# **VIELEN DANK!**