令和元年度 第4回技術管理委員会(令和2年1月9日開催) 要旨

審議事項

(1) ノウハウ+フィールド提供型共同研究の終了評価

	ィールド提供型共同研究の終了評価
研究テーマ名	新たな反応槽風量制御システムに関するノウハウフィールド提供型共同研究
研究形態	ノウハウ+フィールド提供型共同研究
共同研究者	㈱明電舎、岩尾磁器工業㈱、㈱電業社機械製作所
所管部署	計画調整部 技術開発課
研究期間	平成26年8月1日から平成29年8月31日まで
研究目的	反応槽の回路毎に求められた風量に応じて、風量調節弁を最適に制御し、送風機電力を削減することを目的に、実証設備において開発技術を検証する。 従来の風量制御では送風圧力の影響で、ハンチングが発生するため、損失が大きくなり過剰な風量が発生している。本技術では、概要図の①~③により、回路別風量制御を可能とし、送風圧力損失が最小となる弁開度を予測制御することで、風量を最適化する技術である。 ② 弁開度予測による効率向上 ********* ② 弁開度予測による効率向上 ****** ***** **** **** *** ***
研究目標	(目標) エネルギー削減効果 送風機電力量7%削減 研究時の確認事項 1 反応槽各回路の風量調節弁の電動化 回路用風量調節弁を電動化するとともに、試験水槽で2種類の弁(バタフライ弁、グローブ弁)の動作 特性を確認し、実施設にて弁の制御性能の確認を行う。 2 弁開度予測による効率向上 実施設において、反応槽の負荷変動に対し要求風量変更を実施したとき、弁開度予測により、ハンチングの発生を抑え、風量の調整が短時間で安定して行えることを確認する。 3 送風機インレットベーンの制御性向上 インレットベーンの開度特性を考慮した信号変換器を設置し、制御信号の改善による制御性向上を確認する。
研究手法	研究時の確認事項について、水再生センターの反応槽を使用して実証試験を実施し、研究目標を 達成できるか確認した。
研究結果	上記の研究目標を達成した。
審議結果	実用化技術として承認する。
備考	