北京师范大学 2023-2024 学年第二学期期末考试试卷 (A卷)

课程名称:	实变函数			任	课老师姓名:			
卷面总分:	分	考试时长:	120	分钟	考试类别:	闭卷 ⋈	开卷 🗆	其他口

院 (系

姓名:

题号	_	 三	四	五	六	总分
得分						

阅卷老师 (签字): ______

(注意:可以承认并使用问题 $1, \dots, k$ 的结果来回答第 k+1 题。)

装 1. 基础题: 陈述 Vitali 收敛定理, 并予以证明.

订 2. $\diamondsuit f \in L^1(\mathbb{R})$.

线

(a) 请证明对于任意的 $\varepsilon > 0$, 都存在阶梯函数 $s: \mathbb{R} \to \mathbb{R}$ 使得 s 在某个有界 闭区间之外为零,且

$$\int_{\mathbb{R}} |f - s| dm < \varepsilon.$$

(b) 对于任意的 $\varepsilon > 0$, 请证明存在一个连续函数 $g: \mathbb{R} \to \mathbb{R}$ 使得 g 在某个有界闭区间之外为零,且

$$\int_{\mathbb{R}} |f - g| dm < \varepsilon.$$

(c) 证明

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \cos(nx) dm = 0.$$

3. 设 $f:[a,b]\to\mathbb{R}$ 是一个绝对连续的函数. 请证明 f 在 [a,b] 上 Lipschitz 连续当且仅当存在常数 c>0 使得

$$|f'| \le c$$
, a.e. on $[a, b]$.

- 4. 设 $f:[a,b]\to\mathbb{R}$ 是一个有界变差的函数. 令 $v(x)=TV(f_{[a,x]}), \forall x\in[a,b]$.
 - (a) 证明 $|f'| \le v'$ 几乎处处在 [a,b] 上成立,并且

$$\int_{[a,b]} |f'| dm \le TV(f). \tag{*}$$

- (b) 证明 (*) 中等式成立当且仅当 f 在 [a,b] 上是绝对连续的.
- 5. 假设可测集合 E 的测度有限.

装

(a) 对于 $f \in L^{\infty}(E)$, 证明

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

(b) 今 $1 \le p_1 < p_2 \le \infty$. 假设 f_n 在 $L^{p_2}(E)$ 中收敛到 f, 请证明 $f_n, f \in L^{p_1}(E)$ 且

$$||f_n - f||_{p_1} \to 0.$$

第2页