ANALYSIS QUALIFYING EXAM AUGUST 23 1989.

Throughout this exam, unless otherwise specified, the terms measurable, a.e., refer to the Lebesgue measure λ on the real line $\mathbb R$, and L^p of an interval to L^p of that interval with respect to Lebesgue measure on that interval.

1. Let (g_n) be a sequence of Lebesgue measurable functions which converge a.e. to an integrable function g. Let $\langle f_n \rangle$ be a sequence of measurable functions such that $|f_n| \leq g_n$ and $\langle f_n \rangle$ converges to f a.e. Prove that if

$$\int g d\lambda = \lim \int g_n d\lambda,$$

then

$$\int f d\lambda = \lim \int f_n d\lambda.$$

2. Let $f \in L^1(\mathbb{R}, \lambda)$. Prove that

$$\lim_{s\to\infty}\int |f(x+s)-f(x)|d\lambda(x)=0.$$

3. Let (X, A, μ) and (Y, B, ν) be two complete measure spaces. Let $g \in L^1(X, A, \mu)$ and $h \in L^1(Y, B, \nu)$, and define f on $X \times Y$ by f(x, y) = g(x)h(y). Prove that

a. $f \in L^1(X \times Y, \mu \times \nu)$.

- b. $\int_{X\times Y} fd(\mu \times \nu) = \int_X gd\mu \int_Y hd\nu.$ Note: We do not assume that μ and ν are σ -finite!
- 4. Let (X, A, μ) be a finite measure space. Suppose (ν_n) is sequence of measures on (X, A) such that for some M > 0 we have

$$\nu_n(E) \leq M\mu(E)$$
 for all $E \in A$.

Suppose $\nu(E) = \lim_{n \to \infty} \nu_n(E)$ exists for all $E \in A$. Prove that:

- a. ν is a measure
- b. There exists $f \in L^{\infty}(X, \mathcal{A}, \mu)$ such that $\nu(E) = \int_{E} f d\mu$.

- 5. Let $f \in L^1([0,1])$ such that f(0) = 0 and f'(0) exists. Prove that $g \in L^1([0,1])$, where $g(x) = f(x)/x^{\frac{1}{2}}$.
- Let (X, A, μ) be a finite measure space and let $f_n \in L^p(X, \mu)$ for $1 \le p < \infty$. Suppose $f_n \to f$ in measure and that for all $\epsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies that

$$\left(\int_{E}|f_{n}|^{p}d\mu\right)^{\frac{1}{p}}<\epsilon$$

for all n_* Prove that $||f_n - f||_p \to 0$.

- 7. Let $\langle f_n \rangle$ be a sequence of increasing absolutely continuous functions on [0,1] such that $f_n(0)=0$ and $f_n(1)=\frac{1}{2^n}$. Prove that $f=\sum f_n$ is absolutely continuous.
- 8. Show $\lambda(E)=\sup\{\lambda(K): K\subset E, K \text{ compact }\}$ for all measurable sets $E\subset\mathbb{R}$.
- 9. True or False. Prove or give a counterexample.
 - a) If $f_n \to f$ in $L^1(X, \mu)$, then $f_n \to f$ in measure.
 - (b.) If $f_n \to f$ in measure, then $f_n \to f$ in $L^1([0,1])$.
 - C.) If $f_n \to 0$ uniformly on $\mathbb R$ and f_n Lebesgue integrable, then $\int f_n d\lambda \to 0$.
 - d. If f_n Lebesgue measurable and $f_1 \geq f_2 \geq \cdots \geq 0$, then $\lim_{n\to\infty} \int_E f_n d\lambda = \int_E \lim_{n\to\infty} f_n d\lambda$.
 - c. Let $0 \le f$ be Lebesgue integrable over \mathbb{R} . Then for all $\epsilon > 0$ there exists $E \subset \mathbb{R}$ with $\lambda(E) < \infty$ such that $\int f d\lambda \le \int_E f d\lambda + \epsilon$