Process Analysis and Optimization

Submitted by:

Esha Shahzad

RollNumber:

SSP21-CE23

Instructed By:

Prof. Dr. Syed Nadir Hussain

B.Sc. (Engg.) Chemical Engineering 2021-2025

Application of Optimization Techniques in Chemical Engineering

Problem 1: Optimization of Plug Flow Reactor (PFR) Design

Objective: To maximize the conversion of a first-order irreversible reaction (A \rightarrow B) in a PFR, for a given feed rate and reactor volume using optimization techniques.

Given Parameters (Assumed):

- Reaction: A → B

- Rate law: $-r_A = kC_A$

- First-order reaction: $k = 0.1 \text{ s}^{-1}$ (assumed)

- Feed flow rate: F_A0 = 10 mol/s

- Reactor volume: V = 100 L

Model Equations:

PFR Design Equation:

 $V = \int (F_A0 / -r_A) dX$ Since -r_A = kC_A = kC_A0(1 - X), then: $V = (F_A0 / kC_A0) * \int (1 / (1 - X)) dX$ $V = (F_A0 / kC_A0) [-ln(1 - X)]$ Solving for X: $X = 1 - \exp(-kC_A0V / F_A0)$

Optimization Approach:

Objective Function: Maximize X

Constraints:

- Fixed reactor volume V
- Fixed feed rate F_A0

As per the equation, conversion X increases with initial concentration C_A0.

Therefore, maximize C_A0 within limits to maximize X.

Result and Conclusion:

```
Assuming C_A0 = 1 mol/L: X = 1 - \exp(-0.1*1*100 / 10) = 1 - \exp(-1) \approx 0.632 Conclusion: Operating at higher C_A0 increases conversion. Optimization suggests maximizing C_A0 within design limits.
```

Problem 2: Optimization of Distillation Column

Objective: To minimize total cost by optimizing the number of theoretical stages (N) and reflux ratio (R).

Cost Components:

- 1. Capital Cost (CC): Increases with number of stages (N)
- 2. Operating Cost (OC): Increases with reflux ratio (R)

Optimization Strategy:

Use Underwood-Gilliland Shortcut Method:

- Estimate minimum reflux ratio R_min
- Estimate minimum number of stages N_min
- Apply Gilliland correlation:

```
Y = (N - N_min) / (N + 1)

X = (R - R_min) / (R + 1)
```

Objective Function:

```
Total Cost (TC) = \alphaN + \betaR
Where:
\alpha = cost per stage
\beta = cost per unit reflux
```

Optimization Procedure:

- 1. Calculate R_min using Underwood equations
- 2. Vary R from R_min to 2R_min and calculate N using Gilliland correlation
- 3. Calculate TC for each pair (N, R)
- 4. Choose the combination that minimizes TC

Illustrative Example:

Assume:

- $R_{min} = 1.5$
- $N_{min} = 12$
- $-\alpha = 1000$, $\beta = 5000$

Try R = 1.5, 2.0, 2.5, 3.0

Calculate corresponding N and TC for each R $\,$

Determine the optimal combination (N, R) with minimum TC

Conclusion:

- Higher R decreases N but increases OC
- Higher N reduces R but increases CC
- Optimal point is a balance between capital and operating cost Usually found near R = 1.4 to 1.6 * R_m in

This assignment demonstrates how optimization techniques can be used effectively in chemical reactor and separation process design. Mathematical modeling and trade-off analysis are essential tools in achieving cost-effective engineering solutions.