Homework Assignment 2

Reynaldo Perez

October 16, 2022

```
library(tidyverse) # Load tidyverse
## -- Attaching packages ------ 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.8
                   v dplyr 1.0.10
## v tidyr 1.2.0
                   v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.2
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidymodels) # Load tidymodels
## -- Attaching packages ------ tidymodels 1.0.0 --
## v broom 1.0.1 v rsample 1.1.0 ## v dials 1.0.0 v tune 1.0.1
## v modeldata 1.0.1 v workflowsets 1.0.0
            1.0.2
## v parsnip
                     v yardstick 1.1.0
              1.0.1
## v recipes
## -- Conflicts ----- tidymodels_conflicts() --
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag() masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
## * Search for functions across packages at https://www.tidymodels.org/find/
abalone <- read.csv("/Users/reynaldoperez/Downloads/homework-2-2/data/abalone.csv") # Read the data se
names(abalone) # See the names and number of columns of the data set
## [1] "type"
                    "longest shell" "diameter"
                    "shucked_weight" "viscera_weight" "shell_weight"
## [5] "whole_weight"
## [9] "rings"
Q1) Let's add a new variable, named age, to the data set.
age <- abalone$rings + 1.5 # Calculate age
```

```
abalone_new <- cbind(abalone, age) # Add new variable to the dataset
head(abalone_new)
                    # Check
##
     type longest_shell diameter height whole_weight shucked_weight viscera_weight
## 1
                   0.455
                            0.365
                                    0.095
                                                 0.5140
                                                                 0.2245
                                                                                 0.1010
## 2
        М
                   0.350
                            0.265
                                    0.090
                                                 0.2255
                                                                 0.0995
                                                                                 0.0485
## 3
        F
                   0.530
                            0.420
                                    0.135
                                                                 0.2565
                                                 0.6770
                                                                                 0.1415
## 4
        М
                   0.440
                            0.365
                                    0.125
                                                 0.5160
                                                                 0.2155
                                                                                 0.1140
                   0.330
                            0.255
                                                 0.2050
                                                                 0.0895
## 5
        Ι
                                    0.080
                                                                                 0.0395
##
        Ι
                   0.425
                            0.300
                                    0.095
                                                 0.3515
                                                                 0.1410
                                                                                 0.0775
##
     shell_weight rings
## 1
            0.150
                      15 16.5
## 2
            0.070
                       7
                          8.5
## 3
            0.210
                       9 10.5
## 4
            0.155
                      10 11.5
## 5
            0.055
                       7
                          8.5
## 6
            0.120
                       8
                          9.5
```

Now, let us assess the distribution of age:

```
hist(abalone_new$age, breaks = "Sturges", main = paste("Distribution of Age"))
```

Distribution of Age

As one can see, the distribution of age is slightly skewed to the left, with the highest peak at between 10 to \sim 12 years.

Q2) We will now split the abalone data into a training set and a testing set. We will use stratified sampling.

```
abalone_split <- initial_split(abalone_new, prop = 0.75, strata = age)

abalone_train <- training(abalone_split)

abalone_test <- testing(abalone_split)

Q3) Let us create a recipe for predicting the outcome variable, age:

simple_abalone_recipe <- recipe(age ~ ., data = abalone_train)

simple_abalone_recipe

## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
```

Now, we will complete the recipe:

predictor

set.seed(1115)

```
abalone_recipe <- recipe(age ~ type + longest_shell + diameter + height + whole_weight + shucked_weight
step_dummy_multi_choice(starts_with("type")) %>%
prep() %>%
step_interact(terms = ~type_M:shucked_weight) %>%
step_interact(terms = ~type_F:shucked_weight) %>%
step_interact(terms = ~type_I:shucked_weight) %>%
step_interact(terms = ~longest_shell:diameter) %>%
step_interact(terms = ~shucked_weight:shell_weight) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
```

Hence, our recipe is finished. Note that we did not include the *rings* variable in our recipe. This is because obtaining the number of rings is a very time-consuming task, and the other observed measurements would help predict the age much faster.

Q4) Now, we will create and store a linear regression object:

```
lm_model <- linear_reg() %>%
set_engine("lm")
```

Q5) We will now develop an empty workflow, and add the model and recipe we created in the previous questions:

```
lm_wflow <- workflow() %>%
  add_model(lm_model) %>%
  add_recipe(abalone_recipe)
```

Q6) Let's now use the fit() object to predict the age of a hypothetical female abalone with the given information.

```
lm_fit <- fit(lm_wflow, abalone_train)

lm_fit %>%
    extract_fit_parsnip() %>%
    tidy()
```

```
## # A tibble: 16 x 5
##
      term
                                    estimate std.error statistic
                                                                    p.value
##
      <chr>
                                                  <dbl>
                                                            <dbl>
                                                                      <dbl>
                                       11.4
                                                 0.0380
## 1 (Intercept)
                                                          301.
                                                                   0
## 2 longest_shell
                                       0.563
                                                 0.291
                                                            1.93
                                                                   5.32e- 2
## 3 diameter
                                                            7.30
                                       2.34
                                                 0.320
                                                                   3.71e-13
## 4 height
                                       0.218
                                                 0.0703
                                                            3.09
                                                                   2.00e-3
## 5 whole_weight
                                       5.19
                                                 0.389
                                                           13.3
                                                                   1.47e-39
## 6 shucked_weight
                                       -3.50
                                                 0.268
                                                          -13.1
                                                                   5.69e-38
## 7 viscera_weight
                                      -0.936
                                                 0.158
                                                           -5.93
                                                                   3.43e- 9
## 8 shell_weight
                                       1.67
                                                 0.218
                                                            7.67
                                                                   2.26e-14
## 9 type_F
                                                            3.06
                                                                   2.24e- 3
                                       0.314
                                                 0.103
## 10 type_I
                                       -0.607
                                                 0.103
                                                           -5.88
                                                                  4.48e- 9
## 11 type_M
                                                           NA
                                                                  NA
                                       -0.641
                                                 0.177
                                                           -3.62
                                                                   2.94e- 4
## 12 type_M_x_shucked_weight
## 13 type_F_x_shucked_weight
                                       -0.941
                                                 0.177
                                                           -5.32
                                                                   1.11e- 7
## 14 type_I_x_shucked_weight
                                                           NA
                                                                  NΑ
                                      NA
                                                NA
## 15 longest_shell_x_diameter
                                       -3.20
                                                 0.410
                                                           -7.82
                                                                   7.34e-15
                                                           -0.923 3.56e- 1
## 16 shucked_weight_x_shell_weight
                                      -0.189
                                                 0.205
x0 <- data.frame(type = "type_F", longest_shell = 0.5, diameter = 0.1, height = 0.3, whole_weight = 4,
x0 # Display data frame
##
       type longest_shell diameter height whole_weight shucked_weight
## 1 type_F
                      0.5
                               0.1
                                       0.3
     viscera_weight shell_weight
## 1
                  2
## predict.lm(lm_fit, new_data = x0) # Predicted age, but received error saying model cannot include N
Q7) Now, we will assess our model's performance.
library(yardstick)
abalone_train_res <- predict(lm_fit, new_data = abalone_train %>% select(-age)) # Develop predicted va
## Warning in predict.lm(object = object$fit, newdata = new_data, type =
## "response"): prediction from a rank-deficient fit may be misleading
abalone_train_res %>%
 head()
## # A tibble: 6 x 1
##
     .pred
     <dbl>
## 1 9.45
## 2 8.17
## 3 9.46
## 4 9.93
## 5 10.4
## 6 10.0
Now, we will develop the metric sets:
abalone_metrics <- metric_set(rmse, rsq, mae)</pre>
## abalone_metrics(abalone_train_res, truth = age, estimate = .pred) # Error saying length of "truth"
```

Then, create a tibble of the model's predicted values:

```
abalone_train_res <- bind_cols(abalone_train_res, abalone_train %>% select(age))
abalone_train_res %>%
head()
```

```
## # A tibble: 6 x 2
     .pred
            age
##
     <dbl> <dbl>
## 1 9.45
            8.5
## 2 8.17
            8.5
## 3 9.46
            9.5
## 4 9.93
            8.5
## 5 10.4
            8.5
## 6 10.0
             9.5
```

As one can see, the predicted value is not that far off the actual value of age. The \mathbb{R}^2 value we calculated is the percentage amount that the variability observed in age is explained by the regression model.