Цель: формирование навыков измерения характеристик цепи; создание и использование измерительных приборов.

Основным применением аналоговых входов Arduino является чтение сигналов датчиков. Также аналоговые входы могут использоваться как цифровые входы/выходы, при необходимости подключения большого количества модулей.

Благодаря встроенному АЦП (аналого-цифровой преобразователь), данные входы могут считывать напряжение подаваемое на них. Микроконтроллеры Atmega 328, используемые в Arduino UNO, содержат шестиканальный АЦП, разрешение которого составляет 10 бит. Это позволяет на выходе получать значения от 0 до 1023 (всего 1024 градации).

- Функции для работы с аналоговыми сигналами:
- analogRead() Функция считывает значение с указанного аналогового входа. Большинство плат Arduino имеют 6 каналов с 10-битным аналого-цифровым преобразователем (АЦП). Напряжение поданное на аналоговый вход, обычно от 0 до 5 вольт будет преобразовано в значение от 0 до 1023, это 1024 шага с разрешением 0.0049 Вольт. Считывание значение с аналогового входа занимает примерно 100 микросекунд (0.0001 сек), т.е. максимальная частота считывания приблизительно 10,000 раз в секунду.
- analogReference(type) Функция определяет опорное напряжение относительно которого происходят аналоговые измерения. Параметр type: определяет используемое опорное напряжение (DEFAULT, INTERNAL или EXTERNAL).
 - о DEFAULT: стандартное опорное напряжение 5 В (на платформах с напряжением питания 5 В) или 3.3 В (на платформах с напряжением питания 3.3 В)
 - о INTERNAL: встроенное опорное напряжение 1.1 В на микроконтроллерах ATmega168 и ATmega328, и 2.56 В на ATmega8.
 - о INTERNAL1V1: встроенное опорное напряжение 1.1 В (Arduino Mega)
 - о INTERNAL2V56: встроенное опорное напряжение 2.56 (Arduino Mega)
 - о EXTERNAL: внешний источник опорного напряжения, подключенный к выводу AREF

Оборудование

Упр.1 Измерение постоянного напряжения (0..20V)

Создадим и загрузим в Arduino скетч для измерения при помощи аналогового входа А0 напряжения до 5В.

- Запустите среду программирования Arduino IDE.
- Создайте и сохраните новый проект под названием Volt5.ino.
- Объявим переменные и и и_in.

```
int u = 0; // переменная для числа пребразования 0-1023 float u_in = 0.0; // переменная для напряжения 0.0-5.0
```

• В области описания функции **Setup**() инициализируем последовательный порт, для передачи данных с платы на компьютер и определим аналоговых вход A0. Чтобы установить параметры передачи, мы используем функцию **Serial.begin**(), которая принимает один или два параметра. Первым параметром является скорость передачи данных, второй параметр – параметр порта.

```
void setup()
{
Serial.begin(9600);
pinMode(A0,INPUT);// A0 - аналоговый вход
}
```

• Подсчетаем и выведем на монитор порта значения напряжения. Впишите в область описания функции **Loop**() следующий код:

```
void loop() {
u = analogRead(A0);
u_in = (u*4.77) / 1023; // Пересчет значений на входе A0
Serial.println("Напряжение на входе A0 : ",u_in);
delay(500);
}
```

- Для загрузки программы в плату, используем комбинацию клавиш **Ctrl+U**.
- Проверим работу написанной программы, измеряя напряжение подаваемое на вход питания платы Arduino. Подключим резистор переменного сопротивления ко входу питания **Vin** и аналоговому входу **A0**.

- Откроем монитор последовательного порта (Ctrl+Shift+M) и вращением ручки потенциометра проследим за изменением напряжения..

Упр.2 Измерение сопротивления при помощи аналового входа Arduino

Основываясь на этом построим модель омметра на основе делителя напряжения. Основываясь на этом построим модель омметра на основе делителя напряжения.

• Соберем схему делителя напряжения с двумя резисторами. Левый резистор 10кОм, а сопротивление правого будем измерять.

- Запустите среду программирования Arduino IDE.
- Создайте и сохраните новый проект под названием **OmmMetr.ino**.
- Запишем код программы для вычисления сопротивления правого резистора.

```
omMetr | Arduino 1.8.9 (Windows Store 1.8.21.0)
                                                                                       ×
Файл Правка Скетч Инструменты Помощь
 OmMetr
float Vout = 0; // Переменная для хранения значения напряжения в средней точки делителя (0-5.0 ^
float R2 = 0; // Переменная для хранения значения резистора R2
void setup()
Serial.begin(9600); // Подготовка Serial Monitor для вывода информации
void loop()
Vout = (5.0 / 1023.0) * analogRead(analogPin); // Вычисляем напряжение в средней точки делител:
R2 = 10000 / ((5.0 / Vout) - 1); // Вычисляем сопротивление R2 (10000 это значение R1 10 кОм)
Serial.print("Voltage: "); //
Serial.println(Vout); // Напряжения в средней точки делителя (0-5.0) для справки
Serial.print("R2: "); //
Serial.println(R2); // Значение сопротивления R2
delay(1000); // Пауза 1 сек
<
Сохранено.
```

• Загрузите программу в плату Arduino и измерьте сопротивление предложенных резисторов с заклеенной маркировкой.

Упр.3 Вывод аналогового сигнала.

В данном упражнении, мы считаем данные с потенциометра и распределим их в интервале от 0 до 255 с помощью функции **map()**. Данный интервал удобно использовать для выводов с PWM (ШИМ). Применим получаемые значения для управления яркостью светодиода, а также будем выводить информацию в **Serial Monitor**.

• Соберем схему представленную на рисунке

- Создадим новую программу с название AnalogOut.ino.
- Напишите следующий код программы. В данной программе используется функция **map(value, fromLow, fromHigh, toLow, toHigh)**, которая переносит значение (value) из текущего диапазона значений (fromLow .. fromHigh) в новый диапазон (toLow .. toHigh), заданный параметрами. Следует отметить, что функция map не ограничивает значение рамками диапазона, для этого используется функция contrain().

```
const int analogInPin = A0; // потенциометр к A0
const int analogOutPin = 9; // светодиод на выводе 9
int sensorValue = 0;
                          // значения от потенциометра
int outputValue = 0;
                           // значения для PWM
void setup() {
  Serial.begin(9600);
void loop() {
 // считываем данные из потенциометра
  sensorValue = analogRead(analogInPin);
 // распределяем данные из интервала 0-1023 в интервал 0-255
 outputValue = map(sensorValue, 0, 1023, 0, 255);
  // подаём сигнал на светодиод:
 analogWrite(analogOutPin, outputValue);
  // печатаем результаты в Serial Monitor
  Serial.print("sensor = ");
  Serial.print(sensorValue);
  Serial.print("\t output = ");
  Serial.println(outputValue);
  // ждём 2 миллисекунды
  delay(2);
```

• Загрузите программу в плату и протестируйте результат.

Задания для самостоятельного выполнения

- На основе Упр 1. и Упр 2. соберите прибор измеряющий силу тока на участке цепи.
- Соберите схему с эмитирующую бегучую волну оставляющую медленно затухающий след. используйте потенциометр для изменения скорости волны. Сохраните результат в файле Volna.ino
- Дополните предыдущее задание, используя потенциометр для изменения скорости волны. Сохраните результат в том же файле.
- ООО Пройдите тест №2 Чтение аналоговых сигналов на странице «Тесты».