本节内容

中央处理器

数据通路

单总线结构

本章总览

指令周期的数据流

王道24考研交流群: 769832062

数据通路

数据通路

王道24考研交流群: 769832062

内部总线是指同一部件,如CPU内部连接各寄存器及运算部件之间的总线;

系统总线是指同一台计算机系统的各部件,如CPU、内存、通道和各类I/O接口间互相连接的总线。

1. 寄存器之间数据传送

比如把PC内容送至MAR,实现传送操作的流程及控制信号为:

(PC)→Bus PCout有效, PC内容送总线

Bus→MAR MARin有效,总线内容送MAR

也可写为: (PC)→Bus→MAR

也有的教材写为: PC→Bus→MAR

重要的是描述清楚数据流向

内部总线是指同一部件,如CPU内部连接各寄存器及运算部件之间的总线;

系统总线是指同一台计算机系统的各部件,如CPU、内存、通道和各类I/O接口间互相连接的总线。

1. 寄存器之间数据传送

比如把PC内容送至MAR,实现传送操作的流程及控制信号为:

(PC)→Bus PCout有效, PC内容送总线

Bus→MAR MARin有效,总线内容送MAR

2. 主存与CPU之间的数据传送

比如CPU从主存读取指令,实现传送操作的流程及控制信号为:

(PC)→Bus→MAR PCout和MARin有效,现行指令地址→MAR

1→R CU发读命令(通过控制总线发出,图中未画出)

MEM(MAR)→MDR MDRin有效

MDR→Bus→IR MDRout和IRin有效,现行指令→IR

1. 寄存器之间数据传送

比如把PC内容送至MAR,实现传送操作的流程及控制信号为:

(PC)→Bus PCout有效,PC内容送总线

Bus→MAR MARin有效,总线内容送MAR

2. 主存与CPU之间的数据传送

比如CPU从主存读取指令,实现传送操作的流程及控制信号为:

(PC)→Bus→MAR PCout和MARin有效,现行指令地址→MAR

1→R CU发读命令(通过控制总线发出,图中未画出)

MEM(MAR)→MDR MDRin有效

MDR→Bus→IR MDRout和IRin有效,现行指令→IR

3. 执行算术或逻辑运算

比如一条加法指令,微操作序列及控制信号为:

Ad(IR)→Bus→MAR MDRout和MARin有效 或AdIRout和MARin有效

1→R CU发读命令

MEM(MAR)→数据线→MDR MDRin有效

MDR→Bus→Y MDRout和Yin有效,操作数→Y

1. 寄存器之间数据传送

比如把PC内容送至MAR,实现传送操作的流程及控制信号为:

(PC)→Bus PCout有效, PC内容送总线

Bus→MAR MARin有效,总线内容送MAR

2. 主存与CPU之间的数据传送

比如CPU从主存读取指令,实现传送操作的流程及控制信号为:

(PC)→Bus→MAR PCout和MARin有效,现行指令地址→MAR

1→R CU发读命令(通过控制总线发出,图中未画出)

MEM(MAR)→MDR MDRin有效

MDR→Bus→IR MDRout和IRin有效,现行指令→IR

3. 执行算术或逻辑运算

比如一条加法指令,微操作序列及控制信号为:

Ad(IR)→Bus→MAR MDRout和MARin有效

1→R CU发读命令

MEM(MAR)→数据线→MDR MDRin有效

MDR→Bus→Y MDRout和Yin有效,操作数→Y

(ACC)+(Y)→Z ACCout和ALUin有效,CU向ALU发送加命令

Z→ACC Zout和ACCin有效,结果→ACC

王道考研/CSKAOYAN.COM

设有如图所示的单总线结构,分析指令ADD(RO),R1的指令流程和控制信号。

1. 分析指令功能和指令周期

功能: ((RO))+(R1)→(RO)

取指周期、间址周期、执行周期

2. 写出各阶段的指令流程

取指周期: 公共操作

时序	微操作	有效控制信号
1	(PC)→MAR	PCout, MARin
2	M(MAR)→MDR	MemR,MARout, MDRinE
3	(MDR)→IR	MDRout, IRin
4	指令译码	-
5	(PC)+1→PC	<u> </u>

设有如图所示的单总线结构,分析指令ADD(RO),R1的指令流程和控制信号。

1. 分析指令功能和指令周期

功能: ((R0))+(R1)→(R0)

取指周期、间址周期、执行周期

2. 写出各阶段的指令流程

取指周期:公共操作

时序	微操作	有效控制信号
1	(PC)→MAR	PCout, MARin
2	M(MAR)→MDR (PC)+1→PC	MemR,MARout, MDRinE
3	(MDR)→IR	MDRout, IRin
4	指令译码	-

设有如图所示的单总线结构,分析指令ADD(RO),R1的指令流程和控制信号。

1. 分析指令功能和指令周期 功能: ((R0))+(R1)→(R0) 取指周期、间址周期、执行周期

2. 写出各阶段的指令流程 间址周期:完成取数操作,被加数在主存中,加数 已经放在寄存器R1中。

时序	微操作	有效控制信号
1	(R0)→MAR	R0out, MARin
2	M(MAR)→MDR	MemR,MARout, MDRinE
3	(MDR)→Y	MDRout, Yin

设有如图所示的单总线结构,分析指令ADD(RO),R1的指令流程和控制信号。

1. 分析指令功能和指令周期 功能: ((R0))+(R1)→(R0) 取指周期、间址周期、执行周期

2. 写出各阶段的指令流程 执行周期:完成取数操作,被加数在主存中,加数 已经放在寄存器R1中。

时序	微操作	有效控制信号
1	(R1)+(Y)→Z	R1out,ALUin,CU向 ALU发ADD控制信号
2	(Z)→MDR	Zout, MDRin
3	(MDR)→M(MAR)	MemW,MDRoutE, MARout

本节回顾

