

$$\frac{1}{5}$$
 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{3}{50}$ $\frac{3}{50}$ $\frac{2}{50}$

Lo reëel, angeleerd, blemer

3) Itto 2 loop & /m3 Opwaartse bracht F = gH20. H20. 9 Meenwaartse foraclit F = MK. 9 John . Mrs . g/ = Mrs . g/ 1000. 3 VK = MK mk = 750 VK = JK. VK => le = 750 lg/m3

$$S = 2u + 2p \rightarrow 4x$$

$$14 + 4 = 2x - 3x + 1p$$

Tue 20,21 (tg) Jan ve=360 m/s = Stef=3d (te) 2 v ? Stef: x = \(\text{-} = 3\) \(\text{-} \) \(\text{-} \) \(\text{-} = \) \(\text{-} \) \(\te

(four verliesen =)
$$E_R = \frac{1}{2} m \sigma^2$$

(four verliesen =) $E_P = E_R$
 $\frac{1}{2} le \times \frac{2}{2} = \frac{1}{2} m \sigma^2$
 $\frac{1}{2} \times \frac{2}{2} = \frac{m}{2} \cdot \sigma^2$
 $\frac{1}{2} \times \frac{2}{2} = \frac{m}{2} \cdot \sigma^2$
 $\frac{1}{2} \times \frac{2}{2} = \frac{m}{2} \cdot \sigma^2$

$$\frac{\mathcal{O}}{\mathcal{O}} = \frac{\mathcal{X}_1}{\mathcal{V}_2}$$

$$= \sum_{\lambda} \sum_$$

Leevee John o max

T=> 2 openvolgende doorgongen toor mul = 1 s=> T=2s

T2 2 T (=) (T) 2 m

 $\frac{2}{2}$ le $\frac{2\pi}{7}$ $\frac{2\pi}{7$

20,2 T /m/

B