Project 2

Kaiyue Wu

1. Bivariate-Normal

Input: a

Output: -0.163864

The simulated correlation rho is: -0.1638640937610348

2. Evaluate the following expected values by using Monte Carlo simulation:

Input: $\rho = 0.6$

Output: 1.5372813821388835

The Expected Value with 0.6 correlation is: 1.5372813821388835

3.

(a) The estimated value by simulation:

	A 1	А3	A 5	B1	В3	B5
Expected Value	1.077572	3.141554	5.195038	0.985553	0.981528	0.937837
Variance	2.759930	20.988268	57.130256	0.567152	9.081625	77.199072

(b)

The B(t) values of t=1,3,5 are related that they are all around 1 and the reason is the equation is a maritingale.

For the equation : $e^{\frac{t}{2}}cos(W_t)$, if we apply Ito's lemma $f(t,B_t)=\frac{\partial f}{\partial t}d_t+\frac{\partial f}{\partial x}dB_t+\frac{1}{2}\frac{\partial^2 f}{\partial x^2}(dB_t)^2$ Let $Y(t,B_t)=e^{\frac{t}{2}}cos(W_t)$, we have $dy_t=\frac{1}{2}e^{\frac{1}{2}}cos(W_t)dt+e^{\frac{1}{2}}(-sin(W_t))dW_t+\frac{1}{2}e^{\frac{1}{2}}(-cos(W_t))(dW_t)^2$

$$=\frac{1}{2}e^{\frac{1}{2}}cos(W_t)dt+e^{\frac{1}{2}}(-sin(W_t))dW_t-\frac{1}{2}e^{\frac{1}{2}}cos(W_t)d_t\\ =e^{\frac{1}{2}}(-sin(W_t))dW_t=-e^{\frac{1}{2}}sin(W_t)dW_t\\ Y_T-Y_0=\int_0^T-e^{\frac{1}{2}}sin(W_t)dW_t,\quad \text{thus: }Y_T=Y_0-\int_0^Te^{\frac{1}{2}}sin(W_t)dW_t\\ Y_0=e^0cos(0)=1\\ Y_T=1-\int_0^Te^{\frac{1}{2}}sin(W_t)dW_t, \text{ which is a martingale.}$$

Finally, if we take the expectation of Y_T , we see the expectation is always 1.

$$E[Y_T] = E[1 - \int_0^T e^{rac{1}{2}} sin(W_t) dW_t] = 1 - 0 = 1$$

(c) Expected value after variance control:

Here I apply the Antithetic Variates Reduction Method.

As we can see for A, the variance changes from 57.130 to 55.678, which does improve a little bit, but it cannot be considered truly effective. However, the variance of B5 decreases a lot, from 77.199 to 55.666, which can be seen as a big improvement.

	A 5	A5_after	B5	B5_after
Expected Value	5.195038	5.375014	0.937837	0.992073
Variance	57.130256	55.677837	77.199072	55.666178

4.

(a) The call price estimate call price by Monte Carlo simulation is 17.981594283190127.

The estimate the price of this European Call option is: 17.981594283190127

(b) The call price calculated by Black-Scholes is 18.28376570485581.

The Black-Scholes price of this European Call option is: 18.28376570485581

(c) The call option price after using the Antithetic Variates reduction technique is 18.213360.

- The standard deviation before variance control is 34.29
- The standard deviation after variance control is 21.78
- We can see that we reduce the variance significantly. At the same time, this method improves the accuracy of simulation, it approaches the value calculated by Black-Scholes 18.284

The price of this European Call option is with variance control is: 18.213359908553063

Before Variance Control	After Variance Control

Price	17.981594	18.213360
Stdev	34.291620	21.777919

5.

(a) Plot of $E(S_n)$

(b)(c) Plot of 6 paths and E(Sn)

(d) Plot of 6 paths and E(Sn) If we change σ from 18% to 35%.

- As we change the volatility from 18% to 35%, the expected value theoretically would not change, but the graph shows it actually becomes more fluctuated
- The variance of simulated 6 paths are way more than smaller volatility ones.

Simulated Path and Expected Value

6.

(a)Euler Discretization

 $rac{dy}{dx}=f(y,t), and y(0)=y_0$, we can divide [0,T] to N equal parts so that $au=rac{T}{N}$ as step.

For this equation, we have : $4[\int_0^1 \sqrt{1-x^2}\,dx]$ and for simplicity we let y = $4\sqrt{1-x^2}$

According to the formula $y_t = y_o \ + [\int_{t_0}^t \ f(y_ au, au) d_ au]$, we can know

$$y_{t_1} = y_o \; + [\int_{t_0}^{t_1} \; f(y_{ au}, au) d_{ au}]$$

. . .

$$egin{split} y_{t_1} &pprox y_1 = y_0 + f(y_0,t_0) au \ &y_{n+1} = y_n + f(y_n,t_n) au, \ n = 0,1,2 \cdot \cdot \cdot \cdot N - 1 \end{split}$$

We now implement this idea to get the estimated value: 3.14355

Estimate value by using the Euler's discretization scheme is: 3.143555466911028.

(b) Estimate the integral by Monte Carlo simulation.

The estimated value by Monte Carlo simulation is: 3.13555

Estimate value by using the Monte Carlo simulation is: 3.1355512852508935.

(c) Importance Sampling Method

$$egin{aligned} heta &= 4[\int_0^1 \sqrt{1-x^2} \, dx] = \pi \ &= E\left[4\sqrt{1-u^2}
ight] \ \mathrm{Let} \, x = U, \, \, g(x) = 4\sqrt{1-x^2} \ &t(\cdot) = egin{cases} rac{1-ax^2}{1-rac{a}{3}} & \mathrm{for} \, \, [0,1] \ 0 & else \ &E_{t(\cdot)} \left[rac{4\sqrt{1-y^2}}{t(y)}
ight] pprox rac{1}{N} \sum_{i=1}^N rac{4\sqrt{1-y^2}}{t(y)} \end{aligned}$$

- 1. First, I try to get the alpha value by finding the minimum variance, and the result is 0.76, slightly different form the true optimal value of 0.74, therefore, I apply 0.74 in the following calculation.
- 2. Second, I use the acceptance rejection method to simulate random variable with uniform distribution with $t(\cdot)$
- 3. Third, I reestimate with the sampling random variable generated from step 2.
- 4. Finally, I compare the expected value and variance, with and without variance control.

```
Estimate value by with importance sampling is: 3.149794491445853.
```

The estimated value by with importance sampling is: 3.149794491445853.

- The variance before importance sampling is 0.856790
- The variance after importance sampling is 0.191652
- We can observe that the variance has decreased significantly with variance control. However,

in practice, the accuracy after importance sampling seems not appealing. If we keep generating different samples with accept-reject method, we might get values like 3.16, 3.15, even though the variance still remain small.

	Expected Value	Variance
Before Importance Sampling	3.135551	0.856790
After Importance Sampling	3.149794	0.191652