МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка характеристики надежности программы по

структурным схемам надежности

Студентка гр. 7304	Шарапенков И.И
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Исследовать оценку характеристики надежности программ по структурным схемам надежности.

Постановка задачи.

Выполнить расчет характеристик надежности вычислительной системы по структурной схеме надежности, выбранной из таблицы 1 в соответствии с номером студента в списке группы.

В качестве оцениваемых характеристик следует рассматривать:

- Вероятность безотказной работы системы в заданный момент времени.
- Среднее время до отказа системы.

Выполнение расчетов следует производить двумя способами:

- Расчетным способом.
- · Программным способом с помощью Анализатора структурных схем надежности RSSA.

Ход выполнения.

Вариан	N1			N2		N3			
T	комбинат.	λ_1	λ_2	λ_3	λ_4	комб.	λ	комб.	λ
	соединени					соедин		соедин	
	Я								
18	C(3)	1.8	4.0	2.2	-	(2,2)	4.0	(3,1)	2.2

Структура соединения компонентов схемы три блока N1, N2, N3:

- N1 из 3 последовательных элементов,
- N2 из 2 параллельных ветвей (2 элемент на верхней и 2 на нижней)
- N3 из 2 параллельных ветвей (3 последовательного элемента на верхней и 1 последовательного элемента на нижней).

Так же присутствуют 2 мнимых элемента для перехода от N2 к N3 и для создания конечной вершины. Граф представлен на Рисунке 1.

Рис. 1 – Граф надежности

Все заданные значения интенсивностей отказов должны умножаться на 10^{-5} На данном этапе смешанные соединения типа $\,$ r $\,$ из $\,$ n $\,$ не применяются.

Расчет надежности следует производить для значения t = 2.

1. Расчетный способ

$$R_{N1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3)^* t} = e^{-(1.8 + 4.0 + 2.2)^* 10^{-5} * 2} = 0.999839$$

$$R_{N2} = 1 - \left(1 - e^{-(\lambda_4 + \lambda_5)^* t}\right) \left(1 - e^{-(\lambda_6 + \lambda_7)^* t}\right)$$

$$= 1 - \left(1 - e^{-8.0^* 10^{-5} * 2}\right) \left(1 - e^{-8.0^* 10^{-5} * 2}\right) \approx 1$$

$$R_{N3} = 1 - \left(1 - e^{-\left(\lambda_9 + \lambda_{10} + \lambda_{11}\right) * t}\right) \left(1 - e^{-\left(\lambda_{12}\right) * t}\right)$$

$$= 1 - \left(1 - e^{-\left(2 \cdot 6 \cdot 6 \cdot 10^{-5}\right) * 2}\right) \left(1 - e^{-\left(2 \cdot 2 \cdot 2 \cdot 10^{-5}\right) * 2}\right) = 1$$

$$R_S = 0.999839$$

$$MTTF = \int_{0}^{\infty} R_{S}(t)dt = \int_{0}^{\infty} e^{-(\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4})^{*}t} * \left(1 - \left(1 - e^{-\lambda_{5}^{*}t}\right)^{2}\right) * \left(1 - \left(1 - e^{-\lambda_{5}^{*}t}\right)^{2}\right)$$

2. Программный способ с помощью Анализатора структурных схем надежности RSSA.

Была построена схема представлена на Рисунке 2.

Рис.2 – Графа структурной схемы надежности RSSA

ID	Имя	λ	Кратность
1	1	1.8E-5	1.0
2	2	4.0E-5	1.0
3	3	2.2E-5	1.0
4	4	4.0E-5	1.0
5	5	4.0E-5	1.0
6	6	4.0E-5	1.0
7	7	4.0E-5	1.0
8	8	0.0	1.0
9	9	2.2E-5	1.0
10	10	2.2E-5	1.0
11	11	2.2E-5	1.0
12	12	2.2E-5	1.0
13	13	0.0	1.0

Рис.3 – Информация о блоках

Для контроля работы Анализатора ССН отметим, что выполнение расчетов с помощью RSSA по приведенному описанию ССН должно давать следующие результаты:

Рис.4— Результаты расчетов

Описание схемы:

```
<Schema>
     <graf>
          <Block>
               <Id>1</Id>
               <Id2>1</Id2>
               <failureRate>1.8E-5</failureRate>
               <name>1</name>
               <quantity>1</quantity>
               t>
                    <int>2</int>
               </list>
               <type></type>
          </Block>
          <Block>
               <Id>2</Id>
               <Id2>2</Id2>
               <failureRate>4.0E-5</failureRate>
               <name>2</name>
               <quantity>1</quantity>
               st>
                    <int>3</int>
               </list>
               <type></type>
          </Block>
          <Block>
               <Id>3</Id>
               <Id2>3</Id2>
               <failureRate>2.2E-5</failureRate>
               <name>3</name>
               <quantity>1</quantity>
               t>
                    <int>4</int>
                    <int>6</int>
```

```
</list>
     <type></type>
</Block>
<Block>
     <Id>4</Id>
     <Id2>4</Id2>
     <failureRate>4.0E-5</failureRate>
     <name>4</name>
     <quantity>1</quantity>
     st>
          <int>5</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>5</Id>
     <Id2>5</Id2>
     <failureRate>4.0E-5</failureRate>
     <name>5</name>
     <quantity>1</quantity>
     t>
          <int>8</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>6</Id>
     <Id2>6</Id2>
     <failureRate>4.0E-5</failureRate>
     <name>6</name>
     <quantity>1</quantity>
     t>
          <int>7</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>7</Id>
     <Id2>7</Id2>
     <failureRate>4.0E-5</failureRate>
     <name>7</name>
     <quantity>1</quantity>
     st>
          <int>8</int>
     </list>
     <type></type>
</Block>
<Block>
```

```
<Id>8</Id>
     <Id2>8</Id2>
     <failureRate>0</failureRate>
     <name>8</name>
     <quantity>1</quantity>
     t>
          <int>9</int>
          <int>12</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>9</Id>
     <Id2>9</Id2>
     <failureRate>2.2E-5</failureRate>
     <name>9</name>
     <quantity>1</quantity>
     st>
          <int>10</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>10</Id>
     <Id2>10</Id2>
     <failureRate>2.2E-5</failureRate>
     <name>10</name>
     <quantity>1</quantity>
     t>
          <int>11</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>11</Id>
     <Id2>11</Id2>
     <failureRate>2.2E-5</failureRate>
     <name>11</name>
     <quantity>1</quantity>
     t>
          <int>13</int>
     </list>
     <type></type>
</Block>
<Block>
     <Id>12</Id>
     <Id2>12</Id2>
     <failureRate>2.2E-5</failureRate>
     <name>12</name>
```

```
<quantity>1</quantity>
               st>
                    <int>13</int>
               </list>
               <type></type>
          </Block>
          <Block>
              <Id>13</Id>
              <Id2>13</Id2>
              <failureRate>0</failureRate>
              <name>13</name>
              <quantity>1</quantity>
              t/>
               <type></type>
          </Block>
     </graf>
     <ListOfFlag/>
     <listOfNode/>
     t/>
</Schema>
```

Выводы:

В ходе выполнения лабораторной работы была выполнена оценка характеристики надежности программ по структурным схемам надежности. Были получены результаты расчетов надежности и среднего времени безотказной работы, совпадающих между ручным способом и программной способом.