Project Euler, Problem 144: Investigating Multiple Reflections of a Laser Beam

John Butler

Contents

1	Problem Description	2
2	Theorems whose results aid in my solution 2.1 The ellipse $4x^2 + y^2 = 100$ can be rewritten as $y = \pm \sqrt{100 - 4x^2}$	2 2 at
	$x_{+,-} = \frac{-2bm \pm \sqrt{(2bm)^2 - 4(4+m^2)(b^2 - 100)}}{2(4+m^2)}$	
	meaning the points lie at $(x_+, mx_+ + b)$ and $(x, mx + b)$	
	$\theta = \arctan(m)$	
	2.4 If m_{l_1}, m_{l_2}, m_t are the slopes of the incoming line, reflected line, and tangent line, respectively,	2 her
	$m_{l_2} = \tan\left(2 \times \arctan(m_t) - \arctan(m_{l_1})\right)$	
		2
3	Application to Code	2
4	Complexity Analysis / Further Optimizations	2

- 1 Problem Description
- 2 Theorems whose results aid in my solution
- 2.1 The ellipse $4x^2 + y^2 = 100$ can be rewritten as $y = \pm \sqrt{100 4x^2}$

$$4x^{2} + y^{2} = 100$$
$$y^{2} = 100 - 4x^{2}$$
$$y = \pm \sqrt{100 - 4x^{2}}$$

2.2 Given some line, y = mx + b that intersects the ellipse $4x^2 + y^2 = 100$, then the x coordinates of the intersection points are at

$$x_{+,-} = \frac{-2bm \pm \sqrt{(2bm)^2 - 4(4+m^2)(b^2 - 100)}}{2(4+m^2)}$$

meaning the points lie at $(x_+, mx_+ + b)$ and $(x_-, mx_- + b)$

$$4x^2 + y^2 = 100 \iff y = \pm \sqrt{100 - 4x^2}$$

The intersections happens when the line and ellipse have the same x and y coordinates.

$$\therefore mx + b = y = \pm \sqrt{100 - 4x^2}$$

$$mx + b = \pm \sqrt{100 - 4x^2}$$

$$(mx + b)^2 = (\pm \sqrt{100 - 4x^2})^2$$

$$m^2x^2 + 2bmx + b^2 = 100 - 4x^2$$

$$(m^2 + 4)x^2 + (2bm)x + (b^2 - 100) = 0$$

We can solve for x using the quadradic formula

$$x_{+,-} = \frac{-2bm \pm \sqrt{(2bm)^2 - 4(4+m^2)(b^2 - 100)}}{2(4+m^2)}$$

The intersection point are on the line, so if we plug in each x, we get:

$$y_+ = mx_+ + b$$
 and $y_- = mx_- + b$

So the intersection points are $(x_+, mx_+ + b)$ and $(x_-, mx_- + b)$

2.3 Lemma: if m is the slope of a line, and θ is the angle between that line and the x-axis, then

$$\tan \theta = m$$

2.4 If m_{l_1}, m_{l_2}, m_t are the slopes of the incoming line, reflected line, and tangent line, respectively, then

2

$$m_{l_2} = \tan\left(2 \times \arctan(m_t) - \arctan(m_{l_1})\right)$$

- 3 Application to Code
- 4 Complexity Analysis / Further Optimizations