MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> February 19, 2024 Lecture 20 D3

Rekha Santhanam Lecture 20 D3

Orthogonal and Orthonormal Sets: Summary

Defn. A set of *non-zero* vectors $\{v_1, \dots, v_k\} \subset \mathbb{R}^n$, is said to be an **orthogonal set** if $v_i^T v_j = 0$ **for all** $i, j = 1, \dots, i \neq j$.

Examples:
$$\{(1,3,1),(-1,0,1)\}\subset\mathbb{R}^3$$
, $\{(2,1,0,-1),(0,1,0,1),(-1,1,0,-1)\}\subseteq\mathbb{R}^4$, $\{(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}),(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})\}\subseteq\mathbb{R}^3$, $\{e_1,\cdots,e_n\}\subseteq\mathbb{R}^n$.

Of these, the last two examples have all unit vectors (vectors of length one).

Defn. An orthogonal set $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ with all unit vectors, i.e., $||v_i|| = 1$ for all i, is called an **orthonormal** set.

Note: If $\{v_1, \dots, v_k\}$ is an orthogonal set, then $\{u_1, \dots, u_k\}$ is orthonormal, for $u_i = v_i/||v_i||$.

Exercise: If $S = \{v_1, ..., v_k\}$ is an orthogonal set, then v_k is orthogonal to each $v \in \text{Span}\{v_1, ..., v_{k-1}\}$.

Theorem: An orthogonal set in \mathbb{R}^n is linearly independent. **Defn.** A square matrix A whose column vectors form an orthonormal set is called an orthogonal matrix.

Orthogonal Matrices: Examples

Examples: 1.
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
. 2. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

$$2. \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$3. \ \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

Orthogonal Basis

Defn. A basis $\mathscr{B} = \{v_1, \dots, v_k\}$ of a subspace V of \mathbb{R}^n is an orthogonal basis if it is an orthogonal set, i.e., $v_i^T v_j = 0$ for $i \neq j$. Furthermore, if $||v_i|| = 1$ for each i, then \mathscr{B} is an orthonormal basis (or o.n.b.) of V.

Example: Consider the bases of \mathbb{R}^2 :

$$\mathcal{B}_1 = \{ w_1 = (8,0)^T, w_2 = (6,3)^T \},$$

$$\mathcal{B}_2 = \{(8,0)^T, (0,3)^T\}$$
 and

$$\mathcal{B}_3 = \left\{ \left(\frac{8}{\sqrt{8^2 + 0^2}}, 0 \right)^T, \left(0, \frac{3}{\sqrt{0^2 + 3^2}} \right)^T \right\}.$$

Then \mathcal{B}_1 is not orthogonal, \mathcal{B}_2 is an orthogonal basis, but not an orthonormal basis, and \mathcal{B}_3 is an orthonormal basis of \mathbb{R}^2 .

Note: If $\{u_1, \ldots, u_k\} \subseteq \mathbb{R}^n$ is an orthonormal set, then it is an o.n.b. of $V = \text{Span}\{u_1, \ldots, u_k\}$.

Importance of Orthogonal Basis

Example: The set $\mathscr{B} = \{v_1 = (-1,1)^T, v_2 = (1,1)^T\}$ is a orthogonal basis of \mathbb{R}^2 .

• Find
$$[v]_{\mathscr{B}} = (a, b)^T$$
:
 $v = av_1 + bv_2 = a(-1, 1)^T + b(1, 1)^T$
 $v_1^T v = (-1, 1)v = a(-1, 1)(-1, 1)^T = 2a = a||v_1||^2$

Then
$$a = \frac{v_1^T v}{2} = \frac{v_1^T v}{||v_1||^2}$$
 and $b = \frac{v_2^T v}{2} = \frac{v_2^T v}{||v_2||^2}$

General Case: If $\mathcal{B} = \{v_1, ..., v_n\}$ is an o.n.b of V, then $[v]_{\mathcal{B}} = (c_1, ..., c_n)^T$, where $c_j = v_j^T v$.

Moreover, if $T: V \to V$ is linear, and $[T]_{\mathscr{B}}^{\mathscr{B}} = [a_{ij}]$, then $[T]_{\mathscr{B}}^{\mathscr{B}} = ([T(v_1)]_{\mathscr{B}} \cdots [T(v_n)]_{\mathscr{B}}) \Rightarrow a_{ij} = __.$

Think!

When does T map orthogonal sets to orthogonal sets?

Orthogonal Basis and Projections

Every subspace of \mathbb{R}^n has an orthogonal basis.

To construct one, we can start with any basis and modify it (Gram-Schmidt process).

First we see what happens in \mathbb{R}^2 .

To construct an orthogonal basis in \mathbb{R}^n , we need to know how to find $\operatorname{proj}_{v_1}(v_2)$ in \mathbb{R}^n .

Orthogonal Projections in \mathbb{R}^n

If $v(\neq 0)$, $w \in \mathbb{R}^n$, then $\text{proj}_v(w)$, is a multiple of v and $w - \text{proj}_v(w)$ is orthogonal to v. Thus

$$proj_{v}w = av \text{ for some } a \in \mathbb{R}$$

$$v^{T}(w - proj_{v}w) = 0$$

$$v^{T}w - v^{T}av = 0 \iff a = \frac{v^{T}w}{v^{T}v}$$

Therefore
$$proj_{v}(w) = \left(\frac{v^{T}w}{v^{T}v}\right)v.$$

Example. If $w = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ and $v = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$, then the orthogonal projection of w on Span $\{v\}$ is given by

$$\operatorname{proj}_{v}(w) = \left(\frac{v^{T}w}{v^{T}v}\right)v = \frac{6}{14} \begin{pmatrix} 1\\2\\3 \end{pmatrix}.$$

Application: This can be used to "solve" an inconsistent system of equations.

Linear Least Squares and Projections

Suppose system Ax = b is inconsistent, i.e. $b \notin C(A)$. The error E = ||Ax - b|| is the distance from b to $Ax \in C(A)$.

We want the least square solution \hat{x} which minimizes E, i.e., we want to find \hat{b} closest to b such that $A\hat{x} = \hat{b}$ is a consistent system.

Therefore, $\hat{b} = \operatorname{proj}_{C(A)}(b)$ and $A\hat{x} = \hat{b}$.

The error vector $e = b - A\hat{x}$ must be perpendicular to C(A), which is also the row space of A^T .

So, e must be in the left null space of A, $N(A^T)$, i.e.,

$$A^{T}(b-A\hat{x})=0 \text{ or } A^{T}A\hat{x}=A^{T}b$$

Therefore, to find \hat{x} , we need to solve $A^T A \hat{x} = A^T b$.

Linear Least Squares and Projections

Let A be $m \times n$. Then $A^T A$ is a symmetric $n \times n$ matrix.

$$\bullet \left(N(A^T A) = N(A) \right).$$

Proof. $Ax = 0 \Rightarrow A^T Ax = 0$. So, $N(A) \subseteq N(A^T A)$.

For the other inclusion, take $x \in N(A^T A)$.

$$A^T A x = 0 \Rightarrow x^T (A^T A x) = (A x)^T (A x) = ||A x||^2 = 0$$

 $\Rightarrow A x = 0, \text{i.e.}, x \in \mathcal{N}(A).$

- Since $N(A) = N(A^T A)$, by rank-nullity theorem, $rank(A) = n dim(N(A)) = rank(A^T A)$.
- A has linearly independent columns \Leftrightarrow rank $(A) = n \Leftrightarrow$ rank $(A^T A) = n \Leftrightarrow A^T A$ is invertible.
- If rank(A) = n, then the least square solution of Ax = b is given by $A^T A \hat{x} = A^T b \Rightarrow \hat{x} = (A^T A)^{-1} A^T b$ and the orthogonal proj.

of *b* on C(A) is $(\hat{b} = A\hat{x} = Pb)$, where $(P = A(A^TA)^{-1}A^T)$ is the projection matrix. Ques: Is $P^2 = P$?

Linear Least Squares: Example

Example: Find the least square solution to the system

$$\begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} x = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} (Ax = b)$$

We need to solve $A^T A \hat{x} = A^T b$. Now $A^T b = \begin{pmatrix} -4 \\ 11 \end{pmatrix}$ and

$$A^{T}A = \begin{pmatrix} 6 & -11 \\ -11 & 22 \end{pmatrix}.$$

$$[A^{T}A \mid A^{T}b] = \begin{pmatrix} 6 & -11 \mid -4 \\ -11 & 22 \mid 11 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & -11 \mid -4 \\ 0 & 11/6 \mid 11/3 \end{pmatrix}.$$

Therefore $\hat{x_2} = 2$, and $\hat{x_1} = 3$.

Exercise: Find the projection matrix P, and check that $Pb = A\hat{x}$.

Rekha Santhanam Lecture 20 D3

Reading Slide: Linear Least Squares: Application

Hooke's Law states that displacement x of the spring is directly proportional to the load (mass) applied, i.e., m = kx.

A student performs experiments to calculate spring constant k. The data collected says for loads 4,7,11 kg applied, the displacement is 3,5,8 inches respectively. Hence we have:

$$\begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix} k = \begin{pmatrix} 4 \\ 7 \\ 11 \end{pmatrix} \qquad (ak = b).$$

Clearly the data is inconsistent.

Allowing for various errors, how do we find an estimate for k? The method of least squares allows us to find a consistent system "close" to this one!

Exercise: Estimate *k* using the method of least squares.

Reading Slide: Line of Best Fit: Example

Question: We want to find the best line y = C + Dx which fits the given data and gives least square error.

Data: (x,y) = (-2,4), (-1,3), (0,1), and (2,0).

The system
$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 0 \end{pmatrix} \quad (Ax = b)$$

is inconsistent.

Find the least square solution by solving $A^T A \hat{x} = A^T b$.

Question: Find the best quadratic curve $y = C + Dx + Ex^2$ which fits the above data and gives least square error.

Hint. The first row of the matrix A in this case will be $\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$.

Gram-Schmidt Process

If the set of vectors v_1, \ldots, v_r in \mathbb{R}^n are linearly independent, then we can find an orthonormal set of vectors q_1, \ldots, q_r such that $\operatorname{Span}\{v_1, \ldots, v_r\} = \operatorname{Span}\{q_1, \ldots, q_r\}$.

First find an orthogonal set.

Let
$$w_1=v_1$$
, $w_2=v_2-\operatorname{proj}_{w_1}(v_2)$. Then $w_1\perp w_2$ and

$$\mathsf{Span}\{v_1,v_2\}=\mathsf{Span}\{w_1,w_2\}.$$

Let $c_1w_1 + c_2w_2$ be the projection of v_3 on Span $\{w_1, w_2\}$. Then $(v_3 - c_1w_1 - c_2w_2) \perp w_1$ and $(v_3 - c_1w_1 - c_2w_2) \perp w_2$.

$$\Rightarrow w_1^T(v_3 - c_1w_1 - c_2w_2) = 0 \Rightarrow c_1w_1 = \text{proj}_{w_1}(v_3)$$
 and similarly $c_2w_2 = \text{proj}_{w_2}(v_3)$. Therefore,

$$w_3 = v_3 - \text{proj}_{\text{Span}\{w_1, w_2\}}(v_3) = v_3 - \left(\frac{w_1' v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2' v_3}{\|w_2\|^2}\right) w_2.$$

Span
$$\{v_1, v_2, v_3\}$$
 = Span $\{w_1, w_2, w_3\}$ and $w_1^T w_3 = 0, w_2^T w_3 = 0.$

Gram-Schmidt Process (Contd.)

By induction,

$$\begin{aligned} w_r &:= v_r - \operatorname{proj}_{\mathsf{Span}\{w_1, \dots w_{r-1}\}}(v_r) = \\ v_r - \operatorname{proj}_{w_1}(v_r) - \operatorname{proj}_{w_2}(v_r) - \dots - \operatorname{proj}_{w_{r-1}}(v_r) \\ &= v_r - \frac{w_1^T v_r}{\|w_1\|^2} w_1 - \frac{w_2^T v_r}{\|w_2\|^2} w_2 - \dots - \frac{w_{r-1}^T v_r}{\|w_{r-1}\|^2} w_{r-1} \end{aligned}$$

Now take
$$q_1=\frac{w_1}{\|w_1\|}$$
, $q_2=\frac{w_2}{\|w_2\|}$, ..., $q_r=\frac{w_r}{\|w_r\|}$. Then $\{q_1,\ldots,q_r\}$ is an orthonormal set and

$$W = \operatorname{Span}\{v_1, \dots, v_r\} = \operatorname{Span}\{w_1, \dots, w_r\} = \operatorname{Span}\{q_1, \dots, q_r\}.$$

In particular, $\{q_1, q_2, \dots, q_r\}$ is an *orthonormal basis* for W.

Exercise: Show that if $\{w_1, \ldots, w_r\}$ is an orthogonal set, then

$$\mathsf{proj}_{\mathsf{Span}\{w_1, \dots w_{i-1}\}}(v_i) = \mathsf{proj}_{w_1}(v_i) + \mathsf{proj}_{w_2}(v_i) + \dots + \mathsf{proj}_{w_{i-1}}(v_i).$$

Rekha Santhanam Lecture 20 D3

Gram-Schmidt Method: Example

Q: Let
$$S = \left\{ v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} -5 \\ 1 \\ 5 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix} \right\}$$
 and $W =$

Span(S). Find an orthonormal basis for W.

Exercise: First verify that $\{v_1, v_2, v_3\}$ are linearly independent. (Check that rank of $(v_1 \ v_2 \ v_3)$ is 3). Hence S is a basis of W.

Lecture 20 D3