

Clustering Items through Bandit Feedback Finding the Right Feature out of Many

Maximilian Graf* Victor Thuot[†] Nicolas Verzelen[†] June 18, 4th ASCAI (closing) Workshop, Orsay

- * Institut für Mathematik, Universität Potsdam, Potsdam, Germany
- † INRAE, Mistea, Institut Agro, Univ Montpellier, Montpellier, France

Setting

Motivating example

- a set of forest patches
- a set of automatic biodiversity sensors

Figure 1: DNA sensor (left), optical sensor (right)¹

- Objective: partition the forest patches by their biodiversity
- Limitations: cost, lack of specialists, unknown sensors

^{1.} C. Bouget et al. "Bioc@pt: Capteurs automatiques de biodiversité en forêt". In: 2021.

- n: number of forest patches
- d: number of sensors

- n: number of forest patches
- d: number of sensors
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,j} & \cdots & M_{1,d} \\ \vdots & & \vdots & & \vdots \\ M_{i,1} & \cdots & M_{i,j} & \cdots & M_{i,d} \\ \vdots & & \vdots & & \vdots \\ M_{n,1} & \cdots & M_{n,j} & \cdots & M_{n,d} \end{bmatrix} \leftarrow M_{i,\cdot}$$

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,j} & \cdots & M_{1,d} \\ \vdots & & \vdots & & \vdots \\ M_{i,1} & \cdots & M_{i,j} & \cdots & M_{i,d} \\ \vdots & & \vdots & & \vdots \\ M_{n,1} & \cdots & M_{n,j} & \cdots & M_{n,d} \end{bmatrix} \leftarrow M_{i,\cdot}$$

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,j} & \cdots & M_{1,d} \\ \vdots & & \vdots & & \vdots \\ M_{i,1} & \cdots & M_{i,j} & \cdots & M_{i,d} \\ \vdots & & \vdots & & \vdots \\ M_{n,1} & \cdots & M_{n,j} & \cdots & M_{n,d} \end{bmatrix} \leftarrow M_{i,\cdot} \in \{\mu_0, \mu_1\}$$

Hidden partition: there are two groups of patches

$$\exists \mu_0 \neq \mu_1 \in \mathbb{R}^d; \ \forall i \in \{1, \dots, n\}, \ M_{i, \cdot} \in \{\mu_0, \mu_1\}$$

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

• Hidden partition: there are two groups of patches

$$\exists \mu_0 \neq \mu_1 \in \mathbb{R}^d; \ \forall i \in \{1, \dots, n\}, \ \underline{M}_{i, \cdot} \in \{\mu_0, \mu_1\}$$

• Gap vector Denote $\Delta = \mu_1 - \mu_0$ (w.l.o.g, $\mu_0 = 0$)

- n: number of forest patches (items)
- d: number of sensors (features)
- $M_{i,j}$: mean value of the j-th sensor on the i-th patch

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0.5 & 0.05 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow M_{i,\cdot} \in \{0, \Delta\}$$

• Hidden partition: there are two groups of patches

$$\exists \mu_0 \neq \mu_1 \in \mathbb{R}^d; \ \forall i \in \{1, \dots, n\}, \ \mathbf{M}_{i, \cdot} \in \{\mu_0, \mu_1\}$$

- Gap vector Denote $\Delta = \mu_1 \mu_0$ (w.l.o.g, $\mu_0 = 0$)
- Objective 1: recover the partition of patches

... through Bandit feedback

Vanilla clustering: observe the entire matrix

Bandit clustering: adapt the learning strategy on the fly

... through Bandit feedback

Vanilla clustering: observe the entire matrix

Bandit clustering: adapt the learning strategy on the fly

Learning protocol

At each time step t,

- choose a patch $l_t \in 1, \ldots, n$ (based on the past)
- choose a sensor $J_t \in 1, ..., d$ (based on the past)
- receive X_t , s.t., $X_t = M_{I_t,J_t} + \text{random noise}$

...through Bandit feedback

Vanilla clustering: observe the entire matrix

Bandit clustering: adapt the learning strategy on the fly

Learning protocol

At each time step t,

- choose a patch $l_t \in 1, ..., n$ (based on the past)
- choose a sensor $J_t \in 1, ..., d$ (based on the past)
- receive X_t , s.t., $X_t = M_{I_t,J_t} + \text{random noise}$

Objective 1: recover the partition of the patches ...

Objective 2: ... while minimizing the budget

 \rightarrow focusing the budget on the most informative sensor

Time t	1	2	3	4
(patch,sensor)	(1,1)			
$X_t = + $ noise				

Т	ime t	1	2	3	4
(patc	h,sensor)	(1,1)			
$X_t = + $ noise		0.1			

Time t			1	2	3	4
(patch,sensor)			(1,1)	(2,1)		
$X_t = + \text{noise}$		0.1				

٦	ime t	1	2	3	4
(pate	ch,sensor)	(1,1)	(2,1)		
$X_t = + \text{noise}$		0.1	-0.05		

Т	ime t	1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	
$X_t = + \text{noise}$		0.1	-0.05		

Time t	1	2	3	4
(patch,sensor)	(1,1)	(2,1)	(1,4)	
$X_t = + $ noise	0.1	-0.05	0.1	

Time t			1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	(4,4)	
$X_t =$		+ noise	0.1	-0.05	0.1	

Time t			1	2	3	4
(patch,sensor)		(1,1)	(2,1)	(1,4)	(4,4)	
$X_t =$		+ noise	0.1	-0.05	0.1	0.4

Ti	me t	1	2	3	4	
(patch,sensor)		(1,1)	(2,1)	(1,4)	(4,4)	
$X_t =$	+ noise	0.1	-0.05	0.1	0.4	

 \rightarrow At time T, output a partition of the patches

PAC-setting

Learning protocol

Input: prescribed probability δ

While $t \leq T$, (T a stopping time)

- choose a patch $I_t \in {1,\ldots,n}$
- choose a sensor $J_t \in 1, \ldots, d$
- receive X_t , s.t., $X_t = M_{I_t,J_t} + \text{noise}^a$

Output: \hat{g} partition of the patches

a. $\epsilon_t := (X_t - M_{I_t, J_t})$ is 1-sub-Gaussian

PAC-setting

Learning protocol

Input: prescribed probability δ

While $t \leq T$, (T a stopping time)

- choose a patch $I_t \in 1, \ldots, n$
- choose a sensor $J_t \in 1, \ldots, d$
- receive X_t , s.t., $X_t = M_{I_t,J_t} + \text{noise}^a$

Output: \hat{g} partition of the patches

a.
$$\epsilon_t := (X_t - M_{I_t,J_t})$$
 is 1-sub-Gaussian

Definition

 \mathcal{A} is δ -PAC if $\mathbb{P}_{\mathcal{A},\mathcal{M}}(\hat{g} \text{ is correct}) \geqslant 1 - \delta$

PAC-setting

Learning protocol

Input: prescribed probability δ

While $t \leq T$, (T a stopping time)

- choose a patch $I_t \in 1, \ldots, n$
- choose a sensor $J_t \in 1, \ldots, d$
- receive X_t , s.t., $X_t = M_{I_t,J_t} + \text{noise}^a$

Output: \hat{g} partition of the patches

a.
$$\epsilon_t := (X_t - M_{l_t,J_t})$$
 is 1-sub-Gaussian

Definition

$$\mathcal{A}$$
 is δ -PAC if $\mathbb{P}_{\mathcal{A},\mathcal{M}}(\hat{g} \text{ is correct}) \geqslant 1 - \delta$

Main objective

find A, δ -PAC algorithm with a budget T as small as possible

Connection to pure exploration litterature

- The problem² consists in balancing the exploration $\begin{cases} \text{ over the patches } \to \text{ to classify} \\ \text{ over the sensors } \to \text{ to learn the structure of } \Delta \end{cases}$
- We combine ideas from (active) signal detection³⁴, and good-arm-identification⁵.
- 2. K. Ariu et al. "Optimal clustering from noisy binary feedback". In: Machine Learning (2024).
- 3. R. M Castro. "Adaptive sensing performance lower bounds for sparse signal detection and support estimation". In: Bernoulli (2014).
- 4. M. Saad, N. Verzelen, and A. Carpentier. "Active ranking of experts based on their performances in many tasks". In: ICML. PMLR. 2023.
- 5. Y. Zhao et al. "Revisiting simple regret: Fast rates for returning a good arm". In: ICML. PMLR. 2023.

Contribution

Our Contribution

- 1. Introduction of a δ -PAC Algorithm BanditClustering, which
 - a) identifies the most discriminative sensor
 - b) classify patches based on this sensor

Our Contribution

- 1. Introduction of a δ -PAC Algorithm BanditClustering, which
 - a) identifies the most discriminative sensor
 - b) classify patches based on this sensor
- 2. Answers to the questions:
 - What is the sampling budget required ?
 (upper bound on the budget of BanditClustering)
 - Is our approach optimal? (matching lower in most relevent cases)

Our Contribution

- 1. Introduction of a δ -PAC Algorithm BanditClustering, which
 - a) identifies the most discriminative sensor
 - b) classify patches based on this sensor
- 2. Answers to the questions:
 - What is the sampling budget required ?
 (upper bound on the budget of BanditClustering)
 - Is our approach optimal? (matching lower in most relevent cases)
- 3. Illustrative numerical experiments

Algorithm: BanditClustering

1. Identification of representatives patches r_0, r_1 (\sim signal detection)

$$\Delta = M_{r_1,\cdot} - M_{r_0,\cdot}$$

2. Selection of j a good discriminative sensor (\sim good-arm identification)

$$\Delta_j = M_{r_1,j} - M_{r_0,j}$$

3. Classification of patches based on the sensor $(\sim \text{binary classification})$

First step: representative identification

• Objective: For r_0 fixed, find r_1 s.t. $M_{r_1,\cdot} \neq M_{r_0,\cdot}$ (w.l.o.g, $M_{r_0,\cdot} = 0$, and $M_{r_1,\cdot} = \Delta$)

First step: representative identification

- Objective: For r_0 fixed, find r_1 s.t. $M_{r_1,\cdot} \neq M_{r_0,\cdot}$ (w.l.o.g, $M_{r_0,\cdot} = 0$, and $M_{r_1,\cdot} = \Delta$)
- Method:
 - 1. subsampling: select randomly *L* entries of *M*
 - 2. Sequential halving: identify entry (i,j) with $M_{i,j}$ large (with SH and budget N)
 - 3. stopping condition: if $M_{i,j} \neq 0$ w.h.p output the patch of this entry Else increase (L, N) and repeat 1, 2, 3

First step: representative identification

- Objective: For r_0 fixed, find r_1 s.t. $M_{r_1,\cdot} \neq M_{r_0,\cdot}$ (w.l.o.g, $M_{r_0,\cdot} = 0$, and $M_{r_1,\cdot} = \Delta$)
- Method:
 - 1. subsampling: select randomly L entries of M
 - 2. Sequential halving: identify entry (i, j) with $M_{i,j}$ large (with SH and budget N)
 - 3. stopping condition: if $M_{i,j} \neq 0$ w.h.p output the patch of this entry Else increase (L, N) and repeat 1,2,3
- Budget:

$$\frac{d}{\theta \|\Delta\|_2^2} \log(1/\delta) \quad \text{(up to log terms)}$$

with θ proportion of patches in the smallest group

Second step: sensor selection

• Objective: We know r_1 s.t. $\Delta = M_{r_1,\cdot} \neq M_{r_0,\cdot} = 0$, we want j (sensor) s.t. Δ_j is large enough

Second step: sensor selection

- Objective: We know r_1 s.t. $\Delta = M_{r_1,\cdot} \neq M_{r_0,\cdot} = 0$, we want j (sensor) s.t. Δ_j is large enough
- Method:
 - 1. subsampling: select randomly L sensors among $\{1, d\}$
 - 2. Sequential halving: identify entry j with Δ_j large (with SH and budget N)
 - 3. Estimation: estimate Δ_i
 - 4. stopping condition: if $\frac{\dot{n}}{\hat{\Delta}_i^2}\log(n/\delta)\lesssim N$ w.h.p

classification

Else increase (L, N) and repeat 1, 2, 3

Second step (and third step): sensor selection

- Objective: We know r_1 s.t. $\Delta = M_{r_1,\cdot} \neq M_{r_0,\cdot} = 0$, we want j (sensor) s.t. Δ_j is large enough
- Method:
 - 1. subsampling: select randomly L sensors among $\{1, d\}$
 - 2. Sequential halving: identify entry j with Δ_j large (with SH and budget N)
 - 3. Estimation: estimate Δ_i
 - 4. stopping condition: if $\frac{n}{\hat{\Delta}_i^2}\log(n/\delta)\lesssim N$ w.h.p

Sample each patch i with sensor j, N/n times Use a linear classifier

Use a linear classifier

Else increase (L, N) and repeat 1, 2, 3

Thereom (Simpler case)

recall: matrix $(M_{i,j})_{\substack{i=1,\ldots,n\\j\in 1,\ldots,d}}$ with rows $M_{i,\cdot}\in\{0,\Delta\}$

Thereom (Simpler case)

recall: matrix
$$(M_{i,j})_{\substack{i=1,\ldots,n\\j\in 1,\ldots,d}}$$
 with rows $M_{i,\cdot}\in\{0,\Delta\}$

sparse setting: Δ equals h > 0 in s entries and 0 elsewhere

Thereom (Simpler case)

recall: matrix
$$(M_{i,j})_{\substack{i=1,\ldots,n\\j\in 1,\ldots,d}}$$
 with rows $M_{i,\cdot}\in\{0,\Delta\}$

sparse setting: Δ equals h > 0 in s entries and 0 elsewhere

Theorem

With probability $1-\delta$ BanditClustering returns the good partition after $T \lesssim \log(1/\delta) \cdot H$, where

$$H:=\frac{1}{\theta}\frac{d}{\|\Delta\|^2}+\frac{n}{h^2}.$$

Theorem (general case)

Theorem

Define

$$H := \frac{d}{\theta} \left(\frac{1}{\|\Delta\|^2} \right) + \min_{s \in [d]} \left(\frac{d}{s} + \mathbf{n} \right) \left(\frac{1}{\Delta_{(s)}^2} \right) ,$$

with $|\Delta_{(1)}| \geqslant |\Delta_{(2)}| \geqslant \dots$

With probability $1-\delta$, BanditClustering returns the good partition after

$$T \lesssim \log\left(\frac{1}{\delta}\right) \cdot H$$

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Assume that
$$\Delta = (\underbrace{h, \dots, h}_{s}, 0, \dots, 0)$$

Theorem

If A is δ -PAC, then there exists a permutation of M, M_{per} , s.t.,

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Assume that
$$\Delta = (\underbrace{h, \dots, h}_{c}, 0, \dots, 0)$$

1. Finding a patch in the smallest group o explore $rac{1}{ heta}\log(1/\delta)$

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(\,\mathcal{T}\geqslant\frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_\infty^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Assume that
$$\Delta = (\underbrace{h, \dots, h}_{s}, 0, \dots, 0)$$

- 1. Finding a patch in the smallest group o explore $frac{1}{\theta} \log(1/\delta)$
- 2. Detecting a sensor j with $\Delta_j = h$ \rightarrow explore $\frac{d}{s} \log(1/\delta)$

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(\,\mathcal{T}\geqslant\frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_\infty^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Assume that
$$\Delta = (\underbrace{h, \dots, h}_{s}, 0, \dots, 0)$$

- 1. Finding a patch in the smallest group o explore $rac{1}{ heta}\log(1/\delta)$
- 2. Detecting a sensor j with $\Delta_j = h$ \rightarrow explore $\frac{d}{s} \log(1/\delta)$
- 3. Testing $\Delta_j = 0$ VS $\Delta_j = h$ \rightarrow sample $\frac{1}{h^2} \log(1/\delta)$

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

Theorem

If A is δ -PAC, then there exists a permutation of M, M_{per} , s.t.,

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

• Let j such that Δ_j is maximal, for each item, we need at least $\frac{1}{\Delta_j^2}\log(1/\delta)$ samples from to classify it

Theorem

$$\mathbb{P}_{M_{per},\mathcal{A}}\left(T\geqslant \frac{2d}{\theta\|\Delta\|^2}\log(1/6\delta)\vee\frac{\frac{2(n-2)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)}{\|\Delta\|_{\infty}^2}\log(1/4.8\delta)\right)\geqslant\delta\ .$$

- Let j such that Δ_j is maximal, for each item, we need at least $\frac{1}{\Delta_i^2}\log(1/\delta)$ samples from to classify it
- Remark. Still a gap with $\min_{s \in [d]} \left(\frac{d}{s} + n \right) \frac{1}{\Delta_{(s)}^2}$, however, optimal if Δ takes two values.

Numerical experiments

Figure 2: Budgets for increasing sparsity *s* with fixed $\|\Delta\|$ $n = 20, d = 1000, \ \Delta^s = (h_s, \dots, h_s, 0, \dots, 0), \ \text{and} \ h_s = \frac{15}{\sqrt{s}}$

1. Algorithmic solution: new online clustering alg. of budget

$$\tfrac{d}{\theta} \left(\tfrac{1}{\|\Delta\|^2} \right) \log \left(\tfrac{1}{\delta} \right) \\ + \min_{s \in [d]} \left(\tfrac{d}{s} + n \right) \left(\tfrac{1}{\Delta_{(s)}^2} \right) \log \left(\tfrac{1}{\delta} \right)$$

1. Algorithmic solution: new online clustering alg. of budget

$$\frac{d}{\theta} \left(\frac{1}{\|\Delta\|^2} \right) \log \left(\frac{1}{\delta} \right) \\ + \min_{s \in [d]} \left(\frac{d}{s} + n \right) \left(\frac{1}{\Delta_{(s)}^2} \right) \log \left(\frac{1}{\delta} \right)$$

2. Optimality: matching lower bound in the sparse setting

1. Algorithmic solution: new online clustering alg. of budget

$$\tfrac{d}{\theta} \left(\tfrac{1}{\|\Delta\|^2} \right) \log \left(\tfrac{1}{\delta} \right) \\ + \min_{s \in [d]} \left(\tfrac{d}{s} + n \right) \left(\tfrac{1}{\Delta_{(s)}^2} \right) \log \left(\tfrac{1}{\delta} \right)$$

- 2. Optimality: matching lower bound in the sparse setting
- 3. **Perspectives**: refine the lower bounds, generalize to K > 2

- 1. Algorithmic solution: new online clustering alg. of budget $\frac{d}{\theta} \left(\frac{1}{\|\Delta\|^2} \right) \log \left(\frac{1}{\delta} \right) + \min_{s \in [d]} \left(\frac{d}{s} + n \right) \left(\frac{1}{\Delta_{(s)}^2} \right) \log \left(\frac{1}{\delta} \right)$
- 2. Optimality: matching lower bound in the sparse setting
- 3. **Perspectives**: refine the lower bounds, generalize to K > 2
- 4. Reference:
 - M. Graf, V. Thuot, and N. Verzelen. *Clustering Items* through Bandit Feedback: Finding the Right Feature out of Many. Accepted at the 42nd International Conference on Machine Learning. 2025. arXiv: 2503.11209

Thank you

Sequential Halving

- 1: **Input:** Number of arms M, budget T
- 2: Set $S \leftarrow \{1, 2, ..., M\}$

Set of active arms

3: Set $R \leftarrow \lfloor \log_2 M \rfloor$

Number of rounds

4: **for** r = 1 to R **do**

5:
$$n_r \leftarrow \left\lfloor \frac{T}{|S| \cdot R} \right\rfloor$$

$$\triangleright n_{r+1} = 2 \cdot n_r$$

- 6: **for** each arm a in S do
- 7: Sample arm a for n_r times, compute empirical mean $\hat{\mu}_a$
- 8: end for
- 9: Keep top $\left| \frac{|S|}{2} \right|$ arms in S
- 10: end for[final]beamer
- 11: Output: Return the remaining arm in S