Estatística Aplicada a Ciências Ambientais

Distribuições de Probabilidade (pt. 2)

Daniel Detzel detzel@ufpr.br

Agenda

Distribuições contínuas distribuição Normal demais distribuições

Aplicação: análise de frequência de cheias

Comentários sobre a estimação de parâmetros

Traçado da FDA empírica

DISTRIBUIÇÕES DE PROBABILIDADE

distribuições contínuas

Distribuições de probabilidade | distribuições contínuas

Distribuições contínuas mais utilizadas:

Normal

Log-Normal

Uniforme

Exponencial

Gama

Gumbel

Generalizada de Valores Extremos (GEV)

Weibull

Fréchet

Beta, etc.

<u>Distribuição Normal</u>:

Também conhecida como distribuição de Gauss (ou distribuição gaussiana) desenvolvida para o tratamento de erros aleatórios de medidas experimentais

Empregada para descrever uma variável aleatória que flutua simetricamente em torno de um valor central

A mais importante distribuição contínua de probabilidades base para testes de hipótese, intervalos de confiança, regressão e correlação

Possui propriedades relevantes aplicáveis a diversos dados (mesmo não normais)

A distribuição Normal é definida por:

$$f_X(x) = \frac{1}{\sqrt{2\pi\theta_1^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\theta_1}{\theta_2}\right)^2\right]$$
, para $-\infty \le x \le \infty$

$$F_X(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\theta_1^2}} \exp\left[-\frac{1}{2}\left(\frac{x-\theta_1}{\theta_2}\right)^2\right] dx$$

onde θ_1 e θ_2 parâmetros da distribuição

O valor esperado e a variância da distribuição Normal são:

$$E[X] = \mu = \theta_1$$

$$VAR[X] = \sigma^2 = \theta_2^2$$

$$\gamma = 0$$

Portanto, pode-se escrever:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
, para $-\infty \le x \le \infty$

Sensibilidade quanto ao parâmetro média:

Sensibilidade quanto ao parâmetro desvio padrão:

A FDP (e a FDA) não tem solução analítica, portanto requer integração numérica

o problema é que essa integração deve ser feita para cada par de parâmetros θ_1 e θ_2 , o que é inconveniente

Neste ponto, a propriedade reprodutiva da distribuição se torna conveniente qualquer combinação linear de n variáveis aleatórias independentes e normalmente distribuídas também segue uma distribuição normal

ex.: se X é normalmente distribuída e Y = aX + b, Y também seguirá uma distribuição normal

Portanto, pode-se trabalhar com a variável reduzida Z:

$$Z = \frac{X - \mu}{\sigma}$$

Nesse caso, $Z \sim N(0,1)$

lê-se: Z é normalmente distribuído com média 0 e desvio padrão unitário

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z^2}{2}\right]$$
, para $-\infty \le x \le \infty$

A distribuição normal em função da variável reduzida recebe o nome de distribuição normal padrão

sua integração numérica é possível e fornecida em tabelas (ou softwares)

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5606	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8585	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015

No R

Imagem: adaptada de Naghettini e Pinto (2007, p. 135)

Desvios-padrão em relação à média

Apenas 0,28% da área sob a curva está fora do limite de 3σ

A probabilidade de um valor ser inferior a $\mu - 3\sigma$ é de 0,14%

Na prática, se X tem média maior do que 3σ a probabilidade de X assumir valores negativos é mínima

Imagem: adaptada de https://www.simplypsychology.org/z-score.html

Exemplo: Considere uma amostra com uma distribuição normal tal que N(12,25). Qual é a probabilidade de que *X*, retirada dessa amostra, esteja entre 15,6 e 20,4?

Solução:

O que se pede é prob $(15,6 \le x \le 20,4)$.

A amostra tem parâmetros: $\bar{X} = 12$ e s = 25. Assim, as variáveis reduzidas ficam:

$$z_1 = \frac{15,6-12}{25} = 0,12; z_2 = \frac{20,4-12}{25} = 1,08$$

Portanto, prob $(15,6 \le x \le 20,4) \equiv \text{prob}(0,12 \le z \le 1,08)$

$$prob(0,12 \le z \le 1,08) = prob(1,08) - prob(0,12)$$

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5606	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8585	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015

No R

```
pnorm(1.08, mean = 0, sd = 1) [1] 0.8599289
```

pnorm(
$$0.12$$
, mean = 0 , sd = 1)
[1] 0.5477584

$$\therefore \text{ prob}(1,08) - \text{prob}(0,12) = 0,8599 - 0,5478 = 0,3121$$

Assim, a probabilidade de que X esteja entre 15,6 e 20,4 é de 31,2%.

Teorema do Limite Central: a soma, ou a média da soma de VA independentes e igualmente distribuídas tende a uma distribuição normal conforme o tamanho da amostra aumenta

Em geral, n não precisa ser tão grande para a convergência acontecer

Ex.: experimento com um dado:

- 1. Lançar 1000 vezes e anotar os resultados
- 2. Lançar outras 1000 vezes e fazer a média dos resultados entre (1) e (2) (...)
- 5. Lançar outras 1000 vezes e fazer a média dos resultados entre (1), (2), ..., (5)

Resultados

Em outros casos, n precisa ser suficientemente grande como regra geral, adota-se n=30

Na prática, a aplicabilidade do teorema está na possibilidade de convergência para uma normal da soma, ou média, de um número suficientemente grande de componentes aleatórios sem ter o conhecimento das distribuições individuais (ou distribuições marginais)

Ex. de aplicação: distribuição dos totais anuais precipitados em um local a distribuição normal pode ser candidata por força do teorema do limite central

<u>Distribuição Log-Normal</u>:

Utilizada para variáveis aleatórias resultantes de ações multiplicativas de componentes aleatórios independentes, ou seja:

$$X = X_1 \cdot X_2 \cdot \cdots X_n$$

Uma variável $Y = \ln X = \ln X_1 + \ln X_2 + \dots + \ln X_n$, por força do teorema do limite central, irá tender a uma variável normalmente distribuída (com n suficientemente grande)

Assim,
$$X \sim LN(\mu_{\ln(X)}, \sigma_{\ln(X)})$$

A distribuição log-normal é definida por:

$$f_X(x) = \frac{1}{x\sigma_{\ln(X)}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu_{\ln(X)}}{\sigma_{\ln(X)}}\right)^2\right], \text{ para } x > 0$$

$$F_X(x) = \int_0^x \frac{1}{x\sigma_{\ln(X)}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu_{\ln(X)}}{\sigma_{\ln(X)}}\right)^2\right] dx$$

onde $\mu_{\ln(X)}$ e $\sigma_{\ln(X)}$ parâmetros da distribuição

O valor esperado e a variância da distribuição log-normal são:

$$E[X] = \mu_X = \exp\left[\mu_{\ln(X)} + \frac{\sigma_{\ln(X)}^2}{2}\right]$$

$$VAR[X] = \sigma_X^2 = \mu_X^2 \left[\exp(\sigma_{\ln(X)}^2) - 1 \right]$$

$$\gamma = 3CV_X + (CV_X)^3$$

onde

$$CV_X = \sqrt{\exp(\sigma_{\ln(X)}^2) - 1}$$

Há ainda a distribuição log-normal a três parâmetros, definida por:

$$f_X(x) = \frac{1}{(x - \Delta)\sigma_{\ln(X)}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\ln(x - \Delta) - \mu_{\ln(X)}}{\sigma_{\ln(X)}}\right)^2\right], \text{ para } x > 0$$

onde

$$E[X] = \mu_X = \Delta + \exp\left[\mu_{\ln(X)} + \frac{\sigma_{\ln(X)}^2}{2}\right] \qquad \Delta = \frac{x_{\min} \cdot x_{\max} - \tilde{x}^2}{x_{\min} + x_{\max} - 2\tilde{x}}$$

$$VAR[X] = \sigma_X^2 = \left[\exp(\sigma_{\ln(X)}^2) - 1\right] \cdot \exp(2\mu_{\ln(X)} + \sigma_{\ln(X)}^2)$$

O parâmetro de deslocamento Δ é usado quando se precisa de um limite inferior para variável aleatória

A aplicação da equação proposta para estimação de Δ pode render resultados fisicamente impossíveis se a assimetria da série for negativa nesse caso, seu valor pode ser atribuído (ex.: $\Delta = x_{\min}$)

Na prática, o uso da distribuição log-normal é feito aplicando-se uma transformação logarítmica na variável original essa forma dispensa o uso das equações anteriores

<u>Distribuição Uniforme</u>:

Muito usada em processos de simulação, para a geração de números

pseudoaleatórios

$$f_X(x) = \frac{1}{(\beta - \alpha)}, \alpha \le x \le \beta$$

onde

 α assume x_{\min}

 β assume $x_{m\acute{a}x}$

Distribuições de probabilidade | distribuição Exponencial

Distribuição Exponencial:

Uma das distribuições mais simples com aplicações em ciências naturais

$$f_X(x) = \lambda \exp(-\lambda x)$$
, $x \ge 0$

$$F_X(x) = 1 - e^{-\lambda x}, x \ge 0$$

$$E[X] = \frac{1}{\lambda}$$

$$VAR[X] = \frac{1}{\lambda^2} \qquad \gamma = 2$$

<u>Distribuição Gumbel</u>: (para máximas)

Muito utilizada em análise de frequência de cheias

$$f_X(x) = \frac{1}{\alpha} \exp\left[-\frac{x-\beta}{\alpha} - \exp\left(-\frac{x-\beta}{\alpha}\right)\right]$$

$$F_X(x) = \exp\left[-\exp\left(-\frac{x-\beta}{\alpha}\right)\right],$$

para $-\infty \le x \le \infty, -\infty \le \beta \le \infty, \alpha > 0$

O valor esperado, variância e assimetria da distribuição Gumbel, são:

$$E[X] = \beta + 0.5772\alpha$$

$$VAR[X] = \frac{\pi^2 \alpha^2}{6}$$

$$\gamma = 1{,}1396$$

<u>Distribuição GEV</u>: (generalizada de valores extremos) Incorpora três formas assintóticas de valores extremos máximos

$$f_X(x) = \frac{1}{\alpha} \left[1 - \kappa \left(\frac{x - \beta}{\alpha} \right) \right]^{1/(\kappa - 1)} \exp \left\{ - \left[1 - \kappa \left(\frac{x - \beta}{\alpha} \right) \right]^{1/\kappa} \right\}$$

$$F_X(x) = \exp\left\{-\left[1 - \kappa \left(\frac{x - \beta}{\alpha}\right)\right]^{1/\kappa}\right\}$$

onde κ , α e β são os parâmetros de forma, escala e posição, respectivamente

O valor e o sinal de κ define a forma assintótica dos valores extremos

se κ < 0: GEV Tipo II

se $\kappa > 0$: GEV Tipo III

se $\kappa = 0$: distribuição de Gumbel

O valor esperado, variância e assimetria da distribuição GEV, são:

$$E[X] = \beta + \frac{\alpha}{\kappa} [1 - \Gamma(1 + \kappa)]$$

$$VAR(X) = \left(\frac{\alpha}{\kappa}\right)^2 \left[\Gamma(1+2\kappa) - \Gamma^2(1+\kappa)\right]$$

$$\gamma = \langle \text{sinal de } \kappa \rangle \frac{-\Gamma(1+3\kappa) + 3\Gamma(1+\kappa)\Gamma(1+2\kappa) - 2\Gamma^3(1+\kappa)}{\left[\Gamma(1+2\kappa) - \Gamma^2(1+\kappa)\right]^{3/2}}$$

DISTRIBUIÇÕES DE PROBABILIDADE

aplicação: análise de frequência de cheias

A análise de frequência de cheias tem por objetivo estimar valores de vazão para tempos de retorno elevados, em geral maiores do que a amostra (essa análise pode ser feita para outras variáveis também)

A atenção se volta para a cauda direita das distribuições

menores probabilidades de ocorrência maiores valores de vazão

As estimativas são obtidas por meio dos quantis das distribuições quantil: ponto na distribuição cuja área à esquerda tem probabilidade p

Imagem: adaptada de https://https://passeioaleatorio.shinyapps.io/dist_calc/

Matematicamente, é preciso inverter a FDA da distribuição para explicitar x

Ex.: distribuição exponencial

FDA:
$$F_X(x) = 1 - e^{-\lambda x}$$

Quantil:
$$F_X^{-1}(x) = x = -\frac{\ln F_X(x)}{\lambda}$$

Na sequência, atribui-se valores a $F_X(x)$ lembrando que $F_X(x) = 1/T$

Contudo, na análise de frequência de cheias o interesse está na probabilidade de excedência de um valor de vazão, ou seja:

Imagem: adaptada de https://https://passeioaleatorio.shinyapps.io/dist_calc/

Assim, o que se quer calcula é $F'_X(x) = 1 - F_X(x)$

Exercício (proposto): Na análise de uma amostra de vazões de um determinado rio, determinou-se que sua média é de 60 m³/s e seu desvio padrão 12 m³/s. Determine o valor da cheia com 1000 anos de tempo de retorno para as distribuições exponencial e Gumbel.

Solução:

Para resolver o problema é preciso deduzir as equações dos quantis para o caso de probabilidade de excedência $(F'_X(x))$.

Após isso, substitui-se $F'_X(x) = 1/T$.

Para a distribuição exponencial:

$$F_X'(x) = 1 - \left(1 - e^{-\lambda x}\right)$$

Resolvendo para x e substituindo $F'_X(x) = 1/T$:

$$x = -\frac{\ln{(1/T)}}{\lambda}$$

Para a distribuição de Gumbel:

$$F'_X(x) = 1 - \left(\exp\left[-\exp\left(-\frac{x-\beta}{\alpha}\right)\right]\right)$$

Resolvendo para x e substituindo $F'_X(x) = 1/T$:

$$x = -\alpha \ln\left[-\ln\left(1 - \frac{1}{T}\right)\right] + \beta$$

O próximo passo é estimar os parâmetros das distribuições

Para a distribuição exponencial:

$$E[X] = \frac{1}{\lambda} \to \lambda = \frac{1}{E[X]}$$

Fazendo $E[X] = \overline{X}$, chega-se a:

$$\lambda = \frac{1}{60}$$

Para a distribuição de Gumbel:

$$E[X] = \beta + 0.5772\alpha$$
$$VAR[X] = \frac{\pi^2 \alpha^2}{6}$$

Fazendo $E[X] = \overline{X}$ e $VAR[X] = s^2$, chega-se a:

$$\alpha = 9,356$$

 $\beta = 54,599$

Por fim, basta substituir os valores nas equações dos quantis:

Para a distribuição exponencial:

$$x = -\frac{\ln{(1/1000)}}{1/60} \cong 415 \text{ m}^3/\text{s}$$

Para a distribuição de Gumbel:

$$x = -9,356 \ln \left[-\ln \left(1 - \frac{1}{1000} \right) \right] + 54,599 \approx 119 \text{ m}^3/\text{s}$$

No R:

Exponencial:

```
qexp(p, rate = lambda, lower.tail = FALSE)
qexp(1/1000, rate = 1/60, lower.tail = FALSE)
[1] 414.4653
```


Gumbel: (é preciso o pacote "ordinal")

```
qgumbel(p,location = mu, scale = sigma,lower.tail = FALSE)
qgumbel(1/1000,location = 60, scale = 12,lower.tail = FALSE)
[1] 142.8871
```

Obs.: a diferença entre os resultados para Gumbel se deve ao método utilizado para a estimação dos parâmetros.

DISTRIBUIÇÕES DE PROBABILIDADE

considerações sobre estimação de parâmetros

Os parâmetros condicionam as distribuições de probabilidade. Matematicamente:

$$F_X(x) \equiv F_X(x|\theta_1,\theta_2,...,\theta_m)$$

onde

$$\theta_i$$
 parâmetros (populacionais) da distribuição ($i=1,2,...,m$)

Existem diferentes métodos para estimar parâmetros e eles podem produzir valores diferentes para um mesmo parâmetro de uma mesma distribuição

A razão é que o estimador $\hat{\theta}_i$ é função da variável aleatória em questão, o que o torna também uma variável aleatória (portanto, possui dist. de probabilidade) a notação $\hat{\theta}_i$ denota que o valor é o estimador do parâmetro populacional θ_i

$$F_X(x) \equiv F_X(x|\theta_1,\theta_2,...,\theta_m)$$

Quanto maior o tamanho da amostra, mais $\hat{\theta}_i$ se aproxima de θ_i

Alternativamente, se várias amostras forem usadas para obter $\hat{\theta}_i$, o valor médio de todas as estimativas se aproxima de θ_i

Os estimadores possuem propriedades importantes:

Não tendenciosidade:

Um parâmetro não tendencioso é aquele que $E[\widehat{\theta}] = \theta$

Consistência:

Um estimador consistente é aquele cuja probabilidade de $\hat{\theta}$ ser diferente de θ por um fator qualquer ε , se aproxima de zero conforme o tamanho da amostra aumenta

Eficiência:

Um estimador eficiente é aquele cuja variância é menor ou igual à variância de outro estimador qualquer

Suficiência:

Um estimador suficiente é aquele que usa toda a informação relevante da amostra, tal que nenhuma outra informação pode ser adicionada por um estimador alternativo

As propriedades auxiliam na caracterização dos métodos de estimação, que podem variar a depender da amostra disponível e da própria distribuição

Os três principais métodos de estimação são:

método dos momentos método da máxima verossimilhança método dos momentos-L

A ideia aqui não é explorar a matemática por trás dos métodos (pois existem softwares disponíveis para isso), mas trazer dicas da aplicabilidade de cada um

Método dos momentos:

Tido como o método mais simples para estimação de parâmetros

São de qualidade inferior aos demais métodos (menos eficientes)

Perdem para o método da máxima verossimilhança principalmente em distribuições de dois ou três parâmetros

Por outro lado, para amostras pequenas eles podem ser tão bons (ou até melhores) do que outros estimadores

Método da máxima verossimilhança:

É o método mais eficiente (produz estimadores de menor variância)

São estimadores assintoticamente consistentes, suficientes e não tendenciosos

Entretanto, tem aplicabilidade comparável (ou inferior) a outros métodos no caso de amostras pequenas

Exige maior esforço computacional por requerer a solução de sistemas de equações diferenciais parciais

Método dos momentos-L:

Alternativa mais eficiente do que o método dos momentos e comparáveis ao método da máxima verossimilhança

São menos sujeitos a variações amostrais (portanto, são robustos)

Exigem menor esforço computacional do que o método da máxima verossimilhança

Boa opção para amostras pequenas

DISTRIBUIÇÕES DE PROBABILIDADE

distribuições empíricas

As distribuições empíricas se referem às distribuições dos dados sob análise (portanto, são distribuições amostrais)

São úteis para avaliar a adequação de distribuições teóricas ferramentas gráficas para análise de adequação de ajustes

Aqui são abordadas as FDAs empíricas a avaliação das FDPs empíricas foi mostrada anteriormente e consiste em histogramas e gráficos de densidade

Para o traçado da FDA empírica, são precisos dois passos

- 1. Ordenar a série de forma crescente
- 2. Atribuir posições de plotagem p_i , as quais são definidas por:

$$p_i = \frac{i - a}{n + 1 - 2a}$$

onde

constante a ser adotada de acordo com o método escolhido

Valores de *a* de acordo com a motivação

Denominação	Valor de a	Motivação	
Weibull	0	Probabilidades de excedência não tendenciosas para todas as distribuições	
Blom	0,375	Distribuição normal	
Cunnane	0,40	Probabilidades de excedência aproximadamente não tendenciosas para todas as distribuições	
Gringoten	0,44	Distribuição de Gumbel	

Portanto, utilizando as posições de Weibull, tem-se:

$$p_i = \frac{i}{n+1}$$

Exemplo: FDA empírica da série de vazões médias anuais em Foz do Areia, rio Iguaçu (1931 a 2021)

Original				
Anos	\overline{Q} (m 3 /s)			
1931	720			
1932	753			
1933	249			
•••	•••			
2019	533			
2020	296			
2021	427			

Ordenada

Anos	\overline{Q} (m 3 /s)	q_i
1933	249	0,011
2006	259	0,022
1968	264	0,033
1990	1158	0,967
1998	1429	0,978
1983	1528	0,989

FDA empírica resultante

O ajuste a distribuições teóricas pode ser verificado graficamente

Para traçar a FDA teórica:

- 1. Estimar os parâmetros da distribuição desejada
- 2. Inverter a FDA da distribuição, atribuindo as posições de plotagem no lugar das probabilidades $F_X(x)$

Para a distribuição normal: (necessário auxílio de tabelas ou softwares)

$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Exemplo: FDA teórica da série de vazões médias anuais em Foz do Areia, rio Iguaçu (1931 a 2021)

Parâmetros:

$$\bar{X} = 656 \, \text{m}^3/\text{s}$$

$$s = 244 \,\mathrm{m}^3/\mathrm{s}$$

q_i	$\overline{m{Q}}$ (m 3 /s)
0,011	97
0,022	164
0,033	207
	•••
0,967	1105
0,978	1148
0,989	1215

No R:

qnorm(qi, mean = 656, sd = 244)

FDA empírica vs. teórica resultante

O mesmo procedimento pode ser aplicado a outras distribuições

Revisão

A distribuição normal é importante por suas propriedades, mesmo que não tenha aplicabilidade direta em séries de ciências naturais

reprodutibilidade

nº de desvios-padrão em relação à média

Teorema do Limite Central

Distribuições contínuas diversas aqui focadas em formas assimétricas

Análise de frequência de cheias uma das diversas aplicações das distribuições contínuas

Distribuições empíricas úteis para a seleção de modelos teóricos candidatos

Estatística Aplicada a Ciências Ambientais

Daniel Detzel detzel@ufpr.br