디지털 컨텐츠 거래 시스템

Privacy preserved digital contents trading system on public blockchain

1. Contribution

(1) 거래내역의 투명성

• 디지털 컨텐츠를 대리 판매하는 시스템이 거래량을 조작할 수 없음

(2) 프라이버시 거래

• 구매목록, 구매한 컨텐츠 정보 등 거래 대한 프라이버시를 보호

2. Component

3-1 Register User

3-2 Register Data

3-2 Register Data


```
Server
     구매Xh(app)
                                        CT_{data} = Enc(Data, k_{data})
                                       h_{k_{data}} = hash(pk_{own}^{peer} | | k_{data})
                                       h_{CT} = hash(CT_{data})
                                       \Pi.prove = \pi_{registerData}
                                        send \pi_{registerData}, CT_{data}, h_{CT}, h_{k_{dat}}
Relation_{RegisterData}
   Inputs:
      \mathbf{h}_{ct}: hashed cipher Text
      \mathbf{h}_{k_{data}}: hashed \mathbf{k}_{data}
      pk_{own}^{peer}: data owner's pk_{own}
   Witness:
```

```
)ata
   data: text Data
   CT_{data} :encrypted Data
   k_{data}: key used in symmetric-key encryption scheme
h_{kdata} = \text{Hash}( pk_{own}^{peer} \parallel k_{data} )
h_{ct} = \text{Hash}(CT_{data})
CT_{data} = SE.Enc(data, k_{data})
```

3-2 Register Data

판매자(web)

구[HXh(app)

get fee, CT_{data} , $h_{k_{data}}$

get $pk_{enc}^{peer}pk_{own}^{peer}pk_{own}^{del}pk_{enc}^{del}$

 $cm_{peer} = hash(pk_{own}^{peer} || r || fee_{peer} || h_k || pk_{enc}^{cons})$ $cm_{del} = hash(pk_{own}^{del} || r || fee_{del} || h_k || pk_{enc}^{cons})$ $Order := [pk_{enc}^{cons}, pk_{own}^{cons}, r, fee_{peer}, fee_{del}, h_k]$ $CT_{ord} = Enc(Order, pk_{enc}^{peer})$

 $\Pi.prove = \pi_{genTrade}$

 $k_{data} = Dec(CT_{k_{data}}, sk_{enc}^{cons})$ $Data = Dec(CT_{data}, k_{data})$

Relation_{genTrade}

Inputs:

 cm_{peer} : coin commitment send to data owner(peer)

 cm_{del} : coin commitment send to delegate server

 CT_{ord} : encrypted buyer's key

ENA: encrypted account value before buy

ENA': encrypted account value after buy

 fee_{del} : delegation fee

 fee_{peer} : data fee

Witness:

r: random value to make cm

 h_k : hashed k_{data}

 pk_{own}^{del} : to make cm_{del}

 pk_{enc}^{cons} : consumer's pk_{enc} to make CT_{keys} pk_{own}^{cons} : consumer's pk_{own} to make CT_{keys}

 pk_{own}^{peer} : key used in public-key encryption

 pk_{own}^{peer} : to make cm_{peer}

 k_{ENA} : key used in symmetric-key encryption scheme

```
fee_{del} + fee_{peer} = \text{SE.Dec}(\text{ENA}, k_{ENA}) - \text{SE.Dec}(\text{ENA'}, k_{ENA})
cm_{peer} = \text{Hash}(pk_{own}^{peer} || r || fee_{peer} || h_k || pk_{enc}^{cons})
cm_{del} = \text{Hash}(pk_{own}^{del} || r || fee_{del} || h_k || pk_{enc}^{cons})
Order := [pk_{enc}^{cons}, pk_{own}^{cons}, r, fee_{peer}, fee_{del}, h_k]
CT_{ord} = \text{PE.Enc}(Order, pk_{enc}^{peer})
```


판매자(web) 구매자(app) $Relation_{AcceptTrade}$ Inputs: $\mathrm{cm}_{peer}:\ coin\ commitment$ cm_{own} : coin commitment $CT_{k_{data}}$: To inform the consumer of the k_{data} Witness: h_k : hashed k_{data} k_{data} : key that make CT_{data} pk_{onw}^{peer} : data owner's pk_{own} pk_{enc}^{cons} : to encrypt k_{data} consumer's pk_{enc} r: to prove coin commitment ownership fee_{del} : to prove coin commitment ownership fee_{peer} : to prove coin commitment ownership $cm_{peer} = \text{Hash}(pk_{own}^{peer} || r || fee_{peer} || h_k || pk_{enc}^{cons})$ $cm_{del} = \text{Hash}(pk_{own}^{del} || r || fee_{del} || h_k || pk_{enc}^{cons})$ $h_k = \operatorname{Hash}(pk_{own}^{peer} \parallel k_{data})$ $CT_{k_{data}} = \text{PE.Enc}(k_{data}, pk_{enc}^{cons})$

