# Diapositivas: Curso de Cálculo Vectorial con GeoGebra. Integrales dobles

| Presenta                         | ation · July 2020                  |       |  |
|----------------------------------|------------------------------------|-------|--|
| DOI: 10.13140/RG.2.2.17824.20480 |                                    |       |  |
|                                  |                                    |       |  |
| CITATIONS                        |                                    | READS |  |
| 0                                |                                    | 1,591 |  |
|                                  |                                    |       |  |
| 1 author:                        |                                    |       |  |
|                                  | Jeovanny De Jesus Muentes Acevedo  |       |  |
|                                  | Universidad Tecnológica de Bolívar |       |  |
|                                  | 47 PUBLICATIONS 68 CITATIONS       |       |  |
|                                  | SEE PROFILE                        |       |  |

# **INTEGRALES DOBLES**

# JEOVANNY MUENTES ACEVEDO

Universidad Tecnológica de Bolívar

10 de abril de 2023





# Definición (Región rectangular)

Sean a, b, c, d números reales tales que a < b y c < d. El conjunto

$$[a,b]\times [c,d]=\{(x,y): a\leq x\leq b, c\leq y\leq d\}$$

se refiere al rectángulo mostrado en la Figura 1(a).



**Figura 1:** (a) Rectángulo  $[a,b] \times [c,d]$ 

Sea  $f:D=[a,b] \times [c,d] \to \mathbb{R}$  una función continua tal que  $f(x,y) \geq 0$  para todo  $(x,y) \in D$ . Sea S el sólido limitado por la región D, considerado como subconjunto de  $\mathbb{R}^3$ , y el gráfico de

Dividamos el intervalo [a,b] en m subintervalos de igual longitud  $[a,x_1],[x_1,x_2],\ldots,[x_{m-1},b]$ . Llamemos por  $\Delta x$  la longitud de estos subintervalos (note que  $\Delta x = \frac{b-a}{m}$ ). De igual forma, dividamos el intervalo [c,d] en n subintervalos de igual longitud  $[c,y_1],[y_1,y_2],\ldots,[y_{n-1},d]$ . Llamemos por  $\Delta y$  la longitud de estos subintervalos (note que  $\Delta y = \frac{d-c}{n}$ ).



**Figura 2:** División del rectángulo D en subrectángulos

Sea  $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ . Cada  $R_{ij}$  tiene área  $\Delta A = \Delta x \Delta y$ . Tome  $(x_{ij}^*, y_{ij}^*) \in R_{ij}$ . La caja rectangular mostrada en la figura tiene base  $R_{ij}$  y altura  $f(x_{ij}^*, y_{ij}^*)$ , por lo tanto su volumen es

$$f(x_{ij}^*, y_{ij}^*) \Delta x \Delta y = f(x_{ij}^*, y_{ij}^*) \Delta A.$$

Si V es el volumen del sólido, tenemos:

$$V \approx \sum_{j=1}^{n} f(x_{1j}^*, y_{1j}^*) \Delta A + \dots + \sum_{j=1}^{n} f(x_{mj}^*, y_{mj}^*) \Delta A = \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A.$$

Luego, 
$$V = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A$$
.

#### Definición (10.1.1)

**Definimos** 

$$\iint_D f(x,y)dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A$$

y es llamada integral doble de f en  $D = [a, b] \times [c, d]$ .

#### Definición (10.1.4)

Si  $f(x,y) \geq 0$  para todo  $(x,y) \in D$ , sea S el sólido que tiene como base a la región D en el plano xy y está limitado por arriba por el gráfico de z=f(x,y). Entonces el volumen V(S) del sólido S es dado por

$$V(S) = \iint_D f(x, y) dA.$$

# Teorema (Teorema de Fubini)

Suponga que f(x,y) es una función continua en un rectángulo  $D=[a,b]\times [c,d]$ . Entonces

$$\iint_D f(x,y)dA = \int_c^d \left( \int_a^b f(x,y)dx \right) dy = \int_a^b \left( \int_c^d f(x,y)dy \right) dx.$$

# Ejemplo (10.1.6)

Calcular la integral doble de  $f(x,y) = 6x^2y - 2x - 4y$  en el rectángulo  $[0,1] \times [0,2]$ . **Solución:** Tenemos que

$$\int_0^1 \int_0^2 (6x^2y - 2x - 4y) dy dx = \int_0^1 [3x^2y^2 - 2xy - 2y^2]|_0^2 dx = \int_0^1 [12x^2 - 4x - 8] dx$$
$$= [4x^3 - 2x^2 - 8x]|_0^1 = -6.$$

El lector puede verificar que

$$\int_{0}^{2} \int_{0}^{1} (6x^{2}y - 2x - 4y) dx dy = -6.$$

Integrales dobles en regiones <u>tipo I y II</u>

# Definición (Regiones tipo I)

Decimos que una región  $D \subseteq \mathbb{R}^2$  es **tipo I** si es de la forma

$$D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, g(x) \le y \le h(x)\},\$$

donde q y h son funciones continuas en [a,b] con  $g(x) \le h(x)$  para todo  $x \in [a,b]$ .



(a) Gráficos de g y h no se intersecan





h(x)

g(x)

Figura 3: Regiones tipo I

# Definición (Regiones tipo II)

Decimos que una región  $D \subseteq \mathbb{R}^2$  es **tipo II** si es de la forma

$$D = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, g(y) \le x \le h(y)\},\$$

donde g y h son funciones continuas en [c,d] con  $g(y) \le h(y)$  para todo  $y \in [c,d]$ .





(c) Gráficos de g y h se intersecan en dos puntos

Figura 4: Regiones tipo II

# Proposición (10.2.3 y 10.2.5)

Sea  $f: D \to \mathbb{R}$  continua en una región D en  $\mathbb{R}^2$ .

• Si  $D = \{(x,y) \in \mathbb{R}^2 : a \le x \le b, g(x) \le y \le h(x)\}$  es una región tipo I, entonces

$$\iint_D f(x,y)dA = \int_a^b \int_{g(x)}^{h(x)} f(x,y)dydx.$$

■ Si  $D = \{(x,y) \in \mathbb{R}^2 : c \le y \le d, g(y) \le x \le h(y)\}$  una región tipo II, entonces

$$\iint_D f(x,y)dA = \int_c^d \int_{g(y)}^{h(y)} f(x,y)dxdy.$$

#### Ejemplo (10.2.6)

Sea D la región limitada por las curvas y=x+2 y  $y=x^2$ . Calcule  $\iint_D (\frac{x}{2}+\frac{y}{3})dA$ .







**Solución:** Hallemos las intersecciones de las dos curvas para determinar la región de integración D. Igualamos las dos ecuaciones y=x+2 y  $y=x^2$ :

$$x + 2 = x^2$$
  $\Rightarrow$   $x^2 - x - 2 = (x + 1)(x - 2) = 0$   $\Rightarrow$   $x = -1$  o  $x = 2$ .

Note que  $x^2 \le x+2$  para todo  $x \in [-1,2]$ . Tomando  $g(x)=x^2$  y h(x)=x+2 como en la Definición 0.6, se sigue que D es una región tipo I:

$$D = \{(x, y) : -1 \le x \le 2, x^2 \le y \le x + 2\}.$$

# Ejemplo

Por Proposición 10.2.3, tenemos

$$\iint_{D} \left(\frac{x}{2} + \frac{y}{3}\right) dA = \int_{-1}^{2} \int_{x^{2}}^{x+2} \left(\frac{x}{2} + \frac{y}{3}\right) dy dx = \int_{-1}^{2} \left[\frac{xy}{2} + \frac{y^{2}}{6}\right]_{x^{2}}^{x+2} dx$$

$$= \int_{-1}^{2} \left[\frac{x(x+2)}{2} + \frac{(x+2)^{2}}{6}\right] - \left[\frac{x^{3}}{2} + \frac{x^{4}}{6}\right] dx$$

$$= \int_{-1}^{2} \left[\frac{2x^{2}}{3} + \frac{5x}{3} + \frac{2}{3} - \frac{x^{3}}{2} - \frac{x^{4}}{6}\right] dx$$

$$= \left[\frac{2x^{3}}{9} + \frac{5x^{2}}{6} + \frac{2x}{3} - \frac{x^{4}}{8} - \frac{x^{5}}{30}\right]_{-1}^{2} = \frac{141}{40}.$$

# Ejemplo (10.2.10)

Calcular el volumen del sólido S que se encuentra limitado por las superficies  $y=\sqrt{x-1}$ ,  $z=y^2$ , y los planos y=-x+7 y z=0.



**Solución:** La superficie  $z = y^2$  limita por encima a S, así el volumen de S es dado por

$$V(S) = \iint_D y^2 dA$$
, donde D es la base del sólido.

Para describir D, hallemos la intersección entre  $y = \sqrt{x-1}$  y y = -x+7. Igualando:

$$\sqrt{x-1} = -x+7 \to (\sqrt{x-1})^2 = (-x+7)^2 \to x-1 = x^2 - 14x + 49 \to x^2 - 15x + 50 = 0,$$

#### Ejemplo

de donde (x-5)(x-10)=0 y así x=5 o x=10. Descartamos la solución x=10, ya que en este caso la recta y=-x+7 pasa por el punto (10,-3), sin embargo la curva  $y=\sqrt{x-1}$  no toma valores negativos para y. La curva  $y=\sqrt{x-1}$  se encuentra a la izquierda de la recta y=-x+7, por lo tanto D es una región tipo II, donde y varía entre 0 y 2. Para describir D como región tipo II, tenemos que despejar a x en función de y en las ecuaciones  $y=\sqrt{x-1}$  y y=-x+7:

$$x = y^2 + 1$$
  $y$   $x = -y + 7$ .

En consecuencia,

$$D = \{(x, y) : 0 \le y \le 2, y^2 + 1 \le x \le -y + 7\}.$$

Luego,

$$V(S) = \iint_D y^2 dA = \int_0^2 \int_{y^2+1}^{-y+7} y^2 dx dy \int_0^2 y^2 x \Big|_{y^2+1}^{-y+7} dy = \int_0^2 y^2 [(-y+7) - (y^2+1)] dy$$
$$= \int_0^2 (-y^3 + 6y^2 - y^4) dy = \left[ -\frac{y^4}{4} + 2y^3 - \frac{y^5}{5} \right]_0^2 = \frac{28}{5}.$$

# Ejemplo (10.2.8)

Calcular  $\int_0^1 \int_{\sqrt{x}}^1 \sqrt{1+y^3} dy dx$ .

**Solución:** Note que el calculo de la integral  $\int \sqrt{1+y^3}dy$  resulta complicada. En este caso tenemos que la región de integración  $D=\{(x,y): 0\leq x\leq 1, \sqrt{x}\leq y\leq 1\}$  está escrita como una región tipo I.



**Figura 5:**  $D = \{(x, y) : 0 \le x \le 1, \sqrt{x} \le y \le 1\}$ 

#### Ejemplo

En la Figura 5 podemos notar que D es también tipo II: en este caso,  $0 \le y \le 1$  y x está limitado a la izquerda por la recta x=0 y a la derecha por la curva  $y=\sqrt{x}$ , de donde obtenemos que  $x=y^2$ , así  $D=\{(x,y): 0 \le y \le 1, 0 \le x \le y^2\}$ , como podemos ver en la figura. Luego

$$\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{1 + y^{3}} dy dx = \iint_{D} \sqrt{1 + y^{3}} dA = \int_{0}^{1} \int_{0}^{y^{2}} \sqrt{1 + y^{3}} dx dy$$

$$= \int_{0}^{1} \left[ \sqrt{1 + y^{3}} x \right]_{0}^{y^{2}} dy = \int_{0}^{1} \sqrt{1 + y^{3}} y^{2} dy = \left[ \frac{2}{9} (1 + y^{3})^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{2}{9} [2^{\frac{3}{2}} - 1] = \frac{2}{9} [2\sqrt{2} - 1],$$

en donde hemos usado la sustitución  $u = 1 + y^3$  para calcular la última integral.



Para cada  $(x,y) \in \mathbb{R}^2$ , si  $r = \sqrt{x^2 + y^2}$  y  $\theta = \arctan\left(\frac{y}{x}\right)$  (ver Figura 6a), tenemos que

$$x = r\cos\theta \qquad y = r\sin\theta.$$

El par  $(r, \theta)$  es llamado **coordenadas polares** del punto (x, y).



Figura 6: Regiones polares

La ecuación  $\theta=\alpha$ , donde  $\alpha$  es una constante en el intervalo  $[0,2\pi]$ , representa una semirrecta en el plano que inicia desde el origen:  $\theta=\alpha$  consiste de todos los puntos en el plano cuyo ángulo con el semieje x positivo es igual a  $\alpha$ . Así,  $\alpha \leq \theta \leq \beta$  corresponde a una región en el plano limitada por dos semirrectas que inician desde el origen (ver Figura 6b).

Dado que  $r=\sqrt{x^2+y^2}$ , la ecuación r=a, donde a es una constante positiva, representa la circunferencia de radio a y centro en el origen,  $x^2+y^2=a$ . En consecuencia,  $a\leq r\leq b$ , con 0< a< b, corresponde a la región anular en el plano que se encuentra entre las circunferencias de radio a y radio b (ver Figura 6c).

# Definición (Región polar)

Sean a,b números reales positivos con a < b y  $\alpha,\beta$ , con  $0 \le \beta - \alpha \le 2\pi$ . Tomando  $x = r\cos\theta$ ,  $y = r\sin\theta$ , una **región polar** D es aquella que podemos escribir en coordenadas polares como

$$D = \{(r, \theta) : a \le r \le b, \alpha \le \theta \le \beta\}.$$



# Corolario (Integrales dobles con coordenadas polares)

Si f es una función continua en una región polar  $D = \{(r, \theta) : a \le r \le b, \alpha \le \theta \le \beta\}$ , donde  $x = r \cos \theta, y = r \sin \theta$ , entonces

$$\iint_D f(x,y)dA = \int_a^b \int_\alpha^\beta r f(r\cos\theta,r\sin\theta)d\theta dr = \int_\alpha^\beta \int_a^b r f(r\cos\theta,r\sin\theta)dr d\theta.$$

# Ejemplo (10.5.4)

Calcule el volumen del sólido S limitado por los cilindros  $x^2 + y^2 = 1$ ,  $x^2 + y^2 = 4$  y los planos  $z = 0, z = \frac{x}{5} + \frac{y}{10} + 3.$ 







Figura 7: Sólido S

**Solución:** Las intersecciones de las superficies  $x^2+y^2=1,$   $x^2+y^2=4$  con el plano z=0 determinan la base del sólido. Así, la base de S es una región polar:  $1 \le x^2+y^2 \le 4$ . Tomando  $x=r\cos\theta,$   $y=r\sin\theta$ , tenemos que la base D del sólido es dada por

$$D = \{ (r, \theta) : 1 \le r \le 2, 0 \le \theta \le 2\pi \}.$$

Sea  $f(x,y) = \frac{x}{5} + \frac{y}{10} + 3$ . Entonces

$$f(r\cos\theta, r\sin\theta) = \frac{r}{5}\cos\theta + \frac{r}{10}\sin\theta + 3.$$

Luego

$$V(S) = \iint_D f(x,y)dA = \int_1^2 \int_0^{2\pi} r f(r\cos\theta, r\sin\theta)d\theta dr$$

$$= \int_1^2 \int_0^{2\pi} r \left[ \frac{r}{5}\cos\theta + \frac{r}{10}\sin\theta + 3 \right] d\theta dr$$

$$= \int_1^2 \int_0^{2\pi} \left[ \frac{r^2}{5}\cos\theta + \frac{r^2}{10}\sin\theta + 3r \right] d\theta dr$$

$$= \int_1^2 \left[ \frac{r^2}{5}\sin\theta - \frac{r^2}{10}\cos\theta + 3r\theta \right]_0^{2\pi} dr = \int_1^2 6\pi r dr = 3\pi r^2 |_1^2 = 9\pi.$$

# Ejemplo (10.5.5)

Calcule el volumen del sólido S limitado por el paraboloide  $z = \frac{x^2}{16} + \frac{y^2}{16}$  y el plano z = 7.





Figura 8

**Solución:** La intersección del plano z=7 y el paraboloide  $z=\frac{x^2}{16}+\frac{y^2}{16}$  es la circunferencia de ecuación  $\frac{x^2}{16}+\frac{y^2}{16}=7$ , o bien,  $x^2+y^2\leq 112$ , en el plano z=7. Por lo tanto, la proyección del sólido S en el plano xy (considerando esta como subconjunto de  $\mathbb{R}^2$ ) es

$$D = \{(x,y) : x^2 + y^2 \le 112\} = \{(r,\theta) : 0 \le \theta \le 2\pi, 0 \le r \le \sqrt{112} = 4\sqrt{7}\},$$

donde  $x = r \cos \theta$ ,  $y = r \sin \theta$ . Tenemos que el volumen de S es dado por

$$V(S) = \iint_D \left[ 7 - \left( \frac{x^2}{16} + \frac{y^2}{16} \right) \right] dA = \int_0^{2\pi} \int_0^{4\sqrt{7}} r \left[ 7 - \left( \frac{(r\cos\theta)^2}{16} + \frac{(r\sin\theta)^2}{16} \right) \right] dr d\theta$$

$$= \int_0^{2\pi} \int_0^{4\sqrt{7}} r \left[ 7 - \frac{r^2}{16} \right] dr d\theta = \int_0^{2\pi} \int_0^{4\sqrt{7}} \left[ 7r - \frac{r^3}{16} \right] dr d\theta$$

$$= \int_0^{2\pi} \left[ \frac{7}{2} r^2 - \frac{r^4}{64} \right]_0^{4\sqrt{7}} d\theta = \int_0^{2\pi} \left[ \frac{7}{2} (4\sqrt{7})^2 - \frac{(4\sqrt{7})^4}{64} \right] d\theta$$

$$= \int_0^{2\pi} [392 - 196] d\theta = \int_0^{2\pi} 196 d\theta = 392\pi.$$

View publication stats 19 / 1