ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ		
доцент, канд. техн. наук		Н. В. Соловьёв
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1		
РАЗРАБОТКА WINDOWS-ПРИЛОЖЕНИЯ		
по курсу: ЦИФРОВАЯ ОБРАБОТКА ИЗОБРАЖЕНИЯ		
РАБОТУ ВЫПОЛНИЛ		

подпись, дата

С. Л. Прокопьева инициалы, фамилия

4843

СТУДЕНТ ГР. №

1. Индивидуальное задание

Локальное увеличение контрастности эквализацией гистограммы яркости.

2. Теоретические положения

Локальное увеличение контрастности фрагмента изображения можно яркости некоторой получить, используя гистограмму окрестности преобразуемого пикселя (локальную гистограмму). После локальной гистограммы, выполняется требуемое преобразование шкалы яркости, например, эквализация согласно (3.8), и по его результату определяется яркость центрального пикселя окрестности. Далее центр окрестности смещается на следующий пиксель и процедура повторяется. В данном случае на каждом шаге не требуется заполнять массив соответствия яркостей, т.к. необходимо найти только один элемент этого массива, соответствующий яркости преобразуемого пикселя.

Увеличение различимости фрагментов изображения можно получить и путем эквализации или выравнивания гистограммы, т.е. такого преобразования шкалы яркости, при котором гистограмма результирующего изображения будет приближаться по форме к равномерной. Метод основан на предположении, что наибольшая контрастность достигается на изображении, гистограмма которого представляет равномерное распределение пикселей по яркостям на всем диапазоне (0 ... 255). Преобразование шкалы яркости имеет вид

$$z_i' = z_m \sum_{k=0}^i p(z_k),$$

где z'i — значение элемента преобразованной шкалы яркости, соответствующее іой яркости исходной шкалы, p(zk) — нормализованная гистограмма яркости исходного изображения ($i = 0 \dots 255$).

3. Процесс выполнения работы

Язык разработки – python, фреймворк – Qt, версия – 6.2.3

Фреймворк Qt позволяет создавать десктоп-приложения, используя готовые модули для отображения объектов в окне программы.

Программа осуществляет поиск по названию среди изображений, доступных для просмотра. По нажатию кнопки система начинает процесс обработки изображения. После всех математических вычислений приложение выводит обработанное изображение в python-окне.

- 1. Вычисляется гистограмма исходного изображения
- 2. Гистограмма исходного изображения нормализуется
- 3. Вычисляется кумулятивная гистограмма
- 4. Вычисляется новое значение яркости

Был использован специальный модуль opency для того, чтобы упростить задачу загрузки изображения в память в виде массива, вывода изображения на экран и сохранения получившегося изображения в виде файла формата .jpg

Код программы и результат выполнения представлены ниже.

4. Код программы

```
import cv2
from PyQt6.QtWidgets import QApplication, QMainWindow, QPushButton,
QLabel, QLineEdit, QVBoxLayout, QWidget
import matplotlib.pyplot as plt

# Загрузка изображения
image = cv2.imread('roses.jpeg', cv2.IMREAD_GRAYSCALE)
res_image = image.copy()
image_pixels = res_image.shape[0] * res_image.shape[1]

# Создание графика
figure = plt.figure(figsize=(6, 4))
ax = figure.add_subplot()
hist_cumulative = hist = ax.hist(res_image.ravel(), 256)
hist_data = [i for i in hist[0]]
hist_data_len = len(hist_data)

# Нормализация гистограммы
for i in range(hist_data_len):
    hist[0][i] = int(hist_data[i]) / image_pixels

# Вычисление кумулятивной гистограммы
for i in range(1, hist_data_len):
```

```
for i in range(res image.shape[0]):
   for j in range(res image.shape[1]):
       self.setWindowTitle("Matrix 3x3 income/result")
       self.label = QLabel()
```

```
app = QApplication(sys.argv)

# Создаём виджет Qt - окно
window = MainWindow()
window.show()

# Цикл событий
app.exec()
```

5. Результаты выполнения программы

Рисунок 2 – графический интерфейс для работы с приложением

Рисунок 2 – исходное изображение 1

Рисунок 3 – гистограмма исходного изображения 1

Рисунок 4 – обработанное изображение 1

Рисунок 4 – гистограмма обработанного изображения 1

Рисунок 5 –исходное изображение 2

Рисунок 6 – гистограмма исходного изображения 2

Рисунок 7 – обработанное изображение 2

Рисунок 8 – гистограмма обработанного изображения 2

6. Вывод

Выполнена лабораторная работа "Разработка Windows-приложения", получены навыки локального повышения контрастности эквализацией гистограммы.