# Diszkrét matematika I. középszint

10. előadás

Mérai László diái alapján

Komputeralgebra Tanszék

2014. ősz

Szakirányválasztó fórum december 4-én. Jelentkezés november 26-ig: http://goo.gl/forms/dYIHA8SQOZ

Bővebb információ: http://compalg.inf.elte.hu/ $\sim$ nagy

# Lineáris diofantikus egyenletek

Diofantikus egyenletek: egyenletek egész megoldásait keressük.

Lineáris diofantikus egyenletek: ax + by = c, ahol a, b, c egészek.

Ez ekvivalens az  $ax \equiv c \pmod{b}$ ,  $by \equiv c \pmod{a}$  kongruenciákkal.

Az ax + by = c pontosan akkor oldható meg, ha  $(a, b) \mid c$ , és ekkor a megoldások megkaphatók a bővített euklideszi algoritmussal.

További diofantikus egyenletek:

$$x^2 + y^2 = -4$$
: nincs valós megoldás.

 $x^2 - 4y^2 = 3$ : nincs megoldás, u.i. 4-gyel való osztási maradékok:

 $x^2 \equiv 3 \pmod{4}$ . De ez nem lehet, a négyzetszám maradéka 0 vagy 1:

| X          | $x^2 \mod 4$ |
|------------|--------------|
| 4 <i>k</i> | 0            |
| 4k + 1     | 1            |
| 4k + 2     | 0            |
| 4k + 3     | 1            |

Szeretnénk olyan x egészet, mely egyszerre elégíti ki a következő kongruenciákat:

$$2x \equiv 1 \pmod{3}$$
$$4x \equiv 3 \pmod{5}$$

A kongruenciákat külön megoldva:

$$x \equiv 2 \pmod{3}$$
$$x \equiv 2 \pmod{5}$$

Látszik, hogy x = 2 megoldás lesz!

Vannak-e más megoldások?

- 2, 17, 32,..., $2 + 15\ell$ ;
- további megoldások?
- hogyan oldjuk meg az általános esetben:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

Feladat: Oldjuk meg a következő kongruenciarendszert:

$$\left. \begin{array}{l} a_1x \equiv b_1 \; (\operatorname{mod} m_1) \\ a_2x \equiv b_2 \; (\operatorname{mod} m_2) \\ \vdots \\ a_nx \equiv b_n \; (\operatorname{mod} m_n) \end{array} \right\}$$

Az egyes  $a_i x \equiv b_i \pmod{m_i}$  lineáris kongruenciák külön megoldhatóak:

$$\left. \begin{array}{l} x \equiv c_1 \; (\operatorname{\mathsf{mod}} m_1) \\ x \equiv c_2 \; (\operatorname{\mathsf{mod}} m_2) \\ \vdots \\ x \equiv c_n \; (\operatorname{\mathsf{mod}} m_n) \end{array} \right\}$$

Feladat: Oldjuk meg a következő kongruenciarendszert:

$$egin{array}{l} x \equiv c_1 \pmod{m_1} \ x \equiv c_2 \pmod{m_2} \ dots \ x \equiv c_n \pmod{m_n} \end{array} 
ight\}$$

Feltehető, hogy az  $m_1, m_2, \ldots, m_n$  modulusok relatív prímek: ha pl.  $m_1 = m_1'd$ ,  $m_2 = m_2'd$ , akkor az első két sor helyettesíthető (biz.: később)

$$x \equiv c_1 \pmod{m'_1}$$

$$x \equiv c_1 \pmod{d}$$

$$x \equiv c_2 \pmod{m'_2}$$

$$x \equiv c_2 \pmod{d}$$

Ha itt  $c_1 \not\equiv c_2 \pmod{d}$ , akkor nincs megoldás, különben az egyik sor törölhető.

## Kínai maradéktétel

## Tétel

Legyenek  $1 < m_1, m_2, \ldots, m_n$  relatív prím számok,  $c_1, c_2, \ldots, c_n$  egészek. Ekkor az

$$x \equiv c_1 \pmod{m_1}$$

$$x \equiv c_2 \pmod{m_2}$$

$$\vdots$$

$$x \equiv c_n \pmod{m_n}$$

kongruenciarendszer megoldható, és bármely két megoldás kongruens egymással modulo  $m_1 \cdot m_2 \cdots m_n$ .

## Kínai maradéktétel

 $x \equiv c_1 \pmod{m_1}$ ,  $x \equiv c_2 \pmod{m_2}$ , ...,  $x \equiv c_n \pmod{m_n}$ . x = ?

## Bizonyítás

A bizonyítás konstruktív!

Legyen  $m=m_1m_2$ . A bővített euklideszi algoritmussal oldjuk meg az  $m_1x_1+m_2x_2=1$  egyenletet. Legyen  $c_{1,2}=m_1x_1c_2+m_2x_2c_1$ . Ekkor  $c_{1,2}\equiv c_j\pmod{m_j}$  (j=1,2). Ha  $x\equiv c_{1,2}\pmod{m}$ , akkor x megoldása az első két kongruenciának. Megfordítva: ha x megoldása az első két kongruenciának, akkor  $x-c_{1,2}$  osztható  $m_1$ -gyel,  $m_2$ -vel, így a szorzatukkal is:  $x\equiv c_{1,2}\pmod{m}$ . Az eredeti kongruenciarendszer ekvivalens az

$$egin{aligned} x &\equiv c_{1,2} \ (\operatorname{\mathsf{mod}} m_1 m_2) \ x &\equiv c_3 \ (\operatorname{\mathsf{mod}} m_3) \ dots \ x &\equiv c_n \ (\operatorname{\mathsf{mod}} m_n) \end{aligned}$$

kongruenciarendszerrel. *n* szerinti indukcióval adódik az állítás.

#### Példa

$$x\equiv 2 \pmod{3}$$
$$x\equiv 3 \pmod{5}$$

Oldjuk meg az  $3x_1 + 5x_2 = 1$  egyenletet!

Megoldások:  $x_1 = -3$ ,  $x_2 = 2$ .  $\Rightarrow$ 

$$\Rightarrow$$
  $c_{1,2} = 3 \cdot (-3) \cdot 3 + 5 \cdot 2 \cdot 2 = -27 + 20 = -7.$ 

Összes megoldás:  $\{-7+15\ell:\ \ell\in\mathbb{Z}\}=\{8+15\ell:\ \ell\in\mathbb{Z}\}.$ 

#### Példa

$$\begin{array}{c} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{7} \end{array} \right\} \quad \stackrel{c_{1,2}=8}{\Longrightarrow} \quad \begin{array}{c} x \equiv 8 \pmod{15} \\ x \equiv 4 \pmod{7} \end{array} \right\}$$

Oldjuk meg a  $15x_{1.2} + 7x_3 = 1$  egyenletet!

Megoldások: 
$$x_{1,2} = 1$$
,  $x_3 = -2$ .  $\Rightarrow$ 

$$\Rightarrow c_{1,2,3} = 15 \cdot 1 \cdot 4 + 7 \cdot (-2) \cdot 8 = 60 - 112 = -52.$$

Összes megoldás:  $\{-52+105\ell:\ \ell\in\mathbb{Z}\}=\{53+105\ell:\ \ell\in\mathbb{Z}\}.$ 



Sokszor egy adott probléma megoldása nem egy konkrét szám (számok családja), hanem egy egész halmaz (halmazok családja):

```
• 2x \equiv 5 \pmod{7}, megoldások: \{6 + 7\ell : \ell \in \mathbb{Z}\}
• 10x \equiv 8 \pmod{22}, megoldások: \{14 + 22\ell : \ell \in \mathbb{Z}\},
                                                    {3+22\ell: \ell \in \mathbb{Z}}.
```

#### Definíció

Egy rögzített m modulus és a egész esetén, az a-val kongruens elemek halmazát az a által reprezentált maradékosztálynak nevezzük:

$$\overline{a} = \{x \in \mathbb{Z} : x \equiv a \pmod{m}\} = \{a + \ell m : \ell \in \mathbb{Z}\}.$$

#### Példa

A  $2x \equiv 5 \pmod{7}$  megoldása:  $\overline{6}$ A  $10x \equiv 8 \pmod{22}$ , megoldásai:  $\overline{14}$ ,  $\overline{3}$ .  $m = 7 \text{ modulussal } \overline{2} = \overline{23} = \{..., -5, 2, 9, 16, 23, 30, ...\}$ 

**Általában:**  $\overline{a} = \overline{b} \Leftrightarrow a \equiv b \pmod{m}$ .

#### Definíció

Egy rögzített m modulus esetén, ha minden maradékosztályból pontosan egy elemet kiveszünk, akkor az így kapott számok teljes maradékrendszert alkotnak modulo m.

#### Példa

 $\{33, -5, 11, -11, -8\}$  teljes maradékrendszer modulo 5.

Gyakori választás teljes maradékrendszerekre

- Legkisebb nemnegatív maradékok:  $\{0, 1, \dots, m-1\}$ ;
- Legkisebb abszolút értékű maradékok:

$$\begin{array}{l} \left\{0,\pm 1,\ldots,\pm \frac{m-1}{2}\right\}, \text{ ha } 2 \nmid m; \\ \left\{0,\pm 1,\ldots,\pm \frac{m-2}{2},\frac{m}{2}\right\}, \text{ ha } 2 \mid m. \end{array}$$

**Megjegyzés:** ha egy maradékosztály valamely eleme relatív prím a modulushoz, akkor az összes eleme az:  $(a + \ell m, m) = (a, m) = 1$ . Ezeket a maradékosztályokat redukált maradékosztályoknak nevezzük.

## Definíció

Egy rögzített m modulus esetén, ha mindazon maradékosztályból, melyek elemei relatív prímek a modulushoz kiveszünk pontosan egy elemet, akkor az így kapott számok redukált maradékrendszert alkotnak modulo m.

#### Példa

- {1, 2, 3, 4} redukált maradékrendszer modulo 5.
- $\{1, -1\}$  redukált maradékrendszer modulo 3.
- $\{1, 19, 29, 7\}$  redukált maradékrendszer modulo 8.
- $\{0, 1, 2, 3, 4\}$  nem redukált maradékrendszer modulo 5.

A maradékosztályok között természetes módon műveleteket definiálhatunk:

#### Definíció

Rögzített m modulus, és a, b egészek esetén legyen:

$$\overline{a} + \overline{b} \stackrel{\text{def}}{=} \overline{a + b}; \qquad \overline{a} \cdot \overline{b} \stackrel{\text{def}}{=} \overline{a \cdot b}.$$

## Állítás

Ez értelmes definíció, azaz ,ha  $\overline{a}=\overline{a^*}$ ,  $\overline{b}=\overline{b^*}$ , akkor  $\overline{a}+\overline{b}=\overline{a^*}+\overline{b^*}$ , illetve  $\overline{a}\cdot\overline{b}=\overline{a^*}\cdot\overline{b^*}$ .

## Bizonyítás

Mivel  $\overline{a} = \overline{a^*}$ ,  $\overline{b} = \overline{b^*} \Rightarrow a \equiv a^* \pmod{m}$ ,  $\underline{b} \equiv \underline{b^*} \pmod{m} \Rightarrow a + b \equiv a^* + b^* \pmod{m} \Rightarrow \overline{a + b} = \overline{a^* + b^*} \Rightarrow \overline{a} + \overline{b} = \overline{a^*} + \overline{b^*}$ . Szorzás hasonlóan.

14.

# Maradékosztályok

A maradékosztályok között természetes módon műveleteket definiálhatunk:  $\overline{a} + \overline{b} = \overline{a+b}$ ;  $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$ .

## Definíció

Rögzített m modulus esetén legyen  $\mathbb{Z}_m$  a maradékosztályok halmaza. Ekkor a halmaz elemei között definiálhatunk összeadást, illetve szorzást.

## Példa

$$\mathbb{Z}_3=\{\overline{0},\overline{1},\overline{2}\}.$$

| + | 0 | 1 | 2 |
|---|---|---|---|
| 0 | Ō | 1 | 2 |
| 1 | 1 | 2 | ō |
| 2 | 2 | ō | 1 |

$$\begin{array}{c|ccccc} \cdot & \overline{0} & \overline{1} & \overline{2} \\ \hline \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \hline \overline{1} & \overline{0} & \overline{1} & \overline{2} \\ \hline \overline{2} & \overline{0} & \overline{2} & \overline{1} \\ \end{array}$$

$$\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$$

| + | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | Ō | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | Ō |
| 2 | 2 | 3 | ō | 1 |
| 3 | 3 | Ō | 1 | 2 |

|   | 0 | 1 | 2 | 3  |
|---|---|---|---|----|
| 0 | Ō | Ō | Ō | Ō  |
| 1 | Ō | 1 | 2 | 3  |
| 2 | ō | 2 | Ō | 2  |
| 3 | ō | 3 | 2 | _1 |

#### Tétel

Legyen m > 1 egész. Ha 1 < (a, m) < m, akkor  $\overline{a}$  nullosztó  $\mathbb{Z}_m$ -ben:  $\overline{a}$ -hoz van olyan  $\overline{b}$ , hogy  $\overline{a} \cdot \overline{b} = \overline{0}$ 

Ha (a, m) = 1, akkor  $\overline{a}$ -nak van reciproka (multiplikatív inverze)  $\mathbb{Z}_m$ -ben:  $\overline{a}$ -hoz van olyan  $\overline{x}$ , hogy  $\overline{a} \cdot \overline{x} = \overline{1}$ .

Speciálisan, ha *m* prím, minden nem-nulla maradékosztállyal lehet osztani.

#### Példa

Legyen 
$$m=9$$
.  $\overline{6}\cdot\overline{3}=\overline{18}=\overline{0}$ . 
$$(2,9)=1, \text{ fgy } \overline{2}\cdot\overline{5}=\overline{10}=\overline{1}.$$

## Bizonyítás

Legyen d=(a,m). Ekkor  $a\cdot \frac{m}{d}=\frac{a}{d}\cdot m\equiv 0\ (\bmod m)$ , ahonnan b=m/d jelöléssel  $\overline{a}\cdot \overline{b}=\overline{0}$ .

Ha (a, m) = 1, akkor a bővített euklideszi algoritmussal megadhatóak x, y egészek, hogy ax + my = 1. Ekkor  $ax \equiv 1 \pmod{m}$  azaz  $\overline{a} \cdot \overline{x} = \overline{1}$ .

# Euler-féle $\varphi$ függvény

#### Definíció

Egy m > 0 egész szám esetén legyen  $\varphi(m)$  az m-nél kisebb, hozzá relatív prím pozitív egészek száma:  $\varphi(m) = |\{i : 0 < i < m, (m, i) = 1\}|.$ 

### Példa

 $\varphi(5) = 4$ : 5-höz relatív prím pozitív egészek 1, 2, 3, 4;

 $\varphi(6) = 2$ : 6-hoz relatív prím pozitív egészek 1, 5;

 $\varphi(12) = 4$ : 12-höz relatív prím pozitív egészek 1, 5, 7, 11;

 $\varphi(15) = 8$ : 15-höz relatív prím pozitív egészek 1, 2, 4, 7, 8, 11, 13, 14.

**Megjegyzés:**  $\varphi(m)$  a redukált maradékosztályok száma modulo m.

# Euler-féle $\varphi$ függvény

$$\varphi(m) = |\{i: 0 < i < m, (m, i) = 1\}|$$

## Tétel (NB)

Legyen m kanonikus alakja  $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$ . Ekkor  $\varphi(m)=m\cdot\prod_{i=1}^\ell\left(1-\frac{1}{p_i}\right)=\prod_{i=1}^\ell(p_i^{\alpha_i}-p_i^{\alpha_i-1}).$ 

#### Példa

$$\begin{array}{l} \varphi(5)=5\left(1-\frac{1}{5}\right)=5^{1}-5^{0}=4;\\ \varphi(6)=6\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=(2^{1}-2^{0})(3^{1}-3^{0})=2;\\ \varphi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=(2^{2}-2^{1})(3^{1}-3^{0})=4;\\ \varphi(15)=15\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=(3^{1}-3^{0})(5^{1}-5^{0})=8. \end{array}$$

## Euler-Fermat tétel

#### Tétel

Legyen m>1 egész szám, a olyan egész, melyre (a,m)=1. Ekkor  $a^{\varphi(m)}\equiv 1 \; (\bmod{\,m}).$ 

## Következmény (Fermat tétel)

Legyen p prímszám,  $p \nmid a$ . Ekkor  $a^{p-1} \equiv 1 \pmod{p}$ , illetve tetszőleges a esetén  $a^p \equiv a \pmod{p}$ .

#### Példa

$$arphi(6) = 2 \Rightarrow 5^2 = 25 \equiv 1 \pmod{6};$$
  $arphi(12) = 4 \Rightarrow 5^4 = 625 \equiv 1 \pmod{12}; \ 7^4 = 2401 \equiv 1 \pmod{12}.$ 

Figyelem!  $2^4 = 16 \equiv 4 \not\equiv 1 \pmod{12}$ , mert  $(2, 12) = 2 \not\equiv 1$ .

19.

## Euler-Fermat tétel bizonyítása

#### Lemma

Legyen m>1 egész,  $a_1,\ a_2,\ \ldots,\ a_m$  teljes maradékrendszer modulo m. Ekkor minden a,b egészre, melyre  $(a,m)=1,\ a\cdot a_1+b,\ a\cdot a_2+b,\ldots,\ a\cdot a_m+b$  szintén teljes maradékrendszer. Továbbá, ha  $a_1,\ a_2,\ \ldots,\ a_{\varphi(m)}$  redukált maradékrendszer modulo m, akkor  $a\cdot a_1,\ a\cdot a_2,\ldots,\ a\cdot a_{\varphi(m)}$  szintén redukált maradékrendszer.

## Bizonyítás

Tudjuk, hogy  $aa_i + b \equiv aa_j + b \pmod{m} \Leftrightarrow aa_i \equiv aa_j \pmod{m}$ . Mivel (a,m)=1, egyszerűsíthetünk a-val:  $a_i \equiv a_j \pmod{m}$ . Tehát  $a \cdot a_1 + b$ ,  $a \cdot a_2 + b$ ,...,  $a \cdot a_m + b$  páronként inkongruensek. Mivel számuk m, így teljes maradékrendszert alkotnak.

 $(a_i,m)=1 \wedge (a,m)=1 \Rightarrow (a \cdot a_i,m)=1$ . Továbbá  $a \cdot a_1, \ a \cdot a_2,\ldots, \ a \cdot a_{\varphi(m)}$  páronként inkongruensek, számuk  $\varphi(m) \Leftrightarrow$  redukált maradékrendszert alkotnak.

## Euler-Fermat tétel bizonyítása

**Tétel** (Euler-Fermat)  $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$ .

## Bizonyítás

Legyen  $a_1$ ,  $a_2$ , ...,  $a_{\varphi(m)}$  egy redukált maradékrendszer modulo m. Mivel  $(a,m)=1\Rightarrow a\cdot a_1$ ,  $a\cdot a_2$ ,...,  $a\cdot a_{\varphi(m)}$  szintén redukált maradékrendszer.

Innen

$$a^{\varphi(m)}\prod_{j=1}^{\varphi(m)}a_j=\prod_{j=1}^{\varphi(m)}a\cdot a_j\equiv\prod_{j=1}^{\varphi(m)}a_j\ (\operatorname{mod} m).$$

 $\varphi(m)$ 

Mivel  $\prod a_j$  relatív prím m-hez, így egyszerűsíthetünk vele:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.



## Euler-Fermat tétel

**Tétel** (Euler-Fermat) 
$$(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$$

Példa

Mi lesz a 3<sup>111</sup> utolsó számjegye tizes számrendszerben?

Mi lesz 3<sup>111</sup> mod 10?

$$\varphi(10) = 4 \Rightarrow$$

$$3^{111} = 3^{4 \cdot 27 + 3} = (3^4)^{27} \cdot 3^3 \equiv 1^{27} \cdot 3^3 = 3^3 = 27 \equiv 7 \pmod{10}$$

Oldjuk meg a  $2x \equiv 5 \pmod{7}$  kongruenciát!

 $\varphi(7)=6$ . Szorozzuk be mindkét oldalt 2<sup>5</sup>-nel. Ekkor

$$5 \cdot 2^5 \equiv 2^6 x \equiv x \pmod{7}$$
. És itt  $5 \cdot 2^5 = 5 \cdot 32 \equiv 5 \cdot 4 = 20 \equiv 6 \pmod{7}$ .

Oldjuk meg a  $23x \equiv 4 \pmod{211}$  kongruenciát!

 $\varphi(211)=210$ . Szorozzuk be mindkét oldalt  $23^{209}$ -nel. Ekkor

$$4 \cdot 23^{209} \equiv 23^{210} x \equiv x \pmod{211}$$
. És itt  $4 \cdot 23^{209} \equiv \dots \pmod{211}$ .

# Gyors hatványozás

Legyenek m, a, n pozitív egészek, m > 1. Szeretnénk kiszámolni a<sup>n</sup> mod m maradékot hatékonyan.

Ábrázoljuk *n*-et 2-es számrendszerben:

$$n = \sum_{i=0}^{\kappa} \varepsilon_i 2^i = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_1 \varepsilon_0)_{(2)}, \text{ ahol } \varepsilon_0, \varepsilon_1, \dots, \varepsilon_k \in \{0, 1\}.$$

Legyen  $n_i$  ( $0 \le i \le k$ ) az első i + 1 jegy által meghatározott szám:

$$n_j = \lfloor n/2^{k-j} \rfloor = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_{k-j})_{(2)}$$

Ekkor meghatározzuk minden *j*-re az  $x_i \equiv a^{n_j} \pmod{m}$  maradékot:  $n_0 = \varepsilon_k = 1$ .  $x_0 = a$ .

$$n_i = 2 \cdot n_{i-1} + \varepsilon_{k-i} \Rightarrow$$

$$x_j = a^{\varepsilon_{k-j}} x_{j-1}^2 \bmod m = \left\{ \begin{array}{ll} x_{j-1}^2 \bmod m, & \text{ha } \varepsilon_{k-j} = 0 \\ a x_{j-1}^2 \bmod m, & \text{ha } \varepsilon_{k-j} = 1 \end{array} \right. \Rightarrow$$

 $x_k = a^n \mod m$ .

Az algoritmus helyessége az alábbi formulábol következik (Biz.: HF):

$$a^{n} = a^{\sum_{i=0}^{k} \varepsilon_{i} 2^{i}} = \prod_{i=0}^{k} \left(a^{2^{i}}\right)^{\varepsilon_{i}}$$

# Gyors hatványozás

Példa

Mi lesz  $3^{111} \mod 10$ ? (Euler-Fermat  $\Rightarrow 7$ )

$$111_{(10)} = 1101111_{(2)}$$
 itt  $k = 6$ ,  $a = 3$ ,  $m = 10$ .

| j | $n_j$   | $x_j = a^{\varepsilon_{k-j}} \cdot x_{j-1}^2$ | <i>x<sub>j</sub></i> mod 10 |
|---|---------|-----------------------------------------------|-----------------------------|
| 0 | 1       | _                                             | 3                           |
| 1 | 11      | $x_1 = 3 \cdot 3^2$                           | 7                           |
| 2 | 110     | $x_2 = 7^2$                                   | 9                           |
| 3 | 1101    | $x_3 = 3 \cdot 9^2$                           | 3                           |
| 4 | 11011   | $x_4 = 3 \cdot 3^2$                           | 7                           |
| 5 | 110111  | $x_5 = 3 \cdot 7^2$                           | 7                           |
| 6 | 1101111 | $x_6 = 3 \cdot 7^2$                           | 7                           |

# Gyors hatványozás

Példa

Oldjuk meg a  $23x \equiv 4 \pmod{211}$  kongruenciát! Euler-Fermat  $\Rightarrow x \equiv 4 \cdot 23^{209} \equiv \dots \pmod{211}$ .

Mi lesz 23<sup>209</sup> mod 211?  $209_{(10)} = 11010001_{(2)}$  itt k = 7, a = 23.

| j | n <sub>j</sub> | $x_j = a^{\varepsilon_{k-j}} \cdot x_{j-1}^2$ | <i>x<sub>j</sub></i> mod 211 |
|---|----------------|-----------------------------------------------|------------------------------|
| 0 | 1              | _                                             | 23                           |
| 1 | 11             | $x_1 = 23 \cdot 23^2$                         | 140                          |
| 2 | 110            | $x_2 = 140^2$                                 | 188                          |
| 3 | 1101           | $x_3 = 23 \cdot 188^2$                        | 140                          |
| 4 | 11010          | $x_4 = 140^2$                                 | 188                          |
| 5 | 110100         | $x_5 = 188^2$                                 | 107                          |
| 6 | 1101000        | $x_6 = 107^2$                                 | 55                           |
| 7 | 11010001       | $x_6 = 23 \cdot 55^2$                         | 156                          |

 $x \equiv 4 \cdot 23^{209} \equiv 4 \cdot 156 \equiv 202 \pmod{211}$ .

