Chapter 7 outline

Introduction

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

4G/5G cellular networks

- the solution for wide-area mobile Internet
- widespread deployment/use:
 - more mobile-broadband-connected devices than fixedbroadband-connected devices devices (5-1 in 2019)!
 - 4G availability: 97% of time in Korea (90% in US)
- transmission rates up to 100's Mbps
- technical standards: 3rd Generation Partnership Project (3GPP)
 - wwww.3gpp.org
 - 4G: Long-Term Evolution (LTE)standard

4G/5G cellular networks

similarities to wired Internet

- edge/core distinction, but both below to same carrier
- global cellular network: a network of networks
- widespread use of protocols we've studied: HTTP, DNS, TCP, UDP, IP, NAT, separation of data/control planes, SDN, Ethernet, tunneling
- interconnected to wired Internet

differences from wired Internet

- different wireless link layer
- mobility as a 1st class service
- user "identity" (via SIM card)
- business model: users subscribe to a cellular provider
 - strong notion of "home network" versus roaming on visited nets
 - global access, with authentication infrastructure, and inter-carrier settlements

Mobile device:

- smartphone, tablet, laptop, IoT, ... with 4G LTE radio
- 64-bit International Mobile Subscriber Identity (IMSI), stored on SIM (Subscriber Identity Module) card
- LTE jargon: User Equipment (UE)

Base station: <

- at "edge" of carrier's network
- manages wireless radio resources, mobile devices in its coverage area ("cell")
- coordinates device authentication with other elements
- similar to WiFi AP but:
 - active role in user mobility
 - coordinates with nearly base stations to optimize radio use
- LTE jargon: eNode-B

Home Subscriber Service

- stores info about mobile devices for which the HSS's network is their "home network"
- works with MME in device authentication

Serving Gateway (S-GW), PDN Gateway (P-GW)

lie on data path from mobile Mobile device to/from Internet

- P-GW
 - gateway to mobile cellular network
 - Looks like any other internet gateway router
 - provides NAT services
- other routers:
 - extensive use of tunneling

Mobility Management Entity_____

 device authentication (device-to-network, network-to-device) coordinated with mobile home network HSS

mobile device management:

device handover between cells

tracking/paging device location

 path (tunneling) setup from mobile device to P-GW

LTE: data plane control plane separation

control plane

 new protocols for mobility management, security, authentication (later)

data plane

- new protocols at link, physical layers
- extensive use of tunneling to facilitate mobility

LTE: data plane control plane separation

control plane

 new protocols for mobility management, security, authentication (later)

data plane

- new protocols at link, physical layers
- extensive use of tunneling to facilitate mobility

LTE data plane protocol stack: first hop

LTE data plane protocol stack: first hop

LTE radio access network:

- downstream channel: FDM, TDM within frequency channel (OFDM - orthogonal frequency division multiplexing)
 - "orthogonal": minimal interference between channels
 - upstream: FDM, TDM similar to OFDM
- each active mobile device allocated two or more 0.5 ms time slots over 12 frequencies
 - scheduling algorithm not standardized up to operator
 - 100's Mbps per device possible

LTE data plane protocol stack: packet core

tunneling:

- mobile datagram encapsulated using GPRS Tunneling Protocol (GTP), sent inside UDP datagram to S-GW
- S-GW re-tunnels datagrams to P-GW
- supporting mobility: only tunneling endpoints change when mobile user moves

LTE data plane: associating with a BS

- BS broadcasts primary synch signal every 5 ms on all frequencies
 - BSs from multiple carriers may be broadcasting synch signals
- (2) mobile finds a primary synch signal, then locates 2nd synch signal on this freq.
 - mobile then finds info broadcast by BS: channel bandwidth, configurations;
 BS's cellular carrier info
 - mobile may get info from multiple base stations, multiple cellular networks
- (3) mobile selects which BS to associate with (e.g., preference for home carrier)
- (4) more steps still needed to authenticate, establish state, set up data plane

LTE mobiles: sleep modes

as in WiFi, Bluetooth: LTE mobile may put radio to "sleep" to conserve battery:

- light sleep: after 100's msec of inactivity
 - wake up periodically (100's msec) to check for downstream transmissions
- deep sleep: after 5-10 secs of inactivity
 - mobile may change cells while deep sleeping need to reestablish association

Global cellular network: a network of IP networks

home network HSS:

 identify & services info, while in home network and roaming

all IP:

- carriers interconnect with each other, and public internet at exchange points
- legacy 2G, 3G: not all IP, handled otherwise

On to 5G!

- goal: 10x increase in peak bitrate, 10x decrease in latency, 100x increase in traffic capacity over 4G
- 5G NR (new radio):
 - two frequency bands: FR1 (450 MHz-6 GHz) and FR2 (24 GHz-52 GHz): millimeter wave frequencies
 - not backwards-compatible with 4G
 - MIMO: multiple directional antennae
- millimeter wave frequencies: much higher data rates, but over shorter distances
 - pico-cells: cells diameters: 10-100 m
 - massive, dense deployment of new base stations required

Chapter 7 outline

Introduction

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

What is mobility?

spectrum of mobility, from the network perspective: no mobility

high mobility device moves device moves device moves device moves among multiple within same AP among APs in between provider networks, one provider networks, but in while maintaining network powers down one provider ongoing connections while moving network We're interested in these!

Mobility approaches

- let network (routers) handle it:
 - routers advertise well-known name, address (e.g., permanent 32-bit IP address), or number (e.g., cell #) of visiting mobile node via usual routing table exchange
 - Internet routing could do this already with no changes! Routing tables indicate where each mobile located via longest prefix match!

Mobility approaches

- let network (routers) handle it:
 - routers advertise well-kr
 32-bit IP address), or not node via usual routing
 node via usual routing
 not scalable to billions of node
 - Internet routing could a mobiles day with no changes! Routing tables indicate where each me located via longest prefix match!
- let end-systems handle it: functionality at the "edge"
 - *indirect routing:* communication from correspondent to mobile goes through home network, then forwarded to remote mobile
 - direct routing: correspondent gets foreign address of mobile, send directly to mobile

Contacting a mobile friend:

Consider friend frequently changing locations, how do you find him/her?

- search all phone books?
- expect her to let you know where he/she is?
- call his/her parents?
- Facebook!

The importance of having a "home":

- a definitive source of information about you
- a place where people can find out where you are

Home network, visited network: 4G/5G

Home network, visited network: ISP/WiFi

"home" • credentials from ISP (e.g., username, password) stored on device or with user

- ISPs may have national, international presence
- different networks: different credentials
 - some exceptions (e.g., eduroam)
 - architectures exist (mobile IP) for 4G-like mobility, but not used

Home network, visited network: generic

Registration: home needs to know where you are!

end result:

- visited mobility manager knows about mobile
- home HSS knows location of mobile

Mobility with indirect routing

Mobility with indirect routing: comments

- triangle routing:
 - inefficient when correspondent and mobile are in same network

- mobile moves among visited networks: transparent to correspondent!
 - registers in new visited network
 - new visited network registers with home HSS
 - datagrams continue to be forwarded from home network to mobile in new network
 - on-going (e.g., TCP) connections between correspondent and mobile can be maintained!

Mobility with direct routing

Mobility with direct routing: comments

- overcomes triangle routing inefficiencies
- non-transparent to correspondent: correspondent must get care-of-address from home agent
- what if mobile changes visited network?
 - can be handled, but with additional complexity

Chapter 7 outline

Introduction

- Wireless links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

Mobility in 4G networks: major mobility tasks

1) base station association:

- covered earlier
- mobile provides IMSI identifying itself, home network
- (2) control-plane configuration:
 - MME, home HSS establish control-plane state - mobile is in visited network
- (3) data-plane configuration:
 - MME configures forwarding tunnels for mobile
 - visited, home network establish tunnels from home P-GW to mobile

4) mobile handover:

Streamin

g server

mobile device changes its point of attachment to visited network

Configuring LTE control-plane elements

- Mobile communicates with local MME via BS control-plane channel
- MME uses mobile's IMSI info to contact mobile's home HSS
 - retrieve authentication, encryption, network service information
 - home HHS knows mobile now resident in visited network
- BS, mobile select parameters for BS-mobile data-plane radio channel

Configuring data-plane tunnels for mobile

- S-GW to BS tunnel: when mobile changes base stations, simply change endpoint IP address of tunnel
- S-GW to home P-GW tunnel: implementation of indirect routing

tunneling via GTP (GPRS tunneling protocol): mobile's datagram to streaming server encapsulated using GTP inside UDP, inside datagram

Handover between BSs in same cellular network

- current (source) BS selects target BS, sends Handover Request message to target BS
- target BS pre-allocates radio time slots, responds with HR ACK with info for mobile
- 3 source BS informs mobile of new BS
 - mobile can now send via new BS handover looks complete to mobile
- source BS stops sending datagrams to mobile, instead forwards to new BS (who forwards to mobile over radio channel)

Handover between BSs in same cellular network

- target BS informs MME that it is new BS for mobile
 - MME instructs S-GW to change tunnel endpoint to be (new) target BS
- target BS ACKs back to source BS: handover complete, source BS can release resources
- mobile's datagrams now flow through new tunnel from target BS to S-GW

Mobile IP

- mobile IP architecture standardized ~20 years ago [RFC 5944]
 - long before ubiquitous smartphones, 4G support for Internet protocols
 - did not see wide deployment/use
 - perhaps WiFi for Internet, and 2G/3G phones for voice were "good enough" at the time
- mobile IP architecture:
 - indirect routing to node (via home network) using tunnels
 - mobile IP home agent: combined roles of 4G HSS and home P-GW
 - mobile IP foreign agent: combined roles of 4G MME and S-GW
 - protocols for agent discovery in visited network, registration of visited location in home network via ICMP extensions

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handover loss
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - delay impairments for real-time traffic
 - bandwidth a scare resource for wireless links

Chapter 7 summary

Wireless

- Wireless Links and network characteristics
- WiFi: 802.11 wireless LANs
- Cellular networks: 4G and 5G

Mobility

- Mobility management: principles
- Mobility management: practice
 - 4G/5G networks
 - Mobile IP
- Mobility: impact on higher-layer protocols

