Form 3: Methodology

1. Team No: 20

2. Project Title: Multi-Modal Assistive System for people with disabilities

3. Proposed Method:

SNO	Module	Proposed Method	
1	Sign language translation	Two-Stream Mixed Convolutional	
		Neural Network	
2	Visual Question Answering on	Multimodal Transformers	
	Images		
3	image-to-speech and speech-to-text	Optical Character Recognition	

4. Proposed Method illustration

- a. Sign language translation:
 - The methodology involves using a Two-Stream Mixed Convolutional Neural Network. Its architecture is detailed below.

Fig 1. The 2S-CNN structure.

- b. Visual Question Answering on images (Multimodal Transformers):
 - The methodology involves the following three phases
 - i. Featurization of Image and Question:

Model	Hugging Face Model Name	Description		Model	Hugging Face Model Name	Description
ViT	google/vit-base-patch16-224-in21k	Vision Transformer (first image transformer encoder, trained on ImageNet)	╟	BERT	bert-base-uncased	Bidirectional Encoder Representations from Transformers (basic BERT)
DeiT	facebook/deit-base-distilled-patch16-224	Data-Efficient Image Transformer (more efficiently trained transformers for image classification, requiring much less data and computing resources compared to ViT)		RoBERTa	roberta-base	Robustly Optimized BERT Pretraining Approach (builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with larger mini-batches and learning rates)
BEIT	microsoft/beit-base-patch16-224-pt22k-ft22k	Bidirectional Encoder representation from Image Transformers (regular vision transformer, but pre-trained in a self-supervised way rather than supervised)		ALBERT	albert-base-v2	A Lite BERT (consumes lower memory and increases training speed of BERT by splitting the embedding matrix into two smaller matrices and using repeating layers split among groups)

Fig 2. Pretrained image transformers for experimentation to provide visual features.

 $\textbf{Fig 3} \ \textbf{Pretrained text transformers for experimentation to provide textual features}.$

ii. Feature Fusion:

Fig 4. Types of multimodal data fusion

iii. Answer Generation:

answer generation involve a simple classifier for one-word/phrase answers within a fixed answer space.

c. OCR- powered image-to-speech and speech-to-text:

i. Image to text:

Fig 5. General Working of OCR

ii. Text to speech/ speech to text:

In order to implement this feature, we leverage existing speech recognition and text-to-speech engines through Python.

5. Parameter Formulas

- a. Sign language translation:
 - 1. The feature extraction in TSM is calculated with the following equation: $Ht = \sum_{j} \sum_{k} Wi[j,k]At[a-j,a-k]$
 - 2. The feature map Z in TSM is calculated with Equation:. $Z=Ht+Ht+1=\sum j\sum kWA[j,k]At[a-j,a-k]+WB[j,k]At+1[a-j,a-k]$
 - 3. The feature map *Y* in *TSM* is calculated with Equation (3): $Y = OutputTSM = \sum l = 1 c lZi \& \sum c lcHt$
- **b.** Visual Question Answering on Images:
 - 1. Learning rate decay: $\mathbf{w_i^{\wedge}(t+1)} \ \mathbf{w_i^{\wedge}(t)} \alpha^* \nabla L(\mathbf{w}) / \nabla \mathbf{w_i^{\wedge}(t)}$
 - 2. Adam optimizer: $\mathbf{w}_{t+1} = \mathbf{w}_{t} \alpha * \mathbf{m} t / (\sqrt{(\mathbf{v} t + \varepsilon))}$
- **c.** OCR- powered image-to-speech and speech-to-text:
 - 1. Kernel Function : $f(x) = sgn(X \mid i=1 \text{ } \alpha iyiK(xi, x) + b)$
 - 2. Finding the probability of nearest sample : $p(y|q) = P k \in K Wk .1(ky=y)/P k \in K Wk$

SUPERVISOR: TEAM DETAILS:

G.Kiran Kumar C.Chandhana 20eg105310

Assitant Professor K.Sri pavani 20eg105323

M. Vamshi Krishna 20eg105328

S.Jhansi 20eg105348