

14. Clustering: k-Means Clustering Algorithm

k-Means Clustering: Overview

Facts

It is a simple partition based clustering algorithm

It divides a number of data points into a number of clusters, with each cluster represented by a centroid

It has been proposed by MacQueen in 1967

Algorithm Overview

Input:

- The collection of data points
- The number of clusters

Output:

The attribution of the data points to different clusters

Example

feature 1

k-Means Clustering: How Does it Work?

Data

A collection of data points $x_i = (x_{i,k}, x_{i,2}, ..., x_{i,m})$, i = 1,2,...,n, that one wishes to organize onto Kdifferent clusters, where each data point is characterized by different features.

Distance Function

Given two data points x_i and x_j , we can define their similarity via their squared Euclidean distance:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{l=1}^{m} (x_{i,l} - x_{j,l})^2$$

Optimization Problem

The clustering problem can then be posed as follows:

$$C_1^*, C_2^*, \dots, C_K^* = \underset{C_1, C_2, \dots, C_K}{\operatorname{argmin}} J(C_1, C_2, \dots, C_K)$$

Cost Function

Given the K clusters C_1 , C_2 , ..., C_K , we can then define the cost function

$$J(C_1, C_2, ..., C_K) = \frac{1}{K} \cdot \sum_{k=1}^K \sum_{x \in C_k} d(x, c_k) \text{ with } c_k = \frac{1}{|C_k|} \cdot \sum_{x \in C_k} x$$

Computationally very complex problem

heuristic algorithm

k-Means Clustering: Algorithm

k-Means Clustering Algorithm

This is a very simple iterative algorithm involving various steps:

- The very first step involves choosing some initial cluster representatives (e.g. by choosing K random data samples from the dataset)
- The next steps involve iterating between two of operations
 - Attribution of data samples to clusters

$$x \in C_k \iff d(x, c_k) < d(x, c_l), \forall l \neq k$$

• Re-computation of cluster centroids

$$c_k = \frac{1}{|C_k|} \cdot \sum_{x \in C_k} x$$

until convergence (e.g. until nothing changes)

Minimize
$$J(C_1, C_2, ..., C_K)$$
 keeping constant the centroids

Chose centroids that minimize
$$J(C_1, C_2, ..., C_K)$$

Re-Computation of Centroids

Initialization of Centroids

Re-Attribution of Data to Clusters

Attribution of Data to Clusters

This general process is iterated until nothing changes

Example

Initialization of Centroids

Attribution of Data to Clusters

Re-Computation of Centroids

Re-Attribution of Data to Clusters

Does the algorithm terminate?

The k-means clustering algorithm always converges to a solution (cluster assignment), with the cost decreasing from iteration to iteration.

However, the resulting cluster assignment may be a local minimum of the cost function in lieu of the global one.

What is the impact of initialization?

What is the impact of initialization?

Solution: Run the algorithm with multiple initializations, but select the result with minimum cost

How to select the number of clusters?

How to select the number of clusters?

Elbow Method

Application Informed