Higher-Ranked Exception Types

Ruud Koot

April 4, 2014

1 The λ^{\cup} -calculus

Types

$$\tau \in \textbf{Ty} \hspace{1cm} ::= \hspace{1cm} \mathcal{P} \hspace{1cm} \text{(base type)} \\ \hspace{1cm} \mid \hspace{1cm} \tau_1 \to \tau_2 \hspace{1cm} \text{(function type)}$$

Terms

$$t \in \mathbf{Tm} \hspace{1cm} ::= \hspace{1cm} x \hspace{1cm} \text{(variable)}$$

$$\mid \hspace{1cm} \lambda x : \tau.t \hspace{1cm} \text{(abstraction)}$$

$$\mid \hspace{1cm} t_1 \hspace{1cm} t_2 \hspace{1cm} \text{(application)}$$

$$\mid \hspace{1cm} \emptyset \hspace{1cm} \text{(empty)}$$

$$\mid \hspace{1cm} \{c\} \hspace{1cm} \text{(singleton)}$$

$$\mid \hspace{1cm} t_1 \cup t_2 \hspace{1cm} \text{(union)}$$

Environments

$$\Gamma \in \mathbf{Env} ::= \cdot \mid \Gamma, x : \tau$$

1.1 Typing relation

$$\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma, x: \tau \vdash x: \tau} \text{ [T-Var]} \quad \frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma \vdash \lambda x: \tau_1.t: \tau_1 \to \tau_2} \text{ [T-Abs]} \quad \frac{\Gamma \vdash t_1: \tau_1 \to \tau_2}{\Gamma \vdash t_1: t_2: \tau_2} \text{ [T-App]}$$

$$\frac{\Gamma \vdash \emptyset: \mathcal{P}}{\Gamma \vdash \emptyset: \mathcal{P}} \text{ [T-Empty]} \quad \frac{\Gamma \vdash \{c\}: \mathcal{P}}{\Gamma \vdash \{c\}: \mathcal{P}} \text{ [T-Con]} \quad \frac{\Gamma \vdash t_1: \tau \quad \Gamma \vdash t_2: \tau}{\Gamma \vdash t_1 \cup t_2: \tau} \text{ [T-Union]}$$

1.2 Semantics

1.3 Reduction relation

Definition 1. Let \prec be a strict total order on $\mathbf{Con} + \mathbf{Var}$, with $c \prec x$ for all $c \in \mathbf{Con}$ and $x \in \mathbf{Var}$.

$$(\lambda x : \tau.t_1) \ t_2 \longrightarrow [t_2/x] \ t_1 \qquad \qquad (\beta\text{-reduction})$$

$$(t_1 \cup t_2) \ t_3 \longrightarrow t_1 \ t_3 \cup t_2 \ t_3 \qquad \qquad (\text{congruences})$$

$$(\lambda x : \tau.t_1) \cup (\lambda x : \tau.t_2) \longrightarrow \lambda x : \tau. \ (t_1 \cup t_2) \qquad \qquad (\text{congruences})$$

$$x \ t_1 \cdots t_n \cup x' \ t'_1 \cdots t'_n \longrightarrow x \ (t_1 \cup t'_1) \cdots (t_n \cup t'_n) \qquad \qquad (\text{associativity})$$

$$(t_1 \cup t_2) \cup t_3 \longrightarrow t_1 \cup (t_2 \cup t_3) \qquad \qquad (\text{associativity})$$

$$\emptyset \cup t \longrightarrow t \qquad \qquad (\text{unit})$$

$$t \cup \emptyset \longrightarrow t \qquad \qquad (\text{unit})$$

$$x \cup x \longrightarrow x \qquad \qquad (\text{unit})$$

$$c_1 \cup c_2 \cup c_3 \longrightarrow c_4 \qquad \qquad (\text{idempotence})$$

$$c_2 \cup c_3 \cup c_4 \cup c_5 \cup c_5$$

Conjecture 1. The reduction relation \longrightarrow preserves meaning.

Conjecture 2. The reduction relation \longrightarrow is strongly normalizing.

Conjecture 3. The reduction relation \longrightarrow is locally confluent.

Corollary 1. The reduction relation \longrightarrow is confluent.

Proof. Follows from SN, LC and Newman's Lemma.

Corollary 2. The λ^{\cup} -calculus has unique normal forms.

Corollary 3. Equality of λ^{\cup} -terms can be decided by normalization.

2 Completion

$$\kappa \in \mathbf{Kind} \qquad ::= \ \mathbf{EXN} \qquad \qquad (\text{exception})$$

$$\mid \kappa_1 \Rightarrow \kappa_2 \qquad \qquad (\text{exception operator})$$

$$\chi \in \mathbf{Exn} \qquad ::= \ e \qquad \qquad (\text{exception variables})$$

$$\mid \lambda e : \kappa. \chi \qquad \qquad (\text{exception abstraction})$$

$$\widehat{\tau} \in \mathbf{ExnTy} \qquad ::= \ \forall e :: \kappa. \widehat{\tau} \qquad \qquad (\text{exception quantification})$$

$$\mid \widehat{\text{bool}} \qquad \qquad (\text{boolean type})$$

$$\mid \widehat{\tau} \text{ throws } \chi_1 \rightarrow \widehat{\tau}_2 \text{ throws } \chi_2 \qquad (\text{function type})$$

The completion procedure as a set of inference rules: The completion procedure as an algorithm:

```
complete :: \operatorname{Env} \times \operatorname{Ty} \to \operatorname{ExnTy} \times \operatorname{Exn} \times \operatorname{Env}
complete \overline{e_i :: \kappa_i} \text{ bool} =
let e be fresh
in \langle \widehat{\text{bool}}; e :: \overline{\kappa_i} \Rightarrow \operatorname{EXN} \rangle
```

$$\frac{\overline{e_{i} :: \kappa_{i}} \vdash \text{bool} : \text{bool} \& e \ \overline{e_{i}} \triangleright e :: \overline{\kappa_{i}} \Longrightarrow_{\text{EXN}}} \ [\text{C-Bool}]$$

$$\frac{\overline{e_{i} :: \kappa_{i}} \vdash \tau : \widehat{\tau} \& \chi \triangleright \overline{e_{j} :: \kappa_{j}}}{\overline{e_{i} :: \kappa_{i}} \vdash [\tau] : [\widehat{\tau} \text{ throws } \chi] \& e \ \overline{e_{i}} \triangleright e :: \overline{\kappa_{i}} \Longrightarrow_{\text{EXN}}, \overline{e_{j} :: \kappa_{j}}} \ [\text{C-List}]$$

$$\frac{\vdash \tau_{1} : \widehat{\tau}_{1} \& \chi_{1} \triangleright \overline{e_{j} :: \kappa_{j}}}{\overline{e_{i} :: \kappa_{i}}} \ \overline{e_{i} :: \kappa_{i}}, \overline{e_{j} :: \kappa_{j}} \vdash \tau_{2} : \widehat{\tau}_{2} \& \chi_{2} \triangleright \overline{e_{j} :: \kappa_{j}}}{\overline{e_{i} :: \kappa_{j}} \Longrightarrow_{\text{EXN}}, \overline{e_{k} :: \kappa_{k}}} \ [\text{C-Arr}]$$

$$\overline{e_{i} :: \kappa_{i}} \vdash \tau_{1} \to \tau_{2} : \forall \overline{e_{j} :: \kappa_{j}}. (\widehat{\tau}_{1} \text{ throws } \chi_{1} \to \widehat{\tau}_{2} \text{ throws } \chi_{2}) \& e \ \overline{e_{i}} \triangleright e :: \overline{\kappa_{j}} \Longrightarrow_{\text{EXN}}, \overline{e_{k} :: \kappa_{k}}} \ [\text{C-Arr}]$$

Figure 1: Type completion ($\Gamma \vdash \tau : \widehat{\tau} \& \chi \triangleright \Gamma'$)