22-23 学年微分几何期末 彦文娇老师 (回忆版)

使用班级: 2021 级强基班

1. (24 分, 每小题 6 分) 单位球面 $\{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2\}$ 的球极投影表示:

$$\mathbf{R}^2 \to S^2(1) \backslash N$$
$$\mathbf{r}(u_1, u_2) = \left(\frac{2u_1}{1 + |u|^2}, \frac{2u_2}{1 + |u|^2}, \frac{|u|^2 - 1}{1 + |u|^2}\right).$$

其中 N 是北极点 (0,0,1), $|u|^2 = u_1^2 + u_2^2$.

- (1) 求其第一基本形式;
- (2) 求球面面积;
- (3) 求 Christoffel 符号;
- (4) 求 Gauss 曲率.
- 2. (1) (12 分) 证明正螺面 $r(u,v) = (u \sin v, u \cos v, av)$ 是极小曲面;
 - (2) (6分) 证明直纹极小曲面是平面或者正螺面.
- 4. (14 分) 证明单位圆盘 $D^2 = \{(x,y): x^2 + y^2 \le 1\}$ 的欧拉数为 1.
- 5. (30 分) 参数区域是上半平面 $\{(x,y): y>0\}$, Lobachevsky 曲面 H 有 Riemann 度量

$$\mathrm{d}s^2 = \frac{1}{y^2} (\mathrm{d}x \mathrm{d}x + \mathrm{d}y \mathrm{d}y),$$

- (1) (10 分) 求 Gauss 曲率;
- (2) (10 分) 求曲面 *H* 上的所有测地线;
- (3) (10 分) 设 C 是 H 上的光滑曲线, $\mathbf{c}(t) = (t,1)$, $t \in [0,1]$, $\mathbf{v}_0 = (0,1)$ 是 $\mathbf{c}(0)$ 处的切向量, $\mathbf{V}(t)$ 是沿着曲线 C 平行移动的切向量场, 满足 $\mathbf{V}(0) = \mathbf{v}_0$, 求 $\mathbf{V}(t) = (a(t), b(t))$.
- (4)(附加题, 10 分) 单位圆盘 D^2 上有 Poincarè 度量 $d\tilde{s}^2 = \frac{4(\mathrm{d}u\mathrm{d}u + \mathrm{d}v\mathrm{d}v)}{(1 (u^2 + v^2))^2}$, 用
- (2) 中结论求其测地线.

不代表原卷, 仅是回忆版