Statically Typed String Sanitation Inside a Python (Technical Report)

Nathan Fulton Cyrus Omar Jonathan Aldrich

December 2014 CMU-ISR-14-112

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

fix this

This work was supported by the National Security Agency lablet contract #H98230-14-C-0140.

Contents

1	Tern	ninology and Notation	2
2	Regu	ular Expressions	2
3	λ_{RS} 3.1	Static Semantics	2 2 3 3 3 3 6
4	λ_P 4.1 4.2	Static Semantics	7 7 7 7
5	Tran	aslation from λ_{RS} to λ_P	10
Li	ist of	f Figures	
	1 2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 16 16 17 18
	O	Translation from Λ_{KS} to Λ_P	۷(

1 Terminology and Notation

Theorems and lemmas appearing in [1] are numbered correspondingly, while supporting facts appearing only in the Technical Report are lettered. Throughout this technical report, we use a small step semantics corresponding to the big step semantics given in [1].

2 Regular Expressions

The syntax of regular expressions over some alphabet Σ is shown in Figure 1.

Assumption A (Regular Expression Congruences). We assume regular expressions are implicitly identified up to the following congruences:

$$\epsilon \cdot r \equiv r$$

$$r \cdot \epsilon \equiv r$$

$$(r_1 \cdot r_2) \cdot r_3 \equiv r_1 \cdot (r_2 \cdot r_3)$$

$$r_1 + r_2 \equiv r_2 + r_1$$

$$(r_1 + r_2) + r_3 \equiv r_1 + (r_2 + r_3)$$

$$\epsilon^* \equiv \epsilon$$

Assumption B (Properties of Regular Languages). We assume the following properties:

- 1. If $s_1 \in \mathcal{L}\{r_1\}$ and $s_2 \in \mathcal{L}\{r_2\}$ then $s_1s_2 \in \mathcal{L}\{r_1 \cdot r_2\}$.
- 2. For all strings s and regular expressions r, either $s \in \mathcal{L}\{r\}$ or $s \notin \mathcal{L}\{r\}$.
- 3. Regular languages are closed under reversal.

3 λ_{RS}

The syntax of λ_{RS} is specified in Figure 2.

3.1 Static Semantics

The static semantics of λ_{RS} is specified in Figure 4. The typing context obeys the standard structural properties of weakening, exchange and contraction.

3.1.1 Case Analysis

The following correctness conditions must hold for any definition of lhead(r) and ltail(r).

Condition C (Correctness of Head). *If* $c_1s' \in \mathcal{L}\{r\}$, *then* $c_1 \in \mathcal{L}\{\text{lhead}(r)\}$.

Condition D (Correctness of Tail). *If* $c_1s' \in \mathcal{L}\{r\}$ *then* $s' \in \mathcal{L}\{\text{Itail}(r)\}$.

For example, we conjecture (but do not here prove) that the definitions below satisfy these conditions. Note that these are slightly amended relative to the published paper.

Definition 1 (Definition of lhead(r)). We first define an auxiliary relation that determines the set of characters that the head might be, tracking the remainder of any sequences that appear:

$$\begin{aligned} \mathsf{Ihead}(\epsilon,\epsilon) &= \emptyset \\ \mathsf{Ihead}(\epsilon,r') &= \mathsf{Ihead}(r',\epsilon) \\ \mathsf{Ihead}(a,r') &= \{a\} \\ \mathsf{Ihead}(r_1 \cdot r_2,r') &= \mathsf{Ihead}(r_1,r_2 \cdot r') \\ \mathsf{Ihead}(r_1+r_2,r') &= \mathsf{Ihead}(r_1,r') \cup \mathsf{Ihead}(r_2,r') \\ \mathsf{Ihead}(r^*,r') &= \mathsf{Ihead}(r,\epsilon) \cup \mathsf{Ihead}(r',\epsilon) \end{aligned}$$

We define $lhead(r) = a_1 + a_2 + ... + a_i$ iff $lhead(r, \epsilon) = \{a_1, a_2, ..., a_i\}$.

Definition 2 (Brzozowski's Derivative). The *derivative of* r *with respect to* s is denoted by $\delta_s(r)$ and is $\delta_s(r) = \{t | st \in \mathcal{L}\{r\}\}.$

Definition 3 (Definition of Itail(r)). If Ihead $(r, \epsilon) = \{a_1, a_2, ..., a_i\}$, then we define Itail $(r) = \delta_{a_1}(r) + \delta_{a_2}(r) + ... + \delta_{a_i}(r)$.

3.1.2 Replacement

The following correctness condition must hold for any definition of $lreplace(r, r_1, r_2)$.

Condition E (Replacement Correctness). *If* $s_1 \in \mathcal{L}\{r_1\}$ *and* $s_2 \in \mathcal{L}\{r_2\}$ *then*

$$replace(r; s_1; s_2) \in \mathcal{L}\{lreplace(r, r_1, r_2)\}$$

We do not give a particular definition for $lreplace(r, r_1, r_2)$ here.

3.2 Dynamic Semantics

Figure 5 specifies a small-step operational semantics for λ_{RS} .

3.2.1 Canonical Forms

Lemma F (Canonical Forms). *If* $\emptyset \vdash v : \sigma$ *then:*

- 1. If $\sigma = \text{stringin}[r]$ then v = rstr[s] and $s \in \mathcal{L}\{r\}$.
- 2. If $\sigma = \sigma_1 \rightarrow \sigma_2$ then $v = \lambda x.e'$.

Proof. By inspection of the static and dynamic semantics.

3.2.2 Type Safety

Lemma G (Progress). *If* $\emptyset \vdash e : \sigma$ *either* e = v *or* $e \mapsto e'$.

Proof. The proof proceeds by rule induction on the derivation of $\emptyset \vdash e : \sigma$.

 λ fragment. Cases SS-T-Var, SS-T-Abs, and SS-T-App are exactly as in a proof of progress for the simply typed lambda calculus.

S-T-Stringin-I. Suppose $\emptyset \vdash \mathsf{rstr}[s]$: $\mathsf{stringin}[s]$. Then $e = \mathsf{rstr}[s]$.

S-T-Concat. Suppose $\emptyset \vdash \mathsf{rconcat}(e_1; e_2) : \mathsf{stringin}[r_1 \cdot r_2]$ and $\emptyset \vdash e_1 : \mathsf{stringin}[r_1]$ and $\emptyset \vdash e_2 : \mathsf{stringin}[r_2]$. By induction, $e_1 \mapsto e_1'$ or $e_1 = v_1$ and similarly, $e_2 \mapsto e_2'$ or $e_2 = v_2$. If e_1 steps, then SS-E-Concat-Left applies and so $\mathsf{rconcat}(e_1; e_2) \mapsto \mathsf{rconcat}(e_1'; e_2)$. Similarly, if e_2 steps then e steps by SS-E-Concat-Right.

In the remaining case, $e_1 = v_1$ and $e_2 = v_2$. But then it follows by Canonical Forms that $e_1 = \mathsf{rstr}[s_1]$ and $e_2 = \mathsf{rstr}[s_2]$. Finally, by SS-E-Concat, $\mathsf{rconcat}(\mathsf{rstr}[s_1]; \mathsf{rstr}[s_2]) \mapsto \mathsf{rstr}[s_1s_2]$.

S-T-Case. Suppose $e = \mathsf{rstrcase}(e_1; e_2; x, y.e_3)$ and $\emptyset \vdash e_1 : \mathsf{stringin}[r]$. By induction and Canonical Forms it follows that $e_1 \mapsto e_1'$ or $e_1 = \mathsf{rstr}[s]$. In the former case, e steps by S-E-Case-Left. In the latter case, note that $s = \epsilon$ or s = at for some string t. If $s = \epsilon$ then e steps by S-E-Case- ϵ -Val, and if s = at the e steps by S-E-Case-Concat.

S-T-Replace. Suppose $e = \text{rreplace}[r](e_1; e_2), \emptyset \vdash e : \text{stringin}[\text{Ireplace}(r, r_1, r_2)]$ and:

$$\emptyset \vdash e_1 : \mathsf{stringin}[r_1]$$

$$\emptyset \vdash e_2 : \mathsf{stringin}[r_2]$$

By induction on (1), $e_1 \mapsto e_1'$ or $e_1 = v_1$ for some e_1' . If $e_1 \mapsto e_1'$ then e steps by SS-E-Replace-Left. Similarly, if e_2 steps then e steps by SS-E-Replace-Right. The only remaining case is where $e_1 = v_1$ and also $e_2 = v_2$. By Canonical Forms, $e_1 = \text{rstr}[s_1]$ and $e_2 = \text{rstr}[s_2]$. Therefore, $e \mapsto \text{rstr}[\text{replace}(r; s_1; s_2)]$ by SS-E-Replace.

S-T-SafeCoerce. Suppose that $\emptyset \vdash \mathsf{rcoerce}[r](e_1) : \mathsf{stringin}[r]$. and $\emptyset \vdash e_1 : \mathsf{stringin}[r']$ for $\mathcal{L}\{r'\} \subseteq \mathcal{L}\{r\}$. By induction, $e_1 = v_1$ or $e_1 \mapsto e'_1$ for some e'_1 . If $e_1 \mapsto e'_1$ then e steps by SS-E-SafeCoerce-Step. Otherwise, $e_1 = v$ and by Canonical Forms $e_1 = \mathsf{rstr}[s]$. In this case, $e = \mathsf{rcoerce}[r](\mathsf{rstr}[s]) \mapsto \mathsf{rstr}[s]$ by SS-E-SafeCoerce.

S-T-Check Suppose that $\emptyset \vdash \mathsf{rcheck}[r](e_0; x.e_1; e_2)$: $\mathsf{stringin}[r]$ and:

$$\emptyset \vdash e_0 : \mathsf{stringin}[r_0]$$

(4)
$$\emptyset, x : \text{stringin}[r] \vdash e_1 : \sigma$$

$$\emptyset \vdash e_2 : \sigma$$

By induction, $e_0 \mapsto e_0'$ or $e_0 = v$. In the former case e steps by SS-E-Check-StepLeft. Otherwise, $e_0 = \mathsf{rstr}[s]$ by Canonical Forms. By Lemma B part 2, either $s \in \mathcal{L}\{r_0\}$ or $s \notin \mathcal{L}\{r_0\}$. In the former case e takes a step by SS-E-Check-Ok. In the latter case e takes a step by SS-E-Check-NotOk.

Assumption H (Substitution). If $\Psi, x : \sigma' \vdash e : \sigma$ and $\Psi \vdash e' : \sigma'$, then $\Psi \vdash [e'/x]e : \sigma$.

Lemma I (Preservation for Small Step Semantics). If $\emptyset \vdash e : \sigma$ and $e \mapsto e'$ then $\emptyset \vdash e' : \sigma$.

Proof. By induction on the derivation of $e \mapsto e'$ and $\emptyset \vdash e : \sigma$.

 λ fragment. Cases SS-E-AppLeft, SS-E-AppRight, and SS-E-AppAbs are exactly as in a proof of type safety for the simply typed lambda calculus.

- **S-E-Concat-Left.** Suppose $e = \mathsf{rconcat}(e_1; e_2) \mapsto \mathsf{rconcat}(e'_1; e_2)$ and $e_1 \mapsto e'_1$. The only rule that applies is S-T-Concat, so $\emptyset \vdash e_1$: stringin $[r_1]$ and $\emptyset \vdash e_2$: stringin $[r_2]$. By induction, $\emptyset \vdash e'_1$: stringin $[r_1]$. Therefore, by S-T-Concat, $\emptyset \vdash \mathsf{rconcat}(e'_1; e_2)$: stringin $[r_1r_2]$.
- **S-E-Concat-Right**. Suppose $e = \mathsf{rconcat}(e_1; e_2) \mapsto \mathsf{rconcat}(e_1; e_2')$ and $e_2 \mapsto e_2'$. The only rule that applies is S-T-Concat, so $\emptyset \vdash e_1$: $\mathsf{stringin}[r_1]$ and $\emptyset \vdash e_2$: $\mathsf{stringin}[r_2]$. By induction, $\emptyset \vdash e_2'$: $\mathsf{stringin}[r_2]$. Therefore, by S-T-Concat, $\emptyset \vdash \mathsf{rconcat}(e_1; e_2')$: $\mathsf{stringin}[r_1r_2]$.
- **S-E-Concat**. Suppose $\operatorname{rconcat}(\operatorname{rstr}[s_1];\operatorname{rstr}[s_2])\mapsto \operatorname{rstr}[s_1s_2]$. The only applicable rule is S-T-Concat, so $\emptyset \vdash \operatorname{rstr}[s_1]:\operatorname{stringin}[r_1]$ and $\emptyset \vdash \operatorname{rstr}[s_2]:\operatorname{stringin}[r_2]$ and $\emptyset \vdash \operatorname{rconcat}(\operatorname{rstr}[s_1];\operatorname{rstr}[s_2]):\operatorname{stringin}[r_1 \cdot r_2]$. By Canonical Forms, $s_1 \in \mathcal{L}\{r_1\}$ and $s_2 \in \mathcal{L}\{r_2\}$ from which it follows by Lemma B that $s_1s_2 \in \mathcal{L}\{r_1 \cdot r_2\}$. Therefore, $\emptyset \vdash \operatorname{rstr}[s_1s_2]:\operatorname{stringin}[r_1 \cdot r_2]$ by S-T-Rstr.
- **S-E-Case-Left**. Suppose $e \mapsto \mathsf{rstrcase}(e_1'; e_2; x, y.e_3)$ and $\emptyset \vdash e : \sigma$ and $e_1 \mapsto e_1'$. The only rule that applies is S-T-Case, so:

$$\emptyset \vdash e_1 : \mathsf{stringin}[r]$$

$$\emptyset \vdash e_2 : \sigma$$

(8)
$$\emptyset, x : \text{stringin}[\text{lhead}(r)], y : \text{stringin}[\text{ltail}(r)] \vdash e_3 : \sigma$$

By (6) and the assumption that $e_1 \mapsto e_1'$, it follows by induction that $\emptyset \vdash e_1'$: stringin[r]. This fact together with (7) and (8) implies by S-T-Case that $\emptyset \vdash \mathsf{rstrcase}(e_1'; e_2; x, y.e_3) : \sigma$.

- **S-E-Case-** ϵ **-Val**. Suppose $\operatorname{rstrcase}(e_0; e_2; x, y.e_3) \mapsto e_2$. The only rule that applies is S-T-Case, so $\emptyset \vdash e_2 : \sigma$.
- **S-E-Case-Concat**. Suppose that $e = \mathsf{rstrcase}(\mathsf{rstr}[as]; e_2; x, y.e_3) \mapsto [\mathsf{rstr}[a], \mathsf{rstr}[s]/x, y]e_3$ and that $\emptyset \vdash e : \sigma$. The only rule that applies is S-T-Case so:

$$\emptyset \vdash \mathsf{rstr}[as] : \mathsf{stringin}[r]$$

$$\emptyset \vdash e_2 : \sigma$$

(11)
$$\emptyset, x : \text{stringin}[\text{lhead}(r)], y : \text{stringin}[\text{ltail}(r)] \vdash e_3 : \sigma$$

We know that $as \in \mathcal{L}\{r\}$ by Canonical Forms on (9) Therefore, $a \in \mathcal{L}\{\mathsf{lhead}(r)\}$ by Condition C and $s \in \mathcal{L}\{\mathsf{ltail}(r)\}$ by Condition D.

From these facts about a and s we know by S-T-Rstr that $\emptyset \vdash \mathsf{rstr}[a] : \mathsf{stringin}[\mathsf{lhead}(r)]$ and $\emptyset \vdash \mathsf{rstr}[s] : \mathsf{stringin}[\mathsf{ltail}(r)]$. It follows by Assumption H that $\emptyset \vdash [\mathsf{rstr}[a], \mathsf{rstr}[s]/x, y]e_3 : \sigma$.

Case S-E-Replace-Left. Suppose that $e = \text{rreplace}[r](e_1; e_2) \mapsto \text{rreplace}[r](e_1'; e_2)$ when $e_1 \mapsto e_1'$. The only rule that applies is S-T-Replace, so $\emptyset \vdash e : \text{stringin}[\text{Ireplace}(r, r_1, r_2)]$ where:

$$\emptyset \vdash e_1 : \mathsf{stringin}[r_1]$$

 $\emptyset \vdash e_2 : \mathsf{stringin}[r_2]$

By induction, $\emptyset \vdash e_1'$: stringin[r_1]. Therefore, $\emptyset \vdash \mathsf{rreplace}[r](e_1'; e_2)$: stringin[$\mathsf{lreplace}(r, r_1, r_2)$] by S-T-Replace.

Case S-E-Replace-Right. Suppose that $e = \text{rreplace}[r](e_1; e_2) \mapsto \text{rreplace}[r](e'_1; e_2)$ when $e_1 \mapsto e'_1$. The only rule that applies is S-T-Replace, so $\emptyset \vdash e$: stringin[Ireplace (r, r_1, r_2)] where:

$$\emptyset \vdash e_1 : \mathsf{stringin}[r_1]$$

 $\emptyset \vdash e_2 : \mathsf{stringin}[r_2]$

By induction, $\emptyset \vdash e_1'$: stringin $[r_1]$. Therefore, $\emptyset \vdash \mathsf{rreplace}[r](r_1'; r_2)$: stringin $[\mathsf{lreplace}(r, r_1, r_2)]$ by S-T-Replace.

Case S-E-Replace.

Suppose $e = \text{rreplace}[r](\text{rstr}[s_1]; \text{rstr}[s_2]) \mapsto \text{rstr}[\text{replace}(r; s_1; s_2)]$. The only applicable rule is S-T-Replace, so

$$\emptyset \vdash \mathsf{rstr}[s_1] : \mathsf{stringin}[r_1]$$

 $\emptyset \vdash \mathsf{rstr}[s_2] : \mathsf{stringin}[r_2]$

By conanical forms, $s_1 \in \mathcal{L}\{r_1\}$ and $s_2 \in \mathcal{L}\{r_2\}$. Therefore,

$$\mathsf{replace}(r; s_1; s_2) \in \mathcal{L}\{\mathsf{lreplace}(r, r_1, r_2)\}$$

by Condition E. It is finally derivable by S-T-Rstr that:

$$\emptyset \vdash \mathsf{rstr}[\mathsf{replace}(r; s_1; s_2)] : \mathsf{stringin}[\mathsf{lreplace}(r, r_1, r_2)].$$

Case S-E-SafeCoerce. Suppose that $\operatorname{rcoerce}[r](\operatorname{rstr}[s_1]) \mapsto \operatorname{rstr}[s_1]$. The only applicable rule is S-T-SafeCoerce, so $\emptyset \vdash \operatorname{rcoerce}[r](s_1) : \operatorname{stringin}[r]$ and $\emptyset \vdash \operatorname{rstr}[s_1] : \operatorname{stringin}[r']$ and $\mathcal{L}\{r'\} \subset \mathcal{L}\{r\}$. By Canonical Forms, $s' \in \mathcal{L}\{r'\}$. By the definition of subset, $s' \in \mathcal{L}\{r\}$. Therefore, by S-T-Rstr, we have that $\emptyset \vdash \operatorname{rstr}[s'] : \operatorname{stringin}[r]$.

Case S-E-Check-Ok. Suppose $\operatorname{rcheck}[r](\operatorname{rstr}[s]; x.e_1; e_2) \mapsto [\operatorname{rstr}[s]/x]e_1$ and $s \in \mathcal{L}\{r\}$, and $\emptyset \vdash \operatorname{rcheck}[r](\operatorname{rstr}[s]; x.e_1; e_2) : \sigma$. The only rule that applies is S-T-Check, so \emptyset , x: $\operatorname{stringin}[r] \vdash e_1 : \sigma$. By S-T-Rstr, we have that $\emptyset \vdash \operatorname{rstr}[s] : \operatorname{stringin}[r]$. By Substitution, we have that $\emptyset \vdash [\operatorname{rstr}[s]/x]e_1 : \sigma$.

Case S-E-Check-NotOk. Suppose $\mathsf{rcheck}[r](\mathsf{rstr}[s]; x.e_1; e_2) \mapsto e_2$ and $s \notin \mathcal{L}\{r\}$ and $\emptyset \vdash \mathsf{rcheck}[r](\mathsf{rstr}[s]; x.e_1; e_2) : \sigma$. The only applicable rule is S-T-Check, so $\emptyset \vdash e_2 : \sigma$.

Theorem J (Type Safety for small step semantics.). *If* $\emptyset \vdash e : \sigma$ *then either* e val or $e \mapsto^* e'$ *and* $\emptyset \vdash e' : \sigma$. *Proof.* Follows from applying progress and preservation transitively over the multistep judgement.

3.2.3 The Security Theorem

Theorem 4 (Correctness of Input Sanitation for λ_{RS}). If $\emptyset \vdash e$: stringin[r] and $e \mapsto^* rstr[s]$ then $s \in \mathcal{L}\{r\}$.

Proof. By type safety, $\emptyset \vdash rstr[s]$: stringin[r]. By canonical forms, $s \in \mathcal{L}\{r\}$.

4 λ_P

We will define a translation to a language with only standard strings and regular expressions. The syntax of λ_P is shown in Figure 3.

4.1 Static Semantics

The static semantics of λ_P is shown in Figure 6. The typing context of λ_P obeys the standard structural properties of weakening, exchange and contraction.

4.2 Dynamic Semantics

The dynamic semantics of λ_P is shown in Figure 7.

4.2.1 Canonical Forms

Lemma 5 (Canonical Forms). *If* $\emptyset \vdash \dot{v} : \tau$ *then:*

- If $\tau = \tau_1 \rightarrow \tau_2$ then $\dot{v} = \lambda x : \tau . \iota$.
- If $\tau = \operatorname{regex} then \dot{v} = \operatorname{rx}[r]$.
- If $\tau = \text{string then } \dot{v} = \text{str}[s]$.

Proof. By inspection of the static and dynamic semantics.

4.2.2 Type Safety

Theorem 6 (Progress). *If* $\emptyset \vdash \iota : \tau$ *either* $\iota = \dot{v}$ *or* $\iota \mapsto \iota'$.

Proof. The proof proceeds by induction on the typing assumption.

 λ **fragment**. Cases P-T-Var, P-T-Abs, and P-T-App are exactly as in a proof of progress for the simply typed lambda calculus.

P-T-String. In this case, $\iota = \mathsf{str}[s]$, which is a value.

P-T-Regex. In this case, $\iota = rx[r]$, which is a value.

P-T-Concat. In this case, we have that $\emptyset \vdash \mathsf{pconcat}(\iota_1; \iota_2)$: string and $\emptyset \vdash \iota_1$: string and $\emptyset \vdash \iota_2$: string. By the IH, we have that either $\iota_1 \leadsto \iota_1'$ or $\iota_1 = \dot{v}_1$, and similarly $\iota_2 \leadsto \iota_2'$ or $\iota_2 = \dot{v}_2$. If ι_1 steps, then we can make progress via PS-E-ConcatLeft. If ι_2 steps, then we can make progress via PS-E-ConcatRight. If both are values, then by canonical forms $\iota_1 = \mathsf{str}[s_1]$ and $\iota_2 = \mathsf{str}[s_2]$ so we can make progress by PS-E-Concat.

P-T-Case. Suppose $\emptyset \vdash \mathsf{pstrcase}(\iota_1; \iota_2; x, y.\iota_3) : \tau$ and $\emptyset \vdash \iota_1 : \mathsf{string}$. By induction and canonical forms, either $\iota_1 \mapsto \iota_1'$ or $\iota_1 = \mathsf{str}[s_1]$. If ι_1 steps then we can make progress by PS-E-CaseLeft. If it is a value, then by the definition of strings, either $s_1 = \epsilon$ or $s_1 = as$ for some string s. If s_1 is empty, then we can make progress by PS-E-Case-Epsilon. Otherwise, we can make progress by PS-E-Case-Cons.

P-T-Replace. Suppose $\emptyset \vdash \text{preplace}(\iota_1; \iota_2; \iota_3)$: string and $\emptyset \vdash \iota_1$: regex and $\emptyset \vdash \iota_2$: string and $\emptyset \vdash \iota_3$: string. By induction and canonical forms, either $\iota_1 \mapsto \iota'_1$ or $\iota_1 = \text{rx}[r]$. Similarly, $\iota_2 \mapsto \iota'_2$ or $\iota_2 = \text{str}[s_2]$, and $\iota_3 \mapsto \iota'_3$ or $\iota_3 = \text{str}[s_3]$. If ι_1 steps, then we can make progress by PS-E-ReplaceLeft. If ι_2 steps then we can make progress by PS-E-ReplaceRight. If all three are values, we can make progress by PS-E-Replace.

P-T-Check. Suppose $\emptyset \vdash \text{pcheck}(\iota_1; \iota_2; \iota_3; \iota_4)$ and $\emptyset \vdash \iota_1 : \text{regex}$ and $\emptyset \vdash \iota_2 : \text{string}$. By induction and canonical forms, either $\iota_1 \mapsto \iota_1'$ or $\iota_1 = \text{rx}[r]$. Similarly, $\iota_2 \mapsto \iota_2'$ or $\iota_2 = \text{str}[s]$. If ι_1 steps, then we can make progress by PS-E-CheckLeft. If ι_2 steps, then we can make progress by PS-E-CheckRight. If both are values, then by Assumption B.2, either $s \in \mathcal{L}\{r\}$ or $s \notin \mathcal{L}\{r\}$. In the former case, we can make progress by PS-E-Check-OK. In the latter case, we can make progress by PS-E-Check-NotOK.

Assumption K (Substitution). *If* Θ , $x : \tau' \vdash \iota : \tau$ *and* $\Theta \vdash \iota' : \tau'$ *then* $\Theta \vdash [\iota'/x]\iota : \tau$.

Theorem 7 (Preservation). *If* $\emptyset \vdash \iota : \tau \text{ and } \iota \mapsto \iota' \text{ then } \emptyset \vdash \iota' : \tau$.

Proof. The proof proceeds by rule induction on $\iota \mapsto \iota'$ and $\emptyset \vdash \iota : \tau$.

 λ fragment. Cases PS-E-AppLeft, PS-E-AppRight, and PS-E-AppAbs are exactly as in a proof of type safety for the simply typed lambda calculus.

Case PS-E-ConcatLeft. Suppose $\mathsf{pconcat}(\iota_1; \iota_2) \mapsto \mathsf{pconcat}(\iota_1'; \iota_2)$ and $\iota_1 \mapsto \iota_1'$. The only applicable typing rule is P-T-Concat, so $\emptyset \vdash \iota_1$: string and $\emptyset \vdash \iota_2$: string. By induction, $\emptyset \vdash \iota_1'$: string, so $\emptyset \vdash \mathsf{rconcat}(\iota_1'; \iota_2)$: string by P-T-Concat.

Case PS-E-ConcatRight. Suppose pconcat(str[s_1]; ι_2) \mapsto pconcat(str[s_1]; ι_2') and $\iota_2 \mapsto \iota_2'$. The only applicable typing rule is P-T-Concat, so $\emptyset \vdash \mathsf{str}[s_1]$: string and $\emptyset \vdash \iota_2$: string. By induction, $\emptyset \vdash \iota_2'$: string, so $\emptyset \vdash \mathsf{rconcat}(\mathsf{str}[s_1]; \iota_2')$: string by P-T-Concat.

Case PS-E-Concat. Suppose pconcat($\mathsf{str}[s_1]; \mathsf{str}[s_2]$) $\mapsto \mathsf{str}[s_1s_2]$. By P-T-String, $\emptyset \vdash \mathsf{str}[s_1s_2]$: string .

Case PS-E-CaseLeft. Suppose $\mathsf{pstrcase}(\iota_1; \iota_2; x, y.\iota_3) \mapsto \mathsf{rstrcase}(\iota_1'; \iota_2; x, y.\iota_3)$ and $\iota_1 \mapsto \iota_1'$. The only rule that applies is P-T-Case, so:

$$\emptyset \vdash \iota_1 : \mathsf{string}$$

$$\emptyset \vdash \iota_2 : \tau$$

$$\emptyset, x : \mathsf{string}, y : \mathsf{string} \vdash \iota_3 : \tau$$

By induction, $\emptyset \vdash \iota_1'$: string. By P-T-Case, $\emptyset \vdash \mathsf{pstrcase}(\iota_1'; \iota_2; x, y.\iota_3) : \tau$.

Case PS-E-CaseEpsilon. Suppose pstrcase(str[ϵ]; ι_2 ; $x, y.\iota_3$) $\mapsto \iota_2$. The only rule that applies is P-T-Case, so $\emptyset \vdash \iota_2 : \tau$.

Case PS-E-Case-Cons. Suppose $\mathsf{pstrcase}(\mathsf{str}[as]; \iota_2; x, y.\iota_3) \mapsto [\mathsf{str}[a], \mathsf{str}[s]/x, y]\iota_3$ The only rule that applies is P-T-Case, so:

$$\emptyset \vdash \iota_1: \mathsf{string}$$
 $\emptyset \vdash \iota_2: au$ $\emptyset, x: \mathsf{string}, y: \mathsf{string} \vdash \iota_3: au$

By P-T-String, we have that $\emptyset \vdash \mathsf{str}[a]$: string and $\emptyset \vdash \mathsf{str}[s]$: string. By weakening and Substitution applied twice, we have that $\emptyset \vdash [\mathsf{str}[a], \mathsf{str}[s]/x, y]\iota_3 : \tau$.

Case PS-E-ReplaceLeft. Suppose preplace $(\iota_1; \iota_2; \iota_3) \mapsto \text{preplace}(\iota'_1; \iota_2; \iota_3)$ and $\iota_1 \mapsto \iota'_1$. The only rule that applies is P-T-Replace, so $\tau = \text{string}$ and:

$$\emptyset \vdash \iota_1 : \mathsf{regex}$$

 $\emptyset \vdash \iota_2 : \mathsf{string}$
 $\emptyset \vdash \iota_3 : \mathsf{string}$

By induction, $\emptyset \vdash \iota_1'$: regex. Therefore, by P-T-Replace $\emptyset \vdash \mathsf{preplace}(\iota_1'; \iota_2; \iota_3)$.

Case PS-E-ReplaceMid. Suppose preplace($rx[r]; \iota_2; \iota_3$) \mapsto preplace($rx[r]; \iota_2'; \iota_3$) and $\iota_2 \mapsto \iota_2'$. The only rule that applies is P-T-Replace, so $\tau =$ string and:

$$\emptyset \vdash \mathsf{rx}[r] : \mathsf{regex}$$

 $\emptyset \vdash \iota_2 : \mathsf{string}$
 $\emptyset \vdash \iota_3 : \mathsf{string}$

By induction, $\emptyset \vdash \iota_2'$: string. Therefore, by P-T-Replace $\emptyset \vdash \mathsf{preplace}(\mathsf{rx}[r]; \iota_2'; \iota_3)$.

Case PS-E-ReplaceRight. Suppose preplace(rx[r]; str[s]; ι_3) \mapsto preplace(rx[r]; str[s]; ι_3') and $\iota_3 \mapsto \iota_3'$. The only rule that applies is P-T-Replace, so $\tau = string$ and:

$$\emptyset \vdash \mathsf{rx}[r] : \mathsf{regex}$$

 $\emptyset \vdash \mathsf{str}[s] : \mathsf{string}$
 $\emptyset \vdash \iota_3 : \mathsf{string}$

By induction, $\emptyset \vdash \iota_3'$: string. Therefore, by P-T-Replace $\emptyset \vdash \mathsf{preplace}(\mathsf{rx}[r]; \mathsf{str}[s]; \iota_3')$.

Case PS-E-Replace. Suppose preplace(rx[r]; $str[s_2]$; $str[s_3]$) \mapsto $str[replace(r; s_2; s_3)]$. The only applicable rule is P-T-Replace, so $\tau = string$. By P-T-String, $\emptyset \vdash str[replace(r; s_2; s_3)]$: string.

Case PS-E-CheckLeft. Suppose pcheck(ι_1 ; ι_2 ; ι_3 ; ι_4) \mapsto pcheck(ι'_1 ; ι_2 ; ι_3 ; ι_4) and $\iota_1 \mapsto \iota'_1$. The only applicable typing rule is P-T-Check, so:

$$\emptyset \vdash \iota_1 : \text{regex}$$

 $\emptyset \vdash \iota_2 : \text{string}$
 $\emptyset \vdash \iota_3 : \tau$
 $\emptyset \vdash \iota_4 : \tau$

By induction, $\emptyset \vdash \iota_1'$: regex. Therefore, by P-T-Check $\emptyset \vdash \mathsf{pcheck}(\iota_1'; \iota_2; \iota_3; \iota_4) : \tau$.

Case PS-E-CheckRight. Suppose pcheck($rx[r]; \iota_2; \iota_3; \iota_4$) \mapsto pcheck($rx[r]; \iota'_2; \iota_3; \iota_4$) and $\iota_2 \mapsto \iota'_2$. The only applicable typing rule is P-T-Check, so:

$$\emptyset \vdash \mathsf{rx}[r] : \mathsf{regex}$$

 $\emptyset \vdash \iota_2 : \mathsf{string}$
 $\emptyset \vdash \iota_3 : \tau$
 $\emptyset \vdash \iota_4 : \tau$

By induction, $\emptyset \vdash \iota_2'$: string. Therefore, by P-T-Check $\emptyset \vdash \mathsf{pcheck}(\mathsf{rx}[r]; \iota_2'; \iota_3; \iota_4) : \tau$.

Case PS-E-Check-Ok. Suppose pcheck($rx[r]; str[s]; \iota_3; \iota_4$) $\mapsto \iota_3$. The only applicable typing rule is P-T-Check, so $\emptyset \vdash \iota_3 : \tau$.

Case PS-E-Check-Ok. Suppose pcheck($rx[r]; str[s]; \iota_3; \iota_4$) $\mapsto \iota_4$. The only applicable typing rule is P-T-Check, so $\emptyset \vdash \iota_4 : \tau$.

5 Translation from λ_{RS} to λ_{P}

The translation from λ_{RS} to λ_P is defined in Figure 8.

Theorem 8 (Type-Preserving Translation). *If* $\Psi \vdash e : \sigma$ *then* $\llbracket \Psi \rrbracket \vdash \llbracket \iota \rrbracket : \llbracket \sigma \rrbracket$

Proof. By induction on the typing relation.

Case S-T-Var. Suppose $\Psi \vdash x : \sigma$ and $x : \sigma \in \Psi$. We have by definition that $x : \llbracket \sigma \rrbracket \in \llbracket \Psi \rrbracket$ and $\llbracket x \rrbracket = x$. By P-T-Var, we have that $\llbracket \Psi \rrbracket \vdash x : \llbracket \sigma \rrbracket$.

Case S-T-Abs. Suppose $\Psi \vdash \lambda x : \sigma_1.e' : \sigma_1 \rightarrow \sigma_2$ and $\Psi, x : \sigma_1 \vdash e' : \sigma_2$. We have by definition:

$$\begin{bmatrix} \lambda x : \sigma_1 . e' \end{bmatrix} = \lambda x : \llbracket \sigma_1 \rrbracket . \llbracket e' \rrbracket \\
 \llbracket \sigma_1 \to \sigma_2 \rrbracket = \llbracket \sigma_1 \rrbracket \to \llbracket \sigma_2 \rrbracket \\
 \llbracket \Psi, x : \sigma_1 \rrbracket = \llbracket \Psi \rrbracket, x : \llbracket \sigma_1 \rrbracket$$

By induction, we have that $\llbracket \Psi \rrbracket, x : \llbracket \sigma_1 \rrbracket \vdash \llbracket e' \rrbracket : \llbracket \sigma_2 \rrbracket$.

By P-T-Abs, we have that $\llbracket \Psi \rrbracket \vdash \lambda x : \llbracket \sigma_1 \rrbracket . \llbracket e' \rrbracket : \llbracket \sigma_1 \rrbracket \to \llbracket \sigma_2 \rrbracket$.

Case S-T-App. Suppose $\Psi \vdash e_1(e_2) : \sigma$ and $\Psi \vdash e_1 : \sigma_2 \to \sigma$ and $\Psi \vdash e_2 : \sigma_2$. We have by definition:

$$\llbracket e_1(e_2) \rrbracket = \llbracket e_1 \rrbracket (\llbracket e_2 \rrbracket)$$
$$\llbracket \sigma_2 \to \sigma \rrbracket = \llbracket \sigma_2 \rrbracket \to \llbracket \sigma \rrbracket$$

By induction, $\llbracket \Psi \rrbracket \vdash \llbracket e_1 \rrbracket : \llbracket \sigma_2 \rrbracket \to \llbracket \sigma \rrbracket$ and $\llbracket \Psi \rrbracket \vdash \llbracket e_2 \rrbracket : \llbracket \sigma_2 \rrbracket$. Therefore, $\llbracket \Psi \rrbracket \vdash \llbracket e_1 \rrbracket (\llbracket e_2 \rrbracket) : \llbracket \sigma \rrbracket$ by P-T-App.

Case S-T-StringIn-I. Suppose $\Psi \vdash \mathsf{rstr}[s]$: $\mathsf{stringin}[r]$. By definition, $[\![\mathsf{rstr}[s]]\!] = \mathsf{str}[s]$ and $[\![\mathsf{stringin}[r]]\!] = \mathsf{string}$. By P-T-String, $\Theta \vdash \mathsf{str}[s]$: string .

Case S-T-Concat. Suppose $\Psi \vdash \mathsf{rconcat}(e_1; e_2)$: $\mathsf{stringin}[r_1 \cdot r_2]$ and $\Psi \vdash e_1$: $\mathsf{stringin}[r_1]$ and $\Psi \vdash e_2$: $\mathsf{stringin}[r_2]$. We have by definition:

By induction, $\llbracket \Psi \rrbracket \vdash \llbracket e_1 \rrbracket$: string and $\llbracket \Psi \rrbracket \vdash \llbracket e_2 \rrbracket$: string. Thus, $\llbracket \Psi \rrbracket \vdash \mathsf{pconcat}(\llbracket e_1 \rrbracket; \llbracket e_2 \rrbracket)$: string by P-T-Concat.

Case S-T-Case. Suppose $\Psi \vdash \mathsf{rstrcase}(e_1; e_2; x, y.e_3) : \sigma \text{ and } \Psi \vdash e_1 : \mathsf{stringin}[r] \text{ and } \Psi \vdash e_2 : \sigma \text{ and } \Psi, x : \mathsf{stringin}[\mathsf{lhead}(r)], y : \mathsf{stringin}[\mathsf{ltail}(r)] \vdash e_3 : \sigma.$ We have by definition:

By induction, $\llbracket \Psi \rrbracket \vdash \llbracket e_1 \rrbracket$: string and $\llbracket \Psi \rrbracket \vdash \llbracket e_2 \rrbracket : \llbracket \sigma \rrbracket$, and $\llbracket \Psi \rrbracket, x : \mathsf{string}, y : \mathsf{string} \vdash \llbracket e_3 \rrbracket : \llbracket \sigma \rrbracket$. By P-T-Case, we have that $\llbracket \Psi \rrbracket \vdash \mathsf{pstrcase}(\llbracket e_1 \rrbracket ; \llbracket e_2 \rrbracket ; x, y. \llbracket e_3 \rrbracket) : \llbracket \sigma \rrbracket$.

Case S-T-Replace. Suppose $\Psi \vdash \mathsf{rreplace}[r](e_1; e_2)$: $\mathsf{stringin}[\mathsf{lreplace}(r, r_1, r_2)]$ and $\Psi \vdash e_1$: $\mathsf{stringin}[r_1]$ and $\Psi \vdash e_2$: $\mathsf{stringin}[r_2]$. We have by definition:

By induction, we have that $\llbracket \Psi \rrbracket \vdash \llbracket e_1 \rrbracket$: string and $\llbracket \Psi \rrbracket \vdash \llbracket e_2 \rrbracket$: string. By P-T-Regex, we have that $\llbracket \Psi \rrbracket \vdash \mathsf{rx}[r]$: regex. By P-T-Replace, we have that $\llbracket \Psi \rrbracket \vdash \mathsf{preplace}(\mathsf{rx}[r]; \llbracket e_1 \rrbracket; \llbracket e_2 \rrbracket)$: string.

Case S-T-SafeCoerce. Suppose $\Psi \vdash \mathsf{rcoerce}[r](e)$: $\mathsf{stringin}[r]$ and $\Psi \vdash e$: $\mathsf{stringin}[r']$. By definition, $[\![\mathsf{rcoerce}[r](e)]\!] = [\![e]\!]$. By induction, $[\![\Psi]\!] \vdash [\![e]\!]$: $[\![\mathsf{stringin}[r']]\!]$.

Case S-T-Check. Suppose $\Psi \vdash \mathsf{rcheck}[r](e_0; x.e_1; e_2) : \sigma \text{ where } \Psi \vdash e_0 : \mathsf{stringin}[r'] \text{ and } \Psi, x : \mathsf{stringin}[r] \vdash e_1 : \sigma \text{ and } \Psi \vdash e_2 : \sigma.$ We have by definition:

```
\begin{split} [\![\mathsf{rcheck}[r](e_0;x.e_1;e_2)]\!] &= \mathsf{pcheck}(\mathsf{rx}[r];[\![e_0]\!];(\lambda x:\mathsf{string.}[\![e_1]\!])[\![e_0]\!];[\![e_2]\!]) \\ &\quad [\![\mathsf{stringin}[r']]\!] = \mathsf{string} \\ &\quad [\![\Psi,x:\mathsf{stringin}[r]]\!] = [\![\Psi]\!],x:\mathsf{string} \end{split}
```

By induction, we have that $\llbracket \Psi \rrbracket \vdash \llbracket e_0 \rrbracket : \text{string and } \llbracket \Psi \rrbracket, x : \text{string} \vdash \llbracket e_1 \rrbracket : \llbracket \sigma \rrbracket \text{ and } \llbracket \Psi \rrbracket \vdash \llbracket e_2 \rrbracket : \llbracket \sigma \rrbracket.$

By P-T-Regex, we have that $\llbracket \Psi \rrbracket \vdash \mathsf{rx}[r]$: regex.

By P-T-Abs and P-T-App, we have that $\llbracket \Psi \rrbracket \vdash (\lambda x : \mathsf{string}. \llbracket e_1 \rrbracket)(\llbracket e_0 \rrbracket) : \llbracket \sigma \rrbracket$.

By P-T-Check, we have that $\llbracket \Psi \rrbracket \vdash \mathsf{pcheck}(\mathsf{rx}[r]; \llbracket e_0 \rrbracket; (\lambda x : \mathsf{string}. \llbracket e_1 \rrbracket)(\llbracket e_0 \rrbracket); \llbracket e_2 \rrbracket) : \llbracket \sigma \rrbracket.$

Assumption L (Substitution Translation). [[v/x]e] = [[v]/x][e].

Assumption M (Multistep Closure). The following closure properties hold:

- 1. If $\iota_1 \mapsto^* \iota'_1$ then $\iota_1(\iota_2) \mapsto^* \iota'_1(\iota_2)$.
- 2. If $\iota_2 \mapsto^* \iota_2'$ then $\dot{v}_1(\iota_2) \mapsto^* \dot{v}_1(\iota_2')$.
- 3. If $\iota_1 \mapsto^* \iota_1'$ then $pconcat(\iota_1; \iota_2) \mapsto^* pconcat(\iota_1'; \iota_2)$.
- 4. If $\iota_2 \mapsto^* \iota_2'$ then $\mathsf{pconcat}(\mathsf{str}[s_1]; \iota_2) \mapsto^* \mathsf{pconcat}(\mathsf{str}[s_1]; \iota_2')$.
- 5. If $\iota_1 \mapsto^* \iota'_1$ then $\mathsf{pstrcase}(\iota_1; \iota_2; x, y.\iota_3) \mapsto^* \mathsf{pstrcase}(\iota'_1; \iota_2; x, y.\iota_3)$
- 6. If $\iota_1 \mapsto^* \iota'_1$ then preplace $(\iota_1; \iota_2; \iota_3) \mapsto^*$ preplace $(\iota'_1; \iota_2; \iota_3)$.
- 7. If $\iota_2 \mapsto^* \iota_2'$ then $\operatorname{preplace}(\operatorname{rx}[r]; \iota_2; \iota_3) \mapsto^* \operatorname{preplace}(\operatorname{rx}[r]; \iota_2'; \iota_3)$.
- 8. If $\iota_3 \mapsto^* \iota_3'$ then $\operatorname{preplace}(\operatorname{rx}[r];\operatorname{str}[s];\iota_3) \mapsto^* \operatorname{preplace}(\operatorname{rx}[r];\operatorname{str}[s];\iota_3')$.
- 9. If $\iota_1 \mapsto^* \iota'_1$ then $\operatorname{pcheck}(\iota_1; \iota_2; \iota_3; \iota_4) \mapsto^* \operatorname{pcheck}(\iota'_1; \iota_2; \iota_3; \iota_4)$.
- $\textit{10. If } \iota_2 \mapsto^* \iota_2' \textit{ then } \mathsf{pcheck}(\mathsf{rx}[r]; \iota_2; \iota_3; \iota_4) \mapsto^* \mathsf{pcheck}(\mathsf{rx}[r]; \iota_2'; \iota_3; \iota_4).$

Theorem 9 (Translation Correctness). If $\emptyset \vdash e : \sigma \text{ and } e \mapsto e' \text{ then } \llbracket e \rrbracket \mapsto^* \llbracket e' \rrbracket$.

Proof. By induction on evaluation and typing.

Case SS-E-AppLeft. Suppose $e_1(e_2) \mapsto e'_1(e_2)$ and $e_1 \mapsto e'_1$. We have by definition that

$$[e_1(e_2)] = [e_1]([e_2])$$

 $[e'_1(e_2)] = [e'_1]([e_2])$

The only typing rule that applies is S-T-App, so $\emptyset \vdash e_1 : \sigma_2 \to \sigma$.

Inductively, we have that $[e_1] \mapsto^* [e'_1]$.

By Assumption M.1, we have that $[e_1]([e_2]) \mapsto^* [e'_1]([e_2])$.

Case SS-E-AppRight. Suppose $v_1(e_2) \mapsto v_1(e_2')$ and $e_2 \mapsto e_2'$. We have by definition that

$$[v_1(e_2)] = [v_1]([e_2])$$
$$[v_1(e_2')] = [v_1]([e_2'])$$

The only typing rule that applies is S-T-App, so $\emptyset \vdash e_2 : \sigma_2$.

Inductively, we have that $[e_2] \mapsto^* [e'_2]$.

By Assumption M.2, we have that $\llbracket v_1 \rrbracket (\llbracket e_2 \rrbracket) \mapsto^* \llbracket v_1 \rrbracket (\llbracket e_2' \rrbracket)$.

Case SS-E-AppAbs. Suppose $(\lambda x : \sigma_2.e')(v_2) \mapsto [v_2/x]e'$. We have by definition and Assumption L that

$$[(\lambda x : \sigma_2.e')(v_2)] = (\lambda x : [\sigma_2].[e'])[v_2]$$
$$[[v_2/x]e'] = [[v_2]/x][e']$$

By PS-E-AppAbs, we have that $(\lambda x : \llbracket \sigma \rrbracket . \llbracket e' \rrbracket) \llbracket v_2 \rrbracket \mapsto [\llbracket v_2 \rrbracket / x] \llbracket e' \rrbracket . _$

define multistep semantics

Case SS-E-Concat-Left. Suppose $\operatorname{rconcat}(e_1; e_2) \mapsto \operatorname{rconcat}(e'_1; e_2)$ and $e_1 \mapsto e'_1$. We have by definition that

$$[rconcat(e_1; e_2)] = pconcat([e_1]; [e_2])$$

 $[rconcat(e'_1; e_2)] = pconcat([e'_1]; [e_2])$

The only typing rule that applies is S-T-Concat, so $\emptyset \vdash e_1$: stringin $[r_1]$.

Inductively, we have that $[e_1] \mapsto^* [e'_1]$.

By Assumption M.3, we have that pconcat($\llbracket e_1 \rrbracket$; $\llbracket e_2 \rrbracket$) \mapsto^* pconcat($\llbracket e_1' \rrbracket$; $\llbracket e_2 \rrbracket$).

Case SS-E-Concat-Right. Suppose $\operatorname{rconcat}(\operatorname{rstr}[s]; e_2) \mapsto \operatorname{rconcat}(\operatorname{rstr}[s]; e_2')$ and $e_2 \mapsto e_2'$. We have by definition that

The only typing rule that applies is S-T-Concat, so $\emptyset \vdash e_2$: stringin $[r_2]$.

Inductively, we have that $\llbracket e_2 \rrbracket \mapsto^* \llbracket e_2' \rrbracket$.

By Assumption M.4, we have that pconcat($\mathsf{str}[s]; \llbracket e_2 \rrbracket$) $\mapsto^* \mathsf{pconcat}(\mathsf{str}[s]; \llbracket e_2' \rrbracket)$.

Case SS-E-Concat. Suppose $\mathsf{rconcat}(\mathsf{rstr}[s_1]; \mathsf{rstr}[s_2]) \mapsto \mathsf{rstr}[s_1s_2]$. We have by definition that

$$\begin{aligned} \llbracket \mathsf{rconcat}(\mathsf{rstr}[s_1];\mathsf{rstr}[s_2]) \rrbracket &= \mathsf{pconcat}(\mathsf{str}[s_1];\mathsf{str}[s_2]) \\ \llbracket \mathsf{rstr}[s_1s_2] \rrbracket &= \mathsf{str}[s_1s_2] \end{aligned}$$

By PS-E-Concat, we have pconcat($str[s_1]$; $str[s_2]$) $\mapsto str[s_1s_2]$.

Case SS-E-Case-Left Suppose $\mathsf{rstrcase}(e_1; e_2; x, y.e_3) \mapsto \mathsf{rstrcase}(e_1'; e_2; x, y.e_3)$ and $e_1 \mapsto e_1'$. We have by definition that:

$$\begin{split} & [\![\mathsf{rstrcase}(e_1; e_2; x, y.e_3)]\!] = \mathsf{pstrcase}([\![e_1]\!]; [\![e_2]\!]; x, y.[\![e_3]\!]) \\ & [\![\mathsf{rstrcase}(e_1'; e_2; x, y.e_3)]\!] = \mathsf{pstrcase}([\![e_1'\!]]; [\![e_2]\!]; x, y.[\![e_3]\!]) \\ \end{split}$$

The only typing rule that applies is S-T-Case, so $\emptyset \vdash e_1$: stringin[r].

Inductively, $\llbracket e_1 \rrbracket \mapsto^* \llbracket e_1' \rrbracket$.

By Assumption M.5, we have that $\mathsf{pstrcase}(\llbracket e_1 \rrbracket; \llbracket e_2 \rrbracket; x.y. \llbracket e_3 \rrbracket) \mapsto^* \mathsf{pstrcase}(\llbracket e_1' \rrbracket; \llbracket e_2 \rrbracket; x, y. \llbracket e_3 \rrbracket).$

Case SS-E-Case- ϵ -Val. Suppose rstrcase(rstr[ϵ]; e_2 ; $x, y.e_3$) $\mapsto e_2$. We have by definition that:

rename this rule

$$[\![\mathsf{rstrcase}(\mathsf{rstr}[\epsilon]; e_2; x, y.e_3)]\!] = \mathsf{pstrcase}(\mathsf{str}[\epsilon]; [\![e_2]\!]; x, y.[\![e_3]\!])$$

By PS-E-Case-Epsilon, we have that $\mathsf{pstrcase}(\mathsf{str}[\epsilon]; \llbracket e_2 \rrbracket; x, y. \llbracket e_3 \rrbracket) \mapsto \llbracket e_2 \rrbracket.$

Case SS-E-Case-Concat. Suppose $\operatorname{rstr}[as]; e_2; x, y.e_3) \mapsto [\operatorname{rstr}[a], \operatorname{rstr}[s]/x, y]e_3$. We have by Assumption L and definition that

rename this rule

By PS-E-Case-Cons, we have that $\mathsf{pstrcase}(\mathsf{str}[as]; \llbracket e_2 \rrbracket; x, y. \llbracket e_3 \rrbracket) \mapsto^* [\mathsf{str}[a], \mathsf{str}[s]/x, y] \llbracket e_3 \rrbracket.$

Case SS-E-Replace-Left. Suppose $replace[r](e_1; e_2) \mapsto replace[r](e'_1; e_2)$ and $e_1 \mapsto e'_1$. We have by definition that

$$\begin{split} & \llbracket \mathsf{rreplace}[r](e_1; e_2) \rrbracket = \mathsf{preplace}(\mathsf{rx}[r]; \llbracket e_1 \rrbracket; \llbracket e_2 \rrbracket) \\ & \llbracket \mathsf{rreplace}[r](e_1'; e_2) \rrbracket = \mathsf{preplace}(\mathsf{rx}[r]; \llbracket e_1' \rrbracket; \llbracket e_2 \rrbracket) \end{split}$$

The only typing rule that applies is S-T-Replace, so $\emptyset \vdash e_1$: stringin $[r_1]$.

Inductively, we have that $[e_1] \mapsto^* [e'_1]$.

By Assumption M.7, we have that preplace $(rx[r]; [e_1]; [e_2]) \mapsto^* preplace (rx[r]; [e'_1]; [e_2])$.

Case SS-E-Replace-Right. Suppose $replace[r](e_1; e_2) \mapsto replace[r](e_1; e'_2)$ and $e_2 \mapsto e'_2$. By definition,

The only typing rule that applies is S-T-Replace, so $\emptyset \vdash e_2$: stringin $[r_2]$.

Inductively, we have that $\llbracket e_2 \rrbracket \mapsto^* \llbracket e_2' \rrbracket$.

By Assumption M.8, we have that preplace $(rx[r]; [e_1]; [e_2]) \mapsto^* preplace (rx[r]; [e_1]; [e_2])$.

Case SS-E-Replace. Suppose rreplace $[r](rstr[s_1]; rstr[s_2]) \mapsto rstr[lreplace(r, s_1, s_2)]$. By definition,

$$\begin{split} & \llbracket \mathsf{rreplace}[r](\mathsf{rstr}[s_1];\mathsf{rstr}[s_2]) \rrbracket = \mathsf{preplace}(\mathsf{rx}[r];\mathsf{str}[s_1];\mathsf{str}[s_2]) \\ & \llbracket \mathsf{rstr}[\mathsf{lreplace}(r,s_1,s_2)] \rrbracket = \mathsf{str}[\mathsf{lreplace}(r,s_1,s_2)] \end{split}$$

By PS-E-Replace, we have that preplace(rx[r]; $str[s_1]$; $str[s_2]$) \mapsto $str[lreplace(r, s_1, s_2)]$.

Case SS-E-SafeCoerce-Step. Suppose $rcoerce[r](e) \mapsto rcoerce[r](e')$ and $e \mapsto^* e'$. By definition,

$$[\![\mathsf{rcoerce}[r](e)]\!] = [\![e]\!]$$

$$[\![\mathsf{rcoerce}[r](e')]\!] = [\![e']\!]$$

The only typing rule that applies is S-T-SafeCoerce, so $\emptyset \vdash e'$: stringin[r']. Inductively, $[\![e]\!] \mapsto^* [\![e']\!]$.

Case SS-E-SafeCoerce. Suppose $rcoerce[r](rstr[s]) \mapsto rstr[s]$. By definition,

$$[\![\mathsf{rcoerce}[r](\mathsf{rstr}[s])]\!] = \mathsf{str}[s]$$

$$\mathsf{rstr}[s] = \mathsf{str}[s]$$

We have that $\mathsf{str}[s] \mapsto^* \mathsf{str}[s]$ because the multistep judgement is reflexive.

Case SS-E-Check-StepLeft. Suppose $\operatorname{rcheck}[r](e_0; x.e_1; e_2) \mapsto \operatorname{rcheck}[r](e'_0; x.e_1; e_2)$ and $e_0 \mapsto e'_0$. We have by definition that

Inductively, $e_0 \mapsto^* e'_0$.

By Assumption M.10, we have that

Case SS-E-Check-Ok Suppose $\operatorname{rcheck}[r](\operatorname{rstr}[s]; x.e_1; e_2) \mapsto [\operatorname{rstr}[s]/x]e_1$ and $s \in \mathcal{L}\{r\}$. We have by definition that

By PS-E-Check-OK, we have that

$$\mathsf{pcheck}(\mathsf{rx}[r];\mathsf{str}[s];(\lambda x:\mathsf{string}.\llbracket e_1 \rrbracket)(\mathsf{str}[s]);\llbracket e_2 \rrbracket) \mapsto (\lambda x:\mathsf{string}.\llbracket e_1 \rrbracket)(\mathsf{str}[s])$$

By PS-E-AppAbs, we have that

$$(\lambda x : \mathsf{string}.\llbracket e_1 \rrbracket)(\mathsf{str}[s]) \mapsto [\mathsf{str}[s]/x]\llbracket e_1 \rrbracket$$

Case SS-E-Check-NotOk Suppose rcheck[r](rstr[s]; $x.e_1; e_2$) $\mapsto e_2$ and $s \notin \mathcal{L}\{r\}$. By definition,

$$\lceil \operatorname{rcheck}[r](\operatorname{rstr}[s]; x.e_1; e_2) \rceil = \operatorname{pcheck}(\operatorname{rx}[r]; \operatorname{str}[s]; (\lambda x : \operatorname{string}. \llbracket e_1 \rrbracket)(\operatorname{str}[s]); \llbracket e_2 \rrbracket)$$

By PS-E-Check-NotOK, we have that

$$pcheck(rx[r]; str[s]; (\lambda x : string.[e_1])(str[s]); [e_2]) \mapsto [e_2]$$

References

[1] N. Fulton, C. Omar, and J. Aldrich. Statically typed string sanitation inside a python. SPLASH '14. ACM, 2014.

$$r ::= \epsilon \mid a \mid r \cdot r \mid r + r \mid r *$$
 $a \in \Sigma$

Figure 1: Syntax of regular expressions over the alphabet Σ .

$$\begin{array}{lll} \sigma & ::= & \sigma \rightarrow \sigma \mid \operatorname{stringin}[r] & \text{source types} \\ e & ::= & x \mid v \mid e(e) & \text{source terms} \\ \mid & \operatorname{rconcat}(e;e) \mid \operatorname{rstrcase}(e;e;x,y.e) & s \in \Sigma^* \\ \mid & \operatorname{rreplace}[r](e;e) \mid \operatorname{rcoerce}[r](e) \mid \operatorname{rcheck}[r](e;x.e;e) \\ v & ::= & \lambda x.e \mid \operatorname{rstr}[s] & \text{source values} \end{array}$$

Figure 2: Syntax of λ_{RS}

$$\tau \ \ \, ::= \ \, \tau \rightarrow \tau \ \, | \ \, \text{string} \ \, | \ \, \text{regex} \qquad \qquad \text{target types} \\ \ \, \iota \ \ \, ::= \ \, x \ \, | \ \, \dot{v} \ \, | \ \, \iota(\iota) \ \, | \ \, \text{pstrcase}(\iota;\iota;x,y.\iota) \\ \ \, | \ \, \text{preplace}(\iota;\iota;\iota) \ \, | \ \, \text{pstrcase}(\iota;\iota;x,y.\iota) \\ \ \, \dot{v} \ \ \, ::= \ \, \lambda x.\iota \ \, | \ \, \text{str}[s] \ \, | \ \, \text{rx}[r] \qquad \qquad \text{target values}$$

Figure 3: Syntax of λ_P

Figure 4: Typing rules for λ_{RS} . The typing context Ψ is standard.

$$\begin{array}{c} | e \mapsto e | \\ \\ \hline SS-E-APPLEFT \\ e_1 \mapsto e'_1 \\ \hline e_1(e_2) \mapsto e'_1(e_2) \end{array} \\ \hline SS-E-APPRIGHT \\ e_2 \mapsto e'_2 \\ \hline restriction e_1 \mapsto e'_1 \\ \hline e_1(e_2) \mapsto e'_1(e_2) \end{array} \\ \hline SS-E-CONCAT-RIGHT \\ \hline e_2 \mapsto e'_2 \\ \hline restriction e_2 \mapsto e'_2 \\ \hline restriction e_1 \mapsto e'_1 \\ \hline restriction e_2 \mapsto e'_2 \\ \hline restriction e'_1 (e_1; e'_2) \mapsto restr[e] \\ \hline SS-E-SAFECOERCE \\ \hline SS-E-SAFECOERCE \\ \hline SS-E-CHECK-STEPLEFT \\ \hline restriction e'_1 (e'_1; e'_2) \mapsto restr[e] \\ \hline restric$$

Figure 5: Small step semantics for λ_{RS} .

Figure 6: Typing rules for λ_P . The typing context Θ is standard.

$$\iota \mapsto \iota$$

$$\begin{array}{lll} & \text{PS-E-APPLEFT} \\ & \iota_1 \mapsto \iota_1' \\ & \iota_1(\iota_2) \mapsto \iota_1'(\iota_2) \end{array} & \begin{array}{ll} & \text{PS-E-APPRBS} \\ & \iota_2 \mapsto \iota_2' \\ & \vdots \\ & \iota_1(\iota_2) \mapsto \iota_1'(\iota_2) \end{array} & \begin{array}{ll} & \text{PS-E-ConcatLeft} \\ & \iota_1 \mapsto \iota_1' \\ & \vdots \\ & \iota_1(\iota_2) \mapsto \iota_1'(\iota_2) \end{array} & \begin{array}{ll} & \text{PS-E-ConcatLeft} \\ & \iota_2 \mapsto \iota_2' \\ & \text{pconcat}(\text{str}[s_1]; \iota_2) \mapsto \text{pconcat}(\text{str}[s_1]; \iota_2') \end{array} & \begin{array}{ll} & \text{PS-E-ConcatLeft} \\ & \vdots \\ & \vdots \\ & \text{pconcat}(\text{str}[s_1]; \iota_2) \mapsto \text{pconcat}(\text{str}[s_1]; \iota_2') \end{array} & \begin{array}{ll} & \text{PS-E-ConcatLeft} \\ & \iota_2 \mapsto \iota_2' \\ & \text{pconcat}(\text{str}[s_1]; \iota_2) \mapsto \text{pconcat}(\text{str}[s_1]; \iota_2') \end{array} & \begin{array}{ll} & \text{PS-E-ConcatLeft} \\ & \text{pconcat}(\text{str}[s_1]; \text{str}[s_2]) \mapsto \text{str}[s_1s_2] \end{array} \\ & \begin{array}{ll} & \text{PS-E-Case-Epsilon} \\ & \text{pstrcase}(\iota_1; \iota_2; x, y.\iota_3) \mapsto \text{pstrcase}(\iota_1'; \iota_2; x, y.\iota_3) \end{array} & \begin{array}{ll} & \text{PS-E-ReplaceLeff} \\ & \iota_1 \mapsto \iota_1' \\ & \text{preplace}(\tau_1; \iota_2; \iota_3) \mapsto \text{preplace}(\iota_1'; \iota_2; \iota_3) \end{array} & \begin{array}{ll} & \text{PS-E-ReplaceLeff} \\ & \iota_1 \mapsto \iota_1' \\ & \text{preplace}(\tau_1; \iota_2; \iota_3) \mapsto \text{preplace}(\tau_1; \iota_2; \iota_3) \end{array} & \begin{array}{ll} & \text{PS-E-ReplaceRight} \\ & \iota_3 \mapsto \iota_3' \\ & \text{preplace}(\tau_1; \iota_2; \iota_3) \mapsto \text{preplace}(\tau_1; \iota_2; \iota_3) \end{array} & \begin{array}{ll} & \text{PS-E-CheckLeft} \\ & \iota_1 \mapsto \iota_1' \\ & \text{preplace}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \text{preplace}(\tau_1; \iota_2; \iota_3; \iota_4) \end{array} & \begin{array}{ll} & \text{PS-E-CheckLeft} \\ & \iota_1 \mapsto \iota_1' \\ & \text{preplace}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \text{preplace}(\tau_1; \iota_2; \iota_3; \iota_4) \end{array} & \begin{array}{ll} & \text{PS-E-Check-OK} \\ & s \in \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{r\} \\ & \text{pcheck}(\tau_1; \iota_2; \iota_3; \iota_4) \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \notin \mathcal{L}\{\tau_1; \iota_2; \iota_3; \iota_4\} \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \vdash \mathcal{L}\{\tau_1; \iota_2; \iota_3; \iota_4\} \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text{PS-E-Check-NOTOK} \\ & s \vdash \mathcal{L}\{\tau_1; \iota_2; \iota_3; \iota_4\} \mapsto \iota_4 \end{array} & \begin{array}{ll} & \text$$

Figure 7: Small step semantics for λ_P

Figure 8: Translation from λ_{RS} to λ_P

 $[\![\mathsf{rcheck}[r](e;x.e_1;e_2)]\!] = \mathsf{pcheck}(\mathsf{rx}[r];[\![e]\!];(\lambda x : \mathsf{string}.[\![e_1]\!])([\![e]\!]);[\![e_2]\!])$