1. Model Form

$f_i(\beta, x) = \sum_k \beta_k s_{ki}(x) + \mathcal{E}(x, z, t, j)$ $\sum_{k=0}^{Network} \beta_k s_{ki}(x)$

- f_i(β,x) is the value of the network objective function for actor (i), given:
 the current set of parameter estimates (β), and
 - state of the network (x).
 - For k effects, represented as s_{ki} , which may be based on
 - the network (x) or
 - individual attributes (z)
 - Estimated with some random disturbance (ϵ) associated with x, z, t & j
 - Which can be formulated (remember ERGM model) as conditional

probabilities:

$$\Pr(x(i \to j) \mid x, z) = \frac{\exp\left(f_i^{\text{net}}(\beta^{\text{net}}, x, z, t, j)\right)}{\sum_{i} \exp\left(f_i^{\text{net}}(\beta^{\text{net}}, x, z, t, k)\right)}$$

- - $x(i\rightarrow j)$ is the network obtained from x by changing tie to actor j;
 - $x(i \rightarrow i)$ formally stands for keeping the network as is