Расчет мощности выделяемой в полевом транзисторе, работающем в ключевом режиме.

Полевой транзистор - это прибор, обладающий четырьмя выводами: Исток, Сток, Затвор, Подложка. Управляющее напряжение прилагается между Затвором и Истоком. В большинстве случаев подложка внутри корпуса соединена с истоком, так что наружу торчат три вывода. Некоторые виды полевых транзисторов не имеют подложки (транзисторы с p-n переходом).

Полевые транзисторы имеют высокое входное сопротивление постоянному току, что является неоспоримым преимуществом при относительно редком переключении. Расход энергии на управление транзистором в этом случае минимален. Если переключаться надо часто, то в дело вступают емкости затвор - исток и затвор - сток. На их зарядку нужно тратить энергию. Так что по мере роста частоты переключений расход энергии растет, и у полевого транзистора появляются конкуренты, например, биполярные. Но есть еще одно ключевое преимущество - отрицательный температурный коэффициент при большом токе нагрузки. Этот эффект проявляется в том, что по мере нагрева при большом токе стока сопротивление полевого транзистора нарастает. С одной стороны это позволяет соединять полевые транзисторы параллельно без всяких проблем. Токи в них быстро выравниваются самостоятельно, без всякого нашего участия. С другой стороны цельный мощный полевой транзистор можно представить, как соединенные параллельно маломощные (такие полосочки токопроводящего канала полевика). Сила тока в этих полосочках при прогреве выравнивается, так что полевой транзистор проводит ток по всему сечению канала равномерно. Это обуславливает способность полевых транзисторов работать при больших токах. Например, биполярный транзистор имеет положительный температурный коэффициент. Если в какой-то части кристалла появляется большая проводимость, чем вокруг, то это место прогревается сильнее, туда устремляется все больший ток, что может привести к выгоранию кристалла.

При работе качестве силовых переключателей двухтактных трансформаторных источниках питания, транзисторы постоянно переключаются с частотой тактового генератора, при этом через них протекает ток первичной обмотки трансформатора и в результате этого на кристалле выделяется тепло. Что бы оценить количество выделяемого тепла и рассчитать тепловую мощность необходимо определить средний ток, протекающий через ключ. В случае двухтактного преобразователя он будет равен половине тока первичной обмотки, для оценочного расчета в данных целях можно использовать амплитудное значение тока первичной обмотки (это даст слегка завышенную оценку тепловыделения). Так же необходимо знать какое напряжение среднее и максимальное будет на стоках транзистора (величина напряжения зависит от напряжения питания, топологии преобразователя, И величины переключении резистивно-индуктивной нагрузки, а так же от параметров нагрузки во вторичной цепи, индуктивности рассеяния трансформатора, паразитной индуктивности дорожек платы и соединительных проводов и т.д.). Оценочно определить величину напряжения можно по таблице 1.

Таблица 1 – напряжение на ключах.

топология	Usd _min	Usd
push-pull	2 Ипит	2,5 Uпит
bridge	1 Ипит	1,5 Uпит
half-bridge	0,5 U пит	1 U пит

Исходными данными являются результаты индивидуального расчета импульсного трансформатора.

Зная параметры тока через транзистор, напряжения на нем, потребляемой мощности и частоты переключений можно выбрать конкретный прибор, техническая информация на который понадобится для дальнейших тепловых расчетов, пример технической информации на транзистор приведен в ПРИЛОЖЕНИИ2.

Потери на проводимость полевого транзисторного ключа

Потери на силовом ключе в открытом состоянии (потери на проводимость или статические потери). Все эти потери рассеиваются силовым ключом в виде тепловой мощности. В справочнике по мощному полевому транзистору всегда приведено сопротивление сток - исток в открытом состоянии $R_{DS\,(ON)}$ (см. ПРИЛОЖЕНИЕ 2). В комментарии к этой величине приводится режим измерения, а именно управляющее напряжение и ток стока рис.1.

Electrical Characteristics, at Tj=25°C unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =0.25mA	600	-	-	V
Drain-Source avalanche	V _{(BR)DS}	V _{GS} =0V, I _D =20A	-	700	-	
breakdown voltage	` '					
Gate threshold voltage	V _{GS(th)}	I _D =2700μA, V _{GS} =V _{DS}	2.1	3	3.9	
Zero gate voltage drain current	I _{DSS}	V _{DS} =600V, V _{GS} =0V,				μA
		<i>T</i> _j =25°C,	-	0.5	25	
		T _j =150°C	-	-	250	
Gate-source leakage current	I _{GSS}	V _{GS} =30V, V _{DS} =0V	-	-	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10V, I _D =30A,				Ω
		<i>T</i> _j =25°C	-	0.06	0.07	
		T _j =150°C	-	0.16	-	
Gate input resistance	R _G	f=1MHz, open Drain	-	0.62	-	

Рисунок 1 – пример электрических характеристик mosfet.

Время, когда транзистор открыт, вычисляется по формулам:

$$T = \frac{1}{V}$$

$$t_{om\kappa} = 0.4 \cdot T$$
(1)

Имеет смысл всегда выбирать управляющее напряжение выше или равное приведенному в режиме измерения, тогда потери можно оценить сверху по формуле:

$$P_{ON} = \frac{t_{np}}{t_{np} + t_{3a\kappa}} \cdot R_{DS} \cdot I^2_{DS(ON)}$$
(3)

Значение $I_{DS(ON)}$ возьмём как среднее значение тока через транзистор.

Кроме того, необходимо проверить, нет ли превышений по максимальному импульсному току $I_{D\ pulse}$ и максимально допустимой периодически выделяемой энергии E_{AS} .

Maximum Ratings

Parameter	Symbol	Value	Unit
Continuous drain current	I _D		Α
T _C = 25 °C		47	
T _C = 100 °C		30	
Pulsed drain current, t_p limited by T_{jmax}	I _{D puls}	141	
Avalanche energy, single pulse I _D = 10 A, V _{DD} = 50 V	E _{AS}	1800	mJ
Avalanche energy, repetitive t_{AR} limited by T_{jmax}^1 . $I_D = 20 \text{ A}$, $V_{DD} = 50 \text{ V}$	E _{AR}	1	
Avalanche current, repetitive t_{AR} limited by T_{imax}	I _{AR}	20	Α
Gate source voltage static	V _{GS}	±20	V
Gate source voltage AC (f >1Hz)	V _{GS}	±30	
Power dissipation, T _C = 25°C	P _{tot}	415	W
Operating and storage temperature	$T_{\rm i}, T_{\rm sta}$	-55 +150	°C

Рисунок 2 — пример максимально допустимых параметров mosfet.

Действительно, если транзистор открывается на очень короткое время, то средняя рассеиваемая мощность будет невелика, но импульсный ток может превысить допустимые значения. Если время в открытом состоянии среднее, то и мощность, и максимально допустимый импульсный ток могут быть в норме, но импульсно выделенная энергия может превышать максимальный порог и вывести ключ из строя. Энергию оного импульса можно оценить по формуле:

$$E_{AS} = t_{np} \cdot R_{DS} \cdot I^2_{DS(ON)} \tag{4}$$

Потери при переключении полевого транзисторного ключа.

Для расчета потерь на переключение (динамических потерь) необходимо рассчитать время необходимое транзистору на переключение. Дело в том, что для включения (перехода в открытое состояние) полевого транзистора необходимо, чтобы напряжение на затворе достигло заданного. Для выключения, напряжение должно упасть до напряжения закрывания. У полевого транзистора имеют место быть емкости затвор – исток (C_{GS} или C_{iss}) и затвор – сток (C_{GD} или C_{rss}). Для открытия, емкость затвор - исток надо зарядить, а емкость затвор - сток разрядить. Для закрытия - наоборот. Временем перезарядки этих емкостей и определяется время переключения полевого транзистора.

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions		Values		
			min.	typ.	max.	
Transconductance	<i>g</i> fs	V _{DS} ≥2*/ _D *R _{DS(on)max} ,	-	40	-	s
		I _D =30A				
Input capacitance	C _{iss}	V _{GS} =0V, V _{DS} =25V,	-	6800	•	pF
Output capacitance	Coss	f=1MHz	-	2200	•	
Reverse transfer capacitance	C _{rss}		-	145	•	
Effective output capacitance,2)		V _{GS} =0V,	-	193	-	pF
energy related		V _{DS} =0V to 480V				
Effective output capacitance,3)	C _{o(tr)}		-	412	-	
time related						
Turn-on delay time	t _{d(on)}	V _{DD} =380V, V _{GS} =0/13V,	-	18	-	ns
Rise time	<i>t</i> _r	I_D =47A, R_G =1.8Ω,	-	27	-	
Turn-off delay time	t _{d(off)}	T _j =125	-	111	165]
Fall time	t_{f}		-	8	12]

Gate Charge Characteristics

Gate to source charge	Q _{gs}	V _{DD} =350V, I _D =47A	-	24	-	nC
Gate to drain charge	Q _{gd}		-	121	-	
Gate charge total	Qg	V _{DD} =350V, I _D =47A,	-	252	320	
		V _{GS} =0 to 10V				
Gate plateau voltage	V _(plateau)	V _{DD} =350V, I _D =47A	-	5.5	-	V

Рисунок 3 –пример прочих параметровтоsfet.

Емкость затвор - исток обычно намного больше емкости затвор - сток. Но первая емкость должна заряжаться до напряжения управления, а вторая до напряжения на стоке. А это напряжение при индуктивной нагрузке может быть в разы больше коммутируемого

напряжения. Так что при коммутации большого напряжения или при высокой скорости переключения вклад емкости затвор - сток может быть очень существенным. При резком закрывании ключа емкость затвор - сток может даже приоткрывать транзистор, что крайне нежелательно.

Время на переключение можно оценить по следующей формуле:

$$t_{sw} = \frac{(Q_{GS} + Q_{GD})}{I_G},\tag{5}$$

Где Q_{GS} - заряд необходимый чтобы зарядить емкость C_{GS} , Q_{GD} - заряд, необходимый чтобы зарядить емкость C_{GD} , I_{G} -ток заряжающий емкости транзистора, задается сопротивлением в цепи затвора, исходя из желаемой скорости переключения и возможностей драйвера (для расчетов использовать схему платы управления из приложения).

Величины Q_{GD} и Q_{GS} приведены в технической документации (см. рис 3), для определенного напряжения на затворе и стоке транзистора, что бы определить величины зарядов в конкретном случае, можно воспользоваться соотношениями:

$$Q_{GD} = U_G \cdot C_{GD}; \ Q_{GS} = (U_G + U_{D \max}) \cdot C_{GS}$$
(6)

, где $U_{G}\,\,_{\mathrm{U}}U_{D\,\mathrm{max}}\,$ напряжение на затворе и стоке соответственно.

Зная время переключения можно оценить энергию, выделяемую в кристалле за одно переключение:

$$E_{sw} = \int_0^{t_{sw}} R_{SD}(t) I_D^2(t) dt$$
 (7)

Так как зависимости тока и сопротивления канала транзистора уникальны для каждой модели и даже конкретного образца, применять приведенную формулу не представляется возможным. Более простым способом оценить выделение тепла при переключении можно, обратившись к технической документации на прибор, где обязательно должна быть приведенапередаточная характеристика транзистора (см.рис.4).

8 Typ. transfer characteristics

 $I_D = f(V_{GS}); V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$ parameter: $t_D = 10 \mu s$

Рисунок 4 – график передаточной характеристики mosfet.

По графику передаточной характеристики и условий измерения находим среднее значение сопротивления R_{SD} и тока I_{SD} .

Зная сколько энергии, выделяется на транзисторе на одно переключение, можно ориентировочно рассчитать какая средняя тепловая мощность будет выделяться в кристалле из-за переключений транзистора на рабочей частоте:

$$P_{sw} = 2 \cdot E_{sw} \cdot f \tag{8}$$

Тогда полная выделяемая мощность будет равна сумме статической и динамической составляющих.

$$P = P_{ON} + P_{sw} \tag{9}$$

Тепловые расчеты.

Одним из основных вопросов, определяющих эксплуатационную надежность РЭС, является вопрос создания в приборе таких температур, при которых интенсивность отказов используемых в нем элементов поддерживалась бы в пределах, предусмотренных ТУ. Основная задача обеспечения необходимого теплового режима заключается в создании таких условий, при которых количество тепла, рассеянного в окружающую среду, будет равным мощности тепловыделения аппаратуры. Тогда температура нагретой зоны в приборе перестает нарастать, а тепловые параметры при всех прочих равных условиях стабилизируются. Такое состояние называют установившимся тепловым режимом, его можно получить при постоянстве всех параметров, участвующих в процессе теплопередачи.

Все схемные элементы РЭС делят на две группы. К первой относят источники тепла, или термоактивные элементы (электронные лампы, теплонагруженные ППП, ИМС, резисторы и др.), которые при работе рассеивают тепло в окружающую среду. Ко второй группе относятся схемные элементы, которые при работе не выделяют тепла и часто обладают сравнительно низкой термостойкостью (кварцевые стабилизаторы, термосопротивления, конденсаторы, слабонагруженные ППП и ИМС и др.) Такие элементы, нагретые от соседних источников тепла, могут изменить свои параметры или отказать.

В РЭС из всей потребляемой мощности электрической энергии, как правило, на полезное преобразование расходуется лишь незначительная часть, а остальная, большая часть, преобразуется в тепловую, нагревает внутреннюю зону прибора и окружающую среду. Для определения воздействующей на элементы РЭС температуры в реальных условиях эксплуатации необходимо выполнить определенные расчеты, основными исходными данными для которых являются следующие.

- 1. Суммарная мощность Р, выделяющаяся в блоке, Вт.
- 2. Мощность Рэ, выделяющаяся в теплонагруженном элементе, Вт.
- 3. Температура Тс окружающей среды, С.
- 4. Геометрические характеристики блока: длина а, ширина b, высота h, диаметр (для цилиндрических объектов) D, м

Все электронные компоненты выделяют тепло, поэтому умение рассчитывать тепловые режимы так, чтобы не выходить за рабочие режимы элемента необходимо уметь любому электронщику. Стоит также отметить, что срок службы полупроводникового прибора напрямую зависит от его температуры. Существует правило, гласящее, что при увеличении температуры кристалла на 10 °C срок его службы падает вдвое. Это значит, что при увеличении температуры кристалла с 60 до 100 °C срок его службы снизится уже в 16 раз! Поэтому эффективное охлаждение — залог надежной и долгой работы устройства.

Тепловые расчеты очень просты и имеют очень много общего с расчетами электронных схем, так тепло очень похоже на электрической ток, и для тепловых расчетов можно использовать обычный закон Ома, только необходимо провести замену:

- 1. Напряжение (U) заменяется температурой (T)
- 2. Ток (I) заменяется мощностью (P)

3. Сопротивление заменяется тепловым сопротивлением. Обычное сопротивление имеет размерность Вольт/Ампер, а тепловое – °C/Ватт

В итоге, закон Ома $U = I \cdot R$ заменяется на свой тепловой аналог $T = P \cdot R_{\Theta}$, где R_{Θ} -обозначает тепловое сопротивление.

Если тепловой расчет проводится для активных полупроводниковых приборов (транзистор, микросхема, диод). В таком случае необходимо учитывать, что тепло выделяется именно в кристалле полупроводника, а не на корпусе или подложке, поэтому расчет нужно начинать непосредственно от источника появления тепла. В технической документации на любой полупроводниковый прибор обязательно указана максимально допустимая температура кристалла. Обычно, предельную температуру кристалла называют T_i .

Кроме того из технической документации на прибор для тепловых расчетов необходимо узнать величины тепловых сопротивлений.

• R_{Θ} ja - тепловое сопротивление кристалл-атмосфера. Данный параметр применяется для расчета температуры кристалла в случае использования прибора без радиатора или любого принудительного охлаждения.

В случае работы без радиатора тепловая схема выглядит следующим образом:

Рисунок 5-тепловая схемабез радиатора.

Обратим внимание на то, что температура "земли" не нулевая, а равняется температуре окружающего воздуха (T_a). Температура воздуха зависит от того, в каких условиях находится прибор.

• $R_{\odot}jc$ — сопротивление от кристалла до теплоотвода корпуса. Дается в ТД. В приведенном выше примере $R_{\odot}jc$ = 5 °C/B_T.

Если прибор используется с радиатором, то тепловая схема несколько усложняется:

Рисунок 6- тепловая схемас радиатором.

В данной схеме появилось еще несколько тепловых сопротивлений:

• $R_{\odot}cr$ – сопротивление корпус-радиатор. Это сопротивление зависит от того, что находится между корпусом и радиатором. Не следует полагать, что крепление прибора непосредственно на радиатор увеличит теплопроводность схемы, наоборот, неидеальность поверхностей радиатора и теплоотвода нагревающегося элемента значительно увеличит тепловое сопротивление в данной точки тепловой цепи. Поэтому для заполнения пустот и микронеровностей используют различные теплопроводные пасты или специальные прокладки. Иногда кроме задачи снижения теплового сопротивления такие прокладки используют для обеспечения изоляции корпуса элемента от радиатора.

В приложении 3 приведено значение теплопроводности для различных видов термопаст и материалов теплопроводных прокладок.

Зная теплопроводность $K\left[\frac{Bm}{M\cdot C^{\circ}}\right]$, можно рассчитать тепловое сопротивление

 $R_{\Theta}cr$ по следующей формуле:

$$R_{\Theta}cr = \frac{h_{np}}{K \cdot S_{np}} \tag{10}$$

, где: h_{np} и S_{np} толщина и площадь прокладки соответственно.

• $R_{\odot}ra$ – тепловое сопротивление между радиатором и атмосферой. Определяется геометрией радиатора, наличием обдува, положением радиатора и множеством других факторов.

Максимальное значение теплового сопротивления радиатора можно вычислить следующим образом:

Сначала необходимо вычислить суммарное максимальное тепловое сопротивление на пути от кристалла к окружающей среде:

$$R_{\Theta} ja \le \frac{T_J - T_a}{P} \tag{11}$$

, где T_J , T_a и P температура кристалла, окружающей среды и рассеиваемой мощности в кристалле соответственно. Тогда максимальное сопротивление радиатора: $R_{\Theta}ra=R_{\Theta}ja-R_{\Theta}jc-R_{\Theta}cr \tag{12}$

При таком значении сопротивлений и температуры окружающей среды температура кристалла будет максимально допустимой. В реальных условия она должна быть значительно ниже. Какая именно должна быть температура зависит от особенностей самого прибора, условий эксплуатации, схемотехники устройства, и от особенностей конструкции.

Расчет радиатора.

В радиоэлектронных средствах (РЭС) для интенсификации теплоотдачи от теплонагруженных элементов часто применяют теплоотводящие радиаторы. Подобные конструктивные решения могут быть заложены непосредственно в кожухе РЭС и некоторые радиоэлементы, либо радиаторы являются самостоятельной конструкцией, применяемой для отвода тепла в мощных полупроводниковых приборах, интегральных микросхемах, СВЧ-приборах, тепловых трубах и т. д. Назначение радиатора состоит в значительном снижении теплового сопротивления между корпусом теплонагруженного элемента и окружающей средой, а, следовательно, в уменьшении перегрева элемента. Обеспечение допустимого теплового режима элементов увеличивает их надёжность и время безотказной работы.

Для современных РЭС характерна тенденция уменьшения габаритов при возрастании их мощности, что приводит к необходимости создания эффективных

малогабаритных теплоотводов. За время развития радиоэлектроники было разработано большое количество различных типов радиаторов. Широкое применение получили радиаторы, различающиеся по виду площади поверхности теплообмена. Это: 1 – пластинчатые, 2 – ребристые, 3 – петельно-проволочные, 4 – жалюзийные, 5 – пластинчато-штыревые (игольчато-штыревые) радиаторы.

Рисунок 7– эскиз ребристого радиатора.

Рисунок 8-эскиз петельно-проволочного радиатора.

Рисунок 9-схематичный вид жалюзийного радиатора.

Рисунок 10-схематичный вид элементарной ячейки жалюзийного радиатора.

Рисунок 11-структурный видигольчато-штыревого радиатора.

Рисунок 12- виды штырей радиаторов: а - конусный; б - пирамидальный

Конструкции названных радиаторов зависят от вида конвекции: естественным путём или вынужденным с помощью нагнетателей.

При принудительной конвекции рассеиваемая мощность радиатора увеличивается и его можно сделать более компактным. По способу изготовления радиатора разделяются на конструкции, выполненные:

- штамповкой;
- литьем;
- фрезерованием;
- полученные путём набора отдельных пластин.

По типу вентиляции:

- с естественной вентиляцией;
- с принудительной вентиляцией.

Эти типы радиаторов отличаются плотностью расположения ребер или игл. Для радиаторов с естественной вентиляцией расстояние между ребрами (иглами) должно быть не менее 4 мм. К тому же такие радиаторы рассчитаны для работы только в вертикальном положении, когда воздух под действием естественных сил движется между ребрами. Если расстояние между ребрами (иглами) составляет около 2 мм, то такой радиатор рассчитан на принудительную вентиляцию и требует установки вентилятора.

По применяемым материалам:

- цельные алюминиевые;
- цельные медные;
- алюминиевые с медным основанием.

Теоретические основы теплообмена.

Прежде чем приступить к расчету радиатора, вспомним, что существует три типа теплообмена: конвекция, излучение и кондуктивный теплообмен.

Конвективный теплообмен

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью. Под конвекцией теплоты понимают перенос теплоты при перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой температурой. Конвекция возможна только в подвижной среде, здесь перенос теплоты неразрывно связан с переносом самой среды. Различают естественную (свободную) конвекцию и вынужденную конвекцию.

Естественная (свободная) конвекция возникает под действием неоднородного поля внешних массовых сил (сил гравитационного, инерционного, магнитного, или электрического поля), приложенных к частицам жидкости внутри системы.

Вынужденная конвекция возникает под действием внешних поверхностных сил, приложенных на границах системы, или под действием однородного поля массовых сил, действующих в жидкости внутри системы. Вынужденная конвекция может осуществляться также за счет запаса кинетической энергии, полученной жидкостью вне рассматриваемой системы.

Конвективный теплообмен между твердым и газообразным телом в общем виде подчиняется закону Ньютона - Рихмана:

$$P_{n} = \alpha_{k} S_{s} (T_{s} - T_{a}) \tag{13}$$

, где $P_{\scriptscriptstyle n}$ - тепловая мощность потерь, которую радиатор должен рассеять в окружающем пространстве.

 $\alpha_{\it k}$ - коэффициент конвекционного взаимодействия между радиатором и средой.

 S_s -эффективная площадь поверхности радиатора.

 T_s -температура радиатора.

 T_{a} - температура окружающей среды.

Из соотношения (13) следует, что тепловое сопротивление радиатор-среда при учете конвекционного взаимодействия будет иметь вид:

$$R_{sa} = \frac{1}{\alpha_k S_s} \tag{14}$$

индекс *k*при сопротивлении показывает, что теплообмен осуществляется только конвекцией. Конвективная составляющая теплообмена в большей степени зависит от конструктивных особенностей радиатора, его расположении и наличие обдува. В таблице 2 приводятся расчетные формулы коэффициента теплообмена для некоторых применяемых на практике случаев.

Таблица 2 – формулы расчета коэффициента теплообмена при конвекции.

таолица 2 формулы расчета ко	ээффициента теплооомена при конвекции.
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Плоская поверхность радиатора, ориентированная горизонтально, нагретой сгороной вверх: $\alpha_{\rm k} = 1.3A_2 \sqrt[4]{\frac{T_S - T_a}{D}}$
	Плоская поверхность радиатора, ориентированная горизонтально, нагретой стороной вниз: $\alpha_k = 0.7A_2 \sqrt[4]{\frac{T_S - T_a}{D}}$
V V	Плоская поверхность радиатора, обдуваемая потоком воздуха со скоростью V : $\alpha_k = 0,66\lambda \sqrt{\frac{V}{v \cdot h}} \text{ для } \frac{Vh}{v} < 10^5$ $\alpha_k = 0,032\lambda \left[\frac{V}{v}\right] \text{ для } \frac{Vh}{v} > 10^5$ $\lambda - \text{ теплопроводность материала радиатора; } v - так называемый кинематический ко-эффициент вязкости среды (для воздуха v = 1,33 \cdot 10^5) h высота радиатора (в направлении потока)$

Значение коэффициента А2 выбирается по таблице 3, исходя из средней температуры радиатора.

Таблица 3- значение коэффициента А2.

T _{cp} , C	0	10	20	30	40	60	80	100	120	140	150
A_2	1,42	1,4	1,38	1,36	1,34	1,31	1,29	1,27	1,26	1,25	1,24

Лучевой теплообмен

При лучевом теплообмене перенос теплоты осуществляется электромагнитными волнами. При этом происходит двойное преобразование энергии. Вначале энергия теплового движения молекул преобразуется в энергию электромагнитного излучения. Затем происходит поглощение электромагнитного излучения другим телом и превращение ее в энергию теплового движения молекул. Воздух, через который передается тепловое излучение, практически не нагревается.

Тепловое излучение подводит теплоту к глубине высушиваемого материала, а не к ее поверхности в связи с тем, что обладает проникающей способностью

электромагнитных волн в данном диапазоне их длин. Теплоту переносят волны длиной 0,6–104 мкм. Этот диапазон охватывает красное, инфракрасное и сверхвысокочастотное (СВЧ) радиоволновое излучение.

Интенсивность теплового излучения резко возрастает с повышением температуры и при температурах, превышающих +600 °C, приобретает доминирующее значение по сравнению с другими способами передачи тепла.

Закон передачи энергии излучением очень похож на закон конвекции:

$$P_n = \alpha_{\scriptscriptstyle n} S_{\scriptscriptstyle s} (T_{\scriptscriptstyle s} - T_{\scriptscriptstyle a}) \tag{15}$$

где a_{π} –коэффициент теплообмена излучением.

По аналогии с конвективным теплообменом, тепловое сопротивление равно:

$$R_{sa} = \frac{1}{\alpha_{s} S_{s}} \tag{16}$$

Чтобы вычислить сопротивление необходимо найти коэффициент теплообмена:

$$\alpha_{\pi} = \varepsilon_{s} \varphi_{sa} f(T_{a} T_{s}) \tag{17}$$

,где $\varepsilon_{\scriptscriptstyle S}$ - приведенная степень черноты поверхности излучения.

 φ_{sa} - коэффициент облученности.

 $f(T_a T_s)$ -переходная температурная функция, определяемая разностью температур среды и радиатора.

Степень черноты различных материалов различных материалов приведена в таблице 4:

Таблица 4- степень чернотыразличных материалов.

Материал	ε _s
Алюминий с полированной поверхностью	0,040,06
Окисленный алюминий	0,200,31
Силуминовое литье	0,310,33
Черненый анодированный сплав	0,850,9
Латунь окисленная	0,22
Краски матовые темных цветов	0,920,96
Лак черный матовый	0,960,98

Для плоских радиаторов будем считать $\varphi_{sa}=1$. В случае ребристого радиатора коэффициент облученности рассчитывается по формуле:

$$\varphi_{sa} = \frac{a}{a + 2x} \tag{18}$$

, где a - расстояние между соседними ребрами, х- высота ребер.

Переходная температурная функция $f(T_a T_s)$ может быть определена из выражения:

$$f(T_a T_s) = 5.67 \cdot 10^{-8} \frac{(T_5 + 273)^4 - (T_a + 273)^4}{T_s - T_a}$$
(19)

Размерность значений функции $f(T_a T_s) - \text{Bt/}(\text{м}^2 {}^{\circ}\text{C})$.

Общий случай теплообмена

При расчете радиатора кондуктивным обменом тепла можно пренебречь, т.к. он учувствует только на участке передачи тепла через теплопроводящую прокладку. Приняв данное допущение тепловое сопротивление можно рассчитать по формуле:

$$R_{sa} = \frac{R_{sa} - k \cdot R_{sa}}{R_{sa} - k + R_{sa}}$$
 (20)

Однако необходимо учесть неравномерность прогрева радиатора:

$$R_{sa(p)} = \frac{R_{sa}}{g} \tag{21}$$

, где $R_{sa(p)}$ – реальное тепловое сопротивление радиатора,

g- коэффициент неравномерности прогрева.

ддля пластинчатого радиатора коэффициент неравномерности можно найти из графика:

Рисунок 13-график неравномерности прогрева пластинчатого радиатора.

ПРИЛОЖЕНИЕ 1

					I2[A]	I2.2[A]		
Bap№	ФИО	U1 [B]	U2[B]	U2.2[B]	max	max	f [кГц]	d cycle
1		220AC	12DC*	24DC	20	5	20-50	0,45
2		127AC	24DC*	24DC	10	10	20-50	0,45
3		380AC	27DC*	27DC	8	8	20-50	0,45
4		12DC	1000DC	-	0,1	-	20-50	0,45
5		24DC	1500DC	-	0,1	-	20-50	0,45
6		5DC	45DC	24DC	15	6	20-50	0,45
7		100DC	5DC*	12DC	5	10	20-50	0,45
8		310DC	12DC*	5DC	10	10	20-50	0,45
9		27AC	220AC	5DC	1	10	20-50	0,45
10		15DC	5DC*	5DC	3	10	20-50	0,45
11		9DC	9DC	12DC	4	8	25-200	0,4
12		220AC	100DC	100DC	2	1	25-200	0,4
13		127AC	310DC	100DC	1	1	25-200	0,4
14		380AC	24DC	12DC	10	8	25-200	0,4
15		12DC	12DC	5DC	7	10	25-200	0,48
16		24DC	24DC	5DC	5	10	25-200	0,48
17		5DC	5DC	12DC	5	10	25-200	0,48
18		100DC	12DC*	24DC	8	10	25-200	0,48
19		310DC	45DC	9DC	3	5	25-200	0,48
20		27AC	31DC	24DC	2	10	25-200	0,48
21		15DC	400DC	1	1	1	20-200	0,45
22		9DC	5000DC	-	0,1	-	20-200	0,45
23		380AC	9000DC	1	0,05	1	20-200	0,45
24		12DC	1000DC	1	0,5	-	20-200	0,45
25		24DC	600DC	-	1	-	20-200	0,45
26		5DC	30DC	24DC	5	10	100-200	0,45
27		100DC	100DC	5DC	3	5	100-200	0,45
28		15DC	500DC	-	2	-	100-200	0,45
29		9DC	24DC	12DC	16	12	100-200	0,45

ПРИЛОЖЕНИЕ 2

1. Транзистор SPW47N60C3.

SPW47N60C3

Прохладный MOS TM силовой транзистор Функция

- Новая революционная технология высокого напряжения
- Международные лучшие RDS (ON) в 247
- Очень низкий заряд затвора
- Периодическая лавина рейтинга
- Экстремальные DV / DT рейтингу
- Ультранизкие эффективные емкости

V OS @ Tjmax	650	В
$R_{_{DS(\alpha n)}}$	0,07	Ω
I_D	47	A

P-TO247

Тип	Пакет	Код заказа	Маркировка
SPW47N60C3	P-TO247	Q67040-S4491	47N60C3

Максимальная рейтинги

Параметр	Символ	Значение	Единип	
		<u></u>	a	
Непрерывный ток стока	I _D	47	A	
Tc= 25 ° C		30		
Γc= 100 ° C				
Импульсный ток стока, T _p ограничивается Т _{ртах}	I _{D puls}	141		
Лавина энергии, одного импульса	E _{AS}	1800	тДж	
$I_D = 10 \text{ A}, V_{DD} = 50 \text{ B}$				
Лавина энергии, повторяющиеся t_{AR} ограничивается T_{jmax1} $I_{D} = 20$, $V_{DO} = 50$ V	E _{AR}	1		
Ток лавины, повторяющиеся t _{де} ограничивается Т _{упах}	I _{AR}	20	A	
Запорный элемент источника статического напряжения	V _{GS}	±20	V	
Запорный элемент источника переменного напряжения (f>1Гц)	V_{GS}	строек 1 Гц30	\dashv	
Рассеиваемая мощность, при T=25° C	P _{tot}	415	w	
Температура эксплуатации и хранения	T _j , T _{stg}	-55 + 150	° C	

Максимальная рейтинги

Параметр	Символ	Значение	Единица
Крутизна потребления переменного напряжения $V_{\rm BS}$ = 480 B,	dv/dt	50	V/ns
I _D = 47 A, T _j = 125 ° C			

Тепловые характеристики

Параметр	Символ	Значения			Единиц а
		энн.	Номии.	Макс.	
Тепловое сопротивление, положение p – n - перехода	R _{thJC}	-	-	0,3	K/W
Тепловое сопротивление, среда p – n - перехода, этелированная	R _{thJC}	-	-	62	
Температура пайки, 1,6 мм (0,063 дюйма.) От случая в течение 10 секунд	T _{sold}	-	-	260	°C

Параметр	Символ	Условия		Значени	H	Единиц а
			Мин.	Номии.	Макс.	
Напряжение пробоя сток-исток	V _{(BR)DSS}	V _{GS} =0V, I _D =0.25mA	600	-	-	V
Лавинный сток-исток Пробивное напряжение	V _{(BR)CS}	V _{GS} =0V, I _D =20A	-	700	-	
Запорный элемент порогового напряжения	V _{GS(th)}	I_D =2700 μ A V_{GS} = V_{DS}	2.1	3	3.9	
Нулевой ток затвора напряжение стока	I _{DSS}	V ₂₆ = 600B, V ₆₆ = 0V, T _j = 25° C, T _j = 150° C	-	0,5	25 250	μА
Затвор-исток ток утечки	I _{GSS}	Vgs=30V, Vps=0V	-	-	100	nA
Сопротивление сток-истока в открытом состоянии	R _{DS(cn)}	Vgs=30V, Vps=0V T _j = 25° C, T _j = 150° C	-	0,06 0,16	0,07	Ω
Запорный элемент входного сопротивления	Rg	f=1MГ, с открытым стоком	-	0,62	-	

Электрические характеристики при T = 25 ° C, если не указано иное

Параметр	Симво	Условия		Значения			
	л		Мин	Номин.	Макс.	а	
Крутизна	$g_{\rm fs}$	V _{DS} ≥2*I _D *R _{DS(on)max} , / _D =30A	-	40	-	S	
Входная емкость	Ciss	V ₆₈ =0V, V _{D6} =25V,	-	6800	-	pF	
Выходная емкость	ess es	f-1MHz	-	2200	-		
Обратная емкость	Crss		-	145	-		
Эффективная выходная емкость Связанная с энергией ²⁾	C _{o(er)}	VGS=0V, V _{DS} =0V to 480V	-	193	-	pF	
Эффективная выходная емкость связанная со временем ³³	C _{o(tr)}		-	412	-		
Время включения задержки	T _{d(on)}	V ₁₀ =380V, V _{GS} =0/13V,	-	18	-	NS	
Время нарастания	t_r	/ _D =47A, R _G =1.8Q,	-	27	-		
Время выключения задержки	t _{d(eff)}	T _j =125	-	111	165		
Время спада	tr		-	8	12		

Характеристики заряда затвора

Затвор на источнике заряда	Q _{gs}	V ₁₀ =350V,/ ₀ =47A	-	24	-	nC
Затвор для отверстия заряда	Q _{gd}		-	121	-	
Полный заряд затвора	Qg	V _{DD} =350V,/ _D =47A,	-	252	320	
		V _{GS} =0 to 10V				
Напряжения на плато затвора	V _(platean)	V ₁₀ =350V,/ ₀ =47A	-	5.5	-	V

1) Repetitve лавина вызывает дополнительные потери мощности, которые могут быть рассчитаны как $P_{AV} = E_{AR} * f$.

2)Co (ER) является фиксированной емкости, что дает тот же накопленную энергию в то время как C_{oss} V_{DS} растет от 0 до 80% V_{DSS} .

 $^{3)}$ Co(tr) является фиксированной емкости, что дает в то же время зарядки, как Coss, а V_{DS} растет от 0 до 80% V_{DSS} .

		Значения			Единицы
		Мин.	Ном.	Макс.	1
Is	T _C =25°C	-	-	47	A
I _{SM}		-	-	141	
V _{sD}	Vos=0V, I _c =I _s	-	1	1.2	v
t _{rr}	V _s =35QV, I _i =I _s ,	-	580	-	ns
Qr,	di _p /dt=100A/μs	-	23	-	μС
Imn		-	73	-	A
di,,/dt		-	900	-	A/μs
	I_{SM} V_{SD} t_{rr} Qr_{r}	I_{SM} V_{SD} $V_{GS}=0V, I_{g}=I_{g}$ t_{rr} $V_{*}=35QV, I_{f}=I_{g},$ $di_{g}/dt=100A/\mu s$ I_{rrn}	I_{SM} - $V_{CS}=0V, I_{g}=I_{g}$ - I_{rr} - $V_{s}=35QV, I_{r}=I_{g}$ - I_{rr} - I_{rrn} - I_{rrn} - I_{rrn} - I_{rrn} - I_{rrn} - I_{rrn}	I_{SM}	I_{SM} 141 V_{SD} $V_{GS}=0V, I_{g}=I_{g}$ - 1 1.2 t_{rr} $V_{*}=35QV, I_{r}=I_{g},$ - 580 - Qr_{r} $di_{g}/dt=100A/\mu s$ - 23 - I_{rm} - 73 -

Символ	Значение	Единицы	Символ	Значение	Единицы
	номинальное			Номинальное	
Тепловое соп	ротивление		Тепловая ёмі	сость	
	0.002689	K/W	°th1	0.001081	Ws/K
Rth2	0.005407		°th2	0.004021	
*th3	0.011		°th3	0.005415	
*th4	0.054		°th4	0.014	
*th5	0.071		°th5	0.025	
*th6	Q.Q36		°th6	Q.158	

1 Рассеяние мощности

Ptot - f(TC)

3 Переходное тепловое комплексное сопротивление $\mathbf{Z}\mathbf{th}\mathbf{JC}=f\left(t\mathbf{p}\right)$

parameter: $D = t_p/T$

2 Область безопасной работы

ID = f(VDS)

Параметр : $\hat{D} = 0$, $T_c=25$ °C

4 Типичная выходная характеристика

 $I_D = f(V_{DS}); Tj=25^{\circ}C$

Параметр: tp = 10 ps, Vgs

5 Типовая выходная характеристика $I_{\rm n} = f({\rm V_{ns}}); \, T_{\rm j}{=}150^{\rm o}{\rm C}$

parameter: t_p = 10 μs, V_{GS}

7 Сток-исток в открытом состоянии сопротивления

 $m R_{DS(sn)}$ - $f(T_i)$ параметр : I_o - 47 A, V_{os} - 10 В

6 Типовой сток-исток на сопротивление

 $R_{\scriptscriptstyle \mathrm{DS(on)}}f(I_{\scriptscriptstyle \mathrm{D}})$ параметр: Т_/-150°С, $V_{\scriptscriptstyle \mathrm{GS}}$

8 Типовые передаточные характеристики $I_D = f(V_{GS}); \ V_{DS} \ge 2 \ x \ I_D \ x \ R_{DS(on)max}$ параметр: $t_p = 10 \ \mu s$

9 Типовой заряд затвора

 $VGS = f(Q_{Gase})$

параметр: Ір = 47 А импульса

11 Типовой наклон эксплутационного тока

 $di/dt={
m f(R_G)},$ индуктивной нагрузки, ${
m T_j}=125^{\circ}{
m C}$ параметр.: ${
m I_{ES}}=380{
m B},$ ${
m I_{GS}}=0/+13{
m B},$ ${
m I_D}=47{
m A}$

10 Первичная характеристика подложки диода

 I_r = $F(V_{SD})$ параметр: T_j , t_p = 10 μs

12 Типовое время переключения

 $t=f(\mathrm{R}_{\scriptscriptstyle \mathrm{G}})$, индуктивной нагрузки, T_j=125°C

13 Типовое время переключения

 $t=f\left(I_{\rm B}\right)$, индуктивной нагрузки, T_j=125°C параметр: I_{DS}=380B, I_{GS}=0/+13B, $R_{\rm G}$ = 1.8Q

15 Типовые коммутационные потери

 $E=f(I_D)$, индуктивной нагрузки, T_j =125°C параметр: I_{DS} =380B, I_{GS} =0/+13B, R_G =1.8Q

14 Typ. drain source voltage slope

 $dv/dt={
m f(R_G)}$, индуктивной нагрузки, ${
m T_j}=125^{\circ}{
m C}$ параметр: ${
m V_{zs}}=380{
m B}$, ${
m I_{GS}}=0/+13{
m B}$, ${
m I_{c}}=47{
m A}$

16 Typ. switching losses

 $E = I(R_G)$, индуктивной нагрузки, $T_j = 125$ °C параметр: $I_{DS} = 380$ B, $I_{GS} = 0/+13$ B, $I_{DS} = 47$ A

17 Лавина SOA

 $I_{AR}=f(t_{AR})$

19 Напряжение пробоя сток - исток $V_{(BR)DSS} = f(T_j)$

 ${f E}_{AS} = {f f} \, ({f T}_j)$ параметр: ${f I}_D = 10$ A, ${f V}_{DD} = 50$ В

20 Лавина потери мощности

 $P_{AR} = f(f)$ параметр: Едр=1мДж

21 Типовая емкость

 $C = f(V_{DS})$ параметр: V_{GS} =0B, f=1 Мгц

22 Типовая запасенная энергия C_{oss} $E_{oss} \! = \! f(V_{os})$

23 Типовое запирание порогового напряжения

 $V_{\rm GS(th)-}f(T_{\rm j})$ parameter: VGS - ^DS ; ID - 2.7 mA

Определение характеристик диода

2. Транзистор IRFP3077РbF.

IRFP3077PbF

Приложение:

- Высокая эффективность, синхронное выпрямление в ИИП
- Источники бесперебойного питания
- Высокая скорость переключение мощности
- Жесткий коммутатор и цепи высокой частоты

Преимущества:

- Во всем мире Лучший RDS (ON) в ТО-247
- Улучшенная ворота, Лавина и динамические DV / DT

Прочность:

 Полностью характеризуется емкостью и лавинным пробоем

SOA:

Улучшенная подложка диода DV / DT и DI / DT возможность

V _{DSS}	75V
R _{DS(on)} typ.	$2.8 m\Omega$
max.	3.3 m Ω
I _{D (Silicon Limited)}	200A ①
I _{D (Package Limited)}	120A

G	D	S
Затвор	Сток	Исток

Абсолютные максимальные значения

Символ	Параметры	Макс.	Еденицы
$I_D @ T_C = 25^{\circ}C$	Непрерывный ток стока, V _{GS} @ 10В	200Ф	A
I _D @ T _C = 100°C	Непрерывный ток стока, V _{GS} @ 10В	140Ф	
I _D @ T _C = 25°C	Непрерывный ток стока , V _{GS} @ 10В	120	
I _{DM}	Импульсный ток стока ©	850	
$P_D @ T_C = 25^{\circ}C$	Максимальная рассеиваемая мощность	340	W
	Линейное снижение номинальных коэффициентов	2.3	W/°C
V_{GS}	Затвор для источника напряжения	± 20	v
dV/dt	Пик диодного перехода ©	2.5	V/ns
T,	Операционный р-п-переход и	-55 to + 175	°C
T _{STG}	Диапазон температур хранения		
	Температура пайки, в течение 10 секунд	300	
	(1.6мм)		
	Монтаж крутящего момента, 6-32 или МЗ винт	10lb-in (1.1N-m)	

Характеристики лавины

E _{AS (Thermally limited)}	Лавинная энергия одиночного имульса €	200	mJ
I_{AR}	Ток лавин ©	See Fig. 14, 15, 22a, 22b,	A
EAR	Повторная лавинная энергия ©		mJ

Тепловое сопротивление

Символ	Параметры	Типовое	Максимальное	Единицы
Rac	Оболочка р-п-перехода ©	_	0.44	°C/W
Rocs	Корпус-раковина, плоская смазка поверхности	0.24	_	
R _{dIA}	Среда р-п-перехода ©	_	40	

Помехи электростатического происхождения @ T₁ = 25°C (если не указано иное)

Символ	Параметры	Ми	Ном	Макс.	E.t.	Условия
V _{(BR)DSS}	Сток – исток напряжения пробоя	7 5	_	_	V	V., = 0 B, L = 250MA
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Температурный коэффициент напряжения пробоя		0.09	_	V/°C	Исходная точка 25°С, I _D = 5мА (2)
ξ _{06(οκ)}	Сток – исток статического сопротивления	_	2.8	3.3	mΩ	V., = 10B, I, = 75A (5)
V _{GS(th)}	Затвор порогового напряжения	2.0	_	4.0	V	$V_{DS} = V_{GS}, I_D = 250_{\mu}A$
nss	Сток – исток тока утечки	_	_	20	μ	$V_{DS} = 75B$, $V_{GS} = 0B$
itea	Сток – исток тока утечки	_	_	250	_ ^	V., = 75B, V., = 0B, T, = 125°C
	Затвор - исток прямой утечкой	_	_	100	n A	$V_{GS} = 20B$
oss	Затвор - исток обратной утечки	нсток обратной утечки — — —		-100	A	V _{GS} = -20B
₹ _G	Затвор входного сопротивления	_	1.2	_	Ω	f = 1МГи, с открытым стоком

Символ	Параметры	Мин.	Ном.	Макс.	Ea.	Условия
gfs	Крутизна в прямом направлении	160	_	_	S	$V_{DS} = 50B, I_D = 75A$
Q _g	Общий заряд затвора	_	160	220	пC	I _D = 75A
Q _{gs}	Заряд затвор - истока	_	37	_		V _{ns} = 38B
Q _{gd}	Заряд затвор - стока	_	42	_		V _{cs} =10B(5)
t _{d(on)}	Затвор включения задержки времени	_	25	_	ns	V _{DO} = 38B
t _e	Время нарастания	_	87	<u> </u>		$I_D = 75A$
t _{d(eff)}	Выключение времени задержки	_	69	_		$R_G = 2.1 \Omega$
t _f	Время спада	_	95	_		V _{gs} = 10B (5)
Ciss	Входная емкость	_	9400	_	pF	$V_{GS} = 0B$
Coss	Выходная емкость	_	820	_		V _{DS} = 50B
Crss	Обратная передача емкости	_	350	_		f = 1.0MΓη
C _{oss} eff. (ER)	Эффективная выходная емкость (связанная с энергетикой) (7)		1090	_		V _{са} = 0B, V _{ва} = 0В для 60В (8), См. рис. 11
C _{oss} eff. (TR)	Эффективная выходная емкость (установленное время) (8)	_	1260	_		V _{cs} = 0B, V _{cs} = 0В для 60В (6), См рис. 5

Характеристики диода

Символ	Параметры	Ми	Ho	Мак	Eg.	Условия
Is	Источник постоянного тока	_	_	200	Α	Символ MOSFET
	(Подложка диода)]	Показывает
I _{SM}	Текущий импульсный источник	_	_	850		Неотъемлемое обратное
	(Подложка диода)					G р-п-перехода диода
V_{SD}	Диод напряжения в прямом направлении	_	_	1.3	V	T _J = 25°C, I _S = 75A, V _{GS} = 0B (5)
t _{er}	Время обратного восстановления	_	42	63	ns	T _J = 25°C V _R = 64B,
	время обратного восстановления	_	50	75	1	T _J = 125°C I _F = 75A
Q _{II}	Обратный заряд восстановления	_	59	89	nC	T ₃ = 25°C di/dt = 100 A/MS (5)
		_	86	130	1	T _J = 125°C
IRRM	Ток обратного восстановления	_	2.5	_	Α	T ₃ = 25°C
t _{on}	Прямое время включения	Внут	ренняя	время	включе	ния незначительна

Примечания:

- 1) Рассчитанный непрерывный ток на основе максимально допустимой температуре перехода. Ограничение тока провода связи в 120А. Обратите внимание, что ток ограничен, в связи с нагревом проводов устройства могут возникнуть проблемы с
- некоторыми монтажными механизмами.
- 2) Серийный рейтинг; ширина импульса ограничивается макс. температурным соединением
- 3) Ограничено T_{JMax} , начиная T_J = 25 ° C, L = 0.028mH RG = 25 Ω , I_{ASS} = 120A, V_{GS} = 10B. Часть не рекомендуется для использования

выше этого значения.

- 4) $I_{SD} \le 75 A,\, di \,/dt \le 400 A \,/\mu s,\, V_{DD} \le V_{(BR)DSS},\, T_{\rm J} \le 175\,\,^{\circ}$ С. 5) ширина импульса $\le 400 \mu s;\, Рабочий цикл<math display="inline">\le 2\%.$
- 6) C_{OSS} эфф. (TR) является фиксированной емкостью, что дает в то же время зарядки
- как C_{OSS} , а V_{DS} растет от 0 до 80% V_{DSS} . 7) C_{OSS} эфф. (ER) является фиксированной емкости, что дает ту же энергию, как
- $C_{OSS},$ а V_{DS} растет от 0 до 80% $V_{DSS}.$ 8) R_0 измеряют при T_j примерно 90 ° C

VDS, Сток-источника напряжения (В)

Рис. 1. Типичные выходные характеристики

V_{GS}, Затвор источника напряжения (В)

Рис. 3. Типичные передаточные характеристики

Рис. 5. Типовая емкость по сравнению с сток-источника напряжения

Рис. 2. Типичные выходные характеристики

Т₁, Температура соединения (°С)

Рис. 4. Нормализованное сопротивление от температуры

Рис. 6. Типичный Заряд затвора против затвор-источника напряжения

Рис. 7. Типичный сток-исток диода напряжения в прямом направлении

Рис. 9. Максимальный ток стока от

V_{DS} Сток-источника напряжения (В)

Рис. 11. Типичный Coss запасенной энергии

VDS, Сток к источнику напряжения (В)

Рис. 8. Максимально безопасная область

Рис 12. Максимальная лавинная энергия от тока стока

Рис. 13. Максимальное эффективное нестационарное тепловое сопротивление, переход-корпус

Рис. 14. Типичный ток лавинного от длительности импульса

Примечания на поиторяющихся лавинных кривых на рисунках 14, 15: 1. Приметне сбоя лавины:

Чисто тепловое явление, и происходит сбой при температуре избытка $T_{\rm Max}.$ Это подтверждено для каждого типа.

Безопасная эксплуатация в линине допускается да Т_{има} и не пренышая ее.
 Уравнение виже на основе схемы и сигналов, показанных на рисунках 16а, 16b.
 PD (пр) = Средняя россенваемая мощность на один импулье ланины.

5. BV = Номинальное напряжение пробоя (1,3 коэффициент для увеличения

вапражения во время лавины).

6. lav = Допустимый ток лавин.

7. ΔT = Допустимое повышение температуры перехода, не должно превышать Тома (предполагается, что в качестве 25 ° C на рис.14, 15).

 \mathbf{t}_{av} = Среднее время в лавине. $\mathbf{D} = \mathbf{H}\mathbf{arpyska}$ в лавине = \mathbf{t}_{av} *f

 Z_{thE} (D, t_{sc}) = Переходије тепловое сопротивление, на рисунке 13

$$\begin{array}{l} I_{av} = 2\Delta T / \left[1.3*BV*Z_{ft}\right] \\ E_{AS\,(AR)} = P_{D(ave)*}t_{av} \end{array}$$

Рис. 15. Максимальная лавина энергии от температуры

Рис. 16. Температура от порогового напряжения

Рис. 18 - Типичный ток восстановления по сравнению $di_{c}dt$

Рис. 17 - Типичный ток восстановления по сравнению di_sdt

Рис. 19 - Типичный накопленный заряд по сравнению $\mathrm{di}_{r}/\mathrm{dt}$

Рис. 20 - Типичный накопленный заряд по сравнению di_t/dt

Рис. 21. Пик диода восстановления dv / dt тестовая схема для N-канала

Рис. 22a. Ослабление индуктивной испытательной цепи

Рис 22б. Ослабление индуктивных осциплограмм

Рис. 23a. Время переключения схемы испытаний

Рис. 23б. Время переключения осциллограмм

Рис 24а. Тестовый заряд затвора

Рис 24б. Заряд затвора формы волны

3. Транзистор AUIRFP4004.

АВТОМОБИЛЬНАЯ МАРКА

AUIRFP4004

Особенности:

- Передовые технологии
- Низкое сопротивление
- 175°C Рабочая температура
- Быстрое переключение
- Повторная волна допускается до Тупах
- Не содержащий свинца, совместимый RoHS
- Квалифицированные автомобили *

V _{DSS}	40V
R _{DS(on)} typ.	1.35m Ω
max.	1.70m Ω
D (Silicon Limited)	350A①
I _{D (Package Limited)}	195A

Специально разработанный для автомобильного применения. HEXFET® Power MOSFET использует новейшие методы обработки для достижения чрезвычайно низкого сопротивления в кремниевой области. Дополнительные признаки этой конструкции 175 ° C - рабочая температура соединения, быстрое переключение скорости и улучшенный повторяющийся рейтинг лавины. Эти особенности объединяются и делают этот проект крайне эффективным, а также надежное устройство для использования в автомобильной технике и широкое разнообразие других применений.

- T	\sim	-24	47	n	r
- 1	u	-21	+ 5	m	۸.,

G	D	s
Затвор	Сток	Исток

Абсолютные максимальные значения

Напряжение, помимо тех, которые перечислены в разделе "Абсолютные максимальные" может привести к необратимому повреждению устройства. Это только рейтинги напряжения и функциональная работа устройства при этих или других условиях. Воздействие Абсолют-максимум рейтинга условия в течение длительного времени может повлиять на надежность устройства. Сопротивление и рассеиваемая мощность теплового рейтинга измеряется у платы, установленной и до сих пор кондиционерами. Температура окружающей среды (Т_А является 25 °C, если не указано иное.)

	Параметры	Макс.	Единицы
I _D @ T _C = 25°C	Непрерывный ток стока, V _{cs} @ 10В	350	
I _D @ T _C = 100°C	Непрерывный ток стока, V _{ск} @ 10В	250	
$I_D @ T_C = 25^{\circ}C$	Непрерывный ток стока, V _{ск} @ 10В	195	A
I _{DM}	Импульсный ток стока	1390	
$P_D @ T_C = 25^{\circ}C$	Максимальная рассеиваемая мощность	380	W
	Линейное снижение номинальных факторов	2.5	W/°C
V_{GS}	Затвор к источнику напряжения	± 20	V
EAS	Лавинная энергия одиночного импульса	290	mJ
I _{AR}	Ток лавины	См рис. 14, 15, 21а, 216	A
EAR	Серийная лавинная энергия		mJ
dv/dt	Пик восстановления диода	2.0	V/ns
T,	Операционный переход и	-55 to + 175	°C
r_{srg}	диапазон температур хранения		
	Температура пайки, в течение 10 секунд (1,6)	300	
	Крутящий момент монтажа, 6-32 или М3 винт	101b*in (1.1Nm)	

I GIINOBOG COI	противление			
Символ	Параметры	Номин.	Макс.	Еденицы
R _{ec}	Переход-корпус	_	0.40	
R _{ecs}	Корпус – приемник, смазанная плоская поверхность	0.24	_	°C/W
Raw	Переход ко внешним условиям	_	40	1

Статические электрические характеристики @ T_j = 25 ° C (если не указано иное)

Символ	Параметры	Мин	Ном.	Макс.	Ед.	Условия
	Сток – исток напряжения пробоя Напряжение пробоя температурный коэффициент	40	0.035			V _{o.} = 0B, I, = 250 _h A Ссылка на 25°C, I, = 5mA
R _{DS(on)}	Статический сток-исток сопротивления	_	1.35	1.70	mΩ	V _{at} = 10B, I _a = 195A
and a	Затвор порогового напряжения	2.0	-	4.0		$V_{DS} = V_{GS}, I_D = 250 \text{MA}$
gfs	Крутизна в прямом направлении	290		_	S	V _{isi} = 10B, I _i = 195A
IDSS	Сток-исток тока утечки	_		20	μA	V _{DS} = 40B V _{OS} = 0B
		-	_	250		V _{cc} = 40B, V _{cc} = 0B, T, = 125°C
I _{GSS}	Затвор – исток прямой утечки	_	_	200	nA	Vox = 20B
	Затвор – исток обратной утечки	_	_	-200		V ₀₀ = -20B

Динамические электрические характеристики @ T_J = 25 ° C (если не указано иное)

Символ	Параметры	Мин	Ном.	Макс.	Ед.	Условия
Q,	Общий заряд затвора	_	220	330	nC	I _D = 195A
Q _{gs}	Заряд затвор - истока	_	59	_]	V _{**} = 20B
Q _{gd}	Заряд затвор - стока	-	75	—		V.,=10B
Q _{sysc}	Общий заряд затвора синхронизации (Q _q - Q _{pt})	_	145	_		I _D = 195A, V _{ee} =0B, V _{ee} = 10B
R _{G(ini)}	Внутреннее сопротивление затвора	-	6.8	_	n	
t _{d(on)}	Включенное время задержки	—	59	_	ns	V = 20B
t,	Время нарастания	<u> </u>	370	_]	I _D = 195A
t _{d(off)}	Выключенное время задержки	_	160	_]	$R_{i} = 2.7\Omega$
t _t	Время спада	_	190	_]	V.,= 10B
Cisa	Входная емкость	_	8920	_	pF	V.,=0B
Coss	Выходная емкость	_	2360	_		V., = 25B
Cres	Пеердача обратной емкости	_	930	_		f = 1.0МГц
Coss eff. (ER)	Эффективная выходная емкость (связанная с энергией)	_	2860	_		V ₁₁ = 0B, V ₁₂ = 0B для 32B
Coss eff. (TR)	Эффективная выходная емкость (связанная со временем)	_	3110	_		V ₁₄ = 0B, V ₁₅ = 0B для 32B

Diode Characteristics

Символ	Параметры	Мин	Ном	Макс	Ед.	Условия		
Is	Источник постоянного тока	 -	-	350	Α	CHMBOJ MOSFET		
SM	(Подложка диода) Импульсный текущий источник		-	1390		показывая неотъемнемой обратиая G		
	(Подложка диода)					р-п-перехода диода.		
V _{SD}	Диод напряжения в прямом направлении		-	1.3	V	T _j = 25°C, I _s = 195A, V _{ss} = 0B		
er .	Время обратного восстановления		83	130	n s	T _J = 25°C V _n = 20B,		
		_	78	120	,	T _J = 125°C I, = 195A		
Q _v	Обратный заряд восстановления		190	290	n C	T _J = 25°C di/dt = 100A/ws		
			210	320	"	T _J = 125°C		
RRM	Ток обратного восстановления		4.0	-	A	TJ = 25°C		
t _{an}	Прямое время включения	Внутр	Внутреннее время включения незначительно (преобладают LS + LD)					

Рис 1. Типичные выходные характеристики

Рис 3. Типичные Передаточные характеристики

Рис 5. Типовая емкость от сток-источника напряжения

Рис 2. Типичные выходные характеристики

Рис 4. Нормированное сопротивлением от температуры

Рис 6. Типичный Заряд затвора от затвор-источника напряжения

Рис 7. Типичный сток-исток диода напряжения в прямом направлении

Рис 9. Максимальная ток стока от температура корпуса

Рис 11. Типичный Coss запасенной энергии

Рис 8. Максимально безопасная область

Рис 10. Сток - исток напряжения пробоя

Рис 12. Максимальная волна энергии от стока - истока

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Рис 14. Типичный ток лавины от длительности пульса

Примечания на повторяющихся лавинных кривых на рисунках 14, 15:

1. Принятие сбоя давины:

Чисто тепловое явление, и происходит сбой при температуре избытка $T_{\rm IMo}$. Это подтверждено для важдого типа.

Безопасная эксплуатация в лавине допускается да Т_{рых} и не превышая ес.
 Уравнение ниже на основе схемы и ситналов, показавных на рисунках 21a, 216.

 Р_{поин} = Средияв рассенваемая мощность на один импульс давины.
 ВV = Номинальное напряжение пробов (1,3 коэффициент для увеличения напряжения во время лавины).

 T_{Man} Допустимый ток лавии. 7. $\Delta T = Допустимое повышение температуры перехода, не должно превышать <math>T_{Man}$ (предволагается, что в качестве 25 ° C на рис.14, 15).

 t_{ac} = Среднее время в лавине. D = Нагрузка в лавине = t_{ac} *f

Z_{th2C}(D, t_{srt} = Переходные тепловое сопротивление, на рисунких 13

 $P_{D \text{ (ave)}} = 1/2 (1.3 \text{*BV*I}_{av}) = \Delta T / Z_{th,IC}$ Ian = 2AT/ [1.3*BV*Zn] EAS (AR) = Pojavaytan

Рис 15. Максимальная лавина энергии от температуры

Рис 16. Пороговое напряжение от температуры

Рис. 18 - Типичный ток восстановления от di/dt

Рис. 17 - Типичный ток восстановления от di/dt

Рис. 19 - Типичный накопленный заряд от di/dt

Рис. 20 - Типичный накопленный заряд от di/dt

Рис 20. Пик восстановления диода dv/dt Испытательная цепь

Рис 21a. Ослабление индуктивной испытательной цепи

Рис 21б. Ослабление индуктивных осциплограмм

Рис 22а. Время переключения схемы испытаний

Рис 22б. Время переключения осциллограмм

Рис 23а. Заряд затвора испытательной цепи

Рис 23б. Заряд затвора сигнала

TO-247AC Пакет Outline

Размеры указаны в миллиметрах (дюймах)

ТО-247АС Информация

