Relações e funções

1. Sejam R e S relações num conjunto A representadas pelas seguintes matrizes:

$$M_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Determine a forma matricial as relações $R \cup S$, $R \cap S$, $R \circ S$ e $S \circ R$.

- * 2 Exemplos de relações:
 - (a) Encontre relações R e S num conjunto A, tais que $R \circ S = S \circ R$.
 - (b) Encontre uma relação R num conjunto finito A, tal que $R^n = R^{n+1}$ para qualquer $n \in \mathbb{N}^+$.
- **3.** Seja A = $\{1, 2, 3, 4\}$ e \mathcal{R} e \mathcal{S} relações em A de definidas por: $\mathcal{R} = \{(1, 2), (1, 3), (2, 4), (4, 4)\}$ e $\mathcal{S} = \{(1, 1), (1, 2), (1, 3), (2, 3), (2, 4)\}$. Calcular $\mathcal{RS}, \mathcal{SR}, \mathcal{R}^2, \mathcal{R}^3, \mathcal{S}^2, \mathcal{S}^3$.
- 4. Prove que se R é uma relação reflexiva definida em A, então também R² é uma relação reflexiva.
- 5. Mostre que se R é uma relação simétrica, então o seu fecho transitivo R⁺ também é uma relação simétrica.
- 6. Determine o fecho transitivo das seguintes relações em {1,2,3,4}:
 - (a) $\{(1,2),(2,1),(2,3),(3,4),(4,1)\}.$
 - (b) $\{(2,1),(2,3),(3,1),(3,4),(4,1),(4,3)\}.$
 - (c) $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}.$
 - (d) $\{(1,1),(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,2)\}.$
- 7. Considera as seguintes relações em Z:

$$\begin{split} R &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \ : \ x \leq 1 + 2y\} \\ S &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \ : \ x|y\} \\ T &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \ : \ 2|x+y\} \\ U &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \ : \ \exists d \ (d>1 \ \land \ d|x \ \land \ d|y)\} \\ V &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \ : \ mdc(x,y) = 1\} \cup \{(0,0)\} \end{split}$$

Verifique quais destas relações são reflexivas, simétricas, anti-simétricas e transitivas. Quais as relações que são de ordem parcial? E de equivalência?

- 8. Quais dos seguintes elementos são comparáveis na ordem parcial $(\mathbb{Z}^+, |)$?
 - (a) 5, 15
- (b) 6,9
- (c) 8, 16
- (d) 7,7
- 9. Desenhe o diagrama de Hasse da relação \leq no conjunto $\{0, 2, 5, 10, 11, 15\}$.
- 10. Desenhe o diagrama de Hasse da relação de divisibilidade nos seguintes conjuntos:
 - (a) $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

- (b) $\{1, 2, 3, 5, 7, 11, 13\}$.
- (c) $\{1, 2, 3, 6, 12, 24, 36, 48\}$.
- (d) {1, 2, 4, 8, 16, 32, 64}.
- 11. A relação de ordem lexicográfica < no conjunto dos pares de números naturais é definida por

$$(x,y) \prec (z,w) \iff x < z \lor (x = z \land y \le w)$$

- (a) Escreva em compreensão de forma mais simples os conjuntos $\{(x,y) \in \mathbb{N} \times \mathbb{N} : (x,y) \prec (2,3)\}$ e $\{(x,y) \in \mathbb{N} \times \mathbb{N} : (2,3) \prec (x,y)\}$.
- (b) Mostra que ≺ é uma relação de ordem, isto é, é reflexiva, transitiva e anti-simétrica.
- 12. Seja $R \subseteq \mathbb{Z}^2$, tal que a R b se e só se a b é um número inteiro par e não negativo. Verifique que R define uma relação de ordem em \mathbb{Z} . Será R uma relação de ordem total? Justifique.
- * 13 Sejam R e S relações de equivalência num conjunto A. Indique, justificando, quais das relações seguintes são também relações de equivalência em A. Considere depois que R e S são ordens parciais em A. Indique, justificando, quais das seguintes relações, são ordens parciais em A.
 - (a) $R \cap S$
 - (b) $R \cup S$
 - (c) $R \setminus S$
 - (d) $R \circ S$
- 14. Averigua se são verdadeiras ou falsas as afirmações seguintes, justificando a sua resposta.
 - (a) Se $r \subseteq A \times B$ e $s \subseteq B \times C$ são relações binárias não vazias então $rs = s \circ r$ não é vazia.
 - (b) Se f \subseteq A \times B e $g \subseteq$ B \times C e f $g = g \circ$ f é uma função, então f e g são funções.
 - (c) Seja $R \subseteq A \times B$; então $RR^{-1} = \mathcal{I}_A$ e $R^{-1}R = \mathcal{I}_B$ se e só se R é uma função bijectiva.
 - (d) Se $A \neq \emptyset$ é um conjunto finito, então $R \subseteq A \times A$ é uma função se existir pelo menos um 1 em cada linha da matriz de R.
- 15. Determine se cada uma das seguintes funções é injectiva.

(a)
$$f: \mathbb{Z} \to \mathbb{Z}$$

 $f(x) = 2x + 1$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$

 $f(x) = x^2 - 5$

(e)
$$f: \mathbb{Z} \to \mathbb{Z}$$

 $f(x) = 2^x + 1$

(b)
$$f: \mathbb{Q} \to \mathbb{Q}$$

 $f(x) = 2x + 1$

(d)
$$f: \mathbb{Z} \to \mathbb{Z}$$

 $f(x) = x^3 - x$

16. Para cada uma das seguintes funções $f: \mathbb{Z} \to \mathbb{Z}$ determine se são injectivas e/ou sobrejectivas. Para as não sobrejectivas determine o seu contra-domínio.

(a)
$$f(x) = x + 7$$

(c)
$$f(x) = -x + 5$$

(e)
$$f(x) = x^2 + x$$

(b)
$$f(x) = 2x - 3$$

(d)
$$f(x) = x^2$$

(f)
$$f(x) = x^3$$

17. Sejam A, A' e B conjuntos tais que |A| = 5, |B| = 4, $A' \subseteq A$ e |A'| = 3. De quantas maneiras distintas é possível estender uma função $g: A' \to B$ a uma função $f: A \to B$?

- 18. Dê um exemplo de uma função $f: A \to B$ e dois conjuntos $A_1, A_2 \subseteq A$ de tal modo que $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2)$.
- \star 19 Dê um exemplo de uma função $f:\mathbb{N}\to\mathbb{Z}$ que seja:
 - (a) Nem injectiva, nem sobrejectiva.
 - (b) Injectiva, mas não sobrejectiva.
 - (c) Sobrejectiva, mas não injectiva.
 - (d) Sobrejectiva e injectiva.
- ★ 20 Para cada um dos seguintes pares de conjuntos, defina uma bijecção entre os dois. Justifique brevemente que a função definida é uma bijecção.
 - (a) $\mathbb{N} \in \mathbb{Z} \setminus \mathbb{N}$.
 - (b) \mathbb{N} e \mathbb{Z} .
 - (c) \mathbb{N}^+ e \mathbb{Q}^+ , onde $\mathbb{Q}^+=\{\frac{a}{b}:a,b\in\mathbb{N}^+\}$. (Consideramos nesta questão que dois elementos $\frac{a}{b}$ e $\frac{c}{d}\in\mathbb{Q}^+$, são considerados iguais apenas se a=c e b=d).