250B: Commutative Algebra For the Morbidly Curious

Nir Elber

Spring 2022

CONTENTS

Contents		2
_	Introduction to Dimension 1.1 March 31	3
Lie	st of Definitions	c

THEME 1

INTRODUCTION TO DIMENSION

In this sense the algebraic geometers have never left paradise: There is no snake (that is, Peano curve) in the garden.

—David Eisenbud

1.1 March 31

Welcome back from spring break.

1.1.1 Review

We start with a little review. Here was our central definition.

Definition 1.1. The *Krull dimension* of a ring R, denoted $\dim R$, is the supremum of the length r of a chain of distinct primes

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r$$
.

Further, if $\mathfrak{p} \subseteq R$ is prime, we defined the codimension

$$\operatorname{codim} \mathfrak{p} := \dim R/\mathfrak{p}.$$

As an example of something we showed, $\dim R = 0$ if and only if R is Artinian. We also showed that integral extensions preserve dimension.

Proposition 1.2. Fix a ring homomorphism $\varphi:R\to S$ which makes S into an integral R-algebra. Then, for any $\mathfrak{p}\in\operatorname{Spec} R$ such that $\ker\varphi\subseteq\mathfrak{p}$, there exists $\mathfrak{q}\in\operatorname{Spec} S$ such that

$$\mathfrak{p}=\varphi^{-1}(\mathfrak{q}).$$

In fact, for any ideal $I \subseteq S$, we have $\dim S/I = \dim R/\varphi^{-1}(I)$.

And we also showed the principal ideal theorem.

Theorem 1.3. Fix a Noetherian ring R. Given $x \in R$, set \mathfrak{p} to be a minimal prime over (x). Then

$$\operatorname{codim}\mathfrak{p}\leq 1.$$

We also generalized this to minimal primes over ideals I with s generators. In particular, if $\mathfrak{p}=(x_1,\ldots,x_r)$, then

$$\operatorname{codim} \mathfrak{p} \leq r$$
.

We were even able to provide a converse.

Corollary 1.4. Fix $\mathfrak p$ a prime ideal of a ring R with codimension r. Then there are elements x_1, \ldots, x_r such that $\mathfrak p$ is minimal over (x_1, \ldots, x_r) .

Example 1.5. Given a polynomial ring $k[x_1,\ldots,x_n]$, fix $\mathfrak{p}:=(x_1,\ldots,x_k)$. Then

$$\operatorname{codim} \mathfrak{p} = k$$
,

which we could also see directly by constructing the chain

$$(0) \subseteq (x_1) \subseteq \cdots \subseteq (x_1, \ldots, x_k) = \mathfrak{p}.$$

1.1.2 The Rank-Nullity Theorem

We now focus on local rings.

Proposition 1.6. Fix a local ring R with maximal ideal \mathfrak{m} . Then $\dim R$ is the minimal $d \in \mathbb{N}$ such that there exist generators f_1, \ldots, f_d so that

$$\mathfrak{m}^n \subseteq (f_1, \ldots, f_d) \subseteq \mathfrak{m}$$

for some n.

Proof. Because \mathfrak{m} is the unique maximal ideal, we have $\dim R = \operatorname{codim} \mathfrak{m}$. Now, in one direction, if

$$\mathfrak{m}^n \subseteq (f_1, \ldots, f_d) \subseteq \mathfrak{m},$$

for some n, we note that \mathfrak{m} is the unique minimal prime over (f_1, \ldots, f_d) : indeed, $\mathfrak{m}/(f_1, \ldots, f_d)$ is a nilpotent ideal, so any prime between must be equal to \mathfrak{m} .

In the other direction, if \mathfrak{m} is a minimal prime over (f_1, \ldots, f_d) , then the ring

$$R/(f_1,\ldots,f_d)$$

is local, and its only prime is $\mathfrak{m}/(f_1,\ldots,f_d)$ by the uniqueness, so $R/(f_1,\ldots,f_d)$ is Artinian, so the Jacobson radical

$$\mathfrak{m}/(f_1,\ldots,f_d)$$

is still nilpotent, so we get

$$\mathfrak{m}^n \subseteq (f_1, \ldots, f_d) \subseteq \mathfrak{m},$$

which is what we wanted.

Remark 1.7. There is a geometric meaning the discovered (f_1,\ldots,f_d) . Namely, if X is an algebraic set, and $P\in X$ is a point, then we can set R:=A(x) and $\mathfrak p$ to correspond to P. Then the functions $\{f_1,\ldots,f_d\}$ will be "local coordinates" in a neighborhood of P. Roughly speaking, these elements f_k have powers which go to 0, so they merely work in an infinitesimal neighborhood of P.

To set up our next result, we note that dimension is a somewhat general concept: for example, in Set, dimension should be the cardinality. As an example, given a map $\varphi:X\to B$, we can pick any point $p\in B$ and find that

$$\dim X \le \dim B + \dim \varphi^{-1}(p).$$

In our algebraic story, we are interested in families of varieties $X \to B$, which corresponds to ring maps $A(B) \to A(X)$. Still looking locally at the fiber at a point, we have the following.

Proposition 1.8. Fix two local rings R and S with maximal ideals $\mathfrak m$ and $\mathfrak n$, respectively. Now, given a map $\varphi:R\to S$ such that $\varphi(\mathfrak m)\subseteq\mathfrak n$, we have

$$\dim S \leq \dim R + \dim S/\mathfrak{n}S$$

In fact, if S is a flat as an R-module, then we have equality.

This is still approximately our geometric picture because $S/\mathfrak{m}S$ is the coordinate ring of the pre-image of the point \mathfrak{m} .

Proof. We use Proposition 1.6. For brevity, set $r := \dim R$ and $s := \dim S/\mathfrak{S}$. As such, Proposition 1.6 promises us elements $\{f_1, \ldots, f_r\} \subseteq \mathfrak{n}$ and some $p \in \mathbb{N}$ such that

$$\mathfrak{m}^p \subseteq (f_1, \ldots, f_r) \subseteq \mathfrak{m}.$$

Similarly, there exist $\{g_1,\ldots,g_s\}\subseteq\mathfrak{n}$ so that

$$\mathfrak{n}^q \subseteq (g_1, \dots, g_s) + \mathfrak{m}S$$

so that

$$\mathfrak{n}^{pq} \subseteq \mathfrak{m}^p S + (q_1, \dots, q_s) \subseteq (f_1, \dots, f_r, q_1, \dots, q_s) \subseteq \mathfrak{n}$$

by taking the pth power and applying the previous inequality. Thus, $\dim S = \operatorname{codim} \mathfrak{n} \leq r + s$, which is what we wanted.

We now take S to be flat. Set $\mathfrak{q} \subseteq S$ to be a minimal prime over $\mathfrak{m} S$, and we note $s = \dim \mathfrak{q}$ because \mathfrak{q} is minimal over $\mathfrak{m} S$. We do know that

$$\dim S > \dim \mathfrak{g} + \operatorname{codim} \mathfrak{g} = s + \operatorname{codim} \mathfrak{g}$$

so to get the result, we merely need to show $\operatorname{codim} \mathfrak{q} \geq r$. For this, we take the following lemma.

Lemma 1.9 (Going down). Let S be a flat R-algebra by $\varphi:R\to S$. Further, fix $\mathfrak{p}'\subseteq\mathfrak{p}$ are prime ideals in R. If we have $\mathfrak{q}\subseteq S$ so that $\mathfrak{p}=\varphi^{-1}\mathfrak{q}$, then there is a \mathfrak{q}' such that $\mathfrak{p}'=\varphi^{-1}\mathfrak{q}'$.

Pictorially, we are building \mathfrak{q}' in the following diagram.

Anyways, here is the proof of the lemma.

Proof. For psychological reasons, we will replace R with R/\mathfrak{p}' and S with $S/\mathfrak{p}'S$. We do note that $S/\mathfrak{p}'S := S \otimes_R R/\mathfrak{p}'$ must be flat over the R-algebra R/\mathfrak{p}' , as shown on the homework.

Thus, we may assume that R is a domain with $\mathfrak{p}'=(0)$. Our diagram is now as follows.

$$\begin{array}{cccc} S & & \mathfrak{q'} & \subseteq & \mathfrak{q} \\ \varphi & & & \Big| & & \Big| \\ R & & (0) & \subseteq & \mathfrak{p} \end{array}$$

As such, we define \mathfrak{q}' to be a minimal prime over (0) inside \mathfrak{q} , which certainly exists by saying something about Zorn's lemma. It remains to show that

$$\varphi^{-1}(\mathfrak{q}) \stackrel{?}{=} (0).$$

Well, $\mathfrak q$ only has zero-divisors by minimality, but because S is flat (here is where we use the condition!), we have that the function $\mu_r: s\mapsto rs$ is injective for nonzero r, so $\varphi^{-1}(\mathfrak q)$ had better not contain any nonzero element of R. So $\varphi^{-1}(\mathfrak q)=(0)$, finishing.

Now, note that the lemma finishes the theorem because $\operatorname{codim} \mathfrak{q}$ will be $\operatorname{dim} S/\mathfrak{q}$, which upon going down will be at least r by tracking a full chain of primes through.

Example 1.10. Consider S:=k[x,y,z,w]/(xw-yz) to be the ring of singular matrices, as an algebra over R:=k[x,y]. Further, set $\mathfrak{n}:=(x,y,z,w)$ so that $\mathfrak{q}=(x,y)$. We track through the dimensions of Proposition 1.8 at \mathfrak{n} .

Proof. Note that $\dim R_{\mathfrak{m}}=2$ as a localization of a two-dimensional ring. Then we can compute

$$\dim S_{\mathfrak{n}}/\mathfrak{m}S_{\mathfrak{n}} = \dim k[z,w]_{(z,w)} = 2,$$

where we are using the fact that (xw-yz) once localized will disappear as a condition. However, $\dim S=3$, so $\dim S_{\mathfrak{n}}\leq 3$, which is strictly less than $\dim R_{\mathfrak{m}}+\dim S_{\mathfrak{n}}/\mathfrak{m}S_{\mathfrak{n}}=4$.

Remark 1.11. At a high level, we have codified the notion that flat means continuously varying fibers: the dimension of the fiber $S/\mathfrak{m}S$ must be $\dim S - \dim R$ and therefore is constant!

As a consequence, we show that dimension is preserved by completion.

Corollary 1.12. Fix a Noetherian local ring R with maximal ideal \mathfrak{m} . Then $\dim R = \dim \widehat{R}$.

Proof. We know that \widehat{R} is flat as an R-algebra, via the natural map $R \to \widehat{R}$. Now, \mathfrak{m} goes to $\widehat{\mathfrak{m}} = \mathfrak{m} \widehat{R}$ under this map, so we conclude from Proposition 1.8 that

$$\dim \widehat{R} = \dim R + \dim \widehat{R}/\widehat{\mathfrak{m}}.$$

But $\widehat{R}/\widehat{\mathfrak{m}} \cong R/\mathfrak{m}$ is a field, so it has dimension 0. This finishes.

And here is another corollary.

Proposition 1.13. Fix a Noetherian ring R. Then $\dim R[x] = \dim R + 1$.

Proof. We start by showing $\dim R[x] \ge \dim R + 1$. Well, taking $r := \dim R_t$ we pick up a chain

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r.$$

Lifting these to R[x], we get the chain

$$\mathfrak{p}_0 R[x] \subsetneq \mathfrak{p}_1 R[x] \subsetneq \cdots \subsetneq \mathfrak{p}_r R[x].$$

But now we can add $\mathfrak{p}_r R[x] + (x)$ to the end of this chain, which is prime by checking that the quotient $R[x]/(\mathfrak{p}_r R[x] + (x)) \cong R/\mathfrak{p}_r$ is an integral domain. In particular, $\mathfrak{p}_r R[x]$ contains no monic polynomials, so $\mathfrak{p}_r R[x] + (x)$ is indeed strictly bigger.

To finish, we show $\dim R[x] \leq \dim R + 1$. Well, pick up a maximal ideal $\mathfrak{n} \subseteq R[x]$ such that \mathfrak{n} appears in the maximum chain, promising

$$\operatorname{codim} \mathfrak{n} = \dim R[x].$$

As such, we pull $\mathfrak n$ back to R as $\mathfrak m\subseteq R$. Localizing at $\mathfrak m$, we see

$$\dim R[x] = \dim R[x]_{\mathfrak{n}} \le \dim R + \dim R[x]_{\mathfrak{n}}/\mathfrak{m}R[x]_{\mathfrak{n}},$$

where we have used Proposition 1.8. But now $\dim R[x]_{\mathfrak{n}}/\mathfrak{m}R[x]_{\mathfrak{n}}=1$ because it is the dimension of a polynomial ring in one variable over a field.

Corollary 1.14. For a field k, we have $k[x_1, \ldots, x_n] = n$.

Proof. This follows from induction, starting with $\dim k = 0$ and incrementing by Proposition 1.13.

1.1.3 Dimension for Modules

We now add a notion of Krull dimension for modules.

Definition 1.15 (Krull dimension, modules). Given an R-module M, we define the dimension of M as $\dim M := \operatorname{codim} \operatorname{Ann} M$.

This lets us intelligently talk about colength.

Definition 1.16 (Colength). Fix an ideal $\mathfrak{q} \subseteq R$. Then \mathfrak{q} has finite colength on a module M if and only if $M/\mathfrak{q}M$ has finite length.

We have the following check.

Lemma 1.17. Fix a local ring R with maximal ideal \mathfrak{m} . Then \mathfrak{q} has finite colength if and only if there exists an integer n so that

$$\mathfrak{m}^n \subseteq \mathfrak{q} + \operatorname{Ann} M$$
.

Proof. Note that $M/\mathfrak{m}^n M$ has finite length by Nakayama's lemma, so $M/\mathfrak{q}M$ having finite length needs to be measured as such somehow.

As usual, our notion of size behaves in short exact sequences.

Proposition 1.18. Fix a short exact sequence of R-modules

$$0 \to A \to B \to C \to 0$$
.

If \mathfrak{q} has finite colength on A and C, then \mathfrak{q} has finite colength on B.

1.1. MARCH 31

250B: COMM. ALGEBRA

And here are a few more results.

Proof. Omitted.

Proposition 1.19. Fix a local ring R with maximal ideal $\mathfrak m$ and an R-module M. Then $\dim M$ is equal to the minimal d such that (f_1, \ldots, f_d) has finite colength on M.

Proof. Omitted. This follows from Lemma 1.17.

Proposition 1.20. Fix a local ring R with maximal ideal $\mathfrak m$ and an R-module M. Given $x \in \mathfrak m$, we have

$$\dim M/xM \ge \dim M - 1.$$

Proof. Use the previous proposition directly. Namely, if $d = \dim M/xM$, then Proposition 1.19 promises us an ideal (f_1, \ldots, f_d) which has finite colength on M/xM. But then

$$(f_1,\ldots,f_d,x)$$

has finite colength over M, so $\dim M \leq \dim M/xM-1$ by Proposition 1.19 again, which is what we wanted.

1.1.4 Regular Rings

We close class by defining regular.

Definition 1.21 (Regular). Fix a local ring R with maximal ideal \mathfrak{m} , of dimension d. Then R is regular if and only if there exist elements $\{f_1, \ldots, f_d\} \subseteq R$ such that

$$\mathfrak{m}=(f_1,\ldots,f_d).$$

In particular, we know that m is at least a minimal prime over such an ideal; regularity asserts us equality.

Remark 1.22. We have $\dim_{R/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2 = d$ when R is regular, essentially by expanding out the definition and applying Nakayama's lemma.

Example 1.23. Fix $R := k[x_1, \dots, x_d]_{\mathfrak{m}}$, where $\mathfrak{m} = (x_1, \dots, x_d)$. Then R is regular.

Example 1.24. The completion $k[[x_1, \ldots, x_n]]$ is regular.

Example 1.25. Any local principal ideal domain R has dimension 1, and the maximal ideal also is generated by one element, so R is regular.

And here is a last result.

Proposition 1.26. A regular local ring is an integral domain.

Proof. We omit this proof.

LIST OF DEFINITIONS

Colength, 7

Krull dimension, modules, 7

Regular, 8