10./565418 IAP6 ROC'G PCT/PTO 23 JAN 2006

SEQUENCE LISTING

<110> Monaci, Paolo Gallo, Pasquale Nuzzo, Maurizio

<120> SYNTHETIC GENE ENCODING HUMAN EPIDERMAL
GROWTH FACTOR 2/NEU ANTIGEN AND USES THEREOF

<130> ITR0065YP

<150> PCT/EP2004/008234

<151> 2004-04-20

<150> 60/489,237

<151> 2003-07-21

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 3768

<212> DNA

<213> Artificial Sequence

<220>

<223> HER2opt

<400> 1

atggagetgg cegecetgtg cegetgggge etgetgetgg ceetgetgee eeeeggegee 60 gecageacce aggtgtgeae eggeacegae atgaagetge geetgeeege cageecegag 120 acceaectgg acatgetgeg ceaectgtae eaggetgee aggtggtgea gggeaacetg 180 gagetgaeet acetgeeeae eaaegeeage etgagettee tgeaggaeat ceaggaggtg 240 cagggetaeg tgetgatege ecaeaaceag gtgegeeagg tgeeeetgea gegeetgege 300

```
atogtgegeg geacceaget gttegaggae aactaegeee tggeegtget ggaeaaegge 360
gaccccctga acaacaccac ccccgtgacc ggcgccagcc ccggcggcct gcgcgagctg 420
cagetgegea geetgacega gateetgaag ggeggegtge tgateeageg caaceeceag 480
ctgtgctacc aggacaccat cctgtggaag gacatcttcc acaagaacaa ccagctggcc 540
ctgaccctga tcgacaccaa ccgcagccgc gcctgccacc cctgcagccc catgtgcaag 600
ggcagccgct gctggggcga gagcagcgag gactgccaga gcctgacccg caccgtgtgc 660
geoggegget gegeeegetg caagggeeee etgeeeaeeg aetgetgeea egageagtge 720
geogeogget geaceggeee caageacage gactgeetgg cetgeetgea etteaaceae 780
ageggcatet gegagetgea etgeceegee etggtgaeet acaacacega cacettegag 840
agcatgccca accccgaggg ccgctacacc ttcggcgcca gctgcgtgac cgcctgcccc 900
tacaactacc tgagcaccga cgtgggcagc tgcaccctgg tgtgccccct gcacaaccag 960
gaggtgaccg ccgaggacgg cacccagcgc tgcgagaagt gcagcaagcc ctgcgcccgc 1020
gtgtgctacg gcctgggcat ggagcacctg cgcgaggtgc gcgccgtgac cagcgccaac 1080
atccaggagt tegeoggetg caagaagate tteggeagee tggeetteet geeegagage 1140
ttcgacggcg accccgccag caacaccgcc cccctgcagc ccgagcagct gcaggtgttc 1200
gagaccetgg aggagateae eggetacetg tacateageg cetggeeega eageetgeee 1260
gacctgagcg tgttccagaa cctgcaggtg atccgcggcc gcatcctgca caacggcgcc 1320
tacageetga eeetgeaggg eetgggeate agetggetgg geetgegeag eetgegegag 1380
ctgggcagcg gcctggccct gatccaccac aacacccacc tgtgcttcgt gcacaccgtg 1440
ccctgggacc agctgttccg caacccccac caggccctgc tgcacaccgc caaccgcccc 1500
gaggacgagt gcgtgggcga gggcctggcc tgccaccagc tgtgcgcccg cggccactgc 1560
tggggccccg gccccaccca gtgcgtgaac tgcagccagt tcctgcgcgg ccaggagtgc 1620
gtggaggagt gccgcgtgct gcagggcctg ccccgcgagt acgtgaacgc ccgccactgc 1680
ctgccctgcc accccgagtg ccagccccag aacggcagcg tgacctgctt cggccccgag 1740
gccgaccagt gcgtggcctg cgcccactac aaggaccccc ccttctgcgt ggcccgctgc 1800
cccagcggcg tgaagcccga cctgagctac atgcccatct ggaagttccc cgacgaggag 1860
ggegeetgee ageeetgeee cateaactge acceacaget gegtggacet ggacgacaag 1920
ggctgccccg ccgagcagcg cgccagccc ctgaccagca tcatcagcgc cgtggtgggc 1980
atcctgctgg tggtggtgct gggcgtggtg ttcggcatcc tgatcaagcg ccgccagcag 2040
aagatccgca agtacaccat gcgccgcctg ctgcaggaga ccgagctggt ggagcccctg 2100
acceccageg gegecatgee caaccaggee cagatgegea teetgaagga gaccgagetg 2160
cgcaaggtga aggtgctggg cagcggcgcc ttcggcaccg tgtacaaggg catctggatc 2220
cccgacggcg agaacgtgaa gatccccgtg gccatcgccg tgctgcgcga gaacaccagc 2280
cccaaggcca acaaggagat cctggacgag gcctacgtga tggccggcgt gggcagcccc 2340
tacgtgagec geetgetggg catetgeetg accageaceg tgeagetggt gacceagetg 2400
atgccctacg gctgcctgct ggaccacgtg cgcgagaacc gcggccgcct gggcagccag 2460
gacctgctga actggtgcat gcagatcgcc aagggcatga gctacctgga ggacgtgcgc 2520
```

```
ctggtgcacc gcgacctggc cgcccgcaac gtgctggtga agagccccaa ccacgtgaag 2580
atcaccgact teggeetgge eegeetgetg gacategacg agaccgagta eeaegeegac 2640
ggeggeaagg tgcccatcaa gtggatggcc ctggagagca tcctgcgccg ccgcttcacc 2700
caccagageg aegtgtggag ctaeggegtg aeegtgtggg agetgatgae etteggegee 2760
aagccctacg acggcatccc cgcccgcgag atccccgacc tgctggagaa gggcgagcgc 2820
ctgccccagc ccccatctg caccatcgac gtgtacatga tcatggtgaa gtgctggatg 2880
ategacageg agtgeegeec eegetteege gagetggtga gegagtteag eegeatggee 2940
cgcgaccccc agcgcttcgt ggtgatccag aacgaggacc tgggccccgc cagccccttg 3000
gacagcacct tctaccgcag cctgctggag gacgacgaca tgggcgacct ggtggacgcc 3060
gaggagtace tggtgcccca gcagggctte ttetgccccg accecgcccc cggcgccggc 3120
ggcatggtgc accaccgcca ccgcagcagc agcacccgca gcggcggcgg cgacctgacc 3180
ctgggcctgg agcccagcga ggaggaggcc ccccgcagcc ccctggcccc cagcgagggc 3240
geoggeageg acgtgttega eggegacetg ggeatgggeg eegeeaaggg eetgeagage 3300
ctgcccaccc acgaccccag cccctgcag cgctacagcg aggaccccac cgtgcccctg 3360
cccagcgaga ccgacggcta cgtggccccc ctgacctgca gcccccagcc cgagtacgtg 3420
aaccagcccg acgtgcgccc ccagcccccc agcccccgcg agggccccct gcccgccgcc 3480
cgccccgccg gcgccaccct ggagcgccc aagaccctga gccccggcaa gaacggcgtg 3540
gtgaaggacg tgttcgcctt cggcggcgcc gtggagaacc ccgagtacct gaccccccag. 3600
ggeggagetg etecteagee teaceeteea cetgetttea gecetgettt egacaacetg 3660
tactactggg accaggaccc tcctgagagg ggtgctcctc ctagcacctt caagggcacc 3720
cccaccgccg agaaccccga gtacctgggc ctggacgtgc ccgtgtaa
                                                                  3768
```

<210> 2

<211> 1255

<212> PRT

<213> Homo Sapiens, HER2

<400> 2

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu

1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His

35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val

65					70					75					80
Gln	Gly	Tyr	Val	Leu	Ile	Ala	His	Asn	Gln	Val	Arg	Gln	Val	Pro	Leu
				85					90					95	
Gln	Arg	Leu	Arg	Ile	Val	Arg	Gly	Thr	Gln	Leu	Phe	Glu	Asp	Asn	Tyr
			100					105					110		
Ala	Leu	Ala	Val	Leu	Asp	Asn	Gly	Asp	Pro	Leu	Asn	Asn	Thr	Thr	Pro
		115					120					125			
Val	Thr	Gly	Ala	Ser	Pro	Gly	Gly	Leu	Arg	Glu	Leu	Gln	Leu	Arg	Ser
	130					135					140				
Leu	Thr	Glu	Ile	Leu	Lys	Gly	Gly	Val	Leu	Ile	Gln	Arg	Asn	Pro	Gln
145					150					155					160
Leu	Cys	Tyr	Gln	Asp	Thr	Ile	Leu	Trp	Lys	Asp	Ile	Phe	His	Lys	Asn
				165					170					175	
Asn	Gln	Leu	Ala	Leu	Thr	Leu	Ile	Asp	Thr	Asn	Arg	Ser	Arg	Ala	Cys
			180					185					190		
His	Pro	Cys	Ser	Pro	Met	Cys	Lys	Gly	Ser	Arg	Cys	Trp	Gly	Glu	Ser
		195					200					205			
Ser	Glu	Asp	Cys	Gln	Ser	Leu	Thr	Arg	Thr	Val	Cys	Ala	Gly	Gly	Cys
	210					215					220				
Ala	Arg	Cys	Lys	Gly	Pro	Leu	Pro	Thr	Asp	Cys	Cys	His	Glu	Gln	Cys
225					230					235					240
Ala	Ala	Gly	Cys	Thr	Gly	Pro	Lys	His	Ser	Asp	Cys	Leu	Ala	Cys	Leu
				245					250					255	
His	Phe	Asn	His	Ser	Gly	Ile	Cys	Glu	Leu	His	Cys	Pro	Ala	Leu	Val
			260					265					270		
Thr	Tyr	Asn	Thr	Asp	Thr	Phe	Glu	Ser	Met	Pro	Asn	Pro	Glu	Gly	Arg
		275					280					285			
Tyr	Thr	Phe	Gly	Ala	Ser	Cys	Val	Thr	Ala	Cys	Pro	Tyr	Asn	Tyr	Leu
	290					295					300				
Ser	Thr	Asp	Val	Gly	Ser	Cys	Thr	Leu	Val	Cys	Pro	Leu	His	Asn	Gln
305					310					315					320
Glu	Val	Thr	Ala	Glu	Asp	Gly	Thr	Gln	Arg	Cys	Glu	Lys	Cys	Ser	Lys
				325					330					335	
Pro	Cys	Ala	Arg	Val	Cys	Tyr	Gly	Leu	Gly	Met	Glu	His	Leu	Arg	Glu
			340					345					350		
Val	Arg	Ala	Val	Thr	Ser	Ala	Asn	Ile	Gln	Glu	Phe	Ala	Gly	Cys	Lys
		355					360					365			

Lys	Ile	Phe	Gly	Ser	Leu	Ala	Phe	Leu	Pro	Glu	Ser	Phe	Asp	Gly	Asp
	370					375					380				
Pro	Ala	Ser	Asn	Thr	Ala	Pro	Leu	Gln	Pro	Glu	Gln	Leu	Gln	Val	Phe
385					390					395					400
Glu	Thr	Leu	Glu	Glu	Ile	Thr	Gly	Tyr	Leu	Tyr	Ile	Ser	Ala	Trp	Pro
				405					410					415	
Asp	Ser	Leu	Pro	Asp	Leu	Ser	Val	Phe	Gln	Asn	Leu	Gln	Val	Ile	Arg
			420					425					430		
Gly	Arg	Ile	Leu	His	Asn	Gly	Ala	Tyr	Ser	Leu	Thr	Leu	Gln	Gly	Leu
		435					440					445			
Gly	Ile	Ser	Trp	Leu	Gly	Leu	Arg	Ser	Leu	Arg	Glu	Leu	Gly	Ser	Gly
	450					455					460				
Leu	Ala	Leu	Ile	His	His	Asn	Thr	His	Leu	Cys	Phe	Val	His	Thr	Val
465					470					475					480
Pro	Trp	Asp	Gln	Leu	Phe	Arg	Asn	Pro	His	Gln	Ala	Leu	Leu	His	Thr
				485					490					495	
Ala	Asn	Arg	Pro	Glu	Asp	Glu	Cys	Val	Gly	Glu	Gly	Leu	Ala	Cys	His
			500					505					510		
Gln	Leu	Cys	Ala	Arg	Gly	His	Cys	Trp	Gly	Pro	Gly	Pro	Thr	Gln	Cys
		515					520					525			
Val	Asn	Cys	Ser	Gln	Phe	Leu	Arg	Gly	Gln	Glu	Cys	Val	Glu	Glu	Cys
	530					535					540				
Arg	Val	Leu	Gln	Gly	Leu	Pro	Arg	Glu	Tyr	Val	Asn	Ala	Arg	His	Cys
545					550					555					560
Leu	Pro	Cys	His	Pro	Glu	Cys	Gln	Pro	Gln	Asn	Gly	Ser	Val	Thr	Cys
				565					570					575	
Phe	Gly	Pro	Glu	Ala	Asp	Gln	Cys	Val	Ala	Cys	Ala	His	Tyr	Lys	Asp
			580					585					590		
Pro	Pro	Phe	Cys	Val	Ala	Arg	Cys	Pro	Ser	Gly	Val	Lys	Pro	Asp	Leu
		595					600				•	605			
Ser	Tyr	Met	Pro	Ile	Trp	Lys	Phe	Pro	Asp	Glu	Glu	Gly	Ala	Cys	Gln
	610					615					620				
Pro	Cys	Pro	Ile	Asn	Cys	Thr	His	Ser	Cys	Val	Asp	Leu	Asp	Asp	Lys
625					630					635					640
Gly	Cys	Pro	Ala	Glu	Gln	Arg	Ala	Ser	Pro	Leu	Thr	Ser	Ile	Ile	Ser
				645					650					655	
ΔТа	Ual	T = T	Glv	Tla	Lau	Lou	Val	Wa 1	Val	T.011	Clv	Val	Val	Dho	Clar

			660					665					670		
Ile	Leu	Ile	Lys	Arg	Arg	Gln	Gln	Lys	Ile	Arg	Lys	Tyr	Thr	Met	Arg
		675					680					685			
Arg	Leu	Leu	Gln	Glu	Thr	Glu	Leu	Val	Glu	Pro	Leu	Thr	Pro	Ser	Gly
	690					695					700				
Ala	Met	Pro	Asn	Gln	Ala	Gln	Met	Arg	Ile	Leu	Lys	Glu	Thr	Glu	Leu
705					710					715					720
Arg	Lys	Val	Lys	Val	Leu	Gly	Ser	Gly	Ala	Phe	Gly	Thr	Val	Tyr	Lys
				725					730					735	
Gly	Ile	Trp	Ile	Pro	Asp	Gly	Glu	Asn	Val	Lys	Ile	Pro	Val	Ala	Ile
			740					745					750		
Ala	Val	Leu	Arg	Glu	Asn	Thr	Ser	Pro	Lys	Ala	Asn	Lys	Glu	Ile	Leu
		755					760					765			
Asp	Glu	Ala	Tyr	Val	Met	Ala	Gly	Val	Gly	Ser	Pro	Tyr	Val	Ser	Arg
	770					775					780				
Leu	Leu	Gly	Ile	Cys	Leu	Thr	Ser	Thr	Val	Gln	Leu	Val	Thr	Gln	Leu
785					790					795					800
Met	Pro	Tyr	Gly	Cys	Leu	Leu	Asp	His	Val	Arg	Glu	Asn	Arg	Gly	Arg
				805					810					815	
Leu	Gly	Ser	Gln	Asp	Leu	Leu	Asn	Trp	Cys	Met	Gln	Ile	Ala	Lys	Gly
			820					825					830		
Met	Ser	Tyr	Leu	Glu	Asp	Val	Arg	Leu	Val	His	Arg	Asp	Leu	Ala	Ala
		835					840					845			
Arg	Asn	Val	Leu	Val	Lys	Ser	Pro	Asn	His	Val	Lys	Ile	Thr	Asp	Phe
	850					855					860				
Gly	Leu	Ala	Arg	Leu	Leu	Asp	Ile	Asp	Glu	Thr	Glu	Tyr	His	Ala	Asp
865					870					875					880
Gly	Gly	Lys	Val	Pro	Ile	Lys	Trp	Met	Ala	Leu	Glu	Ser	Ile	Leu	Arg
				885					890					895	
Arg	Arg	Phe	Thr	His	Gln	Ser	Asp	Val	Trp	Ser	Tyr	Gly	Val	Thr	Val
			900					905					910		
Trp	Glu	Leu	Met	Thr	Phe	Gly	Ala	Lys	Pro	Tyr	Asp	Gly	Ile	Pro	Ala
		915					920					925.			
Arg	Glu	Ile	Pro	Asp	Leu	Leu	Glu	Lys	Gly	Glu	Arg	Leu	Pro	Gln	Pro
	930					935					940				
Pro	Ile	Cys	Thr	Ile	Asp	Val	Tyr	Met	Ile	Met	Val	Lys	Cys	Trp	Met
945					950					955					960

Ile	Asp	Ser	Glu	_	Arg	Pro	Arg	Phe		Glu	Leu	Val	Ser		Phe
_				965	_	_	~1		970	** . 7	**. 7		~1	975	~ 3
ser	Arg	мес		Arg	Asp	Pro	GIN		Pne	vai	vaı	ше	Gln	Asn	Glu
			980	_				985					990		
Asp	Leu	Gly	Pro	Ala	Ser	Pro	Leu	Asp	Ser	Thr	Phe	Tyr	Arg	Ser	Leu
		995					1000)				1009	5		
Leu	Glu	Asp	Asp	Asp	Met	Gly	Asp	Leu	Val	Asp	Ala	Glu	Glu	Tyr	Leu
	1010)				1019	5				1020)			
Val	Pro	Gln	Gln	Gly	Phe	Phe	Cys	Pro	Asp	Pro	Ala	Pro	Gly	Ala	Gly
1025	5				1030)				1035	5				1040
Gly	Met	Val	His	His	Arg	His	Arg	Ser	Ser	Ser	Thr	Arg	Ser	Gly	Gly
				1049	5				1050)				1055	5
Gly	Asp	Leu	Thr	Leu	Gly	Leu	Glu	Pro	Ser	Glu	Glu	Glu	Ala	Pro	Arg
			1060)				1065	5				1070)	
Ser	Pro	Leu	Ala	Pro	Ser	Glu	Gly	Ala	Gly	Ser	Asp	Val	Phe	Asp	Gly
		1075	075				1080)				1089			
Asp	Leu	Gly	Met	Gly	Ala	Ala	Lys	Gly	Leu	Gln	Ser	Leu	Pro	Thr	His
	1090 10						5				1100)			
Asp	Pro	Ser	Pro	Leu	Gln	Arg	Tyr	Ser	Glu	Asp	Pro	Thr	Val	Pro	Leu
1105	5				1110)				1115	5				1120
Pro	Ser	Glu	Thr	Asp	Gly	Tyr	Val	Ala	Pro	Leu	Thr	Cys	Ser	Pro	Gln
				1125	5			1130						1135	5
Pro	Glu	Tyr	Val	Asn	Gln	Pro	Asp	Val	Arg	Pro	Gln	Pro	Pro	Ser	Pro
			1140)			1145								
Arg	Glu	Gly	Pro	Leu	Pro	Ala	Ala	Arg	Pro	Ala	Gly	Ala	Thr	Leu	Glu
		1155	5				1160)				1165	5		
Arg	Pro	Lys	Thr	Leu	Ser	Pro	Gly	Lys	Asn	Gly	Val	Val	Lys	Asp	Val
	1170)				1175	5				1180)			
Phe	Ala	Phe	Gly	Gly	Ala	Val	Glu	Asn	Pro	Glu	Tyr	Leu	Thr	Pro	Gln
1185	5				1190)				1199	5				1200
Gly	Gly	Ala	Ala	Pro	Gln	Pro	His	Pro	Pro	Pro	Ala	Phe	Ser	Pro	Ala
				1209	5				1210)				1215	5
Phe	Asp	Asn	Leu	Tyr	Tyr	Trp	Asp	Gln	Asp	Pro	Pro	Glu	Arg	Gly	Ala
			1220)				1225	5			1230			
Pro	Pro	Ser	Thr	Phe	Lys	Gly	Thr	Pro	Thr	Ala	Glu	Asn	Pro	Glu	Tyr
		1235					1240					1245			
т от	Gl.	Lou	7 00	บาไ	Dro	Val									

1250 1255

<210> 3

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 3

ccagtttaaa catttaaatg ccgccaccat ggagctggcg gcc 43

<210> 4

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 4

gccgtcgact ttacactggc acgtccagac cca

<210> 5

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> HER2 Peptide

<400> 5

Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser

1 5 10 15

Phe Leu Gln

33

ITR0065YP

```
<210> 6
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> HER2 Peptide
<400> 6
Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
                 5
                                     10
                                                          15
Asn Gln Leu
<210> 7
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> HER2 Peptide
<400> 7
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro
                 5
                                     10
                                                          15
<210> 8
<211> 9
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Kozak Sequence
<400> 8
                                                                  9
gccgccacc
<210> 9
<211> 2028
<212> DNA
<213> Artificial Sequence
<220>
<223> HER2ECDTMopt
<400> 9
atggagetgg eegeeetgtg eegetgggge etgetgetgg eeetgetgee eeeeggegee 60
gccagcaccc aggtgtgcac cggcaccgac atgaagctgc gcctgcccgc cagccccgag 120
acceaectgg acatgetgeg ceaectgtae eagggetgee aggtggtgea gggeaacetg 180
gagetgacet acetgeecae caacgecage etgagettee tgeaggacat ecaggaggtg 240
cagggetacg tgetgatege ccacaaceag gtgegecagg tgeecetgea gegeetgege 300
atcgtgcgcg gcacccagct gttcgaggac aactacgccc tggccgtgct ggacaacggc 360
gaccccctga acaacaccac ccccgtgacc ggcgccagcc ccggcggcct gcgcgagctg 420
cagetgegea geetgacega gateetgaag ggeggegtge tgateeageg caacececag 480
ctgtgctacc aggacaccat cctgtggaag gacatcttcc acaagaacaa ccagctggcc 540
etgaceetga tegacaceaa eegeageege geetgeeace eetgeageee eatgtgeaag 600
ggcagccgct gctggggcga gagcagcgag gactgccaga gcctgacccg caccgtgtgc 660
geeggegget gegeeegetg caagggeeee etgeecaeeg aetgetgeea egageagtge 720
geegeegget geaceggeee caageaeage gaetgeetgg cetgeetgea etteaaceae 780
ageggeatet gegagetgea etgeceegee etggtgaeet acaacacega cacettegag 840
agcatgeeca acceegaggg eegetacace tteggegeea getgegtgae egeetgeeee 900
tacaactacc tgagcaccga cgtgggcagc tgcaccctgg tgtgccccct gcacaaccag 960
gaggtgaccg ccgaggacgg cacccagcgc tgcgagaagt gcagcaagcc ctgcgcccgc 1020
gtgtgctacg gcctgggcat ggagcacctg cgcgaggtgc gcgccgtgac cagcgccaac 1080
atccaggagt tegeoggetg caagaagate tteggeagee tggeetteet geeegagage 1140
ttcgacggcg accccgccag caacaccgcc cccctgcagc ccgagcagct gcaggtgttc 1200
gagaccetgg aggagateae eggetaeetg tacateageg eetggeeega eageetgeee 1260
gacctgageg tgttecagaa cetgeaggtg atcegeggee geateetgea caaeggegee 1320
```

tacageetga eeetgeaggg eetgggeate agetggetgg geetgegeag eetgegegag 1380

```
ctgggcageg geetggeet gatecaccae aacaccacc tgtgettegt geacacegtg 1440 ceetgggace agetgtteeg caacceccae caggeettge tgeacacege caaccgeece 1500 gaggacgagt gegtgggega gggcetggee tgecaccage tgtgeggeeg eggeeactge 1560 tggggeeceg geeccaccaa gtgegtgaac tgeagecagt teetggegg ceaggagtge 1620 gtggaggagt geeggtget geagggeetg ecceggagt aegtgaaege eegecactge 1680 etgecetgee acceegagtg ecageeceag aacggeageg tgacetgett eggeecegag 1740 geegaccagt gegtggeetg egecactae aaggaceece eettetgegt ggeecegetge 1800 eccageggeg tgaageeceg ectgagetae atgeecatet ggaagtteee egaegagag 1860 ggegeetgee ageectgeee cateaactge acceacaget gegtggaeet ggaegaeag 1920 ggetgeeeg tggtggtgt tggtggtgt tteggeatee tgatetga 2028
```

<210> 10

<211> 2028

<212> DNA

<213> Artificial Sequence

<220>

<223> HER2ECDTMwt

<400> 10

atggagetgg eggeettgtg eegetggggg etceteeteg eeetettgee eeeeggagee 60 gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag 120 acceaectgg acatgeteeg ceaectetae eagggetgee aggtggtgea gggaaacetg 180 gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaggatat ccaggaggtg 240 cagggctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300 attgtgcgag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga 360 gacccgctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg 420 cagettegaa geeteacaga gatettgaaa ggaggggtet tgatecageg gaaceeccag 480 ctctgctacc aggacacgat tttgtggaag gacatcttcc acaagaacaa ccagctggct 540 ctcacactga tagacaccaa ccgctctcgg gcctgccacc cctgttctcc gatgtgtaag 600 ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgcg cactgtctgt 660 gccggtggct gtgcccgctg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720 getgeegget geaegggeee caageactet gaetgeetgg cetgeeteea etteaaceae 780 agtggcatct gtgagctgca ctgcccagcc ctggtcacct acaacacaga cacgtttgag 840 tccatgccca atcccgaggg ccggtataca ttcggcgcca gctgtgtgac tgcctgtccc 900 tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 960

```
gaggtgacag cagaggatgg aacacagegg tgtgagaagt gcagcaagcc ctgtgeeega 1020
gtgtgctatg gtctgggcat ggagcacttg cgagaggtga gggcagttac cagtgccaat 1080
atccaggagt ttgctggctg caagaagatc tttgggagcc tggcatttct gccggagagc 1140
tttgatgggg acccagcete caacaetgee eegeteeage eagageaget eeaagtgttt 1200
gagactetgg aagagateae aggttaeeta tacateteag eatggeegga eageetgeet 1260
gacctcageg tettecagaa eetgeaagta ateeggggae gaattetgea caatggegee 1320
tactogotga cootgoaagg gotgggoato agotggotgg ggotgogoto actgagggaa 1380
ctgggcagtg gactggccct catccaccat aacacccacc tctgcttcgt gcacacggtg 1440
ccctgggacc agetettteg gaaccegeac caagetetge tecacactge caaceggeca 1500
gaggacgagt gtgtgggcga gggcctggcc tgccaccagc tgtgcgcccg agggcactgc 1560
tggggtccag ggcccaccca gtgtgtcaac tgcagccagt tccttcgggg ccaggagtgc 1620
gtggaggaat gccgagtact gcaggggctc cccagggagt atgtgaatgc caggcactgt 1680
ttgccgtgcc accctgagtg tcagccccag aatggctcag tgacctgttt tggaccggag 1740
gctgaccagt gtgtggcctg tgcccactat aaggaccctc ccttctgcgt ggcccgctgc 1800
cccagcggtg tgaaacctga cctctcctac atgcccatct ggaagtttcc agatgaggag 1860
ggcgcatgcc agccttgccc catcaactgc acccactcct gtgtggacct ggatgacaag 1920
ggctgccccg ccgagcagag agccagccct ctgacgtcca tcatctctgc ggtggttggc 1980
attctgctgg tcgtggtctt gggggtggtc tttgggatcc tcatctga
                                                                  2028
```

<210> 11

<211> 3778

<212> DNA

<213> Artificial Sequence

<220>

<223> hHER2opt + Kozak

<400> 11

geogecacca tggagetgge egecetgtge egetggggee tgetgetgge-eetgetgeee 60 cceggegeeg ecageacca ggtgtgeace ggeacegaca tgaagetgeg eetgeeegee 120 ageceegaa eccacetgga eatgetgege eacetgtace agggetgeea ggtggtgeag 180 ggeaacetgg agetgaeeta eetgeeeace aaegeeagee tgagetteet geaggaeate 240 eaggaggtge agggetaegt getgategee eacaaceagg tgegeeaggt geeeetgeag 300 egeetgegaa tegtgeegg eaceeagetg ttegaggaea actaegeeet ggeegtgetg 360 gacaaceggeg acceeetgaa eaacaceace eeegtgaeeg gegeeageee eggeggeetg 420 egegagetge agetgeeag eetgaeegg ateetgaagg geggegtget gateeageg 480 aaeceeeage tgtgetaeea ggacaceate etgtggaagg acatetteea eaagaacaac 540

```
cagetggece tgaccetgat egacaceaac egeageegeg cetgecacec etgeageece 600
atgtgcaagg gcagccgctg ctggggcgag agcagcgagg actgccagag cctgacccgc 660
accytytycy ccyycygcty cycccyctyc aagyyccccc tycccaccya ctyctyccac 720
gageagtgeg cegeeggetg caceggeece aageacageg aetgeetgge etgeetgeac 780
ttcaaccaca geggeatetg egagetgeae tgeceegeee tggtgaeeta caacacegae 840
accttcgaga gcatgcccaa ccccgagggc cgctacacct tcggcgccag ctgcgtgacc 900
gcctgcccct acaactacct gagcaccgac gtgggcagct gcaccctggt gtgccccctg 960
cacaaccagg aggtgaccgc cgaggacggc acccagcgct gcgagaagtg cagcaagccc 1020
tgcgcccgcg tgtgctacgg cctgggcatg gagcacctgc gcgaggtgcg cgccgtgacc 1080
agegecaaca tecaggagtt egeeggetge aagaagatet teggeageet ggeetteetg 1140
cccgagaget tcgacggcga ccccgccagc aacaccgccc ccctgcagcc cgagcagctg 1200
caggtgttcg agaccetgga ggagatcace ggetacetgt acateagege etggeeegae 1260
ageetgeeeg acetgagegt gtteeagaae etgeaggtga teegeggeeg cateetgeae 1320
aacggcgcct acagcctgac cctgcagggc ctgggcatca gctggctggg cctgcgcagc 1380
ctgcgcgagc tgggcagcgg cctggccctg atccaccaca acacccacct gtgcttcgtg 1440
cacaccgtgc cctgggacca gctgttccgc aacccccacc aggccctgct gcacaccgcc 1500
ggccactgct ggggccccgg ccccacccag tgcgtgaact gcagccagtt cctgcgcggc 1620
caggagtgcg tggaggagtg ccgcgtgctg cagggcctgc cccgcgagta cgtgaacgcc 1680
cgccactgcc tgccctgcca ccccgagtgc cagccccaga acggcagcgt gacctgcttc 1740
ggccccgagg ccgaccagtg cgtggcctgc gcccactaca aggacccccc cttctgcgtg 1800
gcccgctgcc ccagcggcgt gaagcccgac ctgagctaca tgcccatctg gaagttcccc 1860
gacgaggagg gcgcctgcca gccctgcccc atcaactgca cccacagctg cgtggacctg 1920
gacgacaagg gctgccccgc cgagcagcgc gccagccccc tgaccagcat catcagcgcc 1980
gtggtgggca tcctgctggt ggtggtgctg ggcgtggtgt tcggcatcct gatcaagcgc 2040
egecageaga agateegeaa gtacaecatg egeegeetge tgeaggagae egagetggtg 2100
gagcccctga cccccagcgg cgccatgccc aaccaggccc agatgcgcat cctgaaggag 2160
accgagetge geaaggtgaa ggtgetggge ageggegeet teggeacegt gtacaaggge 2220
atctggatcc ccgacggcga gaacgtgaag atccccgtgg ccatcgccgt gctgcgcgag 2280
aacaccagcc ccaaggccaa caaggagatc ctggacgagg cctacgtgat ggccggcgtg 2340
ggcagcccct acgtgagccg cctgctgggc atctgcctga ccagcaccgt gcagctggtg 2400
acccagetga tgeeetaegg etgeetgetg gaccaegtge gegagaaceg eggeegeetg 2460
ggcagccagg acctgctgaa ctggtgcatg cagatcgcca agggcatgag ctacctggag 2520
gacgtgcgcc tggtgcaccg cgacctggcc gcccgcaacg tgctggtgaa gagccccaac 2580
cacgtgaaga tcaccgactt cggcctggcc cgcctgctgg acatcgacga gaccgagtac 2640
cacgccgacg gcggcaaggt gcccatcaag tggatggccc tggagagcat cctgcgccgc 2700
cgcttcaccc accagagega cgtgtggagc tacggcgtga ccgtgtggga gctgatgacc 2760
```

```
ttcqqcqcca agccctacga cggcatcccc gcccgcgaga tccccgacct gctggagaag 2820
qqcqagcgcc tgccccagcc ccccatctgc accatcgacg tgtacatgat catggtgaag 2880
tqctqqatqa tcgacagcga gtgccgccc cgcttccgcg agctggtgag cgagttcagc 2940
cqcatggccc gcgaccccca gcgcttcgtg gtgatccaga acgaggacct gggccccgcc 3000
agccccctgg acagcacctt ctaccgcagc ctgctggagg acgacgacat gggcgacctg 3060
qtqqacqccg aggagtacct ggtgccccag cagggcttct tctgccccga ccccgccccc 3120
ggcgccggcg gcatggtgca ccaccgccac cgcagcagca gcacccgcag cggcggcggc 3180
gacctgaccc tgggcctgga gcccagcgag gaggaggccc cccgcagccc cctggccccc 3240
agegagggeg ceggeagega egtgttegae ggegaeetgg geatgggege egeeaaggge 3300
ctgcagagcc tgcccaccca cgaccccagc cccctgcagc gctacagcga ggaccccacc 3360
gtgcccctgc ccagcgagac cgacggctac gtggcccccc tgacctgcag cccccagccc 3420
gagtacgtga accagcccga cgtgcgcccc cagcccccca gcccccgcga gggccccctg 3480
cccgccgccc gccccgccgg cgccaccctg gagcgcccca agaccctgag ccccggcaag 3540
aacggcgtgg tgaaggacgt gttcgccttc ggcggcgccg tggagaaccc cgagtacctg 3600
acccccagg gcggagctgc tcctcagcct caccctccac ctgctttcag ccctgctttc 3660
gacaacctgt actactggga ccaggaccct cctgagaggg gtgctcctcc tagcaccttc 3720
aagggcaccc ccaccgccga gaaccccgag tacctgggcc tggacgtgcc cgtgtaaa
<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR Primer
<400> 12
                                                                  33
ccaqatatcg aattctagag ccgccaccat gga
<210> 13
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
```

<223> PCR Primer

<400> 13

gctgtcgact ttatcagatc aggatgccga acaccacgcc c <210> 14 <211> 675 <212> PRT <213> Artificial Sequence <220> <223> HER2ECDTM polypeptide <400> 14 Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Ala Leu Leu 10 Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 20 25 30 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 35 40 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 55 60 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 70 75 80 65 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 90 85 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 120 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 135 140 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 150 155 145 160 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 170 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 185

41

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser

		195					200					205			
Ser	Glu	Asp	Cys	Gln	Ser	Leu	Thr	Arg	Thr	Val	Cys	Ala	Gly	Gly	Cys
	210					215					220				
Ala	Arg	Cys	Lys	Gly	Pro	Leu	Pro	Thr	Asp	Cys	Cys	His	Glu	Gln	Cys
225					230					235					240
Ala	Ala	Gly	Cys	Thr	Gly	Pro	Lys	His	Ser	Asp	Cys	Leu	Ala	Cys	Leu
				245					250					255	
His	Phe	Asn	His	Ser	Gly	Ile	Cys	Glu	Leu	His	Cys	Pro	Ala	Leu	Val
			260					265					270		
Thr	Tyr	Asn	Thr	Asp	Thr	Phe	Glu	Ser	Met	Pro	Asn	Pro	Glu	Gly	Arg
		275					280					285			
Tyr	Thr	Phe	Gly	Ala	Ser	Cys	Val	Thr	Ala	Cys	Pro	Tyr	Asn	Tyr	Leu
	290					295					300				
Ser	Thr	Asp	Val	Gly	Ser	Cys	Thr	Leu	Val	Cys	Pro	Leu	His	Asn	Gln
305					310					315					320
Glu	Val	Thr	Ala	Glu	Asp	Gly	Thr	Gln	Arg	Cys	Glu	Lys	Cys	Ser	Lys
				325					330					335	
Pro	Cys	Ala	Arg	Val	Cys	Tyr	Gly	Leu	Gly	Met	Glu	His	Leu	Arg	Glu
			340					345					350		
Val	Arg	Ala	Val	Thr	Ser	Ala	Asn	Ile	Gln	Glu	Phe	Ala	Gly	Cys	Lys
		355					360					365			
Lys	Ile	Phe	Gly	Ser	Leu	Ala	Phe	Leu	Pro	Glu	Ser	Phe	Asp	Gly	Asp
	370					375					380				
Pro	Ala	Ser	Asn	Thr	Ala	Pro	Leu	Gln	Pro	Glu	Gln	Leu	Gln	Val	Phe
385					390					395					400
Glu	Thr	Leu	Glu	Glu	Ile	Thr	Gly	Tyr	Leu	Tyr	Ile	Ser	Ala	Trp	Pro
	^			405					410					415	
Asp	Ser	Leu	Pro	Asp	Leu	Ser	Val	Phe	Gln	Asn	Leu	Gln	Val	Ile	Arg
			420					425	•				430		
Gly	Arg	Ile	Leu	His	Asn	Gly	Ala	Tyr	Ser	Leu	Thr	Leu	Gln	Gly	Leu
		435					440					445			
Gly	Ile	Ser	Trp	Leu	Gly	Leu	Arg	Ser	Leu	Arg	Glu	Leu	Gly	Ser	Gly
	450					455					460				
Leu	Ala	Leu	Ile	His		Asn	Thr	His	Leu	Cys	Phe	Val	His	Thr	
465					470					475					480
Pro	Trp	Asp	Gln		Phe	Arg	Asn	Pro		Gln	Ala	Leu	Leu	His	Thr
				485					490					495	

Ala	Asn	Arg	Pro	Glu	Asp	Glu	Cys	Val	GIY	GIu	GIY	Leu	Ala	Cys	His
			500					505					510		
Gln	Leu	Cys	Ala	Arg	Gly	His	Cys	Trp	Gly	Pro	Gly	Pro	Thr	Gln	Cys
		515					520					525			
Val	Asn	Cys	Ser	Gln	Phe	Leu	Arg	Gly	Gln	Glu	Cys	Val	Glu	Glu	Cys
	530					535					540				
Arg	Val	Leu	Gln	Gly	Leu	Pro	Arg	Glu	Tyr	Val	Asn	Ala	Arg	His	Cys
545					550					555					560
Leu	Pro	Cys	His	Pro	Glu	Cys	Gln	Pro	Gln	Asn	Gly	Ser	Val	Thr	Cys
				565					570					575	
Phe	Gly	Pro	Glu	Ala	Asp	Gln	Cys	Val	Ala	Cys	Ala	His	Tyr	Lys	Asp
			580					585					590		
Pro	Pro	Phe	Cys	Val	Ala	Arg	Cys	Pro	Ser	Gly	Val	Lys	Pro	Asp	Leu
		595					600					605	-		
Ser	Tyr	Met	Pro	Ile	Trp	Lys	Phe	Pro	Asp	Glu	Glu	Gly	Ala	Cys	Gln
	610					615					620				
Pro	Cys	Pro	Ile	Asn	Cys	Thr	His	Ser	Cys	Val	Asp	Leu	Asp	Asp	Lys
625					630					635					640
Gly	Cys	Pro	Ala	Glu	Gln	Arg	Ala	Ser	Pro	Leu	Thr	Ser	Ile	Ile	Ser
				645					650					655	
Ala	Val	Val	Gly	Ile	Leu	Leu	Val	Val	Val	Leu	Gly	Val	Val	Phe	Gly
			660					665					670		
Ile	Leu	Ile													
		675													