Syntaks og semantik

Lektion 1

5 februar 2008

I dag

- Introduktion
- Ord og sprog
- Regulære udtryk

Introduktion til kurset

3/27

Indhold Form Materiale Eksamen Folk

Kursets emne

Grundlæggende aspekter ved programmeringssprog:

Hvordan kan vi beskrive hvordan et sprog ser ud? (dets form)
 Syntaks:

- regulære sprog, endelige automater, regulære udtryk
- kontekst-frie sprog, push-down-automater, kontekst-frie grammatikker
- Hvordan kan vi beskrive hvordan et sprog skal forstås? (dets adfærd)

Semantik:

- operationel semantik
- denotationel semantik

Kursets indhold

Syntaks – regulære sprog:

- Introduktion; sprog; regulære udtryk
- 2 Endelige automater
- 3 Sprog der ikke er regulære

Syntaks – kontekstfrie sprog:

- 4 Kontekstfrie grammatikker
- Pushdown-automater
- Sprog der ikke er kontekstfrie

5/27

Indhold Form Materiale Eksamen Folk

Kursets indhold

Semantik:

- Operationelle semantikker for et simpelt imperativt sprog
- Operationelle semantikker for diverse udvidelser af sproget
- Blokke og procedurer
- Parametermekanismer
- Denotationel semantik

Teoretisk grundlag:

Domæneteori, rekursion og fikspunkter

Hvad kan jeg bruge det til?

- Vil jeg lære et nyt programmeringssprog?
 Nej.
- Skal vi se nogen smarte algoritmer?
 Nej.
- Vil jeg blive bedre til at programmere?
 Forhåbentlig.
- Vil jeg opnå større forståelse for hvordan programmeringssprog er opbygget?
 Ja.
- Vil jeg opnå større forståelse for hvilke problemer computere kan løse?
 Til dels.
- Vil jeg blive bedre til at forstå teorien bag programmering?
 Ja.

Indhold Form Materiale Eksamen Folk

Hvordan hænger det her sammen med andre kurser?

7/27

Kursets form

- 8:15 10:00: Forelæsning
 - normalt i 0.1.95
 - Læs stoffet hurtigt inden forelæsningen, så I ved hvad det handler om, og læs det grundigt igen bagefter, så I er sikre på at have forstået det.
 - Kursets emner bygger ovenpå hinanden, så hvis der er noget man misser, er det svært at finde tilbage igen!
- 10:10 12:00: Opgaveregning
 - i grupperum
 - to større afleveringsopgaver
 - Forvent ikke at kunne forstå stoffet uden at regne opgaver.
 - Studerende der ikke regner opgaver, kan ikke opholde sig i grupperummet under opgaveregningen.

9/27

Indhold Form Materiale Eksamen Folk

Afleveringsopgaver

- to gennemgående opgaver som I skal bruge en del af opgaveregningen på, hver gang
- afleveres til mig, kommenteres bagefter først af jeres kolleger og til sidst af mig
- vil være del af eksamenspensum
- kan for PE-studerende erstattes af tilsvarende opgaver der har relation til projektet
- Syntaksopgave
 - tilgængelig nu
 - afleveres 10 marts
 - evt. erstatningsopgave skal indleveres senest 15 februar
- Semantikopgave
 - vil blive offentliggjort i starten af marts

Bøger

 Michael Sipser: Introduction to the Theory of Computation, Second Edition, PWS Publishing Co. 2005.

Brug ikke ældre udgaver, der er lavet for meget om!

- Hans Hüttel: Pilen ved træets rod, Aalborg Universitet 2007.
- Sipser skal vi bruge nu
- Hüttel først i marts

11/27

Indhold Form Materiale Eksamen Folk

Hjemmeside

http://sands07.twoday.net

- slides
- opgaver
- andet materiale
- interessante links
- RSS-feed
- kommentarfunktion!

Eksamen

- mundtlig, 20min
- et antal spørgsmål kendt på forhånd træk ét af dem
- 20min forberedelsestid
- ekstern censor, karakter
- pensum og spørgsmål fastlægges ved tredjesidste kursusgang
- afleveringsopgaver indgår som hver deres spørgsmål

13/27

Indhold Form Materiale Eksamen Folk

Uli Fahrenberg underviser uli@cs.aau.dk

Jens Alsted hjælpelærer alsted@cs.aau.dk

Sprog og regulære udtryk

- Motivation: Regulære udtryk
- Bogstaver, ord
- 8 Sprog
- At sammensætte ord
- 10 Operationer på sprog
- Regulære udtryk igen
- Regulære sprog

15/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

Regulære udtryk bruges til tekstbehandling:

- at søge efter mønstre
- at erstatte

Eksempler:

- grep 'Hans' manual.tex
- grep 'vi[,.]' manual.tex
- grep 'o[a-zA-Z]*o[a-zA-Z]*o' manual.tex
- sed $'s: \ | [a-zA-Z] *: :g' manual.tex$
- sed 's:\\usepackage{[a-zA-Z]*}: :g' manual.tex

Et regulært udtryk definerer et sprog:

- $[Hans] = {Hans}$
- $[vi[,.]] = \{vi, vi, vi.\}$
- $[o[a-zA-Z]*o] = \{otto, othello, ohMyGodNo, oo, ...\}$
- [\\usepackage\(\[[a-zA-Z]*]\)\?{[a-zA-Z]*}]
 = {\usepackage{url}, \usepackage[danish] {babel},
 \usepackage{}, \usepackage[]{},...}

Mål for i dag: At gøre det her præcist

17/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

- Σ en endelig mængde af bogstaver eller symboler
 et alfabet
- et ord: en endelig følge af bogstaver
 normalt skrevet uden parenteser eller kommaer
- eksempel: $\Sigma = \{0, 1\}$ ord over Σ : f.x. 0, 1, 00, 01, 1001010110101
- eksempel: $\Sigma = \{a, b, c, d, r\}$ ord over Σ : f.x. a, b, c, d, r, abba, abracadabra
- eksempel: Σ = {gik, jeg, land, mig, og, over, sø, to, vi}
 ord over Σ: f.x. "jeg og mig og vi to"
 eller "jeg gik mig over sø og land"
- eksempel: Σ = {else, if, then, Exp, Stm}
 ord over Σ: f.x. "if Exp then Stm else Stm"

- et sprog: en mængde af ord (endelig eller uendelig)
- mængden af *alle* ord over et alfabet Σ skrives Σ^* (den er altid uendelig (medmindre Σ er tom . . .))
- eksempel: $\Sigma = \{0, 1\}$ $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \dots\}$
- ε det tomme ord; ordet af længde 0
- længden af et ord: |w| = antallet af bogstaver i ordet
- ∅ det tomme sprog; mængden uden indhold
- Bemærk: ε er et *ord*, \emptyset er et *sprog*. Og $\{\varepsilon\} \neq \emptyset$

19/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

- at sammensætte ord: abe o kat = abekat
 (svarer til at gange tal sammen, men ikke kommutativt!)
 (o-tegnet udelades de fleste gange)
- ε er identiteten: $w \circ \varepsilon = w$ og $\varepsilon \circ w = w$ for alle ord w. (ligesom tallet 1 er identiteten for multiplikation)
- gentagen sammensættelse skrives som potenser: $a^2 = aa$, $a^3 = aaa$, $a^9 = aaaaaaaaa$ etc.

Hvis L_1 og L_2 er sprog over et alfabet Σ , kan vi danne

- foreningsmængden L₁ ∪ L₂ = {w | w ∈ L₁ eller w ∈ L₂}
 sproget med alle de ord der er i L₁ eller L₂
- fællesmængden L₁ ∩ L₂ = {w | w ∈ L₁ og w ∈ L₂}
 sproget med alle de ord der er i L₁ og L₂
- sammensætningen L₁ ∘ L₂ = {w₁ ∘ w₂ | w₁ ∈ L₁ og w₂ ∈ L₂}
 sproget med alle de ord der er sammensætninger af et ord fra L₁ efterfulgt af et ord fra L₂
- stjernen L₁* = {w₁ ∘ w₂ ∘ · · · ∘ w_k | alle w_i ∈ L₁}
 sproget med alle de ord der er sammensætninger af vilkårligt mange ord fra L₁
 indeholder er det temme ord sammensætningen af O ord fra
 - indeholder ε : det tomme ord = sammensætningen af 0 ord fra $L_1 \dots$

21/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

Vi kan beskrive sprog som mængder: (her lader vi $\Sigma = \{a, b\}$)

- $L_1 = \{a, b, ab\}$ (et *endeligt* sprog)
- $L_2 = \{a^n \mid n \in \mathbb{N}\}$ alle ord der indeholder kun a, af vilkårlig længde
- $L_3 = \{a^nba^m \mid n, m \in \mathbb{N}\}$ alle ord der indeholder præcist ét b
- $L_4 = \{a^nb^n\}$ alle ord der indeholder et antal a og så samme antal b

eller ved hjælp af regulære udtryk:

- $L_1 = a \cup b \cup ab$
- $L_2 = a^*$
- $L_3 = a^* \circ b \circ a^*$
- $L_4 = ???$

(vi skal senere se at L_4 ikke kan beskrives ved regulære udtryk!)

Definition 1.52: Et regulært udtryk over et alfabet Σ er et udtryk af formen

- \bullet a for et $a \in \Sigma$,
- $\mathbf{2}$ ε ,
- **③** ∅,
- $(R_1 \cup R_2)$, hvor R_1 og R_2 er regulære udtryk,
- **⑤** $(R_1 \circ R_2)$, hvor R_1 og R_2 er regulære udtryk, eller
- (R_1^*) , hvor R_1 er et regulært udtryk.
- en induktiv (eller rekursiv) definition: 1. til 3. giver de basale *byggesten*, og 4. til 6. giver *byggeregler* til hvordan man kan sætte ting sammen.
- parenteserne udelades ofte

Eksempler (med $\Sigma = \{a, b\}$):

$$a, b, a \cup b, (a \cup b)^*, (a \cup b)^* \circ b, ((a \cup b)^* \circ b)^*$$

23/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

Definition 1.52, fortsat: Sproget, som et regulært udtryk R beskriver, betegnes R og er defineret som følger:

- Sipser skriver L(R) i stedet for $[\![R]\!]$. Jeg vil bruge begge notationer Udvidelser:
 - $\Sigma = a_1 \cup a_2 \cup \cdots \cup a_n$ (hvis sproget er $\Sigma = \{a_1, a_2, \ldots, a_n\}$)
 - $R^+ = R \circ R^*$

Eksempler (1.53): (for $\Sigma = \{0, 1\}$)

- [0*10*] = sproget med alle ord der indeholder symbolet 1 præcist én gang
- 2 $[\Sigma^*1\Sigma^*]$ = sproget med alle ord der indeholder symbolet 1 mindst én gang
- [(01+)*] = sproget af alle ord hvori ethvert 0 efterfølges af mindst ét 1

- **9** $(0 \cup \varepsilon)1^* = 01^* \cup 1^*$
- \bigcirc $(0 \cup 1)^* = (0^*1^*)^*$

25/27

Regulære udtryk Bogstaver, ord Sprog At sammensætte ord Operationer på sprog Regulære udtryk Regulære sprog

Sipser	grep, sed etc.	kommentarer
а	а	
Σ	•	
$arepsilon$, \emptyset		findes ikke; se nedenfor
$R_1 \cup R_2$	$R_1 \setminus \mid R_2$	
$R_1 \circ R_2$	R_1R_2	
R^*	$R\star$	
R^+	R+	
(,)	\(,\)	
$R \cup arepsilon$	R ?	højst én forekomst af R
	[abcd]	svarer til a∪b∪c∪d
	[:alpha:]	matcher alle bogstaver
	[:digit:]	matcher alle cifre
	^	negation. Rigtige regexps
		indeholder ikke negation!

Definition: Et sprog kaldes regulært hvis det kan frembringes af et regulært udtryk.

 eller måske: Et sprog L ⊆ Σ*, for Σ et alfabet, siges at være regulært hvis der findes et regulært udtryk R over Σ for hvilket L = ¶R¶.

Spørgsmål der trænger sig på:

- Er alle sprog regulære?
 Nej. Se afsnit 1.4 (lektion 4)
- Findes der andre måder at frembringe regulære sprog på?
 Ja. F.x. endelige automater; se afsnit 1.1 (lektion 2)
- Findes der også måder at frembringe ikke-regulære sprog på?
 Ja. F.x. kontekstfrie grammatikker; se afsnit 2.1 (lektion 5)
- Kan alle sprog så beskrives vha. disse metoder?

Nej, langt fra. Se afsnit 2.3 (lektion 7)

Hvad gør vi så?
 Venter på B&K-kurset næste semester