1 Нотация

Рассмотрим на плоскости стол Т, вершины которого имеют координаты

$$\{(0,0), (T_1,0), (0,T_2), (T_1,T_2)\},\$$

где T_1 и T_2 – положительные целые числа. Будем говорить, что вектор из плоскости \mathbb{R}^2 является uenum, если он имеет целочисленные координаты.

Определение 1. Многоугольник P называется *опорным полиомино*, если P может быть составлен из блоков размера 1×1 , и все вершины многоугольника P являются целыми векторами (проще говоря, P составлен из "клеточек").

Определение 2. Будем называть множество
$$\mathbf{K}_{P,N} = \bigsqcup_{j=1}^{N} P^{j}$$
 расположением полио-

мино muna-P, если P^j является образом фиксированного опорного полиомино $P \subset \mathbb{R}^2$ под действием композиции некоторого поворота с центром в начале координат на угол $\varphi \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$ и некоторого параллельного переноса на целый вектор для каждого $j \in \{1, 2, \dots, N\}$ (проще говоря, $\mathbf{K}_{P,N}$ — множество, состоящее из N непересекающихся по внутренности копий опорного полиомино P).

Определение 3. Набор объединений полиомино $\mathbf{K}_{P_1,N_1},\mathbf{K}_{P_2,N_2},\ldots,\mathbf{K}_{P_M,N_M}$ является замощением стола T, если $\bigsqcup_{j=1}^{M}\mathbf{K}_{P_j,N_j}\subseteq T.$

2 Формулировка задания

Мы предлагаем вам задачу о поиске замощения и ожидаем от вас решения в виде файловой директории, содержащей исходные файлы, инструкции к запуску вашей программы на языке Python (3.8 +) и комментарии в коде, относящиеся к логике вашей программы. Также будет плюсом, если вы сможете оценить сложность и затраченную память решения.

Проблема. Для данного стола T и данного множества $\{P_1, P_2, \ldots, P_M\}$ опорных прямоугольных-полиомино и опорных Π -полиомино с заданными соответствующими мощностями $N_1, N_2, \ldots N_M$ узнать, существует ли такой набор расположений

$$\mathbf{K}_{P_1,N_1},\mathbf{K}_{P_2,N_2},\ldots,\mathbf{K}_{P_M,N_M},$$

который является замощением T.

Входящие параметры алгоритма. Лист из трех элементов:

- 1. (T_1, T_2) размеры стола T, тапл-пара положительных целых чисел;
- 2. $[((S_i^1, S_i^2), N_i)]_{i=1}^{M_1}$ лист из тапл-пар, i-ый элемент которого содержит информацию о расположениях прямоугольных полиомино типа- P_i . А именно, (S_i^1, S_i^2) размер (ширина с высотой) прямоугольника-полоимино P_i , представленный в виде тапл-пары положительных целых чисел с условием $S_i^1 \geq S_i^2$, а N_i мощность расположения полиомино типа- P_i ;

3. $[(Q_i^1,Q_i^2),N_i)]_{i=1}^{M_2}$ — лист из тапл-пар, i-ый элемент которого содержит информацию о расположениях П-полиомино типа- P_i . А именно, (Q_i^1,Q_i^2) — размер П-полоимино, представленный в виде тапл-пары положительных целых чисел $(Q_i^1$ — длина левой и правой "каемок", Q_i^2 — длина верхней "каемки"), а N_i — мощность расположения полиомино типа- P_i .

Выход алгоритма. Существование замощения с заданными параметрами — True или False.

Например, входящие параметры алгоритма, проверяющего возможность замощения стола 4×6 одним Π -полиомино с 3 блоками слева-справа и четыремя блоками сверху, одним Π -полиомино с 2 блоками слева-справа и тремя блоками сверху и двумя квадратным полиомино:

- 1. (4,6) размер стола.
- 2. [(2,2),2] первая тапл-пара кодирует два квадратных полиомино.
- 3. $\left[(3,4),1),(2,3),1\right]$ первая тапл-пара кодирует одно П-полиомино, вторая другое П-полиомино.

Выход алгоритма: Правда.

Рисунок 1: Пример замощения с рассмотренными значениями параметров.