PRINTABLE VERSION

Quiz 13

Question 1

Describe the concavity of the graph of $f(x)=x^3-2x+6$ and find the points of inflection (if any).

- a) Concave down on $\left(-\infty,\frac{1}{3}\right)$; concave up on $\left(\frac{1}{3},\infty\right)$; pt of inflection $\left(\frac{1}{3},0\right)$.
- **b)** Concave down on $(-\infty, \infty)$; no points of inflection
- c) Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection (0, 6).
- **d)** Concave down on $(-\infty,0)$; concave up on $(0,\infty)$; pt of inflection (0,6).
- **e)** Concave up on $(-\infty, \infty)$; no points of inflection

Question 2

Describe the concavity of the graph of $f(x)=\frac{7}{4}\,x^4-\frac{7}{2}\,x^2$ and find the points of inflection (if any).

- a) Concave down on $(-\infty, \infty)$; no points of inflection
- **b)** Concave down on $(-\infty, 0)$; concave up on $(0, \infty)$; pt of inflection (0, 0).

- c) Concave up on $\left(-\infty, -\frac{\sqrt{3}}{3}\right)$ and $\left(\frac{\sqrt{3}}{3}, \infty\right)$; concave down on $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$; pts of inflection $\left(\frac{\sqrt{3}}{3}, -\frac{35}{36}\right)$ and $\left(-\frac{\sqrt{3}}{3}, -\frac{35}{36}\right)$.
- **d)** Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection (0, 0).
- **e)** Concave down on $\left(-\infty, -\frac{\sqrt{3}}{3}\right)$ and $\left(\frac{\sqrt{3}}{3}, \infty\right)$; concave up on $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$; pts of inflection $\left(\frac{\sqrt{3}}{3}, -\frac{35}{36}\right)$ and $\left(-\frac{\sqrt{3}}{3}, -\frac{35}{36}\right)$.

Describe the concavity of the graph of $f(x)=\frac{2\,x}{9\,x^2-4}$ and find the points of inflection (if any).

- **a)** Concave up on $(-\infty,0)$; concave down on $(0,\infty)$; pt of inflection (0,0).
- **b)** Concave down on $\left(-\infty,-\frac{2}{3}\right)$ and $\left(0,\frac{2}{3}\right)$; concave up on $\left(-\frac{2}{3},0\right)$ and $\left(\frac{2}{3},\infty\right)$; pt of inflection (0,0).
- c) Concave down on $\left(-\infty,\frac{2}{3}\right)$; concave up on $\left(\frac{2}{3}\,,\infty\right)$; pt of inflection $\left(\frac{2}{3}\,,0\right)$.

- **d)** Concave down on $(-\infty, \infty)$; no points of inflection
- **e)** Concave up on $\left(-\frac{2}{3},\frac{2}{3}\right)$; concave down on $\left(-\infty,-\frac{2}{3}\right)$ and $\left(\frac{2}{3},\infty\right)$; pts of inflection $\left(-\frac{2}{3},0\right)$ and $\left(\frac{2}{3},0\right)$.

Describe the concavity of the graph of $f(x)=2\left(x-3\right)^{5/3}$ and find the points of inflection (if any).

- a) Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection (0, 0).
- **b)** Concave down on $(-\infty, \infty)$; no points of inflection
- c) \bigcirc concave up on $(-\infty, \infty)$; no points of inflection
- **d)** Concave down on $(-\infty,3)$; concave up on $(3,\infty)$; pt of inflection (3,0).
- **e)** Concave up on $(-\infty, -3)$; concave down on $(-3, \infty)$; pt of inflection (-3, 0).

Question 5

Describe the concavity of the graph of $f(x)=8\,x^2-8\,\sin(2\,x)$ on the interval $[0,\pi]$.

a) Concave up on $\left(0, \frac{\pi}{12}\right)$; concave down on $\left(\frac{\pi}{12}, \pi\right)$.

- **b)** Concave up on $\left(0, \frac{7\pi}{12}\right)$; concave down on $\left(\frac{7\pi}{12}, \pi\right)$.
- c) Concave up on $\left(0,\frac{7\pi}{12}\right)$ and on $\left(\frac{11\pi}{12},\pi\right)$; concave down on $\left(\frac{7\pi}{12},\frac{11\pi}{12}\right)$.
- **d)** Concave up on $\left(\frac{7\pi}{12},\frac{11\pi}{12}\right)$; concave down on $\left(0,\frac{7\pi}{12}\right)$ and on $\left(\frac{11\pi}{12},\pi\right)$.
- e) \bigcirc concave down on $(0,\pi)$.

Find c so that the graph of $f(x)=cx^2+x^{-2}\,$ has a point of inflection at (4,f(4)).

a)
$$c = -\frac{3}{128}$$

b)
$$\bigcirc c = -\frac{3}{256}$$

c)
$$c = \frac{3}{128}$$

d)
$$\bigcirc c = \frac{3}{256}$$

e)
$$\bigcirc c = 0$$

Question 7

The graph of f'(x) is shown below. Give the interval(s) where the graph of

f(x) is concave up.

- a) \bigcirc $(-\infty,0)$ and $(2,\infty)$
- **b)** \bigcirc $(-\infty,-2)$ and $(2,\infty)$
- c) $\bigcirc (-\infty,0)$
- d) $\bigcirc (0,\infty)$
- **e)** (-2,2)

Question 8

Which of the following is true about the graph of $f(x)=6x^3-12x^2+6x-7$?

- a) $\bigcirc f(x)$ has a local minimum at the point $\left(\frac{1}{3}, -\frac{55}{9}\right)$.
- **b)** $\bigcirc f(x)$ is decreasing on the interval $\left(\frac{1}{3},1\right)$.
- c) f(x) has a local maximum at the point (1, -7).
- **d)** $\bigcirc f(x)$ is increasing on the interval $\left(\frac{2}{3},\infty\right)$.
- e) f(x) has a point of inflection at the point (1, -7).

Which of the following is true about the graph of $f(x)=2\sin^3(x)+3\,\sin(x)+1\,$ on the interval $[0,\pi]$?

- a) $\bigcirc f(x)$ has a local minimum at the point $\left(\frac{\pi}{2}\,,6\right)$.
- **b)** $\bigcirc f(x)$ is increasing on the interval $\left(\frac{\pi}{2},\pi\right)$.
- c) f(x) is concave down on the interval $(0,\pi)$.
- **d)** f(x) has points of inflection at the points $\left(\frac{\pi}{4}\,,2\sqrt{2}+1\right)$ and $\left(\frac{3\pi}{4}\,,2\sqrt{2}+1\right)$.
- e) f(x) is concave up on the interval $(0,\pi)$.

Question 10

Given the graph of f'(x) below, where is f(x) decreasing?

- a) $\bigcirc f(x)$ is decreasing on the interval (-6,7).
- **b)** $\bigcirc f(x)$ is decreasing on the intervals (-6,3) and $(7,\infty)$.
- c) f(x) is decreasing on the interval $(-6, \infty)$.
- **d)** $\bigcirc f(x)$ is decreasing on the intervals $(-\infty, -6)$ and (3, 7).
- **e)** $\bigcirc f(x)$ is decreasing on the interval $(-\infty, 7)$.