# Redis 主从复制原理

## 一、为什么需要主从复制

在我们日常的业务开发中,经常会用到 Redis,假设我们只有部署了一台 Redis 服务器,某个时刻 Redis 服务挂了,造成 Redis 不可用,在此期间,大量的请求将会直接打到数据库,数据库 cpu飙升,严重的可能导致数据库直接挂掉,这就是我们经常说的单点故障。为了解决单点问题,一般都需要对 redis 配置主从节点,那么 redis 主节点和从节点之间如何进行数据同步呢? Redis 提供了主从复制机制,我个人认为它的作用有以下几点:

1) 数据冗余 2) 单机故障 3) 读写分离 4) 负载均衡 5) 高可用的基石

## 二、什么是 redis 主从复制

主从复制,是指将一台 Redis 服务器的数据,复制到其他的 Redis 服务器。前者称为主节点 (master),后者称为从节点(slave),数据的复制是单向的,只能由主节点到从节点。一个 主节点可以有多个从节点,但一个从节点只能有一个主节点。

主从模式下, redis 采用读写分离模式:

读操作: 主节点与从节点均可执行读操作, 主要从节点读为主。

写操作: 主节点可以执行写操作,然后把数据同步给各个从节点,保证主从数据一致性。



## 三、如何搭建 redis 主从模式

参考文档: https://www.cnblogs.com/cmyxn/p/9414457.html

## 四、主从复制工作原理

slave 节点初次连接 master 节点,会发送 psync 命令并触发全量复制。此时 master 节点fork 一个后台进程,**开始**生成一份 RDB 快照,同时将那些从外面接收到的写命令缓存到缓冲区中。RDB 文件生成完毕后,将此文件发送给 slave 节点,slave 先写入磁盘,**再**从磁盘加载到内存,接着 master 会将新增加的缓

冲区的写命令发送给 slave, slave 执行写命令并同步数据。如果 slave 节点和 master 节点因网络故障断开连接, 会自动重连,连接之后 master 节点会复制缺少的数据给 slave 节点。

## 1) 主从同步流程



#### 2) 主从同步类型



### 3) 主从复制名词解释

▶ runId----主节点的运行 id

redis 在启动时会自动生成一个随机的 id (这里需要注意的是每次启动的 id 都会不一样),是由 40 个随机的十六进制字符串组成,用来唯一识别一个 redis 节点。

▶ offset-----复制偏移量

复制偏移量是指命令的字节长度,例如: 16000, 通过对比主从节点的复制偏移量,可以判断主从节点数据是否一致。

- ➤ replication buffer------内部队列缓冲区 它是在从节点和主节点建立连接成功后创建的,在主从断开后,这个缓冲区 也会被主节点进行删除,主从节点之间复制命令的传输,都会经过这个 buffer,而且这个 buffer 是每个从节点独有的。
- ➤ repl\_backlog\_buffer-----环形缓冲区 开始进行命令传输之前,就会建立好这个 buffer, 这个 buffer 记录当前

master 接收到的新的写操作命令 offset 和命令本身,是所有 slave 公用的 buffer, slave 发送 psync 之后,会和 master 的 offset 进行比较,来决定 是否进行增量复制。

#### 4) 全量复制流程



- 从服务器连接主服务器,发送 psync 命令
- 主服务器接收到 SYNC 命名后,开始执行 BGSAVE 命令生成 RDB 文件并使用 replication buffer 缓冲区记录此后执行的所有写命令
- 主服务器 BGSAVE 执行完后,向所有从服务器发送快照文件,并在发送期间继续记录被执行的写命令
- 从服务器收到快照文件后丢弃所有旧数据,载入收到的快照
- 主服务器快照发送完毕后开始向从服务器发送缓冲区中的写命令
- 从服务器完成对快照的载入,开始接收命令请求,并执行来自主服务器缓冲 区的写命令

### 5) 增量复制流程

从 redis 2.8 开始,如果主从连接因为网络原因断开以后,重新连接之后可以从中断处继续进行复制,而不用全量复制,大大提升了 redis 的性能。



如果主从断开连接了, redis 主节点会根据从节点发送过来的 runId 和从节点的 offset 进行判断是进行全量复制还是增量复制。判断逻辑如下:

#### 增量复制:

如果 runId 和主节点的 id 相同,并且主从的 offset 差距没有超过 repl\_backlog\_buffer 缓冲区的长度,主节点就会复制 offset 之间的 repl\_backlog\_buffer的命令给 slave。

#### 全量复制:

如果 runId 和主节点的 id 不同或者主从的 offset 差距超过 repl backlog buffer缓冲区的长度,则进行全量复制。

## 五、大厂常见面试题

### 1) redis 主从节点是长连接还是短连接?

长连接

#### 2) 怎么判断 redis 某个节点是否正常工作

一般集群判断节点是否正常工作,常用的方法都是通过互相的 ping-pong 心跳检测机制,如果有一半以上的节点去 ping 一个节点的时候没 pong 回应,集群就会认为这个节点宕机,会断掉这个节点的连接。

redis 主节点默认每隔 10s 发送一次心跳----判断从节点是否在线。

redis 从节点每隔 1s 发送一次心跳-----给主节点发送自己的复制偏移量,从 主节点获取到最新的数据变更命令,还做一件事情就是判断主节点是否在线。

### 3) 过期 key 如何处理

主节点处理了一个 key 或者通过淘汰算法淘汰了一个 key, 这个时候主节点模拟一条 del 命令发送给从节点,从节点接收到命令删除 key。

### 4) redis 是同步复制还是异步复制

redis 主节点每次接收到写命令之后,先写到内部的缓冲区,然后异步发送给从节点。

### 5) redis 主从切换如何减少数据丢失

#### 异步复制同步丢失

对于 Redis 主节点与从节点之间的数据复制,是异步复制的,当客户端发送写请求给 master 节点的时候,客户端会返回 OK,然后同步到各个 slave 节点中。如果此时 master 还没来得及同步给 slave 节点时发生宕机,那么 master 内存中的数据会丢失。

#### 解决方案:

client 端我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间后重新写入 master 来保证数据不丢失。也可以将数据写入 rocketmq 消息队列,发送一个延时消费消息去写入 master。

#### ▶ 集群产生脑裂数据丢失

首先我们需要理解集群的脑裂现象,这就好比一个人有两个大脑,那么到底受谁来控制呢?在分布式集群中,zookeeper很好地解决了这个问题,通过控制半数以上的机器来解决。

那么在 Redis 中,集群脑裂产生数据丢失的现象是怎么样的呢?



#### 解决方案:

在 redis 的配置文件中有两个参数我们可以设置:

min-slaves-to-write 默认是 0, min-slaves-max-lag 默认是 10

## min-slaves-to-write 2 min-slaves-max-lag 5

两个参数表示至少有 2 个 salve 与 master 的同步复制延迟不能超过 5s, 一旦所有的 slave 复制和同步的延迟达到了 5s,那么此时 master 就不会接受任何请求。我们可以减小 min-slaves-max-lag 参数的值,这样就可以避免在发生故障时大量的数据丢失,一旦发现延迟超过了该值就不会往 master 中写入数据。

### 6) redis 主从如何做到故障自动切换

主节点挂了,从节点是无法自动升级成主节点的,这个过程需要人工处理,在此期间,Redis 无法对外提供写操作。此时,Redis 哨兵模式就登场了。

哨兵模式: 当主节点出现故障时,由 Redis Sentinel 自动完成故障发现和转移,并通知应用方,实现高可用性。

# 六、数据备份方式(扩展)

## 1) 热备

由主库承担业务流量,同时会实时的备份数据到从库。



## 2) 冷备

由主库承担业务流量,通过定时或者离线手动执行脚本备份数据到从库。



## 3) 多活

由两个数据中心承担业务流量,数据中心互为主备,一般主数据中心会承担大部分流量,备数据中心会承担小部分流量。



那我们思考一个问题, redis 是属于哪种备份呢?

冷备,为了防止 redis 服务器磁盘出现问题,我们定时将 redis rdb 文件按日期 备份到阿里云的 oss。