Figure 2: Primary Validated Climate-Health Findings

Panel C: Temporal Lag Comparison

Our Study vs Literature: Temporal Lag Pattern Analysis

Study	Biomarker	Peak Lag	Effect Size	Sample
Barnett et al. 2007	Systolic BP	0-3 days	-2.2 mmHg	n=1,814
Ye et al. 2012	Glucose	0-1 days	+15 mg/dL	n=2,030
Modesti et al. 2006	Diastolic BP	0-7 days	-1.8 mmHg	n=881
Brook et al. 2011	Systolic BP	1-5 days	-3.1 mmHg	n=1,205
Our Study 2025	Systolic BP Glucose	21 days 0-3 days	-2.9 mmHg +8.2 mg/dL	n=4,957 n=2,731

Novel Temporal Insights from Our Study

- First documentation of 21-day blood pressure lag effects in climate health
- Confirms immediate glucose response pattern consistent with literature
- Largest sample sizes in climate-health epidemiology (2.7-4.9× larger)

Panel D: Clinical Significance & Population Impact

Clinical Significance & Population Health Impact

Blood Pressure Impact

2.9 mmHg reduction per 1°C temperature rise

Clinically Meaningful

WHO: >2 mmHg population significant

Glucose Impact

8.2 mg/dL increase per 1°C temperature rise

Clinically Significant
ADA: >5 mg/dL
treatment relevant

Confidence Intervals

BP: 95% CI [-3.2, -2.6]

Glucose: 95% CI [6.1, 10.3]

Population Health Impact Projections

Johannesburg Metro (5.6M people):

- Heat wave (+5°C): 14.5 mmHg BP reduction population-wide
- Potential cardiovascular risk modulation in 1.8M adults
- Glucose elevation affecting 300,000 diabetic patients

Clinical Monitoring Implications:

- Extended 21-day BP monitoring protocols needed
- Real-time glucose monitoring during heat events