

Sharif University of Technology Department of Computer Engineering

Embedded System Design

Interplay of Low Energy and Fault Tolerance Techniques (22)

A. Ejlali

Embedded System Requirements

- Real-time computing
 High reliability
 Low energy consumption

 Conflicting objectives

System Level Low Energy Design

- DVS (Dynamic Voltage Scaling):
 - lowering V_{dd} and F
- ABB (Adaptive Body Biasing):
 - lowering Vbs
- DPM (Dynamic Power Management):
 - turning off the unused components

Energy Consumption

$$E_{cyc} = \underbrace{C_{\it eff}V_{\it dd}^2}_{\it Dynamic Energy} +$$

$$\frac{L_{g}}{f(V_{dd})}(V_{dd}K_{3}e^{K_{4}V_{dd}}e^{K_{5}V_{bs}}+|V_{bs}|I_{j})$$

Static Energy

Reliability Problems in DVS-Enabled Systems

- Increased fault rate and error rate
 - Reduced Noise Margin
 - Reduced Critical Charge
 - More susceptible to SEUs
- Increased execution time $\rho = 1 e^{-\lambda \cdot T_{exe}}$
- Reduced slack time in real time systems

Energy Problem in FT Systems

- Fault Handling requires redundancy.
- Redundancy is simply the addition of
 - Time
 - Hardware
 - Software
 - Information

beyond what is needed for normal system operation.

Example 1: Low Precision Redundant Units

