DSC 680

Inman, Gracie

Project 1

03/31/24

```
In [1]: # load data
import pandas as pd
credit_risk_df = pd.read_csv("credit_risk_dataset.csv")
credit_risk_df.head()
```

```
Out[1]:
            person_age person_income person_home_ownership person_emp_length loan_intent loan_grade loan_amnt loan_int_rat
         0
                     22
                                 59000
                                                          RENT
                                                                              123.0
                                                                                     PERSONAL
                                                                                                        D
                                                                                                               35000
                                                                                                                              16.0
                     21
                                  9600
                                                          OWN
                                                                                5.0
                                                                                   EDUCATION
                                                                                                        В
                                                                                                                1000
                                                                                                                              11.1
          2
                     25
                                                     MORTGAGE
                                                                                                        С
                                  9600
                                                                                1.0
                                                                                      MEDICAL
                                                                                                                5500
                                                                                                                              12.8
                     23
                                 65500
                                                          RENT
                                                                               4.0
                                                                                      MEDICAL
                                                                                                        С
                                                                                                               35000
                                                                                                                              15.2
          4
                     24
                                 54400
                                                          RENT
                                                                               8.0
                                                                                      MEDICAL
                                                                                                        С
                                                                                                               35000
                                                                                                                              14.2
```

```
In [2]: # check columns
    credit_risk_df.columns
```

```
In [3]: # drop unneed columns
    credit_risk = credit_risk_df.drop(["loan_grade", "loan_int_rate"], axis = 1)
    credit_risk.head()
```

Out[3]:		person_age	person_income	person_home_ownership	person_emp_length	loan_intent	loan_amnt	loan_status	loan_percer
	0	22	59000	RENT	123.0	PERSONAL	35000	1	
	1	21	9600	OWN	5.0	EDUCATION	1000	0	
	2	25	9600	MORTGAGE	1.0	MEDICAL	5500	1	
	3	23	65500	RENT	4.0	MEDICAL	35000	1	
	4	24	54400	RENT	8.0	MEDICAL	35000	1	

```
import matplotlib.pyplot as plt
import pandas as pd
for column in credit_risk.columns:
    plt.figure(figsize=(8, 6))
    plt.hist(credit_risk[column], bins=20, color='skyblue', edgecolor='black')
    plt.xlabel(column)
    plt.ylabel('Frequency')
    plt.title(f'Histogram of {column} Distribution')
    plt.show()
```



```
In [5]: # Check columns values
        for column in credit risk.columns:
            unique values = credit risk[column].unique()
            print(f"Unique values for '{column}':")
            print(unique values)
            print()
        Unique values for 'person age':
        [ 22 21 25 23 24 26 144 123
                                         20
                                                             28
                                             32
                                                 34
                                                     29
                                                         33
          36
                 50
                     45
                          37
                             39
                                 44
                                     43
                                         41
                                             46
                                                 38
                                                     47
                                                         42
                                                             48
                                                                 49
                                                                     58
                                                                         65
                                                                             51
             66 61
                     54 57 59 62
                                     60
                                        55 52
                                                 64
                                                     70
                                                         78 69
                                                                 56
                                                                     73 63
                                                                             94
          80
             84 76 671
        Unique values for 'person income':
        r 59000
                    9600
                           65500 ... 720000 1900000
                                                       48881
        Unique values for 'person home ownership':
        ['RENT' 'OWN' 'MORTGAGE' 'OTHER']
        Unique values for 'person_emp_length':
        [123.
                5.
                              8.
                                   2.
                                        6.
                                                  0.
                                                       9.
                                                            3. 10. nan 11.
                                             7.
                                  13. 19.
                                                      22. 21. 24. 23.
          18.
             12. 17. 14. 16.
                                            15.
                                                 20.
                                                                          26.
              27. 28. 31. 41.
                                  34. 29.
                                                 30.1
                                            38.
        Unique values for 'loan intent':
        ['PERSONAL' 'EDUCATION' 'MEDICAL' 'VENTURE' 'HOMEIMPROVEMENT'
         'DEBTCONSOLIDATION']
        Unique values for 'loan amnt':
        [35000 1000 5500 2500 1600
                                      4500 30000 1750 34800 34000
                                                                     1500 33950
                4575
                     1400 32500
         33000
                                 4000
                                       2000 32000 31050 24250
                                                               7800 20000 10000
         25000 18000 12000 29100 28000
                                       9600
                                            3000
                                                  6100 4200
                                                               4750
                                                                     4800
                                                                           2700
         27600
                3250 27500 27050 27000 26000 25600 25475 21600 11900 25300
                                                                           3650
          6000
                2400
                     3600
                          7500 4950 21000 16000 22000
                                                        7750 24000 15000 15500
          9000 23050
                     5375
                           6250
                                 5000
                                       2100 14000 6200
                                                         9950
                                                               4475
                                                                     2600
                                                                           8000
          4600
                3500 7200
                           8800
                                 3175 2800 13000 1800
                                                         3300
                                                               3200
                                                                     2275 5600
          3625
                4375 24750 24500
                                 3900 13750 15250 24150
                                                         2250
                                                               4975
                                                                    4900 23975
         23750 23600 23575
                           5400
                                 3375 23400 23000 1200 22750 22500 22400 22250
          7400 21700 7000 21500 21450 21250 9250 20900 20500 20400 20375 20050
```

6400	5650	16600	7125	3550	1275	3800	1625	8500	7575	5200	4025
4400	3825	6500	5875	1550	7350	6700	8300	10625	19900	19800	500
700	750	19000	18950	18800	18750	18725	18550	7100	18500	18400	18250
1300	5800	18225	18200	1375	17950	17800	17750	17700	3975	17625	17600
17500	17475	17400	17200	17000	16950	16875	16800	16750	16700	16525	16500
11500	16425	16400	16300	16250	16075		11100	1525	10800	7850	11325
14500	5975	1075	1100	1150	3025	9475	1325	2750	1350	3725	1925
5175	6300	8400	1450	9800	1475	14125	12300	9500	5225	12200	10750
1675	1700	8875	5150	1775	6075	1825	1850	1875	1900	1950	11000
14950	14900	7600	14850	14800	13250	5125	2050	2125	2150	3075	2200
2225	2300	2350	6600	6950	2425	2450	13600	13500	9200	13475	13450
13400		13300	13275	13225	13200		13050	12250	7550	11200	1050
11225		11050	2850	2875	2900	2925		12500	10150	8325	1250
12375	8125	6425	9750	14400		10950	6800	9450	22550	6900	8575
3050	3100	3125	3150	7775	13650	2950	12800	800	3325	3350	3400
3450	5775	8700	11625	11300	5250	7275	14775	5300	6725	3525	3575
15800	14600	6350	10900	10875		10775	10700	10600	10500	10450	10400
10375	10325	10300	10250	10200	3700	3750	3850	3950	5550	7675	5700
5325	9875	4350	4450	4300	10850	8100	4550	4650	4700	4725	13025
2525	15450	6625	17050	7975	9700	8200	4850	19200	13975	8675	9350
9975	9100	9900	14750	7050	5750	15075	12600	15600	22800	6650	13800
8475	18900	14300	8975	8950	8900	8850	8650	14550	4150	9050	4075
14650	8450	9125	4325	5950	9925	7375	11700	9225	10075	5275	23500
8600	5425	5450	12725	13850	5525	5575	5625	5675	5825	5850	5900
5925	2550	15750	19500	10525	18650	13700	9825	9175	7075	7025	11400
8375	6025	6150	15825	6225	15200	14100	2650	6975	6325	6375	19750
2625	6550	6575	5025	6850	6750	6775	6475	6450	6825	6875	6925
8525	3775	24200	11075	7150	7175	4225	7875	21825	7250	7300	19125
7325	7475	17300	9575	12875	11425	19725	900	17450	14075	12275	31300
7525	15700	11600	14825	7650	7700	7900	7925	7950	13375	25850	21200
23275	10425	15850	6125	5075	5050	12900	9525	29800	21650	8050	8075
23525	8150	8350	27250	2475	8550	8625	8725	8750	8775	7425	9150
9300	9325	9375	9400	9425	9550	29000	12150	19600	26400	15900	4275
4250	13950	7450	4125	4100	4050	11875	18300	31825	11125	16100	29700
6675	15350	10675	10025	10100	10125	3425	14200	11250	17825	11525	11550
11575		11750	11775	11800	11850		25975	14625	8825	27525	19075
14700	18600	2825		21400	1125	20675	16200	12475	18150	12100	12125
13675	12450	2775	2725	2675	4175	12950	12700	12750	24175	10925	13625
13900	25200	12975	14350	3275	14275	20600	23800	29175	21850	9850	14525

```
14575 27300 12075 17325 9625 19950 4525 22600 19400 20800 15125 12225
15400 18325 15550 15625 15650 15675 23450 10575 19425 19550 19650 2375
  2325 31000 30750 29550 28800 14725 22200 24625 23850 23475 22950 22650
 21725 20200 2075 5725 19975 19850 19775
                                              725
                                                    950 18825 17975 17900
 17725 17250 16775 16450 14975 13575 13425 13150 13075 10225 3925 5350
 10725 10550 10275 3675 12775 9775 1425 14675 4625 4425
                                                               4675 12650
  4875 1225 17350 9275 10825 10175 15150 5475 17375 10650
                                                              8275 15025
  9725 6525 15875 10475 27575 10975 12625 8025 7225 10050 4775 20475
  7725 8225 23200 16725 21100 22100 7625 25500 20150 18050 23700 19700
 15275 11175 11350 11450 11475 19150 19450 9075 21125 24800 24400 12325
 12350 2575 12025 14150 17875 11025 14475 26375 13125 27400 14050 28250
 15975 33250 6275 22350 24100 15050 17525 15175 23100 11275 13175 19925
 32400 30600 31400 27175 24375 8175 23325 18125 3225 26800 17925 14250
 12925 13775 17850 20700 11375 15575 15775 19275 29850]
Unique values for 'loan status':
[1 0]
Unique values for 'loan percent income':
[0.59 \ 0.1 \ 0.57 \ 0.53 \ 0.55 \ 0.25 \ 0.45 \ 0.44 \ 0.42 \ 0.16 \ 0.41 \ 0.37 \ 0.32 \ 0.3
 0.06 0.29 0.31 0.22 0.52 0.14 0.49 0.13 0.5 0.35 0.17 0.27 0.33 0.08
 0.03 \ 0.21 \ 0.63 \ 0.47 \ 0.4 \ 0.07 \ 0.38 \ 0.34 \ 0.04 \ 0.23 \ 0.15 \ 0.11 \ 0.43 \ 0.51
 0.02 0.28 0.26 0.19 0.39 0.09 0.05 0.61 0.18 0.6 0.01 0.48 0.12 0.54
 0.56 0.46 0.36 0.24 0.2 0.72 0.64 0.69 0.77 0.83 0.65 0.67 0.58 0.71
 0.68 0.7 0.66 0. 0.76 0.62 0.781
Unique values for 'cb person default on file':
['Y' 'N']
Unique values for 'cb person cred hist length':
[ 3 2 4 8 7 6 9 10 5 11 16 15 12 13 17 14 25 28 27 22 19 29 23 26
 20 21 30 24 181
```

```
In [6]: credit_risk.shape
```

Out[6]: (32581, 10)

```
In [7]: # Check for missing values
        missing values = credit risk.isnull().sum()
        print("Missing values in each column:")
        print(missing values)
        Missing values in each column:
        person age
        person income
        person home ownership
        person emp length
                                       895
        loan_intent
        loan amnt
        loan status
        loan percent income
        cb person default on file
        cb person cred hist length
        dtype: int64
In [8]: credit risk = credit risk.dropna()
        print("Shape of cleaned dataset:", credit risk.shape)
        Shape of cleaned dataset: (31686, 10)
In [9]: # Encode Categorical Values
         from sklearn.preprocessing import LabelEncoder
        label encoder = LabelEncoder()
        credit risk['person home ownership encoded'] = label encoder.fit transform(credit risk['person home ownership
         # Print mapping
        print("Mapping of encoded labels:")
        for label, encoded label in zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_)):
             print(f"{label}: {encoded label}")
        # Check data
        print("\nFirst few rows of the dataset with encoded 'person home ownership':")
        print(credit_risk[['person_home_ownership', 'person_home_ownership_encoded']].head())
```

```
Mapping of encoded labels:
         MORTGAGE: 0
         OTHER: 1
         OWN: 2
         RENT: 3
         First few rows of the dataset with encoded 'person home ownership':
           person home ownership person home ownership encoded
         0
                             RENT
         1
                             OWN
                                                                2
         2
                        MORTGAGE
                                                               0
         3
                             RENT
                                                               3
                            RENT
                                                                3
In [10]:
         credit risk['cb person default on file encoded'] = label encoder.fit transform(credit risk['cb person def
         # Print mapping
         print("Mapping of encoded labels:")
         for label, encoded label in zip(label encoder.classes , label encoder.transform(label encoder.classes )):
             print(f"{label}: {encoded label}")
         # Check
         print("\nFirst few rows of the dataset with encoded 'cb person default on file':")
         print(credit risk[['cb person_default on_file', 'cb person_default on_file encoded']].head())
         Mapping of encoded labels:
         N: 0
         Y: 1
         First few rows of the dataset with encoded 'cb_person_default_on_file':
           cb person default on file cb person default on file encoded
         0
                                                                        0
         1
                                    Ν
         2
                                    Ν
                                                                        0
         3
                                                                        0
                                    Y
```

```
In [11]: credit risk['loan intent encoded'] = label encoder.fit transform(credit risk['loan intent'])
         # Print mapping
         print("Mapping of encoded labels:")
         for label, encoded label in zip(label encoder.classes , label encoder.transform(label encoder.classes )):
             print(f"{label}: {encoded label}")
         # Check
         print("\nFirst few rows of the dataset with encoded 'loan_intent':")
         print(credit risk[['loan intent', 'loan intent encoded']].head())
         Mapping of encoded labels:
         DEBTCONSOLIDATION: 0
         EDUCATION: 1
         HOMEIMPROVEMENT: 2
         MEDICAL: 3
         PERSONAL: 4
         VENTURE: 5
         First few rows of the dataset with encoded 'loan intent':
           loan intent loan intent encoded
              PERSONAL
                                           1
         1
             EDUCATION
         2
                                           3
               MEDICAL
         3
                                           3
               MEDICAL
               MEDICAL
In [12]: credit risk.head()
```

Out[12]:	р	person_age person_income person_home_owners		ship persor	person_emp_length loan_intent loan_amnt loan_status loan_pero						
	0	22	59000	R	ENT	123.0	PERSONAL	35000	1		
	1	21	9600	C	NWN	5.0	EDUCATION	1000	0		
	2	25	9600	MORTG	AGE	1.0	MEDICAL	5500	1		
	3	23	65500	R	ENT	4.0	MEDICAL	35000	1		
	4	24	54400	R	ENT	8.0	MEDICAL	35000	1		
In [13]:			encoded = cred encoded.head()	it_risk.drop([' <mark>pe</mark>	rson_home_	_ownership',	'cb_person	n_default_	on_file', '	loan_inter	
Out[13]:	р	erson_age	person_income	person_emp_length	loan_amnt	loan_status	loan_percent	_income cl	b_person_cred	l_hist_length	
	0	22	59000	123.0	35000	1		0.59		3	
	1	21	9600	5.0	1000	0		0.10		2	
	2	25	9600	1.0	5500	1		0.57		3	
	3	23	65500	4.0	35000	1		0.53		2	
	4	24	54400	8.0	35000	1		0.55		4	
<pre>In [14]: # split data from sklearn.model_selection import train_test_split</pre>											
	<pre>X = credit_risk_encoded.drop('loan_status', axis=1) y = credit_risk_encoded['loan_status'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)</pre>										
	<pre># Shapes of training and test print("Shape of X_train:", X_train.shape) print("Shape of X_test:", X_test.shape) print("Shape of y_train:", y_train.shape) print("Shape of y_test:", y_test.shape)</pre>										

```
Shape of X train: (22180, 9)
         Shape of X test: (9506, 9)
         Shape of y train: (22180,)
         Shape of y test: (9506,)
In [15]: # train models
         from sklearn.linear model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.naive bayes import GaussianNB
         # Tnitialize
         logistic regression = LogisticRegression()
         random forest = RandomForestClassifier()
         naive bayes = GaussianNB()
         # Train
         logistic regression.fit(X_train, y_train)
         random forest.fit(X train, y train)
         naive_bayes.fit(X_train, y_train)
Out[15]: ▼ GaussianNB
         GaussianNB()
In [16]: # evaluate
         from sklearn.metrics import accuracy score, precision score, confusion matrix
         # dictionary
         results = {}
         # Logistic regression
         logistic regression predictions = logistic regression.predict(X test)
         logistic regression accuracy = accuracy score(y test, logistic regression predictions)
         logistic regression precision = precision score(y test, logistic regression predictions)
         logistic regression confusion matrix = confusion matrix(y test, logistic regression predictions)
         results['Logistic Regression'] = {'Accuracy': logistic regression accuracy,
                                            'Precision': logistic regression precision,
                                            'Confusion Matrix': logistic regression confusion matrix}
```

```
In [17]: # random forest
         random forest predictions = random forest.predict(X test)
         random forest accuracy = accuracy score(y test, random forest predictions)
         random forest precision = precision score(y test, random forest predictions)
         random forest confusion matrix = confusion matrix(y test, random forest predictions)
         results['Random Forest'] = {'Accuracy': random forest accuracy,
                                      'Precision': random forest precision,
                                      'Confusion Matrix': random forest confusion matrix}
In [18]: # Naive Bayes
         naive bayes predictions = naive bayes.predict(X test)
         naive bayes accuracy = accuracy score(y test, naive bayes predictions)
         naive bayes precision = precision score(y test, naive bayes predictions)
         naive bayes confusion matrix = confusion matrix(y test, naive bayes predictions)
         results['Naïve Bayes'] = {'Accuracy': naive bayes accuracy,
                                    'Precision': naive bayes precision,
                                    'Confusion Matrix': naive bayes confusion matrix}
In [19]: for model, metrics in results.items():
             print(f" {model}:")
             print(f"Accuracy: {metrics['Accuracy']:.4f}")
             print(f"Precision: {metrics['Precision']:.4f}")
             print("Confusion Matrix:")
             print(metrics['Confusion Matrix'])
             print()
```

```
Logistic Regression:
         Accuracy: 0.8116
         Precision: 0.7390
         Confusion Matrix:
         [[7378 119]
          [1672 337]]
          Random Forest:
         Accuracy: 0.8876
         Precision: 0.8841
         Confusion Matrix:
         [[7355 142]
          [ 926 1083]]
          Naïve Bayes:
         Accuracy: 0.8004
         Precision: 0.6217
         Confusion Matrix:
         [[7323 174]
          [1723 286]]
In [20]: import seaborn as sns
         for model, metrics in results.items():
             plt.figure(figsize=(6, 4))
             sns.heatmap(metrics['Confusion Matrix'], annot=True, cmap='Blues', fmt='g', annot kws={"size": 16})
             plt.title(f'Confusion Matrix for {model}')
             plt.xlabel('Predicted')
             plt.ylabel('Actual')
             plt.show()
```



```
In [21]: feature_importances = random_forest.feature_importances_

# Features
feature_names = X.columns

# Bar plot
plt.figure(figsize=(10, 6))
plt.barh(feature_names, feature_importances, color='skyblue')
plt.xlabel('Feature Importance')
plt.ylabel('Feature Importance for Random Forest Classifier')
plt.title('Feature Importance for Random Forest Classifier')
plt.gca().invert_yaxis()
plt.show()
```



```
In [22]: from sklearn.ensemble import AdaBoostClassifier
         # AdaBoost
         adaboost random forest = AdaBoostClassifier(base estimator=random forest)
         # Train AdaBoost
         adaboost_random_forest.fit(X_train, y_train)
         # Evaluate
         adaboost_random_forest_accuracy = adaboost_random_forest.score(X_test, y_test)
         adaboost random forest predictions = adaboost random forest.predict(X test)
         adaboost random forest precision = precision score(y test, adaboost random forest predictions)
         adaboost random forest confusion matrix = confusion matrix(y test, adaboost random forest predictions)
         # Print.
         print("Metrics for AdaBoost with Random Forest:")
         print(f"Accuracy: {adaboost random forest accuracy:.4f}")
         print(f"Precision: {adaboost random forest precision:.4f}")
         print("Confusion Matrix:")
         print(adaboost random forest confusion matrix)
         /Users/gracieinman/anaconda3/lib/python3.10/site-packages/sklearn/ensemble/ base.py:166: FutureWarning:
         `base estimator` was renamed to `estimator` in version 1.2 and will be removed in 1.4.
           warnings.warn(
         Metrics for AdaBoost with Random Forest:
         Accuracy: 0.8772
         Precision: 0.9033
         Confusion Matrix:
         [[7396 101]
          [1066 943]]
```