Gautam Kapila Case Study 1

G.Kapila 7/5/2019

United States Brewery Market and Beer Composition Statistics

Introduction

The work summarizes following aspects of US brewery market and beer composition per state

- Number of breweries present per state
- Acoholic content of craft beers per state
- Bitterness of the beers per state
- State with beer having maximum alchoholic content and bitterness
- Relationship between beer alcoholic content and beer bitterness

It is envisaged that this work could be extended in future, to come up with proposals on where to start a new brewery venture and target beer composition

Session and Library Information

sessionInfo()

```
## R version 3.5.3 (2019-03-11)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC MONETARY=English United States.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.1252
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                   base
##
## loaded via a namespace (and not attached):
## [1] compiler_3.5.3 magrittr_1.5
                                        tools_3.5.3
                                                        htmltools_0.3.6
## [5] yaml_2.2.0
                        Rcpp_1.0.1
                                                        rmarkdown_1.12
                                        stringi_1.4.3
## [9] knitr_1.22
                        stringr_1.4.0
                                        xfun 0.6
                                                        digest_0.6.19
## [13] evaluate_0.13
```

```
library(tidyr)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(ggplot2)
```

Data Preparation

```
beers <- read.csv(file = "CaseStudy1_2_2_2\\beers.csv",sep = ",")
breweries <- read.csv(file = "CaseStudy1_2_2_2\\breweries.csv",sep = ",")
bd <- merge(beers, breweries, by.x = "Brewery_id", by.y = "Brew_ID")
bd$State <- gsub('\\s+', '', bd$State)
colnames(bd) <- c("BreweryID", "BeerName", "BeerID", "ABV", "IBU", "Style", "Oz", "BreweryName", "City", "State"
write.csv(bd,file = "bd.csv",row.names = FALSE)</pre>
```

Breweries present in each state

```
BDist <- bd %>% dplyr::count(State,sort = TRUE, name = "Count")
ggplot(data = BDist, aes(x=reorder(State,Count),y=Count,fill = Count)) +
    geom_bar(stat = "identity",width = 0.7) +
    coord_flip() +
    geom_text(aes(label=Count), hjust = -0.5, vjust = 0.1, size=2)+
    ggtitle('Brewery Count by State') +
    theme(plot.title = element_text(hjust = 0.5)) +
    xlab("State")+
    theme(axis.text = element_text(size = 8)) +
    scale_fill_gradient(low = "green",high = "red")
```

Brewery Count by State

Printing first 6 and last 6 data from merged file

rbind(head(bd,6),tail(bd,6))

##		BreweryID	BeerName	BeerID	ABV	IBU
##	1	1	Get Together	2692	0.045	50
##	2	1	Maggie's Leap	2691	0.049	26
##	3	1	Wall's End	2690	0.048	19
##	4	1	Pumpion	2689	0.060	38
##	5	1	Stronghold	2688	0.060	25
##	6	1	Parapet ESB	2687	0.056	47
##	2405	556	Pilsner Ukiah	98	0.055	NA
##	2406	557	Heinnieweisse Weissebier	52	0.049	NA
##	2407	557	Snapperhead IPA	51	0.068	NA
##	2408	557	Moo Thunder Stout	50	0.049	NA
##	2409	557	Porkslap Pale Ale	49	0.043	NA
##	2410	558	Urban Wilderness Pale Ale	30	0.049	NA
##			Style	0z		${\tt BreweryName}$
##	1		American IPA	16		NorthGate Brewing
##	2		Milk / Sweet Stout	16		NorthGate Brewing
##	3		English Brown Ale	16		NorthGate Brewing
##	4		Pumpkin Ale	16		NorthGate Brewing
##	5		American Porter	16		NorthGate Brewing
##	6	Extra Spe	cial / Strong Bitter (ESB)	16		NorthGate Brewing

```
## 2405
                             German Pilsener 12
                                                        Ukiah Brewing Company
## 2406
                                  Hefeweizen 12
                                                      Butternuts Beer and Ale
## 2407
                                American IPA 12
                                                      Butternuts Beer and Ale
                         Milk / Sweet Stout 12
## 2408
                                                      Butternuts Beer and Ale
## 2409
                    American Pale Ale (APA) 12
                                                      Butternuts Beer and Ale
## 2410
                           English Pale Ale 12 Sleeping Lady Brewing Company
##
                 City State
## 1
          Minneapolis
## 2
          Minneapolis
                         MN
## 3
          Minneapolis
                         MN
## 4
          Minneapolis
                         MN
          Minneapolis
                         MN
## 5
          Minneapolis
## 6
                         MN
## 2405
                Ukiah
                         CA
## 2406 Garrattsville
                         NY
## 2407 Garrattsville
                         NY
## 2408 Garrattsville
                         NY
## 2409 Garrattsville
                         NY
## 2410
            Anchorage
                         AK
```

Printing NA's count per column

```
sapply(bd, function(x) sum(length(which(is.na(x)))))
```

```
BeerID
                                                    ABV
##
     BreweryID
                    BeerName
                                                                 IBU
                                                                             Style
                                                                 1005
##
              0
                                         0
                                                     62
##
             Oz BreweryName
                                      City
                                                  State
##
                                         0
```

Median Alcohol Content and IBU for each state

```
mABVbyState <- bd %>% drop_na(ABV) %>% group_by(State) %>% summarize(mABV = median(ABV))
ggplot(data = mABVbyState, aes(x=reorder(State,mABV),y=mABV,fill = mABV)) +
    geom_bar(stat = "identity",width = 0.7) +
    coord_flip() +
    geom_text(aes(label=mABV), hjust = -0.5, vjust = 0.1, size=2)+
    ggtitle('Median ABV by State') +
    theme(plot.title = element_text(hjust = 0.5)) +
    xlab("State")+
    ylab("Median ABV")+
    theme(axis.text = element_text(size = 8)) +
    scale_fill_gradient(low = "green",high = "red") +
    ylim(0,0.07)
```

Median ABV by State


```
mIBUbyState <- bd %>% drop_na(IBU) %>% group_by(State) %>% summarize(mIBU = median(IBU))
ggplot(data = mIBUbyState, aes(x=reorder(State,mIBU),y=mIBU,fill = mIBU)) +
    geom_bar(stat = "identity",width = 0.7) +
    coord_flip() +
    geom_text(aes(label=mIBU), hjust = -0.5, vjust = 0.1, size=2)+
    ggtitle('Median IBU by State') +
    theme(plot.title = element_text(hjust = 0.5)) +
    xlab("State")+
    ylab("Median IBU")+
    theme(axis.text = element_text(size = 8)) +
    scale_fill_gradient(low = "green",high = "red")
```

Median IBU by State

State with Max Alcohol Content and Max IBU

State with Max Alcoholic Beer

```
maxABVbyState <- bd %>% drop_na(ABV) %>% group_by(State) %>% summarize(mABV = max(ABV))
maxABVState <- as.character(maxABVbyState[order(-maxABVbyState$mABV),][1,1])
maxABVState</pre>
```

[1] "CO"

State with most bitter bear (max IBU)

```
maxIBUbyState <- bd %>% drop_na(IBU) %>% group_by(State) %>% summarize(mIBU = max(IBU))
maxIBUState <- as.character(maxIBUbyState[order(-maxIBUbyState$mIBU),][1,1])
maxIBUState</pre>
```

[1] "OR"

Summary Statistics for ABV variable

```
summary(beers$ABV)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.00100 0.05000 0.05600 0.05977 0.06700 0.12800 62
```

Relationship between Beer Bitterness and Alcoholic Content

```
ggplot(bd, aes(x=ABV, y=IBU, color=State)) +
  geom_point() +
  xlab("Alcoholic Content of Beer, ABV")+
  ylab("Bitterness of Beer, IBU") +
  theme(axis.text = element_text(size = 8)) +
  ggtitle('Scatter plot between bitterness and alcoholic content') +
  theme(plot.title = element_text(hjust = 0.5))
```

Scatter plot between bitterness and alcoholic content State

Following aspects of the relationship are evident

- 1. In general, higher bitterness tracks with higher alcholic content.
- 2. It appears that one can have a range of bitterness for a given alcoholic content, and vice versa.

There is more to getting the right bitterness (IBU) for a beer than just it's alcoholic content (ABV)

Conclusions

- Colorado by far has the largest number of breweries.
 - CA, MI, IN, TX are other states with high density of breweries.
 - Targeting these states for additional opening of brewery should be considered.
- Co ranks 5th in list of states with highest alcholol content producing states.
 - However, it produces beer with highest alcholic content.
 - Perhaps there is additional apetite in market to absorb higher alcholic content beer.
- Clearly bitterness and alcoholic content track each other.
 - However, beers with different amount of bitterness can be produced at any given alcoholic content.
 - One can be flexible in tailoring beer composition to suite whats popular in local market

GitHub Reference

https://github.com/gkapila07/msds_homeworks/tree/master/dds