```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         from sklearn.neural network import MLPClassifier
         from sklearn.metrics import mean_squared_error, classification_report, confusion_matrix, f1_score, precision_score, rec
         from sklearn.model_selection import train_test_split
         from collections import Counter
```

Data

This data is actually related to the elastic strain engineering task: given the (modified) deformation tensor, predict, whether the tiny diamond crystal under this deformation is a direct-bandgap semiconductor, or not.

I will save you some time and process the data for you.

```
In [2]:
          df = pd.read_csv('c_gw_direct.csv')
In [3]:
          df.shape
         (9766, 7)
Out[3]:
In [4]:
                                                                          ezz is direct
Out[4]:
                     exx
                                exy
                                          exz
                                                     eyz
                                                               eyy
             0 -0.049931
                                    -0.012549
                                                           0.000141
                                                                     0.036242
                           0.019480
                                                0.071484
                                                                                  False
                0.057604
                           0.070671
                                     -0.010140
                                               -0.063918
                                                          0.032494
                                                                    -0.078462
                                                                                  False
                -0.020174 -0.059848
                                      0.017878
                                                0.077713
                                                          -0.087613
                                                                    -0.079651
                                                                                  False
                          -0.026120
                                                                     0.038353
               -0.023523
                                     0.045459
                                               -0.035286
                                                         -0.000705
                                                                                  False
               -0.050925
                                     -0.042681
                                               -0.016254
                                                          -0.019372
                          -0.006037
                                                                    -0.037559
                                                                                  False
         9761 -0.096821
                           0.049679 -0.065829
                                                0.060488
                                                          0.008918
                                                                    0.006889
                                                                                  False
         9762 -0.074071
                           0.027148 -0.056629
                                               -0.068732
                                                          0.070384
                                                                    -0.008722
                                                                                  False
         9763 -0.061505
                                               -0.037589
                           0.015496
                                     0.077352
                                                          -0.047513
                                                                    -0.045182
                                                                                  False
         9764 -0.037760
                           0.037480
                                      0.002881 -0.059958 -0.047096
                                                                     0.060803
         9765
                0.017428
                           0.008733
                                     0.099832
                                                0.028535 -0.054355 -0.006599
                                                                                  False
        9766 rows × 7 columns
In [5]:
          df.is direct.sum()
Out[5]:
In [6]:
          # Getting arrays from table
          X = df[['exx', 'exy', 'exz', 'eyz', 'eyy', 'ezz']].values
          y = df['is direct'].ravel()
In [7]: | X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                    random state=124)
          Counter(y train)
         Counter({False: 6723, True: 1089})
Out[7]:
```

(3 pts) Train and evaluate a simple neural network classifier

- Train a model
- Calculate its precision, recall, f1-score
- Take a look at the confusion matrix

Train a model

```
In [47]:
          model = MLPClassifier(max iter=10000)
          model.fit(X train, y train)
```

```
Out[47]: MLPClassifier(max_iter=10000)
```

Look at the metrics

Print the confusion matrix

Итоги

- Recall 0.66 показывает, что модель в среднем обнаруживает класс в 66% случаев. Это лишь немного лучше, чем 50% угадывание.
- f1-score будем использовать как некую метрику, характеризующую баланс между precision и recall. Здесь за счет неплохой точности (precision) предсказания в целом f1-score повышается.
- Нужно искать метод для повышения precision и recall.

(3 pts) Use an undersampling technique to balance classes

- Balance training sample
- Train new model with the same hyperparameters as before
- Evaluate its metrics. Is is better than the original model?

```
In [49]:
          idx_for_larger_class = np.nonzero(y_train == False)[0]
          idx_for_smaller_class = np.nonzero(y_train == True)[0]
          less_idx_for_larger_class = np.random.choice(idx_for_larger_class,
                                                      len(idx_for_smaller_class),
                                                      replace=False)
          new_idx = list(less_idx_for_larger_class) + list(idx_for_smaller_class)
          X_train_new = X_train[new_idx, :]
          y_train_new = y_train[new_idx]
          model_balanced = MLPClassifier(max_iter=10000)
          model balanced.fit(X train new, y train new)
         MLPClassifier (max iter=10000)
Out[49]:
In [50]:
          predictions_balanced = model_balanced.predict(X_test)
          precision = precision score(y test, predictions balanced)
          print(f'Precision: {precision}')
          recall = recall_score(y_test, predictions_balanced)
          print(f'Recall: {recall}')
          f1 = f1 score(y test, predictions balanced)
          print(f'f1-score: {f1}')
         Precision: 0.5155642023346303
         Recall: 0.9233449477351916
         fl-score: 0.66167290886392
In [51]:
          confusion_matrix(y_test, predictions_balanced)
         array([[1418, 249],
Out[51]:
               [ 22, 265]])
```

- За счет большей сбалансированности данных модель стала лучше отличать один класс от другого. Об этом свидетельствует увеличение значения recall.
- Точность предсказания при этом уменьшилась. Это можно связать с уменьшением выборки, что в целом негативно влияет на обобщаемость модели.
- f1-score уменьшился на 0.05, поэтому вердикт следующий: случайная балансировка на данной выборке показывает плохие результаты.

(3 pts) Try the imblearn package and its undersampling methods

https://imbalanced-learn.org/stable/under_sampling.html

- Try NearMiss, NeighbourhoodCleaningRule, and EditedNearestNeighbours methods
- Do they perform better than the random undersampling?

You may need to reinstall sklearn if it is old

```
In [52]: # !pip uninstall -v scikit-learn -y
In [53]: # !pip install -v scikit-learn
In [54]: # !pip install imblearn
In [55]: from imblearn.under_sampling import NearMiss, EditedNearestNeighbours, NeighbourhoodCleaningRule
```

Balancing with NearMiss

```
In [56]:
          nm1 = NearMiss(version=1)
          X resampled nm1, y resampled nm1 = nm1.fit resample(X train, y train)
In [57]:
          model balanced nearmiss = MLPClassifier(max iter=10000)
          model_balanced_nearmiss.fit(X_resampled_nm1, y_resampled_nm1)
         MLPClassifier(max_iter=10000)
Out[57]:
In [58]:
          predictions_balanced_nearmiss = model_balanced_nearmiss.predict(X_test)
          precision = precision_score(y_test, predictions_balanced_nearmiss)
          print(f'Precision: {precision}')
          recall = recall_score(y_test, predictions_balanced_nearmiss)
          print(f'Recall: {recall}')
          f1 = f1_score(y_test, predictions_balanced_nearmiss)
          print(f'f1-score: {f1}')
         Precision: 0.534521158129176
         Recall: 0.8362369337979094
         fl-score: 0.6521739130434783
```

Balancing with NeighbourhoodCleaningRule

```
In [59]:
          ncr = NeighbourhoodCleaningRule()
          X_resampled_ncr, y_resampled_ncr = ncr.fit_resample(X_train, y_train)
In [60]:
          model_balanced_ncr = MLPClassifier(max_iter=10000)
          model_balanced_ncr.fit(X_resampled_ncr, y_resampled_ncr)
         MLPClassifier(max_iter=10000)
Out[60]:
In [61]:
          predictions balanced ncr = model balanced ncr.predict(X test)
          precision = precision_score(y_test, predictions_balanced_ncr)
          print(f'Precision: {precision}')
          recall = recall score(y test, predictions balanced ncr)
          print(f'Recall: {recall}')
          f1 = f1 score(y test, predictions balanced ncr)
          print(f'f1-score: {f1}')
```

Precision: 0.6755852842809364
Recall: 0.7038327526132404
f1-score: 0.6894197952218429

Balancing with EditedNearestNeighbours

```
In [62]:
          enn = EditedNearestNeighbours()
          X_resampled_enn, y_resampled enn = enn.fit resample(X train, y train)
In [63]:
          model balanced enn = MLPClassifier(max iter=10000)
          model balanced enn.fit(X resampled enn, y resampled enn)
         MLPClassifier(max_iter=10000)
Out[63]:
In [64]:
          predictions_balanced_enn = model_balanced_enn.predict(X_test)
          precision = precision score(y test, predictions balanced enn)
          print(f'Precision: {precision}')
          recall = recall_score(y_test, predictions_balanced_enn)
          print(f'Recall: {recall}')
          f1 = f1_score(y_test, predictions_balanced_enn)
          print(f'f1-score: {f1}')
         Precision: 0.25
         Recall: 0.010452961672473868
         fl-score: 0.020066889632107024
```

Итоги

In [65]:

- NearMiss и NeighbourhoodCleaningRule дают результат хуже, чем без балансировки. Применение этих методов дает свои результаты, но в итоге f1-score не увеличивается, поэтому их использование здесь не оправданно.
- EdintedNearestNeighbours показывает колоссально негативный результат, метрики говорят сами за себя. Не рекомендую здесь.

(3 pts) Perform hyperparameter tuning

- Run a cycle through some hyperparater settings in order to find the best ones
- E.g. hidden layer sizes, alpha regularization ...

hidden layer sizes list = [

- You need to be able to outperform your initial model
- I do not care whether you use balanced or imbalanced training set

```
(200, ),
              (100, ),
              (100, 100, ),
              (50, 50, ),
              (50, 50, 50, ),
              (50, 50, 50, 50),
          alpha_list = [
              0.000001, 0.00001, 0.0001, 0.001, 0.01,
In [66]:
          metrics_grid = {
              'hidden_layer_sizes': [],
              'alpha': [],
              'precision': [],
              'recall': [],
              'f1': [],
          for hidden_layer_sizes_ in hidden_layer_sizes_list:
              for alpha_ in alpha_list:
                  model = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes_, alpha=alpha_, max_iter=10000)
                  model.fit(X train, y train)
                  predictions = model.predict(X test)
                  precision = precision_score(y_test, predictions)
                  recall = recall score(y test, predictions)
```

/home/ilyavoronov/miniconda3/envs/plasma_env/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: Undefined medMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

f1 = f1_score(y_test, predictions)

metrics_grid['alpha'].append(alpha_)

metrics grid['recall'].append(recall)

metrics_grid['f1'].append(f1)

metrics_grid['precision'].append(precision)

metrics_grid['hidden_layer_sizes'].append(hidden_layer_sizes_)

/home/ilyavoronov/miniconda3/envs/plasma_env/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` paramet

er to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/home/ilyavoronov/miniconda3/envs/plasma_env/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

```
In [70]: metrics_grid_df = pd.DataFrame.from_dict(metrics_grid)
    metrics_grid_df
```

Out[70]:	hidden_layer_sizes	alpha	precision	recall	f1
0	(200,)	0.000001	0.851301	0.797909	0.823741
1	(200,)	0.000010	0.806897	0.815331	0.811092
2	(200,)	0.000100	0.890688	0.766551	0.823970
3	(200,)	0.001000	0.862745	0.766551	0.811808
4	(200,)	0.010000	0.714286	0.261324	0.382653
5	(100,)	0.000001	0.832579	0.641115	0.724409
6	(100,)	0.000010	0.741784	0.550523	0.632000
7	(100,)	0.000100	0.757991	0.578397	0.656126
8	(100,)	0.001000	0.816832	0.574913	0.674847
g	(100,)	0.010000	0.000000	0.000000	0.000000
10	(100, 100)	0.000001	0.832776	0.867596	0.849829
11	(100, 100)	0.000010	0.862676	0.853659	0.858144
12	(100, 100)	0.000100	0.880000	0.843206	0.861210
13	(100, 100)	0.001000	0.893939	0.822300	0.856624
14	(100, 100)	0.010000	0.837545	0.808362	0.822695
15	(50, 50)	0.000001	0.888462	0.804878	0.844607
16	(50, 50)	0.000010	0.871698	0.804878	0.836957
17	(50, 50)	0.000100	0.796552	0.804878	0.800693
18	(50, 50)	0.001000	0.886364	0.815331	0.849365
19	(50, 50)	0.010000	0.000000	0.000000	0.000000
20	(50, 50, 50)	0.000001	0.876812	0.843206	0.859680
21	(50, 50, 50)	0.000010	0.857664	0.818815	0.837790
22	(50, 50, 50)	0.000100	0.956938	0.696864	0.806452
23	(50, 50, 50)	0.001000	0.897233	0.790941	0.840741
24	(50, 50, 50)	0.010000	0.908333	0.759582	0.827324
25	(50, 50, 50, 50)	0.000001	0.887597	0.797909	0.840367
26	(50, 50, 50, 50)	0.000010	0.882353	0.783972	0.830258
27	(50, 50, 50, 50)	0.000100	0.596603	0.979094	0.741425
28	(50, 50, 50, 50)	0.001000	0.000000	0.000000	0.000000
29	(50, 50, 50, 50)	0.010000	0.972477	0.738676	0.839604

```
In [68]: pivot = metrics_grid_df.pivot_table(
    index=['hidden_layer_sizes'],
    columns=['alpha'],
    values='f1')
```

In [69]: sns.heatmap(pivot, annot=True)

Out[69]: <AxesSubplot:xlabel='alpha', ylabel='hidden_layer_sizes'>

Итоги

- По сводной таблице видно, что с уменьшением alpha и увеличением числа слоев растет f1-score. Далее уже при повышении числа нейронов в слое тоже идет повышение. Но в то же время это ведет к увеличению расчетного времени.
- Лучше всего показали себя модели с размером (50, 50, 50) и (100, 100). Но последней для достижения этого уровня потребовался меньший параметр регуляризации.
- Оптимальной предлагается считать модель со слеудющими гипер-параметрами:

My final mark is $\min(mark, 10)$

In []:			