RESUMEN 3.3

- La matriz A de $n \times n$ es invertible si y sólo si det $A \neq 0$.
- $\det AB = \det A \det B$.
- Si A es invertible, entonces det $A \neq 0$ y

$$\det A^{-1} = \frac{1}{\det A}$$

- Sea A una matriz de $n \times n$. La **adjunta** o **adjugada** de A, denotada por adj A, es la matriz de $n \times n$ cuya componente ij es A_{ij} , el cofactor ji de A.
- Si det $A \neq 0$, entonces A es invertible y

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

· Teorema de resumen

Sea A una matriz de $n \times n$. Entonces las siguientes siete afirmaciones son equivalentes:

- i) A es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).
- iii) El sistema $Ax = \mathbf{b}$ tiene una solución única para cada vector de dimensión n **b**.
- iv) A es equivalente por renglones a la matriz identidad de $n \times n$, I_n .
- v) A es el producto de matrices elementales.
- vi) La forma escalonada por renglones de A tiene n pivotes.
- vii) det $A \neq 0$.

AUTOEVALUACIÓN 3.3

I) El determinante de $\begin{pmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & 2 & 4 \\ 5 & 1 & 0 & -3 \\ -4 & 3 & 1 & 6 \end{pmatrix}$ es -149. La componente 2, 3 de A^{-1} está dada por

$$\begin{array}{c|cccc} a & -\frac{1}{49} & 1 & 2 & 4 \\ 5 & 1 & -3 \\ -4 & 3 & 6 \end{array},$$

$$\begin{array}{c|cccc} c) & -\frac{1}{49} & 1 & -1 & 4 \\ 2 & 2 & 4 \\ -4 & 1 & 6 \end{array},$$

$$\begin{array}{c|cccc} \mathbf{d} & \frac{1}{49} & 1 & -1 & 4 \\ 2 & 2 & 4 \\ -4 & 1 & 6 \end{array}$$