A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 6EI

Bookmark

Show all steps: ON

Problem

Throughout this set of questions, let K be a root field over F, let G = Gal(K : F), and let I be any intermediate field. Prove the following:

If **G** is a cyclic group, there exists exactly one intermediate field *I* of degree *k*, for each integer *k* dividing [K:F].

Step-by-step solution

Step 1 of 2

Consider a root field K over F, let G = Gal(K:F). The objective is to prove that if G is a cyclic group then there exists exactly one intermediate field I of degree k for each integer kdividing [K:F].

Comment

Step 2 of 2

By Galois theory, there is a one-to-one correspondence between subgroups H of G and fields $I = K_H$ such that $F \le I \le K$.

Because G is cyclic, it contains precisely one subgroup of each order k that divides |G| = [K:F]

Such a subgroup corresponds to a field I where $F \le I \le K$ and K:I = k, so that

$$[I:F] = \frac{[K:F]}{[K:I]} = \frac{n}{k}$$

Now as d runs through all divisors of n, the quotients $\frac{n}{k}$ also run through all divisors of n, so this proves the result.

Comment	