Corrected UPGMA algorithm

Given: a distance matrix D with n species:

- 1) Initialize n clusters, $C_1,...,C_n$, each with a single species in it. Create a leaf node for each of the clusters.
- 2) Define the distance between two clusters as the average pairwise distance between members of the two clusters:

$$d(C_i, C_j) = \frac{\sum_{a \in C_i} \sum_{b \in C_j} D(a, b)}{|C_i| * |C_j|}$$

- 3) Repeat:
 - 3.1 Pick the two clusters C_i and C_j such that $d(C_i, C_j)$ is minimized.
 - 3.2 Create a new cluster $C_k = C_i \cup C_i$
 - 3.3 Create a new node in the tree, make it the parent of nodes i and j, at height $d(C_i, C_i)/2$.
 - 3.4 Add cluster C_k to the list of clusters, and remove clusters C_i and C_j .

Example: Consider the following distance matrix D:

	Α	В	С	D	E
A	-	16	16	4	16
В		-	10	16	10
C			-	16	8
D				-	16
Е					-

First set $C1=\{A\}$, $C2=\{B\}$, $C3=\{C\}$, $C4=\{D\}$, $C5=\{E\}$.

The pair with the smallest distance is (C1,C4). Merge them to obtain $C6=\{A,D\}$ and create their parent node at distance d(C1,C4)/2=4/2=2 from each, to obtain:

The next pair of clusters that is the closest is C3 and C5, with d(C3,C5)=8. Merge them to obtain $C7=\{C,E\}$ and create their parent node at distance d(C3,C5)/2=8/2=4 from each, to obtain:

The next pair of clusters that is the closest is $C7=\{C,E\}$ and $C2=\{B\}$, with d(C7,C2)=(10+10)/2=10. Merge them to obtain $C8=\{C,E,B\}$ and create their parent node at height d(C7,C2)/2=10/2=5, to obtain:

There are only two clusters C6 and C8. Merge them and place their parent node at height d(C6,C8)/2 = ((16+16+16+16+16+16+16)/6)/2 = 8, to obtain:

