Lesson 2: Number Systems

Scott Morgan

Bridgend College

BTEC Computing: Computational Thinking (Unit 18)

Web: scott3142.com

E-mail: MorganSN@cardiff.ac.uk

Counting

 Earliest evidence of counting dates back 35,000 years. Lines scratched on bone.

Counting

- Earliest evidence of counting dates back 35,000 years. Lines scratched on bone.
- Counting has evolved greatly since then.

The Number Line

The Number Line

• We all count with a number system called base 10.

- We all count with a number system called base 10.
- This is probably because we have 10 fingers, which makes it easier.

- We all count with a number system called base 10.
- This is probably because we have 10 fingers, which makes it easier.
- You can count in *any other base*.

- We all count with a number system called base 10.
- This is probably because we have 10 fingers, which makes it easier.
- You can count in any other base.
- What does this mean?

• Evaluate the following:

 3^2 2^4 5³ 10^{3} 3×10^5 1^5 0^{53} 345^{0}

$$3^{2} = 9$$
 2^{4}
 5^{3}
 10^{3}
 3×10^{5}
 1^{5}
 0^{53}
 345^{0}

$$3^{2} = 9$$
 $2^{4} = 16$
 5^{3}
 10^{3}
 3×10^{5}
 1^{5}
 0^{53}
 345^{0}

$$3^{2} = 9$$
 $2^{4} = 16$
 $5^{3} = 125$
 10^{3}
 3×10^{5}
 1^{5}
 0^{53}
 345^{0}

$$3^{2} = 9$$
 $2^{4} = 16$
 $5^{3} = 125$
 $10^{3} = 100$
 3×10^{5}
 1^{5}
 0^{53}
 345^{0}

$$3^{2} = 9$$

$$2^{4} = 16$$

$$5^{3} = 125$$

$$10^{3} = 100$$

$$3 \times 10^{5} = 30000$$

$$1^{5}$$

$$0^{53}$$

$$345^{0}$$

$$3^{2} = 9$$

$$2^{4} = 16$$

$$5^{3} = 125$$

$$10^{3} = 100$$

$$3 \times 10^{5} = 30000$$

$$1^{5} = 1$$

$$0^{53}$$

$$345^{0}$$

$$3^{2} = 9$$

$$2^{4} = 16$$

$$5^{3} = 125$$

$$10^{3} = 100$$

$$3 \times 10^{5} = 30000$$

$$1^{5} = 1$$

$$0^{53} = 0$$

$$345^{0}$$

$$3^{2} = 9$$

$$2^{4} = 16$$

$$5^{3} = 125$$

$$10^{3} = 100$$

$$3 \times 10^{5} = 30000$$

$$1^{5} = 1$$

$$0^{53} = 0$$

$$345^{0} = 1$$

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$3024 = \underbrace{(3 \times 10^{3})}_{=3000} + \underbrace{(0 \times 10^{2})}_{=0} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$3024 = \underbrace{(3 \times 10^{3})}_{=3000} + \underbrace{(0 \times 10^{2})}_{=0} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$1240 =$$

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$3024 = \underbrace{(3 \times 10^{3})}_{=3000} + \underbrace{(0 \times 10^{2})}_{=0} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$1240 = \underbrace{(1 \times 10^{3})}_{=1000} + \underbrace{(2 \times 10^{2})}_{=200} + \underbrace{(4 \times 10^{1})}_{=40} + \underbrace{(0 \times 10^{0})}_{=0}$$

• We can write any whole number as combinations of powers of 10s:

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$3024 = \underbrace{(3 \times 10^{3})}_{=3000} + \underbrace{(0 \times 10^{2})}_{=0} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{1})}_{=4} + \underbrace{(0 \times 10^{0})}_{=0}$$

$$1240 = \underbrace{(1 \times 10^{3})}_{=1000} + \underbrace{(2 \times 10^{2})}_{=200} + \underbrace{(4 \times 10^{1})}_{=40} + \underbrace{(0 \times 10^{0})}_{=0}$$

$$1506 =$$

6

• We can write any whole number as combinations of powers of 10s:

$$324 = \underbrace{(3 \times 10^{2})}_{=300} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$3024 = \underbrace{(3 \times 10^{3})}_{=3000} + \underbrace{(0 \times 10^{2})}_{=0} + \underbrace{(2 \times 10^{1})}_{=20} + \underbrace{(4 \times 10^{0})}_{=4}$$

$$1240 = \underbrace{(1 \times 10^{3})}_{=1000} + \underbrace{(2 \times 10^{2})}_{=200} + \underbrace{(4 \times 10^{1})}_{=40} + \underbrace{(0 \times 10^{0})}_{=0}$$

$$1506 = \underbrace{(1 \times 10^{3})}_{=1000} + \underbrace{(5 \times 10^{2})}_{=500} + \underbrace{(0 \times 10^{1})}_{=0} + \underbrace{(6 \times 10^{0})}_{=6}$$

6