D. Olya and Graph

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Olya has got a directed non-weighted graph, consisting of n vertexes and m edges. We will consider that the graph vertexes are indexed from 1 to n in some manner. Then for any graph edge that goes from vertex v to vertex u the following inequation holds: $v \le u$.

Now Olya wonders, how many ways there are to add an arbitrary (possibly zero) number of edges to the graph so as the following conditions were met:

- 1. You can reach vertexes number i + 1, i + 2, ..., n from any vertex number i (i < n).
- 2. For any graph edge going from vertex v to vertex u the following inequation fulfills: $v \le u$.
- 3. There is at most one edge between any two vertexes.
- 4. The shortest distance between the pair of vertexes i, j (i < j), for which $j i \le k$ holds, equals j i edges.
- 5. The shortest distance between the pair of vertexes i, j (i < j), for which j i > k holds, equals either j i or j i k edges.

We will consider two ways *distinct*, if there is the pair of vertexes i, j ($i \le j$), such that first resulting graph has an edge from i to j and the second one doesn't have it.

Help Olya. As the required number of ways can be rather large, print it modulo $100000007 (10^9 + 7)$.

Input

The first line contains three space-separated integers n, m, k $(2 \le n \le 10^6, 0 \le m \le 10^5, 1 \le k \le 10^6)$.

The next m lines contain the description of the edges of the initial graph. The i-th line contains a pair of space-separated integers u_i , v_i ($1 \le u_i \le v_i \le n$) — the numbers of vertexes that have a directed edge from u_i to v_i between them.

It is guaranteed that any pair of vertexes u_i , v_i has at most one edge between them. It also is guaranteed that the graph edges are given in the order of non-decreasing u_i . If there are multiple edges going from vertex u_i , then it is guaranteed that these edges are given in the order of increasing v_i .

Output

Print a single integer — the answer to the problem modulo $1000000007 (10^9 + 7)$.

Examples

```
input

7 8 2
1 2
2 3
3 4
3 6
4 5
4 7
5 6
6 7

output

2
```

input

7 0 2

output		
12		
input		
7 2 1		
1 3		
3 5		
output		

Note

In the first sample there are two ways: the first way is not to add anything, the second way is to add a single edge from vertex 2 to vertex 5.