\equiv

VIETNAMESE TEXT CLASSIFICATION

Candidate: Nguyễn Hoàng Dũng

TABLE OF CONTENTS

01 INTRODUCTION

What is text
> classification? Its
approaches?

03 EVALUATION

Is the work do well?
> What metrics to be
used?

02 ML PROCESS

From data
understanding,
preprocessing, and
modelling

04 CONSIDERATION

Is this machine
learning algorithm
effective for this
data?

TEXT CLASSIFICATION

Text classification is a task that assigns a set of predefined categories to open-ended text.

Due to the categories, we can divide text classification into smaller subtasks.

Sub-task	Categories
Spam detection	['Spam', 'Not Spam']
Intent detection	['Has intent', 'No intent']
Sentiment analysis	['Like', 'Dislike', 'Neutral']
Topic labeling	['Sports', 'Business', 'Travel', 'Culture', 'Tech',]

TEXT CLASSIFICATION APPROACHES

RULE-BASED

Use a set of handcrafted linguistic rules.

ML-BASED

Let the machine learns to make classifications based on labeled samples.

HYBRID

Combine ML-based with rule-based to improve the results

\equiv

WHAT MY ASSIGNMENT APPLIED?

SUBTASK	APPROACH	LANGUAGE	
Spam detection	Rule-based	Vietnamese	
	ML-based	English	
Topic modeling	Hybrid	Other	

DATASET

2 types of labeling

From the paper: A Comparative Study on Vietnamese Text
Classification Methods

Link: https://github.com/duyvuleo/VNTC
Doi song

Khoa hoc

Kinh doanh
Phap luat
Suc khoe
The gioi

The thao

Van hoa

Vi tinh

0

DATASET

Train			
Topic Topic	c ID	#files	
********	******	******	*****
Chinh tri Xa	hoi	XH	5219
Doi song	DS		3159
Khoa hoc	KH		1820
Kinh doanh	KD		2552
Phap luat	PL		3868
Suc khoe	SK		3384
The gioi	TG		2898
The thao	TT		5298
Van hoa	VH		3080
Vi tinh	VT		2481
Total			33759
Test			
Chinh tri Xa	hoi	XH	7567
Doi song	DS		2036
Khoa hoc	KH		2096
Kinh doanh	KD		5276
Phap luat	PL		3788
Suc khoe	SK		5417
The gioi	TG		6716
The thao	TT		6667
Van hoa	VH		6250
Vi tinh	VT		4560
Total			50373

STATISTICS

- Training set: 33579 samples
- Test set: **50373 samples**

DATA PREPARATION

Converting all the files (in .txt) to 2 .csv files. (Code shown in: csv_generation.ipynb)

- XH_NLD_ (3672).txt

 XH_NLD_ (3673).txt

 XH_NLD_ (3674).txt

 XH_NLD_ (3675).txt

 XH_NLD_ (3676).txt

 XH_NLD_ (3676).txt

 XH_NLD_ (3676).txt

 XH_NLD_ (3678).txt
- XH_NLD_ (3679).txt

 XH_NLD_ (3679).txt
- KH_NLD_ (1652).txt

 KH_NLD_ (1653).txt

 KH_NLD_ (1654).txt

 KH_NLD_ (1655).txt

 KH_NLD_ (1656).txt

 KH_NLD_ (1657).txt

 KH_NLD_ (1657).txt

 KH_NLD_ (1658).txt

 KH_NLD_ (1658).txt

 KH_NLD_ (1658).txt

- DS_ VNE_ (4).txt

 DS_ VNE_ (5).txt

 DS_ VNE_ (9).txt
- DS_ VNE_ (11).txt
- DS_ VNE_ (12).txt
 DS_ VNE_ (14).txt
- DS_ VNE_ (16).txt
- DS_ VNE_ (17).txt
- DS_ VNE_ (19).txt
- DS_ VNE_ (20).txt

WORD SEGMENTATION

Perform stripping, lowercase and remove unwanted symbols.

"Thành lập dự án POLICY phòng chống HIV/AIDS ở VN (NLĐ)- Quỹ hỗ trợ khẩn cấp về AIDS của Hoa Kỳ vừa thành lập dự án POLICY tại VN..."

"thành lập dự án policy phòng chống hiv aids ở vn nlđ quỹ hỗ trợ khẩn cấp về aids của hoa kỳ vừa thành lập dự án policy tại vn"

WORD SEGMENTATION & TOKENIZATION

Text segmentation is the process of dividing written text into meaningful units.

Why we need to do it? In Vietnamese, a word may have it meaning changes when follow by another word.

E.g.,

Hoa = flowers, Kỳ = strange, Hoa Kỳ = U.S

WORD SEGMENTATION & TOKENIZATION

"thành lập dự án policy phòng chống hiv aids ở vn nlđ quỹ hỗ trợ khẩn cấp về aids của hoa kỳ vừa thành lập dự án policy tại vn"

['thành_lập', 'dự_án', 'policy', 'phòng_chống', 'hiv', 'aids', 'ở', 'vn', 'nlđ', 'quỹ', 'hỗ_trợ', 'khẩn_cấp', 'về', 'aids', 'của', 'hoa_kỳ', 'vừa', 'thành_lập', 'dự_án', 'policy', 'tại', 'vn']

ID CONVERT & SEQUENCE PADDING

['thành_lập', 'dự_án', 'policy', 'phòng_chống', 'hiv', 'aids', 'ở', 'vn', 'nlđ', 'quỹ', 'hỗ_trợ', 'khẩn_cấp', 'về', 'aids', 'của', 'hoa_kỳ', 'vừa', 'thành_lập', 'dự_án', 'policy', 'tại', 'vn']

[0, 763, 169, 3, 2137, 3, 3, 25, 33756, 3, 1425, 291, 2498, 28, 3, 7, 3, 164, 763, 169, 3, 35, 33756]

[0, 763, 169, 3, 2137, 3, 3, 25, 33756, 3, 1425, 291, 2498, 28, 3, 7, 3, 164, 763, 169, 3, 35, 33756, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]

ML-BASED MODEL

Vectorization: TF-IDF (Term Frequency - Inverse

Document Frequency)

Classifier: SVM (Support Vector Machine)

DL-BASED MODEL

Vectorization: One-hot word representation

Classifier: CNN (Convolutional Neural Network)

TF-IDF (scikit-learn version):

$$tf(t,d) = n_{t,d}$$

$$idf(t) = \log rac{1+N}{1+df(t)} + 1$$

SVM (support Vector Machine):

\equiv

MODELING

Convolutional Neural Network (CNN)

- 1. Take IDs as inputs, Tensorflow will convert every tokens into a one-hot vector.
- 2. Have an Embedding layer to reduce the dimension.
- 3. Apply Conv1D layers with different filter sizes (2, 3 and 4), use ReLU activation functions, followed by GlobalMaxPool1D layers.
- 4. Concatenate the output and pass through fully-connected layers (ReLU activation functions) applied dropout regularization.
- 5. The final layer is a softmax layer.

OPTIMIZER

LOSS

EPOCH

BATCH SIZE

ADAM

CATEGORICAL CROSS-ENTROPY

20

32

0

EVALUATION METRICS

ACCURACY

Number of correct predictions

PRECISION

Number of positive class predictions that actually belong to the positive class over the test set.

RECALL

Number of positive class predictions made out of all positive samples.

EVALUATION (SVM)

	precision	recall	f1-score	support
Chinh tri Xa hoi	0.8506	0.9260	0.8867	7567
Doi song	0.8140	0.7200	0.7641	2036
Khoa hoc	0.8843	0.8025	0.8414	2096
Kinh doanh	0.9493	0.8846	0.9158	5276
Phap luat	0.9340	0.9153	0.9245	3788
Suc khoe	0.9273	0.9559	0.9414	5417
The gioi	0.9635	0.9306	0.9468	6716
The thao	0.9817	0.9822	0.9819	6667
Van hoa	0.9334	0.9510	0.9421	6250
Vi tinh	0.9310	0.9586	0.9446	4560
accuracy			0.9247	50373
macro avg	0.9169	0.9027	0.9089	50373
weighted avg	0.9253	0.9247	0.9244	50373
2000 Program 10 10 10 10 10 10 10 10 10 10 10 10 10				

\equiv

EVALUATION (CNN)

	precision	recall	f1-score	support
Chinh tri Xa hoi	0.7949	0.8669	0.8293	7567
Doi song	0.6160	0.6586	0.6366	2036
Khoa hoc	0.7647	0.7257	0.7447	2096
Kinh doanh	0.8720	0.8614	0.8667	5276
Phap luat	0.9125	0.8561	0.8834	3788
Suc khoe	0.9269	0.8920	0.9091	5417
The gioi	0.9520	0.8772	0.9131	6716
The thao	0.9705	0.9787	0.9746	6667
Van hoa	0.9148	0.9282	0.9215	6250
Vi tinh	0.9011	0.9333	0.9169	4560
accuracy			0.8837	50373
macro avg	0.8626	0.8578	0.8596	50373
weighted avg	0.8862	0.8837	0.8843	50373

CONSIDERATION

Accuracy comparison of 2 models

Support Vector Machine (SVM)

With TF-IDF vectorizer.

Convolutional Neural
Network (CNN)

With one-hot word representation.

THANK YOU FOR LISTENING!

Also thank our mentors for your valuable guidance in this course!

