EECE 5550: Mobile Robotics

Lecture 21: Robotic Exploration

Plan of the day

- The exploration problem
- Frontier-based exploration
- A brief introduction to information theory
- Information-based exploration

References

- B. Yamauchi: "A Frontier-Based Approach for Autonomous Exploration"
- F. Bourgault, A.A. Makarenko, S.B. Williams: "Information Based Adaptive Exploration"
- H. Carrillo, P. Dames, V. Kumar, J.A. Castellanos: "Autonomous Robotic Exploration Using Occupancy Grid Maps and Graph SLAM Based on Shannon and Renyi Entropy"
- C.E. Shannon: "A Mathematical Theory of Communication"

The Exploration Problem

Goal: Build a complete map of the environment as quickly as possible.

Recall: SLAM and mapping algorithms enable us to build a map from sensor measurements, but they don't directly tell us *what measurements to collect*.

Fundamental question: How should we decide *what measurements to collect,* given that we only have partial knowledge of the environment as we are building the map?

Frontier-based exploration

Main idea [Yamauchi]: To gain the most new information about the world, move to the boundary between the open space and unexplored territory.

Key question: How can we formalize this notion of a "boundary" between free and unexplored space?

Frontier extraction in occupancy grids

Occupancy grids are particularly nice for frontier-based exploration, because they admit a simple approach to classifying space as *free*, occupied, and unknown:

• **Free:** p(occ) < prior

• Occupied: p(occ) > prior

• **Unknown:** p(occ) = prior

We then define the set of *boundary cells* to be the set of all grid cells that are:

- Unoccupied
- Adjacent to an unknown cell

Finally, we define a *frontier* to be a maximal connected set of boundary cells

A (Very) Simple Frontier-Based Exploration Algorithm

while frontiers exist, repeat:

- 1. Plan a path to the nearest one
- 2. Follow the plan to collect measurements
- 3. Update map & frontiers end while

https://youtu.be/op0L0LyGNwY

Frontier-Based Exploration in Occupancy Grids

Pro: Super simple ⊚!

But: This approach doesn't directly address map *quality*: that is, how (*un*)*certain* we are about the final map

We might like to control this directly ...

Frontier-Based Exploration

while frontiers exist, repeat:

- 1. Plan a path to the nearest one
- 2. Follow the plan to collect measurements
- 3. Update map & frontiers

end while

Measuring map quality

Goal: We would like to develop a measure of "quality" for occupancy grid maps.

Key question: What should this actually *be*?

One possible approach: Recall that (probabilistic) occupancy grids encode a belief $p(m|z_{1:m})$ over over the map m given measurements $z_{1:m}$

- Initially: We (typically) have a uniform prior $p(m_i) = .5$ for all cells \Rightarrow Intuitively: we are completely ignorant about the state of the world
- After mapping: Ideally, we want either $p(m_i) \approx 1$ $p(m_i) \approx 0$ for all reachable m_i \Rightarrow Intuitively: We are highly certain about the status of all cells

⇒This suggests that we think about "quality" in terms of posterior uncertainty

But: How to do this?

Quantifying Uncertainty: Entropy

In information theory, the canonical measure of "uncertainty" associated with a random variable X is *entropy*.

If X is a discrete random variable taking values in the set $\{x_1, ..., x_N\}$, its entropy is given by:

$$H(X) = -\sum_{i=1}^{N} P(x_i) \log P(x_i)$$

Claude E. Shannon

How does entropy measure "uncertainty"?

Shannon's key insight: The amount of "information" obtained by observing the outcome of a random process is directly related to how *unlikely* (or "surprising") that outcome is.

Intuition: If I know that $P(X = x_i) = 1$, then drawing a random realization of X equal to x_i is not very interesting ...

(Conversely, finding out that you just won the lottery is *very* interesting!)

Key question: Can we make this intuition *quantitative*?

(That is: can we come up with a good way of *measuring* the "information content" I(x) of a random event x?)

Claude E. Shannon

How does entropy measure "uncertainty"?

We would like to develop a measure I(A) that assigns to a random event A a measure of how "informative" observing that event is.

One approach: Let's specify what properties might we like I to posses

Information axioms: Let A be a random event.

- 1. Nonnegativity: $I(A) \ge 0$
- 2. Monotonicity: I(A) is monotonically decreasing in p(A). (Observing a more likely event is less informative / surprising).
- 3. If p(A) = 1 then I(A) = 0 (Observing an almost-sure outcome provides zero information)
- 4. Additivity: If *B* is another event independent of *A*, then:

$$I(A \cap B) = I(A) + I(B)$$

Key point: Shannon showed that any function *I* satisfying 1-4 must be of the form:

$$I(A) = k \log p(A)$$

for k > 0.

Claude E. Shannon

How does entropy measure "uncertainty"?

Now let's recall the definition of entropy:

$$H(X) = -\sum_{i=1}^{N} P(x_i) \log P(x_i)$$

$$= \sum_{i=1}^{N} P(x_i) \cdot (-\log P(x_i))$$
Information / surprise of expectation over *all* possible realizations of *X* observing realization $X = x_i$

Therefore: The entropy H(X) of a random variable X is measuring the *expected information / surprise* of observing a realization of X.

Claude E. Shannon

Conditional entropy and mutual information

We can also use the notion of entropy to measure how "informative" one random variable is with respect to another.

Suppose that X and Y are jointly distributed, with P(X,Y) = P(Y|X)P(X), and that I measure Y = y. How could I quantify how much observing Y has reduced my uncertainty about X?

Before measurement: My belief over X was simply the *prior* p(X). **After measurement:** My belief over X is the *posterior* p(X|Y=y).

Therefore: The reduction in my uncertainty over X due to measuring Y = y is:

$$H(X) - H(X|Y = y)$$

It follows that the *expected reduction* in X's uncertainty after observing Y is:

$$H(X) - E_Y[H(X|Y=y)]$$

Conditional entropy and mutual information

Recall: The *expected reduction* in X's uncertainty after observing Y is:

$$H(X) - E_Y[H(X|Y=y)]$$

The second term above is called the *conditional entropy*, denoted H(X|Y):

$$H(X|Y) \triangleq E_Y[H(X|Y=y)]$$

Similarly, the expected reduction in X's uncertainty after observing Y is called the *mutual* information between X and Y, denoted I(X;Y):

$$I(X;Y) \triangleq H(X) - H(X|Y)$$

 \Rightarrow The mutual information I(X;Y) quantifies how much observing Y tells me about X.

Conditional entropy and mutual information

$$I(X;Y) \triangleq H(X) - H(X|Y)$$

Entropy in occupancy grid maps

Recall: We wanted to measure the "quality" of an occupancy grid map using a notion of map *uncertainty*.

The preceding discussion suggests that we use *entropy* as a performance measure.

NB: The independence assumption

$$p(m) = \prod_{i} p(m_i)$$

implies:

$$H(m) = \sum_{i} H(m_i)$$

Intuitively: the uncertainty of the *entire map* is the *sum* of the uncertainties of each of its cells

Recall: The goal of exploration is to quickly build a high-quality map.

Given a *current* belief p(M) for the map, how do we determine where to scan next?

Simple greedy strategy: Select the scan that *maximizes the decrease in map entropy*:

$$x_k^* = argmax_{x \in SE(d)} \left[H(M) - H(M|Z(x)) \right] \longleftarrow I(M; Z(x))$$

where here "Z(x)" means "a scan taken at pose x".

Equivalently: Choose the scan that *maximizes mutual information*:

$$x_k^* = argmax_{x \in SE(d)} I(M; Z(x))$$

Sensor footprints

Recall: We only update the occupancy probabilities of cells that lie in the sensor footprint

Therefore: Decrease in map entropy is equal to decrease in entropy of cells in the sensor footprint:

$$H(M) - H(M|Z(x_k)) = H(M_{I_k}) - H(M_{I_k}|Z(x_k)) = I(M_{I_k};Z(x_k))$$

Payoff: To calculate the value of a scan, we only need to consider the (relatively few) cells in the scan's sensor footprint

A simple information-based exploration algorithm

repeat

1. Calculate the next most-informative pose x_k^* at which to scan:

$$x_k^* = argmax_{x \in SE(d)} I(M_{I_k}; Z(x))$$

- 2. Collect measurements
- 3. Update map until (termination condition)

Practicalities

1. Computing the *exact* most-informative pose requires searching over *every possible* pose:

$$x_k^* = argmax_{x \in SE(d)} I(M_{I_k}; Z(x))$$

This might get expensive ...

2. Rather than planning for *single* measurements, we might like to design (approximately) optimal *trajectories*

MPC for information-based exploration

repeat

1. Calculate a (k-step, feasible) trajectory $x_{1:k}$ that (approximately) maximizes MI:

$$x_{1:k}^* = argmax_{x_i \in SE(d)} \ I(M; Z(x_{1:k}))$$

- 2. Execute first stage of plan
- 3. Update map until (termination condition)

https://youtu.be/j O1vOCrUME

Information-based exploration on MIT RACECAR

