Today's Agenda

Practicing Multiple Linear Regressions

Justin Leinaweaver (Spring 2022)

	Earnings (2021 USD)
Age	0.47*
	(0.05)
	(5.5.5)
Education	5.42*
	(0.35)
Exercise	0.95*
	(0.41)
Height	2.84*
	(0.24)
	0.44 0.7*
Constant	-241.27*
	(16.34)
Observations	1 012
Adjusted R ²	1,813
•	0.21
Residual Std. Error	37.43 (df = 1808)
F Statistic	$118.04^* \text{ (df} = 4; 1808)$
Note:	*p < 0.05
	·-

	age	education	exercise	height
age	1	-0.15	-0.33	-0.14
education	-0.15	1	0.18	0.11
exercise	-0.33	0.18	1	0.22
height	-0.14	0.11	0.22	1

For Today - Make Predictions (w/ 95% Pls)

Establish a baseline prediction for a hypothetical person who is 25 (Age), Education 13, Exercise 1, Height 67

Then calculate the predicted income if:

- Finish college? (16)
- Finish grad school? (18)
- Increase exercise to 1x / week? (4)
- Increase exercise to 3x / week? (7)

Earnings (2021 USD)
0.47*
(0.05)
(5555)
5.42*
(0.35)
0.95*
(0.41)
2.84*
(0.24)
-241.27*
(16.34)
1,813
0.21
37.43 (df = 1808)
$118.04^* \text{ (df} = 4; 1808)$
110.04 (41 = 4, 1000)
* $p < 0.05$

Prediction	Low	Estimate	High
Baseline	-44.9	29.9	104.7
Finish College	-28.7	46.1	120.9
Finish Grad School	-17.9	56.9	131.7

Prediction	Low	Estimate	High
Baseline	-44.9	29.9	104.7
Exercise 1x / week	-42.2	32.6	107.4
Exercise >3x	-39.5	35.3	110.1

	Earnings (2021 USD)
Education	5.57*
	(0.36)
Constant	-31.34*
	(4.89)
Observations	1,813
Adjusted R ²	0.11
Residual Std. Error	39.50 (df = 1811)
F Statistic	235.79* (df = 1; 1811)
Note:	*p < 0.05

	Earnings (2021 USD)
Education	5.57*
	(0.36)
Constant	-31.34*
	(4.89)
Observations	1,813
Adjusted R ²	0.11
Residual Std. Error	$39.50 \; (df = 1811)$
F Statistic	235.79* (df = 1; 1811)
Note:	*p < 0.05

	Earnings (2021 USD)
Age	0.47*
	(0.05)
Education	5.42*
	(0.35)
Exercise	0.95*
	(0.41)
Height	2.84*
	(0.24)
Constant	-241.27^*
	(16.34)
Observations	1,813
Adjusted R ²	0.21
Residual Std. Error	37.43 (df = 1808)
F Statistic	118.04* (df = 4; 1808)
Note:	*p < 0.05

?

Earnings (2021 USD)
0.47*
(0.05)
(5555)
5.42*
(0.35)
0.95*
(0.41)
2.84*
(0.24)
-241.27*
(16.34)
1,813
0.21
37.43 (df = 1808)
$118.04^* \text{ (df} = 4; 1808)$
110.04 (41 = 4, 1000)
* $p < 0.05$

Prediction	Low	Estimate	High
Baseline	-44.9	29.9	104.7
Finish College	-28.7	46.1	120.9
Finish Grad School	-17.9	56.9	131.7

Prediction	Low	Estimate	High
Baseline	-44.9	29.9	104.7
Exercise 1x / week	-42.2	32.6	107.4
Exercise >3x	-39.5	35.3	110.1

	Earnings (2021 USD)
Age	0.47*
	(0.05)
	` ,
Education	5.42*
	(0.35)
Exercise	0.95*
	(0.41)
	0.04*
Height	2.84*
	(0.24)
Constant	-241.27*
Constant	(16.34)
	(10.54)
Observations	1,813
Adjusted R ²	0.21
Residual Std. Error	37.43 (df = 1808)
F Statistic	118.04^* (df = 4; 1808)
	, ,
Note:	* $p < 0.05$

Education	Prediction	
12		
13		
14		
15		
16	\$46.1k	
17		
18	\$56.9k	

	Earnings (2021 USD)
Age	0.47*
	(0.05)
	` '
Education	5.42*
	(0.35)
Exercise	0.95*
	(0.41)
	0.04*
Height	2.84*
	(0.24)
Constant	-241.27*
Constant	(16.34)
	(10.54)
Observations	1,813
Adjusted R ²	0.21
Residual Std. Error	37.43 (df = 1808)
F Statistic	$118.04^* \text{ (df} = 4; 1808)$
	, ,
Note:	* $p < 0.05$

Education	Prediction
12	\$24.5k
13	\$29.9k
14	\$35.3k
15	\$40.7k
16	\$46.1k
17	\$51.5k
18	\$56.9k

Education	Prediction	
12	\$24.5k	
13	\$29.9k	
14	\$35.3k	
15	\$40.7k	
16	\$46.1k	
17	\$51.5k	
18	\$56.9k	

The Marginal Effect of Education on Earnings Assumes a 25 year old who is 5ft 7in and doesn't exercise

	Earnings (2021 USD)	
Age	0.47*	
3	(0.05)	
Education	5.42*	
Education	****	
	(0.35)	
Exercise	0.95*	
	(0.41)	
Haimht	2.84*	
Height		
	(0.24)	
Constant	-241.27*	
	(16.34)	
<u> </u>	1.010	
Observations	1,813	
Adjusted R ²	0.21	
Residual Std. Error	37.43 (df = 1808)	
F Statistic	118.04* (df = 4; 1808)	
Note:	*p < 0.05	

The Marginal Effect of Education on Earnings Assumes a 25 year old who is 5ft 7in and doesn't exercise

Create a marginal effects plot with THREE prediction lines

- Predict the effect of education (12-18) for a 25 year old who doesn't exercise and is the shortest person in the sample (4'9")
- Repeat above but assume a person of average height (5'7")
- Repeat above but assume the tallest person in the sample (6'10")

The Marginal Effect of Education on Earnings Assumes a 25 year old who doesn't exercise

	Α	В	С	D	
1	Education	Small Height	Avg Height	Tall Height	
2	12	-3.5	24.5	66.5	
3	13	1.9	29.9	71.9	
4	14	7.3	35.3	77.3	
5	15	12.7	40.7	82.7	
6	16	18.1	46.1	88.1	
7	17	23.5	51.5	93.5	
8	18	28.9	56.9	98.9	
9					

The Marginal Effect of Education on Earnings Assumes a 25 year old who doesn't exercise

What is the "best" model of bachelor's degree completion in dataset 1?

What is the "best" model of bachelor's degree completion in dataset 1?

- Choose the logical predictors
- Fit a simple OLS regression to each predictor
- Fit a multiple regression with the "best" of those
- Evaluate the model using all five steps
- Use the model to make predictions

What is the "best" model of bachelor's degree completion in dataset 1?

Outcome

Bachelors' Degrees

Predictors to Consider

• GDP (Billions), GDP (Rate), Homeownership, Manufacturing employment, Minimum wage, Population, Rental Vacancy Rate, State Tax Rate on Wages, Unemployment

Common Regression Mistakes (Wheelan ch12)

- Linear regression on nonlinear relationships
- Correlation does not equal causation
- Reverse causality
- Omitted variable bias (too few variables)
- Highly correlated explanatory variables (multicollinearity)
- Extrapolating beyond the data
- Data mining (too many variables)