

Topias Karjalainen

2. kesäkuuta 2020

Sisältö

1	Joh	danto	2					
2	Teoriaa							
	2.1	Perusmääritelmiä	3					
	2.2	Markovin ketjut	4					
3	Markovin ketju Monte Carlo menetelmät							
	3.1	Gibbsin otanta-algoritmi	10					
	3.2	Metropolis-Hastings algoritmi	12					
		3.2.1 Yhteys Gibbsin otanta-algoritmiin	15					
		3.2.2 Ehdotusjakauman valinnasta						
	3.3	Yleisiä käytäntöjä MCMC-menetelmissä						
	3.4	Konvergenssi ja Diagnostiikka	17					
		3.4.1 Gelmanin \hat{R}	17					
		3.4.2 ESS	18					
4	Laa	jempi esimerkki	20					
5	Lon	pusanat	24					

Johdanto

Tilastotieteissä frekventistinen koulukunta oli pitkään vallitseva koulukunta. Viimeaikoina kuitenkin suosiotaan on kasvattanut bayesilainen koulukunta. Aiemmin bayesiläinen päättely ei päässyt leviämään, sillä toisin kuin frekventistinen koulukunta, bayesilainen ajattelu ei tarjonnut suurinpaan osaan kysymyksiä analyyttisiä ratkaisuja. Vasta tietokoneiden aikakautena Markovin ketju Monte Carlo -menetelmät (MCMC-menetelmät) ovat antaneet mahdollisuuden ratkaista epä-triviaaleja ongelmia bayesilaisessa kehyksessä.

 $Monte\ Carlo\ -menetelm\ddot{a}n$ kehitteli 50-luvulla $Los\ Alamosissa$ työskennelleet $Nicholas\ Metropolis$, $Stanislav\ Ulam$ ja ehkä 1900-luvun merkityksellisin tiedemies $John\ von\ Neumann$. Yleinen määritelmä Monte Carlo -menetelmälle on toistuva satunnainen arvojen arpominen, aivan kuten $Monte\ Carlon$ kasinopöydissä toistuvasti arvotaan satunnaisesti uusia arvoja korttipakasta, rulettipyörästä ja nopista. Nimensä menetelmä onkin saanut juuri tästä. Yksinkertainen esimerkki Monte Carlo simuloinnista on esimerkiksi π :n arvon estimointi arpomalla sattumanvaraisesti pisteitä tasosta, ja laskemalla kuinka moni niistä on ympyrän säteen sisällä.

Markovin ketjut taas ovat stokastisia prosesseja, jotka on nimetty venäläisen matemaatikon Andrey Markovin mukaan. Niitä karakterisoi Markovin ominaiusuus, jota avataan kappaleessa 2.2.

Tässä tutkielmassa tulen ensin antamaan lyhyen johdatuksen Markovin ketjuihin ja selostan MCMC-menetelmien kannalta relevantin teorian. Tulen esittelemään lyhyesti kaksi algoritmia, joita käytetään MCMC-menetelmissä, *Gibbsin otanta-algoritmin* ja *Metropolis-Hastingsin algoritmin*. Esitän myös kaksi tärkeää diagnostiikkaa menetelmien tulosten arviointiin ja lopuksi vielä tarkastellaan käytännön esimerkkiä MCMC-algoritmistä.

Teoriaa

2.1 Perusmääritelmiä

Määritellään ensiksi todennäköisyys. [Pii; Dur10]

Määritelmä 2.1. Olkoot Ω mielivaltainen epätyhjä joukko. σ -algebra perusjoukolla Ω on sen osajoukkojen joukkoperhe \mathcal{F} , joka toteuttaa ehdot:

- 1. $\emptyset \in \mathcal{F}$
- 2. jos $A \in \mathcal{F}$, $niin A^c \in \mathcal{F}$
- 3. jos $A_k \in \mathcal{F}$, kaikilla $k \in K$, missä K on numeroituva joukko, niin $\bigcup_{k \in K} A_k \in \mathcal{F}$

Määritelmä 2.2. Olkoot \mathcal{A} σ -algebra joukolla X. Pari (X, \mathcal{A}) on mitallinen avaruus.

Määritelmä 2.3. Kolmogorovin aksioomat: Olkoot (Ω, \mathcal{F}) mitallinen avaruus. Kuvaus \mathbf{P} liittää kuhunkin tapahtumaan A todennäköisyyden. Se on kuvaus $\mathbf{P} : \mathcal{F} \mapsto \mathbb{R}$ ja sille pätee:

- 1. $\mathbf{P}(A) > 0 \quad \forall A \in \mathcal{F}$
- 2. $P(\Omega) = 1$
- 3. Jos $(A_k)_{k\in\mathbb{N}}$ ovat erillisiä tapahtumia, niin

$$\mathbf{P}(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}\mathbf{P}(A_k)$$

Kuvausta P kutsutaan todennäköisyysmitaksi.

Määritelmä 2.4. Kolmikkoa $(\Omega, \mathcal{F}, \mathbf{P})$ kutsutaan todennäköisyysavaruudeksi.

Määritelmä 2.5. Satunnaismuuttuja X on (lähes) mielivaltainen kuvaus $X:\Omega\to S,$ jossa S on tilajoukko.

2.2 Markovin ketjut

Esitellään ensiksi joitain perusasioita Markovin ketjuista, sillä ne eivät kuulu sellaisenaan opetussuunnitelmaan. Aloitetaan määrittelemällä stokastinen prosessi.[Pii]

Määritelmä 2.6. Jono $(X_n : n = 1, 2, 3, ...)$ satunnaismuuttujia on diskreettiaikainen stokastinen prosessi.

Merkintä 2.7. Merkitään stokastista prosessia merkinnällä (X_n)

Esitetään nyt *Markovin ehto* diskreetille tilajoukolle määritelmässä 2.11, ja laajennetaan se jatkuvalle tilajoukolle määritelmässä 2.14. [RC05] Määritellään kuitenkin ensin siirtymäydin, eli jakauma, joka määrittelee tilojen välisten siirtymien todennäköisyydet. [Kle13, s. 180]

Määritelmä 2.8. Olkoot (S, S) ja (Y, \mathcal{Y}) mitallisia avaruuksia. *Siirtymäydin* on funktio $T: S \times \mathcal{Y} \to [0, \infty[$, jolle pätee

- (i) $\forall s \in S : A \mapsto T(s, A)$ on todennäköisyysmitta
- (ii) $\forall A \in \mathcal{Y} : s \mapsto T(s, A)$ on mitallinen

Diskreetissä tapauksessa siirtymäydintä kutsutaan siirtymämatriisiksi, joka on

(2.9)
$$p_{ij} = \mathbf{P}(X_n = i | X_{n-1} = j), \ \forall i, j \in S$$

Jatkuvassa tapauksessa ydin kuvaa ehdollista todennäköisyyttä $P(X_{n+1} \in A | X_n = x) = \int_A T(x, x') dx'$. Tälle pätee, että

$$(2.10) \qquad \qquad \int_{S} T(x, x') dx' = 1$$

Määritelmä 2.11. Stokastinen prosessi (X_n) on Markovin ketju diskreetissä tilajoukossa, jos kaikilla alkuhetkillä m, n ja tiloilla $i, j \in S$ on voimassa

(2.12)
$$\mathbf{P}(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_{n-1} = i_{n-1}, X_n = i) = \mathbf{P}(X_{n+1} = j | X_n = i)$$

ja siirtymätodennäköisyyksille on voimassa

(2.13)
$$p_{ij} = \mathbf{P}(X_{n+1} = j | X_n = i) = \mathbf{P}(X_{m+1} = j | X_m = i)$$

Yhtälöä 2.12 kutsutaan Markovin-ehdoksi ja yhtälöä 2.13 taas kutsutaan stationarisuusehdoksi, mikä tarkoittaa, että siirtymätodennäköisyys tilojen i ja j välillä ei riipu ajasta m ja n, vaan pelkästään tiloista i ja j.

Määritelmä 2.14. Stokastinen prosessi (X_n) on Markovin ketju jatkuvassa tilajoukossa, jos kaikilla alkuhetkillä n, X_n :n ehdolliselle jakaumalle pätee

(2.15)
$$\mathbf{P}(X_{n+1} \in A | X_n = x_n, ..., X_0 = x_0) = \mathbf{P}(X_{n+1} \in A | X_n = x_n)$$

Määritelmä 2.16. Satunnaismuuttujan X_0 jakaumaa kutsutaan alkujakaumaksi.

MCMC-menetelmien kannalta keskeinen ominaisuus Markovin ketjulle on sen tasapainojakauma (eng. invariant distribution). Siihen perustuu idea ko. menetelmän takana. Esitetään seuraavaksi tämä ominaisuus, sekä määritellään toinen ominaisuus, kääntyvä Markovin ketju, esittämällä ns. detailed balance-yhtälö, jota tarvitaan Metropolis-Hastingsin-algoritmin tasapainojakauman olemassaolon osoittamiseen.

Määritelmä 2.17. Todennäköisyysjakauma $\pi = (\pi_i)_{i \in S}$ on diskreetin tilajoukon Markovin ketjun (X_n) tasapainojakauma, jos

(2.18)
$$\sum_{i \in S} \pi_i p_{ij} = \pi_j, \forall j \in S$$

Yhtälö 2.18 voidaan kirjoittaa myös muotoon

Jakauma π on jatkuvan tilajoukon Markovin ketjun (X_n) tasapainojakauma jos

(2.20)
$$\pi(y) = \int_{S} \pi(x)T(x,y)dx$$

Määritelmä 2.21. Markovin ketju on kääntyvä, jos löytyy sellainen todennäköisyysjakauma $\lambda = (\lambda_i)_{i \in S}$, että

$$(2.22) \lambda_i p_{ij} = \lambda_j p_{ji}, \forall i, j \in S$$

Määritelmä 2.23. Markovin ketju jatkuvassa tilajoukossa S on kääntyvä, jos on olemassa sellainen todennäköisyys tiheys $\pi(x)$ joukossa S, että

$$\pi(x)T(x,y) = \pi(y)T(y,x), \forall x, y \in S$$

Kääntyvällä Markovin ketjulla on sellainen mukava ominaisuus, että ketjun kääntyvyys on riittävä ehto tasapainojakauman olemassa ololle. Osoitamme tämän seuraavaksi.

Lause 2.25. Jos Markovin ketju on kääntyvä, niin $\lambda = \pi$ on sen tasapainojakauma.

To distus.

$$\sum_{i \in S} \lambda_i p_{ij} = \sum_{i \in S} \lambda_j p_{ji} = \lambda_j \sum_{i \in S} p_{ij} = \lambda_j$$

Lause 2.26. Jos Markovin ketju (X_n) on kääntyvä ja tilajoukko S on jatkuva, niin π on sen tasapainojakauma.

Todistus.Yhtälön 2.10 mukaan $\int_S T(y,x) dx = 1,$ joten

(2.27)
$$\int_{S} \pi(x)T(x,y)dx = \int_{S} \pi(y)T(y,x)dx = \pi(y)\int_{S} T(y,x)dx = \pi(y)$$

Esimerkki 2.28. Pohditaan lyhyttä esimerkkiä, jossa tilajoukko on $S = {\text{"sataa", "paistaa"}}$. Määritellään siirtymätodennäköisyydet siirtymämatriisilla

$$\mathbf{P}^{(1)} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$$

Tämä voidaan visualisoida kuvan 2.28 mukaisesti. Yhtälö 2.19 implikoi, että jakauma π

Kuva 2.1: Esimerkki 2.28

on siirtymämatriisin **P** vasen ominaisvektori (π^T **P** = $\lambda \pi^T$, jossa $\lambda = 1$). Tämä voidaan ratkaista numeerisesti, ja ratkaisu on $\pi^T = (0.4, 0.6)$. Helposti nyt nähdään, että 2.19 pätee.

Seuraavaksi esitellään lyhyeksi *syklinen siirtymäydin*, ja osoitetaan tulos, jota tarvitsemme Gibbsin otanta-algoritmin tasapainojakauman todistuksen yhteydessä.

Määritelmä 2.29. Markovin ketjuissa voimme myös tietyin ehdoin yhdistää siirtymätiheyksiä. Tällöin puhutaan syklisistä siirtymätiheyksistä. Diskreetissä tilanteessa siirtymätodennäköisyys

$$(2.30) T_1...T_d(x,y)$$

voidaan määritellä matriisitulona $P_1P_2...P_d$. Jatkuvassa tapauksessa taas määritellään, että $T_c = T_1...T_d(x, y)$ on syklinen, jos

(2.31)
$$T_c(x,y) = \int_S T_1(x,z_1)T_2(z_1,z_2)...T_d(z_{d-1},y)dz_1...z_{d-1}$$

Lause 2.32. Jos tilajoukko S on diskreetti ja π^T on tasapainojakauma kaikille siirtymämatriiseille $P_1, ..., P_d$, niin se on tasapainojakauma siirtymämatriisille $P = P_1 ... P_d$.

To distus.

$$\pi^T \mathbf{P} = \pi^T \mathbf{P}_1 ... \mathbf{P}_d = \pi^T \mathbf{P}_2 ... \mathbf{P}_d = ... = \pi^T \mathbf{P}_d = \pi^T$$

Lause 2.33. Jos tilajoukko S on jatkuva ja π on tasapainojakauma kaikille siirtymätiheyksille $T_1, ..., T_d$, niin se on tasapainojakauma siirtymätiheydelle $T_c = T_1...T_d(x, y)$

Todistus. Lause voidaan todistaa hyödyntämällä Fubinin lausetta.

$$\int_{S} \pi(x) T_{c}(x, y) dx = \int_{S} \pi(x) \int_{S} T_{1}(x, z_{1}) T_{2}(z_{1}, z_{2}) \dots T_{d}(z_{d-1}, y) dz_{1} \dots z_{d-1} dx$$

$$= \int_{S} T_{2}(z_{1}, z_{2}) \dots T_{d}(z_{d-1}, y) \underbrace{\int_{S} \pi(x) T_{1}(x, z_{1}) dx}_{\pi(z_{1})} dz_{1} \dots z_{d-1}$$

$$= \int_{S} T_{3}(z_{2}, z_{3}) \dots T_{d}(z_{d-1}, y) \underbrace{\int_{S} \pi(z_{1}) T_{2}(z_{1}, z_{2}) dz_{1}}_{\pi(z_{2})} dz_{2} \dots d_{d-1}$$

$$\vdots \\
= \int_{S} \pi(z_{d-1}) T_{d}(z_{d-1}, y) dz_{d-1}$$

$$= \pi(y)$$

Tässä S viittaa nyt aina siihen tilajoukkoon, jonka yli kussakin vaiheessa integroidaan.

Käydään vielä nopeasti läpi muutama ominaisuus, jotka ovat keskeisiä MCMC-menetelmien teoriassa. [RC05; Koi09]

Määritelmä 2.35. Markovin ketju (X_n) , siirtymäytimellä T(x,y) on pelkistymätön jos kaikilla $A \in \mathcal{T}$, joilla $\mathbf{P}(A) > 0$, on olemassa sellainen n, että $T^n(x,A) > 0$ kaikilla $x \in S$

Käytännössä pelkistymättömyys tarkoittaa siis sitä, että jokaisesta tilajoukon kolkasta on mahdollista päästä jokaiseen muuhun pisteeseen avaruutta, eli ketju ei voi jäädä jumiin johonkin alueelle.

Määritelmä 2.36. Markovin ketju (X_n) on palautuva jos

- (i) ketju (X_n) on pelkistymätön ja
- (ii) kaikilla $A \in \mathcal{T}$, joilla $\mathbf{P}(A) > 0$, $\mathbb{E}_x[\eta_A] = \infty$ kaikilla $x \in A$

Missä η_A on käyntien määrä joukossa A.

Palautuvalla ketju tarkoittaa sitä, että ketju palaa alueelle, jossa se on jo käynyt. Palautumista vahvempi ominaisuus on *Harris*-palautuvuus.

Määritelmä 2.37. Joukko A on Harris palautuva, jos $\mathbf{P}_x(\eta_A = \infty) = 1$ kaikilla $x \in A$. Markovin ketju (X_n) on Harris palautuva jos (X_n) on pelkistymätön, ja jokainen joukko A, jolla $\mathbf{P}(A) > 0$, on Harris palautuva.

Määritelmä 2.38. Markovin ketju (X_n) on *jaksollinen*, jos on olemassa erilliset osajoukot $A_1, A_2, ..., A_d \subset S, d > 1$, että

$$(2.39) T(x, A_{i+1}) = 1, \ \forall \in A_i, \ i = 1, ..., d-1$$

ja

$$(2.40) T(x, A_1) = 1, i = d$$

Jos ketju ei ole jaksollinen, se on jaksoton.

Määritellään sitten viekä ergodisuus, joka yhdistää yllä olevat ominaisuudet.

Määritelmä 2.41. Markovin ketju (X_n) on ergodinen, jos se on pelkistymätön, jaksoton ja Harris-palautuva.

Ergodisuus on MCMC-menetelmien kannalta tärkeä ominaisuus, sillä se takaa Markovin ketjun (X_n) konvergoitumisen yksikäsitteisen tasapainojakaumaansa mistä tahansa tilajoukon S pisteestä. Tämän osoittaminen on melko hankalaa ja ylittää reilusti tämän tutkielman laajuuden, joten jätämme sen tekemättä.

Markovin ketju Monte Carlo menetelmät

Tässä luvussa aiomme esitellä MCMC-metodeja. Esittelemme alaluvussa 3.6 Gibbsin otanta-algoritmina tunnetun MCMC-menetelmän, ja sitten alaluvussa 3.2 esittelemme Metropolis–Hastings algoritmin. Osoitamme myös, että todellisuudessa alaluvun 3.6 algoritmi onkin todella vain erikoistapaus luvun 3.2 algoritmista. Pohditaan kuitenkin ensin menetelmän motivaatiota. [Koi09, s. 94] [RC05, s. 269]

Määritelmä 3.1. MCMC-menetelmiksi kutsutaan jakaumaa p simuloivia menetelmiä, jotka perustuvat siihen, että luodaan ergodinen Markovin ketju (X_n) , jolla on tasapaino-jakaumana jakauma p.

Ketjun ergodisuus takaa siis sen, että ketju konvergoituu jokaisesta tila-avaruuden pisteestä. Se takaa, että ketjun empiirinen keskiarvo

(3.2)
$$\mathfrak{J}_n = \frac{1}{n} \sum_{t=1}^n h(X_t)$$

konvergoituu odotusarvoon, eli

(3.3)
$$\lim_{n \to \infty} \mathfrak{J}_n \to \mathbb{E}_p[h(X_t)] = \int h(x)p(x)dx$$

Tällöin ketjun tiloja voidaan siis käsitellä i.i.d. otoksena tasapainojakaumasta.

Markovin ketjuille (ja useimmille MCMC-menetelmien tuottamille Markovin ketjuille) pätee myös keskeinen raja-arvolause (3.4).

(3.4)
$$\sqrt{n}(\mathfrak{J}_n - \mathbb{E}_p[h(X_t)]) \to N(0, \sigma_h^2) \quad \text{kun} \quad n \to \infty$$

jossa

(3.5)
$$\sigma_h^2 = \operatorname{var}_p(h(X_0)) + 2\sum_{t=1}^{\infty} \operatorname{cov}_p(h(X_0), h(X_t))$$

Menetelmän ydin on siis rakentaa systemaattisella tavalla Markovin ketju, jonka tasapainojakaumana on haluamamme simuloitava jakauma. Tämän voisi kuvitella olevan kovin vaikeaa, mutta yllättävästi se onkin melko helppoa.

3.1 Gibbsin otanta-algoritmi

Gibbsin otanta-algoritmi on tapa simuloida bayesiläistä moniulotteista posteriorijakaumaa (eli ulottuvuuksia vähintään 2), kun suora otanta on hankalaa. Algoritmi on nimetty amerikkalaisen fyysikon, Josiah Willard Gibbsin (1839-1903) mukaan, mutta sen todellinen kehittäjä on veljekset Donald Geman (1943-) ja Stuart Geman (1949-) vuonna 1984 artikkelissa Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.

Aloitetaan määrittelemällä algoritmi. [Gel+13, s.276-277]

Määritelmä 3.6. Olkoot θ parametrivektori, joka jaetaan d:hen osaan tai osavektoriin, eli $\theta = (\theta_1, \theta_2, ..., \theta_d)$. Gibbsin otanta-algoritmi määritellään seuraavanlaisesti:

- 1. Arvotaan permutaatio parametrivektorille θ
- 2. Arvotaan uusi tila jokaiselle osavektorille θ_j ehdollistamalla se jokaiselle muulle parametrille, eli vedetään arvot $\theta_1, \theta_2, ..., \theta_d$ jakaumista

$$(3.7) p(\theta_j | \theta_{-j}^{(n-1)}, y)$$

arvotun permutaation parametrijärjestyksessä

3. toistetaan 1-3

Huomautus 3.8. jakaumassa (3.7) merkintä $\theta_{-j}^{(n-1)}$ viittaa kaikkiin muihin parametrin θ komponentteihin paitsi j. komponenttiin, näiden tämänhetkisillä arvoilla eli

$$\boldsymbol{\theta}_{-j}^{(n-1)} = (\theta_1^{(n)}, ..., \theta_{j-1}^{(n)}, \theta_{j+1}^{(n-1)}, ..., \theta_d^{(n-1)})$$

Yleensä määritelmässä 3.6 kohdassa 1. ei arvota uutta permutaatiota, vaan permutaatio päätetään alussa, ja sitä pidetään kaikkien algortimin iteraatioiden ajan samana. Tätä kutsutaan systemaattiseksi Gibbsin otanta-algoritmiksi (systematic scan Gibbs sampler).

Lause 3.9. Määritelmän 3.6 mukaisen algoritmin tuottama Markovin ketju on jaksoton, pelkistymätön ja Harris palautuva ja sillä on sitten yksikäsitteinen tasapainojakauma $p(\theta)$. [Koi09]

Todistus. Voitaisiin osoittaa, että määritelmän 3.6 algoritmin tuottama Markovin ketju on ergodinen, ja täten konvergoituu tasapainojakaumaan. Ohitetaan se tässä, sillä todistus on melko tekninen.

Olkoot $\theta^{(n-1)}$ parametrin alkuperäinen tila, ja $\theta_j^{(n)}$ uusi j:nnen parametrin tila. Nyt $\theta^{(n-1)}$ ja $\theta_j^{(n)}$ yhteistiheysfunktio on kertolaskusäännöllä.

(3.10)
$$p(\theta^{(n-1)})p_{i}(\theta_{i}^{(n)}|\theta_{-i}^{(n-1)})$$

Nyt voidaan integroida

$$(3.11) \int p(\theta^{(n-1)}) p_{j}(\theta_{j}^{(n)}|\theta_{-j}^{(n-1)}) d\theta_{j}^{(n-1)} = \int p(\theta_{j}^{(n-1)}|\theta_{-j}^{(n-1)}) p(\theta_{-j}^{(n-1)}) p_{j}(\theta_{j}^{(n)}|\theta_{-j}^{(n-1)}) d\theta_{j}^{(n-1)}$$

$$= p(\theta_{-j}^{(n-1)}) p_{j}(\theta_{j}^{(n)}|\theta_{-j}^{(n-1)}) \int p(\theta_{j}^{(n-1)}|\theta_{-j}^{(n-1)}) d\theta_{j}^{(n-1)}$$

$$= p(\theta_{-j}^{(n-1)}) p_{j}(\theta_{j}^{(n)}|\theta_{-j}^{(n-1)})$$

$$= p(\theta_{j}^{(n)}, \theta_{-j}^{(n-1)})$$

Eli Gibbs otanta-algoritmin päivitys ei muuta jakaumaa. Nyt voidaan soveltaa lausetta 2.33, jolloin voidaan todeta, että koska p tasapainojakauma jokaiselle $p_j(\theta_j^{(n)}|\theta_{-j}^{(n-1)})$, niin se on tasapainojakauma niiden yhteis siirtymätiheydelle

(3.12)
$$T = \prod_{j=1}^{d} p_j(\theta_j^{(n)} | \theta_{-j}^{(n-1)})$$

Ohitetaan Gibbsin otanta-algoritmin kohdalla toistaiseksi esimerkit, ja palataan siihen kappaleessa 4, jossa tarkastelemme laajempaa esimerkkiä lineaarisen regression parissa. Toteutamme tämän Gibbsin otanta-algoritmina.

Gibbsin otanta-algoritmin vaatimus ehdollisista jakaumista voi vaikuttaa jokseenkin rajoittavalta, sillä joskus voidaan tutkia mallia, jolle on vaikea laskea ehdolliset jakaumat. Toisaalta taas joskus saatamme haluta simuloida yksiulotteista jakaumaa Gibbsin otanta-algoritmilla, mutta tämä ei suoraan ole mahdollista sillä algoritmi tarvitsee vähintään kaksiulotteisen parametrin. Tällöin voidaan kuitenkin pienin muunnoksin hyödyntää Gibbsin otanta-algoritmia hyödyntämällä seuraavaa määritelmää 3.13. [RC05, s. 374]

Määritelmä 3.13. Olkoot p tiheysfunktio. Tiheysfunktiota λ , joka täyttää ehdon

(3.14)
$$\int_{Z} \lambda(x, z) dz = p(x)$$

kutsutaan p:n täydellistymäksi (completion).

Tiheys λ valitaan siten, että sille voi ratkaista ehdolliset jakaumat. Nyt Gibsin otantaalgoritmi voidaan toteuttaa käyttämällä jakaumaa λ ja sen ehdollisia jakaumia. Lauseen 3.9 tulos pätee myös tässä tapauksessa. Tällöin malliin tulee toki uusi parametri z, joka on täysin turha mallin kannalta, mutta avustaa simuloinnissa.

3.2 Metropolis–Hastings algoritmi

Metropolis–Hastings algoritmi on kehittelijöidenssä Nicholas Metropolin (1915-1999) ja Wilfred Keith Hastingsin (1930-2016) mukaan nimetty MCMC-menetelmä, jolla voidaan simuloida bayesiläisessä analyysissa käytettäviä posteriori jakaumia myös silloin kun tiheys on mahdotonta määrittää analyyttisesti.

Algoritmin pohjan kehittivät Stanislav Ulam ja Metropolis työskennellessään Los Alamosissa ja myöhemmin Metropolis kehitteli nykyään Metropolis-algoritmina tunnettua algoritmiä ja esittelivät sen artikkelissa Equation of state calculations by fast computing machines [Met53]. Tämä versio algoritmista vaati, että pian esiteltävä ehdotusjakauma on symmetrinen. Myöhemmin Hastings laajenti algoritmin koskemaan myös epäsymmetrisiä ehdotusjakaumia artikkelissa Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Esitämme jälkimmäisen version algoritmista, sillä edellinen seuraa jälkimmäisestä suoraan.

Merkintä 3.15. TN-jakauma $J_n(\cdot|\cdot)$ on niin sanottu ehdotusjakauma (proposal distribution, jumping distribution), josta MH-algoritmissa arvotaan ehdotustila.

Nyt kun ehdotusjakauma on määritelty, voidaan määritellä Metropolis-Hastingsin algoritmi seuraavanlaisesti [Gel+13, s.278-279]

Määritelmä 3.16. Metropolis–Hastings algoritmi on seuraavanlainen

- 1. Valitaan aloitustila θ_0 tilajoukosta (tämän askeleen aika on n=0)
- 2. Generoidaan kandidaatti tila θ' satunnaisesti ehdotusjakaumasta $J_n(\theta'|\theta^{(n-1)})$
- 3. Lasketaan suhde

$$r = \frac{p(\theta'|y)/J_n(\theta'|\theta^{(n-1)})}{p(\theta^{(n-1)}|y)/J_n(\theta^{(n-1)}|\theta')}$$

4. Asetetaan

$$\theta^{(n)} = \begin{cases} \theta', \text{todennäköisyydellä} & \min(r, 1) \\ \theta^{(n-1)}, \text{muuten} \end{cases}$$

5. Toistetaan 2-5

Lause 3.17. Määritelmän 3.16 algoritmi tuottaa Markovin ketjun jolla on uniikki tasapainojakauma $p(\theta)$ Todistus. Todistus nojautuu Markovin ketjun kääntyvyysominaisuuteen (2.21) ja (2.23), eli

(3.18)
$$T(\theta^{(n)}|\theta^{(n-1)})p(\theta^{(n-1)}) = T(\theta^{(n-1)}|\theta^{(n)})p(\theta^{(n)})$$

joka on siis riittävä ehto tasapainojakauman olemassaololle. Mietitään kahta tapausta: (1) $\theta^{(n)} \neq \theta^{(n-1)}$ ja (2) $\theta^{(n)} = \theta^{(n-1)}$. Tapauksen (2) siirtymä voi tapahtua kahdella tavalla. Joko kohdassa 4. ehdotus θ' hylätään, tai se hyväksytään, mutta osutaan sattumanvaraisesti takaisin samaan kohtaan. Kuitenkin selvästi nähdään, että ehto 3.18 pätee tilanteessa (2).

Tilanteessa (1) siirtymätodennäköisyys pisteestä $\theta^{(n-1)}$ pisteeseen $\theta^{(n)}$ on

$$(3.19) T(\theta^{(n)}|\theta^{(n-1)}) = J_n(\theta^{(n)}|\theta^{(n-1)}) \min\left(\frac{p(\theta^{(n)})J_n(\theta^{(n-1)}|\theta^{(n)})}{p(\theta^{(n-1)})J_n(\theta^{(n)}|\theta^{(n-1)})}, 1\right)$$

Jota voidaan muokata helposti muotoon

(3.20)
$$T(\theta^{(n)}|\theta^{(n-1)}) = J_n(\theta^{(n)}|\theta^{(n-1)}) \min\left(\frac{p(\theta^{(n)})J_n(\theta^{(n-1)}|\theta^{(n)})}{p(\theta^{(n-1)})J_n(\theta^{(n)}|\theta^{(n-1)})}, 1\right) \\ = \frac{1}{p(\theta^{(n-1)})} \min\left(p(\theta^{(n)})J_n(\theta^{(n-1)}|\theta^{(n)}), p(\theta^{(n-1)})J_n(\theta^{(n)}|\theta^{(n-1)})\right)$$

Toistamalla ylläoleva siirtymätodennäköisyydelle pisteestä $\theta^{(n)}$ pisteeseen $\theta^{(n-1)}$ havaitaan, että

$$(3.21) T(\theta^{(n-1)}|\theta^{(n)}) = \frac{1}{p(\theta^{(n)})} \min \left(p(\theta^{(n-1)}) J_n(\theta^{(n)}|\theta^{(n-1)}), p(\theta^{(n)}) J_n(\theta^{(n-1)}|\theta^{(n)}) \right)$$

lauseke on symmetrinen. Kerrotaan yhtälö (3.20) termillä $p(\theta^{(n-1)})$ ja hyödynnetään ominaisuutta (3.21), jolloin

$$T(\theta^{(n)}|\theta^{(n-1)})p(\theta^{(n-1)}) = \frac{1}{p(\theta^{(n-1)})} \min\left(p(\theta^{(n)})J_n(\theta^{(n-1)}|\theta^{(n)}), p(\theta^{(n-1)})J_n(\theta^{(n)}|\theta^{(n-1)})\right) p(\theta^{(n-1)})$$

$$= \frac{1}{p(\theta^{(n)})} \min\left(p(\theta^{(n-1)})J_n(\theta^{(n)}|\theta^{(n-1)}), p(\theta^{(n)})J_n(\theta^{(n-1)}|\theta^{(n)})\right) p(\theta^{(n)})$$

$$= T(\theta^{(n-1)}|\theta^{(n)})p(\theta^{(n)})$$

Eli myös tapauksessa (1) yhtälö (3.18) pätee.

Esimerkki 3.22. Ajatellaan kuvitteellista tapausta, jossa meillä jatkuva kaksiulotteinen todennäköisyysjakauma, jonka tiheysfunktio on

$$(3.23) p(\theta) \propto \exp\left(-5|\theta_1^2 + \theta_2^2 - 1|\right)$$

joka muodostaa regasmaisen 2-ulotteisen jakauman. Valitaan ehdotusjakaumaksi $J_n(\theta^{(n)}|\theta^{(n-1)})$ 2d-multinormaalijakauma

(3.24)
$$J_n(\theta^{(n)}|\theta^{(n-1)}) \sim N(\theta^{(n-1)}, \sigma^2 I_2)$$

jossa I_2 on 2×2 yksikkömatriisi ja olkoot $\sigma^2 = 0.01$. Nyt Metropolis-Hastingsin algoritmin avulla voidaan simuloida jakaumaa $p(\theta)$ algoritmilla 3.16. Simuloidaan kaksi Markovin ketjua asettemalla aloitustiloiksi (0,0) ja (5,5), kummastakin 10 000 tilaa. Simuloimme

Kuva 3.1: Vasemmalla: (5,5). Keskellä: (0,0) Oikealla: tiheysestimaatti (huomaa eri skaala).

myös 200 000 pistettä aloitusarvolla (0,0), joista luodaan tiheysestimaatti. Tulokset löytyy kuvasta 4.2. Kahdessa ensimmäisessä kuvassa viiva on ensimmäisen 250 pisteen polku. Selvästi nähdään, että aloituspisteellä ei ole väliä. Markovin ketjun tasapainojakauma on sama huolimatta aloituspisteestä.

Esimerkki 3.25. Otetaan toisena esimerkkinä klassinen tapaus, jossa oletetaan, että havainnot ovat jakautuneet *Bernoulli-jakauman* mukaan, $y_i \sim \text{Bernoulli}(\theta)$, ja että priori on tasajakauma. Tällöin tiedetään, että analyyttinen posteriori on

$$p(\theta|y_i) = \text{Beta}(\sum_{i=1}^{n} y_i + 1, n - \sum_{i=1}^{n} y_i + 1)$$

Valitaan hieman eksoottinen ehdotusjakauma esimerkin vuoksi:

(3.26)
$$J_n(\theta^{(n)}|\theta^{(n-1)}) \sim \begin{cases} \operatorname{Unif}(\theta^{(n-1)}, 1) & \operatorname{kun } \theta^{(n-1)} < 0.5\\ \operatorname{Unif}(0, \theta^{(n-1)}) & \operatorname{kun } \theta^{(n-1)} \ge 0.5 \end{cases}$$

Toisin kuin esimerkissä 3.22, nyt ehdotusjakauma ei olekkaan symmetrinen.

Kuva 3.2: Esimerkin 3.25 tulokset

Oletetaan että, meillä on havainnot (1, 1, 1, 0, 0, 1, 0, 0, 0, 0) ja tarkastellaan sekä analyyttistä että MH-algoritmin tuottamaa jakaumaa ja niiden eroja.

Kuvasta 3.2 nähdään esimerkin tulokset. Huomataan, että vaikka ehdotusjakauma on melko kummallinen, niin kuitenkin riittävän monella iteraatiolla saavutetaan tasapainojakauma. Huomaa, että vasemmassa kuvaajassa on vihreällä simulaatio keskiarvo, ja punaisella analyyttinen keskiarvo, mutta nämä arvot ovat niin lähellä toisiaan, että viivat ovat päällekkäin.

3.2.1 Yhteys Gibbsin otanta-algoritmiin

Kuten jo totesimme aiemmin, Gibbsin otanta-algoritmin voi esittää Metropolis-Hastings algoritmin erityis tilanteena, jossa hyväksymistodennäköisyys on 1. [Gel+13]

Lause 3.27. Gibbsin otanta-algoritmi on erityistapaus Metropolis-hastings algoritmista.

Todistus. Määritellään MH-algoritmin iteraatio n niin, että se sisältää d askelta, ja jossa iteraation n askel j kuvaa parametriosavektorin θ_j päivitystä ehdollistettuna kaikilla muilla parametrin θ :n elementeillä. Tällöin ehdotusjakauma $J_{j,n}$ iteraation n askeleessa j, voidaan määrittää siten, että se ehdottaa vain tiloja, jotka muuttaa vain parametria θ_j . Eli:

(3.28)
$$J_{j,n}^{Gibbs}(\theta^*|\theta^{(n-1)}) = \begin{cases} p(\theta_j^*|\theta_{-j}^{(n-1)}) & \text{kun } \theta_{-j}^* = \theta_{-j}^{(n-1)} \\ 0 & \text{muulloin} \end{cases}$$

Nyt voidaan kirjoittaa suhde r iteraation n j:nen askeleen kohdalla muotoon

(3.29)
$$r = \frac{p(\theta^*)/J_{j,n}^{Gibbs}(\theta^*|\theta^{(n-1)})}{p(\theta^{(n-1)})/J_{j,n}^{Gibbs}(\theta^{(n-1)}|\theta^*)}$$
$$= \frac{p(\theta^*)/p(\theta_j^*|\theta_{-j}^{(n-1)})}{p(\theta^{(n-1)})/p(\theta_j^{(n-1)}|\theta_{-j}^{(n-1)})}$$
$$= \frac{p(\theta_{-j}^{(n-1)})}{p(\theta_{-j}^{(n-1)})}$$
$$= 1$$

Eli määrittelemällä MH-algoritmille siirtymäjakauma sillä tavalla, että se vastaa Gibbsin otanta-algoritmia, siirtymän hyväksymistodennäköisyydeksi tulee 1.

3.2.2 Ehdotusjakauman valinnasta

Kummassakin kappaleen 3.2 esimerkissä valitsimme ehdotusjakauman melko satunnaisesti. Varsinkin esimerkissä 3.25 se on erittäin epätavallinen, mistä syystä hyvän approksimaation saavuttaminen vie todella monta iteraatiota. Yleensä jos haluamme oikeasti tehokkaasti ja ekonomisesti simuloida jakaumia esitetyllä algoritmilla, haluamme valita ehdotusjakauman jollakin järkevällä, systemaattisella tavalla, joka minimoisi tarvittavien iteraatioiden määrän.

Yleisesti ottaen hyvällä ehdotusjakaumalla on muutama ominaisuus[Gel+13, s. 280]

- 1. Kaikilla θ :n arvoilla on helppo arpoa arvo $J(\theta'|\theta)$
- 2. Suhde r on helppo laskea
- 3. Siirtymät ovat tarpeaksi pitkiä. Muuten Markovin ketju etenee liian hitaasti ja hyvän estimaatin saaminen kestää liian pitkään.
- 4. Siirtymiä ei hylätä liian usein. Muuten Markovin ketju ei etene vaan seisoo paikallaan

Lisäksi simulointia voidaan nopeuttaa mm. käyttämällä adaptiivista ehdotusjakaumaa, jossa ehdotusjakaumaa muunnellaan riippuen ketjun liikkeistä. [Gel+13, s. 295]

3.3 Yleisiä käytäntöjä MCMC-menetelmissä

Usein MCMC-menetelmissä on tapana simuloida useampi kuin yksi ketju. Tällöin asetetaan näiden ketjujen aloitustilat eriäviksi, jotta saadaan vähennettyä aloitustilan vaikutusta lopputukokseen.

Toinen yleinen käytäntö on jättää ketjun alkupäästä jonkin verran tiloja huomioimatta, sillä ketjun alkupäässä se ei välttämättä ole vielä saavuttanut tasapainojakaumaa. Tätä kutsutaan *Burn-in periodiksi*.

Joskus taas on hyvä tapa pudottaa joka n:s tila ketjusta. Tilojen tiputtaminen ei vaikuta tasapainojakaumaan, kunhan ketju vain on saavuttanut sen. Tilojen tiputtamista on hyötyä jos mallissa on paljon parametreja, jolloin tietokoneessa voi tulla ongelmia tilan kanssa. [Gel+13]

3.4 Konvergenssi ja Diagnostiikka

Kappaleissa 3.6 ja 3.2 esiteltyjen algoritmien kohdalla voi herätä kysymys, että mikä on riittävä määrä iteraatioita, jotta Markovin ketju on saavuttanut tasapainojakaumansa ja otanta on riittävän hyvä aproksimaatio posteriorijaukaumasta. Esimerkiksi kun katsotaan kuvan 4.2 vasemman puolen kuvan punaista polkua, niin voidaan sanoa, että se ei ole vielä saavuttanut tasapainojakaumaa sillä haluttu jakauma tunnetaan, mutta tätä ei välttämättä osata sanoa suoraan.

Toinen yleinen ongelma, joka kaipaa pohdintaa on se, että ketjujen sisällä on korrelaatiota, mikä vaikeuttaa päättelyä simuloinnin tuloksista. Otannat eivät siis ole välttämättä täysin riippumattomia. Esitetään nyt kaksi menetelmää diagnosoida näihin onglemiin liittyviä vaikutuksia.

3.4.1 Gelmanin \hat{R}

Yksi yleisimmistä estimaattoreista, joita käytetään MCMC-metodeissa Markovin ketjujen konvergenssin arvioimiseen on (Andrew) $Gelmanin \hat{R}$. Se mittaa ketjujen sisäistä sekoittumista (eng. mixinq) ja erillisten ketjujen välistä sekoittumista. [Gel92; Gel98]

Määritelmä 3.30. Gelmanin R lasketaan jakamalla ensin jokin määrä simuloituja ketjua erillisillä aloituspisteillä keskeltä kahtia. Olkoon nyt m ketjujen määrä jaon jälkeen ja n ketjujen pituus. Olkoot $\psi_{ij}(i=1,...,n;j=1,...,m)$ tila i ketjussa j. Nyt merkitään

(3.31a)
$$B = \frac{n}{m-1} \sum_{j=1}^{m} (\overline{\psi}_{.j} - \overline{\psi}_{..})^2, \text{ jossa}$$

$$\overline{\psi}_{.j} = \frac{1}{n} \sum_{i=1}^{n} \psi_{ij}$$

(3.31c)
$$\overline{\psi}_{\cdot \cdot} = \frac{1}{m} \sum_{j=1}^{m} \overline{\psi}_{\cdot j}$$

Ja merkitään

(3.32)
$$W = \frac{1}{m} \sum_{j=1}^{m} s_j^2, \quad jossa \quad s_j^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\psi_{ij} - \overline{\psi}_{.j})^2$$

Jossa siis B on ketjujen välinen varianssi (between sequence) ja W on ketjujen sisäinen varianssi (within sequence). Näiden painotettuna keskiarvona saadaan estimaattori parametrin ψ ehdolliselle posteriorivarianssille

(3.33)
$$\hat{\sigma}^{+}(\psi|y) = \frac{n-1}{n}W + \frac{1}{n}B$$

Nyt \hat{R} voidaan määritellä kaavalla

$$\hat{R} = \sqrt{\frac{\hat{\sigma}^+(\psi|y)}{W}}$$

Gelmanin \hat{R} mittaa sitä miten paljon kullakin hetkellä ψ :n jakauma voisi supistua, jos simulaatioiden annettaisiin jatkua loputtomasti. Eli siis kun $\hat{R} \approx 1$, niin voidaan sanoa, että Markovin ketju on todennäköisesti saavuttanut tasapainojakaumansa, sillä tällöin eri pisteitä aloitettujen ketjujen välinen varianssi on vakaantunut, eli kaikki ketjut ovat todennäköisesti saavuttaneet tasapainojakauman.

Tällä diagnostiikalla on kuitenkin ongelmansa ja rajoitteensa ja se saattaa virheellisesti diagnosoida konvergoituneen ketjun esimerkiksi jos ketjulla on pitkät hännät. Näitä onglemia korjaa Aalto-yliopiston $Aki\ Vehtarin$ kehittelemä uudempi variaatio \hat{R} diagnostiikasta. [Veh+19]

3.4.2 ESS

Toinen hyödyllinen diagnostiikka MCMC-menetelmissä on niin sanottu effective sample size (ESS), joka pyrkii mittaamaan sitä kuinka monta todellakin riippumatonta otosta ketjussa on. Tämä tarkoittaa siis sitä, että se mittaa kuinka paljon ketjun autokorrelaatio vaikuttaa keskivirheeseen verrattuna täysin riippumattomiin otoksiin.

Määritelmä 3.35. ESS lasketaan kaavalla

(3.36)
$$\hat{n}_{\text{eff}} = \frac{mn}{1 + 2\sum_{t=1}^{T} \hat{\rho}_t}$$

jossa

$$\hat{\rho}_t = 1 - \frac{V_t}{2\hat{\sigma}^+}$$

(3.37b)
$$V_t = \frac{1}{m(n-t)} \sum_{j=1}^m \sum_{i=t+1}^n (\psi_{ij} - \psi_{i-t,j})^2$$

Kaavan (3.37a) $\hat{\sigma}^+$ saadaan kaavasta (3.33). Termissä $\sum_{t=1}^{T} \hat{\rho}_t$ autokorrelaatioita summataan, kunnes kahden peräkkäisen kovariaatin summa on negatiivinen [Gey92].

Myös ESS estimaatille on olemassa paranneltu versio, joka jakaa estimaatin kahteen osaan ja mittaa erikseen jakauman häntien riippumattomien otantojen kokoa.

Laajempi esimerkki

Tarkastellaan vielä lopuksi laajempaa esimerkkiä. Tarkastellaan normaalia lineaarista regressiomallia. Käytetään R:stä löytyvää airquality aineistoa New Yorkin ilmanlaadusta. Sovitetaan aineistoon bayesilainen lineaarinen malli

$$(4.1) Ozone = \beta_0 + \beta_1 Solar.R + \beta_2 Wind$$

Gibbsin otanta-algoritmin avulla.

Määritellään ensiksi malli. Merkitään $\tau = 1/\sigma^2$, $\theta = (\beta_0, \beta_1, \beta_2, \tau)$ ja asetetaan prioirijakaumat konjugaattijakaumiksi.

$$y_{i}|\beta_{0}, \beta_{1}, \beta_{2}, \tau \sim N(\beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}, 1/\tau)$$

$$\beta_{0}|\mu_{0}, \tau_{0} \sim N(\mu_{0}, 1/\tau_{0})$$

$$\beta_{1}|\mu_{1}, \tau_{1} \sim N(\mu_{1}, 1/\tau_{1})$$

$$\beta_{2}|\mu_{2}, \tau_{2} \sim N(\mu_{2}, 1/\tau_{2})$$

$$\tau|\alpha, \gamma \sim \text{Gamma}(\alpha, \gamma)$$

Muodostetaan uskottavuusfunktio

(4.3)
$$L(y|\theta) = \prod_{i=1}^{N} N(\beta_0 + \beta_1 x_i + \beta_2 x_i, 1/\tau)$$

Posterioirijakauman tiheysfunktio on siten laskettavissa verrannollisuudella

(4.4)
$$p(\theta|y) \propto p(\beta_0)p(\beta_1)p(\beta_2)p(\tau) \prod_{i=1}^{N} N(\beta_0 + \beta_1 x_i + \beta_2 x_i, 1/\tau)$$

Tästä saadaan sitten johdettua ehdolliset jakaumat otanta-algoritmia varten

$$\beta_{0}|\beta_{1},\beta_{2},\tau_{0},\tau,\mu_{0},x,y \sim N\left(\frac{\tau_{0}\mu_{0} + \tau \sum_{i=1}^{N}(y_{i} - \beta_{1}x_{i1} - \beta_{2}x_{i2})}{\tau_{0} + \tau N}, \frac{1}{\tau_{0} + \tau N}\right)$$

$$\beta_{1}|\beta_{0},\beta_{2},\tau_{1},\tau,\mu_{1},x,y \sim N\left(\frac{\tau_{1}\mu_{1} + \tau \sum_{i=1}^{N}(y_{i} - \beta_{0} - \beta_{2}x_{i2})x_{i1}}{\tau_{1} + \tau \sum_{i=1}^{N}x_{i1}^{2}}, \frac{1}{\tau_{1} + \tau \sum_{i=1}^{N}x_{i1}^{2}}\right)$$

$$\beta_{2}|\beta_{0},\beta_{1},\tau_{2},\tau,\mu_{2},x,y \sim N\left(\frac{\tau_{2}\mu_{2} + \tau \sum_{i=1}^{N}(y_{i} - \beta_{0} - \beta_{1}x_{i1})x_{i2}}{\tau_{2} + \tau \sum_{i=1}^{N}x_{i2}^{2}}, \frac{1}{\tau_{2} + \tau \sum_{i=1}^{N}x_{i2}^{2}}\right)$$

$$\tau|\beta_{0},\beta_{1},\beta_{2},\alpha,\gamma,x,y \sim \operatorname{Gamma}\left(\alpha + \frac{N}{2},\gamma + \frac{N}{2}\sum_{i=1}^{N}(y_{i} - \beta_{0} - \beta_{1}x_{i1} - \beta_{2}x_{i2})^{2}\right)$$

Asetetaan hyperparametrit $\mu_0 = 80$, $\mu_1 = 0$, $\mu_2 = -5$, $\tau_0 = 1/50$, $\tau_1 = 1/50$, $\tau_2 = 1/50$, $\alpha = 5$, $\gamma = 0.01$. Parametrit on valittu sen mukaan, että ne asettavat jakauman moodin lähelle arvioitua sijaintia ja toisaalta eivät ole kovin informatiivisia vaan paksu häntäisiä. Simuloidaan nyt tästä Gibbsin otanta-algoritmilla yhtälöitä 4.5 käyttäen 8 ketjua, kunkin pituus 2 000. Burnin-periodi olkoot 1 000. Yhteensä siis meillä on 16 000 otosta, joista 8 000 leikataan pois ja 8 000 jätetään arvioitavaksi.

θ	Mean	SD	2.5%	25%	50%	75%	97.5%
β_0	78.89544	5.61842	67.97969	75.14744	78.89385	82.64874	89.86483
β_1	0.09675	0.02263	0.05196	0.08130	0.09688	0.11218	0.14106
β_2	-5.48880	0.51291	-6.48407	-5.83627	-5.49158	-5.13095	-4.48973
τ	0.00177	0.00023	0.00136	0.00161	0.00176	0.00192	0.00226

Taulukko 4.1: Tulokset regressiosta

θ	\hat{R}	$\hat{n}_{ ext{eff}}$
β_0	1.00	778
β_1	1.00	1177
β_2	1.01	902
τ	1.00	7656

Taulukko 4.2: Diagnostiikka

Taulukoissa 4.1 ja 4.2 nähdään tulokset ja MCMC-diagnostiikat, joista puhuttiin aiemmin. Nähdään, että ketjut näyttäisivät konvergoituneen, mikä ei sinänsä ihmetytä, sillä simulaatio määrämme on suurehko.

Mielenkiintoista on nähdä, että kuvassa 4.2 ketju parametrille $1/\tau$ on aivan erinäköinen kuin muille parametreille. Otoksia on yhtä paljon kaikissa, mutta parametrin $1/\tau$ ketju näyttää siltä, että otoksia olisi enemmän. Tämä nähdään myös $\hat{n}_{\rm eff}$ estimaatista.

Kuva 4.1: Esimerkin lineaarisen regression tulos, vasemmalla Solar.R x-akselilla ja oikealla Wind. Punainen viiva on posteriori odotusarvolla piiretty regressioviiva ja vihreä on vertailun vuoksi PNS-mentelmällä sovitettu suora. Siniset ovat sovitteita parametrien eri ehdotusarvoilla.

Kuva 4.2: Esimerkin ketjut ja parametrien posteriori tiheydet

Loppusanat

Olemme nyt tarkastelleet perusajatuksia MCMC-menetelmistä. Kävimme läpi hieman teoriaa, esittelimme algoritmit ja kokeilimme sellaista käytännön tilanteessa. Kuitenkin olemme vain raapaisseet pintaa. Käyttämämme algoritmit ovat monessa mielessä erittäin rajoittuneita. Gibbsin otanta-algoritmissa meidän tulee tuntea ehdolliset jakaumat, ja Metropolis–Hastingsin algoritmi voi olla välillä hidas konvergoitumaan.

Tärkeitä laajennuksia MCMC-algoritmeihin on viimeaikoina kehitetyt ekonomisemmat MCMC-metodit. Tärkeimpänä *Hamiltonian Monte Carlo* eli HMC. Se on variaatio Metropolis–Hastingsin algoritmista, jossa simulaatioon integroidaan tietynlainen fysiikka simulaatio, jolla pyritään suurentamaan Markovin ketjun askelkokoa. Tällä pyritään vähentämään tarvittavien otosten määrää, joka tarvitaan tarpeeksi tarkan posterioriestimaatin saamiseksi, sillä menetelmä vähentää autokorrelaatiota tilojen välillä. Nimensä menetelmä saa *Hamiltonin mekaniikasta*.

Ohitimme myös useita asioita liittyen Markovin ketjuihin. Markovin ketjujen matematiikka ei ole kovin vaikeaa käytännössä, mutta monet todistukset ovat työläitä ja vaativat matematiikkaa, joka ylittää tämän tutkielman laajuuden.

Kuitenkin MCMC-menetelmät ovat mullistaneet maailmaa muunmuassa koneoppimis menetelmien massakaupallistumisen myötä. Ne ovat myös tehneet tieteestä luotettavampaa mahdollistamalla bayesiläisen tilastotieteen uuden nousun ja varsinkin *replikaatiokriisin* jälkeisessä maailmassa se on arvokas kontribuutio.

Paljon on kuitenkin vielä tutkittavaa. Suurista viimeaikaisista loikista huolimatta, MCMC-menetelmtä eivät voita vieläkään nopeudessa perinteisiä tilastollisia menetelmiä, joten uusia ja nopeampia algoritmeja olisi vielä kehiteltävä ja helppokäyttöisyyttä parannettava, jotta MCMC-menetelmät saavuttavat täyden potentiaalinsa.

Kirjallisuus

- [Dur10] Rick Durrett. *Probability: Theory and Examples.* 4. painos. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2010. DOI: 10.1017/CB09780511779398.
- [Gel92] Donald Rubin Gelman Andrew. "Inference from Iterative Simulation using Multiple Sequences". Statistical Science 7 (1992), s. 457–511.
- [Gel98] Stephen Brooks Gelman Andrew. "General Methods for Monitoring Convergence of Iterative Simulations". *Journal of Computational and Graphical Statistics* (joulukuu 1998). URL: http://www.stat.columbia.edu/~gelman/research/published/brooksgelman2.pdf.
- [Gey92] Charles Geyer. "Practical Markov Chain Monte Carlo". Statistical Science 7.4 (1992), s. 473–483.
- [Kle13] A. Klenke. *Probability Theory: A Comprehensive Course*. Universitext. Springer London, 2013. ISBN: 9781447153603.
- [Koi09] Petri Koistinen. Computational Statistics. 2009.
- [Met53] Nicholas Metropolis. "Equation of state calculations by fast computing machines" (1953).
- [Pii] Petteri Piiroinen. Stokastiset prosessit luentomoniste.
- [RC05] Christian P. Robert ja George Casella. Monte Carlo Statistical Methods (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2005. ISBN: 0387212396.
- [Gel+13] Andrew Gelman et al. *Bayesian Data Analysis*. 3. painos. 2013. ISBN: 978-1-4398-4095-5.
- [Veh+19] Aki Vehtari et al. "Rank-normalization, folding, and localization: An improved \widehat{R} for assessing convergence of MCMC". $arXiv\ e\text{-}prints$, arXiv:1903.08008 (maaliskuu 2019), arXiv:1903.08008. arXiv:1903.08008 [stat.CO].