Minimal rational interpolation for

time-harmonic Maxwell's equations

June 24, 2022 Fabio Matti

Primer

1

To locally approximate

$$\boldsymbol{u}:\mathbb{C}\ni\omega\mapsto\boldsymbol{u}(\omega)\in H_{curl}(\Omega)$$

Primer 1

To locally approximate

$$\boldsymbol{u}:\mathbb{C}\ni\omega\mapsto\boldsymbol{u}(\omega)\in\mathsf{H}_{curl}(\Omega)$$

compute the snapshots

$$\mathbf{u}(\omega_1), \mathbf{u}(\omega_2), \ldots, \mathbf{u}(\omega_S)$$

Primer 1

To locally approximate

$$\boldsymbol{u}:\mathbb{C}\ni\omega\mapsto\boldsymbol{u}(\omega)\in H_{curl}(\Omega)$$

compute the snapshots

$$\mathbf{u}(\omega_1), \mathbf{u}(\omega_2), \dots, \mathbf{u}(\omega_S)$$

and build a rational surrogate

$$\tilde{\mathbf{u}}(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{Q}(\omega)}$$

such that $\tilde{\mathbf{u}}(\omega) \approx \mathbf{u}(\omega)$ close to $\omega_1, \omega_2, \dots, \omega_S$.

Outline

- ▶ Problem formulation
- ► Finite element method
- ► Minimal rational interpolation
- ► Example applications
- ► Conclusion and outlook

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\textbf{B} = \nabla \times \textbf{u}$$

$$\boldsymbol{E} = -i\boldsymbol{\omega}\boldsymbol{u}$$

(Electric field)

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\mathbf{B} = \nabla \times \mathbf{u}$$
 (Magnetic field)
 $\mathbf{E} = -\mathrm{i}\omega \mathbf{u}$ (Electric field)

Maxwell's equation

$$\nabla \times (\mu^{-1}\mathbf{B}) - \vartheta_{\mathsf{t}}(\varepsilon \mathbf{E}) = \mathbf{j}$$

Time-harmonic vector potential $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$.

$$\mathbf{B} = \nabla \times \mathbf{u}$$
 (Magnetic field)
 $\mathbf{E} = -i\omega \mathbf{u}$ (Electric field)

Maxwell's equation

$$\nabla \times (\mu^{-1}\mathbf{B}) - \partial_{\mathsf{t}}(\epsilon \mathbf{E}) = \mathbf{j}$$

Time-harmonic potential equation

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) - \varepsilon \omega^2 \mathbf{u} = \mathbf{j}$$

$$\mathsf{H}_{curl}(\Omega) = \{ \mathbf{v} : \Omega \to \mathbb{C}^3, \text{ such that } \mathbf{v} \in \mathsf{L}_2(\Omega), \ \nabla \times \mathbf{v} \in \mathsf{L}_2(\Omega) \}$$

 $\mathsf{H}_{\text{curl}}(\Omega) = \{ \mathbf{v} : \Omega \to \mathbb{C}^3, \text{ such that } \mathbf{v} \in \mathsf{L}_2(\Omega), \ \nabla \times \mathbf{v} \in \mathsf{L}_2(\Omega) \}$

Weak formulation of the time-harmonic potential equation

Find $\mathbf{u} \in H_{\text{curl}}(\Omega)$, such that

$$\int_{\Omega} \langle \boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{u}, \nabla \times \boldsymbol{v} \rangle - \omega^2 \int_{\Omega} \boldsymbol{\varepsilon} \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \int_{\Omega} \langle \boldsymbol{j}, \boldsymbol{v} \rangle + \int_{\partial \Omega} \langle \boldsymbol{g}, \boldsymbol{v} \rangle$$

for all $\mathbf{v} \in \mathsf{H}_{\mathrm{curl}}$, where $\mathbf{g} = (\mu^{-1} \nabla \times \mathbf{u}) \times \mathbf{n}$.

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) - \varepsilon \omega^2 \mathbf{u} = \mathbf{j}$$

Perfectly conducting boundary

$$\mathbf{g} = \mathbf{0}$$
 and $\mathbf{E} \times \mathbf{n} = \mathbf{0}$, on Γ_D

$$\textstyle \int_{\Omega} \langle \mu^{-1} \nabla \times \mathbf{u}, \nabla \times \mathbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \mathbf{u}, \mathbf{v} \rangle = \int_{\Omega} \langle \mathbf{j}, \mathbf{v} \rangle + \int_{\partial \Omega} \langle \mathbf{g}, \mathbf{v} \rangle$$

Perfectly conducting boundary

$$g=0$$
 and $E\times n=0,$ on Γ_D

Inlet, where e.g. ${f B}$ is known along Γ_N

$$\mathbf{g} = (\mu^{-1}\mathbf{B}) \times \mathbf{n}$$
, on $\Gamma_{\mathbf{N}}$

$$\textstyle \int_{\Omega} \langle \mu^{-1} \nabla \times \mathbf{u}, \nabla \times \mathbf{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \mathbf{u}, \mathbf{v} \rangle = \int_{\Omega} \langle \mathbf{j}, \mathbf{v} \rangle + \int_{\partial \Omega} \langle \mathbf{g}, \mathbf{v} \rangle$$

Perfectly conducting boundary

$$g=0$$
 and $E\times n=0,$ on Γ_D

Inlet, where e.g. ${f B}$ is known along Γ_N

$$\mathbf{g} = (\mu^{-1}\mathbf{B}) \times \mathbf{n}$$
, on $\Gamma_{\mathbf{N}}$

Imperfectly conducting boundary [4]

$$\mathbf{g} = i\omega\lambda(\mathbf{n} \times \mathbf{u}) \times \mathbf{n}$$
, on Γ_{I}

$$\int_{\Omega} \langle \boldsymbol{\mu}^{-1} \nabla \times \boldsymbol{u}, \nabla \times \boldsymbol{v} \rangle - \omega^2 \int_{\Omega} \varepsilon \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \int_{\Omega} \langle \boldsymbol{j}, \boldsymbol{v} \rangle + \int_{\partial \Omega} \langle \boldsymbol{g}, \boldsymbol{v} \rangle$$

FEniCS [3] is used to obtain FEM solutions of the form

$$\mathbf{u}_{h}(\omega) = \sum_{i=1}^{N_{h}} \mathbf{u}_{i}(\omega) \mathbf{\Phi}_{i}$$
 (1)

for a basis $\{\phi_i\}_{i=1}^{N_h}$ of a finite dimensional subspace $H_{curl,h}(\Omega) \subset H_{curl}(\Omega)$ (Nédélec finite elements of the first kind).

FEniCS [3] is used to obtain FEM solutions of the form

$$\mathbf{u}_{h}(\omega) = \sum_{i=1}^{N_{h}} u_{i}(\omega) \mathbf{\Phi}_{i}$$
 (1)

for a basis $\{\phi_i\}_{i=1}^{N_h}$ of a finite dimensional subspace $\mathsf{H}_{curl,h}(\Omega) \subset \mathsf{H}_{curl}(\Omega)$ (Nédélec finite elements of the first kind). From now on

$$\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N)$$

with the $L_2(\Omega)$ inner product in $H_{curl,h}(\Omega)$ represented by

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{M}} = \mathbf{u}^{\mathsf{H}} \underline{\mathbf{M}} \mathbf{v}$$

and the norm

$$\|\bar{\mathbf{u}}\|_{M} = \sqrt{\langle \bar{\mathbf{u}}, \bar{\mathbf{u}} \rangle_{M}}$$

Rational surrogate

$$\mathbf{\tilde{u}}(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{Q}(\omega)} = \sum_{i=1}^{S} \frac{\mathbf{p}_{i}}{\omega - \omega_{i}} / \sum_{i=1}^{S} \frac{\mathbf{q}_{i}}{\omega - \omega_{i}}$$

in barycentric coordinates with support points $\omega_1, \omega_2, \dots, \omega_S$.

Rational surrogate

$$\tilde{\mathbf{u}}(\omega) = \frac{\mathbf{P}(\omega)}{\mathbf{Q}(\omega)} = \sum_{j=1}^{S} \frac{\mathbf{p}_{j}}{\omega - \omega_{j}} / \sum_{j=1}^{S} \frac{\mathbf{q}_{j}}{\omega - \omega_{j}}$$

in barycentric coordinates with support points $\omega_1, \omega_2, \ldots, \omega_S$.

Interpolation property

$$\tilde{\mathbf{u}}(\omega_i) = \mathbf{u}(\omega_i), \ \forall i \in \{1, 2, \dots, S\}$$

if and only if $p_i = q_i \mathbf{u}(\omega_i)$, $\forall i$.

Given snapshots $\mathbf{u}(\omega_1)$, $\mathbf{u}(\omega_2)$, ..., $\mathbf{u}(\omega_S)$:

1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $g_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle$, $i, j \in \{1, 2, \dots, S\}$

- 1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $g_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle$, $i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $\underline{\mathbf{G}} = \underline{\mathbf{V}} \underline{\boldsymbol{\Sigma}} \underline{\mathbf{V}}^{\mathsf{H}}$

- 1. Compute the Gramian matrix \underline{G} with entries $g_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle$, $i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $\underline{\mathbf{G}} = \underline{\mathbf{V}} \, \underline{\boldsymbol{\Sigma}} \, \underline{\mathbf{V}}^{\mathsf{H}}$
- 3. Define $\mathbf{q} = (q_1, q_2, \dots, q_S)^T = \underline{\mathbf{V}}[:, S]$

- 1. Compute the Gramian matrix $\underline{\mathbf{G}}$ with entries $g_{ij} = \langle \mathbf{u}(\omega_i), \mathbf{u}(\omega_j) \rangle$, $i, j \in \{1, 2, ..., S\}$
- 2. Compute the singular value decomposition $G = V \Sigma V^H$
- 3. Define $\mathbf{q} = (q_1, q_2, ..., q_S)^T = \underline{\mathbf{V}}[:, S]$
- 4. Define the minimal rational surrogate $\boldsymbol{\tilde{u}}(\omega) = P(\omega)/Q(\omega)$ with

$$\mathbf{P}(\omega) = \sum_{i=1}^{S} \frac{q_{i}\mathbf{u}(\omega_{i})}{\omega - \omega_{i}} \text{ and } \mathbf{Q}(\omega) = \sum_{i=1}^{S} \frac{q_{i}}{\omega - \omega_{i}}$$

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

1. Build the minimal rational surrogate $\tilde{\boldsymbol{u}}_2$ with $\boldsymbol{u}(\boldsymbol{\omega}^{(0)})$ and $\boldsymbol{u}(\boldsymbol{\omega}^{(1)})$ and remove $\boldsymbol{\omega}^{(0)}, \boldsymbol{\omega}^{(1)}$ from Ω_{test}

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

- 1. Build the minimal rational surrogate $\tilde{\mathbf{u}}_2$ with $\mathbf{u}(\omega^{(0)})$ and $\mathbf{u}(\omega^{(1)})$ and remove $\omega^{(0)}, \omega^{(1)}$ from Ω_{test}
- 2. Starting with t = 2, iteratively take a new support point

$$\omega^{(t)} = \operatorname{argmin}_{\omega \in \Omega_{\text{test}}} |Q^{(t)}(\omega)|$$

from Ω_{test} to build the minimal rational surrogate $\tilde{\mathbf{u}}_{t+1}$ based on $\mathbf{u}(\omega^{(0)}), \mathbf{u}(\omega^{(1)}), \ldots, \mathbf{u}(\omega^{(t+1)})$ and increment t

Given $\Omega_{test} = \{\omega_1, \omega_2, \dots, \omega_T\}$ as candidate support points:

- 1. Build the minimal rational surrogate $\tilde{\mathbf{u}}_2$ with $\mathbf{u}(\omega^{(0)})$ and $\mathbf{u}(\omega^{(1)})$ and remove $\omega^{(0)}, \omega^{(1)}$ from Ω_{test}
- 2. Starting with t = 2, iteratively take a new support point

$$\omega^{(t)} = \operatorname{argmin}_{\omega \in \Omega_{\text{test}}} |Q^{(t)}(\omega)|$$

from Ω_{test} to build the minimal rational surrogate $\tilde{\mathbf{u}}_{t+1}$ based on $\mathbf{u}(\omega^{(0)}), \mathbf{u}(\omega^{(1)}), \dots, \mathbf{u}(\omega^{(t+1)})$ and increment t

3. Stop when relative error

$$\|\mathbf{u}(\boldsymbol{\omega}_{t+1}) - \tilde{\mathbf{u}}_{t}(\boldsymbol{\omega}_{t+1})\|_{M} / \|\mathbf{u}(\boldsymbol{\omega}_{t+1})\|_{M}$$

is small enough

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)].$

$$\underline{\mathbf{U}} = \underline{\mathbf{Q}} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{G} = \underline{R}^H \underline{R}$$

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)].$

$$\underline{\mathbf{U}} = \underline{\mathbf{Q}} \; \underline{\mathbf{R}}$$

the Gramian matrix can be expressed as

$$\underline{\mathbf{G}} = \underline{\mathbf{R}}^{\mathsf{H}}\underline{\mathbf{R}}$$

▶ \underline{G} and \underline{R} have the same right-singular vector (exactly what is needed for MRI)

With the QR-decomposition of the snapshot matrix $\underline{\mathbf{U}} = [\mathbf{u}(\omega_1), \dots, \mathbf{u}(\omega_S)].$

$$\underline{U} = \underline{Q} \; \underline{R}$$

the Gramian matrix can be expressed as

$$\underline{\mathbf{G}} = \underline{\mathbf{R}}^{\mathsf{H}}\underline{\mathbf{R}}$$

- ▶ \underline{G} and \underline{R} have the same right-singular vector (exactly what is needed for MRI)
- ► <u>R</u> can be built sequentially (modified Householder triangularization for gMRI)

Efficient way of storing the surrogate (e_i canonical basis vector)

$$\mathring{\mathbf{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{e}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Efficient way of storing the surrogate $(e_j$ canonical basis vector)

$$\dot{\mathbf{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{e}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

The original surrogate can be recovered with

$$\mathbf{\tilde{u}}(\omega) = \underline{\mathbf{U}}\mathbf{\mathring{u}}(\omega)$$

Neat helper quantity $(\mathbf{r}_j = \underline{\mathbf{R}}[:, S]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{r}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Neat helper quantity $(\mathbf{r}_j = \underline{\mathbf{R}}[:, S]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{r}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Proposed way of approximating relative error in gMRI

$$\frac{\|\textbf{u}(\boldsymbol{\omega}_{t+1}) - \boldsymbol{\tilde{u}}_t(\boldsymbol{\omega}_{t+1})\|_M}{\|\textbf{u}(\boldsymbol{\omega}_{t+1})\|_M} \approx \frac{\|\textbf{r}_{t+1} - \boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}{\|\boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}$$

Neat helper quantity $(\mathbf{r}_j = \underline{\mathbf{R}}[:, S]$ from QR-decomposition)

$$\mathbf{\hat{u}}(\omega) = \sum_{j=1}^{S} \frac{q_j \mathbf{r}_j}{\omega - \omega_j} / \sum_{j=1}^{S} \frac{q_j}{\omega - \omega_j}$$

Proposed way of approximating relative error in gMRI

$$\frac{\|\textbf{u}(\boldsymbol{\omega}_{t+1}) - \boldsymbol{\tilde{u}}_t(\boldsymbol{\omega}_{t+1})\|_M}{\|\textbf{u}(\boldsymbol{\omega}_{t+1})\|_M} \approx \frac{\|\textbf{r}_{t+1} - \boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}{\|\boldsymbol{\hat{u}}_t(\boldsymbol{\omega}_{t+1})\|}$$

The original surrogate can be recovered with

$$\boldsymbol{\tilde{u}}(\omega) = \underline{\boldsymbol{Q}}\boldsymbol{\hat{u}}(\omega)$$

We want to find ω , such that

$$0 = Q(\omega) = \sum_{i=1}^{S} \frac{q_i}{\omega - \omega_i}$$

Equivalent eigenvalue problem [2]

$$\underline{A}w=\omega\underline{B}w$$

with

$$\underline{\mathbf{A}} = \begin{pmatrix} 0 & q_1 & q_2 & \dots & q_S \\ 1 & \omega_1 & & & & \\ 1 & & \omega_2 & & & \\ \vdots & & & \ddots & & \\ 1 & & & & \omega_S \end{pmatrix} \text{ and } \underline{\mathbf{B}} = \begin{pmatrix} 0 & & & & \\ & 1 & & & & \\ & & 1 & & & \\ \vdots & & & \ddots & & \\ & & & & 1 \end{pmatrix}$$

Dual-mode circular waveguide filter

► Speed and efficiency

- ► Speed and efficiency
- ► Finding resonances

- ► Speed and efficiency
- ► Finding resonances
- ► Highly symmetric meshes

- ► Speed and efficiency
- ► Finding resonances
- ► Highly symmetric meshes
- ► DMCWF exact dimensions and reference needed

- Speed and efficiency
- ► Finding resonances
- ► Highly symmetric meshes
- DMCWF exact dimensions and reference needed
- ► Copper AC-wire application

- [1] F. Bonzzoni, D. Pradovera, and M. Ruggeri. Rational-based model order reduction of helmholtz frequency response problems with adaptive finite element snapshots. 2021. doi: 10.48550/arXiv.2112.04302.
- [2] G. Klein. Applications of linear barycentric rational interpolation. https: //core.ac.uk/download/pdf/20659062.pdf, 2012.
- [3] H. P. Langtangen and A. Logg. *Solving PDEs in Python: The FEniCS Tutorial I.* Springer, 2016. ISBN 978-3-319-52461-0. doi: 10.1007/978-3-319-52462-7.
- [4] P. Monk. *Finite Element Methods for Maxwell's Equations*. Oxford Science Publications, 2003. ISBN 0-19-850888-3.
- [5] D. Pradovera and F. Nobile. Frequency-domain non-intrusive greedy model order reduction based on minimal rational approximation. pages 159–167, 2021. doi: 10.1007/978-3-030-84238-3_16.

	eigsh		gMRI	
DOF	$ar{\Delta}$	t	$ar{\Delta}$	t
713	1.950 ×10 ⁻²	$25.9\pm1.1~\mathrm{ms}$	1.950 ×10 ⁻²	$61.9 \pm 3.6 \text{ ms}$
7412	1.826×10^{-3}	$199.0 \pm 9.9 \text{ ms}$	1.827×10^{-3}	$410.0\pm16.8~\text{ms}$
74722	1.817×10^{-4}	$3.5\pm0.1~\mathrm{s}$	1.820×10^{-4}	$5.2\pm0.2\:\mathrm{s}$
745513	1.811×10^{-5}	$75.0\pm1.6~\mathrm{s}$	1.846×10^{-5}	$104.0 \pm 1.1 \text{ s}$

	eigs	gMRI
DOF	t	t
713	$57.8 \pm 2.35 \mathrm{ms}$	$62.8 \pm 0.8 \text{ ms}$
7412	$861.0 \pm 42.4 \text{ ms}$	$498.0 \pm 11.7 \mathrm{ms}$
74722	$21.8\pm1.1~\mathrm{s}$	$5.9 \pm 0.3 \mathrm{s}$

Resonant cavity	Imperfect conductor	Waveguide