Algorithm Problem Solving 17ECSE309

Horner's Rule

USN: 01FE15BCS149

NAME: Rajesh S.

What problem does it solve?

- It helps in solving polynomial equations when the value of the variable is given
- Polynomial equation:
 - $P(X) = c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_1 x + c_0$
 - Cn Constant coefficients
 - X variable
- Example: $P(X) = 2x^3 6x^2 + 2x 1$ where x = 3 must give 5 as the solution

Horner's Rule

- Taking the previous example $P(X) = 2x^3 6x^2 + 2x 1$ where x = 3
- By Horner's rule we can solve it as:
 - Given coefficients: 2, -6, 2, -1 \rightarrow (store in an array p)
 - Store p[0] in a variable result
 - Keeping the 1st element as initial and starting from 2nd element to last element of p

multiply value of x with previous result and add current element i.e. result = result*x + p[i] \rightarrow (where i iterates from 2nd index to last index of p)

•
$$P(3) = (2*3 - 6) \rightarrow (0*3 + 2) \rightarrow (2*3 - 1)$$

= 5

C code – Horner's rule function

```
int horner( int poly[] , int n, int x)
{
   int result = poly[0]; // Initialize result

// Evaluate value of polynomial using Horner's method
   for ( int I = 1; i < n; i++ )
      result = result*x + poly[i];
   return result;
} →[1]</pre>
```

Time complexity and Advantages

- Time Complexity: O(n)
- Problems with normal approach:
 - A naive way to evaluate a polynomial is to one by one evaluate all terms. First calculate x^n , multiply the value with c_n , repeat the same steps for other terms and return the sum. Time complexity of this approach is $O(n^2)$ if we use a simple loop for evaluation of x^n . Time complexity can be improved to O(nLogn) if we use O(Logn) approach for evaluation of x^n .
- Why to go for Horner's rule:
 - As multiplication and addition operations are done only n times we get a time complexity of O(n) instead of O(nlogn) and proves to have better time complexity compared to the improved naïve approach.

Applications

- To solve Newton's polynomial:
 - Example: Use Horner's rule to evaluate the Newton polynomial defined by the points $\mathbf{x} = (0.5, 5.9, 1.3, 4.7, 3.5)^T$ with corresponding coefficients $\mathbf{c} = (0.39, 0.47, 0.63, -0.53, 1.23)^T$ at the points $\mathbf{x} = 3.7$ and $\mathbf{x} = 4.2$. \rightarrow [2]
- Extension of horner's method can be used in synthetic division of polynomials:
 - Example: Use Horner's method to solve $-(x^4 + 4x^3 + 3x^2 4x 4) / (x 1)$ The result comes out to be $x^3 + 5x^2 + 8x + 4 \rightarrow [3]$

References

- [1] Horner's Method Polynomial Evaluation, Link: https://www.geeksforgeeks.org/horners-method-polynomial-evaluation/
- [2] Numerical Analysis, Link: https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/05Interpolation/horner/
- [3] Introduction To Horner's Method Of Synthetic Division / Polynomials / Maths Algebra, Link: https://www.youtube.com/watch?v=3LjFgqDFxHQ