Big Data Computing

Master's Degree in Computer Science 2021-2022

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Recap from Last Lecture(s)

2 unsupervised learning techniques to extract "structural" patterns from raw data

Clustering

- Group together similar objects according to a specific distance function
- Formalized as an NP-hard optimization problem
- K-means and its variants as effective heuristics that work in practice

Principal Component Analysis (PCA)

- Reduce data dimensionality
- Automatically extract features from raw data
- Resort to computing the eigenvectors and eigenvalues of the covariance matrix

SUPERVISED LEARNING

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

Task/Problem: Find the maximum element of a list of 1 million unsorted numbers

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"

• Computers are designed to be **programmed** by humans in order to solve a task/problem quicker and better than humans

• Example

- Task/Problem: Find the maximum element of a list of I million unsorted numbers
- Solution/Algorithm: Scan all the numbers in the set and keep track of the largest found "so far"
- Code/Program: Encode the algorithm above into one specific programming language (e.g., C/C++, Java, Python)

Problem

Problem

Solution/Algorithm explicitly designed by human

Can We Always Do That?

Chihuahua or Muffin?

Chihuahua

Muffin

... And Lots More!

... And Lots More!

... And Lots More!

source: https://www.npr.org/sections/thesalt/2016/03/11/470084215/canine-or-cuisine-this-photo-meme-is-fetching?t=1648392960347

Programming vs. "Training" a Computer

• There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly

24

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

- There exist some problems like the chihuahua vs. muffin above which are too hard to be solved directly
- Hard to design an algorithm which is general enough to capture all the nuances of the problem and gives the correct output for any input

Programming vs. "Training" a Computer

Problem

Eventually, the function *f* is **learned** by the learning algorithm from a (large) set of **labeled data**

Machine Learning

• A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data

Machine Learning

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

Machine Learning

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

Machine Learning

- A broad discipline concerned with how to teach machines to learn (i.e., extract knowledge) from data
- 2 main definitions of it:

"The field of study that gives computers the ability to learn without being explicitly programmed"

Arthur Samuel

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

Tom Mitchell

Machine Learning

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Machine Learning

Unsupervised Learning

Extract patterns from input data without any information on the output (target) variable

Supervised Learning

Approximate a function $f: X \rightarrow Y$ from a set of observed labeled examples $\{(X, y)\}$

Reinforcement Learning

Use a Reward-Feedback loop to continuously learn and update the hidden behavior or pattern

Supervised Learning: What Do We Predict?

Supervised Learning

Supervised Learning: What Do We Predict?

Supervised Learning

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Supervised Learning: What Do We Predict?

Supervised Learning

Regression

The target y we want to predict is a continuous real value

e.g., y = price of a house

Classification

The target y we want to predict is a discrete value

e.g., y = spam/non-spam

The Supervised Learning Pipeline

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e., there is no point in adopting any fancy ML solution if it can be solved "directly"!)

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e., there is no point in adopting any fancy ML solution if it can be solved "directly"!)

I. Data collection: get data from your domain of interest

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e., there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e., there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format
- 3. Model training: "build" one (or more) learning models

O. Be sure your problem needs <u>actually</u> to be tackled using Machine Learning techniques

(i.e., there is no point in adopting any fancy ML solution if it can be solved "directly"!)

- I. Data collection: get data from your domain of interest
- 2. Feature engineering: represent data in a "machine-friendly" format
- 3. Model training: "build" one (or more) learning models
- 4. Model selection/evaluation: pick the best-performing model according to some quality metrics

Data Collection

• Any ML technique needs data to operate on!

Data Collection

- Any ML technique needs data to operate on!
- Supervised Learning requires labeled data which may be even harder to get
 - e.g., emails + spam/non-spam tags

Data Collection

- Any ML technique needs data to operate on!
- Supervised Learning requires labeled data which may be even harder to get
 - e.g., emails + spam/non-spam tags
- Might involve combining multiple and heterogeneous data sources

Domain Objects

Collected data need to be encoded with a machine-readable format

Domain Objects

Collected data need to be encoded with a machine-readable format

Each domain object is translated into a *n*-dimensional vector of features

Collected data need to be encoded with a machine-readable format

Each domain object is translated into a *n*-dimensional vector of features

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"
- Each feature can be either derived locally from an instance
 - e.g., annual_income of a person

- Each feature is a property of an instance of our domain
 - e.g., number_of_bedrooms in the case our domain objects are "houses"
- Each feature can be either derived locally from an instance
 - e.g., annual_income of a person
- Or it can be the result of more complex computation involving the whole data collection
 - e.g., **tf-idf** of a word of a document w.r.t. a corpus

• Traditionally done manually by human experts

03/30/2022

62

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.
- Tedious and time-consuming process

- Traditionally done manually by human experts
- Require in-depth knowledge of the specific domain of application
 - e.g., text, images, finance, etc.
- Tedious and time-consuming process
- Techniques to automatically learn data representation (i.e., features):
 - K-means clustering, PCA, autoencoders (unsupervised)
 - Neural Networks (supervised)

Collected (raw) data is far from being perfect!

Collected (raw) data is far from being perfect!

Many challenges need to be addressed <u>before</u> taking any further step down to the ML pipeline

Collected (raw) data is far from being perfect!

Many challenges need to be addressed <u>before</u> taking any further step down to the ML pipeline

Data Preprocessing

Challenge	Description	
Missing values	A feature value may not be available for one or more instances	

Challenge	Description	Solution
Missing values	A feature value may not be available for one or more instances	Replace missing values with the median (continuous) or the mode (categorical) of the existing values

Challenge	Description	
Sparsity	Most of the instances contain just a small subset of the features	

Challenge	Description	Solution
Sparsity	Most of the instances contain just a small subset of the features	Use "sparse-friendly" data structures (e.g., DOK)

Challenge	Description	
Outliers	One or more instances have out-of-range values for one or more features	

Challenge	Description	Solution
Outliers	One or more instances have out-of-range values for one or more features	Retention vs. Exclusion (trimming or winsorising)

Challenge	Description	
	Feature set contains both numerical and categorical values	

Challenge	Description	Solution
Mix of continuous and discrete values	Feature set contains both numerical and categorical values	Transform categorical features using one-hot encoding

Challenge	Description	
Multiple feature	Feature set contains very wide	
magnitudes	range of values	

Challenge	Description	Solution
Multiple feature	Feature set contains very wide	Standardization (min-max,
magnitudes	range of values	z-scores)

Challenge	Description	
Class imbalance	Instances labeled with the class of interest represents a tiny fraction of the total	

Challenge	Description	Solution
Class imbalance	Instances labeled with the class of interest represents a tiny fraction of the total	Over-/Under-sampling, cost-sensitive learning

Challenge	Description	
Strong multicollinearity	Linear relationship between one or more features	

Challenge	Description	Solution
Strong multicollinearity	Linear relationship between one or more features	Dimensionality reduction (PCA)