NASA Technical Paper 2646

March 1987

Experimental Evaluation of Two Turning Vane Designs for Fan Drive Corner of 0.1-Scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

Donald R. Boldman, Royce D. Moore, and Rickey J. Shyne

(NASA-TP-2646) EXPERIMENTAL EVALUATION OF N87-18576
TWO TURNING VANE CESIGNS FOR FAN DRIVE
CORNER OF 0.1-SCALE MODEL OF NASA LEWIS
HESEARCH CENTER'S PROFOSEL ALTITUDE WIND Unclas
TUNNEL (NASA) 148 p CSCL 14B H1/09 43655

NASA Technical Paper 2646

1987

Experimental Evaluation of Two Turning Vane Designs for Fan Drive Corner of 0.1-Scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

Donald R. Boldman, Royce D. Moore, and Rickey J. Shyne

Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Branch

Summary

Two turning vane designs were experimentally evaluated for corner 2 of a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Corner 2 contained a simulated shaft fairing for a fan drive system to be located downstream of the corner. The corner was tested with a bellmouth inlet followed by a 0.1-scale model of the crossleg diffuser designed to connect corners 1 and 2 of the AWT. Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The A vanes were tested in several arrangements which included the resetting of the vane angle by -5° or the removal of the outer vane. For corner 2, with inlet Mach numbers of 0.12 to 0.29, the lowest totalpressure loss for vane A configurations was obtained at the negative reset angle. The loss coefficient increased slightly with Mach number, ranging from 0.165 to 0.175 with a loss coefficient of 0.170 at the inlet design Mach number of 0.24. Removal of the outer vane did not alter the loss. Vane B loss coefficients were essentially the same as those for the reset vane A configurations. At the inlet design Mach number, the presence of the fan shaft fairing accounted for approximately 14 to 31 percent of the total corner 2 loss depending on the particular vane configuration. The crossleg diffuser loss coefficient was 0.018 at the inlet design Mach number of 0.33.

Introduction

It has been proposed that the inactive Altitude Wind Tunnel (AWT) at the NASA Lewis Research Center be rehabilitated to meet the aeropropulsion needs of the future. The proposed program would extend the capabilities of the tunnel to permit testing at Mach numbers above 0.90. The tunnel would accommodate tests involving fuel-burning engines, adverse weather conditions, and acoustics. The internal components of the tunnel were removed when it was converted to altitude test chambers for space research in the late 1950's and early 1960's. Therefore, the proposed AWT would require all new internal components. In addition to a new test section and heat exchanger, four new sets of turning vanes and a new two-stage fan drive system would be required. A schematic of the proposed tunnel is given in figure 1. Corner 1 (downstream of the test section) would have an engine exhaust removal scoop extending through the center of the turning vanes. The fan drive shaft fairing would pass through the corner 2 vanes. Corner 3 and 4 turning vanes would be clean (i.e., no components would pass through the corners). A complete description of the tunnel components is given in references 1 to 3.

Because of the magnitude of the proposed rehabilitation of the AWT, a modeling effort was undertaken to ensure the technical soundness of the new component designs. A 0.1-scale was chosen as the common size for the various components, in part because it represented the upper limit of the Lewis exhauster flow capabilities. After the individual components are tested, they can be assembled as a complete loop to evaluate the interactions of the various components. The results from the corner 1 turning vane investigation were presented in references 4 to 6.

This report presents the results of tests on two turning vane designs proposed for corner 2. The configuration consisted of a crossleg diffuser, the corner turning vanes, the simulated fan drive shaft fairing, and the fan inlet guide vanes (IGV's). Vane A was a controlled-diffusion airfoil design, and vane B was a circular-arc airfoil design. For vane A two vane setting angles were evaluated along with the effects of removing the outer vane. Data were obtained over a range of corner Mach numbers from 0.12 to 0.29, which corresponded to test section Mach numbers of approximately 0.30 to 0.92, respectively. The total-pressure data at the diffuser inlet, at the diffuser exit, at the IGV entrance plane (downstream of the vanes), and at a position downstream of the IGV's were obtained from rakes. Axial wall static-pressure and vane surface-pressure measurements were also obtained. The pressure data are presented in tabular form for all the configurations tested.

Apparatus and Procedure

The corner 2 vane sets were tested with the simulated fan drive shaft fairing in the configuration shown in figure 2. A schematic diagram of the test rig is shown in figure 3. Room air entered the bellmouth and passed through a honeycomb flow straightener and two 1-diameter-long (D = 82.296 cm) spool pieces before reaching the crossleg diffuser. The air was then turned by the corner vanes whereupon it flowed through the variable IGV assembly and three spool pieces before exhausting through a choked-plate assembly to the central altitude exhauster system.

The choked-plate assembly was used for flow control. It included six removable plates and one fixed plate arranged

1

in the form of a converging nozzle. This assembly of plates provided seven specific flow rates between 35.38 and 86.65 kg/sec. The flow straightener was an aluminum honeycomb with a hexagonal cell pattern. The distance across the flats of the honeycomb was 0.95 cm and the length of the cells was 7.08 cm.

Crossleg Diffuser

The 0.1-scale-model crossleg diffuser was designed to connect corner 1 and corner 2, thus forming the high-speed crossleg of the wind tunnel (fig. 1). The diffuser had an inlet diameter of 82.296 cm and an exit diameter of 94.74 cm with a conical half-angle of 3.25° (fig. 3). Two rake instrumentation stations (inlet and exit) in the diffuser provided the data to determine the total-pressure loss for this component and to establish the inlet conditions for the corner 2 vanes.

Turning Vanes

Two sets of turning vanes were designed for corner 2. The vanes were all of the same height and were mounted in the rectangular corner vane holder as shown in figure 4. There was a flat length of 10.67 cm in the turn for mounting the vanes (fig. 3). The flat section formed a 45° angle with both the inlet corner and exit corner pieces. The major axis of the elliptical corner was 133.99 cm, and the minor axis was 94.74 cm. A foam rubber filler material was used between the vanes to form the elliptical internal flow path. Foam rubber was also used as a filler between the upstream and downstream sections of the fan drive shaft fairing. With the foam between the vanes the vane setting angles could be changed manually without disassembling the corner. Although not included in the present investigation, the vane spacing could be varied also. Both the vane setting angle and spacing variations were individually set for each vane. The fan shaft fairing extended from the outer wall of the corner inlet piece through the turning vanes to the fan as shown in figure 5. The geometry of the fairing is given in figure 6. The shaft fairing extended across the inlet flow, whereas for corner 1 the scoop was aligned with the inlet flow.

Vane A.—Vane A (fig. 7) was a controlled-diffusion airfoil designed by the inverse method of Sanz (ref. 7). An advantage of the inverse design code is that the surface velocity distribution is a direct input. This allows control of the velocity diffusion to eliminate boundary-layer separation. The calculation method accounts for the boundary-layer displacement thickness and adjusts the blade shape to provide manufacturing coordinates as output. A schematic of the vanes along the major axis is given in figure 8. The manufacturing coordinates for these vanes, given in table I, were nearly the same as the coordinates used for corner 1 (ref. 4). The slight differences between vane A coordinates for corners 1 and 2 were the result of slightly different design Mach numbers. The 23 equally spaced vanes had a solidity (aerochord/spacing) of 1.92. The vane aerochord was 10.67 cm. The leading edge

of the first vane was 5.987 cm from the outer wall, and the last vane was 5.565 cm from the inner wall. The sketch in figure 8 also shows by dashed lines where the next vanes would have been located with respect to the walls. The orientation of the vane setting angle is shown in the small illustration.

During the testing of vane A, the setting angle of the vanes and the exit angle of the IGV's were changed. The outer vane was also removed for some tests. These changes are listed in table II.

Vane B.—Vane B (fig. 9) was a circular-arc type of vane and was designed by McFarland by the method described in reference 8. McFarland's code solves for a velocity distribution by using a blade-to-blade panel method. The blade coordinates are those used for corner 1 (ref. 4). The vane aerochord was 10.67 cm. These vanes had a solidity of 2.290, which resulted in 28 vanes rather than the 23 vanes used in the vane A configuration. A schematic showing vane B along the major axis is presented in figure 10. The figure also shows by dashed lines where the next vanes would have been positioned. The first vane leading edge was 4.679 cm from the outer corner; the last vane leading edge was 3.576 cm from the inner corner. Vane B was tested only at its design condition. The vane manufacturing coordinates are given in table III.

Inlet Guide Vanes

Twelve IGV's were located downstream of corner 2 as shown in figure 3. These guide vanes, which were uniformly spaced around the circumference, had a chord of 12.35 cm and a maximum thickness equal to 10 percent of the chord. Each guide vane was hinged at the midchord position as shown in figure 11. The front portion of the IGV's was fixed. Adjustments in the angle of the downstream portion of the guide vanes were made in order to change the air inlet angle in the plane where the entrance to the two-stage fan would be located in the AWT. A modest amount of twist was incorporated in order to introduce swirl in the hub region. The swirl, indicated by the design exit flow angle in figure 11(b), ranged from 8.9° at the hub section to 0° at the tip section. The major portion of the test program was performed with the exit angle of the IGV's set at 0°; however, in a limited number of tests the IGV's were set at $+10^{\circ}$ and -10° (table II).

Instrumentation

The airflow was determined from measurements on the choked-plate nozzle located downstream of the vanes (fig. 3). The choked-plate assembly was used to set seven specific flows. To increase the flow, the last plate was removed, and the preceding plate kept in place.

To determine the overall performance of the diffuser, diametrical rakes (fig. 12) were used at the diffuser upstream and downstream stations (fig. 13). These rakes could be moved to four positions around the circumference (0°, 315°, 270°, and 225°-clockwise looking downstream). The rakes

contained 16 total-pressure elements and 6 total-temperature elements. Boundary-layer rakes (fig. 14) were also installed at the upstream and downstream stations. Outer wall static-pressure taps were located at approximately the same axial planes as the rakes. The overall performance of the corner was determined from the diffuser exit diametrical rakes and total-pressure rakes mounted on the IGV leading edge (fig. 15). Each of the 12 IGV's had a 5-element total-pressure rake. Four radial rakes (fig. 16) were located downstream of the IGV's. These rakes could be moved to three circumferential positions.

Other wall static-pressure taps were installed in the spool pieces, diffuser, shaft fairing, and corner. The axial and circumferential locations of the taps are given in figure 13.

Vane performance was evaluated from surface static pressures obtained from taps on adjacent vanes at four sections (fig. 17). Two of the sections were along the major axis near the inside and outside corners (A and D in fig. 17); one was midway between the fairing and the bottom of the middle vanes (C). The fourth section (B) was located at 22 percent of the passage height from the top of the middle vanes.

Flow conditions were visually indicated by tufts which were taped to the walls of the diffuser and corner, as well as the fan drive shaft fairing.

All rake total-pressure measurements and static-pressure measurements were recorded by individual transducers which were calibrated just before each reading. The temperatures were determined from Chromel-constantan thermocouples by using a floating-point temperature reference.

Test Procedure

For a given vane configuration, the desired airflow was set by adjusting the choked-plate assembly. The diffuser upstream diametrical rake was positioned in the instrument ring at either 0° or 225° (clockwise looking downstream). The inlet boundary-layer rakes were positioned 90° from the large upstream rake. The downstream rake was positioned at either 225° or 0° (opposite the upstream rake position). The diametrical and boundary-layer rakes were rotated to four positions to provide radial distributions of total pressure at eight equally spaced circumferential positions. The outlet boundarylayer rakes were also positioned 90° from the large downstream rake. The four IGV exit rakes were positioned 90° apart and rotated to three positions, thus providing radial distributions of total pressure at 12 equally spaced circumferential positions. At each circumferential position the rakes were located midway in the gap between adjacent vanes. Data were recorded at the particular rake position. The facility was then shut down, and all of the diametrical and boundarylayer rakes were indexed manually 45°. The IGV exit rakes were indexed manually 30°. The flow rate was reestablished and data were then recorded at the next rake position. This procedure was repeated until data were recorded at the four diametrical and boundary-layer rake positions and the three IGV rake positions. The upstream and downstream rakes were rotated in opposite directions to minimize the effect of the upstream rake wake on the downstream pressure measurement. All of the static pressures, as well as the IGV leading-edge total pressures, were recorded at each rake position.

Calculation Procedure

The IGV leading-edge total pressures and all static pressures recorded at the four rake positions were arithmetically averaged and corrected to standard-day conditions at the IGV inlet plane to obtain the values presented in this report.

The total-pressure measurements from the rakes were arranged for a given point to form arrays of total pressure at a given circumferential location and given percent span (from the outer wall) locations. The data from the boundary-layer rakes were rearranged in a similar manner. The total pressures from the rakes were each area averaged to obtain the overall values. The boundary-layer-rake data were not included in the averages.

The airflow was calculated from Fliegner's formula (ref. 9) for a choked flow by using measured values of nozzle total pressure and total temperature. This calculated airflow agreed within 2 percent of the mass-averaged airflow calculated from limited cases in which very detailed flow surveys were made. The velocity head and the average inlet and exit Mach numbers were based on the calculated airflow. Total pressure, static pressure, total temperature, velocity head, and airflow were all corrected to standard-day conditions based on the IGV inlet condition.

The symbols and equations used in the calculations are presented in appendixes A and B, respectively.

Results and Discussion

The results are presented in three main sections: overall total-pressure losses, wall static-pressure distributions, and vane-surface Mach number distributions. The results for all four of the vane A configurations and the vane B configuration are presented in the tables. These data include the results obtained for IGV exit angles of 0° , $+10^{\circ}$, and -10° . Note that the IGV setting angles had a negligible effect on the IGV rake data since the rakes were fixed circumferentially between the IGV's. Complete wake surveys behind the IGV's were not obtained as part of the present test program. Since the IGV exit angle parameter had such a small effect on the results, the data plots presented herein represent only the results at an IGV exit setting angle of 0°. Also, since the volume of data for all vane configurations and related parameters is extensive, these data plots will focus primarily on the results for vanes A and B at design conditions and for an optimized vane A configuration (vane A4). The diffuser and corner 2 loss coefficients will be shown for all corner 2 vane designs.

The overall performance for corner 2, based on the wake

measurements, is summarized in table IV. The total-pressure data are presented in tables V and VI. The wall axial static-pressure data are presented in tables VII and VIII. The vane inlet and exit circumferential distributions of static pressure are presented in table IX. The vane-surface static-pressure data are presented in table X.

In table IV a slightly negative pressure loss (and loss coefficient) are shown for the IGV's. These negative values are, in part, attributable to the placement of the downstream pressure rakes. Since the downstream (free stream) rakes were offset 15° from the inlet leading-edge rakes, they did not sense the large pressure drop around 90° in the tip region (inside corner). Consequently, the integrated value of total pressure downstream of the IGV's was slightly higher than the integrated value at the inlet.

In this report the design Mach numbers for the diffuser inlet and corner 2 inlet are given as 0.33 and 0.24, respectively. In related papers (refs. 4 to 6) the indicated design Mach numbers for these components may differ slightly from the above values. These design values can vary depending on the particular loss models used in the design code and on the amount of flow removed from the test section with the plenum evacuation system. Therefore, the design Mach numbers for the crossleg diffuser and corner 2 inlet should be considered nominal values consistent with a test section Mach number of 0.8.

Overall Performance

The overall total-pressure loss coefficients for the diffuser and for corner 2 are presented in figure 18. Data for each component are presented as functions of the inlet Mach numbers. The loss coefficient for these components was based on diametrical rake measurements at stations 34 and 47 for the diffuser and at stations 47 and 79 for corner 2 (fig. 13). The data are presented for all of the corner 2 vane configurations. The loss coefficients given below are based on a least-squares fit of the data.

The diffuser loss coefficient increased only slightly with increasing Mach number, ranging from 0.013 at Mach 0.16 to 0.020 at Mach 0.40 as shown in figure 18(a). The diffuser loss was also independent of the vane configuration in corner 2. This latter result was anticipated because the diffuser was located upstream of corner 2. At the diffuser inlet design Mach number of 0.33, the loss coefficient was only 0.018. A low value of total-pressure loss coefficient was obtained because the flow in the diffuser remained attached, and the loss was due only to skin friction.

As in the diffuser, the loss coefficients for corner 2 with the various vane configurations (table II) increased slightly with increasing Mach number (fig. 18(b)). Two distinct loss levels were evident, with higher losses associated with vanes A and A3. The loss coefficient increased from 0.195 at Mach 0.12 to 0.215 at Mach 0.29. The loss coefficient for vanes A2, A4, and B increased from about 0.165 to 0.175

over the same Mach number range. At the corner 2 inlet design Mach number of 0.24 (corresponding to a diffuser inlet Mach number of 0.33 in fig. 18), the loss coefficients were about 0.210 for vanes A and A3 and 0.170 for vanes A2, A4, and B. The highest loss coefficients were associated with the vane A and A3 configurations in which the vanes were set at the design value of setting angle. Resetting the vanes to a negative incidence angle of -5° (turning the exit flow toward the outside of corner 2, (vanes A2 and A4)) achieved a reduction in total-pressure loss coefficient of approximately 20 percent. This corresponds to a reduction in the loss of about 4 percent of the corner 2 inlet dynamic pressure. Similar reductions in loss coefficient were observed for the vane A configurations which were reset by the same amount and were tested in the companion study of corner 1 of the AWT 0.1-scale model (refs. 4 and 5). As in these previous experiments, the vane B configuration was tested only at its design condition because the data, coupled with visual observations of tufts, indicated that flow separation did not occur in the outside region of the corner.

In the lower loss vane A configurations (vanes A2 and A4), the vanes were reset -5° ; in the higher loss vane A configurations (vanes A and A2), the vanes were set at the design angle. The outer vane was removed in configurations A2 and A4.

Analysis of the vane A results of corner 1 (ref. 5) (using the two-dimensional inviscid analysis of ref. 8) suggested that removing the outer vane would improve performance. Therefore, when extensive separation was observed in the outside corner region with vane A, the outer vane in corner 2 was removed.

Examination of figure 18(b) clearly reveals that, for the vane A configurations, the strongest factor contributing to the reduction in the corner 2 loss was associated with the change in setting angle and that removal of the outer vane (configurations A2 and A4) had a negligible effect. The corner 2 losses with the vane B configuration were essentially the same as the losses associated with vanes A2 and A4.

An estimate of the effect of the shaft fairing on the corner loss can be obtained if the previously reported loss data for corner 1 (which did not have a centerbody (ref. 4)) are assumed to be applicable to the corner 2 configurations. This assumption should be valid since the geometries and test conditions for the two corners were nearly the same. The appropriate corner 1 loss data were interpolated to obtain loss coefficients for the corner 2 inlet Mach number of 0.24 in the absence of a centerbody. A comparison of the measured loss coefficients for corner 2 with the interpolated loss coefficients of corner 1 indicates that the centerbody in corner 2 accounts for approximately 21 percent of the total loss with vane A, 31 percent with vane A2, and 14 percent with vane B. A similar comparison could not be made for vanes A3 and A4 since comparable configurations were not tested in the experiment of reference 4. The fraction of total loss due to the centerbody with vane A2 is consistent with the fraction of total loss for corner 1 (vane A10) caused by an exhaust scoop that passed through the corner.

The radial distributions of diffuser inlet and exit total pressure are presented in figure 19 for vanes A, A4, and B for the design Mach number. Although only the data from the circumferential location of 0° are shown, these profiles are typical of all of the other seven circumferential locations. The similarity of the circumferential profiles in the diffuser was the result of a distortion-free inlet flow provided by the upstream experimental arrangement shown in figure 3. The results in figure 19 indicate that the diffuser inlet boundary-layer thickness was nominally 10 percent of the radius. Slightly thicker boundary layers were evident at the diffuser exit station.

Corner 2 exit total-pressure profiles for vane configurations A, A4 and B are presented in figure 20 for the 90° and 270° circumferential positions corresponding to the inside and outside corner regions, respectively. The profiles in the inside corner region are more peaked, with the greatest loss in total pressure occurring near the inside corner (fig. 20(a)). This loss becomes more evident upon comparing the profiles with the inlet total-pressure profile. The peak values of total pressure approach the free-stream value of inlet total pressure in the region of approximately 20 to 50 percent of span. The influence of the centerbody is apparent by the gradual decrease in total pressure in the region beyond 50 percent of the span.

In the outside corner (fig. 20(b)) the flow appears to be more uniformly mixed as evidenced by the symmetry and uniformity of the profiles over much of the span. A reduction in total pressure from the inlet free-stream value is apparent across the entire span. Again, the influence of the centerbody is evidenced by the reduction in total pressure at distances greater than approximately 70 percent of the span. These profiles provide some insight into the nature of the distortion pattern downstream of the major axis of corner 2. This distorted flow passes through the IGV's and would be present at the face of the AWT fan.

To give a better overall picture of the distortion at the inlet and exit of corner 2 (IGV inlet plane), computer-generated contours of the total pressures are in figure 21 for vanes A, A4, and B operating at design conditions. Regions of low contour density and high total pressure represent low loss regions. For example, the diffuser exit profiles for all vane configurations (figs. 21(a), 21(c), and 21(e)) reveal a high density of contours in the wall region, and thus depict the loss in total pressure in the boundary layer. The innermost contour represents the highest pressure, which is constant in the free stream.

The contours at the corner 2 exit are more complicated. A general symmetry about the horizontal axis is apparent, and thus indicates that the upper half of the flow field behaves much like the lower half. However, the contours of exit total pressure for all three vane configurations are asymmetric to various degrees about the vertical centerline. Regions of significant total-pressure gradient exist at the inside corner (90°

circumferential location) for all three vane configurations. Also, for all configurations a moderate total-pressure gradient is apparent at 90° and 270° because of the presence of the shaft fairing. Regions of pressure gradient can be observed at the 225° and 315° positions with slightly steeper gradients associated with the A vanes (figs. 21(b) and 21(d)). Vane B produced the largest region of uniform exit flow; however, this extensive region of uniform core flow was at a slightly lower total pressure than much of the core flow for vane A4 (figs. 21(d) and 21(f)). This lower pressure is possibly the result of a higher two-dimensional loss associated with the B vanes, as suggested in references 5 and 6. The fact that the overall corner losses were the same for vanes A4 and B can be qualitatively rationalized on the basis of a tradeoff between greater circumferential uniformity at a slightly reduced total pressure (vane B) and better two-dimensional pressure recovery over a smaller region of the core flow (vane A4).

Static Pressure Distribution

The axial wall static-pressure distributions upstream and downstream of corner 2 are shown in figure 22. The distributions are presented for the 90° and 270° positions and for vanes A, A4, and B. The static pressures in the constant area duct and diffuser are quite similar, with a slight flow acceleration (reduction in static pressure because of boundary layer growth) in the straight duct and deceleration (increase in static pressure) in the diffuser (fig. 22(a)). The static pressures at the 90° and 270° positions in the diffuser were nearly equal, and thus implied circumferential uniformity. The total pressures at the diffuser exit were also uniform as shown previously in figure 19 and in the supplemental data contained in the tables. The combined uniformity of static and total pressures indicated a distortion-free flow at the inlet to corner 2.

The limited number of pressure taps downstream of corner 2 reveal a nearly constant static pressure along the outside wall $(270^{\circ} \text{ position})$ as shown in figure 22(b). The static pressures at the 90° position were lower than corresponding pressures at the 270° position at Z = 19.6 cm. All of these data reveal only a weak dependence on vane configuration.

The wall static pressure distributions at the 270° position in corner 2 are presented in figure 23 for vanes A, A4, and B. The fan shaft fairing caused an increase in static pressure in the region 0 < X < 40 cm. Closer to the fairing the static pressures approach the stagnation pressure. At X = 85 cm the static pressure dropped again as the flow accelerated over the fairing and continued to decrease through the vane row downstream to Z = -71 cm. Farther downstream, with vanes A4 and B, the flow in the outside corner continued to accelerate; however, a pressure rise was observed with the vane A configuration. This pressure rise, or diffusion of the flow, was attributed to the converging-diverging nozzle formed between the outside corner and the first vane. Similar results were observed for vane A in corner 1 (ref. 4). In the corner 1

study tufts in the wall indicated that the flow in the outside corner was separated for the vane A configuration.

The circumferential distribution of wall static-pressure coefficient 5.34 cm upstream and downstream of the vane row is presented in figure 24 for vanes A, A4, and B. Higher values of pressure coefficient are indicative of lower values of static pressure. In the plane of the inlet row of static taps, the pressure coefficient tends to be somewhat more uniform, with a nominal value of 1.0 (i.e., the difference between the stagnation and wall static pressures is about equal to the dynamic head at the entrance to corner 2). The depression in the inlet static-pressure coefficient at the 270° position is attributed to separation of the flow at the downstream edge of the shaft fairing. The separation was indicated by tufts attached to the surface of the fairing.

Circumferential distributions of wall static-pressure coefficient derived from the exit row of pressure tap data were less uniform than the distributions described above for the inlet plane (fig. 24). The exit pressure distributions were nearly the same around the inside half of the corner (0° to 180°) for the three vane configurations. Differences can be noted in the outside half of the corner (180° to 360°). The outside corner static pressure was higher for vane A than for vanes A4 and B, which indicates a lower static pressure for vane A. As shown previously in figure 23, these low static pressures at the 270° position were followed by a rapid rise in pressure as the flow progressed downstream and ultimately resulted in separation.

The axial distribution of static pressure on the shaft fairing is shown in figure 25 for vane A4. In the region Z < -40 cm, low static pressures were observed at circumferential positions of 0° and 180°, a result of an acceleration of the flow in the maximum thickness portion of the fairing. High static pressures were evident at the 90° position as a result of flow stagnation at the leading edge of the fairing. An intermediate level of static pressure, approximately equal to the free-stream static pressure, was observed at the trailing edge of the fairing (270° position). Downstream of the vane row, the static pressures on the fairing continued to drop over most of the region which indicated acceleration. The acceleration of the flow was caused by an increase in blockage as the cross section of the fairing changed from biconvex to circular. (Refer to fig. 6.) The decelerating flow at the 0° and 180° positions immediately downstream of the vane row is possibly the result of threedimensional effects of the flow in the corner region formed by the vane downstream suction surface and the fairing. Pressures at the top and bottom of the fairing were essentially equal, as were the pressures at the edges of the fairing.

Vane Surface Mach Number Distribution

The design surface Mach number distributions for vanes A and B are compared to experimental values at section C in figure 26. The design distributions were adjusted to match the experimental corner 2 inlet Mach number of 0.24, which was lower than the values used in the design calculations. (Design

calculations were performed at Mach numbers of 0.265 and 0.350 for vanes A and B, respectively.) This adjustment was made by assuming the design value of the pressure coefficient at a given point on the vane was invariant with the inlet Mach number. Data from the vane passage at section C (lower middle of the vane set) were chosen for this comparison because the flow in this region was expected to be representative of the two-dimensional flow assumed in the design procedure. In general, the design and experimental distributions of Mach number were in good agreement except near the trailing edge of vane B where separation occurred. This separation is evidenced by the drop in experimental Mach number relative to the design distribution which commences at approximately the 85 percent aerochord position (fig. 26(b)).

Vane A experimental and design Mach number distributions for vane sections A to D are shown in figure 27. As expected, the distributions at sections B and C were nearly the same and in good agreement with design, since the flow in these regions was most representative of two-dimensional flow. The greatest deviation from design was observed at sections A and D which were near the outside and inside corners, respectively. The experimental surface Mach numbers near the inside corner (section D) were appreciably lower than design values over most of the airfoil; whereas, near the outside corner (section A) the experimental Mach numbers were higher than design values. The higher observed Mach numbers near the outside corner imply a higher than design value of incidence angle. Conversely, near the inside corner, the flow incidence angle may be negative relative to the design value.

A comparison of experimental and design surface Mach number distributions at sections A to D are presented in figure 28 for vane A4 (vane A reset -5° and the outside vane removed). At sections B and C (two-dimensional flow) the most pronounced effect of resetting the vanes was near the leading edge on the pressure surface where higher Mach numbers can be noted relative to the vane A results. (Compare with fig. 27(b) and (c).) In the outside corner (section A) the peak suction-surface Mach number was reduced by the combined effects of a reset angle and the removal of the outer vane; whereas, at the inside corner (section D) the peak suction surface Mach number was increased. Again, the principal benefits of modifying the setting angle for the vane A configuration were a better uniformity in the Mach number distributions across the vane row and a reduced tendency for flow separation in the outside corner. The exit Mach numbers at the four sections were essentially the same as with vane A4 except that vane A showed variation, especially near the outside corner. The benefits of resetting the angle were reduced total-pressure loss for the corner and better corner 2 exit flow uniformity. Recall that the vane A2 configuration also provided the same low loss levels observed for vanes A4 and B. The only difference between configurations A2 and A4 was that in the latter configuration the outside vane was removed.

In figure 29 a corresponding comparison of Mach number distributions at the four sections was made for vane B. The

experimental distributions at all four sections were in good agreement with the design over much of the airfoil; however, on the suction surface downstream of the 85 percent aerochord point, separation is apparent. This separation is evidenced by the drop in experimental Mach number relative to the design distribution. The separation occurred at all four sections; moreover, the extent of the separated flow was nearly the same at the four sections, and the Mach number distributions were quite similar. This result tends to support the data shown in figure 21(c) which indicates that the exit flow was relatively uniform in the annular region of the corner 2 exit plane. This exit flow uniformity appears to be a direct result of the similarity in vane performance across the vane row. Although some separation was apparent, the vanes performed similarly across the entire corner.

Summary of Results

Two turning vane designs were experimentally evaluated for corner 2 of a 0.1-scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Corner 2 contained a simulated shaft fairing for a fan drive system to be located just downstream of the corner. The corner was tested with a bellmouth inlet followed by a 0.1-scale model of the crossleg diffuser designed to connect corners 1 and 2 of the AWT. Vane A was a controlled-diffusion airfoil design shape; vane B was a circular-arc airfoil shape. Vane A was tested in four configurations: (1) all vanes set at the design angle (vane A); (2) all vanes reset -5° (vane A2); (3) all vanes set at design conditions with the outside vane removed (vane A3); and (4) all vanes reset -5° with the outside vane removed (vane A4). Vane B was tested only at the design setting angle.

The diffuser was tested over a range of inlet Mach numbers from 0.16 to 0.40 and the turning vanes over a range of Mach

numbers from 0.12 to 0.29 which corresponded to test section Mach numbers of about 0.30 to 0.92, respectively. The following principal results were obtained:

- 1. Over the above range of Mach numbers, the lowest corner 2 total-pressure loss coefficients were obtained with vanes A2, A4, and B. All three configurations yielded loss coefficients based on the total-pressure rake data of 0.165 to 0.175, with the loss increasing slightly with increasing Mach number. At the design corner 2 inlet Mach number of 0.24, the loss coefficient for the three configurations was about 0.170. The lowest loss levels for the vane A configurations were obtained after the vanes were reset -5° (direction of negative incidence). The corresponding loss levels for the A vanes operating at the design setting angle were higher (0.195 to 0.215) with a loss coefficient of about 0.210 at the design Mach number.
- 2. The reduction in corner total-pressure loss associated with the reset A vanes was attributed primarily to a reduction in endwall losses. At the reset condition the exit flow was turned toward the outside corner. Removing the outer A vane had a negligible effect on the overall corner 2 loss coefficient.
- 3. Diffuser-loss coefficients increased only slightly with increasing Mach number. The diffuser-loss coefficient was 0.018 at the diffuser inlet design Mach number of 0.33.
- 4. The presence of the fan shaft fairing accounted for approximately 14 to 31 percent of the total corner 2 loss, depending on the particular vane configuration tested.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, October 27, 1986

Appendix A Symbols

\boldsymbol{A}	area, cm²	$P_{t,ex}$	area-averaged, standard-day-corrected exit total pressure, N/cm ²
A_{ex}	area at corner 1 exit, cm ²	_	•
ΔA_{ex}	incremental area for rake element at exit, cm ²	$P_{t,i}$	individual rake element standard-day-corrected inlet
A_{in}	area at corner 1 inlet, cm ²		total pressure, N/cm ²
ΔA_{in}	incremental area for rake elements at inlet, cm ²	$P_{t,in}$	area-averaged, standard-day-corrected inlet total pressure, N/cm ²
A_s	cross-sectional area of scoop at corner 1 inlet, cm ²	q_{in}	standard-day-corrected velocity head, N/cm ²
C	vane chord, cm	R	gas constant
D	diameter, cm		
d_n	nozzle plate diameter, cm	r	radius, cm
M	Mach number	T_n	standard-day-corrected nozzle total temperature, K
		T_t	standard-day-corrected total temperature, K
M_{in}	Mach number at corner 1 inlet	W	airflow, kg/sec
M_{v}	Mach number on vane surface based on inlet total pressure and vane surface static pressure	X	axial distance from diffuser inlet, cm
P_n	standard-day-corrected nozzle total pressure, N/cm ²	XC/C	fraction of vane chord in chordwise direction
$P_{s,in}$	standard-day-corrected static pressure at corner 1,	Y	axial distance from corner 2 inlet, cm
- s,in	N/cm ²	Z	axial distance from corner 2 exit, cm
$P_{s,v}$	standard-day-corrected vane surface static pressure at	γ	ratio of specific heats, 1.40
-,.	V location, N/cm ²	θ	circumferential location from top dead center
$P_{s,x}$	standard-day-corrected wall static pressure at X location, N/cm^2		(clockwise looking downstream), deg
$P_{t,e}$	individual rake element standard-day-corrected exit total pressure, N/cm^2		

Appendix B Equations

(B2)

Airflow-

$$W = 0.04044 \frac{P_n}{T_n} \left(\frac{\pi}{4} d_n^2 \right)$$
 (B1)

$$\frac{P_{t,in} - P_{s,x}}{q_{in}} \tag{B5}$$

Overall Inlet Total Pressure—

Vane Surface Static Pressure Coefficient-

$$P_{t,in} = \frac{\sum_{i=1}^{64} \Delta A_{in} P_{t,i}}{A_{in}}$$

$$\frac{P_{s,\nu} - P_{s,in}}{q_{in}} \tag{B6}$$

Overall Exit Total Pressure—

Mach Number—

$$P_{t,ex} = \frac{\sum_{i=1}^{64} \Delta A_{ex} P_{t,i}}{A_{ex}}$$
 (B3)

$$\frac{M}{(1+0.2\ M^2)^3} = \frac{W}{(A-A_s)P_t} \sqrt{\frac{RT_t}{\gamma}}$$
 (B7)

Velocity Head-

$$q_{in} = 0.7 P_{s,in}(M_{in})^2$$
 (B8)

Loss Coefficient-

Average Inlet Static Pressure—

$$\frac{P_{t,in} - P_{t,ex}}{q_{in}}$$
 (B4)
$$P_{s,in} = P_{t,in} \left(1 + \frac{M_{in}^2}{5} \right)^{-3.5}$$

(B9)

References

- Chamberlin, R.: The Altitude Wind Tunnel (AWT)—A Unique Facility for Propulsion System and Adverse Weather Testing. AIAA Paper 85-0314, Jan. 1985.
- Blaha, B.J.; and Shaw, R.J.: The NASA Altitude Wind Tunnel: Its Role in Advanced Icing Research and Development. AIAA Paper 85-0090, Jan. 1985.
- Abbott, J.M., et al.: Analytical and Physical Modeling Program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT). AIAA Paper 85-0379, Jan. 1985.
- Moore, Royce D.; Boldman, Donald R.; and Shyne, Rickey J.: Experimental Evaluation of Two Turning Vane Designs for High-Speed Corner of 0.1-Scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel. NASA TP-2570, 1986.
- Gelder, T.F., et al.: Wind Tunnel Turning Vanes of Modern Design. AIAA Paper 86-0044, Jan. 1986.
- Ciepluch, C.C., et al.: Progress in the Lewis Research Center Altitude Wind Tunnel (AWT) Modeling Program. AIAA Paper 86-0757, Mar. 1986.
- Sanz, J.M.: Improved Design of Subcritical and Supercritical Cascades Using Complex Characteristics and Boundary Layer Correction. NASA CR-168166, 1983.
- McFarland, E.R.: A Rapid Blade-to-Blade Solution for Use in Turbomachinery Design, J. Eng. Gas Turbines Power, vol. 106, no. 2, Apr. 1984, pp. 376-382.
- Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. 1, Ronald Press Co., 1953, p. 85.

TABLE I.-MANUFACTURING COORDINATES FOR VANE A

[Coordinates are in centimeters.]

	VX	VY		VX	VY		VX	VY
1	9.2294	-5.2375	45	0.6307	-2.1593	89	3.4733	-0.0321
2	9.2258	-5.2337	46	.4206	-2.2275	90	3.6164	0685
3	9.2009	-5.2078	47	.2217	-2.2957	91	3.7587	1104
4	9.1556	-5.1602	48	.0355	-2.3634	92	3.9000	1581
5	9.0928	-5.0941	49	1359	-2.4300	93	4.0406	2118
6	9.0150	-5.0123	50	2943	-2.4850	94	4.1812	2709
7	8.9243	-4.9172	51	4361	-2.5304	95	4.3212	3351
8	8.8223	-4.8110	52	5588	-2.5630	96	4.4607	4045
9	8.7101	-4.6955	53	6596	-2.5760	97	4.5998	4788
10	8.5886	-4.5722	54	7408	-2.5628	98	4.7383	5582
11	8.4584	-4.4425	55	8038	-2.5168	99	4.8764	6424
12	8.3199	-4.3077	56	8441	-2.4525	100	5.1042	7315
13	8.1735	-4.1689	57	8658	-2.3549	101	5.1517	8255
14	8.0192	-4.0271	58	8657	-2.2351	102	5.2890	9243
15	7.8573	-3.8833	59	8390	-2.0964	103	5.4264	-1.0279
16	7.6878	-3.7384	60	7845	-1.9425	104	5.5640	-1.1365
17	7.5107	-3.5934	61	7024	-1.7780	105	5.7021	-1.2501
18	7.3261	-3.4491	62	5961	-1.6076	106	5.8410	-1.3689
19	7.1340	-3.3062	63	4701	-1.4366	107	5.9810	-1.4931
20	6.9344	-3.1657	64	3332	-1.2728	108	6.1225	-1.6231
21	6.7275	-3.0281	65	1833	-1.1145	109	6.2661	-1.7591
22	6.5134	-2.8944	66	0273	-0.9670	110	6.4123	-1.9015
23	6.2921	-2.7652	67	.1322	8314	111	6.5618	-2.0509
24	6.0638	-2.6412	68	.2930	7077	112	6.7151	-2.2079
25	5.8286	-2.5232	69	.4539	5958	113	6.8731	-2.3730
26	5.5868	-2.4120	70	.6139	4950	114	7.0366	-2.5470
27	5.3388	-2.3086	71	.7728	4047	115	7.2063	-2.7304
28	5.0859	-2.2136	72	.9305	3241	116	7.3829	-2.9235
29	4.8278	-2.1259	73	1.0868	2524	117	7.5668	-3.1265
30	4.5635	-2.0469	74	1.2419	1890	118	7.7579	-3.3388
31	4.2948	-1.9786	75	1.3959	1335	119	7.9555	-3.5588
32	4.0225	-1.9213	76	1.5489	0852	120	8.1577	-3.7838
33	3.7475	-1.8750	77	7.7011	0438	121	8.3611	~4.0095
34	3.4707	-1.8401	78	1.8532	0122	122	8.5609	-4.2299
35	3.1930	-1.8168	79	2.0040	.0148	123	8.7508	-4.4378
36	2.9154	-1.8051	80	2.1540	.0365	124	8.9238	-4.6256
37	2.6391	-1.8052	81	2.3033	.0521	125	9.0733	-4.7863
38	2.3652	-1.8170	82	2.4520	.0619	126	9.1941	-4.9152
39	2.0951	-1.8403	83	2.6000	.0658	127	9.2834	-5.0096
40	1.8305	-1.8743	84	2.7474	.0639	128	9.3407	-5.0698
41	1.5726	-1.9181	85	2.8940	.0562	129	9.3676	-5.0978
42	1.3229	-1.9703	86	3.0399	.0428	130	9.3705	-5.1008
43	1.0823	-2.0290	87	3.1851	.0236			
44	0.8514	-2.0926	88	3.3296	.0014			

TABLE II.—CONFIGURATIONS FOR CORNER 2

Vane configuration	Vane setting angle	Vane arrangement	IGV setting angle
A	Design	Design	-10°, 0°, or 10°
A2	Reset −5°	Design	0°
A3	Design	Outer vane removed	0°
A4	Reset −5°	Outer vane removed	0°
В	Design	Design	-10°, 0°, or 10°

TABLE III.—MANUFACTURING COORDINATES FOR VANE B

[Coordinates are in centimeters.]

	vx	VY		VX	VY		VX	VY
1	10.6121	-1.0363	28	2.7682	0.5760	55	3.3198	2.2963
2	10.4292	-0.8972	29	2.4788	.4941	56	3.6493	2.3742
3	10.1729	7152	30	2.1894	.4018	57	3.9788	2.4332
4	9.9166	5456	31	1.8999	.2985	58	4.3082	2.4741
5	9.6483	3805	32	1.6105	.1838	59	4.6377	2.4975
6	9.3800	2276	33	1.3211	.0572	60	4.9672	2.5040
7	9.1116	0864	34	1.0468	0742	61	5.2967	2.4941
8	8.8225	.0531	35	.7724	2173	62	5.6228	2.4680
9	8.5334	.1801	36	.5715	3299	63	5.9490	2.4248
10	8.2444	.2950	37	.4284	3781	64	6.2752	2.3637
11	7.9553	.3984	38	.2778	3668	65	6.6013	2.2839
12	7.6662	.4909	39	.1435	2979	66	6.9275	2.1847
13	7.3601	.5775	40	.0464	1822	67	7.2537	2.0651
14	7.0541	.6527	41	.0019	0379	68	7.5798	1.9243
15	6.7480	.7166	42	.0169	.1123	69	7.9060	1.7615
16	6.4419	.7695	43	.0891	.2449	70	8.1904	1.5999
17	6.1359	.8115	44	.2556	.4359	71	8.4748	1.4184
18	5.8298	.8427	45	.5018	.6929	72	8.7591	1.2154
19	5.5238	.8633	46	.7480	.9226	73	9.0435	.9891
20	5.2177	.8735	47	.9942	1.1284	74	9.2710	.7878
21	4.9115	.8735	48	1.2404	1.3137	75	9.4986	.5638
22	4.6053	.8632	49	1.4866	1.4817	76	9.2761	.3125
23	4.2991	.8424	50	1.7802	1.6613	77	9.9537	.0295
24	3.9929	.8110	51	2.0737	1.8201	78	10.1812	2898
25	3.6867	.7689	52	2.3673	1.9597	79	10.3398	5377
26	3.3806	.7157	53	2.6608	2.0817	80	10.4983	8148
27	3.0744	.6515	54	2.9903	2.1991	81	10.6121	-1.0363

TABLE IV.—OVERALL PERFORMANCE BASED ON RAKE MEASUREMENTS FOR VANES A AND B

See part of tables	X-X			ಜ	٩	၁	Ð	o ·	J	80	£		į		_	ш	п	0	р	ь	L	s	J	n	>	*	×	у
sso		<u>5</u>		-0.026	023	026	026	015	022	-0.005	012	012	900: -	-0.024	021	015	-0.005	007	007	-0.008	030	018	014	600. –	015	024	005	012
Total-pressure loss coefficient		Corner 2		0.208	.210	.213	.208	.195	.209	0.174	.177	.175	.16	0.209	.206	.195	0.169	.170	.161	0.158	.174	.179	.180	.155	.161	.174	.160	.174
Tota		Diffuser		0.018	.021	.018	.018	.013	.020	0.019	.019	.018	.014	0.019	810.	.011	0.021	.021	.016	0.014	.013	.017	.017	.014	.014	.012	.015	.013
oss,		<u>2</u>		-0.016	020	610. –	910	002	013	-0.004	600	007	001	-0.017	013	003	-0.004	005	100. –	-0.005	005	013	010	005	900' -	- 400.	003	002
Total-pressure loss, N/cm ²		Corner 2		0.082	.118	.103	.082	.020	.081	0.098	.085	690	.017	0.101	.082	.020	0.082	890.	.017	0.063	.018	980.	.082	.062	.042	.018	.062	.018
Tota		Diffuser		0.013	.021	910.	.013	.002	.014	0.019	910.	.013	.003	0.017	.012	.002	0.018	.015	.003	0.010	.002	.014	.014	.010	.007	.002	010	.002
		>	Exit	10.147	10.151	10.150	10.147	10.134	10.144	10.136	10.140	10.139	10.133	10.149	10.144	10.134	10.135	10.136	10.133	10.136	10.136	10.144	10.141	10.137	10.138	10.135	10.134	10.133
essure, m ²		ADI	Inlet	10.131	_				→	10.131			→	10.131	_	→	10.131		→	10.131	_							→
Total pressure, N/cm ²		ıser	Exit	10.214	10.249	10.234	10.214	10.152	10.213	10.229	10.217	10.201	10.148	10.232	10.213	10.152	10.213	10.199	10.148	10.194	10.149	10.218	10.214	10.193	10.174	10.149	10.194	10.149
		Diffuser	Inlet	10.226	10.270	10.250	10.226	10.154	10.227	10.248	10.233	10.214	10.151	10.249	10.225	10.154	10.231	10.214	10.151	10.204	10.152	10.232	10.228	10.203	10.181	10.151	10.204	10.152
	>	1	EVII	0.304	.356	.330	.295	.142	.292	0.352	.329	.294	.141	0.326	.293	.141	0.325	.293	.141	0.304	.145	.327	.319	.293	.226	.139	.289	.140
Mach number	ADI	Talot		0.272	.328	304	.273	.132	.273	0.329	306	.274	.132	0.301	.270	.131	0.303	.273	.132	0.274	.130	302	.296	.273	.211	.130	.272	.130
Mach	Diffuser	1,50	EAII	0.240	.288	.266	.240	.121	.238	0.288	.266	.240	.121	0.266	.240	.121	0.266	.241	.121	0.240	.121	.266	.258	.241	.195	.120	.238	.121
	Dif	1212	TIME	0.326		.363			.323	0.395		.327		0.363	.326	.162	0.364		.162	0.326	.161	.364	.352	.327	.263	.161	.323	.162
Reading				281-290	299-302	295-298	279-289	291-294	280-288	307-310	303-306	311-314	315-318	327-330	323-326	319-322	331-334	335-338	339–342	9-19	20-31	41-44	36-40	8-18	32-35	22-29	10-17	21–30
Airflow, kg/sec				60.69	82.30	76.18	69.17	35.48	68.41	82.13	60.9/	69.14	35.45	76.16	69.19	35.51	76.29	69.31	35.48	86.89	35.35	76.17	73.99	69.17	56.55	35.15	68.28	35.36
IGV setting,	deg			-10	0				01	0				0			0			-10		0					10	
Vanes	configu-	ration		A						A2				A3			A4			В								

TABLE V.—TOTAL-PRESSURE DISTRIBUTION FOR DIFFUSER

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, -10° ; airflow, 69.09 kg/sec; readings 281-290

INLET RAKE				
% SPAN 0 5.0 10.131 10.0 10.231 15.0 10.237 20.0 10.235 30.0 10.235 70.0 10.235 90.0 10.240	CIRCUMF 90 10.148 10.192 10.228 10.237 10.234 10.238 10.233 10.240 10.234 10.238 10.236 10.238 10.235 10.237 10.237 10.238	ERENTIAL LOCATION 135 180 10.181 10.157 10.246 10.232 10.244 10.235 10.241 10.233 10.240 10.236 10.238 10.242 10.239	DN, DEG 225 270 10.184 10.178 10.239 10.233 10.238 10.234 10.238 10.233 10.234 10.238 10.237 10.239 10.236 10.234 10.237 10.236	315 AVG 10.145 10.165 10.242 10.236 10.241 10.237 10.241 10.237 10.241 10.236 10.237 10.237 10.240 10.237 10.241 10.239
INLET BOUNDAR	Y LAYER RAKE			
1.0 9.970 2.0 10.030 3.0 10.080 4.0 10.127 5.0 10.167 7.5 10.223 10.0 10.228 12.5 10.230	9.988 10.033 10.051 10.097 10.100 10.134 10.149 10.163 10.187 10.187 10.239 10.229 10.241 10.237 10.242 10.235	9.929 9.947 9.990 10.005 10.044 10.054 10.089 10.095 10.130 10.129 10.211 10.206 10.237 10.232 10.237 10.236	9.964 9.977 10.024 10.044 10.076 10.103 10.119 10.149 10.158 10.187 10.221 10.229 10.232 10.233 10.235 10.234	9.995 9.975 10.058 10.037 10.108 10.087 10.159 10.131 10.197 10.168 10.239 10.225 10.241 10.235 10.239 10.236
EXIT RAKE				
5.0 10.067 10.0 10.198 15.0 10.237 20.0 10.237 30.0 10.235 50.0 10.237 70.0 10.235 90.0 10.237	10.062 10.089 10.207 10.219 10.236 10.239 10.237 10.242 10.237 10.242 10.238 10.243 10.238 10.243 10.240 10.243	10.081 10.078 10.228 10.221 10.240 10.238 10.239 10.238 10.240 10.235 10.237 10.237 10.237 10.237 10.239 10.239	10.091 10.117 10.226 10.218 10.240 10.237 10.236 10.239 10.236 10.240 10.238 10.241 10.241 10.245 10.240 10.241	10.065 10.081 10.205 10.216 10.238 10.238 10.238 10.238 10.239 10.238 10.237 10.239 10.238 10.239 10.238 10.239
EXIT BOUNDARY	LAYER RAKE			
1.0 9.969 2.0 9.995 3.0 10.018 4.0 10.045 5.0 10.071 7.5 10.147 10.0 10.236 12.5 10.208	9.946 9.987 9.988 10.014 10.014 10.041 10.043 10.069 10.072 10.098 10.151 10.171 10.234 10.238 10.213 10.223	9.979 9.970 10.008 9.996 10.035 10.022 10.066 10.049 10.097 10.077 10.179 10.151 10.234 10.211 10.242 10.228	9.979 9.995 10.007 10.037 10.035 10.062 10.065 10.084 10.094 10.109 10.170 10.164 10.226 10.214 10.239 10.233	9.996 10.005 10.016 10.030 10.042 10.058 10.070 10.086 10.144 10.160 10.237 10.229

[Pressures are in newtons per square centimeter.]

(b) Vane A in corner 2; IGV setting, 0°; airflow, 82.30 kg/sec; readings 299-302

INLET	RAKE						
% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.145 10.282 10.288 10.286 10.284 10.284 10.285 10.287	CIRCUME 45 90 10.162 10.213 10.276 10.281 10.280 10.284 10.281 10.287 10.282 10.285 10.283 10.282 10.283 10.284 10.284 10.289	FERENTIAL 135 10.178 10.285 10.286 10.287 10.282 10.287 10.284 10.289	LOCATION, DEG 180 225 10.184 10.20 10.290 10.283 10.290 10.283 10.294 10.283 10.284 10.283 10.283 10.284 10.287 10.283 10.289 10.284	10.280 10.280 10.279 10.285 10.285 10.284 10.279	315 10.213 10.288 10.286 10.287 10.282 10.288 10.285 10.287	AVG 10.189 10.283 10.284 10.285 10.283 10.285 10.284
INLET	BOUNDARY	C LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.908 9.997 10.070 10.141 10.197 10.281 10.285	9.935 9.945 10.024 10.041 10.096 10.118 10.168 10.186 10.224 10.235 10.288 10.282 10.293 10.284 10.291 10.285	9.848 9.933 10.010 10.074 10.132 10.246 10.283 10.283	9.870 9.850 9.952 9.93 10.023 10.010 10.081 10.080 10.134 10.130 10.241 10.250 10.276 10.28 10.282 10.280	10.065 10.129 10.170 10.204 10.269 10.284	9.930 10.018 10.089 10.161 10.219 10.283 10.288 10.287	9.907 9.996 10.069 10.133 10.185 10.268 10.285
EXIT	RAKE						
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.8	10.045 10.232 10.283 10.283 10.281 10.281 10.279 10.284	10.039 10.059 10.237 10.252 10.282 10.286 10.282 10.290 10.280 10.290 10.284 10.290 10.283 10.290 10.289 10.289	10.059 10.267 10.285 10.286 10.286 10.274 10.282 10.285	10.050 10.08 10.250 10.27 10.281 10.28 10.282 10.28 10.274 10.28 10.280 10.28 10.285 10.29 10.286 10.28	2 10.259 8 10.285 9 10.287 7 10.285 8 10.290 3 10.289	10.041 10.241 10.285 10.284 10.287 10.281 10.281	10.062 10.251 10.284 10.285 10.284 10.283 10.285 10.286
EXIT	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.903 9.937 9.971 10.008 10.047 10.151 10.276 10.239	9.873 9.927 9.929 9.966 9.967 10.004 10.007 10.065 10.048 10.086 10.156 10.192 10.272 10.280 10.241 10.263	9.916 9.955 9.992 10.033 10.077 10.193 10.274 10.289	9.913 9.91 9.950 9.95 9.989 9.99 10.029 10.03 10.074 10.07 10.187 10.18 10.269 10.26 10.286 10.28	2 10.006 1 10.042 2 10.076 6 10.110 7 10.190 8 10.258	9.906 9.939 9.972 10.007 10.046 10.155 10.287 10.249	9.914 9.954 9.991 10.030 10.071 10.176 10.273

[Pressures are in newtons per square centimeter.]

(c) Vane A in corner 2; IGV setting, 0° ; airflow, 76.18 kg/sec; readings 295-298

INLET R	AKE	•
---------	-----	---

211661	KHIKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0 INLET	0 10.142 10.260 10.266 10.264 10.262 10.263 10.264 10.269	45 10.161 10.259 10.263 10.260 10.263 10.264 10.266 10.267 Y LAYER F	90 10.203 10.260 10.264 10.256 10.265 10.265 10.264	ERENTIAL 135 10.193 10.268 10.265 10.266 10.262 10.256 10.261 10.264	LOCATIO 180 10.167 10.263 10.265 10.264 10.262 10.263 10.267	N, DEG 225 10.194 10.266 10.266 10.263 10.267 10.265 10.266	270 10.196 10.259 10.261 10.265 10.265 10.264 10.263	315 10.139 10.263 10.263 10.264 10.262 10.262 10.259	AVG 10.175 10.262 10.264 10.263 10.263 10.264 10.265
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	9.937 10.016 10.078 10.138 10.194 10.261 10.265 10.263	9.948 10.025 10.086 10.145 10.197 10.261 10.265	10.018 10.099 10.144 10.180 10.206 10.257 10.265 10.263	9.890 9.965 10.032 10.087 10.136 10.236 10.267	9.903 9.978 10.039 10.088 10.134 10.223 10.255 10.260	9.916 9.995 10.062 10.116 10.167 10.242 10.257	9.947 10.035 10.110 10.167 10.212 10.262 10.264 10.265	9.952 10.027 10.090 10.153 10.200 10.265 10.270 10.269	9.939 10.017 10.080 10.134 10.181 10.251 10.264
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.061 10.223 10.266 10.266 10.264 10.266 10.266 10.269	10.056 10.232 10.265 10.266 10.265 10.265 10.265	10.075 10.238 10.261 10.266 10.266 10.265 10.266	10.069 10.250 10.266 10.268 10.265 10.258 10.262	10.063 10.239 10.264 10.266 10.261 10.264 10.268	10.088 10.252 10.267 10.267 10.265 10.268 10.268	10.110 10.235 10.261 10.262 10.262 10.266 10.261 10.263	10.053 10.225 10.265 10.265 10.267 10.260 10.266	10.072 10.237 10.264 10.266 10.264 10.264 10.265
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.929 9.958 9.988 10.020 10.053 10.143 10.256	9.901 9.951 9.983 10.018 10.054 10.145 10.251	9.957 9.993 10.027 10.063 10.098 10.189 10.263 10.250	9.945 9.979 10.015 10.050 10.087 10.190 10.258 10.270	9.933 9.967 9.999 10.036 10.074 10.171 10.235 10.262	9.938 9.973 10.007 10.042 10.081 10.174 10.245 10.261	9.987 10.024 10.057 10.087 10.115 10.186 10.243 10.260	9.934 9.964 9.993 10.024 10.058 10.150 10.266 10.232	9.940 9.976 10.009 10.043 10.078 10.168 10.252

[Pressures are in newtons per square centimeter.]

(d) Vane A in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 279-289

		(d) valie A in corner 2, 1	ov setting, o , annow, og. 17 kg/sec, 10	adings 217 207
INLET	RAKE			
% 5PAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0	0 10.135 10.235 10.239 10.236 10.227 10.233 10.239	CIRCUMF 90 10.143 10.186 10.229 10.237 10.234 10.239 10.237 10.240 10.236 10.240 10.236 10.241 10.239 10.240	ERENTIAL LOCATION, DEG 135 180 225 10.180 10.151 10.178 10.245 10.234 10.238 10.241 10.233 10.238 10.242 10.231 10.237 10.241 10.227 10.237 10.239 10.233 10.238 10.240 10.237 10.237 10.241 10.240 10.237	10.237 10.241 10.237 10.236 10.240 10.237 10.235 10.241 10.237 10.239 10.241 10.236 10.242 10.239 10.237 10.237 10.239 10.238
INLET	BOUNDAR	Y LAYER RAKE		
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.969 10.032 10.083 10.131 10.171 10.229 10.236 10.233	9.984 10.033 10.046 10.097 10.096 10.136 10.145 10.165 10.183 10.188 10.237 10.230 10.241 10.237 10.241 10.235	9.930 9.948 9.961 9.991 10.007 10.022 10.044 10.054 10.073 10.088 10.093 10.118 10.129 10.130 10.155 10.210 10.206 10.217 10.236 10.233 10.230 10.236 10.237 10.233	10.040 10.052 10.036 10.098 10.103 10.086 10.145 10.153 10.130 10.184 10.193 10.167 10.231 10.240 10.225 10.236 10.244 10.237
EXIT	RAKE			
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.067 10.200 10.238 10.224 10.235 10.237 10.239	10.060 10.089 10.201 10.221 10.232 10.240 10.235 10.242 10.239 10.243 10.239 10.231 10.240 10.242 10.242 10.242	10.083 10.075 10.090 10.231 10.221 10.225 10.243 10.237 10.240 10.243 10.239 10.240 10.243 10.234 10.238 10.234 10.235 10.241 10.240 10.239 10.242 10.241 10.239 10.242	10.218 10.209 10.216 10.237 10.241 10.238 10.239 10.240 10.238 10.239 10.241 10.239 10.241 10.240 10.237 10.240 10.238 10.240
EXIT	BOUNDARY	LAYER RAKE		
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.965 9.993 10.017 10.043 10.069 10.129 10.234 10.205	9.948 9.985 9.991 10.012 10.019 16.040 10.046 10.067 10.074 10.096 10.152 10.170 10.236 10.235 10.215 10.221	9.976 9.974 9.978 10.005 10.001 10.003 10.033 10.029 10.033 10.061 10.058 10.069 10.095 10.088 10.096 10.179 10.167 10.173 10.236 10.229 10.226 10.243 10.241 10.243	10.037 9.994 10.005 10.061 10.018 10.031 10.085 10.042 10.058 10.110 10.068 10.087 10.165 10.144 10.160 10.212 10.238 10.231

[Pressures are in newtons per square centimeter.]

(e) Vane A in corner 2; IGV setting, 0°; airflow, 35.48 kg/sec; readings 291-294

INLET RAKE			
% SPAN 5.0 10.130 10.0 10.156 15.0 10.156 20.0 10.157 30.0 10.157 70.0 10.157 90.0 10.158	CIRCUMFERENTIAL 90 135 10.135 10.141 10.137 10.157 10.156 10.158 10.157 10.157 10.158 10.157 10.157 10.159 10.155 10.158 10.159 10.158 10.158 10.157 10.158 10.157 10.158	10.158 10.156 10 10.157 10.156 10 10.154 10.156 10 10.157 10.155 10 10.158 10.155 10 10.158 10.156 10	270 315 AVG 0.137 10.131 10.136 0.156 10.158 10.157 0.155 10.159 10.157 0.156 10.159 10.157 0.158 10.159 10.157 0.157 10.158 10.157 0.157 10.158 10.157 0.156 10.158 10.158
INLET BOUNDAR	Y LAYER RAKE		
1.0 10.093 2.0 10.109 3.0 10.121 4.0 10.131 5.0 10.141 7.5 10.156 10.0 10.158 12.5 10.157	10.094 10.103 10.079 10.109 10.117 10.083 10.122 10.126 10.106 10.134 10.133 10.117 10.145 10.140 10.129 10.159 10.154 10.148 10.159 10.156 10.158 10.160 10.156 10.158	10.085 10.104 10 10.110 10.118 10 10.119 10.129 10 10.129 10.138 10 10.148 10.156 10 10.156 10.158 10	0.089 10.090 10.090 0.106 10.106 10.102 0.119 10.118 10.118 0.131 10.130 10.128 0.142 10.140 10.138 0.156 10.157 10.154 0.157 10.158 10.157
EXIT RAKE			
5.0 10.114 10.0 10.147 15.0 10.157 20.0 10.157 30.0 10.157 50.0 10.157 70.0 10.155 90.0 10.157	10.115 10.118 10.117 10.139 10.154 10.155 10.159 10.160 10.158 10.160 10.161 10.158 10.159 10.161 10.158 10.159 10.161 10.156 10.159 10.161 10.156 10.159 10.160 10.157	10.150 10.153 10 10.157 10.160 10 10.157 10.159 10 10.158 10.161 10 10.157 10.159 10 10.159 10.160 10	0.123 10.112 10.117 0.151 10.146 10.149 0.159 10.157 10.158 0.160 10.157 10.159 0.160 10.158 10.159 0.160 10.157 10.158 0.160 10.158 10.158
EXIT BOUNDARY	LAYER RAKE		
1.0 10.089 2.0 10.096 3.0 10.102 4.0 10.109 5.0 10.116 7.5 10.133 10.0 10.158 12.5 10.150	10.081 10.091 10.091 10.093 10.098 10.098 10.099 10.104 10.104 10.106 10.111 10.111 10.113 10.118 10.120 10.131 10.136 10.139 10.153 10.156 10.155 10.148 10.151 10.160	10.100 10.098 10 10.107 10.105 10 10.114 10.113 10 10.122 10.118 10 10.141 10.138 10 10.157 10.152 10	0.098 10.090 10.090 0.105 10.097 10.098 0.111 10.102 10.104 0.115 10.109 10.111 0.123 10.115 10.118 0.136 10.133 10.136 0.149 10.157 10.155 0.155 10.150 10.154

[Pressures are in newtons per square centimeter.]

(f) Vane A in corner 2; IGV setting, 10°; airflow, 68.41 kg/sec; readings 280-288

INLE	T RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.135 10.233 10.238 10.236 10.229 10.235 10.234	45 10.145 10.228 10.230 10.230 10.232 10.231 10.230 10.234	CIRCUMF 90 10.195 10.240 10.241 10.243 10.243 10.242 10.244	ERENTIAL 135 10.182 10.246 10.243 10.244 10.244 10.241 10.242	LOCATIO 180 10.155 10.235 10.236 10.232 10.229 10.237 10.239	N, DEG 225 10.174 10.232 10.233 10.232 10.232 10.232 10.231 10.233	270 10.183 10.237 10.238 10.236 10.243 10.244 10.239	315 10.142 10.243 10.242 10.244 10.244 10.237 10.241	AVG 10.164 10.237 10.238 10.237 10.237 10.238 10.239
INLE	T BOUNDAR	Y LAYER F	RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.975 10.036 10.087 10.134 10.173 10.235 10.244	9.986 10.047 10.096 10.143 10.182 10.235 10.241	10.031 10.094 10.131 10.160 10.182 10.228 10.237 10.235	9.923 9.984 10.038 10.083 10.124 10.205 10.231 10.232	9.944 10.004 10.052 10.093 10.128 10.205 10.231 10.237	9.968 10.030 10.081 10.124 10.162 10.223 10.234 10.237	9.981 10.052 10.112 10.158 10.195 10.235 10.236 10.236	9.974 10.035 10.087 10.136 10.176 10.227 10.232	9.973 10.035 10.085 10.129 10.165 10.224 10.236 10.236
EXIT	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0	10.060 10.191 10.231 10.219 10.230 10.230 10.229	10.059 10.199 10.228 10.232 10.232 10.237 10.237	10.095 10.223 10.241 10.244 10.246 17.234 10.245	10.080 10.229 10.243 10.243 10.244 10.235 10.243 10.244	10.070 10.215 10.232 10.234 10.231 10.230 10.232 10.234	10.091 10.226 10.239 10.237 10.237 10.238 10.239	10.119 10.219 10.239 10.241 10.241 10.242 10.243	10.069 10.212 10.244 10.242 10.245 10.244 10.240	10.080 10.214 10.237 10.237 10.238 10.236 10.239
EXIT	BOUNDARY	LAYER RA	AKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.967 9.992 10.016 10.042 10.070 10.132 10.235	9.950 9.991 10.018 10.044 10.073 10.148 10.233	9.984 10.011 10.039 10.067 10.096 10.168 10.233 10.220	9.978 10.006 10.035 10.066 10.097 10.181 10.235 10.243	9.973 9.998 10.024 10.052 10.080 10.158 10.220 10.238	9.978 10.007 10.034 10.063 10.095 10.170 10.227	10.005 10.036 10.060 10.084 10.111 10.165 10.211	9.970 9.994 10.014 10.042 10.071 10.145 10.238 10.211	9.976 10.005 10.030 10.058 10.087 10.158 10.229

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0°; airflow, 82.13 kg/sec; readings 307-310

INLET RAKE				
% SPAN 0 5.0 10.124 10.0 10.259 15.0 10.265 20.0 10.263 30.0 10.258 50.0 10.261 70.0 10.260 90.0 10.264	10.257 10.262 10.261 10.264 10.263 10.268 10.260 10.267 10.263 10.266 10.264 10.267 10.266 10.268	ERENTIAL LOCATIO 135 10.186 10.186 10.269 10.264 10.267 10.265 10.265 10.265 10.253 10.262 10.261 10.264 10.265 10.266	N, DEG 225 270 10.191 10.196 10.265 10.261 10.262 10.262 10.265 10.263 10.260 10.267 10.264 10.267 10.264 10.265 10.264 10.264	315 AVG 10.125 10.164 10.263 10.262 10.263 10.264 10.252 10.263 10.265 10.263 10.260 10.262 10.259 10.233 10.262 10.265
INLET BOUNDAR	Y LAYER KAKE			
1.0 9.870 2.0 9.951 3.0 10.015 4.0 10.077 5.0 10.128 7.5 10.233 10.0 10.260 12.5 10.264	9.899 9.923 9.984 10.017 10.049 10.094 10.113 10.165 10.164 10.212 10.245 10.255 10.258 10.259 10.261 10.258	9.893 9.868 9.980 9.958 10.062 10.038 10.133 10.107 .0.191 10.165 10.264 10.255 10.270 10.265 10.269 10.265	9.887 9.942 9.977 10.045 10.057 10.110 10.124 10.153 10.181 10.188 10.258 10.248 10.264 10.263 10.264 10.261	9.863 9.893 9.943 9.882 10.009 10.054 10.130 10.170 10.239 10.250 10.265 10.263 10.264 10.263
EXIT RAKE				
5.0 10.025 10.0 10.211 15.0 10.265 20.0 10.263 30.0 10.260 50.0 10.260 70.0 10.261 90.0 10.266	10.023 10.047 10.222 10.240 10.260 10.261 10.263 10.263 10.263 10.263 10.265 10.265 10.265 10.266 10.268 10.266	10.051 10.030 10.254 10.231 10.270 10.260 10.269 10.260 10.271 10.257 10.261 10.258 10.264 10.262 10.266 10.264	10.063 10.101 10.246 10.234 10.267 10.259 10.265 10.262 10.264 10.263 10.266 10.264 10.269 10.261 10.267 10.264	10.027 10.046 10.216 10.232 10.264 10.263 10.265 10.264 10.269 10.264 10.264 10.263 10.265 10.264 10.265 10.266
EXIT BOUNDARY	LAYER RAKE			
1.0 9.877 2.0 9.911 3.0 9.945 4.0 9.980 5.0 10.019 7.5 10.125 10.0 10.254 12.5 10.213	9.871 9.915 9.922 9.955 9.959 9.995 9.998 10.037 10.037 10.079 10.145 10.186 10.256 10.264 10.228 10.252	9.899 9.886 9.927 9.923 9.979 9.961 10.020 10.002 10.070 10.044 10.185 10.156 10.262 10.240 10.271 10.259	9.897 9.950 9.936 9.992 9.975 10.029 10.015 10.061 10.057 10.093 10.163 10.170 10.248 10.235 10.266 10.258	9.886 9.898 9.918 9.935 9.950 9.974 9.986 10.012 10.022 10.053 10.127 10.157 10.263 10.253 10.221 10.246

[Pressures are in newtons per square centimeter.]

(h) Vane A2 in corner 2; IGV setting, 0°; airflow, 76.09 kg/sec; readings 303-306

INLET	RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.121 10.240 10.247 10.242 10.243 10.241 10.241	45 10.141 1 10.235 1 10.243 1 10.245 1 10.246 1 10.248 1	0 244 10 0.249 10 0.252 10 0.248 10 0.247 10 0.249 10	ENTIAL 135 1.163 1.248 1.247 1.246 1.244 1.245 1.245	LOCATION 180 10.153 10.247 10.246 10.245 10.245 10.243 10.247 10.247	DEG 225 10.180 10.249 10.247 10.249 10.246 10.248 10.245 10.249	270 10.189 10.244 10.243 10.244 10.248 10.248 10.245	315 10.125 10.247 10.247 10.245 10.244 10.242 10.244	AVG 10.156 10.244 10.246 10.246 10.245 10.245 10.245
INLET	BOUNDARY	LAYER RAK	E						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.905 9.975 10.028 10.079 10.121 10.212 10.240 10.245	9.994 1 10.052 1 10.107 1 10.150 1 10.223 1 10.238 1	0.034 9 0.101 10 0.158 10 0.201 10 0.244 10 0.243 10	9.920 9.997 0.067 0.128 0.178 0.243 0.247	9.901 9.978 10.046 10.107 10.157 10.240 10.247	9.916 9.994 10.064 10.121 10.172 10.242 10.248 10.247	9.966 10.054 10.109 10.145 10.177 10.231 10.245 10.243	9.895 9.969 10.027 10.082 10.128 10.225 10.249 10.248	9.922 10.000 10.062 10.116 10.160 10.233 10.245
EXIT	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.033 10.196 10.247 10.246 10.244 10.244 10.247	10.210 1 10.244 1 10.246 1 10.244 1 10.247 1 10.248 1	0.229 10 0.247 10 0.246 10 0.249 10 0.248 10 0.248 10	0.060 0.239 0.253 0.252 0.252 0.252 0.242 0.243	10.051 10.226 10.247 10.248 10.245 10.244 10.247	10.068 10.227 10.246 10.246 10.244 10.248 10.250	10.099 10.219 10.243 10.244 10.243 10.249 10.248	10.035 10.204 10.248 10.249 10.251 10.245 10.247	10.055 10.219 10.247 10.247 10.246 10.246 10.247
EXIT	BOUNDARY	LAYER RAKE	Ē						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.913 9.942 9.974 10.005 10.040 10.131 10.241 10.208	9.951 9.985 1 10.020 1 10.057 1 10.152 1 10.244 1	9.968 0.003 0.037 0.075 10 0.173 0.247	9.927 9.962 9.998 0.033 0.073 0.174 0.243	9.918 9.951 9.985 10.019 10.059 10.156 10.231	9.922 9.956 9.988 10.022 10.061 10.155 10.230 10.249	9.973 10.009 10.041 10.069 10.098 10.165 10.222 10.243	9.912 9.941 9.970 10.000 10.034 10.128 10.244 10.209	9.925 9.960 9.993 10.026 10.062 10.154 10.238

[Pressures are in newtons per square centimeter.]

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings 311-314

INLET	RAKE					
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.127 10.220 10.225 10.225 10.222 10.223 10.220 10.226	CIRCUMF 90 10.139 10.169 10.220 10.219 10.223 10.223 10.225 10.225 10.222 10.224 10.224 10.223 10.226 10.224 10.227 10.224	ERENTIAL LOCAT 135 180 10.162 10.14 10.228 10.22 10.230 10.22 10.227 10.227 10.217 10.22 10.226 10.228 10.228 10.228	225 4 10.171 1 7 10.226 1 6 10.225 1 6 10.226 1 10.222 1 10.227 1 14 10.224 1	0.220 10 0.220 10 0.219 10 0.224 10 0.223 10 0.222 10	315 AVG .128 10.152 .226 10.223 .226 10.225 .226 10.225 .227 10.224 .225 10.223 .225 10.224 .226 10.226
INLET	BOUNDARY	LAYER RAKE				
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.943 9.998 10.040 10.085 10.122 10.194 10.217	9.967 9.987 10.027 10.054 10.072 10.106 10.117 10.155 10.153 10.189 10.210 10.225 10.221 10.227 10.223 10.226	9.964 9.94 10.024 10.00 10.081 10.06 10.129 10.11 10.172 10.15 10.227 10.21 10.235 10.22 10.229 10.22	12 10.021 1 10 10.078 1 10 10.126 1 11 10.167 1 17 10.224 1 18 10.235 1	10.069 10 10.116 10 10.147 10 10.172 10 10.215 10	9.942 9.962 1.000 10.024 1.046 10.075 1.091 10.120 1.130 10.157 1.208 10.215 1.227 10.227 1.226 10.225
EXIT	RAKE					
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.055 10.185 10.226 10.225 10.224 10.225 10.224	10.058	10.070 10.06 10.218 10.22 10.226 10.22 10.225 10.225 10.218 10.22 10.221 10.22 10.224 10.22	11 10.213 1 25 10.227 1 25 10.227 1 21 10.225 1 24 10.226 1 27 10.227 1	10.203 10 10.225 10 10.226 10 10.227 10 10.228 10 10.229 10	0.049 10.069 0.189 10.204 0.224 10.226 0.223 10.226 0.225 10.225 0.221 10.225 0.225 10.225
EXIT	BOUNDARY	LAYER RAKE				
1.0 2.8 3.0 4.0 5.0 7.5 10.0	9.951 9.977 10.001 10.027 10.055 10.130 10.221 10.193	9.941 9.976 9.978 10.005 10.003 10.033 10.031 10.062 10.060 10.092 10.134 10.168 10.210 10.226 10.191 10.217	9.964 9.99 9.992 9.98 10.022 10.00 10.052 10.00 10.086 10.00 10.167 10.10 10.223 10.2 10.231 10.2	34 9.990 1 12 10.018 1 39 10.044 1 72 10.075 1 49 10.149 1	10.033 10.060 10.083 10.106 10.158 1	9.953 9.963 9.975 9.992 9.998 10.018 0.023 10.045 0.050 10.075 0.127 10.148 0.225 10.216 0.195 10.212

[Pressures are in newtons per square centimeter.]

(j) Vane A2 in corner 2; IGV setting, 0°; airflow, 35.45 kg/sec; readings 315-318

INLET	RAKE				
% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	0 10.126 10.151 10.153 10.152 10.152 10.151 10.152	CIRCUMF 90 10.132 10.140 10.156 10.156 10.156 10.155 10.158 10.154 10.155 10.155 10.156 10.155 10.156 10.155	ERENTIAL LOCATIO 135 180 10.135 10.130 10.155 10.153 10.154 10.153 10.152 10.154 10.154 10.152 10.154 10.152 10.155 10.153 10.155 10.154	N, DEG 225 270 10.142 10.136 10.156 10.153 10.156 10.154 10.157 10.153 10.155 10.155 10.156 10.156 10.156 10.156 10.157 10.154	315 AVG 10.128 10.134 10.154 10.154 10.155 10.154 10.154 10.154 10.154 10.154 10.154 10.153 10.153 10.154 10.155 10.155
INLET	BOUNDARY	LAYER RAKE			
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.083 10.097 10.108 10.117 10.126 10.143 10.152 10.153	10.091 10.089 10.104 10.105 10.116 10.117 10.128 10.129 10.137 10.138 10.141 10.151 10.155 10.152 10.155 10.153	10.087 10.085 10.102 10.099 10.117 10.114 10.130 10.126 10.140 10.136 10.155 10.152 10.157 10.154 10.157 10.155	10.087 10.093 10.103 10.111 10.117 10.123 10.128 10.128 10.138 10.135 10.154 10.147 10.153 10.151 10.154 10.152	10.083 10.087 10.097 10.102 10.109 10.115 10.120 10.126 10.130 10.135 10.150 10.149 10.155 10.153 10.157 10.154
EXIT	RAKE				
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.112 10.146 10.157 10.158 10.156 10.157 10.156	10.111 10.114 10.146 10.149 10.153 10.155 10.152 10.157 10.152 10.156 10.155 10.156 10.154 10.143 10.155 10.156	10.114 10.116 10.149 10.151 10.155 10.157 10.155 10.158 10.155 10.156 10.155 10.157 10.154 10.158 10.156 10.157	10.117 10.120 10.150 10.146 10.153 10.154 10.154 10.155 10.153 10.154 10.154 10.156 10.155 10.156 10.155 10.156	10.110 10.114 10.146 10.148 10.155 10.155 10.155 10.155 10.156 10.155 10.154 10.156 10.154 10.156 10.155 10.156
EXIT	BOUNDARY	LAYER RAKE			
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.086 10.092 10.098 10.104 10.111 10.128 10.153 10.145	10.081 10.091 10.091 10.100 10.097 10.105 10.103 10.113 10.110 10.120 10.129 10.138 10.152 10.157 10.145 10.153	10.085 10.089 10.092 10.095 10.099 10.101 10.106 10.110 10.115 10.118 10.133 10.135 10.149 10.152 10.154 10.155	10.087 10.097 10.094 10.103 10.099 10.099 10.107 10.114 10.116 10.120 10.132 10.134 10.149 10.147 10.155 10.154	10.086 10.088 10.092 10.095 10.098 10.099 10.104 10.108 10.109 10.115 10.128 10.132 10.154 10.152 10.146 10.151

[Pressures are in newtons per square centimeter.]

(k) Vane A3 in corner 2; IGV setting, 0°; airflow, 76.16 kg/sec; readings 327-330

INLET RAKE

% SPAN 5.0 10.0 15.0 20.0 30.0 70.0 90.0	10.255 10.261 10.261 10.259 10.260 10.261	45 10.141 10.253 10.258 10.261 10.254 10.262 10.263 10.265	CIRCUMFE 90 10.183 10.259 10.260 10.264 10.262 10.263 10.264 10.264	135 10.192 10.268 10.264 10.265 10.264 10.265 10.261 10.261	LOCATION 180 10.169 10.263 10.262 10.262 10.259 10.258 10.261 10.265	N, DEG 225 10.201 10.265 10.263 10.265 10.254 10.264 10.261	270 10.205 10.260 10.261 10.260 10.262 10.263 10.261 10.263	315 10.161 10.263 10.263 10.263 10.264 10.261 10.262	AVG 10.174 10.261 10.262 10.263 10.260 10.261 10.262
1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5	10.056 10.104 10.143 10.227 10.255 10.261	9.946 10.010 10.062 10.111 10.152 10.228 10.253 10.259	9.957 10.034 10.093 10.147 10.191 10.251 10.258 10.260	9.944 10.019 10.086 10.143 10.193 10.257 10.264	9.921 9.998 10.066 10.124 10.174 10.254 10.261	9.936 10.012 10.082 10.141 10.190 10.260 10.264	9.996 10.082 10.137 10.172 10.201 10.253 10.263 10.261	9.928 9.998 10.057 10.113 10.160 10.249 10.265 10.264	9.946 10.020 10.080 10.132 10.175 10.247 10.260 10.261
5.0 10.0 15.0 20.0 30.0 50.0 70.0	10.053 10.211 10.262 10.263 10.262 10.262 10.264	10.040 10.203 10.259 10.261 10.260 10.262 10.262	10.069 10.231 10.261 10.260 10.265 10.252 10.265	10.081 10.255 10.265 10.264 10.266 10.262 10.263	10.068 10.240 10.261 10.260 10.258 10.260 10.263 10.264	10.083 10.248 10.264 10.264 10.263 10.265 10.265	10.112 10.239 10.261 10.263 10.263 10.265 10.265	10.066 10.232 10.264 10.263 10.264 10.261 10.264	10.071 10.232 10.262 10.262 10.263 10.263 10.263
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.944 9.977 10.009 10.044 10.079 10.176 10.258 10.245	9.948 9.982 10.016 10.052 10.090 10.186 10.262 10.252	9.989 10.024 10.054 10.083 10.112 10.173 10.258	9.947 9.978 10.007 10.037 10.073 10.157 10.232 10.262	9.934 9.964 9.993 10.022 10.057 10.139 10.212	9.903 9.956 9.987 10.018 10.050 10.132 10.207	9.951 9.984 10.017 10.049 10.085 10.170 10.236 10.258	9.955 9.989 10.023 10.060 10.099 10.201 10.267 10.261	9.946 9.982 10.013 10.046 10.081 10.167 10.242 10.253

[Pressures are in newtons per square centimeter.]

(l) Vane A3 in corner 2; IGV setting, 0°; airflow, 69.19 kg/sec; readings 323-326

INLET	RAKE						
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.147 10.237 10.240 10.240 10.234 10.239 10.239	45 90 10.130 10.160 10.225 10.23 10.230 10.23 10.231 10.23 10.229 10.23 10.233 10.23 10.231 10.23 10.235 10.23	10.246 10.245 10.246 10.243 10.242 10.241	180 10.154 10.235 10.236 10.236 10.236 10.234 10.235 10.235 10.239	DEG 225 270 .170 10.188 .233 10.233 .232 10.233 .234 10.233 .229 10.233 .234 10.233 .232 10.233	10.244 10.243 10.244 10.244 10.243 10.239 10.240	AVG 10.162 10.235 10.237 10.237 10.235 10.236 10.238
INLET	BOUNDAR	Y LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.973 10.026 10.066 10.104 10.135 10.205 10.230 10.233	9.984 9.999 10.037 10.06 10.079 10.10 10.120 10.15 10.151 10.18 10.214 10.23 10.231 10.23 10.235 10.24	10.031 10.087 10.133 10.173 10.231 10.236	10.013 10. 10.070 10. 10.117 10. 10.158 10. 10.223 10. 10.231 10.	.972 10.02 .035 10.09 .091 10.13 .137 10.16 .178 10.18 .238 10.23 .244 10.24 .244 10.23	2 10.017 5 10.064 5 10.110 8 10.148 2 10.221 10.234	9.979 10.039 10.088 10.130 10.165 10.225 10.236
EXIT	RAKE						
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.066 10.191 10.232 10.232 10.231 10.233 10.232	10.058 10.08 10.194 10.21 10.239 10.24 10.241 10.24 10.241 10.24 10.243 10.24 10.242 10.24 10.244 10.24	10.227 2 10.237 4 10.237 4 10.237 5 10.234 4 10.234	10.212 10. 10.231 10. 10.234 10. 10.231 10. 10.229 10. 10.233 10.	.099 10.12 .230 10.22 .242 10.24 .230 10.24 .240 10.24 .243 10.24 .243 10.24 .242 10.24	10.208 10.236 3 10.235 3 10.236 5 10.233 4 10.234	10.082 10.213 10.237 10.237 10.238 10.238 10.238
EXIT	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.981 10.008 10.034 10.064 10.092 10.173 10.238 10.227	9.977 10.01 10.002 10.04 10.029 10.06 10.058 10.09 10.088 10.11 10.168 10.17 10.235 10.22 10.225 10.21	3 10.004 3 10.029 1 10.054 3 10.084 0 10.152 9 10.215	10.000 9 10.023 10 10.048 10 10.065 10 10.143 10 10.202 10	. 938 9. 97 . 981 10.00 . 008 10.03 . 033 10.05 . 061 10.08 . 131 10.15 . 193 10.21 . 224 10.22	5 10.014 2 10.042 3 10.071 5 10.102 5 10.182 1 10.238	9.979 10.007 10.033 10.060 10.086 10.159 10.220 10.229

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0°; airflow, 35.51 kg/sec; readings 319-322

%			CIRCUME	ERENTIAL	LOCATIO	N, DEG			
SPAN	0	45	90	135	180	225	270	315	AVG
5.0	10.130	10.131	10.136	10.138	10.132	10.140	10.139	10.136	10.135
10.0	10.154	10.156	10.156	10.159	10.153	10.159	10.156	10.159	10.157
15.0	10.154	10.157	10.156	10.159	10.154	10.159	10.156	10.158	10.157
20.0	10. 1 55	10.159	10.156	10.159	10.154	10.159	10.156	10.159	10.157
30.0	10.153	10.157	10.156	10.158	10.153	10.157	10.156	10.158	10.156
50.0	10.155	10.160	10.156	10.159	10.156	10.159	10.157	10.158	10.157
70.0	10.155	10.159	10.157	10.159	10.156	10.158	10.157	10.158	10.157
90.0	10.155	10.160	10.158	10.159	10.156	10.160	10.157	10.158	10.158

INLET BOUNDARY LAYER RAKE

1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.121 10.130 10.148 10.155	10.106 10.116 10.125 10.135 10.152 10.158	10.103 10.115 10.126 10.135 10.151 10.155	10.104 10.119 10.129 10.140 10.157 10.159	10.088 10.101 10.116 10.125 10.135 10.153	10.106 10.119 10.130 10.141 10.157 10.158	10.114 10.124 10.130 10.137 10.150 10.154	10.103 10.115 10.126 10.135 10.154 10.159	10.127 10.136 10.153 10.157
12.5	10.156	10.159	10.155	10.160	10.155	10.159	10.154	10.159	10.157

EXIT RAKE

INLET RAKE

5.0 10.0 15.0 20.0 30.0 50.0	10.160 10.159 10.160	10.143 10.155 10.156 10.156 10.156	10.153 10.159 10.161 10.161 10.160	10.153 10.158 10.158 10.159 10.158	10.159 10.159	10.150 10.156 10.156 10.155 10.156	10.151 10.159 10.160 10.160 10.160	10.157 10.158 10.158 10.157	10.158
70.0 90.0		10.157 10.156							

EXIT BOUNDARY LAYER RAKE

.099
.105
.110
.124
.135
.153
.155

[Pressures are in newtons per square centimeter.]

(n) Vane A4 in corner 2; IGV setting, 0°; airflow, 76.29 kg/sec; readings 331-334

INLET	RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.130 10.238 10.244 10.243 10.238 10.282 10.242	45 10.120 10 10.232 10 10.242 10 10.242 10 10.245 10 10.245 10	90 .161 1 .239 1 .241 1 .245 1 .243 1 .243 1	135 0.168 0.247 0.245 0.245 0.244	LOCATION 180 10.137 10.236 10.238 10.239 10.238 10.243 10.243 10.243	DEG 225 10.183 10.247 10.244 10.247 10.236 10.246 10.245 10.247	270 10.189 10.242 10.241 10.241 10.243 10.245 10.242	315 10.139 10.244 10.245 10.245 10.244 10.281 10.243	AVG 10.154 10.241 10.243 10.243 10.240 10.252 10.243
INLET	BOUNDARY	LAYER RAK	Ē						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.929 9.993 10.040 10.087 10.127 10.209 10.238 10.242	9.994 10 10.046 10 10.092 10 10.132 10 10.208 10 10.232 10	.024 1 .080 1 .133 1 .176 1 .235 1	9.928 0.004 0.074 0.130 0.179 0.246 0.251 0.250	9.902 9.978 10.047 10.106 10.155 10.236 10.243 10.242	9.918 9.996 10.065 10.121 10.170 10.240 10.244 10.244	9.976 10.062 10.113 10.146 10.175 10.229 10.240 10.239	9.920 9.988 10.043 10.097 10.145 10.232 10.247 10.245	9.931 10.005 10.063 10.114 10.157 10.229 10.242
EXIT	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.036 10.192 10.246 10.245 10.243 10.244 10.247	10.187 10 10.239 10 10.242 10 10.240 10 10.240 10	1.217 1 1.241 1 1.244 1 1.245 1 1.245 1	0.060 0.235 0.247 0.247 0.247 0.242 0.242	10.050 10.225 10.243 10.243 10.237 10.239 10.243	10.060 10.229 10.246 10.244 10.244 10.245 10.246	10.088 10.215 10.241 10.243 10.243 10.245 10.246	10.039 10.209 10.245 10.245 10.246 10.244 10.242	10.052 10.213 10.244 10.244 10.243 10.243 10.244
EXIT	BOUNDARY	LAYER RAKE							
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.924 9.958 9.990 10.024 10.060 10.158 10.240 10.227	9.961 10 9.992 10 10.027 10 10.063 10 10.160 10 10.245 10	0.044 0.072 1 0.100 1 0.170 1 0.241 1	9.924 9.954 9.982 10.013 10.049 10.133 10.211	9.909 9.939 9.968 9.997 10.032 10.113 10.188 10.231	9.891 9.937 9.969 10.001 10.034 10.118 10.194 10.231	9.935 9.969 10.002 10.036 10.070 10.159 10.224 10.243	9.934 9.968 10.002 10.040 10.078 10.180 10.244 10.239	9.928 9.962 9.994 10.026 10.061 10.149 10.223

[Pressures are in newtons per square centimeter.]

(o) Vane A4 in corner 2; IGV setting, 0° ; airflow, 69.31 kg/sec; readings 335-338

INLET	RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.129 10.218 10.223 10.223 10.218 10.243 10.221 10.224	45 10.112 10.210 10.217 10.219 10.216 10.224 10.222 10.223	90 10.157 10.217 10.221 10.223 10.223 10.223 10.223	ERENTIAL 135 10.159 10.230 10.228 10.229 10.227 10.225 10.226 10.227	LOCATIO 180 10.140 10.220 10.221 10.220 10.218 10.221 10.223 10.225	N, DEG 225 10.160 10.219 10.220 10.221 10.216 10.254 10.219	270 10.173 10.221 10.220 10.220 10.223 10.256 10.220 10.223	315 10.140 10.227 10.227 10.215 10.227 10.257 10.227	AVG 10.146 10.220 10.222 10.222 10.221 10.238 10.223 10.224
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.959 10.012 10.053 10.092 10.124 10.194 10.217 10.221	9.966 10.021 10.064 10.104 10.138 10.203 10.221	9.975 10.039 10.088 10.131 10.166 10.216 10.222 10.223	9.957 10.019 10.074 10.121 10.160 10.216 10.225 10.224	9.941 10.003 10.060 10.109 10.150 10.212 10.220	9.958 10.020 10.077 10.124 10.162 10.222 10.227 10.228	10.001 10.069 10.110 10.135 10.160 10.208 10.221	9.945 10.003 10.050 10.097 10.137 10.208 10.223 10.222	9.963 10.023 10.072 10.114 10.150 10.210 10.222 10.223
EXIT	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.052 10.182 10.221 10.221 10.221 10.221 10.222 10.224	10.046 10.180 10.220 10.223 10.220 10.222 10.223 10.226	10.072 10.202 10.227 10.227 10.229 10.228 10.227 10.226	10.076 10.218 10.227 10.226 10.225 10.222 10.222	10.059 10.201 10.220 10.221 10.220 10.221 10.223 10.222	10.075 10.212 10.226 10.225 10.223 10.225 10.226 10.225	10.100 10.204 10.225 10.227 10.227 10.229 10.228 10.228	10.057 10.192 10.223 10.224 10.225 10.223 10.223	10.067 10.199 10.224 10.224 10.224 10.224 10.224
EXIT	BOUNDARY	LAYER RA	KE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.964 9.989 10.014 10.069 10.145 10.217 10.201	9.961 9.987 10.015 10.042 10.070 10.149 10.222 10.208	10.001 10.029 10.055 10.065 10.099 10.158 10.219 10.204	9.957 9.982 10.006 10.030 10.060 10.129 10.194 10.223	9.957 9.981 10.005 10.031 10.059 10.124 10.185 10.220	9.930 9.972 9.998 10.024 10.051 10.120 10.181 10.212	9.971 9.999 10.025 10.053 10.084 10.151 10.204 10.219	9.971 10.000 10.028 10.059 10.091 10.171 10.226 10.220	9.964 9.992 10.018 10.043 10.073 10.143 10.206 10.213

[Pressures are in newtons per square centimeter.]

(p) Vane A4 in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 339-342

INLET	RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0	0 10.129 10.154 10.156 10.154 10.160 10.155 10.156	45 10.122 10.149 10.148 10.152 10.155 10.155 10.153	CIRCUMF 90 10.127 10.153 10.154 10.154 10.153 10.153	ERENTIAL 135 10.137 10.155 10.154 10.157 10.157 10.154 10.154	LOCATION 180 10.129 10.152 10.153 10.151 10.154 10.155 10.155	N, DEG 225 10.137 10.153 10.154 10.153 10.152 10.160 10.151	270 10.137 10.151 10.153 10.154 10.154 10.161 10.154	315 10.132 10.155 10.155 10.155 10.157 10.162 10.156 10.154	AVG 10.131 10.153 10.153 10.154 10.154 10.157 10.154
INLET	BOUNDARY	LAYER R	RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.088 10.099 10.109 10.119 10.127 10.145 10.151	10.088 10.101 10.111 10.121 10.131 10.147 10.153	10.094 10.109 10.121 10.130 10.140 10.152 10.156	10.086 10.100 10.114 10.126 10.135 10.152 10.155	10.083 10.098 10.113 10.124 10.134 10.151 10.154	10.088 10.103 10.117 10.129 10.139 10.155 10.157	10.098 10.117 10.126 10.133 10.139 10.152 10.156	10.085 10.099 10.109 10.121 10.130 10.148 10.153 10.154	10.089 10.103 10.115 10.125 10.134 10.150 10.154
EXIT !	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.111 10.141 10.142 10.154 10.153 10.152 10.154 10.153	10.109 10.139 10.157 10.155 10.154 10.155 10.157	10.117 10.153 10.156 10.155 10.156 10.155 10.155	10.115 10.150 10.155 10.155 10.156 10.154 10.153 10.154	10.113 10.146 10.153 10.152 10.154 10.154 10.154	10.117 10.149 10.156 10.157 10.156 10.158 10.158	10.119 10.146 10.155 10.155 10.155 10.156 10.157	10.111 10.146 10.155 10.155 10.156 10.154 10.155 10.154	10.114 10.146 10.154 10.155 10.155 10.155 10.155
EXIT	BOUNDARY	LAYER RA	KE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.090 10.098 10.102 10.109 10.117 10.138 10.158	10.090 10.094 10.100 10.107 10.114 10.132 10.153	10.095 10.101 10.095 10.112 10.117 10.132 10 152 10.146	10.088 10.096 10.101 10.107 10.114 10.131 10.148 10.155	10.086 10.092 10.098 10.104 10.111 10.126 10.142 10.152	10.080 10.089 10.096 10.102 10.108 10.125 10.139 10.149	10.085 10.093 10.098 10.106 10.113 10.130 10.145 10.152	10.093 10.100 10.106 10.112 10.122 10.141 10.157 10.155	10.088 10.095 10.100 10.108 10.114 10.132 10.149

[Pressures are in newtons per square centimeter.]

(q) Vane B in corner 2; IGV setting, -10°; airflow, 68.98 kg/sec; readings 9-19

INLET	RAKE							
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0	0 10.146 10.214 10.216 10.210 10.205 10.204 10.209	45 10.136 10 10.212 10 10.214 10 10.214 10 10.214 10 10.218 10 10.220 10	RCUMFERENTI 90 135 .156 10.13 .222 10.21 .220 10.21 .217 10.21 .214 10.21 .218 10.21 .215 10.21 .213 10.21	180 8 10.101 6 10.208 6 10.211 10.211 4 10.207 3 10.212 1 10.212	N, DEG 225 10.163 10.219 10.220 10.217 10.222 10.222 10.222	270 10.134 10.220 10.219 10.216 10.215 10.217 10.215	315 10.180 10.219 10.217 10.212 10.209 10.213 10.211	AVG 10.144 10.216 10.216 10.214 10.213 10.215 10.214
INLET	BOUNDARY	r LAYER RAKE	E					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.993 10.046 10.090 10.127 10.164 10.211 10.216 10.217	10.039 10 10.084 10 10.124 10 10.164 10 10.216 10 10.208 10	9.971 9.97 1.027 10.02 1.075 10.07 1.119 10.11 1.161 10.15 1.215 10.21 1.219 10.22 1.220 10.22	9 9.992 8 10.037 8 10.075 5 10.112 8 10.190 5 10.215	9.956 10.009 10.058 10.099 10.134 10.200 10.214 10.215	9.934 9.989 10.038 10.079 10.120 10.186 10.217	10.026 10.079 10.118 10.151 10.188 10.226 10.226	9.973 10.026 10.072 10.111 10.150 10.208 10.218 10.219
EXIT F	RAKE							
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.103 10.214 10.225 10.221 10.216 10.214 10.219	10.199 10 10.216 10 10.216 10 10.213 10 10.211 10 10.212 10	0.079 10.07 0.206 10.19 0.222 10.21 0.219 10.21 0.216 10.21 0.216 10.21 0.214 10.21 0.212 10.21	7 10.178 8 10.221 7 10.221 5 10.220 5 10.223 4 10.223	10.064 10.192 10.214 10.214 10.213 10.214 10.214	10.064 10.196 10.219 10.217 10.214 10.217 10.217	10.099 10.214 10.218 10.215 10.210 10.215 10.213 10.216	10.074 10.200 10.219 10.217 10.215 10.216 10.216
EXIT	BOUNDARY	LAYER RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.985 10.011 10.036 10.063 10.090 10.159 10.205 10.214	9.992 10 10.016 10 10.041 10 10.069 10 10.141 10 10.192 10	9.994 9.96 9.019 9.99 9.046 10.02 9.073 10.04 9.101 10.07 9.1175 10.14 9.219 10.20 9.226 10.21	9.984 0 10.007 4 10.028 2 10.053 5 10.108 0 10.178	9.972 9.998 10.019 10.042 10.088 10.137 10.196 10.217	9.980 10.001 10.022 10.046 10.079 10.144 10.204 10.224	9.984 10.008 10.033 10.059 10.087 10.161 10.208 10.216	9.976 10.001 10.025 10.050 10.080 10.146 10.200 10.216

[Pressures are in newtons per square centimeter.]

(r) Vane B in corner 2; IGV setting, -10° ; airflow, 35.35 kg/sec; readings 20-31

INLET RAKE

10.0 1 15.0 2 20.0 3 30.0 1 50.0 1 70.0 1	0 45 10.132 10.1 10.150 10.1 10.150 10.1 10.147 10.1 10.147 10.1 10.147 10.1 10.147 10.1 10.147 10.1	90 28 10.141 50 10.162 52 10.161 53 10.159 52 10.168 54 10.160 52 10.161 53 10.158	TERENTIAL 135 10.133 10.157 10.158 10.158 10.158 10.158 10.159	LOCATION 180 10.121 10.150 10.150 10.149 10.148 10.150 10.150 10.149	N, DEG 225 10.133 10.152 10.154 10.153 10.151 10.155 10.155	270 10.138 10.160 10.161 10.159 10.160 10.161 10.159	315 10.146 10.159 10.158 10.157 10.156 10.159 10.158	AVG 10.134 10.155 10.155 10.154 10.155 10.155
2.0 3.0 4.0 5.0 7.5 10.0	10.094 10.0 10.108 10.1 10.121 10.1 10.131 10.1 10.143 10.1 10.157 10.1 10.162 10.1 KE	09 10.097 22 10.110 32 10.121 43 10.132 58 10.150 50 10.151	10.083 10.098 10.113 10.124 10.135 10.153 10.155	10.090 10.104 10.117 10.128 10.137 10.156 10.161 10.160	10.088 10.103 10.116 10.126 10.136 10.155 10.160 10.160	10.071 10.086 10.099 10.110 10.121 10.143 10.149 10.149	10.093 10.107 10.120 10.131 10.141 10.155 10.153 10.154	10.087 10.102 10.115 10.125 10.136 10.153 10.156 10.156
10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.117	10.157 10.161 10.160 48 10.159 49 10.160 50 10.160 49 10.160	10.118 10.153 10.161 10.161 10.161 10.160 10.161	10.107 10.139 10.154 10.153 10.154 10.155 10.153	10.107 10.141 10.150 10.150 10.150 10.151 10.151	10.117 10.154 10.161 10.160 10.160 10.161 10.160	10.123 10.157 10.161 10.161 10.158 10.159 10.158	10.115 10.150 10.157 10.156 10.155 10.156 10.156
2.0 3.0 4.0 5.0 7.5 10.0	10.096 10.0 10.103 10.1 10.109 10.1 10.115 10.1 10.123 10.1 10.142 10.1 10.155 10.1 10.161 10.1	00 10.096 07 10.102 14 10.111 22 10.117 41 10.137 56 10.151	10.083 10.090 10.096 10.103 10.111 10.129 10.144 10.149	10.091 10.098 10.103 10.109 10.119 10.133 10.151	10.093 10.099 10.105 10.110 10.131 10.136 10.152 10.159	10.086 10.091 10.098 10.104 10.112 10.129 10.146 10.154	10.085 10.092 10.097 10.104 10.112 10.130 10.144 10.148	10.089 10.096 10.102 10.109 10.118 10.135 10.150

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

INLET	RAKE								
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0	0 10.168 10.242 10.247 10.239 10.237 10.234 10.241	45 10.146 10.241 10.245 10.244 10.239 10.243 10.249	CIRCUMF 90 10.169 10.255 10.257 10.249 10.246 10.247 10.246	ERENTIAL 135 10.147 10.250 10.251 10.249 10.248 10.245 10.244 10.247	LOCATIO 180 10.111 10.245 10.244 10.243 10.236 10.246 10.246	N, DEG 225 10.167 10.249 10.251 10.247 10.251 10.249 10.247	270 10.136 10.251 10.249 10.245 10.244 10.248 10.244	315 10.201 10.249 10.247 10.243 10.237 10.245 10.241	AVG 10.156 10.248 10.249 10.245 10.245 10.245 10.245
INLET	BOUNDARY	LAYER RA	KE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.947 10.024 10.085 10.139 10.198 10.246 10.250 10.248	9.919 9.991 10.050 10.108 10.171 10.230 10.238 10.238	9.936 10.008 10.068 10.125 10.190 10.246 10.255 10.254	9.917 9.992 10.060 10.115 10.164 10.247 10.253 10.252	9.881 9.953 10.011 10.063 10.113 10.216 10.249 10.248	9.906 9.984 10.050 10.106 10.155 10.238 10.249 10.250	9.883 9.957 10.020 10.076 10.127 10.229 10.248 10.248	9.976 10.053 10.111 10.165 10.219 10.253 10.251 10.248	9.921 9.995 10.057 10.112 10.167 10.238 10.249 10.248
EXIT	RAKE								
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.094 10.241 10.252 10.247 10.241 10.237 10.246 10.249	10.048 10.222 10.248 10.248 10.244 10.239 10.248 10.243	10.072 10.244 10.256 10.253 10.249 10.248 10.246	10.046 10.230 10.254 10.253 10.249 10.246 10.245	10.015 10.196 10.249 10.249 10.245 10.250 10.252	10.057 10.224 10.249 10.246 10.246 10.251 10.245	10.047 10.221 10.250 10.247 10.247 10.250 10.249 10.246	10.093 10.240 10.248 10.243 10.239 10.244 10.243	10.059 10.227 10.231 10.248 10.245 10.246 10.247
EXIT	BOUNDARY	LAYER RA	KE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.940 9.975 10.010 10.045 10.082 10.173 10.235	9.906 9.950 9.984 10.020 10.058 10.159 10.227 10.239	9.930 9.975 10.010 10.048 10.086 10.188 10.249 10.260	9.927 9.960 9.994 10.027 10.066 10.156 10.230 10.248	9.905 9.936 9.963 9.994 10.030 10.120 10.204 10.244	9.918 9.950 9.982 10.014 10.104 10.145 10.225 10.249	9.917 9.946 9.975 10.005 10.048 10.140 10.225 10.252	9.948 9.981 10.016 10.052 10.090 10.185 10.241 10.248	9.924 9.959 9.992 10.026 10.070 10.158 10.230 10.248

[Pressures are in newtons per square centimeter.]

(t) Vane B in corner 2; IGV setting, 0°; airflow, 73.99 kg/sec; readings 36-40

INLET RAKE					
% SPAN 5.0 10.173 10.0 10.242 15.0 10.243 20.0 10.237 30.0 10.233 50.0 10.231 70.0 10.237 90.0 10.240	CIRCUMFERENTIAL 90 135 10.147 10.170 10.142 10.240 10.253 10.243 10.242 10.252 10.243 10.243 10.246 10.241 10.237 10.244 10.241 10.241 10.244 10.232 10.245 10.243 10.234 10.243 10.240 10.239	LOCATION, DEG 180 225 10.100 10.168 10.232 10.245 10.235 10.246 10.233 10.243 10.229 10.245 10.241 10.247 10.241 10.245 10.240 10.244	270 10.134 10.246 10.245 10.243 10.242 10.245 10.241	315 10.191 10.241 10.239 10.235 10.232 10.238 10.233	AVG 10.153 10.243 10.243 10.240 10.238 10.240 10.240 10.241
INLET BOUNDAR	Y LAYER RAKE				
1.0 9.946 2.0 10.018 3.0 10.074 4.0 10.130 5.0 10.189 7.5 10.238 10.0 10.244 12.5 10.243	9.929 9.933 9.919 9.999 10.006 9.991 10.055 10.065 10.055 10.111 10.123 10.110 10.168 10.185 10.158 10.223 10.242 10.241 10.231 10.249 10.250 10.233 10.252 10.250	9.893 9.910 9.962 9.982 10.019 10.046 10.067 10.100 10.115 10.148 10.212 10.229 10.240 10.239 10.241 10.241	9.892 9.961 10.022 10.076 10.127 10.224 10.245 10.243	9.980 10.053 10.108 10.157 10.205 10.250 10.248 10.247	9.925 9.997 10.056 10.109 10.162 10.232 10.243
EXIT RAKE					
5.0 10.086 10.0 10.233 15.0 10.246 20.0 10.242 30.0 10.238 50.0 10.235 70.0 10.244 90.0 10.245	10.048 10.065 10.058 10.224 10.235 10.226 10.242 10.250 10.249 10.243 10.246 10.248 10.238 10.242 10.245 10.238 10.240 10.241 10.242 10.240 10.242 10.239 10.238 10.243	10.024 10.053 10.194 10.214 10.245 10.242 10.241 10.241 10.234 10.242 10.246 10.245 10.247 10.242 10.246 10.241	10.044 10.213 10.243 10.241 10.240 10.243 10.241 10.239	10.097 10.241 10.244 10.240 10.234 10.242 10.239 10.243	10.059 10.222 10.245 10.243 10.239 10.241 10.242
EXIT BOUNDARY	LAYER RAKE				
1.0 9.943 2.0 9.976 3.0 10.009 4.0 10.042 5.0 10.076 7.5 10.165 10.0 10.226 12.5 10.240	9.918 9.947 9.932 9.960 9.981 9.963 9.993 10.015 9.995 10.028 10.051 10.028 10.065 10.089 10.066 10.161 10.185 10.157 10.231 10.244 10.228 10.247 10.252 10.244	9.909 9.930 9.938 9.960 9.965 9.992 9.994 10.023 10.027 10.058 10.113 10.147 10.191 10.222 10.234 10.246	9.924 9.949 9.979 10.010 10.048 10.140 10.219 10.247	9.956 9.989 10.022 10.057 10.093 10.184 10.237 10.243	9.932 9.964 9.996 10.029 10.065 10.157 10.225

[Pressures are in newtons per square centimeter.]

(u) Vane B in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 8–18

INLET RAKE			
% SPAN 0 5.0 10.146 10.0 10.206 15.0 10.212 20.0 10.209 30.0 10.205 50.0 10.205 70.0 10.208 90.0 10.210	CIRCUMFERENT 90 13 10.141 10.157 10.1 10.209 10.222 10.2 10.210 10.221 10.2 10.212 10.217 10.2 10.215 10.217 10.2 10.217 10.217 10.2 10.217 10.217 10.2	35 180 225 134 10.103 10.159 215 10.208 10.219 214 10.210 10.221 212 10.210 10.217 212 10.204 10.221 210 10.212 10.220 210 10.213 10.218	270 315 AVG 10.142 10.181 10.145 10.221 10.218 10.215 10.220 10.215 10.215 10.218 10.210 10.213 10.217 10.207 10.212 10.217 10.213 10.213 10.215 10.210 10.214 10.218 10.212 10.213
INLET BOUNDAR	Y LAYER RAKE		
1.0 10.001 2.0 10.054 3.0 10.096 4.0 10.134 5.0 10.172 7.5 10.216 10.0 10.221 12.5 10.219	9.972 9.983 9.9 10.026 10.036 10.0 10.069 10.081 10.0 10.108 10.119 10.1 10.149 10.160 10.1 10.205 10.214 10.2 10.212 10.220 10.2 10.214 10.220 10.2	9.994 10.013 969 10.039 10.059 110 10.076 10.100 147 10.112 10.135 214 10.187 10.201 223 10.213 10.212	9.933 10.027 9.973 9.989 10.078 10.026 10.040 10.119 10.071 10.084 10.152 10.110 10.125 10.188 10.149 10.201 10.226 10.208 10.217 10.227 10.218 10.215 10.224 10.218
EXIT RAKE			
5.0 10.101 10.0 10.210 15.0 10.222 20.0 10.219 30.0 10.215 50.0 10.211 70.0 10.217 90.0 10.219	10.062 10.082 10.0 10.199 10.208 10.2 10.216 10.220 10.2 10.214 10.218 10.2 10.213 10.214 10.2 10.211 10.214 10.2 10.212 10.214 10.2 10.209 10.212 10.2	201 10.172 10.191 221 10.215 10.214 221 10.217 10.213 218 10.216 10.213 217 10.220 10.214 215 10.221 10.214	10.061 10.100 10.073 10.192 10.215 10.198 10.216 10.220 10.218 10.218 10.217 10.217 10.213 10.211 10.214 10.217 10.215 10.215 10.215 10.214 10.215 10.215 10.217 10.215
EXIT BOUNDARY	LAYER RAKE		
1.0 9.981 2.0 10.006 3.0 10.032 4.0 10.057 5.0 10.084 7.5 10.152 10.0 10.201 12.5 10.213	9.965 9.995 9.9 9.997 10.019 9.9 10.021 10.045 10.0 10.045 10.071 10.0 10.072 10.099 10.0 10.141 10.171 10.1 10.195 10.216 10.2 10.210 10.225 10.3	994 9.983 10.001 920 10.004 10.024 947 10.026 10.048 974 10.050 10.095 147 10.115 10.141 201 10.174 10.197	9.976 9.984 9.976 9.997 10.010 10.001 10.018 10.035 10.025 10.040 10.062 10.050 10.072 10.091 10.080 10.136 10.164 10.146 10.196 10.211 10.199 10.221 10.217 10.215

TABLE V.—Continued. TOTAL-PRESSURE DISTRIBUTION FOR DIFFUSER

[Pressures are in newtons per square centimeter.]

(v) Vane B in corner 2; IGV setting, 0°; airflow, 56.55 kg/sec; readings 32-35

INLET	RAKE						
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.155 10.190 10.191 10.187 10.184 10.185 10.187	45 10.130 10 10.184 10 10.185 10 10.184 10 10.184 10 10.185 10	90 135 .141 10.137 .188 10.191 .189 10.195 .186 10.195 .184 10.193 .187 10.191 .186 10.189	LOCATION, DEG 180 225 10.117 10.138 10.188 10.184 10.189 10.186 10.189 10.183 10.188 10.185 10.192 10.186 10.190 10.184 10.190 10.183	270 10.129 10.190 10.190 10.186 10.185 10.187 10.185	315 10.170 10.195 10.193 10.188 10.187 10.189 10.189	AVG 10.140 10.189 10.190 10.188 10.186 10.188 10.187
INLET	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.025 10.064 10.095 10.122 10.150 10.186 10.188 10.188	10.071 10 10.101 10 10.127 10 10.155 10 10.193 10 10.197 10	.102 10.079 .130 10.107 .158 10.133 .192 10.180 .193 10.188	9.996 10.025 10.032 10.061 10.064 10.093 10.092 10.120 10.116 10.144 10.168 10.187 10.185 10.194 10.187 10.196	10.007 10.043 10.075 10.101 10.128 10.179 10.192	10.041 10.077 10.107 10.132 10.158 10.186 10.188 10.188	10.021 10.056 10.089 10.116 10.143 10.184 10.191
EXIT	RAKE						
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.099 10.179 10.186 10.183 10.181 10.181 10.184	10.180 10 10.193 10 10.193 10 10.190 10 10.189 10 10.190 10	1.189 10.173 1.197 10.190 1.195 10.189 1.194 10.188 1.194 10.187 1.193 10.185	10.065	10.099 10.182 10.196 10.194 10.192 10.194 10.195 10.193	10.103 10.184 10.187 10.184 10.181 10.186 10.185	10.093 10.178 10.191 10.189 10.188 10.188 10.188
EXIT	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.041 10.057 10.074 10.092 10.109 10.153 10.188 10.194	10.032 10 10.050 10 10.069 10 10.097 10 10.141 10 10.180 10	0.038 10.051 0.057 10.067 0.076 10.083 0.097 10.102 0.149 10.145	10.028	10.011 10.025 10.041 10.058 10.078 10.127 10.171 10.188	10.043 10.060 10.078 10.095 10.113 10.160 10.189 10.194	10.025 10.042 10.059 10.076 10.099 10.142 10.180 10.191

TABLE V.—Continued. TOTAL-PRESSURE DISTRIBUTION FOR DIFFUSER

[Pressures are in newtons per square centimeter.]

(w) Vane B in corner 2; IGV setting, 0°; airflow, 35.15 kg/sec; readings 22-29

INLET	RAKE						
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0	0 10.133 10.151 10.153 10.151 10.150 10.151 10.151	CIRCU 45 90 10.134 10.154 10.155 10.154 10.155 10.156 10.156 10.155 10.155 10.155 10.155	6 10.157 6 10.157 6 10.157 4 10.155 5 10.156 5 10.156	LOCATION, DEG 180 225 10.125 10.13 10.153 10.15 10.153 10.15 10.153 10.15 10.151 10.15 10.154 10.15 10.153 10.15 10.153 10.15	10.157 10.156 10.156 10.154 10.154 10.156 10.155	315 10.143 10.157 10.156 10.155 10.154 10.156 10.156	AVG 10.133 10.155 10.155 10.154 10.153 10.155 10.155
INLET	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.092 10.107 10.119 10.129 10.140 10.157 10.157	10.090 10.08 10.106 10.10 10.117 10.11 10.128 10.12 10.139 10.13 10.155 10.15 10.157 10.15 10.159 10.15	3 10.099 4 10.113 5 10.123 7 10.134 3 10.151 5 10.155	10.084 10.08 10.100 10.09 10.112 10.11 10.123 10.11 10.133 10.12 10.152 10.15 10.157 10.15 10.156 10.15	7 10.093 0 10.105 9 10.116 9 10.127 0 10.147 6 10.153	10.096 10.110 10.122 10.132 10.143 10.156 10.156	10.087 10.102 10.114 10.124 10.135 10.152 10.156 10.156
EXIT	RAKE						
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.121 10.152 10.157 10.155 10.154 10.153 10.155 10.156	10.112 13.12 10.148 10.15 10.153 10.15 10.153 10.15 10.151 10.15 10.154 10.15 10.153 10.15 10.152 10.15	5 10.148 9 10.156 7 10.156 6 10.157 8 10.156 8 10.155	10.111 10.11 10.147 10.14 10.158 10.15 10.157 10.15 10.157 10.15 10.158 10.15 10.158 10.15 10.156 10.15	4 10.151 4 10.160 3 10.157 3 10.157 4 10.159 4 10.157	10.120 10.152 10.156 10.155 10.153 10.155 10.154 10.155	10.115 10.150 10.157 10.156 10.155 10.156 10.156
EXIT	BOUNDARY	LAYER RAKE					
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.094 10.100 10.106 10.113 10.120 10.139 10.153	10.089 10.09 10.098 10.09 10.104 10.10 10.111 10.11 10.119 10.12 10.139 10.13 10.154 10.15 10.158 10.15	9 10.094 5 10.101 3 10.106 0 10.116 9 10.133 4 10.149	10.092 10.09 10.098 10.09 10.104 10.10 10.109 10.10 10.118 10.13 10.134 10.13 10.149 10.15 10.158 10.15	5 10.093 2 10.098 9 10.104 1 10.114 3 10.132 0 10.148	10.090 10.096 10.104 10.111 10.117 10.137 10.151 10.154	10.090 10.097 10.103 10.109 10.119 10.136 10.151

TABLE V.—Continued. TOTAL-PRESSURE DISTRIBUTION FOR DIFFUSER

[Pressures are in newtons per square centimeter.]

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings 10-17

INLET	RAKE							
% SPAN 5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	0 10.152 10.212 10.215 10.208 10.204 10.202 10.209 10.209	CIRCUMF 90 10.143 10.164 10.210 10.227 10.213 10.225 10.216 10.222 10.215 10.219 10.216 10.222 10.216 10.222 10.216 10.222 10.218 10.207	ERENTIAL 135 10.132 10.212 10.211 10.210 10.209 10.209 10.208 10.210	180 10.101 10.205 10.209 10.209 10.206 10.212	DEG 225 10.150 10.216 10.220 10.217 10.219 10.219 10.218 10.217	270 10.149 10.225 10.224 10.222 10.222 10.221 10.222	315 10.176 10.215 10.212 10.207 10.204 10.210 10.208 10.209	AVG 10.146 10.215 10.216 10.214 10.212 10.214 10.214
INLET	BOUNDARY	LAYER RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	10.007 10.062 10.106 10.141 10.178 10.220 10.225 10.222	9.975 9.974 10.031 10.030 10.075 10.076 10.115 10.117 10.155 10.159 10.209 10.210 10.213 10.215 10.213 10.216	9.973 10.026 10.073 10.114 10.151 10.213 10.221	10.048 10.086 10.122 10.196 10.220	9.955 10.011 10.057 10.100 10.135 10.199 10.210 10.211	9.932 9.988 10.036 10.079 10.119 10.194 10.214	10.019 10.072 10.114 10.149 10.184 10.222 10.223	9.973 10.028 10.073 10.112 10.150 10.208 10.218 10.218
EXIT	RAKE							
5.0 10.0 15.0 20.0 30.0 50.0 70.0 90.0	10.103 10.212 10.222 10.219 10.214 10.211 10.219	10.064 10.078 10.201 10.203 10.215 10.216 10.214 10.216 10.210 10.211 10.210 10.212 10.211 10.211 10.208 10.209	10.078 10.206 10.225 10.225 10.222 10.221 10.221	10.173	10.067 10.192 10.213 10.211 10.212 10.214 10.212	10.059 10.190 10.213 10.212 10.210 10.213 10.212 10.211	10.103 10.218 10.226 10.221 10.215 10.220 10.219 10.222	10.075 10.199 10.219 10.217 10.214 10.215 10.216
EXIT	BOUNDARY	LAYER RAKE						
1.0 2.0 3.0 4.0 5.0 7.5 10.0	9.980 10.005 10.031 10.056 10.083 10.152 10.201 10.212	9.970 9.994 10.001 10.019 10.025 10.044 10.049 10.071 10.076 10.098 10.144 10.171 10.196 10.216 10.210 10.225	9.973 9.999 10.023 10.049 10.076 10.146 10.198 10.211	9.958 9.981 10.002 10.024 10.048 10.116 10.177 10.206	9.983 10.008 10.031 10.055 10.102 10.147 10.205 10.224	9.981 10.002 10.023 10.047 10.078 10.143 10.201 10.221	9.981 10.006 10.032 10.059 10.087 10.157 10.203 10.212	9.977 10.003 10.027 10.051 10.081 10.147 10.200 10.215

TABLE V.—Concluded. TOTAL-PRESSURE DISTRIBUTION FOR DIFFUSER

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10°; airflow, 35.36 kg/sec; readings 21-30

INLET RAKE				
% SPAN 5.0 10.142 10.0 10.159 15.0 10.160 20.0 10.158 30.0 10.158 50.0 10.157 70.0 10.158 90.0 10.159	CIRCUMFERENTIAL 90 135 10.123 10.142 10.130 10.145 10.163 10.155 10.146 10.163 10.154 10.146 10.161 10.153 10.144 10.159 10.153 10.147 10.161 10.153 10.146 10.161 10.153 10.146 10.161 10.153	LOCATION, DEG 180 225 10.133 10.126 10.159 10.146 10.159 10.147 10.161 10.146 10.160 10.146 10.161 10.145 10.159 10.145 10.160 10.146	270 315 10.135 10.14 10.160 10.15 10.162 10.15 10.161 10.15 10.163 10.15 10.163 10.15 10.160 10.15 10.161 10.15	10.134 55 10.155 55 10.156 53 10.155 51 10.154 54 10.155 53 10.155
INLET BOUNDAR	Y LAYER RAKE			
1.0 10.097 2.0 10.111 3.0 10.123 4.0 10.122 5.0 10.144 7.5 10.160 10.0 10.163 12.5 10.162	10.088 10.093 10.076 10.103 10.109 10.089 10.114 10.121 10.103 10.125 10.132 10.113 10.137 10.143 10.122 10.153 10.159 10.141 10.156 10.161 10.146 10.156 10.160 10.147	10.089 10.081 10.104 10.097 10.118 10.109 10.128 10.118 10.138 10.129 10.157 10.149 10.162 10.154 10.161 10.154	10.082 10.08 10.097 10.10 10.111 10.11 10.120 10.12 10.131 10.13 10.153 10.14 10.159 10.14	10.101 14 10.114 24 10.123 33 10.135 47 10.152 47 10.156
EXIT RAKE				
5.0 10.111 10.0 10.143 15.0 10.147 20.0 10.147 30.0 10.145 50.0 10.144 70.0 10.147 90.0 10.146	10.116 10.118 10.120 10.153 10.153 10.155 10.160 10.157 10.162 10.160 10.155 10.162 10.159 10.155 10.162 10.159 10.156 10.161 10.160 10.155 10.161 10.158 10.155 10.161	10.104 10.117 10.137 10.151 10.148 10.160 10.147 10.160 10.147 10.161 10.148 10.161 10.147 10.160 10.147 10.160	10.114 10.12 10.148 10.15 10.157 10.16 10.156 10.16 10.155 10.15 10.156 10.16 10.155 10.15	59 10.150 52 10.157 50 10.156 59 10.155 51 10.156 59 10.156
EXIT BOUNDARY	LAYER RAKE			
1.0 10.091 2.0 10.098 3.0 10.105 4.0 10.112 5.0 10.119 7.5 10.138 10.0 10.150 12.5 10.156	10.092 10.083 10.093 10.101 10.089 10.100 10.108 10.096 10.106 10.115 10.103 10.112 10.122 10.112 10.121 10.142 10.131 10.137 10.158 10.145 10.152 10.162 10.148 10.157	10.087 10.094 10.095 10.100 10.099 10.106 10.105 10.112 10.115 10.133 10.131 10.137 10.147 10.153 10.155 10.162	10.080 10.09 10.085 10.10 10.091 10.11 10.098 10.11 10.106 10.12 10.123 10.14 10.140 10.15 10.147 10.16	10.097 10.103 15.10.109 23.10.119 41.10.135 56.10.150

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, -10° ; airflow, 69.09 kg/sec; readings 281-290

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.067	10.183	10.203	10.225	10.171
30	10.099	10.200	10.236	10.221	10.214
60	9.917	10.186	10.209	10.239	10.139
90	9.871	10.228	10.181	10.045	9.967
120	10.074	10.191	10.233	10.238	10.090
150	10.103	10.205	10.237	10.206	10.176
180	10.076	10.173	10.183	10.218	10.177
210	9.865	10.069	10.202	10.223	10.130
240	10.037	10.131	10.199	10.194	10.124
270	10.053	10.151	10.170	10.181	9.975
300	10.053	10.157	10.231	10.199	10.115
330	9.876	10.068	10.183	10.233	10.172
AVG	10.008	10.162	10.206	10.202	10.121

CIRCUM								
LOCATION			PE	RCENT SPAN	FROM TIF	•		
DEG.	5	10	15	20	30	50	70	90
15	10.089	10.146	10.106	10.142	10.233	10.228	10.210	10.198
45	10.092	10.130	10.111	10.168	10.237	10.232	10.208	10.175
75	9.931	9.953	9.984	10.119	10.233	10.178	10.202	10.067
105	10.043	10.083	10.146	10.222	10.193	10.240	10.198	10.120
135	10.112	10.112	10.133	10.168	10.236	10.192	10.208	10.161
165	10.045	10.107	10.132	10.159	10.188	10.228	10.184	10.162
195	9.909	9.957	10.017	10.075	10.167	10.223	10.220	10.146
225	9.970	9.984	9.990	10.004	10.052	10.180	10.214	10.165
255	10.010	10.037	10.063	10.092	10.162	10.172	10.169	10.128
285	10.067	10.106	10.140	10.164	10.193	10.185	10.220	10.117
315	9.944	9.947	9.951	9.965	10.026	10.160	10.217	10.180
345	9.975	10.038	10.099	10.150	10.216	10.237	10.233	10.146
AVG	10.016	10.050	10.073	10.119	10.178	10.205	10.207	10.147

[Pressures are in newtons per square centimeter.]

(b) Vane A in corner 2; IGV setting, 0°; airflow, 82.30 kg/sec; readings 299-302

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.039	10.204	10.230	10.264	10.184
30	10.084	10.235	10.282	10.252	10.245
60	9.833	10.214	10.241	10.285	10.144
90	9.763	10.270	10.202	10.003	9.898
120	10.044	10.228	10.269	10.284	10.072
150	10.092	10.239	10.284	10.242	10.205
180	10.058	10.195	10.209	10.254	10.198
210	9.747	10.043	10.234	10.260	10.122
240	9.993	10.123	10.216	10.219	10.117
270	10.017	10.154	10.190	10.200	9.914
300	10.011	10.171	10.273	10.228	10.101
330	9.766	10.044	10.214	10.281	10.191
AVG	9.954	10.177	10.237	10.231	10.116

CIRCUM								
LOCATION			PEF	RCENT SPAN	FROM TIF	•		
DEG.	5	10	15	20	30	50	70	90
15	10.071	10.129	10.102	10.180	10.248	10.256	10.284	10.192
45	9.908	9.997	10.026	10.168	10.273	10.216	10.266	10.035
75	9.916	10.004	10.023	10.164	10.270	10.218	10.245	10.037
105	10.080	10.075	10.086	10.135	10.224	10.226	10.251	10.173
135	10.068	10.132	10.152	10.184	10.216	10.277	10.249	10.203
165	10.064	10.130	10.150	10.183	10.215	10.269	10.247	10.186
195	9.880	9.892	9.898	9.914	9.977	10.163	10.211	10.182
225	10.006	10.034	10.071	10.111	10.199	10.229	10.211	10.102
255	9.971	10.004	10.038	10.078	10.168	10.256	10.224	10.105
285	9.878	9.888	9.892	9.910	9.995	10.194	10.270	10.171
315	9.883	9.980	10.070	10.141	10.202	10.246	10.275	10.158
345	9.888	9.981	10.075	10.143	10.203	10.245	10.275	10.173
AVG	9.968	10.020	10.049	10.109	10.182	10.233	10.251	10.143

[Pressures are in newtons per square centimeter.]

(c) Vane A in corner 2; IGV setting, 0° ; airflow, 76.18 kg/sec; readings 295–298

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.051	10.193	10.219	10.248	10.181
30	10.086	10.220	10.261	10.246	10.232
60	9.872	10.203	10.225	10.265	10.140
90	9.808	10.252	10.191	10.019	9.931
120	10.058	10.210	10.258	10.264	10.080
150	10.096	10.224	10.264	10.224	10.186
180	10.064	10.185	10.197	10.239	10.190
210	9.796	10.049	10.218	10.246	10.129
240	10.013	10.127	10.212	10.209	10.120
270	10.031	10.152	10.181	10.194	9.941
300	10.033	10.163	10.256	10.215	10.108
330	9.816	10.052	10.202	10.263	10.184
AVG	9.977	10.169	10.224	10.219	10.119

CIRCUM								
LOCATION			PER	CENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.077	10.137	10.097	10.129	10.250	10.196	10.263	10.208
45	10.070	10.118	10.082	10.163	10.244	10.259	10.262	10.180
75	9.936	9.993	9.992	10.127	10.257	10.203	10.249	10.051
105	10.056	10.098	10.155	10.237	10.223	10.268	10.254	10.113
135	10.084	10.062	10.091	10.141	10.200	10.199	10.244	10.160
165	10.075	10.130	10.148	10.177	10.202	10.258	10.231	10.194
195	9.873	9.939	10.018	10.088	10.175	10.203	10.201	10.139
225	9.907	9.920	9.928	9.945	10.006	10.179	10.204	10.184
255	10.018	10.046	10.076	10.113	10.190	10.207	10.201	10.105
285	10.052	10.100	10.139	10.169	10.212	10.190	10.230	10.121
315	9.906	9.916	9.921	9.940	10.010	10.175	10.229	10.143
345	9.914	9.998	10.079	10.142	10.193	10.233	10.263	10.159
AVG	9.997	10.038	10.061	10.114	10.180	10.214	10.236	10.146

[Pressures are in newtons per square centimeter.]

(d) Vane A in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 279-289

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.066	10.180	10.202	10.225	10.171
30	10.096	10.203	10.237	10.222	10.213
60	9.923	10.187	10.207	10.240	10.137
90	9.873	10.228	10.180	10.044	9.969
120	10.071	10.195	10.234	10.239	10.089
150	10.103	10.205	10.238	10.206	10.175
180	10.077	10.173	10.187	10.220	10.178
210	9.859	10.063	10.200	10.224	10.130
240	10.036	10.130	10.200	10.195	10.124
270	10.053	10.151	10.172	10.182	9.973
300	10.055	10.158	10.231	10.198	10.114
330	9.875	10.067	10.186	10.234	10.173
AVG	10.007	10.162	10.206	10.202	10.121

CIRCUM								
LOCATION			PEF	RCENT SPAN	I FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.082	10.153	10.100	10.127	10.224	10.182	10.237	10.196
45	10.068	10.117	10.090	10.155	10.224	10.226	10.239	10.174
75	9.985	10.022	10.044	10.151	10.236	10.192	10.224	10.069
105	10.068	10.103	10.149	10.214	10.203	10.240	10.228	10.116
135	10.096	10.088	10.101	10.141	10.191	10.186	10.215	10.160
165	10.083	10.129	10.142	10.164	10.188	10.234	10.210	10.184
195	9.919	9.974	10.037	10.091	10.163	10.187	10.184	10.140
225	9.960	9.969	9.975	9.988	10.034	10.173	10.192	10.175
255	10.028	10.053	10.080	10.108	10.174	10.198	10.189	10.112
285	10.067	10.106	10.136	10.162	10.196	10.171	10.210	10.123
315	9.951	9.960	9.965	9.979	10.042	10.174	10.215	10.148
345	9.960	10.028	10.092	10.141	10.181	10.214	10.239	10.155
AVG	10.022	10.058	10.076	10.119	10.171	10.198	10.215	10.146

[Pressures are in newtons per square centimeter.]

(e) Vane A in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 291-294

IGV INLET RAKE

CIRCUM					
LOCATION		PERO	CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.116	10.140	10.150	10.154	10.140
30	10.123	10.148	10.157	10.152	10.151
60	10.081	10.146	10.149	10.158	10.135
90	10.073	10.155	10.143	10.113	10.093
120	10.113	10.146	10.155	10.157	10.122
150	10.123	10.149	10.157	10.149	10.143
180	10.118	10.141	10.144	10.154	10.143
210	10.067	10.116	10.148	10.154	10.133
240	10.108	10.130	10.147	10.148	10.132
270	10.112	10.138	10.143	10.144	10.089
300	10.110	10.137	10.155	10.149	10.129
330	10.071	10.116	10.145	10.157	10.142
AVG	10.101	10.138	10.149	10.149	10.129

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIF	•		
DEG.	5	10	15	20	30	50	70	90
15	10.120	10.131	10.123	10.138	10.157	10.159	10.159	10.142
45	10.091	10.106	10.196	10.130	10.155	10.144	10.151	10.118
75	10.091	10.106	10.107	10.131	10.153	10.145	10.151	10.118
105	10.119	10.119	10.122	10.130	10.149	10.148	10.151	10.138
135	10.119	10.129	10.132	10.136	10.146	10.157	10.149	10.141
165	10.117	10.127	10.131	10.135	10.144	10.156	10.148	10.139
195	10.091	10.094	10.096	10.099	10.111	10.141	10.147	10.144
225	10.098	10.107	10.114	10.122	10.138	10.148	10.143	10.127
255	10.098	10.106	10.112	10.120	10.136	10.150	10.146	10.129
285	10.088	10.091	10.092	10.097	10.112	10.141	10.149	10.136
315	10.090	10.105	10.122	10.132	10.142	10.150	10.155	10.140
345	10.089	10.105	10.121	10.132	10.141	10.149	10.154	10.140
AVG	10.101	10.110	10.115	10.125	10.140	10.149	10.150	10.134

[Pressures are in newtons per square centimeter.]

(f) Vane A in corner 2; IGV setting, 10°; airflow, 68.41 kg/sec; readings 280-288

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.066	10.179	10.201	10.224	10.171
30	10.094	10.204	10.236	10.223	10.213
60	9.926	10.188	10.206	10.240	10.139
90	9.872	10.228	10.180	10.043	9.969
120	10.066	10.199	10.235	10.238	10.089
150	10.106	10.203	10.236	10.206	10.176
180	10.074	10.172	10.191	10.222	10.177
210	9.857	10.062	10.198	10.225	10.129
240	10.036	10.131	10.201	10.196	10.124
270	10.054	10.151	10.171	10.181	9.974
300	10.054	10.157	10.230	10.199	10.114
330	9.878	10.068	10.187	10.233	10.173
AVG	10.007	10.162	10.206	10.203	10.121

CIRCUM LOCATION			p.r.r	OCENT CDAN	COOM TID			
			L EL	RCENT SPAN				
DEG.	5	10	15	20	30	50	70	90
15	10.063	10.149	10.120	10.142	10.178	10.228	10.185	10.155
45	10.080	10.134	10.121	10.175	10.187	10.182	10.212	10.177
75	9.982	10.073	10.103	10.176	10.203	10.220	10.224	10.078
105	10.010	9.977	10.013	10.132	10.238	10.211	10.236	10.104
135	10.087	10.085	10.086	10.130	10.227	10.202	10.239	10.140
165	10.099	10.115	10.111	10.142	10.232	10.187	10.241	10.202
195	9.921	9.973	10.034	10.088	10.166	10.219	10.232	10.169
225	9.943	9.951	9.959	9.972	10.019	10.147	10.227	10.192
255	10.049	10.075	10.105	10.133	10.185	10.209	10.199	10.102
285	10.048	10.088	10.120	10.150	10.188	10.161	10.179	10.121
315	9.963	9.972	9.982	9.995	10.050	10.179	10.192	10.135
345	9.947	10.017	10.075	10.121	10.192	10.205	10.195	10.169
AVG	10.016	10.051	10.069	10.113	10.172	10.196	10.213	10.145

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0°; airflow, 82.13 kg/sec; readings 307-310

IGV INLET RAKE

CIRCUM					
LOCATION		PER(CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.034	10.214	10.257	10.249	10.186
30	10.073	10.259	10.178	10.249	10.133
60	9.888	10.251	10.261	10.187	10.080
90	9.583	10.181	10.240	10.132	9.903
120	10.073	10.266	10.244	10.177	10.079
150	10.077	10.264	10.195	10.262	10.097
180	10.050	10.238	10.243	10.248	10.203
210	9.801	10.024	10.187	10.252	10.134
240	10.102	10.192	10.224	10.242	10.106
270	10.068	10.17.	10.175	10.192	9.992
30 0	10.057	10.211	10.222	10.239	10.094
330	9.792	10.044	10.234	10.206	10.213
AVG	9.967	10.193	10.222	10.220	10.102

CIRCUM LOCATION			PE	RCENT SPAN	FROM TIE	P		
DEG.	5	10	15	20	30	50	70	90
15	10.040	10.091	10.054	10.137	10.258	10.178	10.195	10.144
45	9.732	9.762	9.827	10.041	10.259	10.263	10.192	10.037
75	9.745	9.770	9.819	10.026	10.259	10.262	10.211	10.024
105	10.061	10.048	10.049	10.109	10.260	10.242	10.227	10.074
135	10.046	10.090	10.099	10.159	10.263	10.207	10.223	10.188
165	10.044	10.090	10.099	10.159	10.264	10.208	10.232	10.181
195	10.000	9.980	9.964	9.973	10.067	10.224	10.259	10.178
225	9.978	10.013	10.046	10.085	10.176	10.218	10.229	10.086
255	9.971	10.007	10.039	10.077	10.166	10.213	10.234	10.086
285	9.979	9.973	9.966	9.983	10.078	10.253	10.218	10.148
315	9.878	9.955	10.035	10.117	10.236	10.206	10.202	10.160
345	9.878	9.954	10.038	10.118	10.235	10.205	10.207	10.205
AVG	9.946	9.978	10.003	10.082	10.210	10.223	10.219	10.126

[Pressures are in newtons per square centimeter.]

(h) Vane A2 in corner 2; IGV setting, 0°; airflow, 76.09 kg/sec; readings 303-306

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.046	10.204	10.240	10.235	10.179
30	10.078	10.242	10.173	10.235	10.135
60	9.920	10.240	10.245	10.180	10.083
90	9.651	10.172	10.226	10.130	9.936
120	10.081	10.249	10.230	10.170	10.086
150	10.086	10.248	10.188	10.245	10.102
180	10.062	10.224	10.228	10.234	10.194
210	9.843	10.036	10.179	10.230	10.136
240	10.107	10.185	10.211	10.228	10.111
270	10.077	10.166	10.171	10.184	10.010
300	10.068	10.200	10.209	10.225	10.100
330	9.833	10.055	10.224	10.194	10.204
AVG	9.988	10.185	10.210	10.208	10.106

CIRCUM								
LOCATION	4		PEF	RCENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.049	10.136	10.095	10.149	10.229	10.235	10.201	10.187
45	10.054	10.106	10.055	10.135	10.241	10.171	10.194	10.146
75	9.781	9.811	9.853	10.035	10.243	10.247	10.184	10.046
105	10.008	9.981	9.953	10.037	10.250	10.215	10.230	10.127
135	10.067	10.060	10.062	10.114	10.240	10.226	10.217	10.082
165	10.055	10.095	10.104	10.154	10.247	10.195	10.213	10.180
195	9.805	9.838	9.887	9.958	10.126	10.238	10.232	10.219
225	10.019	10.006	9.990	9.996	10.070	10.210	10.242	10.172
255	9.996	10.028	10.054	10.088	10.169	10.206	10.215	10.092
285	10.082	10.120	10.150	10.176	10.224	10.221	10.221	10.108
315	9.999	9.996	9.988	9.999	10.084	10.238	10.208	10.148
345	9.916	9.983	10.056	10.127	10.225	10.196	10.194	10.156
AVG	9.986	10.013	10.021	10.081	10.196	10.217	10.213	10.138

[Pressures are in newtons per square centimeter.]

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings 311-314

IGV INLET RAKE

CIRCUM					
LOCATION		PER	CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.063	10.189	10.220	10.214	10.167
30	10.088	10.222	10.164	10.214	10.136
60	9.959	10.218	10.225	10.171	10.093
90	9.756	10.163	10.209	10.133	9.974
120	10.085	10.225	10.210	10.162	10.090
150	10.094	10.226	10.176	10.222	10.112
180	10.074	10.205	10.201	10.214	10.180
210	9.899	10.054	10.169	10.216	10.138
240	10.110	10.175	10.192	10.210	10.117
270	10.088	10.162	10.166	10.175	10.033
300	10.078	10.185	10.191	10.208	10.108
330	9.893	10.071	10.208	10.185	10.188
AVG	10.016	10.175	10.194	10.194	10.111

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIE	P		
DEG.	5	10	15	20	30	50	70	90
15	10.060	10.130	10.100	10.143	10.213	10.223	10.184	10.175
45	10.67 0	10.109	10.080	10.137	10.223	10.165	10.182	10.145
75	9.834	9.876	9.943	10.105	10.220	10.223	10.170	10.060
105	10.038	10.001	9.976	10.049	10.225	10.197	10.213	10.127
135	10.083	10.074	10.077	10.124	10.226	10.210	10.204	10.096
165	10.066	10.096	10.102	10.143	10.221	10.181	10.193	10.168
195	9.872	9.900	9.941	10.000	10.129	10.214	10.213	10.206
225	10.039	10.027	10.020	10.027	10.085	10.195	10.225	10.170
255	10.014	10.041	10.064	10.092	10.158	10.189	10.197	10.098
285	10.094	10.121	10.147	10.170	10.211	10.202	10.203	10.116
315	10.027	10.022	10.019	10.031	10.094	10.219	10.196	10.149
345	9.949	10.002	10.062	10.117	10.201	10.183	10.178	10.145
AVG	10.012	10.033	10.044	10.095	10.184	10.200	10.196	10.138

[Pressures are in newtons per square centimeter.]

(j) Vane A2 in corner 2; IGV setting, 0°; airflow, 35.45 kg/sec; readings 315-318

IGV INLET RAKE

CTDCUM					
CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.116	10.145	10.153	10.152	10.138
30	10.119	10.153	10.139	10.152	10.134
60	10.090	10.153	10.155	10.140	10.121
90	10.048	10.141	10.153	10.133	10.094
120	10.115	10.153	10.149	10.137	10.120
150	10.122	10.154	10.141	10.155	10.132
180	10.118	10.145	10.151	10.151	10.140
210	10.076	10.112	10.140	10.151	10.134
240	10.125	10.141	10.145	10.150	10.131
270	10.122	10.139	10.141	10.142	10.107
300	10.118	10.142	10.144	10.150	10.127
330	10.075	10.116	10.151	10.144	10.145
AVG	10.104	10.141	10.147	10.146	10.127

CIRCUM LOCATION			PER	CENT SPAN	FROM TIP			
DEG.	5	10	15	20 71	30	50	70	90
15	10.117	10.138	10.119	10.130	10.152	10.139	10.146	10.136
45	10.055	10.074	10.087	10.124	10.154	10.155	10.141	10.112
75	10.056	10.076	10.087	10.127	10.156	10.157	10.134	10.115
105	10.116	10.114	10.114	10.123	10.153	10.151	10.147	10.124
135	10.112	10.120	10.122	10.131	10.153	10.143	10.147	10.143
165	10.116	10.123	10.125	10.137	10.156	10.146	10.151	10.141
195	10.111	10.109	10.106	10.106	10.120	10.144	10.155	10.142
225	10.102	10.109	10.114	10.120	10.134	10.144	10.147	10.126
255	10.103	10.110	10.116	10.122	10.138	10.147	10.149	10.128
285	10.106	10.106	10.105	10.106	10.123	10.153	10.146	10.136
315	10.091	10.104	10.117	10.130	10.148	10.145	10.144	10.134
345	10.093	10.105	10.120	10.130	10.150	10.147	10.147	10.145
AVG	10.098	10.107	10.111	10.124	10.145	10.148	10.146	10.132

[Pressures are in newtons per square centimeter.]

(k) Vane A3 in corner 2; IGV setting, $0\ensuremath{^\circ}\xspace$; airflow, 76.16 kg/sec; readings 327–330

IGV INLET RAKE

CIRCUM					
LOCATION		PERO	CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.056	10.181	10.205	10.243	10.196
30	10.086	10.214	10.260	10.239	10.225
60	9.853	1 0 .209	10.225	10.263	10.141
90	9.830	10.248	10.195	10.024	9.929
120	10.051	10.194	10.247	10.263	10.087
150	10.095	10.222	10.264	10.216	10.167
180	10.076	10.185	10.187	10.224	10.198
210	9.782	10.011	10.210	10.249	10.128
240	10.051	10.135	10.222	10.215	10.111
270	10.108	10.145	10.185	10.194	9.936
300	10.071	10.165	10.249	10.221	10.096
330	9.809	10.025	10.191	10.256	10.190
AVG	9.989	10.161	10.220	10.217	10.117

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIF	P		
DEG.	5	10	15	20	30	50	70	90
15	10.054	10.151	10.097	10.127	10.246	10.197	10.259	10.196
45	10.066	10.116	10.076	10.152	10.248	10.256	10.260	10.179
75	9.931	10.019	10.027	10.141	10.250	10.199	10.245	10.051
105	10.054	10.084	10.132	10.214	10.231	10.262	10.253	10.107
135	10.084	10.073	10.088	10.132	10.207	10.207	10.236	10.163
165	10.063	10.117	10.153	10.178	10.202	10.255	10.233	10.202
195	9.854	9.922	9.998	10.063	10.159	10.204	10.205	10.155
225	9.925	9.929	9.928	9.942	10.009	10.194	10.203	10.167
255	10.027	10.054	10.063	10.075	10.128	10.246	10.208	10.099
285	10.086	10.112	10.123	10.137	10.188	10.179	10.224	10.115
315	9.916	9.923	9.926	9.943	10.013	10.169	10.228	10.139
345	9.912	9.995	10.081	10.143	10.196	10.239	10.261	10.192
AVG	9.998	10.041	10.058	10.104	10.173	10.217	10.235	10.147

[Pressures are in newtons per square centimeter.]

(1) Vane A3 in corner 2; IGV setting, 0°; airflow, 69.19 kg/sec; readings 323-326

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.073	10.172	10.192	10.223	10.182
30	10.092	10.196	10.236	10.218	10.207
60	9.911	10.193	10.208	10.238	10.141
90	9.880	10.226	10.182	10.044	9.967
120	10.063	10.177	10.227	10.238	10.093
150	10.103	10.204	10.239	10.199	10.163
180	10.086	10.173	10.177	10.209	10.183
210	9.849	10.037	10.192	10.228	10.130
240	10.065	10.137	10.207	10.200	10.118
270	10.112	10.146	10.177	10.180	9.971
300	10.084	10.158	10.228	10.205	10.104
330	9.872	10.047	10.179	10.232	10.179
AVG	10.016	10.155	10.204	10.201	10.120

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.082	10.126	10.091	10.150	10.227	10.240	10.241	10.175
45	9.969	10.029	10.043	10.132	10.222	10.183	10.220	10.064
75	9.972	10.034	10.049	10.138	10.223	10.187	10.213	10.063
105	10.099	10.089	10.100	10.136	10.200	10.195	10.221	10.163
135	10.073	10.125	10.145	10.167	10.185	10.230	10.206	10.186
165	10.076	10.126	10.146	10.167	10.183	10.226	10.205	10.175
195	9.968	9.970	9.976	9.990	10.045	10.185	10.194	10.177
225	10.057	10.073	10.076	10.084	10.130	10.218	10.189	10.101
255	10.078	10.083	10.080	10.083	10.126	10.215	10.189	10.105
285	9.961	9.967	9.971	9.981	10.040	10.168	10.213	10.143
315	9.950	10.015	10.084	10.137	10.179	10.215	10.234	10.178
345	9.951	10.015	10.084	10.135	10.177	10.212	10.228	10.181
AVG	10.020	10.054	10.070	10.108	10.161	10.206	10.213	10.143

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0°; airflow, 35.51 kg/sec; readings 319-322

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.118	10.141	10.148	10.154	10.143
30	10.122	10.147	10.157	10.152	10.150
60	10.081	10.147	10.150	10.158	10.136
90	10.071	10.155	10.143	10.112	10.091
120	10.112	10.143	10.155	10.155	10.123
150	10.123	10.149	10.158	10.148	10.140
180	10.119	10.141	10.142	10.152	10.145
210	10.064	10.108	10.144	10.156	10.133
240	10.111	10.130	10.148	10.148	10.131
270	10.125	10.137	10.144	10.141	10.090
300	10.121	10.139	10.155	10.151	10.127
330	10.070	10.110	10.144	10.155	10.143
AVG	10.103	10.137	10.149	10.148	10.129

CIRCUM LOCATION			PEP	CENT SPAN	FROM TIP			
DEG.	5	10	15	20	30	50	70	90
15	10.114	10.145	10.123	10.128	10.150	10.143	10.153	10.143
45	10.119	10.137	10.121	10.135	10.155	10.158	10.158	10.142
75	10.091	10.115	10.110	10.131	10.154	10.144	10.152	10.116
105	10.110	10.115	10.125	10.143	10.146	10.155	10.150	10.126
135	10.118	10.119	10.123	10.130	10.150	10.148	10.151	10.138
165	10.116	10.128	10.133	10.137	10.144	10.155	10.147	10.144
195	10.075	10.088	10.103	10.114	10.134	10.144	10.144	10.134
225	10.092	10.094	10.095	10.099	10.110	10.144	10.148	10.144
255	10.117	10.119	10.118	10.119	10.129	10.150	10.145	10.127
285	10.113	10.119	10.120	10.124	10.138	10.141	10.149	10.129
315	10.091	10.092	10.094	10.096	10.110	10.142	10.149	10.135
345	10.089	10.104	10.119	10.132	10.142	10.150	10.155	10.147
AVG	10.104	10.114	10.115	10.124	10.138	10.148	10.150	10.135

[Pressures are in newtons per square centimeter.]

(n) Vane A4 in corner 2; IGV setting, 0°; airflow, 76.29 kg/sec; readings 331-334

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.036	10.191	10.238	10.237	10.178
30	10.066	10.239	10.169	10.231	10.139
60	9.860	10.231	10.238	10.175	10.078
90	9.710	10.180	10.221	10.116	9.930
120	10.080	10.243	10.219	10.173	10.078
150	10.079	10.244	10.177	10.243	10.106
180	10.058	10.217	10.225	10.230	10.192
210	9.845	10.041	10.183	10.240	10.137
240	10.114	10.188	10.207	10.234	10.110
270	10.107	10.165	10.174	10.183	10.008
300	10.142	10.211	10.220	10.229	10.092
330	9.835	10.035	10.205	10.204	10.197
AVG	9.994	10.182	10.206	10.208	10.104

CIRCUM								
LOCATION	!		PEF	RCENT SPAN	I FROM TIE	P		
DEG.	5	10	15	20	30	50	70	90
15	10.043	10.091	10.060	10.139	10.238	10.188	10.178	10.135
45	9.868	9.889	9.828	9.948	10.230	10.241	10.189	10.038
75	9.876	9.899	9.836	9.962	10.235	10.243	10.204	10.032
105	10.070	10.066	10.060	10.116	10.242	10.233	10.237	10.084
135	10.049	10.087	10.096	10.144	10.242	10.188	10.211	10.187
165	10.052	10.091	10.097	10.147	10.239	10.193	10.217	10.181
195	10.031	10.012	9.999	10.007	10.080	10.208	10.241	10.175
225	10.062	10.081	10.099	10.123	10.172	10.210	10.213	10.087
255	10.077	10.089	10.098	10.113	10.160	10.210	10.216	10.091
285	9.985	9.995	9.983	9.993	10.077	10.238	10.203	10.138
315	9.879	9.932	10.000	10.076	10.203	10.195	10.195	10.151
345	9.885	9.943	10.009	10.081	10.207	10.196	10.200	10.190
AVG	9.990	10.014	10.014	10.071	10.194	10.212	10.209	10.124

[Pressures are in newtons per square centimeter.]

(o) Vane A4 in corner 2; IGV setting, 0°; airflow, 69.31 kg/sec; readings 335-338

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.055	10.180	10.220	10.218	10.170
30	10.079	10.219	10.162	10.216	10.139
60	9.907	10.212	10.220	10.168	10.088
90	9.788	10.171	10.205	10.117	9.968
120	10.087	10.223	10.204	10.164	10.088
150	10.089	10.224	10.167	10.224	10.112
180	10.072	10.199	10.210	10.213	10.179
210	9.897	10.059	10.171	10.220	10.139
240	10.113	10.177	10.192	10.216	10.116
270	10.111	10.161	10.170	10.171	10.028
300	10.137	10.193	10.203	10.214	10.102
330	9.890	10.050	10.195	10.190	10.183
AVG	10.019	10.172	10.193	10.194	10.109

CIRCUM LOCATION			PEF	RCENT SPAN	I FROM TIE	•		
DEG.	5	10	15	20	30	50	70	90
15	10.043	10.128	10.094	10.135	10.212	10.220	10.184	10.176
45	10.063	10.112	10.075	10.141	10.224	10.180	10.172	10.140
75	9.911	9.943	9.889	9.995	10.215	10.221	10.176	10.055
105	10.034	10.010	9.998	10.078	10.226	10.183	10.214	10.123
135	10.084	10.077	10.076	10.120	10.226	10.207	10.221	10.097
165	10.061	10.095	10.104	10.141	10.220	10.176	10.198	10.176
195	9.865	9.880	9.905	9.950	10.080	10.208	10.207	10.199
225	10.053	10.038	10.025	10.030	10.090	10.191	10.225	10.170
255	10.072	10.088	10.102	10.120	10.163	10.183	10.196	10.096
285	10.061	10.090	10.117	10.142	10.182	10.197	10.205	10.113
315	10.040	10.026	10.016	10.022	10.092	10.223	10.190	10.143
345	9.927	9.976	10.030	10.092	10.192	10.185	10.183	10.147
AVG	10.018	10.039	10.036	10.081	10.177	10.198	10.198	10.136

[Pressures are in newtons per square centimeter.]

(p) Vane A4 in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 339–342

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.115	10.143	10.154	10.153	10.140
30	10.115	10.153	10.139	10.151	10.134
60	10.080	10.152	10.152	10.141	10.123
90	10.052	10.140	10.153	10.130	10.094
120	10.116	10.153	10.146	10.139	10.119
150	10.121	10.154	10.141	10.155	10.132
180	10.117	10.147	10.152	10.151	10.140
210	10.077	10.113	10.140	10.153	10.132
240	10.124	10.141	10.146	10.152	10.129
270	10.126	10.139	10.143	10.141	10.106
300	10.131	10.144	10.146	10.151	10.126
330	10.075	10.112	10.143	10.145	10.143
AVG	10.104	10.141	10.147	10.147	10.126

CIRCUM								
LOCATION			PER	RCENT SPAN		•		
DEG.	5	10	15	20	30	50	70	90
15	10.116	10.132	10.118	10.132	10.153	10.142	10.142	10.135
45	10.078	10.100	10.077	10.104	10.152	10.154	10.140	10.111
75	10.078	10.099	10.077	10.102	10.151	10.152	10.144	10.111
105	10.119	10.116	10.114	10.124	10.155	10.153	10.152	10.125
135	10.113	10.121	10.123	10.132	10.153	10.141	10.149	10.142
165	10.112	10.121	10.123	10.133	10.152	10.142	10.148	10.138
195	10.114	10.110	10.108	10.110	10.124	10.145	10.156	10.143
225	10.116	10.121	10.123	10.125	10.134	10.148	10.145	10.127
255	10.118	10.121	10.123	10.126	10.135	10.148	10.145	10.128
285	10.110	10.107	10.105	10.107	10.123	10.154	10.147	10.137
315	10.088	10.099	10.111	10.124	10.146	10.146	10.144	10.136
345	10.085	10.097	10.110	10.122	10.145	10.144	10.144	10.142
AVG	10.104	10.112	10.169	10.120	10.143	10.147	10.146	10.131

[Pressures are in newtons per square centimeter.]

(q) Vane B in corner 2; IGV setting, -10°; airflow, 68.98 kg/sec; readings 9-19

IGV INLET RAKE

CIRCUM					
LOCATION		PER	CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.035	10.179	10.177	10.165	10.137
30	10.091	10.176	10.179	10.197	10.120
60	10.027	10.208	10.190	10.209	10.103
90	9.861	10.195	10.190	10.153	10.015
120	10.066	10.217	10.205	10.212	10.118
150	10.098	10.204	10.195	10.191	10.138
180	10.057	10.178	10.166	10.172	10.146
210	9.975	10.156	10.185	10.191	10.137
240	10.046	10.146	10.186	10.181	10.102
270	10.111	10.164	10.125	10.153	10.043
300	10.056	10.162	10.190	10.178	10.099
330	9.967	10.149	10.188	10.179	10.126
AVG	10.033	10.178	10.181	10.182	10.107

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIF	•		
DEG.	5	10	15	20	30	50	70	90
15	10.036	10.088	10.087	10.109	10.182	10.179	10.159	10.129
45	10.050	10.075	10.095	10.154	10.203	10.207	10.187	10.161
75	9.897	9.991	10.087	10.181	10.192	10.186	10.177	10.131
105	9.997	10.080	10.153	10.193	10.208	10.200	10.182	10.091
135	10.046	10.090	10.133	10.176	10.181	10.208	10.167	10.150
165	10.005	10.048	10.082	10.109	10.185	10.202	10.173	10.174
195	9.960	10.010	10.062	10.103	10.161	10.166	10.185	10.132
225	10.033	10.047	10.065	10.093	10.151	10.185	10.182	10.127
255	10.059	10.078	10.094	10.108	10.143	10.183	10.154	10.109
285	10.027	10.049	10.068	10.088	10.128	10.189	10.178	10.099
315	10.025	10.030	10.060	10.083	10.139	10.179	10.180	10.122
345	10.024	10.063	10.087	10.113	10.149	10.166	10.179	10.145
AVG	10.013	10.054	10.089	10.126	10.168	10.188	10.175	10.131

[Pressures are in newtons per square centimeter.]

(r) Vane B in corner 2; IGV setting, -10°; airflow, 35.35 kg/sec; readings 20-31

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.112	10.147	10.144	10.146	10.139
30	10.120	10.144	10.143	10.149	10.130
60	10.099	10.152	10.144	10.146	10.129
90	10.068	10.148	10.150	10.131	10.105
120	10.112	10.151	10.146	10.143	10.130
150	10.120	10.143	10.144	10.146	10.132
180	10.116	10.146	10.147	10.148	10.143
210	10.091	10.138	10.150	10.147	10.130
240	10.106	10.130	10.147	10.147	10.125
270	10.126	10.142	10.131	10.135	10.107
300	10.114	10.133	10.146	10.146	10.124
330	10.087	10.130	10.147	10.146	10.132
AVG	10.106	10.142	10.145	10.144	10.127

CIRCUM								
LOCATION			PER	RCENT SPAN	I FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.113	10.141	10.128	10.142	10.151	10.152	10.152	10.142
45	10.076	10.114	10.128	10.148	10.142	10.145	10.147	10.124
75	10.065	10.107	10.123	10.145	10.141	10.148	10.146	10.125
105	10.113	10.121	10.131	10.142	10.152	10.151	10.150	10.138
135	10.110	10.124	10.133	10.141	10.154	10.156	10.154	10.150
165	10.100	10.116	10.124	10.135	10.147	10.152	10.149	10.137
195	10.106	10.111	10.116	10.124	10.140	10.152	10.151	10.134
225	10.113	10.121	10.127	10.133	10.145	10.146	10.146	10.131
255	10.107	10.113	10.119	10.124	10.138	10.139	10.139	10.125
285	10.104	10.110	10.116	10.124	10.139	10.147	10.153	10.134
315	10.111	10.118	10.124	10.130	10.140	10.155	10.154	10.147
345	10.104	10.110	10.119	10.125	10.135	10.144	10.148	10.137
AVG	10.102	10.117	10.124	10.134	10.144	10.149	10.149	10.135

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

IGV INLET RAKE

CIRCUM					
LOCATION		PER(CENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	9.989	10.192	10.189	10.175	10.137
30	10.073	10.211	10.208	10.222	10.127
60	9.989	10.235	10.226	10.238	10.089
90	9.752	10.228	10.202	10.137	9.953
120	10.026	10.242	10.241	10.239	10.126
150	10.084	10.205	10.232	10.208	10.150
180	10.031	10.186	10.172	10.180	10.149
210	9.921	10.172	10.203	10.214	10.136
240	10.025	10.159	10.210	10.201	10.093
270	10.104	10.174	10.129	10.160	10.012
300	10.036	10.175	10.212	10.193	10.091
330	9.914	10.163	10.205	10.200	10.118
AVG	9.995	10.195	10.203	10.197	10.099

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIE	•		
DEG.	5	10	15	20	30	50	70	90
15	10.025	10.108	10.077	10.101	10.212	10.218	10.182	10.170
45	10.045	10.071	10.061	10.151	10.222	10.203	10.241	10.137
75	9.908	9.996	10.087	10.171	10.219	10.193	10.226	10.153
105	10.002	10.044	10.134	10.230	10.240	10.244	10.198	10.058
135	10.022	10.067	10.097	10.139	10.204	10.225	10.216	10.165
165	9.968	10.035	10.071	10.109	10.229	10.177	10.220	10.147
195	9.929	9.995	10.059	10.108	10.187	10.210	10.180	10.146
225	9.995	10.005	10.035	10.078	10.152	10.203	10.210	10.113
255	10.043	10.061	10.075	10.089	10.134	10.225	10.187	10.097
285	10.008	10.043	10.070	10.100	10.158	10.220	10.198	10.092
315	9.998	10.026	10.061	10.098	10.161	10.192	10.194	10.122
345	9.981	10.038	10.078	10.105	10.150	10.178	10.204	10.165
AVG	9.994	10.041	10.075	10.123	10.189	10.207	10.205	10.130

[Pressures are in newtons per square centimeter.]

(t) Vane B in corner 2; IGV setting, 0°; airflow, 73.99 kg/sec; readings 36-40

IGV EXIT RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.004	10.194	10.191	10.173	10.138
30	10.078	10.195	10.209	10.208	10.121
60	9.997	10.238	10.216	10.232	10.087
90	9.764	10.220	10.194	10.143	9.964
120	10.034	10.245	10.229	10.237	10.128
150	10.089	10.237	10.233	10.196	10.147
180	10.032	10.179	10.169	10.175	10.148
210	9.926	10.168	10.200	10.209	10.138
240	10.027	10.157	10.205	10.196	10.094
270	10.103	10.172	10.128	10.158	10.014
30 0	10.038	10.175	10.209	10.192	10.091
330	9.921	10.159	10.206	10.193	10.121
AVG	10.001	10.195	10.199	10.193	10.099

IGV INLET RAKE

CIRCUM LOCATION			PEF	RCENT SPAN	FROM TIF	,		
DEG.	5	10	15	20	30	50	70	90
15	10.039	10.086	10.062	10.151	10.221	10.194	10.224	10.128
45	9.914	10.011	10.099	10.183	10.219	10.196	10.218	10.154
75	9.908	10.005	10.094	10.185	10.216	10.202	10.215	10.150
105	10.027	10.062	10.088	10.129	10.208	10.224	10.201	10.151
135	9.969	10.036	10.068	10.100	10.214	10.171	10.213	10.147
165	9.966	10.035	10.071	10.103	10.224	10.176	10.217	10.176
195	9.993	10.007	10.034	10.075	10.148	10.196	10.204	10.111
225	10.041	10.050	10.076	10.090	10.134	10.220	10.185	10.098
255	10.030	10.052	10.069	10.086	10.135	10.226	10.196	10.107
285	9.997	10.026	10.061	10.097	10.154	10.188	10.188	10.117
315	9.980	10.042	10.080	10.107	10.149	10.180	10.201	10.164
345	9.986	10.044	10.083	10.110	10.151	10.179	10.203	10.192
AVG	9.987	10.038	10.074	10.118	10.181	10.196	10.205	10.141

[Pressures are in newtons per square centimeter.]

(u) Vane B in corner 2; IGV setting, 0° ; airflow, 69.17 kg/sec; readings 8-18

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.037	10.179	10.176	10.165	10.139
30	10.096	10.176	10.181	10.197	10.122
60	10.029	10.210	10.191	10.209	10.102
90	9.864	10.195	10.186	10.148	10.018
120	10.062	10.217	10.206	10.211	10.117
150	10.099	10.201	10.194	10.188	10.139
180	10.054	10.174	10.166	10.174	10.148
210	9.976	10.156	10.186	10.192	10.137
240	10.047	10.146	10.184	10.180	10.103
270	10.110	10.164	10.126	10.153	10.040
300	10.056	10.161	10.190	10.178	10.099
330	9.968	10.150	10.187	10.179	10.127
AVG	10.033	10.178	10.181	10.181	10.107

CIRCUM LOCATION			PER	CENT SPAN	FROM TIF	,		
DEG.	5	10	15	20	30	50	70	90
15	10.037	10.088	10.085	10.104	10.183	10.194	10.168	10.150
45	10.062	10.079	10.082	10.148	10.207	10.177	10.196	10.136
75	9.962	10.045	10.104	10.174	10.196	10.179	10.202	10.146
105	10.020	10.044	10.114	10.195	10.208	10.188	10.180	10.059
135	10.047	10.065	10.086	10.125	10.197	10.190	10.188	10.149
165	10.011	10.061	10.086	10.108	10.191	10.166	10.186	10.156
195	9.971	10.020	10.066	10.103	10.167	10.190	10.168	10.131
225	10.025	10.036	10.056	10.086	10.143	10.181	10.187	10.116
255	10.063	10.079	10.091	10.101	10.136	10.198	10.175	10.110
285	10.024	10.049	10.074	10.099	10.144	10.189	10.176	10.097
315	10.028	10.052	10.077	10.104	10.145	10.170	10.178	10.116
345	10.022	10.066	10.093	10.113	10.133	10.177	10.186	10.158
AVG	10.023	10.057	10.084	10.122	10.171	10.183	10.183	10.127

[Pressures are in newtons per square centimeter.]

(v) Vane B in corner 2; IGV setting, 0°; airflow, 56.55 kg/sec; readings 32-35

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.069	10.164	10.166	10.160	10.140
30	10.108	10.171	10.157	10.179	10.130
60	10.055	10.183	10.167	10.180	10.116
90	9.958	10.173	10.172	10.143	10.072
120	10.083	10.185	10.175	10.170	10.119
150	10.111	10.183	10.164	10.174	10.134
180	10.080	10.160	10.167	10.169	10.149
210	10.024	10.144	10.172	10.170	10.134
240	10.069	10.137	10.172	10.165	10.111
270	10.116	10.156	10.125	10.145	10.069
300	10.078	10.145	10.172	10.164	10.108
330	10.019	10.138	10.177	10.163	10.130
AVG	10.064	10.162	10.165	10.165	10.118

CIRCUM								
LOCATION			PER	RCENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.080	10.130	10.110	10.125	10.176	10.176	10.166	10.149
45	10.091	10.119	10.105	10.146	10.187	10.171	10.179	10.148
75	9.999	10.066	10.112	10.163	10.173	10.162	10.174	10.119
105	10.063	10.078	10.123	10.176	10.179	10.169	10.165	10.096
135	10.081	10.090	10.106	10.139	10.183	10.177	10.163	10.149
165	10.045	10.079	10.092	10.109	10.171	10.153	10.158	10.155
195	10.040	10.070	10.094	10.115	10.158	10.173	10.163	10.132
225	10.067	10.073	10.087	10.108	10.148	10.173	10.177	10.127
255	10.070	10.083	10.092	10.103	10.130	10.172	10.159	10.112
285	10.067	10.086	10.099	10.116	10.149	10.172	10.169	10.116
315	10.068	10.084	10.100	10.118	10.149	10.163	10.169	10.130
345	10.049	10.079	10.097	10.097	10.137	10.167	10.163	10.143
AVG	10.060	10.086	10.101	10.126	10.162	10.169	10.167	10.132

[Pressures are in newtons per square centimeter.]

(w) Vane B in corner 2; IGV setting, 0°; airflow, 35.15 kg/sec; readings 22-29

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.113	10.147	10.145	10.146	10.139
30	10.120	10.143	10.142	10.149	10.131
6 0	10.100	10.151	10.143	10.147	10.129
90	10.069	10.147	10.149	10.131	10.107
120	10.109	10.151	10.145	10.144	10.130
150	10.123	10.143	10.144	10.146	10.131
180	10.115	10.146	10.144	10.147	10.144
210	10.090	10.137	10.150	10.147	10.132
240	10.107	10.131	10.147	10.148	10.125
270	10.127	10.142	10.130	10.136	10.106
300	10.113	10.134	10.146	10.146	10.124
330	10.087	10.130	10.148	10.145	10.132
AVG	10.106	10.142	10.144	10.144	10.128

CIRCUM								
LOCATION			PER	CENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.117	10.142	10.122	10.137	10.149	10.146	10.150	10.138
45	10.101	10.132	10.131	10.148	10.145	10.144	10.145	10.124
75	10.101	10.131	10.130	10.146	10.145	10.143	10.146	10.128
105	10.104	10.106	10.115	10.132	10.150	10.145	10.146	10.138
135	10.115	10.119	10.128	10.139	10.150	10.147	10.153	10.145
165	10.115	10.119	10.128	10.138	10.149	10.146	10.152	10.141
195	10.099	10.101	10.107	10.117	10.135	10.149	10.151	10.130
225	10.109	10.113	10.117	10.122	10.134	10.148	10.147	10.127
255	10.108	10.112	10.117	10.120	10.132	10.148	10.147	10.127
285	10.102	10.110	10.117	10.126	10.139	10.148	10.144	10.131
315	10.101	10.114	10.122	10.127	10.140	10.143	10.147	10.140
345	10.102	10.115	10.123	10.128	10.141	10.144	10.144	10.145
AVG	10.106	10.118	10.121	10.132	10.142	10.146	10.148	10.134

[Pressures are in newtons per square centimeter.]

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings 10-17

IGV INLET RAKE

CIRCUM		5556	ENT COAN	500W TTD	
LOCATION		PERU	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.038	10.180	10.177	10.163	10.136
30	10.096	10.173	10.181	10.195	10.125
60	10.033	10.210	10.190	10.208	10.105
90	9.866	10.194	10.185	10.153	10.021
120	10.058	10.215	10.207	10.210	10.115
150	10.101	10.204	10.198	10.184	10.138
180	10.054	10.173	10.169	10.177	10.151
210	9.975	10.154	10.185	10.189	10.137
240	10.047	10.144	10.184	10.180	10.103
270	10.110	10.164	10.127	10.151	10.040
300	10.058	10.161	10.190	10.177	10.099
330	9.968	10.152	10.183	10.180	10.128
AVG	10.034	10.177	10.181	10.181	10.108

CIRCUM								
LOCATION			PER	CENT SPAN	FROM TIP			
DEG.	5	10	15	20	30	50	70	90
15	10.048	10.089	10.085	10.121	10.184	10.163	10.190	10.140
45	10.072	10.087	10.074	10.151	10.170	10.193	10.193	10.141
75	10.042	10.116	10.139	10.196	10.191	10.190	10.189	10.111
105	9.942	9.938	10.035	10.159	10.203	10.194	10.187	10.089
135	10.024	10.029	10.041	10.076	10.175	10.177	10.184	10.122
165	10.038	10.074	10.093	10.117	10.175	10.191	10.216	10.148
195	9.985	10.027	10.064	10.094	10.153	10.169	10.167	10.133
225	10.009	10.016	10.038	10.071	10.135	10.182	10.174	10.106
255	10.061	10.073	10.083	10.092	10.127	10.204	10.189	10.111
285	10.035	10.067	10.095	10.123	10.159	10.182	10.159	10.096
315	10.021	10.051	10.079	10.107	10.143	10.162	10.167	10.107
345	10.017	10.069	10.101	10.120	10.151	10.203	10.179	10.164
AVG	10.024	10.053	10.077	10.119	10.164	10.184	10.183	10.122

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10°; airflow, 35.36 kg/sec; readings 21-30

IGV INLET RAKE

CIRCUM					
LOCATION		PERC	ENT SPAN	FROM TIP	
DEG.	10	30	50	70	90
0	10.113	10.147	10.144	10.147	10.139
30	10.120	10.144	10.142	10.149	10.130
60	10.098	10.152	10.144	10.147	10.129
90	10.069	10.147	10.150	10.130	10.105
120	10.111	10.151	10.146	10.143	10.129
150	10.122	10.143	10.143	10.146	10.132
180	10.116	10.146	10.147	10.148	10.143
210	10.090	10.139	10.151	10.147	10.133
240	10.106	10.131	10.147	10.148	10.124
270	10.127	10.142	10.130	10.135	10.107
300	10.113	10.133	10.146	10.146	10.124
330	10.088	10.130	10.147	10.145	10.132
AVG	10.106	10.142	10.145	10.144	10.127

CIRCUM LOCATION			PFR	RCENT SPAN	FROM TIP	•		
DEG.	5	10	15	20	30	50	70	90
15	10.113	10.135	10.117	10.134	10.149	10.145	10.145	10.138
45	10.090	10.127	10.137	10.153	10.149	10.153	10.156	10.132
75	10.074	10.112	10.121	10.139	10.134	10.139	10.140	10.123
105	10.105	10.109	10.120	10.133	10.146	10.144	10.141	10.137
135	10.119	10.126	10.132	10.141	10.159	10.157	10.150	10.152
165	10.103	10.112	10.117	10.127	10.145	10.142	10.137	10.136
195	10.099	10.091	10.107	10.115	10.132	10.147	10.148	10.127
225	10.115	10.120	10.125	10.130	10.130	10.151	10.151	10.133
255	10.097	10.105	10.109	10.113	10.126	10.136	10.137	10.119
285	10.099	10.106	10.114	10.122	10.137	10.142	10.146	10.129
315	10.112	10.121	10.128	10.132	10.144	10.153	10.149	10.144
345	10.097	10.105	10.113	10.119	10.132	10.141	10.135	10.135
AVG	10.102	10.114	10.120	10.130	10.140	10.146	10.145	10.134

TABLE VII.—AXIAL STATIC-PRESSURE DISTRIBUTION

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, -10° ; airflow, 69.09 kg/sec; readings 281-290

AXIAL STATION	CIRC	OUTER CUMFERENTI	WALL AL LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	RBODY	ON, DEG
	0	90	180	270	0	90	180	270
1234567890456789012345678901234567890123	9.677 9.675 9.704 9.750 9.7793 9.8336 9.8358 9.85531 9.85531 9.8726	9.644 9.6635 9.66335 9.66331 9.66331 9.664463 9.66886 9.66886 9.7777 9.8834 9.884	9.632 9.662 9.698 9.724 9.7772 9.8319 9.8358 9.8859 9.8852 9.8842 9.713	9.651 9.660 9.700 9.726 9.7751 9.7777 9.836 9.841 9.892 9.904 9.949 9.810 0.000 ****** 9.718 9.733 9.714	9.440 9.441 9.454 ****** ***** 9.723 9.975 9.919	10.101 10.214 10.223 10.226 10.225 10.221	9.436 9.426 9.445 9.491 ****** 9.737 9.915	9.769 9.795 9.712 ***** *****
64 65 66 67 68 69 70 71 72 73 74 75 76	9.710 9.7704 9.699 9.6690 9.66552 9.665545 9.665545 9.65545 **********************************	****** ****** ****** ***** ***** ***** 9.612	9.691 9.698 9.688 9.687 9.6657 9.6657 9.6658 9.6651 2.6658 2.6888 8.8888 8.8888 9.6552	9.706 9.703 9.703 9.697 9.691 9.673 9.673 9.656 9.656 9.650 1	9.8624 9.7841 9.7743 9.7715 9.76304 9.5550 9.55317 9.5500 9.5500 9.5500 9.5500	9.756 9.756 9.7566 9.7756 9.7756 9.7714 9.6651 9.6651 9.66101 9.55881 9.5581	9.2621 9.288281 9.774035 9.77663995 9.551099.5517 9.5517 9.5517	9.73362 9.773362 9.7719 9.77096 9.666424 9.6619 9.55887 9.55887

[Pressures are in newtons per square centimeter.]

(b) Vane A in corner 2; IGV setting, 0°; airflow, 82.30 kg/sec; readings 299-302

AXIAL STATION	CIRC	OUTER V	JALL LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	OH, DEG
	0	90	180	270	0	90	180	270
12345678901234567890123	9.486 9.482 9.523 9.5591 9.646 9.717 9.7456 9.7756 9.7723 9.698	9.48 9.42255 9.442255 9.44225 9.44113 9.44113 9.44113 9.44697 9.555727 9.555988 9.5559880	9.420 9.462 9.514 9.552 9.5622 9.646 9.708 9.717 9.745 9.745 9.725	9.448 9.460 9.517 9.5559 9.629 9.629 9.687 9.716 9.723 9.796 9.795 9.878 9.686				
	9.54597 9.55329 9.551309 9.551309 9.446544439 9.444439 9.38*** 9.38*** 9.88** 9.88** 9.88** 9.88**		9.5337 9.5337 9.5522 9.5512 9.5512 9.44543 9.44543 9.44543 9.44543 9.44543 9.44543 8.45543 8.4	0.000 0.000 ****7 9.5529 9.5562 9.5524 9.5524 9.5524 9.5524 9.5524 9.5524 9.5524 9.447 9.4450 9.4450 9.4450 9.4460	9.143 9.147 9.167 9.167 9.167 9.165 ****** 9.547 9.906 9.827 9.692 9.632 9.574 9.526 9.574 9.526 9.423 9.377 9.228 9.2249 9.227 9.228	10.094 10.2264 10.2266 10.2	9.137 9.126 9.1221 *** 9.5368 9.55621 9.5621 9.6837 9.6837 9.68326 9.65719 9.63339 9.22446 9.2238 9.22469 9.2238 9.2238	9.620 9.644 9.531 ************************************

[Pressures are in newtons per square centimeter.]

(c) Vane A in corner 2; IGV setting, 0°; airflow, 76.18 kg/sec; readings 295-298

AXIAL		OUTER	WALL			CENTER	BODY	
STATION	CIRC	UMFERENTI	AL LOCATI	ON, DEG	CIRCU	JMFERENTI	AL LOCATI	·
	0	90	180	270	0	90	180	270
123456789045678901234567890123456789012345678901234	9.5665912922188533 9.66359221888533 9.66359221888533 9.6616799.7753 9.661679942210999.555649575 99.6598875699999999999999999999999999999999	9.526 9.5147 9.55117 9.55128 9.55178 9.555578 9.555578 9.555578 9.555578 9.66916 99.7777 99.7777	9.510 9.510 9.5287210 9.56287210 9.66587210 9.66587779088777 9.66100034771080 9.7777 9.787877 9.78787777 9.787877 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.787777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.7878777 9.78787777 9.78787777 9.78787777 9.78787777 9.78787777 9.787877777 9.7877777 9.78787777 9.7877777 9.7877777 9.78787777 9.7877777 9.7877777	9.55 7.58 9.59 9.66 9.66 9.66 9.77 9.88 9.77 9.78	9.272 9.274 9.290 ****** 9.627 9.866 9.798 9.647 9.6610 9.615 9.615 9.436 9.436 9.436	10.0236 10.2246 10.2250 10.2250 10.2250 10.2	9.265 9.2579 9.2273 ***********************************	9.684 9.710 9.610 ***** 9.639 9.639 9.6637 9.6637 9.5591 9.5591 9.5591 9.541 9.490
74 75 76	9.535 9.526 9.467	****** ******	9.528 9.533 9.591	9.523 9.532 9.468	9.381 9.365 9.352	9.485 9.468 9.459	9.382 9.364 9.353	9.480 9.463 9.458
77 77 78	****** ******	******	******	****** ******	9.346	9.448	9.347	9.444
7 9	9.488	9.488	9.532	9.531	9.494	9.494	9.489	9.490

[Pressures are in newtons per square centimeter.]

(d) Vane A in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 279-289

AXIAL STATION	CIRC	OUTER W		ON, DEG	CIRCU	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
1234567890456789012345678901234567890123456789	9.673 9.672 9.672 9.77473 9.777905 9.88562 9.88539 9.88539 9.88539 9.7712 9.7706 9.6687 9.66867	9.6633333695305199.6666924918133483 9.6666692530599.666666924999.6668924999.666692999999999999999999999999999	9.627 9.658 9.658 9.7469 9.7769 9.8128 9.8562 9.88562 9.8852 9.8852 9.8851 9.7109 9.7709 9.709 9.709 9.6681 9.6678	9.648 9.657 9.659 9.7769 9.7769 9.8839 9.8901 9.88391 9.88901 9.88901 9.89000 ***6866701 9.773771 9.7703 9.6682 9.6682	9.434 9.435 9.448 9.448 ***** 9.720 9.917 9.860 9.778 9.737 9.699 9.712	10.102 10.215 10.224 10.227 10.224 10.222 9.766 9.772 9.763 9.753 9.7428 9.711	9.429 9.419 9.438 9.486 ****99.734 9.734 9.818 9.7740 9.769 9.6662	9.765 9.793 9.709 ****** 9.734 9.732 9.722 9.722 9.713 9.706
70 71 72 73 74 75 76 77 78 79	9.668 9.660 9.656 9.658 9.641 9.587 ****** ******		9.668 9.653 9.643 9.642 9.648 1 ******** 9.648	9.673 9.668 9.658 9.652 9.640 9.645 9.596 ******	9.631 9.599 9.568 9.524 9.524 9.500 9.495 9.495 9.616	9.694 9.692 9.6427 9.609 9.5587 9.5576 9.5515	9.626 9.595 9.572 9.525 9.525 9.501 9.501 9.496 9.4903 9.611	9.677 9.6539 9.6619 9.55886 9.5577 9.611

[Pressures are in newtons per square centimeter.]

(e) Vane A in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 291–294

AXIAL STATION	CIRC	OUTER W UMFERENTIA		DH, DEG	CIRCU	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
12345678901234567890123456789012345678901234	10.022 10.021 10.027 10.033 10.033 10.058 10.055 10.066 10.066 10.066 10.066 10.035 10.032 10.032 10.031 10.032 10.031 10.024 10.024 10.024 10.022 10.018 10.017 10.016	10.013 10.012 10.013 10.013 10.011 10.010 10.010 10.015 10.015 10.024 10.024 10.025 10.039 10.044 10.054 10.056 10.056	10.010 10.017 10.026 10.0328 10.0344 10.054 10.0559 10.0655 10.0665 10.0660 10.060 10.023 10.0227 10.023 10.0227 10.023 10.0219 10.017 10.015	10.014 10.017 10.026 10.033 10.039 10.050 10.057 10.072 10.072 10.075 10.085 10.052 0.000 ******* 10.035 10.035 10.035 10.035 10.035 10.029 10.027 10.022 10.021 10.021 10.017 10.014	9.966 9.965 9.965 9.968 ****** 10.033 10.093 10.067 10.057 10.036 10.027 10.037 10.037 10.0014 9.996 9.990 9.985	10.120 10.152 10.155 10.155 10.154 10.045 10.045 10.037 10.037 10.037 10.0327 10.0225 10.015	9.960 9.960 9.963 9.974 ************************************	10.042 10.054 10.054 10.037 10.037 10.035 10.033 10.031 10.029 10.027 10.027 10.017 10.017 10.018 10.008
75 76 77 78 79	10.014 9.999 ****** ****** 10.007	****** ****** ****** 10.008	10.015 10.016 ******* *******	10.015 10.005 ******* ******* 10.015	9.983 9.981 9.980 9.980 10.007	10.005 10.002 9.999 9.998 10.006	9.983 9.982 9.980 9.982 10.006	10.002 9.999 9.998 9.999 10.006

[Pressures are in newtons per square centimeter.]

(f) Vane A in corner 2; IGV setting, 10°; airflow, 68.41 kg/sec; readings 280-288

AXIAL STATION	CIRC	OUTER I	WALL AL LOCATI	ION, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789045678901234567890123456789	9.673 9.673 9.672 9.672 9.7747 9.789 9.8823562 9.885562 9.88539 9.88562 9.88562 9.886539 9.886539 9.886539 9.886539 9.886539 9.886539 9.886539 9.886539 9.886539 9.886539	9.639 9.639 9.6330 9.6330 9.6629 9.6629 9.6640 9.6640 9.6640 9.6640 9.6689 9.777792 9.884 9.8884 9.8884	9.626 9.657 9.6749 9.7749 9.88356 9.88561 9.88561 9.88561 9.88561 9.88561 9.88667 9.88667 9.88667	9.647 9.656 9.77468 9.77468 9.77913 9.8838 9.89017 9.8000 9.99000 9.7733771043 9.7773771917709999999999999999999999999999	9.434 9.435 9.448 ****** 9.720 9.973 9.917 9.860 9.778 9.778 9.7700 9.711	10.101 10.214 10.223 10.226 10.223 10.226 10.222 9.765 9.771 9.762 9.752 9.752 9.752	9.428 9.419 9.438 9.486 ****709 9.734 9.912 9.859 9.7739 9.6661	9.766 9.792 9.709 ****** 9.734 9.732 9.729 9.722 9.713 9.713 9.692
70 71 72 73 74 75 76 77	9.668 9.661 9.656 9.651 9.648 9.643 9.587 ******	****** ****** ****** ******	9.667 9.655 9.652 9.642 9.641 9.645 9.679 ******	9.673 9.668 9.659 9.652 9.640 9.597 ******	9.599 9.568 9.545 9.525 9.512 9.512	9.692 9.670 9.647 9.625 9.606 9.593 9.584 9.576	9.624 9.594 9.569 9.543 9.524 9.509 9.500	9.677 9.656 9.620 9.620 9.590 9.597 9.580
78 79	9.609	9.609	9.648	9.645	9.498	9.573 9.612	9.502 9.612	9.612

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0°; airflow, 82.13 kg/sec; readings 307-310

3567890123456789012345666666666666666666666666666666666666	CIRC	OUTER WALL CIRCUMFERENTIAL LOCA	CENTERBODY CIRCUMFERENTIAL LOCATION, DEG				
2345678901234567890123456789012345666666666666666666666666666666666666	0	0 90 180	270	0	90	180	270
68 9 69 9 70 9 71 9	9.4605748288011145 9.55563680011145 9.55555555999999999999999999999999999	9.421 9.414 9.408 9.411 9.401 9.401 9.397 9.378 9.472 9.434 9.434 9.434 9.456 9.471 9.480 9.509 9.536 9.577 9.614 9.638 9.6605 9.633 9.6608 9.698 9.698 9.698 9.698 9.740 9.741 9.751 9.741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7741 9.7751 9.7751 9.7751 9.7751 9.7751 9.7751 9.7751 9.7761 9.7751 9.7	9.435 9.447 9.547 9.557128 9.64788 9.557128 9.66788 9.779147 9.66788 9.779147 9.7817 9.887 7.000**2485567 9.663285 9.663285 9.663285 9.663285 9.663285 9.663285 9.663285 9.663285 9.799.555543 9.799.555543 9.799.55559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.5559 9.799.	9.248 9.243 9.248 ***** ***** 9.6121 9.769 9.7122 9.5337 9.5337 9.5337 9.390	10.071 10.231 10.244 10.248 10.245 10.226 10.242 9.637 9.629 9.592 9.576 9.5530 9.5530 9.576	9.2244 9.2236 9.2236 9.294 ***** 9.610 9.7715 9.7659 9.558 9.538 9.4433 9.383	9.684 9.700 9.617 ************************************
73 9 74 9 75 9 76 9 77 *** 78 ***		9.460	3 9.469 8 9.450 3 9.459 6 9.377 * ******	9.342 9.304 9.278 9.258 9.242 9.233 9.393	9.440 9.407 9.381 9.362 9.350 9.338 9.337 9.331	9.346 9.308 9.278 9.256 9.242 9.233 9.241 9.406	9.452 9.422 9.398 9.371 9.355 9.358 9.406

[Pressures are in newtons per square centimeter.]

(h) Vane A2 in corner 2; IGV setting, 0°; airflow, 76.09 kg/sec; readings 303-306

AXIAL STATION	CIRC	OUTER W	IALL LOCATI	ON, DEG	CIRC	CENTER JMFERENTI		ON DEG
	0	90	180	270	0	90	180	270
12345678901234444444444455555555566666666677777	9.555 9.555 9.555 9.561477899 9.66477899 9.776886827 744999 9.7789 9.7789 9.7789 9	9.50 9.50 9.50 9.50 9.50 9.50 9.49 9.49 9.44 9.55 9.55 9.55 9.55 9.66 9.66 9.67 9.77 9.77 9.77	9.496 9.532 9.66471866799.664799.7751899.7751899.77585 99.663299.77585 99.663298299.66100199.55555999.5549	9.521 9.53 1880 9.6647877359735527 9.6647877359735527 9.80000×956698138737 9.8890 9.8966991 9.663218899.663218899.66321899.66321899.655555555555555555555555555555555555	9.359 9.352 9.356 ***** 9.4681 9.946 9.764 9.764 9.762 9.611 9.613 9.623 9.443	10.217 10.229 10.2232 10.2230 10.22128 9.699 9.676 9.659 9.659 9.6557 9.5557 9.5527	9.356 9.3348 9.3348 9.3398 ***** 9.6674 9.6675 9.714 9.6612 9.529 9.445	9.739 9.755 9.683 ****** 9.660 9.6637 9.6637 9.6639 9.5589 9.558
73 74 75	9.545 9.542 9.531	****** *******	9.539 9.535 9.539	9.552 9.536 9.544	9.411 9.386 9.368	9.499 9.475 9.459	9.411 9.386 9.366	9.511 9.491 9.473
76 77 78	9.472 ****** *****	****** ******	9.600 ****** ****	9.475 ****** *****	9.354 9.347 9.347	9.450 9.440 9.437	9.355 9.347 9.354	9.468 9.454 9.456
78	9.452	9.452	9.542	9.541	9.486	9.484	9.498	9.497

[Pressures are in newtons per square centimeter.]

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings 311-314

AXIAL STATION	CIRC	OUTER D CUMFERENTIA	AL LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234	9.665 9.661 9.689 9.7752 9.7780 9.7828 9.8858 9.8852 9.88547 9.8858 9.8852 9.8852 9.8852	9.616 9.619 9.619 9.623 9.6619 9.6615 9.66323 9.66323 9.66323 9.66847 9.7779 9.7779 9.7799 9.8820	9.616 9.647 9.684 9.7738 9.7801 9.8818 9.8859 9.8859 9.8859 9.8848 9.7534 9.77329	9.639 9.647 9.685 9.7138 9.7808 9.8839 9.8834 9.8890 9.8903 9.948 9.8903 9.948 9.7778 9.7778 9.7778 9.7778 9.7789	9.504 9.500 9.503 ****** 9.765 9.978 9.926 9.873	10.086 10.202 10.211 10.214 10.211 10.195 10.210	9.504 9.489 9.535 ***** 9.762 9.7623 9.872	9.812 9.829 9.768 ****** *******
65 66 67 68 69 70 71 72 73 74 75 76 77	9.715 9.710 9.710 9.688 9.667 9.6654 9.6564 9.6564 9.588		9.7718 9.7718 9.7701 9.6887 9.6677 9.66538 9.66588 9.6557 *******	9.723 9.723 9.723 9.707 9.700 9.690 9.683 9.6673 9.6650 9.656 9.65601	9.833 9.749 9.7710 9.715 9.6307 9.6573 9.5548 9.5548 9.5513 9.497	9.761 9.7746 9.7733 9.77089 9.6641 9.6685 9.608 9.5772	9.333 9.7512 9.77512 9.66075 9.5542 9.5510 9.5510 9.5509 9.5509	9.741 9.732 9.732 9.708 9.669 9.6651 9.630 9.595 9.595 9.585

[Pressures are in newtons per square centimeter.]

(j) Vane A2 in corner 2; IGV setting, 0°; airflow, 35.45 kg/sec; readings 315-318

AXIAL STATION	CIRCU	OUTER W JMFERENTIA	ALL L LOCATION	ON, DEG	CIRCU	CENTERI MFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789012345678901234567890123456789012345678901234567890123	10.020 10.018 10.025 10.037 10.042 10.047 10.056 10.057 10.064 10.065 10.064 10.065 10.062 10.0636 10.035	10.012 10.010 10.010 10.010 10.010 10.008 10.008 10.007 10.004 10.011 10.013 10.016 10.021 10.029 10.029 10.045 10.045 10.056 10.056	10.008 10.015 10.024 10.030 10.035 10.041 10.055 10.064 10.065 10.062 10.062	10.012 10.015 10.025 10.028 10.028 10.037 10.043 10.054 10.058 10.059 10.072 10.076 10.085 10.066 0.000 ******* 10.047 10.046 10.046 10.046 10.096 10.096	9.983 9.980 9.980 ****** 10.043 10.095 10.082	10.116 10.150 10.153 10.152 10.151 10.147 10.151	9.982 9.977 9.978 9.987 ****** 10.043 10.082	10.053 10.062 10.045 ******* ******
64 665 667 688 70 71 773 774 775 778 778	10.033 10.032 10.030 10.028 10.027 10.022 10.019 10.020 10.018 10.016 10.015 10.001 ********************************	***** ****** ****** ****** ****** ******	10.033 10.033 10.030 10.029 10.027 10.025 10.023 10.020 10.019 10.016 10.016 10.018 ************************************	10.035 10.035 10.033 10.031 10.030 10.028 10.025 10.025 10.022 10.022 10.017 10.017 10.006 **********************************	10.032 10.061 10.061 10.040 10.030 10.036 10.012 10.005 9.998 9.992 9.986 9.980 9.980 9.980	10.045 10.042 10.040 10.036 10.028 10.025 10.020 10.014 10.008 10.003 10.002 9.999 9.997 9.998 10.006	10.070 10.0761 10.051 10.043 10.030 10.020 10.013 10.005 9.989 9.982 9.982 9.982 10.008	10.041 10.040 10.038 10.035 10.032 10.029 10.021 10.017 10.011 10.007 10.003 10.004 10.002 10.002

[Pressures are in newtons per square centimeter.]

(k) Vane A3 in corner 2; IGV setting, 0°; airflow, 76.16 kg/sec; readings 327-330

AXIAL STATION	CIRC	OUTER W	NALL NL LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789012345678901234567890	9.568 9.573 9.610 9.642 9.701 9.722 9.740 9.770 9.770 9.770 9.783 9.762	9.544 9.528 9.5228 9.55226 9.55226 9.55522 9.555789 9.555789 9.55789 9.7723 9.77788	9.540 9.566 9.608 9.670 9.750 9.769 9.780 9.809 9.780 9.782 9.782	9.550 9.559 9.638 9.6700 9.7027 9.7903 9.7923 9.795 9.8453 9.8515 9.8515 9.0000 ******90 9.6127 9.649	9.271 9.276 9.298 ******	10.100 10.237 10.246 10.245 10.250 10.242	9.256 9.251 9.281 9.353	9.666 9.697 9.620 ******
61 623 645 667 689 701 775 777 778 777	9.6623 9.6623 9.66103 9.5598 9.5555547 9.55555477 9.5555477 9.8888 9.555887 9.8888 9.8		9.66227 9.66227 9.66610587 9.5555554415 9.5555554415 9.555554415 9.8888	9.640 9.6426 9.66154 9.66114 9.6695 9.5557718 9.55467 9.55467 9.55467 8************************************	9.634 9.879 9.808 9.755 9.6507 9.6507 9.6524 9.4417 9.33764 9.33759 9.33559	9.6966 9.6686 9.6684 9.6663 9.6621 9.5549 9.5549 9.4470 9.4450 9.455	9.620 9.621 9.88056 9.77050 9.76508 9.76508 9.5481 9.5481 9.33681 9.33681 9.3501	9.6445 9.66435 9.6625 9.6625 9.55530 9.55530 9.4474 9.44601

[Pressures are in newtons per square centimeter.]

(1) Vane A3 in corner 2; IGV setting, 0° ; airflow, 69.19 kg/sec; readings 323-326

AXIAL STATION	CIRC	OUTER UMFERENTI	WALL AL LOCATI	OH, DEG	CIRCU	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234567890	9.671 9.675 9.7354 9.77576 9.77579 9.88331 9.88655 9.88655 9.8855 9.77114 9.709 9.6698 9.6674	9.654 9.6644 9.6644 9.6643 9.6643 9.6655 9.6	9.648 9.648 9.670 9.729 9.77576 9.8342 9.88667 9.88544 9.8857 9.8857 9.89.8844 9.89.89.89 9.7712 9.7702 9.6685 9.6676	9.655 9.664 9.703 9.729 9.7754 9.7778 9.8800 9.8839 9.894 9.905 9.895 9.952 9.780 0.000 ****** 9.693 9.711 9.728 9.736 10.000 9.720 9.711 9.710 9.708 9.708 9.6990 9.680	9.428 9.433 9.450 ***** 9.726 9.926 9.8827 9.726 9.8827 9.711 9.711	10.105 10.218 10.224 10.226 10.221 9.770 9.773 9.768 9.758 9.758 9.742 9.770	9.418 9.412 9.436 9.495 ***7160 9.866 9.740 9.865 9.770 9.665	9.750 9.785 9.715 ****** 9.715 ****** 9.739 9.735 9.728 9.720 9.711 9.694
71 72 73 74 75 76	9.666 9.663 9.656 9.654 9.648 9.595 ******* 9.617	****** ****** ***** ***** ***** ***** ***** 9.616	9.666 9.660 9.654 9.650 9.654 9.681 ******* 9.665	9.676 9.666 9.658 9.643 9.656 9.592 ************************************	9.605 9.574 9.550 9.531 9.518 9.508 9.502 9.504 9.622	9.678 9.655 9.633 9.615 9.603 9.591 9.585 9.584 9.621	9.603 9.577 9.551 9.533 9.518 9.509 9.505 9.512 9.618	9.662 9.646 9.626 9.611 9.597 9.594 9.583 9.587 9.619

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0°; airflow, 35.51 kg/sec; readings 319-322

AXIAL STATION	CIRCU	OUTER W JMFERENTIA	ALL L LOCATIO	DN, DEG	CIRCU	CENTER!	BODY AL LOCATIO	DN, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234567890123456789	10.021 10.022 10.028 10.034 10.046 10.053 10.059 10.066 10.064 10.064 10.061 10.025 10.022 10.028 10.022 10.023 10.023 10.023 10.023 10.025 10.025 10.025	10.016 10.014 10.014 10.014 10.019 10.013 10.017 10.016 10.021 10.023 10.0225 10.028 10.046 10.056 10.056 10.056 10.056 10.056	10.015 10.021 10.029 10.034 10.045 10.055 10.055 10.066 10.066 10.0661 10.061 10.029 10.028 10.029 10.028 10.029 10.028 10.021 10.029 10.028 10.029 10.028 10.029	10.016 10.019 10.034 10.046 10.055 10.061 10.073 10.073 10.073 10.033 10.0336 10.0336 10.0336 10.0331 10.0336 10.029 10.0228 10.0231 10.029 10.0231 10.029 10.0231 10.029 10.0231 10.029 10.023	9.9636 9.9636 9.9968 9.9968 ***********************************	10.121 10.153 10.155 10.155 10.154 10.044 10.044 10.039 10.037 10.027 10.011 10.007 10.008 10.000 10.000 10.000	9.95726 9.95726 9.9967 9.9967 ***********************************	10.038 10.052 10.032 ******* 10.037 10.036 10.034 10.032 10.032 10.024 10.024 10.015 10.015 10.007 10.003 10.003 10.003

[Pressures are in newtons per square centimeter.]

(n) Vane A4 in corner 2; IGV setting, 0°; airflow, 76.29 kg/sec; readings 331-334

AXIAL STATION	CIRC	OUTER I		ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789045678901234567890123456	9.548 9.555 9.592 9.625 9.6584 9.725 9.754 9.764 9.790 9.790 9.791 9.770	9.55102 9.5510	9.520 9.548 9.586 9.621 9.6576 9.7731 9.757 9.7790 9.799 9.7984 9.784	9.531 9.541 9.589 9.622 9.653 9.684 9.772 9.839 9.771 9.839 9.854 9.909 9.784 0.000 ********	9.354 9.351 9.362	10.078 10.219 10.230	9,349 9.334 9.350	9.729 9.749
57 559 601 661 664 666 667 669 771 775 776 778 79	9.649 9.6423 9.6423 9.6625 9.66103 9.55602 9.55539 9.55539 9.55488 9.55488 9.55488 9.55488 9.55488 9.55488 9.55488 9.55488 9.55488	****** ****** ****** ***** ***** ***** 9.467	9.64427 9.66427 9.6629 9.66108 9.6600 9.555437 9.554437 9.554437 9.888 8888 8888 8888 8888 8888 8888 88	9.712 9.700 9.700 9.7006 9.687 9.687 9.6646 9.6638 9.66217 9.65576 9.55576 9.55576 9.55576 8************************************	***** **** 9.688 9.8817 9.7969 9.715 9.6617 9.6617 9.65391 9.4521 9.4521 9.379 9.3557 9.499	10.231 10.227 10.229 10.224 9.701 9.6658 9.6551 9.6553 9.5502 9.5502 9.5502 9.4459 9.4493	9.404 **********************************	9.691 ************************************

[Pressures are in newtons per square centimeter.]

(o) Vane A4 in corner 2; IGV setting, 0°; airflow, 69.31 kg/sec; readings 335-338

AXIAL STATION	CIRC	OUTER W UMFEREHTIA	ALL L LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
1234567890456789012345678901234567890123456666666777777777777777777777777777777	9.654171819154 9.67776892819154 9.697778825543 9.7778825543 9.777372109888885746655466599.66655468***8999.6665548***9999.6665548***999999999999999999999999999999999	1	9.6 6 8137012921835544 9.6 8137012921835544 9.77768012921835544 9.7732114709099.885544 99.77329114709099.66654588*** 99.77329199.66654936*** 99.8888	9.6388 9.639.774647899.888937 9.68714047780294 9.774647899.8889037 9.888907 9.8889037 9.8889037 9.8889037 9.8889037 9.8889037 9.88890	9.492 9.492 9.501 8 ** ** 9.782 9.927 9.7716 9.7716 9.7716 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.6075	10.2213 10.2213 10.2213 10.2197 10.299 9.7751 9.7751 9.7751 9.77524 9.6663 9.6603 9.6603 9.6603 9.6582 9.5573 9.5573 9.5573	9.4783 9.4783 9.4783 9.4783 8.77627445 9.8877517736075531660 9.5550061 9.6655531660061	9.799 9.827 9.827 9.750 9.750 9.755 9.751 9.752 9.752 9.752 9.7631 9.6631 9.6631 9.6631 9.653 9.653 9.653

[Pressures are in newtons per square centimeter.]

(p) Vane A4 in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 339-342

AXIAL STATION	CIRCU	OUTER W JMFERENTIA		ON, DEG	CIRCU	CENTERI IMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234567890123456789	10.019 10.019 10.019 10.032 10.038 10.044 10.0557 10.066 10.065 10.066 10.062 10.030 10.032 10.030 10.028 10.023 10.021 10.0168 10.021 10.019 10.018 10.023 10.023 10.023 10.023 10.023	10.013 10.012 10.012 10.012 10.010 10.010 10.0019 10.0016 10.0019 10.023 10.0235 10.037 10.0235 10.0558 ***********************************	10.013 10.018 10.018 10.038 10.038 10.048 10.057 10.066 10.065 10.065 10.065 10.033 10.033 10.033 10.033 10.033 10.027 10.022 10.022 10.022 10.019 10.019 10.019 10.018 10.018	10.013 10.016 10.032 10.039 10.044 10.055 10.055 10.076 10.073 10.076 10.086 10.063 0.000 ******* 10.049 10.045 10.049 10.045 10.048 10.099 10.037 10.037 10.037 10.035 10.021 10.021 10.021 10.021 10.021 10.021 10.021 10.021	9.981 9.979 9.9781 ************************************	10.150 10.153 10.153 10.1551 10.147 10.044 10.044 10.037 10.033 10.0227 10.016 10.002 10.000 10.0000 10.0000	9.980 9.977 9.977 9.987 ****** 10.043 10.051 10.052 10.053 10.033 10.033 10.001 9.993 9.985 9.985 9.985 9.985	10.052 10.062 10.046 ******* 10.043 10.035 10.035 10.035 10.035 10.032 10.022 10.017 10.012 10.009 10.004 10.004 10.003 10.003

[Pressures are in newtons per square centimeter.]

(q) Vane B in corner 2; IGV setting, -10° ; airflow, 68.98 kg/sec; readings 9-19

AXIAL STATION	CIRC	OUTER UMFERENTI	WALL AL LOCATI	ON, DEG	CIRCU	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789045678901234567890123456789012345678901	9.646 9.6477457799.88332266 9.677457799.88332266 9.66837799.8832299.8 9.7771058242799.6683777999.6683799999999999999999999999999999999999	9.614 9.6114 9.66117 9.66114 9.66107 9.66114 9.66107 9.66342 9.66540 9.665454 9.6667 9.77353 9.77589 9.77789 9.77789	9.619 9.619 9.643 9.69189 9.7757799 9.775799 9.7799 9.88218 9.77199 9.8818 9.77199 9.668779 9.6683799 9.6660	9.632 9.6339 9.6789.745691 9.7689.77685 9.8099.88582 9.80999.8873 9.80000 9.87770 9.7751 9.77	9.573 9.566 9.566 9.566 9.566 9.832 9.752 9.832 9.754 9.686 9.696 9.602	10.149 10.149 10.149 10.147 10.128 10.146 9.715 9.715 9.710 9.658	9.5560 9.5568 9.5568 9.558 ***********************************	9.835 9.842 9.790 ****** 9.738 9.732 9.732 9.724 9.705 9.693 9.658
72 73 74 75 76 77 78 79	9.652 9.647 9.643 9.637 9.593 ****** ******	****** ****** ****** ****** ****** ******	9.649 9.645 9.639 9.642 9.665 *******	9.663 9.655 9.644 9.649 9.599 ******* 9.651	9.574 9.5536 9.5524 9.5515 9.5510 9.5610	9.638 9.638 9.602 9.595 9.577 9.577 9.610	9.577 9.555 9.5538 9.525 9.517 9.512 9.517 9.614	9.642 9.624 9.609 9.595 9.591 9.582 9.583

[Pressures are in newtons per square centimeter.]

(r) Vane B in corner 2; IGV setting, -10° ; airflow, 35.35 kg/sec; readings 20–31

AXIAL STATION	CIRC	OUTER N	NALL AL LOCATI	ON, DEG	CIRCU	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
123456789045678901234567890123456789012345678901234	10.021 10.020 10.027 10.034 10.050 10.054 10.059 10.066 10.066 10.066 10.066 10.066 10.033 10.033 10.033 10.033 10.032 10.022 10.022 10.022	10.014 10.013 10.013 10.013 10.011 10.012 10.011 10.016 10.016 10.020 10.022 10.023 10.023 10.033 10.048 10.052 10.055 10.055	10.013 10.019 10.027 10.0339 10.058 10.058 10.064 10.064 10.064 10.064 10.0331 10.0331 10.0331 10.0331 10.0231 10.0231 10.0231 10.02231 10.02231	10.016 10.018 10.018 10.034 10.034 10.046 10.056 10.062 10.075 10.079 10.089 10.079 10.089 10.0553 10.0553 10.0553 10.0553 10.0388 10.0388 10.0388 10.0388 10.0388 10.0388 10.0388 10.032	9.999 9.997 9.996 ****** 10.049 10.059 10.059 10.059 10.057 10.057 10.057 10.057 10.057	10.116 10.151 10.1552 10.1552 10.1558 10.151 10.0337 10.0337 10.0331 10.0331 10.0301 10.0224 10.024 10.012	10.000 9.995 9.994 10.005 9.994 10.005 10.005 10.005 10.005 10.003 10.001 10.001 10.001 9.995	10.066 10.072 10.056 ****** ****** 10.043 10.042 10.039 10.036 10.031 10.022 10.022 10.018
74 75 76 77 78 79	10.019 10.018 10.004 ****** ******* 10.008	****** ****** ****** 10.008	10.018 10.019 10.019 ******* *******	10.020 10.021 10.009 ****** ****** 10.022	9.991 9.988 9.986 9.985 9.935 10.012	10.009 10.005 10.006 10.004 10.003 10.011	9.992 9.988 9.987 9.985 9.987 10.010	10.010 10.005 10.006 10.003 10.003

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

AXIAL STATION	CIRC	OUTER CUMFERENTI		IOH, DEG	CIRC	CENTE	RBODY IAL LOCAT:	ION, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234566666666777777	9 9 7 9 8 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.5133 9.550961 9.550961 9.550961 9.55599.555555 9.5555558 9.555558 9.555558 9.667131 9.6671318	9.513 9.5549 9.56647639999999999999999999999999999999999	9.531 9.531 9.533 9.6659 9.66512 9.7730 9.88616 9.7730 9.88616 9.7730 9.88616 9.77223 9.88616 9.99.66329 9.66329 9.66329 9.66329 9.66329 9.66329 9.66329 9.66329 9.77323 9.773	9.455 94552* 94552* 9455 9876504566028 8.796759966228 98769966228 96528503 96528503 9443	10.059 10.22359 10.22359 10.22359 10.22359 10.22936 9.664425 9.66477 9.66477 9.66477 9.5535 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530 9.5530	9.4618 9.443899.47 ***7288379.656459.6564599.45599.4929	9.813 9.814 9.814 9.75 9.865 9.665 9.665 9.665 9.655 9.655 9.5545 9.5545 9.549
	9.537 9.493 *******	****** ****** ******	9.546 9.616 ******	9.554 9.483 ****** *****	9.384 9.369 9.362 9.361	9.471 9.463 9.455 9.453	9.384 9.372 9.366 9.372	9.481 9.475 9.461 9.464

[Pressures are in newtons per square centimeter.]

(t) Vane B in corner 2; IGV setting, 0°; airflow, 73.99 kg/sec; readings 36-40

AXIAL STATION	CIR	OUTER CUMFERENT		ION, DEG	CIRC	CENTEI UMFERENT	RBODY IAL LOCAT:	ION, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234567890123456789	9.570 9.574 9.66920 9.66920 9.7749 9.8810 9.7720 9.8810 9.7720 9.8810 9.6650 9.6650 9.6650 9.66320 9.66320 9.66320	90 415 5555555555555555555556669133002 9 90 90	9.535 9.567 9.663675 9.664521658000 9.666521658000 9.6665799.88000 9.6665799.88000 9.6665799.6632	9.55 9.55 9.56 9.64722 9.7735617 9.8900 9.775438 9.8900 9.8900 9.77438 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548 9.77548	9.483 9.474 9.474 9.474 8.775 9.886 9.776 9.8164 9.775 9.62	10.062 10.217 10.227 10.231 10.231 10.1225 9.666 9.6666 9.6654 9.645	9.484 9.465 9.465 9.495 ****** 9.705 9.821 9.717 9.627	9.824 9.827 9.763 ***** 9.697 9.6987 9.6664 9.652
69 70 71 72 73 74 75 76 77 78 79	9.609 9.597 9.587 9.569 9.559 9.551 ******* 9.502	****** ****** ****** ***** ***** ***** ****	9.614 9.601 9.590 9.581 9.572 9.564 9.567 9.612 ****** *****	9.629 9.616 9.609 9.596 9.585 9.576 9.508 ******* 9.576	9.649 9.5515 9.4519 9.4451 9.4410 9.4103 9.392 9.392	9.627 9.611 9.587 9.5626 9.5314 9.513 9.483 9.4881 9.524	9.587 9.549 9.513 9.4854 9.4455 9.4403 9.403 9.533	9.635 9.616 9.599 9.5545 9.5501 9.5503 9.490 9.533

[Pressures are in newtons per square centimeter.]

(u) Vane B in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 8-18

AXIAL STATION	CIRC	OUTER CUMFERENTI		ON, DEG	CIRC	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
1234567890456789012345678901234	9.650 9.649 9.676 9.743 9.7758 9.7758 9.7759 9.8834 9.8831 9.8839 9.8819	9.6618 9.6618 9.6618 9.66111 9.6615 9.6653 9.6653 9.6653 9.6657777 9.777 9.777 9.777 9.777	9.621 9.644 9.674 9.697 9.719 9.739 9.7760 9.778 9.795 9.834 9.822 9.817 9.817	9.634 9.640 9.675 9.699 9.722 9.745 9.786 9.810 9.853 9.853 9.876				
55555566666666777777777777777777777777	9.712 9.712 9.712 9.7106 9.6686 9.66554 9.66659 9.666439 9.66659 9.5888 8888 8888 8888 8888 8888 8888	***** ***** ***** ***** **** **** **** **** **** ****	9.711 9.711 9.711 9.711 9.710 9.669 9.665 9.6665 9.6665 9.6665 9.8888 9.	9.886 0.000 ***790 9.778 9.778 9.7752 9.7752 9.7721 9.66875 9.66875 9.66548 9.66548 9.66448 9.66448 ******	9.569 9.569 9.569 *** **65363 987772893 987775244830365753267 966307553267 95553267 95553267 95553267 95553267 95553267 95553267 95553267 95553267 95553267	10.020 10.142 10.1447 10.148 10.126 10.145 9.6719 9.7117 9.7712 9.7701 9.659 9.659 9.6659 9.6659 9.6599 9.6599 9.6599 9.6599 9.6595 9.5580 9.5799	9.5568 9.5568 9.5568 9.558 9.558 9.5568 9.779.887 9.779.887 9.777285 9.6662088 9.6556201 9.55542205 9.55542205 9.55513 9.55513	9.835 9.843 9.843 9.792 ***** 9.799.7716 9.77216 9.6659 9.6659 9.6699.6699 9.6699.55885 9.618

[Pressures are in newtons per square centimeter.]

(v) Vane B in corner 2; IGV setting, 0° ; airflow, 56.55 kg/sec; readings 32–35

AXIAL STATION	CIRC	OUTER W		ON, DEG	CIRC	CENTER JMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
12345678904567890123456789012345678901234567890123	9.84560563936 9.87894560563936 9.880122944663936 9.8888777664938877766493888777664938888777649388440	9.820 9.8819 9.8820 9.8820 9.8815 9.8815 9.8833 9.8833 9.885	9.8 3 738222559 9.8 8 5738222559 9.88801223396620555 9.8888776620555 9.88887799.99.99.99.88887799.888444959	9.8 28 9.8 35 9.8 35 9.8 87905 9.9 9194 9.9 9199 9.9 9199 9.8 886 9.8 885 9.8 885	9.788 9.783 9.784 ****** 9.916 10.048 9.999 9.966 9.939 9.913 9.894 9.894 9.891 9.891 9.891 9.891 9.891	10.093 10.179 10.179 10.178 10.178 10.175 9.8885 9.8887 9.8865 9.8866 9.8866 9.8844 9.8820	9.790 9.777793 9.7793 ****9.906 10.005 9.939 9.8864 9.88478 9.8798	9.9667 9.9667 9.936 9.938 9.9997 9.8879 9.8879 9.88479 9.8843647 9.8824
74 75 76 77	9.837 9.834 9.799 ******	******* ******* ******	9.835 9.837 9.839 ******	9.838 9.841 9.809 ******	9.766 9.758 9.751 9.748	9.810 9.807 9.799 9.794	9.768 9.758 9.753 9.749	9.814 9.805 9.802 9.795
	****** 9.808		****** 9.842	****** 9.842	9.747	9.794 9.816	9.753	9.796 9.818

[Pressures are in newtons per square centimeter.]

(w) Vane B in corner 2; IGV setting, 0° ; airflow, 35.15 kg/sec; readings 22-29

AXIAL STATION	CIRC	OUTER W JMFERENTIA		DH, DEG	CIRCU	CENTER! MFERENTI	BODY AL LOCATION	ON, DEG
	0	90	180	270	0	90	180	270
1234567890456789012345678901234567890123456666667777777777777777777777777777777	10.021 10.021 10.021 10.021 10.028 10.034 10.039 10.045 10.068 10.066 10.068 10.066 10.064 10.031 10.032 10.031 10.032 10.031 10.032 10.031 10.032 10.031 10.032 10.031 10.032 10.035	10.014 10.013 10.013 10.013 10.013 10.011 10.011 10.016 10.015 10.020 10.022 10.022 10.035 10.048 10.055 10.057	10.013 10.019 10.027 10.039 10.044 10.055 10.058 10.066 10.066 10.065 10.033 10.0338 10.0338 10.0338 10.0338 10.0338 10.0328 10.022 10.020 10.019 10.020 10.019 10.020 10.020 10.020 10.020 10.020 10.020 10.020 10.020 10.020	10.016 10.016 10.019 10.035 10.040 10.051 10.056 10.061 10.076 10.079 10.080 0.0079 10.089 10.0551	9.9997 9.9997 9.9997 9.9997 ************	10.116 10.151 10.1551 10.1552 10.1554 10.037 10.0336 10.0336 10.0331 10.0328 10.0128 10.004 10.004	9.9994 9.9990 9.9990 9.9990 10.00594 10.0059910.005910.009910.009910.009999999999	10.066 10.072 10.057 ******* 10.043 10.041 10.039 10.035 10.035 10.022 10.018 10.010 10.006 10.005 10.005 10.003 10.003

[Pressures are in newtons per square centimeter.]

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings 10-17

AXIAL STATION	CIRC	OUTER W UMFERENTIA	IALL L LOCATI	ON, DEG	CIRC	CENTER UMFERENTI	BODY AL LOCATI	ON, DEG
	0	90	180	270	0	90	180	270
	9.655 9.655 9.777677997735599.88332599.883325999.8833259999.8833259999.66655444998899.66655444998899.8899.8899.889999999999999999		9.647 9.647 9.7746222 9.6702222 9.7746857 9.7799.783222 9.7718822 9.77189.7799.6687 9.665547 9.665547 9.665547 9.665547 9.665547 9.665547 9.665547 9.665547 9.665547	9.637 9.637 9.647 9.7258 9.77258 9.810 9.88658 9.886618 9.886618 9.886888 9.88688 9.88688 9.88688 9.88688 9.88688 9.88688 9.886888 9.88688 9.88688 9.88688 9.88688 9.886888 9.88688 9.88688 9.88688 9.88688 9.88688 9.88688 9.88688 9.88688 9.8868	9.578 9.5772 9.5772 ***********************************	10.1446 10.1446 10.1446 10.1271 10.146 10.1271 10.146 9.7719 9.6767 9.66642 9.6596 9.6596 9.5581 9.5581 9.613	9.55688 9.55688 9.55688 775918870663083431 79.8879.776290.6630831431331 9.551221 9.551221	9.837 9.844 9.844 9.844 9.794 9.77328 9.77328 9.66642 9.66642 9.6969 9.5989 9.65989 9.65989 9.65989

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10° ; airflow, 35.36 kg/sec; readings 21–30

AXIAL STATION	CIRC	OUTER UMFERENTIA		ON, DEG	CIRC	CENTER UMFERENTI		ON, DEG
	0	90	180	270	0	90	180	270
12345678901234567890123456789012345678901234567890123456789012345678	10.021 10.020 10.0349 10.0349 10.0499 10.0550 10.0664 10.0664 10.0335 10.0335 10.0335 10.0335 10.0226 10.0227 10.0198 10.0227 10.0198 10.04***********************************	10.014 10.013 10.013 10.013 10.011 10.011 10.010 10.005 10.015 10.0224 10.0224 10.0224 10.0235 10.048 10.0557	10.013 10.019 10.0339 10.0339 10.0558 10.0558 10.0664 10.0664 10.03376521 10.03319 10.	10.015 10.015 10.015 10.034 10.0466 10.0662 10.0662 10.0674 10.075 10.077 10.07	9.999 9.997 9.996 *********************************	10.149 10.153 10.1552 10.1552 10.0336 10.03354 10.03354 10.00331 10.0031 10.0031 10.0031 10.0031	10.094 9.994 10.0849 9.00 ** 10.0859 10.0859 10.0910.002 9.9988 10.0992 9.9885	10.066 10.072 10.056 ******* 10.044 10.044 10.044 10.035 10.035 10.022 10.018 10.022 10.018 10.005 10.005 10.005
79	10.008	10.008	10.019	****** 10.021	9.984 10.011	10.002	9.986 10.010	10.003

TABLE VIII.—STATIC-PRESSURE DISTRIBUTION AT INLET GUIDE VANE EXIT

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, $-10\,^\circ$; airflow, 69.09 kg/sec; readings 281--290

(d) Vane A in corner	2; IGV	setting,	0°;	airflow,	69.17	kg/sec;	readings
279-289							

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.546	9.490
2	9.536	9.479
3	9.557	9.473
4	9.545	9.469
5	9.535	9.457
6	9.566	9.484
7	9.541	9.491
8	9.536	9.496
9	9.543	9.493
10	9.553	9.496
11	9.556	9.490
12	9.547	9.498
AVG	9.547	9.485

		
CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.560	9.541
2	9.550	9.534
3	9.571	9.521
4	9.567	9.527
5	9.564	9.522
6	9.566	9.539
ž	9.560	9.547
8	9.559	9.549
ğ	9.562	9.544
1 Ó	9.566	9.547
îĭ	9.570	9.545
îż	9.563	9.549
AVĜ	9.563	9.539
A V U	7.565	7.237

(b) Vane A in corner 2; IGV setting, 0° ; airflow, 82.30 kg/sec; readings 299-302

(e) Vane A in corner 2; IGV setting, 0°; airflow, 35.48 kg/sec; readings 291-294

CIRCUM			
LOCATION	DEG.	OUTER WALL	CENTERBODY
1	15	9.299	9.291
2	45	9.296	9.276
3	75	9.352	9.267
4	105	9.307	9.269
5	135	9.318	9.255
6	165	9.338	9.291
7	195	9.303	9.299
8	225	9.310	9.298
9	255	9.327	9.294
10	285	9.314	9.295
11	315	9.324	9.291
12	345	9.334	9.300
AVG		9.318	9.285
L			

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.992	9.990
2	9.991	9.987
3	10.000	9.986
4	9.994	9.987
) 5	9.996	9.986
6	9.999	9.991
7	9.994	9.993
8	9.995	9.993
9	9.997	9.992
10	9.995	9.993
11	9.997	9.991
12	9.998	9.993
AVG	9.996	9.990

(c) Vane A in corner 2; IGV setting, 0° ; airflow, 76.18 kg/sec; readings 295-298

(f) Vane A in corner 2; IGV setting, 10° ; airflow, 68.41 kg/sec; readings 280-288

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.423	9.402
2	9.410	9.393
3	9.438	9.382
4	9.432	9.383
5	9.426	9.377
6	9.432	9.404
7	9.423	9.407
8	9.422	9.411
9	9.426	9.405
10	9.436	9.405
11	9.436	9.405
12	9.427	9.410
AVG	9.427	9.399
	· - · · - · · · · · · · · · · · · · · ·	

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.568	9.556
2	9.557	9.548
3	9.573	9.530
4	9.577	9.540
5	9.579	9.539
6	9.579	9.557
7	9.570	9.562
8	9.571	9.564
9	9.571	9.558
10	9.577	9.563
11	9.575	9.562
12	9.571	9.565
AVG	9.572	9.554

TABLE VIII.—Continued. STATIC-PRESSURE DISTRIBUTION AT INLET GUIDE VANE EXIT

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0° ; airflow, 82.13 kg/sec; readings 307-310

(j) Vane A2 in corner 2; IG'	V setting	0°;	airflow,	35.45	kg/sec;	readings
315-318						

CIRCUM	OUTED HALL	AFWIFERE
LOCATION	OUTER WALL	CENTERBODY
1	9.303	9.294
) 2	9.295	9.273
3	9.328	9.265
4	9.294	9.272
5	9.312	9.256
6	9.337	9.291
7	9.299	9.302
8	9.311	9.295
9	9.333	9.298
10	9.316	9.301
11	9.339	9.297
12	9.337	9.305
AVG	9.317	9.287
1		

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.993	9.991
2	9.991	9.986
3	9.996	9.986
4	9.991	9.988
5	9.996	9.985
6	9.999	9.991
7	9.993	9.994
8	9.996	9.993
9	9.998	9.994
10	9.996	9.995
l îi	9.998	9.993
12	9.999	9.995
AVG	9.995	9.991

(h) Vane A2 in corner 2; IGV setting, $0\,^\circ;$ airflow, 76.09 kg/sec; readings 303–306

(k) Vane A3 in corner 2; IGV setting, 0° ; airflow, 76.16 kg/sec; readings 327-330

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.420	9.398
2	9.404	9.384
3	9.414	9.374
4	9.420	9.378
5	9.426	9.370
6	9.427	9.398
7	9.416	9.406
8	9.418	9.404
9	9.424	9.404
10	9.435	9.404
11	9.439	9.406
12	9.427	9.410
AVG	9.423	9.395
L		

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.436	9.417
2	9.416	9.408
3	9.452	9.398
4	9.447	9.398
5	9.444	9.394
6	9.446	9.421
1 7	9.435	9.425
8	9.435	9.426
9	9.437	9.421
10	9.449	9.422
l îi	9.449	9.421
īž	9.440	9.426
AVG	9.441	9.415
1	· · · · -	

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings

(1) Vane A3 in corner 2; IGV setting, 0°; airflow, 69.19 kg/sec; readings

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.558	9.542
2	9.546	9.530
3	9.555	9.522
4	9.556	9.524
5	9.561	9.519
6	9.563	9.541
7	9.554	9.547
8	9.556	9.546
9	9.561	9.546
10	9.570	9.547
11	9.574	9.547
12	9.563	9.551
AVG	9.560	9.538

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.557	9.552
5	9.548	9.540
ž	9.590	9.534
4	9.562	9.537
5	9.571	9.530
6	9.582	9.552
ž	9.558	9.557
8	9.563	9.555
ğ	9.578	9.553
10	9.565	9.556
īĭ	9.575	9.552
12	9.580	9.558
AVG	9.569	9.548

TABLE VIII.—Continued. STATIC-PRESSURE DISTRIBUTION AT INLET GUIDE VANE EXIT

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0° ; airflow, 35.51 kg/sec; readings 319-322

(p) Vane A4 in corner 2; IGV	setting,	0°; airflow,	35.48 kg/sec;	readings
339-342				

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.995	9.991
2	9.993	9.989
3	9.999	9.988
4	9.997	9.989
5	9.998	9.988
6	9.998	9.993
7	9.997	9.994
8	9.997	9.994
9	9.996	9.994
10	9.998	9.994
11 12	9.998 9.993	9.993
AVG	9.993	9.994 9.992

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.993	9.991
2	9.989	9.987
3	9.998	9.986
4	9.992	9.988
5	9.997	9.986
(6	9.999	9.992
7	9.994	9.995
8	9.997	9.993
9	9.998	9.994
10	9.997	9.995
11	9.992	9.993
12	9.999	9.995
AVG	9.996	9.991

(n) Vane A4 in corner 2; IGV setting, 0° ; airflow, 76.29 kg/sec; readings 331-334

(q) Vane B in corner 2; IGV setting, -10° ; airflow, 68.98 kg/sec; readings 9-19

OUTER WALL	CENTERBODY
9.418	9.414
9.408	9.396
9.444	9.389
9.415	9.395
9.436	9.383
9.452	9.414
9.419	9.423
9.427	9.417
9.450	9.418
	9.420
	9.417
9.450	9.424
9.433	9.409
	9.418 9.408 9.444 9.415 9.436 9.452 9.419 9.427 9.427 9.450 9.450 9.450

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.527	9.482
2	9.524	9.469
3	9.540	9.466
4	9.533	9.467
5	9.529	9.463
6	9.534	9.483
7	9.529	9.485
8	9.527	9.486
9	9.526	9.487
10	9.544	9.487
11	9.546	9.487
12	9.539	9.492
AVG	9.533	9.480

(o) Vane A4 in corner 2; IGV setting, 0° ; airflow, 69.31 kg/sec; readings 335-338

(r) Vane B in corner 2; IGV setting, -10° ; airflow, 35.35 kg/sec; readings 20-31

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.560	9.545
2	9.533	9.534
3	9.560	9.526
4	9.559	9.528
5	9.566	9.523
6	9.567	9.546
7	9.554	9.552
8	9.559	9.549
9	9.563	9.550
10	9.572	9.548
11	9.577	9.550
12	9.565	9.554
AVG	9.561	9.542
		

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.992	9.982
2	9.992	9.978
3	10.002	9.979
4	9.995	9.980
5	9.995	9.978
6	9.998	9.983
7	9.993	9.984
8	9.994	9.984
9	9.997	9.985
10	9.996	9.986
11	9.999	9.984
12	9.999	9.986
AVG	9.996	9.982

TABLE VIII.—Continued. STATIC-PRESSURE DISTRIBUTION AT INLET GUIDE VANE EXIT

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

(v) Vane B	in corner 2	; IGV	setting,	0°;	airflow,	56.55	kg/sec;	readings
32-35								

OZDOUM		
CIRCUM	011777	OFMIT FRR ORY
LOCATION	OUTER WALL	CENTERBODY
1	9.426	9.408
2	9.413	9.394
3	9.441	9.388
4	9.434	9.388
5	9.432	9.384
6	9.434	9.411
7	9.431	9.414
8	9.426	9.413
9	9.436	9.414
10	9.442	9.414
11	9.446	9.415
12	9.436	9.418
AVG	9.433	9.405

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.786	9.774
2	9.780	9.771
3	9.794	9.768
4	9.792	9.771
5	9.791	9.768
6	9.791	9.780
1 7	9.789	9.782
8	9.787	9.782
9	9.791	9.781
10	9.794	9.782
11	9.797	9.781
12	9.792	9.783
AVG	9.791	9.777

(t) Vane B in corner 2; IGV setting, 0° ; airflow, 73.99 kg/sec; readings 36-40

(w) Vane B in corner 2; IGV setting, 0° ; airflow, 35.15 kg/sec; readings 22-29

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.444	9.440
2	9.441	9.422
3	9.483	9.420
4	9.454	9.427
5	9.458	9.414
6	9.473	9.442
7	9.451	9.447
8	9.454	9.442
9	9.475	9.444
10	9.459	9.446
11	9.473	9.444
12	9.478	9.449
AVG	9.462	9.436

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.998	9.999
2	9.998	9.996
3	10.006	9.995
4	9.999	9.996
5	10.002	9.995
6	10.007	9.999
7	9.999	10.000
8	10.001	10.000
9	10.007	9.996
10	9.999	10.001
11	10.003	9.999
12	10.006	10.001
AVG	10.002	9.998

(u) Vane B in corner 2; IGV setting, 0° ; airflow, 69.17 kg/sec; readings 8-18

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.555	9.541
2	9.545	9.530
3	9.565	9.526
4	9.563	9.529
5	9.562	9.525
6	9.560	9.544
7	9.558	9.546
8	9.555	9.546
9	9.561	9.545
10	9.566	9.544
11	9.568	9.545
12	9.561	9.547
AVG	9.560	9.539

CIRCUM		
LOCATION	OUTER WALL	CENTERBODY
1	9.566	9.558
2	9.556	9.549
3	9.575	9.540
4	9.575	9.544
5	9.579	9.544
6	9.573	9.560
7	9.573	9.564
8	9.571	9.565
9	9.577	9.561
10	9.578	9.563
11	9.580	9.562
12	9.573	9.566
AVG	9.573	9.556

TABLE VIII.—Concluded. STATIC-PRESSURE DISTRIBUTION AT INLET GUIDE VANE EXIT

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10° ; airflow, 35.36 kg/sec; readings 21--30

CIRCUM		-
LOCATION	OUTER WALL	CENTERBODY
1	9.994	9.993
2	9.994	9.989
3	10.001	9.989
4	9.996	9.991
5	9.998	9.989
6	10.000	9.994
7	9.996	9.995
8	9.996	9.994
9	9.999	9.994
10	9.997	9.995
11	9.999	9.993
12	10.000	9.994
AVG	9.997	9.993

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, -10°; airflow, 69.09 kg/sec; readings 281-290

CIRCUM.	INL	ET	EX	ΙT
LOCATION,	FRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.817	1.004	9.734	1.215
15	9.855	0.909	9.720	1.250
30	9.854	0.911	9.696	1.310
45	9.860	0.895	9.659	1.403
60	9.885	0.833	9.653	1.420
75	9.893	0.811	*****	****
90	9.901	0.791	*****	****
105	9.898	0.798	****	****
120	9.884	0.834	9.661	1.397
135	9.862	0.890	9.662	1.396
150	9.858	0.900	9.686	1.335
165	9.857	0.902	9.719	1.251
180	9.217	1.004	9.735	1.211
195	9.780	1.097	9.701	1.298
210	9.771	1.121	9.652	1.420
225	9.772	1.116	9.607	1.535
240	9.786	1.081	9.565	1.641
255	9.805	1.035	9.563	1.646
270	9.761	1.146	9.621	1.500
285	9.816	1.006	9.590	1.577
300	9.760	1.147	9.581	1.600
315	9.762	1.144	9.625	1.490
330	9.743	1.192	9.669	1.377
345	9.771	1.121	9.714	1.263

(b) Vane A in corner 2; IGV setting, 0° ; airflow, 82.30 kg/sec; readings 299-302

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.692	0.992	9.564	1.219
15	9.742	0.903	9.543	1.256
30	9.741	0.904	9.510	1.315
45	9.745	0.897	9.454	1.414
60	9.789	0.819	9.444	1.432
7 5	9 .799	0.801	****	*****
90	9.807	0.786	*****	*****
105	9.803	0.793	*****	*****
120	9.783	0.830	9.461	1.401
135	9.751	0.887	9.457	1.410
150	9.747	0.894	9.493	1.345
165	9.744	0.899	9.543	1.257
180	9.692	0.992	9.565	1.217
195	9.632	1.097	9.513	1.310
210	9.619	1.121	9.442	1.435
225	9.623	1.114	9.381	1.544
240	9.644	1.076	9.323	1.647
255	9.674	1.023	9.305	1.680
270	9.613	1.132	9.392	1.525
285	9.687	1.000	9.349	1.602
3 00	9.605	1.146	9.342	1.614
315	9.606	1.144	9.404	1.503
330	9.577	1.195	9.466	1.393
345	9.619	1.121	9.536	1.270

[Pressures are in newtons per square centimeter.]

(c) Vane A in corner 2; IGV setting, 0°; airflow, 76.18 kg/sec; readings 295-298

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	H/CM2		N/CM2	
0	9.747	1.012	9.637	1.239
15	9.784	0.935	9.619	1.276
30	9.789	0.924	9.590	1.337
45	9.796	0.909	9.543	1.434
60	9.827	0.845	9.533	1.455
75	9.839	0.821	*****	*****
90	9.848	0.802	*****	*****
105	9.844	0.811	*****	*****
120	9.827	0.846	9.550	1.421
135	9.799	0.904	9.547	1.426
150	9.794	0.915	9.576	1.366
165	9.792	0.918	9.618	1.278
180	9.747	1.012	9.638	1.237
195	9.692	1.125	9.594	1.329
210	9.684	1.142	9.534	1.453
225	9.687	1.137	9.478	1.570
240	9.705	1.098	9.429	1.672
255	9.731	1.044	9.416	1.698
270	9.676	1.158	9.493	1.539
285	9.742	1.022	9.455	1.618
300	9.673	1.164	9.446	1.636
315	9.673	1.164	9.499	1.525
330	9.649	1.216	9.556	1.407
345	9.685	1.141	9.613	1.289

(d) Vane A in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 279-289

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.818	0.999	9.730	1.220
15	9.852	0.913	9.716	1.256
30	9.851	0.914	9.691	1.317
45	9.857	0.900	9.655	1.410
60	9.883	0.835	9.647	1.429
75	9.892	0.813	*****	****
90	9.900	0.792	*****	*****
105	9.896	0.802	*****	*****
120	9.882	0.837	9.660	1.398
135	9.860	0.893	9.659	1.400
150	9.856	0.903	9.682	1.342
165	9.854	0.906	9.715	1.257
180	9.818	0.999	9.732	1.216
195	9.776	1.103	9.697	1.304
210	9.768	1.124	9.648	1.426
225	9.769	1.122	9.603	1.541
240	9.783	1.085	9.560	1.648
255	9.802	1.037	9.557	1.656
270	9.758	1.150	9.616	1.507
285	9.813	1.010	9.585	1.585
300	9.759	1.148	9.577	1.606
315	9.759	1.147	9.620	1.498
330	9.739	1.197	9.665	1.383
345	9.767	1.127	9.711	1.269

[Pressures are in newtons per square centimeter.]

(e) Vane A in corner 2; IGV setting, 0°; airflow, 35.48 kg/sec; readings 291-294

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	10.056	0.927	10.035	1.127
15	10.064	0.848	10.031	1.162
30	10.063	0.856	10.025	1.227
45	10.064	0.850	10.018	1.287
60	10.070	0.792	10.016	1.307
75	10.072	0.766	*****	****
90	10.073	0.756	****	****
105	10.073	0.763	****	*****
120	10.070	0.792	10.018	1.290
135	17.064	0.843	10.016	1.313
150	10.064	0.846	10.025	1.227
165	10.063	0.857	10.032	1.161
180	10.056	0.927	10.035	1.127
195	10.046	1.024	10.027	1.201
210	10.044	1.043	10.015	1.316
225	10.044	1.041	10.007	1.401
240	10.047	1.014	9.994	1.522
255	10.050	0.983	9.997	1.498
270	10.039	1.085	10.009	1.379
285	10.052	0.962	10.004	1.429
300	10.041	1.068	9.999	1.471
315	10.041	1.074	10.010	1.373
330	10.037	1.112	10.020	1.268
345	10.044	1.041	10.031	1.165

(f) Vane A in corner 2; IGV setting, 10°; airflow, 68.41 kg/sec; readings 280-288

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.815	1.026	9.730	1.243
15	9.852	0.930	9.716	1.281
30	9.851	0.932	9.691	1.344
45	9.857	0.917	9.653	1.441
60	9.881	0.853	9.645	1.462
75	9.891	0.829	*****	*****
90	9.899	0.809	*****	*****
105	9.895	0.818	****	*****
120	9.882	0.853	9.658	1.429
135	9.859	0.911	9.657	1.431
150	9.855	0.922	9.681	1.370
165	9.853	0.926	9.715	1.283
180	9.815	1.026	9.731	1.240
195	9.777	1.124	9.697	1.328
210	9.768	1.146	9.649	1.453
225	9.769	1.143	9.602	1.573
240	9.782	1.108	9.561	1.680
255	9.802	1.057	9.558	1.686
270	9.757	1.173	9.616	1.537
285	9.813	1.030	9.586	1.614
300	9.758	1.172	9.577	1.639
315	9.759	1.170	9.620	1.526
330	9.739	1.221	9.666	1.409
345	9.768	1.147	9.711	1.292

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0°; airflow, 82.13 kg/sec; readings 307-310

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.711	0.924	9.603	1.117
15	9.736	0.880	9.540	1.230
30	9.717	0.914	9.499	1.302
45	9.707	0.932	9.424	1.436
60	9.748	0.858	9.409	1.463
75	9.739	0.875	*****	*****
90	9.742	0.869	****	*****
105	9.742	0.869	*****	*****
120	9.728	0.894	9.427	1.430
135	9.709	0.929	9.428	1.429
150	1.723	0.902	9.493	1.313
165	9.738	0.876	9.538	1.234
180	9.711	0.924	9.609	1.106
195	9.684	0.972	9.588	1.143
210	9.669	0.999	9.546	1.218
225	9.689	0.963	9.473	1.349
240	9.717	0.913	9.438	1.410
255	9.742	0.869	9.603	1.116
270	9.709	0.928	9.596	1.129
285	9.753	0.849	9.540	1.230
300	9.690	0.962	9.491	1.317
315	9.672	0.993	9.501	1.299
330	9.635	1.059	9.566	1.183
345	9.672	0.993	9.604	1.115

(h) Vane A2 in corner 2; IGV setting, 0°; airflow, 76.09 kg/sec; readings 303-306

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.762	0.945	9.669	1.137
15	9.783	0.901	9.613	1.253
30	9.766	U.936	9.579	1.325
45	9.758	0.954	9.513	1.461
60	9.791	0.883	9.502	1.484
75	9.786	0.894	*****	*****
90	9.789	0.888	*****	*****
105	9.789	0.888	*****	*****
120	9.777	0.914	9.516	1.456
135	9.759	0.950	9.517	1.453
150	9.773	0.922	9.573	1.336
165	9.786	0.894	9.609	1.263
180	9.762	0.945	9.674	1.126
195	9.740	0.990	9.657	1.163
210	9.727	1.018	9.620	1.240
225	9.744	0.982	9.555	1.374
240	9.768	0.932	9.526	1.435
255	9.790	0.887	9.675	1.126
270	9.760	0.949	9.665	1.147
285	9.799	0.867	9.616	1.247
300	9.745	0.980	9.572	1.339
315	9.734	1.002	9.580	1.322
330	9.697	1.080	9.637	1.204
345	9.728	1.014	9.670	1.135

[Pressures are in newtons per square centimeter.]

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings 311-314

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG. 0	N/CM2 9.830	0.935	N/CM2 9.756	1.121
15	9.847	0.891	9.712	1.232
30	9.834	0.925	9.684	1.303
45	9.827	0.943	9.632	1.436
60	9.856	0.869	9.619	1.467
75	9.849	0.887	*****	****
90	9.851	0.883	*****	*****
105	9.851	0.882	*****	*****
120	9.842	0.905	9.633	1.433
135	9.829	0.939	9.633	1.431
150	9.838	0.914	9.679	1.316
165	9.850	0.885	9.709	1.241
180	9.830	0.935	9.759	1.113
195	9.813	0.978	9.746	1.147
210	9.803	1.002	9.717	1.220
225	9.817	0.968	9.665	1.352
240	9.827	0.942	9.642	1.410
255	9.854	0.876	9.765	1.100
270	9.829	0.938	9.754	1.127
285	9.861	0.857	9.717	1.221
300	9.818	0.966	9.679	1.316
315	9.809	0.988	9.685	1.301
330	9.780	1.062	9.731	1.184
345	9.804	1.002	9.759	1.114

(j) Vane A2 in corner 2; IGV setting, 0°; airflow, 35.45 kg/sec; readings 315-318

CIRCUM.	INL	ET	EX	ΙT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	10.058	0.870	10.040	1.049
15	10.063	0.831	10.030	1.150
30	10.059	0.864	10.021	1.229
45	10.057	0.880	10.011	1.326
<u>6 0</u>	10.063	0.822	10.007	1.367
75	10.063	0.830	****	*****
90	10.063	0.831	*****	*****
105	10.062	0.837	*****	*****
120	10.061	0.850	10.011	1.326
135	10.057	0.883	10.012	1.318
150	10.057	0.882	10.024	1.204
165	10.063	0.829	10.031	1.139
180	10.058	0.870	10.042	1.027
195	10.054	0.911	10.040	1.051
210	10.052	0.930	10.033	1.114
225	10.055	0.904	10.021	1.235
240	10.060	0.859	10.015	1.292
255	10.063	0.827	10.046	0.987
270	10.058	0.878	10.041	1.039
285	10.065	0.812	10.035	1.102
300	10.056	0.891	10.024	1.207
315	10.054	0.909	10.025	1.196
330	10.046	0.990	10.035	1.096
345	10.052	0.929	10.041	1.038

TABLE IX.—Continued. VANE INLET AND EXIT STATIC-PRESSURE DISTRIBUTION

[Pressures are in newtons per square centimeter.]

(k) Vane A3 in corner 2; IGV setting, 0°; airflow, 76.16 kg/sec; readings 327-330

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.755	0.992	9.643	1.226
15	9.801	0.897	9.626	1.261
30	9.800	0.899	9.598	1.318
45	9.806	0.885	9.549	1.420
60	9.842	0.810	9.544	1.431
75	9.847	0.801	*****	****
90	9.854	0.786	*****	*****
105	9.860	0.773	*****	*****
120	9.834	0.827	9.560	1.398
135	9.807	0.884	9.560	1.398
150	9.802	0.895	9.589	1.337
165	9.801	0.897	9.628	1.256
180	9.755	0.992	9.652	1.206
195	9.709	1.088	9.612	1.290
210	9.681	1.147	9.559	1.401
225	9.685	1.138	9.494	1.534
240	9.695	1.118	9.414	1.702
255	9.663	1.184	9.485	1.555
270	9.705	1.095	9.602	1.310
285	9.641	1.229	9.463	1.599
300	9.674	1.161	9.452	1.623
315	9.680	1.149	9.494	1.536
330	9.658	1.194	9.557	1.403
345	9.703	1.100	9.620	1.274

(I) Vane A3 in corner 2; IGV setting, 0°; airflow, 69.19 kg/sec; readings 323-326

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.822	0.986	9.734	1.209
15	9.860	0.892	9.720	1.245
30	9.859	0.894	9.698	1.301
45	9.865	0.879	9.659	1.398
60	9.892	0.810	9.653	1.413
75	9.898	0.796	*****	*****
90	9.904	9.780	*****	*****
105	9.900	0.791	*****	*****
120	9.887	0.822	9.665	1.383
135	9.862	0.886	9.666	1.382
150	9.860	0.891	9.690	1.320
165	9.860	0.890	9.721	1.242
180	9.822	0.986	9.739	1.196
195	9.786	1.078	9.708	1.275
210	9.762	1.138	9.664	1.387
225	9.766	1.129	9.615	1.510
240	9.770	1.117	9.549	1.676
255	9.746	1.178	9.610	1.523
270	9.785	1.082	9.703	1.286
285	9.729	1.221	9.592	1.566
300	9.754	1.160	9.579	1.600
315	9.761	1.140	9.613	1.514
330	9.743	1.187	9.666	1.382
345	9.781	1.090	9.716	1.255

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0°; airflow, 35.51 kg/sec; readings 319-322

CIRCUM.	INL	.ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2	0 000	N/CM2	1 10/
0	10.056	0.922	10.035	1.126
15	10.065	0.836	10.032 10.025	1.158 1.224
30	10.065	0.835	10.025	1.282
45	10.066	0.831 0.764	10.019	1.302
60 75	10.072 10.074	0.752	*****	*****
90	10.074	0.742	*****	*****
105	10.073	0.758	*****	*****
120	10.071	0.783	10.019	1.280
135	10.066	0.829	10.020	1.272
150	10.065	0.837	10.026	1.212
165	10.064	0.842	10.033	1.143
180	10.056	0.922	10.037	1.105
195	10.047	1.006	10.030	1.171
210	10.041	1.064	10.020	1.274
225	10.042	1.055	10.012	1.343
240	10.042	1.060	9.992	1.538
255	10.038	1.098	10.008	1.381
270	10.048	1.000	10.031	1.167
285	10.033	1.145	10.006	1.409
300	10.040	1.081	9.999	1.473
315	10.041	1.068	10.007	1.394
330	10.038	1.101	10.020	1.269
345	10.046	1.015	10.031	1.162

(n) Vane A4 in corner 2; IGV setting, 0°; airflow, 76.29 kg/sec; readings 331-334

CIRCUM.	INL	ET	EX	ΙT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.766	0.925	9.669	1.126
15	9.786	0.885	9.620	1.228
30	9.777	0.902	9.585	1.300
45	9.771	0.916	9.522	1.430
60	9.804	0.847	9.520	1.434
75	9.915	0.618	*****	*****
90	9.803	0.849	*****	*****
105	9.813	0.829	*****	*****
120	9.787	0.883	9.524	1.426
135	9.769	0.919	9.526	1.421
150	9.779	0.899	9.583	1.304
165	9.786	0.885	9.619	1.230
180 195	9.766	0.925	9.681	1.102
	9.741	0.976	9.668	1.129
210 225	9.728 9.741	1.005	9.636	1.194
240	9.758	0.978	9.584	1.301
255	9.757	0.941 0.943	9.542	1.390
270	9.791	0.943	9.670	1.123
285	9.739	0.873	9.741	0.977 1.138
300	9.740	0.980	9.663	
315	9.737	0.986	9.567	1.337
330	9.706	1.049	9.597 9.642	1.276 1.183
345	9.736	0.987	9.672	1.103
512	7.730	0.707	7.0/2	1.117

[Pressures are in newtons per square centimeter.]

(o) Vane A4 in corner 2; IGV setting, $0\,^{\circ};$ airflow, 69.31 kg/sec; readings 335–338

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.831	0.923	9.753	1.121
15	9.847	0.884	9.711	1.225
30	9.840	0.902	9.683	1.295
45	9.834	0.916	9.633	1.422
60	9.861	0.848	9.631	1.427
75	9.857	0.858	*****	*****
90	9.860	0.850	*****	*****
105	9.869	0.828	*****	*****
120	9.847	0.884	9.634	1.418
135	9.833	0.919	9.637	1.412
15 0	9.841	0.900	9.682	1.299
165	9.847	0.885	9.711	1.227
180	9.831	0.923	9.760	1.101
195	9.811	0.975	9.751	1.124
210	9.800	1.002	9.725	1.190
225	9.810	0.977	9.684	1.292
240	9.824	0.942	9.651	1.376
255	9.823	0.944	9.754	1.116
270	9.855	0.865	9.811	0.975
285	9.810	0.978	9.750	1.127
300	9.810	0.977	9.672	1.323
315	9.808	0.983	9.695	1.267
330	9.783	1.045	9.731	1.174
345	9.804	0.993	9.756	1.113
		- · · · -		

(p) Vane A4 in corner 2; IGV setting, 0°; airflow, 35.48 kg/sec; readings 339-342

CIRCUM.	INL	ΕT	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	10.059	0.857	10.040	1.043
15	10.063	0.827	10.031	1.137
30	10.062	0.837	10.023	1.209
45	10.060	0.852	10.014	1.298
60	10.066	0.797	10.013	1.302
75	10.065	rì.802	*****	*****
90	10.065	0.799	****	*****
105	10.068	0.770	****	*****
120	10.062	0.829	10.015	1.287
135	10.059	0.858	10.016	1.274
150	10.062	0.834	10.027	1.174
165	10.063	0.819	10.033	1.115
180	10.059	0.857	10.044	1.007
195	10.054	0.908	10.042	1.026
210	10.052	0.926	10.035	1.089
225	10.055	0.901	10.022	1.215
240	10.057	0.877	10.019	1.244
255	10.057	0.876	10.041	1.033
270	10.065	0.802	10.057	0.880
285	10.054	0.911	10.041	1.031
300	10.055	0.904	10.024	1.204
315	10.055	0.897	10.026	1.175
330	10.349	0.957	10.036	1.084
345	10.053	0.916	10.041	1.031

[Pressures are in newtons per square centimeter.]

(q) Vane B in corner 2; IGV setting, -10°; airflow, 68.98 kg/sec; readings 9-19

CIRCUM.	INL	ET	EX	ΙT
LOCATION, DEG.	PRESSURE N/CM2	COEFFIC	PRESSURE N/CM2	COEFFIC
0	9.804	0.983	9.729	1.173
15	9.812	0.964	9.697	1.253
30	9.809	0.972	9.678	1.302
45	9.803	0.987	9.640	1.399
60	9.812	0.964	9.634	1.414
75	9.798	0.998	*****	*****
90	9.803	0.986	*****	*****
105	9.808	0.974	·****	*****
120	9.811	0.968	9.643	1.391
135	9.802	0.989	9.643	1.389
150	9.804	0.984	9.672	1.318
165	9.807	0.976	9.694	1.261
180	9.810	0.969	9.738	1.151
195	9.796	1.004	9.742	1.140
210	9.800	0.995	9.750	1.122
225	9.826	0.929	9.741	1.143
240	9.838	0.899	9.752	1.116
255	9.874	0.807	9.785	1.033
270	9.883	0.784	9.795	1.007
285	9.872	0.814	9.781	1.041
300	9.850	0.868	9.742	1.141
315	9.826	0.929	9.751	1.119
330	9.802	0.989	9.734	1.161
345	9.792	1.015	9.739	1.148

(r) Vane B in corner 2; IGV setting, -10°; airflow, 35.35 kg/sec; readings 20-31

CIRCUM.	INL	ET	EX	ΙT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG. 0	N/CM2 10.061	0.861	N/CM2 10.042	1.045
15	10.063	0.836	10.033	1.133
30	10.062	0.850	10.027	1.193
45	10.060	0.865	10.018	1.275
60	10.062	0.849	10.016	1.297
75	10.059	0.881	*****	*****
90	10.060	0.873	****	*****
105	10.061	0.862	*****	*****
120	10.061	0.857	10.018	1.279
135	10.060	0.871	10.019	1.269
150	10.058	0.889	10.027	1.188
165	10.062	0.847	10.034	1.124
180	10.062	0.855	10.044	1.026
195	10.057	0.903	10.044	1.026
210	10.058	0.891	10.045	1.012
225	10.064	0.828	10.039	1.073
240	10.067	0.796	10.045	1.015
255	10.077	0.707	10.053	0.940
270	10.078	0.691	10.056	0.912
285	10.076	0.712	10.052	0.944
300	10.071	0.766	10.043	1.039
315	10.065	0.822	10.039	1.070
330	10.059	0.884	10.043	1.039
345	10.056	0.911	10.044	1.025

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.769	0.930	9.667	1.143
15	9.777	1.914	9.617	1.245
30	9.771	ú.926	9.590	1.302
45	9.763	0.943	9.529	1.428
60	9.775	0.918	9.522	1.442
75	9.758	0.953	*****	*****
90	9.764	0.941	*****	*****
105	9.770	0.929	*****	*****
120	9.772	0.924	9.544	1.397
135	9.760	0.949	9.541	1.402
150	9.765	0.938	9.580	1.322
165	9.771	0.926	9.618	1.244
180	9.777	0.915	9.680	1.114
195	9.759	0.951	9.685	1.105
210	9.763	0.943	9.694	1.085
225	9.798	0.870	9.678	1.119
240	9.814	0.837	9.699	1.075
255	9.864	0.733	9.745	0.981
270	9.879	0.702	9.760	0.950
285	9.863	0.735	9.742	0.987
300	9.832	0.799	9.685	1.105
315	9.799	0.868	9.667	1.142
330	9.766	0.936	9.678	1.120
345	9.753	0.964	9.678	1.119

(t) Vane B in corner 2; IGV setting, 0°; airflow, 73.99 kg/sec; readings 36-40

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.783	0.946	9.684	1.163
15	9.791	0.929	9.639	1.262
30	9.786	0.938	9.613	1.318
45	9.775	0.963	9.562	1.431
60	9.790	0.930	9.552	1.454
75	9.773	0.968	*****	*****
90	9.779	0.954	*****	*****
105	9.785	0.940	*****	*****
120	9.788	0.935	9.568	1.418
135	9.777	0.958	9.565	1.424
150	9.781	0.950	9.604	1.338
165	9.785	0.940	9.639	1.262
180	9.789	0.931	9.695	1.140
195	9.773	0.968	9.701	1.125
210	9.776	0.960	9.710	1.105
225	9.810	0.887	9.702	1.124
240	9.826	0.851	9.714	1.098
255	9.874	0.746	9.757	1.002
270	9.888	0.716	9.771	0.971
285	9.872	9.751	9.754	1.010
300	9.842	0.816	9.702	1.124
315	9.811	0.885	9.683	1.166
330	9.779	0.953	9.694	1.141
345	9.766	0.982	9.696	1.136

[Pressures are in newtons per square centimeter.]

(u) Vane B in corner 2; IGV setting, 0° ; airflow, 69.17 kg/sec; readings 8-18

CIRCUM. INLET	EXIT
LOCATION, PRESSURE COEFFI	
DEG. N/CM2	N/CM2
0 9.805 0.974	9.729 1.165
15 9.812 0.956	9.698 1.244
30 9.810 0.963	9.678 1.293
45 9.803 0.979	9.640 1.390
60 9.813 0.956	9.633 1.406
75 9.729 0.989	*****
90 9.804 0.977	*****
105 9.809 0.965	*****
120 9.812 0.958	9.645 1.376
135 9.803 0.981	9.645 1.377
150 9.805 0.975	
165 9.808 0.967	9.695 1.251
180 9.811 0.961	9.739 1.141
195 9.798 0.993	
210 9.801 0.985	
225 9.827 0.919	
240 9.838 0.892	
255 9.875 0.800	9.785 1.025
270 9.884 0.777	9.796 0.998
285 9.873 0.80 <u>5</u>	
300 9.850 0.861	
315 9.827 0.921	9.752 1.107
330 9.803 0.980	
345 9.793 1.005	9.740 1.138

(v) Vane B in corner 2; IGV setting, 0°; airflow, 56.55 kg/sec; readings 32-35

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.946	0.865	9.896	1.054
15	9.951	0.844	9.875	1.134
30	9.949	0.852	9.861	1.186
45	9.945	0.867	9.836	1.281
60	9.951	0.845	9.831	1.299
75	9.942	0.878	*****	*****
90	9.945	0.867	*****	*****
105	9.948	0.855	*****	*****
120	9.950	0.848	9.838	1.275
135	9.944	0.870	9.838	1.272
150	9.946	0.863	9.857	1.201
165	9.945	0.866	9.874	1.137
180	9.948	0.856	9.900	1.037
195	9.940	888.0	9.903	1.028
210	9.942	0.880	9.907	1.010
225	9.960	0.812	9.905	1.021
240	9.967	0.783	9.909	1.006
255	9.992	0.691	9.930	0.924
270	9.997	0.669	9.937	0.899
285	9.990	0.695	9.928	0.933
300	9.976	0.751	9.903	1.028
315	9.960	0.812	9.894	1.062
330	9.944	0.873	9.900	1.037
345	9.937	0.899	9.902	1.030

[Pressures are in newtons per square centimeter.]

(w) Vane B in corner 2; IGV setting, 0°; airflow, 35.15 kg/sec; readings 22-29

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG. 0	N/CM2	0 970	N/CM2	
15	10.061 10.063	0.870	10.041	1.060
30	10.062	0.846 0.858	10.033 10.027	1.141 1.201
45	10.061	0.871	10.027	1.201
60	10.062	0.860	10.016	1.313
75	10.056	0.915	*****	*****
90	10.060	0.875	*****	*****
105	10.061	0.871	*****	*****
120	10.061	0.866	10.018	1.291
135	10.060	0.877	10.019	1.280
150	10.061	0.869	10.027	1.200
165	10.063	0.850	10.034	1.138
180 195	10.062 10.057	0.862	10.044	1.035
210	10.058	0.904 0.900	10.044 10.045	1.036
225	10.065	0.833	10.045	1.024 1.079
240	10.067	0.805	10.045	1.020
255	10.077	0.708	10.052	0.953
270	10.079	0.688	10.056	0.918
285	10.076	0.716	10.053	0.949
300	10.071	0.773	10.044	1.038
315	10.065	0.831	10.040	1.077
330	10.059	0.891	10.043	1.043
345	10.057	0.908	10.044	1.035

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings 10-17

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG.	N/CM2		N/CM2	
0	9.807	0.995	9.732	1.189
15	9.816	0.973	9.700	1.271
30	9.812	0.984	9.681	1.320
45	9.806	0.998	9.642	1.419
60	9.815	0.975	9.636	1.437
75	9.802	1.009	*****	*****
90	9.807	0.997	*****	*****
105	10ه.9	0.987	*****	*****
120	9.813	0.980	9.647	1.407
135	9.804	1.002	9.648	1.406
150	9.807	0.996	9.675	1.335
165	9.811	0.987	9.701	1.268
180	9.812	0.984	9.742	1.164
195	9.800	1.015	9.747	1.151
210	9.803	1.007	9.753	1.133
225	9.829	0.939	9.745	1.156
240	9.840	0.911	9.756	1.126
255	9.876	0.817	9.788	1.044
270	9.886	0.793	9.798	1.018
285	9.874	0.823	9 .785	1.052
300	9.852	0.881	9.746	1.152
315	9.828	0.941	9.755	1.130
330	9.805	1.001	9.741	1.166
345	9.795	1.026	9.743	1.161

TABLE IX.—Concluded. VANE INLET AND EXIT STATIC-PRESSURE DISTRIBUTION

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10°; airflow, 35.36 kg/sec; readings 21-30

CIRCUM.	INL	ET	EX	IT
LOCATION,	PRESSURE	COEFFIC	PRESSURE	COEFFIC
DEG. 0	N/CM2 10.061	0.861	N/CM2 10.042	1.045
15	10.063	0.836	10.033	1.131
30	10.062	0.850	10.027	1.192
45	10.060	0.866	10.015	1.306
60	10.062	0.851	10.016	1.297
75	10.059	0.880	****	*****
90	10.060	0.871	*****	*****
105	10.060	0.864	***** 10.018	***** 1.277
120 135	10.061 10.059	0.857 0.874	10.018	1.269
150	10.061	0.861	10.027	1.191
165	10.062	0.847	10.031	1.154
180	10.062	0.854	10.044	1.024
195	10.057	0.897	10.044	1.025
210	10.058	0.892	10.046	1.009
225	10.064	0.827	10.039	1.072
240	10.067	0.800	10.045	1.016
255	10.077	0.708	10.052 10.055	0.944 0.913
270 285	10.079 10.076	0.687 0.713	10.055	0.946
300	10.071	0.759	10.052	1.032
315	10.065	0.822	10.037	1.096
330	10.059	0.880	10.043	1.036
345	10.056	0.908	10.044	1.029

[Pressures are in newtons per square centimeter.]

(a) Vane A in corner 2; IGV setting, -10° ; airflow, 69.09 kg/sec; readings 281-290

SECTION	A					
XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESSURE SUCT 9.697 9.357 9.3512 9.204 9.105 9.043 9.197 9.378 9.5015 9.5116	PRESS 9.697 9.956 9.761 9.753 9.784 9.864 9.850 9.850 9.8766 9.709 9.620 9.539	MACH SUCT 0.273 0.356 0.356 0.379 0.406 0.410 0.421 0.390 0.348 0.329 0.323	NO PRESS 0.273 0.191 0.255 0.258 0.248 0.236 0.228 0.234 0.254 0.254 0.254 0.270 0.280 0.294	COEFFI SUCT -0.293 -1.152 -1.266 -1.427 -1.540 -1.764 -1.948 -1.557 -1.066 -0.847 -0.784 -0.752	CIENT PRESS -0.293 0.362 -0.131 -0.152 -0.072 -0.025 0.094 0.047 -0.119 -0.261 -0.355 -0.488 -0.692
SECTION	В					
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.588 9.311 9.311 9.263 9.263 9.246 9.282 9.479 9.648 9.702 9.716 9.723	9.588 10.090 9.930 9.936 9.925 9.942 9.957 9.971 9.928 9.889 9.889 9.859	0.302 0.366 0.366 0.375 0.376 0.380 0.377 0.372 0.286 0.272 0.268	0.302 0.132 0.201 0.206 0.203 0.197 0.191 0.183 0.186 0.202 0.215 0.225 0.236	-0.568 -1.269 -1.372 -1.389 -1.435 -1.398 -1.394 -0.845 -0.281 -0.227	-0.568 0.702 0.296 0.261 0.283 0.328 0.365 0.415 0.405 0.292 0.193 0.118 0.031 -0.117
SECTION	С					
0.005 0.025 0.055 0.055 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900	9.518 9.282 9.2241 9.2243 9.2239 9.2239 9.4550 9.680 9.680 9.680 9.718	9.518 10.139 9.939 9.938 9.938 9.926 9.952 9.971 9.971 9.873 9.842 9.805 9.741	0.319 0.372 0.379 0.381 0.380 0.384 0.381 0.377 0.294 0.278 0.278	0.319 0.103 0.198 0.205 0.198 0.203 0.193 0.186 0.1889 0.207 0.221 0.231 0.242	-0.745 -1.344 -1.424 -1.447 -1.479 -1.451 -1.450 -0.918 -0.489 -0.336 -0.292 -0.271	-0.745 0.825 0.3272 0.318 0.286 0.353 0.401 0.256 0.151 0.074 -0.020 -0.181
SECTION	D					
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.850 0.950	9.615 9.501 9.497 9.499 9.496 9.506 9.517 9.611 9.732 9.747 9.765	9.615 10.145 9.998 9.979 9.983 9.987 9.998 10.010 9.998 9.951 9.908 9.878 9.840 9.773	0.295 0.323 0.324 0.324 0.324 0.322 0.319 0.272 0.264 0.259 0.254	0.295 0.098 0.175 0.182 0.181 0.179 0.175 0.175 0.175 0.209 0.219 0.231 0.252	-0.501 -0.789 -0.794 -0.800 -0.795 -0.802 -0.775 -0.747 -0.511 -0.511 -0.283 -0.205 -0.165 -0.045 -0.121	-0.501 0.841 0.469 0.431 0.441 0.469 0.469 0.351 0.240 0.164 0.069 -0.100

[Pressures are in newtons per square centimeter.]

(b) Vane A in corner 2; IGV setting, 0°; airflow, 82.30 kg/sec; readings 299-302

•	_	^	-	~	_	ы	
`	-	{ ⁻	1	•	п	N	Α.

JECTION	m					
XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.900	PRESSURE, SUCT 9.538 9.052 8.988 8.890 8.822 8.693 8.661 8.581 8.798 9.068 9.190 9.226 9.245 9.244	N/CM2 PR.538 9.854 9.557 9.6527 9.6658 9.6623 9.699 9.692 9.376	MACH SUCT 0.322 0.425 0.437 0.455 0.468 0.491 0.496 0.510 0.472 0.422 0.398 0.391 0.387	NO PRESS 0.322 0.238 0.310 0.313 0.293 0.295 0.275 0.282 0.307 0.326 0.339 0.355 0.380	COEFFI SUCT -0.244 -1.110 -1.222 -1.397 -1.519 -1.747 -1.805 -1.947 -1.560 -1.081 -0.864 -0.800 -0.766 -0.767	CIENT PRESS -0.244 0.318 -0.157 -0.032 0.087 -0.032 0.085 0.042 -0.131 -0.273 -0.503 -0.710
SECTION	В					
0.000 0.025 0.050 0.150 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.371 8.969 8.971 8.907 8.8896 8.869 8.892 9.201 9.439 9.518 9.537 9.545	9.371 10.061 9.836 9.831 9.857 9.878 9.910 9.901 9.840 9.742 9.742 9.692	0.360 0.441 0.440 0.452 0.455 0.455 0.455 0.325 0.327 0.322 0.320 0.316	0.360 0.163 0.243 0.249 0.245 0.237 0.230 J.220 0.223 0.242 0.258 0.270 0.284 0.305	-0.542 -1.256 -1.253 -1.366 -1.386 -1.434 -1.394 -1.328 -0.844 -0.421 -0.280 -0.246 -0.231 -0.202	-0.542 0.685 0.285 0.278 0.324 0.361 0.417 0.402 0.292 0.118 0.029 -0.119
SECTION	С					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900 0.950	9.280 8.922 8.877 8.864 8.868 8.847 8.863 8.894 9.158 9.400 9.510 9.523 9.539	9.280 10.132 9.848 9.823 9.853 9.874 9.901 9.887 9.717 9.663 9.572	0.379 0.450 0.458 0.4659 0.463 0.463 0.465 0.455 0.455 0.334 0.3329 0.322	0'.379 0.128 0.240 0.247 0.238 0.244 0.232 0.223 0.227 0.228 0.265 0.277 0.291 0.314	-0.702 -1.341 -1.420 -1.443 -1.474 -1.445 -1.390 -0.921 -0.490 -0.336 -0.294 -0.270 -0.242	-0.702 0.813 0.307 0.262 0.314 0.281 0.353 0.402 0.376 0.151 0.073 -0.022 -0.183
SECTION	D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.900	9.407 9.2465 9.2241 9.2238 9.2252 9.2566 9.3918 9.563 9.5641 9.611	9.407 10.148 9.941 9.914 9.927 9.927 9.963 9.963 9.876 9.813 9.876 9.717	0.352 0.387 0.388 0.388 0.385 0.385 0.385 0.385 0.311 0.327	0.352 0.119 0.209 0.218 0.216 0.214 0.208 0.202 0.209 0.250 0.250 0.250 0.250	-0.478 -0.765 -0.766 -0.774 -0.769 -0.778 -0.752 -0.729 -0.499 -0.279 -0.200 -0.163 -0.062 -0.115	-0.478 0.8472 0.425 0.436 0.478 0.511 0.476 0.3575 0.165 0.074 -0.097

[Pressures are in newtons per square centimeter.]

(c) Vane A in corner 2; IGV setting, 0°; airflow, 76.18 kg/sec; readings 295-298

SECTION	,
---------	---

XC000 0.025 0.025 0.075 0.150 0.150 0.2300 0.500 0.700 0.850 0.950	PRESSURE, N/CM2 SUCT PRESS 9.601 9.601 9.180 9.902 9.125 9.666 9.044 9.656 8.986 9.696 8.874 9.721 8.847 9.751 8.780 9.779 8.971 9.757 9.209 9.671 9.317 9.604 9.346 9.557 9.364 9.391	MACH NO SUCT PRESS 0.304 0.304 0.397 0.218 0.408 0.287 0.424 0.289 0.435 0.279 0.456 0.272 0.461 0.264 0.473 0.256 0.473 0.256 0.438 0.262 0.391 0.286 0.369 0.303 0.363 0.314 0.359 0.353	COEFFICIENT SUCT PRESS -0.297 -0.297 -1.171 0.329 -1.285 -0.162 -1.453 -0.182 -1.573 -0.099 -1.805 -0.047 -1.862 0.014 -2.000 0.072 -1.604 0.027 -1.111 -0.152 -0.885 -0.290 -0.8826 -0.387 -0.788 -0.522 -0.789 -0.732
SECTION	Ŀ		
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.465 9.114 10.074 9.118 9.877 9.063 9.863 9.055 9.868 9.031 9.895 9.051 9.911 9.081 9.939 9.321 9.939 9.321 9.939 9.321 9.937 9.530 9.877 9.596 9.827 9.614 9.793 9.623 9.749 9.635	0.336 0.336 0.410 0.150 0.410 0.226 0.420 0.231 0.422 0.229 0.426 0.220 0.423 0.214 0.417 0.205 0.368 0.208 0.321 0.226 0.305 0.242 0.300 0.252 0.298 0.264 0.295 0.284	-0.579 -0.579 -1.307 0.685 -1.298 0.276 -1.413 0.240 -1.430 0.258 -1.478 0.313 -1.438 0.348 -1.375 0.404 -0.878 0.277 -0.307 0.173 -0.269 0.101 -0.250 0.012 -0.225 -0.140
SECTION	С		
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.850 0.900	9.376 9.076 9.076 9.037 9.888 9.026 9.864 9.029 9.888 9.010 9.873 9.025 9.908 9.050 9.931 9.284 9.931 9.284 9.931 9.495 9.859 9.571 9.809 9.571 9.604 9.725 9.618	0.356 0.356 0.418 0.118 0.425 0.222 0.428 0.230 0.427 0.222 0.431 0.227 0.428 0.216 0.423 0.208 0.376 0.212 0.329 0.231 0.311 0.247 0.306 0.258 0.303 0.271 0.299 0.292	-0.764 -0.764 -1.386 0.811 -1.466 0.298 -1.490 0.250 -1.484 0.300 -1.522 0.267 -1.493 0.340 -1.522 0.267 -1.493 0.340 -1.520 0.364 -0.516 0.240 -0.516 0.240 -0.359 0.136 -0.316 0.056 -0.291 -0.039 -0.262 -0.203
SECTION	D		
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900	9.493 9.493 9.353 10.149 9.351 9.967 9.348 9.944 9.350 9.949 9.347 9.953 9.360 9.968 9.373 9.983 9.488 9.967 9.597 9.909 9.636 9.855 9.655 9.818 9.709 9.771 9.678 9.687	0.330 0.330 0.361 0.109 0.361 0.195 0.362 0.203 0.362 0.202 0.362 0.200 0.359 0.195 0.357 0.189 0.331 0.195 0.331 0.195 0.304 0.215 0.295 0.233 0.290 0.244 0.275 0.258 0.284 0.281	-0.521 -0.521 -0.811 0.841 -0.815 0.463 -0.821 0.415 -0.818 0.425 -0.825 0.435 -0.797 0.464 -0.771 0.497 -0.532 0.464 -0.304 0.343 -0.224 0.230 -0.185 0.154 -0.072 0.055 -0.137 -0.117

[Pressures are in newtons per square centimeter.]

(d) Vane A in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 279-289

36011011	^					
XC/C 0.000 0.025 0.050 0.150 0.150 0.200 0.300 0.700 0.850 0.900 0.950	PRESSURE SUCT 9.693 9.350 9.305 9.107 9.033 9.190 9.384 9.473 9.511	F, N/CM2 PRESS 9.693 9.759 9.751 9.781 9.789 9.847 9.847 9.830 9.763 9.7669 9.669	MACH SUCT 0.275 0.358 0.367 0.381 0.390 0.408 0.412 0.423 0.391 0.350 0.350 0.324 0.321	NO PRESS 0.275 0.192 0.256 0.258 0.244 0.236 0.234 0.235 0.255 0.271 0.281 0.295 0.315	COEFFI SUCT -0.300 -1.164 -1.277 -1.436 -1.552 -1.777 -1.830 -1.963 -1.567 -1.077 -0.855 -0.793 -0.759	CIENT PRESS -0.300 0.363 -0.154 -0.077 -0.032 0.090 0.047 -0.123 -0.265 -0.491 -0.700
SECTION	В					
0.000 0.025 0.055 0.075 0.170 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.584 9.3063 9.2666 9.2258 9.2253 9.2277 9.4648 9.7129	9.584 10.090 9.927 9.923 9.922 9.940 9.954 9.975 9.966 9.887 9.887 9.8857 9.862 9.762	0.303 0.367 0.368 0.377 0.378 0.378 0.378 0.374 0.3330 0.288 0.273 0.269 0.267	0.303 0.132 0.202 0.207 0.204 0.197 0.192 0.184 0.187 0.203 0.216 0.226 0.237	-0.574 -1.276 -1.282 -1.388 -1.402 -1.447 -1.409 -1.356 -0.856 -0.286 -0.252 -0.234 -0.208	-0.574 0.701 0.295 0.278 0.324 0.360 0.412 0.398 0.195 0.195 0.026 -0.124
SECTION	С					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.515 9.2765 9.22338 9.22335 9.22355 9.4417 9.6678 9.715	9.515 10.139 9.939 9.919 9.925 9.925 9.952 9.961 9.961 9.841 9.883 9.743	0.320 0.374 0.380 0.382 0.381 0.385 0.385 0.378 0.295 0.279 0.274 0.272	0.320 0.102 0.198 0.205 0.198 0.203 0.193 0.186 0.190 0.207 0.221 0.231 0.243	-0.749 -1.352 -1.428 -1.446 -1.485 -1.456 -1.405 -0.920 -0.491 -0.338 -0.296 -0.280 -0.243	-0.749 0.827 0.327 0.317 0.287 0.354 0.399 0.377 0.255 0.073 -0.021 -0.181
SECTION	D					
0.000 0.025 0.050 0.075 0.170 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.610 9.497 9.4996 9.4995 9.491 9.503 9.5107 9.697 9.744 9.7792	9.610 10.145 9.997 9.978 9.982 9.986 9.997 10.009 9.999 9.999 9.995 9.876 9.838 9.770	0.296 0.324 0.325 0.325 0.325 0.320 0.297 0.273 0.260 0.260 0.246	0.296 0.098 0.175 0.183 0.180 0.175 0.175 0.170 0.175 0.210 0.220 0.232 0.253	-0.507 -0.794 -0.797 -0.804 -0.798 -0.779 -0.753 -0.5238 -0.210 -0.169 -0.050 -0.126	-0.507 0.841 0.469 0.419 0.4467 0.467 0.467 0.3467 0.336 0.167 -0.105

[Pressures are in newtons per square centimeter.]

(e) Vane A in corner 2; IGV setting, 0°; airflow, 35.48 kg/sec; readings 291-294

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.850 0.900 0.950 SECTION	PRESSURE, SUCT 10.021 9.935 9.926 9.911 9.881 9.865 9.901 9.953 9.976 9.985 9.985	N/CM2 PRESS 10.094 10.094 10.046 10.049 10.054 10.065 10.061 10.061 10.031 10.022 10.022	MACH SUCT 0.136 0.176 0.185 0.189 0.197 0.208 0.199 0.168 0.156 0.154	NO PRESS 0.136 0.090 0.123 0.124 0.120 0.118 0.115 0.111 0.124 0.131 0.136 0.142	COEFFI SUCT -0.260 -1.179 -1.318 -1.416 -1.608 -1.655 -1.762 -1.415 -0.912 -0.696 -0.645 -0.609	CIENT PRESS -0.260 -0.021 -0.039 0.016 0.060 0.060 0.124 -0.036 -0.1247 -0.3748
0.000 0.025 0.050 0.075 0.150 0.150 0.300 0.500 0.700 0.800 0.800 0.900	9.997 9.933 9.931 9.921 9.920 9.916 9.925 9.971 10.014 10.032 10.032	9.997 10.124 10.086 10.082 10.083 10.087 10.090 10.091 10.093 10.082 10.073 10.065 10.058	0.148 0.177 0.178 0.181 0.182 0.182 0.184 0.188 0.161 0.140 0.135 0.131 0.139	0.148 0.062 0.097 0.100 0.098 0.096 0.093 0.092 0.091 0.099 0.105 0.115 0.125	-0.486 -1.110 -1.132 -1.220 -1.234 -1.276 -1.243 -1.181 -0.745 -0.328 -0.232 -0.172 -0.129	-0.486 0.738 0.365 0.326 0.3420 0.4821 0.435 0.245 0.171 0.096
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900 0.950	9.979 9.924 9.916 9.913 9.913 9.917 9.917 9.961 10.008 10.022 10.026 10.028	9.979 10.136 10.087 10.083 10.083 10.083 10.089 10.092 10.079 10.069 10.069 10.062 10.053	0.157 0.180 0.183 0.185 0.185 0.186 0.186 0.186 0.165 0.163 0.132 0.131	0.157 0.047 0.095 0.099 0.096 0.098 0.094 0.092 0.093 0.101 0.108 0.113 0.113	-0.664 -1.196 -1.272 -1.299 -1.298 -1.3308 -1.308 -1.262 -0.833 -0.388 -0.250 -0.212 -0.188 -0.163	-0.664 0.854 0.381 0.336 0.370 0.342 0.431 0.411 0.304 0.208 0.133 0.103
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.800 0.850 0.900 0.950	D 10.006 9.979 9.972 9.977 9.976 9.975 9.977 10.003 10.025 10.033 10.025 10.036	10.006 10.134 10.098 10.093 10.093 10.097 10.097 10.097 10.087 10.076 10.068 10.059	0.144 0.157 0.158 0.158 0.159 0.158 0.157 0.146 0.130 0.128 0.128	0.144 0.050 0.087 0.091 0.091 0.089 0.088 0.088 0.088 0.104 0.109 0.115	-0.400 -0.663 -0.736 -0.685 -0.690 -0.705 -0.687 -0.686 -0.436 -0.222 -0.145 -0.110 0.031 -0.068	-0.400 0.834 0.443 0.441 0.456 0.475 0.271 0.195 0.106

[Pressures are in newtons per square centimeter.]

(f) Vane A in corner 2; IGV setting, 10°; airflow, 68.41 kg/sec; readings 280-288

_		_	_	_	_		
ς	F	С	т	T	n	N	

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.950 0.950	PRESSURE, N/CM2 SUCT PRESS 9.692 9.692 9.351 9.957 9.306 9.759 9.242 9.750 9.196 9.781 9.107 9.799 9.086 9.825 9.034 9.847 9.190 9.830 9.384 9.763 9.473 9.706 9.497 9.669 9.511 9.534	MACH NO SUCT PRESS 0.275 0.275 0.357 0.191 0.367 0.256 0.380 0.258 0.390 0.249 0.408 0.244 0.412 0.229 0.391 0.236 0.422 0.229 0.391 0.234 0.350 0.255 0.330 0.271 0.324 0.281 0.321 0.321	COEFFICIENT SUCT PRESS -0.328 -0.328 -1.206 0.356 -1.321 -0.155 -1.486 -0.177 -1.604 -0.099 -1.835 -0.052 -1.888 0.015 -2.023 0.072 -1.621 0.029 -1.120 -0.146 -0.892 -0.292 -0.830 -0.387 -0.799 -0.522 -0.795 -0.735
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950 0.950	9.585 9.305 9.305 9.303 9.927 9.261 9.913 9.255 9.922 9.238 9.939 9.253 9.954 9.274 9.274 9.974 9.471 9.968 9.643 9.925 9.698 9.887 9.711 9.857 9.718 9.822 9.729 9.762	0.302 0.302 0.367 0.132 0.367 0.202 0.376 0.207 0.378 0.204 0.381 0.197 0.378 0.192 0.374 0.184 0.330 0.186 0.288 0.202 0.273 0.216 0.269 0.226 0.267 0.237 0.264 0.255	-0.603 -0.603 -1.323 0.696 -1.329 0.277 -1.437 0.242 -1.452 0.265 -1.498 0.310 -1.459 0.346 -1.404 0.400 -0.896 0.384 -0.454 0.274 -0.311 0.175 -0.278 0.097 -0.259 0.007 -0.232 -0.147
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900	9.515 9.275 10.139 9.245 9.939 9.235 9.919 9.237 9.925 9.234 9.953 9.254 9.971 9.446 9.961 9.616 9.912 9.9677 9.872 9.694 9.700 9.803 9.715	0.320 0.320 0.373 0.101 0.380 0.198 0.382 0.205 0.381 0.198 0.385 0.202 0.382 0.192 0.378 0.185 0.336 0.189 0.294 0.207 0.279 0.221 0.274 0.231 0.272 0.242 0.268 0.261	-0.784 -0.784 -1.401 0.825 -1.480 0.308 -1.505 0.257 -1.499 0.305 -1.538 0.273 -1.508 0.344 -1.457 0.390 -0.962 0.367 -0.522 0.240 -0.367 0.135 -0.322 0.055 -0.307 -0.041 -0.267 -0.205
SECTION 0.000 0.025 0.050 0.150 0.150 0.300 0.500 0.700 0.800 0.900 0.950	9.608 9.608 9.491 10.145 9.490 9.998 9.487 9.978 9.489 9.982 9.485 9.986 9.497 9.997 9.508 10.009 9.604 9.997 9.695 9.949 9.726 9.905 9.744 9.875 9.791 9.837 9.769	0.297 0.297 0.325 0.097 0.325 0.175 0.326 0.183 0.326 0.181 0.327 0.179 0.324 0.175 0.321 0.175 0.298 0.175 0.298 0.175 0.274 0.194 0.265 0.209 0.260 0.220 0.246 0.232 0.255 0.253	-0.544 -0.544 -0.846 0.842 -0.848 0.461 -0.855 0.409 -0.850 0.420 -0.861 0.430 -0.829 0.458 -0.802 0.488 -0.554 0.458 -0.319 0.334 -0.239 0.222 -0.194 0.144 -0.072 0.047 -0.151 -0.129

[Pressures are in newtons per square centimeter.]

(g) Vane A2 in corner 2; IGV setting, 0°; airflow, 82.13 kg/sec; readings 307-310

SECTION	Α					
XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.300 0.700 0.800 0.850 0.900	PRESSURE, SUCT 9.712 9.275 9.198 9.099 9.028 8.903 8.837 9.086 9.329 9.425 9.452 9.469 9.471	N/CM2 PRESS 9.712 9.552 9.556 9.645 9.645 9.7773 9.7773 9.7777	MACH SUCT 0.273 0.377 0.393 0.412 0.426 0.455 0.462 0.465 0.365 0.365 0.338 0.334	NO PRESS 0.273 0.314 0.306 0.291 0.279 0.257 0.256 0.272 0.286 0.295 0.308	COEFFI SUCT 0.098 -0.680 -0.817 -0.994 -1.121 -1.344 -1.393 -1.462 -1.017 -0.585 -0.413 -0.365 -0.335	CIENT PRESS 0.098 0.188 -0.127 -0.020 0.059 0.128 0.207 0.107 0.016 -0.051 -0.142 -0.290
SECTION	В					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.900	9.645 9.099 9.044 8.9282 8.810 8.827 9.4860 9.557 9.586	9.645 9.585 9.5635 9.6335 9.819 9.8865 9.8880 9.8840 9.7253	0.291 0.4123 0.423 0.445 0.467 0.465 0.455 0.386 0.3313 0.313 0.306 0.303	0.291 0.306 0.312 0.294 0.255 0.243 0.228 0.223 0.235 0.248 0.223 0.235 0.248	-0.020 -0.994 -1.093 -1.300 -1.381 -1.510 -1.491 -1.391 -0.758 -0.305 -0.173 -0.142 -0.125 -0.104	-0.020 -0.127 -0.169 -0.043 0.049 0.215 0.289 0.371 0.398 0.351 0.255 0.118 -0.007
SECTION	С					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.900	9.5349 9.0442 8.8858 8.7945 8.8856 8.8488 9.4446 9.5566 9.55661	9.533 9.748 9.582 9.648 9.696 9.818 9.860 9.860 9.862 9.7741 9.696 9.618	0.319 0.422 0.443 0.453 0.458 0.469 0.468 0.460 0.395 0.339 0.320 0.311	0.319 0.263 0.307 0.290 0.278 0.260 0.243 0.230 0.228 0.242 0.255 0.265 0.278 0.298	-0.222 -1.083 -1.274 -1.377 -1.424 -1.535 -1.520 -1.443 -0.836 -0.377 -0.228 -0.187 -0.162 -0.136	-0.221 0.162 -0.134 -0.016 0.070 0.184 0.287 0.363 0.374 0.295 0.215 0.150 0.070
SECTION	D					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.516 9.182 9.051 8.9846 8.885 8.8935 9.211 9.4712 9.4718 9.521	9.516 9.637 9.6552 9.688 9.815 9.8859 9.8866 9.8122 9.7552 9.558	0.323 0.396 0.422 0.434 0.453 0.452 0.454 0.390 0.347 0.327 0.324 0.322	0.323 0.293 0.314 0.294 0.258 0.244 0.230 0.228 0.245 0.262 0.262 0.289 0.313	-0.251 -0.846 -1.080 -1.192 -1.375 -1.362 -1.287 -0.796 -0.436 -0.331 -0.283 -0.260 -0.241	-0.251 -0.036 -0.184 -0.045 0.055 0.198 0.282 0.360 0.373 0.277 0.170 0.004 -0.176

[Pressures are in newtons per square centimeter.]

(h) Vane A2 in corner 2; IGV setting, 0° ; airflow, 76.09 kg/sec; readings 303-306

0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	SECTION	0.000 0.025 0.050 0.075 0.150 0.200 0.300 0.500 0.700 0.850 0.950	0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800	0.000 0.025 0.050	XC/C 0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.3500 0.700 0.850 0.950
9.585 9.280 9.188 9.131 9.094 9.042 9.046 9.326 9.326 9.556 9.578 9.609	מ	9.600 9.185 9.0942 9.0942 9.0119 8.9971 9.0111 9.5355 9.6637 9.6550	9.078 9.037 8.975 9.345 9.345 9.5631 9.665 9.665 9.665	9.703 9.228 9.179	PRESSURE SUCT 9.7577 9.3311 9.227 9.166 9.055 9.033 9.219 9.516 9.5557
9.586 9.7032 9.638 9.644 9.814 9.856 9.890 9.853 9.764 9.717 9.632		9.600 9.800 9.656 9.712 9.7782 9.859 9.896 9.901 9.861 9.820 9.751 9.683	9.658 9.744 9.822 9.859 9.898 9.878 9.878 9.841 9.810 9.774	9.703 9.660 9.638	PRESS 9.756 9.811 9.658 9.708 9.748 9.748 9.748 9.7726 9.819 9.7726 9.649 9.576
0.303 0.373 0.392 0.404 0.411 0.421 0.421 0.423 0.363 0.323 0.323 0.305 0.305		0.300 0.393 0.412 0.426 0.426 0.435 0.427 0.367 0.316 0.298 0.298 0.290 0.287	0.414 0.422 0.434 0.432 0.360 0.308 0.292 0.288 0.288	0.272 0.384 0.394	MACF SUCT 0.257 0.352 0.367 0.384 0.428 0.429 0.320 0.320 0.311 0.310
0.303 0.271 0.291 0.274 0.261 0.240 0.227 0.215 0.213 0.228 0.228 0.255 0.269		0.300 0.245 0.285 0.270 0.251 0.250 0.214 0.212 0.225 0.238 0.238 0.259	0.274 0.261 0.238 0.226 0.213 0.208 0.220 0.232 0.242 0.252	0.272 0.284 0.290	NO PRESS 0.257 0.241 0.292 0.285 0.271 0.260 0.250 0.239 0.239 0.253 0.266 0.275 0.287
-0.293 -0.928 -1.119 -1.237 -1.313 -1.423 -1.413 -1.332 -0.833 -0.833 -0.354 -0.308 -0.244 -0.267		-0.264 -1.125 -1.319 -1.422 -1.471 -1.583 -1.569 -1.486 -0.863 -0.404 -0.252 -0.186 -0.160	-1.347 -1.433 -1.559 -1.5442 -0.797 -0.335 -0.198 -0.167 -0.150	-0.048 -1.036 -1.137	COEFF SUCT 0.062 -0.726 -0.864 -1.037 -1.165 -1.386 -1.5054 -0.613 -0.613 -0.438 -0.357 -0.352
-0.292 -0.038 -0.197 -0.057 0.182 0.268 0.348 0.3663 0.155 0.078 -0.021		-0.263 0.152 -0.146 -0.031 0.115 0.275 0.351 0.362 0.279 0.198 0.1050 -0.090	-0.059 0.036 0.197 0.276 0.3586 0.315 0.237 0.173 0.098 -0.031	-0.049 -0.138 -0.185	PRESS 0.062 0.176 -0.143 -0.039 0.045 0.114 0.190 0.191 -0.001 -0.069 -0.161

[Pressures are in newtons per square centimeter.]

(i) Vane A2 in corner 2; IGV setting, 0°; airflow, 69.14 kg/sec; readings 311-314

SECTION	A					
XC/C 0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.850 0.950	PRESSURE 9.85123 9.46123 9.22415 9.22415 9.22415 9.6664 9.6668	N/CM2 PRESS 9.8824 9.8822 9.723 9.7522 9.8852 9.8852 9.8841 9.8841 9.8805 9.743 9.684	MACH SUCT 0.233 0.317 0.335 0.335 0.374 0.374 0.379 0.385 0.287 0.287 0.282	NO PRESS 0.233 0.213 0.261 0.254 0.242 0.224 0.214 0.214 0.214 0.217 0.227	COEFF SUCT 0.062 -0.714 -0.842 -1.146 -1.358 -1.408 -1.471 -1.024 -0.588 -0.332 -0.3330	ICIENT PRESS 0.063 0.212 -0.175 -0.115 0.042 0.134 0.208 0.208 0.107 -0.017 -0.049 -0.141 -0.288
SECTION	В					
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.776 9.396 9.356 9.276 9.243 9.193 9.200 9.491 9.673 9.7738 9.7744	9.776 9.7752 9.735 9.733 9.819 9.879 9.911 9.943 9.955 9.871 9.871 9.842 9.792	0.247 0.345 0.354 0.371 0.378 0.388 0.388 0.387 0.262 0.258 0.257	0.247 0.254 0.259 0.245 0.234 0.215 0.203 0.192 0.188 0.198 0.209 0.217 0.227	-0.058 -1.015 -1.116 -1.318 -1.400 -1.527 -1.508 -1.420 -0.776 -0.317 -0.182 -0.152 -0.137 -0.115	-0.058 -0.160 -0.039 0.051 0.203 0.285 0.365 0.389 0.3246 0.183 0.110 -0.017
SECTION	С					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.950	9.695 9.366 9.285 9.2224 9.185 9.1216 9.4644 9.7729 9.7729	9.695 9.862 9.747 9.792 9.869 9.908 9.944 9.941 9.854 9.854 9.8767	0.271 0.353 0.369 0.378 0.382 0.391 0.384 0.329 0.264 0.268	0.271 0.220 0.256 0.242 0.232 0.218 0.205 0.193 0.191 0.203 0.214 0.223 0.233	-0.261 -1.106 -1.294 -1.449 -1.559 -1.548 -1.468 -0.849 -0.240 -0.198 -0.174	-0.261 0.161 -0.131 -0.017 0.068 0.177 0.275 0.356 0.366 0.286 0.206 0.140 0.060 -0.078
SECTION	D					
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.646 9.469 9.384 9.319 9.277 9.277 9.485 9.6678 9.6678 9.6694	9.645 9.7716 9.7172 9.810 9.860 9.894 9.922 9.929 9.853 9.855 9.723	0.284 0.328 0.348 0.356 0.362 0.371 0.370 0.365 0.324 0.279 0.279	0.284 0.249 0.265 0.249 0.237 0.221 0.210 0.199 0.199 0.209 0.223 0.232 0.244 0.263	-0.385 -0.831 -1.048 -1.145 -1.210 -1.315 -1.309 -1.242 -0.749 -0.343 -0.303 -0.282 -0.262	-0.387 -0.070 -0.208 -0.067 0.029 0.154 0.239 0.312 0.328 0.137 0.068 -0.026

[Pressures are in newtons per square centimeter.]

(j) Vane A2 in corner 2; IGV setting, 0° ; airflow, 35.45 kg/sec; readings 315-318

_		_	-	_		
5	F۲	`Τ	- [n	N	Δ

XC/C 0.000 0.025 0.055 0.100 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESSURE SUCT 10.052 9.978 9.966 9.951 9.941 9.922 9.916 9.911 9.953 10.011 10.021	PRESS 10.052 10.052 10.080 10.045 10.060 10.066 10.073 10.065 10.0655 10.055 10.040 10.026	MACH SUCT 0.117 0.156 0.161 0.168 0.172 0.180 0.182 0.184 0.167 0.147 0.147 0.136 0.134	NO PRESS 0.117 0.098 0.124 0.121 0.116 0.112 0.108 0.103 0.104 0.115 0.115 0.119 0.124	COEFFI SUCT 0.074 -0.647 -0.765 -0.910 -1.190 -1.245 -1.288 -0.885 -0.462 -0.323 -0.224 -0.225	CIENT PRESS 0.073 0.341 -0.005 0.078 0.149 0.207 0.265 0.175 0.104 0.032 -0.047 -0.182
SECTION 0.000 0.025 0.050 0.075 0.100 0.200 0.300 0.500 0.700 0.800 0.950 SECTION	10.044 9.954 9.942 9.925 9.917 9.907 9.905 9.918 9.977 10.021 10.033 10.036 10.038	10.044 10.046 10.041 10.052 10.059 10.069 10.078 10.087 10.0882 10.082 10.069	0.122 0.167 0.171 0.179 0.182 0.186 0.187 0.182 0.156 0.134 0.128 0.126	0.122 0.121 0.124 0.117 0.112 0.106 0.100 0.093 0.092 0.097 0.102 0.106 0.110	-0.006 -0.879 -0.988 -1.161 -1.231 -1.335 -1.352 -1.228 -0.652 -0.225 -0.225 -0.082 -0.084	-0.011 0.011 -0.039 0.068 0.141 0.237 0.324 0.413 0.425 0.236 0.236 0.172 0.051
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.500 0.700 0.850 0.950	10.023 9.944 9.925 9.915 9.910 9.899 9.899 9.973 10.013 10.028 10.032	10.023 10.068 10.040 10.059 10.059 10.068 10.075 10.086 10.078 10.071 10.064 10.057	0.133 0.171 0.179 0.183 0.185 0.189 0.189 0.186 0.158 0.131 0.129 0.127	0.134 0.107 0.124 0.118 0.113 0.107 0.102 0.094 0.099 0.105 0.109 0.114 0.122	-0.210 -0.978 -1.158 -1.304 -1.408 -1.407 -1.326 -0.695 -0.306 -0.164 -0.123 -0.103	-0.214 0.222 -0.050 0.057 0.137 0.227 0.294 0.399 0.402 0.327 0.253 0.191 0.117
SECTION 0.000 0.025 0.050 0.075 0.100 0.200 0.300 0.500 0.700 0.800 0.950	10.020 9.971 9.942 9.930 9.922 9.910 9.916 9.968 10.005 10.016 10.019	10.020 10.045 10.031 10.045 10.053 10.065 10.075 10.082 10.084 10.074 10.064 10.058 10.048	0.135 0.159 0.172 0.177 0.180 0.184 0.185 0.182 0.160 0.143 0.137 0.135 0.134	0.135 0.121 0.129 0.121 0.116 0.108 0.102 0.097 0.096 0.102 0.109 0.113 0.119 0.129	-0.241 -0.711 -0.991 -1.111 -1.183 -1.298 -1.304 -1.243 -0.742 -0.385 -0.274 -0.246 -0.217	-0.235 0.006 -0.133 -0.002 0.083 0.200 0.294 0.379 0.288 0.185 0.125 -0.125

[Pressures are in newtons per square centimeter.]

(k) Vane A3 in corner 2; IGV setting, 0°; airflow, 76.16 kg/sec; readings 327-330

c	=	^	T	т	n	N	Α
	_	•		•	u		_ ^

XC/C 0.000 0.025 0.055 0.150 0.150 0.300 0.300 0.700 0.800 0.850 0.950	PRESSURE SUCT 9.706 9.331 9.252 9.252 9.167 9.165 9.123 9.473 9.473 9.493 9.489	PRESS 9.706 10.135 9.871 9.880 9.8886 9.898 9.898 9.894 9.894 9.810 9.743 9.638 9.547	MACH SUCT 0.276 0.365 0.372 0.382 0.388 0.399 0.400 0.408 0.389 0.352 0.3329 0.327	NO PRESS 0.276 0.117 0.216 0.227 0.224 0.222 0.215 0.220 0.246 0.266 0.2794 0.316	COEFFI SUCT -0.077 -0.857 -0.920 -1.020 -1.078 -1.198 -1.202 -1.289 -1.289 -0.563 -0.563 -0.5520	CIENT PRESS -0.077 0.816 0.286 0.286 0.297 0.345 0.314 0.140 0.007 -0.097 -0.217
SECTION 0.000 0.025 0.050 0.150 0.150 0.200 0.300 0.700 0.800 0.850 0.950	9.475 9.120 9.071 9.048 9.045 9.0315 9.0315 9.533 9.601 9.6237	9.474 10.026 9.845 9.853 9.853 9.8853 9.929 9.929 9.926 9.875 9.829 9.750 9.750 9.680	0.333 0.409 0.418 0.423 0.424 0.429 0.426 0.369 0.369 0.303 0.299 0.297	0.333 0.171 0.235 0.238 0.233 0.224 0.217 0.208 0.209 0.226 0.240 0.251 0.263 0.283	-0.558 -1.296 -1.396 -1.445 -1.456 -1.514 -1.479 -0.890 -0.437 -0.294 -0.261 -0.244	-0.559 0.590 0.213 0.196 0.238 0.288 0.3381 0.386 0.180 0.105 0.105
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900 0.950	9.385 9.085 9.039 9.028 9.030 9.0123 9.051 9.503 9.577 9.591 9.625	9.386 10.108 9.867 9.852 9.864 9.882 9.903 9.929 9.918 9.861 9.813 9.775 9.732	0.353 0.416 0.425 0.427 0.426 0.430 0.428 0.422 0.374 0.327 0.309 0.300 0.297	0.353 0.132 0.228 0.233 0.223 0.223 0.217 0.208 0.212 0.230 0.256 0.269 0.289	-0.743 -1.373 -1.464 -1.487 -1.482 -1.524 -1.497 -1.438 -0.945 -0.499 -0.344 -0.300 -0.273 -0.245	-0.742 0.759 0.257 0.227 0.251 0.338 0.364 0.146 0.070 -0.023 -0.184
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	9.542 9.426 9.379 9.371 9.369 9.369 9.383 9.506 9.648 9.659 9.668 9.678	9.543 10.161 9.970 9.947 9.953 9.959 9.972 9.987 9.975 9.975 9.861 9.826 9.779	0.317 0.344 0.355 0.357 0.356 0.357 0.356 0.351 0.326 0.302 0.291 0.288 0.288	0.317 0.100 0.193 0.201 0.199 0.197 0.192 0.186 0.192 0.213 0.230 0.241 0.255 0.280	-0.416 -0.660 -0.757 -0.772 -0.767 -0.778 -0.748 -0.723 -0.496 -0.283 -0.198 -0.174 -0.154	-0.416 0.870 0.472 0.425 0.438 0.450 0.477 0.508 0.477 0.5107

[Pressures are in newtons per square centimeter.]

(l) Vane A3 in corner 2; IGV setting, 0° ; airflow, 69.19 kg/sec; readings 323-326

c	_	^	т	T	\sim	N	

	••					
XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESSURE SUCT 9.462 9.462 9.438 9.400 9.373 9.333 9.333 9.382 9.532 9.597 9.614 9.611	E, N/CM2 PRESS 9.143 9.953 9.925 9.931 9.935 9.944 9.952 9.940 9.871 9.817 9.731 9.659	MACH SUCT 0.252 0.332 0.338 0.346 0.351 0.361 0.368 0.350 0.316 0.299 0.295 0.294	NO PRESS 0.253 0.099 0.192 0.203 0.200 0.199 0.199 0.197 0.221 0.238 0.250 0.264	COEFFI SUCT -0.104 -0.882 -0.942 -1.038 -1.292 -1.206 -1.290 -1.290 -1.487 -0.505	PRESS -0.104 0.837 0.359 0.287 0.303 0.313 0.355 0.324 0.150 0.015 -0.081 -0.201 -0.385
SECTION	В					
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.850 0.900	9.587 9.303 9.2647 9.2241 9.2219 9.234 9.258 9.4683 9.700 9.713 9.713	9.587 10.050 9.901 9.894 9.896 9.928 9.945 9.969 9.964 9.9885 9.885 9.885 9.885	0.302 0.368 0.376 0.379 0.381 0.385 0.382 0.377 0.331 0.288 0.272 0.269 0.267	0.302 0.152 0.211 0.214 0.209 0.201 0.195 0.186 0.205 0.216 0.226 0.237 0.254	-0.565 -1.284 -1.382 -1.424 -1.439 -1.494 -1.457 -0.867 -0.281 -0.248 -0.231 -0.206	-0.565 0.602 0.227 0.208 0.241 0.296 0.338 0.397 0.386 0.277 0.112 0.026
SECTION	С					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.900	9.514 9.271 9.240 9.229 9.2212 9.224 9.224 9.445 9.680 9.695 9.719	9.515 10.113 9.915 9.902 9.903 9.929 9.945 9.966 9.951 9.842 9.842 9.806 9.743	0.320 0.374 0.381 0.383 0.387 0.387 0.384 0.380 0.336 0.274 0.278 0.274 0.270	0.320 0.119 0.206 0.211 0.207 0.201 0.195 0.187 0.191 0.207 0.221 0.221 0.230 0.242	-0.749 -1.363 -1.441 -1.467 -1.511 -1.482 -1.425 -0.925 -0.485 -0.294 -0.260 -0.232	-0.748 0.761 0.261 0.228 0.2597 0.338 0.392 0.369 0.253 0.154 0.079 -0.014
SECTION	D					
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.644 9.5513 9.5517 9.5517 9.5517 9.5517 9.5124 9.7102 9.736 9.745 9.752	9.644 10.156 9.999 9.985 9.985 9.989 9.999 10.011 10.001 9.953 9.909 9.881 9.842 9.771	0.287 0.310 0.320 0.322 0.321 0.322 0.317 0.294 0.272 0.262 0.260 0.258	0.287 0.089 0.174 0.182 0.178 0.174 0.169 0.174 0.192 0.208 0.218 0.231 0.252	-0.423 -0.645 -0.752 -0.761 -0.770 -0.743 -0.724 -0.490 -0.191 -0.166 -0.149 -0.127	-0.423 0.871 0.474 0.427 0.438 0.449 0.475 0.506 0.478 0.3547 0.175 0.077 -0.100

[Pressures are in newtons per square centimeter.]

(m) Vane A3 in corner 2; IGV setting, 0° ; airflow, 35.51 kg/sec; readings 319-322

ς	E	r	τ	τ	n	N	Α
J	_	·		1	u		

32011011	^					
XC/C 0.000 0.025 0.055 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900 0.950	PRESSURE SUCT 10.034 9.959 9.954 9.942 9.933 9.927 9.948 10.004 10.008 10.007	N/CM2 PRESS 10.034 10.139 10.090 10.084 10.085 10.088 10.090 10.098 10.098 10.058 10.071 10.058 10.058	MACH SUCT 0.129 0.166 0.168 0.171 0.173 0.177 0.177 0.173 0.173 0.145 0.143 0.142	NO PRESS 0.129 0.042 0.093 0.097 0.096 0.095 0.094 0.107 0.115 0.121 0.128 0.137	COEFFI SUCT -0.132 -0.854 -0.899 -0.976 -1.019 -1.113 -1.106 -1.168 -1.023 -0.575 -0.425 -0.385 -0.375 -0.393	CIENT PRESS -0.127 0.884 0.410 0.3559 0.373 0.386 0.404 0.375 0.224 0.096 0.002 -0.104 -0.273
SECTION	В					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.700 0.850 0.850 0.900	9.996 9.930 9.920 9.917 9.915 9.910 9.914 9.921 9.921 10.032 10.032	9.996 10.111 10.079 10.076 10.084 10.087 10.082 10.092 10.091 10.081 10.072 10.065 10.057	0.149 0.178 0.182 0.183 0.184 0.186 0.184 0.181 0.159 0.140 0.133 0.131 0.131	0.149 0.076 0.101 0.103 0.103 0.098 0.096 0.092 0.092 0.100 0.111 0.116 0.124	-0.499 -1.135 -1.227 -1.263 -1.327 -1.292 -1.218 -0.717 -0.321 -0.197 -0.165 -0.155	-0.499 0.611 0.303 0.276 0.307 0.349 0.380 0.427 0.421 0.323 0.240 0.169 0.095 -0.043
SECTION	С					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.977 9.921 9.913 9.910 9.906 9.908 9.914 9.963 10.023 10.027 10.023	9.977 10.130 10.082 10.078 10.080 10.084 10.088 10.092 10.089 10.079 10.069 10.062 10.062	0.158 0.182 0.185 0.186 0.187 0.187 0.184 0.164 0.164 0.143 0.133 0.133	0.158 0.056 0.099 0.102 0.100 0.098 0.095 0.092 0.094 0.101 0.108 0.113 0.118	-0.682 -1.221 -1.296 -1.323 -1.327 -1.365 -1.344 -1.287 -0.814 -0.387 -0.239 -0.200 -0.180 -0.155	-0.683 0.791 0.330 0.292 0.315 0.346 0.384 0.424 0.401 0.401 0.210 0.139 0.054 -0.091
SECTION	D					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	10.012 9.996 9.981 9.978 9.977 9.977 9.978 9.981 10.004 10.026 10.035 10.037	10.012 10.137 10.098 10.093 10.095 10.095 10.098 10.101 10.098 10.0076 10.076 10.070	0.141 0.149 0.156 0.157 0.158 0.157 0.156 0.145 0.133 0.129 0.128 0.127	0.141 0.045 0.087 0.091 0.090 0.087 0.085 0.087 0.086 0.103 0.108 0.114	-0.345 -0.495 -0.646 -0.667 -0.684 -0.667 -0.418 -0.206 -0.126 -0.105 -0.097	-0.340 0.862 0.484 0.440 0.452 0.488 0.512 0.488 0.381 0.275 0.213 0.120

[Pressures are in newtons per square centimeter.]

(n) Vane A4 in corner 2; IGV setting, 0° ; airflow, 76.29 kg/sec; readings 331-334

XC/C 0.0025 0.0250 0.075 0.100 0.150 0.2300 0.700 0.850 0.950 0.950	PRESTURE, SUCT 9.897 9.5158 9.384 9.336 9.2237 9.2237 9.2237 9.360 9.625 9.643 9.651 9.640	N/CM2 PRESS 9.897 9.905 9.713 9.762 9.802 9.831 9.867 9.867 9.910 9.826 9.756 9.756	MACH SUCT 0.212 0.319 0.333 0.350 0.360 0.379 0.385 0.385 0.349 0.292 0.288 0.292	NO PRESS 0.213 0.210 0.269 0.255 0.243 0.234 0.224 0.214 0.208 0.222 0.236 0.245 0.257	COEFFI SUCT 0.364 -0.546 -0.698 -0.797 -0.976 -1.0038 -0.335 -0.199 -0.162 -0.168	CIENT PRESSS 0.379 -0.017 0.085 0.168 0.228 0.356 0.359 0.391 0.217 0.154 0.071 -0.058
0.000	9.747	9.746	0.259	0.259	0.052	0.052 -0.174
0.025 0.050 0.075 0.100	9.258 9.153 9.096 9.055	9.637 9.631 9.694 9.741	0.377 0.399 0.410 0.418	0.289 0.291 0.274 0.261	-0.960 -1.176 -1.295 -1.378	-0.188 -0.056 0.042
0.150 0.200 0.300	8.989 8.997 9.040	9.823 9.858 9.899	0.431 0.429 0.421	0.236 0.225 0.212	-1.515 -1.499 -1.410 -0.738	0.211 0.284 0.367 0.395
0.500 0.700 0.800 0.850	9.365 9.573 9.637 9.650	9.912 9.880 9.844 9.814	0.354 0.306 0.289 0.286	0.207 0.218 0.230 0.239	-0.308 -0.175 -0.148	0.328 0.253 0.191
0.900 0.950	9.656 9.665	9.777 9.716	0.284 0.282	0.250 0.268	-0.136 -0.117	0.115
SECTION	C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.950	9.645 9.116 9.061 9.034 8.977 8.982 9.022 9.541 9.612 9.631 9.645	9.646 9.7648 9.7647 9.751 9.869 9.869 9.892 9.826 9.825 9.756 9.690	0.287 0.386 0.406 0.417 0.422 0.433 0.432 0.435 0.363 0.314 0.296 0.291 0.288	0.287 0.249 0.286 0.270 0.258 0.241 0.225 0.213 0.213 0.223 0.236 0.245 0.257	-0.157 -1.047 -1.252 -1.366 -1.422 -1.549 -1.529 -1.451 -0.826 -0.374 -0.226 -0.186 -0.163	-0.156 0.127 -0.153 -0.029 0.060 0.179 0.286 0.360 0.374 0.296 0.216 0.152 0.072 -0.066
SECTION	מ					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.900	9.579 9.306 9.202 9.148 9.116 9.068 9.072 9.113 9.515 9.571 9.585 9.595 9.604	9.580 9.746 9.630 9.707 9.816 9.857 9.856 9.855 9.720 9.636	0.304 0.367 0.389 0.400 0.406 0.415 0.407 0.359 0.359 0.306 0.302	0.304 0.259 0.291 0.272 0.259 0.239 0.226 0.213 0.211 0.226 0.242 0.253 0.267	-0.294 -0.859 -1.074 -1.186 -1.252 -1.352 -1.354 -1.258 -0.427 -0.311 -0.281 -0.260 -0.243	-0.293 0.052 -0.189 -0.044 0.052 0.195 0.281 0.358 0.378 0.172 0.100 -0.002

[Pressures are in newtons per square centimeter.]

(o) Vane A4 in corner 2; IGV setting, 0°; airflow, 69.31 kg/sec; readings 335-338

				J	
SECTION	A				
XC/C 0.000 0.025 0.050 0.150 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	PRESSURE, N/CM2 SUCT PRESS 9.933 9.932 9.626 9.953 9.575 9.794 9.514 9.836 9.474 9.867 9.404 9.891 9.392 9.913 9.378 9.940 9.520 9.952 9.666 9.917 9.719 9.884 9.733 9.858 9.739 9.826 9.732 9.775	MACH SUCT 0.195 0.289 0.302 0.317 0.326 0.343 0.345 0.345 0.263 0.263 0.263	NO PRESS 0.195 0.187 0.241 0.228 0.210 0.202 0.192 0.187 0.201 0.202 0.187 0.201 0.201	COEFFI SUCT 0.347 -0.425 -0.553 -0.705 -0.805 -0.982 -1.012 -1.046 -0.690 -0.325 -0.190 -0.156 -0.140	CIENT PRESS 0.345 0.397 -0.002 0.102 0.180 0.242 0.297 0.363 0.3063 0.3063 0.305 0.079 -0.050
SECTION	В				
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.900	9.811 9.811 9.414 9.730 9.328 9.726 9.282 9.777 9.249 9.810 9.195 9.879 9.202 9.909 9.237 9.942 9.504 9.952 9.674 9.952 9.726 9.896 9.737 9.871 9.741 9.841 9.749 9.791	0.236 0.340 0.359 0.369 0.388 0.386 0.379 0.319 0.276 0.258 0.257	0.236 0.260 0.261 0.247 0.236 0.214 0.203 0.191 0.187 0.197 0.208 0.216 0.226	0.041 -0.957 -1.173 -1.289 -1.372 -1.507 -1.490 -1.402 -0.730 -0.304 -0.174 -0.147 -0.135	0.039 -0.164 -0.174 -0.038 0.212 0.287 0.368 0.394 0.329 0.253 0.117 -0.010
SECTION	С				
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.950	9.730 9.730 9.376 9.849 9.295 9.737 9.250 9.787 9.228 9.820 9.182 9.866 9.185 9.908 9.216 9.939 9.467 9.944 9.646 9.912 9.704 9.881 9.721 9.856 9.730 9.824 9.741 9.770	0.260 0.349 0.366 0.376 0.381 0.390 0.393 0.328 0.283 0.267 0.263 0.260 0.257	0.260 0.224 0.258 0.244 0.233 0.218 0.204 0.191 0.202 0.213 0.222 0.232 0.249	-0.164 -1.051 -1.255 -1.368 -1.424 -1.532 -1.532 -1.823 -0.373 -0.228 -0.186 -0.163	-0.163 0.136 -0.147 -0.021 0.063 0.179 0.284 0.373 0.295 0.217 0.152 0.073 -0.063
SECTION	ם				
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.850 0.950	9.672 9.673 9.453 9.818 9.365 9.721 9.322 9.778 9.296 9.816 9.255 9.871 9.259 9.907 9.291 9.936 9.482 9.942 9.625 9.904 9.671 9.862 9.682 9.835 9.691 9.797 9.698 9.725	0.276 0.331 0.351 0.366 0.375 0.374 0.367 0.324 0.289 0.277 0.274 0.271	0.276 0.263 0.263 0.246 0.234 0.217 0.204 0.193 0.295 0.219 0.229 0.240 0.262	-0.309 -0.859 -1.079 -1.188 -1.253 -1.356 -1.347 -1.264 -0.786 -0.427 -0.312 -0.283 -0.262	-0.307 0.057 -0.186 -0.053 0.191 0.280 0.355 0.375 0.169 0.100 -0.075

[Pressures are in newtons per square centimeter.]

(p) Vane A4 in corner 2; IGV setting, 0° ; airflow, 35.48 kg/sec; readings 339-342

XC/C 0.000 0.025 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.900 0.950	PRESSURE SUCT 10.083 10.003 9.992 9.977 9.969 9.952 9.951 9.949 9.978 10.034 10.037 10.038	PRESS 10.083 10.089 10.051 10.064 10.070 10.077 10.082 10.088 10.091 10.074 10.068 10.060	MACH SUCT 0.096 0.143 0.149 0.156 0.167 0.168 0.169 0.155 0.134 0.127 0.126 0.125	NO PRESS 0.096 0.091 0.117 0.109 0.105 0.101 0.097 0.092 0.090 0.103 0.107 0.111	COEFFI SUCT 0.374 -0.509 -0.653 -0.731 -0.888 -0.902 -0.922 -0.224 -0.103 -0.071 -0.060 -0.073	CIENT PRESS 0.371 0.432 0.069 0.187 0.250 0.313 0.364 0.451 0.285 0.226 0.156 0.031
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	10.052 9.959 9.938 9.927 9.920 9.907 9.908 9.919 9.987 10.023 10.035 10.035	10.052 10.039 10.038 10.050 10.058 10.069 10.079 10.087 10.090 10.083 10.076 10.070 10.063	0.117 0.164 0.173 0.178 0.181 0.186 0.185 0.185 0.185 0.127 0.125 0.125 0.125	0.117 0.124 0.125 0.118 0.113 0.106 0.099 0.093 0.091 0.096 0.101 0.105 0.110	0.076 -0.827 -1.025 -1.131 -1.204 -1.322 -1.311 -1.206 -0.557 -0.205 -0.089 -0.068 -0.058	0.072 -0.050 -0.057 0.057 0.135 0.241 0.340 0.414 0.473 0.373 0.245 0.183
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.800 0.950	10.031 9.948 9.928 9.917 9.912 9.900 9.901 9.908 9.975 10.014 10.029 10.032 10.035	10.031 10.064 10.038 10.050 10.058 10.068 10.075 10.086 10.084 10.079 10.079	0.129 0.169 0.177 0.182 0.188 0.188 0.185 0.157 0.157 0.138 0.130 0.128	0.129 0.109 0.125 0.118 0.113 0.106 0.102 0.093 0.095 0.099 0.104 0.108 0.113	-0.131 -0.931 -1.119 -1.229 -1.282 -1.395 -1.388 -1.312 -0.674 -0.291 -0.150 -0.114 -0.091 -0.060	-0.133 0.189 -0.060 0.054 0.134 0.231 0.380 0.407 0.382 0.337 0.265 0.213
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900 0.950	10.019 9.974 9.949 9.937 9.930 9.920 9.920 9.920 9.921 10.009 10.0021 10.023	10.019 10.059 10.034 10.048 10.057 10.068 10.077 10.084 10.077 10.067 10.067	0.135 0.157 0.169 0.173 0.176 0.181 0.181 0.178 0.157 0.141 0.135 0.133	0.135 0.113 0.127 0.119 0.114 0.107 0.100 0.095 0.094 0.101 0.107 0.112	-0.244 -0.677 -0.924 -1.033 -1.100 -1.201 -1.200 -1.140 -0.671 -0.340 -0.228 -0.201 -0.184 -0.168	-0.241 0.138 -0.095 0.032 0.1226 0.316 0.388 0.401 0.313 0.215 0.058 -0.094

[Pressures are in newtons per square centimeter.]

(q) Vane B in corner 2; IGV setting, -10°; airflow, 68.98 kg/sec; readings 9-19

XC/00 0.0055 0.0250 0.0755 0.1500 0.1500 0.2000 0.7000 0.7000 0.8500 0.950	PRESTURE 5UCT 9.833 9.709 9.6668 9.6618 9.5535 9.5535 9.5535 9.5537 9.707	PRESS 9.833 9.822 9.600 9.736 9.780 9.798 9.813 9.814 9.811 9.812 9.809 9.800 9.801	MACH SUCT 0.227 0.262 0.265 0.272 0.278 0.289 0.308 0.311 0.311 0.306 0.298 0.284 0.265	NO PRESS 0.228 0.294 0.257 0.257 0.236 0.236 0.234 0.234 0.2334 0.2335 0.238	COEFFI SUCT 0.104 -0.181 -0.210 -0.272 -0.332 -0.4523 -0.623 -0.657 -0.657 -0.592 -0.386 -0.214	CIENT PRESS 0.1075 -0.485 -0.142 -0.031 0.0157 0.055 0.055 0.049 0.049 0.023
0.005 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.585 9.499 9.522 9.513 9.506 9.486 9.476 9.472 9.468 9.468 9.527 9.600	9.585 10.014 9.520 9.620 9.791 9.820 9.824 9.835 9.835 9.831 9.824 9.836 9.836	0.298 0.319 0.314 0.316 0.317 0.322 0.325 0.329 0.326 0.326 0.321 0.312	0.298 0.160 0.314 0.273 0.241 0.235 0.232 0.230 0.227 0.228 0.228 0.232 0.232	-0.521 -0.740 -0.680 -0.704 -0.721 -0.772 -0.798 -0.844 -0.807 -0.816 -0.756 -0.669 -0.485 -0.255	-0.523 0.560 -0.687 -0.284 -0.002 0.042 0.071 0.081 0.109 0.097 0.074 0.068 0.035 -0.015
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.300 0.500 0.700 0.850 0.950	9.555 9.462 9.492 9.479 9.480 9.461 9.4431 9.4452 9.441 9.608	9.555 9.594 9.526 9.633 9.804 9.803 9.815 9.816 9.818 9.810 9.813 9.784	0.305 0.328 0.321 0.324 0.324 0.328 0.331 0.335 0.335 0.335 0.325 0.371	0.305 0.169 0.313 0.285 0.237 0.237 0.233 0.234 0.232 0.235 0.235 0.236 0.242	-0.598 -0.833 -0.756 -0.789 -0.788 -0.836 -0.912 -0.859 -0.859 -0.859 -0.461 -0.267	-0.598 0.510 -0.671 -0.400 0.031 0.027 0.058 0.054 0.067 0.045 0.052 -0.010 -0.121
SECTION 0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.500 0.700 0.850 0.950 0.950	9.674 9.633 9.5557 9.5552 9.484 9.491 9.510 9.5501 9.558 9.672	9.673 9.931 9.491 9.610 9.771 9.785 9.799 9.822 9.826 9.811 9.806 9.792 9.769	0.274 0.286 0.302 0.305 0.309 0.323 0.315 0.319 0.319 0.314 0.288 0.275	0.275 0.193 0.321 0.292 0.247 0.243 0.238 0.237 0.231 0.235 0.236 0.240	-0.297 -0.401 -0.560 -0.594 -0.632 -0.778 -0.739 -0.697 -0.734 -0.738 -0.684 -0.590 -0.430	-0.299 0.352 -0.360 -0.460 -0.054 -0.018 0.018 0.031 0.037 0.035 -0.059

[Pressures are in newtons per square centimeter.]

(r) Vane B in corner 2; IGV setting, -10° ; airflow, 35.35 kg/sec; readings 20-31

c	=	^	т	т	n	Ν	Λ
- 5		·	1	1	u	17	_ ~

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.900 0.950 SECTION	PRESSURE. 10.055 10.028 10.022 10.016 10.006 9.997 9.984 9.998 9.998 10.013 10.032 B	N/CM2 PRESS 10.055 10.070 10.011 10.042 10.057 10.060 10.060 10.061 10.060 10.061 10.057 10.057	MACH SUCT 0.116 0.131 0.135 0.137 0.143 0.147 0.152 0.153 0.153 0.150 0.159 0.129	NO PRESS 0.116 0.106 0.140 0.123 0.117 0.114 0.113 0.112 0.112 0.112 0.112 0.114	COEFFI SUCT 0.087 -0.181 -0.178 -0.239 -0.289 -0.393 -0.482 -0.577 -0.605 -0.608 -0.546 -0.470 -0.323 -0.136	CIENT PRESS 0.082 0.232 -0.338 -0.037 0.107 0.133 0.135 0.144 0.135 0.142 0.128 0.110
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900	9.993 9.976 9.984 9.9883 9.9775 9.9775 9.9775 9.985 9.985 10.028	9.993 10.121 10.003 10.027 10.065 10.065 10.067 10.068 10.070 10.068 10.067 10.062	0.149 0.157 0.153 0.154 0.156 0.158 0.158 0.158 0.158 0.158 0.153 0.153	0.149 0.063 0.144 0.132 0.109 0.109 0.108 0.107 0.105 0.106 0.107 0.108	-0.516 -0.679 -0.6017 -0.626 -0.6699 -0.699 -0.6999 -0.6995 -0.488 -0.595	-0.520 0.730 -0.424 -0.191 0.184 0.204 0.213 0.240 0.232 0.212 0.250 0.151
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.500 0.500 0.700 0.850 0.950	9.983 9.965 9.974 9.973 9.972 9.966 9.966 9.972 9.980 10.0028	9.983 10.118 10.001 10.027 10.051 10.064 10.065 10.065 10.065 10.065 10.065	0.154 0.162 0.158 0.159 0.160 0.161 0.163 0.1661 0.159 0.155 0.146	0'.154 0.067 0.145 0.132 0.118 0.110 0.108 0.109 0.108 0.110 0.109 0.111	-0.617 -0.794 -0.699 -0.720 -0.755 -0.769 -0.808 -0.755 -0.777 -0.777 -0.641 -0.449 -0.175	-0.615 0.697 -0.443 -0.143 0.176 0.197 0.186 0.201 0.179 0.186 0.151 0.060
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.950	10.023 10.009 9.998 9.994 9.991 9.975 9.983 9.980 9.979 9.985 9.993 10.010	10.024 10.095 9.982 10.045 10.057 10.059 10.0665 10.065 10.062 10.061 10.059	0.134 0.141 0.147 0.149 0.150 0.158 0.156 0.155 0.155 0.155 0.153 0.149 0.141	0.134 0.088 0.154 0.139 0.122 0.115 0.113 0.109 0.109 0.111 0.112 0.113	-0.224 -0.361 -0.472 -0.506 -0.539 -0.697 -0.652 -0.613 -0.644 -0.598 -0.515 -0.355	-0.221 0.473 -0.623 -0.313 0.101 0.126 0.130 0.184 0.151 0.148 0.152

[Pressures are in newtons per square centimeter.]

(s) Vane B in corner 2; IGV setting, 0°; airflow, 76.17 kg/sec; readings 41-44

S	EC	T	Ι	0	H	Α
---	----	---	---	---	---	---

XCO 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.700 0.800 0.700 0.850 0.950 SECTION 0.025 0.025 0.055 0.100	9.490 9.364 9.394 9.382 9.370	N/CM2 PRES26 9.7887 9.7887 9.762 9.7762 9.7788 9.7788 9.77789 9.7763 9.7763 9.7655 9.7655 9.7650 9.7650 9.7651	MACH SUCT 0.280 0.2880 0.294 0.303 0.317 0.3440 0.3345 0.3345 0.3345 0.3352 0.3559 0.3554	NO PRESS 7 0 . 2517 0 . 2527 0 . 2525 0 0 . 2252 0 0 . 2255 0 0 0 . 2255 0 0 0 . 2255 0	COEFFI 0.205 -0.1208 -0.1216 -0.2187 -0.4099 -0.6495 -0.6594 -0.5518 -0.5788 -0.7791 -0.7711	CIENT PRESS 0.202 -0.192 -0.103 0.019 0.014 0.114 0.116 0.102 0.075 0.080 -0.658 -0.7459 0.028
0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900 0.950 SECTION	9.340 9.325 9.304 9.321 9.315 9.351 9.403 9.503 9.614	9.771 9.786 9.792 9.807 9.801 9.787 9.786 9.763 9.734	0.361 0.364 0.368 0.365 0.366 0.358 0.347 0.323 0.296	0.253 0.249 0.247 0.243 0.245 0.249 0.249 0.256 0.264	-0.803 -0.834 -0.876 -0.843 -0.854 -0.780 -0.673 -0.464 -0.235	0.092 0.123 0.135 0.167 0.153 0.124 0.122 0.075 0.014
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.800 0.850 0.900 0.950	9.449 9.315 9.354 9.333 9.331 9.269 9.281 9.281 9.513 9.605	9.449 10.021 9.383 9.551 9.758 9.765 9.785 9.789 9.776 9.776 9.776 9.768 9.747 9.683	0.336 0.366 0.357 0.360 0.361 0.367 0.370 0.373 0.373 0.363 0.347 0.321 0.298	0.336 0.167 0.351 0.312 0.257 0.255 0.249 0.250 0.248 0.252 0.252 0.255 0.260	-0.576 -0.855 -0.7797 -0.805 -0.863 -0.896 -0.896 -0.8926 -0.823 -0.6443 -0.4452	-0.576 0.610 -0.713 -0.365 0.064 0.080 0.121 0.113 0.129 0.103 0.101 0.084 -0.090
SECTION 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.500 0.500 0.800 0.850 0.900 0.950	9.593 9.513 9.441 9.401 9.316 9.336 9.337 9.3371 9.429 9.521 9.577	9.593 9.929 9.929 9.482 9.705 9.732 9.752 9.758 9.785 9.785 9.767 9.759 9.759	0.302 0.321 0.338 0.342 0.347 0.366 0.361 0.355 0.361 0.354 0.319	0.302 0.203 0.203 0.328 0.272 0.265 0.259 0.259 0.257 0.248 0.255 0.257	-0.278 -0.445 -0.445 -0.675 -0.675 -0.810 -0.753 -0.805 -0.739 -0.618 -0.428 -0.310	-0.279 0.418 -0.507 -0.045 0.010 0.052 0.064 0.120 0.083 0.066 0.022 -0.066

[Pressures are in newtons per square centimeter.]

(t) Vane B in corner 2; IGV setting, 0°; airflow, 73.99 kg/sec; readings 36-40

XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.700 0.850 0.950 0.950	PRESSURE SUCT 9.834 9.667 9.667 9.636 9.546 9.542 9.4430 9.457 9.457 9.458 9.656 B	PRESS 9.834 9.796 9.505 9.690 9.749 9.774 9.786 9.795 9.791 9.794 9.787 9.777	MACH SUCT 0.233 0.276 0.281 0.290 0.312 0.312 0.335 0.335 0.335 0.335 0.324 0.307	NO PRESS 0.245 0.245 0.259 0.259 0.251 0.246 0.246 0.245 0.248 0.251	COEFFI SUCT 0.184 -0.183 -0.253 -0.324 -0.449 -0.662 -0.6695 -0.703 -0.554 -0.554 -0.207	CIENT PRESS 0.1884 0.099 -0.540 -0.1333 -0.0052 0.0792 0.0998 0.0990 0.096 0.058
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.700 0.700 0.800 0.950	9.507 9.390 9.420 9.407 9.397 9.354 9.354 9.3550 9.345 9.378 9.522 9.632	9.507 10.048 9.398 9.756 9.756 9.785 9.820 9.823 9.800 9.779 9.779 9.752	0.322 0.349 0.345 0.347 0.353 0.357 0.357 0.359 0.359 0.359	0.322 0.153 0.257 0.284 0.257 0.248 0.244 0.244 0.244 0.244 0.250	-0.535 -0.791 -0.726 -0.755 -0.777 -0.838 -0.870 -0.815 -0.879 -0.8817 -0.711 -0.502	-0.535 0.653 -0.774 -0.209 0.012 0.075 0.120 0.152 0.138 0.109 0.106 0.062 0.003
0.000 0.025 0.055 0.055 0.150 0.150 0.200 0.300 0.700 0.850 0.900 0.950	9.470 9.342 9.380 9.367 9.365 9.323 9.324 9.311 9.358 9.425 9.525	9.470 10.025 9.413 9.567 9.774 9.779 9.796 9.790 9.790 9.782 9.759 9.697	0.330 0.359 0.351 0.354 0.360 0.363 0.363 0.366 0.363 0.365 0.356	0.330 0.163 0.347 0.251 0.250 0.245 0.246 0.247 0.247 0.247 0.247	-0.617 -0.897 -0.813 -0.842 -0.847 -0.905 -0.939 -0.936 -0.967 -0.863 -0.715 -0.476	-0.615 0.604 -0.7422 0.051 0.062 0.100 0.095 0.110 0.086 0.086 0.070 0.018
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.950	9.616 9.527 9.4456 9.4557 9.3575 9.375 9.3775 9.460 9.5463	9.616 9.939 9.355 9.515 9.752 9.770 9.777 9.805 9.777 9.805 9.777 9.757	0.295 0.318 0.329 0.334 0.356 0.352 0.352 0.3552 0.3552 0.3552 0.3552	0.295 0.198 0.356 0.350 0.264 0.258 0.251 0.243 0.243 0.242 0.248 0.251	-0.297 -0.503 -0.608 -0.647 -0.865 -0.825 -0.768 -0.817 -0.827 -0.639 -0.450 -0.324	-0.296 0.413 -0.869 -0.517 -0.043 0.057 0.111 0.119 0.075 0.058

[Pressures are in newtons per square centimeter.]

(u) Vane B in corner 2; IGV setting, 0°; airflow, 69.17 kg/sec; readings 8-18

SECTION	A					
XC/C 0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.950	PRESSURE SUCT 9.831 9.720 9.6661 9.6620 9.5543 9.5538 9.5588 9.70 9.70	F, N/CM2 PRESS 9.830 9.824 9.602 9.739 9.731 9.799 9.808 9.813 9.815 9.812 9.807 9.801 9.803	MACH SUCT 0.228 0.262 0.265 0.271 0.278 0.297 0.307 0.311 0.315 0.297 0.283	NO PRESS 0.228 0.230 0.293 0.244 0.238 0.235 0.234 0.233 0.234 0.233 0.233 0.233	COEFFI SUCT 0.104 -0.174 -0.201 -0.262 -0.322 -0.426 -0.508 -0.638 -0.638 -0.641 -0.581 -0.506 -0.371 -0.203	CIENT PRESS 0.103 0.088 -0.470 -0.125 -0.025 0.047 0.060 0.057 0.057 0.044 0.029 0.034
SECTION	В					
0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900 0.950	9.588 9.5527 9.5517 9.4477 9.4477 9.4477 9.5502 9.693	9.587 10.014 9.523 9.783 9.873 9.811 9.821 9.836 9.832 9.832 9.8321 9.808 9.788	0.297 0.318 0.313 0.315 0.327 0.322 0.324 0.328 0.325 0.325 0.320 0.320	0.297 0.160 0.313 0.272 0.240 0.231 0.230 0.226 0.228 0.228 0.231 0.235 0.241	-0.506 -0.722 -0.663 -0.684 -0.703 -0.755 -0.779 -0.824 -0.788 -0.797 -0.738 -0.652 -0.470	-0.507 0.563 -0.6709 0.009 0.054 0.080 0.092 0.118 0.1084 0.0881 0.046 -0.003
SECTION	С					
0.000 0.025 0.050 0.075 0.150 0.150 0.200 0.300 0.500 0.700 0.850 0.900 0.950	9.564 9.448 9.4485 9.4453 9.4455 9.4472 9.68 9.68	9.557 9.995 9.526 9.6306 9.805 9.817 9.812 9.814 9.814 9.817 9.790 9.746	0.305 0.327 0.320 0.322 0.323 0.327 0.330 0.334 0.332 0.332 0.3324 0.312 0.291	0.305 0.168 0.312 0.285 0.236 0.236 0.233 0.233 0.233 0.233 0.235 0.241 0.254	-0.584 -0.816 -0.738 -0.770 -0.817 -0.845 -0.845 -0.865 -0.779 -0.654 -0.443 -0.252	-0.584 0.517 -0.654 -0.3842 0.039 0.070 0.066 0.087 0.057 0.065 0.045
SECTION	D					
0.000 0.025 0.050 0.050 0.150 0.150 0.200 0.500 0.500 0.700 0.850 0.950	9.676 9.6362 9.55565 9.55487 9.5519 9.55024 9.55024 9.674	9.675 9.932 9.494 9.612 9.787 9.801 9.805 9.823 9.823 9.827 9.812 9.794 9.770	0.274 0.285 0.301 0.308 0.322 0.319 0.318 0.318 0.313 0.288 0.274	0.274 0.193 0.320 0.291 0.246 0.242 0.238 0.236 0.239 0.229 0.234 0.235	-0.285 -0.385 -0.586 -0.585 -0.614 -0.760 -0.725 -0.679 -0.717 -0.721 -0.573 -0.416 -0.290	-0.286 0.358 -0.741 -0.445 -0.007 0.029 0.039 0.086 0.095 0.0546 0.011 -0.048

[Pressures are in newtons per square centimeter.]

(v) Vane B in corner 2; IGV setting, 0°; airflow, 56.55 kg/sec; readings 32-35

[Pressures are in newtons per square centimeter.]

(w) Vane B in corner 2; IGV setting, 0°; airflow, 35.15 kg/sec; readings 22-29

SE	C	Ţ	Ι	0	И	A
----	---	---	---	---	---	---

0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	SECTION	0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.500 0.850 0.850 0.900	SECTION	0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.950	SECTION	XC/C 0.025 0.025 0.050 0.150 0.150 0.250 0.250 0.250 0.300 0.500 0.850 0.850 0.950	
10.023 10.009 9.998 9.991 9.975 9.979 9.984 9.976 9.979 9.985 9.985 10.009	D	9.984 9.965 9.975 9.974 9.967 9.967 9.967 9.967 9.981 9.999	С	9.993 9.977 9.983 9.9882 9.9775 9.9775 9.9776 9.988	В	PRESSURE SUCT 10.056 10.028 10.022 10.016 10.095 9.987 9.984 9.998 9.991 9.998 10.032	••
10.023 10.094 9.982 10.013 10.046 10.056 10.059 10.060 10.065 10.065 10.062 10.061 10.058		9.984 10.118 10.002 10.028 10.052 10.065 10.067 10.063 10.067 10.065 10.067		9.993 10.121 10.002 10.026 10.063 10.065 10.067 10.068 10.071 10.070 10.068 10.065 10.065		N/CM2 PRESS 10.055 10.071 10.012 10.042 10.053 10.057 10.060 10.060 10.061 10.061 10.060 10.060 10.060	
0.134 0.147 0.147 0.150 0.158 0.158 0.155 0.155 0.155 0.141 0.132		0.153 0.162 0.158 0.158 0.158 0.160 0.161 0.162 0.160 0.161 0.158 0.155 0.146		0.149 0.157 0.153 0.154 0.156 0.157 0.157 0.157 0.158 0.157 0.158		MACH SUCT 0.115 0.131 0.135 0.137 0.147 0.152 0.153 0.154 0.150 0.154 0.159	
0.134 0.088 0.154 0.139 0.121 0.115 0.113 0.112 0.109 0.109 0.109 0.111 0.112		0.153 0.066 0.145 0.131 0.137 0.109 0.108 0.110 0.108 0.109 0.108 0.109 0.108		0.149 0.063 0.145 0.132 0.110 0.109 0.107 0.105 0.106 0.107 0.106 0.107		NO PRESS 0.115 0.105 0.140 0.123 0.117 0.112 0.112 0.112 0.112 0.112 0.112 0.113	
-0.241 -0.374 -0.486 -0.554 -0.5558 -0.677 -0.627 -0.697 -0.668 -0.615 -0.371 -0.371		-0.623 -0.811 -0.712 -0.723 -0.732 -0.765 -0.787 -0.817 -0.761 -0.788 -0.729 -0.647 -0.474 -0.183		-0.530 -0.695 -0.616 -0.632 -0.646 -0.707 -0.738 -0.711 -0.715 -0.695 -0.488 -0.488		COEFFI SUCT 0.087 -0.191 -0.192 -0.251 -0.305 -0.487 -0.595 -0.627 -0.627 -0.557 -0.484 -0.334	
-0.235 0.460 -0.637 -0.340 -0.017 0.125 0.125 0.174 0.143 0.137 0.159		-0.623 0.698 -0.444 -0.187 0.174 0.179 0.158 0.179 0.179 0.179		-0.531 0.728 -0.443 -0.206 0.178 0.178 0.231 0.226 0.196 0.1976		CIENT PRESS 0.0829 -0.348 -0.060 0.099 0.125 0.135 0.125 0.125 0.111	

[Pressures are in newtons per square centimeter.]

(x) Vane B in corner 2; IGV setting, 10°; airflow, 68.28 kg/sec; readings 10-17

SECTION	I A					
XC/C 0.000 0.025 0.055 0.075 0.100 0.150 0.200 0.300 0.500 0.500 0.850 0.850 0.950	PRESSURE SUCT 9.835 9.725 9.713 9.666 9.624 9.5591 9.5540 9.5539 9.562 9.5644 9.711	PRESS 9.8825 9.605 9.783 9.8810 9.8815 9.8814 9.8814 9.8803 9.8805	MACH SUCT 0.227 0.260 0.270 0.277 0.288 0.296 0.306 0.310 0.310 0.296 0.282 0.264	NO PRESS 0.227 0.230 0.293 0.255 0.243 0.238 0.235 0.233 0.233 0.233 0.233	COEFFI SUCT 0.092 -0.192 -0.223 -0.345 -0.453 -0.638 -0.668 -0.672 -0.613 -0.538 -0.538	CIENT PRESS 0.091 0.061 -0.501 -0.148 -0.044 0.027 0.044 0.027 0.044 0.038 0.035 0.023 0.023
SECTION	В					
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.850 0.950	9.590 9.506 9.5520 9.5513 9.4983 9.4680 9.4680 9.4635 9.696	9.591 10.015 9.527 9.688 9.794 9.813 9.823 9.823 9.838 9.838 9.824 9.823 9.810 9.791	0.297 0.318 0.313 0.316 0.321 0.323 0.327 0.325 0.325 0.329 0.311 0.293	0.296 0.159 0.312 0.271 0.240 0.234 0.231 0.229 0.227 0.227 0.231 0.235	-0.539 -0.760 -0.706 -0.720 -0.739 -0.792 -0.816 -0.854 -0.855 -0.775 -0.687 -0.504 -0.268	-0.537 0.554 -0.702 -0.289 -0.014 0.033 0.060 0.071 0.098 0.086 0.063 0.060 0.026 -0.023
SECTION	C					
0.000 0.025 0.050 0.075 0.100 0.150 0.200 0.500 0.700 0.850 0.900	9.562 9.4692 9.5090 9.488 9.457 9.457 9.459 9.459 9.6516 9.692	9.562 9.995 9.533 9.638 9.807 9.817 9.823 9.816 9.816 9.792 9.749	0.304 0.326 0.319 0.322 0.322 0.327 0.329 0.333 0.329 0.331 0.290 0.270	0.304 0.168 0.311 0.284 0.235 0.236 0.232 0.232 0.231 0.233 0.235 0.240	-0.613 -0.851 -0.768 -0.798 -0.854 -0.854 -0.928 -0.928 -0.902 -0.914 -0.688 -0.474 -0.279	-0.613 0.502 -0.685 -0.413 0.021 0.017 0.050 0.045 0.045 0.036 0.041 0.025 -0.020
SECTION	D					
0.005 0.025 0.055 0.0575 0.100 0.150 0.200 0.300 0.700 0.800 0.850 0.950	9.677 9.675 9.5558 9.5547 9.5489 9.5021 9.521 9.521 9.5636 9.676	9.677 9.932 9.497 9.614 9.773 9.788 9.807 9.825 9.825 9.828 9.814 9.809 9.771	0.274 0.284 0.301 0.305 0.307 0.321 0.318 0.314 0.317 0.318 0.312 0.303	0.274 0.193 0.3291 0.246 0.242 0.237 0.236 0.229 0.229 0.229 0.235 0.235	-0.315 -0.418 -0.580 -0.622 -0.650 -0.799 -0.766 -0.715 -0.760 -0.760 -0.760 -0.449 -0.320	-0.315 0.340 -0.781 -0.479 -0.070 -0.031 0.005 0.018 0.064 0.072 0.036 -0.036 -0.073

[Pressures are in newtons per square centimeter.]

(y) Vane B in corner 2; IGV setting, 10°; airflow, 35.36 kg/sec; readings 21-30

XC/0 0.005 0.025 0.050 0.150 0.150 0.200 0.300 0.500 0.700 0.800 0.850 0.900 0.950	PRESSURE SUCT 10.055 10.028 10.028 10.021 10.016 10.006 9.997 9.984 9.984 9.998 10.013 10.032	N/CM2 PRESS 10.056 10.069 10.042 10.052 10.057 10.059 10.060 10.061 10.061 10.058 10.058	MACH SUCT 0.115 0.131 0.135 0.138 0.143 0.147 0.152 0.153 0.154 0.150 0.147	NO PRESS 0.115 0.107 0.140 0.124 0.117 0.114 0.113 0.112 0.112 0.112 0.112 0.112 0.114	COEFFI SUCT 0.089 -0.180 -0.179 -0.240 -0.293 -0.394 -0.478 -0.605 -0.608 -0.608 -0.470 -0.322 -0.138	CIENT PRESS 0.092 0.219 -0.344 -0.059 0.104 0.124 0.137 0.144 0.138 0.113
0.000 0.025 0.025 0.075 0.100 0.150 0.200 0.500 0.700 0.850 0.950	9.993 9.976 9.984 9.982 9.987 9.977 9.972 9.971 9.979 9.985 9.997	9.992 10.121 10.002 10.027 10.065 10.065 10.067 10.068 10.071 10.069 10.067 10.067	0.149 0.157 0.153 0.154 0.157 0.157 0.159 0.159 0.159 0.153 0.147 0.131	0.149 0.063 0.145 0.132 0.109 0.109 0.108 0.107 0.106 0.106 0.108 0.108	-0.517 -0.681 -0.603 -0.619 -0.627 -0.672 -0.688 -0.719 -0.725 -0.728 -0.594 -0.483 -0.174	-0.522 0.726 -0.426 -0.188 0.184 0.180 0.204 0.211 0.237 0.226 0.207 0.2100 0.171 0.128
SECTION 0.005 0.025 0.055 0.100 0.150 0.200 0.500 0.500 0.700 0.800 0.950 0.950 SECTION	9.983 9.964 9.974 9.973 9.972 9.966 9.966 9.978 9.999 9.999	9.984 10.118 10.001 10.028 10.051 10.065 10.066 10.065 10.065 10.065 10.065	0.154 0.162 0.158 0.159 0.160 0.163 0.163 0.162 0.159 0.156 0.131	0.154 0.066 0.145 0.131 0.118 0.108 0.109 0.109 0.109 0.109 0.109 0.109	-0.612 -0.795 -0.794 -0.715 -0.717 -0.753 -0.808 -0.757 -0.808 -0.777 -0.806 -0.777	-0.607 0.700 -0.440 -0.181 0.049 0.1200 0.188 0.185 0.184 0.180 0.150 0.064
0.000 0.025 0.050 0.100 0.150 0.200 0.300 0.500 0.700 0.850 0.900	10.023 10.008 9.997 9.994 9.974 9.979 9.983 9.980 9.979 9.981 9.993 10.009	10.023 10.094 9.982 10.012 10.046 10.056 10.059 10.065 10.065 10.065 10.062	0.134 0.142 0.147 0.149 0.158 0.156 0.155 0.155 0.149 0.141	0.134 0.088 0.154 0.139 0.121 0.115 0.113 0.113 0.113 0.1119 0.109 0.109 0.111	-0.226 -0.367 -0.478 -0.506 -0.541 -0.698 -0.657 -0.610 -0.654 -0.654 -0.659 -0.199	-0.222 0.468 -0.624 -0.328 -0.005 0.126 0.130 0.181 0.184 0.145 0.118 0.071

Figure 1.—Capabilities of modified and rehabilitated AWT.

Test-section acoustic level, dB (OASPL). 120

. -40 to 15

Altitude, m Total temperature, ^OC

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2.—Corner 2 test configuration.

Figure 3.—Schematic of corner 2 test apparatus.

OF POOR QUALITY

Figure 4.—Corner 2 vane holder showing foam fillers.

Figure 6.—Geometry of fan shaft fairing in corner 2. (Dimensions are in centimeters.)

(a) C-85-4470

C-85-2446

(a) Inlet.(b) Exit to fan inlet guide vanes.Figure 5.—Fan shaft fairing.

OF POOR QUALITY

(a) End view.(b) 3/4 view.

Figure 7.-Vane A (controlled-diffusion).

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8.—Schematic showing Vane A in corner 2 (along major axis).

- (a) End view.
- (b) 3/4 view.

Figure 9.-Vane B (circular-arc).

Figure 10.—Schematic showing Vane B in corner 2 (along major axis).

- (a) Inlet guide vane angle, design -10°.
 (b) Inlet guide vane angle, design.
- (c) Inlet guide vane angle, design +10°.

Figure 11.—Inlet guide vane with twist at trailing edge.

ORIGINAL PAGE IS OF POOR QUALITY

Element	Туре	Distance from outer wall to	Distanc outer w	
		centerline, percent of span	Inlet	Exit
1	Pressure	5.0	2.075	2.314
2	Temperature	7.5	3.114	3.470
3	Pressure	10.0	4.150	4.628
4	1	15.0	6.226	6.939
5		20.0	8.301	9.253
6		30.0	12.451	13.881
7	Temperature	40.0	16.601	18.506
8	Pressure	50.0	20.752	23.134
9	Pressure	70.0	29.053	32.388
10	Temperature	80.0	33.209	37.013
11	Pressure	90.0	37.353	41.641
12	Pressure	90.0	45.654	50.891
13	Temperature	80.0	49.804	55.519
14	Pressure	70.0	53.955	60.144
15	Pressure	50.0	62.255	69.398
16	Temperature	40.0	66.406	74.026
17	Pressure	30.0	70.556	78.651
18	} {	20.0	74.706	83.279
19		15.0	76.782	85.593
20		10.0	78.857	87.904
21	Temperature	7.5	79.893	89.063
22	Pressure	5.0	80.932	90.216

(a) Inlet. (b) Exit.

Figure 12.—Diffuser diametrical rakes.

	inlet				Exit	
Station	X, cm	locations,	Station	Z, cm	Circumferential location, θ , deg	
		θ , deg			Outer wall	Shaft fairing
1	-152.375	90	54	-99.619		0,90,180,270
2	-135.915	i	55	-90.145		0,90,180,270
3	-116.916		56	-80.670		0,90,180
4	-102.997		57	—71.196	270	90,180
5	→86.538	j l	58	-61.722	270	90,270
6	-70.079		59	-52.248	270	90
7	-53.619]	60	-42.774	270	90
8	-37,160	1 1	61	-33.299	0.180,270	0,180,270
9	-20.701	l i	62	-23.824	1 1	0,180,270
10	-4.115	1	63	21.285		0,90,180,270
33	0		64	-18.745		
*34	6.198	0,90,180,270	65	16.205	'	
35	8.306	90	66	-13.665		
36	11.684	90	67	-11.125		
37	15.062	0,90,180,270	68	-8.585		
38	18.440	90	69	-6.045		
39	21.819	90	70	-3.505		
40	25.222	0,90,180,270	71	-0.965	+	
41	35.382	1	72	1.575	0,90,180,270	}
42	45.542		73	4.115	1 1	
43	53.702		74	6.655		
44		1	75	9.195	1	
45	76.022	1 1	76	11.735	l i	1 1
46	86.192	1	77	14.275		1 1
*47	90.221	*	78	16.815	!!	1 1
48	109.703		*79	19.609	1014 5714	121/2.571/2.
49	119.177		*80	36.627	121/2,571/2,	
50	128.651			1	1021/2,1471/2	1021/2,1471/2
51	138.125				1921/2,2371/2	2821/2,3271/2
52	147.599	1			2821/2,3271/2	20272,32172
53	194.970	270	1	1	1	1

^{*}Rake location.

Figure 13.—Instrumentation locations.

ORIGINAL PAGE IS OF POOR QUALITY

Element	Distance from outer wall to	Distance from outer wall, cm		
	centerline, percent of span	Inlet	Exit	
1	1.0	0.414	0.462	
2	2.0	.831	.925	
3	3.0	1.245	1.387	
4	4.0	1.661	1.852	
5	5.0	2.075	2.314	
6	7.5	3.114	3.470	
7	10.0	4.150	4.628	
8	12.5	5.189	5.784	

Figure 14.—Diffuser boundary-layer rakes.

Element	Distance from outer wall to inner wall, percent of span	Distance from outer wall, cm
1	10	3.785
2	30	8.966
3	50	14.148
4	70	19.329
5	90	24.511

Figure 15.—IGV leading-edge rake.

Element	Туре	Distance from outer wall to inner wall, percent of span	Distance from outer wall, cm
1	Pressure	5.0	1,295
2	Temperature	7.5	1.943
3	Pressure	10.0	2.591
4		15.0	3.886
5		20.0	5.207
6	↓	30.0	7.772
7	Temperature	40.0	10,363
8	Pressure	50.0	12.954
9	Pressure	70.0	18.136
10	Temperature	80.0	20.726
11	Pressure	90.0	23.317

Figure 16.—IGV exit rake.

Figure 17.—Location for vane surface static taps (looking downstream).

Figure 18.—Component loss coefficient as function of inlet Mach number.

Data fairing based on least-squares fit.

Figure 19.—Total pressure profiles at diffuser inlet and exit (inlet of corner 2).

Circumferential position, 0°; nominal diffuser inlet Mach number, 0.33.

- (a) Circumferential position, 90° (inside corner).
- (b) Circumferential position, 270° (outside corner).

Figure 20.—Corner 2 exit total-pressure profiles for vanes A, A4, and B Nominal corner 2 inlet Mach number, 0.24.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 22.—Axial wall static-pressure distributions upstream and downstream of corner 2. Nominal airflow, 69.2 kg/sec; nominal corner 2 inlet Mach number, 0.24.

Figure 23.—Axial wall static-pressure distribution in corner 2. Circumferential position, 270°; nominal airflow, 69.2 kg/sec; nominal inlet Mach number, 0.24.

Figure 24.—Circumferential distribution of static-pressure coefficient upstream and downstream of corner 2 vane row. Nominal airflow, 69.2 kg/sec; nominal corner 2 inlet Mach number, 0.24.

Figure 25.—Axial static-pressure distribution on shaft fairing centerbody for vane A4. Nominal airflow, 69.2 kg/sec.

Figure 26.—Measured and design Mach number distributions for vanes A and B in corner 2. Section C; nominal corner 2 inlet Mach number, 0.24.

Figure 27.—Surface Mach number distributions for Vane A in corner 2. Nominal corner 2 inlet Mach number, 0.24.

Figure 28.—Surface Mach number distributions for Vane A4 in corner 2. Nominal corner 2 inlet Mach number, 0.24.

Figure 29.—Surface Mach number distributions for Vane B in corner 2. Nominal corner 2 inlet Mach number, 0.24.

1. Report No.	2. Government Access	sion No.	3. Recipient's Catalog	g No.		
NASA TP-2646						
4. Title and Subtitle		5. Report Date				
Experimental Evaluation of Two Tur		MARCH 1987				
Corner of 0.1-Scale Model of NASA	er's	6. Performing Organization Code				
Proposed Altitude Wind Tunnel			505-62-3A			
7. Author(s)			8. Performing Organization Report No.			
Donald R. Boldman, Royce D. Moore, and Rickey J. Shyne			E-3175			
			10. Work Unit No.			
9. Performing Organization Name and Address			11. Contract or Grant	No.		
National Aeronautics and Space Adn	ninistration		Tr. Contract of Grant No.			
Lewis Research Center						
Cleveland, Ohio 44135			13. Type of Report an	d Period Covered		
2. Spannering Agency Name and Address			Technical Pape	r		
Sponsoring Agency Name and Address National Aeronautics and Space Adn	ninistration		14. Sponsoring Agency Code			
Washington, D.C. 20546	mistration					
5. Supplementary Notes						
Two turning vane designs were experimental Research Center's proposed Altitude drive system to be located downstreat 0.1-scale model of the crossleg diffur controlled-diffusion airfoil shape; varangements which included the result lowest total-pressure loss for vane A increased slightly with Mach number design Mach number of 0.24. Remo essentially the same as those for the at the inlet design Mach number of 0.25.	Wind Tunnel (AWT) am of the corner. The ser designed to connerne B was a circular-aretting of the vane angle configurations was of r, ranging from 0.165 val of the outer vane of reset vane A configuration.	Corner 2 container corner was tested we corners 1 and 2 or cairfoil shape. The le by -5° or the reptained at the negation to 0.175 with a lost did not alter the lost	d a simulated shaft with a bellmouth inle of the AWT. Vane a A vanes were test emoval of the outer ive reset angle. The as coefficient of 0.1 as. Vane B loss coefficients	fairing for a fa let followed by A was a ed in several vane. The e loss coefficient 70 at the inlet fficients were		
7. Key Words (Suggested by Author(s)) Wind tunnel turning vanes Cascades Corner flows		18. Distribution States Unclassified STAR Categ	-unlimited			
9. Security Classif. (of this report)	20. Security Classif. (c	f this page)	21. No of pages	22. Price*		
Unclassified	Unclassified		145	A07		