CONCOURS D'ADMISSION 2004

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Courbures des surfaces dans l'espace R³

Ce problème propose une étude des surfaces de l'espace \mathbb{R}^3 et de leurs courbures totale et moyenne. Pour tout entier n>0, l'espace \mathbb{R}^n sera muni de son produit scalaire et de sa norme usuels notés respectivement (.|.) et ||.||. La première partie est consacrée à des préliminaires algébriques.

Première partie

- 1. Soient $x^{(1)},\ldots,x^{(n)}$ des éléments de $\mathbf{R}^{n+1},(x_j^{(i)})_{j=1,\ldots,n+1}$ les composantes de $x^{(i)}$ dans la base canonique de \mathbf{R}^{n+1} . Pour tout $k=1,\ldots,n+1$ on note V_k le produit par $(-1)^{k+1}$ du déterminant de la matrice $(x_j^{(i)})$ où $i=1,\ldots,n$ et $j=1,\ldots,k-1,k+1,\ldots,n+1$. On note V le vecteur de \mathbf{R}^{n+1} de composantes V_k .
 - **1.a)** Montrer que V est orthogonal à tous les $x^{(i)}$.
 - **1.b)** Comparer les conditions suivantes :
 - i) V = 0
 - ii) la famille $(x^{(i)})_{i=1,\ldots,n}$ est liée.
- **1.c)** Exprimer en fonction de ||V|| le déterminant des n+1 vecteurs $V, x^{(1)}, \ldots, x^{(n)}$ dans la base canonique de \mathbf{R}^{n+1} .
- **2.a)** Montrer que, pour tout n-uple de vecteurs $(x^{(1)}, \ldots, x^{(n)})$ linéairement indépendants, il existe un unique vecteur $W(x^{(1)}, \ldots, x^{(n)})$ ayant les propriétés suivantes
 - i) $W(x^{(1)}, \ldots, x^{(n)})$ est de norme 1 et orthogonal à tous les $x^{(i)}$
- ii) le déterminant des n+1 vecteurs $W(x^{(1)},\ldots,x^{(n)}),x^{(1)},\ldots,x^{(n)}$ dans la base canonique de \mathbf{R}^{n+1} est strictement positif.

2.b) Vérifier que, pour toute rotation R de \mathbb{R}^{n+1} , on a

$$W(R(x^{(1)}), \dots, R(x^{(n)})) = R(W(x^{(1)}, \dots, x^{(n)})).$$

- 3) Soit (e_1, \ldots, e_n) une base de \mathbf{R}^n , Q la matrice de coefficients $q_{i,j} = (e_i|e_j)$.
- $\mathbf{3.a}$) Montrer que Q est inversible et diagonalisable. Que peut-on dire de ses valeurs propres?
- **3.b)** Soit v un vecteur de \mathbb{R}^n , de coordonnées v_i dans la base (e_1, \ldots, e_n) . Exprimer le vecteur ligne (v_1, \ldots, v_n) en fonction de Q et du vecteur ligne $((v|e_1), \ldots, (v|e_n))$.

Dans la suite du problème, on désigne par U une partie ouverte de \mathbf{R}^n , par $u=(u_1,\ldots,u_n)$ un élément quelconque de U, par F une application de classe C^2 de U dans \mathbf{R}^{n+1} , par $\partial_i F$ (resp. $\partial_i \partial_j F$) ses dérivées partielles d'ordre 1 (resp. 2). On suppose que les n-vecteurs $(\partial_i F)(u)$ sont linéairement indépendants pour tout u, et on pose $W(u) = W((\partial_1 F)(u), \ldots, (\partial_n F)(u))$.

- **4.a)** Vérifier que l'application $u \mapsto W(u)$ est de classe C^1 .
- **4.b)** Comparer $((\partial_k W)(u)|(\partial_i F)(u))$ et $(W(u)|(\partial_i \partial_k F)(u))$.
- **4.c)** Démontrer l'existence et l'unicité de nombres réels $a_{i,j}(u)$ tels que l'on ait

$$(\partial_i W)(u) = \sum_j a_{i,j}(u)(\partial_j F)(u) .$$

4.d) On note respectivement A(u), S(u), Q(u) les matrices de coefficients respectifs $a_{i,j}(u), (W(u)|(\partial_i\partial_j F)(u)), ((\partial_i F)(u)|(\partial_j F)(u))$. Vérifier que $A(u) = -S(u)Q(u)^{-1}$.

Deuxième partie

Dans toute la suite du problème, on suppose n=2; on a donc un ouvert U de \mathbf{R}^2 et une application F de classe C^2 de U dans \mathbf{R}^3 telle que les vecteurs $(\partial_1 F)(u)$ et $(\partial_2 F)(u)$ soient linéairement indépendants pour tout u de U. On a en outre

$$W(u) = \frac{(\partial_1 F)(u) \wedge (\partial_2 F)(u)}{\|(\partial_1 F)(u) \wedge (\partial_2 F)(u)\|}$$

où $. \land .$ désigne le produit vectoriel dans \mathbb{R}^3 . On pose

$$K(u) = \det A(u)$$
, $H(u) = \frac{1}{2} \operatorname{tr} A(u)$

où A(u) est la matrice définie à la question **4.d**). On note $F_i(u)$, i = 1, 2, 3, les composantes de F(u); on suppose que U contient le point 0 et on fait l'étude de la surface F(U) au voisinage du point F(0).

5. Soit R une rotation de \mathbb{R}^3 . Montrer que les objets $\hat{K}(0)$ et $\hat{H}(0)$ associés à l'application $\hat{F} = R \circ F$ sont égaux respectivement à K(0) et H(0).

6. On suppose que, pour u suffisamment voisin de 0, F(u) est de la forme

$$F(u) = (u_1, u_2, f(u_1, u_2))$$

avec
$$f(0) = (\partial_1 f)(0) = (\partial_2 f)(0) = 0$$
.

6.a) Calculer K(0) et H(0) en fonction des nombres

$$r = (\partial_1 \partial_1 f)(0)$$
, $s = (\partial_1 \partial_2 f)(0)$, $t = (\partial_2 \partial_2 f)(0)$.

- **6.b)** (Cas d'un cylindre) On suppose que $f(u_1, u_2)$ est fonction de u_1 seul, soit $f(u_1, u_2) = g(u_1)$. Exprimer H(0) en fonction de la courbure de la courbe Γ , intersection du cylindre avec le plan $x_2 = 0$.
 - 7.) Dans cette question, on considère le cas d'une surface de révolution :

$$F(u) = (f(u_1)\cos u_2, f(u_1)\sin u_2, u_1)$$

où f est une fonction strictement positive de classe C^2 définie sur un intervalle I.

- **7.a)** Dire pour quelles valeurs de u les vecteurs $(\partial_1 F)(u)$ et $(\partial_2 F)(u)$ sont linéairement indépendants.
 - 7.b) Vérifier que

$$A(u) = f(u_1)^{-1} \left(1 + f'(u_1)^2 \right)^{-3/2} \begin{pmatrix} f(u_1)f''(u_1) & 0 \\ 0 & -\left(1 + f'(u_1)^2\right) \end{pmatrix}.$$

- **7.c)** Donner une fonction f élémentaire pour laquelle H(u) est nul pour tout u.
- **7.d)** Montrer que, pour tous nombres réels α et β , $\alpha > 0$, il existe f satisfaisant

$$H(u) = 0$$
 pour tout u , $f(0) = \alpha$, $f'(0) = \beta$.

Interpréter géométriquement le résultat obtenu.

- **7.e)** Calculer K(u) pour une telle fonction f.
- 8.) Indiquer, sans aucun calcul, des surfaces pour lesquelles K(u) et H(u) sont des constantes.

Troisième partie

Dans cette partie, on se propose d'étudier l'effet d'un changement de paramétrage sur les fonctions H et K.

Dans la situation du début de la deuxième partie on note $\frac{\partial F}{\partial u}$ la matrice (jacobienne) de coefficients $\left(\frac{\partial F}{\partial u}\right)_{i,j} = \partial_j F_i$. Notation analogue pour $\frac{\partial W}{\partial u}$.

9. Vérifier que
$$\frac{\partial W}{\partial u} = \frac{\partial F}{\partial u} {}^t A(u)$$
.

On se donne maintenant un difféomorphisme Φ de U sur un autre ouvert \tilde{U} de \mathbf{R}^2 et on pose $\Psi = \Phi^{-1}$. Pour tout $u \in U$ on écrira aussi $\tilde{u} = \Phi(u)$; on pose $\tilde{F}(\tilde{u}) = F(u)$, c'est-à-dire $\tilde{F} = F \circ \Psi$, et on note $\tilde{W}(\tilde{u}), \tilde{A}(\tilde{u}), \tilde{K}(\tilde{u}), \tilde{H}(\tilde{u})$ les objets définis à partir de \tilde{F} et \tilde{u} comme W(u), A(u), K(u), H(u) l'ont été à partir de F et u. On suppose U connexe par arcs.

- **10.a)** Exprimer $\frac{\partial \tilde{F}}{\partial \tilde{u}}$ en fonction de $\frac{\partial F}{\partial u}$ et $\frac{\partial \Psi}{\partial \tilde{u}}$, puis $(\partial_1 \tilde{F})(\tilde{u}) \wedge (\partial_2 \tilde{F})(\tilde{u})$ en fonction de $(\partial_1 F)(u) \wedge (\partial_2 F)(u)$ et dét $\frac{\partial \Psi}{\partial \tilde{u}}$.
 - **10.b)** Montrer qu'il existe $\varepsilon \in \{1, -1\}$ tel que l'on ait $\tilde{W}(\tilde{u}) = \varepsilon W(u)$ pour tout $u \in U$.
 - **10.c)** Exprimer $\tilde{A}(\tilde{u})$ en fonction de $\varepsilon, A(u)$ et $\frac{\partial \Psi}{\partial \tilde{u}}$.
 - **10.d)** Comparer $\tilde{H}(\tilde{u})$ et $H(u), \tilde{K}(\tilde{u})$ et K(u).

* *

*