Mémoire M2

Antoine VEZIER

 $30~\mathrm{mars}~2018$

Table des matières

1	Pré	liminaires
	1.1	Résultats d'algèbre commutative
		1.1.1 Extensions entières d'anneaux
		1.1.2 Anneaux locaux
	1.2	Algèbres graduées
	1.3	Variétés algébriques
		1.3.1 Généralités
		1.3.2 Dimension
		1.3.3 Normalité
		1.3.4 Quelques résultats sur les morphismes
	1.4	Groupes algébriques affines
		1.4.1 Généralités
		1.4.2 G-variétés, représentations
		1.4.3 Groupes quotients
		1.4.4 Groupes diagonalisables, actions de groupes diagonalisables
	1.5	Théorie des invariants
		1.5.1 L'algèbre des invariants
		1.5.2 Quotient d'une variété algébrique sous l'action d'un groupe algébrique
	1.6	Faisceaux quasi-cohérents
		1.6.1 Faisceaux quasi-cohérents sur une variété
		1.6.2 Faisceaux quasi-cohérents sur une variété projective
		1.6.3 Faisceaux inversibles, Fibrés en droites
		1.6.4 G -linearisation d'un fibré en droite
	1.7	Diviseurs
		1.7.1 Diviseurs de Weil
		1.7.2 Faisceau d'algèbres divisorielles
		1.7.3 Diviseurs de Cartier et groupe de Picard
		1.7.4 L'espace projectif \mathbb{P}^n_k
2	Anı	neaux de Cox
	2.1	Un exemple introductif
	2.2	Cas d'un groupe des classes sans torsion
		2.2.1 Faisceau et anneau de Cox
		2.2.2 Le spectre relatif de \mathcal{R}
		2.2.3 Propriétés algébriques de l'anneau de Cox
	2.3	Groupe des classes avec torsion

Introduction

Blabla

Conventions

- Sauf mention explicite du contraire, k désigne un corps algébriquement clos de caractéristique zéro. Les résultats où l'hypothèse sur la caractéristique est nécessaire seront clairement balisés.
- Un anneau désigne un anneau commutatif unitaire.
- Un groupe algébrique désigne un groupe algébrique affine.

Chapitre 1

Préliminaires

Résultats d'algèbre commutative 1.1

Extensions entières d'anneaux 1.1.1

Définition 1.1.1.1. Soit A un anneau intègre. A est dit intégralement clos si il est égal à sa clôture intégrale. Soit B un anneau, on dit que B est normal si tout localisé de B en idéal premier est un anneau intègre et intégralement clos. On note qu'un anneau intègre est intégralement clos si et seulement si il est normal

integratement clos. On note qu'un anneau megre est mogratement clos si et seulement si n'est normai.			
Théorème 1.1.1.2. Soit A un anneau intègre noetherien intégralement clos. Alors			
1. Tous les diviseurs premiers d'un idéal principal non-nul sont de hauteur 1.			
2. $A = \bigcap_{p \ premier, \ ht(p)=1} A_p$			

Théorème 1.1.1.3. Soit A un anneau intègre noetherien intégralement clos. Alors, A est factoriel \iff Tout idéal premier de hauteur 1 est principal.

Démonstration.

1.1.2 Anneaux locaux

Théorème 1.1.2.1. Un anneau local régulier est factoriel.

Démonstration. Prendre la preuve dans [5] thm 11.5 p81

Démonstration. Voir [5] 20.3

Théorème 1.1.2.2. Soit A un anneau intègre et I un idéal fractionnaire de A. Les assertions suivantes sont équivalentes :

- 1. I est inversible
- 2. I est un A-module projectif
- 3. I est de type fini, et pour tout idéal maximal m de A, l'idéal fractionnaire I_m de A_m est principal.

Démonstration. Voir [5] 11.3

1.2Algèbres graduées

Proposition 1.2.0.1. Soit A un anneau Z-gradué. Les assertions suivantes sont équivalentes :

- (i) A est noetherien
- (ii) A_0 est noetherien et A est de type fini en tant que A_0 -algèbre

Démonstration. AtiyahMcdo p106

1.3 Variétés algébriques

1.3.1 Généralités

Dans ce mémoire, on travaille dans la catégorie des k-schémas réduits séparés de type fini sur k, où k est un corps algébriquement clos de caractéristique zéro fixé. Ces objets sont appelés des k-variétés algébriques, ou tout simplement variétés. Cette catégorie est équivalente à la catégorie des k-variétés algébriques au sens de [9] en ne considérant que les points fermés. D'ailleurs, par un point d'une variété X, on entendra point fermé, sauf mention du contraire. Soit X_0 le sous espace des points fermés de X muni de la topologie induite. Alors les treillis des ouverts des topologies de X et X_0 sont isomorphes. On bénéficie ainsi des résultats sur les morphismes et la dimension démontrés par exemple dans [9] ou [2] chap I.

On note que la sous-catégorie pleine des variétés affines est anti-équivalente à celle des k-algèbre de type fini réduites via le foncteur sections globales, noté k[.] dans ce cas pour coller aux notations traditionnelles. Un schéma de type fini sur un corps est noetherien, on en déduit que toute partie localement fermée d'une variété admet une unique structure de variété, et tout fermé se décompose de manière unique en une union finie de sous-variétés fermées irréductibles maximales. Enfin, le produit sur k préserve l'irréductiblité.

Construction 1.3.1.1. [Recollement de variétés] Soit $(X_i)_{u \in I}$ une famille finie de variétés. Supposons $\forall i, j$ on ait des ouverts $X_{ij} \subset X_i$ et des isomorphismes $f_{ij}: X_{ij} \to X_{ji}$ tels que $\forall i, j, k \in I$ on ait :

- 1. $X_{ii} = X_i$ et $f_{ii} = id$
- 2. $f_{ij}^{-1}(X_{ji} \cap X_{jk}) = X_{ij} \cap X_{ik}$
- 3. Le diagramme suivant commute :

$$X_{ij} \cap X_{ik} \xrightarrow{f_{ik}} X_{ki} \cap X_{kj}$$

$$X_{ji} \cap X_{jk}$$

Alors on peut définir une variété X comme la réunion disjointe des X_i modulo la relation d'équivalence $x \sim x' \iff x \in X_{ij}, x' \in X_{ji}$ et $f_{ij}(x) = x'$). On note $f_i : X_i \to X$ les applications canoniques, et on munit X de la topologie finale associée aux f_i . On vérifie que chaque f_i est une immersion ouverte dont on note U_i l'image. Le faisceau structural est définit en recollant les $\mathcal{O}_{U_i} := f_{i\star} \mathcal{O}_{X_i}$, ses sections sur un ouvert $W \subset X$ étant

$$\mathcal{O}_X(W) = \{(s_i)_{i \in I} \mid s_i \in \mathcal{O}_{U_i}(W \cap U_i), f_{ij}(s_i|_{W \cap U_i \cap U_i}) = s_i|_{W \cap U_i \cap U_i}\}$$

Définition 1.3.1.2. Soit X, Y des variétés. Supposons que X soit une variété sur Y par un morphisme $f: X \to Y$. On dit que X est séparé sur Y si f est séparé, c'est à dire que l'image du morphisme diagonal dans $X \times_Y X$ est fermé.

Proposition 1.3.1.3.1. la composition de deux morphismes séparés est séparé.

2. Lemme 25.21.8 stacks

$$D\acute{e}monstration.$$

On déduit de la proposition précédente que le spectre relatif d'une variété X est séparé.

1.3.2 Dimension

Théorème 1.3.2.1. Soit X une variété irréductible, $U \subset X$ un ouvert non-vide et $f \in \mathcal{O}_X(U)^*$ non inversible. Soit Z une composante irréductible de $\{x \in U \mid f(x) = 0\}$. Alors $\dim Z = \dim(X) - 1$.

Démonstration. Voir [2] I.7 Th.2, après réduction au cas X affine, la preuve consiste en une réduction au cas facile où k[X] est factoriel.

1.3.3 Normalité

Définition 1.3.3.1. Une variété est dite normale si tous ses anneaux locaux sont intègres et intégralement clos.

Proposition 1.3.3.2. Une variété normale est union disjointe de ses composantes irréductibles.

Démonstration. Si un point $p \in X$ d'une variété se situe à l'intersection de deux composantes irréductibles, l'anneau local en p contient au moins deux premiers minimaux et n'est donc pas intègre.

On note que une variété irréductible X est normale si et seulement si pour tout ouvert affine $U \subset X$, $\mathcal{O}_X(U)$ est normal au sens de la définition 1.1.1.1.

Proposition 1.3.3.3. Le lieu singulier d'une variété normale est un fermé de codimension ≥ 2

 $D\acute{e}monstration.$

Proposition 1.3.3.4. Soit X une variété affine irréductible. Pour toute variété Y contenant X, le complémentaire $Y \setminus X$ est de codimension 1.

 $D\acute{e}monstration.$

Proposition 1.3.3.5. Soit X une variété normale irréductible. Pour toute sous-variété fermée Y de codimension ≥ 2 , la restriction $\mathcal{O}(X) \to \mathcal{O}(X \setminus Y)$ est un isomorphisme.

Démonstration. On peut traiter le problème localement et supposer $X = \operatorname{Spec} A$ affine. On considère f régulière sur $U := X \setminus Y$. On remarque que tout $p \in \operatorname{Spec} A$ de hauteur 1 appartient à U. En effet, dans le cas contraire il contiendrait les idéaux premiers correspondants aux composantes irréductibles de Y, ce qui est impossible car ils sont de hauteur ≥ 2 . On en déduit que f est définie en tous ces p et induit un élément en chaque tige A_p via les injections $\mathcal{O}_X(U) \hookrightarrow \mathcal{O}_p = A_p$, par irréductibilité de A. On en déduit que d'après 1.1.1.2, un morphisme $\mathcal{O}_X(U) \hookrightarrow \cap_p A_p = A = \mathcal{O}(X)$ qui est inverse de la restriction, d'où le résultat. \square

1.3.4 Quelques résultats sur les morphismes

Généralités

Définition 1.3.4.1 (Morphisme affine). Un morphisme de variétés algébriques $\varphi: X \to Y$ est dit affine si pour tout ouvert affine $V \subset Y$, l'image réciproque $\varphi^{-1}(V)$ est affine.

Exemple 1.3.4.2. Un morphisme de variétés affines $\varphi: X \to Y$ est affine. En effet, soit V un ouvert affine de Y et $U = \varphi^{-1}(V)$. En considérant le diagramme commutatif ci-dessous on constate que l'on a $U \simeq (\varphi \times i_2)^{-1}(\Delta_Y) = \{(x, \varphi(x)) \mid x \in U\} \subset X \times V$. Comme $X \times V$ est affine, U aussi.

$$U \xrightarrow{\varphi} V$$

$$\downarrow_{i_1} \qquad \downarrow_{i_2}$$

$$X \xrightarrow{\varphi} Y$$

Dimension des fibres

Applications rationnelles

Morphismes finis, normalité

Définition 1.3.4.3 (Morphisme fini, localement fini). Soit $f: X \to Y$ un morphisme de variétés affines. On dit que f est fini si la k[Y]-algèbre $(k[X], f^*)$ est finie.

On dit qu'un morphisme est localement fini en $x \in X$ si ils existe un morphisme fini $\mu : Y' \to Y$ et un isomorphisme ν d'un ouvert de X contenant x sur un ouvert de Y', tel que $\mu\nu = f_{|U}$.

Proposition 1.3.4.4. Soient X, Y deux variétés algébriques affines irréductibles de même dimension et $f: X \mapsto Y$ un morphisme dominant.

Alors il existe $g \in k[Y]^*$ tel que le morphisme induit $f: X_g \mapsto Y_g$ soit fini, surjectif avec des fibres de même cardinal.

 $D\acute{e}monstration$. Par hypothèse, l'extension $k(Y) \xrightarrow{f^*} k(X)$ est algébrique finie, disons de degré n. En caractéristique zéro on peut trouver $u \in k(X)$ tel que k(X) = k(Y)[u]. On remarque que l'on peut imposer $u \in k[X]$. On considère $P := P_{min}(u,k(Y)) = T^n + a_1T^{n-1} + ... + a_0$. En réduisant au même dénominateur on a $P \in k[Y]_v[T]$ pour un $v \in k[Y]$. De plus, en prenant l'intersection avec d'autres ouverts principaux on peut supposer $k[X]_v$ entier sur $k[Y]_v$, et $k[Y]_v[u]$ intégralement clos, ce qui donne $k[Y]_v[u] = k[X]_v$ entier sur $k[Y]_v$. Ainsi $f: X_v \to Y_v$ est fini et donc surjectif car dominant.

On a donc une factorisation de $f^*: k[Y]_v \xrightarrow{p_1^*} k[Y]_v[T] \xrightarrow{\pi} k[Y]_v[T]/(P) \xrightarrow{\overline{ev_f}} k[Y]_v[u]$ qui donne $f: X_v \xrightarrow{\cong} \{(y,t) \in Y_v \times \mathbb{A}^1 \mid P(y)(t) = 0\} \hookrightarrow Y_v \times \mathbb{A}^1 \xrightarrow{p_1} Y_v$. Ainsi le cardinal de la fibre $f^{-1}(y), y \in Y_v$ est le cardinal de l'ensemble des zéros du polynôme P(y)(T). On peut s'assurer que cet ensemble est de cardinal constant en intersectant à nouveau avec l'ouvert principal du discriminant de P qui est un polynôme en les coefficients de P.

Ce résultat reste vrai en caractéristique positive, voir [9] 5.1.6 pour une preuve légèrement différente dans ce cadre. On y montre que le cardinal de la fibre générale est $[k(X):k(Y)]_s$. En revanche pour le corollaire immédiat suivant, la caractéristique zéro est essentielle (penser par exemple au morphisme de Frobenius $\mathbb{A}^1 \xrightarrow{x\mapsto x^p} \mathbb{A}^1$).

Corollaire 1.3.4.5. Avec les hypothèses de 5, si de plus f est injectif, alors il existe $g \in k[Y]^*$ tel que le morphisme induit $f: X_g \mapsto Y_g$ soit un isomorphisme.

Proposition 1.3.4.6. Soit $f: X \mapsto Y$ un morphisme dominant de variétés irréductibles. Soit $g: X \to Z$

 $constant \ sur \ les \ fibres \ de \ f. \ Alors \ il \ existe \ h \in k[Y]^* \ et \ une \ factorisation$

Démonstration. On considère $\varphi=(f,g):X\to Y\times Z$ et le diagramme commutatif ci-contre. Comme f est dominant, π_1 l'est aussi. De plus $\overline{\varphi(X)}$ est irréductible et $\varphi(X)$ contient un ouvert dense de $\overline{\varphi(X)}$. Par ailleurs comme g est constante sur les fibres de f on vérifie que π_1 est injective sur $\varphi(X)$. Par le corollaire précédent, π_1 réalise un isomorphisme $\overline{\varphi(X)}_h \xrightarrow{\pi_1} Y_h$ pour un $h \in k[Y]^*$. Finalement, le morphisme recherché est $Y_h \xrightarrow{\pi_2 \pi_1^{-1}} Z$

Proposition 1.3.4.7. Soit $f: X \mapsto Y$ un morphisme de variétés affines et $x \in X$. Si la fibre de f(x) est finie, alors f est localement fini en x.

 $D\acute{e}monstration.$ Cf [9] 5.2.6

Théorème 1.3.4.8. Soit $f: X \mapsto Y$ un morphisme bijectif de variétés irréductibles avec Y normale. Alors f est un isomorphisme.

 $D\acute{e}monstration.$

1.4 Groupes algébriques affines

1.4.1 Généralités

1.4.2 G-variétés, représentations

Définition 1.4.2.1 (G-variété). Soit G un groupe algébrique. Une G-variété est une variété algébrique X sur laquelle G agit algébriquement. C'est à dire qu'on a un morphisme de groupes de G dans le groupe d'automorphismes X.

Proposition 1.4.2.2. Soit G un groupe algébrique, X une G-variété et $x \in X$.

- 1. G.x est ouvert dans $\overline{G.x}$.
- 2. Toute composante irréductible de G.x a pour dimension dim(G) dim(G.x).
- 3. $\overline{G.x} \setminus G.X$ est une union d'orbites de dimension $< dim(\overline{G.x})$.
- 4. G.x est ouvert dans $\overline{G.x}$.

 $D\acute{e}monstration.$ On suppose d'abord G connexe.

- 1. D'après ??, G.x contient un ouvert dense U de $\overline{G.x}$. Or, G est réunion de translatés de U.
- 2. D'après ??, il existe un ouvert dense de G.x tel que toute les fibres de cet ouvert ont pour dimension $\dim(G)-\dim(G.x)=\dim(G_x)$.
- 3. $\overline{G.x} \setminus G.x$ est un fermé propre de $\overline{G.x}$ donc de dimension inférieure d'après ??. Par ailleurs, $\overline{G.x}$ est G-stable donc $\overline{G.x} \setminus G.x$ est réunion d'orbites.
- 4. Enfin si dim(G.x) est minimal, $\overline{G.x} \setminus G.x$ est vide

Enfin, G n'est pas connexe, on écrit $G = \bigcup_{i=1}^n g_i G^\circ.x$ avec $g_1 = e$. D'où $\overline{G.x} = \bigcup_{i=1}^n \overline{g_i G^\circ}.x$. Les $\overline{g_i G^\circ}$ sont égales où disjointes, c'est donc la décomposition en composantes irréductibles. On construit un ouvert de $\overline{G.x}$ inclus dans G.x en posant $U = G^\circ.x \setminus \bigcup_{i=2}^n \overline{g_i G^\circ}.x$. On a $\dim(G^\circ) - \dim((G^\circ)_x) = \dim(G) - \dim(G_x)$ car $(G_x)^\circ \subset (G^\circ)_x \subset G_x$, d'où $\dim(G_x) = \dim((G^\circ)_x)$. Or chaque composante de G.x est l'adrence d'un orbite pour G° , d'où 2) d'après le cas connexe. On a $\overline{G.x} \setminus G.x = \bigcup_{i=1}^n \overline{g_i G^\circ.x} \setminus g_i G^\circ.x = \bigcup_{i=1}^n g_i (\overline{G^\circ.x} \setminus G^\circ.x)$ qui est une union finie de fermés de dimension inférieure à $\overline{G.x}$ ce qui prouve 3). On utilise le même argument pour prouver 4) dans le cas général.

Définition 1.4.2.3 (G-module, simple, semi-simple). Une représentation de G, ou G-module (rationnel) est un couple (V, ρ) où V est un k-espace vectoriel de dimension finie et ρ un morphisme de groupes algébriques de G dans GL(V).

On étend cette définition au cas où V est de dimension infinie, on demande alors que V soit réunion de G-modules de dimension finie.

On dit qu'un G-module est simple si il n'admet pas de sous G-module non trivial. On dit qu'un G-module est semi-simple si tout sous G-module admet un G-module supplémentaire.

Proposition 1.4.2.4. Soit G un groupe algébrique et X une G-variété. k[X] est naturellement muni d'une action $(g.f)(x) := f(g^{-1}.x), \forall f \in k[X], g \in G, x \in X$ Muni de cette action, k[X] un G-module.

Démonstration. On note $a: G \times X \to X$ le morphisme associé à l'action de G. Cela donne $\forall g, x \in G \times X$, $a^*(f)(g,x) = g^{-1}.f(x) = \sum_{i=1}^r \varphi_i(g)\psi_i(x)$, d'où $g.f = \sum_{i=1}^r \varphi_i(g)\psi_i \in k[X]$. Ainsi les translaté g.f pour $g \in G$ engendrent un k-ev V(f) de dimension finie et G-stable.

De plus l'action est algébrique. En effet $\forall l \in V(f)^*$, qu'on prolonge en $l' \in \operatorname{Vect}_k(\psi_1, ..., \psi_r)^*$. On a $\forall h \in G, g \mapsto l(g.(h.f)) = \sum_{i=1}^r \varphi_i((gh)^{-1})l'(\psi_i) \in k[G]$. Finalement $k[X] = \bigcup_{f \in k[X]} V(f)$ est un G-module.

Théorème 1.4.2.5. Soit G un groupe algébrique et X une G variété. X est isomorphe en tant que G-variété à une sous G-variété fermée d'un G-module de dimension finie.

Corollaire 1.4.2.6. Tout groupe algébrique est linéaire.

Définition 1.4.2.7 (Groupe réductif). Un groupe algébrique G est dit réductif si tout G-module est semi-simple.

Exemple 1.4.2.8. Les groupes finis et les groupe diagonalisables sont réductifs.

1.4.3 Groupes quotients

Théorème 1.4.3.1. Soit G un groupe algébrique et $H \leqslant G$ fermé.

Alors il existe un G-module V de dimension finie et une ligne $L \subset V$ telle que $H = Stab_G(L) := \{g \in G \mid g.v \in L, \forall v \in L\}.$

Théorème 1.4.3.2. Soit G un groupe algébrique et $H \triangleleft G$ fermé. Alors il existe un G-module (V, ρ) de dimension finie tel que $H = \operatorname{Ker} \rho$.

Le théorème suivant est le résultat principal de cette section. Il prouve l'existence des groupes quotients dans la catégorie des groupes algébriques. Le groupe quotient est alors unique à isomorphisme près, c'est une conséquence formelle de la propriété universelle du quotient.

Théorème 1.4.3.3 (Car. 0). Soient $G, H, (V, \rho)$ comme dans le théorème précédent, et $f: G \to G'$ un morphisme de groupes algébriques tel que $H \subset \operatorname{Ker} f$.

Alors il existe une unique factorisation $\begin{matrix} G & \xrightarrow{f} & G' \\ \downarrow \rho & & \downarrow \uparrow \\ \rho(G) \end{matrix}$

Démonstration. Le morphisme φ recherché existe en tant que morphisme de groupes abstraits, il est G-équivariant pour les actions naturelles de G sur $\rho(G)$ et G' via ρ et f. Concrètement cela signifie $\forall g_1, g_2 \in G, \varphi(\rho(g_1)\rho(g_2)) = f(g_1)\varphi(\rho(g_2))$. Si G est connexe, d'après la proposition 1.3.4.6, φ est algébrique sur un ouvert U non-vide de $\rho(G)$. Or on a un recouvrement de $\rho(G)$ par des g.U. En écrivant pour $x \in g.U, \varphi(x) = f(g)\varphi(g^{-1}.x)$, on constate que φ est un morphisme de groupes algébriques.

Supposons G quelconque mais $H \leq G^{\circ}$. Comme φ est algébrique sur le sous-groupe G°/H d'après ce qui précède, on a φ algébrique partout à nouveau par G-équivariance.

On peut se ramener au cas précédent en procédant en deux étapes. Dans un premier temps, on quotiente par le sous-groupe normal connexe H° (on a bien $H^{\circ} \leq G^{\circ}$), puis on quotiente par le sous-groupe normal fini H/H° . Il reste donc à prouver le cas H fini, c'est un corollaire direct du théorème 1.5.2.2.

1.4.4 Groupes diagonalisables, actions de groupes diagonalisables

Groupes diagonalisables

Soit G un groupe algébrique. Le groupe $X^*(G)$ des caractères de G est un sous-groupe de $k[G]^\times$. On remarque que X^* est un foncteur contravariant de la catégorie des groupes algébriques dans la catégorie des groupes abéliens de type fini, l'image d'un morphisme $G_1 \xrightarrow{\varphi} G_2$ étant simplement la (co)-restriction $\varphi^*|_{X^*(G_2)}^{X^*(G_2)}$ du comorphisme φ^* entre les algèbres de coordonnées. On signale qu'en caractéristique p > 0, les groupes de caractères ont de plus la propriété d'être sans p-torsion. Tout ce qui suit reste vrai en caractéristique p, avec cette contrainte supplémentaire sur les groupes de caractères.

Exemple 1.4.4.1. 1. $X^*(GL_n) = \{\det^k \mid k \in \mathbb{Z}\} \simeq \mathbb{Z}$. En effet, $k[GL_n]^{\times} = \{\lambda \det^k \mid k \in \mathbb{Z}, \lambda \in k^*\}$, puisque $k[X_{ij}]$ est factoriel et det irréductible. En évaluant en I_n , on a nécessairement $\lambda = 1$. Comme \det^k est un caractère, le résultat suit.

2.
$$X^*(SL_n) = 1 \text{ car } D(SL_n) = SL_n$$
.

3. Les unités de $k[\mathbb{G}_m]$ sont les monômes. On en déduit que les caractères sont exactement les $t \mapsto t^k, k \in \mathbb{Z}$. Par ailleurs, on remarque que $X^*(G_1 \times G_2) = X^*(G_1) \times X^*(G_2)$, d'où $X^*(D_n) = \{\text{monômes à coefficient unitaire}\} \simeq \mathbb{Z}^n$.

On remarque que les caractères de D_n engendrent $k[D_n]$ comme k-ev, ils en forment donc une k-base par le lemme de Dedekind qui assurent que les caractères sont libres dans $Map(D_n, k)$. On a plus généralement :

Proposition 1.4.4.2. Soit G un groupe algébrique. Les assertions suivantes sont équivalentes :

- 1. G est diagonalisable (i.e. \simeq à un sous-groupe fermé de D_n)
- 2. $k[G] = Vect_k(X^*(G))$.
- 3. Tout G-module est somme directe G-modules de dimension 1.

Démonstration. 1. 1) \Longrightarrow 2) La restriction $k[D_n] \xrightarrow{res_G} k[G]$ est surjective et la restriction d'un caractère est un caractère.

- 2. 2) ⇒ 3) G est abélien, car ∀χ ∈ X*(G), g, h ∈ G, χ(gh) = χ(hg). C'est donc vrai pour toute fonction régulière, on en conclut gh = hg. On observe que l'action naturelle de G sur k[G] est semi-simple. En effet, les caractères forment une base de diagonalisation de k[G]. Ainsi G est semi-simple par la décomposition de Jordan. Soit (V, ρ) le G-module considéré et W ⊂ V un sous G-module de dimension finie, disons n. Par la décomposition de Jordan, ρ(G) est semi-simple. De plus, c'est un sous groupe abélien fermé de GL_n. Il est donc conjugué à un sous-groupe fermé de D_n. On voit ainsi que V = ⊕_{χ∈X*(G)} V_χ, où V_χ := {v ∈ v | g.f = χ(g)f, ∀g ∈ G}. En effet, ils sont en somme directe, et tout élément de V se décompose de cette manière.
- 3. 3) \Longrightarrow 1) On peut supposer $G \subset GL_n$, et considérer l'action naturelle sur k^n après choix d'une base $(e_1, ..., e_n)$. Par hypothèse, on peut écrire $k^n = (f_1) \oplus ... \oplus (f_n)$, avec les (f_i) sous G-module de dimension 1. G est donc conjugué à un sous-groupe de D_n .

Ce constat motive la définition suivante :

Définition 1.4.4.3 (Tore, Groupe diagonalisable). Un groupe diagonalisable est un groupe algébrique G tel que $k[G] = \text{Vect}_k(X^*(G))$. Un tore est un groupe diagonalisable connexe.

On travaille désormais dans la catégorie des groupes diagonalisables. On considère un groupe diagonalisable G et le groupe $\chi^{**}(G) := (\chi^*)^2(G)$.

Proposition 1.4.4.4. G et $\chi^{**}(G)$ sont naturellement isomorphes en tant que groupes abstraits, et aussi en tant que groupes algébriques par transport de structure. L'isomorphisme est $\operatorname{ev}_G: G \to \operatorname{Hom}(X^*(G), \mathbb{G}_m), g \mapsto (\chi \mapsto \chi(g))$.

Démonstration. ev_G est injective : Soit $g \in G$ tel que $\chi(g) = 1 = \chi(e_G), \forall \chi \in X^*(G)$. Alors $g = e_G$ car G est un groupe diagonalisable.

ev_G est surjective : Soit $\varphi \in \chi^{**}(G)$. On a un prolongement unique de φ en un morphisme de k-algèbre $k[X^*(G)] = k[G] \to k$ qui est donc de la forme $k[G] \to k$, $f \mapsto f(g)$ pour un $g \in G$. En restreignant à $X^*(G)$, on trouve que $\varphi = \text{ev}_G(g)$.

Autrement dit on a un isomorphisme de foncteurs $(\chi^*)^2 \simeq Id$, d'où une équivalence de catégories entre les groupes diagonalisables et les groupes abéliens de type fini. Une autre façon de voir cela est d'introduire l'algèbre de groupe d'un groupe abélien de type fini M, c'est par définition $k[M] = \{\sum_{finie} \lambda_g g, \lambda_g \in k, g \in G\}$ avec la multiplication définie par l'opération de groupe de G. La propriété suivante montre que l'on construit ainsi un autre inverse de $\chi^*(.)$

Proposition 1.4.4.5. Soient, M, M_1, M_2 des groupes abéliens de type fini, et G un groupe diagonalisable. Alors k[M] est de type fini, réduite et on a $k[M_1 \oplus M_2] \simeq k[M_1] \otimes k[M_2]$. De plus, k[M] est naturellement muni d'une structure d'algèbre de Hopf et on a $k[G] = k[X^*(G)]$ et donc $G = \operatorname{Spec} \circ k[X^*(G)]$.

Démonstration. On a deux morphismes d'algèbre $k[M_1] \to k[M_1 \oplus M_2], e_{m_1} \mapsto e_{(m_1,0)}$ et $k[M_2] \to k[M_1 \oplus M_2], e_{m_2} \mapsto e_{(0,e_{m_2})},$ d'où l'existence d'un morphisme $k[M_1] \otimes k[M_2]$ dont on vérifie que c'est un isomorphisme. Comme on a $M \simeq \mathbb{Z}^r \oplus (\bigoplus_{i=1}^r \mathbb{Z}/d_i\mathbb{Z})$, il suffit de traiter les cas $M = \mathbb{Z}$ et $M = \mathbb{Z}/d\mathbb{Z}$. On a $k[\mathbb{Z}] \simeq k[t,t^{-1}]$ qui est intègre, de type fini, et réduite. On a $k[\mathbb{Z}/d\mathbb{Z}] \simeq k[t]/(t^d-1)$. On voit, par le théorème chinois par exemple, que cette algèbre de type fini non-intègre est réduite si et seulement si les racine de t^d-1 sont simples, ce qui est le cas en caractéristique zéro.

Enfin la structure d'algèbre de Hopf sur k[M] est donnée par $\Delta(e_m) = e_m \otimes e_m$, $i(e_m) = e_{-m}$, $e(e_m) = e_0$. \square

Corollaire 1.4.4.6. Soit G un groupe diagonalisable. Alors :

- 1. G est isomorphe au produit direct d'un tore et d'un groupe abélien fini.
- 2. G est un tore \iff $X^*(G)$ est libre de type fini \iff G est connexe.

Action d'un groupe diagonalisable sur une variété affine

On a montré dans la partie précédente que l'algèbre des coordonnées d'un groupe diagonalisable G était naturellement munie d'une $X^*(G)$ -graduation. Cela peut être vu comme la traduction algébrique de l'action de G sur lui même par multiplication à gauche. On précise, cela ci-dessous en montrant que les foncteurs Spec et k[.] réalisent une équivalence de catégories entre les variétés affines munies d'une action d'un groupe diagonalisable et les algèbres graduées par un groupe abélien de type fini. On a déjà l'équivalence entre variétés affines et algèbres affines. Il s'agit donc de vérifier que les (co)-restrictions des deux foncteurs k[.] et Spec sont bien définies et que les actions et graduations sont préservées.

Construction 1.4.4.7. Soit H un groupe diagonalisable et X une H-variété affine. Le H-module k[X] est somme directe de H-module de dimension 1 d'après la partie précédente et on peut écrire :

$$k[X] = \bigoplus_{\chi \in X^*(H)} V_{\chi}$$
, où $V_{\chi} := \{ f \in k[X] \mid h.f = \chi(h)f, \forall h \in H \}$

On voit immédiatement que cette somme directe est $X^*(H)$ -graduée. De plus, cette construction est fonctorielle, en effet en considérant les diagrammes commutatifs ci-dessous. Le premier est la traduction de la donnée d'un morphisme $(\widetilde{\varphi}, \varphi)$ d'une H-variété affine X vers une H'-variété affine X'. Le second est obtenu par passage aux algèbres de coordonnées.

Le petit calcul ci-dessous montre que $\forall f \in V'_{\chi'} \subset k[X']$, on a $\varphi^*(f) \in V_{\widetilde{\varphi}^*(\chi')}$, ce qui montre que $(\widetilde{\varphi}^*, \varphi^*)$ est un morphisme d'algèbres graduées.

$$\forall h \in H, x \in X, \varphi^*(f)(h.x) = a_1^* \varphi^*(f)(h,x) = (\widetilde{\varphi} \otimes \varphi) a_2^*(f)(h,x) = \widetilde{\varphi}^*(\chi')(h) \varphi^*(f)(x)$$

Construction 1.4.4.8. Soit K un groupe abélien de type fini et A une k-algèbre affine K-graduée. On pose $X:=\operatorname{Spec}(A)$ et on choisit des générateurs homogènes $f_{\omega_1},...,f_{\omega_r}$ de A, ce qui donne une immersion fermée $i:X\to k^r, x\mapsto (f_1(x),...,f_r(x))$. On transporte la graduation à $k[k^r]=k[t_1,...,t_r]$ en posant $\deg(t_i)=\omega_i$, ce qui fait de $k[i(X)]=k[t_1,...,t_r]/\ker^{i}\xrightarrow{i^*}A$ un isomorphisme d'algèbres graduées. Enfin, on munit k^r de l'action diagonale associée aux caractères $\chi^{\omega_1},...,\chi^{\omega_r}$ de $H:=\operatorname{Spec}(k[K])$, c'est à dire $\forall h\in H, t\in k^r, h.t:=(\chi^{\omega_1}(h)t_1,...,\chi^{\omega_r}(h)t_r)$. On a donc concrètement pour $f:=\sum \alpha_{i_1,...,i_r}t_1^{i_1}...t_r^{i_r}\in k[k^r], f(h.t)=f(\chi^{\omega_1}(h)t_1,...,\chi^{\omega_r}(h)t_r)=\sum \alpha_{i_1,...,i_r}\chi^{\sum i_k\omega_k}(h)t_1^{i_1}...t_r^{i_r}$. Ainsi on a, $f\in k[k^r]_\omega\iff\forall (i_1,...,i_r),\sum_k i_k\omega_k=\omega\iff f(h.t)=\chi^{\omega}(h)\sum \alpha_{i_1,...,i_r}t_1^{i_1}...t_r^{i_r}=\chi^{\omega}(h)f(t), \forall h\in H$. Cette condition montre que l'idéal homogène \ker^* est H-stable et donc que i(X) est une H-variété. On transporte en retour cette action sur X et on voit que l'action obtenue est indépendante du choix initiale des f_i , en effet la condition d'homogénéité exprimée ci-dessus définit complètement le comorphisme de l'action de $H:a^*:A\to k[K]\otimes A, f_\omega\mapsto\chi^\omega\otimes f_\omega.$

Pour finir, vérifions la fonctorialité. Soit $(\widetilde{\varphi}, \varphi)$ un morphisme entre la K-algèbre graduée A et la K'-algèbre graduée A'. La construction montre que l'on définit deux morphismes $a_1: A \to k[K] \otimes A$ et $a_2: A' \to k[K'] \otimes A'$. Et on a,

$$\forall h_{\omega} \in A_{\omega}, \ (\widetilde{\varphi} \otimes \varphi) \circ a_{1}(h_{\omega}) = (\widetilde{\varphi} \otimes \varphi)(\chi^{\omega} \otimes h_{\omega}) = \chi'^{\widetilde{\varphi}(\omega)} \otimes \varphi(h_{\omega})_{\widetilde{\varphi}(\omega)}$$
$$\forall h_{\omega} \in A_{\omega}, \ a_{2} \circ \varphi(h_{\omega}) = a_{2}(\varphi(h_{\omega})_{\widetilde{\varphi}(\omega)}) = \chi'^{\widetilde{\varphi}(\omega)} \otimes \varphi(h_{\omega})_{\widetilde{\varphi}(\omega)}$$

D'où le diagramme commutatif de gauche ci-dessous, qui donne le diagramme de droite par application du foncteur Spec. Ce dernier diagramme finit de prouver la fonctorialité.

$$\begin{array}{cccc} K \otimes A & \xleftarrow{a_1} & A & & \operatorname{Spec}(k[K]) \times \operatorname{Spec}(A) & \xrightarrow{a_1^{\circ}} & \operatorname{Spec}(A) \\ \downarrow^{\widetilde{\varphi}^* \otimes \varphi^*} & \downarrow^{\varphi} & & & \widetilde{\varphi} \times \varphi \uparrow & & \varphi \uparrow \\ K' \otimes A' & \xleftarrow{a_2} & A' & & \operatorname{Spec}(k[K']) \times \operatorname{Spec}(A') & \xrightarrow{a_2^{\circ}} & \operatorname{Spec}(A') \end{array}$$

On voit que dans les deux constructions on a la même condition sur l'homogénéité qui détermine à la fois l'action et la graduation, c'est ce qu'on voulait vérifier.

Ainsi les actions de groupe diagonalisable sur les variétés affines peuvent être caractérisé en terme algébrique grâce à cette équivalence. C'est l'objet des propositions suivantes.

Proposition 1.4.4.9. Soit A une algèbre affine K-graduée, $X := \operatorname{Spec} A$ muni de l'action de $H := \operatorname{Spec} k[K]$. Soit $Y \subset X$ une sous variété fermée, et $I = \mathcal{I}(Y)$. Les assertions suivantes sont équivalentes :

- 1. Y est H-stable.
- 2. I est un idéal homogène.

Démonstration. Comme I est radical, Y est H-stable si et seulement si $\forall P \in I, h \in H, y \in Y, P(h.y) = 0$. Supposons que cette dernière condition soit vérifiée, on écrit $P = \sum_{finie} P_{\omega}$ sa décomposition en composantes homogènes. On a alors, $P(h.y) = \sum \chi^{\omega} \otimes P_{\omega}(h,y) = \sum \chi^{\omega}(h)P_{\omega}(y) = 0$. Les caractères étant libres, on a $P_{\omega}(y) = 0, \forall y, \omega$, c'est à dire $P_{\omega} \in I, \forall \omega$. Ainsi I est homogène. La réciproque est immédiate. \square

Dans la construction 1.4.4.8, on voit que la situation générale est assez proche de l'exemple le plus simple de l'action diagonale de $(k^*)^n$ sur k^r par un choix de r caractères. On voit bien dans ce cas que la géométrie de l'orbite d'un point $p \in k^r$ va être assez dépendante de la nullité des coordonnées $x_1, ..., x_r$ au point p. Cela motive la définition suivante.

Définition 1.4.4.10 (Monoïde d'orbite, Groupe d'orbite). Soit A une algèbre affine K-graduée munie de l'action de $H := \operatorname{Spec} k[K]$ sur $X := \operatorname{Spec} A$.

- 1. Le monoïde d'orbite d'un point $x \in X$ est le sous-monoïde $S_x \subset K$ engendré par $\{\omega \in K \mid \exists f \in A_\omega \text{ telle que } f(x) \neq 0\}$
- 2. Le groupe d'orbite d'un point $x \in X$ est le sous-groupe $K_x \subset K$ engendré par le monoïde d'orbite.

Proposition 1.4.4.11. Soit A une algèbre affine K-graduée, $X := \operatorname{Spec} A$ muni de l'action de $H := \operatorname{Spec} k[K]$, et $x \in X$. On a le diagramme commutatif suivant, dont les deux lignes sont exactes :

$$0 \longrightarrow K_x \longrightarrow K \longrightarrow K/K_x \longrightarrow 0$$

$$\downarrow^{\simeq} \qquad \downarrow^{\omega \stackrel{\simeq}{\longrightarrow} \chi^{\omega}} \qquad \downarrow^{\simeq}$$

$$0 \longrightarrow X^*(H/H_x) \stackrel{\pi^*}{\longrightarrow} X^*(H) \stackrel{i^*}{\longrightarrow} X^*(H_x) \longrightarrow 0$$

où $i: H_x \to H$ est l'inclusion du stabilisateur de x, et $\pi: H \to H/H_x$ la projection canonique. En particulier, on obtient $H_x \simeq \operatorname{Spec}(k[K/K_x])$.

Démonstration. La deuxième ligne est obtenue par le théorème 1.4.3.3, puis application du foncteur X^* . Elle est bien exacte par exactitude du foncteur X^* . La flèche verticale centrale est l'isomorphisme canonique déduit de $X^* \circ \operatorname{Spec} \circ k[.] \simeq Id$.

Comme $\overline{H.x}$ est H-stable, la graduation est préservée sur $k[\overline{H.x}]$ d'après la proposition 1.4.4.9. De plus si $f \in k[X]_{\omega}$ est telle que $f(x) \neq 0$, cela reste le cas modulo $\mathcal{I}_X(\overline{H.x})_{\omega}$ et réciproquement. Ainsi, S_x et K_x ne sont pas modifiés si on remplace X par $\overline{H.x}$.

Considérons le fermé propre $\overline{H.x} \setminus H.x$, éventuellement vide. Il est H-stable comme réunion d'orbites. Alors $\mathcal{I}_{\overline{H.x}}(\overline{H.x} \setminus H.x)$ est homogène d'après la proposition 1.4.4.9, et $\neq \{0\}$. Choisissons $f \neq 0$ homogène dans ce H-module, c'est donc un vecteur propre. Ainsi, f est non-nulle quelque part sur H.x et donc partout par transitivité et choix de f. On en conclut $H.x = (\overline{H.x})_f$. Considérons la graduation naturelle associée à $k[\overline{H.x}]_f$. Comme on a inversé f, le monoïde de poids est potentiellement plus gros. En revanche on voit facilement que K_x n'est pas modifié.

Supposons donc X = H.x. Dans ce cas, on voit qu'une fonction homogène non-nulle est partout non-nulle, donc inversible. On a donc dans ce cas $S_x = K_x = S(k[H.x]) = K(k[H.x])$, où S(k[H.x]) et K(k[H.x]) sont respectivement les monoïdes et groupes de poids de l'algèbre K-graduée k[H.x].

D'après la proposition 1.3.4.6 et le théorème 1.3.4.8 on a le diagramme commutatif de gauche ci-dessous. Le diagramme de droite est obtenu par application du foncteur k[.].

Comme les flèches du diagramme de gauche sont des morphismes de H-variétés, les morphismes du diagramme de droite préservent la graduation. Ainsi, φ^* induit un isomorphisme sur les groupes de poids $K_x \xrightarrow{\omega \mapsto \chi^\omega} X^*(H/H_x)$. Enfin, toujours en utilisant le diagramme, cet isomorphisme est l'unique faisant commuter le carré de gauche dans le diagramme de la proposition.

Proposition 1.4.4.12. Soit A une algèbre affine K-graduée, $X := \operatorname{Spec} A$ muni de l'action de $H := \operatorname{Spec} k[K]$, et $x \in X$. Cette action induit une action de H/H_x sur $\overline{H.x}$. De plus, $\overline{H.x}$ et $\operatorname{Spec}(k[S_x])$ sont isomorphes en tant que H/H_x -variétés.

Démonstration. On suppose $X = \overline{H.x}$ ce qui ne modifie pas S_x et K_x . De plus on a $S(k[\overline{H.x}]) = S_x$ et $K(k[\overline{H.x}]) = K_x$. D'après la preuve précédente, $k[K_x]$ et $k[H/H_x]$ sont canoniquement isomorphes et on a un isomorphisme de K_x -algèbres graduées $k[H.x] \to k[K_x]$, $f_\omega \mapsto f_\omega(x)\chi^\omega$. On a également le morphisme de K_x -algèbres graduées $k[H.x] \to k[S_x]$ définit par la même formule. On voit facilement qu'il est injectif. Pour la surjectivité, on peut par exemple voir que le premier isomorphisme est en fait le prolongement par localisation en un élément homogène de ce morphisme (voir démonstration précédente), d'où un diagramme commutatif de K_x -algèbres graduées. Cela donne la proposition par application de Spec.

$$k[H.x] \xrightarrow{\simeq} k[K_x]$$

$$f \mapsto f_{|H.x} \uparrow \qquad \qquad \subset \uparrow$$

$$k[\overline{H.x}] \xrightarrow{\simeq} k[S_x]$$

Proposition 1.4.4.13. Soit A une algèbre affine intègre K-graduée, $X := \operatorname{Spec} A$ muni de l'action de $H := \operatorname{Spec} k[K]$. Alors il existe un ouvert affine non-vide $U \subset X$ tel que :

$$S_x = S(A), \ K_x = K(A), \ \forall x \in U$$

Démonstration. On choisit des générateurs homogènes $f_1, ..., f_r$ de A. On pose $U := X_{f_1...f_r}$ qui est non-vide car A est intègre. $\forall \omega \in S(A), \exists g \neq 0 \in A_\omega$ car A est intègre. Quitte à décomposer g, on peut le supposer de la forme $f_1^{i_1}...f_r^{i_r}$. On en déduit que $\omega \in S_x, \forall x \in U$. Comme l'autre inclusion est immédiate, U satisfait la propriété.

Pour finir voyons une caractérisation algébrique des actions fidèles de groupes diagonalisables sur des variétés affines.

Proposition 1.4.4.14. Soit A une algèbre affine intègre K-graduée, $X := \operatorname{Spec} A$ muni de l'action de $H := \operatorname{Spec} k[K]$. L'action de H est fidèle si et seulement si K = K(A).

Démonstration. Soit $g \in \cap_{x \in X} H_x$. L'action de g sur les fonctions régulières est triviale, donc en particulier sur les fonctions homogènes. Comme A est intègre, $\forall \omega \in S(A), \exists f_\omega \neq 0 \in A_\omega$, on en déduit $g \in \cap_{\chi \in S(A)} \operatorname{Ker}(\chi)$ puis facilement $g \in \cap_{\chi \in K(A)} \operatorname{Ker}(\chi)$ d'où $g = e_H$ si K = K(A) car H est un groupe diagonalisable. Sinon comme $K(A) \subsetneq K$, on peut choisir $g \neq e_H \in H$ tel que $g \in \cap_{\chi \in K(A)} \operatorname{Ker}(\chi)$. En effet $\cap_{\chi \in K(A)} \operatorname{Ker}(\chi)$ est un sous-groupe fermé non-trivial de H car son groupe de caractère est K/K(A). Ainsi g agit trivialement sur les fonctions homogènes et donc sur les fonctions régulières. On en déduit que g agit trivialement sur K.

1.5 Théorie des invariants

1.5.1 L'algèbre des invariants

Soit G un groupe algébrique et X une G-variété affine. k[X] est un G-module rationnel pour l'action naturelle de G sur les fonctions régulières, on définit la sous-algèbre des invariants $k[X]^G := \{f \in k[X] \mid g.f = f, \forall g \in G\}$. C'est par définition la sous-algèbre des fonctions constantes sur les orbites de l'action de G sur X.

Une question naturelle est de se demander si cette algèbre est de type fini. Ce n'est pas le cas en général. En effet, dans la perspective de répondre au 14e problème de Hilbert, Nagata exhiba en 1959 une algèbre d'invariants pour l'action d'un groupe algèbrique qui n'est pas de type fini. Avec des hypothèses sur G, on peut cependant montrer que c'est le cas, c'est l'objectif de cette partie.

Supposons G réductif. Le G-module k[X] est alors semi-simple, en particulier, $k[X]^G$ admet un supplémentaire G-stable que l'on note $k[X]_G$. On définit l'opérateur de Reynolds $R_{k[X]}$ comme la projection sur $k[X]^G$ associée à cette décomposition. Voici quelques propriétés de $R_{k[X]}$:

Proposition 1.5.1.1. 1. Soit $f: V \to W$ un morphisme de G-module et $f^G: V^G \to W^G$ le morphisme induit. On a $R_W f = fR_V$. En particulier, si f est surjective, f^G l'est aussi.

2. $R_{k[X]}$ est $K[X]^G$ -linéaire

Démonstration. 1. Ok

2. Soit $a \in k[X]^G$, on considère m_a la multiplication par a dans k[X]. C'est un endomorphisme de G-module, il commute donc avec $R_{k[X]}$.

Théorème 1.5.1.2 (Hilbert). Soit G un groupe réductif et X une G-variété affine. Alors l'algèbre des invariant $k[X]^G$ est de type fini.

Démonstration. Supposons que X soit un G-module V de dimension finie. L'action de k^* sur V par homothétie donne une \mathbb{N} -graduation $k[V] = \bigoplus_{n=0}^{\infty} k[V]_n$, $k[V]_n$ étant le sous espace des polynômes homogènes de degré n. Cette graduation est G-stable et se restreint sur l'algèbre des invariants en une \mathbb{N} -graduation $k[V]^G = \bigoplus_{n=0}^{\infty} k[V]_n^G$. Or on remarque que $k[V]^G$ est noetherien. En effet, soit I un idéal de $k[V]^G$, et J son extension dans k[V]. J est un sous G-module, donc la contraction de J dans $k[V]^G$ est $R_{k[V]}(J) = IR_{k[V]}(k[V]) = I$. On voit donc que la condition de chaîne est satisfaite sur $k[V]^G$ si elle satisfaite sur k[V], ce qui est le cas car ce dernier est noetherien par le théorème de la base de Hilbert. Ainsi, on

a le résultat d'après la proposition 1.2.0.1.

Dans le cas général, on peut d'après le théorème 1.4.2.5 supposer X inclus dans un G-module V. On obtient alors un G-morphisme surjectif $k[V] \to k[X]$ qui induit un G-morphisme surjectif $k[V]^G \to k[X]^G$ d'après la proposition 1.5.1.1. Cela montre que $k[X]^G$ est de type fini.

On constate que cette preuve n'est pas effective. Il est en général difficile de calculer l'algèbre des invariants. On présente ci-dessous la méthode des sections qui permet le calcul dans certains cas.

Soit $S \subset X$ une sous-variété fermée. Définissons $Z(S) = \{g \in G \mid g.s = s, \forall s \in S\}$ et $N(S) = \{g \in G \mid g.s \in S, \forall s \in S\}$. Clairement, Z(S) est un sous-groupe normal de N(S), et le quotient W = N(S)/Z(S) agit sur S. La surjection $k[X] \to k[S]$, induit un morphisme $k[X]^G \xrightarrow{\varphi} k[S]^W$.

Supposons que l'on ait un ouvert dense $U \subset X$ tel que $\forall x \in U, G.x$ intersecte S, alors on voit que φ est injective. Si de plus, $k[S]^W$ est engendré par des $\varphi(f_1), ..., \varphi(f_r)$, alors φ est un isomorphisme et $k[X]^G$ est engendré par $f_1, ..., f_r$.

Exemple 1.5.1.3. $G = GL_n$, $X = M_n$, $g.A = gAg^{-1}$, $S = D_n$, $U = X_{disc(\chi)}$. En considérant un élément de U, qui a donc ses valeurs propres deux à deux distinctes, on a par un calcul direct $Z(S) = D_n$. Puis on a $N(S) = \{$ matrices monomiales $\}$ car la conjugaison préserve les espaces propres. Ainsi, W est isomorphe au groupe symétrique Σ_n et agit sur S en permutant les entrées diagonales. On a ainsi $k[S]^W = k[\sigma_1, ..., \sigma_n]$, l'algèbre engendrée par les fonctions symétriques élémentaires. C'est une algèbre de polynômes. Soient $f_1, ..., f_n$ les coefficient du polynôme caractéristique générique. Ce sont des éléments de $k[X]^G$, et on a $f_{i|S} = (-1)^i \sigma_i$, d'où $k[X]^G = k[f_1, ..., f_n]$.

1.5.2 Quotient d'une variété algébrique sous l'action d'un groupe algébrique Quotient catégorique

Soit G un groupe algébrique et X une G-variété. En tant que groupe abstrait agissant sur un ensemble, le quotient de X par G (noté X//G) est par définition l'ensemble des orbites. On note $\pi: X \to X//G$ l'application qui à un élément de X associe son orbite. X//G satisfait une propriété universelle, il représente le foncteur $\operatorname{Ens} \to \operatorname{Ens}, Y \mapsto \{f \in \operatorname{Map}(X,Y) \mid f \text{ est constante sur les orbites}\}$, il est donc unique à isomorphisme près. Pour cette raison la paire $(X//G,\pi)$ est appelée le quotient catégorique de X par G. On peut ainsi transporter cette définition dans la catégorie des variétés algébriques. Toutefois, il n'est pas clair que ce quotient existe toujours. L'exemple suivant montre que lorsqu'il existe, le quotient catégorique ne coïncide pas nécessairement avec l'ensemble des orbites.

Exemple 1.5.2.1. On considère l'action naturelle de GL_n sur \mathbb{A}^n . Le quotient catégorique existe et est un point. En effet soir $f: \mathbb{A}^n \to Z$ constant sur les orbites, alors f est constante car il existe un orbite dense. En revanche il y a un deuxième orbite, c'est le fermé $\{0\}$.

On suppose X affine et $k[X]^G$ de type fini avec $f_1,...,f_r$ des générateurs, c'est en particulier le cas lorsque G est réductif d'aprés le théorème 1.5.1.2. Dans ce cadre, l'algèbre des invariants définit une variété algébrique affine, notons la Y. On définit le morphisme $\varphi: X \to k^r, x \mapsto (f_1(x),...,f_r(x))$. Son comorphisme φ^* admet une factorisation : $k[t_1,...,t_r] \twoheadrightarrow k[X]^G \xrightarrow{\subset} k[X]$, d'où $Y \simeq \overline{\varphi(X)}$. On peut donc voir $X \xrightarrow{\varphi} \overline{\varphi(X)}$ comme une réalisation du morphisme $\pi: X \to Y$ associé à $k[X]^G \subset k[X]$. On appelle ce morphisme, le morphisme quotient. De la même manière on voit que tout morphisme G-invariant de variétés affines $X \to Z$ se factorise à travers Y. De ce fait, Y semble être un bon candidat pour le quotient catégorique. Toutefois il faut être prudent, dans [10] 6.4.10, on exhibe un exemple de cette situation qui n'admet pas de quotient catégorique. On a toutefois le résultat suivant :

Théorème 1.5.2.2. Soit G un groupe réductif et X une G-variété affine.

- 1. Le morphisme quotient $\pi: X \to Y$ est surjectif.
- 2. (Y, π) est un quotient catégorique. On écrit donc Y = X//G.

- 3. Soit $Z \subset X$ une sous G-variété fermée. Le morphisme induit $Z//G \to X//G$ est une immersion fermé. On peut ainsi identifier π_Z et π_X restreint à Z. De plus, soit Z' une autre sous G-variété fermée, on a $\pi_X(Z \cap Z') = \pi_X(Z) \cap \pi_X(Z')$.
- 4. Chaque fibre de π_X contient un unique orbite fermé.
- Démonstration. 1. Soit $x \in Y$ et m_x l'ideal maximal de $k[X]^G$ correspondant. La fibre $\pi^{-1}(x)$ correspond à l'ensemble des idéaux maximaux contenant l'extension I de m_x dans k[X]. Or on a déjà vu que l'extension dans k[X] était injective, I est donc un idéal propre contenu dans au moins un idéal maximal. La fibre étant non-vide, π est surjective.
 - 2. L'existence de la factorisation a déjà était vue. Avec 1) on a maintenant l'unicité.
 - 3. On note i l'inclusion $Z \subset X$. $\pi_X i$ est constant sur les orbites de Z d'où l'existence d'un unique morphisme $\varphi: Z//G \to X//G$ tel que $\varphi \pi_Z = \pi_X i$. La projection $k[X] \to k[Z]$ est un morphisme de G-module surjectif. D'après la proposition 1.5.1.1, cette projection induit un morphisme de k-algèbre surjectif $k[X]^G \xrightarrow{\varphi^*} k[Z]^G$, donc φ est une immersion fermée. Soit I (resp. I') l'idéal de Z (resp. Z') dans k[X]. L'idéal de $Z \cap Z'$ est I + I' et l'idéal de $\pi_X(Z)$ est $\mathcal{I}_{X//G}(\pi_X(Z)) = I \cap k[X]^G = R_X(I)$. Ainsi $\mathcal{I}_{X//G}(\pi_X(Z \cap Z')) = R_X(I + I') = R_X(I) + R_X(I') = \mathcal{I}_{X//G}(\pi_X(Z) \cap \pi_X(Z'))$.

4. d'après 3), π_X envoie deux orbites fermés distincts sur deux points distincts.

On remarque que les propriétés du théorème précédent s'étendent automatiquement au cas d'une G-variété X si le théorème est vérifié localement sur un recouvrement affine d'un candidat (Y, π) pour le quotient X//G. De ce constat découle la notion de bon quotient.

Définition 1.5.2.3 (Bon quotient). Soit G un groupe réductif et X une G-variété. Une paire (Y, π) où Y est une variété et π un morphisme $X \to Y$ est un bon quotient si elle vérifie :

- (i) π est affine et G-invariant.
- (ii) $\pi^*: \mathcal{O}_Y \to (\pi_*\mathcal{O}_X)^G$ est un isomorphisme.

Exemple 1.5.2.4. Soit G un groupe réductif et X une G-variété affine. D'après le théorème 1.5.2.2 et l'exemple 1.3.4.2, X//G est un bon quotient.

Quotient géométrique

Parmi les quotients catégoriques $(X//G, \pi)$, on cherche à caractériser ceux ayant les propriétés géométriques intuitivement attendues pour un quotient, c'est à dire que X//G soit l'ensemble des orbites avec une topologie aussi fine que possible. C'est la notion de quotient géométrique :

Définition 1.5.2.5 (Quotient géométrique). Soit G un groupe algébrique et X une G-variété. Une paire (Y,π) où Y est une variété et π un morphisme $X \to Y$ est un quotient géométrique si elle vérifie :

- (i) π est surjective et ses fibres sont exactement les orbites.
- (ii) La topologie de Y coïncide avec la topologie quotient associée à π .
- (iii) $\pi^*: \mathcal{O}_Y \to (\pi_*\mathcal{O}_X)^G$ est un isomorphisme.

On remarque que pour un quotient géométrique $(X//G,\pi)$, tous les orbites sont fermés dans X et l'application quotient est ouverte. En effet, soit U un ouvert de X, on a $\pi^{-1}(\pi(U)) = \bigcup_{g \in G} g.U$ qui est ouvert.

Exemple 1.5.2.6. Soit G un groupe algébrique et H un sous-groupe fermé. Dans la catégorie des ensemble, le quotient $(G/H, \pi)$ est exactement le quotient catégorique $(G//H, \pi)$ pour l'action de H sur G par multiplication à droite. Dans [9] 5.5.5, en caractéristique quelconque, on munit G/H d'une structure d'espace annelé en lui attribuant la topologie quotient puis en définissant le faisceau structural par $\mathcal{O}_{G/H}(U) := \{f \in \operatorname{Map}(U,k) \mid f\pi \in \mathcal{O}_G(\pi^{-1}(U))\}$. Par construction, il vérifie la propriété universelle de factorisation. De plus, on montre ensuite que cet espace annelé est isomorphe à une variété quasi-projective,

ce qui montre l'existence du quotient catégorique $(G//H,\pi)$ dans la catégorie des variétés algébriques. Par définition de $\mathcal{O}_{G/H}$, on a une flèche $\mathcal{O}_Y \xrightarrow{\pi^*} (\pi_* \mathcal{O}_X)^G$. Elle est injective par la surjectivité de π , et elle est surjective, par la propriété universelle du quotient. $(G//H,\pi)$ est donc un quotient géométrique. Cela généralise bien sur le théorème 1.4.3.3.

Exemple 1.5.2.7. Un bon quotient $(X//G, \pi)$ est un quotient géométrique si les fibres de π sont exactement les orbites. En effet, d'après ce qui précède, il reste alors à vérifier que X//G est muni de la topologie quotient. Soit un ouvert de X de la forme $\pi^{-1}(A)$ où A est une partie de X//G. En tenant compte de 1.5.2.2 (iii) et de la surjectivité de π on a : $\pi(X \setminus \pi^{-1}(A)) = Y \setminus A$ qui est fermé, donc A est ouvert.

Un exemple: La construction Proj

Dans cette partie, on va détailler une construction qui à la fois éclaire et généralise la construction de la variété algébrique $\mathbb{P}^n(k)$. On considère A une algèbre affine \mathbb{N} -graduée et on pose $X := \operatorname{Spec}(A)$. X est donc muni d'une action de k^* . Une orbite k^* .x est de dimension 0 ou 1. Si elle est de dimension 0, c'est un point fixe car k^* est connexe. Si elle est de dimension 1, elle est soit fermée, soit son adhérence est constituée de k^* .x et d'une réunion de points fixes, en fait un seul comme on va le voir.

On note F l'ensemble des points fixes et on remarque que $F = \mathcal{V}_X(A_{>0})$, où $A_{>0} := (f \mid f \in A_d \text{ pour un } d > 0)$ est l'idéal dit inconvenant. En effet, F est l'ensemble des idéaux maximaux qui sont k^* -stables. Or on peut remarquer qu'un idéal radical est k^* -stable si et seulement si il est homogène. Enfin, un idéal maximal et homogène contient nécessairement $A_{>0}$.

On remarque que $A^{k^*} = A_0 = A/A_{>0}$, et comme le bon quotient $Y_0 := X//k^* = \operatorname{Spec}(A_0)$ paramètre les orbites fermés, on obtient en particulier que si $k^*.x$ n'est pas fermé, son adhérence contient un unique point fixe. En résumé, $W := X \setminus F$ est la réunion des orbites de dimension 1, et ils sont tous fermés dans W. On va montrer que W admet un quotient géométrique, c'est la construction Proj.

Pour tout $f \in A_{>0}$ homogène, la localisation A_f est \mathbb{Z} -graduée de la manière suivante :

$$A_f = \bigoplus_{d \in \mathbb{Z}}, \quad (A_f)_d := \{h/f^l \mid \deg(h) - l\deg(f) = d\}$$

On note $A_{(f)} := (A_f)_0$ en remarquant qu'il s'agit de l'algèbre des invariants de la k^* -variété affine X_f . On a ainsi trouvé le bon quotient $U_f := \operatorname{Spec}(A_{(f)}) = X_f / / k^*$. De plus, comme $F \subset \mathcal{V}_X(f)$, il s'agit d'un quotient géométrique d'après ce qui précède. Or on peut recouvrir W par un nombre fini de X_{f_i} avec les f_i homogènes de degrés > 0. Considérons les diagrammes commutatifs ci-dessous. Dans le diagramme de gauche, toutes les flèches sont des inclusions. Le diagramme de droite est obtenu par application du foncteur Spec :

$$A_{f_{i}} \longrightarrow A_{f_{i}f_{j}} \longleftarrow A_{f_{j}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \pi_{i} \qquad \downarrow \pi_{j}$$

$$A_{(f_{i})} \longrightarrow A_{(f_{i}f_{j})} \longleftarrow A_{(f_{j})} \qquad U_{f_{i}} \longleftarrow U_{f_{i}f_{j}} \longrightarrow U_{f_{j}}$$

Les flèches horizontales du diagramme de droite sont des immersions ouvertes, en effet on a $U_{f_if_j} \simeq (U_{f_i})_{f_j}$. Les conditions de la construction 1.3.1.1 sont satisfaites, on peut former une prevariété $\operatorname{Proj}(A)$ par recollement des U_{f_i} le long de ces immersions. De plus, les (U_{f_i}, π_i) sont des quotients géométriques et le diagramme exprime que l'on a les conditions de recollement sur les intersections qui font de $\operatorname{Proj}(A)$ le quotient géométrique global $W//k^*$.

Enfin, on remarque que les fermés de Proj(A) correspondent aux fermés k^* -stables de W, c'est à dire aux idéaux radicaux homogènes qui ne contiennent pas l'idéal inconvenant. On appelle ces fermés des variétés projectives. La topologie quotient sur Proj(A) que l'on vient de définir est aussi appelé la topologie de Zariski.

A ajouter?:

Séparé => Cf Stacks 8.8 construction of schemes

irréductible = Cf critére avec recovrement

sections globales (cf hartshorne chap 1 si A0=k et A engendré par A1)? c'est propre?

Fonctorialité de Proj

1.6 Faisceaux quasi-cohérents

- 1.6.1 Faisceaux quasi-cohérents sur une variété
- 1.6.2 Faisceaux quasi-cohérents sur une variété projective
- 1.6.3 Faisceaux inversibles, Fibrés en droites

Définition 1.6.3.1. Soit X une variété. Un faisceau inversible \mathcal{L} sur X est un \mathcal{O}_X -module localement libre de rang 1. Autrement dit, tout point $x \in X$ admet un voisinage ouvert $U \subset X$ tel que $\mathcal{L}|_U$ est isomorphe à \mathcal{O}_U .

On peut toujours trivialiser deux faisceaux inversibles sur un même recouvrement ouvert de X. On voit ainsi que le produit tensoriel sur \mathcal{O}_X de faisceaux inversibles est inversible. Par ailleurs, le faisceau $\mathcal{H}om(\mathcal{L},\mathcal{O}_X)$ est clairement inversible car sur les ouverts U où \mathcal{L} est trivial, se donner un morphisme $\mathcal{L}_{|U} \to \mathcal{O}_{|U}$ revient à se donner une section de $\mathcal{O}(U)$. De plus, l'application naturelle $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{H}om(\mathcal{L},\mathcal{O}_X) \to \mathcal{O}_X, (s,f) \mapsto f(s)$ est un isomorphisme. Ainsi, les classes d'isomorphie de faisceaux inversible sur X munies du produit tensoriel forment un groupe appelé groupe de Picard de X, noté $\mathrm{Pic}(X)$.

Exemple 1.6.3.2. Soit $X = \operatorname{Spec}(A)$ irréductible. Alors se donner un faisceau inversible sur X revient (à isomorphisme près) à se donner un idéal fractionnaire I de k[X] qui est inversible (cf 1.1.2.2), son inverse est alors $I^{-1} := (A:I)$. Les idéaux fractionnaires inversibles donnant le faisceau inversible trivial sont les idéaux fractionnaires principaux. Le groupe de Picard de X est ainsi isomorphe au groupe des idéaux fractionnaires inversibles modulo les idéaux fractionnaires principaux. Les idéaux de A qui sont inversibles forment une partie génératrice de ce groupe.

Si de plus A est localement factoriel, par exemple si X est lisse, les idéaux inversibles sont les idéaux de hauteur 1 pure, c'est à dire tels que ses idéaux premiers associés sont tous de hauteur 1. De plus tout idéal inversible s'écrit de manière unique comme produit de puissances d'idéaux premiers de hauteur 1. Pic(X) est donc le quotient du groupe libre sur les idéaux premiers de hauteur 1 par les idéaux fractionnaires principaux.

On va maintenant voir que les faisceaux inversibles sur X s'incarnent naturellement en des variétés sur X, ce sont les fibrés en droites.

Définition 1.6.3.3. Soit X une variété. Un fibré en droite sur X est une variété L munie d'un morphisme $\pi: L \to X$ tel que X admet un recouvrement ouvert $(U_i)_{i \in I}$ satisfaisant :

- 1. $\forall i \in I$, il existe un isomorphisme $\varphi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{A}^1$ de variétés sur U_i .
- 2. $\forall i, j \in I$, l'isomorphisme $\varphi_j \circ \varphi_i^{-1} : (U_i \cap U_j) \times \mathbb{A}^1 \to (U_i \cap U_j) \times \mathbb{A}^1$ est de la forme $(x, z) \mapsto (x, a_{ij}(x)z)$.

Un morphisme de fibrés en droites sur X est un morphisme de variétés sur X avec la conditions supplémentaire que les morphismes induits sur les fibres soient linéaires. Une section d'un fibré en droites (L, π) est une section de π , et on a la version locale de cette notion.

Considérons un faisceau inversible \mathcal{L} sur X trivialisé sur un recouvrement affine $(U_i)_{i\in I}$ avec un générateur $s_i \in \mathcal{L}(U_i)$ sur chaque U_i . Sur $U_i \cap U_j$, on a $s_j = a_{ij}s_i$ avec $a_{ij} \in \mathcal{O}_X(U_i \cap U_j)^{\times}$. On considère au dessus de chaque U_i le fibré trivial $(U_i \times \mathbb{A}^1, \pi_i)$, et on les recolle avec des isomorphismes définis par $\mathcal{O}_X(U_i \cap U_j) \otimes_k k[t] \to \mathcal{O}_X(U_i \cap U_j) \otimes k[u]$, $f \otimes_k 1 \mapsto f \otimes_k 1$, $1 \otimes_k t \mapsto a_{ij} \otimes_k u$. On a ainsi construit un fibré en droites sur X.

Réciproquement, considérons le \mathcal{O}_X -module des sections d'un fibré en droite L sur X. Sur les ouverts U_i où L est trivialisé on voit que les sections forment un faisceau isomorphe à $\mathcal{O}_{X|U_i}$. En effet se donner une section sur U_i revient à se donner un morphisme $U_i \to \mathbb{A}^1$, c'est à dire un élément de $\mathcal{O}_X(U_i)$. C'est donc un faisceau inversible.

En composant les deux opérations on trouve le faisceau inversible dual du faisceau de départ. Ces opération sont fonctorielles et réalisent une anti-équivalence de catégorie entre faisceaux inversibles sur X et fibrés en droites sur X. Cela permet de transporter la structure du groupe de Picard sur les classes d'isomorphie de fibrés en droites.

On introduit ci-dessous la version relative du spectre d'un anneau. Ceci va nous permettre de construire les fibrés en droite de manière plus intrinsèque.

Construction 1.6.3.4. [Spectre relatif]

Si on se donne un faisceau inversible \mathcal{L} sur une variété X, le fibré en droites qu'on lui associe dans la discussion précédente n'est autre que $\operatorname{Spec}_X(\operatorname{Sym}(\mathcal{L}))$, où $\operatorname{Sym}(\mathcal{L})$) est l'algèbre symétrique associée à \mathcal{L} sur \mathcal{O}_X . En effet, on recolle les $\operatorname{Spec}_{U_i}(\operatorname{Sym}(\mathcal{L}_{|U_i})) \simeq \operatorname{Spec}_{U_i}(\mathcal{O}_{U_i}[t]) \simeq U_i \times_k \mathbb{A}^1_k$, où $(U_i)_i$ est un recouvrement qui trivialise \mathcal{L} .

Notons qu'un fibré en droites (L, π) est muni d'une action de \mathbb{G}_m sur ses fibres. L'ensemble L_0 des points fixes sous \mathbb{G}_m est le fermé correspondant à l'image de la section nulle. Son complémentaire $L^{\times} := L \setminus L_0$ est une \mathbb{G}_m -variété et π se restreint en $\pi^{\times} : L^{\times} \to X$ qui est un quotient géométrique. En effet sur les U_i , on a $\pi^{\times -1}(U_i) \simeq U_i \times_k \mathbb{G}_m$ et l'action de \mathbb{G}_m se fait par multiplication sur le facteur de droite.

1.6.4 G-linearisation d'un fibré en droite

1.7 Diviseurs

1.7.1 Diviseurs de Weil

Partant de l'observation qu'en géométrie classique dans le plan projectif, il existe une dualité entre les droites et les points, il parait intéressant de s'intéresser aux sous-variétés fermées de codimension 1 et de conférer une structure naturelle à cet ensemble. C'est l'idée de diviseur, dont on va voir qu'un cadre privilégié est celui d'une variété normale, que l'on supposera de plus irréductible suivant la remarque 1.3.3.2.

Définition 1.7.1.1 (Diviseur premier, WDiv(X), diviseur de Weil, diviseur effectif). Soit X une variété normale irréductible. Un diviseur premier D est une sous-variété fermée irréductible de codimension 1. On définit WDiv(X) le groupe libre engendré par les diviseurs premiers. Un élément de WDiv(X) est appelé un diviseur de Weil. Enfin, un diviseur est dit effectif si il est à coefficients ≥ 0 .

On introduit maintenant pour chaque diviseur D une valuation sur k(X) donnant des informations sur le comportement des fonctions rationnelles sur D. C'est l'analogue de l'ordre d'un zéro ou d'un pôle d'une fonction rationnelle de la droite affine en un point. Soit η le point générique de D, et $\mathcal{O}_{\eta,X}$ son anneau local. Par hypothèse et grâce aux propriétés de la localisation, il est noethérien normal et de dimension 1, c'est donc un anneau de valuation discrète, où DVR. La valuation associée $v_D: k(X) \to \mathbb{Z}$ donne par définition l'ordre d'annulation d'une fonction rationnelle le long de D. La propriété ci-dessous montre que les fonctions rationnelles permettent de définir des diviseurs de Weil.

Proposition 1.7.1.2. Soit X une variété normale et irréductible et $f \in k(X)^*$. Alors $v_D(f) = 0$ sauf pour un nombre fini de diviseurs premiers D.

Démonstration. Soit $f = g/h \in k(X)^*$, où l'on peut supposer X affine. Comme $v_D(f) = v_D(g) - v_D(h)$, on peut supposer $f \in k[X]$. Soit D une diviseur premier et p son point générique. Si $f \in k[X]_p^\times$ alors $v_D(f) = 0$. Sinon, $f \in p$ et donc $D \subset \mathcal{V}_X(f)$. Or, d'après le théorème 1.3.2.1, les composantes irréductibles Z_i de $\mathcal{V}_X(f)$ sont des diviseurs premiers. Ainsi $v_D(f) = 0$ à moins que D ne soit l'un des Z_i .

Ainsi l'application $k(X)^* \to \mathrm{WDiv}(X)$, $f \mapsto \mathrm{div}(f) := \sum_D v_D(f)D$ définit un morphisme de groupes. Son image est le groupe des diviseurs principaux noté $\mathrm{PDiv}(X)$. La relation modulo $\mathrm{PDiv}(X)$ s'appelle l'équivalence linéaire, et le groupe quotient $\mathrm{Cl}(X)$ est le groupe des classes de diviseurs. $\mathrm{Cl}(X)$ est un invariant en général difficile à calculer. Ci-dessous on liste quelques outils et exemples. **Proposition 1.7.1.3.** Soit $X = \operatorname{Spec}(A)$ une variété affine normale et irréductible. Alors A est factoriel si et seulement si Cl(X) = 0

Démonstration. C'est une conséquence de 1.1.1.2 et 1.1.1.3. Voir [4] II.6.2.

Corollaire 1.7.1.4. $Cl(\mathbb{A}^n_k) = 0$ pour $n \ge 1$

Théorème 1.7.1.5. Soit X une variété normale et irréductible et Z une sous-variété fermée propre. On $pose\ U := X \setminus Z.\ Alors:$

- 1. $Cl(X) \rightarrow Cl(U)$ défini par $\sum_i n_i D_i \mapsto \sum_i n_i (D_i \cap U)$, avec $D_i \cap U = 0$ si $D_i \cap U = \emptyset$, est un morphisme de groupe surjectif.
- 2. Si $codim(Z, X) \ge 2$, then $Cl(X) \to Cl(U)$ est un isomorphisme.
- 3. Soient $D_1, ..., D_s$ les composantes irréductibles de Z qui sont des diviseurs. Alors la suite ci-dessous exacte

$$\bigoplus_{j=1}^{s} \mathbb{Z}D_{j} \xrightarrow{\pi} Cl(X) \xrightarrow{\cdot \cap U} Cl(U) \to 0$$

1. Si $D \cap U \neq \emptyset$ alors $\dim(X) = \dim(U)$ et $\dim(D) = \dim(D \cap U)$ car ce sont des ouverts de Démonstration. variétés irréductibles donc la dimension est préservée. Ainsi cela définit une application $\mathrm{WDiv}(X) \to$ $\mathrm{WDiv}(U)$ qui est un morphisme par construction. De plus, comme un diviseur principal est envoyé sur un diviseur principal, on a bien le morphisme attendu. Il est surjectif car pour tout $D \in \mathrm{WDiv}(U)$ premier, on a $D = \overline{D} \cap U$.

- 2. Dans ce cas on ne peut avoir $D \subset Z$ cause de la dimension donc $D \cap U \neq \emptyset$. Ainsi, le noyau du morphisme $\mathrm{WDiv}(X) \to \mathrm{WDiv}(U)$ est exactement $\mathrm{PDiv}(X)$ d'où l'isomorphisme.
- 3. Le noyau de $\cap U$ est exactement l'ensemble des $\pi(D)$ où D est un diviseur dont le support est contenu dans $X \setminus U = Z$, d'où le résultat.

1.7.2Faisceau d'algèbres divisorielles

La proposition suivante montre que l'on peut caractériser les sections du faisceau structural de X en terme de diviseurs.

Proposition 1.7.2.1. Soit X une variété normale et irréductible et $f \in k(X)^*$. Alors

- 1. $div(f) \ge 0 \iff f \in \mathcal{O}_X(X)$
- 2. $div(f) = 0 \iff f \in \mathcal{O}_X(X)^{\times}$

Démonstration. Il est suffisant de vérifier ces propriétés localement sur les ouverts affines. Or dans ce cas, f est une section globale si et seulement si f appartient à tous les anneaux locaux des diviseurs premier d'après 1.1.1.2. Cette dernière condition revient à dire que $\operatorname{div}(f)$ est effectif, cela prouve 1).

Pour la deuxième assertion, on remarque que $\operatorname{div}(f) = 0 \iff \operatorname{div}(f) \ge 0$ et $\operatorname{div}(f^{-1}) \ge 0$.

Plus généralement, on définit pour chaque diviseur D un \mathcal{O}_X -module $\mathcal{O}_X(D)$ dont les sections sur un ouvert $U \subset X$ sont définies par

$$\Gamma(U, \mathcal{O}_X(D)) := \{ f \in k(X)^* \mid (\operatorname{div}(f) + D)_{|U} \geqslant 0 \} \cup \{ 0 \}$$

On vérifie, grâce aux propriétés des valuations v_D , qu'il s'agit d'un sous $\mathcal{O}_X(U)$ -module de k(X), autrement dit un idéal fractionnaire de $\mathcal{O}_X(U)$, pour tout ouvert affine U. C'est donc un sous \mathcal{O}_X -module de la \mathcal{O}_X algèbre k(X). Dans le cas où X est affine on a une description explicite des sections globales:

Proposition 1.7.2.2. Soit X une variété affine normale et irréductible, A := k[X].

- 1. Soit un diviseur de Weil $D = a_{p_1}Y_{p_1} + ... + a_{p_r}Y_{p_r}$, on $a \Gamma(X, \mathcal{O}_X(D)) = \bigcap_{ht(p)=1} p^{-a_p}A_p$, où $a_p = 0$ si $p \notin \{p_1, ..., p_r\}$.
- 2. Soit $(Y_i)_{i \leqslant r}$ des diviseurs premiers de Cartier et $D = a_{p_1}Y_{p_1} + ... + a_{p_r}Y_{p_r}$, on a $\Gamma(X, \mathcal{O}_X(D)) = \prod_{i=1}^n p^{-a_p}$.
- 3. Pour un diviseur premier Y_p , on a $\Gamma(X, \mathcal{O}_X(-Y_p)) = p$. Si de plus p est inversible et $a \in \mathbb{Z}$, on a $\Gamma(X, \mathcal{O}_X(aY_p)) = p^{-a}$.

Démonstration. 1. Pour tout idéal premier p de hauteur 1, A_p est un DVR. On a donc $pA_p = (\pi)$ pour un certain $\pi \in A_p \subset k(X)$. Pour tout entier $a \in \mathbb{Z}$, on définit un sous A_p -module de k(X) isomorphe à pA_p en posant $p^aA_p := (\pi^a)$. C'est un idéal fractionnaire de A_p et on a pour $f \in k(X)^*$, $v_{Y_p}(f) \geqslant a \iff f \in p^aA_p$. Or, $f \in \Gamma(X, \mathcal{O}_X(D)) \iff \operatorname{div}(f) \geqslant -D \iff v_{Y_p}(f) \geqslant -a_p$, pour tout p de hauteur 1, avec a_p le coefficient de Y_p dans D.

- 2. Cela est une conséquence de 1.7.3.2 et 1.6.3.2.
- 3. Dans ce cas, Y_p est effectif, donc $\Gamma(X, \mathcal{O}_X(-Y_p))$ est un sous-module de A, donc un idéal. On a donc $\Gamma(X, \mathcal{O}_X(-Y_p)) = pA_p \cap A = p$. Pour l'autre assertion, c'est immédiat car $\mathcal{O}_X(Y_p)$ est alors inversible d'après 1.6.3.2, c'est à dire que Y_p est de Cartier.

On forme maintenant la somme directe des $\mathcal{O}_X(D)$ et on la munit d'un produit de la façon suivante : pour $f_1 \in \mathcal{O}_X(D_1)$, $f_2 \in \mathcal{O}_X(D_2)$, on définit le produit de f_1 et f_2 comme l'élément f_1f_2 de $\mathcal{O}_X(D_1 + D_2)$. On voit que cette algèbre est naturellement WDiv-graduée, avec pour chaque degré D un contrôle prescrit quant au comportement des fonctions sur le support de D. Ceci mène à la définition suivante.

Définition 1.7.2.3 (Faisceau d'algèbres divisorielles). Soit X une variété normale et irréductible. Le faisceau d'algèbres divisorielles associé à un sous-groupe $K \in \mathrm{WDiv}(X)$ est le faisceau de \mathcal{O}_X -algèbres K-graduées

$$\bigoplus_{D \in K} S_D, \quad S_D := \mathcal{O}_X(D)$$

Exemple 1.7.2.4. On considère la droite projective \mathbb{P}^1 , $D = \{\infty\}$ et $K = \mathbb{Z}D$. Cherchons la forme d'une section $f \in S_{nD}(\mathbb{P}^1)$. On se place sur la carte affine $U_0 = \mathbb{P}^1 \setminus \{\infty\}$ associée au repère projectif $(\infty, 0, 1) = (e_0, e_1, e_0 + e_1)$, on note z la coordonnée associée. Par hypothèse, f est régulière sur U_0 , c'est donc un polynôme en z. On fait agir l'homographie $z \mapsto w = 1/z$ pour se placer sur la carte $U_1 = \mathbb{P}^1 \setminus \{e_1\}$ associée au repère $(0, \infty, 1)$. Sur cette carte, la fonction qui coïncide avec f sur $U_0 \cap U_1$ est g(w) = f(1/w). Or si on écrit $f(z) = z^k h(z)$ avec $z \nmid h(z)$, on obtient $g(w) = w^{-k-\deg(h)}h(w)$. Comme on doit avoir $k + \deg(h) \leqslant n$, on obtient que f est un polynôme de degré $\leqslant n$.

Ainsi on voit que l'application $\varphi_n: k[t_0,t_1]_n \to S_{nD}(\mathbb{P}^1), f \mapsto f(1,z)$ est un isomorphisme de k-ev. De plus, on a facilement $\varphi_n \varphi_m = \varphi_{n+m}$. Finalement, $(\varphi, \widetilde{\varphi})$ avec $\varphi: k[t_0,t_n] \to S(\mathbb{P}^1), f \mapsto f(1,z)$ et $\widetilde{\varphi}: \mathbb{Z} \to K, n \mapsto nD$ est un isomorphisme d'algèbres graduées.

Proposition 1.7.2.5. Soit X une variété normale et irréductible et $D \in \mathrm{WDiv}(X)$. Alors $\mathcal{O}_X(D)$ est un \mathcal{O}_X -module cohérent. En particulier, le faisceau d'algèbres divisorielles associé à un sous-groupe $K \in \mathrm{WDiv}(X)$ est une \mathcal{O}_X -algèbre quasi-cohérente.

Démonstration. On peut supposer $X=\operatorname{Spec} A$ affine car le problème est local. Alors d'après $\ref{eq:constration}$ où $M=\Gamma(X,\mathcal{O}_X(D))$. Il s'agit donc de montrer que M est un A-module de type fini. Mais d'après 1.7.2.2, on voit que $\Gamma(X,\mathcal{O}_X(D))$ est un idéal fractionnaire de A, il est donc isomorphe à un idéal de A en tant A-module après multiplication par une certaine fonction rationnelle. Comme A est noetherien cela conclut la preuve. En fait, cela revient à constater que les fonctions $f\in\Gamma(X,\mathcal{O}_X(D))$ peuvent admettre des pôles uniquement sur les diviseurs premiers intervenant dans l'écriture de D, soit un nombre fini. L'ordre de ces pôle peut donc être borné par un même $d\in\mathbb{N}$.

Proposition 1.7.2.6. Soit X une variété normale et irréductible et $D \in \mathrm{WDiv}(X)$. Alors pour tout ouvert $U \subset X$ tels que $X \setminus U$ soit de codimension $\geqslant 2$ dans X, on a $\Gamma(U, \mathcal{O}_X(D)) \simeq \Gamma(X, \mathcal{O}_X(D))$.

Démonstration. Encore une fois, on peut traiter le problème localement et supposer $X=\operatorname{Spec} A$ affine. La restriction est injective et comme en 1.3.3.5, on remarque que U contient tous les premiers p de hauteur 1. Toujours comme en 1.3.3.5 et en écrivant $D=a_{p_1}Y_{p_1}+\ldots+a_{p_r}Y_{p_r}$ comme en 1.7.2.2, on considère les injections dans les tiges $\Gamma(X,\mathcal{O}_X(D))_p=p^{-a_p}A_p$ et on construit l'inverse de la restriction $\Gamma(U,\mathcal{O}_X(D))\hookrightarrow\Gamma(X,\mathcal{O}_X(D))=\bigcap_{ht(p)=1}p^{-a_p}A_p$.

1.7.3 Diviseurs de Cartier et groupe de Picard

Sur des variétés plus générales, par exemple avec des singularités, les anneaux locaux associés aux diviseurs premiers ne sont plus en général des DVR. On a alors des difficultés pour définir par exemple le diviseur d'une fonction rationnelle. On a néanmoins la notion générale de diviseur de Cartier, qui dans le cadre des variétés normales irréductibles correspondra aux diviseur de Weil "localement principaux".

Définition 1.7.3.1 (Diviseur de Cartier). Soit X une variété irréductible. Un diviseur de Cartier sur X est une section globale du faisceau $k(X)^{\times}/\mathcal{O}_X^{\times}$. Ainsi un diviseur de Cartier est la donnée d'une famille $(U_i, f_i)_{i \in I}$ telle que pour tout i, U_i est un ouvert de $X, (U_i)_{i \in I}$ est un recouvrement de $X, f_i \in k(X)^{\times}$, et pour tout $i, j \in I$, $f_i f_j^{-1} \in \mathcal{O}_X^{\times}(U_i \cap U_j)$.

Un diviseur de cartier est dit principal si il provient d'une section globale de $k(X)^{\times}$ c'est à dire d'une fonction rationnelle. Deux diviseurs de Cartier sont dits linéairement équivalents si ils sont égaux modulo le sous-groupe des diviseurs principaux. Le groupe quotient se note CaCl(X).

Soit X une variété irréductible. On remarque que pour un diviseur de Cartier $D=(U_i,f_i)_{i\in I}$ de X, $\mathcal{O}_X(D)_{|U_i}$ est le $(\mathcal{O}_X)_{|U_i}$ -module libre de base (f_i^{-1}) . Il est donc localement libre de rang 1, c'est à dire inversible. On récupère facilement D à partir de $\mathcal{O}_X(D)$ en prenant un recouvrement qui le trivialise. Enfin, pour tout sous-faisceau inversible de $k(X)^\times$ on construit de la même manière un diviseur de Cartier. On a donc une correspondance bijective entre diviseurs de Cartier et sous-faisceau inversible de $k(X)^\times$. Par cette correspondance, deux diviseurs sont linéairement équivalents si et seulement si les faisceaux inversibles sont isomorphes. On a ainsi définit une application injective $\operatorname{CaCl}(X) \to \operatorname{Pic}(X)$ dont on voit facilement que c'est un morphisme de groupe. Comme X est supposé irréductible, c'est un isomorphisme car tout faisceau inversible est isomorphe à un sous-faisceau inversible de $k(X)^\times$. En résumé on a le résultat suivant :

Proposition 1.7.3.2. Soit X une variété irréductible. L'application $D \mapsto \mathcal{O}_X(D)$ définit un isomorphisme de groupe $CaCl(X) \simeq Pic(X)$.

On suppose à nouveau X normale et irréductible. Dans ce cadre, tout diviseur de Cartier $(U_i, f_i)_{i \in I}$ définit un unique diviseur de Weil de la façon suivante. Pour tout diviseur premier Y, on choisit un indice $i \in I$ tel que $U_i \cap Y \neq \emptyset$ et on prend $v_Y(f_i)$ pour coefficient de Y. Cette somme est finie par la même preuve que 1.7.1.2. Par ailleurs elle ne dépend pas du choix des indices car si j est un autre indice possible, $f_i f_j^{-1} \in \mathcal{O}_X^{\times}(U_i \cap U_j)$ par définition, donc $v_Y(f_i) = v_Y(f_j)$. On a ainsi un diviseur de Weil tel que sa restriction à tout ouvert du recouvrement $(U_i)_{i \in I}$ est principal. D'où la terminologie "localement principal". Ce constat permet de voir $\operatorname{CaCl}(X)$ comme un sous-groupe de $\operatorname{Cl}(X)$ (on vérifie que les diviseurs principaux se correspondent).

Ce sous-groupe est propre en général (cf [4] 6.11.3). En revanche, si X est lisse, tout diviseur de Weil est localement principal . En effet dans ce cas, les anneaux locaux sont factoriels, on obtient ainsi en tout point une équation locale d'un diviseur premier car un idéal premier de hauteur 1 d'un anneau factoriel est principal, ce qui permet de conclure.

Proposition 1.7.3.3. Soit X une variété normale irréductible, $D, E \in \mathrm{WDiv}\,X$ avec D de Cartier. Alors le morphisme naturel $\alpha: \mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E) \to \mathcal{O}_X(D+E)$ est un isomorphisme.

Démonstration. Écrivons $D=(U_i,f_i)_{i\in I}$. Alors sur chaque U_i , α induit un isomorphisme de \mathcal{O}_X -module. En effet on a un morphisme inverse, il s'agit de la multiplication par f_i^{-1} composée avec l'isomorphisme $\mathcal{O}_{U_i}(E)\simeq \mathcal{O}_{U_i}(D)\otimes_{\mathcal{O}_{U_i}}\mathcal{O}_{U_i}(E)$.

Par analogie avec les diviseurs de Weil, un diviseur de Cartier $D=(U_i,f_i)_{i\in I}$ est dit effectif si pour tout $i\in I,\ f_i\in \mathcal{O}_X(U_i)$. Dans ce cas $\mathcal{O}_X(-D)$ est un sous \mathcal{O}_X -module de \mathcal{O}_X , c'est concrètement le faisceau d'idéaux localement généré sur chaque U_i par f_i . D'après 1.3.2.1 cela définit un sous-schéma fermé de X de codimension 1. L'inclusion $\mathcal{O}_X(-D)\hookrightarrow \mathcal{O}_X$ est une section globale de $\mathcal{H}om(\mathcal{O}_X(-D),\mathcal{O}_X)\simeq \mathcal{O}_X(D)$ appelée section canonique et notée 1_D puisqu'elle correspond à la multiplication par 1. Réciproquement, la donnée d'un couple (\mathcal{L},s) constitué d'un faisceau inversible sur X et d'une section globale définit un diviseur de Cartier effectif de la manière suivante. Soit $(U_i)_{i\in I}$ un recouvrement qui trivialise \mathcal{L} . Sur chaque U_i on a un isomorphisme $\varphi_i: \mathcal{L}_{|U_i} \to \mathcal{O}_{X|U_i}$. On voit que $(U_i, \varphi_i(s))_i$ définit un diviseur de Cartier effectif indépendant du choix des φ_i , et donc du couple (\mathcal{L},s) à isomorphisme près. On l'appelle le diviseur des zéros de s et on le note div $_D(s)$. Les deux procédés que l'on vient de décrire sont inverses l'un de l'autre, on obtient ainsi une correspondance bijective :

$$\left\{ \text{Diviseurs de Cartier effectif sur } X \right\} \leftrightarrow \left\{ \begin{array}{l} \text{couples } (\mathcal{L},s) \text{ constitués d'un faisceau} \\ \text{inversible et d'une section globale} \end{array} \right\}$$

Considérons un diviseur de Cartier D quelconque et $\mathcal{O}_X(D)$ le sous-faisceau inversible de k(X) qui lui correspond. En faisant varier s dans les couples $(\mathcal{O}_X(D), s)$ tels que ci-dessus, on obtient tous les diviseurs de Cartier effectifs linéairement équivalent à D. En effet, $\operatorname{div}_D(s)$ est par définition un diviseur effectif linéairement équivalent à D. Réciproquement un diviseur effectif linéairement équivalent à D s'écrit $D + \operatorname{div}(s) \geqslant 0$ où s est donc une section globale s de $\mathcal{O}_X(D)$.

1.7.4 L'espace projectif \mathbb{P}_k^n

Faisceaux inversibles sur \mathbb{P}^n_k

Morphismes vers l'espace projectif

Soit X une variété munie d'un morphisme $(f, f^{\sharp}): X \to \mathbb{P}^n_k$, où \mathbb{P}^n_k =Proj $k[x_0, ..., x_n]$. On considère le faisceau tordu de Serre $\mathcal{O}(1)$ sur \mathbb{P}^n_k . C'est un faisceau inversible engendré par les sections globales $x_0, ..., x_n$. $f^*\mathcal{O}(1)$ est également inversible et on a un morphisme canonique de $\mathcal{O}_{\mathbb{P}^n_k}$ -module $\alpha: \mathcal{O}(1) \to f_*f^*\mathcal{O}(1)$ où la structure de $\mathcal{O}_{\mathbb{P}^n_k}$ -module sur $f_*f^*\mathcal{O}(1)$ est donnée par $\lambda.t = f^{\sharp}(\lambda)t$ pour tout ouvert $V \subset \mathbb{P}^n_k$, $\lambda \in \mathcal{O}_{\mathbb{P}^n_k}(V)$, $t \in f_*f^*\mathcal{O}(1)(V)$. On définit des sections globales $f^*(x_0) := s_0 := \alpha(\mathbb{P}^n_k)(x_0), ..., f^*(x_n) := s_n := \alpha(\mathbb{P}^n_k)(x_n)$ de $f^*\mathcal{O}(1)$ dont on voit facilement qu'elles engendrent $f^*\mathcal{O}(1)$.

Considérons un faisceau inversible \mathcal{L} sur une variété Y, une section globale l, et un morphisme $(g, g^{\sharp}): X \to Y$. On définit l'ouvert

$$Y_l := \{ y \in Y \mid \mathcal{O}_{Y,y} l_y = \mathcal{L}_y \} = \{ y \in Y \mid l_y \notin m_y \mathcal{L}_y \}$$

C'est tout simplement le complémentaire du support du diviseur des zéros associé au couple (\mathcal{L}, l) . Si $\mathcal{L} = \mathcal{O}_Y$ il s'agit de l'ouvert principal Y_l , et on a de plus $g^{-1}(Y_l) = X_{g^{\sharp}(l)} = X_{g^{*}(l)}$ car $g^{*}\mathcal{O}_Y = \mathcal{O}_X$ et $\alpha = g^{\sharp}$ dans ce cas. Revenant dans le cas général, on voit facilement que $g^{*}\mathcal{L}$ est inversible et en raisonnant localement sur des ouverts affines qui trivialisent \mathcal{L} , on voit d'après ce qui précède que $g^{-1}(Y_l) = X_{g^{*}(l)}$. D'autre part, si $l_1, ..., l_n$ sont des sections globales qui engendrent \mathcal{L} , on voit que (Y_{l_i}) est un recouvrement de Y qui trivialise \mathcal{L} . En effet, sur chaque Y_{l_i} , on a un isomorphisme $\mathcal{O}_{Y|Y_{l_i}} \to \mathcal{L}_{Y|Y_{l_i}}$, $\lambda \mapsto \lambda l_i$, et par hypothèse, l'intersection des complémentaires des Y_{l_i} est vide. Enfin, on note sans ambiguïté l_j/l_i l'unique élément de $\mathcal{O}_{Y|Y_{l_i}}(Y_l)$ tel que $l_j/l_i.l_i = l_j$ par l'isomorphisme précédent.

Revenons au cas initial et notons $U_i = D_+(x_i) = \mathcal{O}(1)_{x_i}$. La k-algèbre $\mathcal{O}_{P_k^n}(U_i)$ est engendrée par les éléments x_j/x_i et on a $s_j/s_i.s_i = s_j = \alpha(U_i)(x_j) = \alpha(U_i)(x_j/x_i.x_i) = f^\sharp(x_j/x_i).\alpha(U_i)(x_i) = f^\sharp(x_j/x_i).s_i$. On a donc nécessairement $f^\sharp(x_j/x_i) = s_j/s_i$. Comme les U_i sont affines, cela définit des morphismes $f_i: X_{s_i} \to P_k^n$ en composant avec l'inclusion. C'est morphismes se recollent en un unique morphisme, car ils coïncident sur les $X_{s_i} \cap X_{s_j}$. Autrement dit, on récupère f par la donnée des s_i , et f est ainsi l'unique morphisme tel que $f^*(x_i) = s_i$.

Réciproquement montrons que la donnée d'un faisceau inversible \mathcal{L} sur X et de sections globales $l_0, ..., l_n$ qui l'engendrent définissent un unique morphisme $f: X \to \mathbb{P}^n_k$ tel que $\mathcal{L} \simeq f^*\mathcal{O}(1)$, ce dernier isomorphisme étant celui qui envoie $f^*(x_i)$ sur l_i . Si f existe avec ces propriétés, il est unique d'après ce qui précède.

Pour l'existence, on construit comme précédemment des morphismes $f_i: X_{l_i} \to U_i$ qui se recollent en un morphisme $f: X \to \mathbb{P}^n_k$. Par construction, \mathcal{L} et $f^*\mathcal{O}(1)$ se trivialisent sur le même recouvrement $(f^{-1}(U_i) = X_{l_i} = X_{f^*(x_i)})_i$. On a des isomorphismes locaux $\varphi_i: \mathcal{L}_{|f^{-1}(U_i)} \to f^*\mathcal{O}(1)_{|f^{-1}(U_i)}, l_i \mapsto f^*x_i$. Ce sont des sections locales de $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}(1))$ sur un recouvrement de X. Pour vérifier qu'elles coïncident aux intersections $X_{l_i} \cap X_{l_j}$, on remarque que l'on a $l_i/l_j = f^{\sharp}(U_i \cap U_j)(x_i/x_j) = f^*(x_i)/f^*(x_j) \in \mathcal{O}_X(X_{l_i} \cap X_{l_j})^{\times}$. Ces sections se recollent donc en un unique isomorphisme $\mathcal{L} \simeq f^*\mathcal{O}(1)$ qui est bien l'isomorphisme recherché.

Notons que cette propriété caractérise l'espace projectif \mathbb{P}^n_k à isomorphisme près. En effet il représente le foncteur (voir stacks)...

Variétés quasi-projectives, faisceaux inversible très amples

Définition 1.7.4.1. Soit X une variété et \mathcal{L} un faisceau inversible sur X engendré par une famille finie de sections globales. Si ces sections définissent une immersion $X \hookrightarrow \mathbb{P}^n_k$, on dit que \mathcal{L} est très ample. Cela revient à dire que $\mathcal{L} \simeq i^*\mathcal{O}(1)$ pour une immersion $i : \hookrightarrow \mathbb{P}^n_k$.

Si X est normale et irréductible, un diviseur de Cartier D est dit très ample si on a $\mathcal{O}_X(D) \simeq i^*\mathcal{O}(1)$ pour une immersion $i : \hookrightarrow \mathbb{P}^n_k$.

Supposons maintenant X lisse (donc normale) et projective, $D \in \mathrm{WDiv}(X)$, $\mathcal{O}_X(D)$ le faisceau inversible associé. On a vu que l'ensemble des diviseurs effectifs linéairement équivalents à D est $\{\mathrm{div}_D(s) \mid s \in \Gamma(X, \mathcal{O}_X(D)) \setminus \{0\}\}$. D'autre part deux sections globales s, s' non nulles ont même diviseur des zéros si et seulement si elles sont colinéaires dans le k-ev $\Gamma(X, \mathcal{O}_X(D))$, en effet dans ce cas $s/s' \in \mathcal{O}_X^{\times}(X) = k^*$, car k est algébriquement clos. Notons enfin que $\Gamma(X, \mathcal{O}_X(D))$ est de dimension finie ([4] II.5.19). Ainsi l'ensemble des diviseurs effectifs linéairement équivalent à D est naturellement muni d'une structure d'espace projectif, cela amène la définition suivante :

Définition 1.7.4.2 (Système linéaire, point de base). Soit X une variété lisse et projective, et D un diviseur. Le système linéaire complet définit par D est l'ensemble des diviseurs effectifs linéairement équivalents à D, on le note |D|. Un système linéaire est une partie de |D| correspondant à un sous espace projectif. On dit que $p \in X$ est un point de base d'un système linéaire $\mathbb{P}(V) \subset |D|$ si l'intersection des $X \setminus X_s$ pour $s \in V$ est non vide

Autrement dit dans ce langage, se donner un morphisme $X \to \mathbb{P}^n_k$ est équivalent à se donner un système linéaire $\mathbb{P}(V) \subset |D|$ sans point de base et une base de V.

Chapitre 2

Anneaux de Cox

2.1 Un exemple introductif

Soit $X = \operatorname{Proj}(B/I)$ une variété projective et irréductible, où $B = k[x_0, ..., x_n]$ et $I \subset B$ un idéal homogène. A la différence du cas affine, l'algèbre graduée B/I des coordonnées homogènes de X n'est pas un invariant. Par exemple, $\mathbb{P}^1_k = \operatorname{Proj}(k[x_0, x_1])$ est isomorphe à tous ses plongements de Veronese, ces isomorphismes provenant de morphismes injectifs mais non surjectifs entre les algèbres de coordonnées homogènes correspondantes.

On considère maintenant le cas où X est donnée par une immersion fermée $X \stackrel{\iota}{\hookrightarrow} \mathbb{P}^n_k$ avec $i(X) = \operatorname{Proj}(B/I)$. On note d'après 1.7.4 que cela revient à se donner un diviseur très ample D tel que $\mathcal{O}_X(D) \simeq i^*\mathcal{O}_{\mathbb{P}^n_k}(1)$. Considérons l'application canonique $\alpha: \oplus_{l\in\mathbb{Z}}\mathcal{O}_{\mathbb{P}^n_k}(l) \to i_*i^* \oplus_{l\in\mathbb{Z}}\mathcal{O}_{\mathbb{P}^n_k}(l) \simeq i_* \oplus_{l\in\mathbb{Z}}\mathcal{O}_X(lD)$. Sur les sections globales cela donne $\alpha(\mathbb{P}^n_k): k[x_0,...,x_n] \to \Gamma_*(\mathcal{O}_X(D)) = \mathcal{S}(X)$, ou \mathcal{S} est le faisceau d'algèbres divisorielles sur X associé à $\mathbb{Z}D$. Au degré zéro, $\alpha_0 = i^\sharp$, on en déduit ker $\alpha = \Gamma_*(\mathcal{I}_{i(X)}) = I$ d'après ??, puis $\operatorname{Im} \alpha \simeq B/I$. On a ainsi retrouvé l'algèbre des coordonnées du plongement à partir d'un \mathcal{O}_X -module inversible, c'est à dire un élément de son groupe de Picard, qui est un objet intrinsèquement défini sur X.

D'après [4] ex II.5.14, S(X) est la clôture intégrale de B/I. Ainsi, B/I est normal si et seulement si $\alpha(\mathbb{P}^n_k)$ est surjective, on dit alors que le plongement est projectivement normal. Cette remarque montre en particulier que S(X) est une k-algèbre de type fini. On redémontre maintenant ce fait en donnant un éclairage géométrique sur ces constructions. Le fibré en droites $L = \operatorname{Spec}_{\mathbb{P}^n_k}(\operatorname{Sym}(\mathcal{O}_{\mathbb{P}^n_k}(1))) = \operatorname{Spec}_{\mathbb{P}^n_k}(\oplus_{l \geq 0} \mathcal{O}_{\mathbb{P}^n_k}(1))$ est l'éclatement en l'origine de \mathbb{A}^{n+1} . En effet, on montre facilement que le $\mathcal{O}_{\mathbb{P}^n_k}$ -module des sections de l'éclatement en l'origine de \mathbb{A}^{n+1} vu comme fibré en droites sur \mathbb{P}^n_k est $\mathcal{O}_{\mathbb{P}^n_k}(-1)$, ce qui permet de conclure d'après la discussion 1.6.3.3. On a le diagramme commutatif suivant, où L_X est le fibré en droites $\operatorname{Spec}_X(\operatorname{Sym}(\mathcal{O}_X(D)),$ j est une immersion fermée (comme recollement d'immersions fermées) et π est propre.

$$\begin{array}{ccc} L_X & \stackrel{j}{\longrightarrow} & L & \stackrel{\pi}{\longrightarrow} & \mathbb{A}_k^{n+1} \\ \downarrow^{p_X} & & \downarrow^p \\ X & \stackrel{i}{\longrightarrow} & \mathbb{P}_k^n \end{array}$$

On considère comme en 1.6.3.3 l'action de \mathbb{G}_m sur les fibres de L, L_0 l'ensemble des points fixes, et L^{\times} son complémentaire. L^{\times} est constitué de recollements de schémas isomorphes à $\operatorname{Spec}_{U_i}(\mathcal{O}_{U_i}[t,t^{-1}]) \simeq U_i \times_k \mathbb{G}_m$, ce qui donne $L^{\times} = \operatorname{Spec}_{\mathbb{P}^n_k}(\oplus_{l \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^n_k}(lD))$. De plus, L^{\times} est isomorphe à $\mathbb{A}^{n+1} \setminus \{0\}$ par restriction de π . D'autre part, p se restreint en une application $p^{\times}: L^{\times} \to \mathbb{P}^n_k$ qui est le quotient géométrique de l'action de \mathbb{G}_m . On résume cela dans le diagramme ci-dessous :

$$\begin{split} \widetilde{X} &:= L_X^\times \stackrel{j}{\longleftrightarrow} L^\times \stackrel{\simeq}{\longrightarrow} \mathbb{A}_k^{n+1} \setminus \{0\} \\ \downarrow^{p_X^\times} & \downarrow^{p^\times} \\ X \stackrel{i}{\longleftrightarrow} \mathbb{P}_k^n \end{split}$$

Notons encore π la restriction πj , c'est une application propre. Ainsi, $\pi_* \mathcal{O}_{L_X}$ est un $\mathcal{O}_{\mathbb{A}^{n+1}_k}$ -module cohérent. On en déduit que $\mathcal{O}(L_X) = \pi_* \mathcal{O}_{L_X}(\mathbb{A}^{n+1}_k)$ est un $k[x_0,...,x_n]$ -module de type fini, c'est en particulier une k-algèbre de type fini. De plus comme les $\mathcal{O}_X(lD)$ n'ont pas de sections globales non nulles pour l < 0, on en déduit que $\mathcal{O}(\widetilde{X}) = \Gamma(X, \oplus_{l \in \mathbb{Z}} \mathcal{O}_X(lD)) = \mathcal{O}(L_X)$ est de type fini sur k. C'est de plus une algèbre \mathbb{N} -graduée, son spectre \widetilde{X} est donc muni d'une action de \mathbb{G}_m avec un unique point fixe p_0 appartenant à l'adhérence de tout orbite. Enfin, pour tout $f \in \Gamma(X, \mathcal{O}_X(lD))$ avec f non nulle et l > 0, on a $\mathcal{O}_{\widetilde{X}}(p_X^{\times -1}(X_f)) = \Gamma(X_f, \oplus_{k \in \mathbb{Z}} \mathcal{O}_X(lD)) = \Gamma(X, \oplus_{k \in \mathbb{Z}} \mathcal{O}_X(lD))_f = \mathcal{O}(L_X)_f$. L'unique maximal contenant chaque f correspond à p_0 , on voit ainsi que ces spectres se recollent en $\widetilde{X} = \overline{X} \setminus \{p_0\}$, où $\overline{X} = \operatorname{Spec} \mathcal{O}(\widetilde{X})$.

Prenons maintenant un exemple concret, soit $X \subset \mathbb{P}^3_k$ la quadrique projective d'équation en coordonnées homogènes $x_1x_2 = x_3x_4$, et D le diviseur des zéros de la section $x_4 \in \mathcal{O}_X(1)$. D est un diviseur de Cartier effectif sur X que l'on peut décrire sur les ouverts standards par $(U_i, x_4/x_i)_{1\leqslant i\leqslant 4}$. De plus, D est très ample car $\mathcal{O}_X(D) \simeq \mathcal{O}_X(1)$. En effet, en regardant ces \mathcal{O}_X -modules comme sous-modules de $k(x_1, ..., x_4)$, on voit l'isomorphisme en multipliant les générateurs locaux x_i/x_4 de $\mathcal{O}_X(D)$ par x_4 . L'algèbre des coordonnées homogènes de X est normale, donc en reprenant les notations précédentes on obtient que \bar{X} est le cone affine d'équation $t_1t_2-t_3t_4$ dans \mathbb{A}^4 et $\widetilde{X}=\bar{X}\setminus\{0\}$ le cône épointé.

On va maintenant utiliser cette construction pour calculer le groupe des classes $\operatorname{Cl}(\bar{X}) \simeq \operatorname{Cl}(\tilde{X})$. En tant que fibré en droite sur X on voit en utilisant [4] II.6.6 que $\operatorname{Cl}(X) \simeq \operatorname{Cl}(L_X)$, et le pullback de D par cet isomorphisme est exactement $\pi^{-1}(0)$. Puis on a $\tilde{X} = L_X \setminus \pi^{-1}(0)$ où le diviseur exceptionnel $\pi^{-1}(0)$ est isomorphe à X. D'après ce qui précède et comme $\pi^{-1}(0)$ est irréductible et de codimension 1 dans \tilde{X} , on a d'après 1.7.1.5 une suite exacte :

$$0 \to \mathbb{Z} \xrightarrow{\varphi} \mathrm{Cl}(X) \to \mathrm{Cl}(\widetilde{X}) \to 0, \ \varphi(1) = D$$

Par ailleurs dans [4] II.6.6.1 on calcule $\operatorname{Cl}(X) \simeq \mathbb{Z}^2$ avec D = (1,1). On en déduit $\operatorname{Cl}(\widetilde{X}) \simeq \mathbb{Z}$ avec deux générateurs de somme nulle, $D_1 = \mathcal{V}(p_1)$ avec $p_1 = (t_1, t_4)$ et $D_2 = \mathcal{V}(p_2)$ avec $p_2 = (t_2, t_4)$.

Calculons maintenant les sections globales du faisceau d'algèbres divisorielles \mathcal{S} sur $Y:=\widetilde{X}$ associé à $K=\mathbb{Z}D_2$. On a $\Gamma(Y,\mathcal{O}_Y(-D_2))=\Gamma(\bar{X},\mathcal{O}_{\bar{X}}(-D_2))=p_2$ d'après 1.7.2.2. Puis comme comme le cône épointé Y est lisse, D_2 est Cartier dessus. Ainsi $\mathcal{O}_Y(-D_2)$ est un faisceau inversible sur Y d'inverse $\mathcal{O}_Y(D_2)$, ce dernier étant la restriction à Y du $\mathcal{O}_{\bar{X}}$ -module $(t_4^{-1}p_1)$. En effet, on a $p_1p_2=(t_4)$ car ce sont deux idéaux radicaux définissant le même fermé. On a donc $\Gamma(Y,\mathcal{O}_Y(D_2))=t_4^{-1}p_1=(1,t_4^{-1}t_1)$. Ainsi $\Gamma(Y,S)$ est engendré en tant que $\mathcal{O}(Y)$ -algèbre par les éléments algébriquement libres $(z_1,z_2,z_3,z_4):=(1,t_4^{-1}t_1,t_2,t_4)$. De plus d'après les équations suivantes la composante homogène de degré zéro est inclus dans $k[z_1,z_2,z_3,z_4]$:

$$z_2z_4=t_1, z_1z_3=t_2, z_2z_3=t_3, z_1z_4=t_4$$

On a donc $\Gamma(X,S)=k[z_1,z_2,z_3,z_4]$, c'est une algèbre de polynômes naturellement graduée par $\deg(z_1)=\deg(z_2)=1$, $\deg(z_3)=\deg(z_4)=-1$. Cette \mathbb{Z} -graduation se traduit en une action de \mathbb{G}_m sur Y donnée concrètement par $\lambda.z=(\lambda z_1,\lambda z_2,\lambda^{-1}z_3,\lambda^{-1}z_4)$. L'algèbre des invariants sous cette action est $k[z_1z_2,z_1z_4,z_2z_3,z_2z_4]$ ce qui donne un isomorphisme $\operatorname{Spec}(\Gamma(Y,S)^{\mathbb{G}_m})\simeq Y$.

On vient ainsi de voir dans cet exemple qu'un faisceau d'algèbres divisorielles $\mathcal S$ bien choisi permet de retrouver Y comme bon quotient d'une H-variété construite à partir de ce faisceau (où H définit la graduation de $\mathcal S$). C'est ce qu'on va étudier de manière générale dans cette partie.

2.2 Cas d'un groupe des classes sans torsion

Dans cette partie on définit l'anneau de Cox d'une variété X normale irréductible avec un groupe des classes libre de type fini. On est en particulier dans le cadre de l'exemple précédent.

2.2.1 Faisceau et anneau de Cox

Construction 2.2.1.1 (Faisceau de Cox, Anneau de Cox). Soit X normale irréductible avec un groupe des classes libre de type fini et un sous-groupe $K \subset \operatorname{Cl}(X)$ se projetant isomorphiquement sur $\operatorname{Cl}(X)$. Il existe de tels K car $\operatorname{Cl}(X)$ est libre de type fini. On définit le faisceau de Cox sur X, noté $\mathcal R$ comme le faisceau d'algèbres divisorielles associé à K. Cette description ne dépend qu'à isomorphisme près du choix de K. L'anneau de Cox de X est l'algèbre des sections globales du faisceau de Cox.

Démonstration. Soient K, K' deux sous-groupes de WDiv(X) se projetant isomorphiquement sur $\mathrm{Cl}(X)$, et $\mathcal{R}, \mathcal{R}'$ les faisceaux de Cox correspondants. On choisit une base $(D_1, ..., D_s)$ de K. Cette base définit une section de la projection $c: \mathrm{WDiv}(X) \to \mathrm{Cl}(X)$ et on peut modifier cette section par des éléments du noyau, cela fournissant autant de bases de sous-groupes de WDiv(X) se projetant isomorphiquement sur $\mathrm{Cl}(X)$. Par ailleurs, chaque $D_i + \mathrm{Ker}\,c$ rencontre nécessairement K' sinon on aurait $\mathrm{rg}\,K' < \mathrm{rg}\,\mathrm{Cl}(X)$ comme rang de modules libres de type fini. On choisit ainsi $f_1, ..., f_s \in k(X)$ tels que $(D_i - \mathrm{div}(f_i))_i$ forme une base de K'. On définit un morphisme $\alpha: K \to k(X)^*, a_1D_1 + ... + a_sD_s \mapsto f_1^{a_1}...f_s^{a_s}$. Avec cela, l'isomorphisme linéaire faisant correspondre les bases de K et K' est $\widetilde{\psi}: K \to K', D \mapsto -\mathrm{div}(\alpha(D)) + D$. Enfin on définit un isomorphisme d'algèbres divisorielles $(\psi, \widetilde{\psi}): \mathcal{R} \to \mathcal{R}'$ en posant $f \in \Gamma(U, \mathcal{R}_D) \mapsto \alpha(D)f$.

2.2.2 Le spectre relatif de \mathcal{R}

On souhaiterait réaliser géométriquement le faisceau de Cox d'une variété X ayant les propriétés de la construction précédente. Une idée naturelle est de prendre le spectre relatif (\widetilde{X}, p) de ce faisceau d'algèbres quasi-cohérent. Toutefois, ce spectre relatif ne définira pas une variété en général. Il faudrait pouvoir recouvrir X par un nombre fini d'ouverts affines U_i tels que $\mathcal{R}(U_i)$ soit de type fini réduit, on dit alors que \mathcal{R} est localement de type fini. Sous certaines conditions, on pourra s'en assurer. Par exemple si X est lisse, tous les diviseurs sont de Cartier, et notons dans ce cas $D_1, ..., D_s$ une base de K et U un ouvert sur lequel chaque D_i est principal. On a localement un isomorphisme d'algèbres graduées :

$$\mathcal{O}_X(U) \otimes_k k[t_1^{\pm}, ..., t_s^{\pm}] \to \mathcal{R}(U), \ g \otimes t_1^{\nu_1} ... t_s^{\nu_s} \mapsto gf_1^{-\nu_1} ... f_s^{-\nu_s}$$

Par recollement on obtient que \widetilde{X} est le produit $L_1^{\times} \times ... \times L_s^{\times}$ où, avec les notation de l'exemple d'introduction, L_i est le fibré en droite correspondant à $\mathcal{O}_X(D_i)$.

Par ailleurs, notons que dans le cas où \mathcal{R} est localement de type fini, son spectre relatif est naturellement muni d'une action de $H:=\operatorname{Spec} k[K]$ pour laquelle (X,p) est un bon quotient. En effet, p est affine par construction et sur chaque U_i , $\mathcal{R}(U_i)$ est K-graduée avec pour éléments homogènes de degré zéro $\mathcal{R}(U_i)_0=\mathcal{O}_X(U_i)$. Ces quotients locaux coïncident aux intersections et se recollent globalement en p. On remarque que dans le cas où X est lisse, l'isomorphisme ci-dessus nous dit que localement on a un diagramme commutatif dans lequel les flèches sont H-équivariantes et H agit sur le produit par multiplication sur le premier facteur :

$$p^{-1}(U) \xrightarrow{\simeq} H \times U$$

$$\downarrow p \qquad pr_U$$

Dans la suite de cette partie on considère les conditions et données suivantes sur la variété X, qui nous permet de parler de son faisceau de Cox et la variété définie par son spectre relatif :

(†) X est normale irréductible avec un groupe des classes libre de type fini. On se fixe un sous-groupe $K \subset Cl(X)$ se projetant isomorphiquement sur Cl(X). On suppose que le faisceau de Cox est localement de type fini.

Proposition 2.2.2.1. Soit X vérifiant (†). Alors \widetilde{X} est une variété irréductible et normale. De plus, pour tout fermé $A \subset X$ de codimension $\geqslant 2$, $p^{-1}(A)$ est aussi de codimension $\geqslant 2$.

Démonstration. Tout d'abord, \widetilde{X} est séparé comme spectre relatif sur une variété. Ensuite, on recouvre l'ouvert des points réguliers X_{reg} par un nombre fini d'ouverts U_i comme dans le diagramme ci-dessus, ce qui est possible car tout ouvert de X est quasi-compact. Ainsi les $p^{-1}(U_i)$ sont irréductibles, et leur réunion $p^{-1}(X_{reg})$ également car leur intersection est non-vide (cf $\ref{eq:intersection}$). De plus, $p^{-1}(X_{reg})$ est lisse car c'est vrai localement par le diagramme. On recouvre maintenant X par des ouverts affines $V_1, ..., V_s$ et on a d'après 1.7.2.6, $\mathcal{R}(V_i \cap X_{reg}) = \mathcal{R}(V_i) = \mathcal{O}_{\widetilde{X}}(p^{-1}(V_i))$. Ces anneaux sont normaux et intègre car $p^{-1}(X_{reg})$ est irréductible et lisse. Comme les $p^{-1}(V_i)$ recouvrent \widetilde{X} on en déduit la normalité et l'irréductibilité. Pour la dernière assertion, c'est une conséquence directe du fait que $p_*\mathcal{O}_{\widetilde{X}} = \mathcal{R}$ et de $\ref{eq:intersection}$.

Remarquons qu'une section de $s \in \mathcal{R}(U)$ homogène de degré $D \in K$ sur un ouvert $U \subset X$ peut être vue à la fois comme une fonction rationnelle sur X vérifiant $\operatorname{div}(s) + D \geqslant 0$ et comme une fonction régulière sur \widetilde{X} qui est homogène de degré D pour l'action de H. De plus, si D est Cartier, $\operatorname{div}(s) + D$ est le diviseur des zéros de s sur X. Dans tous les cas on adopte la notation $\operatorname{div}_D(s)$ pour ce diviseur effectif et $X_{D,s}$ pour le complémentaire de son support. On explore maintenant les relation entre ces points de vue. Notons tout d'abord que comme p est un morphisme dominant de variétés irréductibles, on peut définir le pullback $p^*(D)$ d'un diviseur de Cartier simplement par le pullback de ses équations locales. Pour un diviseur de Weil D, on considère sa restriction D' à X_{reg} et on définit $p^*(D)$ comme l'unique diviseur de Weil à correspondant à $p^*(D')$ via l'isomorphisme WDiv $(\widetilde{X}) \simeq \operatorname{WDiv}(p^{-1}(X_{reg}))$. Le pullback envoie les diviseurs principaux sur des diviseurs principaux et on obtient un morphisme de groupes $\operatorname{Cl}(X) \to \operatorname{Cl}(\widetilde{X})$.

Proposition 2.2.2.2. Soit X vérifiant (†). Pour tout $D \in K$ et $s \in \mathcal{R}_D(X)$, on $a \operatorname{div}(s) = p^*(\operatorname{div}_D(s))$. Si de plus X_s est affine, on a $\operatorname{Supp}(\operatorname{div}(s)) = p^{-1}(\operatorname{Supp}(\operatorname{div}_D(s))$.

 $D\acute{e}monstration$. Comme $\widetilde{X} \setminus p^{-1}(X_{reg})$ est de codimension $\geqslant 2$ on peut supposer pour ce problème X et donc \widetilde{X} lisse. On écrit $D = (U_i, f_i)$, on a ainsi $s_i := s_{|U_i} = \alpha_i f_i^{-1}$ avec $\alpha_i \in \mathcal{O}_X(U_i)$, et localement on a $p^*(\operatorname{div}_D(s)_{|U_i}) = p^*(\operatorname{div}(\alpha_i)) = \operatorname{div}(p^\sharp(\alpha_i)) = \operatorname{div}(\alpha_i) = \operatorname{div}(\alpha_i f_i^{-1}) = \operatorname{div}(s_{|U_i})$, l'avant dernière égalité étant due au fait que f_i est inversible sur $p^{-1}(U_i)$. En effet, sur U_i on a $D = \operatorname{div}(f_i)$ donc $f_i \in \mathcal{R}_{-D}(U_i) \subset \mathcal{O}_{\widetilde{X}}(p^{-1}(U_i))$ et $f_i^{-1} \in \mathcal{R}_D(U_i) \subset \mathcal{O}_{\widetilde{X}}(p^{-1}(U_i))$.

La deuxième assertion, il faut montrer $p^{-1}(X_{D,s}) = \widetilde{X}_s$. On remarque $s^{-1} \in \mathcal{R}_{-D}(X_{D,s})$ donc s est inversible sur $p^{-1}(X_{D,s})$, ce qui montre $p^{-1}(X_{D,s}) \subset \widetilde{X}_s$. Par ailleurs, $\operatorname{div}_D(s)$ est de Cartier sur X_{reg} et son pullback est le pullback de ses équations locales, on obtient donc $p^{-1}(X_{D,s}) \cap p^{-1}(X_{reg}) = \widetilde{X}_s \cap p^{-1}(X_{reg})$. Ainsi $\widetilde{X}_s \setminus p^{-1}(X_{D,s})$ est le complémentaire d'un ouvert affine de codimension $\geqslant 2$, donc est vide d'après 1.3.3.4.

Corollaire 2.2.2.3. Soit X vérifiant (\dagger) . Soit $\tilde{x} \in \widetilde{X}$ tel que $H.\tilde{x}$ est fermé dans \widetilde{X} . Pour tout $D \in K, f \in \mathcal{R}_D(X)$ non-nulle, on a:

$$f(\tilde{x}) = 0 \iff p(\tilde{x}) \in \text{Supp}(\text{div}_D(f))$$

Démonstration. Remarquons que l'on a $\operatorname{Supp}(p^*(D)) \subset p^{-1}(\operatorname{Supp}(D))$. Puis comme p est surjective, on trouve $p(\operatorname{Supp}(p^*(D))) \subset \operatorname{Supp}(D)$. En effet, on peut supposer D effectif et on a $p(\operatorname{Supp}(p^*(D))) = p(\operatorname{Supp}(p^*(D'))) \subset p(\operatorname{Supp}(p^*(D')))$, où on a noté $D' = D \cap X_{reg}$. Or $x \in \operatorname{Supp}(p^*(D')) \iff x \in \mathcal{V}_{p^{-1}(U_i)}(p^{\sharp}(f_i))$ en écrivant $D' = (U_i, f_i)_i$. On en déduit $p(x) \in \mathcal{V}_{U_i}(f_i)$, d'où $p(x) \in \operatorname{Supp}(D')$. Comme $\operatorname{Supp}(D') = \operatorname{Supp}(D)$, on a bien le résultat annoncé. De plus, $p(\operatorname{Supp}(p^*(D)))$ et $\operatorname{Supp}(D)$ coïncident sur l'ouvert dense X_{reg} et $p(\operatorname{Supp}(p^*(D)))$ est fermé d'après 1.5.2.2. On a donc l'égalité :

$$p(\operatorname{Supp}(p^*(D))) = \operatorname{Supp}(D)$$

Ainsi en appliquant la proposition précédente, on a $p(\operatorname{Supp}(\operatorname{div}(f))) = \operatorname{Supp}(\operatorname{div}_D(f))$ et donc $f(\tilde{x}) = 0 \Longrightarrow p(\tilde{x}) \in \operatorname{Supp} \operatorname{div}_D(f)$. Réciproquement, si $p(\tilde{x}) \in \operatorname{Supp} \operatorname{div}_D(f)$, on a $p(\tilde{x}) = p(\tilde{x}')$ pour un $\tilde{x}' \in \operatorname{Supp}(\operatorname{div}(f))$. Toujours d'après 1.5.2.2 et en utilisant que $H.\tilde{x}$ est fermé on obtient $H.\tilde{x} \subset \overline{H.\tilde{x}'}$ ce qui prouve $f(\tilde{x}) = 0$ car f est nulle sur $H.\tilde{x}'$, étant homogène et s'annulant en \tilde{x}' .

On établit maintenant un résultat important sur le groupe des classes de \widetilde{X} sous l'hypothèse (†). On mentionne tout de suite une réciproque dans le cas où X est lisse. Soit \widetilde{X} le spectre relatif du faisceau d'algèbres divisorielles associé à un sous-groupe de type fini $K \subset \mathrm{WDiv}(X)$. Dans ce cas, si $\mathrm{Cl}(\widetilde{X}) = 0$, alors la projection $K \to \mathrm{Cl}(\widetilde{X})$ est surjective (voir [3] 1.3.3).

Théorème 2.2.2.4. Soit X vérifiant (\dagger) . On a $Cl(\widetilde{X}) = 0$.

Démonstration. Comme $p^{-1}(X_{sing})$ est de codimension $\geqslant 2$ on peut supposer X et donc \widetilde{X} lisse, on a en effet un isomorphisme $\operatorname{Cl}(\widetilde{X}) \simeq \operatorname{Cl}(\widetilde{X} \setminus p^{-1}(X_{sing}))$. Soit $\widetilde{D} \in \operatorname{WDiv}(\widetilde{X})$ un diviseur. Il est de Cartier par hypothèse et on veut montrer qu'il est principal. \widetilde{X} est muni d'une action de $\operatorname{Spec} k[K]$ par la K-graduation de $\mathcal{O}_{\widetilde{X}}$. On étend cette graduation au faisceau structural $\operatorname{Sym}(\mathcal{O}_{\widetilde{X}}(\widetilde{D}))$ du fibré en droites (L,π) associé à \widetilde{D} en posant localement $\deg(t)=0$ sur les ouverts affines U_i où $\pi^{-1}(U_i)\simeq \mathcal{O}_{U_i}[t]$. Cela munit L d'une action de H dont on voit qu'elle est π -équivariante et linéaire sur les fibres (localement c'est l'identité entre les fibres). On a ainsi muni L d'une H-linéarisation et on obtient un H-module $\Gamma(\widetilde{X},\mathcal{O}_{\widetilde{X}}(\widetilde{D}))$ (Cf ??). On en déduit que pour tout $h \in H$, $f \in \Gamma(\widetilde{X},\mathcal{O}_{\widetilde{X}}(\widetilde{D}))$, on a $\operatorname{div}_{\widetilde{D}}(h.f) = h.\operatorname{div}_{\widetilde{D}}(f)$. Choisissant f homogène pour cette représentation (cf ??) on a ainsi construit un diviseur $\operatorname{div}_{\widetilde{D}}(f)$ fixe pour l'action de H et linéairement équivalent à D. On peut donc supposer que \widetilde{D} est H-invariant. En utilisant le diagramme du début de cette partie qui s'applique localement ici et en remarquant que H agit transitivement sur lui même on conclut que via cette isomorphisme, \widetilde{D} est de la forme $H \times Z$. On en déduit en posant $D = p(\widetilde{D})$ que $\widetilde{D} = p^*(D)$. Or, par hypothèse D est linéairement équivalent à un $D' \in K$, on a ainsi le résultat car $p^*(D')$ est principal d'après la proposition précédente.

Corollaire 2.2.2.5. Soit X vérifiant (†). Alors \widetilde{X} est quasi-affine.

Démonstration. On recouvre X par des ouverts affine $X_1, ..., X_r$. D'après 1.3.3.4 chaque $X \setminus X_i$ est purement de codimension 1, c'est donc le support d'un diviseur effectif $D_i \in \operatorname{WDiv}(X)$. Sur X_{reg} , on a donc $\operatorname{Supp}(D_i) = \operatorname{Supp}(\operatorname{div}_{D_i}(1))$ où 1 est vu comme une section globale de $\mathcal{O}_X(D_i)$. Cette égalité reste vrai sur X grâce aux isomorphismes $\Gamma(X, \mathcal{O}_X(D_i) \simeq \Gamma(X_{reg}, \mathcal{O}_X(D_i))$ et $\operatorname{WDiv}(X) \simeq \operatorname{WDiv}(X_{reg})$. Ainsi, d'après 2.2.2.2, \widetilde{X} est recouvert par des \widetilde{X}_{f_i} qui sont affines car les $X_i = X_{D_i,1}$ le sont. Maintenant, notons que la propriété de finitude locale du faisceau structural de \widetilde{X} reste vrai sur tout recouvrement affine de \widetilde{X} , on a donc en particulier pour tout i, $\mathcal{O}(\widetilde{X}_{f_i}) = k[(g_{ij})_{1 \leqslant j \leqslant n}]$. Comme f_i est inversible sur chaque \widetilde{X}_{f_i} , on ne change rien en multipliant les g_{ij} par une puissance f_i^m , ce qui permet de supposer que les g_{ij} proviennent de sections globales en prenant un m suffisamment grand (Cf ??). On a ainsi construit une sous-algèbre de type fini $R = k[(g_{ij})_{1 \leqslant i \leqslant r, 1 \leqslant j \leqslant n}]$ de $\mathcal{O}(\widetilde{X})$ telle que pour tout i, on a $R_{f_i} = \mathcal{O}(\widetilde{X}_{f_i}) = \mathcal{O}(\widetilde{X})_{f_i}$, la dernière égalité venant de ??. On en déduit des immersions ouvertes $\widetilde{X}_{f_i} \hookrightarrow \operatorname{Spec}(R)$ qui se recollent en une immersion ouverte $\widetilde{X} \hookrightarrow \operatorname{Spec}(R)$ d'où le résultat.

Corollaire 2.2.2.6. Soit X vérifiant (\dagger) , $x \in X$, $K_x^0 \subset K$ le sous-groupe des diviseurs localement principaux en x, et $\tilde{x} \in p^{-1}(x)$ tel que $H.\tilde{x}$ est fermé. Alors le stabilisateur $H_{\tilde{x}}$ est égal à Spec $k[K/K_x^0]$.

Démonstration. Comme H agit localement sur \widetilde{X} on peut se placer sur un voisinage affine de x, on suppose ainsi X et \widetilde{X} affines. Ainsi, en appliquant 1.4.4.11, on a $H_{\widetilde{x}}=\operatorname{Spec} k[K/K_{\widetilde{x}}]$, où $K_{\widetilde{x}}$ est le groupe d'orbite de \widetilde{x} . Supposons que $D\in K$ soit principal sur ce voisinage de x, c'est à dire $D=\operatorname{div}(g)$ avec $g\in k(X)$. Choisissons $\alpha\in k[X]$ tel que $\alpha(x)\neq 0$. Alors $f:=\alpha g^{-1}\in \mathcal{R}_D(X)$ et $\operatorname{div}_D(f)=\operatorname{div}(\alpha)$. En utilisant 2.2.2.3, on obtient $f(\widetilde{x})\neq 0$ et donc $D\in K_{\widetilde{x}}$. Réciproquement, prenons $D\in K_{\widetilde{x}}$, c'est à dire $f(\widetilde{x})\neq 0$ pour un $f\in \mathcal{R}_D(X)$. Alors $x\notin\operatorname{div}_D(f)$, et on a $D=-\operatorname{div}(f)$ au voisinage de x. Cela qui montre que D est localement principal.

Corollaire 2.2.2.7. Soit X vérifiant (\dagger) , et telle que tout diviseur soit de Cartier, par exemple si X est lisse. Alors H agit librement sur \widetilde{X} .

2.2.3 Propriétés algébriques de l'anneau de Cox

Proposition 2.2.3.1. Soit X vérifiant (\dagger) . Alors :

- 1. L'anneau de $Cox \mathcal{R}(X)$ est factoriel.
- 2. Le groupe des unités de l'anneau de Cox est $\mathcal{R}(X)^{\times} = \Gamma(X, \mathcal{O}^{\times})$
- Démonstration. 1. On peut supposer X lisse car X_{sing} est de codimension $\geqslant 2$ donc $\Gamma(X, \mathcal{R}) = \Gamma(X_{reg}, X)$. Ainsi \widetilde{X} est lisse (par vérification locale immédiate) et le théorème 2.2.2.4 s'applique. Soit $f \in \mathcal{R}(X) = p_*\mathcal{O}_{\widetilde{X}}(X) = \mathcal{O}_{\widetilde{X}}(\widetilde{X})$. On a donc le diviseur effectif $\operatorname{div}(f) = \sum n_i D_i = \sum n_i \operatorname{div}(f_i) = \operatorname{div}(\prod f_i^{n_i})$ où les D_i sont des diviseurs premiers, chaque $f_i \in \mathcal{R}(X)$ d'après 1.7.2.1 et est irréductible. L'unicité de l'écriture sur WDiv(X)) donne l'unicité de l'écriture $f = u \prod f_i^{n_i}$ où $u \in \mathcal{R}(X)^{\times}$.
 - 2. Une inclusion est évidente. Pour l'autre prenons $f \in \mathcal{R}(X)^{\times}$, qui est homogène d'après ??, disons de degré D. Alors, $fg = 1 \in \mathcal{R}_0(X)$ pour un $g \in \mathcal{R}(X)^{\times}$ homogène de degré -D. Ainsi on a $0 = \operatorname{div}_0(1) = \operatorname{div}_{D-D}(fg) = \operatorname{div}_D(f) + \operatorname{div}_{D}(g)$. Les deux derniers diviseurs étant effectifs, on a $\operatorname{div}_D(f) = 0$ et donc $D = -\operatorname{div}(f)$, ce qui donne $f \in \mathcal{R}_0(X) = \mathcal{O}(X)^{\times}$ d'où le résultat.

Exemple 2.2.3.2. Reprenons le cas du cône affine de l'exemple introductif. $\mathcal{R}(Y)$ est l'algèbre de polynômes sur k à 4 indéterminés, donc est factoriel en particulier. Par ailleurs, $\mathcal{O}(Y)^{\times} = k^*$ car en inversant par exemple t_1 on obtient $Y_{t_1} \simeq \mathbb{A}^1 \setminus \{0\} \times \mathbb{A}^2$, d'où le résultat.

Proposition 2.2.3.3. Soit X vérifiant (†). Alors :

- 1. Soient $f \in \mathcal{R}_D(X)$ et $g \in \mathcal{R}_E(X)$ non nulles. Alors $f \mid g \iff \operatorname{div}_D(f) \leqslant \operatorname{div}_E(g)$.
- 2. Soit $f \in \mathcal{R}_D(X)$ non nulle. Alors f est premier si et seulement si $\operatorname{div}_D(f)$ est premier.

Démonstration. Soit f,g des fonctions régulières non-nulles sur \widetilde{X} . Comme \widetilde{X} est intègre, on peut les voir comme des éléments de $k(X)^*$. Ainsi $f \mid g$ dans $\mathcal{R}(X)$ si et seulement si $\operatorname{div}(f^{-1}g) \geqslant 0$. Prenant f,g comme dans l'énoncé et en utilisant 2.2.2.2, que c'est équivalent à $\operatorname{div}_D(f) \leqslant \operatorname{div}_E(g)$. La preuve du deuxième énoncé est similaire.

2.3 Groupe des classes avec torsion

Bibliographie

- [1] auteur. titre. journal, 2015.
- [2] D.Mumford. The red book of varieties and schemes. Springer, 1999.
- [3] I.Arzhantsev et al. Cox Rings. Cambridge University Press, 2014.
- [4] R. Hartshorne. Algebraic Geometry. Springer, 1977.
- [5] H.Matsumura. Commutative ring theory. Cambridge University Press, 1986.
- [6] I.Arzhantsev. Introduction to algebraic groups and invariant theory. http://halgebra.math.msu.su/staff/arzhan/driver.pdf. Accessed: 2018-23-01.
- [7] M.Brion. Introduction to actions of algebraic groups. https://www-fourier.ujf-grenoble.fr/~mbrion/notes_luminy.pdf. Accessed: 2018-23-01.
- [8] M.Brion. Linearization of algebraic group actions. https://www-fourier.ujf-grenoble.fr/~mbrion/lin_rev.pdf. Accessed: 2018-18-03.
- [9] T.A.Springer. Linear Algebraic Groups. Birkhauser, 1998.
- [10] Alvaro Rittatore Walter Ferrer Santos. Actions and invariants of algebraic groups. Chapman and Hall, 2005.