Corrigé épreuve STATISTIQUE juin 2007

Exercice I (4 points)

Réponses: B/C/B/B/A/C/A/C.

Exercice II (11 points)

Intéressement en k€	ni	ni ⁺	hi
[0; 10[6	6	2,4
[10; 20[30	36	12
[20; 24[50	86	50
[24; 30[40	126	26,67
[30;40[20	146	8
[40; 50[4	150	1,6

1) Déterminer au centième, les paramètres suivants :

Classe modale	[20; 24] elle correspond à la hauteur (hi) la plus forte sur l'histogramme.
Moyenne	3540/150 = 23,60
C_{25}	$C_{(25)} = 37,75 \implies C_{25} = 20,14$
Q_3	$Q_{(3)} = 113,25 \implies Q_3 = 28,09$
Médiane	Le rang de la me = $75,50 \Rightarrow$ me = $23,16$
$\sum n_i x_i^2 - n \overline{x}^2$	SCE = 9316
Coefficient de	(28,09-23,16)-(23,16-20,14)
Yule	$\frac{(28,09-23,16)-(23,16-20,14)}{(28,09-20,14)}=0,24$

2) Le coefficient de Yule est strictement positif : cette série n'est pas symétrique, elle est étalée à droite.

3)
$$\gamma_2 = \frac{2064607/150}{7,88^4} - 3 = 0,57$$
. La série est leptocurtique. Elle est moins aplatie que la distribution de la loi normale de même moyenne et de même écart type.

4) Si on appelle X la variable mesurant l'ancien intéressement et Y la variable correspondant au nouvel intéressement après augmentation :

$$Y = 1,015X + 1.$$

La moyenne de Y est donc égale à $1,015\times23,6+1=24,95$.

L'écart type de Y est égal à $|1,015| \times 7,881 = 8$.

Exercice III (6 points)

Hauteur origine	Faible	Moyenne	Forte
Région l	27 / 48,90	189 / 186,60	54 / 34,50
Région 2	33 / 32,60	124 / 124,40	23 / 23
Région 3	103 / 81,50	309 / 311	38 / 57,50

Hypothèse nulle: Il y a indépendance entre la taille des arbres et leur origine géographique.

Critère statistique calculé :	33,16		
Nombre de degrés de liberté :	(3-1)(3-1) = 4		
Critère statistique théorique :	9,49		
Conclusion:	On rejette H _o avec un risque de se trom inférieur à 5 %		
Risque réel ?	Le risque de se tromper en refusant H _o e inférieur à 0,1%.		

Exercice IV (10 points)

Partie A:

1) X peut s'écrire comme la somme de 180 variables aléatoires indépendantes :

 $X = \sum_{i=1}^{180} X_i$ où X_i est la variable aléatoire mesurant le nombre d'heures de stationnement payées par le client numéro $i \Rightarrow X$ suit une loi de Poisson de paramètre $180 \times 3 = 540$.

- 2) Le paramètre de la loi de Poisson étant > 18, la loi de X peut être approximée par une loi normale $N(540; \sqrt{540})$.
- 3) Il faut trouver x tel que $P(540 x \le X \le 540 + x) = 0.92$.

Or
$$P(T \le \frac{x}{\sqrt{540}}) - P(T \le -\frac{x}{\sqrt{540}}) = 2P(T \le \frac{x}{\sqrt{540}}) - 1 \Rightarrow P(T \le \frac{x}{\sqrt{540}}) = 0.96.$$

Dans la table 2 de la loi normale on lit la valeur 1,7507 = $\frac{x}{\sqrt{540}}$. On obtient x = 40,68 et l'intervalle centré sur la moyenne [499,32; 580,68].

Partie B:

- 1) Pour chaque client qui se présente aux caisses, il y a 2 issues possibles :
 - \Rightarrow il choisit la caisse B avec une probabilité p = 0,3
 - \rightarrow ou non avec la probabilité q = 0,7.

Cette épreuve se répète de façon indépendante pour les 180 clients. L(Y) = B(180; 0.3).

2)
$$E(Y) = 180 \times 0.3 = 54$$
 et $V(Y) = 180 \times 0.3 \times 0.7 = 37.8 \Rightarrow \sigma(Y) = 6.15$.

3) n > 5 et
$$\left| \sqrt{\frac{0.3}{0.7}} - \sqrt{\frac{0.7}{0.3}} \right| \times \frac{1}{\sqrt{180}} = 0.065$$
 donc inférieur à 0.34.

On peut approcher la loi Binomiale par la loi normale N(54;6,15).

4)
$$P(Y \le 62) - P(Y \le 38) = P(T \le 1,30) - P(T \le -2,60) = 0,9032 - (1 - 0,9953) = 0,8985.$$

5) On cherche x tel que :
$$P(Y \le x) = 0.97 \Rightarrow P(T \le \frac{x - 54}{6.15}) = 0.97$$
. On en déduit que $(x - 54)/6.15 = 1.8808$. Il faut donc 66 reçus.

Exercice V (11 points)

1)
$$cov(X; Y) = \frac{1623,10}{8} - \frac{24,4}{8} \times \frac{515}{8} = 6,5438$$
.

$$V(X) = \frac{78.2}{8} - \left(\frac{24.4}{8}\right)^2 = 0.4725$$

$$\Rightarrow b = 6.5438/0.4725 = 13.8493 \text{ et } a = \frac{515}{8} - b \times \frac{24.4}{8} = 22.1346$$

$$V(Y) = \frac{34025}{8} - \left(\frac{515}{8}\right)^2 = 108,9844$$

 $r^2 = \frac{6,5438^2}{0,4725 \times 108,9844} = 0,8316 \Rightarrow 83,16 \%$ des variations du chiffre d'affaires sont expliquées par les frais de publicité.

$$SPE(X ; Y) = n \times cov(X ; Y) = 52,35.$$

2) L'écart type des résidus
$$s(e_i) = \sqrt{\frac{146,87}{8}} = 4,28$$
.

N° observation	Yi estimé	résidu	e_i^2	Résidu standardisé
1	49,83	8,83	77,97	2,06
8	78,92	3,92	15,37	0,91
Total	515	0	146,87	0

3) La première est une donnée OUT car
$$\left| \frac{e_i}{s(e_i)} \right| > 2$$
.

4)
$$cov(x_i; e_i) = \frac{\sum x_i e_i}{n} \approx 0$$

5)
$$s^2(\hat{y}_i) = r^2 \times s^2(y_i) = 90,63$$
.

Exercice VI (8 points)

Hypothèse nulle: La distribution observée suit une loi Normale N(25,5; 10).

Calculons:

$$P(X < 10) = P(T < (10-25,5)/10) = P(T < -1,55) = 1 - 0.9394 = 0.0606$$

$$P(25 \le X < 30) = P(T < 0.45) - P(T < -0.05) = 0.6736 - (1 - 0.5199) = 0.1935$$

$$P(X \ge 40) = P(T \ge 1,45) = 1 - 0,9265 = 0,0735$$

Valeurs de	probabilité	Effectifs	Effectifs
X		théoriques	observés
X < 10	0,0606	12,12	10
10≤X<20	0,2306	46,12	50
20≤X<25	0,1889	37,78	38
25≤X<30	0,1935	38,70	40
30≤X<40	0,2528	50,57	52
X ≥ 40	0,0735	14,70	10
Total	1	200	200

Il n'y a pas d'effectif théorique < 5.

Critère statistique calculé: 2,29

Critère statistique théorique: 11,10 pour un ddl de 5

<u>Conclusion</u>: On accepte H_o, car si on la refuse on prend un risque de se tromper supérieur à 5% (risque réel compris entre 50% et 90%).