A Cutoff Time Strategy based on the Coupon Collector's Problem

— Supplementary Materials —

Fernando G. Lobo¹, Mosab Bazargani², and Edmund K. Burke³

¹DEEI-FCT and CENSE – Centro de Investigação em Ambiente e Sustentabilidade, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal f.lobo@ualg.pt

²School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4FZ, UK m.bazargani@qmul.ac.uk

³University of Leicester, University Road, Leicester LE1 7RH, UK edmund.burke@leicester.ac.uk

This document contains supplementary material to the article "A Cutoff Time Strategy based on the Coupon Collector's Problem" submitted to EJOR. The 9 tables appearing in the article and presented herein with the results over all TSP instances, all QAP instances, and all PFSP instances.

Table 1: Summary of results obtained for the three problem classes and for the three settings of the history length $L_h \in \{1,5000,50000\}$. 100 independent runs were made for each combination of problem instance and L_h value. The table reports how many of those runs the CCP strategy reached a better, equal, or worse solution cost, than the 2% cutoff strategy (labeled as <, =, or >, under the Cost columns). It also reports in how many of those runs the CCP strategy took less or more iterations to stop than the 2% strategy (labeled as < or >, under Iterations). The CCP cutoff time is calculated using a confidence level p = 0.95.

TSP

			L_h =	= 1			1	$L_h =$	5000			1	$L_h =$	50000	
Dataset		Cost		Itera	tions		Cost		Itera	tions		Cost			ations
Dataset	(CCI	P vs. 2	%)	(CCP	vs. 2%)	(CCI	o vs. 2	%)	(CCP	vs. 2%)	(CC	CP vs. 2	2%)	(CCP	vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
d657	100	0	0	0	100	22	78	0	0	100	0	100	0	100	0
u724	100	0	0	0	100	38	62	0	0	100	0	100	0	100	0
rat783	100	0	0	0	100	32	68	0	0	100	0	100	0	100	0
dsj1000	100	0	0	0	100	23	77	0	0	100	0	100	0	0	100
pr1002	100	0	0	0	100	27	73	0	0	100	0	100	0	0	100
u1060	100	0	0	0	100	67	33	0	0	100	4	96	0	0	100
vm1084	100	0	0	0	100	38	62	0	0	100	0	100	0	0	100
pcb1173	100	0	0	0	100	36	64	0	0	100	0	100	0	0	100
d1291	100	0	0	0	100	50	50	0	0	100	0	100	0	0	100
rl1304	100	0	0	0	100	45	55	0	0	100	0	100	0	0	100
rl1323	100	0	0	0	100	31	69	0	0	100	0	100	0	0	100
nrw1379	100	0	0	0	100	38	62	0	0	100	0	100	0	0	100
fl1400	100	0	0	0	100	99	1	0	0	100	15	85	0	0	100
u1432	100	0	0	0	100	100	0	0	0	100	31	69	0	0	100
fl1577	100	0	0	0	100	97	3	0	0	100	22	78	0	0	100
d1655	100	0	0	0	100	93	7	0	0	100	16	84	0	0	100
vm1748	100	0	0	0	100	71	29	0	0	100	1	99	0	0	100
u1817	100	0	0	0	100	96	4	0	0	100	27	73	0	0	100
rl1889	100	0	0	0	100	77	23	0	0	100	4	96	0	0	100
d2103	100	0	0	0	100	86	14	0	0	100	7	93	0	0	100
u2152	100	0	0	0	100	99	1	0	0	100	46	54	0	0	100
u2319	100	0	0	0	100	100	0	0	0	100	72	28	0	0	100
pr2392	100	0	0	0	100	72	28	0	0	100	2	98	0	0	100
pcb3038	100	0	0	0	100	78	22	0	0	100	3	97	0	0	100

Table 1: Continued from previous page

			L_h =	= 1			1	$L_h =$	5000			ì	$L_h =$	50000	
Dataset		Cost		Itera	tions		Cost		Itera	tions		Cost		Itera	tions
Dataset	(CCF	vs. 2	2%)	(CCP	vs. 2%)	(CCI	vs. 2	%)	(CCP v	rs. 2%)	(CC	P vs. 5	2%)	(CCP	vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
fl3795	100	0	0	0	100	100	0	0	0	100	85	15	0	0	100
fnl4461	100	0	0	0	100	88	12	0	0	100	2	98	0	0	100
rl5915	100	0	0	0	100	92	8	0	0	100	8	92	0	0	100
rl5934	100	0	0	0	100	89	11	0	0	100	27	73	0	0	100
brd14051	100	0	0	0	100	98	2	0	0	100	38	62	0	0	100
d15112	100	0	0	0	100	100	0	0	0	100	31	69	0	0	100

 \mathbf{QAP}

QAP			L_h =	_ 1				$L_h =$	5000				T. —	50000	
		Cost	L_h -		ations		Cost	L_h —		ations		Cost	L_h —		ations
Dataset	(CC	P vs. 2	2%)		vs. 2%)	(CC	P vs. 2	2%)		vs. 2%)	(CC	CP vs.	2%)		vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
bur26a	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
bur26b	0	99	1	100	0	o o	100	0	100	0	0	100	0	97	3
bur26c	ő	100	0	100	0	ő	100	0	100	0	ő	100	0	100	0
bur26d	ő	99	1	100	0	ő	100	0	99	1	ő	100	0	100	0
bur26e	ő	100	0	100	0	ő	100	0	100	0	ő	100	0	100	0
bur26f	0	99	1	100	0	o o	100	0	99	1	0	100	0	100	0
bur26g	0	100	0	100	0	o o	100	0	100	0	o o	100	0	100	0
bur26h	0	100	0	100	0	o o	100	0	99	1	o o	100	0	100	0
chr12a	0	100	0	100	0	0	100	0	23	77	0	100	0	0	100
chr12b	0	99	1	100	0	0	100	0	12	88	0	100	0	0	100
chr12c	0	100	0	100	0	0	100	0	32	68	0	100	0	0	100
chr15a	0	100	0	100	0	1	99	0	1	99	0	100	0	0	100
chr15b	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
chr15c	0	100	0	100	0	0	100	0	1	99	0	100	0	0	100
chr18a	0	100	0	100	0	1	99	0	0	100	0	100	0	0	100
chr18b	0	93	7	100	0	0	100	0	0	100	0	100	0	0	100
chr20a	0	98	2	100	0	0	100	0	0	100	0	100	0	0	100
chr20b	0	100	0	100	0	2	98	0	0	100	0	100	0	0	100
chr20c	0	100	0	100	0	0	100	0	11	89	0	100	0	35	65
chr22a	0	100	0	100	0	0	100	0	15	85	0	100	0	56	44
chr22b	0	98	2	100	0	0	100	0	11	89	0	100	0	16	84
chr25a	0	100	0	100	0	1	99	0	89	11	0	100	0	92	8
els19	0	100	0	100	0	0	100	0	4	96	0	100	0	7	93
esc16a	0	94	6	100	0	0	100	0	100	0	0	100	0	0	100
esc16b	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
esc16c	0	92	8	100	0	0	100	0	87	13	0	100	0	0	100
esc16d	0	91	9	100	0	0	100	0	100	0	0	100	0	0	100
esc16e	0	83	17	100	0	0	100	0	100	0	0	100	0	0	100
esc16f	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
esc16g	0	97	3	100	0	0	100	0	100	0	0	100	0	0	100
esc16h	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
esc16i	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
esc16j	0	97	3	100	0	0	100	0	100	0	0	100	0	0	100
esc32a	0	74	26	100	0	0	100	0	89	11	0	100	0	98	2
esc32b	0	82	18	100	0	0	100	0	12	88	0	100	0	16	84
esc32c	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
esc32d	0	86	14	100	0	0	100	0	0	100	0	100	0	0	100
esc32e	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
esc32g	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
esc32h	0	82	18	100	0	0	100	0	0	100	0	100	0	0	100
esc64a	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
esc128	3	97	0	0	100	37	63	0	0	100	0	100	0	0	100
had12	0	96	4	100	0	0	100	0	6	94	0	100	0	0	100
had14	0	94	6	100	0	0	100	0	1	99	0	100	0	0	100
had16	0	95	5	100	0	0	100	0	0	100	0	100	0	0	100
had18	0	95	5	100	0	0	100	0	0	100	0	100	0	0	100
had20	0	99	1	100	0	0	100	0	1 100	99	0	100	0	16	84
kra30a kra30b	0	92 95	8	100 100	0	0	100 100	0	100 100	0	0	100 100	0	100 100	0
kra30b kra32	0	95 98	$\frac{5}{2}$	100	0	0	100	0	100	0	0	100	0	100	0
lipa20a	0	98 99	1	100	0	0	100	0	31	69	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98	0	56	44
lipa20a lipa20b	0	100	0	100	0	3	97	0	83	69 17	$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$	98 100	0	91	44 9
lipa30a	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
lipa30b	0	100	0	100	0	0	100	0	98	$\frac{0}{2}$	0	100	0	100	0
lipa40a	0	100	0	100	0	0	100	0	98	1	0	100	0	100	0
lipa40b	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
lipa50a	0	99	1	100	0	0	100	0	55	45	0	100	0	100	0
lipa50b	0	100	0	100	0	0	100	0	96	45	0	100	0	100	0
11Pa000	U	100	U	100	U	U	100	U	J-0	4					t page >

 Table 1: Continued from previous page

					e 1: Con			-		риус 					
		<u> </u>	L_h =					$L_h =$				-	$L_h =$		
Dataset	(00	Cost CP vs.	2%)		erations P vs. 2%)	(CC	Cost P vs.	9 %)	1	rations P vs. 2%)	(C)	Cost CP vs.	20%)		rations vs. 2%)
	(00	r vs.	270)	(CCI	vs. 270)	(CC.	r vs.	270) >	(CCI	vs. 270) >	(()	⊃r vs. =	270)	(CCF	vs. 270)
lipa60a	0	99	1	100	0	0	100	0	1	99	0	100	0	100	0
lipa60b	0	100	0	100	0	0	100	0	48	52	0	100	0	100	0
lipa70a	0	100	0	100	0	1	99	0	0	100	0	100	0	100	0
lipa70b	0	100	0	100	0	0	100	0	51	49	0	100	0	100	0
lipa80a	0	100	0	100	0	0	100	0	0	100	0	100	0	100	0
lipa80b	0	100	0	100	0	0	100	0	27	73	0	100	0	100	0
lipa90a	0	100	0	96	4	0	100	0	0	100	0	100	0	100	0
lipa90b nug12	0 0	100 97	$0 \\ 3$	87 100	13 0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99 100	0	3 43	97 57	0	$\frac{100}{100}$	0	100	0 100
nug12 nug14	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
nug15	0	100	0	100	0	0	100	0	0	100	0	100	0	ő	100
nug16a	0	100	0	100	0	1	99	0	0	100	0	100	0	0	100
nug16b	0	98	2	100	0	1	99	0	0	100	0	100	0	0	100
nug17	0	99	1	100	0	1	99	0	0	100	0	100	0	0	100
nug18	0	99	1	100	0	0	100	0	0	100	0	100	0	0	100
nug20	0	99	1	100	0	0	100	0	4	96	0	100	0	14	86
nug21	0	100	0	100	0	0	100	0	19	81	0	100	0	50	50
nug22 nug24	0 0	99 96	$1 \\ 4$	100 100	0	0	100 100	0	83 96	17 4	0	$\frac{100}{100}$	0	92 98	$8\\2$
nug24 nug25	0	100	4 0	100	0	0	100	0	96	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	0	100	0	98	1
nug27	0	97	3	100	0	0	100	0	100	0	0	100	0	100	0
nug28	0	98	2	100	0	0	100	0	100	0	0	100	0	100	0
nug30	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
rou12	0	100	0	100	0	0	100	0	29	71	0	100	0	0	100
rou15	0	100	0	100	0	3	97	0	2	98	0	100	0	0	100
rou20	0	100	0	100	0	5	95	0	0	100	0	100	0	9	91
scr12	0	99	1	100	0	0	100	0	17	83	0	100	0	0	100
scr15 scr20	0 0	100 100	0	100 100	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	100 99	0	0 5	100 95	0	100	0	$\begin{array}{c c} 0 \\ 22 \end{array}$	100
sko42	0	100	0	100	0	0	100	0	100	95	0	$\frac{100}{100}$	0	100	78 0
sko49	0	98	2	100	0	0	100	0	100	0	0	100	0	100	0
sko56	0	99	1	100	0	o o	100	0	100	ő	0	100	0	100	0
sko64	0	98	2	100	0	0	100	0	97	3	0	100	0	100	0
sko72	0	99	1	100	0	0	100	0	10	90	0	100	0	100	0
sko81	0	98	2	94	6	0	100	0	0	100	0	100	0	100	0
sko90	2	98	0	72	28	0	100	0	0	100	0	100	0	100	0
sko100a sko100b	4 8	96 92	0	26 21	74 79	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99 100	0	0	100	0	$\frac{100}{100}$	0	100 100	0 0
sko100b	4	96	0	21	79 79	0	100	0	0	100 100	0	100	0	100	0
sko100d	5	95	0	24	76	0	100	0	0	100	0	100	0	100	0
sko100e	10	90	0	26	74	0	100	0	0	100	0	100	0	100	0
sko100f	14	85	1	20	80	1	99	0	0	100	0	100	0	100	0
ste36a	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
ste36b	0	99	1	100	0	0	100	0	100	0	0	100	0	100	0
ste36c	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tai10a	0	100	0	100	0	0	100	0	82	18	0	100	0	0	100
tai10b tai12a	0	100 100	0	100 100	0	0	100 100	0	57 16	43 84	0	$\frac{100}{100}$	0	0	100 100
tai12b	0	100	0	100	0	0	100	0	14	86	0	100	0	0	100
tai15a	0	100	0	100	0	1	99	0	3	97	0	100	0	0	100
tai15b	0	100	0	100	0	0	100	0	0	100	Ö	100	0	0	100
tai17a	0	100	0	100	0	1	99	0	1	99	0	100	0	0	100
tai20a	0	100	0	100	0	0	100	0	1	99	2	98	0	2	98
tai20b	0	100	0	100	0	0	100	0	36	64	0	100	0	53	47
tai25a	0	100	0	100	0	1	99	0	58	42	0	100	0	75	25
tai25b tai30a	0	100	0	100	0	0	100	0	100 99	0	0	100	0	100	0
tai30a tai30b	0	100 100	0	100 100	0	0	100 100	0	100	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	$\frac{100}{100}$	0	100 100	0
tai35a	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tai35b	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tai40a	0	100	0	100	0	0	100	0	99	1	0	100	0	100	0
tai40b	0	99	1	100	0	0	100	0	100	0	0	100	0	100	0
tai50a	0	100	0	100	0	0	100	0	72	28	0	100	0	100	0
tai50b	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tai60a	0	100	0	100	0	0	100	0	100	99	0	100	0	100	0
tai60b tai64c	0 0	100 100	0	100 100	0	0 10	100 90	0	100	$\begin{bmatrix} 0 \\ 100 \end{bmatrix}$	0	$\frac{100}{100}$	0	100	$0 \\ 100$
tai80a	0	100	0	98	$\frac{0}{2}$	1 10	99	0	0	100	0	100	0	100	0
tai80b	0	100	0	99	1	0	100	0	0	100	0	100	0	100	0
tai100a	2	98	0	46	54	1	99	0	0	100	0	100	0	100	0
	· · · · · · · · · · · · · · · · · · ·											Com	timarad	00 00	ct page >

 Table 1: Continued from previous page

			L_h =	= 1				$L_h =$	5000				$L_h =$	50000	
Dataset		Cost		Iter	rations		Cost		Itera	ations		Cost		Iter	ations
Dataset	(CC	P vs. 2	2%)	(CCP	vs. 2%)	(CC	P vs. 2	2%)	(CCP	vs. 2%)	(CC	CP vs.	2%)	(CCP	vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
tai100b	5	95	0	18	82	0	100	0	0	100	0	100	0	100	0
tai150b	95	5	0	0	100	0	100	0	0	100	0	100	0	100	0
tai256c	85	15	0	0	100	81	19	0	0	100	0	100	0	0	100
tho30	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tho40	0	100	0	100	0	0	100	0	100	0	0	100	0	100	0
tho150	88	12	0	0	100	0	100	0	0	100	0	100	0	100	0
wil50	0	99	1	100	0	0	100	0	100	0	0	100	0	100	0
wil100	6	94	0	13	87	0	100	0	0	100	0	100	0	100	0

PFSP

PFSP	I	1				т	7000				r	F0000			
		Cost	L_h =		rations		Cost	$L_h =$		itions		Cost	$L_h =$		rations
Dataset		P vs. 2	0%)		vs. 2%)		P vs. 2) %)		vs. 2%)	(CC	COSt CP vs.	2%)		vs. 2%)
	<	vs. 2	>	(001	> >	<	vs. 2	>	(<	vs. 270) >	<)ı vs. =	>	<	vs. 270)
tai001 - 020×05	0	33	67	100	0	9	87	4	14	86	0	100	0	0	100
$tai002 - 020 \times 05$	0	31	69	100	0	0	91	9	27	73	0	100	0	ő	100
$tai003 - 020 \times 05$	0	36	64	100	0	15	85	0	0	100	0	100	0	o o	100
$tai004 - 020 \times 05$	0	56	44	100	0	7	93	0	0	100	0	100	0	0	100
$tai005 - 020 \times 05$	0	53	47	100	0	9	91	0	0	100	0	100	0	0	100
tai006 - 020×05	0	60	40	100	0	6	94	0	0	100	0	100	0	0	100
$tai007 - 020 \times 05$	0	99	1	100	0	0	100	0	6	94	0	100	0	0	100
$tai008 - 020 \times 05$	0	46	54	100	0	5	95	0	0	100	0	100	0	0	100
$tai009 - 020 \times 05$	0	55	45	100	0	7	93	0	0	100	0	100	0	0	100
$tai010 - 020 \times 05$	0	47	53	100	0	5	95	0	0	100	0	100	0	0	100
$tai011 - 020 \times 10$	0	84	16	100	0	2	98	0	0	100	0	100	0	1	99
$tai012 - 020 \times 10$	0	81	19	100	0	1	99	0	0	100	0	100	0	1	99
$tai013 - 020 \times 10$	0	95	5	100	0	0	100	0	0	100	0	100	0	0	100
$tai014 - 020 \times 10$	0	85	15	100	0	0	100	0	0	100	1	99	0	0	100
$tai015 - 020 \times 10$	0	70	30	100	0	1	99	0	0	100	1	99	0	2	98
tai016 - 020×10	0	77	23	100	0	4	96	0	0	100	0	100	0	0	100
tai017 - 020×10	0	27	73	100	0	1	99	0	0	100	0	100	0	0	100
tai018 - 020×10	0	84	16	100	0	1	99	0	0	100	0	100	0	1	99
tai019 - 020×10	0	59	41	100	0	7	93	0	0	100	0	100	0	0	100
tai020 - 020×10	0	86	14	100	0	2	98	0	0	100	0	100	0	0	100
tai021 - 020×20	0	91	9	100	0	2	98	0	0	100	0	100	0	1	99
tai022 - 020×20	0	88	12	100	0	3	97	0	1	99	0	100	0	5	95
tai023 - 020×20	0	93	7	100	0	1	99	0	0	100	0	100	0	3	97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	79	21	100	0	0	100	0	0	100	0	100	0	1	99
	0	95 91	5 9	100 100	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99	0	0	100 100	1 1	99 99	0	1 1	99 99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	91 89	9 11	100	0	$\begin{array}{c c} 0 \\ 2 \end{array}$	100 98	0	0	100	0	100	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	100
$tai027 - 020 \times 20$ $tai028 - 020 \times 20$	0	93	7	100	0	1	99	0	0	100	0	100	0	0	100
$tai028 - 020 \times 20$ $tai029 - 020 \times 20$	0	90	10	100	0	1	99	0	0	100	1	99	0	$\frac{0}{2}$	98
$tai029 020 \times 20$ $tai030 - 020 \times 20$	0	96	4	100	0	1	99	0	0	100	0	100	0	2	98
$tai030 - 020 \times 20$ $tai031 - 050 \times 05$	0	86	14	100	0	13	87	0	0	100	0	100	0	0	100
$tai032 - 050 \times 05$	0	79	21	100	0	43	57	0	0	100	4	96	0	42	58
$tai033 - 050 \times 05$	o 0	92	8	100	0	23	77	0	0	100	0	100	0	0	100
$tai034 - 050 \times 05$	0	55	45	100	0	45	55	0	0	100	0	100	0	8	92
$tai035 - 050 \times 05$	0	89	11	100	0	7	93	0	0	100	2	98	0	0	100
$tai036 - 050 \times 05$	0	72	28	100	0	8	92	0	0	100	0	100	0	0	100
$tai037 - 050 \times 05$	0	72	28	100	0	32	68	0	0	100	0	100	0	97	3
tai038 - 050×05	0	97	3	100	0	9	91	0	0	100	5	95	0	25	75
$tai039 - 050 \times 05$	0	83	17	100	0	10	90	0	0	100	0	100	0	2	98
$tai040 - 050 \times 05$	0	87	13	100	0	11	89	0	0	100	0	100	0	0	100
tai041 - 050×10	1	52	47	98	2	31	69	0	0	100	0	95	5	100	0
$tai042 - 050 \times 10$	0	51	49	98	2	34	66	0	0	100	0	97	3	100	0
$tai043 - 050 \times 10$	2	51	47	95	5	24	76	0	0	100	0	97	3	100	0
$tai044 - 050 \times 10$	0	52	48	100	0	31	69	0	0	100	0	100	0	100	0
$tai045 - 050 \times 10$	1	52	47	97	3	27	73	0	0	100	0	93	7	100	0
$tai046 - 050 \times 10$	1	76	23	98	2	31	69	0	0	100	0	96	4	100	0
$tai047 - 050 \times 10$	0	64	36	100	0	45	55	0	0	100	0	95	5	100	0
$tai048 - 050 \times 10$	0	64	36	99	1	26	74	0	0	100	0	96	4	100	0
tai049 - 050×10	0	69	31	99	1	38	62	0	0	100	0	95	5	100	0
$tai050 - 050 \times 10$	1	47	52	95	5	35	65	0	0	100	0	93	7	100	0
$tai051 - 050 \times 20$	2	75	23	93	7	33	67	0	0	100	0	94	6	100	0
$tai052 - 050 \times 20$	1	53	46	93	7	18	82	0	0	100	0	93	7	100	0
$tai053 - 050 \times 20$	0	64	36	98	2	24	76	0	0	100	0	99	1	100	0
$tai054 - 050 \times 20$	0	72	28	97	3	19	81	0	0	100	0	94	6	100	0
$tai055 - 050 \times 20$	0	85	15	99	1	21	79	0	0	100	0	100	0	100	0
$tai056 - 050 \times 20$	1	72	27	95	5	16	84	0	0	100	0	95	5	100	0

 Table 1: Continued from previous page

	ı				e 1: Con	иниеа				.ye 			_		
		Cost	L_h =		entions		Cost	$L_h =$		tions		Cost	$L_h =$		ations
Dataset	(CC	Cost P vs. 2	2%)		rations vs. 2%)	(CC	Cost P vs. 2	(%)		tions vs. 2%)	(CC	COST CP vs.	2%)		vs. 2%)
	<	=	>	`<	>	<	=	>	<	>	<	=	>	`<	>
tai057 - 050×20	3	65	32	93	7	18	82	0	0	100	0	94	6	100	0
tai058 - 050×20	1	76 70	23	98	2	23	77	0	0	100	0	93	7	100	0
tai059 - 050×20	1 1	79	20	98 96	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	15	85 74	0	0	100	0	97	3 8	100 100	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\frac{55}{100}$	$\frac{44}{0}$	90	100	26 20	74 80	0	0	100 100	0	92 100	0	0	100
$tai061 - 100 \times 05$ $tai062 - 100 \times 05$	1	99	0	0	100	8	92	0	0	100	12	88	0	0	100
tai063 - 100×05	15	85	0	o o	100	81	19	0	0	100	20	80	0	0	100
$tai064 - 100 \times 05$	5	95	0	0	100	47	53	0	0	100	8	92	0	0	100
$tai065 - 100 \times 05$	10	90	0	0	100	74	26	0	0	100	7	93	0	0	100
tai066 - 100×05	2	98	0	0	100	19	81	0	0	100	2	98	0	0	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 9	100 91	0	0	100 100	24 82	$\frac{76}{18}$	0	0	100 100	6 6	94 94	0	0	100 100
$tai069 - 100 \times 05$	0	100	0	0	100	60	40	0	0	100	3	97	0	0	100
tai070 - 100×05	7	93	0	o o	100	77	23	0	0	100	9	91	0	0	100
tai071 - 100×10	46	54	0	0	100	60	40	0	0	100	1	99	0	24	76
$tai072 - 100 \times 10$	26	74	0	0	100	64	36	0	0	100	2	98	0	8	92
tai073 - 100×10	50	50	0	0	100	54	46	0	0	100	1	99	0	0	100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39 63	$\frac{61}{37}$	0	0	100 100	$64 \\ 62$	$\frac{36}{38}$	0	0	100 100	$\frac{1}{0}$	98 100	1 0	78 91	22 9
$tai076 - 100 \times 10$	34	66	0	0	100	42	58	0	0	100	2	98	0	0	100
$tai070 - 100 \times 10$	33	67	0	0	100	75	$\frac{36}{25}$	0	0	100	1	99	0	1	99
tai078 - 100×10	56	44	0	0	100	80	20	Ö	0	100	5	95	0	37	63
tai079 – 100×10	57	43	0	0	100	90	10	0	0	100	15	85	0	6	94
$tai080 - 100 \times 10$	3	97	0	0	100	7	93	0	0	100	3	97	0	0	100
tai081 - 100×20	80	20	0	0	100	72	28	0	0	100	0	75	25	100	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82 83	18 17	0	0	100 100	72 68	$\frac{28}{32}$	0	0	100 100	0	92 82	8 18	100 100	0
$tai083 - 100 \times 20$ $tai084 - 100 \times 20$	71	29	0	0	100	56	32 44	0	0	100	0	96	4	100	0
$tai085 - 100 \times 20$	77	23	0	0	100	70	30	0	0	100	0	81	19	100	0
tai086 - 100×20	81	19	0	0	100	54	46	0	0	100	0	95	5	100	0
$tai087 - 100 \times 20$	91	9	0	0	100	74	26	0	0	100	0	81	19	100	0
tai088 – 100×20	89	11	0	0	100	72	28	0	0	100	0	76	24	100	0
tai089 - 100×20	91 53	9	0	0	100	68	$\frac{32}{23}$	0	0	100	0	89	11	100	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71	$\frac{47}{29}$	0	0	100 100	77 69	23 31	0	0	100 100	0 48	94 52	6 0	100	100
$tai091 - 200 \times 10$	82	18	0	0	100	95	5	0	0	100	35	65	0	0	100
tai093 - 200×10	28	72	0	0	100	81	19	0	0	100	25	75	0	0	100
$tai094 - 200 \times 10$	93	7	0	0	100	98	2	0	0	100	64	36	0	0	100
tai095 - 200×10	73	27	0	0	100	86	14	0	0	100	14	86	0	0	100
tai096 - 200×10	91	9	0	0	100	91	9	0	0	100	22	78	0	0	100
$\begin{array}{c} tai097 - 200 \times 10 \\ tai098 - 200 \times 10 \end{array}$	79 82	21 18	0	0	100 100	89 87	11 13	0	0	100 100	$\frac{37}{27}$	63 73	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
tai099 - 200×10	62	38	0	0	100	94	6	0	0	100	6	94	0	0	100
tai100 - 200×10	87	13	0	o o	100	90	10	0	0	100	29	71	0	0	100
tai101 - 200×20	100	0	0	0	100	95	5	0	0	100	25	75	0	0	100
tai102 - 200×20	100	0	0	0	100	92	8	0	0	100	17	83	0	0	100
tai103 - 200×20	100	0	0	0	100	77	23	0	0	100	16	84	0	0	100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	99 100	$\frac{1}{0}$	0	0	100 100	88 93	$\frac{12}{7}$	0	0	100 100	$\frac{27}{23}$	73 77	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$tai105 - 200 \times 20$ $tai106 - 200 \times 20$	99	1	0	0	100	93	10	0	0	100	$\frac{23}{22}$	77 78	0	0	100
$tai100 = 200 \times 20$ $tai107 = 200 \times 20$	98	2	0	0	100	93	7	0	0	100	$\frac{22}{24}$	76	0	0	100
tai108 - 200×20	99	1	0	0	100	95	5	0	0	100	21	79	0	0	100
tai109 – 200×20	99	1	0	0	100	90	10	0	0	100	26	74	0	0	100
tai110 - 200×20	98	2	0	0	100	83	17	0	0	100	7	93	0	0	100
tai111 - 500×20	100	0	0	0	100	100	0	0	0	100	83 86	17	0	0	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100	0 0	0	0	100 100	100 99	0 1	0	0	100 100	86 79	$\frac{14}{21}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	0	0	0	100	100	0	0	0	100	93	$\frac{21}{7}$	0	0	100
$tai115 - 500 \times 20$	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
tai116 - 500×20	100	0	0	0	100	100	0	0	0	100	83	17	0	0	100
tai117 - 500×20	100	0	0	0	100	99	1	0	0	100	61	39	0	0	100
tai118 - 500×20	100	0	0	0	100	100	0	0	0	100	83	17	0	0	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100	0 0	0	0	100 100	100 98	$0 \\ 2$	0	0	100 100	81 77	19 23	0	0	100 100
$vfr001 - 10 \times 05$	100	100	0	100	0	98	$\frac{2}{100}$	0	100	0	0	100	0	0	100
vfr001 - 10×05	0	90	10	100	0	0	100	0	95	5	0	100	0	0	100
vfr001 - 10×15	0	39	61	100	0	0	100	0	89	11	0	100	0	0	100
vfr001 - 10×20	0	98	2	100	0	0	100	0	64	36	0	100	0	0	100
vfr001 - 20×05	0	69	31	100	0	1	99	0	0	100	2	98	0	0	100
$v fr 001 - 20 \times 10$	0	61	39	100	0	1	99	0	0	100	0	100	0	0	100

 Table 1: Continued from previous page

					e 1: Con		•	•	-	<i>uyc</i> 					
		C	L_h =					$L_h =$					$L_h =$		
Dataset	(CC	Cost P vs. :	2%)		rations P vs. 2%)	(CC	Cost P vs. 2	2%)		ations vs. 2%)	(CC	Cost CP vs.	2%)		rations vs. 2%)
	<	=	>	<	> 10, 270)	<	=	>	<	> 270)	<	=	>	<	> 270)
vfr001 - 20×15	0	93	7	100	0	0	100	0	0	100	0	100	0	1	99
vfr001 - 20×20	0	86	14	100	0	0	100	0	0	100	0	100	0	2	98
vfr001 - 30×05	0	74	26	100	0	3	97	0	0	100	0	100	0	0	100
vfr001 - 30×10	0	47	53	100	0	15	85	0	0	100	1	99	0	98	2
$vfr001 - 30 \times 15$ $vfr001 - 30 \times 20$	0	70 89	30 11	100 100	0	$\begin{array}{c c} 2 \\ 2 \end{array}$	98 98	0	0	100 100	0	100 100	0	99 100	$\frac{1}{0}$
$v fr 001 - 40 \times 05$	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
vfr001 - 40×10	0	47	53	100	0	12	88	0	0	100	0	96	4	100	0
vfr001 - 40×15	0	47	53	100	0	13	87	0	0	100	0	95	5	100	0
vfr001 - 40×20	0	59	41	100	0	22	78	0	0	100	0	95	5	100	0
$vfr001 - 50 \times 05$ $vfr001 - 50 \times 10$	0	100 59	$0 \\ 41$	100 94	0 6	$\begin{vmatrix} 1\\ 31 \end{vmatrix}$	99 69	0	0	100 100	0	100 89	0 11	0 100	100 0
vfr001 - 50×15	1	65	34	95	5	25	75	0	0	100	0	92	8	100	0
vfr001 - 50×20	0	77	23	97	3	23	77	0	ő	100	0	100	0	100	Ő
$v fr 001 - 60 \times 05$	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
vfr001 - 60×10	5	80	15	68	32	22	78	0	0	100	0	95	5	100	0
vfr001 - 60×15	16	60	24	55	45	55	45	0	0	100	0	90	10	100	0
$vfr001 - 60 \times 20$ $vfr001 - 100 \times 20$	10 87	$\frac{76}{13}$	$\frac{14}{0}$	67 0	33 100	35 76	$\frac{65}{24}$	0	0	100 100	0	90 77	$\frac{10}{23}$	100 100	0
$vfr001 - 100 \times 20$ $vfr001 - 100 \times 40$	72	28	0	0	100	58	$\frac{24}{42}$	0	0	100	0	95	∠3 5	100	0
vfr001 - 100×60	50	50	0	0	100	36	64	0	0	100	0	100	0	100	0
vfr001 - 200×20	100	0	0	0	100	91	9	0	0	100	21	79	0	0	100
vfr001 - 200×40	100	0	0	0	100	100	0	0	0	100	2	98	0	6	94
$vfr001 - 200 \times 60$ $vfr001 - 300 \times 20$	100 100	0	0	0	100	97	3	0	0	100	5 39	95 61	0	$\begin{bmatrix} 7 \\ 0 \end{bmatrix}$	93
$vfr001 - 300 \times 20$ $vfr001 - 300 \times 40$	100	0	0	0	100 100	97 99	3 1	0	0	100 100	39 54	$\frac{61}{46}$	0	0	100 100
vfr001 - 300×40	100	0	0	0	100	100	0	0	0	100	41	59	0	0	100
vfr001 - 400×20	100	0	0	0	100	100	0	0	0	100	54	46	0	0	100
vfr001 - 400×40	100	0	0	0	100	100	0	0	0	100	63	37	0	0	100
vfr001 - 400×60	100	0	0	0	100	100	0	0	0	100	53	47	0	0	100
$vfr001 - 500 \times 20$ $vfr001 - 500 \times 40$	100 100	0	0	0	100 100	99	$\frac{1}{0}$	0	0	100 100	88 77	12 23	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$vfr001 - 500 \times 60$	100	0	0	0	100	100	0	0	0	100	81	19	0	0	100
vfr001 - 600×20	100	0	0	0	100	99	1	0	0	100	86	14	0	0	100
$\mathbf{vfr001} - 600 \times 40$	100	0	0	0	100	100	0	0	0	100	85	15	0	0	100
$v \text{fr} 001 - 600 \times 60$	100	0	0	0	100	100	0	0	0	100	88	12	0	0	100
$vfr001 - 700 \times 20$ $vfr001 - 700 \times 40$	100 100	0	0	0	100 100	100 100	0	0	0	100 100	84 89	$\begin{array}{c} 16 \\ 11 \end{array}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$vfr001 - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	97	3	0	0	100
vfr001 - 800×20	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
$\mathbf{vfr001} - 800 {\times} 40$	100	0	0	0	100	100	0	0	0	100	95	5	0	0	100
$v \text{fr} 001 - 800 \times 60$	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
$vfr002 - 10 \times 05 vfr002 - 10 \times 10$	0	$\frac{75}{100}$	$\frac{25}{0}$	100 100	0	0	100 100	0	100 100	0	$0 \\ 0$	100 100	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$vfr002 - 10 \times 10$ $vfr002 - 10 \times 15$	0	98	2	100	0	0	100	0	78	22	0	100	0	0	100
vfr002 - 10×19	0	100	0	100	0	0	100	0	94	6	0	100	0	0	100
$vfr002 - 20 \times 05$	0	19	81	100	0	5	95	0	3	97	3	97	0	0	100
vfr002 - 20×10	0	64	36	100	0	1	99	0	2	98	0	100	0	2	98
$vfr002 - 20 \times 15$ $vfr002 - 20 \times 20$	0	73 94	$\frac{27}{6}$	100 100	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99 100	0	0	100	0	100 100	0	$\begin{vmatrix} 4 \\ 1 \end{vmatrix}$	96 99
$vfr002 - 20 \times 20$ $vfr002 - 30 \times 05$	0	94 47	6 53	100	0	10	90	0	0	100 100	2	98	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	100
vfr002 - 30×10	0	59	41	100	0	8	92	0	0	100	0	99	1	100	0
vfr002 - 30×15	0	57	43	100	0	5	95	0	0	100	0	99	1	100	0
vfr002 - 30×20	0	40	60	100	0	5	95	0	0	100	0	100	0	100	0
vfr002 - 40×05	0	69	31 63	100	0	21	79 70	0	0	100	0	100	$0 \\ 3$	0 100	100
$vfr002 - 40 \times 10$ $vfr002 - 40 \times 15$	0	$\frac{37}{54}$	63 46	100 100	0	21 15	79 85	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	0	$97 \\ 94$	3 6	100	0
$vfr002 - 40 \times 15$ $vfr002 - 40 \times 20$	0	83	17	100	0	12	88	0	0	100	0	100	0	100	0
$v \text{fr} 002 - 50 \times 05$	0	86	14	100	0	0	100	0	1	99	0	100	0	0	100
vfr002 - 50×10	0	51	49	99	1	24	76	0	0	100	0	95	5	100	0
vfr002 - 50×15	3	60	37	93	7	36	64	0	0	100	0	95	5	100	0
$v \text{fr} 002 - 50 \times 20$	1	67 70	32	98	2	21	79 80	0	0	100	0	96	4	100	100
$vfr002 - 60 \times 05$ $vfr002 - 60 \times 10$	0 1	$70 \\ 71$	$\frac{30}{28}$	100 81	0 19	20 48	$\frac{80}{52}$	0	0	100 100	$\frac{2}{0}$	98 95	0 5	0 100	100 0
$vfr002 - 60 \times 10$ $vfr002 - 60 \times 15$	18	56	26	53	47	46	$\frac{52}{54}$	0	0	100	0	89	11	100	0
vfr002 - 60×20	11	72	17	55	45	37	63	0	0	100	0	94	6	100	0
vfr002 - 100×20	90	10	0	0	100	77	23	0	0	100	0	74	26	100	0
vfr002 - 100×40	58	42	0	0	100	62	38	0	0	100	0	90	10	100	0
$vfr002 - 100 \times 60$ $vfr002 - 200 \times 20$	48 100	$\frac{52}{0}$	0	0	100 100	50 88	$\frac{50}{12}$	0	0	100 100	0 24	99 76	$\frac{1}{0}$	100	0 100
V11002 - 200 X 20	100	U	U	U	100	_ 00	14	U	U	100	24				$rt \ page >$

 Table 1: Continued from previous page

					e 1: Con					<u></u>					
		<u> </u>	L_h =					$L_h =$					$L_h =$		
Dataset	(CC	Cost P vs. 2	9%)		rations P vs. 2%)	(CC	Cost P vs. 2	0%)	l	ations vs. 2%)	(CC	Cost CP vs.	9 %)		rations vs. 2%)
	(CC	r vs. 2	270) >	(001	vs. 270)	(CC.	r vs. 2	>	(CCP	vs. 270)	(00	∍ r vs. =	270)	(ССР	vs. 270)
vfr002 - 200×40	100	0	0	0	100	98	2	0	0	100	7	93	0	5	95
vfr002 - 200×60	100	0	0	0	100	98	2	0	0	100	5	95	0	5	95
vfr002 - 300×20	100	0	0	0	100	95	5	0	0	100	44	56	0	0	100
vfr002 - 300×40	100	0	0	0	100	100	0	0	0	100	47	53	0	0	100
vfr002 - 300×60	100	0	0	0	100	100	0	0	0	100	42	58	0	0	100
$vfr002 - 400 \times 20$ $vfr002 - 400 \times 40$	100 100	0 0	0	0	100 100	99	$\frac{1}{0}$	0	0	100 100	73 72	$\frac{27}{28}$	0	0	100 100
$vfr002 - 400 \times 40$ $vfr002 - 400 \times 60$	100	0	0	0	100	100	0	0	0	100	74	26	0	0	100
$v fr 002 - 500 \times 20$	100	0	0	0	100	100	0	0	0	100	83	17	0	ő	100
vfr002 - 500×40	100	0	0	0	100	100	0	0	0	100	70	30	0	0	100
$\mathbf{vfr002} - 500 {\times} 60$	100	0	0	0	100	100	0	0	0	100	85	15	0	0	100
vfr002 - 600×20	100	0	0	0	100	100	0	0	0	100	93	7	0	0	100
$v \text{fr} 002 - 600 \times 40$	100 100	0 0	0	0	100 100	99	$\frac{1}{0}$	0	0	100	85 86	$\frac{15}{14}$	0	0	100
$vfr002 - 600 \times 60$ $vfr002 - 700 \times 20$	100	0	0	0	100	100	0	0	0	100 100	93	7	0	0	100 100
$v \text{fr} 002 - 700 \times 40$	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
$v fr 002 - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	95	5	0	0	100
vfr002 - 800×20	100	0	0	0	100	100	0	0	0	100	96	4	0	0	100
vfr002 - 800×40	100	0	0	0	100	100	0	0	0	100	94	6	0	0	100
$vfr002 - 800 \times 60$	100	0	0	100	100	100	100	0	100	100	97	100	0	0	100
$vfr003 - 10 \times 05$ $vfr003 - 10 \times 10$	0	99 100	$\frac{1}{0}$	100 100	0	0	$\frac{100}{100}$	0	100 100	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	100 100	0	0	100 100
$vfr003 - 10 \times 10$ $vfr003 - 10 \times 15$	0	100	0	100	0	0	100	0	77	23	0	100	0	0	100
vfr003 - 10×10	0	97	3	100	0	0	100	0	61	39	0	100	0	0	100
vfr003 - 20×05	0	92	8	100	0	0	100	0	3	97	0	100	0	0	100
vfr003 - 20×10	0	49	51	100	0	0	100	0	0	100	0	100	0	0	100
vfr003 - 20×15	0	86	14	100	0	1	99	0	0	100	0	100	0	1	99
vfr003 - 20×20	0	88	12	100	0	1	99	0	0	100	0	100	0	0	100
$vfr003 - 30 \times 05$ $vfr003 - 30 \times 10$	0	41 50	59 50	100 100	0	10 6	90 94	0	0	100 100	0	100 100	0	$\frac{0}{100}$	100 0
$vfr003 - 30 \times 10$ $vfr003 - 30 \times 15$	0	57	43	100	0	3	97	0	0	100	0	100	0	100	0
vfr003 - 30×20	0	88	12	100	0	1	99	0	ő	100	0	100	0	100	0
vfr003 - 40×05	0	85	15	100	0	2	98	0	0	100	0	100	0	0	100
vfr003 - 40×10	0	45	55	100	0	20	80	0	0	100	0	99	1	100	0
vfr003 - 40×15	0	71	29	100	0	10	90	0	0	100	0	100	0	100	0
$vfr003 - 40 \times 20$ $vfr003 - 50 \times 05$	0	71 99	29 1	100 100	0	7 47	93 53	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	0	98 100	$\frac{2}{0}$	100 0	0 100
$vfr003 - 50 \times 03$ $vfr003 - 50 \times 10$	0	62	38	99	1	30	70	0	0	100	0	89	11	100	0
vfr003 - 50×15	ő	70	30	93	7	31	69	0	0	100	0	94	6	100	0
vfr003 - 50×20	0	82	18	98	2	20	80	0	0	100	0	99	1	100	0
vfr003 - 60×05	0	96	4	100	0	32	68	0	0	100	1	99	0	0	100
vfr003 - 60×10	6	72	22	64	36	46	54	0	0	100	0	92	8	100	0
vfr003 - 60×15	12	73	15	59	41	48	52 64	0	0	100	0	92	8	100 100	0
$vfr003 - 60 \times 20$ $vfr003 - 100 \times 20$	7 89	$\begin{array}{c} 77 \\ 11 \end{array}$	16 0	64 0	36 100	36 75	$\frac{64}{25}$	0	0	100 100	0	89 82	11 18	100	0
$vfr003 - 100 \times 20$ $vfr003 - 100 \times 40$	73	$\frac{11}{27}$	0	0	100	66	$\frac{25}{34}$	0	0	100	0	94	6	100	0
vfr003 - 100×60	44	56	0	0	100	38	62	0	0	100	0	99	1	100	0
vfr003 - 200×20	100	0	0	0	100	89	11	0	0	100	13	87	0	0	100
vfr003 - 200×40	100	0	0	0	100	98	2	0	0	100	4	96	0	8	92
vfr003 - 200×60	100	0	0	0	100	99	1	0	0	100	5	95	0	4	96
vfr003 - 300×20 vfr003 - 300×40	100 100	0 0	0	0	100 100	95 100	5 0	0	0	100 100	39 40	61 60	0	0	100 100
vfr003 - 300×40 vfr003 - 300×60	100	0	0	0	100	100	0	0	0	100	40	59	0	0	100
$v fr 003 - 400 \times 20$	100	0	0	0	100	99	1	0	0	100	68	32	0	0	100
vfr003 - 400×40	100	0	0	0	100	100	0	0	ő	100	64	36	0	0	100
vfr003 - 400×60	100	0	0	0	100	100	0	0	0	100	69	31	0	0	100
vfr003 - 500×20	100	0	0	0	100	100	0	0	0	100	83	17	0	0	100
vfr003 - 500×40	100	0	0	0	100	100	0	0	0	100	80	20	0	0	100
$vfr003 - 500 \times 60$ $vfr003 - 600 \times 20$	100 100	0 0	0	0	100 100	100 100	0	0	0	100 100	79 75	$\frac{21}{25}$	0	0	100 100
$vfr003 - 600 \times 20$	100	0	0	0	100	100	0	0	0	100	83	$\frac{25}{17}$	0	0	100
$vfr003 - 600 \times 60$	100	0	0	0	100	100	0	0	0	100	94	6	0	0	100
vfr003 - 700×20	100	0	0	0	100	100	0	0	ō	100	94	6	0	0	100
vfr003 - 700×40	100	0	0	0	100	100	0	0	0	100	94	6	0	0	100
$v fr 003 - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	92	8	0	0	100
vfr003 - 800×20	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
$oxed{vfr003 - 800 imes 40} \ oxed{vfr003 - 800 imes 60}$	100 100	0 0	0	0	100 100	100 100	0	0 0	0	100 100	$95 \\ 94$	5 6	0	0	100 100
vfr003 - 800×60 vfr004 - 10×05	0	100	0	100	0	100	100	0	100	0	0	100	0	0	100
vfr004 - 10×05	0	100	0	100	0	0	100	0	63	37	0	100	0	0	100
										٧, ا					t page >

 Table 1: Continued from previous page

					e 1: Con					<u></u> _					
		C	L_h =					$L_h =$					$L_h =$		
Dataset	(CC	Cost P vs. :	2%)		erations P vs. 2%)	(CCI	Cost P vs. 2	2%)		ations vs. 2%)	(CC	Cost CP vs.	2%)		ations vs. 2%)
	<	=	>	<	> 1. 13. 270)	<	=	>	<	> 270)	<	=	>	<	> 270)
vfr004 - 10×15	0	98	2	100	0	0	100	0	67	33	0	100	0	0	100
vfr004 - 10×20	0	97	3	100	0	0	100	0	68	32	0	100	0	0	100
vfr004 - 20×05	0	61	39	100	0	11	89	0	0	100	1	99	0	0	100
vfr004 - 20×10	0	89	11	100	0	0	100	0	0	100	0	100	0	0	100
$vfr004 - 20 \times 15$ $vfr004 - 20 \times 20$	0	92 93	8 7	100 100	0	1 1	99 99	0	0	100 100	$\frac{1}{0}$	99 100	0	$0 \\ 3$	100 97
vfr004 - 30×05	0	80	20	100	0	1	99	0	0	100	0	100	0	0	100
vfr004 - 30×10	0	69	31	100	0	8	92	0	0	100	0	100	0	100	0
vfr004 - 30×15	0	57	43	100	0	2	98	0	0	100	0	100	0	100	0
vfr004 - 30×20	0	74	26	100	0	1	99	0	0	100	0	100	0	100	0
$vfr004 - 40 \times 05$ $vfr004 - 40 \times 10$	0	$\frac{100}{36}$	$\frac{0}{64}$	100 100	0	$\begin{array}{ c c } & 1 \\ & 24 \end{array}$	99 76	0	0	100 100	0	100 96	$0 \\ 4$	0 100	100 0
vfr004 - 40×15	0	67	33	100	0	6	94	0	0	100	0	100	0	100	0
vfr004 - 40×20	0	86	14	100	0	10	90	ő	ő	100	0	100	0	100	0
vfr004 - 50×05	0	56	44	100	0	20	80	0	0	100	4	96	0	0	100
vfr004 - 50×10	0	73	27	98	2	17	83	0	0	100	0	91	9	100	0
vfr004 - 50×15	1	75 79	24	97	3	20	80	0	0	100	0	93	7	100	0
$vfr004 - 50 \times 20$ $vfr004 - 60 \times 05$	$\begin{array}{c c} 1 \\ 0 \end{array}$	$\frac{73}{100}$	$\frac{26}{0}$	98 100	$\begin{array}{c} 2 \\ 0 \end{array}$	20	80 93	0	0	100 100	0	98 100	$\frac{2}{0}$	100 0	0 100
$v fr 004 - 60 \times 10$	$\frac{0}{2}$	75	23	78	$\frac{0}{22}$	28	93 72	0	0	100	0	99	1	100	0
vfr004 - 60×15	8	68	24	59	41	47	53	0	0	100	0	83	17	100	0
vfr004 - 60×20	7	77	16	54	46	38	62	0	0	100	0	89	11	100	0
vfr004 - 100×20	89	11	0	0	100	65	35	0	0	100	0	72	28	100	0
$vfr004 - 100 \times 40$ $vfr004 - 100 \times 60$	75 58	$\frac{25}{42}$	0	0	100 100	72 53	$\frac{28}{47}$	0	0	100	0	90	$\frac{10}{2}$	100 100	0
$v \text{fr} 004 - 100 \times 60$ $v \text{fr} 004 - 200 \times 20$	100	42	0	0	100	93	47 7	0	0	100 100	14	98 86	$0 \frac{2}{0}$	0	100
vfr004 - 200×20	100	0	0	0	100	97	3	0	0	100	10	89	1	10	90
vfr004 - 200×60	100	0	0	0	100	97	3	0	0	100	5	95	0	6	94
vfr004 - 300×20	100	0	0	0	100	100	0	0	0	100	45	55	0	0	100
vfr004 - 300×40	100	0	0	0	100	99	1	0	0	100	44	56	0	0	100
$vfr004 - 300 \times 60$ $vfr004 - 400 \times 20$	100 100	0	0	0	100 100	100 100	0	0	0	100 100	43 69	$\frac{57}{31}$	0	0	100 100
$vfr004 - 400 \times 40$	100	0	0	0	100	100	0	0	0	100	66	34	0	0	100
vfr004 - 400×60	100	0	0	0	100	100	0	0	0	100	67	33	0	0	100
vfr004 - 500×20	100	0	0	0	100	100	0	0	0	100	73	27	0	0	100
vfr004 - 500×40	100	0	0	0	100	100	0	0	0	100	76	24	0	0	100
$v fr 004 - 500 \times 60$	100	0	0	0	100	100	0	0	0	100	79	21	0	0	100
$vfr004 - 600 \times 20$ $vfr004 - 600 \times 40$	100 100	0	0	0	100 100	100 100	0	0	0	100 100	84 79	$\frac{16}{21}$	0	0	100 100
$v \text{fr} 004 - 600 \times 60$	100	0	0	0	100	100	0	0	0	100	90	10	0	0	100
vfr004 - 700×20	100	0	0	0	100	99	1	0	0	100	89	11	0	0	100
$\mathbf{vfr004} - 700 {\times} 40$	100	0	0	0	100	100	0	0	0	100	93	7	0	0	100
$vfr004 - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	91	9	0	0	100
$vfr004 - 800 \times 20$ $vfr004 - 800 \times 40$	100 100	0	0	0	100 100	100 100	0	0	0	100 100	91 93	9 7	0	0 0	100 100
$vfr004 - 800 \times 40$ $vfr004 - 800 \times 60$	100	0	0	0	100	100	0	0	0	100	93 97	3	0	0	100
vfr005 - 10×05	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr005 - 10×10	0	99	1	100	0	0	100	0	100	0	0	100	0	0	100
vfr005 - 10×15	0	99	1	100	0	0	100	0	76	24	0	100	0	0	100
$vfr005 - 10 \times 20$ $vfr005 - 20 \times 05$	0	100 95	0 5	100 100	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\frac{100}{100}$	0	90	10 100	0	100 100	0	0	100 100
$vfr005 - 20 \times 05$ $vfr005 - 20 \times 10$	0	95 82	18	100	0	6	94	0	0	100	0	100	0	1	99
vfr005 - 20×15	0	59	41	100	0	7	93	0	0	100	1	99	0	0	100
vfr005 - 20×20	0	75	25	100	0	2	98	0	0	100	0	100	0	0	100
vfr005 - 30×05	0	100	0	100	0	0	100	0	1	99	0	100	0	0	100
vfr005 - 30×10	0	32	68	100	0	7	93	0	0	100	1	98	1	96	4
$vfr005 - 30 \times 15$ $vfr005 - 30 \times 20$	0	52 82	48 18	100 100	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99 100	0	0	100 100	0	96 100	$\frac{4}{0}$	100 100	0
$vfr005 - 30 \times 20$ $vfr005 - 40 \times 05$	0	60	40	100	0	$\begin{array}{c c} 0 \\ 2 \end{array}$	98	0	0	100	0	100	0	0	100
vfr005 - 40×10	0	30	70	100	0	12	88	0	ő	100	0	94	6	100	0
vfr005 - 40×15	0	42	58	100	0	22	78	0	0	100	0	94	6	100	0
vfr005 - 40×20	0	89	11	100	0	6	94	0	0	100	0	100	0	100	0
$vfr005 - 50 \times 05$ $vfr005 - 50 \times 10$	0	$\frac{95}{71}$	$\frac{5}{29}$	100 100	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{ c c } & 17 \\ & 22 \end{array}$	83 78	0	0	100 100	0	100 100	0	$\frac{0}{100}$	100 0
$vfr005 - 50 \times 10$ $vfr005 - 50 \times 15$	0	71 78	$\frac{29}{22}$	95	5	$\frac{22}{30}$	78 70	0	0	100	0	98	$\frac{0}{2}$	100	0
$vfr005 - 50 \times 20$	0	85	15	97	3	23	77	0	0	100	0	95	5	100	0
vfr005 - 60×05	0	100	0	100	0	4	96	0	0	100	0	100	0	0	100
vfr005 - 60×10	8	62	30	69	31	43	57	0	0	100	0	85	15	100	0
vfr005 - 60×15	7	69	24	73	27	48	52	0	0	100	0	93	7	100	0
vfr005 - 60×20	1	81	18	77	23	42	58	0	0	100	0	90	10	100	$\frac{0}{t \ page} \triangleright$

 Table 1: Continued from previous page

			_		1: Con		•	-	-	~ <i>9</i> ~			-	* 0000	
		Cost	$L_h =$		ations		Cost	$L_h =$		ations		Cost	$L_h =$	50000 Iter	ations
Dataset	(CC	P vs. 2	2%)		vs. 2%)	(CC	P vs. 2	%)		vs. 2%)	(CC	CP vs.	2%)		vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
vfr005 - 100×20	93	7	0	0	100	77	23	0	0	100	0	76	24	100	0
vfr005 - 100×40	78	22	0	0	100	60	40	0	0	100	0	94	6	100	0
vfr005 - 100×60	53	47	0	0	100	44	56	0	0	100	0	96	4	100	0
vfr005 - 200×20	99	1	0	0	100	93	7	0	0	100	26	74	0	0	100
vfr005 - 200×40	100	0	0	0	100	98	2	0	0	100	2	98	0	23	77
$vfr005 - 200 \times 60$ $vfr005 - 300 \times 20$	100 100	0	0	0	100 100	95 97	$\frac{5}{3}$	0	0	100 100	4 49	96 51	0	$\begin{bmatrix} 7 \\ 0 \end{bmatrix}$	93 100
$vfr005 - 300 \times 20$ $vfr005 - 300 \times 40$	100	0	0	0	100	100	0	0	0	100	49	54	0	0	100
vfr005 - 300×40	100	0	0	0	100	100	0	0	0	100	32	68	0	0	100
vfr005 - 400×20	100	0	0	0	100	100	0	0	0	100	63	37	0	0	100
vfr005 - 400×40	100	0	0	0	100	100	0	0	0	100	67	33	0	0	100
$\mathbf{vfr005} - 400 {\times} 60$	100	0	0	0	100	100	0	0	0	100	73	27	0	0	100
$vfr005 - 500 \times 20$	100	0	0	0	100	98	2	0	0	100	56	44	0	0	100
vfr005 - 500×40	100	0	0	0	100	100	0	0	0	100	74	26	0	0	100
$\mathbf{vfr005} - 500 \times 60$	100	0	0	0	100	100	0	0	0	100	88	12	0	0	100
vfr005 - 600×20	100	0	0	0	100	100	0	0	0	100	83	17	0	0	100
vfr005 - 600×40	100	0	0	0	100	100	0	0	0	100	85	15	0	0	100
$vfr005 - 600 \times 60$ $vfr005 - 700 \times 20$	100 100	0	$0 \\ 0$	0	100 100	100 100	0 0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	89 87	11 13	0	0	100 100
$vfr005 - 700 \times 20$ $vfr005 - 700 \times 40$	100	0	0	0	100	100	0	0		100	88	13	0	0	100
$vfr005 - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	96	4	0	0	100
$v fr 005 - 800 \times 20$	100	0	0	0	100	100	0	0	0	100	91	9	0	0	100
vfr005 - 800×40	100	0	0	0	100	100	0	0	0	100	92	8	0	0	100
$\mathbf{vfr005} - 800 {\times} 60$	100	0	0	0	100	100	0	0	0	100	93	7	0	0	100
vfr006 - 10×05	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr006 - 10×10	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr006 - 10×15	0	100	0	100	0	0	100	0	86	14	0	100	0	0	100
vfr006 - 10×20	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr006 - 20×05	0	67	33	100	0	0	100	0	0	100	0	100	0	0	100
vfr006 - 20×10	0	80 87	20 13	100 100	0	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	99 97	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100	0	$\frac{100}{100}$	0	0 7	100
$vfr006 - 20 \times 15$ $vfr006 - 20 \times 20$	0	87 75	$\frac{15}{25}$	100	0	0	100	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	100 99	0	100	0	$\frac{7}{2}$	93 98
vfr006 - 30×05	0	100	0	100	0	0	100	0	95	5	0	100	0	0	100
vfr006 - 30×10	0	37	63	100	0	6	94	0	0	100	0	100	0	100	0
vfr006 - 30×15	0	75	25	100	0	0	100	0	0	100	0	100	0	100	0
vfr006 - 30×20	0	90	10	100	0	0	100	0	0	100	0	100	0	98	2
vfr006 - 40×05	0	90	10	100	0	1	99	0	0	100	0	100	0	0	100
vfr006 - 40×10	0	35	65	100	0	31	69	0	0	100	0	96	4	100	0
vfr006 - 40×15	0	67	33	100	0	8	92	0	0	100	0	96	4	100	0
$vfr006 - 40 \times 20$ $vfr006 - 50 \times 05$	0	50 63	$\frac{50}{37}$	100 100	0	13 57	87 43	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	0	96 100	$\frac{4}{0}$	100	0 100
vfr006 - 50×05	0	79	21	100	0	39	43 61	0		100	0	98	2	100	0
vfr006 - 50×15	0	68	32	94	6	23	77	0	0	100	0	97	3	100	0
vfr006 - 50×20	0	77	23	100	0	12	88	0	0	100	0	98	2	100	0
vfr006 - 60×05	0	84	16	100	0	30	70	0	0	100	0	100	0	2	98
vfr006 - 60×10	15	63	22	56	44	44	56	0	0	100	0	90	10	100	0
vfr006 - 60×15	13	71	16	56	44	36	64	0	0	100	0	87	13	100	0
vfr006 - 60×20	8	76	16	73	27	30	70	0	0	100	0	96	4	100	0
vfr006 - 100×20	96	4	0	0	100	72	28	0	0	100	0	81	19	100	0
vfr006 - 100×40 vfr006 - 100×60	$\frac{75}{52}$	$\frac{25}{48}$	0	0	100 100	59 39	41 61	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	0	90 97	$\frac{10}{3}$	100 100	0
$v \text{fr} 006 - 100 \times 60$ $v \text{fr} 006 - 200 \times 20$	100	40	0	0	100	94	6	0		100	30	97 70	о 0	0	100
vfr006 - 200×40	100	0	0	0	100	99	1	0	0	100	9	91	0	7	93
vfr006 - 200×60	100	0	0	ő	100	95	5	0	0	100	2	98	0	6	94
vfr006 - 300×20	100	0	0	0	100	98	2	0	0	100	$\overline{44}$	56	0	0	100
vfr006 - 300×40	100	0	0	0	100	100	0	0	0	100	41	59	0	0	100
vfr006 - 300×60	100	0	0	0	100	100	0	0	0	100	44	56	0	0	100
vfr006 - 400×20	100	0	0	0	100	99	1	0	0	100	70	30	0	0	100
vfr006 - 400×40	100	0	0	0	100	100	0	0	0	100	69	31	0	0	100
vfr006 - 400×60	100	0	0	0	100	100	0	0	0	100	71	29	0	0	100
$vfr006 - 500 \times 20$ $vfr006 - 500 \times 40$	100 100	0	0	0	100 100	100 100	0 0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100	80 76	$\frac{20}{24}$	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$vfr006 - 500 \times 40$ $vfr006 - 500 \times 60$	100	0	0	0	100	100	0	0	0	100	82	24 18	0	0	100
$v \text{fr} 000 - 300 \times 00$ $v \text{fr} 006 - 600 \times 20$	100	0	0	0	100	100	0	0	0	100	92	8	0	0	100
$vfr006 - 600 \times 40$	100	0	0	0	100	100	0	0	0	100	85	15	0	0	100
$vfr006 - 600 \times 60$	100	0	0	0	100	100	0	0	0	100	87	13	0	0	100
vfr006 - 700×20	100	0	0	0	100	100	0	0	0	100	84	16	0	0	100
vfr006 - 700×40	100	0	0	0	100	100	0	0	0	100	87	13	0	0	100
$\mathbf{vfr006} - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	90	10	0	0	100
vfr006 - 800×20	100	0	0	0	100	100	0	0	0	100	87	13	0	0	100

 Table 1: Continued from previous page

	I				e 1: Con	oorowca	•	•	-	age					
		Cost	L_h =		rations		Cost	$L_h =$		ations		Cost	$L_h =$		rations
Dataset	(CC	P vs. 2	2%)		vs. 2%)	(CC	P vs. 2	2%)	l	vs. 2%)	(CC	CP vs.	2%)		vs. 2%)
	<	=	>	` <	>	`<	=	>	` <	>	<	=	>	`<	>
$v fr 006 - 800 \times 40$	100	0	0	0	100	100	0	0	0	100	92	8	0	0	100
$vfr006 - 800 \times 60$ $vfr007 - 10 \times 05$	100	$\frac{0}{35}$	$0 \\ 65$	100	100 0	100	$\frac{0}{100}$	0	0 100	100 0	98	2 100	0	0	100 100
$vfr007 - 10 \times 05$ $vfr007 - 10 \times 10$	0	98	2	100	0	0	100	0	96	$\frac{0}{4}$	0	100	0	0	100
vfr007 - 10×15	0	81	19	100	0	0	100	0	100	0	0	100	0	0	100
vfr007 - 10×20	o o	100	0	100	0	ő	100	0	85	15	0	100	0	ő	100
vfr007 - 20×05	0	53	47	100	0	2	98	0	0	100	0	100	0	0	100
vfr007 - 20×10	0	66	34	100	0	0	100	0	0	100	1	99	0	0	100
vfr007 - 20×15	0	65	35	100	0	4	96	0	0	100	0	100	0	0	100
$vfr007 - 20 \times 20$ $vfr007 - 30 \times 05$	0	$85 \\ 100$	15 0	100 100	0	$\begin{vmatrix} 2\\0 \end{vmatrix}$	$\frac{98}{100}$	0	0 11	100 89	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	99 100	0	0	100 100
$vfr007 - 30 \times 10$	0	49	51	100	0	$\begin{array}{c c} 0 \\ 2 \end{array}$	98	0	0	100	0	100	0	100	0
vfr007 - 30×15	ő	90	10	100	0	2	98	0	o o	100	0	100	0	100	0
vfr007 - 30×20	0	38	62	100	0	2	98	0	0	100	0	100	0	100	0
vfr007 - 40×05	0	98	2	100	0	0	100	0	0	100	0	100	0	0	100
vfr007 - 40×10	0	78	22	100	0	3	97	0	0	100	0	98	2	100	0
vfr007 - 40×15	0	48	52	100	0	14	86	0	0	100	0	96	4	100	0
$vfr007 - 40 \times 20$ $vfr007 - 50 \times 05$	0	$\frac{74}{100}$	26 0	100 100	0	5 8	$\frac{95}{92}$	0	0	100 100	0	99 100	$\begin{array}{c} 1 \\ 0 \end{array}$	100	0 100
$vfr007 - 50 \times 10$	0	50	50	100	0	$\frac{3}{24}$	76	0	0	100	0	96	4	100	0
vfr007 - 50×15	1	67	32	95	5	25	75	0	ő	100	0	95	5	100	0
vfr007 - 50×20	2	73	25	97	3	27	73	0	0	100	0	100	0	100	0
vfr007 - 60×05	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
vfr007 - 60×10	3	77	20	91	9	43	57	0	0	100	0	85	15	100	0
$vfr007 - 60 \times 15$ $vfr007 - 60 \times 20$	9	75 70	16 21	58 72	$\frac{42}{28}$	43 43	57 57	0	0	100	0	86 84	$\frac{14}{16}$	100 100	0
$vfr007 - 00 \times 20$ $vfr007 - 100 \times 20$	92	8	0	0	100	78	22	0	0	100 100	0	79	21	100	0
$v fr 007 - 100 \times 40$	73	27	0	0	100	59	41	0	0	100	0	91	9	100	0
vfr007 - 100×60	57	43	0	0	100	45	55	0	0	100	0	97	3	100	0
vfr007 - 200×20	100	0	0	0	100	92	8	0	0	100	21	79	0	0	100
vfr007 - 200×40	100	0	0	0	100	99	1	0	0	100	5	95	0	3	97
vfr007 - 200×60	100	0	0	0	100	97	3	0	0	100	5	95	0	3	97
$vfr007 - 300 \times 20$ $vfr007 - 300 \times 40$	100 100	0 0	0	0	100 100	98 99	$\frac{2}{1}$	0	0 0	100 100	43 45	57 55	0	0	100 100
vfr007 - 300×40	100	0	0	0	100	100	0	0	0	100	47	53	0	0	100
vfr007 - 400×20	100	0	0	0	100	98	2	0	ő	100	71	29	0	ő	100
vfr007 - 400×40	100	0	0	0	100	99	1	0	0	100	58	42	0	0	100
vfr007 - 400×60	100	0	0	0	100	100	0	0	0	100	76	24	0	0	100
vfr007 - 500×20	100	0	0	0	100	98	2	0	0	100	77	23	0	0	100
$vfr007 - 500 \times 40$ $vfr007 - 500 \times 60$	100 100	0 0	0	0	100 100	100 100	0	0	0	100 100	77 82	23 18	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	100 100
$vfr007 - 600 \times 20$	100	0	0	0	100	100	0	0	0	100	90	10	0	0	100
$v fr 007 - 600 \times 40$	100	0	0	0	100	100	0	0	0	100	85	15	0	ő	100
$\mathbf{vfr007} - 600 {\times} 60$	100	0	0	0	100	100	0	0	0	100	87	13	0	0	100
vfr007 - 700×20	100	0	0	0	100	100	0	0	0	100	89	11	0	0	100
vfr007 - 700×40	100	0	0	0	100	100	0	0	0	100	93	7	0	0	100
$vfr007 - 700 \times 60$	100	0	0	0	100	100 100	0	0	0	100	91 96	9	0	0	100
$ vfr007 - 800 \times 20 vfr007 - 800 \times 40 $	100 100	0 0	0	0	100 100	100	0	0	0	100 100	95	4 5	0	0	100 100
$vfr007 - 800 \times 40$ $vfr007 - 800 \times 60$	100	0	0	0	100	100	0	0	0	100	94	6	0	0	100
vfr008 - 10×05	0	100	0	100	0	0	100	0	99	1	0	100	0	0	100
vfr008 - 10×10	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr008 - 10×15	0	88	12	100	0	0	100	0	61	39	0	100	0	0	100
vfr008 - 10×20	0	100	0	100	0	0	100	0	93	7	0	100	0	0	100
$vfr008 - 20 \times 05$ $vfr008 - 20 \times 10$	0	61 48	39 52	100 100	0	$\begin{vmatrix} 3 \\ 0 \end{vmatrix}$	$97 \\ 100$	0	0	100 100	0	100 100	0	0	100 100
$vfr008 - 20 \times 10$ $vfr008 - 20 \times 15$	0	48 89	52 11	100	0	$\begin{array}{c c} 0 \\ 2 \end{array}$	98	0	0	100	0	100	0	3	97
$vfr008 - 20 \times 10$	0	97	3	100	0	3	97	0	0	100	0	100	0	0	100
vfr008 - 30×05	0	36	64	100	0	18	82	0	ō	100	5	95	0	2	98
vfr008 - 30×10	0	57	43	100	0	5	95	0	0	100	0	100	0	100	0
vfr008 - 30×15	0	79	21	100	0	0	100	0	1	99	0	100	0	100	0
vfr008 - 30×20	0	85	15	100	0	2	98	0	0	100	0	100	0	99	100
$vfr008 - 40 \times 05$ $vfr008 - 40 \times 10$	0	100 39	0 61	100 100	0	$\begin{vmatrix} 0 \\ 9 \end{vmatrix}$	100 91	0	0	100 100	0	100 96	$0 \\ 4$	0 100	100
$vfr008 - 40 \times 10$ $vfr008 - 40 \times 15$	0	76	24	100	0	8	92	0	0	100	0	98	2	100	0
vfr008 - 40×20	0	76	24	100	0	7	93	0	o o	100	0	99	1	100	0
vfr008 - 50×05	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
vfr008 - 50×10	0	60	40	97	3	25	75	0	0	100	0	96	4	100	0
vfr008 - 50×15	0	66	34	97	3	26	74	0	0	100	0	95	5	100	0
vfr008 - 50×20	0	79	21	96	4	16	84	0	0	100	0	99	1	100	0

Table 1: Continued from previous page

Patient	Table 1: Continued from previous page															
			Carat	$\overline{L_h}$ =					$L_h =$		tion -			$L_h =$		
Verticols	Dataset	(CC		2%)			(CC		2%)			(CC		2%)		
Friend Sinch 10 0 85 15 98 22 49 51 0 0 0 100 100 10 100 0 0 0 0 0 0 0 0		`		,	`	,					′	,		,	`	,
		l														
From From Service 90		l														
From Prince 100 x 20		l														
Ferricos - 100 x - 40 Ferricos -									-			-				
rfr008 - 200×20 100 0 0 100 87 13 0 0 100 24 76 0 0 3 97 rfr008 - 200×20 100 0 0 0 100 96 4 0 0 100 4 97 rfr008 - 300×20 100 0 0 100 98 2 0 100 4 96 0 6 6 94 100		l														_
		!	47													_
ν̄r008 - 200×80 100 0 0 0 100 96 4 0 0 100 0 4 90 0 6 6 94 ν̄r008 - 300×80 100 0 0 0 100 100 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 0 100 0 0 </td <td></td>																
rfr008 - 300×20 100 0 0 100 98 2 0 0 100 45 55 0 0 100 rfr008 - 300×20 100 0 0 100 10 100 0 0 100 0 100 0 100 0 100																
									-					-		
rfr008 - 400 < 20 100 0 0 100 99 1 0 100 63 31 0 0 100 vfr008 - 400 < 0 0 100 100 0 0 100 0 0 100 100 0 0 100 0 0 100 100 0 0 100 100 0 0 100 100 0 100 0 100 0 100 </td <td></td> <td>!</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		!							-							
chrons - 400×40 100 0 0 100 0 0 100 65 37 0 0 100 vir00s - 500×20 100 0 0 100 0 0 100 0 0 100 0 100 75 24 0 100	vfr008 - 300×60	100	0	0	0	100	100	0	0	0	100	39		0	0	100
cfr008 - 400 × 60 100 0 0 100 100 59 41 0 0 100 100 100 100 100 100 100 100 0 100 100 0 100 100 100 76 224 0 0 100 100 100 100 76 224 0 0 100 100 0 0 100 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 100 0 0 100 0 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0																
chrones - 500 x 20 100 0 0 100 99 1 0 100 78 24 0 100 100 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 100 0 100 <th< td=""><td></td><td>!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		!														
vfr008 - 500 × 40 100 0 0 100 0 0 100 0 0 100 0 0 0 0 0 0 0 100 0 0 0 100 0 0 <td></td>																
vfr008 - 500 × 60 100 0 0 100 0 0 100 120 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 0 0				-					-	_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{vfr008} - 500 {\times} 60$!	0	0	0	100	100	0	0	0			16	0	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-							
$ \begin{array}{c} srboos - 700 \times 20 \\ srboos - 700 \times 2$																
$\begin{array}{c} schroos - 700 \times 40 \\ vchroos - 700 \times 60 \\ vchroos - 800 \times 20 \\ vc$																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-					-		
$ \begin{array}{c} \text{rf} 008 - 800 \times 40 \\ \text{vf} 009 - 800 \times 60 \\ \text{loo} \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $				0	0				0					0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	vfr008 - 800×20				_				-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c} \text{sr} 1009 - 10 \times 15 \\ \text{v} 1009 - 10 \times 20 \\ \text{v} 1009 - 20 \times 10 \\ \text{v} 1009 - 20 \times 20 \\ \text{v} 1000$		l							-					-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$!														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	vfr009 - 10×20		100		100	0	0	100	0		60	0	100	0		100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		l														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_			-	_						
$ \begin{array}{c} v f r 0 0 9 - 30 \times 20 \\ v f r 0 0 9 - 40 \times 05 \\ v f r 0 0 9 - 40 \times 05 \\ v f r 0 0 9 - 40 \times 05 \\ v f r 0 0 9 - 40 \times 05 \\ 0 & 70 & 30 & 100 \\ 0 & 100 & 0 & 17 & 83 & 0 \\ 0 & 100 & 0 & 100 \\ 0 & 0 & 100 \\ 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		0	59	41	100	0	1	99	0	0	100	0		0		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l								_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				_			-	_		-				_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	vfr009 - 40×20	0	78	22	100	0	6	94	0	0	100	0	100	0	100	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!							-	_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vfr009 - 60×10	0	93	7	100	0	13		0	0	100	0		0	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-					-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100			0	100	100	0	0	0		62	38	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
vfr009 - 600×40 100 0 0 100 100 0 0 100 77 23 0 0 100 vfr009 - 600×60 100 0 0 100 0 0 0 100 88 12 0 0 100									-	_						
									-					-		
Continued on next page \triangleright	$\mathbf{vfr009} - 600 {\times} 60$	100	0	0	0	100	100	0	0	0	100	88				

 Table 1: Continued from previous page

			L_h =	= 1				$L_h =$	5000				$L_h =$	50000	
Detect		Cost			rations		Cost		Iter	ations		Cost			ations
Dataset	(CC	P vs. 2	2%)	(CCI	vs. 2%)	(CC	P vs. 2	2%)	(CCP	vs. 2%)	(CC	CP vs.	2%)	(CCP	vs. 2%)
	<	=	>	<	>	<	=	>	<	>	<	=	>	<	>
vfr009 - 700×20	100	0	0	0	100	100	0	0	0	100	97	3	0	0	100
vfr009 - 700×40	100	0	0	0	100	100	0	0	0	100	83	17	0	0	100
$\mathbf{vfr009} - 700 \times 60$	100	0	0	0	100	100	0	0	0	100	91	9	0	0	100
vfr009 - 800×20	100	0	0	0	100	100	0	0	0	100	86	14	0	0	100
vfr009 - 800×40	100	0	0	0	100	100	0	0	0	100	95	5	0	0	100
$\mathbf{vfr009} - 800 \times 60$	100	0	0	0	100	100	0	0	0	100	96	4	0	0	100
vfr010 - 10×05	0	100	0	100	0	0	100	0	100	0	0	100	0	0	100
vfr010 - 10×10	0	85	15	100	0	0	100	0	100	0	0	100	0	0	100
vfr010 - 10×15	0	99	1	100	0	0	100	0	100	0	0	100	0	0	100
vfr010 - 10×20	0	100	0	100	0	0	100	0	92	8	0	100	0	0	100
vfr010 - 20×05	0	99	1	100	0	1	99	0	0	100	0	100	0	0	100
vfr010 - 20×10	0	56	44	100	0	3	97	0	1	99	0	100	0	4	96
vfr010 - 20×15	0	91	9	100	0	0	100	0	0	100	0	100	0	0	100
vfr010 - 20×20	0	46	54	100	0	4	96	0	0	100	0	100	0	0	100
vfr010 - 30×05	0	62	38	100	0	13	87	0	0	100	0	100	0	0	100
vfr010 - 30×10	0	50	50	100	0	5	95	0	0	100	0	100	0	100	0
vfr010 - 30×15	0	68	32	100	0	7	93	0	0	100	0	100	0	95	5
vfr010 - 30×20	0	86	14	100	0	1	99	0	0	100	0	100	0	100	0
vfr010 - 40×05	0	100	0	100	0	0	100	0	0	100	0	100	0	0	100
vfr010 - 40×10	0	33	67	100	0	21	79	0	0	100	0	97	3	100	0
vfr010 - 40×15	0	62	38	100	0	12	88	0	0	100	0	95	5	100	0
vfr010 - 40×20	0	84	16	100	0	11	89	0	0	100	0	99	1	100	0
vfr010 - 50×05	0	90	10	100	0	33	67	0	0	100	0	100	0	0	100
vfr010 - 50×10	0	71	29	100	0	10	90	0	0	100	0	94	6	100	0
vfr010 - 50×15	2	58	40	98	2	39	61	0	0	100	0	97	3	100	0
vfr010 - 50×20	0	77	23	96	4	26	74	0	0	100	0	96	4	100	0
vfr010 - 60×05	0	100	0	100	0	0	100	0	1	99	0	100	0	0	100
vfr010 - 60×10	2	73	25	88	12	43	57	0	0	100	0	93	7	100	0
vfr010 - 60×15	9	62	29	65	35	33	67	0	0	100	0	86	14	100	0
vfr010 - 60×20	8	70	22	67	33	30	$\frac{70}{25}$	0	0 0	100	0	93 85	7	100	0 0
$vfr010 - 100 \times 20$ $vfr010 - 100 \times 40$	92 70	$\frac{8}{30}$	0	0	100 100	75 65	$\frac{25}{35}$	0	0	100 100	0	94	$\frac{15}{6}$	100 100	0
$vfr010 - 100 \times 40$ $vfr010 - 100 \times 60$	42	58	0	0	100	47		0	0	100	0	98	2	100	0
$vfr010 - 100 \times 60$ $vfr010 - 200 \times 20$	100	0	0	0	100	92	$\frac{53}{8}$	0	0	100	13	98 87	0	0	100
$vfr010 - 200 \times 20$ $vfr010 - 200 \times 40$	100	0	0	0	100	99	1	0	0	100	6	94	0	$\begin{array}{c c} & 0 \\ & 4 \end{array}$	96
$vfr010 - 200 \times 60$	100	0	0	0	100	99	1	0	0	100	4	96	0	4	96
$vfr010 - 300 \times 20$	100	0	0	0	100	93	7	0	0	100	36	64	0	0	100
vfr010 - 300×40	100	0	0	0	100	100	0	0	0	100	38	62	0	0	100
vfr010 - 300×40	100	0	0	0	100	100	0	0	0	100	43	57	0	0	100
vfr010 - 400×20	100	0	0	ő	100	99	1	0	0	100	61	39	0	0	100
vfr010 - 400×40	100	0	0	0	100	100	0	0	0	100	58	42	0	0	100
vfr010 - 400×60	100	0	0	ő	100	100	0	0	0	100	63	37	0	0	100
vfr010 - 500×20	100	0	0	0	100	100	0	0	0	100	59	41	0	0	100
$v fr 0 10 - 500 \times 40$	100	0	0	ő	100	100	0	0	ő	100	74	26	0	ő	100
$vfr010 - 500 \times 60$	100	0	0	0	100	100	0	0	0	100	79	21	0	0	100
vfr010 - 600×20	100	0	0	0	100	99	1	0	0	100	90	10	0	0	100
$v fr 0 10 - 600 \times 40$	100	0	0	ő	100	100	0	0	0	100	83	17	0	0	100
$v fr 0 10 - 600 \times 60$	100	0	0	ő	100	100	0	0	ő	100	87	13	0	ő	100
vfr010 - 700×20	100	0	0	0	100	89	11	0	ő	100	16	84	0	ő	100
$v fr 0 10 - 700 \times 40$	100	0	0	ő	100	100	0	0	ő	100	83	17	0	ő	100
$v fr 0 10 - 700 \times 60$	100	0	0	0	100	100	0	0	ő	100	91	9	0	ő	100
vfr010 - 800×20	100	0	0	0	100	100	0	0	0	100	99	1	0	0	100
$v fr 0 10 - 800 \times 40$	100	0	0	0	100	100	0	0	0	100	91	9	0	0	100
$v fr 0 10 - 800 \times 60$	100	0	0	0	100	100	0	0	o o	100	94	6	0	0	100
												-			

Table 2: Results obtained by LAHC on seven TSP instances with both stopping criteria, CCP and 2% of total search time, using $L_h \in \{1,5000,50000\}$. The CCP cutoff time is calculated using a confidence level p = 0.95. The results are averaged over 100 independent runs. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

Dataset	Stopping		$L_h = 1$	L_{I}	$a_{i} = 5000$	$L_h = 50000$		
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	
d657	2%	0.25	515	0.05	23594	0.02	219937	
4057	ccp	0.13	5396	0.05	26679	0.02	218830	
u724	2%	0.23	698	0.05	26656	0.03	245732	
u124	ccp	0.13	6777	0.05	30739	0.03	244866	

Table 2: Continued from previous page

Dataset	Stopping		$L_h = 1$	L_{l}	$a_{i} = 5000$	L_h	=50000
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
. 5 00	2%	0.24	774	0.06	28195	0.03	259162
rat783	ccp	0.13	8308	0.06	33018	0.03	258763
1-:1000	2%	0.18	1962	0.05	40646	0.02	363879
dsj1000	сср	0.14	13189	0.05	48323	0.02	364651
n=1002	сср 2%	0.19	1838	0.05	40633	0.02	364699
pr1002	ccp	0.14	13591	0.05	48528	0.02	365490
u1060	2%	0.17	2252	0.05	43576	0.02	388940
u1000	сср	0.14	17635	0.05	54775	0.02	390690
vm1084	2%	0.19	2398	0.05	45711	0.03	401890
VIII1004	ccp 2%	0.14	16143	0.05	55355	0.03	403407
pcb1173		0.19	2751	0.07	49698	0.03	437050
pediffo	ccp	0.15	18749	0.07	61139	0.03	439607
d1291	2%	0.25	3735	0.07	57450	0.03	494171
41201	ccp 2%	0.19	25150	0.07	72407	0.03	498249
rl1304		0.22	4183	0.07	59108	0.03	504785
	ccp	0.17	24466	0.07	73541	0.03	508833
rl1323	2%	0.22	4309	0.06	60459	0.03	513434
	ccp	0.17	25110	0.06	75126	0.03	517750
nrw1379	2%	0.16	3694	0.07	59887	0.03	520334
	ccp	0.13	25904	0.07	76054	0.03	525852
fl1400	2%	0.12	3954	0.03	57279	0.01	491071
	ccp	0.08	50808	0.03	92114	0.01	500415
u1432	2%	0.16	3678	0.05	65775	0.02	557985
	ccp	0.09	56519	0.05	106073	0.02	570563
fl1577	2%	0.20	6546	0.06	74369	0.02	618350
	ccp	0.15	55302	0.06	114133	0.02	633245
d1655	2%	0.19	6931	0.07	79124	0.04	660650
	ccp	0.16	49703	0.07	113135	0.04	675212
vm1748	2%	0.16	8257	0.06	86368	0.03	712242
	ccp 2%	0.14	47366	0.06	116566	0.03	724488
u1817		0.21 0.17	8297	0.09 0.09	92454	0.04	752937 774134
	ccp 2%	0.17	73886 10691		146745 97782	0.04 0.04	788916
rl1889			54244	0.08	134546		
	2%	0.17 0.23	12318	0.08 0.11	111923	0.04 0.07	805356 879397
d2103		0.23	80838	0.11 0.11	164641	0.07 0.07	903148
	ccp 2%	0.20	12741	0.09	115321	0.04	923093
u2152	ccp	0.20	115059	0.09	202446	0.04	967607
	2%	0.08	9436	0.03	124619	0.02	968811
u2319	ccp	0.03	207031	0.03	276355	0.02	1043247
	2%	0.17	16714	0.08	129377	0.04	1026521
pr2392	ccp	0.16	87714	0.08	186142	0.04 0.04	1020521
	2%	0.16	28181	0.09	175972	0.04	1340996
pcb3038	ccp	0.15	143730	0.09	273159	0.05	1400291
	2%	0.15	61248	0.08	266016	0.05	1812087
fl3795	ccp	0.12	523236	0.08	678098	0.05	2142854
0.14.5	2%	0.14	64994	0.09	298539	0.05	2107620
fnl4461	ccp	0.13	315894	0.09	521294	0.05	2258021
15015	2%	0.19	168374	0.12	543071	0.06	3128480
rl5915	ccp	0.18	650387	0.12	976649	0.06	3425433
	2%	0.19	172701	0.12	533000	0.06	3117058
rl5934	ccp	0.18	643924	0.12	968002	0.06	3457224
1 14 15 5	2%	0.13	949751	0.11	1869730	0.07	8661990
brd14051	ccp	0.13	3680605	0.11	4456230	0.07	10781969
d15112	2%	0.13	1068998	0.11	2073672	0.07	9508700
					4958517		11939113

Table 3: Results obtained by LAHC on 17 Taillard's instances of QAP of size larger than 30 taken from QAPLIB with both stopping criteria, CCP and 2% of total search time, using $L_h \in \{1,5000,50000\}$. The CCP cutoff time is calculated using a confidence level p = 0.95. The results are averaged over 100 independent runs. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

Dataset	Dataset Stopping		$L_h = 1$	L_{I}	$a_i = 5000$	$L_h = 50000$		
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	
bur26a	2%	0.00	100	0.00	322	0.00	3331	
bur20a	ccp	0.00	5	0.00	320	0.00	3314	

Table 3: Continued from previous page

Dataset	Stopping		$L_h = 1$	L_I	$n_i = 5000$	L_h	=50000
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
l0.Cl.	2%	0.00	100	0.00	300	0.00	312
bur26b	ccp	0.00	5	0.00	299	0.00	311
bur26c	2%	0.01	100	0.00	327	0.00	339
Dui 200	ccp	0.01	5	0.00	326	0.00	337
bur26d	2%	0.01	100	0.00	311	0.00	320
	ccp 2%	0.01	100	0.00	310 329	0.00	318 344
bur26e	l .	0.00	100 5	0.00	329 327	0.00	344 342
	2%	0.00	100	0.00	306	0.00	320
bur26f	ccp	0.00	5	0.00	305	0.00	318
1 00	2%	0.00	100	0.00	333	0.00	341
bur26g	ccp	0.00	5	0.00	331	0.00	340
bur26h	2%	0.01	100	0.00	312	0.00	322
5412011	ccp	0.01	5	0.00	311	0.00	321
chr12a	2%	0.53	100	0.06	109	0.01	114
	2%	0.53	1 100	0.06	111 118	0.01	122 126
chr12b	ccp	$0.58 \\ 0.58$	100 1	0.02	118 124	0.00	133
	2%	0.46	100	0.04	105	0.00	105
chr12c	ccp	0.46	1	0.04	105	0.00	113
ohr15e	2%	0.57	100	0.10	129	0.02	139
chr15a	ccp	0.57	1	0.10	136	0.02	146
chr15b	2%	0.59	100	0.17	140	0.08	152
	ccp	0.59	1	0.17	148	0.08	157
chr15c	2%	0.69	100	0.21	127	0.09	139
	ccp 2%	0.69	100	0.21	135 174	0.09	146 189
chr18a	ccp	0.70	2	0.19	174	0.09	192
	2%	0.13	100	0.01	171	0.00	182
chr18b	ccp	0.13	2	0.01	175	0.00	185
ala#20a	2%	0.47	100	0.17	193	0.10	204
chr20a	ccp	0.47	2	0.17	198	0.10	207
chr20b	2%	0.42	100	0.16	175	0.10	182
CIII 200	ccp	0.42	2	0.16	180	0.10	186
chr20c	2%	0.87	100	0.23	221	0.13	236
	2%	0.87	100	0.23	225 227	0.13	239 251
chr22a	ccp	0.14	3	0.05	228	0.03	$\frac{251}{252}$
	2%	0.14	100	0.06	213	0.03	223
chr22b	ccp	0.14	3	0.06	216	0.04	224
1 05	2%	0.57	100	0.25	278	0.17	288
chr25a	ccp	0.57	4	0.24	279	0.17	287
els19	2%	0.29	100	0.13	222	0.09	233
CISTO	ccp	0.29	2	0.13	226	0.09	235
esc16a	2%	0.00	100	0.00	100	0.00	77
	ccp	0.00	1	0.00	80	0.00	84
esc16b	2%	0.00	100 1	0.00	100 50	$0.00 \\ 0.00$	46 52
	2%	0.00	100	0.00	100	0.00	92
esc16c	ccp	0.00	1	0.00	93	0.00	98
000101	2%	0.00	100	0.00	100	0.00	70
esc16d	ccp	0.01	1	0.00	73	0.00	76
esc16e	2%	0.00	100	0.00	100	0.00	62
	ccp	0.01	1	0.00	66	0.00	69
esc16f	2%	0.00	100	0.00	100	0.00	10
	2%	0.00	100	0.00	5	0.00	5
esc16g	ccp	0.00	100 1	0.00	100 72	0.00	69 76
	2%	0.00	100	0.00	100	0.00	81
esc16h	ccp	0.00	1	0.00	83	0.00	89
ogo1 <i>C</i> :	2%	0.00	100	0.00	100	0.00	64
esc16i	ccp	0.00	1	0.00	67	0.00	71
esc16j	2%	0.00	100	0.00	100	0.00	48
CSC 1UJ	ccp	0.01	1	0.00	52	0.00	55
esc32a	2%	0.12	100	0.06	268	0.02	278
	ccp	0.13	9	0.06	267	0.02	278
esc32b	2%	0.13	100	0.10	232	0.03	240
	2%	0.14	8 100	0.10	233	0.03	240
esc32c	ccp	0.00	100 6	0.00	164 169	0.00	1 72 175
	ı cep	0.00	U	0.00	109	0.00	110

 $Continued\ on\ next\ page\ \rhd$

Table 3: Continued from previous page

Dataset	Stopping		$L_h = 1$	L_{I}	$n_0 = 5000$	L_h	=50000
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
	ccp	0.02	7	0.00	189	0.00	195
esc32e	2%	0.00	100	0.00	100	0.00	51
escoze	ccp	0.00	5	0.00	56	0.00	60
esc32g	2%	0.00	100	0.00	100	0.00	56
	ccp	0.00	5	0.00	60	0.00	63
esc32h	2%	0.02	100	0.00	197	0.00	205
	2%	0.03	7 100	0.00	199 183	0.00	207 187
esc64a	ccp	0.00	25	0.00	202	0.00	190
	2%	0.02	100	0.02	334	0.00	340
esc128	ccp	0.02	131	0.01	442	0.00	343
1 110	2%	0.01	100	0.00	109	0.00	116
had12	ccp	0.01	1	0.00	115	0.00	121
had14	2%	0.01	100	0.00	139	0.00	147
naur	ccp	0.01	1	0.00	145	0.00	151
had16	2%	0.01	100	0.00	172	0.00	179
114410	ccp	0.01	2	0.00	177	0.00	183
had18	2%	0.01	100	0.00	196	0.00	205
	2%	0.01	100	0.00	199 228	0.00	208 237
had20	ccp	0.01	3	0.00	230	0.00	238
	2%	0.01	100	0.00	387	0.00	404
kra30a	ccp	0.07	7	0.02	385	0.01	401
lrno 201-	2%	0.05	100	0.01	384	0.00	401
kra30b	ccp	0.05	7	0.01	381	0.00	398
kra32	2%	0.06	100	0.02	418	0.01	436
KI a J Z	ccp	0.06	8	0.02	414	0.01	432
lipa20a	2%	0.03	100	0.01	217	0.00	240
F	ccp	0.03	2	0.01	219	0.00	244
lipa20b	2%	0.15 0.15	100	0.02	270	$0.00 \\ 0.00$	291 290
	2%	0.13	100	0.01	273 382	0.00	444
lipa30a	ccp	0.02	6	0.01	379	0.00	440
	2%	0.16	100	0.01	480	0.00	512
lipa30b	ccp	0.16	6	0.01	476	0.00	506
1: 40-	2%	0.01	100	0.01	498	0.01	576
lipa40a	ccp	0.01	12	0.01	496	0.01	570
lipa40b	2%	0.18	100	0.00	726	0.00	742
пратоо	ccp	0.18	12	0.00	719	0.00	732
lipa50a	2%	0.01	100	0.01	652	0.00	804
	ccp	0.01	20	0.01	651	0.00	793
lipa50b	2%	0.18 0.18	100 21	0.01 0.01	953 947	$0.00 \\ 0.00$	989 974
	2%	0.10	100	0.01	784	0.00	917
lipa60a	ccp	0.01	31	0.01	787	0.01	904
1: 001	2%	0.20	100	0.10	1015	0.00	1253
lipa60b	ccp	0.20	32	0.10	1013	0.00	1233
line 70e	2%	0.01	100	0.01	965	0.01	1109
lipa70a	ccp	0.01	44	0.01	972	0.01	1092
lipa70b	2%	0.21	100	0.10	1280	0.00	1536
F2.00	ccp	0.21	46	0.10	1281	0.00	1510
lipa80a	2%	0.01	100	0.01	1101	0.01	1151
-	2%	0.01	61	0.01	1114 1356	0.01	1133 1823
lipa80b	ccp	0.21	100 63	0.15	1363	$0.01 \\ 0.01$	1823 1792
	2%	0.21	100	0.13	1306	0.01	1385
lipa90a	ccp	0.01	75	0.01	1325	0.01	1362
1: 001	2%	0.22	100	0.18	1482	0.01	2131
lipa90b	ccp	0.22	81	0.18	1499	0.01	2093
nug12	2%	0.04	100	0.00	102	0.00	101
nug14	ccp	0.05	1	0.00	101	0.00	107
nug14	2%	0.05	100	0.01	126	0.00	138
	ccp	0.05	1	0.01	132	0.00	143
nug15	2%	0.04	100	0.00	140	0.00	150
	ccp 2%	0.04	100	0.00	147	0.00	154
nug16a		0.05	100 1	0.01	159	$0.00 \\ 0.00$	167
	2%	0.05	100	0.01	164 157	0.00	170 165
nug16b	ccp	0.05	100	0.00	163	0.00	169
	2%	0.03	100	0.00	168	0.00	180

Table 3: Continued from previous page

Dataset	Stopping	L_h	= 1	L_{I}	$a_i = 5000$	L_h	= 50000
Dataset	Criterion	\overline{RPD} 1	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
	сср	0.04	2	0.01	173	0.00	1840
1.0	2%	0.04	100	0.01	182	0.00	1892
nug18	сср	0.04	2	0.01	186	0.00	1918
90	2%	0.04	100	0.01	216	0.00	2281
nug20	ccp	0.04	3	0.01	218	0.00	2297
01	2%	0.04	100	0.01	235	0.00	2487
nug21	ccp	0.04	3	0.01	237	0.00	2492
	2%	0.03	100	0.01	264	0.00	2750
nug22	ccp	0.03	3	0.01	264	0.00	2746
m	2%	0.04	100	0.01	288	0.00	3003
nug24	ccp	0.04	4	0.01	288	0.00	2994
05	2%	0.03	100	0.00	304	0.00	3188
nug25	сср	0.03	5	0.00	303	0.00	3175
97	2%	0.04	100	0.01	347	0.00	3618
nug27	ccp	0.04	5	0.01	345	0.00	3595
20	2%	0.04	100	0.01	354	0.00	3748
nug28	ccp	0.04	6	0.01	352	0.00	3723
	2%	0.04	100	0.01	404	0.00	4127
nug30	ccp	0.04	7	0.01	401	0.00	4095
	2%	0.06	100	0.00	109	0.00	1107
rou12	ccp	0.06	1	0.00	111	0.00	1169
	2%	0.07	100	0.00	133	0.00	1472
rou15	ccp	0.07	100	0.02	139	0.00	1514
	2%	0.05	100	0.02	192	0.00	2130
rou20	ccp	0.05	2	0.02	198	0.01	2130
	2%	0.03	100	0.02	107	0.00	1121
scr12	ccp	0.07	100	0.00	110	0.00	1121
	2%	0.07	100	0.00	152	0.00	1624
scr15		0.11	100	0.02	158	0.00	1624
	2%			0.02	224	0.00	2351
scr20		0.10 0.10	100 2	0.02	224 227	0.00	2365
	ccp						
sko42	2%	0.03	100	0.00	646	0.00	6689
	ccp	0.03	15	0.00	641	0.00	6605
sko49	2%	0.03	100	0.00	785	0.00	8088
	ccp	0.03	22	0.00	781	0.00	7976
sko56	2%	0.03	100	0.00	957	0.00	9815
	ccp	0.03	29	0.00	954	0.00	9669
sko64	2%	0.02	100	0.00	1154	0.00	11700
	ccp	0.02	42	0.00	1153	0.00	11516
sko72	2%	0.02	100	0.00	1345	0.00	13641
	ccp	0.02	54	0.00	1346	0.00	13418
sko81	2%	0.02	100	0.00	1572	0.00	15862
	ccp	0.02	71	0.00	1576	0.00	15594
sko90	2%	0.02	100	0.00	1798	0.00	18282
511000	ccp	0.02	91	0.00	1808	0.00	17967
sko100a	2%	0.02	100	0.00	2068	0.00	20967
bhoioa	ccp	0.02	116	0.00	2085	0.00	20603
sko100b	2%	0.02	100	0.00	2077	0.00	20904
5701000	сср	0.02	118	0.00	2092	0.00	20543
sko100c	2%	0.02	100	0.00	2090	0.00	21101
2101000	сср	0.02	116	0.00	2105	0.00	20736
sko100d	2%	0.02	100	0.00	2066	0.00	20904
5AU100U	ccp	0.02	115	0.00	2082	0.00	20543
sko100e	2%	0.02	100	0.00	2106	0.00	21190
PVOTOGE	ccp	0.02	118	0.00	2121	0.00	20823
sko100f	2%	0.02	100	0.00	2062	0.00	20957
2001001	ccp	0.02	124	0.00	2079	0.00	20594
sto96s	2%	0.11	100	0.02	525	0.01	5463
ste36a	ccp	0.11	10	0.02	520	0.01	540 4
at 0261	2%	0.20	100	0.03	543	0.01	5616
ste36b	ccp	0.20	10	0.03	538	0.01	5554
at a 2.0 c	2%	0.09	100	0.01	539	0.00	556
ste36c	сср	0.09	10	0.01	534	0.00	5500
. 10	2%	0.06	100	0.00	100	0.00	871
tai10a	сср	0.06	0	0.00	87	0.00	953
	2%	0.11	100	0.00	101	0.00	1000
tai10b	ccp	0.11	0	0.00	96	0.00	1075
	2%	0.11	100	0.00	112	0.00	1203
tai12a	ccp	0.10	100	0.01	117	0.00	1262
	2%	0.10	100	0.01	111	0.00	1166

Table 3: Continued from previous page

Dataset	Stopping		$L_h = 1$	L_h	=5000	L_h	= 50000
Dataset	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
	сср	0.14	1	0.03	117	0.00	1241
	2%	0.05	100	0.01	131	0.00	1408
tai15a	ccp	0.05	1	0.01	136	0.00	1451
	2%	0.01	100	0.00	155	0.00	1699
tai15b	ccp	0.01	1	0.00	162	0.00	1738
	2%	0.05	100	0.02	155	0.01	1652
tai17a	ccp	0.05	2	0.02	159	0.01	1687
	2%	0.06	100	0.02	192	0.01	1998
tai20a	ccp	0.06	2	0.02	197	0.01	2035
	2%	0.13	100	0.02	235	0.01	2499
tai20b		0.13	3	0.04	239	0.02	2522
	2%	0.13	100	0.04	255	0.02	2713
tai25a		0.06	4	0.03	$\frac{255}{256}$	0.02 0.02	2713 2710
	ccp			I			
tai25b	2%	0.14	100	0.02	337	0.01	3511
	ccp	0.14	4	0.02	335	0.01	3491
tai30a	2%	0.05	100	0.03	335	0.02	3443
	ccp	0.05	6	0.03	333	0.02	3424
tai30b	2%	0.13	100	0.03	427	0.03	4435
141000	ccp	0.13	7	0.03	424	0.03	4396
tai35a	2%	0.05	100	0.03	406	0.02	4121
uaiooa	ccp	0.05	9	0.03	404	0.02	4088
tai35b	2%	0.08	100	0.02	526	0.02	5395
taroon	ccp	0.08	10	0.02	521	0.02	5337
+-:40-	2%	0.05	100	0.03	480	0.02	5004
tai40a	ccp	0.05	13	0.03	478	0.02	4954
	2%	0.10	100	0.02	640	0.02	6538
tai40b	сср	0.10	13	0.02	634	0.02	6458
	2%	0.05	100	0.03	645	0.03	6621
tai50a	ccp	0.05	21	0.03	645	0.03	6539
	2%	0.07	100	0.01	860	0.00	8709
tai50b	ccp	0.07	23	0.01	855	0.00	8585
	2%	0.04	100	0.03	809	0.03	8292
tai60a	ccp	0.04	33	0.03	811	0.03	8176
	2%	0.04	100	0.03	1102	0.00	11147
tai60b		0.06	35	0.01	1099	0.00	10974
	2%	0.00	100	0.01	132	0.00	
tai64c		Į.		0.00			1429
	2%	0.01	27		158	0.00	1485
tai80a		0.04	100	0.03	1142	0.02	11874
	ccp	0.04	64	0.03	1155	0.02	11687
tai80b	2%	0.05	100	0.01	1592	0.01	16081
	ccp	0.05	69	0.01	1595	0.01	15810
tai100a	2%	0.04	100	0.03	1534	0.02	15754
	ccp	0.04	104	0.03	1563	0.02	15496
tai100b	2%	0.05	100	0.00	2144	0.00	21482
	ccp	0.05	115	0.00	2158	0.00	21109
tai150b	2%	0.03	105	0.01	3576	0.00	35435
	сср	0.03	318	0.01	3642	0.00	34864
tai256c	2%	0.01	100	0.00	789	0.00	8187
0a1200C	ccp	0.00	608	0.00	1358	0.00	8466
tho30	2%	0.05	100	0.01	416	0.00	4279
01000	ccp	0.05	6	0.01	413	0.00	4243
4h a 40	2%	0.05	100	0.01	604	0.00	6303
tho40	сср	0.05	13	0.01	599	0.00	6227
.1 170	2%	0.02	101	0.00	3591	0.00	35930
tho 150	ccp	0.02	285	0.00	3657	0.00	35349
	2%	0.01	100	0.00	822	0.00	8368
wil50	ccp	0.01	23	0.00	818	0.00	8251
	2%	0.01	100	0.00	2066	0.00	21076
wil100	ccp	0.01	122	0.00	2082	0.00	20711
	сер	0.01	144	0.00	2002	0.00	20111

Table 4: Results obtained by LAHC on 12 PFSP Taillard's instances with both stopping criteria, CCP and 2% of total search time, using $L_h \in \{1,5000,50000\}$. The CCP cutoff time is calculated using a confidence level p=0.95. The results are averaged over 100 independent runs. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

Dataset	NEH	Stopping		$L_h = 1$	L_{F}	$a_{i} = 5000$	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
$tai001 - 020 \times 05$	0.01	2%	0.00 0.00	100 4	$0.00 \\ 0.00$	115 120	0.00	1403 1524
		2%	0.00	100	0.00	109	0.00	1133
$tai002 - 020 \times 05$	0.00	ccp	0.00	4	0.00	109	0.00	1199
$tai003 - 020 \times 05$	0.05	2%	0.00	100	0.01	167	0.00	1982
	1	2%	0.01 0.01	100	0.01	177 187	0.00	2015 2026
$tai004 - 020 \times 05$	0.02	ccp	0.01	5	0.00	192	0.00	2046
tai005 - 020×05	0.06	2%	0.01	100	0.00	146	0.00	1613
020,000	- 0.00	ccp	0.01	5	0.00	157	0.00	1658
$tai006 - 020 \times 05$	0.03	2% ccp	0.01 0.01	100 4	0.01 0.01	141 149	0.00	1673 1752
tai007 - 020×05	0.04	2%	0.01	100	0.01	109	0.01	1161
tai007 = 020×05	0.04	ccp	0.01	3	0.01	116	0.01	1223
$tai008 - 020 \times 05$	0.01	2%	0.00	100	0.00 0.00	168	0.00	1833
		2%	0.01 0.01	100	0.00	175 164	0.00	1864 1787
$tai009 - 020 \times 05$	0.05	ccp	0.01	6	0.00	174	0.00	1823
tai010 - 020×05	0.04	2%	0.00	100	0.00	173	0.00	1826
020/00	0.04	ccp	0.01	6	0.00	182	0.00	1855
$tai011 - 020 \times 10$	0.06	2% ccp	0.01 0.01	100 5	$0.01 \\ 0.00$	209 211	0.00	2171 2189
. 1010 000 10	0.00	2%	0.02	100	0.00	203	0.00	2090
$tai012 - 020 \times 10$	0.08	ccp	0.02	5	0.01	206	0.00	2111
tai013 - 020×10	0.04	2%	0.02	100	0.01	199	0.01	2098
		2%	0.02 0.02	5 100	0.01	201 199	0.01	2115 2109
$tai014 - 020 \times 10$	0.05	ccp	0.02	5	0.01	202	0.00	2138
tai015 - 020×10	0.06	2%	0.03	100	0.01	206	0.00	2176
tai015 - 020×10	0.00	ccp	0.03	5	0.01	209	0.00	2206
$tai016 - 020 \times 10$	0.04	2%	0.02 0.02	100 5	$0.01 \\ 0.01$	190 195	0.00	2100 2123
		2%	0.02	100	0.00	202	0.00	2157
$tai017 - 020 \times 10$	0.05	ccp	0.02	4	0.00	205	0.00	2175
tai018 - 020×10	0.05	2%	0.03	100	0.01	193	0.01	2044
	1	2%	0.03 0.01	5 100	0.01	197 171	0.01	2069 1917
$tai019 - 020 \times 10$	0.03	ccp	0.01	5	0.01	182	0.00	1941
tai020 - 020×10	0.04	2%	0.02	100	0.01	192	0.01	2022
ta1020 020×10	0.04	ccp	0.02	5	0.01	196	0.01	2046
$tai021 - 020 \times 20$	0.05	2% ccp	0.02 0.02	100 5	$0.01 \\ 0.01$	196 200	0.00	2109 2130
1,000 00000	0.00	2%	0.02	100	0.01	204	0.00	2175
$tai022 - 020 \times 20$	0.02	ccp	0.02	5	0.01	208	0.00	2195
$tai023 - 020 \times 20$	0.04	2%	0.02	100	0.01	193	0.00	2019
	-	2%	0.02 0.01	5 100	0.01	196 208	0.00	2047 2159
$tai024 - 020 \times 20$	0.02	ccp	0.01	5	0.01	211	0.00	2176
tai025 - 020×20	0.05	2%	0.02	100	0.01	194	0.00	2038
020/20	0.00	ccp	0.02	5	0.01	198	0.00	2066
$tai026 - 020 \times 20$	0.06	2% ccp	0.02 0.02	100 5	$0.01 \\ 0.01$	199 202	0.00	2053 2087
002 00000	0.04	2%	0.02	100	0.01	200	0.00	2094
$tai027 - 020 \times 20$	0.04	ccp	0.02	5	0.01	203	0.00	2119
tai028 - 020×20	0.02	2%	0.02	100	0.01	197	0.00	2109
		2%	0.02 0.02	100	0.01	200 199	0.00	2133 2115
$tai029 - 020 \times 20$	0.03	ccp	0.02	5	0.01	202	0.00	2113
tai030 - 020×20	0.05	2%	0.02	100	0.01	210	0.00	2195
020 \ 20	0.00	ccp	0.02	5	0.01	213	0.00	2213
$tai031 - 050 \times 05$	0.00	2% ccp	0.00	100 28	0.00 0.00	147 182	0.00	1610 1657
4-1090 OFC OF	0.00	2%	0.00	100	0.00	179	0.00	2428
$tai032 - 050 \times 05$	0.00	сср	0.00	35	0.00	255	0.00	2465
tai033 - 050×05	0.00	2%	0.00	100	0.00	204	0.00	2220
		ccp	0.00	29	0.00	241	0.00	2236

Table 4: Continued from previous page

Detect	NEH	Stopping		$L_h = 1$	L_h	a = 5000	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
$tai034 - 050 \times 05$	0.01	2%	0.00	100	0.01	188	0.00	232
141004 000700	0.01	ccp	0.01	43	0.01	246	0.00	235
$tai035-050{\times}05$	0.00	2%	0.00 0.00	100 27	0.00 0.00	158 191	0.00	171 3
		2%	0.00	100	0.00	205	0.00	213
$tai036 - 050 \times 05$	0.00	ccp	0.00	30	0.00	232	0.00	216
$tai037 - 050 \times 05$	0.01	2%	0.00	100	0.00	240	0.00	267
ta1031 050×05	0.01	ccp	0.00	39	0.00	281	0.00	267
$tai038 - 050 \times 05$	0.00	2%	0.00	100 29	0.00 0.00	198 232	0.00 0.00	226 231
		ccp 2%	0.00	100	0.00	215	0.00	231 227
$tai039 - 050 \times 05$	0.01	ccp	0.00	32	0.00	249	0.00	228
$tai040 - 050 \times 05$	0.00	2%	0.00	100	0.00	166	0.00	172
ta1040 - 050×05	0.00	сср	0.00	44	0.00	201	0.00	175
$tai041 - 050 \times 10$	0.06	2%	0.03	100	0.03	386	0.02	481
		ccp 2%	0.04 0.02	40 100	0.03	438 438	0.02	470 485
$tai042 - 050 \times 10$	0.05	ccp	0.02	55	0.02	494	0.02	400 479
	0.07	2%	0.03	100	0.02	504	0.01	550
$tai043 - 050 \times 10$	0.07	ccp	0.03	61	0.02	542	0.01	541
$tai044 - 050 \times 10$	0.04	2%	0.01	100	0.01	404	0.00	449
		ccp	0.01	51	0.01	451	0.00	445
$tai045 - 050 \times 10$	0.06	2% ccp	0.02 0.02	100 59	0.02 0.02	464 505	0.01 0.01	515 505
		2%	0.02	100	0.02	378	0.01	456
$tai046 - 050 \times 10$	0.06	ccp	0.03	57	0.02	432	0.01	449
tai047 - 050×10	0.06	2%	0.02	100	0.02	349	0.01	409
ta1047 = 050 x 10	0.00	ccp	0.02	45	0.02	411	0.01	400
$tai048 - 050 \times 10$	0.05	2%	0.01	100	0.01	409	0.00	446
		2%	0.01 0.01	55 100	0.01	452 439	0.00 0.01	440 505
$tai049 - 050 \times 10$	0.04	ccp	0.01	49	0.01	493	0.01	495
050 050 10	0.00	2%	0.02	100	0.02	423	0.01	493
$tai050 - 050 \times 10$	0.06	ccp	0.02	58	0.02	476	0.01	480
$tai051 - 050 \times 20$	0.07	2%	0.05	100	0.04	536	0.04	581
		ccp	0.05	58	0.04	579	0.04	572
$tai052-050{\times}20$	0.07	2% ccp	0.04 0.04	100 59	0.03 0.03	557 588	0.02 0.02	618 605
		2%	0.05	100	0.04	536	0.02	586
$tai053 - 050 \times 20$	0.08	ccp	0.05	56	0.04	573	0.03	578
$tai054 - 050 \times 20$	0.10	2%	0.06	100	0.05	551	0.04	595
ta1054 - 050 × 20	0.10	ccp	0.06	60	0.05	583	0.04	584
$tai055 - 050 \times 20$	0.08	2%	0.05	100	0.04	579	0.03	619
		2%	0.05 0.04	54 100	0.04	612 541	0.03 0.02	611 582
$tai056 - 050 \times 20$	0.07	ccp	0.04	61	0.03	571	0.02	571
+-:057 050,400	0.00	2%	0.04	100	0.03	560	0.02	607
$tai057 - 050 \times 20$	0.08	ccp	0.04	63	0.03	595	0.02	596
$tai058 - 050 \times 20$	0.08	2%	0.06	100	0.04	555	0.04	604
		2%	0.06 0.06	56 100	0.04	590 560	0.04	592
$tai059 - 050 \times 20$	0.08	ccp	0.06	52	0.05 0.05	5 60 588	$0.04 \\ 0.04$	593
+-:000 OF0 00	0.10	2%	0.05	100	0.04	508	0.03	592
$tai060 - 050 \times 20$	0.10	ccp	0.05	56	0.04	559	0.03	579
tai061 – 100×05	0.00	2%	0.00	100	0.00	180	0.00	195
100/100	1 0.00	ccp	0.00	133	0.00	317	0.00	203
$tai062 - 100 \times 05$	0.00	2%	0.00	100 128	0.00 0.00	180 320	0.00 0.00	192 207
		2%	0.00	100	0.00	198	0.00	267
$tai063 - 100 \times 05$	0.01	ccp	0.00	164	0.00	440	0.00	290
$tai064 - 100 \times 05$	0.00	2%	0.00	100	0.00	183	0.00	217
001X004 = 100X00	0.00	ccp	0.00	141	0.00	386	0.00	228
$tai065 - 100 \times 05$	0.00	2%	0.00	100	0.00	225	0.00	246
		2%	0.00	162 100	0.00	414 187	0.00	257 211
$tai066 - 100 \times 05$	0.00	ccp	0.00	127	0.00 0.00	348	0.00	211
+-:007 100 0F	0.00	2%	0.00	100	0.00	207	0.00	231
$tai067 - 100 \times 05$	0.00	ccp	0.00	129	0.00	403	0.00	245
tai068 – 100×05	0.01	2%	0.00	100	0.00	205	0.00	276
100/00	0.01	ccp	0.00	162	0.00	449	0.00	289
$tai069 - 100 \times 05$	0.01	2%	0.00	100	0.00	212	0.00	256 next page

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{I}	$a_{i} = 5000$	L_h	h = 50000	
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	
		ccp	0.00	135	0.00	399	0.00	2645	
$tai070 - 100 \times 05$	0.00	2%	0.00	100	0.00	211	0.00	2546	
		2%	0.00	164 100	0.00 0.01	419 514	0.00	2689 577 3	
$tai071 - 100 \times 10$	0.02	ccp	0.01	221	0.01	746	0.00	5780	
		2%	0.01	100	0.01	506	0.00	5430	
$tai072 - 100 \times 10$	0.02	ccp	0.00	198	0.01	704	0.01	5463	
+~:072 100×10	0.00	2%	0.01	100	0.01	441	0.00	4814	
$tai073 - 100 \times 10$	0.02	ccp	0.00	238	0.00	645	0.00	4849	
$tai074 - 100 \times 10$	0.04	2%	0.01	100	0.01	568	0.01	6358	
		ccp	0.01	231	0.01	785	0.01	6360	
$tai075 - 100 \times 10$	0.04	2%	0.01 0.01	100 279	0.01 0.01	593 805	$0.01 \\ 0.01$	637 637 (
		2%	0.00	100	0.01	489	0.00	5108	
$tai076 - 100 \times 10$	0.02	ccp	0.00	195	0.00	649	0.00	513	
. 10010	0.00	2%	0.01	100	0.01	420	0.00	5069	
$tai077 - 100 \times 10$	0.03	ccp	0.01	218	0.01	692	0.00	509	
tai078 – 100×10	0.02	2%	0.01	100	0.01	468	0.01	566	
tai010 100×10	0.02	ccp	0.01	239	0.01	739	0.01	574	
$tai079 - 100 \times 10$	0.02	2%	0.01	100	0.02	348	0.01	491	
		сср 2%	0.01 0.01	257 100	0.01 0.01	752 369	0.01 0.01	512 377	
$tai080 - 100 \times 10$	0.02	ccp	0.01	128	0.01 0.01	369 489	0.01	383	
		2%	0.05	100	0.05	884	0.01	1078	
$tai081 - 100 \times 20$	0.08	ccp	0.04	335	0.04	1178	0.03	1036	
+-:000 100×00	0.00	2%	0.03	100	0.03	873	0.02	995	
$tai082 - 100 \times 20$	0.06	ccp	0.03	334	0.02	1146	0.02	980	
tai083 – 100×20	0.06	2%	0.03	100	0.03	886	0.02	1014	
100/120	0.00	ccp	0.03	336	0.02	1172	0.02	991	
$tai084 - 100 \times 20$	0.05	2%	0.03	100	0.03	768	0.02	843	
		2%	0.02	283 100	0.02 0.04	998 794	0.02 0.03	920	
$tai085 - 100 \times 20$	0.06	ccp	0.04	300	0.04	1082	0.03	920 895	
		2%	0.04	100	0.04	816	0.03	889	
$tai086 - 100 \times 20$	0.08	ccp	0.03	318	0.03	1035	0.03	876	
+-:007 100×00	0.00	2%	0.04	100	0.04	972	0.03	1057	
$tai087 - 100 \times 20$	0.08	ccp	0.04	366	0.03	1247	0.03	1027	
$tai088 - 100 \times 20$	0.07	2%	0.05	100	0.04	960	0.03	1107	
	0.01	ccp	0.04	352	0.04	1247	0.03	1065	
$tai089 - 100 \times 20$	0.07	2%	0.04	100 386	0.04 0.03	948	0.03	1085	
		2%	0.04	100	0.03	1214 721	0.03 0.02	1063 836	
$tai090 - 100 \times 20$	0.05	ccp	0.03	241	0.03	1014	0.02	824	
. 1001 . 200 . 10	0.01	2%	0.00	100	0.01	399	0.01	455	
$tai091 - 200 \times 10$	0.01	ccp	0.00	788	0.00	1548	0.00	602	
tai092 - 200×10	0.02	2%	0.01	100	0.01	691	0.01	804	
ta1032 200×10	0.02	ccp	0.01	1058	0.01	1875	0.01	897	
$tai093 - 200 \times 10$	0.01	2%	0.01	100	0.01	489	0.01	540	
· · · · ·		ccp	0.01	680	0.01	1451	0.01	609	
$tai094-200{\times}10$	0.02	2%	0.01 0.00	100 1053	0.01 0.00	315 1584	0.00 0.00	456 596	
		2%	0.00	1000	0.00	721	0.00	779	
$tai095 - 200 \times 10$	0.01	ccp	0.00	785	0.00	1526	0.00	835	
+~:006 000::10	0.00	2%	0.01	100	0.01	644	0.01	693	
$tai096 - 200 \times 10$	0.02	ccp	0.00	853	0.01	1500	0.00	768	
tai097 – 200×10	0.01	2%	0.01	100	0.01	481	0.01	590	
	0.01	ccp	0.00	864	0.01	1597	0.00	710	
$tai098 - 200 \times 10$	0.01	2%	0.00	100	0.01	552	0.01	604	
		2%	0.00	890	0.01	1382	0.01	677 754	
$tai099 - 200 \times 10$	0.01	ccp	0.00 0.00	100 663	0.01 0.00	688 1512	0.00 0.00	7 54 799	
		2%	0.00	100	0.00	514	0.00	632	
$tai100 - 200 \times 10$	0.02	ccp	0.00	907	0.01	1443	0.00	707	
. 101 . 000 . 00	0.05	2%	0.03	100	0.03	1239	0.02	1393	
$tai101 - 200 \times 20$	0.05	ccp	0.02	1390	0.02	2520	0.02	1454	
tai102 – 200×20	0.05	2%	0.03	101	0.03	1513	0.02	1704	
tai102 - 200 X 20	0.05	ccp	0.03	1453	0.02	2860	0.02	1760	
	0.05	2%	0.03	100	0.02	1355	0.02	1418	
$tai103 - 200 \times 20$	().();)	ccp	0.02	1436	0.02	2258	0.02	1470	

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{t}	$n_{i} = 5000$	L_h	=50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		сср	0.02	1501	0.02	2422	0.02	1487
$tai105 - 200 \times 20$	0.03	2%	0.02	100	0.02	1286	0.01	1443
2007.20	0.00	ccp	0.01	1428	0.01	2599	0.01	1508
$tai106 - 200 \times 20$	0.04	2%	0.02 0.02	100 1269	0.02 0.02	1 287 2383	0.02 0.02	1413
		2%	0.02	100	0.02	1449	0.02	1485 1610
$tai107 - 200 \times 20$	0.04	ccp	0.03	1287	0.02	2631	0.01	1674
		2%	0.03	100	0.03	1229	0.02	1431
$tai108 - 200 \times 20$	0.05	ccp	0.02	1378	0.02	2498	0.02	1498
+a:100 200×20	0.05	2%	0.03	100	0.03	1266	0.02	1450
$tai109 - 200 \times 20$	0.05	ccp	0.02	1287	0.02	2519	0.02	1531
tai110 - 200×20	0.05	2%	0.04	100	0.03	1465	0.02	1647
tailio 200×20	0.00	ccp	0.03	1515	0.03	2630	0.02	1680
$tai111 - 500 \times 20$	0.03	2%	0.03	100	0.02	2172	0.01	2404
	1	ccp	0.01	12574	0.01	12210	0.01	3215
$tai112 - 500 \times 20$	0.02	2%	0.02	100	0.02	1862	0.01	2143
		2%	0.01	9439 100	0.01	11680	0.01 0.01	2989 198 8
$tai113 - 500 \times 20$	0.02	ccp	0.02	10385	0.02	1740 10710	0.01	285
		2%	0.01	10363	0.01	1761	0.01	1955
$tai114 - 500 \times 20$	0.02	ccp	0.02	10655	0.01	11663	0.01	305
. '11# #00 00	0.00	2%	0.01	100	0.01	1854	0.01	2120
$tai115 - 500 \times 20$	0.02	ccp	0.01	9623	0.01	12176	0.00	301
tai116 - 500×20	0.00	2%	0.01	101	0.01	2058	0.01	227'
$tai116 - 500 \times 20$	0.02	сср	0.01	8978	0.01	11729	0.01	314
tai117 – 500×20	0.02	2%	0.01	100	0.01	1562	0.01	1762
000/20	0.02	ccp	0.01	6759	0.01	8782	0.01	244
$tai118 - 500 \times 20$	0.02	2%	0.02	100	0.01	1834	0.01	207
		ccp	0.01	10076	0.01	10804	0.01	291
$tai119 - 500 \times 20$	0.02	2%	0.01 0.01	100 9402	0.01 0.01	1979 11356	0.01 0.01	222 3
		2%	0.01	100	0.01	1888	0.01	206
$tai120 - 500 \times 20$	0.02	ccp	0.01	8685	0.01	10526	0.01	279
		2%	0.00	100	0.00	100	0.00	58
$vfr001 - 10 \times 05$	0.00	ccp	0.00	1	0.00	62	0.00	6
f 001 10 10	0.00	2%	0.03	100	0.00	100	0.00	8
$vfr001 - 10 \times 10$	0.08	сср	0.03	1	0.00	85	0.00	9
vfr001 - 10×15	0.00	2%	0.00	100	0.00	100	0.00	9:
VIIO01 - 10×15	0.00	ccp	0.00	1	0.00	91	0.00	9
vfr001 - 10×20	0.05	2%	0.01	100	0.00	100	0.00	90
	0.00	ccp	0.01	1	0.00	97	0.00	10
vfr001 - 20×05	0.02	2%	0.00	100	0.00	145	0.00	153
		ccp	0.01	5	0.00	151	0.00	15
$vfr001 - 20 \times 10$	0.09	2%	0.02 0.02	100 6	0.01 0.01	188 192	0.00	198 20
		2%				202		210
$vfr001 - 20 \times 15$	0.04	ccp	0.02 0.02	100 5	$0.01 \\ 0.01$	202 204	0.00	210
		2%	0.02	100	0.00	211	0.00	220
$vfr001 - 20 \times 20$	0.03	ccp	0.02	5	0.00	213	0.00	22
f001 20 05	0.01	2%	0.00	100	0.00	135	0.00	153
$v fr 001 - 30 \times 05$	0.01	ccp	0.00	11	0.00	149	0.00	15
vfr001 - 30×10	0.04	2%	0.02	100	0.02	275	0.01	31
001 00×10	0.04	ccp	0.02	13	0.02	287	0.01	313
vfr001 - 30×15	0.06	2%	0.03	100	0.02	309	0.01	33
	1	ccp	0.03	15	0.02	313	0.01	334
$v fr 001 - 30 \times 20$	0.04	2%	0.02	100	0.02	315	0.01	33
		2%	0.03	13 100	0.02	319 117	0.01	328 128
$vfr001 - 40 \times 05$	0.00	ccp	0.00	100 16	0.00	136	0.00	13
		2%	0.00	100	0.00	363	0.00	39
$vfr001 - 40 \times 10$	0.04	ccp	0.02	31	0.02	380	0.02	389
6.001 10 :-		2%	0.02	100	0.02	411	0.02	46
$vfr001 - 40 \times 15$	0.04	ccp	0.03	32	0.02	427	0.01	45
f-001 40: 22	0.05	2%	0.01	100	0.01	409	0.01	44
$vfr001 - 40 \times 20$	0.05	ccp	0.02	34	0.01	437	0.01	442
wfr001 50×05	0.00	2%	0.00	100	0.00	139	0.00	152
$vfr001 - 50 \times 05$	0.00	ccp	0.00	26	0.00	172	0.00	15
vfr001 - 50×10	0.05	2%	0.02	100	0.02	487	0.01	53
V11001 - 30 X 10	0.05	ccp	0.02	61	0.01	528	0.01	52 4
		2%	0.03	100	0.02	510	0.02	56

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{I}	$a_{i} = 5000$	L_h	=50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ⁵
		ccp	0.03	58	0.02	545	0.02	552
$vfr001 - 50 \times 20$	0.06	2%	0.03	100	0.02	545	0.02	582
		ccp	0.03	56	0.02	582	0.02	575
$vfr001 - 60 \times 05$	0.00	2%	0.00	100 39	$0.00 \\ 0.00$	1 89 229	0.00	197 199
		2%	0.00	100	0.00	512	0.00	544
$vfr001 - 60 \times 10$	0.05	ccp	0.01	87	0.01	566	0.00	534
		2%	0.02	100	0.02	548	0.01	621
$vfr001 - 60 \times 15$	0.05	ccp	0.02	103	0.02	640	0.01	606
f-001 60×20	0.06	2%	0.03	100	0.02	689	0.01	751
$vfr001 - 60 \times 20$	0.06	$_{\rm ccp}$	0.03	93	0.02	748	0.01	735
vfr001 - 100×20	0.07	2%	0.03	100	0.02	1071	0.01	1202
VII001 100×20	0.07	ccp	0.03	353	0.02	1339	0.01	1168
vfr001 - 100×40	0.05	2%	0.04	100	0.03	1132	0.02	1222
		ccp	0.04	284	0.02	1356	0.02	1204
vfr001 - 100×60	0.06	2%	0.04	100	0.03	1094	0.02	1166
		ccp 2%	0.04	242	0.03 0.02	1261	0.02	1154
$vfr001 - 200 \times 20$	0.05	ccp	0.03 0.02	101 1661	0.02 0.02	1511 2793	0.01 0.01	1 691 1752
		2%	0.04	101	0.02	2260	0.01	2501
$vfr001 - 200 \times 40$	0.06	ccp	0.04	2404	0.02	4090	0.01	2508
		2%	0.04	101	0.02	2295	0.01	2490
$v fr 001 - 200 \times 60$	0.06	ccp	0.03	1822	0.02	3768	0.01	2502
f001 200 : 20	0.00	2%	0.02	100	0.01	1999	0.01	2167
$v fr 001 - 300 \times 20$	0.03	ccp	0.01	3741	0.01	4979	0.01	234
f001 200 × 40	0.05	2%	0.04	101	0.02	3340	0.01	3589
$v fr 001 - 300 \times 40$	0.05	ccp	0.02	7248	0.01	8704	0.01	381
vfr001 - 300×60	0.05	2%	0.04	101	0.02	3427	0.01	3740
711001 300×00	0.00	ccp	0.03	6279	0.02	8962	0.01	393
vfr001 - 400×20	0.03	2%	0.02	101	0.01	2286	0.01	2543
.11001 1007.20	0.00	ccp	0.01	8873	0.01	8221	0.01	293
vfr001 - 400×40	0.04	2%	0.03	101	0.02	4042	0.01	426
		ccp	0.02	13568	0.01	13442	0.01	475
vfr001 - 400×60	0.04	2%	0.04	101	0.02	4776	0.00	5091
		2%	0.02	15465	0.01 0.01	17028	0.00 0.01	557
$v fr 001 - 500 \times 20$	0.03	ccp	0.02	101 11935	0.01 0.01	2163 13422	0.01	242 3
		2%	0.03	101	0.01	4440	0.01	4713
$v fr 001 - 500 \times 40$	0.04	ccp	0.02	18267	0.01	18492	0.00	561
		2%	0.04	101	0.01	6089	0.00	640'
$vfr001 - 500 \times 60$	0.04	ccp	0.02	28256	0.01	31704	0.00	755
f 001 000 00	0.00	2%	0.01	101	0.01	2371	0.01	259
$v fr 001 - 600 \times 20$	0.02	ccp	0.00	16322	0.01	16758	0.00	373
	0.04	2%	0.03	102	0.01	5207	0.01	549
$v \text{fr} 001 - 600 \times 40$	0.04	ccp	0.01	32538	0.01	28629	0.00	716
$v \text{fr} 001 - 600 \times 60$	0.04	2%	0.04	101	0.01	6951	0.00	6979
VII 000 × 00	0.04	ccp	0.02	43719	0.01	39285	0.00	884
vfr001 - 700×20	0.02	2%	0.01	101	0.01	2242	0.01	2459
		ccp	0.00	21617	0.00	20372	0.00	390
$vfr001 - 700 \times 40$	0.03	2%	0.03	101	0.01	5226	0.00	561
		ccp	0.01	39225	0.01	37342	0.00	807
$vfr001 - 700 \times 60$	0.04	2%	0.04 0.02	101 67475	0.02	8711	0.00	849 ₄
		2%	0.02	67475 100	0.01 0.01	59909 2066	0.00 0.01	1185 229 !
$v fr 001 - 800 \times 20$	0.01	ccp	0.01	23107	0.01 0.00	2000 25215	0.01	448
		2%	0.03	101	0.00	6175	0.00	6450
$vfr001 - 800 \times 40$	0.03	ccp	0.03	58764	0.01	54213	0.00	981
		2%	0.03	101	0.01	8592	0.00	866
v fr $001 - 800 \times 60$	0.04	ccp	0.02	87631	0.01	75685	0.00	1277
f-000 10::0°	0.00	2%	0.00	100	0.00	100	0.00	7
$\sqrt{\text{fr}002} - 10 \times 05$	0.03	ccp	0.01	1	0.00	78	0.00	8
rf=000 10×10	0.01	2%	0.00	100	0.00	100	0.00	6
$v fr 002 - 10 \times 10$	0.01	ccp	0.00	1	0.00	69	0.00	7
vfr002 - 10×15	0.03	2%	0.01	100	0.00	100	0.00	93
v11002 - 10×15	0.03	сср	0.01	1	0.00	94	0.00	10
vfr002 - 10×20	0.01	2%	0.00	100	0.00	100	0.00	86
v11002 - 10×20	0.01	ccp	0.00	1	0.00	88	0.00	9.
vfr002 - 20×05	0.01	2%	0.00	100	0.00	108	0.00	130
-11002 20700	0.01	ccp	0.01	4	0.00	117	0.00	15
vfr002 - 20×10	$ _{0.05}$	2%	0.02	100	0.01	203	0.00	21

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{I}	$a_1 = 5000$	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
		ccp	0.03	5	0.01	207	0.00	2174
vfr002 - 20×15	0.04	2%	0.02	100	0.01	204	0.00	2164
		ccp	0.02	5	0.01	207	0.00	2186
$vfr002-20{\times}20$	0.04	2%	0.03 0.03	100 5	$0.01 \\ 0.01$	201 203	0.00	2099 2120
		2%	0.00	100	0.00	190	0.00	2138
$vfr002 - 30 \times 05$	0.04	ccp	0.01	13	0.00	204	0.00	2173
-f-000 20×10	0.04	2%	0.02	100	0.02	294	0.01	3250
$vfr002 - 30 \times 10$	0.04	ccp	0.02	15	0.02	301	0.01	3233
vfr002 - 30×15	0.05	2%	0.02	100	0.02	304	0.01	3310
VII 002 00×10	0.00	ccp	0.03	15	0.02	310	0.01	3283
$vfr002 - 30 \times 20$	0.06	2%	0.02	100	0.01	312	0.01	339
		2%	0.03 0.00	19 100	0.01	319 171	0.01	337 194
$vfr002-40{\times}05$	0.01	ccp	0.00	20	0.00	197	0.00	194 197
		2%	0.01	100	0.01	389	0.00	421
$vfr002 - 40 \times 10$	0.04	ccp	0.01	35	0.00	415	0.00	416
-f-000 40×15	0.07	2%	0.03	100	0.02	431	0.01	465
$v fr 002 - 40 \times 15$	0.07	ccp	0.03	32	0.02	447	0.01	457
vfr002 - 40×20	0.06	2%	0.04	100	0.02	428	0.01	468
VII 002 10×20	0.00	ccp	0.04	27	0.02	445	0.01	463
$vfr002 - 50 \times 05$	0.00	2%	0.00	100	0.00	105	0.00	107
		2%	0.00	32 100	0.00	134	0.00 0.01	113 422
$vfr002 - 50 \times 10$	0.03	ccp	0.01 0.01	50	0.02	346 385	0.01	422 412
		2%	0.01	100	0.02	465	0.01	507
$vfr002 - 50 \times 15$	0.07	ccp	0.03	56	0.02	514	0.02	499
f 000 F000	0.00	2%	0.03	100	0.02	533	0.01	579
$vfr002 - 50 \times 20$	0.06	ccp	0.03	55	0.02	569	0.01	570
vfr002 - 60×05	0.02	2%	0.00	100	0.00	200	0.00	210
VII002 00×00	0.02	ccp	0.00	43	0.00	243	0.00	213
$vfr002 - 60 \times 10$	0.03	2%	0.01	100	0.01	473	0.01	521
		ccp	0.01	82	0.01	553	0.01	513
$vfr002-60{\times}15$	0.07	2%	0.03 0.03	100 101	0.02 0.02	609 678	0.01 0.01	674 656 :
		2%	0.03	100	0.02	666	0.01	720
$vfr002 - 60 \times 20$	0.07	ccp	0.03	98	0.02	727	0.01	707
f-000 100×00	0.00	2%	0.03	100	0.03	1016	0.02	1150
$v fr 002 - 100 \times 20$	0.06	ccp	0.03	341	0.02	1305	0.02	1113
vfr002 - 100×40	0.05	2%	0.04	100	0.03	1141	0.02	1231
VII002 100×40	0.00	ccp	0.04	267	0.02	1364	0.02	1208
vfr002 - 100×60	0.06	2%	0.04	100	0.03	1083	0.02	1138
		2%	0.04	235	0.03 0.02	1260	0.02	$\frac{1126}{1623}$
$vfr002-200{\times}20$	0.05	ccp	0.03	101 1623	0.02	1 500 2642	0.01	1623
		2%	0.04	101	0.02	2258	0.01	2506
$vfr002-200{\times}40$	0.06	ccp	0.03	2462	0.02	4129	0.01	2522
f-000 000×C0	0.05	2%	0.04	100	0.02	2292	0.01	2482
vfr002 - 200×60	0.05	сср	0.03	1772	0.02	3807	0.01	2493
vfr002 - 300×20	0.03	2%	0.02	100	0.01	1612	0.01	1775
555×20	0.55	ccp	0.01	2874	0.01	4640	0.01	1990
vfr002 - 300×40	0.04	2%	0.03	101	0.02	3284	0.01	3552
		2%	0.02	7283 101	0.01	8614 3446	0.01 0.01	3746 3740
$vfr002-300{\times}60$	0.04	ccp	0.04	5866	0.02 0.02	9342	0.01	3740 3908
f.000 100	0.5-	2%	0.02	101	0.01	1903	0.01	2091
$vfr002 - 400 \times 20$	0.03	ccp	0.01	6188	0.01	7969	0.01	2576
f-000 400×40	0.05	2%	0.04	101	0.02	4047	0.01	4305
vfr002 - 400×40	0.05	ccp	0.02	14023	0.01	14394	0.01	4916
vfr002 - 400×60	0.04	2%	0.04	101	0.02	4733	0.00	5106
111002 100700	0.04	ccp	0.02	14635	0.01	18093	0.00	5669
vfr002 - 500×20	0.02	2%	0.01	100	0.01	1964	0.01	2188
	- 7-	ccp	0.01	9304	0.01	11462	0.01	2969
$vfr002 - 500 \times 40$	0.04	2%	0.03 0.02	101 25316	0.01 0.01	4996 20523	0.00 0.00	4945 5713
		2%	0.02	25316	0.01	6047	0.00	5713 6274
$\mathbf{vfr002} - 500 \times 60$	0.04	ccp	0.04	26919	0.02	32226	0.00	7461
6.000 000	0.55	2%	0.02	100	0.01	2097	0.01	2275
$v fr 002 - 600 \times 20$	0.02	ccp	0.01	13782	0.01	15885	0.01	3579
			0.03	101	0.01	4853	0.01	5107

Table 4: Continued from previous page

D	NEH	Stopping		$L_h = 1$		$\frac{1}{a} = 5000$	L_{L}	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
	101 25	сср	0.01	31723	0.01	26657	0.00	65388
$v fr 002 - 600 \times 60$	0.04	2%	0.04	101	0.01	7221	0.00	72655
V1r002 - 000×00	0.04	ccp	0.02	43335	0.01	41761	0.00	92489
vfr002 - 700×20	0.02	2%	0.01	100	0.01	2174	0.01	24580
VII 002 100×20	0.02	ccp	0.00	16556	0.00	19711	0.00	41586
$\mathbf{vfr002} - 700{\times}40$	0.03	2%	0.03	101	0.01	5835	0.00	60877
		ccp	0.01	47994	0.01	38299	0.00	82798
$\mathbf{vfr002} - 700 {\times} 60$	0.04	2%	0.04 0.02	101 63084	0.02 0.01	8303 53647	0.01 0.00	79529 112116
		2%	0.02	101	0.01	2280	0.01	25468
$vfr002 - 800 \times 20$	0.01	ccp	0.00	27595	0.00	28820	0.00	50834
		2%	0.03	102	0.01	5745	0.01	61295
$vfr002 - 800 \times 40$	0.03	сср	0.01	57257	0.01	50307	0.00	95629
v.fv002 200×60	0.04	2%	0.04	101	0.01	9729	0.00	91019
$vfr002 - 800 \times 60$	0.04	ccp	0.02	97530	0.01	83900	0.00	140433
vfr003 - 10×05	0.04	2%	0.00	100	0.00	100	0.00	797
1000 1000	0.01	ccp	0.00	1	0.00	81	0.00	874
$vfr003 - 10 \times 10$	0.02	2%	0.01	100	0.00	100	0.00	739
	_	ccp	0.01	100	0.00	75	0.00	823
$vfr003-10{\times}15$	0.00	2%	0.00	100 1	$0.00 \\ 0.00$	100 94	$0.00 \\ 0.00$	937 1010
		2%	0.00	100	0.00	101	0.00	912
$vfr003-10{\times}20$	0.02	ccp	0.02	100	0.00	94	0.00	984
f 000 00 07	0.00	2%	0.00	100	0.00	131	0.00	1406
$vfr003 - 20 \times 05$	0.00	сср	0.00	4	0.00	139	0.00	1459
f-002 20 v 10	0.04	2%	0.02	100	0.01	201	0.00	2133
$vfr003 - 20 \times 10$	0.04	ccp	0.03	5	0.01	204	0.00	2147
vfr003 - 20×15	0.03	2%	0.02	100	0.01	204	0.00	2140
	0.00	ccp	0.02	5	0.01	207	0.00	2159
$vfr003 - 20 \times 20$	0.04	2%	0.02	100	0.01	193	0.01	2099
		ccp	0.02	5	0.01	197	0.01	2118
$vfr003-30{\times}05$	0.04	2%	0.01 0.01	100 11	0.01 0.01	1 72 186	$0.00 \\ 0.00$	1913 1936
		сср 2%	0.01	100	0.01	295	0.00	3226
$vfr003 - 30 \times 10$	0.04	ccp	0.02	16	0.02	301	0.01	3209
		2%	0.03	100	0.02	327	0.01	3456
$vfr003 - 30 \times 15$	0.09	ccp	0.04	16	0.02	331	0.01	3432
vfr003 - 30×20	0.07	2%	0.03	100	0.02	322	0.01	3387
VII 003 30 × 20	0.07	ccp	0.03	14	0.02	325	0.01	3370
$vfr003 - 40 \times 05$	0.00	2%	0.00	100	0.00	200	0.00	2160
		ccp	0.00	21	0.00	223	0.00	2175
$vfr003-40{\times}10$	0.05	2% ccp	0.01 0.01	100 29	0.01 0.01	346 368	$0.00 \\ 0.00$	3796 3763
		2%	0.01	100	0.02	431	0.00	4658
$vfr003 - 40 \times 15$	0.05	ccp	0.03	28	0.02	445	0.01	4611
-f-009 40: 20	0.04	2%	0.03	100	0.02	441	0.01	4631
$vfr003 - 40 \times 20$	0.04	ccp	0.03	31	0.02	455	0.01	4581
vfr003 - 50×05	0.02	2%	0.00	100	0.00	153	0.00	1651
60 X 06 = 600 HV	0.02	сср	0.00	37	0.00	192	0.00	1678
vfr003 - 50×10	0.05	2%	0.02	100	0.02	400	0.01	4885
		ccp	0.02	51	0.02	449	0.01	4709
$vfr003-50{\times}15$	0.07	2%	0.03	100	0.03	535	0.02	5863
		2%	0.03 0.03	61 100	0.02	573 536	0.02 0.02	5758 5677
$vfr003-50{\times}20$	0.06	ccp	0.03	57	0.02 0.02	568	0.02 0.02	5601
6.000 57 77		2%	0.00	100	0.00	181	0.02	2064
$vfr003 - 60 \times 05$	0.01	ccp	0.00	50	0.00	242	0.00	2088
rrfr002 60×10	0.05	2%	0.01	100	0.01	532	0.00	5674
$v fr 003 - 60 \times 10$	0.05	ccp	0.01	90	0.01	609	0.01	5557
vfr003 - 60×15	0.07	2%	0.03	100	0.02	631	0.02	7016
		ccp	0.03	97	0.02	705	0.02	6874
$vfr003 - 60 \times 20$	0.06	2%	0.03	100	0.02	603	0.02	6970
		ccp	0.03	92	0.02	680	0.02	6785
$vfr003-100{\times}20$	0.07	2%	0.03 0.03	100 379	0.02 0.02	1086 1357	0.01 0.01	11917 11648
		2%	0.03	100	0.02	1081	0.01	11048
$vfr003 - 100 \times 40$	0.06		0.04	299	0.03	1338	0.02	11770
VII003 - 100×40	l	CCD						,,
	0.05	2%	0.04	100	0.03	1092	0.02	11831
vfr003 - 100×40	0.05						0.02 0.02	11831 11707

 Table 4: Continued from previous page

NEH RPD 0.06 0.05 0.04 0.05 0.05 0.05 0.02 0.05 0.05 0.02 0.04 0.04	Stopping Criterion ccp 2% ccp	RPD 0.01 0.04 0.03 0.04 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.04 0.02 0.01 0.04 0.02 0.04 0.02	$L_h = 1$ Iters. (10^3) 1699 101 2272 100 1716 101 4205 101 6350 101 6772 100 4778 101 13504	RPD 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01	n = 5000 Iters. (10 ³) 2941 2269 4020 2157 3814 2022 5197 3058 8146 3422 9129 1669	$\begin{array}{c} L_h \\ \hline RPD \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline 0.01 \\ 0.01 $	= 50000 Iters. (10 ³) 17980 24880 24976 24646 24785 22185 24138 33263 35334 37653
0.06 0.05 0.04 0.05 0.05 0.02 0.05 0.05 0.05	ccp 2%	0.01 0.04 0.03 0.04 0.03 0.03 0.02 0.04 0.03 0.04 0.02 0.01 0.04 0.02 0.04	1699 101 2272 100 1716 101 4205 101 6350 101 6772 100 4778 101 13504	0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02	2941 2269 4020 2157 3814 2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	17980 24880 24976 24646 24785 22185 24138 33263 35334 37653
0.05 0.04 0.05 0.05 0.02 0.05 0.05 0.04	2% ccp	0.04 0.03 0.04 0.03 0.02 0.04 0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04	101 2272 100 1716 101 4205 101 6350 101 6772 100 4778 101 13504	0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	2269 4020 2157 3814 2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	24880 24976 24646 24785 22185 24138 33263 35334 37653
0.05 0.04 0.05 0.05 0.02 0.05 0.05 0.04	ccp 2% ccp	0.03 0.04 0.03 0.02 0.04 0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04	2272 100 1716 101 4205 101 6350 101 6772 100 4778 101 13504	0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	4020 2157 3814 2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	24976 24646 24785 22185 24138 33263 35334 37653
0.04 0.05 0.05 0.02 0.05 0.05 0.05 0.04	2% ccp	0.04 0.03 0.02 0.04 0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04 0.04	100 1716 101 4205 101 6350 101 6772 100 4778 101 13504	0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	2157 3814 2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	24646 24785 22185 24138 33263 35334 37653
0.04 0.05 0.05 0.02 0.05 0.05 0.05 0.04	ccp 2% ccp	0.03 0.03 0.02 0.04 0.03 0.04 0.02 0.02 0.04 0.04 0.02	1716 101 4205 101 6350 101 6772 100 4778 101 13504	0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02	3814 2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01 0.01	24785 22185 24138 33263 35334 37653
0.05 0.05 0.02 0.05 0.05 0.05 0.02	2% ccp	0.03 0.02 0.04 0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04	101 4205 101 6350 101 6772 100 4778 101 13504	0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01	2022 5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01 0.01	22185 24138 33263 35334 37653
0.05 0.05 0.02 0.05 0.05 0.05 0.02	ccp 2% ccp ccp	0.02 0.04 0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04	4205 101 6350 101 6772 100 4778 101 13504	0.01 0.02 0.02 0.02 0.02 0.02 0.02	5197 3058 8146 3422 9129	0.01 0.01 0.01 0.01 0.01	24138 33263 35334 37653
0.05 0.02 0.05 0.05 0.02 0.04	2% ccp	0.03 0.04 0.02 0.02 0.01 0.04 0.02 0.04	6350 101 6772 100 4778 101 13504	0.02 0.02 0.02 0.02 0.02 0.01	8146 3422 9129	0.01 0.01 0.01	3326 3 35334 3765 3
0.05 0.02 0.05 0.05 0.02 0.04	2% ccp 2% ccp 2% ccp 2% ccp 2%	0.04 0.02 0.02 0.01 0.04 0.02 0.04	101 6772 100 4778 101 13504	0.02 0.02 0.02 0.01	3422 9129	0.01 0.01	37653
0.02 0.05 0.05 0.02 0.04	ccp 2% ccp 2% ccp 2% ccp 2% ccp 2% ccp	0.02 0.02 0.01 0.04 0.02 0.04	100 4778 101 13504	0.02 0.02 0.01	9129	0.01	
0.02 0.05 0.05 0.02 0.04	2% ccp 2% ccp 2% ccp 2%	0.02 0.01 0.04 0.02 0.04	100 4778 101 13504	0.02 0.01			
0.05 0.05 0.02 0.04	2% ccp 2% ccp 2% ccp	0.01 0.04 0.02 0.04	4778 101 13504	0.01	1669	በ በ1	39274
0.05 0.05 0.02 0.04	2% ccp 2% ccp 2%	0.04 0.02 0.04	101 13504			1	17799
0.05 0.02 0.04	сср 2% сср 2% сср	0.02 0.04	13504		6463	0.01	22541
0.05 0.02 0.04	2% ccp 2% ccp	0.04		0.01	3949	0.01	42534
0.02	сср 2% сср			0.01	14057	0.00	4756
0.04	2% ccp	0.02	101	0.02	4461	0.01	48981
0.04	ccp		14767	0.01	17408	0.00	55094
		0.01	101	0.01 0.01	1969	0.01	22199
		0.01	10380		11941	0.01	31030
0.04	2%	0.04 0.02	101 26320	0.02 0.01	4564	0.01 0.01	48816
0.04	2%	0.02	26329 101	0.01	21023 6209	0.01	59416 6313 8
	2% ccp	0.04 0.02	27779	0.01 0.01	30368	0.00	75572
	2%	0.02	100	0.01	2362	0.00	2560
0.02	ccp	0.01	14147	0.01	16182	0.00	35920
	2%	0.03	101	0.01	5204	0.01	54622
0.04	ccp	0.02	27604	0.01	28447	0.00	6782
0.04	2%	0.04	101	0.01	7295	0.00	72773
0.04	сср	0.02	42771	0.01	44606	0.00	9856
0.00	2%	0.01	100	0.01	2093	0.01	22593
0.02	ccp	0.01	17503	0.01	20330	0.01	3904
0.04	2%	0.03	101	0.01	6178	0.00	61920
0.04	ccp	0.01	47156	0.01	40906	0.00	83228
0.04	2%	0.04			8130		81185
0.04	ccp						111258
0.02							28526
0.0-							51445
0.03							6601
							10014
0.04						1	93588
							139519
0.01							687 768
							95
0.00		l .				1	1025
							956
0.03		l.	100		96	1	1025
0.00	2%	0.00	100	0.00	100	0.00	962
0.02	ccp	0.00	1	0.00	96	0.00	1029
0.02	2%	0.01	100	0.01	185	0.00	2088
0.02	ccp	0.01	5	0.00	194	0.00	2128
0.04	2%	0.02	100	0.01	202	0.00	2159
0.04	ccp	0.02	5	0.01	205	0.00	217
0.05	2%	0.04	100	0.01	187	0.01	2010
0.00	ccp	0.04	5	0.01	190	0.01	203
0.05	2%	0.04	100	0.01	203	0.00	2169
0.00	ccp						218
0.01		0.00			119	1	137
	ccp						142
0.06						1	329
							327
0.05						1	338
							336
0.06		!				1	330 328 :
							181
0.03							184
							3959
0.05					301	0.04	
	ccp	0.03	33	0.02	395	0.02	3918
	0.02 0.04 0.02 0.03 0.04 0.00 0.03 0.02 0.02 0.04 0.05 0.05 0.06 0.06	0.02 2% 0.04 2% 0.04 2% 0.02 2% 0.03 2% 0.04 2% 0.01 2% 0.02 2% 0.03 2% 0.02 2% 0.02 2% 0.02 2% 0.04 2% 0.05 2% 0.05 2% 0.01 2% 0.02 2% 0.05 2% 0.05 2% 0.06 2% 0.07 2% 0.08 2% 0.09 2% 0.00 2% 0.01 2% 0.02 2% 0.03 2% 0.04 2% 0.05 2% 0.06 2% 0.07 2% 0.08 2% 0.09 2% 0.00	ccp 0.02 0.02 2% 0.01 0.04 2% 0.03 ccp 0.04 ccp 0.02 0.02 2% 0.01 0.03 2% 0.03 ccp 0.01 0.03 ccp 0.01 0.04 ccp 0.04 ccp 0.01 0.01 2% 0.01 ccp 0.01 ccp 0.01 0.00 ccp 0.00 ccp 0.00 0.03 2% 0.00 ccp 0.00 0.02 2% 0.00 0.02 2% 0.01 0.04 ccp 0.01 0.05 ccp 0.04 0.05 ccp 0.04 0.05 ccp 0.04 0.01 ccp 0.00 0.02 ccp 0.00 0.05 ccp 0.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ccp 0.02 2% 0.01 100 0.01 0.04 2% 0.03 101 0.01 0.04 2% 0.03 101 0.01 0.04 2% 0.04 101 0.01 0.04 2% 0.04 101 0.01 0.02 2% 0.01 101 0.01 0.02 2% 0.03 102 0.01 0.03 2% 0.03 102 0.01 0.04 2% 0.04 101 0.01 0.04 2% 0.04 101 0.01 0.04 2% 0.04 101 0.01 0.01 2% 0.01 100 0.00 0.02 2% 0.01 100 0.00 0.03 2% 0.00 100 0.00 0.03 2% 0.00 100 0.00 0.02 2% 0.00 100 0.00 <tr< td=""><td>ccp 0.02 4277 0.01 44006 0.02 2% 0.01 100 0.01 2093 0.04 2% 0.03 101 0.01 6178 0.04 2% 0.04 47156 0.01 40906 0.04 2% 0.04 101 0.01 8130 0.02 2% 0.01 101 0.01 2632 0.02 ccp 0.00 31596 0.00 29153 0.03 2% 0.03 102 0.01 6465 0.04 2% 0.04 101 0.01 10355 0.04 2% 0.04 101 0.01 10355 0.01 2% 0.01 100 0.00 100 0.02 2% 0.00 100 0.00 100 0.03 2% 0.00 100 0.00 100 0.04 2% 0.00 100 0.00 100<!--</td--><td> CCP</td></td></tr<>	ccp 0.02 4277 0.01 44006 0.02 2% 0.01 100 0.01 2093 0.04 2% 0.03 101 0.01 6178 0.04 2% 0.04 47156 0.01 40906 0.04 2% 0.04 101 0.01 8130 0.02 2% 0.01 101 0.01 2632 0.02 ccp 0.00 31596 0.00 29153 0.03 2% 0.03 102 0.01 6465 0.04 2% 0.04 101 0.01 10355 0.04 2% 0.04 101 0.01 10355 0.01 2% 0.01 100 0.00 100 0.02 2% 0.00 100 0.00 100 0.03 2% 0.00 100 0.00 100 0.04 2% 0.00 100 0.00 100 </td <td> CCP</td>	CCP

Table 4: Continued from previous page

Dataset	NEH	Stopping	-	$L_h = 1$	L_{I}	$a_i = 5000$	L_h	=50000
Davasev	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		ccp	0.03	32	0.02	424	0.01	452
vfr004 - 40×20	0.05	2%	0.03	100	0.02	423	0.02	452
	0.00	ccp	0.03	28	0.02	439	0.02	448
vfr004 - 50×05	0.01	2%	0.00 0.00	100 37	0.00 0.00	179 219	0.00 0.00	207 213
		2%	0.00	100	0.00	462	0.00	499
vfr004 - 50×10	0.06	ccp	0.02	59	0.02 0.02	494	0.01	498
		2%	0.03	100	0.02	525	0.01	575
$v fr 004 - 50 \times 15$	0.05	ccp	0.03	57	0.02	559	0.01	563
-f-004 50×20	0.05	2%	0.03	100	0.02	573	0.01	613
$v fr 004 - 50 \times 20$	0.05	ccp	0.03	56	0.02	603	0.01	603
vfr004 - 60×05	0.00	2%	0.00	100	0.00	206	0.00	222
VIIO04 00×00	0.00	ccp	0.00	48	0.00	255	0.00	223
vfr004 - 60×10	0.04	2%	0.01	100	0.01	498	0.01	535
		ccp	0.01	79	0.01	557	0.01	527
vfr004 - 60×15	0.07	2%	0.02	100	0.02	643	0.01	711
		2%	0.02	97 100	0.01	719	0.01	685 748
vfr004 - 60×20	0.06		0.03 0.03	98	0.02 0.02	671 737	0.01 0.01	727
		2%	0.03	100	0.02	999	0.01	1160
vfr004 – 100×20	0.06	ccp	0.03	381	0.02	1285	0.01	1120
		2%	0.04	100	0.03	1113	0.02	1235
vfr004 – 100×40	0.07	ccp	0.04	290	0.03	1383	0.02	1211
f 004 100 . c0	0.00	2%	0.04	100	0.03	1123	0.02	118
vfr004 - 100×60	0.06	сср	0.04	250	0.03	1303	0.02	1168
-f-004 200×20	0.05	2%	0.03	101	0.02	1607	0.01	1768
vfr004 - 200×20	0.05	ccp	0.02	1852	0.01	2847	0.01	180
vfr004 - 200×40	0.05	2%	0.04	101	0.02	2280	0.01	2519
711004 200740	0.00	ccp	0.03	2519	0.02	4160	0.01	253
vfr004 - 200×60	0.05	2%	0.04	100	0.02	2265	0.01	2488
.11001 2007.00	0.00	ccp	0.03	1610	0.02	3811	0.01	250
vfr004 - 300×20	0.03	2%	0.02	101	0.02	1851	0.01	207
		ccp	0.01	3932	0.01	5000	0.01	228
vfr004 - 300×40	0.05	2%	0.04	101	0.02	3153	0.01	3529
		2%	0.02	6077 101	0.01	8348 3461	0.01 0.01	3715 372 5
vfr004 - 300×60	0.04	ccp	0.04	6102	0.02	8803	0.01	393
		2%	0.02	101	0.01	1964	0.01	218
vfr004 – 400×20	0.03	ccp	0.01	6877	0.01	7275	0.01	262
6.004 400 40	0.04	2%	0.04	101	0.01	4306	0.01	4460
$v \text{fr} 004 - 400 \times 40$	0.04	сср	0.02	12694	0.01	15593	0.00	505
-f-004 400×60	0.04	2%	0.04	101	0.02	4648	0.00	4979
$v fr 004 - 400 \times 60$	0.04	ccp	0.02	15019	0.01	18404	0.00	558
vfr004 - 500×20	0.02	2%	0.02	100	0.01	2009	0.01	215
VIIO04 500×20	0.02	ccp	0.01	10596	0.01	10620	0.01	289
vfr004 - 500×40	0.04	2%	0.03	101	0.02	4537	0.01	470
.11001 0007110	0.01	ccp	0.02	22196	0.01	19605	0.01	558
v fr 004 - 500 imes 60	0.04	2%	0.04	101	0.02	5724	0.00	6080
	-	ccp	0.02	26252	0.01	27810	0.00	736
vfr004 - 600×20	0.02	2%	0.01	100	0.01	2033	0.01	228 3
		2%	0.01	14218 101	0.00	15185 4981	0.00	344 543
$vfr004 - 600 \times 40$	0.04	ccp	0.03	30031	0.01 0.01	30660	0.00 0.00	543 4
_		2%	0.01	101	0.01	7360	0.00	736
$v \text{fr} 004 - 600 \times 60$	0.04	ccp	0.04	41932	0.01	44848	0.00	962
6.004 700 77	0.5:	2%	0.01	100	0.01	2014	0.01	218
vfr004 - 700×20	0.01	ccp	0.01	17325	0.01	19154	0.01	377
-f-004 700::40	0.00	2%	0.03	102	0.01	5662	0.00	588
$\sqrt{\text{fr}004} - 700 \times 40$	0.03	ccp	0.01	45780	0.01	38597	0.00	800
vfr004 - 700×60	0.04	2%	0.04	101	0.02	8366	0.01	804
11004 - 100×00	0.04	ccp	0.02	64630	0.01	59404	0.00	1094
vfr004 - 800×20	0.02	2%	0.01	100	0.01	2271	0.00	259
VII UU T	0.02	ccp	0.00	25608	0.00	27547	0.00	535
vfr004 - 800×40	0.03	2%	0.03	102	0.01	5670	0.01	613
001 000/40	5.05	ccp	0.01	65499	0.01	49593	0.00	917
v fr 004 - 800 imes 60	0.04	2%	0.04	101	0.01	9702	0.00	9259
	5.51	ccp	0.02	93111	0.01	83096	0.00	1405
VII 001 000×00								
vfr005 - 10×05	0.05	2% ccp	0.00	100 1	0.00	100 80	$0.00 \\ 0.00$	76 8

 Table 4: Continued from previous page

D	NEH	Stopping		$L_h = 1$	$L_h = 5000$ $L_h = 50$			
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	RPD	$\frac{1 - 3000}{\text{Iters.} (10^3)}$	RPD	Iters. (10^3)
	101 10	сср	0.00	1	0.00	84	0.00	887
f005 10×15	0.01	2%	0.01	100	0.00	100	0.00	945
$vfr005 - 10 \times 15$	0.01	ccp	0.01	1	0.00	94	0.00	1010
vfr005 - 10×20	0.02	2%	0.01	100	0.00	100	0.00	917
VII 000 10×20	0.02	ccp	0.01	1	0.00	91	0.00	983
$vfr005 - 20 \times 05$	0.01	2%	0.00	100	0.00	144	0.00	1537
		ccp	0.00	4	0.00	150	0.00	1584
$vfr005-20{\times}10$	0.05	2%	0.02	100 5	0.01 0.01	198 204	0.00	212 0 214
		2%	0.03 0.01	100	0.01	199	0.00	214
$vfr005-20{\times}15$	0.05	ccp	0.01	6	0.01	207	0.00	217
		2%	0.01	100	0.00	207	0.00	2219
$vfr005-20{\times}20$	0.04	ccp	0.01	5	0.00	211	0.00	223
C-00F 20×0F	0.01	2%	0.00	100	0.00	110	0.00	117
$vfr005 - 30 \times 05$	0.01	ccp	0.00	8	0.00	121	0.00	123
vfr005 - 30×10	0.06	2%	0.02	100	0.02	248	0.02	296
VII005 - 50×10	0.00	ccp	0.03	12	0.02	258	0.01	296
$vfr005 - 30 \times 15$	0.03	2%	0.01	100	0.01	299	0.01	323
	0.00	ccp	0.01	13	0.01	302	0.01	319
$vfr005 - 30 \times 20$	0.06	2%	0.03	100	0.02	315	0.01	338
		ccp	0.03	13	0.02	318	0.01	337
$vfr005-40{\times}05$	0.02	2% ccp	0.00 0.00	100 22	0.00	195 213	0.00	209 210
		2%	0.01	100	0.00	373	0.00	409
$vfr005 - 40 \times 10$	0.05	ccp	0.02	34	0.01	390	0.01	402
6.007 40 47		2%	0.02	100	0.02	395	0.01	441
$vfr005 - 40 \times 15$	0.05	сср	0.02	33	0.02	419	0.01	433
vfr005 - 40×20	0.06	2%	0.03	100	0.02	443	0.01	471
VII'005 - 40 x 20	0.06	ccp	0.03	29	0.02	455	0.01	466
vfr005 - 50×05	0.01	2%	0.00	100	0.00	161	0.00	185
VII 000 00 × 00	0.01	ccp	0.00	31	0.00	208	0.00	189
$vfr005 - 50 \times 10$	0.05	2%	0.01	100	0.01	336	0.00	360
		ccp	0.01	43	0.01	373	0.00	357
$vfr005-50{\times}15$	0.06	2%	0.03 0.03	100 57	0.02 0.02	529 570	$0.02 \\ 0.02$	577 569
		2%	0.03	100	0.02	561	0.02	605
$vfr005 - 50 \times 20$	0.05	ccp	0.03	50	0.02	595	0.02	595
		2%	0.00	100	0.00	225	0.00	234
$vfr005 - 60 \times 05$	0.01	ccp	0.00	43	0.00	265	0.00	235
f 005 - 6010	0.05	2%	0.02	100	0.02	545	0.01	608
$vfr005 - 60 \times 10$	0.05	ccp	0.02	90	0.02	622	0.01	589
vfr005 - 60×15	0.05	2%	0.02	100	0.02	562	0.01	622
VII000 00×10	0.00	ccp	0.02	84	0.02	640	0.01	608
$vfr005 - 60 \times 20$	0.05	2%	0.03	100	0.02	670	0.01	727
		ccp	0.03	80	0.02	734	0.01	709
$vfr005 - 100 \times 20$	0.07	2%	0.04	100	0.03	1018	0.02	1163
		2%	0.03	385	0.02	1323	0.02	1134
$vfr005-100{\times}40$	0.06	ccp	0.04	100 291	0.03 0.03	1102 1317	0.02 0.02	1211 1194
		2%	0.04	100	0.03	1108	0.02	1202
$vfr005 - 100 \times 60$	0.05	ccp	0.04	240	0.03	1288	0.02	1186
-f-00" 200 20	0.04	2%	0.03	100	0.02	1349	0.02	1552
$vfr005 - 200 \times 20$	0.04	ccp	0.02	1419	0.02	2667	0.02	1621
vfr005 - 200×40	0.05	2%	0.04	101	0.02	2358	0.01	2599
v11000 - 200×40	0.00	ccp	0.03	2197	0.02	4385	0.01	2602
vfr005 - 200×60	0.04	2%	0.04	100	0.02	2250	0.01	2488
200700	0.01	ccp	0.03	1784	0.02	3626	0.01	2502
$vfr005 - 300 \times 20$	0.04	2%	0.02	101	0.02	1679	0.01	1867
		ccp	0.01	3923	0.01	4784	0.01	2079
$vfr005-300{\times}40$	0.05	2%	0.04	101 7033	0.02	3192	0.01	3516
		2%	0.02	7033 101	0.01	8855 3525	0.01 0.01	3733 3756
$vfr005 - 300 \times 60$	0.05	ccp	0.04	6322	0.02	8946	0.01	3906
		2%	0.03	100	0.01	1781	0.01	1987
$vfr005-400{\times}20$	0.02	ccp	0.01	5828	0.01	7587	0.01	2452
C 00F 100 :-		2%	0.04	101	0.02	4228	0.01	4492
$v fr 005 - 400 \times 40$	0.05	ccp	0.02	14184	0.01	15606	0.00	5027
C 00F 400: 30	0.05	2%	0.04	101	0.02	4650	0.00	5001
	0.05		0.00			17517		
$vfr005 - 400 \times 60$		ccp	0.02	14397	0.01	17517	0.00	5601

Table 4: Continued from previous page

Datacat	NEH	Stopping		$L_h = 1$	L_{I}	$a_1 = 5000$	L_h	=50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		сср	0.01	7167	0.01	8944	0.01	2619
vfr005 - 500×40	0.04	2%	0.04	101	0.01	4328	0.00	4805
VII 000 000 × 40	0.04	ccp	0.02	21846	0.01	21075	0.00	5717
$\mathbf{vfr005} - 500 {\times} 60$	0.04	2%	0.04	101	0.01	5965	0.00	6064
		ccp	0.02	27389	0.01	29587	0.00	7398
$vfr005 - 600 \times 20$	0.02	2%	0.01 0.01	101 14135	0.01 0.01	2039 15313	0.01 0.01	2233 3440
		2%	0.01	14133	0.01	5338	0.01	5521
$\mathbf{vfr005} - 600 \times 40$	0.04	ccp	0.01	33079	0.01	28991	0.00	6940
4.007 .000 .00	0.04	2%	0.04	101	0.02	6927	0.00	7083
$\mathbf{vfr005} - 600 \times 60$	0.04	ccp	0.02	44210	0.01	44285	0.00	9111
f-00" 700×00	0.00	2%	0.01	101	0.01	2259	0.01	2516
$vfr005 - 700 \times 20$	0.02	ccp	0.00	19794	0.00	20307	0.00	4192
vfr005 - 700×40	0.03	2%	0.03	101	0.01	5115	0.01	5453
VII 000 100 × 40	0.00	ccp	0.01	41695	0.01	35165	0.00	7480
$\mathbf{vfr005} - 700 {\times} 60$	0.04	2%	0.04	101	0.01	8406	0.00	7989
		ccp	0.02	55061	0.01	59063	0.00	11184
vfr005 - 800×20	0.01	2%	0.01	100	0.01	2150	0.00	2403
		2%	0.00	24622 102	0.00	26493 5363	0.00 0.01	4520 5968
$vfr005 - 800 \times 40$	0.03	ccp	0.03	58561	0.01	48782	0.01	8948
		2%	0.03	101	0.02	9165	0.01	8779
$\mathbf{vfr005} - 800 \times 60$	0.04	ccp	0.02	66075	0.01	78402	0.00	12863
6000 10 07		2%	0.00	100	0.00	100	0.00	63
$vfr006 - 10 \times 05$	0.00	ccp	0.00	1	0.00	67	0.00	72
f-00C 10×10	0.00	2%	0.00	100	0.00	100	0.00	68
$vfr006 - 10 \times 10$	0.00	$_{\rm ccp}$	0.00	1	0.00	71	0.00	77
vfr006 - 10×15	0.00	2%	0.00	100	0.00	100	0.00	87
VII000 - 10×15	0.00	ccp	0.00	1	0.00	89	0.00	94
vfr006 - 10×20	0.03	2%	0.00	100	0.00	100	0.00	80
VII 000 10 / 20	0.00	ccp	0.00	1	0.00	82	0.00	89
$v fr 006 - 20 \times 05$	0.02	2%	0.00	100	0.00	159	0.00	170
		ccp	0.00	5	0.00	164	0.00	173
$vfr006 - 20 \times 10$	0.04	2%	0.02 0.02	100 5	0.01 0.01	187 191	0.00	201 203
		2%	0.02	100	0.01	208	0.00	205 225
$vfr006 - 20 \times 15$	0.05	ccp	0.03	5	0.01	213	0.00	226
		2%	0.03	100	0.01	199	0.00	210
$vfr006 - 20 \times 20$	0.05	ccp	0.03	5	0.01	202	0.00	212
£ 000 00 05	0.00	2%	0.00	100	0.00	100	0.00	83
$vfr006 - 30 \times 05$	0.00	сср	0.00	11	0.00	89	0.00	90
f-006 20×10	0.05	2%	0.02	100	0.01	307	0.01	329
vfr006 – 30×10	0.05	ccp	0.02	15	0.01	312	0.01	328
vfr006 – 30×15	0.05	2%	0.03	100	0.02	323	0.01	339
VII000 50×15	0.00	ccp	0.03	15	0.02	325	0.01	338
vfr006 - 30×20	0.08	2%	0.04	100	0.02	305	0.01	327
	0.00	ccp	0.04	14	0.02	308	0.01	325
vfr006 - 40×05	0.01	2%	0.00	100	0.00	158	0.00	166
		2%	0.00	17	0.00	174	0.00	170 353
$vfr006 - 40 \times 10$	0.05		0.02 0.02	100 30	0.02 0.02	313 346	0.01 0.01	353 348
		2%	0.02	100	0.02	413	0.01	444
$vfr006 - 40 \times 15$	0.06	ccp	0.03	32	0.02	427	0.02	438
4.000		2%	0.03	100	0.02	421	0.02	464
$vfr006 - 40 \times 20$	0.06	ccp	0.03	33	0.02	437	0.01	457
	0.01	2%	0.00	100	0.00	144	0.00	201
$vfr006 - 50 \times 05$	0.01	ccp	0.00	43	0.00	219	0.00	205
wfr006 50×10	0.09	2%	0.00	100	0.01	248	0.00	327
vfr006 – 50×10	0.03	ccp	0.01	37	0.01	321	0.00	324
vfr006 - 50×15	0.08	2%	0.03	100	0.02	558	0.01	599
*11000 00×10	0.00	ccp	0.03	57	0.02	591	0.01	589
vfr006 – 50×20	0.05	2%	0.03	100	0.02	564	0.01	601
·11000 00 A 20	0.00	ccp	0.03	50	0.02	587	0.01	592
vfr006 - 60×05	0.01	2%	0.00	100	0.00	208	0.00	233
	0.01	ccp	0.00	46	0.00	268	0.00	234
vfr006 - 60×10	0.07	2%	0.02	100	0.02	542	0.01	588
	1	сср	0.02	99	0.01	612	0.01	574
			0.00	100	0.00	~-~		
vfr006 - 60×15	0.07	2% ccp	0.03 0.03	100 97	0.02 0.02	672 733	0.01 0.01	739 720

Table 4: Continued from previous page

Dataget	NEH	Stopping		$L_h = 1$	L_h	$a_{i} = 5000$	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		сср	0.03	90	0.02	720	0.02	7098
vfr006 - 100×20	0.07	2%	0.04	100	0.02	1057	0.02	11706
VII 000 100 × 20	0.07	ccp	0.04	394	0.02	1328	0.02	11413
$vfr006 - 100 \times 40$	0.05	2%	0.04	100	0.03	1095	0.02	12032
		ccp	0.03	309	0.02	1319	0.02	11827
$vfr006-100{\times}60$	0.06	2%	0.04 0.04	100 239	0.03 0.03	1080 1252	$0.02 \\ 0.02$	11508 1137 7
		2%	0.04	101	0.03	1589	0.02	18009
$vfr006-200{\times}20$	0.05	ccp	0.03	1790	0.02	3113	0.01	1874
	0.00	2%	0.04	101	0.02	2228	0.01	25198
$v fr 006 - 200 \times 40$	0.06	ccp	0.03	2229	0.02	4155	0.01	25378
f-000 000×00	0.05	2%	0.04	100	0.02	2235	0.01	2522
$v fr 006 - 200 \times 60$	0.05	ccp	0.03	1795	0.02	3823	0.01	2528
vfr006 - 300×20	0.04	2%	0.02	100	0.02	1832	0.01	1944
V11000 500×20	0.04	ccp	0.01	3482	0.01	4745	0.01	2132
vfr006 - 300×40	0.05	2%	0.04	101	0.02	3280	0.01	3611
		ccp	0.03	6806	0.02	8844	0.01	3803
vfr006 - 300×60	0.05	2%	0.04 0.03	101 6037	0.02 0.02	3475 8701	0.01 0.01	3754 3932
		2%	0.03	101	0.02	2165	0.01	2402
$vfr006 - 400 \times 20$	0.03	ccp	0.02	7193	0.01	8620	0.01	2859
		2%	0.04	101	0.01	4122	0.00	4406
$\mathbf{vfr006} - 400 \times 40$	0.04	ccp	0.02	14247	0.01	14659	0.00	4950
f006 400×60	0.04	2%	0.04	101	0.01	4785	0.00	5025
vfr006 – 400×60	0.04	ccp	0.02	14725	0.01	17380	0.00	5602
vfr006 - 500×20	0.02	2%	0.01	100	0.01	1899	0.01	2187
VII000 - 500×20	0.02	ccp	0.01	9937	0.01	11488	0.00	2980
vfr006 - 500×40	0.04	2%	0.04	101	0.02	4780	0.01	5047
111000 0007.10	0.01	ccp	0.02	25569	0.01	20055	0.01	5966
$vfr006 - 500 \times 60$	0.05	2%	0.04	101	0.02	5803	0.00	6206
		ccp	0.02	26137	0.01	29194	0.00	7423
$vfr006 - 600 \times 20$	0.02	2%	0.01	101	0.01 0.00	2040 17170	0.01 0.00	2310
		2%	0.00	15140 101	0.00	17170 5090	0.00	3716 5275
$vfr006-600{\times}40$	0.03	ccp	0.03	31127	0.01	28206	0.00	6891
		2%	0.04	101	0.01	7413	0.00	7284
$\mathbf{vfr006} - 600 \times 60$	0.04	ccp	0.02	46940	0.01	43381	0.00	9350
f 000 = =00 00	0.00	2%	0.01	101	0.01	2206	0.01	2371
vfr006 - 700×20	0.02	ccp	0.00	20596	0.01	19622	0.01	3813
vfr006 - 700×40	0.03	2%	0.03	101	0.01	5209	0.01	5622
VII 000 - 700 × 40	0.03	ccp	0.01	41957	0.01	33451	0.01	7757
$v fr 006 - 700 \times 60$	0.04	2%	0.04	101	0.01	8272	0.00	8276
	0.01	ccp	0.02	62859	0.01	62930	0.00	11264
vfr006 - 800×20	0.01	2%	0.01	100	0.01	1871	0.01	2097
		ccp	0.01	22349	0.01	25555	0.01	4427
$\mathbf{vfr006} - 800 \mathbf{\times 40}$	0.03	2%	0.03 0.01	102	0.01	6076	0.00	6540
		2%	0.01	67252 101	0.01 0.01	55211 9965	0.00	9539 9486
$\mathbf{vfr006} - 800 \times 60$	0.04	ccp	0.04	93029	0.01	82415	0.00	14157
6.00 m	0.5:	2%	0.00	100	0.00	100	0.00	71
$vfr007 - 10 \times 05$	0.04	ccp	0.01	1	0.00	74	0.00	78
-f-007 10: 10	0.00	2%	0.00	100	0.00	100	0.00	81
$vfr007 - 10 \times 10$	0.00	ccp	0.00	1	0.00	83	0.00	89
vfr007 - 10×15	0.03	2%	0.00	100	0.00	100	0.00	77
ATTOOL = 10 \ 10	0.03	ccp	0.01	1	0.00	79	0.00	85
vfr007 - 10×20	0.00	2%	0.00	100	0.00	100	0.00	94
1007 10720	0.00	ccp	0.00	1	0.00	95	0.00	101
$v fr 007 - 20 \times 05$	0.00	2%	0.00	100	0.00	155	0.00	178
		ccp	0.00	100	0.00	161	0.00	182
$vfr007 - 20 \times 10$	0.03	2%	0.01	100	0.01	202	0.00	211
		2%	0.01 0.00	5 100	0.01	205 189	0.00	214 203
$vfr007 - 20 \times 15$	0.04	ccp	0.00	6	0.00	195	0.00	203
		2%	0.01	100	0.00	204	0.00	218
$vfr007 - 20 \times 20$	0.04	ccp	0.01	5	0.01	204	0.00	220
6.00 F 33	0.55	2%	0.00	100	0.00	102	0.00	104
$vfr007 - 30 \times 05$	0.00	ccp	0.00	8	0.00	108	0.00	111
-f-007 20::10	0.04	2%	0.03	100	0.02	302	0.01	324
$vfr007 - 30 \times 10$	0.04	ccp	0.03	13	0.02	306	0.01	322
vfr007 – 30×15	0.05	2%	0.03	100	0.02	311	0.01	327

Table 4: Continued from previous page

Datasat	NEH	Stopping		$L_h = 1$	L_h	$a_{i} = 5000$	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
		сср	0.03	13	0.02	315	0.01	3257
vfr007 - 30×20	0.05	2%	0.03	100	0.02	316	0.01	3421
VII 00 1 00 X 20	0.00	ccp	0.03	15	0.02	321	0.01	3403
$vfr007 - 40 \times 05$	0.02	2%	0.00	100	0.00	202	0.00	2087
		ccp	0.00	19	0.00	216	0.00	2107
$vfr007-40{\times}10$	0.05	2%	0.03 0.04	100 20	$0.04 \\ 0.04$	275 289	0.03 0.03	3189 3136
		2%	0.04	100	0.04	406	0.03	4552
$vfr007 - 40 \times 15$	0.08	ccp	0.04	35	0.02	424	0.01	4486
		2%	0.03	100	0.02	462	0.01	4842
$vfr007 - 40 \times 20$	0.03	ccp	0.03	27	0.02	471	0.01	4778
	0.00	2%	0.00	100	0.00	157	0.00	1640
$vfr007 - 50 \times 05$	0.00	ccp	0.00	30	0.00	185	0.00	1675
vfr007 - 50×10	0.04	2%	0.02	100	0.02	394	0.02	4125
VII 00 / 10	0.04	ccp	0.02	48	0.02	428	0.02	4076
$vfr007 - 50 \times 15$	0.06	2%	0.03	100	0.02	519	0.02	5769
		ccp	0.03	54	0.02	553	0.02	5668
$vfr007 - 50 \times 20$	0.05	2%	0.04	100	0.03	549	0.02	5943
		2%	0.04	54 100	0.03	585 191	0.02	$\frac{5862}{1982}$
$vfr007-60{\times}05$	0.01	ccp	0.00	41	0.00	229	0.00	2010
		2%	0.02	100	0.00	485	0.00	5459
$v fr 007 - 60 \times 10$	0.03	ccp	0.02	69	0.01	565	0.01	5315
vfr007 - 60×15	0.06	2%	0.03	100	0.02	635	0.02	6985
$V11007 - 00 \times 10$	0.00	ccp	0.03	99	0.02	708	0.02	6765
vfr007 - 60×20	0.07	2%	0.03	100	0.03	623	0.02	7145
VII 00 / 20	0.01	ccp	0.04	92	0.02	698	0.02	6876
$vfr007 - 100 \times 20$	0.07	2%	0.04	100	0.02	1070	0.01	11972
		ccp	0.03	394	0.02	1331	0.01	11613
$vfr007-100{\times}40$	0.06	2%	0.04 0.04	100 292	0.03 0.03	1096 1324	0.02 0.02	12202 11992
		ccp 2%	0.04	100	0.03	1110	0.02	11992
$vfr007 - 100 \times 60$	0.05	ccp	0.04	244	0.03	1288	0.02	11783
		2%	0.02	100	0.02	1576	0.01	17416
$vfr007 - 200 \times 20$	0.03	ccp	0.01	1671	0.01	2777	0.01	17955
f 007 - 200 - 40	0.05	2%	0.04	101	0.02	2217	0.01	24688
$v fr 007 - 200 \times 40$	0.05	$_{\rm ccp}$	0.03	2282	0.02	4167	0.01	24802
vfr007 - 200×60	0.05	2%	0.04	101	0.02	2306	0.01	24590
VIIOO1 200/00	0.00	ccp	0.03	1736	0.02	3797	0.01	24694
$vfr007 - 300 \times 20$	0.03	2%	0.02	101	0.01	1679	0.01	18563
		ccp	0.01	3680	0.01	4644	0.01	20431
$vfr007-300{\times}40$	0.05	2%	0.04 0.02	101 7148	0.02 0.01	3252 8398	0.01 0.01	35236 37350
		2%	0.02	101	0.01	3396	0.01	37448
$vfr007 - 300 \times 60$	0.05	ccp	0.03	6503	0.02	8801	0.01	39221
6.00 − 100 00	0.00	2%	0.02	101	0.01	1724	0.01	19358
$vfr007 - 400 \times 20$	0.03	ccp	0.01	6857	0.01	7934	0.01	25084
vfr007 - 400×40	0.04	2%	0.04	101	0.01	4006	0.00	43120
v11001 = 400×40	0.04	сср	0.02	11772	0.01	13919	0.00	48003
vfr007 - 400×60	0.05	2%	0.04	101	0.02	4804	0.00	50011
100/100		ccp	0.03	14492	0.01	18316	0.00	56092
$vfr007 - 500 \times 20$	0.02	2%	0.01	101	0.01	2038	0.01	22333
		ccp	0.00	9110	0.00	10567	0.00	29860
$vfr007-500{\times}40$	0.04	2% ccp	0.03 0.02	101 15523	0.02 0.01	4129 18175	0.01 0.01	46844 55441
		2%	0.02	101	0.01	6054	0.00	62891
$\mathbf{vfr007} - 500 {\times} 60$	0.04	ccp	0.04	27010	0.02	29463	0.00	75042
-f-007 coo00	0.01	2%	0.01	100	0.01	1793	0.01	19598
$v fr 007 - 600 \times 20$	0.01	ccp	0.00	10697	0.00	14736	0.00	32550
$v fr 007 - 600 \times 40$	0.04	2%	0.03	101	0.01	5321	0.00	54816
.1100, 000/40	0.04	ccp	0.01	28462	0.01	29861	0.00	69415
$\mathbf{vfr007} - 600 {\times} 60$	0.05	2%	0.04	101	0.01	7196	0.00	71936
	- 7	ccp	0.02	39924	0.01	42352	0.00	90532
$vfr007-700{\times}20$	0.01	2%	0.01	101 18640	0.01	2175	0.01	23133 40107
		2%	0.00	18649 102	0.00	20097 5707	0.00	40197 59608
$\mathbf{vfr007} - 700 {\times} 40$	0.04	ccp	0.03	47859	0.01	40406	0.00	83203
			0.04	101	0.01	8572	0.00	81358
0 00F		2%	0.04					
$\mathbf{vfr007} - 700{\times}60$	0.04	ccp	0.04	61231	0.01	64937	0.00	114596

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{t}	$a_{i} = 5000$	L_h	= 50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		сср	0.00	16947	0.00	25305	0.00	4333
f-007 000v 40	0.02	2%	0.03	101	0.01	5896	0.00	60810
$vfr007 - 800 \times 40$	0.03	сср	0.01	61164	0.01	49580	0.00	89394
f-007 000v.c0	0.04	2%	0.04	101	0.01	9546	0.00	86634
$vfr007 - 800 \times 60$	0.04	$_{\rm ccp}$	0.02	86780	0.01	71490	0.00	128330
vfr008 - 10×05	0.03	2%	0.00	100	0.00	100	0.00	859
VII 000 – 10 × 05	0.03	ccp	0.00	1	0.00	88	0.00	933
vfr008 - 10×10	0.01	2%	0.01	100	0.00	100	0.00	824
VII 008 – 10 × 10	0.01	ccp	0.01	1	0.00	84	0.00	899
vfr008 - 10×15	0.02	2%	0.01	100	0.00	103	0.00	966
VII 000 - 10 × 15	0.02	ccp	0.01	1	0.00	95	0.00	1040
-f-000 10×200	0.02	2%	0.01	100	0.00	100	0.00	802
$vfr008 - 10 \times 20$	0.03	сср	0.01	1	0.00	82	0.00	879
-f-000 00 0T	0.04	2%	0.00	100	0.00	179	0.00	191
$vfr008 - 20 \times 05$	0.04	сср	0.01	5	0.00	184	0.00	194
f.000 00 10	0.00	2%	0.01	100	0.00	175	0.00	181
$vfr008 - 20 \times 10$	0.02	сср	0.01	6	0.00	180	0.00	185
		2%	0.01	100	0.01	206	0.00	218
$vfr008 - 20 \times 15$	0.05	сср	0.02	5	0.01	210	0.00	220
		2%	0.02	100	0.01	205	0.00	217
$vfr008 - 20 \times 20$	0.03	ccp	0.02	4	0.01	208	0.00	219
		2%	0.01	100	0.01	176	0.00	204
$vfr008 - 30 \times 05$	0.02	ccp	0.01	13	0.01	193	0.00	209
		2%	0.02	100	0.02	296	0.01	323
$vfr008 - 30 \times 10$	0.05	ccp	0.02	1700 17	0.02	301	0.01	323 322
		2%	0.02	100	0.02	328	0.01	340
$vfr008 - 30 \times 15$	0.07		0.03	100 15	0.02 0.02	330	0.01	338
		ccp						
$vfr008 - 30 \times 20$	0.04	2%	0.03	100	0.02	316	0.01	336
		ccp	0.03	14	0.02	319	0.01	335
$vfr008 - 40 \times 05$	0.00	2%	0.00	100	0.00	135	0.00	142
		ccp	0.00	16	0.00	152	0.00	147
$vfr008 - 40 \times 10$	0.05	2%	0.02	100	0.02	329	0.01	374
		ccp	0.02	28	0.02	344	0.01	369
$vfr008 - 40 \times 15$	0.07	2%	0.03	100	0.02	433	0.01	465
	0.01	ccp	0.04	33	0.02	445	0.01	459
$vfr008 - 40 \times 20$	0.07	2%	0.03	100	0.02	436	0.01	460
1000 1000	0.01	ccp	0.03	30	0.02	448	0.01	455
$vfr008 - 50 \times 05$	0.00	2%	0.00	100	0.00	148	0.00	156
V11000 00×00	0.00	ccp	0.00	26	0.00	174	0.00	160
vfr008 - 50×10	0.04	2%	0.02	100	0.02	436	0.01	470
V11000 50×10	0.04	ccp	0.02	56	0.01	474	0.01	462
vfr008 - 50×15	0.08	2%	0.03	100	0.02	531	0.01	583
VII 000 - 50 X 15	0.08	ccp	0.03	60	0.02	572	0.01	574
f000 E0x20	0.06	2%	0.03	100	0.02	530	0.01	579
$vfr008 - 50 \times 20$	0.06	ccp	0.03	55	0.02	561	0.01	572
-f-000 coor	0.01	2%	0.00	100	0.00	218	0.00	235
$vfr008 - 60 \times 05$	0.01	сср	0.00	50	0.00	276	0.00	236
f.000 ac 10	0.00	2%	0.01	100	0.01	294	0.01	327
$vfr008 - 60 \times 10$	0.03	ccp	0.01	63	0.01	381	0.01	326
f.000 00 :=		2%	0.03	100	0.02	599	0.02	671
$vfr008 - 60 \times 15$	0.06	ccp	0.03	88	0.02	659	0.02	653
		2%	0.04	100	0.02	687	0.02	739
$vfr008 - 60 \times 20$	0.07	ccp	0.04	90	0.02	739	0.02	724
		2%	0.04	100	0.02	1052	0.02	1172
$vfr008-100{\times}20$	0.07		0.03	372	0.02 0.02	1335	0.01	1172 1149
		2%	0.03	100	0.02	1113	0.01	1149
$vfr008 - 100 \times 40$	0.05							
		ccp	0.04	292	0.02	1366	0.02	1206
vfr008 - 100×60	0.06	2%	0.04	100	0.03	1094	0.02	1173
		ccp	0.04	237	0.03	1271	0.02	1161
vfr008 - 200×20	0.04	2%	0.02	101	0.02	1396	0.01	1540
		ccp	0.01	1695	0.01	2512	0.01	1595
vfr008 - 200×40	0.06	2%	0.04	101	0.02	2243	0.01	2431
VII 300 200 A 40	0.00	ccp	0.03	2299	0.02	4105	0.01	2453
vfr008 - 200×60	0.05	2%	0.04	101	0.02	2262	0.01	2498
VII 000 - 200 X 00	0.05	ccp	0.03	1749	0.02	3841	0.01	2507
r.f.,000 200 200	0.09	2%	0.02	100	0.02	1685	0.01	1866
$vfr008 - 300 \times 20$	0.03	сср	0.01	3492	0.01	4627	0.01	2050
6.000 000 10	0.05	2%	0.04	101	0.02	3238	0.01	3578
	0.05	i e						
$vfr008 - 300 \times 40$	0.05	$_{\rm ccp}$	0.02	7016	0.01	8974	0.01	3756

Table 4: Continued from previous page

Dataset	NEH	Stopping		$L_h = 1$	L_{I}	$a_{i} = 5000$	L_h	=50000
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10 ³
		ccp	0.03	5762	0.02	8867	0.01	3923
vfr008 – 400×20	0.03	2%	0.02	101	0.01	1718	0.01	1925
		ccp	0.01	5807	0.01	6996	0.01	2444
$vfr008 - 400 \times 40$	0.04	2%	0.03 0.02	101 15275	0.02 0.01	3938 13294	0.01 0.00	4225 4751
		2%	0.02	101	0.01	4640	0.00	5032
$vfr008 - 400 \times 60$	0.04	ccp	0.04	14564	0.02	17191	0.00	5520
f 000 - 700 - 00	0.00	2%	0.01	101	0.01	2221	0.01	2456
$v fr 008 - 500 \times 20$	0.02	ccp	0.00	11487	0.00	11457	0.00	3233
vfr008 - 500×40	0.04	2%	0.03	101	0.01	4594	0.01	4773
VII 000 500 × 40	0.04	ccp	0.02	20505	0.01	18163	0.00	5660
$vfr008 - 500 \times 60$	0.04	2%	0.04	101	0.01	6223	0.00	6319
		ccp	0.02	27503	0.01	30795	0.00	7461
$vfr008 - 600 \times 20$	0.02	2%	0.01 0.01	100 16021	0.01 0.01	2210 15327	0.01 0.00	2428 3395
		2%	0.01	10021	0.01	5055	0.00	5265
$\mathbf{vfr008} - 600 \times 40$	0.04	ccp	0.01	36602	0.01	26340	0.00	6614
4.000 000 00	0.04	2%	0.04	101	0.02	7067	0.00	7167
$vfr008 - 600 \times 60$	0.04	ccp	0.02	47948	0.01	42435	0.00	9109
f009 700×20	0.01	2%	0.01	100	0.01	2482	0.01	2722
vfr008 – 700×20	0.01	ccp	0.00	24164	0.00	22304	0.00	4346
vfr008 - 700×40	0.04	2%	0.03	102	0.01	$\boldsymbol{5124}$	0.00	5518
VII 000 100 × 40	0.04	ccp	0.01	43631	0.01	36516	0.00	7783
$v fr 008 - 700 \times 60$	0.04	2%	0.04	101	0.01	8094	0.00	7964
		ccp	0.02	51097	0.01	57145	0.00	10902
$vfr008 - 800 \times 20$	0.01	2% ccp	0.01 0.00	100 21332	0.01 0.00	2020 27378	0.01 0.00	2328 4732
		2%	0.03	102	0.01	5785	0.00	6002
$v fr 008 - 800 \times 40$	0.03	ccp	0.01	51741	0.01	44458	0.00	881
4.000 000 00	0.04	2%	0.04	101	0.01	8643	0.00	8470
$vfr008 - 800 \times 60$	0.04	ccp	0.02	67737	0.01	74944	0.00	1230
vfr009 - 10×05	0.02	2%	0.00	100	0.00	100	0.00	88
VII009 - 10×05	0.02	ccp	0.00	1	0.00	89	0.00	95
vfr009 – 10×10	0.01	2%	0.00	100	0.00	100	0.00	91
11000 107110	0.01	ccp	0.00	1	0.00	93	0.00	98
vfr009 – 10×15	0.02	2%	0.00	100	0.00	100	0.00	78
		2%	0.00	100	0.00	81 101	0.00	
$vfr009 - 10 \times 20$	0.03	ccp	0.01	100 1	0.00	101	0.00	10
		2%	0.00	100	0.00	128	0.00	142
$vfr009 - 20 \times 05$	0.01	ccp	0.00	4	0.00	140	0.00	14'
f-000 20×10	0.04	2%	0.01	100	0.01	198	0.00	214
$v fr 009 - 20 \times 10$	0.04	ccp	0.01	5	0.01	203	0.00	21
vfr009 – 20×15	0.03	2%	0.01	100	0.00	212	0.00	224
VII 003 20×10	0.00	ccp	0.01	6	0.00	214	0.00	22
vfr009 - 20×20	0.04	2%	0.02	100	0.00	202	0.00	210
		ccp	0.02	5	0.00	204	0.00	21
$vfr009 - 30 \times 05$	0.00	2%	0.00	100 9	$0.00 \\ 0.00$	123 135	0.00	133
		2%	0.00	100	0.00	291	0.00	29
$vfr009 - 30 \times 10$	0.06	ccp	0.01	160 16	0.01	294	0.01	296
£ 000 00 15	0.05	2%	0.02	100	0.01	338	0.01	35
$v fr 009 - 30 \times 15$	0.05	ccp	0.02	15	0.01	341	0.01	351
vfr009 - 30×20	0.04	2%	0.02	100	0.02	314	0.01	32
VII 000 00 A 20	0.04	ccp	0.02	14	0.02	317	0.01	327
vfr009 – 40×05	0.01	2%	0.00	100	0.00	181	0.00	202
	0.01	ccp	0.00	22	0.00	212	0.00	20
vfr009 - 40×10	0.05	2%	0.03	100	0.03	304	0.02	37.
		2%	0.04 0.03	26 100	0.03	334 454	0.02	374 48
$v fr 009 - 40 \times 15$	0.05	ccp	0.03	30	0.02 0.02	4 54 465	0.01	48 47
		2%	0.03	100	0.02	428	0.01	44
$v fr 009 - 40 \times 20$	0.05	ccp	0.03	28	0.02	440	0.02	443
C000 FC 0F	0.00	2%	0.00	100	0.00	179	0.00	18
$v fr 009 - 50 \times 05$	0.00	ccp	0.00	27	0.00	204	0.00	18
vfr009 - 50×10	0.03	2%	0.00	100	0.00	355	0.00	36
v11009 – 90 X 10	0.03	ccp	0.00	42	0.00	383	0.00	362
		2%	0.03	100	0.02	519	0.01	583
$vfr009 - 50 \times 15$	0.06		0.03	65	0.02	570	0.01	567

Table 4: Continued from previous page

Dataset	NEH Stopping		-	$L_h = 1$		$L_h = 5000$		$L_h = 50000$	
	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	
		сср	0.03	57	0.02	580	0.01	5846	
vfr009 - 60×05	0.01	2%	0.00	100	0.00	203	0.00	2374	
	-	2%	0.00	100	0.00	269 371	0.00	2389 3815	
$vfr009-60{\times}10$	0.01	ccp	0.00	100 48	0.00 0.00	371 416	0.00	3818 378 6	
		2%	0.03	100	0.02	548	0.00	6307	
$vfr009 - 60 \times 15$	0.06	ccp	0.03	97	0.02	627	0.01	6107	
f 000 - 60 - 20	0.07	2%	0.03	100	0.03	618	0.01	713	
$vfr009 - 60 \times 20$	0.07	ccp	0.03	86	0.02	687	0.01	6897	
vfr009 - 100×20	0.06	2%	0.03	100	0.02	978	0.01	1140	
VII 000 100 × 20	0.00	ccp	0.03	390	0.02	1284	0.01	1108'	
vfr009 - 100×40	0.06	2%	0.04	100	0.03	1128	0.02	1216	
		ccp	0.04	283	0.03	1350	0.02	1200: 1133	
$vfr009-100{\times}60$	0.05	2% ccp	0.04 0.04	100 225	0.03 0.03	1055 1237	$0.02 \\ 0.02$	1133 1120	
		2%	0.03	100	0.02	1512	0.02	1669	
$vfr009 - 200 \times 20$	0.04	ccp	0.02	1630	0.02	2796	0.01	1724	
f 000 000	0.00	2%	0.04	101	0.02	2278	0.01	2557	
$v fr 009 - 200 \times 40$	0.06	ccp	0.03	2319	0.02	4145	0.01	2569	
vfr009 - 200×60	0.05	2%	0.04	101	0.02	2259	0.01	2493	
VII009 - 200×00	0.05	ccp	0.03	1861	0.02	3786	0.01	2502	
vfr009 - 300×20	0.04	2%	0.02	101	0.02	1606	0.01	1801	
	0.01	ccp	0.01	3409	0.01	4701	0.01	2018	
vfr009 - 300×40	0.05	2%	0.04	101 6740	0.02	3152 8307	0.01	3426	
		2%	0.02	6749 101	0.01	8307 3508	0.01 0.01	3612 3734	
$vfr009 - 300 \times 60$	0.05	ccp	0.04	6065	0.02 0.02	8894	0.01	3939	
		2%	0.02	100	0.01	1764	0.01	1976	
$vfr009 - 400 \times 20$	0.03	ccp	0.01	6746	0.01	7638	0.01	2468	
f 000 400 40	0.04	2%	0.03	101	0.01	4251	0.00	4428	
$vfr009 - 400 \times 40$	0.04	ccp	0.02	12821	0.01	14666	0.00	4948	
$v fr 009 - 400 \times 60$	0.05	2%	0.04	101	0.02	4812	0.00	5096	
VII 003 400×00	0.00	ccp	0.02	15977	0.01	17122	0.00	5659	
vfr009 - 500×20	0.02	2%	0.01	101	0.01	2089	0.01	2349	
	0.02	ccp	0.01	9756	0.01	12458	0.01	3193	
$\mathbf{vfr009} - 500 \mathbf{\times 40}$	0.04	2%	0.04	101	0.01 0.01	4742	0.01 0.00	5051	
		2%	0.02	19532 101	0.01	21968 6003	0.00	6025 6220	
$\mathbf{vfr009} - 500 \times 60$	0.04	ccp	0.03	26948	0.02	29139	0.00	7574	
		2%	0.01	101	0.01	1903	0.01	2147	
$vfr009 - 600 \times 20$	0.02	ccp	0.01	12110	0.01	13074	0.01	3145	
f-000 600×40	0.04	2%	0.03	101	0.01	5463	0.00	5630	
$vfr009 - 600 \times 40$	0.04	ccp	0.01	33976	0.01	28906	0.00	6847	
vfr009 - 600×60	0.04	2%	0.04	101	0.02	6803	0.01	6812	
VII 000 000×00	0.01	ccp	0.02	41069	0.01	41178	0.00	8849	
vfr009 - 700×20	0.01	2%	0.01	100	0.01	2117	0.01	2382	
		ccp	0.00	18587	0.00	23089	0.00	4168	
$vfr009-700{\times}40$	0.04	2%	0.03 0.01	101 41879	0.01 0.01	5268 37890	0.01 0.00	5646 7771	
		2%	0.01	101	0.01	8770	0.00	8224	
$\mathbf{vfr009} - 700 \times 60$	0.04	ccp	0.04	58287	0.01	60277	0.00	11554	
f 000 000 00	0.01	2%	0.01	100	0.01	1792	0.00	1952	
vfr009 – 800×20	0.01	ccp	0.00	27746	0.00	24698	0.00	3855	
vfr009 - 800×40	0.03	2%	0.03	102	0.01	5562	0.01	6032	
VII 009 - 600 X 40	0.03	ccp	0.01	62009	0.01	49044	0.00	9252	
$v fr 009 - 800 \times 60$	0.04	2%	0.03	101	0.01	9357	0.00	8866	
	0.01	ccp	0.01	90381	0.01	76821	0.00	13372	
vfr010 - 10×05	0.00	2%	0.00	100	0.00	100	0.00	78	
		ccp	0.00	100	0.00	81	0.00	86	
$vfr010 - 10 \times 10$	0.05	2%	0.00 0.00	100 1	$0.00 \\ 0.00$	100 77	0.00	75 83	
		2%	0.00	100	0.00	100	0.00	87	
$vfr010 - 10 \times 15$	0.00	ccp	0.00	100	0.00	88	0.00	93	
0.010		2%	0.00	100	0.00	100	0.00	86	
$vfr010 - 10 \times 20$	0.00	ccp	0.00	1	0.00	87	0.00	94	
f-010 00×05	0.01	2%	0.00	100	0.00	166	0.00	174	
$vfr010 - 20 \times 05$	0.01	ccp	0.00	4	0.00	171	0.00	178	
vfr010 - 20×10	0.08	2%	0.03	100	0.01	200	0.00	213	
VII.O.I.O 20 \ 10	0.00	ccp	0.03	6	0.01	204	0.00	214	
vfr010 - 20×15	0.05	2%	0.03	100	0.01	193	0.00	207 : next page [

Table 4: Continued from previous page

Dataset	NEH Stopping			$L_h = 1$		$L_h = 5000$		$L_h = 50000$	
Dataset	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	
		сср	0.03	5	0.01	196	0.00	2089	
$vfr010 - 20 \times 20$	0.04	2%	0.01	100	0.01	188	0.00	2054	
		ccp	0.02	5	0.01	194	0.00	2072	
$vfr010-30{\times}05$	0.02	2% ccp	0.00 0.00	100 13	0.00 0.00	166 181	0.00	1832 1852	
		2%	0.02	100	0.01	290	0.01	3204	
$vfr010 - 30 \times 10$	0.05	ccp	0.02	15	0.01	297	0.01	3190	
vfr010 - 30×15	0.06	2%	0.03	100	0.02	293	0.01	3163	
VII010 - 30 × 13	0.00	ccp	0.03	15	0.02	300	0.01	3149	
$vfr010 - 30 \times 20$	0.04	2%	0.02	100	0.02	321	0.01	3352	
		ccp	0.03	13	0.02	323	0.01	3334	
$vfr010-40{\times}05$	0.00	2%	0.00	100 19	$0.00 \\ 0.00$	165 184	0.00	174 2 178	
		2%	0.02	100	0.00	343	0.00	389	
$vfr010 - 40 \times 10$	0.04	ccp	0.02	28	0.02	367	0.01	382	
f=010 40×15	0.06	2%	0.03	100	0.02	393	0.02	441	
vfr010 – 40×15	0.06	сср	0.03	34	0.02	412	0.02	433	
vfr010 - 40×20	0.07	2%	0.04	100	0.02	434	0.01	456	
VIIO10 10/120	0.01	ccp	0.04	30	0.02	448	0.01	452	
$vfr010 - 50 \times 05$	0.00	2%	0.00 0.00	100 30	0.00 0.00	196 239	0.00	221 224	
		2%	0.00	100	0.00	360	0.00	398	
$vfr010 - 50 \times 10$	0.05	ccp	0.02	36	0.02	387	0.01	389	
f 010 = F01F	0.07	2%	0.04	100	0.02	524	0.02	575	
$vfr010 - 50 \times 15$	0.07	ccp	0.04	57	0.02	571	0.02	564	
vfr010 - 50×20	0.06	2%	0.03	100	0.02	550	0.01	610	
VII010 50×20	0.00	ccp	0.03	61	0.02	592	0.01	601	
$vfr010 - 60 \times 05$	0.00	2%	0.00	100	0.00	100	0.00	89	
		2%	0.00 0.01	39 100	0.00	126 468	0.00 0.01	$\frac{96}{536}$	
$vfr010 - 60 \times 10$	0.05	ccp	0.01	75	0.02 0.02	544	0.01	530 524	
		2%	0.02	100	0.02	566	0.01	619	
$vfr010 - 60 \times 15$	0.04	сср	0.02	93	0.02	629	0.01	602	
vfr010 - 60×20	0.07	2%	0.03	100	0.02	676	0.01	746	
VII010 - 00 × 20	0.07	ccp	0.03	89	0.02	721	0.01	729	
vfr010 - 100×20	0.07	2%	0.04	100	0.03	946	0.02	1088	
		2%	0.03	375 100	0.02	1214	0.02	1059	
$vfr010-100{\times}40$	0.06	ccp	0.04 0.04	286	0.03 0.03	1119 1345	0.02 0.02	1208 1188	
		2%	0.04	100	0.03	1055	0.02	1132	
$vfr010 - 100 \times 60$	0.06	ccp	0.04	228	0.03	1234	0.02	1119	
vfr010 - 200×20	0.04	2%	0.03	101	0.02	1642	0.01	1799	
VII010 - 200 x 20	0.04	ccp	0.02	1955	0.01	2881	0.01	1837	
vfr010 - 200×40	0.05	2%	0.04	101	0.02	2199	0.01	2485	
		ccp	0.02	2575	0.02	4185	0.01	2497	
$vfr010-200{\times}60$	0.06	2% ccp	0.05 0.04	101 1924	0.02 0.02	2230 3755	$0.01 \\ 0.01$	2478 2491	
		2%	0.04	100	0.02	1318	0.01	1464	
$vfr010 - 300 \times 20$	0.03	ccp	0.01	2228	0.01	3768	0.01	1637	
vfr010 - 300×40	0.05	2%	0.04	101	0.02	3224	0.01	3516	
VII 010 - 300 X 40	0.05	сср	0.02	6888	0.01	8426	0.00	3705	
vfr010 - 300×60	0.05	2%	0.04	101	0.02	3392	0.01	3773	
		ccp	0.03	6351	0.02	8690	0.01	3957	
vfr010 - 400×20	0.02	2%	0.01 0.00	101 6251	0.01 0.00	1 831 7585	0.00 0.00	2076 2493	
		2%	0.00	101	0.00	4128	0.00	2493 4412	
$vfr010 - 400 \times 40$	0.05	ccp	0.02	12508	0.01	14669	0.01	4908	
f.010 400 d0	0.04	2%	0.04	101	0.02	4650	0.00	5026	
$vfr010 - 400 \times 60$	0.04	сср	0.02	14629	0.01	16532	0.00	5536	
vfr010 - 500×20	0.02	2%	0.01	101	0.01	2192	0.01	2336	
010 000 \ 20	0.02	ccp	0.01	10061	0.01	10347	0.01	2971	
$vfr010 - 500 \times 40$	0.04	2%	0.04	101	0.01	4674	0.01	4927	
		ccp	0.02	22286	0.01	20539	0.01	5811	
$\mathbf{vfr010} - 500 {\times} 60$	0.04	2% ccp	0.03 0.02	101 27304	0.02 0.01	5971 29408	0.00 0.00	6235 7447	
0.010		2%	0.02	101	0.01	2291	0.00	2529	
$vfr010 - 600 \times 20$	0.02	ccp	0.00	17581	0.01	17168	0.00	3746	
$v fr 0 10 - 600 \times 40$	0.04	2%	0.03	101	0.01	5129	0.00	5405	
V1FU1U - 0UU×4U	0.04	сср	0.01	30894	0.01	26452	0.00	6766	
$v fr 0 10 - 600 \times 60$	0.04	2%	0.04	101	0.02	6961	0.00	7065 n next page	

Table 4: Continued from previous page

Dataset	NEH	Stopping	$L_h = 1$		$L_h = 5000$		$L_h = 50000$	
Davasev	RPD	Criterion	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)	\overline{RPD}	Iters. (10^3)
		ccp	0.02	42863	0.01	41912	0.00	93332
vfr010 - 700×20	0.01	2%	0.01	100	0.01	1863	0.01	19934
VII010 - 700×20	0.01	ccp	0.01	9739	0.01	11804	0.01	28404
vfr010 - 700×40	0.03	2%	0.03	101	0.01	5690	0.01	57064
VIP010 - 700×40		ccp	0.01	43439	0.01	33397	0.00	75013
vfr010 - 700×60	0.04	2%	0.04	101	0.01	7367	0.00	75576
		ccp	0.02	54058	0.01	53391	0.00	104089
vfr010 - 800×20	0.01	2%	0.01	101	0.01	2255	0.00	25244
		ccp	0.00	28571	0.00	31695	0.00	52579
$\mathbf{vfr010} - 800{\times}40$	0.03	2%	0.03	101	0.01	5894	0.01	61982
		ccp	0.01	62607	0.01	51923	0.00	91210
vfr010 - 800×60	0.04	2%	0.03	101	0.02	10212	0.00	97049
		ccp	0.01	91515	0.01	86400	0.00	142722

Table 5: The CCP cutoff time for TSP, QAP, and PFSP instances with confidence level p = 0.95, as a percentage of the total search time. Results are average over 100 independent runs.

TSP

Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
d657	61.48 %	12.35 %	1.50 %
u724	60.38 %	13.18 %	1.65~%
rat783	58.51 %	14.50 %	1.85 %
dsj1000	61.30 %	16.67~%	2.21~%
pr1002	59.87 %	16.67~%	2.21 %
u1060	53.15 %	16.68~%	2.33 %
vm1084	59.57 %	17.28 %	2.37 %
pcb1173	60.79 %	18.49 %	2.57 %
d1291	55.78 %	19.15 %	2.78 %
rl1304	58.18 %	19.25~%	2.78 %
rl1323	58.44 %	19.44~%	2.82 %
nrw1379	61.80 %	20.95~%	3.03 %
fl1400	33.99 %	18.06 %	3.29 %
u1432	31.91 %	16.51~%	3.02 %
fl1577	39.82 %	18.76 %	3.34 %
d1655	48.79 %	20.85 %	3.47 %
vm1748	56.32 %	22.63 %	3.63 %
u1817	40.59 %	19.74~%	3.69 %
rl1889	57.73 %	23.11 %	3.85 %
d2103	49.21 %	23.76 %	4.31 %
u2152	36.99 %	20.50 %	4.23 %
u2319	24.47 %	17.76~%	4.59 %
pr2392	58.77 %	27.49 %	4.83 %
pcb3038	59.36 %	31.06~%	6.04 %
fl3795	27.28 %	20.39 %	6.35 %
fnl4461	60.57 %	36.58~%	8.42 %
rl5915	53.46 %	35.44~%	10.05 %
rl5934	54.46 %	36.07 %	10.03 %
brd14051	57.78 %	47.60 %	19.61 %
d15112	60.80 %	49.75 %	20.62~%

 \mathbf{QAP}

&111			
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
bur26a	62.23%	1.57%	1.51%
bur26b	64.11%	1.68%	1.61%
bur26c	62.48%	1.54%	1.48%
bur26d	64.31%	1.62%	1.57%
bur26e	62.87%	1.53%	1.46%
bur26f	63.14%	1.65%	1.57%
bur26g	62.51%	1.51%	1.47%
bur26h	63.44%	1.61%	1.56%
chr12a	69.81%	4.63%	4.16%
chr12b	68.83%	4.12%	3.82%
chr12c	72.91%	4.87%	4.48%
chr15a	67.88%	3.72%	3.48%
chr15b	67.68%	3.42%	3.21%
chr15c	71.51%	3.76%	3.48%
chr18a	70.19%	2.81%	2.62%

 Table 5: Continued from previous page

	Jiverraca j		
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
chr18b	64.80%	2.86%	2.72%
chr20a	67.22%	2.55%	2.43%
chr20b	70.52%	2.81%	2.71%
chr20c	66.21%	2.25%	2.10%
chr22a	65.09%	2.21%	2.01%
chr22b	66.33%	2.36%	2.25%
chr25a	65.01%	1.81%	1.75%
els19	62.74%	2.23%	2.13%
esc16a	73.93%	6.30%	5.98%
esc16b	91.75%	10.49%	10.01%
esc16c	72.71%	5.41%	5.12%
esc16d	75.51%	6.91%	6.60%
esc16e	71.89%	7.73%	7.33%
esc16f	100.00%	100.00%	100.00%
esc16g	72.82%	7.00%	6.67%
esc16h	82.81%	6.11%	5.65%
esc16i	88.07%	7.64%	7.16%
esc16j	76.36%	9.76%	9.34%
esc32a	56.56%	$\frac{9.70\%}{1.88\%}$	$\frac{9.34\%}{1.80\%}$
esc32b	57.44%	2.16%	2.08%
esc32c	82.77%	2.97%	2.85%
esc32d	66.22%	2.66%	2.56%
esc32e	97.31%	9.19%	8.51%
esc32g	92.14%	8.48%	8.02%
esc32h	68.22%	2.52%	2.41%
esc64a	86.84%	10.62%	2.63%
esc128	76.26%	22.09%	2.84%
had12	67.26%	4.38%	4.14%
had14	63.39%	3.46%	3.31%
had16	63.92%	2.83%	2.72%
had18	63.43%	2.52%	2.41%
had20	63.73%	2.18%	2.10%
kra30a	61.28%	1.30%	1.25%
kra30b	60.20%	1.32%	1.26%
kra32	58.28%	1.21%	1.16%
lipa20a	68.11%	2.36%	2.12%
lipa20b	68.71%	1.89%	1.75%
lipa30a	65.00%	1.37%	1.16%
lipa30b	66.91%	1.08%	0.99%
lipa40a	63.75%	1.56%	0.91%
lipa40b	62.69%	1.05%	0.68%
lipa50a	64.09%	1.95%	0.65%
lipa50b	61.37%	1.33%	0.51%
lipa60a	61.74%	2.37%	0.57%
lipa60b	59.69%	1.94%	0.41%
lipa70a	60.90%	2.69%	0.47%
1 -			
lipa70b	58.79%	2.16%	0.33%
lipa80a lipa80b	59.41%	3.15%	0.45%
*	57.91%	2.70%	0.28%
lipa90a	61.99%	3.42%	0.37%
lipa90b	57.92%	3.13%	0.24%
nug12	69.65%	5.01%	4.68%
nug14	67.80%	3.83%	3.51%
nug15	66.21%	3.44%	3.25%
nug16a	67.05%	3.07%	2.95%
nug16b	66.67%	3.12%	2.97%
nug17	65.22%	2.91%	2.74%
nug18	66.14%	2.71%	2.63%
nug20	65.35%	2.31%	2.19%
nug21	64.47%	2.12%	2.01%
nug22	64.22%	1.90%	1.83%
nug24	62.65%	1.75%	1.68%
nug25	60.21%	1.66%	1.58%
nug27	61.47%	1.46%	1.40%
nug28	59.97%	1.43%	1.35%
nug30	60.46%	1.25%	1.22%
rou12	71.67%	4.70%	4.38%
rou15	67.83%	3.65%	3.36%
rou20	68.93%	2.57%	2.36%
scr12	69.05%	4.62%	4.28%
scr15	69.14%	3.19%	3.05%
scr20	66.81%	2.22%	2.13%
sko42	57.28%	1.31%	0.76%
5110 12	01.2070	1.01/0	0.1070

 Table 5: Continued from previous page

Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
sko49	55.63%	1.52%	0.63%
sko56	56.64%	1.67%	0.52%
sko64	52.97%	1.86%	0.43%
sko72	52.64%	2.06%	0.37%
sko81	52.47%	2.28%	0.32%
sko90	51.32%	2.50%	0.28%
sko100a	50.83%	2.73%	0.28%
sko100b	49.83%	2.72%	0.28%
sko100c	50.48%	2.71%	0.27%
sko100d	50.68%	2.74%	0.28%
sko100e	50.00%	2.69%	0.27%
sko100f	48.16%	2.74%	0.28%
ste36a	60.78%	1.15%	0.93%
ste36b	59.91%	1.11%	0.90%
ste36c	61.97%	1.12%	0.91%
tai10a	73.80%	6.02%	5.42%
tai10b	73.49%	5.29%	4.71%
tai12a	72.71%	4.35%	4.02%
tai12b	68.29%	4.38%	4.09%
tai15a	72.64%	3.73%	3.51%
tai15b	66.59%	3.11%	2.90%
tai17a	69.95%	3.19%	3.01%
tai20a	70.09%	2.58%	2.49%
tai20b	60.89%	2.11%	2.00%
tai25a	67.61%	1.98%	1.86%
tai25b	60.38%	1.50%	1.44%
tai30a	67.97%	1.52%	1.48%
tai30b	59.28%	1.18%	1.14%
tai35a	64.81%	1.40%	1.23%
tai35b	58.77%	1.07%	0.94%
tai40a	62.72%	1.59%	1.02%
tai40b	58.47%	1.19%	0.78%
tai50a	61.28%	1.93%	0.77%
tai50b	56.16%	1.45%	0.58%
tai60a	58.10%	2.30%	0.61%
tai60b	53.52%	1.69%	0.46%
tai64c	79.91%	13.60%	3.38%
tai80a	57.23%	3.04%	0.43%
tai80b	51.98%	2.19%	0.32%
tai100a	56.25%	3.66%	0.37%
tai100b	50.62%	2.64%	0.27%
tai150b	44.45%	3.78%	0.39%
tai256c	72.77%	32.37%	5.17%
tho30	62.67%	1.21%	1.18%
tho40	59.74%	1.26%	0.80%
tho150	49.33%	3.77%	0.39%
wil50	55.29%	1.52%	0.61%
wil100	47.77%	2.74%	0.28%

PFSP

Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
$tai001 - 020 \times 05$	85.42%	4.29%	3.29%
$tai002-020{\times}05$	82.28%	4.67%	4.18%
$tai003 - 020 \times 05$	63.58%	2.85%	2.49%
$tai004 - 020 \times 05$	67.88%	2.62%	2.45%
$tai005 - 020 \times 05$	73.18%	3.21%	3.03%
$tai006-020{\times}05$	80.83%	3.38%	2.89%
$tai007 - 020 \times 05$	94.71%	4.35%	4.10%
$tai008 - 020 \times 05$	71.77%	2.87%	2.69%
$tai009 - 020 \times 05$	62.57%	2.92%	2.77%
$tai010-020{\times}05$	59.44%	2.76%	2.70%
$tai011 - 020 \times 10$	64.39%	2.38%	2.30%
$tai012 - 020 \times 10$	62.47%	2.44%	2.39%
$tai013 - 020 \times 10$	72.52%	2.51%	2.38%
$tai014 - 020 \times 10$	70.65%	2.49%	2.35%
$tai015 - 020 \times 10$	68.31%	2.41%	2.28%
$tai016 - 020 \times 10$	68.21%	2.59%	2.37%
$tai017 - 020 \times 10$	78.84%	2.46%	2.31%
$tai018 - 020 \times 10$	69.94%	2.56%	2.43%
$tai019 - 020 \times 10$	67.26%	2.78%	2.59%
$tai020-020\times10$	73.94%	2.57%	2.46%
$tai021-020\times20$	70.50%	2.53%	2.37%
$tai022-020{\times}20$	71.35%	2.43%	2.30%

 Table 5: Continued from previous page

Table 5: C	j		Pago
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
tai023 - 020×20	74.08%	$\frac{2.58\%}{}$	$\frac{2.47\%}{}$
$tai023 - 020 \times 20$ $tai024 - 020 \times 20$	73.41%	$\frac{2.38\%}{2.38\%}$	2.31%
$tai025 - 020 \times 20$	71.25%	2.55%	2.44%
$tai026 - 020 \times 20$	71.01%	2.50%	2.42%
$tai027 - 020 \times 20$	64.52%	2.49%	2.38%
$tai028 - 020 \times 20$	75.42%	2.52%	2.36%
$tai029 - 020 \times 20$	69.27%	2.51%	2.36%
$tai030 - 020 \times 20$	69.35%	2.37%	2.28%
$tai031 - 050 \times 05$	93.29%	14.36%	3.03%
$tai031 - 050 \times 05$ $tai032 - 050 \times 05$	77.74%	10.36%	2.04%
$tai033 - 050 \times 05$	90.48%	10.80%	2.24%
$tai034 - 050 \times 05$	67.72%	10.72%	2.13%
$tai035 - 050 \times 05$	96.12%	13.56%	2.85%
$tai036 - 050 \times 05$	88.98%	11.23%	2.32%
$tai037 - 050 \times 05$	69.90%	9.25%	1.87%
$tai038 - 050 \times 05$	89.79%	11.26%	2.18%
$tai039 - 050 \times 05$	83.71%	10.49%	2.20%
$tai040 - 050 \times 05$	62.58%	12.91%	2.85%
$tai040 - 050 \times 05$ $tai041 - 050 \times 10$			
	74.61%	6.12%	1.07%
$tai042 - 050 \times 10$	51.74%	5.28%	1.05%
$tai043 - 050 \times 10$	47.78%	4.82%	0.92%
$tai044 - 050 \times 10$	55.90%	5.80%	1.12%
$tai045 - 050 \times 10$	48.97%	5.17%	0.99%
$tai046 - 050 \times 10$	50.85%	6.12%	1.13%
$tai047 - 050 \times 10$	61.76%	6.38%	1.26%
$tai047 - 050 \times 10$ $tai048 - 050 \times 10$	51.38%	5.80%	1.14%
$tai048 - 050 \times 10$ $tai049 - 050 \times 10$	57.29%	5.30%	1.01%
$tai049 - 050 \times 10$ $tai050 - 050 \times 10$			
	49.19%	5.50%	1.05%
$tai051 - 050 \times 20$	50.75%	4.49%	0.88%
$tai052 - 050 \times 20$	49.57%	4.45%	0.83%
$tai053 - 050 \times 20$	51.78%	4.55%	0.87%
$tai054 - 050 \times 20$	48.25%	4.47%	0.86%
$tai055 - 050 \times 20$	52.43%	4.26%	0.82%
$tai056 - 050 \times 20$	47.75%	4.55%	0.88%
$tai050 - 050 \times 20$ $tai057 - 050 \times 20$	45.23%	4.37%	0.84%
$tai058 - 050 \times 20$	51.17%	4.41%	0.85%
$tai059 - 050 \times 20$	54.34%	4.43%	0.85%
$tai060 - 050 \times 20$	50.75%	4.70%	0.87%
$tai061 - 100 \times 05$	90.40%	37.74%	5.86%
$tai062 - 100 \times 05$	95.44%	37.95%	5.80%
$tai063 - 100 \times 05$	77.27%	28.01%	4.15%
$tai064 - 100 \times 05$	88.09%	31.46%	5.23%
$tai065 - 100 \times 05$	77.84%	29.26%	4.64%
$tai066 - 100 \times 05$	95.75%	34.59%	5.38%
$tai060 - 100 \times 05$	95.51%	30.29%	4.88%
$tai068 - 100 \times 05$	76.50%	27.16%	4.15%
$tai069 - 100 \times 05$	89.67%	30.08%	4.53%
$tai070 - 100 \times 05$	75.65%	28.88%	4.45%
$tai071 - 100 \times 10$	60.00%	16.38%	2.07%
$tai072 - 100 \times 10$	65.03%	17.14%	2.19%
$tai073 - 100 \times 10$	54.82%	18.71%	2.47%
$tai074 - 100 \times 10$	58.19%	15.38%	1.89%
$tai075 - 100 \times 10$	48.82%	15.01%	1.88%
$tai076 - 100 \times 10$	65.99%	18.54%	2.33%
$tai070 - 100 \times 10$ $tai077 - 100 \times 10$	60.20%	17.71%	$\frac{2.35\%}{2.36\%}$
	l .		
$tai078 - 100 \times 10$	55.91%	16.58%	2.10%
tai079 - 100×10	53.69%	16.80%	2.37%
$tai080 - 100 \times 10$	94.93%	24.50%	3.12%
$tai081 - 100 \times 20$	41.33%	10.32%	1.16%
$tai082 - 100 \times 20$	40.25%	10.58%	1.23%
$tai083 - 100 \times 20$	40.00%	10.37%	1.21%
$tai084 - 100 \times 20$	47.26%	12.14%	1.44%
$tai085 - 100 \times 20$	44.09%	11.23%	1.34%
$tai085 - 100 \times 20$ $tai086 - 100 \times 20$			
	41.93%	11.68%	1.37%
$tai087 - 100 \times 20$	36.98%	9.70%	1.17%
$tai088 - 100 \times 20$	38.38%	9.73%	1.13%
$tai089 - 100 \times 20$	35.53%	9.95%	1.13%
$tai090 - 100 \times 20$	55.76%	12.01%	1.46%
$tai091 - 200 \times 10$	72.31%	37.75%	9.21%
$tai092 - 200 \times 10$	59.13%	30.45%	6.03%
$tai092 = 200 \times 10$ $tai093 = 200 \times 10$	84.81%	39.40%	8.88%
$tai093 - 200 \times 10$ $tai094 - 200 \times 10$			
	55.17%	35.78%	9.14%
$tai095 - 200 \times 10$	72.15%	35.65%	6.44%

 Table 5: Continued from previous page

Table 5: C	oncontaca j	Tom precioa	o page
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
tai096 - 200×10	66.97%	37.14%	7.07%
$tai090 - 200 \times 10$	67.63%	35.76%	7.70%
$tai097 - 200 \times 10$ $tai098 - 200 \times 10$	65.56%	39.99%	7.97%
$tai099 - 200 \times 10$	81.86%	35.98%	6.73%
$tai100 - 200 \times 10$	63.16%	38.18%	7.65%
$tai101 - 200 \times 20$	42.29%	22.11%	3.71%
$tai102 - 200 \times 20$	42.06%	19.45%	3.07%
$tai103 - 200 \times 20$	42.35%	24.28%	3.67%
$tai104 - 200 \times 20$	40.88%	23.28%	3.65%
$tai105 - 200 \times 20$	41.60%	21.51%	3.58%
$tai105 - 200 \times 20$ $tai106 - 200 \times 20$	47.35%	23.17%	3.64%
$tai107 - 200 \times 20$	45.67%	21.28%	3.23%
$tai108 - 200 \times 20$	43.74%	22.19%	3.61%
$tai109 - 200 \times 20$	47.26%	22.17%	3.53%
$tai110 - 200 \times 20$	40.98%	21.27%	3.22%
$tai111 - 500 \times 20$	34.89%	35.07%	12.10%
$tai112 - 500 \times 20$	46.64%	35.72%	13.03%
$tai113 - 500 \times 20$	41.59%	39.10%	13.69%
$tai114 - 500 \times 20$	40.86%	35.93%	12.80%
$tai114 - 500 \times 20$ $tai115 - 500 \times 20$	45.90%	34.58%	12.94%
tai116 - 500×20	47.47%	36.06%	12.42%
$tai117 - 500 \times 20$	63.62%	46.98%	16.00%
$tai118 - 500 \times 20$	42.71%	39.15%	13.34%
$tai119 - 500 \times 20$	47.06%	37.00%	12.88%
$tai120 - 500 \times 20$	49.71%	40.36%	13.93%
$v fr 001 - 10 \times 05$	96.53%	8.27%	7.65%
vfr001 - 10×10	72.63%	5.97%	5.55%
$v fr 001 - 10 \times 15$	82.91%	5.58%	5.19%
$v fr 001 - 10 \times 13$ $v fr 001 - 10 \times 20$	73.41%	5.21%	4.85%
vfr001 - 20×05	68.77%	3.32%	3.17%
vfr001 - 20×10	60.43%	2.62%	2.50%
$vfr001 - 20 \times 15$	72.99%	2.48%	2.30%
$vfr001-20{\times}20$	64.73%	2.36%	2.26%
$vfr001 - 30 \times 05$	77.55%	5.56%	3.19%
$vfr001 - 30 \times 10$	66.23%	2.89%	1.61%
vfr001 - 30×15	58.32%	2.64%	1.50%
$v fr 001 - 30 \times 20$	64.94%	2.58%	1.53%
$v fr 001 - 40 \times 05$	99.80%	11.59%	3.82%
$v \text{fr} 001 - 40 \times 10$	54.82%	4.16%	1.30%
$v \text{fr} 001 - 40 \times 10$ $v \text{fr} 001 - 40 \times 15$			
	55.29%	3.71%	1.11%
vfr001 - 40×20	51.58%	3.63%	1.14%
$vfr001 - 50 \times 05$	97.93%	15.05%	3.18%
$vfr001-50{\times}10$	47.62%	4.95%	0.96%
$v fr 001 - 50 \times 15$	49.46%	4.78%	0.91%
$vfr001 - 50 \times 20$	50.89%	4.48%	0.87%
vfr001 - 60×05	99.25%	16.96%	2.51%
$v fr 001 - 60 \times 10$	48.70%	6.89%	0.94%
$v fr 001 - 60 \times 10$ $v fr 001 - 60 \times 15$	42.20%	6.12%	0.83%
vfr001 - 60×20	47.94%	5.22%	0.68%
vfr001 - 100×20	37.81%	9.01%	1.03%
vfr001 - 100×40	46.61%	8.90%	1.00%
vfr001 - 100×60	53.39%	9.55%	1.04%
$vfr001 - 200 \times 20$	37.07%	19.90%	3.08%
vfr001 - 200×40	25.02%	13.51%	2.15%
vfr001 - 200×60	32.96%	14.58%	2.15%
vfr001 - 300×20	38.68%	27.27%	5.51%
$v \text{fr} 001 - 300 \times 20$ $v \text{fr} 001 - 300 \times 40$	20.58%	15.84%	3.39%
$v \text{fr} 001 - 300 \times 40$ $v \text{fr} 001 - 300 \times 60$	20.58%	15.00%	$\frac{3.39\%}{3.28\%}$
$v \text{fr} 001 - 300 \times 60$ $v \text{fr} 001 - 400 \times 20$			
	31.45%	31.19%	8.17%
vfr001 - 400×40	20.09%	19.34%	5.05%
vfr001 - 400×60	17.10%	14.88%	4.31%
vfr001 - 500×20	35.82%	32.31%	11.80%
$vfr001 - 500 \times 40$	23.64%	22.62%	6.90%
$\mathbf{vfr001} - 500 {\times} 60$	14.96%	13.17%	5.13%
vfr001 - 600×20	38.68%	37.86%	15.37%
$v fr 001 - 600 \times 40$	19.75%	21.96%	8.03%
$v fr 001 - 600 \times 40$ $v fr 001 - 600 \times 60$	14.83%	15.89%	6.52%
vfr001 - 700×20	41.10%	42.08%	20.55%
$\mathbf{vfr001} - 700 \times 40$	22.52%	23.95%	9.99%
$\mathbf{vfr001} - 700 {\times} 60$	12.50%	14.65%	6.76%
vfr001 - 800×20	51.49%	45.73%	24.32%
$\mathbf{vfr001} - 800{\times}40$	20.27%	21.07%	10.91%
$\mathbf{vfr001} - 800 {\times} 60$	13.26%	15.42%	8.28%
		Continued or	

 Table 5: Continued from previous page

vfn002 - 10×10 74.59% 6.45% 5.94% vfn002 - 10×10 92.18% 7.42% 6.80% vfn002 - 10×20 85.94% 5.75% 5.41% vfn002 - 20×05 85.94% 5.75% 5.41% vfn002 - 20×15 65.66% 2.45% 2.32% vfn002 - 30×05 70.55% 4.07% 2.31% vfn002 - 30×10 59.39% 2.74% 2.38% vfn002 - 30×20 49.98% 2.59% 1.49% vfn002 - 40×15 52.89% 3.35% 1.10% vfn002 - 40×20 62.05% 3.56% 1.09% vfn002 - 50×15 51.97% 5.08% 1.09% vfn002 - 50×20 51.88% 4.59% 0.88% </th <th></th> <th>Jiverraca j</th> <th></th> <th></th>		Jiverraca j		
vfn002 - 10×10 92.18% 7.42% 6.80% vfn002 - 10×20 76.38% 5.39% 5.03% vfn002 - 20×05 88.25% 4.32% 3.36% vfn002 - 20×10 65.91% 2.45% 2.32% vfn002 - 20×20 72.44% 2.48% 2.38% vfn002 - 30×15 70.55% 4.07% 2.31% vfn002 - 30×10 59.39% 2.74% 1.56% vfn002 - 30×20 49.98% 2.59% 1.49% vfn002 - 30×10 59.39% 2.74% 1.56% vfn002 - 30×20 49.98% 2.59% 1.49% vfn002 - 40×55 81.37% 8.04% 2.54% vfn002 - 40×10 49.93% 3.82% 1.10% vfn002 - 40×20 62.05% 3.56% 1.10% vfn002 - 50×15 51.97% 5.08% 1.10% vfn002 - 50×10 57.23% 6.83% 1.25% vfn02 - 60×15 9.285% 16.04% 2.35% vfn02 - 60×10 51.78% 7.08% 0.97% <th>Dataset</th> <th>$L_h = 1$</th> <th>$L_h = 5000$</th> <th>$L_h = 50000$</th>	Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
vfr002 - 10×15 76.38% 5.39% 5.03% vfr002 - 20×05 85.94% 5.75% 5.41% vfr002 - 20×10 65.91% 2.45% 2.32% vfr002 - 20×10 65.91% 2.45% 2.33% vfr002 - 30×15 65.66% 2.43% 2.30% vfr002 - 30×15 70.55% 4.07% 2.31% vfr002 - 30×15 58.40% 2.66% 1.53% vfr002 - 30×15 58.40% 2.66% 1.53% vfr002 - 40×10 49.98% 2.59% 1.10% vfr002 - 40×10 49.93% 3.82% 1.10% vfr002 - 40×20 62.05% 3.56% 1.08% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 60×20 44.93% 5.38% 4.59% vfr002 - 60×20 44.93% 5.38% 0.97% vfr002 - 60×20 44.93% 5.38% 0.71%<				
vfn002 - 10 × 20 85.94% 5.75% 5.41% vfn002 - 20 × 10 88.25% 4.32% 3.36% vfn002 - 20 × 15 65.66% 2.45% 2.32% vfn002 - 20 × 20 72.44% 2.48% 2.30% vfn002 - 30 × 10 59.39% 2.74% 1.56% vfn002 - 30 × 15 58.40% 2.66% 1.53% vfn022 - 40 × 10 49.93% 2.59% 1.49% vfn022 - 40 × 15 52.89% 3.53% 1.10% vfn022 - 40 × 15 52.89% 3.53% 1.10% vfn022 - 50 × 10 57.23% 6.83% 1.25% vfn022 - 50 × 10 57.23% 6.83% 1.25% vfn022 - 50 × 20 51.88% 4.59% 0.88% vfn022 - 60 × 20 44.93% 5.38% 1.06% vfn022 - 60 × 20 44.93% <				
vfn002 - 20×10 88.25% 4.32% 3.36% vfn002 - 20×15 65.91% 2.45% 2.32% vfn002 - 20×20 72.44% 2.48% 2.30% vfn002 - 30×10 70.55% 4.07% 2.31% vfn002 - 30×15 58.40% 2.66% 1.53% vfn002 - 30×10 49.98% 2.59% 1.49% vfn002 - 40×10 49.98% 2.59% 1.49% vfn002 - 40×10 49.98% 2.59% 1.49% vfn002 - 40×15 58.40% 2.66% 1.33% vfn002 - 40×10 49.98% 2.59% 1.49% vfn002 - 40×15 58.374% 1.497% 4.44% vfn002 - 50×15 51.97% 5.08% 1.00% vfn002 - 50×15 51.97% 5.08% 1.00% vfn002 - 60×20 51.88% 4.59% 0.97% vfn002 - 60×20 44.03% 5.77% 0.76% vfn002 - 100×40 50.40% 8.83% 0.99% vfn002 - 200×40 26.16% 31.50% 2.1				
vfr002 - 20×10 65.91% 2.45% 2.32% vfr002 - 20×20 65.66% 2.43% 2.30% vfr002 - 30×05 70.55% 4.07% 2.31% vfr002 - 30×10 59.39% 2.74% 1.56% vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×15 51.79% 5.08% 1.00% vfr002 - 60×20 44.93% 5.38% 4.59% 0.88% vfr002 - 60×15 44.03% 5.77% 0.76% vfr002 - 60×20 44.93% 5.38% 0.99% vfr002 - 60×20 44.93% 5.38% 0.99% vfr002 - 500×20 49.928 1.08%<				
vfr002 - 20×15 65.66% 2.43% 2.30% vfr002 - 20×20 72.44% 2.48% 2.38% vfr002 - 30×10 59.39% 2.74% 1.56% vfr002 - 30×10 59.39% 2.74% 1.56% vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×05 81.37% 8.04% 2.54% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×20 62.05% 3.56% 1.10% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×20 44.93% 5.38% 0.97% vfr002 - 60×20 44.93% 5.38% 0.97% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×20 36.99% 20.98% 3.21				
vfr002 - 20×20 72.44% 2.48% 2.38% vfr002 - 30×15 70.55% 4.07% 1.56% vfr002 - 30×15 58.40% 2.666% 1.53% vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×20 62.05% 3.56% 1.08% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×15 51.78% 4.59% 0.88% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×15 44.03% 5.77% 0.76% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.71% vfr002 - 100×40 55.12% 9.57% 1.0				
vfr002 - 30×05 70.55% 4.07% 2.31% vfr002 - 30×15 59.39% 2.74% 1.56% vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×15 81.37% 8.04% 2.54% vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 40×20 62.05% 3.56% 1.08% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×20 44.93% 5.38% 0.97% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×40 49.69% 29.98% 1.07% vfr002 - 200×40 49.60% 29.61% 6.52% vfr002 - 400×40 49.60% 29.61% <t< td=""><td></td><td></td><td></td><td></td></t<>				
vfr002 - 30×10 59.39% 2.74% 1.56% vfr002 - 30×15 58.40% 2.66% 1.63% vfr002 - 40×05 81.37% 8.04% 2.59% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×20 62.05% 3.53% 1.10% vfr002 - 50×15 52.89% 3.53% 1.10% vfr002 - 50×15 57.23% 6.83% 1.25% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×05 51.78% 7.08% 1.00% vfr002 - 50×10 51.78% 1.00% 1.00% vfr002 - 60×0 51.78% 7.08% 0.97% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×15 44.03% 5.77% 0.76% vf002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.71% vfr002 - 200×20 36.99% 20.98% 3.21%				
vfr002 - 30×15 58.40% 2.66% 1.53% vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×20 44.93% 5.38% 0.71% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×20 39.04% 9.28% 0.97% vfr002 - 100×20 36.99% 20.98% 3.21% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×60 34.84% 14.55% <				
vfr002 - 30×20 49.98% 2.59% 1.49% vfr002 - 40×10 81.37% 8.04% 2.54% vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 40×20 62.05% 3.56% 1.08% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×20 44.93% 5.38% 0.71% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×40 42.14% 14.55% 2.16% vfr002 - 300×60 49.60% 29.61% <				
vfr002 - 40×05 81.37% 8.04% 2.54% vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×10 52.89% 3.53% 1.10% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×15 44.03% 5.77% 0.76% vfr002 - 100×20 44.93% 5.38% 0.71% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×20 36.99% 29.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×40 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×40 19.90% 15.72% 3.45% </td <td></td> <td></td> <td></td> <td></td>				
vfr002 - 40×10 49.93% 3.82% 1.20% vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 50×05 83.74% 19.47% 4.44% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 50×20 51.88% 4.59% 0.88% vfr002 - 60×10 51.78% 4.59% 0.88% vfr002 - 60×20 44.93% 5.38% 0.97% vfr002 - 60×20 44.93% 5.38% 0.77% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×40 49.60% 8.83% 0.99% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 300×40 49.60% 29.61% 6.52% vfr002 - 300×40 49.60% 29.61% 6.52% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×40 19.59% 18.00%				
vfr002 - 40×15 52.89% 3.53% 1.10% vfr002 - 50×05 62.05% 3.56% 1.08% vfr002 - 50×10 57.23% 6.83% 1.25% vfr002 - 50×15 51.97% 5.08% 1.00% vfr002 - 60×05 92.85% 16.04% 2.35% vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×10 44.03% 5.77% 0.76% vfr002 - 60×20 39.04% 9.28% 1.08% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×40 29.61% 6.52% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×20 43.38% 32.24% 9.35% <				
vfr002 − 40×20 62.05% 3.56% 1.08% vfr002 − 50×05 83.74% 19.47% 4.44% vfr002 − 50×15 51.97% 5.08% 1.00% vfr002 − 50×20 51.88% 4.59% 0.88% vfr002 − 60×05 92.85% 16.04% 2.35% vfr002 − 60×10 51.78% 7.08% 0.97% vfr002 − 60×15 44.03% 5.77% 0.76% vfr002 − 100×20 39.04% 9.28% 1.08% vfr002 − 100×20 39.04% 9.28% 1.08% vfr002 − 100×40 50.40% 8.83% 0.99% vfr002 − 200×20 36.99% 20.98% 3.21% vfr002 − 200×40 26.16% 13.50% 2.14% vf002 − 300×20 49.60% 29.61% 6.52% vfr002 − 300×40 19.90% 15.72% 3.45% vfr002 − 300×40 19.59% 11.67% 3.35% vfr002 − 300×40 19.59% 18.00% 4.89% vfr002 − 300×60 24.32% 14.45%				
vfr002 − 50×05 83.74% 19.47% 4.44% vfr002 − 50×10 57.23% 6.83% 1.25% vfr002 − 50×15 51.97% 5.08% 1.00% vfr002 − 50×20 51.88% 4.59% 0.88% vfr002 − 60×10 51.78% 7.08% 0.97% vfr002 − 60×20 44.93% 5.37% 0.76% vfr002 − 100×40 50.40% 8.83% 0.99% vfr002 − 100×40 50.40% 8.83% 0.99% vfr002 − 100×40 55.12% 9.57% 1.07% vfr002 − 200×40 36.99% 20.98% 3.21% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 300×20 49.60% 29.61% 6.52% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 300×60 24.32% 14.45% 3.30% vfr002 − 400×20 43.38% 32.24% 9.35% vfr002 − 400×20 47.82% 37.04% 13.06% vfr002 − 500×40 16.96% 20.60% <td></td> <td></td> <td></td> <td></td>				
vfr002 = 50×10 57.23% 6.83% 1.25% vfr002 = 50×15 51.97% 5.08% 1.00% vfr002 = 60×15 51.88% 4.59% 0.88% vfr002 = 60×10 51.78% 7.08% 0.97% vfr002 = 60×20 44.93% 5.38% 0.71% vfr002 = 100×20 39.04% 9.28% 1.08% vfr002 = 100×40 50.40% 8.83% 0.99% vfr002 = 100×40 50.40% 8.83% 0.99% vfr002 = 200×20 36.99% 20.98% 3.21% vfr002 = 200×40 26.16% 13.50% 2.14% vfr002 = 300×20 49.60% 29.61% 6.52% vfr002 = 300×40 19.99% 15.72% 3.45% vfr002 = 400×40 19.59% 18.00% 4.89% vf002 = 400×40 19.59% 18.00%				
vfr002 − 50×15 51.97% 5.08% 1.00% vfr002 − 50×20 51.88% 4.59% 0.88% vfr002 − 60×15 92.85% 16.04% 2.35% vfr002 − 60×15 44.03% 5.77% 0.76% vfr002 − 100×20 39.04% 9.28% 1.08% vfr002 − 100×40 50.40% 8.83% 0.99% vfr002 − 100×60 55.12% 9.57% 1.07% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 300×40 9.60% 29.61% 6.52% vfr002 − 300×40 19.90% 15.72% 3.45% vfr002 − 300×40 19.90% 15.72% 3.45% vfr002 − 300×40 19.90% 15.72% 3.45% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 400×40 19.59% 18.00% 4.89% vfr002 − 500×20 47.82% 37.04% 13.06% vfr002 − 500×20 47.82% 37.04%<				
vfr002 − 50×20 51.88% 4.59% 0.88% vfr002 − 60×05 92.85% 16.04% 2.35% vfr002 − 60×10 51.78% 7.08% 0.97% vfr002 − 60×20 44.93% 5.38% 0.71% vfr002 − 100×20 39.04% 9.28% 1.08% vfr002 − 100×60 55.12% 9.57% 1.07% vfr002 − 200×20 36.99% 20.98% 3.21% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 300×20 49.60% 29.61% 6.52% vfr002 − 300×40 19.90% 15.72% 3.45% vfr002 − 300×60 24.32% 14.45% 3.30% vfr002 − 300×60 24.32% 14.45% 3.30% vfr002 − 400×20 47.82% 37.04% 13.06% vfr002 − 400×40 19.59% 18.00% 4.89% vfr002 − 500×20 47.82% 37.04% 13.06% vfr002 − 500×60 15.99% 12.6				
vfr002 = 60×05 92.85% 16.04% 2.35% vfr002 = 60×10 51.78% 7.08% 0.97% vfr002 = 60×15 44.03% 5.77% 0.76% vfr002 = 100×20 39.04% 9.28% 1.08% vfr002 = 100×40 50.40% 8.83% 0.99% vfr002 = 100×40 55.12% 9.57% 1.07% vfr002 = 200×40 26.16% 13.50% 2.14% vfr002 = 300×20 36.99% 20.98% 3.21% vfr002 = 300×40 26.16% 13.50% 2.14% vfr002 = 300×40 19.90% 15.72% 3.45% vfr002 = 300×40 19.90% 15.72% 3.45% vfr002 = 300×40 19.90% 15.72% 3.45% vfr002 = 400×20 43.38% 32.24% 9.35% vfr002 = 400×20 43.38% 32.24% 9.35% vfr002 = 400×60 18.04% 13.92% 4.23% vfr002 = 500×40 16.96% 20.60% 6.78% vfr002 = 600×40 21.12% 38.74				
vfr002 - 60×10 51.78% 7.08% 0.97% vfr002 - 60×20 44.03% 5.77% 0.76% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.99% 15.72% 3.45% vfr002 - 300×40 24.32% 14.45% 3.30% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×40 21.12% 23.				
vfr002 − 60×15 44.03% 5.77% 0.76% vfr002 − 60×20 44.93% 5.38% 0.71% vfr002 − 100×20 39.04% 9.28% 1.08% vfr002 − 100×60 55.12% 9.57% 1.07% vfr002 − 200×20 36.99% 20.98% 3.21% vfr002 − 200×40 26.16% 13.50% 2.14% vfr002 − 300×20 49.60% 29.61% 6.52% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 400×20 43.88% 32.24% 9.35% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 300×40 19.99% 15.72% 3.45% vfr002 − 400×20 43.38% 32.24% 9.35% vfr002 − 400×40 19.59% 18.00% 4.89% vfr002 − 500×40 16.96% 20.60% 6.78% vfr002 − 500×40 15.99% 12.68% 5.20% vfr002 − 600×20 46.11% 38.				
vfr002 - 60×20 44.93% 5.38% 0.71% vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×60 14.31% 1				
vfr002 - 100×20 39.04% 9.28% 1.08% vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×60 55.12% 9.57% 1.07% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×60 14.31% 14.74% 6.23% vfr002 - 800×40 20.93%				
vfr002 - 100×40 50.40% 8.83% 0.99% vfr002 - 100×60 55.12% 9.57% 1.07% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87%				
vfr002 - 100×60 55.12% 9.57% 1.07% vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×40 242.50% 40.85% 21.29% vfr002 - 800×60 11.87%				
vfr002 - 200×20 36.99% 20.98% 3.21% vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×40 21.12% 33.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87%				
vfr002 - 200×40 26.16% 13.50% 2.14% vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×15 82.64%				
vfr002 - 200×60 34.84% 14.55% 2.16% vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×60 13.85% 16.42% 7.23% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×10 81.82% 6.27% 6.16% vfr003 - 10×20 82.18% <td< td=""><td></td><td></td><td></td><td></td></td<>				
vfr002 - 300×20 49.60% 29.61% 6.52% vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×60 16.96% 20.60% 6.78% vfr002 - 500×60 15.99% 12.68% 5.20% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×15 81.99% 6.20% 5.77% vfr003 - 10×20 82.18% <t< td=""><td></td><td></td><td></td><td></td></t<>				
vfr002 - 300×40 19.90% 15.72% 3.45% vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×40 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr003 - 10×15 81.99% 6.20% 5.77% vfr003 - 10×15 82.64%				
vfr002 - 300×60 24.32% 14.45% 3.30% vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 20×10 67.31%				
vfr002 - 400×20 43.38% 32.24% 9.35% vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×60 16.96% 20.60% 6.78% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×20 42.11% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 10×20 82.18% 5.42% 5.21% vfr003 - 20×10 67.31%				
vfr002 - 400×40 19.59% 18.00% 4.89% vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×60 15.99% 12.68% 5.20% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×60 13.85% 16.42% 7.23% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 6.20% 5.77% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31%				
vfr002 - 400×60 18.04% 13.92% 4.23% vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 500×60 15.99% 12.68% 5.20% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 24.18% 11.28% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31% 2.47% 2.34% vfr003 - 20×20 69.34% 2				
vfr002 - 500×20 47.82% 37.04% 13.06% vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 600×60 15.99% 12.68% 5.20% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×60 13.85% 22.75% 9.67% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 24.18% 11.28% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31% 2.47% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×15 76.40% 2.50% 1.47% vfr003 - 30×20 62.93% 2.54%<				
vfr002 - 500×40 16.96% 20.60% 6.78% vfr002 - 500×60 15.99% 12.68% 5.20% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×60 13.85% 16.42% 7.23% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×15 73.45% 2.47% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×10 57.67% 2.75%				
vfr002 - 500×60 15.99% 12.68% 5.20% vfr002 - 600×20 46.11% 38.74% 16.17% vfr002 - 600×40 21.12% 23.12% 8.76% vfr002 - 600×60 14.31% 14.74% 6.23% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×60 13.85% 16.42% 7.23% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 10×20 82.18% 5.42% 5.21% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×15 73.45% 2.47% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×5 77.41% 4.45% 2.60% vfr003 - 30×10 57.67% 2.75%	I .			
vfr002 − 600 × 40 21.12% 23.12% 8.76% vfr002 − 600 × 60 14.31% 14.74% 6.23% vfr002 − 700 × 20 52.59% 43.93% 19.32% vfr002 − 700 × 60 18.35% 22.75% 9.67% vfr002 − 800 × 20 42.50% 40.85% 21.29% vfr002 − 800 × 40 20.93% 24.18% 11.28% vfr002 − 800 × 60 11.87% 6.20% 5.77% vfr003 − 10 × 05 81.99% 6.20% 5.77% vfr003 − 10 × 10 81.82% 6.77% 6.16% vfr003 − 10 × 20 82.18% 5.42% 5.21% vfr003 − 20 × 05 87.91% 3.63% 3.44% vfr003 − 20 × 10 67.31% 2.47% 2.34% vfr003 − 20 × 20 69.34% 2.57% 2.38% vfr003 − 30 × 5 77.41% 4.45% 2.60% vfr003 − 30 × 10 57.67% 2.57% 1.56% vfr003 − 30 × 10 57.67% 2.55% 1.47% vfr003 − 40 × 10 60.66	$\mathbf{vfr002} - 500 {\times} 60$	15.99%	12.68%	5.20%
vfr002 − 600×60 14.31% 14.74% 6.23% vfr002 − 700×20 52.59% 43.93% 19.32% vfr002 − 700×40 18.35% 22.75% 9.67% vfr002 − 700×60 13.85% 16.42% 7.23% vfr002 − 800×20 42.50% 40.85% 21.29% vfr002 − 800×40 20.93% 24.18% 11.28% vfr002 − 800×60 11.87% 14.11% 7.66% vfr003 − 10×05 81.99% 6.20% 5.77% vfr003 − 10×10 81.82% 6.77% 6.16% vfr003 − 10×20 82.18% 5.42% 5.21% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×10 67.31% 2.47% 2.34% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×20 62.93% 2.54% 1.47% vfr003 − 40×05 77.12% 7.05%	$vfr002 - 600 \times 20$	46.11%	38.74%	16.17%
vfr002 - 700×20 52.59% 43.93% 19.32% vfr002 - 700×40 18.35% 22.75% 9.67% vfr002 - 700×60 13.85% 16.42% 7.23% vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×15 81.99% 6.20% 5.77% vfr003 - 10×15 82.64% 5.35% 5.00% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31% 2.47% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×05 77.41% 4.45% 2.60% vfr003 - 30×10 57.67% 2.75% 1.56% vfr003 - 30×10 57.67% 2.75% 1.56% vfr003 - 30×20 62.93% 2.54% 1.47% vfr003 - 40×05 77.12% 7.05%	$\mathbf{vfr002} - 600 \times 40$	21.12%	23.12%	8.76%
vfr002 − 700×40 18.35% 22.75% 9.67% vfr002 − 700×60 13.85% 16.42% 7.23% vfr002 − 800×20 42.50% 40.85% 21.29% vfr002 − 800×40 20.93% 24.18% 11.28% vfr002 − 800×60 11.87% 14.11% 7.66% vfr003 − 10×05 81.99% 6.20% 5.77% vfr003 − 10×15 82.64% 5.35% 5.00% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×10 67.31% 2.47% 2.34% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×20 62.93% 2.54% 1.47% vfr003 − 40×05 77.12% 7.05% 2.30% vfr003 − 40×15 59.92% 3.55%	$\mathbf{vfr002} - 600 \times 60$	14.31%	14.74%	6.23%
vfr002 − 700×60 13.85% 16.42% 7.23% vfr002 − 800×20 42.50% 40.85% 21.29% vfr002 − 800×40 20.93% 24.18% 11.28% vfr002 − 800×60 11.87% 14.11% 7.66% vfr003 − 10×05 81.99% 6.20% 5.77% vfr003 − 10×10 81.82% 6.77% 6.16% vfr003 − 10×15 82.64% 5.35% 5.00% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×10 67.31% 2.47% 2.34% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×20 62.93% 2.54% 1.47% vfr003 − 40×05 77.12% 7.05% 2.30% vfr003 − 40×15 59.92% 3.55% <	$vfr002 - 700 \times 20$	52.59%	43.93%	19.32%
vfr002 - 800×20 42.50% 40.85% 21.29% vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 10×15 82.64% 5.35% 5.00% vfr003 - 10×20 82.18% 5.42% 5.21% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31% 2.47% 2.34% vfr003 - 20×15 73.45% 2.43% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×05 77.41% 4.45% 2.60% vfr003 - 30×10 57.67% 2.75% 1.56% vfr003 - 30×20 62.93% 2.54% 1.47% vfr003 - 40×05 77.12% 7.05% 2.30% vfr003 - 40×10 60.66% 4.31% 1.33% vfr003 - 50×05 71.92% 3.55%		18.35%	22.75%	
vfr002 - 800×40 20.93% 24.18% 11.28% vfr002 - 800×60 11.87% 14.11% 7.66% vfr003 - 10×05 81.99% 6.20% 5.77% vfr003 - 10×10 81.82% 6.77% 6.16% vfr003 - 10×15 82.64% 5.35% 5.00% vfr003 - 10×20 82.18% 5.42% 5.21% vfr003 - 20×05 87.91% 3.63% 3.44% vfr003 - 20×10 67.31% 2.47% 2.34% vfr003 - 20×15 73.45% 2.43% 2.34% vfr003 - 20×20 69.34% 2.57% 2.38% vfr003 - 30×05 77.41% 4.45% 2.60% vfr003 - 30×10 57.67% 2.75% 1.56% vfr003 - 30×20 62.93% 2.54% 1.47% vfr003 - 40×05 77.12% 7.05% 2.30% vfr003 - 40×10 60.66% 4.31% 1.33% vfr003 - 40×20 56.90% 3.48% 1.10% vfr003 - 50×05 71.92% 3.55% 1.0				
vfr002 − 800×60 11.87% 14.11% 7.66% vfr003 − 10×05 81.99% 6.20% 5.77% vfr003 − 10×10 81.82% 6.77% 6.16% vfr003 − 10×15 82.64% 5.35% 5.00% vfr003 − 20×05 82.18% 5.42% 5.21% vfr003 − 20×05 87.91% 3.63% 3.44% vfr003 − 20×10 67.31% 2.47% 2.34% vfr003 − 20×20 69.34% 2.57% 2.38% vfr003 − 30×05 77.41% 4.45% 2.60% vfr003 − 30×10 57.67% 2.75% 1.56% vfr003 − 30×15 56.40% 2.50% 1.47% vfr003 − 30×20 62.93% 2.54% 1.49% vfr003 − 40×05 77.12% 7.05% 2.30% vfr003 − 40×10 60.66% 4.31% 1.33% vfr003 − 40×10 60.66% 4.31% 1.33% vfr003 − 50×05 71.92% 3.55% 1.09% vfr003 − 50×10 55.07% 5.83% 1.07%			40.85%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l .			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccc} vfr003-60{\times}10 & 47.57\% & 6.42\% & 0.90\% \\ vfr003-60{\times}15 & 44.00\% & 5.55\% & 0.73\% \\ vfr003-60{\times}20 & 46.86\% & 5.77\% & 0.74\% \\ \end{array} $	l .			
vfr003 - 60×15 44.00% 5.55% 0.73% vfr003 - 60×20 46.86% 5.77% 0.74%				
vfr003 - 60×20 46.86% 5.77% 0.74%				
			8.89%	

 $\begin{array}{c|cccc} \hline 0.03/0 & 1.03\% \\ \hline Continued on next page \rhd \\ \hline \end{array}$

 Table 5: Continued from previous page

Table 5: Co	j	rom process	o page
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
vfr003 - 100×40	45.07%	9.03%	1.02%
vfr003 - 100×60	56.41%	9.50%	1.02%
vfr003 - 200×20	35.73%	19.03%	3.00%
vfr003 - 200×40	26.00%	13.71%	2.16%
vfr003 - 200×60	35.93%	14.48%	2.18%
vfr003 - 300×20	35.38%	26.34%	5.35%
vfr003 - 300×40	22.84%	16.60%	3.66%
$v fr 003 - 300 \times 60$	21.37%	14.70%	3.29%
vfr003 - 400×20	55.97%	40.26%	10.71%
vfr003 - 400×40	20.19%	18.22%	5.05%
vfr003 - 400×60	17.87%	14.65%	4.35%
$v fr 003 - 500 \times 20$	41.10%	35.02%	12.61%
vfr003 - 500×40	16.05%	20.04%	6.55%
$\mathbf{vfr003} - 500 \times 60$	15.16%	13.52%	5.12%
$v fr 003 - 600 \times 20$	44.31%	38.94%	16.03%
$\mathbf{vfr003} - 600 {\times} 40$	23.63%	21.96%	8.44%
$v fr 003 - 600 \times 60$	14.36%	13.79%	5.84%
vfr003 - 700×20	48.40%	41.95%	20.53%
$v \text{fr} 003 - 700 \times 40$	18.58%	20.74%	9.60%
$v \text{fr} 003 - 700 \times 40$ $v \text{fr} 003 - 700 \times 60$	12.05%	14.67%	7.21%
vfr003 - 800×20	36.46%	39.98%	21.01%
$\mathbf{vfr003} - 800 \times 40$	18.07%	21.63%	10.74%
$\mathbf{vfr003} - 800 {\times} 60$	13.43%	13.49%	7.73%
$v fr 004 - 10 \times 05$	94.78%	7.55%	6.76%
vfr004 - 10×10	83.22%	5.20%	4.92%
vfr004 - 10×15	63.82%	5.26%	4.90%
$v fr 004 - 10 \times 10$	76.60%	5.26%	4.88%
$vfr004 - 20 \times 05$			
	65.41%	2.61%	2.36%
vfr004 - 20×10	67.40%	2.46%	2.31%
$v fr 004 - 20 \times 15$	71.08%	2.66%	2.48%
$vfr004 - 20 \times 20$	76.35%	2.44%	2.31%
$vfr004 - 30 \times 05$	80.11%	5.92%	3.53%
vfr004 - 30×10	61.48%	2.67%	1.53%
vfr004 - 30×15	58.71%	2.55%	1.50%
vfr004 - 30×20	60.94%	2.62%	1.53%
$v \text{fr} 004 - 40 \times 05$	80.67%	8.33%	2.71%
l .			
vfr004 - 40×10	53.12%	4.01%	1.28%
vfr004 - 40×15	53.57%	3.73%	1.11%
vfr004 - 40×20	61.26%	3.60%	1.12%
vfr004 - 50×05	73.27%	12.01%	2.35%
$v fr 004 - 50 \times 10$	47.49%	5.28%	1.03%
$vfr004 - 50 \times 15$	50.55%	4.66%	0.89%
vfr004 - 50×20	51.44%	4.32%	0.83%
$v fr 004 - 60 \times 05$	82.30%	15.25%	2.24%
$v \text{fr} 004 - 60 \times 03$ $v \text{fr} 004 - 60 \times 10$			
	54.25%	7.02%	0.95%
$vfr004 - 60 \times 15$	43.90%	5.44%	0.73%
$v fr 004 - 60 \times 20$	43.66%	5.30%	0.69%
$vfr004 - 100 \times 20$	35.66%	9.48%	1.07%
vfr004 - 100×40	45.16%	8.73%	0.99%
vfr004 - 100×60	52.70%	9.24%	1.03%
vfr004 - 200×20	31.91%	19.58%	2.99%
$v \text{fr} 004 - 200 \times 40$	24.03%	13.42%	2.12%
$v \text{fr} 004 - 200 \times 40$ $v \text{fr} 004 - 200 \times 60$	36.94%		2.16%
		14.46%	
vfr004 - 300×20	37.13%	27.24%	5.66%
vfr004 - 300×40	23.23%	16.48%	3.47%
vfr004 - 300×60	23.27%	15.31%	3.28%
vfr004 - 400×20	38.49%	34.94%	9.13%
$\mathbf{vfr004} - 400{\times}40$	21.34%	16.62%	4.76%
vfr004 - 400×60	17.55%	13.86%	4.29%
vfr004 - 500×20	41.19%	39.96%	13.50%
$v fr 004 - 500 \times 40$	19.01%	21.52%	6.93%
$vfr004 - 500 \times 60$	16.24%	15.08%	5.28%
vfr004 - 600×20	46.04%	40.75%	16.70%
$\mathbf{vfr004} - 600 \mathbf{\times 40}$	21.77%	20.74%	8.24%
$\mathbf{vfr004} - 600 \mathbf{\times 60}$	14.56%	13.63%	6.00%
vfr004 - 700×20	50.50%	45.28%	21.41%
$\mathbf{vfr004} - 700 {\times} 40$	19.24%	23.13%	9.97%
$v fr 004 - 700 \times 60$	13.65%	14.67%	7.34%
$v fr 004 - 800 \times 20$	48.36%	43.75%	20.54%
I .			
vfr004 - 800×40	18.43%	23.86%	11.68%
$v fr 004 - 800 \times 60$	12.36%	13.84%	7.62%
$v fr 005 - 10 \times 05$	72.72%	6.36%	5.93%
vfr005 - 10×10	76.74%	6.01%	5.72%
		Continued or	

 Table 5: Continued from previous page

20010 01 0	j	тот ртеснои	o pago
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
vfr005 - 10×15	84.97%	5.36%	5.01%
$vfr005 - 10 \times 20$	86.75%	5.55%	5.15%
$vfr005 - 20 \times 05$	88.48%	3.33%	3.16%
$v fr 005 - 20 \times 10$	69.61%	2.47%	2.35%
$v fr 005 - 20 \times 15$	59.57%	2.43%	2.31%
$v fr 005 - 20 \times 20$	67.52%	2.39%	2.25%
$v \text{fr} 005 - 30 \times 05$	97.97%	6.80%	4.05%
vfr005 - 30×10	70.42%	3.23%	1.70%
$v \text{fr} 005 - 30 \times 10$ $v \text{fr} 005 - 30 \times 15$		$\frac{3.23\%}{2.71\%}$	1.57%
	65.43%		
vfr005 - 30×20	65.65%	2.60%	1.49%
vfr005 - 40×05	75.60%	7.39%	2.37%
vfr005 - 40×10	52.43%	4.05%	1.24%
$v fr 005 - 40 \times 15$	53.15%	3.78%	1.16%
vfr005 - 40×20	58.10%	3.48%	1.08%
$vfr005 - 50 \times 05$	85.42%	12.52%	2.65%
$v fr 005 - 50 \times 10$	63.70%	7.00%	1.40%
$v fr 005 - 50 \times 15$	50.12%	4.57%	0.88%
$v fr 005 - 50 \times 20$	56.76%	4.37%	0.84%
$v fr 005 - 60 \times 05$	91.58%	14.68%	2.12%
vfr005 - 60×10	49.66%	6.30%	0.85%
vfr005 - 60×15	51.67%	6.12%	0.82%
$v fr 005 - 60 \times 20$	52.77%	5.32%	0.71%
$v fr 005 - 100 \times 20$	34.45%	9.15%	1.06%
$v \text{fr} 005 - 100 \times 20$ $v \text{fr} 005 - 100 \times 40$	44.97%	9.14%	1.00%
$v \text{fr} 005 - 100 \times 40$ $v \text{fr} 005 - 100 \times 60$	54.38%	9.14%	1.00% $1.01%$
$v \text{fr} 005 - 100 \times 60$ $v \text{fr} 005 - 200 \times 20$	42.89%	9.30% $20.90%$	$\frac{1.01\%}{3.34\%}$
vfr005 - 200×40	26.99%	12.59%	2.07%
vfr005 - 200×60	34.42%	15.15%	2.16%
$v fr 005 - 300 \times 20$	37.30%	28.78%	6.22%
vfr005 - 300×40	20.22%	15.36%	3.46%
vfr005 - 300×60	22.31%	15.07%	3.30%
$v fr 005 - 400 \times 20$	45.71%	34.94%	9.84%
vfr005 - 400×40	18.84%	16.09%	4.78%
$vfr005 - 400 \times 60$	18.24%	14.62%	4.28%
$v fr 005 - 500 \times 20$	59.20%	45.17%	14.81%
$v fr 005 - 500 \times 40$	19.63%	19.91%	6.79%
$\mathbf{vfr005} - 500 \times 60$	15.60%	14.04%	5.24%
vfr005 - 600×20	44.76%	41.03%	16.84%
$\mathbf{vfr005} - 600 \mathbf{\times} 40$	20.20%	21.52%	8.26%
$\mathbf{vfr005} - 600 \times 60$	13.92%	13.67%	6.31%
vfr005 - 700×20	44.93%	42.40%	19.19%
$v fr 005 - 700 \times 40$	21.89%	24.69%	10.69%
$\mathbf{vfr005} - 700 {\times} 60$	16.25%	14.54%	7.19%
$v fr 005 - 800 \times 20$	46.89%	43.86%	23.93%
$v fr 005 - 800 \times 40$	20.19%	23.95%	11.93%
$\mathbf{vfr005} - 800 {\times} 60$	17.75%	14.92%	8.44%
vfr006 - 10×05	93.80%	7.94%	7.26%
vfr006 - 10×10	88.07%	7.19%	6.60%
vfr006 - 10×15	86.25%	5.70%	5.42%
$vfr006 - 10 \times 20$	87.44%	6.10%	5.64%
$vfr006 - 20 \times 05$	74.00%	3.07%	2.89%
vfr006 - 20×10	65.78%	2.64%	2.48%
vfr006 - 20×15	66.84%	2.37%	2.23%
vfr006 - 20×20	65.17%	2.52%	2.39%
vfr006 - 30×05	77.56%	9.24%	5.56%
vfr006 - 30×10	57.58%	2.65%	1.53%
vfr006 - 30×15	59.88%	$\frac{2.53\%}{2.53\%}$	1.49%
vfr006 - 30×20	64.17%	2.68%	1.55%
$v fr 006 - 40 \times 05$	93.61%	9.03%	2.93%
vfr006 - 40×10	57.37%	4.56%	1.44%
vfr006 - 40×15	54.02%	3.70%	1.15%
vfr006 - 40×20	51.76%	3.62%	1.10%
$v fr 006 - 50 \times 05$	65.33%	12.22%	2.44%
vfr006 - 50×10	73.63%	8.47%	1.55%
$v fr 006 - 50 \times 15$	50.23%	4.40%	0.85%
$v fr 006 - 50 \times 20$	55.40%	4.44%	0.85%
$v fr 006 - 60 \times 05$	86.90%	14.58%	2.14%
vfr006 - 60×10	44.27%	6.40%	0.87%
vfr006 - 60×15	43.95%	5.33%	0.70%
$v fr 006 - 60 \times 20$	47.62%	5.43%	0.71%
vfr006 - 100×20	33.66%	9.09%	1.05%
vfr006 - 100×40	43.48%	9.16%	1.01%
vfr006 - 100×60	54.56%	9.63%	1.05%
		Continued or	

 Table 5: Continued from previous page

		r	
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
vfr006 - 200×20	33.70%	17.88%	2.88%
vfr006 - 200×40	26.58%	13.37%	2.12%
vfr006 - 200×60	33.45%	14.45%	2.13%
vfr006 - 300×20	40.66%	28.46%	6.06%
$v fr 000 - 300 \times 20$ $v fr 006 - 300 \times 40$			
	20.81%	15.25%	3.40%
vfr006 - 300×60	24.15%	15.30%	3.28%
$v fr 006 - 400 \times 20$	37.17%	29.79%	8.39%
$vfr006 - 400 \times 40$	18.28%	17.23%	4.84%
vfr006 - 400×60	17.94%	14.41%	4.27%
$v fr 006 - 500 \times 20$	42.85%	37.84%	13.10%
			6.50%
vfr006 - 500×40	16.69%	20.94%	
$\mathbf{vfr006} - 500 \mathbf{\times 60}$	16.23%	14.09%	5.22%
$v fr 006 - 600 \times 20$	41.43%	35.74%	15.55%
$\mathbf{vfr}006 - 600 \times 40$	21.02%	21.94%	8.35%
$vfr006 - 600 \times 60$	13.29%	14.36%	6.18%
vfr006 - 700×20	44.17%	44.94%	21.14%
vfr006 - 700×40	21.96%	25.74%	10.34%
$\mathbf{vfr006} - 700 \times 60$	13.72%	13.62%	7.13%
$vfr006 - 800 \times 20$	52.71%	44.37%	24.84%
$\mathbf{vfr006} - 800 \mathbf{\times 40}$	17.11%	21.46%	11.22%
$\mathbf{vfr006} - 800 {\times} 60$	12.41%	13.81%	7.59%
$v fr 007 - 10 \times 05$	75.88%	6.84%	6.40%
vfr007 - 10×10	81.84%	6.14%	5.71%
$vfr007 - 10 \times 10$ $vfr007 - 10 \times 15$	74.42%	6.45%	5.93%
vfr007 - 10×20	91.12%	5.29%	4.96%
$vfr007 - 20 \times 05$	80.87%	3.15%	2.74%
$vfr007 - 20 \times 10$	70.78%	2.45%	2.35%
$vfr007 - 20 \times 15$	62.40%	2.58%	2.45%
$vfr007 - 20 \times 20$	68.01%	2.42%	2.28%
vfr007 - 30×05	98.80%	7.62%	4.51%
$v \text{fr} 007 - 30 \times 03$ $v \text{fr} 007 - 30 \times 10$	66.37%	2.70%	1.56%
$vfr007 - 30 \times 15$	66.09%	2.62%	1.54%
$vfr007 - 30 \times 20$	59.28%	2.58%	1.48%
$vfr007 - 40 \times 05$	83.29%	7.29%	2.37%
vfr007 - 40×10	86.68%	5.48%	1.65%
vfr007 - 40×15	49.55%	3.73%	1.12%
vfr007 - 40×20	63.62%	3.35%	1.05%
vfr007 - 50×05	86.57%	14.00%	2.99%
vfr007 - 50×10	58.37%	6.07%	1.23%
$vfr007 - 50 \times 15$	53.00%	4.71%	0.89%
$v fr 007 - 50 \times 20$	52.58%	4.46%	0.86%
$v fr 007 - 60 \times 05$	94.83%	17.00%	2.49%
vfr007 - 60×10	62.16%	6.97%	0.94%
vfr007 - 60×15	43.82%	5.52%	0.74%
$v \text{fr} 007 - 60 \times 10$ $v \text{fr} 007 - 60 \times 20$			
	46.59%	5.60%	0.73%
$v fr 007 - 100 \times 20$	34.41%	9.08%	1.03%
$vfr007 - 100 \times 40$	46.20%	9.10%	1.00%
vfr007 - 100×60	53.61%	9.37%	1.02%
vfr007 - 200×20	36.52%	19.92%	3.01%
vfr007 - 200×40	26.62%	13.22%	2.17%
$v \text{fr} 007 - 200 \times 60$	35.33%	14.51%	2.18%
$v \text{fr} 007 - 200 \times 00$ $v \text{fr} 007 - 300 \times 20$	39.36%	29.47%	6.32%
$vfr007 - 300 \times 20$ $vfr007 - 300 \times 40$			
	19.98%	16.23%	3.46%
vfr007 - 300×60	22.08%	15.25%	3.29%
$vfr007 - 400 \times 20$	39.49%	33.49%	9.65%
vfr007 - 400×40	22.42%	18.43%	5.00%
vfr007 - 400×60	18.37%	13.84%	4.27%
vfr007 - 500×20	46.88%	39.74%	12.99%
$v \text{fr} 007 - 500 \times 40$	27.72%	23.23%	6.98%
$vfr007 - 500 \times 60$	15.44%	13.86%	5.17%
$v fr 007 - 600 \times 20$	58.31%	41.73%	17.79%
$\mathbf{vfr007} - 600 \mathbf{\times 40}$	22.41%	20.79%	8.25%
$\mathbf{vfr007} - 600 \mathbf{\times 60}$	15.58%	14.66%	6.34%
vfr007 - 700×20	46.78%	42.59%	20.20%
$v fr 007 - 700 \times 40$	18.11%	21.77%	9.64%
$v \text{fr} 007 - 700 \times 60$	14.32%	13.42%	7.02%
vfr007 - 800×20	69.11%	45.68%	24.96%
$\mathbf{vfr007} - 800{\times}40$	19.35%	23.48%	11.94%
$\mathbf{vfr007} - 800 {\times} 60$	13.57%	16.44%	8.40%
$v fr 008 - 10 \times 05$	86.62%	5.73%	5.40%
vfr008 - 10×10	88.99%	5.99%	5.61%
vfr008 - 10×15	82.37%	5.39%	4.87%
$v \text{fr} 008 - 10 \times 10$ $v \text{fr} 008 - 10 \times 20$	79.55%	6.32%	5.94%
VII 000 - 10 X 20	19.00/0	Continued or	

 Table 5: Continued from previous page

Table 5: Co	,		- F - 3 -
Dataset	$L_h = 1$	$L_h = 5000$	$L_h = 50000$
vfr008 - 20×05	63.54%	2.74%	2.58%
vfr008 - 20×10	63.04%	2.79%	2.70%
vfr008 - 20×15	66.82%	2.40%	2.28%
$v \text{fr} 008 - 20 \times 10$ $v \text{fr} 008 - 20 \times 20$	77.05%	2.42%	$\frac{2.26\%}{2.30\%}$
$v fr 008 - 30 \times 05$	69.01%	4.33%	2.42%
$vfr008 - 30 \times 10$	54.07%	2.75%	1.56%
$vfr008 - 30 \times 15$	57.77%	2.50%	1.49%
$v fr 008 - 30 \times 20$	62.91%	2.58%	1.51%
$v fr 008 - 40 \times 05$	98.79%	10.33%	3.39%
vfr008 - 40×10	60.89%	4.60%	1.37%
vfr008 - 40×15	52.66%	3.55%	1.09%
vfr008 - 40×20	57.77%	3.52%	1.10%
$vfr008 - 50 \times 05$	99.22%	14.85%	3.11%
$v fr 008 - 50 \times 10$	51.68%	5.50%	1.08%
$v fr 008 - 50 \times 15$	48.62%	4.56%	0.87%
$vfr008 - 50 \times 20$	51.58%	4.65%	0.88%
vfr008 - 60×05	79.55%	14.13%	2.12%
vfr008 - 60×10	65.24%	10.27%	1.54%
vfr008 - 60×15	49.64%	5.94%	0.77%
	48.27%		
vfr008 - 60×20		5.28%	0.69%
vfr008 - 100×20	36.37%	9.05%	1.04%
$v fr 008 - 100 \times 40$	45.94%	8.83%	0.99%
vfr008 - 100×60	53.83%	9.50%	1.03%
$vfr008 - 200 \times 20$	35.90%	22.08%	3.38%
vfr008 - 200×40	26.21%	13.45%	2.20%
$v fr 008 - 200 \times 60$	34.85%	14.47%	2.15%
vfr008 - 300×20	40.44%	29.50%	6.30%
vfr008 - 300×40	20.52%	15.14%	3.44%
	25.18%		
vfr008 - 300×60		15.27%	3.29%
$vfr008 - 400 \times 20$	44.15%	36.79%	9.87%
$\mathbf{vfr008} - 400 \mathbf{\times 40}$	17.47%	19.29%	5.05%
$\mathbf{vfr008} - 400 {\times} 60$	17.65%	14.84%	4.34%
$v fr 008 - 500 \times 20$	38.20%	36.06%	12.05%
$v fr 008 - 500 \times 40$	21.51%	23.17%	6.85%
$\mathbf{vfr008} - 500 {\times} 60$	15.21%	13.33%	5.20%
vfr008 - 600×20	39.75%	40.90%	16.92%
$vfr008 - 600 \times 40$	17.09%	23.99%	8.68%
$v fr 008 - 600 \times 60$	12.96%	14.58%	6.32%
vfr008 - 700×20	36.44%	39.37%	18.50%
$vfr008-700{\times}40$	21.00%	24.16%	10.33%
$\mathbf{vfr008} - 700{\times}60$	17.71%	15.41%	7.37%
$v fr 008 - 800 \times 20$	54.40%	41.78%	22.74%
$v fr 008 - 800 \times 40$	23.21%	26.29%	12.14%
$v fr 008 - 800 \times 60$	16.96%	15.98%	8.67%
vfr009 - 10×05	80.38%	5.67%	5.27%
		~	~
vfr009 - 10×10	65.70%	5.41%	5.12%
vfr009 - 10×15	76.54%	6.26%	5.86%
$vfr009 - 10 \times 20$	84.31%	5.08%	4.77%
$vfr009 - 20 \times 05$	84.00%	3.58%	3.40%
vfr009 - 20×10	69.95%	2.49%	2.32%
$vfr009 - 20 \times 15$	61.01%	2.35%	2.23%
$vfr009 - 20 \times 20$	71.44%	2.47%	2.37%
$vfr009 - 30 \times 05$	96.29%	6.06%	3.60%
vfr009 - 30×10	53.17%	2.79%	1.69%
$v fr 009 - 30 \times 10$ $v fr 009 - 30 \times 15$	58.31%	2.41%	1.43%
$vfr009 - 30 \times 15$ $vfr009 - 30 \times 20$		$\frac{2.41\%}{2.61\%}$	
	64.75%		1.54%
vfr009 - 40×05	76.75%	7.42%	2.43%
vfr009 - 40×10	66.34%	4.81%	1.36%
$vfr009 - 40 \times 15$	57.61%	3.40%	1.05%
$vfr009 - 40 \times 20$	60.70%	3.59%	1.13%
$v fr 009 - 50 \times 05$	97.13%	12.69%	2.66%
$v fr 009 - 50 \times 10$	65.52%	6.76%	1.38%
$vfr009 - 50 \times 15$	44.66%	4.58%	0.88%
$v \text{fr} 009 - 50 \times 20$	49.90%	4.49%	0.86%
vfr009 - 60×05	90.30%	14.55%	2.10%
vfr009 - 60×10	82.47%	9.34%	1.32%
$vfr009 - 60 \times 15$	45.17%	6.27%	0.83%
$vfr009 - 60 \times 20$	50.75%	5.74%	0.73%
vfr009 - 100×20	35.16%	9.45%	1.08%
vfr009 - 100×40	46.94%	8.94%	1.00%
$v fr 009 - 100 \times 60$	56.83%	9.74%	1.07%
$v \text{fr} 009 - 200 \times 20$	37.41%	19.91%	3.13%
$v \text{fr} 009 - 200 \times 20$ $v \text{fr} 009 - 200 \times 40$	25.47%	13.39%	$\frac{3.13\%}{2.10\%}$
VII 000 - 200 X 40	20.4170	Continued or	

 Table 5: Continued from previous page

vfr009 − 200×60 32.16% 14.54% 2.15% vfr009 − 300×20 42.04% 29.07% 6.42% vfr009 − 300×60 23.47% 15.14% 3.58% vfr009 − 400×20 38.88% 34.01% 9.78% vfr009 − 400×40 20.81% 17.62% 4.85% vfr009 − 400×40 20.81% 17.62% 4.85% vfr009 − 500×20 45.67% 34.67% 12.19% vfr009 − 500×20 45.67% 34.67% 12.19% vfr009 − 500×20 15.79% 14.28% 5.13% vfr009 − 600×20 15.79% 14.28% 5.13% vfr009 − 600×40 18.78% 21.73% 8.35% vfr009 − 700×40 21.93% 22.86% 10.34% vfr009 − 700×60 15.15% 14.43% 6.99% vf009 − 800×20 42.19% 47.46% 7.85% vf009 − 800×20 19.45% 23.40% 11.65% vf009 − 800×40 19.45% 23.40% 11.65% vf000 − 800×40 19.45%	Dataget	T 1	$L_h = 5000$	$L_h = 50000$
vfr009 - 300×20 42.04% 29.07% 6.42% vfr009 - 300×40 21.19% 16.40% 3.28% vfr009 - 400×20 38.88% 34.01% 9.78% vfr009 - 400×40 20.81% 17.62% 4.85% vfr009 - 500×20 45.67% 34.67% 12.19% vfr009 - 500×40 21.96% 19.14% 6.44% vfr009 - 500×40 15.79% 14.28% 5.13% vfr009 - 600×40 15.79% 14.28% 5.13% vfr009 - 600×40 15.58% 15.14% 6.52% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 700×20 47.81% 38.08% 19.23% vfr009 - 800×40 19.45% 23.40% 11.65% vfr009 - 800×40 19.45% 23.40% 11.65% vfr009 - 800×40 19.45%				
vfr009 = 300×60 21.19% 16.40% 3.58% vfr009 = 300×60 23.47% 15.14% 3.28% vfr009 = 400×40 20.81% 17.62% 4.85% vfr009 = 400×60 16.61% 14.71% 4.23% vfr009 = 500×20 45.67% 34.67% 12.19% vfr009 = 500×40 21.96% 19.14% 6.44% vfr009 = 600×40 18.78% 21.73% 8.35% vfr009 = 600×40 18.78% 21.73% 8.35% vfr009 = 700×20 47.81% 38.08% 19.23% vfr009 = 700×40 21.93% 22.86% 10.34% vfr009 = 700×40 21.93% 22.86% 10.34% vfr009 = 800×20 42.19% 47.46% 27.85% vfr009 = 800×40 19.45% 23.40% 11.65% vfr009 = 800×40 19.45% 23.40% 11.65% vfr009 = 800×60 13.11% 15.17% 8.04% vf0010 = 10×5 88.88% 6.26% 5.83% vf010 = 10×5 88.88%				
vfr009 - 300×60 23.47% 15.14% 3.28% vfr009 - 400×20 38.88% 34.01% 9.78% vfr009 - 400×60 16.61% 14.71% 4.23% vfr009 - 500×20 45.67% 34.67% 12.19% vfr009 - 500×60 15.79% 14.28% 5.13% vfr009 - 600×20 54.94% 46.56% 18.27% vfr009 - 600×60 15.58% 21.73% 8.35% vfr009 - 700×40 115.58% 15.14% 6.52% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr010 - 10×15 88.88% 6.26% 5.83% vf010 - 10×15 81.43% 5.72% 5.36% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 30×20 73.51% 2.60% 2.43% vf010 - 30×20 66.53% 2.55% <td></td> <td></td> <td></td> <td></td>				
vfr009 - 400×20 38.88% 34.01% 9.78% vfr009 - 400×40 20.81% 17.62% 4.85% vfr009 - 500×20 45.67% 34.67% 12.19% vfr009 - 500×20 45.67% 34.67% 12.19% vfr009 - 500×20 54.94% 46.56% 18.27% vfr009 - 600×20 54.94% 46.56% 18.27% vfr009 - 600×20 47.81% 38.08% 19.23% vfr009 - 700×20 47.81% 38.08% 19.23% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×20 42.19% 47.46% 27.85% vfr010 - 10×10 63.52% 6.56% 5.83% vf010 - 10×15 81.43% 5.72% 5.36% vf010 - 10×20 71.60% 5.88% 6.26% 5.83% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 20×20 73.51% 2.60% 2.43% vf010 - 30×15 60.53%				
vfr009 - 400 × 60 16.61% 17.62% 4.85% vfr009 - 500 × 20 45.67% 34.67% 12.19% vfr009 - 500 × 40 21.96% 19.14% 6.44% vfr009 - 500 × 60 15.79% 14.28% 5.13% vfr009 - 600 × 20 54.94% 46.56% 18.27% vfr009 - 600 × 60 15.58% 15.14% 6.52% vfr009 - 700 × 20 47.81% 38.08% 19.23% vfr009 - 700 × 40 21.93% 22.86% 10.34% vfr009 - 800 × 20 42.19% 47.46% 27.85% vfr009 - 800 × 40 19.45% 23.40% 11.65% vfr009 - 800 × 40 19.45% 23.40% 11.65% vfr010 - 10 × 10 63.52% 6.55% 6.05% vfr010 - 10 × 10 63.52% 6.55% 6.05% vfr010 - 20 × 05 79.27% 2.93% 2.80% vfr010 - 20 × 10 61.34% 2.47% 2.35% vf010 - 20 × 20 73.51% 2.60% 2.43% vf010 - 20 × 20				
vfr009 - 400×60 16.61% 14.71% 4.23% vfr009 - 500×20 45.67% 34.67% 12.19% vfr009 - 500×60 15.79% 14.28% 5.13% vfr009 - 600×20 54.94% 46.56% 18.27% vfr009 - 600×40 18.78% 21.73% 8.35% vfr009 - 700×20 47.81% 38.08% 19.23% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr009 - 800×40 19.45% 23.40% 11.65% vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×15 68.86% 2.58% 5.43% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×15 60.53% 2.57% 1.60% vfr010 - 30×20 67.59% 4.5		38.88%	34.01%	9.78%
vfr009 − 500×20 45.67% 19.14% 6.44% vfr009 − 500×60 15.79% 14.28% 5.13% vfr009 − 600×20 54.94% 46.56% 18.27% vfr009 − 600×20 15.58% 21.73% 8.35% vfr009 − 600×40 15.58% 15.14% 6.52% vfr009 − 700×20 47.81% 38.08% 19.23% vfr009 − 700×40 21.93% 22.86% 10.34% vfr009 − 800×20 42.19% 47.46% 27.85% vfr009 − 800×40 19.45% 23.40% 11.65% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 6.26% 5.83% vfr010 − 20×15 84.84% 6.26% 5.83% 5.43% vfr010 − 20×10 61.34% 2.47% 2.35% 6.55% 6.05% vfr010 − 20×10 61.34% 2.47% 2.35% 6.26% 5.88% 2.42% vfr010 − 20×15	$\mathbf{vfr009} - 400{\times}40$	20.81%	17.62%	4.85%
vfr009 − 500×20 45.67% 19.14% 6.44% vfr009 − 500×60 15.79% 14.28% 5.13% vfr009 − 600×20 54.94% 46.56% 18.27% vfr009 − 600×20 15.58% 21.73% 8.35% vfr009 − 600×40 15.58% 15.14% 6.52% vfr009 − 700×20 47.81% 38.08% 19.23% vfr009 − 700×40 21.93% 22.86% 10.34% vfr009 − 800×20 42.19% 47.46% 27.85% vfr009 − 800×40 19.45% 23.40% 11.65% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 6.26% 5.83% vfr010 − 20×15 84.84% 6.26% 5.83% 5.43% vfr010 − 20×10 61.34% 2.47% 2.35% 6.55% 6.05% vfr010 − 20×10 61.34% 2.47% 2.35% 6.26% 5.88% 2.42% vfr010 − 20×15	$\mathbf{vfr009} - 400{\times}60$	16.61%	14.71%	4.23%
vfr009 - 500×40 15.79% 14.28% 5.13% vfr009 - 600×20 15.79% 14.28% 5.13% vfr009 - 600×40 18.78% 21.73% 8.35% vfr009 - 600×60 15.58% 15.14% 6.52% vfr009 - 700×20 21.93% 22.86% 10.34% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr009 - 800×60 13.11% 15.17% 8.04% vfr010 - 10×15 88.88% 6.26% 5.83% vfr010 - 10×10 63.52% 6.55% 6.05% vf010 - 20×10 71.60% 5.88% 5.43% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 20×10 61.34% 2.47% 2.35% vf010 - 30×05 67.59% 4.55% 2.47% vf010 - 30×15 60.53% 2.75%	vfr009 - 500×20	45.67%	34.67%	12.19%
vfr009 − 500×60 15.79% 14.28% 5.13% vfr009 − 600×20 54.94% 46.56% 18.27% vfr009 − 600×60 15.58% 15.14% 6.52% vfr009 − 700×20 47.81% 38.08% 19.23% vfr009 − 700×40 21.93% 22.86% 10.34% vfr009 − 800×20 42.19% 47.46% 27.85% vfr009 − 800×40 19.45% 23.40% 11.65% vfr009 − 800×40 19.45% 23.40% 11.65% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 5.43% vfr010 − 20×05 79.27% 2.93% 2.80% vfr010 − 20×10 61.34% 2.47% 2.35% vfr010 − 20×20 73.51% 2.60% 2.43% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×15 60.53% 2.75% 1.60% vfr010 − 30×20 68.16% 2.55% <td></td> <td></td> <td></td> <td></td>				
vfr009 - 600×20 54.94% 46.56% 18.27% vfr009 - 600×60 vfr009 - 700×20 15.58% 15.14% 6.52% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 700×60 vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr010 - 10×05 88.88% 6.26% 5.83% vfr010 - 10×15 81.43% 5.72% 5.36% vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.27% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×20 66.53% 2.75% 1.60% vfr010 - 30×20 67.59% 4.55% 2.27% vfr010				
vfr009 − 600×40 18.78% 21.73% 8.35% vfr009 − 700×20 47.81% 38.08% 19.23% vfr009 − 700×40 21.93% 22.86% 10.34% vfr009 − 800×20 47.81% 38.08% 19.23% vfr009 − 800×20 42.193% 22.86% 10.34% vfr009 − 800×60 15.15% 14.43% 6.99% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.55% vfr010 − 10×20 71.60% 5.88% 5.43% vfr010 − 20×15 81.43% 5.72% 5.36% vfr010 − 20×15 68.86% 2.58% 2.43% vfr010 − 20×15 68.86% 2.58% 2.42% vfr010 − 30×05 67.59% 4.55% 2.43% vfr010 − 30×15 68.86% 2.58% 2.42% vfr010 − 30×15 68.86% 2.58% 2.42% vfr010 − 30×15 67.59% 4.55% 2.70% vfr010 − 30×20 68.17% 2.55%				
vfr009 − 600×60 15.58% 15.14% 6.52% vfr009 − 700×20 vfr009 − 700×60 21.93% 22.86% 10.33% vfr009 − 700×60 15.15% 14.43% 6.99% vfr009 − 800×40 42.19% 47.46% 27.85% vfr009 − 800×60 13.11% 15.17% 8.04% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 5.23% vfr010 − 20×05 79.27% 2.93% 2.80% vfr010 − 20×15 68.86% 2.58% 2.47% 2.35% vfr010 − 20×10 61.34% 2.47% 2.35% 2.47% 2.35% vfr010 − 20×20 73.51% 2.60% 2.43% vfr010 − 20×20 73.51% 2.60% 2.43% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×20 68.17% 2.55% 1.51% vfr010 − 30×20 68.17% 2.55% 1.51% vfr010 − 40×10 60.62% 4.31% 1.31%				
vfr009 - 700×20 47.81% 38.08% 19.23% vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr010 - 10×05 88.88% 6.26% 5.83% vfr010 - 10×15 81.43% 5.72% 5.36% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×15 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 20×20 73.51% 2.60% 2.43% vfr010 - 30×05 67.59% 4.55% 2.24% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×10 60.62% 4.31%				
vfr009 - 700×40 21.93% 22.86% 10.34% vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 42.19% 47.46% 27.85% vfr009 - 800×60 13.11% 15.17% 8.04% vfr010 - 10×15 88.88% 6.26% 5.83% vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 20×20 73.51% 2.60% 2.43% vfr010 - 30×5 67.59% 4.55% 2.70% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×15 51.77% 3.86% 1.16% vfr010 - 40×20 57.18% 3.52% <t< td=""><td></td><td></td><td></td><td></td></t<>				
vfr009 − 700×60 15.15% 14.43% 6.99% vfr009 − 800×20 42.19% 47.46% 27.85% vfr009 − 800×40 19.45% 23.40% 11.65% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 5.43% vfr010 − 20×05 79.27% 2.93% 2.80% vfr010 − 20×10 61.34% 2.47% 2.35% vfr010 − 20×15 68.86% 2.58% 2.42% vfr010 − 20×20 73.51% 2.60% 2.43% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×10 59.70% 2.78% 1.57% vfr010 − 30×20 68.17% 2.55% 1.51% vfr010 − 40×05 83.07% 8.57% 2.81% vfr010 − 40×10 60.62% 4.31% 1.31% vfr010 − 40×20 57.18% 3.52% <th< td=""><td></td><td></td><td></td><td></td></th<>				
vfr009 - 800×20 42.19% 47.46% 27.85% vfr009 - 800×40 19.45% 23.40% 11.65% vfr010 - 10×05 88.88% 6.26% 5.83% vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×20 vfr.60% 5.88% 5.72% 5.36% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.24% vfr010 - 30×15 68.86% 2.58% 2.42% vfr010 - 30×15 60.53% 2.75% 1.57% vfr010 - 30×20 68.17% 2.55% 1.57% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×15 51.77% 3.86% 1.16% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×15 50.23%				
vfr009 − 800×40 19.45% 23.40% 11.65% vfr010 − 10×05 88.88% 6.26% 5.83% vfr010 − 10×10 63.52% 6.55% 6.05% vfr010 − 10×20 71.60% 5.88% 5.36% vfr010 − 20×05 79.27% 2.93% 5.36% vfr010 − 20×10 61.34% 2.47% 2.35% vfr010 − 20×20 73.51% 2.60% 2.43% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×10 59.70% 2.75% 2.60% 2.43% vfr010 − 30×20 67.59% 4.55% 2.70% 2.75% 1.60% vfr010 − 30×10 59.70% 2.75% 1.60% 2.75% 1.60% vfr010 − 30×20 68.17% 2.55% 2.75% 1.60% vfr010 − 40×20 68.17% 2.55% 1.51% vfr010 − 40×20 57.18% 3.52% 1.11% vfr010 − 50×20 46.32% 4.40% 0.84% vfr010 − 50×20 46.32% 4.40%		15.15%	14.43%	6.99%
vfr009 − 800 × 60 13.11% 15.17% 8.04% vfn010 − 10×05 88.88% 6.26% 5.83% vfn010 − 10×10 63.52% 6.55% 6.55% 6.05% vfn010 − 10×20 71.60% 5.88% 5.43% vfn010 − 20×05 79.27% 2.93% 2.80% vfn010 − 20×10 61.34% 2.47% 2.35% vfn010 − 20×15 68.86% 2.58% 2.42% vfn010 − 20×20 73.51% 2.60% 2.43% vfn010 − 30×05 67.59% 4.55% 2.70% vfn010 − 30×10 59.70% 2.78% 1.57% vfn010 − 30×20 68.17% 2.55% 1.51% vfn010 − 30×20 68.17% 2.55% 1.51% vfn010 − 40×05 83.07% 8.57% 2.81% vfn010 − 40×10 60.62% 4.31% 1.31% vfn010 − 40×20 57.18% 3.52% 1.11% vfn010 − 50×10 75.01% 6.71% 1.29% vfn010 − 50×20 46.32% 4.5	$v fr 009 - 800 \times 20$	42.19%	47.46%	27.85%
vfr010 - 10×05 88.88% 6.26% 5.83% vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×20 71.60% 5.88% 5.36% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×20 73.51% 2.60% 2.43% vfr010 - 30×05 67.59% 4.55% 2.42% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×20 68.17% 2.55% 1.57% vfr010 - 40×20 68.17% 2.55% 1.50% vfr010 - 40×20 68.17% 2.55% 1.51% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×20 59.0.25% 10.87% 2.23% vfr010 - 50×15 50.23% 4.56% 0.89% vfr010 - 60×15 46.32% 4.40% 0.84%	$v fr 009 - 800 \times 40$	19.45%	23.40%	11.65%
vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×20 vfr010 - 10×20 71.60% 5.88% 5.36% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×20 68.17% 2.55% 2.71% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×15 51.77% 3.86% 1.16% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×15 50.23% 4.56% 0.89% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×05 99.63% 30.84% 5.20% vfr010 - 60×20 47.68% <	$\mathbf{vfr009} - 800 {\times} 60$	13.11%	15.17%	8.04%
vfr010 - 10×10 63.52% 6.55% 6.05% vfr010 - 10×20 vfr010 - 10×20 71.60% 5.88% 5.36% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×20 68.17% 2.55% 2.71% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×15 51.77% 3.86% 1.16% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×15 50.23% 4.56% 0.89% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×05 99.63% 30.84% 5.20% vfr010 - 60×20 47.68% <				
vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×15 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×15 60.53% 2.75% 1.57% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×10 60.62% 4.31% 1.31% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×10 75.01% 6.71% 1.29% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×20 48.79% 5.41% 0.69% vfr010 - 60×20 48.79% 5.41% 0.69% </td <td></td> <td></td> <td></td> <td></td>				
vfr010 - 10×20 71.60% 5.88% 5.43% vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×15 68.86% 2.47% 2.35% vfr010 - 20×20 73.51% 2.60% 2.43% vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×10 60.62% 4.31% 1.31% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×10 75.01% 6.71% 1.29% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×25 99.63% 30.84% 5.20% vfr010 - 60×20 46.32% 4.40% 0.84% vfr010 - 60×20 46.76% 6.22% 0.83% vfr010 - 60×20 48.79% 5.41% 0.69%<				
vfr010 - 20×05 79.27% 2.93% 2.80% vfr010 - 20×10 61.34% 2.47% 2.35% vfr010 - 20×21 68.86% 2.58% 2.42% vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×10 60.62% 4.31% 1.31% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×10 75.01% 6.71% 1.29% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×15 50.23% 4.56% 0.89% vfr010 - 60×20 48.79% 5.41% 0.69% vfr010 - 100×20 36.29% 9.99% 1.13%<				
vfr010 − 20×10 61.34% 2.47% 2.35% vfr010 − 20×25 68.86% 2.58% 2.42% vfr010 − 30×05 67.59% 4.55% 2.70% vfr010 − 30×10 59.70% 2.78% 1.57% vfr010 − 30×15 60.53% 2.75% 1.60% vfr010 − 30×20 68.17% 2.55% 1.51% vfr010 − 40×05 83.07% 8.57% 2.81% vfr010 − 40×10 60.62% 4.31% 1.31% vfr010 − 40×20 57.18% 3.52% 1.11% vfr010 − 50×05 90.25% 10.87% 2.23% vfr010 − 50×05 90.25% 10.87% 2.23% vfr010 − 50×20 46.32% 4.56% 0.89% vfr010 − 50×20 46.32% 4.40% 0.84% vfr010 − 60×15 50.23% 4.56% 0.89% vfr010 − 60×20 47.68% 6.22% 0.83% vfr010 − 200×20 46.79% 9.99% 1.13% vfr010 − 100×20 36.29% 9.99% 1.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	viru10 - 20×10			
vfr010 - 30×05 67.59% 4.55% 2.70% vfr010 - 30×10 59.70% 2.78% 1.57% vfr010 - 30×15 60.53% 2.75% 1.60% vfr010 - 30×20 68.17% 2.55% 1.51% vfr010 - 40×05 83.07% 8.57% 2.81% vfr010 - 40×15 51.77% 3.86% 1.16% vfr010 - 40×20 57.18% 3.52% 1.11% vfr010 - 50×05 90.25% 10.87% 2.23% vfr010 - 50×10 75.01% 6.71% 1.29% vfr010 - 50×20 46.32% 4.40% 0.84% vfr010 - 60×05 99.63% 30.84% 5.20% vfr010 - 60×05 99.63% 30.84% 5.20% vfr010 - 60×10 55.68% 7.21% 0.96% vfr010 - 60×20 48.79% 5.41% 0.69% vfr010 - 100×20 36.29% 9.99% 1.13% vfr010 - 200×20 31.39% 19.21% 2.94% vfr010 - 200×40 23.49% 13.28%				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 010 - 30 \times 10$	59.70%	2.78%	1.57%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 010 - 30 \times 15$	60.53%	2.75%	1.60%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 010 - 30 \times 20$	68.17%	2.55%	1.51%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 010 - 40 \times 05$	83.07%	8.57%	2.81%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 0 10 - 60 \times 10$	55.68%	7.21%	0.96%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 010 - 60 \times 15$	47.68%	6.22%	0.83%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v fr 0 10 - 60 \times 20$	48.79%	5.41%	0.69%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vfr010 - 100×20	36.29%	9.99%	1.13%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vtr010 - 300×40			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.89%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{vfr010} - 400 {\times} 60$	17.61%	15.27%	4.33%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		42.15%	39.74%	13.06%
$\begin{array}{c cccccc} \mathbf{vfr010-500\times60} & 15.45\% & 14.11\% & 5.21\% \\ \mathbf{vfr010-600\times20} & 36.59\% & 36.38\% & 15.41\% \\ \mathbf{vfr010-600\times40} & 20.53\% & 23.17\% & 8.47\% \\ \mathbf{vfr010-600\times60} & 14.78\% & 14.53\% & 6.17\% \\ \mathbf{vfr010-700\times20} & 86.02\% & 70.22\% & 27.93\% \\ \mathbf{vfr010-700\times40} & 20.02\% & 26.56\% & 10.68\% \\ \mathbf{vfr010-700\times60} & 16.28\% & 15.89\% & 7.72\% \\ \mathbf{vfr010-800\times20} & 41.35\% & 37.30\% & 20.57\% \\ \mathbf{vfr010-800\times40} & 18.49\% & 22.78\% & 11.74\% \\ \end{array}$				6.66%
$\begin{array}{c ccccc} \mathbf{vfr}010 - 600 \times 20 & 36.59\% & 36.38\% & 15.41\% \\ \mathbf{vfr}010 - 600 \times 40 & 20.53\% & 23.17\% & 8.47\% \\ \mathbf{vfr}010 - 600 \times 60 & 14.78\% & 14.53\% & 6.17\% \\ \mathbf{vfr}010 - 700 \times 20 & 86.02\% & 70.22\% & 27.93\% \\ \mathbf{vfr}010 - 700 \times 40 & 20.02\% & 26.56\% & 10.68\% \\ \mathbf{vfr}010 - 700 \times 60 & 16.28\% & 15.89\% & 7.72\% \\ \mathbf{vfr}010 - 800 \times 20 & 41.35\% & 37.30\% & 20.57\% \\ \mathbf{vfr}010 - 800 \times 40 & 18.49\% & 22.78\% & 11.74\% \\ \end{array}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccc} \textbf{vfr010} - \textbf{600} \times \textbf{60} & 14.78\% & 14.53\% & 6.17\% \\ \textbf{vfr010} - 700 \times 20 & 86.02\% & 70.22\% & 27.93\% \\ \textbf{vfr010} - \textbf{700} \times \textbf{40} & 20.02\% & 26.56\% & 10.68\% \\ \textbf{vfr010} - \textbf{700} \times \textbf{60} & 16.28\% & 15.89\% & 7.72\% \\ \textbf{vfr010} - 800 \times 20 & 41.35\% & 37.30\% & 20.57\% \\ \textbf{vfr010} - \textbf{800} \times \textbf{40} & 18.49\% & 22.78\% & 11.74\% \\ \end{array} $				
$ \begin{array}{c ccccc} \mathbf{vfr}010 - 700 \times 20 & 86.02\% & 70.22\% & 27.93\% \\ \mathbf{vfr}010 - 700 \times 40 & 20.02\% & 26.56\% & 10.68\% \\ \mathbf{vfr}010 - 700 \times 60 & 16.28\% & 15.89\% & 7.72\% \\ \mathbf{vfr}010 - 800 \times 20 & 41.35\% & 37.30\% & 20.57\% \\ \mathbf{vfr}010 - 800 \times 40 & 18.49\% & 22.78\% & 11.74\% \\ \end{array} $				
$ \begin{array}{c ccccc} \mathbf{vfr010-700\times40} & 20.02\% & 26.56\% & 10.68\% \\ \mathbf{vfr010-700\times60} & 16.28\% & 15.89\% & 7.72\% \\ \mathbf{vfr010-800\times20} & 41.35\% & 37.30\% & 20.57\% \\ \mathbf{vfr010-800\times40} & 18.49\% & 22.78\% & 11.74\% \\ \end{array} $				
$ \begin{array}{ c c c c c c c c c } \hline \textbf{vfr010} - \textbf{700} \times \textbf{60} & 16.28\% & 15.89\% & 7.72\% \\ \hline \textbf{vfr010} - 800 \times 20 & 41.35\% & 37.30\% & 20.57\% \\ \hline \textbf{vfr010} - \textbf{800} \times \textbf{40} & 18.49\% & 22.78\% & 11.74\% \\ \hline \end{array} $				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \mathbf{vfr010} - 800 \times 40 18.49\% 22.78\% 11.74\%$				
$1 \text{ yfr} 010 - 800 \times 60 \mid 12.58\% \mid 13.45\% \mid 7.54\%$				
11.010 000 12.0070 10.4070 1.0470	$\mathbf{vfr010} - 800 {\times} 60$	12.58%	13.45%	7.54%

Table 6: Analysis over the neighbours of the current solution obtained by LAHC on TSP instances, for both cutoff strategies. I_{move} denotes the average number of improving moves over 100 independent runs at the cutoff time. I_{max} denotes the maximum number of improving moves in a single run out of 100 independent runs. Local Optimum denotes the percentage of runs where the current solution at the cutoff point was at a local optimum. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

	G		$L_h =$	1		$L_{h} = 50$	000		$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
	2%	118.46	552	0%	0.27	2	75%	0.00	0	100%
d657	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
70.4	2%	100.35	1130	0%	0.38	3	72%	0.00	0	100%
u724	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
rat783	2%	124.10	1582	0%	0.30	2	76%	0.00	0	100%
141700	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
dsj1000	2%	60.21	474	0%	0.36	5	73%	0.00	0	100%
45,1000	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
pr1002	2%	64.13	304	0%	0.38	3	72%	0.00	0	100%
•	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
u1060	2%	54.10 0.00	294	0% $100%$	0.66 0.03	5 1	61%	0.00 0.01	0 1	100%
	2%	53.39	143	0%	0.50	2	$\frac{97\%}{62\%}$	0.01	0	99%
vm1084		0.00	143	100%	0.00	0	100%	0.00	0	100%
	2%	52.38	194	0%	0.51	3	66%	0.00	0	100%
pcb1173	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	44.95	210	0%	0.64	4	55%	0.00	0	100%
d1291	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
11904	2%	44.11	184	0%	0.72	3	52%	0.00	0	100%
rl1304	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	43.81	185	0%	0.50	4	62%	0.00	0	100%
rl1323	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
nrw1379	2%	55.17	235	0%	0.73	5	53%	0.00	0	100%
III W 1379	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
fl1400	2%	54.13	251	0%	1.47	5	34%	0.06	1	94%
111400	ccp	0.03	1	97%	0.03	1	97%	0.04	2	97%
u1432	2%	58.75	166	0%	1.21	7	39%	0.05	1	95%
u1402	ccp	0.05	2	96%	0.03	1	97%	0.03	1	97%
fl1577	2%	43.12	186	0%	1.09	5	41%	0.05	2	96%
	ccp	0.02	1	98%	0.01	1	99%	0.02	1	98%
d1655	2%	40.70	186	0%	1.10	5	44%	0.04	2	97%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vm1748	2%	35.04 0.00	113 0	0% 100%	1.23 0.00	7	31% $100%$	0.00	0	100% 100%
	2%	43.86	194	0%	1.29	5	36%	0.05	1	95%
u1817		0.01	194	99%	0.01	3 1	99%	0.03	1	95%
	2%	33.42	129	0%	1.44	9	24%	0.04	1	99%
rl1889	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
	2%	39.83	196	0%	1.45	7	31%	0.00	1	99%
d2103	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	36.79	126	0%	1.66	11	29%	0.07	1	93%
u2152	ccp	0.03	1	97%	0.03	1	97%	0.04	2	97%
0210	2%	64.27	179	0%	2.29	9	17%	0.13	2	88%
u2319	ccp	0.03	2	98%	0.02	2	99%	0.08	1	92%
pr9309	2%	32.97	131	0%	1.32	10	31%	0.00	0	100%
pr2392	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
pcb3038	2%	28.50	110	0%	1.87	11	30%	0.01	1	99%
henanao	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
fl3795	2%	22.23	76	0%	3.16	13	15%	0.42	3	68%
	ccp	0.07	2	94%	0.06	2	95%	0.04	1	96%
fnl4461	2%	26.34	119	0%	2.66	12	14%	0.04	2	97%
~-	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
rl5915	2%	17.18	86	0%	3.18	12	9%	0.08	2	94%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
rl5934	2%	14.56	53	0%	2.86	15	12%	0.15	2	86%
	ccp	0.00	0	100%	0.00	17	100%	0.01	1	99%
brd14051	2%	15.26	55	0%	5.22	17	2%	0.46	3	65%
	2%	0.03	2	98% 0%	0.01	18	99%	0.01 0.52	1	99% 63%
d15112		15.46	51 1		5.81				4	
	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%

Table 7: Analysis over the neighbours of the current solution obtained by LAHC on QAP instances, for both cutoff strategies. I_{move} denotes the average number of improving moves over 100 independent runs at the cutoff time. I_{max} denotes the maximum number of improving moves in a single run out of 100 independent runs. Local Optimum denotes the percentage of runs where the current solution at the cutoff point was at a local optimum. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

	Stopping		$L_h =$	1	$L_h = 5000$		$L_h = 50000$			
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
bur26a	2% ccp	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
bur26b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
Dui 200	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
bur26c	2% ccp	0.00	0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% 100%
bur26d	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
Duizou	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
bur26e	2% ccp	0.00	0 0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% 100%
bur26f	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
Du1201	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
bur26g	2% ccp	0.00	0 0	100% $100%$	0.00	0 0	100% $100%$	0.00	$0 \\ 0$	100% 100%
bur26h	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
Dui 2011	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr12a	2% ccp	0.00	0 0	100% $100%$	0.00	$0 \\ 0$	100% $100%$	0.00	$0 \\ 0$	100% 100%
chr12b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
CIII 12D	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
chr12c	2% ccp	0.00	0 0	100% $100%$	0.00	0	100% $100%$	0.00	0 0	100% 100%
chr15a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
CIII 15a	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr15b	2% ccp	0.00	0 0	100% 100%	0.00	0	100% $100%$	0.00	0	100% 100%
chr15c	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
CIII 15C	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr18a	2% ccp	0.00	0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% 100%
ala m 1 O la	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr18b	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
chr20a	2% ccp	0.00	0	100% 100%	0.00	0	100% $100%$	0.00	0	100% 100%
-1001-	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr20b	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr20c	2% ccp	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
chr22a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
CHrzza	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr22b	2% ccp	0.00	0	100% 100%	0.00	0	100% $100%$	0.00	0	100% 100%
-107 -	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
chr25a	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
els19	2% ccp	0.00	0 0	100% $100%$	0.00	$0 \\ 0$	100% $100%$	0.00	$0 \\ 0$	100% 100%
16-	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc16a	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
esc16b	2% ccp	0.00	0 0	100% $100%$	0.00	$0 \\ 0$	100% $100%$	0.00	0 0	100% 100%
1.0	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc16c	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc16d	2%	0.00 0.03	0 1	100%	0.00	0	100% $100%$	0.00	0	100% 100%
1.0	2%	0.03	0	97% 100%	0.00	0	100%	0.00	0	100%
esc16e	ccp	0.04	1	96%	0.00	0	100%	0.00	0	100%
esc16f	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
1.0	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc16g	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
esc16h	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
101	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc16i	ccp	0.00	0	100%	0.00	Ő	100%	0.00	0	$ \begin{array}{c c} 100\% \\ \hline next page > \end{array} $

 Table 7: Continued from previous page

	C4		$L_h =$	$\frac{\mathbf{7:} \ Contin}{1}$,	$L_h = 50$			$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local
	2%	0.00	0	Optimum 100%	0.00	0	Optimum 100%	0.00	0	Optimum 100%
esc16j	ccp	0.00	1	98%	0.00	0	100%	0.00	0	100%
esc32a	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
esc52a	ccp	0.02	2	99%	0.00	0	100%	0.00	0	100%
esc32b	2% ccp	$0.00 \\ 0.02$	$0 \\ 1$	100% $98%$	$0.02 \\ 0.01$	$\frac{1}{1}$	98% 99%	$0.00 \\ 0.00$	0 0	100% 100%
	2%	0.02	0	100%	0.00	0	100%	0.00	0	100%
esc32c	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc32d	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
000024	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
esc32e	2% ccp	0.00	0	100% 100%	0.00	0 0	100% $100%$	0.00	0 0	100% 100%
90	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc32g	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
esc32h	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
	2%	0.01	0	99%	0.00	0	100% 98%	0.00	0	100% 100%
esc64a	ccp	0.00	0	100%	0.02	0	100%	0.00	0	100%
aaa100	2%	0.01	1	99%	0.39	7	80%	0.01	1	99%
esc128	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
had12	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
had14	ccp	0.00	1	98%	0.00	0	100%	0.00	0	100%
had16	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nauro	ccp	0.03	1	97%	0.00	0	100%	0.00	0	100%
had18	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.01	0	99%	0.00	0	100% 100%	0.00	0	100% 100%
had20	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
kra30a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
Krasoa	ccp	0.04	1	96%	0.00	0	100%	0.00	0	100%
kra30b	2% ccp	0.00 0.02	0 1	100% 98%	0.00	0	100% 100%	0.00	0	100% 100%
	2%	0.02	0	100%	0.00	0	100%	0.00	0	100%
kra32	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa20a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
lipa20b	ccp	0.00	0	100% $100%$	0.00	0	100%	0.00	0	100%
1: 20 -	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa30a	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa30b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa40a	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa40b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
прачов	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa50a	2% ccp	0.00	0	100% $100%$	0.00	0 0	100% 100%	0.00	0 0	100% 100%
11 701	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa50b	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa60a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
-r 2000	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa60b	2% ccp	0.00	0 0	100% $100%$	0.00	0 0	100% $100%$	$0.00 \\ 0.00$	0 0	100% 100%
1: 70	2%	0.00	0	100%	0.00	1	99%	0.00	0	100%
lipa70a	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa70b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
-	2%	0.00	0	100% 100%	0.00	0	100% 99%	0.00	0	100% 100%
lipa80a	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa80b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
праоор	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
lipa90a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 99%	0.00	0	100% 100%
lipa90b	ccp	0.00	0	100%	0.01	0	100%	0.00	0	100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug12										

 Table 7: Continued from previous page

	g, .		$L_h =$	$\frac{\mathbf{7:}\ Contin}{1}$	laca jion	$\frac{L_h = 50}{L_h}$			$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local
				Optimum			Optimum			Optimum
nug14	2% ccp	0.00	0 0	100% $100%$	0.00	0	100% $100%$	0.00 0.00	0 0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug15	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug16a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
1145104	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug16b	2% ccp	0.00 0.01	0 1	100% 99%	0.00	0	100% 100%	0.00	0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug17	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug18	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
114810	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug20	2% ccp	0.00 0.01	0 1	100% 99%	0.00	0 0	100% 100%	$0.00 \\ 0.00$	0 0	100% 100%
21	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug21	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug22	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.01	0	99%	0.00	0	100%	0.00	0	100%
nug24	ccp	0.00	$\frac{0}{2}$	98%	0.00	0	100% $100%$	0.00	0	100% $100%$
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug25	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug27	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.02	0	98% 100%	0.00	0	100% 100%	0.00	0	100% 100%
nug28	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
nug30	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
rou12	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
rou15	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
rou20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
10020	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
scr12	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
scr15	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
scr20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
50120	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko42	2% ccp	0.00	$0 \\ 0$	100% $100%$	0.00	0 0	100% $100%$	$0.00 \\ 0.00$	0 0	100% $100%$
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko49	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
sko56	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
511000	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko64	2% ccp	0.00	0 0	100% $100%$	0.00	0 0	100% 100%	0.00	0 0	100% 100%
1 70	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko72	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko81	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.01	1 2	99%	0.00	0	100% 100%	0.00	0	100%
sko90	ccp	0.02	0	100%	0.00	0	100%	0.00	0	100%
sko100a	2%	0.06	2	97%	0.00	0	100%	0.00	0	100%
skorota	ccp	0.00	0	100%	0.00	0	100%	0.01	1	99%
sko100b	2%	0.08	3	95%	0.00	0	100%	0.00	0	100%
	2%	0.00	3	100% 97%	0.00	0	100% 100%	0.00	0	100% 100%
sko100c	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko100d	2%	0.06	2	95%	0.00	0	100%	0.00	0	100%
DOLLOVE	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
sko100e	2%	0.20	4	90%	0.00	0	100%	0.00	0	100%
	2%	0.00 0.10	0 2	100% 91%	0.00	0	100% 100%	0.00	0	100% 100%
sko100f	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
ste36a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
sicoua	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
ste36b	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%

Table 7: Continued from previous page

	g		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
ste36c	2% ccp	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
tai10a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tarroa	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai10b	2% ccp	0.00	$0 \\ 0$	100% $100%$	0.00	0 0	100% $100%$	$0.00 \\ 0.00$	0	100% 100%
tai12a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
taiiza	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai12b	2% ccp	0.00	$0 \\ 0$	100% $100%$	0.00	0 0	100% $100%$	0.00	0	100% $100%$
tai15a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tanja	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai15b	2% ccp	0.00	0	100% $100%$	0.00	0 0	100% $100%$	$0.00 \\ 0.00$	0	100% 100%
tai17a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
taiira	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai20a	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00 0.00	0	100% 100%
. :001	ccp 2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai20b	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai25a	2%	0.00	0	100% 100%	0.00	0	100% $100%$	$0.00 \\ 0.00$	0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai25b	ccp 2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai30a		0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
tai30b		0.00	0	100%	0.00	0	100%	0.00	0	100%
tai35a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
tai35b		0.00	0	100%	0.00	0	100%	0.00	0	100%
tai40a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp 2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai40b	ccp	0.00 0.01	0 1	100% 99%	0.00	0	100% 100%	0.00 0.00	0	100% 100%
tai50a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
taioua	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai50b	2% ccp	0.00	0	100% 100%	0.00	0	100% $100%$	$0.00 \\ 0.00$	0	100% 100%
tai60a	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
taioua	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai60b	2% ccp	0.00	0	100% $100%$	0.00	0	100% 100%	$0.00 \\ 0.00$	0	100% 100%
+-:C1-	2%	0.00	0	100%	0.46	4	72%	0.00	0	100%
tai64c	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai80a	2%	0.00	0	100% $100%$	0.01 0.00	$\frac{1}{0}$	99% 100%	$0.00 \\ 0.00$	0 0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai80b	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai100a	2%	0.04	2	98%	0.01	1	99%	0.00	0	100%
	2%	0.00	0	100% 95%	0.00	0	100% 100%	0.00	0	100% 100%
tai100b	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai150b	2%	6.71	21	5%	0.00	0	100%	0.00	0	100%
	2%	0.00 2.29	10	100% 15%	0.00 2.74	18	100% 13%	0.00	0	100% 98%
tai256c	ccp	0.00	0	100%	0.00	0	100%	0.02	0	100%
tho30	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
tho 40	ccp	0.00	0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% $100%$
tho150	2%	3.76	28	12%	0.00	0	100%	0.00	0	100%
***************************************	ccp	0.00	0	100%	0.00	0	100% 100%	0.00	0	100%
wil50	2% ccp	0.00	0	100% $100%$	0.00	0 0	100% $100%$	$0.00 \\ 0.00$	0 0	100% 100%
	2%	0.05	3	97%	0.00	0	100%	0.00	0	100%
wil100	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%

Table 8: Analysis over the neighbours of the current solution obtained by LAHC on PFSP instances, for both cutoff strategies. I_{move} denotes the average number of improving moves over 100 independent runs at the cutoff time. I_{max} denotes the maximum number of improving moves in a single run out of 100 independent runs. Local Optimum denotes the percentage of runs where the current solution at the cutoff point was at a local optimum. Entries in boldface are statistical significant with a p-value < 0.05 according to the Wilcoxon signed-rank test.

	Ct		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local
	2%	0.00	0	100%	0.01	1	99%	0.00	0	Optimum 100%
$tai001 - 020 \times 05$	ccp	0.06	2	95%	0.01	1	99%	0.00	0	100%
$tai002-020{\times}05$	2%	$0.00 \\ 0.03$	0 1	100% 97%	$0.03 \\ 0.02$	2 1	98% 98%	0.00	0 0	100% 100%
	2%	0.00	0	100%	0.02	1	96%	0.00	0	100%
$tai003 - 020 \times 05$	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
$tai004 - 020 \times 05$	2%	0.00	0	100%	0.04	3	98%	0.00	0	100%
	2%	0.02	$\frac{1}{0}$	98% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$tai005 - 020 \times 05$	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
tai006 - 020×05	2%	0.01	1	99%	0.00	0	100%	0.00	0	100%
	2%	0.02	$\frac{1}{0}$	98% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$tai007-020\times05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai008 - 020×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai008 – 020 x 05	ccp	0.07	5	97%	0.00	0	100%	0.00	0	100%
$tai009-020{\times}05$	2%	$0.00 \\ 0.04$	$0 \\ 2$	100% 97%	$0.05 \\ 0.00$	2	96%	0.00	0 0	100%
	2%	0.04	0	100%	0.00	12	100% 92%	0.00	0	100% 100%
$tai010-020\times05$	ccp	0.07	$\frac{0}{2}$	95%	0.00	0	100%	0.00	0	100%
tai011 - 020×10	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
020/10	ccp	0.03	1	97%	0.01	1	99%	0.00	0	100%
$tai012-020{\times}10$	2% ccp	0.00 0.01	0 1	100% 99%	0.00	0	100% $100%$	0.00	0 0	100% 100%
. 1010 000 10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai013-020\times10$	ccp	0.01	1	99%	0.01	1	99%	0.00	0	100%
tai014 - 020×10	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
	2%	0.00	0	100% 100%	0.01	1 1	99% 97%	0.00	0	100% 100%
$tai015-020{\times}10$	ccp	0.00	1	97%	0.03	0	100%	0.00	0	100%
tai016 - 020×10	2%	0.00	0	100%	0.03	2	98%	0.00	0	100%
tai010 = 020 × 10	ccp	0.03	1	97%	0.00	0	100%	0.00	0	100%
$tai017-020{\times}10$	2%	0.02 0.06	2 4	99% 97%	0.01 0.00	$\frac{1}{0}$	99% $100%$	0.00	0 0	100% 100%
	2%	0.00	0	100%	0.00	1	99%	0.00	0	100%
$tai018 - 020 \times 10$	ccp	0.01	1	99%	0.01	1	99%	0.00	0	100%
tai019 - 020×10	2%	0.00	0	100%	0.07	3	95%	0.01	1	99%
020/110	ccp	0.01	0	99%	0.03	1	97%	0.00	0	100%
$tai020-020{\times}10$	2% ccp	0.00 0.05	1	100% $95%$	0.00	0	100% $100%$	0.00	0 0	100% $100%$
001 00000	2%	0.00	0	100%	0.04	2	97%	0.00	0	100%
$tai021 - 020 \times 20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai022 - 020 \times 20$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.09	5	97% 100%	0.02	0	98% 100%	0.00	0	100%
$tai023-020\times20$	ccp	0.00	1	98%	0.00	0	100%	0.00	0	100%
tai024 - 020×20	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
041024 - 020 X 20	ccp	0.05	2	96%	0.01	1	99%	0.00	0	100%
$tai025-020{\times}20$	2% ccp	0.00 0.00	$0 \\ 0$	100% $100%$	0.01	$\frac{1}{0}$	99% $100%$	0.00	0 0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai026 - 020 \times 20$	ccp	0.03	$\overset{\circ}{2}$	98%	0.00	0	100%	0.00	0	100%
tai027 - 020×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp 2%	0.01	$\frac{1}{0}$	99%	0.00	0	100% 99%	0.00	0	100%
$tai028-020{\times}20$	ccp	0.00	0	100% $100%$	0.01	1	99% 99%	0.00	0	100% $100%$
+0:000 000 00	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai029 - 020 \times 20$	ccp	0.03	2	98%	0.00	0	100%	0.00	0	100%
$tai030 - 020 \times 20$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0 1	100% 99%	0.00	3	100% 94%	0.00	0	100%
$tai031-050\times05$	ccp	0.01	0	100%	0.00	0	100%	0.00	0	100%
$tai032 - 050 \times 05$	2%	0.01	1	99%	0.04	1	96%	0.00	0	100%
000 X 00	ccp	0.03	1	97%	0.03	1	97%	0.00	0	100%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
tai033 - 050×05	2%	0.00	0	100%	0.04	1	96%	0.00	0	100%
	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
$tai034-050\times05$	2% ccp	0.01 0.00	$\frac{1}{0}$	99% 100%	0.00 0.01	0 1	100% 99%	0.00	0	100% 100%
+~:025 OE0 v OE	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
$tai035 - 050 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai036 - 050 \times 05$	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
	2%	0.01 0.00	0	99%	0.01	1 3	99%	0.01	0	99%
$tai037 - 050 \times 05$	ccp	0.04	1	96%	0.02	1	98%	0.00	0	100%
tai038 - 050×05	2%	0.00	0	100%	0.26	26	99%	0.00	0	100%
	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
$tai039 - 050 \times 05$	2% ccp	0.00	0	100% 100%	0.03 0.03	$\frac{1}{2}$	97% 98%	0.00	0	100% 100%
+-:040 OF0 v OF	2%	0.00	0	100%	0.20	12	91%	0.00	0	100%
$tai040 - 050 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$tai041 - 050 \times 10$	2%	0.19	19	99%	0.05	2	96%	0.01	1	99%
	2%	0.04	3	98% 99%	0.16	8 15	92% 94%	0.03	3	99% 99%
$tai042 - 050 \times 10$	ccp	0.25	19	95%	0.05	2	96%	0.00	0	100%
tai043 - 050×10	2%	0.13	7	95%	0.03	1	97%	0.00	0	100%
001040 - 000X10	ccp	0.09	2	93%	0.01	1	99%	0.00	0	100%
$tai044 - 050 \times 10$	2%	$0.04 \\ 0.02$	$\frac{1}{2}$	96% 99%	0.14 0.01	9 1	94% 99%	0.00	0 0	100% 100%
	2%	0.02	2	96%	0.01	10	94%	0.00	0	100%
$tai045 - 050 \times 10$	ccp	0.01	1	99%	0.07	2	94%	0.01	1	99%
$tai046 - 050 \times 10$	2%	0.01	1	99%	0.10	3	94%	0.00	0	100%
	2%	0.01	0	99%	0.02	2	99% 92%	0.00	0	100% 100%
$tai047 - 050 \times 10$	ccp	0.00	0	100%	0.09	$\frac{2}{2}$	98%	0.00	0	100%
tai048 - 050×10	2%	0.05	4	98%	0.05	3	97%	0.00	0	100%
ta1048 = 050 x 10	сср	0.04	2	97%	0.00	0	100%	0.00	0	100%
$tai049 - 050 \times 10$	2%	0.03	2	98%	0.19	11	93%	0.01	1	99%
	2%	0.03	1 5	97% 97%	0.04	2	97% 94%	0.02	0	98% 100%
$tai050 - 050 \times 10$	ccp	0.02	1	98%	0.02	1	98%	0.02	1	98%
tai051 - 050×20	2%	0.07	2	95%	0.14	4	92%	0.00	0	100%
	ccp	0.05	2	97%	0.00	0	100%	0.00	0	100%
$tai052-050\times20$	2% ccp	0.04 0.06	2 3	97% 96%	0.09 0.04	2 2	93% 97%	0.00 0.01	0 1	100% 99%
020 020 00	2%	0.00	4	94%	0.05	2	96%	0.02	1	98%
$tai053 - 050 \times 20$	ccp	0.02	1	98%	0.04	1	96%	0.00	0	100%
$tai054 - 050 \times 20$	2%	0.06	3	96%	0.11	6	94%	0.04	4	99%
	2%	0.05	1	95% 98%	0.05	2	97% 97%	0.01	1 1	99% 99%
$tai055-050\times20$	ccp	0.02	0	100%	0.04	1	99%	0.01	0	100%
tai056 - 050×20	2%	0.02	1	98%	0.09	3	93%	0.00	0	100%
ta1050 - 050 x 20	ccp	0.03	1	97%	0.02	2	99%	0.00	0	100%
$tai057 - 050 \times 20$	2%	0.06 0.03	2 1	96% $97%$	0.10 0.03	3 1	$94\% \\ 97\%$	0.00	$0 \\ 0$	100% 100%
	2%	0.05	2	96%	0.03	3	92%	0.00	0	100%
$tai058 - 050 \times 20$	ccp	0.03	$\frac{1}{2}$	98%	0.03	3	99%	0.01	1	99%
tai059 - 050×20	2%	0.02	1	98%	0.05	2	96%	0.00	0	100%
111000 000/20	ccp	0.03	1	97%	0.01	1	99%	0.00	0	100%
$tai060-050\times20$	2% ccp	0.11 0.03	$\frac{4}{1}$	95% $97%$	0.02 0.06	$\frac{1}{4}$	98% 97%	0.00	0	100% 100%
+a:061 100::05	2%	0.00	0	100%	0.52	6	62%	0.00	1	99%
$tai061 - 100 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
tai062 - 100×05	2%	0.02	1	98%	0.14	3	91%	0.03	1	97%
	2%	0.03	3	97% 95%	0.01 0.46	1 19	99% 76%	0.00	0	100% 98%
$tai063 - 100 \times 05$	ccp	0.07	0	100%	0.46	19	76% 97%	$0.02 \\ 0.02$	$\frac{1}{2}$	98% 99%
tai064 – 100×05	2%	0.00	0	100%	0.28	7	85%	0.00	0	100%
ta1004 - 100×09	ccp	0.09	9	99%	0.06	6	99%	0.00	0	100%
tai065 – 100×05	2%	0.03	1	97%	0.55	9	74%	0.01	1	99%
	2%	0.01	1 0	99%	0.02 0.62	$\frac{1}{16}$	98% 61%	0.01	$\frac{1}{2}$	99% 96%
$tai066 - 100 \times 05$	ccp	0.00	0	100% $100%$	0.02	0	100%	0.05	0	100%
toi067 100×05	2%	0.02	1	98%	0.48	10	75%	0.02	1	98%
$tai067 - 100 \times 05$	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
. 1000 100 0	2%	0.03	1	97%	2.01	162	76%	0.01	1	99%
$tai068 - 100 \times 05$	ccp	0.02	1	98%	0.00	0	100%	0.01	1	99%
tai069 - 100×05	2%	0.00	0	100%	0.63	5	58%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	6	100% 87%	0.00	0	100% 100%
$tai070 - 100 \times 05$	ccp	0.00	0	100%	0.01	1	99%	0.00	1	99%
tai071 - 100×10	2%	0.18	5	89%	0.09	2	92%	0.01	1	99%
tai071 - 100×10	ccp	0.02	1	98%	0.02	1	98%	0.00	0	100%
$tai072-100{\times}10$	2%	$0.55 \\ 0.03$	29 1	94% 97%	0.22 0.04	4	85% $96%$	$0.01 \\ 0.01$	$1 \\ 1$	99% 99%
	2%	0.03	5	91%	0.04	2	83%	0.01	1	99%
$tai073 - 100 \times 10$	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
tai074 - 100×10	2%	0.13	3	91%	0.35	10	83%	0.01	1	99%
100/10	ccp	0.02	1	98%	0.01	1	99%	0.00	0	100%
$tai075-100{\times}10$	2% ccp	0.23 0.01	3 1	85% $99%$	0.55 0.01	38 1	$87\% \\ 99\%$	$0.00 \\ 0.01$	0 1	100% 99%
	2%	0.15	13	97%	0.15	4	88%	0.01	1	99%
$tai076 - 100 \times 10$	ccp	0.05	2	96%	0.01	1	99%	0.00	0	100%
tai077 - 100×10	2%	0.05	2	96%	0.22	2	82%	0.00	0	100%
	2%	0.00	0	100%	0.01 3.35	$\frac{1}{325}$	99%	0.00	0	100%
$tai078-100{\times}10$	ccp	0.14 0.01	5 1	93% 99%	3.35 0.01	$\frac{325}{1}$	90% 99%	$0.00 \\ 0.01$	0 1	100% 99%
+-:070 100 10	2%	0.40	26	89%	0.01	2	91%	0.03	1	97%
$tai079 - 100 \times 10$	ccp	0.07	4	96%	0.05	1	95%	0.04	1	96%
tai080 - 100×10	2%	0.00	0	100%	0.01	1	99%	0.01	1	99%
	2%	0.00	14	100% 76%	0.00	8	100% 79%	0.00	0	100% 100%
$tai081-100{\times}20$	ccp	0.01	$\frac{14}{2}$	96%	0.01	1	99%	0.00	0	100%
+-:000 100×00	2%	0.50	15	83%	0.27	4	85%	0.00	0	100%
$tai082 - 100 \times 20$	ccp	0.01	1	99%	0.01	1	99%	0.03	2	98%
$tai083 - 100 \times 20$	2%	0.61	16	81%	0.08	2	94%	0.00	0	100%
	2%	0.05 0.19	6	96% 89%	0.03	10	98% 89%	0.00	0	100% 100%
$tai084-100\times20$	ccp	0.13	1	98%	0.00	0	100%	0.03	1	97%
tai085 - 100×20	2%	0.29	9	89%	0.31	14	87%	0.03	3	99%
ta1065 - 100 x 20	ccp	0.40	38	98%	0.05	2	96%	0.05	1	95%
$tai086-100{\times}20$	2%	0.49	6	77%	0.32	9	84%	0.00	0	100%
	2%	0.02 0.33	1 5	98% 81%	0.06 0.29	10	97% 89%	0.00	0 4	100% 96%
$tai087 - 100 \times 20$	ccp	0.22	19	96%	0.02	1	98%	0.01	1	99%
tai088 – 100×20	2%	1.10	28	79%	0.22	3	84%	0.02	1	98%
100 100 100 120	ccp	0.03	2	98%	0.04	1	96%	0.02	1	98%
$tai089-100{\times}20$	2%	0.98 0.07	$\frac{15}{4}$	71% 97%	0.33	$\begin{array}{c} 11 \\ 2 \end{array}$	$87\% \\ 93\%$	$0.00 \\ 0.03$	0 1	100% 97%
	2%	0.36	18	86%	0.08	2	87%	0.03	2	98%
$tai090 - 100 \times 20$	ccp	0.02	1	98%	0.06	1	94%	0.08	3	94%
tai091 - 200×10	2%	0.85	12	71%	0.80	16	65%	0.05	1	95%
200710	ccp	0.02	1	98%	0.00	12	100%	0.01	1	99%
$tai092-200{\times}10$	2% ccp	0.58 0.02	12 1	73% 98%	0.76 0.02	13 2	$67\% \\ 99\%$	0.06 0.00	2	95% 100%
+=:002 000::10	2%	0.02	8	92%	2.74	123	52%	0.00	0	100%
tai093 – 200×10	ccp	0.00	0	100%	0.00	0	100%	0.02	1	98%
tai094 – 200×10	2%	0.95	8	54%	2.12	63	37%	0.15	2	89%
	2%	0.03 0.81	43	97% 75%	0.04 0.40	5	97% 76%	0.02	1 1	98% 97%
$tai095-200{\times}10$	ccp	0.81	43	100%	0.40	5 1	76% 99%	0.03 0.00	0	100%
to:006 200×10	2%	0.85	8	55%	1.13	16	51%	0.04	1	96%
tai096 – 200×10	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
$tai097 - 200 \times 10$	2%	0.62	9	69%	2.71	122	40%	0.09	3	94%
	2%	0.02 0.34	1 8	98% 82%	0.01 1.23	$\frac{1}{32}$	99% 67%	0.01	1 5	99% 98%
$tai098-200{\times}10$	ccp	0.04	1	99%	0.00	0	100%	0.00	0	100%
tai099 – 200×10	2%	0.57	27	81%	0.79	10	60%	0.00	0	100%
141099 – 200 X 10	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
tai100 - 200×10	2%	0.96	38	80%	1.05	6	51%	0.01	1	99%
	2%	0.01 6.03	$\frac{1}{143}$	99% 50%	0.02 1.20	$\frac{1}{21}$	98% 70%	0.01	1 1	99% 99%
$tai101-200{\times}20$	ccp	0.03 0.04	143 1	96%	0.01	21 1	99%	$0.01 \\ 0.01$	1	99% 99%
+oi100 200×20	2%	5.66	60	43%	0.46	7	78%	0.02	1	98%
$tai102 - 200 \times 20$	ccp	0.06	2	95%	0.01	1	99%	0.05	2	96%

Table 8: Continued from previous page

	Stopping		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
	2%	3.03	82	70%	0.67	14	73%	0.03	1	97%
$tai103 - 200 \times 20$	ccp	0.05	1	95%	0.01	1	99%	0.01	1	99%
tai104 - 200×20	2%	1.88	37	56%	0.60	12	74%	0.02	2	99%
	2%	0.03	1	97%	0.01	1	99%	0.02	1	98%
$tai105-200{\times}20$	ccp	2.92 0.03	61 1	48% 97%	1.22 0.08	51 6	77% 98%	$0.03 \\ 0.05$	$\frac{1}{4}$	97% 98%
	2%	5.10	170	54%	0.54	6	73%	0.05	3	97%
$tai106 - 200 \times 20$	ccp	0.05	2	96%	0.02	1	98%	0.02	1	98%
$tai107 - 200 \times 20$	2%	4.90	75	70%	1.01	42	67%	0.05	1	95%
	2%	0.07 2.39	44	94% 57%	0.05 0.47	4	98% 71%	0.03	1	98% 99%
$tai108-200{\times}20$	ccp	0.06	3	97%	0.47	3	98%	0.01	1	98%
t-:100 000×00	2%	2.52	79	67%	0.28	4	82%	0.03	1	97%
$tai109 - 200 \times 20$	ccp	0.01	1	99%	0.04	2	97%	0.01	1	99%
$tai110 - 200 \times 20$	2%	3.56	65	50%	0.50	10	79%	0.00	0	100%
	2%	0.04 66.14	$\frac{1}{3556}$	96%	0.06 11.74	808	95% 44%	0.01	9	99% 89%
$tai111-500{\times}20$	ccp	0.01	3550 1	99%	0.02	1	98%	0.22	0	100%
, :110 F0000	2%	12.52	303	23%	4.58	121	39%	0.16	4	90%
$tai112 - 500 \times 20$	ccp	0.01	1	99%	0.05	2	96%	0.00	0	100%
tai113 - 500×20	2%	10.98	269	21%	3.59	66	37%	0.20	4	83%
	ccp	0.02	148	98%	0.02	23	98%	0.07	7	99%
$tai114-500{\times}20$	2% ccp	15.95 0.04	148 1	12% 96%	3.12 0.02	23 1	$\frac{38\%}{98\%}$	0.27 0.01	$\frac{4}{1}$	79% 99%
	2%	16.77	324	20%	3.62	33	32%	0.17	3	87%
$tai115 - 500 \times 20$	ccp	0.04	3	98%	0.02	1	98%	0.04	1	96%
$tai116 - 500 \times 20$	2%	38.80	861	3%	6.88	250	45%	0.20	4	87%
	ccp	0.05	2018	97%	0.00 2.65	0 21	100%	0.03 0.20	1 3	97% 86%
$tai117-500{\times}20$	2% ccp	21.93 0.08	2018 7	43% 98%	0.02	21 1	37% 98%	0.20 0.02	3 1	98%
	2%	21.60	396	14%	5.58	298	39%	0.09	1	91%
$tai118 - 500 \times 20$	ccp	0.05	2	97%	0.00	0	100%	0.06	4	97%
tai119 - 500×20	2%	29.43	476	8%	3.87	49	32%	0.27	9	87%
	ccp	0.04	$\frac{4}{221}$	99%	0.01 2.74	1	99%	0.00	0	100%
$tai120-500{\times}20$	2% ccp	12.63 0.02	221 1	13% 98%	0.01	23 1	$40\% \\ 99\%$	0.15 0.00	$\frac{4}{0}$	91% 100%
6001 10 05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr001 - 10 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 - 10×10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr001-10{\times}15$	2% ccp	$0.00 \\ 0.03$	$0 \\ 1$	100% $97%$	0.00	0	100% $100%$	0.00	0	100% $100%$
f 001 10 00	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr001 - 10 \times 20$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
vfr001 - 20×05	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
	2%	0.02 0.00	1 0	98% 100%	0.00	0	100% 99%	0.00	0	100% 100%
$vfr001-20{\times}10$	ccp	0.04	1	96%	0.01	0	100%	0.00	0	100%
f 001 00 . 15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 - 20×15	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 - 20×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.02	$\frac{1}{0}$	98% 100%	0.00	0	100% 97%	0.00	0	100% 100%
$vfr001-30{\times}05$	ccp	0.00	$\frac{0}{4}$	99%	0.03	0	$\frac{97\%}{100\%}$	0.00	0	100% $100%$
f-001 20::10	2%	0.00	0	100%	0.03	1	97%	0.00	0	100%
vfr001 - 30×10	сср	0.02	1	98%	0.03	2	98%	0.01	1	99%
vfr001 - 30×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.03	0	97%	0.08	$\frac{4}{1}$	98% 98%	0.00	0	100% 100%
$vfr001-30{\times}20$	ccp	0.00	1	98%	0.02	0	100%	0.00	0	100% $100%$
rrfr001 40×07	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 – 40×05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 - 40×10	2%	0.03	3	99%	0.04	4	99%	0.00	0	100%
	2%	0.06	4	96% 98%	0.02	2	99% 96%	0.01	0	99%
$vfr001-40{\times}15$	ccp	0.07	$\frac{4}{2}$	98%	0.05	0	100%	0.00	0	100% $100%$
	2%	0.01	1	99%	0.03	1	97%	0.00	0	100%
$vfr001 - 40 \times 20$	ccp	0.09	2	92%	0.01	1	99%	0.00	0	100%
vfr001 - 50×05	2%	0.00	0	100%	0.23	2	87%	0.00	0	100%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
	2%	0.02	1	98%	0.04	2	97%	0.01	1	99%
$vfr001 - 50 \times 10$	сср	0.04	2	97%	0.02	1	98%	0.01	1	99%
vfr001 - 50×15	2%	0.01	1	99%	0.06	1	94%	0.00	0	100%
VII 001 50×15	ccp	0.05	2	96%	0.04	2	98%	0.01	1	99%
$vfr001-50{\times}20$	2%	$0.00 \\ 0.05$	$0 \\ 2$	100% $96%$	0.06 0.01	$\frac{2}{1}$	95% 99%	0.00	0	100% 100%
	2%	0.00	0	100%	0.01	2	94%	0.00	0	100%
$vfr001 - 60 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr001 - 60×10	2%	0.02	1	98%	0.05	3	97%	0.00	0	100%
VII 001 00×10	ccp	0.06	2	96%	0.03	3	99%	0.00	0	100%
$vfr001-60{\times}15$	2% ccp	0.12 0.13	4 5	95% $93%$	0.14 0.05	7 1	93% 95%	0.03 0.03	2 2	98% 98%
f 001 00 00	2%	0.04	2	97%	0.17	7	91%	0.00	0	100%
$vfr001 - 60 \times 20$	ccp	0.05	3	97%	0.02	1	98%	0.02	1	98%
vfr001 - 100×20	2%	0.64	7	69%	0.12	3	91%	0.00	0	100%
	ccp	0.04	2	97%	0.08	2	94%	0.01	1	99%
$vfr001-100{\times}40$	2% ccp	0.57 0.05	$\frac{12}{3}$	76% 98%	0.49 0.02	8 1	78% 98%	0.01 0.00	$\frac{1}{0}$	99% 100%
f 001 100c0	2%	0.41	6	77%	0.26	4	85%	0.00	0	100%
vfr001 - 100×60	сср	0.00	0	100%	0.06	3	97%	0.00	0	100%
vfr001 - 200×20	2%	6.33	91	37%	0.43	10	78%	0.02	1	98%
	ccp	0.04	40	98% 12%	0.02	1	98%	0.02	1	98%
$vfr001-200{\times}40$	2% ccp	9.36 0.03	40 1	$\frac{12\%}{97\%}$	1.08 0.05	$9\\2$	60% $96%$	0.00 0.01	0 1	100% 99%
f 001 000c0	2%	8.20	58	12%	1.29	18	48%	0.01	1	99%
vfr001 - 200×60	ccp	0.02	1	98%	0.02	1	98%	0.01	1	99%
vfr001 - 300×20	2%	17.96	196	20%	1.37	33	70%	0.02	1	98%
	2%	0.01 22.76	109	99% 12%	0.05 2.82	$\frac{1}{37}$	95% 49%	0.65	62	97% 94%
$vfr001-300{\times}40$	ccp	0.07	3	95%	0.11	5	95%	0.11	3 11	96%
-f-001 200×C0	2%	19.32	269	6%	2.03	15	52%	0.09	5	95%
vfr001 - 300×60	ccp	0.03	1	97%	0.03	1	97%	0.02	1	98%
$vfr001 - 400 \times 20$	2%	55.04	2454	22%	2.11	46	54%	0.15	11	95%
	2%	0.08 46.51	260	97% 2%	0.02 3.07	$\frac{1}{47}$	98% 57%	0.03	3	98% 94%
$vfr001-400{\times}40$	ccp	0.04	200	97%	0.03	2	98%	0.11	3 1	98%
vfr001 - 400×60	2%	36.15	262	3%	2.97	31	44%	0.08	2	94%
VII'001 - 400 × 60	ccp	0.00	0	100%	0.14	6	94%	0.01	1	99%
$vfr001 - 500 \times 20$	2%	35.86	582	12%	2.36	25	48%	0.34	9	86%
	2%	0.02 78.44	535	98% 6%	0.03 6.04	191	98% 48%	0.04 0.07	3	96% 96%
$vfr001 - 500 \times 40$	ccp	0.37	21	92%	0.04	2	89%	0.01	1	99%
$v fr 001 - 500 \times 60$	2%	67.38	323	1%	5.65	43	41%	0.37	25	93%
VIIO01 - 300×00	сср	0.02	1	98%	0.08	4	95%	0.03	2	98%
$vfr001-600{\times}20$	2%	83.42	1222	12%	3.49	38	41%	0.16	4	88%
	2%	0.00 153.88	$\frac{0}{621}$	100% 3%	0.03 6.61	134	97% 46%	0.01 0.12	$\frac{1}{2}$	99% 89%
$\mathbf{vfr001} - 600 \times 40$	ccp	0.03	2	98%	0.02	1	98%	0.04	3	98%
vfr001 - 600×60	2%	140.41	682	0%	7.11	68	40%	0.39	19	90%
.11001 000/00	ccp	0.13	6	95%	0.03	1	97%	0.01	1	99%
$vfr001-700{\times}20$	2% ccp	77.86 0.03	818 1	4% 97%	7.33 0.01	209 1	$24\% \\ 99\%$	0.72 0.03	39 1	85% 97%
0.001 757	2%	182.19	966	5%	7.38	231	41%	0.03	8	89%
$\mathbf{vfr001} - 700 {\times} 40$	ccp	0.05	2	96%	0.02	1	98%	0.05	4	98%
$v fr 001 - 700 \times 60$	2%	174.54	709	0%	6.16	94	45%	0.20	6	94%
.30/00	ccp	0.09	1407	96%	0.11	150	95%	0.12	12	99%
$vfr001-800{\times}20$	2% ccp	47.41 0.05	$1407 \\ 2$	11% $96%$	8.68 0.01	$152 \\ 1$	33% $99%$	0.49 0.02	5 1	76% 98%
6-001 000 10	2%	232.68	1058	3%	8.02	166	45%	0.02	2	92%
$vfr001 - 800 \times 40$	ccp	0.07	3	97%	0.03	2	98%	0.00	0	100%
$v fr 001 - 800 \times 60$	2%	220.84	969	1%	13.67	188	41%	0.06	1	94%
	ccp	0.08	$\frac{7}{0}$	98%	0.00	0	100%	0.00	0	100%
$vfr002-10{\times}05$	2% ccp	$0.00 \\ 0.03$	0 1	100% $97%$	0.00	0 0	100% $100%$	0.00	0	100% 100%
-f-000 10: 10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr002 - 10 \times 10$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
		0.00		10007	0.00	0	100%	0.00	0	100%
vfr002 - 10×15	2%	0.00	0	100%	0.00					
vfr002 - 10×15	2% ccp 2%	0.00 0.01 0.00	$\begin{array}{c} 0 \\ 1 \\ \hline 0 \end{array}$	99%	0.00	0	100%	0.00	0	100%

Table 8: Continued from previous page

Б.,	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr002 - 20×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 002 20×09	ccp	0.01	1	99%	0.04	2	97%	0.00	0	100%
$vfr002-20{\times}10$	2%	$0.00 \\ 0.00$	0	100% 100%	$0.01 \\ 0.02$	$\frac{1}{2}$	99% 99%	$0.00 \\ 0.00$	0	100% 100%
	2%	0.00	0	100%	0.02	0	100%	0.00	0	100%
$vfr002-20{\times}15$	ccp	0.00	1	99%	0.00	0	100%	0.00	0	100%
vfr002 - 20×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 002 - 20×20	ccp	0.03	2	98%	0.00	0	100%	0.00	0	100%
$vfr002 - 30 \times 05$	2%	0.00	0	100%	0.06	2	96%	0.00	0	100%
	2%	0.02	0	99%	0.02	1 4	98% 94%	0.00	0	100% 100%
$vfr002 - 30 \times 10$	ccp	0.05	$\overset{\circ}{2}$	96%	0.02	1	98%	0.00	0	100%
vfr002 - 30×15	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
VII 002 50×15	ccp	0.03	2	98%	0.01	1	99%	0.00	0	100%
$vfr002 - 30 \times 20$	2%	0.01	1	99%	0.03	2	98%	0.00	0	100%
	2%	0.09	0	93%	0.01	1	99% 95%	0.00	0	100% 100%
$vfr002-40{\times}05$	ccp	0.00	0	100%	0.04	$\frac{1}{2}$	98%	0.00	1	99%
vfr002 - 40×10	2%	0.01	1	99%	0.06	2	95%	0.00	0	100%
VII UUZ = 4U X IU	ccp	0.09	5	96%	0.07	2	96%	0.00	0	100%
$vfr002 - 40 \times 15$	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
	2%	0.01	$\frac{1}{0}$	99%	0.00	0 2	100% 98%	0.00	0	100% 100%
$vfr002 - 40 \times 20$	ccp	0.00	1	99%	0.03	$\frac{2}{2}$	99%	0.00	0	100%
vfr002 - 50×05	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 002 - 50 × 05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr002 - 50 \times 10$	2%	0.03	2	98%	0.03	1	97%	0.00	0	100%
	2%	0.03	$\frac{2}{2}$	98% 98%	0.01	1 3	99% 94%	0.01	$\frac{1}{0}$	99%
$vfr002-50{\times}15$	ccp	0.03	3	96%	0.00	1	99%	0.00	0	100%
vfr002 - 50×20	2%	0.09	3	94%	0.13	2	89%	0.01	1	99%
VIr002 = 50 x 20	ccp	0.03	2	98%	0.04	2	97%	0.00	0	100%
$vfr002 - 60 \times 05$	2%	0.02	1	98%	0.01	1	99%	0.01	1	99%
	2%	0.00	0 1	100% 98%	0.03	$\frac{1}{2}$	97% 88%	0.00	0	100%
$vfr002-60{\times}10$	ccp	0.02	3	97%	0.13	1	99%	0.00	1	99%
vfr002 - 60×15	2%	0.19	9	94%	0.11	3	94%	0.00	0	100%
VIr002 = 00 × 15	ccp	0.05	2	96%	0.07	5	98%	0.01	1	99%
$vfr002 - 60 \times 20$	2%	0.04	2	97%	0.08	2	93%	0.00	0	100%
	2%	0.06	5 7	98% 70%	0.03	$\frac{1}{7}$	97% 76%	0.01	0	99%
$vfr002-100{\times}20$	ccp	0.01	1	99%	0.02	1	98%	0.00	$\frac{0}{2}$	97%
f-000 100×40	2%	0.37	4	78%	0.26	5	81%	0.01	1	99%
$v fr 002 - 100 \times 40$	ccp	0.00	0	100%	0.01	1	99%	0.01	1	99%
vfr002 - 100×60	2%	0.44	7	77%	0.29	5	82%	0.00	0	100%
	2%	0.01 5.37	113	99% 41%	0.00 0.44	$\frac{0}{4}$	$\frac{100\%}{76\%}$	0.01	$\frac{1}{2}$	99% 98%
$vfr002-200{\times}20$	ccp	0.00	0	100%	0.04	2	97%	0.03	1	97%
-f-000 000×40	2%	7.87	59	15%	1.04	25	63%	0.05	3	97%
vfr002 - 200×40	ccp	0.03	2	98%	0.01	1	99%	0.06	3	97%
vfr002 - 200×60	2%	5.04	23	14%	1.13	11	54%	0.06	2	96%
	2%	0.04 15.60	$\frac{1}{279}$	$\frac{96\%}{24\%}$	0.01 1.49	1 28	$\frac{99\%}{62\%}$	0.02 0.07	$\frac{1}{2}$	98% 94%
$vfr002-300{\times}20$	ccp	0.00	0	100%	0.02	1	98%	0.07 0.00	0	100%
f 000 - 200 - 40	2%	30.10	124	4%	2.08	23	54%	0.03	1	97%
$v fr 002 - 300 \times 40$	ccp	0.17	4	92%	0.04	1	96%	0.02	1	98%
vfr002 - 300×60	2%	18.75	79	3%	2.39	21	45%	0.09	7	97%
	ccp	0.06	2	95%	0.08	20	94%	0.05	1	95%
$vfr002-400{\times}20$	2% ccp	23.06 0.03	$\frac{228}{2}$	$17\% \\ 98\%$	2.94 0.08	30 2	45% $93%$	$0.17 \\ 0.06$	8	92% $96%$
f-000 400 40	2%	59.92	258	3%	2.25	38	62%	0.07	3	95%
vfr002 - 400×40	ccp	0.05	4	98%	0.01	1	99%	0.08	8	99%
vfr002 - 400×60	2%	47.58	393	1%	2.78	17	39%	0.06	2	95%
100,000	ccp	0.07	2	94%	0.04	2	98%	0.01	1	99%
$vfr002 - 500 \times 20$	2%	12.39 0.00	$\frac{124}{0}$	28% $100%$	4.87 0.00	53 0	28% 100%	0.31 0.05	3	80% 98%
	2%	86.08	522	5%	3.73	70	61%	0.05	13	98%
$vfr002 - 500 \times 40$	ccp	0.02	1	98%	0.03	1	97%	0.01	1	99%
$\overline{\mathbf{vfr002} - 500 \! \times \! 60}$	2%	78.74	505	1%	4.81	57	41%	0.11	4	95%
v1r002 - 900×00	сср	0.06	2	95%	0.12	4	96%	0.06	3	97%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr002 - 600×20	2%	61.80	1578	8%	9.24	381	29%	0.16	3	87%
VII 002 - 000 x 20	ccp	0.02	1	98%	0.04	1	96%	0.07	1	93%
$vfr002-600{\times}40$	2%	118.77 0.01	684 1	4% 99%	2.55 0.03	21 2	$\frac{56\%}{98\%}$	0.23 0.00	5 0	85% $100%$
	2%	104.92	463	0%	8.13	155	40%	0.00	28	94%
$\mathbf{vfr002} - 600 \times 60$	ccp	0.02	2	99%	0.05	3	98%	0.05	3	97%
vfr002 - 700×20	2%	35.32	1609	15%	7.17	83	28%	0.22	3	86%
	2%	0.05 187.33	803	96%	0.03 4.92	67	98% 49%	0.01 0.23	1 17	99%
$\mathbf{vfr002} - 700{\times}40$	ccp	0.11	803 11	99%	0.01	1	99%	0.23	1	94%
vfr002 - 700×60	2%	166.48	1989	3%	9.27	117	41%	0.66	39	92%
VIF002 - 700×00	ccp	0.03	2	98%	0.18	10	92%	0.15	6	95%
$vfr002-800{\times}20$	2%	81.36 0.03	2872 1	11% 97%	8.80 0.00	206 0	$\frac{22\%}{100\%}$	2.17 0.01	161 1	69% 99%
	2%	260.88	2031	1%	5.86	149	41%	0.01	14	86%
vfr002 - 800×40	ccp	0.32	31	98%	0.04	1	96%	0.05	3	97%
$v fr 002 - 800 \times 60$	2%	179.95	797	0%	10.45	160	42%	0.12	3	91%
VII 002 000×00	ccp	0.00	0	100%	0.05	5	99%	0.02	1	98%
$vfr003-10{\times}05$	2% ccp	0.00	0	100% $100%$	0.00	0	100% 100%	0.00	0	100% 100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr003 - 10×10	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr003 - 10×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
.11000 10/10	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr003-10{\times}20$	2% ccp	0.00 0.01	0 1	100% 99%	0.00	$0 \\ 0$	100% $100%$	0.00	0	100% 100%
	2%	0.00	0	100%	0.00	1	99%	0.00	0	100%
$vfr003 - 20 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr003 - 20×10	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 005 20×10	ccp	0.06	4	97%	0.00	0	100%	0.00	0	100%
$vfr003-20{\times}15$	2%	0.00 0.01	0 1	100% 99%	0.00 0.01	0 1	100% $99%$	0.00	0	100% 100%
	2%	0.01	0	100%	0.00	0	100%	0.00	0	100%
$vfr003 - 20 \times 20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr003 - 30×05	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 000	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
$vfr003-30{\times}10$	2%	0.01 0.01	1 1	99% 99%	0.02 0.04	$\frac{1}{2}$	98% 97%	0.00	0 0	100% 100%
	2%	0.01	0	100%	0.04	1	99%	0.00	0	100%
$vfr003 - 30 \times 15$	ccp	0.04	1	96%	0.00	0	100%	0.00	0	100%
vfr003 - 30×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp	0.01	1	99%	0.01	1	99%	0.00	0	100%
$vfr003-40{\times}05$	2% ccp	0.00 0.01	$0 \\ 1$	100% $99%$	0.12 0.02	1 1	$88\% \\ 98\%$	0.00	0 0	100% 100%
	2%	0.01	1	99%	0.02	3	96%	0.00	2	99%
vfr003 - 40×10	ccp	0.02	1	98%	0.06	3	97%	0.00	0	100%
vfr003 - 40×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp	0.05	1	95%	0.03	1	97%	0.00	0	100%
$vfr003-40{\times}20$	2% ccp	0.00 0.01	0 1	100% $99%$	0.10 0.00	$\frac{4}{0}$	94% $100%$	0.00	$0 \\ 0$	100% 100%
-f-009 #0-0#	2%	0.00	0	100%	0.28	2	73%	0.00	0	100%
$vfr003 - 50 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr003 - 50×10	2%	0.07	5	97%	0.03	1	97%	0.04	4	99%
.11000 00/10	ccp	0.01	1	99%	0.02	1	98%	0.00	0	100%
$vfr003-50{\times}15$	2% ccp	$0.08 \\ 0.12$	4 11	97% 98%	0.10 0.09	2 5	92% $97%$	0.00 0.01	0 1	100% $99%$
6.000 %	2%	0.12	4	99%	0.09	0	100%	0.01	0	100%
$vfr003 - 50 \times 20$	ccp	0.03	1	97%	0.02	1	98%	0.00	0	100%
vfr003 - 60×05	2%	0.00	0	100%	0.06	1	94%	0.00	0	100%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr003-60{\times}10$	2%	0.03 0.04	2 1	98% 96%	0.18 0.01	7 1	90% 99%	0.00	$0 \\ 2$	100% 98%
	2%	0.04	3	90%	0.01	1 4	99%	0.03	0	100%
$vfr003-60\times15$	ccp	0.17	6	94%	0.05	3	97%	0.00	0	100%
vfr003 - 60×20	2%	0.09	3	93%	0.10	3	92%	0.00	0	100%
VII 000 = 00 × 20	ccp	0.07	2	95%	0.07	3	95%	0.02	2	99%
vfr003 - 100×20	2%	0.92	12	72%	0.31	6	86%	0.01	1	99%
	2%	0.15 0.54	10	96% 76%	0.09 0.39	8 5	98% 72%	0.00	0	100% 100%
vfr003 - 100×40										

Table 8: Continued from previous page

_	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr003 - 100×60	2%	0.44	7	80%	0.23	3	83%	0.00	0	100%
VIr003 – 100 × 00	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
vfr003 - 200×20	2%	4.83	50	43%	0.65	15	81%	0.00	0	100%
	2%	0.05 8.28	43	96% 8%	0.06 1.48	16	96% 56%	0.00	0	100% 97%
$vfr003-200{\times}40$	ccp	0.04	1	96%	0.06	10	94%	0.05	$\overset{1}{2}$	96%
f=002 200×60	2%	6.98	37	12%	1.59	9	46%	0.06	1	94%
$v fr 003 - 200 \times 60$	ccp	0.08	3	95%	0.03	1	97%	0.03	2	98%
vfr003 - 300×20	2%	26.91	187	22%	1.56	25	59%	0.03	3	99%
	2%	0.01 30.30	203	99% 8%	0.01 2.14	23	99% 60%	0.00	$\frac{0}{4}$	100% 97%
$vfr003 - 300 \times 40$	ccp	0.03	200	98%	0.02	1	98%	0.00	1	99%
vfr003 - 300×60	2%	21.94	104	2%	2.31	17	43%	0.16	6	93%
VII 005 500×00	ccp	0.08	2	95%	0.08	2	94%	0.05	1	95%
vfr003 - 400×20	2%	2.94	114	55%	1.91	16	59%	0.13	2	91%
	2%	0.07 53.81	$\frac{7}{398}$	99%	2.02	<u>0</u> 56	100% 59%	0.01	1 3	99% 94%
$vfr003-400{\times}40$	ccp	0.01	1	99%	0.12	8	95%	0.04	1	96%
vfr003 - 400×60	2%	43.19	233	2%	3.84	58	41%	0.17	5	91%
ATT 009 400 V00	ccp	0.10	4	97%	0.13	8	95%	0.06	2	95%
$vfr003 - 500 \times 20$	2%	35.28 0.04	560	13% 96%	6.26 0.01	179 1	$42\% \\ 99\%$	0.14 0.02	$\frac{4}{1}$	92% 98%
	2%	78.63	677	3%	4.23	109	51%	0.02	2	93%
$v fr 003 - 500 \times 40$	ccp	0.00	0	100%	0.41	36	96%	0.01	1	99%
vfr003 - 500×60	2%	77.05	507	1%	3.32	40	48%	0.61	28	87%
VII 003 — 300×00	ccp	0.10	4	95%	0.00	0	100%	0.01	1	99%
vfr003 - 600×20	2%	28.95	652	16%	4.94	92	29%	0.20	8	90%
	2%	0.02 132.76	663	98%	0.02 10.01	$\frac{1}{244}$	98% 43%	0.03 0.13	$\frac{1}{2}$	97% 90%
$\mathbf{vfr003} - 600 \times 40$	ccp	0.01	1	99%	0.02	2	99%	0.04	2	98%
vfr003 - 600×60	2%	110.34	372	2%	3.64	39	51%	0.25	12	94%
VI1003 - 000×00	ccp	0.12	7	94%	0.00	0	100%	0.25	13	94%
vfr003 - 700×20	2%	120.51	5674	10%	5.45	89	29%	0.52	6	73%
	2%	0.02 186.17	1000	98% 3%	0.02 5.75	$\frac{1}{45}$	98% 35%	0.00 0.10	<u>0</u> 3	100% 93%
$\mathbf{vfr003} - 700 \times 40$	ccp	0.02	1	98%	0.00	0	100%	0.02	1	98%
vfr003 - 700×60	2%	141.43	1015	1%	9.09	107	43%	0.09	4	94%
VII 000 100×00	ccp	0.02	2	99%	0.02	1	98%	0.20	18	97%
$vfr003-800{\times}20$	2%	97.38 0.02	1692 1	5% 98%	10.57 0.03	441 1	$26\% \\ 97\%$	0.42 0.01	7 1	76% 99%
_	2%	260.90	1547	0%	13.02	198	39%	1.61	132	92%
$vfr003 - 800 \times 40$	ccp	1.18	114	95%	0.04	3	98%	0.03	1	97%
vfr003 - 800×60	2%	187.02	908	1%	9.27	115	43%	0.61	17	89%
	ccp	0.07	3	96%	0.03	1	97%	0.00	0	100%
$vfr004-10{\times}05$	2% ccp	0.00	0 0	100% $100%$	0.00	0	100% $100%$	$0.00 \\ 0.00$	$0 \\ 0$	100% 100%
6004 40 40	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr004-10\times10$	ccp	0.04	3	98%	0.00	0	100%	0.00	0	100%
vfr004 - 10×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.01	0	99%	0.00	0	100% 100%	0.00	0	100% 100%
$vfr004-10{\times}20$	ccp	0.00	0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% $100%$
f-004 00::05	2%	0.00	0	100%	0.03	2	98%	0.00	0	100%
$vfr004 - 20 \times 05$	ccp	0.16	15	98%	0.00	0	100%	0.00	0	100%
vfr004 - 20×10	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 98%	0.00	0	100% 100%
$vfr004-20{\times}15$	ccp	0.00	1	98%	0.02	0	$\frac{98\%}{100\%}$	0.00	0	100% $100%$
rrfr004 20×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr004 - 20 \times 20$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
vfr004 - 30×05	2%	0.00	0	100%	0.03	1	97%	0.01	1	99%
	2%	0.01	0	99%	0.01	1 1	99% 97%	0.00	0	100% 100%
$vfr004-30{\times}10$	ccp	0.00	1	98%	0.03	3	97%	0.00	0	100% $100%$
f=004 20×15	2%	0.00	0	100%	0.03	2	98%	0.00	0	100%
$vfr004 - 30 \times 15$	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
		T		1,0007	0.00	0	100%	0.00	0	100%
vfr004 - 30×20	2%	0.00	0	100%	0.00					
vfr004 - 30×20	2% ccp 2%	0.00 0.02 0.00	0 1 0	98%	0.00 0.01 0.01	1 1	99%	0.00	1 0	99%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr004 - 40×10	2%	0.00	0	100%	0.04	1	96%	0.00	0	100%
VII 004 40×10	ccp	0.17	8	93%	0.04	1	96%	0.00	0	100%
$vfr004-40{\times}15$	2%	$0.00 \\ 0.00$	0	100% 100%	0.04 0.00	3	98% 100%	$0.00 \\ 0.00$	0	100% 100%
	2%	0.06	5	98%	0.00	1	97%	0.00	0	100%
$vfr004 - 40 \times 20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr004 - 50×05	2%	0.02	1	98%	0.01	1	99%	0.00	0	100%
VII 004 - 50×05	ccp	0.02	2	99%	0.05	3	98%	0.00	0	100%
$vfr004-50{\times}10$	2%	0.01 0.00	$\frac{1}{0}$	99% 100%	0.02 0.00	$\frac{1}{0}$	98% $100%$	$0.00 \\ 0.00$	0	100% 100%
	2%	0.00	2	97%	0.00	5	94%	0.00	0	100%
$vfr004 - 50 \times 15$	ccp	0.03	1	97%	0.02	$\overset{\circ}{2}$	99%	0.00	0	100%
vfr004 - 50×20	2%	0.04	3	98%	0.05	2	96%	0.00	0	100%
VII 004 00 × 20	ccp	0.02	1	98%	0.02	2	99%	0.00	0	100%
$vfr004-60{\times}05$	2%	0.00	$0 \\ 0$	100% $100%$	0.13 0.00	$\frac{2}{0}$	88% $100%$	0.00	0	100% 100%
	2%	0.00	2	98%	0.00	5	91%	0.00	0	100%
$vfr004-60\times10$	ccp	0.03	1	97%	0.01	1	99%	0.00	0	100%
vfr004 - 60×15	2%	0.11	4	94%	0.20	9	93%	0.00	0	100%
VII 004 - 00×13	ccp	0.01	1	99%	0.02	1	98%	0.01	1	99%
$vfr004 - 60 \times 20$	2%	0.15	5	92%	0.13	4	91%	0.00	0	100%
	2%	0.07	14	95% 73%	0.00 0.29	5	100% 89%	0.00	0	100% 99%
$vfr004-100\times20$	ccp	0.09	2	93%	0.23	1	99%	0.01	1	99%
vfr004 - 100×40	2%	0.49	3	69%	0.59	9	77%	0.00	0	100%
VII 004 - 100 × 40	сср	0.02	1	98%	0.04	3	98%	0.01	1	99%
vfr004 - 100×60	2%	0.69	8	70%	0.24	4	84%	0.01	1	99%
	2%	0.02 9.49	$\frac{1}{126}$	98% 37%	0.01 0.75	1 16	99% 68%	0.00	0	100% 100%
$vfr004-200{\times}20$	ccp	0.02	2	99%	0.02	10	98%	0.00	1	99%
vfr004 - 200×40	2%	9.42	49	7%	1.29	27	59%	0.17	4	91%
VII 004 - 200 x 40	сср	0.08	2	93%	0.09	2	94%	0.11	2	92%
vfr004 - 200×60	2%	6.14	27	18%	1.41	19	49%	0.07	5	98%
	2%	0.00 14.02	184	100% 26%	0.05 1.42	2 15	96% 53%	0.03	0	97% 100%
$vfr004-300{\times}20$	ccp	0.03	104	97%	0.12	7	95%	0.05	$\frac{0}{2}$	96%
vfr004 - 300×40	2%	28.25	207	8%	2.32	33	53%	0.03	1	97%
VII'004 - 500 x 40	ccp	0.02	1	98%	0.16	12	97%	0.09	5	96%
vfr004 - 300×60	2%	16.82	85	6%	2.06	39	43%	0.14	4	92%
	2%	0.02 22.74	$\frac{1}{157}$	98% 18%	0.06 6.03	2 279	95% 43%	0.04	2	97% 89%
$vfr004-400{\times}20$	ccp	0.07	157	93%	0.05	378 5	98%	0.12	1	99%
£ 00.4 400 · 40	2%	52.79	240	7%	4.17	75	48%	0.03	1	97%
$\mathbf{vfr004} - 400{\times}40$	ccp	0.12	5	95%	0.11	7	96%	0.00	0	100%
vfr004 - 400×60	2%	36.33	165	2%	3.20	34	43%	0.23	6	92%
	2%	0.13 19.55	10 365	$\frac{96\%}{27\%}$	0.12 1.87	8 15	95% 41%	0.12	$\frac{3}{2}$	91% 91%
$vfr004-500{\times}20$	ccp	0.05	$\frac{505}{4}$	98%	0.04	2	97%	0.11	1	97%
f-004 F00×40	2%	61.59	241	3%	4.42	58	47%	0.04	2	98%
vfr004 - 500×40	ccp	0.18	18	99%	0.00	0	100%	0.01	1	99%
$vfr004 - 500 \times 60$	2%	69.04	296	2%	6.84	91	47%	0.18	8	91%
	2%	0.01 22.01	183	99%	0.02 3.93	$\frac{1}{37}$	98% 28%	0.05 0.35	$\frac{1}{6}$	95% 79%
$vfr004-600{\times}20$	ccp	0.07	183	95%	0.04	2	28% 97%	0.35	89	$\frac{79\%}{93\%}$
vrfv004 600×40	2%	110.81	458	7%	7.15	147	54%	0.12	3	91%
$vfr004 - 600 \times 40$	сср	0.08	2	93%	0.01	1	99%	0.01	1	99%
$v fr 004 - 600 \times 60$	2%	106.60	509	0%	8.55	66	47%	0.11	6	95%
	2%	0.05 12.72	183	96% 11%	0.07 14.48	$\frac{4}{1067}$	$\frac{97\%}{32\%}$	0.04	6	97% 80%
$vfr004-700{\times}20$	ccp	0.03	183	98%	0.01	1067	99%	0.30 0.04	3	80% 98%
f004 700×40	2%	187.65	1267	5%	16.06	586	45%	0.15	2	88%
$v fr 004 - 700 \times 40$	ccp	0.04	3	98%	0.02	1	98%	0.01	1	99%
$v fr 004 - 700 \times 60$	2%	136.48	435	0%	6.84	61	42%	0.59	23	91%
	ccp	0.16	720	96%	0.42	41	98%	0.00	$\frac{0}{4}$	100%
$vfr004-800{\times}20$	2% ccp	54.64 0.02	738 1	6% $98%$	8.64 0.02	87 1	16% $98%$	0.32 0.01	4 1	80% 99%
	2%	294.13	1481	3%	8.67	382	49%	0.01	4	85%
$v fr 004 - 800 \times 40$	ccp	0.00	0	100%	0.10	3	94%	0.02	1	98%
$v fr 004 - 800 \times 60$	2%	204.79	772	0%	5.54	81	52%	0.55	23	91%
ATT 00-7 - 900 × 00	сср	0.00	0	100%	0.01	1	99%	0.00	0	100%

Table 8: Continued from previous page

D : :	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr005 - 10×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100%
$vfr005 - 10 \times 10$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr005 - 10×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$vfr005 - 10 \times 20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr005 - 20×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	$\frac{0}{1}$	100% 98%	0.00	0	100%
$vfr005 - 20 \times 10$	ccp	0.14	4	95%	0.00	0	100%	0.01	1	99%
vfr005 - 20×15	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
	2%	0.02	0	98% 100%	0.02	0	98% 100%	0.00	0	100% 100%
$vfr005 - 20 \times 20$	ccp	0.00	0	100%	0.00	1	99%	0.00	0	100%
vfr005 - 30×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 000 00 X 00	2%	0.00	0	100% 98%	0.00	0	100% 99%	0.00	0	100%
$vfr005-30{\times}10$	ccp	0.02	1 1	98% 97%	0.01	1	99%	0.00	0	100%
vfr005 - 30×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VIr005 – 50 × 15	ccp	0.00	0	100%	0.07	6	98%	0.00	0	100%
$vfr005-30{\times}20$	2%	$0.00 \\ 0.02$	$0 \\ 2$	100% 99%	0.03 0.01	1 1	97% 99%	$0.00 \\ 0.00$	$0 \\ 0$	100% 100%
	2%	0.02	0	100%	0.01	1	99%	0.00	0	100%
$vfr005 - 40 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr005 - 40×10	2%	0.05	3	97%	0.05	2	96%	0.00	0	100%
	2%	0.02	$\frac{1}{2}$	98% 97%	0.01	$\frac{1}{2}$	99% 96%	0.01	1 1	99% 99%
$vfr005-40\times15$	ccp	0.10	$\frac{2}{2}$	93%	0.03	1	96%	0.01	1	99%
vfr005 - 40×20	2%	0.02	2	99%	0.05	2	96%	0.00	0	100%
VII 000 40×20	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr005-50{\times}05$	2% ccp	0.00 0.02	0 1	100% 98%	0.09 0.00	$\frac{2}{0}$	92% $100%$	0.00	$0 \\ 0$	100% 100%
f 005 - 5010	2%	0.00	0	100%	0.03	1	97%	0.00	0	100%
vfr005 - 50×10	ccp	0.03	2	98%	0.02	1	98%	0.00	0	100%
$vfr005-50{\times}15$	2%	0.04	1	96% 97%	0.13 0.03	2	89%	$0.00 \\ 0.01$	0	100%
	2%	0.03	$\frac{1}{2}$	98%	0.03	3	98% 93%	0.01	0	99%
$vfr005 - 50 \times 20$	ccp	0.01	1	99%	0.02	1	98%	0.00	0	100%
vfr005 - 60×05	2%	0.00	0	100%	0.13	12	98%	0.00	0	100%
	2%	0.00	$\frac{0}{7}$	100% 92%	0.00	$\frac{0}{2}$	100% 93%	0.00	0	100% 100%
$vfr005-60\times10$	ccp	0.13	1	97%	0.06	$\frac{2}{2}$	96%	0.00	1	98%
vfr005 - 60×15	2%	0.04	2	97%	0.31	12	88%	0.00	0	100%
VII 000 00 X 10	2%	0.01	1	99%	0.04	3	98%	0.00	0	100%
$vfr005-60{\times}20$	ccp	$0.06 \\ 0.01$	3 1	97% $99%$	0.12 0.05	$\frac{2}{2}$	91% $96%$	$0.00 \\ 0.01$	1	99%
f-005 100×20	2%	0.83	8	68%	0.42	14	86%	0.02	2	99%
vfr005 - 100×20	ccp	0.08	3	96%	0.04	2	97%	0.06	4	97%
$vfr005-100{\times}40$	2%	0.62 0.02	$\begin{array}{c} 27 \\ 1 \end{array}$	78% 98%	0.24 0.01	2 1	78% 99%	$0.01 \\ 0.01$	1 1	99% 99%
	2%	0.02	6	82%	0.01	3	87%	0.01	0	100%
$vfr005 - 100 \times 60$	ccp	0.01	1	99%	0.00	0	100%	0.03	3	99%
vfr005 - 200×20	2%	3.92	156	60%	0.69	28	77%	0.04	1	96%
	2%	0.03 7.43	$\frac{1}{54}$	97% 17%	0.03 1.73	$\frac{1}{27}$	97% 54%	0.06 0.07	3	96% 96%
$vfr005-200{\times}40$	ccp	0.12	7	94%	0.06	3	96%	0.07	$\frac{3}{2}$	98%
vfr005 - 200×60	2%	4.94	36	21%	0.96	10	62%	0.03	1	97%
.11000 200 \ 00	ccp	0.06	2	96%	0.05	3	97%	0.00	0	100%
$vfr005-300{\times}20$	2% ccp	7.75 0.02	$\frac{126}{1}$	21% $98%$	2.68 0.05	109 3	$60\% \\ 97\%$	3.71 0.00	363 0	93% 100%
f-00E 200 · 40	2%	25.91	144	7%	2.40	49	62%	0.03	1	97%
vfr005 - 300×40	ccp	0.16	12	95%	0.28	21	95%	0.08	5	97%
vfr005 - 300×60	2%	18.43	81	3%	1.57	17	55%	0.05	3	98%
	2%	0.00 27.72	$\frac{0}{1259}$	$\frac{100\%}{25\%}$	0.08 1.36	3 20	95% 48%	0.06 0.05	2	96% 96%
$vfr005-400{\times}20$	ccp	0.01	1239	99%	0.02	1	98%	0.03 0.02	$\frac{2}{2}$	99%
vfr005 - 400×40	2%	62.90	434	0%	2.89	32	59%	0.19	6	93%
vпооо — 400 X 40	ccp	0.05	1	95%	0.04	3	98%	0.02	2	99%

Table 8: Continued from previous page

	Ctonnina		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Stopping Criterion	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local	I_{move}	I_{max}	Local
				Optimum			Optimum			Optimum
$vfr005-400{\times}60$	2%	41.00 0.06	279 2	2% 96%	3.37 0.07	51 2	44% 95%	$0.26 \\ 0.06$	$\frac{10}{2}$	92% 95%
	сср 2%	37.07	1047	16%	4.22	85	36%	0.00	6	89%
$vfr005-500{\times}20$	ccp	0.01	1	99%	0.00	0	100%	0.03	1	97%
C 00F F0040	2%	101.10	536	4%	5.36	160	56%	0.31	28	96%
$v fr 005 - 500 \times 40$	ccp	0.03	2	98%	0.08	4	97%	0.06	5	98%
$v fr 005 - 500 \times 60$	2%	56.65	227	7%	4.78	68	38%	0.23	9	92%
VI1005 500×00	ccp	0.12	4	93%	0.03	1	97%	0.03	1	97%
$vfr005 - 600 \times 20$	2%	29.35	574	10%	4.58	69	38%	0.37	12	82%
	2%	0.01 132.46	$\frac{1}{760}$	99%	0.02 3.51	1 50	98% 48%	0.00	<u>0</u> 4	100% 94%
$vfr005-600{\times}40$	ccp	0.08	700 5	97%	0.02	2	99%	0.09 0.00	0	100%
_	2%	116.21	416	0%	5.06	52	50%	0.46	10	85%
$\mathbf{vfr005} - 600 \times 60$	сср	0.12	6	95%	0.02	1	98%	0.02	1	98%
f-005 700×20	2%	70.35	679	10%	8.69	114	27%	0.30	4	81%
$vfr005 - 700 \times 20$	ccp	0.03	1	97%	0.00	0	100%	0.03	1	97%
vfr005 - 700×40	2%	138.22	626	3%	8.63	150	33%	0.21	2	86%
VII 000 100×40	ccp	0.01	1	99%	0.04	2	98%	0.00	0	100%
$\mathbf{vfr005} - 700 {\times} 60$	2%	147.85	552	0%	7.14	144	36%	0.15	4	92%
	2%	52.20	702	97% 5%	0.01 19.38	531	99%	0.03	3 14	99%
$vfr005-800{\times}20$	2% ccp	52.29 0.03	702	$\frac{5\%}{99\%}$	19.38 0.10	531 8	$\frac{22\%}{97\%}$	0.57 0.02	14 1	79% 98%
	2%	285.34	1378	1%	9.20	243	33%	0.02	7	90%
$vfr005-800{\times}40$	ccp	0.03	1378	97%	0.57	$\frac{243}{56}$	98%	0.20	1	99%
4 007 000 00	2%	223.67	752	0%	8.50	108	34%	0.61	42	89%
$\mathbf{vfr005} - 800 \times 60$	ccp	0.03	1	97%	0.01	1	99%	0.03	1	97%
vfr006 - 10×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 000 – 10 × 05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr006 - 10×10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
111000 107110	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr006 - 10 \times 15$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$vfr006-10{\times}20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100%	0.00	1	99%	0.00	0	100%
$vfr006-20{\times}05$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
f 006 - 00 - 10	2%	0.00	0	100%	0.02	2	99%	0.00	0	100%
$vfr006 - 20 \times 10$	ccp	0.04	2	97%	0.00	0	100%	0.00	0	100%
vfr006 - 20×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 000 - 20 × 15	ccp	0.00	0	100%	0.02	2	99%	0.00	0	100%
$vfr006 - 20 \times 20$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp	0.03	1	97%	0.00	0	100%	0.00	0	100%
$vfr006 - 30 \times 05$	2%	0.00	0	100% $100%$	0.00	0	$\frac{100\%}{100\%}$	$0.00 \\ 0.00$	0 0	100% 100%
	2%	0.00	0	100%	0.06	0 2	95%	0.00	0	100%
$vfr006-30{\times}10$	ccp	0.00	1	97%	0.00	1	98%	0.00	0	100%
4.000 95 15	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
$vfr006-30{\times}15$	ccp	0.04	$\overset{\circ}{2}$	97%	0.00	0	100%	0.00	0	100%
vfr006 - 30×20	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
v11000 - 50 X 20	ccp	0.04	2	98%	0.00	0	100%	0.00	0	100%
vfr006 - 40×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
207.00	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr006-40{\times}10$	2%	0.01	1	99%	0.02	1	98%	0.00	0	100%
	2%	0.30	24	93%	0.02	1 1	98% 98%	0.02	0	99%
$vfr006-40{\times}15$	2% ccp	0.00	0	100% $100%$	0.02	1	98% 99%	0.00	0	100% $100%$
	2%	0.00	1	99%	0.01	1	97%	0.00	0	100%
$vfr006 - 40 \times 20$	ccp	0.07	3	96%	0.03	$\overset{1}{2}$	98%	0.02	1	98%
	2%	0.00	0	100%	0.60	32	75%	0.00	0	100%
$vfr006 - 50 \times 05$	ccp	0.01	1	99%	0.00	0	100%	0.01	1	99%
vfr006 - 50×10	2%	0.02	1	98%	0.01	1	99%	0.00	0	100%
*11000 00×10	ccp	0.01	1	99%	0.00	0	100%	0.01	1	99%
vfr006 - 50×15	2%	0.01	1	99%	0.03	1	97%	0.00	0	100%
	ccp	0.07	2	94%	0.00	0	100%	0.00	0	100%
$vfr006-50{\times}20$	2%	0.00	0	100%	0.05	3	98%	0.00	0	100%
	2%	0.01	1 0	99%	0.02	1 11	98% 97%	0.01	1 0	99% 100%
$vfr006 - 60 \times 05$		1.51	151	99%	$0.13 \\ 0.42$	$\frac{11}{42}$	97% 99%	0.00	0	100% $100%$
111000 007.00								0.00		
vfr006 - 60×10	2%	0.15	4	94%	0.15	4	89%	0.00	0	100%

Table 8: Continued from previous page

_	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr006 - 60×15	2%	0.09	3	93%	0.05	1	95%	0.02	1	98%
VIr000 - 00×15	ccp	0.03	1	97%	0.02	1	98%	0.00	0	100%
$vfr006 - 60 \times 20$	2%	0.13	3	91%	0.09	3	93%	0.00	0	100%
	2%	0.00 1.25	14	100% 59%	0.04	9	96% 78%	0.01	1 1	99% 99%
$vfr006-100{\times}20$	ccp	0.08	4	96%	0.40	2	98%	$0.01 \\ 0.02$	$\overset{1}{2}$	99%
f 000 100 10	2%	0.42	4	74%	0.27	7	83%	0.00	0	100%
vfr006 - 100×40	$_{\rm ccp}$	0.02	1	98%	0.03	1	97%	0.01	1	99%
vfr006 - 100×60	2%	0.53	10	74%	0.24	4	83%	0.00	0	100%
11000 1007.00	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%
$vfr006-200{\times}20$	2% ccp	4.89 0.08	$\begin{array}{c} 51 \\ 2 \end{array}$	38% $95%$	1.13 0.00	48 0	76% 100%	$0.03 \\ 0.01$	2 1	98% 99%
6.000 000 10	2%	8.26	45	14%	1.32	15	66%	0.01	1	99%
$vfr006 - 200 \times 40$	сср	0.11	5	94%	0.04	2	97%	0.05	3	97%
vfr006 - 200×60	2%	7.04	41	14%	1.44	15	51%	0.04	3	98%
VII 000 200×00	ccp	0.02	1	98%	0.04	1	96%	0.01	1	99%
vfr006 - 300×20	2%	6.26	201	47%	1.18	11	54%	0.11	6	94%
	2%	0.07 27.94	102	95% 6%	0.03 2.61	1 25	97% 43%	0.00 0.10	$\frac{0}{4}$	100% 95%
$vfr006-300{\times}40$	ccp	0.11	6	94%	0.26	25 16	96%	0.10	1	99%
f-006 200 : c0	2%	21.00	94	0%	2.15	31	47%	0.05	2	96%
vfr006 - 300×60	ccp	0.04	3	98%	0.16	14	97%	0.01	1	99%
vfr006 - 400×20	2%	21.68	322	14%	2.44	70	52%	0.03	1	97%
1000 100/120	ccp	0.03	1	97%	0.02	1	98%	0.02	1	98%
$vfr006-400{\times}40$	2% ccp	41.33 0.08	272 5	6% 96%	2.54 0.00	86 0	63% $100%$	$0.06 \\ 0.03$	1 1	94% 97%
	2%	35.68	203	4%	3.02	28	43%	0.30	7	88%
vfr006 - 400×60	ccp	0.01	1	99%	0.06	3	97%	0.14	5	94%
vfr006 - 500×20	2%	11.73	144	16%	3.61	24	36%	0.25	5	87%
VII 000 - 500 x 20	ccp	0.05	2	96%	0.01	1	99%	0.09	5	96%
vfr006 - 500×40	2%	60.63	330	3%	3.18	36	51%	0.26	20	95%
	2%	0.10 82.42	526	97% 3%	0.04 5.42	3 66	98% 40%	0.06 0.07	$\frac{4}{2}$	98% 95%
$\mathbf{vfr006} - 500{\times}60$	ccp	0.02	526 1	98%	0.00	0	100%	0.07 0.01	1	95% 99%
	2%	35.16	563	16%	6.07	101	41%	0.40	5	77%
$vfr006 - 600 \times 20$	сср	0.01	1	99%	0.01	1	99%	0.03	1	97%
$v fr 006 - 600 \times 40$	2%	110.80	833	3%	7.44	433	43%	0.17	6	92%
VII 000 000×40	ccp	0.01	1	99%	0.05	3	97%	0.03	3	99%
$vfr006 - 600 \times 60$	2%	125.84	459	1%	5.32	62	42%	0.03	1	97%
	сср 2%	0.04 37.22	364	98% 14%	0.15 5.07	11 138	$\frac{95\%}{32\%}$	0.13	11 5	97% 83%
$vfr006 - 700 \times 20$	ccp	0.07	3	95%	0.03	1	97%	0.01	1	99%
f-00C 700×40	2%	170.03	827	3%	6.96	136	43%	0.16	7	93%
vfr006 - 700×40	ccp	0.61	59	97%	0.05	3	97%	0.02	1	98%
$vfr006 - 700 \times 60$	2%	131.22	570	0%	5.98	104	52%	0.07	2	94%
	2%	0.00 20.75	$\frac{0}{283}$	$\frac{100\%}{14\%}$	7.43	100	99%	0.04 0.85	$\frac{2}{27}$	97% 67%
$vfr006-800{\times}20$	ccp	0.00	203 0	14% $100%$	0.03	100	97%	0.83	2	99%
0.000 000 15	2%	274.09	1821	1%	5.06	80	42%	0.02	$\frac{2}{7}$	93%
$\mathbf{vfr006} - 800 \mathbf{\times 40}$	ccp	0.47	44	96%	0.06	2	96%	0.02	1	98%
$v fr 006 - 800 \times 60$	2%	196.81	1012	1%	8.89	161	48%	0.72	21	85%
	ccp	0.04	2	97%	0.02	2	99%	0.02	1	98%
$vfr007-10{\times}05$	2%	0.00 0.10	$0 \\ 1$	100% $90%$	0.00	0	100% $100%$	$0.00 \\ 0.00$	$0 \\ 0$	100% 100%
	2%	0.10	0	100%	0.00	0	100%	0.00	0	100%
$vfr007-10\times10$	ccp	0.00	1	99%	0.00	0	100%	0.00	0	100%
vfr007 - 10×15	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII = 100119	ccp	0.06	3	98%	0.00	0	100%	0.00	0	100%
vfr007 - 10×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$vfr007-20{\times}05$	ccp	$0.00 \\ 0.03$	0 1	97%	0.00 0.04	0 4	99%	0.00	0	100% $100%$
£ 00 T 00 10	2%	0.00	0	100%	0.04	1	99%	0.00	0	100%
$vfr007 - 20 \times 10$	ccp	0.06	$\overset{\circ}{2}$	96%	0.00	0	100%	0.00	0	100%
vfr007 - 20×15	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 001 - 20 X 10	ccp	0.06	3	96%	0.02	1	98%	0.00	0	100%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr007 - 20 \times 20$		0.00	_	4000-	1 000	_	4000	0.00	_	4 ~ ~ ~ ~
vfr007 - 20×20	ccp 2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%

Table 8: Continued from previous page

	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr007 - 30×10	2%	0.01	1	99%	0.01	1	99%	0.00	0	100%
VII 001 00×10	ccp 2%	0.10	5	95%	0.00	0	100%	0.00	0	100%
$vfr007-30{\times}15$	ccp	$0.00 \\ 0.01$	0 1	100% $99%$	0.01 0.01	$1 \\ 1$	99% 99%	$0.00 \\ 0.00$	0	100% 100%
f-007 20×00	2%	0.01	1	99%	0.04	2	97%	0.00	0	100%
vfr007 - 30×20	ccp	0.09	2	93%	0.01	1	99%	0.00	0	100%
$vfr007 - 40 \times 05$	2%	0.00	0	100%	0.02	1	98%	0.00	0	100%
	2%	0.02	0	99%	0.00	0	100% 99%	0.00	0	100% 100%
$vfr007 - 40 \times 10$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr007 - 40×15	2%	0.06	2	96%	0.01	1	99%	0.00	0	100%
VIIO01 10×10	ccb	0.05	1	95%	0.01	1	99%	0.01	1	99%
$vfr007-40{\times}20$	2% ccp	$0.01 \\ 0.04$	1 1	99% 96%	0.02 0.01	2 1	99% 99%	$0.00 \\ 0.00$	0 0	100% 100%
-f-007 F0×05	2%	0.00	0	100%	0.23	2	78%	0.00	0	100%
vfr007 - 50×05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr007 - 50×10	2%	0.05	2	96%	0.06	4	97%	0.05	2	97%
	2%	0.11	5 2	96% 97%	0.02	1	98% 96%	0.00	0	100% 100%
$vfr007 - 50 \times 15$	ccp	0.05	2	96%	0.08	3	95%	0.00	0	100%
vfr007 - 50×20	2%	0.10	5	95%	0.06	2	95%	0.00	0	100%
VII 007 - 50 × 20	ccp	0.04	2	98%	0.07	2	95%	0.00	0	100%
$vfr007-60{\times}05$	2%	$0.00 \\ 0.00$	0	100% 100%	0.00	0	100% $100%$	$0.00 \\ 0.00$	0	100% 100%
	2%	0.00	0	93%	0.00	0 4	91%	0.00	0	98%
$vfr007 - 60 \times 10$	ccp	0.00	0	100%	0.00	0	100%	0.01	1	99%
vfr007 - 60×15	2%	0.19	5	91%	0.15	4	92%	0.00	0	100%
VII 00 / 10	ccp	0.05	1	95%	0.02	1	98%	0.00	0	100%
$vfr007-60{\times}20$	2%	0.09 0.18	2 9	93% $97%$	0.18 0.10	6 7	91% 96%	0.03 0.01	2 1	98% 99%
	2%	0.18	30	67%	0.10	14	87%	0.01	1	99%
$vfr007 - 100 \times 20$	ccp	0.03	2	98%	0.08	2	93%	0.02	2	99%
vfr007 - 100×40	2%	0.85	9	70%	0.29	4	82%	0.00	0	100%
	ccp	0.04	1 7	96%	0.03	2	98%	0.00	0	100%
$vfr007-100{\times}60$	2% ccp	0.66 0.00	7 0	70% 100%	0.23 0.00	$\frac{4}{0}$	85% $100%$	$0.00 \\ 0.00$	0	100% 100%
f-007 200 v 20	2%	7.44	89	33%	0.83	11	72%	0.01	1	99%
vfr007 - 200×20	ccp	0.05	4	98%	0.01	1	99%	0.02	1	98%
$vfr007 - 200 \times 40$	2%	8.14	81	15%	0.83	9	71%	0.00	0	100%
	2%	0.10 6.30	5 40	96% 11%	0.04 1.53	36	96% 54%	0.03	3	98% 97%
$vfr007-200{\times}60$	ccp	0.02	1	98%	0.00	0	100%	0.03	1	97%
vfr007 - 300×20	2%	12.35	177	25%	1.93	58	58%	0.06	4	97%
VII 007 = 300 × 20	ccp	0.02	1	98%	0.01	1	99%	0.02	1	98%
$vfr007-300{\times}40$	2%	20.00 0.02	117	$\frac{12\%}{98\%}$	1.45 0.05	18	59% 98%	$0.04 \\ 0.02$	1	96% 98%
	2%	20.17	1 87	3%	2.55	38	51%	0.02	$\frac{1}{2}$	93%
$vfr007 - 300 \times 60$	ccp	0.02	1	98%	0.17	11	95%	0.08	3	96%
vfr007 - 400×20	2%	11.00	174	18%	1.92	20	46%	0.17	4	90%
100, 100, 20	2%	0.03 59.08	383	$\frac{98\%}{2\%}$	0.06 5.16	139	97% 51%	0.01 0.10	1 7	99% 96%
$vfr007-400{\times}40$	ccp	0.03	363 2	98%	0.07	139 5	97%	0.10 0.02	$\frac{i}{2}$	90%
f-007 400×C0	2%	48.93	237	1%	3.51	50	41%	0.21	6	91%
vfr007 - 400×60	ccp	0.02	1	98%	0.03	1	97%	0.05	1	95%
$vfr007 - 500 \times 20$	2%	92.50	2161	7%	2.94	19	37%	0.19	4	89%
	2%	0.05 87.75	337	95% 3%	0.01 4.04	$\frac{1}{120}$	99% 52%	0.02	1	98% 96%
$vfr007 - 500 \times 40$	ccp	0.00	0	100%	0.00	0	100%	0.04 0.15	13	98%
$v fr 007 - 500 \times 60$	2%	64.66	274	1%	4.29	44	47%	0.24	4	87%
·11001 000×00	ccp	0.12	5	94%	0.03	1	97%	0.09	5	95%
$vfr007-600{\times}20$	2%	22.48 0.04	650	10%	5.80	56 1	$\frac{29\%}{98\%}$	0.26 0.01	7	85% 99%
	2%	157.51	663	96% 1%	0.02 5.75	$\frac{1}{259}$	98% 51%	0.01	38	99% 85%
$\mathbf{vfr007} - 600 \times 40$	ccp	0.04	2	97%	0.03	1	97%	0.00	0	100%
$v fr 007 - 600 \times 60$	2%	121.70	756	2%	4.19	72	55%	0.37	13	90%
·11001 000×00	ccp	0.07	3	95%	0.18	8	94%	0.01	1	99%
$vfr007-700{\times}20$	2%	65.59 0.00	$1298 \\ 0$	12% $100%$	7.72 0.02	232 1	27% $98%$	0.40 0.02	$\frac{6}{2}$	78% 99%
	2%	237.50	3471	0%	15.69	428	38%	0.02	5	94%
$vfr007 - 700 \times 40$	ccp	0.02	1	98%	0.03	1	97%	0.10	0	100%

Table 8: Continued from previous page

	Stopping		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
f-007 700×60	2%	146.90	510	1%	6.19	80	45%	0.51	34	90%
$\mathbf{vfr007} - 700 {\times} 60$	сср	0.18	15	97%	0.26	15	98%	0.02	1	98%
$vfr007-800{\times}20$	2%	38.12	475	3% 99%	9.69	94	23%	1.13 0.02	46	67%
	2%	0.01 232.37	892	2%	0.42 18.61	1000	98% 45%	0.02	1 5	98% 81%
$vfr007 - 800 \times 40$	ccp	0.03	1	97%	0.80	80	99%	0.00	0	100%
$v fr 007 - 800 \times 60$	2%	182.32	499	0%	5.11	91	53%	0.35	30	94%
VII 001 000×00	ccp	0.17	11	98%	0.03	2	98%	0.02	1	98%
$vfr008-10{\times}05$	2% ccp	0.00	$0 \\ 0$	100% 100%	0.00	0	100% $100%$	0.00	0 0	100% 100%
f 000 1010	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr008 – 10×10	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr008 - 10 \times 15$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.00	0	100% 100%	0.00	0	100% 100%	0.00	0	100% 100%
$vfr008-10{\times}20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr008 - 20×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 008 – 20 × 05	ccp	0.04	2	97%	0.00	0	100%	0.00	0	100%
$vfr008-20{\times}10$	2%	0.00 0.08	0	100% 95%	0.01 0.00	$\frac{1}{0}$	99% 100%	0.00	0	100% 100%
	2%	0.08	0	100%	0.00	2	99%	0.00	0	100%
$vfr008 - 20 \times 15$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr008 - 20×20	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr008-30{\times}05$	2% ccp	$0.00 \\ 0.03$	$0 \\ 2$	100% 98%	0.03	$\frac{1}{0}$	97% $100%$	0.00	0	100% 100%
f-000 20 : 10	2%	0.00	0	100%	0.00	1	99%	0.00	0	100%
$vfr008 - 30 \times 10$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
vfr008 - 30×15	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
	2%	0.01	$\frac{1}{0}$	99%	0.00	3	100% 98%	0.00	0	100% 100%
$vfr008-30{\times}20$	ccp	0.00	1	98%	0.04	3 0	$\frac{98\%}{100\%}$	0.00	0	100%
vfr008 - 40×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VIF008 - 40 × 05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr008 - 40 \times 10$	2%	$0.04 \\ 0.02$	4	99%	0.11 0.09	7 6	96%	0.00 0.01	0	100% 99%
	2%	0.02	1	98% 99%	0.09	1	97% 98%	0.01	0	100%
$vfr008 - 40 \times 15$	ccp	0.02	1	98%	0.01	1	99%	0.00	0	100%
vfr008 - 40×20	2%	0.01	1	99%	0.04	3	98%	0.00	0	100%
VII 000 10 × 20	ccp	0.05	4	98%	0.00	0	100%	0.00	0	100%
$vfr008-50{\times}05$	2% ccp	$0.00 \\ 0.00$	$0 \\ 0$	100% $100%$	0.00	0	100% $100%$	0.00	0 0	100% 100%
	2%	0.00	0	100%	0.15	10	94%	0.00	1	99%
$vfr008 - 50 \times 10$	ccp	0.02	1	98%	0.01	1	99%	0.00	0	100%
vfr008 - 50×15	2%	0.04	2	97%	0.10	3	93%	0.00	0	100%
	2%	0.05	1 1	95% 97%	0.00	0 3	100% 95%	0.02	1 0	98% 100%
$vfr008-50{\times}20$	ccp	0.03	1	99%	0.03	2	98%	0.00	0	100%
vfr008 - 60×05	2%	0.00	0	100%	0.29	5	81%	0.00	0	100%
*11000 00×00	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr008-60{\times}10$	2%	0.02 0.03	1 1	98% 97%	0.14 0.00	$\frac{4}{0}$	89% 100%	0.00	0	100% 100%
f.000 00 :-	2%	0.03	2	92%	0.00	11	89%	0.00	1	99%
vfr008 - 60×15	ccp	0.04	2	97%	0.09	3	95%	0.03	1	97%
vfr008 - 60×20	2%	0.05	3	97%	0.11	5	95%	0.00	0	100%
	2%	0.01	10	99% 69%	0.09	15	95% 80%	0.00	0	100% 99%
$vfr008-100{\times}20$	ccp	0.05	3	97%	0.41	8	96%	0.01	$\overset{1}{2}$	99%
vfr008 - 100×40	2%	0.61	7	69%	0.37	5	79%	0.00	0	100%
v11000 - 100 X 40	ccp	0.05	3	97%	0.06	2	96%	0.02	1	98%
$vfr008-100{\times}60$	2%	0.53	7	75% 98%	0.32 0.02	6	80% 98%	$0.00 \\ 0.02$	0	100% 98%
6.000	2%	0.05 5.60	53	98% 37%	0.02	1 3	98% 81%	0.02	1 1	98%
$vfr008 - 200 \times 20$	ccp	0.02	1	98%	0.25	23	97%	0.02	2	98%
vfr008 - 200×40	2%	6.74	36	12%	1.11	17	69%	0.02	1	98%
.11000 200 / 40	ccp	0.05	1	95%	0.07	2	95%	0.04	2	97%
$vfr008-200{\times}60$	2% ccp	7.42 0.02	30 1	8% 98%	1.15 0.04	10 3	$46\% \\ 98\%$	$0.02 \\ 0.02$	$1 \\ 1$	98% 98%
vfr008 - 300×20	2%	12.96	154	27%	1.00		66%	0.02	3	95%
				,0			96%		_	97%

Table 8: Continued from previous page

	Stopping		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
	2%	29.83	162	3%	2.31	19	48%	0.04	2	97%
$vfr008 - 300 \times 40$	ccp	0.03	1	97%	0.00	0	100%	0.05	2	96%
vfr008 - 300×60	2%	18.46	89	4%	2.35	26	48%	0.08	2	94%
VII 000 000 X 00	ccp	0.06	4	98%	0.04	1	96%	0.03	1	97%
$vfr008-400{\times}20$	2% ccp	22.44 0.02	527 1	14% 98%	1.56 0.04	$\begin{array}{c} 11 \\ 3 \end{array}$	$49\% \\ 98\%$	0.16 0.00	$7 \\ 0$	91% 100%
	2%	56.04	262	5%	2.33	73	61%	0.08	2	93%
$\mathbf{vfr008} - 400 \times 40$	ccp	0.03	1	97%	0.09	5	98%	0.03	2	98%
$v fr 008 - 400 \times 60$	2%	43.89	194	1%	3.86	58	39%	0.16	8	92%
	2%	0.07 21.26	404	96% 21%	0.02 2.98	1 28	98% 39%	0.02 0.38	$\frac{1}{20}$	98% 90%
$vfr008-500{\times}20$	ccp	0.02	$\frac{404}{1}$	98%	0.02	28 1	98%	0.38	$\frac{20}{2}$	90% 97%
f-000 F00×40	2%	73.83	530	4%	4.02	51	51%	0.12	4	93%
vfr008 - 500×40	ccp	0.18	15	96%	0.01	1	99%	0.01	1	99%
$vfr008 - 500 \times 60$	2%	78.11	797	0%	4.12	39	43%	0.12	3	94%
	2%	0.09 49.63	1240	94%	0.07 4.20	143	$\frac{95\%}{42\%}$	0.09	6	95% 93%
$vfr008-600{\times}20$	ccp	0.02	1240	98%	0.10	3	94%	0.10	$\frac{0}{2}$	93% 98%
f-000 600 / 40	2%	152.23	548	1%	3.07	41	49%	0.54	37	88%
$vfr008 - 600 \times 40$	ccp	0.03	1	97%	0.00	0	100%	0.09	6	96%
$vfr008 - 600 \times 60$	2%	104.62	630	1%	4.31	49	43%	0.50	14	87%
	сср 2%	0.01 56.33	1340	99% 11%	0.01 4.83	$\frac{1}{40}$	99% 27%	0.20	10	96% 81%
$vfr008 - 700 \times 20$	ccp	0.02	1540	98%	0.10	3	93%	0.02	1	98%
vfr008 - 700×40	2%	210.78	882	0%	4.97	70	40%	0.08	3	94%
VII 0008 - 700 × 40	ccp	0.34	31	97%	0.02	1	98%	0.04	1	96%
$vfr008 - 700 \times 60$	2%	114.56 0.11	413	2% 97%	8.12 0.09	65	47% 98%	0.24 0.01	8	91% 99%
	2%	32.30	9 717	11%	7.05	82	17%	0.01	1 4	71%
$vfr008 - 800 \times 20$	ccp	0.03	1	97%	0.02	1	98%	0.02	1	98%
vfr008 - 800×40	2%	244.84	1136	1%	5.24	123	52%	0.32	12	85%
VII 000 000 X 40	ccp	0.02	1	98%	0.03	3	99%	0.03	2	98%
$\mathbf{vfr008} - 800{\times}60$	2%	239.21 0.10	765 8	0% 97%	10.72 0.07	159 7	52% $99%$	0.08 0.08	4 5	95% 97%
	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr009 - 10 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr009 - 10×10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.05	0	95%	0.00	0	100%	0.00	0	100%
$vfr009-10{\times}15$	ccp	$0.00 \\ 0.00$	0	100% $100%$	0.00	0	100% $100%$	0.00	0	100% 100%
f.000 1000	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr009 – 10×20	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr009 - 20 \times 05$	2%	0.00	0	100%	0.05	2	96%	0.00	0	100%
	2%	0.02	0	98% 100%	0.01	0	99%	0.00	0	100%
$vfr009-20{\times}10$	ccp	0.00	1	99%	0.00	0	100% $100%$	0.00	0	100% $100%$
vfr009 - 20×15	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 003 - 20 X 13	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
$vfr009-20{\times}20$	2%	$0.00 \\ 0.00$	0	100% $100%$	0.00 0.01	0	100% $99%$	0.00	$0 \\ 0$	100% 100%
	2%	0.00	0	100%	0.01	1	93%	0.00	0	100%
$vfr009 - 30 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr009 - 30×10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
*11000 00×10	ccp	0.06	3	96%	0.00	0	100%	0.00	0	100%
$vfr009-30{\times}15$	2%	$0.00 \\ 0.02$	0 1	100% 98%	0.05 0.03	$\frac{1}{2}$	95% $98%$	0.00	$0 \\ 0$	100% 100%
	2%	0.02	0	100%	0.03	1	98%	0.00	0	100%
$vfr009 - 30 \times 20$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
vfr009 - 40×05	2%	0.00	0	100%	0.32	6	82%	0.00	0	100%
20,000	ccp	0.02	2	99%	0.00	0	100%	0.00	0	100%
$vfr009-40{\times}10$	2% ccp	0.01 0.01	1 1	99% 99%	0.05 0.13	1 10	95% 97%	0.02 0.00	$\frac{1}{0}$	98% 100%
f 000 40 17	2%	0.01	0	100%	0.13	10	99%	0.00	0	100%
$vfr009-40\times15$	ccp	0.01	1	99%	0.02	2	99%	0.00	0	100%
vfr009 - 40×20	2%	0.00	0	100%	0.06	1	94%	0.00	0	100%
	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
$vfr009-50{\times}05$	2% ccp	0.00	0	100% $100%$	0.06 0.00	$\frac{1}{0}$	94% $100%$	0.00	$0 \\ 0$	100% 100%
£ 000 = 50 : 5	2%	0.00	0	100%	0.06	3	97%	0.00	0	100%
$vfr009 - 50 \times 10$	ccp	0.00	0	100%	0.01	1	99%	0.00	0	100%

Table 8: Continued from previous page

_	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr009 - 50×15	2%	0.04	2	97%	0.06	1	94%	0.00	0	100%
VII 003 50×15	ccp	0.09	4	94%	0.04	4	99%	0.00	0	100%
$vfr009-50{\times}20$	2% ccp	0.01 0.03	1 1	99% 97%	0.13 0.01	2 1	90% 99%	$0.00 \\ 0.01$	0 1	100% 99%
f.000 00 0F	2%	0.03	4	99%	0.08	1	92%	0.00	0	100%
$vfr009 - 60 \times 05$	сср	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr009 - 60×10	2%	0.00	0	100%	0.14	5	93%	0.00	0	100%
	2%	0.00	0 4	100% 94%	0.00 0.15	0 4	100% 90%	0.00	0	100% 100%
$vfr009 - 60 \times 15$	ccp	0.12	2	96%	0.10	0	100%	0.00	0	100%
vfr009 - 60×20	2%	0.22	5	90%	0.15	4	92%	0.00	0	100%
VII 003 00×20	ccp	0.06	2	95%	0.03	2	98%	0.00	0	100%
$vfr009-100{\times}20$	2% ccp	0.79 0.03	8	70% 99%	0.36 0.06	19 3	87% 96%	$0.02 \\ 0.02$	1 1	98% 98%
f.000 100 10	2%	0.89	32	71%	0.44	4	76%	0.01	1	99%
$v fr 009 - 100 \times 40$	ccp	0.01	1	99%	0.01	1	99%	0.01	1	99%
vfr009 - 100×60	2%	0.46	7	75%	0.23	4	83%	0.00	0	100%
	2%	0.00 6.11	49	100% 37%	0.02 0.62	6	99% 71%	0.00	$\frac{0}{2}$	100% 97%
$vfr009-200{\times}20$	ccp	0.11	49 5	97%	0.02	1	97%	0.04 0.01	1	99%
vfr009 - 200×40	2%	9.40	44	11%	1.39	18	53%	0.03	3	99%
v11009 = 200 x 40	ccp	0.01	1	99%	0.08	5	96%	0.03	1	97%
$vfr009-200{\times}60$	2%	6.43 0.01	51 1	16% 99%	1.07 0.00	10	56% $100%$	$0.02 \\ 0.02$	2	99% 98%
	2%	17.27	223	24%	1.52	20	59%	0.02	1 14	98%
$vfr009 - 300 \times 20$	ccp	0.12	10	97%	0.01	1	99%	0.04	3	98%
vfr009 - 300×40	2%	26.97	98	7%	2.12	30	57%	0.26	22	95%
	ccp	0.00	100	100%	0.08	3	96%	0.01	1	99%
$vfr009-300{\times}60$	2% ccp	18.40 0.01	100 1	1% 99%	1.84 0.05	20 3	47% 97%	0.15 0.03	3 1	90% 97%
f 000 400 20	2%	7.35	154	28%	3.74	163	44%	0.08	2	93%
vfr009 - 400×20	ccp	0.01	1	99%	0.02	1	98%	0.00	0	100%
$v fr 009 - 400 \times 40$	2%	47.98	241	3%	2.99	57	58%	0.10	6	97%
	2%	0.02 45.84	305	98% 1%	0.03 2.06	24	98% 53%	0.03	3	99% 93%
$\mathbf{vfr009} - 400 \times 60$	ccp	0.13	9	95%	0.04	2	97%	0.03	$\frac{3}{2}$	98%
vfr009 - 500×20	2%	51.57	1382	13%	4.19	80	37%	1.09	56	90%
VII 003 000 × 20	ccp	0.07	2	95%	0.01	1	99%	0.01	1	99%
$vfr009-500{\times}40$	2% ccp	72.83 0.01	303 1	6% 99%	5.94 0.01	93 1	53% 99%	0.17 0.01	10 1	92% 99%
£ 000 × 00 00	2%	56.38	184	1%	5.28	53	46%	0.34	15	93%
$vfr009 - 500 \times 60$	ccp	0.09	2	92%	0.06	3	96%	0.03	2	98%
vfr009 - 600×20	2%	25.62	285	16%	3.88	32	27%	0.13	2	88%
	2%	0.02 135.33	$\frac{1}{732}$	98% 2%	0.02 8.70	189	98% 47%	0.01 1.22	116	99% 94%
$\mathbf{vfr009} - 600 \times 40$	ccp	0.01	132	99%	0.37	$\frac{169}{32}$	95%	0.01	110	94%
$v fr 009 - 600 \times 60$	2%	104.40	357	1%	5.73	82	46%	0.74	17	84%
VII 000 - 000×00	ccp	0.03	2	98%	0.00	0	100%	0.02	1	98%
$vfr009-700{\times}20$	2%	29.47 0.03	594 1	11% 97%	7.44 0.00	132 0	17% $100%$	1.17 0.00	79 0	76% 100%
6.000 F :-	2%	180.85	$\frac{1}{1441}$	0%	4.48	111	46%	0.00	3	83%
$v fr 009 - 700 \times 40$	ccp	0.00	0	100%	0.04	1	96%	0.02	1	98%
$v fr 009 - 700 \times 60$	2%	133.25	805	0%	7.74	92	44%	0.16	4	91%
	2%	0.06 30.30	450	97% 8%	0.05 5.65	51	98% 23%	0.09	9 8	99%
$vfr009-800{\times}20$	ccp	0.02	450 1	$8\% \\ 98\%$	0.00	0	$\frac{23\%}{100\%}$	0.38 0.03	8 1	78% 97%
vrfm000 000 40	2%	237.34	1792	2%	8.86	160	43%	1.05	78	83%
vfr009 - 800×40	ccp	0.03	1	97%	0.02	1	98%	0.02	1	98%
$\mathbf{vfr009} - 800 \times 60$	2%	160.90	773	2%	6.97	92	47%	0.17	4	89%
	2%	0.21	20	98% 100%	0.21 0.00	13	94%	0.51	42	98% 100%
$vfr010-10\times05$	ccp	0.00	1	99%	0.00	0	100%	0.00	0	100%
vfr010 - 10×10	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
v11010 - 10×10	ccp	0.07	1	93%	0.00	0	100%	0.00	0	100%
$vfr010-10{\times}15$	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
	2%	0.01	$\frac{1}{0}$	99%	0.00	0	100% 100%	0.00	0	$\frac{100\%}{100\%}$
$vfr010-10{\times}20$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr010 - 20×05	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
VII 010 - 20 X 00	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%

Table 8: Continued from previous page

_	Stopping		$L_h =$			$L_h = 50$			$L_h = 50$	
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr010 - 20×10	2%	0.00	0	100%	0.01	1	99%	0.00	0	100%
VII 010 20×10	ccp 2%	0.01	1	99%	0.00	0 2	100%	0.00	0	100%
$vfr010-20{\times}15$	ccp	$0.00 \\ 0.03$	0 1	100% $97%$	0.02 0.00	0	99% 100%	$0.00 \\ 0.00$	0	100% 100%
-f-010 00×00	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr010 - 20×20	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
$vfr010 - 30 \times 05$	2%	0.00	0	100%	0.01 0.03	1	99%	0.00	0	100%
	2%	0.02	0	99%	0.03	3 6	99% 97%	0.00	0	100% 100%
$vfr010 - 30 \times 10$	ccp	0.02	1	98%	0.00	0	100%	0.00	0	100%
vfr010 - 30×15	2%	0.01	1	99%	0.01	1	99%	0.00	0	100%
VIIO10 00×10	ccb	0.00	0	100%	0.01	1	99%	0.00	0	100%
$vfr010-30{\times}20$	2% ccp	$0.00 \\ 0.02$	0 1	100% 98%	0.03 0.01	1 1	97% 99%	$0.00 \\ 0.00$	0	100% 100%
-f-010 40×05	2%	0.00	0	100%	0.13	8	96%	0.00	0	100%
vfr010 - 40×05	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr010 - 40×10	2%	0.10	3	94%	0.07	3	96%	0.00	0	100%
	2%	0.05	3	97% 99%	0.02	1 3	98% 95%	0.00	0	100%
$vfr010 - 40 \times 15$	ccp	0.06	4	97%	0.00	1	99%	0.00	0	100%
vfr010 - 40×20	2%	0.00	0	100%	0.05	2	96%	0.00	0	100%
VII U I U = 4U X ZU	ccp	0.03	3	99%	0.00	0	100%	0.00	0	100%
$vfr010-50{\times}05$	2%	$0.00 \\ 0.01$	0 1	100% 99%	0.12 0.02	$\frac{2}{1}$	90% 98%	$0.00 \\ 0.00$	0 0	100% 100%
6.010	2%	0.01	0	100%	0.02	2	98%	0.00	0	100%
$vfr010 - 50 \times 10$	ccp	0.01	1	99%	0.00	0	100%	0.00	0	100%
vfr010 - 50×15	2%	0.01	1	99%	0.11	2	90%	0.00	0	100%
VIIO10 00×10	ccp	0.09	3	94%	0.02	1	98%	0.00	0	100%
$vfr010-50{\times}20$	2% ccp	0.03 0.04	2 3	98% 98%	0.04 0.03	$\frac{2}{2}$	97% 98%	0.00	0	100% 100%
f.010 00 0F	2%	0.00	0	100%	0.00	0	100%	0.00	0	100%
$vfr010 - 60 \times 05$	ccp	0.00	0	100%	0.00	0	100%	0.00	0	100%
vfr010 - 60×10	2%	0.04	1	96%	0.05	2	96%	0.00	0	100%
	2%	0.03	1 5	97% 94%	0.03	2	98% 92%	0.02	1	99% 99%
$vfr010-60{\times}15$	ccp	0.14 0.03	3 1	94%	0.09	1	98%	0.01 0.03	1	99% 97%
f-010 60×20	2%	0.14	6	94%	0.06	2	96%	0.00	0	100%
vfr010 - 60×20	ccp	0.05	1	95%	0.10	8	97%	0.03	2	98%
$vfr010 - 100 \times 20$	2%	1.03	16	74%	0.10	3	92%	0.01	1	99%
	2%	0.09	6	96% 71%	0.01 0.42	1 17	99% 81%	0.02	0	98% 100%
$vfr010-100{\times}40$	ccp	0.01	1	99%	0.42	0	100%	0.00	0	100%
vfr010 - 100×60	2%	0.44	10	77%	0.48	18	79%	0.00	0	100%
VII 010 - 100 × 00	ccp	0.01	1	99%	0.02	2	99%	0.02	1	98%
$vfr010-200{\times}20$	2%	7.98 0.07	48	$\frac{29\%}{96\%}$	0.75 0.03	22	75% 99%	$0.00 \\ 0.00$	0	100% 100%
	2%	8.00	46	18%	1.23	3 14	55%	0.00	3	98%
$v fr 010 - 200 \times 40$	ccp	0.02	1	98%	0.02	2	99%	0.02	1	98%
vfr010 - 200×60	2%	8.77	37	6%	1.40	9	39%	0.06	3	97%
200,000	2%	0.03 8.83	3 148	99% 21%	0.00 10.03	833	$\frac{100\%}{47\%}$	0.00 0.05	$\frac{0}{2}$	100% 96%
$vfr010-300{\times}20$	ccp	8.83 0.00	148	$\frac{21\%}{100\%}$	0.03 0.01	833 1	47% 99%	0.05 0.00	0	96% 100%
f-010 200 · 40	2%	27.50	122	1%	2.42	24	52%	0.10	2	93%
vfr010 - 300×40	ccp	0.06	4	97%	0.01	1	99%	0.03	2	98%
vfr010 - 300×60	2%	19.73	115	4%	1.65	20	49%	0.08	3	95%
	2%	0.06 18.09	621	$\frac{96\%}{26\%}$	0.05 2.67	$\frac{2}{22}$	96% 46%	0.00 0.11	0 4	$\frac{100\%}{93\%}$
$vfr010-400{\times}20$	ccp	0.00	021	$\frac{26\%}{100\%}$	0.03	$\frac{22}{2}$	$\frac{46\%}{98\%}$	0.11 0.03	4 1	93% 97%
vfr010 400×40	2%	49.29	175	6%	3.92	100	53%	0.10	3	92%
vfr010 - 400×40	ccp	0.04	1	96%	0.06	3	97%	0.02	1	98%
vfr010 - 400×60	2%	45.72	197	2%	4.30	53	48%	0.12	2	92%
	2%	0.02 46.98	643	98% 18%	0.08 4.68	203	98% 45%	0.06	1 3	94% 97%
$vfr010-500{\times}20$	ccp	0.04	2	97%	0.01	203 1	99%	0.00	2	91%
wfm010	2%	93.78	582	5%	5.16	153	57%	0.19	7	91%
$vfr010 - 500 \times 40$	ccp	0.03	3	99%	0.01	1	99%	0.01	1	99%
$\mathbf{vfr010} - 500 \times 60$	2%	65.35	391	1%	4.50	38	38%	0.16	7	93%
	2%	0.05 47.80	985	97% 18%	0.12 3.85	9 61	96% 39%	0.05 0.32	5 9	99% 84%
$vfr010 - 600 \times 20$			2000	10.70		() [.0970	U.DZ	.9	0470

Table 8: Continued from previous page

	Stopping		$L_h =$	1		$L_h = 50$	000		$L_h = 50$	000
Dataset	Criterion	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum	I_{move}	I_{max}	Local Optimum
vfr010 - 600×40	2%	122.54	1144	1%	4.80	113	51%	0.07	2	95%
VIPU10 - 000×40	ccp	0.09	2	92%	0.32	28	96%	0.00	0	100%
vfr010 - 600×60	2%	113.94	506	0%	4.64	48	44%	0.19	5	89%
VIIO10 - 000×00	ccp	0.01	1	99%	0.03	2	98%	0.03	1	97%
vfr010 - 700×20	2%	11.03	241	23%	5.56	107	36%	0.19	8	94%
VII010 - 700×20	ccp	0.01	1	99%	0.02	1	98%	0.01	1	99%
vfr010 - 700×40	2%	186.41	830	0%	5.35	176	45%	0.39	35	95%
VIIO10 - 700×40	ccp	0.01	1	99%	0.03	1	97%	0.04	2	97%
vfr010 - 700×60	2%	147.87	498	0%	6.02	169	41%	0.70	48	92%
VII 010 - 700×00	ccp	0.04	2	97%	0.03	2	98%	0.04	2	97%
vfr010 - 800×20	2%	41.47	802	10%	7.09	110	19%	0.44	7	78%
VII 010 - 800 x 20	ccp	0.00	0	100%	0.01	1	99%	0.04	1	96%
vfr010 - 800×40	2%	260.91	1499	1%	7.17	153	43%	0.14	2	90%
VII 010 - 800×40	ccp	0.01	1	99%	0.08	6	97%	0.01	1	99%
vfr010 - 800×60	2%	217.37	1022	0%	5.78	52	51%	0.45	19	89%
VII 010 - 800 × 00	ccp	0.05	4	98%	0.02	1	98%	0.06	4	97%

Table 9: For all instances of the three problem classes, and for $L_h \in \{1,5000,50000\}$, the table displays two values $(idle_r \text{ and } idle_p)$ collected from the experiments that used the CCP cutoff time. $idle_r$ stands for the number of times that the state of LAHC changes, plateau moves aside, and is shown in thousands of iterations rounded to the nearest integer. $idle_p$ shows that same number percentage-wise in terms of the total number of iterations done during the entire run. The results are averaged over 100 independent runs. For each instance we also show the value of $\beta \ln |N(s)|$ (using p = 0.95), the overhead factor of the CCP calculation with respect to visiting each solution in the neighbourhood exactly once.

TSF

Dataset	$\beta \ln N(s) $	$L_h =$	1	$L_h = 5$	000	$L_h = 50$	0000
		$idle_r$ (10^3)	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$
d657	15.28	3	0.06%	13710	51.41%	137183	62.69%
u724	15.47	4	0.05%	15347	49.96%	153058	62.51%
rat783	15.63	4	0.05%	16117	48.86%	161686	62.49%
dsj1000	16.12	6	0.04%	22730	47.07%	227058	62.27%
pr1002	16.12	5	0.04%	22610	46.63%	226204	61.89%
u1060	16.23	6	0.03%	24198	44.29%	240926	61.67%
vm1084	16.28	6	0.04%	25139	45.45%	249766	61.92%
pcb1173	16.44	6	0.03%	26853	43.95%	269454	61.30%
d1291	16.63	7	0.03%	30498	42.17%	304071	61.03%
rl1304	16.65	8	0.03%	31295	42.59%	310949	61.11%
rl1323	16.68	8	0.03%	31809	42.39%	316060	61.05%
nrw1379	16.76	8	0.03%	31797	41.83%	320050	60.86%
fl1400	16.79	9	0.02%	31318	34.40%	309054	61.78%
u1432	16.84	8	0.01%	32758	31.34%	331629	58.15%
fl1577	17.03	10	0.02%	38128	33.79%	377608	59.66%
d1655	17.13	10	0.02%	40120	35.68%	401628	59.50%
vm1748	17.23	11	0.02%	43643	37.53%	433975	59.91%
u1817	17.31	11	0.02%	44514	30.77%	446753	57.74%
rl1889	17.39	12	0.02%	48231	35.95%	476534	59.19%
d2103	17.60	13	0.02%	52834	32.26%	528565	58.54%
u2152	17.65	13	0.01%	53895	27.04%	541296	55.99%
u2319	17.80	13	0.01%	54634	20.28%	555146	53.30%
pr2392	17.86	15	0.02%	61897	33.31%	618135	58.46%
pcb3038	18.34	19	0.01%	79761	29.28%	800315	57.16%
fl3795	18.79	27	0.01%	103946	15.67%	1007428	47.27%
fnl4461	19.11	29	0.01%	122127	23.50%	1228007	54.39%
rl5915	19.67	42	0.01%	175568	18.08%	1743452	50.93%
rl5934	19.68	42	0.01%	176363	18.36%	1750842	50.71%
brd14051	21.40	109	0.00%	452401	10.19%	4485125	41.64%
d15112	21.55	118	0.00%	495194	10.01%	4898465	41.06%

QAP

Dataset β	$\beta \ln N(s) $	$L_h =$	1	$L_h = 5$	000	$L_h = 50000$		
Dataset		$idle_r$ (10 ³)	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$	
bur26a	8.78	0	1.24%	207	64.62%	2091	63.08%	
bur26b	8.78	0	1.33%	191	63.97%	1946	62.33%	

 Table 9: Continued from previous page

		$L_h =$		$\frac{m \ previous \ p}{L_h = 5}$		$L_h = 50$	0000
Dataset	$\beta \ln N(s) $	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$
bur26c	8.78	$\frac{tate_r (10)}{0}$	$\frac{iaie_{p}}{1.30\%}$	$\frac{\imath u \imath e_r \ (10^\circ)}{211}$	$\frac{i a i e_p}{64.69\%}$	$\frac{tate_r (10^\circ)}{2126}$	$\frac{iaie_p}{62.95\%}$
bur26d	8.78	0	1.33%	200	64.45%	1997	62.61%
bur26e	8.78	0	1.37%	212	64.85%	2165	63.14%
bur26f	8.78	0	1.37%	197	64.44%	2009	63.00%
bur26g	8.78	0	1.33%	215	64.76%	2153	63.34%
bur26h	8.78	0	1.39%	201	64.56%	2012	62.61%
chr12a	7.19	0	1.89%	63	56.57%	653	53.35%
chr12b	7.19	0	$\frac{1.09\%}{2.13\%}$	69	55.47%	707	52.69%
chr12c	7.19	0	1.95%	59	55.88%	594	52.09% $52.27%$
chr15a	7.19	0	1.48%	78	57.25%	804	55.02%
chr15b	7.65	0	1.59%	87	58.83%	894	56.60%
chr15c	7.65	0	1.46%	78	58.08%	816	55.87%
chr18a	8.03	0	1.24%	109	60.46%	1126	58.47%
chr18b	8.03	0	1.10%	106	60.35%	1073	58.00%
chr20a	8.24	0	1.06%	121	61.02%	1227	59.12%
chr20b	8.24	0	0.96%	109	60.63%	1096	58.90%
chr20c	8.24	0	1.33%	135	59.85%	1377	57.30%
chr22a	8.44	0	1.02%	142	62.28%	1531	60.72%
chr22b	8.44	0	0.95%	134	62.00%	1362	60.57%
chr25a	8.70	0	0.92%	173	62.19%	1743	60.61%
els19	8.14	0	1.89%	140	62.01%	1413	59.90%
esc16a	7.78	0	0.82%	46	57.07%	456	54.10%
esc16b	7.78	0	0.60%	26	53.04%	261	50.42%
esc16c	7.78	0	1.03%	54	57.82%	538	54.77%
esc16d	7.78	0	0.72%	42	56.96%	417	54.52%
esc16e	7.78	0	0.60%	37	57.15%	374	54.23%
esc16f	7.78	0	0.00%	0	0.00%	0	0.00%
esc16g	7.78	0	0.66%	41	56.11%	406	53.41%
esc16h	7.78	0	1.01%	43	51.77%	427	47.88%
esc16i	7.78	0	0.76%	35	52.57%	350	49.10%
esc16j	7.78	0	0.52%	30	57.11%	298	54.56%
esc32a	9.20	0	0.46%	172	64.15%	1761	63.27%
esc32b	9.20	0	0.43%	152	65.15%	1546	64.20%
esc32c	9.20	0	0.49%	104	61.81%	1041	59.33%
esc32d	9.20	0	0.38%	120	63.69%	1216	62.27%
esc32e	9.20	o o	0.13%	28	50.39%	281	46.83%
esc32g	9.20	o o	0.15%	33	54.47%	327	51.25%
esc32h	9.20	o o	0.44%	127	63.69%	1287	61.99%
esc64a	10.60	0	0.11%	119	59.10%	1189	62.45%
esc128	12.00	0	0.04%	226	51.23%	2254	65.56%
had12	7.19	0	2.01%	66	57.75%	677	55.60%
had14	7.51	0	1.99%	87	59.86%	876	57.86%
had16	7.78	0	1.72%	107	60.55%	1069	58.15%
had18	8.03	0	1.46%	123	61.97%	1258	60.37%
had20	8.24	0	1.42%	145	62.96%	1459	61.20%
kra30a	9.07	0	0.78%	245	63.61%	2516	62.66%
kra30b	9.07	0	0.77%	243	63.72%	2493	62.63%
kra32	9.20	0	0.70%	265	63.89%	2724	62.94%
lipa20a	8.24	0	0.98%	134	61.19%	1439	59.05%
lipa20b	8.24	0	1.04%	162	59.58%	1658	57.14%
lipa30a	9.07	0	0.63%	236	62.39%	2663	60.54%
lipa30b	9.07	0	0.69%	289	60.88%	2970	58.61%
lipa40a	9.66	0	0.46%	311	62.65%	3531	61.99%
lipa40b	9.66	0	0.50%	442	61.50%	4384	59.87%
lipa50a	10.11	0	0.37%	407	62.41%	4937	62.28%
lipa50b	10.11	0	0.39%	584	61.74%	5902	60.55%
lipa60a	10.47	0	0.30%	490	62.22%	5653	62.59%
lipa60b	10.47	0	0.31%	625	61.73%	7535	61.09%
lipa70a	10.79	0	0.25%	601	61.85%	6869	62.92%
lipa70b	10.79	0	0.26%	787	61.46%	9268	61.37%
lipa80a	11.05	0	0.21%	682	61.19%	7128	62.90%
lipa80b	11.05	0	0.22%	834	61.18%	11056	61.72%
lipa90a	11.29	0	0.20%	808	60.98%	8593	63.06%
lipa90b	11.29	0	0.20%	911	60.77%	12978	62.00%
nug12	7.19	0	1.74%	58	57.38%	590	54.82%
nug14	7.51	o o	1.59%	79	59.63%	827	57.60%
nug15	7.65	o o	1.47%	87	59.58%	900	58.18%
nug16a	7.78	0	1.42%	99	60.60%	1005	58.84%
nug16b	7.78	0	1.32%	97	59.80%	982	57.84%
nug17	7.78	0	1.32%	105	60.90%	1088	59.17%
MD - 1	1.01	l .					
nug18	8.03	0	1.24%	113	61.03%	1137	59.30%

Table 9: Continued from previous page

Dataget	$\beta \ln N(s) $	$L_h =$	1	$L_h = 5$	000	$L_h = 50$	0000
Dataset	$\beta \ln N(s) $	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$
nug21	8.34	0	1.17%	147	62.15%	1516	60.85%
nug22	8.44	0	1.26%	166	63.00%	1686	61.42%
nug24	8.62	0	1.01%	180	62.60%	1837	61.35%
nug25	8.70	0	0.92%	191	62.87%	1950	61.44%
nug27	8.86	o o	0.96%	219	63.61%	2247	62.49%
nug28	8.93	o o	0.85%	222	63.28%	2319	62.28%
nug30	9.07	0	0.82%	254	63.49%	2563	62.59%
rou12	7.19	0	1.82%	63	57.10%	645	55.25%
rou15	7.65	0	1.45%	83	59.59%	871	57.58%
rou20	8.24	0	1.45% $1.05%$	121	61.30%	1273	59.40%
	1		1.03% $1.99%$				55.30%
scr12	7.19	0		64	57.89%	656	55.30% 58.03%
scr15	7.65	0	1.69%	95	60.05%	963	
scr20	8.24	0	1.29%	140	61.80%	1422	60.18%
sko42	9.75	0	0.60%	409	63.81%	4191	63.45%
sko49	10.07	0	0.52%	498	63.69%	5087	63.78%
sko56	10.34	0	0.47%	606	63.53%	6180	63.91%
sko64	10.60	0	0.41%	731	63.44%	7388	64.15%
sko72	10.84	0	0.37%	848	63.04%	8615	64.20%
sko81	11.08	0	0.33%	993	63.00%	10020	64.26%
sko90	11.29	0	0.31%	1134	62.73%	11546	64.26%
sko100a	11.50	0	0.28%	1303	62.49%	13243	64.28%
sko100b	11.50	0	0.27%	1307	62.50%	13216	64.33%
sko100c	11.50	0	0.28%	1315	62.46%	13343	64.35%
sko100d	11.50	0	0.27%	1302	62.53%	13217	64.34%
sko100e	11.50	0	0.27%	1323	62.41%	13380	64.26%
sko100f	11.50	0	0.26%	1299	62.50%	13245	64.31%
ste36a	9.44	0	0.77%	335	64.42%	3431	63.49%
ste36b	9.44	0	0.86%	348	64.68%	3552	63.96%
ste36c	9.44	0	0.86%	345	64.59%	3509	63.81%
tai10a	6.80	0	2.35%	48	55.06%	494	51.85%
tai10b	6.80	0	2.73%	53	54.75%	559	51.90%
tai12a	7.19	0	1.88%	67	57.54%	695	55.21%
tai12b	7.19	0	2.35%	64	54.93%	647	51.99%
tai15a	7.19	0	1.39%	81	59.35%	826	57.07%
	7.65	0		97	59.59%	996	57.07% $57.31%$
tai15b			1.91%				
tai17a	7.91	0	1.28%	96	60.22%	986	58.50%
tai20a	8.24	0	1.00%	119	60.68%	1202	59.17%
tai20b	8.24	0	1.59%	138	57.36%	1391	54.55%
tai25a	8.70	0	0.79%	158	61.72%	1632	60.26%
tai25b	8.70	0	1.34%	218	64.93%	2207	63.16%
tai30a	9.07	0	0.69%	207	62.24%	2096	61.27%
tai30b	9.07	0	1.26%	276	65.15%	2807	63.80%
tai35a	9.38	0	0.56%	252	62.54%	2519	61.63%
tai35b	9.38	0	1.05%	347	66.54%	3504	65.65%
tai40a	9.66	0	0.47%	298	62.38%	3068	61.94%
tai40b	9.66	0	0.98%	421	66.41%	4249	65.79%
tai50a	10.11	0	0.38%	401	62.16%	4072	62.29%
tai50b	10.11	0	0.79%	568	66.37%	5697	66.35%
tai60a	10.47	0	0.30%	501	61.73%	5108	62.48%
tai60b	10.47	0	0.69%	734	66.83%	7368	67.14%
tai64c	10.60	0	0.08%	85	54.10%	872	58.74%
tai80a	11.05	0	0.22%	706	61.13%	7325	62.69%
tai80b	11.05	0	0.49%	1046	65.58%	10536	66.64%
tai100a	11.50	0	0.17%	943	60.35%	9723	62.75%
tai100b	11.50	0	0.39%	1402	64.99%	14094	66.77%
tai150b	12.32		0.35%	2300	63.16%	23068	66.17%
tai256c	13.39	0	0.23%	505	37.31%	5035	59.48%
tho30	9.07	0	0.02%	262	63.53%	2655	62.59%
tho40	9.66	0	0.92%	380	63.49%	3924	63.01%
tho150	12.32	1	0.20%	2233	61.08%	22656	64.09%
wil50	10.11	0	0.53%	525	64.14%	5284	64.04%
wil100	11.50	0	0.26%	1301	62.52%	13325	64.34%

PFSP

Dataset	$\beta \ln N(s) $	$L_h = 1$		$L_h = 5000$		$L_h = 50000$	
Dataset		$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$
$tai001 - 020 \times 05$	8.88	0	0.14%	66	54.58%	791	51.88%
$tai002 - 020 \times 05$	8.88	0	0.09%	62	57.09%	656	54.71%
$tai003 - 020 \times 05$	8.88	0	0.28%	107	60.34%	1180	58.58%
$tai004 - 020 \times 05$	8.88	0	0.25%	118	61.60%	1237	60.45%
$tai005 - 020 \times 05$	8.88	0	0.24%	91	57.83%	923	55.68%
$tai006 - 020 \times 05$	8.88	0	0.22%	88	58.68%	984	56.24%

Table 9: Continued from previous page

Dataset	$\beta \ln N(s) $	$L_h =$	1	$L_h = 5$	000		$L_h = 50000$		
Baraser		$idle_r$ (10^3)	$idle_p$	$idle_r$ (10^3)	$idle_p$	$idle_r$ (10^3)	$idle_p$		
$tai007 - 020 \times 05$	8.88	0	0.20%	65	56.14%	651	53.23%		
$tai008-020{\times}05$	8.88	0	0.22%	107	60.87%	1107	59.38%		
$tai009 - 020 \times 05$	8.88	0	0.29%	104	60.07%	1056	58.02%		
$tai010-020{\times}05$	8.88	0	0.26%	110	60.79%	1100	59.29%		
$tai011 - 020 \times 10$	8.88	0	0.34%	132	62.57%	1350	61.72%		
$tai012-020{\times}10$	8.88	0	0.37%	129	62.52%	1292	61.22%		
$tai013 - 020 \times 10$	8.88	0	0.24%	126	62.83%	1299	61.42%		
$tai014-020{\times}10$	8.88	0	0.27%	126	62.44%	1302	60.90%		
$tai015-020{\times}10$	8.88	0	0.29%	131	62.58%	1348	61.11%		
$tai016-020{\times}10$	8.88	0	0.26%	121	61.94%	1294	60.96%		
$tai017 - 020 \times 10$	8.88	0	0.29%	129	62.73%	1338	61.53%		
$tai018 - 020 \times 10$	8.88	0	0.24%	123	62.42%	1254	60.61%		
$tai019 - 020 \times 10$	8.88	0	0.21%	110	60.42%	1160	59.75%		
$tai020-020{\times}10$	8.88	0	0.27%	123	62.70%	1253	61.25%		
$tai021 - 020 \times 20$	8.88	0	0.32%	125	62.58%	1307	61.35%		
$tai022 - 020 \times 20$	8.88	0	0.25%	130	62.68%	1346	61.37%		
$tai023 - 020 \times 20$	8.88	0	0.26%	122	62.30%	1248	61.01%		
$tai024 - 020 \times 20$	8.88	0	0.23%	133	62.86%	1337	61.47%		
$tai025 - 020 \times 20$	8.88	0	0.32%	124	62.56%	1267	61.35%		
$tai026 - 020 \times 20$	8.88	0	0.31%	126	62.50%	1273	61.02%		
$tai027 - 020 \times 20$	8.88	ő	0.28%	127	62.67%	1300	61.39%		
$tai028 - 020 \times 20$	8.88	ő	0.25%	125	62.63%	1310	61.43%		
$tai029 - 020 \times 20$	8.88	0	0.26%	126	62.22%	1307	61.13%		
$tai020 - 020 \times 20$	8.88	0	0.31%	133	62.34%	1355	61.29%		
$tai031 - 050 \times 05$	10.78	ő	0.01%	94	51.73%	960	57.98%		
$tai032 - 050 \times 05$	10.78	ő	0.02%	131	51.66%	1435	58.27%		
$tai033 - 050 \times 05$	10.78	0	0.03%	133	55.17%	1374	61.48%		
$tai034 - 050 \times 05$	10.78	0	0.02%	130	53.26%	1400	59.58%		
$tai035 - 050 \times 05$	10.78	0	0.02%	100	52.17%	999	56.91%		
$tai036 - 050 \times 05$	10.78	0	0.02%	129	55.83%	1311	60.63%		
$tai037 - 050 \times 05$	10.78	0	0.04%	155	55.11%	1583	59.25%		
$tai038 - 050 \times 05$	10.78	0	0.03%	128	55.47%	1391	60.16%		
$tai039 - 050 \times 05$	10.78	0	0.03%	138	55.61%	1395	61.10%		
$tai040 - 050 \times 05$	10.78	0	0.02%	110	54.97%	1091	62.18%		
$tai041 - 050 \times 10$	10.78	0	0.05%	260	59.54%	2980	63.34%		
$tai041 - 050 \times 10$ $tai042 - 050 \times 10$	10.78	0	0.06%	294	59.73%	3045	63.54%		
$tai042 - 050 \times 10$	10.78	0	0.07%	332	61.22%	3492	64.48%		
$tai044 - 050 \times 10$	10.78	0	0.07%	269	59.83%	2846	63.90%		
$tai045 - 050 \times 10$	10.78	0	0.07%	304	60.35%	3251	64.30%		
$tai046 - 050 \times 10$	10.78	0	0.06%	255	59.18%	2848	63.30%		
$tai040 - 050 \times 10$ $tai047 - 050 \times 10$	10.78	0	0.00%	236	57.50%	2469	61.68%		
$tai048 - 050 \times 10$	10.78	0	0.09%	269	59.74%	2806	63.71%		
$tai049 - 050 \times 10$	10.78	0	0.06%	293	59.43%	3165	63.86%		
$tai049 - 050 \times 10$ $tai050 - 050 \times 10$	10.78	0	0.00%	280	59.45%	3032	63.16%		
$tai050 - 050 \times 10$ $tai051 - 050 \times 20$	10.78	0	0.07%	353	61.05%	3695	64.59%		
$tai051 - 050 \times 20$ $tai052 - 050 \times 20$	10.78	0	0.05%	360	61.05%	3913	64.59%		
$tai052 - 050 \times 20$ $tai053 - 050 \times 20$	10.78	0	0.00%	349	60.88%	3712	64.17%		
$tai055 - 050 \times 20$ $tai054 - 050 \times 20$	10.78	0	0.07%	357	61.27%	3763	64.17% $64.34%$		
$tai054 - 050 \times 20$ $tai055 - 050 \times 20$	10.78	0	0.08%	375	61.27% $61.38%$	3931	64.33%		
$tai056 - 050 \times 20$ $tai056 - 050 \times 20$	10.78	0	0.06% $0.07%$	351	61.38% $61.42%$	3676	64.33% $64.31%$		
	10.78	0	0.07%	363	61.42% $61.02%$	3843	64.31%		
$tai057 - 050 \times 20$ $tai058 - 050 \times 20$	10.78	0	$0.07\% \\ 0.06\%$	360	61.02% $61.02%$	3843	64.41% $64.27%$		
$tai058 - 050 \times 20$ $tai059 - 050 \times 20$	10.78						64.27% $64.42%$		
		0	0.06%	362	61.63%	3825			
$tai060 - 050 \times 20$	10.78	0	0.09%	339	60.70%	3714	64.09%		
$tai061 - 100 \times 05$	12.19	0	0.01%	120	37.98%	1193	58.49%		
$tai062 - 100 \times 05$	12.19	0	0.00%	116	36.62%	1185	57.26%		
$tai063 - 100 \times 05$	12.19	0	0.01%	158	36.50%	1675	57.69%		
tai064 – 100×05	12.19	0	0.00%	132	34.55%	1329	58.15%		
$tai065 - 100 \times 05$	12.19	0	0.00%	153	37.31%	1525	59.18%		
tai066 – 100×05	12.19	0	0.00%	127	36.59%	1281	57.61%		
$tai067 - 100 \times 05$	12.19	0	0.00%	146	36.76%	1461	59.49%		
$tai068 - 100 \times 05$	12.19	0	0.01%	164	37.06%	1723	59.55%		
$tai069 - 100 \times 05$	12.19	0	0.01%	157	39.54%	1544	58.41%		
$tai070 - 100 \times 05$	12.19	0	0.00%	153	36.73%	1549	57.62%		
$tai071 - 100 \times 10$	12.19	0	0.01%	361	49.00%	3679	63.67%		
$tai072 - 100 \times 10$	12.19	0	0.02%	347	49.60%	3465	63.43%		
$tai073 - 100 \times 10$	12.19	0	0.01%	315	49.20%	3074	63.41%		
$tai074-100\times10$	12.19	0	0.02%	399	51.09%	4049	63.69%		
$tai075-100\times10$	12.19	0	0.02%	408	50.99%	4059	63.74%		
$tai076-100{\times}10$	12.19	0	0.02%	326	50.46%	3278	63.82%		
$tai077-100{\times}10$	12.19	0	0.02%	317	46.48%	3227	63.36%		
$tai078 - 100 \times 10$	12.19	0	0.01%	344	47.03%	3579	62.35%		

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 5$				
1000 100 10	10.10	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$			
tai079 - 100×10	12.19	0	0.01%	298	40.68%	3095	60.59%			
tai080 - 100×10	12.19	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.01\% \\ 0.03\%$	236	48.31% $53.25%$	2350 6653	61.27% $64.22%$			
$ \begin{array}{r} \text{tai}081 - 100 \times 20 \\ \text{tai}082 - 100 \times 20 \end{array} $	12.19 12.19	0	0.03%	623 607	53.26%	6309	64.22% $64.37%$			
$tai082 - 100 \times 20$ $tai083 - 100 \times 20$	12.19	0	0.03%	618	53.26%	6357	64.15%			
$tai084 - 100 \times 20$	12.19	0	0.03%	530	53.41%	5330	63.85%			
$tai085 - 100 \times 20$	12.19	0	0.02%	559	52.07%	5680	63.48%			
$tai086 - 100 \times 20$	12.19	0	0.03%	557	54.15%	5581	63.67%			
$tai087 - 100 \times 20$	12.19	0	0.03%	662	53.46%	6603	64.28%			
$tai088 - 100 \times 20$	12.19	0	0.02%	663	53.51%	6826	64.04%			
$tai089 - 100 \times 20$	12.19	0	0.02%	653	54.02%	6823	64.15%			
$tai090 - 100 \times 20$	12.19	0	0.02%	509	50.72%	5238	63.54%			
$tai091 - 200 \times 10$	13.58	0	0.00%	335	22.73%	3265	54.64%			
$tai092 - 200 \times 10$	13.58	0	0.01%	537	29.99%	5359	59.79%			
$tai093 - 200 \times 10$	13.58	0	0.00%	390	27.83%	3528	57.92%			
$tai094 - 200 \times 10$	13.58	0	0.00%	305	20.05%	3091	52.10%			
$tai095 - 200 \times 10$	13.58	0	0.00%	510	33.74%	5031	60.23%			
tai096 – 200×10	13.58	0	0.00%	458	31.29%	4583	59.73%			
tai097 - 200×10	13.58	0	0.00%	406	26.40%	4019	56.87%			
tai098 - 200×10	13.58	0	0.00%	408	30.12%	3977	58.79% $60.60%$			
$tai099 - 200 \times 10$	13.58	0 0	$0.00\% \\ 0.00\%$	494	33.02% $29.41%$	4845				
$tai100 - 200 \times 10$ $tai101 - 200 \times 20$	13.58 13.58	0	0.00% $0.01%$	$418 \\ 912$	37.24%	4134 8967	58.56% $61.69%$			
$tai101 - 200 \times 20$ $tai102 - 200 \times 20$	13.58	0	0.01% $0.01%$	1100	37.24% $39.43%$	10954	61.69% $62.27%$			
$tai102 - 200 \times 20$ $tai103 - 200 \times 20$	13.58	0	0.01%	928	41.68%	9194	62.55%			
$tai103 = 200 \times 20$ $tai104 = 200 \times 20$	13.58	0	0.01%	889	37.84%	9236	62.15%			
$tai105 - 200 \times 20$	13.58	0	0.01%	944	37.42%	9314	61.83%			
$tai106 - 200 \times 20$	13.58	0	0.01%	939	40.16%	9200	62.00%			
$tai107 - 200 \times 20$	13.58	0	0.01%	1038	40.51%	10397	62.14%			
$tai108 - 200 \times 20$	13.58	0	0.01%	926	37.84%	9278	61.99%			
$tai109 - 200 \times 20$	13.58	0	0.01%	969	39.40%	9478	61.92%			
$tai110 - 200 \times 20$	13.58	0	0.01%	1035	40.38%	10565	62.88%			
$tai111 - 500 \times 20$	15.42	0	0.00%	1690	15.25%	16398	51.42%			
$tai112 - 500 \times 20$	15.42	0	0.00%	1524	14.05%	14608	49.34%			
$tai113 - 500 \times 20$	15.42	0	0.00%	1416	14.23%	13895	49.18%			
$tai114 - 500 \times 20$	15.42	0	0.00%	1418	13.12%	13969	46.31%			
$tai115 - 500 \times 20$	15.42	0	0.00%	1501	13.36%	14544	48.82%			
$tai116 - 500 \times 20$	15.42	0	0.00%	1584	14.73%	15453	49.81%			
$tai117 - 500 \times 20$	15.42	0	0.00%	1228	14.91%	12000	49.78%			
$tai118 - 500 \times 20$	15.42	0	0.00%	1462	14.71%	14308	49.46%			
tai119 - 500×20	15.42	0	0.00%	1569	14.93%	15155	50.61%			
$tai120 - 500 \times 20$	15.42	0	0.00%	1427	14.82%	13944	50.39%			
vfr001 - 10×05	7.39	0	0.33%	28	44.98%	281	41.77%			
$v fr 001 - 10 \times 10$	7.39 7.39	0	$0.95\% \ 0.57\%$	47	54.78% $55.17%$	486	52.76% $51.76%$			
$vfr001 - 10 \times 15$ $vfr001 - 10 \times 20$	7.39	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1.07%	50 54	56.14%	506 548	51.70% $52.90%$			
$v \text{fr} 001 - 10 \times 20$ $v \text{fr} 001 - 20 \times 05$	8.88	0	0.24%	90	59.14%	903	52.90% $57.13%$			
$v \text{fr} 001 - 20 \times 05$ $v \text{fr} 001 - 20 \times 10$	8.88	0	0.24% $0.39%$	120	62.37%	1220	60.76%			
$v fr 001 - 20 \times 10$ $v fr 001 - 20 \times 15$	8.88	0	0.39%	128	62.64%	1325	60.60%			
$v fr 001 - 20 \times 10$ $v fr 001 - 20 \times 20$	8.88	0	0.26%	134	62.98%	1366	61.29%			
$v fr 001 - 30 \times 05$	9.73	0	0.08%	86	57.85%	896	56.94%			
vfr001 - 30×10	9.73	ő	0.12%	177	61.74%	1945	62.13%			
vfr001 - 30×15	9.73	0	0.15%	197	62.78%	2103	62.88%			
$vfr001 - 30 \times 20$	9.73	0	0.14%	201	63.02%	2068	62.92%			
$vfr001-40{\times}05$	10.32	0	0.02%	71	52.03%	705	53.81%			
vfr001 - 40×10	10.32	0	0.08%	233	61.27%	2441	62.72%			
vfr001 - 40×15	10.32	0	0.07%	263	61.76%	2896	63.97%			
$vfr001 - 40 \times 20$	10.32	0	0.10%	268	61.42%	2823	63.78%			
$vfr001 - 50 \times 05$	10.78	0	0.01%	86	49.88%	857	54.42%			
vfr001 - 50×10	10.78	0	0.06%	320	60.60%	3357	64.07%			
vfr001 - 50×15	10.78	0	0.07%	332	60.92%	3536	64.02%			
$v fr 001 - 50 \times 20$	10.78	0	0.06%	354	60.87%	3686	64.06%			
$v fr 001 - 60 \times 05$	11.15	0	0.01%	116	50.82%	1163	58.15%			
$v fr 001 - 60 \times 10$	11.15	0	0.06%	337	59.60%	3424	64.06%			
$v fr 001 - 60 \times 15$	11.15	0	0.04%	373	58.36%	3901	64.38%			
$vfr001 - 60 \times 20$ $vfr001 - 100 \times 20$	11.15 12.19	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.05\% \\ 0.03\%$	448 713	59.98% $53.53%$	4754 7526	64.68% $64.41%$			
$vfr001 - 100 \times 20$ $vfr001 - 100 \times 40$	12.19	0	0.03% $0.02%$	713 735	53.53% 54.41%	7713	64.41% $64.06%$			
$vfr001 - 100 \times 40$ $vfr001 - 100 \times 60$	12.19	0	0.02%	733 703	54.41% $55.83%$	7382	63.94%			
$v fr 001 - 100 \times 00$ $v fr 001 - 200 \times 20$	13.58	0	0.03% $0.01%$	1093	40.03%	10918	62.33%			
$v fr 001 - 200 \times 40$	13.58	0	0.01%	1476	36.93%	15597	62.20%			
vfr001 - 200×60	13.58	ő	0.01%	1455	39.28%	15571	62.24%			
****						ntinued on ne				

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 50$				
f=001 200×20	14.40	$idle_r$ (10^3)	$idle_p$	$idle_r (10^3)$ 1420	$idle_p$	$idle_r (10^3)$	$idle_p$			
$vfr001 - 300 \times 20$ $vfr001 - 300 \times 40$	14.40 14.40	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00% $0.00%$	2173	29.84% $26.49%$	14107 22538	60.23% 59.14%			
vfr001 - 300×40	14.40	0	0.00%	2149	24.92%	22956	58.37%			
vfr001 - 400×20	14.97	0	0.00%	1701	22.03%	16720	57.12%			
$v fr 001 - 400 \times 40$	14.97	0	0.00%	2675	21.45%	27021	57.07%			
vfr001 - 400×60	14.97	0	0.00%	2888	17.94%	30424	54.87%			
vfr001 - 500×20	15.42	0	0.00%	1699	14.13%	16493	50.50%			
vfr001 - 500×40	15.42	0	0.00%	3019	17.56%	30288	54.25%			
$\mathbf{vfr001} - 500 {\times} 60$	15.42	0	0.00%	3586	12.23%	37617	50.19%			
$vfr001 - 600 \times 20$	15.79	0	0.00%	1821	12.02%	17557	47.53%			
$\mathbf{vfr001} - 600 \mathbf{\times 40}$	15.79	0	0.00%	3512	13.44%	35165	49.68%			
$\mathbf{vfr001} - 600 \times 60$	15.79	0	0.00%	4105	11.41%	42165	48.33%			
vfr001 - 700×20	16.10	0	0.00%	1748	9.29%	16695	43.51%			
$v fr 001 - 700 \times 40$	16.10	0	0.00%	3743	11.23%	36664	46.31%			
$vfr001 - 700 \times 60$	16.10	1	0.00%	4832	8.91%	49883	42.75%			
vfr001 - 800×20	16.36	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$0.00\% \\ 0.00\%$	1646 4321	$7.14\% \\ 8.65\%$	16098	37.24%			
$v \text{fr} 001 - 800 \times 40 \\ v \text{fr} 001 - 800 \times 60$	16.36 16.36	1	0.00%	5231	$\frac{6.05\%}{7.64\%}$	42060 52676	43.72% $42.11%$			
$v \text{fr} 001 - 800 \times 00$ $v \text{fr} 002 - 10 \times 05$	7.39	0	0.69%	42	53.65%	434	51.26%			
$v \text{fr} 002 - 10 \times 05$ $v \text{fr} 002 - 10 \times 10$	7.39	0	0.56%	33	47.37%	330	43.42%			
$v \text{fr} 002 - 10 \times 10$ $v \text{fr} 002 - 10 \times 15$	7.39	0	1.03%	52	55.37%	525	52.31%			
$v fr 002 - 10 \times 10$ $v fr 002 - 10 \times 20$	7.39	0	0.76%	49	55.75%	492	52.86%			
$v fr 002 - 20 \times 05$	8.88	0	0.15%	66	56.94%	796	53.20%			
vfr002 - 20×10	8.88	0	0.26%	128	61.90%	1319	60.68%			
$v fr 002 - 20 \times 15$	8.88	0	0.27%	130	62.54%	1331	60.90%			
$vfr002-20{\times}20$	8.88	0	0.26%	127	62.56%	1299	61.32%			
$vfr002 - 30 \times 05$	9.73	0	0.11%	119	58.13%	1265	58.24%			
$vfr002 - 30 \times 10$	9.73	0	0.12%	189	62.70%	2041	63.14%			
$vfr002 - 30 \times 15$	9.73	0	0.15%	193	62.31%	2051	62.45%			
$vfr002 - 30 \times 20$	9.73	0	0.12%	198	62.20%	2108	62.51%			
$vfr002 - 40 \times 05$	10.32	0	0.05%	109	55.67%	1150	58.14%			
vfr002 - 40×10	10.32	0	0.08%	255	61.40%	2639	63.38%			
vfr002 - 40×15	10.32	0	0.11%	277	61.97%	2916	63.71%			
vfr002 - 40×20	10.32	0	0.09%	277	62.11%	2965	63.92%			
$v fr 002 - 50 \times 05$	10.78	0	0.01%	61	45.73%	610	53.99%			
$v fr 002 - 50 \times 10$	10.78	0 0	0.05%	226	58.65%	2580	62.46%			
$v fr 002 - 50 \times 15$ $v fr 002 - 50 \times 20$	10.78 10.78	0	$0.08\% \\ 0.06\%$	306 348	59.68% $61.26%$	3169 3670	63.42% $64.34%$			
$vfr002 - 60 \times 05$	11.15	0	0.03%	126	51.97%	1272	59.65%			
$v fr 002 - 60 \times 10$	11.15	0	0.03%	317	57.42%	3274	63.78%			
$v fr 002 - 60 \times 15$	11.15	o o	0.05%	400	59.03%	4221	64.32%			
$v fr 002 - 60 \times 20$	11.15	0	0.05%	431	59.47%	4548	64.30%			
vfr002 - 100×20	12.19	0	0.02%	696	53.66%	7173	64.40%			
vfr002 - 100×40	12.19	0	0.02%	738	54.29%	7744				
$vfr002 - 100 \times 60$	12.19	0	0.02%	693	55.14%	7190	63.81%			
$vfr002-200{\times}20$	13.58	0	0.01%	1039	40.16%	10495	62.44%			
$vfr002-200{\times}40$	13.58	0	0.01%	1486	37.05%	15695	62.24%			
vfr002 - 200×60	13.58	0	0.01%	1457	39.19%	15490	62.16%			
vfr002 - 300×20	14.40	0	0.01%	1190	26.99%	11730	59.10%			
vfr002 - 300×40	14.40	0	0.00%	2149	26.06%	22215	59.37%			
$v fr 002 - 300 \times 60$	14.40	0	0.00%	2169	24.25%	22938	58.75%			
$v fr 002 - 400 \times 20$	14.97	0	0.00%	1454	19.47%	13925	54.40%			
$v fr 002 - 400 \times 40$	14.97 14.97	0	0.00%	2688	20.08%	27453	56.10%			
$vfr002 - 400 \times 60$ $vfr002 - 500 \times 20$	14.97	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.00\% \\ 0.00\%$	2892 1523	16.80% $14.57%$	30504 14718	53.99% $49.95%$			
$vfr002 - 500 \times 20$ $vfr002 - 500 \times 40$	15.42	0	0.00%	3180	14.57% $16.87%$	31450	49.95% $55.31%$			
$v \text{fr} 002 - 500 \times 40$ $v \text{fr} 002 - 500 \times 60$	15.42	0	0.00%	3593	10.87% $11.81%$	37206	50.27%			
$v \text{fr} 002 - 600 \times 20$	15.79	0	0.00%	1641	11.01%	15841	45.00%			
$v \text{fr} 002 - 600 \times 40$	15.79	0	0.00%	3361	13.55%	33149	51.10%			
$v \text{fr} 002 - 600 \times 40$	15.79	0	0.00%	4187	10.81%	43472	47.62%			
$v fr 002 - 700 \times 20$	16.10	0	0.00%	1775	9.85%	17174	42.06%			
$\mathbf{vfr002} - 700 \times 40$	16.10	1	0.00%	3936	11.28%	39066	47.85%			
$\mathbf{vfr002} - 700 {\times} 60$	16.10	1	0.00%	4664	9.64%	48216	44.06%			
$vfr002 - 800 \times 20$	16.36	0	0.00%	1853	7.18%	18161	36.86%			
$vfr002-800{\times}40$	16.36	1	0.00%	4102	9.34%	40275	43.31%			
$\mathbf{vfr002} - 800 {\times} 60$	16.36	1	0.00%	5362	7.16%	54474	39.78%			
vfr003 - 10×05	7.39	0	0.86%	44	53.92%	443	50.68%			
vfr003 - 10×10	7.39	0	0.63%	40	53.15%	411	49.99%			
vfr003 - 10×15	7.39	0	0.71%	54	57.36%	553	54.81%			
vfr003 - 10×20	7.39	0	0.71%	53	55.96%	528	53.74%			
vfr003 - 20×05	8.88	0	0.18%	79	57.13%	797	54.66%			
vfr003 - 20×10	8.88	0	0.22%	127	62.09%	1311	61.04%			

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 5$				
f-002 00 v 15	0.00	$idle_r$ (10^3)	$idle_p$	$idle_r (10^3)$	$\frac{idle_p}{co.5407}$	$idle_r (10^3)$	$idle_p$			
$vfr003 - 20 \times 15$ $vfr003 - 20 \times 20$	8.88 8.88	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.22\% \ 0.26\%$	129 122	62.54% $61.97%$	1323 1284	61.33% $60.61%$			
$v fr 003 - 20 \times 20$ $v fr 003 - 30 \times 05$	9.73	0	0.20% $0.12%$	109	58.32%	1125	58.13%			
vfr003 - 30×10	9.73	0	0.12%	188	62.48%	2026	63.13%			
vfr003 - 30×15	9.73	0	0.18%	207	62.69%	2159	62.89%			
vfr003 - 30×20	9.73	0	0.20%	204	62.98%	2123	62.98%			
vfr003 - 40×05	10.32	0	0.03%	125	56.13%	1257	57.79%			
vfr003 - 40×10	10.32	0	0.11%	226	61.46%	2354	62.56%			
$vfr003 - 40 \times 15$	10.32	0	0.09%	278	62.47%	2949	63.96%			
$vfr003 - 40 \times 20$	10.32	0	0.07%	283	62.23%	2932	64.00%			
$vfr003 - 50 \times 05$	10.78	0	0.03%	105	54.65%	1047	62.40%			
$v fr 003 - 50 \times 10$	10.78	0	0.07%	267	59.60%	2991	63.51%			
vfr003 - 50×15	10.78	0	0.07%	349	60.91%	3694	64.15%			
vfr003 - 50×20	10.78	0	0.07%	347	61.07%	3589	64.06%			
vfr003 - 60×05	11.15	0	0.02%	123	50.76%	1253	59.91%			
$v fr 003 - 60 \times 10$	11.15	0 0	$0.06\% \\ 0.06\%$	355	58.45%	3551 4443	63.90%			
$vfr003 - 60 \times 15$ $vfr003 - 60 \times 20$	11.15 11.15	0	0.05%	420 402	59.68% $59.25%$	4362	64.62% $64.29%$			
$v fr 003 - 00 \times 20$ $v fr 003 - 100 \times 20$	12.19	0	0.03%	722	53.51%	7514	64.51%			
$v fr 003 - 100 \times 40$	12.19	0	0.03%	715	53.76%	7533	64.00%			
$v fr 003 - 100 \times 40$ $v fr 003 - 100 \times 60$	12.19	0	0.02%	706	55.84%	7478	63.89%			
vfr003 - 200×20	13.58	0	0.02%	1139	39.94%	11312	62.93%			
vfr003 - 200×40	13.58	0	0.01%	1477	37.50%	15516	62.15%			
vfr003 - 200×60	13.58	0	0.01%	1413	37.80%	15344	61.93%			
vfr003 - 300×20	14.40	0	0.01%	1448	29.33%	14527	60.28%			
$vfr003 - 300 \times 40$	14.40	0	0.00%	2082	26.63%	21094	59.80%			
$vfr003 - 300 \times 60$	14.40	0	0.00%	2165	24.64%	23019	58.69%			
$vfr003 - 400 \times 20$	14.97	0	0.00%	1229	20.48%	12095	54.00%			
$v fr 003 - 400 \times 40$	14.97	0	0.00%	2657	20.08%	26943	56.86%			
vfr003 - 400×60	14.97	0	0.00%	2873	17.53%	29982	54.65%			
vfr003 - 500×20	15.42	0	0.00%	1557	14.06%	15152	49.49%			
vfr003 - 500×40	15.42	0	0.00%	3155	16.23%	31468	53.39%			
$vfr003 - 500 \times 60$	15.42 15.79	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.00\% \\ 0.00\%$	3564 1793	12.51% $12.20%$	37393 17219	49.82%			
$v fr 003 - 600 \times 20$ $v fr 003 - 600 \times 40$	15.79	0	0.00%	3530	12.20% $13.52%$	34991	48.55% $51.96%$			
$v \text{fr} 003 - 600 \times 40$ $v \text{fr} 003 - 600 \times 60$	15.79	0	0.00%	4200	10.17%	43701	44.93%			
$v fr 003 - 700 \times 20$	16.10	0	0.00%	1658	8.75%	15752	41.00%			
$v \text{fr} 003 - 700 \times 40$	16.10	1	0.00%	4038	10.58%	39738	48.33%			
$\mathbf{vfr003} - 700{\times}60$	16.10	1	0.00%	4765	8.83%	48591	44.39%			
vfr003 - 800×20	16.36	0	0.00%	2021	7.67%	19556	39.17%			
$\mathbf{vfr003} - 800 \mathbf{\times 40}$	16.36	1	0.00%	4337	8.88%	42789	43.79%			
$\mathbf{vfr003} - 800 {\times} 60$	16.36	1	0.00%	5389	6.91%	54573	40.17%			
$vfr004-10{\times}05$	7.39	0	0.46%	35	51.41%	364	47.39%			
vfr004 - 10×10	7.39	0	0.65%	54	55.91%	544	53.35%			
$vfr004 - 10 \times 15$	7.39	0	0.78%	51	53.40%	514	50.16%			
vfr004 - 10×20	7.39	0	0.81%	54	56.75%	551	53.62%			
vfr004 - 20×05	8.88	0	0.21%	120	61.70%	1286	60.44%			
vfr004 - 20×10	8.88	0	0.23%	128	62.54%	1332	61.26%			
$v fr 004 - 20 \times 15$	8.88 8.88	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.27\% \ 0.28\%$	118 129	61.75% $62.36%$	1232 1334	60.48%			
$vfr004 - 20 \times 20$ $vfr004 - 30 \times 05$	9.73	0	0.28% $0.06%$	75	53.92%	757	61.02% $53.34%$			
$v \text{fr} 004 - 30 \times 05$ $v \text{fr} 004 - 30 \times 10$	9.73	0	0.06% $0.15%$	194	62.78%	2062	62.92%			
$v fr 004 - 30 \times 10$ $v fr 004 - 30 \times 15$	9.73	0	0.13% $0.14%$	203	62.89%	2118	63.01%			
vfr004 - 30×10	9.73	0	0.14%	198	62.93%	2070	63.01%			
$v fr 004 - 40 \times 05$	10.32	0	0.08%	109	57.92%	1091	59.06%			
vfr004 - 40×10	10.32	ő	0.09%	242	61.32%	2476	63.19%			
vfr004 - 40×15	10.32	0	0.10%	263	61.98%	2879	63.59%			
$vfr004-40{\times}20$	10.32	0	0.08%	273	62.19%	2851	63.61%			
$vfr004-50{\times}05$	10.78	0	0.02%	116	53.33%	1268	59.54%			
vfr004 - 50×10	10.78	0	0.07%	301	60.88%	3112	63.62%			
vfr004 - 50×15	10.78	0	0.06%	341	61.03%	3626	64.30%			
vfr004 - 50×20	10.78	0	0.06%	370	61.34%	3883	64.35%			
vfr004 - 60×05	11.15	0	0.02%	131	51.20%	1297	57.97%			
vfr004 - 60×10	11.15	0	0.05%	331	59.45%	3390	64.26%			
$v fr 004 - 60 \times 15$	11.15	0	0.06%	426	59.38%	4396	64.09%			
$v fr 004 - 60 \times 20$	11.15	0	0.05%	441	60.00%	4682	64.35%			
$v fr 004 - 100 \times 20$	12.19	0	0.02%	682	53.60%	7228	64.49%			
$vfr004 - 100 \times 40$ $vfr004 - 100 \times 60$	12.19 12.19	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.02\% \ 0.02\%$	739 722	53.75% $55.55%$	7776 7489	64.18%			
$vfr004 - 100 \times 60$ $vfr004 - 200 \times 20$	13.58	0	0.02% $0.01%$	1126	40.62%	11367	64.09% $62.96%$			
$v fr 004 - 200 \times 40$	13.58	0	0.01%	1485	36.81%	15729	61.96%			
$v fr 004 - 200 \times 60$	13.58	0	0.01%	1446	38.67%	15480	61.94%			
			- , 0			ntinued on ne				

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 50$				
f-004 200×20	14.40	$idle_r$ (10^3)	$idle_p$	$idle_r (10^3)$ 1368	$idle_p$	$idle_r (10^3)$	idlep			
$v fr 004 - 300 \times 20$ $v fr 004 - 300 \times 40$	14.40 14.40	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00% $0.00%$	2135	28.70% $27.07%$	13594 22149	59.58% $59.64%$			
$v fr 004 - 300 \times 40$ $v fr 004 - 300 \times 60$	14.40	0	0.00%	2139	25.35%	22866	58.23%			
vfr004 - 400×20	14.97	0	0.00%	1488	21.67%	14504	55.43%			
$v fr 004 - 400 \times 40$	14.97	0	0.00%	2802	19.32%	28280	56.30%			
vfr004 - 400×60	14.97	0	0.00%	2872	16.58%	30210	54.24%			
vfr004 - 500×20	15.42	0	0.00%	1520	15.58%	14507	50.63%			
vfr004 - 500×40	15.42	0	0.00%	3060	16.90%	30382	54.61%			
$\mathbf{vfr004} - 500 {\times} 60$	15.42	0	0.00%	3503	13.67%	36770	50.42%			
vfr004 - 600×20	15.79	0	0.00%	1603	11.43%	15544	45.72%			
$v fr 004 - 600 \times 40$	15.79	0	0.00%	3510	12.66%	34768	50.42%			
$vfr004 - 600 \times 60$	15.79	0	0.00%	4185	10.02%	43552	45.95%			
$vfr004 - 700 \times 20$ $vfr004 - 700 \times 40$	16.10 16.10	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$0.00\% \\ 0.00\%$	1549 3885	8.84% $11.32%$	15174 38027	41.16% $48.03%$			
$v fr 004 - 700 \times 40$ $v fr 004 - 700 \times 60$	16.10	1	0.00%	4749	8.78%	47990	44.61%			
vfr004 - 800×20	16.36	0	0.00%	1843	7.61%	18447	35.88%			
vfr004 - 800×40	16.36		0.00%	4076	9.22%	40150	44.68%			
$\mathbf{vfr004} - 800 {\times} 60$	16.36	1	0.00%	5363	7.06%	54702	39.77%			
vfr005 - 10×05	7.39	0	1.01%	43	54.01%	433	50.90%			
$vfr005 - 10 \times 10$	7.39	0	0.66%	46	53.98%	462	52.17%			
vfr005 - 10×15	7.39	0	0.73%	54	57.01%	549	54.48%			
vfr005 - 10×20	7.39	0	0.74%	51	56.57%	525	53.48%			
vfr005 - 20×05	8.88	0	0.19%	87	57.65%	873	55.12%			
vfr005 - 20×10	8.88	0	0.30%	127	62.07%	1307	60.98%			
$vfr005 - 20 \times 15$ $vfr005 - 20 \times 20$	8.88 8.88	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.30\% \\ 0.38\%$	129 131	62.20% $62.20%$	1336 1367	61.50% $61.12%$			
$vfr005 - 20 \times 20$ $vfr005 - 30 \times 05$	9.73	0	0.36%	66	54.74%	661	53.40%			
$v \text{fr} 005 - 30 \times 05$ $v \text{fr} 005 - 30 \times 10$	9.73	0	0.00% $0.15%$	157	60.74%	1800	60.77%			
$v fr 005 - 30 \times 15$	9.73	0	0.13%	190	62.69%	1977	61.98%			
vfr005 - 30×20	9.73	0	0.16%	201	63.15%	2129	63.16%			
vfr005 - 40×05	10.32	0	0.06%	124	58.18%	1276	60.52%			
vfr005 - 40×10	10.32	0	0.08%	240	61.62%	2559	63.51%			
vfr005 - 40×15	10.32	0	0.10%	258	61.49%	2755	63.52%			
$vfr005 - 40 \times 20$	10.32	0	0.10%	283	62.36%	2973	63.68%			
vfr005 - 50×05	10.78	0	0.03%	105	50.47%	1054	55.76%			
vfr005 - 50×10	10.78	0	0.08%	219	58.93%	2255	63.11%			
vfr005 - 50×15	10.78	0 0	0.06%	347	60.89%	3655	64.20% $64.08%$			
$vfr005 - 50 \times 20$ $vfr005 - 60 \times 05$	10.78 11.15	0	$0.07\% \\ 0.03\%$	364 141	61.20% $53.38%$	3818 1404	59.54%			
$v \text{fr} 005 - 60 \times 10$	11.15	0	0.05%	365	58.76%	3776	64.10%			
$v fr 005 - 60 \times 15$	11.15	0	0.06%	378	59.14%	3898	64.07%			
vfr005 - 60×20	11.15	0	0.04%	437	59.66%	4575	64.53%			
vfr005 - 100×20	12.19	0	0.03%	697	53.04%	7313	64.47%			
vfr005 - 100×40	12.19	0	0.02%	716	54.52%	7670	64.24%			
vfr005 - 100×60	12.19	0	0.02%	711	55.33%	7575	63.86%			
$vfr005 - 200 \times 20$	13.58	0	0.01%	1009	38.81%	10064	62.12%			
vfr005 - 200×40	13.58	0	0.01%	1543	36.01%	16167	62.17%			
vfr005 - 200×60	13.58	0	0.01%	1432	40.17%	15526	62.09%			
$vfr005 - 300 \times 20$ $vfr005 - 300 \times 40$	14.40 14.40	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.00\% \\ 0.00\%$	1252 2143	27.78% $25.39%$	12297 22125	59.24% $59.39%$			
$v \text{fr} 005 - 300 \times 40$ $v \text{fr} 005 - 300 \times 60$	14.40	0	0.00%	2145	25.39% $25.47%$	22125	58.85%			
$v \text{fr} 005 - 300 \times 00$ $v \text{fr} 005 - 400 \times 20$	14.40	0	0.00%	1364	19.75%	13233	54.39%			
$v fr 005 - 400 \times 40$	14.97	0	0.00%	2789	18.70%	28304	56.60%			
$\mathbf{vfr005} - 400 \times 60$	14.97	0	0.00%	2844	17.36%	30119	54.00%			
vfr005 - 500×20	15.42	0	0.00%	1384	16.22%	13382	51.50%			
$vfr005-500{\times}40$	15.42	0	0.00%	3103	15.94%	30700	54.08%			
$\mathbf{vfr005} - 500 \times 60$	15.42	0	0.00%	3538	12.85%	36683	49.94%			
vfr005 - 600×20	15.79	0	0.00%	1562	11.21%	15187	44.97%			
vfr005 - 600×40	15.79	0	0.00%	3587	13.50%	35530	51.62%			
$vfr005 - 600 \times 60$	15.79	0	0.00%	4181	10.04%	42643	47.40%			
$vfr005 - 700 \times 20$ $vfr005 - 700 \times 40$	16.10 16.10	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.00\% \\ 0.00\%$	1802 3663	9.63% $11.37%$	17398 35584	42.31% $48.21%$			
$vfr005 - 700 \times 40$ $vfr005 - 700 \times 60$	16.10	1	0.00%	4733	8.69%	48289	48.21% $43.98%$			
$v \text{fr} 005 - 700 \times 60$ $v \text{fr} 005 - 800 \times 20$	16.16	0	0.00%	1709	7.12%	16437	$\frac{45.95\%}{37.51\%}$			
$v fr 005 - 800 \times 40$	16.36		0.00%	4020	9.13%	39126	44.54%			
$v \text{fr} 005 - 800 \times 60$	16.36	1	0.00%	5264	7.43%	53036	42.54%			
vfr006 - 10×05	7.39	0	0.50%	33	48.55%	326	44.33%			
vfr006 - 10×10	7.39	0	0.69%	36	49.94%	357	45.87%			
vfr006 - 10×15	7.39	0	0.68%	50	56.42%	508	54.15%			
vfr006 - 10×20	7.39	0	0.92%	41	50.16%	414	46.50%			
$v fr 006 - 20 \times 05$	8.88	0	0.25%	99	60.54%	1018	58.63%			
vfr006 - 20×10	8.88	0	0.28%	118	61.95%	1238	60.90%			

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 50$				
vfr006 - 20×15	8.88	$\frac{idle_r \ (10^3)}{0}$	$\frac{idle_p}{0.27\%}$	$idle_r (10^3)$ 133	$\frac{idle_p}{62.35\%}$	$idle_r (10^3)$ 1388	$\frac{idle_p}{61.39\%}$			
$v \text{fr} 006 - 20 \times 15$ $v \text{fr} 006 - 20 \times 20$	8.88	0	0.27% $0.28%$	126	62.30%	1296	61.39% $61.03%$			
vfr006 - 30×05	9.73	0	0.05%	47	52.43%	468	51.71%			
vfr006 - 30×10	9.73	0	0.14%	195	62.73%	2062	62.86%			
vfr006 - 30×15	9.73	0	0.13%	205	63.02%	2124	62.84%			
vfr006 - 30×20	9.73	0	0.19%	194	63.07%	2045	62.76%			
vfr006 - 40×05	10.32	0	0.04%	97	55.60%	972	56.95%			
vfr006 - 40×10	10.32	0	0.07%	204	58.99%	2139	61.47%			
$vfr006 - 40 \times 15$	10.32	0	0.10%	264	61.92%	2789	63.67%			
$vfr006 - 40 \times 20$	10.32	0	0.10%	270	61.94%	2909	63.62%			
vfr006 - 50×05	10.78	0	0.02%	105	48.31%	1169	56.93%			
vfr006 - 50×10	10.78	0	0.06%	179	55.66%	1980	61.14%			
vfr006 - 50×15	10.78	0	0.08%	363	61.37%	3795	64.39%			
vfr006 - 50×20	10.78	0	0.06%	359	61.27%	3811	64.33%			
$vfr006 - 60 \times 05$ $vfr006 - 60 \times 10$	11.15 11.15	0 0	$0.02\% \\ 0.06\%$	137 359	51.42% $58.82%$	1393 3685	59.48% $64.18%$			
$v \text{fr} 006 - 60 \times 10$ $v \text{fr} 006 - 60 \times 15$	11.15	0	0.06%	440	60.11%	4672	64.82%			
$v fr 006 - 60 \times 10$ $v fr 006 - 60 \times 20$	11.15	0	0.05%	431	59.95%	4575	64.45%			
vfr006 - 100×20	12.19	0	0.02%	704	53.37%	7358	64.47%			
vfr006 - 100×20	12.19	0	0.02%	712	54.26%	7561	63.92%			
vfr006 - 100×60	12.19	0	0.02%	691	55.32%	7280	63.98%			
vfr006 - 200×20	13.58	0	0.01%	1161	38.29%	11668	62.29%			
vfr006 - 200×40	13.58	0	0.01%	1489	36.82%	15730	62.02%			
vfr006 - 200×60	13.58	0	0.01%	1439	38.43%	15705	62.13%			
vfr006 - 300×20	14.40	0	0.00%	1312	28.74%	12744	59.85%			
vfr006 - 300×40	14.40	0	0.00%	2146	25.26%	22430	59.08%			
vfr006 - 300×60	14.40	0	0.00%	2164	25.64%	23053	58.70%			
vfr006 - 400×20	14.97	0	0.00%	1635	20.27%	15903	55.83%			
$\mathbf{vfr006} - 400 \mathbf{\times 40}$	14.97	0	0.00%	2737	19.66%	27898	56.53%			
vfr006 - 400×60	14.97	0	0.00%	2881	17.35%	30363	54.34%			
$v fr 006 - 500 \times 20$	15.42	0	0.00%	1492	14.41%	14816	50.25%			
$v fr 006 - 500 \times 40$	15.42	0	0.00%	3134	16.92%	31904	53.81%			
$vfr006 - 500 \times 60$	15.42	0	0.00%	3550	12.97%	37030	50.27%			
vfr006 - 600×20	15.79	0	0.00%	1660	10.40%	16067	43.94%			
vfr006 - 600×40	15.79	0	0.00%	3495	13.43%	34303	50.36%			
vfr006 - 600×60	15.79	0	0.00%	4177	10.52%	43125	46.86%			
$v fr 006 - 700 \times 20$	16.10	0 0	0.00%	1664	9.36% $12.02%$	16248	43.34%			
$vfr006 - 700 \times 40$ $vfr006 - 700 \times 60$	16.10 16.10	1	$0.00\% \\ 0.00\%$	3715 4778	8.21%	36785 48716	48.15% $44.04%$			
$v \text{fr} 006 - 700 \times 60$ $v \text{fr} 006 - 800 \times 20$	16.36	0	0.00%	1519	6.38%	15016	35.31%			
$vfr006 - 800 \times 40$	16.36		0.00%	4290	8.72%	41994	44.90%			
$v fr 006 - 800 \times 60$	16.36	1	0.00%	5357	7.03%	54939	39.73%			
vfr007 - 10×05	7.39	0	0.66%	39	52.57%	398	50.48%			
vfr007 - 10×10	7.39	0	0.62%	44	52.85%	446	50.00%			
vfr007 - 10×15	7.39	0	0.65%	40	50.93%	403	47.03%			
vfr007 - 10×20	7.39	0	0.59%	51	54.12%	519	51.42%			
vfr007 - 20×05	8.88	0	0.21%	96	59.65%	1058	57.88%			
vfr007 - 20×10	8.88	0	0.24%	127	62.16%	1309	61.09%			
vfr007 - 20×15	8.88	0	0.31%	122	62.20%	1252	61.06%			
vfr007 - 20×20	8.88	0	0.30%	129	62.22%	1341	60.75%			
vfr007 - 30×05	9.73	0	0.03%	55	51.25%	552	49.58%			
vfr007 - 30×10	9.73	0	0.12%	191	62.57%	2029	62.94%			
vfr007 - 30×15	9.73	0	0.12%	198	62.89%	2045	62.76%			
vfr007 - 30×20	9.73	0	0.12%	202	62.94%	2143	63.00%			
vfr007 - 40×05	10.32	0	0.09%	126	58.61%	1258	59.71%			
vfr007 - 40×10	10.32 10.32	0	0.08%	173	60.10%	1917	61.06%			
$vfr007 - 40 \times 15$ $vfr007 - 40 \times 20$	10.32 10.32	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.10\% \\ 0.06\%$	262 294	61.91% $62.45%$	2857 3046	63.67% 63.75%			
$vfr007 - 40 \times 20$ $vfr007 - 50 \times 05$	10.32	0	0.06% $0.01%$	99	53.39%	984	63.75% $58.76%$			
$v \text{fr} 007 - 50 \times 05$ $v \text{fr} 007 - 50 \times 10$	10.78	0	0.01%	257	60.10%	2599	63.77%			
$vfr007 - 50 \times 10$ $vfr007 - 50 \times 15$	10.78	0	0.06%	336	60.79%	3624	63.95%			
$v fr 007 - 50 \times 20$	10.78	0	0.06%	357	61.06%	3762	64.17%			
$v \text{fr} 007 - 60 \times 05$	11.15	0	0.03%	120	52.44%	1194	59.38%			
vfr007 - 60×10	11.15	0	0.04%	329	58.34%	3418	64.31%			
vfr007 - 60×15	11.15	0	0.05%	422	59.62%	4370	64.60%			
vfr007 - 60×20	11.15	ő	0.06%	414	59.44%	4425	64.33%			
vfr007 - 100×20	12.19	0	0.03%	712	53.79%	7472	64.34%			
vfr007 - 100×40	12.19	0	0.02%	719	54.49%	7672	63.98%			
vfr007 - 100×60	12.19	0	0.02%	715	55.67%	7541	64.00%			
vfr007 - 200×20	13.58	0	0.01%	1105	40.68%	11207	62.46%			
vfr007 - 200×40	13.58	0	0.01%	1477	36.18%	15395	62.10%			
vfr007 - 200×60	13.58	0	0.01%	1463	39.30%	15367	62.24%			

 Table 9: Continued from previous page

Table 9: Continued from previous page										
Dataset	$\beta \ln N(s) $	$L_h =$		$L_h = 5$		$L_h = 50$				
-f-007 200 v 00	14.40	$idle_r$ (10^3)	$idle_p$	$idle_r (10^3)$	$idle_p$	$idle_r (10^3)$	$idle_p$			
$vfr007 - 300 \times 20$ $vfr007 - 300 \times 40$	14.40 14.40	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.01% $0.00%$	1250 2125	28.40% $26.63%$	12089 22092	59.28% $59.28%$			
$vfr007 - 300 \times 40$ $vfr007 - 300 \times 60$	14.40	0	0.00%	2171	25.59%	22975	58.68%			
vfr007 - 400×20	14.97	0	0.00%	1349	18.63%	13242	53.28%			
vfr007 - 400×40	14.97	0	0.00%	2705	20.72%	27272	57.01%			
vfr007 - 400×60	14.97	0	0.00%	2894	16.71%	30248	54.12%			
vfr007 - 500×20	15.42	0	0.00%	1566	16.04%	15211	51.33%			
$vfr007 - 500 \times 40$	15.42	0	0.00%	2950	17.65%	29962	54.26%			
$\mathbf{vfr007} - 500{\times}60$	15.42	0	0.00%	3558	12.77%	37437	50.27%			
$v fr 007 - 600 \times 20$	15.79	0	0.00%	1400	10.26%	13760	43.08%			
$v fr 007 - 600 \times 40$	15.79	0	0.00%	3563	12.94%	35188	51.12%			
$vfr007 - 600 \times 60$	15.79	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.00%	4203	10.80% $8.82%$	43272	48.28%			
$vfr007 - 700 \times 20$ $vfr007 - 700 \times 40$	16.10 16.10	1	$0.00\% \\ 0.00\%$	1641 3945	10.79%	15990 38756	40.81% $47.32%$			
$v fr 007 - 700 \times 60$	16.10	1	0.00%	4850	8.21%	49139	43.67%			
vfr007 - 800×20	16.36	0	0.00%	1521	6.58%	14735	34.91%			
$vfr007 - 800 \times 40$	16.36	1	0.00%	4073	9.06%	39701	45.20%			
$vfr007 - 800 \times 60$	16.36	1	0.00%	5214	8.11%	52937	42.32%			
$vfr008 - 10 \times 05$	7.39	0	0.75%	46	52.94%	469	50.35%			
$vfr008 - 10 \times 10$	7.39	0	0.58%	46	54.61%	457	51.00%			
$vfr008 - 10 \times 15$	7.39	0	0.83%	50	52.87%	525	50.56%			
vfr008 - 10×20	7.39	0	0.82%	46	56.03%	471	53.71%			
vfr008 - 20×05	8.88	0	0.29%	113	61.41%	1168	60.07%			
vfr008 - 20×10	8.88	0	$0.18\% \\ 0.31\%$	109	60.45%	1086	58.50%			
$vfr008 - 20 \times 15$ $vfr008 - 20 \times 20$	8.88 8.88	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.31% $0.23%$	131 130	62.43% $62.54%$	1341 1341	60.86% $61.26%$			
$v fr 008 - 20 \times 20$ $v fr 008 - 30 \times 05$	9.73	0	0.23% $0.09%$	115	59.38%	1251	59.72%			
vfr008 - 30×10	9.73	0	0.03% $0.14%$	188	62.64%	2010	62.38%			
vfr008 - 30×15	9.73	0	0.18%	208	63.11%	2135	63.06%			
vfr008 - 30×20	9.73	0	0.12%	200	62.58%	2112	63.04%			
$v fr 008 - 40 \times 05$	10.32	0	0.03%	83	54.73%	832	56.33%			
vfr008 - 40×10	10.32	0	0.10%	211	61.34%	2311	62.61%			
vfr008 - 40×15	10.32	0	0.11%	277	62.26%	2929	63.79%			
$vfr008 - 40 \times 20$	10.32	0	0.11%	280	62.55%	2901	63.72%			
vfr008 - 50×05	10.78	0	0.01%	92	52.54%	915	56.88%			
vfr008 - 50×10	10.78	0	0.05%	284	60.07%	2946	63.69%			
$vfr008 - 50 \times 15$ $vfr008 - 50 \times 20$	10.78 10.78	0 0	$0.08\% \\ 0.06\%$	348 344	60.90% $61.32%$	3691 3670	64.28% $64.14%$			
$v fr 008 - 50 \times 20$ $v fr 008 - 60 \times 05$	11.15	0	0.00%	144	52.40%	1426	60.37%			
vfr008 - 60×10	11.15	0	0.03%	201	52.98%	1997	61.26%			
vfr008 - 60×15	11.15	0	0.05%	393	59.69%	4218	64.54%			
$v fr 008 - 60 \times 20$	11.15	0	0.05%	443	59.99%	4664	64.38%			
$vfr008-100{\times}20$	12.19	0	0.02%	713	53.66%	7402	64.39%			
vfr008 - 100×40	12.19	0	0.02%	734	53.96%	7737	64.11%			
$v fr 008 - 100 \times 60$	12.19	0	0.03%	700	55.21%	7426	63.95%			
vfr008 - 200×20	13.58	0	0.01%	990	40.43%	9967	62.52%			
vfr008 - 200×40	13.58	0	$0.01\% \\ 0.01\%$	1468	36.55%	15261	62.25%			
$vfr008 - 200 \times 60$ $vfr008 - 300 \times 20$	13.58 14.40	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0.01%	1453 1241	38.80% $28.18%$	15568 12211	62.10% $59.63%$			
$v \text{fr} 008 - 300 \times 20$ $v \text{fr} 008 - 300 \times 40$	14.40	0	0.00%	2175	25.34%	22362	59.63%			
vfr008 - 300×40	14.40	0	0.00%	2133	25.16%	22869	58.41%			
vfr008 - 400×20	14.97	ő	0.00%	1331	20.29%	13222	54.43%			
$\mathbf{vfr008} - 400{\times}40$	14.97	0	0.00%	2664	21.35%	27024	57.07%			
$\mathbf{vfr008} - 400 {\times} 60$	14.97	0	0.00%	2867	17.75%	30253	55.01%			
vfr008 - 500×20	15.42	0	0.00%	1711	15.95%	16568	51.78%			
vfr008 - 500×40	15.42	0	0.00%	3033	18.10%	30489	54.20%			
$vfr008 - 500 \times 60$	15.42	0	0.00%	3568	12.31%	37328	50.45%			
vfr008 - 600×20	15.79	0	0.00%	1686	12.04%	16275	48.47%			
${ m vfr}008 - 600{ imes}40 \ { m vfr}008 - 600{ imes}60$	15.79 15.79	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.00\% \\ 0.00\%$	3459 4134	14.51% $10.56%$	33999 42941	51.92% $47.72%$			
vfr008 - 800×80 vfr008 - 700×20	16.10	0	0.00%	1922	9.53%	18451	47.72% $43.23%$			
$v fr 008 - 700 \times 20$ $v fr 008 - 700 \times 40$	16.10		0.00%	3651	11.08%	36149	47.25%			
$\mathbf{vfr008} - 700 \times 60$	16.10	0	0.00%	4707	9.14%	47828	44.64%			
vfr008 - 800×20	16.36	ő	0.00%	1660	6.60%	16196	35.11%			
vfr008 - 800×40	16.36	1	0.00%	4044	10.07%	39340	45.50%			
$\mathbf{vfr008} - 800{\times}60$	16.36	1	0.00%	5175	7.80%	51760	42.78%			
vfr009 - 10×05	7.39	0	0.78%	47	52.96%	473	49.40%			
vfr009 - 10×10	7.39	0	0.71%	51	54.96%	508	51.76%			
vfr009 - 10×15	7.39	0	0.93%	43	52.82%	427	49.40%			
$vfr009 - 10 \times 20$ $vfr009 - 20 \times 05$	7.39 8.88	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0.84\% \\ 0.17\%$	56 79	56.28% $56.38%$	571 792	54.03% 53.75%			
$vfr009 - 20 \times 05$ $vfr009 - 20 \times 10$	8.88	0	$0.17\% \\ 0.26\%$	126	62.10%	1324	60.94%			
VII 000 - 20 X IU	0.00		0.40/0	120		ntinued on ne				

 Table 9: Continued from previous page

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 9: Continued from previous page										
	Dataset	$\beta \ln N(s) $									
νπορο = 20×20 8.88 0 0.31% 127 62.19% 1300 61.12% νπορο = 30×10 9.73 0 0.17% 184 62.68% 75. 15.34% 75. 15.40% 75. 15.40% 75. 15.40% 75. 15.40% 2216 63.07% 15.00%	f=000 20×15	0 00	· /				_ ` /				
rh000 - 30×05 9.73 0 0.05% 75 55.34% 75 1.07% rh000 - 30×10 9.73 0 0.17% 118 62.68% 18.88 62.06% rh000 - 30×20 9.73 0 0.14% 215 63.01% 2216 63.07% rh000 - 40×01 10.32 0 0.05% 116 64.71% 115 66.24% rh000 - 40×02 10.32 0 0.09% 291 62.67% 3052 63.98% rh009 - 50×10 10.78 0 0.09% 291 62.67% 3052 63.98% rh009 - 50×15 10.78 0 0.09% 228 59.49% 226 22.4% rh009 - 50×15 10.78 0 0.06% 322 60.81% 363 63.37% rh009 - 50×20 10.78 0 0.06% 322 60.81% 364 61.38% rh009 - 60×15 11.15 0 0.06% 370 59.14% 62.27 62.33%			_								
vfr00p = 30×15 9.73 0 0.17% 184 62.68% 1888 62.06% vfr00p = 30×25 9.73 0 0.16% 2215 63.01% 226 63.07% vfr00p = 40×05 10.32 0 0.05% 116 54.17% 115 56.24% 760% 40×10 116 54.17% 115 56.24% 760% 40×10 10.32 0 0.07% 200 6002% 2341 62.48% vfr009 = 40×20 60.02% 2341 62.48% vfr009 = 40×20 10.032 0 0.09% 2273 62.03% 2827 63.08% vfr009 = 50×15 10.78 0 0.06% 228 59.49% 2262 62.44% vfr009 = 50×15 10.78 0 0.06% 322 60.81% 3674 64.38% vfr009 = 50×15 10.78 0 0.06% 322 60.81% 3674 64.38% vfr009 = 50×15 10.78 0 0.06% 322 60.81% 363 62.27% 767609 60.81% 363 60.51%											
ν̄rh000 - 30×15 9.73 0 0.16% 215 63.01% 2216 63.07% ν̄rh009 - 40×5 10.32 0 0.05% 116 64.71% 1159 56.24% ν̄rh009 - 40×15 10.32 0 0.05% 116 64.71% 1159 56.24% ν̄rh009 - 40×15 10.32 0 0.09% 291 62.67% 3052 63.88% ν̄rh009 - 50×15 10.78 0 0.02% 112 54.84% 1121 59.52% 76.00 60.00 228 59.49% 2262 62.44% v̄rh009 - 50×15 10.78 0 0.00% 228 59.49% 2262 0.24% v̄rh009 - 50×20 10.78 0 0.00% 322 60.81% 363 63.37% v̄rh009 - 50×20 10.78 0 0.00% 370 344 60.51% 4140 59.05% v̄rh009 - 60×20 11.15 0 0.00% 370 59.14% 3227 64.31% v̄rh009 - 60×10 11.15 0 0.05% 370 59.14% 4327 64											
νfr009 - 30×20 9.73 0 0.14% 201 63.28% 2068 63.14% νfr009 - 40×15 10.32 0 0.05% 200 60.02% 2341 62.48% vfr009 - 40×15 10.32 0 0.07% 200 60.02% 2341 62.48% vfr009 - 50×0 10.32 0 0.09% 273 62.03% 2827 63.08% vfr009 - 50×0 10.78 0 0.09% 228 59.49% 2262 62.44% vfr009 - 50×15 10.78 0 0.06% 228 59.49% 2262 62.44% vfr009 - 50×15 10.78 0 0.06% 322 60.81% 376 44.48% vfr009 - 50×15 10.78 0 0.06% 322 60.81% 376 44.48% vfr009 - 50×20 11.15 0 0.03% 238 57.22% 2276 62.78% vfr009 - 60×15 11.15 0 0.05% 408 59.48% 4450 44.15% vfr009 - 60×15 11.15 0 0.05% 408 59.48% <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td>			l								
ν̄f0000 - 40×05 10.32 0 0.05% 116 54.71% 1159 56.24% ν̄f0009 - 40×15 10.32 0 0.09% 291 62.67% 3052 63.88% ν̄f009 - 40×20 10.32 0 0.09% 291 62.67% 3052 63.88% ν̄f009 - 50×5 10.78 0 0.02% 112 54.84% 1121 59.22% 62.68% ν̄f009 - 50×15 10.78 0 0.07% 344 60.51% 363 63.37% 65.08% 76.09 50×15 10.78 0 0.07% 344 60.51% 363 63.37% 60.00% 370 50.14% 60.81% 373 60.18% 4140 89.05% ν̄f009 60×15 11.15 0 0.03% 370 59.14% 30.27 61.21% 61.09% 712 64.13% 64.13% 61.00% 712 64.13% 64.13% 66.00% 712 64.13% 66.00% 712 64.13% 66.00% 712											
ν̄f009 - 40×15 10.32 0 0.07% 200 600.2% 231 62.48% vfr009 - 40×20 10.32 0 0.09% 273 62.03% 2227 63.68% vfr009 - 50×50 10.78 0 0.09% 273 62.03% 2227 63.68% vfr009 - 50×50 10.78 0 0.00% 228 59.49% 2262 62.44% vfr009 - 50×50 10.78 0 0.00% 228 59.49% 2262 62.44% vfr009 - 50×50 10.78 0 0.00% 325 60.81% 376 64.38% vfr009 - 60×10 11.15 0 0.00% 329 60.81% 376 64.43% vfr009 - 60×10 11.15 0 0.03% 238 57.32% 2376 62.78% vfr009 - 60×10 11.15 0 0.05% 408 59.48% 4450 64.51% vfr009 - 100×20 11.15 0 0.06% 408 59.48% 4450 64.51% vfr009 - 100×20 11.15 0 0.06% 408 59.48% 4											
vfr0009 - 40×20 10.32 0 0.09% 273 62.03% 2827 63.88% vfr009 - 50×10 10.78 0 0.02% 112 54.94% 122 62.04% vfr009 - 50×10 10.78 0 0.00% 324 60.01% 363 63.93% vfr009 - 50×20 10.78 0 0.00% 352 60.91% 376 64.38% vfr009 - 60×10 11.15 0 0.03% 238 57.32% 2376 62.78% vfr009 - 60×10 11.15 0 0.05% 370 59.14% 3927 64.13% vfr009 - 60×20 11.15 0 0.06% 408 59.48% 450 64.15% vfr009 - 100×40 12.19 0 0.02% 677 53.09% 7124 64.13% vfr009 - 200×20 13.58 0 0.01% 1474 39.48% 7156 63.87% vfr009 - 200×20 13.68 0 0.01% 1450 39.01% 1566	vfr009 - 40×10		0		200						
vfr0009 - 50×05 10.78 0 0.02% 112 54.84% 1121 59.29% vfr009 - 50×15 10.78 0 0.06% 228 59.49% 2202 62.41 vfr009 - 50×20 10.78 0 0.06% 352 60.81% 333 63.97% vfr009 - 60×10 11.15 0 0.03% 352 60.81% 337 61.92% vfr009 - 60×20 11.15 0 0.03% 238 57.32% 2376 62.23% vfr009 - 60×20 11.15 0 0.05% 370 59.14% 3927 64.13% vfr009 - 60×20 11.15 0 0.06% 408 53.48% 450 64.11% vfr009 - 100×20 12.19 0 0.02% 677 53.98% 7703 64.18% vfr009 - 200×40 13.58 0 0.01% 1496 39.01% 1566 62.23% vfr009 - 200×60 13.58 0 0.01% 1497 1496 1594	$vfr009 - 40 \times 15$	10.32	0	0.09%	291	62.67%	3052	63.98%			
vrh0009 - 50×10 10.78 0 0.06% 228 59.49% 2262 62.44% vrh009 - 50×20 10.78 0 0.07% 344 60.51% 3633 6333 6333 63.93% vrh009 - 60×20 11.15 0 0.01% 137 50.92% 1410 59.05% vrh009 - 60×10 11.15 0 0.03% 238 57.32% 2276 62.78% vrh009 - 60×15 11.15 0 0.05% 370 59.14% 3927 64.13% vrh009 - 60×20 11.15 0 0.06% 408 59.48% 450 64.18% vrh009 - 60×20 11.15 0 0.06% 408 59.48% 450 64.18% vrh009 - 00×40 12.19 0 0.02% 677 53.09% 77124 64.27% vrh009 - 200×20 13.58 0 0.01% 1074 39.48% 450 62.74% vrh009 - 200×20 13.58 0 0.01% 1450 30.01% 1556 62.23% vrh009 - 200×20 13.58 0 0.01% <	$vfr009 - 40 \times 20$	10.32	0	0.09%	273	62.03%	2827	63.68%			
vfr0009 - 50×20 10.78 0 0.00% 354 (60.81% 3633 (63.97% vfr009 - 60×05 11.15 0 0.06% 352 (60.81% 3764 (61.82%) vfr009 - 60×05 11.15 0 0.03% 328 57.32% 2376 (22.82%) vfr009 - 60×15 11.15 0 0.03% 238 57.32% 2376 (22.82%) vfr009 - 60×20 11.15 0 0.06% 408 59.48% 4327 (41.8%) vfr009 - 100×20 12.19 0 0.02% 677 53.09% 7124 64.27% vfr009 - 100×40 12.19 0 0.02% 684 55.38% 7703 61.18% vfr009 - 200×20 13.58 0 0.01% 1496 37.02% 13942 62.27% vfr009 - 200×40 13.58 0 0.01% 1496 37.02% 15842 62.27% vf009 - 300×40 14.40 0 0.00% 2153 27.40% 15889 59.08% vf009 - 300×40 14.40 0 0.00% 2153 27.1% 22.8282 58.04% vf009 - 400×20 14.97 0 0.00% 2253 19.96% 2510 39.94% vf009 - 500×40 14.47 0 0.00% 2278 19.96% 25710 59.03% <td></td> <td></td> <td>0</td> <td></td> <td>112</td> <td>54.84%</td> <td>1121</td> <td></td>			0		112	54.84%	1121				
vfr0009 − 50×20 10.78 0 0.06% 352 60.81% 3764 64.88% vfr009 − 60×10 11.15 0 0.03% 238 57.32% 2376 62.78% vfr009 − 60×10 11.15 0 0.05% 370 59.14% 3927 64.81% vfr009 − 100×20 12.19 0 0.02% 677 53.98% 7124 64.27% vfr009 − 100×40 12.19 0 0.02% 684 53.38% 7156 63.87% vfr009 − 100×60 12.19 0 0.02% 684 53.38% 7156 63.87% vfr009 − 200×40 13.58 0 0.01% 1496 37.02% 15942 62.07% vfr009 − 200×40 13.58 0 0.01% 1450 30.91% 15566 62.23 vfr009 − 300×40 14.40 0 0.09% 2219 26.80% 22150 59.08% vfr009 − 400×40 14.97 0 0.00% 2180 91.31% 135	I .	l .	l								
cfr009 - 60×05 11.15 0 0.01% 137 50.92% 14.10 59.05% cfr009 - 60×15 11.15 0 0.05% 370 59.14% 39.77 64.31% vfc09 - 60×20 11.15 0 0.05% 370 59.14% 39.77 64.31% vfc09 - 100×20 12.19 0 0.02% 677 53.99% 7723 64.13% vfc090 - 100×20 12.19 0 0.02% 684 55.38% 7703 64.18% vfc009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 62.74% vfc009 - 200×40 13.58 0 0.01% 1450 39.01% 15566 62.23% vfc009 - 200×60 13.58 0 0.01% 1450 39.01% 15566 62.23% vfc009 - 300×0 14.40 0 0.00% 2153 25.21% 2288 25.00% vfc009 - 300×0 14.40 0 0.00% 2153 25.21% 25.		l .	l								
rfr009 - 60x 10 11.15 0 0.03% 238 57.2% 2376 62.78% vfr009 - 60x 20 11.15 0 0.06% 408 59.48% 4450 64.31% vfr009 - 100x 20 12.19 0 0.02% 677 53.09% 7124 64.27% vfr009 - 100x 40 12.19 0 0.02% 675 53.98% 7103 64.18% vfr009 - 200x 20 13.58 0 0.01% 1074 39.48% 1716 63.87% vfr009 - 200x 20 13.58 0 0.01% 1496 37.02% 15942 62.74% 64.18% vfr009 - 200x 20 13.58 0 0.01% 1496 37.02% 15942 62.74% 15942 62.74% 15942 62.74% 62.74% 7194 44.14 0 0.01% 1496 37.02% 15942 62.74% 62.74% 1589 59.08% 7700 60.00% 2153 25.21% 28282 55.08% 7100 59.00% 211.42 0 0.00% 15.21 0.00%											
rfr009 - 60×15 11.15 0 0.06% 48 59.48% 4350 64.31% vfr009 - 100×20 12.19 0 0.02% 677 53.09% 71.24 64.51% vfr009 - 100×60 12.19 0 0.02% 678 53.98% 71.36 64.18% vfr009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 62.74% vfr009 - 200×20 13.58 0 0.01% 1450 37.02% 15942 20.07% vfr009 - 200×60 13.58 0 0.01% 1450 39.01% 15566 62.23% vfr009 - 300×0 14.40 0 0.00% 2153 25.21% 258.08 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 250.08% 25											
rfr009 - 60×20 11.15 0 0.06% 408 59.48% 4450 64.27% vfr009 - 100×20 12.19 0 0.02% 677 53.09% 7723 64.18% vfr009 - 100×60 12.19 0 0.02% 684 55.38% 7703 64.18% vfr009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 22.74% vfr009 - 200×60 13.58 0 0.01% 1496 37.02% 15942 62.74% vfr009 - 300×20 14.40 0 0.01% 1266 27.40% 11889 59.08% vfr009 - 300×00 14.40 0 0.00% 2153 25.21% 22882 58.0% vfr009 - 300×00 14.40 0 0.00% 2133 25.21% 22882 58.20% vfr009 - 400×40 14.97 0 0.00% 280 17.70% 30507 54.47% vfr009 - 500×20 15.42 0 0.00% 150 12.14% <t< td=""><td></td><td>l .</td><td>l</td><td></td><td></td><td></td><td></td><td></td></t<>		l .	l								
r/r009 = 100×20 12.19 0 0.02% 677 53.09% 7124 64.18% v/r009 = 100×60 12.19 0 0.02% 684 55.38% 7156 63.87% v/r009 = 200×20 13.58 0 0.01% 1974 39.48% 10813 62.74% v/r009 = 200×60 13.58 0 0.01% 1450 39.01% 15566 62.07% v/r009 = 300×20 14.40 0 0.01% 1262 27.40% 11889 59.08% v/r009 = 300×40 14.40 0 0.00% 2153 25.21% 22882 59.08% v/r009 = 300×60 14.40 0 0.00% 2153 25.21% 22882 52.0% v/r009 = 400×20 14.97 0 0.00% 2288 17.70% 3505 54.6% v/r009 = 500×20 15.42 0 0.00% 3281 19.66% 27910 56.66% v/r009 = 500×20 15.42 0 0.00% 3211 12.32%		l .									
cfr009 - 100×60 12.19 0 0.02% 725 53.98% 7703 64.18% vfr009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 62.74% vfr009 - 200×60 13.58 0 0.01% 1496 37.02% 15942 62.73% vfr009 - 300×20 14.40 0 0.01% 1266 32.03% 25.03 62.23% vfr009 - 300×20 14.40 0 0.00% 2153 25.21% 1288 56.4% vfr009 - 300×60 14.40 0 0.00% 2153 25.21% 22882 58.26% vfr009 - 400×40 14.97 0 0.00% 2728 19.96% 27910 56.66% vfr009 - 500×20 15.42 0 0.00% 3212 15.86% 32295 56.23% vfr009 - 500×20 15.79 0 0.00% 350 13.16% 33966 49.28% vfr009 - 500×20 15.79 0 0.00% 350 13.16%											
cfr009 - 100×60 12.19 0 0.02% 684 55.38% 7156 63.87% vfr009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 26.74% vfr009 - 200×60 13.58 0 0.01% 1450 39.01% 15566 62.27% vfr009 - 300×20 14.40 0 0.00% 2119 26.80% 21503 59.64% vfr009 - 300×60 14.40 0 0.00% 2153 25.21% 22885 82.0% vfr009 - 400×20 14.97 0 0.00% 1369 19.31% 13352 54.7% vfr009 - 400×20 14.97 0 0.00% 2880 17.70% 30507 54.09% vfr009 - 400×20 15.42 0 0.00% 2880 17.70% 30507 54.09% vfr009 - 500×60 15.42 0 0.00% 3560 13.16% 32295 53.3% vfr009 - 600×40 15.79 0 0.00% 3501 13.63%											
vfr009 - 200×20 13.58 0 0.01% 1074 39.48% 10813 62.74% vfr009 - 200×60 13.58 0 0.01% 1496 37.02% 15926 20.78% vfr009 - 300×20 14.40 0 0.01% 1226 27.40% 15566 62.23% vfr009 - 300×60 14.40 0 0.00% 2153 25.21% 22882 58.06% vfr009 - 300×60 14.40 0 0.00% 2153 25.21% 22882 58.04% vfr009 - 400×40 14.97 0 0.00% 278 19.96% 27910 56.66% vfr009 - 500×20 15.42 0 0.00% 2880 17.70% 30507 54.09% vfr009 - 500×20 15.42 0 0.00% 3212 15.86% 32295 53.93% vfr009 - 600×20 15.79 0 0.00% 1511 12.32% 14725 47.31% vfr009 - 600×20 15.79 0 0.00% 1510 19.32%											
cfr009 - 200×40 13.58 0 0.01% 1496 37.02% 15942 62.23% vfr009 - 200×60 13.58 0 0.01% 1450 39.01% 15566 62.23% vfr009 - 300×20 14.40 0 0.00% 2119 26.80% 21503 59.68% vfr009 - 400×20 14.47 0 0.00% 1369 19.31% 13352 54.7% vfr009 - 400×40 14.97 0 0.00% 1369 19.31% 13352 54.7% vfr009 - 400×60 14.97 0 0.00% 2280 17.70% 30507 54.09% vfr009 - 500×60 15.42 0 0.00% 2880 17.70% 30507 54.09% vfr009 - 500×60 15.42 0 0.00% 3560 13.16% 36966 49.28% vfr009 - 500×60 15.79 0 0.00% 3561 13.16% 36966 49.28% vfr009 - 600×20 15.79 0 0.00% 3511 12.32%		l .									
vfr009 = 200×60 13.58 0 0.01% 1450 39.01% 15666 62.23% vfr009 = 300×40 14.40 0 0.01% 1226 27.40% 1188 50.08% vfr009 = 300×60 14.40 0 0.00% 2113 25.21% 22882 88.20% vfr009 = 400×40 14.97 0 0.00% 2728 19.96% 27910 56.66% vfr009 = 500×20 15.42 0 0.00% 22880 17.70% 3507 54.09% vfr009 = 500×20 15.42 0 0.00% 3212 15.86% 32295 53.93% vfr009 = 500×20 15.79 0 0.00% 3560 13.16% 36966 49.28% vfr009 = 600×60 15.79 0 0.00% 1511 12.32% 14725 47.31% 47.20% vfr009 = 600×60 15.79 0 0.00% 3594 13.63% 36562 25.58% vfr009 = 600×60 15.79 0 0.00% 410											
vfr009 = 300×20 14.40 0 0.01% 1226 27.40% 11889 59.08% vfr009 = 300×60 14.40 0 0.00% 2119 26.80% 2153 59.64% vfr009 = 400×20 14.97 0 0.00% 2153 25.21% 22282 58.20% vfr009 = 400×60 14.97 0 0.00% 2728 19.96% 27910 56.66% vfr009 = 500×60 15.42 0 0.00% 2880 17.70% 30507 54.09% vfr009 = 500×60 15.42 0 0.00% 3661 13.16% 3696 49.28% vfr009 = 500×60 15.42 0 0.00% 3560 13.16% 3696 49.28% vfr009 = 600×40 15.79 0 0.00% 3594 13.63% 35762 25.88% vfr009 = 700×20 16.10 0 0.00% 3798 10.90% 36880 48.20% vfr009 = 800×20 16.36 0 0.00% 3789 10.99%											
vfr009 = 300×40 14.40 0 0.00% 2119 26.80% 21503 59.64% vfr009 = 300×20 14.40 0 0.00% 2153 25.21% 22882 58.20% vfr009 = 400×40 14.97 0 0.00% 2728 19.96% 27910 56.66% vfr009 = 500×20 15.42 0 0.00% 2880 17.70% 30507 54.09% vfr009 = 500×20 15.42 0 0.00% 3212 15.86% 32295 53.39% vfr009 = 500×20 15.79 0 0.00% 3212 15.86% 32295 53.39% vfr009 = 600×20 15.79 0 0.00% 3594 13.63% 35762 25.58% vfr009 = 600×60 15.79 0 0.00% 4140 10.97% 41711 47.99% vfr009 = 600×60 15.79 0 0.00% 4140 10.97% 4171 47.99% vfr009 = 700×20 16.10 0 0.00% 478 8.71%		l .	l								
r/r009 - 400×20 14.97 0 0.00% 13.689 19.31% 13.352 54.47% v/r009 - 400×60 14.97 0 0.00% 2728 19.96% 27910 56.66% v/r009 - 500×20 15.42 0 0.00% 1647 14.64% 15873 50.22% v/r009 - 500×60 15.42 0 0.00% 3610 13.16% 3606 49.28% v/r009 - 600×20 15.79 0 0.00% 3560 13.16% 3606 49.28% v/r009 - 600×20 15.79 0 0.00% 3594 13.63% 35762 25.58% v/r009 - 600×20 15.79 0 0.00% 4140 10.97% 41771 47.90% v/r009 - 800×20 16.10 0 0.00% 3789 10.90% 3680 48.20% v/r009 - 700×60 16.10 1 0.00% 4788 8.71% 49037 43.43% v/r009 - 800×20 16.36 0 0.00% 4788 8.71%		l .	l .								
r/r009 - 400×20 14.97 0 0.00% 13.689 19.31% 13.352 54.47% v/r009 - 400×60 14.97 0 0.00% 2728 19.96% 27910 56.66% v/r009 - 500×20 15.42 0 0.00% 1647 14.64% 15873 50.22% v/r009 - 500×60 15.42 0 0.00% 3610 13.16% 3606 49.28% v/r009 - 600×20 15.79 0 0.00% 3560 13.16% 3606 49.28% v/r009 - 600×20 15.79 0 0.00% 3594 13.63% 35762 25.58% v/r009 - 600×20 15.79 0 0.00% 4140 10.97% 41771 47.90% v/r009 - 800×20 16.10 0 0.00% 3789 10.90% 3680 48.20% v/r009 - 700×60 16.10 1 0.00% 4788 8.71% 49037 43.43% v/r009 - 800×20 16.36 0 0.00% 4788 8.71%			0				22882	58.20%			
vfr009 − 400×60 14.97 0 0.00% 2880 17.70% 30.507 54.09% vfr009 − 500×40 15.42 0 0.00% 1647 14.64% 15873 50.22% vfr009 − 500×40 15.42 0 0.00% 3560 13.16% 3696 49.28% vfr009 − 600×20 15.79 0 0.00% 3561 13.16% 3696 49.28% vfr009 − 600×40 15.79 0 0.00% 3594 13.63% 35762 52.58% vfr009 − 700×20 16.10 0 0.00% 4140 10.97% 41771 47.90% vfr009 − 700×40 16.10 1 0.00% 3789 10.90% 36880 48.20% vfr009 − 800×20 16.36 0 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×40 16.36 1 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×40 16.36 1 0.00% 4059 9.03%	vfr009 - 400×20			0.00%							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{vfr009} - 400 \mathbf{\times 40}$	14.97	0	0.00%	2728	19.96%	27910	56.66%			
vfr009 − 500×40 vfr009 − 500×60 vfr009 − 600×20 vfr009 − 600×40 vfr009 − 600×60 vfr009 − 600×60 vfr009 − 700×20 vfr009 − 700×20 vfr009 − 700×20 vfr009 − 700×60 vfr009 − 700×60 vfr009 − 700×60 vfr009 − 800×60 vfr009 − 800×60 vfr000	$\mathbf{vfr009} - 400 \mathbf{\times 60}$	14.97	0	0.00%	2880	17.70%	30507	54.09%			
vfr009 − 500×60 15.42 0 0.00% 3560 13.16% 36966 49.28% vfr009 − 600×40 15.79 0 0.00% 1511 12.32% 14725 47.31% vfr009 − 600×60 15.79 0 0.00% 3594 13.63% 35762 52.58% vfr009 − 700×20 16.10 0 0.00% 1707 8.20% 16658 40.60% vfr009 − 700×40 16.10 1 0.00% 3789 10.90% 36880 48.20% vfr009 − 800×20 16.36 0 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×40 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 − 10×05 7.39 0 0.54% 42 52.48% 424 442 43.43% vfr010 − 10×15 7.39 0 0.75% 48 54.58% 424 51.9% vfr010 − 10×20 7.39 0 0.75% 48 54.58%	$vfr009 - 500 \times 20$		0	0.00%	1647	14.64%	15873	50.22%			
vfr009 − 600×20 15.79 0 0.00% 1511 12.32% 14725 47.31% vfr009 − 600×40 15.79 0 0.00% 4140 10.97% 4171 47.90% vfr009 − 700×20 16.10 0 0.00% 4140 10.97% 4171 47.90% vfr009 − 700×20 16.10 1 0.00% 3789 10.90% 36880 48.20% vfr009 − 700×20 16.10 1 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×20 16.36 0 0.00% 1441 6.47% 13696 36.88% vfr009 − 800×40 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 − 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 − 10×10 7.39 0 0.54% 42 54.88 422 44.88% vfr010 − 10×15 7.39 0 0.75% 48 54.58% 422	$\mathbf{vfr009} - 500 \mathbf{\times 40}$	15.42	0		3212	15.86%	32295				
vfr009 - 600 × 40 vfr009 - 600 × 60 vfr009 - 700 × 20 vfr009 - 700 × 40 vfr009 - 700 × 60 vfr009 - 700 × 60 vfr009 - 800 × 40 vfr009 - 800 × 60 vfr009 - 800 × 60 vfr010 - 10 × 05 vfr010 - 10 × 05 vfr010 - 10 × 05 vfr010 - 10 × 10 vfr010 - 10 × 10 vfr010 - 10 × 10 vfr010 - 20 × 05 vfr010 - 20 × 05 vfr010 - 20 × 20 vfr010 - 30 × 10 vfr010 - 40 × 10 vfr010 - 40 × 10 vfr010 - 40 × 10 vfr010 - 50 × 50 vfr010 - 60 × 10 vfr010 - 60 × 50 vfr010 - 60 × 50 vfr											
vfr009 − 600×60 15.79 0 0.00% 4140 10.97% 41771 47.90% vfr009 − 700×20 16.10 0 0.00% 3789 10.90% 3688 40.60% vfr009 − 700×60 16.10 1 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×20 16.36 0 0.00% 4059 90.93% 3484 43.77% vfr009 − 800×60 16.36 1 0.00% 4059 90.93% 3484 43.77% vfr010 − 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 − 10×10 7.39 0 0.54% 42 54.81% 429 51.59% vfr010 − 10×20 7.39 0 0.75% 48 54.58% 422 44.81% 429 51.93% vfr010 − 20×10 8.88 0 0.25% 102 59.44% 418 57.00% vfr010 − 20×15 8.88 0 0.25% 123 <											
vfr009 - 700×20 16.10 0 0.00% 1707 8.20% 16658 40.60% vfr009 - 700×40 16.10 1 0.00% 3789 10.90% 36880 48.20% vfr009 - 800×20 16.36 0 0.00% 4788 8.71% 49037 43.43% vfr009 - 800×40 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 - 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 - 10×10 7.39 0 0.86% 42 54.81% 429 51.59% vfr010 - 10×20 7.39 0 0.75% 48 54.58% 485 51.48% vfr010 - 20×05 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×10 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×20 8.88 0 0.25% 102 62.78% 128											
vfr009 - 700×40 16.10 1 0.00% 3789 10.90% 36880 48.20% vfr009 - 700×60 16.10 1 0.00% 4788 8.71% 49037 43.43% vfr009 - 800×40 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 - 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 - 10×10 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 - 10×15 7.39 0 0.72% 50 56.82% 511 54.37% vfr010 - 20×05 8.88 0 0.25% 48 54.58% 48 51.48% vfr010 - 20×05 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×10 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×15 8.88 0 0.25% 123 62.78% 128 61.53%	l control of the cont	l .									
vfr009 − 700×60 16.10 1 0.00% 4788 8.71% 49037 43.43% vfr009 − 800×20 16.36 0 0.00% 1441 6.47% 13696 36.38% vfr009 − 800×60 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 − 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 − 10×15 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 − 10×20 7.39 0 0.75% 48 54.58% 485 51.59% vfr010 − 20×05 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 − 20×10 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 − 20×20 8.88 0 0.25% 123 62.78% 128 61.53% vfr010 − 30×20 8.73 0 0.10% 108 59.98% 1128 60.	l control of the cont	l .									
vfr009 = 800×20 16.36 0 0.00% 1441 6.47% 13696 36.38% vfr009 = 800×40 16.36 1 0.00% 4059 9.03% 39436 43.77% vfr010 - 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 - 10×10 7.39 0 0.86% 42 54.81% 429 51.59% vfr010 - 10×20 7.39 0 0.75% 48 54.58% 485 51.48% vfr010 - 20×05 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×10 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 - 20×20 8.88 0 0.25% 122 62.78% 1286 61.19% vfr010 - 30×05 9.73 0 0.10% 108 59.98% 1128 60.90% vfr010 - 30×10 9.73 0 0.15% 187 62.27% 1974 62.68%											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
vfr009 − 800×60 16.36 1 0.00% 5267 7.57% 53273 40.83% vfr010 − 10×05 7.39 0 0.54% 42 52.48% 424 48.86% vfr010 − 10×15 7.39 0 0.86% 42 54.81% 429 51.59% vfr010 − 10×20 7.39 0 0.72% 50 56.82% 511 54.37% vfr010 − 20×05 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 − 20×15 8.88 0 0.25% 102 59.44% 1018 57.00% vfr010 − 20×20 8.88 0 0.25% 123 62.78% 1285 61.53% vfr010 − 30×05 9.73 0 0.10% 108 59.98% 1128 60.90% vfr010 − 30×15 9.73 0 0.14% 185 62.27% 1974 62.68% vfr010 − 30×20 9.73 0 0.12% 203 62.84% 2093 62.76% </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		l								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l control of the cont	l .	l .								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$vfr010 - 20 \times 05$		0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$vfr010-20{\times}15$		0	0.25%	123	62.78%	1285				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.88	0	0.27%	120	61.85%	1268	61.19%			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l .								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .	l .								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I .	l .	l .								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l .								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .	l .								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		l .	l .								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			l .								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
vfr010 - 200×20 13.58 0 0.01% 1147 40.68% 11555 62.92% vfr010 - 200×40 13.58 0 0.01% 1462 35.90% 15467 61.96%		l .	l .								
vfr010 - 200×40 13.58 0 0.01% 1462 35.90% 15467 61.96%											

Table 9: Continued from previous page

Dataset	$\beta \ln N(s) $	$L_h =$	1	$L_h = 5$	000	$L_h = 50$	0000
Baraser	β III 1 · (θ)	$idle_r$ (10^3)	$idle_p$	$idle_r$ (10^3)	$idle_p$	$idle_r$ (10^3)	$idle_p$
vfr010 - 300×20	14.40	0	0.01%	989	27.35%	9623	58.88%
vfr010 - 300×40	14.40	0	0.00%	2127	26.55%	21993	59.46%
vfr010 - 300×60	14.40	0	0.00%	2156	25.76%	23066	58.37%
vfr010 - 400×20	14.97	0	0.00%	1423	20.34%	13730	55.30%
vfr010 - 400×40	14.97	0	0.00%	2717	19.83%	27646	56.53%
$\mathbf{vfr010} - 400 \times 60$	14.97	0	0.00%	2834	18.06%	30053	54.50%
$vfr010 - 500 \times 20$	15.42	0	0.00%	1588	16.32%	15521	52.68%
$\mathbf{vfr010} - 500 {\times} 40$	15.42	0	0.00%	3153	16.60%	31381	54.27%
$\mathbf{vfr010} - 500 {\times} 60$	15.42	0	0.00%	3541	12.92%	37074	50.18%
vfr010 - 600×20	15.79	0	0.00%	1773	11.27%	17317	46.91%
$\mathbf{vfr010} - 600 \mathbf{\times 40}$	15.79	0	0.00%	3492	14.14%	34635	51.62%
$\mathbf{vfr010} - 600 \times 60$	15.79	0	0.00%	4189	10.68%	43079	46.79%
vfr010 - 700×20	16.10	0	0.00%	1329	11.79%	13000	46.08%
$\mathbf{vfr010} - 700 {\times} 40$	16.10	0	0.00%	3765	12.58%	36776	49.71%
$vfr010 - 700 \times 60$	16.10	1	0.00%	4619	9.26%	46492	45.44%
vfr010 - 800×20	16.36	0	0.00%	1850	6.52%	17846	34.98%
$\mathbf{vfr010} - 800 {\times} 40$	16.36	1	0.00%	4149	8.94%	40349	45.15%
$\mathbf{vfr010} - 800 {\times} 60$	16.36	1	0.00%	5420	6.92%	55503	39.92%