Tentamen i TATA24 Linjär Algebra

2022-01-09 kl 8.00-13.00

Inga hjälpmedel. Ej räknedosa.

På del A och B (uppgift 1–6) ska endast svar ges. De ska lämnas på ett gemensamt papper. Varje uppgift på del A och B ger högst 1 poäng.

Uppgifterna på del C (uppgift 7–10) ger högst 3 poäng per uppgift, och till dessa krävs fullständiga och välmotiverade lösningar.

För betyg 3/4/5 krävs minst 2 poäng på del A, minst 2 poäng på del B, minst 2/3/4 uppgifter på del C som bedömts med minst 2 poäng vardera, samt minst 8/12/16 poäng totalt.

Godkänd kontrollskrivning ger 3 poäng på del A (uppgift 1–3) som då inte behöver lösas. Markera detta genom att skriva "G" i rutorna för uppgift 1–3.

Svar finns efter skrivningstidens slut på kursens hemsida.

Nedan ges \mathbb{R}^n alltid standardskalärprodukten, och standardbasen i \mathbb{R}^n ses som ett höger ON-system när lämpligt.

DEL A

- 1. Ange alla minstakvadratlösningar till ekvationssystemet $\begin{cases} x_1 + x_2 = 0, \\ x_1 x_2 = 4, \\ x_2 = 1. \end{cases}$
- 2. För vilket $a \in \mathbb{R}$ är vektorerna (1, a, -2, 1) och (2, -1, 2a, 1) i \mathbb{R}^4 ortogonala?
- 3. Bestäm skärningspunkten för den linje som ges av $(x_1, x_2, x_3) = (5 + t, 5 + 2t, 5 + 3t)$, $t \in \mathbb{R}$, och det plan som innehåller punkterna (0, 1, 1), (2, 2, 0) och (1, 3, 1).

DEL B

- 4. Bestäm alla egenvärden till matrisen $\begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$.
- 5. Beräkna determinanten för matrisen $\begin{pmatrix} 0 & 2 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \end{pmatrix}.$
- 6. Låt $F: \mathbb{P}_2 \to \mathbb{P}_2$ vara den linjära avbildning som ges av F(p(x)) = (x+1)p'(x). Ange F:s avbildningsmatris i standardbasen $(1 \ x \ x^2)$ för \mathbb{P}_2 .

VÄND!

Utbildningskod: TATA24

Modul: TEN1

DEL C

- 7. Låt \mathbb{V} vara det delrum av \mathbb{R}^4 som spänns upp av (1,2,-1,1) och (3,4,-1,2). Bestäm det kortaste avståndet från $\mathbf{u}=(4,4,4,6)$ till \mathbb{V} .
- 8. Bestäm de punkter på andragradsytan $12x_1^2 + 15x_2^2 + 18x_3^2 8x_1x_3 = 40$ i \mathbb{R}^3 som ligger längst från origo. Ange även dessa punkters avstånd till origo.
- 9. För den linjära avbildningen $F: \mathbb{R}^2 \to \mathbb{R}^2$ gäller att (3,1) och (-2,3) är egenvektorer med egenvärde 2 respektive -1. Bestäm F:s matris i standardbasen.
- 10. Låt A vara en $n \times n$ -matris. Visa att om $A^k=0$ för något heltal $k \geq 1$ så är antingen A=0 eller så är A inte diagonaliserbar.

LYCKA TILL!