Acta Cryst. (1998). C54, 709-710

Hexamolybdenum Octatelluride, Mo₆Te₈

GORDON J. MILLER AND MARK SMITH

Iowa State University, Department of Chemistry, Ames, Iowa 50011, USA. E-mail: gmiller@iastate.edu

(Received 15 July 1997; accepted 25 November 1997)

Abstract

The title compound, isotypic with Mo_6Se_8 , contains Mo_6Te_8 clusters. All eight faces of a distorted octahedral Mo cluster [Mo—Mo 2.699 (2), 2.785 (2) Å] are capped by Te atoms, six of which also provide bridges to neighboring clusters.

Comment

Mo₆Te₈ was reported in 1970 (Grandjean et al., 1970) to be isostructural with Mo₆Se₈ (Bars et al., 1973), based on photographically recorded diffraction patterns. Lattice constants were given. During the course of our studies on ternary molybdenum chalcogenide systems, crystals of Mo₆Te₈ were synthesized by chemicaltransport reactions using a number of transport agents. The best crystals were grown using Sb or As at 1273 K. The material can be prepared in single-phase yield by direct combination of the elements at this temperature. Mo₆Te₈ obviously bears a close structural relationship to the important Chevrel phases $M_x Mo_6 Q_8$ (M = alkali metal, alkaline earth, 3d transition metal, lanthanide, actinide or other cation; x < 4; Q = S, Se, Te), the superconducting and critical magnetic field properties of which have generated a great deal of synthetic and theoretical interest (see Etourneau, 1992). As such, Mo₆Te₈ warrants a complete structural determination.

The title compound contains interlinked Mo₆Te₈ clusters, the central metal cluster moiety of which is a distorted octahedral Mo₆ cluster. The distortion takes the form of an elongation of the cluster in the c direction, generating short [2.699 (2) Å] Mo—Mo distances in the crystallographic *ab* plane and long [2.785 (2) Å] Mo—Mo distances along the c direction. A distorted cube of Te atoms surrounds the Mo₆ cluster, with six Te2 atoms capping six of the faces of the Mo₆ cluster [Mo—Te2 2.717 (1), 2.777 (2) and 2.781 (2) Å] and Te1 atoms capping the other two faces, forming three bonds with Mo—Te1 2.732 (2) Å. The six Te2 atoms provide bridges to neighboring Mo₆Te₈ groups (Fig. 1) at the six cluster vertex sites. The distances from the vertex Mo to each bridging Te2 are equivalent [2.818 (1) Å].

Since the reactions that produced the crystals used for the present determination employed As or Sb, the possibility of incorporation of a ternary element must be addressed. In the Chevrel phases, the ternary M atom

Fig. 1. Coordination and connectivity of the Mo₆ clusters. For clarity, only intercluster Mo—Te2 bonds are represented. The lines drawn between Te atoms indicate only the cubic environment of the Mo₆ cluster, and do not represent bonds (Te···Te ca 3.9 Å).

resides in the large eight-coordinate spaces formed by the chalcogens from eight different Mo_6Q_8 units. The corresponding position in Mo_6Te_8 is (0, 0, 1/2), but the Fourier map shows no significant features at this position $(1.9 \, \text{e Å}^{-3})$. Furthermore, qualitative energy-dispersive spectroscopy compositional analysis using a JEOL 6100 scanning electron microscope confirmed the presence of only Mo and Te in multiple crystal samples.

Experimental

Black reflective cubic crystals of Mo_6Te_8 formed as by-products of reactions loaded according to the stoichiometry Mo_3X_3Te (X = As, Sb), and heated at 1273 K for 7 d in sealed evacuated fused-silica tubes. The compound can be synthesized in single-phase yield by stoichiometric reaction of the elements at 1273 K.

Crystal data

•	
Mo ₆ Te ₈	Mo $K\alpha$ radiation
$M_r = 1596.44$	$\lambda = 0.71073 \text{ Å}$
Hexagonal	Cell parameters from 50
$R\overline{3}$	reflections
a = 10.1790 (10) Å	$\theta = 5.8 - 25.0^{\circ}$
c = 11.674(2) Å	$\mu = 21.560 \text{ mm}^{-1}$
$V = 1047.5 (2) \text{ Å}^3$	T = 293 (2) K
Z = 3	Block
$D_x = 7.592 \text{ Mg m}^{-3}$	$0.10 \times 0.07 \times 0.06 \text{ mm}$
D_m not measured	Black

Data collection

Siemens P4 diffractometer $R_{\text{int}} = 0.067$ ω scans $\theta_{\text{max}} = 25^{\circ}$ Absorption correction: $h = -1 \rightarrow 11$ ψ scans (*SHELXL93*; $k = -12 \rightarrow 1$ Sheldrick, 1993) $l = -13 \rightarrow 1$ $T_{\min} = 0.234$, $T_{\max} = 0.274$ 3 standard reflections 604 measured reflections 413 independent reflections 398 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$\Delta \rho_{\text{max}} = 1.95 \text{ e Å}^{-3}$
$R[F > 4\sigma(F)] = 0.039$	$\Delta \rho_{\rm min} = -2.06 \text{ e Å}^{-3}$
$wR(F^2) = 0.109$	Extinction correction:
S = 1.187	SHELXL93
413 reflections	Extinction coefficient:
23 parameters	0.00112 (13)
$w = 1/[\sigma^2(F_o^2) + (0.0230P)^2]$	Scattering factors from
+ 172.7655 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{max} < 0.001$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

$$U_{\rm eq} = (1/3) \sum_{i} \sum_{j} U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$$

	X	У	Z.	U_{eq}
Mo	-0.14367(12)	0.01736 (13)	0.09888 (9)	0.0157 (5)
Tel	0	0	0.29112 (13)	0.0189(5)
Te2	-0.36957 (10)	0.00200 (10)	0.24699 (7)	0.0181(5)

A peak of $1.9 \, e \, \mathring{A}^{-3}$ remained in the final difference Fourier map. It is located 2.44 \mathring{A} from Te1 at (0,0,1/2), but is small considering the heavy atoms in the structure.

Data collection: P4 software (Siemens, 1993, 1994). Cell refinement: P4. Data reduction: P4. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ATOMS (Dowty, 1994). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1198). Services for accessing these data are described at the back of the journal.

References

Bars, O., Guillevic, J. & Grandjean, D. (1973). *J. Solid State Chem.* **6**, 48-57.

Dowty, E. (1994). *ATOMS for Windows*. Version 3.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Etourneau, J. (1992). *Solid State Chemistry: Compounds*, edited by A. K. Cheetham & P. Day, pp. 93–95. New York: Oxford University Press.

Grandjean, D., Bars, O., Meerschant, A. & Spiessler, M. (1970). Bull. Soc. Fr. Miner. Cryst. 93, 498–499.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1993, 1994). P4 Diffractometer Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.