High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination

Yudeog Han Joon-Young Lee In So Kweon Robotics and Computer Vision Lab., KAIST

Problem Definition

A single RGB-D image depth camera Natural illumination

Lighting estimation High-quality shape

Shape Estimation in Natural Illumination

Overall framework

Image formation

Our lighting model

$$I = \alpha s(\mathbf{n}) = \alpha (\mathbf{n}^{\mathsf{T}} A \mathbf{n} + \mathbf{b}^{\mathsf{T}} n + c)$$

Conventional quadratic lighting function§

I: observed intensity

 $s(\boldsymbol{n}) = \boldsymbol{n}^{\mathsf{T}} A \boldsymbol{n} + \boldsymbol{b}^{\mathsf{T}} n + c$

 α : (per-pixel) local lighting parameter

A, b, c: (per-channel) global lighting parameter **n**: surface normal vector

Lighting estimation

Global lighting parameter estimation

the low-dimensional characteristic of a diffuse reflectance model

$$\begin{bmatrix} \operatorname{vec}(\boldsymbol{n}_1 \boldsymbol{n}_1^T)^T & \boldsymbol{n}_1^T & 1 \\ \vdots & & & \\ \operatorname{vec}(\mathbf{n}_k \boldsymbol{n}_k^T)^T & \boldsymbol{n}_k^T & 1 \end{bmatrix} \begin{bmatrix} \operatorname{vec}(A) \\ \boldsymbol{b} \\ c \end{bmatrix} = \begin{bmatrix} I_1 \\ \vdots \\ I_k \end{bmatrix}$$

Local lighting parameter estimation

- The residual error in the global lighting model
- local lighting variations
- initial normal deviations
- Illumination in small neighborhood is smoothly varying

$$\underset{\alpha}{\operatorname{argmin}} \lambda_{1}^{l} E_{1}^{l}(\alpha) + \lambda_{2}^{l} E_{2}^{l}(\alpha) + \lambda_{3}^{l} E_{3}^{l}(\alpha)$$

$$E_{1}^{l}(\alpha) = \sum_{p} \|I_{p} - \alpha_{p} s(\boldsymbol{n}_{p})\|^{2}$$

$$E_{2}^{l}(\alpha) = \sum_{p} \sum_{q \in \Omega_{p}} \|\omega_{(p,q)}^{l}(\alpha_{p} - \alpha_{q})\|^{2}$$

$$\omega_{(p,q)}^{l} = \begin{cases} 0 & \text{if } \|I_{p} - I_{q}\|^{2} > \tau^{l} \\ \exp(-\frac{\|I_{p} - I_{q}\|^{2}}{2\sigma_{l}^{2}}) & \text{otherwise} \end{cases}$$

$$E_3^l(\alpha) = \sum_p \|\nabla^2 \alpha_p\|^2$$

The entire lighting estimation is efficiently solved by least squares.

§ DM. K. Johnson and E. H. Adelson. Shape estimation in natural illumination. CVPR 2011

Input image

Our result (the global model only)

Our result (final)

❖ Normal estimation

- Shading constraint
- Normal constraint
- Integrability constraint

$\underset{\boldsymbol{n}}{\operatorname{argmin}} \lambda_1^n E_1^n(\boldsymbol{n}) + \lambda_2^n E_2^n(\boldsymbol{n}) + \lambda_3^n E_3^n(\boldsymbol{n})$

$$E_1^n(\boldsymbol{n}) = \sum_p ||I_p - \tilde{s}(\boldsymbol{n}_p)||^2$$

$$E_2^n(\mathbf{n}) = \sum_p^p \|1 - \mathbf{n}_p \cdot \mathbf{n}_p^0\|^2 \quad E_3^n(\mathbf{n}) = \sum_p \|\nabla \times \mathbf{n}_p\|^2$$

Experiments

Quantitative evaluation

		Average (°)				R10 (%)				A75 (°)			
		initial	GL	GC	Ours	initial	GL	GC	Ours	initial	GL	GC	Ours
ANGEL	Env1	6.360	7.216	7.553	6.099	17.54	21.18	25.61	14.31	7.950	9.284	10.139	7.587
	Env2	6.360	6.765	7.292	5.577	17.54	19.62	24.18	13.11	7.950	8.893	9.825	6.777
	Env3	6.360	7.541	6.923	6.118	17.54	19.99	18.79	15.02	7.950	9.120	8.620	7.604
BUNNY	Env1	4.933	6.633	8.413	4.857	7.72	17.65	31.33	7.20	6.396	8.699	10.989	6.286
	Env2	4.933	6.590	8.872	4.826	7.72	18.32	33.73	7.40	6.396	8.828	11.476	6.170
	Env3	4.933	6.203	6.467	4.893	7.72	11.96	16.72	7.18	6.396	7.854	8.418	6.307
FACE	Env1	4.513	6.080	6.466	3.648	4.85	9.84	13.68	4.16	5.756	7.714	8.486	4.525
	Env2	4.513	5.948	6.610	3.815	4.85	8.75	15.47	3.56	5.756	7.440	8.702	4.830
	Env3	4.513	5.324	5.198	3.887	4.85	6.63	6.77	3.63	5.756	6.663	6.698	4.845
PALM	Env1	4.679	6.288	6.244	3.463	5.55	13.30	16.68	2.50	6.059	8.319	8.612	4.562
	Env2	4.679	6.856	6.590	3.522	5.55	17.54	20.58	3.02	6.059	8.951	9.238	4.625
	Env3	4.679	5.415	5.577	3.213	5.55	7.76	9.12	1.51	6.059	7.081	7.480	4.171

RX: the percentage of pixels that have an angular normal error above X degrees AX: the angular normal error at the X^{th} percentile after sorting the errors from low to high

Real-world experiments

Structured light system Multi-albedos handling

Our result

Multi-view stereo system

Wu et al.[†] Input image Initial depth Our result [†] C. Wu, B. Wilburn, Y. Matsushita, and C. Theobalt. High-quality shape from multi-view stereo and shading under general illumination. CVPR 2011.

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No.2010-0028680)1