# Alpian Technologies

MOBILE SOFTWARE ENGINEER TEST



# Software Engineer Technical Test

Congratulations on getting to this stage and thank you for taking the time to solve the following exercises. Please remember to commit your code frequently using a version control system of your choice. Once you successfully complete this tasks please share your repository with us.

In your repository you should include:

- A text file with your thought process (for every question that require a description)
- The source code to solve the exercise
- A readme file with all the instructions that you think will be useful for us to test your solution.

Best of luck.

**NOTE**: Keep in mind that you should keep your repository private. You can use <a href="https://github.com">https://github.com</a> to create an account with free private repos. Once you are done you can share your repo with <a href="mailto:Tiamaroth">Tiamaroth</a>, <a href="mailto:eugenekup">eugenekup</a>, <a href="mailto:LalinP">LalinP</a> and <a href="mailto:lao1g12">lao1g12</a> on GitHub. Please remember to create a sub-folder and clearly mention your Name & Surname to allow a quick identification.

Alpian Technologies CONFIDENTIAL 1

#### Exercise 1

Some programming languages do not have loops; instead they make use of recursion. Therefore, it is good to be fluent in translating a function with loops into a recursive one. Here is an iterative function collatz written in pseudocode (this function is the well-known Collatz conjecture, <a href="https://en.wikipedia.org/wiki/Collatz">https://en.wikipedia.org/wiki/Collatz</a> conjecture):

```
collatz(n)
while n > 1
show n
if n odd
set n to 3n + 1
else
set n to n / 2
```

- I. When written recursively, the function body can be reduced to a single *return* statement.
- a. Express this function as a recursive one in any language of your choice (Java, Go, Kotlin etc).
- b. Rewrite your answer so that it is tail-recursive in any language of your choice (Java, Go, Kotlin ,etc).

## Exercise 2

In computer graphics an operation called the *dotproduct* is used to manipulate vectors. The dot product of (a1, a2,···, an) and (b1, b2,···, bn) is a1b1+a2b2+···+anbn; using the zip, map and reduce operations, write a function *dotProduct* that computes the dot product of two vectors in any language that implements zip, map and reduce functions on your choice.

Alpian Technologies CONFIDENTIAL 2

### **Exercise 3**

You're tasked to implement the new customer-mapper-service in a language of your choice among Java, Go or Kotlin.

This service stores entities defined as:

- customerId -> int
- externalld -> string
- createdAt -> date (you are free to use the most convenient date type of the language you chose)

It will expose two endpoints with a POST and GET operations.

- POST endpoint will take as parameter the customerId and the createdAt, store it in a cache / in-memory database (up to you!) pairing it with an externalId. The externalId can be generated it in the service itself. The date is expected to be valid with format yyyy-mm-dd and can't be in the future.
- GET endpoint will return the externalld of a given customerld

Endpoints can be either Rest or gRPC, your choice.

Alpian Technologies CONFIDENTIAL 3