## 第十一周

#### ■ 教学计划

- 机器学习: 感知器(上次课)
- 项目报告: 0109, 0206
- 机器学习:内核与聚类(这次课)

#### ■ 任务

- 家作5: 机器学习
- 项目5: 机器学习,三周的时间,5/31日提交

# 人工智能导论

#### **Kernels and Clustering**



基于UC Berkeley, CS188课程 --- University of California, Berkeley

## Case-Based Learning



## Non-Separable Data



## Case-Based Reasoning

- Classification from similarity
  - Case-based reasoning
  - Predict an instance's label using similar instances
- Nearest-neighbor classification
  - 1-NN: copy the label of the most similar data point
  - K-NN: vote the k nearest neighbors (need a weighting scheme)
  - Key issue: how to define similarity
  - Trade-offs: Small k gives relevant neighbors, Large k gives smoother functions





#### Parametric / Non-Parametric

- Parametric models:
  - Fixed set of parameters
  - More data means better settings
- Non-parametric models:
  - Complexity of the classifier increases with data
  - Better in the limit, often worse in the non-limit
- (K)NN is non-parametric



Truth





10 Examples



100 Examples



10000 Examples



#### Nearest-Neighbor Classification

- Nearest neighbor for digits:
  - Take new image
  - Compare to all training images
  - Assign based on closest example
- Encoding: image is vector of intensities:

- What's the similarity function?
  - Dot product of two images vectors?

$$sim(x, x') = x \cdot x' = \sum_{i} x_i x_i'$$

- Usually normalize vectors so ||x|| = 1
- min = 0 (when?), max = 1 (when?)

0

2

0

/ 1

\_

## **Similarity Functions**



#### **Basic Similarity**

Many similarities based on feature dot products:

$$sim(x, x') = f(x) \cdot f(x') = \sum_{i} f_i(x) f_i(x')$$

• If features are just the pixels:

$$sim(x, x') = x \cdot x' = \sum_{i} x_i x'_i$$

Note: not all similarities are of this form

#### **Invariant Metrics**

- Better similarity functions use knowledge about vision
- Example: invariant metrics:
  - Similarities are invariant under certain transformations
  - Rotation, scaling, translation, stroke-thickness...
  - E.g:





- 16 x 16 = 256 pixels; a point in 256-dim space
- These points have small similarity in R<sup>256</sup> (why?)
- How can we incorporate such invariances into our similarities?

#### **Rotation Invariant Metrics**



- Each example is now a curve in R<sup>256</sup>
- Rotation invariant similarity:

 E.g. highest similarity between images' rotation lines

#### Tangent Families



- Problems with s':
  - Hard to compute
  - Allows large transformations (e.g.  $6 \rightarrow 9$ )

- Tangent distance:
  - 1st order approximation at original points.
    - Easy to compute
    - Models small rotations

#### **Template Deformation**

- Deformable templates:
  - An "ideal" version of each category
  - Best-fit to image using min variance
  - Cost for high distortion of template
  - Cost for image points being far from distorted template
- Used in many commercial digit recognizers











#### A Tale of Two Approaches...

- Nearest neighbor-like approaches
  - Can use fancy similarity functions
  - Don't actually get to do explicit learning

- Perceptron-like approaches
  - Explicit training to reduce empirical error
  - Can't use fancy similarity, only linear
  - Or can they? Let's find out!

### Kernelization



#### Perceptron Weights

- What is the final value of a weight  $w_v$  of a perceptron?
  - Can it be any real vector?
  - No! It's built by adding up inputs.

$$w_y = 0 + f(x_1) - f(x_5) + \dots$$

$$w_y = \sum_i \alpha_{i,y} f(x_i)$$

 Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

$$\alpha_y = \langle \alpha_{1,y} \ \alpha_{2,y} \ \dots \ \alpha_{n,y} \rangle$$

#### **Dual Perceptron**

How to classify a new example x?

score
$$(y, x) = w_y \cdot f(x)$$
  

$$= \left(\sum_i \alpha_{i,y} f(x_i)\right) \cdot f(x)$$

$$= \sum_i \alpha_{i,y} (f(x_i) \cdot f(x))$$

$$= \sum_i \alpha_{i,y} K(x_i, x)$$

• If someone tells us the value of K for each pair of examples, never need to build the weight vectors (or the feature vectors)!

#### **Dual Perceptron**

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify  $x_n$ ,

$$y = \arg\max_{y} \sum_{i} \alpha_{i,y} K(x_i, x_n)$$

- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise count of right class (for this instance)

$$\alpha_{y,n} = \alpha_{y,n} - 1$$
  $w_y = w_y - f(x_n)$   
 $\alpha_{y^*,n} = \alpha_{y^*,n} + 1$   $w_{y^*} = w_{y^*} + f(x_n)$ 

#### Kernelized Perceptron

- If we had a black box (kernel) K that told us the dot product of two examples x and x':
  - Could work entirely with the dual representation
  - No need to ever take dot products ("kernel trick")

$$score(y, x) = w_y \cdot f(x)$$

$$= \sum_i \alpha_{i,y} K(x_i, x)$$

- Like nearest neighbor work with black-box similarities
- Downside: slow if many examples get nonzero alpha



## Kernelized Perceptron Structure





#### Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- "Kernel trick": we can substitute any\* similarity function in place of the dot product
- Lets us learn new kinds of hypotheses

<sup>\*</sup> Fine print: if your kernel doesn't satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels *sometimes* work (but not always).

## Non-Linearity



#### **Non-Linear Separators**

Data that is linearly separable works out great for linear decision rules:



But what are we going to do if the dataset is just too hard?



How about... mapping data to a higher-dimensional space:



#### **Non-Linear Separators**

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:



#### Some Kernels

 Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back

• Linear kernel: 
$$K(x, x') = x' \cdot x' = \sum_{i} x_i x_i'$$

• Quadratic kernel:  $K(x,x')=(x\cdot x'+1)^2$   $=\sum_{i,j}x_ix_j\,x_i'x_j'+2\sum_ix_i\,x_i'+1$ 

RBF: infinite dimensional representation

$$K(x, x') = \exp(-||x - x'||^2)$$

Discrete kernels: e.g. string kernels

#### Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
  - Yes, in principle, just compute them
  - No need to modify any algorithms
  - But, number of features can get large (or infinite)
  - Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels
- Kernels let us compute with these features implicitly
  - Example: implicit dot product in quadratic kernel takes much less space and time per dot product
  - Of course, there's the cost for using the pure dual algorithms: you need to compute the similarity to every training datum

#### Recap: Classification

- Classification systems:
  - Supervised learning
  - Make a prediction given evidence
  - We've seen several methods for this
  - Useful when you have labeled data



### Clustering

- Clustering systems:
  - Unsupervised learning
  - Detect patterns in unlabeled data
    - E.g. group emails or search results
    - E.g. find categories of customers
    - E.g. detect anomalous program executions
  - Useful when don't know what you're looking for
  - Requires data, but no labels
  - Often get gibberish



## Clustering



#### Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns



- What could "similar" mean?
  - One option: small (squared) Euclidean distance

$$dist(x,y) = (x-y)^{\mathsf{T}}(x-y) = \sum_{i} (x_i - y_i)^2$$

## K-Means



#### K-Means

- An iterative clustering algorithm
  - Pick K random points as cluster centers (means)
  - Alternate:
    - Assign data instances to closest mean
    - Assign each mean to the average of its assigned points
  - Stop when no points' assignments change



## K-Means Example



#### K-Means as Optimization

Consider the total distance to the means:

$$\phi(\{x_i\},\{a_i\},\{c_k\}) = \sum_i \operatorname{dist}(x_i,c_{a_i})$$
 points means assignments



- Each iteration reduces phi
- Two stages each iteration:
  - Update assignments: fix means c, change assignments a
  - Update means: fix assignments a, change means c



#### Phase I: Update Assignments

For each point, re-assign to closest mean:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

Can only decrease total distance phi!

$$\phi(\lbrace x_i \rbrace, \lbrace a_i \rbrace, \lbrace c_k \rbrace) = \sum_i \operatorname{dist}(x_i, c_{a_i})$$





#### Phase II: Update Means

• Move each mean to the average of its assigned points:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

- Also can only decrease total distance... (Why?)
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean





#### Initialization

- K-means is non-deterministic
  - Requires initial means
  - It does matter what you pick!
  - What can go wrong?

 Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics





## K-Means Getting Stuck

#### A local optimum:



Why doesn't this work out like the earlier example, with the purple taking over half the blue?





#### **K-Means Questions**

- Will K-means converge?
  - To a global optimum?
- Will it always find the true patterns in the data?
  - If the patterns are very very clear?
- Will it find something interesting?
- Do people ever use it?
- How many clusters to pick?



## **Agglomerative Clustering**





## **Agglomerative Clustering**

- Agglomerative clustering:
  - First merge very similar instances
  - Incrementally build larger clusters out of smaller clusters
- Algorithm:
  - Maintain a set of clusters
  - Initially, each instance in its own cluster
  - Repeat:
    - Pick the two closest clusters
    - Merge them into a new cluster
    - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram





### **Agglomerative Clustering**

- How should we define "closest" for clusters with multiple elements?
- Many options
  - Closest pair (single-link clustering)
  - Farthest pair (complete-link clustering)
  - Average of all pairs
  - Ward's method (min variance, like k-means)
- Different choices create different clustering behaviors



#### Example: Google News



Search News

Search the Web

Advanced news search

browse 25,000 news sources updated continuously.

U.S. »

World »

#### Heavy Fighting Continues As Pakistan Army Battles Taliban

Voice of America - 10 hours ago

By Barry Newhouse Pakistan's military said its forces have killed 55 to 60 Taliban militants in the last 24 hours in heavy fighting in Taliban-held areas of the northwest.

Pakistani troops battle Taliban militants for fourth day guardian.co.uk

Army: 55 militants killed in Pakistan fighting The Associated Press Christian Science Monitor - CNN International - Bloomberg - New York Times

all 3,824 news articles »



edit

ABC News

#### Weekend Opinionator: Souter, Specter and the Future of the GOP

New York Times - 48 minutes ago

By Tobin Harshaw An odd week. While Barack Obama celebrated his 100th day in office, the headlines were pretty much dominated by the opposition party, albeit not in the way many Republicans would have liked.

US Supreme Court Vacancy An Early Test For Sen Specter Wall Street Journal Letters: Arlen Specter, Notre Dame, Chrysler Houston Chronicle

The Associated Press - Kansas City Star - Philadelphia Inquirer - Bangor Daily News all 401 news articles »



**FOXNew** 

edi

#### Sri Lanka admits bombing safe haven

guardian.co.uk - 3 hours ago

Sri Lanka has admitted bombing a "safe haven" created for up to 150000 civilians fleeing fighting between Tamil Tiger fighters and the army.

Chinese billions in Sri Lanka fund battle against Tamil Tigers Times Online Huge Humanitarian Operation Under Way in Sri Lanka Voice of America

BBC News - Reuters - AFP - Xinhua

all 2,492 news articles »



#### Joe Biden, the Flu and You

New York Times - 48 minutes ago

By GAIL COLLINS The swine flu scare has made it clear why Barack Obama picked Joe Biden for vice president, David Brooks and Gail Collins talk between columns. After his flu warning, Biden takes the train home. The Associated Press.

Biden to visit Balkan states in mid-May Washington Post

AFP - Christian Science Monitor - Biziournals.com - Voice of America all 1,506 news articles »



edit 🗵 Business »

#### Buffett Calls Investment Candidates' 2008 Performance Subpar

Bloomberg - 2 hours ago

By Hugh Son, Erik Holm and Andrew Frye May 2 (Bloomberg) -- Billionaire Warren Buffett said all of the candidates to replace him as chief investment officer of Berkshire Hathaway Inc. failed to beat the 38 percent decline of the Standard & Poor's 500 ...

Buffett offers bleak outlook for US newspapers Reuters

Buffett: Limit CEO pay through embarrassment MarketWatch

CNBC - The Associated Press - quardian.co.uk

all 1,454 news articles » BRK.A

#### Chrysler's Fall May Help Administration Reshape GM

new York Times - 5 hours ago

Auto task force members, from left: Treasury's Ron Bloom and Gene Sperling, Labor's Edward Montgomery, and Steve Rattner, BY DAVID E. SANGER and BILL VLASIC WASHINGTON - Fresh from pushing Chrysler into bankruptcy, President Obama and his

Comment by Gary Chaison Prof. of Industrial Relations, Clark University

Sankruptcy reality sets in for Chrysler, workers Detroit Free Press

Washington Post - Bloomberg - CNNMoney.com

all 11,028 news articles » MOTC:FIATY - BIT:FR - GM

#### Top-level categories: supervised classification

Story groupings: unsupervised clustering



### Example: K-Means

- [web demo]
  - http://www.cs.washington.edu/research/imagedatabase/demo/kmclus ter/