Manual for Package: physics Revision 1:2M

Karl Kästner

October 14, 2019

Contents

1	@Cons	stant	1
	1.1	Constant	1
	1.2	celsius_to_kelvin	1
	1.3	$depth_to_pressure \dots \dots \dots \dots \dots$	1
	1.4	kelvin_to_celsius	2
	1.5	pressure_to_depth	2
	1.6	sound_absorption_water	2
	1.7	sound_velocity_water	2
2	physic	s	3
	2.1	sound_absorption_air	3
	2.2	test_sound_absorption_air	3

1 @Constant

1.1 Constant

Constant and physical standard quantities

1.2 celsius_to_kelvin

convert temperature from degree Celsius to Kelvin function $t_K = celsius_to_kelvin(t_C)$

1.3 depth_to_pressure

```
convert depth to pressure in fresh water at standard temperature z = (p - p0)/(rho \ g) \Rightarrow p = rho \ g \ z + p0 input : p0 : nx1 \ or \ scalar, \ pressure \ at \ water \ surface \ in \ BAR d : depth \ in \ metre output : p : nx1, \ pressure \ at \ measurement \ depth \ in \ BAR
```

1.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

1.5 pressure_to_depth

```
convert pressure to depth in fresh water at standard temperature z = (p - p0)/(rho*g) input: p : nx1, \; pressure \; at \; measurement \; depth \; in \; BAR p0 : nx1 \; or \; scalar, \; pressure \; at \; water \; surface \; in \; BAR output: d : \; depth \; in \; metre
```

1.6 sound_absorption_water

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
```

```
D : depth (m)
T : temperature (C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

$1.7 \quad sound_velocity_water$

```
sound velocity in water
following Lubbers and Graaff (1998)
this formula does not include depth and salinity effects
```

2 physics

${\bf 2.1} \quad sound_absorption_air$

${\bf 2.2 \quad test_sound_absorption_air}$