Chem 1142—Exam 3A Spring 2011

Name:

Multiple Choice. [5 pts. Each] Circle the best response.

Q1. A Brønsted acid is:

a) a proton acceptor

b) a proton donor

c) an electron-pair donor

d) an electron-pair acceptor

e) a substance that ionizes to produce H₃O⁺ ions.

Q2. The pH of $0.20 \text{ M Sr}(OH)_2(aq)$ is:

a) 0.70

b) 0.40

c) 1.00

d) 13.30

e) 13.60

Q3. A weak acid:

a) Has a high pH

b) Has a low pH

c) Has a pH close to 7.00

d) Partially ionizes in water

e) Is chemically unreactive

Q4. Which of the following has the **greatest** molar solubility?

a) PbF₂; $K_{\rm sp} = 4.1 \times 10^{-8}$

b) CaF_2 ; $K_{sp} = 4.0 \times 10^{-11}$

c) BaF₂; $K_{\rm sp} = 1.7 \times 10^{-6}$

d) Ag_2SO_4 ; $K_{sp} = 1.4 \times 10^{-5}$

Q5. An aqueous solution of NH₄Br is:

a) Acidic

b) Basic

c) Neutral

d) Not enough information to give an answer

Q6. K_{sp} for PbCl₂ is 2.4 x 10⁻⁴. What is the molar solubility of PbCl₂?

a) $6.2 \times 10^{-2} \text{ M}$

b) 3.9 x 10⁻² M

c) 2.4 x 10⁻⁴ M

d) 7.7×10^{-3}

e) $6.0 \times 10^{-5} \text{ M}$

Short Response Questions. Show ALL work to receive credit.

Q7. [10 pts.] Calculate the pH of a 0.10 M aqueous solution of NaF(aq), given K_a (HF) = 7.1 x 10^{-4} .

Q8.	[10 pts.] Identify (and explain how you identified) the Lewis acid and base in the following reaction:											
	$AlCl_3 + Cl^- \rightarrow AlCl_4^-$											
	Be sure to write valid Lewis structures as part of your answer.											
	pts.] The p K_a s of two monoprotic acids, HA and HB, are 5.9 and 8.1 respectively. Which of the two is onger acid?											
Q10. [10 pts.] Write formulas for the following compounds: a) lithium phosphate											
	b) ammonium bicarbonate											

c) sulfuric acid

d) calcium sulfate dihydratee) trisulfur heptabromide

Q13. [10 pts.] How many grams of CaCO₃ will dissolve in 300. mL of 0.050 M Ca(NO₃)₂(aq)? K_{sp} (CaCO₃) = 8.7 x 10⁻⁹.

BONUS QUESTION.

 H_3PO_4 is a triprotic acid. Write out the chemical reactions corresponding to K_{a1} , K_{a2} , and K_{a3} .

Useful Information

$$N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \ {\rm x} \ 10^{-14} \ {\rm at} \ 25 \ {\rm ^{\circ}C}.$$

$$pH = -log[H_3O^+]$$

$$pH + pOH = 14.00 (at 25 °C)$$

$$K_aK_b = K_w$$

$$R = 8.314 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$$

$$pH = pK_a + log \frac{[Base]}{[Acid]}$$

$$M_1V_1=M_2V_2$$

Periodic Table of the Elements

			Leur	Juic I	abie	טוטול	LICII	ICH 162									
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1																2
н																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Ľi	Be											B	Č	N	ŏ	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16.00	17	18
													Si	P		CI	1
Na 22.99	Mg											Al	_	I -	S	1	Ar
	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
	ı	57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138 91	140.12	140.91	144 24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]