

Layers Lec 6

OSI Reference Model

Layered model:

- 7. Application
- 6. Presentation
- 5. Session
- 4. Transport
- 3. Network
- 2. Data Link
- 1. Physical

Responsibility:

*transmission of raw bits over a communication channel.

Issues:

- >mechanical and electrical interfaces
- >time per bit
- distances

Data Link Layer -

Data Link Control

provide an error-free communication link **Issues**:

- >framing (dividing data into chunks)
- >header & trailer bits
- addressing

Data Link Layer -

The MAC sublayer

Medium Access Control - needed by mutiaccess networks.

MAC provides DLC with "virtual wires" on multiaccess networks.

Network Layer

Responsibilities:

- path selection between end-systems (routing).
- >subnet flow control.
- fragmentation & reassembly
- translation between different network types.

Issues:

>virtual circuits

Transport Layer

Responsibilities:

- provides virtual end-to-end links between peer processes.
- >end-to-end flow control

Issues:

- >error detection
- >reliable communication

Session Layer

Responsibilities:

between applications.

Note: Many protocol suites do not include a session layer.

The Presentation Layer

Responsibilities:

data encryption
data compression
data conversion

Note: Many protocol suites do not include a Presentation Layer.

Application Layer

- papplication level protocols
- pappropriate selection of "type of service"

"anything not provided by any of the other layers"

Data

Layering & Headers

- Each layer needs to add some control information to the data in order to do it's job.
- This information is typically prepended to the data before being given to the lower layer.
- Once the lower layers deliver the the data and control information the peer layer uses the control information.

To remember

Layering & Headers

Physical

>no header - just a bunch of bits.

Data Link

- >address of the receiving endpoints
- address of the sending endpoint
- >length of the data
- >checksum.

Example:Network layer header

- >type of service
- >length of the data
- packet identifier
- >fragment number
- >time to live
- >protocol
- header checksum
- >source network address
- destination network address

TCP/IP MODEL

OSI & TCP/IP Models

OSI Model

Application Layer

Application programs using the network

Transport Layer (TCP/UDP)

Management of end-to-end message transmission, error detection and error correction

Network Layer (IP)

Handling of datagrams: routing and congestion

Data Link Layer

Management of cost effective and reliable data delivery, access to physical networks

Physical Layer

Physical Media