NASA TECHNICAL NOTE

NASA TN D-5088

CASE FILE COPY

A COMPUTER PROGRAM FOR A
LINE-BY-LINE CALCULATION OF SPECTRA
FROM DIATOMIC MOLECULES AND ATOMS
ASSUMING A VOIGT LINE PROFILE

by Ellis E. Whiting, James O. Arnold, and Gilbert C. Lyle Ames Research Center Moffett Field, Calif.

A COMPUTER PROGRAM FOR A LINE-BY-LINE CALCULATION OF SPECTRA FROM DIATOMIC MOLECULES AND ATOMS ASSUMING A VOIGT LINE PROFILE

By Ellis E. Whiting, James O. Arnold, and Gilbert C. Lyle

Ames Research Center Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

A COMPUTER PROGRAM FOR A LINE-BY-LINE CALCULATION OF SPECTRA FROM DIATOMIC MOLECULES AND ATOMS

ASSUMING A VOIGT LINE PROFILE

By Ellis E. Whiting, James O. Arnold, and Gilbert C. Lyle

Ames Research Center

SUMMARY

A Fortran IV computer program for predicting the spectra resulting from electronic transitions of diatomic molecules and atoms in local thermodynamic equilibrium is described in detail. Included are instructions for preparing the input data, a program listing, and complete flow charts. The program produces a spectrum by accounting for the contribution of each rotational and atomic line considered. The integrated intensity of each line is distributed in the spectrum by an approximate Voigt profile. The program can produce spectra for optically thin gases or for cases where simultaneous emission and absorption occurs. In addition, the program can compute the spectrum resulting from the absorption of incident radiation by a column of cold gas or the high-temperature, self-absorbed emission spectrum from a nonisothermal gas. The computed spectrum can be output directly or combined with a slit function and sensitivity calibration to predict the output of a grating spectrograph or a fixed wavelength radiometer.

INTRODUCTION

There are many applications in the field of quantitative spectroscopy where the ability to compute an emission or absorption spectrum is required. For example, electronic transition moments (or f-numbers) are often determined by comparing measured and computed intensities (see refs. 1-5). In such an application, test conditions giving an optically thin gas are usually required to simplify the problem, although Drake, Tyte, and Nicholls (ref. 5) recently reported a technique for determining these quantities from strongly self-absorbed spectra. Detailed spectral computations are also used in predicting radiative heat transfer in hot-gas environments, in stellar atmosphere calculations, for determining planetary surface pressure from measured line broadening, and for establishing basic spectroscopic constants.

The task of computing a reasonably accurate spectrum for a mixture of atoms and diatomic molecules is complicated by the enormously large number (often tens of thousands) of rotational lines forming the spectrum. In addition, several kinds of electronic transitions may be involved, each with its own required set of line strength and wavelength equations. These considerations make it impractical to produce the band spectra from even a simple

diatomic transition, such as $\text{BeO}(^1\Sigma \to ^1\Sigma)$, without the aid of an electronic computer. In response to this need, several computer programs have been written to produce synthetic spectra (see, e.g., refs. 5 and 6). However, most programs have been written for specific applications and cannot be applied to more general requirements. The present work was undertaken to develop a computer program applicable, to some degree of approximation, to any "allowed" electronic transition of diatomic molecules and atoms. Specifically, the program has the capability to include the following features in any computation:

- 1. Parallel transitions ($\triangle\Lambda=\Lambda^{\bullet}-\Lambda^{\bullet}=0$), in which spin splitting and lambda doubling are ignored (ignoring spin splitting and/or lambda doubling means herein that the total multiplet strength is assumed to reside in a single "effective" line),
- 2. Perpendicular transitions ($\triangle A = \pm 1$), in which spin splitting and lambda doubling are ignored,
 - 3. $^{2}\Sigma \leftrightarrow ^{2}\Pi$ transitions, in which lambda doubling is ignored,
 - 4. Atomic lines,
- 5. Option to terminate rotational-line calculations when the molecule dissociates due to rotation,
- 6. Option to include the alternation of line intensities for homonuclear molecules,
 - 7. Use of an approximate Voigt profile for the line shape, and
 - 8. Radiative energy transport in a nonisothermal gas.

The restrictions on spin splitting and lambda doubling can be removed with a modest reprogramming effort, but this would result in longer computer run times.

The output options available in the program are:

- 1. Tabulation of the spontaneous-emission spectrum (i.e., optically thin spectrum) for a 1.0 cm path length,
- 2. Tabulation of the "true" spectrum, which incorporates spontaneous emission, induced emission, absorption, and externally incident radiation through the equation of radiative transfer,
- 3. Tabulation of the curve of growth for an arbitrary number of wavelength intervals,
- $\ensuremath{\mbox{\scalebox{μ}}}$. Tabulation of the integrated intensity over an arbitrary number of wavelength intervals, and

5. Tabulation of the output signal produced by a radiometer or spectrometer by specifying an instrument calibration. The instrument slit function can be approximated by up to 99 straight-line segments or by a Gaussian curve. The computation can be made at a fixed wavelength to simulate a radiometer or by scanning across any specified wavelength interval to simulate a grating instrument. In the latter case, the sensitivity can be varied as a function of wavelength to accurately simulate a grating-instrument calibration.

The computer program presented is also discussed in reference 7. That reference describes the theoretical and numerical assumptions made in the program, compares computer results with those given by other programs, and demonstrates the flexibility of the program in solving a wide variety of problems. However, that paper does not discuss programming details and, consequently, is not in a useful form for understanding and using the program. This paper provides: (1) a discussion of program operations, (2) a listing of the program statements, (3) detailed flow charts of the program logic, and (4) a guide for preparing the input data necessary to operate the program. It is assumed that the reader has a copy of reference 7 available; therefore, the information contained in that paper will not be reproduced herein.

The program is available from COSMIC, Barrow Hall, University of Georgia, Athens, Georgia. The program package includes the program source decks, an 800 BPI magnetic tape with spectroscopic data for 18 diatomic systems, and the input and output for an extensive program checkout. When requesting this program, refer to Flash Sheet number ARC-10221.

SYMBOLS

FORTRAN IV	Commonly Used Notation	
ALPHA	α_{e}	rotational constant for equilibrium position, cm-1
ALTNAT		alteration factor for homonuclear molecules, dimensionless ALTNAT = 0, lines do not alternate in intensity = 1, lines with K" odd are strongest = 2, lines with K" even are strongest
ATOMCC		number density of atoms, atoms-cm ⁻³
BE	Вe	rotational constant for equilibrium position, cm-1
BEØB-X	BeO, $B^1\Sigma \rightarrow X^1\Sigma$	band system for BeO molecule near 4700 Å
BETA	βe	rotational constant for equilibrium position, cm-1
BLAM	\mathbb{B}_{λ} , \mathbb{B}_{λ}^{o}	Planck or black-body function, $W-cm^{-2}-\mu^{-1}-sr^{-1}$

BV	$\mathbb{B}_{\mathbf{v}}$	rotational constant for the vibrational level v, cm-1
CAPA	Α.	spin coupling constant, cm-1
CAPL	, Λ	quantum number specifying the component of the resultant electronic angular momentum along the internuclear axis, dimensionless
СН3900	CH,B ² Σ→X ² Π	band system of CH molecule near 3900 Å
CH4300	CH,A ² △→X ² ∏	band system of CH molecule near 4300 Å
CINI3		intensity factor defined in equation (12) page 12
CN V	$CN, B^2\Sigma \rightarrow X^2\Sigma$	violet band system of CN molecule
CN RED	CN,A ² Π→X ² Σ	red band system of CN molecule
CØASDI	CO,a¹³Σ→a³∏	Asundi band system of CO molecule
СØ+ СТ	$CO^+, A^2\Pi \rightarrow X^2\Sigma$	comet tail band system of CO molecule
CØ 4+	$CO,A^1\Pi \rightarrow X^1\Sigma$	fourth positive band system of CO molecule
CONST1 CONST2 CONST3		constants used in line strength expressions in sub- routine S2 PI2 and specified in table I
CSPRD1 CSPRD2 CSPRD3		constants used in Voigt profile expressions and defined in equations on page 11
CSTR		constant used in line strength expression in sub- routine ZERO and defined in equation on page 14
C2PHIL	C ₂ ,b¹∏→a¹Σ	Phillips band system of C2 molecule
C2SWAN	C₂,A³∏→X³∏	Swan band system of C2 molecule
DE	D _e	rotational constant for equilibrium position, cm-1
DEGEN	đ	electronic multiplicity, dimensionless
DELLAM	$\triangle \lambda$	distance between wavelength locations at which spectrum is computed, Å
DEPTH	l,x	depth of radiating gas, cm
$\mathtt{D} \mathbf{\Lambda}$	$D_{\mathbf{v}}$	rotational constant for the vibrational level v, cm-1
DZERO	D_{O}	dissociation energy referred to the $v=0$ vibrational level, cm^{-1}

E	E,I	line integrated spontaneous emission, W-cm ⁻³ -sr ⁻¹
E	G(v)+F(K)	sum of vibrational and rotational energy used in iteration to find KMAX and defined by equation (15) on page 13
EINSTN	Auz	Einstein A coefficient, probability of transition, sec-1-part-1
ELAM(M)	$\mathbf{E}_{\lambda},\mathbf{I}_{\lambda}$	spectral intensity distribution of spontaneous emission, $\text{W-cm}^{-3}\text{-}\mu^{-1}\text{-sr}^{-1}$
FRANCK	$\mathbf{q}_{\mathbf{V_1}}$	Franck-Condon factor, dimensionless
IFACTR		integer name of the intensity factor, CINT3, set up in Hollerith mode so that if CINT3 = 0.0 blanks are printed rather than zeros
TLAM(M)	\mathtt{I}_{λ} , \mathtt{B}_{λ}	specific intensity, $W-cm^{-2}-\mu^{-1}-sr^{-1}$
J	J	rotational quantum number, dimensionless
K	k, N	rotational quantum number without spin, dimensionless
KMIN	K _{min}	minimum rotational quantum number, dimensionless
KMAX	K _{max}	maximum rotational quantum number, dimensionless
LAM(M)	λ	wavelengths specifying incident spectrum array or linear segment slit function, Å
LAMBDA (м) λ	wavelength locations at which spectrum is computed, Å
LAMCL	$\gamma^{ar{\mathbf{G}}}$	center of rotational or atomic line or location of center of slit function, Å
LAMMIN	$\lambda_{ exttt{min}}$	minimum wavelength in computed spectrum, Å
XAMMAI	$\lambda_{ ext{ma.x}}$	maximum wavelength in computed spectrum, Å
LAMR(M)	λ	wavelengths specifying instrument calibration, A
LAMS(M)	λ	wavelengths at which instrument output signal is generated, Å
LAMS1	λ	starting wavelength for scanning slit or wavelength for fixed linear slit Å
IAMS2	λ	stopping wavelength for scanning slit, Å
IAML	λ	starting wavelength for spectral integration, Å
LAM2	λ	stopping wavelength for spectral integration, Å

LEVELS		number of electronic energy levels for a diatomic molecule
MU	$\mu_{ extsf{A}}$	reduced mass in atomic-weight units
NAME	,	six-letter (or less) name specifying an atomic or diatomic system
NARRAY		number of points at which spectrum is computed
NCENTR		array index in ELAM(M) nearest to center of line being added to spectrum
NEND		array index in $ELAM(M)$ at which the last contribution of a line is added
NINTRV		number of intervals in a case over which the spectrum will be integrated
NPOINT		number of array elements specifying the slit function. NPOINT = 0 if the slit function is specified by a Gaussian curve
NRLAMS		number of points specifying the instrument calibration
nslit		number of slits for which the instrument output signal will be computed
NSPRED		one-half the number of places in the spectrum to which a line will be added
NSTART		array index in ${\rm ELAM}(M)$ at which the first contribution of a line is added
NUBAR	$\overline{\nu}$	wave number of a line center, cm ⁻¹
NUBARO	$\overline{\nu}_{O}(v^{\dagger}v^{"})$	wave number of a band origin, cm ⁻¹
NUSPIN	N,I	nuclear spin of an atom in a homonuclear diatomic molecule, dimensionless
N2LBH	$\mathbb{N}_2, \mathbf{a}^! \mathbb{I} \rightarrow \mathbb{X}^1 \Sigma$	Lyman-Birge-Hopfield band system of N_2 molecule
N2 1+	$N_2, B^3\Pi \rightarrow A^3\Sigma$	first positive band system of N_2 molecule
N2 2+	N ₂ ,C ³ ∏→B ³ ∏	second positive band system of N_2 molecule
N2+ 1-	$\mathbb{N}_{2}^{+}, \mathbb{B}^{2}\Sigma \rightarrow \mathbb{X}^{2}\Sigma$	first negative band system of \mathbb{N}_2^+ molecular ion
NØ B	$NO,B^2\Pi \rightarrow X^2\Pi$	beta band system of NO molecule
NØ G	$NO, A^2 \Sigma \rightarrow X^2 \Pi$	gamma band system of NO molecule
ø2 SR	$0_2, B^3 \Sigma \rightarrow X^3 \Sigma$	Schuman-Runge band system of 02 molecule
ø н3060	OH,A ² Σ→X ² Π	band system of OH molecule near 3060 Å

PARTCC	N	number density of molecules, molecules-cm ⁻³
Q	Q ·	partition function, dimensionless
R	r	internuclear distance, cm
RANGE		number of line widths from the line center that a line is added to the spontaneous emission spectrum, integer
RE	r _e	internuclear distance at equilibrium position, cm
RLAM(M)		spectral calibration of scanning slit that multi- plies slit function to yield instrument sensitivity
RLAMCL		value of spectral calibration RLAM(M) at slit centerline, LAMCL
RMAX		maximum value of RSLIT(M)
RSLIT(M)		slit function values for linear segment slit function
SCAN		flag to indicate whether a fixed slit (SCAN \neq 1) or a scanning slit (SCAN = 1) is specified
SIGN		constant used in line strength expressions in subroutine ONE and in equations (19), (20), and (21) on page 15, dimensionless
SIGNAL		instrument output signal computed in subroutine SLIT, arbitrary units
SIGNS1 SIGNS2 SIGNS3		constants used in line strength expression in subroutine S2 PI2 and in equations (23) and (24) on pages 15 and 16, dimensionless
signu1 }		constants used in NUBAR expression in subroutine S2 PI2 and in equation (22) on page 15, dimensionless
STEP		wavelength interval between points where the instrument output signal is computed for a scanning slit, Å
SUMRE2	$\Sigma R_{\mathrm{e}}(\mathbf{\bar{r}_{v^{\dagger}v^{\dagger}}})/\mathrm{ea_{o}} ^{2}$	sum of the squares of the dimensionless electronic transition moments. The sum is over all electronic transitions from the upper and lower multiplet levels
TELECT	$^{\mathrm{T}}$ elect	electronic temperature, ^O K

TERM(M)	extstyle ext	electronic term energy, cm ⁻¹
TOTALI		integrated spectral intensity, over a specified wavelength interval, found in subroutine INTRVL, W-cm ⁻² -sr ⁻¹
TROT	${ m T}_{ m rot}$	rotational temperature, ^o K
TVIB	Tvib	vibrational temperature, ^O K
U	Ŭ	molecular potential energy defined in equation (13) on page 13, cm ⁻¹
V	Λ.	vibrational quantum number, dimensionless
WIDTH		width of Gaussian slit function at half-peak or width of linear segment slit function defined by equation (27) on page 16, A
WIDTHC	Wg	width of Gaussian line profile at half-height, Å
WIDTHL	w _Z	width of Lorentzian line profile at half-height, Å
WIDTHV	v_{V}	width of Voigt line profile at half-height, Å
WE WEXE WEXE WEZE	$\left(\begin{array}{c}\omega_{\mathrm{e}}\\\omega_{\mathrm{e}}\mathrm{x}_{\mathrm{e}}\\\omega_{\mathrm{e}}\mathrm{y}_{\mathrm{e}}\\\omega_{\mathrm{e}}\mathrm{z}_{\mathrm{e}}\end{array}\right)$	vibrational spectroscopic constants, cm ⁻¹
Y	Y	ratio of spin coupling constant to rotational constant for given vibrational level (A/B_V) , dimensionless
U	() ¹ ,() _u	letter following many of the above symbols to indicate upper level (i.e., ALPHAU $\equiv \alpha_e^{\dagger}$)
L .	()",() _L ,	letter following many of the above symbols to indicate lower level (i.e., ALPHAL $\equiv \alpha_e^{n}$)
Ø	0	the capital letter 0, when appearing in band-system names

PROGRAM DESCRIPTION

A listing of the program, liberally annotated with comment statements, is provided in appendix A. This listing, in direct association with the flow charts of each subroutine given in appendix B, provides a complete and detailed description of the program. A simplified flow chart of the main program, illustrating the step-by-step flow through the program, is shown in figure 1. This simplified flow chart should be studied carefully to keep the overall program logic clearly in view. In addition, the following discussion is included to aid the reader in understanding the program.

The end result of this program is to produce the "true" spectrum as given by the equation of radiative transfer. Within the computer the "true"

spectrum is generated in two distinct steps. In the first step the spectrum due to spontaneous emission only is computed. This is accomplished by summing the spectral contributions from all included lines at many points within the spectral range considered. For atomic lines this is accomplished entirely within the ATOMIC subroutine. For diatomic molecules the procedure is somewhat more complicated. When a new band system is specified, program control is transferred to the SETUP subroutine. In this subroutine, the spectroscopic constants are read either from cards or from magnetic tape and the partition function, Q, is computed. After these tasks are completed, control is transferred back to the main program where a vibrational band card is read. This card causes control to be transferred to the VU VL subroutine where: (1) the appropriate vibrational constants are computed from the spectroscopic constants, (2) an intensity factor (CINT3) is computed if needed, and (3) the maximum rotational quantum number is found. After these tasks are completed, control is transferred back to the main program, followed by an immediate transfer to the appropriate rotational-structure subroutine, ZERO, ONE, or S2 PT2. Subroutine ZERO applies to parallel transitions, subroutine ONE applies to perpendicular transitions, and subroutine S2 PI2 applies to $^{2}\Sigma \rightarrow ^{2}\Pi$ or $^{2}\Pi \rightarrow ^{2}\Sigma$ transitions. In these subroutines, the wavelength and integrated intensity due to spontaneous emission of each rotational line are calculated, the intensity is distributed spectrally into a Voigt profile, and the line is added into the spectrum.

If several vibrational bands are specified for several band systems, the summation process can include tens of thousands of rotational lines. The resultant spectral sum of this multitude of lines, including any atomic lines specified, yields the spontaneous-emission spectrum. If an optically thin spectrum is desired as a final result, it is given directly by the spontaneous-emission spectrum.

The second step in the development of the "true" spectrum is to compute the wavelength-dependent absorption coefficient, including induced emission. As described in reference 7, this function is given directly by dividing the spectral intensities due to spontaneous emission, developed above, by the Planck (or black body) function at the appropriate temperature and wavelengths. The absorption coefficient is then combined with the geometric gas depth and the incident radiation, if specified, in the equation of radiative transfer to give the "true" spectrum.

The generality of the program is greatly enhanced by permitting the "true" spectrum radiating from a gas layer to be used as the incident radiation for a new gas layer. This allows the calculation of the "true" spectrum from a multilayer source, where each layer is specified by a different thermochemical and thermodynamic environment.

Most of the numerical steps performed in the program can be easily understood once the intent of the operation is known. The comment statements in the listing and the description of the theory given in reference 7 should make the intent of most operations clearly evident. There are, however, a few operations that need additional discussion. These are presented in the following sections.

Spontaneous-Emission Spectrum

The procedure for building the spectrum involves several steps. These steps will be easier to understand if the notation illustrated in figure 2 is followed closely during the discussion. A large array (ELAM(M)) with 9000 entries is reserved in the computer core for summing the spectral intensity at many points within the spectral range considered. The minimum (LAMMIN) and maximum (LAMMAX) wavelengths are specified as is the wavelength interval (DELLAM) between points where the spectrum is to be summed. For good spectral resolution, DELLAM is normally selected to be about 1/10 of the narrowest line width at half-height (WIDTHV) considered in the calculation.

The total number of points at which the spectrum is summed (NARRAY) is limited to 9000. NARRAY is found from LAMMIN, LAMMAX, and DELIAM, and, if NARRAY is greater than 9000, DELLAM is changed so that NARRAY is equal to 9000. LAMMAX is always recomputed to ensure that it is exactly an even increment of DELLAM from LAMMIN. For this reason, the value of LAMMAX used and output by the program may be slightly less than the value input.

The contributions from each rotational and atomic line to the spontaneous emission spectrum are added into the ELAM(M) array by the following procedure. The array index number nearest to the line center (NCENTR) is found from (refer to fig. 2)

$$NCENTR = \left(\frac{LAMCL - LAMMIN}{DELIAM} + 1.5\right)_{truncated}$$
 (1)

where LAMCL is the wavelength of the line center, and the characteristic of Fortran IV to convert real numbers into integer numbers by rounding down (truncating) has been used.

Theoretically, each line makes a contribution to the spectrum at all wavelengths. Beyond some distance from the line center, however, the contribution of the line to the spectral intensity is very small. Therefore, computer run time can be reduced considerably, with slight loss in accuracy, by adding each line into the spectrum for only a limited distance from the line center. In the program, this distance is specified by RANGE, in terms of a given number of line widths.

If RANGE is input as zero (or the card field is left blank) then RANGE is set as follows: For a pure Gaussian line profile, the spontaneous-emission intensity is less than 10⁻¹¹ of the peak line intensity only three line widths from the line center. Therefore, RANGE = 3.0 is considered adequate for this case. For a Lorentzian or Voigt line profile the intensity in the wings is much stronger than for a Gaussian profile, and RANGE is increased to 5.0 for these cases. This limitation results in approximately 5 percent of the spontaneous integrated intensity being excluded from the computation for a pure Lorentzian line profile.

The number of entries in the $\rm ELAM(M)$ array from the location defined by NCENTR, to which contributions from a given line are added, is

$$NSPRED = \left(\frac{RANGE \cdot WIDTHV}{DELLAM} + 1.1\right) truncated$$
 (2)

The array indices that define the first (NSTART) and the last (NEND) entries in the ELAM(M) array to which a contribution from a line is added is

$$NSTART = NCENTR - NSPRED$$
 (3)

$$NEND = NCENTR + NSPRED$$
 (4)

These indices provide limits for a simple DO loop, involving the line-profile expression (see refs. 7 and 8), which adds the contributions from each line to the correct locations in the ELAM(M) array, and hence forms the spontaneous-emission spectrum. In partial Fortran IV notation, the line-profile expression from reference 8 can be written

$$ELAM(M) = E \left[CSPRD1 \cdot e^{-2.772 \cdot CSPRD3^{2}} + \frac{CSPRD2}{1 + 4 \cdot CSPRD3^{2}} \right]$$

+ 0.016 • CSPRD2
$$\left(1 - \frac{\text{WIDTHL}}{\text{WIDTHV}}\right) \left(e^{-0.4 \cdot \text{CSPRD3}^{2.25}} - \frac{10.0}{10 + \text{CSPRD3}^{2.25}}\right)$$
 (5)

where E is the integrated spontaneous emission of the line and

$$CSPRD1 = \frac{\left[1 - \left(\frac{\text{WIDTHL/WIDTHV}}{\text{WIDTHV}}\right) \cdot 10^{4}}{\frac{\text{WIDTHV}\left[1.065 + 0.447\left(\frac{\text{WIDTHL/WIDTHV}}{\text{WIDTHV}}\right) + 0.058\left(\frac{\text{WIDTHL/WIDTHV}}{\text{VIDTHV}}\right)^{2}\right]}$$
(6)

$$CSPRD2 = \frac{(\text{WIDTHL/WIDTHV}) \cdot 10^4}{\text{WIDTHV}[1.065 + 0.447(\text{WIDTHL/WIDTHV}) + 0.058(\text{WIDTHL/WIDTHV})^2]}$$
(7)

$$CSPRD3 = \left| \frac{LAMBDA - LAMCL}{WIDIHV} \right|$$
 (8)

LAMBDA is the wavelength at which the spectrum is computed

$$= LAMMIN + (M - 1) \cdot DELLAM$$
 (9)

Intensity Factor

The first major step taken in the program for any spectral computation is to generate the spontaneous-emission spectrum as outlined above. When spontaneous emission from a cold gas is computed, however, the intensities are

numerically small because of the low concentration of molecules in the upper state. The expression for the number of molecules in the upper state is given by (see ref. 7)

$$N_{u} = \frac{Nd_{u}(2J' + 1)e^{-\frac{hc}{k}\left(\frac{T_{e}'}{T_{elect}} + \frac{G'}{T_{vib}} + \frac{F'}{T_{rot}}\right)}{Q}$$
(10)

The exponent will be a large negative number for high term energies and/or low temperatures. For example, in the case of the $A^1\Pi$ state of CO at room temperature, the electronic and vibrational part of the exponent is approximately -300. The computer cannot recognize numbers less than $10^{-38}=e^{-87.5}$ and simply equates all numbers less than this value to 0.0. Therefore, a straightforward application of the above equation to CO(4+) at room temperature would produce meaningless numbers.

To overcome this computer-caused limitation, an intensity factor is introduced as follows:

$$\overline{N}_{u} = N_{u} \cdot 10^{\text{CINT3}} = \frac{Nd_{u}(2J' + 1)e}{Nd_{u}(2J' + 1)e} - \frac{\frac{hc}{k}\left(\frac{T_{e}'}{T_{elect}} + \frac{G'}{T_{vib}} + \frac{F'}{T_{rot}}\right) + 2.30259 \cdot \text{CINT3}}{Q}$$
(11)

where

$$CINT3 = \left| \frac{\frac{hc}{k} \left(\frac{T_{e'}}{T_{elect}} + \frac{G'}{T_{vib}} \right)}{2.30259} \right|_{truncated}$$
(12)

From these expressions, it is clear that CINT3 is an even power of 10 that adjusts the numerical value of $N_{\rm u}$ into a numerically acceptable regime. Results that include the intensity factor are obviously in error by this factor and it must be removed before the results can be used. When numbers reflecting only spontaneous emission are printed, the correction is applied at the time of printing. For example, suppose an exact intensity of 3.5×10^{-178} should have been computed, but an intensity factor of 10^{+170} was applied. The value found by the program is, therefore, 3.5×10^{-8} , but is printed as $3.5\times10^{-8}\times10^{-170}$. In printer notation this appears as 3.500E-08-170. The intensity factor is printed by using the Hollerith array, IFACTR, so that, when the intensity factor is zero, blanks will appear on the printed output rather than zeros. When the "true" spectrum is computed, the intensity factor is removed from the calculation at the time the absorption coefficient is computed and no further correction is necessary.

Maximum Rotational Quantum Number (KMAX)

A rotating molecule develops a centrifugal force that distorts the potential well. If the nonrotating potential well is described by a Morse potential, then the rotation-dependent potential is given by (see ref. 9)

$$U = D_{e} \left[1 - e^{-\beta (R - R_{e})} \right]^{2} + \frac{hK(K + 1)}{8\pi^{2} cuR^{2}}$$
 (13)

where

$$\beta = (2\pi^2 c\mu/D_e h)^{1/2} \omega_e$$

$$\mu = \text{reduced mass, g}$$
(14)

The effect of rotation on the potential well can be seen by the curves in figure 3 for HgH taken from reference 9. The molecule will dissociate when the vibrational plus rotational energy equals or exceeds the rotation-induced local maximum in the potential well. The sum of the vibrational and rotational energies is given by

$$E = \omega_{e}(v + 1/2) - \omega_{e}x_{e}(v + 1/2)^{2} + \omega_{e}y_{e}(v + 1/2)^{3} + \omega_{e}z_{e}(v + 1/2)^{4}$$

$$+ B_{v}K(K + 1) - D_{v}K^{2}(K + 1)^{2}$$
(15)

Therefore, once a vibrational level has been specified, an iteration scheme is required to find KMAX from equations (13) and (15).

The energy of the local maximum can be found from equation (13) if the rotational quantum number and the internuclear distance (R) at that point are known. The internuclear distance at the local maximum is found for a specified value of K by differentiating equation (13) and equating it to zero, that is,

$$\frac{\mathrm{dU}}{\mathrm{dR}} = 2D_{\mathrm{e}}\beta \left[1 - \mathrm{e}^{-\beta(\mathrm{R}-\mathrm{R}_{\mathrm{e}})}\right] \mathrm{e}^{-\beta(\mathrm{R}-\mathrm{R}_{\mathrm{e}})} - \frac{2\mathrm{h}K(\mathrm{K}+1)}{8\pi^{2}\mathrm{c}\mu\mathrm{R}^{3}} = 0$$
 (16)

For numerical solution, this equation is rewritten as

$$f(R) = R^{3} \left[1 - e^{-\beta(R-R_{e})}\right] e^{-\beta(R-R_{e})} = \frac{hK(K+1)}{8\pi^{2}c\mu D_{e}\beta} = g(K)$$
 (17)

and is illustrated in figure 4.

¹In fact, some predissociation will occur at lower energies due to a wave mechanical passage through the potential barrier, but this effect is ignored in the present program.

The value of R at the local maximum, R', is found by stepping R from its equilibrium value (R_e) by fixed increments $(0.1\times10^{-8}~\text{cm})$ until f(R) exceeds and then falls below g(K); R' is then found by interpolating to f(R) = g(K). If f(R) passes its maximum before g(K) is reached, the rotational quantum number is too large and rotational dissociation would have occurred. A local maximum in the potential well does not exist in this case (see curve for K = 40 in fig. 3), but a value of R at or near the peak of the f(R) curve is chosen for the iteration.

Once the internuclear distance for the local maximum is found (at the specified rotational quantum number) it is combined with the vibrational quantum number to compute the values of U and E from equations (13) and (15). When the iteration has converged, U will be nearly equal to E, and hence the difference U - E is a good criterion to guide the iteration process. A representative plot of U - E as a function of K is shown in figure 5. The desired iteration point is obviously the first root of this function.

The first iteration is begun with K=50, and the associated value of R' is found as outlined above; K is then increased in increments of 20, holding R fixed until $U \le E$. Then, by interpolating to U-E=0, a new value of K is found for the second iteration. A new value of R' is found from the new K value, which, in turn, leads to new values of U and E. The new values of U, E, and K, and the prior values of U, E, and K, are used to extrapolate to U-E=0, which determines the next value of K. This process is continued until the value of K does not change during an iteration. KMAX is then set equal to this value of K.

The iteration process is very fast, requiring only three or four iterations to converge to the maximum allowed value of K. KMAX values computed in this manner for $\rm O_2$ are in good agreement with the results of reference 10.

The maximum allowed rotational quantum number is found for both the upper and the lower vibrational levels. The value of KMAX used in the program is the minimum of the upper state value, the lower state value, and the input value if one is specified. If the dissociation energy of an electronic level is not known, KMAX cannot be found for that level. If KMAX cannot be found for either level and a value is not input, the program arbitrarily sets KMAX = 150; experience has found this to be a reasonable value except for the halides.

Constants Used in Rotational-Structure Subroutines

(a) Subroutine ZERO

The line-strength expression used for these transitions (i.e., $\Sigma \to \Sigma$, $\Pi \to \Pi$, etc.) is (see ref. 7)

$$S = KU + CSTR$$
 (18)

where

CSTR = 0 for the R branch CSTR = 1 for the P branch

(b) Subroutine ONE

The line-strength expressions used for these transitions (i.e., $\Sigma \to \Pi$, $\Pi \to \Sigma$, $\Pi \to \triangle$, etc.) are (see ref. 7)

$$S(P) = \frac{(KU + 1 - SIGN \cdot CAPLU)(KU + 2 - SIGN \cdot CAPLU)}{2(KU + 1)}$$
(19)

$$S(Q) = \frac{(KU + SIGN \cdot CAPLU)(2KU + 1)(KU + 1 - SIGN \cdot CAPLU)}{2KU(KU + 1)}$$
(20)

$$S(R) = \frac{(KU + SIGN \cdot CAPLU)(KU - 1 + SIGN \cdot CAPLU)}{2KU}$$
(21)

For $\triangle A = +1$ transitions (i.e., $\Pi \rightarrow \Sigma$, $\triangle \rightarrow \Pi$, etc.)

$$SIGN = +1$$

For $\triangle A = -1$ transitions (i.e., $\Sigma \rightarrow \Pi$, $\Pi \rightarrow \triangle$, etc.)

$$SIGN = -1$$

(c) Subroutine S2 PI2

The wave number (NUBAR) of each rotational line for these transitions (i.e., ${}^2\Sigma \longleftrightarrow {}^2\Pi$) is defined by the equations in reference 9, page 232, or reference 7. In partial Fortran IV notation, the wave number is

NUBAR = NUBARO + BVU
$$\left[(JU + 0.5)^2 - CAPLU^2 + \frac{SIGNU1}{2} \sqrt{4(JU + 0.5)^2 - 4 \cdot YU \cdot CAPLU^2 + (YU \cdot CAPLU)^2} \right]$$

- BVL $\left[(JL + 0.5)^2 - CAPLL^2 + \frac{SIGNU2}{2} \sqrt{4(JL + 0.5)^2 - 4 \cdot YL \cdot CAPLL^2 + (YL \cdot CAPLL)^2} \right]$ (22)

The line-strength expression for each branch (see ref. 11, or ref. 7) is given by one of the following general expressions

$$S_{1} = \frac{(2J+1)^{2} + SIGNS1 \cdot (2J+1) \cdot U \cdot (4J^{2}+4J+CONST1+2Y \cdot SIGNS2)}{16(J+CONST2)}$$
(23)

$$S_{2} = \frac{(2J+1)[(4J^{2}+4J-1)-SIGNS1\cdot U\cdot (8J^{3}+12J^{2}-2J+CONST3+2Y\cdot SIGNS3)]}{16J(J+1)}$$
(24)

where

$$U = [Y^2 - 4Y + (2J + 1)^2]^{-1/2}$$
 (25)

J = JU and Y = YU = CAPAU/BVU for $^{2}\Pi \rightarrow ^{2}\Sigma$ transitions

J = JL and Y = YL = CAPAL/BVL for $\Sigma \rightarrow \Pi$ transitions

The values of the constants in these expressions can be determined from references 9 and 11, and are tabulated in table I.

Integration in INTRVL and SLTT Subroutines

(a) Subroutine INTRVL

Subroutine INTRVL computes integrated intensities between the specified wavelengths LAML and LAM2. The integration is, simply,

$$TOTALI = \int_{LAML}^{LAM2} ELAM \cdot d\lambda$$
 (26)

A sketch to help clarify the notation used in the program is given in figure 6. The integration proceeds by assuming a linear variation of the spectral intensity between points in the array.

(b) Subroutine SLIT

Subroutine SLIT computes the output signal that would be recorded by an instrument measuring intensities equal to the computed spectrum. The instrument sensitivity is input by specifying the slit function and the absolute calibration. The slit function can be specified by a normalized Gaussian expression or by a series of linear segments. These two alternatives are illustrated in figure 7. In the case of a nonsymmetrical slit, as shown in figure 7(b), LAMCL is difficult to specify meaningfully. The width of the linear segment slit is defined as

$$WIDIH = \frac{\int RSLIT \cdot d\lambda}{RMAX}$$
 (27)

The instrument absolute calibration is input as a single factor, if the instrument is a fixed wavelength radiometer, and as a function of wavelength, if the instrument is a grating spectrograph or a scanning spectrometer (referred to hereafter as a scanning slit). A representative calibration curve (RLAM(M)) for a scanning slit is shown in figure 8.

The integration to yield the instrument output signal at a given wavelength is

$$SIGNAL = \int_{\substack{\text{Slit} \\ \text{function}}} \frac{RSLIT \cdot RLAMCL \cdot ELAM}{C \cdot WIDTH} d\lambda$$
 (28)

where RLAMCL is either the calibration factor for a fixed wavelength slit or the local value of the calibration function for a scanning slit and,

C = 1.0 for a linear-segment slit function

C = 1.065 for a Gaussian slit function

The integration at a given wavelength is illustrated in figure 9. For a scanning slit, the integration is performed repetitively at wavelength intervals given by STEP from IAMS1 to IAMS2. Only 500 locations have been reserved in the computer for storing SIGNAL as a function of wavelength. However, after this storage is filled, the data are printed, permitting the storage to be used again for the next 500 points. Therefore, there is no limit to the number of instrument-output points that can be computed. The primary purpose of printing the data in 500 point blocks is to facilitate adding a machine-plotting option.

PROGRAM USAGE

The program is written in the Fortran IV computer language. It operates at Ames Research Center on an IBM 7094 computer as an overlay job, under the IBJOB Processor of the IBSYS Operating System, version 13.

A simplified flow chart of the main program, illustrating the step-by-step flow through the program, is shown in figure 1. The primary method used to control the sequence of operations is the presence or absence of data in various fields of certain data cards. The inset table in figure 1 lists the data cards that are tested and the data fields that are filled for each card type. Clearly, by testing for blanks (or zeros), the card type can be selected. At the end of each case, control is transferred back to the beginning of the program to read in the next case. There is no limit to the number of cases that can be "stacked."

Deck Makeup

Origin	Link	Name	Description
	0	MAIN	Initializes factors for each case, directs logic to the appropriate subroutines, and solves the radiative-transport equation
	0	BLOCK DATA	Fills array OUTPUT
	0	SKIP	Positions data tape to start of desired file. User must provide this subroutine. (When called from SETUP it skips to the start of the next file, when called from VU VL it returns to the start of the present file.)
ALPHA	1	ILAMDA	Initializes the IIAM array with the specified incident radiation and initializes the EIAM array to 0.0
ALPHA	2	SETUP	Reads the molecular constants, computes the partition function, and determines the appropriate transition subroutine to generate the intensities
ALPHA	3	VU VL	Computes and reads vibrational band constants, determines the maximum rotational quantum number, and finds the intensity factor
ALPHA	4	ZERO	Computes parallel transitions for diatomic molecules
ALPHA	5	ONE	Computes perpendicular transitions for diatomic molecules
ALPHA	6	S2 PI2	Computes doublet sigma to doublet pi transitions (or vice versa) for diatomic molecules
ALPHA	7	ATOMIC	Computes the electronic transitions for atoms
ALPHA	8	PRINT	Tabulates spectral intensity vs. wavelength on the written output
ALPHA	9	INTRVL	Computes integrated intensities between specified wavelengths
ALPHA.	10	SLIT	Computes the output signal given by a specified instrument sensitivity
ALPHA	11	GROWTH	Computes the curve-of-growth

Tapes

Logical tape number	Usage	
5	Input	
6	Output	
9	Spectroscopic data tape. BCD format, 800 bits/inch.	

Program Input

A complete description of all required data cards is given in appendix C. Clearly, for the program to function properly, a great many values must be specified correctly. To reduce the probability of costly human errors, the spectroscopic constants and Franck-Condon factors for 18 diatomic band systems are stored on magnetic tape. A listing of this tape is given in appendix D. The tape can be easily extended to include additional band systems.

The program logic is such that all spectroscopic constants for a given band system must be read from the tape, or all must be read from data cards. If the spectroscopic constants are read from the tape, then the Franck-Condon factors may also be read from the tape. However, because Franck-Condon factors are generally more uncertain than the spectroscopic constants, the option exists to override the Franck-Condon factor on the tape by specifying the desired value on the appropriate data card.

Computer Run Time

The time to run a single case on the computer is controlled primarily by the time required to generate the spontaneous-emission spectrum. Therefore, the computer run time can be estimated approximately by

Time = $c \cdot n \cdot RANGE \cdot (WIDTHV/DELLAM)$, minutes (29)

where

- c constant found from experience with a given computer, 5.8×10⁻⁵ minute/line for the ARC IBM 7094
- n total number of lines included in the computation

Error Flags

Tests are made at many strategic locations throughout the program to insure that obvious errors are not present in the data. If an obvious error is found, an appropriate statement is printed. If an error is found in the data for the externally incident radiation, the program skips to the next case. If an error is found in the data for a band system, the program transfers control to the PRINT subroutine, which prints, in tabular form, the spectrum computed to that point, and then skips to the next case. If an error is found in the data for a vibrational band, an appropriate statement is printed, and the band is omitted from the calculation. However, in this case, the solution will continue.

Sample Case

The sample case presented is intended to illustrate the general format of the printed output. Therefore, only a few of the program options are included. A complete checkout of all program options and error flag statements has been made, but such an extensive checkout does not seem appropriate for this report. The sample case selected for presentation is the CN(red) and atomic-nitrogen computation shown in figures 7(a) and 7(b) of reference 7. The printed output for this case is shown in appendix E. Considerable care has been taken to output all input data used in the computation and to clearly identify each of them. Standard spectroscopic nomenclature from reference 9 has been used where appropriate. Where this was not possible, more complete statements have been printed.

The heading on the printed output is composed of the information placed on the three title cards plus a statement of the spectral range of the computation and the wavelength interval between computation points. Following the heading, each molecular band system and atomic system specified is printed. The spectroscopic constants and thermodynamic conditions specified for each system are also printed, in addition to the computed values of the spontaneous-emission intensity.

The integrated intensity listed for each branch is the sum of the spontaneous emission from all rotational lines between KMIN and KMAX that fall within the spectral range of the computation. BAND TOTAL is simply the sum of the branch intensities. APPROXIMATE BAND TOTAL is computed by assuming that all the band radiation occurs at the band origin (see equation IV-74 on page 200 of reference 9) and is normally within 30 percent or less of the BAND TOTAL. A larger difference is shown here because most of the rotational lines fall outside the spectral range specified and, therefore, are not included in the BRANCH and BAND TOTAL values. After the vibrational bands specified for a band system have been computed, the integrated spontaneous emission from the entire system, SYSTEM TOTAL, is found by summing the BAND TOTAL values. In the sample case, only one band is specified so that SYSTEM TOTAL = BAND TOTAL. The output for the atomic-nitrogen lines illustrates a format similar to, but somewhat simpler than, that for the band systems. After the last molecular or atomic system has been completed, the sum of the integrated spontaneous emission from every rotational and atomic line that fell within the spectral range is printed.

Once the computation of the spontaneous-emission spectrum is complete, for a case or a layer, cards are read that specify whether an optically thin spectrum is desired, or whether the "true" spectrum given by the equation of radiative transfer is desired (see discussion in ref. 7). For this sample case, a "true" spectrum is specified for a radiating gas depth of 1.0 cm, and it is tabulated on the printed output. Only a partial tabulation is presented.

The final program option illustrated by this sample case is the spectrum as it would appear if recorded by a grating instrument. The slit function and spectral calibration assumed for the calculation are shown on the printed output, and in figure 7(b) of reference 7. The instrument sensitivity at any

wavelength is given by the product of these functions. The instrument output signal is found by integrating the product of the instrument sensitivity and the spectral intensity. A partial tabulation of the output signal as a function of wavelength is shown on the printed output, and can be compared with figure 7(a) of reference 7.

CONCLUDING REMARKS

The computer program presented is applicable, to some degree of approximation, to any "allowed" diatomic or atomic electronic transition. The program computes a "true" spectrum by using the equation of radiative transfer, which accounts for spontaneous emission, induced emission, absorption, and externally incident radiation. Considerable care has been taken to make the program easy to read and apply. Since standard spectroscopic notation is used and abundant comment statements are provided within the actual program listing, the user should be able to understand the program and not be forced to exhibit faith in a "canned" routine. In addition, the program was designed to enable additional subroutines to be added with only minor modifications to the main program. Likely candidates for addition to the program are subroutines to compute the free-free and free-bound continua.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Dec. 2, 1968
124-07-01-15-00-21

APPENDIX A

LISTING OF PROGRAM STATEMENTS

```
HF0750R2812 20000 4.0 2821 SEPT 19, 68
                                                                                                                                         19
           DEBUG ARNOLD
$JOB
                          BASIC
$ I B J O B
SDECK
SDECK
                          DUM03
                          DUMO4
                          DUMO7
$DECK
$DECK
                          DUM08
                          DUM10
SDECK
SDECK
                          DUM11
                          DUM12
SDECK
SIBFTC HF0750
C MAIN PROGRAM
C INITIALIZES FACTORS FOR EACH CASE, DIRECTS LOGIC TO THE APPROPRIATE SUBROUTINES, AND SOLVES THE RADIATIVE TRANSPORT EQUATION.
            COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
           COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM( 9000),ELAM( 9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBAND2/WEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
WEL,WEXEL,WEYEL,WEZEL,BVL,DVL,
NUSPIN
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CWIDTH/WIDTHL,WIDTHY,RANGE
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
          1
            DIMENSION TITLE (36)
REAL ILAM, LAMMAX, LAMMIN, MU, NUBARO, NUSPIN, LAMBDA
LOGICAL NEWCAS
                                             /, PRINTS/6HPRINT /, CASE/4HCASE/
            DATA BLANK/6H
 C READ THE FIRST CONTROL CARD IN EACH CASE. IF FIRST 4 COLUMNS DO NOT SPELL C CASE, READ THROUGH TO THE NEXT CASE.
            READ (5,505) SEARCH
             IF (SEARCH .EQ. CASE) GO TO 20
            GO TO 10
  C INITIALIZE RUNNING SUMS, CONSTANTS, AND FLAGS FOR THE NEW CASE.
            TOTAL=0.0
  20
             SYSTEM=0.0
             DEPTH=0.0
             CINT3=0.0
            DO 30 M=1.5
  C OUTPUT(11) IS A BLANK CHARACTER SET IN BLOCK DATA.
               FACTRI(M)=OUTPUT(11)
  30
             NEWCAS= .FALSE.
   C READ TITLE CARDS FOR THIS CASE.
             READ(5,500) (TITLE(M),M=1,36)
   C PRINT TITLES ON WRITTEN OUTPUT.
             WRITE(6,600) (TITLE(M),M=1,36)
   C READ WAVELENGTH RANGE FOR CALCULATION AND WAVELENGTH INTERVAL BETWEEN C POINTS IN THE COMPUTED SPECTRUM.
              READ(5,501) LAMMIN, LAMMAX, DELLAM
   C TEST DELLAM. IF IT IS TOO SMALL TO ALLOW COVERAGE FROM LAMMIN TO C LAMMAX WITH 9,000 ENTRIES IN THE ARRAY, INCREASE DELLAM.
              IF ((LAMMAX-LAMMIN)/DELLAM.GT. 8999.) DELLAM=(LAMMAX-LAMMIN)/8999.NARRAY=1.1 +(LAMMAX-LAMMIN)/DELLAM
       ADJUST LAMMAX TO MAKE IT AN EVEN INCREMENT OF DELLAM AND WRITE GENERAL HEADING FOR THIS CASE.
               ARRAYN=NARRAY
               LAMMAX=LAMMIN +(ARRAYN-1.0)*DELLAM
WRITE(6,602) LAMMIN,LAMMAX,DELLAM
       SUBROUTINE ILAMDA INITIALIZES THE ILAM ARRAY WITH THE SPECIFIED INCIDENT RADIATION AND INITIALIZES THE ELAM ARRAY TO 0.0. IF NEWCAS = .TRUE., AN ERROR WAS DETECTED IN THE INCIDENT SPECTRUM AND THIS CASE WILL BE OMITTED.
               CALL ILAMDA (NEWCAS)
IF (NEWCAS) GO TO 10
               GO TO 50
     C STATEMENT 40 IS A KEY READ STATEMENT IN THE PROGRAM. REQUIRED
C INFORMATION IS READ AND THE PROGRAM TESTS WHICH FIELDS HAVE DATA
C TO DETERMINE WHAT SHOULD BE DONE NEXT. WHEN RETURNING FROM THE
C ILAMDA OR ATOMIC SUBROUTINES, THIS CARD HAS ALREADY BEEN READ.
     C THE FOLLOWING TABLE DEFINES THE FIELDS THAT ARE FILLED FOR
          EACH CARD TYPE.
```

```
C CARD TYPE
                        READ1
                                      READ2
                                                    READ3
                                                                 READ4
                                                                               READ5
                                                                                             READ6
     (COLUMNS)
(TYPE FIELD)
                         1-10
                                      11-20
                                                    21-30
                                                                 31-40
                                                                               41-45
                                                                                             67-72
                        E10.0
                                      E10.0
                                                    E10.0
                                                                 E10.0
    VIBRATIONAL
    BAND
                        VU
                                      ٧L
                                                    KMIN
                                                                 KMAX
    RAND
                                                                         (IF ON CARDS)
    SYSTEM
                        PARTCC
                                      TELECT
                                                    TVIB
                                                                 TROT
                                                                             (INDEX)
                                                                                             NAME
c
    ATOMIC
                                                    PARTITION
    SYSTEM
                        ATOMCC
                                      TELECT
                                                    FUNCTION-Q
                                                                                             NAME
c
    CURVE OF GROWTH
                        LAM1
                                      LAM2
                                                                                             GROWTH
    RADIATIVE
TRANSPORT
                        DEPTH
                                                                                             LAYER
    PRINT
SPECTRUM
c
                                                                                             PRINT
    DONT PRINT
                                                                                             NONE
        READ(5,502) READ1, READ2, READ3, READ4, READ5, READ6
40
C WHAT CARD TYPE HAS BEEN READ.
C IS THIS A VIBRATIONAL BAND.
50
        IF(READ6 .EQ. BLANK) GO TO 70
C IS THIS A BAND SYSTEM.
        IF (READ4 .NE. 0.0) GO TO 60
C IS THIS AN ATOMIC SYSTEM.
        IF (READ3 .NE. 0.0) GO TO 110
C THE SPONTANEOUS EMISSION SPECTRUM FOR THIS CASE OR LAYER IS COMPLETE.
        TOTAL=TOTAL+SYSTEM
        IF (TOTAL *EQ* 0*0) GO TO 55

IF (SYSTEM *NE* 0*0) WRITE(6,606) SYSTEM*(FACTRI(M),M=1,5)
WRITE(6,607) TOTAL*(FACTRI(M),M=1,5)
        SYSTEM= 0.0
        TOTAL= 0.0
C IS THIS A CURVE OF GROWTH CALCULATION.
        IF (READ2 .NE. 0.0) GO TO 115
C IS THIS A RADIATIVE TRANSPORT CALCULATION.
        IF (READ1 .NE. 0.0) GO TO 120
        GO TO 160
C TRANSFER CONTROL TO THE APPROPRIATE SUBROUTINE.
   SUBROUTINE SETUP READS THE MOLECULAR CONSTANTS, COMPUTES THE PARTITION FUNCTION, AND DETERMINES THE APPROPRIATE TRANSITION SUBROUTINE TO GENERATE INTENSITIES DUE TO SPONTANEOUS EMISSION. IF NEWCAS = .TRUE. AN ERROR WAS DETECTED IN THE MOLECULAR CONSTANTS AND THE REMAINDER OF THIS CASE WILL BE OMITTED.
       CALL SETUP (NEWCAS)
IF (NEWCAS) GO TO 180
GO TO 40
60
   SUBROUTINE VU VL COMPUTES AND READS VIBRATIONAL BAND CONSTANTS AND DETERMINES THE MAXIMUM ROTATIONAL QUANTUM NUMBER AND THE INTENDITY
   FACTOR.
C
        CALL VU VL (SKIPVV)
IF (SKIPVV •NE• 0•0) GO TO 40
GO TO (80•90•100),INDEX
70
C SUBROUTINE ZERO COMPUTES PARALLEL TRANSITIONS FOR DIATOMIC MOLECULES.
80
        CALL ZERO
GO TO 40
   SUBROUTINE ONE COMPUTES PERPENDICULAR TRANSITIONS FOR
   DIATOMIC MOLECULES.
90
       CALL ONE
GO TO 40
   SUBROUTINE S2 PI2 COMPUTES DOUBLET SIGMA TO DOUBLET PI TRANSITIONS (OR VICE VERSA) FOR DIATOMIC MOLECULES.
       CALL S2PI2
100
```

C SUBROUTINE ATOMIC COMPUTES ELECTRONIC TRANSITIONS FOR ATOMS.

```
110 CALL ATOMIC
        GO TO 50
C THIS IS A CURVE-OF-GROWTH CALCULATION.
        CALL GROWTH
   RE-INITIALIZE THE ILAM ARRAY TO ENABLE A SEPARATE RADIATIVE TRANSPORT CALCULATION IF SPECIFIED.
        DO 117 M=1,NARRAY
ILAM(M)=0.0
        GO TO 40
C THIS IS A RADIATIVE TRANSPORT SOLUTION. GENERATE THE ILAM ARRAY.
       DEPTH =READ1
WRITE(6,608) DEPTH
        DO 130 M=1.NARRAY.
IF(ELAM(M) .LE. 1.0E-36) GO TO 130
            LAMBDA=(LAMMIN +(COUNT-1.0)*DELLAM)*1.0E-8
BLAM=1.1904E-16*EXP(-1.43879/(LAMBDA*TELECT))/(LAMBDA**5*
(1.0-EXP(-1.43879/(LAMBDA*TELECT))))
           CILAM1=ALOG(8.4003E+15*LAMBDA**5*(1.00-EXP(-1.43879/
(LAMBDA*TELECT))))
            CILAM2=ALOG(DEPTH)
CILAM3=ALOG(ELAM(M))
            CILAM4*1.43879/(LAMBDA*TELECT)-2.30259*CINT3+CILAM1+CILAM2
            IF (CILAM4 •GT• 87•0) CILAM4=87•0
CILAM4=EXP(CILAM4)
ILAM(M)=BLAM-(BLAM-ILAM(M))*EXP(-CILAM4)
     THE ILAM ARRAY HAS BEEN GENERATED FOR THIS LAYER.
INITIALIZE THE INTENSITY FACTOR AND ELAM ARRAY FOR THE NEXT LAYER.
          CINT3=0.0
         DO 140 M=1,5
FACTRI(M) = OUTPUT(11)
 140
         DO 150 M=1.NARRAY
ELAM(M)=0.0
 150
          GO TO 40
 C---
 C THE CALCULATION OF THE FINAL SPECTRAL INTENSITY ARRAY IS FINISHED.
C COMPLETE THE SOLUTION FOR THE OUTPUT OPTIONS DESTRED.
C IF THIS IS A RADIATIVE TRANSPORT SOLUTION, TRANSFER THE VALUES OF ILAM INTO THE ELAM ARRAY FOR CONVENIENCE IN LATER MANIPULATION.
         IF(DEPTH .EQ. 0.0) GO TO 180
DO 170 M=1,NARRAY
ELAM(M)=ILAM(M)
  C GENERATE WAVELENGTHS AND STORE THEM IN THE ILAM ARRAY.
         DO 190 M=1,NARRAY
  180
             ILAM(M)=LAMMIN +(COUNT-1.0)*DELLAM
  190
          IF (NEWCAS) GO TO 200
  C IS THE SPECTRUM TO BE TABULATED.
           IF(READ6 .NE. PRINTS) GO TO 210
  C SUBROUTINE PRINT TABULATES SPECTRAL INTENSITY VERSUS WAVELENGTH ON C THE WRITTEN OUTPUT.
  200 CALL PRINT(NEWCAS)
           IF (NEWCAS) GO TO 10
  C READ A CARD WHICH SPECIFIES THE NUMBER OF INTERVALS AND THE NUMBER
   C OF SLITS TO BE CONSIDERED.
  210 READ(5,503) NINTRV, NSLIT
   C SUBROUTINE INTRVL COMPUTES INTEGRATED INTENSITIES BETWEEN SPECIFIED
      WAVELENGTHS.
           IF (NINTRY .NE. 0) CALL INTRVL(NINTRV)
   C SUBROUTINE SLIT COMPUTES THE OUTPUT SIGNAL GIVEN BY A SPECIFIED INSTRUMENT SENSITIVITY.
            IF (NSLIT .NE. 0) CALL SLIT(NSLIT)
           GO TO 10
```

C FORMATS FOR READ STATEMENTS.

```
FORMAT(12A6)
       500
                FORMAT(1210.0)
FORMAT(4E10.0,F5.0,21X,A6)
       501
       502
       503
                 FORMAT(215)
       504
                 FORMAT(4E10.3.26X,A6)
       505
                 FORMAT(1A4)
       C FORMATS FOR WRITE STATEMENTS.
                FORMAT(1H1,29X,12A6/30X,12A6/30X,12A6)
       600
                FORMAT(3/X,12A6)
FORMAT(//21X,27HTHE SPECTRUM COMPUTED FROM ,F8.2,4H TO ,F8.2,
       602
                1 14H ANGSTROMS AT *F6.3.19H ANGSTROM INTERVALS//)
FORMAT(103X*)2HSYSTEM TOTAL*)X*,1PE10*4*,5A1)
FORMAT(7,02X*)35HTOTAL OF ALL INTEGRATED INTENSITIES*,1X*,1PE10*4*,5A1)
FORMAT(//24X*,73HTHIS IS A RADIATIVE TRANSPORT SOLUTION*, DEPTH OF A
       606
               1BOVE RADIATING LAYER IS.F9.3,4H CM.//)
       SIRFTC HEO75A
                BLOCK DATA
       C BLOCK DATA SUBROUTINE IS USED TO LOAD HOLLERITH INFORMATION INTO THE C ARRAY, OUTPUT(12). THIS ARRAY IS USED TO BUILD THE ARRAY FACTRI(5) C FOR PRINTING THE INTENSITY FACTOR.
                 COMMON/CEXTRA/INDEX.NFILE.SYSTEM.TOTAL.OUTPUT(12)
                DATA (OUTPUT(M), M=1,12)/1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,
                                                       1H +1H-/
                 END
       $IBFTC HF075N
                 SUBROUTINE SKIP(I.K)
           SUBROUTINE SKIP POSITIONS THE SPECTROSCOPIC DATA TAPE (TAPE 9) TO THE
            PROPER FILE.
                 WRITE (6,700)
                 STOP
       C FORMAT FOR ERROR STATEMENT.
                FORMAT(/30X,48HTHE COMPUTATION WAS TERMINATED BECAUSE THE USER ,

2 29HAS NOT SUPPLIED A SKIP/
2 30X,46HSUBROUTINE TO POSITION THE SPECTROSCOPIC DATA ,
       700
                              24HTAPE TO THE PROPER FILE .//)
                 END
$ORIGIN
       SIBFTC HF075B
                 SUBROUTINE ILAMDA (NEWCAS)
           SUBROUTINE ILAMDA INITIALIZES THE ILAM ARRAY WITH THE SPECIFIED
            INCIDENT RADIATION AND INITIALIZES THE ELAM ARRAY TO 0.0.
                COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPAU,DEU,DZEROU,REU,TERMU,ALPAU,CAPAU,DEU,DZEROU,REU,TERMU,ALPAU,CAPAU,DEU,DZEROU,REU,TERML
COMMON/CBAND2/WEU,WEXEU,WEXEU,WEZEU,BVU,DVU,DVG,DEGENU,MU,ALTNAT,
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
                 REAL ILAM, LAMMAX, LAMMIN
                 LOGICAL NEWCAS
DATA BLANK/6H
            INITIALIZE VALUES SO THAT THE ILAM ARRAY CAN BE SET TO 0.0 IF AN INCIDENT SPECTRUM IS NOT SPECIFIED.
                 ELAM(1)=LAMMIN
                 ELAM(2)=LAMMAX
                 ELAM(5001)=0.0
                 ELAM(5002)=0.0
                 NTI AM=4999
            READ THE VALUES OF THE INCIDENT RADIATION VERSUS WAVELENGTH AND STORE THEM TEMPORARILY IN THE ELAM ARRAY.
```

```
10
        READ(5,500) READ1, READ2, READ3, READ4, READ5, READ6
        IF (READ6 .NE. BLANK) GO TO 20
        NOILAM= 1
NLAM=NLAM+2
        NILAM=NILAM+2
        ELAM(NLAM)=READ1
        ELAM(NILAM)=READ2
ELAM(NLAM+1)=READ3
         ELAM(NILAM+1)=READ4
        GO TO 10
20
        NLAM=NLAM+1
         IF(NLAM.NE.O) GO TO 25
        M1=1
GO TO 50
IF (ELAM(NLAM) •EQ• 0•0) NLAM=NLAM-1
25
C PRINT SPECIFIED INCIDENT RADIATION.
        WRITE(6,600)
DO 30 M=1,NLAM
WRITE(6,601) ELAM(M),ELAM(M+5000)
30
   TEST WAVELENGTHS OF THE INITIAL ILAM VALUES.
C
    THE LAST WAVELENGTH MUST BE EQUAL TO OR GREATER THAN LAMMAX.
THE FIRST WAVELENGTH MUST BE LESS THAN OR EQUAL TO LAMMIN.
SET THE INDEX M1 SO THAT LAMMIN IS BOUNDED BY THE APPROPRIATE ELAM ELEMENTS.
WAVELENGTHS MUST INCREASE MONOTONICALLY.
         IF(ELAM(NLAM) .LT. LAMMAX) GO TO 80
         M1 = 0
         IF(ELAM(M1+1) •GT• LAMMIN) GO TO 38
M1=M1+1
35
        M1=M1+1

GO TO 35

IF(M1 •EQ• 0) GO TO 80

DO 40 M=2,NLAM

IF (ELAM(M) •LE• ELAM(M-1)) GO TO 80
40
C
   INITIALIZE THE ILAM ARRAY.
        DO 60 M=1.NARRAY
50
            COLINTEM
           ILAM(M)=ELAM(M1+5000) +(ELAM(M1+5001)-ELAM(M1+5000))*(LAMMIN+

(COUNT-1•0)*DELLAM-ELAM(M1))/(ELAM(M1+1)-ELAM(M1))

IF (LAMMIN+COUNT*DELLAM •GT• ELAM(M1+1)) M1=M1+1
60
C INTIALIZE THE ELAM ARRAY.
         DO 70 M=1,NARRAY
            ELAM(M)=0.0
70
         RETURN
C THERE IS AN ERROR IN THE INCIDENT RADIATION DATA. WRITE CASE. AN ERROR MESSAGE AND OMIT THIS CASE.
         WRITE(6,700)
80
         RETURN
C FORMATS FOR READ STATEMENTS.
        FORMAT(4E10.0,F5.0,21X,A6)
   FORMATS FOR WRITE STATEMENTS.
         FORMAT(48X,35HSPECTRUM INCIDENT ON GAS SAMPLE//
51X,10HWAVELENGTH,10X,8HINCIDENT/
51X,2HIN,18X,9HINTENSITY/
 600
         2 31X.9HANGSTROMS.11X,15HW/CM2-MICRON-SR//)
FORMAT(50X,F8.2,13X,1PE10.4)
 601
 C FORMAT FOR ERROR STATEMENT.
         FORMAT(//22x,50HONE OF THE FOLLOWING RESTRICTIONS ON THE INCIDENT
1 ,37H5PECTRAL INTENSITY ARRAY WAS VIOLATED/
2 36X,58HTHE FIRST WAVELENGTH MUST BE LESS THAN OR EQUAL TO L
 700
         3AMMIN./
                   36X,60HTHE LAST WAVELENGTH MUST BE EQUAL TO OR GREATER THAN
        5 ! AMMAX . /
                   36X,40HWAVELENGTHS MUST INCREASE MONOTONICALLY.)
         END
              ......
```

```
ALPHA
SORIGIN
$IBFTC HF075C
          SUBROUTINE SETUP (NEWCAS)
C SUBROUTINE SETUP READS THE MOLECULAR CONSTANTS, COMPUTES THE PARTITION
    FUNCTION, AND DETERMINES THE APPROPRIATE TRANSITION SUBROUTINE TO GENERATE INTENSITIES DUE TO SPONTANEOUS EMISSION.
          COMMON/CPLOT/LAMMIN.LAMMAX.DELLAM,NARRAY.CINT3.FACTRI(5)
         COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
WEL,WEXEL,WEYEL,WEZEL,BVL,DVL,
NUSPIN
COMMON/CTEMP/TELECT,TVIB,TROT
          COMMON/CTRAN/PARTCC.NUBARO.Q.AOE.CINT1.CINT2.KMIN.KMAX
          COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
         DIMENSION ALPHA(30), BE(30), DEGEN(30), TERM(30), WE(30), WEXE(30), WEXE(30), WEZE(30), DUMMY(2)
         REAL KMAX1,KMAX2,LOWER,MU,NUBARO,NUSPIN,ILAM,NAME
LOGICAL NEWCAS
         DATA ENDS/6HEND /, BLANK/6H /
DATA UPPER/6HUPPER /, LOWER/6HLOWER /, STATE/6HSTATE /
DATA ODD/6H ODD /, EVEN/6H EVEN /
          REWIND 9
C A NEW BAND SYSTEM HAS BEEN SPECIFIED.
          PARTCC=READ1
          TELECT=READ2
TVIB=READ3
          TROT=READ4
    WRITE THE INTEGRATED INTENSITY DUE TO SPONTANEOUS EMISSION FOR THE PREVIOUSLY COMPUTED SYSTEM•
          IF (SYSTEM .NE. 0.0) WRITE(6,600) SYSTEM.(FACTRI(M),M=1,5)
          TOTAL = TOTAL + SYSTEM
          SYSTEM=0.0
C ARE THE CONSTANTS FOR THIS BAND SYSTEM INPUT ON CARDS.
          IF (INDEX .NE. 0) GO TO 40
C THE CONSTANTS FOR THIS BAND SYSTEM ARE ON TAPE.
         READ(9,900) NAME, INDEX, NFILE
IF (NAME .EQ. ENDS) GO TO 120
IF (NAME .EQ. READ6) GO TO 20
          CALL SKIP(1,9)
C READ PAST THE FRANCK-CONDON FACTORS, USING TERM(M2) AS A DUMMY C ARRAY.
         DO 30 M1=1,20
READ(9,901) (TERM(M2), M2= 1,20)
30
C READ THE CONSTANTS FROM TAPE.
         READ (9,902) READ1,ALTNAT,DEU,BETAU,REU,DZEROU,CAPAU,CAPLU,

MU,NUSPIN,DEL,BETAL,REL,DZEROL,CAPAL,CAPLL

LEVELS=READ1+0.1

READ (9,902) (DEGEN(M),TERM(M),WE(M),WEXE(M),WEYE(M),WEZE(M),BE(M)

ALPHA(M),M=1,LEVELS)
          GO TO 50
C THE CONSTANTS FOR THIS BAND SYSTEM ARE TO BE INPUT ON CARDS.
          READ(5,500) READ1, ALTNAT, DEU, BETAU, REU, DZEROU, CAPAU, CAPLU
40
         READ(5,500) MU,NUSPIN,DEL,BETAL,REL,DZEROL,CAPAL,CAPAL

LEVELS=READ1+0.1

READ(5,500) (DEGEN(M),TERM(M),WE(M),WEXE(M),WEYE(M),WEZE(M),

1 BE(M),ALPHA(M),M=1,LEVELS)
          NFILE= 0
C STORE UPPER AND LOWER STATE SPECTROSCOPIC CONSTANTS FOR THIS SYSTEM.
          ALPHAU=ALPHA(1)
          ALPHAL=ALPHA(2)
BEU=BE(1)
          BEL=BE(2)
          DEGENU=DEGEN(1)
          TERMU=TERM(1)
          TERML=TERM(2)
          WEU=WE(1)
          WEL=WE(1)
WEXEU=WEXE(1)
WEXEL=WEXE(2)
WEYEU=WEYE(1)
```

WEYEL=WEYE(2) WEZEU=WEZE(1) WEZEL=WEZE(2)

```
C FIND Q, THE PARTITION FUNCTION REFERENCED TO THE EQUILIBRIUM POSITION
C OF THE GROUND STATE POTENTIAL WELL.
       Q=0.0
DO 70 M=1.LEVELS
QVR=0.0
          QV=0.0
EVIB1=0.0
          EVIB2=WE(M)*(V+0.5) -WEXE(M)*(V+0.5)**2 +WEYE(M)*(V+0.5)**3
60
                  +WF7F(M)*(V+0.5)**4
          DELTQV=EXP(-1.43879*EVIB2/TVIB)
    COMPARE DELTA Q-VIBRATIONAL TO 0.1 PERCENT OF THE QV SUM TO THIS
    POINT.
           IF (DELTQV .LE. 0.001*QV) GO TO 70
C HAS THE VIBRATIONAL ENERGY REACHED A FICTITIOUS PEAK.
           IF (EV1B2 .LE. EV1B1) GO TO 70
           QV=QV+DELTQV
QVR=QVR +TROT*DELTQV/(1.43879*(BE(M)-ALPHA(M)*(V+0.5)))
           EVIB1=EVIB2
           V=V+1.0
          GO TO 60
Q=Q +QVR*DEGEN(M)*EXP(-1.43879*TERM(M)/TELECT)
70
C WRITE THE INPUT DATA FOR THE NEW SYSTEM.
        WRITE(6,601) READ6,PARTCC,TELECT,TVIB,TROT WRITE(6,602) ALTNAT,NUSPIN,LEVELS,MU
        ICAPLU= CAPLU+ 0.1
ICAPLL= CAPLL+ 0.1
WRITE(6,606)CAPAU,ICAPLU,DEU,BETAU,DZEROU,REU,
                        CAPAL, ICAPLL, DEL, BETAL, DZEROL, REL
        DO 100 M=1, LEVELS
           DUMMY(1)=BLANK
DUMMY(2)=BLANK
IF (M •NC• 1) GO TO 80
DUMMY(1)= UPPER
DUMMY(2)= STATE
           IF (M •NE• 2) GO TO 90
DUMMY(1) = LOWER
DUMMY(2) = STATE
MDUMMY = DEGEN(M)
 80
 ٩n
           WRITE(6+603) DUMMY(1)+DUMMY(2)+MDUMMY+TERM(M)+WE(M)+WEXE(M)+WEYE(M)+WEZE(M)+BE(M)+ALPHA(M)
 100
 C IF LINES ALTERNATE IN INTENSITY, WRITE OUT RATIO OF INTENSITIES.
         IF (ALTNAT .EQ. 0.0) GO TO 110
         DUMMY1=ODD
         IF (ALTNAT .EQ. 2.0) DUMMY1=EVEN
RATIO=NUSPIN/(NUSPIN+1.0)
         WRITE(6,604) DUMMY1, RATIO
 C IS THE UPPER ELECTRONIC TERM ENERGY GREATER THAN THE LOWER ELECTRONIC TERM ENERGY. IF NOT, WRITE AN ERROR MESSAGE AND OMIT THIS CASE.
 110 IF (TERMU .LE. TERML) GO TO 130
 C WRITE THE OUTPUT HEADING FOR VIBRATIONAL BANDS.
         WRITE(6,605)
         RETURN
 C THERE IS AN ERROR IN THE BAND SYSTEM NAME. WRITE AN ERROR MESSAGE C AND OMIT THIS CASE.
        WRITE(6,700) READ6
         GO TO 140
    THERE IS AN ERROR IN THE TERM ENERGIES. WRITE AN ERROR MESSAGE AND
 C OMIT THIS CASE.
         WRITE(6,701)
 130
         NEWCAS=.TRUE.
 C FORMATS FOR READ STATEMENTS.
         FORMAT(8E10.0)
  500
          FORMAT(4E10.0.F5.0.21X.A6)
  501
         FORMAT(215)
  502
  C FORMATS FOR WRITE STATEMENTS.
         FORMAT( /102X,12HSYSTEM TOTAL,2X,1PE10.4,5A1)
FORMAT(//63X,A6///
1 21X,12HTOTAL NUMBER,13X,10HELECTRONIC,14X,11HVIBRATIONAL,13X,
  601
                10HR01AT1ONAL/
21X+12HOF MOLECULES+3(13X+11HTEMPERATURE)/
21X+7HPER CC +3X+3(15X+9HDEGREES K)//
21X+1PE10+4+1X+3(14X+E10+4)///)
```

```
FORMAT(21X,4HLINE,21X,12HNUCLEAR SPIN,12X,9HNUMBER OF,15X,
602
                 1 7HREDUCED/
2 21x,11HALTERNATION,14x,15HFOR HOMONUCLEAR,9X,
              1 THREDUCED/
2 21X,11HALTERNATION,14X,15HFOR HOMONUCLEAR,9X,
3 10HELECTRONIC,14X,6HATOMIC/
4 21X,6HFACTOR,19X,9HMOLECULES,15X,6HLEVELS,18X,6HWEIGHT//
5 23X,F2.0,24X,F3.1,21X,12,19X,F6.4///)
FORMAT(1/x,2A6,2X,12,7X,7(1X,1PE14.7))
FORMAT(1/x,2A6,2X,12,7X,7(1X,1PE14.7))
FORMAT(1/x,01HLNES WITH,A6,84HROTATIONAL QUANTUM NUMBERS ARE STR
10NGEST, WITH THE RATIO OF WEAK TO STRONG LINES OF ,F7.3)
FORMAT(//1X,11HV1BRATIONAL,3X,7HFRANCK-,6X,17HTRANSITION MOMENT,
1 3X,15HROTATIONAL LINE,10X,5HRANGE,7X,4HBAND,9X,
2 10HROTATIONAL LINE,10X,5HRANGE,7X,4HBAND,9X,
4 20HWIDTH AT HALF-HEIGHT,5X,7HIN LINE,5X,9HORIGIN IN,4X,
5 15HQUANTUM NUMBERS,3X,9HINTENSITY/
6 1X,11HUPPER LOWER,3X,6HFACTOR,7X,15HELECTRONIC BAND,5X,
7 21HGAUSS LORENTZ VOIGT,4X,6HWIDTHS,6X,9HANGSTROMS,6X,
1 11HMIN MAX,5X,8HW/CM2-SR)
FORMAT(14X,4HSPIN,9X,17HQUANTUM NUMBER OF,15X,10HROTATIONAL,5X,
2 21HINTERNUCLEAR DISTANCE/
3 14X,8HCOUPLING,5X,28HRESULTANT ELECTRONIC ANGULAR,4X,
4 8HCONSTANT,7X,8HCONSTANT,9X,6HENERGY,11X,14HAT EQUILIBRIUM/
14X,8HCOUSTANT,5X,29HMOMENTUM ABOUT INTERNUC. AXIS,3X,
6 8HDE, 1/CM,7X,10HBETA, 1/CM,7X,12HDEZERO, 1/CM,5X,
 605
 606
                    5 14%,8HCONSTANT,5Xx,29HMOMENTUM ABOUT INTERNUC. AXIS,3X,6
8 HDDE, 1/CM,7Xx,10HBETA, 1/CM,7Xx,12HDEZERO, 1/CM,5X,
7 12HPOSITION, CM//
8 1X,11HUPPER STATE,2X,F7.2,17X,12, 18X,E14.7,1X,E14.7,3X,
9 E14.7,3X,E14.7/
1 1X,11HLOWER STATE,2X,F7.2,17X,12, 18X,E14.7,1X,E14.7,3X,
E14.7,3X,E14.7///
FORMAT(12X,10HELECTRONIC,4X,10HELECTRONIC/
1 12X,10HDEGENERACY,4Xx,11HTERM ENERGY,4X,2HWE,13X,4HWEXE,11X,
2 4HWEYE,11X,4HWEZE,11X,2HBE,13X,7HALPHA F//)
 607
                                             4HWEYE, 11X, 4HWEZE, 11X, 2HBE, 13X, 7HALPHA E//)
 C FORMATS FOR ERROR STATEMENTS.
                  FORMAT(///10x,3HTHE,1x,A6,12H BAND SYSTEM,20H IS NOT ON THE TAPE.)
FORMAT(//1x,112HERROR - ELECTRONIC TERM ENERGY OF THE UPPER STATE
11S LESS THAN OR EQUAL TO THE TERM ENERGY OF THE LOWER STATE. )
  701
 C FORMATS FOR TAPE READ STATEMENTS.
                     FORMAT(A6.216)
FORMAT(5E14.7)
  902
                     FORMAT(8E14.7)
   SORIGIN
   $IBFTC HF075D
                       SUBROUTINE VU VL (SKIPVV)
         SUBROUTINE VU VL COMPUTES AND READS VIBRATIONAL BAND CONSTANTS AND DETERMINES THE MAXIMUM ROTATIONAL QUANTUM NUMBER AND THE INTENSITY
             FACTOR.
                     COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,GINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPAU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPAL,DEL,DZEROU,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,

UNEL,WEXEL,WEYEL,WEZEL,BVL,DVL,
COMMON/CTEMP/TELECT,TV1B,TROT
COMMON/CTRAN/PARTCC,NUBARO,0,AGE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
                        REAL MU.KMAX2.KMAX1.NUBARO.LOWER.ILAM.NAME
                       DIMENSION QVV(20)
INTEGER FLAG
                        DATA UPPER/6HUPPER / LOWER/6HLOWER /
                       SKIPVV= 0.0
A0E=2.5415785E-18
                        C=2.9979E+10
PI=3.1415927
                        VII=READ1
                        VL=READ2
                        KMIN=READ3
                        KMAX=READ4
            TEST VIBRATIONAL QUANTUM NUMBERS TO ENSURE THAT FICTITIOUS PEAK IN VIBRATIONAL TERM ENERGY HAS NOT BEEN EXCEEDED.
   C HPPER STATE
                        FLAG = 0
WE = WEU
WEXE = WEXEU
WEYE = WEYEU
WEZE = WEZEU
                        MV = VU + 1.1
GO TO 10
```

```
C LOWER STATE.
         WE = WEL
WEXE = WEXEL
WEYE = WEYEL
WEZE = WEZEL
          MV = VL +1 \cdot 1
          EV1 =0.0
10
          FLAG = FLAG +1
DO 20 M=1,MV
             V = M-1
EV2 =WE*(V+•5) -WEXE*(V+•5)**2+WEYE*(V+•5)**3 +WEZE*(V+•5)**4
              IF(EV2 .LE. EV1) GO TO 230
              EV1 = EV2
20
          IF(FLAG.EQ.1) GO TO 5
C COMPUTE ROTATIONAL CONSTANTS FOR THIS BAND.
          BVU=BEU-ALPHAU*(VU+0.5)
          BVL=BEL-ALPHAL*(VL+0.5)
DVU=DEU+BETAU*(VU+0.5)
           DVL=DEL+BETAL*(VL+0.5)
C READ VIBRATIONAL BAND CONSTANTS.
           READ (5,500) SUMRE2, WIDTHG, WIDTHL, NUBARO, FRANCK, RANGE
C IF A FRANCK-CONDON FACTOR WAS READ. CONTINUE WITH
C THE SOLUTION. IF ONE WAS NOT READ AND THE MOLECULAR AND SPECTROSCOPIC
C CONSTANTS WERE NOT READ FROM TAPE. THEN THE SOLUTION CANNOT PROCEED.
           IF (FRANCK •GT• 0•0) GO TO 40
IF (NFILE •EQ• 0) GO TO 240
     READ FRANCK-CONDON FACTORS FROM TAPE USING THE WEZE ARRAY FOR
      TEMPORARY STORAGE.
           CALL SKIP(-0,9)
           READ(9,900) NAME, INDEX, NFILE
           N1=VU+1.1
           N2=VL+1.1
READ(9,901) ({QVV(M2),M2=1,20},M1=1,N1)
           FRANCK=QVV(N2)
      RANGE IS THE DISTANCE FROM THE LINE CENTER, IN LINE WIDTHS, BEYOND WHICH THE SPONTANEOUS LINE EMISSION IS CONSIDERED ZERO.
           IF(RANGE •NE• 0•0) GO TO 45
RANGE=5•0
           IF (WIDTHL .EQ. 0.0) RANGE=3.0
    FIND THE VOIGT LINE WIDTH AT HALF-HEIGHT. IF LINE WIDTHS WERE NOT INPUT
IMPOSE A GAUSSIAN PROFILE WITH A WIDTH TEN TIMES DELLAM.
            WIDTHV=WIDTHL/2.0+SQRT(WIDTHL**2/4.0+WIDTHG**2)
           IF (WIDTHV .NE. 0.0) GO TO 50
WIDTHV=10.0*DELLAM
            WIDTHG=WIDTHV
            WRITE (6,701)
 C FIND KMAX, THE MAXIMUM ROTATIONAL QUANTUM NUMBER POSSIBLE FOR THE SPECIFIED VIBRATIONAL LEVELS. KMAX VALUES ARE FOUND FOR BOTH THE UPPER AND LOWER STATES. HOWEVER, VALUE OF THE KMAX USED BY THE PROGRAM IS THE MINIMUM OF THESE AND THE INPUT VALUE IF IT IS NOT ZERO. IF THE DISSOCIATION ENERGY IS NOT INPUT, KMAX CANNOT BE DETERMINED AND IS SET TO THE INPUT VALUE OR 150 IF THE INPUT VALUE IS ZERO. SEE HERZBERG, PAGE 426, FOR A DISCUSSION OF DISSOCIATION DUE TO ROTATION.
 C SET UP CONSTANTS TO FIND KMAX FOR LOWER STATE.
            1F (DZEROL .EQ. 0.0) GO TO 60
 50
            DEQUIL=DZEROL +WEL/2.0 -WEXEL/4.0 +WEYEL/8.0 +WEZEL/16.0

EVIB=WEL*(VL+0.5) -WEXEL*(VL+0.5)**2 +WEYEL*(VL+0.5)**3

1 +WEZEL*(VL+0.5)**4

1 = 1.2177E7*WEL*SGRT(MU/DEQUIL)
            REQUIL=REL
            DV=DVL
            BV=BVL
GO TO 70
  C SET UP CONSTANTS TO FIND KMAX FOR UPPER STATE.
            IF (DZEROU .EQ. 0.0) GO TO 170
            DEQUIL=DZEROU +WEU/2.0 -WEXEU/4.0 +WEYEU/8.0 +WEŻEU/16.0

EVIB=WEU*(VU+0.5) -WEXEU*(VU+0.5)**2 +WEYEU*(VU+0.5)**3

1 +WEZEU*(VU+0.5)**4

Cl=1.2177E7*WEU*SQRT(MU/DEQUIL)
             REQUIL = REU
             DV=DVU
             BV=BVU
  C IF VIBRATIONAL ENERGY IS GREATER THAN OR EQUAL TO THE DISSOCIATION ENERGY, THIS BAND CANNOT EXIST.
```

IF (EVIB .GE. DEQUIL) GO TO 220

```
C SET THE INITIAL VALUES NEEDED TO START THE ITERATION.
    KMAX1= PRIOR VALUE OF KMAX
KMAX2= PRESENT VALUE OF KMAX
KMAX3= INTEGER VALUE OF KMAX
K= INTEGER VALUE OF KMAX
E1 AND E2= PRIOR AND PRESENT SUMS OF VIBRATIONAL PLUS ROTATIONAL ENERGY•
U1 AND U2= PRIOR AND PRESENT VALUES OF EFFECTIVE POTENTIAL ENERGY AT THE
     LOCAL MAXIMUM.
FLAG=1 INDICATES THIS IS THE FIRST ITERATION.
           C3=1.686E-15/MU
           E1=EVIB
           U1=DEQUIL
           KMAX1=0.0
           K= 50
KMAX2=K
           FLAG= 1
C FIND R, THE INTERNUCLEAR DISTANCE AT THE LOCAL MAXIMUM OF THE C EFFECTIVE POTENTIAL WELL FOR KMAX2. A MORSE CURVE IS ASSUMED C FOR THE POTENTIAL WELL WITHOUT ROTATION.
 80
           R=REQUIL
           FR2=0.0
FK=C3*1.0E+24*KMAX2*(KMAX2+1.0)/(C1*DEQUIL)
 90
           FR1=FR2
            R=R+0.1E-8
IF (R .GT. 1.0E-7) GO TO 120
            C2=EXP(-C1*(R-REQUIL))
            FR2=(R *1.0E+8)**3*C2*(1.0-C2)
            IF (FR2 •GT• FR1) GO TO 90

IF (FR2 •GT• FK) GO TO 90

IF (FR1 •EQ• FR2) GO TO 100

IF (FR1 •GT• FK) GO TO 110
 C A LOCAL MAXIMUM DOES NOT EXIST AT K.
C SET R TO PRIOR VALUE AND CONTINUE ITERATION.
            R = R - 0.1E - 8
            GO TO 120
 C THE LOCAL MAXIMUM AT K IS, IN FACT, A CRITICAL POINT. C SET R TO CRITICAL POINT AND CONTINUE ITERATION.
            GO TO 120
  C INTERPOLATE TO GET VALUE OF R AT LOCAL MAXIMUM.
  110 R=R- 0.1E-8*(FK-FR2)/(FR1-FR2)
 C FIND THE NEXT VALUE OF KMAX (I.E., KAMX3). DURING THE FIRST ITERATION STEP KMAX2 BY 20 UNTIL U2 IS LESS THAN OR EQUAL TO E2 AND THEN INTERPOLATE TO U=E TO GET KMAX3. IN ALL OTHER ITERATIONS, JUST EXTRAPOLATE TO U=E TO GET KMAX3.
            E2=EVIB +BV*KMAX2*(KMAX2+1.0) -DV*KMAX2**2*(KMAX2+1.0)**2
U2=DEQUIL*(1.0-EXP(-C1*(R-REQUIL)))**2 +C3*KMAX2*(KMAX2+1.0)/R**2
            IF(FLAG •NE• 1) GO TO 140
IF(U2 •LE• E2) GO TO 130
KMAX1= KMAX2
KMAX2= KMAX2+ 20•0
             K= KMAX2+ 0.1
             IF(KMAX2 .GE. 500.0) GO TO 150
             E1= E2
U1= U2
GO TO 120
   130
             KMAX3=KMAX2 +(U2-E2)*(KMAX2-KMAX1)/((U1-E1)-(U2-E2))
   C IF KMAX3 IS LESS THAN OR EQUAL TO ZERO, THIS VIBRATIONAL LEVEL C CANNOT EXIST.
      CANNOT EXIST.
              IF (KMAX3 .LE. 0) GO TO 260
   C WHEN KMAX3 EQUALS K. THE ITERATION IS COMPLETE.
              IF (KMAX3 .EQ. K) GO TO 160
              K=KMAX3
              KMAX1=KMAX2
KMAX2=KMAX3
              E1=E2
U1=U2
              GO TO 80
   150
            KMAX3= KMAX2+ 0.1
   C THE ITERATION IS COMPLETE, SET KMAX.
            IF (KMAX •EQ• 0) KMAX=KMAX3
IF (KMAX3 •LT• KMAX) KMAX=KMAX3
IF (BV •EQ• BVL) GO TO 60
IF (KMAX •EQ• 0) KMAX=150
   160
   170
```

```
SET UP CONSTANTS FOR INTENSITY EQUATION IN ROTATIONAL STRUCTURE SUBROUTIXE AND COMPUTE NUBARO, THE BAND ORIGIN, IF NOT SPECIFIED.
       CINT1=TERMU/TELECT +(WEU*(VU+0.5)-WEXEU*(VU+0.5)**2+WEYEU*
               (VU+0.5)**3+WEZEU*(VU+0.5)**4)/TVIB
       CINT2=(16.0E-7*C*PARTCC*FRANCK*SUMRE2*PI**3)/(3.0*Q)
       IF (NUBARO .EQ. 0.0) NUBARO=TERMU -TERML +WEU*(VU+0.5) -WEXEU*
                                             -WEZEL*(VL+0.5)**4
       ORIGIN=1.0E+8/NUBARO
C FIND THE INTENSITY FACTOR, IF NECESSARY.
       IFACTR= 0.62486*CINT1
IF(IFACTR .LT. 30) GO TO 210
CINT4=IFACTR
        IF(CINT4 .LT. CINT3) GO TO 210
       FACTRI(1)=OUTPUT(12)
        DO 180 M1=2.5
          FACTRI(M1)=OUTPUT(M+1)
IFACTR=IFACTR-M*10**(5-M1)
180
          M=IFACTR/10**(4-M1)
C IF THIS IS NOT THE FIRST INTENSITY FACTOR: ADJUST THE ELAM ARRAY.
        IF(CINT3 .EQ. 0.0) GO TO 200
       CINT5= CINT4-CINT3
DO 190 M=1 NARRAY
190
          ELAM(M)=ELAM(M) *EXP(2.30259*CINT5)
        SYSTEM= SYSTEM*EXP(2.30259*CINT5)
      TOTAL= TOTAL*EXP(2.30259*CINT5)
CINT3= CINT4
200
C WRITE THE VIBRATIONAL BAND INFORMATION,
210
       M1=VU+ 0.1
        M2=VL+ 0.1
IRANGE= RANGE+ 0.1
IF(KMIN .LT. 2) KMIN= 2
       WRITE(6,600)M1,M2,FRANCK,SUMRE2,WIDTHG,WIDTHL,WIDTHV,IRANGE,
        ORIGIN, KMIN, KMAX
IF (CINT2 -LE- 0-0) GO TO 250
C \, THIS VIBRATIONAL LEVEL CANNOT EXIST. WRITE THE APPROPRIATE MESSAGE C \, AND OMIT THIS BAND.
      M1=VU+ 0.1
M2=VL+ 0.1
DUMMY=UPPER
IF (8V .EQ. BVL) DUMMY=LOWER
220
        WRITE(6,702) M1,M2,DUMMY
        SKIPVV= 1.0
       M1=VU+ 0.1
M2=VL+ 0.1
DUMMY=UPPER
230
        IF(WE .EQ. WEL) DUMMY=LOWER
WRITE(6,705) M1.M2.DUMMY
        READ(5,500) SUMRE2, WIDTHG, WIDTHL, NUBARO, FRANCK, RANGE
        SKIPVV= 1.0
C THERE IS AN ERROR IN THE FRANCK-CONDON FACTOR. WRITE AN ERROR MESSAGE C AND OMIT THIS BAND.
       M1= VU+ 0.1
M2= VL+ 0.1
WRITE(6,703) M1.M2
SKIPVV= 1.0
C THE BAND INTENSITY IS ZERO DUE TO A POSSIBLE ERROR IN PARTCC, FRANCK, SUMRE2, C OR Q. WRITE THE APPROPRIATE MESSAGE AND OMIT THIS BAND.
250
     WRITE(6,700)
        SKIPVV= 1.0
C THE MAX POSSIBLE ROTATIONAL QUANTUM NUMBER IS LESS THAN OR EQUAL TO ZERO. WRITE THE APPROPRIATE MESSAGE AND OMIT THIS BAND.
       M1= VU+ 0.1
M2= VL+ 0.1
WRITE(6,704) M1,M2
260
        SKIPVV= 1.0
        RETURN
C FORMAT FOR READ STATEMENT.
```

```
500 FORMAT(6E10.0)
      C FORMAT FOR WRITE STATEMENT.
              FORMAT(/1X,12,4X,12,6X,1PE10.4,3X,E10.4,9X,3(0PF7.4,1X),3X,14,17,74,75,14,5X,14,5X,14,7)
      C FORMATS FOR ERROR STATEMENTS.
              FORMAT(/2X.130HINTENSITY FOR THIS BAND IS LESS THAN OR EQUAL TO ZE 1RO DUE TO THE INPUT DATA VALUES. THEREFORE IT WAS OMITTED FROM THE
              2 COMPUTATION.)
              FORMATI'8X.117HLINE WIDTHS WERE NOT INPUT FOR NEXT BAND. PROGRAM INPOSED A GAUSSIAN PROFILE WITH WIDTH AT HALF-HEIGHT = 10*INTERVAL.
      701
              FORMAT(//6x,4HTHE ,12,3H , ,12,84H TRANSITION WAS OMITTED FROM THE 1 CALCULATION BECAUSE THE VIBRATIONAL ENERGY FOR THE ,A6,14HSTATE E 2XCEEDED/
      702
              2XCEEDED/
3 6X,23HITS DISSOCIATION ENERGY)
FORMAT(///10X,41HNO FRANCK-CONDON FACTOR WAS INPUT FOR THE,12,
1 3H,,12,6H BAND.)
FORMAT(/6X,4HTHE,12,3H,,12,95H TRANSITION WAS OMITTED BEC&USE T
1HE MAX POSSIBLE ROT QUANTUM NUMBER IS LESS THAN OR EQUAL TO 0.//)
FORMAT(//6X,4HTHE,12,3H,,12,92H TRANSITION WAS OMITTED FROM THE
1 CALCULATION BECAUSE THE VIBRATIONAL QUANTUM NUMBER FOR THE,46,
25HSTATE/6X,65HEXCEEDS THE FICTITIOUS PEAK ON THE VIBRATIONAL TE<sup>5</sup>/
      703
      704
               3ENERGY CURVE.)
      C FORMATS FOR THE TAPE STATEMENTS.
                FORMAT(A6,216)
                FORMAT(5E14.7)
.....
       SORIGIN
       $IBFTC HF075E
                 SUBROUTINE ZERO
       C SUBROUTINE ZERO COMPUTES PARALLEL TRANSITIONS FOR DIATOMIC MOLECULES.
                  COMMON/CPLOT/LAMMIN, LAMMAX, DELLAM, NARRAY, CINT3, FACTRI(5)
                 COMMON/CARRAY/ILAM( 9000); ELAM( 9000)

COMMON/CARRAY/ILAM( 9000); ELAM( 9000)

COMMON/CBAND1/READ1.READ2.READ3.READ5.READ6

COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,

ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML

COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
                 COMMON/CBANDZ/WEU, WEXEU, WEYEU, WEZEU, BVU, DVU, DEGENU, MU, /

WEL, WEXEL, WEYEL, WEZEL, BVL, DVL,

COMMON/CTEMP/TELECT, TVIB, TROT

COMMON/CWIDTH/WIDTHL, WIDTHV, RANGE

COMMON/CTRAN/PARTCC, NUBARO, Q, AOE, CINT1, CINT2, KMIN, KMAX

COMMON/CEXTRA/INDEX, NFILE, SYSTEM, TOTAL, OUTPUT(12)
                                                                                                          NUSPIN
                  REAL ILAM, KU, KL, LAMCL, LAMBDA, LAMMAX, LAMMIN, NUBAR, NUBARO, NUSPIN
        C FIND THE NUMBER OF ENTRIES IN THE INTENSITY ARRAY, FROM THE LINE CENTER, C AT WHICH EACH LINE IS ASSUMED TO HAVE A CONTRIBUTION.
                  NSPRED=1.1+RANGE*WIDTHV/DELLAM
        C SET CONSTANTS WHICH DETERMINE THE LINE SHAPE.
                  CSPRD2=WIDTHL/WIDTHV
CSPRD3=(1.065+0.447*CSPRD2+0.058*CSPRD2**2)*WIDTHV*1.0E-4
CSPRD1=(1.0-CSPRD2)/CSPRD3
                  CSPRD2=CSPRD2/CSPRD3
             SET CONSTANTS WHICH DETERMINE THE WAVELENGTH OF THE LINE CENTER FOR TRIPLETS. SEE HERZBERG, PAGE 235.
                   YU=CAPAU/BVU
                  YL=CAPAL/BVL
DIVISR=2.0
                   IF (CAPLU .EQ. 0.0) DIVISR=1.0
         C SET CONSTANTS FOR THE P BRANCH AND INITIALIZE THE RUNNING SUMS.
                   CSTR=1.0
                   KU=KMIN
                   KL=KU+1.0
                   BAND=0.0
                  BRANCH=0.0
              COMPUTE AND DISTRIBUTE THE INTEGRATED INTENSITY DUE TO SPONTANEOUS
         C EMISSION OF ALL SPECIFIED ROTATIONAL LINES.
                   DO 60 M=KMIN+KMAX
                      7211=0.0
                       Z2L=0.0
          C FOR A DESCRIPTION OF THESE EQUATIONS, SEE HERZBERG, PAGE 235.
                       IF (DEGENU/DIVISR .NE. 3.0) GO TO 20
```

```
C COMPUTE THE WAVELENGTH OF THE LINE CENTER IN ANGSTROMS.
          NUBAR=NUBARO +BVU*(KU*(KU+1.0)+4.0*Z2U) -BVL*(KL*(KL+1.0)+4.0*Z2L) -DVU*(KU+0.5)**4 +DVL*(KL+0.5)**4
LAMCL=1.0E+8/NUBAR
20
C IF THE LINE WAVELENGTH FALLS OUTSIDE THE SPECTRAL RANGE OF C INTEREST, OMIT IT AND PROCEED TO THE NEXT LINE.
           IF(LAMCL.LT.LAMMIN-RANGE*WIDTHV) GO TO 50
IF(LAMCL.GT.LAMMAX+RANGE*WIDTHV) GO TO 50
C FIND THE STRENGTH FACTOR.
           S=KU+CSTR
C DETERMINE IF LINES ALTERNATE IN INTENSITY.
           FACTOR=1.0
IF (ALTNAT .EQ. 0.0) GO TO 30
C EVALUATE THE ALTERNATION FACTOR FOR HOMONUCLEAR MOLECULES. THE EXPONENT IN THE ALTERNATING FUNCTION IS FOUND SEPARATELY TO ENSURE THAT IT IS AN INTEGER BEFORE RAISING (-1.0) TO A POWER.
           KEXP= KL + ALTNAT + 0.1
FACTOR=1.0 +(-1.0)**KEXP/(2.0*NUSPIN+1.0)
C FIND THE INTEGRATED LINE INTENSITY DUE TO SPONTANEOUS EMISSION.
           E=FACTOR*S*(NUBAR**2*AOE)**2*CINT2*EXP(-1.43879*(CINT1
              +(BVU*KU*(KU+1.0))/TROT)+2.30259*CINT3)
C SET CONSTANTS USED TO DISTRIBUTE THE ROTATIONAL LINE.
           NCENTR=1.5+(LAMCL-LAMMIN)/DELLAM
           NSTART=NCENTR-NSPRED
           IF (NSTART +LT+ 1) NSTART=1
NEND=NCENTR +NSPRED
IF (NEND +GT+ NARRAY) NEND=NARRAY
C DISTRIBUTE THE ROTATIONAL LINE.
           DO 40 M1=NSTART NEND
              COUNT=M1
LAMBDA=LAMMIN+(COUNT-1.0)*DELLAM
           LAMBDA=LAM(LOWI-1=0)*DCLLAM
CSPRD3=ABS((LAMBDA-LAMCL)/WIDTHV)
ELAM(M1)=ELAM(M1) +E*(CSPRD1*EXP(-2*772*CSPRD3**2)
+CSPRD2*(1*0+4*0*CSPRD3**2) +0*016* CSPRD2*(1*0-4*0*CSPRD3**2) +0*016* CSPRD2*(1*0-4*0*CSPRD3**2*2*25) -10*0/
40
                           (10.0+CSPRD3**2.25)))
           BRANCH= BRANCH + E
           KU=KU+1.0
           KL=KL+1.0
C HAVE BOTH BRANCHES BEEN COMPLETED.
         IF (KL .EQ. KU-1.0) GO TO 70
C WRITE P BRANCH DATA.
         WRITE(6,600) BRANCH, (FACTRI(M), M=1,5)
         BAND=BRANCH
         SYSTEM=SYSTEM+BRANCH
C SET CONSTANTS FOR THE R BRANCH.
         CSTR=0.0
         KU=KMIN
         KL=KU-1.0
GO TO 10
C WRITE R BRANCH DATA.
        WRITE(6,601) BRANCH, (FACTRI(M), M=1,5)
         BAND=BAND+BRANCH
         SYSTEM=SYSTEM+BRANCH
C COMPUTE APPROXIMATE BAND INTENSITY. SEE BATES, PAGE 57.
         QR=TROT/(1.43879*BVU)
APPROX=CINT2*QR*(NUBARO**2*A0E)**2*EXP(-1.43879*CINT1+
                 2.30259*CINT3)
C WRITE ADDITIONAL DATA FOR THIS VIBRATIONAL BAND.
         WRITE(6,602) BAND, (FACTRI(M), M=1,5), APPROX, (FACTRI(M), M=1,5)
C FORMATS FOR WRITE STATEMENTS.
600 FORMAT(107x,8HP BRANCH,1x,1PE10.4,5A1)
       FORMAT(107X8HR BRANCH,1X,1PE10.4,5A1)
FORMAT(/ 105X,10HBAND TOTAL,1X,1PE10.4,5A1/
1 93X,22HAPPROXIMATE BAND TOTAL,1X,E10.4,5A1//)
 602
```

ALPHA SOR IGIN \$IBFTC HF075F SUBROUTINE ONE C SUBROUTINE ONE COMPUTES PERPENDICULAR TRANSITIONS FOR DIATOMIC MOLECULES. COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPAU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
1
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX COMMON/CTRAN/PARTCC, NUBARO, 0, A0E, CINT1, CINT2, KMIN, KMAX
COMMON/CEXTRA/INDEX, NFILE, SYSTEM, TOTAL, OUTPUT(12) REAL ILAM, KU, KL, LAMCL, LAMBDA, LAMMAX, LAMMIN, NUBAR, NUBARO, NUSPIN C FIND THE NUMBER OF ENTRIES IN THE INTENSITY ARRAY, FROM THE LINE CENTER. C AT WHICH EACH LINE IS ASSUMED TO HAVE A CONTRIBUTION. NSPRED=1.1+RANGE*WIDTHV/DELLAM C SET CONSTANTS WHICH DETERMINE THE LINE SHAPE. CSPRD2=WIDTHL/WIDTHV CSPRD1=(1.065+0.447*CSPRD2+0.058*CSPRD2**2)*WIDTHV*1.0E-4
CSPRD1=(1.00-CSPRD2)/CSPRD3 CSPRD2=CSPRD2/CSPRD3 SET THE SIGN OF CAPLU, USED IN STRENGTH EQUATIONS, APPROPRIATE TO THE SIGN OF DELTA LAMBDA. SEE JOHNSON, PAGE 150. IF (CAPLU .LT. CAPLL) SIGN=-1.0 C SET CONSTANTS FOR THE P BRANCH AND INITIALIZE THE RUNNING SUMS. SWITCH= 1 KU=KMIN KL=KU+1.0 10 BRANCH=0.0 C COMPUTE AND DISTRIBUTE THE INTEGRATED INTENSITY DUE TO SPONTANEOUS EMISSION OF ALL SPECIFIED ROTATIONAL LINES. DO 90 M=KMIN+KMAX C COMPUTE THE WAVELENGTH OF THE LINE CENTER IN ANGSTROMS. NUBAR=NUBARO +BVU*KU*(KU+1.0) -BVL*KL*(KL+1.0) -DVU*KU**2*
(KU+1.0)**2 +DVL*KL**2*(KL+1.0)**2
LAMCL=1.0E+8/NUBAR IF THE LINE WAVELENGTH FALLS OUTSIDE THE SPECTRAL RANGE OF INTEREST, OMIT IT AND PROCEED TO THE NEXT LINE. IF(LAMCL.LT.LAMMIN-RANGE*WIDTHV) GO TO 80 IF(LAMCL.GT.LAMMAX+RANGE*WIDTHV) GO TO 80 C FIND THE STRENGTH FACTOR. GO TO (20,30,40), SWITCH C P BRANCH STRENGTH FACTOR S=(KU+1.0-SIGN*CAPLU)*(KU+2.0-SIGN*CAPLU)/(2.0*(KU+1.0)) 20 GO TO 50 C Q BRANCH STRENGTH FACTOR. S=(KU+SIGN*CAPLU)*(2.0*KU+1.0)*(KU+1.0-SIGN*CAPLU)/ (2.0*KU*(KU+1.0)) GO TO 50

C R BRANCH STRENGTH FACTOR.

40 S=(KU+SIGN*CAPLU)*(KU-1.0+SIGN*CAPLU)/(2.0*KU)

C DETERMINE IF LINES ALTERNATE IN INTENSITY.

50 FACTOR=1.0
 IF (ALTNAT .EQ. 0.0) GO TO 60

C EVALUATE THE ALTERNATION FACTOR FOR HOMONUCLEAR MOLECULES. THE EXPONENT IN THE ALTERNATING FUNCTION IS FOUND SEPARATELY TO ENSURE THAT IT IS AN INTEGER BEFORE RAISING (-1.0) TO A POWER.

KEXP* KL + ALTNAT + 0.1 FACTOR=1.0 +(-1.0)**KEXP/(2.0*NUSPIN+1.0)

```
C FIND THE INTEGRATED LINE INTENSITY DUE TO SPONTANEOUS EMISSION.
      60
                 E=FACTOR*S*(NUBAR**2*A0E)**2*CINT2*EXP(+1.43879*(CINT1
                    +(BVU*KU*(KU+1.0))/TROT)+2.30259*CINT3)
      C SET CONSTANTS USED TO DISTRIBUTE THE ROTATIONAL LINE.
                  NCENTR=1.5+(LAMCL-LAMMIN)/DELLAM
                  NSTART=NCENTR-NSPRED
                  IF (NSTART •LT• 1) NSTART=1
NEND=NCENTR +NSPRED
                  IF (NEND .GT. NARRAY) NEND=NARRAY
      C DISTRIBUTE THE ROTATIONAL LINE.
                 DO 70 M1=NSTART NEND
                    COUNT=M1
LAMBDA=LAMMIN+(COUNT-1.0)*DELLAM
                 CSPRD3=ABS((LAMBDA-LAMCL)/MIDTHV)

ELAM(M1) = ELAM(M1) + E*(CSPRD1*EXP(-2*772*CSPRD3**2) + CSPRD2*(1*0+4*0*CSPRD3**2) + 0*016* CSPRD2*(1*0+WIDTHL/WIDTHV)*(EXP(-0*4*CSPRD3**2*25) - 10*0/
      70
                             (10.0+CSPRD3**2.25)))
                 BRANCH= BRANCH + E
      80
      90
                 KL=KL+1.0
               BAND=BAND+BRANCH
               SYSTEM=SYSTEM+BRANCH
      C HAVE ALL THREE BRANCHES BEEN COMPLETED.
               GO TO (100,110,120), SWITCH
      C OUTPUT P BRANCH INTEGRATED INTENSITY.
              WRITE(6,600) BRANCH, (FACTRI(M), M=1,5)
      C SET CONSTANTS FOR Q BRANCH.
               SWITCH= 2
               KU=KMIN
              KL≖KU
GO TO 10
      C OUTPUT Q BRANCH INTEGRATED INTENSITY.
      110 WRITE(6,601) BRANCH, (FACTRI(M), M=1,5)
      C SET CONSTANTS FOR R BRANCH.
               SWITCH= 3
               KU=KMIN
               KL=KU-1.0
               GO TO 10
      C OUTPUT R BRANCH INTEGRATED INTENSITY.
      120 WRITE(6,602) BRANCH, (FACTRI(M), M=1,5)
      C COMPUTE APPROXIMATE BAND INTENSITY. SEE BATES, PAGE 57.
              QR=TROT/(1.43879*BVU)
               APPROX=CINT2*QR*(NUBARO**2*AOE)**2*EXP(-1.43879*CINT1+
                       2.30259*CINT3)
              WRITE(6,603) BAND, (FACTRI(M), M=1,5), APPROX, (FACTRI(M), M=1,5)
      C FORMATS FOR WRITE STATEMENTS.
              FORMAT(107X,8HP BRANCH,1X,1PE10.4,5A1)
FORMAT(107X,8HQ BRANCH,1X,1PE10.4,5A1)
      600
              FORMAT(107X,8HR BRANCH,1X,1PE10.4,5A1)
FORMAT(/ 105X,10HBAND TOTAL,1X,1PE10.4,5A1/
      602
                        93X,22HAPPROXIMATE BAND TOTAL,1X,E10.4,5A1//)
              END
SOR IGIN
                          ALPHA
      $IBFTC HF075G
              SUBROUTINE S2 PI2
          SUBROUTINE S2 PI2 COMPUTES DOUBLET SIGMA TO DOUBLET PI TRANSITIONS (OR VICE VERSA) FOR DIATOMIC MOLECULES.
               COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
              COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU.BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROU,REU,TERML
COMMON/CBAND2/WEU.WEXEU,WEYEU.WEZEU,BVU,DVU,DEGENU,WU,ALTNAT,
WEL.WEXEL,WEYEL,WEZEL,BVU,DVU,
NUSPIN
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CWIDTH/WIDTHU,WIDTHU,RANGE
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
```

```
DIMENSION NAME(16,2)
       REAL ILAM, J. JL. JU. K. LAMCL, LAMBDA, LAMMAX, LAMMIN, NUBAR, NUBARO, NUSPIN
       INTEGER SWITCH
LOGICAL FROMPI,DBLBRN
       DATA((NAME(M1,M2),M2=1,2),M1=1,16)/
C
              PI TO SIGMA TRANS.
                                                SIGMA TO PI TRANS.
                              P2 ,
              6Н
                                                                  R2 ,
P1 ,
                        • 6H
                                                 6Н
                       ,6H R1 ,
                                                           ,6H
                                                           •6H SR21 •
              6H
                                                 6Н
                        ,6H 0P12 ,
                                                           ,6H OP12 ,
             6HQ2 AND,6H QP21,
6HQ1 AND,6H QR12,
6HR2 AND,6H RQ21,
6HP1 AND,6H PQ12,
                                                 6HQ2 AND 6H QR12 ,
6HQ1 AND 6H QP21 ,
                                                 6HP2 AND,6H PQ12
                                                 6HR1 AND,6H RQ21 /
  , DBLBRN IS TRUE WHEN COMPUTING TWO BRANCHES WHOSE LINES ARE ASSUMED TO HAVE THE SAME WAVELENGTHS.
        DBLBRN=.FALSE.
C ADJUST FACTOR USED IN INTENSITY EQUATION TO ACCOUNT FOR SPIN SPLITTING.
  SET CONSTANTS APPROPRIATE TO THE ELECTRONIC TRANSITION. FROMPI IS TRUE IF THE UPPER STATE IS DOUBLET PI.
        FROMPI = . FALSE .
        IF (CAPLU.GT.CAPLL) FROMPI=.TRUE.
C SET COUPLING CONSTANT.
        YU=CAPAU/BVU
        YL=CAPAL/BVL
        IF(FROMPI) Y=YU
  SET SWITCH, THE BRANCH IDENTIFIER, AND IPRINT, THE INDEX ON NAME WHICH IDENTIFIES THE BRANCH OUTPUT.
        SWITCH= 0
        IPRINT=0
        IF (FROMPI) IPRINT=-1
C FIND THE NUMBER OF ENTRIES IN THE INTENSITY ARRAY, FROM THE LINE CENTER, C AT WHICH EACH LINE IS ASSUMED TO HAVE A CONTRIBUTION.
       NSPRED=1.1+RANGE*WIDTHV/DELLAM
C SET CONSTANTS WHICH DETERMINE THE LINE SHAPE.
       CSPRD2=WIDTHL/WIDTHV
        CSPRD3=(1.065+0.447*CSPRD2+0.058*CSPRD2**2)*WIDTHV*1.0E~4
CSPRD1=(1.0-CSPRD2)/CSPRD3
        CSPRD2=CSPRD2/CSPRD3
C SET CONSTANTS FOR THE P2 BRANCH (PI TO SIGMA TRANSITION) OR C R2 BRANCH (SIGMA TO PI TRANSITION).
        BAND=0.0
       K=KMIN
JU=K-0.5
        JL=JU-1.0
        IF (FROMPI) JL=JU+1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
        SIGNU1=1.0
        SIGNU2=1.0
C SET CONSTANTS FOR THE STRENGTH EQUATION.
        SIGNS1=1.0
        SIGN52=-1.0
       CONST1=1.0
       CONST2=1.0
       WRITE(6,600) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
  SET CONSTANTS FOR THE R1 BRANCH (PI TO SIGMA TRANSITION) OR P1 BRANCH (SIGMA TO PI TRANSITION).
        JU=K+0.5
       JL=JU+1.0
IF (FROMPI) JL=JU-1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
        SIGNU1=-1.0
C SET CONSTANTS FOR THE STRENGTH EQUATION.
```

```
SIGNS1=1.0
      SIGNS2=-1.0
      const1=1.0
      CONST2=0.0
      GO TO 80
      WRITE(6,600) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
20
C SET CONSTANTS FOR THE SR21 BRANCH (EITHER TRANSITION).
      JU=K-0.5
JL=JU-1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
      SIGNU1=1.0
      51GNU2=-1.0
C SET CONSTANTS FOR THE STRENGTH EQUATION.
      SIGNS1=-1.0
       SIGNS2=-1.0
       CONST1=1.0
      1F (FROMPI) CONST2=0.0
GO TO 80
      WRITE(6,600) (NAME(IPRINT,MI),MI=1,2),BRANCH,(FACTRI(M),M=1,5)
30
C SET CONSTANTS FOR THE OP12 BRANCH (EITHER TRANSITION).
       JL=JU+1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
       SIGNU1=-1.0
       SIGNU2=1.0
 C SET CONSTANTS FOR THE STRENGTH EQUATION.
       SIGNS1=-1.0
       SIGNS2=-1.0
       const1=1.0
       CONST2=0.0
       IF (FROMPI) CONST2=1.0
GO TO 80
       WRITE(6,600) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
 40
   SET CONSTANTS FOR THE Q2 AND QP21 BRANCHES (PI TO SIGMA TRANSITION) OR Q2 AND QR12 BRANCHES (SIGMA TO PI TRANSITION).
 C
        DRI BRN= TRUE
        JU=K-0.5
        JL=JU
 C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
        SIGNU1=1.0
        51GNU2=1.0
 C SET CONSTANTS FOR THE STRENGTH EQUATION.
        SIGNS1=-1.0
        SIGNS2=1.0
        5IGNS3=-1.0
        CONST1=-7.0
        CONST2=1.0
        CONST3=1.0
        GO TO 80
        WRITE(6,602) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
  50
  C SET CONSTANTS FOR THE Q1 AND QR12 BRANCHES (PI TO SIGMA TRANSITION) OR Q1 AND QP21 BRANCHES (SIGMA TO PI TRANSITION).
         JL∓JU
  C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
         SIGNU1=-1.0
         SIGNU2=-1.0
  C SET CONSTANTS FOR THE STRENGTH EQUATION.
         SIGNS1=-1.0
SIGNS2=1.0
         SIGNS3=1.0
         CONST1=-7.0
         CONST2=0.0
CONST3=-7.0
         GO TO 80
         WRITE(6,602) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
  60
```

```
SET CONSTANTS FOR THE R2 AND RQ21 BRANCHES (PI TO SIGMA TRANSITION) OR P2 AND PQ12 BRANCHES (SIGMA TO PI TRANSITION).
         JU=K-0.5
        JL=JU+1.0
IF (FROMPI) JL=JU-1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
        SIGNU1=1.0
        SIGNU2=1.0
C SET CONSTANTS FOR THE STRENGTH EQUATION.
        SIGNS1=1.0
SIGNS2= 1.0
        SIGNS3= 1.0
        CONST1=-7.0
        CONST2=0.0
        CONST3=-7.0
GO TO 80
        WRITE(6,602) (NAME(IPRINT,M1),M1=1,2),BRANCH,(FACTRI(M),M=1,5)
    SET CONSTANTS FOR THE P1 AND PO12 BRANCHES (PI TO SIGMA TRANSITION) OR R1 AND RQ21 BRANCHES (SIGMA TO PI TRANSITION).
        JU=K+0.5
        IF (FROMPI) JL=JU+1.0
C SET CONSTANTS FOR THE WAVELENGTH EQUATION.
        SIGNU1=-1.0
        5 I GNU 2=-1.0
C SET CONSTANTS FOR THE STRENGTH FQUATION.
        SIGNS1=1.0
        SIGNS3=-1.0
        CONST1=-7.0
        CONST2=1.0
        CONST3=1.0
   COMPUTE AND DISTRIBUTE THE INTEGRATED INTENSITY DUE TO SPONTANEOUS EMISSION OF ALL SPECIFIED ROTATIONAL LINES FOR THE APPROPRIATE BRANCH.

J IS THE ROTATIONAL QUANTUM NUMBER OF THE PI STATE. SEE REFERENCE BY
C J IS T
80
       BRANCH=0.0
        J=JL
IF (FROMPI) J=JU
        DO 120 M=KMIN+KMAX
C COMPUTE THE WAVELENGTH OF THE LINE CENTER IN ANGSTROMS.
          NUBAR=NUBARO +BVU*((JU+0.5)**2 -CAPLU**2 +SIGNU1/2.0 *SQRT(4.0*
                  (JU+0.5)**2-4.0*YU*CAPLU**2 + 516NU1/2.0 *SGRT(4

-BVL*((JL+0.5)**2 -CAPLL**2 + 516NU2/2.0*

SQRT(4.0*(JL+0.5)**2 -4.0*YL*CAPLL**2 + (YL*CAPLL)**2))
          LAMCL=1.0E+8/NUBAR
           IF THE LINE WAVELENGTH FALLS OUTSIDE THE SPECTRAL RANGE OF
          INTEREST, OMIT IT AND PROCEED TO THE NEXT LINE.
           IF(LAMCL.LT.LAMMIN-RANGE*WIDTHV) GO TO 110
IF(LAMCL.GT.LAMMAX+RANGE*WIDTHV) GO TO 110
C FIND STRENGTH FACTOR FOR SINGLE BRANCHES.
          U=1.0/SQRT(Y**2-4.0*Y+(2.0*J+1.0)**2)
S=((2.0*J+1.0)**2 +SIGNS1*(2.0*J+1.0)*U*(4.0*J**2 +4.0*J +CONST1
+SIGNS2*2.0*Y))/(16.0*(J+CONST2))
          IF (.NOT.DBLBRN) GO TO 90
C FIND STRENGTH FACTOR FOR DOUBLE BRANCHES.
          S=S +(2.0*J+1.0)*((4.0*J**2+4.0*J-1.0) -SIGNS1*U*(8.0*J**3+12.0
             *J**2 -2.0*J +CONST3 +SIGNS3*2.0*Y))/(16.0*J*(J+1.0))
C FIND THE INTEGRATED LINE INTENSITY DUE TO SPONTANEOUS EMISSION.
          E=S*(NUBAR**2*A0E)**2*CINT2*EXP(-1.43879*(CINT1+(BVU*JU*(JU+1.0))/TROT)+2.30259*CINT3)
90
C SET CONSTANTS USED TO DISTRIBUTE THE ROTATIONAL LINE.
          NCENTR=1.5+(LAMCL-LAMMIN)/DELLAM
NSTART=NCENTR-NSPRED
           IF (NSTART •LT• 1) NSTART=1
NEND≈NCENTR +NSPRED
           IF (NEND .GT. NARRAY) NEND=NARRAY
```

```
C DISTRIBUTE THE ROTATIONAL LINE.
                 DO 100 M1=NSTART, NEND
                    COUNT=M1
LAMBDA=LAMMIN+(COUNT-1.0)*DELLAM
CSPRD3=ABS((LAMBDA-LAMCL)/WIDTHV)
ELAM(M1)=ELAM(M1) +E*(CSPRD1*EXP(-2.772*CSPRD3**2)
+CSPRD2/(1.0+4.0*CSPRD3**2) +0.016* CSPRD2*(1.0-
WIDTHL/WIDTHV)*(EXP(-0.4*CSPRD3**2.25) -10.0/
(10.0+CSPRD3**2.25)))
     100
                  BRANCH=BRANCH +E
                  JU=JU+1.0
      110
                   JL=JL+1.0
                  K=K+1.0
                   J=J+1.0
      120
          SET FACTORS IN PREPARATION FOR THE NEXT BRANCH.
               BAND=BAND+BRANCH
                SYSTEM=SYSTEM+BRANCH
                K=KMIN
IPRINT=IPRINT+2
                SWITCH= SWITCH+ 1
      C GO TO THE APPROPRIATE BRANCH.
                GO TO (10,20,30,40,50,60,70,130), SWITCH
      C COMPUTE APPROXIMATE BAND INTENSITY. SEE BATES, PAGE 57.
              QR=TROT/(1.43879*BVU)
                WR-1RUI/11-4-3017-00U)
APPROX=CINT2*CR*(NUBARO**2*A0E)**2*EXP(-1-43879*CINT1+
1 2-30259*CINT3)*2-0
                                    (NAME(IPRINT.M1).M1=1.2).BRANCH.(FACTRI(M).M=1.5).BAND.(FACTRI(M).M=1.5).APPROX.(FACTRI(M).M=1.5)
                WRITE(6,601)
                RETURN
       C FORMATS FOR WRITE STATEMENTS.
                FORMAT(94X,2A6,6HBRANCH ,4X,1PE10.4,5A1)
FORMAT(94X,2A6,8HBRANCHES,2X,1PE10.4,5A1//
       600
                        104X,10HBAND TOTAL,2X,1PE10.4,5A1/
92X,22HAPPROXIMATE BAND TOTAL,2X,1PE10.4,5A1}
                FORMAT(94X,2A6,8HBRANCHES,2X,1PE10.4,5A1)
       602
$IBFTC HF075H
                 SUBROUTINE ATOMIC
       C SUBROUTINE ATOMIC COMPUTES THE ELECTRONIC TRANSITION FOR ATOMS.
                COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEXEU,WEXEU,BVU,DVU,DEGENU,MU,ALTNAT,
WEL,WEXEL,WEYEL,WEZEL,BVU,DVL,
NUSPIN
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CWIDTH/WIDTHU,WIDTHY,RANGE
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
                 REAL ILAM, LAMCL, LAMBDA, LAMMAX, LAMMIN, NAME DATA BLANK/6H /
         C WRITE THE INTEGRATED INTENSITY FOR THE PREVIOUSLY COMPUTED SYSTEM.
                  IF (SYSTEM .NE. 0.0) WRITE(6,600) SYSTEM.(FACTRI(M),M=1,5)
TOTAL=TOTAL+SYSTEM
                 SYSTEM=0.0
                  ATOMCC=READ1
                  TELECT=READ2
Q =READ3
                  NAME=READ6
         C WRITE THE GENERAL HEADING AND DATA FOR ATOMIC TRANSITIONS.
                  WRITE(6,601) READ6, ATOMCC, TELECT, Q
         20
                  READ(5,500)WIDTHG, WIDTHL, DEGENU, TERMU, EINSTN, LAMCL, RANGE, READ6
                      (READ6.EQ.BLANK) GO TO 50
              WRITE THE TOTAL INTEGRATED SPONTANEOUS EMISSION INTENSITY FOR THE
         C WRITE THE T
C PRIOR ATOM.
```

```
WRITE(6,602) NAME, SYSTEM, (FACTRI(M), M=1.5)
         NAME=READ6
SYSTEM=0.0
         IF(TERMU .EQ. 0.0 .AND. DEGENU .NE. 0.0) GO TO 40 READ1=WIDTHG
         READ2=WIDTHL
         READ3=DEGENU
         READ4=TERMU
READ5=EINSTN
         RETURN
         ATOMCC=WIDTHG
TELECT= WIDTHL
 40
         Q=DEGENU
         GO TO 20
 C FIND THE INTENSITY FACTOR, IF NECESSARY.
         CINT1= TERMU/TELECT
         IFACTR=0.62486*CINT1
IF(IFACTR .LT. 30) GO TO 90
         CINT4= IFACTR
         IF(CINT4 .LT. CINT3) GO TO 90
         FACTRI(1)=OUTPUT(12)
M=IFACTR/1000
         DO 60 M1=2,5
FACTRI(M1)=OUTPUT(M+1)
           IFACTR=IFACTR-M*10**(5-M1)
M=IFACTR/10**(4-M1)
    IF THIS IS NOT THE FIRST INTENSITY FACTOR, ADJUST THE ELAM ARRAY.
         IF(CINT3 •EQ• 0•0) GO TO 80
CINT5= CINT4-CINT3
        DO 70 M=1,NARRAY
ELAM(M)=ELAM(M)*EXP(2.30259*CINT5)
 70
         SYSTEM= SYSTEM*EXP(2.30259*CINT5)
        TOTAL= TOTAL*EXP(2.30259*CINT5)
CINT3= CINT4
 80
    RANGE IS THE DISTANCE FROM THE LINE CENTER, IN LINEWIDTHS, BEYOND WHICH THE
 C LINE INTENSITY IS CONSIDERED ZERO.
 90
         IF (RANGE .NE. 0.0) GO TO 95
         IF (WIDTHL .EQ. 0.0) RANGE=3.0
C FIND THE VOIGT LINE WIDTH AT HALF-HEIGHT.
        WIDTHV=WIDTHL/2.0+SQRT(WIDTHL**2/4.0+WIDTHG**2)
IF (WIDTHV .NE. 0.0) GO TO 100
WIDTHV=10.0*DELLAM
         WIDTHG=WIDTHV
         WRITE(6,701)
    FIND THE NUMBER OF ENTRIES IN THE INTENSITY ARRAY, FROM THE LINE CENTER, AT WHICH EACH LINE IS ASSUMED TO HAVE A CONTRIBUTION.
       NSPRED=1.1 +RANGE*WIDTHV/DELLAM
C SET CONSTANTS WHICH DETERMINE THE LINE SHAPE.
        CSPRD2=WIDTHL/WIDTHV
        CSPRD3=(1.065+0.447*CSPRD2+0.058*CSPRD2**2)*WIDTHV*1.0E-4
CSPRD1=(1.0-CSPRD2)/CSPRD3
        CSPRD2=CSPRD2/CSPRD3
C IF THE LINE WAVELENGTH FALLS OUTSIDE THE SPECTRAL RANGE OF
C INTEREST, OMIT IT AND PROCEED TO THE NEXT LINE.
        IF (LAMCL . LT . LAMMIN-RANGE * WIDTHV) GO TO 120
        IF (LAMCL.GT.LAMMAX+RANGE*WIDTHV) GO TO 120
C FIND THE INTEGRATED LINE INTENSITY DUE TO SPONTANEOUS EMISSION.
          E=1.580E-16*ATOMCC*DEGENU*EINSTN*EXP(-1.43879*TERMU/TELECT
              +2.30259*CINT3)/(Q*LAMCL)
C SET CONSTANTS USED TO DISTRIBUTE THE ATOMIC LINE.
        NCENTR=1.5+(LAMCL-LAMMIN)/DELLAM
        NSTART=NCENTR-NSPRED
        IF (NSTART •LT• 1) NSTART=1
NEND=NCENTR +NSPRED
        IF (NEND .GT. NARRAY) NEND=NARRAY
C DISTRIBUTE THE ATOMIC LINE.
        DO 110 MI=NSTART NEND
          ) 110 Ml=NSIAKI; THE COUNT=M1
COUNT=M1
LAMBDA=LAMMIN +(COUNT-1.0)*DELLAM
CSPRD3=ABS((LAMBDA-LAMCL)/WIDTHV)
ELAM(M1)=ELAM(M1) +E*(CSPRD1*EXP(-2.772*CSPRD3**2)
+CSPRD2/(1.0+4.0*CSPRD3**2) +0.016* CSPRD2*(1.0-WIDTHL/WIDTHV)*(EXP(-0.4*CSPRD3**2.25) -10.0/
110
      2
      3
```

```
SYSTEM=SYSTEM+E
            TOTAL = TOTAL+E
C PRINT ATOMIC LINE INFORMATION.
           IDEGEN= DEGENU+ 0.1
IRANGE= RANGE+ 0.1
WRITE(6,603) LAMCL,IDEGEN,TERMU,EINSTN,WIDTHG,WIDTHL,WIDTHV,
IRANGE,E,(FACTRI(M),M=1,5)
C LINE WAVELENGTH FALLS OUTSIDE SPECTRAL RANGE OF INTEREST.
            WRITE(6,700) LAMCL
120
            GO TO 30
C FORMAT FOR READ STATEMENT.
           FORMAT(6E10.0.E6.0.A6)
 C FORMATS FOR WRITE STATEMENTS.
            FORMAT(//103X:12HSYSTEM TOTAL:1X:1PE10:4:5A1)
FORMAT(//52X:25HATOMIC LINE SPECTRUM FOR :A6//
1 35X:9HNUMBER OF/
1 35X:5HATOMS:20X:
1 10HELECTRONIC:16X:9HPARTITION/
2 35X:6HPER CC:19X:11HTEMPERATURE:15X:8HFUNCTION//
35X:6HPER CC:19X:11HTEMPERATURE:15X:8HFUNCTION//
3 35X:10HUAVELENGTH:6X:10HELECTRONIC:6X:10HELECTRONIC:6X;
4 9X:10HWAVELENGTH:6X:10HELECTRONIC:6X:10HELECTRONIC:6X;
5 8HEINSTEIN:9X:11HATOMIC LINE:16X:5HRANGE:10X:10HINTEGRATED/
6 9X:12HIN ANGSTROMS:4X:10HDEGENERACY:6X:11HTERM ENERGY;
5X:7HA COEFF:10X:20HWIDTH AT HALF-HEIGHT:7X:7HIN LINE;
8 8X:9HINTENSITY/
 600
 601
             5X,14,11X,1PE10.4,5A1)
  C FORMATS FOR ERROR STATEMENTS.
              FORMAT( 10X,8HLINE AT,1PE10.4,43H ANGSTROMS FALLS OUTSIDE THE PLOT
   700
            FORMAT(/8X+117HLINE WIDTHS WERE NOT INPUT FOR NEXT LINE. PROGRAM I 1MPOSED A GAUSSIAN PROFILE WITH WIDTH AT HALF-HEIGHT * 10*INTERVAL.
                               ALPHA
   SORIGIN
   SIBFTC HF075J
               SUBROUTINE PRINT(NEWCAS)
         SUBROUTINE PRINT TABULATES SPECTRAL INTENSITY VS WAVELENGTH ON THE
         WRITTEN OUTPUT.
         IN THIS SUBROUTINE, THE ILAM ARRAY, WHICH NOW CONTAINS WAVELENGTHS, WILL BE NAMED LAMBDA.
               COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/LAMBDA( 9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBADD1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBADD2/WEU,WEZEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
NUSPIN
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CWIDTH/WIDTHL,WIDTHY,RANGE
COMMON/CTRAN/PARTCC,NUBARO,O,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
                REAL LAMBDA, LAMMAX, LAMMIN
                LOGICAL NEWCAS
    C WRITE GENERAL HEADING AND READ A CARD SPECIFYING WHETHER THE INTENSITIES ARE TO BE PRINTED AS LINEAR OR LOG VALUES.
                 WRITE (6,600)
                C A LOG OUTPUT IS DESIRED.
           WRITE HEADING FOR THE LOG OUTPUT, ENSURE THAT THE LOG OF ZERO WILL NOT BE TAKEN, AND APPLY THE INTENSITY FACTOR.
                  WRITE(6,601
                 DO 10 M=1,NARRAY

IF (ELAM(M) .EQ. 0.0) ELAM(M)=1.0E-38

ELAM(M)=ALOGIO(ELAM(M)) - CINT3
```

10

```
NWRITE=NARRAY/4
                         N1=NWRITE+1
N2=2*NWRITE+1
                          N3=3*NWRITE+1
           C PRINT THE LAMBDA VERSUS LOG(ELAM) VALUES IN FOUR COLUMNS ACROSS THE PAGE.
                         DO 20 M=1.NWRITE
                              WRITE(6,602) LAMBDA(M), ELAM(M), LAMBDA(N1), ELAM(N1), LAMBDA(N2), ELAM(N2), LAMBDA(N3), ELAM(N3)
                              N1=N1+1
                              N2 = N2 + 1
           20
                              N3=N3+1
           C IS THE PRINTING COMPLETED. IF SO, RETURN TO THE MAIN PROGRAM.
                          IF (4*NWRITE.EQ.NARRAY) RETURN
                          N1=4*NWRITE+1
NWRITE=NARRAY-4*NWRITE
           C WRITE THE REMAINING VALUES AND RETURN TO THE MAIN PROGRAM.
                          DO 30 M=1.NWRITE
                              WRITE(6,603) LAMBDA(N1), ELAM(N1)
                              N1=N1+1
           30
                          RETURN
           C A LINEAR OUTPUT IS DESIRED.
           C WRITE THE HEADING FOR THE LINEAR OUTPUT.
                          WRITE(6.605)
           50
                          NWRITE=NARRAY/4
                          N1=NWRITE+1
                         N2=2*NWRITE+1
N3=3*NWRITE+1
           C PRINT THE LAMBDA VERSUS ELAM VALUES IN FOUR COLUMNS ACROSS THE PAGE.
                          DO 60 M=1.NWRITE
                              WRITE(6,606) LAMBDA(M), ELAM(M), (FACTRI(M1), M1=1,5), LAMBDA(N1), ELAM(N1), (FACTRI(M1), M1=1,5), LAMBDA(N2), ELAM(N2), (FACTRI(M1), M1=1,5), LAMBDA(N3), ELAM(N3), E
                                                               (FACTRI(M1),M1=1,5)
                               N1=N1+1
                               N2=N2+1
           60
                               N3=N3+1
           C IS THE PRINTING COMPLETED. IF SO, RETURN TO THE MAIN PROGRAM.
                           IF (4*NWRITE.EQ.NARRAY) RETURN
                          N1=4*NWRITE+1
                          NWRITE=NARRAY-4*NWRITE
           C WRITE THE REMAINING VALUES AND RETURN TO THE MAIN PROGRAM.
                          DO 70 M=1.NWRITE
                               WRITE(6,607) LAMBDA(N1), ELAM(N1), (FACTRI(M1), M1=1,5)
                               N1=N1+1
           70
                          RETURN
           C FORMAT FOR READ STATEMENT.
           500 FORMAT(66X,A6)
           C FORMATS FOR WRITE STATEMENTS.
                          FORMAT(//49X,34HTABULATION OF COMPUTED SPECTRUM//)
FORMAT(4(3X,29HWAVELENGTH LOG 10(1NTENSITY,1X)/
4(3X,29HANGSTROMS W/CM2-MICRON-SR),1X)//)
           600
           601
                         602
           603
            605
           606
                         FORMAT(4(4X,0PF8.2,4X,1PE11.4,5A1))
FORMAT(100X,F8.2,4X,1PE11.4,5A1)
.....
           $ORIGIN
                                              ALPHA
           $IBFTC HF075K
                          SUBROUTINE INTRVL(NINTRV)
           C SUBROUTINE INTRVL COMPUTES INTEGRATED INTENSITIES BETWEEN SPECIFIED C WAVELENGTHS.
                  IN THIS SUBROUTINE, THE ILAM ARRAY, WHICH NOW CONTAINS WAVELENGTHS, WILL
                  BE NAMED LAMBDA.
                         COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/LAMBDA( 9000),ELAM( 9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROU,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
1 WEL,WEXEL,WEYEL,WEZEL,BVL,DVL, NUSPIN
```

COMMON/CTEMP/TELECT, TVIB, TROT COMMON/CWIDTH/WIDTHL.WIDTHY,RANGE
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)

REAL LAM1, LAM2, LAMMAX, LAMMIN, LAMBDA,

C WRITE GENERAL HEADING AND READ WAVELENGTH LIMITS FOR INTEGRATION C INTERVAL•

WRITE(6,600)

READ(5,500) LAM1, LAM2 10

C INITIALIZE INTEGRATED INTENSITY FOR THIS INTERVAL.

TOTAL I = 0 . 0

C IF THE UPPER WAVELENGTH LIMIT WAS INPUT FIRST, WRITE AN ERROR C MESSAGE AND OMIT THIS INTERVAL. MESSAGE AND OMIT THIS INTERVAL.

IF (LAM2 .LE. LAM1) GO TO 70

C IF WAVELENGTH LIMITS ARE OUTSIDE SPECTRAL RANGE CONSIDERED, SET C INTEGRATION LIMITS TO APPROPRIATE END WAVELENGTH.

IF (LAM1 •LT• LAMMIN) LAM1=LAMMIN
IF (LAM2 •GT• LAMMAX) LAM2=LAMMAX

C FIND INDICES IN INTENSITY ARRAY TO BE INCLUDED IN INTEGRATION.

NSTART= 1.0 +(LAM1-LAMMIN)/DELLAM NEND= 1.0 +(LAM2-LAMMIN)/DELLAM

C TEST INTERVAL LIMITS.

IF (NSTART .LT. NEND) GO TO 20

C THE INTERVAL IS BOUNDED BY CONSECUTIVE ENTRIES IN THE LAMBDA ARRAY.

SLOPE=(ELAM(NSTART+1)-ELAM(NSTART))/DELLAM
TOTALI=((SLOPE*(LAM1-LAMBDA(NSTART))+ELAM(NSTART))+(SLOPE*(LAM2-LAMBDA(NSTART))+ELAM(NSTART)))*(LAM2-LAM1)/2•0E+4 GO TO 50

- C IS THERE A RIGHT-HAND INCREMENT.
- IF (NEND.EQ.NARRAY) GO TO 30
- C COMPUTE INTEGRATED INTENSITY FROM RIGHT-HAND INCREMENTAL AREA.

ELAM1=(ELAM(NEND+1)-ELAM(NEND))*(LAM2-LAMBDA(NEND))/
1 DELLAM+ELAM(NEND)
TOTALI=(ELAM1+ELAM(NEND))*(LAM2-LAMBDA(NEND))/2•0E+4

- C COMPUTE INTEGRATED INTENSITY FROM LEFT-HAND INCREMENTAL AREA.
- ELAM1=(ELAM(NSTART)-ELAM(NSTART+1))*(LAMBDA(NSTART+1)-LAM1)/ 30 DELLAM+ELAM(NSTART+1)
 TOTALI=TOTALI+(ELAM1+ELAM(NSTART+1))*(LAMBDA(NSTART+1)-LAM1)/2•E+4
- C DO INTERVAL LIMITS BOUND A SINGLE ENTRY IN THE LAMBDA ARRAY.

IF (NEND .EQ. NSTART+1) GO TO 50

C COMPUTE INTEGRATED INTENSITY FROM CENTRAL INCREMENTAL AREAS.

NSTART=NSTART+2 DO 40 M=NSTART, NEND

TOTALI=TOTALI+(ELAM(M)+ELAM(M-1))*DELLAM/2.0E+4

- C WRITE WAVELENGTH LIMITS AND RESULTING VALUE OF INTEGRATION.
- WRITE(6,601) LAM1, LAM2, TOTALI, (FACTRI(M), M=1,5)
- IF INTEGRATION HAS BEEN COMPLETED FOR ALL SPECIFIED INTERVALS, RETURN TO MAIN PROGRAM.
- ċ

NINTRV=NINTRV-1 60 IF (NINTRV.NE.O) GO TO 10

- THERE IS AN ERROR IN THE LIMITS FOR THE INTEGRATION INTERVAL.
- WRITE(6,700) LAM1, LAM2 GO T.O 60
- C FORMAT FOR READ STATEMENT.
- FORMAT(2E10.0) 500
- FORMATS FOR WRITE STATEMENTS.
- FORMAT(///50x,31HINTEGRATED SPECTRAL INTENSITIES//
 1 35x,16HLOWER WAVELENGTH 10x,16HUPPER WAVELENGTH,10x,10HINTEGR
 2ATED/ 35x,5HLIMIT21x,5HLIMIT,21x,9HINTENSITY/
 3 35x,9HANGSTROMS17x,9HANGSTROMS,17x,8HW/CM2-SR//)
- FORMAT(35X, 1PE10.4, 16X, E10.4, 16X, E10.4, 5A1) 601

```
C FORMAT FOR ERROR STATEMENT.
        FORMAT(//10x+16HTHE LOWER LIMIT +1PE11+4+33H IS GREATER THAN THE U
1PPER LIMIT +E11+4+36H THUS INTEGRATION WAS NOT PERFORMED. )
              ______
SIBETC HEO75L
          SUBROUTINE SLIT(NSLIT)
C SUBROUTINE SLIT COMPUTES THE OUTPUT SIGNAL GIVEN BY A SPECIFIED C INSTRUMENT SENSITIVITY.
   IN THIS SUBROUTINE, THE ILAM ARRAY, WHICH NOW CONTAINS WAVELENGTHS, WILL WILL BE NAMED LAMBDA.
         COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CARRAY/LAMBDA(9000).ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4.READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
LEMANORY, WEL,WEXEL,WEYEL,BVE,BVL,DVL,
NUSPIN
COMMON/CTEMP/TELECT,TV1B,TROT
COMMON/CTRAN/PARTCC,NUBARO,0,ADE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12)
           DIMENSION LAM(100), RSLIT(100), LAMR(100), RLAM(100), LAMS(500),
         ISIGLAM(500), LAMSAV(100)
REAL LAM1, LAM2, LAMS, LAMBDA, LAMR, LAMS, LAMCL, LAMS1, LAMS2, LAMSAV
INTEGER BLOCK, FACTRI, SCAN, FLAG
DATA SLITI/4HSLIT/
C WRITE THE GENERAL HEADING AND INITIALIZE THE COUNTER SPECIFYING HOW MANY SLIT CASES HAVE BEEN COMPLETED.
           WRITE (6,600)
C ARE ALL THE DESIRED SLIT CASES COMPLETED. IF SO, RETURN TO THE MAIN PROGRAM.
           IF (MSLIT. EQ. NSLIT) RETURN
C THIS IS THE STARTING POINT FOR THE CONSIDERATION OF EACH NEW SLIT CASE.
C IF AN ERROR WAS DETECTED IN THE PRIOR CASE, READ THROUGH THE REMAINING CARDS.
           READ(5,505) SEARCH
           IF(SEARCH+NE+SLIT1) GO TO 6
           MSLIT=MSLIT+1
C INITIALIZE THE INSTRUMENT OUTPUT SIGNAL.
           WRITE (6,616)
    READ THE CARD THAT SPECIFIES THE TYPE OF INSTRUMENT SENSITIVITY TO BE
     NPOINT= NUMBER OF ARRAY ELEMENTS SPECIFYING SLIT FUNCTION. IF
NPOINT=0. THE SLIT FUNCTION IS SPECIFIED BY A GAUSSIAN CURVE.

SCAN= 1 SPECIFIES A SCANNING SLIT CASE. SCAN= 0 SPECIFIES A FIXED
SLIT CASE.
     SCAN= 1 SPECIFIES A SCANNING SLIT CASE. SCAN= 0 SPECIFIES A FIXED SLIT CASE.

STEP= DISTANCE IN ANGSTROMS THAT THE SLIT IS MOVED FOR EACH STEP OF THE SCAN.

LAMS1= STARTING WAVELENGTH OF THE SCAN FOR A SCANNING SLIT. LOCATION OF THE SLIT CENTER LINE FOR A FIXED LINEAR SLIT.

LAMS2= STOPPING WAVELENGTH OF THE SCAN FOR A SCANNING SLIT.

NRLAMS= NUMBER OF ARRAY ELEMENTS IN THE SPECTRAL CALIBRATION ARRAY.
           READ(5,500) NPOINT, SCAN, STEP, LAMS1, LAMS2, NRLAMS
 C WRITE HEADINGS FOR THE APPROPRIATE CASE.
           IF(SCAN.NE.1) WRITE(6,601) MSLIT
IF(SCAN.EQ.1) WRITE(6,602) MSLIT,LAMS1,LAMS2,STEP
    WAS THE UPPER SCAN LIMIT INPUT LESS THAN OR EQUAL TO THE LOWER LIMIT. IF SO, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
            IF(SCAN.EQ.1.AND.LAMS2.LE.LAMS1) GO TO 272
 C \, IS THE SLIT FUNCTION SPECIFIED BY A GAUSSIAN CURVE OR BY A SET C \, OF LINEAR SEGMENTS.
           IF(NPOINT+EQ+0) GO TO 25
 C THE SLIT FUNCTION IS SPECIFIED BY LINEAR SEGMENTS. READ IN.
 C PRINT, AND TEST THE DEFINING VALUES OF THE SLIT FUNCTION.
           READ(5,502) (LAM(M),RSLIT(M),M=1,NPOINT) WRITE(6,603)
```

WRITE(6,604) (LAM(M), RSLIT(M), M=1, NPOINT)

```
DO THE WAVELENGTHS SPECIFYING THE SLIT FUNCTION INCREASE MONOTONICALLY. IF NOT, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
        MI =NPOINT-1
        DO 10 M=1.M1
           IF(LAM(M).GE.LAM(M+1)) GO TO 265
           CONTINUE
10
C FIND THE PEAK OF THE SLIT FUNCTION AND COMPUTE THE EFFECTIVE WIDTH OF THE SLIT FUNCTION SPECIFIED BY LINEAR SEGMENTS.
        WIDTH=0.0
         RMAX=0.0
        DO 15 M=1,NPOINT

IF(RSLIT(M).GT.RMAX) RMAX=RSLIT(M)
15
         MI = NPOINT-1
            WIDTH=WIDTH+0.5*(RSLIT(M+1)+RSLIT(M))*(LAM(M+1)-LAM(M))/RMAX
20
C READ THE DATA DENOTING THE CENTER OF THE SLIT FUNCTION AND THE CALIBRATION C FACTOR USED TO SPECIFY THE INSTRUMENT SENSITIVITY IF THIS IS A FIXED C WAVELENGTH RADIOMETER.
         READ(5,503) LAMCL, RLAMCL
C IS THE SPECIFIED CENTER OF THE SLIT FUNCTION COMPATIBLE WITH THE SLIT C FUNCTION DATA. IF NOT, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
         IF(LAMCL.LT.LAM(1).OR.LAMCL.GT.LAM(NPOINT)) GO TO 266
C THE SLIT FUNCTION IS SPECIFIED BY A GAUSSIAN FUNCTION. PRINT THE C HEADING AND READ THE DEFINING DATA.
         WRITE(6,607)
          READ(5,501) LAMCL, RLAMCL, WIDTH
 C IS THIS A SPECTROGRAPH OR SCANNING SPECTROMETER CASE.
         IF(SCAN.EQ.1) GO TO 45
 C THIS IS A FIXED WAVELENGTH RADIOMETER.
          IF(NPOINT.EQ.O) GO TO 40
 C PRINT ADDITIONAL LINEAR SLIT DATA.
          WRITE(6,605) LAMCL, LAMS1, RLAMCL, WIDTH
 C POSITION THE SLIT AT THE SPECIFIED WAVELENGTH.
          SHIFT=LAMS1-LAMCL
          DO 35 M=1,NPOINT
            LAM(M)=LAM(M)+SHIFT
 35
 C IF PART OR ALL OF THE INSTRUMENT SENSITIVITY LIES OUTSIDE THE COMPUTED SPECTRUM, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
           IF(LAM(1) .LT. LAMBDA(1)) GO TO 260
IF(LAM(NPOINT) .GT. LAMBDA(NARRAY)) GO TO 260
          GO TO 125
 C PRINT THE GAUSSIAN INPUT DATA.
          WRITE(6,608) LAMCL, RLAMCL, WIDTH
TEST1=LAMBDA(1)-(LAMCL-3.0*WIDTH)
  40
           TEST2=LAMBDA(NARRAY)-(LAMCL+3.0*WIDTH)
IF(TEST2-LT.0.0) GO TO 260
           GO TO 155
  C THIS IS A SPECTROGRAPH OR A SCANNING SPECTROMETER CASE. POSITION THE C SLIT AT THE START OF THE SCAN AND TEST THE SPECIFIED END POINTS OF THE DESIRED SPECTRAL COVERAGE.
           IF (NPOINT . EQ.O) GO TO 70
  45
      THE SLIT FUNCTION IS SPECIFIED BY A LINEAR SLIT.
      PRINT ADDITIONAL SLIT DATA.
           WRITE(6,606)
            WRITE(6,604) LAMCL, WIDTH
   C POSITION THE LINEAR SLIT AT THE SPECIFIED STARTING WAVELENGTH FOR THE SCAN.
           SHIFT=LAMS1-LAMCL
            DO 55 M=1.NPOINT
              LAM(M) = LAM(M) + SHIFT)
   55
      TEST THE INPUT DATA FOR THE LINEAR SCANNING SLIT.

IF PART OR ALL OF THE INSTRUMENT SENSITIVITY WILL FALL OUTSIDE THE
COMPUTED SPECTRUM, MAKE THE APPROPRIATE ADJUSTMENT AND WRITE A MESSAGE
INDICATING THIS WAS DONE.
            IF(TEST1.LE.0.0) GO TO 65
LAMS1=LAMS1+TEST1
```

DO 60 M=1. NPOINT

```
LAM(M) = LAM(M) + TEST1
       TEST2=LAMBDA(NARRAY)-(LAMS2+LAM(NPOINT)-LAMS1)
65
C PRINT THE GAUSSIAN SLIT DATA.
70
       WRITE(6.609) WIDTH
   TEST THE INPUT DATA FOR THE GAUSSIAN SCANNING SLIT.

IF PART OR ALL OF THE INSTRUMENT SENSITIVITY WILL FALL OUTSIDE THE
COMPUTED SPECTRUM, MAKE THE APPROPRIATE ADJUSTMENT AND WRITE A MESSAGE
   INDICATING THIS WAS DONE.
       TEST1=LAMBDA(1)-(LAMS1-3.0*WIDTH)
       IF(TEST1.LE.0.0) GO TO 75
LAMS1=LAMS1+TEST1
75
       TEST2=LAMBDA(NARRAY)-(LAMS2+3.0*WIDTH)
77
       IF(TEST2.LT.0.0) LAMS2=LAMS2+TEST2
IF(TEST1.GT.0.0.0.OR.TEST2.LT.0.0) WRITE(6,702) LAMS1,LAMS2,STEP
C POSITION THE SLIT AT THE SPECIFIED STARTING WAVELENGTH OF THE SCAN.
       LAMCL≃LAMS1
C READ AND PRINT DATA SPECIFYING SPECTRAL CALIBRATION OF SCANNING SLIT.
        READ(5,502)(LAMR(M),RLAM(M),M=1,NRLAMS)
        WRITE(6,610)
        WRITE(6,604)(LAMR(M), RLAM(M),M=1,NRLAMS)
  IF THE WAVELENGTH VALUES OF THE SPECTRAL CALIBRATION DO NOT INCREASE MONOTONICALLY, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
       DO 90 M=1;M2
IF(LAMR(M).GE.LAMR(M+1)) GO TO 270
90
          CONTINUE
C IF THE END POINTS OF THE SPECTRAL CALIBRATION DO NOT BOUND THE SCANNING RANGE, WRITE AN ERROR MESSAGE AND OMIT THIS SLIT.
        IF(LAMS1.LT.LAMR(1)) GO TO 271
        IF(LAMS2.GT.LAMR(NRLAMS)) GO TO 271
C SET THE INITIAL VALUES OF COUNTERS AND WAVELENGTHS FOR THE SCAN.
        NSTGLM=1
        LAMS(1)=LAMS1
       BLOCK=1
FLAG=0
        NSTEP=0
C THIS IS THE STARTING POINT FOR EACH STEP OF THE SCAN.
  LOCATE THE SLIT CENTER WAVELENGTH BETWEEN THE PROPER ELEMENTS IN
   THE SPECTRAL CALIBRATION ARRAY.
        IF(LAMCL.GE.LAMR(NRLAM).AND.LAMCL.LE.LAMR(NRLAM+1)) GO TO 115
        NRLAM= NRLAM+1
        GO TO 95
C \, FIND THE SPECTRAL CALIBRATION RLAMCL AT THE SLIT CENTER FOR THIS C \, STEP OF THE SCAN.
      RLAMCL=RLAM(NRLAM)+(LAMCL-LAMR(NRLAM))*(RLAM(NRLAM+1)-
1RLAM(NRLAM))/(LAMR(NRLAM+1)-LAMR(NRLAM))
IF(NPOINT•EQ•0) GO TO 155
C THE INTEGRATION SCHEME FOR LINEAR SLITS BEGINS HERE.
   SET THE INITIAL INDEX VALUES FOR THE INTEGRATION. N1 AND N2 ARE INDICES IN THE SPECTRAL ARRAY. M1 AND M2 ARE INDICES IN THE
C SLIT FUNCTION ARRAY.
        NSTART=1.1+(LAM(1)-LAMBDA(1))/DELLAM
        N1=NSTART
        N2=N1+1
        M2 = 2
   COMPUTE THE SPECTRAL INTENSITY AT THE LEFT-HAND END POINT OF THE SLIT FUNCTION.
        ELAM1=ELAM(N2) +(LAMBDA(N2)-LAM(1))*(ELAM(N1)-ELAM(N2))/
C IS THE RIGHT-HAND POINT OF THE INTERVAL IN THE SPECTRUM OR SLIT C FUNCTION ARRAY.
135 IF(LAMBDA(N2)+LT+LAM(M2)) GO TO 140
```

```
C THE RIGHT-HAND POINT OF THE INTERVAL IS IN THE SLIT FUNCTION ARRAY.
       1 AM2=1 AM(M2)
       ELAM2#ELAM(N2) +(LAMBDA(N2)-LAM(M2))*(ELAM(N1)-ELAM(N2))/
              DELLAM
       M1=M1+1
       GO TO 145
C THE RIGHT-HAND POINT OF THE INTERVAL IS IN THE SPECTRUM ARRAY.
       RSLIT2=RSLIT(M2)+(LAM(M2)-LAMBDA(N2))*(RSLIT(M1)-RSLIT(M2))/
(LAM(M2)-LAM(M1))
140
       ELAM2=ELAM(N2)
       N2=N2+1
C GENERATE THE LINEAR SLIT INSTRUMENT OUTPUT SIGNAL.
       SIGNAL=SIGNAL +(ELAM1*RSLIT1+ELAM2*RSLIT2)*RLAMCL*
      1(LAM2-LAM1)/2.0E+4
C IS THE INTEGRATION FOR THIS SLIT OR THIS STEP IN THE SCAN COMPLETE.
       IF(LAM(NPOINT)-LAM2.LE.O.1*DELLAM) GO TO 150
C MOVE TO THE NEXT INTERVAL.
C THE LEFT-HAND POINT OF THE NEW INTERVAL IS THE RIGHT-HAND POINT OF THE PRIOR INTERVAL.
        RSLIT1=RSLIT2
       GO TO 135
C DIVIDE BY THE SLIT WIDTH TO YIELD THE INSTRUMENT OUTPUT C AT THIS WAVELENGTH.
       SIGNAL=SIGNAL/(WIDTH*1.0E-04)
GO TO 165
C THE INSTRUMENT SENSITIVITY IS SPECIFIED BY A GAUSSIAN CURVE.
C THE INTEGRATION SCHEME FOR GAUSSIAN SLITS BEGINS HERE.
C FIND INDICES IN THE SPECTRUM ARRAY TO BE INCLUDED IN THE INTEGRATION.
        NSTART=1+1+(LAMCL-3.0*WIDTH-LAMBDA(1))/DELLAM
NEND=6.0*WIDTH/DELLAM
        NEND=NSTART+NEND+1
C SET THE INITIAL INDEX VALUES FOR THE INTEGRATION.
        N1=NSTART
        N2 = N1 + 1
 C COMPUTE THE PRODUCT OF SPECTRAL INTENSITY AND INSTRUMENT SENSITIVITY C AT THE LEFT-HAND SIDE OF THE INTEGRATION ELEMENT.
        ELAM1=ELAM(N1)*RLAMCL*EXP(-2.772*((LAMBDA(N1)-LAMCL)/WIDTH)**2)
 C COMPUTE THE PRODUCT OF SPECTRAL INTENSITY AND INSTRUMENT SENSITIVITY AT C THE RIGHT-HAND SIDE OF THE INTEGRATION ELEMENT.
 160 ELAM2=ELAM(N2)*RLAMCL*EXP(-2.772*((LAMBDA(N2)-LAMCL)/WIDTH)**2)
 C GENERATE THE GAUSSIAN SLIT INSTRUMENT OUTPUT SIGNAL.
         SIGNAL=SIGNAL +(ELAM1+ELAM2)*DELLAM/2.0E+04
         N1 = N1 + 1
         N2=N2+1
 C IS THE INTEGRATION FOR THIS SLIT OR THIS STEP IN THE SCAN COMPLETE.
         IF (N2 .GT. NEND) GO TO 161
         FLAM1=ELAM2
         GO TO 160
  C DIVIDE BY THE APPROPRIATE SLIT WIDTH TO YIELD THE INSTRUMENT OUTPUT
 C AT THIS WAVELENGTH.
       SIGNAL=SIGNAL/(WIDTH*1.06439E-04)
 C IS THIS A SCANNING SLIT CASE.
        IF(SCAN .NE. 1) GO TO 255
  C THIS IS A SCANNING SLIT CASE.
         SIGLAM(NSIGLM) = SIGNAL
  C IS THE SCAN COMPLETED.
         IF(FLAG.EQ.1) GO TO 250
  C IS A DATA BLOCK CONTAINING 500 ENTRIES FROM THIS SCAN COMPLETED. IF SO, GO
C TO THE PORTION OF THE SUBROUTINE WHERE THE DATA BLOCK WILL BE PRINTED ON
C THE OUTPUT SHEET.
```

IF (NSIGLM.EQ.500) GO TO 250

```
C IS THE NEXT STEP THE LAST FOR THIS SCAN.
```

TEST=LAMS2-LAMS(NSIGLM) IF(TEST-LE-STEP) GO TO 200

C SET THE COUNTERS AND WAVELENGTHS FOR THE NEXT STEP OF THE SCAN.

NSTEP=NSTEP+1 COUNT=NSTEP LAMCL=LAMS1+COUNT*STEP

C IF A DATA BLOCK WAS JUST PRINTED (NSIGLM=500), READJUST THE COUNTER NSIGLM-

IF(NSIGLM.NE.500) GO TO 185 NSIGLM≃1 LAMS(1)=LAMS1+COUNT*STEP GO TO 190

NSIGLM=NSIGLM+1 185 LAMS(NSIGLM) = LAMS1+COUNT*STEP

IF(NPOINT.EQ.O) GO TO 225 190

C SAVE THE WAVELENGTHS OF THE SLIT FUNCTION AT THE FIRST SCANNING LOCATION.

IF(NSTEP.GT.1) GO TO 196 DO 195 M=1.NPOINT LAMSAV(M)=LAM(M) 195 196 DO 197 M=1,NPOINT LAM(M)=LAMSAV(M)+COUNT*STEP 197 GO TO 225

C SET UP THE LAST STEP OF THE SCAN.

FLAG=1 200 LAMCL=LAMS2

C IF A DATA BLOCK WAS JUST PRINTED. READJUST THE COUNTER NSIGLM.

IF(NSIGLM.NE.500) GO TO 205 NSIGLM=1 LAMS(1)=LAMS2 GO TO 210

NSIGLM=NSIGLM+1 205 LAMS(NSIGLM)=LAMS2

IF(NPOINT.EQ.O) GO TO 225 DO 215 M=1, NPOINT LAM(M)=LAM(M)+TEST

C RE-INITIALIZE SIGNAL FOR THE NEXT STEP OF THE SCAN.

225 SIGNAL=0+0

GO TO 95

C IF THIS IS THE FIRST DATA BLOCK, PRINT THE SCAN DATA HEADING ON THE C OUTPUT SHEET.

IF(BLOCK.EQ.1) WRITE(6.612)

C PRINT THE SCAN DATA ON THE OUTPUT SHEET.

WRITE(6,613) (LAMS(M),SIGLAM(M),(FACTRI(M1),M1=1,5), M=1,NSIGLM)

C IS THIS SCAN CASE COMPLETED.

TELELAG. FQ. 11 GO TO 5

C THE SCAN CASE IS NOT COMPLETED. CONTINUE THE SCAN.

BLOCK=BLOCK+1 GO TO 180

C WRITE THE FIXED WAVELENGTH RADIOMETER DATA ON THE OUTPUT SHEET.

WRITE(6,615) SIGNAL, (FACTRI(M), M=1,5)

C THERE IS AN ERROR IN THE SLIT INPUT DATA. WRITE AN ERROR MESSAGE C AND CONTINUE.

C ALL OR PART OF THE FIXED SLIT LIES OUTSIDE THE COMPUTED SPECTRUM.

WRITE(6,700) 260 GO TO 5

C WAVELENGTHS SPECIFYING THE LINEAR SLIT FUNCTION DO NOT INCREASE C MONOTONICALLY.

WRITE(6,701) GO TO 5

SPECIFIED CENTER OF THE SLIT FUNCTION LIES OUTSIDE THE SPECIFIED SLIT FUNCTION.

```
WRITE(6,606)
266
             WRITE(6,604) LAMCL, WIDTH WRITE(6,704)
              GO TO 5
C WAVELENGTHS OF SPECTRAL CALIBRATION DO NOT INCREASE MONOTONICALLY.
             WRITE(6,701)
              GO TO 5
     WAVELENGTHS SPECIFYING THE SPECTRAL CALIBRATION DO NOT BOUND THE DESIRED SCAN RANGE.
             WRITE(6,703)
C UPPER SCAN LIMIT WAS INPUT LESS THAN OR EQUAL TO THE LOWER LIMIT.
             WRITE(6,705)
272
              GO TO 5
C FORMATS FOR READ STATEMENTS.
              FORMAT(15,4X,11,4X,3E10.0,1X,15)
500
501
              FORMAT(3E10.0)
502
              FORMAT(6E10.0)
               FORMAT(2E10.0
 503
504
              FORMAT(2F13.7
505
              FORMAT(1A4)
C FORMATS FOR WRITE STATEMENTS.
                              34X.63HDETECTOR OUTPUT SIGNAL GIVEN BY A SPECIFIED INSTRUME
            2NT RESPONSE///)
FORMAT(49X, 27HFIXED WAVELENGTH RADIOMETER, 2X, 13//)
601
            FORMAT(42X. 37HSPECTROGRAPH OR SCANNING SPECTROMETER.2X.13//
118X.20HSPECTRAL RANGE FROM .F8.2.4H TO .F8.2.23H ANGSTROMS COMPUTE
            2D AT *F6.3:19H ANGSTROM INTERVALS//)
FORMAT(42X:42HSLIT FUNCTION SPECIFIED BY LINEAR SEGMENTS//
603
           FORMATI(42X,42HSLII FUNCTION SPECIFIED BY LINEAR SEGMENTS//

50X,10HWAVELENGTH,1IX,4HSLIT/

50X,9HANGSTROMS ,12X,8HFUNCTION//)

FORMATI(51X,0PF9.3,10X.1PEII.4)

FORMATI(7/35X,9HCENTER OF,9X,11HLOCATION OF,21X, 8HCOMPUTED/

135X,13HSLIT FUNCTION,5X,11HSLIT CENTER,5X,11HCALIBRATION,5X,
604
            210HSLIT WIDTH/
335X, 9HANGSTROMS,9X,9HANGSTROMS,7X,6HFACTOR,10X,9HANGSTROMS//
           335x, 9HANGSTROMS,9x,9HANGSTROMS,7X,6HFACTOR,10x,9HANGSTROMS//
435x,F9.3,9x,F9.3,6x,1PE11.4,4x,1PE11.4//)
FORMAT(//50x,9HCANTER OF,12x,8HCOMPUTED/

50x,13HSLIT FUNCTION,8x,10HSLIT WIDTH/
50x,9HANGSTROMS,12x,9HANGSTROMS//)
FORMAT(41x,45HSLIT FUNCTION SPECIFIED BY A GAUSSIAN PROFILE//)
FORMAT(31x,18HWAVELENGTH AT PEAK,8x,4HPEAK,14x,18HWIDTH AT HALF-P
1EAK/31x,22HSENSITIVITY, ANGSTROMS,4x,11HSENSITIVITY,7x,
222HSENSITIVITY, ANGSTROMS//
339x,F9.3,11x,1PE11.4,12x,1PE11.4//)
FORMAT(50x,13HPEAK VALUE OF,5x,14HWIDTH AT HALF-/
50x,13HSLIT FUNCTION,5x,15HPEAK, ANGSTROMS//
2 52x,5H1.000,11x,1PE11.4)
606
 607
 609
            1 500%,13HSC11 FUNCTION;3X,13HPEAK, ANGSTROMS?/

2 52X,5H1,000%;11X,1PE11.49

FORMAT(//16X,96HSPECTRAL CALIBRATION OF INSTRUMENT THAT MULTIPLIES

1 SLIT FUNCTION TO YIELD INSTRUMENT SENSITIVITY//

250X,10HWAVELENGTH,11X,11HCALIBRATION/
 610
             350X, 9HANGSTROMS, 12X, 8HFUNCTION//)
 612
              FORMAT(///
              FORMAT(///

1 51X,11HLOCATION OF,6X,17HINSTRUMENT OUTPUT/
2 51X,11HSLIT CENTER,6X,18HLW/CM2-MICRON-SR)*,/
3 51X, 9HANGSTROMS,8X, 19H(SENSITIVITY UNITS) //)
FORMAT(51X,0PF9,3,10X,1PE11,4,5A1)
FORMAT(33X,19HRADIOMETER OUTPUT ,1PE11,4,5A1,37H(W/CM2-MICRON-SR)
 615
            1*(SENSITIVITY UNITS)///)
              FORMAT(//30X)
 616
 C FORMATS FOR ERROR STATEMENTS.
             FORMAT(/26X,83HDETECTOR OMITTED BECAUSE PART OR ALL OF SENSITIVITY 1 LIES OUTSIDE COMPUTED SPECTRUM.//)
               FORMAT(/26X,67HDETECTOR OMITTED BECAUSE WAVELENGTHS DO NOT INCREAS
  701
             1E MONOTONICALLY .//)
             FORMATI//5X110HINPUT DATA FOR LAMS1 OR LAMS2 WOULD HAVE ALLOWED P

1ART OR ALL OF THE INSTRUMENT SENSITIVITY TO LIE OUTSIDE THE,/

24X, 96H COMPUTED SPECTRUM. THE END POINTS WERE APPROPRIATELY ADJUS

3TED SO THAT NOW THE SCANNING RANGE 15,/

44X, 5H FROM.F8.2,4H TO ,F8.2, 16H ANGSTROMS WITH, 66.3,
 702
            44X, 5H FROM,F8.2,4H TO ,F8.2, 16H ANGSTROMS WITH , F6.3,
516H ANGSTROM STEPS.//)
FORMAT(10X,101HDETECTOR OMITTED BECAUSE WAVELENGTHS SPECIFYING SPE
1CTRAL CALIBRATION DO NOT BOUND DESIRED SCAN RANGE.//)
FORMAT(//8X,103HDETECTOR OMITTED BECAUSE SPECIFIED CENTER OF SLIT
1FUNCTION LIES OUTSIDE OF THE SPECIFIED SLIT FUNCTION.//)
FORMAT(// 17X,85HDETECTOR OMITTED BECAUSE UPPER SCAN LIMIT WAS INP
 703
  704
             1UT LESS THAN OR EQUAL TO LOWER LIMIT//)
```

END

SORIGIN ALPHA SIBFTC HF075M SUBROUTINE GROWTH C SUBROUTINE GROWTH COMPUTES THE CURVE OF GROWTH. COMMON/CPLOT/LAMMIN, LAMMAX, DELLAM, NARRAY, CINT3, FACTRI(5) COMMON/CPLOT/LAMMIN,LAMMAX,DELLAM,NARRAY,CINT3,FACTRI(5)
COMMON/CRRAY/ILAM(9000),ELAM(9000)
COMMON/CREAD/READ1,READ2,READ3,READ4,READ5,READ6
COMMON/CBAND1/ALPHAU,BEU,BETAU,CAPAU,CAPLU,DEU,DZEROU,REU,TERMU,
ALPHAL,BEL,BETAL,CAPAL,CAPLL,DEL,DZEROL,REL,TERML,
COMMON/CBAND2/WEU,WEXEU,WEYEU,WEZEU,BVU,DVU,DEGENU,MU,ALTNAT,
WEL,WEXEL,WEYEL,WEZEL,BVU,DVL,
COMMON/CTEMP/TELECT,TVIB,TROT
COMMON/CWIDTH/WIDTHL,WIDTHY,RANGE
COMMON/CTRAN/PARTCC,NUBARO,Q,AOE,CINT1,CINT2,KMIN,KMAX
COMMON/CEXTRA/INDEX,NFILE,SYSTEM,TOTAL,OUTPUT(12) REAL LAM1, LAM2, LAMMAX, LAMMIN, ILAM, ILAM1, LAMBDA, LAMDA1, LAMDA2, 1 AMDA3 DIMENSION DEPTH1(25), GROW(25) LAM1= READ1 LAM2= READ2 C PRINT HEADING FOR CURVE-OF-GROWTH CALCULATION. WRITE(6,600) LAM1, LAM2 C IF THE UPPER WAVELENGTH LIMIT WAS INPUT FIRST, WRITE AN ERROR C MESSAGE AND OMIT THIS CURVE OF GROWTH. IF (LAM2 .LE. LAM1) GO TO 70 IF WAVELENGTH LIMITS ARE OUTSIDE SPECTRAL RANGE CONSIDERED, SET INTEGRATION LIMITS TO APPROPRIATE END WAVELENGTH. IF (LAM1 •LT• LAMMIN) LAM1=LAMMIN
IF (LAM2 •GT• LAMMAX) LAM2=LAMMAX C FIND INDICES IN INTENSITY ARRAY TO BE INCLUDED IN INTEGRATION. NSTART= 1.0 +(LAM1-LAMMIN)/DELLAM NEND= 1.0 +(LAM2-LAMMIN)/DELLAM C DEFINE SPECIAL WAVELENGTHS NEEDED IN THE INTEGRATION. COUNT = NSTART
LAMDA1= LAMMIN+ (COUNT-1.0)*DELLAM
LAMDA2= LAMDA1+ DELLAM
COUNT= NEND
LAMDA3= LAMMIN+ (COUNT-1.0)*DELLAM C INITIALIZE DEPTH AND START CURVE-OF-GROWTH CALCULATION. DEPTH= 3.162278E-7 IF(NEND .NE. NARRAY) M2=NEND+1 DO 60 M1=1,25 TOTALI= 0.0 DEPTH= DEPTH*3.162278 DO 10 M=NSTART.M2 IF (ELAM(M) .LE. 1.0E-36) GO TO 10 LAMBDA=(LAMMIN +(COUNT-1.0)*DELLAM)*1.0E-8 LAMBDA=: (LAMBIN +1(CUNI-1-0), "DELLAN", 1-1-0-0
BLAM=1-1904E-16*EXP(-1-4-3879/(LAMBDA**ELECT))) (LAMBDA**5*
(1.0-EXP(-1.4-3879/(LAMBDA**ELECT))))
CILAM1 = ALOG(18.40032E+15*LAMBDA**5*(1.0-EXP(-1.43879/(LAMBDA**ELECT)))) 1 1 CILAM2=ALOG(DEPTH)
CILAM3=ALOG(ELAM(M)) CILAM4 =1.43879/(LAMBDA*TELECT)-2.30259*CINT3+CILAM1+CILAM2 +CILAM3 IF (CILAM4 •GT• 87•0) CILAM4=87•0 CILAM4=EXP(CILAM4) ILAM(M)=BLAM*(1.0-EXP(-CILAM4))
CONTINUE

C TEST INTERVAL LIMITS.

10

IF (NSTART .LT. NEND) GO TO 20

C THE INTERVAL IS BOUNDED BY CONSECUTIVE ENTRIES IN THE LAMBDA ARRAY.

SLOPE=(ILAM(NSTART+1)-ILAM(NSTART))/DELLAM TOTALI=((SLOPE*(LAM1-LAMINATART)))*(SLOPE*(LAM2-LAM1)+ILAM(NSTART)))*(LAM2-LAM1)+ILAM(NSTART)))*(LAM2-LAM1)/2.0E+4

- C IS THERE A RIGHT-HAND INCREMENT.
- IF (NEND.EQ.NARRAY) GO TO 30 20
- C COMPUTE INTEGRATED INTENSITY FROM RIGHT-HAND INCREMENTAL AREA.

```
C COMPUTE INTEGRATED INTENSITY FROM LEFT-HAND INCREMENTAL AREA.
            ILAM1=(ILAM(NSTART)-ILAM(NSTART+1))*(LAMDA2-LAM1)/
    DELLAM+ILAM(NSTART+1)
TOTALI=TOTALI+(ILAM1+ILAM(NSTART+1))*(LAMDA2-LAM1)/2.0E+4
   30
         1
   C DO INTERVAL LIMITS BOUND A SINGLE ENTRY IN THE LAMBDA ARRAY.
            IF (NEND .EQ. NSTART+1) GO TO 50
   C COMPUTE INTEGRATED INTENSITY FROM CENTRAL INCREMENTAL AREAS.
            NSTART=NSTART+2
            DO 40 M=NSTART, NEND
TOTALI=TOTALI+(ILAM(M)+ILAM(M-1))*DELLAM/2.0E+4
   40
   C RESET NSTART FOR NEXT STEP OF DO LOOP ENDING AT STATEMENT 60.
            NSTART=NSTART-2
            DEPTH1(M1) = DEPTH
GROW(M1) = TOTALI
    50
   60
   C WRITE CURVE-OF-GROWTH DATA.
          WRITE(6,601) (DEPTH1(M),GROW(M), M=1,25)
    C THERE IS AN ERROR IN THE LIMITS FOR THE INTEGRATION INTERVAL.
          WRITE(6,700) LAM1, LAM2
    70
    C FORMATS FOR WRITE STATEMENTS.
    600
          FORMAT(//
                  34X,33HCURVE OF GROWTH CALCULATION FROM ,F8.2,4H TO ,F8.2,
                  70X,10HINTEGRATED/
52X, 9HGEOMETRIC,9X, 9HINTENSITY/
52X,9HDEPTH, CM,9X,12HWATTS/CM2-SR//)
          FORMAT(52X,1PE9.3,10X,E9.3)
    601
    C FORMAT FOR ERROR STATEMENT.
         FORMAT(//10x+16HTHE LOWER LIMIT +1PE11.4,33H IS GREATER THAN THE U 1PPER LIMIT +E11.4,36H THUS INTEGRATION WAS NOT PERFORMED. )
    700
           FND
.....
```

APPENDIX B

FLOW CHARTS OF PROGRAM

APPENDIX C

DESCRIPTION OF INPUT CARDS FOR PROGRAM

f r Comments	each case	Columns 1-4 must spell CASE. The remaining spaces may be used for data deck identification. This card is read in the main program.	Any 72 alphameric characters may be written in the first 72 spaces of each card. The information input on these cards will be written on the heading of each case. These cards are read in the main program.	(LAMMAX-LAMMIN)/DELLAM < 8999. This card is read in the main program.	s, if specified	LAM(1) < LAMMIN, LAM(LAST) > LAMMAX LAM(M) < LAM(M + 1) Blank cards are not required if an incident spectrum is not specified. Maximum number of points permitted is 4000. The last card can have only one point, if desired. If the final output is to be a curve of growth or an optically thin spectrum, an incident spectrum should not be specified. These cards are read in subroutine ILAMDA.
Number of cards per case	required for	Н	m	H	spectrum cards,	0-2000
Content	Input rec	Case card CASE	Title card TITLES	Spectral coverage and resolution LAMMIN, Amin IAMMAX, Amax DELLAM, $\Delta\lambda$	ent	Incident spectrum LAM(M), \lambda LAM(M), I\lambda LAM(M + 1) LLAM(M + 1)
Format		Αħ	12A6	E10.0 E10.0		E10.0 E10.0 E10.0
Columns		1-4	1-72	1-10		1-10 11-20 21-30 31-40
Card		<u>-</u>	CJ	m		- †

				Number of				
number	Columns	Format	t Content	cards per band system		ບ	Comments	
BANI	BAND SYSTEM CARDS:	CARDS:	Two alternatives - Band Band systems		be input agnetic t	from magnetic tape	O.	from cards.
ſζ	1-10	国10.0		Н	Any number a layer or	of band a case.	systems can	be included in
	21-20		TELECT, Telect TVIB, Tvib		Name must exactly on	Name must be left justified and must exactly one of the following:	tified and llowing:	must be
	67-72	A6			CN5V55 CZSWAN	CNPRED ØH3060	CØb4+b N2+b1-	CH4300 BEØB-X
					CØASDI CØ+bCT	C2PHIL Ø2bSRb	N2bl+b N2b2+b	NØbBbb NØbGbb
					N2LBH	\circ	1 1 1	•
					main progre	m, subr	Inis card is read outine IIAMDA, or	read in the , or
			Band	system input fr	from cards			
5-a	C	- - - -	Band sys and name	H	Any number of band a layer or a case.		systems can be	oe included in
	11 - 20	E10.0	TELEC		Name can b	be any A6 ide	identifier.	
	31-40 41-45 67-72	E10.0 F5.0 A6			IF CAPLU - If CAPLU - ²II ↔ ²∑ (CAPLU - CAPLL = 0 INDEX = 1.0 CAPLU - CAPLL = ± 1 and this is $\frac{n}{\sqrt{2}}$ (or vice versa) transition	INDEX = 1.0 and this is not transition	1.0 is not a
					INDEX = 2.0. versa) transi	INDEX = 2.0. If this is a 2 I versa) transition INDEX = 3.0.	is a 211 + EX = 3.0.	$^{2}\Pi \leftrightarrow ^{2}\Sigma$ (or vice .0.
					This card subroutine	This card is read in the main program, subroutine ILAMDA, or subroutine ATOMI	the main program, subroutine ATOMIC.	ogram,

	This card is read in subroutine SEFUP.	This card is read in subroutine SETUP. The appropriate cards for the upper and lower levels of the transition must be input first and second, respectively. These cards are read in subroutine SETUP.
Number of cards per band system		1 LEVELS
Content	Band system data LEVELS ALTNAT, C DEU, D. BETAU, B. REU, r. DZEROU, D. CAPAU, A' CAPLU, A'	Band system data MU, HA NUSPIN, I DEL, De BETAL, Be REL, re DZEROL, DO CAPLL, A" CAPLL, A"
Format	E10.0 E10.0 E10.0 E10.0 E10.0 E10.0	E10.0 E10.0 E10.0 E10.0 E10.0 E10.0 E10.0 E10.0 E10.0 E10.0
Columns	1-10 11-20 21-30 31-40 41-50 51-60 61-70	11-20 21-30 31-40 41-50 51-60 61-70 71-80 11-20 21-30 31-40 41-50 51-60 61-70
Card	5- 6-	را ا ا ا

Card	Columns	Format		er c ls pe syst	
			Vibrational band	cards for each	system
	1-10 11-20 21-30 31-40	E10.0 E10.0 E10.0	VU-VL data VU, v' VL, v'' KMIN, Kmin KMAX, Kmax	Any number but each must be followed by a card 7.	Cards 6 and 7 specify one vibrational band. Any number of bands may be input and these must follow card number 5 if the band system is input from tape, or 5-d if the input is from cards. KMIN and KMAX may be left blank. If KMIN is left blank it will be set to 2. If KMAX is left blank and a value for DZEROU and/or DZEROL is known, KMAX will be computed; otherwise KMAX will be set to 150. This card is read in the main program.
1	1-10 11-20 21-30 31-40 41-50 51-60	E10.0 E10.0 E10.0 E10.0 E10.0	$\begin{array}{c c} \text{VU-VL data} \\ \text{SUMRE2}, & \Sigma \middle \frac{\text{Re}(\vec{\mathbf{r}}_{\mathbf{v}^{\mathbf{t}}}\mathbf{v}^{\mathbf{u}})}{\text{ea}_{\mathbf{o}}} \middle \\ \text{WIDTHG}, & \mathbf{w}_{\mathcal{C}} \\ \text{WIDTHL}, & \mathbf{w}_{\mathcal{I}} \\ \text{NUBARO}, & \vec{\mathbf{v}}_{\mathbf{o}}(\mathbf{v}^{\mathbf{t}}\mathbf{v}^{\mathbf{u}}) \\ \text{FRANCK}, & q_{\mathbf{v}^{\mathbf{t}}}\mathbf{v}^{\mathbf{u}} \\ \text{RANGE} \end{array}$	Any number	NUBARO and RANGE may be left blank. If NUBARO is left blank, its value will be computed from the spectroscopic constants. If RANGE is left blank, it will be set to 5 if WIDTHL \neq 0; if WIDTHL = 0, RANGE will be set to 3. FRANCK may be left blank for a band system input from tape. If this is done, the value stored on tape is used in the calculation. This card is read in subroutine VU VL.

Comments	ds	NAME can be any A6 identifier. Any number of atomic systems can be specified for each layer and they can be mixed with the specified band systems. However, the printed output will be easier to read if all the atomic systems are either input before or after the band systems. This card is read either in the main program, subroutine ILAMDA, or ATOMIC.	RANGE may be left blank. If this is done and WIDIHL \$\neq 0\$, RANGE is set to 5; otherwise, RANGE is set to 3. This card is read in subroutine ATOMIC.
Number of cards per atomic system	system input cards	⊢	Any number following each card 8
Content	Atomic	Atomic data ATOMCC, N TELECT, Telect Q,Q NAME	Atomic data WIDTHG, Wg WIDTHL, W ₁ DEGENU, d' TERMU, T' ELNSTN, A _{ul} LAMCL, A RANGE
Format		E10.0 E10.0 E10.0 A6	E10.0 E10.0 E10.0 E10.0 E10.0 E10.0
Columns		1-10 11-20 21-30 67-72	1-10 11-20 21-30 31-40 41-50 51-60 61-66
Card		∞	0,

Comments	card	LAML < LAMMAX I.AMZ < I.AMMAX This card specifies that a curve-of- growth will be printed on the output sheet. The card must follow the last vibrational band or atomic line card. Any number of integration intervals I.AML to I.AMZ may be specified, and the word GROWTH must appear on each card. Blank cards are not required if a curve of growth is not needed. A curve-of-growth calculation can be specified for any single-layer case or for the first layer of a multilayer case. However, if an incident spectrum is specified, it will not be used and, in fact, will be re-initialized to zero. This card is read in the main program or subroutine ATOMIC.	card	each LAYER must be left-justified. If the "true" spectrum for a given incident spectrum and geometric DEPTH is to be computed, this card must be input with the word LAYER written as indicated. This card follows the last curve-of- growth card. If a "true" spectrum is not to be computed, and the final output is to be for an optically thin spectrum, this card is omitted. This card is read in the main program or subroutine ATOMIC
Number of cards per case	Curve-of-growth ca	Any number.	transport	One for eallayer.
Content	Curve-	Curve_of_growth integration limits LAML, \(\lambda \) GROWTH	Radiative	Depth of radiating layer DEPTH, 1, x IAYER
Format		E10.0 B10.0		E10.0 A6
Columns Format		1-10 11-20 67-72		1-10
Card		. 10		11

Card number	Columns	Format	Content	Number of cards per slit case	Comments
Slit cards: total number linear, (c)	ards: 'I' number o	There are four ty of SLITS must be scanning Gaussian,	Slit cards: There are four types of slits and any numb total number of SLITS must be equal to NSLIT. The slit linear, (c) scanning Gaussian, and (d) scanning linear.	any number of The slit types linear.	any number of each may be specified for each case. The The slit types are: (a) fixed Gaussian, (b) fixed linear.
			(a) Fixed G	Gaussian slit ca	cands
16-a	1-4	Α¼	Slit identification	H	The first four columns of this card must spell SLIF. The remaining columns can contain any desired information. This card is read in subroutine SLIF.
17 -a	1-5	I5	NPOINT	Т	NPOINT = 0 (or blank) for this slit case. This card is read in subroutine SLIT.
8 -81	1-10 11-20 21-30	E10.0 E10.0 E10.0	Slit data LAMCL RLAMCL WIDIH	-	LAMCL ± 3.0(WIDIH) must fall between LAMMAX and LAMMIN. LAMCL = spectral location of slit center. RLAMCL = peak value of instrument sensitivity. WIDIH = width of slit at half-peak sensitivity. This card is read in subroutine SLIT.
			(b) Fixed linear	slit	cards
16-b	1-4	Αλ	Slit identification	T	The first four columns of this card must spell SLFT. The remaining columns can contain any desired information. This card is read in subroutine SLFT.
17 -b	1-5 25-34	I5 EIO.0	NPOINT LAMS1	1	NPOINT < 100 and LAMS1 must not allow any part of the instrument sensitivity to fall outside the computed spectrum. This card is read in subroutine SLIT.

1 LAMS1 = spectral location at which slit function will be centered.

17-c 1-5 I5 NPOINT 10 I1 SCAN 15-24 E10.0 IAMS1 35-44 E10.0 IAMS2 46-50 I5 NRIAMS 17-c 1-5 I5 NPOINT 18-24 E10.0 IAMS2 18-25-34 E10.0 IAMS2 18-2	18-c 21-30 E10.0 WIDTH peak height. This card is read in
13-b	1-10
1-10 E10.0 IAMCL 11-20 E10.0 RIAMCL 12-20 E10.0 RIAMCL 13-30 E10.0 RIAMCL 14-30 E10.0 RIAMCL 15-40 RIAMCL 15-50 FINACHORINE 15-50 FINACHORINE 15-50 FINACHORINE 15-50 FINACHORINE 15-50 FINACHORICATION 15-50 FINACHORIC	IANGL = position in slit function data IANGL = position in slit function to located at IANGL = calibrat factor. The instrument sensitivity given by the product RLANGL - RSLIT(V IANGL) IANGL SLANGL STATC ST
(c) Scanning Gaussian slit cards Slit identification 1 The first four columns of this card spell SLIT. The remaining columns contain any desired information. The card is read in subroutine SLIT.	Colored Sitt identification The first four columns of this card spell SLIT. The remaining columns of this card spell SLIT. The remaining columns of contain any desired information. The card is read in subroutine SLIT. 1-5
Slit identification 1 The first four columns of this card spell SLIT. The remaining columns contain any desired information. The card is read in subroutine SLIT.	1-4 A4 SLIT The remaining columns of this card spell SLIT. The remaining columns of contain any desired information. The card is read in subroutine SLIT. 1-5 I5 NPOINT NPOINT NPOINT SCAN I STEP distant wavelength of SCAN, IAMS1 = start wavelength of SCAN, IAMS2 = stopping wavelength of SCAN, IAMS2 = stopping wavelength of SCAN, NRIAMS = number pairs of values specifying the spect calibration of the instrument. 15-24 E10.0 IAMS1 pairs of values specifying the spect calibration of the instrument. 25-34 E10.0 IAMS2 IAMMIN + 3.0(WIDTH) IAMS2 ≤ IAMMIN + 3.0(WIDTH) IAMS2 ≤ IAMMIN + 3.0(WIDTH) This card is read in subroutine SLIT.
	Slit data

Card number	Columns	Format	Content	Number of cards per slit case	Comments
19-c	1-10 11-20 21-30 31-40 41-50 51-60	E10.0 E10.0 E10.0 E10.0 E10.0	Spectral calibration IAMR(M) RIAMR(M + 1) RIAMR(M + 1) RIAMR(M + 2) RIAMR(M + 2)	Enough to specify NRLAMS pairs of spectral calibration points	The instrument sensitivity at any wavelength along the scan is given by the spectral calibration at the slit function center. Interpolated values of the spectral calibration are used when appropriate. LAMR(M) < LAMR(M + 1) LAMR(1) < LAMS1, LAMR(NRLAMS) > LAMS2.
			(d) Scanning	linear	slit cards
16 - d	ή-T	Α [‡]	Slit identification SLIT	T	The first four columns of this card must spell SLIF. The remaining columns can contain any desired information. This card is read in subroutine SLIF.
17 -d	1-5 10 15-24 25-34 35-44 46-50	15 11 E10.0 E10.0 E10.0	Slit data NPOINT SCAN STEP LAMS1 IAMS2 NRIAMS	H	NPOINT < 100. All other comments made for card 17-c of the scanning Gaussian slit apply here as well. This card is read in subroutine SLIT.
18 - a	1-10 11-20 21-30 31-40 41-50 51-60	E10.0 E10.0 E10.0 E10.0	Slit function LAM(M) RSLIT(M) LAM(M + 1) RSLIT(M + 1) LAM(M + 2) RSLIT(M + 2) RSLIT(M + 2)	Enough to specify NPOINT pairs of slit function data points	The slit function abscissa must be in Å but they can be relative to any origin desired. LAM(M) < LAM(M + 1) These cards are read in subroutine SLIT.

Number of cards per Comments slit case		ation Enough to Comments for card number 19-c in the specify scanning Gaussian case apply here as MRLAMS pairs well. of spectral calibration points
Content	Slit function data	Spectral calibration LAMR(M) RLAMR(M + 1) RLAMR(M + 1) RLAMR(M + 2) LAMR(M + 2)
Format	E10.0	E10.0 E10.0 E10.0 E10.0
Columns	1-10	21-10
Card	19-d	20-d

APPENDIX D

LISTING OF SPECTROSCOPIC CONSTANTS AND FRANCK-CONDON FACTORS FOR MOLECULAR BAND SYSTEMS ON MAGNETIC TAPE

In the listing of the Franck-Condon factors, values of 0.0 are printed as a row of stars (*).

DIATOMIC TRANSITION CN V INDEX NO.
SPECIFYING
SUBROUTINE
USEC IN CALC.
1

NUMBER SPECIFYING DATA LCCATION ON TAPE 1

SPECTEGRAPHIC CONSTANTS FOR A AND X STATES FRCM PCLETTG AND RIGUTTI, NAOVO CIMENTO 39, P515, (1965).

B STATE CATA FROM HERZBERG EXCEPT WE AND WEXE WHICH WERE TAKEN FROM DOUGLAS AND ROUTLY ASTROPHYS J. SUPP.1, P295 (1954)
RKR FRANCK-CONCON FACTORS FROM SPINDLER JGSRT VOL. 5, P 165 (1965).
DISSOCIATION ENERGIES BASED ON HERZBERG P.455 AND ADJUSTED TO 8.2 EV. THIS TRANSITICA COMPUTED IN SUBBOUTINE ZERO.

		LINE ALTERNATIC FACTOR	.K	NUCLEAR SE FOR HOMONI MCLECULES		NUMBER OF Electroni Levels		REDUCED ATOMIC Weight		
		C.		00		3		6.4643		
	SPIN CCUPL CCNST	ING RESU		CF RENIC ANGULAR INTERNUC. AXI:		CONST	ICNAL ANT 1/CM	DISSCCIATION ENERGY DEZERO, 1/CM	AT EQUI	
UPPER LCHER	STATE 0.		c c		0.000000		0000E-38 0000E-38	0.5950000E (
	ELECTRC DEGENER		RONIC ENERGY W	ιE	WEXE	WEYE	WEZE	81	ŧ	ALPHA E
UPPER LOWER		0.000	0000E-39 2	2.1686140E 03 2.C68745CE 03 3.8125550E 03	1.3134000E	01	0E-03 0.000	0000E-39 1	.9701000E CO .8992000E OO .71510C0E CO	2.2150000E-02 1.7013300E-02 1.7075700E-02
					FRANCK-COND	ON FACTOR				
	vv c	1	2	3	4	5	6	7	8	9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17	S.1790E-C1 8.09C0E-C2 1.2000E-C3	7.6000E-02 7.755CE-C1 1.4170E-C1 2.80C0E-C3 ********* ********* ******** ********	5.80 CO E - C3 1.24 CO E - C1 6.75 40 E - C1 1.90 50 E - C1 4.30 CO E - C3 1.00 C	1.4300E-02 1.5550E-01 5.5290E-01 3.23180E-01 5.54000E-03 2.0000E-04 ************************************	******** 1.200E-03 2.39CEF-C2 1.7450E-01 5.2790E-01 2.6680E-01 7.0000E-03 7.00C0E-04 ********* ********* ********* ********	******** 1.0000E-04 2.6000E-03 3.4200E-02 1.8250E-01 4.8240E-01 3.2000E-03 1.7000E-03 ********** ********** ********* ******	********* 2.0000E-02 4.5200E-02 1.7810E-01 4.5830E-01 3.0950E-01 3.0050E-03 ********* ******** ********* ********	******** ******* ******* ******* ******	******** ******* ******* ******* ******	********* ******* 1.0009F-04 1.7000E-03 1.2300E-02 7.08C0E-02 1.1460E-01 2.5370E-01 2.0400E-02 6.4000E-03 1.4000E-03 1.4000E-03 1.4000E-03 *********** ********** ********** *****
6 7 8 9 10 11 12 13 14 15 16 17	********* ******** ******** ********	11 ******** ******* ******* ****** ****	12 ********* ******** ******** 1.0000E-04 3.7000E-03 1.3500E-02 9.0100E-02 2.2700E-02 4.2900E-02 1.2030E-01 2.2000E-02 5.6000E-03 5.6000E-03	********** ********* ******** ******	14 ******* ******* ******* ****** ****	15 ********* ******** ******** ******	16 ******** ******* ******* ******* ****	17 ******** ******** ******* ******* ****		19 ******** ******* ******* ****** ******

DIATOMIC TRANSITION CN REC INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.

NUMBER SPECIFYING CATA LOCATION ON TAPE 2

SPECTCGRAPHIC CONSTANTS FOR A AND X STATES FRCM PCLETTO AND RIGUTTI, NAOVO CIMENTO 39, P 519, (1965).

B STATE CATA FROM HERZBERG EXCEPT WE AND WEXE WHICH WERE TAKEN FROM DCUGLAS AND ROUTLY ASTROPHYS J. SUPP.1, P 295 (1954)
SPIN CCUPLING CONSTANT A TAKEN FROM HERZBERG WHICH IS CLOSE TO AVERAGE VALUE BY POLETIC AND RIGUTTI'S
THIS TRANSITION COMPUTED IN SUBROUTINE SIZ PIZ

		LINE ALTE FACT	RNATION		NUCLEAR SP FOR HOMONU MOLECULES		NUMBER OF ELECTRONIU LEVELS	с	REDUCED ATCMIC WEIGHT		
		0.			0.0		3		6.4643		
	CO	IN CUPLING INSTANT	RESULT		CF TRONIC ANGULAR INTERNUC. AXIS	RCTATION CONSTANT DE, 1/CM	CONST	ANT	DISSOCIATIO Energy Dezero, 1/0	AT EQUI	
UPPER S	STATE -	0.00		1 C			0E-05 -0.424 0E-05 -0.957		0.5740000E 0.6620000E		
		TRONIC ENERACY	ELECTRO TERM EN		ı E	WEXE	WEYE	WEZE	В	E	ALPHA E
UPPER S LOWER S		4 2 2	9.24534 0.00000 2.57518	00E-39 2	1.8125550E 03 2.0687450E 03 2.168614CE 03	1.3134000E	01 -5.500000	0E-03 0.000	10000E-39 1	.8992000E 00	1.707570CE-02 1.70133C0E-02 2.215000CE-02
						FR ANCK-COND	ON FACTOR				
			à.		2		5	6	7	8	9
,	VV C		1	2	3	4	5	ь	•	•	,
0 5 3 1 2 1 3 4 4 1 2 5 6 7 7 8 5 8 5 9 8 8 1 1 2 1 2 1 2 1 3 1 4 1 5 1 6 1 7 7 8 1 8 1 1 6 1 1 6 1 1	5.0015E- 3.1785E- 1.2685E- 1.0200E- 1.1100E- 2.8500E- 7.5000E- 7.5000E- 5.000E- 5.000E- 8.444444444444444444444444444444444444	-C1 4.600 -C1 2.408 -C1 2.408 -C1 1.942 -C2 9.41C -C3 3.615 -C4 3.800 -C5 1.100	0E-02 3 5E-C1 19 0E-C2 19 0E-C2 10 0E-C2 10 0E-C3 10 0E-C3 10 0E-C4 10 10 10 10 10 10 10 10 10 10 10 10 10		2 2.1355E-C1 2 8.78COE-C2 1 1.6150E-O2 1 1.2280E-C1 2 5.50COE-O2 2 4.8550E-O2 3 2.1250E-O2 3 4.15COE-C3 4 3.15COE-C3 4 1.1000E-O3 4 .0CCOE-O4 5 5.0CCOE-O4 ************************************		1.0000E-04 6.1500E-03 1.0265E-01 2.9940E-01 1.5905E-01 3.0400E-02 1.505E-01 8.4400E-02 1.0680E-01 8.3050E-02 2.5900E-02 1.2100E-02 5.3000E-03 2.1500E-04 3.0000E-04 1.5000E-04	******** 4.0000E-04 1.5900E-02 1.5665E-01 2.6685E-01 7.5000E-04 1.2870E-01 6.9600E-02 1.5000E-04 4.5550E-02 9.0100E-02 8.8800E-02 6.3150E-02 3.7250E-02 1.9400E-02 9.3000E-03 1.8500E-03 7.5000E-04 **********	********* ********* 1.2506=03 3.1300E=02 2.0665E=01 2.0669E=01 2.0669E=02 8.0950E=02 8.0950E=02 9.4700E=02 8.6100E=02 6.5150E=02 8.4400E=02 4.8250E=02 1.4800E=02 7.3000E=03 3.4000E=03	******** 5.0000E-05 2.9500E-03 5.2850E-02 2.4545E-01 1.3865E-01 6.3450E-02 3.6500E-02 3.1900E-02 3.1900E-02 7.3650E-02 7.3650E-02 5.70C0E-02 3.7050E-02 1.1400E-02 1.1400E-02	******** ******** 1.0000E-04 6.0000E-04 6.0000E-02 2.6755E-01 7.7700E-02 1.0080E-01 8.2500E-02 9.2500E-02 5.5850E-02 2.4000E-03 1.6500E-02 6.8600E-02 6.8600E-02 4.5050E-02 4.8700E-02 4.8700E-02 ***********
, \	vv 10		11	12	13	14	15	16	17	18	19
1 × 2 × 3 × 4 3 5 1	******** ******** ******* 3.5000E- 1.0700E-	*** ***** *** ***** *** ***** -C4 *****	***** * ***** * ***** *	********** ********** **************	* ********** ********** **********	******	********* ******** ******* ******* ****	********	*********	**************************************	********* ******** ******* ******* ******
7 2	2.7275E-	-C1 1.431	5E-01 2	2.70C0E-C	2 2.15COE-03	1.0000E-04	******	******	******	******	*****
	3.2050E- 1.2420E-			1.7620E-0: 2.3455E-0:		3.5500E-03 5.3650E-02	1.5000E-04 5.5000E-03	2.5000E-04	******	*******	*****
10 2	2.5000E-	-04 1.296	5E-01 5	5.5000E-0	4 1.9850E-01	2.3255E-C1	7.1100E-02	8.2500E-C3	3.5000E-04 1.1800E-02		********* ***
	6.7800E- 7.2C50E-			1.1835E-01 2.9900E-01		1.5685E-01 3.1700E-02	2.5195E-01 1.1455E-01	9.0900E-02 2.6465E-01	1.1280E-01	1.6350E-02	*****
13	1.4250E-	-02 7.685	0E-02	1.6550E-C	2 5.2750E-02	6.660CE-02	5.7550E-02	7.5450E-02	2.6925E-01	1.3585E-01	******
	3.5000E- 3.2750E-			6.9850E-C: 4.7100E-C:		7.1750E-02 9.5000E-04	3.8850E-02 8.2500E-02	8.2450E-02 1.7000E-02	4.3400E-02		*****
	5.760CE-			6.7000E-0		3.5650E-02	8.4000E-03	8.3300E-02	4.2000E-03	1.1325E-01	******
17 6	6.1450E-	-C2 4.290	0E-02	4.6000E-0	3 1.83COE-02	5.97CGE-02	1.8150E-02	2.1950E-02	7.5050E-02 3.7150E-02		*****
	5.0650E- *******			2.7C50E-C: *******		3.1450E-02	5.4150E-02 *******	5.9500E-03	3. /15Ut=Uz		****

DIATOMIC TRANSITION C2SWAN INDEX NG.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING DATA LOCATION ON TAPE 3

SPECTOGRAPHIC CONSTANTS FROM BALLIK AND RAMSAY ASTROPHYS J. 137,1963 EXCEPT FOR SPIN CCUPLING CONSTANTS WHICH WERE TAKEN FROM HERZBERG. RKK FRANCK-CONDON FACTORS FROM SPINDLER JOSRT VOL. 5, P 195 (1965). THIS TRANSITION COMPUTED IN SUBROUTINE ZERO.

		LINE ALTERNATION FACTOR C.			NUCLEAR SPIN FCR HOMONUCLEAR MCLECULES 0.0			NUMBER OF Electronic Levels			REDUCE ATOMIC WEIGHT	D			
		C.			0.0				10			6.0019			
		N IPLING STANT	RESU		OF IRONIC ANGULAR INTERNUC. AXI	s	ROTATION CONSTANT DE, 1/CM	AL	CONST	ICNAL ANT 1/CM		DISSOCIAT ENERGY CEZERO, 1		INTERNU AT EQUI POSITIO	
UPPER ST LCWER ST				1 1			0.000000			0000E-		0.2950000 0.4890000		0.12660	
		RCNIC	ELECT TERM		N E	WE:	ΧE	WE	ΥE		WEZE		8 E		ALPHA E
UPPER ST LCWER ST			7.162 5.503 4.324 4.079 3.426 1.331 8.391 6.434	4000E 02 460CE C4 0230E 04 6650E 04 1900E 04 2100E 04 0000E 03 2700E 03	1.7882200E 03 1.6413500E 03 1.671500CE 03 1.8295700E 03 1.8295700E 03 1.80656C0E 03 1.961600E 03 1.66683500E 03 1.47045C0E 03 1.85471C0E 03	1. 4. 1. 3. 1. 1. 1. 1. 1.	6440000E 1670000E CC20000E 3970000E 92600CCE 5810000E 3850000E 119000E	01 0. 01 2. 01 0. 01 2. 01 -4. 01 0. 01 -1.	000000 4 EC000 000000 8 C5000 02 C000 0 C0000 0 C0000	0E-39 0E-01 0E-39 0E 00 0E 00 0E-39 0E-C2	0.000 0.000 0.000 0.000 0.000	00000E-39 00000E-39 00000E-39 00000E-39 00000E-39 00000E-39 00000E-39	1.6324 1.7930 1.8334 1.1922 1.7834 1.8700 1.6163	7000E 00 6600E 00 9000E 00 9000E 00 9000E 00 9000E 00 9400E 00 9400E 00	1.6080000E-02 1.6610000E-02 4.2100000E-02 2.040000E-02 2.4200000E-02 0.000000E-02 0.000000E-03 1.6880000E-02 1.7650000E-02
						FR.	ANCK-COND	ON FAC	TCR						
٧٧	, с		1	2	3		4		<u> </u>		6	7		8	9
V 0 7. 1 2. 2 2. 3 8. 4 ** 6 ** 7 ** 10 ** 11 ** 12 ** 14 ** 16 ** 17 **	2130E-C .5060E-C .72C0E-C .000CE-C .000	3.371 2.3.742 4.6.590 2.200 3.4.44 3.44 3.44 3.44 3.44 3.44 3.44	0E-C1 0E-C1 0E-02 0E-02 0×**** **** *** **** ** *** *** *** *** *** ***		2 8.80 CCE-03 1 9.9900E-02 1 2.62 1CE-01 4.77 COE-02 1 1.94 10E-01 3 1.34 10E-01 1.90 COE-03 8.0 CCO E-04 ************* ************ ********	2. 1. 2. 4. 1. 2. ** ** ** ** ** ** **	5000E-03 5400E-02 3770E-01 1120E-01 4300E-02 5850E-01 4920E-04 1000E-04 1000E-04 1000E-04 ************************************	1.572 1.576 4.600 4.831 1.700 3.200 ***** ***** ***** *****	0E-04 0E-03 0E-02 0E-01 0E-01 0E-03 0E-01	**************************************	**************************************	******* 2.0000E- 2.0200E- 7.8200E- 1.5250E- 8.0400E- 5.6620E- 5.8500E- ******* ******* ******* ******* ******	04	**************************************	******** 1.000E-04 1.2000E-03 3.4000E-02 3.5800F-02 1.3220E-01 3.6700E-02 ********* ********* ********* *****
vv	, 1C		11	12	13		14		15		16	17		18	19
1 ** 2 ** 3 2 * 4 2 * 5 1 * 6 3 * 7 8 1 * 9 1 * 11 ** 12 ** 13 **	**************************************	** ***** ** ***** ** ***** ** **** ** **** ** **** ** **** ** *****	*****	******** ******* 1.00C0E-C 6.000E-C 1.35C0E-C 3.75C0E-C ******** ******** ******************	* *********** * ******** * ******** 4 ********	****	******* ******* ******* ******* ****		******	**************************************	**************************************	******* ****** *******	************	******	********* ******* ******* ****** ****
16 ** 17 **	******* ******	** *****	*****	******	* ********* * ******	**	*******	*****	*****	*****	***** ****	******	** *** ** ***	*****	******
	*******		*****		* *********		******		*****	****				******	*******

DIATOMIC TRANSITION OH3060 INDEX NO.
SPECIFYING
SUBROUTINE
USEC IN CALC.
3

NUMBER SPECIFYING DATA LCCATION ON TAPE 4

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONDON FACTORS ASTROPHYS 4. P 55 (1955)
THIS TRANSITION COMPUTED IN SUBROUTINE S2 PI2.

		LINE ALTE FACTO	RNATION OR			NUCLEAR SPI FCR HOMONUC MOLECULES			BER OF CTRONIC ELS	:		REDUCED ATOMIC WEIGHT)		
		0.				0.0			2			0.9484			
		N IPLING ISTANT	RESUL	UM NUMBER TANT ELEC TUM ABCU	CTRO	NIC ANGULAR Ternuc. Axis	ROTATIONA CONSTANT DE, 1/CM	L	ROTATI CONSTA	ANT		DISSOCIATE ENERGY DEZERO, 1		INTERNUC AT EQUIL POSITION	
UPPER :	STATE STATE 13	C.00		C 1			0.0000000			0000E-1		0.00000000 0.3510000		C.1C121C	
		TRONIC *	ELECTR TERM E		WE		WEXE	WE	ΥE		WEZE		ΒE		ALPHA E
UPPER LOWER	STATE 2	2	3.2682	50CE 04		8056COE 03 352100E 03	9.4930000E 0 8.2810000E 0	1 -6. 1 0.	470000 000000	0E-01 0E-39	0.000	00000E-39			8.07C0000E-01 7.1400000E-01
							FRANCK-CCND(N FAC	TCR						
	vv c		1	2		3	4		5		6	7		8	9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	S. G. T. C. E.— (8. 6. C. C. E.— (6. C. C. C. E.— (6. C.	7.16(02) 1.65(02) 2.30(02) 2.3	00E-02 00E-01 00E-02	3.00CCE- 1.86COE- 5.14COE- 5.4CCCE- 7.0COE+ 7.	O1 C1 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	******** 1.2000E-02 2.80CCE-01 3.2100E-01 2.53C0E-01 2.53C0E-01 2.53C0E-01 2.53C0E-02 2.54C2E-01 2.	********* ************* 3.2000E-01 ********** ********** ********** ******	**************************************	***** ***** ***** ***** ***** ***** ****	*****	**************	********* ******* ******* ******* ****	****	********	******** ******* ****** ****** *****
V 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 10 11 2 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	*******		11	******* ******	*****************	13	14	******	15	***************************************	16	***************************************	*************	18	*******

DIATOMIC TRANSITION CO 4+

INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER SPECIFYING DATA LOCATION ON TAPE 5

SPECTOGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONDON FACTORS BY NICHOLLS
THIS TRANSITION COMPUTED IN SUBROUTINE ONE

REF JQSRT 2 (1962)

	LINE ALTERNATIO FACTOR	NUCLEAR SE FOR HOMONU MOLECULES		NUMB E ELECTI LEVEL	RONIC		REDUCED ATOMIC WEIGHT			
	0.		0.0		11			6.8584		
	PLING RESI	TUM NUMBER OF ULTANT ELECTRO ENTUM ABOUT IN	INIC ANGULAR	RCTATION/ CONSTANT DE, 1/CM	C	OTATIONAL ONSTANT ETA, 1/CM		DISSECTATI ENERGY DEZERO, 1/	AT EQU	UCLEAR DISTANCE ILIBRIUM DN, CM
UPPER STATE LCWER STATE	0.00	1 C		0.0000000		.0000000E-		.0000000E		100E-07
ECHEN STATE	U • U U.	C		0.000000	JE-38 U	-0000000E-	26 L	0.8960000E	05 0.1128	190E-07
		RONIC Energy we		WEXE	WEYE		WEZE		BE	ALPHA E
UPPER STATE 1 LOWER STATE 1 1 1 1 1	0.00 5.98 9.31 5.29 9.19 8.69 8.38 6.22 5.59	00000E-39 2.1 55000E C4 2.1 5780GE 04 0.0 68000E 04 2.1 8600CE 04 2.1 8600CE 04 2.1 19400E 04 1.2	5156100E 03 1702100E 03 12000C0E 03 20000C00E-39 134000C0E 03 13300000E 03 1880070CE 03 1377900E 03 21800C0E 03 2392500E 03	1.7250500E 1.3461000E 1.9800CCE 0.000000E 0.000000E 0.000000E 0.000000E 0.000000E 1.624000CE 9.5000CCE 1.447000CE	3.080 02 0.000 39 0.000 39 0.000 39 0.000 39 0.000 39 0.000 1.120 00 0.000	00000E-39 00000E-39 00000E-39 00000E-39 00000E-39 00000E-39 00000E-39 00000E-39	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0000E-39 0000E-39 0000E-39 0000E-39 0000E-39 0000E-39	1.6116000E 00 1.9313900E 00 0.000000CE-39 1.95630COE 00 0.000000CE-30 1.9422000E 00 1.9610000E 00 2.0750000E 00 1.2615000E 00 1.3310000E 00 1.68100COE 00	2.229000E-02 1.748500E-02 0.900000E-39 0.000000E-39 0.000000E-39 2.700000E-02 3.3000000E-02 1.700000E-02 1.600000E-02
				FRANCK-COND	ON FACTO	R				
vv c	1	2	3	4	5		6	7	8	9
V 0 1.1319E-(1 2.1614E-(2 2.2997E-(3 1.8128E-(4 1.1879E-(5 6.8846E-(7 1.8429E-(8 8.6974E-(10 1.9367E-(11 8.8941E-(12 4.0787E-(13 1.8773E-(14 8.7084E-(15 4.0846E-(16 1.9425E-(18 4.6172E-(19 ************************************	1 1.5487E-01 1 1.2179E-C2 1 2.0493E-02 1 8.7285E-C2 1 1.3264E-01 2 1.1603E-01 2 8.8057E-02 3 5.8371E-02 3 2.0162E-C2 4 1.1024E-C2 4 5.8643E-03 5 8.83666E-03 15 1.5891E-03 5 8.2117E-C4 6 2.2157E-C4 6 1.1653E-04	3.0508E-03	1.9629E-01 7.6435E-02 1.16C7E-01 6.4536E-04 5.7630E-02 9.1254E-02 4.2201E-02 2.2336E-03 4.0627E-02 6.4755E-02 7.1751E-02 6.5086E-02 5.2041E-02 2.6431E-02 2.6471E-02 1.7597E-02 7.2159E-03 *********	9.6040E-02 1.9313E-01 5.0832E-03 8.9569E-02 6.6561E-02 1.3841E-02 1.3886E-02 4.4622E-02 7.5687E-03 1.4618E-03 1.9480E-02 4.1768E-02 5.5313E-02 5.7629E-02 5.1936E-02 4.2528E-02 3.2596E-02 2.3851E-02 *********	3.5535E 1.8569E 5.7179E 8.4157E 6.1711E 8.2359E 4.2265E 4.2268E 3.2779E 4.5052E 1.7143E 6.7201E 2.3102E 3.7973E 4.52574E 4.52574E 4.6751E 4.6751E 4.2574E	-01 1.082 -02 1.650 -02 4.712 -03 9.803 -02 2.168 -02 2.177 -05 6.987 -02 3.828 -02 2.418 -02 4.969 -04 4.418 -03 3.324 -02 7.380 -02 9.478 -02 3.324	9E-01 2E-01 8E-04 4E-02 4E-02 72E-02 72E-02 15E-02 9E-02 15E-02 9E-02 8E-02 8E-02	2.4282E-C 4.4465E-C 1.6681E-C 6.7660E-C 3.1553E-C 7.2885E-C 2.9021E-C 3.0612E-C 1.030E-C 1.030E-C 1.030E-C 1.030E-C 1.030E-C 1.6298E-C 2.3731E-C 1.6298E-C 1.6298E-C 2.6615E-C 4.1680E-C 6.1450E-C 6.1450E-C 1.6937E-C ************************************	1.3804E-02 9.9629E-02 1.5884E-01 12.2.72C2E-03 9.437TE-02 2.5.93C4E-04 13.5.8181E-02 12.4.2672E-02 12.4.2672E-02 12.4.2672E-02 12.4.2672E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-02 12.4.9442E-03 13.6861E-02 13.6861E-02 14.6581E-02	3.3745E-03 4.1314F-02 1.4862E-01 8.9110E-02 2.1092E-02 6.3519E-02 3.7499E-02 9.8388E-03 5.8879E-02 2.3741E-02 1.0943E-03 3.0204E-02 4.2877E-02 2.1882E-02 1.9365E-03 3.5232E-03 1.8049E-02 2.9379E-02
VV 1C	11	12	13	14	15		16	17	18	19
8 6.8218E-(9 5.9671E-(10 2.4797E-(11 4.9911E-(12 1.4383E-(13 1.7179E-(14 2.5544E-(15 3.7613E-(16 2.3565E-(17 5.1274E-(18 3.2516E-(1.0812E-04 2.3.1152E-03 2.3.3725E-02 1.2914E-01 1.1299E-01	4.0752E-C2 4.4543E-C2 4.7082E-03 5.1872E-C2 2.C623E-C2 2.1272E-C3 3.1550E-C2 3.4831E-C2 1.C192E-02 2.6237E-C2	7.7972E-02 2.4546E-03 6.2178E-02 8.4925E-03 2.C729E-02 4.4591E-02 4.C014E-03 2.8332E-02 3.1077E-02 1.1864E-02	1.1842E-C2 6.9276E-C2 1.2255E-C2	2.2424E 5.2619E 2.6202E 4.8135E 1.9786E 4.6578E 1.9578E 3.0450E 2.9198E 5.3800E	-08 8.472 -06 1.280 -05 8.652 -03 2.857 -02 4.688 -02 3.670 -01 1.201 -02 1.835 -02 7.675 -02 1.330 -03 5.628 -02 1.114 -03 4.111 -02 8.664 -03 2.772	1E-10 0E-07 4E-06 4E-03 7E-02 7E-01 0E-05 7E-02 7E-02 7E-02 8E-02 8E-02 8E-02 8E-02 8E-03 2E-03	1.3911E-0 5.4755E-0 2.1822E-0 5.7040E-0 1.8132E-0 2.5596E-0 4.0913E-0 1.5983E-0 2.2361E-0 4.6775E-0	1 2.2816E-12 6.3250E-10 7 7.9258E-08 15 4.9963E-06 14 1.6515E-04 12 2.6628E-03 12 2.4980E-02 12 1.2915E-01 12 1.0029E-02 12 1.6192E-02 12 5.0261E-02 12 4.4129E-04 14 4.1675E-02 12 2.0329E-02 12 1.7042E-03 12 1.7042E-03 13 2.7916E-03	8.8683E-14 3.4137E-11 5.7731E-09 4.9572E-07 2.2666E-05 5.5819F-04 7.2532E-03 4.6607F-02 1.2656E-01 8.9341E-02 2.2404E-03 7.2885E-07 4.4292E-04 5.0304E-02 1.4535E-02 1.2562E-02 3.8687E-02 9.2564F-03

DIATEMIC TRANSITION N2+ 1INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING DATA LOCATION ON TAPE 6

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONCON FACTORS
NBS VCL 65A 1961 P451
THIS TRANSITION COMPUTED IN SUBROUTINE ZERO

	LINE ALTERNATION FACTOR	NUCLEAR S FCR HOMONI MOLECULES	UCLEAR	NUMBER DI ELECTRON: LEVELS		REDUCED ATOMIC WEIGHT		
	1.	1.0		3		7.0036		
SPIN CCUPLIN CCNSTAN		TRONIC ANGULAR		CONST	TIONAL TANT 1/CM	DISSOCIATION ENERGY CEZERO, 1/C	AT EQUI	CLEAR DISTANCE LIBRIUM DN, CM
UPPER STATE C.GO LCWER STATE 0.00			0.000000 0.000000		00000E-38 00000E-38	0.0000000E-		
ELECTRONI Degenerac		ı E	WEXE	WEYE	WEZE	81	E	ALPHA E
UPPER STATE 2 LCWER STATE 2 2	C.CC00000E-39	2.4198400E 03 2.2071900E 03 2.0500000E 03	1.6136000E	01 -5.375000 01 -4.000000 39 C.000000	0.000 O.000	00000E-39 1	.0830000E 00 .9322000E 00 .65000C0E 00	1.9500000E-02 2.0200000E-02 5.000000E-02
			FRANCK-COND	ON FACTOR				
vv c	1 2	3	4	5	6	7	8	9
1 3.0144E-C1 2 2 4.5371E-02 4 3 2.2475E-03 1 4 1.4521E-05 6 5 4.6340E-07 3 6 9.4819E-03 3 7 6.4377E-10 3 8 4.1958E-12 3 10 3.5467E-14 1 11 2.8767E-16 6 12 5.2594E-16 2 13 7.4212E-2C 9 14 1.7188E-16 9 15 1.8467E-16 4 16 1.8155E-17 5 17 9.5257E-17 1 18 3.2282E-16 6	.5883E-C1 7.C162E-02 .2260E-01 2.8598E-C1 .C559E-C1 5.0646E-C2 .0552E-01 4.1372E-01 .9353E-C3 1.6604E-C1 .9353E-C5 1.3355E-02 .0877E-C6 5.7286E-C5 .4169E-08 1.1319E-C5 .7552E-C9 4.9566E-08 .8766E-12 2.6591E-C8 .0275E-11 1.7C56E-10 .9997E-13 3.8767E-11 .4906E-15 5.5598E-12 .9105E-16 1.C091E-13 .9105E-17 2.6642E-15 .2329E-17 1.3821E-15 .0281E-17 2.6642E-15 .4575E-16 2.8290E-12 .4575E-16 1.3366E-15 .4620E-16 2.7374E-17 .7846E-16 1.1417E-16	1.3242E-01 2.25C1E-01 2.10C5E-03 3.7922E-01 2.2651E-01 2.2651E-05 4.9298E-05 3.0C55E-C5 1.7424E-08 8.3563E-08 1.6762E-09 7.8486E-11 2.7547E-11 9.9713E-13 3.0960E-15 6.5616E-15 1.5689E-15	3.2972E-C3 4.2726E-O2 1.6535E-O1 6.7256E-C3 3.3100E-O1 2.6731E-C1 2.7894E-O2 1.8070E-C5 6.4203E-O5 3.2950E-C8 1.9686E-C7 9.1842E-O9 5.7016E-11 7.6533E-12 2.0529E-14 7.6808E-15 3.1337E-17	6.3420E-04 1.1403E-02 7.1133E-02 1.7060E-01 5.2901E-02 2.9248E-02 2.8304E-01 3.0677E-01 3.4188E-02 1.0666E-06 1.1610E-04 6.7150E-04 6.7150E-07 3.5189E-08 1.3391E-11 2.2485E-10 3.6688E-11 1.1348E-12 4.8177E-14 7.9994E-14	1.1549E-04 2.6998E-03 2.3623E-02 9.45114E-02 1.5692E-01 4.8153E-02 2.4145E-01 3.4009E-01 3.8904E-02 8.0941E-05 1.8230E-04 4.9932E-07 1.0410E-07 1.3184E-09 3.6122E-10 1.2484E-10 8.8436E-12 3.1504E-14	1.9998E-05 5.8613E-04 6.6608E-03 3.8008E-02 1.0964E-01 1.3327E-01 2.0444E-02 2.0830E-01 3.6856E-01 4.1527E-02 3.8725E-04 1.1720E-05 4.7645E-07 2.4797E-07 8.9261E-09 2.8260E-10 3.2815E-10 4.3885E-11	3.2805E-06 1.1849E-04 1.6951E-03 1.2612E-02 5.2363E-02 1.1666E-01 1.0647E-01 5.9387E-03 8.4684E-02 1.8373E-01 3.9326E-01 4.1704E-02 1.0871E-03 3.0102E-04 3.0048E-05 2.0416E-07 4.8200E-07 3.8957E-05 6.1538E-10	5.0335E-07 2.2393E-05 3.9336E-04 3.6675E-03 2.0033E-02 6.4883E-02 1.1499E-01 8.0835E-02 4.7434E-04 9.0654E-02 1.6717E-01 4.1493E-01 3.9276E-02 2.3614E-03 3.0712E-04 6.3998E-05 1.5601E-08 7.5533E-07 1.2246E-07 1.8664E-09
VV 10	11 12	13	14	15	16	17	18	19
1 3.9213E-06 6. 2 8.4449E-C5 1. 3 9.6386E-04 2. 4 6.5985E-C3 1. 5 2.8257E-02 3. 7 1.0837E-C1 8. 8 5.8649E-02 9. 9 5.5515E-C4 4. 10 9.1407E-02 8. 11 1.5792E-01 1. 12 4.3379E-01 1. 13 3.4320E-02 4. 4.3643E-03 2. 14 4.3643E-03 7. 15 2.4992E-C4 7. 16 1.1714E-C4 1.	.4194E-05 7.47C6E-10 2862E-07 8.7554E-C8 6.754E-C5 3.03C5E-C6 3237E-C4 5.1559E-C5 3.4058E-C3 3.4058E-C3 4.6429E-02 3.4058E-C3 6.515E-02 1.4962E-C2 6.5615E-02 8.3188E-02 6.751E-02 8.6284E-02 6.640E-03 2.71C1E-C2 4.957E-C1 1.5933E-C1 7.223E-02 4.6145E-01 1.648E-03 1.8762E-02 3548E-04 1.6676E-C2 5652E-C6 2.5870E-C4 8357E-C7 2.4387E-C5	9.5331E-09 4.8313E-07 1.0440E-05 1.28C7E-04 1.0071E-03 5.3781E-02 5.0528E-02 8.2879E-02 7.3930E-02 1.7195E-02 1.2382E-02 7.3838E-02 1.6967E-01 4.68C8E-01 1.4566E-02 1.4566E-02 3.5495E-05	5.6580E-10 6.2656E-C8 1.8810E-06 2.8771E-C5 2.7242E-04 1.7413E-03 7.8225E-03 2.4953E-C2 5.5439E-02 8.0178E-02 6.2084E-C2 1.0343E-02 1.6506E-C2 6.4180E-02 1.8661E-01 4.6761E-01 3.2073E-C3 1.8313E-C2	5.7438E-12 2.7584E-13 5.2243E-07 5.7951E-06 6.7369E-05 5.1455E-C4 2.7556E-03 1.0647E-02 2.5771E-02 5.8721E-02 7.5740E-02 5.8379E-03 2.0049E-02 5.3547E-02 2.1044E-01 4.5788E-01 1.9948E-05 2.1029E-02	4.0732E-12 4.1016E-11 5.9C97E-11 3.0499E-08 9.9985E-07 1.5032E-05 1.3912E-04 4.0574E-02 3.4721E-02 3.4099E-02 6.0410E-02 4.1892E-02 4.1892E-02 3.403E-03 2.3010E-02 4.2359E-02 4.2131E-01 4.3662E-01 3.0089E-03	1.9329E-12 3.8757E-11 1.2927E-10 1.1388E-09 1.3165E-07 2.9233E-04 1.4059E-03 5.6271E-03 1.6889E-02 3.7741E-02 6.0656E-02 6.4044E-02 3.3901E-02 2.5526E-02 2.1669E-02 2.7903E-01 4.0194E-01	7.4934E-13 2.1156E-11 1.8980E-10 1.9300E-10 8.8002E-09 4.5566E-07 7.2925E-06 6.5513E-05 4.4632E-04 2.0953E-03 7.4191E-03 1.9954E-02 5.7743E-02 5.7743E-02 5.7743E-02 5.7824E-02 5.7824E-02 2.0265E-02 3.2267E-01	2.47C9E-13 9.2253E-12 1.2444E-10 5.9679E-10 5.3633E-11 4.4113E-08 1.3305E-06 1.6626E-05 1.2957E-04 7.1529E-04 2.9555E-03 9.3675E-03 2.2892E-02 4.2558E-02 5.7746E-02 5.1592E-02 1.9790E-04 3.0199E-02 1.0750E-02

DIATOMIC TRANSITION N2 1+ INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER SPECIFYING DATA LOCATION ON TAPE 7

SPECTOGRAPHIC CONSTANTS FROM HERZBERG MORSE FRANCK CONDON FACTORS NBS VOL 65 A NC 5 1961 PAGE 451 THIS TRANSITION COMPUTED IN SUBROUTINE CNE

	LINE ALTERNATION FACTOR		NUCLEAR SPIN FCR HOMONUCLEAR MCLECULES		NUMBER OF ELECTRONIC LEVELS		REDUCED ATOMIC WEIGHT		
	1.		1.0		10		7.0038		
SPIN COUPL CONST	ING RESUL	UM NUMBER OF TANT ELECTRO TUM ABOUT IN	NIC ANGULAR TERNUC. AXIS	ROTATIONAL CONSTANT DE, 1/CM	ROTATI CONSTA EETA,	NT E	ISSOCIATION NERGY DEZERO, 1/CM	INTERNUC AT EQUIL POSITION	
	00 00	1 0		0.00000000	E-38 C.0000 E-38 C.0000		0.0000000E=38		
ELECTRO Degener	NIC ELECTR			WEXE	WEYE	WEZE	ВЕ		ALPHA E
UPPER STATE 6 LOWER STATE 3 3 3 6 2 2 1 1	5.9626 5.0206 9.932 9.758 9.577 8.914 6.9296 6.394	5000E 04 1.4 7000E 04 6.7 4000E 04 0.6 0000E 04 2.7 7300E 04 2.4 3000E 04 1.4	4603700E 03 7C000C0E 02 CC00C0E-39 18450G0E 03 C351000E 03 56920100E 03 5601000E 03	1.447000E 0 1.389100E 0 C.CCC000E-3 0.000000E-3 1.768000E 0 1.27910CCE 0 1.15000CE 0 1.445600E 0	1 -2.500000 9 C.0000000 9 C.0000000 1 -2.1500000 1 -3.4690000 1 0.000000000	0.0000 0E-39	0000E-39 1.0000E-39 0.000E-39 0.000E-39 1.0000E-39 0.000E-39 0.000E-39 0.000E-39 0.000E-39 1.0000E-39 1.0000E-30 1.0000E-	440000E 00 460000E 00 0000000E-39 000000E-39 8259000E 00 6370000E 00	1.840000E-02 1.300000E-02 0.000000E-39 0.000000E-39 1.970000E-02 2.240000E-02 0.000000E-02 1.5000000E-02 1.870000E-02
				FRANCK-CCNDC	N FACTOR				
	_	2	3	4	5	6	7	. 8	9
1 4.0645E-01 2 1.5746E-01 3 5.C143E-02 4 7.15C5E-C3 5 5.8713E-04 6 2.6156E-C5 7 5.6982E-07 8 4.7221E-C5 9 6.5C75E-12 1C 2.78C2E-15 11 8.1140E-16 12 2.5148E-16 13 5.9625E-17 14 3.4245E-16 15 1.7005E-16 16 5.1720E-17 17 2.C782E-17 18 1.8889E-16	2.1203E-C1 2.9871E-C1 1.3180E-C1 2.7246E-C2 2.9248E-C3 1.6122E-C4 4.1737E-C6 3.9626E-08 6.C552E-11 3.3224E-14 5.0349E-16 1.6620E-17 6.4.4756E-17 6.2.5344E-16 7.4160E-17	1.1320E-C1 3.8683E-C2 2.7381E-C1 2.1065E-O1 6.1481E-C2 8.4620E-O3 5.6752E-C4 1.7188E-C5 1.8482E-C7 3.0349E-10 2.1376E-13 4.3337E-16 4.5421E-16 2.7160E-17 2.2234E-16 2.4354E-17	1.2C48E-03 1.6C45E-03 1.8C65E-01 2.6C54E-01 1.0C50E-01 1.0E50E-02 1.4947E-03 5.24C8E-05 6.3216E-07 1.1C12E-09 1.0512E-12 6.7232E-16 4.1387E-16 4.9038E-17 5.40C9E-16	2.6486E-C2 1.4502E-01 7.7240E-02 3.2267E-02 1.1388E-01 4.7796E-02 8.3053E-C2 2.7061E-01 1.5609E-01 3.4197E-02 3.2741E-03 1.3176E-04 1.7690E-06 3.2357E-09 4.0476E-12 2.8052E-15 6.3948E-17 2.1696E-15	1.3990E-02 8.6473E-02 1.2750E-01 9.0504E-03 8.8227E-02 4.2616E-02 1.9163E-02 2.4380E-01 2.0292E-01 5.5689E-02 6.2985E-03 2.8895E-04 4.2896E-06 8.1628E-09 1.2846E-11 4.5515E-14 2.4366E-15		1.8513E-03 1.9997E-02 7.4955E-02 1.0094E-01 1.7977E-02 3.8289E-02 8.0781E-02 6.7482E-03 1.1586E-01 2.6301E-01 1.2991E-01 2.6301E-01 1.1398E-01 1.7773E-02 1.0436E-05 3.7813E-08 8.5321E-11 4.8996E-13	9.0789E-02 6.3607E-02 1.2208E-06 6.9671E-02 3.6430E-02 7.8622E-02 5.2188E-02 7.2055E-02 2.6878E-01 1.4759E-01 2.7016E-02 1.7849E-03 3.4803E-05 7.2030E-08	2.3477E-C4 3.5891E-O3 2.1815E-O2 6.4061E-O2 6.3468E-C2 2.4543E-O2 1.2893E-O2 7.7327E-O2 8.36C1E-O3 6.7727E-O2 3.7645E-O2 2.87792E-O2 2.8566E-O2 2.5751E-O1 1.8258E-O1 3.9015E-O2 2.8927E-O3 6.1314E-O5 1.2872E-O7 4.3255E-10
VV 1C	11	12	13	14	15	16	17	18	19
V C 8.4C31E-O 1 1.4631E-O 2 1.C529E-C 3 2.5171E-C 4 7.51C6E-C 5 5.E198E-O 6 2.4600E-O 10 8.37C0E-O 11 9.O118E-O 12 1.1C86E-C 13 4.E872E-C 14 2.3145E-C 15 2.154E-C 16 5.3547E-C 17 4.4801E-C 17 4.4801E-C 17 1.4631E-O 17 1.46801E-C 17 4.4801E-C 17 1.4631E-C 17 4.4801E-C 17 1.4631E-C 17 1.4631E	3.0383E-C5 3.5.9070E-C4 2.4.8845E-C3 2.2.1871E-C2 2.7.0564E-C2 2.2.28C59E-C2 2.2.7384E-C3 2.5.7211E-C2 2.3.384E-C3 2.5.7211E-C2 2.7.8966E-O2 2.6171E-C5 3.11561E-C1 1.77329E-C4 1.94432E-C1 2.4432E-C1	1.1135E-C5 2.38C2E-C4 2.2119E-C3 1.1508E-C2 3.5667E-C2 6.3384E-C2 5.2611E-C2 6.4CC3E-C3 1.8520E-C2 5.544E-C2 5.5457E-C2 5.3424E-C3 1.0292E-C1 1.33CE-C2 1.35158E-C1 2.6718E-C1	9.6271E-05 \$.8235E-04 \$.8243E-03 2.1275E-02 4.7545E-02 4.7545E-02 2.9121E-02 8.6772E-05 3.7259E-02 4.6033E-02 6.6872E-02 2.9820E-02 2.9820E-02 7.825CE-02 3.6337E-02 1.6776E-01 2.8246E-01	7.9625E-03 4.8138E-02 2.5442E-02 5.71C4E-03 6.1513E-02 1.0861E-02 5.2260E-02 4.9346E-02 6.3088E-02 6.7723E-02	3.6806E-04 2.2815E-02 4.6325E-02 7.8299E-03 2.0820E-02 5.5268E-02 5.5460E-04 6.8675E-02 2.3488E-02 8.7269E-02	6.7658E-06 8.7217E-C5 6.7625E-04 3.4791E-03 1.2313E-02 2.9867E-02 4.1643E-02 4.1643E-02 3.0276E-03 3.576E-03 3.576E-03 3.576E-03 2.9860E-02 2.9424E-03 2.9424E-03 6.1701E-03	**************************************	***************************************	******** ******** ******* ******* ******

DIATOMIC TRANSITION N2 2+ INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING DATA LOCATION ON TAPE 8

SPECTEGRAPHIC CONSTANTS FROM HERZBERG MORSE FRANCK CONDON FACTORS NBS VOL 65A 1961 P 451. THIS TRANSITION COMPUTED IN SUBPOUTINE ZERO

	LINE ALTERN FACTOR 1.	ATION	NUCLEAR S FCR HOMON MCLECULES 1.0	UCLEAR	NUMBER CI ELECTRON LEVELS 1C		REDUCED ATOMIC WEIGHT		
	CCUPLING				IAL ROTA CONS	TIGNAL TANT • 1/CM	7.0038 DISSOCIATION ENERGY DEZERO, 1/0	AT EQUI	CLEAR DISTANCE LIBRIUM
UPPER STATE LCWER STATE	C.00 42.30	1		0.000000		00000E-38	C.00C0000E-		
		LECTRONIC ERM ENERGY	h E	WEXE	WEYE	WEZE	8	ıE	ALPHA E
UPPER STATE LCWER STATE	6 5 1 9 3 9 2 6 2 6 1 6 3	.9626300E 04 .9327000E 04 .7584000E 04 .577C00CE 04 .929C000E 04 .2943000E 04 .C00C000E 04	2.C351000E 03 1.7341100E 03 6.7C00C00E 02 0.C000C00E-39 2.18450C0E 03 1.6520100E 03 1.5601C00E 03 1.52700C0E 03 1.46C37C0E 03 2.35961C0E 03	1.447000E 0.0000000E 0.000000E 0.C0000CE 1.2791000E 1.190000E 1.3891000E	39 0.00000 39 0.00000 39 0.00000 01 -3.48900 01 0.00000 01 0.00000 01 -2.50000	00E-39	00000E-39 1 00000E-39 0 00000E-39 0 00000E-39 0 00000E-39 1 00000E-39 1	.82590C0E 00 .6380000E 00 .46000C0E 00 .0000000E-39 .6370000E 00 .0000000E-39 .4800000E 00 .4400000E 00	1.970000E-02 1.840000E-02 0.000000E-39 0.000000E-39 2.240000E-02 0.000000E-39 1.500000E-02 1.300000E-02
				FRANCK-CENE	ON FACTOR				
V V	C 1	2	3	4	5	6	7	8	9
0 4.4929 1 3.8896 2 1.3494 3 2.3636 4 2.19C5 5 ***** 6 ***** 8 ****** 10 ***** 11 ***** 12 ***** 14 ***** 15 ***** 16 ***** 17 ***** 18 ***** 19 *****	E-C1 1.8685E E-C1 3.2232E- E-C2 3.5146E E-C2 6.9566E **** *******************************	2 - 0 2 7 6 E - C C C C C C C C C C C C C C C C C C	2 .0027E-01 5 .9570E-02 1 .1812E-01 1 .47523E-02 ************************************	1.6345E-02 1.1238E-01 1.6138E-01 1.8410E-03 1.5698E-01 ************************************	4.7260E-03 4.8391E-02 1.4274E-C1 8.89906E-02 1.4160E-02 ************************************	1.2999E-03 1.7904E-02 8.3030E-02 1.3450E-01 2.938E-02 ************************************	3.4632E-04 6.0242E-03 3.8599E-02 8.9626E-01 9.9550E-02 *********** *********** *********** ****	1.9045E-03 1.5642E-02 6.1610E-02 1.1050E-01 ************************************	2.3327E-05 5.7747E-04 5.7932E-03 2.9799E-02 8.0226E-02 ************************************
vv 1	c 11	12	13	14	15	16	17	18	19
0 5.5777 1 1.7024 2 2.C181 2 1.2816 4 4.C144 5 ******* 8 ****** 10 ****** 11 ****** 12 ****** 13 ****** 14 ***** 15 ***** 16 ****** 17 ***** 18 ***** 19 ******	E-O4 4.9252E- E-C3 6.7377E- E-O2 5.C889E- E-O2 2.2924E- ************************************	C5 1.4075E-C5 C4 2.1835E-C4 C5 1.51C6E-C3 C2 1.0317E-C2 *** *********** *********** **********	3 • SS12E-06 6 • S 9 11E-05 6 • S 9 21E-04 2 • 4 3 2 21E-03 ************************************	2.5535E-C8 1.1265E-O6 2.1688E-C5 2.1668E-C7 1.7309E-O3 7******** ********* ******** ******** ****	6.5466E-09 3.1711E-07 6.72C6E-C6 8.3002E-05 6.6710E-04 ********** ********* ********* *******	1.6780E-CS 8.9119E-CA 2.065CE-C4 2.8101E-C6 2.5045E-C4 ************************************	4.2921E-10 2.5012F-08 6.3413E-07 9.4178E-06 9.2257E-05 ************************************	******	2.7561E-11 1.9548E-09 5.9029E-08 1.0378E-06 1.2065E-05 ********** ********* ********* *******

DIATOMIC TRANSITION N2LBH

INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER
SPECIFYING
DATA LCCATION
ON TAPE
9

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK CONDON FACTORS NBS VOL 65A P 451 1961
THIS TRANSITION COMPUTED IN SUBROUTINE ONE.

	LINE ALTERNATION FACTOR		NUCLEAR SP FCR HOMONU MCLECULES		NUMBER OF ELECTRONIC LEVELS	;	REDUCED ATOMIC WEIGHT 7.0038		
	2.		1.0		10				
SPIN COUPLI CONSTA	NG RESUL	UP NUMBER OF TANT ELECTRO TUP ABOUT IN	NIC ANGULAR TERNUC. AXIS	RCTATIONA CONSTANT DE, 1/CM	L ROTAT CONST BETA,	ANT	DISSOCIATIO ENERGY DEZERO, 1/C	AT EQUI	
UPPER STATE 0.0	0	1		0.0000000			0.00C0000E- 0.7871000E		
LOWER STATE 0.0	0	С		0.0000000	E-38 0.000	0000E-38	0.76720002		
ELECTRON DEGENER				WEXE	WEYE	WEZE		E	ALPHA E
UPPER STATE 2 LCWER STATE 1 1 3 3 6 6 2 1 6 3	0.0000 5.9327 9.7584 9.5770 8.9147 6.2600 5.9626	000E-39 2.3 000E 04 6.3 000E 04 C.0 000E 04 2.1 300E 04 2.6 000E 04 1.5 000E 04 1.5	596100E 03	1.2791000E 0 1.4456000E 0 C.0000000E-3 C.000000E-3 1.768000E 1 1.190000E 0 1.150000E 0 1.447000CE 0 1.3891000E 0	7.510000 9 0.000000 9 0.000000 9 0.000000 11 -2.150000 11 0.000000 11 0.0000000 11 0.0000000000	0E-03 -5.090 0E-39 0.000 0E-39 0.000 0E-39 0.000 0E-39 0.000 0E-39 0.000 0E-39 0.000 0E-39 0.000	0000E-04 2 0000E-39 1 0000E-39 0 0000E-39 1 0000E-39 1 0000E-39 1	.6370000E 00 .0100000E 00 .460000E 00 .0000000E-39 .000000E-39 .8259100E 00 .000000E-39 .4800000E 00 .4400000E 00	2.240000E-02 1.8700000E-02 0.000000E-39 0.000000E-39 1.970000E-39 1.970000E-02 1.500000E-02 1.840000E-02 1.300000E-02
				FRANCK-CCNDO	N FACTOR				
WV C	1	2	3	4	5	6	7	8	9
VV C V 0 4.3147E-C2 1 1.1623E-C1 2 1.7128E-C1 3 1.8348E-O1 4 1.6026E-C1 5 1.2140E-C1 6 8.2871E-C2 7 5.23C4E-C2 8 3.1090E-O2 9 1.7644E-O2 10 9.66C8E-C3 12 2.6637E-C3 13 1.3780E-03 14 6.9562E-O4 15 3.5254E-C4 16 1.7686E-O4 17 ************************************	1.5170E-C1 1.9315E-C1	2.4766-C1 8.C487E-O2 3.276CE-C3 7.5543E-C2 9.66C9E-C2 4.6680E-O2 4.5383E-C3 5.7559E-C3 3.3721E-C2 6.1C52E-C2 7.3781E-C2 7.1626E-C2 4.6253E-O2 3.2962E-C2 2.2268E-C2 1.4443E-O2 ************************************		1.7313E-01 8.7320E-02 6.5983E-02 3.6061E-03 7.7442E-02 5.67C1E-02 2.7951E-03 1.7174E-02 5.3397E-02 5.4846E-02 2.7952E-02 4.5490E-02 3.1418E-02 4.577E-03 1.3577E-03 3.1418E-02 4.5779E-02 ************************************	8.8079E-02 1.8508E-01 8.5541E-04 9.5107E-02 3.7353E-02 8.3644E-03 6.3473E-02 4.6538E-02 4.6538E-03 3.2341E-03 3.2341E-02 4.5179E-02 2.5375E-04 4.2788E-03 1.6781E-02 ************************************	3.3993E-C2 1.7516E-O1 6.4509E-O2 6.5801E-O2 1.6885E-C2 7.8822E-C2 1.4846E-O2 1.2779E-C2 5.4396E-O2 5.9713E-O2 5.0804E-O3 4.9041E-O2 2.8601E-O2 4.2374E-O2 3.4721E-O2 3.4721E-O2 3.4721E-O2 3.4721E-O2 3.4724-V2 4.6705E-C2 3.6705E-O2 4.6705E-O2 4.724-V2 4.7	1.0171E-02 1.0324E-01 1.6401E-01 1.4814E-04 9.6672E-02 7.9121E-03 5.7309E-01 4.7475E-01 1.5872E-01 4.7431E-02 3.4460E-0 2.3212E-0 2.0402E-02 2.0402E-02 3.4144E-0 3.4144E-0 3.4144E-0	4.2495E-02 1.6142E-01 7.8397E-02 2.3.6152E-02 2.5.5021E-02 2.1.0399E-02 2.3.8666E-02 2.9.4200E-04 2.1.7415E-02 3.3.6711E-02 4.1688E-02 3.3.6711E-02 4.1.834E-04 2.1.7834E-04 2.1.7834E-04	4.4536E-04 1.2894E-02 9.4062E-02 1.6324E-01 9.1675E-03 8.5363E-02 2.0104E-03 6.7550E-02 1.7512E-02 1.1738E-02 4.9335E-02 2.5184E-02 2.5184E-02 2.5184E-02 2.8085E-02 7.8066E-03 ************************************
vv 10	11	12	13	14	15	16	17	18	19
V 6.5886E-C5 1 2.5684E-C3 2 3.7178E-C2 3 1.4306E-C1 4 1.0847E-O1 5 7.9576E-C3 6 7.8737E-C2 7 1.5376E-O2	7.74C0E-06 5.2458E-C4 1.C4C3E-C2 7.5175E-02 1.6220E-01 3.9113E-02 5.1442E-C2 3.2C95E-C2 5.3566E-C2 1.2444E-03 4.9046E-02 2.6962E-C2 5.4143E-C4 2.8647E-C2 3.6255E-C2 1.1055E-C2 3.9481E-C4 ************************************	1.1514E-C2 1.8394E-C2 4.5667E-O2 1.C683E-C2 4.5241E-C3 3.C416E-C2 3.0054E-C2 ************************************	3.5553E-02 4.C959E-02 6.3378E-05 3.3C26E-02 3.35C5E-02 2.8417E-03 8.7665E-03 ************************************	3.4393E-02 4.4981E-02 5.290E-03 5.6482E-02 1.2956E-02 7.7462E-03 3.6895E-02 2.1658E-02 ************************************	6.1266E-02 3.2684E-03 3.0547E-02 3.6321E-02 9.0C14E-04 1.7875E-02	1,9606E-09 2,\$740E-07 1,9191E-05 5,8124E-04 8,4426E-03 5,6318E-02 1,4800E-01 8,9062E-02 7,5768E-03 7,6180E-02 4,7036E-03 4,6130E-02 2,6337E-03 4,0621E-03 4,0821E-03 4,7823E-03 4,7823E-03 4,7823E-03 4,7823E-03 4,7823E-03	7.0520E-1 1.5857E-0 1.5250E-0 6.9568E-0 1.5660E-0 1.7212E-0 8.5723E-0 1.5546E-0 4.0354E-0 3.7765E-0 4.6677E-0 1.6466E-0 1.7892E-0 1.7892E-0 2.2493E-0 4.44444444444444444444444444444444444	1 1.8302E-12 6 6.2259E-10 8.9997E-08 6 10654E-06 2.1160E-04 2 3.6717E-03 1.1173E-02 1 1.1640E-01 2 7.2487E-03 12 6.8721E-02 12 1.3531E-02 2 5.4613E-02 2 2.0058E-04 4.3017E-02 1.9805E-02	5.6045E-04 7.6735E-03 5.0917E-02 1.4178E-01 1.0525E-01 1.1699E-03 7.9458E-02 8.1207E-07 5.6134E-02 9.5126E-03 2.0646E-02 ************

DIATOMIC TRANSITION NO B INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING DATA LOCATION ON TAPE 10

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
AVERAGE VALUES FOR PI 1/2 AND PI 3/2 USED IN APPROPRIATE PLACES.
RKR FRANCK-CONDON FACTORS JOSRT VOL 4 P271 UPPER VALUE IN ARRAY USED THIS TRANSITION COMPUTED IN SUBROUTINE ZERO.

	LINE ALTERNATIO FACTOR	CN	NUCLEAR S FCR HOMON MCLECULES	UCLEAR	NUMBER O Electron Levels		REDUCED ATOMIC WEIGHT 7.4688		
	C •		0.0		6		7.4688		
SPIN CCUP CCNS	LING RESI	NTUM NUMBER (ULTANT ELECTI ENTUM ABCUT	CF RONIC ANGULAR INTERNUC. AXI	ROTATION CONSTANT S CE, 1/CM	CONS	TIONAL TANT + 1/CM	DISSOCIATI ENERGY DEZERO, 1/	AT EQUI	UCLEAR DISTANCE ILIBRIUM DN, CM
UPPER STATE 0 LOWER STATE 124	.00 .20	1		0.000000		C0000E-38 C0000E-38	0.0000000E		
ELECTRI Degene		TRONIC Energy Mi	Ε	WEXE	WEYE	WEZE		BE	ALPHÀ E
UPPER STATE 4 LCHER STATE 4 2 2 2 2 2 2	6.055 6.062 5.308 5.214	5000CE 01 1. 28500E 04 2. 33000E 04 2. 48000E 04 2.	.03768COE 03 .9038550E 03 .37360CCE 03 .3270000E 03 .3470000E 03	1.3970000E 1.5850000E 2.300000E	00	00E-03 0.00 00E-39 0.00 00E-39 0.00	00000E-39 00000E-39 00000E-39	1.1270000E CO 1.7046000E 00 1.98630C0E 00 1.99170C0E 00 1.95500C0E 00 1.99520C0E 00	1.5250000E-02 1.7800000E-02 1.8200000E-02 0.0000000E-39 0.0000000E-39 1.6400000E-02
				FRANCK-COND	ON FACTOR				
, vv	1	2	3	4	5	6	7	8	9
0	********* 1.0000E-03 4.0000E-03 1.7CC0E-02 3.2000E-02 4.40C0E-02 5.8C00E-02 6.C000E-02 5.7CC0E-02 4.80C0E-02 3.4000E-02 3.4000E-02 4.80************************************	1.0000E-C3 6.000E-C3 1.8000E-C2 3.8000E-02 5.40CCE-C2 6.9000E-02 3.60C0E-C2 1.9000E-C3 3.00C0E-C3 1.00C0E-C3 3.00C0E-C3 4.40C0E-C3 4	5.0CC0E-03 2.4CC0E-02 4.8CC0E-02 7.6CC0E-02 7.6CC0E-02 3.2CC0E-02 7.0CC0E-03 3.4***********************************	1.7000E-02 5.1000E-02 8.5000E-02 4.3000E-02 4.3000E-03 1.0000E-03 1.0000E-03 1.0000E-03 1.0000E-02 1.0000E-02 1.0000E-02 1.0000E-02 1.0000E-03 1.000E-03 1.0000E-03 1.0000E-03 1.0000E-03 1.0000E-03 1.000E-03	4.1C00E-02 9.7C00E-02 3.8000E-02 1.0000E-03 1.2C00E-02 3.8C00E-02 4.6000E-02 2.7C07E-02 6.0000E-03 ************************************	8.2000F-02 1.1700E-C1 4.700E-C2 4.4700E-C2 5.3000E-02 5.3000E-C2 5.0000E-03 1.8000E-02 3.2000E-02 3.1000E-02 1.1000E-02 4.44444444444444444444444444444444444	8.8000E-0 2.0000E-0 3.3000E-0 6.000E-0 2.4000E-0 *********************************	3 2.1000E-C2 6.8000E-02 2 4.0000E-02 3.1000E-02 2 3.6000E-02 2 1.4000E-02 2 ***********************************	1.6700F-01 ******** 7.3000E-02 4.2000E-02 3.0000E-03 4.6000E-02 1.3000E-03 1.3000E-02 2.7000E-02 2.7000E-03 3.0000E-03 3.0000E-03 ********** ********** ********** ******
. VV 1C	11	12	13	14	15	16	17	18	19
C 1.5200E-01 1 2.1000E-02 2 8.2000E-02 3 1.C000E-03 4 3.5000E-02 5 3.7000E-02 7 2.2000E-02 8 3.5C00E-02 9 1.8C00E-02 10 ************************************	1.1400E-01 7.4000E-02 4.10CCE-02 2.4000E-02 5.4CC0E-02 1.8000E-02 2.5000E-02 4.00C0E-02 2.0000E-03 2.40C0E-02 2.6CCCE-02 1.0000E-03 *********** *********** ************	7.6CC0E-C2 1.2600E-C1 ********** 7.2000E-C2 2.5000E-C2 4.3CC0E-C2 2.0000E-C3 1.7CC0E-C2 1.4000E-C2 ********** ********** ********** ******	3.3CCOE-02 1.39COE-01 1.8ECCE-C2 5.4000E-02 5.2CCOE-02 2.0CCOE-02 2.7CCOE-02 2.7CCOE-03 1.4CCOE-03 3.2CCCE-03 3.2CCCE-03	1.6000E-02 1.0500E-01 8.200CE-C2 9.0000E-03 6.6000E-02 1.4000E-02 3.4000E-02 3.4000E-02 2.7000E-02 8.0000E-03 ************************************	7.COCOE-O3 6.8000E-O2 1.26C0E-O1 1.3000E-O2 5.CC00E-O2 5.CC00E-O2 ************************************	2.0000E-03 2.8000E-02 1.2400E-01 8.6000E-02 5.0000E-03 3.1000E-02 2.2000E-02 2.2000E-02 2.2000E-02 1.0000E-03 ************************************	******* 1.2000E-0 7.7C00E-0 1.3400E-0 5.0000E-0 4.2000E-0 ******** 2.000E-0 3.1000E-0 ******** ******** ********* ******	2 4.0000E-03 2 5.00C0E-02 1 1.1500E-01 2 7.7C00E-02 3 0000E-03 6 .20C0E-02 2 1.00C0E-03 3 2.50C0E-02 2 2.20C0E-02 3 .0000E-03 3 2.50C0E-03 3 2.50C0E-03 4 ************************************	********* 1.0000F-03 1.0000F-02 6.9000E-02 1.2900E-02 4.0000E-02 3.2000E-02 8.0000E-03 4.1000E-02 6.0000E-03 2.2000F-02 *********** ********** ********** *****

DIATOMIC TRANSITION NO G INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
3

NUMBER SPECIFYING DATA LUCATION ON TAPE 11

SPECTEGRAPHIC CCNSTANTS FROM HERZBERG AVERAGE VALUES OF PI 1/2 AND PI 3/2 IN APPROPRIATE PLACES. RKR FRANCK CONCON FACTORS JOSRT VOL 4 P271 1964 THIS TRANSITION COMPUTED IN SUBROUTINE S2 PI2

AL	NE TERNATION CTOR	NUCLEAR SP FCR HOMONUM MOLECULES		NUMBER OF ELECTRONIC LEVELS		REDUCED ATOMIC WEIGHT		
	0.	0.0		6		7.4688		
SPIN COUPLING CONSTANT	QUANTUP NUMBE RESULTANT ELE POMENTUP ABCU	R CF CTRCNIC ANGULAR T INTERNUC. AXIS	ROTATIONAL CONSTANT DE, 1/CM	ROTATI CONSTA EETA,	NT E	ISSCCIATION NERGY EZERO, 1/CM	AT EQUIL	
UPPER STATE C.00 LOWER STATE 124.20	C 1		0.0000000	E-38 C.0000 E-38 O.0000		.00C0000E-3 0.5240000E 0		
ELECTRONIC Degeneracy	ELECTRONIC TERM ENERGY	k E	WEXE	WEYE	WEZE	ВЕ		ALPHA E
UPPER STATE 2 LCWER STATE 4 2 2 2	4.3965700E 04 6.0550000E 01 6.0628500E 04 5.3083000E 04 5.2148000E 04 4.5932400E 04	2.37130CCE 03 1.9C38550E 03 2.3736CCCE 03 2.3270000E 03 2.34700COE 03 1.03768COE 03	1.448000CE 0 1.3970000E 0 1.58500CCE 0 2.3000000E 0 0.000000E-3 7.6C300COE 0	1 -1.2000000 1 0.0000000 1 0.0000000 9 0.0000000	E-03 0.0000 E-39 0.0000 E-39 0.0000 E-39 0.0000	0000E-39 1. 0000E-39 1. 0000E-39 1.	9952000E 00 7046000E 00 58630C0E 00 9917000E 00 95500C0E 00 127000CE 00	1.640000E-02 1.780000E-02 1.82C00CE-02 0.000000E-39 0.000000E-39 1.525000E-02
			FRANCK-CCNCC	N FACTOR				
		-			6	7	8	9
1 3.6700E-01 5. 2 2.750E-01 8. 3 9.9000E-02 4. 4 2.600E-02 1. 5 5.000E-03 7. 6 2.0000E-03 1. 7 ************************************	1 2 2.1800E-01.6CC0E-02.7CC0E-02.7C00E-01.74C0E-02.7C00E-02.7C00E-02.7C00E-03.3.0000E	-C2 1.3300E-01 -C1 1.5C00E-02 -C3 1.1200E-01 -C1 5.3CC0E-02 -C1 2.34C0E-01 -C2 1.92C0E-01 -C3 6.CC0E-02 *** 1.66C0E-02 *** ********** *** ********* *** ******	4 6.5000E-02 1.6000E-01 2.0000E-02 2.0000E-02 2.0000E-03 1.4900E-01 2.2100E-01 1.1000E-01 1.1000E-03 1.0000E-03 1.0000E-03 1.0000E-03 1.	5 2.8000E-02 1.2600E-01 9.2C00E-02 ********** 1.0900E-01 1.8000E-02 2.3000E-01 1.3900E-02 1.3900E-02 1.3900E-02 1.3900E-02 1.3900E-02 1.3900E-02 1.3900E-02	6 1.0C00E-02 7.0000E-02 1.2500E-01 2.6000E-02 5.6000E-02 2.2000E-02 4.9000E-02 6.0000E-03 1.7900E-01 9.3000E-01 9.3000E-03 *********** ************************	3.0000E-03 3.4000E-02 1.0600E-01 8.5000E-02 2.6000E-02 2.6000E-02 2.5000E-02 1.0600E-03 1.2300E-01 2.0400E-01 2.0400E-01 2.0400E-01 4************************************	2.00C0E-03 1.3000E-02 6.10C0E-02 1.0100E-02 2.1000E-02 9.2000E-02 5.0000E-03 9.2000E-02 3.0000E-02 2.60C0E-02 4.000E-02 6.2000E-02 ************************************	1.0000E-03 2.8000E-02 8.3000E-02 8.3000E-02 8.3000E-02 1.8000E-02 1.8000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02 1.6000E-02
10	11 12	13	14	15	16	17	18	19
1 3.0000E-C3 1 2 1.4000E-C2 3 6.CC00E-C2 4 8.5000E-C2 6 5 2.5000E-C2 6 6 *********** 7 6.8C00E-C2 3 8 1.1000E-O2 5 9 3.4000E-O2 5 10 5.3000E-C2 12 2.5000E-C2 12 4.5000E-C2 12 4.5000E-C2 13 ***********************************	11 12 ******** .0000E-03 4.0000 .7000E-02 7.5000 .7000E-02 8.5000E-02 1.7000 .3000E-02 1.7000 .3000E-02 2.0000 .3000E-02 2.0000 .3000E-02 2.0000 .4000E-02 6.5000 .3400E-02 2.0000 .4000E-02 2.0000 .4000E-02 2.0000 .4000E-02 4.1000 .4000E-03 4.0000 .4000E-03 4.00	**************************************	********* ******** *****		********	4.4000E-02 3.4000E-02 ************ 1.7000E-03 3.2000E-02 ********** ************ ************	********** ********** ********* *****	********* ******** ******* ******* ****

DIATOMIC TRANSITION COASDI INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER. SPECIFYING DATA LOCATION ON TAPE 12

COASDI STANDS FOR CO ASUNCI BANDS.
SPECICGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONDON FACTORS BY JARMAIN, FRASER, AND NICHCLLS
ASTROPHYS J 122,55, (1555)
THIS TRANSITION COMPUTED IN SUBROUTINE ONE.

NE TERNATION CTOR	NUCLEAR SPIN FOR HOMONUCLEAR MCLECULES		NUMBER OF ELECTRONIC LEVELS 12		REDUCED ATOMIC WEIGHT 6.8584		
· .	0.0		12		6.8584		
RESULTANT ELECT	RENIC ANGULAR	CONSTANT	CONST	TANT	ENERGY	AT EQUI	
0 1							
ELECTRONIC TERM ENERGY W	E	WEXE	WEYE	WEZE	В	E	ALPHA E
4.8687550E 04 1 5.9805000E 04 2 9.3157800E 04 2 9.2928000E 04 2 5.1926000E 04 2 6.6948000E 04 2 8.3804000E 04 2 6.5074800E 04 1 6.2299400E 04 1	.7392500E 03 .1120000E 03 .0C00000E-39 .1340000E 03 .1330000E 03 .0C000000E-39 - .08207C0E 03 .15800C0E 03 .15156100E 03	1.447000E (1.980000E (0.000000E-2 (0.000000E-2 (0.000000E-2 (0.000000E-2 (0.000000E-2 (1.7250500E (7.6240000E (01 0.000000 02 0.000000 03 0.000000 03 0.000000 03 0.000000 03 0.000000 03 0.000000 04 0.000000 05 0.000000 06 0.0000000 07 0.0000000 08 0.000000000 08 0.0000000000000000000000000000000000	00E-39	00000E-39 1 00000E-39 0 00000E-39 1 000000E-39 1 00000E-39 1 00000E-39 1 00000E-39 2 00000E-39 1	.6810000E 00 .0000000E-39 .95630C0E 00 .0000000E-39 .9422000E 00 .0000000E-39 .9610000E 00 .07500CCE 00 .61160C0E 00 .2615000E 00	1.600000E-02 1.930000E-02 0.000000E-39 0.000000E-39 0.000000E-39 -0.000000E-39 2.700000E-29 2.700000E-02 1.700000E-02 1.700000E-02
	ı	FRANCK-CONEC	N FACTOR				
1 2	3	4	Ē	6	7	8	9
0CE-C1 2.42C0E-C1 00E-O1 9.70C0E-O2 0CE-O1 5.00C0E-O2 0CE-O2 5.00C0E-C2 0CE-C2 2.40C0E-C2 0CE-C1 1.00C0E-C2 0CE-C2 2.30CCE-C2 0CE-C2 2.30CCE-C2 0CE-C2 5.00C0E-C2 0CE-C2 5.00C0E-C2 0CE-C2 4.10C0E-C2 0CE-C2 5.50C0E-C2 ****** ******************************	*********	********** ******** ******* ******* ****	********** ********* ******** ******	********	********	*******	******** ******* ******* ****** ****
****** ****** ****** ****** ****** ****	***************************************	********** ********* ******** ******	********** ******* ****** ***** ****	16	17 ********* ******** ******* ******* ****	18	19
	TERNATION: TOR QUANTUM NUMBER RESULTANT ELECT MUMENTUM ABCUT ELECTRONIC TERM ENERCY W 5.59C10CCE 04 1 4.8687550E 04 1 5.98C5000E 04 2 9.315780CE 04 2 9.315780CE 04 2 9.315780CE 04 2 8.6948000E 04 2 8.38C400E 04 1 6.2299400E 04 1 C.CCC0000E-39 2 1 2 CEE-C1 2.432C0E-C1 00E-02 5.00C0E-02 00E-03 5.00C0E-02 00E-02 5.00C0E-02 00E-03 5.00C0E-02 00E-04 5.00C0E-02 00E-05 5.00C0E-02 00E-05 5.00C0E-02 00E-06 5.00C0E-02 00E-07 5.00C0E-02 00E-08 5.00C0E-02 00E-09 5.00C0E-02 00E-09 5.00C0E-02 00E-01 5.00C0E-02 00E-02 5.00C0E-02 00E-03 5.00C0E-02 00E-03 5.00C0E-02 00E-03 5.00C0E-02 00E-03 5.00C0E-02 00E-04 5.00C0E-02 00E-05 5.00C0E-02 00E-05 5.00C0E-02 00E-06 5.00C0E-02 00E-07 5.00C0E-02 00E-08 5.00C0E-02 00E-09 5.00C0E-02	TRATION FCR HOMONU MCLECULES	TERNATION FCR HOMONUCLEAR MCLECULES 0.0 QUANTUM NUMBER OF RESULTANT ELECTRONIC ANGULAR CONSTANT DE, 1/CM Q 0.00000000 ELECTRONIC TERM ENERGY WE WEXE 5.59C10CCE 04 1.2180000E 03 9.5C000000E 04 2.1120000E 03 1.4470000E 05 9.315786CE 04 0.C000000E-39 0.0000000E-39 9.315786CE 04 2.133000E 03 0.C000000E-39 0.SC90000E-39 0.SC9000E-39 0.SC900E-39 0.SC9000E-39 0.SC9000E-39 0.SC9000E-39 0.SC9000E-39 0.SC900E-39 0.S	ERNATION	ERNATION FCR HOMONUCLEAR LEVELS	EENATION FOR PRODUCCION STATE CONTINUE STATE CONTIN	READTICK FCH HOMONUCLEAR ELECTRONIC LEVELS LEVE

DIATOMIC TRANSITION C2PHIL INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER SPECIFYING DATA LCCATION ON TAPE 13

C2PHIL STANDS FOR C2 PHILLIPS BANDS.
SPECTOGRAPHIC CONSTANTS FROM BALLIK AND RAMSAY ASTROPHYS J 137 1963 P84.
RKR FRANCK-CONDON FACTORS JQSRT VOL 5 1965 P 165.
TRANSITION COMPUTED IN SUBROUTINE CNE.

	LINE ALTERNATION FACTOR	N	NUCLEAR SP FOR HOMONU MCLECULES		NUMBER OF ELECTRONIC LEVELS 10			REDUCED ATOMIC WEIGHT 6.0019			
SPIN CCUPI CCNS	LING RESU	TUM NUMBER CF LTANT ELECTRO NTUM ABGUT II	=	ROTATIONA CONSTANT DE+ 1/CM	CO	TATIONAL NSTANT TA, 1/CM	E	ISSOCIATI NERGY EZERO, 1/		INTERNUC AT EQUIL POSITION	
	.00 .00	1 C		0.0000000		0000000E-3 0000000E-3	-	.4130000E		C.131843 0.124253	
ELECTR Degene		RONIC ENERGY WE		WEXE	WEYE		WEZE		BE		ALPHA E
UPPER STATE 2 LCWER STATE 1 1 1 6 2 6 3 3 3	8.391 0.000 5.503 4.324 4.079 3.426 2.002 1.331 6.434	COCCE 03 1.0 0000E-39 1.4 4600E 04 1.0 0230E 04 1.6 655CE 04 1.2 190CE 04 1.2 250CE 04 1.2 2100E 04 1.2	6C83500E 03 8547100E 03 6715000E 03 82957C0E 03 1065600E 03 8C91000E 03 7882200E 03 9616000E 03 47045C0E 03 64135C0E 03	1.2078000E 0 1.334000E 0 4.CC2000E 0 1.397000E 0 3.92600CE 0 1.5810000E 0 1.644000E 0 1.119000E 0	01 -1.720 01 2.460 01 0.000 01 2.805 01 +4.020 01 -5.067 01 0.000	0000E-01 0000E-01 0000E-39 0000E 00 0000E-01 0000E-39	0.0000 0.0000 0.0000 0.0000 0.0000	000E-39 000E-39 000E-39 000E-39 0000E-39 0000E-39 000E-39 000E-39	1.8198 1.7930 1.8334 1.1922 1.7834 1.7527 1.8700 1.4985	4400E 00 4400E 00 0000E 00 0000E 00 0000E 00 0000E 00 0000E 00 0000E 00 6200E 00	1.6880000E-02 1.7650000E-02 4.210000E-02 2.040000E-02 2.420000E-02 1.800000E-02 0.000000E-02 0.000000E-39 1.634000E-02 1.66610000E-02
				FRANCK-CCND	EN FACTOR	ł					
vv c	1	2	3	4	5		6	7		8	9
0 4.1570E-C1 1 3.3580E-C1 2 1.5510E-O1 3 5.850GE-O2 4 2.01C0E-O2 5 6.E00CE-O3 6 2.3000E-C2 7 8.00C0E-O4 8 3.CC00E-C4 9 1.0C00E-C4 10 ********** 11 ********* 12 ********* 14 ******** 15 ******** 16 ******** 17 ******** 18 ******** 19 ********	7.2000E-03 1.7600E-01 1.9520E-01 1.2160E-01 1.2160E-01 2.5600E-02 3.6000E-02 3.6000E-03 ********** ********** ********** ******	1.5360E-01 2.9450E-01 5.35C0E-02 3.5200E-02 1.3570E-01 9.56CCE-02 2.3500E-02 2.3500E-02 2.3500E-03 ************************************	3.0200E-02 2.6170E-01 1.2380E-01 1.4360E-01 1.00C0E-02 1.1860E-01 1.1350E-01 7.67C0E-02 4.23C0E-02	3.2000E-03 8.4800E-02 2.5440E-C1 1.6700E-02 1.6310E-01 3.8600E-02 7.8000E-02 1.0850E-C1 9.6600E-02 1.0850E-C1 9.6600E-02 4.0850E-C1 9.6600E-02 4.0850E-C1 9.6600E-02 4.0850E-C1 9.6600E-02 4.0850E-C1 9.6600E-03 4.0850E-C1 9.6600E-03 4.0850E-C1 9.6600E-03 4.0850E-C1 9.6600E-03 4.0850E-C1 9.6600E-03 4.0850E-03	2.0CCOE- 1.4100E- 2.4820E- 7.4000E- 1.1550E- 8.75COE- 2.5COOE- 2.5COOE- 2.5COOE- 2.64COE- ********* ********* ******** ********	1.4000 -01 2.6301 -03 1.4430 -01 2.66001 -02 4.4901 -03 1.1481 -02 2.8701 ***** ***** ***** ***** ***** ***** ****	0E-03 0E-02 0E-01 0E-01 0E-02 0E-02 0E-03 0E-03 0E-03 0E-03 0E-03 0E-04 0E-03 0E-04 0E-04 0E-04 0E-04 0E-04 0E-05 0E	******** 5.6000E 7.3100E 4.6800E 1.2680E 2.3000E 9.9000E ******** ******** ******** ******** ****	04 *** 03 1 02 1 02 2 01 1 02 2 02 2 03 1 04 *** 05 *** 06 *** 07 *** 07 *** 08 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 *** 09 ** 00 *	********* ******* ******** ******** ****	********* 2.00C9E-04 3.63C9E-C2 1.6580E-O1 1.5560E-O1 1.1800E-O2 1.2020E-O1 4.53C0E-C2 ********* ******** ******** ******** ****
vv 1c	11	12	13	14	15		16	17		18	19
V O ******** 1 ******** 2 ******** 3 7.0000E-0 4 8.90CCE-0 5 6.60CE-0 6 1.5520E-0 7 9.0600E-0 8 5.01CCE-0 9 7.57C0E-0 10 ********* 12 ********* 13 ******** 14 ******** 15 ******** 16 ******** 17 ******** 18 ******** 19 ********	* ********** 4 ********* 4 ********* 1 **********	*********	********* ******** ******* ******* ****	********	*******	***************************************	*****	**********	************************	**************************************	******* ******* ****** ***** ***** ****

DIATOMIC TRANSITION O2 SR INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING DATA LOCATION ON TAPE 14

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONCON FACTORS BY JARMAIN, FRASER, AND NICHOLLS 1954
ASTROPHYS J 122, 55 (1955)
TRANSITION COMPUTED IN SUBROUTINE ZERO.

		LINE ALTERNATION FACTOR 1.			NUCLEAR S FOR HOMON MOLECULES	NUCLEAR	NUMBER ELECTRO LEVELS		REDUCE ATOMIC WEIGHT	D	
			1.		0.0		5		8.0000		
		SPIN CCUPL CCNST	ING RESU		R CF CTRENIC ANGULAR T INTERNUC. AXI		T CON	ATICNAL STANT A, 1/CM	DISSECTAT ENERGY DEZERO, 1.	AT EQL	UCLEAR DISTANCE ILIBRIUM ON, CM
	STATE STATE	C .		c		0.00000		000000E-38	0.1430000		C00E-07 398E-07
		LECTRC EGENER		RONIC ENERGY	WE	WEXE	₩EYE	WEZ	!E	BE	ALPHA E
UPPER LOWER	STATE STATE	3 3 1 2	0.000 3.609 1.319	221CCE 04 00000E-39 860CCE 04 95220E 04 810CCE 03	7.CC36CCCE 02 1.5803610E 03 8.19000GOE 02 1.4326870E 03 1.5C93CCOE 03	1.2073000E 2.250CCC0E	01 5.4600 01 0.0000 01 -1.0750	000E-02 0.0		8.19000C0E-C1 1.4456660E 00 1.05000C0E 00 1.4004160E 00 1.42640C0E C0	1.5791000E-02 0.0000000E-39 1.8170000E-02
						FRANCK-CCN	DCN FACTOR				
v	vv	С	1	2	3	4	5	6	7	8	9
1 2 3 4	2.69C0 1.64C0 6.94C0 2.2800	DE-C8 DE-C7 DE-C7 DE-C6 DE-C6 DE-C5 DE-C5 DE-C5 DE-C4	6.2500E-08 6.6400E-07 3.6900E-06 1.4300E-05 4.3200E-05 2.3700E-04 4.6200E-04 4.6200E-03 2.0200E-03 2.8900E-03	8.1200E-(7.84C0E-(5.61C0E-(1.35C0E-(3.80C0E-(3.80C0E-(3.00C0E-(4.8CC0E-(7.07C0E-(1.72C0E-(1.25C0E-(1.25C0E-(C	**********	*******	* * * * * * * * * * * * * * * * * * *	* ******** * ******** * ******* * ******	**	*********
12 13 14 15 16 17 18	4.1600 5.8800 7.9500 1.0400 *******	DE-04 DE-C4 DE-C4 DE-C3 *****	3.940CE-C3 5.13CCE-O3 6.42OOE-O3 7.74COE-O3 *********** **********	1.54C0E-(1.82C0E-(2.C4C0E-(2.22C0E-(************************************	C2	*********** ********* ******** ******		* ********** * ********* * ******** * ******	* ********* * ******** * ******** * ******	** ************************************	********* ********* ********* *******
V		. C	11	12	13	14	15	16	17	18	19
0 1 2 3 4 5	*****	****	********** ******** ******* ******* ****	*******	**	********* ********* ******** ********	******	* ******** * ******** * ******** * *******	* ************************************	**	********* ******** ********* ******
7 8 9 10 11	*****	****	********* ********* ******** ******	***********	*********	********* ******** **********	******	* ******** * ******** * *******	*	** *********	********* ******** ******* ******* ****
13 14 15 16 17		**** **** ****	*********	**************************************	*********	******	******	* ******** * ******** * *******	* *********************	* ********************************	******** ********* ******** *******
	*****		*******	******		*******	******			* *******	******

DIATOMIC TRANSITION CH4300 INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
2

NUMBER SPECIFYING DATA LOCATION CN TAPE 15

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CCNDCN FACTORS JCSRT VOL 4 P283 1964
TRANSITICN COMPUTEC IN SUBROUTINE CNE.

	LINE ALTERNATION FACTOR		NUCLEAR SP FOR HOMONU MOLECULES					REDUCED ATOMIC WEIGHT C.9300	•	
	C .		0.0			4		0.7500		
SPIN CCUPI CCNST	ING RESUL	UM NUMBER CF TANT ELECTRG TUM ABCUT IN	NIC ANGULAR TERNUC. AXIS	ROTATIONA CONSTANT DE, 1/CM	L	ROTATIONA CONSTANT BETA, 1/0		DISSCCIATI ENERGY CEZERO, 1/	AT EQU	UCLEAR DISTANCE ILIBRIUM DN. CM
	.00	2 1		0.0000000		c.0000000		0.00000000 0.28000000		600E-07 800E-07
ELECTRI Degenei				WEXE	WEY	r E	WEZE		ВЕ	ALPHA E
UPPER STATE 4 LCWER STATE 4 2 2	0.0CC0 3.1821	000E-39 2.8	616000E 03	9.0400000E (6.430000CE (1.05800CCE (3.7380000E (0.0	000000E- 0000000E- 000000E-	39 0.000 39 0.000	00000E-39 00000E-39 00000E-39	1.4912000E 01 1.4457000E 01 1.46290C0E 01 1.28870C0E 01	5.34C0000E-01 7.44C00C0E-01
				FRANCK-COND	'N FAC	TER				
vv c	1	2	3	4	.,	5	6	7	8	9
V C 9.9960E-01 1 2.0000E-04 2 ********** 3 ********* 4 ********* 5 ********* 7 ******** 8 ********* 10 ********* 11 ********* 12 ********* 14 ********* 15 ********* 16 ********* 17 ********* 18 ********* 19 *********	9.9860E-01 1.0000E-04 ********** ********* ********* *******	********* 1.000E-04 9.5470E-C1 3.2000E-C3 ********* ******** ********* ********	********* 2.8CCOE-C3 5.8150E-01 1.4600E-02 ********** ********* ********* ****	********* 1.0000E-04 ********** 1.3100E-02 9.2530E-01 1.2800E-02 1.2800E-02 1.280******** ********** ********** ********	****	*****	**************************************	*******	**	**************************************
VV 1C V O ********* 1 ********* 2 ******** 3 ********* 4 ******** 5 ******** 6 ******** 7 ******** 9 ******** 10 ******** 11 ******** 12 ******** 14 ******** 15 ******** 16 ********* 17 ******** 18 ********* 18 *********	**************************************	12 ******** ******* ******* ******* ******	13	14 ******** ******* ****** ****** ****	******	******* ****** ******* ******* ******* ****	16	********* ********* ********* ******	*** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** **	* * * * * * * * * * * * * * * * * * *

DIATOMIC TRANSITION CH3900 INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
3

NUMBER SPECIFYING DATA LOCATION ON TAPE 16

SPECICERAPHIC CONSTANTS FROM HERZBERG MORSE FRANCK-CONDON FACTORS JCSRT VOL 4 P283 1964 TRANSITION COMPUTEC IN SUBROUTINE S2 P12.

		LINE ALTERNATIO FACTOR	Ň.	NUCLEAR SF FOR HOMONU MCLECULES		NUMBER GF ELECTRONI LEVELS	с	REDUCED ATOMIC WEIGHT		
		0.		0.0		4		C.9300		
	SPIN CCUPL CCNST	ING RESU		CF RONIC ANGULAR INTERNUC. AXIS	ROTATION CONSTANT DE, 1/CM		ANT	DISSOCIATION ENERGY DEZERO. 1/C	AT EQUI	
UPPER :			c 1		C.00C000		0000E-38 0000E-38	C.0000000E- 0.2800000E		
	ELECTROI Degener		RONIC Energy We	E	WEXE	WEYE	WEZE	В	E	ALPHA E
UPPER :		0.000 3.182	0000E-39 2.	.54250CCE C3 .8616000E O3 .8241CCOE O3 .9210000E O3	3.7380000E 6.4300000E 1.C580000E 9.C400000E	01 0.000000 02 0.000000	0E-39 C.000	0000E-39 1 0000E-39 1	.2887000E 01 .4457000E 01 .4629000E 01 .4912000E 01	4.8500000E-01 5.3400000E-01 7.4460000E-01 6.7000000E-01
					FRANCK-COND	ON FACTOR				
,	vv c	1	2	3	4	5	6	7	8	9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	5.9370E-C1 1.2000E-03 1.2650E-C1 8.1100E-02 7.000E-02 7.2830E-02 7	6.0000E-04 2.1760E-01 1.660E-02 2.1740E-01 1.650CE-02 1.6100E-01 ************************************	1.6910E-C1 1.6770E-02 4.CC0E-C4 1.2000E-C3 5.76CCE-C2 2.15C0E-C2 ************************************	5.25COE-02 1.1160E-01 1.62CCE-02 7.45COE-02 1.04COE-02 1.04COE-03 5.13COE-02 ************************************	8.00C0E-03 1.3970E-01 1.8C00E-03 3.8900E-02 7000E-03 3.8900E-02 7000E-03 7000E-03 7000E-03 7000E-03 7000E-03 700E-02	5.5700E-02 6.8000E-03 4.5200E-03 4.9000E-03 ************************************	3.3100E-02 4.5700E-02 2.4400E-02 3.9000E-03 ************************************	1.700E-03 1.1270E-01 6.9000E-04 7.9100E-02 *********** *********** **********	******** ******* ******* ******* ******	********* ******** ******* ****** ****
V C C 1 2 2 3 4 4 5 5 6 6 7 8 8 9 10 11 12 13 11 15 16 17 18	VV 1C	11	12 ********* ******* ******* ******* *****	13	14	*********	16 ******* ******* ******* ****** ****** ****	17		19 ******** ******* ******* ******* ******

DIATOMIC TRANSITION BEOB-X INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
1

NUMBER SPECIFYING CATA LOCATION ON TAPE 17

SPECTCGRAPHIC CONSTANTS FROM HERZBERG.
MORSE FRANCK CONCON FACTORS JOSRT VOL 7 P639 1967.
VALUES USED WERE THE AVERAGE OF THOSE FOR THE P AND R BRANCHES FOR J=20.
THIS TRANSITON COMPUTED IN SUBROUTINE ZERG.

		LINE ALTERNATIO FACTOR	N	NUCLEAR SE FCR HCMONU MCLECULES		NUMBER OF ELECTRONI LEVELS		REDUCED ATOMIC WEIGHT		
		0.		0.0		5		5.7661		
	SPIN CGUPL CCNST	ING RESU		OF RONIC ANGULAR INTERNUC. AXIS	RCTATION CONSTANT S DE, 1/CM	CONST	ICNAL ANT 1/CM	DISSCCIATION ENERGY DEZERO, 1/0	AT EQUI	CLEAR DISTANCE LIBRIUM N. CM
UPPER LOWER	STATE C.		c o		0.000000		0000E-38 0000E-38	0.0000000E 0.2990000E		
	ELECTRC Degener		RONIC ENERGY N	E	WEXE	WEYE	WEZE	ŧ	BE	ALPHA E
UPPER LCWER		0.000 4.136 3.912	0000E-39 1 5000E 04 1 0100E 04 1	.3708170E 03 .4873230E 03 .C160C00E 03 .C815000E 03 .1442380E 03	7.7455000E 1.18297C0E 1.CCC00C0E 9.1C000C0E 8.41450C0E	C1 C.OCOOOO OC C.OOOOOO	0E-02 0.000 0E-39 0.000 0E-39 0.000	00000E-39 0000CE-39 00000E-39	1.57580C0E 00 1.65100C0E 00 0.C0C00CCE-39 1.3C8C0O0E 00 1.3661CCOE 00	1.5400000E-02 1.9000000E-02 0.000000E-39 1.000000E-02 1.6280000F-02
					FRANCK-COND	ON FACTOR				
	vv 0	1	2	3	4	5	6	7	8	9
V 0 0 1 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 1 0 1 1 1 1 2 1 3 1 1 4 1 5 5 1 6 1 7 1 8 8 1 9	8.9250E-C1 1.C085E-01 7.4500E-C3 ************************************	1.0450E-C1 7.0975E-01 1.665CE-C1 1.6750E-02 ************************************	4.15CCE-C3 1.8030E-C1 5.7450E-C1 2.0025E-C1 3.1550E-C2 *********** ********** ********** *****	1 . 0 2 C 0 E - 0 2 2 . 3 5 4 5 E - 0 1 4 . 7 4 8 0 E - 0 1 2 . 3 2 1 0 E - C 1 ************************************	********* 1.6850E-C2 2.76CCE-C1 ********* ******** ******** ******	*********	*********	*******	* * * * * * * * * * * * * * * * * * *	*********
٧	VV 10	11	12	13	14	15	16	17	18	19
0 1 2 3 4 5	*****************	********	*********	**********	********** ********* ********* ******	********** ******** ******** *******	********	*******	* ********* * ********* * ******** * ********	********* ******** ******** ********
6 7 8 9 10 11	******	********	*********	* ********** * ********* * *********	******** ********* ********* ******	********* ********* **********	********* ********* ********* *******	*******	* ************* * ********* * ********	********* ******** ******* ********
12 13 14 15 16 17	*********	********	********	* ******** * ******** * ******** * ********	********* ******** ******** ********	******** ******** ********* ********	********** ******** ******** *******	********* ******** ******* ********	* ********* * ******* * ******* * ******	******** ********* ******** ********
19	******	*******	******	*******	*****	******	*******	******	* *******	******

DIATOMIC TRANSITION CO+ CT INDEX NO.
SPECIFYING
SUBROUTINE
USED IN CALC.
3

NUMBER
SPECIFYING
DATA LCCATION
GN TAPE
18

SPECTROSCOPIC CONSTANTS FROM HERZBERG.
MORSE FRANCK-CONCON FACTORS BY JARMAIN, FRASER, AND NICHOLLS 1954
ASTROPHYS J 122, 55 (1955)
THIS TRANSITION COMPUTED IN SUBROUTINE S2 PI2.

		LINE ALTERNATI FACTOR	CN	NUCLEAR SI FOR HOMONI MGLECULES		NUMBER ELECTRO LEVELS		REDUCED Atomic Weight		
		0.		0.0		3		6.8582		
	SPIN CCUPI CCNS	LING RES		OF TRCNIC ANGULAR INTERNUC. AXI	RGTATION CONSTANT S DE, 1/CM	CON	ATIONAL ISTANT A, 1/CM	DISSOCIATI ENERGY DEZERO, 1/	AT EQUI	UCLEAR DISTANCE ILIBRIUM CN, CM
	STATE 125	.00 .00	1 C		0.000000		000000E-38	C.0000000E		
	ELECTRO Degener		TRONIC ENERGY	wE	WEXE	WEYE	• WEZE	<u> </u>	BE	ALPHA E
	STATE 4 STATE 2 2	0.00	C0000E-39	1.5620600E 03 2.2142400E 03 1.7341800E 03	1.5164000E	01 -7.0000	000E-02 0.00 000E-04 0.00 000E-01 0.00	00000E-39	1.58940C0E 00 1.9772000E 00 1.79992C0E 00	1.9420000E-02 1.8960000E-02 3.0250000E-02
					FR ANCK-COND	ON FACTOR				
u	vv 0	1	2	3	4	5	6	7	8	9
1 2 2 3 3 4 5 6 6 7 7 8 8 9 100 11 12 13 14 15 16 17 18	4.2000E-02 1.300E-C1 1.66CCE-01 1.5900E-01 1.5900E-01 8.50CCE-02 5.5000E-02 3.4C00E-02 3.4C00E-02 ************************************	1.4900E-C1 1.9100E-C1 7.9C00E-C2 4.0000E-C2 4.1000E-C2 *********** ********* ********* ******	8.30C0E-C: 7.1000E-C: 9.60C0E-C: 5.10C0E-C: *********** ********** ********** *****	2 ********** 1.04CCE-01 2 7.2CCCE-02 2 1.00CCE-03 2 ********* * ********* * ********* * ******	1.7400E-01 8.40C0E-02 8.90C0E-02 ************************************	8.9000 E-C 1.0000 E-C 1.0000 E-C ************************************	1 1.8000E-01 3 *********** * ********* * ********* * ******	********* ******** ******** ********	* * * * * * * * * * * * * * * * * * *	******** ******* ****** ***** ***** ****
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	********** ********* ******** ******	11	12 ********* ******** ******** ******** ****	*********** ********* ********* *****	14	15	* * * * * * * * * * * * * * * * * * * *	********	* ********** * ******** * ******* * ******	10 ******** ******* ******* ******* ****

APPENDIX E

SAMPLE CASE

SAMPLE CASE FOR NASA TN CALCULATION INCLUDES THE (0,0) BAND OF THE CN RED SYSTEM, 2 ATOMIC NITROGEN LINES AND AN INSTRUMENT CALIBRATION.

THE SPECTRUM COMPUTED FROM 10860.00 TO 11085.00 ANGSTROMS AT 0.025 ANGSTROM INTERVALS

CN RED

		L NUMBER DLECULES CC	ELECTRONIC TEMPERATUR DEGREES K		VIBRATIONAL TEMPERATURE DEGREES K	ROTATI Temper Degree	LATURE	
	1.000	30E 15	6.0000E 03	3	6.0000E 03	6.0000	DE 03	
	LINE ALTEI FACTO	RNAT1ON DR	NUCLEAR SI FOR HOMONI MOLECULES		NUMBER OF ELECTRONIC LEVELS	REDUCE ATOMIC WEIGHT	; ⁻	
	0.		0.0		3	6.4643	3	
	SPIN COUPLING CONSTANT		DF TRONIC ANGULAR INTERNUC. AXI		ROTATIONAL CONSTANT BETA, 1/CM	DISSOCIAT ENERGY DEZERO, :	AT	ERNUCLEAR DISTANCE EQUILIBRIUM ITION, CM
UPPER STATE LOWER STATE	-52.20 0.00	1 0			-G5 -0.4246000E- -G5 -0.95700G0E-			233200E-07 171900E-07
	LECTRONIC DEGENERACY	ELECTRÓNIC TERM ENERGY	₩E	WEXE	WEYE	WEZE	ВЕ	ALPHA E
UPPER STATE LOWER STATE	4 2 2	0.00000000E-39	2.0687448E 03	1.3134000E 01	-1.1800000E-02 -5.5000000E-03 0.000000E-39		1.8992 00 0E	00 1.7013399E-02
VIBRATIONAL QUANTUM NO. UPPER LOWER	FRANCK- CONDON FACTOR	TRANSITION MO AVERAGED DVER ELECTRONIC BA	THE WIDTH A	NAL LENE T HALF-HEEGHT LORGNTZ WOIGT	RANGE IN LINE WIDTHS		OTATIONAL UANTUM NUMBE MIN MAX	
0 0	5.0015E-01	5.2100E-01	0.1200	0.1440 0.211	9 5	10968.064	2 15	0
						Q1 AN R2 AN	P2 BRANC R1 BRANC SR21 BRANC OP12 BRANC D QP21 BRANC D QR12 BRANC D RQ21 BRANC D PQ12 BRANC	H 4.5949E-03 H 6.5940E-04 H 7.6646E-95 HES 4.8071E-03 HES 4.3989E-03 HES 5.9004E-03
				٠		APPROXI		TAL 2.2368E-02 TAL 1.0518E-01

SYSTEM TOTAL 2.2368E-02

ATOMIC LINE SPECIRUM FOR N

	ATO	BER OF MS CC	ELECTRONIC TEMRERATURE			ITION TION		
	2.0	GOOE 21	6.0000E 03		4.11	100E 30		
WAVELENGTH IN ANGSTROMS	ELECTRONIC DEGENERACY	ELECTRONIC TERM ENERGY	EINSTEIN A COEFF	ATOMIC LI WIDTH AT GAUSS LO	HALF-HE	IGHT VOIGT	RANGE IN LINE WIDTHS	INTEGRATED INTENSITY W/CM2-SR
19879.200 19884.600	6 8	1.04684E 05 1.04718E 05	1.6300E 05 1.4169E 05			G.285 G.285	5 5	8.4997E-05 9.9012E-05
				SUM OF	THE N	ATOM	IC LINES INCLUDED	1.8401E-04
				TOT	AL OF	ALL INTEG	RATED INTENSITIES	2.2552E~02

THIS IS A RADIATIVE TRANSPORT SOLUTION. DEPTH OF ABOVE RADIATING LAYER IS 1.000 CM.

TABULATION OF COMPUTED SPECTRUM

WAVELENGTH ANGSTROMS	INTENSITY W/CM2-MICRON-SR	WAVELENGTH ANGSTROMS	INTENSITY W/CM2-MICRON-SR	WAVELENGTH ANGSTROMS	INTENSITY W/CM2-MICRON-SR	WAVELENGTH ANGSTROMS	INTENSITY W/CM2-MICRON-SR
10860.00	0.0000E-39	13916.26	1.5053E-02	10972.51	5.7327E-02	11028.77	1.43438-03
10860.02	0.0000E-39	10916.28	1.6037E-02	10972.54	5.9158E-02	11028.79	1.5182E-03
10860.05	G.0000E-39	10916.31	1.7227E-32	10972.56	4.8218E-02	11028.82	1.6098E-D3
10869-97	0.0000E-39	10916.33	1.8684E-02	10972.59	5.1178E-02	11028.84	1.7014E-03
10860.10	0.G009E-39	10916.36	2.0432E-02	10972.61	5.4436E-02	11628.87	1.8158E-03
10860.13	0.0000E-39	10916.38	2.2560E-02	10972.64	5.8022E-02	11028.89	1.9379E-03
10860.15	9.00CGE-39	10916.41	2.5146E-02	19972.66	6.1974E- 0 2	11028.92	2.0599E-03
10860.17	6.0000E-39	10916.43	2.8328E-02	10972.69	6.6345E-02	11028.94	2.2 0 49E-03
1000001	••••		•	•	•	•	•
•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
10916.06	1.2314E-02	10972.31	2.1942E-02	11028.57	1.9821E-02	11084.82	4.9046E 90
10916.08	1.2253E-92	10972.34	5.0835E-02	11628.59	1.9791E- 0 2	11084.85	3.0224E CO
10916.11	1.2299E-02	10972.36	5.1147E-02	11028.62	1.8875E- 0 2	11084.87	2.3066E 60
10916-13	1.2459E-02	10972.39	5.1643E-02	11028.64	1.8044E-02	11084.90	1.7938E 00
10916.16	1.2711E-02	10972.41	5.2353E-02	11628.67	1.7273E-62	11384.92	1.3880E #9
10916.18	1.3092E-02	10972.44	5-3261E-92	11028.69	1.65716-02	11084.95	1.1321E 00
10916.21	1.3603E-02	10972.46	5.4390E-02	11028.72	1.5930E-02	11084.97	9.4532E-01
10916.23	1.4244E-02	10972.49	5.5740E-02	11028.74	1.3580E-C3	11085.00	8.0477E-01

SPECTROGRAPH OR SCANNING SPECTROMETER 1

SPECTRAL RANGE FROM 10865.50 TO 11079.50 ANGSTROMS COMPUTED AT 0.250 ANGSTROM INTERVALS

SLIT FUNCTION SPECIFIED BY LINEAR SEGMENTS

WAVELENGTH	SLIT
ANGSTROMS	FUNCTION
-2.500	0.0000E-39
-2.250	5.0000E-03
-2.000	2.310uE-02
-1.875	4.2200E-02
-1.750	7.2300E-02
-1.65 0	1.1040E-01
-1.500	2.510QE-01
-0.850	9.03306-01
-0.800	9.3370E-01
-0.750	9.4580E-01
-0.700	9.53806-01
-0.650	9.5980E-01
0.500	9.9600E-01
0.550	1.000GE 60
0.600	9.9600E-01
0.650	9.9400E-01
0.700	9.889 0E-01
0.750	9.789 0 6-91
0.809	9.638 0 E- 0 1
1.550	2.0080E-01
1.600	1.6360E-01
1.650	1.35506-01
1.750	9.34 00 E-02
1.85 0	6.830GE-G2
2.000	4.0200E-02
2.150	1.91 30 E-02
2.250	1.2000E-02
2.500	0.000GE-39
	SLIT FUNCTION 0.0000E-39 5.0000E-33 2.310UE-02 4.2200E-02 7.2300E-02 1.1040E-01 9.030E-01 9.3370E-01 9.5380E-01 9.5980E-01 1.0000E-00 9.9600E-01 9.9400E-01 9.980E-01 1.0000E-00 9.380E-01 9.380E-01 1.550E-01 9.3400E-02 4.020E-02 1.3100E-02
CENTER OF SLIT FUNCTION	COMPUTED SLIT WIDTH
SLIT FUNCTION	SLIT WIDTH
ANGSTROMS	ANGSTROMS
0.000	2.5250E 00

SPECTRAL CALEBRATION OF INSTRUMENT THAT MULTEPLIES SLIT FUNCTION TO YEELD INSTRUMENT SENSITIVITY

WAVELENGTH CALIBRATION FUNCTION

10860.000	9.0000E-01
10870.000	8.900GE-C1
10880.000	8.80C0E-C1
10890.000	8.7100E-01
10900.000	8.6000E-G1
10910.000	8.4800E-01
10920.000	8.3500E-01
	8.22006-01
10930.000	
10940.000	8.1400E-01
10950.000	8.0800E-C1
10960.000	7.990UE-21
10970.000	7.8000E-01
10975.000	7.65 00 E-01
10980.000	7.5000E-01
10990.000	7.3000E-01
11002.000	7.02006-01
11012.000	6.6500E-01
11018.000	6.5500E-01
11025.000	6.55 00E-0 1
11049.000	6.2000E-01
11062.000	5.520UE-01
11065.000	5.5200E-C1
11072.000	5.35 00 E-01
11080.000	5.2000E-01
11985.000	5.0000E-01
110031000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LOCATION DE	INSTRUMENT OUTPUT
LOCATION OF	INSTRUMENT CUTPUT
SLIT CENTER	IW/CM2-MICRON-SR)*
SLIT CENTER	IW/CM2-MICRON-SR)*
SLIT CENTER ANGSTROMS	IW/CM2-MICRON-SR)*
SLIT CENTER ANGSTROMS 10865.500	(W/CH2-MICRON-SR)* (SENSITIVITY UNITS) 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750	LW/CM2-MICRCN-SR)* (SENSITIWITY UNITS) 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000	(W/CM2-MICRCN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250	(W/CM2-MICRCN-SR)* (SENSITI*ITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500	.IW/CM2-MICRCN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250	(W/CM2-MICRCN-SR)* (SENSITI*ITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.750	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500 10866.750 10867.000	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.750	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500 10866.750 10867.000	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500 10866.750 10867.000	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500 10866.750 10867.000	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.000 10866.250 10866.500 10866.750 10867.000	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.750 10865.750 10866.250 10866.250 10866.750 10866.750 10867.250	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.750 10865.750 10866.250 10866.250 10866.750 10866.750 10867.250	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.750 10867.000 10867.000	IN/CM2-MICRCN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.750 10865.750 10866.200 10866.250 10866.750 10867.200 10867.250	IW/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.750 10867.250 11077.750 11078.250	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 1.0000E-39 0.4000E-39 0.4000E-39 0.4000E-39 0.4000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.200 10866.250 10866.500 10866.750 10867.000 10867.250 	IN/CM2-MICACN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.4000E-39 0.4000E-39 0.4000E-39 0.4000E-39 0.4000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.750 10867.200 10867.250 11077.750 11078.250 11078.250 11078.500 11078.500	IN/CM2-MICRCM-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.10000E-39 0.10000E-39 0.10000E-39 0.10000E-39 0.10000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.750 10867.200 10867.250 11077.750 11078.250 11078.250 11078.500 11078.500	IN/CM2-MICACN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.4000E-39 0.4000E-39 0.4000E-39 0.4000E-39 0.4000E-39
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.500 10866.750 10867.000 10867.250 11077.750 11078.250 11078.250 11078.500 11078.750 11078.750	1W/CM2-MICACN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.4000E-39 0.400E-39 0.4000E-39 0.4000E-39 0.400E-39 0.400E-39 0.400E-39 0.400E-3
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.750 10867.250 11077.750 11078.000 11078.250 11078.550 11078.750 11079.000	IN/GRZ-MICRCN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.10000E-39 0.10000E
SLIT CENTER ANGSTROMS 10865.500 10865.750 10866.250 10866.250 10866.500 10866.750 10867.000 10867.250 11077.750 11078.250 11078.250 11078.500 11078.750 11078.750	1W/CM2-MICACN-SR)* (SENSITIVITY UNITS) 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.0000E-39 0.4000E-39 0.400E-39 0.4000E-39 0.4000E-39 0.400E-39 0.400E-39 0.400E-39 0.400E-3

REFERENCES

- 1. Wurster, Walter H.: Measured Transition Probability for the First-Positive Band System of Nitrogen. J. Chem. Phys., vol. 36, no. 8, April 1962, pp. 2111-2117.
- 2. Keck, J. C.; Allan, R. A.; and Taylor, R. L.: Electronic Transition
 Moments for Air Molecules. JQSRT, vol. 3, Oct./Dec. 1963, pp. 335-353.
- 3. Reis, Victor H.: Oscillator Strengths for the N₂ Second Positive and N₂ First Negative Systems From Observations of Shock Layers About Hypersonic Projectiles. JQSRT, vol. 4, Nov./Dec. 1964, pp. 783-792.
- 4. Arnold, James O.: A Shock Tube Determination of the Electronic Transition Moment of the C₂(Swan) Bands. JQSRT, vol. 8, Nov. 1968, pp. 1781-1794.
- 5. Drake, G. W. F.; Tyte, D. C.; and Nicholls, R. W.: A Study of Emissivities and Transition Probabilities of Diatomic Molecules in Optically Thick Hot Gases With Application to the $B^1\Sigma \to X^1\Sigma$ Transition of BeO. JQSRT, vol. 7, July/Aug. 1967, pp. 639-659.
- 6. Fairbairn, A. R.: Self-absorption in Molecular Spectral Curves of Growth for C2 and CN. JQSRT, vol. 6, Nov./Dec. 1966, pp. 787-798.
- 7. Arnold, James O.; Whiting, Ellis E.; and Lyle, Gilbert C.: Line by Line Calculation of Spectra From Diatomic Molecules and Atoms Assuming a Voigt Line Profile. JQSRT, vol. 9, 1969.
- 8. Whiting, Ellis E.: An Emperical Approximation to the Voigt Profile. JQSRT, vol. 8, June 1968, pp. 1379-1384.
- 9. Herzberg, G.: Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. Second ed., Van Nostrand Co., New York, 1950.
- 10. Drellishak, Kenneth S.: Partition Functions and Thermodynamic Properties of High Temperature Gases. AEDC-TDR-64-22, 1964.
- 11. Earls, Lester T.: Intensities in ${}^{2}\Pi \rightarrow {}^{2}\Sigma$ Transitions in Diatomic Molecules. Physical Review, vol. 48, Sept. 1935, p. 423.

TABLE I. - CONSTANTS FOR 2 II \longleftrightarrow 2 N TRANSITIONS

<u>س</u>	T						,						
CONST						+	<u> </u>	Ŀ,		4	<u></u>		+
CONSTS		+	0	0/+1	+1/0		구 +	<u></u>	0	0		7	
SIGNS CONSTIT CONSTR		⊢	다+	⊢	۲ +		-7		<u>-</u>	<u></u>		<u></u>	
SIGNS3	>					7		구			+		급.
STGNS		딕	근	7	귀.		 - 		H	+		7	
STGWST		+1		겁	ㄷ	7	7	7	7	+	 +	7	구 +
STUTIE		근 +	7	걲	+	- +	NUBAR Q_{2})	<u></u>	NUBAR Q_1)	r -1 +	(same NUBAR as R ₂ or P ₂)	7	(same NUBAR as
STGNITT		+]	Ħ	r∃ +	ᄅ	- +	(same	7	(same	 +	(same	7	(same l
Strength	equation	S_1	Sı	Sı	ຜູ	S N	Ω	Ω N	ß	Ω	ය ග	Ω H	Ω Ø
	11z ← 3z	R2	P_1	SRoj	$^{\mathrm{O}_{\mathrm{12}}}$	ପ୍ଧ	4R12	Q ₁	9P21	P2	Pols	$ m R_1$	RQ21
Branch	SI → SΣ	P2	\mathbb{R}_1	SR	O _P 12	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	QP21	Q.	9R12	R2	RQ21	다	P _{Q1} 2

Figure 1.- Simplified flow chart of Main Program.

Figure 2.- Illustration of notation used in building the spontaneous-emission spectrum.

Figure 3.- Effective potential curves of HgH in the ground state. (Reproduced from ref. 9)

Figure 4.- Expressions used to find internuclear distance R', at the local maximum of the potential well.

Figure 5.- Energy difference between local maximum of potential well and sum of vibrational and rotational energies.

Figure 9.- Illustration of integration to produce instrument output signal.