* Name Origin:

Latin: fluo (flow).

* Sources:

Found in the minerals fluorite (CaF₂) and cryolite(Na₂AIF₆).

* Uses:

Combines more readily than any other element. Used in refrigerants and other chloro fluorocarbons. Also in toothpaste as sodium fluoride (NaF) and stannous fluoride (SnF_2); also in Teflon.

* Additional Notes:

1529, Georigius Agricola described the use of fluorspar as a flux, and as early as 1670 Schwandhard found that glass was etched when exposed to fluorspar treated with acid. Scheele and many later investigators, including Davy, Gay-Lussac, Lavoisier, and Thenard, experimented with hydrofluoric acid, some experiments ending in tragedy. The element was finally isolated in 1886 by Moisson after nearly 74 years of continuous effort. Fluorine occurs chiefly in fluorspar (CaF₂) and cryolite (Na₂AIF₆), but is rather widely distributed in other minerals. It is a member of the halogen family of elements, and is obtained by electrolyzing a solution of potassium hydrogen fluoride in anhydrous hydrogen fluoride in a vessel of metal or transparent fluorspar. Modern commercial production methods are essentially variations on the procedures first used by Moisson. Fluorine is the most electronegative and reactive of all elements. It is a pale yellow, corrosive gas, which reacts with practically all organic and inorganic substances. Finely divided metals, glass, ceramics, carbon, and even water burn in fluorine with a bright flame. Until World War II, there was no commercial production of elemental fluorine. The atom bomb project and nuclear energy applications, however, made it necessary to produce large quantities. Safe handling techniques have now been developed and it is possible at present to transport liquid fluorine by the ton. Fluorine and its compounds are used in producing uranium (from the hexafluoride) and more than 100 commercial fluorochemicals, including many well-known high-temperature plastics. Hydrofluoric acid is extensively used for etching the glass of light bulbs, etc. Fluorochloro hydrocarbons are extensively used in air conditioning and refrigeration. It has been suggested that fluorine can be substituted for hydrogen wherever it occurs in organic compounds, which could lead to an astronomical number of new fluorine compounds. The presence of fluorine as a soluble fluoride in drinking water to the extent of 2 ppm may cause mottled enamel in teeth, when used by children acquiring permanent teeth; in smaller amounts, however, fluorides are said to be beneficial and used in water supplies to prevent dental cavities. Elemental fluorine has been studied as a rocket propellant as it has an exceptionally high specific impulse value. Compounds of fluorine with rare gases have now been confirmed. Fluorides of xenon, radon, and krypton are among those known. Elemental fluorine and the fluoride ion are highly toxic. The free element has a characteristic pungent odor, detectable in concentrations as low as 20 ppb, which is below the safe working level. The recommended maximum allowable concentration for a daily 8-hour time-weighted exposure is 1 ppm. Fluorine is known to have thirteen isotopes.