Lecture 6 Multiple Regression

Outline

- R-square and adjusted R-square
- Multiple regression
 - Interpret \hat{eta}
 - formula for $\hat{\beta}$
- F-test
- Unbiasedness and consistency
- The notion of control

R-square: how well did our line fit the data?

- R^2 is the goodness of fit. It is the most widely used measure of fit.
- $\sum_{i} (Y_i \bar{Y})^2 = \sum_{i} (\hat{Y}_i \bar{Y})^2 + \sum_{i} e_i^2$
- TSS = ESS + RSS

•
$$R^2 = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i} e_i^2}{\sum_{i} (Y_i - \bar{Y})^2}$$

- The \mathbb{R}^2 is the ratio of explained variation to total variation
 - The proportion of total variation in Y that our model has captured (with independent variables)
 - We can use \mathbb{R}^2 to compare models if our objective is to fit data.

Examples of R-square

Figure 2.4 X and Y are not related; in such a case, R^2 would be 0.

Figure 2.6 A perfect fit: all the data points are on the regression line, and the resulting R^2 is 1.

Figure 2.5 A set of data for X and Y that can be "explained" quite well with a regression line $(R^2 = .95)$.

Exercise: compare models using R-square

- Model 1: age and health status
 - reg phstat age_yrs
- Model 2: education and health status
 - reg phstat educ_r1

Source	SS	d f	MS	
Model Residual	611.927847 60354.2942	1 46948	611.927847 1.28555624	
Total Source	60966.222 SS	46949 d	1.29856274 f MS	
Model Residual	4293.7399 56672.482		1 4293.7399 8 1.2071330	
Total	60966.22	2 46949	9 1.2985627	4

- Manually calculate the R-squares from ESS and RSS
- Interpret what R-square means in each model in words
- Which model is better in terms of making predictions (fitting data)? Why?
- Is it necessary that the bigger R-square the better our model is?
- Does big R-square necessarily imply big β ? Why?
- Note the total SS are the same in both models, why?

Adjusted R-square

- Let's compare the R-square of these two models
 - Model 1:Y= $\beta_1X_1+\epsilon$
 - Model 2:Y= $\beta_1X_1+\beta_2X_2+\beta_3X_3+\epsilon$
- Which model have a bigger R-square? (R-square is the explained variation divided by the total variation-which model can explain more of the variations in Y?)
 - As we add more X in the model, R-square will ALWAYS increase
 - We need another measure to penalize for adding more irrelevant variables

Adjusted R-square

• Adjusted R^2 denoted $\overline{R^2}$ $\overline{R}^2 = 1 - \frac{\sum e_i^2 / (N - K - 1)}{\sum (Y_i - \overline{Y})^2 / (N - 1)}$

Where N - K - 1 = degrees of freedom for residual, N is sample size, K is number of coefficients excluding the constant

- As K increases (number of independent variables increases), what happens to \mathbb{R}^2 ?
- Don't have to memorize the exact formula, but need to understand the intuition: adjusted R-square is an improvement over R-square. It penalizes for adding more independent variables (bigger K).
- People usually look at the adjusted R-square to evaluate how well they fit the regression line

STATA output of R-square and adjusted R-square

Source	SS	d f		MS		Number of obs		46950 476.00
Model	611.927847	1		27847		F(1, 46948) Prob > F	=	0.000
Residual	60354.2942	46948	1.285	555624		R-squared Adj R-squared	=	0.010
Total	60966.222	46949	1.298	356274		Root MSE	=	1.133
	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιn	terval
phstat								
phstat age_yrs	.0198173	.0009	9083	21.82	0.000	.018037	_	021597

T or F: Adjusted R-square is never bigger than R-square

Our Regression

. reg wage female

Source	SS	df		MS		Number of obs F(1, 524)		526 68.54
Model Residual	828.220467 6332.19382	1 524		220467 843394		Prob > F R-squared Adj R-squared		0.0000 0.1157 0.1140
Total	7160.41429	525	13.6	388844		Root MSE	=	
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιn	terval]
female _cons	-2.51183 7.099489	.3034		-8.28 33.81		-3.107878 6.686928		.915782 7.51205

Comparing wages for women and men with same education

. req wage female educ

Source	SS	df		MS		Number of obs		526
Model Residual	1853.25304 5307.16125	2 523		6.626518 .1475359		F(2, 523) Prob > F R-squared Adj R-squared		91.32 0.0000 0.2588 0.2560
Total	7160.41429	525	13.0	5388844		Root MSE		3.1855
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
female educ _cons	-2.273362 .5064521 .6228168	.2790 .0503 .6725	3906	-8.15 10.05 0.93	0.000 0.000 0.355	-2.821547 .4074592 698382		.725176 .605445 .944016

Same education and experience

. reg wage female educ exper

Source	SS	df	MS	Number of obs	=	526
				F(3, 522)	=	77.92
Model	2214.74206	3	738.247353	Prob > F	=	0.0000
Residual	4945.67223	522	9.47446788	R-squared	=	0.3093
				Adj R-squared	=	0.3053
Total	7160.41429	525	13.6388844	Root MSE	=	3.0783

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	-2.155517	.2703055	-7.97	0.000	-2.686537	-1.624497
educ	.6025802	.0511174	11.79	0.000	.5021591	.7030012
exper	.0642417	.0104003	6.18	0.000	.0438101	.0846734
_cons	-1.734481	.7536203	-2.30	0.022	-3.214982	2539797

Takeaways about R-square and adjusted R-square

- Adjusted R-square is a standardized measure that can be used to compare models. It is useful if our objective is to making prediction
- In micro-econometrics, R-square is not that useful. Because our objective is NOT fitting the data, but to find whether one specific X has causal impact on Y.
 - e.g. How many factors can explain variation in one's health status?
 - Perhaps many more than we can include in the regression
 - It's natural to get a small R-square if we only include education as X
 - Our interest lies in whether education has caused variation in health, not in predicting health status based only on one variable

Multiple regression

- Definition: a regression with more than one independent variable
- Back to the health status example. You might want to include both age and education in the regression. Now we have two independent variables, it is a multiple regression.
- The general multiple regression model with K independent variables is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_K X_{Ki} + \epsilon_i$$

How to interpret β ?

- A big difference between multiple and single regression model is in the interpretation of the slope coefficients
- Now a slope coefficient indicates the change in the average of the dependent variable associated with a one-unit increase in the explanatory variable holding the other explanatory variables constant or fixed
- Example: Healthi=β₀ + β₁Educi + β₂Agei + εi
- $\widehat{\beta}_1$ =-0.15: Holding other explanatory variables constant, one unit increase in education level is associated with 0.15 unit decrease in average health index. (note here 1=excellent, so it actually increase health)
- Exercise: $\hat{\beta}$ 2=0.07, explain what it means in the context.

Mathematical formula for β (difficult)

- We run a multiple regression $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_N X_{Ni} + \varepsilon_i$
- We could run a regression of X_{1i} on all of the other X variables, and then compute the residuals- call it \widehat{X}_{1i} (partial out the effect of all the other X variables)
- Then $\hat{\beta}_1 = \frac{Cov(\widetilde{X_{1i}}, Y_i)}{Var(\widetilde{X_{1i}})}$
- ullet The relationship between X1 and Y holding all other X variables fixed

F-test

- With a multiple regression $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_N X_{Ni} + \epsilon_i$, we can still perform statistical inference using p-value or confidence interval to determine if a specific β is **statistically different** from 0 (or other number)
- Now if we want to test whether a group of variables jointly have any effect on Y, we will use F-test.
- H₀: $\beta_1 = \beta_2 = ... = \beta_N = 0$
- H_a : at least one of the β s is not zero

Example of F-test

- Healthi= β_0 + β_1 Educi + β_2 Agei + β_3 male+ ϵ_i
- I want to know whether education, age and gender are jointly affecting health
- $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
- What is H_a?
- Where is F-test in STATA output?
 - Top right panel
 - Like t-stat, F-stat follows a specific distribution, a bigger F-stat means higher power to reject the H₀

Number of obs = 46950

Adj R-squared =

Root MSE

3, 46946) = 1272.88

- Prob>F is like the p-value in t-test. We can look at "Prob>F" and compare it with α to decide whether rejecting H₀
- Why is this statistics in the section along with R-square? What do you think this F- stat is mostly used for?

Unbiasedness of OLS

- In the econometric model we have population parameter β , and what we get from data is a sample estimate $\hat{\beta}$. If we draw many samples, we will get multiple $\hat{\beta}$. Those $\hat{\beta}$ form a sampling distribution with a certain mean and standard deviation
- Unbiased estimator:
 - If $E(\hat{\beta}) = \beta$, then $\hat{\beta}$ is unbiased
 - If the mean of all those $\hat{\beta}$ s equal to the true parameter β , then it is unbiased
- If the estimate is unbiased, it is likely we get the true causal effect.
 - It doesn't mean the specific $\hat{\beta}$ is the true β , it means if the sample is "typical", we are near the true effect

When is OLS estimate unbiased?

- There are four conditions
- The most important one is "zero conditional mean", $E(\varepsilon | X)=0$
 - It is an assumption made in the population, it's not about a specific sample
 - The expected value of error term is zero for every given X.
 - In other words, the error is randomly distributed for a given X.
- It is an untestable assumption
- Likely to be true or not? Can you think of an example when OLS is biased?

Consistency of OLS

- The conditions for unbiased estimator are hard to meet, so we settle for estimators that are consistent.
- Consistency: the distribution of the estimate becomes more tightly distributed around β as the sample size grows $_{|}$
- As $n \to \infty$, the distribution of the estimate $\hat{\beta}$ collapse to the parameter value β

Unbiasedness and consistency

• For unbiasedness, we have "zero conditional mean":

$$E(\varepsilon \mid X) = 0 (1)$$

• For consistency, we have a weaker assumption-"zero mean and zero correlation":

$$E(\varepsilon)=0 \& Cov(X, \varepsilon)=0 (2)$$

- $E(\varepsilon)=0$ is always true for OLS estimator, so $Cov(X, \varepsilon)=0$ is the key condition
- Why is (2) a weaker condition of (1)?
- Assumption (1) requires the error term to be completely random given each X
 - e.g. ε cannot be related to X^2
- Assumption (2) says that error is not correlate with X, but can be correlated with other stuff
 - e.g. ϵ can be correlated with X^2

Unbiasedness and consistency

- Unbiasedness is a finite sample property
- Consistency is a large sample property
- Unbiased means on average you will get the true β
- Consistent means on average you may not get the true β , but as sample size increase, you will be more likely to get true β
- Consistency requires a weaker assumption, therefore the condition to get correct causal estimate is relaxed to $Cov(X, \varepsilon)=0$.

OLS with control

- Look at multiple regression from another perspective:
- $Y = \alpha + \beta D + \gamma_1 X_1 + \gamma_2 X_2 + \dots + \gamma_n X_n + \varepsilon$
- We have treated all independent variables equally. Now we give special attention to our variable of interest, **the treatment variable D**, and consider other variables X_1 - X_n as **controls**
- We put X_1 - X_n in the regression, because we can observe them and the data allow us to measure them. Therefore they are also called **the observables**
- There can be factors that we want to control but are not observable to us (or we cannot measure them in the data). These factors are called **unobserved** variables (unobservables). They are represented by the error term ε

Why do we have biased $\hat{\beta}$?

- Assume the true model for whether insurance affect health is
 - $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
- We are now running this model:
 - $Health = \alpha' + \beta' Insured + \gamma_1' Age + \gamma_2' Educ + \varepsilon'$
- Is β' the true causal impact of insured on health (β) ?
- Recall the condition for β' to be causal is $Cov(\epsilon',Insured)=0$
- Which variable is now left in ε' ?
 - Income
- Is Cov (income, Insured) likely to be 0?
 - No. Therefore $\widehat{\beta}'$ is biased
- Failure to include proper controls result in biased estimates

The notion of control

- Meaning of control #1:
 - When you control for variables you hold that variable constant or fixed
 - Similar notion to a lab experiment keep other factors held fixed (ceteris paribus)
- Meaning of control #2:
 - e.g. $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
 - Within group comparison: compare mean health status of the insured with the uninsured for those with same age, education and income. It's more proper than across group comparison
- Meaning of control #3:
 - "Partialling Out"
 - β tells us the causal effect of whether insured on health after the confounding effect of age, education and income has been partialled (or netted) out

Omitted variable bias

- The bias in the OLS estimator that occurs as a result of an omitted factor is called *omitted variable* bias. For omitted variable bias to occur, the omitted factor "Z" must be:
 - 1. A determinant of Y (i.e. Z is part of ε); and
 - 2. Correlated with the regressor X (i.e. $corr(Z,X) \neq 0$)
- **Both** conditions must hold for the omission of Z to result in omitted variable bias.

Omitted variable bias direction

		Corr(omitted variable,x)		
		positive	negative	
Corr(omitted variable,y)	positive	upward bias	downward bias	
	negative	downward bias	upward bias	

The notion of control

- Health = $\alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
- More on "partialling out":
 - If insurance status is randomly assigned, we won't have to control for other factors. In that case, all the variation in insured is "clean".
 - Since insurance status is not randomly assigned, it contains both "clean" variation and "dirty" variation
 - The "dirty" variation is the part that correlates with age, educ or income.
 - By controlling for age, educ and income, we are partialling out the "dirty" variation, leaving the "clean" variation for identification. What does it exactly mean?

Diagram showing clean and dirty variation

 $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$

Good, bad and the useless

- Good controls are variables that you include in the regression in order to kill dirty identifying variation
- Useless controls are variables that you include in the regression that aren't correlated with treatment variable D.
 - Useless controls can still explain Y
 - Often it's worthwhile to include these controls to reduce your standard errors, but fundamentally, these controls don't do that much
- Bad controls are variables that are caused by D. Controlling for these variables is called "over controlling"

Example: Immigrantion

- Suppose immigration positively impacts crime rate
- If I regress crime on immigration, I may find a positive effect
- Crime = $\alpha + \beta$ Number of Immigrants + ε , $\hat{\beta}$ >0
- Is this relationship biased?
 - Possibly, because some other factors (e.g. big city indicator) is left in the error term. Once controlling for big city, the effect may change
- Note, when we include a control, we are more concerned whether it affects treatment variable **D**, not whether it affects Y.

Example: good, bad and useless controls

- Variable "big city" affects both immigration and crime rate, therefore it is a good control.
- Now you include another variable number of rainy days. You think number of rainy days will affect crime. But it has nothing to do with immigration. Therefore it is a useless control. (Although the adjusted R-square will increase, it doesn't eliminate any "dirty" variation)
- Now consider the variable-local unemployment rate. This variable is likely to be caused by immigrants and therefore may be a **bad** control. Because it will take away the "clean" variation too. You will over-control by including it
 - Note: when you try to think of a bad control, think about the mechanisms why immigrants affect crime rate, controlling for these mechanisms are usually over-controlling

Criteria for good, bad and useless controls

- Good controls affect Y and D (variable of interest)
- Useless controls affect Y but not D
- Bad controls affects Y, and are caused by D (Bad controls are often mechanisms through which D affect Y)

Review for quizzes

- Be able to interpret β in multiple regressions
- Know the meaning, null and alternative hypothesis of F-test
- Understand the conditions for unbiasedness and consistency and the relationship between them
- Understand why we need controls-Because cov(D, ϵ)=0 is violated, and the estimate is biased
- Be able to come up with examples of three types of controls, and explain why they are good, bad and useless