MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETATRIAT GENERAL

DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

DIRESTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE Service d'Appui au Baccalauréat

BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

SESSION 2001

(0,25 pt)

Série : C Epreuve de : MATHEMATIQUES
Durée : 4 heures

Code Matière : 009 Coefficient : 5

NB: Les DEUX Exercices et le Problème sont obligatoires

Exercice – 1 (04 points)

Dans le plan orienté (P), on considère un triangle ABC isocèle et rectangle en A tel que AB = AC et mes \overrightarrow{AB} , $\overrightarrow{AC} = \frac{\pi}{2}$.

- 1. Dans cette question, le plan (P) est rapporté au repère orthonormé direct (A, \overrightarrow{AB} , \overrightarrow{AC}).
 - a. Déterminer les affixes respectives z_A, z_B, z_C des points A, B, C.
 - b. Soit T la transformation ponctuelle du plan (P) vers (P) qui à tout point M d'affixe z associe le point M' d'affixe z' telle que z' = -z + 2i.

Caractériser géométriquement T. (0,25 pt)

- c. Donner l'expression complexe de la rotation R de centre A et d'angle $\frac{\pi}{2}$. (0,25 pt)
- d. On pose f = T o R. Donner l'expression complexe de f. (0,25 pt)

 En déduire la nature et les éléments géométriques de f. (0,25 pt)
- e. On note I le centre de f ; donner la nature du quadrilatère ABIC. Justifier votre réponse. (0,25 pt)

Dans toute la suite, on utilisera une méthode géométrique. On pose AB = AC = a où a $\in 3^*_+$.

- 2. Soit S la similitude plane directe de centre I qui transforme A en B. On note C' = S(C); O' = S(O) où O est le milieu du segment [BC].
 - a. Donner le rapport et l'angle de S. (0,50 pt)
 - D. Montrer que $C' \in [IA]$. (0,25 pt)
 - c. Donner l'image par S du segment [IA] et montrer que O' est le milieu du segment [IB]. (0,75 pt)
- 3. On considère le système de points pondérés {(A; –1), (B; 1), (C; 1)}.
 - a. Quel est le barycentre G de ce système ? (0,25 pt)
 - b. Déterminer et construire l'ensemble (Γ) des points M du plan tels que MA² + MB² + MC² = a². (0,75 pt)

Exercice – 2 (04 points)

- 1. On considère deux dés cubiques parfaitement équilibrés D₁ et D₂ tels que :
 - D₁ porte sur ses six faces les chiffres 1, 1, 2, 3, 3, 4.
 - D₂ porte sur ses six faces les chiffres 1, 2, 3, 4, 5, 6.

On lance simultanément ces deux dés. On note **a** le chiffre lu sur D₁ et **b** le chiffre lu sur D₂.

Calculer la probabilité de chacun des événements suivants :

A: « obtenir un couple (a, b) tel que a = b » (0,50 pt)
B: « obtenir un couple (a, b) de nombres impairs ». (0,50 pt)

On prend le dé D₂ dont les six faces sont numérotées de 1 à 6.

On lance une fois ce dé. A chaque entier n obtenu $(1 \le n \le 6)$, on associe le couple d'entiers (a, b) tels que a = 5n + 3 et b = 3n + 1.

a. Pour $n \in \{1, 2, 3, 4, 5, 6\}$, donner le couple (a, b) correspondant ainsi que leur plus grand commun diviseur d (d = PGCD (a, b)). (1,00 pt)

C: « a et b sont des nombres premiers » (0,50 pt)D: « a et b sont premiers entre eux ». (0,50 pt)3. Résoudre l'équation 13x - 7y = 11, d'inconnues $(x, y) \in IN \times IN$. (1,00 pt) **PROBLEME** (12 points) On considère la fonction numérique f_n définie sur IR par : $f_n(x) = x^n e^{-x}$ où $n \in \mathbb{N}^*$ et $f_0(x) = e^{-x}$. On note (C_n) la courbe représentative de f_n dans un repère orthonormé. Dans cette partie, n est un entier supérieur ou égal à 1. PARTIE A. 1. Calculer la limite de $f_n(x)$ quand $x \to +\infty$. (0,25 pt)2. Dans toute la suite de cette question, on distinguera les cas n pair et n impair. Calculer la limite de $f_n(x)$ quand $x \to -\infty$. (0,50 pt)b. Calculer $f_n(x)$ et dresser le tableau de variation de f_n . (2,00 pts) c. Etudier le signe de $f_{n+1}(x) - f_n(x)$ pour tout $x \in \mathbb{R}$. (0,50 pt)En déduire les positions relatives de (C_{n+1}) et (C_n) . (0,50 pt) 3. Montrer que toutes les courbes (\mathcal{C}_n) passent par deux points fixes indépendants de n dont on précisera les coordonnées. (0,50 pt)PARTIE B. 1. On considère l'équation différentielle (E) : y " + 2y ' + y = 2e^{-x}. Vérifier que la fonction ϕ définie sur IR par $\phi(x) = x^2 e^{-x}$ est solution de (E). (0,50 pt)Montrer qu'une fonction numérique f est solution de (E) si et seulement si f - φ est solution de l'équation (E') : y'' + 2y' + y = 0. (0,25 pt) Résoudre (E') et en déduire toutes les solutions de (E). (0,75 pt) Déterminer l'unique solution f de (E) telle que f(0) = 1 et f'(0) = -2 et exprimer f en fonction de f_0 , f_1 et f_2 . (0,75 pt) 2. On considère la fonction numérique f définie sur IR par $f(x) = (x^2 - x + 1)e^{-x}$. Etudier les variations de f et dresser son tableau de variation. (1,00 pt)Construire la courbe représentative (\mathcal{C}) de f dans un repère orthogonal (\vec{O} , \vec{i} , \vec{j}). Unités $||\vec{i}|| = 1 \text{ cm}$; $||\vec{i}|| = 5 \text{ cm}$. (0,50 pt)On donne : $e^{-1} \approx 0.37$; $e^{-2} \approx 0.13$. PARTIE C. Pour tout $n \in IN$ et pour tout $x \in IR_+$, on pose $I_n(x) = \frac{1}{n!} \int_0^x f_n(t) dt$ (On rappelle que 0! = 1). 1. a. Calculer $I_0(x)$, $I_1(x)$ et $I_2(x)$ en fonction de x. (0,75 pt)Utiliser la guestion B 1.d. pour calculer l'aire A du domaine plan limité par la courbe (C), l'axe (x'Ox) et les droites d'équations x = 0 et x = 1. (0,50 pt)2. a. Pour tout $n \in IN$ et pour tout $x \in IR_+$, exprimer $I_{n+1}(x)$ en fonction de $I_n(x)$. (0,50 pt)En déduire $I_n(x)$ en fonction de n et x. b. (0,50 pt)Pour n fixé, calculer la limite de $I_n(x)$ quand $x \to +\infty$. (0,25 pt) On prend x = 1, démontrer que \forall n \in IN, $0 \le I_n(1) \le \frac{1}{(n+1)!}$. 3. a. (0,50 pt)En déduire la limite de $I_n(1)$ quand $n \to +\infty$. b. (0,25 pt)Déduire de la question 2. b. l'expression de $I_n(1)$ en fonction de n. C. (0,25 pt)Utiliser les résultats précédents pour montrer que : e = $\lim_{n \to +\infty} \left| \sum_{k=0}^{n} \frac{1}{k!} \right|$. d. (0,50 pt)

Calculer la probabilité de chacun des événements suivants :