PATENT ABSTRACTS OF JAPAN

(11) Publication number: (43) Date of publication of application: 26.05.2000

2000146782 A

G01N 1/28 (51) Int. CI

C12M 3/00, G01N 1/10

(71) Applicant KAWAI YOSHIO

(21) Application number: (22) Date of filing:

10336480 12.11.1998

(72) Inventor:

SHIINA YOSHIO IIJIMA JUNKO

OKAWATO MITSUAKI SAKUMA KANAE KAWAI YOSHIO

(54) APPARATUS AND METHOD FOR PREPARATION OF AUTOMATICALLY FIXED SAMPLE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an apparatus and a method in which a high quality microscope sample for cell diagnosis is prepared from a cell suspension with high reproducibility and without manual intervention.

SOLUTION: According to the presence or absence of continuity of an electrode 3, a level sensor 11 is turned on or off. The downstream side of a filter 1 is sucked by a vacuum pump 5 via a solenoid valve 10 and a constant pressure device 4. When the end point of a filtering operation is judged, the level sensor 11 is turned off, and the solenoid valve 10 is closed as so to stop the suction operation. A cleaning-liquid supply system 6, a first fixing-liquid supply system 7 and a second fixing-liquid supply system 8 are composed of tanks 61, 71, 81, of three-way selector valves 62, 72, 82 and of a syringe-type pump which is driven by a motor. By this constitution, under the control of a sequencer 9, an operator charges a sample in a prescribed amount into a sample container 2. By a simple depression of a

start button, an immobilized cell sample is obtained on the filter 1 after about 20 minutes.

COPYRIGHT: (C)2000, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出國公開番号

特開2000-146782 (P2000-146782A) (43)公開日 平成12年5月26日(2000.5.26)

(51) Int.Cl.7		識別配号	FI			テーマコート*(参考)		
G01N	1/28		G01N	1/28	J	4B029		
C12M	3/00		C12M	3/00	Z			
G01N	1/10		G01N	1/10	В			
				1/28	F			

			1/28 F			
			U			
		永 樹查馨	未請求 請求項の数2 FD (全 5 頁)			
(21)出願番号	特順平10-336480	(71)出順人	598163260			
			河合 義雄			
(22) 出顧日	平成10年11月12日(1998, 11, 12)	東京都武蔵野市吉祥寺東町3-12-10				
		(72)発明者	椎名 義雄			
			東京都八王子市元八王子町1-538-1			
		(72)発明者	飯島 淳子			
			東京都小金井市前原町 5 - 2 - 46			
		(72)発明者	大河戸 光章			
			埼玉県浦和市別所7-17-30 SSハイツ			
			105			
		(72) 発明者	佐久間 香苗			
			神奈川県鎌倉市大船4-16-5 ラプラス			
			大船203			
		1	最終頁に続く			

(54) 【発明の名称】 自動固定標本作製装置および方法

(57) 【要約】

【課題】細胞懸濁液から質の良い細胞診断用顕微鏡試料 を再現性良く人手をかけないで製作する。

【解決手段】細胞懸濁液の濾過を一定の圧力の元に行う ことにより、細胞の変形を防止する。濾過の終了時点を 電気的に検出し、すぐに洗浄液を自動的に投入する事に より、細胞の乾燥による劣化を防止する。フィルター上 に捕集された細胞を洗浄を行うことによって夾雑物を除 き見やすい細胞診標本を作る。一連の操作をシーケンサ ーにより自動化し操作条件を同一にすることにより再現 性の良い標本が得られる。

【特許請求の範囲】

【請求項1】 生体試料からなる細胞浮游液を濾過して 細胞を捕集し細胞診断用プレパラートを作成する一連の 操作の前半の部分、具体的には細胞浮遊液から細胞を満 過捕集しフィルター上で細胞の固定を行うところまでの 操作、を自動的に行うための装置であり、一定の吸引圧 力による細胞浮遊液の吸引濾過、濾過終了を自動的に判 定して吸引停止と所定量の洗浄液の自動投入、洗浄液の 濾過終了を自動的に判定しての所定量の第一固定被の自 助投入と第一固定化反応時間の管理、及び必要に応じて 10 の、第二固定被の自動投入と第二固定化反応時間の管理 を自動的に行い、フィルター上に細胞を変性させること なく捕集し固定することを特徴とする自動固定標本作製 装置。

「請求項2】 生体試料からなる細胞深游游を濾温して 細胞を捕集し細胞診断用プレパラートを作成する一連の 操作の前半の部分、具体的には細胞浮游液から細胞を濾 過捕集しフィルター上で細胞の固定を行うところまでの 操作、に於いて、細胞浮遊液を濾過した後にフィルター 上に残った細胞を生理的洗浄液、例えば生理食塩水、燐 20 酸パッファー、1%BSA含有生理食塩水等、で洗浄し 付着粒子等を除去すること、及び濾過が終了した直後に 生理的洗浄液を添加し、空気を吸引する事により細胞が 乾燥変質する事を防止することを特徴とする細胞診断用 プレパラート作成前処理方法。

【祭明の詳細な説明】

[0001]

【発明の属する技術】細胞を含む懸濁液、特に液状生体 試料中から細胞を濾過捕集するに当たって、その細胞を ある場合に利用される。具体的には、尿中又は体くう液 等の液状検体に含まれる細胞の捕集、穿刺吸引物を生理 食塩水に分散させた試料からの細胞の捕集等に利用され **ర**。

[0002]

【従来の技術】細胞懸渦液から細胞を濾過捕集する事は 従来から行われていたが、殆どは手動で吸引が行われ、 濾過の終了時点を肉眼で判断していた。このため吸引終 了時点の判断にばらつきがあり、吸引過度で細胞がフィ ルターに食い込んだり、吸引不足で固定液が希釈される 40 等の変動があり再現性が得られなかった。

【0003】全自動固定標本作製装置としては、商品名 シンプレップ (ThinPrep) が販売されている。 技術内容の詳細は不明であるが、本発明との相違点は、 吸引を吸引速度一定で行っているため吸引圧力一定の保 証がないこと、濾過終了を吸引圧力の変化に依って判定 していること、及び生理的洗浄液による洗浄を行わない ことにあり、高価な装置であり処理に時間がかかるとと もに多検体自動処理に不向きである。

[0004]

【発明が解決しようとする課類】課題の一つはきれいな 顕微鏡観察のための試料が再現性良く得られること。二 番目は人手の節約、特に経験を要しないで誰でも容易に 良い試料が得られること。この2点が遊成されれば標本 作製の標準化が可能となり、細胞診断そのものの標準化 が可能となる。

[0005]

【課題を解決するための手段】きれいな顕微鏡観察のた めの試料を作るには一つには洗浄が有効である。フィル ター上に残った夾雑物及び細胞の周囲に付いた微粒子を 洗浄により除去する事によって、きれいな資料が得られ 顕微鏡観察が容易になる。

【0006】二番目には適当な吸引圧力を選定し、一定 に保つことが有効である。吸引圧力が大きすぎると細胞 がフィルターにめり込んで変形し、形状が変化して診断 に誤差が生じる。吸引速度一定では吸引圧力が一定にな る保証がなく、早くフィルターに到着した細胞と後から 到着したものとの間に変形の差が生じる可能性がある。

【0007】三番目には濾過終了の判定及び洗浄液、固 定被の投入のタイミングが重要である。濾過終了の判定 が遅いと空気を吸って細胞が乾燥し核の詳細な観察が不 能となる。判定が早過ぎると、洗浄液の場合は問題は無 いが、残留被状成分による固定被の希釈が起こり固定反 応の条件が十分満足されないため、細胞が部分的に固定 されるのでフィルター上に塗抹された細胞が剝離しやす くなる。また、濾過終了の判定は良くても、洗浄液、固 定被の投入タイミングが遅れるとその間に細胞の乾燥が おこり良好な試料が得られない。

【0008】以上述べたように質の良い細胞診標本を再 純粋な形で、しかも変性させることなく捕集する必要が 30 現性良く作るには人手による操作を極力排除し、自動化 することが必要であり、また自動化によって省力化がは かられるとともに、未熟練者でも、良質の試料が作成で きるようになる。標本作製の標準化に当たっては多数の 試料を自動的に処理できる方式が必要となる。この点に も考慮を払っておくことが必要である。

> 【0009】濾過時には最適吸引圧力を一定に維持する ことによりフィルター上での細胞の変形を防止し、濾過 終了時点を適切に判断し、洗浄液、固定液を注入する事 によって細胞の乾燥による劣化を防止し、濾過終了後に 洗浄液で洗浄する事によって細胞診標本の夾雑物を無く して見やすくすることができる。一連の操作を自動化す ることにより、これらの操作条件を再現性良く実施し、 高品質の細胞診標本を再現性良く作成することができ る。

[0010]

【発明の実施の形態】尿を濾過して尿中に含まれる癌細 胞を捕集するための装置を図1に示す。他の目的の装置 も操作条件が異なるのみで、本質的には同一の装置が使 用される。この場合は血球を透過させ、癌細胞を捕集す 50 るためフィルター1の穴径は10ミクロン、直径12ミ

リメートルのものを使用した。尿サンプルは50mlを サンプル容器 2 に投入する。本サンプル容器は下部に 2 本の電極31、32を有し、32の下端の位置が濾過の 終点判定にかかわる。この位置は実験により決定され る。管極31、32間の導通の有無でレベルセンサー1 1がON/OFFする。フィルターの下流側は電磁弁1 ○及び定圧装置4を経由して真空ポンプ5により吸引さ れる。濾過の終点判定時にはレベルセンサー11のOF Fで電磁弁10が閉となり吸引を停止する。6は洗浄液 供給系、7、8は第一、第二国定被供給系を示す。これ 10 に洗浄被による洗浄を行うことにより夾雑物のないされ らはそれぞれタンク61、71、81、三方切り替え弁 61、62、63、モーターで駆動されるシリンジタイ プのポンプから成る。9はこれらを制御するシーケンサ ーを示す。

【0011】図2にサンブル容器2の詳細を示す。漏斗 状のサンプル容器にアルミ箔を接着して電極31、32 とした。31はサンプル容器の下部まで、32の下端は 31より少し上になるよう接着した。

【0012】図3にシーケンサーの流れを示す。作業者 はサンプル容器2に所定量のサンプルを投入しスタート 20 ボタンを押すのみで、約20分後にはフィルター1上に 固定された細胞の試料が得られる。この試料はすでに固 定を終わっており、急いで次の工程(スライドガラスへ の転写、染色工程、等) に進める必要はなく、ほかの作 業が一段落した後に取り上げればよい。

【0013】本装置につき各種条件を変更して実験の結 果、吸引圧力は水銀柱10mm以下、電極32の下端の 位置はサンブル容器の下端より1mmが良く、洗浄液は 生理食塩水、生理的燐酸パッファー (PBS)、1%B SAを含む生理食塩水等が好結果を示し、液量としては 30

5mlで良かった。第一固定液はエタノール95%水溶 被0.5-2ml、15分間、第二固定液は2%カーボ ワックスを含むイソプロピルアルコール、メタノール混 合水溶液0.5m1、反応時間2分間で好結果が得られ た。

[0014]

【発明の効果】自動化により再現性良く良質の顕微鏡用 試料が得られる。一定の圧力で濾過を行うことによりフ ィルターへの細胞の食い込み変形をなくす。濾過終了後 いな試料が得られる。濾過終了時点を電気的に判断して 吸引を停止し洗浄液を注入することにより細胞の変形と 劣化を防止し質の良い試料が得られる。

【図面の簡単な説明】

【図1】本発明の装置の構成を示す。

【図2】サンプル容器とそれに取り付けた電極を示す。 【図3】本装置の一連の操作の流れを示す。 【符号の説明】

フィルター

- サンプル容器
- 館極
- 定圧装置 4
- 真空ポンプ
- 洗净被供給系
- 7 第一固定被供給系
- 8 第二固定液供給系
- シーケンサー
- 10 電磁弁 11 レベルセンサー

【図1】

[図3]

フロントページの続き

(72)発明者 河合 義雄 東京都武蔵野市吉禅寺東町 3 -12-10 Fターム(参考) 4B029 AA07 AA27 BB01 BB11 CC01 FA01 FA11 FA15