

Einführung in die Computerlinguistik Maschinelles Lernen

Dr. Benjamin Roth & <u>Annemarie Friedrich</u>
Centrum für Infomations- und Sprachverarbeitung
LMU München
WS 2016/2017

Maschinelles Lernen

- Einführung (heute)
 - Attribute
 - Klassifikation vs. Clustering
 - Evaluation von Algorithmen
- Algorithmen
 - K-means
 - Entscheidungsbäume
 - Naive Bayes (& Sprachmodelle)

Klassifikation

Mustererkennung (pattern recognition)

Kamera

Was sind mögliche Erkennungsmerkmale?

Mustererkennung (pattern recognition)

Maschinelles Lernen

- Prinzip: lerne aus Mustern von linguistischer Information ...
 - Sprachmodelle (welche Sätze sind okay in einer natürlichen Sprache?)
 - Parse-Bäume (finde automatisch den besten Baum für einen Satz)
 - Übersetzungsmodelle
 - Textkategorien (Text → Nachrichten, Prosa, Gedicht, Spam, e-Mail, ... ?)
- Grundsätzlich: je zahlreicher und informativer die Daten, desto besser

Klassifikation

- überwachtes Lernen (supervised)
- Algorithmus lernt Funktion $x \to y$ aus annotierten Daten $< x_i$ = Merkmale (features), y_i = Klasse>

Beispiel:

Klassen: e-Mail vs. Spam

Merkmale: Wörter der Mail (lemmatisiert)

Klassifikator lernt z.B., dass Vorkommen von "hot girl" eher auf Spam hinweist.

Training und Evaluation

- Trainingsdaten → werden benutzt, um den Klassifikator zu trainieren (zu erstellen)
- Testdaten → Klassifikator wird auf diese Daten angewendet und Ergebnis der Vorhersage wird mit den tatsächlichen Labels verglichen
- oft auch noch: Entwicklungsdaten (development set)
- keine Überschneidung zwischen diesen Datensets!!

Evaluation

- Testdaten: Auswertung des Klassifikationsergebnisses
 - hier: 100 Test-Instanzen

automatisch zugewiesene Klasse

tatsächliche Klasse

	e-Mail	Spam	ما داد د
e-Mail	58 ◆	2 1	richtig
Spam	9	12	falsch

- Accuracy: % der Testinstanzen, die richtig klassifiziert wurden
 - Accuracy im Beispiel?

Precision

- Wie sehr kann ich dem Klassifikator trauen, wenn er eine Mail als Spam klassifiziert?
- Precision wird pro Klasse berechnet
 - $Precision(K) = \frac{richtig \ als \ K \ klassifizierte \ Instanzen}{alle \ als \ K \ klassifizierten \ Instanzen}$
 - Precision(e-Mail)?
 - Precision(Spam)? automatisch zugewiesene Klasse

tatsächliche Klasse

	e-Mail	Spam
e-Mail	58	21
Spam	9	12

Recall

- Wie viele der tatsächlichen Spam-Mails findet der Klassifikator?
- Recall wird pro Klasse berechnet
 - $Recall(K) = \frac{richtig \ als \ K \ klassifizierte \ Instanzen}{alle \ Instanzen, \ die \ tatsächlich \ K \ sind}$
 - Recall(e-Mail)?
 - Recall(Spam)?

automatisch zugewiesene Klasse

tatsächliche Klasse

_	e-Mail	Spam
e-Mail	58	21
Spam	9	12

Precision-Recall Trade-Off

 verschiedene Algorithmen oder verschiedene Einstellungen resultieren in unterschiedlichen Werten für Precision + Recall

Precision-Recall Trade-Off

 verschiedene Algorithmen oder verschiedene Einstellungen resultieren in unterschiedlichen Werten für Precision + Recall

F1-Measure

- ein Score, der zur Evaluation genutzt werden kann
- harmonischer Mittelwert von Precision und Recall

•
$$F_1 = \frac{2*Precision*Recall}{Precision+Recall}$$

• Alternativen: Precision und Recall können auch anders gewichtet werden (F_{β})