I Ranking and Sign Estimation

We next propose a simple and (as we shall experimentally show) effective heuristic solution for estimating the order of Shapley values, without computing the actual values. The solution uses $A_{d,s}$ as a proxy for the Shapley value of d w.r.t. s, namely instead of ranking based on the (unknown) Shapley values, it ranks based on $A_{d,s}$. Similarly, to estimate the sign of the Shapley value of a data point $d \in D$ with respect to a label $s \in S$, we output the sign of $A_{d,s} - AVG_{i \in S}(A_{d,i})$ (if the value is greater than the average, we output "positive", otherwise we output "negative").

This solution is based on the following observation: for $S = \{s_1, s_2\}$ and $A_{d,s_1} > A_{d,s_2}$ for some sequence $d \in D$, then the Shapley value of d with respect to s_1 is positive, and with respect to s_2 is negative. While a generalization to cases where |S| > 2 does not necessarily hold, there is an intuitive correlation between the relative magnitudes of $A_{d,s}$ and the relative magnitudes of Shapley values. Indeed, we will experimentally show that the simple algorithm ranking data items based on $A_{d,s}$ values generally achieves good ranking accuracy, and the simple algorithm for the sign estimation attains good sign accuracy.

Data: Dataset D

Result: Estimations to Shapley values for each $d \in D$ (serves as attribution explanation for d).

Run ComputeDataProb() step of Algorithm 1 on D to get $A_{d,s}$ values for each $d \in D, s \in S$;

return $(A_{d,s} - AVG_{i \in S}[A_{d,i}])$ as explanation value for data point d on label s.

Algorithm 1: Attribution explanations (estimating Shapley values order and sign using $A_{d,s}$ values)

Proposition 1. If |S| = 2, and $A_{d,s_1} > A_{d,s_2}$ for a data point d and the two labels s_1, s_2 , the Shapley value of d with respect to the label s_1 is greater than its Shapley value with respect to s_2 , and also A_{d,s_1} is positive and A_{d,s_2} is negative.

Proof. We will show that when |S| = 2, if $A_{i,s_1} \geq A_{i,s_2}$, then $Shapley(i)[s_1] \geq Shapley(i)[s_2]$. Moreover, we will show that the Shapley value of i with respect to s_1 is positive, and the Shapley value of i with respect to s_2 is negative. The value function is:

$$v(D) = argmax(\prod_{d \in D} \sum_{s \in S} \alpha_s \cdot A_{d,s})$$
(1.1)

And in the case of 2 labels:

$$v(D) = argmax(\prod_{d \in D} \left[\alpha_{s_1} * A_{d,s_1} + \alpha_{s_2} * A_{d,s_2}\right])$$
(1.2)

And since $\alpha_{s_1} + \alpha_{s_2} = 1$:

$$v(D) = argmax(\prod_{d \in D} \left[\alpha_{s_1} * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2}\right])$$
(1.3)

The Shapley value of a data point $i \in D$ is:

$$\frac{1}{N!} \sum_{G \subseteq [N] \setminus \{i\}} \left[v(G \cup i) - v(G) \right] * |G|! * (N - |G| - 1)!$$
(1.4)

We will show that vector $v(G \cup i) - v(G)$ is always positive in the index s_1 and always negative in the index s_2 . The value $v(G \cup i) - v(G)$ is:

$$argmax(\prod_{d \in G \cup i} [\alpha_{s_1} * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2}]) -$$

$$argmax(\prod_{d \in G} [\alpha_{s_1} * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2}])$$

$$(1.5)$$

Equals:

$$argmax(\prod_{d \in G} [\alpha_{s_1} * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2}] *$$

$$(\alpha_{s_1} * (A_{i,s_1} - A_{i,s_2}) + A_{i,s_2})) -$$

$$argmax(\prod_{d \in G} [\alpha_{s_1} * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2}])$$

$$(1.6)$$

Assume that the vector that is maximizing vector $v(G \cup i)$ is (m_1, m_2) and that that vector that is maximizing v(G) is (n_1, n_2) . Note that what we need to prove is that $m_1 \ge n_1$ and that $m_2 \le n_2$ (to show that the maximizing vector after adding data point i is higher in the index of s_1 and smaller in the index of s_2).

Assume for the way of contradiction that $m_1 < n_1$. We know that (m_1, m_2) is maximizing $v(G \cup i)$ so we have that the likelihood function on $G \cup i$ is higher in the point (m_1, m_2) than in any other point, specifically (n_1, n_2) , so:

$$\prod_{d \in G} \left[m_1 * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2} \right] * (m_1 * (A_{i,s_1} - A_{i,s_2}) + A_{i,s_2}) \ge
\prod_{d \in G} \left[n_1 * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2} \right] * (n_1 * (A_{i,s_1} - A_{i,s_2}) + A_{i,s_2})$$
(1.7)

But we know that (n_1, n_2) is maximizing the likelihood function on G, so:

$$\prod_{d \in G} \left[m_1 * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2} \right] \leq
\prod_{d \in G} \left[n_1 * (A_{d,s_1} - A_{d,s_2}) + A_{d,s_2} \right]$$
(1.8)

Which means that

$$(m_1 * (A_{i,s_1} - A_{i,s_2}) + A_{i,s_2}) \ge (n_1 * (A_{i,s_1} - A_{i,s_2}) + A_{i,s_2})$$
(1.9)

Which is equivalent to:

$$m_1 * (A_{i,s_1} - A_{i,s_2}) \ge n_1 * (A_{i,s_1} - A_{i,s_2})$$
 (1.10)

But since we assumed that $A_{i,s_1} > A_{i,s_2}$, the value $A_{i,s_1} - A_{i,s_2}$ is positive, hence

$$m_1 \ge n_1 \tag{1.11}$$

And this is a contradiction.

This means that for each subset G, $v(G \cup i)[s_1] \ge v(G)[s_1]$, so $v(G \cup i)[s_1] - v(G)[s_1]$ is always positive, and since Shapley value is just summing over these values and multiplying with positive values, the Shapley value $Shapley(i, s_1)$ will be positive.

The proof of the second direction is symmetric (that $Shapley(i, s_2)$ will be negative).

On the other hand:

Proposition 2. A generalization of Proposition 1 to $|S| \ge 3$ does not hold.

Proof. It might be the case that $A_{i,s_1} > A_{i,s_2}$, but still $Shapley(i)[s_1] < Shapley(i)[s_2]$, for example, in a case where the algorithm is debating between s_2 and s_3 , and data point i is making it decide on s_2 , because $A_{i,s_2} > A_{i,s_3}$. So the Shapley of i on s_2

3

would be very high, and the Shapley of i on s_1 would be 0, because anyway the algorithm was not even considering label s_1 . A formal counter example would be when the likelihood function is:

$$L(D,\alpha) = (10^8 \alpha_1 + 10^8 \alpha_2 + 0\alpha_3)^{1000} \cdot (100\alpha_1 + 0\alpha_2 + 101\alpha_3)$$
(1.12)

For the last data point, even though $A_{i,s_1} < A_{i,s_3}$, this is the data point that is making the algorithm decide between s_1 and s_2 , hence it will have a high value in $Shapley(i)[s_1]$, and $Shapley(i)[s_3]$ will be 0.