Operator scaling++

Yuanzhi Li (Princeton)

Joint work with Zeyuan Allen-Zhu, Ankit Garg(Microsoft Research), Rafael Oliveria (University of Toronto) and Avi Wigderson (IAS)

Thanks:

My fiancée Yandi Jin

Problem of interest

- Group action: A group G, a set V.
 - Each element g in G defines a map g: V -> V (actions).
 - The actions preserve the group structure:
 - $(g_1g_2)(v) = g_1(g_2(v))$.
 - Identity(v) = v.

Problem of interest

- Orbit intersection
 - Given elements v_1 , v_2 in V, whether there are g_1 , g_2 in G such that
 - $g_1(v_1) = g_2(v_2)$.
- Orbit closure intersection:
 - Suppose V is some metric space.
 - Given elements v_1 , v_2 in V, consider two sets:
 - $O(v_1) = \{ g(v_1) \mid g \text{ in } G \}, O(v_2) = \{ g(v_2) \mid g \text{ in } G \}.$
 - Whether the closures of O(v₁) and O(v₂) intersect.
- We want to do it efficiently.

Why is this problem interesting?

- Graph isomorphism:
 - G: Symmetric group on n elements.
 - V: Set of graphs with n vertices.
 - An efficient algorithm (poly time) would be a huge break through.

How hard is this problem?

- Orbit intersection: Unlikely to be NP-complete.
- 'In co-AM' just like Graph Isomorphism.

In this paper

- We give a polynomial time algorithm for orbit closure intersection problem for left-right linear actions:
 - V = set of m tuples of n x n complex matrices.
 - $v = (M_1, ..., M_m)$.
 - $G = SL_n(C) \times SL_n(C)$.
 - SL_n(C): The set of all linear operations on Cⁿ with determinate 1.
 - g = A, B.
 - $g(v) = (AM_1B^+, ..., AM_mB^+).$

The main problem:

- Given $v_1 = (M_1, ..., M_m)$, $v_2 = (M_1', ..., M_m')$, decide whether for every ∞ > 0 there exists A, B in such that
 - $||AM_1B^+ M_1'||_F^2 + ... + ||AM_mB^+ M_m'||_F^2 < \infty$.
- We give a polynomial time algorithm:
 - Polynomial in the number of bits to write down v_1 , v_2 .

Optimization approach

- Let us focus on $V = C^n$ (complex Euclidean space of dimension n), G is a subset of $GL_n(C)$.
- $|| * ||_2$ is the Euclidean norm.
 - Define $f_v(g) = ||g(v)||_2^2$.
 - Define $N(v) = \inf_{g \text{ in } G} f_v(g)$.
 - Moment map: $\mu_G(v)$.

Optimization approach

- Kempf-Ness Theorem + Hilbert Nullstellansatz:
 - Suppose $N(v_1)$, $N(v_2) > 0$, then there is an element in the intersection of the closures of $O(v_1)$ and $O(v_2)$:
 - Then there is one v_0 in the intersection of the closures of $O(v_1)$ and $O(v_2)$ such that:
 - $\mu_{G}(v_{0}) = 0$.
 - v_0 is unique in the sense that for every such v_0 , v_0 , there exists s with:
 - $v_0 = s(v_0')$, where:
 - $||s(v')||_2 = ||v'||_2$ for every v' in V.
 - s is in the maximum compact subgroup K of G.

Two steps approach

- Find $v_1' = g_1(v_1)$, $v_2' = g_2(v_2)$ such that $\mu_G(v_1') = \mu_G(v_2') = 0$.
 - Find g_1 , g_2 that minimizes $||g_1(v_1)||_2^2$, $||g_2(v_2)||_2^2$.
 - Optimization: given v, find the argmin of $||g(v)||_2^2$ over g in G.
- Solve the problem whether the orbit of v_1' , v_2' in K intersects
 - Solve the problem on a simpler group (The maximum compact subgroup).
- Original ↔ Opt + Simple.

The idea looks simple

- But there is a problem:
 - The optimization step: Given v, find the argmin of $||g(v)||_2^2$ over g in G.
 - Usually, the theorems in optimization looks like this:
 - Given v, find g' such that $||g'(v)||_2^2 \le \inf_{g \text{ in } G} ||g(v)||_2^2 + \epsilon$.
 - In some Time $(1/\epsilon)$.
 - Two reasons:
 - Infimum might not be achievable.
 - Infimum might not be a rational matrix (even when v is an integer vector).

Can we work inexactly?

- One major difference between optimization and mathematics:
 - In math:
 - The exact minimizer has property blah blah blah.
 - If \$ equals to ¥, then blah blah blah.
 - In optimization:
 - To get an efficient algorithm, most of the time we need to work with:
 - The approximate minimizer.
 - When \$ approximately equals to ¥.

Two steps approach (Modified)

- Find g_1 , g_2 that approximately minimizes $||g_1(v_1)||_2^2$, $||g_2(v_2)||_2^2$
 - Optimization: given v, approximately minimizes $||g(v)||_2^2$ over g in G.
 - $||g'(v)||_2^2 \le \inf_{g \text{ in } G} ||g(v)||_2^2 + \epsilon$.
- Solve the problem whether the orbit of v₁', v₂' in K approximately intersects:
 - Find s_1 , s_2 in K such that:
 - $|| s_1(v_1') s_2(v_2') ||_2^2 \le \epsilon$.
- Original \leftrightarrow Opt(ϵ) + Simple (ϵ)?

How to choose epsilon?

- How fast we can minimize the given function?
 - Given v, find g' such that $||g'(v)||_2^2 \le \inf_{g \in G} ||g(v)||_2^2 + \epsilon$
 - In some Time $(1/\epsilon)$.
 - What is this Time $(1/\epsilon)$?
 - Logarithmic? $\log(1/\epsilon)$?
 - Polynomial? $(1/\epsilon)^{10}$?
 - Exponential? $e^{1/\epsilon}$?
 - > we want large epsilon so we can optimize fast.
- How small the error needs so the mathematical theorems still hold:
 - > we want small epsilon so we can prove the theorem easily.

How fast we can minimize the given function

- Given v, minimize $||g(v)||_2^2$ over g in G.
- Theorem of [GRS'13, Wood'11]
 - For 'most of the' G: a subset of $GL_n(C)$, $V = C^n$:
 - $||g(v)||_2^2$ is geodesically convex.

Geodesic Convexity

- Equip some Riemannian metric | | * | | on G: a subset of $GL_n(C)$.
 - Geodesic path from g₁ to g₂:
 - γ: [0, 1] -> G
 - $\gamma(0) = g_1$
 - $\gamma(1) = g_2$
 - For every s, t in [0,1]: $|| \gamma(s) \gamma(t) ||$ is proportional to |s t|.
 - It can also be (uniquely) characterized by $\gamma'(0)$.
- A function f: G -> R is geodesically convex:
 - If and only if for every geodesic path γ:
 - $f(\gamma)$: [0, 1] -> R is convex.

Minimize a geodesically convex function

- Convex function f:
 - Gradient descent: at each point x, move along $-\nabla f(x)$.
- Geodesic convex function f:
 - Geodesic gradient descent: At each point x, find geodesic path γ such that
 - y(0) = x.
 - $\gamma'(0) = -\nabla f(x)$.
 - Move along γ.

Minimize a Geodesically convex function

- Theorem[ZS'16]:
 - Using Geodesic gradient descent, we can minimize a geodesic convex function f up to error ϵ in time:
 - $(1/\epsilon)^2$.
 - Polynomial time algorithm for (inverse) polynomially small ϵ .

Mathematical part

- Can we prove the theorem when the error ϵ is inverse polynomial?
 - It is ok for applications in previous work: [GGOW'16] (Null Cone)
 - Not ok for our problem: We need exponentially small epsilon.

Mathematical part

- The inexact orbit closure intersection problem:
 - Given tuples $v_1 = (M_1, ..., M_m)$ and $v_2 = (M_1', ..., M_m')$.
 - Our group G: $SL_n(C) \times SL_n(C)$.
 - The orbit closure of v_1 and v_2 intersects:
 - if and only if there exists (A, B) in G such that
 - $||AM_1B^+ M_1'||_F^2 + ... + ||AM_mB^+ M_m'||_F^2 \le \epsilon.$
- Central question: How small ϵ needs to be?

Mathematical part

- Theorem (this paper): epsilon being (inverse) exponentially small is sufficient:
- There exists a polynomial p: R^3 -> R such that for every m, n, B, every $v_1 = (M_1, ..., M_m)$ and $v_2 = (M_1', ..., M_m')$ where M_i , M_i' in $C^{n \times n}$ with each entry being integers in [-B, B], the following two statements are equivalent:
 - The orbit closure of v_1 and v_2 intersects.
 - There exists (A, B) in G such that $||AM_1B^+ M_1'||_F^2 + ... + ||AM_mB^+ M_m'||_F^2 \le e^{-p(m, n, \log B)}$.
- (inverse) exponential is tight.

Epsilon is inverse exponentially small

- To get an efficient algorithm, we need to:
 - Given v, find g' such that $||g'(v)||_2^2 \le \inf_{g \text{ in } G} ||g(v)||_2^2 + \epsilon$.
 - In time polylog($1/\epsilon$).
- Which means that we can not use gradient descent.

Faster optimization algorithms

- Optimization algorithm with polylog($1/\epsilon$) convergence rate:
 - In convex setting:
 - Newton's method (Only local convergence rate).
 - Interior point algorithm.
 - Ellipsoid algorithm.

Faster optimization algorithms:

- Newton's method (Only local convergence rate).
- Interior point algorithm.
 - They are 'gradient descent' type of algorithms.
 - They all based on the so called ``self-concordant function''.

Self-concordant function:

- A convex function f: R -> R is self-concordant if for every x:
 - $|f'''(x)| \le 2 (f''(x))^{3/2}$.
 - Scaling independent: $|f'''(ax)| \le 2 (f''(ax))^{3/2}$ for every non-zero a.

• A geodesically convex function is self-concordant if for every geodesic path γ , $f(\gamma)$: R -> R is self-concordant.

Self-concordant function:

- A convex function f: R -> R is self-concordant if for every x:
 - $|f'''(x)| \le 2 (f''(x))^{3/2}$
- 'looks likes' Quadratic function:
 - When the second order derivative is small, the change of it is also small.

Optimize a self-concordant function:

- Forklore (informal): There is an algorithm that runs in time poly(n)log($1/\epsilon$) to minimize a geodesic self-concordant function: G -> R up to accuracy ϵ .
- Move along direction $-(\nabla^2 f(x))^{-1} \nabla f(x)$.

Good, can we use it?

- No...
 - Our function $||g(v)||_2^2$ is not geodesic self-concordant ...

Ok, can we modify the definition?

- $|f'''(x)| \le 2 (f''(x))^{3/2}$
- Why 3/2? I don't like 3/2... it's not an integer... not nice...
- Scaling independent.
- Can we fix a scaling and use other powers?

Self-robust function:

- A function f: R -> R is self-robust if for every x:
 - $|f'''(x)| \leq f''(x)$.
- A geodesic convex function is self-concordant if for every unit speed geodesic path γ , $f(\gamma)$: R -> R is self-concordant.
 - Unit speed: $||\gamma'(0)|| = 1$.

Optimize a self-robust function:

• Theorem [This paper, informal]: There is an algorithm that runs in time poly(n)log($1/\epsilon$) to minimize a geodesic self-robust function: G -> R up to accuracy ϵ . (G is a subset of $GL_n(C)$)

Overview of the algorithm:

- At every iteration, maintain a point g in G.
 - Compute the local geodesic gradient $\nabla f(g)$, defined as:
 - For every direction e, <e, $\nabla f(g)$ > = $f'(\gamma(t))|_{t=0}$
 - Such that $\gamma(0) = g, \gamma'(0) = e$.
 - Compute the local geodesic hessian $\nabla^2 f(g)$, defined as
 - For every direction e, $e^+ \nabla^2 f(g) = f''(\gamma(t))|_{t=0}$
 - Such that $\gamma(0) = g$, $\gamma'(0) = v$.
 - Minimize the function g(e) = $\langle e, \nabla f(g) \rangle + 0.1 e^{+} \nabla^{2} f(g) e$ over $||e|| \leq 0.1$
 - Let e* be the minimizer.
 - Move to $\gamma(0.01)$ such that
 - $y(0) = g, y'(0) = e^*$.

Wait a second...

- Why $\nabla f(g)$, $\nabla^2 f(g)$ even exist?
- It is important that γ is geodesic path.
 - Can be defined via 'Exponential map'.

Good, can we use it?

- No...
 - Our function $||g(v)||_2^2$ is not geodesic self-robust...

Wait... so what are you talking about???

Modify the function

- We just need to find the minimizer g in G of $||g(v)||_2^2$.
- We can minimize any function h_v(g) such that
 - argmin $g \in h_v(g) = argmin_{g \in G} ||g(v)||_2^2$.
- Can we find such function? And make it self-concordant/self-robust?

The log capacity function:

- In our problem:
 - $v = (M_1, ..., M_m), g = (A, B).$
 - $||g(v)||_2^2 = ||AM_1B^+||_F^2 + ... + ||AM_mB^+||_F^2$.
 - Minimizing this function is aka operator scaling.
- The equivalent function: log capacity function: for a PSD matrix X,
 - $f(X) = logdet(M_1XM_1^+ + ... + M_mXM_m^+) logdet(X)$.
- Theorem [Gurvits'04]:
 - Let X* be a minimizer of f(X), let A*, B* be the minimizer of ||g(v)||₂², then there exists a, b in R such that
 - $B^+B = a X^*$.
 - $AA^+ = b(M_1XM_1^+ + ... + M_mXM_m^+).$

Log capacity function:

- Theorem [This paper]:
- $f(X) = logdet(M_1XM_1^+ + ... + M_mXM_m^+) logdet(X)$
 - Is a geodesic self-robust function, with the geodesic path over PSD matrices given as:
 - $\gamma(t) = X_0^{1/2} e^{tD} X_0^{1/2}$
 - $\gamma(0) = X_0$
 - $\gamma'(0) = X_0^{1/2} D X_0^{1/2}$.

Step 1:

• Minimize:

- $f_1(X) = logdet(M_1XM_1^+ + ... + M_mXM_m^+) logdet(X)$.
- $f_2(X) = logdet(M_1'XM_1'^+ + ... + M_m'XM_m'^+) logdet(X)$.
- Let X_1^* , X_2^* be an ϵ -approximate minimizers.

• Let:

- $B^+B = a_1 X_1^*, B_2^+B_2 = a_2 X_2^*.$
- $AA^+ = b_1(M_1X_1^*M_1^+ + ... + M_mX_1^*M_m^+)$, $A_2A_2^+ = b_2(M_1'X_2^*M_1'^+ + ... + M_m'X_2^*M_m'^+)$.

Step 2:

- Now, let $w_1 = Av_1B^+$, $w_2 = A_2v_2B_2^+$.
- Check the orbit closure $w_{1,}$ w_{2} approximately interests in a subgroup K:
 - K: all the elements g in G such that for every v in V, $||g(v)||_2^2 = ||v||_2^2$
 - In this problem: K: the set of all (determinate one) unitary matrices.

Exact unitary equivalence:

- Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m'),$
- Check whether there exists unitary matrices U, V such that
 - For all i in m: $U M_i V^+ = M_i'$.
- Existing algorithms [CIK'97, IQ'18] can solve it in polynomial time.

Inexact unitary equivalence:

- Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m'),$
- Check whether there exists unitary matrices U, V such that
 - For all i in m: $||U M_i V^+ M_i'||_F \le \epsilon$.
 - Where ϵ is (inverse) exponentially small.

Naïve idea

- Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m'),$
- Check whether there exists unitary matrices U, V such that
 - For all i in m: $||U M_i V^+ M_i'||_F \le \epsilon$.
 - Where ϵ is (inverse) exponentially small.
 - Make ϵ smaller than (inverse) exponential of the bit complexity of M_i and M_i .
 - So U M_i V + = M_i '.
 - Use exact algorithm.

Recall how we get w₁

• Minimize:

- $f_1(X) = logdet(M_1XM_1^+ + ... + M_mXM_m^+) logdet(X)$.
- $f_2(X) = logdet(M_1'XM_1'^+ + ... + M_m'XM_m'^+) logdet(X).$
- Let X_1^* , X_2^* be an ϵ -approximate minimizers.

• Let:

- $B^+B = a_1 X_1^*, B_2^+B_2 = a_2 X_2^*.$
- $AA^+ = b_1(M_1X_1^*M_1^+ + ... + M_mX_1^*M_m^+)$, $A_2A_2^+ = b_2(M_1'X_2^*M_1'^+ + ... + M_m'X_2^*M_m'^+)$.

Naïve idea

- Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m')$:
 - $w_1 = Av_1B^+$, where A, B defined by an ϵ -approximate minimizer.
- The smaller ϵ is, the larger the bit complexity of M_i is.
 - In fact, ϵ can never be smaller than (inverse) exponential of the bit complexity of M_i and M_i .

This paper

- We give an algorithm that runs in time poly(m, n, log $1/\epsilon$, B) that
 - Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m'),$
 - Distinguish whether there exists unitary matrices U, V such that
 - For all i in m: $||U M_i V^+ M_i'||_F \le \epsilon$.
 - There exists i in m: $||U M_i V^+ M_i'||_F \ge \exp(\text{poly}(m, n)) \epsilon^{1/\text{poly}(m, n)}$.
- It applies to any ϵ , regardless of the bit complexity B of w_1 , w_2 .

In exact algorithm: Step 1

- What do we know if there exists unitary U, V such that
 - $||U M V^{+} M'||_{F} \le \epsilon$.
- Singular value decomposition.

Singular value decomposition (SVD)

- For every matrix M in C^{n x n}:
- There exists unitary matrices U, V and a diagonal matrix $\Sigma = \text{diag}(\sigma_1, ..., \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0$ such that:
 - $M = U\Sigma V^+$.

Gap-free Wedin Theorem

- What do we know if there exists unitary U, V such that
 - $||U M V^{+} M'||_{F} \le \epsilon$?
- Theorem [AL'16]: Let $M = U_1\Sigma V_1^+$, $M' = U_2\Sigma V_2^+$ be the SVD of M, M'. Suppose $||UMV^+ M'||_F \le \epsilon$. For every $\delta \ge 0$, if
 - There exists k in [n 1] such that $\sigma_k \sigma_{k+1} \ge \delta$
 - Then $||U_{11} + U U_{22}||_F \le \epsilon/(\delta 2\epsilon)$.
 - U₁₁: First k columns of U₁, U₂₂: Last n k columns of U₂

Gap-free Wedin Theorem

- $||U_{11} + U^{\dagger}U_{22}||_{F} \le \epsilon/(\delta 2\epsilon)$.
- If we write $U = U_2U'U_1^+$ for an unitary matrix U'.
 - Then U' is close to being (block) diagonal.

Apply gap-free Wedin Theorem

- Suppose $||U M_i V^+ M_i'||_F \le \epsilon$ and M_i has a singular value gap δ
 - Then we can find in polynomial time unitary U', U'', V', V'' such that there exists unitary matrices U_1 , U_2 , V_1 , V_2 :
 - $| | U U' \operatorname{diag}(U_1, U_2) U''^+ | |_F \le \epsilon/(\delta 2\epsilon).$
 - $| | V V' \operatorname{diag}(V_1, V_2) V''^+ | |_F \le \epsilon/(\delta 2\epsilon).$
 - Reduce the original problem to two sub problems of smaller dimensions.

In the end:

- Left with a problem where all M_i has no singular value gap:
 - M_i is close to a (constant multiple of) unitary matrix.
- $||U M_i V^+ M_i'||_F \le \epsilon$ where M_i , M_i' are close to unitary:
 - V is close to M_i'+UM.
- So we can reduce one unitary V and focus only on U.

Inexact unitary conjugation:

- Given $w_1 = (M_1, ..., M_m), w_2 = (M_1', ..., M_m'),$
- Check whether there exists unitary matrices U such that
 - For all i in m: $||U M_i U^+ M_i'||_F \le \epsilon$.
 - Where ϵ is (inverse) exponentially small.

Eigenvalue

- The eigenvalues of a matrix M is given by the set of all values λ in C such that
 - $Det(\lambda I M) = 0$.

Eigenvalue Wedin Theorem

- What do we know if there exists unitary U such that
 - $||U M U^{+} M'||_{F} \le \epsilon$.
- Theorem [This paper]: Suppose $||U M U^+ M'||_F \le \epsilon$, then for every $\delta \ge 0$, if M has two eigenvalues λ_1 , λ_2 such that $||\lambda_1|| \lambda_2|| \ge \delta$,
 - We can compute, in time poly(n, $\log 1/\epsilon$) unitary matrices U', U'' such that there exists unitary matrices U₁, U₂:
 - $| | U U' \operatorname{diag}(U_1, U_2) U''^+ | |_{E} \le \epsilon/(\delta/n 2\epsilon).$

Apply eigenvalue Wedin Theorem

- Suppose $||U M_i U^+ M_i'||_F \le \epsilon$ and M_i has a eigenvalue gap δ :
 - Then we can find in polynomial time unitary matrices U' ,U'' such that there exists unitary matrices $\rm U_1$, $\rm U_2$
 - $| | U U' \operatorname{diag}(U_1, U_2) U''^+ | |_F \le \epsilon/(\delta/n 2\epsilon).$
 - Reduce the original problem to two sub problems of smaller dimensions.

In the end:

- Left with a problem where all M_i has no singular value gap nor eigenvalue gap.
 - Theorem [This paper]: M_i is close to (constant multiple of) identity.

Summary

- We give a polynomial time algorithm for orbit closure intersection problem for left-right linear actions:
 - V = set of m tuples of n x n complex matrices.
 - $v = (M_1, ..., M_m)$.
 - $G = SL_n(C) \times SL_n(C)$.
 - g = A, B.
 - $g(v) = (AM_1B^+, ..., AM_mB^+).$

Summary

- Use geodesic optimization to reduce the original problem to inexact unitary equivalence problem.
 - Inexact theorem holds for (inverse) exponentially small epsilon.
 - Mathematics.
 - Design an algorithm with linear convergence rate.
 - Optimization.
- Design a new algorithm for inexact unitary equivalence problem.