## Interfacing Memory with 8086

### Address decoding

- In general all the address lines are not used by the memory devices to select particular memory locations.
- The remaining line are used to generate chip select logic.
- Following two techniques are used to decode the address:
  - Absolute or Full decoding
  - 2) Linear or Partial decoding

## Absolute or full decoding

- All the higher address lines are decoded to select the memory chip.
- The memory chip is selected only for the specified logic levels on these higher order address lines.
- So each location have fixed address.
- · This technique is expensive
- It needs more hardware than partial decoding.

### **Partial or Linear Decoding**

- This technique is used in the small system
- All the address lines are not used to generate chip select logic
- Individual High order address lines are used to decode the chip select for the memory chips.
- Less hardware is required.
- Drawback is address of location is not fixed, so each location may have multiple address.

Q. 1: Interface 32 KB of RAM memory to the 8086 microprocessor system using absolute decoding with the suitable address.

Step\_1: Total RAM memory = 32 KB
Half RAM capacity = 16 KB
hence,
number of RAM IC required = 2 ICs of 16 KB
so,

EVEN Bank = 1 ICs of 16 KB RAM

ODD Bank = 1 ICs of 16 KB RAM

| Even bank     | Odd bank      |
|---------------|---------------|
| RAM _1 (16KB) | RAM _2 (16KB) |

Step\_2: Number of address lines required = 15 address lines

### Step\_3: Address decoding table

| MEMOR    | THE RESERVE OF THE PROPERTY OF THE PARTY OF | BINARY ADDRESS |    |    |    |    |    |    |    |    |    |              |   |   |   |   |   |   |   |   |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|----|----|----|----|----|----|----|----|--------------|---|---|---|---|---|---|---|---|---|
| Y IC     | Y IC ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |    | A  | A  | Α  | A  | A  | A  | A  | Α  | A            | A | Α | A | A | A | Α | A | A | A |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19             | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9            | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 16 K x 8 | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0              | 0  | 0  | o  | 0  | 0  | o  | 0  | 0  | o  | $\mathbf{o}$ | o | o | o | o | o | O | O | o | 0 |
| RAM-(1)  | 07FFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | О              | O  | o  | o  | o  | 1  | 1  | 1  | 1  | 1  | 1            | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | O |

To decoder

To 16 K IC

R&M-2 < 00001H

Q. 2: Interface 32 K word of memory to the 8086 microprocessor system. Available memory chips are 16 K x 8 RAM. Use suitable decoder for generating chip select logic.

Step\_1: Total memory = 32 K word = 32\*2 K = 64 K
IC available = 16 K
hence,
number of RAM IC required = 64 K x 8/ 16 Kx8 = 4 ICs
so,

EVEN Bank = 2 ICs of 16 Kx8 RAM ODD Bank = 2 ICs of 16 Kx8 RAM

| Even bank    | Odd bank     |
|--------------|--------------|
| RAM _1 (16K) | RAM _2 (16K) |
| RAM_3 (16K)  | RAM _4 (16K) |

Step\_2: Number of address lines required = 15 address lines

### Step\_3: Address decoding table

| MEMORY<br>IC        | HEX<br>ADDRESS   | BINARY ADDRESS |                 |                 |                 |                 |                 |                 |                 |     |                 |    |    |    |    |                |    |                |       |       |    |
|---------------------|------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-----------------|----|----|----|----|----------------|----|----------------|-------|-------|----|
|                     | , and the second | A19            | A <sub>18</sub> | A <sub>17</sub> | A <sub>16</sub> | A <sub>15</sub> | A <sub>84</sub> | A <sub>13</sub> | A <sub>12</sub> | A11 | A <sub>10</sub> | A9 | As | A7 | A6 | A <sub>5</sub> | A4 | A <sub>3</sub> | $A_2$ | $A_1$ | Ao |
| 16 K x 8<br>RAM-(1) | 00000            | 0              | o               | 0               | o               | o               | o               | o               | o               | o   | o               | 0  | 0  | 0  | o  | 0              | 0  | 0              | o     | O     | 0  |
|                     | 07FFE            | 0              | 0               | 0               | O               | 1               | 1               | 1               | 1               | 1   | 1               | 1  | 1  | 1  | 1  | 1              | 1  | 1              | 1     | 1     | 0  |
| 16 K x 8            | 08000            | O              | 0               | 0               | О               | 1               | o               | 0               | 0               | O   | 0               | 0  | 0  | 0  | 0  | 0              | o  | 0              | 0     | 0     | o  |
| RAM-(3)             | OFFFE            | 0              | O               | 0               | O               | 1               | 1               | 1               | 1               | 1   | 1               | 1  | 1  | 1  | 1  | 1              | 1  | 1              | 1     | 1     | 0  |



Q. 3: Interface the following memory ICs with the 8086 microprocessor system in minimum mode configuration. ROM 4K-2 Numbers EPROM 64K-1 Numbers RAM 32K-1Number. Use partial decoding.

# EVEN Bank = 1 ICs of 4 KB ROM ODD Bank = 1 ICs of 4 KB ROM Total EPROM memory = 64 KB EVEN Bank = 1 ICs of 32 KB EPROM ODD Bank = 1 ICs of 32 KB EPROM ODD Bank = 1 ICs of 32 KB EPROM EVEN Bank = 1 ICs of 16 KB RAM ODD Bank = 1 ICs of 16 KB RAM

| Even bank       | Odd bank        |
|-----------------|-----------------|
| ROM _1 (4KB)    | ROM _2 (4KB)    |
| EPROM _1 (32KB) | EPROM _2 (32KB) |
| RAM _1 (16KB)   | RAM _2 (16KB)   |

### Step 2:

Number of address lines required for ROM = 13 address lines Number of address lines required for EPROM = 16 address lines Number of address lines required for RAM = 15 address lines

### Step\_3: Address decoding table BINARY ADDRESS MEMORY HEX Aı A17 A15 A14 A12 A11 A10 As $A_4$ As A19 A18 A16 Ao As Az As IC ADDRESS FFFFE 4 K x 8 ROM-(1) FE000 To ROM IC 32 K x 8 EFFFE EPROM-(1) E0000 To EPROM IC D0000 16 K x 8 RAM-(1) D7FFE To decoder To RAM IC