FCC Part 90 Test Report

Report No.: AGC00932141101FE09

FCC ID : 2ADPVVZ-30-G6-4

PRODUCT
DESIGNATION: Two Way radio

BRAND NAME: Vertex Standard

MODEL NAME : VZ-30-G6-4,VZ-30

CLIENT : Vertex Standard LMR, Inc.

DATE OF ISSUE: Nov.22, 2014

STANDARD(S) : FCC Part 90 Rules

REPORT VERSION : V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION: This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC00932141101FE09 Page 2 of 54

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov.22, 2014	Valid	Original Report

Page 3 of 54

VERIFICATION OF COMPLIANCE

VEIGH TOATTON OF O	<u> </u>	
Applicant:	Vertex Standard LMR, Inc.	
	Tamachi First Bldg. 4-6-8 Shibaur, Minato-ku, Tokyo 108-0023 Japan	
Manufacturar	Quanzhou Feijie Electron Co.,Ltd.	
Manufacturer:	Jiangnan Hi-tech Garden, Quanzhou City, Fujian Province, China 362000	
Product Designation:	Two Way radio	
Brand Name:	Vertex Standard	
Test Model	VZ-30-G6-4,VZ-30	
Difference	All the same except the model name.	
Date of Test:	Nov.18, 2014 to Nov.21, 2014	

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2009. The sample tested as described in this report is in compliance with the FCC Rules Part 90 requirements

The test results of this report relate only to the tested sample identified in this report.

Tested by

Freddie Duan Nov.22, 2014

Checked By

Kidd Yang Nov.22, 2014

Solyer 2Lary

Authorized By

Solger Zhang Nov.22, 2014

Page 4 of 54

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	
2.1 EUT CONFIGURATION2.2 EUT EXERCISE	
2.3 GENERAL TECHNICAL REQUIREMENTS	
2.4 CONFIGURATION OF TESTED SYSTEM	
2.5. SUMMARY OF TEST RESULTS	g
3. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	10
4. DESCRIPTION OF TEST MODES	11
5. CONDUCTED LIMITS	12
5.1 PROVISIONS APPLICABLE	12
5.2 MEASUREMENT PROCEDURE	
5.3 TEST SETUP BLOCK DIAGRAM	
5.4 TEST RESULT	
6. FREQUENCY TOLERANCE	16
6.1 PROVISIONS APPLICABLE	
6.2 MEASUREMENT PROCEDURE	
6.3 TEST SETUP BLOCK DIAGRAM	
7. EMISSION BANDWIDTH	
7.1 PROVISIONS APPLICABLE	
7.2 MEASUREMENT PROCEDURE	
7.3 TEST SETUP BLOCK DIAGRAM7.4 MEASUREMENT RESULT	
8. UNWANTED RADIATION	
8.1 PROVISIONS APPLICABLE	
8.3 TEST SETUP BLOCK DIAGRAM	

⊃ag	е	5	of	54

8.4 MEASUREMENT RESULTS:	26
9. MODULATION CHARACTERISTICS	29
9.1 PROVISIONS APPLICABLE 9.2 MEASUREMENT METHOD 9.3 MEASUREMENT RESULT	29
10. MAXIMUMN TRANSMITTER POWER	33
10.1 PROVISIONS APPLICABLE 10.2 TEST PROCEDURE 10.3 TEST CONFIGURATION 10.4 TEST RESULT 10.5 CONDUCT SPURIOUS PLOT	33 33
11. RANSMITTER FREQUENCY BEHAVIOR	37
11.1 PROVISIONS APPLICABLE 11.2 TEST METHOD 11.3 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR 11.4 MEASURE RESULT	37
12. RADIATED EMISSION ON RECEIVING MODE	40
12.1 PROVISIONS APPLICABLE	40
13. AUDIO LOW PASS FILTER RESPONSE	45
13.1 LIMITS	45
APPENDIX I: PHOTOGRAPHS OF SETUP	48
APPENDIX II: EXTERNAL VIEW OF EUT	49

Page 6 of 54

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a Two Way radio designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Communication Type	Voice / Tone only
Modulation	FM
Emission Type	F3E
Emission Bandwidth	10.32KHz
Peak Frequency Deviation	1.85KHz
Audio Frequency Response	10.88dB
Maximum Transmitter Power	35.98dBm
Output power Modification	4W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)
Antenna Designation	Detachable
Power Supply	DC 7.4V, 1800mAh (by battery)
Adapter Parameter	Input: 100-240V, 50/60HZ, 0.2A Output: 12V, 0.5A
Limiting Voltage	DC 6.29V-DC 8.51V
On another Francisco	Frequency Range: 400MHz to 470MHz Channel Separation: 12.5KHz
Operation Frequency Range and Channel	Bottom Channel: 400.025MHz Centre Channel: 435.000MHz Top Channel: 469.975MHz
Frequency Tolerance	0.847ppm

Page 7 of 54

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID**: 2ADPVVZ-30-G6-4, filing to comply with the FCC Part 90 requirements .

1.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2009; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

1.4 TEST FACILITY

The test site used to collect the radiated data is located on the address of Attestation of Global Compliance (Shenzhen) Co., Ltd. The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and IC requirements in documents RS212.

FCC register No.: 259865

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 8 of 54

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.3 GENERAL TECHNICAL REQUIREMENTS

For FCC Part 90 requirements:

- (1). Section 15.207: Conducted Limits
- (2). Section 90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area
- (3). Section 90.207: Modulation Characteristic
- (4). Section 90.209: Occupied Bandwidth
- (5). Section 90.210: Emission Mask
- (6). Section 90.213: Frequency Tolerance
- (7). Section 90.214: Transient Frequency Behavior
- (8). Section 15.109: Radiated Emission

Page 9 of 54

2.4 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Two Way radio	VZ-30-G6-4	FCC ID: 2ADPVVZ-30-G6-4	EUT

2.5. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207	Conducted Emission	Compliant
§90.205	Maximum Transmitter Power	Compliant
§90.207	Modulation Characteristic	Compliant
§90.209	Occupied Bandwidth	Compliant
§90.210	Emission Mask	Compliant
§90.213	Frequency Tolerance	Compliant
§90.214	Transient Frequency Behavior	Compliant
§15.109	Radiated Emission	Compliant

Page 10 of 54

3. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location 1	2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu,	
Location 1	Xixiang, Bao'an District, Shenzhen, Guangdong, China	
Location 2	B112-B113, Building 12, Baoan Building Materials Center, No.1 of Xixiang Inner	
Location 2	Ring Road, Baoan District, Shenzhen, Guangdong, P.R.China	

LIST OF EQUIPMENTS USED

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	N/A	07/25/2014	07/24/2015
LISN	R&S	ESH3-Z5	N/A	09/05/2014	09/04/2015
CLIMATE CHAMBER	EXPERY	TN-400	N/A	07/25/2014	07/24/2015
ATTENUATOR	WEINSCHEL CORP	58-30-33	ML030	07/25/2014	07/24/2015
DC POWER SUPPLY	ZHAOXIN	RXN-605D	N/A	07/25/2014	07/24/2015
SPECTRUM ANALYZER	AGILENT	N9010A	MY53470504	10/21/2014	10/20/2015
MODULATION ANALYZER	HP	8920B	3104A03367	07/16/2014	07/15/2015
HEADPHONE LINE	AGC	N/A	N/A	N/A	N/A
HORN ANT	ETS	3117	00034609	08/17/2014	08/16/2015
BROADBAND ANT	SCHWARZBECK	VULB9168	D69250	08/17/2014	08/16/2015
AMPLIFIER	Schwarzbeck	BBV 9718	9718-62	07/30/2014	07/29/2015
Multi-Device Controller	EMCO	2090	N/A	07/30/2014	07/29/2015
HORN ANTENNA	A.H. SYSTEMS INC.	SAS-574	N/A	07/16/2014	07/15/2015
SIGNAL GENERATOR	AGILENT	E4421B	122501288	07/25/2014	07/24/2015
SIGNAL GENERATOR	R&S	SMT03	A0304261	07/25/2014	07/24/2015
BICONILOG ANTENNA	EMCO	3142C	N/A	08/17/2014	08/16/2015
RF CABLE	SUIRONG	9KHZ-30MHZ	N/A	07/15/2014	07/14/2015
RF CABLE	SUIRONG	30MHZ-18GHZ	N/A	07/15/2014	07/14/2015

NOTE: 8920B can generate audio modulation frequency.

Page 11 of 54

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (Two Way radio) has been tested under normal operating condition. (The top channel, the middle channel and the bottom channel) are chosen for testing at each channel separation.

No.	TEST MODES	CHANNEL SEPARATION
1	Low Channel	12.5 KHz
2	Middle Channel	12.5 KHz
3	High Channel	12.5 KHz

EMC TEST MODES

No.	TEST MODES
1	Transmit Mode
2	Standby Mode

Note: Only the result of the worst case was recorded in the report.

Page 12 of 54

5. CONDUCTED LIMITS

5.1 PROVISIONS APPLICABLE

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the, the radio frequency voltage that is conducted back onto the AC power line on any frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50uH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit(dBuV)		
, ,	Quasi-Peak	Average	
0.15 – 0.5	66 to 56 *	56 to 46 *	
0.5 – 5	56	46	
5 – 30	60	50	

^{*} Decreases with the logarithm of the frequency.

5.2 MEASUREMENT PROCEDURE

- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- (5) All support equipments received AC power from a second LISN, if any.
- (6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (7) Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. During the above scans, the emissions were maximized by cable manipulation.

Page 13 of 54

5.3 TEST SETUP BLOCK DIAGRAM

Page 14 of 54

5.4 TEST RESULT

CONDUCTED EMISSION TEST - LINE L1

SCAN TABLE: "Voltage (150K-30M) FIN"
Short Description: 9k-30M Voltage

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuv	dB	dBuv	dB				
0.158000 0.206000 0.266000 0.362000 0.446000 0.582000	38.80 37.30 28.20 30.40 31.20 35.40	0.2 0.2 0.2 0.2 0.2	66 63 61 59 57 56	26.8 26.1 33.0 28.3 25.7 20.6	QP QP QP QP QP OP	L1 L1 L1 L1 L1	FLO FLO FLO FLO FLO	ON ON ON ON

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuv	dB	dBuv	dB				
0.150000	28.30	0.2	56	27.7	AV	L1	FLO	ON
0.298000	24.80	0.2	50	25.5	AV	L1	FLO	ON
0.638000	24.40	0.2	46	21.6	AV	L1	FLO	ON
0.926000	24.90	0.2	46	21.1	AV	L1	FLO	ON
1.438000	20.40	0.2	46	25.6	AV	L1	FLO	ON
1.782000	20.60	0.3	46	25.4	AV	L1	FLO	ON

Page 15 of 54

CONDUCTED EMISSION TEST - LINE N

SCAN TABLE: "Voltage (150K-30M) FIN"
Short Description: 9k-30M Voltage

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuv	dB	dBuv	dB				
0.154000	42.50	0.2	66	23.3	QP	N	FLO	ON
0.202000	38.10	0.2	64	25.4	QP	N	FLO	ON
0.254000	32.70	0.2	62	28.9	QP	N	FLO	ON
0.350000	30.10	0.2	59	28.9	QP	N	FLO	ON
0.714000	30.90	0.2	56	25.1	QP	N	FLO	ON
1.894000	28.10	0.3	56	27.9	QP	N	FLO	ON

MEASUREMENT RESULT:

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuv	dB	dBuv	dB				
0.150000	30.00	0.2	56	26.0	AV	N	FLO	ON
0.294000	26.50	0.2	50	23.9	AV	N	FLO	ON
0.538000	25.70	0.2	46	20.3	AV	N	FLO	ON
0.922000	25.60	0.2	46	20.4	AV	N	FLO	ON
1.286000	22.20	0.2	46	23.8	AV	N	FLO	ON
3.022000	19.40	0.3	46	26.6	AV	N	FLO	ON

Page 16 of 54

6. FREQUENCY TOLERANCE

6.1 PROVISIONS APPLICABLE

a). According to FCC Part 2 Section 2.1055(a)(1), the frequency stability shall be measured with variation of ambient temperature from −30°C to +50°C centigrade.

- b). According to FCC Part 2 Section 2.1055(d)(2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacturer.
- c). According to FCC Part 90 Section 90.213, the frequency tolerance must be maintained within 0.00025% for 12.5 KHz channel separation and 0.0001% for 6.25 KHz channel separation.
- d). According to RSS-119 Section 119.5.3, the frequency tolerance must be maintained within 0.00025% for 12.5 KHz channel separation and 0.0005% for 25KHz channel separation.

6.2 MEASUREMENT PROCEDURE

6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50° C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.

6.2.2 Frequency stability versus input voltage

- Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃.
 Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT shall be powered by DC 7.4V.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

Page 17 of 54

6.3 TEST SETUP BLOCK DIAGRAM

Temperature Chamber

Page 18 of 54

6.4 TEST RESULT

Frequency stability versus input voltage (Supply nominal voltage is 7.4V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	400.025 MHz	Limit:	5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	7.4	400.025315	0.787
40	7.4	400.025314	0.785
30	7.4	400.025293	0.732
20	7.4	400.025282	0.705
10	7.4	400.025287	0.717
0	7.4	400.025241	0.602
-10	7.4	400.025332	0.830
-20	7.4	400.025339	0.847
-30	7.4	400.025317	0.792

Middle Channel @ 12.5 KHz Channel Separation

Reference Frequency:	435.000	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	7.4	435.000355	0.816
40	7.4	435.000282	0.648
30	7.4	435.000274	0.630
20	7.4	435.000276	0.634
10	7.4	435.000263	0.605
0	7.4	435.000245	0.563
-10	7.4	435.000257	0.591
-20	7.4	435.000263	0.605
-30	7.4	435.000272	0.625

Top Channel @ 12.5 KHz Channel Separation

Reference Frequency:	469.975	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	7.4	469.975372	0.792
40	7.4	469.975355	0.755
30	7.4	469.975347	0.738
20	7.4	469.975352	0.749
10	7.4	469.975333	0.709
0	7.4	469.975332	0.706
-10	7.4	469.9753527	0.750
-20	7.4	469.975345	0.734
-30	7.4	469.975362	0.770

Page 19 of 54

(2) Frequency stability versus input voltage (Battery Limiting voltage is 6.29V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	400.025 MHz	Limit:	5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	400.025283	0.707
40	DC 6.29 V	400.025275	0.687
30	DC 6.29 V	400.025262	0.655
20	DC 6.29 V	400.025257	0.642
10	DC 6.29 V	400.025252	0.630
0	DC 6.29 V	400.025237	0.592
-10	DC 6.29 V	400.025231	0.577
-20	DC 6.29 V	400.025228	0.570
-30	DC 6.29 V	400.025215	0.537

Middle Channel @ 12.5 KHz Channel Separation

Reference Frequency:	435.000 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	435.000293	0.674
40	DC 6.29 V	435.000276	0.634
30	DC 6.29 V	435.000262	0.602
20	DC 6.29 V	435.000247	0.568
10	DC 6.29 V	435.000252	0.579
0	DC 6.29 V	435.000255	0.586
-10	DC 6.29 V	435.000236	0.543
-20	DC 6.29 V	435.000226	0.520
-30	DC 6.29 V	435.000221	0.508

Top Channel @ 12.5 KHz Channel Separation

Reference Frequency:	469.975 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 6.29 V	469.975296	0.630
40	DC 6.29 V	469.975285	0.606
30	DC 6.29 V	469.975277	0.589
20	DC 6.29 V	469.975241	0.513
10	DC 6.29 V	469.975236	0.502
0	DC 6.29 V	469.975223	0.474
-10	DC 6.29 V	469.975227	0.483
-20	DC 6.29 V	469.975241	0.513
-30	DC 6.29 V	469.975252	0.536

Page 20 of 54

(3) Frequency stability versus input voltage (Battery Fully Charged voltage is 8.51V)

Bottom Channel @ 12.5 KHz Channel Separation

Reference Frequency:	400.025 MHz	Limit:	5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	400.025287	0.717
40	DC 8.51 V	400.025271	0.677
30	DC 8.51 V	400.025249	0.622
20	DC 8.51 V	400.025247	0.617
10	DC 8.51 V	400.025225	0.562
0	DC 8.51 V	400.025241	0.602
-10	DC 8.51 V	400.025238	0.595
-20	DC 8.51 V	400.025222	0.555
-30	DC 8.51 V	400.025217	0.542

Middle Channel @ 12.5 KHz Channel Separation

Reference Frequency:	435.000 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	435.000296	0.680
40	DC 8.51 V	435.000275	0.632
30	DC 8.51 V	435.000267	0.614
20	DC 8.51 V	435.000252	0.579
10	DC 8.51 V	435.000246	0.566
0	DC 8.51 V	435.000247	0.568
-10	DC 8.51 V	435.000234	0.538
-20	DC 8.51 V	435.000227	0.522
-30	DC 8.51 V	435.000225	0.517

Top Channel @ 12.5KHz Channel Separation

Reference Frequency:	469.975 MHz	Limit:	2.5ppm
Envionment Temperature	Power Supply	Frequency Deviation	
(℃)	(V)	(MHz)	ppm
50	DC 8.51 V	469.975294	0.626
40	DC 8.51 V	469.975286	0.609
30	DC 8.51 V	469.975273	0.581
20	DC 8.51 V	469.975247	0.526
10	DC 8.51 V	469.975232	0.494
0	DC 8.51 V	469.975225	0.479
-10	DC 8.51 V	469.975221	0.470
-20	DC 8.51 V	469.975227	0.483
-30	DC 8.51 V	469.975227	0.483

Page 21 of 54

7. EMISSION BANDWIDTH

7.1 PROVISIONS APPLICABLE

According to FCC Part 90 Section 90.209:The authorized bandwidth shall be 11.25 KHz for 12.5 KHz channel separation and 6 KHz for 6.25 KHz channel separation.

According to RSS-119 Section 119.5.5: The authorized bandwidth shall be 11.25 KHz for 12.5 KHz

7.2 MEASUREMENT PROCEDURE

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).
 - 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 300 Hz, Span =50 KHz.
 - 4). Set SPA Max hold. Mark peak, -26 dB.

7.3 TEST SETUP BLOCK DIAGRAM

Page 22 of 54

7.4 MEASUREMENT RESULT

26 DB BANDWIDTH MEASUREMENT RESULT				
Operating Frequency	12.5 KHz Channel Separation			
Operating Frequency	Test Data Limits Result			
400.025MHz	10.32KHz	11.25 KHz	Pass	
435.000MHz	10.27KHz	11.25 KHz	Pass	
469.975MHz	10.29KHz	11.25 KHz	Pass	

Occupied bandwidth of Low Channel (Maximum)

Page 23 of 54

8. UNWANTED RADIATION

8.1 PROVISIONS APPLICABLE

8.1.1 According to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with each channel separation.

According to RSS-119 Section 119.5.8, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters with each channel separation.

For 12.5 KHz Channel Separation:

- (1).On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB.
- (2).On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27(fd-2.88 KHz) dB
- (3).On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, which ever is lesser attenuation.

For 6.25 KHz Channel Separation:

- (1).On any frequency from the center of the authorized bandwidth fo to 3.0 kHz removed from fo: Zero dB.
- (2).On any frequency removed from the center of the authorized bandwidth by a displacement f requency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd'3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (3).On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10log (P) or 65 dB, whichever is the lesser attenuation.

8.2 MEASUREMENT PROCEDURE

- (1)On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.
- (2) The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
- (3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
- (4) The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
- (5) The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
- (6)The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- (7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.

Page 24 of 54

- (8) The maximum signal level detected by the measuring receiver shall be noted.
- (9) The measurement shall be repeated with the test antenna set to horizontal polarization.
- (10) Replace the antenna with a proper Antenna (substitution antenna).
- (11) The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
- (12) The substitution antenna shall be connected to a calibrated signal generator.
- (13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- (14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.
- (15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
- (16)The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- (17)The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

8.3 TEST SETUP BLOCK DIAGRAM

Page 25 of 54

SUBSTITUTION METHOD: (Radiated Emissions)

Radiated Below 1GHz

Ground Plane

Radiated Above 1 GHz

Antenna mast D: distance 3 meters Horn antenna Signal table Substituted Horn antenna Spectrum analyzer/pre-amp

Page 26 of 54

8.4 MEASUREMENT RESULTS:

Measurement Result for 12.5 KHz Channel Separation

On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, which ever is lesser attenuation.

Limit: At least 50+10 log (P) =50+10log (4) =56 (dB)

Measurement Result for 12.5 KHz Channel Separation @ 400.025MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
400.025	>	0		pass
800.050	V	69.33(-32.32dBm)	56	pass
1200.08	V	70.12	56	pass
1600.100	V	70.37	56	pass
2000.125	V	72.56	56	pass
2400.150	V	74.05	56	pass
2800.175	>	75.85	56	pass
3200.200	V	77.52	56	pass
3600.225	V	79.83	56	pass
4000.250	V	81.31	56	pass

Measurement Result for 12.5 KHz Channel Separation @ 435.000MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
435.000	V	0		pass
870.000	V	69.65(-32.67dBm)	56	pass
1305.000	V	69.81(-32.84 dBm)	56	pass
1740.000	V	72.45	56	pass
2175.000	V	75.72	56	pass
2610.000	V	76.93	56	pass
3045.000	V	78.61	56	pass
3480.000	V	70.16	56	pass
3915.000	V	80.13	56	pass
4350.000	V	81.27	56	pass

Page 27 of 54

Measurement Result for 12.5 KHz Channel Separation @ 469.975MHz

Emission Frequency (MHz)	Ant. Polarity(H/V)	Measurement Result Below carrier(dBc)	Limit below carrier(dBc)	Result(P/F)
469.975	V	0		pass
939.950	V	69.81(-32.84dBm)	56	pass
1409.925	V	71.56	56	pass
1879.900	V	73.82	56	pass
2349.875	V	74.45	56	pass
2819.850	V	75.83	56	pass
3289.825	V	77.62	56	pass
3759.800	V	79.57	56	pass
4229.775	V	70.42	56	pass
4699.750	V	71.75	56	pass

Notes: The emissions were scanned from 30 MHz to 10th harmonics.

Page 28 of 54

8.5 EMISSION MASK PLOT

The detailed procedure employed for Emission Mask measurements are specified as following:

- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz.

The Worst Emission Mask for 12.5 KHz channel Separation Bottom Channel (4W)

Page 29 of 54

9. MODULATION CHARACTERISTICS

9.1 PROVISIONS APPLICABLE

According to CFR 47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

9.2 MEASUREMENT METHOD

9.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

Figure 1: Modulation characteristic measurement configuration

Page 30 of 54

9.3 MEASUREMENT RESULT

(A). MODULATION LIMIT:

Middle Channel @ 12.5 KHz Channel Separations

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.24	0.84	0.86	0.89
-15	0.32	0.95	0.97	1.04
-10	0.44	1.23	1.28	1.37
-5	0.52	1.34	1.45	1.48
0	0.65	1.50	1.56	1.59
5	0.73	1.62	1.74	1.85
10	0.86	1.72	1.76	1.83
15	0.92	1.64	1.73	1.77
20	0.85	1.53	1.64	1.74

Note: All the modes had been tested, but only the worst data recorded in the report.

Page 31 of 54

(B). AUDIO FREQUENCY RESPONSE:

Middle Channel @ 12.5 KHz Channel Separations

Audio Frequency				
Frequency (Hz)	Deviation (KHz)	Response(dB)		
100				
200				
300	0.15	-10.46		
400	0.19			
500	0.19	-8.40		
		-6.38		
600	0.27	-5.35		
700	0.30	-4.44		
800	0.36	-2.85		
900	0.42	-1.51		
1000	0.50	0.00		
1200	0.55	0.83		
1400	0.66	2.41		
1600	0.76	3.64		
1800	0.85	4.61		
2000	0.94	5.48		
2400	1.22	7.75		
2500	1.44	9.19		
2800	1.66	10.42		
3000	1.75	10.88		
3200	1.71	10.68		
3600	1.54	9.77		
4000	1.05	6.44		
4500	0.84	4.51		
5000	0.74	3.41		
5500	0.56	0.98		
6000	0.15	-10.46		
6500	0.06	-18.42		
7000	0.03	-24.44		
7500	0.01	-33.98		
9000				
10000				
14000				
18000				
20000				
30000				
00000	1			

Page 32 of 54

Frequency Response of Middle Channel (UHF)

Note: All the modes had been tested, but only the worst data recorded in the report.

Page 33 of 54

10. MAXIMUMN TRANSMITTER POWER

10.1 PROVISIONS APPLICABLE

Per FCC §2.1046 and §90.205 AND RSS 119 Part 4.1: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

10.2 TEST PROCEDURE

The RF output of Two-way Radio was conducted to a spectrum analyzer through an appropriate attenuator.

10.3 TEST CONFIGURATION

Conducted Output Power:

Effective Radiated Power measurement Below 1GHz

Report No.: AGC00932141101FE09 Page 34 of 54

Above 1GHz

Page 35 of 54

10.4 TEST RESULT

The maximum Conducted Power (CP) is 4 W for 12.5 KHz Channel Separation

Calculation Formula: CP = R + A + L

* Note:

CP: The final Conducted Power

R: The reading value from spectrum analyzer A: The attenuation value of the used attenuator

L: The loss of all connection cables

Conducted Power Measurement Results			
Channal Sanaration	Channel	Measurement Result (dBm)	
Channel Separation		For 36.02dBm(4W)	
	Bottom(400.025MHz)	35.98	
12.5 KHz	Middle(435.000MHz)	35.95	
	Top (469.975MHz)	35.92	

Radiated Power Measurement Results			
Channel Separation	Channel	Measurement Result (dBm)	
		For 36.99dBm(4W)	
12.5 KHz	Bottom(400.025MHz)	35.96	
	Middle(435.000MHz)	35.93	
	Top (469.975MHz)	35.90	

Page 36 of 54

10.5 CONDUCT SPURIOUS PLOT

<u>Conducted Spurious Emission (worst)</u> @ 400.025MHz With 12.5 KHz Channel Separation 30MHz-1GHz

Conduct Spurious Emission (worst) @ 400.025MHz With 12.5 KHz Channel Separation 1GHz-12.75GHz

Page 37 of 54

11. RANSMITTER FREQUENCY BEHAVIOR

11.1 PROVISIONS APPLICABLE

Section 90.214

	Maximum fraguancy	All equipment							
Time intervals 1. 2	Maximum frequency difference ³	150 to 174 MHz	421 to 512 MHz						
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels									
t ₁ ⁴	± 25.0 kHz ± 12.5 kHz ± 25.0 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms						
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels									
t ₁ 4	± 12.5 kHz ± 6.25 kHz ± 12.5 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms						
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels									
t ₁ ⁴ t ₂ t ₃ ⁴	± 6.25 kHz ± 3.125 kHz ± 6.25 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms						

 $^{^1}$ t $_{on}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_1 is the time period immediately following t_{on} .

11.2 TEST METHOD

TIA/EIA-603 2.2.19

11.3 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR

ton: The switch-on instant ton of a transmitter is defined by the condition when the output power, measured at the antenna terminal, exceeds 0,1 % of the full output power (-30 dBc).

t1: period of time starting at ton and finishing according to above 11.1

t2: period of time starting at the end of t1 and finishing according to above 11.1

toff: switch-off instant defined by the condition when the output power falls below 0,1 % of the full output power (-30 dBc).

t3: period of time that finishing at toff and starting according to above 11.1

 t_1 is the time period immediately following t_0 . t_2 is the time period from the instant when the transmitter is turned off until $t_{\rm off}$. $t_{\rm off}$ is the instant when the 1 kHz test signal starts to rise.

2 During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency.
⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

Page 39 of 54

11.4 MEASURE RESULT

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--Off to On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation--On to Off

Page 40 of 54

12. RADIATED EMISSION ON RECEIVING MODE

12.1 PROVISIONS APPLICABLE

FCC Part 15 Subpart B Section 15.109 RSS-Gen Subpart B Section RSS-Gen.6.1

12.2 TEST METHOD

ANSI C 63.4: 2003

Page 41 of 54

12.3 MEASURE RESULT (MEASURED AT 3M USING FCC PART15 B LIMITS)

RADIATED EMISSION TEST RESULTS - HORIZONTAL

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
33.880	Н	11.0	17.4	28.4	40.0	11.6	Pass	150.0	322.6
64.920	Н	12.2	11.1	23.3	40.0	16.7	Pass	200.0	298.4
122.635	Н	12.3	13.2	25.5	43.5	18.0	Pass	150.0	281.6
610.545	Н	7.4	23.1	30.5	46.0	15.5	Pass	150.0	37.5
687.175	Н	6.9	24.4	31.3	46.0	14.7	Pass	100.0	98.9
964.110	Н	6.6	28.7	35.3	54.0	18.7	Pass	100.0	23.6

RADIATED EMISSION TEST RESULTS - VERTICAL

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
33.880	V	17.7	17.4	35.1	40.0	4.9	Pass	150.0	210.0
138.640	V	5.0	14.9	19.9	43.5	23.6	Pass	200.0	302.0
337.005	V	5.4	17.7	23.1	46.0	22.9	Pass	150.0	152.0
440.795	V	5.6	20.1	25.7	46.0	20.3	Pass	200.0	38.2
576.595	v	6.5	22.7	29.2	46.0	16.8	Pass	200.0	508.0
778.840	V	5.6	25.5	31.1	46.0	14.9	Pass	150.0	258.2

RADIATED EMISSION TEST RESULTS - HORIZONTAL (ABOVE 1G)

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	dB/u\//m\		Margin dB PK	Pass/Fail	Height cm	Angle deg
1360.000	н	38.5	-5.0	33.5	74.0	40.5	Pass	100.0	289.9
2387.500	н	39.7	-0.5	39.2	74.0	34.8	Pass	200.0	148.4
2830.000	Н	40.8	2.6	43.4	74.0	30.6	Pass	200.0	148.4
1517.500	н	37.6	-4.0	33.6	74.0	40.4	Pass	100.0	71.4
2080.000	н	38.3	-2.5	35.8	74.0	38.2	Pass	100.0	71.4
3130.000	н	39.9	3.8	43.7	74.0	30.3	Pass	100.0	71.4

Page 44 of 54

RADIATED EMISSION TEST RESULTS - VERTICAL (ABOVE 1G)

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m)	Limit dB(uV/m) PK	Margin dB PK	Pass/Fail	Height cm	Angle deg
2792.500	V	40.5	2.5	43.0	74.0	31.0	Pass	100.0	298.3
3302.500	V	38.3	3.9	42.2	74.0	31.8	Pass	200.0	356.4
3707.500	V	38.8	5.0	43.8	74.0	30.2	Pass	200.0	35.5
2065.000	V	38.8	-2.6	36.2	74.0	37.8	Pass	200.0	35.5
1945.000	v	38.6	-2.8	35.8	74.0	38.2	Pass	200.0	35.5
1442.500	v	37.4	-4.4	33.0	74.0	41.0	Pass	200.0	108.3

Page 45 of 54

13. AUDIO LOW PASS FILTER RESPONSE

13.1 LIMITS

2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 KHz Attenuation
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in KHz
20 – 30 KHz	50dB

13.2. METHOD OF MEASUREMENTS

The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.

Page 46 of 54

13.3 TEST DATA
12.5 KHZ CHANNEL SPACING, F3E, FREQUENCY OF ALL MODULATION STATES (TEST RESULT FOR UHF)

Frequency	Audio In	Audio out	Attenuation	Attenuation	Recommended Attenuation
(KHz)	(dBV)	(dBV)	(Out_In)	Rel.to 3 KHz	(dB)
			dB	(dB)	
0.1	-76.17	-31.21	46.37	-36.53	
0.2	-76.17	-17.36	58.24	-25.63	
0.4	-76.17	-6.27	71.64	-12.83	
0.6	-76.17	0.41	74.24	-6.43	
8.0	-76.17	4.15	78.94	-2.93	
1.0	-76.17	7.16	83.64	-0.03	
1.5	-76.17	8.25	84.84	2.15	
2.0	-76.17	8.97	85.34	1.56	
2.5	-76.17	7.52	83.84	0.66	
3.0	-76.17	6.27	82.54	-1.81	0
3.5	-76.17	2.63	78.44	-4.93	-4
4.0	-76.17	-2.27	74.64	-9.43	-7
4.5	-76.17	-9.2	68.24	-16.53	-12
5.0	-76.17	-15.16	60.64	-21.73	-15
6.0	-76.17	-21.22	54.14	-28.63	-18
7.0	-76.17	-31.6	46.24	-36.43	-22
8.0	-76.17	-39.21	37.94	-47.63	-26
9.0	-76.17	-61.95	15.16	-66.93	-28
10.0	-76.17	-61.95	15.16	-66.45	-31
12.0	-76.17	-61.95	15.16	-66.45	-37
14.0	-76.17	-61.95	15.16	-66.45	-40
16.0	-76.17	-61.95	15.16	-66.45	-44
18.0	-76.17	-61.95	15.16	-66.45	-47
20.0	-76.17	-61.95	15.16	-66.45	-49
25.0	-76.17	-61.95	15.16	-66.45	-49
30.0	-76.17	-61.95	15.16	-66.45	-49
35.0	-76.17	-61.95	15.16	-66.45	-49
40.0	-76.17	-61.95	15.16	-66.45	-49
45.0	-76.17	-61.95	15.16	-66.45	-49
50.0	-76.17	-61.95	15.16	-66.45	-49

Page 47 of 54

Note: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Page 48 of 54

APPENDIX I: PHOTOGRAPHS OF SETUP

RADIATED EMISSION TEST SETUP

CONDUCTED EMISSION TEST SETUP

Page 49 of 54

APPENDIX II: EXTERNAL VIEW OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT

Report No.: AGC00932141101FE09 Page 50 of 54

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.: AGC00932141101FE09 Page 51 of 54

BACK VIEW OF EUT

LEFT VIEW OF EUT

Report No.: AGC00932141101FE09 Page 52 of 54

RIGHT VIEW OF EUT

OPEN VIEW-1 OF EUT

Report No.: AGC00932141101FE09 Page 53 of 54

OPEN VIEW-2 OF EUT

OPEN VIEW-3 OF EUT

Page 54 of 54

INTERNAL VIEW-1 OF EUT

INTERNAL VIEW-2 OF EUT

----END OF REPORT----