A-Levels Math Notes

Shao Hong

Contents

1	A1: Inequalities and Equations				
	1.1 Solving Inequalities				
	1.1.1 Rational Inequalities				
	1.2 Modulus Inequalities				
	1.3 System of Linear Equations				
	1.4 Summary				
2	A5.1: Differentiation				
	2.1 Limits				
	2.2 Geometrical Results of the Derivatives				
3	B1(A): Graphing Techniques (Part I)				
	3.1 Graphing 'Familiar' Functions and Asymptotic bois				
	3.2 Conics				
	3.2.1 Ellipses				
	3.3 Parametric Equations				
	3.4 Summary				
4	Statistics 1: Permutations and Combinations				
	4.1 The Addition and Multiplication Principles				
	4.2 Permutation				

A1: Inequalities and Equations

1.1 Solving Inequalities

1.1.1 Rational Inequalities

General Methods

- 1. Quadratic formula for factorisation / finding roots (of polynomial).
- 2. Completing the square.
- 3. Discriminant/Completing the Sq to eliminate* factors which are always positive or negative (e.g. removing $x^2 - 3x + 4$). Note to include coefficient of x^2 in argument.
- 4. GC (include sketch).
- 5. Rational Functions^a: Move everything to one side (+,-), then use number line.
- 6. Number line (more complicated functions).

^aFractions of Polynomials

Important Notes

- \Box Eliminating Factors only a works for c = 0 in $f(x) \ge c$ or $f(x) \le c$.
- \Box Discriminant include coefficient of x^2 in argument.
- Rational functions exclude the values that causes division by zero to occur.
- With inequalities, be really careful about multiplication! If x > y and z > 0, then xz > yz.
- \Box Cross multiplication preserves order for $\frac{x}{y} < \frac{x'}{y'}$ iff y and y' are both positive or negative.
- \Box Squaring preserves order for x < y iff x and y are both positive or negative.
- ^aCounterexample: $P(x) = x(3x^2 9x + 10) \le 2$ iff $x \le 2$ is false. E.g.: $P(1.8) = 6.336 \le 2$. ^bOtherwise, note the counterexample $\frac{1}{2} < \frac{1}{-3}$.

1.2 Modulus Inequalities

Fact

Given $x \in \mathbb{R}$, we have that

- \bullet $|x| \geq 0$,
- $|x^2| = |x|^2 = x^2$,
- $\bullet \ \sqrt{x^2} = |x|.$

And as long as $x \in \mathbb{R}^+$,

$$\bullet \ \sqrt{x}^2 = |x|.$$

Useful Properties

For every $x, k \in \mathbb{R}$:

- (a) |x| < k iff^a -k < x < k.
- (b) |x| > k iff x < -k or x > k.

(of course, similarly applies for the non-strict ordering \leq)

^aNotice that k > 0 here since $0 \le |x| < k$.

Important Notes

• Note that when solving for |x| = y, |x| < y, etc, y must be greater than or equal to 0. In other words, there may be solutions we will need to reject. (For <, equality is of course not allowed.)

Important Notes

- \triangle Carelessness: Look at the question carefully! If they ask for a *set* of values, then rmb to give it as a *set*!
- \triangle Exponentiation and Logarithms: Simply use ln and avoid \log_c for c < 1.

^aOrder is *Preserved* under exponentiation/logarithms if the base is *larger than* one. Otherwise, when it is *less than* one, the order is *reversed*. https://www.desmos.com/calculator/gd8z5fa0bg

1.3 System of Linear Equations

Things

 χ For more complicated real-world-context qns, try playing around with the values (e.g. use simult eqns) first. It may work out nicer than expected.

1.4 Summary

G.C. Skills

- 1. Plotting curves y = f(x) in G.C.
- 2. How to use simultaneous equation solver.

Important Notes

 \square Eliminating Factors — only a works for c = 0 in $f(x) \ge c$ or $f(x) \le c$. Discriminant — include coefficient of x^2 in argument. Rational functions — exclude the values that causes division by zero to occur. With inequalities, be really careful about multiplication! If x > y and z > 0, then xz > yz. Cross multiplication preserves order for $\frac{x}{y} < \frac{x'}{y'}$ iff y and y' are both positive or negative. Squaring preserves order for x < y iff x and y are both positive or negative. Note that when solving for |x| = y, |x| < y, etc, y must be greater than or equal to 0. In other words, there may be solutions we will need to reject. (For <, equality is of course not allowed.) □ Carelessness: Look at the question carefully! If they ask for a set of values, then rmb to give it as a set! $\hfill \square$ Exponentiation and Logarithms: Simply use ln and avoid \log_c for $c<1.^c$ For more complicated real-world-context qns, try playing around with the values (e.g. use simult eqns) first. It may work out nicer than expected.

^aCounterexample: $P(x) = x(3x^2 - 9x + 10) \le 2$ iff $x \le 2$ is false. E.g.: $P(1.8) = 6.336 \le 2$. ^bOtherwise, note the counterexample $\frac{1}{2} < \frac{1}{-3}$.

^cOrder is *Preserved* under exponentiation/logarithms if the base is *larger than* one. Otherwise, when it is *less* than one, the order is reversed. https://www.desmos.com/calculator/gd8z5fa0bg

A5.1: Differentiation

2.1 Limits

2.2 Geometrical Results of the Derivatives

Definition

- (i) A function f is called (strictly) increasing on an interval I iff f'(x) > 0 for all $x \in I$.
- (ii) A function f is called monotonically increasing on an interval I iff $f'(x) \ge 0$ for any $x \in I$.

Things To Know

- 1. How to sketch the graph of the integral or a derivative of a function f.
- 2. Relationship btw. a function f and its derivative, f':

y = f(x)	y = f'(x)
Vertical asymptote at $x = a$	Vertical asymptote at $x = a$.
Horizontal asymptote at $y = a$	Horizontal asymptote $y = 0$.

 a Of course, provided that f is integrable/differentiable.

B1(A): Graphing Techniques (Part I)

3.1 Graphing 'Familiar' Functions and Asymptotic bois

Definition

- 1. **Lines of Symmetry**: A *line of symmetry* of a function is a line, such that the function is a reflection of itself about that line.
- 2. Horizontal Asymptotes: A (horizontal) line g(x) = c is the horizontal asymptote of the curve f(x) iff $\lim_{x\to\infty} f(x) = c$ (or with $-\infty$ instead of ∞).
- 3. Vertical Asymptotes: A (vertical) line x = c is a vertical asymptote of the curve f(x) iff $\lim_{x\to c} f(x) = \infty$ or $-\infty$.
- 4. Oblique Asymptotes: A line g(x) = mx + c where $m \neq 0$ is an oblique asymptote of the curve f(x) iff $\lim_{x\to\infty} [f(x) g(x)] = 0$ (or with $-\infty$ instead of ∞).

Curve Sketching (Rational Funcs)

- S Stationary points
- I Intersection with axes
- A Asymptotes
- i Know how to sketch the graphs of $y = \frac{ax+b}{cx+d}$ and $y = \frac{ax^2+bx+c}{dx+e}$.
- ii Rectangular Hyperbolas (of the form $y = \frac{ax+b}{cx+d}$):
 - Two asymptotes, namely $x = -\frac{d}{c}$ and $y = \frac{a}{c}$.
 - Two lines of symmetry with gradients ± 1 and pass through the intersection point of the aforementioned two asymptotes.
- iii If $n = \deg P = \deg Q$, then
 - y = R(x) is the horizontal asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
 - Equivalently, $y = \frac{\operatorname{coeff}_P(x^n)}{\operatorname{coeff}_Q(x^n)}$ is a horizontal asymptote.
- iv If deg $P = \deg Q + 1$, then R(x) is an oblique asymptote of $\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)}$.
- v Write down asymptotes and lines of symmetry. b If none are present indicate with "No lines of symmetry."

```
<sup>a</sup>E.g.: y = \frac{1}{15} is a horizontal asymptote of y = \frac{\mathbf{1}x^2 + 2x - 3}{(5x+1)(3x+2)}

<sup>b</sup>E.g.:

Asymptotes: x = 4, y = 20.
```

Lines of Symmetry: y = x + 16, y = -x + 24.

^aOtherwise notated by $f(x) \to c$ as $x \to \infty$.

Important Notes

- Can explicitly write out the asymptotes and lines of symmetry (or if they are not present) to be safe.
- Using the discriminant intelligently can result in nice answers.

3.2 Conics

3.2.1 Ellipses

"Tikz is pain, PGFPlots is suffering" — Wise Man.

	Ellipses	Hyperbolas
Standard Forms	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1}{\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1}$
General Equation	$ax^{2} + by^{2} + cx^{2} + dx + e = 0,$ where $\operatorname{sgn}(a) = \operatorname{sgn} b$.	$ax^{2} + by^{2} + cx^{2} + dex + e = 0,$ where $sgn(a) \neq sgn b$.
Center	(h,k)	(h,k)
Vertical 'Radius' (variables here from standard form!)	b	b
Horizontal 'Radius' (variables here from standard form!)	a	a
Vertical Vertices (variables here from standard form!)	$(h,k\pm b)$	$(h, k \pm b)$
Horizontal Vertices (variables here from standard form!)	$(h\pm a,k)$	$(h\pm a,k)$
Shape	$ \begin{array}{c} y \\ h \\ (h,k) \end{array} $	$coeff(x^{2}) < 0$ y (h, k) $coeff(y^{2}) < 0$ y (h, k) (h, k)
Asymptotes (No mond to mond)	$y = k \pm \frac{b(x-h)}{a}$	$y = k \pm \frac{b(x-h)}{a}$
(No need to rmb!) Lines of Symmetry	x = h, y = k	x = h, y = k
U U	/ 0	, ,

General Info

 ${\mathscr H}$ To find asymptote of hyperbolas, just solve

$$\frac{(x-h)^2}{a^2} = \frac{(y-k)^2}{b^2}.$$

 ${\mathscr H}$ Label vertices or radii, together with the center and asymptotes.

3.3 Parametric Equations

Important Notes

 \star Check the qns for any *restrictions* on the parameter! And modify that of the G.C.'s accordingly (Tmin & Tmax).

3.4 Summary

G.C. Skills

- 1. Plot conics with the two ways.
- 2. Know G.C. functions like finding axial intercepts.

Important Notes

- - \Box Can explicitly write out the asymptotes and lines of symmetry (or if they are not present) to be safe.
- -□- Using the discriminant intelligently can result in nice answers.
- Check the qns for any *restrictions* on the parameter! And modify that of the G.C.'s accordingly (Tmin & Tmax).

Statistics 1: Permutations and Combinations

4.1 The Addition and Multiplication Principles

Example 1: The Addition Principle

There are three distinct cups of black sugar bubble tea and five unique cups of zero sugar bubbles tea available, I am buying *exactly* one of them. How many choices do I have? Answer: 3 + 5 = 8.

Example 2: The Multiplication Principle

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen. How many different subcommittees are possible. Answer: $3 \cdot 4 \cdot 5 \cdot 2 = 120$.

4.2 Permutation

Definition 1:
$$^{n}P_{k}$$

$$^{n}P_{k}:=\frac{n!}{(n-k)!}$$