МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.1.1 Измерение удельной теплоемкости воздуха при постоянном давлении

Салтыкова Дарья Б04-105

1 Введение

Цель работы: 1) измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; 2) исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

Оборудование: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр; вольтметр (цифровые мультиметры); термопара, подключённая к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретические сведения

Измерение теплоёмкости тел обычно производится в калориметрах, т.е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры δT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\delta T}$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно - масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в кото-рой установлен нагревательный элемент (см.рис.1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q [кг/с] - массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q = (N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$

Рис. 1: Нагрев газа при течении по трубе

приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 - атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$C_p = \frac{N - N_{\text{пот}}}{q\Delta T}$$

3 Экспериментальная установка

Схема установки изображена на рис. 1. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10^{-5} торр) для минимизации потерь тепла, обусловленных теплопроводностью.

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T$$

где $\beta=40.7\frac{\text{мкB}}{^{\circ}C}$ - чувствительность медно-константановой термопары в рабочем диапазоне температур (20-30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран K. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t}$$

где ρ_0 - плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева-Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 - атмосферное давление, T_0 - комнатная температура (в Кельвинах), $\mu=29,0$ г/моль - средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T << T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \Delta T$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_p q + \alpha) \Delta T$$

Следовательно, при фиксированном расходе воздуха (q = const) подводимая мощность и разность температур связаны прямой пропорциональностью ($\Delta T(N)$ — линейная функция).

4 Ход работы

- 1. Подготовим к работе газовый счетчик: проверим, что он заполнен водой, установим счетчик по уровню.
- 2. Охладим калориметр до комнатной температуры.
- 3. Включим вольтметр, предназначенный для измерения ЭДС термопары.
- 4. Запишем показания компнатной температуры, давления и влажности. Вычислим плотность воздуха при данных условиях

$$T_0 = 23 \, ^{\circ}C, P_0 = 99530 \, \Pi a, \varphi = 20\%$$

$$\rho = 1.17 \text{ kg/m}3$$

5. С помощью газового счетчика и секундомера измерим максимальный расход воздуха $\frac{\Delta V}{\Delta T}$ (в л/с). Измерения представлены в таблице.

t, c	$\mathrm{dV}/\mathrm{dt},\pi/\mathrm{c}$
24,7	0,202
24,9	0,201
24,81	0,202

По найденным значениям определим среднее значение расхода и массовый расход воздуха q_{max} $[\Gamma/c]$.

$$\langle \frac{\Delta V}{\Delta t} \rangle = 0.202 \text{ m/c}$$

$$q_{max} = 0.236 \ г/c$$

6. Оценим величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T = 1 \ {
m K}$.

Оценим минимальную мощность N_0 , необходимую для нагрева газа при максимальном расходе. $N_0=c_pq\Delta T\approx 0.238~{\rm Bt}.$

Учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R \approx 35~{\rm Om}$ и в процессе опыта практически не меняется, искомое значение тока $I_0 = qN_0R \approx 83~{\rm mA}$.

7. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при расходе воздуха q=0.236 г/с. Погрешность измерения тока: $\sigma_I=0.01$ мA; напряжения: $\sigma_U=0.01$ В, $\sigma_{\varepsilon}=1$ мВ.

І, мА	U, B	ε , MKB	R, Ом	N, Вт	σ_N , Om	ΔT , K	σ_T , K
99,87	3,529	53,0	35,34	0,352	0,0010	1,30	0,00025
114,67	4,051	71,0	35,33	0,465	0,0011	1,74	0,00025
127,23	4,491	88,0	35,29	0,571	0,0013	2,16	0,00025
147,91	5,218	119,0	35,27	0,767	0,0015	2,92	0,00025
163,15	5,754	144,0	35,26	0,936	0,0016	3,54	0,00025
179,97	6,346	176,0	35,26	1,141	0,0018	4,32	0,00025

Завершив первую серию измерений, охладим калориметр до комнатной температуры.

8. Проведем аналогичные измерения для другого значения расхода воздуха.

t, c	$ m dV/dt,\pi/c$
18,38	$0,\!1360$
18,59	0,1345
18,43	0,1356

$$\langle \frac{\Delta V}{\Delta t} \rangle = 0.135~\mathrm{f}/\mathrm{c}, q = 0.158~\mathrm{f}/\mathrm{c}, N_0 = 0.157~\mathrm{Bt}, I_0 = 67~\mathrm{mA}$$

I, мА	U, B	ε , мкВ	R, Ом	N, Вт	σ_N , Om	ΔT , K	σ_T , K
86,54	3,054	54,0	35,29	0,264	0,0009	1,33	0,00025
103,86	3,669	82,0	35,33	0,381	0,0010	2,01	0,00025
120,14	4,246	112,0	35,34	0,510	0,0012	2,75	0,00025
137,24	4,849	147,0	35,33	0,665	0,0014	3,61	0,00025
153,15	5,408	184,0	35,31	0,828	0,0015	4,52	0,00025
180,12	6,362	256,0	35,32	1,146	0,0018	6,29	0,00025

После завершения опытов выключим источник питания нагревателя и мультиметры. Кран К откроем для максимального продува воздуха через калориметр.

9. Построим на одном графике зависимости $\Delta T(N)$ при разных значениях q (Рис. 2).

10. Построим график зависимости $\frac{1}{k}(q)$ и, пользуясь формулой $N=(c_pq+\alpha)\Delta T$, определим теплоёмкость воздуха при постоянном давлении c_p (Рис. 3).

$$\frac{1}{k} = c_p q + \alpha$$

k, B _T /K	1/k, K/B _T	$\sigma_{1/k},\mathrm{K/Br}$	q, r/c	σ_q , γ/c
3,82	0,262	0,020	0,236	0,002
5,61	0,178	0,011	$0,\!158$	0,001

Получаем

$$c_p = (1070 \pm 68) \frac{\text{Дж}}{\text{K Kr}}$$

$$\alpha = (0.00906 \pm 0.0018) \frac{\text{Дж}}{\text{K c}}$$

11. Вычислим доли тепловых потерь в опытах : $\frac{N_{\text{пот}}}{N} = \frac{\alpha}{k}$

$q, \frac{\Gamma}{c}$	Nпот/N
0,236	$(24 \pm 0.52) \cdot 10^{-4}$
0,158	$(16 \pm 0.47) \cdot 10^{-4}$

5 Вывод

В ходе работы было определено значение удельной теплоемкости воздуха при $T_0=23~^{\circ}C, P_0=99530~\Pi a, \varphi=20\%$:

$$(1070 \pm 68) \frac{\text{Дж}}{\text{K KG}}$$

Табличное значение: $c_{p_{\mathrm{таб}\pi}}=1003\frac{\mathrm{Дж}}{\mathrm{K}\ \mathrm{\kappa r}}$

В пределах погрешности значения совпадают.

Также были определены доли тепловых потерь в опытах. В среднем $\frac{N_{\text{пот}}}{N}=(20\pm0.50)\cdot10^{-4}.$

6 Графики

Рис. 2: Зависимость ΔT от N

Рис. 3: Зависимость $\frac{1}{k}$ от q