Bioinformatics: Finding Regulatory Motifs

Swakkhar Shatabda

Department of Computer Science and Engineering BRAC University

Book Reference

Chapter 2, Bioinformatics Algorithms: An Active Learning Approach - I

Hidden Message Once Again!

- Gene regulation is the process used to control the timing, location and amount in which genes are expressed.
- The process can be complicated and is carried out by a variety of mechanisms, including through regulatory proteins and chemical modification of DNA. Gene regulation is key to the ability of an organism to respond to environmental changes.
- A transcription factor regulates a gene by binding to a specific short DNA interval called a regulatory motif, or transcription factor binding site.
- Transcription factors bind to either enhancer or promoter regions of DNA adjacent to the genes that they regulate based on recognizing specific DNA motifs.

Regulatory Motifs

- Motifs are short recurring patterns.
- Transcription factors often regulate a group of genes that are involved in similar cellular processes.
- Thus, genes that contain the same motif in their upstream regions are likely to be related in their functions.
- In fact, many regulatory motifs are identified by analyzing the regions upstream of genes known to have similar functions.
- The life of a bioinformatician would be easy if regulatory motifs were completely conserved, but the reality is more complex, as regulatory motifs may vary at some positions, denegerate.

Circadian Clock

- Plant cell keeps track of day and night independently of other cells, and that just three plant genes, called LHY, CCA1, and TOC1, are the clock's master timekeepers.
- TOC1 promotes the expression of LHY and CCA1, whereas LHY and CCA1 repress the expression of TOC1, resulting in a negative feedback loop.
- CCA1 binds to AAAAAATCT in the upstream region of many genes regulated by CCA1

The evening element

- In 2000, Steve Kay used DNA arrays to determine which genes in the plant Arabidopsis thaliana are activated at different times of the day.
- He then extracted the upstream regions of nearly 500 genes that exhibited circadian behavior and looked for frequently appearing patterns in their upstream regions.
- If you concatenated these upstream regions into a single string, you
 would find that AAAATATCT is a surprisingly frequent word,
 appearing 46 times.
- After he mutated the evening element in the upstream region of one gene, the gene no longer exhibited circadian behavior.
- Not all motifs are as conserved as the evening element.

Immunity genes in a Fly

- If we infect a fly with a bacterium, the fly will switch on its immunity genes to fight the infection.
- The genes with elevated expression levels after the infection are likely to be immunity genes.
- These genes have 12-mers similar to TCGGGGATTTCC in upstream regions, binding site of a transcription factor called NF-κB that activates various immunity genes in flies.

```
TCGGGGGTTTtt
c C G G t G A c T T a C
a C G G G G A T T T + C
T t G G G G A c T T t t
aaGGGAcTTCC
T t G G G G A c T T C C
TCGGGGATT cat
 CGGGGATTCCt
TaGGGGAacTaC
TCGGGtATaaCC
```


8

Another string finding problem

Frequent Words Problem?

Frequent Words with Mismatches Problem?

- Concatenating all the sequences into a single string is inadequate because it does not correctly model the biological problem of motif finding.
- A DnaA box is a pattern that clumps, or appears frequently, within a relatively short interval of the genome.
- In contrast, a regulatory motif is a pattern that appears at least one (with variation) in each of many different regions that are scattled throughout the genome.

A brute force algorithm

```
MOTIFENUMERATION(Dna, k, d)

Patterns ← an empty set

for each k-mer Pattern in Dna

for each k-mer Pattern' differing from Pattern by at most d mismatches

if Pattern' appears in each string from Dna with at most d mismatches

add Pattern' to Patterns

remove duplicates from Patterns

return Patterns
```

• Each string length = n, number of strings = t, what will be the run time?

A better algorithm?

$$d(Pattern, Text) = \min_{\text{all } k\text{-mers } Pattern' \text{ in } Text} \text{HAMMINGDISTANCE}(Pattern, Pattern')$$
.

d(GATTCTCA, gcaaaGACGCTGAccaa) = 3.

$$d(Pattern, Dna) = \sum_{i=1}^{t} d(Pattern, Dna_i).$$

For example, for the strings Dna shown below, d(AAA, Dna) = 1 + 1 + 2 + 0 + 1 = 5.

```
ttaccttAAC 1
gATAtctgtc 1
Dna ACGgcgttcg 2
ccctAAAgag 0
cgtcAGAggt 1
```

A better algorithm?

```
MEDIANSTRING(Dna, k)distance \leftarrow \inftyfor each k-mer Pattern from AA \dots AA to TT \dots TTif distance > d(Pattern, Dna)distance \leftarrow d(Pattern, Dna)Median \leftarrow Patternreturn Median
```

Runtime? Comaparison to the brute force?

Profile Matrix

```
1 TCGGGGGTTTTtt
2 cCGGGGACTTAC
3 aCGGGGATTTTCC
4 TtGGGGACTTCC
6 TtGGGGACTTCC
7 TCGGGGATTCAC
8 TCGGGGATTCAT
9 TaGGGGATCCC
10 TCGGGGATCCC
```

```
      Profile
      A: .2 .2 .0 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0

      C: .1 .6 .0 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6

      G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0 .0

      T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4
```

A scoring function for the motifs

Entropy

• Entropy is a measure of the uncertainty of a probability distribution (p_1, \dots, p_N) , and is defined as:

$$H(p_1, \cdots, p_N) = -\sum_{i=1}^N p_i \cdot log_2(p_i)$$

- The entropy of the probability distribution (0.2, 0.6, 0.0, 0.2) corresponding to the second column is $-(0.2log_20.2 + 0.6log_20.6 + 0.0log_20.0 + 0.2log_20.2) \approx 1.371$
- The entropy of the more conserved final column (0.0, 0.6, 0.0, 0.4) is $-(0.0log_20.0 + 0.6log_20.6 + 0.0log_20.0 + 0.4log_20.4) \approx 0.971$
- The entropy of the very conserved 5th column (0.0, 0.0, 0.9, 0.1) is $-(0.0log_20.0 + 0.0log_20.0 + 0.9log_20.9 + 0.1log_20.1) \approx 0.467$.
- The entropy of a motif matrix is defined as the sum of the entropy of its columns.

A Greedy Algorithm

```
GREEDYMOTIFSEARCH(Dna, k, t)

BestMotifs \leftarrow motif matrix formed by first k-mers in each string from Dna

for each k-mer Motif in the first string from Dna

Motif_1 \leftarrow Motif

for i=2 to t

form Profile from motifs Motif_1, ..., Motif_{i-1}

Motif_i \leftarrow Profile-most probable k-mer in the i-th string in Dna

Motifs \leftarrow (Motif_1, ..., Motif_t)

if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs \leftarrow Motifs

return BestMotifs
```

• How good is this algorithm? It fails too.

Why greedy algorithm fails?

• Find the (4,1)-motif **ACGT** implanted in the following strings Dna.

```
ttACCTtaac
gATGTctgtc
acgGCGTtag
ccctaACGAg
cgtcagAGGT
A: 1 0 0 0
C 1 1 0
C: 0 1 1 0
C: 0 0 0
C 1 1 0
```

Laplacian Correction Needed.

Laplacian Correction

Laplace's Rule of Succession adds 1 to each element of COUNT(*Motifs*), updating the two matrices to the following:

```
COUNT(Motifs)

A: 2+1 1+1 1+1 1+1

C: 0+1 1+1 1+1 1+1

G: 1+1 1+1 1+1 0+1

T: 1+1 1+1 1+1 2+1

A: 2+1 1+1 1+1 1+1

PROFILE(Motifs)

1/8 2/8 2/8 2/8 2/8

2/8 2/8 2/8 3/8
```

Motifs ACCT

We use this profile matrix to compute the probabilities of all 4-mers in the second string from *Dna*:

g ATG	ATGT	TGT C	GT ct	${f T}$ ctg	ctgt	tgtc
$1/5^{4}$	$4/5^{4}$	$1/5^{4}$	$4/5^{4}$	$2/5^{4}$	$2/5^4$	$1/5^{4}$

We use this profile matrix to compute the probabilities of all 4-mers in the third string from *Dna*:

acg**G** cg**GC** g**GCG** GCGT CGTt GTta Ttag
$$12/6^4$$
 $2/6^4$ $2/6^4$ $12/6^4$ $3/6^4$ $2/6^4$ $2/6^4$

Motifs ATGT acgG

We use this profile matrix to compute probabilities of all 4-mers in the fourth string from *Dna*:

ccct ccta cta**A** ta**AC** a**ACG ACGA CGA**9
$$18/7^4$$
 $3/7^4$ $2/7^4$ $1/7^4$ $16/7^4$ $36/7^4$ $2/7^4$


```
Motifs
ACCT
ATGT
acgG
ACGA
```

```
COUNT(Motifs)
A: 4+1 0+1 0+1 0+1
C: 0+1 3+1 1+1 0+1
G: 0+1 0+1 3+1 1+1
T: 0+1 1+1 0+1 2+1

A: 4+1 0+1 0+1 0+1
FROFILE(Motifs)
5/8 1/8 1/8 2/8
1/8 4/8 2/8
1/8 1/8 3/8
```

We now use this profile to compute the probabilities of all 4-mers in the fifth string in *Dna*:

```
cgtc gtca tcag cagA agAG gAGG AGGT 1/8^4 8/8^4 8/8^4 8/8^4 10/8^4 8/8^4 60/8^4
```


Greedy Algorithm: Consensus

• Find the (4,1)-motif **ACGT** implanted in the following strings Dna.

tt ACCT taac		ACCT
g ATGT ctgtc		ATGT
acg GCGT tag	Motifs	acg G
cccta ACGA g		AGGT
cgtcag AGGT	CONSENSUS(Motifs)	ACGT

Further Improvement!

```
Profile

A: 4/5 0 0 1/5 ttaccttaac

C: 0 3/5 1/5 0 gatgtctgtc

G: 1/5 1/5 4/5 0 Dna acggcgttag

T: 0 1/5 0 4/5 ccctaacgag

cgtcagaggt
```

Taking the *Profile*-most probable 4-mer from each row of *Dna* produces the following 4-mers (shown in red):

```
ttaccttaac
gatgtctgtc
MOTIFS(Profile, Dna)
acggcgttag
ccctaacgag
cgtcagaggt
```

• Why would we do this? Because our hope is that MOTIFS(PROFILE(Motifs), Dna) has a better score than the original collection of k-mers Motifs. We can then form the profile matrix of these k-mers, PROFILE(MOTIFS(PROFILE(Motifs), Dna)), and continue...

A Monte Carlo Algorithm

```
RANDOMIZEDMOTIFSEARCH(Dna, k, t)

randomly select k-mers Motifs = (Motif_1, \dots, Motif_t) in each string from Dna

BestMotifs \leftarrow Motifs

while forever

Profile \leftarrow Profile(Motifs)

Motifs \leftarrow Motifs(Profile, Dna)

if Score(Motifs) < Score(BestMotifs)

BestMotifs \leftarrow Motifs

else

return BestMotifs
```

• Since a single run of RANDOMIZEDMOTIFSEARCH may generate a rather poor set of motifs, bioinformaticians usually run this algorithm thousands of times. On each run, they begin from a new randomly selected set of kneeps selecting the best set of k-mers found in all these runs.

A Monte Carlo Algorithm

```
gATGTctgtc

gATGTctgtc

Dna ccgGCGTtag

cactaACGAg

cgtcagAGGT
```

Below, we construct the profile matrix PROFILE(*Motifs*) of the chosen 4-mers.

Motifs			Profile(Motifs)					
t	а	а	С	A:	0.4	0.2	0.2	0.2
G	Τ	С	t	C:	0.2	0.4	0.2	0.2
С	С	g	G	G:	0.2	0.2	0.4	0.2
а	С	t	а	T:	0.2	0.2	0.2	0.4
Α	G	G	Т					

A Monte Carlo Algorithm

ttAC	tACC	ACCT	CCTt	CTta	Ttaa	taac
.0016	.0016	.0128	.0064	.0016	.0016	.0016
gATG	ATGT	TGTc	GTct	Tctg	ctgt	tgtc
.0016	.0128	.0016	.0032	.0032	.0032	.0016
ccgG	cgGC	gGCG	GCGT	CGTt	GTta	Ttag
.0064	.0036	.0016	.0128	.0032	.0016	.0016
cact	acta	ctaA	taAC	aACG	ACGA	CGAg
.0032	.0064	.0016	.0016	.0032	.0128	.0016
cgtc	gtca	tcag	cagA	agAG	gAGG	AGGT
.0016	.0016	.0016	.0032	.0032	.0032	.0128

Gibbs Sampling

- RANDOMIZEDMOTIFSEACH may change all t strings in Motifs in a single iteration.
- This strategy may prove reckless, since some correct motifs (captured in Motifs) may potentially be discarded at the next iteration. GIBBSSAMPLER is a more cautious iterative algorithm that discards a single k-mer from the current set of motifs at each iteration and decides to either keep it or replace it with a new one.

```
ttaccttaac
                ttaccttaac
                                    ttaccttaac
                                                    ttaccttaac
gatatctgtc
                gatatctgtc
                                    qatatctgtc
                                                    gatatctgtc
acggcgttcg → acggcgttcg
                                    acggcgttcg →
                                                    acggcgttcg
ccctaaagag
                ccctaaagag
                                    ccctaaagag
                                                    ccctaaagag
cgtcagaggt
                cgtcagaggt
                                    cgtcagaggt
                                                    cgtcagaggt
   RANDOMIZEDMOTIESEARCH
                                            GIBBS SAMPLER
(may change all k-mers in one step)
                                      (changes one k-mer in one step)
```


Gibbs Sampling

```
GIBBSSAMPLER(Dna, k, t, N)

randomly select k-mers Motifs = (Motif_1, ..., Motif_t) in each string from Dna

BestMotifs \leftarrow Motifs

for j \leftarrow 1 to N

i \leftarrow RANDOM(t)

Profile \leftarrow profile matrix formed from all strings in Motifs except for Motif_i

Motif_i \leftarrow Profile-randomly generated k-mer in the i-th sequence

if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs \leftarrow Motifs

return BestMotifs
```

- What is the value of *k*?
- What if the nucleotide distribution is skewed?


```
ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag → -----
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT
```

This results in the following motif, count, and profile matrices.

```
Motifs G T c t a c c t a A G G T
```


Application of Laplace's Rule of Succession to the count matrix above yields the following updated count and profile matrices:

After adding pseudocounts, the 4-mer probabilities in the deleted string ${\tt ccgGCGTtag}$ are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
$$4/8^4$$
 $8/8^4$ $8/8^4$ $24/8^4$ $12/8^4$ $16/8^4$ $8/8^4$

Since these probabilities sum to $C=80/8^4$, our hypothetical seven-sided die is represented by the random number generator

$$\begin{split} & \text{Random} \left(\frac{4/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{24/8^4}{80/8^4}, \frac{12/8^4}{80/8^4}, \frac{16/8^4}{80/8^4}, \frac{8/8^4}{80/8^4} \right) \\ & = \text{Random} \left(\frac{4}{80}, \frac{8}{80}, \frac{8}{80}, \frac{24}{80}, \frac{12}{80}, \frac{16}{80}, \frac{8}{80} \right). \end{split}$$

After constructing the motif and profile matrices, we obtain the following:

Note that the profile matrix looks more biased toward the implanted motif than the previous profile matrix did. We update the count and profile matrices with pseudocounts:

Then, we compute the probabilities of all 4-mers in the deleted string ttACCTtaac:

ttAC	tACC	ACCT	CCTt	CTta	Ttaa	taac
$2/8^{4}$	$2/8^{4}$	$72/8^4$	$24/8^4$	$8/8^{4}$	$4/8^{4}$	$1/8^{4}$


```
ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag ------
cactaACGAg ------
cgtcagAGGT cgtcagAGGT
```

We further add pseudocounts and construct the resulting count and profile matrices:

```
A: 3 1 1 1 1

COUNT(Motifs)
G: 1 3 3 1
G: 3 2 3 1
T: 1 2 1 5

A: 3/8 1/8 1/8 1/8
C: 1/8 3/8 3/8 1/8
C: 1/8 3/8 3/8 1/8
T: 1/8 2/8 1/8 5/8
```

We now compute the probabilities of all 4-mers in the deleted string $\mathtt{cactaACGAg}$:

cact	acta	ctaA	taAC	aACG	ACGA	CGAg
$15/8^4$	$9/8^{4}$	$2/8^{4}$	$1/8^{4}$	$9/8^{4}$	$27/8^4$	$2/8^{4}$

