Semestrální práce KIV/ZOS 2020/2021

Obsah

Zadání	2
Popis implementace	3
Struktura souborů .h .c	
Struktura souborového svazku	
Uživatelská příručka	
Popis příkazů	
Parametry programu	

Zadání

Zadáním je vytvořit pseudosystém souborů založený na i-uzlech.

Více na:

 $\underline{https://courseware.zcu.cz/portal/studium/courseware/kiv/zos/samostatna-prace.html}$

 $\underline{https://courseware.zcu.cz/CoursewarePortlets2/DownloadDokumentu?id=187948}$

Popis implementace

Základem systému je soubor, jehož název je předaný prvním a jediným argumentem. Tento soubor se upravuje pomocí zadaných příkazů. Po naformátování souboru se v něm vytvoří struktura reprezentující souborový systém.

Struktura souborů.h.c

Program je rozdělen do 5 zdrojových souborů.

Main.c – hlavní soubor aplikace

Commands.h – hlavičkový soubor příkazů

Commands.c – zdrojový soubor příkazů

Ext.h - hlavičkový soubor obsahující struktury zapisující se do svazku

Ext.c – implementace funkcí pracující se svazkem

Struktura souborového svazku

Naformátovaný svazek obsahuje několik bloků. Prvním je superblock. Tato struktura obsahuje základní informace o svazku. Dalším blokem je pole bytů o 10 ti prvních reprezentující zabrané inody. Tato velikost se dá změnit přepsáním directivy preprocesoru *BITMAPI_SIZE*. Obdobnou strukturou je pole reprezentující zabrané clustery. Jeho velikost se dá změnit přepsáním hodnoty BITMAP_SIZE. Následuje výpis struktury pseudo_inode, která reprezentuje i-uzel. Po skončení inodů, následují samotná data. Data lze rozdělit na 3 typy podle toho, zde se jedná o adresář, soubor nebo symbolický link. V prvním případě je v prvním clusteru několik struktur direktory_item. Tato struktura obsahuje inode_id a jméno souboru. Directory_item na prvním místě je odkaz na rodiče složky. Pokud je soubor prázdný je jeho inode_id nastaveno na ID_ITEM_FREE, což odpovídá hodnotě -1. Jestliže se jedná o soubor, pak jsou jeho data buď přímo v clusterech, na které směřují jeho přímé odkazy, nebo je odkaz na jeho data v nepřímém linku.

Uživatelská příručka

Popis příkazů

cp s1 s2 - Zkopíruje soubor s1 do umístění s2

my s1 s2 - Přesune soubor s1 do umístění s2, nebo přejmenuje s1 na s2

rm s1 - Smaže soubor s1

mkdir a1 - Vytvoří adresář a1

rmdir a1 - Smaže prázdný adresář a1

ls a1 - Vypíše obsah adresáře a1

cat s1 - Vypíše obsah souboru s1

cd a1 - Změní aktuální cestu do adresáře a1

pwd - Vypíše aktuální cestu

info a1/s1 - Vypíše informace o souboru/adresáři s1/a1 (v jakých clusterech se nachází)

incp s1 s2 - Nahraje soubor s1 z pevného disku do umístění s2 v pseudoNTFS

outcp s1 s2 - Nahraje soubor s1 z pseudoNTFS do umístění s2 na pevném disku

load s1 - Načte soubor z pevného disku, ve kterém budou jednotlivé příkazy, a začne je sekvenčně vykonávat. Formát je 1 příkaz/1řádek

format 600MB - Příkaz provede formát souboru, který byl zadán jako parametr při spuštení programu na souborový systém dané velikosti. Pokud už soubor nějaká data obsahoval, budou přemazána. Pokud soubor neexistoval, bude vytvořen.

Parametry programu

Program má pouze jediný parametr a tím je název svazku, se kterým se bude pracovat.

Závěr

Myslím, že zadání jsem v rámci mezí splnil. Příkazy mi fungují a systém běží stabilně. Mám hodně nápadů na vylepšení mé práce. Pokud bych měl práci dále rozšiřovat, zaměřil bych se na absolutní odladění chyb a případně bych se pokusil naddimenzovat systém, aby bylo možné ho plnohodnotně používat. Dalším vylepšením by mohlo být šifrování souboru svazku, podobně jako program VeraCrypt.