

Measurements of Longitudinal Coupled Bunch Instabilities and Status of New Feedback System

Guenther Rehm
Diamond Light Source
IBIC16, 13 Sept 2016

Outline

- Motivation / Introduction
- Measurements of longitudinal CBI using existing electronics
- Status of new feedback electronics
- Conclusions

Purpose of BbB Feedback

- A BbB feedback will add negative feedback at betatron or synchrotron oscillation frequency of each individual bunch.
- By doing so, it supresses
 oscillations of each individual
 bunch and as a consequence also
 of any mode of oscillation of
 many or all bunches
- It is used to supress transverse or longitudinal multi-bunch instabilities, which can be caused by wake fields or ion trapping

Need for Longitudinal Feedback

- Diamond has currently two super conducting cavities installed (Cornell type)
- Two normal conducting cavities (HOM damped design) to be installed in Summer 2017
- BESSY 2, MLS, DELTA have these HOM damped NC cavities, still need longitudinal BbB FB
- Diamond needs longitudinal BbB FB ready to operate before NC cavity installation to ensure operation at 300mA

Digital Longitudinal BbB Feedback

- •A/D and D/A run synchronous with bunches, every bunch measured
- RF frontend can be shared between transverse and longitudinal
- •Different feedback parameters/actions for individual bunches possible

Stripline as Longitudinal Kicker

Temporary system before kicker cavity gets installed:

- Transverse kicks at baseband (0-250 MHz) in differential mode
- Longitudinal kicks upconverted to 3f_{RF} in common mode
- Diplexers combine signals to allow concurrent use as vertical and longitudinal kicker

Exciting Longitudinal Modes

Each mode μ is associated with one frequency:

$$\boldsymbol{\omega} = (pM + \mu)\boldsymbol{\omega}_0 + \boldsymbol{\omega}_S$$

- Program sequencer to step through μ =0...935, excite 4800 turns, measure 24000 turns.
- Average I/Q for two synchrotron periods

Extracting Damping Rates

- Extract only times of damping
- Normalise to peak for plotting

Fit logarithm of magnitude with straight line for

damping rate

Longitudinal Damping Rates

Top Level Requirements

- Each bunch needs acting upon, typically 2ns between bunches
- Each oscillation mode is associated with a frequency, these span 0-250 MHz bandwidth
- All modes need to receive negative feedback:
 - Phase response of the whole loop over the whole bandwidth needs to be flat to a few 10 degree, otherwise driving some modes instead of damping
 - Amplitude response should be flat to within 3dB,
 otherwise very little damping for some modes

New Feedback Electronics

- Decided on modular approach using MTCA
- One AMC carries two FMC modules to implement two channels BbB at up to 500MS/s

Vadatech AMC 525 Xilinx Virtex-7 690T 2GB DDR3 RAM

PPC2040 with 32GB SD for FPGA programming

Innovative Integration FMC-500 2x500MS/s ADC, 14b 2x1230MS/s DAC, 16b DC coupled, external sample clock

CERN Open Hardware FMC-DIO-5Ch-TTL-A 5 Channel in/out for triggers

ADC performance verification

- ADC to on board RAM to CPU RAM implemented
- Using external clock directly gives best results

External Clock / PLL

DSP Firmware to be added

 In-house developed firmware in VHDL will be ported from TMBF to new hardware

Abbott et. al., MOPGF097, ICALEPCS15

Conclusions

- Investigations using vertical stripline as longitudinal kicker show clear impact of varying longitudinal impedance
- New BbB System will be based on MTCA technology with firmware/software ported from existing TMBF
- Mode-by-mode drive/damp experiments are key to characterising stability margin of all modes

Acknowledgements

- DLS: Alun Morgan, Michael Abbott, Isa Uzun
- Micha Dehler (SLS)
- Eric Plouviez (ESRF)
- Dmitry Teytelman (Dimtel)