

Real-time Grasping Using Eventbased Camera

In partial fulfillment of the requirements for the degree of Laurea Magistrale in Robotics Engineering

Presented by: Hocine DELALA

SUPERVISOR:
PROF. CARMINE RECCHIUTO

Introduction

Traditional Frame-Based Cameras

- X High Latency
- X Motion Blur
- X Poor Dynamic Range
 - U VS U

Event-Based Cameras (DVS)

- Microsecond Latency
- No Motion Blur
- 🔽 120dB Dynamic Range
- Power Efficiency

How can we utilize the advantages of Event-Based Cameras to achieve real-time grasping for industrial manipulation?

State of the Art - Existing Approaches

Model-Based [1]	Model-Free [1]
 Requirements: Known CAD model. 3D registration. EMVS [2] for reconstruction. 	Requirements: No CAD needed MEMS clustering EMVS for depth(one time)
Output: • 6-DoF pose.	Output: • Centroid + orientation

Where does our work fit?

Middle Ground

- Lightweight geometric priors (object dimensions)
- No 3D reconstruction (Simpler & faster)
- Suitable for industrial scenarios (catalogued objects)

Can we grasp objects reliably using only 2D event clustering and geometric priors?

The Answer is **YES!**

- ✓ Reconstruction-free perception pipeline.
- ✓ Static + dynamic grasping modes.
- ✓ Experimental validation (mm-level accuracy).

Initial Approach - EMVS (3D Reconstruction)

Offline Tests Results:

X Sparse, noisy reconstruction

X Insufficient for object segmentation

Limitations:

Complex and computationally heavy w.r.t 2D approaches.

Pivoting to 2D Clustering approach

Why 2D Clustering is Enough?

Grasp always occurs at the same Z-level.

Known object height (geometric prior).

Stage 1: 2D Clustering & Validation + 3D back-projection

Stage 2: Temporal 3D Filtering

Eye-in-Hand Camera Frame (URDF/TF)

- Eye-in-hand.
- Fixed joint.
- Transform measurement.
- Known height of the object.

Stage 1: 2D Clustering & Validation

Step 1: DBSCAN Clustering

- Accumulate recent events: $E_{\Lambda t}$
- Cluster in pixel space (cluster eps, min samples)

Step 2: Rectangle Fitting

- We fit the cluster to the object dim.
- Extract: center (u,v), dimensions, angle

Step 3: Size-Consistency Check (cluster Validation)

Rejects the cluster if the geometric error exceeds a threshold

Step 4: 3D Back-projection

Back-project the 3D position into the robot's base frame.

Stage 2: Temporal 3D Filtering

1. Pose Accumulation:

Collecting validated 3D poses from stage 1 while the robot is moving.

2. 3D DBSCAN Clustering

Apply a second layer of DBSCAN, this time in the 3D Base Frame.

3. Compute stable pose:

Final centroid averaging.

Output: Stable, filtered pose.

Scenario: Object stationary on stopped conveyor.

Workflow:

- 1. **Exploration:** Robot performs motion to generate events
- Square trajectory
- Yaw sweep
- 2. **Clustering:** Accumulate pose hypotheses during motion.
- 3. **Filtering:** Temporal 3D DBSCAN → stable pose.
- 4. **Grasping: Movelt** executes grasp sequence
- Approach → Orient gripper → Descend → Close

DAVIS346

Camera

→ Lift

Position-Based Visual Servoing (PBVS)

Velocity Estimation & Predictive Interception

Velocity Estimation (Kalman Filter):

State vector (4D): $X = [x, y, v_x, v_y]^T$

Input: Position measurements [x, y] from clustering. **Output:** Velocity estimate $v_{est} = [v_x, v_y]$

- 1. **PREDICT:** Assume constant velocity $x_{new} = x_{old} + v_{old} \times \Delta t$
- **2. UPDATE:** When new measurement arrives
 - → Refine velocity estimate by comparing prediction to measurement
- **3. REPEAT:** More measurements \rightarrow Better understanding of true velocity \rightarrow Less influenced by noise \checkmark Gave smoother better results than simple averaging (finite differencing $v = \Delta p/\Delta t$).

Linear Motion Prediction:

$$p_{pred} = p_{start} + v_{est} \cdot \Delta t$$

Feed-Forward Control:

$$v_{control} = k_P \cdot e_{pred} + v_{est}$$
 \uparrow
 \uparrow
correction compensation

Scenario: Object moving on a conveyor

1. TRACKING

- Position-Based Visual Servoing (PBVS)
- Follow object, collect position history
- Controller: $v = k_P \cdot e + k_d \cdot \dot{e}$

2. ESTIMATING

- Kalman Filter on position history Action feedback:
- Estimate planar velocity: (v_x, v_y) stabilized pose

3. BLIND DESCENT

- Predict intercept position.
- Feed-forward control loop.
- Descend and close gripper.

Predictive grasp compensates for latency

Experimental Setup

Hardware:

- **Robot:** Kinova Gen3 (6-DOF, 891mm reach)
- **Gripper:** Robotiq 2F-85 (85mm stroke)
- Camera: DAVIS346 (346×260 pixels, eye-in-hand)
- **Object:** Rectangular box (8.5×6.0×14.5 cm)

Software:

- ROS Kinetic (Docker container)
- Movelt for motion planning
- Python scripts.

Experimental Variations in case of Static Grasping

Object Surface Patterns Tested:

Exploration Trajectories:

- Square (20×20cm XY)
- Yaw sweep (±30°)

Why test variations?

- → Evaluate robustness to texture and motion type
- → To find the pattern that is motion independent, we look for the pattern that excites the most events, regardless of the motions type.

Evaluation Metrics

1. Centroid Accuracy (mm):

$$e = \sqrt{(x_{\text{det}} - x_{\text{ref}})^2 + (y_{\text{det}} - y_{\text{ref}})^2}$$

The object was positioned in a known position and used as a reference point to calculate the error.

2. Events Count:

Number of events within detected bounding box

→ Indicates feature richness

3. Grasp Success Rate:

$$Success \ Rate = \frac{Successful \ Grasps}{Total \ Attempts} \times 100\%$$

Static Grasping (Square Trajectory): Visual Results

Static Grasping(Yaw sweep): Visual Results

Overlay image_view

yaw sweep exploration trajectory (no patterns)

Static Grasping (Orientation): Visual Results

Static Grasping Results Analysis

Square trajectory Accuracy

Trial	No pattern	RICE zigzag	UNIGE borders	UNIGE dots	Checkerboard
1	12.50	5.10	11.70	11.70	3.60
2	1.40	5.00	8.40	10.70	2.80
3	3.60	2.20	8.20	11.70	1.60
4	0.00	5.10	6.40	5.10	2.80
5	2.20	8.50	9.20	10.40	2.40
6	10.00	2.20	7.00	9.40	3.60
7	5.10	3.60	7.80	6.70	3.60
8	5.10	3.60	9.40	6.40	5.80
9	7.10	2.20	8.60	7.60	3.20
10	6.10	3.20	7.80	5.80	4.50
Average(r	nm) 5.31	4.07	8.45	8.55	3.39
Std. dev.	3.25	2.11	1.90	2.35	1.42
Success (%	90	100	80	100	100

Yaw sweep trajectory Accuracy

Trial	No pattern	RICE zigzag	UNIGE dots
1	5.10	12.50	6.40
2	3.60	5.10	7.60
3	8.00	7.60	7.10
4	4.10	11.20	9.10
5	1.00	10.00	6.40
6	6.20	10.60	6.40
7	2.50	10.00	7.60
8	7.50	7.30	6.10
9	4.80	7.10	5.40
10	2.90	7.10	8.20
Average (mr	m) 4.57	8.85	7.03
Std. dev.	$\bf 2.22$	2.33	1.11
Success (%)	100	100	100

Static Grasping Results Summary

Explore Motion	Pattern	Avg. Centroid Err (mm)	Success (%)
Square	RICE zigzag	4.07	100
Square	Checkerboard	3.39	100
Yaw Sweep	No pattern	4.57	100
Yaw Sweep	${\rm UNIGE\ dots}$	7.03	100

[✓] Square + patterns: Best accuracy (3-4mm)

[√] Yaw + edges: Prefers clean boundaries (No Pattern)

[√] No pattern: Still works! (5.31mm) → Critical for real industrial items

Dynamic Experimental Setup

Simulation Approach:

 Object placed on long paper sheet - Manually pulled across workspace

Tested Trajectories:

- √ Straight line (X direction)
- ✓ Diagonal (XY motion)

Challenges: Irregular, imprecise speed

→ **Results:** Proof-of-concept, not a quantitative benchmark

Dynamic Grasping Results (Tracking Only)

Different Directions

System successfully demonstrated:

Dynamic Grasping: Results

Tracking & Grasp Linear path

System successfully demonstrated:

- ✓ Real-time PBVS tracking
- √ velocity estimation
- ✓ Predictive intercept and grasp

Observation:

Gripper closed on moving object, but the contact is often not exactly in the center.

Dynamic Grasping: Results

Tracking & Grasp diagonal path

System successfully demonstrated:

- ✓ Real-time PBVS tracking
- √ velocity estimation
- ✓ Predictive intercept and grasp

Observation:

Gripper closed on moving object, but contact often near edge rather than centroid

Dynamic Results Summary: Limitations & Future work

What was Proved:	What was not Proved:
✓ Pipeline provides stable poses for PBVS	X Quantitative performance vs. Speed
✓ Sufficiently velocity estimation ✓ Feed-forward control compensates	X Maximum speed capability
for latency ✓ System handles real-time tracking and interception	X Testing different objects shapes

As a future work:

- → Motorized conveyor for quantitative dynamic evaluation.
- → Learned validation for shape generalization.
- → Hybrid clustering pipeline.

Contributions Summary

Thank you for your attention!

References

[1] Huang, X., Halwani, M., Muthusamy, R., Ayyad, A., Swart, D., Seneviratne, L., Gan, D. & Zweiri, Y. (2022). Real-time grasping strategies using event camera. J. Intell. Manuf., 33, 593–615

[2] Rebecq, H., Gallego, G., Mueggler, E. & Scaramuzza, D. (2018). EMVS: Event-based multi-view stereo—3d reconstruction with an eventcamera in real-time. Int. J. Comput. Vis., 126, 1394–1414