Surname	Other na	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Mechanica Advanced/Advance		
Monday 22 January 2018 – Time: 1 hour 30 minutes	Afternoon	Paper Reference WME01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P51463A
©2018 Pearson Education Ltd.

1.

Figure 1

A particle of weight W is attached at C to two light inextensible strings AC and BC. The other ends of the strings are attached to fixed points A and B on a horizontal ceiling. The particle hangs in equilibrium with the strings in a vertical plane and with AC and BC inclined to the horizontal at 30° and 45° respectively, as shown in Figure 1.

Find, in terms of W,

- (i) the tension in AC,
- (ii) the tension in BC.

(7)

	Leave blank
Question 1 continued	
	-
	_
	_
	-
	-
	-
	-
	-
	_
	_
	-
	-
	_
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-

Question 1 continued		

estion 1 continued	

(6)

2.

Figure 2

A particle P of weight 40 N lies at rest in equilibrium on a fixed rough horizontal surface. A force of magnitude 20 N is applied to P. The force acts at angle θ to the horizontal, as shown in Figure 2. The coefficient of friction between P and the surface is μ .

Given that the particle remains at rest, show that

$$\mu \geqslant \frac{\cos \theta}{2 + \sin \theta}$$

6

Question 2 continued		blan
		Q2
	(Total 6 marks)	

- Two particles A and B have mass 2m and km respectively. The particles are moving in opposite directions along the same straight smooth horizontal line so that the particles collide directly. Immediately before the collision A has speed 2u and B has speed u. The direction of motion of each particle is reversed by the collision. Immediately after the collision the speed of A is $\frac{u}{2}$.
 - (a) Find, in terms of m and u, the magnitude of the impulse exerted by B on A in the collision.

(3)

(b)	Show	that	<i>k</i> < 5
-----	------	------	--------------

!)

	(4
_	
_	
-	
-	
-	
-	
_	

8

Question 3 continued	blank
	Q3
(Total 7 marks)	

1.	A package of mass 6 kg is held at rest at a fixed point A on a rough plane.
	The plane is inclined at 30° to the horizontal. The package is released from rest and
	slides down a line of greatest slope of the plane. The coefficient of friction between
	the package and the plane is $\frac{1}{4}$. The package is modelled as a particle.

(a) Find the magnitude of the acceleration of the package.

(6)

As it slides down the slope the package passes through the point B, where AB = 10 m.

(b) Find the speed of the package as it passes through B.

(2)

	`

	Lea bla
Question 4 continued	

Question 4 contin	ued		

Question 4 continued	blank
	Q4
(Total 8 marks)	
(

5.	A cyclist is travelling along a straight horizontal road. The cyclist starts from rest at point A on the road and accelerates uniformly at 0.6 m s^{-2} for 20 seconds. He then moves at constant speed for $4T$ seconds, where $T < 20$. He then decelerates uniformly at 0.3 m s^{-2} and after T seconds passes through point B on the road. The distance from A to B is 705 m.
	(a) Sketch a speed-time graph for the motion of the cyclist between points A and B. (2)
	(b) Find the value of T. (7)
	The cyclist continues his journey, still decelerating uniformly at 0.3 m s^{-2} , until he comes to rest at point C on the road.
	(c) Find the total time taken by the cyclist to travel from A to C.
	(3)

estion 5 continued	
estion 5 continued	

Question 5 continued		

Question 5 continued	blank
	Q5
(Total 12 marks)	

[In this question i and j are perpendicular horizontal unit vectors.]	
A particle P of mass 2 kg moves under the action of two forces, $(2\mathbf{i} + 3\mathbf{j})$ N and $(4\mathbf{i} - 5\mathbf{j})$ N	N.
(a) Find the magnitude of the acceleration of <i>P</i> .	Λ
(4	4)
At time $t = 0$, P has velocity $(-u\mathbf{i} + u\mathbf{j})$ m s ⁻¹ , where u is a positive constant.	
At time $t = T$ seconds, P has velocity $(10\mathbf{i} + 2\mathbf{j})$ m s ⁻¹ .	
(b) Find	
(i) the value of T ,	
(ii) the value of u .	_\
	5)
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	A particle <i>P</i> of mass 2 kg moves under the action of two forces, (2 i + 3 j) N and (4 i - 5 j) N (a) Find the magnitude of the acceleration of <i>P</i> . At time $t = 0$, <i>P</i> has velocity ($-u$ i + u j) m s ⁻¹ , where <i>u</i> is a positive constant. At time $t = T$ seconds, <i>P</i> has velocity (10 i + 2 j) m s ⁻¹ . (b) Find (i) the value of <i>T</i> , (ii) the value of <i>u</i> .

Question 6 continued	Leave
Question o continued	
	Q6
(Total 9 marks)	
(Total 7 marks)	

7. A 1 m C 4 m D 1 m B

Figure 3

A non-uniform rod AB has length 6 m and mass 8 kg. The rod rests in equilibrium, in a horizontal position, on two smooth supports at C and at D, where AC = 1 m and DB = 1 m, as shown in Figure 3. The magnitude of the reaction between the rod and the support at D is twice the magnitude of the reaction between the rod and the support at C. The centre of mass of the rod is at C, where C0 where C1 m.

(a) Show that
$$x = \frac{11}{3}$$
.

The support at C is moved to the point F on the rod, where AF = 2 m. A particle of mass 3 kg is placed on the rod at A. The rod remains horizontal and in equilibrium. The magnitude of the reaction between the rod and the support at D is k times the magnitude of the reaction between the rod and the support at F.

(b) Find the value of k .	

	Leave
	blank
Question 7 continued	
Question / continued	
	1

Question 7 continued		Leave blank
		Q7
(Total 12	marks)	

8.

Figure 4

One end of a light inextensible string is attached to a block A of mass 3 kg. Block A is held at rest on a smooth fixed plane. The plane is inclined at 40° to the horizontal ground. The string lies along a line of greatest slope of the plane and passes over a small smooth pulley which is fixed at the top of the plane. The other end of the string is attached to a block B of mass 5 kg. Block B hangs freely at rest below the pulley, as shown in Figure 4. The system is released from rest with the string taut.

By modelling the two blocks as particles,

(a) find the tension in the string as B descends.

(6)

After falling for 1.5 s, block B hits the ground and is immediately brought to rest. In its subsequent motion, A does not reach the pulley.

(b) Find the speed of B at the instant it hits the ground.

(3)

(c) Find the total distance moved up the plane by A before it comes to instantaneous rest.

	Lea blaı
Duestion 8 continued	

Question 8 continued		

	Leave
	blank
Question 8 continued	
Question o continuou	

V			2		3	
		٩				
~			S			
$^{\sim}$						
V			1		2	2
	<	ì	d		р	μ
		d	ì			
X		9	Р			
ŏ	2	J	Ę	J		J
Š	3	Į	5	Į	5	Į
8	3	S	2	3	2	
8	3	1	2		2	
8	3	3	2			
8	3	3	2			
8	3	3	2			
8	3	9	2			
8	?	9	2			
8	?	9	2			
8	?	9	2			
	?	9	2			
	?	9	2			
			2			
		9				
		9				
		9				
		900000000000000000000000000000000000000				
		900000000000000000000000000000000000000				
		900000000000000000000000000000000000000				
		9/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4				

	_
	_
	_ Q8
(Total 14 marks)	
TOTAL FOR PAPER: 75 MARKS	
END END	
P 5 1 4 6 3 A 0 2 8 2 8	
P 5 1 4 6 3 A 0 2 8 2 8	

Question 8 continued