ДИСЦИПЛИНА	Прикладные задачи математической статистики
ИНСТИТУТ	Институт искусственного интеллекта
КАФЕДРА	Технологий искусственного интеллекта
ГРУППЫ	
ВИДЫ УЧЕБНОГО	Практические материалы для лабораторного занятия
МАТЕРИАЛА	Тема - 4 Способы визуализации данных. Часть 2
	(Лаб). Изучение пакетов R для визуализации
	взаимосвязей в данных
ПРЕПОДАВАТЕЛЬ	Бурцева Т.А.
CEMECTP	1 семестр

Методические указания к выполнению заданий

Используя переменную t, выполните скрипт и задания в R.

Задание 1.

install.packages("car")

library(car)

pairs(t[2:3])

Ответ:

Рис.1

Задание 2 scatterplotMatrix(t[2:3])

Ответ:

Рис. 2

Задание 3

scatterplotMatrix(t[2:3], regLine = FALSE, smooth = TRUE,

main = "Correlations of parties' share",
diagonal = list(method = "histogram"))

Ответ:

Correlations of parties' share

Рис.3

Задание 4

scatterplotMatrix(t[2:3], regLine = FALSE, smooth = TRUE,

main = "Correlations of parties' share",
diagonal = list(method = "boxplot"))

Ответ:

Correlations of parties' share

Рис. 4

Задание 5. Тепловая карта — это двумерное визуальное представление данных, которое использует цвета для отображения значения переменной. Тепловые карты часто используются для демонстрации корреляции различных факторов в наборе данных друг с другом. Пример создания тепловой карты:

```
d=c(6.4,13.3,4.1,1.3,14.1,10.6,9.9,9.6,15.3,22.1,13.4, 13.2,8.4,6.3,8.9,5.2,10.9,14.4) v=c(5.4,12.3,4.4,1.7,13.1,11.6,8.9,8.6,13.3,22.1,11.4, 13.1,8.4,6.3,8.9,5.2,10.9,14.4) data=as.data.frame(d) data$v=v data$w=v library(ggplot2) ggplot(data, aes(d, v)) + geom_tile(aes(fill = w),colour = "white") + scale_fill_gradient(low = "blue",high = "red")
```

Ответ:

Задание 6. Построение моделей парной регрессии без и с учетом фактора с помощью языка статистической обработки данных R

Шаг. 1.

Загружаем таблицу данных для всех вариантов как объект данных в среду R-Studio, для чего используем кнопку Import Dataset, находим файл dataidz23:

Результат:

Шаг 2. Формируем таблицу для своего варианта

#Чтобы не писать в названии переменных длинное название таблицы выполняем команду присвоения, выполнится команда если ее выделить мышью и нажать клавиши ctrl+enter: t=dataidz23

#делаем свой вариант, сохраняя таблицу в том же объекте данных:

t=t[c(1,2,3,4,5,13,14,15,17,18,21,22,23,24,25),] перечень чисел дан в файле на втором листе dataidz23.

#переименуем в таблице названия столбцов, так как они указываются в названии переменных при обращении к ним в R:

names(t) =c("number", "x", "y")

Шаг. 3 Рисуем диаграмму рассеивания

plot(t\$x,t\$y, col='green', main="Поле корреляции, млн. pyб.", xlim=c(min(t\$x),max(t\$x)), ylim=c(min(t\$y),max(t\$y)), xlab="Активы", ylab="Прибыль")

Поле корреляции, млн.руб.

Вывод: связь линейная, но масштаб банка влияет на параметры модели.

Шаг 4. Введем новую переменную, которая будет указывать на то, крупный или мелкий банк:

```
for (i in 1:15){if (t[i,2] < 900){ t[i,4] = 1} else \{t[i,4] = 0 } i = i + 1} colnames(t)[4]="factor" t$factor=as.factor(t$factor) levels(t$factor)=c("high", "low")
```

		(8	,	•• /	
	•	number [‡]	x	y	factor [‡]
	1	1	982	35.1	high
	2	2	971	22.6	high
	3	3	965	20.1	high
	4	4	1045	20.8	high
	5	5	1004	23.8	high
	6	13	880	21.3	low
	7	14	873	18.1	low
	8	15	864	21.2	low
	9	17	804	16.5	low
1	0	18	821	17.2	low
1	1	21	800	15.3	low
1	2	22	785	14.4	low
1	3	23	794	12.5	low
1-	4	24	795	16.2	low
1	5	25	770	11.5	low

Результат:

Построим график с учетом фактора:

plot(t\$x,t\$y, col = factor(t\$factor), main="Поле корреляции, млн.руб.", xlim=c(min(t\$x),max(t\$x)), ylim=c(min(t\$y),max(t\$y)), xlab="Активы", ylab="Прибыль")

Поле корреляции, млн.руб.

Шаг. 5 Строим модели парной регрессии 5.1. Без учета масштаба банка fit=lm(t\$y~t\$x) summary(fit)

Результат:

```
fit=1m(t$y~t$x)
  41
  42
      summary(fit)
  43
  44
  45
       (Top Level) $
 46:1
Console
       Terminal ×
                 Background Jobs ×
R 4.3.0 · ~/ ≈
> summary(fit)
Call:
lm(formula = t\$y \sim t\$x)
Residuals:
             1Q Median
                             3Q
-6.1241 -1.9278 -0.4353 0.8405 11.1051
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                        10.01529 -2.163 0.04975 *
(Intercept) -21.66382
t$x
              0.04650
                         0.01136
                                   4.092 0.00127 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.937 on 13 degrees of freedom
Multiple R-squared: 0.5629, Adjusted R-squared: 0.5293
F-statistic: 16.74 on 1 and 13 DF, p-value: 0.001272
```

Выводы: Коэффициенты регрессии статистически значимо отличны от нуля (звездочки), но Adjusted R-squared: 0.5293 < 0.75.

Проведем проверку выполнения предпосылок теоремы Гаусса-Маркова с помощью диагностических диаграмм: plot(fit)

1. Зависимость остатков от теоретических значений у

Вывод: наблюдение номер 4 и номер 1 нарушают линейность зависимости у от х.

2. Q-Q график проверки согласованности остатков нормальному распределению:

Вывод: наблюдение номер 1 и номер 4 не позволяют считать остатки случайными.

3. Вывод: остатки имеют не постоянную дисперсию.

Наблюдения номер 4 и 1 влиятельные, то есть сильно отличаются от других. Итак, предпосылки теоремы нарушены.

Построим на графике линию регрессии с доверительным интервалом:

```
install.packages("ggplot2")
library(ggplot2)
ggplot(t, aes(t$x, t$y))+
    geom_point(size = 1)+
    geom_smooth(method = "lm")
```

Результат:

Видно, что есть 4 точки, которые не покрыты доверительным интервалом.

5.2. С учетом масштаба банка

1. Проверим данные на наличие выбросов:

$$ggplot(t, aes(x = t\$x, y = t\$y, fill = t\$factor))+$$

geom_boxplot()+ ggtitle(" Распределение банков по фактору")

Результат:

Видим, что в группе крупных банков есть выброс. Его нужно заменить на медиану.

t[4,2]=median(tx)

Выброс остался по у: t[1,3]=median(t\$у)

Выбросов нет, видно, что группы отличаются по распределению признаков.

Строим регрессию с учетом фактора

 $ggplot(t, aes(t\$x, t\$y, col = factor(t\$factor))) + geom_point(size = 1) + geom_smooth(method = "lm").$

Проверим качество моделей:

Регрессия в группе мелких банков:

 $fit1=lm(t\$y[t\$factor=="low"] \sim t\$x[t\$factor=="low"])$

summary(fit1)

Результат:

Call:

lm(formula = t\$y[t\$factor == "low"] ~ t\$x[t\$factor == "low"])

Residuals:

Min 1Q Median 3Q Max -2.3516 -0.9240 0.3998 1.0220 1.5290

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -44.24747 10.41855 -4.247 0.002811 **

t\$x[t\$factor == "low"] 0.07411 0.01271 5.829 0.000392 ***

--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.505 on 8 degrees of freedom Multiple R-squared: 0.8094, Adjusted R-squared: 0.7856 F-statistic: 33.98 on 1 and 8 DF, p-value: 0.000392

Вывод: качество улучшилось.

Проверим предпосылки:

Остатки случайны в группе мелких банков, а в целом по всей совокупности нет:

```
elow=fit$residuals
> shapiro.test(elow)

Shapiro-Wilk normality test

data: elow
W = 0.8497, p-value = 0.0172<0,05

> elow=fit1$residuals
> shapiro.test(elow)

Shapiro-Wilk normality test

data: elow
W = 0.86622, p-value = 0.0903>0,05

Проверим группу крупных банков:

fit2=lm(t$y[t$factor=="high"]~ t$x[t$factor=="high"])

summary(fit2)

ehigh=fit2$residuals

shapiro.test(ehigh)
```

Результаты:

```
Call:
lm(formula = t$y[t$factor == "high"] ~ t$x[t$factor == "high"])
Residuals:
              2
-3.1760 1.4109 -1.0417 0.4567 2.3501
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        13.513891 22.196151
                                              0.609
                                                       0.586
t$x[t$factor == "high"] 0.007904
                                   0.023159
                                              0.341
                                                       0.755
Residual standard error: 2.51 on 3 degrees of freedom
Multiple R-squared: 0.03738, Adjusted R-squared:
F-statistic: 0.1165 on 1 and 3 DF, p-value: 0.7554
> ehigh=fit2$residuals
> shapiro.test(ehigh)
       Shapiro-Wilk normality test
data: ehigh
W = 0.96265, p-value = 0.8263
```

Вывод: модель в группе крупных банков не является адекватной, хотя остатки случайные.

Задание для самостоятельной работы

Выполните примеры лабораторной работы на основе данных из табл. 1 и таблицы вариантов. Оформите отчёт.

Таблица 1

№ банка	Активы, млн. руб.	Прибыль, млн. руб.	№ банка	Активы, млн. руб.	Прибыль, млн. руб.
1	982	35,1	26	778	13,8
2	971	22,6	27	758	15,4
3	965	20,1	28	753	13,1
4	1045	20,8	29	720	12,5
5	1004	23,8	30	717	11,2
6	958	19,3	31	716	13,3
7	932	21,3	32	712	8,6
8	931	18,4	33	703	8,3
9	928	20,2	34	690	5,7
10	924	19,4	35	684	7,5
11	921	20,6	36	677	5,7
12	901	15,6	37	673	5,2
13	880	21,3	38	649	4,7
14	873	18,1	39	631	6,7
15	864	21,2	40	627	4,8
16	859	18,4	41	609	8,9

17	804	16,5	42	605	6,7
18	821	17,2	43	574	5,1
19	801	18	44	563	6,3
20	801	19,4	45	556	6,3
21	800	15,3	46	543	3,6
22	785	14,4	47	538	5,3
23	794	12,5	48	526	5
24	795	16,2	49	510	5,8
25	770	11,5	50	512	5,1

Таблица вариантов

3.0	' 1
№ варианта	Перечень номеров банков, данные о которых необходимо взять из массива исходных данных для выполнения своего варианта
<u>варианта</u>	4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 5, 11, 13, 1, 9, 11
2	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, 45
3	14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50
4	7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 37, 38, 39, 40, 41, 44
-	
5	6, 8, 9, 14, 15, 18, 19, 21, 22, 23, 26, 27, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 45, 47, 49, 50, 1
6	1, 3, 5, 9, 10, 12, 14, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 50
7	1, 2, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 50, 49
8	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 49, 50
9	3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 50, 49
10	10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 26, 28, 30, 32, 35, 37, 38, 40, 41, 43, 46, 47, 48
11	1, 8, 12, 16, 20, 24, 28, 32, 36, 41, 44, 48, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 5, 11, 13, 49, 50
12	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 34, 35, 36, 37
13	14, 16, 17, 19, 20, 22, 23, 25, 6, 28, 29, 31, 32, 34, 35, 37, 48, 39, 40, 41, 43, 44, 46, 47, 49, 50
14	7, 18, 19, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 37, 38, 39, 40, 41
15	6, 8, 9, 14, 15, 18, 19, 21, 22, 23, 26, 27, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 45, 47, 49, 50
16	1, 3, 5, 9, 10, 12, 14, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44
17	1, 2, 14, 15, 16, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 50
18	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 49, 50
19	3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 26, 27, 28, 29, 34, 35, 36, 37
20	10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 26, 28, 30, 32, 35, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50
21	1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41
22	3, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 26, 27, 28, 29, 34, 35, 36
23	10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 26, 28, 30, 32, 35, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50
24	1, 8, 12, 16, 20, 24, 28, 32, 36, 41, 44, 48, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 5, 11, 13, 50
25	1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
	V

Примечание: если варианта не хватает, осуществите случайную выборку не менее 30 банков sample(x=data, size=30)