HOML Ch.10 Exercise #6

Suppose you have an MLP composed of one input layer with 10 passthrough neurons, followed by one hidden layer with 50 artificial neurons, and finally one output layer with 3 artificial neurons. All artificial neurons use the ReLU activation function. (*Answers in italics*.)

Before we answer the questions, here's a quick summary of what the author stated about the equation relating to the output of fully connected layers $h_{\mathbf{W},\mathbf{h}}(\mathbf{X}) = \Phi(\mathbf{XW} + \mathbf{b})$:

"X represents the matrix of input features. It has one row per instance and one column per feature.

- The weight matrix **W** contains all the connection weights except for the ones from the bias neuron. It has one row per input neuron and one column per artificial neuron in the layer.
- The bias vector **b** contains all the connection weights between the bias neuron and the artificial neurons. It has one bias term per artificial neuron.
- The function φ is called the activation function: when the artificial neurons are TLUs, it is a step function."

Using this information, let's answer the following questions:

- What is the shape of the input matrix **X**? Since **X** has 10 passthrough neurons, its shape is m by 10 where m is the batch size.
- What are the shapes of the hidden layer's weight vector \mathbf{W}_h and its bias vector \mathbf{b}_h ? **X** has 10 passthrough neurons and the hidden layer that follows, \mathbf{W}_h has 50 artificial neurons, so the shape of W is 10 by 50. The bias vector \mathbf{b}_h has a shape of 50 because there have to be as many bias terms as there are artificial neurons.

- What are the shapes of the output layer's weight vector \mathbf{W}_{o} and its bias vector \mathbf{b}_{o} ?

 The output layer \mathbf{W}_{o} is receiving 50 neurons and outputting 3, so its shape is 50 by 3. And the bias vector \mathbf{b}_{o} has 3 terms, corresponding to the number of output neurons.
- What is the shape of the network's output matrix **Y**? Its shape should be m by 3, where m is the batch size and 3 is the number of outputs.
- Write the equation that computes the network's output matrix \mathbf{Y} as a function of \mathbf{X} , $\mathbf{W_h}$, $\mathbf{b_h}$, $\mathbf{W_o}$, and $\mathbf{b_o}$. We have an input layer and two ReLU activation layers, each with a bias vector. So, following the structure of the output of fully connected layers, $\mathbf{Y} = \text{ReLU}(\text{ReLU}(\mathbf{XW_h} + \mathbf{b_h})\mathbf{W_o} + \mathbf{b_o})$
- *** Additional notes from the author: ReLU activations turn every negative number in the matrix to zero, and the bias vector is added to every row in the matrix (broadcasting).