# Ciencia de Datos



# ¿Qué es la Ciencia de Datos?

La **Ciencia de Datos** es un enfoque multidisciplinario para obtener perspectivas (insights) a partir de una cantidad cada vez mayor de datos.

La ciencia de datos combina las matemáticas, estadística, programación especializada, IA y el aprendizaje automático para descubrir estos insights y orientar la toma de decisiones.



# ¿Cómo crear valor con los datos?



# El proceso en la Ciencia de Datos



Fuente: definido por Hadley Wickham

# TIPOS DE DATOS

# **ESTRUCTURADOS**

Datos que tienen un modelo definido o provienen de un campo determinado en un registro



# NO ESTRUCTURADOS

Datos que no tienen un modelo predefinido o no están organizados de alguna manera







# Tipos de datos

Datos estructurados Tablas, bases de datos.



### **Datos semi-estructurados**

XML data

JSON data





### **Datos no estructurados**

Textual



Imagen



Video Audio



### **Datos acerca de datos**

DATA METADATA







# ¿Qué es el Machine Learning?

- El aprendizaje automático (ML) permite a las computadoras aprender y tomar decisiones sin necesidad de programación explícita.
- Implica introducir datos en algoritmos para identificar patrones y realizar predicciones a partir de nuevos datos.
- El aprendizaje automático se utiliza en diversas aplicaciones, como el reconocimiento de imágenes y voz, el procesamiento del lenguaje natural y los sistemas de recomendación.



### Las diferencias entre

### Inteligencia Artificial, Machine Learning y Deep Learning



#### Inteligencia Artificial (IA)

Campo que estudia cómo crear programas informáticos con la habilidad de aprender y razonar como los humanos para resolver problemas de forma creativa.

#### Machine Learning (ML)

Aplicación de la IA dedicada a la creación de algoritmos que permitan a los sistemas aprender sin intervención humana, es decir, sin necesidad de programarlos explícitamente.

#### Deep Learning (DL)

Subconjunto del ML enfocado a la creación de redes neuronales artificiales, es decir, sistemas que imitan al cerebro humano, adaptándose y aprendiendo a partir de grandes cantidades de datos.

# Diferencias entre Machine Learning y Deep Learning

### **Machine Learning**



# **BIG DATA**



## Definición

**Big data** se refiere a conjuntos de datos extremadamente grandes y complejos que no pueden gestionarse ni analizarse fácilmente con las herramientas tradicionales de procesamiento de datos

**Big Data** cubre las estrategias no-tradicionales y tecnologías necesarias para recolectar, organizar, procesar y obtener información desde grandes conjuntos de datos (datasets).



# Las 5 "V" de Big Data

### Volumen



 Cantidades que exigen un almacenamiento mucho más complejo y con una capacidad de almacenamiento enorme a nivel terabyte.

### **Variedad**

- Los datos provienen de diferentes fuentes
- Datos estructurados y no estructurados.







### Velocidad



- Es necesario contar con capacidades robustas que hagan frente a la volatilidad de los datos.
- Muchos de ellos tienen una vida útil corta.
- Por lo que es necesario capturarlos y analizarlos en el momento oportuno para que no pierdan valor.

### Valor

• Se refiere a la información que puedan tener los datos para alcanzar el objetivo que se está buscado.



### Veracidad

- Calidad en cuanto al resguardo de los datos.
- Al trabajar con grandes volúmenes de información, se pueden presentar problemas como:
- registros incompletos o erróneos,
- datos faltantes
- información que, proveniente de diferentes fuentes, son discrepantes.

# Relación de la Ciencia de Datos y el Big Data





### Ciencia de Datos en la vida cotidiana

### **Autos autónomos**



**Casas inteligentes** 



Gestión de tránsito



**Ciudades inteligentes** 



**Ofertas personalizadas** 



# Ejemplos en el uso de Big Data



 Netflix utiliza Big Data para sus sistemas de recomendación y algunas estrategias/sugerencias comerciales y de marketing basadas en el análisis FODA y PESTLE.

 Hoy cuenta con más de 300 millones de suscriptores en todo el mundo

### Fuente de datos

### Para los sistemas de recomendación Netflix utiliza:



Calificaciones de sus usuarios.



Ubicación, la hora y la fecha



El dispositivo que están usando para transmitirlo



Los puntos en los que se pausó, reanudó o adelantó el programa, o si el programa se ve repetidamente



Los datos generados por Netflix han aumentado hasta el 1000% entre 2016 y 2019..



# El éxito de amazon



- Gracias al Big Data es una de las empresas líderes del comercio online
- El uso del Big Data en Amazon está basado en el machine learning
- El Big Data lo utiliza para predecir el comportamiento de los usuarios y mejorar su experiencia en la plataforma.
- o Filtración colaborativa ítem a ítem

## El éxito de amazon

### Big data en AWS

- Amazon incorpora las funciones Big Data en Amazon Web Services (o AWS, la plataforma de soluciones en la nube de la compañía)
- No incluye solo el almacenamiento y análisis de datos, sino también sus análisis predictivos y aprendizaje automático

 Integración con otras herramientas como Hadoop

