1 28th of September 2018 — F. Poloni

1.1 Singular value decomposition (SVD)

We are left with the task of reaching a (sort of) "eigenvalue decomposition" when the target matrix is not symmetric.

There are two way to generalize the eigenvalue decomposition to a nonsymmetric matrix A (with something that always exists):

Definition 1.1 (Schur decomposition). Let $A \in M(n, \mathbb{R})$, $\exists U \in M(n, \mathbb{R})$ orthogonal matrix and $T \in M(n, \mathbb{R})$ triangular matrix such that $A = UTU^T$ and this is called **Schur decomposition**.

What is really important for us is the **Singular value decomposition**, every square matrix A can be written with **SVD** form.

Every square matrix A can be written as SVD.

Definition 1.2 (Singular value decomposition). Let $A \in M(n, \mathbb{R})$, $\exists U, V \in M(n, \mathbb{R})$ orthogonal matrices (V not necessary equal to U) and $\Sigma \in Diag(n, \mathbb{R})$ such that $A = U\Sigma V^T$ and this is called **Singular Value Decomposition**.

$$A = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & & \\ & & & \sigma_n \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix} = \sum_{i=1}^n u_i \sigma_i v_i^T =$$

$$= u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T + \cdots + u_n \sigma_n v_n^T$$

Where σ_i are called **singular values** and they are sorted such that:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$

General fact on singular values:

- $Singular\ values \neq eigenvalues$
- They are always positive and usually more spread apart than the eigenvalues.

$$\sigma_1 \geq |\lambda_1|$$
 and $|\lambda_m| \geq \sigma_m$

 λ_i is larger than the largest eigenvalue of a matrix A and λ_m is smaller than the smallest eigenvalue of a matrix A.

The SVD can be defined also for a rectangular matrix A:

Definition 1.3 (Rectangular matrices and SVD). Let $A \in M(m, n, \mathbb{R})$, there exist $U \in M(m, \mathbb{R})$ orthogonal, $V \in M(n, \mathbb{R})$ orthogonal and $\Sigma(m, n, \mathbb{R})$ diagonal in the sense that $\Sigma_{ij} = 0$ with $i \neq j$ (padded with zeros). Matrix A has a **SVD factorization**, where Σ has the following shape:

• case $m < n \ (e.g \ m = 3, n = 5)$

$$\begin{pmatrix}
\sigma_1 & 0 & 0 & 0 & 0 \\
0 & \sigma_2 & 0 & 0 & 0 \\
0 & 0 & \sigma_3 & 0 & 0
\end{pmatrix}$$

• $case \ m > n \ (e.g \ m = 5, n = 3)$

$$\begin{pmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & \sigma_3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Definition 1.4 (Thin SVD). Let $A \in M(m, n, \mathbb{R})$, has a **thin SVD factorization**: we may restrict to compute only the first min(m, n) vectors that appear in this sum: thin SVD.

$$A = \sum_{i=1}^{\min(m,n)} u_i \sigma_i v_i^T = u_1 \sigma_1 v_1^T + u_2 \sigma_2 v_2^T + \dots + u_{\min(m,n)} \sigma_{\min(m,n)} v_{\min(m,n)}^T$$

Something on Matlab ...

In Matlab the SVD decomposition is obtained through the command svd(A), which return value is made of the three matrices U, Σ, V .

As an example, [U, S, V] = svd(A). Notice that, if svd(A) is assigned to one variable, then such variable is an array of singular values.

The thin SVD can be compute with: [U, S, V] = svd(A, 0).

Computational costs

We are not going into details of algorithms for computing SVD, but we would like to add a consideration about the computational complexity of such an algorithm.

- [U, S, V] = svd(A, 0) (thin) costs $O(mn^2)$ ops for $A \in \mathbb{R}^{m \times n}$ or $A \in \mathbb{R}^{n \times m}$ with $m \geq n$
- [U, S, V] = svd(A) (non-thin) more expensive, because it has to store the large $m \times m$ factor. (But there are some tricks to store orthogonal matrices compactly, more about it later).

1.1.1 Properties of SVD

The SVD reveals rank, image, and kernel of a matrix.

Definition 1.5 (Rank). Let $A \in M(n, \mathbb{R})$ we call the **rank** of A the number of non-zero singular values.

Equivalently, the **rank** is the size of the column space.

Property 1.1. A matrix $A \in M(n, \mathbb{R})$ has rank r iff all its eigenvalues starting from the r+1-th are 0, formally iff $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0$.

Thanks to Property 1.1, we can somehow talk about an "even thinner" SVD, where all the 0s in the bottom right part of the matrix Σ , cancel out the latter columns of U and the latter rows of V (aka columns of V^T). A pictorial representation of the shape of Σ can be found below.

This factorization represents A as $\sum_{i=1}^{r} U_i \sigma_i V_i$.

An attentive reader may notice that $Ax = \sum_{i=1}^{r} U_i \sigma_i V_i x$, where the last three terms are dimensionally a scalar. It goes without saying that the image of A is the span of $U_1, U_2, \dots U_r$, hence rk(A) = r.

Moreover, $\ker(A) = span(V_{r+1}, V_{r+2}, \dots V_n)$, since V is orthogonal (proof: plugging in $x = V_j$, where j > r).

Definition 1.6 (Matrix norm). Let $A \in M(m, n, \mathbb{R})$. We define the **matrix norm** of A as:

$$||A|| := \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{z=1} ||Az||$$

Where the norm may be any of the ones defined in ?? second equality is introduced in order to work in a compact set, the one of normalized vectors z.

Notice that $||Ax|| \le ||A|| ||x||$.

Property 1.2. Let A and $B \in M(n, m, \mathbb{R})$ and let $x \in \mathbb{R}^n$, the following holds, for any norm defined in ??:

- $||A|| \ge 0$ (and the equality holds iff A = 0);
- $\|\alpha A\| = |\alpha| \|A\|, \forall \alpha \in \mathbb{R};$
- $||A + B|| \le ||A|| + ||B||$;
- $||AB|| \le ||A|| \, ||B||$;
- $||Ax|| \le ||A|| \, ||x||$.

Fact 1.3. Let $A \in (n, m, \mathbb{R})$ and let $U \in M(m, n, \mathbb{R})$ orthogonal, in the case of 2-norm $||A||_2 = ||AU||_2 = ||UA||_2$.

Proof. $\|UA\|_2 = \max_{x \in R^n, \ x \neq 0} \frac{\|UAx\|_2}{\|x\|_2} \stackrel{\text{(1)}}{=} \max_{x \in R^n, \ x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \|A\|_2$, where $\stackrel{\text{(1)}}{=}$ follows from a property of vector norms.

 $||AU||_2 = \max_{x \in R^n, \ x \neq 0} \frac{||AUx||_2}{||x||_2} \stackrel{\text{(2)}}{=} \max_{y \in R^n, \ y \neq 0} \frac{||Ay||_2}{||y||_2} = ||A||_2, \text{ where } \stackrel{\text{(2)}}{=} \text{ follows from the substitution } y = Ux.$

Definition 1.7 (Frobenius norm). Let $A \in M(n, m, \mathbb{R})$, we term **Frobenius norm** of $A \|A\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m (A)_{ij}^2}$.

Notice that all the properties enumerated in Property 1.2 hold for the Frobenius norm as well.

Fact 1.4. Let $A \in M(n, m, \mathbb{R})$ and let $A = U\Sigma V^T$ be its singular value decomposition. The following hold:

1.
$$||A||_2 = ||\Sigma||_2 = \sigma_1;$$

2.
$$||A||_F = ||Sigma||_F = \sum_{i=1}^{\min n, m} \sigma_i^2$$
.

Proof.

1. The first equality follows from Proposition 1.3, while the second is proved as follows:

$$\|\Sigma\|_{2} = \max_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{\|\Sigma x\|_{2}}{\|x\|_{2}} = \max_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{\left\| \begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}}{\left\| \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}} = \max_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{\left\| \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}}{\left\| \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}} = \max_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{\left\| \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}}{\left\| \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \right\|_{2}} = \frac{\sqrt{(\sigma_{1}x_{1})^{2} + (\sigma_{2}x_{2})^{2} + \dots + (\sigma_{n}x_{n})^{2}}}{\sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}} \leq \frac{\sqrt{(\sigma_{1}x_{1})^{2} + (\sigma_{1}x_{2})^{2} + \dots + (\sigma_{1}x_{n})^{2}}}{\sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}} = \sigma_{1}$$

$$(1.1)$$

The equality is achieved if we pick $x = e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$.

2. the proof of this assertion is similar to the other and it is left to the reader.

Theorem 1.5 (Eckart-Younger). Let $A \in M(n, m, \mathbb{R})$ and let $A = U\Sigma V^T$ be its singular value decomposition.

The solution of $\min_{rk(X) \le k} ||A|| - X$ is given by the truncated SVD:

$$X = \begin{pmatrix} U^1 & U^2 & \cdots & U^k \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_k \end{pmatrix} \begin{pmatrix} V^1 \\ V^2 \\ \vdots \\ V^k \end{pmatrix}$$

Where the norm is both $\|\cdot\|_2$ and $\|\cdot\|_F$.

Fact 1.6. Let $A \in M(n, \mathbb{R})$ and let A be invertible. The following holds: $||A^{-1}|| = \frac{1}{\sigma_n}$

Proof. Since A is invertible, none of the σ_i is 0, hence the smaller (namely σ_n) is not 0.

$$A^{-1} = (U\Sigma V^{T})^{-1} \stackrel{\text{(1)}}{=} V^{T^{-1}} \Sigma^{-1} U^{-1} = V \begin{pmatrix} \frac{1}{\sigma_{1}} & & & \\ & \frac{1}{\sigma_{2}} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_{n}} \end{pmatrix} U^{T}$$

Where $\stackrel{\text{\scriptsize (1)}}{=}$ follows from the orthogonality of V and U.

Notice that this is *almost* an SVD, because the values on the diagonal are not sorted in a decreasing order.

Plugging in the norm, we have:

$$||A^{-1}|| = ||V\begin{pmatrix} \frac{1}{\sigma_1} & & & \\ & \frac{1}{\sigma_2} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_n} \end{pmatrix} U^T || = ||\begin{pmatrix} \frac{1}{\sigma_1} & & & \\ & \frac{1}{\sigma_2} & & \\ & & & \ddots & \\ & & & & \frac{1}{\sigma_n} \end{pmatrix} || = \frac{1}{\sigma_n}$$