Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Reidentification

Weijian Deng

Overview

- Thanks for giving me the opportunity to talk about our work
- This talk covers
 - Generative adversarial network (GAN)
 - CycleGAN
 - SPGAN (our)

Generative model

What I cannot create, I do not understand
—Richard Feynman

Generative model

Real images distribution $P_{data}(x)$

generated images distribution $P_G(x)$

We want to learn $P_G(x)$ similar to $P_{data}(x)$

Generative adversarial network (GAN)

Discriminative Model **D**

Horse → zebra

forward

CycleGAN forward The second control of the

backward

CycleGAN Forward The state of the state of

Minmax game

Q? minmax function is enough?

Q? minmax function is enough?

G

Q? minmax function is enough? Content is changed!

G

Q? minmax function is enough? Content is changed!

forward

SPGAN (Similarity Preserving GAN)

Duke images

Market images

Person re-identification (re-ID) models trained on one dataset often fail to generalize well to another due to dataset bias

Big drop!

76.8% → 43.1% (train on market)

SPGAN (Similarity Preserving GAN)

"Learning via translation" framework

Step 1: source-target image translation

Step 2: feature learning

SPGAN (Similarity Preserving GAN)

Source domain: images from one dataset duke
Target domain: images from another dataset market

Note that two datasets contain different classes/ IDs

Cycle-consistency loss Preserve the content

Q: cycle-consistency loss is enough?

Q: cycle-consistency loss is enough?

The translated image is used for learning feature/ training a classifier.

Thus, identity information should be preserved

identity information should be preserved

New unsupervised constraints:

- the translated image should be close to its original image at feature space; (similarity)
- 2) The translated images should be not close to target images (dissimilarity)

(dissimilarity)

identity information should be preserved

New unsupervised constraints:

1) the translated image should be close to its original image at feature space; (similarity)

The translated images should be not close to target images

Market → Duke Duke → Market Visual examples Input CycleGAN CycleGAN+Lide **SPGAN**

Test Set: DUKE

Test Set: Market

Thank you