Algebra and Geometry (Cod. 30544)

General Exam – December 10, 2021

Time: 2 hours. Total: 150 points.

Multiple choice questions (total: 24 points)

Each question has a single correct answer: write the correct answer in the box on the right. If you want to change your response cancel it and write another answer next to the box. 6 points are assigned for a correct answer, 0 points for a missing answer, -2 point for an incorrect answer.

1. Given an integer $n \geq 0$, let \mathcal{P}_n be the set of poly $\mathcal{P} := \bigcup_{n \geq 0} \mathcal{P}_n$. Then:	momials with real coefficients and degree $\leq n$ and	d set
(A) \mathcal{P} is a finitely generated vector space (C) \mathcal{P}_6 contains 4 linearly dependent polynomials	(B) \mathcal{P}_4 contains 6 L.I. polynomials (D) none of the others	
2. Let $V = \mathbf{Z}_2^{\mathbf{N}}$ be the vector space of binary sequence	over the field \mathbf{Z}_2 . Then	
(A) The set $\{x \in V : nx = 0_V \text{ for some } n \ge 1\}$ is a (B) $\dim(V) = 1$	vector space	
(C) Every $T \in \mathcal{L}(V)$ is injective (D) none of the others		
3. Let $T: V \to W$ be a linear operator, where V, W are	e finite dimensional real vector spaces. Then	
(A) The transpose operator is a linear function V' (B) $\dim(T(V)) \leq \dim(V)$	$\rightarrow W'$	
(C) $\dim(\operatorname{Ker}(T)) \ge \dim(V)$		
(D) none of the others		
4. Let V be a vector space over a field \mathbf{F} and fix a substant		
(A) $V + 2W := \{x + 2y : x \in V, y \in W\}$ is a vector (C) $V + 2W^2 := \{x + 2y^2 : x \in V, y \in W\}$ is a vect	space (B) $ V/W = \infty$ if $W \neq V$ or space (D) none of the others	
True/False questions	s (total: 24 points)	
Each statement can be either true or false: write T for true or F for cancel it and write another answer next to the box. 4 points are assigning incorrect answer.		_
1. Every permutation of $\{1, \ldots, n\}$ can be written unique	uely as product of transpositions.	
2. $\mathbf{Z}_3 \times \mathbf{Z}_3$ is vector space over the field \mathbf{Z}_3 .		
3. Suppose that 3 is an eigenvalue of $A \in \mathcal{M}_3(\mathbf{R})$. The	n $A^2 - 3A$ is not invertible.	
4. $\mathcal{A}(V)$ is a vector space of dimension $\dim(V)$, provide	ed that V is a finite dimensional vector space.	
5. Every square matrix is diagonalizable.		
6. For each integer $n \in [0, \dim(V)]$, there exists a subspace	pace M such that $\dim(V/M) = n$.	

Open answer questions (total: 102 points)

Answers must be written in the corresponding spaces. Each of the six questions will be assigned from 0 to 17 points. Answers must be adequately justified.

Question 1. (a) Provide the definition of field **F**.

(b) Does there exist a field **F** such that 5x = 0 for all $x \in F$?

Question 2. Given an integer $n \ge 0$, let \mathcal{P}_n be the set of polynomials with real coefficients and degree $\le n$. Define $X_0 := \{0\}$ and $X_n := \{p_1^2 + \dots + p_n^2 : p_1, \dots, p_n \in \mathcal{P}_n\}$ if $n \ge 1$. Show that X_n is a vector space over \mathbf{R} if and only if n = 0.

Question 3. Let V be a finite dimensional vector space over a field \mathbf{F} , and fix a vector subspace $M \subseteq V$.

- (a) Give the definition of annihilator M° and show that it is vector space.
- (b) Prove that $\dim(M^{\circ}) + \dim(M) = \dim(V)$.

Question 4. Let V, W be finite dimensional vector spaces and $T \in \mathcal{L}(V, W)$. Show that

$$\forall x \in V, \quad (T(x))'' = T''x''.$$

(Here, $T''x'' := T'' \circ x''$ and, for each $x \in V$, x'' stands for the element of the bidual V'' associated with x through the canonical isomorphism.)

Question 5. Let V be a finite dimensional vector space over \mathbf{R} and fix $T \in \mathcal{L}(V)$.

- (a) Provide the definition of T $\hat{}$.
- (b) State the theorem which gives you the relationship between T and the determinant of T.

Question 6. Let V be a finite dimensional vector space and fix $T \in \mathcal{L}(V)$.

- (a) Provide the definition of eigenvalue of T.
- (b) Let c be an eigenvalue of $T \in \mathcal{L}(V)$, and let $M = \operatorname{Ker}(T cI)$. If $S \in \mathcal{L}(V)$ and ST = TS, show that $S(M) \subseteq M$.

0.1 Solutions Multiple choices / True-False

Multiple choices:

1	2	3	4
С	A	В	A

True/False:

1	2	3	4	5	6
F	Т	Т	F	F	Т

0.2 Open question

- **1** (a) A field **F** is a set F endowed with two operations $+: F^2 \to F$ and $\times: F^2 \to F$ such that: (i) (F, +) is an abelian group; (ii) (F^*, \times) is an abelian group; (iii) $a \times (b + c) = a \times b + a \times c$ for all $a, b, c \in F$.
 - (b) Yes, $F = Z_5$.

Note: The hypothesis that (F, +) is an abelian group requires the existence of an additivity identity, let us call it 0, hence $|F| \ge 1$. Moreover, the hypothesis that (F^*, \times) is an abelian group, where $F^* := F \setminus \{0\}$, requires the existence of a multiplicative identity, so that $|F^*| \ge 1$, and this implies that $|F| \ge 2$. In particular, $F = \{0\}$ cannot be a field!

- **2** If n = 0 then $X_0 = \{0\}$ is a vector space. Conversely, if $n \ge 1$, choose $p_1 = \cdots = p_n = 1$, hence $g := \sum_{i=1}^n p_i^2 \in X_n$, where g is the constant function n. If X_n were a vector space then $\alpha g \in X_n$ for all $\alpha \in \mathbf{R}$. But this this impossible since $-g \notin X_n$: indeed if $p \in X_n$ then necessarily $p(x) \ge 0$ for all $x \in \mathbf{R}$.
- **3** (a) $M^{\circ} := \{ f \in V' : f(x) = 0 \text{ for all } x \in M \}$. In addition, if $f, g \in M^{\circ}$ and $\alpha \in \mathbf{F}$, then (f+g)(x) = f(x) + g(x) = 0 for all $x \in M$ and $(\alpha f)(x) = \alpha f(x) = 0$ for all $x \in M$. Moreover, $0 \in M^{\circ} \subseteq V'$, hence it is a vector subspace of the algebraic dual V'.
- (b) Let $\{x_1, \ldots, x_k\}$ be a basis of M. Extend it to a basis $\{x_1, \ldots, x_n\}$ of V. Consider the dual basis $\{f_1, \ldots, f_n\}$ of V' such that $f_i(x_j) = 1$ if i = j and 0 otherwise (in particular $\dim(V') = \dim(V)$). Now it is enough to check that $f_1, \ldots, f_k \notin M^{\circ}$ and $f_{k+1}, \ldots, f_n \in M^{\circ}$. Therefore $\dim(M^{\circ}) = n k = \dim(V) \dim(M)$.
- **4** Fix $x \in V$, so that $Tx \in W$. The associated linear function (Tx)'' in the bidual W'' is, hence, a linear form $W' \to \mathbf{F}$.

Note also that T'' is the bitranspose of $T: V \to W$, hence it is a function $V'' \to W''$. Considering that $x'' \in V''$, the composite linear operator T''x'' is a function in W'', that is, a linear operator $W' \to \mathbf{F}$.

Fix a function $f \in W'$. Then, on the one hand,

$$(T(x))''(f) = f(Tx)$$

since $Tx \in W$ and $(Tx)'' \in W''$.

On the other hand,

$$(T''x'')(f) = (x''T')(f) = x''(T'f) = (T'f)(x) = f(Tx).$$

Therefore these two functions are equal.

- 5 See lecture notes.
- 6 (a) See lecture notes.
- (b) M is composed by the vectors $x \in V$ such that $Tx = c \cdot Ix$, i.e., Tx = cx. At this point, if ST = TS and $x \in M$ then Sx belongs to M because

$$T(Sx) = (TS)(x) = (ST)(x) = S(Tx) = S(cx) = c(Sx),$$

which completes the proof.