目录

一 、	建立 ARIMA 模型的数据(随时间变化的数据)	2
_,	观察数据是否具有季节变化的成分(通过预测中的序列图)确	定
是否	高要进行季节分解	2
三、	通过自相关图和偏自相关图判断序列是否是平稳序列	4
四、	判断一界差分是否平稳	6
五、	建立 ARIMA()模型	9
六、	计算模型结果	9
七、	进行拟合预测	14

ARIMA 模型是随机性时间序列分析中的一大类分析方法的综合,可以进行精度较高的短期预测,这里通过实例详细介绍使用 SPSS 建立 ARIMA 模型的过程和结果解析。

一、建立 ARIMA 模型的数据(随时间变化的数据)

首先搜集好需要建立 ARIMA 模型的数据,这里选择上证指数 1998 年 1 月到 2011 年 12 的周度数据,数据如下:

二、观察数据是否具有季节变化的成分(通过预测中的序列图)确定 是否需要进行季节分解

进行 ARIMA 模型之前,要先观察数据是否有季节成分,所以先做 序列图进行观察。绘制序列图方法如下,依次点击"分析","预测",

"序列图",弹出序列图窗口。

在序列图窗口中,"变量"栏选择"收盘"变量,"时间轴标签" 中选择"日期"变量,然后确定,就得到数据的序列图。

从图中可以看出,序列没有明显的季节成分,但存在一个明显的 变化,因此没有必要做季节分解。

三、通过自相关图和偏自相关图判断序列是否是平稳序列

此外, ARIMA 模型要求序列是平稳序列, 因此要对数据进行平稳性分析。

下面做股票序列的自相关图和偏自相关图进行分析序列的平稳性。 在 SPSS 主窗口, 依次点击"分析", "预测", "自相关", 弹出 自相关设置窗口。

在自相关设置窗口中,将"收盘"序列选入"变量"框,然后"输出"项勾选"自相关"和"偏自相关",然后确定,就得到自相关图和偏自相关图。

从图中可以看出,序列的自相关图(ACF)和偏自相关图(PACF)都是拖尾的,说明序列是非平稳的。

股票数据序列通常不是平稳序列。

四、判断一界差分是否平稳

但股票数据序列一般一阶差分都是平稳的,因此可以通过差分做进一步分析。

绘制股票序列差分序列图,观察其平稳性。在第 3 步的序列窗口中,勾选"差分"选项,即绘制差分序列的序列图,这里使用 1 阶差分。

由图可以知道,差分序列基本均匀分布在 0 刻度线上下两侧,因 此可以认为差分序列是平稳的。

轉換: difference(1)

然后再看差分序列的 ACF 和 PACF 图,步骤如下,依次点击"分

析","预测","自相关",在弹出的自相关窗口中选择"差分", 然后确定,就能得到差分序列的ACF和PACF图。

由图可知,差分序列的 ACF和 PACF都是拖尾的,因此,可对原始序列(是原始序列!)建立 ARIMA(p,1,q)模型。

五、建立 ARIMA()模型

经过反复试验,确定模型为 ARIMA(1,1,1)。

六、计算模型结果

模型运行如下:依次点击"分析", "预测", "创建模型", 弹出时间序列建模器。

在弹出的窗口,点击确定。

在"变量"选项中,"因变量"选择"收盘", "自变量"选择 "日期",方法选择 ARIMA, 然后点击"条件",设置 ARIMA 的条件。

将模型的 p,d,q 都设置成 1,1,1, 然后继续。

在"Statistics"中,按照图上所示,"拟合变量"选择"平稳的 R方", "R方", "比较模拟"中选择"拟合优度", "个别模型统计中"选择"参数估计"。

在"图"选项中,选择"序列","残差自相关函数","残差

部分自相关函数"等选项,如下图所示。

在"保存"选项中,全部勾选。(这一步可以不要)

所有设置完成后,点击确定,模型结果就出来了。R 的平方达到 0.961,拟合程度很好,AR,MA 的系数分别是 0.787 和 0.664,显著性

水平都小于0.01,因此系数都显著不为0.

型號說明

			模型類型		
模型 ID	close	- 模型_1	ARIMA(1,1,1)		

模型統計資料

		模型適合度統計				
		資料	Ljung-Box Q(18)		8)	
模型	預測變數數目	平穩 R 平方	統計資料	DF	顯著性	離群值數目
close-模型_1	0	.025	92.422	16	.000	0

ARIMA 模型參數

					估計	SE	Т	顯著性
close-模型_1	close	無轉換	常數		1.009	6.615	.153	.879
			AR	落後 1	.950	.034	28.076	.000
			差異		1			
			MA	落後 1	.901	.047	19.263	.000

再看残差的 ACF 和 PACF 图,可以看到都是平稳的,因此 ARIMA(1,1,1)是合理的。

因此, ARIMA 模型结果为:

$$x_t - 0.95x_{t-1} = \varepsilon_t - 0.901\varepsilon_{t-1}$$

七、进行拟合预测

最后进行拟合预测, 可以看到拟合效果很好。

