

图像处理与机器学习

Digital Image Processing and Machine Learning

主讲人: 黄琳琳

电子信息工程学院

第四章 图像分割

- ◆ 引言
- ◆ 基于阈值的方法
- ◆ 基于边缘的方法
- ◆ 基于区域的方法

> 点检测

▶点检测

-- 点检测模板

图像中孤立的点对于该模板有较大响应

对于图像中的点, |R| > T

则该点被认为是孤立点, T为阈值

-1	-1	-1		
-1	8	-1		
-1	-1	J.		

点检测模板 R

> 点检测

原图

点检测结果

阈值法二值化

> 线检测

> 线检测

用 R₁, R₂, R₃, R₄ 分别四个方向线检测模板

对于图像中的点, $|R_i| > |R_j|, i \neq j$

则该点被认为与在模板i方向上的线更相关

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1	2	-1
-1	2	-1

2	-1	-1
-1	2	-1
-1	-1	2

图像中灰度恒定的区域,对 上述4个模板的响应为零

> 线检测

-45度线模板

阈值法二值化

边缘信息

边缘检测

- > 图像边缘
 - -- 图像中一组相连的像素集合
 - -- 这些像素位于两个区域边界
- 边缘提取
 - -- 一阶或二阶导数
 - -- 图像高通滤波器

- > 图像微分运算
 - -- 计算梯度

图像函数 f(x,y) 在像素 (x,y)的梯度为一个向量:

$$\nabla f = \begin{bmatrix} G_x & G_y \end{bmatrix}^T = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T$$

$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y) \qquad \frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$

图像函数 f(x,y) 在像素 (x,y)的梯度为一个向量:

$$\nabla f = \begin{bmatrix} G_x & G_y \end{bmatrix}^T = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T$$

$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y) \qquad \frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$

- ✓ 平坦区(灰度不变区域)差分值为零
- ✓ 边缘 (灰度变化区域) 差分值为非零

> 一阶算子

Robert算子

Prewitt 算子

·	-1	-1	-1
	0	. 0	0
	1	1	100

Sobel 算子

	(//->-					1
-1	0	1		-1	-2	_
-2	0	2		0	0	(
-1	0	1	5	1	2	1

> 二阶算子

Laplace算子

-1	-1	-1	
-1	8	-1	
-1	-1	-1	

> 边缘提取算子

- -- 检测精度: 边缘算子应该只对真正的边缘有响应
- -- 定位精度: 检测边缘与真边缘像素距离应尽可能小
- -- 单边响应: 在<mark>单边存在</mark>的地方, 结果不应出现多边

1986年学者 John F. Canny 提出了一种多级边缘检测方法

简称为 "Canny" 算子

Canny算子

- 1. 降低噪声: 高斯低通滤波,平滑图像
- 2. 计算梯度: 采用4个方向检测算子提取梯度
- 3. 非极大值抑制:沿着梯度方向寻找局部最大值
- 4. 边缘跟踪: 采用双阈值检测和跟踪边缘

➤ 基于边缘提取的腹部CT图像肝脏区域分割

原图

Sobel 算子

Canny 算子

分割结果

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!