Exploratory Data Analysis

Data Description

	Icavol	lweight	age	lbph	svi	Icp	gleason	pgg45	Ipsa
count	97.000000	97.000000	97.000000	97.000000	97.000000	97.000000	97.000000	97.000000	97.000000
mean	1.350010	3.628943	63.865979	0.100356	0.216495	-0.179366	6.752577	24.381443	2.478387
std	1.178625	0.428411	7.445117	1.450807	0.413995	1.398250	0.722134	28.204035	1.154329
min	-1.347074	2.374906	41.000000	-1.386294	0.000000	-1.386294	6.000000	0.000000	-0.430783
25%	0.512824	3.375880	60.000000	-1.386294	0.000000	-1.386294	6.000000	0.000000	1.731656
50%	1.446919	3.623007	65.000000	0.300105	0.000000	-0.798508	7.000000	15.000000	2.591516
75%	2.127041	3.876396	68.000000	1.558145	0.000000	1.178655	7.000000	40.000000	3.056357
max	3.821004	4.780383	79.000000	2.326302	1.000000	2.904165	9.000000	100.000000	5.582932

o Predictor Variable Distribution

Correlation Heatmap

Figure 1: Predictor Variable Correlation Matrix

Figure 2: Relationship between Ipsa and Icavol

The three key figures to take note of for the exploratory data analysis are the correlation heat map, the distribution graphs and the scatterplot between lcavol and lpsa.

The Predictor Variable Distribution graphs show that the outcome variable, along with Icavol, lweight and age, are all approximately normally distributed. This bodes well for the validity of the machine learning models to be developed.

The correlation heatmap of Figure 1 shows how strong correlated each of the variables are to each other and to the outcome variable, Ipsa. From Figure 1, we see that the strongest correlations are between Ipsa and Icavol, and pgg45 and gleason. The strong correlation between pgg45 and gleason suggests that there *may* be multicollinearity present, but it's not an issue at the moment. The correlation heatmap indicates which variables may have more importance in models like Random Forests: the stronger the correlation, the likelier that variable is in having a higher feature importance in a decision tree model.

The key takeaway from Figure 1 is that the predictor variable that has the strongest correlation with the outcome variable is lcavol. As such, Figure 2 is created to get a visualization of the relationship between lcavol and lpsa. Figure 2 shows that there is clearly a positive linear relationship between lcavol and lpsa.

- Machine Learning Using Linear Penalization Models
 - Each model was built after scaling the predictor variables using the standard scaler and splitting the dataset into training and testing datasets, with the testing dataset having 20% of the original dataset.

0	Table 1:	: Model	Coefficient	Estimates	and N	Mean S	Squared E	rrors
---	----------	---------	-------------	------------------	-------	--------	-----------	-------

	OLS	Ridge	Lasso	Elastic Net	
Icavol	0.664409	0.664379	0.654965	0.654915	
lweight	0.496889	0.496531	0.417405	0.417106	
age	-0.026831	-0.026823	-0.023958	-0.023950	
lbph	0.118506	0.118525	0.118480	0.118494	
svi	0.783247	0.782134	0.609598	0.608736	
lcp	-0.168766	-0.168471	-0.108863	-0.108622	
gleason	0.138275	0.138063	0.057213	0.057078	
pgg45	0.002174	0.002178	0.003424	0.003427	
Training MSE	0.43654752179 67732	0.4365476705 696794	0.4419005952 153945	0.4419424054 804098	
Testing MSE	0.54016919434 34795	0.5400814088 187056	0.5159025607 326395	0.5158699585 332689	

Using the Testing MSE as the criterion, we can see that the Elastic Net model is the best model for finding the line of best fit. We can see that as the models become more complicated testing MSEs get smaller, which suggests the models become better at finding the line of best fit. The models can be improved by narrowing down the predictors variables and using only the best

ones, or by weighing the importance of each predictor variable in the model until the lowest MSE is found. Other, more complex models like Neural Network, SVG, or Gradient Vector may also show better MSE. Adding additional predictor variables can also improve MSE since we don't know if there are other predictors that are not in the dataset that may be able better predict the lpsa.