& Visualization Using Deep Model

Face Social Traits Rating Prediction

Na Zhang

What is social trait of faces?

- People often make trait judgments about unfamiliar others based on their faces in the absence of context or other information
- such as forming an impression that someone looks friendly, trustworthy, or strong

Example of social traits

ASD

- Individuals with Autism Spectrum Disorder (ASD) often have difficulties reading social information from faces
- In this work, we try to study how do the people with ASD make facial trait judgement

Data

- Contains 500 faces of 50 identities
- 10 face images per identity

Face Samples

Multiple variations:

- facial expression
- pose angels
- lighting conditions
- Makeup
- occlusion (eyeglasses)
- background

Facial Ratings

Face

Ratings

Choose two traits as examples for analysis

Face

Ratings

20 20 15 15 10 10 -2.0 3.0 4.5 5.0 6.0 2.5 3.5 4.0 4.5 5.0 2.0 2.5 3.0 3.5 4.0 5.5 NT strong : mu = 4.0716, std = 0.9391ASD strong : mu = 4.2291, std = 0.824625 25 20 20 15 15 10 10 5 -

6.0

5.5

ASD warm: mu = 4.3893, std = 0.7905

Ratings

Distribution

2.5

3.0

3.5

4.0

4.5

5.0

NT warm: mu = 4.2459, std = 0.8866

5.5

6.0

Model

Transfer Learning

Training Settings

Training Strategy: Transfer Learning

Finetune a Pre-trained Model (ImageNet)

Freeze all Convolutional Layers (Set Layers to Non-trainable)

Train Only Top Layers (Randomly Initialized)

Pipeline

4 models are trained

Train 4 Models to Predict Ratings Input Ratings ASD Warm Regression Model 5.3170731707 5.3902439024 NT Warm Regression Model 3.4615384615 ASD Strong Regression Model 3.4324324324 NT Strong Regression Model

Measure Metrics

Pearson's r value

Given a pair of random variables (X, Y), the formula for ρ is:

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$
 (Eq.1)

where:

cov is the covariance

 σ_X is the standard deviation of X

 σ_Y is the standard deviation of Y

values in [-1, 1]

- > 0: no correlation
- <-0.5/>0.5: notable correlation
- others: less notable correlation

5-fold Cross Validation

Pearson's r is calculated

	Warm		Strong	
5-Fold	ASD	NT	ASD	NT
1	0.525	0.528	0.7751	0.8303
2	0.7689	0.7733	0.5413	0.657
3	0.6535	0.6129	0.5129	0.7819
4	0.7688	0.7714	0.5233	0.5214
5	0.5278	0.5376	0.5056	0.5598

• verify (fold 1)

	Warm		Strong	
times	ASD	NT	ASD	NT
1	-0.0544	0.1718	-0.0134	0.0812
2	0.011	0.0756	-0.0899	-0.0843
3	-0.0866	0.1113	0.1526	-0.1095
4	0.1852	0.0447	0.0112	-0.0927
5	0.0516	-0.0871	-0.0627	0.121

LRP Analysis

- Layer-wise Relevance Propagation (LRP) technique [1]
- highlight which input features deep neural network uses to support its output

Mouth, nose, eyes make big positive contributions

More Examples

For each model

- we choose several face images with highest ratings and several images with lowest ratings
- to show the LRP result

ASD Strong

highest ratings

5.783783784 5.769230769 5.756756757 5.666666667

lowest ratings

2.297297297 2.690476191 2.711111111 2.72972973

NT Strong

highest ratings

ASD Warm

highest ratings

lowest ratings

NT Warm

highest ratings

5.956521739 5.947368421 5.880952381

lowest ratings

Next Step

- Use projection method to study how faces are clustered and separated in the t-SNE space
- Try other facial traits

Summary

- We have studied how do the people with ASD make facial trait judgements
- We find that mouth, eyes make the largest positive contributions to facial trait ratings