PREDICTING POOREST COMMUNITIES IN AFRICA USING SATELLITE IMAGERY

PROBLEM STATEMENT

- **Client**: The World Bank
- **Target**: Anti-poverty initiative for poorest villages in Africa
- **Challenge**: Scarcity of relevant and timely data

Can we train a model that correctly predicts the poorest villages in Africa, using publicly available satellite imagery?

Wealth Index

EVALUATION METRICS

We wanted a model that balanced these two metrics:

Accuracy:

Null Model Accuracy = 66.7%

Recall/True Positive Rate

Data Collection & Details

Wealth Index Data

- Formed from Demographic & Health Surveys (DHS) data on asset wealth
 - Annual standardized survey in 23 African countries
 - o Many questions about housing, water/electricity, vehicles, etc.

- Results averaged across 3-year periods in specific (latitude, longitude) locations
 - Periods: 2009-2011, 2012-2014, 2015-2017
 - A "village" in our data means a 3-year aggregate of a location.

- "Wealth Index" is 1st Principal Component of survey data
 - Data from 19,699 "villages"

Satellite Imagery

- 8 channels: 3 RGB, 3 infrared (NIR, SWIR1, SWIR2), 1 thermal (TEMP1) and 1 nighttime lights (NIGHTLIGHTS)
 - Images from Landsat satellite (30m/pixel resolution)
 - NIGHTLIGHTS images are from DMSP (2009-11) or VIIRS (2012-14)
 satellites and at lower resolution

- 1 set of six 255x255 images for each "village" (RGB channels grouped)
- Pixels in each channel averaged across that village's 3-year period
 - Median of all cloud-free pixel values used to create 1 composite

After removing "bad" RGB images, 19,467 villages' worth of images

Example Imagery (1 Village in Angola)

Wealth Index: 1.88 (not in poorest third)

Train/Test/Validation Split

90% of observations (17,520) used as training data

- 5% of observations (974) used as test data
 - Select models on the basis of Accuracy, Recall scores on test data

- 5% of observations (973) used as validation data
 - Evaluate performance of production model vs. baseline model

Exploratory Data Analysis

Average wealth index by living area

-People living in the Urban area has a lot of different wealth index by comparing to people who lived in the Rural area.

Data by area

-More data in the Rural area, the size is about double from the Urban area.

Rural / Urban map

-Green color is for the Urban area and red for the Rural area, looks like people are denser close to the coastline.

Households per village

-Average households per village is about 25

All model

	LogisticRegression	RandomForestClassifier	AdaBoostClassifier	KNeighborsClassifier	
only_country_train	0.709246575	0.709075342	0.709246575	0.62859589	
only_country_test	0.709445585	0.704312115	0.709445585	0.605749487	
country_is_urban_train	0.799885845	0.799885845	0.799885845	0.782762557	
country_is_urban_test	0.783367556	0.783367556	0.783367556	0.764887064	
country_is_urban_lat_long_train	0.790353881	0.999828767	0.817636986	0.880936073	
country_is_urban_lat_long_test	0.781314168	0.820328542	0.808008214	0.813141684	
only_lat_long_train	0.675627854	0.999771689	0.729908676	0.856164384	
only_lat_long_test	0.6724846	0.794661191	0.717659138	0.790554415	
country_lat_long_train	0.717294521	0.999885845	0.743436073	0.856621005	
country_lat_long_test	0.719712526	0.813141684	0.743326489	0.793634497	

Best model score & confusion matrix

	RandomForestClassifier
country_lat_long_train	0.999885845
country_lat_long_test	0.813141684
country_lat_long_val	0.803699897
accuracy_val	0.803699897
recall_val	0.672240803

	Predicted not Poorest	Predicted Poorest
Actual not Poorest	581	93
Actual Poorest	98	201

Single CNN Structure

NN Modeling Approach

Transfer Learning with Convolutional Neural Networks

- Train one copy of EfficientNetV2M (top layer) for each image type.
 - o 6 "predictors": RGB, NIR, SWIR1, SWIR2, TEMP1, NIGHTLIGHTS

 For each village, feed the 6 predictors' predicted probabilities as features into a top-level model (along with coordinates + country)

Train top-level models on these data (see next slide)

How good of predictors are the images by themselves?

NIR Test Accuracy: 69.0%

RGB Test Acturacy: 74.4%

How good of predictors are the images *together?*

- Predicted probabilites are only moderately correlated with each other
- Reasons to believe that combining them will yield much better results

Final Models

Correlations of predicted probability with target

-Not high for correlations.

-The NIGHTLIGHT has the highest.

Final model

	acc_train	acc_crossval	acc_test	recall_train	recall_test
model					
Logistic Regression	0.836587	0.835445	0.820329	0.717844	0.695122
Random Forest	0.976027	0.842123	0.837782	0.951894	0.743902
Random Forest (no Country dummies)	0.945491	0.836986	0.816222	0.902252	0.710366
Logistic Regression (no Country dummies)	0.811073	0.811644	0.778234	0.668884	0.646341
XGBoost	0.891553	0.848402	0.840862	0.833675	0.762195
kNN	0.856164	0.827169	0.815195	0.770386	0.728659
Stacked Model	0.925970	0.848858	0.835729	0.872057	0.740854

- -Not using "country" does not improve models
- -XGBoost performs the best

OUR PRODUCTION MODEL IS MORE ACCURATE AND SENSITIVE

	NULL MODEL	BASELINE RF MODEL	PRODUCTION MODEL
ACCURACY	66.7%	80.4%	85.0%
RECALL	0%	67.2%	78.6%

Baseline vs Production Model comparison

Baseline	Predict not poorest	Predict poorest
Actual not poorest		^{FP} 93
Actual poorest	^{FN} 98	201

XGBoost	Predict not poorest	Predict poorest
Actual not poorest	^{TN} 592 +2%	82 _{-12%}
Actual poorest	64 _{-35%}	235 _{+17%}

-Overall score improves

CONCLUSION

The problem: Can we train a model that correctly predicts the poorest villages in Africa, using publicly available satellite imagery?

- Our solution: YES! Using just geographic coordinates and other information that can be automatically downloaded and fed into our model - we can predict with an accuracy of 85% and a sensitivity of 78.6% whether a village in Africa suffers from extreme poverty.