

Intro to Instrumentation and Field Measurements in Remote Sensing

Javier Concha and Paul Romanczyk

Digital Imaging and Remote Sensing Lab Chester F. Carlson Center for Imaging Science Rochester Institute of Technology

January 6, 2015

Presented for 2015 Intersession Term

Outline

Introduction

Outline

Introduction

Course Goals

- Learn the importance of field measurements
- Learn how to take field measurements
- Learn about DIRS instruments

Course Description

- Friday: Introduction
- Monday: Introduction (con't) and DIRS instruments exhibition
- Tuesday: Lab: Reflectance measurements
- Wednesday: Lab: LIDAR measurements

Definitions

Field Measurements or Groundtruth:

"Observations or measurements made at or near the surface of the earth in support of remote sensing."

Remote Sensing:

"Remote sensing is the science of obtaining information about objects or areas from a distance, typically from aircraft or satellites."

Motivation

Why is it important?

- Validation
- Calibration
- Correction

Motivation Examples

Include:

Javier's example (over water mea.)

Paul's example (LIDAR and trees?)

Kind of Measurements

- reflectance
- concentration
- location

 ΔQ : radian energy incident

 Δt : time interval ΔA : surface area at location (x,y,z)

 $\Delta\Omega$: solid angle in direction (θ, φ)

 $\Delta \lambda$: photons wavelength interval

$$\label{eq:loss_loss} \textit{L}(\textit{x},\textit{y},\textit{z},\textit{t},\theta,\varphi,\lambda) \equiv \frac{\Delta \textit{Q}}{\Delta \textit{t} \Delta \textit{A} \Delta \Omega \Delta \lambda} \quad \left[\textit{Js}^{-1} \textit{m}^{-2} \textit{sr}^{-1} \textit{nm}^{-1}\right]$$

$$\left[Js^{-1}m^{-2}sr^{-1}nm^{-1}\right] \qquad (3)$$

$\{\cdot\,|\,\cdot\,\}$ Rochester Institute of Technology

 ΔQ : radian energy incident

 Δt : time interval ΔA : surface area at location (x,y,z)

 $\Delta\Omega$: solid angle in direction (θ,φ)

 $\Delta\lambda$: photons wavelength interval

$$L(x, y, z, t, \theta, \varphi, \lambda) \equiv \frac{\partial^4 Q}{\partial t \partial A \partial \Omega \partial \lambda} \left[J s^{-1} m^{-2} s r^{-1} n m^{-1} \right]$$
(1)

Spectral downwelling scalar irradiance at depth z:

$$E_{od}(z,\lambda) = \int_{2\pi_d} L(z,\theta,\varphi,\lambda) d\Omega \quad [Wm^{-2}nm^{-1}]$$
 (2)

Spectral upwelling scalar irradiance at depth z:

$$E_{ou}(z,\lambda) = \int_{2\pi_{u}} L(z,\theta,\varphi,\lambda) d\Omega \quad [Wm^{-2}nm^{-1}]$$
 (3)

Spectral scalar irradiance at depth z:

$$E_o(z,\lambda) \equiv E_{od}(z,\lambda) + E_{ou}(z,\lambda)$$
 (4)

$$= \int_{4\pi} L(z,\theta,\varphi,\lambda) d\Omega \tag{5}$$

Spectral downwelling plane irradiance at depth z:

$$E_d(z,\lambda) = \int_{2\pi_d} L(z,\theta,\varphi,\lambda) |\cos\theta| d\Omega \quad [Wm^{-2}nm^{-1}] \quad (6)$$

Photosynthetic available radiation, PAR:

$$PAR(z) \equiv \int_{350nm}^{700nm} \frac{\lambda}{hc} E_o(z,\lambda) d\lambda \quad \left[photons \ s^{-1} m^{-2} \right] \quad (7)$$

Objectives

- Develop over-water atmospheric correction
- Design water constituent retrieval algorithm
- Apply glint correction
- Validate results
- Demo process to a different study site

Outline

Introduction

- Current retrieval algorithm depends on IOPs from the field. Not always available!
- LUT from Hydrolight: Highly dependent in phase function
- Obtain field data for Landsat-8 is difficult, mainly for weather conditions

Thanks for your attention!

Javier A. Concha jxc4005@rit.edu

(09/19/2013)

Thanks for your attention! QUESTIONS?

Javier A. Concha jxc4005@rit.edu

(09/19/2013)

References

[[Muller-Karger et al., 2013]] Muller-Karger, F., Roffer, M., Walker, N., Oliver, M., Schofield, O., Abbott, M., Graber, H., Leben, R., and Goni, G. (2013).

Satellite remote sensing in support of an integrated ocean observing system.

Geoscience and Remote Sensing Magazine, IEEE, 1(4):8-18.