#### CONTINUITY

If  $f: D \to \mathbb{R}$  and  $c \in D$ , then we say that f is "continuous at c" if  $\lim_{x \to c} f(x) = f(c)$ .

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon]$$

**Def.** Continuous function..

If f is continuous at every point in its domain, we say that f is continuous. Notice that now we have  $|x-c| < \delta$ .

$$(\forall c \in D)(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon]$$

Comment. Continuity of Rational functions.

We have shown that if p, q are polynomials,  $q(c) \neq 0$  then  $\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}$ , so all rational functions are continuous wherever their denominator is not zero.

Comment. Continuity of sin and cos functions.

We have shown that  $\lim_{x\to c}\sin(x)=\sin(c)$  and  $\lim_{x\to c}\cos(x)=\cos(c)$ , so sin and cos are continuous functions

**Thm.** Continuity of  $\sqrt[n]{x}$ .

The function  $f(x) = \sqrt[n]{x}$  is continuous at any point in its domain (where it makes sense), for  $n \in \mathbb{N}$ .

# Proof.

We want to show that  $\lim_{x\to c} \sqrt[n]{x} = \sqrt[n]{c}$  for all c>0. When n is odd, the proof for c<0 is similar.

$$|f(x) - f(c)| = \left| \sqrt[n]{x} - \sqrt[n]{c} \right| = \frac{|x - c|}{\left| \sum_{k=0}^{n-1} x^{k/n} c^{(n-k)/n} \right|} = \frac{|x - c|}{\sum_{k=0}^{n-1} x^{k/n} c^{(n-k)/n}}$$

Assume  $|x-c| < \frac{c}{2}$ , so that  $-c/2 < x - c < c/2 \Leftrightarrow c/2 < x < 3c/2$ .

$$\frac{|x-c|}{\sum_{k=0}^{n-1} x^{k/n} c^{(n-k)/n}} < \frac{|x-c|}{\sum_{k=0}^{n-1} (\frac{c}{2})^{k/n} c^{(n-k)/n}} = \frac{|x-c|}{c \sum_{k=0}^{n-1} 2^{-k/n}} < \frac{|x-c|}{c}$$

So  $\delta = \min(\frac{c}{2}, c\varepsilon)$ .

# Corollary. Limit laws.

Note that the **limit laws** immediately tell us that any scalar multiple, a sum, a product, a quotient of two continuous functions is continuous.

**Thm.** Invariance of domain. (was discussed)

If U is an open subset of  $\mathbb{R}^n$  and  $f: U \to \mathbb{R}^n$  is an injective continuous map, then V := f(U) is open in  $\mathbb{R}^n$  and f is a homeomorphism between U and V.

**Thm.** Limits of compositions.

Suppose that f and g are functions such that  $\lim_{x\to c} g(x) = L$  and  $\lim_{x\to L} f(x) = M$ .

If one of the following is true

- 1. f is continuous at L (M = f(L))
- 2.  $\exists e > 0$  such that  $g(x) \neq L$  for 0 < |x c| < e

then  $\lim_{x\to c} f(g(x)) = M$ .

## Proof.

Fix  $\varepsilon > 0$ .

- (1) Since  $\lim_{y \to L} f(y) = M$  we can find a  $\hat{\delta} > 0$  such that  $0 < |y L| < \hat{\delta} \Rightarrow |f(y) M| < \varepsilon$ .
- (2) Since  $\lim_{x \to c} g(x) = L$ ,  $\exists \delta > 0$  such that  $0 < |x c| < \delta \Rightarrow |g(x) L| < \hat{\delta}$ .

We would like to combine these:

$$0<|x-c|<\delta\Rightarrow|g(x)-L|<\hat{\delta}$$
 
$$0<|y-L|<\hat{\delta}\Rightarrow|f(y)-M|<\varepsilon$$

There are two cases.

- 1. If f is continuous, then (1) becomes  $|y L| < \hat{\delta} \Rightarrow |f(x) M| < \varepsilon$ . And so  $0 < |x - c| < \delta \Rightarrow |g(x) - L| < \hat{\delta} \Rightarrow |f(g(x)) - M| < \varepsilon$ .
- 2. Since  $g(x) \neq L$  when 0 < |x c| < e, let  $\tilde{\delta} = \min(\delta, e)$ . So if  $0 < |x - c| < \tilde{\delta}$ , then  $0 < |g(x) - L| < \hat{\delta}$ , and consequently  $|f(g(x)) - M| < \varepsilon$ .

Thm.

If f and g are continuous at c, then  $f \circ g$  is also continuous at c.

## Proof.

We know that  $\lim_{x\to c}g(x)=g(c)$  and  $\lim_{x\to g(c)}f(x)=f(g(c)),$  so  $\lim_{x\to c}f(g(x))=f(g(c)).$ 

From this we get the ability to use substitution or change the variable.

#### TYPES OF DISCONTINUITY

Suppose that f is not continuous at c, and let  $L^{\pm} = \lim_{x \to c^{\pm}} f(x)$ .

- 1. We say that c is a removable discontinuity if  $L^+$  and  $L^-$  exist and  $L^+ = L^-$ .
- 2. We say that c is a jump discontinuity if  $L^+$  and  $L^-$  exist and  $L^+ \neq L^-$ .
- 3. We say that c is an essential discontinuity if one of  $L^+$  and  $L^-$  does not exist.



**Def.** "Thomae's Function".

We define  $T: \mathbb{R} \to \mathbb{R}$  as

$$T(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ and } \gcd(p,q) = 1\\ 0 & \text{if } x \notin \mathbb{Q}\\ 1 & \text{if } x = 0 \end{cases}$$

So note that  $0 \le T(x) \le 1$ .

Also, note the T is periodic, since T(x+1) = T(x) for all  $x \in \mathbb{R}$ .



Note that for any  $\varepsilon > 0$  there are only finitely many rationals  $x \in [0,1)$  that  $T(x) \geq \varepsilon$ .

Thm. "Continuity of Thomae's function"

Thomae's function is continuous at every irrational, and discontinuous at every rational. The discontinuity is removable.

# Proof. "Continuity of Thomae's function"

**Claim:**  $\forall c \in \mathbb{R}, \lim_{x \to c} T(x) = 0$ . We will prove this on [0, 1).

Let  $\varepsilon > 0$  be given and choose the smallest  $N \in \mathbb{N}$  such that  $\frac{1}{N} < \varepsilon$  (so  $\frac{1}{N-1} > \varepsilon$ ). Note that if  $\varepsilon \ge \frac{1}{2}$  any  $\delta > 0$  will work, so we may assume that  $0 < \varepsilon < \frac{1}{2}$ .

Define  $F_c = \left\{\frac{k}{m} : m \in \{2, \dots, N-1\}, k \in \{1, \dots, m-1\}, \gcd(k, m) = 1\right\}$ . For every element in  $F_c$ ,  $x \in F_c \Rightarrow T\left(\frac{k}{m}\right) = \frac{1}{m} \ge \frac{1}{N-1} > \varepsilon$ .

Note that if  $x \in F_c$  then writing  $x = \frac{k}{m}$  we get  $T(x) = T(\frac{k}{m}) = \frac{1}{m} \ge \frac{1}{N-1} > \varepsilon$  and  $F_c$  enumerates all numbers whose denominator is at most N-1, so this is precisely the points whose image is greater than  $\varepsilon$ .

Let  $\delta = \min_{x \in F_c \setminus \{c\}} |x - c|$ , which exists because  $|F_c|$  is finite and is positive since  $x \neq c$  for all  $x \in F_c \setminus \{c\}$ .

Claim: If  $0 < |x - c| < \delta$  then  $|T(x)| < \varepsilon$ .

If  $x \in \mathbb{R} \setminus \mathbb{Q}$  then  $|T(x)| = |0| = 0 < \varepsilon$ .

If  $x \in \mathbb{Q}$ , note that  $x \notin F_c$ , so writing  $x = \frac{p}{q}$  in lowest terms,  $q \ge N$ , and so  $T(x) = \frac{1}{q} \le \frac{1}{N} < \varepsilon$ .

### "Dirichlet's function"

The Dirichlet function is continuous nowhere. Limit never exists.

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$