Методы оптимизации. Семинар 3. Autodiff.

Корнилов Никита Максимович

мфти фивт

18 сентября 2025г

Граф вычислений

Функции представляют собой последовательность (дифференцируемых) параметрических преобразований. Строим вычислительный граф (computational graph), где промежуточным вершинам соответствуют преобразования, входящим стрелкам — входные переменные, а выходным стрелкам — результат преобразования.

Граф вычислений

$$f(x,\omega,b) = \frac{(\sigma(\omega^{\top}x+b)-t)^2}{2} + \lambda \cdot \frac{1}{2} \|\omega\|_2^2, \quad x,\omega \in \mathbb{R}^n, b \in \mathbb{R}.$$

Граф вычислений

$$f(x,\omega,b) = \frac{(\sigma(\omega^{\top}x+b)-t)^2}{2} + \lambda \cdot \frac{1}{2} \|\omega\|_2^2, \quad x,\omega \in \mathbb{R}^n, b \in \mathbb{R}.$$

Подсчёт значения f(x) по графу называется forward pass.

H. М. Корнилов 18 сентября 2025г 3 / 11

Производные в графе

Мы хотим найти градиент по переменной $x \in \mathbb{R}^n$ финальной функции $f(x): \mathbb{R}^n \to \mathbb{R}.$

Back Propagation

Идти от детей к родителям и в вершине u считать $\frac{\partial f}{\partial u}$. Для вершины u с детьми v_1,\ldots,v_d мы имеем $f(u(x))=f(v_1(u(x)),\ldots,v_d(u(x)))$ и по правилу дифф функции нескольких переменных:

$$\frac{\partial f}{\partial u}(x) = \sum_{j=1}^d \frac{\partial f}{\partial v_j}(x) \cdot \frac{\partial v_j}{\partial u}(x), \quad \frac{\partial f}{\partial v_j}(x) = (\nabla_{v_j} f(x))^\top.$$

В конце мы доходим до начальной вершины x и получаем $\frac{\partial f}{\partial x}$.

Н. М. Корнилов 18 сентября 2025г 4 / 11

Back Propagation

Отсортируем все m вершин от детей к родителям и перенумеруем их от 1 до m.

Обозначим производную функции f по вершине u_i как

$$\overline{u_i} = \frac{\partial f}{\partial u_i}.$$

Общий алгоритм действий выглядит так

- **1** Произвести forward pass и сохранить все значения u_i как функции от их родителей.
- ② Положить $\overline{u_m} = 1$ и для всех $i = m 1, \dots, 1$ посчитать

$$\overline{u_i} = \sum_{j \in \mathsf{ДЕТИ}(u_i)} \overline{u_j} \frac{\partial u_j}{\partial u_i}.$$

$$f(u) = f(v_1(u), \dots, v_d(u))$$

$$\frac{\partial f}{\partial u} = \sum_{j=1}^{d} \frac{\partial f}{\partial v_j} \cdot \frac{\partial v_j}{\partial u}.$$

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial v_j} \cdot \frac{\partial f$$

Н. М. Корнилов 18 сентября 2025г

$$f(u) = f(v_1(u), \dots, v_d(u))$$
$$\frac{\partial f}{\partial u} = \sum_{i=1}^d \frac{\partial f}{\partial v_i} \cdot \frac{\partial v_i}{\partial u}.$$

lacktriangle Необходимо хранить BCE промежуточные значения u_i .

$$f(u) = f(v_1(u), \dots, v_d(u))$$
$$\frac{\partial f}{\partial u} = \sum_{j=1}^d \frac{\partial f}{\partial v_j} \cdot \frac{\partial v_j}{\partial u}.$$

- $lue{f 0}$ Необходимо хранить BCE промежуточные значения u_i .
- ② Важно уметь быстро превращать градиент по выходу в градиент по входу (умножать якобиан $\frac{\partial v_j}{\partial u}$ на строку слева).
- **О**перации с якобианами эффективно разработаны в рамках библиотек автоматического дифференцирования.

$$f(u) = f(v_1(u), \dots, v_d(u))$$
$$\frac{\partial f}{\partial u} = \sum_{j=1}^d \frac{\partial f}{\partial v_j} \cdot \frac{\partial v_j}{\partial u}.$$

- lacktriangle Необходимо хранить ВСЕ промежуточные значения u_i .
- ② Важно уметь быстро превращать градиент по выходу в градиент по входу (умножать якобиан $\frac{\partial v_j}{\partial u}$ на строку слева).
- Операции с якобианами эффективно разработаны в рамках библиотек автоматического дифференцирования.
- 4 Каждая вершина может быть запрограммирована как отдельная сущность, умеющая внутри себя делать forward и backward pass.

Н. М. Корнилов

$$f(u) = f(v_1(u), \dots, v_d(u))$$

$$\frac{\partial f}{\partial u} = \sum_{j=1}^d \frac{\partial f}{\partial v_j} \cdot \frac{\partial v_j}{\partial u}.$$

- $lue{f 0}$ Необходимо хранить BCE промежуточные значения u_i .
- ② Важно уметь быстро превращать градиент по выходу в градиент по входу (умножать якобиан $\frac{\partial v_j}{\partial u}$ на строку слева).
- Операции с якобианами эффективно разработаны в рамках библиотек автоматического дифференцирования.
- Каждая вершина может быть запрограммирована как отдельная сущность, умеющая внутри себя делать forward и backward pass.
- Можно строить граф вычисления производной.

4D>4B>4E>4E> 900

Умножение якобиана на строку

Для функции вида $f:\mathbb{R}^n \to \mathbb{R}^m$ и вектора $y \in \mathbb{R}^m$ считаем значение $y^\top J_f(x)$ в точке x, а именно

$$d\langle y, f(x) \rangle = \langle y, J_f dx \rangle = \langle J_f^\top y, dx \rangle = \langle \nabla g(x), dx \rangle,$$

где $g(x) = \langle f(x), y \rangle$.

Вместо полного гессиана можно найти градиент функции g. Именно поэтому вычисления из Back Propagation можно эффективно реализовать на практике.

◆ロ → ◆ 日 → ◆ 目 → ● ・ ● ・ ◆ 9 へ ○ ○

Умножение гессиана на вектор

Дважды непрерывно дифференцируемая функция $f: \mathbb{R}^n \to \mathbb{R}$, вектор $y \in \mathbb{R}^n$.

Покажем, как можно эффективно считать

$$\nabla^2 f(x) \cdot y$$

$$d(\langle \nabla f(x), y \rangle) = d(\nabla f)^{\top} y = dx^{\top} \nabla^2 f(x) \cdot y = dx^{\top} \nabla g(x),$$
где $g(x) = \langle \nabla f(x), y \rangle.$

Вместо полного гессиана можно найти градиент функции д.

Forward Proragation

Forward Propagation

Идти от родителей к детям и в вершине u считать $\frac{\partial u}{\partial x}$. Для вершины u с родителями p_1,\ldots,p_k мы имеем $u(x)=u(p_1(x),\ldots,p_k(x))$ и по правилу дифф функции нескольких переменных:

$$\underbrace{\frac{\partial u}{\partial x}(x)} = \sum_{j=1}^{k} \frac{\partial u}{\partial p_{j}}(x) \cdot \frac{\partial p_{j}}{\partial x}(x).$$

В конце мы доходим до конечной вершины f и получаем $\frac{\partial f}{\partial x}$

Обсуждение Forward Propagation

$$u = u(p_1, \dots, p_k)$$
$$\frac{\partial u}{\partial x} = \sum_{j=1}^k \frac{\partial u}{\partial p_j} \cdot \frac{\partial p_j}{\partial x}.$$

- Можно совершать forward pass вместе с подсчётом $\frac{\partial u}{\partial x}$ и нужно будет хранить только один слой графа.
- В forward propagation нужно хранить $\frac{\partial u_i}{\partial x}$, а в backward propagation $\frac{\partial f}{\partial u_i}$. Если размерность входа x намного больше, чем размерность выхода f(x), то на каждом шаге forward pass нужно будет хранить настолько же больше данных.

Обсуждение Forward Propagation

$$u = u(p_1, \dots, p_k)$$
$$\frac{\partial u}{\partial x} = \sum_{i=1}^k \frac{\partial u}{\partial p_i} \cdot \frac{\partial p_i}{\partial x}.$$

- Можно совершать forward pass вместе с подсчётом $\frac{\partial u}{\partial x}$ и нужно будет хранить только один слой графа.
- В forward propagation нужно хранить $\frac{\partial u_i}{\partial x}$, а в backward propagation $\frac{\partial f}{\partial u_i}$. Если размерность входа x намного больше, чем размерность выхода f(x), то на каждом шаге forward pass нужно будет хранить настолько же больше данных.

Вывод

Для $f:\mathbb{R}^n o \mathbb{R}^m$ выгоднее использовать

- ullet Back Propagation при $n\gg m$,
- Forward Propagation при $n \le m$.

Н. М. Корнилов