1 DEFINIÇÃO DE ESPAÇO VETORIAL

Um espaço vetorial S deve atender às seguintes propriedades:

- (i) comutatividade: u + v = v + u;
- (ii) associatividade: (u+v)+w=u+(v+w) e $(\alpha\beta)u=\alpha(\beta u)$;
- (iii) vetor nulo: existe um vetor $0 \in S$, chamado vetor nulo, ou vetor zero, tal que u + 0 = 0 + u = u para todo $u \in S$;
- (iv) inverso aditivo: para cada vetor $u \in S$ existe um vetor $-u \in S$, chamado o inverso aditivo, ou o simétrico de S, tal que u + (-u) = (-u) + u = 0;
- (v) distributividade: $(\alpha + \beta)v = \alpha v + \beta v$ e $\alpha(u + v) = \alpha u + \alpha v$;
- (vi) multiplicação pela unidade: $1 \cdot v = v$.

Todos esses axiomas devem ser satisfeitos para α e $\beta \in \mathbb{R}$ e $u,v,w \in S$ quaisquer.

1.1 Exemplos

- 1. O espaço vetorial euclidiano \mathbb{R}^n , para $n \in \mathbb{N}$.
- 2. O conjunto das matrizes de ordem $m \times n$ com $m, n \in \mathbb{N}$ e valores reais formam um espaço vetorial.
- 3. Os elementos do espaço \mathbb{R}^{∞} .
- 4. Seja X um conjunto não-vazio qualquer. Denota-se por $\mathbb{F}(X,\mathbb{R})$ o conjunto de todas as funções reais $f,g:X\to\mathbb{R}$. Este conjunto \mathbb{F} se torna um espaço vetorial quando definimos a soma f+g de duas funções e $\alpha\cdot f$ o produto por uma função escalar: (f+g)(x)=f(x)+g(x), $(\alpha f)(x)=\alpha\cdot f(x)$.

2 Subespaços Vetoriais

Um subespaço vetorial do espaço vetorial S é um subconjunto $T\subset S$ que atende aos axiomas que definem S como um espaço vetorial e é por si só um espaço vetorial.

Seja S um espaço vetorial, chamaremos de subespaço vetorial de S o subconjunto T de S que atenda às seguintes propriedades:

- (i) $0 \in T$;
- (ii) Se $u, v \in T$ então $u + v \in T$;
- (iii) Se $u \in T$ então $\alpha u \in T$.

2.1 Exemplos

- 1. Seja $v \in S$ um vetor não nulo. O conjunto $T = \alpha v; \alpha \in \mathbb{R}$ de todos os múltiplos de v é um subespaço de S.
- 2. Seja $S=\mathbb{F}(\mathbb{R},\mathbb{R})$ o espaço vetorial de todas as funções reais de uma variável real $(f:\mathbb{R}\to\mathbb{R})$. Para cada $k\in\mathbb{N}$, o conjunto $C^k(\mathbb{R})$ das funções k-vezes continuamente diferenciáveis é um subespaço de S.

2.2 Soma Direta

Sejam T_1 e T_2 subespaços de S. Podemos obter a partir de T_1 e T_2 um novo subespaço de S através da união entre esses dois subespaços $(T_1 \cup T_2)$; que é, simplesmente, o conjunto formado por todas as somas $t_1 + t_2$, onde $t_1 \in T_1$ e $t_2 \in T_2$. Esse novo espaço será representado por $T_1 + T_2$.

Quando os subespaços $T_1,T_2\subset S$ têm em comum apenas o elemento 0, ou seja, $T_1\cap T_2=0$, escreve-se $T_1\oplus T_2$ ao invés de T_1+T_2 e diz-se que $T=T_1\oplus T_2$ (T é a soma direta de T_1 e T_2).

Teorema 2.1. Sejam T, T_1, T_2 subespaços de S, com $T_1 \subset T$ e $T_2 \subset T$. As seguintes afirmações são equivalentes:

- 1. $T = T_1 \oplus T_2$;
- 2. todo elemento $r \in T$ se escreve de maneira única como a soma $r = t_1 + t_2$, onde $t_1 \in T_1$ e $t_2 \in T_2$.

3 BASES

Definição. Combinação linear: seja u_i , $(i=1,\ldots,n)$ um conjunto de vetores de um espaço vetorial S, então diz-se que v é uma combinação linear dos vetores u_i se:

$$v = \sum_{i=1}^{n} \alpha_i u_i.$$

Seja T um subconjunto do espaço vetorial S. O subespaço de S gerado por T é, por definição, o conjunto de todas as combinações lineares $\alpha_1u_1+\alpha_2u_2+\ldots+\alpha_nu_n$ de vetores $u_1,u_2,\ldots,u_n\in T$. Quando o subespaço gerado por T coincide com S, dizemos que T é um conjunto de geradores de S, neste caso para todo $v\in S$ tem-se: $v=\alpha_1u_1+\alpha_2u_2+\ldots+\alpha_nu_n$. Ou seja, qualquer elemento de S pode ser obtido através de uma combinação linear dos vetores de T.

3.1 Exemplo

1. Os chamados vetores canônicos constituem um conjunto de geradores do espaço \mathbb{R}^n .

Definição. Conjunto linearmente independente: seja S um espaço vetorial. Diz-se que um conjunto $T \subset S$ é linearmente independente (LI) quando nenhum vetor $u \in T$ é combinação linear dos outros elementos de T.

Observação. No caso de T=u, dizemos que T é LI se $u\neq 0$.

Teorema 3.1. Seja T um conjunto LI do espaço S. Se:

$$\alpha_1 u_1 + \ldots + \alpha_n u_n = 0$$

com $u_i \in T$, então $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

3.2 Exemplos

- 1. Os chamados vetores canônicos são LI.
- 2. Os monômios $1, x, x^2, \dots, x^n$ em P^n são LI.

Observação. De forma evidente, se um conjunto não é LI, ele é linearmente dependente (LD).

Definição. Base: uma base de um espaço S é um conjunto $B \subset S$ linearmente independente que gera S. Se $\mathfrak{B} = \{u_1, u_2, \ldots, u_n\}$ é uma base de S, logo $v = \alpha_1 u_1 + \ldots + \alpha_n u_n$, então $\alpha_1, \ldots, \alpha_n$ são as coordenadas de v na base \mathfrak{B} .

3.3 Exemplos

- 1. Os chamados vetores canônicos formam uma base de \mathbb{R}^n . Os monômios $1, x, x^2, \dots, x^n$ formam uma base de P^n .
- 2. O conjunto de monômios de grau arbitrário $\{1,x,x^2,\ldots,x^n,\ldots\}$ formam uma base do espaço P de todos os polinômios reais.
- 3. O conjunto $X=\{\overline{e_1},\ldots,\overline{e_n},\ldots\}\subset\mathbb{R}^\infty$, onde $\overline{e_n}=[0,\ldots,0,1,0,\ldots]$ é LI, mas não gera \mathbb{R}^∞ .

Observação. Houve um debate na Matemática sobre a existência ou não de uma base para \mathbb{R}^{∞} . O que se sabe é: \mathbb{R}^{∞} possui uma base que não se consegue computar, pois existe o lema de Zorn que garante que todo espaço vetorial tem uma base.

Teorema 3.2. Se os vetores v_1, \ldots, v_n geram o espaço S, então qualquer conjunto com mais de n vetores em S é LD.

Corolário 3.1. Se os vetores v_1, \ldots, v_n geram o espaço S e os vetores u_1, \ldots, u_m são LI, então $m \le n$.

Corolário 3.2. Se o espaço vetorial S tem uma base $\mathfrak{B} = \{u_1, u_2, \dots, u_n\}$ com n elementos, então qualquer base de S também possuirá n elementos.

Definição. Dimensão: diz-se que um espaço vetorial S tem dimensão finita quando admite uma base $\mathfrak{B}=\{u_1,u_2,\ldots,u_n\}$ com um número finito n de elementos. Pelo corolário 2, o número de elementos é o mesmo para todas as bases, logo denota-se a dimensão do espaço S:n=dimS. O espaço vetorial S formado apenas pelo elemento S tem dimensão S.

Corolário 3.3. Se a dimensão de um espaço $S \notin n$, um conjunto com n vetores gera S se, e somente se é LI.

Teorema 3.3. Seja S um espaço vetorial de dimensão finita n, então:

- (i) todo conjunto X de geradores de S contém uma base;
- (ii) todo conjunto LI $\{v_1, \ldots, v_m\} \subset S$ está contido numa base;
- (iii) todo subespaço $T \subset S$ tem dimensão finita $\leq n$;
- (iv) se a dimensão do subespaço $T\subset S$ é igual a n, então T=S.

3.4 Exemplos

- 1. Os monômios $1,x,x^2,\ldots,x^n$ constituem uma base de P^n (polinômios de grau $\leq n$), logo P^n tem dimensão finita igual a n+1.
- 2. O espaço P de todos os polinômios tem dimensão infinita.
- 3. \mathbb{R}^{∞} tem dimensão infinita.
- 4. O espaço vetorial $M_{(m \times n)}$ das matrizes de ordem $m \times n$ tem dimensão igual a $m \cdot n$.

4 Transformações Lineares

Definição. Transformação linear: sejam T,S espaços vetoriais. Uma transformação linear $A:T\to S$ é uma correspondência que associa a cada vetor $v\in T$ um vetor $A(v)=A\cdot v=Av\in S$ de modo que, para todos $u,v\in T$ e $\alpha\in\mathbb{R}$ valham:

- (i) A(u+v) = Au + Av;
- (ii) $A(\alpha v) = \alpha A v$.

O vetor Av é chamado de imagem de v pela transformação A.

Consequências:

- (i) A(0) = 0, A(0) = A(0+0) = A(0) + A(0);
- (ii) $u,v\in S$ e $\alpha,\beta\in\mathbb{R}$ tem-se: $A(\alpha u+\beta v)=A(\alpha u)+A(\beta v)=\alpha Au+\beta Av;$
- (iii) generalizando, sejam $v_1, \ldots, v_m \in S$ e $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$, vale: $A(\alpha_1 v_1 + \ldots + \alpha_m v_m) = \alpha_1 A v_1 + \ldots + \alpha_m A v_m$;
- (iv) A(-v) = -Av e A(u-v) = Au Av.

A soma de duas transformações lineares $A,B:T\to S$ e o produto de uma transformação linear (TL) $A:T\to S$ por um número $\alpha\in\mathbb{R}$ são as TLs:

- (i) $A + B : T \to S, (A + B)v = Av + Bv;$
- (ii) $\alpha A: T \to S, (\alpha A)v = \alpha Av.$

Propriedades válidas para todo $v\in T$. O símbolo 0 denota a TL nula: $0:T\to S, 0(v)=0$. O que permite definir $-A:T\to S$ por (-A)v=-Av e (-A)+(A)=A+(-A)=0.

Seja $\mathfrak{L}(T,S)$ o conjunto das TLs de T em S. As definições anteriores caracterizam $\mathfrak{L}(T,S)$ num espaço vetorial. Quando

T=S, escreve-se apenas $\mathfrak{L}(S)$. AS TLs de um espaço vetorial nele mesmo ganham o sinônimo de operadores lineares em S. As TLs $\phi:S\to\mathbb{R}$ com valores numéricos são chamadas de funcionais lineares. Chama-se de S^* o espaço vetorial formado por todas os funcionais lineares $\Phi:S\to\mathbb{R},\,S^*$ é também chamado de espaço dual de S.

Teorema 4.1. Sejam T e S espaços vetoriais e $\mathfrak B$ uma base de T. Para cada vetor $u \in \mathfrak B$, façamos corresponder (de forma arbitrária) um vetor $u' \in S$. Então existe uma única transformação linear $A: T \to S$ tal que Au = u' para cada $u \in B$.

Consequência: se quisermos definir uma TL $A:\mathbb{R}^n \to \mathbb{R}^m$ basta escolher, para cada $j=1,\ldots,n$, um vetor $v_j=[a_{ij},a_{2j},\ldots,a_{mj}]\in\mathbb{R}^m$ de tal modo que $v_j=Ae_j$, ou seja, v_j é a imagem do j-ésimo vetor da base canônica e_j pela TL A. E, uma vez feito isso, podemos obter a imagem de qualquer $u\in\mathbb{R}^n$:

$$Au = A(\sum_{j=1}^{n} x_{j}e_{j}) = \sum_{j=1}^{n} x_{j}Ae_{j}$$

$$= \sum_{i=1}^{n} (a_{1j}x_{j}, a_{2j}x_{j}, \dots, a_{mj}x_{j})$$

$$= (\sum_{j=1}^{n} a_{1j}x_{j}, \sum_{j=1}^{n} a_{2j}x_{j}, \dots, \sum_{j=1}^{n} a_{mj}x_{j})$$

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

Reescrevendo em forma matricial:

$$y = Au$$

4.1 Exemplos

- 1. A rotação em um ângulo θ em torno da origem no plano.
- 2. A projeção ortogonal sobre uma reta que consiste em projetar qualquer vetor u=[x,y] sobre a reta $y=\alpha x$.
- 3. Exemplo de funcional: produto interno entre funções.

4.2 Exercícios

- Dado um conjunto de vetores, como verificar se eles formam um conjunto LI?
- 2. Mudança de base.

4.3 Formas Bilineares

Definição. Sejam T, S dois espaços vetoriais. Dizemos que uma função $b: T \times S \to \mathbb{R}$, denotada por b(u,v) para $u \in T$ e $v \in S$ é uma forma bilinear se ela for linear em cada argumento. A forma bilinear atende às seguintes propriedades:

(i)
$$b(u+u',v) = b(u,v) + b(u',v);$$

(ii)
$$b(u, v + v') = b(u, v) + b(u, v')$$
;

- (iii) $b(\alpha u, v) = \alpha b(u, v)$;
- (iv) $b(u, \alpha v) = \alpha b(u, v)$.

Onde $u,u'\in T,\ v,v'\in S$ e $\alpha\in\mathbb{R}$. Essas definições de soma e produto fazem do conjunto $\mathfrak{L}(T\times S)$ formado por todas as formas bilineares $b:T\times S\to\mathbb{R}$ um espaço vetorial por si só. O produto escalar ou produto interno $u\cdot v=(u,v)=u_1v_1+u_2v_2+\ldots u_nv_n$, para $u,v\in\mathbb{R}^n$ é uma forma bilinear $(u,v):\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$.

Seja $L^2(\Omega)=\{f\in L^2(\Omega): \int_\Omega f^2\,dx<\infty\}$. No caso de funções f,g de quadrado integrável no domínio Ω , isto é, $f,g\in L^2(\Omega)$, o produto interno entre f,g é:

$$(f,g) = \int_{\Omega} fg \, dx$$

4.4 Produto de Transformações Lineares

Definição. Produto de transformações lineares: sejam as TLs $A:T\to S,\,B:S\to E$, onde o domínio de B é o contra-domínio de A. O produto $BA:T\to E$ que mapeia cada $u\in T$ em E, (BA)u=B(Au).

Deve-se observar que BA é por si só uma TL, BA representa a TL composta $B\circ A$ das TLs B e A. Para $C:E\to F$ e $A,B:T\to E$, valem:

- (i) associatividade: (CB)A = C(BA);
- (ii) distributividade à esquerda: (B+C)A = BA + CA;
- (iii) distributividade à direita: C(A + B) = CA + CB.

4.5 Exemplo

1. Uma rotação *R* do exemplo 4.1 seguida da projeção ortogonal sobre uma reta (do exemplo 4.2).

4.6 Núcleo e Imagem de Uma Transformação Linear

Definição. Núcleo de uma TL: sejam T e S espaços vetoriais e $A:T\to S$ uma TL. Chamamos de núcleo de A, denotado por $\mathbf{N}(A)$ o conjunto definido por:

$$N(A) = \{v : v \in T, A(v) = 0\}$$

Definição. Imagem de uma TL: sejam T, S e A definidos anteriormente. Chamamos de imagem de A, denotada por $\mathbf{Im}(A)$, o conjunto definido por:

$$\mathbf{Im}(A) = \{u : Av = u, v \in T, u \in S\}$$

A imagem de A é um subespaço vetorial de S. Quando $\mathbf{Im}(A)=S$, diz-se que a TL A é sobrejetiva.

Definição. Inversa à direita de uma TL: seja uma TL $A: T \to S$ com $T \in S$ espaços vetoriais de dimensão finita. Diz-se que A tem uma inversa à direita B se $AB = I_T$ (I_T é a TL identidade de T), ou seja, AB(u) = u para todo $u \in T$.

Teorema 4.2. Seja $A: T \to S$ uma TL entre espaços de dimensão finita, A possui uma inversa à direita se e somente se A é sobrejetiva.

Uma TL $A:T\to S$ é chamada de injetiva quando para $u,u'\in T$ quaisquer, tem-se $Au\neq Au'$ em S, se $u\neq u'$.

Teorema 4.3. Para que uma $TL A: T \to S$ seja injetiva, é necessário e suficiente que seu $\mathbf{N}(A)$ contenha apenas o vetor nulo, em outras palavras, $dim(\mathbf{N}(A)) = 0$.

Definição. Inversa à esquerda de uma TL: seja uma TL $A: T \to S$ com T e S espaços vetoriais de dimensão finita. Diz-se que A tem uma inversa à esquerda B se $BA = I_S$ (I_S é a TL identidade de S), ou seja, BA(u) = u para todo $u \in T$.

Teorema 4.4. Seja $A: T \to S$ uma TL entre espaços de dimensão finita, A possui uma inversa à esquerda se e somente se A é injetiva.

Definição. Transformação linear invertível: uma $TL \ A: T \to S$ com T e S é chamada de invertível se existir $B: S \to T$ linear tal que $BA = I_T$ e $AB = I_S$, ou seja, B é ao mesmo tempo inversa à esquerda e à direita de A. Diz-se que B é a inversa de A e $(A)^{-1} = B$.

Teorema 4.5. Uma $TL \ A: T \to S$ tem inversa se e somente se ela é injetiva e sobrejetiva. Neste caso, diz-se que A é bijetiva ou $A: T \to S$ é um isomorfismo e que T e S são isomorfos.

Um isomorfismo $A:T\to S$ transforma uma base de T em uma base de S.

Teorema 4.6. Sejam T e S espaços vetoriais de dimensão finita. Para toda TL $A: T \rightarrow S$, vale:

$$dim(T) = dim(\mathbf{N}(A)) + dim(\mathbf{Im}(A))$$

4.7 Problema de Autovalor

Definição. Transformação linear adjunta: chamaremos de TL adjunta de A a TL $A^*:S\to T$ tal que, para $A:T\to S,\ u\in T$ e $v\in S$ quaisquer vale:

$$(Au, v) = (u, A^*v)$$

Diz-se que a TL $A: T \to S$ é autoadjunta se $A = A^*$.

Definição. Problema de autovalor padrão: seja $A:S\to S$ uma TL. Um vetor $x\neq 0$ é chamado de autovetor de A se existe $\lambda\in\mathbb{R}$ ou $\lambda\in\mathbb{C}$ tal que:

$$Ax = \lambda x$$

O número λ , por sua vez, é chamado de autovalor de A. Para cada autovalor, tem-se um autovetor associado.

Teorema 4.7. Para autovalores distintos do mesmo operador (TL), há autovetores associados que são Ll.

Teorema 4.8. Sejam λ_i e λ_j autovalores distintos de um operador autoadjunto $A:S\to S$, então os autovetores associados x_i e x_j são ortogonais $((x_i,x_j)=0)$.

Teorema 4.9. Para todo operador autoadjunto $A: S \to S$ num espaço de dimensão finita com produto interno, existe uma base ortonormal $\{x_1, x_2, \dots, x_n\} \subset S$ formada pelos autovetores de A.

Corolário 4.1. Toda matriz simétrica possui autovalores reais.

Definição. Multiplicidade: seja o operador $A:S\to S$ um operador de dimensão finita. Chama-se multiplicidade algébrica (abreviadamente $ma(\lambda_i)$) do autovalor λ_i a potência do termo $(\lambda-\lambda_i)$ que ocorre no polinômio característico. A multiplicidade geométrica de um autovalor λ_i é a quantidade de autovetores LI associados ao autovalor.

Teorema 4.10. Seja $A: S \to S$ um operador linear entre espaços de dimensão finita n. Se possuir autovalores não distintos, pode-se afirmar que:

$$mg(\lambda_i) = n - posto(A - \lambda_i I)$$

Onde $mg(\lambda_i)$ é a multiplicidade geométrica do autovalor λ_i .