2 (tr)uSDX Assembly

truSDX_Main_Schematic_1.0 < https://dl2man.de/wp-content/uploads/2021/12/truSDX_Main_Schematic_1.0.pdf>

DOWNLOAD < HTTPS://DL2MAN.DE/WP-CONTENT/UPLOADS/2021/12/TRUSDX_MAIN_SCHEMATIC_1.0.PDF> truSDX_Mainboard_ibom_1.0 < https://dl2man.de/wp-content/uploads/2021/12/truSDX_Mainboard_ibom_1.0. html>

DOWNLOAD < HTTPS://DL2MAN.DE/WP-CONTENT/UPLOADS/2021/12/TRUSDX_MAINBOARD_IBOM_1.0.HTML>

truSDX_RF_Schematic_1.0 < https://dl2man.de/wpcontent/uploads/2021/12/truSDX_RF_Schematic_1.0.pd f>

DOWNLOAD < HTTPS://DL2MAN.DE/WP-CONTENT/UPLOADS/2021/12/TRUSDX_RF_SCHEMATIC_1.0.PDF>

truSDX_RF_ibom_1.0 < https://dl2man.de/wp-content/uploads/2021/12/truSDX_RF_ibom_1.0.html>

DOWNLOAD < HTTPS://DL2MAN.DE/WP-CONTENT/UPLOADS/2021/12/TRUSDX_RF_IBOM_1.0.HTML>

Alternative, very comprehensive Schematic, drawn by KD4SGE & WA4ITD:

truSDX_Main-RF_Boards_with_Notes_v1.0k-1 < https://dl2man.de/wp-content/uploads/2022/07/truSDX_Main-RF_Boards_with_Notes_v1.0k-1.pdf>

DOWNLOAD < HTTPS://DL2MAN.DE/WP-CONTENT/UPLOADS/2022/07/TRUSDX_MAIN-RF_BOARDS_WITH_NOTES_V1.0K-1.PDF>

<u>After Assembly, you need to install Firmware < https://dlaman.de/3b-trusdx-firmware/></u>

<u>Klick here to get to the Group Buy Instructions < https://dl2man.de/1-trusdx-group-buy/></u>

Here are the Results of the Harmonic measurements:

80m

60m

40m		
30m		

The TRX was un-tweaked, and built completely according to the Schematic Values of Capacitors and Toroids. Harmonic suppression is better than -43dB on ALL Bands.

A Video on Filter Tuning

UPDATE: 16. March 2022:

Alternative Bands Setups

We've got many user requests for alternative Band Setup. Personally we're not really interested in that and lack the time to double- and triple check all the Information, but we wanted to give you -the user- the possibility to play around with it. Since (tr)uSDX is supposed to be a standardized rig, we cannot allow for totally custom Band Selection, but we've prepared 3 Options in Firmware for you:

Band-Slot Assignment	K1	K2	К3	K4	K5
Lo (current Standard)	20 m	30 m	40 m	60 m	80 m
Hi (Only Hi Bands)	10 m	12m	15m	17m	20 m
Classic (Classical Bands w/o WARC)	10 m	15m	20 m	40 m	80 m

Can be selected at in Menu 8.7 "Band Config"

UPDATE 08. May 2022:

Here are my Results with "Classic Bands" Setup, using the FDT 86256 FET: (Again UPDATED 20 May 2022)

< https://dl2man.de/wp-			
content/uploads/2022/05/FDT	NEW	CLASSI	C- 2.ipg >

Because of higher gate threshold value, this FET requires higher PA BIAS Max Setting of 160 for best performance. With PA Bias Max 160 it was possible to get at or above 80% up to 10m Band, even with Red Toroids.

I was using the Toroids and PCB provided by our official Supplier Sunny.

IMPORTANT!

The below Tables represent **UNTESTED** Component Values! Use them with caution at your own Risk. The Values need to be tweaked for 5W@12V and Efficienct over 80%. Please report back in the forum about the Values that actually made it happen for you.

ATTENTION: This Table are THEORETICAL Values for 1x FDT86256 (Install ONLY Q5 as PA FET)

Band	80 m	60 m	40 m	30 m	20 m	17m	15 m	12m	10m
F (MHz)	3,6 0	5,3 5	7,10	10,1 0	14,1 5	18,0 8	21,1 0	24,9 0	28,1 0
CX0//C X1	104 1	697	523	36 4	257	199	169	142	125
CX2//C X3	276 5	186 0	140 2	985	703	550	472	400	354
LX1	1,3 4	0,9 0	0,6 8	0,4 8	0,3 4	0,27	0,2 3	0,19	0,17
CX4//C X5	221 2	148 8	112 1	788	563	440	377	320	283
CX8//C X9	221 2	148 8	112 1	788	563	440	377	320	283
LX2	0,6 6	0,4 5	0,3 4	0,2 4	0,17	0,13	0,11	0,10	0,0 9
CX6//C X7	737	496	374	263	188	147	126	107	94

This Table is for 1x FDT86256 (All Inductances in μH – All Caps in pF)

ATTENTION: This Table are THEORETICAL Values for 3x BS170 (Install ONLY Q1,Q2 and Q3 as PA FET)

Band	80 m	60 m	40 m	30 m	20m	17m	15m	12 m	10m
F (MHz)	3,5 6	5,3 5	7,0 5	10,1	14,0 5	18,0 8	21,0 5	24, 9	28,0 5
CX0//C X1	657	420	30 7	199	128	88	69	50	39
CX2//C X3	186 4	124 0	941	65 7	472	367	315	26 6	237
LX1	2,0 4	1,3 6	1,0 3	0,7 2	0,52	0,4	0,3 5	0,2 9	0,26
CX4//C X5	182 6	121 5	92 2	64 4	463	360	309	261	232
CX8//C X9	182 6	121 5	92 2	64 4	463	360	309	261	232
LX2	0,8 2	0,5 5	0,4 1	0,2 9	0,21	0,16	0,14	0,1 2	0,1
CX6//C X7	609	405	30 7	215	154	120	103	87	77

This Table is for 3xBS170 (All Inductances in μH – All Caps in pF)

Depending on your Setup, you only need to place the desired Component-Values to the Right Band-Slots together with the FET you want to use and Activate it in Firmware.

FAQ:

CXo//CX1 ????

X Stands for Band slot (e.G. 1 for K1 -> so this would be then C10//C11)

"//" means: Those 2 are in Parallel. Putting Capacitors in Parallel is a simple Addition of Capacitance

Example:

CXo//CX1 for FDT86256 and 80m is supposed to be 1041pF

So we need to find 2 (available) Capacitor-Values, that will result in a total Capacitance closest to 1041pF as possible.

470pF//560pF would be close = 1030pF

620pF//430pF would be close = 1050pF

68opF//36opF -> BINGO = 104opF

but a lot of other combinations are possible. Just use what you can get or have available and try to get as close as possible.

There might also be cases where you can achieve it with just one Cap. In this case place it to one of the 2 available Cap-Footprints and leave the other one empty.

Remember: (tr)uSDX Filter Capacitors ALWAYS need to be CoG/NPo Types, rated for at least 100V!

Use some online or offline tool, to calculate the amount of

Windings for your Toroids. I like this one:

https://www.dlohst.de/mini-ringkern-rechner.htm#en < https://www.dlohst.de/mini-ringkern-rechner.htm#en>

Depending on Frequency you can use either T₃₇-2 (Red) or T₃₇-6 (Yellow) Toroids.

Happy tuning!

(tr)uSDX < https://dl2man.de/>

FORUM < https://forum.dl2man.de>

uSDX Sandwich < https://dl2man.de/sample-page/>

QCX Mini -> uSDX Mod < https://dl2man.de/qcx-mini-usdx-mod/>

Impressum < https://dlaman.de/imprint/>

© 2022 DL2MAN's HAM Radio Page < https://dl2man.de/> Powered by WordPress < https://wordpress.org/>

To the top ↑