Университет ИТМО

Факультет программной инженерии и компьютерной техники

Индивидуальное домашнее задание №8

по «Математической статистике» Вариант 9

Выполнили:

Студенты группы Р3233

Хасаншин Марат

Шикунов Максим

Номер команд: 9

Санкт-Петербург 2024

Цель работы

Используя метод наименьших квадратов. сгладить предложенную табличную зависимость. Вычислить невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Линеаризовать зависимость.

Исходные данные

t	0.5	1	1.5	2	2.5	3	3.5
Z	4.63	4.17	3.31	2.76	2.44	1.96	1.66

Ход выполнения

1. Сгладим наши измерения при помощи формулы $z = ae^{bt}$ и вычислим невязки с точностью до тысячных

x=t	0.5	1	1.5	2	2.5	3	3.5
y=ln(z)	1.533	1.428	1.197	1.015	0.892	0.673	0.507

Найдем коэффициенты a_0 и a_1 для линейного уравнения $a_{0+}a_1x$ наилучшим образом приближающего y

Для этого вычислим \overline{y} . \overline{x} . \overline{xy} . $\overline{x^2}$ по формулам:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{x}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$a_0 = \frac{\bar{y} \cdot \bar{x}^2 - \bar{x} \cdot \bar{x} \bar{y}}{\bar{x}^2 - \bar{x}^2} \qquad a_1 = \frac{\bar{x} \bar{y} - \bar{y} \cdot \bar{x}}{\bar{x}^2 - \bar{x}^2}$$

$$\bar{y} = 1.035 \qquad \bar{x} = 2 \qquad \overline{xy} = 1.7205 \qquad \overline{x^2} = 5$$

$$a_0 = 1.734$$
 $a_1 = -0.3495$

Найдем a. z и b:

$$a = e^{a_0}$$
 $b = a_1$
 $a = 5.663262$ $b = -0.3495$
 $z = 5.663262 \cdot e^{-0.3495 \cdot t}$

Вычисленные значения:

Разности между табличными и сглаженными значениями сведены в таблицу:

t	0.5	1	1.5	2	2.5	3	3.5
ε	-0.125	0.177	-0.043	-0.055	0.076	-0.025	-0.007

Сумма невязок: 0,058

2. Сгладим наши измерения при помощи формулы $z = \frac{1}{at+b}$ и вычислим невязки с точностью до тысячных

x=t	0.5	1	1.5	2	2.5	3	3.5
$y = \frac{1}{z}$	0.216	0.24	0.302	0.362	0.41	0.51	0.602

Найдем коэффициенты a_0 и a_1 для линейного уравнения a_0+a_1x наилучшим образом приближающего y

Для этого вычислим \overline{y} . \overline{x} . \overline{xy} . $\overline{x^2}$ по формулам:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \qquad \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\bar{y}$$
=0.378 \bar{x} =2
$$\bar{x}\bar{y}$$
=0.884 \bar{x}^2 =5

$$a_0 = \frac{\overline{y} \cdot \overline{x^2} - \overline{x} \cdot \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} = 0.119$$

$$a_1 = \frac{\overline{x}\overline{y} - \overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2} = \frac{1.7205 - 1.035 \cdot 2}{5 - 2 \cdot 2} = 0.129$$

Найдем a.z и b

$$a = a_0 = 0.119$$
 $b = a_1 = 0.129$ $z = \frac{1}{0.119t + 0.129}$

x=t	0.5	1	1.5	2	2.5	3	3.5
y	5,298	4,026	3,246	2,720	2,340	2,054	1,830

3. Сгладим наши измерения при помощи формулы $z = at^b$ и вычислим невязки с точностью до тысячных

x=lnt	-0,693	0	0,405	0,693	0,916	1,099	1,253
$y = \ln z$	1.533	1.428	1.197	1.015	0.892	0.673	0.507

Найдем коэффициенты a_0 и a_1 для линейного уравнения a_0+a_1x наилучшим образом приближающего y

Для этого вычислим \overline{y} . \overline{x} . \overline{xy} . $\overline{x^2}$ по формулам:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \qquad \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\bar{y}$$
=1.035 \bar{x} =0.525 $\bar{x}\bar{y}$ =0.331 \bar{x}^2 =0.677

$$a_0 = \frac{\overline{y} \cdot \overline{x^2} - \overline{x} \cdot \overline{xy}}{\overline{x^2} - \overline{x}^2} = 1.311$$

$$a_1 = \frac{\overline{x}\overline{y} - \overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2} = -0.527$$

Найдем *а. z* и *b*

$$a = e^{1.311} = 3.712$$
 $b = a_1 = -0.527$ $z = 3.712t^{-0.527}$

x=t	0.5	1	1.5	2	2.5	3	3.5
у	5,349	3,712	2,997	2,576	2,290	2,080	1,918

x=t	0.5	1	1.5	2	2.5	3	3.5
разница	-0,719	0,458	0,313	0,184	0,150	-0,120	-0,258

4. Сгладим наши измерения при помощи формулы $z = \frac{t}{at+b}$ и вычислим невязки с точностью до тысячных

$x = \frac{1}{t}$	2	1	0.66667	0.5	0.4	0.33333	0.28571
$y = \frac{1}{z}$	0.216	0.24	0.302	0.362	0.41	0.51	0.602

Найдем коэффициенты a_0 и a_1 для линейного уравнения a_0 + a_1x наилучшим образом приближающего y

Для этого вычислим \overline{y} . \overline{x} . \overline{xy} . $\overline{x^2}$ по формулам:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$-\frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \qquad \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\bar{y}$$
=0.378 \bar{x} =0.741

$$\overline{xy} = 0.223 \quad \overline{x^2} = 0.864$$

$$a_0 = \frac{\overline{y} \cdot \overline{x^2} - \overline{x} \cdot \overline{xy}}{\overline{x^2} - \overline{x}^2} = 0.511$$

$$a_1 = \frac{\overline{xy} - \overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2} = -0.18$$

Найдем a.z и b

$$a = a_0 = 0.511$$
 $b = a_1 = -0.18$ $z = \frac{t}{0.511t - 0.18}$

ν	6.635	3.023	2.558	2.376	2.278	2.218	2.176

x=t	0.5	1	1.5	2	2.5	3	3.5
разница	-2.005	1.147	0.752	0.384	0.162	-0.258	-0.516

Вывод

Сгладили предложенную зависимость данных по функции вида $z=ae^{bt}$.