TD 16 : Intégrale et calcul de primitive

Entrainements

Calculer les primitives des fonctions suivantes en indiquant l'ensemble de validité :

1.
$$x \mapsto \cos(3x)$$

$$2. x \mapsto \cos^3(x)$$

$$2. x \mapsto \cos^{2}(x)$$

3.
$$x \mapsto \cos(x)\sin^4(x)$$

 $\sin(x)$

4.
$$x \mapsto \frac{\sin(x)}{\cos^2(x)}$$

5.
$$x \mapsto \tan(x)$$

$$6. \ x \mapsto \frac{1}{x \ln(x)}$$

$$8. x \mapsto \frac{1}{1}$$

7.
$$x \mapsto \frac{x}{\sqrt{x^2 + 1}}$$

8. $x \mapsto \frac{1}{e^x + 1}$

9.
$$x \mapsto \frac{1}{\sqrt{x-1}}$$

10.
$$x \mapsto \frac{x+1}{x^2+2x-3}$$

11. $x \mapsto \frac{5x-12}{x(x-4)}$

11.
$$x \mapsto \frac{5x - 12}{x(x - 4)}$$

Exercice 2. Calculer les primitives des fonctions suivantes en indiquant l'ensemble de validité :

$$1. \ x \mapsto \frac{1}{x^2 + 3}$$

2.
$$x \mapsto \frac{1}{x^2 + 16}$$

$$3. \ x \mapsto \frac{e^x}{1 + e^{2x}}$$

$$4. \ x \mapsto \frac{\cos(x)}{1 + \sin^2(x)}$$

5.
$$x \mapsto \frac{1}{(1+x)\sqrt{x}}$$

6.
$$x \mapsto \frac{e^x}{\sqrt{4 - e^x}}$$

Exercice 3. Calculer les primitives des fonctions suivantes en indiquant l'ensemble de validité :

1.
$$x \mapsto x^3 \cos(6x)$$

4.
$$x \mapsto x^2 e^{-x}$$

2.
$$x \mapsto x \cos^2(x)$$

5.
$$x \mapsto x^3 e^{-x^2}$$

3.
$$x \mapsto \arctan(x)$$

Exercice 4. Calculer les intégrales suivantes :

1.
$$\int_{2}^{3} \frac{1}{1-x} dx$$

3.
$$\int_0^{\frac{\pi}{2}} \sin(x) \cos(x) dx$$
 5. $\int_1^2 \frac{\ln x}{x} dx$

5.
$$\int_{1}^{2} \frac{\ln x}{x} dx$$

$$2. \int_{2}^{3} \frac{1}{(1-x)^{2}} dx$$

4.
$$\int_0^{\pi} |\cos(x)| dx$$

6.
$$\int_0^1 \frac{x^2}{1+x} dx$$

Exercice 5. Calculer les intégrales suivantes :

$$1. \int_0^\pi x \cos(x) dx$$

3.
$$\int_0^1 x(1-x)^n dx, n \in \mathbb{N}$$

$$2. \int_0^1 xe^{2x} dx$$

4.
$$\int_{1}^{t} x^{n} \ln(x) dx, n \in \mathbb{N}, t > 0$$

Exercice 6. Calculer les intégrales suivantes par changement de variable :

1.
$$\int_0^{\frac{n}{4}} (\tan(x) + \tan^3(x)) dx \quad (u = \tan x)$$

4.
$$\int_0^1 x^2 \sqrt{1+x^3} dx$$

2.
$$\int_{0}^{\pi} \sin^{3}(x) \cos^{2}(x) dx$$
 $(u = \cos x)$

5.
$$\int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

3.
$$\int_0^a \sqrt{1 - \frac{t^2}{a^2}} dt$$
, $a > 0$ $(t = a \sin u)$

6.
$$\int_0^1 \frac{\sqrt{2+x}}{1+x} dx \quad (x=u^2-2)$$

Exercice 7. Calculer les intégrales suivantes :

1.
$$\int_0^1 \frac{2x+1}{x^2+x+1} dx$$

3.
$$\int_0^{\ln 2} \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx$$

2.
$$\int_{2}^{3} \frac{x+3}{x^2-1} dx$$

4.
$$\int_0^1 \frac{x}{(x+1)^2} dx$$

Exercice 8.

1. Montrer que $\forall x \in [-1, 1]$,

$$\frac{x+1}{x^2+4x+5} = \frac{1}{2} \times \frac{2x+4}{x^2+4x+5} - \frac{1}{x^2+4x+5},$$

puis que

$$\frac{1}{x^2 + 4x + 5} = \frac{1}{(x+2)^2 + 1}.$$

En déduire la valeur de $\int_{-1}^{1} \frac{x+1}{x^2+4x+5} dx$

2. Avec la même méthode, calculer $\int_0^2 \frac{2x+1}{2x-x^2-4} dx$

Exercice 9. À l'aide du changement de variable indiqué entre parenthèses, calculer une primitive des fonctions d'une variable réelle suivantes.

1.
$$x \mapsto \frac{x}{1+x^4}$$
 $(u=t^2)$

5.
$$x \mapsto \frac{1}{\cos^4(x)} \quad (u = \tan(t))$$

2.
$$x \mapsto \frac{1}{2 + \sqrt{x}}$$
 $(u = 2 + \sqrt{t})$

6.
$$x \mapsto \frac{\sqrt{\sin(x)}}{\cos(x)}$$
 $(u = \sqrt{\sin(t)})$

3.
$$x \mapsto e^{2x} \sin(e^x)$$
 $(t = e^t)$

7.
$$x \mapsto \frac{1}{e^x + e^{-x}}$$
 $(u = e^t)$

 $4. \ x \mapsto \frac{\sqrt{x}}{1+x} \quad (u = \sqrt{t})$

Exercice 10.

1. Soit f continue sur [a, b]. Montrer que $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$.

2. Application au calcul de $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$

Exercice 11. Calculer $\lim_{n\to+\infty} S_n$ quand:

1.
$$S_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$$

$$4. S_n = \sum_{k=1}^n \frac{k}{n^2} \sin\left(\frac{k\pi}{n}\right)$$

2.
$$S_n = \frac{1}{n^{\frac{3}{2}}} \sum_{k=1}^n \sqrt{k}$$

5.
$$S_n = \left(\frac{(2n)!}{n! \times n^n}\right)^{\frac{1}{n}}$$

3.
$$S_n = \sum_{k=1}^n \frac{k^2}{n^2 \sqrt{n^3 + k^3}}$$

6.
$$S_n = \left(\prod_{k=1}^n (n+k)\right)^{\frac{1}{2n}}$$

Études de fonctions définies par des intégrales

Exercice 12. Soit la fonction f définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = \int_{-\infty}^{2x} e^{-t^2} dt$.

Montrer que f est de classe C^{∞} sur \mathbb{R} , calculer f' et étudier les variations de f.

Exercice 13. Calcular
$$\lim_{x\to 1} \frac{1}{x-1} \int_1^x \frac{t^2}{1+t^2} dt$$
.

Exercice 14. Soit
$$G(x) = \int_{\frac{1}{x}}^{x} \frac{\ln t}{1+t^2} dt$$
.

- 1. Ensemble de définition de G?
- 2. Montrer que G est de classe C^1 sur son ensemble de définition.
- 3. Calculer G'. Conclusion?

Exercice 15. On pose
$$f(t) = te^{-\frac{1}{t}}$$
 si $t \neq 0$ et $f(0) = 0$. Étudier $\lim_{x \to 0^+} \frac{1}{x} \int_0^x f(t) dt$.

Type DS

Exercice 16. Intégrales de Wallis (on ne peut pas trouver d'exercice plus classique que celui-là...)

Soit *n* un entier naturel et $I_n = \int_{1}^{\frac{\pi}{2}} \sin^n(t) dt$.

- 1. (a) Calculer I_0 , I_1 , I_2 .
 - (b) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. Est-elle convergente?
- (a) À l'aide d'une intégration par parties, montrer que

$$\forall n \in \mathbb{N}, \quad (n+2)I_{n+2} = (n+1)I_n.$$

(b) En déduire que, pour $p \in \mathbb{N}^*$, on a

$$I_{2p} = \frac{1 \times 3 \times 5 \times \dots \times (2p-1)}{2 \times 4 \times 6 \times \dots \times (2p)} \times \frac{\pi}{2}$$

$$I_{2p+1} = \frac{2 \times 4 \times 6 \times \dots \times (2p)}{1 \times 3 \times 5 \times \dots \times (2p+1)}.$$

- (c) Calculer nI_nI_{n-1} pour $n \in \mathbb{N}^*$.
- 3. (a) Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{I_n}{I_{n-2}} \le \frac{I_n}{I_{n-1}} \le 1$.
 - (b) Montrer que : $\lim_{n \to +\infty} \frac{I_n}{I_{n-1}} = 1$.

Exercice 17. Soit
$$f(x) = \int_x^{2x} \frac{dt}{\sqrt{t^4 + 1}}$$
.

- 1. Déterminer le domaine de définition de f, et étudier sa parité.
- 2. Montrer que f est dérivable et que $f'(x) = \frac{2}{\sqrt{16x^4 + 1}} \frac{1}{\sqrt{x^4 + 1}}$
- 3. Étudier les variations de f.
- 4. À l'aide d'un encadrement, déterminer la limite de f en $+\infty$.

Exercice 18. On définit pour tout $n \in \mathbb{N}$: $I_n = \int_0^1 x^n \sin(\pi x) dx$.

1. Montrer que pour tout $n \in \mathbb{N}$

$$0 \le I_n \le \frac{1}{n+1}$$

- 2. En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ converge quand n tend vers l'infini et calculer sa limite.
- 3. Calculer I_0 et I_1 .
- 4. Montrer que pour tout $n \in \mathbb{N}$:

$$I_n = \frac{1}{\pi} - \frac{n(n-1)}{\pi^2} I_{n-2}.$$

Exercice 19. Pour tout $n \in \mathbb{N}$, on note $J_n = \int_0^1 x^n e^{-x} dx$.

1. Montrer que pour tout $n \in \mathbb{N}$:

$$0 \le J_n \le \frac{1}{n+1}$$

- 2. En déduire que la suite $(J_n)_{n\in\mathbb{N}}$ converge quand n tend vers l'infini et calculer sa limite.
- 3. Montrer que pour tout $n \in \mathbb{N}$:

$$J_{n+1} = (n+1)J_n - \frac{1}{e}$$

4. En déduire que :

$$\forall n \in \mathbb{N}, \quad 0 \le J_n - \frac{1}{(n+1)e} \le \frac{1}{(n+1)(n+2)}.$$

5. Trouver un équivalent simple de J_n quand n tend vers l'infini.

Exercice 20. On considère la suite d'intégrales $J_n = \int_0^1 \frac{e^{-nx}}{e^x + 1} dx$ avec $n \in \mathbb{N}$.

- 1. Calculer $I = \int_0^1 \frac{e^x}{e^x + 1} dx$. Exprimer J_0 en fonction de I et en déduire la valeur de J_0 .
- 2. Montrer que pour tout $n \in \mathbb{N}^*$:

$$0 \le J_n \le \frac{1 - e^{-n}}{n}$$

- 3. En déduire que la suite $(J_n)_{n\in\mathbb{N}}$ converge quand n tend vers l'infini et calculer sa limite.
- 4. Montrer que la suite $(J_n)_{n\in\mathbb{N}}$ est décroissante. En déduire sans calcul supplémentaire que : $\frac{1}{2}(J_n+J_{n+1})\leq J_n\leq \frac{1}{2}(J_n+J_{n-1})$.
- 5. Calculer la valeur de $J_n + J_{n+1}$ en fonction de n.
- 6. En déduire la limite de la suite $(nJ_n)_{n\in\mathbb{N}}$.