panopto.eu		要退出全屏,	请按	Esc	
------------	--	--------	----	-----	--

Exam: Sensors and Microsystems Electronics, AY 2018-2019

June 11, 2019, Morning

NAME:

Important: Fill out your full name and hand in this sheet together with your preparation.

Driving LEDs using a boost converter

- 2. Discuss: Thermistors
- Problem:

A horizontal tube with a circular cross section and an inner diameter of 10 cm contains a narrow section ('venturi') with an inner diameter of 5 cm. Water of 4 °C is flowing through this tube. The static pressure at a long distance before the venturi is 1.8x10⁵ Pa; at the venturi the pressure has dropped to 1.5x10⁵ Pa.

Calculate the flow rate of the water that flows through the tube. Express the result in liters per

Exam: Sensors and Microsystems Electronics, AY 2021-2022

June 28, 2022, Afternoon

NAME:

Important: Fill out your full name and hand in this sheet together with your preparation.

- · A microsystem consumes:
 - on average 1.3 mA at 1.3 V
 - with periodic energy bursts.

If the device should work for at least 5 days continuously and there is a space restriction, which type of energy supply would you recommend for the device? Please elaborate your answer.

Calculate for the adjacent circuit the relationship between I₀ and I_{ref.} Q₁,
 Q₂ and Q₃ are identical with the same β. How is this circuit called?

Problem:

Consider a typical "NTC" (thermistor with a negative temperature coefficient). The characteristic of such a sensor is given by:

$$R_z = R_0 e^{\frac{B}{T}}$$

With T the absolute temperature in Kelvin.

Linearize the sensor by adding a parallel resistor Rp, chosen in such a way that the inflection

panopto.eu - 要退出全屏, 请按 Esc

re sheets:

BOOST converter for LED driving

BOOST CONVERTED FOR LED UTIVING						
E SW C	Weight					
Schematic	4					
$E < \Sigma V_{DL}$ (e.g. battery powered)	1					
Cases sx=closed and open						
V _L =Ldi _L /dt	1					
$i(t)$ for $t < T_{\infty}$ $i_L = i_L(0) + \frac{E}{L}t$	2					
$\begin{aligned} & i(t) \text{ for } \mathbf{T}_{cm} < t < \mathbf{T} \\ & I_{L} = I_{L}(T_{os}) + \frac{1}{L} \int_{T_{os}}^{t} (E - V_{o} - \sum V_{os}) dt \end{aligned}$	2					
Assume V_{Di} indep. is \rightarrow const. in integral	1					
$i_L = i_L(T_{oo}) + (t - T_{oo})(E - V_D - \sum V_{DI})$	1					
Steady-state condition $i_{L}(T) = i_{L}(0)$	1					
$(V_D + \sum V_{Di} - E)(T - T_{on}) = ET_{on}$	1					
Duty cycle $D=T_{cot}/T$. $\sum V_{Co} = E \frac{1}{1-D} - V_{Co}$	2					
Figure current (t)	1					
Efficiency: losses regulator; sense R; series resistance of L ; series resistance of Mosfet; voltage drop V_D	2					
Typical overall efficiency 80-85%	1					

Discuss: Thermistors

								_										_
E SW C	Weight									Weight								
									Based on semiconductors	1								
			\rightarrow	-	\vdash	+	+	_	Symbol PTC, NTC (non-linear)	2		\perp						
Schematic	4					_		_	Low doping: # charge carriers rises with	1								
$E < \Sigma V_{DL}$ (e.g. battery powered)	1				\perp	\perp		_	High doping: metallic: R rises with T	1	+	+	+	-	_	+	\rightarrow	H
Cases syx=closed and open	1										+	+	+	-	_	+	_	H
V _L =Ldi _L /dt	1								$R_T - R_0 e^{\frac{2(\frac{1}{T} - \frac{1}{L})}{T}} - A e^{\frac{2}{T}}$	2								
i(t) for t <t<sub>∞</t<sub>									Meaning of Ro. A. B	1								
$i_{t} = i_{t}(0) + \frac{E}{I}t$	2								B T-dept. + bad reproducibility	1								
$\begin{split} &i_t - i_t(0) + \frac{E}{L}t \\ &\underline{\dot{s}}(t) \text{ for } T_{os} \leq t \leq T \\ &i_t - i_t(T_{os}) + \frac{1}{L} \int_{T_{os}}^{t} (E - V_o - \sum V_{os}) dt \end{split}$	2								Effective TCR (n/lin) $\alpha = \frac{dR_T/dT}{R_T} = -\frac{B}{T^2}$	1								
Assume V _{Di} indep. is. → const. in integral	1	$\overline{}$	-			$\overline{}$	_	\dashv	PTC: 2 types	1								
$i_{L} = i_{L}(T_{oo}) + (t - T_{on})(E - V_{o} - \sum V_{oi})$	1		-	_	\vdash	+	_	\dashv	Posistors (ceramic)	1								
		\rightarrow	-	_	\vdash	\rightarrow	_	_	Silistors (doped Si)	1								
Steady-state condition $i_{\epsilon}(T) = i_{\epsilon}(0)$	1								Posistors: abrupt; Curie temp.	1								
$(V_D + \sum V_{Oi} - E)(T - T_{on}) = ET_{on}$ Duty cycle $D = T_{on}/T$.	2								Silistors: smooth f^{am} $R_r = R_{2s} \left(\frac{T}{298.15 \text{ K}}\right)^{2s}$	1								
$\sum V_{Oi} = E \frac{1}{1 - D} - V_{O}$	-								Thermistors less stable than RTD; Artificial/accelerated aging.	1								
	1								Sensitive, high resistance values (>> wires)	1	\perp							
Figure current (t) Efficiency: losses regulator; sense R;			_				_	_	Small, cheap	2	-	+			-	+	_	\vdash
series resistance of L; series resistance of Mosfet; voltage drop VD	2								Indirect applications (current, flow,)	3	+	+			+	\forall		
Typical overall efficiency 80-85%	1								Eg. T. 111Y									L
Other relevant info (bonus)	1								Other relevant info (eg. "Thermally									

