Gabarito da AP1 - Fundamentos de Algoritmos para Computação

1. (2.0) Verifique se cada uma das afirmações abaixo é verdadeira. Se for falsa, justifique e faça a devida modificação de modo a torná-la verdadeira. Caso seja verdadeira, justifique.

(a)
$$\{\emptyset\} \subseteq \{\emptyset, 2, -3, 5\}$$

Resposta:

A afirmativa é verdadeira porque \emptyset é o único elemento do conjunto $\{\emptyset\}$ e é um elemento do conjunto $A = \{\emptyset, 2, -3, 5\}$, usamos o símbolo *está contido* (\subseteq) para estudarmos a relação entre conjuntos.

(b)
$$(A \cup B) \cap C = (A \cap B) \cup C$$

Resposta: A afirmativa é falsa, pois por exemplo, se considerarmos os conjuntos $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$ e $C = \{1, 3, 5, 7, 9\}$, temos $A \cup B = \{1, 2, 3, 4, 5, 6\}, (A \cup B) \cap C = \{1, 3, 5\}, A \cap B = \{3, 4\}$ e $(A \cap B) \cup C = \{1, 3, 4, 5, 7, 9\}$, concluímos que $(A \cup B) \cap C \neq (A \cap B) \cup C$.

As afirmações corretas são:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

OU

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

(c) Se
$$n(A \cup B) = 15$$
, $n(A) = 9$, $n(A \cap B) = 2$ então $n(B) = 6$.

Resposta: A afirmação é falsa, pois pelo princípio de inclusão e exclusão, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$, implicando em n(B) = 8, para $n(A \cup B) = 15$, n(A) = 9, $n(A \cap B) = 2$.

Portanto, a afirmação correta é:

Se
$$n(A \cup B) = 15$$
, $n(A) = 9$, $n(A \cap B) = 2$ então $n(B) = 8$.

2. (2.0) Mostre usando Indução Matemática:

$$\sum_{i=1}^{n} \frac{1}{2^{i}} = 1 - \frac{1}{2^{n}}$$
 para todo n inteiro natural.

Prova:

Seja
$$P(n): \sum_{i=1}^{n} \frac{1}{2^i} = 1 - \frac{1}{2^n}$$

Base da indução:

Para n = 1, $\frac{1}{2^1} = \frac{1}{2} = 1 - \frac{1}{2} = 1 - \frac{1}{2^1}$, logo P(1) é verdadeiro.

Hipótese de Indução:

Suponha verdadeiro para n = k, isto é, P(k) é verdadeiro:

$$P(k): \sum_{i=1}^{k} \frac{1}{2^i} = 1 - \frac{1}{2^k}$$

Vamos mostrar que se P(k) é verdadeiro então P(k+1) é verdadeiro, isto é:

Temos que provar que: $P(k+1): \sum_{i=1}^{k+1} \frac{1}{2^i} = 1 - \frac{1}{2^{k+1}}$ é verdadeiro.

Desenvolvendo para n = k + 1 e usando a hipótese de indução, temos que:

Logo, pelo princípio da indução, a igualdade é verdadeira, $\forall n \in \mathbb{N}$.

3. (1.5) Quantos números com cinco algarismos podemos construir com os números ímpares 1, 3, 5, 7, 9, desde que estejam sempre juntos os algarismos 5 e 9?

Resposta: O número de maneiras de ordenar 5 algarismos de modo que 2 números, 5 e 9, fiquem juntas é $2.P_4$, pois para formar um número com 5 algarismos, devemos inicialmente decidir em que ordem se colocarão 5 e 9 (59 ou 95), e, em seguida, formar o número com 4 alagarismos. Portanto a resposta é 2.4! = 2.24 = 48.

4. (1.5) Uma embarcação deve ser tripulada por 8 homens, 2 dos quais só remam do lado direito e 1 apenas do lado esquerdo. De quantos modos podemos formar uma tripulação, se de cada lado devemos ter 4 tripulantes?

Resposta: Como temos que 2 homens só remam do lado direito então faltam 2 lugares para a ocupação dos 4 tripulantes do lado direito, o mesmo ocorre com o lado

2

esquerdo, sendo que faltam 3 tripulantes. Daí, ficam faltando 5 tripulantes, logo para o lado esquerdo devemos escolher 3 tripulantes dos 5 restantes, o que pode ser feito de C_5^3 . Agora, com a escolha desses 3 tripulantes, automaticamente definimos os 2 restantes para o lado direito. Portanto, temos $C_5^3 = 10$.

5. (1.5) Considerando o sistema decimal de numeração, quantos números naturais com 4 algarismos (repetidos ou não) existem?

Resposta: Pelo sistema decimal de numeração podemos usar os números 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, logo o primeiro algarismo pode ser escolhido de 9 modos (o dígito zero não entra, pois não formaria um número de 4 dígitos). Observemos que para os algarismos restantes temos de escolher 3 números ordenados dentre 10, que podem ser repetidos o que corresponde a arranjos com repetição, $AR_{10}^3 = 10^3$. Daí, pelo princípio multiplicativo, temos que a resposta é $9.10^3 = 9000$.

6. (1.5) Quantas são as soluções inteiras, não negativas da inequação $x + y + z \le 10$, tal que y > 1? Justifique.

Resposta: Como y>1, isto é, $y\geq 2$, então temos de encontrar quantas são as soluções inteiras não-negativas da inequação $x+y+z\leq 10$ com a restrição: $y\geq 2$.

Definindo por y'=y-2, e substituindo y por y'+2, a equação $x+y+z \le 10$ resulta equivalentemente a: $x+y'+2+z \le 10$, com $x,y',z \ge 0$, ou seja, $x+y'+z \le 8$, com $x,y',z \ge 0$.

Em cada solução inteira não-negativa de $x+y'+z\leq 8$ defina-se a folga da solução por:

$$f = 8 - (x + y' + z)$$

É claro que existe uma correspondência biunívoca entre as soluções inteiras nãonegativas de $x + y' + z \le 8$ e as soluções inteiras não-negativas de x + y' + z + f = 8.

Logo, o número de soluções inteiras não-negativas da inequação $x+y'+z \le 8$ é igual ao número de soluções inteiras não-negativas de x+y'+z+f=8 que é $CR_4^8=C_{11}^8=165$.