Análise de Circuitos Sequenciais

Modelo geral dos circuitos sequenciais

Um circuito sequencial é constituído por uma componente de memória e por uma componente combinacional:

A componente de memória designa-se por **Unidade de Memória**, e é constituída por um conjunto de *Flip-Flops* (células de memória).

O conjunto das saídas de todas as células de memória constitui o **estado** de um circuito sequencial.

O **número de estados** depende do número de *Flip-Flops* que o circuito contém:

Como cada *Flip-Flop* tem dois estados possíveis (Q=**0** ou Q=**1**), o número total de estados é **2**ⁿ, sendo **n** o número de *Flip-Flops* do circuito.

Designam-se por variáveis de estado, as saídas da Unidade de Memória (uma variável por cada saída de um *Flip-Flop*).

No modelo geral de um circuito sequencial, define-se:

Descodificador de Saída - é o circuito combinacional que gera as saídas externas do circuito sequencial;

Descodificador de Estado Seguinte - é o circuito combinacional que gera as entradas para o bloco Unidade de Memória (estas são tais que, aplicadas aos *Flip-Flops*, resultarão numa combinação de variáveis de estado igual ao estado seguinte pretendido).

Análise/síntese de circuitos sequenciais

Análise de um circuito: é o processo que permite obter uma descrição sobre o funcionamento do circuito, através do exame do seu diagrama lógico.

Síntese de um circuito: é o processo que, a partir da descrição do funcionamento pretendido para o circuito, permite chegar ao diagrama lógico que traduz esse funcionamento.

Neste capítulo abordar-se-á a análise de circuitos sequenciais, sendo o processo de síntese tema do próximo capítulo.

Análise de circuitos sequenciais

O funcionamento de um circuito sequencial pode ser representado por:

- um Diagrama de Estados
- uma Tabela de Transição de estados

O significado de ambas as representações é o mesmo, mas o primeiro é visualmente mais claro.

Com efeito, num processo de análise o Diagrama de Estados é uma das últimas representações que se obtêm, uma vez que explica claramente o funcionamento do circuito.

Diagrama de Estados

O Diagrama de Estados representa de forma clara a sequência de **estados** pelos quais o circuito passa em função das **entradas**, e as **saídas** que vai gerando.

Neste diagrama:

- os estados designam-se por letras (ou códigos binários) dentro de ovais;
- as entradas são apresentadas em etiquetas junto aos arcos que ligam os estados;
- as saídas aparecem ao lado das entradas, separadas destas últimas por uma barra ('/').

Exemplo

Considere-se um circuito sequencial com uma única entrada **E** (para além da entrada de relógio), cujo funcionamento é o seguinte:

- Enquanto E=1, o circuito percorre a sequência de estados A,B,C,D,A,...
- Enquanto E=0, o circuito mantém-se no mesmo estado
- As saídas X e Y, são produzidas de acordo com a tabela seguinte:

Estado	1 ×	Υ
A	0	0
В	0	1
С	1	0
D	1	1

O diagrama de estados correspondente é o seguinte:

- Se a entrada for 1, o circuito passa sempre ao estado seguinte (quando ocorrer a próxima vertente activa do relógio);
- Se a entrada for 0, o circuito permanece no estado actual;
- As saídas dependem apenas do estado presente.

Circuito

Sequencial

Clock ·

Outro exemplo

Considere-se um circuito com dois estados **A** e **B**, uma entrada **E** e uma saída **S**, cujo funcionamento é o seguinte:

- No estado A, a saída é igual à entrada.
 Neste caso é necessário usar duas etiquetas para o mesmo estado: se entrada=0 → saída=0; se entrada=1 → saída=1.
- No estado B, qualquer que seja a entrada, a saída é 1.
- A transição entre os estados não depende da entrada E. (A transição dá-se quando ocorrer a vertente activa do relógio.)

Tabela de Transição

Como foi anteriormente referido, a **Tabela de Transição** é outra das formas de representar o funcionamento de um circuito sequencial.

Esta é composta por 2 grupos de colunas:

Estado Presente e Entradas

		<u> </u>		
Estado presente	Entradas	Estado seguinte	Saí X	das Y
A	B	R	0	0
A ·	1	В	0	0
В	0	В	0	t
В	1	E	ß	1
С	o	С	1	0
С	1	D.	1.	0
0	B	0	1	1
D	t	A	1	1

Estado Seguinte e Saídas

Tabela de Excitação

A **Tabela de Excitação** é outra ferramenta utilizada quer na análise quer na síntese de circuitos sequenciais.

É semelhante à Tabela de Transição mas substitui o Estado Seguinte pelas entradas a aplicar aos *Flip-Flops* para se alcançar esse Estado Seguinte.

A sua obtenção encontra-se ilustrada nos exemplos seguintes.

Exemplos de Análise

Exemplo 1

Considere-se o circuito da figura seguinte:

- Como funciona?
- O que faz ?

1º Passo: Obter as Funções de Excitação dos *Flip-Flops*

Para tal basta ler do diagrama lógico, as funções lógicas que estão aplicadas às entradas dos Flip-Flops.

$$J_A = \overline{Q}_B.S$$
 $K_A = 1$
 $J_B = Q_A.S$ $K_B = 1$

$$J_B = Q_A.S$$

$$K_{\Delta} = 1$$

$$K_B = 1$$

2º Passo: Obter a Tabela de Excitação

Aplicar as funções obtidas acima, para cada combinação de (QA, QB, S), e ver quais são as entradas JA, KA, JB e KB.

3º Passo: Obter a Tabela de Transição

O objectivo da Tabela de Transição é obter o estado que se segue ao estado presente.

Como a Tabela de Excitação dá os estados presentes e as entradas dos *Flip-Flops*, atendendo às tabelas destes últimos, podemos deduzir os estados seguintes.

A Tabela de Transição completa é a seguinte:

•	tado sente				Estado seguinte			
0 _B	Ο _A ^(Π)	S	JB	КВ	JA	Κ _Α	0 _B	1) O _A
0	٥	0	0	1	0	1	0	0
0	0	1	0	1	1	1	0	1
0	1	0	0	1	0	1	0 .	0
٥	1	1	1	ĭ	1	1	1	0
1	C C	0	Q.	1	0	1	. 0	0
1	0	1	0	1	O.	1	0	0
1	1	0	0	1	0	1	0	0
1	1	1	1	1	0	1	o	0

4º Passo: Desenhar o Diagrama de Estados

- Se Estado=00 e S=0, Estado
 Seguinte=00 (mantém-se); se
 S=1, Estado Seguinte=01
- Se Estado=01 e S=0, Estado
 Seguinte=00; se S=1, Estado
 Seguinte=10
- Se Estado=10, qualquer que seja S, Estado Seguinte=00
- Se Estado=11, qualquer que seja S, Estado Seguinte=00

Estado presente								tado uinte
OB (n)	ο _A ^(π)	S	JB	КВ	JA	Κ _A	0 _B	1) O (n+1)
0	٥	0	0	1	D	1	0	0
0	0	1	0	1	1	1	0	1
0	1	0	0	1	0	1	0	0
0	1	1	1	1	1	1	1	0
1	0	0	0	1	0	1	. 0	0
1	0	1	0	1	0	1	0	0
1	1	0	0	1	0	1	0	0
1	1	1 1	1	1	0	1	0	0

5º Passo: Descrição verbal

Considere-se que o circuito parte do estado 00. Quando a entrada S=1, o circuito transita para o estado 01, depois para o 10 e finalmente regressa ao estado 00.

Quando a entrada S=0, o circuito regressa ao estado 00, independentemente de qual for o estado actual.

O estado 11 não faz parte da sequência principal.

A entrada **S** controla o avanço na sequência principal.

Exemplo 2

Considere-se o seguinte circuito:

APAGA é um sinal assíncrono que, quando activado, coloca a saída dos *Flip-Flops* a **0**.

1º Passo: Obter as Funções de Excitação(a partir do diagrama lógico)

$$\mathbf{1}^{\mathsf{C}} = \mathbf{0}^{\mathsf{B}}$$
$$\mathbf{1}^{\mathsf{B}} = \mathbf{0}^{\mathsf{B}}$$
$$\mathbf{1}^{\mathsf{H}} = \underline{\mathbf{0}}^{\mathsf{C}}$$

$$K^{C} = \vec{0}^{B}$$

 $K^{B} = \vec{0}^{U}$

2º Passo: Obter a Tabela de Excitação

(usando as funções de excitação, obter os J e os K)

$$J_{\dot{H}} = \bar{Q}_{\dot{C}}$$
 $K_{\dot{H}} = Q_{\dot{C}}$ $K_{\dot{B}} = \bar{Q}_{\dot{H}}$ $K_{\dot{C}} = \bar{Q}_{\dot{B}}$ $K_{\dot{C}} = \bar{Q}_{\dot{B}}$ Por exemplo:

	Estado presente								
	Q (n)	о _в	OC (n)	JA	KA	JB	Κв	JС	кс
	٥	D	0	1	0	0	1	0	1
•	0	0	1	0	1	0	1	0	1
	à	1	0	1	0	D	1	1	0
	0	1	1	D	1	0	1	1	٥
	1	0	0	1	0	· 1	0	D	1
	1	0	1	0	1	1	0	0	1
	1	1	0	1	0	1	0	1	0
	1	1	1	0	1	1	0	1	0
								•	

3º Passo: Obter a Tabela de Transição

(partindo da tabela anterior e da tabela funcional dos FFs)

4º Passo: Desenhar o Diagrama de Estados

(por leitura da Tabela de Transição)

- O circuito não tem entradas (para além da de relógio)
- Os estados 101 e 010 não fazem parte da sequência principal

5º Passo: Descrição verbal

Pode dizer-se que o circuito funciona como um registo de deslocamento de 3 bits com negação no último: o bit em C "entra" em A no clock seguinte (embora negado) e os restantes "deslocam-se para a direita". Este tipo de funcionamento corresponde aos Twisted-ring Counters ou Contadores de Moebius.