Propagated Signaling: Action Potential 2

Action Potential Currents

Hodgkin-Huxley Measurements & Model Explain APs

- 1) Depolarization event.
- 2) Na⁺ channels open fast $(g_{Na} \mathbf{UP})$.
- 3) Inward Na⁺ current.
- 4) Further depolarization.
- 5) Further Na+ channels open.
- 6) Positive feedback continues...
- 7) $V_m \Rightarrow E_{Na}$.
- 8) Na⁺ channels inactivate (g_{Na} **DOWN**).
- 9) K^+ channels start opening ($g_K UP$).
- 10) Outward current decreases V_m.
- 11) $V_m \Rightarrow E_K$. Hyperpolarizes beyond resting potential (after potential).
- 12) Absolute refractory period (due to Na+inactivation).
- 13) Relative refractory period (due to increased opening of K⁺).

How do APs change the concentration of ions?

lonic species J	Outside (mM)	Inside (mM)	E _j (mV)
Na⁺	145	12	+67
K ⁺	4	155	-98
Ca ⁺⁺	1.5	10-4	+129
CI-	123	4.2	-90

- Membrane C = $1 \mu F/cm^2$
- Charge of e=1.6e-19
 Couloumbs
- Q=CV
- ions/mol= 6.02e23
- Neuron volume = 7,000 μm³
- Neuron surface area = 20,000 μm^2

What about Ca++

Ionic species J	Outside (mM)	Inside (mM)	E _j (mV)
Na ⁺	145	12	+67
K ⁺	4	155	-98
Ca ⁺⁺	1.5	10-4	+129
CI-	123	4.2	-90

- Ca⁺⁺ inside the neuron is 4 orders of magnitude smaller than outside.
- Ca⁺⁺ is important for intracellular signaling

How do neurons regulate intracellular Ca++ concentrations?

Ca++ homeostasis

- When Ca++ enters the cell, microdomains occur near the membrane (important for signaling)
- The Ca++ rapidly binds to proteins (such as calmodulin) or is sequestered by the ER and mitochondria
- For every 100-1000 Ca++ ions entering the cell, on average one ion "remains free"
- Eventually the Ca++ is extruded by Ca++ ATPases (PMCA) or Na+/Ca+ countertransporters

Hodgkin-Huxley Equations

$$i_m = i_C + i_l + i_{Na} + i_K$$

where,

$$i_l = g_l(V_m - E_l)$$

$$i_{Na} = g_{Na}(V_m - E_{Na})$$

$$i_K = g_K(V_m - E_K)$$

$$i_m = C_m \frac{dV_m}{dt} + g_l(V_m - E_l) + g_{Na}(V_m - E_{Na}) + g_K(V_m - E_K)$$

$$g_{Na} = \overline{g}_{Na} m^3 h$$

$$g_K = \overline{g}_K n^4$$

What are gating variables?

Modeling Gating Variables

Modeling Gating Variables

For K currents:

closed
$$\stackrel{\alpha_n}{\underset{\beta_n}{\longrightarrow}}$$
 open (1-n) β_n n

$$\frac{dn}{dt} = \alpha_n (V)(1-n) - \beta_n (V)n$$

$$\tau_n(V)\frac{dn}{dt} = n_\infty(V) - n \qquad \qquad \tau_n = \frac{1}{\alpha_n + \beta_n}$$

$$\tau_n = \frac{1}{\alpha_n + \beta_n}$$

$$n = n_{\infty} - (n_{\infty} - n_0)^{e^{-t/\tau_n}} \qquad n_{\infty} = \frac{\alpha_n}{\alpha + \beta}$$

Voltage Dependence of Gates

Markovian Single Channels

Markovian Single Channels

Modern models

- (Multi-compartment)
- Model reduction
- Integrate and fire (pasted spikes)
- Izhikevitch (dynamical system)

What triggers action potentials and how do they propagate?

Axon Hillock / Initial Segment

 What is the effect on the threshold of an increase in the density of voltage gated Na+ channels?

Axon Hillock / Initial Segment

 Has lower threshold, triggering AP propagation down axon.

How do APs move on axons?

Action Potentials Propagate

Synaptic Currents

Effect of the Dendritic Cable

Neurons are not spherical nor just a single RC Compartment

Modeling Dendrites (Cable Equation)

The Cable Equation

- r_a Axial resistance of unit length cable
- r_m Membrane resistance of unit length cable
- c_m Membrane capacitance of unit length cable

$$R_{a} = \pi a^{2} r_{a}$$

$$R_{m} = 2\pi a r_{m}$$

$$C_{m} = \frac{c_{m}}{2\pi a}$$

Typical values for a neuron $R_a = 100 \ \Omega cm$, $R_m = 10^4 \sim 10^5 \ \Omega cm^2$, $C_m = 10^{-6} \ F/cm^2$

The Cable Equation

Assumptions:

- 1) The electrical components are assumed to be linear and constant throughout the length of the fiber
- 2) The voltage drop due to radial current flow within the axoplasm is negligible.
- 3) The extracellular resistance to current flow is 0

$$\Delta V = -i_{a} r_{a} \Delta x$$

Radial
$$\Delta i_a = -i_m \Delta x$$

$$\Delta V = -i_{a} r_{a} \Delta x \qquad \frac{\partial V}{\partial x} = -i_{a} r_{a}$$

$$\frac{\partial i_{a}}{\partial x} = -i_{m} = -c_{m} \frac{\partial V}{\partial t} - \frac{V_{m}}{r_{m}} \qquad \text{since} \qquad i_{m} = c_{m} \frac{\partial V}{\partial t} + \frac{V_{m}}{r_{m}}$$

$$i_{m} = c_{m} \frac{\partial V}{\partial t} + \frac{V_{m}}{r_{m}}$$

Plugging the axial equation into the radial one yields:

$$\frac{1}{r_a} \frac{\partial^2 V}{\partial x^2} = c_m \frac{\partial V}{\partial t} + \frac{V}{r_m}$$

Rearranging:

$$\frac{r_{m}}{r_{a}}\frac{\partial^{2}V}{\partial x^{2}} - c_{m}r_{m}\frac{\partial V}{\partial t} - V = 0$$

Or:

$$\lambda^2 \frac{\partial^2 V}{\partial x^2} - \tau_m \frac{\partial V}{\partial t} - V = 0$$

Where:

$$\tau_m = r_m c_m = R_m C_m$$

$$\lambda = \sqrt{\frac{r_m}{r_a}} = \sqrt{\frac{R_m a}{2R_a}}$$

Solutions to the Cable Equation: Length Dependence

Steady State for a point current source I₀ applied to X=0 to an Infinite Length Cable

$$\lambda^2 \frac{\partial^2 V}{\partial x^2} - \tau_m \frac{\partial V}{\partial t} - V = 0$$

$$V(T,X) = \frac{\lambda r_{a}I_{o}}{4} \left[\exp(-X)erfc\left(\frac{X}{2\sqrt{T}} - \sqrt{T}\right) - \exp(X)erfc\left(\frac{X}{2\sqrt{T}} + \sqrt{T}\right) \right]$$

at steady state the time derivative is 0

$$V = \frac{r_a I_0 \lambda}{2} e^{-\frac{x}{\lambda}}$$

$$X \equiv \frac{x}{\lambda}; T \equiv \frac{t}{\tau}$$

Thickness Dependence

$$\lambda = \sqrt{\frac{r_m}{r_a}} = \sqrt{\frac{R_m a}{2R_a}}$$

Characteristic length
Where a is the radius of the process, or d/2

Time Dependence

$$V(T,0) = \frac{\lambda r_a I_o}{2} erf(\sqrt{T})$$

at X=0

4.4. Nonisopotential cell (cylinder)

Time and Space

 How will the size of the dendritic process affect speed of conduction?

How do neurons actually compute?

Temporal summation

Spatial summation

Temporal Summation

- Consecutive synaptic potentials are added together in the postsynaptic cell.
- Larger time constant => more likely that two consecutive inputs will summate to cross threshold.
- Time constant depends on density of resting ion channels, their conductance, membrane properties.

Spatial Summation

- Inputs from presynaptic neurons acting at different sites on postsynaptic neuron are added together.
- Larger length constant => signals do not rapidly decay with distance, thus 2 different inputs are more likely to bring postsynaptic neuron to threshold.
- Length constant depends on size of axons and dendrites, resistive properties of cytoplasm, density of resting ion channels, their conductance.

(No) Spatio/Temporal Summation

http://www.nature.com/neuro/journal/v8/n12/full/nn1599.html

Spatio/Temporal Summation

Spatio/Temporal Summation

Spatio/Temporal Summation

What happens at the other end?

Few voltage gated channels

Lots of voltage gated Na⁺ channels

Lots of voltage gated Ca⁺⁺ channels