Analisis y Diseño de Algoritmos

Juan Gutiérrez

November 2, 2022

Algoritmos voraces (Greedy)

Problema Max-Intervalos-Disjuntos. Dada una secuencia de intervalos cerrados en la recta, encontrar un subconjunto de intervalos compatibles dos a dos de tamaño máximo.

Figure 1: Tomada del libro Kleinberg, Algorithm Design

Figure 2: Tomada del libro Kleinberg, Algorithm Design

Figure 3: Tomada del libro Kleinberg, Algorithm Design

Figure 4: Tomada del libro Kleinberg, Algorithm Design

- Elección voraz: debemos demostrar que siempre existe una solución óptima que contiene a la eleccción voraz
- 2. Subestructura óptima: debemos demostrar que la subsolución dejada es óptima para el subproblema dejado por la elección voraz

Problema Max-Intervalos-Disjuntos. Dada una secuencia de intervalos cerrados en la recta, encontrar un subconjunto de intervalos compatibles dos a dos.

Lema 3.1 (Elección voraz). Existe una solución óptima para el problema que contiene el intervalo $[s_1, f_1]$.

Lema 3.2 (Subestructura óptima). Si X es una solución óptima al problema que contiene a $[s_1, f_1]$ entonces $X \setminus \{[s_1, f_1]\}$ es una solución óptima al subproblema dejado por la elección voraz.

Problema Mochila-entera. Dado un conjunto $\{1,2,\ldots,n\}$ de items cada uno con un peso natural w_i , un valor natural v_i y un número natural W, encontrar un subconjunto de items cuya suma de valores es la mayor posible, pero menor o igual a W.

Problema Mochila-fraccionaria. Dado un conjunto $\{1,2,\ldots,n\}$ de items cada uno con un peso natural w_i , un valor natural v_i y un número natural W, encontrar un vector de racionales entre 0 y 1 (x_1,x_2,\ldots,x_n) que maximize $\sum_{i=1}^n x_i v_i$ sobre la restricción $\sum_{i=1}^n x_i w_i \leq W$

Recibe: Una instancia v,w,W del problema Mochila-Fraccionaria Devuelve: Una solución óptima para dicha instancia Mochila-Fraccionaria-Greedy(v,w,W)

```
\begin{array}{ll} \text{1: for } j = n \text{ to } 1 \\ \text{2:} & \text{if } w[j] \leq W \\ \text{3: } & x_j = 1 \\ \text{4: } & W = W - w[j] \\ \text{5: } & \text{else} \\ \text{6: } & x_j = W/w[j] \end{array}
```


Figure 8: Tomada del libro Cormen, Introduction to Algorithms

Lema 4.1 (Elección voraz). Existe una solución óptima (x_1,x_2,\ldots,x_n) al problema tal que $x_n=\min\{1,W/w_n\}$

Lema 4.2 (Subestructura óptima). Si (x_1, x_2, \ldots, x_n) es una solución óptima al problema con $x_n = \min\{1, W/w_i\}$, entonces $(x_1, x_2, \ldots, x_{n-1})$ es una solución óptima al subproblema dejado con $W = W - x_n w_n$.

Gracias