

CAPILLARY PRESSURE

Carlos Torres-Verdín, Ph.D. Professor

Department of Petroleum and Geosystems Engineering

The University of Texas at Austin

Advanced Multi-Well Formation Evaluation

Objectives

- Measure Capillary Pressure
- Convert capillary pressure to height above freewater level
- Convert height to subsurface depths where saturations are known
- Convert capillary pressure to different fluidsaturated systems
- Introduce recently-developed methods for the estimation of saturation-dependant capillary pressure

Advanced Multi-Well Formation Evaluation

Introduction

Advanced Multi-Well Formation Evaluation

Introduction

Estimating Downdip Water Contact

Conversion from Air-Brine to Hydrocarbon-Water System

$$J = P_c [k/\varphi]^{0.5} / (\sigma \cos \theta)$$

$$P_{h-w} = [(\sigma_{h-w} \cos \theta_{h-w}) / (\sigma_{ab} \cos \theta_{ab})] P_{ab}$$

Air-Brine: $\sigma_{ab} = 72 \text{ dynes/cm}$ $\theta_{ab} = 0^{\circ}$

Hydrocarbon-Water: $\sigma_{h-w} = 18 \text{ dynes/cm}$ $\theta_{h-w} = 0^{\circ}$

$$H = (P_c)/(\rho_w - \rho_h)$$

$$\rho_{\rm w} = 1.07 \, {\rm g/cc}$$
 $\rho_{\rm h} = 0.69 \, {\rm g/cc}$

Worthington, P. F., 2002, Application of saturation-height functions in integrated reservoir description, in M. Lovell and N. Parkinson, eds., Geological applications of well logs: AAPG Methods in Exploration No. 13, p. 75–89.

Advanced Multi-Well Formation Evaluation

Capillary Pressure

Subsurface Saturations

Height Above Free Water

Brooks-Corey Formulation

$$P_c = P_c^0 \sqrt{\frac{\phi}{k}} \left(1 - S_N \right)^{e_p}$$

$$S_{N} = \frac{S_{w} - S_{wr}}{1 - S_{wr} - S_{nwr}}$$

Advanced Multi-Well Formation Evaluation

PROPERTIES OF WATER-BEARING SANDS
INVADED WITH OIL-BASE MUD FROM
MULTI-PHYSICS BOREHOLE GEOPHYSICAL
MEASUREMENTS

Zoya Heidari and Carlos Torres-Verdín

The University of Texas at Austin

Motivation

- Why water-saturated zones?
 - Low resistivity
 - Max sensitivity of array-induction resistivity measurements
- Why oil-base mud filtrate?
 - Immiscibility of mud-filtrate and in-situ fluid
 - Negligible effect of salinity
 - Larger separation among array-induction resistivity measurements

Advanced Multi-Well Formation Evaluation

Outline

- Objectives
- Introduction
- Method
- Field applications
- Sensitivity analysis
- Conclusions

Objectives

- Obtain reliable estimates of dynamic petrophysical properties using:
 - Water-saturated and shale zones
 - Well-log numerical simulation
 - Simulation of oil-base mud-filtrate invasion
- Combined inversion:
 - Gamma-ray, PEF, sonic, array-induction resistivity, density and neutron logs

Advanced Multi-Well Formation Evaluation

16

Introduction

- Conventional petrophysical interpretation:
 - Use of Archie's equation in water-saturated sands
- What is the problem?
 - Water saturation of less than 100%
 - OBM
 - Residual hydrocarbon
 - Shaly sands
 - Effect of matrix on nuclear logs

Method

Advanced Multi-Well Formation Evaluation

Method

Method

Advanced Multi-Well Formation Evaluation

Method S_w [fraction] @ t_{inv}=120 hrs **Initial Guess:** X40 X50 X60 Conventional **Petrophysical Analysis** Salinity [kppm] @ tiny=1/00 **Solid composition** Density Well-Log Simulation Resistivity [ohm.m] @ ## X40 1 X50 2 X60 SNUPAR Migration length Fluid Density [g/cm³] tinv=120 hrs X40 15 X50 16 X60 Resistivity Migration Length [cm] @ t_{inv}=120 hrs puter Modeling **G**rປປ 22 20 18 Update the **Layered Model** Radial Distance from Wellbore [ft] **Advanced Multi-Well Formation Evaluation**

Method

Field Applications

• Field Example No. 1: Central North Sea Sandstone (OBM)

• Field Example No. 1: Central North Sea Sandstone (OBM)

Field Applications

• Field Example No. 1: Cross-Validation

• Field Example No. 2: Trinidad Shaly Sand (OBM)

Advanced Multi-Well Formation Evaluation

Field Applications

Field Example No. 2: Trinidad Shaly Sand (OBM)

• Field Example No. 2: Cross-Validation

Advanced Multi-Well Formation Evaluation

Field Applications

• Field Example No. 3: Deep-Water Gulf of Mexico (OBM)

• Field Example No. 3: Deep-Water Gulf of Mexico (OBM)

Field Applications

• Field Example No. 3: Sonic measurements

• Field Example No. 3: Sonic measurements

Advanced Multi-Well Formation Evaluation

Sensitivity Analysis

Assumed synthetic case for sensitivity analysis

- OBM
- Oil formation
- Water-saturated zone
- Clean sand
- S_{w,initial} = 0.80
- $S_{w,irr} = 0.15$
- t_{inv}= 3.0 Days

Sensitivity Analysis

Sensitivity analysis on porosity and permeability

Advanced Multi-Well Formation Evaluation

Sensitivity Analysis

Sensitivity analysis on porosity and permeability

Sensitivity Analysis

Simulation of formation-tester measurements

Advanced Multi-Well Formation Evaluation

Conclusions (1)

- Use water-saturated and shale zones to estimate dynamic petrophysical properties in presence of OBM:
 - Low resistivity Max sensitivity of resistivity measurements
 - Immiscibility of mud-filtrate and in-situ fluid
 - Negligible effect of salinity
 - Higher separation in array-induction resistivity measurements
 - Reduces non-uniqueness of results

Advanced Multi-Well Formation Evaluation

Conclusions (2)

- Use Gamma-Ray, PEF, Sonic, Resistivity and Nuclear logs:
 - Reduces non-uniqueness of results
 - Enables to estimate matrix composition as well as fluid distribution
- Three challenging field examples
 - Wide range of porosity and permeability
 - Cross-validation of estimated capillary pressure curves by comparison to water saturation profile

Advanced Multi-Well Formation Evaluation

Conclusions (3)

 Increasing porosity and permeability decreases the efficiency of the method

Advanced Multi-Well Formation Evaluation

--

• Field Example No. 3: Sonic measurements

