# 1 Martingales

**Definition 1.** Let probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  together with a filtration  $\{\mathcal{F}_t\}_{t \in \mathscr{T}}$ . Then the quadruple  $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in \mathscr{T}}, \mathbb{P})$  is also called a **filtered probability space**.

In this course,  $\mathscr{T}$  will typically be the natural numbers  $\mathbb{N} = \{0, 1, 2, \dots\}$  or  $\mathbb{R}^+ = [0, \infty)$  the non-negative numbers. A martingale is a stochastic process defined with respect to a filtered probability space. Loosely speaking, it represents the total payout of a fair game. That is, the expected value in the future is equal to its current value.

**Definition 2.** Let  $X = \{X_t\}_{t \in \mathcal{T}}$  be a stochastic process satisfies the following two conditions.

- X is adapted to  $\{\mathcal{F}_t\}_{t\in\mathscr{T}}$ , i.e.,  $X_t$  is  $\mathcal{F}_t$  measurable for all  $t\in\mathscr{T}$ .
- $\mathbb{E}[|X_t|] < \infty$  for all  $t \in \mathcal{T}$ .

X is called a martingale (with respect to the filtration  $\{\mathcal{F}_t\}_{t\in\mathscr{T}}\}$ ) if

$$\mathbb{E}\left[X_t|\mathcal{F}_s\right] = X_s \qquad \text{for all } s, t \in \mathscr{T} \text{ with } s \le t. \tag{1}$$

If we say that  $X=\{X_t\}_{t\in\mathscr{T}}$  is a martingale without specifying the filtration, we mean that  $X=\{X_t\}_{t\in\mathscr{T}}$  is a martingale w.r.t. its natural filtration  $\mathcal{F}^X_t=\sigma(X_s|s\in\mathscr{T},\,s\leq t)$ .

**Remark 1.** The condition (1) is equivalent to

$$\mathbb{E}\left[X_t - X_s | \mathcal{F}_s\right] = 0 \qquad \text{for all } s, t \in \mathscr{T} \text{ with } s \le t. \tag{2}$$

If we let  $X_t$  denote the total payouts of a game at time t, then  $X_t - X_s$  represents the gain (or loss) accumulated between times t and s. Condition (2) implies that based on all the information available at time s, the expected value of this gain (or loss) is zero. In this sense, a martingale can be understood the mathematical formalization of a fair game.

**Remark 2.** In discrete time,  $\mathcal{T} = \{0, 1, \dots\}$ , the condition (1) is equivalent to

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = X_n \qquad \text{for all } n \ge 0. \tag{3}$$

The proof is a direct application of the tower property.

**Example 1** (Simple Random Walk). Let  $Y_1, Y_2, ...$  be i.i.d. Rademacher random variables, i.e.  $\mathbb{P}(Y = \pm 1) = \frac{1}{2}$ . Then  $\{X_n\}_{n=0,1,2,...}$  defined through

$$X_0 = 0 \qquad \text{and} \qquad X_n = \sum_{k=1}^n Y_k \tag{4}$$

is a martingale in discrete time with respect to the natural filtration  $\mathcal{F}_n^X$ . Indeed, since  $Y_{n+1}$  is independent of  $\mathcal{F}_n^X$ ,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + Y_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n|\mathcal{F}_n] + \mathbb{E}[Y_{n+1}|\mathcal{F}_n] = X_n + \mathbb{E}[Y_{n+1}] = X_n$$

which satisfies condition (3).

### 1.1 Properties

Naturally, the expected value of the earnings of a fair game is equal to zero.

### Proposition 1

If  $\{X_t\}_{t\in\mathscr{T}}$  is a martingale, then

$$\mathbb{E}[X_t] = \mathbb{E}[X_0] \quad \text{for all } t \in \mathscr{T}.$$

We have the following formula for the second moment of the earnings between time s and t.

### Proposition 2

Let  $\{X_t\}_{t\in\mathscr{T}}$  be a martingale with  $\mathbb{E}[(X_t)^2]<\infty$  for all  $t\in\mathscr{T}$ . Then, for  $s,t\in\mathscr{T}$  with  $s\leq t$ ,

$$\mathbb{E}[(X_t - X_s)^2 | \mathcal{F}_s] = \mathbb{E}[X_t^2 | \mathcal{F}_s] - X_s^2.$$

In particular,

$$\mathbb{E}[(X_t - X_s)^2] = \mathbb{E}[X_t^2] - \mathbb{E}[X_s^2].$$

**Example 2.** (The martingale betting strategy) Let  $X_t$  be a simple random walk. We now take an *adapted* stochastic process  $\{\xi_n\}_{n=0,1,...}$  where  $\xi_0 = 1$  and, for  $n \ge 1$ ,

$$\xi_n = \begin{cases} 2^n, & \text{if } Y_1 = \dots = Y_n = -1, \\ 0, & \text{otherwise.} \end{cases}$$

This represents a betting strategy where we double our bet until we win. Then the gambler's total return at time n is

$$V_n = \sum_{k=1}^n \xi_{k-1} (X_k - X_{k-1})$$

$$= \xi_0 Y_1 + \dots + \xi_{n-1} Y_n$$

$$= \begin{cases} -1 - 2 - \dots - 2^{n-1} = -(2^n - 1), & \text{if } Y_1 = \dots = Y_n = -1 \\ +1, & \text{otherwise.} \end{cases}$$

One can show that with probability one there will eventually be some (random) integer n such that  $Y_n = 1$ , in which case the gambler will have won \$1.

**Example 3** (General Betting Strategies). In general, let  $\{X_n\}_{n\geq 0}$  be a martingale denoting the outcomes of a fair game. We let the process  $\{\xi_n\}_{n\geq 0}$  be an adapted process denoting a betting strategy. This means that the  $\xi_n$  bet is a function of the information up to the nth game.

Suppose we are at game k, if we bet  $\xi_k$  on the kth game, then we earn  $\xi_k(X_{k+1} - X_k)$  on the kth game. Our earnings associated with this betting strategy is therefore

$$V_0 = 0, V_n = \sum_{k=0}^{n-1} \xi_k (X_{k+1} - X_k).$$
 (5)

The question is if one can come up with a smart betting strategy such that  $\mathbb{E}[V_n] > 0 = \mathbb{E}[V_0]$  for some n?

The answer to that question is no, and it is demonstrated in the following theorem. That is, no betting strategy that can turn a martingale into a favorable game.

### Theorem 1

Suppose  $\{\xi_n\}_{n=0,1,...}$  is an adapted process such that for every n there exists a constant  $C_n$  such that  $|\xi_n(\omega)| \leq C_n$  for all  $\omega \in \Omega$ . If  $\{X_n\}_{n=0,1,...}$  is a martingale, then  $\{V_n\}_{n=0,1,...}$  defined in (5) is again a martingale. In particular, we have  $\mathbb{E}[V_n] = 0$  for all n.

## 1.2 Example Problems

## 1.2.1 Proofs of Results

**Problem 1.1.** Prove Proposition 1.

Solution 1.1. It follows from (2) that

$$\mathbb{E}[X_t] = \mathbb{E}\big[\mathbb{E}[X_t|\mathcal{F}_0]\big] = \mathbb{E}[X_0].$$

**Problem 1.2.** Prove Proposition 2.

Solution 1.2. We have

$$\mathbb{E}[(X_t - X_s)^2 | \mathcal{F}_s] = \mathbb{E}[X_t^2 - 2X_t X_s + X_s^2 | \mathcal{F}_s]$$

$$= \mathbb{E}[X_t^2 | \mathcal{F}_s] - 2\mathbb{E}[X_t X_s | \mathcal{F}_s] + \mathbb{E}[X_s^2 | \mathcal{F}_s]$$

$$= \mathbb{E}[X_t^2 | \mathcal{F}_s] - 2X_s \mathbb{E}[X_t | \mathcal{F}_s] + X_s^2$$

$$= \mathbb{E}[X_t^2 | \mathcal{F}_s] - 2X_s X_s + X_s^2$$

$$= \mathbb{E}[X_t^2 | \mathcal{F}_s] - X_s^2.$$

The second identity follows from the first by taking expectations.

**Problem 1.3.** Prove Theorem 1.

**Solution 1.3.** We check the properties of a martingale.

- (i) Clearly,  $\{V_n\}_{n=0,1,...}$  is adapted.
- (ii) The fact that  $|\xi_k| \leq C_k$  and letting  $C := \max\{C_1, \ldots, C_{n-1}\}$  gives that

$$\mathbb{E}[|V_n|] = \mathbb{E}\left[\left|\sum_{k=1}^n \xi_{k-1}(X_k - X_{k-1})\right|\right] \le \sum_{k=1}^n \mathbb{E}[|\xi_{k-1}(X_k - X_{k-1})|]$$

$$\le \sum_{k=1}^n C_{k-1}\mathbb{E}[|X_k - X_{k-1}|] \le C\sum_{k=1}^n \left(\mathbb{E}[|X_k|] + \mathbb{E}[|X_{k-1}|]\right) < \infty.$$

(iii) Next, we have

$$\mathbb{E}[V_{n+1} - V_n | \mathcal{F}_n] = \mathbb{E}[\xi_n(X_{n+1} - X_n) | \mathcal{F}_n]$$
$$= \xi_n \mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n] = 0$$

Therefore  $\{V_n\}_{n=0,1,...}$  is indeed a martingale. Finally, the martingale property of  $\xi \bullet X$  implies that

$$\mathbb{E}[V_n] = \mathbb{E}[V_0] = 0,$$
 for all  $n$ .

#### 1.2.2 Definitions and Properties of Martingales

**Problem 1.4.** Let  $Y_1, Y_2, ...$  be independent (though not necessarily identically distributed) random variables with common expectation  $\mathbb{E}[Y_k] = 0$  for all k. Show that  $\{X_n\}_{n=0,1,2,...}$  defined by

$$X_0 = 0 \qquad \text{and} \qquad X_n = \sum_{k=1}^n Y_k$$

is a martingale in discrete time with respect to its natural filtration  $\mathcal{F}_n^X$ .

**Solution 1.4.** Since  $Y_{n+1}$  is independent of  $\mathcal{F}_n^X$ ,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + Y_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n|\mathcal{F}_n] + \mathbb{E}[Y_{n+1}|\mathcal{F}_n] = X_n + \mathbb{E}[Y_{n+1}] = X_n.$$

**Problem 1.5.** Let  $Y_1, Y_2,...$  be independent and nonnegative (though not necessarily identically distributed) random variables with common expectation  $\mathbb{E}[Y_k] = 1$  for all k.

1. Show that  $\{X_n\}_{n>0}$  defined through

$$X_0 = 1 \qquad \text{and} \qquad X_n = \prod_{k=1}^n Y_k$$

is a martingale.

2. Let  $Y_k$  be of the form  $Y_k = e^{Z_k - c_k}$  for independent random variables  $Z_k$  with distribution  $N(0, \sigma_k^2)$  and certain constants  $c_k$ . That is, determine  $c_k$  such that  $\{X_n\}_{n \geq 0}$  is a martingale.

**Problem 1.6.** Let X be a random variable such that  $\mathbb{E}[|X|] < \infty$  and  $\mathscr{T}$  either  $\{0, 1, 2, ...\}$  or  $[0, \infty)$ . Show that

$$X_t := \mathbb{E}[X|\mathcal{F}_t], \qquad t \in \mathscr{T},$$

is a martingale.

**Problem 1.7.** Consider an urn with balls of two colors, red and green. Assume that initially there is on ball of each color in the urn. At each time step, a ball is chosen at random from the urn. If a red ball is chosen, it is returned and in addition another red ball is added to the urn. Similarly, if a green ball is chosen, it is returned together with another green balls. Let  $X_n$  denote the number of red balls in the urn after n draws. Then  $X_0 = 1$  and  $X_n$  is a time-inhomogeneous Markov Chain. Let  $M_n = X_n/(n+2)$  be the fraction of red balls after n draws. Then  $M_n$  is a martingale with respect to the natural filtration  $\mathcal{F}_t^X = \sigma(X_s|s \in \mathcal{F}, s \leq t)$ .