

GT IQ

Ecole « Approches Quantiques pour une nouvelle Recherche Opérationnelle »

Responsable du GT Quantique :

Simon Perdrix (simon.perdrix@loria.fr)

Responsables du GT2L:

Caroline Prodhon (caroline.prodhon@utt.fr)
Philippe Lacomme (placomme@isima.fr)
Responsable de EUME:

Marc Sevaux (marc.sevaux@univ-ubs.fr)

Ecole conjointe GT IQ / GT2L sur le quantique Montpellier 2-5 novembre 2021

GT2L

GT IQ

EUME

LIRMM IBM

Caroline Prodhon
Philippe Lacomme

Simon Perdrix

Marc Sevaux

J.M Torres

Eric Bourreau

Organisation locale

Positionnement:

Découvrir la programmation quantique

Cible: chercheurs en RO

Rappeler les fondamentaux scientifiques

Sensibiliser la communauté

Originalité :

Ecole théorique et pratique Nombreux TPs d'initiation

Dr. Simon Perdix Introduction Générale à l'Informatique Quantique

Dr Simon Martiel

ATOS

Backtracking Quantique

Emmanuel Jeandel **Principes des algorithmes de type GROVER**

Jean-Michel Torres
IBM
TP Qiskit

Pr. Benoit Valiron **Présentation de QAOA et VQE**

Eric Bourreau LIRMM
TP sur Grover

Dr. Stéphane Louise **CEA Paris**

Dr Philipe Lacomme
LIMOS
TP pour le TSP avec QAOA

- Concepts théoriques -

Introduction Générale à l'Informatique Quantique par Simon Perdrix du CNRS			
	Postulats Mécanique Quantique		
	Notations		
	Portes Quantiques		
	Circuits Quantiques		
	Résultat théoriques (universalité, équivalence classique-quantique)		
	Algorithme Bernstein Vazirani		
	Algorithme de Deutsch-Josza		

Principes des algorithmes de type GROVER par Emmanuel Jeandel Algorithme de Grover (1 solution) Interprétation géométrique de l'opérateur de Grover Algorithme de Grover (m solutions) Q-Search (m inconnu) Algorithme de Simon

- Concepts théoriques -

Présentation de QAOA et VQE par Benoît Valiron	
Introduction aux méthodes variationnelles	
Matrices Hermitiennes, Valeurs/Vecteurs Propres	
Variational Quantum EigenSolver (VQE)	
Quantum Approximate Optimisation Algorithm (QAOA)	
Application : Max-Cut, TSP	

Backtracking Quantique par Simon Martiel		
Quantum Walk		
Recherche d'un élément		
Quantum Backtraking		
Estimation de taille d'arbre de backtraking		

Retour d'expérience par Stéphane Louise		
	Calcul Adiabatique	
	Machine DWave	
	Problèmes de Cardinalité Maximale	

https://perso.isima.fr/~lacomme/GT2L/accueil_quantique.php

Christian Artigues Directeur de recherche CNRS Responsable du GDR RO

Hubert Lacaze Directeur Technique IBM

Christian Artigues
Directeur de recherche CNRS

Hubert Lacaze Directeur Technique IBM

Les repas du midi

Soirée festive du mardi soir

Soirée festive du jeudi soir

Les repas du midi

Afterwork du mardi soir

Soirée festive du jeudi soir

Les repas du midi

Soirée festive du mardi soir

Soirée festive du jeudi soir

Ecole pour une Recherche Opérationnelle Quantique Montpellier 2-5 novembre 2021

https://www.facebook.com/profile.php?id=100026199064432

• Session "Algorithmes quantiques pour l'optimisation" du GT GT2L - <u>Gérard Fleury</u>, <u>Eric</u> <u>Bourreau</u> & <u>Philippe Lacomme</u>

L'arrivée de machines quantiques performantes a relancé l'intérêt porté à l'informatique quantique qui permet de redéfinir certains concepts comme celui de la recherche d'un optimum global. L'objectif de cette session est de regrouper des contributions autour de l'informatique quantique appliquée à la recherche opérationnelle.