微分積分学・同演習 A

演習問題 12

1. (1) 収束する(2) 収束する(3) 収束する

(考え方) (1) $(x^2+1)^5 \approx x^{5/2}$ より収束と当たりをつけ,上から抑える関数を探す.この場合は $\frac{1}{x^{5/2}}$ で十分.(2) $\frac{e^x}{\cosh(2x)} \approx 2e^{-x}$ より収束と当たりをつけ,上から抑える関数を探す.この場合は $2e^{-x}$ で十分.(3) 原始関数が計算できるので直接 $(x=\sin\theta$ と変数変換).

 2^{\dagger} (1) $\alpha>\frac{1}{2}$ (2) $\alpha<\beta$ (3) $\alpha-1$ かつ $\beta>0$ (考え方) (1) 問題が生じるのは $x\to+\infty$ のとき . $(x^2+1)^{\alpha}\approx x^{2\alpha}$ より $2\alpha>1$ な

(考え方)(1) 問題が生しるのは $x o +\infty$ のとき . $(x^2+1)^lpha pprox x^{2lpha}$ より 2lpha>1 ならばよいと当たりをつけられる.実際,x が十分大きいとき $0< x^{2lpha}< (x^2+1)^lpha< (x+1)^{2lpha}$ より

$$\frac{1}{(x+1)^{2\alpha}} < \frac{1}{(x^2+1)^{\alpha}} < \frac{1}{x^{2\alpha}}$$

なので $2\alpha>1$ ならば収束し , $2\alpha\leq 1$ ならば発散する.(2) 問題が生じるのは $x\to +\infty$ のとき. $\frac{e^{\alpha x}}{(\cosh x)^{\beta}}\approx e^{(\alpha-\beta)x}$ より $\alpha-\beta<0$ ならばよいと当たりをつけられる.実際 , x が十分大きいとき , $0< e^{(\alpha-\beta)x}<\frac{e^{\alpha x}}{(\cosh x)^{\beta}}<2^{\beta}e^{(\alpha-\beta)x}$ なので $\alpha<\beta$ ならば収束し , $\alpha\geq\beta$ ならば発散する.(3) 教科書の問題 5.98 を参照.

- 3^{\dagger} (1) 発散する.積分区間に不連続点 x=1 があり,それが原因.(出題ミス.本来は積分の下端が 1 であった.この場合は $\frac{\pi}{2}$ となる.) (2) π (3) $\frac{\pi}{2}$ (考え方) (1) (下端を 1 としたとき) $s=\sqrt{x^2-1}+x$ と変数変換.他にも $t=\sqrt{x^2-1}$ や u=1/x などでも計算できる.(2) $x(1-x)=(\frac{1}{2})^2-(x-\frac{1}{2})^2$ より,原始関数はArcsin で書ける.(3) $t=e^x$ と変数変換.
- 4. (1) ab>0 のとき収束し, $\frac{\pi}{2\sqrt{ab}}$,ab<0 のときは発散する.(2) $\frac{\pi}{\sqrt{2}}$ (3) ab>0 のとき収束し, $\frac{\pi}{4\sqrt{ab}}\left(\frac{1}{a}+\frac{1}{b}\right)$,ab<0 のときは発散する. (考え方)(1),(3) $t=\tan x$ と変数変換.(2)は $\cos^4 x+\sin^4 x=1-2\sin^2 x\cos^2 x=1-\frac{1}{2}\sin^2 2x$ と変形して $t=\tan 2x$ とする.積分区間に注意.
- 5. (1) 正しい .(2) 誤り . 積分区間に不連続点 x=1 があり , 定義に従って計算すると発散する .(3) 正しい .

(考え方) (1) は定義どおり (2) 積分区間内に不連続点がある (3) $x \to +0$ および $x \to +\infty$ の 2 箇所に広義積分があるが,これらはいずれも収束する.変数変換

x=1/t をすれば I=-I となるので , I=0 となる .

- 6^{\dagger} (1),(2),(3) いずれも n が偶数のとき $\frac{(n-1)!!}{n!!}\cdot\frac{\pi}{2}$, n が奇数のとき $\frac{(n-1)!!}{n!!}$. ただし , k!! は一つおき階乗 (教科書 p.60 参照) . (4) $\frac{(2n-3)!!}{(2n-2)!!}\cdot\frac{\pi}{2}$ (考え方) (1) と (2) が等しいことは変数変換 $y=\frac{\pi}{2}-x$ により分かる . また (1) と (3) が等しいことは , (3) において $x=\sin\theta$ と変数変換することにより分かる . さらに , (4) において $x=\cos\theta$ と変数変換すれば (2) において $n\to 2n-2$ としたものと一致することが分かる . よって , この問題は本質的には (1) を求めればすべて求まる . I_n とおく . $(\sin x)^n=-(\cos x)'(\sin x)^{n-1}$ とみて部分積分することにより $I_n=\frac{n-1}{n}I_{n-2}$ という漸化式を得る . ここで明らかに $I_0=\frac{pi}{2}$, $I_1=1$ であるので解答を得る .
- 7. (1) 問題となるのは $x\to +0$ のときと $x\to +\infty$ のとき. $x\to +0$ のときは大体 $\log x$ なので問題がなく, $x\to +\infty$ のときは $\frac{\log x}{(1+x)^2}=\frac{1}{(x+1)^{3/2}}\cdot\frac{\log x}{\sqrt{x+1}}$ で後者は 0 に収束し,前者の広義積分は収束する.よって,問題の広義積分も収束する.(2) $|\sin x|\le 1$ であり, $\left|\frac{\sin x}{x^2}\right|\le \frac{1}{x^2}$ であるので,問題の広義積分も収束する.(3) 問題となるのは $x\to +0$ のときと $x\to +\infty$ のときであるが,後者の場合は(2)と同様の理由で収束する.また $x\to +0$ のときは $\frac{\sin x}{x^{3/2}}=\frac{1}{\sqrt{x}}\cdot\frac{\sin x}{x}$ であり前者の広義積分は収束し後者は 1 に収束するので,問題の広義積分も収束する.
- 8.* 演習問題 11 の大問 5 より $\int e^{-x} \sin x \, dx = \frac{\cos x \sin x}{2} e^{-x}$ であることを用いる.三角関数 $\sin x$ の周期は 2π なので,積分区間 $[2k\pi, (2k+2)\pi]$ で計算したあと, $k=0,1,2,3,\ldots$ として足し合わせる.k 番目の区間での積分の結果は $\frac{e^{\pi}+2+e^{-\pi}}{2}e^{-(2k+1)\pi}$ である.