

Data science applied to SpaceX launches

Applied Data Science Capstone

10th Courses IBM Data Science Professional Certificate and Applied Data Science Specialization

Name: Angelo Villegas

Outline

- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Introduction

Project background and context

- Space Exploration Technologies Corp doing business as SpaceX, is an American spacecraft manufacturer, launch service provider and satellite communications company.
- SpaceX advertises Falcon 9 rocket launches on its website at a cost of \$62 million; other suppliers cost more than \$165 million each, much of the savings is due to SpaceX being able to reuse the first stage.
- Problems you want to find answers
 - Using the data we can collect on SpaceX launches, we want to predict whether the Falcon 9 first stage will land successfully.
 - Therefore, if we can determine this, we will know the cost of a launch. And thus use this information for our company and bid against SpaceX for the launch of a rocket.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Some HTML tables to Wikipedia
- The data obtained were managed and analyzed by means of
 - Data analysis (EDA) using visualization and SQL
 - Interactive visual analytics using Folium and Plotly Dash
 - Predictive analysis using classification models
 - Building, tune, evaluate classification models using *confusion matrix* and examinate de accuracy using *score function*.

Data Collection

- Data collection with an API:
 - SpaceX REST API. We use a URL to direct us to a specific point of the API, we obtain this result through the *.json() method*, and then we visualize it in a dataframe.
- With the help of the BeautifulSoup library we extract Falcon 9 launch data from Wikipedia.

Data Collection – SpaceX API

- API SpaceX Data of Falcon 1 y Falcon 9
- Filtering only Falcon 9 's data
 - With Pandas's functions and
 - Another helpers functions

GitHub Link of <u>Lab Collecting Data to SpaceX API</u>

Data Collection - Scraping

 Web scraping to collect Falcon 9 historical launch records from a Wikipedia. <u>Link</u>

- Filtering only Falcon 9 's data
 - With Pandas's functions and
 - Another helpers functions

GitHub Link of <u>Web Scraping from Wikipedia Lab</u>

Data Wrangling

- Exploratory Data Analysis (EDA) to find some patterns in the data and determine what would be the label for *training* supervised models.
- Using the SpaceX dataset
 - We examine the Orbit column
 - Geosynchronous orbit (GTO), was the most crowded at the launches
 - We examined the **Outcome** column, representing each release with a ratings variable:
 - O: not land successufully
 - 1: landed successfully.
- GitHub Link of <u>Data Wrangling's Lab</u>

EDA with Data Visualization

- The visualization of the data was done by observing how the different variables behaved with respect to whether the first stage had a successful landing or not.
- We perform scatter charting to see the relationship between two variables, and decipher if there is any relevant behavior in the case.
- We also visualize a bar chart to see how the target orbit of the launch influences its success.
- We then visualize at the trend in line graphs of the launches over the last few years.

GitHub Link of <u>Data Visualization Lab</u>

EDA with SQL

- Summarize the SQL queries performed:
 - 1. SELECT Launch_site, COUNT(Launch_site) AS COUNT FROM SPACEXTABLE GROUP BY Launch_site
 - 2. SELECT * FROM SPACEXTABLE WHERE Launch site LIKE 'CCA%' LIMIT 5
 - 3. SELECT SUM(PAYLOAD MASS KG) AS 'Total Pay Mass by NASA' FROM SPACEXTABLE WHERE Customer LIKE '%(CRS)'
 - 4. SELECT AVG(PAYLOAD_MASS__KG_) AS 'AVG Pay Mass in KG' FROM SPACEXTABLE WHERE Booster_Version LIKE 'F9 v1.1%'
 - 5. SELECT * FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)' ORDER BY Date LIMIT 1
 - 6. SELECT * FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (drone ship)' AND PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000
 - 7. SELECT Mission_Outcome, COUNT(Mission_Outcome) AS COUNT FROM SPACEXTABLE GROUP BY Mission_Outcome
 - 8. SELECT Booster_Version, PAYLOAD_MASS__KG_ FROM SPACEXTABLE WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD MASS KG) FROM SPACEXTABLE)
 - 9. SELECT substr(Date, 6, 2) AS Months, Landing_Outcome, Booster_Version, Launch_Site FROM SPACEXTABLE WHERE Date LIKE '2015%' AND Landing_Outcome LIKE '%(drone ship)'
 - 10. SELECT Date, Landing_Outcome FROM SPACEXTABLE WHERE Landing_Outcome IN ('Failure (drone ship)','Success (ground pad)') AND Date BETWEEN '2010-06-04' AND '2017-03-20'ORDER BY Date DESC
- GitHub Link of EDA with SQL Lab

Build an Interactive Map with Folium

Folium library to visualize launch site locations on a map.

• Map objects:

GitHub Link of <u>Lunch Sites Analysis with Folium Lab</u>

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

 4 modelos de ML para predecir el exito o el fracaso del primer aterrizaje dados los datos de los laboratorios precedentes.

- Logistic Regression
- SVM
- Classification Trees
- KNN

GitHub Link of <u>Machine Learning Prediction Lab</u>

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- We see that as the number of flights increases, it is more likely that the first stage will land successfully for all 3 launch sites.
- In addition, the largest number of launches were made in CCAFC SLC 40.

Payload vs. Launch Site

- No heavy payload rockets (greater than 10,000) are launched at the VAFB-SLC launch site. This
 results in a higher number of successful launches compared to unsuccessful launches at that
 site.
- We also note that the higher the payload, the more failed launches are almost nil.

Success Rate vs. Orbit Type

 The most successful launches are those to the ES-L1, GEO, HEO and SSO orbits.

Flight Number vs. Orbit Type

- For LEO orbit, the success of the launches seems to be related to the number of flights.
- The 100% efficiency of the launch to GEO orbit is given that there is only one launch to that orbit.
- Therefore, there seems to be no relation between the success of the launch and the number of flights to the ISS and GTO orbits.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However for GTO we cannot distinguish this well as both positive landing rate and negative landing(unsuccessful mission) are both there here.

Launch Success Yearly Trend

 We can observe that the sucess rate since 2013 kept increasing till 2020

All Launch Site Names

Launch_Site	COUNT
CCAFS LC-40	26
CCAFS SLC-40	34
KSC LC-39A	25
VAFB SLC-4E	16

- The table shows the name of each launch site with the number of launches made at each site.
- We see that the highest number of launches was in CCAFS SLC-40.

Launch Site Names Begin with 'CCA'

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG	i_ Orbi	t Customer	Mission_Outcome	Landing_Outcome
2010- 04-06	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit		0 LEG) SpaceX	Success	Failure (parachute)
2010- 08-12	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		o LEG		Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	52	.5 LEG		Success	No attempt
2012- 08-10	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	50	o LEG	NASA (CRS)	Success	No attempt
2013- 01-03	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	67	7 LEG	NASA (CRS)	Success	No attempt

- The table shows 5 records where the launch site begins with 'CCA'.
- We can observe that all of them have had successful mission results, but with failed landings in 2 of them.
- In addition, all launches were directed to LEO orbit.

Total Payload Mass

TOTAL PAY MASS BY NASA: 45569 Kg

Average Payload Mass by F9 v1.1

Average Payload Mass: 2534.66 Kg

First Successful Ground Landing Date

- *Date*: 2015/12/22
- *Time*: 1:29:00
- Booster Version: F9 FT B1019
- Launch Site: CCAFS LC-40
- Payload: OG2 Mission 2 11 Orbcomm-OG2 satellites
- Payload mass: 2034 kg
- Orbit: Low Earth Orbit (LEO)
- Customer: Orbcomm

Successful Drone Ship Landing with Payload between 4000 and 6000

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2016-06- 05	05:21:00	F9 FT B1022	CCAFS LC-40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016-08- 14	05:26:00	F9 FT B1026	CCAFS LC-40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2017-03- 30	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
2017-11- 10	22:53:00	F9 FT B1031.2	KSC LC-39A	SES-11 / EchoStar 105	5200	GTO	SES EchoStar	Success	Success (drone ship)

 All launches were made into GTO orbit from the CCAFS LC-40 and KSC LC-39A sites.

Total Number of Successful and Failure Mission Outcomes

- Failure in flight: 1
- *Success* : 100

Boosters Carried Maximum Payload

- F9 B5 B1048.4
- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

Maximum Payload Mass: 15600 Kg

2015 Launch Records

- Failure (drone ship): F9 v1.1 B1012 and F9 v1.1 B1015
- Precluded (drone ship): F9 v1.1 B1018

Launch Site
CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Date	Landing_Outcome
2017-03-06	Success (ground pad)
2017-02-19	Success (ground pad)
2017-01-05	Success (ground pad)
2016-07-18	Success (ground pad)
2016-06-15	Failure (drone ship)
2016-04-03	Failure (drone ship)
2016-01-17	Failure (drone ship)
2015-12-22	Success (ground pad)
2015-10-01	Failure (drone ship)
2015-04-14	Failure (drone ship)

• The table shows successful landings for ground platforms and unsuccessful landings for drone ship.

Lunch Sites visualization map

We note two important points:

- Launch sites are close to the planet's equator.
- All of them are near the coast of an ocean.

Success/failed lunches visualization map

Cluster with original Zoom of the number of launches for the West Coast and East Coast of the country.

Success/failed lunches visualization map

Success/failed lunches visualization map

Some line traces for the calculation of distances to the costline and highway vicinity for the CCAFS LC-40 launch site.

Distances for each launch site

	Lunch_Site	Coastline [km]	Highways[km]	Rilways[km]	Nearest_City[km]
0	CCAFS LC-40	0.863105	0.589100	1.281903	62.035694
1	CCAFS SLC-40	0.863105	0.589100	1.281903	62.035694
2	KSC_LC 39A	7.319666	0.833236	0.719326	53.161906
3	VAFB SLC-4E	1.360011	6.155040	1.266939	14.030300

- Launch Sites are in close proximity to coast.
- Launch Sites are also close to Major Highways and Railway for logistic purposes.
- Launch sites are far from dense human habitats like cities.

Classification Accuracy — Score values

For the training data the model that best fits the data is **TREE.**

For the testing data the model that best fits the data is **KNN**.

Classification Accuracy — Confusion Matrix

Tree Model

Conclusions

- The data could be obtained effectively using SpaceX API and web Scraping.
- Using the launch classification tool, we were able to distinguish between successful and unsuccessful launches.
- In addition, we note that the busiest Earth orbits are GTO, ISS, VLEO. Where the most successful missions were drone launches
- The best launch site is the CCAAFS LC -40
- We see that all launch sites are far from urban sites, and with greater proximity to the ocean and to highways and railways.