Introduction to General Relativity - HW 2 - 401208729

Q1.
$$\lambda^{0.0}$$
 $\lambda^{0.0}$ $\lambda^{0.0}$

Notice that, If we're going to end up with Lagrangian at "non-nelativistic" limit,

we should choose "time" as our parmeter.

or
$$\lambda = t$$

Thereby,
$$S = 2 \int \left(+ \eta \frac{dx^r}{dt} \frac{dx^v}{dt} \right)^{\frac{1}{2}} dt$$

Now use $dt = ydt$

$$S = 2 \int \int \left(+ \eta \frac{dx^r}{dt} \frac{dx^v}{dt} \right)^{\frac{1}{2}} dt$$

Remember that $\frac{dx^r}{dt} = u^r$ \Rightarrow so $+ \eta rv \frac{dx^r}{dt} \frac{dx^v}{dt} = \frac{1}{1 + \eta rv} \frac{dx^r}{dt} \frac{dx^v}{dt} \frac{dx^v}{dt} = \frac{1}{1 + \eta rv} \frac{dx^v}{dt} \frac{dx^v}{dt} \frac{dx^v}{dt} = \frac{1}{1 + \eta rv} \frac{dx^v}{dt} \frac{dx^v}{dt} \frac{dx^v}{dt} = \frac{1}{1 + \eta rv} \frac{dx^v}{dt} \frac{$

in non-reliamit, /c Kl, hences

no has

mostly

$$= \int_{\Gamma} \left(\alpha - \frac{\alpha V^2}{2C^2} \right) dt$$

The first term is constant and accounts for rost - mass contribution to Lagrangian.

(Notice that we can add any constant term to Lagragic regardless of its value, heal its not a significat contribution to the classical action).

To obtain 12 my 2 as "Non-rel" Lograngian
we have to

$$\frac{-\alpha \sqrt{1-\alpha}}{1c^2} = \frac{1}{2} m \sqrt{2} = 0 \qquad \alpha = -mc^2$$

b) Start with T_ parametrization:

$$S = -mc^{2} \int \int_{\Gamma} \sqrt{\frac{dx'}{dt}} \frac{dx'}{dt} dt$$

x 1 -> x 1 + 8x 1

Notice that since $8\sqrt{\#} = \frac{8\#}{2\sqrt{\#}}$,

Hence the roots of 8/# is equal to

the roots of 8# =0, we can safely

neglect the square root.

$$S \rightarrow S = -mc^{2} \int_{\Gamma} \left(+ \eta_{VV} \frac{dx^{V}}{d\tau} \frac{dx^{V}}{d\tau} \right) \frac{dx^{V}}{d\tau} \frac{dx^{V$$

$$(\delta X')$$
 $T = Ti$
 $= \delta X'$
 $T = Tf$
 $= 0$

Hene it Vanishes.

Then force for obeying Hamilton's principle (85 = 0) for any δx^r , $\frac{d}{dt} \left(\frac{dx^r}{dt} \right) = 0$

this is up

Q2.
$$K' = \frac{d}{d\tau} P' = \frac{d}{d\tau} (m_0 u') \frac{dt = y d\tau}{d\tau} from S.R.$$

$$\frac{y d}{dt} \left(m_0 u^{\gamma} \right) \xrightarrow{\text{where}} \left\{ u^{\gamma} = \frac{dx^{\gamma}}{d\tau} = y \left(c_{\gamma} \vec{v} \right) \right\}$$

Note that F is not the usual force,

which is max = 0, but is $\overrightarrow{T} = \frac{d}{dt} (m_0 y \overrightarrow{v})$ by definition of S.R. books.

Hence:

$$K' = y \frac{d}{dt} \left\{ m \cdot y \left(\mathbf{C}, \vec{\mathbf{v}} \right) \right\}$$

This is F (new def.)

Let's check to (mosse), this shull be Fig.

$$\frac{1}{1+}\left(\lambda\right) = \frac{q+}{q+}\left(1-(\sqrt{c})_{5}\right)_{-\sqrt{5}} = \frac{q+}{q+}\left(1-(\sqrt{c})_{5}\right)_{-3}^{5}$$

where
$$\alpha = \frac{d | v|}{dt}$$
 is magnitude of acceleration vector.

I (moyc) = mocxex 2 y 3

= mo (apy 3)

= mo (axpexyv + ya)

Hence, F.v rs equal to:

F.v rs equal to:

To be able to proceed further we should think how to alter a.v term?

I hink how to alter a.v term?

Peplace it in below:

Q3. U'. Up = C2 = desirative w.r.+ T, $2\frac{du'}{d\tau} \cdot u_r = 0 \longrightarrow \alpha' \cdot U_r = 0$ Hem at is I to Up. For proving that at is space likes Since ut is time like go to a frame when it is of form U = (C, 0,000). (This is always possible.) Now if a'= (a', a', a2, a3), then for al. Uy = - - C.a+ - a = 0 hence (a) = (o) a', a', a') => a'ar = + (a') 2 + (a2) 2 > 0 % (Notice that a are not usual acceleration, we won't need them too.)

b)
$$\alpha' = \frac{1}{d\tau} \alpha'$$

For a single particle, we can follow its trojectory and duris meaning ful.

of particles, hence it's better to re-interprete

chain rule de dxing

This means that to find acceleration in fluid, just you should have relocity field and its gradient.

= al = de u = u Daut

For dust,
$$p = a : T^{rv} = \rho U^{r}U^{v}$$

Consider $u^{\alpha} = y(C_{1}U^{r})$ in any frame,

$$C^{2} = (C_{1}U^{r}) = \rho U^{r}U^{v}$$

Consider $u^{\alpha} = y(C_{1}U^{r})$ in any frame,

$$C^{2} = (C_{1}U^{r}) = \rho U^{r}U^{v}$$

Cur $u^{2}x = u^{2}x = u^{2}x$

P= mo mass (mo) by y to account for the relativistic transformation of mass.

Besides, length along the motion will be Contracted by factor.

Y(v)

Prewfrant = \frac{ymo}{y} \frac{y^2}{o}

Hene, T is emy - momentum Tensor in any frame ! Now let's calculate of The for v=0 -3, Tro - 1 3 (Pfr) + 17- (Pu) = . $\frac{\partial}{\partial t} \rho + \frac{\partial}{\nabla \cdot} (\rho \vec{u}) = 0$ This is continuity equation for ideal fluid! Describing the flow of fluid within an infinitesimal region. The Plux of fluid in the surfall . surfale 5 - density's rate of charge! or integral form: $\frac{\partial}{\partial t} \int_{\mathcal{V}} \rho(\vec{x}) d^3X = -\int_{\mathcal{V}} \rho \vec{u} d\vec{s}$ Now let's work-ut the i- Componets. 3, T'= 0, T'' = 1 3 (pfui) + ?; (puiuj) = 0 $\Rightarrow \frac{\partial}{\partial x} (Pu^i) + \partial j (Pu^i u^j) = 0$

These equations govern the momentum of
the fluid, also they are the famous Nävier -
stokes equation that are derived from
Newton's second law.
we can also utilize definition of enery-momentom
tensor's componets to interpute equations:
$T^{\circ\circ} = P \times C^2 \sim \frac{m}{V} C^2 \sim \frac{E}{V}$ so this the
· ·
Relativistic energy density of the fluid.
Toi = cpui ~ cx mai ~ momentum
V
so this is momentum density of the fleid.
Ti = puiui = <u>muiui</u> , this indicates how
· V
much momentum - flox passes thigh the j-th
directions
(Inter 1011)

Thurby, Ofto relates momentum density to
energy density - hence its Conservation equation
Oft Relates momentum density to momentum flag
which is known as momentum-curret consertion.