CKME136 - CAPSTONE

Dinesafe Exploration & Analysis

Mohammed Amir

April 17, 2017

Step 1. Data Load

Process Dinesafe is an open dataset from City of Toronto Food Hygiene Inspection Report for the year 2015 and 2016. Address is a full address dataset extracted from google map for the Dinesafe food premises using google geocode. Load Dinesafe and Address Datasets, convert NULL values to NA.

```
Dinesafe = read.csv("D:/CAPSTONE/data/DineSafe_02162017.csv",
na.strings='NULL')
Address = read.csv("D:/CAPSTONE/data/ADDRESS_02262017.csv",
na.strings='NULL')
```

Step 2. Dataset Exploration Process

2.1 - Identify the column names for each datasets

```
## List Column names
colnames(Dinesafe)
cat("\n")
colnames(Address)
```

2.2 - Identify database dimensions, Address has 7 columns and Dinesafe has 17 columns

```
## Review dimension of dataset (Row by column)
dim(Dinesafe)
cat("\n")
dim(Address)
```

2.3 - Summarise the datasets. Find the min, max, median for quartile quantitative values, as well as identify word category counts for the categorical values.

```
## Review dataset summary
summary(Dinesafe)
cat("\n")
summary(Address)
```

2.4 - Identify the dataset structure such as int, factor, num for both datasets

```
## Review dataset structure
str(Dinesafe)
cat("\n")
str(Address)
```

2.5 - Display top 5 sample data

```
head(Dinesafe,5)
head(Address,5)
```

Step 3 – Merge Datasets

Merge Dinesafe and Address datasets based on establishment id column

```
Dinesafe <- merge(Dinesafe,Address,by="ESTABLISHMENT_ID")</pre>
```

3.1 - Analyise merged dataset

```
## Identify dimension
dim(Dinesafe)
cat("\n")
str(Dinesafe)
                 ## Identify structure
cat("\n")
table(Dinesafe$CUISINE_TYPE, useNA = "always") ## Identify Cuisine Type
cat("\n")
table(Dinesafe$ESTABLISHMENT STATUS, useNA = "always")## Identify Review
Rating
cat("\n")
table(Dinesafe$DISTRICT, useNA = "always")
                                                    ## Identify Districts
cat("\n")
table(Dinesafe$SEVERITY)
                                                  ## Identify Severity Type
```

Step 4 - Data Munging Step

4.1 - Data Cleaning and Transforming raw data into usable dataset.

```
### Remove COURT_OUTCOME, AMOUNT_FINED & INFRACTION_DETAILS Columns from
Dinesafe dataset
Dinesafe <- subset(Dinesafe, select = -c(ROW_ID,
COURT_OUTCOME,AMOUNT_FINED,LONG_ADDRESS, INFRACTION_DETAILS) )
cat("\n")
### Remove doublicate Establishement Name and Address from dataset
Dinesafe <- subset(Dinesafe, select = -c(ESTABLISHMENT_NAME.y,
ESTABLISHMENT_ADDRESS) )
cat("\n")
## Rename ESTABLISHMENT_NAME.x column name to ESTABLISHMENT_NAME
colnames(Dinesafe)[colnames(Dinesafe) == 'ESTABLISHMENT_NAME.x'] <-
'ESTABLISHMENT_NAME'</pre>
```

Plot missingness map using Amelia package

```
#Quantify missing values
apply(Dinesafe, 2, function(x) sum(is.na(x)))
cat("\n")

# Plot missingness map using Amelia package
library(Amelia)

## Loading required package: Rcpp

## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.4, built: 2015-12-05)
## ## Copyright (C) 2005-2017 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##

missmap(Dinesafe, col = c("Red","Yellow"), y.cex = 0.8, x.cex = 0.8, legend =
TRUE, rank.order = "False" ,main = "Dinesafe missingness map", y.labels =
NULL,y.at = NULL)
```

Dinesafe missingness map

4.3 - Change ACTION from factor to character to avoid error during imputation.

```
## Convert Action column from factor to character type
Dinesafe$ACTION = as.character(Dinesafe$ACTION)
```

4.4 - Set catagorical level for Establishment status and Sevrity columns

```
## Set Categorical Data Type Level for Establishment Status column
Dinesafe$ESTABLISHMENT_STATUS =
factor(Dinesafe$ESTABLISHMENT_STATUS,levels=c("Closed","Conditional Pass",
    "Pass"))
cat("\n")

## Set Categorical Data Type Level for Severity column
Dinesafe$SEVERITY <- factor(Dinesafe$SEVERITY, levels = c("NA - Not
Applicable", "N - No Action", "M - Minor", "S - Significant", "C - Crucial"))</pre>
```

4.5 - Describe quantitative values in Reveiw and Rate columns

```
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, round.POSIXt, trunc.POSIXt, units
## Describe Review data
describe(Dinesafe$REVIEW)
cat("\n")
## Describe Value data
describe(Dinesafe$VALUE)
cat("\n")
```

4.6 - Show complete rows from dataset

```
## Complete Case Rows with no missing (NA) value
Complete_Dinesafe <- Dinesafe[complete.cases(Dinesafe),]
nrow(Complete_Dinesafe)</pre>
```

4.7 - Impute NA values in REVIEW column based on mean value of each cuisine type

```
## Impute Dinesafe$REVIEW with Mean Review Value for each missing review
value based cuisine type
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="African"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE_TYPE=="African"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="Bakeries"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE_TYPE=="Bakeries"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="Bar"] =
```

```
mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Bar"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Cafe"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE_TYPE=="Cafe"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Caribbean"]
= mean(Dinesafe$REVIEW[Dinesafe$CUISINE_TYPE=="Caribbean"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="Deli"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Deli"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Dessert"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Dessert"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="European"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE_TYPE=="European"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Far
Eastern"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Far Eastern"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="Pastries"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Pastries"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE_TYPE=="South")
Asian"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="South Asian"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="South East
Asian"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="South East Asian"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Latin
American"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Latin American"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) &
Dinesafe$CUISINE TYPE=="Mediterranean"] =
mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Mediterranean"], na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Middle"
Eastern"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Middle Eastern"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="North
American"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="North American"],
na.rm=TRUE)
Dinesafe$REVIEW[is.na(Dinesafe$REVIEW) & Dinesafe$CUISINE TYPE=="Juicery &
Smoothies"] = mean(Dinesafe$REVIEW[Dinesafe$CUISINE TYPE=="Juicery &
Smoothies"], na.rm=TRUE)
```

4.7 - Impute NA values in VALUE column based on mean value of each cuisine type

```
## Impute Dinesafe$VALUE with Mean Value for each missing value based cuisine
type
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="African"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="African"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Bakeries"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="Bakeries"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Bar"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="Bar"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Cafe"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="Cafe"], na.rm=TRUE)
```

```
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="Caribbean"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Caribbean"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Deli"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Deli"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Dessert"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="Dessert"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="European"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="European"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="Far Eastern"]
= mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Far Eastern"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE_TYPE=="Pastries"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Pastries"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="South Asian"]
= mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="South Asian"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="South East"
Asian"] = mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="South East Asian"],
na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="Latin"
American"] = mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Latin American"],
na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) &
Dinesafe$CUISINE_TYPE=="Mediterranean"] =
mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Mediterranean"], na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="Middle")
Eastern"] = mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="Middle Eastern"],
na.rm=TRUE)
Dinesafe$VALUE(is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="North")
American"] = mean(Dinesafe$VALUE[Dinesafe$CUISINE TYPE=="North American"],
na.rm=TRUE)
Dinesafe$VALUE[is.na(Dinesafe$VALUE) & Dinesafe$CUISINE TYPE=="Juicery &
Smoothies"] = mean(Dinesafe$VALUE[Dinesafe$CUISINE_TYPE=="Juicery &
Smoothies"], na.rm=TRUE)
4.8 - Impute missing severity and action columns where establishment status is PASS
Dinesafe$SEVERITY[is.na(Dinesafe$SEVERITY) & Dinesafe$ESTABLISHMENT STATUS ==
"Pass"] = "NA - Not Applicable"
```

```
## Impute Severity column if it is NA and Establishment Status is PASS
Dinesafe$SEVERITY[is.na(Dinesafe$SEVERITY) & Dinesafe$ESTABLISHMENT_STATUS ==
"Pass"] = "NA - Not Applicable"
cat("\n")
## Impute Action column if it is NA and Establishment Status is PASS &
Severity is No Action
Dinesafe$ACTION[is.na(Dinesafe$ACTION) & Dinesafe$ESTABLISHMENT_STATUS ==
"Pass" & Dinesafe$SEVERITY == "NA - Not Applicable"] = "No Action Required"
```

4.9 - Check for incomplete rows

```
## Check for non complete case
Dinesafe_NA <- Dinesafe[!complete.cases(Dinesafe),]
cat("\n")
nrow(Dinesafe_NA)</pre>
```

Step 5 - Data Exploratory Analysis and Visualization

5.1 Univarient Data Analysis

The histogram graph of quantitative data in Dinesafe\$Review shows that the data is normally distrubuted skewed to the left, where as Dinesafe\$value shows that the data is not normally distrubuted.

Histogram graph
hist(Dinesafe\$REVIEW, col="GREEN")

Histogram of Dinesafe\$REVIEW

hist(Dinesafe\$VALUE,col="YELLOW")

Histogram of Dinesafe\$VALUE

Kernel Density Plots
Review <- density(Dinesafe\$REVIEW)
plot(Review)</pre>

density.default(x = Dinesafe\$REVIEW)


```
## Bar chart representation of a categorical values in Cusine Typek
Inspection Result and Severity columns.

## CUISINE TYPE FREQUECY
Cuisin <- table(Dinesafe$CUISINE_TYPE)
barplot(Cuisin, main="Cuisine Type", ylab="Frequency", beside=TRUE, col = rainbow(17),las=2, horiz=FALSE)</pre>
```


Food Hygiene Inspection Result
Inspection <- table(Dinesafe\$ESTABLISHMENT_STATUS)
barplot(Inspection, main="Food Hygiene Inspection Result", xlab="Inspection
Result", ylab="Establishment Count", col=c("red","yellow","green"),
beside=TRUE)</pre>

Food Hygiene Inspection Result


```
## Food Hygiene Inspection Severity
Severity <- table(Dinesafe$SEVERITY)
barplot(Severity, main="Food Hygiene Inspection Severity", xlab="",
ylab="Count", col=c("red","yellow","green","White","Orange"),
beside=TRUE,las=2)</pre>
```

Food Hygiene Inspection Severity

Boxplot of data distribution representation of Review and Value columns with its minimum, maximum, median, 1st quartile, 3rd quartile as well as outliers.

The Review boxplot shows that the rating value range is quite close, ie between 2.5 and 4 with most of the data is concertrated above the median value of 3. Outlier data are above 4 and below 2.5 and mean value is 1.5 boxplot(Dinesafe\$REVIEW, main = toupper("Boxplot of Review Column"), ylab = "Review Rating", col = "blue")

abline(h=mean(Dinesafe\$VALUE, na.rm = T), lty=2)

BOXPLOT OF REVIEW COLUMN

The Value boxplot shows that it has one outlier and the data distribution
is between 1 and 2 and the median and mean values are close to each other
around 1.5
boxplot(Dinesafe\$VALUE,main = toupper("Boxplot of VALUE Column"),ylab =
"Value",col = "green")
abline(h=mean(Dinesafe\$VALUE, na.rm = T), lty=2)

BOXPLOT OF VALUE COLUMN

5.2.1 - Mean & Standard deviation of Review and Value data against Estalishment status.

Based on the mean and standard deviation value of the review rating food premises that failed inspection had a mean review ratnig below the passed premises. Also failed food premises has a higher standard deviation value as compared to those who passed.

On the other hand the relationship between mean/standard deviation value and inspection outcome is not observer due to consistent result across all three values.

```
## Mean Review data against establishment inspection status
tapply(Dinesafe$REVIEW , Dinesafe$ESTABLISHMENT_STATUS, mean)
cat("\n")
## Standard Deviation of Review data against establishment inspection status
tapply(Dinesafe$REVIEW , Dinesafe$ESTABLISHMENT_STATUS, sd)
cat("\n")
## Mean value data against establishment inspection status
tapply(Dinesafe$VALUE , Dinesafe$ESTABLISHMENT_STATUS, mean)
cat("\n")
## Standard Deviation of Value data against establishment inspection status
tapply(Dinesafe$VALUE , Dinesafe$ESTABLISHMENT_STATUS, sd)
```

5.2.2 - Categorical data analysis against the numerical Review Rating column using byplot

```
library(lattice)
bwplot(ESTABLISHMENT_STATUS ~ REVIEW, data = Dinesafe, ylab = "Inspection
Status", xlab = "Review Rating")
```


bwplot(CUISINE_TYPE ~ REVIEW, data = Dinesafe, ylab = "Cuisine Type", xlab =
"Review Rating")

5.2.3 - Categorical data analysis against the numerical Value Rating column using bwplot

```
## Categorical data analysis
bwplot(ESTABLISHMENT_STATUS ~ VALUE, data = Dinesafe, ylab = "Inspection
Status", xlab = "Value Rating")
```


bwplot(SEVERITY ~ VALUE, data = Dinesafe, ylab = "Inspection Outcome Severity", xlab = "Value Rating")

bwplot(CUISINE_TYPE ~ VALUE, data = Dinesafe, ylab = "Cuisine Type", xlab =
"Value Rating")

5.2.4 - Categorical data analysis of District against the numerical data of Review and Value Rating column using qplot

```
qplot(REVIEW, DISTRICT, data=Dinesafe) + xlim(0, 5)
```


qplot(VALUE, DISTRICT, data=Dinesafe) + xlim(0, 5)

5.2.5 - Relationship graphy between two categorical columns (INSPECTION STATUS AND SEVERITY)

```
library(gmodels)
joint = CrossTable(Dinesafe$ESTABLISHMENT_STATUS, Dinesafe$SEVERITY)
joint$t
joint_count = joint$t
barplot(joint_count, beside = TRUE, col = c("Red","Yellow","Green"),ylab =
"Frequency", xlab = "Severity")
legend("topright", c("Closed","Conditional Pass","Pass"), pch=15, col =
c("Red","Yellow","Green"))
```


5.2.6 - Scattered graph showing a relatship between two numerical values Based on the graph below there is no linear relationship between a restaurant review rating and value for money rating as the values are scattered all over the box and doesn't follow the simple linear regression model line.

```
plot (Dinesafe$REVIEW, Dinesafe$VALUE, col = c("RED", "BLUE"),
xlab="REVIEW", ylab="VALUE", main="Review against Value graph", type = "b")
legend("topright", legend=c("Review", "Value"), col=c("green", "blue"),
lty=1:2, cex=1, box.lty=2)
abline(lm(Dinesafe$REVIEW ~ Dinesafe$VALUE))
```

Review against Value graph

5.3 - Multivariant Data Analysis

5.3.1 - Plot of a simple scattered matrix between three columns (REVIEW, DISTRICT & ESTABLISHMENT TYPE) & (VALUE, DISTRICT & ESTABLISHMENT TYPE)

pairs(~REVIEW+DISTRICT+ESTABLISHMENT_STATUS,data=Dinesafe, main="Simple
Scatterplot Matrix")

Simple Scatterplot Matrix

pairs(~VALUE+DISTRICT+ESTABLISHMENT_STATUS,data=Dinesafe, main="Simple
Scatterplot Matrix")

Simple Scatterplot Matrix

5.3.2- Aggregation between multiple columns categorical and numerical values.

```
head(aggregate(Dinesafe$REVIEW ~ Dinesafe$ESTABLISHMENT_STATUS +
Dinesafe$CUISINE_TYPE + Dinesafe$DISTRICT, FUN=mean),10)
head(aggregate(Dinesafe$REVIEW ~ Dinesafe$ESTABLISHMENT_STATUS +
Dinesafe$CUISINE_TYPE, FUN=length),10)
```

. Write final data frame to csv file.

```
write.csv(Dinesafe, file = "D:/CAPSTONE/CAPSTONE/DATASET/Final_Dinesafe.csv",
row.names= TRUE)
```