EJERCICIOS IMPRESCINDIBLES

► Asíntotas

- (1) Una función ¿puede tener una asíntota horizontal y una oblícua a la vez?
- (2) La exponencial $y = e^x$ ¿tiene asíntotas?
- (3) Calcula $\lim_{x \to \infty} \ln x$.
- (4) **PAEU2004J.** Sea la función $y=2e^{-2|x|}$. Calcula sus asíntotas. ¿Es continua?
- (5) **PAEU2011J,a.** Calcula las asíntotas de la función $f(x) = \frac{x^2 3x + 3}{x 1}$
- (6) Sea la función definida para $x \neq 0$ por $f(x) = \frac{x^2 + 1}{x}$. Calcula sus asíntotas.
- (7) **EBAU2017S, parte.** Consideremos la función $f(x) = \frac{x^2 + 1}{x^2 + 2}$. Calcular el dominio y sus asíntotas.
- (8) Halla las asíntotas de la curva $y = \frac{x^2 + 1}{x 2}$.
- (9) Calcula las asíntotas de:

a)
$$f(x) = e^{\frac{2x}{x^2+1}}$$

$$b) \ f(x) = \frac{9x - 3}{x^2 - 2x}$$

(10) **EBAU2008J.** Calcular las asíntotas de la función $f(x) = \frac{(2x-1)^2}{4x^2+1}$.

► Continuidad

- (11) a) La tangente de x ($f(x) = \operatorname{tg} x$) es ¿continua en todo \mathbb{R} ? ¿Cuál es su dominio de definición?
 - b) ¿Y el arcotangente de x? ¿es continuo en todo \mathbb{R} ? ¿Cuál es su dominio de definición?
- (12) Determinar los valores de a y b para que la siguiente función sea continua en todos sus puntos:

$$f(x) = \begin{cases} ax^2 + b & \text{si } x < 0 \\ x - a & \text{si } 0 \le x < 1 \\ \frac{a}{x} + b & \text{si } 1 \le x \end{cases}$$

(13) Estudiar la continuidad de la función $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} -1 & \text{si } x < -4\\ x + 2 & \text{si } -4 \le x < 2\\ \frac{8}{x} & \text{si } 2 \le x \end{cases}$$

- (14) **EBAU2015S.** Consideremos la función definida a trozos $f(x) = \begin{cases} ax^2 + bx + c, & \text{si } x \leq 2 \\ \ln(x-1), & \text{si } x > 2 \end{cases}$ Hallar los valores de a, b y c para que f(x) sea continua en toda la recta real y tenga un extremo relativo en el punto (1, -1).
- (15) Sea la función $f(x) = \begin{cases} (x+2)^2 4 & \text{si } x < 0 \\ -a(x-2)^2 + 4a & \text{si } x \ge 0 \end{cases}$. Determina los valores de a que hacen continua la función en x=0.
- (16) **PAEU2005J.** Estúdiese, según los valores de los números reales α y β , la continuidad de la función f definida por

$$f(x) = \begin{cases} \frac{x+\alpha}{1+e^{1/x}} & \text{si } x \neq 0\\ \beta & \text{si } x = 0 \end{cases}$$

(17) Estudiar la continuidad de la función

$$f(x) = \begin{cases} |x+2| & \text{si } x < -1\\ x^2 & \text{si } -1 \le x \le 1\\ 2x+1 & \text{si } 1 < x \end{cases}$$

(18) **EBAU2012S, parte.** Aplicando la definición, estudiar la continuidad de la función $f \text{ dada por } f(x) = \begin{cases} x - x^2 & \text{si } 0 \leq x \leq 1 \\ \frac{\ln^2 x}{x - 1} & \text{si } 1 < x \leq 2 \end{cases}$ en el punto x = 1, donde la denota el logaritmo neperiano.

▶ Propiedades de funciones básicas

- (19) **EBAU2015S**, parte. Consideremos la función $f(x) = \frac{x^2 1}{x^2 + 1}$. Calcular dominio, puntos de corte y sus asíntotas.
- (20) ¿Cuál es el dominio de la función $y = x\sqrt{\frac{x+1}{x-1}}$.
- (21) Calcula el dominio, puntos de corte con los ejes de la función $f(x) = \ln\left(\frac{x^2 2}{2x 1}\right)$

▶ Teoremas

- (22) EBAU2017J.
 - a) Enunciar el teorema de Bolzano e interpretarlo geométricamente.
 - b) Encontrar un intervalo en el que $p(x) = x^6 + x^4 1$ tenga al menos una raíz.

- (23) **EBAU2007J.** Demostrar que las curvas $f(x) = \operatorname{sen} x$ y $g(x) = \frac{1}{x}$ se cortan en algún punto del intervalo $\left(2\pi, \frac{5\pi}{2}\right)$.
- (24) **EBAU2007J,b.** Sea la función $f(x) = x + e^{-x}$. Demostrar que existe algún número real c tal que $c + e^{-c} = 4$.
- (25) **EBAU2008J.** Demostrar que la ecuación $x^3 + x 5 = 0$ tiene al menos una solución en el intervalo (1, 2).
- (26) **EBAU2009S.** Probar que la ecuación $x^{2009} e^x + 2 = 0$ tiene alguna solución.