```
import numpy as np
import pandas as pd
class Perceptron:
    def __init__(self, learning_rate, epochs):
        self.weights = None
        self.bias = None
        self.learning_rate = learning_rate
        self.epochs = epochs
    def activation(self, z):
        return np.heaviside(z, 0) # haviside(z) heaviside ->
activation
    # Perceptron training
    def fit(self, X, y):
        n features = X.shape[1]
        # Initializing weights and bias
        self.weights = np.zeros((n features))
        self.bias = 0
        # Iterating until the number of epochs
        for epoch in range(self.epochs):
            # Traversing through the entire training set
            for i in range(len(X)):
                z = np.dot(X, self.weights) + self.bias # Finding the
dot product and adding the bias
                y pred = self.activation(z) # Passing through an
activation function
                #Updating weights and bias
                self.weights = self.weights + self.learning rate *
(y[i] - y_pred[i]) * X[i]
                self.bias = self.bias + self.learning rate * (y[i] -
y pred[i])
        return self.weights, self.bias
    def predict(self, X):
        z = np.dot(X, self.weights) + self.bias
        return self.activation(z)
diabetes df = pd.read csv(r"C:\Users\student\Desktop\Aks\
diabetes.csv")
diabetes df.head()
```

\ _	ncies	Glucose	BloodPressu	re Skin	Thickness	Insulin	
0 BMT /	6	148		72	35	0	33.6
1	1	85		66	29	0	26.6
2	8	183		64	0	0	23.3
3	1	89		66	23	94	28.1
4	0	137		40	35	168	43.1
DiabetesPedigreeFunction Age Outcome 0							
<pre>X = diabetes_df[['Pregnancies','Glucose','BloodPressure','SkinThickness',' Insulin','BMI','DiabetesPedigreeFunction','Age']].values y = diabetes_df['Outcome'].values X_train, X_test, y_train, y_test = train_test_split(X, y,</pre>							
<pre>test_size=0.5, random_state=42) perceptron = Perceptron(0.001, 100) perceptron.fit(X_train, y_train) pred = perceptron.predict(X_test)</pre>							
<pre>from sklearn.metrics import accuracy_score</pre>							
<pre>print("Accuracy Score : ",(accuracy_score(pred, y_test))*100,"%")</pre>							
Accuracy Score : 66.9270833333333 %							
<pre>from sklearn.metrics import classification_report</pre>							
<pre>report = classification_report(pred, y_test, digits=2) print(report)</pre>							
precision recall f1-score support							
	0.0 1.0	0.93 0.17	0.69 0.54	0.79 0.26	343 41		
accur macro	_	0.55	0.61	0.67 0.52	384 384		

weighted avg 0.84 0.67 0.73 384