Statistical Analysis

Case Studies

- 1. Housing Price Analysis
- 2. Car Accidents in United States
- 3. Probability of being Myopic
- 4. Study Survey
- 5. Traffic Congestion
- 6. Real Estate Analysis
- 7. Process Improvements
- 8. Promotion in NYPD
- 9. Nutrition Education Program

Housing Price Analysis

A sample of housing prices from a neighborhood in Ontario is listed:

- 1. Use Excel functions to give the answer of the values in blue area directly.
- 2. Organize the data into frequency distribution with seven class intervals appropriately (Outliers should not be included). Expand the table to have the following columns: relative frequency, cumulative frequency and mid point.
- 3. Draw the histogram and polygon to show the frequency distribution.
- 4. Draw the histogram and polygon to show cumulative frequency distribution.
- 5. Calculate the mean, median and sample standard deviation based on the frequency distribution developed in Point 2. (Note: They are different from the values in blue area. Use the formula for grouped data and information in the frequency distribution table. Please use the formula for median and standard

deviation below.)

List Price of houses

				,	
\$	204,900	\$	297,900	\$	635,000
\$	210,000	\$	298,800	\$	635,000
\$	214,900	\$	299,900	\$	640,000
\$	219,877	\$	300,000	\$	649,900
\$	228,500	\$	309,900	\$	702,500
\$	229,900	\$	319,900	\$	725,800
\$	229,900	\$	319,900	\$	742,000
\$	234,900	\$	328,000	\$	756,000
\$	235,800	\$	338,000	\$	757,000
Ś	239,900	\$	349,500	\$	778,200
Ś	244,900	\$	349,800	\$	792,100
Ś	249,000	\$	349,900	\$	807,000
\$	249,900	\$	349,900	\$	821,000
Ś	249,900	\$	359,800	\$	825,000
Ś	250,000	\$	359,900	\$	827,000
\$	253,000	\$	365,000	\$	832,100
Ś	254,800	\$	389,900	\$	835,000
\$	259,900	\$	389,900	\$	836,000
\$	264,900	\$	398,800	\$	839,000
\$	265,000	\$	459,900	\$	839,500
\$	269,000	\$	469,900	\$	841,000
\$	270,000	\$	499,000	\$	850,000
\$	274,000	\$	565,900	\$	855,000
\$	274,000	\$	578,000	\$	858,000
\$	275,900	\$	591,000	\$	859,000
\$	278,877	\$	598,000	\$	886,000
\$	279,888	\$	605,000	\$	890,000
\$	•	\$	615,000	\$	899,100
-	279,900	\$	621,500	\$	921,000 925,000
\$	279,900	\$	625,000	\$	985,000
-	279,900	\$	628,000	\$	992,300
\$	289,900	\$	632,000	\$	995,000
\$	292,500	Ψ_	332,000	Ş	333,000

\$	1,025,000
\$	1,358,000
\$	1,410,000
\$	1,609,000
\$	1,850,000
\$	2,120,000
\$	2,150,000
Ś	2.850.000

Conditional Probability- Car Accidents in USA

The U.S. National Highway Traffic Safety Administration gathers data concerning the causes of highway crashes where at least one fatality has occurred. The following probabilities were determined from the 1998 annual study (BAC is blood-alcohol content). (Source: Statistical Abstract of the United States, 2000, Table 1042.)

 $P(BAC = 0 \mid Crash \text{ with fatality}) = .616$ $P(BAC \text{ is between .01 and .09} \mid Crash \text{ with fatality}) = .300$ $P(BAC \text{ is greater than .09} \mid Crash \text{ with fatality}) = .084$

Over a certain stretch of highway during a 1-year period, suppose the probability of being involved in a crash that results in at least one fatality is .01. It has been estimated that 12% of the drivers on this highway drive while their BAC is greater than .09. Determine the probability of a crash with at least one fatality if a driver drives while legally intoxicated (BAC greater than .09).

SOLUTION

Let Event A= BAC > 0.09 so **P(A)= 0.12**

Let Event B = Crash with atleast one Fatality so | **P(B)**= **0.01**

Given, **P(A/B)= 0.084** that means that Probabilty of BAC>0.09 given that crash with fatality happened.

As per the quetion, we need to find the probability of a crash with at least one fatality (B) given that BAC >0.09(A). So, find P(B/A)

P(B/A)= P(A&B)/P(A)..... (Equation 1)We only know P(A)=0.12

But, P(A/B)= P(A&B)/P(B)0.084= P(A&B)/0.01 so
P(A&B)=0.00084 (Putting this value in Equation 1)

P(B/A) = 0.00084/0.12= 0.007

Thus, the probability of crash with atleast one fatality if the driver drives while legally intoxicated is 0.007

Probability of Being Myopic- Using Binomial Distribution

Researchers at the University of Pennsylvania School of Medicine theorized that children under 2 years old who sleep in rooms with the light on have a 40% probability of becoming myopic by age 16. Suppose that researchers found 25 children who slept with the light on before they were 2.

- a. What is the probability that 10 of them will become myopic before age 16? 0.16
- b. What is the probability that fewer than 5 of them will become myopic before age 16? 0.0095
- c. What is the probability that more than 15 of them will become myopic before age 16? 0.013
- d. What is the probability that at least 3 of them will become myopic before age 16? 0.99
- e. What is the probability that at most 20 of them will become myopic before age 16? 0.99
- f. How many children will be expected to become myopic before age 16? 10

PART A:	X=10, P= 0.4, N=25	Using Binomial Distribution formula
	Probability that 10 of them will become myopic before age 16	0.161157939
PART B:	X= 1 to 4, p=0.4, n=25	Using Binomial Distribution Formula
	P(X=1) P(X=2)	0.00005
	P(X=3) P(X=4)	0.00194 0.00710
	P(X=1)+P(X=2)+P(X=3)+P(X=4)	0.00947
PART C:	0.013169073	

PART D:	it means atm	ost 2
Using BD	formula	0.999571
PART E:	METHOD 1	0.999992
	METHOD 2	0.999992
PART F:	Expected Val	ue=Mean
	Mean=	N*P
		10

Study Statistics- Using Normal Distribution

The amount of time devoted to studying statistics each week by students who achieve a grade of A in the course is a normally distributed random variable with a mean of 7.5 hours and a standard deviation of 2.1 hours.

- a. What proportion of A students study for more than 10 hours per week? (3 out of 25)
- b. Find the probability that an A student spends between 7 and 9 hours studying. 0.356
- c. What proportion of A students spend fewer than 3 hours studying? (1 out of 50)
- d. What is the amount of time below which only 5% of all A students spend studying? 4 hours

a) z-score = (10 - 7.5) / 2.1 = 1.19 P(X < 10) = 0.8830 ~ 0.88 P(X > 10) = 1 - 0.88 = 0.12 Proportion of A students who study > 10 hours per week = 12/100 = 3/25	b) z-score = (9 - 7.5) / 2.1 = 0.7143 P (X < 9) = 0.7611 z-score = (7 - 7.5) / 2.1 = -0.2381 P (X < 7) = 0.4052 P (7 < X < 9) = 0.7611 - 0.4052 = 0.3559
0.12 Using the formula	0.36 Using the formula
c) z-score = (3 - 7.5) / 2.1 = -2.1429 P (X < 3) = 0.0162 ~ 0.02 Proportion of A students who study < 3 hours per week = 2/100 = 1/50	d) z-score associated with 5% is -1.65 -1.65 = (X - 7.5) / 2.1 X - 7.5 = -1.65 * 2.1 = -3.465 X = 7.5 -3.465 = 4.035 ~4 Only 5% of all A students spend studying less than 4
0.02 Using the formula	4.0 Using the formula

Traffic Congestion in USA - Using Hypothesis Testing

Traffic congestion seems to worsen each year. This raises the question, How much does roadway congestion cost the United States annually? The Federal Highway Administration's Highway Performance Monitoring System conducts an analysis to produce an estimate of the total cost. Drivers in the 73 most congested areas in the United States were sampled, and each driver's congestion cost in time and gasoline was recorded. The total number of drivers in these 73 areas was 128,000,000.

- a. Estimate with 95% confidence the total cost of congestion in the 73 areas. (Adapted from the Statistical Abstract of the United States, 2006, Table 1082.)
- b. If an organization claims that the total cost of congestion in the 73 areas is greater than \$420, do you agree with it based on this sample result?
- c. If an organization claims that the total cost of congestion in the 73 areas is less than \$450, do you accept it based on this sample result?

Cost (\$)	483	354	269	293	
749	508	430	451		
381	483	615	331	760	
461	331	331	531	362	
247	402	384	227	372	
252	253	510	379	497	
501	371	491	382		-
653	587	545	411	356	
507	526	527 490	439	454	
293	297 455	473	676	422	•
534	260	447	330		
	470	229	504	443	
308	749	280	332	445	
669	443	538	493	310	
257	746	577	498	230	
375	314	351			-
327	186	266	349	586	
377	418	511	415	401	
301	280	495	343	354	
	648	532	489		-
604	411	756 394	331	381	
372	509	364	459	322	
237	434 326	332	436		
558	420	444	482		
242	439	302	443		
382	489	614	462		
392	465	354	480		
562	556	314	485		
557	224	327	284		
356	336	517	380		
250	364	252	412		
314	485	204	355		
575	409	556 410	441		
509	314 384	517	473		
456	262	541	599		
261	321	439	374		
455	474	246	537		
328	393	79	356		

PART-A				
Average(μ)	422.3636364			
Standard Deviation(σ)	122.7739555			
n	176			
df	175			
t-Stat	1.973612462			
Confidence Interval	$\mu \pm t$ -stat* (σ/\sqrt{n})			
Calculating Lower Limit	404.0989679			
Calculating Upper Limit Limit	440.6283048			

\mathbf{RT}	

We will have to formulate the hypothesis for this part: $H_o = 450$ $H_A < 450$

We will find p-value and compare it with α to make the decision about accepting or rejecting the null hypothesis
t-value
-2.986283153
p-value
0.001614454

Since, p < α, so we can reject the null hypothesis. There is sufficient evidence to claim that the total cost of congestion in the 73 areas is less than \$450

PART-B

We will have to formulate the hypothesis for this part: $H_0 = 420$ $H_A > 420$

We know that α = 0.05, so inorder to ascertain if we can accept our

null hypothesis or not we should find the t-value and then the corresponding p
t-value

0.255405796

p-value

0.399354814

Since, p > α, so we fail to reject our null hypothesis. There is no sufficient evidence to support the claim that the total cost of congestion in the 73 areas is greater than \$420

Real Estate Analysis - Using T:Test for two samples

Residents of neighbouring towns have an ongoing disagreement over who lays claim to the higher average price of of a single family home. Since you live in one of these towns, you decide to obtain a random sample of homes listed for sale with a majoy local realtor to investigate if there is actually any difference in the average home price.

- a. Using the data provided, check the conditions (Independence, Randomization, Normal Condition and Variance Condition) for this test.
- b. Write the null and alternative hypotheses for this test.
- c. Test the hypotheses and find the p-value.
- d. Make a conclusion about this test.

TOWN 1				
ID	Price			
70615991	399900			
70669695	429900			
70650547	499000			
70616722	669000			
70667851	690000			
70656875	699000			
70610315	815900			
70644981	929000			
70626337	1365000			
70658257	1395000			
70576192	1650000			
70642564	1695000			
70547973	1750000			
70654435	1995000			
70642052	2100000			
70624345	2750000			
70657912	2950000			

Mean:γ ₁	1340100
SD1: σ ₁	795584
n1:	17

TOWN 2				
ID	Price			
70546158	489000			
70660264	759900			
70569799	799000			
70649392	999000			
70656361	1099000			
70538352	1395000			
70636923	1450000			
70651181	1475000			
70521906	1650000			
70576614	1990000			
70641078	1999800			
70650711	2395000			
70597605	2999000			

Mean: γ ₂	1499977
SD2 : σ_2	709909
n2:	13

Before performing a two-sample t-test, three conditions must be checked. First, the data in each group must be drawn independently and at random from its own homogenous population or generated by a randomized comparative experiment. The given data satisfy this assumption because it is given in the problem statement that the samples are random, and there is no reason to believe the data influence each other.

Next, the data in both groups must be approximately normal. The data appear normally distributed because the data are approximately symmetric instead of being skewed, and there are no outliers.

Finally, the two groups must be independent of each other. The given data satisfy this independent groups assumption because the two samples are not related. A home can only be in one town.

	Part-B	
H_o :	μ_1 - μ_2 = 0	
H_A :	$\mu_1 - \mu_2 \neq 0$	

(PART-C) t-Test	(PART-C) t-Test: Two-Sample Assuming Unequal Variances						
U)	(Used the Data Analysis in DATA)						
	Town 1	Town 2					
Mean	1340100	1499976.923					
Variance	632954666250.00	503970670256.41					
Observations	17	13					
Mean Difference	0	15					
df	27						
t Stat	-0.579936071						
P(T<=t)							
one-tail	0.283383125						
t Critical							
one-tail	1.703288446						
P(T<=t)							
two-tail	0.567						
t Critical							
two-tail	2.051830516	.'' 1					

Part-D

Since p > 0.05, so w fail to reject the null hypothesis and conclude there is insuffcient evidence to prove that average price of houses is different for houses in both towns.

Process Improvement - Using Two Factor ANOVA Test with Replication

Design	System	Time
1	1	4.5
2	1	3.3
3	1	3.4
1	1	4
2	1	3
3	1	2.9
1	1	4.2
2	1	3
3	1	3.2
1	1	4.5
2	1	3.5
3	1	3.2
1	1	3.8
	1	2.8
3	1	3
1	2	3
2	2	3.8
3	2	3.6
1	2	2.8
2	2	4
3	2	3.5
1	2	3
2	2	3.5
3	2	3.8
1	2	4
2	2	4.2
3	2	4.2
1	2	3
2	2	3.6
3	2	3.8

Sorting data by Workspace Design-1, 2 and 3

Results - ANOVA two factor test with replication

_					Anova: Two-	Factor V	With Repl	ication
		Orga	anized Data		SIDGADY	Carrer 1	S4 2	T-4-1
\dashv	T4 //				SUMMARY	Storage 1 WD1	Storage 2	Total
4	Item#	Group	Storage 1	Storage 2	Count	5.00	5.00	10.00
	1	WD1	4.5	3	Sum	21.00	15.80	36.80
_	4		4	20	Average	4.20	3.16	3.68
7	4	· •	4	2.8	Variance	0.10	0.23	0.44
\dashv	7	· 	4.2	3		WD2		
\dashv	10	· 	4.5	4	Count	5.00	5.00	10.00
╧		· •			Sum	15.60	19.10	34.70
	13	· 	3.8	3	Average	3.12	3.82	3.47
\dashv	2	WD2	3.3	3.8	Variance	0.08	0.08	0.21
\forall	5		3	4		WD3		
\dashv	8	' '	3	3.5	Count	5.00	5.00	10.00
ᅪ	11	· 	3.5	4.2	Sum	15.70	18.90	34.60
\mid		· •			Average	3.14	3.78	3.46
1	14		2.8	3.6	Variance	0.04	0.07	0.16
+	3	WD3	3.4	3.6		Total		
_	6	' 	2.9	3.5	Count	15.00	15.00	
ſ	9	· 	3.2	3.8	Sum	52.30	53.80	
T	12	' 	3.2	4.2	Average	3.49	3.59	
+	15	' '	3	3.8	Variance	0.33	0.21	
ᅪ	1.7)	5.0				

ANOVA SS P-value F crit Source of Variation MS0.31 1.56 0.23 3.40 2.00 0.15 Workdesign 0.39 0.07 0.76 4.26 1.00 0.07 Storage 24.72 3.40 2.00 0.00 4.88 2.44 Interaction Within 2.37 24.00 0.10

One way to improve a process is to eliminate non-value-added activities (e.g. extra movements) and wasted effort (e.g. looking for materials). A consultant was hired to improve the efficiency in a large shop floor operation. She tested three different workspace designs and two different storage/retrieval systems. She measured process flow time for three randomly selected operations through each of of the combinations of workspace design and storage/retrieval systems.

a. Is this an experiment or observational study? Explain

It is an experiment because a consultant was hired to improve the efficiency in a large shop floor operation and she measures the flow time through a combinaton of work design and storage systems.

b. Use the data provided to run two-factor ANOVA.

The two factor ANOVA with replication was run after arranging the data as shown on the left. The results of ANOVA are on the next sheet.

c. What is the response variable?

Process Flow Time

d. How many treatments are involved?

There are 3 levels in the workspace design-1,2,3 and there are 2 levels in storage system-1,2. So total number of treatments will be: 3x2=6. So, Treatments=6

- e. Based on your ANOVA results, does workspace design impact process flow time?

 Based on the P-value of workspace design which is 0.23 we can say that p>(alpha=0.05) so we fail to reject our null hypothesis and conclude that workspace design does not impact the the process flow time.
- f. Based on your ANOVA results, does retrieval system impact process flow time?

 Based on the P-value of storage systems which is 0.39 we can say that p>(alpha=0.05) so
 we fail to reject our null hypothesis and conclude that storage systems does not impact the
 the process flow time.
- g. How does the interaction perform based on your ANOVA result?

The p-value for interaction is 0 which is less than alpha=0.05. This means that we can conclude there is significant interaction impact and hence, can agree with the fact that that workspace design & storage systems have an impact on the process time flow.

Promotion in NYPD - Using Chi Square Test

THE DATA COLLECTED SHOWS THE RANK ATTAINED BY MALE AND FEMALE OFFICERS IN THE NEW YORK CITY POLICE DEPARTMENT (NYPD). DO THESE DATA INDICATE THAT MEN AND WOMEN ARE EQUITABLY REPRESENTED AT ALL LEVELS OF THE DEPARTMENT?

- A. WHAT'S THE PROBABILITY THAT A PERSON SELECTED AT RANDOM FROM NYPD IS A FEMALE?
- B. WHAT'S THE PROBABILITY THAT A PERSON SELECTED AT RANDOM FROM NYPD IS A DETECTIVE?
- C. ASSUMING NO BIAS IN PROMOTIONS, HOW MANY FEMALE DETECTIVES WOULD YOU EXPECT THE NYPD TO HAVE?
- D. TO SEE IF THERE IS EVIDENCE OF THE DIFFERENCES IN RANKS ATTAINED BY MALES AND FEMALES, WOULD YOU TEST GOODNESS-OF-FIT OR HOMOGENEITY (INDEPENDENCE)?
- E. STATE THE HYPOTHESES.
- F. TEST THE CONDITIONS.
- **G. HOW MANY DEGREES OF FREEDOM ARE THERE?**
- H. FIND THE CHI-SQUARE VALUE AND THE ASSOCIATED P-VALUE.
- I. STATE YOUR CONCLUSION.
- J. IF YOU CONCLUDED THAT THE DISTRIBUTIONS ARE NOT THE SAME, ANALYZE THE DIFFERENCES USING THE STANDARDIZED RESIDUALS OF YOUR CONCLUSIONS.

Rank	Number of Females	Number of Males	Total number for each rank
Officer	4281	21900	26181
Detective	806	4058	4864
Sergeant	415	3898	4313
Lieutenant	89	1333	1422
Captain	12	359	371
Higher Ranks	10	218	228
	Sum of Females	Sum of Males	Overall Total
Total	5613	31766	37379

Part-A

Probability that a person selected at random from NYPD is a female is

P(Female)

0.150164531

Part -B

Probability that a person selected at random from NYPD is a detective is 0.13

P(Detective)

0.130126542

Part-C

Female detectives the NYPD is expected to have is 730

No. of Female

Detectives 730,4002782

PART -D

Since we want to know if men and women are equitably represented at all levels of the department, therefore we should test for homogeneity

PART-E

Since we have 2 varibles gender and rank. Therefore, our null hypothesis and alternative hypothesis will be:

 H_0 : $(P\ Male\ Officer_{\square}) = P(Female\ Officer),\ P(Male\ Detective) = P(Female\ Detective), P(Male\ Sergeant) = P(Female\ Detective)$ $P(Female\ Sergeant),\ P(Male\ Lieutenant) = P(Female\ Lieutenant),\ P(Male\ Captain) = P(Female\ Captain),\ P(Male\ Higher\ Ranks) = P(Female\ Higher\ Ranks)$

 H_A : There is different proportion for atleast one rank

H0: Rank is independent of gender, HA: Rank is dependent on gender

PART-F

There are 3 conditions to use for Chi-Square test for Homogeneity. They are as follows:

- 1) The variables should be categorical. Here, rank and gender are both categorical.
- 2) We should assume that the sample is randomly selected
- 3) The Expected count for each cell should be minimum 5. We can calculate it:

Rank	Number of	Number of	Total number
Kank	Females	Males	for each rank
Officer	4281	21900	26181
Detective	806	4058	4864
Sergeant	415	3898	4313
Lieutenant	89	1333	1422
Captain	12	359	371
Higher Ranks	10	218	228
	Sum of Females	Sum of Males	Overall Total
Total	5613	31766	37379

PART-F

Testing for expected count condition shows that all the values are greater than 5.

are greater dail 5.					
Rank	Number of Females	Number of Males			
Officer	3931.457583	22249.54242			
Detective	730.4002782	4133.599722			
Sergeant	647.6596217	3665.340378			
Lieutenant	213.5339629	1208.466037			
Captain	55.71104096	315.288959			
Higher Ranks	34.23751304	193.762487			
	Sum of Females	Sum of Males			
Total	5613	31766			

PART-G

Degree of Freedom:(No. of rows-1)(No. of columns -1)

Degree of Freedom: 5

	PA	RT-H	
Rank	Female	Male	Total
Officer	76.27%	68.94%	70.04%
Detective	14.36%	12.77%	13.01%
Sergeant	7.39%	12.27%	11.54%
Lieutenant	1.59%	4.20%	3.80%
Captain	0.21%	1.13%	0.99%
Higher Ranks	0.18%	0.69%	0.61%
TotAL	5613	31766	37379
	PART-H(Expected Val	ue calculation	
Rank	Female	Male	Total
Officer	3931.457583	22249.54242	26181
Detective	730.4002782	4133.599722	4864
Sergeant	647.6596217	3665.340378	4313
Lieutenant	213.5339629	1208.466037	1422
Captain	55.71104096	315.288959	371
Higher Ranks	34.23751304	193.762487	228
PART-	H(Finding the residual)		
Rank	Female	Male	
Officer	31.07750716	5.491344446	
Detective	7.824912041	1.382649099	
Sergeant	83.57862334	14.7682054	
Lieutenant	72.62876457	12.83338335	
Captain	34.29580688	6.060012718	
Higher Ranks	17.15828593	3.031840929	
ParT-H(Calculating Chi Squ	are and P-Value)		
Chi Square χ²	290.1313359		
P-Value	0.00		

Part-I

Since chi-square is very large and p-value is zero so we will reject null hypothesis. We can conclude that there is different proportion of male & female in atleast one of the ranks.

	PART-J	
Rank	Female	Male
Officer	5.57	-2.34
Detective	2.80	-1.18
Sergeant	-9.14	3.84
Lieutenant	-8.52	3.58
Captain	-5.86	2.46
Higher Ranks	-4.14	1.74

In Part-J, If the standardized residual is beyond the range of ± 2, then that cell can be considered to be a major contributor or statistically significant.

So. all the cells except Male Detective and Male Higher Ranks are major contributors.

Nutrition Education Program- Using T-Test & Scatter Plots

Nutrition Education Programs

Nutrition education programs, which teach clients how to lose weight or reduce cholesterol levels through better eating patterns, have been growing in popularity. The nurse in charge of one such program at a local hospital wanted to know whether the programs actually work. A random sample was drawn of 33 clients who attended a nutrition education program for those with elevated cholesterol levels. The study recorded the weight, cholesterol levels, total dietary fat intake per average day, total dietary cholesterol intake per average day, and percent of daily calories from fat. These data were gathered both before and 3 months after the program.

The researchers also determined the clients' genders, ages, and heights. The data are stored in the following way:

Column 1: Gender (1 = female, 2 = male)

Column 2: Age

Column 3: Height (in meters)

Columns 4 and 5: Weight, before and after (in kilograms)

Columns 6 and 7: Cholesterol level, before and after

Columns 8 and 9: Total dietary fat intake per average day, before and after (in grams)

Columns 10 and 11: Dietary cholesterol intake per average day, before and after (in milligrams)

Columns 12 and 13: Percent daily calories from fat, before and after

The nurse would like the following information:

- a. In terms of each of weight, cholesterol level, fat intake, cholesterol intake, and calories from fat, is the program a success?
- b. Did the program affect the amount of reduction in each of weight, cholesterol level, fat intake, cholesterol intake, and calories from fat in females?
- c. Does age affect the amount of reduction in weight, cholesterol level, fat intake, cholesterol intake, and calories from fat cholesterol?

Gender	Age	Height	Weight 1	Weight 2	Choles 1	Choles 2	TotFat 1	TotFat 2	DietC 1	DietC 2	PDCF 1	PDCF 2
1	22	1.60	74.20	71.70	6.82	7.50	19.3	21.2	88.1	154.9	25.2	23.6
1	30	1.62	99.60	96.60	5.73	5.30	39.3	27.7	239.0	149.5	45.7	30.5
1	34	1.73	71.80	71.30	6.26	6.64	71.6	43.3	168.6	156.4	31.2	24.9
1	40	1.50	56.00	53.80	6.82	7.68	38.1	29.8	102.3	75.7	47.3	37.5
2	40	1.75	86.30	87.40	7.22	6.67	94.1	70.2	368.9	256.4	39.9	29.8
2	40	1.75	97.00	96.00	5.42	4.86	88.5	64.8	233.3	190.3	33.1	32.3
1	41	1.65	73.90	71.10	6.78	5.57	17.0	22.1	39.6	59.7	27.3	22.6
2	43	1.78	104.80	99.00	9.02	7.61	114.8	33.6	532.1	178.4	37.7	27.5
2	43	1.73	96.30	96.60	7.52	6.68	117.3	72.0	939.8	261.0	38.4	34.2
2	45	1.75	91.50	86.30	7.03	5.25	94.5	55.7	299.8	282.6	45.8	29.8
1	46	1.63	48.80	47.90	5.50	4.56	110.7	61.4	368.6	110.9	41.7	31.2
2	46	1.74	68.80	75.90	6.67	5.76	114.4	93.4	381.9	298.6	47.8	39.5
2	46	1.74	100.00	100.70	6.45	7.02	34.1	14.1	90.0	26.2	23.1	20.0
1	49	1.59	59.00	58.20	6.49	5.47	45.9	30.1	82.7	75.0	36.0	28.8
1	50	1.68	85.20	83.10	7.80	7.12	49.2	37.8	192.6	230.5	35.8	28.4
2	51	1.75	79.80	78.40	7.20	6.18	63.4	68.6	246.4	588.4	40.6	34.9
2	51	1.70	80.50	73.50	6.41	5.42	56.2	20.7	144.7	71.7	34.5	24.3
1	52	1.61	95.20	95.20	6.86	6.25	47.6	16.6	131.2	78.3	34.7	20.9
1	53	1.63	65.20	63.00	7.20	7.39	48.2	36.5	95.2	101.4	32.6	32.5
2	53	1.77	97.80	94.00	6.00	6.32	38.5	32.0	126.6	111.0	39.2	34.9
2	53	1.73	82.60	81.80	7.04	7.53	131.5	31.1	489.6	102.1	50.4	40.4
1	54	1.58	65.00	63.70	5.83	5.71	63.7	49.5	252.2	193.2	38.6	33.8
1	55	1.74	69.90	66.80	6.59	5.97	48.4	31.8	226.6	160.3	33.7	32.1
1	56	1.65	68.40	68.90	7.93	6.49	57.7	36.5	70.8	87.3	32.3	25.2
1	56	1.53	95.80	95.30	6.96	6.32	80.1	50.4	263.8	152.9	35.6	31.2
2	57	1.74	98.90	101.40	6.29	6.07	108.3	90.0	329.0	363.6	37.8	41.8
1	58	1.57	52.30	52.80	7.49	6.55	55.0	62.4	275.5	215.6	49.3	38.2
2	58	1.70	103.50	103.50	6.70	6.05	52.3	72.2	172.3	151.5	35.1	34.4
2	63	1.79	83.20	81.40	7.73	5.96	92.1	101.1	386.9	373.2	38.8	45.0
2	63	1.78	80.30	76.80	7.01	6.54	44.9	36.8	125.0	81.5	22.5	19.8
1	64	1.65	60.70	60.50	7.17	6.00	21.5	24.2	124.2	104.1	19.7	15.3
2	65	1.69	79.00	77.90	6.70	6.16	62.4	41.5	192.8	149.1	38.0	40.8
2	69	1.66	65.00	64.00	8.07	6.21	75.9	62.5	219.8	253.8	36.3	31.0

PART - A

To compare the success of the education program, we will compare the results of the variables like weight, cholesterol level, fat intake, cholesterol intake, and calories from fat before & after the program. We will consider these as paired samples & perform 't-Test: Paired Two Sample for Means' Test. Then we will look at the P-value of these test reults. If it is less than the sigificance level which we assume to be 0.05, then we can say that the program is a success.

Comparison of weight before & after the program				
	Weight 1	Weight 2		
Mean	79.888	78.621		
Variance	255.537	251.089		
Observations	33.000	33.000		
Pearson	0.000			
Correlation	0.988			
Hypothesized	0.0	000		
Mean Difference	0.0	000		
df	32.	000		
t Stat	2.8	397		
P(T<=t) one-tail	0.0	003		
t Critical one-tail	1.694			
P(T<=t) two-tail	0.007			
t Critical two-tail	2.0)37		

Comparison of cholesterol level before & after the program				
	Choles 1	Choles 2		
Mean	6.870	6.267		
Variance	0.583	0.618		
Observations	33.000	33.000		
Pearson	0.5	.571		
Correlation				
Hypothesized	0.0	000		
Mean Difference	0.0	,,,,		
₫f	32.	000		
t Stat	4.8	325		
P(T<=t) one-tail	0.0	000		
t Critical one-tail	1.694			
P(T<=t) two-tail	0.000			
t Critical two-tail	2.037			

Comparison of total dietary fat intake per average day, before & after the program								
	Total Fat 1	Total Fat 2						
Mean	66.561	46.715						
Variance	967.594	533.914						
Observations	33.000	33.000						
Pearson	Pearson							
Correlation	0.635							
Hypothesized	0.0	000						
Mean Difference	0.0	000						
df	32.	.000						
t Stat	4.0	698						
P(T<=t) one-tail	0.0	000						
t Critical one-tail	1.694							
P(T<=t) two-tail	0.000							
t Critical two-tail	2.037							

Comparison of dietary cholesterol intake per average day, before & after the								
program								
	DietC 1	DietC 2						
Mean	242.421	177.124						
Variance	30617.755	13032.424						
Observations	33.000	33.000						
Pearson	0.420							
Correlation	0.4	120						
Hypothesized	0.0	000						
Mean Difference	0.0	,00						
df	32.	000						
t Stat	2.2	289						
P(T<=t) one-tail	0.014							
t Critical one-tail	cal one-tail 1.694							
P(T<=t) two-tail	0.0	29						
t Critical two-tail 2.037								

Hypothesis:

H0- The mean difference in the values for weight, cholesterol level, fat intake, cholesterol intake, and calories from fat before & after the program is zero Ha-The mean difference in the values for weight, cholesterol level, fat intake, cholesterol intake, and calories from fat before & after the program is not zero

Conclusion: Since the p-values(P(T<=t) two-tail) is less than alpha(0.05) so we can reject the null hypothesis and conclude that values for variables are different.

The Nutrition Education Program is a success as it has changed the variables.

PART-B: NUTRITION

In this sheet, Gender 1= FEMALE

We will conduct a 't-Test: Two-Sample Assuming Unequal Variances' test and look at one-tailed test for reduction in the values of each variable with respect to gender. If the p-value for one-tailed test of less than 0.05 then we can conclude that gender impacts the reduction of certain variables

Gender	Age	Height	Weight 1	Weight 2	Choles 1	Choles 2	TotFat 1	TotFat 2	DietC 1	DietC 2	PDCF 1	PDCF 2
1	56	1.65	68.40	68.90	7.93	6.49	57.7	36.5	70.8	87.3	32.3	25.2
1	53	1.63	65.20	63.00	7.20	7.39	48.2	36.5	95.2	101.4	32.6	32.5
1	54	1.58	65.00	63.70	5.83	5.71	63.7	49.5	252.2	193.2	38.6	33.8
1	56	1.53	95.80	95.30	6.96	6.32	80.1	50.4	263.8	152.9	35.6	31.2
1	22	1.60	74.20	71.70	6.82	7.50	19.3	21.2	88.1	154.9	25.2	23.6
1	52	1.61	95.20	95.20	6.86	6.25	47.6	16.6	131.2	78.3	34.7	20.9
1	34	1.73	71.80	71.30	6.26	6.64	71.6	43.3	168.6	156.4	31.2	24.9
1	55	1.74	69.90	66.80	6.59	5.97	48.4	31.8	226.6	160.3	33.7	32.1
1	58	1.57	52.30	52.80	7.49	6.55	55.0	62.4	275.5	215.6	49.3	38.2
1	41	1.65	73.90	71.10	6.78	5.57	17.0	22.1	39.6	59.7	27.3	22.6
1	30	1.62	99.60	96.60	5.73	5.30	39.3	27.7	239.0	149.5	45.7	30.5
1	46	1.63	48.80	47.90	5.50	4.56	110.7	61.4	368.6	110.9	41.7	31.2
1	64	1.65	60.70	60.50	7.17	6.00	21.5	24.2	124.2	104.1	19.7	15.3
1	50	1.68	85.20	83.10	7.80	7.12	49.2	37.8	192.6	230.5	35.8	28.4
1	49	1.59	59.00	58.20	6.49	5.47	45.9	30.1	82.7	75.0	36.0	28.8

Comparison of dietary cholesterol intake per average day, before & after the program

before & an	before & after the program						
	DietC 1	DietC 2					
Mean	170.063 131						
Variance	8637.321	2785.709					
Observations	16.000 16.00						
Hypothesized							
Mean	0.000						
Difference							
df	24.	000					
t Stat	1.4	139					
P(T<=t) one-tail	0.0	814					
t Critical one-tail	1.7	710					
P(T<=t) two-tail	0.163						
t Critical two-tail	ail 2.063						

Comparison of Percent daily calories from fat, before & after the program								
	PDCF 1	PDCF 2						
Mean	35.419	28.544						
Variance	63.067	37.697						
Observations	16.000	16.000						
Hypothesized Mean Difference	0.000							
df	28	.000						
t Stat	2.	739						
P(T<=t) one-tail	0.0	005						
t Critical one-tail	1.	701						
P(T<=t) two-tail	0.	011						
t Critical two-tail	2.	048						

C : f :14							
Comparison of weight							
before & after the program							
	Weight1 Weight 2						
Mean	71.313	69.994					
Variance	242.216 235.76						
Observations	16.000 16.000						
Hypothesized							
Mean	0	.000					
Difference							
df	30	0.000					
t Stat	0	.241					
$P(T \le t)$ one-tail	0.	4055					
t Critical one-tail	1.697						
P(T<=t) two-tail	0.811						
t Critical two-tail	2	.042					

CONCLUSION:

We can see that the p-value for one tailed test for all the variables except weight & dietary cholesterol before and after the program is less than the significance level (0.05)

We can conclude that there is no reduction in weight & cholesterol intake from the program but cholesterol level, fat intake, and calories from fat for females from the adoption of nutrition education program has reduced.

So, the nutrition education program has proved beneficial for women in aspects where it caused reduction.

Comparison of cholesterol level before & after the program Choles 1 Choles 2 6.764 6.283 Mean Variance 0.485 0.748 16.000 Observations 16.000 Hypothesized Mean 0.000 Difference 29,000 1.737 t Stat 0.0465 P(T<=t) one-tail 1.699 t Critical one-tail 0.093 P(T<=t) two-tail 2.045 t Critical two-tail

Comparison of total dietary fat intake per average day, before & after the program								
	Tot Fat 1	Tot Fat .						
Mean	50.831	36.331						
Variance	563.122	191.642						
Observations	16.000	16.000						
Hypothesized Mean	0.000							

Difference

df

t Stat

P(T<=t) one-tail

t Critical one-tail

P(T<=t) two-tail

t Critical two-tail

before &

Tot Fat 2

36.331 191.642

24.000

2.111

0.0226

1.710

0.045

2.064

				P.	ART-C	(Scatter	plots)				
Age	Height	Weight 1	Weight 2	Choles 1	Choles 2	TotFat 1	TotFat 2	DietC 1	DietC 2	PDCF 1	PDCF 2
22	1.60	74.20	71.70	6.82	7.50	19.3	21.2	88.1	154.9	25.2	23.6
30	1.62	99.60	96.60	5.73	5.30	39.3	27.7	239.0	149.5	45.7	30.5
34	1.73	71.80	71.30	6.26	6.64	71.6	43.3	168.6	156.4	31.2	24.9
40	1.50	56.00	53.80	6.82	7.68	38.1	29.8	102.3	75.7	47.3	37.5
40	1.75	86.30	87.40	7.22	6.67	94.1	70.2	368.9	256.4	39.9	29.8
40	1.75	97.00	96.00	5.42	4.86	88.5	64.8	233.3	190.3	33.1	32.3
41	1.65	73.90	71.10	6.78	5.57	17.0	22.1	39.6	59.7	27.3	22.6
43	1.78	104.80	99.00	9.02	7.61	114.8	33.6	532.1	178.4	37.7	27.5
43	1.73	96.30	96.60	7.52	6.68	117.3	72.0	939.8	261.0	38.4	34.2
45	1.75	91.50	86.30	7.03	5.25	94.5	55.7	299.8	282.6	45.8	29.8
46	1.63	48.80	47.90	5.50	4.56	110.7	61.4	368.6	110.9	41.7	31.2
46	1.74	68.80	75.90	6.67	5.76	114.4	93.4	381.9	298.6	47.8	39.5
46	1.74	100.00	100.70	6.45	7.02	34.1	14.1	90.0	26.2	23.1	20.0
49	1.59	59.00	58.20	6.49	5.47	45.9	30.1	82.7	75.0	36.0	28.8
50	1.68	85.20	83.10	7.80	7.12	49.2	37.8	192.6	230.5	35.8	28.4
51	1.75	79.80	78.40	7.20	6.18	63.4	68.6	246.4	588.4	40.6	34.9
51	1.70	80.50	73.50	6.41	5.42	56.2	20.7	144.7	71.7	34.5	24.3
52	1.61	95.20	95.20	6.86	6.25	47.6	16.6	131.2	78.3	34.7	20.9
53	1.63	65.20	63.00	7.20	7.39	48.2	36.5	95.2	101.4	32.6	32.5
53	1.77	97.80	94.00	6.00	6.32	38.5	32.0	126.6	111.0	39.2	34.9
53	1.73	82.60	81.80	7.04	7.53	131.5	31.1	489.6	102.1	50.4	40.4
54	1.58	65.00	63.70	5.83	5.71	63.7	49.5	252.2	193.2	38.6	33.8
55	1.74	69.90	66.80	6.59	5.97	48.4	31.8	226.6	160.3	33.7	32.1
56	1.65	68.40	68.90	7.93	6.49	57.7	36.5	70.8	87.3	32.3	25.2
56	1.53	95.80	95.30	6.96	6.32	80.1	50.4	263.8	152.9	35.6	31.2
57	1.74	98.90	101.40	6.29	6.07	108.3	90.0	329.0	363.6	37.8	41.8
58	1.57	52.30	52.80	7.49	6.55	55.0	62.4	275.5	215.6	49.3	38.2
58	1.70	103.50	103.50	6.70	6.05	52.3	72.2	172.3	151.5	35.1	34.4
63	1.79	83.20	81.40	7.73	5.96	92.1	101.1	386.9	373.2	38.8	45.0
63	1.78	80.30	76.80	7.01	6.54	44.9	36.8	125.0	81.5	22.5	19.8
64	1.65	60.70	60.50	7.17	6.00	21.5	24.2	124.2	104.1	19.7	15.3
65	1.69	79.00	77.90	6.70	6.16	62.4	41.5	192.8	149.1	38.0	40.8

1.66

65.00

64.00

8.07

6.21

75.9

62.5

219.8

253.8

36.3

		b	ing corre etween l each vari			
	Weight 1	Weight 2			TotFat 1	TotFat 2
Age	-0.139	-0.124		Age	0.051	0.225
Ago	Choles 1	Choles 2		A 770	DietC 1	DietC 2
Age	0.282	-0.088		Age	-0.058	0.092
		4.70	PDCF 1	PDCF 2		
		Age	-0.078	0.150		

None of the variables are highly corelated to age as they are way less than 0.7

Weight 1, Weight 2, Choles 2, DietC 1 and PDCF 1
are negatively correlated with age meaning an
inverse relationship with age

31.0

Comparison of total fat before & after the NEP for different age groups

Comparison of PDCF before & after the NEP for different age groups

