Classroom Exercises

- 1. Quad. GRAM is a parallelogram.
 - **a.** Why is $\angle G$ supplementary to $\angle M$?
 - **b.** Why is $\angle M$ supplementary to $\angle A$?
 - c. Complete: Consecutive angles of a parallelogram are ?, while opposite angles are ?...
- 2. Suppose that $\angle M$ is a right angle. What can you deduce about angles G, R, and A?

In Exercises 3-5 quad. ABCD is a parallelogram. Find the values of x, y, and z.

3.

5.

Must quad. EFGH be a parallelogram? Can it be a parallelogram? Explain.

Quad. ABCD is a parallelogram. Name the principal theorem or definition that justifies the statement.

9.
$$\overline{AD} \parallel \overline{BC}$$

10.
$$\angle ADX \cong \angle CBX$$

11.
$$m \angle ABC = m \angle CDA$$

12.
$$\overline{AD} \cong \overline{BC}$$

13.
$$AX = \frac{1}{2}AC$$

14.
$$DX = BX$$

- 15. Draw a quadrilateral that isn't a parallelogram but does have two 60° angles opposite each other.
- 16. State each theorem in if-then form. (Begin "If a quadrilateral is a")
 - a. Theorem 5-1
- b. Theorem 5-2
- c. Theorem 5-3
- 17. a. Draw any two segments, \overline{AC} and \overline{BD} , that bisect each other at O. What appears to be true of quad. ABCD?
 - **b.** This exercise investigates the converse of what theorem?
- 18. Draw two segments that are both parallel and congruent. Connect their endpoints to form a quadrilateral. What appears to be true of the quadrilateral?