RGM College of Engineering and Technology (Autonomous), Nandyal Department of CSE (Data Science)

2020-24 Batch - IV Year - II Semester - Project Presentations - Phase 1

List of activities to present to their project supervisors:

1. Team information

Sl	Registered Number	Name	Team Leader	Project Supervisor, Designation, Department	Project Co-supervisor, Designation, Department
1	20091A3251	B. Suresh Kumar Reddy	B. Suresh	Dr. M. Suleman	Ms. A. Annapurna,
2	20091A3229	M. Nandeeswar	Kumar	Basha, Associate Professor,	Assistant
3	20091A3212	B. Dharani	Reddy	CSE(DS)	Professor, CSE(DS)

2. Title of the Project

Multi-disease detection system with X-ray images using Deep Learning Techniques

3. Source of the Project

"COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning" Elsevier by Prottoy Saha, Muhammad Sheikh Sadi, O.F.M. Riaz Rahman Aranya, Sadia Jahan, Ferdib-Al Islam.

Paper_Link: COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning - ScienceDirect

Journal: Informatics in Medicine Unlocked

Volume: 26

Year of published: 2021

The paper introduces COV-VGX, a deep learning-based COVID-19 detection system utilizing chest X-ray images. Employing transfer learning with the VGG-16 pre-trained model, the system incorporates both multiclass and binary classifiers for automated prediction of coronavirus, pneumonia, and normal classes. Despite limited COVID-19 dataset availability, extensive experiments demonstrate remarkable performance with a multiclass classifier.

4. Any supporting sources

[1]"COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images" IEEE by Tabik, S. and Gómez-Ríos, A. and Martín-Rodríguez, J. L. and Sevillano-García, I. and Rey-Area, M. and Charte, D. and Guirado, E. and Suárez, J. L. and Luengo, J. and Valero-González, M. A. and García-Villanova, P. and Olmedo-Sánchez, E. and Herrera, https://doi.org/10.1109/JBHI.2020.3037127.

[2] "Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks" ScienceDirect by Suat Toraman, Talha Burak Alakus, Ibrahim Turkoglu https://www.sciencedirect.com/science/article/pii/S0960077920305191

5. Work done so far, such as literature survey

Author	Methodology	Features	Challenges	
Liva Faes; Xiaoxuan	A comparison of	Critically appraise	Limited amount of	
Liu; Pearse A Kean,	deep learning performance against	the current state of diagnostic	dataset.	
The Lancet Digital	health-care	performance by deep		
Health, October	professionals in	learning algorithms		
2020	detecting diseases from medical	for medical imaging.		
	imaging: a			
	systematic review			
	and meta-analysis			
Pushpa Singh;	Diagnosing of	Helps to verify this	Dependency on real	
Narendra Singh;	disease using	data and foretell that	data leads to data	
Krishna Kant Singh;	machine learning	everything from	scarcity.	
Akansha Singh,		sickness outbreaks to		
Machine Learning		severe infectious		
and the Internet of		diseases.		

Medical Things in			
Healthcare, 2021			
Yuanyuan Pan;	Enhanced Deep	The predictions are	It is
Minghuan Fu; Biao	Learning Assisted	very fast.	Computationally
Cheng; Xuefei Tao;	Convolutional		expensive
Jing Guo, IEEE	Neural Network for		
Access ,May 2020	Heart Disease		
	Prediction.		
M. Chen, Y. Hao, K.	Disease prediction	Prediction accuracy	If the images
Hwang, L. Wang	by machine learning	of our proposed	inovlves some
and L. Wang, IEEE	over big data from	algorithm reaches	degree of changes
Access, 2020	healthcare	94.8% with a	or angle changes,
	communities	convergence speed	then CNNs find it
		which is faster than	difficult in
		that of the CNN-	classifying the
		based unimodal	image.
		disease risk	
		prediction (CNN-	
		UDRP) algorithm.	
Alexander	An overview of	Results in close to	3D CNN's are a
Selvikvag;	deep learning in	state-of-the-art	comparatively new
Lundervold; Arvid	medical imaging	performance on 2D	concept and yet to
Lundervold;	focusing on MRI	object detection.	be like 2D's.
Katarzyna			
WęgrzynWolska,			
Zeitschrift für			
Medizinische			
Physik, May 2020			

- Conducted a literature survey, collecting relevant papers from IEEE and Science Direct.
- Identified existing work and outlined future works.

- Completed requirements analysis, including detailed and high-level requirements, and ensured validation.
- Analysed design requirements, covering component design, data flow, and evaluating interfaces between system components.

6. Division of project into tasks

Task	Team Member	Concepts	Technologies
		involved	involved
Identification of	B. Suresh Kumar	Literature survey	-
beneficiary	Reddy		
domain			
Identification of	M. Nandeeswar	Literature survey	-
papers in IEEE,			
ScienceDirect			
Identification of	B. Dharani	Literature survey	-
existing work			
and future scope			
Detailed	B. Suresh Kumar	Requirement	-
Requirement	Reddy	analysis	
analysis			
Identifying	B. Suresh Kumar	Design	-
objectives,	Reddy		
diagrams and			
implementing			
design			
Gathering data	M. Nandeeswar	Data Collection	Kaggle, Github,
from different			SIRM databases
sources			
Cleaning data	M. Nandeeswar	Data	Numpy, Pandas,
and visualizing		preprocessing	Matplotlib
the data		and Exploratory	
		data analysis	
Splitting the data	M. Nandeeswar	Data splitting	sklearn
into train and			
test			
Train and	B. Suresh Kumar	Development	Transfer
implement the	Reddy	Phase	Learning,
DL models			Fully Connected
			layers, VGG-16,
			AlexNet,
			CNN

Evaluate the	B. Suresh Kumar	Performance	Confusion	
performance	Reddy	Metrics	Metrics	
Implement the	B. Dharani	Frontend	HTML, CSS	
user interface				
Set up the Flask	B. Dharani	Backend	Flask	
environment for				
the backend				
framework				
Conduct system	M. Nandeeswar	Testing	Unittest, pytest	
testing and				
model				
deployment				
Gathering	B. Suresh Kumar	Iterative	-	
feedback from	Reddy	Feedback		
the project				
supervisor, Co-				
supervisor, and				
department				
head.				

7. Work plan / schedule (should be in line with the Project Calendar)

Week	Activity				
08.01.2024 to 12.01.2024	 Supervisors Review-1: Literature Survey Identification of papers in IEEE, ScienceDirect, and Elsevier. Identification of existing work and future scope in selected papers. 				
15.01.2024 to 20.01.2024	Gathering the data from different sources				
22.01.2024 to 27.01.2024	Data preprocessing and Exploratory data analysis				
29.01.2024 to 03.02.2024	Department Review - 1				
05.02.2024 to 10.02.2024	Identifying the DL models				
12.02.2024 to 17.02.2024	Development Phase -1 Train and implement the models				
19.02.204 to 24.02.2024	Calendar Review -1				
26.02.2024 to 02.03.2024	Development Phase -2 Develop the models and evaluate performance metrics				

04.03.2024 to 09.03.2024	Supervisors Review -2 Implement the architecture of the models and analyze them.
11.03.2024 to 16.03.2024	Development Phase -3 Setup experimental analysis and Front-end techniques
18.03.2024 to 23.03.2024	Department Review -2
25.03.2024 to 30.03.2024	Development Phase -4 Set up the Flask environment at the backend.
01.04.2024 to 06.04.2024	Supervisors Review -3 Establish data flow from the backend to the front end for dashboards. Develop data analysis dashboards.
08.04.2024 to 13.04.2024	Department Review - 3
15.04.2024 to 20.04.2024	Testing and deployment
22.04.2024 to 27.04.2024	Calendar Review -2
29.04.2024 to 30.04.2024	Project Report submission to the department
01.05.2024 to 05.05.2024	External Viva Voce

8. Work distribution for each member

Team Member	Task	Technologies	
B. Suresh Kumar	Literature survey,	Matplotlib, Transfer	
Reddy(20091A3251)	Exploratory Data	Learning, CNN,	
	Analysis, DL models,	Fully Connected	
	Performance metrics	layers, VGG-16,	
		AlexNet, confusion	
		metrics, Sklearn,	
		Kears, Tensorflow	
M. Nandeeswar(20091A3229)	Data Collection and	Numpy, pandas,	
	preprocessing,	pytest	
	Unit Testing,		
	Integration Testing		
B. Dharani(20091A3212)	Frontend and	HTML, CSS, Flask	
	Backend design		

9. Skillset of each member to match their allocated work,

Example:

Team Member	Data Collection	Deep Learning Modelling	Backend	Frontend	Data Analysis (Preprocessing)	DL Algorithms	Unit Testing	Integration Testing
B. Suresh	✓	✓	~	✓	✓	✓	✓	✓
Kumar Reddy								
M. Nandeeswar	✓	✓	✓		✓		✓	✓
B. Dharani	✓	✓		✓		✓	✓	✓

10. Supervisor's remarks.

Signatures

Member - 1: Team Leader: B. Suresh Kumar Reddy

Member - 2: M. Nandeeswar

Member - 3: B. Dharani

Date: 09-01-2024

Signature Signature Signature (Project Coordinator) (Co-Supervisor) (Supervisor)

Signature HoD, CSE (Data Science)