Estructuras Algebraicas para la Computación

Mariam Cobalea

Universidad de Málaga Dpto. de Matemática Aplicada

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

1 / 68

Tema 3: Grupos, anillos y cuerpos

- Grupos y subgrupos. Clases laterales y teorema de Lagrange.
- Introducción a la teoría de la codificación.
- Anillos. Elementos inversibles y divisores de cero. Cuerpos.

Grupos

Introducción

Para resolver la ecuación a+x=b en \mathbb{Z} procedemos del siguiente modo:

• Se suma (-a) en ambos miembros,

$$(-a) + (a + x) = (-a) + b$$

Se aplica la propiedad asociativa

$$((-a) + a) + x = (-a) + b$$

Se aplica la propiedad del opuesto y obtenemos

$$0+x=(-a)+b$$

Usando la propiedad de identidad del neutro nos queda

$$\mathbf{x} = (-a) + b$$

3 Sabemos que la suma de dos enteros siempre es un entero, de modo que (-a) + b es un entero.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

2/6

Grupos

Introducción

Así, para todo a y b de \mathbb{Z} , se tiene que x = (-a) + b es el único entero que satisface la ecuación a + x = b.

En este ejemplo, aparte de usar el hecho de que la suma es una operación binaria en el conjunto de los enteros, se aplican otras tres propiedades de la suma:

- propiedad asociativa,
- propiedad de **elemento neutro** y
- propiedad del simétrico.

Estas propiedades se usan para definir la estructura algebraica de grupo.

tariam Cobalea (UMA) Estructuras Algebraicas para la Computación 2 / 68 Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación 4 / 68

Definición

Sea * una operación binaria definida en un conjunto G. Se dice que (G,*) es un **grupo** si se verifican las siguientes propiedades:

4 Asociativa: $\forall a, b, c \in G$, (a*b)*c = a*(b*c)

2 Elemento neutro: $\exists e \in G, \forall a \in G, a * e = e * a = a$

3 Elemento simétrico: $\forall a \in G, \exists a' \in G, a * a' = a' * a = e$

Si además se verifica la propiedad

Conmutativa: $\forall a, b \in G, \ a * b = b * a$

se dice que (G,*) es un grupo abeliano.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

5 / 68

Grupos

Notación

	Elemento neutro	Elemento simétrico
Operación aditiva	Cero	Opuesto
	0	(-a)
Operación multiplicativa	Unidad	Inverso
	1 , I	a^{-1}

Grupos

Ejemplos

- $(\mathbb{Z},+)$ es un grupo. El elemento neutro es 0 y para cada $x \in \mathbb{Z}$ su opuesto es -x. Además, $(\mathbb{Z},+)$ es abeliano, ya que se verifica la propiedad conmutativa.
- $(\mathbb{Q},+)$ es un grupo. El elemento neutro es 0 y para cada $x\in\mathbb{Q}$ su opuesto es -x. Además, $(\mathbb{Q},+)$ es abeliano, ya que se verifica la propiedad conmutativa.
- (\mathbb{R}^+,\cdot) es un grupo. El elemento neutro es 1 y para cada $x\in\mathbb{R}$ el inverso es $\frac{1}{x}$. Además, (\mathbb{R}^+,\cdot) es abeliano ya que se verifica la propiedad conmutativa.
- (\mathbb{Z}^+,\cdot) no es grupo, ya que 2 no tiene inverso.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

7.1.

Grupos

Ejercicios

 \bullet En el conjunto $\ \ \mathbb{Z}$ se define la operación

$$x*y=x+y+1$$

Estudia si $(\mathbb{Z},*)$ es un grupo.

 ${\color{red} \bullet}$ En el conjunto ${\color{black} \mathbb{R}} - \{0\}$ se define la operación binaria

$$x*y=\frac{x\cdot y}{2}$$

Estudia si $(\mathbb{R} - \{0\}, *)$ es un grupo.

lacktriangle En el conjunto $\mathbb{Q}-\{1\}$ se define la operación *

$$\mathbf{x} * \mathbf{y} = \mathbf{x} + \mathbf{y} - \mathbf{x} \mathbf{y}$$

Estudia si $(\mathbb{Q} - \{1\}, *)$ es un grupo.

Propiedades de los grupos

Teorema

Sea (G,*) un grupo. Entonces:

- El elemento neutro e es único.
- El elemento simétrico a^{-1} de cada elemento $a \in G$ es único.
- $(a^{-1})^{-1} = a$

Teorema

Sea (G,*) un grupo y sean $a,b \in G$. Entonces:

• $(a*b)^{-1} = b^{-1}*a^{-1}$

Teorema (Propiedad de simplificación)

Sea (G,*) un grupo y sean $a,b,c \in G$. Se verifican:

- Si a*b=a*c, entonces b=c
- Si b*a=c*a, entonces b=c

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Grupos

Propiedades de los grupos

Teorema

Sea (G,*) un grupo y sean $a,b \in G$, entonces

- la ecuación a * x = b tiene solución única $x = a^{-1} * b$
- la ecuación y * a = b tiene solución única $y = b * a^{-1}$
- fijado un elemento $a \in G$, la función $f: G \rightarrow G$, definida

$$f(\mathbf{x}) = a * \mathbf{x}$$

es bivectiva.

Demostración: Ejercicio

Grupos

Propiedades de los grupos

Ejercicio: En el conjunto $G = \mathbb{R} - \{-1\}$ se define la operación *

$$*: G \times G \longrightarrow G$$

$$(x,y) \longmapsto x * y = x + y + xy$$

- Demuestra que (G,*) es grupo.
- 2 Encuentra el valor de $x \in G$ tal que 2 * x * 3 = 35

Estructuras Algebraicas para la Computación

Grupos

Propiedades de los grupos

Ejercicios: Demuestra que:

- Si (G,*) es un grupo tal que para todo $a \in G$, se verifica $a^2 = e$, entonces (G, *) es abeliano.
- ② Si (G,*) es un grupo tal que para todo $a,b \in G$,

$$(a*b)^{-1} = a^{-1}*b^{-1}$$

entonces (G, *) es abeliano.

Propiedades de los grupos

Definición

El **orden** de un grupo (G,*) es el cardinal del conjunto G. Se dice que el grupo (G,*) es **finito** si tiene orden finito.

La operación de un grupo finito se puede especificar mediante una tabla, llamada tabla de Cayley.

Ejemplo El grupo (H, \cdot) , donde $H = \{1, i, -1, -i\}$, donde $i = \sqrt{-1}$. La tabla de Cayley de la operación \cdot es:

		1	i	-1	− i
_	1	1	i	-1	− <i>i</i>
	i	i	-1	− <i>i</i>	1
	-1	-1	− <i>i</i>	1	i
	− i	− <i>i</i>	1	i	-1

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

12 / 68

Grupos

Propiedades de los grupos

Teorema

Si (G,*) es un grupo finito, entonces su tabla de Cayley es tal que cada elemento de G aparece exactamente una vez en cada fila y en cada columna.

Ejercicio En el conjunto $S = \{a, b, c, d, e\}$ se define la operación * dada por la tabla

*	e	а	b	с	d
e	e	а	b	С	d
а	а	e	d	b	с
b	b	с	e	d	а
с	с	d	а	e	b
d	d	b	С	а	e

Demuestra que no se verifica el recíproco del teorema anterior.

Grupos

Propiedades de los grupos

Ejercicio En el conjunto $G = \{e, a, b, c, d, f\}$ se considera una operación binaria * dada por

*	e	а	b	с	d	f
е	е	а	b	с	d	f
а	а		е	f	С	d
b	b	е	а			
с	С				а	
d	d	f				
f	f	С		а		

Completa la tabla anterior para que (G,*) sea un grupo. ¿Es abeliano?

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

15 / 6

Grupos

Ejercicio Se considera el conjunto $G = \{i, s_0, s_1, s_2\}$, cuyos elementos son transformaciones del plano provisto de dos ejes de referencia perpendiculares.

i: identidad

 s_0 : simetría respecto al origen de coordenadas

 s_1 : simetría respecto al eje de abcisas

 s_2 : simetría respecto al eje de ordenadas

En G definimos la operación \circ composición de funciones.

• Escribe la tabla de la operación o

• Demuestra que (G, \circ) es un grupo.

(Este grupo es conocido como grupo de Kleinn)

Operación compatible con una relación de equivalencia

Definición

Sea A un conjunto en el que hay definidas una relación de equivalencia \sim y una operación binaria *. Se dice que \sim y * son **compatibles** si para todo $a_1, a_2, b_1, b_2 \in A$ se verifica

$$\left\{ egin{array}{l} a_1 \sim a_2 \\ b_1 \sim b_2 \end{array}
ight\} \implies a_1 * b_1 \sim a_2 * b_2 \end{array}$$

Ejemplo: En \mathbb{Z} , la suma y el producto son compatibles con la relación de equivalencia congruencia módulo m

$$a \equiv b \pmod{m} \iff a - b = k \cdot m, \quad k \in \mathbb{Z}$$

Para todo $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ se verifica:

$$\left. \begin{array}{l} a_1 \equiv a_2 \; mod(m) \\ b_1 \equiv b_2 \; mod(m) \end{array} \right\} \implies \left\{ \begin{array}{ll} a_1 + b_1 & \equiv & a_2 + b_2 & mod(m) \\ a_1 \cdot b_1 & \equiv & a_2 \cdot b_2 & mod(m) \end{array} \right\}$$

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Grupos

Operación compatible con una relación de equivalencia

Teorema

Si \sim y * son compatibles, entonces en el conjunto cociente $A/_{\sim}$ se puede definir una operación **

Ejemplo: En el conjunto \mathbb{Z}_5 se definen las operaciones:

Grupos

Operación compatible con una relación de equivalencia

Dada una estructura algebraica (A,*), si la relación de equivalencia \sim es compatible con la operación *, la estructura cociente $(A/_{\sim}, \circledast)$ "hereda" algunas propiedades de la estructura (A, *).

Más exactamente.

- si * es asociativa o conmutativa en A. entonces la operación * también es asociativa en $A/_{\sim}$;
- si e es el elemento neutro de (A,*), entonces [e] es el neutro de $(A/_{\sim}, \circledast)$;
- si $x' \in A$ es el simétrico de $x \in A$ en (A, *), entonces [x'] es la clase simétrica de la clase [x] en $(A/_{\sim}, \circledast)$.

Estructuras Algebraicas para la Computación

Grupos

Operación compatible con una relación de equivalencia

Ejemplo: Para todo m > 1, en el conjunto cociente \mathbb{Z}_m la operación

$$+_m: \quad \mathbb{Z}_m \times \mathbb{Z}_m \quad \to \quad \mathbb{Z}_m$$
 $[x]_m +_m [y]_m = [x + y]_m$

verifica:

• $+_m$ es asociativa, es conmutativa, tiene elemento neutro $[0]_m$ y cada clase $[x]_m$ tiene su opuesto $-[x]_m = [-x]_m$.

Así, para todo m > 1, se verifica que $(\mathbb{Z}_m, +_m)$ tiene estructura de grupo abeliano.

Operación compatible con una relación de equivalencia

Ejemplo: Para todo m > 1, en el conjunto cociente \mathbb{Z}_m también podemos definir

$$\cdot_m$$
: $\mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m$
 $[x]_m \cdot_m [y]_m = [x \cdot y]_m$

- La operación \cdot_m es asociativa, $[1]_m$ es el elemento neutro y es conmutativa.
- Así, para todo m > 1, se tiene que (\mathbb{Z}_m, \cdot_m) es un monoide conmutativo.
- Además, cuando m = p (siendo p un número primo) se verifica que cada elemento no nulo tiene inverso.
- Por lo tanto, para p primo, $(\mathbb{Z}_p \{[0]_p\}, \cdot_p)$ es también un grupo.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Grupos

Operación compatible con una relación de equivalencia

Ejemplo: En particular, para m=4 v m=5, tenemos

$$\mathbb{Z}_4 = \{[0]_4, [1]_4, [2]_4, [3]_4\}$$

 $\mathbb{Z}_5^* = \{[1]_5, [2]_5, [3]_5, [4]_5\}$

Grupos

Producto directo

Definición

Dados los grupos (G,*) v (H,\bullet) , el producto directo $G \times H$ es el conjunto de pares ordenados (g,h) con $g \in G$ y $h \in H$, equipado con la operación 丄

$$(g_1,h_1)\perp (g_2,h_2)=(g_1*g_2,h_1\bullet h_2)$$

Eiemplo:

• $(\mathbb{Z}_2 \times \mathbb{Z}_2, \oplus)$

\oplus	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

• $(\mathbb{R} \times \mathbb{R}, +)$

Grupos

Producto directo

Teorema

Sean los grupos (G,*) v (H,\bullet) . El producto directo $(G\times H,\bot)$ es un grupo. Si G v H son finitos, entonces el orden de este grupo es el producto de los órdenes de G y H.

Ejemplo: Son grupos:

- $(\mathbb{Z}_2 \times \mathbb{Z}_2, \oplus)$.
- $(\mathbb{Z}_2 \times \mathbb{Z}_3, \oplus)$, en general $(\mathbb{Z}_n \times \mathbb{Z}_m, \oplus)$.
- $(\mathbb{R} \times \mathbb{R}, +)$,
- $(\mathbb{R} \times \cdots \times \mathbb{R}, +)$

Orden de un elemento

Definición

Sea (G,*) un grupo y sea $a \in G$. Se define:

- $a^0 = e^0$
- $a^{n+1} = a * a^n, \quad n > 0$

Definición

El **orden** de un elemento $a \in G$ es el menor entero positivo n tal que $a^n = e$

Si no existe tal entero, se dice que el elemento a tiene **orden infinito**.

Ejemplo: En el grupo $(H = \{1, i, -1, -i\}, \cdot)$ tenemos

- $(-1)(-1) = 1 \implies o(-1) = 2$
- $(-i)(-i)(-i)(-i) = 1 \implies o(-i) = 4$

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Grupos

Orden de un elemento

Ejemplo:

- En el grupo $(\mathbb{Z}_6, +_6)$ el elemento neutro es $[0]_6$.
 - $[4]_6 +_6 [4]_6 +_6 [4]_6 = [12]_6 = [0]_6 \implies o([4]_6) = 3$
 - $[5]_6 +_6 \dots +_6 [5]_6 = [30]_6 = [0]_6 \implies o([5]_6) = 6$
- En el grupo $(\mathbb{Z}_7^*, \cdot_7)$, el elemento neutro es $[1]_7$.
 - $[2]_7 \cdot_7 [2]_7 \cdot_7 [2]_7 = [8]_7 = [1]_7 \implies o([2]_7) = 3$
 - $[6]_7 \cdot_7 [6]_7 = [36]_7 = [1]_7 \implies o([6]_7) = 2$
- Si consideramos el grupo $(\mathcal{M}_{2\times 2}^*(\mathbb{Z}_p),\cdot)$ de las matrices inversibles de tamaño 2×2 con coeficientes en \mathbb{Z}_p , p primo, la matriz

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 tiene orden p .

Grupos

Subgrupos

Definición

Sea (G,*) un grupo y sea $\varnothing \neq H \subseteq G$. Se dice que H es un **subgrupo** de (G,*) si (H,*) es grupo.

Ejemplos:

- $(2\mathbb{Z},+)$ es un subgrupo de $(\mathbb{Z},+)$.
- $(\mathbb{Z},+)$ es subgrupo de $(\mathbb{R},+)$.
- $(\{[0]_6, [2]_6, [4]_6\}, +_6)$ es subgrupo de $(\mathbb{Z}_6, +_6)$.

Ejercicio: Demuestra o refuta:

- El subconjunto de los enteros impares es un subgrupo de $(\mathbb{Z}, +)$.
- $(\mathbb{Z}_4, +_4)$ es un subgrupo de $(\mathbb{Z}_{12}, +_{12})$.
- $(\{[1]_{11}, [3]_{11}, [4]_{11}, [5]_{11}, [9]_{11}\}, \cdot_{11})$ es subgrupo de $(\mathbb{Z}_{11}^*, \cdot_{11})$.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Grupos

Subgrupos

En todo grupo G encontramos, al menos, dos subgrupos:

 $\{e\}$ y el mismo G.

Estos dos subgrupos se llaman subgrupos triviales o impropios; a los demás se les llama *subgrupos propios*.

Teorema

Sea (G,*) un grupo y sea $\varnothing \neq H \subseteq G$. Son equivalentes:

- H es un subgrupo de G.
- H verifica las condiciones:
 - si $h, k \in H$, entonces $h * k \in H$.
 - si $h \in H$, entonces $h^{-1} \in H$.
- **3** Si $h, k \in H$, entonces $h * k^{-1} \in H$.

Subgrupos

Ejercicios: Demuestra que:

- $(\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\},+_{12})$ es un subgrupo de $(\mathbb{Z}_{12},+_{12})$.
- El conjunto de matrices

$$\left\{ oldsymbol{A} = \left(egin{array}{cc} a & -b \ b & a \end{array}
ight), \quad a,b \in \mathbb{R}
ight\}$$

es un subgrupo del grupo de matrices $(\mathcal{M}_2(\mathbb{R}), +)$.

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

29 / 68

Grupos

Subgrupos

Teorema

Sea (G,*) un grupo y sea $\varnothing \neq H \subseteq G$, H finito. Si * es una operación cerrada en H, entonces (H,*) es un subgrupo de (G,*).

 $\forall x, y \in H, \quad x * y \in H \implies H \text{ es un subgrupo de } (G, *)$

Ejemplo: $(\{[1]_7, [2]_7, [4]_7\}, \cdot_7)$ es subgrupo de $(\mathbb{Z}_7^*, \cdot_7)$, ya que

Grupos

Intersección de Subgrupos

Teorema

Sea (G,*) un grupo y sean H y K dos subgrupos de G. Entonces $H \cap K$ es un subgrupo de G.

Demostración: Ejercicio

Ejemplo: Sea el grupo $(\mathbb{Z},+)$ y los subgrupos $(2\mathbb{Z},+)$ y $(3\mathbb{Z},+)$. Entonces $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$.

La unión de dos subgrupos, en general no es subgrupo.

Como **contraejemplo** nos sirve el ejemplo anterior. La unión $2\mathbb{Z} \cup 3\mathbb{Z}$, es un subconjunto que no es cerrado para la suma:

2+3=5, pero $5 \notin 2\mathbb{Z}$, ni $5 \notin 3\mathbb{Z}$. Luego $2+3 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

Mariam Cobalea (UM

Estructuras Algebraicas para la Computación

21 / 61

Grupos

Subgrupos

Ejercicio Sea S₃ el conjunto de las permutaciones de 3 elementos.

$$S_3 = \{\textit{id}, \sigma_1, \sigma_2, \tau_1, \tau_2, \tau_3\}$$

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$au_1 = \left(egin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}
ight), \ au_2 = \left(egin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}
ight), \ au_3 = \left(egin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}
ight)$$

- \bullet Demuestra que $\ (S_3,\circ)\$ es un grupo de orden 6 no conmutativo.
- ullet Halla un subgrupo de S_3 que sea conmutativo.

Subgrupos

Ejercicio Sea el conjunto de funciones $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, donde cada $f_i: \mathbb{R} - \{0,1\} \rightarrow \mathbb{R} - \{0,1\}$ para i: 1,2,...,6, está definida

$$f_1(x) = x,$$
 $f_2(x) = \frac{1}{x},$ $f_3(x) = 1-x,$

$$f_4(x) = \frac{1}{1-x}, \qquad f_5(x) = \frac{x-1}{x}, \qquad f_6(x) = \frac{x}{x-1}$$

Demuestra que (\mathbf{F}, \circ) es un grupo y determina un subgrupo.

Grupos

Grupos cíclicos

Dado un grupo (G,*) v un elemento $a \in G$, nos preguntamos cuál es el mínimo subgrupo H tal que $a \in H$.

Teorema

Sea (G,*) un grupo y sea $a \in G$. Sea $H = \{a^n : n \in \mathbb{Z}\}$. Entonces (H,*) es un subgrupo de (G,*) y, si (H',*) es otro subgrupo tal que $a \in H'$, entonces $H \subset H'$.

Demostración:

- ✓ Claramente, si $a \in H$, entonces también $a^2, a^3, ... \in H$.
- ✓ El elemento neutro, a^0 , también debe estar en H.
- ✓ Y ya que $a \in H$, también $a^{-1} \in H$.
- ✓ Además, $(a^{-1})^2 = a^{-2} \in H$, $(a^{-1})^3 = a^{-3} \in H$, ...
- ✓ En resumen, cualquier subgrupo H de (G,*) tal que $a \in H$, debe contener al menos todos los elementos de la forma a^n donde $n \in \mathbb{Z}$.

Grupos

Grupos cíclicos

El mínimo subgrupo de G que contiene al elemento a se denota $\langle a \rangle$.

Ejemplos:

• En el grupo $(\mathbb{Z}_7, +_7)$ el subgrupo generado por $[4]_7$ es

$$\langle [4]_7 \rangle = \{ [4]_7, [1]_7, [5]_7, [2]_7, [6]_7, [3]_7, [0]_7 \}$$

• En el grupo $(\mathbb{Z}_7^*, \cdot_7)$ el subgrupo generado por $[4]_7$ es

$$\langle [4]_7 \rangle = \{ [4]_7, [2]_7, [1]_7 \}$$

Grupos

Grupos cíclicos

Definición

Se dice que un grupo G es **cíclico** si existe un elemento $a \in G$ tal que $\langle a \rangle = G$.

Ejemplos:

- $(G = \{1, i, -1, -i\}, \cdot)$ es cíclico, pues $i = i^1, -1 = i^2, -i = i^3, 1 = i^4$
- $(\mathbb{Z}_4, +_4)$ es cíclico, pues $[1]_4 = [1]_4$, $[1]_4 +_4 [1]_4 = [2]_4$, $[1]_4 +_4 [1]_4 +_4 [1]_4 = [3]_4$, $[1]_4 +_4 [1]_4 +_4 [1]_4 +_4 [1]_4 = [0]_4$ En general, todo $(\mathbb{Z}_m, +_m)$ es un grupo cíclico.
- El grupo $(\mathbb{Z}_8, +_8)$ es cíclico, ya que el subgrupo $\langle [3]_8 \rangle = (\mathbb{Z}_8, +_8)$.
- El grupo $(\mathbb{Z}_5^*, \times_5)$ es cíclico, ya que el subgrupo $\langle [3]_5 \rangle = (\mathbb{Z}_5^*, \times_5)$.

Grupos cíclicos

- Evidentemente, todo grupo cíclico es abeliano. ¿Por qué?
- Sin embargo, el recíproco no es cierto.
- Un contraejemplo es el grupo $(\mathbb{Z}_2 \times \mathbb{Z}_2, \oplus)$ que es un grupo abeliano, pero no es cíclico. ¿Por qué?

$$\mathbb{Z}_2\times\mathbb{Z}_2=\quad \{00,01,10,11\}$$

\oplus	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

37 / 6

Grupos

Generadores

Dado un grupo (G,*) y un subconjunto $S \subseteq G$, nos preguntamos cuál es el mínimo subgrupo H que contiene al subconjunto S.

Definición

Sea S un subconjunto no vacío de un grupo (G,*). El subgrupo generado por $\langle S \rangle$, se define recursivamente

- (B) $S \subseteq \langle S \rangle$.
- $(R_1) \ \ Si \ \ x,y \in S, \ \ entonces \ \ x*y \in \langle S \rangle.$
- (R₂) Si $x \in S$, entonces $x^{-1} \in \langle S \rangle$.

Ejemplos:

- Dado el grupo $(\mathbb{Z},+)$, el subgrupo generado por $\{4\}$ es $\{4\} = 4\mathbb{Z}$
- ② Dado el grupo $(\mathbb{Z},+),\;$ el subgrupo generado por $\{4,-6\}$ es $\langle \{4,-6\} \rangle = 2\mathbb{Z}$

Grupos

Generadores

Teorema

Sea S un conjunto no vacío del grupo (G,*). Entonces $\langle S \rangle$ consta de todos los productos formados con los elementos de S y sus simétricos (opuesto o inversos).

- Si $S = \{x\}$, generalmente escribiremos $\langle x \rangle$ en lugar de $\langle \{x\} \rangle$.
- El subgrupo $\langle x \rangle$ consta de todos los productos de x y x^{-1} . Y cada producto será igual a una potencia de x o de x^{-1} , ya que podemos cancelar una x con una x^{-1} . Por lo tanto,

$$\langle \mathbf{x} \rangle = \{ \mathbf{x}^{\mathbf{k}} | \mathbf{k} \in \mathbb{Z} \}$$

Definición

Sea (G,*) un grupo y sea S un subconjunto de G. Se dice que S es un conjunto de generadores de G o que genera a G, si $\langle S \rangle = G$.

Mariam Cobalea (UMA

structuras Algebraicas para la Computación

20 / 6

Grupos

Generadores

Ejercicio Sea (G,*) el grupo generado por los elementos a y b tales que $a^3 = b^2 = 1$ y $b*a = a^2*b$. Calcula $(b*a)^2$ y escribe la tabla de Cayley de la operación.

Homomorfismos de grupos

Definición

Sean los grupos (G,*) y (H, \perp) . Se dice que una función $\psi: G \to H$ es un homomorfismo de grupos si para todo $x,y \in G$,

$$\psi(\mathbf{x} * \mathbf{y}) = \psi(\mathbf{x}) \perp \psi(\mathbf{y})$$

Ejemplo: Sean los grupos $(\mathbb{Z},+)$ y (\mathbb{C}^*,\cdot) y la función $\psi\colon\mathbb{Z}\to\mathbb{C}^*$ definida

$$\psi(n) = i^n$$

donde $i = \sqrt{-1}$.

Claramente, ψ es un homomorfismo de grupos, ya que para todo $m,n\in\mathbb{Z},$

$$\psi(\mathbf{n}+\mathbf{m}) \stackrel{(\mathsf{Def}.\psi)}{=} \mathbf{i}^{\mathsf{n}+\mathsf{m}} = \mathbf{i}^{\mathsf{n}} \cdot \mathbf{i}^{\mathsf{m}} \stackrel{(\mathsf{Def}.\psi)}{=} \psi(\mathbf{n}) \cdot \psi(\mathbf{m})$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

41 / 68

Grupos

Homomorfismos de grupos

Teorema

Sea $\psi \colon \mathbf{G} \to \mathbf{H}$ un homomorfismo de grupos.

- Si e_G es el elemento neutro de G y e_H es el elemento neutro de H, entonces $\psi(e_G)=e_H$.
- **Q** La imagen del elemento simétrico de $a \in G$ es el simétrico de la imagen de a: $\psi(a^{-1}) = (\psi(a))^{-1}$.
- La imagen de cada subgrupo de G es un subgrupo de H.
- La preimagen de cada subgrupo de H es un subgrupo de G.

Demostración: Ejercicio

Grupos

Homomorfismos de grupos

Ejemplo: En el homomorfismo $\psi \colon (\mathbb{Z},+) \to (\mathbb{C}^*,\cdot)$ definido $\psi(n)=i^n$ tenemos que:

- $\psi(0) = i^0 = 1$
- 1 $\stackrel{(Prop,1)}{=} \psi(0) = \psi(n+(-n)) \stackrel{(\psi \text{ es homomorf.})}{=} \psi(n) \cdot \psi(-n)$ Por tanto, $\psi(-n) = (\psi(n))^{-1}$
- **1** La imagen del subgrupo $2\mathbb{Z}$ es el subgrupo $\{1, -1\}$.
- La preimagen del subgrupo $\{1\}$ es el subgrupo $4\mathbb{Z}$.

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

43 / 6

Grupos

Núcleo de un Homomorfismo de grupos

Definición

Sea $\psi\colon G\to H$ un homomorfismo de grupos. Se llama **núcleo** del homomorfismo ψ al subconjunto de elementos de G cuya imagen es el elemento neutro de e_H . Se denota $\mathcal{K}er\psi$.

$$\mathcal{K}er\psi = \{ \mathbf{x} \in \mathbf{G} \mid \psi(\mathbf{x}) = \mathbf{e}_{\mathsf{H}} \}$$

Ejemplo:

El núcleo del homomorfismo $\psi \colon (\mathbb{Z},+) o (\mathbb{C}^*,\cdot)$ definido $\psi(n) = i^n$ es

$$Ker\psi = \{x \in \mathbb{Z} \mid \psi(x) = 1\} = \{\dots, -8, -4, 0, 4, 8, \dots\} = 4\mathbb{Z}$$

riam Cobalea (UMA) Estructuras Algebraicas para la Computación

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

Núcleo de un Homomorfismo de grupos

Teorema

El núcleo de un homomorfismo de grupos $\psi: G \to H$ es un subgrupo de G.

Demostración: Ejercicio

Teorema

Sea $\psi \colon G \to H$ un homomorfismo de grupos. Entonces, $\mathcal{K}er\psi = \{e_G\}$ si y sólo si ψ es inyectiva.

Demostración: Ejercicio

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

45 / 6

Grupos

Imagen de un Homomorfismo de grupos

Definición

Sea $\psi\colon G\to H$ un homomorfismo de grupos. Se llama **imagen** del homomorfismo ψ al subconjunto de elementos de H que son imagen de algún elemento de G. Se denota $\mathcal{I}m\psi$.

$$\mathcal{I}m\psi = \{ \mathbf{y} \in \mathbf{H} | \exists \mathbf{x} \in \mathbf{G}, \ \psi(\mathbf{x}) = \mathbf{y} \}$$

Ejemplo: La imagen del homomorfismo $\psi: (\mathbb{Z}, +) \to (\mathbb{C}^*, \cdot)$ definido $\psi(n) = i^n$ es $\mathcal{I}m\psi = \{y \in \mathbb{C}^* | \exists m \in \mathbb{Z}, \ \psi(m) = y\} = \{1, i, -1, -i\}$

Teorema

 \mathcal{I} m ψ es un subgrupo de H.

Demostración: Ejercicio

Grupos

Isomorfismo de grupos

Definición

Sean los grupos (G,*) y (H, \perp) . Se dice que una función $\psi: G \to H$ es un **isomorfismo de grupos** si es biyectiva y para todo $x, y \in G$,

$$\psi(\mathbf{x} * \mathbf{y}) = \psi(\mathbf{x}) \perp \psi(\mathbf{y})$$

Ejemplo: Sean los grupos $(\mathbb{Z}_4, +_4)$ y (H, \cdot) , donde $H = \{1, i, -1, -i\}$. Un isomorfismo de grupos es la función

$$f: \quad (\mathbb{Z}_4, +_4) \quad \rightarrow \quad (H, \cdot)$$

$$[0]_4 \quad \mapsto \quad 1$$

$$[1]_4 \quad \mapsto \quad i$$

$$[2]_4 \quad \mapsto \quad -1$$

$$[3]_4 \quad \mapsto \quad -i$$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computació

17 / 6

Grupos

Isomorfismo de grupos

Ejemplo:

+4	[0]4	[1]4	[2]4	[3]4
[0]4	[0]4	[1]4	[2]4	[3]4
[1]4	[1]4	[2]4	[3]4	[0]4
[2]4	[2]4	[3]4	[0]4	[1] ₄
[3]4	[3]4	[0]4	[1]4	[2]4

	1	i	-1	-i
1	1	i	-1	-i
i	i	-1	− <i>i</i>	1
-1	-1	-i	1	i
_i	− i	1	i	-1

Isomorfismo de grupos

Ejemplo: Dados los grupos $(\mathbb{Z}_4, +_4)$ y $(\mathbb{Z}_5^*, \times_5)$, las funciones

son isomorfismos de grupos.

Estructuras Algebraicas para la Computación

Grupos

Isomorfismo de grupos

Teorema

Si $\psi: G \to H$ es un isomorfismo entre los grupos (G, *) y (H, \bullet) , entonces:

- (G,*) es abeliano si y sólo si (H, \bullet) es abeliano.
- (G, *) es cíclico si y sólo si (H, \bullet) es cíclico.
- **9** Para todo $a \in G$, $o(a) = o(\psi(a))$.
- **a** La función inversa $\psi^{-1}: H \to G$ define un isomorfismo de (H, \bullet) en (G,*).

Ejercicio:

- Demuestra que el grupo de Kleinn es isomorfo al grupo $(\mathbb{Z}_2 \times \mathbb{Z}_2, \oplus)$, pero no es isomorfo al grupo $(\mathbb{Z}_4, +_4)$.
- Como consecuencia, $(\mathbb{Z}_2 \times \mathbb{Z}_2, \oplus)$ no es isomorfo a $(\mathbb{Z}_4, +_4)$.

Grupos

Isomorfismo de grupos : Grupos cíclicos

Teorema

Sea (G,*) un grupo cíclico. Se verifica que

- Si G es finito con |G| = m, entonces (G,*) es isomorfo al grupo $(\mathbb{Z}_m,+_m).$
- **2** Si G es infinito, entonces (G,*) es isomorfo al grupo $(\mathbb{Z},+)$.

Ejemplo El grupo $(H = \{1, i, -1, -i\}, \cdot)$ es isomorfo al grupo $(\mathbb{Z}_4, +_4)$. *Ejercicio* Se considera el conjunto de matrices

$$\mathcal{M}(\mathbb{Z}) = \left\{ \left(egin{array}{cc} 1 & \mathsf{z} \ 0 & 1 \end{array}
ight), \; \mathsf{z} \in \mathbb{Z}
ight\}$$

Demuestra que:

- $\mathcal{M}(\mathbb{Z})$ es un grupo con la operación multiplicación de matrices.
- $(\mathcal{M}(\mathbb{Z}),\cdot)$ es isomorfo al grupo $(\mathbb{Z},+)$.

Mariam Cobalea (UMA) Estructuras Algebraicas para la Computación

Definición

Sea H un subgrupo de un grupo (G,*) y sea $a \in G$. Se considera

$$\mathbf{a} * \mathbf{H} = \{\mathbf{a} * \mathbf{h}, \ \mathbf{h} \in \mathbf{H}\}$$

Al subconjunto a * H se le llama clase lateral izquierda del elemento a respecto del subgrupo H. Análogamente, el subconjunto

$$H * \mathbf{a} = \{h * \mathbf{a}, h \in H\}$$

se llama clase lateral derecha del elemento a respecto del subgrupo H.

Clases laterales

Ejemplo: Grupo $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f ₄	f_5	f_6
f_2	f_2	f_1	f_4	f_3	f_6	f_5
f_3	f ₃	f_5	f_1	f ₆	f_2	f_4
f_4	f ₄	f ₆	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f_6	f_1	f_4	f_2
f_6	f ₆	f_4	f_5	f_2	f ₃	f_1

•Clase lateral izquierda del elemento f_3

$$f_3 \circ H_1 = \{f_3 \circ f_1, f_3 \circ f_2\} = \{f_3, f_5\}$$

ullet Clase lateral izquierda del elemento f_5

$$f_5 \circ H_1 = \{f_5 \circ f_1, f_5 \circ f_2\} = \{f_5, f_3\}$$

Clases laterales

Ejemplo: Grupo $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f_2	f_3	f_4	f_5	f ₆
f_1	f_1	f ₂	<i>f</i> ₃	f ₄	f_5	f ₆
f_2	f_2	f_1	f_4	f_3	f_6	f_5
f_3	f_3	f_5	f_1	f ₆	f_2	f_4
f_4	f_4	f ₆	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f ₆	f_1	f_4	f_2
f ₆	f_6	f_4	f_5	f ₂	f_3	f_1

 \bullet Clase lateral izquierda del elemento f_1

$$f_1 \circ H_1 = \{f_1 \circ f_1, f_1 \circ f_2\} = \{f_1, f_2\}$$

• Clase lateral izquierda del elemento f₂

$$f_2 \circ H_1 = \{f_2 \circ f_1, f_2 \circ f_2\} = \{f_2, f_1\}$$

Clases laterales

Ejemplo: Grupo $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f_2	f_3	f_4	f_5	f ₆
f_1	f_1	f_2	f_3	f ₄	f_5	f ₆
f_2	f_2	f_1	f ₄	f_3	f ₆	f ₅
f_3	f_3	f_5	f_1	f ₆	f_2	f ₄
f_4	f_4	f ₆	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f ₆	f_1	f ₄	f_2
f ₆	f ₆	f_4	f_5	f_2	f_3	f_1

• Clase lateral izquierda del elemento f_4

$$f_4 \circ H_1 = \{f_4 \circ f_1, f_4 \circ f_2\} = \{f_4, f_6\}$$

• Clase lateral izquierda del elemento f₆

$$f_6 \circ H_1 = \{f_6 \circ f_1, f_6 \circ f_2\} = \{f_6, f_4\}$$

Ejemplo: Grupo $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f ₂	f ₃	f_4	f_5	f ₆
f_1	f_1	f_2	<i>f</i> ₃	f_4	f_5	f ₆
f_2	f_2	f_1	f_4	f_3	f_6	f_5
f_3	f ₃	f_5	f_1	f ₆	f_2	f ₄
f_4	f_4	f ₆	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f_6	f_1	f_4	f_2
f ₆	f ₆	f ₄	<i>f</i> ₅	f ₂	<i>f</i> ₃	f_1

ullet Clase lateral derecha del elemento f_1

$$H_1 \circ f_1 = \{f_1 \circ f_1, f_2 \circ f_1\} = \{f_1, f_2\}$$

ullet Clase lateral derecha del elemento f_2

$$H_1 \circ f_2 = \{f_1 \circ f_2, f_2 \circ f_2\} = \{f_2, f_1\}$$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

57 / 69

Estructuras Algebraicas para la Computación

59 / 6

Clases laterales

Ejemplo: Grupo $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f_2	f_3	f_4	f_5	f ₆
f_1	f_1	f ₂	f_3	f ₄	f_5	f ₆
f_2	f ₂	f_1	f ₄	f_3	f ₆	f_5
f_3	f_3	f_5	f_1	f ₆	f_2	f_4
f_4	f ₄	f ₆	f ₂	f_5	f_1	f_3
f_5	f_5	f_3	f ₆	f_1	f ₄	f ₂
f_6	f ₆	f ₄	f_5	f ₂	f ₃	f_1

ullet Clase lateral derecha del elemento f_3

$$H_1 \circ f_3 = \{f_1 \circ f_3, f_2 \circ f_3\} = \{f_3, f_4\}$$

ullet Clase lateral derecha del elemento f_4

$$H_1 \circ f_4 = \{f_1 \circ f_4, f_2 \circ f_4\} = \{f_4, f_3\}$$

Clases laterales

Ejemplo: Grupo $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, Subgrupo $H_1 = \{f_1, f_2\}$

0	f_1	f_2	f ₃	f_4	f_5	f ₆
f_1	f_1	f_2	f_3	f_4	f_5	f ₆
f_2	f_2	f_1	f_4	f_3	f_6	f_5
f_3	f_3	f_5	f_1	f ₆	f ₂	f_4
f_4	f_4	f ₆	f_2	f_5	f_1	f_3
f_5	f_5	f_3	f_6	f_1	f_4	f_2
f_6		f_4	f_5	f_2	f_3	f_1

ullet Clase lateral derecha del elemento f_5

$$H_1 \circ f_5 = \{f_1 \circ f_5, f_2 \circ f_5\} = \{f_5, f_6\}$$

ullet Clase lateral derecha del elemento f_6

$$H_1 \circ f_6 = \{f_1 \circ f_6, f_2 \circ f_6\} = \{f_6, f_5\}$$

Clases laterales

Veamos por qué se dan estos nombres. En $\,G\,$ podemos definir dos relaciones $\,\sim_i\,$ y $\,\sim_d\,$

$$\forall a, b \in G, \quad a \sim_i b \iff a^{-1} \cdot b \in H$$

$$\forall a,b \in G, \quad a \sim_d b \iff a \cdot b^{-1} \in H$$

- ullet Se demuestra que \sim_i y \sim_d son relaciones de equivalencia.
- Y para cada $a \in G$, denotamos
 - $[a]_i$ la clase para la relación \sim_i
 - $[a]_d$ la clase para la relación \sim_d

Cada clase $[a]_i$ estará formada por todos los elementos $x \in G$ que se relacionan con a

$$x \in [a]_i \iff a \sim_i x \iff a^{-1} * x \in H \iff a^{-1} * x = h \in H$$

$$\iff x = a * h. \ h \in H \iff x \in a * H$$

Y análogamente

$$x \in [a]_d \iff a \sim_d x \iff x \sim_d a \iff x * a^{-1} \in H$$

$$\iff x * a^{-1} = h \in H \iff x = h * a, h \in H \iff x \in H * a$$

Mariam Cobalea (UMA

Estructuras Algebraicas para la Computación

61 / 68

Clases laterales

Para cada elemento $x \in G$ tenemos

$$x \in [a]_i \iff x \in a * H$$

$$x \in [a]_d \iff x \in H * a$$

Así nos quedan las particiones

$$G_{\nearrow_{\sim_i}} = \{[a]_i, \ a \in G\} = \{a * H, \ a \in G\}$$

$$G_{\nearrow_{\sim_d}} = \{ [a]_d, \ a \in G \} = \{ H * a, \ a \in G \}$$

Clases laterales

Ejemplo: Para el grupo $\mathbf{F} = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ y el subgrupo $H_1 = \{f_1, f_2\}$, la partición correspondiente a la relación \sim_i es

$$\{\{f_1,f_2\},\{f_3,f_5\},\{f_4,f_6\}\}$$

Y la partición correspondiente a la relación \sim_d es

$$\{\{f_1,f_2\},\{f_3,f_4\},\{f_5,f_6\}\}$$

Definición

Sea H un subgrupo de un grupo (G,*). Se dice que H es un subgrupo normal o invariante si para cada $a \in G$ se verifica:

$$a * H = H * a$$

Ejemplo: El subgrupo $H = \{f_1, f_4, f_5\}$ es un subgrupo normal del grupo $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$

Mariam Cobalea (UMA)

Estructuras Algebraicas para la Computación

67 / 69

Clases laterales

Observaciones

✓ La clase del elemento neutro es el subgrupo H

$$e * H = H$$

✓ $a \in a * H$, ¿por qué?

✓ El subconjunto a * H no es subgrupo, a menos que $a \in H$.

✓ Si $b \in a * H$, entonces b * H = a * H.

Teorema

Sea H un subgrupo de un grupo (G,*) y sean $a,b\in G$. Entonces a*H=b*H ó bien $a*H\cap b*H=\varnothing$. Análogamente para las clases laterales a la derecha.

Demostración: Trivial por ser \sim_i y \sim_d relaciones de equivalencia.

Teorema

Sea H un subgrupo del grupo (G,*). Entonces cada clase lateral de H en G tiene el mismo cardinal que H.

Demostración:

- ✓ Para cada $a \in G$, la función $f: H \to H$, definida f(h) = a * h es bivectiva.
- ✓ Por lo tanto, |H| = |a * H|.

Clases laterales

Corolario

- Sea $a \in G$. Entonces el orden del elemento a divide al orden de G.
- Si G es un grupo de orden primo, entonces es cíclico.

Ejercicio: Demuestra que:

• Si G es un grupo con siete elementos, entonces G es abeliano.

Estructuras Algebraicas para la Computación

Clases laterales

Teorema (Lagrange)

Sea H un subgrupo de un grupo finito (G,*). Entonces el cardinal de H divide al cardinal de G.

Demostración: Por ser $\{a_1*H,\cdots,a_k*H\}$ una partición de G, $|G|=\sum_{i=1}^k|a_i*H|$

$$|G| = \sum_{i=1}^{k} |a_i * H|$$

Aplicando el teorema anterior,

$$|G| = \sum_{i=1}^{K} |a_i * H| = |H| + |H| + \cdots + |H| = k|H|$$

Bibliografía

Algebra lineal J. de Burgos (Ed. McGraw Hill)

Matemáticas discreta y combinatoria R.P. Grimaldi (Ed. Addison Wesley)

Estructuras de Matemáticas Discretas para la Computación

B. Kolman y R.C. Busby (Ed. Prentice Hall)

Estructuras de Matemáticas Discretas para la Computación

B. Kolman, R.C. Busby y S. Ross (Ed. Prentice Hall)

Elementos de Matemáticas Discretas C.L. Liu (Ed. McGraw Hill)