Name: Sahand Sabour Student ID: 2020280401

1. A worker is tiling a road with n square grids, there are two different kinds of bricks available, one is the square brick and the other is the rectangle brick which covers 2 grids. Please count the total different ways the road can be tiled.

Let $\,a_n$ denote the number of arrangement. We would consider 2 scenarios:

- 1) The first tile is filled with a square brick. In this case, n-1 grids would be left.
- 2) The first tile is filled with a rectangle brick, leaving n-2 grids to be filled. Accordingly, we would consider these two scenarios for the remaining grids, which shows a recursive behavior in how the grids are filled. In order to fill in 1 grid, we would need 1 square brick, giving $a_1 = 1$. For 2 grids, we can have 1 rectangle brick or 2 square bricks, giving $a_2 = 2$. For 3 grids, we can use 3 square bricks, 1 rectangle brick and a square brick, or a square brick and a rectangle brick, , giving $a_3 = 3$. Hence, assuming $a_0 = 1$ since the only way to tile 0 grids is by not placing any tiles, it can be observed that the number of ways to fill in the grids follow the Fibonacci sequence, with a shift in values corresponding to each index (i.e. $a_n = F_{n+1}$). Therefore we have

$$a_n = a_{n-1} + a_{n-2} = > a_n - a_{n-1} - a_{n-2} = 0$$

Giving characteristic equation $x^2-x-1=0$ with roots $\frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$. Therefore, $a_n=A[\frac{1+\sqrt{5}}{2}]^n+B[\frac{1-\sqrt{5}}{2}]^n$, where $a_0=1 \text{ so } A+B=1$

$$a_1 = 1 \text{ so } A[\frac{1+\sqrt{5}}{2}] + B[\frac{1-\sqrt{5}}{2}] = 1$$

Solving the above equations results in $A = \frac{1+\sqrt{5}}{2}$ and $B = \frac{1-\sqrt{5}}{2}$. Therefore,

$$a_n = \left[\frac{1+\sqrt{5}}{2}\right]^{n+1} + \left[\frac{1-\sqrt{5}}{2}\right]^{n+1}$$

Where a_n is the number of ways to tile a road consisting of n grids.

2. How many different ways to color n grids in a line with red, white or blue colors but no two adjacent grids are colored with red?

Let a_n denote the number of arrangement. There would be two scenarios:

- 1) The first grid and the third grid are colored with white. In this case, there would be a 1-1 correspondence between the arrangements of the 4^{th} grid to n^{th} grid and the arrangements for remaining n-2 grids: $2a_{n-2}$.
- 2) The first grid is white and the third grid is colored with either blue or red. In this case, there would be a 1-1 correspondence between the arrangements of the 3^{rd} grid to n^{th} grid and the arrangements for remaining n-1 grids: $2a_{n-1}$.

This gives a_n =2 a_{n-1} + $2a_{n-2}$. Accordingly, $a_0=1$ and $a_1=3$, and the characteristic equation $C(x)=x^2-2x-2=0$ with roots $\frac{2+\sqrt{12}}{2}$ and $\frac{2-\sqrt{12}}{2}$.

$$a_n = A[\frac{2+\sqrt{12}}{2}]^n + B[\frac{2-\sqrt{12}}{2}]^n$$

$$a_0 = 1 \text{ so } A + B = 1$$

$$a_1 = 3 \text{ so } A[\frac{2 + \sqrt{12}}{2}] + B[\frac{2 - \sqrt{12}}{2}] = 3$$

Giving A = $\frac{2+\sqrt{3}}{2\sqrt{3}} = \frac{3+2\sqrt{3}}{6}$ and B= $\frac{3-2\sqrt{3}}{6}$. Therefore,

$$a_n = \frac{3 + 2\sqrt{3}}{6} \left[\frac{2 + \sqrt{12}}{2} \right]^n + \frac{3 - 2\sqrt{3}}{6} \left[\frac{2 - \sqrt{12}}{2} \right]^n$$

$$a_{n} = \frac{3 + 2\sqrt{3}}{6} [1 + \sqrt{3}]^{n} + \frac{3 - 2\sqrt{3}}{6} [1 - \sqrt{3}]^{n}$$