Introduction to robocup

robocup@mit.edu Rfcbots.com

The plan

- Robocup Overview
- Mechanical
- Electrical
- Computer Science
- Last notes
- Pizza and questions!

Gameplay – Small Size League

- Five robots/team
- 18cm diameter, 15cm height
- Play soccer with an orange golf ball
- Two overhead cameras connected to an off-field computer
 - Cameras send bots' info to computers
 - Teams send commands

RFC-Cambridge

- First competed in 2005
- Harvard-MIT effort
- International competitions in Istanbul, Singapore, Germany, Austria

What to expect

- No background experience necessary
- Weekly subteam meetings
- Semesterly all-team meetings
- Spring Semester North American competition???
- Summer international competition

Mechanical subteam

- What we do
- · How we do it
- How we're organized
- What you'll get out of it
- Why RFC-ME?
- What to expect
- 2012-2013 projects

How we do it

- Weekly meetings
- Tools of the trade
 - ☐ CNC mills, lathes
 - Rapid prototyping
 - Solidworks CAD
 - Finite Element Analysis (FEA)
 - MATLAB, MathCAD

How we're organized

- Constantly evolving
- Lots of experience levels
 - ☐ Freshman-graduate
- Older students mentor young'uns

What you'll get out of RFC-ME

- Design experience: Mens et Manus
 - Critical! Only way to learn it is to do it
- Manufacturing experience
 - Also critical!
- Engineering team experience
 - Subtle, but critical!
- Networking

Why RFC ME?

- · Design experience: Mens et Manus
 - Critical! Only way to learn it is to do it
- · Manufacturing experience -DFM
 - Also critical!
- Engineering team experience
 - critical!
- Networking

What to expect

- Fluctuating time commitment
 - Weekly meetings typically 1.5 hr
 - Spikes before important milestones
 - Feb, June
- Comfortable pacing
 - Take on as much work as you like
 - Freshman year will likely be an apprenticeship p@dotlprototype omniwheel
 - When ready, tackle design projects
- Focus on learning
 - Ok to mess up! Failures are a source of insight, learning

2011-2012 season ME projects

- · Hit the books hard
 - Read other teams' papers, journal articles
 - Assess state of the art
- Benchmark
 - Run experiments; where do we stand?
- · Redesign -> prototype
- Maintain current gen (Firefly squad) for other subteams

EE Subteam

EE in the robot

- Each robot function is controlled by a distinct circuit board – modularity
- Driving: motor controller boards (4)
- Kicking: kicker board; 450 volts!
- Dribbling the ball: auxiliary kicker board
- Communication: motherboard

What can you learn?

- EE skills about circuits, control, communication
- Hands on lab experience
 - Soldering
 - oscilloscopes
 - etc.
- Design experience design and implement your own circuit board

How you can help!

- No skills needed
- Design circuit boards to validate critical components (motors, kicker, dribbler, etc.)
- Interface with MechE and CS teams to optimize robot

Where to find us

- We meet once a week on Sunday afternoons behind the MIT Museum (N51)
- Next Meeting: watch your e-mails!

Computer Science Subteam

- We write the code
- ... and make the bots do cool stuff

11000Soccer00101010Robots100111Soccer1001110Robot101100Soccer

11000Soccer00101010Robots100111Soccer1001110Robot101100Soccer

Overall System

- Code runs on a PC
- We use C# under Visual Studio 2010
- 10,000+ lines of code
- 1-20 people involved every year

(Some) documentation on http://wiki.rfccambridge.com/

System Architecture

Al Strategy

- Skills, tactics, plays
 - Play-language
- Long-term vs.
 Short-term goals
- All changes with opponent

Motion Planning

- Get from point A to point B
 - Avoid obstacles
 - Be fast
- Cool algorithms involved

Why CS?

- You love hacking!
 - ... and want to learn how to write good code
- It's a real team and a real system
 - Very different from psets
 - Companies love that
- Possible projects:
 - different playbooks, more strategies
 - · dribbling, chip kicking?
 - passing, deflection shots
 - replay system

Help from upperclassmen

- Help from upperclassmen
- Experience

- Help from upperclassmen
- Experience
- Cross-university (get off campus every once in a while)

- Help from upperclassmen
- Experience
- Cross-university (get off campus every once in a while)
- International experiences

1997 pable of beating the human world

- Help from upperclassmen
- Experience
- Cross-university (get off campus every once in a while)
- International experiences
- Robots are cool