Digital Logic Circuit Design Lab

Combinational Logic Circuit Lab

Name/ID: 안견힐/21900416

Partner Name/ID: 진가람/21900727

Date: 2023-05-29

Problem 1

Design and make a circuit for 2-bit up-down counter and display the output with a 7-segment display.

- The clock period is 1 second. Use Arduino to generate the clock.
- There are 2 modes for the counter:
 - Up-counting mode, Down-counting mode
- Use one push button to control the counter mode. See Table 1
- Display the output decimal number '0'~'3' with a 7-Segment Display
- Use 7-segment decoder chip(SN74LS47N) to control 7-Segment Display
- Design the circuit and check the results in the simulation program.
- Implement the circuit on a breadboard and demonstrate the result.

Input X	Counter mode		
X = 0	UP_Counting		
X=1	DOWN_Counting		

Design Process

Table 1. Electrical Components

State Table & State Graph (Mealy)

Fig 1. State Graph

State Definition

 S_0 : Normal State

 S_1 : Shifted State #1

 S_2 : Shifted State #2

 S_3 : Shifted State #3

Table 2. State Table

Present State	U=0	U=1	Output(Z)	
S_0	S_1	S_3	S ₁ (01)	S ₃ (11)
S_1	S_2	S_0	S ₂ (10)	$S_0(00)$
S_2	S_3	S_2	S ₃ (11)	S ₂ (01)
S_3	S_0	S_2	$S_0(00)$	S ₂ (10)

• Truth table & Boolean expression

Table 3. Truth Table

Input		Next State (B ⁺ , A ⁺)			
В	Α	U=0		U	=1
0	0	0	1	1	1
0	1	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	0

Table 4. D-FF Truth Table

FF Inputs (D_B, D_A)					
U	=0	U=1			
0	1	1	1		
1	0	1	0		
1	1	0	1		
0	0	0	0		
0	0	0	0		

Table 5. K - Map

BA U	0	1	U BA	0	1
00	1	0	00	1	1
01	0	1	01	0	0
11	1	0	11	0	0
10	0	1	10	1	1
'	1	B+	•		A ⁺

SOPs:

$$B^{+} = \overline{U}(B \oplus A) + U\overline{(B \oplus A)}$$

$$A^{+} = \overline{A}$$

$$D_{B} = B^{+}$$

$$D_{A} = A^{+}$$

Draw the circuit

Fig 2. Design Circuit

Simulation Circuit Design

Figure 3.Circuit Output

Logisim을 이용해서 다음과 같은 Up-Down Counter 7-Segment를 구현하였다. 위의 Circuit은 0부터 3까지 출력되는 2-bit 7-Segment이다. Input (U)에 0을 주면 Up-Counter를, Input (U)에 1을 주면 Down-Counter의 역할을 한다. 이후 CLK에 신호가 들어오고 나갈 때마다 Counting이 진행된다. XOR gate 2개와 D-FF 2개를 이용하였으며 7-Segment는 LAB#1에서 구현한 것을 활용하였다.

Results and Discussion

Demo Video

https://youtu.be/rsQgcMQciZw

Results

Fig 4. Actual Circuit

Fig 5. Circuit Result

Discussion

Logisim 에서 구현한 Simulation 을 기반으로 BreadBoard 와 아두이노를 사용하여 위와 같은 Up-Down Counter 7-Segment 회로를 구현하였다. LAB#2 Design Problem 에 적힌 Counter Mode Condition 을 고려하여 U 에 0 이 입력되었을 때 Up-Counting 을, 1 이 입력되었을 때 Down-Counting 이 진행되도록 Circuit 을 구현하였다. XOR Gate 구현을 위한 소자는 74HC86 로 4 개의 XOR Gate 가 내장되어 있다. D-FF은 74LS74을 사용하였으며 이는 2개의 D-FF이 내장되어 있다. 1 번 핀에는 A^+ 가, 2 번 핀에는 B^+ 가 입력된다. 그리고 CLK 신호는 D-FF 소자에 입력하였다. CLK 신호는 아두이노를 사용하여 입력하였으며 사용한 코드는 Appendix 에 기재하였다. A^+ 신호와 B^+ 신호는 Decoder 로 입력되며 C^+ 와 D^+ 신호는 2-bit Display 를 위해 Ground 로 입력하였다.

Appendix

```
void setup() {
 1
 2
       Serial.begin(9600);
 3
       pinMode(10, OUTPUT);
 4
 5
 6
7
     void loop() {
       // put your main code here, to run repeatedly:
       digitalWrite(10,HIGH);
9
       Serial.println("H");
10
       delay(500);
11
       digitalWrite(10,LOW);
12
       Serial.println("L");
13
       delay(500);
14
15
16
```

Source Code