Solutions of Tutorial-6

Problem set 6.1

- 4 $\det(A-\lambda I)=\lambda^2+\lambda-6=(\lambda+3)(\lambda-2)$. Then A has $\lambda_1=-3$ and $\lambda_2=2$ (check trace =-1 and determinant =-6) with $oldsymbol{x}_1=(3,-2)$ and $oldsymbol{x}_2=(1,1).$ A^2 has the
- same eigenvectors as A, with eigenvalues $\lambda_1^2=9$ and $\lambda_2^2=4$. **6** A and B have $\lambda_1=1$ and $\lambda_2=1$. AB and BA have $\lambda^2-4\lambda+1$ and the quadratic formula gives $\lambda = 2 \pm \sqrt{3}$. Eigenvalues of AB are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of Section 6.2).
- **9** (a) Multiply by A: $A(Ax) = A(\lambda x) = \lambda Ax$ gives $A^2x = \lambda^2 x$
 - (b) Multiply by A^{-1} : $x = A^{-1}Ax = A^{-1}\lambda x = \lambda A^{-1}x$ gives $A^{-1}x = \frac{1}{\lambda}x$
- (c) Add Ix = x: $(A + I)x = (\lambda + 1)x$. 13 (a) $Pu = (uu^{\mathrm{T}})u = u(u^{\mathrm{T}}u) = u$ so $\lambda = 1$ (b) $Pv = (uu^{\mathrm{T}})v = u(u^{\mathrm{T}}v) = 0$ (c) $x_1=(-1,1,0,0), \ x_2=(-3,0,1,0), \ x_3=(-5,0,0,1)$ all have Px=0x=0. 19 (a) $\mathrm{rank}=2$ (b) $\det(B^\mathrm{T}B)=0$ (d) eigenvalues of $(B^2+I)^{-1}$ are $1,\frac{1}{2},\frac{1}{5}$.
- **32** (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the column space (we know Av and Aw are in the column space).
 - (b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular solution to Ax = v + w. Add any cu from the nullspace
- (c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

Problem set 6.2

- 11 (a) True (no zero eigenvalues) (b) False (repeated $\lambda = 2$ may have only one line of (c) False (repeated λ may have a full set of eigenvectors)
- **12** (a) False: don't know if $\lambda = 0$ or not.
 - (b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.
 - (c) True: We know there is only one line of eigenvectors.
- **23** If $A = X\Lambda X^{-1}$ then $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix} = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 2\Lambda \end{bmatrix} \begin{bmatrix} X^{-1} & 0 \\ 0 & X^{-1} \end{bmatrix}$. So B has the original λ 's from \tilde{A} and the additional eigenvalues $2\lambda_1, \ldots$

27
$$R = X\sqrt{\Lambda}X^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \text{ has } R^2 = A.$$

 \sqrt{B} needs $\lambda=\sqrt{9}$ and $\sqrt{-1}$, trace (their sum) is not real so \sqrt{B} cannot be real. Note that $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ has two imaginary eigenvalues $\sqrt{-1}=i$ and -i, real trace 0, real square root $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

Problem set 6.4

- 11 If λ is complex then $\overline{\lambda}$ is also an eigenvalue $(A\overline{x} = \overline{\lambda}\overline{x})$. Always $\lambda + \overline{\lambda}$ is real. The trace is real so the third eigenvalue of a 3 by 3 real matrix must be real.
- 12 If x is not real then $\lambda = x^T Ax/x^T x$ is not always real. Can't assume real eigenvectors!

23 (a) False.
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 (b) True from $A^{\rm T} = Q\Lambda Q^{\rm T} = A$ (d) False!

Problem set 6.5

2 Only $S_4=\left[\begin{array}{cc} 1 & 10 \\ 10 & 101 \end{array}\right]$ has two positive eigenvalues since $101>10^2$.

 $x^{T}S_{1}x = 5x_{1}^{2} + 12x_{1}x_{2} + 7x_{2}^{2}$ is negative for example when $x_{1} = 4$ and $x_{2} = -3$: A_{1} is not positive definite as its determinant confirms; S_{2} has trace c_{0} ; S_{3} has $\det = 0$.

- **4** $f(x,y) = x^2 + 4xy + 9y^2 = (x+2y)^2 + 5y^2$; $x^2 + 6xy + 9y^2 = (x+3y)^2$.
- 14 The eigenvalues of S^{-1} are positive because they are $1/\lambda(S)$. Also the entries of S^{-1} pass the determinant tests. And $x^{\mathrm{T}}S^{-1}x = (S^{-1}x)^{\mathrm{T}}S(S^{-1}x) > 0$ for all $x \neq 0$.
- 15 Since $x^T S x > 0$ and $x^T T x > 0$ we have $x^T (S + T) x = x^T S x + x^T T x > 0$ for all $x \neq 0$. Then S + T is a positive definite matrix. The second proof uses the test $S = A^T A$ (independent columns in A): If $S = A^T A$ and $T = B^T B$ pass this test, then $S + T = \begin{bmatrix} A & B \end{bmatrix}^T \begin{bmatrix} A \\ B \end{bmatrix}$ also passes, and must be positive definite.
- **16** $x^T S x$ is zero when $(x_1, x_2, x_3) = (0, 1, 0)$ because of the zero on the diagonal. Actually $x^T S x$ goes negative for x = (1, -10, 0) because the second pivot is negative.
- 18 If $Sx = \lambda x$ then $x^T Sx = \lambda x^T x$. If S is positive definite this leads to $\lambda = x^T Sx / x^T x > 0$ (ratio of positive numbers). So positive energy \Rightarrow positive eigenvalues.

28 det S=(1)(10)(1)=10; $\lambda=2$ and 5; $x_1=(\cos\theta,\sin\theta)$, $x_2=(-\sin\theta,\cos\theta)$; the λ 's are positive. So S is positive definite.