逻辑回归

水果分类的例子

根据水果的属性, 判断该水果的种类。

mass: 水果重量 width: 水果的宽度 height: 水果的高度

color_score: 水果的颜色数值, 范围0-1

fruit_name: 水果类别

前19个样本是苹果 后19个样本是橙子

用这38个样本预测后四个样本对应的水果种类。

逻辑回归logistic regression

类型	模型	Y的特点	例子
线性回归	OLS、GLS(最小二乘)	连续数值型变量	GDP、产量、收入
0-1回归	logistic回归	二值变量 (0-1)	是否违约、是否得病
定序回归	probit定序回归	定序变量	等级评定 (优良差)
计数回归	泊松回归 (泊松分布)	计数变量	每分钟车流量
生存回归	Cox等比例风险回归	生存变量(截断数据)	企业、产品的寿命

对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。 把y看成事件发生的概率,y>0.5表示发生; y<0.5表示不发生

线性概率模型

线性概率模型(Linear Probability Model, 简记LPM)

直接用原来的回归模型进行回归。

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \mu_i$$

写成向量乘积形式: $y_i = x_i' \beta + u_i \ (i = 1, 2, \dots, n)$

内生性问题: y_i只能取0或者1(回归系数估计出来不一致且有偏)

$$u_i = egin{cases} 1 - oldsymbol{x_i'eta} &, \ y_i = 1 \ -oldsymbol{x_i'eta} &, \ y_i = 0 \end{cases}$$
 显然 $cov(x_i, u_i)
eq 0$

$$\hat{y}_i = \widehat{eta}_0 + \widehat{eta}_1 x_{1i} + \widehat{eta}_2 x_{2i} + \dots + \widehat{eta}_k x_{ki}$$

预测值却可能出现 $\hat{y}_i > 1$ 或者 $\hat{y}_i < 0$ 的不现实情况

两点分布 (伯努利分布)

事件	1	0
概率	p	1-p

在给定x的情况下,考虑y的两点分布概率

$$\begin{cases} P(y=1|\boldsymbol{x}) = F(\boldsymbol{x},\boldsymbol{\beta}) \\ P(y=0|\boldsymbol{x}) = 1 - F(\boldsymbol{x},\boldsymbol{\beta}) \end{cases} \stackrel{\text{i.i.}}{\to} - \stackrel{\text{in}}{\boxtimes} F(\boldsymbol{x},\boldsymbol{\beta}) = F(\boldsymbol{x}_i'\boldsymbol{\beta})$$

 $F(x, \beta)$ 称为连接函数(link function),它将解释变量x和被解释变量y连接起来。 我们只需要保证 $F(x, \beta)$ 是定义在[0, 1]上的函数,就能保证 $0 \le \hat{y} \le 1$

因为
$$E(y|\mathbf{x}) = 1 \times P(y=1|\mathbf{x}) + 0 \times P(y=0|\mathbf{x}) = P(y=1|\mathbf{x})$$

所以我们可以将 \hat{y} 可以理解为' $y=1$ '发生的概率。

$$F(\boldsymbol{x}, \boldsymbol{\beta}) = S(\boldsymbol{x}_i' \boldsymbol{\beta}) = \frac{\exp(\boldsymbol{x}_i' \boldsymbol{\beta})}{1 + \exp(\boldsymbol{x}_i' \boldsymbol{\beta})}$$

非线性模型,使用极大似然估计方法(MLE)进行估计

$$\begin{cases} P(y=1|\boldsymbol{x}) = S(\boldsymbol{x_i'\beta}) \\ P(y=0|\boldsymbol{x}) = 1 - S(\boldsymbol{x_i'\beta}) \end{cases} \Rightarrow f(y_i|\boldsymbol{x_i,\beta}) = \begin{cases} S(\boldsymbol{x_i'\beta}), & y_i = 1 \\ 1 - S(\boldsymbol{x_i'\beta}), & y_i = 0 \end{cases}$$

写成更加紧凑的形式:

$$f(y_i|\boldsymbol{x_i},\boldsymbol{\beta}) = [S(\boldsymbol{x_i'\beta})]^{y_i} [1 - S(\boldsymbol{x_i'\beta})]^{1-y_i}$$

取对数: $\ln f(y_i|\mathbf{x}_i,\boldsymbol{\beta}) = y_i[S(\mathbf{x}_i'\boldsymbol{\beta})] + (1-y_i)[1-S(\mathbf{x}_i'\boldsymbol{\beta})]$

样本的对数似然函数:
$$\ln L(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{x}) = \sum_{i=1}^n y_i \ln[S(\boldsymbol{x}_i'\boldsymbol{\beta})] + \sum_{i=1}^n (1-y_i)[1-S(\boldsymbol{x}_i'\boldsymbol{\beta})]$$

可以使用数值方法(梯度下降)求解这个非线性最大化的问题。

逻辑回归的推导: https://www.bilibili.com/video/av44798895/?p=45
极大使然估计: 大家可参考概率论与数理统计的教材, 或搜索相应视频学习

在给定x的情况下,考虑y的两点分布概率

$$\begin{cases} P(y=1|\boldsymbol{x}) = F(\boldsymbol{x},\boldsymbol{\beta}) \\ P(y=0|\boldsymbol{x}) = 1 - F(\boldsymbol{x},\boldsymbol{\beta}) \end{cases}$$

因为 $E(y|\boldsymbol{x}) = 1 \times P(y=1|\boldsymbol{x}) + 0 \times P(y=0|\boldsymbol{x}) = P(y=1|\boldsymbol{x})$

所以我们可以将 \hat{y} 可以理解为 $\hat{y}=1$ '发生的概率。

$$\hat{y}_{i} = P(y_{i} = 1 | \boldsymbol{x}) = S(\boldsymbol{x}_{i}' \widehat{\boldsymbol{\beta}}) = \frac{\exp(\boldsymbol{x}_{i}' \widehat{\boldsymbol{\beta}})}{1 + \exp(\boldsymbol{x}_{i}' \widehat{\boldsymbol{\beta}})} = \frac{e^{\widehat{\beta}_{0} + \widehat{\beta}_{1} x_{1i} + \widehat{\beta}_{2} x_{2i} + \dots + \widehat{\beta}_{k} x_{ki}}}{1 + e^{\widehat{\beta}_{0} + \widehat{\beta}_{1} x_{1i} + \widehat{\beta}_{2} x_{2i} + \dots + \widehat{\beta}_{k} x_{ki}}}$$

如果 $\hat{y}_i \ge 0.5$,则认为其预测的y = 1;否则则认为其预测的y = 0

如何确定合适的模型

把数据分为**训练组和测试组**,用训练组的数据来估计出模型,再用测试组的数据来进行测试。(训练组和测试组的比例一般设置为80%和20%)

已知分类结果的水果ID为1-38, 前19个为苹果, 后19个为橙子。 每类水果中随机抽出3个ID作为测试组, 剩下的16个ID作为训练组。 (比如: 17-19、36-38这六个样本作为测试组) 比较设置不同的自变量后的模型对于测试组的预测效果。

(注意: 为了消除偶然性的影响,可以对上述步骤多重复几次,最 终对每个模型求一个平均的准确率,这个步骤称为交叉验证。)

Fisher线性判别分析

Fisher线性判别分析

LDA(Linear Discriminant Analysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。

详细证明和求解步骤: https://www.bilibili.com/video/av33101528/?p=3