$$V_{\text{eff}} = \frac{l(l+1)\hbar^2}{2m_e R^2} - \frac{e^2 k}{R}$$

Using the electronic units. i.e, $\hbar = 1, k = 1, m_e = 1, e = 1$:

Figure 1. $V_{eff}(R)$ vs R for l = 1, 2, 3, 4, 5, 6

Now let's check the derivative of $V_{eff}(R)$ to get the minimums of the potential. I will call it $V_{eff}(R_*)$ Then plot it over the previous plot

$$\frac{\mathrm{dV}_{eff}}{\mathrm{dR}} = 0 \to \frac{e^2 k}{R^2} - \frac{l(l+1)\hbar^2}{m_e R^3} = 0 \to R_* = \frac{(l^2+l)\hbar^2}{e^2 k m_e} \to V_{eff}(R_*) = -\frac{(e^2 k m_e)^2}{2m_e \hbar^2 l(l+1)} = -\frac{e^4 k^2 m_e}{2l(l+1)\hbar^2}$$

Figure 2. $V_{eff}(R_*)$ vs R_* on the previous plot for l=1, 2, 3, 4, 5, 6

Now let's check what happens to the maximum orbital quantum number l at n >> 1. We will replace l by n-1 in $V_{eff}(R_*)$ to see what we will get:

$$V_{eff}(R_*) = -\frac{(e^2km_e)^2}{2m_e\hbar^2l(l+1)} = -\frac{(e^2km_e)^2}{2m_e\hbar^2n(n-1)}, \text{ Since } n >> 1, V_{eff}(R_*) \approx -\frac{(e^2km_e)^2}{2m_e\hbar^2n^2}$$

Which looks quite familiar, remembering that
$$E_n = -\frac{(e^2 k m_e)^2}{2m_e \hbar^2 n^2}$$

 $\therefore V_{eff}(R_*) \approx E_n$; For l_{max} and $n >> 1$

Now I will plot $V_{eff}(R_*)$ and E_n vs n to show that at the high values of the principle quantum number n, $V_{eff}(R_*) \approx E_n$

Figure 3. $V_{eff}(R_*)$ and E_n vs n.