XXVI : Espaces euclidiens et préhilbertiens réels

1 - Produit scalaire : définition

Défina: Soit E un M-ev. On amelle poduit scalaire sur Étoute forme bilinéaire synétique défire et positive sur E. Soit O. ExE - 12. Pet un produit scalcine si (i) Pest !: livercine; (ii) Pest synéhique, (iii) Pest positive. Y 2 EE, P(x, x) > 0

(iv) Part dépire: V2 ET, P(2, 11) = 0 => 20 = 5 ng: 0 (n, y) est noté sourt: < >1, y > \(\frac{1}{2} \) (), 4) (20/4) Si Pest Dyretique et locaire por aport à la 1 de variolle, elle est bilirective. 8517 2, g, z E E, 2 E12 - $\varphi(x,y+\lambda z) = \varphi(y+\lambda z,y)$ $= \left(\left(\frac{1}{2}, \frac{1}{2} \right) + \lambda \left(\frac{1}{2}, \frac{1}{2} \right) \right)$ $= \mathcal{Q}(n, y) + \mathcal{Q}(n, y)$

Ty: les poduits saalaires unels sur 12 sur
12 sont des poduits saalaires.

sur 12: \(\tau \): \(\tau ((3),(3)) (---) act5dSit $(3),(4),(4) \in \mathbb{Z}^2$. $\lambda \in \mathbb{Z}^2$. $(\ddot{a}): \langle (\ddot{b}) | (\ddot{b}) \rangle = a + b d = \langle (\ddot{b}) | (\ddot{b}) \rangle$ $(i) < (i) + \lambda(i) (i) = (a + \lambda c) e + (6 + \lambda d) f$ $= \langle (3) | (2) \rangle + \lambda \langle (3) | (2) \rangle$ par synétie, <. (-) et livieure. (ii) $((3))((3)) = a^2 + b^2 > 0$

(iv) S:
$$\langle (3) | (3) \rangle = 0$$
, $a^{2} + (^{2} = 0)$
 $de = 6 = 0$.

(i) $e = 6 = 0$.

(i) $e = 6 = 0$.

(ii) $e = 6 = 0$.

(iii) $e = 6 = 0$.

(iii) $e = 6 = 0$.

(iv) $e = 6 = 0$.

b lara carrique de
$$\Omega_{\Lambda}(x)$$
 at $(1, X, -X^{1})$.

8. $A = \widehat{Z}$ a: X^{i} , $B = \widehat{Z}$ b: X^{i} ,

b la Lara carrique: $A = (\widehat{a}, X^{1})$, $B = (\widehat{b}, X^{1})$,

(e ps. usual de $\Omega_{\Lambda}(x)$:

 $[\mathcal{L}_{\Lambda}(x) \times \Omega_{\Lambda}(x) - X^{1}]$
 $[\mathcal{L}_{\Lambda}(x) \times$

Si
$$f \in \mathcal{C}(0.1), (1)$$
 $f : Cf(f) \ge 0$

als: $\int_{1}^{1} f^{2} = 0$.

Or: $f^{2} = 0$.

 $f^{2} = 0$

de
$$\widehat{A} \cdot \langle \cdot | \cdot \rangle : \widehat{\Pi}_{\Lambda} (\times)^{2} \longrightarrow 12$$
 $(A, B) \longrightarrow \int_{0}^{1} \widehat{A} \cdot \widehat{B}$
 $A + 1 \cap S \cdot A = \widehat{\Pi}_{\Lambda} (\times)$
 $\widehat{\Pi}_{\Lambda} (\times) !$
 $\widehat{\Pi}_{\Lambda} (\times) !$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$
 $A \cdot B = (1) \cdot (1) = 0$