LaByRInth

An Improved Algorithm for Low-Coverage Biallelic Genetic Imputation

Jason Vander Woude

Outline

- 1. Project History
- 2. Genetics
- 3. Imputation
 - a. LB-Impute
 - b. LaByRInth
 - i. Modeling
- 4. Future Work

Kansas State Agronomy

- 1. Correlate physical features with genetics in wheat and wheatgrass
 - a. Plant height
 - b. Number of seeds per head
- 2. Fit equations to data to model distributions
- 3. LaByRInth imputation

Outline >> Genetics

Chromosomes

- 1. Chromosomes encode genetic information
- 2. Chromosome is a sequence of bonded bases
 - a. A/T and C/G
 - b. 5' and 3'
 - c. 5'ATGACACTGTGACA3' uniquely identifies

Heterozygous and Homozygous

- 1. Wheat has 42 chromosomes
- 2. Chromosomes come in pairs (homologs)
 - a. Homologs serve same genetic purpose
 - b. Base pairs can be completely different
 - c. Each parent contributes one chromosome to each homologous pair

Genetic Imputation

- 1. Expensive to collect all genetic information
- 2. Patterns are expected based on known breeding
- 3. Imputation is used to fill in the gaps
 - a. Build a mathematical model of the expected process
 - b. Use known genetic sites to infer unknown sites

How well does imputation actually work?

Genetics of a Biallelic Homologous Chromosome Pair

1 homolog with Ref. and 1 with Alt.

Sampled

LB-Impute

Genetics vs LB-Impute

Outline \rightarrow Imputation \rightarrow LB-Impute

LB-Impute

- 1. Leaves large sections of the chromosome un-imputed
- 2. Designed for F2 populations

F2 vs F5

LaByRInth

- 1. Low-coverage Biallelic R-package Imputation
- 2. Initially supposed to be re-write of LB-Impute (Java to R)
- 3. Found many areas for improvement
 - a. Project took unexpected direction
 - b. A few weeks became more than a year
- 4. Open source

Outline → Imputation → LaByRInth → Modeling

Modeling Strategies

- 1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly "solve" the model

Outline \rightarrow Imputation \rightarrow LaByRInth \rightarrow Modeling

Modeling Strategies

- 1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly "solve" the model
- 2. Option 2: Use a model that accurately captures biology
 - May not be able to "solve" the model exactly

Modeling Strategies

- 1. Option 1: Use a model that ignores some biology (varying levels)
 - Often able to exactly "solve" the model
- 2. Option 2: Use a model that accurately captures biology
 - May not be able to "solve" the model exactly
- 3. An analogy: find the area of a circle
 - Use a polygon to approximate the area
 - i. Area of polygon may be able to be exactly computed
 - \circ Use formula πr^2
 - i. π cannot be represented exactly

LaByRInth Strategy

- 1. Have not found a good way to do option 2 (capture biology)
- 2. Two different ideas for option 1 (exact solution to model)
 - a. Extend LB-Impute strategy to other generations
 - i. Assumes we can segment the chromosome
 - b. New method based on different biological assumptions
 - i. Assume limited genetic change during reproduction

How well does LaByRInth work?

Genetics

LaByRInth

Genetics vs LaByRInth

This Summer

- 1. Implement and test both concept methods
 - a. Real data
 - b. Simulated data
- 2. Write and submit paper
- 3. Package code and release

Thanks to my advisors,

Dr. Nathan Tintle (Dordt)

Dr. Jesse Poland (Kansas State)

Dr. Mike Janssen (Dordt)

Questions?

