MSO 202A: Complex Variables

August-September 2022

Assignment-0

Exercises marked (T) are to be discussed in the tutorials.

1. (T)Let P(z) be a polynomial with real coefficients. Show that if z_0 is a root of P then so is \overline{z}_0 .

Solution: Since the coefficinets are real, we have $\overline{P(z)} = P(\overline{z})$.

2. Solve the following equations in polar form and locate the roots in the complex plane:

(a)
$$z^4 = -1$$

(b)
$$(\mathbf{T})z^4 = -1 + \sqrt{3}\iota$$

Solution:

(a) Write
$$z^4 = -1 = e^{i\pi + 2ik\pi}, k \in \mathbb{Z}$$
.

Roots are

$$e^{\iota \pi/4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\iota,$$

$$e^{\iota 3\pi/4} = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\iota,$$

$$e^{\iota 5\pi/4} = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\iota,$$

$$e^{\iota 7\pi/4} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\iota.$$
(b) $z^4 = -1 = 2e^{2\iota\pi/3} = 2e^{2\iota\pi/3 + 2\iota k\pi}, \ k \in \mathbb{Z}.$

Roots are

$$\begin{split} &\sqrt[4]{2}e^{\iota\pi/6} = \sqrt[4]{2}(\frac{\sqrt{3}}{2} + \frac{1}{2}\iota), \\ &\sqrt[4]{2}e^{\iota2\pi/3} = \sqrt[4]{2}((\iota\frac{\sqrt{3}}{2} - \frac{1}{2})), \\ &\sqrt[4]{2}e^{\iota7\pi/6} = \sqrt[4]{2}(-\frac{\sqrt{3}}{2} - \frac{1}{2}\iota), \\ &\sqrt[4]{2}e^{\iota5\pi/3} = \sqrt[4]{2}(-\iota\frac{\sqrt{3}}{2} + \frac{1}{2})). \end{split}$$

3. Simplify $(1+\iota)^{17}$ into the form $a+b\iota$.

Solution:
$$1 + \iota = \sqrt{2}(\cos(\pi/4) + \iota \sin(\pi/4))$$
.
Thus $(1 + \iota)^{17} = (\sqrt{2})^{17}(\cos(17\pi/4) + \iota \sin(17\pi/4)) = 256(1 + \iota)$

4. Show that if two integers can be expressed as the sum of two squares, then so can their product.

Solution: Let $M=a^2+b^2$ and $N=c^2+d^2$ where $a,b,c,d\in\mathbb{Z}$. Take $z=a+\iota b$ and $w=c+\iota d$. Then $MN=|z|^2|w|^2=|zw|^2=\operatorname{Re}(zw)^2+\operatorname{Im}(zw)^2$.

5. (T)Show that the *n*-th roots of 1 (aside from 1) satisfy the cyclotomic equation $z^{n-1} + z^{n-2} + \cdots + z + 1 = 0$

Solution:

$$z^{n} - 1 = (z - 1)(z^{n-1} + z^{n-2} + \dots + z + 1).$$

Let ω be a *n*-th roots of 1 (aside from 1). Putting $z = \omega$ in the above identity, the left hand side becomes 0. But $\omega \neq 1$. So $\omega^{n-1} + \omega^{n-2} + \cdots + \omega + 1 = 0$

6. (T)Consider the n-1 diagonals of a regular n-gon inscribed in a unit circle obtained by connecting one vertex with all the others. Show that the product of their lengths is n.

Solution: Let the vertices of the regular n-gon be $1, a_1, a_2, \dots, a_{n-1}$. The the required product of their lengths of the diagonals is $|1 - a_1| \cdots |1 - a_{n-1}|$. By the previous problem, a_1, a_2, \dots, a_{n-1} are the roots of the equation $z^{n-1} + z^{n-2} + \dots + z + 1 = 0$. So $z^{n-1} + z^{n-2} + \dots + z + 1 = (z - a_1) \cdots (z - a_{n-1})$. Putting z = 1 and taking modulus, we have the desired result.

7. Let ω be a p-th root of unity. Define

$$\chi(p) = \sum_{n=0}^{p-1} \omega^{n^2}.$$

Verify that $\chi(3)^2 = -3$, $\chi(5)^2 = 5$, $\chi(7)^2 = -7$.

(Remark: The expression $\chi(p)$ is known as Gauss Sum. For odd prime p it can be shown that $\chi(p)^2=(-1)^{\frac{p-1}{2}}p$.)

Solution:

$$\chi(3)^2 = (1+2\omega)^2 = 1 + 4\omega + 4\omega^2 = -3.$$

$$\chi(5)^2 = (1+2\omega+2\omega^4)^2 = 1 + 4\omega^2 + 4\omega^8 + 4\omega + 4\omega^4 + 8\omega^5 = 5 + 4(1+\omega+\omega^2+\omega^3+\omega^4) = 5.$$

$$\chi(7)^2 = (1+2\omega+2\omega^2+2\omega^4)^2 = 1 + 8\omega + 8\omega^2 + 8\omega^3 + 8\omega^4 + 8\omega^5 + 8\omega^6 = -7.$$

8. For each of the following equations, give a geometric description of the set of complex numbers. (a) $(\mathbf{T})|z-z_1|=|z-z_2|$ (b) $|z-z_1|+|z-z_2|=c$ (c) $|z-2+3\iota|<1$ (d) $(\mathbf{T})0 \le z < \pi/4$ (e) $|z-4| \ge |z|$ (f) $|\operatorname{Re} z| \ge a > 0$

Solution:

- (a) The equation $|z z_1| = |z z_2|$ exactly expresses the fact that z is the same distance to z_1 as it is to z_2 . From geometry, this set of points is just the perpendicular bisector of the segment connecting z_1 and z_2 (the line which is perpendicular to this segment and passes through the midpoint of this segment).
- (b) The triangle inequality can also be expressed in the form $|z_1| + |z_2| \ge |z_1 z_2|$. (Take the usual form of the triangle inequality and replace z_2 with $-z_2$). Then applying this form of the triangle inequality gives $|z z_1| + |z z_2| \ge |z_1 z_2|$.

Therefore, if $c < |z_1 - z_2|$, it is impossible for $|z - z_1| + |z - z_2| = c$ to have any solutions, so the set in question is the empty set.

Suppose $c = |z_1 - z_2|$. Then z must lie on the line segment connecting z_1 and z_2 . Indeed, if z is not on the line connecting z_1 , z_2 , then z, z_1 , z_2 are not collinear, and since z, z_1 , z_2 form the vertices of an actual triangle, the triangle inequality yields $|z - z_1| + |z - z_2| > |z_1 - z_2|$. Also, if z is on the line connecting z_1 , z_2 but not on the segment between them, then one of $|z - z_1|$, $|z - z_2|$ is greater than $|z_1 - z_2|$, so $|z - z_1| + |z - z_2| > c$ would be impossible.

Finally, if $c > |z_1 - z_2|$, then the set of points in question form an ellipse. This is actually one of the possible definitions of an ellipse: as the set of points whose sum of distances from two fixed points is constant. Also, z_1 , z_2 are the foci of this ellipse.

- (c) Open disc with center at $2 3\iota$ with radius 1.
- (d) region between two rays $\theta = 0$ and $\theta = \pi/4$.
- (e) Note that |z-4|=|z| represents the line perpendicularly bisecting z=4 and z=0, which is the line x=2. Thus the inequality represents the half plane, given by $x\leq 2$.
- (f). $x \ge a$ or $x \le -a$
- 9. In each following functions f(z), compute the limit $\lim_{z\to 0} f(z)$. Hence conclude whether the functions can be defined at z=0 to become continuous.

(T)(a)
$$2z \frac{\text{Re } z}{|z|}$$
 (T)(b) $\frac{\iota z}{|z|}$ (c) $3 \frac{\text{Re } z}{z}$

Solution:

- (a) $|f(z)| = |2z \frac{\text{Re } z}{|z|}| = |\text{Re } z| \to 0$ as $z \to 0$. Thus the limit is 0. So if we define f(0) = 0, then the function is continuous at 0.
- (b) $f(z) = \frac{-y + \iota x}{\sqrt{x^2 + y^2}}$. If $z \to 0$ along positive side of x axis then $f(z) \to \iota$. If $z \to 0$ along positive side of y axis then $f(z) \to -1$. Thus $\lim_{z \to 0} \frac{-y + \iota x}{\sqrt{x^2 + y^2}}$ does not exist and hence the function can not be made continuous at z = 0.
- (c). $f(z) = \frac{3x}{x+iy}$. If $z \to 0$ along x axis then $f(z) \to 3$. If $z \to 0$ along y axis then $f(z) \to 0$. Thus $\lim_{z \to 0} \frac{3x}{x+iy}$ does not exist and hence the function can not be made continuous at z = 0.
- 10. (\mathbf{T}) Let

$$f(z) = \frac{\{(1-\iota)z + (1+\iota)\overline{z}\}^2}{z\overline{z}}.$$

Show that $\lim_{x\to 0} \lim_{y\to 0} f(z) = \lim_{y\to 0} \lim_{x\to 0} f(z)$ but $\lim_{z\to 0} f(z)$ does not exist.

Solution:

 $\lim_{x\to 0} \lim_{y\to 0} f(z) = \lim_{x\to 0} \frac{\{(1-\iota)x + (1+\iota)x\}^2}{x^2} = 4.$ Similarly $\lim_{y\to 0} \lim_{x\to 0} f(z) = 4.$ But along the line y=-x, the limit is 0. So $\lim_{z\to 0} f(z)$ does not exist.