MATH 387 LAB FINAL EXAM

HONOURS NUMERICAL ANALYSIS

WRITTEN BY

DAVID KNAPIK

 $McGill\ University \\ 260607757 \\ david.knapik@mcgill.ca$

Exercise 1

Recall that $f \in C^{0,\alpha}([-1,1])$ for $0 < \alpha \le 1$ iff

$$\sup_{-1 \le x \le y \le 1} \frac{\mid f(x) - f(y) \mid}{\mid x - y \mid^{\alpha}} < \infty$$

and that $f \in C^{k,\alpha}([-1,1])$ for $k \in \mathbb{N}$ and $0 < \alpha \le 1$ iff $f \in C^k([-1,1])$ and $f^{(k)} \in C^{0,\alpha}([-1,1])$. Our goal is to find the largest $k+\alpha$ such that $f_a \in C^{k,\alpha}([-1,1])$, depending on a > 0.

1.1 Largest Possible k

1.1.1 Case 1

First, consider $a \in \mathbb{N}$, (a > 0).

If we take k = a, then

$$f_a^{(a)}(x) = \begin{cases} a! & x > 0\\ 0 & x \le 0 \end{cases}$$

which has discontinuity at x = 0 since a > 0.

If we take k = a - 1, then

$$f_a^{(a-1)}(x) = \begin{cases} (a-1)!x & x > 0\\ 0 & x \le 0 \end{cases}$$

which is continuous.

1.1.2 Case 2

Now, consider $a \in \mathbb{R} \setminus \mathbb{N}$, (a > 0).

From Case 1, we know that we can take at least k = a - 1. But in this case, the fractional part of a (frac(a)) is nonzero, so we can take k = a - frac(a) and still retain continuity.

1.1.3 Conclusion

So, in conclusion, the maximum possible k is:

$$k = \begin{cases} (a-1) & a \in \mathbb{N} \\ a - frac(a) & a \in \mathbb{R} \setminus \mathbb{N} \end{cases}$$
 (1.1)

1.2 Largest Possible Alpha

We are given that $0 < \alpha \le 1$. If we decrease $k \in \mathbb{N}$ by one, to maximize $k + \alpha$ we would need to increase α by one, which is not possible. Thus, to determine the largest possible α , we set k to be given by (1.1) and find the corresponding values of α such that

$$\sup \frac{|f_a(x) - f_a(y)|}{|x - y|^{\alpha}} < \infty$$

Remark. We check with f_a and not $f_a^{(k)}$ because with the maximum possible k, checking our condition is equivalent up to a constant, which does not affect the analysis in the regime of infinity.

Note that for $x, y \in [-1, 0]$, we have that $f_a(x) = f_a(y) = 0$. Thus, $f_a \in C^k([-1, 0])$ and $f_a^{(k)} \in C^{0,\alpha}([-1, 0])$ trivially $(\forall k \in \mathbb{N}, \forall \alpha)$.

So, we just need to consider x or y OR both x and y in (0,1]. WLOG, take $x,y\in(0,1]$ with x>y.

1.2.1 Case 1

First consider $\alpha \leq a$ (a > 0). We have that:

$$\sup_{-1 \le x, y \le 1} \frac{|f_a(x) - f_a(y)|}{|x - y|^{\alpha}} = \sup_{-1 \le x, y \le 1} \frac{|x^a - y^a|}{|x - y|^{\alpha}}$$

$$\le \sup_{-1 \le x, y \le 1} \frac{|x - y|^{\alpha}}{|x - y|^{\alpha}}$$

$$= 1$$

$$< \infty$$

1.2.2 Case 2

Now consider $\alpha > a$ (a > 0). We have that:

$$\sup_{-1 \le x, y \le 1} \frac{|f_a(x) - f_a(y)|}{|x - y|^{\alpha}} \ge \sup_{-1 \le x \le 1} \frac{|(2x)^a - x^a|}{|2x - x|^{\alpha}}$$
$$= (2^a - 1) \sup_{-1 \le x \le 1} x^{a - \alpha}$$
$$\to \infty \quad (x = 0)$$

1.2.3 Conclusion

So, in conclusion, we have that $\alpha \leq a$.

1.3 Result

From the above $(\alpha \leq a)$ and also (1.1), we conclude that the largest $k + \alpha$ such that $f_a \in C^{k,\alpha}([-1,1])$ is:

$$\max k + \alpha = \begin{cases} 2a - 1 & a \in \mathbb{N} \\ 2a - frac(a) & a \in \mathbb{R} \setminus \mathbb{N} \end{cases}$$