CS311 Computer Organization

Lecture 1:Computer Abstractions and Technology

Fall 2018

Soontae Kim
School of Computing
KAIST

The Computer Revolution

Progress in computer technology

- Underpinned by Moore's Law
 - The number of <u>transistors</u> that can be placed inexpensively on an <u>integrated circuit</u> doubles approximately every two years

Makes novel applications feasible

- Computers in automobiles (Electronic Control Unit, ECU)
- Smartphones
- Human genome project
- World Wide Web
- Search Engines
- Google AlphaGo, IBM Watson

Computers are pervasive

Embedded systems, Internet Of Things (IOT)

Classes of Computers

Personal computers

- General purpose, variety of software
- Subject to cost/performance tradeoff

• Server computers

- Network based
- High capacity, performance, reliability
- Range from small servers to building sized
- Developed into cloud computing

Classes of Computers II

Supercomputers

- High-end scientific and engineering calculations
- Highest capability but represent a small fraction of the overall computer market
 - Cray supercomputers

Embedded computers

- Hidden as components of systems
- Stringent power/performance/cost constraints
- E.g. Cell phone, ECUs in cars, games, TVs
- Developed into smartphones and IOT

The PostPC Era

The PostPC Era

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Giant datacenters
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
 - Instruction set architecture
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing
 - multicore

Performance of program

Algorithm

Determines number of source-level statements and I/O operations executed- algorithms, data structure

• Programming language, compiler, architecture

 Determine number of machine instructions executed per statement – ch2, 3

Processor and memory system

- Determine how fast instructions are executed – ch 4,5,6

• I/O system (including OS)

Determines how fast I/O operations are executed – ch
 4,5,6

Eight Great Ideas invented

- Design for Moore's Law
- Use abstraction to simplify design
- Make the common case fast
- Performance via parallelism
- Performance via pipelining
- Performance via prediction
- Hierarchy of memories
- Dependability via redundancy

Below Your Program

Application software

Written in high-level language

System software

- Compiler: translates HLL code to machine code
- Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing of resources

Hardware

Processor, memory, I/O controllers

Levels of Program Code

High-level language

- Level of abstraction closer to problem domain
- Provides for productivity and portability

Assembly language

Symbolic representation of machine instructions

Hardware representation

- Binary digits (bits)
- Encode instructions and data

High-level language program (in C)

program (for MIPS)

Assembly language swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

lw \$16, 4(\$2)
sw \$16, 0(\$2)
sw \$15, 4(\$2)
jr \$31

Binary machine language program (for MIPS)

Components of a Computer

The BIG Picture

performance

Desktop, server,
 embedded

Input/output includes

- User-interface devices
 - Display, keyboard, mouse
- Storage devices
 - Hard disk, CD/DVD, flash
- Network adapters
 - For communicating with other computers

Touchscreen

- PostPC device
- Supersedes keyboard and mouse
- Resistive and Capacitive types
 - Most tablets, smart phones use capacitive
 - Capacitive allows multiple touches simultaneously

Through the Looking Glass

- LCD screen: picture elements (pixels)
 - Mirrors content of frame buffer memory

Opening the Box

Components of the Apple iPad 2 A 1395

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

• Apple A5

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface including instructions, registers, memory access, I/O ...
- Application binary interface (ABI)
 - The ISA + OS interface provided to app. programmers
- Implementation
 - Hardware that obeys the architecture abstraction

A Safe Place for Data

Volatile main memory

- Loses instructions and data when power off
- Mainly use DRAM (Dynamic RAM)

Non-volatile secondary memory

- Magnetic disk
- Flash memory
- Optical disk (CDROM, DVD)

Networks

- Networked computers have advantages of communication, resource sharing, nonlocal access
- Local area network (LAN): Ethernet
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

- 300mm wafer, 280 dies, 32nm technology
- Each die is 20.7 x 10.5 mm

Integrated Circuit Cost

Cost per die =
$$\frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}$$

Dies per wafer $\approx \text{Wafer area/Die area}$

Yield = $\frac{1}{(1+(\text{Defects per area} \times \text{Die area/2}))^2}$

Nonlinear relation to area and defect rate

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design