A. Topological Order

Given a directed acyclic graph (DAG) find a valid topological order.

Input

First tine: N (0<N<=100000), number of nodes. Second line: M (0<N<=300000), number of edges.

Next M lines, each: U V (0<=U, V<N), defines an edge from U to V.

Output

Topological Order. See sample for clarification

Input	Output
6	0
5	1
13	2
12	5
01	3
3 4	4
25	

B. Counting Topological Orders

Given a directed acyclic graph (DAG) find the number of valid topological orders.

Input

First line: N, number of nodes. Second line: M, number of edges.

Next M lines, each: U V (0<=U, V<N), defines an edge from U to V.

Output

Number of topological orders. See sample for clarification

Input	Output
4	2
4	
3 1	
3 1 3 2	
10	
20	

C. Articulation Points

Given an undirected graph find all of its articulation points.

Input

First line: N (O<N<=100000), number of nodes. Second line: M (O<N<=300000). number of edges.

Next M lines. each: U V ((0<=U, V<N), defines an edge between U and V.

Output

List all the articulation points in increasing order. See sample for clarification.

Input	Output
6	1
5	2
13	3
12	
0 1	
0 1 3 4 2 5	
25	

D. Grid Component

Given an NxM grid. with blocked cells, find the number of connected empty areas. For each empty cell, it is connected with four cells (if empty): Up, Down. Left and Right You can never step into a blocked cell.

Input

First line: N (O<N<=100). M (O<M<=100).

Next N lines, each contains M characters "." indicates an empty cell. "#" indicates blocked cells.

Output

One line with the number of different connected areas. See sample for more clarification.

Input 5 3	Output 2
###	
 .#.	

E. Removable Devices

Mr. John is in charge of a network that connects n devices. Each device in the network is capable of connecting to another device directly or indirectly through a path containing other devices. A device is a removable device if that can be turned off or removed from the network without hampering the connectivity among other devices.

Input

First line: N (O<N<=100000), number of devices.

Second line: M (O<N<=300000). number of direct connections.

Next M lines. each: U V ((0<=U, V<N), defines a direct connection between devices U and V.

Output

The number of devices removable devices.

Input	Output
6	3
5	
13	
12	
0 1	
3 4 2 5	
25	