

计算机网络 Computer Networks

网络互联: 交换网络

直连网络的局限

□局限性

- > 接入主机的数量受限
 - ●点到点链路: 两台主机
 - ●广播链路: 例如Ethernet, 最大容纳1024台主机
- > 网络地理覆盖范围有限
 - ●点到点链路: 一条链路而非一个区域
 - ●广播链路:例如Ethernet,最大覆盖范围2500米

直连网络的扩展

□直连网络的问题

▶ 覆盖范围以及接入节点数量受限

□解决方案

> 交换网络

交換网络 (例如:基于交换机的Ethernet)

电路交换

□电话网络

- > 电话机并非直连
- ▶ 电话机通过一个交换设备(称为交换机)互联
- > 交换机保证两个电话机之间的专用电路连接

PBX 接线总机 In 1924

人工电话交换总机

数字交换设备 每一个交换机可以服务 10,000-100,000+ 个用户

分组交换

□交换机

- > 多输入多输出设备
- ▶ 将分组/数据帧从一个输入端口传送至一个或多个输出端口
 - 称为交换(或转发)

分组交换网络

□星型拓扑结构的优点

- > 建立可以容纳更多主机的网络
- 建立可以覆盖更大区域的网络
- 新主机连接到交换机上时,并不会导致原有连接主机的 性能变差
 - 基于交换机的网络,提供了交换机到主机的全速率链路 (传输数据)

□交换网络比共享介质网络更具扩展性

▶ 扩展性: 具备增加更多节点的能力

分组交换网络

分组交换的机制

	数据报	虚电路	源路由
	Datagram	Virtual Circuit	Source routing
起源	ARPANET, 1969	X.25, CCITT, 1976	Token Ring, 802.5, 1980s
核心思想	主机提供可靠保证	网络提供可靠保证	分组提供可靠保证
分组信息	分组首部包含源/目	分组首部包含一个本	分组首部包含完整的
	的主机地址	地有效的临时VCI	路由信息
转发机制	独立处理	按照VC模式处理	独立处理
	每一个分组	每一个分组	每一个分组
目的节点 接收的分组	乱序	按序	按序

提纲

- □问题: 直连网络的扩展
 - ▶局域网的扩展与网桥
 - ●透明网桥
 - ●生成树算法
 - ●虚拟局域网

提纲

- □问题: 直连网络的扩展
 - ▶局域网的扩展与网桥
 - ●透明网桥
 - ●生成树算法
 - ●虚拟局域网

网桥和交换机

- □传统以太网的局限性
 - ➤ 最多2500m的覆盖范围
 - ▶ 最多容纳1024台主机

□如何扩展网络?

- ▶ 物理层方案: 通过中继器或集线器再生放大信号
 - 扩大了冲突域,性能降低
- ▶ 数据链路层方案:设计一种新的节点实现多个以太网 之间的数据帧转发
 - → 网桥, 有时通称为以太网交换机

网桥与中继器作用的比较

网桥和局域网扩展

□通过网桥扩展局域网

- > 网桥是交换机的一种实现
- \triangleright 单一局域网的总通信量为10Mbps, 连接 n 个网桥的吞吐量最多能够达到 n *10Mbps
- □ 最简单的网桥(早期方案)
 - > 将输入端口上接收的局域网的数据帧向所有端口输出

- □问题
 - ▶最简单的网桥向所有端口转发数据帧
- □动机
 - ▶ 根据需要进行转发
 - 对局域网上的站点并不知道所发送的帧将经过哪几个 网桥,因为网桥对各站来说是"透明的"
- □解决方案
 - > 引入转发表

- □新的问题
 - ▶ 如何自适应构造转发表?
- □动机
 - ▶ 根据数据帧转发过程自学习构造转发表
- □解决方案
 - > 逆向学习
 - > 主机与端口的映射关系学习
 - 监测接收数据帧的源地址信息

- 网桥启动时, 转发表为空
- 通过逆向学习法构建转发表
- 如果转发表中无对应记录,则向所有其他端口转发数据帧

主机	端口

Booting up

主机	端口
Α	1
В	1
С	1
X	2
Υ	2
• • •	• • •

Time out

主机	端口
Α	1
В	1
Х	2
Υ	2
•••	•••

网桥丢弃超时的记录 (一段时间内未更新, 默认300s), 即, soft state

网桥的工作流程

小结-透明网桥

□逆向学习

- ➤ 根据帧的<mark>源地址</mark>在MAC地址表查找匹配表项
- 如果没有,则增加一个新表项
 - (源地址、入境端口、帧到达时间)
- 如果有,则更新原表项的帧到达时间,重置老化时间

□ 对入境帧的转发过程(三选一)

- 查帧的目的地址是否在MAC地址表中
- ▶ 如果有,且入境端口≠出境端口,则从对应的出境端口转发帧
- ▶ 如果有,且入境端口=出境端口,则丢弃帧(即过滤帧)
- ▶ 如果没有,则向除入境端口以外的其它所有端口泛洪帧

提纲

- □问题: 直连网络的扩展
 - ▶局域网的扩展与网桥
 - ●透明网桥
 - ●生成树算法
 - ●虚拟局域网

局域网扩展产生环路

- 1. 广播风暴
- 2. 重复帧

K

3. MAC地址表不稳定

An example of Extended LAN with loops.

生成树算法

- □新的问题: 网络环路
 - ▶广播风暴、重复帧、MAC地址表不稳定
- □动机
 - > 网桥动态交换配置信息
 - 网桥的ID
 - 网桥间的跳数距离
- □解决方案
 - ➤ 生成树算法(Spanning Tree Protocol)
 - ▶ 从扩展局域网的拓扑结构中去掉一些端口,使其退化成为一颗无环树

基于图论的生成树算法

- □ 生成(跨越)
 - > 覆盖所有的节点
- □树
 - ▶ 无环路, 或任意两个节点之间只有一条路径

(a) 有环图

(b) 生成树

理想的生成树算法

□假设

- > 交换机知道扩展局域网的全局拓扑结构
- ➤ 每个网桥有一个唯一的标识符B_x, x 为网桥 id

□生成树节点的选择

- > 选择最小标识符的网桥为生成树的根节点网桥
- ➤ 选择离根最近的网桥为LAN的指派网桥(转发数据帧)
- > 每一个网桥根据其端口是否转发数据帧决定是否是指派网桥
 - ●思考:从功能上看,根节点是否是指派网桥?

□转发机制

- 根网桥总是向所有的端口转发数据帧
- > 其他网桥通过指派网桥对应的端口转发数据帧

局域网扩展(避免环路)

实用的生成树算法

- □放宽假设
 - > 交换机无法知道扩展局域网的全局拓扑结构
- □动机
 - > 设计交换机之间的信息交换机制
 - > 实现一种动态的分布式算法
- □问题1:交换信息的设计,称为配置信息
 - > 发送数据的源网桥的ID
 - > 发送网桥认定的根网桥的ID
 - 从发送网桥到根网桥的距离 (转发次数/跳数)

实用的生成树算法

- □问题2: 设计分布式协商机制
 - > 最初每个网桥认为自己是根节点
 - ▶每个网桥生成配置消息并从每个端口发送出去
 - ▶ 当网桥的某个端口收到新的配置消息后, 更新每个端口的配置消息
 - ▶ 当网桥学习发现自己既不是根节点也不是指派节点时则 停止发送配置信息

实用的生成树算法

- □问题3:设计维护机制
 - ➤ 系统稳定时, 仅根网桥产生配置消息, 其他网桥仅在 那些指派网桥的端口上转发这些配置消息
 - ▶ 根节点周期性的发送配置消息
 - ▶ 如果网桥在一段时间后仍未收到配置消息,则重新 宣布自己是根节点,重新生成配置消息并转发

生成树算法示例

Assuming all bridges power on at the same time

Configuration message from node X claiming distance d from root node Y: (Y, d, X)

Focus on B3

提纲

- □问题: 直连网络的扩展
 - ▶局域网的扩展与网桥
 - ●透明网桥
 - ●生成树算法
 - ●虚拟局域网

网桥的局限性

- □ 网络的局限性1: Scalability(扩展性)
 - > 当连接网段的数量增加时, 生成树算法扩展性存在局限性
 - ▶ 广播域是广播帧能够到达的范围
 - ●缺省情况下,网桥所有端口同属一个广播域,无法隔离广播域
 - ▶ 在大规模网络中,广播帧在广播域中传播,占用资源, 降低性能,且具有安全隐患
- □解决方案: 虚拟局域网(VLAN)
 - ▶每个虚拟局域网分配一个标识符,是一个独立的广播域
 - > 只有两个网段的标识符相同时, 才能完成数据帧的转发

虚拟局域网示例

传统局域网与虚拟局域网组网结构比较

虚拟局域网是在物理网络 上根据用途等来<mark>逻辑划分</mark> 的局域网,与用户的物理 位置没有关系。

虚拟局域网限制了接收广播信息的主机数,使网络不会因传播过多的广播信息而引起性能急剧下降。

基于交换机端口的VLAN划分方法

VLAN与端口对照表

VLAN	端口号
	1
	4
VLAN ₁	7
	11
	15
VLAN2	2
	5
	9
	13

基于主机MAC地址的VLAN划分方法

基于网络层地址或协议的VLAN划分

虚拟局域网的优点

- □有效控制广播域范围
 - ➤ 广播流量被限制在一个VLAN内
- □增强网络的安全性
 - ➤ VLAN间相互隔离,无法进行二层通信
 - ➤ 不同VLAN需通过三层设备通信
- □灵活构建虚拟工作组
 - ▶ 同一工作组的用户不必局限于同一物理范围
- □提高网络的可管理性
 - ➤ 将不同的业务规划到不同VLAN便于管理

网桥的局限性

- □ 网络的局限性1: Scalability(扩展性)
 - > 当连接网段的数量增加时, 生成树算法扩展性存在局限性
 - > 在一个大规模的网络中, 广播帧会影响网络的性能
- □解决方案: 虚拟局域网(VLAN)
 - ▶ 每一个虚拟局域网分配一个标识符
 - > 只有两个网段的标识符相同时, 才能完成数据帧的转发
- □ 网络的局限性2: Heterogeneity(异构性)
 - ➤ 网桥利用帧首部进行数据帧转发, 因此仅支持采用相同格式地址的网络, 例如 48bits
- □解决方案:?

考纲要求

- □ 了解:数据报交换、虚电路交换的原理
- □理解:局域网扩展
- □ 理解: 网桥的概念
- □理解: 生成树算法
- □ 理解:不同以太网技术的差异,能够区分传统共享式以太网、交换式以太网
- □ 掌握:以太网中继器、集线器、网桥、交换机设备的 功能与区别

要点回顾

☐ Ethernet 桥接和交换

序号	问题	解决方案	
1.	Ethernet 扩展	转发表	
2.	Ethernet 自适应技术	逆向自主学习	
3.	交换机回路	生成树算法	
4.	扩展性和安全性	虚拟局域网	

要点回顾

	中继器	集线器	交换机	网桥
协议层次	物理层	物理层	MAC层	MAC层
主要功能	连接多个缆段,增加总线长度,增加 接入的主机数量	接入多台计算机 形成星形结构的 Ethernet	连接多台计算机, 实现快速帧转发	互联多个同构或 异构的局域网
工作原理	信号放大与整形	信号放大与整形	在多端口之间同时 转发多帧	MAC地址过滤与 帧转发
结构特点	两个端口	可以有多端口	可以有多端口	可以有多端口
使用地址	-	-	MAC地址	MAC地址
冲突域	连接在多个缆段 上的所有主机属 于一个冲突域	连接在集线器上 的所有主机属于 一个冲突域	如果主机独占端口, 则不存在冲突	每个互联的局域网 分别是一个冲突域

Email: chenwang@hust.edu.cn

Website: http://www.chenwang.net.cn