1. Probability

- 1.1 Properties of Probability
- + Infinite Series

What is Statistics?

- ☆ What is a statistic? A function of data
- ☆ Statistics: study of the collection, analysis, interpretation, presentation, and organization of data.

1. Probability

1.1 Properties of Probability

Set: collection of distinct & unique elements

Random Experiments

$$S = \{A, B, \zeta, ..., Z\}$$

$$S = \text{integers} > 0$$

In Statistics, we consider experiments where the outcome can not be predicted with certainty.

- Outcome space or Sample space, S collection of all possible outcomes
- An Event is a collection of outcomes in S.
- If a random experiment is performed and the outcome of the experiment is in A, we say event A has occurred.

$$A = \{1, 2, 3\}$$
 AUB = $\{1, 2, 3, 4\}$
 $B = \{3, 4\}$ AUB = $\{3\}$

A = even numbers

Set notation and operations

2 EA

Notation	
	Ø, {}
	$x \in A$
OR	A U B
AND	A ∩ B
Γ	$A \subseteq B$
L	$A \subset B$
	<u>A', A</u> c

Meaning

Null or empty set x is an element of A the union of A and B

A is a subset of B

A is a proper subset of B

the complement of A

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A), called the probability of the event A, such that the following properties are satisfied: 6-sided

(a)
$$P(A) \ge 0$$
; non-negative

(b)
$$P(S) = 1$$
;

(a) $P(A) \ge 0$; (b) P(S) = 1; (c) if A_1, A_2, A_3, \ldots are events and $A_i \cap A_j = \emptyset, i \ne j$, then

$$P(A_1 \cup A_2 \cup \dots \cup A_k) = P(A_1) + P(A_2) + \dots + P(A_k)$$

for each positive integer k, and

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

for an infinite, but countable, number of events.

6 sided die

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$P[evan]$$

$$\{2,4,63 \rightarrow P \rightarrow 0.5$$

$$y = x^{2} \quad \{(x) =$$

- Real valued set function

Theorem 1.1-1

For each event A,

$$P(A) = 1 - P(A').$$

Proof [See Figure 1.1-1(a).] We have

$$S = A \cup A'$$
 and $A \cap A' = \emptyset$.

Thus, from properties (b) and (c), it follows that

$$1 = P(A) + P(A').$$

Hence

$$P(A) = 1 - P(A').$$

$$AUA' = S$$

Probability Theorems

Theorem 1

$$P[A] = .3$$

$$P[A]=.3$$
 $P[A']=.7$

$$P[A'] = 1 - P[A]$$

Theorem 2

$$P[\emptyset]=0$$

Theorem3

6-sided die
$$P[7]=0$$
 $P[A]$ not $> P[B]$

□ If $A \subset B$, then $P[A] \leq P[B]$.

Probability Theorems

- **Theorem 4**
 - For any event A, $P[A] \leq 1$

- **Theorem 5**
 - If A and B are any two events, then
- $P[A \cup B] = P[A] + P[B] P[A \cap B]$
 - Theorem 6
 - $P[A \cup B \cup C] = P[A] + P[B] + P[C] P[A \cap B] P[A \cap C] - P[B \cap C] + P[A \cap B \cap C]$

- 1. Suppose a 6-sided die is rolled:
 - Let event A = {The outcome is even} $A = \{2, 4, 6\}$
 - Let event B = {The outcome is greater than 3} $\beta = \{4, 5, 6\}$
 - □ a) What are the outcomes in $[A \cap B]$? [4,6]
 - ii) What is $P[A \cap B]$?

1. Suppose a 6-sided die is rolled:

PL]

- Let event A = {The outcome is even}
- Let event B = {The outcome is greater than 3}
 - b) What are the outcomes in [A U B]? {2, 4, 5,4}
 - ii) What is P[A U B]? \\

1... Suppose the die is loaded so that the A = {2, 4, 6} probability of an outcome is proportional to 5-54,5,63 the outcome, i.e. (1)+7(2)+...7(6)=1

i.e.
$$p[1]+p[2]+...p[6]=1$$

 $p+2p+3p+4p+5p+6p=1$ $2|p=1=\frac{p-1/21}{p-1/21}$

$$P[1] = p$$
, $P[2] = 2p$, $P[3] = 3p$, $P[4] = 4p$, $P[5] = 5p$, $P[6] = 6p$,

- c) Find the value of p that would make this a valid P[2U4U6] =2p+4p+6p=12P probability model

- d) Find the following probabilities: $\frac{2, 4, 5, 6}{2!}$ ii) P[A], ii) P[A'], iii) P[A U B] = $\frac{17/2!}{2!}$

- The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10. $= \frac{1}{3} \left(\frac{3}{3} \right) \left($
 - A) What is the probability that a student selected at random does not own a bicycle? $\frac{2l}{2}$ = $l \frac{2l}{2}$ = . 45
 - B) What is the probability that a selected student at random owns either a car or a bicycle (or both)?

$$P[CUB] = P[C] + P[B] - P[Bnc]$$

= .3 +.55 - .1 =.75

The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.

C) What is the probability that a student selected at random neither has a car nor a bicycle?

3. Let
$$a > 2$$
. Suppose $S = \{0, 1, 2, 3,\}$ and

P[0] = c, P[k] =
$$\frac{1}{a^k}$$
, k = 1, 2, 3...

- A) Find the value of c that will make this a valid probability distribution.
- B) Find the probability of an odd outcome

$$P[o] + P[1] + P[2] + ...$$

$$C + \sum_{k=1}^{l-1} \frac{1}{a^{k}}$$

$$C + \frac{1}{1-\frac{1}{a}} = 1$$

Let
$$a > 2$$
. Suppose $S = \{0, 1, 2, 3,\}$ and

$$P[0] = c$$
, $P[k] = \frac{1}{a^k}$, $k = 1, 2, 3...$

$$\frac{1}{a} + \frac{1}{a^2} + \frac{1}{a^5} + \frac{1}{a^5}$$

$$\frac{1/a}{1-\frac{1}{a^2}} = \frac{a}{a^2-1}$$

Suppose S = {0, 1, 2, 3, }, P[0] = p, and P[k] = $\frac{1}{2^k k!}$, k = 1, 2, 3...

Find the value of p that will make this a valid probability distribution.

Find the value of p that will make this a valid probability distribution.

$$P(s) = 1 \quad P(0) + P(1) + P(2) + \dots = 1$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$P + \sum_{k=0}^{\infty} \frac{1}{x^{k}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

R Tutorial

See .R file on website

R resource http://www.peterhaschke.com/files/IntroToR.pdf

p 7 - 37

→ Calc 3 Review

1. Set up a double integral of f(x,y) over the region given by 0 < x < 1, x < y < x + 1.

4. Set up a double integral of f(x, y) over the part of the unit square on which **both** x and y are greater than 0.5.

Solution:

$$\int_{x=1/2}^{1} \int_{y=1/2}^{1} f(x,y) dy dx$$

7. Set up a double integral of f(x,y) over the set of all points (x,y) in the first quadrant with $|x-y| \leq 1$.

