Physik Anwendung für Inßformatik / Felix Tran, Joshua Beny Hürzeler / 1

1 Grundlagen

1.1 Trigometrie

$\sin\left(\alpha\right) = \frac{G}{H}$
$\cos(\alpha) = \frac{A}{H}$
$\tan(\alpha) = \frac{G}{A} = \frac{\sin(\alpha)}{\cos(\alpha)}$

	0°	30°	45°	60°	90°
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

1.1.1 Physikalische Grössen

Geschwindigkeit	v	-	m/s
Beschleunigung	a	-	m/s^2
Federkonstante	D	-	N/m
Frequenz	f	Hertz	1/s
Kraft	F	Newton	$kg \cdot m/s^2$
Energie	E	Joule	$N \cdot m$
Arbeit = Δ Energie	W	Joule	$J = N \cdot m$
Leistung = Arbeit pro Zeit	P	Watt	J/s

* 4.19 Joule = 1 Cal, 1 Joule = 1 Watt/s => $3.6 \cdot 10^6 J = 1 \text{ kWh}$

1.1.2 Basisgrössen

Länge	l	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s

1.1.3 Abhängigkeit Weg Geschwindigkeit und Beschleunigung über die Zeit

Wegfunktion	s(t)
Geschwindigkeitsfunktion	$v(t) = \dot{s}(t)$
Beschleunigungsfunktion	$a(t) = \dot{v}(t) = \ddot{s}(t)$

1.1.4 Konstanten

Fallbeschleunigung	g	$9.80665m/s^2$
Lichtgeschwindigkeit	c	$2.99792458 \cdot 10^8 m/s$
Gravitationskon- stante	G	$\frac{6.673 \cdot 10^{-}11 N \cdot }{m^{2}/\mathrm{kg}^{2}}$

Konservative Kraft: Die Kraft ist konservativ, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reell wertige Funktion einer Variable eine Stammfunktion besitzt. Das Hook'schen Gesetz beschreibt eine konservative Kraft, da sie nur von Ortskoordinaten abhängt, und da -F(x) als reellwertige Funktion einer Variable eine Stammfunktion besitzt

2 Kinematik

Mittlere Geschwindigkeit: $\bar{v} = \frac{\Delta v}{\Delta s}$ Mittlere Beschleunigung: $\bar{a} = \frac{\Delta v}{\Delta t}$

Gleichförmige Bewegung: $s = \overline{s_0} + v \cdot t \Rightarrow \frac{s}{v} = t$

Geradlinige Bewegung: $\Delta s = \bar{v} \Delta t$ Gleichmässig beschleunigte Bewegung:

$$\begin{split} s &= s_0 + v_0 \cdot t + \frac{1}{2} @^2 \\ v &= v_0 + \text{at} \\ v^2 &= v_0^2 + 2a(s - s_0) \Rightarrow \text{wenn } v_0 = 0 \Rightarrow s = \frac{v^2}{2a} \\ \bar{v} &= \frac{v_1 - v_2}{2} \\ t &= \frac{v}{2} = \frac{v_0 - v}{2} \end{split}$$

2.1 Gleichförmige Kreisbewegung (ω = konst.)