EE1101 Signals and Systems JAN—MAY 2019 Tutorial 7, Extra Questions

March 18, 2019

1. Find the Fourier transform of the signal x(t) shown below.

2. a) Consider a signal m(t) with its Fourier transform as shown in the figure below. The signal m(t) is multiplied by a sinusoid $\cos(\omega t)$ to obtain the signal $x(t) = m(t)\cos(\omega t)$. Plot the Fourier transform of x(t). Assume $\omega \gg B$.

 $M(j\omega)$

- b) The signal x(t) is again multiplied by the same sinusoid $\cos(\omega t)$ to get a new signal y(t). Plot the Fourier transform of y(t).
- c) The signal y(t) is passed through an ideal low pass filter with cut off frequency ω_l . What should the range of ω_l be so that we recover m(t) at the output of filter.

- 3. a) The impulse response of a linear time-invariant continuous time system is given by $h(t) = e^{-2t}u(t)$, where u(t) denotes the unit step function. Calculate the frequency response $H(\omega)$ of this system in terms of angular frequency ω .
 - b) Find the output of this system, to the sinusoidal input $x(t) = 2\cos(2t)$ for all time t.
- 4. Given that x(t) has the Fourier transform X(jw), Calculate the inverse fourier transform of following functions in terms of x(t).

a)
$$X(j(w-w_0)) + X(j(w+w_0))$$

- b) Even[X(jw)]
- 5. A signal x(t) can be expressed as the sum of even and odd components as $x(t) = x_e(t) + x_o(t)$.
 - a) If $x(t) \iff X(j\omega)$, show that for real x(t), $x_e(t) \iff Re[X(j\omega)]$ and $x_o(t) \iff jIm[X(j\omega)]$.
 - b) Verify these results for $x(t) = e^{-at}u(t)$.
- 6. Prove that in general, the following relationships hold:

$$\frac{dx(t)}{dt} * y(t) = x(t) * \frac{dy(t)}{dt} = \frac{d(x(t) * y(t))}{dt}$$

Here * represents convolution, and x(t), y(t) are differentiable.