

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme bazate pe reguli
- Sisteme hibride

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- and Learning Algorithms, Cambridge University Press, 2003
- □ capitolul 3 din *T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997*

Conținut

Sisteme inteligente

- Sisteme care învaţă singure (SIS)
 - Instruire (învăţare) automata (Machine Learning ML)
 - Problematică
 - Proiectarea unui sistem de învăţare automată
 - Tipologie
 - Învăţare supervizată
 - Învăţare nesupervizată
 - Învăţare cu întărire
 - Teoria învăţării
 - Exemple de sisteme

Sisteme inteligente

Problematica

"How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?"

Aplicaţii

- Recunoaştere de imagini şi semnal vocal
 - Recunoaşterea scrisului de mână
 - Detecţia feţelor
 - Înţelegerea limbajului vorbit
- Computer vision
 - Detecţia obstacolelor
 - Recunoaşterea amprentelor
- Supraveghere bio
- Controlul roboţilor
- Predicţia vremii
- Diagnosticare medicală
- Detecţia fraudelor

Definire

- Arthur Samuel (1959)
 - "field of study that gives computers the ability to learn without being explicity programmed"
 - Înzestrarea computerelor cu abilitatea de a învăţa pe baza experienţei
- Herbert Simon (1970)
 - "Learning is any process by which a system improves performance from experience."
- Tom Mitchell (1998)
 - "a well-posed learning problem is defined as follows: He says that a computer program is set to learn from an experience E with respect to some task T and some performance measure P if its performance on T as measured by P improves with experience E"
- EthemAlpaydin (2010)
 - Programming computersto optimizea performance criterion using example data or past experience.

Necesitate

- Sisteme computaţionale mai bune
 - Sisteme dificil sau prea costisitor de construit manual
 - Sisteme care se adaptează automat
 - Filtre de spam
 - Sisteme care descoperă informații în baze de date mari → data mining
 - Analize financiare
 - Analize de text/imagini
- Înţelegerea organismelor biologice

Projectare

- Îmbunătăţirea task-ului T
 - Stabilirea scopului (ceea ce trebuie învăţat) funcţiei obiectiv şi reprezentarea sa
 - Alegerea unui algoritm de învăţare care să realizeze inferenţa (previziunea) scopului pe baza experienţei
- respectând o metrică de performanţă P
 - Evaluarea performanţelor algortimului ales
- bazându-se pe experienţa E
 - Alegerea bazei de experienţă
- Exemplu
 - T: jucarea jocului de dame
 - P: procentul de jocuri câştigate împotriva unui oponent oarecare
 - E: exersarea jocului împotriva lui însuşi
 - T: recunoaşterea scrisului de mână
 - P: procentul de cuvinte recunoscute corect
 - E: baze de date cu imagini cu cuvinte corect adnotate
 - □ T: separarea spam-urilor de mesajele obişnuite
 - P: procentul de email-uri corect clasificate (spam sau normal)
 - E: baze de date cu email-uri adnotate

■ Proiectare → Alegerea funcţiei obiectiv

- Care este funcţia care trebuie învăţată?
 - □ Ex.: pentru jocul de dame → funcţie care:
 - alege următoarea mutare
 - evaluează o mutare
 - obiectivul fiind alegerea celei mai bune mutări

Reprezentarea funcţiei obiectiv

- Diferite reprezentări
 - Tablou (tabel)
 - Reguli simbolice
 - Funcţie numerică
 - Funcţii probabilistice
- Ex. Jocul de dame
 - Combinaţie liniară a nr. de piese albe, nr. de piese negre, nr. de piese albe compromise la următoarea mutare, r. de piese albe compromise la următoarea mutare
- Există un compromis între
 - expresivitatea reprezentării şi
 - uşurinţa învăţării
- Calculul funcţiei obiectiv
 - Timp polinomial
 - Timp non-polinomial

□ Proiectare → Alegerea unui algoritm de învăţare

- Algoritmul
 - folosind datele de antrenament
 - induce definirea unor ipoteze care
 - să se potirvească cu acestea şi
 - să generalizeze cât mai bine datele ne-văzute (datele de test)
- Principiul de lucru de bază
 - Minimizarea unei erori (funcţie de cost loss function)

□ Proiectare → Evaluarea unui sistem de învăţare

- Experimental
 - Compararea diferitelor metode pe diferite date (cross-validare)
 - Colectarea datelor pe baza performanţei
 - Acurateţe, timp antrenare, timp testare
 - Aprecierea diferenţelor dpdv statistic
- Teoretic
 - Analiza matematică a algoritmilor şi demonstrarea de teoreme
 - Complexitatea computaţională
 - Abilitatea de a se potrivi cu datele de antrenament
 - Complexitatea eşantionului relevant pentru o învăţare corectă

□ Proiectare → Evaluarea unui sistem de învăţare

- Compararea performanţelor a 2 algoritmi în rezolvarea unei probleme
 - Indicatori de performanţă
 - Parametrii ai unei serii statistice (ex. media)
 - Proporţie calculată pentru serie statistică (ex. acurateţea)

Comparare pe baza intervalelor de încredere

- Pp o problemă și 2 algoritmi care o rezolvă
- Performanţele algoritmilor: p₁ şi p₂
- Intervalele de încredere corespunzătoare celor 2 performanțe $I_1 = [p_1 \Delta_1, p_1 + \Delta_1]$ și $I_2 = [p_2 \Delta_2, p_2 + \Delta_2]$
- Dacă $I_1 \cap I_2 = \emptyset$ → algoritmul 1 este mai bun decât algoritmul 2 (pt problema dată)
- Dacă $I_1 \cap I_2 \neq \emptyset$ → nu se poate spune care algoritm este mai bun

Interval de încredere pentru medie

- Pentru o serie statistică de volum n, cu media (calculată) m și dispersia σ să se determine intervalul de încredere al valorii medii μ
- $P(-z \le (m-\mu)/(\sigma/\sqrt{n}) \le z) = 1 a \rightarrow \mu \in [m-z\sigma/\sqrt{n}, m+z\sigma/\sqrt{n}]$
- $P = 95\% \rightarrow z = 1.96$
- Ex. Problema rucsacului rezolvată cu ajutorul algoritmilor evolutivi

Interval de încredere pentru acuratețe

- Pentru o performanță p (acuratețe) calculată pentru n date să se determine intervalul de încredere
- $P \in [p-z(p(1-p)/n)^{1/2}, p+z(p(1-p)/n)^{1/2}]$
- $P = 95\% \rightarrow z = 1.96$
- Ex. Problemă de clasificare rezolvată cu ajutorul Maşinilor cu suport vectorial

_	-	
P=1-α	Z	
99.9%	3.3	
99.0%	2.577	
98.5%	2.43	
97.5%	2.243	
95.0%	1.96	
90.0%	1.645	
85.0%	1.439	
75.0%	75.0% 1.151	

□ Proiectare → Alegerea bazei de experienţă

- Bazată pe
 - Experienţă directă
 - Perechi (intrare, ieşire) utile pt. funcţia obiectiv
 - Ex. Jocul de dame → table de joc etichetată cu mutare corectă sau incorectă
 - Experienţă indirectă
 - Feedback util (diferit de perechile I/O) pt funcţia obiectiv
 - Ex. Jocul de dame → secvenţe de mutări şi scorul final asociat jocului

Surse de date

- Exemple generate aleator
 - Exemple pozitive şi negative
- Exemple pozitive colectate de un "învăţător" benevol
- Exemple reale
- Compoziţie
 - Date de antrenament
 - Date de test
- Caracteristici
 - Date independente
 - Dacă nu → clasificare colectivă
 - Datele de antrenament şi de test trebuie să urmeze aceeaşi lege de distribuţie
 - Dacă nu → învăţare prin transfer (transfer learning/inductive transfer)
 - recunoaşterea maşinilor → recunoaşterea camioanelor
 - analiza textelor
 - filtre de spam

□ Proiectare → Alegerea bazei de experienţă

- Tipuri de atribute ale datelor
 - □ Cantitative → scară nominală sau raţională
 - Valori continue → greutatea
 - Valori discrete → numărul de computere
 - Valori de tip interval → durata unor evenimente
 - Calitative
 - Nominale → culoarea
 - Ordinale → intensitatea sunetului (joasă, medie, înaltă)
 - Structurate
 - Arbori rădăcina e o generalizare a copiilor (vehicol → maşină, autobus, tractor, camion)
- Transformări asupra datelor
 - Standardizare → atribute numerice
 - Înlăturarea efectelor de scară (scări şi unităţi de măsură diferite)
 - Valorile brute se transformă în scoruri z
 - $Z_{ij} = (x_{ij} \mu_j)/\sigma_j$, unde x_{ij} valoarea atributului al j-lea al instanței i, μ_j (σ_j) este media (abaterea) atributelor j pt. toate instanțele
 - Selectarea anumitor atribute

Tipologie

- În funcţie de scopul urmărit
 - SI pentru predicţii
 - Scop: predicția ieșirii pentru o intrare nouă folosind un model învățat anterior
 - Ex.: predicţia vânzărilor dintr-un produs pentru un moment de timp viitor în funcţie de preţ, lună calendaristică, regiune, venit mediu pe economie
 - SI pentru regresii
 - Scop: estimarea formei unei funcţii uni sau multivariată folosind un model învăţat anterior
 - Ex.: estimarea funcției care modelează conturul unei suprafețe
 - SI pentru clasificare
 - Scop: clasificarea unui obiect într-una sau mai multe categorii (clase) cunoscute anterior sau nu - pe baza caracteristicilor (atributelor, proprietăţilor) lui
 - Ex.: sistem de diagnoză pentru un pacient cu tumoare: nevasculară, vasvculară, angiogenă
 - SI pentru planificare
 - Scop: generarea unei succesiuni optime de acţiuni pentru efectuarea unei sarcini
 - Ex.: planificarea deplasării unui robot de la o poziție dată până la o sursă de energie (pentru alimentare)

Tipologie

- În funcție de experiența acumulată în timpul învățării
 - SI cu învăţare supervizată

SI cu învăţare nesupervizată

žă ...

SI cu învăţare activă

SI cu învăţare cu întărire

□ Învăţare supervizată

- Definire
- Exemple
- Proces
- Calitatea învăţării
 - Metode de evaluare
 - Măsuri de performanţă
- Tipologie

Învățare supervizată

- Scop
 - Furnizarea unei ieşiri corecte pentru o nouă intrare
- Definire
 - Se dă un set de date (exemple, instanţe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_data, ieşire,), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k − nr de clase) → problemă de clasificare
 - un număr real → problemă de regresie
 - □ date de test sub forma (atribute_datai), i =1,n (n = nr datelor de test).
 - Să se determine
 - o funcție (necunoscută) care realizează corespondența atribute ieșire pe datele de antrenament
 - ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcția învățată pe datele de antrenament
- Alte denumiri
 - Clasificare (regresie), învăţare inductivă
- □ Proces → 2 etape
 - Antrenarea
 - Învăţarea, cu ajutorul unui algoritm, a modelului de clasificare
 - Testarea
 - Testarea modelului folosind date de test noi (unseen data)
- Caracteristic
 - BD experimentală adnotată (pt. învăţare)

Învățare supervizată

■ Tip de probleme

- regresie
 - Scop: predicţia output-ului pentru un input nou
 - Output continuu (nr real)
 - Ex.: predicţia preţurilor
- clasificare
 - Scop: clasificarea (etichetarea) unui nou input
 - Output discret (etichetă dintr-o mulţime predefinită)
 - Ex.: detectarea tumorilor maligne

■ Exemple de probleme

- Recunoaşterea scrisului de mână
- Recunoaşterea imaginilor
- Previziunea vremii
- Detecţia spam-urilor

Învățare supervizată

- Calitatea învăţării
 - Definire
 - o măsură de performanță a algoritmului
 - ex. acurateţea (Acc = nr de exemple corect clasificate / nr total de exemple)
 - calculată în
 - faza de antrenare
 - faza de testare

Metode de evaluare

- Seturi disjuncte de antrenare şi testare
 - setul de antrenare poate fi împărțit în date de învățare și date de validare
 - setul de antrenare este folosit pentru estimarea parametrilor modelului (cei mai buni parametri obţinuţi pe validare vor fi folosiţi pentru construcţia modelului final)
 - pentru date numeroase
- Validare încrucişată cu mai multe (h) sub-seturi egale ale datelor (de antrenament)
 - separararea datelor de h ori în (h-1 sub-seturi pentru învățare și 1 sub-set pt validare)
 - dimensiunea unui sub-set = dimensiunea setului / h
 - performanţa este dată de media pe cele h rulări (ex. h = 5 sau h = 10)
 - pentru date puţine
- Leave-one-out cross-validation
 - similar validării încrucişate, dar h = nr de date → un sub-set conţine un singur exemplu
 - pentru date foarte puţine

Dificultăți

□ Învăţare pe derost (overfitting) → performanţă bună pe datele de antrenament, dar foarte slabă pe datele de test

Învățare supervizată

- Calitatea învăţării
 - Măsuri de performanţă
 - Măsuri statistice
 - acurateţea
 - Precizia
 - Rapelul
 - Scorul F1
 - Eficienţa
 - În construirea modelului
 - În testarea modelului
 - Robusteţea
 - Tratarea zgomotelor şi a valorilor lipsă
 - Scalabilitatea
 - Eficienţa gestionării seturilor mari de date
 - Interpretabilitatea
 - Modelului de clasificare
 - Proprietatea modelului de a fi compact
 - Scoruri

Învățare supervizată

- □ Calitatea învățării → Măsuri de performanță → Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Opusul erorii
 - Calculată pe
 - Setul de validare
 - Setul de test
 - Uneori
 - Analiză de text
 - Detectarea intruşilor într-o reţea
 - Analize financiare

este importantă doar o singură clasă (clasă pozitivă) → restul claselor sunt negative

- Precizia (P)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
 - probabilitatea ca un exemplu clasificat pozitiv să fie relevant
 - \Box TP / (TP + FP)
- Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozitiv să fie identificat corect de către clasificator
 - \Box TP/ (TP +FN)
 - Matrice de confuzie → rezultate reale vs. rezultate calculat
- Scorul F1
 - Combină precizia şi rapelul, facilitând compararea a 2 algoritmi
 - Media armonică a preciziei şi rapelului
 - \square 2PR/(P+R)

-					
3			Rezultate reale		
			Clasa pozitivă	Clasa(ele) negativă(e)	
	Rezultate calculate Clasa pozitivă Clasa pozitivă Clasa(ele) negativă(e)	True positiv (TP)	False positiv (FP)		
		False negative (FN)	True negative (TN)		

- □ Învăţare ne-supervizată
 - Definire
 - Exemple
 - Proces
 - Metode de evaluare şi măsuri de performanţă
 - Tipologie

- Scop
 - Găsirea unui model sau a unei structuri utile a datelor
 - Împărțirea unor exemple neetichetate în submulțimi disjuncte (clusteri) astfel încât:
 - exemplele din acelaşi cluster sunt foarte similare
 - exemplele din clusteri diferiți sunt foarte diferite
- Definire
 - Se dă un set de date (exemple, instanţe, cazuri)
 - Date de antrenament sub forma atribute_data;, unde
 - i = 1, N (N = nr datelor de antrenament)
 - **atribute_data**_i= $(atr_{ij}, atr_{ij}, ..., atr_{im}), m$ nr atributelor (caracteristicilor, proprietăților) unei date
 - Date de test sub forma (**atribute_data**_i), i = 1, n (n = nr datelor de test)
 - Se determină
 - o funcţie (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase
 - Nr de clase poate fi pre-definit (k) sau necunoscut
 - Datele dintr-o clasă sunt asemănătoare
 - clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament
 - Învățare supervizată vs. învățare ne-supervizată

- Distanţe între 2 elemente p şi q ε Rm
 - Euclideana \rightarrow d(p,q)=sqrt(Σ j=1,2,...,m(pj-qj)2)
 - □ Manhattan \rightarrow d(p,q)= Σ j=1,2,...,m|pj-qj|
 - Mahalanobis \rightarrow d(p,q)=sqrt(p-q)S-1(p-q)), unde S este matricea de variație și covariație (S= E[(p-E[p])(q-E[q])])
 - □ Produsul intern \rightarrow d(p,q)= Σ j=1,2,...,mpjqj
 - □ Cosine \rightarrow d(p,q)= Σ j=1,2,...,mpjqj / (sqrt(Σ j=1,2,...,mpj2) * sqrt(Σ j=1,2,...,mqj2))
 - □ Hamming → numărul de diferențe între p şi q
 - □ Levenshtein → numărul minim de operații necesare pentru a-l transforma pe p în q
- Distanţă vs. Similaritate
 - Distanţa → min
 - □ Similaritatea → max

- Alte denumiri
 - Clustering
- □ Procesul → 2 paşi
 - Antrenarea \rightarrow Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi
 - Testarea → Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament
- Caracteristic
 - Datele nu sunt adnotate (etichetate)
- Tip de probleme
 - Identificara unor grupuri (clusteri)
 - Analiza genelor
 - Procesarea imaginilor
 - Analiza reţelelor sociale
 - Segmentarea pieţei
 - Analiza datelor astronomice
 - Clusteri de calculatoare
 - Reducerea dimensiunii
 - Identificarea unor cauze (explicaţii) ale datelor
 - Modelarea densităţii datelor
- Exemple de probleme
 - Gruparea genelor
 - Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei)
 - news.google.com

- Calitatea învăţării (validarea clusterizări):
 - Criterii interne → Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri
 - Distanţa în interiorul clusterului
 - Distanţa între clusteri
 - Indexul Davies-Bouldin
 - Indexul Dunn
 - Criteri externe → Folosirea unor benchmark-uri formate din date pregrupate
 - Compararea cu date cunoscute în practică este imposibil
 - Precizia
 - Rapelul
 - F-measure

- □ Calitatea învăţării → Criterii interne
 - Distanţa în interiorul clusterului c_i care conţine n_i instanţe
 - Distanţa medie între instanţe (average distance) $D_a(c_j) = \sum_{x_{i1}, x_{i2} \in c_j} ||x_{i1} x_{i2}|| / (n_j(n_j-1))$
 - Distanţa între cei mai apropiaţi vecini $D_{nn}(c_j) = \sum_{xi1ecj} min_{xi2ecj} ||x_{i1} x_{i2}|| / n_j$
 - Distanța între centroizi $D_c(c_j) = \sum_{x_i, e \in J} ||x_i \mu_j|| / n_j$, unde $\mu_j = 1 / n_j \sum_{x_i \in C_j} x_i$
 - Distanţa între 2 clusteri c_{j1} şi c_{j2}
 - Legătură simplă $d_s(c_{j1}, c_{j2}) = \min_{x_{i1} \in c_{j1}, x_{i2} \in c_{j2}} \{||x_{i1} x_{i2}||\}$
 - Legătură completă $d_{co}(c_{j1}, c_{j2}) = \max_{x_{i1} \in c_{j1}, x_{i2} \in c_{j2}} \{||x_{i1} x_{i2}||\}$
 - □ Legătură medie $d_a(c_{j1}, c_{j2}) = \sum_{x_{i1} \in c_{j1}, x_{i2} \in c_{j2}} \{||x_{i1} x_{i2}||\} / (n_{j1} * n_{j2})$
 - □ Legătură între centroizi $d_{ce}(c_{i1}, c_{i2}) = ||\mu_{i1} \mu_{i2}||$
 - Indexul Davies-Bouldin → min → clusteri compacţi
 - $DB = 1/nc*\sum_{i=1,2,...,nc} \max_{j=1,2,...,nc,j \neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_j)), \text{ unde:}$
 - nc numărul de clusteri
 - μ_i centroidul clusterului i
 - σ_i media distanțelor între elementele din clusterul i și centroidul μ_i
 - $d(\mu_i, \mu_j)$ distanța între centroidul μ_i și centroidul μ_j
 - Indexul Dunn
 - Identifică clusterii denşi şi bine separaţi
 - $D=d_{min}/d_{max}$, unde:
 - d_{min} distanța minimă între 2 obiecte din clusteri diferiți distanța intra-cluster
 - d_{max} distanța maximă între 2 obiecte din același cluster distanța inter-cluster

- Tipologie
 - După modul de formare al clusterilor
 - Ierarhic
 - se crează un arbore taxonomic (dendogramă)
 - crearea clusterilor → recursiv
 - nu se cunoaste k (nr de clusteri)
 - aglomerativ (de jos în sus) → clusteri mici spre clusteri mari
 - diviziv (de sus în jos) → clusteri mari spre clusteri mici
 - Ex. Clustering ierarhic aglomrativ
 - Ne-ierarhic
 - Partiţional → se determină o împărţire a datelor → toţi clusterii deodată
 - Optimizează o funcție obiectiv definită local (doar pe anumite atribute) sau global (pe toate atributele) care poate fi:
 - Pătratul erorii suma patratelor distanțelor între date şi centroizii clusterilor → min (ex. K-means)
 - Bazată pe grafuri (ex. Clusterizare bazată pe arborele minim de acoperire)
 - Pe modele probabilistice (ex. Identificarea distribuţiei datelor → Maximizarea aşteptărilor)
 - Pe cel mai apropiat vecin
 - Necesită fixarea apriori a lui k → fixarea clusterilor iniţiali
 - · Algoritmii se rulează de mai multe ori cu diferiți parametri și se alege versiunea cea mai eficientă
 - Ex. K-means, ACO
 - bazat pe densitatea datelor
 - Densitatea şi conectivitatea datelor
 - Formarea clusterilor de bazează pe densitatea datelor într-o anumită regiune
 - Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune
 - Funcția de densitate a datelor
 - Se încearcă modelarea legii de distribuţie a datelor
 - Avantaj:
 - Modelarea unor clusteri de orice formă
 - Bazat pe un grid
 - Nu e chiar o metodă nouă de lucru
 - Poate fi ierarhic, partiţional sau bazat pe densitate
 - Pp segmentarea spaţiului de date în zone regulate
 - Obiectele se plasează pe un grid multi-dimensional
 - Ex. ACO

- Tipologie
 - După modul de lucru al algoritmului
 - Aglomerativ
 - 1. Fiecare instanță formează inițial un cluster
 - 2. Se calculează distanțele între oricare 2 clusteri
 - 3. Se reunesc cei mai apropiaţi 2 clusteri
 - 4. Se repetă paşii 2 şi 3 până se ajunge la un singur cluster sau la un alt criteriu de stop
 - Diviziv
 - 1. Se stabileşte numărul de clusteri (k)
 - 2. Se iniţializează centrii fiecărui cluster
 - 3. Se determină o împărţire a datelor
 - 4. Se recalculează centrii clusterilor
 - 5. Se reptă pasul 3 și 4 până partiționarea nu se mai schimbă (algoritmul a convers)
 - După atributele considerate
 - Monotetic atributele se consideră pe rând
 - Politetic atributele se consideră simultan
 - După tipul de apartenenţă al datelor la clusteri
 - Clustering exact (hard clustering)
 - Asociază fiecarei intrări x_i o etichetă (clasă) c_i
 - Clustering fuzzy
 - Asociază fiecarei intrări $\mathbf{x_i}$ un grad (probabilitate) de apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță $\mathbf{x_i}$ poate aparține mai multor clusteri

Tipologie

- În funcție de experiența acumulată în timpul învățării
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare)
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Algoritmi evolutivi
 - Maşini cu suport vectorial
 - Modele Markov ascunse

Aprilie, 2018

29

□ Învăţare activă

- Algoritmul de învăţare poate primi informaţii suplimentare în timpul învăţării pentru a-şi îmbunătăţi performanţa
 - Ex. pe care din datele de antrenament este mai uşor să se înveţe modelul de decizie

Tipologie

- În funcție de experiența acumulată în timpul învățării
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare)
 - Metoda celor mai mici pătrate
 - Metoda gradient descent
 - Algoritmi evolutivi
 - Logisitc regression
 - kNN
 - Arbori de decizie
 - Maşini cu suport vectorial
 - Reţele neuronale artificiale
 - Programare genetică
 - Modele Markov ascunse

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare x ∈ R^d
 - □ Date de ieşire y ∈ R

- Se cere un model f care transformă x în y
- $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare xⁱ ∈ R^d, i=1,n
 - □ Date de ieşire yⁱ ∈ R
 - □ Se cere un model f care transformă orice xⁱ în yⁱ, i=1,n

- Se poate defini o funcție de cost
- □ Loss = $\sum_{i=1,n} (y^i f(x^i))^2$ -- minimizată → valorile optime ale lui β

```
\mathbf{x} = (1, \mathbf{x}) = (1, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d)^T \in \mathbb{R}^{d+1}
```

$$\mathbf{B} = (\beta_0, \beta_1, \beta_2, \dots, \beta_d)^{\mathsf{T}} \in \mathbb{R}^{d+1}$$

$$rac{1}{2} f(x) = x^T \beta$$

□ Loss (**β**) =
$$|| y - X β ||^2$$

$$X = 1 X_{1,1} X_{1,2} X_{1,3} \dots X_{1,d}$$

- □ .

- \Box 1 $X_{n,1} X_{n,2} X_{n,3} X_{n,d}$

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare $x^i \in \mathbb{R}^d$, i=1,n
 - □ Date de ieşire yⁱ ε R
 - □ Se cere un model f care transformă orice xⁱ în yⁱ, i=1,n
 - $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$
 - Se poate defini o funcție de cost
 - □ Loss = $\sum_{i=1,n} (y^i f(x^i))^2$ -- minimizată → valorile optime ale lui β
 - Derivarea loss-ului dupăβ : $\beta = (X^TX)^{-1}X^Ty$
 - □ Daca d = 1, $\beta_1 = \text{cov}(x,y)/\text{var}(x)$, $\beta_0 = y \beta_1 x$

Metoda gradient descent

- Modelarea coeficienților β:
 - □ la iterația 0: valori random (sau 0)
 - □ la iterația t + 1
 - $\beta_k(t+1) = \beta_k(t)$ learning_rate * error(t) * x , k = 1,2,...,d
 - $\beta_0(t+1) = \beta_0(t)$ learning_rate * error(t)
 - Unde
 - error(t) = computed realOutput
 - error(t) = $\beta_0(t) + \beta_1(t)^*x_1 + \beta_2(t)^*x_2 + ... + \beta_d(t)^*x_d y$

- Metoda bazată pe algoritmi evolutivi
 - Modelarea coeficienților β cu ajutorul cromozomilor
 - Fitness-ul calitatea coeficienţilor β

Recapitulare

□ Sisteme care învață singure (SIS)

- Instruire (învăţare) automata (Machine Learning ML)
 - Învăţare supervizată → datele de antrenament sunt deja etichetate cu elemente din E, iar datele de test trebuie etichetate cu una dintre etichetele din E pe baza unui model (învăţat pe datele de antrenament) care face corespondenţa date-etichete
 - Învăţare nesupervizată → datele de antrenament NU sunt etichetate, trebuie învăţat un model de etichetare, iar apoi datele de test trebuie etichetate cu una dintre etichetele identificate de model

Sisteme

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Retele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- Capitolul VI (19) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 8 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 12 și 13 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- Capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- Capitolul 4 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop