Approximate Inference

- In more realistic scenarios, more complex models are required, and the marginal likelihood is usually intractable, thus the posterior cannot be solved analytically
- we have to approximate the posterior distribution $p(y \mid \theta)$ by:
 - Simulation: generate a random sample to approximate the posterior empirically
 - Distributional approximation: approximate the posterior directly by some simpler parametric distribution (e.g. Normal)
- We will focus on approximating the posterior distribution by generating random samples

Grid Sampling (Grid Approximation, Discrete Approximation)

- Create an even-spaced grid: $g_1 = a + i/2, \ldots, g_m = b i/2$ where a is the lower, and b is the upper limit of the interval on which we want to evaluate the posterior, i is the increment of the grid, and m is the number of grid points.
- Evaluate values of the unnormalized posterior density in the grid points $q(g_1; \mathbf{y}), \ldots, q(g_m; \mathbf{y})$, and normalized them to obtain the estimated values of the posterior distribution at the grid points:

$$- \hat{\boldsymbol{\rho}}_1 := \frac{q(g_1:\mathbf{y})}{\sum_{i=1}^m q(g_i:\mathbf{y})}, \dots, \hat{\boldsymbol{\rho}}_m := \frac{q(g_m:\mathbf{y})}{\sum_{i=1}^m q(g_i:\mathbf{y})}$$

- For every $s = 1, \dots, S$:
 - Generate λ_s from a categorical distribution with outcomes g_1, \ldots, g_m which have the probability $\hat{p}_1, \ldots, \hat{p}_n$
 - Add jitter which is uniformly distributed around zero, and whose interval length is equal to the grid spacing, to the generated values: $\lambda_s = \lambda_s + X$, where $X \sim U(-i/2, i/2)$ to push generated values out of the grid points.

Grid Sampling and Curse of Dimensionality

- 10 parameters
- if we don't know beforehand where the posterior mass is
 - need to choose wide box for the grid
 - need to have enough grid points to sample essential mass
- e.g. 50 or 1000 grid points per dimension
 - \rightarrow 50¹⁰ \approx 1e17 grid points
 - \rightarrow 1000¹⁰ \approx 1e30 grid points
- Suppose a laptop can compute density of normal distribution about 20 million times per second
 - → evaluation in 1e17 grid points would take 150 years
 - → evaluation in 1e30 grid points would take 1 500 billion years

How to Generate Random Numbers?

- Pseudo Random Number Generator(PRNG) refers to an algorithm that uses mathematical formulas to produce sequences of random numbers.
- PRNGs generate a sequence of numbers approximating the properties of random numbers. (They would pass various statistical tests for checking the random/independent property, thus sufficient for Bayesian inference)
 - Linear congruential generater: $X_{n+1} = (aX_n + c) \mod m$
 - a = 1103515245, c = 12345, $m = 2^{31}$, X_0 is the seed

Direct Sampling

- Produces independent draws
 - Using analytic transformations of uniform random numbers (e.g. Polar method for normal random variable)
 If U₁ and U₂ are independent draws from distribution U(0, 1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$

 $X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$

then X_1 and X_2 are independent draws from the distribution N(0,1)

Direct Sampling

- Produces independent draws
 - Using analytic transformations of uniform random numbers (e.g. Polar method for normal random variable)
 If U₁ and U₂ are independent draws from distribution U(0, 1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$

 $X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$

then X_1 and X_2 are independent draws from the distribution N(0,1)

- Inverse-CDF

A continuous CDF, F, is a one-to-one mapping of the domain of the CDF into the interval (0,1)

Lemma: if $U \sim Unif(0,1)$, then $X = F^{-1}(U)$ is a simulation from f(x)

Direct Sampling

- Produces independent draws
 - Using analytic transformations of uniform random numbers (e.g. Polar method for normal random variable)
 If U₁ and U₂ are independent draws from distribution U(0, 1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$

 $X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$

then X_1 and X_2 are independent draws from the distribution N(0, 1)

- Inverse-CDF A continuous CDF, F, is a one-to-one mapping of the domain of the CDF into the interval (0,1) Lemma: if $U \sim Unif(0,1)$, then $X = F^{-1}(U)$ is a simulation from f(x)
- Still restricted to limited set of models

Indirect Sampling

- Rejection sampling
- Importance sampling
- Markov chain Monte Carlo

Draw directly from a proposal distribution, reject some draws, remaining draws are independent draws from the target distribution

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $q(\theta|y)/Mg(\theta)$

Draw directly from a proposal distribution, reject some draws, remaining draws are independent draws from the target distribution

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $q(\theta|y)/Mg(\theta)$

Draw directly from a proposal distribution, reject some draws, remaining draws are independent draws from the target distribution

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \le 1$
- Draw from the proposal and accept with probability $q(\theta|y)/Mg(\theta)$
- Common for truncated distributions

- The number of accepted draws is the effective sample size
 - with bad proposal distribution may require a lot of trials
 - selection of good proposal gets very difficult when the number of dimensions increase

Draw samples directly from a proposal distribution, then weigh the draws

- Proposal does not need to have a higher value everywhere

Draw samples directly from a proposal distribution, then weigh the draws

Proposal does not need to have a higher value everywhere
 Target, proposal, and draws

Draw samples directly from a proposal distribution, then weigh the draws

Proposal does not need to have a higher value everywhere
 Draws and importance weights

- Resampling using normalized importance weights can be used to pick a smaller number of draws with uniform weights
- Selection of good proposal gets more difficult when the number of dimensions increase
- Often used to correct distributional approximations

Normal approximation is discussed more in BDA3 Ch 4

Normal approximation is discussed more in BDA3 Ch 4 But the normal approximation is not that good here: Grid $sd(LD50) \approx 0.1$, Normal $sd(LD50) \approx .75!$

Grid sd(LD50) \approx 0.1, IR sd(LD50) \approx 0.1

Importance sampling leave-one-out cross-validation

- Later in the course you will learn how $p(\theta|y)$ can be used as a proposal distribution for $p(\theta|y_{-i})$
 - which allows fast computation of leave-one-out cross-validation

$$p(y_i|y_{-i}) = \int p(y_i|\theta)p(\theta|y_{-i})d\theta$$

Monte Carlo - History

Computational algorithms that use the process of repeated random sampling to make numerical estimations of unknown parameters.

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)

Monte Carlo - History

Computational algorithms that use the process of repeated random sampling to make numerical estimations of unknown parameters.

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann and Ulam in the end of 1940s
 - · they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949

Monte Carlo - History

Computational algorithms that use the process of repeated random sampling to make numerical estimations of unknown parameters.

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann and Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949
- Cheaper computation became available in 1990s
 - BUGS project started 1989 (last OpenBUGS release 2014)
 - Gelfand & Smith, 1990
 - Stan initial release 2012

Monte Carlo

- Simulate draws from the target distribution
 - these draws can be treated as any observations
 - a collection of draws is sample
- Use these draws, for example,
 - · to compute means, deviations, quantiles
 - to draw histograms
 - to marginalize
 - etc.

Monte Carlo vs. Deterministic

- Monte Carlo = simulation methods
 - Samples are selected stochastically (randomly)
- Deterministic methods (e.g. grid)
 - Evaluation points are selected by some deterministic rule
 - Proper deterministic methods converge faster (common for low dimensions)

Markov chain Monte Carlo (MCMC)

- Pros
 - Markov chain goes where most of the posterior mass is
 - Certain MCMC methods scale well to high dimensions
- Cons
 - Draws are dependent (affects how many draws are needed)
 - Convergence in practical time is not guaranteed
- MCMC methods in this course
 - · Gibbs: "iterative conditional sampling"
 - Metropolis: "random walk in joint distribution"
 - Dynamic Hamiltonian Monte Carlo: "state-of-the-art" used in Stan

How many simulation draws are needed?

- How many draws or how big sample size?
- If draws are independent
 - usual methods to estimate the uncertainty due to a finite number of observations (finite sample size)
- Markov chain Monte Carlo produces dependent draws
 - requires additional work to estimate the effective sample size