4 多变量线性回归(Linear Regression with Multiple Variables)

4.1 多特征(Multiple Features)

对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征:

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

这里由于特征不再只有一个, 引入一些新的记号

n: 特征的总数

 $x^{(i)}$: 代表样本矩阵中第 i 行, 也就是第 i 个训练实例。

 $x_i^{(i)}$: 代表样本矩阵中第i 行的第j 列,也就是第i 个训练实例的第j 个特征。

参照上图,则有
$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}, x_1^{(2)} = 1416$$

多变量假设函数 h 表示为: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$

对于 θ_0 ,和单特征中一样,我们将其看作基础数值。例如,房价的基础价格。

参数向量的维度为 n+1, 在特征向量中添加 x_0 后, 其维度也变为 n+1, 则运用线性代数, 可简化 h:

$$h_{ heta}\left(x
ight) = \left[heta_{0} \; heta_{1} \; \ldots \; heta_{n}
ight] egin{bmatrix} x_{0} \ x_{1} \ dots \ x_{n} \end{bmatrix} = heta^{T}x$$

 θ^T : θ 矩阵的转置

x: 某个样本的特征向量,n+1 维特征量向量

 x_0 : 为了计算方便我们会假设 $x_0^{(i)}=1$

注: 该部分记号较多,记不住可随时回顾!

4.2 多变量梯度下降(Gradient Descent for Multiple

Variables)

多变量代价函数类似于单变量代价函数,

即
$$J\left(heta_{0}, heta_{1}\ldots heta_{n}
ight)=rac{1}{2m}\sum_{i=1}^{m}\left(h_{ heta}\left(x^{(i)}
ight)-y^{(i)}
ight)^{2}$$
,其中 $h_{ heta}\left(x
ight)= heta^{T}x$ 。

前文提到梯度下降对于最小化代价函数的通用性,则多变量梯度下降公式即

$$egin{aligned} & ext{Repeat until convergence: } \{ \ & heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J\left(heta_0, heta_1 \ldots heta_n
ight) \ \end{aligned}$$

解出偏导得:

repeat until convergence:
$$\{$$
 $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \qquad ext{for j} := 0,1... ext{n}$ $\}$

可展开为:

$$egin{aligned} ext{repeat until convergence: } \{ & heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \ & heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)} \ & heta_n := heta_n - heta_n - heta_n + heta_n +$$

当然,同单变量梯度下降一样,计算时需要同时更新所有参数。

 $h_{\theta}(x) = \theta^{T}x$,则得到同时更新参数的向量化(Vectorization)实现:

$$heta = heta - lpha rac{1}{m} (X^T (X heta - y))$$

X: 训练集数据, $m \times (n+1)$ 维矩阵 (包含基本特征 $x_0 = 1$)

4.3 梯度下降实践1-特征值缩放(Gradient Descent in Practice I - Feature Scaling)

在应用梯度下降算法实践时,由于各特征值的范围不一,可能会影响代价函数收敛速度。

以房价预测问题为例,这里选取房屋面积大小和房间数量这两个特征。

下图中,左图是以原始数据绘制的代价函数轮廓图,右图为采用特征缩放(都除以最大值)后图像。左图中呈现的图像较扁,相对于使用特征缩放方法的右图,梯度下降算法需要更多次的迭代。

Feature Scaling

Idea: Make sure features are on a similar scale.

为了优化梯度下降的收敛速度,采用特征缩放的技巧,使各特征值的范围尽量一致。

除了以上图人工选择并除以一个参数的方式,均值归一化(Mean normalization)方法更为便捷,可采用它来对所有特征值统一缩放:

$$x_i := rac{x_i - average(x)}{maximum(x) - minimum(x)}$$
,使得 $x_i \in (-1,1)$

对于特征的范围,并不一定需要使得 $-1 \le x \le 1$,类似于 $1 \le x \le 3$ 等也是可取的,而诸如 $-100 \le x \le 100$, $-0.00001 \le x \le 0.00001$,就显得过大/过小了。

另外注意,一旦采用特征缩放,我们就需对所有的输入采用特征缩放,包括训练集、测试集、预测输入等。

4.4 梯度下降实践2-学习速率(Gradient Descent in Practice II - Learning Rate)

通常,有两种方法来确定函数是否收敛

- 多次迭代收敛法
 - 无法确定需要多少次迭代
 - 较易绘制关于迭代次数的图像
 - 根据图像易预测所需的迭代次数
- 自动化测试收敛法(比较阈值)
 - 不易选取阈值
 - 代价函数近乎直线时无法确定收敛情况

对于梯度下降,一般采用多次迭代收敛法来得出最小化代价函数的参数值,自动化测试收敛法(如设定 $J(\theta) < 10^{-3}$ 时判定收敛)则几乎不会被使用。

我们可以通过绘制代价函数关于迭代次数的图像,可视化梯度下降的执行过程,借助直观的图形来发现代价函数趋向于多少时能趋于收敛,依据图像变化情况,确定诸如学习速率的取值,迭代次数的大小等问题。

对于学习速率 α ,一般上图展现的为适中情况,下图中,左图可能表明 α 过大,代价函数无法收敛,右图可能表明 α 过小,代价函数收敛的太慢。当然, α 足够小时,代价函数在每轮迭代后一定会减少。

通过不断改变 α 值,绘制并观察图像,并以此来确定合适的学习速率。 尝试时可取 α 如 ... 0,001, 0.003, 0.01, 0.03, 0.1, ...

4.5 特征和多项式回归(Features and Polynomial Regression)

在特征选取时,我们也可以自己归纳总结,定义一个新的特征,用来取代或拆分旧的一个或多个特征。比如,对于房屋面积特征来说,我们可以将其拆分为长度和宽度两个特征,反之,我们也可以合并长度和宽度这两个特征为面积这一个特征。

线性回归只能以直线来对数据进行拟合,有时候需要使用曲线来对数据进行拟合,即3项式回归(Polynomial Regression)。

比如一个二次方模型: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2$

或者三次方模型: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^3$

或者平方根模型: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 \sqrt{x_3}$

在使用多项式回归时,要记住非常有必要进行特征缩放,比如 x_1 的范围为 1-1000,那么 x_1^2 的范围则为 1-1000000,不适用特征缩放的话,范围更有不一致,也更易影响效率。

4.6 正规方程(Normal Equation)

对于一些线性回归问题来说,正规方程法给出了一个更好的解决问题的方式。

正规方程法,即令 $\frac{\partial}{\partial \theta_j} J(\theta_j) = 0$,通过解析函数的方式直接计算得出参数向量的值 $\theta = \left(X^T X\right)^{-1} X^T y$,Octave/Matlab 代码: theta = inv(X'*X)*X'*y。

 X^{-1} : 矩阵 X 的逆,在 Octave 中, inv 函数用于计算矩阵的逆,类似的还有 pinv 函数。

X': 在 Octave 中表示矩阵 X 的转置,即 X^T

下表列出了正规方程法与梯度下降算法的对比

条件	梯度下降	正规方程
是否需要选取 α	需要	不需要
是否需要迭代运算	需要	不需要
特征量大土时	适用, $O\left(kn^2\right)$	不适用, $(X^TX)^{-1}$ 复杂度 $O\left(n^3\right)$
适用范围 2	各类模型	只适用线性模型,且矩阵需可逆

正规方程法的推导过程:

$$egin{split} J\left(heta
ight) &= rac{1}{2m} \sum_{i=1}^m \left(h_ heta\left(x^{(i)}
ight) - y^{(i)}
ight)^2 \ &= rac{1}{2m} ||X heta - y||^2 \ &= rac{1}{2m} (X heta - y)^T (X heta - y) \end{split}$$

展开上式可得

$$J(heta) = rac{1}{2m}ig(heta^TX^TX heta - heta^TX^Ty - y^TX heta + y^Tyig)$$

注意到 $\theta^T X^T y$ 与 $y^T X \theta$ 都为标量,实际上是等价的,则:

$$J(heta) = rac{1}{2m}[X^TX heta - 2 heta^TX^Ty + y^Ty]$$

接下来对 $J(\theta)$ 求偏导,根据矩阵的求导法则:

$$\frac{dX^TAX}{dX} = (A + A^T)X$$

$$\frac{dX^TA}{dX} = A$$

所以有:

$$rac{\partial J(heta)}{\partial heta} = rac{1}{2m} ig(2 X^T X heta - 2 X^T y ig) = X^T X heta - X^T y$$

令
$$\frac{\partial J(\theta)}{\partial \theta} = 0$$
, 则有

$$heta = \left(X^T X
ight)^{-1} X^T y$$

4.7 不可逆性正规方程(Normal Equation Noninvertibility)

(本部分内容为选讲)

正规方程无法应用于不可逆的矩阵,发生这种问题的概率很小,通常由于

- 特征之间线性相关 比如同时包含英寸的尺寸和米为单位的尺寸两个特征,它们是线性相关的 即 $x_1 = x_2 * (3.28)^2$ 。
- 特征数量大于训练集的数量 $(m \le n)$ 。

如果发现 X^TX 的结果不可逆,可尝试:

- 减少多余/重复特征
- 增加训练集数量
- 使用正则化(后文)

对于这类不可逆的矩阵,我们称之为奇异矩阵或退化矩阵。

这种情况下,如果还想使用正规方程法,在Octave中,可以选用 pinv 函数,pinv 区别于 inv ,pinv 函数被称为伪逆函数,在矩阵不可逆的时候,使用这个函数仍可正确地计算出 θ 的值。

5 Octave/Matlab Tutorial

复习时可直接倍速回顾视频,笔记整理暂留。

5.1 Basic Operations

5.2 Moving Data Around

#5.3 Computing on Data

5.4 Plotting Data

5.5 Control Statements: for, while, if statement

5.6 向量化(Vectorization)

$$\sum_{j=0}^n heta_j x_j = heta^T x$$

#5.x 常用函数整理

1. 一般来说,当 n 超过 10000 时,对于正规方程而言,特征量较大。 $\underline{\boldsymbol{\omega}}$

2. 梯度下降算法的普适性好,而对于特定的线性回归模型,正规方程是很好的替代品。 $\underline{\boldsymbol{\omega}}$