

FORMATO DE SYLLABUS Código: AA-FR-003

Proceso: Autoevaluación y Acreditación

Macroproceso: Direccionamiento Estratégico

Fecha de Aprobación: 27/07/2023

Versión: 01

FACULTAD:		Tecnológica							
PROYECTO CURRICULAR:		Tecnología en Electronica Industrial			CÓDIGO PLAN DE ESTUDIOS:				
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO									
NOMBRE DEL E	SPACIO ACADÉ	MICO: Ecuaciones Dife	erenciales						
Código del espacio académico:			88	Número de créditos académicos:			3		
Distribución horas de trabajo:			HTD	2	HTC	3	НТА	9	
Tipo de espacio académico:			Asignatura	х	Cátedra				
NATURALEZA DEL ESPACIO ACADÉMICO:									
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco		
CARÁCTER DEL ESPACIO ACADÉMICO:									
Teórico	x	Práctico		Teórico-Práctico		Otros:		Cuál:	
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:									
Presencial	x	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	

Se recomienda que el estudiante haya aprobado satisfactoriamente las asignaturas de cálculo diferencial, integral y álgebra lineal. Es fundamental que tenga habilidades para resolver derivadas, integrales y manipular funciones elementales. Asimismo, se espera capacidad para interpretar gráficamente ecuaciones y usar herramientas computacionales como MATLAB, Python (SymPy) o GeoGebra. Estas habilidades permitirán comprender y aplicar métodos analíticos, cualitativos y numéricos en la resolución de ecuaciones diferenciales con aplicación en sistemas electrónicos, circuitos, procesos físicos y modelado de señales.

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

Las ecuaciones diferenciales son el lenguaje matemático que describe la evolución de muchos sistemas físicos, eléctricos, térmicos y biológicos. En el ámbito de la electrónica industrial, permiten modelar el comportamiento dinámico de circuitos, la respuesta de sensores, los sistemas de control, la transferencia de energía y la vibración de estructuras. Esta asignatura dota al estudiante de herramientas analíticas y computacionales para interpretar, simular y resolver ecuaciones que rigen fenómenos reales. Además, fortalece el pensamiento lógico-formal, la abstracción y el diseño de soluciones computacionales, lo que resulta indispensable en entornos industriales inteligentes, automatizados y sostenibles.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General

Modelar, interpretar, resolver y simular situaciones reales de tipo dinámico a través de ecuaciones diferenciales de primer y segundo orden, usando métodos analíticos, gráficos, cualitativos y computacionales.

Objetivos Específicos

Identificar y clasificar ecuaciones diferenciales ordinarias (EDO) según su orden, linealidad y tipo.

Resolver ecuaciones diferenciales de primer orden mediante métodos analíticos y gráficos.

Aplicar transformada de Laplace en la resolución de ecuaciones diferenciales y sistemas.

Estudiar soluciones cualitativas mediante análisis de estabilidad, direcciones de pendiente y diagramas de fase.

Usar herramientas computacionales (Python, MATLAB) para simular y analizar modelos dinámicos.

Aplicar ecuaciones diferenciales al modelado de sistemas electrónicos, circuitos, poblaciones, procesos térmicos, entre otros.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Fortalecer la competencia para modelar matemáticamente fenómenos físicos, biológicos y tecnológicos.

Desarrollar la capacidad de análisis crítico y solución de problemas usando herramientas formales y computacionales.

Fomentar el pensamiento sistémico y el uso de métodos numéricos para la simulación de fenómenos reales.

Resultados de aprendizaje:

Plantea modelos diferenciales para fenómenos del entorno y los resuelve usando diversos métodos.

Analiza el comportamiento cualitativo y computacional de sistemas dinámicos.

 $Emplea\ software\ especializado\ para\ representar\ soluciones\ exactas\ y\ aproxima das.$

Desarrolla proyectos de modelado que articulan la teoría diferencial con aplicaciones reales de la electrónica.

VI. CONTENIDOS TEMÁTICOS

Introducción a las Ecuaciones Diferenciales (1 semana)

Clasificación, orden, linealidad, soluciones generales y particulares.

Modelado de situaciones físicas y electrónicas simples.

Ecuaciones de Primer Orden (3 semanas)

Variables separables, lineales, exactas, homogéneas, de Bernoulli.

Métodos cualitativos: campos de dirección, diagramas de fase.

Aplicaciones: mezclas, enfriamiento de Newton, crecimiento poblacional, circuitos RC.

Aplicaciones de Primer Orden (2 semanas)

Trayectorias ortogonales, sistemas electrónicos, tanques conectados, sistemas térmicos.

Transformada de Laplace (4 semanas)

Definición, propiedades, transformada inversa.

Funciones escalón, delta de Dirac, convolución.

Aplicaciones a problemas de valor inicial y sistemas.

Modelado de señales discontinuas y conmutación.

Ecuaciones de Orden Superior (2 semanas)

Ecuaciones lineales homogéneas y no homogéneas con coeficientes constantes.

Métodos de coeficientes indeterminados y variación de parámetros.

Ecuaciones de Cauchy-Euler.

Soluciones en serie de potencias.

Sistemas de Ecuaciones Diferenciales (2 semanas)

Representación matricial, solución por transformada de Laplace.

Vectores propios y valores propios.

Aplicaciones en sistemas acoplados y circuitos RLC.

Aplicaciones (2 semanas)

Sistemas masa-resorte, amortiguados y no amortiguados.

Vibraciones mecánicas y eléctricas.

Análisis de estabilidad, oscilaciones forzadas, resonancia.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se emplearán clases activas que integren exposiciones conceptuales con resolución de problemas, uso de software y proyectos aplicados. El enfoque será inductivo-deductivo, articulando teoría con modelado y simulación. Se fomentará el trabajo en equipo, la formulación de modelos propios y la experimentación virtual mediante herramientas digitales como MATLAB, Python, GeoGebra, Desmos y simuladores en línea. Se usará la estrategia de Aprendizaje Basado en Proyectos (ApP) y actividades prácticas para aplicar los modelos diferenciales en contextos reales de electrónica y sistemas industriales.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Se utilizarán libros de texto, recursos audiovisuales, simuladores interactivos y herramientas como MATLAB, Python (SymPy, matplotlib), WolframAlpha y GeoGebra. El laboratorio de matemáticas o ambientes de simulación virtual serán clave para el desarrollo de prácticas dirigidas. Se promoverá el uso de una plataforma virtual (Moodle, Classroom) para retroalimentación, foros, entrega de actividades y seguimiento personalizado del aprendizaje.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se desarrollarán prácticas computacionales en simuladores para representar fenómenos físicos modelados por EDO. Opcionalmente, se podrán realizar visitas o videovisitas a laboratorios donde se implementen modelos diferenciales en el análisis de señales, circuitos, controladores PID o procesos térmicos. También se incentivará el uso de sensores y tarjetas como Arduino para validar modelos con datos reales.

XI. BIBLIOGRAFÍA

Zill, D. (2021). Ecuaciones Diferenciales con Aplicaciones de Modelado. Ed. Cengage.

Boyce, W., & DiPrima, R. (2020). Ecuaciones Diferenciales y Problemas con Valores en la Frontera. Ed. Wiley.

Blanchard, P., Devaney, R., & Hall, G. (2019). Ecuaciones Diferenciales: Sistemas y Teoría Cualitativa. Ed. Springer.

Nagle, E., Saff, E., & Snider, A. (2018). Ecuaciones Diferenciales y Problemas con Valores en la Frontera. Ed. Pearson.

Hernández, J., & Rincón, R. (2008). Introducción a las Ecuaciones Diferenciales. Ed. Universidad Distrital.

OpenStax (2023). Differential Equations. https://openstax.org

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:

