Зміст

1	Пог	ередні відомості	
	1.1	Відомості з алгебри	
	1.2	Відомості з теорії міри	
	1.3	Відомості про точкові випадкові процеси	
2	Пер	естановки Юенса	
	2.1	Граничний розподіл нерухомих точок	
	2.2	Статистичні властивості нерухомих точок	 1
		2.2.1 Найменша та найбільша нерухомі точки	 1
		2.2.2 Сума нерухомих точок	 1
		2.2.3 Найменші і найбільші спейсинги	 1

Розділ 1

Попередні відомості

1.1 Відомості з алгебри

Означення 1.1.1 ([1], ст. 114). Перестановкою π на скінченній множині A називають довільне бієктивне відображення $\sigma: A \to A$.

Означення 1.1.2 ([1], ст. 118). *Циклом довжини k* називають перестановку π , що змінює (зсуває за циклом) елементи $i_1, i_2, \ldots, i_k \in A$, залишаючи інші на місці, тобто $\pi(i_j) = i_{j+1}$ для $j = 1, \ldots, k-1, \pi(i_k) = i_1, \pi(i_j) = i_j$ для $j = k+1, \ldots, n$.

Означення 1.1.3 ([1], ст. 116). Групою перестановок (симетричною групою) степеня n називають групу, утворену множиною перестановок множини $\{1, \ldots, n\}$ за операцією композиції. Група S_n містить n! різних перестановок, нейтральним елементом є тотожне відображення ([1], ст. 114).

1.2 Відомості з теорії міри

Означення 1.2.1 ([2], ст. 19). Для будь-якого простору X непорожня сім'я підмножин \mathcal{R} називається *кільцем*, якщо вона замкнена відносно скінченних об'єднань, перетинів та різниць. Еквівалентне означення ([3], ст. 4): \mathcal{R} непорожня та $(A, B \in \mathcal{R}) \Rightarrow (A \cup B, A \setminus B \in \mathcal{R})$.

Означення 1.2.2 ([2], ст. 19). Для будь-якого простору X непорожня сім'я підмножин \mathcal{S} називається налівкільщем, якщо вона замкнена відносно скінченних перетинів та кожна різниця множин з \mathcal{S} представляється у вигляді диз'юнктного об'єднання множин з \mathcal{S} , тобто для будь-яких $A, B \in \mathcal{S}$ існують множини $K_i \in \mathcal{S}, i = 1, \ldots, n$, що попарно не перетинаються і $A \setminus B = \bigcup_{i=1}^n K_i$.

Означення 1.2.3 ([4], ст. 139). Для будь-якого простору X непорожня сім'я підмножин \mathcal{A} називається σ -алгеброю, якщо виконуються наступні три умови:

- 1. $(A \in \mathcal{A}) \Rightarrow (A^C = X \setminus A \in \mathcal{A});$
- 2. $(A, B \in \mathcal{A}) \Rightarrow (A \cup B \in \mathcal{A});$
- 3. $(A_1, A_2, A_3, \dots \in \mathcal{A}) \Rightarrow (\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}).$

Пара (X, A) називається вимірним простором.

Означення 1.2.4 ([4], ст. 146). Нехай (X, \mathcal{A}_X) та (Y, \mathcal{A}_Y) — два вимірних простори. Відображення $f: X \to Y$ називається *вимірним*, якщо для кожної множини $A \in \mathcal{A}_Y$ її повний прообраз $f^{-1}(A) = \{x: f(x) \in A\}$ належить \mathcal{A}_X .

Означення 1.2.5 ([4], ст. 147). Нехай X — метричний простір, \mathcal{O} — сім'я всіх відкритих підмножин X. Мінімальна σ -алгебра $\mathcal{B}(X)$, що містить \mathcal{O} , називається борелевою σ -алгеброю, а множини $A \in \mathcal{B}(X)$ — борелевими множинами.

Означення 1.2.6 ([2], ст. 24). Сім'я підмножин S сепарабельного метричного простору X називається *розсікаючою*, якщо виконуються наступні дві умови:

- 1. Кожну відкриту підмножину X можна представити у вигляді зліченного об'єднання множин з \mathcal{S} ;
- 2. Кожну підмножину X можна покрити скінченною кількістю множин з S.

Означення 1.2.7 ([3], ст. 8). Нехай $\mathcal{A} - \sigma$ -алгебра у просторі X. Функція $\mu : \mathcal{A} \to \mathbb{R}$ називається *мірою* на вимірному просторі (X, \mathcal{A}) , якщо виконуються наступні дві умови:

- 1. Невід'ємність: $\forall A \in \mathcal{A} : \mu(A) \geq 0$;
- 2. σ -адитивність: довільних множин $A_1, A_2, A_3, ... \in \mathcal{A}$, що попарно не перетинаються, $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

Означення 1.2.8 ([2], ст. 22). Точка $x \in X$ називається *атомом* міри μ на вимірному просторі (X, \mathcal{A}) , якщо $\mu(\{x\}) > 0$.

Означення 1.2.9 ([2], ст. 22; [5], ст. 123). *Міра Дірака*, зосереджена в точці $x \in X$ — це міра δ_x на на вимірному просторі (X, \mathcal{A}) , для якої $\forall A \in \mathcal{A} : \delta_x(A) = \mathbb{1} \{x \in A\} = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$.

Означення 1.2.10 ([5], ст. 123). Точкова міра— це міра μ на на вимірному просторі (X, \mathcal{A}) , для якої $\forall A \in \mathcal{A} : \mu(A) = \sum_{i=1}^{\infty} \delta_{x_i}(A)$, де $(x_i, i \geq 1)$ — зліченний набір точок X, не обов'язково різних. Точкова міра називається радоновою, якщо міра компактних множин з \mathcal{A} завжди є скінченною.

Означення 1.2.11 ([5], ст. 140). Нехай $(\mu_n, n \ge 1)$ — послідовність мір на на вимірному просторі (X, \mathcal{A}) , а $C_K^+(X)$ — множина неперервних невід'ємних функцій $X \to \mathbb{R}$ з компактним носієм. Послідовність $(\mu_n, n \ge 1)$ *грубо збігається* до міри μ на тому ж вимірному просторі, якщо $\int_X f d\mu_n \to \int_X f d\mu$ для всіх $f \in C_K^+(X)$. Ця збіжність позначається $\mu_n \stackrel{v}{\longrightarrow} \mu$.

Наведемо теорему, що характеризує збіжність послідовності точкових мір.

Теорема 1.2.1 ([5], ст. 144). *Нехай* ($\mu_n, n \ge 1$) та $\mu -$ міри на вимірному просторі (X, \mathcal{A}) і $\mu_n \xrightarrow{v} \mu$. Для кожної компактної множини $K \subset X$ з $\mu(\partial K)$ існує номер N = N(K) такий, що при $n \ge N$ існує нумерація атомів μ_n та μ такі, що

$$\mu_n(A \cap K) = \sum_{i=1}^p \delta_{x_i^{(n)}}(A), \ \mu(A \cap K) = \sum_{i=1}^p \delta_{x_i}(A)$$

для всіх $A \in \mathcal{A}$ і $x_i^{(n)} \to x_i$ для всіх $1 \le i \le p$.

1.3 Відомості про точкові випадкові процеси

Точкові випадкові процеси є основним поняттям, що досліджується в роботі. Наведемо початкові означення з [5]. В межах цього пункту, якщо не сказано інакше, E — підмножина скінченновимірного евклідового простору, $\mathcal{E} = \mathcal{B}(E)$ — борелева σ -алгебра підмножин E. Для точкової міри μ позначимо $S_{\mu} = \{x \in E : \mu(\{x\}) \neq 0\}$ — множину атомів.

Означення 1.3.1 ([5], ст. 124). Точкова міра μ називається *простою*, якщо $\mu(\{x\}) \le 1$ для всіх $x \in E$.

Позначимо $M_p(E)$ множину усіх точкових мір, визначених на E, а $\mathcal{M}_p(E)$ — найменшу σ -алгебру підмножин $M_p(E)$, що містить усі множини виду $\{\mu \in M_p(E) : \mu(F) \in B\}$ для всіх $F \in \mathcal{E}$ і $B \in \mathcal{B}([0, +\infty])$. Також зафіксуємо деякий ймовірнісний простір — трійку $(\Omega, \mathcal{A}, \mathbb{P})$, де Ω — простір елементарних подій, \mathcal{A} — σ -алгебра підмножин Ω , а \mathbb{P} — міра на цьому просторі, що додатково задовольняє умову $\mathbb{P}(\Omega) = 1$.

Означення 1.3.2. Точковий випадковий процес N — вимірне відображення з ймовірнісного простору $(\Omega, \mathcal{A}, \mathbb{P})$ в $(M_p(E), \mathcal{M}_p(E))$.

Якщо зафіксувати $\omega \in \Omega$, то $N(\omega, \cdot)$ буде точковою мірою. З іншого боку, якщо зафіксувати $F \in \mathcal{E}$, то N(F) буде випадковою величиною зі значеннями в $[0, +\infty]$. Також, точковий процес N задає ймовірнісну міру $P_N = \mathbb{P} \circ N^{-1} = \mathbb{P} [N \in \cdot]$ на $\mathcal{M}_p(E)$.

Надалі для спрощення точкові випадкові процеси будемо називати просто *точковими* процесами. Наведемо декілька теорем, що стосуються означення точкового процесу.

Теорема 1.3.1 ([5], ст. 124). N e точковим процесом тоді і тільки тоді, коли для кожного $F \in \mathcal{E}$ відображення $\omega \mapsto N(\omega, F)$ з (Ω, \mathcal{A}) в $([0, +\infty], \mathcal{B}([0, +\infty]))$ e вимірним.

Теорема 1.3.2 ([5], ст. 126). Нехай N — точковий процес на вимірному просторі (E, \mathcal{E}) , а сім'я передкомпактних множин \mathcal{F} задовольняє наступні умови:

- 1. $(A, B \in \mathcal{F}) \Rightarrow (A \cap B \in \mathcal{F});$
- 2. \mathcal{E} ϵ мінімальною σ -алгеброю, що містить \mathcal{F} ;
- 3. Існує послідовність множин $E_n \in \mathcal{F}$, для якої $E_1 \subset E_2 \subset ...$ і $\bigcup_{n=1}^{\infty} E_n = E$.

Для $k \in \mathbb{N}$ визначимо скінченновимірні розподіли

$$P_{I_1,...,I_k}(n_1,...,n_k) = \mathbb{P}(N(I_j) = n_j, 1 \le j \le k)$$

для $I_i \in \mathcal{F}$ та цілих $n_i \geq 0$, $1 \leq i \leq k$.

Тоді система скінченновимірних розподілів $\{P_{I_1,...,I_k}, k=1,2,...,I_j\in\mathcal{F}\}$ однозначно визначає розподіл P_N .

Означення незалежності процесів — чи потрібно?

Означення функціоналу Лапласа — чи потрібно?

Як і для випадкових величин, для точкових процесів можна ввести поняття «середнього значення».

Означення 1.3.3 ([2], ст. 127). *Мірою інтенсивності* або *середньою мірою* точкового процесу N називається міра μ , що для $F \in \mathcal{E}$ визначена як

$$\mu(F) = \mathbb{E}N(F) = \int_{\Omega} N(\omega, F) d\mathbb{P} = \int_{M_p(E)} m(F) dP_N$$

Наведемо приклад точкового процесу.

Означення 1.3.4 ([6], ст. 11). Нехай P — деяка ймовірнісна міра на (E, \mathcal{E}) , а X_1, \ldots, X_m — незалежні випадкові величини з відповідним розподілом. Для кожного $i = 1, \ldots, m$ δ_{X_i} — це точковий процес, для якого $\mathbb{P}(\delta_{X_i}(F) = 1) = \mathbb{P}(X_i \in F)$, $\mathbb{P}(\delta_{X_i}(F) = 0) = \mathbb{P}(X_i \notin F)$ для $F \in \mathcal{E}$. Точковий процес $X = \delta_{X_1} + \delta_{X_2} + \cdots + \delta_{X_m}$ називається біноміальний процесом з розміром вибірки m та розподілом P. Для нього

$$\mathbb{P}(X(F) = k) = C_m^k P(F)^k (1 - P(F))^{m-k}, \ k = 0, \dots, m, \ F \in \mathcal{E}$$

.

Перейдемо до означення процесу Пуассона, який є центральним у роботі.

Означення 1.3.5 ([5], ст. 130). Нехай μ — радонова міра на \mathcal{E} . Точковий процес N називається процесом Пуассона або випадковою мірою Пуассона з мірою інтенсивності μ , якщо N задовольняє наступні умови:

1. Для будь-якої $F \in \mathcal{E}$ та будь-якого невід'ємного цілого числа k

$$\mathbb{P}(N(F) = k) = \begin{cases} \frac{(\mu(F))^k}{k!} e^{-\mu(F)}, & \mu(F) < \infty, \\ 0, & \mu(F) = \infty; \end{cases}$$

2. Для будь-якого натурального k, якщо F_1, \ldots, F_k з \mathcal{E} попарно не перетинаються, то $(N(F_i), 1 \le i \le k)$ є незалежними в сукупності випадковими величинами.

Як і для невипадкових точкових мір, для точкових процесів також можна ввести поняття грубої збіжності.

Означення 1.3.6 ([2], ст. 109). Нехай $(\xi_n, n \ge 1)$ — послідовність точкових процесів на вимірному просторі (E, \mathcal{E}) . Якщо $\mathbb{E}\varphi(\xi_n) \to \mathbb{E}\varphi(\xi)$ для кожної обмеженої функції φ , неперервної на $M_p(E)$ відносно грубої збіжності мір, то послідовність $(\xi_n, n \ge 1)$ грубо збігається за розподілом, що позначається $\xi_n \xrightarrow{vd} \xi$.

Наведемо критерій грубої збіжності за розподілом.

Теорема 1.3.3 ([2], ст. 121). Нехай ($\xi_n, n \geq 1$) — послідовність точкових процесів на вимірному просторі (E, \mathcal{E}), а точковий процес ξ — простий. Нехай також $\mathcal{U} \subset \hat{\mathcal{E}}_{\xi}$ — фіксоване розсікаюче кільце, де $\hat{\mathcal{E}}_{\xi}$ позначає сім'ю борелевих підмножин E, для яких $\mathbb{E}\xi(\partial B) = 0$, а $\mathcal{I} \subset \mathcal{U}$ — напів-кільце. Тоді $\xi_n \xrightarrow{vd} \xi$ тоді і тільки тоді, коли

- 1. $\lim_{n\to\infty} \mathbb{P}(\xi_n(U)=0) = \mathbb{P}(\xi(U)=0)$ для $U\in\mathcal{U}$;
- 2. $\limsup_{n\to\infty} \mathbb{P}\left(\xi_n(I)>1\right) \leq \mathbb{P}\left(\xi(I)>1\right)$ для $I\in\mathcal{I}.$

Для практичних застосувань є корисною наступна теорема про неперервне відображення.

Теорема 1.3.4 ([7], ст. 42). Нехай $(\xi_n, n \ge 1)$ — послідовність точкових процесів на вимірному просторі (E, \mathcal{E}) , яка грубо збігається за розподілом до точкового процесу ξ , а відображення $\varphi: M_p(E) \to \mathbb{R}$ таке, що $\mathbb{P}(\xi \in \{\mu \in M_p(E) : \varphi \text{ не } \varepsilon \text{ неперевною } \varepsilon \mu\}) = 0$.

Тоді послідовність випадкових величин $(\varphi(\xi_n), n \ge 1)$ збігається за розподілом до $\varphi(\xi)$, тобто $\varphi(\xi_n) \xrightarrow{d} \varphi(\xi)$.

Розділ 2

Перестановки Юенса

2.1 Граничний розподіл нерухомих точок

Розглянемо ймовірнісний розподіл на групі перестановок S_n , заданий у такий спосіб:

$$\mathbb{P}(\{\pi\}) = \frac{\theta^{c(\pi)}}{\theta(\theta+1)\dots(\theta+n-1)}, \ \pi \in S_n,$$
(2.1)

де $\theta > 0$ — фіксований параметр, а $c(\pi)$ позначає кількість циклів у π . Цей розподіл також відомий як *міра Юенса*. Тут і далі відповідні випадкові перестановки називатимемо *перестановками Юенса*.

Зауваження. Якщо $\theta=1,\ (2.1)$ задає рівномірний розподіл, тобто $\mathbb{P}(\{\pi\})=\frac{1}{n!}$ для всіх $\pi\in S_n.$

Перед тим, як вводити подальші поняття, розглянемо і доведемо наступну лему:

Лема 2.1.1. Нехай σ — випадкова перестановка на множині $\{1, \ldots, n\}$, що задана розподілом (2.1) (тобто, σ е перестановкою Юенса з S_n). Для $a \in \mathbb{R}$ позначимо $\lceil a \rceil = \min \{k \in \mathbb{Z} : k \geq a\}$. Нехай $\gamma \in [0,1]$, а $X_n = \operatorname{card} \{i \in \{1, \ldots, \lceil \gamma n \rceil\} : \sigma(i) = i\}$ — кількість нерухомих точок σ серед перших $\lceil \gamma n \rceil$ натуральних чисел. Тоді X_n за розподілом збігається до Poiss $(\gamma \theta)$, тобто

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \frac{(\gamma \theta)^k}{k!} e^{-\gamma \theta}, \ k \in \mathbb{N}_0.$$
 (2.2)

Доведення. Отримаємо явну формулу для $\mathbb{P}(X_n = k)$, починаючи з випадку k = 0. Нехай F_i позначає множину перестановок, для яких i є нерухомою точкою. Тоді

$$\mathbb{P}(X_n = 0) = \mathbb{P}\left(F_1^C \cap F_2^C \cap \dots \cap F_{\lceil \gamma n \rceil}^C\right) = 1 - \mathbb{P}\left(F_1 \cup F_2 \cup \dots \cup F_{\lceil \gamma n \rceil}\right) = 1 - \sum_i \mathbb{P}(F_i) + \sum_{i < j} \mathbb{P}(F_i \cap F_j) - \dots + (-1)^{\lceil \gamma n \rceil} \mathbb{P}\left(F_1 \cap F_2 \cap \dots \cap F_{\lceil \gamma n \rceil}\right).$$

У цьому виразі $\lceil \gamma n \rceil$ однакових доданків виду $\mathbb{P}(F_i)$, $C^2_{\lceil \gamma n \rceil}$ однакових доданків виду $\mathbb{P}(F_i \cap F_j)$ і так далі. Це означає, що достатньо знайти вирази для цих ймовірностей лише для конкретних наборів індексів. Якщо 1 є нерухомою точкою перестановки π , то вона має містити «тотожний» цикл (1), тобто $\pi = (1) \circ \tilde{\pi}$, де $\tilde{\pi}$ є перестановкою множини $\{2, \ldots, n\}$. Аналогічно, якщо 1 і 2 є нерухомими точками π , то $\pi = (1)(2) \circ \tilde{\pi}$, де $\tilde{\pi}$ вже є перестановкою множини

 ${3, \ldots, n}$. Отже,

$$\mathbb{P}\left(1,2,\dots,i \text{ } \varepsilon \text{ нерухомими точками } \sigma\right) = \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \mathbb{P}\left(\{\pi\}\right) = \\ = \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \frac{\theta^{\mathrm{c}(\pi)}}{\theta(\theta+1)\dots(\theta+n-1)} = \left[\mathrm{c}(\pi)\geq i\right] = \\ = \frac{\theta^i}{\theta(\theta+1)\dots(\theta+n-1)} \sum_{\pi=(1)(2)\dots(i)\circ\tilde{\pi}\in S_n} \theta^{\mathrm{c}(\pi)-i} = \frac{\theta^i}{\theta(\theta+1)\dots(\theta+n-1)} \sum_{\tilde{\pi}\in S_{n-i}} \theta^{\mathrm{c}(\tilde{\pi})}.$$

Остання сума є сумою ймовірностей розподілу Юенса (2.1) на S_{n-i} , але без константи нормування, тому дорівнює $\theta(\theta+1)\dots(\theta+n-i-1)$, отже

$$\mathbb{P}(1,2,\ldots,i \in \text{нерухомими точками } \sigma) = \frac{\theta^i}{(\theta+n-i)\ldots(\theta+n-1)}.$$

З цього отримуємо

$$\mathbb{P}(X_n = 0) = \sum_{i=0}^{\lceil \gamma n \rceil} (-1)^i C^i_{\lceil \gamma n \rceil} \frac{\theta^i}{(\theta + n - i) \dots (\theta + n - 1)}.$$

 $\mathbb{P}(X_n = k)$ для k > 0 можна отримати аналогічно: існує $C^k_{\lceil \gamma n \rceil}$ способів вибрати k натуральних чисел, які будуть нерухомими точками, а для інших $\lceil \gamma n \rceil - k$ застосувати формулу, аналогічну до $\mathbb{P}(X_n = 0)$:

$$\mathbb{P}(X_n = k) = C_{\lceil \gamma n \rceil}^k \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i C_{\lceil \gamma n \rceil - k}^i \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Тепер доведемо $\lim_{n\to\infty} \mathbb{P}\left(X_n=k\right) = \frac{(\gamma\theta)^k}{k!}e^{-\gamma\theta}$

$$\mathbb{P}(X_n = k) = \frac{(\lceil \gamma n \rceil)!}{k!(\lceil \gamma n \rceil - k)!} \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i \frac{(\lceil \gamma n \rceil - k)!}{i!(\lceil \gamma n \rceil - k - i)!} \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)} = \frac{\theta^k}{k!} \sum_{i=0}^{\lceil \gamma n \rceil - k} (-1)^i \frac{\theta^i}{i!} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Нехай N достатньо велике і $\lceil \gamma n \rceil - k > N$, тоді $\mathbb{P}(X_n = k)$ можна розбити на дві суми — S_1 від 0 до N-1 та S_2 від N до $\lceil \gamma n \rceil - k$.

$$\frac{k!}{\theta^k} \cdot |S_2| \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \left(\frac{\lceil \gamma n \rceil}{\theta + n - \lceil \gamma n \rceil} \right)^{i+k} \leq \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} \left(\frac{\lceil \gamma n \rceil}{n - \lceil \gamma n \rceil} \right)^{i+k}.$$

Оскільки $\lim_{n\to\infty}\frac{\lceil\gamma n\rceil}{n-\lceil\gamma n\rceil}=\frac{\gamma}{1-\gamma}$ для $\gamma\in[0,1),\,\frac{\lceil\gamma n\rceil}{n-\lceil\gamma n\rceil}\leq C=C(\gamma),$ то

$$\frac{k!}{\theta^k} \cdot |S_2| \le C^k \sum_{i=N}^{\lceil \gamma n \rceil - k} \frac{\theta^i}{i!} C^i \le C^k \sum_{i=N}^{\infty} \frac{\theta^i}{i!} C^i \to 0, \ N \to \infty.$$

Якщо $\gamma = 1$, то

$$\frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} = \frac{(n - k - i + 1) \dots (n - 2)(n - 1)n}{(\theta + n - i - k) \dots (\theta + n - 1)} \le \frac{(n - k - i + 1) \dots (n - 2)(n - 1)n}{(n - i - k) \dots (n - 1)} = \frac{n}{n - i - k} \to 1, \ n \to \infty,$$

тому цей дріб теж обмежений і $\lim_{N\to\infty} S_2=0$ також справджується. Що стосується $S_1,$ то для фіксованого N

$$\lim_{n \to \infty} S_1 = \frac{\theta^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{\theta^i}{i!} \lim_{n \to \infty} \frac{(\lceil \gamma n \rceil - k - i + 1) \dots (\lceil \gamma n \rceil - 2)(\lceil \gamma n \rceil - 1)\lceil \gamma n \rceil}{(\theta + n - i - k) \dots (\theta + n - 1)} = \frac{\theta^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{\theta^i}{i!} \gamma^{i+k} = \frac{(\gamma \theta)^k}{k!} \sum_{i=0}^{N-1} (-1)^i \frac{(\gamma \theta)^i}{i!} \to \frac{(\gamma \theta)^k}{k!} e^{-\gamma \theta}, \ N \to \infty.$$

Користуючись позначеннями з леми 2.1.1, визначимо для $n \in \mathbb{N}$ точкові процеси P_n на $(E, \mathcal{E}) = ([0, 1], \mathcal{B}([0, 1]))$ за правилом

$$P_n(F) = \operatorname{card}\left\{i \in \{1, ..., n\} : \sigma(i) = i \text{ Ta } \frac{i}{n} \in F\right\}, F \in \mathcal{E}.$$
 (2.3)

Тобто, P_n є випадковою точковою мірою з атомами у нерухомих точках перестановки Юенса σ , нормованих n, тому результат леми можна записати як

$$\lim_{n\to\infty} \mathbb{P}\left(P_n\left([0,\gamma]\right) = k\right) = \mathbb{P}\left(N\left([0,\gamma]\right) = k\right), \ k \in \mathbb{N}_0.$$

Тут N є точковим процесом Пуассона з мірою інтенсивності θ · Leb on [0,1]. Виявляється, що має місце узагальнення цієї збіжності:

Теорема 2.1.2. Послідовність точкових процесів P_n грубо збігається за розподілом до точкового процесу Пуассона N з мірою інтенсивності $\Lambda = \theta \cdot \text{Leb}$ на [0,1] ($P_n \xrightarrow{vd} N, n \to \infty$).

Теорема 1.3.3 формулює критерій грубої збіжності точкових процесів:

Теорема. Нехай $(\xi_n, n \ge 1)$ — послідовність точкових процесів на вимірному просторі (E, \mathcal{E}) , а точковий процес ξ — простий. Нехай також $\mathcal{U} \subset \hat{\mathcal{E}}_{\xi}$ — фіксоване розсікаюче кільце, де $\hat{\mathcal{E}}_{\xi}$ позначає сім'ю борелевих підмножин E, для яких $\mathbb{E}\xi(\partial B) = 0$, а $\mathcal{I} \subset \mathcal{U}$ — напів-кільце. Тоді $\xi_n \xrightarrow{vd} \xi$ тоді і тільки тоді, коли

- 1. $\lim_{n\to\infty} \mathbb{P}(\xi_n(U)=0) = \mathbb{P}(\xi(U)=0)$ для $U\in\mathcal{U}$;
- 2. $\limsup_{n\to\infty} \mathbb{P}(\xi_n(I)>1) \leq \mathbb{P}(\xi(I)>1)$ для $I\in\mathcal{I}$.

Розглянемо сім'ю множин \mathcal{X} , що складається зі скінченних диз'юнктних об'єднань інтервалів $\langle a,b \rangle \subset [0,1]$, де $\langle a,b \rangle$ позначає одне з [a,b], (a,b), [a,b) чи (a,b]. Для точкового процесу Пуассона N з мірою інтенсивності $\Lambda = \theta$. Leb на [0,1] (який є простим), $\mathbb{E}N(\partial B) = \Lambda(\partial B)$, тому для всіх $B \subset \mathcal{X}$ $\mathbb{E}N(\partial B) = 0$, бо ∂B складається зі скінченного об'єднання окремих точок. Це означає, що $\hat{\mathcal{E}}_N = \mathcal{X}$. Також, \mathcal{X} є кільцем і розсікаючим класом, оскільки всі необхідні умови очевидно виконуються. Отже, для доведення теореми 2.1.2, можна використати теорему 1.3.3 для $\xi_n = P_n$, $\xi = N$ та $\hat{\mathcal{E}}_N = \mathcal{U} = \mathcal{I} = \mathcal{X}$.

Доведення теореми 2.1.2. Нехай $\langle \gamma_1, \delta_1 \rangle$, ..., $\langle \gamma_m, \delta_m \rangle$ ($\gamma_1 < \delta_1 < \gamma_2 < ... < \gamma_m < \delta_m$) — набір інтервалів в [0,1], що попарно не перетинаються, $\lfloor a \rfloor = \max \{k \in \mathbb{Z} : k \leq a\}$, $I_j = \langle \gamma_j, \delta_j \rangle$ і $I = \bigvee_{j=1}^m I_j \in \mathcal{X}$. Позначимо $Y_n = P_n(I)$, де $P_n(I)$ визначено формулою (2.3). Нехай $M_n = \operatorname{card} \{i \in \{1,...,n\} : \frac{i}{n} \in I\}$ і тоді, аналогічно лемі 2.1.1,

$$\mathbb{P}(Y_n = k) = C_{M_n}^k \sum_{i=0}^{M_n - k} (-1)^i C_{M_n - k}^i \frac{\theta^{i+k}}{(\theta + n - i - k) \dots (\theta + n - 1)}.$$

Оскільки сагд $\left\{i \in \{1,...,n\} : \frac{i}{n} \in I_j\right\} = \lceil \delta_j n \rceil - \lfloor \gamma_j n \rfloor$ ($\lceil \cdot \rceil$ може змінюватися на $\lfloor \cdot \rfloor$ і навпаки в залежності від n та включення кінцевих точок до інтервалу), а $\lfloor x \rfloor \leq x \leq \lceil x \rceil$, то $\lim_{n \to \infty} \frac{M_n}{n} = \sum_{j=1}^m (\delta_j - \gamma_j)$, повторенням доведення збіжності у лемі 2.1.1, отримуємо

$$\lim_{n \to \infty} \mathbb{P}\left(Y_n = k\right) = \frac{1}{k!} \left(\theta \sum_{j=1}^m (\delta_j - \gamma_j)\right)^k \exp\left\{-\theta \sum_{j=1}^m (\delta_j - \gamma_j)\right\}, k \in \mathbb{N}_0.$$

Оскільки $\Lambda(I) = \theta \cdot \text{Leb}(I) = \theta \sum_{j=1}^{m} (\delta_j - \gamma_j)$, то

$$\lim_{n \to \infty} \mathbb{P}\left(P_n(I) = 0\right) = \mathbb{P}\left(N(I) = 0\right), I \in \mathcal{X}.$$

Так як $\mathbb{P}(P_n(I) > 1) = 1 - (\mathbb{P}(P_n(I) = 0) + \mathbb{P}(P_n(I) = 1))$ і $\mathbb{P}(P_n(I) = 1) \to \mathbb{P}(N(I) = 1)$ для $I \in \mathcal{X}$, отримуємо

$$\lim_{n \to \infty} \mathbb{P}\left(P_n(I) > 1\right) = \mathbb{P}\left(N(I) > 1\right), I \in \mathcal{X}.$$

Отже, обидві умови теореми 1.3.3 справджуються, що і доводить $P_n \xrightarrow{vd} N, \ n \to \infty.$

Для наступних досліджень будуть важливі перестановки з принаймні однією нерухомою точкою. З теореми 2.1.2, для $\gamma=1$ має місце $\mathbb{P}(X_n=0) \to e^{-\theta}, n \to \infty$. Введемо ще один точковий процес P'_n , що визначений для борелевих множин $F \in \mathcal{B}([0,1])$ як

$$\mathbb{P}(P_n'(F) = k) = \mathbb{P}(P_n(F) = k \mid P_n([0, 1]) > 0) = \begin{cases} \frac{\mathbb{P}(P_n(F) = k)}{1 - \mathbb{P}(P_n([0, 1]) = 0)}, & k > 0; \\ \frac{1 - \mathbb{P}(P_n(F^C) = 0)}{1 - \mathbb{P}(P_n([0, 1]) = 0)}, & k = 0. \end{cases}$$
(2.4)

Повторенням доведення 2.1.2 можна отримати наступний результат:

Теорема 2.1.3. Точковий процес P'_n грубо збігається за розподілом до точкового процесу N' на [0,1], для якого

$$\mathbb{P}\left(N'(F) = k\right) = \begin{cases} \frac{(\Lambda(F))^k}{k!} \cdot \frac{e^{-\Lambda(F)}}{1 - e^{-\theta}}, & k > 0\\ \frac{1 - e^{-(\theta - \Lambda(F))}}{1 - e^{-\theta}}, & k = 0. \end{cases}$$

$$(2.5)$$

для всіх $F \in \mathcal{B}([0,1])$ та $k \in \mathbb{N}$.

Зокрема, для F = [0, 1]:

$$\mathbb{P}(N'([0,1]) = k) = \begin{cases} \frac{\theta^k}{k!} \cdot \frac{e^{-\theta}}{1 - e^{-\theta}}, & k > 0\\ 0, & k = 0. \end{cases}$$
 (2.6)

2.2 Статистичні властивості нерухомих точок

Результати теорем 2.1.2 та 2.1.3 можуть бути застосовані з теоремою про неперервне відображення з [7]. В термінах грубої збіжності точкових процесів, її можна сформулювати наступним чином:

Теорема 2.2.1 (теорема про неперервне відображення). Нехай φ є неперервним відображенням з простору $\mathcal{M}^p_{[0,1]}$ точкових мір на [0,1] з грубою топологією в \mathbb{R} зі стандартною топологією. Якщо ξ_n — послідовність точкових процесів, що грубо збігається за розподілом до ξ , $\xi_n \stackrel{vd}{\longrightarrow} \xi$, тоді $\varphi(\xi_n) \stackrel{d}{\longrightarrow} \varphi(\xi)$, тобто послідовність випадкових величин $\varphi(\xi_n)$ збігається за розподілом до $\varphi(\xi)$.

Зауваження. За означенням збіжності за розподілом, якщо φ є обмеженою, то також має місце $\mathbb{E}\varphi(\xi_n) \to \mathbb{E}\varphi(\xi)$.

Перед дослідженням граничних розподілів для деяких відображень, варто навести твердження 3.13 з [5], яке можна сформулювати наступним чином:

Лема 2.2.2. Нехай μ_n — грубо збіжна послідовність точкових мір в $\mathcal{M}^p_{[0,1]}$, тобто $\mu_n \stackrel{v}{\longrightarrow} \mu$. Тоді

$$\mu_n = \sum_{i=1}^k \delta_{x_i^{(n)}}, \ \mu = \sum_{i=1}^k \delta_{x_i}$$

 $\partial e\ \delta_x\ e\ мірою\ Дірака,\ зосередженою\ e\ x,\ a\ x_i^{(n)} o x_i, n o \infty\ \partial \mathit{л} s\ i=1,\ldots,k.$

Це означає, що будь-яка неперервна функція з \mathbb{R}^k (або принаймні $[0,1]^k$) в \mathbb{R} задає неперервне відносно грубої топології відображення.

2.2.1 Найменша та найбільша нерухомі точки

Для точкової міри μ відображення можна визначити два відображення $\min(\mu) = \sup\{x \in [0,1] : \max(\mu) = \inf\{x \in [0,1] : \mu([x,1]) = 0\}$, що ставлять у відповідність цій міри її найменший та найбільший атом, де для порожньої множини за домовленістю $\sup \emptyset = 0$ та $\inf \emptyset = 1$. Нехай $\mu_n \stackrel{v}{\longrightarrow} \mu$. Оскільки $\min\{x_1, \dots, x_k\}$ та $\max\{x_1, \dots, x_k\}$ є неперервними функціями з \mathbb{R}^k в \mathbb{R} , з леми 2.2.2 випливає, що $\min(\mu)$ та $\max(\mu)$ є неперервними відносно грубої топології.

Незважаючи на результат теореми 2.1.3, простіше отримати розподіл $\min(N)$ та $\max(N)$, ніж $\min(N')$ та $\max(N')$, оскільки умовний розподіл $\mathbb{P}(N(F) = k \mid N([0,1]) = m)$ є відомим (твердження 3.8, [6]) — це біноміальний процес з розміром m та розподілом Unif (0,1). Іншим корисним фактом є такий: нехай U_1, U_2, \ldots, U_m є тоді розподіли $U_{(1)}$ та $U_{(m)}$ задаються

$$\mathbb{P}\left(U_{(1)} \le x\right) = \begin{cases} 0, & x < 0 \\ 1 - (1 - x)^m, & 0 \le x < 1, \ \mathbb{P}\left(U_{(m)} \le x\right) = \begin{cases} 0, & x < 0 \\ x^m, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Отже, розподіли $\min(N)$ та $\max(N)$ задаються

$$\mathbb{P}(\min(N) \le x) = \sum_{m=0}^{\infty} \mathbb{P}(\min(N) \le x \mid N([0,1]) = m) \, \mathbb{P}(N([0,1]) = m) = \qquad (2.7)$$

$$= \mathbb{1} \{x \ge 1\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}(\min(N) \le x \mid N([0,1]) = m) \, \frac{\theta^m}{m!} e^{-\theta} = \\
= \begin{cases} 0, & x < 0 \\ \sum_{m=1}^{\infty} (1 - (1 - x)^m) \, \frac{\theta^m}{m!} e^{-\theta} = 1 - e^{-\theta x}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

$$\mathbb{P}\left(\max(N) \le x\right) = \sum_{m=0}^{\infty} \mathbb{P}\left(\max(N) \le x \mid N([0,1]) = m\right) \mathbb{P}\left(N([0,1]) = m\right) = \tag{2.8}$$

$$= \mathbb{1}\left\{x \ge 0\right\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}\left(\max(N) \le x \mid N([0,1]) = m\right) \frac{\theta^m}{m!} e^{-\theta} = \begin{cases} 0, & x < 0 \\ e^{-\theta} + \sum_{m=1}^{\infty} x^m \frac{\theta^m}{m!} e^{-\theta} = e^{\theta(x-1)}, & 0 \le x < 1 \\ 1, & x > 1 \end{cases}$$

Ці розподіли є змішаними, бо $\mathbb{P}(N([0,1]) = 0) = e^{-\theta}$ і тому $\mathbb{P}(\min(N) = 1) = \mathbb{P}(\max(N) = 0) = e^{-\theta}$. Відповідні умовні розподіли є абсолютно неперервними:

$$\mathbb{P}(\min(N) \le x \mid \min(N) < 1) = \begin{cases} 0, & x < 0\\ \frac{1 - e^{-\theta x}}{1 - e^{-\theta}}, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$
 (2.9)

$$\mathbb{P}(\max(N) \le x \mid \max(N) > 0) = \begin{cases} 0, & x < 0 \\ \frac{e^{\theta x} - 1}{e^{\theta} - 1}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$
 (2.10)

Умови $\{\min(N) < 1\}$ та $\{\max(N) > 0\}$ еквівалентні $\{N([0,1]) > 0\}$, тому умовні розподіли (2.9) та (2.10) задають безумовні розподіли $\min(N')$ та $\max(N')$.

Для $P'_n \min(P'_n) = \sup\{x \in [0,1] : \operatorname{card}\{i \in \{1,\dots,\lceil xn\rceil\} : Z(i) = i\} = 0\}$ означає супремум значень x, для яких усі $i \in \{1,\dots,\lceil xn\rceil\}$ під дією перестановки опиняються не на своїх місцях, аналогічно $\max(P'_n)$ означає інфімум x, для $i \in \{\lfloor xn\rfloor + 1,\dots,n\}$ опиняються не на своїх місцях. Легко побачити, що такі x можуть набувати лише значень, що є пропорційними $\frac{1}{n}$.

Обчислення $\mathbb{P}\left(\frac{k-1}{n} < \min(N') \le \frac{k}{n}\right)$ та $\mathbb{P}\left(\frac{k-1}{n} < \max(N') \le \frac{k}{n}\right)$ дає приблизну частку перестановок, для яких k є відповідно найменшою та найбільшою нерухомою точкою.

Також,
$$\mathbb{E} \min(N') = \int_0^1 \left(1 - \frac{1 - e^{-\theta x}}{1 - e^{-\theta}}\right) dx = \frac{1}{\theta} + \frac{1}{1 - e^{\theta}}$$
 та $\mathbb{E} \max(N') = \int_0^1 \left(1 - \frac{e^{\theta x} - 1}{e^{\theta} - 1}\right) dx = 1 - \frac{1}{\theta} + \frac{1}{e^{\theta} - 1}$, тому $\lim_{n \to \infty} \mathbb{E} \min(P'_n) = \frac{1}{\theta} + \frac{1}{1 - e^{\theta}}$ та $\lim_{n \to \infty} \mathbb{E} \max(P'_n) = 1 - \frac{1}{\theta} + \frac{1}{e^{\theta} - 1}$.

2.2.2 Сума нерухомих точок

Граничний розподіл суми нерухомих точок можна отримати, користуючись функціоналом Лапласа точкового процесу Пуассона. З [7], для процесу Пуассона з мірою інтенсивності θ · Leb на [0,1], цей функціонал задається

$$\psi_N(f) = \mathbb{E} \exp\left\{-\int_0^1 f(x)dN\right\} = \exp\left\{-\theta \int_0^1 \left(1 - e^{-f(x)}\right) dx\right\}$$
 (2.11)

для вимірних, невід'ємних, обмежених функцій f на [0,1].

Позначатимемо $\mathrm{sum}(N)$ суму атомів точкового процесу Пуассона N. Для будь-якої точкової міри $\mu,\,\mathrm{sum}(\mu)=\int_0^1 x d\mu.$ Перетворення Лапласа невід'ємної випадкової величини X

задається $\mathcal{L}\{X\}(p) = \mathbb{E}e^{-pX}$. Якщо порівняти це означення з (2.11), можна побачити, що перетворення Лапласа $\mathrm{sum}(N)$ дорівнює значенню $\psi_N(f)$ для f(x) = px. Пряме обчислення дає наступний результат:

$$\mathcal{L}\left\{\operatorname{sum}(N)\right\}(p) = \exp\left\{-\theta\left(1 + \frac{1}{p}(e^{-p} - 1)\right)\right\}$$
(2.12)

Оскільки розподіл sum(N) є сумішшю абсолютно неперервного розподілу та дискретного з атомом в 0, можна знайти перетворення Лапласа лише абсолютно неперервної частини, що також буде перетворення для sum(N').

$$\mathcal{L}\left\{\operatorname{sum}(N)\right\}(p) = \mathbb{E}e^{-p\cdot\operatorname{sum}(N)} = 1\cdot\mathbb{P}\left(\operatorname{sum}(N) = 0\right) + \mathbb{E}e^{-p\cdot\operatorname{sum}(N')}\cdot\mathbb{P}\left(\operatorname{sum}(N) > 0\right) =$$

$$= e^{-\theta} + \mathcal{L}\left\{\operatorname{sum}(N')\right\}(p)\cdot(1 - e^{-\theta}) \Rightarrow \mathcal{L}\left\{\operatorname{sum}(N')\right\}(p) = \frac{1}{1 - e^{-\theta}}\left(\mathcal{L}\left\{\operatorname{sum}(N)\right\}(p) - e^{-\theta}\right) =$$

$$= \frac{e^{-\theta}}{1 - e^{-\theta}}\exp\left\{-\frac{\theta}{p}(e^{-p} - 1)\right\}$$

Оскільки $\operatorname{sum}(N')$ є абсолютно неперервною випадковою величиною, $\mathcal{L}\left\{\operatorname{sum}(N')\right\}(p)$ є перетворенням Лапласа для щільності, тому перетворення Лапласа для функції розподілу $\operatorname{sum}(N')$ задається

$$\mathcal{L}\left\{F_{\text{sum}(N')}(x)\right\}(p) = \frac{e^{-\theta}}{1 - e^{-\theta}} \frac{1}{p} \exp\left\{-\frac{\theta}{p}(e^{-p} - 1)\right\}$$
(2.13)

Знаходження оберненого перетворення для (2.13) є доволі складним.

Хоча, існує інший підхід до знаходження $F_{\text{sum}(N)}(x)$:

$$\mathbb{P}(\text{sum}(N) \le x) = \sum_{m=0}^{\infty} \mathbb{P}(\text{sum}(N) \le x \mid N([0,1]) = m) \, \mathbb{P}(N([0,1]) = m) = 0$$

$$= \mathbb{1} \{x \ge 0\} \cdot e^{-\theta} + \sum_{m=1}^{\infty} \mathbb{P}(\text{sum}(N) \le x \mid N([0,1]) = m) \, \frac{\theta^m}{m!} e^{-\theta}$$

Умовні розподіли $\mathbb{P}(\text{sum}(N) \leq x \mid N([0,1]) = m)$ є розподілами Ірвіна-Голла — розподілами суми m незалежних випадкових величин з розподілом Unif (0,1). Їх функція розподілу наступна:

$$\begin{cases} 0, & x < 0 \\ \frac{1}{m!} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k C_m^k (x - k)^m, & 0 \le x < m \\ 1, & x \ge m \end{cases}$$

Для кожного інтервалу $[n, n+1), n \in \mathbb{N} \cup \{0\}, \mathbb{P}(\text{sum}(N) \leq x)$ може бути виражена через $I_{\nu}(z), \nu \in \mathbb{R}$ — модифіковані функції Бесселя першого роду:

$$I_{\nu}(z) = \left(\frac{1}{2}z\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}z\right)^k}{k!\Gamma(\nu+k+1)}$$

Наприклад:

$$x \in [0,1), \ \mathbb{P}\left(\text{sum}(N) \le x\right) = e^{-\theta} \left(1 + \sum_{m=1}^{\infty} \frac{\theta^m}{(m!)^2} x^m\right) = e^{-\theta} \cdot I_0(2\sqrt{\theta x})$$

$$x \in [1,2), \ \mathbb{P}\left(\text{sum}(N) \le x\right) = e^{-\theta} \left(1 + \frac{\theta}{1!} + \sum_{m=2}^{\infty} \frac{\theta^m}{(m!)^2} x^m - \sum_{m=2}^{\infty} \frac{\theta^m}{(m-1)!m!} (x-1)^m\right) =$$

$$= e^{-\theta} \left(I_0(2\sqrt{\theta x}) - \sqrt{\theta(x-1)} \cdot I_1(2\sqrt{\theta(x-1)})\right)$$

$$x \in [2,3), \ \mathbb{P}\left(\text{sum}(N) \le x\right) = e^{-\theta} \left(1 + \frac{\theta}{1!} + \frac{\theta^2}{2!} + \sum_{m=3}^{\infty} \frac{\theta^m}{(m!)^2} x^m - \sum_{m=3}^{\infty} \frac{\theta^m}{(m-1)!m!} (x-1)^m + \sum_{m=3}^{\infty} \frac{\theta^m}{(m-2)!m!} (x-2)^m\right) = e^{-\theta} \left(I_0(2\sqrt{\theta x}) - \sqrt{\theta(x-1)} \cdot I_1(2\sqrt{\theta(x-1)}) + \frac{1}{2!} \theta(x-2)I_2(2\sqrt{\theta(x-2)})\right)$$

В загальному випадку:

$$x \in [n, n+1), \ \mathbb{P}(\text{sum}(N) \le x) = e^{-\theta} \sum_{k=0}^{n} (-1)^k \frac{1}{k!} (\theta(x-k))^{\frac{k}{2}} I_k \left(2\sqrt{\theta(x-k)}\right)$$

Отже, функція розподілу sum(N) задається

$$F_{\text{sum}(N)}(x) = \mathbb{P}\left(\text{sum}(N) \le x\right) = \begin{cases} 0, & x < 0 \\ e^{-\theta} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k \frac{1}{k!} \left(\theta(x-k)\right)^{\frac{k}{2}} I_k \left(2\sqrt{\theta(x-k)}\right), & x \ge 0 \end{cases}$$
(2.14)

Таким чином, функція розподіу sum(N') може бути виражена через $F_{sum(N)}(x)$ настуним чином:

$$\mathbb{P}(\text{sum}(N') \le x) = \mathbb{P}(\text{sum}(N) \le x \mid \text{sum}(N) > 0) = \frac{1}{1 - e^{-\theta}} \left(F_{\text{sum}(N)}(x) - e^{-\theta} \right)$$
--- CDF plot ---

При цьому, $\mathbb{E} \operatorname{sum}(N)$ значно простіше знайти за формулою повного математичного сподівання, оскільки для m > 0 $\mathbb{E} (\operatorname{sum}(N) \mid N([0,1]) = m) = \frac{m}{2}$ як математичне сподівання суми m незалежних випадкових величин з розподілом Unif (0,1):

$$\mathbb{E}\operatorname{sum}(N) = 0 \cdot \mathbb{P}\left(N([0,1]) = 0\right) + \sum_{m=1}^{\infty} \frac{m}{2} \frac{\theta^m}{m!} e^{-\theta} = \frac{e^{-\theta}}{2} \sum_{m=1}^{\infty} \frac{\theta^m}{(m-1)!} = \frac{\theta}{2}$$

2.2.3 Найменші і найбільші спейсинги

Визначимо граничні розподілу найменшого і найбільшого спейсингів — відстаней між нерухомими точками.

Зауваження. Щоб застосувати тут теоретичні результати, що стосуються випадкового розбиття інтервалів, зручно вважати $\min(N)$ and $1 - \max(N)$ спейсингами. Для випадкової перестановки $\{1, \ldots, n\}$ це означатиме вважати 0 та n+1 «штучними» нерухомими точками.

Нехай U_1, U_2, \ldots, U_n — незалежні випадкові величин з розподілом Unif (0,1), що розділяють відрізок [0,1] на n+1 інтервалів з довжинами $S_1, S_2, \ldots, S_{n+1}$, або, у відсортованому вигляді, $S_{(1)}^{[n+1]} < S_{(2)}^{[n+1]} < \cdots < S_{(n+1)}^{[n+1]}$ (тут і далі, $S_{(i)}$ позначає i-ту порядкову статистику, а $S_{(i)}^{[n]}$ — те ж саме, але з вказанням n як кількості цих статистик). Розподіли $S_{(k)}^{[n+1]}$ отримано у багатьох роботах (наприклад, [8], [9]). Зокрема, для $x \in [0,1]$:

$$\mathbb{P}\left(S_{(1)}^{[n+1]} > x\right) = \left((1 - (n+1)x)_{+}\right)^{n} \tag{2.16}$$

$$\mathbb{P}\left(S_{(n+1)}^{[n+1]} > x\right) = \sum_{j=1}^{n+1} (-1)^{j-1} C_{n+1}^{j} \left((1-jx)_{+}\right)^{n}$$
(2.17)

де $x_{+} = \max(x, 0)$.

Отже, розподіли найменшого s-min(N) та найбільшого s-max(N) спейсингів між атомами N задаються (з домовленістю $S^1_{(1)}=1$)

$$\mathbb{P}\left(\text{s-min}(N) > x\right) = \sum_{n=0}^{\infty} \mathbb{P}\left(S_{(1)}^{[n+1]} > x\right) \mathbb{P}\left(N([0,1]) = n\right)$$
(2.18)

$$\mathbb{P}\left(\text{s-max}(N) > x\right) = \sum_{n=0}^{\infty} \mathbb{P}\left(S_{(n+1)}^{[n+1]} > x\right) \mathbb{P}\left(N([0,1]) = n\right)$$
(2.19)

Хоча явні вирази для (2.18) та (2.19), скоріш за все, доволі складні, цікаво звернути увагу на дві випадкові величини з такими ж розподілами.

Добре відомо (наприклад, [8]), що для незалежних величин X_1, X_2, \ldots, X_n з розподілом Exp(1) мають місце наступні три рівності:

$$(S_1, S_2, \dots, S_n)^T \stackrel{d}{=} \left(\frac{X_1}{\sum_{i=1}^n X_i}, \frac{X_2}{\sum_{i=1}^n X_i}, \dots, \frac{X_n}{\sum_{i=1}^n X_i}\right)^T$$
 (2.20)

$$(S_{(1)}, S_{(1)}, \dots, S_{(n)})^T \stackrel{d}{=} \left(\frac{X_{(1)}}{\sum_{i=1}^n X_i}, \frac{X_{(2)}}{\sum_{i=1}^n X_i}, \dots, \frac{X_{(n)}}{\sum_{i=1}^n X_i} \right)^T$$
 (2.21)

$$X_{(i)} \stackrel{d}{=} \frac{X_n}{n} + \frac{X_{n-1}}{n-1} + \dots + \frac{X_{n-i+1}}{n-i+1}$$
 (2.22)

Виявляється, (2.21) та (2.22) можна узагальнити в наступну неочікувану рівність:

Пема 2.2.3. Для порядкових статистик спейсингів між незалежними величинами з розподілом Unif (0,1) та та незалежних величин X_1, X_2, \ldots, X_n з розподілом Exp(1) має місце

$$S_{(i)}^{[n]} \stackrel{d}{=} \frac{\frac{X_n}{n} + \frac{X_{n-1}}{n-1} + \dots + \frac{X_{n-i+1}}{n-i+1}}{\sum_{i=1}^n X_i}, i = 1, \dots, n$$
(2.23)

Доведення. Позначимо спейсинги між X_1, X_2, \dots, X_n через $\Delta_1 = X_{(1)}, \ \Delta_i = X_{(i)} - X_{(i-1)}, i = 2, \dots, n$. З [10] відомо, що всі Δ_i незалежні та мають розподіли $\operatorname{Exp}(n-i+1)$. Отже, праву частину $S_{(i)} \stackrel{d}{=} \frac{X_{(i)}}{\sum_{i=1}^n X_i}$ можна переписати як

$$\frac{X_{(i)}}{\sum_{j=1}^{n} X_{j}} = \frac{X_{(i)}}{\sum_{j=1}^{n} X_{(j)}} = \frac{\Delta_{1} + \dots + \Delta_{i}}{\Delta_{1} + (\Delta_{1} + \Delta_{2}) + \dots + (\Delta_{1} + \dots + \Delta_{n})}$$

Введемо нові незалежні випадкові величини $Y_i = (n-i+1)\Delta_i$ з розподілом Exp (1). В термінах Y_i , верхню рівність можна переписати як

$$\frac{X_{(i)}}{\sum_{j=1}^{n} X_j} = \frac{\sum_{j=1}^{i} \frac{Y_j}{n-j+1}}{\sum_{j=1}^{n} Y_j}$$

Оскільки X_i та Y_i незалежні та мають однакові розподіли, то отримуємо (2.23).

Окремими випадками леми 2.2.3 є $S_{(1)}^{[n]} \stackrel{d}{=} \frac{X_1}{n \sum_{i=1}^n X_i}$ та $S_{(n)}^{[n]} \stackrel{d}{=} \frac{\sum_{i=1}^n \frac{X_i}{n-i+1}}{\sum_{i=1}^n X_i} \stackrel{d}{=} \frac{\sum_{i=1}^n \frac{X_i}{i}}{\sum_{i=1}^n X_i}$. Разом з (2.18) та (2.19) вони приводять до наступних рівностей за розподілом:

$$s-\min(N) \stackrel{d}{=} \frac{X_1}{(\nu+1)\sum_{i=1}^{\nu+1} X_i}, \ s-\max(N) \stackrel{d}{=} \frac{\sum_{i=1}^{\nu+1} \frac{X_i}{i}}{\sum_{i=1}^{\nu+1} X_i}$$
 (2.24)

де ν має розподіл Poiss (θ) , а $(X_i, i \in \mathbb{N})$ незалежні і мають розподіл Exp (1). \mathbb{E} s-min(N) та \mathbb{E} s-max(N) можна знайти з (2.24). Нехай $n \in \mathbb{N} \cup \{0\}$, тоді

$$\mathbb{E}\left(\frac{X_1}{(n+1)\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{(n+1)^2} \cdot \mathbb{E}\left(\frac{X_1}{\sum_{i=1}^{n+1}X_i} + \dots + \frac{X_{n+1}}{\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{(n+1)^2}$$

$$\mathbb{E}\left(\frac{\sum_{i=1}^{n+1}\frac{X_i}{i}}{\sum_{i=1}^{n+1}X_i}\right) = \sum_{i=1}^{n+1}\frac{1}{i} \cdot \mathbb{E}\left(\frac{X_i}{\sum_{i=1}^{n+1}X_i}\right) = \frac{1}{n+1} \cdot \sum_{i=1}^{n+1}\frac{1}{i}$$

Оскільки $\mathbb{P}\left(\nu=n\right)=\frac{\theta^n}{n!}e^{-\theta}$, то

$$\mathbb{E}\operatorname{s-min}(N) = \frac{e^{-\theta}}{\theta} \sum_{n=1}^{\infty} \frac{\theta^n}{n \cdot n!} = \frac{e^{-\theta}}{\theta} \int_0^{\theta} \frac{e^t - 1}{t} dt$$

$$\mathbb{E}\operatorname{s-max}(N) = \frac{e^{-\theta}}{\theta} \sum_{n=1}^{\infty} \frac{H_n}{n!} \theta^n$$

де $H_n = \sum_{k=1}^n \frac{1}{k} - n$ -те гармонічне число Зокрема, для $\theta = 1$ (випадок рівномірного розподілу) \mathbb{E} s-min $(N) \approx 0.48483$ and \mathbb{E} s-max $(N) \approx 0.7966$.

Бібліографія

- [1] Спекторський Ігор Якович. Дискретна математика. Київ, НТУУ «КПІ», ННК «ІПСА», 2004.
- [2] Olav Kallenberg. Random Measures, Theory and Applications. Springer International Publishing, 2017.
- [3] Y. M. Berezansky; Z. G. Sheftel; G. F. Us. Functional analysis, volume 1. Birkhäuser Verlag, 1996.
- [4] Богданський Юрій Вікторович. *Інтеграл в курсі аналізу*. Видавництво «Політехніка», Київ, 2013.
- [5] Sidney I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer New York, 1987.
- [6] Günter Last and Mathew Penrose. Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2017.
- [7] Sidney I. Resnick. Crash course II: Weak convergence; implications for heavy-tail analysis. In *Heavy-Tail Phenomena*, pages 39–69. Springer New York, 2007.
- [8] Lars Holst. On the lengths of the pieces of a stick broken at random. *Journal of Applied Probability*, 17(3):623–634, 1980.
- [9] Iosif Pinelis. Order statistics on the spacings between order statistics for the uniform distribution, 2019.
- [10] Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics (Classics in Applied Mathematics). Society for Industrial and Applied Mathematics, USA, 2008.