The EM algorithm is a nice tool for maximizing non-standard likelihood functions, particularly in cases of "missing data." The results are shown below.

We implement EM algorithm for probit as mentioned below. Then calculate EM and GLM(family=binomial(link="probit")) for different initial values. The results for coefficient estimation and number of iteration are shown below. The main challenge with EM is that it's convergence may be slow.

1. E-Step: compute

$$Z^{(t+1)} = \mathbb{E} \left[Z|y,\beta^{(t)} \right],$$

$$Z_{i}^{(t+1)} = \begin{cases} x_{i}^{T} \beta^{(t)} - \frac{\phi(x_{i}^{T} \beta^{(t)})}{\Phi(-x_{i}^{T} \beta^{(t)})} & \text{if } y_{i} = 0\\ x_{i}^{T} \beta^{(t)} + \frac{\phi(x_{i}^{T} \beta^{(t)})}{1 - \Phi(-x_{i}^{T} \beta^{(t)})} & \text{if } y_{i} = 1 \end{cases}.$$

2. M-Step:

$$\beta^{(t+1)} = (X^T X)^{-1} X^T Z^{(t+1)},$$

3. Continue until convergence

	th	theta=(0.1, 0.2)						theta = (50, 20)						
Model	iter	inte	ercept 🔼 x	T	Model	▼ i	iter 🔼	intercept	▼ x	~	Model	™ iter	intercept 💌	x 🔼
GLM		8	0.0705	0.6739	GLM		4	4382619.0	000	0.1792	GLM	didn't converge	57.3545	23.2981
EM		700	0.0705	0.6739	EM		41	0.0	438	0.1792	EM	didn't converge	49.9984	20.0003

Appendix: R code

```
# probit regression via EM
# Y for complete data, X for the binary response and U for the predictor variable. .
em.probreg <- function(U, X, theta0) {
 maxit <- 1000
 tol <- 1e-10
 i <- 0
 M <- solve(t(U) %*% U) %*% t(U)
 theta <- theta0
 m <- U %*% theta
 repeat {
  i <- i + 1
  v <- (2 * X - 1) * dnorm(m) / pnorm((2 * X - 1) * m)
  up <- M %*% v
  theta <- theta + up
  if(max(abs(up)) < tol | | i >= maxit) break
  m <- U %*% theta
 }
 return(list(iterations=i, estimate=as.numeric(theta)))
}
A <- 0
B <- 1
x <- rnorm(50, 0, 4)
y \leftarrow rbinom(50, 1, pnorm(A + B * x))
```

```
nloglik <- function(theta) {

a <- theta[1]

b <- theta[2]

p <- pnorm(a + b * x)

o <- sum(dbinom(y, size=1, prob=p, log=TRUE))

return(-o)
}

theta0 <- c(1,3)

o.optim <- optim(theta0, nloglik, method="BFGS"); print(o.optim)

glm1 <- glm(y ~ x, family=binomial(link="probit")); print(list(glm1$coef, glm1$iter))

o.em <- em.probreg(as.matrix(cbind(rep(1, 50), x)), y, theta0); print(o.em)

plot(x, y, xlab="X", ylab="Y")

f <- function(x) pnorm(o.em$estimate[1] + o.em$estimate[2] * x)

curve(f, add=TRUE, col=2)
```