Three Approaches, Two Results Orbispace Mapping Objects:

Dorette Pronk¹ and Laura Scull²

¹Dalhousie University, Halifax, NS

²Fort Lewis College, Durango, CO

ATCAT Seminar

February 23, 2021

Outline

- Informal Intro to Orbispaces
- Orbispace Groupoids, More Formally
- Orbispace Morphisms
- Mapping Objects
- 5 Exponentiability
- Bicategorical Enrichment
- Fibrant Replacement

Orbispaces

- An orbispace is a space that is obtained from another space by quotienting out (finite) symmetry, but you want to keep the info about the symmetry.
- Symmetry is modeled locally by actions of finite groups.

Example 1: Reflections

through an action by $\mathbb{Z}/2$. Here, the underlying space of the The line with reflection symmetry about the origin modeled orbifold is a half-line with a special end-point.

ullet The plane with reflection symmetry about the y-axis, modeled through an action by $\mathbb{Z}/2$. Here, the underlying space of the orbifold is a half-plane with a special boundary line.

 We will call the boundaries of a space formed through this type of action, *silvered boundaries*.

Example 2: Dihedral Groups

We can combine reflections to form the dihedral groups D_{2n} .

• A corner of order 2 (group D_4):

• A corner of order 3 (group D_6):

Orbispace Mapping Objects

Informal Intro to Orbispaces

Corners of order 6 (group D_{12}):

A Corner of Order 6

A Rectangular Billiard

Note: the tesselation

local information groups are finite; but the inotrapy group is intimite Can beginer the terms of finite Rammerch

A Triangular Billiard

D. Pronk, L. Scull

8/52

Another Triangular Billiard

Example 3: Actions by Rotation

The cyclic group of order n acts on the disc by rotation to define an orbifold with underlying space a cone of order *n*.

An order 2 cone:

D. Pronk, L. Scull

Order 3 Cones

The teardrop orbifold

We can glue together orbifolds to make more complicated ones.

What is the best usy to represent these? We need spaces and groups.

Topological Groupoids

A topological groupoid \mathcal{G} , is a groupoid internal to the category of topological spaces and continuous maps:

arrows G_1 are equipped with a topology and all structure maps are ullet a small groupoid where both the set of objects \mathcal{G}_0 and the set of continuous:

$$\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \xrightarrow{\mu} \mathcal{G}_1 \xrightarrow{\text{inv}} \mathcal{G}_1 \xrightarrow{s} \mathcal{G}_0$$

A point with a group

Given a group G, we define BG to be the groupoid with

- $(BG)_0 = \{*\};$
- $(BG)_1 = G$, equipped with the discrete topology;
- s(g) = t(g) = *, for all $g \in G$;
- $\mu(g_1, g_2) = g_1 g_2$, multiplication in G;
- u(*) = e, the unit element of G.

A Disc with Z/2 Reflection Action

$$\mu((\sigma, \alpha)(\sigma, x)) = (\sigma\sigma, x)$$

$$= (e, x)$$

The disc D with $\mathbb{Z}/2$ action can be modeled as a groupoid:

- $ullet \mathcal{G}_0=D;$
- $\mathcal{G}_1 = \{e\} \times D \cup \{\sigma\} \times D$;
- $s(e, x) = x = s(\sigma, x);$
- t(e, x) = x and $t(\sigma, x) = \sigma(x)$.

Translation/Action Groupoids

Given a discrete group G acting on a space X, $G \times X \xrightarrow{\bullet} X$, the translation groupoid $G \times X$ is defined as follows:

- $(G \ltimes X)_0 = X$ and $(G \ltimes X)_1 = G \times X$;
- s(g, x) = x and $t(g, x) = g \cdot x$;
- $\mu((g,h\cdot x),(h,x))=(gh,x)$ and $\operatorname{inv}(g,x)=(g^{-1},g\cdot x).$

S^1 with a $\mathbb{Z}/2$ -Action

This orbifold is also called the 'silvered interval', or the interval with silvered endpoints.

ශ් **ර**

Another presentation of the silvered interval

Orbispaces as Groupoids

Lecal homeonophism

Orbispaces are proper étale groupoids internal to the category of Manifolds - locally Endidean. Hausdorff spaces:

- $\mathcal{G}_1 \xrightarrow{(s,t)} \mathcal{G}_0 \times \mathcal{G}_0$ is proper (closed with compact fibers);
- the source map $\mathcal{G}_1 \stackrel{s}{\longrightarrow} \mathcal{G}_0$ is étale (and hence all structure maps are étale).
- Satalue 156,57
- Margacian

| huston

Chen Rum -

Orbispace Mapping Objects

Groupoid Homomorphisms

Definition

A morphism $\varphi:\mathcal{G}\to\mathcal{H}$ between topological groupoid a continuous functor; i.e., a pair of continuous maps

$$\varphi_0\colon \mathcal{G}_0 \to \mathcal{H}_0$$
 and $\varphi_1\colon \mathcal{G}_1 \to \mathcal{H}_1$

that makes the usual diagrams commute:

However, this isn't all...

D. Pronk, L. Scull

Multiple representations for the same orbispace

We have seen two representations for the silvered interval. There is a

groupoid homomorphism:

However, this is not an isomorphism, or even an equivalence. It is an example of an essential equivalence.

Essential Equivalences

- A morphism $\varphi : \mathcal{G} \to \mathcal{H}$ is an **essential equivalence** when it is essentially surjective and fully faithful.
- It is essentially surjective when $\mathcal{G}_0 \times_{\mathcal{H}_0} \mathcal{H}_1 \longrightarrow \mathcal{H}_0$ in

is an open surjection

f may not be onto the objects of \mathcal{H} , but every object in \mathcal{H}_0 is isomorphic to an object in the image of \mathcal{G}_0 .

Orbispace Mapping Objects

Essential Equivalences

A morphism $\varphi \colon \mathcal{G} \to \mathcal{H}$ is **fully faithful** if the following square is a pullback:

