PRAKTIČNI DEL

Izračunljivost in računska zahtevnost (28. 12. 2020)

Ime in priimek (TISKANO):

1. (8 točk)

(a) Napišite regularni izraz za prepoznavanje telefonskih številk. Vsaka telefonska številka je sestavljena iz 9 števk, ki so lahko poljubno ločene s presledki. Na začetku je lahko prisotna še območna koda, sestavljena iz dveh števk v oklepaju.

1

2

3

 \sum

- (b) Dobljeni regularni izraz pretvorite v ε -NKA.
- (c) ε -NKA pretvorite v DKA.

Odgovor:

(a)

$$d = 0 + 1 + 2 + \ldots + 9$$

 $s = \Box$

 $("("dd")" + \varepsilon)ds^*ds^*ds^*ds^*ds^*ds^*ds^*ds^*d$

(b) ε -NKA:

(c) DKA:

- 2. (8 točk)
 - (a) Dokažite, da je jezik $\{a^nb^n \mid n \leq k\}$ regularen za poljuben k.
 - (b) Je jezik $\{a^n b^{2n} c^n \mid n \ge 0\}$
 - i. regularen?
 - ii. kontekstno neodvisen?
 - iii. odločljiv?
 - iv. rekurziven?

Vsako trditev dokažite!

(c) Dokažite, da je $\{a^ib^ja^{i+j} \mid i,j>0\}$ determinističen kontekstno neodvisen jezik.

Odgovor:

(a) Sestavimo NKA za ta jezik:

- (b) i. Ne. Uporabimo lemo o napihovanju za regularne jezike. Izberemo primerno besedo $w=a^nb^{2n}c^n$. Glede na lemo se mora nekje med prvimi n znaki pojaviti cikel, ki ga lahko napihujemo in tako dobimo besedo $w'=a^{n+j(\alpha-1)}b^{2n}c^n$, kjer je j>0 dolžina cikla in $\alpha\geq 0$ število prehodov cikla. Za poljuben $\alpha\neq 1$ beseda w' ni v jeziku, zato jezik ni regularen.
 - ii. Ne. Uporabimo lemo o napihovanju za kontekstno neodvisne jezike. Izberemo primerno besedo $w=a^nb^{2n}c^n$. Del, ki ga napihujemo, se lahko nahaja v celoti med a-ji, b-ji ali c-ji, ali pa se razteza prek ene izmed mej, med a-ji in b-ji ali med b-ji in c-ji. V vsakem izmed teh primerov po napihovanju beseda ni več v jeziku.
 - iii. Da, obstaja Turingov stroj, ki razpoznava jezik. *Ideja:* Uporabimo stroj s tremi trakovi. Najprej preverimo, če je beseda sestavljena iz zaporedja a-jev, b-jev in c-jev v tem vrstnem redu. Nato enake simbole razdelimo na enake trakove. Zdaj lahko preverimo, ali je število a-jev enako številu b-jev, potem pa še, ali je število b-jev dvakratnik števila a-jev.
 - iv. Da, rekurziven in odločljiv sta sinonima.
- (c) Zgradimo skladovni avtomat, ki sprejema s praznim skladom:

$$\delta(q_0, a, Z_0) = (q_0, XZ_0)$$

$$\delta(q_0, a, X) = (q_0, XX)$$

$$\delta(q_0, b, X) = (q_1, XX)$$

$$\delta(q_1, b, X) = (q_1, XX)$$

$$\delta(q_1, a, X) = (q_2, \varepsilon)$$

$$\delta(q_2, a, X) = (q_2, \varepsilon)$$

2

- 3. (8 točk)
 - (a) Je mogoče, da je jezik L polodločljiv, njegov komplement \overline{L} pa neodločljiv? Če je, podajte primer.
 - (b) Ali je jezik $\{\langle M \rangle \mid L(M) = \Sigma^*\}$
 - i. regularen?
 - ii. odločljiv?
 - iii. polodločljiv?
 - iv. neodločljiv?

Vsako trditev dokažite!

(c) Kaj mora veljati za funkcijo f na spodnji sliki, da je prevedba $M_A \to M_B$ veljavna?

Odgovor:

- (a) Je mogoče, na primer univerzalni jezik L_u in njegov komplement $\overline{L_u}$.
- (b) i. Ne, ker je neodločljiv.
 - ii. Ne, ker je neodločljiv.
 - iii. Ne, ker je neodločljiv.
 - iv. Da. Nanj lahko prevedemo $\overline{L_u} = \{\langle M, w \rangle \mid w \notin L(M)\}$, za katerega vemo, da je neodločljiv. Zgraditi moramo torej stroj M'(w'), tako da bo veljalo $L(M') = \Sigma^* \iff w \notin L(M)$. Prvi poskus: Naj bo $M_u(M, w)$ univerzalni Turingov stroj in naj bo $M'(w') = \neg M_u(M, w)$. Iz tega sledi implikacija $w \in L(M) \implies L(M') \neq \Sigma^*$, oziroma ekvivalentno, $L(M') = \Sigma^* \implies w \notin L(M)$. Implikacija v drugo smer pa ne velja, saj se lahko zgodi, da se M_u ne ustavi. Rešitev leži prav v omejitvi delovanja M_u . Drugi poskus: Naj bo $M_u(M, w, k)$ univerzalni Turingov stroj, ki sprejme vhod, če M sprejme w v manj kot k korakih. Naj bo $M'(w') = \neg M_u(M, w, |w'|)$. Če $w \notin L(M)$, bo M' sprejel vhod ne glede na w', zato $L(M') = \Sigma^*$. Tudi prejšnja implikacija v tem primeru še vedno drži, saj v primeru $w \in L(M)$ vedno obstaja w' zadostne dolžine.
- (c) Funkcija f mora biti izračunljiva.