Lecture 2

There are 4 types of Data sets

Record:

- Relational Records
- Data Matrix (Numerical Matrix and Crosstabs)
- Document data (Term Frequency Vector)
- Transaction Data

Graph and Network:

- The Web
- Social or Info Nets
- Molecular Structures

Ordered Data Sets:

- Video data
- Temporal data (time-series)
- Sequential data
- Genetic sequence data

Spatial, IMG and MM:

- Spatial data (Maps)
- IMG data
- Video Data

Attribute: a data field representing a feature of a data object.

Nominal

Categories, states, names

Binary

- Nominal but with only two states
 - Symmetric Binary
 - Both outcomes equal (Gender)
 - Asymmetric Binary
 - Not equally important (Medical Test)

Ordinal

 Values have meaningful order but magnitude is unknown (sizes, grades, ranks)

• Numeric

- Quantity (integer or real)
- Interval Scaled
 - Measured on a scale of equal sized units with no true zero (Temperature, dates)
- Ratio Scaled
 - Has a zero point (Temperature in Kelvin, length, counts, monetary values)

Discrete Attribute: Has a finite or countably infinite set of values, sometimes represented as integer variables (Special Case: Binary Attributes)

Continuous Attribute: Has real numbers as values represented using Floating point variables (Weight, Height, Temperature)

Motivation: To understand data

- Central Tendency (Mean, Median, Mode)
- Variation
- Spread

Data Dispersion:

- Median, Max, Min
- Quantiles
- Outliers
- Variance

Numerical Dimensions (Sorted Intervals):

- Data Dispersion (Analyzed with multiple levels of precision)
- Boxplot or Q-Analysis on sorted intervals

Dispersion Analysis on Computed Measures:

- Folding measures into numerical dimensions
- Boxplot or Q-Analysis on transformed cube.

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Quartiles: Q1 (25th %), Q3 (75th %)

Inter quartile range: IQR= Q3-Q1

Five NO. Summary: min, Q1, median, Q3, max

Outlier: a value higher or lower than IQR x 1.5

Variance

Standard Deviation: Square root of Variance

Box Plot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually (Graphic display of 5 NO. summary)

Histogram: x-axis are values, y-axis are frequencies (Better than Boxplot)

Quantile Plot: each value Xi is paired with Fi

Quantile-Quantile Plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another

Scatter Plot: each pair of values is a pair of coordinates (Positive Correlation, Negative Correlation, No Correlation)

Data Visualization

- Gain insight by mapping data onto graphical primitives
- Provide a qualitative view of large data sets
- Search for patterns, relations, irregularities
- Find interesting region and parameters for more quantitative analysis
- Provide Visual Proof of derived computer representation

Visualization Methods:

- Pixel Oriented
 - For a data set of X dimensions create X windows on the screen
 - Values of records are mapped to X pixels
 - Colors of Pixels reflect Values
 - Can also be done in a Circle Segment
- Geometric Projection
 - Direct Visualization
 - Scatterplot and Scatterplot Matrices
 - Landscapes
 - Data must be transformed into a 2D spatial representation
 - Parallel Coordinates
 - N equally spaced axes parallel to the screen axis and correspond to attributes
 - Scaled to [Min : Max] range of attribute
 - Data items correspond to the polygonal line intersecting the axes
 - Projection Pursuit
 - Prosection Views
 - o Hyperslice

- Icon Based
 - Chernoff faces
 - Display Values on a 2D surface (10 x 10)
 - Stick Figures
 - Two attributes mapped to axes, remaining attributes mapped to angle or length of limbs
 - Shape Coding
 - Use shape to encode info
 - Color Icons
 - Use Color to encode info
 - Tile bars
 - Use small icons to represent relevant feature vectors
- Hierarchical (Partitioning into Subspaces)
 - Dimensional Stacking
 - Partitioning of N-Dimensional attribute space in 2D subspaces, stacking.
 - Attribute Value ranges into classes, using the important ones on the outside
 - Ordinal Data w/ Low cardinality with no more than 9D
 - Must map Dimensions properly
 - Worlds within Worlds
 - Assign the function and two most important parameters to innermost world
 - All other parameters constant
 - N-Vision, Auto Visual

- Tree Map
 - Screen-filling partitioning of the screen into regions depending on the attribute values
- Cone trees
 - build a 2D circle tree that arranges its nodes in concentric circles centered on the root node
 - Up to 1000 nodes
 - Cannot avoid overlaps
- InfoCube
 - 3D Technique where info is displayed as nested semitransparent cubes
- Visualizing Complex Data
 - Non-Numerical Data
 - Social Networks
 - o Tag Cloud
 - Importance is by font size and color'

Similarity

- Numerical measure of how alike
- Range [0,1]

Dissimilarity

- Numerical measure of how different
- Min is often 0, upper limit differs

Proximity

• Refers to Similarity or Dissimilarity

Z-score =
$$\frac{x-\mu}{\sigma}$$

X is the raw score, $\boldsymbol{\mu}$ is the mean and $\boldsymbol{\sigma}$ is the standard deviation

- Minkowski Distance
 - Manhattan (power of P)
 - Supremum (Max of two points)
 - o Euclidean (Power of 2)
- Cosine Similarity