

ESEIAAT

Cubesat Constellation Astrea

Technical sheet

Degree: Aerospace Engineering Course: Engineering Projects

Group: G4 EA-T2016

Delivery date: 22-12-2016

Students:

Cebrián Galán, Joan Fontanes Molina, Pol Foreman Campins, Lluís Fraixedas Lucea, Roger Fuentes Muñoz, Óscar González García, Sílvia Harrán Albelda, Fernando Kaloyanov Naydenov, Boyan

Martínez Viol, Víctor Morata Carranza, David

Pla Olea, Laura Pons Daza, Marina

Puig Ruiz, Josep Serra Moncunill, Josep Maria

Tarroc Gil, Sergi Tió Malo, Xavier

Urbano González, Eva María

Customer: Pérez Llera, Luís Manuel

Contents

Li	st of	Tables	ii
Li	st of	Figures	iii
	0.1	Communication Protocols	1
	0.2	Ground segment	2
	0.3	Satellite Configuration	4
1	Bib	liography	5

List of Tables

0.1.1 Requirements of the communications protocol	1
0.1.2 Communications protocol overview	1
0.2.1 Countries of location	2
0.2.2 GS's systems	3

List of Figures

0.2.1 Location of the GS and MCC	2
----------------------------------	---

0.1 Communication Protocols

The communication protocols are a list of rules that allow different entities to communicate between them, enabling the transference of information.

In Astrea constellation, the communication protocols are very important because are the ones that allow the constellation to work together and accomplish de function it has been designed for. The protocols used in Astrea constellation have to be:

High-speed Reliable Secure Compatible with external satellites

Table 0.1.1: Requirements of the communications protocol

In order to accomplish the requirements, the standards of the Consultative Committee for Space Data Systems (CCSDS) have been followed, toguether with the ISO model. Regarding the protocols of the Ground Segment, security has been the most important requirement to decide the protocol. The chosen protocols are exposed in the following table.

Space segment: CCSDS Standards			
Transport Layer	Space communication protocol specification transmission protocol: SCSP-TP		
	Main protocol	Internet Protocol version 6 (IPv6)	
Network layer	Routing protocol	Open Shortest Path First (OSPF)	
	Complementary protocols	IP over CCSDS	
Data Link Layer	Data Link Protocol Sublayer	TC Space Data Link Protocol	
	Sync and Channel Coding Sublayer	TC Sync and Channel Coding	
Ground segment			
Presentation of the data to the client Applie		Application	
Protocol		Secure Shell (SSSH)	

Table 0.1.2: Communications protocol overview

0.2 Ground segment

The ground segment is composed by the Ground Stations (GS) and the Mission Control Center (MCC), that allow the receiving of the information from the constellation to the Earth.

The placement of the different nodes of the Ground Segment is shown in the following map.

Figure 0.2.1: Location of the GS and MCC

Node	Color in the map	Country	
GS1	Yellow	Canada	
GS2	Orange	Falkland Islands	
GS3	Blue	United Kingdom	
MCC	Green	Spain	

Table 0.2.1: Countries of location

The MCC is composed by a set of offices with good connection to the GS. The systems that compose the GS are exposed in the following table.

System	Features	Purpose	Elements included
S-band	Half-duplex system:	Housekeepink	Transciever
	downlink and uplink	data/TT& C	LNA
	capability	Client data upload	HPA
			RF Limiter
			RF Swith
			RF Fuse
			Rotors
X-band	X-band downlink	Client data download	X-band receiver
	capacity		LNA
			RF Limiter
			RF Fuse
			Rotor

Table 0.2.2: GS's systems

0.3 Satellite Configuration

System	Weight/unit (g)	Sizes (mm)	N. of units
STRUCTURE AND MECHANICS			
Structure	304.3	100 x 100 x 300	1
Thermal protection	38	Covers all	1
Total	342.3		
ELECTRIC POWER SYSTEM			
Solar arrays	175	98 x 83 x 8.50	4
Batteries	155	90 x 63 x 12.02	2
Power management	126	92.0 x 88.9 x 20.5	1
Total	1136		
PAYLOAD			
Patch antenna	30	90 x 90 x4.35	8
Transceiver inter-satellite	16.4	$65 \times 40 \times 6.5$	3
Transceiver space to ground	101.5	86 x 86 x 45	1
Data handling system	28.3	$65 \times 40 \times 6.5$	1
Antenna Deployable	83	100 x 83 x 6.5	1
Total	502		
AOCDS			
Thruster	1500	90 x 90 x 95	1
ADACS	506	90 x 90 x 58	1
Total	2006		
TOTAL ESTIMATION	3986.3		

Chapter 1

Bibliography