1.° Semestre 2014/2015

Duração: 60 minutos

16 janeiro 2015

NOME NÚMERO

1. (2 valores) Considere o seguinte circuito. Assumindo que os sinais C, K e S evoluem ao longo do tempo da forma indicada na tabela seguinte, acabe de preencher o resto da tabela (o sombreado é apenas para melhor visualização).

C	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1	0	1	0	1
K	1	1	0	0	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	0	0	1	1	0
S	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
X	1	1	1	0	0	1	1	1	0	0	1	1	1	0	0	0	1	1	1	0	0	1	1	0
Y	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0
W	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1
Z	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	1

- 2. (2+2+2 valores) A subtração A-B é equivalente a somar A com o simétrico de B. A principal vantagem da notação de complemento para 2 é poder tratar os números positivos e negativos de igual forma, de modo que a subtração é desnecessária. Suponha que pretende efetuar a subtração 421 2781 (números em base 10), através de uma soma, mas em binário, usando a notação de complemento para 2 com 16 bits.
 - a) Calcule os valores em binário com 16 bits, usando a notação de complemento para 2, e faça a soma.

0	0	0	0	0	0	0	1	1	0	1	0	0	1	0	1	1.º operando
1	1	1	1	0	1	0	1	0	0	1	0	0	0	1	1	2.º operando
1	1	1	1	0	1	1	0	1	1	0	0	1	0	0	0	Soma

b) Idem, mas agora em hexadecimal, com 32 bits.

0	0	0	0	0	1	A	5	Н	1.º operando
F	F	F	F	F	5	2	3	Н	2.º operando
F	F	F	F	F	6	C	8	Н	Soma

- c) Qual é o menor número de bits dos operandos com que é possível efetuar corretamente esta conta, sempre em notação de complemento para 2? Justifique.
- 13. Menos que isso faz o 2.º operando ficar com valor errado (o 13.º é o do sinal). O 1.º operando é menos limitativo (poderia ter apenas 10 bits).

3. (2 valores) Quantos valores diferentes é possível representar com 25 bits? Use a notação de K, M, G, etc.

32 M

4. (1,5+1,5 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.

- a) Uma das instruções que o PEPE-8 consegue realizar é ADD [endereço], somando o registo A com uma célula de memória e colocando o resultado no registo A. Sobre a figura, reforce com a caneta o percurso dos dados (e apenas estes) durante a execução desta instrução.
- b) Na tabela seguinte estão referidos os sinais que a Unidade de Controlo gera para controlar a Unidade de Dados. Preencha esta tabela, especificando para cada sinal qual o seu papel concreto (ou indicação de que não interessa) no caso específico da execução da instrução referida na alínea anterior.

Sinal	Papel concreto do sinal nesta instrução
Constante	Indica o endereço especificado na instrução
WR	Inativo (indica leitura da memória)
SEL_B	Seleciona a entrada direita do multiplexer B
SEL_A	Seleciona a entrada esquerda do multiplexer A
ESCR_A	Ativo (memoriza o resultado no registo A)
SEL_ALU	Especifica soma

5. (2+2+3 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16. Para facilitar, fornecese a descrição interna das instruções CALL e RET.

CALL Etiqueta	SP ← SP-2 M[SP]←PC PC ← Endereço da Etiqueta
RET	$PC \leftarrow M[SP]$
	SP ← SP+2

a) Preencha os endereços de cada instrução (lado esquerdo, preencha apenas as linhas em que tal faça sentido) e os espaços no programa. <u>Considere que todos os MOVs ocupam apenas uma palavra</u>.

b) Indique quais as funções matemáticas (relação entre resultados e parâmetros de entrada) implementadas pelas rotinas RotA e RotB? Justifique, descrevendo sucintamente o funcionamento de cada uma delas.

A rotina RotB implementa a multiplicação (R1 ← R1 * R2). Soma repetidamente R1 a R3 (tantas vezes quanto o valor de R2). No final coloca o valor do produto em R1

A rotina RotA implementa o fatorial de R1. Usando a rotina RotB, multiplica N por N-1, N-2, etc, diminuindo sucessivamente R2, até chegar a 1. O produto é sucessivamente acumulado em R1.

c) Acabe de preencher a tabela com informação sobre os acessos de dados à memória feitos pelo programa, de leitura (L) ou escrita (E). Para este efeito, considere que rotina RotB é apenas chamada uma vez (ou seja, que a instrução JMP proxA não faz nada). Use uma cruz ou um traço na última coluna caso não se possa saber o valor em causa. Use apenas as linhas que necessitar.

Endereço da instrução que faz o acesso	Endereço acedido	L ou E	Valor lido ou escrito
0004Н	0100H	L	0004H
0006Н	0162H	E	0008H
000EH	0160H	E	
0018H	015EH	E	001AH
0020Н	015CH	E	0003Н
0022Н	015AH	E	
0030Н	015AH	L	
0032Н	015CH	L	0003Н
0034Н	015EH	L	001AH
001CH	0160H	L	
001EH	0162H	L	0008H
000AH	0102H	E	000CH