MUNICIPALIDAD DISTRITAL DE CHUNGUI

EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO" CON CUI 00000000

DISTRIBUCIONES TEORICAS

CONSULTOR: TJGO INFRATEC

AYACUCHO- PERÚ NOVIEMBRE- 2024

1

Analisis estadisticos de datos hidrologicos

El análisis de frecuencias tiene la finalidad de estimar precipitaciones, intensidades o caudales máximos, según sea el caso, para diferentes períodos de retorno, mediante la aplicación de modelos probabilísticos, los cuales pueden ser discretos o continuos.

En la estadística existen diversas funciones de distribución de probabilidad teóricas; recomendándose utilizar las siguientes funciones:

- Distribución Normal
- Distribución Log Normal 2 parámetros
- Distribución Log Normal 3 parámetros
- Distribución Gamma 2 parámetros
- Distribución Gamma 3 parámetros
- Distribución Log Pearson tipo III
- Distribución Gumbel
- Distribución Log Gumbel

1.1 Prueba de ajuste de Smirnov-Kolmogorov

La prueba de ajuste de Smirnov-Kolmogorov, consiste en comparar las diferencias existentes, entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando el valor máximo del valor absoluto de la diferencia entre el valor observado y el valor de la recta teórica del modelo, se tiene:

$$\Delta = \max |F(x) - P(x)|$$

Donde:

- 1. Δ: Estadístico de Smirnov-Kolmogorov, cuyo valor es igual a la diferencia máxima existente entre la probabilidad ajustada y la probabilidad empírica.
- 2. F(x): Probabilidad de la distribución teórica.
- 3. P(x): Probabilidad experimental o empírica de los datos, denominada también frecuencia acumulada.

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

El estadístico Δ tiene su función de distribución de probabilidades.

Si Δ_0 es un valor crítico para un nivel de significación α , se tiene que:

$$P\left[\max |F(x) - P(x)| \ge \Delta_0\right] = \alpha$$

0

$$P(\Delta \ge \Delta_0) = \alpha$$

También:

$$P(\Delta < \Delta_0) = 1 - \alpha$$

El procedimiento para efectuar el ajuste mediante el estadístico de Smirnov-Kolmogorov es el siguiente:

Calcular la probabilidad empírica o experimental P(x) de los datos. Para esto se usa la fórmula de Weibull:

$$P(x) = \frac{M}{N+1}$$

Donde:

- 1. P(x): Probabilidad empírica o experimental.
- 2. M: Posición del dato en la lista ordenada.
- 3. N: Número total de datos.
- 4. Calcular las diferencias P(x) F(x), para todos los valores de x.
- 5. Seleccionar la máxima diferencia:

$$\Delta = \max |F(x) - P(x)|$$

- 6. Calcular el valor crítico del estadístico Δ , es decir Δ_0 , para un $\alpha=0.05$ y N igual al número de datos. Los valores de Δ_0 se muestran en la tabla 5.3.
- Para el caso de utilizar el procedimiento de los modelos teóricos, usar la ecuación de la función acumulada F(x), o tablas elaboradas para tal fin.
- Comparar el valor del estadístico Δ , con el valor crítico Δ_0 de la Tabla 1.1, con los siguientes criterios de decisión deducidos de la ecuación (5.6):
 - ••• Si $\Delta < \Delta_0$: el ajuste es bueno, al nivel de significación seleccionado.
 - \cdot Si $\Delta \geq \Delta_0$: el ajuste no es bueno, al nivel de significación seleccionado, siendo necesario probar con otra distribución.

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

Cuadro 1.1: Valores críticos del estadístico \(\triangle \) para diferentes tamaños muestrales y niveles de significación.

N	0.20	0.15	0.10	0.05	0.01
1	0.900	0.925	0.950	0.975	0.995
2	0.684	0.726	0.776	0.842	0.929
3	0.565	0.597	0.642	0.708	0.828
4	0.494	0.525	0.564	0.624	0.733
5	0.446	0.474	0.510	0.565	0.669
6	0.410	0.436	0.470	0.521	0.618
7	0.381	0.405	0.438	0.486	0.577
8	0.358	0.381	0.411	0.457	0.543
9	0.339	0.360	0.388	0.432	0.514
10	0.322	0.342	0.368	0.410	0.490
11	0.307	0.326	0.352	0.391	0.468
12	0.295	0.313	0.338	0.375	0.450
13	0.284	0.302	0.325	0.361	0.433
14	0.274	0.292	0.314	0.349	0.418
15	0.266	0.283	0.304	0.338	0.404
16	0.258	0.274	0.295	0.328	0.392
17	0.250	0.266	0.286	0.318	0.381
18	0.244	0.259	0.278	0.309	0.371
19	0.237	0.252	0.272	0.301	0.363
20	0.231	0.246	0.264	0.294	0.356
25	0.210	0.220	0.240	0.270	0.320
30	0.190	0.200	0.220	0.240	0.290
35	0.180	0.190	0.210	0.230	0.270
<i>N</i> > 35	$\frac{1,07}{\sqrt{N}}$	$\frac{1,14}{\sqrt{N}}$	$\frac{1,22}{\sqrt{N}}$	$\frac{1,36}{\sqrt{N}}$	$\frac{1,63}{\sqrt{N}}$

Parámetros	Valor
Numero de datos n	37
Nivel de significancia	0.05
Delta critico - tabular	0.2236

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.2 Distribución Normal

La función de densidad de probabilidad normal se define como:

$$f(x) = \frac{1}{S\sqrt{(2\pi)}}e^{-\frac{1}{2}\left(\frac{x-\overline{X}}{S}\right)^2}$$

Donde:

1. f(x) = función densidad normal de la variable x

2. x = variable independiente

3. \overline{X} = Parámetro de localización, igual a la media aritmética de x.

4. S = Parámetro de escala, igual a la desviación estándar de x.

Parámetros Parámetros	Valor
Media aritmetica \overline{X}	27.448649
Desviación estándar S	8.374519

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	F(xm)	Delta Teorico
1	16.8	0.026316	0.101766	0.07545
2	17.3	0.052632	0.112785	0.060154
3	18.5	0.078947	0.142635	0.063687
4	18.5	0.105263	0.142635	0.037372
5	18.7	0.131579	0.148087	0.016508
6	19.1	0.157895	0.159404	0.001509
7	19.2	0.184211	0.162319	0.021891
8	20.1	0.210526	0.190107	0.020419
9	20.5	0.236842	0.203344	0.033498
10	20.7	0.263158	0.210163	0.052995
11	21.7	0.289474	0.246216	0.043257
12	22	0.315789	0.257645	0.058144
13	22.8	0.342105	0.289415	0.05269
14	23.8	0.368421	0.331533	0.036888
15	23.8	0.394737	0.331533	0.063204
16	24.1	0.421053	0.344629	0.076423
17	24.4	0.447368	0.357915	0.089454
18	25	0.473684	0.384993	0.088691
19	25	0.5	0.384993	0.115007
20	25.9	0.526316	0.426644	0.099671
21	26.4	0.552632	0.450175	0.102456
22	26.5	0.578947	0.454905	0.124042
23	28.1	0.605263	0.530998	0.074266
24	28.3	0.631579	0.540487	0.091092
25	28.6	0.657895	0.554675	0.103219
26	29.9	0.684211	0.61513	0.06908
27	30.2	0.710526	0.628748	0.081779
28	30.4	0.736842	0.637738	0.099104
29	33.8	0.763158	0.775898	0.01274
30	34.3	0.789474	0.793355	0.003882
31	36	0.815789	0.8464	0.030611
32	36.2	0.842105	0.851988	0.009883
33	40.1	0.868421	0.934567	0.066146
34	42.2	0.894737	0.960919	0.066183
35	42.6	0.921053	0.964792	0.043739
36	46.4	0.947368	0.988181	0.040813
37	47.7	0.973684	0.992201	0.018517

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.3 Distribución Log Normal 2 parámetros

$$f(x) = \frac{1}{x\sqrt{(2\pi)}\sigma_y}e^{-\frac{1}{2}\left(\frac{Ln(x)-\mu_y}{\sigma_y}\right)^2}$$

Donde:

- 1. f(x) = función densidad normal de la variable x
- 2. x = variable independiente
- 3. $\mu_v = \text{Media aritmética de los logaritmos naturales de x}$, Ln(x).
- 4. $\sigma_y =$ Desviación estándar de loslogaritmos naturales de x , Ln(x).

Parámetros	Valor
Media aritmetica \overline{X}	3.27065
Desviación estándar S	0.28768

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Y=In(x)	F(xm)	Delta Teorico
1	16.8	0.026316	2.821379	0.059179	0.032863
2	17.3	0.052632	2.850707	0.072178	0.019547
3	18.5	0.078947	2.917771	0.109979	0.031032
4	18.5	0.105263	2.917771	0.109979	0.004716
5	18.7	0.131579	2.928524	0.117169	0.01441
6	19.1	0.157895	2.949688	0.132278	0.025617
7	19.2	0.184211	2.95491	0.136203	0.048007
8	20.1	0.210526	3.00072	0.174045	0.036481
9	20.5	0.236842	3.020425	0.192204	0.044638
10	20.7	0.263158	3.030134	0.201562	0.061596
11	21.7	0.289474	3.077312	0.250773	0.0387
12	22	0.315789	3.091042	0.266205	0.049584
13	22.8	0.342105	3.126761	0.308477	0.033628
14	23.8	0.368421	3.169686	0.362809	0.005612
15	23.8	0.394737	3.169686	0.362809	0.031928
16	24.1	0.421053	3.182212	0.379262	0.04179
17	24.4	0.447368	3.194583	0.39573	0.051639
18	25	0.473684	3.218876	0.428587	0.045097
19	25	0.5	3.218876	0.428587	0.071413
20	25.9	0.526316	3.254243	0.477259	0.049056
21	26.4	0.552632	3.273364	0.503763	0.048868
22	26.5	0.578947	3.277145	0.509005	0.069942
23	28.1	0.605263	3.33577	0.589539	0.015724
24	28.3	0.631579	3.342862	0.599098	0.032481
25	28.6	0.657895	3.353407	0.6132	0.044695
26	29.9	0.684211	3.397858	0.670823	0.013388
27	30.2	0.710526	3.407842	0.68328	0.027247
28	30.4	0.736842	3.414443	0.691404	0.045438
29	33.8	0.763158	3.520461	0.807402	0.044244
30	34.3	0.789474	3.535145	0.821058	0.031585
31	36	0.815789	3.583519	0.861605	0.045815
32	36.2	0.842105	3.589059	0.865813	0.023708
33	40.1	0.868421	3.691376	0.928195	0.059774
34	42.2	0.894737	3.74242	0.949488	0.054751
35	42.6	0.921053	3.751854	0.952807	0.031755
36	46.4	0.947368	3.837299	0.975565	0.028196
37	47.7	0.973684	3.864931	0.980575	0.006891

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.4 Distribución Log Normal 3 parámetros

$$f(x) = \frac{1}{(x - x_0)\sigma_y \sqrt{(2\pi)}} e^{-\frac{1}{2} \left(\frac{Ln(x - x_0) - \mu_y}{\sigma_y}\right)^2}$$

Donde:

- 1. f(x) = función densidad normal de la variable x
- 2. x = variable independiente
- 3. x_0 = Parámetro de posición en el dominio x.
- 4. $\mu_v = \text{Parámetro de escala en el dominio x.}$
- 5. σ_v^2 = Parámetro de forma en el dominio x.

Parámetros Parámetros	Valor
Media aritmetica \overline{X}	2.583869
Desviación estándar S	0.539895
Mediana	25.0
Parametro de posición (x_0)	12.162759

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPAR-TAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Y = In(x)	In(x-x0)	x-x0	F(xm)	Delta Teorico
1	16.8	0.026316	2.821379	1.53412	4.637241	0.025926	0.00039
2	17.3	0.052632	2.850707	1.636516	5.137241	0.039656	0.012976
3	18.5	0.078947	2.917771	1.846444	6.337241	0.08599	0.007043
4	18.5	0.105263	2.917771	1.846444	6.337241	0.08599	0.019273
5	18.7	0.131579	2.928524	1.877515	6.537241	0.095383	0.036196
6	19.1	0.157895	2.949688	1.936904	6.937241	0.115397	0.042497
7	19.2	0.184211	2.95491	1.951216	7.037241	0.120638	0.063573
8	20.1	0.210526	3.00072	2.071566	7.937241	0.171338	0.039189
9	20.5	0.236842	3.020425	2.120732	8.337241	0.195494	0.041348
10	20.7	0.263158	3.030134	2.144438	8.537241	0.207846	0.055312
11	21.7	0.289474	3.077312	2.255204	9.537241	0.271343	0.01813
12	22	0.315789	3.091042	2.286175	9.837241	0.290683	0.025106
13	22.8	0.342105	3.126761	2.364361	10.637241	0.34216	5.5e-05
14	23.8	0.368421	3.169686	2.45421	11.637241	0.405105	0.036684
15	23.8	0.394737	3.169686	2.45421	11.637241	0.405105	0.010369
16	24.1	0.421053	3.182212	2.479663	11.937241	0.423475	0.002423
17	24.4	0.447368	3.194583	2.504484	12.237241	0.441551	0.005817
18	25	0.473684	3.218876	2.55235	12.837241	0.476724	0.003039
19	25	0.5	3.218876	2.55235	12.837241	0.476724	0.023276
20	25.9	0.526316	3.254243	2.62011	13.737241	0.52676	0.000444
21	26.4	0.552632	3.273364	2.655861	14.237241	0.55304	0.000408
22	26.5	0.578947	3.277145	2.66286	14.337241	0.558162	0.020786
23	28.1	0.605263	3.33577	2.768659	15.937241	0.633926	0.028663
24	28.3	0.631579	3.342862	2.78113	16.137241	0.642582	0.011003
25	28.6	0.657895	3.353407	2.79955	16.437241	0.655233	0.002662
26	29.9	0.684211	3.397858	2.875666	17.737241	0.705564	0.021353
27	30.2	0.710526	3.407842	2.892439	18.037241	0.716182	0.005656
28	30.4	0.736842	3.414443	2.903466	18.237241	0.723062	0.01378
29	33.8	0.763158	3.520461	3.074416	21.637241	0.818219	0.055061
30	34.3	0.789474	3.535145	3.097261	22.137241	0.829175	0.039702
31	36	0.815789	3.583519	3.171249	23.837241	0.861692	0.045902
32	36.2	0.842105	3.589059	3.179604	24.037241	0.865079	0.022974
33	40.1	0.868421	3.691376	3.329961	27.937241	0.916502	0.048081
34	42.2	0.894737	3.74242	3.402438	30.037241	0.935261	0.040524
35	42.6	0.921053	3.751854	3.415667	30.437241	0.938301	0.017248
36	46.4	0.947368	3.837299	3.533314	34.237241	0.960675	0.013307
37	47.7	0.973684	3.864931	3.570581	35.537241	0.966195	0.007489

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.5 Distribución Gamma 2 parámetros

$$f(x) = \frac{x^{\gamma - 1} e^{-\frac{x}{\beta}}}{\beta^{\gamma} \Gamma(\gamma)}$$

Donde:

1. f(x) = función densidad normal de la variable x

2. x = variable independiente

3. γ = Parámetro de forma (+)

4. β = Parámetro de escala (+)

5. $\Gamma(\gamma) =$ Función gamma completa definida como :

Parámetros	Valor
Media aritmetica \overline{X}	27.448649
Desviación estándar S	8.374519
Y	0.041667
Parametro de forma γ	12.164713
Parametro de escala	2.256416

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Y=In(x)	F(xm)	Delta Teorico
1	16.8	0.026316	2.821379	0.068947	0.042631
2	17.3	0.052632	2.850707	0.081351	0.02872
3	18.5	0.078947	2.917771	0.116507	0.03756
4	18.5	0.105263	2.917771	0.116507	0.011244
5	18.7	0.131579	2.928524	0.123102	0.008477
6	19.1	0.157895	2.949688	0.136906	0.020989
7	19.2	0.184211	2.95491	0.140484	0.043727
8	20.1	0.210526	3.00072	0.174869	0.035657
9	20.5	0.236842	3.020425	0.191352	0.04549
10	20.7	0.263158	3.030134	0.199852	0.063306
11	21.7	0.289474	3.077312	0.244707	0.044767
12	22	0.315789	3.091042	0.25885	0.056939
13	22.8	0.342105	3.126761	0.297845	0.04426
14	23.8	0.368421	3.169686	0.348612	0.01981
15	23.8	0.394737	3.169686	0.348612	0.046125
16	24.1	0.421053	3.182212	0.364147	0.056906
17	24.4	0.447368	3.194583	0.379776	0.067592
18	25	0.473684	3.218876	0.411212	0.062473
19	25	0.5	3.218876	0.411212	0.088788
20	25.9	0.526316	3.254243	0.458425	0.067891
21	26.4	0.552632	3.273364	0.484475	0.068157
22	26.5	0.578947	3.277145	0.489657	0.089291
23	28.1	0.605263	3.33577	0.570515	0.034748
24	28.3	0.631579	3.342862	0.580272	0.051307
25	28.6	0.657895	3.353407	0.594729	0.063166
26	29.9	0.684211	3.397858	0.654587	0.029624
27	30.2	0.710526	3.407842	0.667691	0.042835
28	30.4	0.736842	3.414443	0.676269	0.060573
29	33.8	0.763158	3.520461	0.801249	0.038091
30	34.3	0.789474	3.535145	0.816224	0.02675
31	36	0.815789	3.583519	0.860853	0.045063
32	36.2	0.842105	3.589059	0.86549	0.023385
33	40.1	0.868421	3.691376	0.933671	0.06525
34	42.2	0.894737	3.74242	0.956172	0.061435
35	42.6	0.921053	3.751854	0.959598	0.038546
36	46.4	0.947368	3.837299	0.982025	0.034657
37	47.7	0.973684	3.864931	0.986568	0.012884

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.6 Distribución Gamma 3 parámetros o Pearson tipo III

$$f(x) = \frac{(x - x_0)^{\gamma - 1} e^{-\frac{(x - x_0)}{\beta}}}{\beta^{\gamma} \Gamma(\gamma)}$$

Donde:

- 1. x_o = origen de varibale x, parámetro de posicion
- 2. γ = Parámetro de forma (+)
- 3. β = Parámetro de escala (+)
- 4. $\Gamma(\gamma)$ = Función gamma completa definida como :

Parámetros	Valor
Media aritmetica \overline{X}	27.448649
Desviación estándar S	8.374519
Coeficiente asimetrico Cs	0.928625
Parametro de forma γ	4.638518
Parametro de escala	3.888394
Parametro de posición (x_0)	9.412263

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Y=X-X0	F(xm)	Delta Teorico
1	16.8	0.026316	7.387737	0.065573	0.039258
2	17.3	0.052632	7.887737	0.080455	0.027823
3	18.5	0.078947	9.087737	0.122546	0.043598
4	18.5	0.105263	9.087737	0.122546	0.017282
5	18.7	0.131579	9.287737	0.130373	0.001206
6	19.1	0.157895	9.687737	0.14666	0.011235
7	19.2	0.184211	9.787737	0.150858	0.033353
8	20.1	0.210526	10.687737	0.190686	0.01984
9	20.5	0.236842	11.087737	0.209435	0.027407
10	20.7	0.263158	11.287737	0.219016	0.044141
11	21.7	0.289474	12.287737	0.268623	0.02085
12	22	0.315789	12.587737	0.283944	0.031846
13	22.8	0.342105	13.387737	0.325437	0.016668
14	23.8	0.368421	14.387737	0.377935	0.009514
15	23.8	0.394737	14.387737	0.377935	0.016802
16	24.1	0.421053	14.687737	0.393684	0.027368
17	24.4	0.447368	14.987737	0.409389	0.037979
18	25	0.473684	15.587737	0.440574	0.033111
19	25	0.5	15.587737	0.440574	0.059426
20	25.9	0.526316	16.487737	0.486478	0.039838
21	26.4	0.552632	16.987737	0.511369	0.041263
22	26.5	0.578947	17.087737	0.516286	0.062662
23	28.1	0.605263	18.687737	0.591693	0.013571
24	28.3	0.631579	18.887737	0.600641	0.030938
25	28.6	0.657895	19.187737	0.613848	0.044046
26	29.9	0.684211	20.487737	0.667951	0.016259
27	30.2	0.710526	20.787737	0.67969	0.030836
28	30.4	0.736842	20.987737	0.687358	0.049484
29	33.8	0.763158	24.387737	0.798312	0.035154
30	34.3	0.789474	24.887737	0.811638	0.022164
31	36	0.815789	26.587737	0.851699	0.035909
32	36.2	0.842105	26.787737	0.855907	0.013801
33	40.1	0.868421	30.687737	0.91981	0.051389
34	42.2	0.894737	32.787737	0.94253	0.047793
35	42.6	0.921053	33.187737	0.94613	0.025078
36	46.4	0.947368	36.987737	0.971387	0.024019
37	47.7	0.973684	38.287737	0.977115	0.00343

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.7 Distribución Log Pearson tipo III

$$f(x) = \frac{(\ln x - x_0)^{\gamma - 1} e^{-\frac{(\ln x - x_0)}{\beta}}}{x\beta^{\gamma} \Gamma(\gamma)}$$

Donde:

- 1. γ = Parámetro de forma
- 2. β = Parámetro de escala
- 3. x_0 = Parámetro de posición

Parámetros	Valor
Media aritmetica \overline{X}	3.27065
Desviación estándar S	0.28768
Coeficiente asimetrico Cs	0.447263
Parametro de forma γ	19.995604
Parametro de posición	0.064334
Parametro de posición (x_0)	1.984246

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Ln(x)	Ln(x)-X0	F(xm)	Delta Teorico
1	16.8	0.026316	2.821379	0.837133	0.043099	0.016783
2	17.3	0.052632	2.850707	0.86646	0.056922	0.004291
3	18.5	0.078947	2.917771	0.933525	0.099467	0.020519
4	18.5	0.105263	2.917771	0.933525	0.099467	0.005797
5	18.7	0.131579	2.928524	0.944277	0.10778	0.023799
6	19.1	0.157895	2.949688	0.965442	0.125365	0.032529
7	19.2	0.184211	2.95491	0.970664	0.129952	0.054258
8	20.1	0.210526	3.00072	1.016474	0.174292	0.036234
9	20.5	0.236842	3.020425	1.036179	0.195528	0.041314
10	20.7	0.263158	3.030134	1.045888	0.206437	0.056721
11	21.7	0.289474	3.077312	1.093066	0.263229	0.026244
12	22	0.315789	3.091042	1.106796	0.280796	0.034993
13	22.8	0.342105	3.126761	1.142514	0.328234	0.013871
14	23.8	0.368421	3.169686	1.18544	0.387646	0.019225
15	23.8	0.394737	3.169686	1.18544	0.387646	0.007091
16	24.1	0.421053	3.182212	1.197966	0.405283	0.015769
17	24.4	0.447368	3.194583	1.210337	0.42277	0.024598
18	25	0.473684	3.218876	1.23463	0.457172	0.016513
19	25	0.5	3.218876	1.23463	0.457172	0.042828
20	25.9	0.526316	3.254243	1.269997	0.506954	0.019361
21	26.4	0.552632	3.273364	1.289118	0.53349	0.019142
22	26.5	0.578947	3.277145	1.292899	0.538691	0.040256
23	28.1	0.605263	3.33577	1.351524	0.616756	0.011493
24	28.3	0.631579	3.342862	1.358616	0.625802	0.005777
25	28.6	0.657895	3.353407	1.369161	0.639066	0.018829
26	29.9	0.684211	3.397858	1.413612	0.69232	0.008109
27	30.2	0.710526	3.407842	1.423596	0.703645	0.006882
28	30.4	0.736842	3.414443	1.430197	0.710998	0.025845
29	33.8	0.763158	3.520461	1.536215	0.813607	0.050449
30	34.3	0.789474	3.535145	1.550899	0.82548	0.036006
31	36	0.815789	3.583519	1.599273	0.860671	0.044882
32	36.2	0.842105	3.589059	1.604813	0.864329	0.022223
33	40.1	0.868421	3.691376	1.70713	0.919347	0.050926
34	42.2	0.894737	3.74242	1.758174	0.938988	0.044252
35	42.6	0.921053	3.751854	1.767608	0.942135	0.021083
36	46.4	0.947368	3.837299	1.853053	0.964846	0.017478
37	47.7	0.973684	3.864931	1.880685	0.970288	0.003396

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.8 Distribución Gumbel

$$F(x) = e^{-e^{-\frac{(x-\mu)}{\alpha}}}$$

Donde:

- 1. S = Desviación estandar de la variable x.
- 2. f(x) = función densidad normal de la variable x
- 3. x = variable independiente
- 4. $0 < \alpha < \infty$, es el parametro de escala.
- 5. $-\infty < \mu < \infty$, es el parámetro de posición, llamado también valor central o moda

Parámetros	Valor
Media aritmetica \overline{X}	27.448649
Desviación estándar S	8.374519
Parámetro de escala	6.529586
Parámetro de posición μ	23.680115

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPAR-

N°	Pmax24h	Weitbull	F(xm)	Delta Teorico
1	16.8	0.026316	0.056801	0.030486
2	17.3	0.052632	0.070175	0.017543
3	18.5	0.078947	0.109619	0.030672
4	18.5	0.105263	0.109619	0.004356
5	18.7	0.131579	0.117178	0.014401
6	19.1	0.157895	0.1331	0.024795
7	19.2	0.184211	0.137243	0.046968
8	20.1	0.210526	0.177232	0.033294
9	20.5	0.236842	0.196424	0.040418
10	20.7	0.263158	0.206308	0.05685
11	21.7	0.289474	0.258139	0.031335
12	22	0.315789	0.274325	0.041465
13	22.8	0.342105	0.318448	0.023657
14	23.8	0.368421	0.374633	0.006212
15	23.8	0.394737	0.374633	0.020103
16	24.1	0.421053	0.39152	0.029533
17	24.4	0.447368	0.408358	0.03901
18	25	0.473684	0.441763	0.031921
19	25	0.5	0.441763	0.058237
20	25.9	0.526316	0.490765	0.035551
21	26.4	0.552632	0.517203	0.035428
22	26.5	0.578947	0.522412	0.056535
23	28.1	0.605263	0.601584	0.003679
24	28.3	0.631579	0.610877	0.020702
25	28.6	0.657895	0.624548	0.033347
26	29.9	0.684211	0.679941	0.004269
27	30.2	0.710526	0.691822	0.018704
28	30.4	0.736842	0.699554	0.037288
29	33.8	0.763158	0.808739	0.045581
30	34.3	0.789474	0.821494	0.03202
31	36	0.815789	0.859367	0.043578
32	36.2	0.842105	0.863305	0.0212
33	40.1	0.868421	0.922297	0.053876
34	42.2	0.894737	0.943044	0.048307
35	42.6	0.921053	0.946336	0.025283
36	46.4	0.947368	0.969648	0.02228
37	47.7	0.973684	0.975059	0.001374

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.9 Distribución Log Gumbel

$$F(x) = e^{-e^{-\frac{(x-\mu)}{\alpha}}}$$

Donde:

- 1. S = Desviación estandar del logaritmo de la variable x.
- 2. C_s = Coeficiente asimetrico del logaritmo de la la varible x.
- 3. f(x) = función densidad normal de la variable x
- 4. x = variable independiente
- 5. $0 < \alpha < \infty$, es el parametro de escala.
- 6. $-\infty < \mu < \infty$, es el parámetro de posición, llamado también valor central o moda

Parámetros	Valor
Media aritmetica \overline{X}	3.27065
Desviación estándar S	0.28768
Parámetro de escala	0.224303
Parámetro de posición μ	3.141194

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

N°	Pmax24h	Weitbull	Ln(X)	F(xm)	Delta Teorico
1	16.8	0.026316	2.821379	0.015588	0.010728
2	17.3	0.052632	2.850707	0.025959	0.026673
3	18.5	0.078947	2.917771	0.066694	0.012253
4	18.5	0.105263	2.917771	0.066694	0.038569
5	18.7	0.131579	2.928524	0.075706	0.055873
6	19.1	0.157895	2.949688	0.095512	0.062383
7	19.2	0.184211	2.95491	0.100815	0.083395
8	20.1	0.210526	3.00072	0.154028	0.056498
9	20.5	0.236842	3.020425	0.180271	0.056571
10	20.7	0.263158	3.030134	0.193841	0.069317
11	21.7	0.289474	3.077312	0.26461	0.024863
12	22	0.315789	3.091042	0.286346	0.029444
13	22.8	0.342105	3.126761	0.344224	0.002118
14	23.8	0.368421	3.169686	0.414487	0.046066
15	23.8	0.394737	3.169686	0.414487	0.01975
16	24.1	0.421053	3.182212	0.434796	0.013743
17	24.4	0.447368	3.194583	0.454669	0.007301
18	25	0.473684	3.218876	0.492982	0.019298
19	25	0.5	3.218876	0.492982	0.007018
20	25.9	0.526316	3.254243	0.546561	0.020245
21	26.4	0.552632	3.273364	0.574218	0.021587
22	26.5	0.578947	3.277145	0.579567	0.00062
23	28.1	0.605263	3.33577	0.657037	0.051774
24	28.3	0.631579	3.342862	0.665683	0.034104
25	28.6	0.657895	3.353407	0.67824	0.020345
26	29.9	0.684211	3.397858	0.727272	0.043061
27	30.2	0.710526	3.407842	0.737424	0.026898
28	30.4	0.736842	3.414443	0.743966	0.007124
29	33.8	0.763158	3.520461	0.831636	0.068478
30	34.3	0.789474	3.535145	0.841409	0.051936
31	36	0.815789	3.583519	0.870072	0.054283
32	36.2	0.842105	3.589059	0.873032	0.030926
33	40.1	0.868421	3.691376	0.91755	0.049129
34	42.2	0.894737	3.74242	0.933761	0.039024
35	42.6	0.921053	3.751854	0.9364	0.015348
36	46.4	0.947368	3.837299	0.956097	0.008729
37	47.7	0.973684	3.864931	0.961085	0.012599

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

"MEJORAMIENTO DEL SERVICIO DE TRANSITABILIDAD VIAL INTERURBANA EN EL CAMINO VECINAL TRAMO: AY-710 (RUMICHACA) - ESPINCO DEL DISTRITO DE CHUNGUI DE LA PROVINCIA DE LA MAR DEL DEPARTAMENTO DE AYACUCHO", CUI 00000000.

1.10 Resumen y valicación

Distribuciones	Delta teorico	Delta critico	Verificación
Distribución Normal	0.124042	0.223583	Los datos se ajustan a la distribución
Distribución Log Normal 2 parámetros	0.071413	0.223583	Los datos se ajustan a la distribución
Distribución Log Normal 3 parámetros	0.063573	0.223583	Los datos se ajustan a la distribución
Distribución Gamma 2 parámetros	0.089291	0.223583	Los datos se ajustan a la distribución
Distribución Gamma 3 parámetros	0.062662	0.223583	Los datos se ajustan a la distribución
Distribución Log Pearson tipo III	0.056721	0.223583	Los datos se ajustan a la distribución
Distribución Gumbel	0.058237	0.223583	Los datos se ajustan a la distribución
Distribución Log Gumbel	0.083395	0.223583	Los datos se ajustan a la distribución

Finalmente la distribución que mas se ajusta pues tiene el menor delta teorico y la cual usaremos para predecir la precipitación para diferentes periodos de retorno es la siguiente distribución.

Distribución	Delta teorico	Delta critico
Distribución Log Pearson tipo III	0.056721	0.223583

FORMULACIÓN DEL EXPEDIENTE TÉCNICO:

TAMENTO DE AYACUCHO", CUI 00000000.

Periodo de Retorno T (años)	PP (mm)	PP corregido	F(Z)
2.0	19.8242	25.7715	0.5
5.0	25.5866	33.2625	0.8
10.0	29.6061	38.4879	0.9
25.0	34.9295	45.4083	0.96
50.0	39.0793	50.8031	0.98
100.0	43.3921	56.4097	0.99
200.0	47.9036	62.2746	0.995
500.0	54.2216	70.4881	0.998
1000.0	59.3015	77.092	0.999
10000.0	78.3506	101.8558	0.9999