# Integrating Scientific Theory with Machine Learning

### Miodrag Bolic

Health Devices Research Group (HDRG)

School of Electrical Engineering and Computer Science University of Ottawa

March 27, 2021

### **Outline**



- Introduction
- 2 Merging mechanistic and ML models
  - Concepts
  - Mechanistic models augmented with ML
  - Knowledge informed ML
- 3 Research Directions
- 4 References

# **Current approaches in modeling**

### Machine learning

- Can find patterns in problems where complexity prohibits the explicit programming of a system's exact physical nature.
- Not enough data to train sufficiently generalized models.
- Purely data-driven model might not meet constraints such as dictated by natural laws
- Need for models to be interpretable and explainable
- Require homogeneous labeled training data

#### Mechanistic models

- "A picture is worth a thousand words" -¿ "A model is worth a thousand datasets" [7]
- Often, cannot capture complex dynamics in the system
- They are simplified to allow for handling complexity

### Hybrid models

- Best of both worlds
- Can be complex and difficult to train

# Presenting knowledge

Merging mechanistic and MI models Concents

- General knowledge: knowledge independent of the task and data domain.
- *Domain knowledge*: knowledge in any field such as biology, physics, chemistry, and engineering.

| Algebraic                   | Logic                      | Simulation | Differential                                                                                             | Knowledge           | Probabilistic |
|-----------------------------|----------------------------|------------|----------------------------------------------------------------------------------------------------------|---------------------|---------------|
| Equations                   | Rules                      | Results    | Equations                                                                                                | Graphs              | Relations     |
| $E = m \cdot c^2$ $v \le c$ | $A \wedge B \Rightarrow C$ |            | $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$ $F(x) = m \frac{d^2 x}{dt^2}$ | Man wears Tom Shirt | <i>y x</i>    |

Figure: Domain knowledge representation [11] <sup>1</sup>

# Mechanistic models augmented with ML

Merging mechanistic and ML models Concepts



### Information Flow of Informed ML

Merging mechanistic and MI models Concents

Informed machine learning describes learning from a hybrid information source that consists of data and prior knowledge. The prior knowledge is pre-existent and separated from the data and is explicitly integrated into the machine learning pipeline [11].



Figure: Machine learning flow [11]

# Knowledge informed ML

Merging mechanistic and MI models Concents



# Residual modeling

Merging mechanistic and MI models. Mechanistic models augmented with MI

- The hypothesis: the obtained solution from the first principles model does not explain the system behavior -¿ created features are still well-correlated with the target variable (mismatch).
- ML aims to learn the residual pattern of the system behavior.



- Y<sub>ML</sub>: machine learning predicted label
- Y<sub>DK</sub>: domain knowledge predicted label
- $Y_{true}$ : ground truth label

Figure: Residual modeling [4]



# ML-based parameter optimization

Merging mechanistic and ML models. Mechanistic models augmented with ML

- The ML model serves as an estimator of unmeasured process parameters that are difficult to model from first principles
- Used to model a fedbatch bioreactor [6]



Figure: Parameter estimation

- Data: Biomass concentration at time k
- Output: Predicted biomass concentration at k + 1
- Unobserved parameter: Growth rate

# **Differential equations**

Merging mechanistic and MI models. Mechanistic models augmented with MI

Infer solutions to partial differential equations, and obtain physics-informed surrogate models [9]:

- Neural networks can represent an arbitrary functions when given appropriate weights.
- Therefore it can approximate any arbitrary function that represents a solution of a differential equation: u = NN(x)
- We can also find du/dx,  $d^2u/dx^2$  through back-propagation.
- Assume that we are given a differential equation with boundary conditions.
- The goal is to minimize the mean square error loss formed by differential equation and boundary conditions using automated differentiation.



# **Data and Training**

Merging mechanistic and MI models. Knowledge informed MI

### Training data

- Features
  - feature engineering
- Data augmentation
  - image transforms
  - simulations: generate a large amount of data from mechanistic models for training.

### Feature learning

- Unsupervised learning knowledge can still be incorporated
- Variational autoencoders
  - VAEs jointly learn an inference model and a generative model, allowing them to infer latent variables from observed data.



Figure: Understanding Variational Autoencoders

# Learning algorithm

Merging mechanistic and ML models. Knowledge informed ML

- Mass = Density · Volume: ML does not know that this is not supposed to be violated
- Domain knowledge is into a loss function and performs regularization



- function *L*() is machine learning loss function
- function G() is regularization term: a measure of consistency between domain knowledge and predicted label
- function  $M_{DK}()$ : a domain knowledge transformation of feature X

Figure: Knowledge in the loss function [4]



### **Architectures**

Merging mechanistic and ML models. Knowledge informed ML

- Model structure incorporates the mechanistic model
- We will introduce state-space models first and show how they can be integrated with RNNs
- Integration is done with variational autoencoders

# State-space models

Merging mechanistic and ML models Knowledge informed ML

### State-space models:

- probabilistic scenarios: We do not have perfect knowledge about the state of the system, and the system can develop non-deterministically over time
- are numerically efficient to solve
- can describe differential equations



Transition equation:

$$\mathbf{z}_t = \mathbf{A}_t \mathbf{z}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \epsilon_t$$

Emission equation:

$$\mathbf{x}_t = \mathbf{C}_t \mathbf{z}_t + \boldsymbol{\delta}_t$$

Figure: Linear state-space model [3]

# Filtering in state-space models

Merging mechanistic and ML models Knowledge informed ML

#### Kalman filter:

- Kalman filter is optimal for linear Gaussian problems.
- Generalizes many common time-series models
- Strong modelling assumptions:
  - Linear transitions and emissions
  - Gaussian transitions and measurement noise

#### Non-linear filters

- Extended Kalman filters (non-linear observation equation, Gaussian noise)
- Particle filters (non-linear, non Gaussian)
- Problems
  - Transition model still have difficulties handling complex non-linear dynamics
  - Does not capture long-term dependencies in data (Markov models)



### Stochastic recurrent neural networks I

Merging mechanistic and MI models. Knowledge informed MI



Figure: Merged RNN and state-space model [3]

### **Gaussian processes**

Merging mechanistic and ML models Knowledge informed ML

- Each data points is a random variable generated from multivariate normal distribution
- The relationship between random variables determines the shape of the latent function.
- Advantages:
  - Regression and prediction with confidence intervals [10]
  - Learning the parameters of the state space models or differential equations [8]
  - Time series where data is not uniformly sampled.
  - Allow for Bayesian optimization



Figure: Gaussian process regression example [8]

# Sequential decision making

Merging mechanistic and MI models. Knowledge informed MI

### Incorporating human knowledge into:

- Reward
- Policy and action selection
- Building the overall controller



Figure: Probabilistic model of decision-making problem of an agent. The oval nodes represent the state (S) and the observation (O). The rectangle is the decision node (A) and the diamond is the reward function (R). [2]

# Suggestion for research I

- Design a simulator that will allow us to simulate the bioprocess and bioreactor based on mechanistic or hybrid model [5]. This is important for:
  - digital twin
  - generating data for testing algorithms
- Merging mechanistic and ML models in this field has just started
  - there is great research opportunity to be first to apply some of these ML approaches on data from bioreactor.
- Gaussian processes for uncertainties and optimization

# Suggestion for research II

Research Directions

- Pre-training or intelligent initialization of the parameters of the ML model
  - Transfer learning



Figure: Transfer learning [1]

- Meta learning
  - learning from other processes
  - from our data collected using different sensors and in different ways

### u Ottawa

# Tools for scientific machine learning



Figure: Comparison of tools readily usable with differentiable programming (automatic differentiation) frameworks copied from here > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > > < > > < >

### References I



#### Reference

- [1] Changyu Deng, Xunbi Ji, Colton Rainey, Jianyu Zhang, and Wei Lu. Integrating machine learning with human knowledge. *iScience*, 23(11):101656, 2020.
- [2] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for interactive pomdps: representations and solutions. Auton Agent Multi-Agent Syst, 18, 2009.
- [3] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models with stochastic layers. In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS'16, page 2207–2215, Red Hook, NY, USA, 2016. Curran Associates Inc.
- [4] Xiaowei Jia.MI applications in scientific domains, 2020.
- [5] Harini Narayanan, Lars Behle, Martin F. Luna, Michael Sokolov, Gonzalo Guillén-Gosálbez, Massimo Morbidelli, and Alessandro Butté. Hybrid-ekf: Hybrid model coupled with extended kalman filter for real-time monitoring and control of mammalian cell culture. Biotechnology and Bioengineering, 117(9):2703–2714, 2020.

### References II



Reference

- [6] D. C. Psichogios and Lyle H. Ungar. A hybrid neural network-first principles approach to process modeling. Aiche Journal, 38:1499–1511, 1992.
- [7] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific machine learning, 2020.
- [8] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Machine learning of linear differential equations using gaussian processes. Journal of Computational Physics, 348:683–693, Nov 2017.
- [9] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, 2017.
- [10] P. Swain, K. Stevenson, and A. Leary et al. Inferring time derivatives including cell growth rates using gaussian processes. Nat Commun, 7, 2016.

### References III



Reference

[11] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, and Jannis Schuecker. Informed machine learning – a taxonomy and survey of integrating knowledge into learning systems. 2020

### Recommended videos



Reference

- Probabilistic data fusion and physics-informed machine learning: A new paradigm for modeling and computation under uncertainty
- ML applications in scientific domain