Методы оптимизации, Лабораторная работа №2

Кирилл Кадомцев

Май 2025

Содержание

1.	Описание методов	1
2.	Тестирование	1
3.	Графики	•

1. Описание методов

Был реализован метод Ньютона и метод Ньютона с выбором шага.

Для удобства и расширяемости, методы реализовывались так, чтоб можно было в дальнейшем использовать их для любых размерностей (исходя из предположения, что это может стать объектом исследования в дальнейших лабораторных работах). Для стратегий был создан специальный интерфейс с методом step, позволяющий в дальнейшем расширить список реализованных методов.

2. Тестирование

Для тестирования были выбраны несколько функций с различными точками минимума. Также, была использованна функция Химмельблау, поскольку она мультимодальная.

1. Параболоид

$$f(x,y) = x^2 + y^2$$

2. Эллипс

•
$$f(x,y) = 4x + y$$

•
$$\nabla f(x,y) = \binom{8x}{2y}$$

3. Функция Розенброка

•
$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} -2(1-x) - 400x(y-x^2) \\ 200(y-x^2) \end{pmatrix}$$

4. Квадратичная форма (3, -2)

•
$$f(x,y) = (x-3)^2 + (y+2)^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} 2(x-3) \\ 2(y+2) \end{pmatrix}$$

5. Квадратичная форма (2, -1)

$$\bullet \ f(x,y) = x + y$$

•
$$\nabla f(x,y) = \begin{pmatrix} 10(x-2) \\ 6(y+1) \end{pmatrix}$$

6. Функция Химмельблау

•
$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

•
$$\nabla f(x,y) = \begin{pmatrix} 4x(x^2+y-11) + 2(x+y^2-7) \\ 2(x^2+y-11) + 4y(x+y^2-7) \end{pmatrix}$$

Ниже приведены результаты оптимизации в зависимости от стратегии выбора шага. В данном случае (nan, nan) является результатом переполнения, то есть провалом поиска минимума.

Функция	argmin	Backtracking	Пост. шаг
paraboloid	$(0, \ 0)$	(0, 0)	(0, 0)
ellipse	$(0, \ 0)$	(0, 0)	(0, 0)
rosenbrock	$(1, \ 1)$	(0.99995, 0.99990)	(1.0000, 1.0000)
min3m2	(3, -2)	(3.0000, -2.0000)	(3.0000, -2.0000)
min2m1	(2, -1)	(0.0000, 0.0000)	(2.0000, -1.0000)
himmelblau	(3.0, 2.0), (-2.8051, 3.1313), (-3.7793, -3.2832), (3.5844, -1.8481)	(0.0000, 0.0000)	(-0.3423, 0.2500)

Таблица 1: Сравнение результата работы метода Ньютона в зависимости от выбора шага

Функция	argmin	Backtracking	Пост. шаг
paraboloid	$(0, \ 0)$	1	1
ellipse	$(0, \ 0)$	1	1
rosenbrock	$(1, \ 1)$	13	3
min3m2	(3, -2)	2	2
min2m1	(2, -1)	1000	2
himmelblau	(3.0, 2.0), (-2.8051, 3.1313), (-3.7793, -3.2832), (3.5844, -1.8481)	1000	6

Таблица 2: Сравнение количества итераций в зависимости от выбора шага

3. Графики

Не будем приводить все графики ввиду избыточности. Графики для эллипса демонстрируют, что точка минимума (0,0) находится за 1 итерацию. Графики для функции Химмельблау показывают несовершенство постоянного и кусочно-постоянного методов для мультимодальной функции. Для квадратичной функции графики приведены для демонстрации работы корректности работы в случае, если минимум отличен от нуля.

