Segurança de Sistemas Criptografia

Prof. Avelino Francisco Zorzo Escola Politécnica- PUCRS

PS: Este curso está baseado no curso CSC-3661 Cryptography preparado Prof. Feng Hao – Newcastle University e no curso online Cryptography preparado pelo Prof. Dan Bonneh – Stanford University.

Livros de referência Firewalls e Segurança Applied Cryptograph y (Bruce Schneier, 1996) na Internet (William Cheswick, 2003) Handbook of Applied Criptografia e segurança Cryptography (Alfred Menezes, 1997) (William Stallings, 2008) Cryptography: Theory O Livro de códigos and Practice (Simon Singh, 2004) (Doug Stinson, 2006)

O que é criptografia?

- "A arte e ciência de manter informações seguras".
 - Bruce Scheneier
- "Criptografia envolve a projeção de confiança: levar confiança de onde existe para onde é necessária."
 - Ross Anderson

Comunicação pessoal (cifrar um disco)

Similar à comunicação segura: Usuário hoje envia uma mensagempara ele mesmo amanhã.

Objetivos/metas básicas

- 1. Privacidade: sem vazar dados confidenciais
- 2. Autenticação: sem se passar por outro
- 3. Integridade: sem alteração
- 4. Não-repúdio: não ser capaz de negar

Algoritmos e chaves

- Cifra: um algoritmo criptográfico para cifrar (criptografar) e decifrar (decriptografar).
- Chave: usada para cifrar e decifrar
- Espaço da chave: quantia de chaves possíveis
- "O segredo deve estar totalmente na chave e não na cifra".

Princípio de Kerckhoff

Seis princípios de Kerckhoff (1883)

- O sistema deveria ser inquebrável na prática, se não teoricamente inquebrável.
- O projeto de um sistema não de necessitar segredo do sistema.
- 3. A chave deve ser memorizável e fácil de alterar.
- Os criptogramas devem ser transmissíveis por telégrafo.
- O equipamento deve ser portável e operável por uma única pessoa.
- O sistema deve ser fácil de usar.

Cifras simétricas e assimétricas

- Chaves de cifrar e decifrar podem ser
 - A mesma nas cifras simétricas
 - Ou diferentes em cifras assimétricas

Criptoanálise

- A arte e ciência de analisar fraquezas em algoritmos criptográficos (cifras)
- Também conhecido como ataque.
- Criptologia = Criptografia + Criptoanálise

Quatro tipos de ataques genéricos

- 1. Ataque só com texto cifrado (Ciphertext-only)
- 2. Ataque com texto claro conhecido (Known-plaintext)
 - Na II Guerra Mundial: mensagens alemãs começavam com uma data
- 3. Ataque com texto claro escolhido (Chosen-plaintext)
 - Quebra de código na batalha de Midway (II GM)
- 4. Ataque com texto cifrado escolhido (Chosen-ciphertex)
 - O objetivo é deduzir a chave (ataque na hora do almoço)

Nomes utilizados

■ Alice - Primeira pessoa que participa

■ Bob - Segundo participante
■ Carol - Terceiro participante

■ Eve - Alguém na escuta (eavesdropper)

■ Mallory - Atacante ativo

Grandes números (armazenar)

■ Número de átomos no planeta	2^{170}
■ Número de átomos no sol	2^{190}
■ Número de átomos na galáxia	2^{223}
■ Número de átomos no universo	2^{265}

■ Para armazenar uma chave de 256-bit 2²⁶⁴ bits

Grandes números (tempo)

■ Tempo até a próxima era do gelo	214 anos
■ Tempo até o sol virar nova	230 anos
■ Idade do planeta Terra	230 anos
■ Idade do Universo	234 anos

■ Tempo para quebrar por força bruta uma chave de 256 bits 2192 anos

(Assumindo testar 1 bilhão de chaves em 1 ms)

Criptografia em todos lugares DVD (CSS, AACS) Páginas restritas Paginas restritas Phips Banco on line https

Núcleo de criptografia

■ Estabelecer a chave

Cara ou coroa no telefone

■ Alice e Bob decidem jogar honestamente cara ou coroa via telefone

Alice → Bob: Eu jogo. Venço se der cara.

Bob → Alice: OK. Jogue.
Alice → Bob: Feito! Deu cara.

Bob → Alice: Humm... como eu sei que você

não trapaceou?

Para lembrar

- Leis de segurança de Shamir (Prêmio Turing 2002)
 - 1. Sistemas completamente seguros não existem.
 - Para diminuir suas vulnerabilidades pela metade, devese dobrar os gastos.
 - 3. Criptografia é normalmente contornada, não quebrada.

!