Non-linear Physics Coursework

URN: 6667703

MSc Physics, University of Surrey, United Kingdom

Contents

1	$Th\epsilon$	e Duffing Equation	2
	1.1	Question 1	2
	1.2	Question 2	3
	1.3	Question 3	6
2	Cas	scade route to chaos and folding of strange attractors	8
	2.1	Question 1	8
	2.2	Question 2	8
3	Chaos Recognition		
	3.1	Question 1	9
R	References		

1 The Duffing Equation

1.1 Question 1

The Duffing equation is given as:

$$\ddot{x} + 2\gamma\dot{x} + \alpha x + \beta x^3 = F_e \cos(\omega t) \tag{1}$$

whereby $\alpha = -1$, $\beta = +1$ and $\omega = +1$. In this scenario, x is the displacement, 2γ is the damping in the system, $F_e \cos(\omega t)$ is the external forcing of the system and βx^3 is the cubic restoring force. It is easier to analyse the solutions to such equation by converting the non linear equation to a system of first order differential equations.

Finding a suitable variable transformation

After replacing the values of α , β and ω in the Duffing equation, we have:

$$\ddot{x} + 2\gamma \dot{x} - x + x^3 = F_e \cos(t) \tag{2}$$

Let $\dot{x} = u$. Therefore, we can rewrite the Duffing equation as follows:

$$\dot{u} + 2\gamma u - x + x^3 = F_e \cos(t)$$

A system of differential equations

$$\dot{x} = u \tag{3}$$

$$\dot{u} = F_e \cos(t) - 2\gamma u - x^3 + x \tag{4}$$

We are given $F_{cons} = -\frac{\partial V(x)}{\partial x}$. The potential V(x) is given as follows:

$$V(x) = -\int F_{cons} \, dx$$

In this case, $F_{cons} = x^3 - x$. Therefore,

$$V(x) = \frac{x^4}{4} - \frac{x^2}{2} \tag{5}$$

Figure 1: The plot of potential V against displacement x

1.2 Question 2

This time, F_e is equal to zero in equation(4). We will find the nullclines, fixed points and then sketch the phase portraits for $\gamma < 0, \gamma = 0$ and $\gamma > 0$ using GeoGebra online plotting tool.

Vertical Nullclines

$$\begin{array}{rcl}
\dot{x} & = & 0 \\
u & = & 0
\end{array}$$

Horizontal Nullclines

$$\dot{u} = 0$$

$$0 = -2\gamma u + x(-x^2 + 1)$$

For u = 0,

$$-x^3 + x = 0$$

Therefore, x = 0, x = 1 and x = -1. Hence, the fixed points are (0,0),(1,0) and (-1,0).

Using our system of equations (3) and (4), we can construct its Jacobian matrix. The Jacobian matrix is given by

$$J(x,u) = \begin{pmatrix} 0 & 1\\ -3x^2 + 1 & -2\gamma \end{pmatrix}$$

(i) For fixed point (0,0)

$$J(0,0) = \begin{pmatrix} 0 & 1\\ 1 & -2\gamma \end{pmatrix}$$

(ii) For fixed point (1,0)

$$J(1,0) = \begin{pmatrix} 0 & 1 \\ -2 & -2\gamma \end{pmatrix}$$

(iii) For fixed point (-1,0)

$$J(-1,0) = \begin{pmatrix} 0 & 1 \\ -2 & -2\gamma \end{pmatrix}$$

Hence for fixed points (ii) and (iii), they will share similar features as they have the same Jacobian matrix.

For case (i),

when $\gamma = 0$

$$J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The eigenvalues are 1 and -1. Their corresponding eigenvectors are $(1\ 1)$ and $(-1\ 1)^T$ respectively.

Figure 2: Phase portrait for eigenvectors $(1\ 1)$ and $(-1\ 1)^T$.

when $\gamma > 0$

In particular, we choose $\gamma = 2$

$$J = \begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix}$$

The eigenvalues are $\sqrt{5}-2$ and $-\sqrt{5}-2$. Their corresponding eigenvectors are $(\sqrt{5}+2\ 1)$ and $(-\sqrt{5}+2\ 1)^T$ respectively.

Figure 3: Phase portrait for eigenvectors $(\sqrt{5} + 2 \ 1)$ and $(-\sqrt{5} + 2 \ 1)^T$.

when $\gamma < 0$

In particular, we choose $\gamma = -2$

$$J = \begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix}$$

The eigenvalues are $\sqrt{5} + 2$ and $-\sqrt{5} + 2$. Their corresponding eigenvectors are $(\sqrt{5} - 2 \ 1)$ and $(-\sqrt{5} - 2 \ 1)^T$ respectively.

Figure 4: Phase portrait for eigenvectors $(\sqrt{5}-2\ 1)$ and $(-\sqrt{5}-2\ 1)^T$.

For case (ii) or (iii),

when $\gamma = 0$

$$J = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix}$$

The eigenvalues are $\sqrt{2}i$ and $-\sqrt{2}i$. Their corresponding eigenvectors are $(-\sqrt{2}i \ 2)$ and $(\sqrt{2}i \ 2)^T$ respectively.

Figure 5: Phase portrait for eigenvectors $(-\sqrt{2}i \ 2)$ and $(\sqrt{2}i \ 2)^T$.

when $\gamma < 0$

In particular, we choose $\gamma = -2$

$$J = \begin{pmatrix} 0 & 1 \\ -2 & 4 \end{pmatrix}$$

The eigenvalues are $2+\sqrt{2}$ and $2-\sqrt{2}$. Their corresponding eigenvectors are $(\frac{\sqrt{2}-1}{\sqrt{2}} \ 1)$ and $(\frac{\sqrt{2}+1}{\sqrt{2}} \ 1)^T$ respectively.

Figure 6: Phase portrait for eigenvectors $(\frac{\sqrt{2}-1}{\sqrt{2}} \ 1)$ and $(\frac{\sqrt{2}+1}{\sqrt{2}} \ 1)^T$.

when $\gamma > 0$

In particular, we choose $\gamma = 2$

$$J = \begin{pmatrix} 0 & 1 \\ -2 & -4 \end{pmatrix}$$

The eigenvalues are $-2+\sqrt{2}$ and $-2-\sqrt{2}$. Their corresponding eigenvectors are $(\frac{-\sqrt{2}-1}{\sqrt{2}} \ 1)$ and $(\frac{-\sqrt{2}+1}{\sqrt{2}} \ 1)^T$ respectively.

Figure 7: Phase portrait for eigenvectors $(\frac{-\sqrt{2}-1}{\sqrt{2}} \ 1)$ and $(\frac{-\sqrt{2}+1}{\sqrt{2}} \ 1)^T$.

Question 3 1.3

The new system of equations is now given as:

$$\dot{x} = v$$

$$\dot{v} = F_e \cos(\theta) - 2\gamma v - x^3 + x$$
(6)
(7)

$$\dot{v} = F_e \cos(\theta) - 2\gamma v - x^3 + x \tag{7}$$

Consider $\gamma = 1, F_e = 1$ and $\theta = \pi$. The phase portrait is found in figure 8. Consider $\gamma = 0, F_e = 1$ and $\theta = 2\pi$. The phase portrait is found in figure 9. Consider $\gamma = 0, F_e = 0$ and $\theta = 0$. The phase portrait is found in figure 10. Consider $\gamma = -1, F_e = -1$ and $\theta = \pi$. The phase portrait is found in figure 11. Consider $\gamma = 1, F_e = 20$ and $\theta = 2\pi$. The phase portrait is found in figure 12.

All the phase portraits have been plotted using GeoGebra online plotting tool.

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

2 Cascade route to chaos and folding of strange attractors

2.1 Question 1

Consider $\gamma=0.25, F_e=0.43, \alpha=-1, \beta=1, \omega=1$ and $\theta=0$. The phase portrait is found in figure 13.

Figure 13

2.2 Question 2

Consider $\gamma, \alpha, \beta, \omega$ to be constant and $0.1 < F_e < 0.43$. The phase portraits are found in figure 14 and 15 for two different F_e values in the specified range.

Figure 14

Figure 15

3 Chaos Recognition

3.1 Question 1

We use the pandas library to read the sample files in python. The peak values from each sample files are extracted. Hence, a sequence of maxima Z_n is formed. In order to determine whether the samples files are chaotic motion or not, we need to plot Z_{n+1} versus Z_n . Whereby, n ranges from 1 to the total number of peaks in each data file. Below are the plots for sample 1, 2 and 3 respectively.

Figure 16: The plot of Z_{n+1} versus Z_n for sample 1

Figure 17: The plot of Z_{n+1} versus Z_n for sample 2

Figure 18: The plot of Z_{n+1} versus Z_n for sample 3

A very important feature of chaos is that it is not random. Therefore, it is deterministic. A Poincaré plot was made by Lorenz, whereby he plotted Z_{n+1} versus Z_n .[1] It was found out that the map is very similar to a tent map. There is a maximum Z value for which a cut-off happens, the system will then switch to the next lobe. Hence, it can be shown that the system switches between the 2 lobes chaotically. From the samples we have obtained, we can then deduce that only sample 1 seems to satisfy the chaotic motion described. The code for these plots can be found in appendix 3.

Appendices

Appendix 1

Figure 19: code for the plot of potential V against displacement $\mathbf x$

Appendix 3

```
| Dec. | Insert controlled in parts or and the controlled in parts or and the controlled in parts of the controlled in t
```



```
The state of the s
```


Figure 20: code for the 3 plots of sample 1, 2 and 3 respectively to determine chaotic motion.

References

[1] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, $20(2):130-141,\ 1963.$