A Study on Group Equivariant CNNs

Geometric Data Analysis, MVA

Polina Barabanshchikova Anshuman Sinha

Télécom Paris Institut Polytechnique de Paris

December 19, 2023

Contents

- 1. Motivation
- 2. Theory
- 3. MNIST Experiments
- 4. Segmentation
- 5. Conclusion

Motivation: Comparision with Regular CNNs

CNNs

- are inherently equivariant to translations
- are not equivariant to other transformations: rotations, reflections, etc.
- use data augmentation to tackle such problems

Group Equivariant CNNs [Cohen, 2016]

- are designed to be equivariant to symmetry groups
- use specific filters to guarantee equivariance to group elements
- have enhanced capacity for group specific representation learning

Study & Contributions

- 1. Theoretical study of base paper's approaches
- 2. Testing and benchmarking on:
 - classification task: MNIST, MNIST-Rot
 - segmentation task on dermascopic images

Symmetry Groups

A group is a non-empty set G together with a binary operation " \cdot " : $G \times G \to G$ such that

- $\forall a, b, c \in G : a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- $\exists e \in G \ \forall a \in G : a \cdot e = e \cdot a = a$
- $\forall a \in G \ \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e$

Examples

- \mathbb{Z}^2 2D integer translations
- p4 (pn) compositions of translations and rotations by $\pi/2$ ($2\pi/n$)
- p4m compositions of translations, mirror reflections, and rotations by $\pi/2$

Equivariance

An operator $\Phi: X \to Y$ is *G*-equivariant if it commutes with the group action:

$$\Phi(T_g x) = T'_g \Phi(x)$$

Equivariance

An operator $\Phi: X \to Y$ is **G**-equivariant if it commutes with the group action:

$$\Phi(T_g x) = T'_g \Phi(x)$$

Properties

- invariance is a special case of equivariance with $T_g'\Phi=\Phi$
- ullet composition preserves equivariance \Longrightarrow deep neural networks
- sum preserves equivariance ⇒ skip-connections and residual blocks

G-equivariant convolutions

Regular convolution (correlation) transforms a stack of feature maps $f:\mathbb{Z}^2 o \mathbb{R}^K$ by

$$[f \star \psi](x) = \sum_{y \in \mathbb{Z}^2} \sum_{k} f_k(y) \psi_k(x - y)$$

G-equivariant convolution transforms a stack of feature maps $f: H \to \mathbb{R}^K$ by

$$[f \star \psi](g) = \sum_{h \in H} \sum_{k} f_k(h) \psi_k(g^{-1}h) = \sum_{h \in H} \sum_{k} f_k(h) T_g[\psi_k](h)$$

Moreover, if g is a composition of a translation t and a transformation s, then

$$[f \star \psi](g) = \sum_{h \in H} \sum_{k} f_k(h) T_t[T_s \psi_k](h)$$

It can be implemented as a regular convolution with filters $T_s\psi_k!$ But $\psi_k: G \to \mathbb{R}$.

Classification task: MNIST

CNN Model Architecture:

- 5 layers of 3 × 3 convolutions
- 8, 16, 32, 64 and 128 channels respectively
- ReLU activation, batch normalization and 3D max-pooling

Channel sizes of models to preserve the number of net trainable parameters:

- p4CNN: 8, 16, 32, 64, 128
 - p6CNN: 8, 16, 32, 64, 72
 - p8CNN: 4, 16, 16, 64, 64
 - p4mCNN: 4, 16, 16, 64, 64

MNIST: Experiments & Analysis

Model	MNIST test	MNIST (+transforms)	
	accuracy	test accuracy	
CNN	98.2%	34.1%	
p4CNN	95.8%	62.9%	
p6CNN	96.0%	42.0%	
p8CNN	95.9%	63.5%	
p4mCNN	94.2%	79.6%	

Table: Accuracy of models trained on MNIST and tested on MNIST and on randomly rotated and flipped MNIST images

Key Points:

- CNN model (original accuracy: 98.2%) is highly unsuccessful at classifying rotated numbers
- Poor performance of p6CNN might be due to the lack of right angles among it's group elements interpolation of pixel values affects accuracy

Rotated MNIST: Experiments & Analysis

Model	Test accuracy		
CNN	92.43%		
p4CNN	96.17%		
p6CNN	94.82%		
p8CNN	96.01%		
p4mCNN	93.95%		

Table: Accuracy of models trained and tested on Rotated MNIST

Key Points:

- p8CNN performs poorer than p4CNN; probably due to lower capacity of the model (reduced channels)
- p4mCNN lacks promising results as test set has no reflected images; mirroring parameters are unused.

Segmentation Models

SegNet Model Architecture: [Badrinarayanan, 2017]

- 4 encoder blocks followed by max-pooling
- 4 decoder blocks preceded by upsampling (or transposed convolution)
- ReLU activation and batch normalization
- last layer: max-pooling over stabilizer dimension

Analysis

- ullet max-pooling in spatial dimension is H-equivariant \iff subsample on a subgroup $H \in G$
- last max-pooling is coset pooling \implies it is G-equivariant
- transposed G-convolutions with stride are G-equivariant \Longrightarrow upsampling is G-equivariant

Predictions

Segmentation Scores

Model	train	test	rotated test
	IoU	IoU	loU
SegNet p4SegNet p4mSegNet	0.885	0.718	0.646
	0.87	0.786	0.786
	0.848	0.745	0.745
SegNet+	0.859	0.767	0.771
p4SegNet+	0.894	0.788	0.788

Table: Performance of segmentation models

Overview of *G*-equivariant CNNs

Advantages

- Equivariance guaranties
- Weight sharing
- Efficient implementation for split groups
- Better generalization properties

Limitations

- Only discrete groups are supported
- Matrix operations cannot perfectly model actions of some discrete groups (pn, n > 4)
- Computational time depends on the size of the group
- Number of weights per channel grows with the size of the group

Steerable CNNs

- Convolution kernels parameterised as steerable functions [Cohen, 2017, Weiler, 2018]
- Feature maps encode directional information by convolving with basis functions
- Fourier basis functions produce a vector field feature map of Fourier coefficients [Fageot & Uhlmann, 2021]

Advantage: These feature maps can recover continuous transformed signals as opposed to distinct discrete elements sampled explicitly.

Limitation: The number of basis functions remains a hyperparameter. This imposes an approximation on other information encoded by higher order frequencies.

References

Taco Cohen and Max Welling (2016)

Group Equivariant Convolutional Networks

International Conference on Machine Learning 48, 2990 – 2999.

Taco Cohen and Max Welling (2017)

Steerable CNNs

International Conference on Learning Representations.

Maurice Weiler, Mario Geiger Max Welling, Wouter Boomsma and Taco Cohen (2018) 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data Conference on Neural Information Processing Systems 32.

Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla (2017)

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39(12).

Julien Fageot, Virginie Uhlmann, Zsuzsanna Puspoki, Benjamin Beck, Michael Unser and Adrien Depeursinge (2021)

Principled Design and Implementation of Steerable Detectors

IEEE Transactions on Image Processing

Robustness

Figure: Left: Corrupted input. Middle: $p4SegNet_T$ prediction. Right: $SegNet_T$ prediction.

Feature Maps

Figure: Feature maps taken from the last layer of p4mSegNet before pooling across the stabilizer dimension

Training plots

The End