COHEN-MACAULAY EDGE IDEAL WHOSE HEIGHT IS HALF OF THE NUMBER OF VERTICES

MARILENA CRUPI, GIANCARLO RINALDO, AND NAOKI TERAI

ABSTRACT. We consider a class of graphs G such that the height of the edge ideal I(G) is half of the number $\sharp V(G)$ of the vertices. We give Cohen-Macaulay criteria for such graphs.

Introduction

In this article a graph means a simple graph without loops and multiple edges. Let G be a graph with the vertex set $V(G) = \{x_1, \ldots, x_n\}$ and with the edge set E(G). Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field K. The edge ideal I(G), associated to G, is the ideal of S generated by the set of all squarefree monomials $x_i x_j$ so that x_i is adjacent to x_j . For this ideal the following theorem [5] is known:

Theorem 0.1. Suppose G is an unmixed graph without isolated vertices. Then we have $2 \text{ height } I(G) \geq \sharp V(G)$.

In this paper we treat the class of graphs for which the above equality holds, i.e., we consider an unmixed graph without isolated vertex with $2 \operatorname{height} I(G) = \sharp V(G)$. Such a class of graphs is rich, because it includes all the unmixed bipartite graphs and all the grafted graphs. Herzog-Hibi [8] gave beautiful theorems on Cohen-Macaulay edge ideals of bipartite graphs. Our purpose in this article is to generalize their results for our class of graphs.

It is known that a graph G in our class has a perfect matching, we may assume that

(*) $V(G) = X \cup Y$, $X \cap Y = \emptyset$, where $X = \{x_1, \dots, x_n\}$ is a minimal vertex cover of G and $Y = \{y_1, \dots, y_n\}$ is a maximal independent set of G such that $\{x_1y_1, \dots, x_ny_n\} \subset E(G)$.

Date: September 24, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C75, Secondary 05C90, 13H10, 55U10.

Key words and phrases. Unmixed graph, Cohen-Macaulay graph.

Hence $\{x_1 - y_1, \dots, x_n - y_n\}$ is a system of parameters of S/I(G). In Sections 3 and 4, using this, we give the following characterization of Cohen-Macaulayness, which is similar to the case of bipartite graph (see [8]).

Theorem 0.2. Let G be an unmixed graph with 2n vertices, which are not isolated, and with height I(G) = n. Then the following conditions are equivalent:

- (1) G is Cohen-Macaulay.
- (2) $\Delta(G)$ is strongly connected.
- (3) There is a unique perfect matching in G.
- (4) $\Delta(G)$ is shellable.

Note that it includes equivalence between Cohen-Macaulayness and shellability as in the bipartite graphs (see [3]).

We also have a Cohen-Macaulay criterion which is similar to Herzog-Hibi ([8], Theorem 3.4):

Theorem 0.3. Let G be a graph with 2n vertices, which are not isolated, and with height I(G) = n. We assume the conditions (*) and

(**)
$$x_i y_j \in E(G)$$
 implies $i \leq j$.

Then the following conditions are equivalent:

- (1) G is Cohen-Macaulay.
- (2) G is unmixed.
- (3) The following conditions hold:
 - (i) If $z_i x_j, y_j x_k \in E(G)$, then $z_i x_k \in E(G)$ for distinct i, j, k and for $z_i \in \{x_i, y_i\}$.
 - (ii) If $x_i y_j \in E(G)$, then $x_i x_j \notin E(G)$.

Although in Herzog-Hibi [8] Alexander duality plays an important role for their proof, we give a direct and elementary proof without it. The Herzog-Hibi criterion for bipartite graphs was discussed by many authors in literature that gave alternative proofs for it (see [7], [13])

In Section 5 we introduce a new class of graphs which we call B-grafted graphs. They are a generalization of grafted graphs introduced by Faridi [4]. If G is an unmixed B-grafted graph, then we have $2 \operatorname{height} I(G) = \sharp V(G)$. Hence applying our main result, we show:

Theorem 0.4. The B-grafted graph $G(H_0; B_1, \ldots, B_p)$ is Cohen-Macaulay (unmixed, respectively) if and only if every bipartite graph B_i is Cohen-Macaulay (unmixed, respectively) for $i = 1, \ldots, p$.

See Sections 1 and 5 for undefined concepts and notation.

1. Preliminaries

In this section we recall some concepts and a notation on graphs and on simplicial complexes that we will use in the article.

Let G be a graph with the vertex set $V(G) = \{x_1, \dots, x_n\}$ and with the edge set E(G). The *induced subgraph* $G|_W$ by $W \subset V(G)$ is defined by

$$G|_{W} = (W, \{e \in E(G); e \subset W\}).$$

For $W \subset V(G)$ we denote $G|_{V(G)\setminus W}$ by G-W. For $F \subset E(G)$ we denote $(V(G), E(G) \setminus F)$ by G-F. For a family F of 2-element subsets of V(G) we denote $(V(G), E(G) \cup F)$ by G+F.

A subset $C \subset V(G)$ is a vertex cover of G if every edge of G is incident with at least one vertex in C. A vertex cover C of G is called minimal if there is no proper subset of C which is a vertex cover of G. A subset A of V(G) is called an independent set of G if no two vertices of G are adjacent. An independent set G of G is maximal if there exists no independent set which properly includes G. Observe that G is a minimal vertex cover of G if and only if G is equal to the smallest number of G. And also note that height G is equal to the smallest number of elements. A graph G is called unmixed if all the minimal vertex covers of G have the same number of elements. A graph G is called Cohen-Macaulay if G is a Cohen-Macaulay ring, where G is a polynomial ring for a field G. Refer [2], [14] for detailed information on this subject.

Set $V = \{x_1, \ldots, x_n\}$. A simplicial complex Δ on the vertex set V is a collection of subsets of V such that (i) $\{x_i\} \in \Delta$ for all $x_i \in V$ and (ii) $F \in \Delta$ and $G \subseteq F$ imply $G \in \Delta$. An element $F \in \Delta$ is called a face of Δ . For $F \subset V$ we define the dimension of F by dim $F = \sharp F - 1$, where $\sharp F$ is the cardinality of the set F. A maximal face of Δ with respect to inclusion is called a facet of Δ . If all facets of Δ have the same dimension, then Δ is called pure.

A pure simplicial complex Δ is called *shellable* if the facets of Δ can be given a linear order F_1, \ldots, F_m such that for all $1 \leq j < i \leq m$, there exist some $v \in F_i \setminus F_j$ and some $k \in \{1, \ldots, i-1\}$ with $F_i \setminus F_k = \{v\}$.

Moreover, a pure simplicial complex Δ is strongly connected if for every two facets F and G of Δ there is a sequence of facets $F = F_0, F_1, \ldots, F_m = G$ such that $\dim(F_i \cap F_{i+1}) = \dim \Delta - 1$ for each $i = 0, \ldots, m-1$.

If G is a graph, we define the complementary simplicial complex of G by

$$\Delta(G) = \{A \subseteq V(G) : A \text{ is an independent set in } G\}.$$

Observe that $\Delta(G)$ is the Stanley-Reisner simplicial complex of I(G).

2. Unmixedness

In this section we survey unmixed graphs whose edge ideals have the height that is half of the number of vertices.

Lemma 2.1. Let G be an unmixed graph with non-isolated 2n vertices and with height I(G) = n. Then G has a perfect matching.

The proof is clear from ([6], Remark 2.2). By the lemma for an unmixed graph G with 2n vertices, which are not isolated, and with height I(G) = n, we may assume

(*) $V(G) = X \cup Y, X \cap Y = \emptyset$, where $X = \{x_1, \ldots, x_n\}$ is a minimal vertex cover of G and $Y = \{y_1, \dots, y_n\}$ is a maximal independent set of G such that $\{x_1y_1,\ldots,x_ny_n\}\subset E(G)$.

From now on, set $S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$ for a field K and I(G) is an ideal of S. By Lemma 2.1 we have the following ring-theoretic properties of S/I(G):

Corollary 2.2. Let G be an unmixed graph with 2n vertices, which are not isolated, and with height I(G) = n. We assume the condition (*). Then

(i) Each minimal prime ideal of I(G) is of the form

$$(x_{i_1},\ldots,x_{i_k},y_{i_{k+1}},\ldots,y_{i_n}),$$

where
$$\{i_1, \ldots, i_n\} = \{1, \ldots, n\}$$

where $\{i_1,\ldots,i_n\}=\{1,\ldots,n\}$. (ii) $\{x_1-y_1,\ldots,x_n-y_n\}$ is a system of parameters of S/I(G).

For later use we give a characterization of the unmixedness for our graphs, that is a more detailed description, but a special case of a more general result ([10], Theorem 2.9):

Proposition 2.3. Let G be a graph with 2n vertices, which are not isolated, and with height I(G) = n. We assume the condition (*). Then G is unmixed if and only if the following conditions hold:

- (i) If $z_i x_j$, $y_j x_k \in E(G)$ then $z_i x_k \in E(G)$ for distinct i, j and k and for $z_i \in \{x_i, y_i\}$.
- (ii) If $x_i y_j \in E(G)$ then $x_i x_j \notin E(G)$.

3. Cohen-Macaulayness

In this section we give combinatorial characterizations of Cohen-Macaulay graphs whose edge ideals have the height that is half of the number of vertices.

First we introduce an operator that allows us to construct a new graph. Let G be a graph with 2n vertices, which are not isolated, and with height I(G) = n. We assume the condition (*).

For any
$$i \in [n] := \{1, \dots, n\}$$
 set

$$E_i := \{k \in [n] : x_k y_i \in E(G)\} \setminus \{i\},\$$

and define the graph $O_i(G)$ by

$$O_i(G) := G - \{x_k y_i : k \in E_i\} + \{x_k x_i : k \in E_i\}.$$

Then for every subset $T := \{i_1, \dots, i_\ell\}$ of the set [n], we define

$$O_T(G) = O_{i_1}O_{i_2}\cdots O_{i_\ell}(G).$$

Note that $O_T(G)$ is a graph with 2n vertices, which are not isolated, and with height I(G) = n satisfying the condition (*).

Example 3.1. Let $T = \{2, 3\}$, then

The next proposition shows that Cohen-Macaulayness of G can be checked by unmixedness of all the deformations $O_T(G)$ of G.

Proposition 3.2. Let G be an unmixed graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*). Then the following conditions are equivalent:

- (1) G is Cohen-Macaulay.
- (2) $O_T(G)$ is Cohen-Macaulay for every subset T of [n].
- (3) $O_T(G)$ is unmixed for every subset T of [n].

Proof. Set $S = K[x_1, \dots, x_n, y_1, \dots, y_n], S_k = K[x_1, \dots, x_n, y_{k+1}, \dots, y_n],$ and $G_k = O_{T_k}(G)|_{X \cup \{y_{k+1}, \dots, y_n\}}.$

 $(1) \Longrightarrow (2)$. By relabeling, we may assume that T = [k]. Let G be a Cohen-Macaulay graph. Then

$$S/(I(G) + (x_1 - y_1, \dots, x_k - y_k)) \simeq S_k/(I(G_k) + (x_1^2, \dots, x_k^2))$$

is Cohen-Macaulay. Since the polarization preserves Cohen-Macaulayness,

$$S/(I(G_k) + (x_1^2, \dots, x_k^2))^{\text{pol}} = S/(I(G_k) + (x_1y_1, \dots, x_ky_k)) = S/I(O_T(G))$$

is Cohen-Macaulay, where $(x_1^2, \ldots, x_k^2)^{\text{pol}}$ stands for the polarization of (x_1^2, \ldots, x_k^2) . See [12] for basic properties of polarization.

- $(2) \Longrightarrow (3)$. Every Cohen-Macaulay ideal is unmixed [1].
- $(3) \Longrightarrow (1)$. Suppose G is not Cohen-Macaulay. We want to prove that there exists a subset $T \subset [n]$ such that $O_T(G)$ is not unmixed. Since G is not Cohen-Macaulay the sequence $\{x_i y_i : 1 \le i \le n\}$ is not a regular sequence of S/I(G). Hence there exists $k \ge 1$ such that $\{x_i y_i : i \in [k-1]\}$ is a regular sequence of S/I(G) and $x_k y_k$ is not regular on the ring

$$R := S_{k-1}/(I(G_{k-1}) + (x_1^2, \dots, x_{k-1}^2)) \simeq S/(I(G) + (x_1 - y_1, \dots, x_{k-1} - y_{k-1})).$$

Set $J = I(G_{k-1}) + (x_1^2, \dots, x_{k-1}^2)$. Since $x_k - y_k$ is not regular on R, then

$$x_k - y_k \in \bigcup_{P \in \mathrm{Ass}\,R} P$$

and there exists an associated prime ideal \widetilde{P} of J such that $x_k - y_k \in \widetilde{P}$. Since $x_k \in \widetilde{P}$ or $y_k \in \widetilde{P}$, we have $x_k, y_k \in \widetilde{P}$. Hence height $\widetilde{P} > n$. Hence R is not unmixed. Therefore $S/(I(G_{k-1}) + (x_1^2, \dots, x_{k-1}^2))^{\text{pol}} \simeq S/I(O_{T_{k-1}}(G))$ is not unmixed. \square

For distinct $i_1, i_2, \ldots, i_r \in [n]$ we denote by $C_{i_1 i_2 \ldots i_r}$ the cycle C with

$$V(C) = \{x_{i_1}, y_{i_1}, x_{i_2}, \dots, x_{i_r}, y_{i_r}\}\$$

and

$$E(C) = \{x_{i_1}y_{i_1}, y_{i_1}x_{i_2}, x_{i_2}y_{i_2}, \dots, y_{i_r}x_{i_r}, y_{i_r}x_{i_1}\}.$$

Proposition 3.3. Let G be an unmixed graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*). Then the following conditions are equivalent:

- (1) The subset $\{x_1y_1, x_2y_2, \dots, x_ny_n\}$ of E(G) is a unique perfect matching in G.
- (2) The cycle C_{ij} is not included in G for any i < j.
- (3) For any $r \geq 2$ the cycle $C_{i_1 i_2 \dots i_r}$ is not included in G for any subset $\{i_1, i_2, \dots, i_r\} \subset [n]$ of cardinality r.

Proof. (1) \Longrightarrow (2). Suppose $C_{ij} \subset G$. Then we have two perfect matchings in G:

$$\{x_1y_1,x_2y_2,\ldots,x_ny_n\},\$$

$$\{x_1y_1, x_2y_2, \dots, x_{i-1}y_{i-1}, x_iy_j, x_jy_i, x_{i+1}y_{i+1}, \dots, x_ny_n\}.$$

 $(2) \Longrightarrow (3)$. We proceed by induction on r.

For r=2 there is nothing to prove. Assume r>2 and suppose that $C_{i_1i_2...i_r}\subset G$. Since $y_{i_{r-1}}x_{i_r},y_{i_r}x_{i_1}\in E(G)$, we have $y_{i_{r-1}}x_{i_1}\in E(G)$ by Theorem 2.3. Hence $C_{i_1i_2...i_{r-1}}\subset G$, which is a contradiction with the inductive hypothesis.

 $(3) \Longrightarrow (1)$. Suppose there exists another perfect matching:

$$\{x_1y_{i_1}, x_2y_{i_2}, \dots, x_ny_{i_n}\} \subset E(G).$$

Then we define a permutation σ by

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{array}\right).$$

Then σ can be decomposed as $\sigma = \prod \sigma_i$, where each σ_i is a cycle of σ . Since σ is not an identity permutation, for some i the cycle σ_i is of the form $(j_1 j_2 \ldots j_r)$ with $r \geq 2$. Then we have $C_{j_r j_{r-1} \ldots j_1} \subset G$. **Theorem 3.4.** Let G be an unmixed graph with 2n vertices, which are not isolated, with height I(G) = n satisfying the condition (*). Then the following conditions are equivalent:

- (1) G is Cohen-Macaulay.
- (2) $\Delta(G)$ is strongly connected.
- (3) The cycle C_{ij} is not included in G for any i < j.

Proof. $(1) \Longrightarrow (2)$. Well known.

 $(2) \Longrightarrow (3)$. Assume that $C_{ij} \subset G$ for some i < j. Let F be a facet of $\Delta(G)$ such that $x_i \in F$. Since $x_i y_j \in E(G)$, we have $y_j \notin F$ and by unmixedness of G it follows that $x_j \in F$. Hence $\{x_i, x_j\} \subset F$. Let F' be a facet of $\Delta(G)$ such that $\{y_i, y_j\} \subset F'$.

We show that there does not exist a chain of facets of $\Delta(G)$ such that

$$F = F_0, F_1, \dots, F_m = F', \text{ with } \sharp (F_i \cap F_{i+1}) = n-1 \text{ for } i = 1, \dots, m-1.$$

Every facet $H \in \Delta(G)$ is one of the following form:

$$H = \{z_1, \dots, z_{i-1}, x_i, z_{i+1}, \dots, z_{j-1}, x_j, z_{j+1}, \dots, z_n\}$$

or

$$H = \{z_1, \dots, z_{i-1}, y_i, z_{i+1}, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n\},\$$

where $z_k \in \{x_k, y_k\}$, since $\{x_iy_i, x_jy_j, x_iy_j, x_jy_i\} \subset E(G)$. Hence it is impossible to find such a chain. Hence $\Delta(G)$ is not strongly connected.

 $(3) \Longrightarrow (1)$. In order to prove the statement by Proposition 3.2 it is sufficient to verify that $O_T(G)$ is unmixed for every subset T of [n]. Hence we prove that conditions (i) and (ii) of Proposition 2.3 are satisfied for the graph $G' = O_T(G)$.

First we check the condition (i) for G'. We may assume that $j \notin T$.

Suppose $i \notin T$. We must show the following:

"If $z_i x_j$, $y_j x_k \in E(G')$, then $z_i x_k \in E(G')$ for distict i, j and k and for $z_i \in \{x_i, y_i\}$."

Since $z_i x_j$, $y_j x_k \in E(G)$ and G is unmixed, by Theorem 2.3 we have $z_i x_k \in E(G)$. Hence $z_i x_k \in E(G')$.

Suppose $i \in T$. We must show the following:

"If $x_i x_j$, $y_j x_k \in E(G')$ then $x_i x_k \in E(G')$ for distict i, j and k."

Since $y_j x_k \in E(G')$, we have $y_j x_k \in E(G)$. Since $x_i x_j \in E(G')$, we have either $x_i x_j \in E(G)$ or $y_i x_j \in E(G)$. If $x_i x_j \in E(G)$, then by Theorem 2.3 we have $x_i x_k \in E(G)$, since $y_j x_k \in E(G)$ and G is unmixed. Similarly, if $y_i x_j \in E(G)$, then we have $y_i x_k \in E(G)$, since $y_j x_k \in E(G)$. In both cases, we have $x_i x_k \in E(G')$.

Next we check the condition (ii) for G'. We may assume that $j \notin T$. We also assume that $i \in T$. We must show that either $x_i x_j \notin E(G')$ or $x_i y_j \notin E(G')$. Suppose $x_i x_j, x_i y_j \in E(G')$. Then we have $x_i y_j \in E(G)$, and either $x_i x_j \in E(G)$ or $y_i x_j \in E(G)$. Since G is unmixed, $x_i x_j \in E(G)$

is impossible by Theorem 2.3, (ii). While the condition $y_i x_j \in E(G)$ is also impossible, since G does not have the cycle C_{ij} for any i < j. It is a contradiction.

The next lemma is crucial for giving another criterion for the Cohen-Macaulayness of our graphs.

Lemma 3.5. Let G be an unmixed graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*).

If G is a Cohen-Macaulay graph then there exists a suitable simultaneous change of labeling on both $\{x_i\}$ and $\{y_i\}$ (i.e., we relable $(x_{i_1}, \ldots, x_{i_n})$ and $(y_{i_1}, \ldots, y_{i_n})$ as (x_1, \ldots, x_n) and (y_1, \ldots, y_n) at the same time), such that $x_iy_j \in E(G)$ implies $i \leq j$.

Proof. We can define a partial order \leq on X by

$$x_i \leq x_j$$
 if and only if $x_i y_j \in E(G)$.

In fact, the reflexivity holds by (*), the transitivity holds by unmixedness of G (see Theorem 2.4 (i)) and the antisymmetry holds since G contains no cycle C_{ij} for any i < j. Take a linear extension of \preceq , which we call \preceq' . By the linear order \preceq' , we have $x_{i_1} \preceq' \cdots \preceq' x_{i_n}$. We relabel them as $x_1 \preceq' \cdots \preceq' x_n$. At the same time we relabel y_{i_1}, \ldots, y_{i_n} as y_1, \ldots, y_n . Then if $x_i y_j \in E(G)$, $x_i \preceq' x_j$. Hence $i \leq j$.

Hence for a Cohen-Macaulay graph G with 2n vertices, which are not isolated, and height I(G) = n satisfying the condition (*), we may assume that

(**)
$$x_i y_j \in E(G)$$
 implies $i \leq j$.

Now we state another Cohen-Macalay criterion on our graphs, which is generalization of Herzog-Hibi ([8], Theorem 3.4).

Theorem 3.6. Let G be a graph with 2n vertices, which are not isolated, and with height I(G) = n. We assume the conditions (*) and (**).

Then the following conditions are equivalent:

- (1) G is Cohen-Macaulay;
- (2) G is unmixed;
- (3) The following conditions hold:
 - (i) If $z_i x_j, y_j x_k \in E(G)$ then $z_i x_k \in E(G)$ for distict i, j, k and for $z_i \in \{x_i, y_i\}$;
 - (ii) If $x_i y_i \in E(G)$ then $x_i x_i \notin E(G)$.

Proof. (1) \Longrightarrow (2) is well known.

- $(2) \Longrightarrow (1)$ follows from Theorem 3.4, since we assume the condition (**).
- $(2) \iff (3)$ follows from Theorem 2.3.

As an easy consequence of the previous results we obtain the upper bound for the minimal number $\mu(I(G))$ of generators of I(G):

Corollary 3.7. Let G be a graph with 2n vertices, which are not isolated, and with height I(G) = n.

- (i) If G is unmixed, then $\mu(I(G)) \leq n^2$.
- (ii) If G is Cohen-Macaulay, then $\mu(I(G)) \leq \frac{n(n+1)}{2}$.

Proof. The statements are consequences of the criteria for the unmixedness and for the Cohen-Macaulayness given by Proposition 2.3 and Theorem 3.6.

4. Shellability and Cohen-Macaulay type

In this section if G is a graph such that $\sharp V(G)=2n$ and height I(G)=n, we show the equivalence between Cohen-Macaulayness of G and shellability of the complementary simplicial complex $\Delta(G)$. We also express the Cohen-Macaulay type of S/I(G) in a combinatorial way.

Theorem 4.1. Let G be an unmixed graph with 2n vertices, which are not isolated, and with height I(G) = n. Then G is Cohen-Macaulay if and only if $\Delta(G)$ is shellable.

We just give a proof of the following lemma. The rest of the proof is almost identical with the proof of ([3], Theorem 2.9).

Lemma 4.2. Let G be a Cohen-Macaulay graph with 2n vertices, which are not isolated, and height I(G) = n. Then there exists a vertex $v \in V(G)$ such that $\deg(v) = 1$.

Proof. We may assume the condition (*). Suppose that each $v \in V(G)$ has at least degree 2. Let i_1, i_2, \ldots be a sequence such that $y_{i_1} x_{i_2}, y_{i_2} x_{i_3}, \ldots \in E(G)$ with $i_j \neq i_{j+1}$. Since the cardinality of Y is finite, there must be exist integers s < t such that $i_t = i_s$. We may assume that $i_s, i_{s+1}, \ldots, i_{t-1}$ are distinct. This induces the cycle $C_{i_s i_{s+1} \cdots i_{t-1}} \subset G$. Therefore G is not Cohen-Macaulay by Proposition 3.3 and Theorem 3.4.

Now we express the Cohen-Macaulay type of a graph belonging to our class, imitating the bipartite case (see [14], pp. 184-185).

Lemma 4.3. Let G be a Cohen-Macaulay graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*). Then

Soc
$$(K[x_1, \dots, x_n]/(I(O_{[n]}(G)|_X) + (x_1^2, \dots, x_n^2))$$

is generated by all the monomials $x_{i_1} \cdots x_{i_r}$ such that $\{x_{i_1}, \dots, x_{i_r}\}$ is a maximal independent set of $O_{[n]}(G)|_X$.

Proof. The ring $A := K[x_1, \ldots, x_n] / (I(O_{[n]}(G)|_X) + (x_1^2, \ldots, x_n^2))$ is spanned as a K-vector space by the image of 1 and the images of the squarefree monomials

$$(4.1) x_{i_1} \cdots x_{i_r}, 1 \le i_1 < i_2 < \dots < i_r \le n$$

such that $x_{i_j}x_{i_k} \notin E(O_{[n]}(G)|_X)$, for $j \neq k$, i.e. $\{x_{i_1}, \ldots, x_{i_r}\}$ is an independent set of $O_{[n]}(G)|_X$. Since A is an artinian positively graded algebra, Soc $A = (0:_A A_+)$ is generated by the images of the squarefree monomials of the form (4.1) such that $\{x_{i_1}, \ldots, x_{i_r}\}$ is a maximal independent set of $O_{[n]}(G)|_X$.

Corollary 4.4. Let G be a Cohen-Macaulay graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*). Then

- (i) type $S/I(G) = \sharp \Upsilon(O_{[n]}(G)|_X)$, where $\Upsilon(O_{[n]}(G)|_X)$ is the family of all minimal vertex covers of $O_{[n]}(G)|_X$. In particular, type S/I(G) is independent from the base field K.
- (ii) G is level if and only if $O_{[n]}(G)|_X$ is unmixed. In particular, levelness of G is independent from the base field K.

Proof. Set $S = K[x_1, ..., x_n, y_1, ..., y_n]$ and $S_n = K[x_1, ..., x_n]$.

(i) Since G is Cohen-Macaulay and $\{x_1 - y_1, \dots, x_n - y_n\}$ is a regular sequence, we have

type
$$S/I(G) = \dim_K \operatorname{Soc} S/(I(G) + (x_1 - y_1, \dots, x_n - y_n))$$

 $= \dim_K \operatorname{Soc} S_n/(I(O_{[n]}(G)|_X) + (x_1^2, \dots, x_n^2))$
 $= \sharp \Upsilon(O_{[n]}(G)|_X)$

by the previous lemma.

(ii) When G is Cohen-Macaulay, G is level if and only if

$$Soc S/\left(I(G)+\left(x_{1}-y_{1},\ldots,x_{n}-y_{n}\right)\right)$$

is equi-generated. By the previous lemma it is equivalent to that $O_{[n]}(G)|_X$ is unmixed. \Box

Corollary 4.5. Let G be a Cohen-Macaulay graph with 2n vertices, which are not isolated, and height I(G) = n. We assume the condition (*). Then the following conditions are equivalent:

- (1) G is Gorestein;
- (2) $I(G) = (x_1y_1, \dots, x_ny_n);$
- (3) G is a complete intersection.

Proof. (1) \Rightarrow (2). G is Gorenstein if and only if S/I(G) is Cohen-Macaulay and type S/I(G) = 1. Since $1 = \text{type } S/I(G) = \sharp \Upsilon(O_{[n]}(G)|_X)$, it follows that $O_{[n]}(G)|_X$ has a unique minimal vertex cover. Hence $O_{[n]}(G)|_X$ is isolated n vertices. Hence $I(G) = (x_1y_1, \ldots, x_ny_n)$.

 $(2) \Rightarrow (3)$. From its definition.

$$(3) \Rightarrow (1)$$
. See [1].

5. B-Grafted graph

In this section we introduce a new class of graphs G with $\sharp V(G)=2n$ and with height I(G)=n and we study its Cohen-Macaulayness.

Let H_0 be a graph with the labeled vertices $1, 2, \ldots, p$.

For every i = 1, ..., p let B_i be a bipartite graph with labeled partition X_i and Y_i such that $\sharp X_i = \sharp Y_i = n_i$. (We do not give a label to each vertex of B_i , but we distinguish the partition X_i and Y_i .) We assume that B_i has no isolated vertex for every i = 1, ..., p. We define the graph

$$G = G(H_0; B_1, \dots, B_p)$$

as follows: The vertex set of G is $V(G) := X \cup Y$, where $X = X_1 \cup \ldots \cup X_p$, and $Y = Y_1 \cup \ldots \cup Y_p$. The edge set E(G) of G defined by:

$$xy \in E(G)$$
 if and only if

either

there exist i, j such that $x \in X_i, y \in X_j$, and $ij \in E(H_0)$

or

there exists i such that $x \in X_i, y \in Y_i$, and $xy \in E(B_i)$.

We call such a graph G the B-grafted graph. Note that X is a minimal vertex cover of G and Y is a maximal independent set of G. Note also that $\sharp V(G) = 2(\sum_{i=1}^p n_i)$.

Example 5.1. Let H_0 be a cycle of the length 3. By the following bipartite graphs B_1 , B_2 , B_3 , we obtain the B-grafted graph G:

Remark 5.2. If B_i is just a complete graph with 2 vertices, i.e., a complete bipartite graph with $\sharp X_i = \sharp Y_i = 1$ for $i = 1, \ldots, p$, then the B-grafted graph G is called a grafted graph in [4].

Theorem 5.3. The B-grafted graph $G(H_0; B_1, \ldots, B_p)$ is Cohen-Macaulay (unmixed, respectively) if and only if every bipartite graph B_i is Cohen-Macaulay (unmixed, respectively) for $i = 1, \ldots, p$.

Proof. It is clear from Theorem 3.4 (Proposition 2.3, respectively). \Box

Acknowledgments. The third author acknowledges the financial support of GNSAGA-INDAM and the hospitality during his stay at the Department of Mathematics of the University of Messina (Italy). This work was also supported by KAKENHI18540041 and KAKENHI20540047.

References

- W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, Cambridge, 1997.
- [2] R. Diestel, Graph theory, 2nd edition, GTM 173 Springer, Berlin/Heidelberg/New York, 2000.
- [3] M. Estrada, R.H. Villarreal. Cohen-Macaulay bipartite graphs. Arch.Math.68 (1997), 124-128.
- [4] S. Faridi. Cohen-Macaulay properties of square-free monomial ideals. Commutative algebra. Lecture Notes Pure Appl. Math., Chapman an Hall, Boca Raton FL. 244 (2006), 85-114.
- [5] I. Gitler, C.E. Valencia. Bounds for invariants of edge-rings. Com. Alg. 33 (2005), 1603-1616.
- [6] I. Gitler, C.E. Valencia. Bounds for graph invariants. Preprint, arXive:math/0510387v2 [math.CO].
- [7] H. Haghighi, S.Yassemi. A combinatorial characterization of Cohen-Macaulay bipartite graphs. Preprint (2008).
- [8] J. Herzog, T.Hibi. Distributive lattices, bipartite graphs and Alexander duality. J. Alg. Combin., 22 (2005), 289-302.
- [9] T. Hibi, Algebraic combinatorics on convex polytopes, Carslaw Publications, Glebe, N.S.W., Australia , 1992.
- [10] S.Morey, E. Reyes, R.H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of König type. J. Pure Appl. Alg. **212** (2008), 1770-1786.
- [11] R.P. Stanley, Combinatorics and commutative algebra, 2nd edition, Birkäuser, Boston/Basel/Stuttgart, 1996.
- [12] J.Stuckard, W.Vogel, Buchsbaum rings and applications: An interaction between algebra, geometry and topology, Springer, Berlin/Heidelberg/New York, 1986.
- [13] A.Van Tuyl, R.H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs. J. Combin. Theory Series A 115 (2008), 779-814.
- [14] R.H. Villarreal. Monomial algebras. Pure and applied mathematics. Marcel Dekker, New York/Basel, 2001.
- [15] R.H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), 277-293.
- [16] R.H. Villarreal. Unmixed bipartite graphs. Rev. Colombiana Mat. 41(2) (2007), 393-395.

(Marilena Crupi) DIPARTIMENTO DI MATEMATICA, UNIVERSITA' DI MESSINA, SALITA SPERONE, 31, 98166 MESSINA, ITALY. FAX NUMBER: +39 090 393502 E-mail address: mcrupi@unime.it

(Giancarlo Rinaldo) DIPARTIMENTO DI MATEMATICA, UNIVERSITA' DI MESSINA, SALITA SPERONE, 31, 98166 MESSINA, ITALY. FAX NUMBER: +39 090 393502 E-mail address: rinaldo@dipmat.unime.it

(Naoki Terai) Department of Mathematics, Faculty of Culture and Education, Saga University, Saga 840–8502, Japan. Fax number:

 $E ext{-}mail\ address: terai@cc.saga-u.ac.jp}$