

PRIMERA PARTE (60 min)

Problema 1.1 (1,5 puntos)

Dadas las funciones lógicas:

$$f_1(a,b,c,d) = \sum_{4} (1,3,5,7,9,11) + \Delta(0,2)$$
$$f_2(a,b,c,d) = \prod_{4} (0,2,3,6,8,10,12,14) + \Delta(5)$$

- a) Escriba la tabla de verdad de f₂
- b) Obtenga la expresión más simplificada posible de f₁ como suma de productos.
- c) Obtenga la expresión más simplificada posible de f₂ como producto de sumas.
- d) Implemente la función f₂ utilizando sólo puertas NOR.
- e) Implemente la función f₂ utilizando un multiplexor 8:1.
- f) Implemente ambas funciones utilizando un decodificador.

Nota importante: se valorará el uso del menor número de componentes en las soluciones

Cuestión 1.2 (1 punto)

Dados los números A=10101100 y B=12F:

- a) Obtenga qué número decimal sería A si se considera que está escrito en binario natural, complemento uno y signo magnitud.
- b) Suponiendo que A está escrito en código Gray, expresarlo en binario natural. Indique, justificando su respuesta, si A puede representar un número en código BCD. Indique que número decimal sería B si se considera que está escrito en hexadecimal.
- c) Si nos dicen que $35_{16} = 65_x$ ¿En que base x está codificado el número 65?
- d) Dados los números C= +35₁₀ D= -123₁₀. Realice las operaciones C+D y -C+D en complemento a dos utilizando 8 bits. Justifique si se produce desbordamiento y acarreo en ambos caso.

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2010

SEGUNDA PARTE (60 min)

Problema 2.1 (2 puntos)

Diseñe un circuito secuencial síncrono, mediante una máquina de estados de Moore que disponga de una entrada H y de tres salidas S_2 S_1 S_0 .

El circuito será capaz de generar 5 valores de 3 bits cada uno de forma secuencial, es decir, un valor cada ciclo de reloj.

La secuencia de valores será:

Al llegar al 5° valor se volverá a repetir la misma secuencia, es decir: S_2 S_1 S_0 = 111, 110, 101, 100, 011, 111, 110,

La entrada actuará de manera que si H = 0 la secuencia se detendrá y si H = 1 la secuencia continuará. Se usarán biestables D y las puertas lógicas necesarias.

Se pide:

- a) Diagrama de estados (con indicación del estado inicial o de reset).
- b) Asignación de estados. Justifique el número de biestables necesarios.
- c) Tabla de transiciones.
- d) Funciones de estado y de salida simplificadas.
- e) Esquema del diseño con las líneas de reloj y reset.

Cuestión 2.2 (0,75 puntos)

Determine la secuencia de salida Z del contador módulo-5 (cuenta de 0 a 4) de la figura en función de la evolución de las entradas. Expresar Z como un número entero.

Cuestión 2.3 (0,75 puntos)

Dibuje el esquemático de puertas y biestables de un registro de desplazamiento de tres bits, de tipo SIPO (Serial Input Parallel Output).

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Enero de 2010

Nombre:	Grupo:
Apellidos:	

Cuestión 3.2 (0,75 puntos)

Mediante la PAL de la figura, implemente los segmentos a y b de un decodificador BCD a 7-segmentos. Simplificar las funciones si es necesario. Asumir que las entradas del decodificador se denominan B₃, B₂, B₁, B₀.

Cuestión 3.3 (0,75 puntos)

Dada la asociación de memorias de la figura:

- a) Especificar el ancho de los buses de direcciones y datos
- b) Determinar el tamaño total del espacio de direccionamiento
- c) Determinar el mapa de memoria, incluyendo los rangos que cubre cada circuito en hexadecimal

Asumir que a todos los chips de memoria llegan las señales de OE, WE y las señales A13-A0 del bus de direcciones.

PRIMERA PARTE (60 min)

Problema 1.1 (1,5 puntos)

Dadas las funciones lógicas:

$$f_1(a,b,c,d) = \sum_{4} (1,3,5,7,9,11) + \Delta(0,2)$$
$$f_2(a,b,c,d) = \prod_{4} (0,2,3,6,8,10,12,14) + \Delta(5)$$

- a) Escriba la tabla de verdad de f₂
- b) Obtenga la expresión más simplificada posible de f₁ como suma de productos.
- c) Obtenga la expresión más simplificada posible de f2 como producto de sumas.
- d) Implemente la función f₂ utilizando sólo puertas NOR.
- e) Implemente la función f₂ utilizando un multiplexor 8:1.
- f) Implemente ambas funciones utilizando un decodificador.

Nota importante: se valorará el uso del menor número de componentes en las soluciones

SOLUCIÓN PROPUESTA

a) Escriba la tabla de verdad de f₂

А	В	С	D	F2
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	X
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

b) Obtenga la expresión más simplificada posible de f₁ como suma de productos.

	AB				
CD		00	01	11	10
	00	X	0	0	٥
	01	1	1	0	1
	11	1	_1	0	1
	10	Х	0	0	0

$$F1 = \left(\overline{b} \cdot d\right) + \left(\overline{a} \cdot d\right)$$

c) Obtenga la expresión más simplificada posible de $f_2\ como\ producto\ de\ sumas.$

AB
CD 00 01 11 10
00 0 1 0 0
01 1 X 1 1
11 0 1 1 1
10 0 0 0

$$F1 = (b+d) \cdot (\overline{c}+d) \cdot (a+b+\overline{c}) \cdot (\overline{a}+d)$$

d) Implemente la función f2 utilizando sólo puertas NOR.

$$F1 = \frac{\overline{(b+d)\cdot(\overline{c}+d)\cdot(a+b+\overline{c})\cdot(\overline{a}+d)}}{\overline{(b+d)}+\overline{(\overline{c}+d)}+\overline{(a+b+\overline{c})}+\overline{(\overline{a}+d)}}$$

e) Implemente la función f₂ utilizando un multiplexor 8:1.

I	A E	C	D	F2	MUX8:1
(0 (0	0	0	đ
(0 (0	1	1	ū
(0 (1	0	0	0
_ (0 (1	1	0	0
() 1	0	0	1	1
() 1	0	1	X	
() 1	1	0	0	d
_() 1	1	1	1	ď
1	L 0	0	0	0	đ
1	L 0	0	1	1	a
1	L 0	1	0	0	d
1	L 0	1	1	1	a
1	L 1	. 0	0	0	đ
1	L 1	0	1	1	u
1	L 1	1	0	0	d
1	L 1	1	1	1	u

f) Implemente ambas funciones utilizando un decodificador.

ENERO 2010 TECNOLOGIA DE COMPUTADORES CUESTION Z

$$B = 12F$$

$$A = 10101100$$

 $B = 12F$
a) A en binario $A_z = 10101100_z = z^7 + z^5 + z^3 + z^2 = 128 + 32 + 8 + 4$
 $A_z = 10101100_z = 172_{10}$

A en Complemento a 1:
$$A_{C1} = 10101100_{C1} = (-1) \cdot 2^{7} + 2^{5} + 2^{3} + 2^{7} + 1 =$$

$$= -128 + 32 + 8 + 4 + 1 = -128 + 45$$

$$= -83_{10}$$

A está expresado en Signo magnified
$$A = 1 \underbrace{0101100}_{\text{Signo}}, \quad 0101100 = 32 + 3 + 4 = 44$$
Signo
$$A = 1 \underbrace{0101100}_{\text{Signo}}, \quad 0101100 = 32 + 3 + 4 = 44$$

b) A está escrito en Gray expresarlo en Binario Natural A = 10101100

à Ruede representar A un número en código BCP?

⇒ No puede representar un nº cadeficado en BCD

A B se considera que está escrito en hexadecimal

$$B = 12F_{16}$$

$$3 = 72F_{16}$$

$$12F_{16} = 1.16^{2} + 2.16 + 15 = (24)^{2} + 2.24 + 15 = 28 + 25 + 15 = 256 + 32 + 15 = 303_{10}$$

c)
$$35_{16} = 65_{X}$$
 C wainto vale la base X ?
 $35_{16} = 3.16 + 5 = 48 + 5 = 53_{10}$ igualando
 $65_{X} = 6.X + 5$
 $53 = 6X + 5 \rightarrow X = \frac{53.5}{6} = 3 \rightarrow base Octal$

d) C = +3510 Realice las operaciones C+D y -C+D en camplemento D = -12310 a 2 otherando 8 bits c Se produce desbardamiento y acarreo?

$$C = +35_{10} = 0010 \ 0011 \ c_2$$

$$-D = +123_{10} = 0111 \ 1011_{C2}$$

$$D = -123_{10} = 1000 \ 0101_{C2}$$

No se puede producir desbordan. al sumar un positivo y un regativo No se produce acarreo

Se produce desbardamiento

Se suma un número regativo

(-35) con otro regativo (-123)

y el resultado que se dotiene es

positivo > error.

Se produce acarres 1 que se desprecia al trabajar en C2

2009-2010. 1er Cuat. TC. 2ª Parte. Problema.

Diseñe una máquina de estados por Moore que disponga de una entrada H y de tres salidas S_2 S_1 S_0 .

Esta máquina será capaz de dar, de forma secuencial, 5 valores de 3 bits cada uno. La secuencia de valores será:

Al llegar al 5° valor se volverá a repetir la misma secuencia, es decir: S_2 S_1 $S_0 = 111$, 110, 101, 100, 011, 111, 110,

La entrada actuará de la siguiente manera: si H = 0 la secuencia se detendrá y si H = 1 la secuencia continuará.

Se usarán biestables D y las puertas lógicas necesarias.

Se pide:

- 1) Diagrama de estados (con indicación del estado inicial o de reset).
- 2) Asignación de estados. Justifique el nº de biestables necesarios.
- 3) Tabla de transiciones.
- 4) Funciones de estado y de salida simplificadas.
- 5) Esquema del diseño con las líneas de reloj y reset.

SOLUCIÓN:

1) Diagrama de estados (con indicación de estado de reset).

2) Asignación de estados. Justificación del nº de biestables necesarios.

Q_2	\mathbf{Q}_1	Q_0	Estado
0	0	0	Eo
0	0	1	E ₁
0	1	0	E_2
0	1	1	E_3
1	0	0	E_4

Para 5 estados necesitaremos 3 biestables (Q_2, Q_1, Q_0) ya que 3 será la menor potencia entera de 2 que sea mayor o igual que 5 $(2^3 \ge 5)$.

3) Tabla de transiciones. Funciones de estado y de salida.

	Funciones de											
				Esta	do sigu	iiente	e	estado		9	Salida	S
Q_2	Q_1	Q_0	Н	Q_2^+	$\mathbf{Q_1}^{+}$	Q_0^{\dagger}	D_2	D_1	D_0	S_2	S ₁	S ₀
0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	1	0	0	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	1	1	0
0	0	1	1	0	1	0	0	1	0	1	1	0
0	1	0	0	0	1	0	0	1	0	1	0	1
0	1	0	1	0	1	1	0	1	1	1	0	1
0	1	1	0	0	1	1	0	1	1	1	0	0
0	1	1	1	1	0	0	1	0	0	1	0	0
1	0	0	0	1	0	0	1	0	0	0	1	1
1	0	0	1	0	0	0	0	0	0	0	1	1
1	0	1	0				X	Χ	Χ	Χ	Χ	Χ
1	0	1	1				X	Χ	Χ	Χ	Χ	Χ
1	1	0	0				X	Χ	Χ	Χ	Χ	Χ
1	1	0	1				X	Χ	Χ	Χ	Χ	Χ
1	1	1	0				X	Χ	Χ	Χ	Χ	Χ
1	1	1	1				Χ	Χ	Χ	Χ	Χ	Χ

4) Funciones de estado $(D_2,D_1\;y\;D_0)\;y$ salida simplificadas $(S_2,S_1\;y\;S_0)$.

Funciones de estado simplificadas por Karnaugh:

D_2				
Q_2Q_1/Q_0H	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	Χ	X	X
10	1	0	Χ	Χ

$$D_2 = Q_2 \overline{H} + Q_1 Q_0 H$$

D_1				
Q_2Q_1/Q_0H	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	X	Х	Χ	Х
10	0	0	X	Χ

$$\mathsf{D}_1 = \mathsf{Q}_1 \; \overline{\mathsf{Q}}_0 \; + \mathsf{Q}_1 \; \overline{\mathsf{H}} \; + \overline{\mathsf{Q}}_1 \; \mathsf{Q}_0 \; \mathsf{H}$$

D_o				
Q_2Q_1/Q_0H	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	Χ	Χ	Χ	X
10	0	0	X	X

$$\mathsf{D}_0 = \overline{\mathsf{Q}}_2 \ \overline{\mathsf{Q}}_0 \ \mathsf{H} + \mathsf{Q}_0 \ \overline{\mathsf{H}}$$

Las funciones de salida $(S_2, S_1 y S_0)$ se pueden obtener directamente de la tabla del apartado 3:

$$S_2 = \overline{Q}_2$$

$$S_1 = \overline{Q_1}$$

$$S_0 = \overline{Q}_0$$

5) Esquema del diseño con las líneas de reloj y reset.

Siendo su simulación:

Cuestión 2.2 (0,75 puntos)

Determine la secuencia de salida Z del contador módulo-5 (cuenta de 0 a 4) de la figura en función de la evolución de las entradas. Expresar Z como un número entero.

Cuestión 2.3 (0,75 puntos)

Dibuje el esquemático de puertas y biestables de un registro de desplazamiento de tres bits, de tipo SIPO (Serial Input Parallel Output).

auestion 3.2

B3 B2 BA B.	ab
0000	1 1
0001	01
0010	1 1
0011	111
0100	OA
0101	10
0110	10
0111	11
1000	1 1 1
1001	111
Rosto	××

Las dos funciones tienen demasiados unos. Hay que simplificar

B362	00 01 11 10	
00	DOLLA	
011	O(XXX)	2
(0	TIKE	
00	Di On	
01		b
(0	WI WY	

 $a = \overline{B_2}\overline{B_0} + B_2B_0 + B_3 + B_4$ $b = \overline{B_1}\overline{B_0} + B_1B_0 + \overline{B_2}$ $B_3 B_1 B_1 B_0$

Cuestion 3.3

- a) Bus de direcciones: 16 bits
 Bus de datos: 16 bits
- b) 16 bits de direcciones = 2¹⁶=2⁶-2¹⁰=64k Espacio de direccionamiento: 64k
- c) Hay 3 blugues de memoria de 16kx16, uno de ellus formado por dos chips de 16kx8.

Tamaños en hexadecimal: $64k = 2^{16} = 1.(2^4)^4 \Rightarrow 10000_{16}$ $16k = 2^4.2^{10} = 2^{14} = 4.(2^4)^3 \Rightarrow 4000_{16}$

	16K]	RPH-1	Ram-2	0000 H 3FFFH
64K	16K	RAI	1-3	4000H 7EFFH
617	16K	H	1610	BFFFH
	16K	RA	H-4	CDOOH