Class 14: RNASeq mini-project

Nicolò (PID: A18109144)

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Section 1. Differential Expression Analysis

Data Import

```
Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Warning: package 'GenomeInfoDb' was built under R version 4.3.2

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.3.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':
rowMedians

The following objects are masked from 'package:matrixStats':
anyMissing, rowMedians

Read our counts and metadata CSV files

```
metaFile <- "data/GSE37704_metadata.csv"</pre>
  countFile <- "data/GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
SRR493370
               hoxa1_kd
               hoxa1_kd
SRR493371
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                   918
                                0
                                          0
                                                     0
                                                               0
                                                                          0
ENSG00000279928
                   718
                                0
                                          0
                                                    0
                                                               0
                                                                          0
ENSG00000279457
                  1982
                               23
                                         28
                                                    29
                                                              29
                                                                         28
ENSG00000278566
                   939
                                0
                                          0
                                                    0
                                                               0
                                                                          0
ENSG00000273547
                   939
                                0
                                          0
                                                    0
                                                                          0
ENSG00000187634
                  3214
                              124
                                        123
                                                   205
                                                             207
                                                                        212
                SRR493371
ENSG00000186092
                         0
                         0
ENSG00000279928
ENSG00000279457
                        46
ENSG00000278566
                         0
                         0
ENSG00000273547
ENSG00000187634
                       258
```

Q1. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns). Tip: What will rowSums() of countData return and how could you use it in this context?

```
# Filter count data where you have 0 read count across all samples.
countData <- countData[rowSums(countData) != 0, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(countData)

[1] 15975

DESeq setup and analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

```
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
     Q3. Call the summary() function on your results to get a sense of how many genes
     are up or down-regulated at the default 0.1 p-value cutoff.
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                   : 4349, 27%
                   : 4396, 28%
LFC < 0 (down)
outliers [1]
                    : 0, 0%
low counts [2]
                    : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

Result visualization

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Geneset enrichment

Q5. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
```

Warning: package 'AnnotationDbi' was built under R version 4.3.2

```
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"

```
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                    "ONTOLOGY"
                                                                 "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                  "SYMBOL"
                                                                 "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                           stat
                                                                     pvalue
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                  <numeric>
                                 0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000279457
                  29.913579
ENSG00000187634 183.229650
                                 0.4264571 0.1402658 3.040350 2.36304e-03
```

```
ENSG00000188976 1651.188076
                                -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.637938
                                 0.7297556 0.1318599
                                                        5.534326 3.12428e-08
ENSG00000187583
                 47.255123
                                 0.0405765 0.2718928
                                                        0.149237 8.81366e-01
                  11.979750
                                 0.5428105 0.5215598
                                                      1.040744 2.97994e-01
ENSG00000187642
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
                                 0.2573837 0.1027266
                                                        2.505522 1.22271e-02
ENSG00000187608 350.716868
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                      8.346304 7.04321e-17
ENSG00000237330
                   0.158192
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                                 symbol
                       padj
                                             entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NΑ
                                                                         NA
                                                  NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                               26155 NOC2 like nucleolar ...
                                              339451 kelch like family me..
ENSG00000187961 1.13413e-07
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                  PERM1
                                               84808 PPARGC1 and ESRR ind..
ENSG00000188290 1.30538e-24
                                   HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                                9636 ISG15 ubiquitin like..
                                  ISG15
ENSG00000188157 4.21963e-16
                                              375790
                                   AGRN
                                                                      agrin
ENSG00000237330
                         NA
                                 RNF223
                                              401934 ring finger protein ...
```

Save results

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

KEGG pathways

Load the packages and setup the KEGG data-sets we need.

```
library(pathview)
library(gage)
library(gageData)
```

```
data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                            "151531" "1548"
                                                               "1549"
                                                                         "1551"
                                  "10941"
               "1576"
                        "1577"
 [9] "1553"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                               "54575"
                                                                         "54576"
                                            "54657"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                                      "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                               "7364"
                                                                         "7365"
                                            "7378"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                                      "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                          "113"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                 "158"
                                                                          "159"
                "171568" "1716"
                                   "196883"
                                             "203"
                                                       "204"
                                                                 "205"
                                                                          "221823"
 [25] "1633"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721" "25885"
                                                       "2618"
                                                                 "26289"
                                                                          "270"
 [41] "271"
                "27115"
                         "272"
                                             "2977"
                                                                          "2984"
                                   "2766"
                                                       "2982"
                                                                 "2983"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
                                                                "318"
                                                                          "3251"
                                                                 "4830"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841"
                                                      "471"
                                                                          "4831"
                "4833"
                                             "4882"
 [65] "4832"
                         "4860"
                                   "4881"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
                "51251"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                          "5140"
 [73] "51082"
                         "51292"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                                                                 "54107"
                                                                          "5422"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                          "5433"
                                   "5437"
[113] "5434"
                "5435"
                          "5436"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                          "6240"
                                                       "7498"
                                                                 "8382"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                                          "84172"
                                                                          "9060"
                                   "8622"
                                                                "8833"
[145] "84265"
                "84284"
                         "84618"
                                             "8654"
                                                       "87178"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                          "957"
```

```
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                          1465
                                   51232
                                               2034
                                                         2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
Now, let's run the gage pathway analysis.
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
Let's look at the object returned from gage().
  attributes(keggres)
$names
[1] "greater" "less"
                         "stats"
Let's look at the first few down (less) pathway results:
  # Look at the first few down (less) pathways
  head(keggres$less)
                                                                       p.val
                                          p.geomean stat.mean
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                       1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                       3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                       3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                              q.val set.size
hsa04110 Cell cycle
                                       0.001448312
                                                         121 8.995727e-06
```

0.007586381

0.073840037

0.121861535

0.121861535

36 9.424076e-05

144 1.375901e-03

28 3.066756e-03

102 3.784520e-03

53 8.961413e-03

hsa03030 DNA replication

hsa03440 Homologous recombination

hsa00010 Glycolysis / Gluconeogenesis 0.212222694

hsa03013 RNA transport

hsa04114 Oocyte meiosis

Let's generate the pathway figure showing the Cell cycle pathway (hsa04110)

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa04110.pathview.png

Figure 1: Figure 1: My genes involved in Cell cycle pathway

```
# A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B Info: Writing image file hsa04110.pathview.pdf Now, let's process our results a bit more to automagically pull out the top 5 upregulated pathways, then further process that just to get the pathway IDs needed by the pathview() function. ## Focus on top 5 upregulated pathways here for demo purposes only keggrespathways <- rownames(keggres\$greater)[1:5]</pre> # Extract the 8 character long IDs part of each string keggresids = substr(keggrespathways, start=1, stop=8) keggresids [1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330" pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa") 'select()' returned 1:1 mapping between keys and columns Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B Info: Writing image file hsa04640.pathview.png 'select()' returned 1:1 mapping between keys and columns Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B Info: Writing image file hsa04630.pathview.png

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa04142.pathview.png

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa04330.pathview.png

Here are the plots:

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 down-regulated pathways
keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/nicol/OneDrive/Documents/BioTech/3 Anno/Primo Semestre/B

Info: Writing image file hsa04114.pathview.png

Section 3. Gene Ontology (GO)

We can also do a similar procedure with gene ontology. Similar to above, go.sets.hs has all GO terms. go.subs.hs is a named list containing indexes for the BP, CC, and MF ontologies. Let's focus on BP (a.k.a Biological Process) here.

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val GO:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05 GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04 GO:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04 GO:0007610 behavior 1.925222e-04 3.565432 1.925222e-04 GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
```

```
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                      exp1
GO:0007156 homophilic cell adhesion
                                          0.1952430
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1952430
                                                         424 1.432451e-04
GO:0007610 behavior
                                          0.1968058
                                                         426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3566193
                                                         391 5.953254e-04
$less
                                            p.geomean stat.mean
                                                                        p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.843127e-12
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.659009e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178690e-07
                                                            84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GD:0007610 behavior
                                           3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                           3.261376 3.261376
GO:0035295 tube development
                                           3.253665 3.253665
```

Section 4. Reactome Analysis

Reactome is database consisting of biological molecules and their relation to pathways and processes. Reactome, such as many other tools, has an online software available (https://reactome.org/) and R package available (https://bioconductor.org/packages/release/bioc/html/Reacto

First, Using R, output the list of significant genes at the 0.05 level as a plain text file:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/# Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Cell cycle, Mitotic has the most significant "Entities p-value". The most significant pathways more or less match the previous KEGG GO results (the down-regulated genes) and are related to cell cycle for the most part. Differences might be related the different way genes are classified.