

Course: OSF Operações Sólido Fluido Solid Fluid Operations

LEQB/MEQB, 2024/25

Chemical and Biological Engineering Section, Department of Chemistry, FCTNOVA

OSF/FCTNOVA

Instructors

- Prof. Rui Oliveira (T, TP)
 - Office 509 DQ
 - Email: rmo@fct.unl.pt
- Prof. Isabel Esteves (TP, P)
 - Office 226 DQ/Lab 513 DQ
 - Email: i.esteves@fct.unl.pt
- Prof. Rafael Costa (TP, P)
 - Office 628 DQ/Lab 334 DQ
 - Email: <u>rs.costa@fct.unl.pt</u>

Also @ TP & P lab classes:

TP1: 14.10 (Centrifugation), 11.11, 18.11 (Filtration)

TP2: 11.10 (Sedimentation), 15.11, 22.11 (Filtration)

P3: 29.11 and 6.12, 8h, lab 521 - DQ 5th floor

P4: 29.11 and 6.12, 13h, lab 521 – DQ 5th floor

P classes are mandatory

II - REDUÇÃO DA GRANULOMETRIA DE SÓLIDOS

REDUCTION OF SOLIDS PARTICLE SIZE

Problema II.1

Tritura-se um material num triturador de maxilas Blake e reduz-se o tamanho médio das partículas de 50 mm para 10 mm, com um consumo de energia de 13.0 kW s kg⁻¹. Qual será o consumo de energia necessário para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm,

- (a) supondo aplicável a lei de Rittinger, e
- (b) supondo aplicável a lei de Kick?

Qual destes resultados considera de maior confiança e porquê?

Energy for size reduction

Rittinger's law

Bond's law

Kick's law

$$E = K_R f_c \left(\frac{1}{L_2} - \frac{1}{L_1} \right)$$

$$E = K_R f_c \left(\frac{1}{L_2} - \frac{1}{L_1} \right) \qquad E = E_i \sqrt{\left(\frac{100}{L_2} \right)} \left(1 - \frac{1}{\sqrt{q}} \right) \quad E = K_K f_c \ln \left(\frac{L_1}{L_2} \right)$$

Fine reduction

Intermediate reduction

Coarse reduction

E – energy spent for size reduction, [KJ/kg]

 K_R , K_K - Rittinger, Kick constant respectively; empririal constant related to the equipment; without physical meaning

 f_{c} — Compressive strength [MPa]; caracterizes the solid material that is being reduced

For bond's law only:

 E_i - the work index: amount of energy required to reduce unit mass of material from L1=∞ to a size L2=100 µm

$$q = L_1/L_2$$

Rittinger's law

$$E = K_R f_c \left(\frac{1}{L_2} - \frac{1}{L_1} \right)$$

Fine reduction

Kick's law

$$E = K_K f_c \ln \left(\frac{L_1}{L_2} \right)$$

Coarse reduction

$$13 = K_r f_c \left(\frac{1}{10} - \frac{1}{50} \right)$$

$$K_r f_c = 162.5 \,\mathrm{kW \, s \, kg^{-1} mm}$$

Logo, a energia necessária para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm é:

$$E = 162.5 \left(\frac{1}{25} - \frac{1}{75} \right)$$
 $E = 4.33 \text{ kW s kg}^{-1}$

$$13 = K_k f_c \ln \left(\frac{50}{10} \right)$$

$$K_k f_c = 8.1 \, \text{kW s kg}^{-1}$$

Conclusão:

Como se trata de moagem grossa de partículas de 7.5 cm, a lei de Kick é a mais fiável para calcular *E*.

Logo, a energia necessária para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm é:

$$E = 8.1 \ln \left(\frac{75}{25}\right) \qquad E = 8.87 \text{ kW s kg}^{-1}$$

Problema II.2

Usou-se um triturador para triturar um material cuja resistência à compressão era de 22.5 MN/m². O tamanho da alimentação era menor que 50 mm, maior que 40 mm e a energia necessária era 13.0 kW s kg⁻¹. A análise por peneiração do produto produziu o seguinte resultado:

Dimensão da (mm)	abertura	Percentagem do produto (% em número)		
Passando por	6.00	100		
Retido em	4.00	26		
Retido em	2.00	18		
Retido em	0.75	23		
Retido em	0.50	8		
Retido em	0.25	17		
Retido em	0.125	3		
Passando por	0.125	5		

Lógica:

- Determinar a dimensão média do produto.
- Determinar K_k assumindo moagem grosseira
- Obter E para as condições pedidas.

Qual seria a potência necessária para triturar 1 kg/s de um material com resistência à compressão de 45 MN/m² a partir de uma alimentação de tamanho menor que 45 mm, maior que 40 mm para dar um produto de tamanho médio de 0.50 mm? OSF-FCTUNL

- 1) Determinar a dimensão média do produto.
 - a) Método de Bond "Bond's diameter is defined as the mesh size through which 80% of material passes, in a sieving characterization experiment."

Assuma-se 4 mm pelo método de Bond.

Dimensão da abertura (mm)		Percentagem do produto (% em número)		
Passando por	6.00	100		
Retido em	4.00	26		
Retido em	2.00	18		
Retido em	0.75	23		
Retido em	0.50	8		
Retido em	0.25	17		
Retido em	0.125	3		
Passando por	0.125	5		

b) Calculo diâmetro médio em massa/volume

Particle size distribution: mean diameter

	Measurement in weight, x	Measurement in number, n
Mean diameter based on volume (weight) $\bar{d}_{\it \chi} = \bar{d}_{\it v}$	$= \frac{\sum x_i d_i}{\sum x_i}$	$= \frac{\sum n_i d_i^4}{\sum n_i d_i^3}$

$$d_x = \frac{177.92}{37.99} = 4.68 \text{ mm}$$

aperture size (mm)	mean d (mm)	% product	ni	nidi (mm)	nidi ² (mm)	nidi ³ (mm)	nidi ⁴ (mm)
6		100					
4	5	26	0.26	1.3	6.5	32.5	162.5
2	3	18	0.18	0.54	1.62	4.86	14.58
0.75	1.375	23	0.23	0.31625	0.434844	0.59791	0.822126
0.5	0.625	8	0.08	0.05	0.03125	0.019531	0.012207
0.25	0.375	17	0.17	0.06375	0.023906	0.008965	0.003362
0.125	0.1875	3	0.03	0.005625	0.001055	0.000198	3.71E-05
	0.125	5	0.05	0.00625	0.000781	9.77E-05	1.22E-05
sum				2.281875	8.611836	37.9867	177.9177

2) Determinar K_k

Diâmetro médio da alimentação = (50+40)/2 = 45 mm Diâmetro médio do produto = 4 mm Energia consumida = 13.0 kW s kg⁻¹ Força de compressão = 22.5 MN/m²

$$13 = K_k f_c \ln\left(\frac{45}{4}\right)$$

$$K_k = \frac{5.9}{22.5} = 0.24 \text{ kW s kg}^{-1} \text{MN}^{-1} \text{m}^2$$

3) Obter E para as condições pedidas.

A potência necessária para triturar 1 kg/s de um material com resistência à compressão de 45 MN/m² a partir de uma alimentação de menor que 45 mm, maior que 40 mm para dar um produto de tamanho médio de 0.50 mm, vem

Diâmetro médio da alimentação = (45+40)/2 = 42.5 mm Diâmetro médio do produto = 0.5 mm Força de compressão = 45 MN/m²

Energy for size reduction

Depending on the size of the feed and of the desired product, reduction equipment is classified as: (1)Fine, (2)Intermediate, (3)Coarse; different laws of energy are applied in each case

	FINE	INTERMEDIATE	COARSE
Feed size (L1)	5-2 mm	50-5 mm	1500-40 mm
Product size (L2)	<0,1 mm (powder)	5-0,1 (granular/powder)	50-5 mm (large/granular)
Examples of equipment	Ball mill Buhrstone mill Roller mill NEI pendulum mill Griffin mill Ring roller mill Tube mill	Crushing rolls Disc crusher Edge runner mill Hammer mill Single roll crusher Pin mill Symons disc crusher	Stag jaw crusher Stag jaw crusher Dodge jaw crusher Gyratory crusher

Kick's law

$$E = K_K f_c \ln \left(\frac{L_1}{L_2}\right)$$

Coarse reduction

 $E = 47.98 \,\mathrm{kW \, s \, kg^{-1}}$

OSF-FCTUNL

Para triturar 1kg/s: P = 47.98 kW

2) Determinar K_k

Diâmetro médio da alimentação = (50+40)/2 = 45 mmDiâmetro médio do produto = 4 mm Energia consumida = 13.0 kW s kg⁻¹ Força de compressão = 22.5 MN/m²

Energy for size reduction

FINE

5 2 mm

Food size (I 1)

Depending on the size of the feed and of the desired product, reduction equipment is classified as: (1)Fine, (2)Intermediate, (3)Coarse; different laws of energy are applied in each case

$13 = K_k f_c \ln \left(\frac{45}{4}\right)$

$$K_k = \frac{5.9}{22.5} = 0.1$$

 $K_k = \frac{5.9}{22.5} = 0$. E se se considerar o diâmetro médio do produto (L_2) = 4.68 mm, qual o valor de potência obtido?

3) Obter E para as condiçã

A potência necessária para ti MN/m² a partir de uma alim produto de tamanho médio

Diâmetro médio da alimenta Diâmetro médio do produto

Força de compressão = 45 MN/m²

Obtém-se P = 51.97 kW, a diferença é pequena e logo é fiável a aproximação feita pelo método de Bond.

 $E = 47.98 \, \text{kW s kg}^{-1}$

COARSE INTERMEDIATE

50-5 mm 5-0.1(granular/powder)

Crushing rolls

Disc crusher Edge runner mill Hammer mill Single roll crusher Pin mill Symons disc crusher 1500-40 mm 50-5 mm (large/granular)

Blake jaw crusher Stag jaw crusher Dodge jaw crusher Gyratory crusher

Kick's law

$$E = K_K f_c \ln \left(\frac{L_1}{L_2}\right)$$

Coarse reduction

Problema II.6

Um moinho de bolas com 1.2 m de diâmetro está a trabalhar a 0.80 Hz verificando-se que o moinho não está a trabalhar satisfatoriamente. Sugere alguma modificação nas condições de funcionamento?

Equipment for size reduction

Ball mill (Moinho de bolas)

• A **ball mill** has a critical rotation speed $(w_c, rad/s)$ that must be avoided. At the critical point, the ball (with mass m and radius r) is subject to a centrifugal force (mu^2/r) equal to the gravitational force (mg)

$$m\frac{u^2}{r} = mg \qquad m \, rw_c^2 = mg \Leftrightarrow$$

$$w_c = \sqrt{\frac{g}{r}}$$

• The optimal rotation speed $(w_o, rad/s)$ should be chosen below the critical value $(w_c, rad/s)$ in order to maximize milling efficiency:

$$w_o \sim [1/2, 3/4] \times w_c$$

 W_c - [rad/s], r - (mill internal radius - particle radius)], g = 9,81 [m/s²]

1 Hz = 2π rad/s – rotação por segundo rad = comprimento do arco/raio do arco (é adimensional)

O moinho de bolas com 1.2 m de diâmetro está a trabalhar a 0.80 Hz. Verifica-se que corretamente o moinho deveria funcionar com uma rotação ótima de (0.32+0.48)/2 =0.4 Hz, i.e. a metade da rotação a que está.

A velocidade angular crítica (para partículas pequenas, $r \cong \text{raio do moinho}$) vem

$$w_c = \sqrt{\frac{9.81}{0.6}} = 4.04 \text{ rad/s}$$
 $\frac{4.04}{2\pi} = 0.64 \text{ Hz}$

A velocidade angular ótima é approx. entre $0.5 w_c$ a $0.75 w_c$, logo varia de

$$w_o = 0.5 \times 4.04 = 2.02 \, \mathrm{rad/s}$$
 $\frac{2.02}{2\pi} = 0.32 \, \mathrm{Hz}$ $w_o = 0.75 \times 4.04 = 3.03 \, \mathrm{rad/s}$ $\frac{4.04}{2\pi} = 0.48 \, \mathrm{Hz}$

Velocidade angular [rad/s] é por definição a razão do deslocamento angular pelo tempo gasto para que esse deslocamento ocorra; e o deslocamento angular = distância S percorrida / raio r do moinho (se S=r, wc vem em rad/s; se $S=2\pi r$ ou seja 1 volta, wc vem em rot/s=Hz).

See you soon at TP and P lab classes!

TP1: 14.10 (Centrifugation), 11.11, 18.11 (Filtration)

TP2: 11.10 (Sedimentation), 15.11, 22.11 (Filtration)

P3: 29.11 and 6.12, 8h, lab 521 - DQ 5th floor

P4: 29.11 and 6.12, 13h, lab 521 – DQ 5th floor P classes are mandatory