

Общероссийский математический портал

Ф. Ф. Султанбеков, Заряды и автоморфизмы одного класса конечных логик множеств, Констр. meop. $\phi y n k u.$ u $\phi y n k u.$ u d y n k u. d y n k u.

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:30:45

- 3. Габдулкаев Б. Г. Оптимальные аппроксимации решений линейных задач. - Казань: Изд-во КГУ. - 1980. - 232 с.
- 4. Гусейнов А.И., Мухтаров Х.Ш. Введение в теорию нелинейных сингулярных интегральных уравнений. М.: Наука, 1980. 414 с.
- 5. Раджабов Б. Х., Салаев В. В. О полной непреривности одного сингулярного оператора // ДАН Тадж. ССР. — 1973. — Т.16. — № 12.
- 6. Габдулхаев Б. Г. Ободном прямом методе решения интегральных уравнений // Изв. вузов. Матем. 1965.— № 3.— С.51—60.
- 7. Габдулхаев Б.Г.К численному решению полных сингулярных интегральных уравнений // Краевне задачи и их приложения / Чуваш. ун-т. Чебоксары, 1988. С.139 146.

Φ .Ф.Султанбеков

ЗАРЯДЫ И АВТОМОРФИЗМЫ ОДНОГО КЛАССА КОНЕЧНЫХ ЛОГИК МНОЖЕСТВ

Пусть k, m — натуральные числа, $X = \{x_1, x_2, ..., x_{km}\}$ — конечное множество. Через X(km,k) обозначается логика множеств (6-класс) на X, состоящая из всех подмножеств X, число элементов которых кратно k. В работе [I] показано, что любая мера на логике X(km,k) имеет единственное продолжение до заряда на алгебре всех подмножеств X. Доказательство этого опирается на интересную комбинаторную лемму, утверждающую, что в качестве образующих логики X(km,k) можно выбрать km-1 некоторых k — элементных подмножеств X.

В настоящей работе мы приводим новое прямое доказательство упомянутого выше результата. Затем описываются крайние точки пространства состояний логики X(km,k) и автоморфизмы этой логики. Более подробно с тематикой δ —классов и мер на них можно познакомиться в работах [2], [3].

§ I. Заряды на логиках множеств

Зарядом на логике X(km,k) называется ортоадцитивная функция $v: X(km,k) \rightarrow \mathbb{R}$. Например, если $f: X \rightarrow \mathbb{R}$ — произ — вольная функция, то отображение $v_f(A) = \sum_{x \in A} f(x)$, $A \in X(km,k)$ является зарядом на X(km,k). Такие заряды будем называть регулярными.

Теорема І. Пусть m > 3. Тогда для любого заряда v на логике X(km,k) существует единственная функция f такая, что v = v.

Доказательство. Сначала установим регулярность любого заряда на логике X(3k,k). Пусть v — произвольный заряд на X(3k,k) и Y(X)=w. Введем регулярный заряд v_k по функции $h(x)=\frac{w}{3k}(x\in X)$. Тогда $v_k=v_k-v_k$ — заряд на логике X(3k,k)такой, что $v_k(X)=0$. Покажем, что v_k — регулярный заряд.

Пусть $x \in X$ и A — атом X(Jk,k) , не содержащий x . Обо-значим $A = \{a_1,a_2,...,a_k\}$, $A_i = A \setminus \{a_i\}$ и рассмотрим функцию

$$p(x,A) = \sum_{i=1}^{k} \gamma_{i}(A_{i} U\{x\}) - (k-1)\gamma_{i}(A).$$

Установим, что функция p(x,A) на самом деле не зависит от A .

Случай І. A и B – непересекающиеся атомы, не содержащие x. Обозначим $B = \{ \mathcal{L}_1, \mathcal{L}_2, ..., \mathcal{L}_k \}$, $B_i = B \setminus \{ \mathcal{L}_i \}$, $\mathcal{L} = \{ x, c_2, c_3, ..., c_k \}$. Тогда X = AUBUC. Надо установить равенство $\rho(x, A) = \rho(x, B)$, ко – торое равносильно такому равенству:

$$\sum_{i=1}^{k} \sqrt[3]{A_i \cup \{x\}} + (k-1)\sqrt[3]{B} = \sum_{i=1}^{k} \sqrt[3]{B_i \cup \{x\}} + (k-1)\sqrt[3]{A}.$$

Шаг I. Имеем $\sqrt[3]{A_1 U\{x\}} + \sqrt[3]{B} = -\sqrt[3]{\{a_1, C_2, ..., C_k\}} = -\sqrt[3]{a_1 C_2 ... C_k}$ (в дальнейшем мы будем использовать подобную сокращенную запись), $\sqrt[3]{B_1 U\{x\}} + \sqrt[3]{A} = -\sqrt[3]{a_1 C_2 C_2 C_2 ... C_k}$. Значит, (I) равносильно $\sqrt[3]{A_1 C_2 ... C_k} + \sum_{k=2}^{k} \sqrt[3]{A_1 U\{x\}} + (k-2)\sqrt[3]{B} = \sqrt[3]{A_1 C_2 ... C_k} + \sum_{k=2}^{k} \sqrt[3]{B_1 U\{x\}} + (k-2)\sqrt[3]{A}$.

$$\text{ Har 2. Mmeem } v_0(b_1c_2...c_K) + v_0(A_2U\{x\}) = -v_0(a_2b_2b_3...b_K), v_0(a_2c_2...c_K) +$$

+
$$\sqrt[k]{(B_2 \cup \{x\})} = -\sqrt[k]{(b_2 a_2 a_3 ... a_K)}$$
. Значит, (2) равносильно $\sqrt[k]{(b_2 a_2 ... a_K)} + \sum_{i=3}^{k} \sqrt[k]{(A_i \cup \{x\})} + (k-2)\sqrt[k]{(B)} = \sqrt[k]{(a_2 b_2 ... b_K)} + \sum_{i=3}^{k} \sqrt[k]{(B_i \cup \{x\})} + (k-2)\sqrt[k]{(A)}$.

Шаг 3. Имеем $v_o(A_3 \cup \{x\}) + v_o(B) = -v_o(a_3 c_2...c_\kappa)$, $v_o(B_3 \cup \{x\}) + v_o(A) = -v_o(b_3 c_2...c_\kappa)$. Значит, (3) будет равносильно равенству $v_o(b_3 a_2 a_3...a_\kappa) + v_o(b_3 c_2...c_\kappa) + \sum_{i=4} v_o(A_i \cup \{x\}) + (k-3)v_o(B) = -v_o(a_2 b_2 b_3...b_\kappa) + v_o(a_3 c_2...c_\kappa) + \sum_{i=4} v_o(B_i \cup \{x\}) + (k-3)v_o(A)$ или такому $v_o(a_1 b_1 x a_4 a_5...a_\kappa) + \sum_{i=4} v_o(A_i \cup \{x\}) + (k-3)v_o(B) = -v_o(a_1 b_1 x b_4 b_5...b_\kappa) + \sum_{i=4} v_o(B_i \cup \{x\}) + (k-3)v_o(B)$ (4)

Шаг 4. Имеем $v_0(A_4 \cup \{x\}) + v_0(B) = -v_0(a_4c_2...c_K)$ и $v_0(B_4 \cup \{x\}) + v_0(A) = -v_0(a_2a_3b_2b_3b_3...b_K)$. Далее $v_0(a_2b_2xa_4...a_K) + v_0(b_4c_2...c_K) = -v_0(a_2a_3b_2b_3b_3...a_K)$. Следовательно, (4) равносильно равенству

$$\frac{1}{2} \left(a_{2} b_{2} a_{3} b_{3} a_{3} \dots a_{k} \right) + \sum_{i=5}^{k} \frac{1}{2} \left(A_{i} U \left\{ x \right\} \right) + (k-4) \frac{1}{2} \left(B \right) = \\
= \frac{1}{2} \left(a_{2} b_{2} a_{3} b_{3} b_{3} \dots b_{k} \right) + \sum_{i=5}^{k} \frac{1}{2} \left(B_{i} U \left\{ x \right\} \right) + (k-4) \frac{1}{2} \left(A \right) . \quad (5)$$

Повторяя шаги 3, 4 с множествами A_5 , A_6 , B_5 , B_6 , получим, что (5) равносильно такому равенству:

$$\frac{1}{2} \left(a_{2} \, b_{2} \, a_{3} \, b_{3} \, a_{5} \, b_{5} \, a_{7} \dots \, a_{K} \right) + \sum_{i=1}^{K} \sqrt{A_{i} \, U \left\{ x \right\}} + (k-6) \sqrt{B} = \\
= \sqrt{a_{2} \, b_{2} \, a_{3} \, b_{3} \, a_{5} \, b_{5} \, b_{7} \dots \, b_{K}} + \sum_{i=1}^{K} \sqrt{B_{i} \, U \left\{ x \right\}} + (k-6) \sqrt{A} .$$
(6)

Поэтому, если $k=2\ell$ четно, то, повторяя шаги 3, 4 нужное коли — чество раз, получим, что (6) равносильно соотношению

$$\sqrt[3]{(a_1b_2 a_3 b_3 a_5 b_5 \dots a_{2\ell-1} b_{2\ell-1})} = \sqrt[3]{(b_1 a_2 b_3 a_3 b_3 a_5 \dots b_{2\ell-1} a_{2\ell-1})},$$

которое верно. Если же $k=2\ell+1$ нечетно, то (6) будет равносильно соотношению

$$\begin{split} & \gamma_{0}(a_{2}b_{2}a_{3}b_{3}a_{5}b_{5}...a_{2\ell-1}b_{2\ell-1}a_{2\ell+1}) + \gamma_{0}(A_{2\ell+1}U\{x\}) + \gamma_{0}(B) = \\ & = \gamma_{0}(b_{2}a_{2}b_{3}a_{3}b_{5}a_{5}...b_{2\ell-1}a_{2\ell-1}b_{2\ell+1}) + \gamma_{0}(B_{2\ell+1}U\{x\}) + \gamma_{0}(A). \end{split}$$

Так как $v_o(A_{2\ell+1} \cup \{x\}) + v_o(B) = -v_o(a_{2\ell+1}c_2...c_\kappa)$, $v_o(B_{2\ell+1} \cup \{x\}) + v_o(A) = -v_o(b_{\ell+1}c_2...c_\kappa)$, то (7) равносильно равенству $v_o(a_2b_2a_3b_3a_5b_3...$... $a_{2\ell-1}b_{2\ell-1}a_{2\ell+1}) + v_o(b_{2\ell+1}c_2...c_\kappa) = v_o(b_2a_2b_3a_3b_3a_3...b_{2\ell-1}a_{2\ell+1}b_{2\ell+1}) + v_o(a_{2\ell+1}c_2...c_\kappa)$, которое верно, поскольку левая часть есть $-v_o(a_1b_2a_4b_4a_5b_3...a_2b_2b_3)$, а правая $-v_o(b_2a_2b_3a_4b_3a_5...b_2a_2b_3)$. Случай 2. А и В — произвольные атомы, не содержащие x.

Поскольку $card\ A = card\ B = \hat{k}$, а $card\ X = 3\hat{k}$, то существует атом C, не содержащтй точку x и $A\mathit{NC} = \emptyset$, $B\mathit{NC} = \emptyset$. По доказанному в случае I имеем p(x,A) = p(x,C); p(x,B) = p(x,C). Shaчит, p(x,A) = p(x,B) для любых атомов A, B, не содер — жащих x.

Теперь положим

$$f_o(x) = \frac{1}{k} \left[\sum_{i=1}^{k} \gamma_o(A_i \cup \{x\}) - (k-1) \gamma_o(A) \right] . \tag{*}$$

Остается проверить, что $\gamma_c = \gamma_f$. Достаточно установить это равенство на атомах логики X(3k, k). Пусть $\mathcal{B} = \{b_2, \dots, b_k\}$ — атом и $a \notin \mathcal{B}$. Для вичисления значения $f_o(b_i)$ по формуле (*) выберем в качестве атома $A = (\mathcal{B} \setminus \{b_i\}) \cup \{a\}$. Тогда $f_o(b_i) =$

$$= \frac{f}{\mathcal{R}} \left[\gamma_0(B) + \gamma_0(ab_1b_3...b_K) + \gamma_0(ab_2b_1b_4...b_K) + ... + \gamma_0(ab_2...b_{K-1}b_1) - \\ -(K-1)\gamma_0(ab_2...b_K) \right] = \frac{f}{\mathcal{R}} \left[\gamma_0(B) + \gamma_0(B_2U\{a\}) + \gamma_0(B_3U\{a\}) + ... + \gamma_0(B_2U\{a\}) - (k-1)\gamma_0(B_2U\{a\}) \right] = \frac{f}{\mathcal{R}} \left[\gamma_0(B) + \sum_{i=1}^K \gamma_0(B_iU\{a\}) - k\gamma_0(B_2U\{a\}) \right].$$
Аналогично, $f_0(b_1) = \frac{f}{\mathcal{R}} \left[\gamma_0(B) + \sum_{i=1}^K \gamma_0(B_iU\{a\}) - k\gamma_0(B_2U\{a\}) \right].$

Hostomy
$$\gamma_{f}(\mathcal{B}) = \sum_{j=1}^{K} f_{o}(\mathcal{E}_{j}) = \frac{1}{\mathcal{E}} \left[\mathcal{R} \gamma_{o}(\mathcal{B}) + \mathcal{R} \sum_{i=1}^{K} \gamma_{o}(\mathcal{B}_{i} \cup \{\alpha\}) - \right]$$

$$-k\sum_{j=1}^{K}\gamma_{j}(B_{j}\cup\{\alpha\})]=\gamma_{j}(B)$$
. Итак, любой заряд ϑ на логике

X(3k,k) регулярен; функция, порождающая y , задается по фор – муле

$$f(x) = \frac{1}{k} \left[\sum_{i=1}^{k} \gamma(A_i \cup \{x\}) - (k-1)\gamma(A) \right], \quad (**)$$

где $A = \{\alpha_1, \alpha_2, ..., \alpha_k\}$ — любой атом X(3k, k) , не содержащий точку x , $A_i = A \setminus \{\alpha_i\}$. Единственность функции f следует из таких рассуждений. Поскольку равенство (**) для регулярных за рядов вырождается в тождество, то предположение $y = y_0$

$$g(x) = \frac{1}{k} \left[\sum_{i=1}^{k} \sqrt[k]{A_i \cup \{x\}} - (k-1)\sqrt[k]{A} \right] = \frac{1}{k} \left[\sum_{i=1}^{k} \sqrt[k]{A_i \cup \{x\}} - (k-1)\sqrt[k]{A} \right] = f(x).$$

Наконец, покажем, как общий сдучай логики X(km.k) (m > 3)редуцируется к логике X(3k,k).

Пусть $X' \subset X$, card X' = 3k , V - зарян на X(km, k). Сужение заряда γ на логику X(3k,k), которое мы обозначим γ' , по доказанному регулярно. Соответствующая γ' функция f' имеет вид

$$f'(x) = \frac{1}{k} \left[\sum_{i=1}^{k} \gamma'(A_i \cup \{x\}) - (k-1) \gamma'(A) \right] =$$

$$= \frac{1}{k} \left[\sum_{i=1}^{k} \gamma(A_i \cup \{x\}) - (k-1) \gamma(A) \right],$$

где $A \subset X'$, card A = k, $x \notin A$, $x \in X'$.

Пусть γ'' и f'' – аналогичные объекты для другого множества $X'' \subset X$, card X'' = 3k. Установим согласованность функцы f', f'': если $x \in X' \cap X''$, то f'(x) = f''(x).

Это очевидно, если $\operatorname{Card} X \cap X'' = \ell > k$. Пусть $1 \le \ell \le k$ и $X' = \{x, x_1, ..., x_{\ell-1}, x_{\ell+1}, ..., x_{3k}\}, X'' = \{x, x_1, ..., x_{\ell-1}, x_{\ell+1}, ..., x_{3k}\}$. Обозначим $X''' = \{x, x_1, ..., x_{\ell-1}, x_{\ell+1}, ..., x_{k+1}, ..., x_{k+\ell}, x_{\ell+1}, ..., x_{\ell+\ell}, x_$ Тогда $\operatorname{\it card} X'''=3k$ и существует атом $A\subset X'\cap X'''$, не содержа щий x . Поэтому f''(x)=f'(x) . Аналогично, существует атом $\mathcal{B}\in X''\cap X'''$, не содержащий x , f''(x)=f''(x) . Теорема доказа на.

I) m=2, $k \geqslant 3$. В этом случае размерность пространства зарядов на логике X(2k,k) равна $\frac{1}{2}C_{2k}^{k}+1$, размерность пространства функций на X равна 2k. Поскольку $\frac{1}{2}C_{2k}^{k}+1>2k$, то на X(2k,k) существуют нерегулярные заряды. Вот пример нерегулярного заряда. Рассмотрим множество $N=\{1,2,\ldots,2k\}$. Каждый атом логики N(2k,k) будем записывать в порядке возрастания его чисел и введем порядок на атомах: $A=\{a_1,a_2,\ldots,a_k\}< B=\{b_1,\ldots,b_k\}\Leftrightarrow b_2a_1$, или $b_1=a_1,b_2>a_2,\ldots$, или $a_2=b_1a_2=b_2,\ldots,a_n=b_n$, $a_2=b_1$, $a_2=b_2$, $a_2=b_1$, $a_2=b_2$, $a_2=b_1$, $a_2=b_2$

$$\rho(1,\{2,3,4\}) = \lambda(123) + \lambda(124) + \lambda(134) - 2 \cdot \lambda(234) = 0 + 1 + 4 - 2 \cdot 10 = -15,$$

$$\rho(1,\{2,4,5\}) = \lambda(124) + \lambda(125) + \lambda(145) - 2 \cdot \lambda(245) = 1 + 2 + 7 - 2 \cdot 13 = -16.$$

2) на логиках X(4,2), X(2,1), X(k,k) любой заряд регулярен.

§ 2. Состояния и автоморфизмы логик X (km,k)

В этом параграфе будем предполагать m > 3, k > 2. Мера M на логике X(km,k) такая, что $\mu(X) = 1$ называется состоянием. Множество всех состояний на X(km,k) обозначим S(X(km,k)) = S. Ближайшая наша цель — найти крайние точки выпуклого множества S.

Теорема 2. Пусть $\mu \in S(X(km,k))$ — двузначное на атомах логики X(km,k) . Тогда существуют единственные $y \in X$ и $t \in \left[0,\frac{1}{m}\right] \mathcal{U}\left(\frac{1}{m},\frac{1}{m-1}\right]$ такие, что функция f , порождающая μ , имеет вид

 $f(x) = \begin{cases} 1 - t(m - \frac{1}{k}), & \text{если } x = y \\ \frac{t}{k}, & \text{если } x \neq y \end{cases} (x \in X).$

Доказательство. Пусть μ на атомах X(km,k) принимает значения \mathcal{L} , β ; $0 \le \mathcal{L} < \beta \le I$. Тогда для любых $\mathcal{L}_I \ne \mathcal{L}_Z$, \mathcal{L}_I ,

 β - α . Пусть $f(x) = \min_{x \in X} f(x)$. Таким образом, f может принимать лишь два значения: $f(x_0)$ и $f(x_0) + \beta - \alpha$. Обозначим $X_0 = \{x \mid f(x) = f(x_0)\}, X_0 = \{x \mid f(x) = f(x_0) + \beta - \alpha\}$.

 $X_0 \equiv \{x \mid f(x) = f(x_0)\}, X_1 \equiv \{x \mid f(x) = f(x_0) + \beta - \alpha\}$. Случай I. card $X_0 \geqslant k$. Тогда card $X_1 \leqslant k$. Иначе, если $k \leqslant \text{card} X_1$, то существуют два атома $A_1 \in X_0$, $A_2 \in X_1$ и значит, $\mu A_1 = k f(x_0) = \alpha$, $\mu A_2 = k (f(x_0) + \beta - \alpha) = \beta$. Из этих равенств получаем k = 1, что противоречит нашему предноложению относительно k. Рассмотрим атом A, состоящий из card X_1 точек множества X_1 и k-card X_1 точек множества X_2 и k-card X_1 точек множества X_2 и k-card X_1 точек множества X_2 о то имеем также равенство $f(x_0) = \frac{\alpha}{k}$. Поэтому $\mu A = \text{card} X_1 (\beta - \alpha) + \alpha$. Предположение $\mu A = \alpha$ влечет card $X_1 = 0$, $f \equiv \text{const}$, что противоречит двузначности состояния μ . Следовательно, $\mu A = \beta$, откуда получаем μ card μ 1. Итак, μ 2. Следовательно, μ 3. Так как μ 4. Состояние, то имеем также μ 5. μ 3. Так как μ 6. Состояние, μ 3. μ 4. Предположение μ 4. Предположение μ 5. Поэтому μ 6. Так как μ 6. Состояние, μ 6. Поемовательно, μ 6. Так как μ 7. Состояние, μ 8. Так как μ 7. Состояние, μ 8. Так как μ 7. Оторда μ 6. Поемовательно, μ 8. Так как μ 8. Оторда μ 9. Порда μ 8. Пакие, μ 9. Пакие, что

$$f(x) = \begin{cases} 1 - \alpha (m - \frac{1}{k}), & \text{если } x = y \\ \frac{\alpha}{k}, & \text{если } x \neq y \end{cases} (x \in X).$$

Случай 2. $card X_0 < k$. Тогда $card X_1 > k$ и, взяв атом $B < X_1$, найдем $\rho B = k(f(x_0) + \beta - \alpha) = \beta$, $f(x_0) = \alpha - \frac{k-1}{k}\beta$. Рассмотрим атом A, состоящий из $card X_0$ точек множества X_0 и $k - card X_0$ точек множества X_1 . Тогда $\rho A = card X_0(\alpha - \frac{k-1}{k}\beta) + (k - card X_0) \frac{\beta}{k} \in \{\alpha, \beta\}$. Снова, как для случая I, равенство $\rho A = \beta$ противоречит двузначности ρA на атомах. Равенство же $\rho A = \alpha$ дает $card X_0 = 1$, $card X_1 = mk - 1$. Из равенства $\rho A = 1$ найдем $\alpha - \frac{k-1}{k}\beta + (mk-1)\frac{\beta}{k} = 1$ или $\alpha + \beta(m-1) = 1$. Отсюда получим $0 < \alpha < 1 - \beta(m-1) < \beta$ или $\beta > \frac{1}{m}$; $\beta < \frac{1}{m-1}$. Итак, существуют $\gamma \in X_0$, $\gamma < 1 - \beta < \frac{1}{m-1}$ такие, что

$$f(x) = \begin{cases} 1 - \beta(m - \frac{1}{\kappa}), & \text{QCJM} \quad x = y \\ \frac{\beta}{\kappa} & \text{QCJM} \quad x \neq y \end{cases} (x \in X).$$

Случаи I, 2 доказывают теорему.

С ледствие. Пусть $\mathcal M$ — двузначное состояние на логике X(km,k). Тогда существует единственное $y\in X$ такое, что

$$\mu A = \begin{cases} 0, & \text{если} & y \notin A \\ 1, & \text{если} & y \in A \end{cases} (A \in X(Xm, k)).$$

Доказательство. По условию β с двузначно на атомах, причем $\alpha = 0$, $\beta = I$. Это соответствует случаю I. По — этому существует $\gamma \in X$ такое, что

$$f(x) = \begin{cases} 1, & \text{если} \quad x = y \\ 0, & \text{если} \quad x \neq y \end{cases} (x \in X).$$

Отсюда получаем требуемое.

Замечан и е. Формальная подстановка значения $t=\frac{f}{m}$ в теореме 2 приводит к состоянию, однозначному на атомах логики X(km,k). Другим граничным значением в этой теореме является $t=\frac{1}{m-t}$. Как мы покажем ниже, именно граничные значения t=0 и $t=\frac{1}{m-t}$ описывают все крайние точки пространства состояний S.

Теорема 3. Множество крайних точек $\mathcal{E} \times t \mathcal{S}(X(km,k)) = \mathcal{C}$ состоит из состояний $\hat{\mathcal{Y}}$, $\hat{\mathcal{Y}}(y=x_1,x_2,...,x_m)$, функции которых имеют вид

$$f_{\hat{y}}(x) = \begin{cases} 0, \text{ если } x \neq y \\ 1, \text{ если } x = y \end{cases}, \qquad f_{\hat{y}}(x) = \begin{cases} \frac{1}{\kappa(m-1)}, \text{ если } x \neq y \\ -\frac{k-1}{\kappa(m-1)}, \text{ если } x = y \end{cases}.$$

Доказательство. Заметим, что f > g влечет $\mu_f > \mu_g$. Пусть $\mu \in S$ и f функция, соответствующая μ .

а). Допустим, что f > O и $\mu \neq g$ ни при каком $g \in X$. Тогда

а). Допустим, что
$$f > 0$$
 и $M \neq y$ ни при каком $y \in X$. Тогда $\min_{x \in X} \{f(x) | f(x) > 0\} = f(x_0), 0 < f(x_0) < 1$ и $f > f(x_0) I_{\{x_0\}}$, где $I_{\{x_0\}}$ есть характеристическая функция множества $\{x_0\}$. Положим $g = (f - f(x_0) I_{\{x_0\}})$ $\frac{1}{1 - f(x_0)}$. Тогда $g > 0$ и $\sum_{x \in X} g(x) = (\sum_{x \in X} f(x) - f(x_0)) = \frac{1}{1 - f(x_0)} = 1$. Значит, $\mu_g \in S$ и равенство $f = -64$

 $=f(x_i)I_{\{x_i\}}+(f-f(x_i)I_{\{x_i\}})$ влечет $\mu=f(x_i)x_i+(1-f(x_i))\mu_g$. Следова –

тельно, р ∉ €.

б). Допустим, что f имеет отрицательные значения. Пусть $f(x_0)=\min_{x\in X}f(x)=-c$, c>0. Тогда f(x)>0 для любого атома A, не содержащего точку x. Действительно, если бы существо—вал атом $A=\{a_1,a_2,\dots,a_k\}$ $f(x_0)=0$ мы бы имели

$$0 = \mu_{f}(A) = \sum_{j=1}^{k} f(a_{j}) > f(a_{j}) + \dots + f(a_{i-1}) + f(x_{i}) + \dots + f(a_{k-1}) + \dots + f(a_{k}) = \mu_{f}(a_{j} \dots a_{i-1} x_{i} a_{i+1} \dots a_{k}).$$

Пусть \mathcal{O} — совокупность всех атомов логики $\mathcal{X}(km,k)$, не содержащих точку \mathcal{X}_o . Положим $\mathcal{A}=\min_{A\in\mathcal{C}}\mathcal{O}_{\mathcal{A}}(A)$. Тогда $\mathcal{O}<\mathcal{A}<\mathcal{I}$. В са-

мом деле, $\Lambda > 0$, так как семейство $\mathcal O$ конечно и $\mu_f(A) > 0$ для всех $A \in \mathcal O$. Предположение $\Lambda = 1$ означало бн $\mu_f(A) = 1$ для всех $A \in \mathcal O$. Тек как $\lambda m - 1 > 2 \lambda r$, то в $\mathcal O$ существуют два непересе – кающихся атома. Это противоречит условию $\mu_f(X) = 1$.

Состояние \mathcal{X}_o на атомах имеет вид

$$x_o(A) =
 \begin{cases}
 0, & \text{если } x_o \in A, \\
 \frac{1}{m-1}, & \text{если } x_o \notin A.
 \end{cases}$$

Покажем, что $\mathcal{M}_f \geqslant \mathcal{X} \overset{\vee}{x_o}$. Достаточно проверить это неравенство на атомах. Если \hat{A} — атом и $\overset{\wedge}{x_o} \in \hat{A}$, то $\mathcal{X}_o(\hat{A}) = 0$, $\mathcal{M}_f(\hat{A}) \geqslant 0$. Если $\overset{\wedge}{x_o} \in \hat{A}$, то $\mathcal{M}_f(\hat{A}) \geqslant 0$. $\overset{\wedge}{x_o} = \mathcal{X}_o(\hat{A})$. Поэтому, если $\mathcal{M}_f \neq \overset{\vee}{x_o}$, $\overset{\wedge}{x_o} = \mathcal{M}_f = (1-\hat{A})^2 + \overset{\vee}{x_o}$. Следова — тельно,

Теперь покажем, что состояния $y, y \in \mathcal{E}$. Проверим это для y. Допустим, что $y = \lambda_{\beta \mu_{f}} + (1-\lambda)\mu_{g}$, где $0 < \lambda < 1$. Покажем, что $f = g = f_{g}$. Действительно, для всех атомов $A \ni y$ имеем $y(A) = 0 = \lambda \sum_{x \in A} f(x) + (1-\lambda)\sum_{x \in A} g(x)$. Отсюда, пользуясь тем, что 0 - край—

няя точка отрезка [0,1] , получим f(x)=f(x) для любых $x, x \in \mathcal{E} \setminus \{y\}$. Если B — множество, состоящее из m-1 не пересекающихся атомов $A \not\ni y$, то $y(B)=1=\lambda \sum_{x\in B}f(x)+(1-\lambda)\sum_{x\in B}g(x)$. Shaчит, $(m-1)kf(x)=1,f(x)=\frac{k}{m-1}$ ($x\in X\setminus \{y\}$). Теперь из равенства

 $f(y)+f(x_i)+\dots+f(x_{k-1})=0$ нолучим $f(y)=-\frac{k-1}{K(m-i)}$. Итак, $f=f_y$

аналогично $g = f_{ij}^{m}$. Теорема доказана. Труппу всех автоморфизмов логики X(km,k) обозначим че — , а через $\mathcal{G}(X)$ - группу всех биекций мноpes Aut X(km,k)жэства Х в себя.

T е о р е м а 4. Для любого $p \in Aut X(km,k)$ существует единственная биекция $\mathcal{I}_{\rho} \in \mathcal{G}(X)$ такая, что $\rho(A) = \{\mathcal{I}_{\rho}(x) | x \in A\} (A \in A)$ $\in X(km,k)$). При этом соответствие $ho
ightharpoonup \widetilde{\mathcal{J}}_{
ho}$ устанавливает изоморфизм групп Aut X(km,k) и G(X)

Доказательство. Пусть $\rho \in Aut \, X(km,k)$ и yдвузначное состояние. Очевидно, что $y \circ \rho$ — снова двузначное состояние. В силу следствия теоремы 2 существует единственный элемент $\delta_{\rho}(y) \in X$ такой, что $\hat{y} \circ \rho = \delta_{\rho}(y)$. Нетрудно прове – рить, что $\delta_{\rho}(\cdot)$ – биекция кножества X в себя. Положим \mathcal{I}_{ρ} = = δ_{ρ}^{-2} . Horamem, 4TO $\rho(A) = \{x | \delta_{\rho}(x) \in A\} = \{\mathcal{T}_{\rho}(\mathcal{Z}) | \mathcal{Z} \in A\}$.

Пусть $\mathcal{Z} \in \rho(A)$. Тогда $(\hat{\mathcal{Z}} \circ \rho)(A) = 1 = \mathcal{E}_{\rho}(\mathcal{Z})(A)$. Значит, $\mathcal{E}_{\rho}(\mathcal{Z}) \in A$, то есть $\mathcal{Z} \in \{x \mid \mathcal{E}_{\rho}(x) \in A\}$. Обратно, если $\mathcal{E}_{\rho}(x) \in A$, то $\mathcal{E}_{\rho}(x)(A) = 1$ $=1=(\hat{x}\circ
ho)(A)$ $^{\prime}$ и значит, $x\in
ho(A)$. Тейерь покажем, что такая омекция \mathcal{T}_{o} единственна. Допустим омекция $\mathcal{T} \in \mathcal{G}(X)$ такова, что $p(A) = \{ \widetilde{\pi}(x) \mid x \in A \}$ и существует $y \in X$ такое, что $\widetilde{\pi}(y) \neq \delta_p^{-1}(y)$. Выберем атом $A = \{ y, y_1, \dots, y_{K-1} \}$ такой, что $\delta_p(y_i) \neq \widetilde{\pi}(y)$ ($i = 1, 2, \dots, K-1$). Тогда $p(A) = \{ \widetilde{\pi}(y), \widetilde{\pi}(y_i), \dots, \widetilde{\pi}(y_{K-1}) \} = 1$ $=\left\{\delta_{\rho}^{-1}(y),\delta_{\rho}^{-1}(y_{1}),...,\delta_{\rho}^{-1}(y_{\kappa-1})\right\}$. Противоречие.

Пусть 1 - тождественные отображения $\mathcal{G}(X)$ и Aut X(km,k) соответственно. В сиду единственности $\widehat{\mathcal{H}}_{I}=\widehat{\mathcal{H}}$. Пусть $\rho,q\in Aut\; X(km,k)$. Тогда $\widehat{\mathcal{G}_{pq}}(x)=\widehat{x}\circ(\rho q)=(\widehat{x}\circ\rho)\circ q=$ $= \mathcal{G}_{\rho}(x) \circ q = \mathcal{G}_{q} (\mathcal{G}_{\rho}(x)) \quad \text{Otenda } \mathcal{G}_{\rho q} = \mathcal{G}_{q} \mathcal{G}_{\rho} , \mathcal{R}_{\rho q} = (\mathcal{G}_{\rho q})^{-1} = (\mathcal{G}_{q} \mathcal{G}_{\rho})^{-1} = \mathcal{G}_{\rho} \mathcal{G}_{q}^{-1} = \mathcal{R}_{\rho} \mathcal{R}_{q} , \quad \mathcal{I} = \mathcal{I}_{\rho \rho} \mathcal{I}_{\rho^{-1}} = \mathcal{I}_{\rho} \mathcal{I}_{\rho^{-1}} , \quad \mathcal{R}_{\rho^{-1}} = (\mathcal{I}_{\rho})^{-1} .$

Обратно, каждая биекция $\mathscr{A} \in \mathscr{G}(X)$ по формуле $P_{\mathscr{C}}(A) = \{\mathscr{R}(x)\}$ $x \in A$, $A \in X(km,k)$ задает автоморфизм логики X(km,k) . Теорема доказана.

Замечание. Комбинаторное доказательство теоремы 4 было получено в [4]. Через ${\mathcal J}$ обозначим множество всех инволю тивных автоморфизмов логики $X(km,k): \mathcal{I} = \{ p \in Aut \ X(km,k) | p^2 = I \}$. Тогда эквивалентны следующие условия для меры μ :

(i) $\mu \circ pq = \mu \circ qp$ для любых $\rho, q \in Aut \ X(km, k)$,

(ii) $\rho \circ \rho = \rho \circ q \rho$ для любых $\rho, q \in \mathcal{I}$, (iii) $\rho \circ \rho = \rho \circ \rho^{-1}$ для любого $\rho \in \operatorname{Aut} X(\kappa m, \kappa)$.

Утверждение $(i) \Rightarrow (ii)$ очевидно. Так как $Aut \ X(km,k)$ изоморфно G(X), то импликация $(ii) \Rightarrow (iii)$ вытекает из следующей леммы.

Лемма. Пусть X — множество, $f: X \to X$ — смекция. Тогда существуют инволюции g_1 , g_2 из X в себя такие, что $f=g_1\circ g_2$. Установим справедливость импликации $(iii)\Rightarrow (i)$. Имеем $\mathcal{M}(\rho q(A))=\mathcal{M}((\rho q)^{-1}(A))=\mathcal{M}(q^{-1}[\rho^{-1}(A)])=\mathcal{M}(q[\rho^{-1}(A)])=\mathcal{M}\circ q\rho^{-1}(A)=\mathcal{M}\circ \rho q^{-1}(A)$. Таким образом, если мера \mathcal{M} удовлетворяет условию (iii), то $\mathcal{M}\circ \rho$ тоже удовлетворяет (iii) с любым автоморфизмом ρ . Итак, $\mathcal{M}\circ \rho q=\mathcal{M}\circ q^{-1}\rho^{-1}=(\mathcal{M}\circ q^{-1})\circ \rho^{-1}=(\mathcal{M}\circ q)\circ \rho^{-1}=\mathcal{M}\circ q\rho$. Меру \mathcal{M} , удовлетворяющую одному из эквивалентных условий (i)—(iii), назовем следом на логике X (km, k).

Теорема 5. Мера μ на логике X(km,k) является следом тогда и только тогда, когда функция f , ей соответствующая, — константа.

Доказательство. Пусть $\overline{\mathcal{H}} \in \overline{\mathcal{G}}(X)$ и A — атом, не содержащий точку $\overline{\mathcal{H}}(X)$. Тогда $f(\overline{\mathcal{H}}(X)) = \frac{i}{k} \left[\sum_{i=1}^{k} \mu(A_i \cup \{\overline{\mathcal{H}}(X)\}) - (k-1)\mu A \right]$. Пусть $\overline{\mathcal{H}}(b_i) = \mathcal{Q}_i$ ($i=1,2,\ldots,k$) ; тогда, очевидно, $b_i \neq x$ ($i=1,\ldots,k$) и $\{\overline{\mathcal{H}}(X)\} \cup A_i = \overline{\mathcal{H}}(\{x\} \cup B_i)$. Следовательно, $f(\overline{\mathcal{H}}(X)) = \frac{i}{k} \left[\sum_{i=1}^{k} \mu(\overline{\mathcal{H}}(\{x\} \cup B_i)) - (k-1)\mu(\overline{\mathcal{H}}(B)) \right] = \frac{i}{k} \left[\sum_{i=1}^{k} \mu(\overline{\mathcal{H}}(X) \cup \overline{\mathcal{H}}(B_i)) - (k-1)\mu(\overline{\mathcal{H}}(B)) \right] = f(\overline{\mathcal{H}}(X))$. Итак, $f \circ \overline{\mathcal{H}} = f \circ \overline{\mathcal{H}}(X) = f(x_i) \cup f(x_i)$ дин любой биекции $\overline{\mathcal{H}} \in \mathcal{G}(X)$. Рассмотрим биекцию $\overline{\mathcal{H}}(X_i) = X_{i+1}$, $\overline{\mathcal{H}}(X_{mk}) = X_i$, $i=\overline{I,mk}$. Тогда $\overline{\mathcal{H}}(X_i) = X_{j-1}$, $j=2,\ldots,mk$; $\overline{\mathcal{H}}(X_i) = X_{mk}$. Следовательно, $f(x_{i+1}) = f(x_{i-1})$, $i=2,\ldots,mk-1$; $f(x_i) = f(x_{mk}) = f(x_{mk}) = f(x_{mk}) = f(x_{mk})$. Итак, $f(x_i) = f(x_3) = f(x_5) = \ldots = f(x_{mk-1})$, $f(x_i) = f(x_j) = f(x_m)$. Теперь рассмотрим биекцию $\overline{\mathcal{H}}(X_i) = X_i$, $\overline{\mathcal{H}}(X_i) = f(x_i)$, то есть f — константа.

Литература

I. Prather R. Generating the K-subsets of an n-set // Amer. Math. Monthly. - 1980. - V.87. - P. 740 - 743.

- 2. Gudder S. P. An extension of classical measure theory // SIAM Review. 1984. Vol.26. No I. P.7I 89.
- 3. Gudder S. P. Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979.
- 4. Овчинник ов П. Г. Строение мер на квантових догиках: Автореф. дисс. ... канд.физ.-мат.наук. - Казань, 1985.

J.A. Cypaii

МЕТОД МЕХАНИЧЕСКИХ КУБАТУР ДЛЯ МНОГОМЕРІНІХ СЛАБО СИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО РОДА

Рассмотрим двумерное слабо сингулярное интегральное уравне – ние (с.с.и.у.) вида $^{\rm I}$

$$Ax = \frac{1}{4\pi^2} \iint_0^{2\pi} \ln \left| \sin \frac{6-S}{2} \right| \ln \left| \sin \frac{c-t}{2} \right| x(6,c) d6 dc + \frac{1}{4\pi^2} \iint_0^{2\pi} \int_0^{2\pi} h(s,t,6,c) x(6,c) d6 dc = y(s,t),$$
(I)

где $x(s,t)_2$ – неизвестная функция, которая ищется в пространстве $X = L_2[0,2\pi]^2 = L_2[0,2\pi;0,2\pi]$ с обичной нормой

$$\|x\|_{L_{2}[0,2\pi]^{2}} = \|x\|_{2} = \left(\frac{1}{4\pi^{2}}\int\int_{0}^{2\pi} |x(s,t)|^{2} ds dt\right)^{1/2},$$

h(s,t,6,t), y(s,t) — известные непрерывные 2π —периодические функции по каждой из переменных, а слабо сингулярный интеграл понимается как несобственный.

Приближенные методы решения одномерных интегральных уравне -- ний такого типа достаточно хорошо разработаны (см., напрамер,

І Двумерный случай рассматривается для простоты выкладок ; распространение всех полученных ниже результатов на уравнение с κ ($\kappa > 3$) — переменными не представляет труда.