1 Grundlagen ueber reelle Zahlen

1.1 Geordnete Koerper

Definition 1

Es sei A eine Menge. Eine Relation $\prec \subseteq AxA$ heisst totale Ordnung.

- 1) ≺ ist eine Ordnungsrelation (reflexiv, antisymetrisch, transitiv)
- 2) \forall a,b \in A { a \prec b oder b \prec a }

Bezeichnung 1

Ist $a \prec b$ und $a \neq b$, so schreiben wir $a \prec b$

Beispiel 1

Die natuerliche Ordnung \leq der reellen Zahlen, ist eine totale Ordnung. Sind $a,b \in \Re$ mit a < b, dann a+c < b+c fuer alle $c \in \Re$ (a=5, b=6, c=2, 5<6, 5+2 < 6+2, d.h. 7<8) $0<a,b \Rightarrow 0 < a*b$ (a=5, b=6, 0 < 5*6 = 30)

Definition 2

Es sei (K,+,*) ein Koerper mit Nullelement 0 und \prec eine totale Ordnung auf K. Dann heisst \prec Anordnu

- 1) $\forall x, y, z \in K(y < z \Rightarrow x + y < x + z)$
- $2) \ \forall x, y, z \in K(0 < x, y \Rightarrow 0 < x * z)$

 $(K, +, *, \prec)$ heisst geordneter Koerper.

Beispiel 2

 $(\Re, +, *, \prec)$ heisst geordneter Koerper

Satz 1

Es sei $(K, +, *, \prec)$ ein geordneter Koerper. Dann gilt $0 \prec a$ oder a = 0 oder $0 \prec -a$ fuer $a \in K$

Beweis (Satz 1)

Angenommen $a \prec 0$ und $a \neq 0$.

Dann $a \prec 0$ nach Definition 1 und $a - a \prec -a$, d.h. $0 \prec -a$ nach Definition 2

Satz 2

Es sei $(K, +, *, \preceq)$ ein geordneter Koerper und $a, b, c, d \in K$. Ist $a \preceq b \ und \ c \preceq d, \ dann \ a + c \preceq b + d$.

Beweis (Satz 2)

Aus $a \leq b$ folgt $a + c \leq b + c$. Aus $c \leq d$ folgt $b + c \leq b + d$.

Die Transitivitaet liefert : $a+c \leq b+d$

Bemerkung 1

Ist a=c=0, dann liefert Satz 2 : $(0 \le b \text{ und } 0 \le d) \Rightarrow 0 \le b + d$.

Definition 3

Es sei (K,+,*) ein Koerper mit Nullelement D und $P \subseteq K$.

P heisst Positivbereich von K, wenn

- 1) Fuer alle $a \in K \setminus \{0\}$ gilt entweder $a \in P$ oder $-a \in P$
- 2) $a, b \in P \Rightarrow a + b, a * b \in P$

Bezeichnung 2

Wir setzen $P_{\leq} := \{a \in K | 0 \prec a\}$

Satz 3

Ist $(K, +, *, \preceq)$ ein geordneter Koerper, dann ist P_{\leq} ein Positivbereich.

Beweis (Satz 3)

1) Es sei $a \in K \setminus \{0\}$. Es sei $a \notin P_{<}$ dann gilt

a = 0 oder 0 < -a nach Satz 1, d.h.

 $0 \prec -a \operatorname{da} a \neq 0$. Somit $(-a) \in P_{\leq}$.

Ist $a \in P_{\leq}$, d.h. $0 \prec a$, $-a + 0 \prec a - a$.

 $-a \prec 0$, d.h. $-a \in P_{<}$. Analog $-a \in P_{<} \Rightarrow a \notin P_{<}$.

Somit gilt entweder $a \in P_{\leq} oder - a \in P_{\leq}$

- 2) Es seien $a, b \in P_{<}$, d.h. $0 \prec a, 0 \prec b$. Nach Bemerkung 1 gilt
- $0 \prec a + b$ und $a + b \in P_{<}$. Ausserdem gilt $0 \prec a * b$ nach Definition 2, d.h. $a * b \in P_{<}$.

Bezeichnung 3

Wir setzen $\prec_P = \{(x,y)|y+x \in P \cup \{0\}\}\$

Satz 4

Es sei (K, +, *) ein Koerper mit Nullelement 0 und $P \subseteq K$ ein Positivbereich. Dann ist $(K, +, *, \prec_P)$ ein geordneter Koerper.

Beweis (Satz 4)

```
Zunaechst zeigen wir, das \prec_P eine totale Ordnung ist (Definition 1) - refelexiv : Es sei a \in K. Dann a-a=0, d.h. a \prec_P a - antisymetrisch : a \prec_P b und b \prec_P a, dann b-a \in P \cup \{0\} und a-b \in P \cup \{0\}. Ist b-a \in P, dann -(b-a) \notin P (Definition 3), d.h. Ist b-a \in P, ergibt sich b-a=0 also a-b. -transitiv : Es seien a \prec_P b und b \prec_P c, d.h. b-a \in P \cup \{0\} und c-b \in P \cup \{0\}. Dann c-a=(c-b)+(b-a) \in P \cup \{0\} nach Definition 3
```

Damit ist \prec_P eine Ordnungsrelation

Es seien $a, b \in K$. ist a=b, dann a-b=0, d.h. $a \prec_P b$.

Ist $a \neq b$, d.h. $b - a \neq 0$. Dann gilt entweder $(b - a) \in P$, $-(b - a) \in P$.

 $a - b \in P$ nach Definition 3

d.h. $a \prec_P a$ oder $b \prec_P a$

Damit ist \prec_P eine totale Ordnung und wir haben noch 1) und 2) aus Definition 2 zu zeigen.

1) Es seien $x, y, z \in K$ mit $y \prec_P z$, d.h. $z - y \in P \cup \{0\}$. Dann $y \notin z$ und $z - y \in P$. Dann $(z + x) - (y - x) \in P$, d.h. $y + x \prec_P z + x$. 2) Es seien $0 \prec_P x, y$, d.h. $x - 0 \in P \cup \{0\}$ und $y - 0 \in P \cup \{0\}$, also $x, z \in P \cup \{0\}$ und somit $x, y \in P$, daraus folgt $x * y \in P$, $x * y - o \in P$ und $0 \prec_P x * y$

Bemerkung 2

Ist P ein Psoitivbereich eines geordneten Koerpers $(K, +, *, \prec)$. Dann gilt $\prec_P = \prec$

Satz 5

Es sei (K, +, *) ein Koerper mit Nullelement 0 sowie $a \in K \setminus \{0\}$ und $P \subseteq K$ ein Positivbereich. Dann gilt $a^2 \in P$

Beweis (Satz 5)

Da $a \neq 0$ gilt $a \in P$ oder $-a \in P$ nach Definition 3. Dann $a^2 \in P$ oder $(-a)^2 \in P$ (d.h. $a^2 \in P$) nach Definition 3.

Satz 6

Es sei (K, +, *) ein Koerper und P ein Positionsbereich von K. Ist $a \in P$ dann $a^{-1} \in P$ (fuer alle $a \in K \setminus \{0\}$)

Beweis (Satz 6)

Nach Satz 5 gilt $(a^{-1})^2 \in P$. Aus $a, (a^{-1})^2 \in P$ folgt $a(a^{-1})^2 \in P$ nach Definition 3, d.h. $a^{-1} \in P$

Satz 7

Es sei (K, +, *) ein Koerper mit Einselement e und $\emptyset \neq P \subseteq K$ ein Positivbereich von K. Dann gilt $e \in P$.

Beweis (Satz 7)

Nach Satz 5 gilt $e^2 - e \in P$

Satz 8

Es sei $(K, +, *, \prec)$ ein geordneter Koerper mit Nullelement 0 sowie $a, b, c \in K$ mit $a \prec b$. Dann gilt : a) $0 \prec c \Rightarrow ca \prec cb$ b) $c \prec 0 \Rightarrow cb \prec ca$

Beweis (Satz 8)

Ist c=0 oder a=b, dann ist die Aussage klar. Es seien nun $c \neq 0$ und $a \neq b$. Aus $a \prec b$ folgt $a-a \prec b-a$, d.h. $0 \prec b-a$, d.h. $b-a \in P_{<}$ wobei $P_{<}$ ein Positivbereich ist (Satz 3) a) $0 \prec c$ heisst $c \in P_{<}$, so $c(b-a) \in P_{<}$ (Definition 3), d.h. $cb-ca \in P_{<}$ und $ca \prec_{P_{<}} cb$, d.h. $ca \prec cb$ nach Bemerkung 2. b) $c \prec 0$, also $c \prec_{P_{<}} 0$, d.h. $0-c \in P_{<}$ somit $(-c)(b-a) \in P_{<}$, d.h. $ca-cb \in P_{<}$, $cb \prec_{P_{<}} ca$ also $cb \prec ca$.

Satz 18

Es sei M eine Menge und \preceq eine totale Ordnung auf M. Dann sind die folgenden Eigenschaften aquivalent :

- i) \leq erfuellt die Supremum-Eigenschaft.
- ii) \prec erfuellt die Infimum-Eigenschaft.

Beweis (Satz 18) i) \Rightarrow ii)

Es sei $\emptyset \neq B \subseteq M$ nach unten beschraenkt.

Wir setzen $U_B = \{x \in M | x \text{ ist untere Schranke von } B\}$

 $U_B \neq \emptyset$, da B nach unten becshraenkt ist.

 U_B ist nach oben beschraenkt, denn fuer $b \in B$

gilt $x \leq b$ fuer alle $x \in U_B$ $Da \leq$ die

Supremum-Eigenschaft erfuellt, existiert $Sup(U_B)$.

Wir zeigen, $Sup(U_B) = Inf(B)$. Es sei $b \in B$. Da b eine obere Schranke

von U_B ist, gilt $Sup(U_B) \leq b$.

 $(Sup(U_B)$ ist die kleinste obere Schranke von $U_B)$

Somit ist $Sup(U_B)$ untere Schranke von B.

Es sei $e \in U_B$ und $u \leq Sup(U_B)$. Somit

ist $Sup(U_B)$ die groesste untere Schranke von B, d.h.

 $Sup(U_B) = Inf(B)$. Also existiert das Infimum von B.

i) \Rightarrow i) .Es sei $\emptyset \neq B \subseteq M$ und nach

oben beschraenkt.

Wir setzen $O_B := \{x \in M | x \text{ ist obere Schranke von } B\}.$

Man kann analog zeigen, dass $Inf(O_B)$ existiert und $Sup(B) = Inf(O_B)$.

Definition 10

Es sei M eine Menge und \leq eine totale Ordnung auf M.

 \leq heisst vollstaendige Ordnung, wenn \leq die

Supremum-Eigenschaft erfuellt.

Definition 11

ein geordneter Koerper $(K, +, *, \preceq)$ heisst vollstaendig wenn \preceq eine vollstaendige Ordnung ist.

Satz 19

Es sei $(K, +, *, \preceq)$ ein vollstaendiger Koerper.

Dann ist die Anordnung \leq archimedisch.

Beweis (Satz 19)

Es sei $a \in K$. Es sei $a \leq 0$. Dann gilt

 $a \leq 1 \ denn \ 0 \leq 1$. Es sei $0 \leq a$.

Angenommen, es gibt kein $n \in \aleph$ mit $a \leq n$

 $(\exists n \ a \prec n) \sim (\forall n \ n \leq a)$. Dann $n \leq a$

fuer alle $n \in \aleph$. Dann $\aleph \subseteq K$ nach oben

beschraenkt. Da \leq eine vollstaendige Ordnung ist, existiert Sup(\aleph)

Aus $-1 \prec 0$ folgt $Sup(\aleph) - 1 \prec Sup(\aleph)$

 $d.h.Sup(\aleph) - 1$ ist keine obere Schranke von $\aleph \subseteq K$.

Damit existiert ein $m \in \aleph$ mit $Sup(\aleph) - 1 \prec m + 1$

 $(Sup(\aleph) - 1) + 1 \prec m + 1$, d.h. $Sup(\aleph) \prec m + 1 \in \aleph$

Dies ist ein Widerspruch zu Sup(ℵ) ist obere

Schranke von $\aleph \subseteq K$. Damit ist die Annahme falsch und es existiert $n \in \aleph$ mit a<n.

1.2 Wurzeln

Definition 12

Es sei (K,+,*) ein Koerper, $a,y \in K$ $2 \le k \in \aleph$. Ist yk = a, dann heisst yk-te Wurzel aus a.

Beispiel 12

3 und (-3) und 4-te Wurzel aus 81 : $\sqrt[4]{81}$ (-3) ist 3-te Wurzel aus -27 : $\sqrt[3]{-27}$

Satz 20

Es sei $(K, +, *, \preceq)$ ein total geordneter Koerper $n \in \mathbb{N} \setminus \{0\}$ und $a \in K$ mit $0 \leq a$. Dann gibt es hoechstens ein $y \in K$ mit $0 \leq y$ und $y^n = a$.

Beweis (Satz 20)

Es seien $y_1, y_2 \in K$ mit $y_1^n = y_2^n = a$.

Dann $y_1 \leq y_2$ oder $y_2 \leq y_1$ oder $y_1 = y_2$.

Es sei $0 \prec y_1 \prec y_2$ Wir zeigen mit vollstaendiger Induktion

dass $0 \prec < y_1^n \prec y_2^n$

IA : n=1 ist klar nach Voraussetzung $0 \prec y_1 \prec y_2$

IV : n=k Es gilt $0 \prec y_1^k \prec y_2^k$. IBh: n=k+1 Es gilt $0 \prec y_1^{k+1} \prec y_2^{k+1}$

IBw: Nach IV gilt $0 \prec y_1^k \prec y_2^k$ und $0 \prec y_1$

Nach Satz 8a) erhaelt man

 $0 \prec y_1^{k+1} \prec y_2^{k+1}$ Aus $y_1 \prec y_2$ und $0 \prec y_2$ folgt $y_1 y_2^k \prec y_2^{k+1}$ (Satz 8a).

Die Transitivitaet liefert : $0 \prec y_1^{k+1} \prec y_2^k y_1 \prec y_2^{k+1}$, d.h. $0 \prec y_1^{k+1} \prec y_2^k y_1^{k+1}$)

Damit $y_1^n \neq y_2^n$, ein Widerspruch. Analog erhaelt man ein Widerspruch falls $y_2 \prec y_1$. Also $y_1 = y_2$.

Satz 20.a

(O.B.) Es sei $(K,+,*,\preceq)$ ein archimedischer Koerper,

 $n \in \mathbb{N} \setminus \{0\} \text{ und } a \in K \text{ mit } 0 \prec a.$

Dann sind die folgenden Aussagen aequivalent.

i) Es existiert ein $y \in K$ mit $0 \prec y$ und $y^n = a$

ii) Die Menge B := $\{x \in K | x^n = a\}$ hat ein supremum. und es gilt $Sup(B)^n = a$ sowie $0 \prec sup(B)$.

Bemerkung 6

```
Ist (K,+,*,preceq) ein vollstaendiger Koerper, a \in K mit 0 \prec a und n \in \aleph \setminus \{0\}.
Dann gibt es genau ein y \in K mit 0 \prec y und y^n = a.
```

Bezeichnung

Man schreibt $\sqrt[n]{a} = y$ oder $y = a^{1/n}$ fuer die n-te Wurzel aus a.

Satz 21

Es sei (K,+,*) ein Koerper. Dann existiert hoechstens eine totale Ordnung \preceq , so dass $(K,+,*,\preceq)$ vollstaendig ist.

Beweis (Satz 21)

```
Es sei \preceq eine totale Ordnung, so dass (K,+,*,\prec) vollstaendig ist. Es sei a \in K \setminus \{0\}. Ist a=x fuer x \in K \setminus \{0\}, dann ist a=x^2 \in P_{<} nach Satz 5. d.h. 0 \prec a Ist 0 \prec a, dann existiert ein x \in K \setminus \{0\} mit a=x^2 nach Bemerkung 6. da (K,+,*,\preceq) vollstaendig ist. Dann gilt 0 \prec a \Leftrightarrow x \in K \setminus \{0\} mitx^2=aexistiert. Dies zeigt P_{<}=\{x^2|x \in K \setminus \{0\}\} fuer jede totale Ordnung preceq fuer die (K,+,*,\preceq) vollstaendig ist. Nach Bemerkung 2 gilt \preceq=\preceq_{P_{<}}. Ausserdem gilt \preceq_{P_{<}}=\{(a,b)|b-a\in\{x^2|x\in K\setminus\{0\}\}\cup\{0\}\} Dies zeigt, dass die totale Ordnung eindeutig durch den Koerper (K,+,*) festgelegt ist (falls eine derartige totale Ordnung \preceq existiert)
```

Bemerkung 7

Es sei
$$a \in K$$
 mit $0 \prec a$ und $m, n \in \aleph \setminus \{0\}$.
Dann gilt $\sqrt[n]{a^m} = (\sqrt[n]{a})^m$
und $\sqrt[n]{\sqrt[n]{a}} = \sqrt[nm]{a} = \sqrt[m]{\sqrt[n]{a}}$

Bezeichnung

$$a^{m/n} = \sqrt[n]{a^m}$$

Beispiel 13

$$\sqrt[2]{\sqrt[3]{64}} = \sqrt[2]{4} = 2$$

$$\sqrt[3]{\sqrt[2]{64}} = \sqrt[3]{8} = 2$$

$$\sqrt[6]{64} = 2$$

$$2^{4/2} = \sqrt[2]{2^4} = \sqrt[2]{16} = 4$$

Bemerkung 8

- 1) Fuer $q \in Q$ mit q < 0 und $a \in K$ gilt $a^q = (a^{-q})^{-1}$
- 2) $q \in Q$ und $a, b \in K$ mit $0 \prec a, b$ gilt $(ab)^q = a^q b^q$
- 3) Fuer $p, q \in Q$ und $a \in K$ mit $0 \prec a$ gilt
- $(a^p)^q = a^{p*q} \text{ und } a^p * a^q = a^{p+q}$
- 4) Fuer $q \in Q^+$ und $a, b \in K$ mit $0 \leq a \prec b$ gilt $a^q \prec b^q$ 5) Fuer $q \in Q$ mit $q \prec 0$ und $a, b \in K$ mit $0 \prec a \prec b$ gilt $b^q \prec a^q$

1.3 Die reellen Zahlen als DedeKind-Schnitte

Definition 13

Es sei $\emptyset \neq M \subset Q$. M heisst DedeKind-Schnitt, wenn fuer alle $p \in M$ gilt $\{a \in Q | a \leq p\} \subset M$

Bemerkung 9

Ist M ein DedeKind-Schnitt dann gilt a) $\forall p \in M \forall a \in Q \{ a \leq p \Rightarrow a \in M \}$ b) $\forall p \in M \exists r \in M \{ p < r \}$

Beispiel 14

 $M=\{x\in Q|x^3<-1\}$ Wir wollen zeigen, dass M ein DedeKind-Schniit ist Es sei $p\in M$, d.h. $p^3<-1$. Fuer $a\in Q$ mit $a\le p$ gilt $a^3\le p^3<-1$, d.h. $a^3<-1$. Dann ist $\{a\in Q|a\le p\}\subseteq M$ Es gilt $p\ne -1$ und nach Satz 17 existiert ein $r\in Q$ mit p< r<-1, d.h. $r^3<-1$ und somit $r\in M$. Dies zeigt $\{a\in Q|a\subseteq p\}\subset M$, da r nicht zur linken Menge gehoert, aber in M liegt.

Satz 22

Es sei $M \subseteq Q$ ein Dedekind-Schnitt. Dann ist M eine nach oben beschraenkte Menge in dem Koerper $(Q, +, *, \leq)$

Beweis (Satz 22)

Angenommen, M ist nicht nach oben beschraenkt. .[Dann gilt es zu jedem $m \in \aleph$ ein $q \in M$ mit $m \subseteq q$] * Es sei $q \in Q$. Dann existiert ein $n \in \aleph \setminus \{0\}$ mit $q \subset n$ (Def 6), da $(Q, +, *, \leq)$ archimedisch ist. Zu n existiert wegen (*) ein $p \in M$ mit $n \leq p$, d.h. $n \in M$, da M Dedekind-Schnitt und wegen q < n ist auch $q \in M$. Also $Q \subseteq M$, das widerspricht $M \neq Q$ (Definition 13)

Satz 23

```
(O.B.) Man kann auf der Menge aller Dedekind-Schnitte (bezeichnet mit M*) eine Addition \oplus und eine Multiplikation \odot sowie eine totale Ordnung \preceq definieren, sodass (M*, \oplus, \odot, \preceq) ein vollstaendiger Koerper ist, der (Q, +, *) enthaelt und \preceq die natuerliche Ordnung leq der rationalen Zahlen fortsetzt. Jeder geordnete Koerper mit dieser Eigenschaft ist isomorph zu (M*, \oplus, \odot, \preceq).
```

Bezeichnung

Der in Satz 23 betrachtete Koerper $(M*, \oplus, \odot, \preceq)$ wird der Koerper der reellen Zahlen genannt und mit (R, +, *) bezeichnet.

1.4 Absolutbetrag und Bewertung

Definition 14

```
Es seien (K,+,*,\preceq) ein geordneter Koerper mit Nullelement 0 und a \in K. Dann heisst |a| := \{afalls0 \preceq a \ oder \ -afallsa \prec 0 \} Absolutbetrag von a
```

Bemerkung

Der Absolutbetrag von a ist von der Anordnung \leq abhaengig.

Beispiel 15

Ist $r \in \Re$, dann beschreibt |r| bezueglich der natuerlichen Ordnung \leq der reellen Zahlen den Abstand von r zum Nullpunkt auf dem genormten Zahlenstrahl.

Bemerkung 11

- a) Es gilt |a| = |-a|
- b) $|a| \ge 0$
- c) $|a| = 0 \Leftrightarrow a = 0$
- d) |a * b| = |a| * |b|
- e) $|a+b| \le |a| + |b| (Dreiecksungleichung)$
- f) $|a| |b| \le |a b|, |a + b|$
- g) $||a| |b|| \le |a b|$

Bezeichnung

i ist ein Symbol mit $i \notin \Re$. Wir setzen $i^2 = -1$. Sind $a, b \in \Re$, dann heisst a+b komplexe Zahl. a heisst Realteil, b heisst Imaginaerteil. $C := \{a+ib|a,b\in \Re\}$ - MEnge der $|a+ib| := \sqrt[2]{a^2+b^2}$ heisst Norm von a+ib z=a+ib, dann heisst $\overline{z} := a-ib$ konjugiert komplexe Zahl zu z=a+ib

Bemerkung 12

a) Es gilt
$$(a+ib)(a+ib) = aa' - bb' + i(ab' + a'b)$$

b) $(a+ib) + (a'+ib') = (a+a') + i(b*b')$
Ist $z=a+ib$, dann $z*\overline{z} = a^2 + b^2$, d.h.
 $|z| = \sqrt[2]{z*\overline{z}}$

Beispiel 16

z = 4+i3 ,
$$|z| = \sqrt[2]{4^2 + 3^2} = \sqrt{25} = 5$$

z₁ = 4 + i3, z₂ = 1 - i2
z₁ + z₂ = 4 + 1 + i(3 - 2) = 5 + i
z₁ * z₂ = 4 * 1 - (3(-2)) + i(4(-2) + 3 * 1) = 10 + i(-5) = 10 - i5