

March 22, 2022

Colonel James L. Booth, District Commander U.S. Army Corps of Engineers, Jacksonville District Jacksonville, FL 32207

Letter submitted electronically via LakeOComments@usace.army.mil

Subject: LOSOM – Draft Operational Guidance

Dear Colonel Booth:

On behalf of the Sanibel-Captiva Conservation Foundation and Conservancy of Southwest Florida, we want to personally thank you for your leadership and the hard work and dedication that you and your staff have invested in ensuring that the Lake Okeechobee System Operating Manual (LOSOM) is balanced for the entire water management system and to the benefit of all stakeholders.

The LOSOM current tentatively selected plan (TSP) was modeled with three sub-bands within Zone-D of the regulation schedule with varying discharge rates to downstream systems associated with different water levels. This modeling also demonstrated an 81% certainty of discharges to the Caloosahatchee within and below zone D (slide 14 of attached). In the current draft Chapter 7 Water Control Plan, these sub-bands are in part identified in all but name in the text of the plan. This text is essentially a decision tree matrix in text form. It is unclear if a decision tree-like matrix will be developed similar to the current regulation schedule to provide some guidance and expectation of volumes delivered to downstream systems including the Northern Estuaries.

Currently as written, the Water Control Plan outlines three seasonal assessment periods to evaluate the available data and determine the best course of action for water management of Lake Okeechobee. Given how dynamic and variable Lake Okeechobee and the greater Everglades ecosystem can be it is recommended that if seasonal assessment periods be used that they are more frequent. Moreover, given the extreme range of stage conditions afforded within Zone D, it is recommended to establish a more formal operational guidance akin to the Zone D sub-bands to manage expectations and provide guidance on managing water levels within the Lake. Finally, it is recommended that a decision tree matrix be developed to establish expectations and guide water levels within the Lake.

In recent years, water management has gotten away from the "Hold and Dump" strategies of the past, demonstrating the capabilities of operational flexibility and how it can be used to facilitate healthy downstream ecosystems. While the current plan will hold the lake water level higher than current conditions, moving away from the "Hold and Dump" strategy of the past will also benefit the ecology of the Lake. We want to thank you for your leadership and for working towards a complete operations plan that will be clear and transparent to water managers and stakeholders alike. We look forward to working with you and your staff in finalizing the operations plan.

Sincerely,

Paul Julian, Ph.D., Hydrological Modeler

Sanibel-Captiva Conservation Foundation & Conservancy of Southwest Florida

CC:

Colonel James L. Booth, US Army Corps of Engineers, James.l.booth@usace.army.mil
Tim E. Gysan, US Army Corps of Engineers, Earl.T.Gysan@usace.army.mil
Nicole Johnson, Conservancy of Southwest Florida, nicolej@conservancy.org
James Evans, Sanibel-Captiva Conservation Foundation, james.evans@sccf.org

Attachment:

LOSOM Iteration 3 Modeling Evaluation - Preferred Alternative

Lake Okeechobee System Operating Manual

Iteration 3 Modeling Evaluation - Preferred Alternative

Sanibel-Captiva Conservation Foundation

Conservancy of Southwest Florida

DRAFT - December 14, 2021 (Updated: January 23, 2022)

Paul Julian PhD

Use cursor keys for navigation, press "O" for a slide Overview

Download PDF Version

Iteration 3 - Model runs

Alternative	Description				
ECB191	LOSOM Existing Conditions Baseline 2019 with LORS08				
$NA22f^2$	LOSOM No Action 2022 (without C43 Reservoir) with LORS08				
$NA25f^3$	LOSOM No Action 2025 (with C43 Reservoir) with LORS08				
PA22	Preferred Alterative 2022. Distinct operational zones and regulatory disharge rates				
	selected based on LOSOM objectives (without C43 Reservoir)				
PA25	Preferred Alterative 2025. Distinct operational zones and regulatory disharge rates				
	selected based on LOSOM objectives (with C43 Reservoir)				

¹Existing Conditions Baseline 2019

² No Action Condition 2022

³No Action Condition 2025

Salinity Envelope

RECOVER salinity envelope evaluation during the simulation period of record for Caloosahatchee (top) and St Lucie (bottom) estuaries.

Salinity Envelope

RECOVER salinity envelope evaluation relative to each respective FWO/No Action Alterantives during the simulation period of record for Caloosahatchee (top) and St Lucie (bottom) estuaries.

RECOVER Estuary salinit envelope 14-day period count of low, optimum, stress, damaging and extreme flow events for Caloosatchee and St Lucie estuaries based on 14-day moving average discharge data.

Area	Alt	Low Events	Optimum Events	Stress Events fron LOK	Damaging n Events from LOK	Extreme Events
CRE 1	ECB19	663	469	184	198	66
	NA22f	651	462	198	205	62
	PA22	550	635	69	79	80
	NA25f	556	588	183	187	57
	PA25	455	765	66	81	72
SLE ¹	ECB19	109	831	164	159	179
	NA22f	107	864	147	140	162
	PA22	183	915	30	37	167
	NA25f	107	865	145	140	162
	PA25	183	912	30	38	164

¹CRE: Caloosahatchee Estuary; SLE: St Lucie Estuary

Low Flows CRE: < 750 cfs; SLE: < 150 cfs

Optimum Flows CRE: \geq 750 cfs & < 2100 cfs; SLE: \geq 150 cfs & < 1400 cfs cfs

Stressful Flows CRE: ≥ 2100 cfs & < 2600 cfs; SLE: ≥ 1400 cfs & < 1700 cfs

Damaging Flows CRE: > 2600 cfs; SLE:> 1700 cfs

Data Source: USACE and SFWMD Interagency Modeling Center.

Salinity Envelope

Monthly salinity envelope evaluation during the simulation period of record for Caloosahatchee (top) and St Lucie (bottom) estuaries.

Salinity Envelope

Monthly salinity envelope evaluation relative to each respective FWO/No Action Alterantives during the simulation period of record for Caloosahatchee (top) and St Lucie (bottom) estuaries.

Seasonality of monthly average discharge across all alternatives.

Calendar plot of monthly average S-79 discharge.

Regulatory Discharge

Average annual flood control (i.e. regulatory) discharges for each major flow-path.

Regulatory Discharge

Average annual lake sourced discharges to CRE and SLE within stressful and damaging discharges.

Lake Okeechobee Regulation Schedule

Percent of time (period of simulation) above, within and below Zone D.

Lake Okeechobee Regulation Schedule

Distribution of daily discharge at S79 above, within and below Zone D.

Lake Okeechobee

Percent of time LOK stage above 17 Ft, 16 Ft and below 10 Ft NGVD29

Lake Okeechobee

Timeline of annual LOK max stage > 17 Ft NGVD29.

Lake Okeechobee - Stage Envelope

Normal and recovery ecological stage envelope timeline for each alternative.

Lake Okeechobee - Stage Envelope

LOK ecological stage envelope total scores (all years).

Lake Okeechobee - Stage Envelope

LOK ecological stage envelope total scores (all years, May to September).

Lake Okeechobee - High Stage Events

Lake Okeechobee - weekly recession

Calendar plot of LOK weekly recession rates (all years and days).

Lake Okeechobee - weekly recession

Calendar plot of LOK weekly recession rates specific to SNKI nesting period.