Flexport

Data Analyst Assignment

Ravi Dayabhai August 30, 2019

Contents

Motivation & Context

Metric Definitions

Approach

Analysis

Q&A

Motivations & Context

Metric Definitions

A "missing bill" (or "missing invoice") occurs when we have information for only a few, but not all of the bills (or invoices, respectively) associated with a shipment for services rendered or we have record of a bill or invoice with NULLs.

Metric Definitions

"Net revenue" is revenue less cost, where revenue is the sum of invoiced amounts and cost is the sum of billed amounts, both recognized on the shipment date, for a given shipment.

Metric Definitions

Approach

Note: This isn't exhaustive. Subsequent summary visualizations attempt to capture multiple relationships due to economy of time!

Note: This isn't exhaustive. Subsequent summary visualizations attempt to capture multiple relationships due to economy of time!

Analysis

Before diving in, let's inspect the data to get sense of shipments...

...and what data we're missing.

Distribution of "time-to-close" suggests fair amount of variance...

→ "Closing" shipments seems to take **quite long**: **c. 80 days** (or almost a full quarter), on average.

...and we see that "time-to-bill" is the leading culprit.

- → Only **c. 10%** of bills are billed before their shipment's corresponding invoice.
- → Only **c. 4%** of shipment "time-to-close" is determined by relatively slower invoicing.

"Time-to-invoice" is roughly the same among our customers...

OPS

(All available shipment dates January 2016 to May 2017)

→ c. 9-13 days is roughly the dollar-weighted average "time-to-invoice" for any client, but this measure is pretty spread out (c. 8 days standard deviation) for each client.

FIN

...but one vendor in particular (ReLAX Cartage) is very slow to bill!

OPS

(All available shipment dates January 2016 to May 2017)

Also, the more expensive service-providers generally bill quicker: 49-day dollar-weighted average vs. 58-day simple average "time-to-bill".

FIN

OPS

FIN

- → Roughly, more activity in Q1, Q4 (slowing thru Q2, Q4) when measured by invoices and bills.
- → Looking at **autocorrelations** for seasonality **didn't suggest further investigation**.

...and vendor and client cuts over time told largely the same story.

→ ReLAX Cartage has always been slower than vendor peers to bill.

Profitability depends on decision to transport via ocean or air...

→ The driver for this profitability is **lower cost** of ocean freight, **not higher pricing**.

...and regression *might* be a good candidate method to predict costs...

FIN

→ Coefficients approximate factors: **x1 is origin services** (binary), **x1 is destination services** (binary), and **x3 is air freight** (binary).

...and regression *might* be a good candidate method to predict costs...

→ I worry about **non-constant variance (heteroskedasticity) for freight type** — our predictions won't be as good for those shipments that use air transportation.

...given evidence of being able to generalize decently well [maybe].

Random Train-Test

Training data: 67 records Testing data: 30 records IS R^2: 0.7526 OS R^2: 0.7501 S RMSE: 701.7332 Training data: 67 records Testing data: 30 records Random State: 4 IS R^2: 0.7567 RMSE: 652.8822 OS R^2: 0.7282 OS RMSE: 709.6886 Training data: 67 records Testing data: 30 records IS R^2: 0.7862 S RMSE: 607.7329 OS R^2: 0.6904 RMSE: 784.1906 Training data: 67 records Testing data: 30 records IS R^2: 0.7354 IN RMSE: 691.3490 OS R^2: 0.8000 Training data: 67 records Testing data: 30 records Random State: 12 IS R^2: 0.7413 | RMSE: 679.3947 OS RMSE: 633.9426

"Back to the Future" Train-Test

```
Training data: 21 records
Testing data: 76 records
IS R^2: 0.7952
               IS RMSE: 562.6216
OS R^2: 0.7457
                OS RMSE: 694.9761
Training data: 40 records
Testing data: 57 records
Cut-off date: 2016-06-30 00:00:00
IS R^2: 0.7939 IS RMSE: 615.8809
OS R^2: 0.7150 OS RMSE: 718.4413
Training data: 55 records
Testing data: 42 records
          2016-09-30 00:00:00
IS R^2: 0.8085
                IS RMSE: 587.6223
OS R^2: 0.6716
               OS RMSE: 770.7303
Training data: 70 records
Testing data: 27 records
cut-off date 2016-12-31 00:00:00
IS R^2: 0.7975 IS RMSE: 577.0079
                OS RMSE: 890.9002
Training data: 87 records
Testing data: 10 records
Cut-off date: 2017-03-31 00:00:00
TS R^2: 0.7805 TS RMSE: 622.4212
               OS RMSE: 976.3895
```

VS.

→ If granted more time, **revisiting distribution of shipment varieties over time** or would be a good next step. Also **additional data could better specify the model.**

Finally, it's difficult to pick out profitability trends given missing data...

Note: Only shows shipments for which we have complete information.

→ Missing bills seem only to appear in the later months, and better clarity can be achieved by fixing longer-standing missing invoicing.

...even on a broader scale.

Note: Only shows shipments for which we have complete information.

Q&A