

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for producing a sustained-release composition, which comprises mixing an aqueous solution containing a ~~physiologically active substance compound represented by the general formula:~~

5-oxo-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z (SEQ ID NO: 1)

wherein Y represents DLeu, DAla, DTrp, DSer (tBu), D2Nal or DHis (ImBz1) and Z represents NH-C₂H₅ or Gly-NH₂ and an acid or base acetic acid in a molar amount of about 1.5 ~~to about 5~~ or more times that of the compound ~~physiologically active substance~~ with a solution of a lactic acid-glycolic acid polymer in a low water-soluble organic solvent to obtain a W/O type emulsion, biodegradable polymer, and then drying the emulsion mixture.

2. (Currently Amended) The method according to claim 1, wherein the aqueous solution is obtained using a salt of the compound ~~physiologically active substance~~ with acetic acid ~~the acid or base~~.

3. (Currently Amended) The method according to claim 1, wherein the proportion of the compound ~~physiologically active substance~~ in the sustained-release composition is about 0.001 to about 50% by weight.

4. (Currently Amended) A method for stabilizing a W/O type emulsion mixture of an aqueous solution containing a compound represented by the general formula:

5-oxo-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z (SEQ ID NO: 1)

wherein Y represents DLeu, DAla, DTrp, DSer (tBu), D2Nal or DHis (ImBz1) and Z represents NH-C₂H₅ or Gly-NH₂ ~~physiologically active substance~~ and a solution of a lactic acid-glycolic acid polymer in a low water-soluble organic solvent biodegradable polymer, which comprises adding to the aqueous solution acetic acid ~~an acid or base~~ in a molar

amount of about 1.5 to about 5 mol or more times that of the compound physiologically active substance.

5. (Currently Amended) A method for allowing a W/O type emulsion mixture of an aqueous solution containing a compound represented by the general formula:

5-oxo-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z (SEQ ID NO: 1)

wherein Y represents DLeu, DAla, DTrp, DSer (tBu), D2Nal or DHis (ImBz1) and Z represents NH-C₂H₅ or Gly-NH₂ physiologically active substance and a solution of a lactic acid-glycolic acid polymer in a low water-soluble organic solvent biodegradable polymer to have a viscosity of about 3,000 cp or less, which comprises adding to the aqueous solution acetic acid an acid or base in a molar amount of about 1.5 to about 5 mol or more times that of the compound physiologically active substance.

6-9. (Canceled)

10. (Currently Amended) The method according to any one of claims 1, 4 and 5, wherein said acetic acid is used the acid or base in a molar amount of about 1.65 to about 3 times that of the compound physiologically active substance is used.

11-15. (Canceled)

16. (Currently Amended) The method according to claim 1[[15]], wherein the molar ratio of lactic acid to glycolic acid in the lactic acid-glycolic acid polymer is 100:0 to 50:50.

17. (Currently Amended) The method according to claim 1[[16]], wherein the molar ratio of lactic acid to glycolic acid in the lactic acid-glycolic acid polymer is 100:0.

18. (Currently Amended) The method according to claim 1[[15]], wherein the weight average molecular weight of the lactic acid-glycolic acid polymer is 5,000 to 50,000.

19. (Currently Amended) The method according to claim 1[[15]], wherein the weight average molecular weight of the lactic acid-glycolic acid polymer is 17,000 to 30,000.

20. (Currently Amended) The method according to claim 1, wherein the lactic acid-glycolic acid polymer ~~biodegradable polymer~~ is a lactic acid polymer having a weight average molecular weight of 15,000 to 50,000 and the content of a polymer having a weight average molecular weight of 5,000 or less in said lactic acid polymer is 5% by weight or less.

21. (Currently Amended) The method according to claim 1, wherein the ~~biodegradable polymer~~ is a lactic acid-glycolic acid polymer has ~~having~~ about 20 to about 1,000 μmol of terminal carboxyl per unit mass (gram) of the polymer.

22. (Currently Amended) The method according to claim 1, wherein the molar amount of the terminal carboxyl of the lactic acid-glycolic acid polymer ~~biodegradable polymer~~ is about 0.1 to about 5 times that of the compound ~~physiologically active substance~~.

23. (Canceled)

24. (Currently Amended) The method according to any one of claims 1, 4 and 5 ~~claim 23~~, wherein the low water-soluble organic solvent is dichloromethane.

25-27. (Canceled)

28. (Currently Amended) The method according to any one of claims 1, 4 and 5 ~~claim 27~~, wherein the particle size of the W/O type emulsion is very small.

29. (Currently Amended) The method according to claim 1, wherein the drying of the W/O type emulsion mixture is in-water drying.

30. (Original) The method according to claim 29, wherein an aqueous solution of an osmotic pressure regulating agent is used as an outer aqueous phase on the in-water drying.

31. (Original) The method according to claim 30, wherein the osmotic pressure regulating agent is mannitol.

32. (Original) The method according to claim 1, wherein the sustained-release composition is in the form of a microparticle.

33. (Original) The method according to claim 32, wherein the microparticle is a microsphere or a microcapsule.

34. (Currently Amended) A method for producing a sustained-release composition, which comprises mixing an aqueous solution containing 1) a compound represented by the general formula:

5-oxo-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z (SEQ ID NO: 1)

wherein Y represents DLeu, DAla, DTrp, DSer (tBu), D2Nal or DHis (ImBz1) and Z represents NH-C₂H₅ or Gly-NH₂ physiologically active substance and 2) acetic acid an acid or base in an amount of about 0.1 to about 20% by weight of said aqueous solution with a solution of a lactic acid-glycolic acid polymer in a low water-soluble organic solvent to obtain a W/O type emulsion, biodegradable polymer, and then drying the emulsion mixture.

35. (Currently Amended) The method according to claim 34, wherein the aqueous solution is obtained using a salt of the compound physiologically active substance with acetic acid the acid or base.

36. (Original) A sustained-release composition produced by the method according to claim 1.

37. (Canceled)

38. (New) The method according to claim 1, wherein Y represents DLeu and Z represents Gly-NH₂.

39. (New) the method according to claim 1, wherein the viscosity of the W/O type emulsion is in the range of about 3,000 cp or less at about 12 to 25°C.