

Joint Optimization of Tree-based Index and Deep Model for Recommender Systems

NeurIPS | 2019

Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, Kun Gai {zhuhan.zh, daqing.cdq, ziru.xzr, pengye.zpy, yushi.lx, jay.hj, lihan.lh, xiyu.xj, jingshi.gk}@alibaba-inc.com

Introduction

The previous work Tree-based Deep Model (TDM) creatively proposes to use tree index for large-scale recommendation. By using advanced deep model to retrieve user interests in the tree, recommendation accuracy is improved greatly. In this paper, we give a framework to jointly optimize the tree index and deep model with a unified global objective.

Max-heap preference modeling

$$p^{(l)}(n|u) = \frac{\max_{n_c \in \{n's \text{ children in level } l+1\}} p^{(l+1)}(n_c|u)}{\alpha^{(l)}}$$

From max-heap to samples

Samples from implicit feedback $\{(u^{(i)},c^{(i)})\}_{i=1}^n$ Ground-truth preference $p\left(\pi(c)|u;\pi\right)=1$ From max-heap $\{p(b_j(\pi(c))|u;\pi)=1\}_{j=0}^{l_{max}}$

Unified global loss function

Denote the user preference model parameters as θ and the tree structure definition as π , the unified global loss w.r.t. (θ,π) is the cross-entropy loss of each sample in each level:

$$\mathcal{L}(\theta, \pi) = -\sum_{i=1}^{n} \sum_{j=0}^{l_{max}} \log \hat{p}\left(b_j(\pi(c^{(i)})) | u^{(i)}; \theta, \pi\right)$$

Joint optimization framework

Algorithm 1: Joint learning framework of the tree index and deep model Input: Loss function $\mathcal{L}(\theta,\pi)$, initial deep model \mathcal{M} and initial tree \mathcal{T} 1: for $t=0,1,2\dots$ do 2: Solve $\min_{\theta} \mathcal{L}(\theta,\pi)$ by optimizing the model \mathcal{M} . 3: Solve $\max_{\pi} -\mathcal{L}(\theta,\pi)$ by optimizing the tree hierarchy with Algorithm 2 4: end for Output: Learned model \mathcal{M} and tree \mathcal{T}

Alternatively optimize the user preference model and tree structure. The optimization of preference model can be solved by standard back-propagation. The optimization of tree structure is equivalent to a maximum matching problem of weighted bipartite graph, which has no efficient solution when the corpus size is very large.

Approximate tree learning

$$\mathcal{L}_{c_k}^{s,e}(\pi) = \sum_{(u,c)\in\mathcal{A}_k} \sum_{j=s}^{e} \log \hat{p}\left(b_j(\pi(c))|u;\theta,\pi\right)$$

Algorithm 2: Tree learning algorithm

Input: Gap d, max tree level l_{\max} , original projection π_{old} Output: Optimized projection π_{new} 1: Set current level $l \leftarrow d$, initialize $\pi_{new} \leftarrow \pi_{old}$ 2: while d > 0 do

3: for each node n_i in level l - d do

4: Denote \mathcal{C}_{n_i} as the item set that $\forall c \in \mathcal{C}_{n_i}, b_{l-d}(\pi_{new}(c)) = n_i$ 5: Find π^* that maximize $\sum_{c \in \mathcal{C}_{n_i}} \mathcal{L}_c^{l-d+1,l}(\pi)$, s.t. $\forall c \in \mathcal{C}_{n_i}, b_{l-d}(\pi^*(c)) = n_i$ 6: Update π_{new} . $\forall c \in \mathcal{C}_{n_i}, \pi_{new}(c) \leftarrow \pi^*(c)$ 7: end for

8: $d \leftarrow \min(d, l_{max} - l)$ 9: $l \leftarrow l + d$ 10: end while

In order to tackle the corpus size problem in tree learning, we propose an approximate algorithm to learning the tree structure step-by-step.

Right: Dataset dimensions

Bottom: Overall offline results

	Amazon Books	UserBehavior
# of users	294,739	969,529
# of items	1,477,922	4,162,024
# of categories	2,637	9,439
# of records	8,654,619	100,020,395

Method	Amazon Books		UserBehavior			
	Precision	Recall	F-Measure	Precision	Recall	F-Measure
Item-CF	0.52%	8.18%	0.92%	1.56%	6.75%	2.30%
YouTube product-DNN	0.53%	8.26%	0.93%	2.25%	10.15%	3.36%
HSM	0.42%	6.22%	0.72%	1.80%	8.62%	2.71%
TDM	0.50%	7.49%	0.88%	2.23%	10.84%	3.40%
DNN	0.56%	8.57%	0.98%	2.81%	13.45%	4.23%
JTM-J	0.51%	7.60%	0.89%	2.48%	11.72%	3.73%
JTM-H	0.68%	10.45%	1.19%	2.66%	12.93%	4.02%
JTM	0.79%	12.45%	1.38%	3.11%	14.71%	4.68%

Left: Jointly model and tree learning results

Bottom: Online A/B test results

Metric	Baseline	TDM	JTM	
CTR	0.0%	+5.4%	+11.3%	_
RPM	0.0%	+7.6%	+12.9%	
				_