IN THE CLAIMS:

1.-18. (Cancelled)

19. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space between adjacent vertebrae, comprising:

an elongate body having a length and defining external threads extending substantially entirely along said length, said elongate body including opposite outer walls that are substantially continuously tapered along said length so as to define a taper angle therebetween with said outer walls disposed entirely within said taper angle to maintain the adjacent vertebrae in an angular relationship relative to one another when said elongate body is implanted within the disc space, said elongate body at least partially formed of a porous biocompatible material to permit bone tissue ingrowth into said elongate body, said elongate body having a substantially solid configuration and comprising a unitary, single-piece structure for disposition within the disc space.

20. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space between adjacent vertebrae, comprising:

an elongate body having a length and defining external threads extending substantially entirely along said length, said elongate body being substantially continuously tapered along said length and at least partially formed of a porous biocompatible material to permit bone tissue ingrowth into said elongate body, The fusion device of claim 19, wherein said porous biocompatible material being comprises a composite comprising an open-celled substrate having interconnected porosity, said open-celled substrate infiltrated with a metal.

- 21. (Previously Presented) The fusion device of claim 20, wherein said open-celled substrate is a carbonaceous material.
 - 22. (Previously Presented) The fusion device of claim 20, wherein said open-celled

substrate is a carbon foam.

23. (Previously Presented) The fusion device of claim 20, wherein said metal

comprises a group VB metal.

24. (Previously Presented) The fusion device of claim 23, wherein said metal is

tantalum.

25. (Previously Presented) The fusion device of claim 19, wherein said porous

biocompatible material has a modulus of elasticity approximately equal to a modulus of elasticity

of human bone.

(Cancelled) 26.

(Currently Amended) A fusion device for facilitating arthrodesis in a disc space 27.

between adjacent vertebrae, comprising:

an elongate body having a length and defining external threads extending substantially

entirely along said length, said external threads being circumferentially interrupted by a pair of

oppositely disposed truncated side walls arranged substantially diametrically opposite one

another to define a pair of threaded arcuate side walls extending along said length, said pair of

threaded arcuate side walls are tapered along a substantial portion of said length of said elongate

body, said elongate body at least partially formed of a porous biocompatible material to permit

bone tissue ingrowth into said elongate body.

28. (Currently Amended) The fusion device according to claim 27, A fusion device

for facilitating arthrodesis in a disc space between adjacent vertebrae, comprising:

an elongate body having a length and defining external threads extending substantially

entirely along said length, said external threads being circumferentially interrupted by a pair of

oppositely disposed truncated side walls to define a pair of threaded arcuate side walls extending

Response to non-final Office Action Application Serial No. 10/644,252

Inventor: Thomas Zdeblick et al.

Filing Date: August 20, 2003

Page 4 of 18

along said length, said pair of threaded arcuate side walls are tapered along a substantial portion of said length of said elongate body, said elongate body at least partially formed of a porous

biocompatible material to permit bone tissue ingrowth into said elongate body; and

wherein said elongate body defines a hollow interior, said pair of threaded arcuate side walls each defining at least one opening extending therethrough in communication with said

hollow interior.

29. (Previously Presented) The fusion device according to claim 28, further

comprising a bone growth inducing material disposed within said hollow interior.

30. (Cancelled)

31. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a length and defining external threads extending substantially

entirely along said length, said elongate body having a first diameter adjacent a first end thereof

and a larger second diameter adjacent an opposite second end thereof, said elongate body

including opposite outer walls that are substantially continuously tapered between said first and

second ends so as to define a taper angle therebetween with said outer walls disposed entirely

within said taper angle to maintain the adjacent vertebrae in an angular relationship relative to

one another when said elongate body is implanted within the disc space, said elongate body at

least partially formed of a porous biocompatible material to permit bone tissue ingrowth into said

elongate body, said elongate body having a substantially solid configuration and comprising a

unitary, single-piece structure for disposition within the disc space.

32.-33. (Cancelled)

34. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

Page 5 of 18

an elongate body having a side wall extending generally along a longitudinal axis and

defining a hollow interior and at least one opening extending laterally through said side wall in

communication with said hollow interior, said elongate body being substantially continuously

tapered along said length and at least partially formed of a porous biocompatible material to

permit bone tissue ingrowth into said elongate body, said porous biocompatible material being a

composite comprising an open-celled substrate having interconnected porosity, said substrate

infiltrated with a metal.

35. (Previously Presented) The fusion device of claim 34, wherein said open-celled

substrate is a carbonaceous material.

36. (Previously Presented) The fusion device of claim 34, wherein said metal

comprises a group VB metal.

37. (Currently Amended) The fusion device of claim 32 34, wherein said elongate

body has a length and defines external threads extending substantially entirely along said length.

38. (Previously Presented) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a hollow interior and at least one opening in communication

with said hollow interior, said elongate body having a length and defining external threads

extending substantially entirely along said length, said external threads being circumferentially

interrupted by a pair of oppositely disposed truncated side walls to define a pair of threaded

arcuate side walls extending along said length and tapered along a substantial portion of said

length, said at least one opening extending through a corresponding one of said threaded arcuate

side walls, said elongate body at least partially formed of a porous biocompatible material to

Page 6 of 18

permit bone tissue ingrowth into said elongate body.

Response to non-final Office Action

Inventor: Thomas Zdeblick et al.

Application Serial No. 10/644,252

' 39. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a side wall extending generally along a longitudinal axis and

<u>defining</u> a hollow interior and at least one opening <u>extending laterally through said side wall</u> in

communication with said hollow interior, said elongate body having a length and including a pair

of oppositely disposed truncated side walls portions and a pair of arcuate side walls portions

extending therebetween along said length and tapered along a substantial portion of said length,

said elongate body at least partially formed of a porous biocompatible material to permit bone

tissue ingrowth into said elongate body.

40. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a length and including a pair of oppositely disposed arcuate side

walls extending along said length and tapered along a substantial portion of said length and

adapted for engagement with the adjacent vertebra, said elongate body including a pair of

truncated side walls extending between said arcuate side walls, said elongate body having a

hollow interior and at least one opening extending through at least one of said arcuate side walls

and said truncated side walls in communication with said hollow interior and being at least

partially formed of a porous biocompatible material to permit bone tissue ingrowth into said

arcuate side walls.

41. (Previously Presented) The fusion device of claim 40, wherein said porous

biocompatible material is a composite comprising an open-celled substrate having interconnected

porosity, said substrate infiltrated with a metal.

42. (Previously Presented) The fusion device of claim 41, wherein said open-celled

substrate is a carbonaceous material.

43. (Previously Presented) The fusion device of claim 41, wherein said metal

Response to non-final Office Action Application Serial No. 10/644,252

Inventor: Thomas Zdeblick et al. Filing Date: August 20, 2003

Page 7 of 18

comprises a group VB metal.

44. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a length and including a pair of oppositely disposed arcuate side

walls extending along said length and adapted for engagement with the adjacent vertebrae, said

arcuate side walls defining external threads extending substantially entirely along said length and

tapered substantially entirely along said length, said elongate body at least partially formed of a

porous biocompatible material to permit bone tissue ingrowth into said arcuate side walls, said

elongate body having a substantially solid configuration and comprising a unitary, single-piece

structure for disposition within the disc space.

45. (Currently Amended) The fusion device of claim 44, further comprising a pair of

truncated side walls <u>arranged substantially diametrically opposite one another and</u> extending

between said arcuate side walls.

46.-49. (Cancelled)

50. (Currently Amended) A fusion device for facilitating arthrodesis in a disc space

between adjacent vertebrae, comprising:

an elongate body having a length and including a pair of oppositely disposed arcuate side

walls extending along said length and adapted for engagement with the adjacent vertebrae, said

elongate body being substantially continuously tapered along said length to define a substantially

conical configuration and being at least partially formed of a porous biocompatible material to

permit bone tissue ingrowth into said arcuate side walls, said elongate body having a

substantially solid configuration and comprising a unitary, single-piece structure for disposition

within the disc space.

Response to non-final Office Action Application Serial No. 10/644,252 Inventor: Thomas Zdeblick et al.

Filing Date: August 20, 2003

Page 8 of 18