Second Live Lecture (Webinar): Starts in **15** minutes

Christophe Bontemps, UN SIAP

Second Live Lecture (Webinar): Starts in **10** minutes

Christophe Bontemps, UN SIAP

Second Live Lecture (Webinar): Starts in **5** minutes

Christophe Bontemps, UN SIAP

Classification

[- REMINDER -]

► Mute yourself always!

[- REMINDER -]

- ► Mute yourself always!
- ► The lecture is recorded

[- REMINDER -]

- Mute yourself always!
- ► The lecture is recorded
- ► Ask questions in the chat

► Introduction

- Introduction
- ► Classification in a (*Machine learning Framework*)

- ► Introduction
- ► Classification in a (*Machine learning Framework*)
- ► Q&A

- ► Introduction
- ► Classification in a (*Machine learning Framework*)
- ► Q&A
- ► Next week

What is a classification problem?

▶ The goal is to understand why an observation belongs to a certain category

- ▶ The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural

- ▶ The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ▶ Some variables *x*s may explain why *y* belongs to a particular category

- ▶ The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ▶ Some variables *x*s may explain why *y* belongs to a particular category

What is a classification problem?

- ▶ The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ▶ Some variables *x*s may explain why *y* belongs to a particular category

A **classifier** is a tool that provides a classification for *y* using (*or not*) additional information from other variables

Measures of Fit

Introduction

[SUPERVISED *vs* UNSUPERVISED CLASSIFICATION]

Logit

ROC curve

Best classifier

Takeaways

▶ In **supervised** classification, we **observe** the category for each observation

▶ In **supervised** classification, we **observe** the category for each observation *One may learn and estimate the impact of other variables on that classification (e.g. logit regression)*

- ▶ In **supervised** classification, we **observe** the category for each observation *One may learn and estimate the impact of other variables on that classification (e.g. logit regression)*
- ► In **unsupervised** classification, we **ignore** the category (if any) of each observation

- ▶ In **supervised** classification, we **observe** the category for each observation *One may learn and estimate the impact of other variables on that classification (e.g. logit regression)*
- In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - The goal is to classify observations from those variables (clustering) without having any information of what a category means.

- ▶ In **supervised** classification, we **observe** the category for each observation *One may learn and estimate the impact of other variables on that classification (e.g. logit regression)*
- In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - The goal is to classify observations from those variables (clustering) without having any information of what a category means.

- ▶ In **supervised** classification, we **observe** the category for each observation *One may learn and estimate the impact of other variables on that classification (e.g. logit regression)*
- ▶ In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - The goal is to classify observations from those variables (clustering) without having any information of what a category means.
- We'll focus on supervised classification

Logit

Measures of Fit

Introduction

ROC curve

Best classifier

Takeaways

▶ You observe households in *Urban* or *Rural* and *Education*.

▶ You observe households in *Urban* or *Rural* and *Education*.

▶ You observe households in *Urban* or *Rural* and *Education*.

▶ A classifier "finds" the value of *Education* separating "*Rural*" from "*Urban*"

▶ You observe households in *Urban* or *Rural* and *Education*.

A classifier "finds" the value of *Education* separating "*Rural*" from "*Urban*" Typically with a threshold rule: "if $x \ge T_0$ then category is *Urban*"

ROC curve

Best classifier

[CLASSIFICATION: A 2-D EXAMPLE]

Measures of Fit

Introduction

➤ You observe households in *Urban* or *Rural* areas and **two** variables (features): *Education* and *Income*

➤ You observe households in *Urban* or *Rural* areas and **two** variables (features): *Education* and *Income*

➤ You observe households in *Urban* or *Rural* areas and **two** variables (features): *Education* and *Income*

Where is the boundary? How to find it?

► A classifier will determine a **boundary** using both *Education* and *Income* to separate "Rural" from "Urban"

► A classifier will determine a **boundary** using both *Education* and *Income* to separate "Rural" from "Urban"

► A classifier will determine a **boundary** using both *Education* and *Income* to separate "Rural" from "Urban"

► The rule can be based on a linear relationship between *Education* and *Income* or can be non linear.

ROC curve

Best classifier

[CLASSIFICATION: A 2-D EXAMPLE]

Measures of Fit

Introduction

► Example of a linear classifier

Example of a linear classifier

Example of a linear classifier

▶ The separation rule is $x'\beta \ge T_0$ for a particular T_0 : the *threshold*

Example of a linear classifier

The separation rule is $x'\beta \ge T_0$ for a particular T_0 : the *threshold* e.g.: $\beta_0 + \beta_1 Education + \beta_2 Income > T_0 \Leftrightarrow Urban$

► Example of non-linear classifier

► Example of non-linear classifier

► Example of non-linear classifier

► The rule that separated the two classes is non linear in the variables *Education* and *Income*

▶ What is the goal?

► What is the goal? Have the "best" classification

- What is the goal?Have the "best" classification
- → Need for a criterion to determine what is a good classifier

- What is the goal?Have the "best'" classification
- → Need for a criterion to determine what is a good classifier
 - Measures of fit in classification are different and specific

There are several popular measures of fit, differing in their spirit and their goal

Accuracy

- Accuracy
- Confusion matrix

- Accuracy
- Confusion matrix
- Sensitivity & Specificity

- Accuracy
- Confusion matrix
- Sensitivity & Specificity
- Kappa

There are several popular measures of fit, differing in their spirit and their goal

- Accuracy
- Confusion matrix
- Sensitivity & Specificity
- Kappa

. . .

There are several popular measures of fit, differing in their spirit and their goal

- Accuracy
- Confusion matrix
- Sensitivity & Specificity
- Kappa

. . .

Each criterion answers to a different question

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

• where $\widehat{f}(\cdot)$ is the classifier.

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- where $\widehat{f}(\cdot)$ is the classifier.
- \hookrightarrow We want the **maximum** possible accuracy.

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- where $\widehat{f}(\cdot)$ is the classifier.
- → We want the **maximum** possible accuracy.
- ▶ Equivalently, we may want to **minimize** the *error rate* or *misclassification rate*

$$\Pr\left[y_0 \neq \widehat{f}(x_0)\right]$$

A classifier predicts in which class each observation should be:

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Table: Confusion Matrix

Introduction

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Best classifier

Takeaways

Table: Confusion Matrix

Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{TruePositives + TrueNegatives}{N}$$

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Table: Confusion Matrix

Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$= \frac{TruePositives + TrueNegatives}{N}$$

It is the proportion of accurate predictions

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► Here *Urban* is the "positive" class

Introduction

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ► Here *Urban* is the "positive" class
- Accuracy is then the ratio:

$$Accuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ► Here *Urban* is the "positive" class
- Accuracy is then the ratio:

$$Accuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

▶ We have an accurate prediction in 75% of the cases.

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

▶ One may be more interested in **correctly** predicting a particular outcome!

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

- ▶ One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

- ▶ One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
- ▶ One may need other measures, focused on one particular outcome

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

- ▶ One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
 - One may need other measures, focused on one particular outcome
 - Compute Sensitivity & Specificity from the confusion matrix

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

- ▶ One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
 - One may need other measures, focused on one particular outcome
 - Compute Sensitivity & Specificity from the confusion matrix
 - They may go in different directions

[SENSITIVITY OR *True Positive Rate*]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Introduction

[SENSITIVITY OR *True Positive Rate*]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

▶ *Sensitivity*: focuses on predicted positives (here *Urban*) *vs* observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24} = 0.78$

[SENSITIVITY OR *True Positive Rate*]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

➤ Sensitivity: focuses on predicted positives (here *Urban*) vs observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24} = 0.78$

On *Urban*, we correctly predict in 78% of the cases

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Introduction

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Sensitivity focuses on predicted negatives (Rural) vs observed negatives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Sensitivity focuses on predicted negatives (Rural) vs observed negatives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

On *Rural*, we predict correctly in **only** 71% of the cases

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
Tredicted	Rural	(FN)	0 (TN)

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
Tredicted	Rural	(FN)	0 (TN)

· · · would have a very good Accuracy and Sensitivity

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

		Observed (Irue)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
	Rural	(FN)	0 (TN)

· · · would have a very good Accuracy and Sensitivity

Accuracy = (TP + TN) / 100 = 95 %

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "*stupid*" classifier predicting only *Urban* · · ·

		Observed (Irue)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
	Rural	(FN)	(TN)

· · · would have a very good Accuracy and Sensitivity

Accuracy =
$$(TP + TN) / 100 = 95 \%$$

Sensitivity = TP/(TP + FN) = 95/95 = 100 %

[THE KAPPA (κ) INDEX]

 $\mathit{Kappa}\left(\kappa\right)$ is defined to measure the accuracy with imbalanced classes Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

[THE KAPPA (κ) INDEX]

 $\it Kappa~(\kappa)$ is defined to measure the accuracy with imbalanced classes Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

Rest classifier

[THE KAPPA (κ) INDEX]

 $\it Kappa~(\kappa)$ is defined to measure the accuracy with imbalanced classes Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

 P_e is the **accuracy of an uniformed classifier** that would operate purely by chance, using no information.

[THE KAPPA (κ) INDEX]

 $\it Kappa~(\kappa)$ is defined to measure the accuracy with imbalanced classes Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

 P_e is the **accuracy of an uniformed classifier** that would operate purely by chance, using no information.

NB: P_o is simple accuracy while P_e is more complex to compute.

[THE KAPPA (κ) INDEX]

 $\mathit{Kappa}\ (\kappa)$ is defined to measure the accuracy with imbalanced classes Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

 P_e is the **accuracy of an uniformed classifier** that would operate purely by chance, using no information.

NB: P_o is simple accuracy while P_e is more complex to compute.

The larger κ is, the better the model for a given distribution of classes in a data set

[LOGIT AS YOU KNOW IT]

[LOGIT AS YOU KNOW IT]

y is discrete ($y \in 0, 1$), so no *direct* linear relationship between y and the explanatory variables x (i.e. Education, Income)

[LOGIT AS YOU KNOW IT]

y is discrete ($y \in 0, 1$), so no *direct* linear relationship between y and the explanatory variables x (i.e. *Education, Income*)

▶ Logit estimates the probabilities π (∈ [0, 1])

$$\pi = Probablity[y = 1]$$

Takeaways

y is discrete $(y \in 0, 1)$, so no direct linear relationship between y and the explanatory variables x (i.e. Education, Income)

Logit estimates the probabilities π (\in [0, 1])

$$\pi = Probablity[y = 1]$$

► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

[LOGIT AS YOU KNOW IT]

y is discrete ($y \in 0, 1$), so no *direct* linear relationship between y and the explanatory variables x (i.e. *Education, Income*)

▶ Logit estimates the probabilities π (∈ [0, 1])

$$\pi = Probablity[y = 1]$$

► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

 \hookrightarrow So basically: $log(\frac{\pi}{1-\pi}) = x'\beta$ where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y=1

Logit

•000

[Logit as You know it]

y is discrete $(y \in 0, 1)$, so no direct linear relationship between y and the explanatory variables *x* (*i.e. Education, Income*)

Logit estimates the probabilities π (\in [0, 1])

$$\pi = Probablity[y = 1]$$

► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

 \hookrightarrow So basically: $\log(\frac{\pi}{1-\pi}) = x'\beta$ where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y = 1

 \rightarrow "The logit models log of odd ratios as linear in x"

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a **threshold** probability

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a **threshold** probability

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a **threshold** probability

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

▶ If $t_0 \neq 1/2$, then there exist a threshold T_0 such that :

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a **threshold** probability

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

▶ If $t_0 \neq 1/2$, then there exist a threshold T_0 such that :

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

 \hookrightarrow The logit classifier depends on the linear combination of the x's

[IMPORTANCE OF THE THRESHOLD]

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta = T_0$ defines the partition of the space

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta = T_0$ defines the partition of the space

[IMPORTANCE OF THE THRESHOLD]

▶ The rule $x'\beta = T_0$ defines the partition of the space

▶ This partition is sensitive to the choice of the threshold T_0 (and hence t_0)

[IMPORTANCE OF THE THRESHOLD]

[IMPORTANCE OF THE THRESHOLD]

- ► Changing t_0 will change the predictions & the classification A **higher** t_0 will allocate **less** observations to the y = 1 category (Urban) A **lower** t_0 will allocate **more** observations to the y = 1 category
- ightharpoonup The choice of t_o should be done according to the data and observed classes repartition
- Specificity and Sensitivity are affected by t_0

▶ We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)

- ▶ We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)
- ► The ROC curve help visualize the best choice

- ▶ We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)
- ► The ROC curve help visualize the best choice
- ► The ROC plots both Sensitivity and Specificity values for different thresholds

- ▶ We want the *Specificity* and *Sensitivity* to be both **maximized** (ideally both would be 1)
- The ROC curve help visualize the best choice
- ► The ROC plots both Sensitivity and Specificity values for different thresholds
- \hookrightarrow Be careful of the axes

The ROC represents values of 1- Specificity = FPR vs Sensitivity = TPR for many values of the threshold t_0

The ROC represents values of 1- Specificity = FPR vs Sensitivity = TPR for many values of the threshold t_0

The ROC represents values of 1- Specificity = FPR vs Sensitivity = TPR for many values of the threshold t_0

 \rightarrow sometimes on a ROC curve, x is sensitivity with inverted x-axis

▶ Optimally, the curve should touch top-left corner

▶ Optimally, the curve should touch top-left corner

▶ Optimally, the curve should touch top-left corner

▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*

Optimally, the curve should touch top-left corner

- ▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*
- ▶ If t_0 /, specificity / and sensitivity \

A model that works well, whatever the threshold is certainly desirable

A model that works well, whatever the threshold is certainly desirable

▶ Using the AUC is also a measure of fit of a model

A model that works well, whatever the threshold is certainly desirable

▶ Using the AUC is also a measure of fit of a model

A model that works well, whatever the threshold is certainly desirable

▶ Using the AUC is also a measure of fit of a model

The greater the area, the better the model

▶ We have several measures at hand

- ▶ We have several measures at hand
- We should evaluate those models on their predictive performance on a new "unseen" data set

- We have several measures at hand
- We should evaluate those models on their predictive performance on a new "unseen" data set
- → This is what Cross-Validation can do

- ▶ We have several measures at hand
- We should evaluate those models on their predictive performance on a new "unseen" data set
- → This is what Cross-Validation can do

► For any model, CV gives several classifications

- ► For any model, CV gives several classifications
- ▶ All the criteria derive from the confusion matrix

- ► For any model, CV gives several classifications
- ▶ All the criteria derive from the confusion matrix
- \hookrightarrow Examine them all!

- ► For any model, CV gives several classifications
- ► All the criteria derive from the confusion matrix

[HOW TO CHOSE THE BEST MODEL?]

[HOW TO CHOSE THE BEST MODEL?]

▶ We have several criteria for one model

[HOW TO CHOSE THE BEST MODEL?]

- We have several criteria for one model
- ▶ We should again evaluate the classifier based on "unseen" data set

[HOW TO CHOSE THE BEST MODEL?]

- We have several criteria for one model
- ▶ We should again evaluate the classifier based on "unseen" data set
- → Run Cross-Validation an all!

Sensitivity

Specificity

Specificity of all CV validation sest, on all models

[HOW TO CHOSE THE BEST MODEL?]

- ▶ We have several criteria for one model
- ▶ We should again evaluate the classifier based on "unseen" data set
- → Run Cross-Validation an all!

080

Accuracy

▶ In classification, the **Confusion matrix** is important

- ▶ In classification, the **Confusion matrix** is important
- ▶ Many adjustment measures: accuracy, sensitivity and specificity.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- When outcome is imbalanced, one may use kappa has a better measure for accuracy.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.

Which measure you should consider depends on the context and your goal.

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- ▶ **Logit** is a benchmark parametric model for classification

- ▶ In classification, the **Confusion matrix** is important
- Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- Logit is a benchmark parametric model for classification
 One may use the ROC to change the threshold parameter

▶ Use (*Training-Validation*) sets to **select** parameters within a model

- ▶ Use (*Training-Validation*) sets to **select** parameters within a model
- ▶ Use (*Training-Validation*) sets to **compare** models on the same criteria

- ▶ Use (*Training-Validation*) sets to **select** parameters within a model
- ▶ Use (*Training-Validation*) sets to **compare** models on the same criteria
- ▶ Several criteria / measures of fit / cost functions are available

- ▶ Use (*Training-Validation*) sets to **select** parameters within a model
- ▶ Use (*Training-Validation*) sets to **compare** models on the same criteria
- ▶ Several criteria / measures of fit / cost functions are available
- Time is the limit...

Write your questions in the chat

▶ Module 3: "Regression" (Multiple dimension, penalization methods, ...)

- ▶ Module 3: "Regression" (Multiple dimension, penalization methods, ...)
- Webinar on "Regression" Thursday, same time

- ▶ Module 3: "Regression" (Multiple dimension, penalization methods, ...)
- Webinar on "Regression" Thursday, same time
- Complete the activities before the webinar!

- ▶ Module 3: "Regression" (Multiple dimension, penalization methods, ...)
- Webinar on "Regression" Thursday, same time
- Complete the activities before the webinar!
- Continue to post your thoughts on the forums

- ▶ Module 3: "Regression" (Multiple dimension, penalization methods, ...)
- Webinar on "Regression" Thursday, same time
- Complete the activities before the webinar!
- Continue to post your thoughts on the forums

Have a nice week!