COM3110/4115/6150: Text Processing

Sentiment Analysis: Approaches and Evaluation

Rob Gaizauskas

Department of Computer Science University of Sheffield

Learning Outcomes

By the end of the SA sessions, you will be able to:

- Explain the relevance of the topic
- Differentiate between objective and subjective texts
- List the main elements in a sentiment analysis system
- Provide a critical summary of the main approaches for the problem
- Explain how sentiment analysis systems are evaluated.

Overview

- Definition of the problem of sentiment analysis
- Approaches to sentiment analysis
- Evaluation of sentiment analysis approaches

Two approaches to SA

- Lexicon-based
 - Binary
 - Gradable
- Corpus-based (machine learning)

Naive Bayes classifier: estimate the probability of each class given a text:

• Compute the posterior probability (Bayes rule) of each class c_i for text segment T

$$P(c_i|T) = \frac{P(T|c_i)P(c_i)}{P(T)}$$

Assumption of independence between attributes ("naive" assumption)

$$P(T|c_i) = P(t_1, t_2, ..., t_j|c_i) = \prod_{j=1}^n P(t_j|c_i)$$

where T is described by a number of attributes $t_1, ..., t_j$

A Naive Bayes classifier (ctd)

• **Likelihood**: product of probabilities of each feature value of segment occurring with class c_i

$$\prod_{j=1}^n P(t_j|c_i)$$

Prior: probability of segment having class c_i

$$P(c_i)$$

• **Evidence**: product of probabilities of features of segment – constant term for all classes, can be disregarded:

$$\prod_{i=1}^n P(t_j)$$

Final decision:

$$\underset{c_i}{\operatorname{argmax}} \prod_{j=1}^n P(t_j|c_i) P(c_i) \quad (= \underset{c_i}{\operatorname{argmax}} P(c_i) \prod_{j=1}^n P(t_j|c_i))$$

A Naive Bayes classifier - a worked out example

• Corpus of movie reviews: 7 examples for training

Doc	Words	Class
1	Great movie, excellent plot, renown actors	Positive
2	I had not seen a fantastic plot like this in good 5 years.	Positive
	Amazing!!!	
3	Lovely plot, amazing cast, somehow I am in love with	Positive
	the bad guy	
4	Bad movie with great cast, but very poor plot and	Negative
	unimaginative ending	
5	I hate this film, it has nothing original	Negative
6	Great movie, but not	Negative
7	Very bad movie, I have no words to express how I	Negative
	dislike it	

A Naive Bayes classifier - a worked out example (ctd)

• Features: adjectives (bag-of-words)

Doc	Words	Class
1	Great movie, excellent plot, renowned actors	Positive
2	I had not seen a fantastic plot like this in good 5	Positive
	years. amazing !!!	
3	Lovely plot, amazing cast, somehow I am in love with	Positive
	the bad guy	
4	Bad movie with great cast, but very poor plot and	Negative
	unimaginative ending	
5	I hate this film, it has nothing original. Really bad	Negative
6	Great movie, but not	Negative
7	Very bad movie, I have no words to express how I	Negative
	dislike it	

Relative frequency in corpus is the simplest approach to estimating probabilities:

Priors:

$$P(positive) = count(positive)/N = 3/7 = 0.43$$

$$P(negative) = count(negative)/N = 4/7 = 0.57$$

where N = total training examples

Assume standard pre-processing: tokenisation, lowercasing, punctuation removal (except special punctuation like !!!)

Likelihoods:

$$P(t_j|c_i) = \frac{count(t_j, c_i)}{count(c_i)}$$

Count word t_i in class c_i / total words in that class

P(amazing positive)	= 2/10	P(amazing negative)	= 0/8
P(bad positive)	= 1/10	P(bad negative)	= 3/8
P(excellent positive)	= 1/10	P(excellent negative)	= 0/8
P(fantastic positive)	= 1/10	P(fantastic negative)	= 0/8
P(good positive)	= 1/10	P(good negative)	= 0/8
P(great positive)	= 1/10	P(great negative)	= 2/8
P(lovely positive)	= 1/10	P(lovely negative)	= 0/8
P(original positive)	= 0/10	P(original negative)	= 1/8
P(poor positive)	= 0/10	P(poor negative)	= 1/8
P(renowned positive)	= 1/10	P(renowned negative)	= 0/8
P(unimaginative positive)	= 0/10	P(unimaginative negative)	= 1/8
P(!!! positive)	= 1/10	P(!!! negative)	= 0/8

- Relative frequencies for prior $(P(c_i))$ and likelihood $(P(t_j|c_i))$ make the **model** in a Naive Bayes classifier.
- At decision (test) time, given a new segment to classify, this model is applied to find the most likely class for the segment:

$$\operatorname*{argmax}_{c_i} P(c_i) \prod_{j=1}^n P(t_j | c_i)$$

Given a new segment to classify (test time):

Doc	Words	Class
8	This was a fantastic story, good, lovely	???

Final decision

$$\operatorname*{argmax}_{c_i} P(c_i) \prod_{j=1}^n P(t_j|c_i)$$

$$P(positive) * P(fantastic|positive) * P(good|positive) * P(lovely|positive)$$

$$3/7 * 1/10 * 1/10 * 1/10 = 0.00043$$

$$P(\textit{negative}) * P(\textit{fantastic}|\textit{negative}) * P(\textit{good}|\textit{negative}) * P(\textit{lovely}|\textit{negative})$$

$$4/7 * 0/8 * 0/8 * 0/8 = 0$$

So: *sentiment* = *positive*

What if the new segment to classify (test time) is:

Doc	Words	Class
10	Lovely plot, excellent cast, amazing everything	???

Final decision

$$P(\textit{positive}) * P(\textit{lovely}|\textit{positive}) * P(\textit{excellent}|\textit{positive}) * P(\textit{amazing}|\textit{positive})$$

$$3/7 * 1/10 * 1/10 * 1/10 = 0.00043$$

$$P(negative) * P(lovely|negative) * P(excellent|negative) * P(amazing|negative)$$

$$4/7*0/8*0/8*0/8=0$$

So: sentiment = positive

Given a new segment to classify (test time):

Doc	Words	Class
9	Great plot, great cast, great everything	???

Final decision

$$P(positive) * P(great|positive) * P(great|positive) * P(great|positive)$$

$$3/7 * 1/10 * 1/10 * 1/10 = 0.00043$$

$$P(negative) * P(great|negative) * P(great|negative) * P(great|negative)$$

4/7 * 2/8 * 2/8 * 2/8 = 0.00893

So: *sentiment* = *negative*

But if the new segment to classify (test time) is:

Doc	Words	Class
11	Boring movie, annoying plot, unimaginative ending	???

Final decision

$$P(\textit{positive}) * P(\textit{boring}|\textit{positive}) * P(\textit{annoying}|\textit{positive}) * P(\textit{unimaginative}|\textit{positive})$$

$$= \frac{3/7 * 0/10 * 0/10 * 0/10 = 0}{P(\textit{negative}) * P(\textit{boring}|\textit{negative}) * P(\textit{annoying}|\textit{negative}) * P(\textit{unimaginative}|\textit{negative})}{4/7 * 0/8 * 0/8 * 1/8 = 0}$$

So: sentiment = ???

Add smoothing to feature counts (add 1 to every count). Likelihoods =

$$P(t_j|c_i) = \frac{count(t_j, c_i) + 1}{count(c_i) + |V|}$$

where |V| is the number of distinct attributes in training (all classes) = 12

Doc	Words	Class
12	Boring movie, annoying plot, unimaginative ending	???

Final decision

$$P(\textit{positive}) * P(\textit{boring}|\textit{positive}) * P(\textit{annoying}|\textit{positive}) * P(\textit{unimaginative}|\textit{positive})$$

$$3/7*((0+1)/(10+12))*((0+1)/(10+12))*((0+1)/(10+12))=0.000040$$

$$P(negative) * P(boring|negative) * P(annoying|negative) * P(unimaginative|negative)$$

$$4/7*((0+1)/(8+12))*((0+1)/(8+12))*((1+1)/(8+12)) = 0.000143$$

So: *sentiment* = *negative*

Given a trained classifier that classifies arbitrary segments of text we can use it to:

- Classify entire documents, e.g an entire review.
- Classify sentences in a document (perhaps just those identified as subjective) and then compute a classification of the document by aggregating the sentiments of individual sentences, according to some function.
- Classify sentences or phrases identified as discussing an aspect/feature of a target object (e.g. a sentence discussing battery life of a phone) and interpret the sentiment as the sentiment of opinion holder towards the specific aspect under discussion

Questions:

- Is this a good solution? Is it robust?
- What is the role of the prior?
- How can we improve this solution?
 - Other features? Are we missing out critical information?
 - Other algorithms?
- What about non-binary classification (e.g. 5-grades of sentiment)?

Questions:

- Is this a good solution? Is it robust?
 - → It's simple and will work well if data is not sparse
- What is the role of the prior?
 - \rightarrow Prior is very important esp. on biased cases
- How can we improve this solution?
 - Other features? Are we missing out critical information?
 - → Using all words (in Naive Bayes) works well in some tasks
 - → Finding subsets of words may help in other tasks
 - → Using only adjectives can be limiting. Verbs like hate, dislike; nouns like love; words for inversion like not; intensifiers like very
 - → Pre-built polarity lexicons can be helpful
 - ightarrow Negation is important
 - Other algorithms?
 - → MaxEnt & SVM tend to do better than Naive Bayes
- What about non-binary classification (e.g. 5-grades of sentiment)?
 - ightarrow 5-class ordinal classification or regression algorithms can be used

Comparative SA

Can contrast direct opinions versus more complex comparative opinions:

- Direct sentiment expressions on target objects
 - e.g., "the picture quality of this camera is great."
- Comparisons expressing similarities or differences between objects,
 - e.g., "car x is cheaper than car y."

Comparative SA – Linguistic Forms of Expression

Comparatives and superlatives in English are expressed in one of three ways:

- Short regulars: short "regular" adjectives/adverbs form comparatives by adding "er" and superlatives by adding "est": long, longer, longest, fast, faster, fastest, etc.
- Longer regulars: adjectives/adverbs longer than 2 syllables and not ending in "y" form comparatives and superlatives by adding the words "more" and "most" before them: more expensive, most expensive.
- Irregulars: more, most, less, least, better, best, worse, worst, further/farther, furthest/farthest

Comparative SA – Comparative Relations

Bing Liu distinguishes 4 types of comparative relations:

- **1** Gradable Non-equal gradable: Relations of the type greater or less than. E.g.: *"lenses of camera A are better than those of camera B"*
- **2** Equative: Relations of the type equal to. E.g.: "camera A and camera B both come in 7MP"
- **Superlative**: Relations of the type greater or less than all others. E.g.: "camera A is the cheapest camera available in market"
- 4 Non-gradable comparisons: Relations that compare aspects of two or more entities, but do not grade them. There are 3 main sub-types:
 - ♦ Entity A is similar to or different from entity B with regard to some of their shared aspects, e.g., "Coke tastes differently from Pepsi."
 - Entity A has aspect a1, and entity B has aspect a2, e.g., "Desktop PCs use external speakers but laptops use internal speakers."
 - Entity A has aspect a, but entity B does not, e.g., "Phone-x has an earphone, but Phone-y does not."

Comparative SA

Earlier quintuple-based model of opinion needs to be modified for comparative opinions:

Comparative SA Model: Given an opinionated document d, extract comparative opinions: (O_1, O_2, F, PO, h, t) , where

- O₁ and O₂ are the object sets being compared based on their shared features F, PO is the preferred object set of the opinion holder h, and t is the time when the comparative opinion is expressed.
- No positive/negative opinions.

Example: Canons optics is better than those of Sony and Nikon. John, 2010

```
\begin{array}{ll} O_1 & \{\mathit{Canon}\} \\ O_2 & \{\mathit{Sony}, \mathit{Nikon}\} \\ F & \{\mathit{optics}\} \\ PO & \{\mathit{Canon}\} \\ h & \mathit{John} \\ t & 2010 \end{array}
```

Evaluation

How do we quantify how well our Sentiment Analysis systems work?

- Create experimental datasets (aka test corpora): i.e., text segments that have been classified by humans, e.g. positive vs negative
- Compare (positive vs negative) system to human classifications
- Compute metrics like

$$\label{eq:Accuracy} \begin{aligned} &\text{Accuracy} = \frac{\# \text{ correctly classified texts}}{\# \text{ texts}} \\ &\text{Precision Pos} = \frac{\# \text{ texts correctly classified as positive}}{\# \text{ texts classified as positive}} \\ &\text{Recall Pos} = \frac{\# \text{ texts correctly classified as positive}}{\# \text{ positive texts}} \\ &\text{F-measure Pos} = \frac{2* \text{Precision Pos} * \text{Recall Pos}}{\text{Precision Pos} + \text{Recall Pos}} \end{aligned}$$

Same for negative class.

Baseline: most frequent class in the training set.

Conclusions

- Exciting topic, many applications, huge market for systems, particularly in focused domains.
- Promising results with simple techniques, but many interesting research challenges to be addressed for high accuracy.

Trends:

- Use subjectivity/polarity filtering in pre-processing of NLP tasks, like summarisation.
- ◇ Joint-emotion analysis task: each fragment is classified with a number of emotions. E.g. SemEval-2007 Affective Text task http://nlp.cs. swarthmore.edu/semeval/tasks/task14/summary.shtml: Predict six emotions in a news headline: Anger, Disgust, Fear, Joy, Sadness and Surprise.
 - "Amount" of emotion given by a score in [0,100], where 0 = total lack of emotion and 100 = maximum emotional load.

Conclusions

Trends:

 Robust systems for sentiment analysis on challenging types of data at feature-level (also called aspect-based sentiment analysis). SemEval-2014-16 tasks, e.g. http://alt.gcri.org/semeval2014/task4/: Aspect **term** extraction and polarity "I loved their fajitas" \rightarrow {fajitas: positive} "I hated their fajitas, but their salads were great" \rightarrow {fajitas: negative, salads: positive} "The fajitas are their first plate" \rightarrow {fajitas: neutral} "The fajitas were great to taste, but not to see" \rightarrow {fajitas: conflict} Aspect category extraction and polarity "The restaurant was too expensive" \rightarrow {price: negative} "The restaurant was expensive, but the menu was great" \rightarrow {price: negative, food: positive}

Sentiment analysis on social media like Twitter: SemEval-2015 task http://alt.qcri.org/semeval2015/task10/

Extra reading

Bing Liu and Lei Zhang (2012). A survey on opinion mining and sentiment analysis. Kluwer Academic Publishers:

http://www.cs.uic.edu/~lzhang3/paper/opinion_survey.pdf

Bing Liu (2012). Sentiment Analysis and Opinion Mining. Morgan and Claypool Publishers. Draft on line at: https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf