Solutions Tutorial Sheet-11 (Basic Logic)

Ans 1: a) Sharks have not been spotted near the shore.

- **b)** Swimming at the New Jersey shore is allowed, and sharks have been spotted near the shore.
- c) Swimming at the New Jersey shore is not allowed, or sharks have been spotted near the shore.
- d) If swimming at the New Jersey shore is allowed, then sharks have not been spotted near the shore.
- e) If sharks have not been spotted near the shore, then swimming at the New Jersey shore is allowed.
- f) If swimming at the New Jersey shore is not allowed, then sharks have not been spotted near the shore.
- g) Swimming at the New Jersey shore is allowed if and only if sharks have not been spotted near the shore.
- h) Swimming at the New Jersey shore is not allowed, and either swimming at the New Jersey shore is allowed or sharks have not been spotted near the shore.

Ans 2: a) $r \land \neg p$

b) $\neg p \land q \land r$ **c**) $r \rightarrow (q \leftrightarrow \neg p)$

d) $\neg q \land \neg p \land r$

e) $(q \rightarrow (\neg r \land \neg p)) \land \neg ((\neg r \land \neg p) \rightarrow q)$ f) $(p \land r) \rightarrow$

 $\neg q$

Ans 3: a) Converse: "I will ski tomorrow only if it snows today." Contrapositive: "If I do not ski tomorrow, then it will not have snowed today." Inverse: "If it does not snow today, then I will not ski tomorrow."

b) Converse: "If I come to class, then there will be a quiz." Contrapositive: "If I do not come to class, then there will not be a quiz." Inverse: "If there is not going to be a quiz, then I don't come to class."

c) Converse: "A positive integer is a prime if it has no divisors other than 1 and itself." Contrapositive: "If a positive integer has a divisor other than 1 and itself, then it is not prime." Inverse: "If a positive integer is not prime, then it has a divisor other than 1 and itself."

Ans 4: a) Jan is not rich, or Jan is not happy.

- **b**) Carlos will not bicycle tomorrow, and Carlos will not run tomorrow.
- c) Mei does not walk to class, and Mei does not take the bus to class.
- **d)** Ibrahim is not smart, or Ibrahim is not hard working.

Ans 5: a)

p	q	$p \wedge q$	$(p \land q) \rightarrow p$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

p	q	$p \vee q$	$p \to (p \lor q)$
Т	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

	(2)		
p	q	$\neg p$	$p \rightarrow q$	$\neg p \to (p \to q)$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	Т	Т	Т

		C	1)	
p	q	$p \wedge q$	$p \rightarrow q$	$(p \land q) \to (p \to q)$
T	T	T	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	T	T

Ans 6: In each case we will show that if the hypothesis is true, then the conclusion is also.

- a) If the hypothesis $p \land q$ is true, then by the definition of conjunction, the conclusion p must also be true.
- **b)** If the hypothesis p is true, by the definition of disjunction, the conclusion $p \vee q$ is also true.
- c) If the hypothesis $\neg p$ is true, that is, if p is false, then the conclusion $p \rightarrow q$ is true.
- **d)** If the hypothesis $p \wedge q$ is true, then both p and q are true, so the conclusion $p \rightarrow q$ is also true.

Ans 7: For $(p \to r) \lor (q \to r)$ to be false, both of the two conditional statements must be false, which happens exactly when r is false and both p and q are true. But this is precisely the case in which $p \land q$ is true and r is false, which is precisely when $(p \land q) \to r$ is false. Because the two propositions are false in exactly the same situations, they are logically equivalent.

Ans 8: a)
$$p \lor \neg q \lor \neg r$$

b)
$$(p \lor q \lor r) \land s$$

c)
$$(p \wedge T) \vee (q \wedge F)$$

Ans 9: i

- Construct the Truth Table for the proposition
- Pick each row that evaluates to T
- -If a variable r in this row is T then write it as it; otherwise, write the negation of it, i.e., $\neg r$
- -OR these written literals (literal = variable or its complement)

Example: Truth Table for $p \lor q \to \neg r$

	- Tutti lable for P + q						
p	q	r	$\neg r$	p v q	$p \lor q \to \neg r$	$p \lor q \to \neg r$	
Т	T	Т	F	T	F		
Т	Т	F	T	Т	Т	(p∧q∧¬r) `	\ /
Т	F	Т	F	T	F		•
Т	F	F	Т	T	Т	(n. a. r) 3	. ,
F	T	Т	F	T	F	(p∧¬q∧¬r) \	V
F	Т	F	T	T	Т	(¬p∧q∧¬r) `	/
F	F	Т	F	F	T	(¬p∧¬q∧r) `	
F	F	F	Т	F	Т	(¬p∧¬q∧¬r)	•

ii)

1. Eliminate implication signs

$$\neg(\neg p \lor q) \lor (\neg r \lor p)$$

2. Move negation inwards; eliminate double negation

$$(p \land \neg q) \lor (\neg r \lor p)$$

3. Convert to CNF using associative/distributive laws

$$(p \lor \neg r \lor p) \land (\neg q \lor \neg r \lor p)$$