

Additional Problems for Self Practice (APSP)

Marked questions are recommended for Revision.

This Section is not meant for classroom discussion. It is being given to promote self study and self testing amongst the Resonance students.

PART - I: PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max. Marks: 100 Max. Time : 1 Hour

Important Instructions:

A. General:

1. The test paper is of **1** hour duration.

2. The Test Paper consists of **25** questions and each questions carries **4** Marks. Test Paper consists of **Two** Sections.

B. Test Paper Format and its Marking Scheme:

- 1. Section-1 contains **20** multiple choice questions. Each question has four choices (1), (2), (3) and (4) out of which **ONE** is correct. For each question in Section-1, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. In all other cases, minus one (-1) mark will be awarded.
- Section-2 contains 5 questions. The answer to each of the question is a Numerical Value. For each question in Section-2, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. No negative marks will be answered for incorrect answer in this section. In this section answer to each question is NUMERICAL VALUE with two digit integer and decimal upto two digit. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.

SECTION-1

This section contains **20** multiple choice questions. Each questions has four choices (1), (2), (3) and (4) out of which Only **ONE** option is correct.

1. 112.0 mL of NO₂ at STP was liquefied, the density of the liquid being 1.15 g mL⁻¹. Calculate the volume and the number of molecules in the liquid NO₂.

(1) 0.10 mL and 3.01×10^{22}

(2) 0.20 mL and 3.01×10^{21}

(3) 0.20 mL and 6.02×10^{23}

(4) 0.40 mL and 6.02×10^{21}

2. X and Y are two elements which form X₂ Y₃ and X₃Y₄. If 0.20 mol of X₂Y₃ weighs 32.0 g and 0.4 mol of X₃Y₄ weighs 92.8 g, the atomic weights of X and Y are respectively

(1) 16.0 and 56.0

(2) 8.0 and 28.0

(3) 56.0 and 16.0

(4) 28.0 and 8.0

3. $2KI + I_2 + 22 HNO_3 \longrightarrow 2HIO_3 + 2KIO_3 + 22NO_2 + 10H_2O$

If 3 mole of KI & 2 moles I2 are reacted with excess of HNO3. Volume of NO2 gas evolved at NTP is

(1) 739.2 Lt

(2) 1075.2 Lt

(3) 44.8 Lt

(4) 67.2 Lt

4. In the reaction $4A + 2B + 3C \longrightarrow A_4B_2C_3$ what will be the number of moles of product formed. Starting from 2 moles of A, 1.2 moles of B & 1.44 moles of C:

(1) 0.5

(2) 0.6

(3) 0.48

(4) 4.64

5. Which of the following equations is a balanced one :

(1) $5BiO_3^- + 22H^+ + Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + MnO_4^-$

(2) $5BiO_3^- + 14H^+ + 2Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$

(3) $2BiO_3^- + 4H^+ + Mn^{2+} \longrightarrow 2Bi^{3+} + 2H_2O + MnO_4^-$

(4) $6BiO_3^- + 12H^+ + 3Mn^{2+} \longrightarrow 6Bi^{3+} + 6H_2O + 3MnO_4^-$

6. During the disproportionation of lodine to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is :

(1) 1:5

(2) 5:1

(3) 3:1

(4) 1 : 3

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

- 7. The strength of 10^{-2} M Na₂CO₃ solution in terms of molality will be (density of solution = 1.10 g mL⁻¹). (Molecular weight of $Na_2CO_3 = 106 \text{ g mol}^{-1}$)
 - $(1) 9.00 \times 10^{-3}$
- (2) 1.5×10^{-2}
- $(3) 5.1 \times 10^{-3}$
- $(4) 11.2 \times 10^{-3}$
- The temperature at which molarity of pure water is equal to its molality is : 8.
 - (1) 273 K
- (2) 298 K
- (3) 277 K
- (4) None
- 5.85 g of NaCl is dissolved in 1 L of pure water. The number of ions in 1 mL of this solution is 9. $(4) 6.02 \times 10^{20}$
 - $(1) 6.02 \times 10^{19}$
- (2) 1.2×10^{22}
- (3) 1.2×10^{20}
- 10. The correct expression relating molality (m), molarity (M), density of solution (d) and molar mass (M₂) of solute is:
 - (1) m = $\frac{101}{d+MM}$ × 1000

(2) m = $\frac{100}{1000d-MM_2}$ × 1000

(3) m = $\frac{d+MM_2}{M}$ × 1000

- (4) m = $\frac{1000d-MM_2}{M} \times 1000$
- A compound is composed of 74% C, 8.7% H and 17.3% N by mass. If the molecular mass of the 11. compound is 162, what is its molecular formula?
 - (1) C₅H₇N
- $(2) C_{10}H_{16}N_2$
- (3) C₈H₁₄N₃
- (4) C₁₀H₁₄N₂
- Calculate the volume of O_2 needed for combustion of 1 kg of carbon at STP. C + $O_2 \xrightarrow{\Delta} CO_2$. 12.
 - (1) 1866.67 L O₂.
- (2) 3733.33 L O₂.
- (3) 933.33 L O₂.
- (4) 4666.67 L O₂.
- 13. Li metal is one of the few substances that reacts directly with molecular nitrogen. The balanced equation for reaction is:

$$6Li(s) + N_2(g) \longrightarrow 2Li_3N(s)$$

How many grams of the product, lithium nitride, can be prepared from 3.5g of lithium metal and 8.4 g of molecular nitrogen?

- (1) 21.00 g of Li₃N.
- (2) 2.91 g of Li₃N.
- (3) 5.83 g of Li₃N.
- 14. Potassium super oxide, KO2, is used in rebreathing gas masks to generate O2. If a reaction vessel contains 0.15 mol KO₂ and 0.10 mol H₂O, what is the limiting reactant? How many moles of oxygen can be produced?

$$2KO_2 + 2H_2O \longrightarrow 2KOH + H_2O_2 + O_2$$

- (1) H₂O limiting reagent, 0.05 mol of O₂.
- (2) KO₂ limiting reagent, 0.05 mol of O₂.
- (3) H₂O limiting reagent, 0.075 mol of O₂.
- (4) KO₂ limiting reagent, 0.075 mol of O₂.
- 15. A 1 g sample of KClO₃ was heated under such conditions that a part of it decomposed according to the equation.
 - (i) $2KCIO_3 \longrightarrow 2KCI + 3O_2$

and the remaining underwent change according to the equation

(ii) 4KClO₃ — → 3KClO₄ + KCl

If the amount of O2 evolved was 146.8 mL at NTP, calculate the percentage by weight of KCIO4 in the residue.

- (1) 29.3 %.
- (2) 49.8 %.
- (3) 62.5 %.
- (1) 87.1 %.
- 16. Equal weights of mercury and I2 are allowed to react completely to form a mixture of mercurous and mercuric iodide leaving none of the reactants. Calculate the ratio of the weights of Hg2I2 and HgI2 formed.
 - (1) 1 : 0.653
- (2) 0.732 : 1
- (3) 1 : 0.523
- (4) 0.523 : 1
- A piece of aluminium weighing 2.7 g is heated with 75.0 ml of H₂SO₄ (sp. gr. 1.2 containing 25% H₂SO₄ 17. by mass). After the metal is carefully dissolved the solution is diluted to 400ml. What is the molarity of the free H₂SO₄ in the resulting solution.
 - (1) 1.056 M
- (2) 0.560 M
- (3) 0.312 M
- (4) 0.198 M
- 100 ml of 0.15 M solution of Al₂(SO₄)₃, the density of the solution is 1.5 g/ml. Report the no. of Al³⁺ ions 18. in this weight.
 - (1) 1.8×10^{25} ions
- (2) 6×10^{22} ions
- (3) 1.8×10^{23} ions
- (4) 1.8×10^{22} ions

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Mole Concept

19. 5 g sample of CuSO₄.5H₂O was dissolved in water. BaCl₂ solution was mixed in excess to this solution. The precipitate (BaSO₄) obtained was washed and dried, it weighed 4.66 g. What is the % of SO₄²⁻ by weight in the sample.

(1) 76.8%

(2) 38.4%

(3) 51%

(4) 19.2%

20. Calcium phosphide (Ca₃P₂) formed by reacting calcium orthophosphate (Ca₃(PO₄)₂) with magnesium was hydrolysed by water. The evolved phosphine (PH₃) was burnt in air to yield phosphorus pentoxide (P₂O₅). How many grams of magnesium metaphosphate would be obtained, if 19.2 g of magnesium were used for reducing calcium phosphate.

 $Ca_3(PO_4)_2 + Mg \longrightarrow Ca_3P_2 + MgO$

 $Ca_3P_2 + H_2O \longrightarrow Ca(OH)_2 + PH_3$

 $PH_3 + O_2 \longrightarrow P_2O_5 + H_2O$

 $MgO + P_2O_5 \longrightarrow Mg(PO_3)_2$

magnesium metaphosphate

(1) 145.8 gram

(2) 32 gram

(3) 50.4 gram

(4) 18.2 gram

SECTION-2

This section contains 5 questions. Each question, when worked out will result in Numerical Value.

- 21. A 10.0 g sample of a mixture of calcium chloride and sodium chloride is treated with Na₂CO₃ solution. This calcium carbonate is heated to convert all the calcium to calcium oxide and the final mass of calcium oxide is 1.62 g. The percentage by mass of calcium chloride in the original mixture is :
- 22. Minimum amount of Ag₂CO₃(s) (in gram) required to produce sufficient oxygen for the complete combustion of C_2H_2 which produces 1.12 ltr of CO_2 at S.T.P after combustion is: [Ag = 108]

 $Ag_2CO_3(s) \longrightarrow 2Ag(s) + CO_2(g) + \frac{1}{2}O_2(g)$ $C_2H_2 + \frac{5}{2}O_2 \longrightarrow 2CO_2 + H_2O$

- How much NaNO₃ must be weighed (in gram) out to make 50 ml of an agueous solution containing 70 23. mg of Na+ per mL?
- What is the molarity of H₂SO₄ solution that has a density 1.84 g/cc at 35°C and contains 98% by 24. weight-
- 25. 64 g of a mixture of NaCl and KCl were treated with concentrated sulphuric acid. The total mass of metal sulphates obtained was found to be 76 g. What are the mass percents of NaCl in the mixture. The reactions are,

 $2 \text{ NaCl} + \text{H}_2 \text{SO}_4 \longrightarrow \text{Na}_2 \text{SO}_4 + 2 \text{ HCl}$: $2 \text{ KCl} + \text{H}_2 \text{SO}_4 \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{ HCl}$

Practice Test-1 (IIT-JEE (Main Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

						· • · · · · · ·				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25					
Ans.										

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PART - II : JEE (MAIN) / AIEEE OFFLINE PROBLEMS (PREVIOUS YEARS)

1.	In an organic compour weight. Molecular forms (1) C ₆ H ₈ N ₂		mol ⁻¹ C, H and N atom (3) $C_5H_6N_3$	ns are present in 9 : 1 : 3.5 by [AIEEE 2002, 3/225] (4) C ₄ H ₁₈ N ₃
2.		n oxidising agent and ulinsferred in each case is (2) 1, 5, 3, 7		InO ₂ , Mn ₂ O ₃ and Mn ²⁺ , then the [AIEEE 2002, 3/225] (4) 3, 5, 7, 1
3.	Which of the following i			[AIEEE 2002, 3/225]
	(1) NaCl + KNO ₃ ——		(2) CaC ₂ O ₄ + 2 HCl —	
	, , , ,	-	1 (4) Zn + 2AgCN ——	. ,
4.	Which of the following (1) Molarity	concentration factor is aff (2) Molality	fected by change in temp (3) Mole fraction	perature? [AIEEE 2002, 3/225] (4) Weight fraction
5.			atm pressure will be correduction of boron trichlo	onsumed in obtaining 21.6 g of ride by hydrogen- [AIEEE 2003, 3/225]
	(1) 44.8 lit.	(2) 22.4 lit.	(3) 89.6 lit.	(4) 67.2 lit.
6.	6.02×10^{20} molecules of	of urea are present in 100		oncentration of urea solution is [AIEEE 2004, 3/225]
	(1) 0.001 M	(2) 0.01 M	(3) 0.02 M	(4) 0.1 M
7.	The oxidation state of 0 (1) + 3	Cr in $[Cr(NH_3)_4Cl_2]^+$ is : (2) + 2	(3) + 1	[AIEEE 2005, 1½/225] (4) 0
8.		` ,	are mixed in the followin t is the molarity of the fin	
	(1) 2.70M	(2) 1.344M	(3) 1.50M	[AIEEE 2005, 3/225] (4) 1.20M
9.	How many moles of ma	agnesium phosphate, Mg	3(PO ₄) ₂ will contain 0.25	mole of oxygen atoms? [AIEEE-2006, 3/165]
	(1) 0.02	(2) 3.125×10^{-2}	(3) 1.25×10^{-2}	$(4) 2.5 \times 10^{-2}$
10.	Density of a 2.05M solu	ution of acetic acid in wat	er is 1.02 g/ml. The mola	lity of the solution is: [AIEEE-2006, 3/165]
	(1) 1.14 mol kg ⁻¹	(2) 3.28 mol kg ⁻¹	(3) 2.28 mol kg ⁻¹	(4) 0.44 mol kg ⁻¹
11.	(2) 33.6 L H _{2(g)} is produ (3) 67.2 L H _{2(g)} at STP i	ned for every 3L H ₂ produ	ure and pressure for eve le of Al that reacts .	[AIEEE-2007, 3/120] ry moles that reacts.
12.	by mass will be:	·	·	H_2SO_4 molar mass = 98 g mol ⁻¹) [AIEEE-2007, 3/120]
	(1) 1.22	(2) 1.45	(3) 1.64	(4) 1.88
13.	A 5.2 molal aqueous so alcohol in the solution? (1) 0.100	(2) 0.190	CH ₃ OH, is supplied. Wh (3) 0.086	at is the mole fraction of methyl [AIEEE-2011, 3/120] (4) 0.050
14.	, ,	` '	,	added to 0.3000 dm ³ of water at
	STP is: (1) 5.55 × 10 ⁻⁴	(2) 33.3 m	(3) 3.33 × 10 ⁻² m	[AIEEE-2011, 3/120] (4) 0.555 m
15.	The density of a solution 1.15 g/mL. The molarity (1) 0.50 M		g 120 g of urea (mol. ma (3) 1.02 M	ss = 60 u) in 1000 g of water is [AIEEE-2012, 4/120] (4) 2.05 M
		Peg & Corp Office : CG T	ower A 46 8 52 IDIA Near City N	Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

IVIOIE	e Concept /				
16.	The molarity of a so	olution obtained by mixing	g 750 mL of 0.5(M) HC		
	(1) 0.875 M	(2) 1.00 M	(3) 1.75 M	(4) 0.975 M	n)-2013, 4/120]
17.	Consider the follow	ing reaction :			
	$xMnO_4^- + yC_2O_4^{2-} +$	- zH+ \rightarrow xMn ²⁺ + 2yCO ₂ +	+ $\frac{z}{2}$ H ₂ O		
	The values of x, y a (1) 5, 2 and 16	and z in the reaction are, (2) 2, 5 and 8	respectively : (3) 2, 5 and 16	[JEE(Ma (4) 5, 2 and 8	in)-2013, 4/120]
18.	(a) $H_2O_2 + 2H^+ + 2$ (b) $H_2O_2 - 2e^-$ (c) $H_2O_2 + 2e^-$	→ O ₂ + 2H ⁺	s as a reducing agent ?	[JEE(Mai	n)-2014, 4/120]
	(1) (a), (b)	(2) (c), (d)	(3) (a), (c)	(4) (b), (d)	
19.		tula of a commercial residual residual would be the maximum (2) $\frac{1}{206}$		by the resin when ex	
20.^	volume for complet	cm, 15 mL of a gaseous e combustion. After com form and the volumes w ocarbon is : (2) C ₄ H ₈	bustion the gases occu	upy 330 mL. Assumir same temperature ai	ng that the water
21.	1 gram of a carbo molar mass of M ₂ C (1) 84.3	nate (M_2CO_3) on treatm O_3 in g mol ⁻¹ is : (2) 118.6	ent with excess HCI p		ole of CO ₂ . The in)-2017, 4/120]
22.	Carbon (22.9%), H	t elements by mass in sydrogen (10.0%); and Ni eplaced by ² H atoms is: (2) 7.5 kg		ight which a 75 kg pe	
23.	Which of the follow (1) $XeF_2 + PF_5$ (3) $XeF_6 + 2H_2O$ —		ple of a redox reaction (2) $XeF_6 + H_2O - $ (4) $XeF_4 + O_2F_2 - $	→ XeOF ₄ + 2HF	in)-2017, 4/120]
PAR	T - III : NATION	AL STANDARD EX	AMINATION IN C	HEMISTRY (NSE	C) STAGE-I
1.	The vapour density (A) 44	of carbon dioxide is (B) 32	(C) 22	(D) 12	[NSEC-2000]
2.	The volume of 16 g (A) 2.24 dm ³	of oxygen at S.T.P. is: (B) 11.2 dm ³	(C) 22.4 dm ³	(D) 8 dm ³	[NSEC-2000]
3.	(A) moles of the so	n is the number of : lute per 1000g of the solv t of the solute per kilogra			[NSEC-2000]

(C) gram moles of the solute per 1000 cm³ of solution.

(D) moles of the solute per 100g of the solvent

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

4.	Consider the following Element A	Atomic	c weight 2.01	[N	NSEC-2000]
	В		5.5		
	X, then the weight of or	ne mole of X is	4 moles of B combines wi	· ·	ve 1 mole of
	(A) 154.0 g	(B) 74.0 g	(C) 47.5 g	(D) 166.0 g	
5.	In the following reaction (A) sulphur is oxidised (C) sulphur is reduced	and reduced	→ 3S + 2H ₂ O (B) sulphur is oxidised a (D) hydrogen is oxidise	and hydrogen is red	
6.	The amount of salt requ (A) 0.05 mole	uired to prepare 10 dm ³ (B) 0.02 mole	of decimolar solution is : (C) 0.01 mole	(D) 1.00 mole	NSEC-2001]
7.	If 1 dm ³ of a gas weigh (A) 56 g	ts 2.5 g at STP, its gram (B) 11.2 g	-molecular weight is : (C) 22.4 g	(D) 224 g	NSEC-2001]
8.	If two compounds have	the same empirical form	nula but differnet molecul		
	(A) same viscosity (C) different percentage	e composition	(B) different molecular (D) same vapour densit	weight	NSEC-2001]
9.			gs of an average adult was and has normal body ten	nperature at 37°C).	
	(A) 0.15 mol	(B) 0.25 mol	(C) 1.15 mol	(D) 2.25 mol.	1 0LC-2002]
10.			ct lenses can be made b ty of the solution will be o (C) 1.0684 M		g of NaCl in NSEC-2002]
		` '	` '	()	
11.	A molal solution contain (A) one litre of solution (C) one litre of the solve	ns one gram mole of solo	` '	[N	NSEC-2002]
11. 12.	(A) one litre of solution(C) one litre of the solveAn average cup of coff	ns one gram mole of soluent	ute in : (B) 1000 g of the solver	Int tition \mathbb{P}_2 . How many moles	s of caffeine
	(A) one litre of solution(C) one litre of the solve	ns one gram mole of soluent	ute in : (B) 1000 g of the solver (D) 22.4 litre of the solu	Int tition \mathbb{P}_2 . How many moles	-
	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight?	ns one gram mole of solutions one gram mole of solutions about 125 representations (B) 6.44 × 10 ⁻⁴ recontent of 26.7%. If it	ute in : (B) 1000 g of the solver (D) 22.4 litre of the soluting of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³ s molecule contains two	IN tion 02. How many moles IN (D) none of these atoms of sulphur,	es of caffeine
12. 13.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33×10^{-3} Cystine has a sulphur molecular weight? (A) 240	ent fee contains about 125 r (B) 6.44 × 10 ⁻⁴ content of 26.7%. If it	ute in : (B) 1000 g of the solver (D) 22.4 litre of the solung of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³	IN tition 02. How many moles IN (D) none of these atoms of sulphur, IN (D) 120.	es of caffeine NSEC-2002] r, what is its NSEC-2002]
12.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight?	ns one gram mole of solutions one gram mole of solutions about 125 references (B) 6.44 × 10 ⁻⁴ content of 26.7%. If it (B) 24 contains:	ute in : (B) 1000 g of the solver (D) 22.4 litre of the soluting of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³ s molecule contains two	IN total tion 102. How many moles IN (D) none of these atoms of sulphur, IN (D) 120. In (D) 120. In (D) 120.	es of caffeine NSEC-2002]
12. 13.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight? (A) 240 1 gram mole of CO ₂ co (A) 3 gram atoms of CO (C) 6.022 × 10 ²³ atoms	ns one gram mole of solutions one gram mole of solutions about 125 recontains about 125 recontent of 26.7%. If it (B) 24 ontains: O2 of oxygen solutions are unimolar solutions are unimolar solutions.	ute in : (B) 1000 g of the solver (D) 22.4 litre of the solution of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³ s molecule contains two (C) 2400 (B) 6.022 × 10 ²³ atoms (D) 3.011 × 10 ²³ molecule	Int tion 2. How many moles IN (D) none of these atoms of sulphur, IN (D) 120. IN of carbon ules of CO ₂ . IN 1000 mL of solution	es of caffeine NSEC-2002] , what is its NSEC-2002] NSEC-2002]
12. 13. 14.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight? (A) 240 1 gram mole of CO ₂ co (A) 3 gram atoms of CO (C) 6.022 × 10 ²³ atoms Which of the following solve (A) 0.46 g of C ₂ H ₅ OH in (C) 0.23 g of CH ₃ OH in (C) 0.23 g of CH ₃ OH in (C)	ns one gram mole of solutions one gram mole of solutions about 125 recontains about 125 recontent of 26.7%. If it (B) 24 ontains: O2 of oxygen solutions are unimolar solutions are unimolar solutions.	ute in : (B) 1000 g of the solver (D) 22.4 litre of the solutions of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³ s molecule contains two (C) 2400 (B) 6.022 × 10 ²³ atoms (D) 3.011 × 10 ²³ moleculations ? (B) 110.98 g of CaCl ₂ ir (D) 5.88 g of NaCl in 10	Int tion 2. How many moles IN (D) none of these atoms of sulphur, IN (D) 120. IN of carbon ules of CO ₂ . IN 1000 mL of solution	es of caffeine NSEC-2002] , what is its NSEC-2002] NSEC-2002]
12. 13. 14. 15.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight? (A) 240 1 gram mole of CO ₂ co (A) 3 gram atoms of CO (C) 6.022 × 10 ²³ atoms Which of the followings (A) 0.46 g of C ₂ H ₅ OH in (C) 0.23 g of CH ₃ OH in 1.00 g of a pure element (A) U	ns one gram mole of solutions are unimolar solutions are unimolar solutions at contains 4.39 × 10 ²¹ at (B) Ce	ute in : (B) 1000 g of the solver (D) 22.4 litre of the solutions of caffeine, $C_8H_{10}N_4C$ (C) 6.234 × 10 ⁻²³ s molecule contains two (C) 2400 (B) 6.022 × 10 ²³ atoms (D) 3.011 × 10 ²³ moleculations? (B) 110.98 g of CaCl ₂ in (D) 5.88 g of NaCl in 10 (toms. The element is	Int tion 2. How many moles IN (D) none of these atoms of sulphur, IN (D) 120. IN of carbon ules of CO ₂ . IN 1000 mL of solution 000 mL of solution. IN (D) Au.	es of caffeine NSEC-2002] r, what is its NSEC-2002] NSEC-2002] on
12. 13. 14. 15.	(A) one litre of solution (C) one litre of the solve An average cup of coff are in a cup? (A) 8.33 × 10 ⁻³ Cystine has a sulphur molecular weight? (A) 240 1 gram mole of CO ₂ co (A) 3 gram atoms of CO (C) 6.022 × 10 ²³ atoms Which of the followings (A) 0.46 g of C ₂ H ₅ OH in (C) 0.23 g of CH ₃ OH in 1.00 g of a pure element (A) U The maximum amount (A) 30.0 g A mixture of aluminium	ns one gram mole of solutions (B) 6.44 × 10 ⁻⁴ content of 26.7%. If it (B) 24 Intains: O2 of oxygen solutions are unimolar solutions are unimolar solution at 10 mL of solution at 100 mL of solution at contains 4.39 × 10 ²¹ at (B) Ce of CH ₃ CI that can be presented at 273 K and 1 at 273 K and 1 at 275 K and 1 at	ute in: (B) 1000 g of the solver (D) 22.4 litre of the solutions of caffeine, C ₈ H ₁₀ N ₄ C (C) 6.234 × 10 ⁻²³ s molecule contains two (C) 2400 (B) 6.022 × 10 ²³ atoms (D) 3.011 × 10 ²³ moleculations? (B) 110.98 g of CaCl ₂ ir (D) 5.88 g of NaCl in 10 toms. The element is (C) Ba epared by reacting 20.0 g	IN the tion 102. How many moles [N] (D) none of these of atoms of sulphur, [N] (D) 120. IN of carbon alles of CO2. IN 1000 mL of solution (D) Au. of CH4 with 10.0 g (D) 31.6 g (Ved in acid and even and of aluminium in the color (D) and of aluminium in the color (D) and (D	es of caffeine NSEC-2002] T, what is its NSEC-2002] NSEC-2002] NSEC-2003] of Cl ₂ is olved 1.69 L

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

19.	The largest number of r (A) CO ₂	nolecules is present in 1 (B) H ₂ O	g of (C) C₂H₅OH	(D) N ₂ O ₅ .	[NSEC-2004]
20.		ssolved in 50 g of water. s in these two solutions a e solute Y is			
	(A) 7:5	(B) 4:3	(C) 15:28	(D) 28:15	
21.	An ammonia bottle in solution is (A) 11.5 M	the laboratory is labelle (B) 15 M	ed density 0.91 g cm ⁻³ (C) 13.4 M	25% w/w. The (D) 17 M.	molarity of this [NSEC-2004]
22.	If 0.5 mol of BaCl ₂ is n can be formed is	nixed with 0.2 mol of Na	3PO ₄ , the maximum nun	nber of moles of	Ba ₃ (PO ₄) ₂ that [NSEC-2004]
	(A) 0.1	(B) 0.2	(C) 0.5	(D) 0.7	
23.	The total number of ele (A) 4.8×10^{24}	ctrons present in 8.0 g of (B) 3.01×10^{24}	methane is (C) 4.8 × 10 ²⁵	(D) 3.01×10^{23}	[NSEC-2004]
24.	(in a.m.u) is	ances of ¹² C and ¹³ C are		-	nass of carbon [NSEC-2005]
	(A) 12.111	(B) 12.981	(C) 12.011	(D) 12.891	
25.	The strength of 10^{-2} mc mL ⁻¹) (A) 9.00×10^{-3}	olar Na ₂ CO ₃ solution in te (B) 1.5 × 10 ⁻²	erms of molality will be (d) $(C) 5.1 \times 10^{-3}$	(D) 11.2×10^{-3} .	ution = 1.10 g [NSEC-2005]
26.	` '	ns 1.5 g at NTP. Its gram (B) 33.6 g	` '	(D) 15 g.	[NSEC-2005]
27.	0.1 g of an element con (A) Ga	tains 4.39×10^{20} atoms. (B) Ce	The element is (C) Pb	(D) Ba.	[NSEC-2005]
28.	The percentages of C, formula of this compour (A) CH ₂ N	H and N in an organic and is (B) CH ₄ N	compound are 40%, 13 (C) CH₅N	3.3% and 46.7% (D) C ₃ H ₉ N ₃ .	The empirical [NSEC-2006]
29.	The ideal mass (in kg)	of aluminium metal produ	iced after processing of	1 metric ton of A	
	(A) 1000	(B) 530	(C) 795	(D) 265	[NSEC-2006]
30.	5% respectively. The av	sotopes with masses 24 verage mass of the isotop (B) 25.50	be mixture would be	e abundance of (D) 24.25	80%, 15% and [NSEC-2006]
31.		of papavering, an opiur ave 70.8% carbon, 6.2%			
	(A) C ₂₀ H ₂₀ N ₂	(B) C ₂₀ H ₂₁ O ₄ N	(C) C ₁₀ H ₁₁ O ₃ N	(D) $C_{21}H_{20}N$	-
32.	prepared as follows:	a pineapple like odour		ring agent in fru	uit syrups. It is
	In an experiment, 349 propanoic acid in excess	₂ H₅COOH _(aq)	noate was obtained from	m 250 grams o	f ethanol, with
	The percentage yield of (A) 48.2		(C) 54.6	(D) 32.	[NSEC-2007]
33.		nolecules contains the m (B) H ₂ SO ₄	` ,	, ,	[NSEC-2007]

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

34.		Im sulfate $Al_2(SO_4)_3$ is d the sulfate ion the solution (B) 5.00 x 10^{-2} M			[NSEC-2007]
35.	MnO ₂ (s) + 4HO Assuming the reaction mass) is needed to pro		$CI_{2(aq)} + 2H_2O(I)$ hat mass of concentrate	ed HCI solution	·
36.	(A) 5.15 g	(B) 14.3 g a+ ions are there in 20mL	(C) 19.4 g	(D) 26.4 g	[NSEC-2007]
JU.	(A) 0.008	(B) 0.020	(C) 0.024	(D) 0.008	[NGLG-2007]
37.	What is the Na+ ion co with 50 mL of 0.30M Na (A) 0.15 M	oncentration in the soluti a₃PO₄ solution ? (B) 0.24 M	on formed by mixing 20 (C) 0.48	mL of 0.10 M N	la ₂ SO ₄ solution [NSEC-2008]
38.	A currency counting moxygen atoms in 24.8 g	achine counts 60 million g of Na ₂ S ₂ O ₃ .5H ₂ O (M.W be required to count the (B) 7.03 × 10 ¹⁰	notes per day. A bank h . = 248).	, ,	[NSEC-2008]
39.	Which of the following (A) H ₂ SO ₄ + 2NH ₃ — (B) H ₂ SO ₄ + Na ₂ CO ₃ – (C) 2K ₂ CrO ₄ + H ₂ SO ₄	equations represented a	n oxidation-reduction rea ${\sf O}_2$	action ?	[NSEC-2008]
40.		$_{5}\mathrm{H}_{12}\mathrm{O}$, is added to gas quired to burn 1.0 mol o (B) 6.0 mol			
41.	The hydrated salt Na ₂ S its original weight. The (A) 5	SO ₄ .nH ₂ O loses all water refore, the value n is : (B) 10	of crystallization on hea	ating and is reduc	ced to 44.1% of [NSEC-2008]
42.	The simplest formula of element 'B' (Atomic we (A) AB	of a compound containin ight = 20) is (B) A ₂ B	g 50% of element 'A' (A (C) A_2B_2	atomic weight = $^{\circ}$ (D) A ₂ B ₃	10) and 50% of [NSEC-2008]
43.	The simplest formula of element 'B' (Atomic we (A) AB	of a compound containin ight = 20) is (B) A ₂ B	g 50% of element 'A' (A' (C) A ₂ B ₂	Atomic weight = $\frac{1}{2}$ (D) A ₂ B ₃	10) and 50% of [NSEC-2008]
44.	3.7 dm ³ of 1 M NaOH s solution is : (A) 0.80 M	solution is mixed with 5 d	lm ³ of 0.3 M NaOH soluti (C) 0.73 M	ion. The molarity (D) 0.59 M	of the resulting [NSEC-2009]
45 .	Heating of a solution do (A) the normality of the (C) the molality of the s	pes not change : solution	(B) the molarity of the s (D) the density of the s	solution	[NSEC-2009]
46.	0.14 g of a substance v	when burnt in oxygen yie (B) carbon	lds 0.28 g of oxide. The s (C) sulphur	substance is – (D) phosphorou	[NSEC-2009] us
47.^	The number of molecul	les of hydration present i	n 252 mg of hydrated ox	alic acid (H ₂ C ₂ O ₂	
	(A) 2.68×10^{18}	(B) 2.52×10^{21}	(C) 1.83×10^{24}	(D) 2.4×10^{21}	[NSEC-2009]

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

48.	(A) H ₂ SO ₄ + 2NH ₃ —— (B) H ₂ SO ₄ + Na ₂ CO ₃ —	\longrightarrow Na ₂ SO ₄ + H ₂ O + CO \longrightarrow K ₂ Cr ₂ O ₇ + K ₂ SO ₄ +	\mathcal{O}_2		[N2EC-2009]
49.	3Ag (s) + 4HNC	nitric acid according to the large 0_3 (aq) $\longrightarrow 3AgNO_3$ (and $3 = 3AgNO_3$) required to reaction $3 = 3AgNO_3$	q) + NO (g) + 2H ₂ O (l)	s : (D) 25.3 mL	[NSEC-2009]
50.	The conversion which re(A) $NO_2^- \rightarrow N_2$	epresents oxidation is : (B) $VO_2^+ \rightarrow VO_3^-$	(C) $CIO^- \rightarrow CI^-$	(D) $CrO_4^{2-} \rightarrow C$	[NSEC-2010] r ₂ O ₇ ²⁻
51.		ng beryllium has the fol of the compound has ma of the compound is: (B) BeN ₂ H ₁₀ Cl			beryllium is 9. [NSEC-2010]
52.	The molarity of 20% w/v (A) 2.32	w sulphuric acid of densit (B) 2.02	ty 1.14 g cm ⁻³ is (C) 2.12	(D) 2.22	[NSEC-2010]
53.		impurity in a sample is 0 M AgNO ₃ to completel (B) 2.56			
54.	` '	oles of barium phosphate	` `	` '	e is mixed with [NSEC-2010]
55.	The largest number of r (A) 70 g of Sulphur diox (C) 36 g of Water	molecules are present in ide	(B) 64 g of Nitrogen per (D) 34 g of Carbon diox		[NSEC-2010]
56.	The number of water m (A) 1.2×10^{21}	olecules present in 0.20 (B) 2.14×10^{21}	g sample of CuSO ₄ .5H ₂ O (C) 2.14 × 10^{22}	O (Molar mass = $(D) 1.2 \times 10^{23}$	249.7) is [NSEC-2011]
57.	An element X is found t	o combine with oxygen t weight of the element in (B) 31.0	o form X ₄ O ₆ . If 8.40 g of		nbine with 6.50 [NSEC-2011]
58.		is added to a water san ver chloride is precipitated : AgNO ₃ 169.91 (B) 0.35 g	d. The mass of chloride i		
59.	reaction, is:	of CH ₃ Cl that can be pre HCl, (presume that no o (B) 0.141 mole		_	by the following [NSEC-2012]
60.	In the reaction, 2KClO ₃ at N.T.P. will be: (A) 9.74 dm ³	\rightarrow 2KCl + 3O ₂ when 36. (B) 8.92 dm ³	.75 g of KClO $_3$ is heated (C) 10.08 dm 3	, the volume of (D) 22.4 dm ³	oxygen evolved [NSEC-2012]
61.	•	n in which the concentrat	. ,	, ,	is: [NSEC-2012]
	(A) Molarity	(B) Normality	(C) Formality	(D) Molality	[14020-2012]

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

62.	In a nitration experim	ent, 10.0 g of benzene ga	as and 13.2 g of nitrobe	nzene. The perce	ntage yield is : [NSEC-2012]
	(A) 83.5%	(B) 62.7%	(C) 88.9%	(D) 26.7%	[11020-2012]
63.	Approximate number	s of moles of hydrogen at	toms in 1.006 × 10 ²³ mc	elecules of diethyl	ether are : [NSEC-2014]
	(A) 0.16	(B) 6	(C) 1.67	(D) 3	
64.		N ₄ C ₃) liberates methane of 11.2 L of methane under S (B) 72			luminum carbide [NSEC-2014]
65.	The specific gravity of	of a HNO ₃ solution is 1.42	and it is 70% w/w. The	molar concentrati	on of HNO ₃ is : [NSEC-2014]
	(A) 15.8	(B) 31.6	(C) 11.1	(D) 14.2	[N3L0-2014]
66.	The ratio of the mas molecules in the mixt (A) 4:5	ses of methane and etha ture is: (B) 3 : 2	ne In a gas mixture is (C) 2:3	4: 5. The ratio of (D) 5:4	number of their [NSEC-2015]
67.		5.0 L of SO ₂ are reacted	with 3.0 L of O ₂ accordi	ng to the following	gequation
		$g_2(g) \rightarrow 2SO_3(g)$ action mixture at the com (B) 8.0 L	pletion of the reaction is (C) 5.5 L	(D) 5 L	[NSEC-2017]
68.	according to the follo $\text{Li}_2\text{O}_{(s)} + \text{H}_2\text{O}(g) \rightarrow 2\text{I}$ If 60 kg of water and I. water will be remove II. Li_2O will be the lim III. 100 kg of Li_2O will	LiOH _(s) 45 kg of Li ₂ O are present red completely	in a shuttle y remove the water pre		r vapour
69.	Which of the following 30? (A) 30 g H ₂ SO ₄ + 100 (C) 1 mol of H ₂ SO ₄ +		(B) 1 mol of H ₂ SO ₄ + (D) 0.30 mol H ₂ SO ₄ -	2 mol of H ₂ O	f H ₂ SO ₄ close to [NSEC-2017]
70.	in space vehicle prop	m consisting of N,N-dime oulsion. The liquid comports. If all gases are under e of (CH ₃) ₂ NNH ₂ is (B) 6	nents are mixed stichior	metrically so that I	N ₂ , CO ₂ and H ₂ O
71.	Number of moles of	KClO₃ that have to be he	ated to produce 1.0 L o	of O ₂ (g) at STP c	•
	as (A) 1/3 (1/22.4)	(B) ½(1/22.4)	(C) 2/3 (1/22.4)	(D) 3/2 (22.4)	[NSEC-2018]
72.	Among the following, (A) 1.0 g of O ₂ molec (C) 1.0 g of O ₃	number of oxygen atoms ules	s present in the maximu (B) 4.0 g of O atoms (D) 1.7 g of H ₂ O		[NSEC-2018]
73.	I. $C_{2}O_{7}^{2}(ad)$ II. SiCl ₄ (I) + 2M	the reaction/s that can be $+2OH(ag) \rightarrow 2CrG + F$ $g(s) \rightarrow 2MgCl_2(I) + Si(s)$ $OH(I) \rightarrow 2KCIO_3(g) + 10$ $(B) I, II and III$	FO(I)	reduction is/are. (D) IV only	[NSEC-2018]

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

74. In the following reaction, the values of a, b and c, respectively are [NSEC-2018]

 $a F_2(g) + b OH^-(aq) \longrightarrow c F^-(aq) + d OF_2(g) + e H_2O(l)$

(A) 3, 2, 4

(B) 3, 4, 2

(C) 2, 2, 4

(D) 2, 2, 2

- 75. In YBa₂Cu₃O_{7-x}, a superconducting oxide that got George Bednorz and Karl Muller the Noble prize in 1986, Cu can exist in both +2 and +3 oxidation states and their proportion depends on the value of 'x'. [NSEC-2018] In YBa₂Cu₃O_{7-0.5}
 - (A) 0.5 moles of Cu are in +3 oxidation state
- (B) 5% of Cu is in +3 oxidation sate
- (C) All the Cu is in +3 oxidation state
- (D) All Cu is in +2 oxidation state
- A common method to clean spills is to use to Na₂CO₃(Molar mass 106 g.) If 50.0 mL of 0.75 M HCl is 76. split on a wooden surface, the amount of Na₂CO₃ required is [NSEC-2018]

(A) 3.75 g

(B) 7.5 g

(C) 2.0 q

(D) 4.0 g

Penicillamine is used in the treatment of arthritis. One molecule of penicillamine contains a single 77. sulphur atom and the weight percentage of sulphur in penicillamine is 21.49%. Molecular weight of penicillamine in q mol-1 is [NSEC-2018]

(A) 85.40

(B) 68.76

(C) 125.2

(D) 149.2

78. The analysis of three different binary oxides of bromine (Br) and oxygen (O) gives the following results:

Compound	Mass of O combined with 1.0 g of Br
X	0.101 g
Υ	0.303 g
Z	0.503 g

Which of the following statements is not correct?

[NSEC-2018]

I Compound Y is Br₂O₃

III Compound Z is Br₂O₇

II Compound Z is Br₂O₅ IV Compound Y is Br₂O₅

(A) I and III

(B) II and IV

(C) III and IV

(D) I and II

79. Which of the following statements is/are correct? [NSEC-2018]

I. Number of significant figure in 2345.100 is three

II. 0.00787 rounded to two significant figures is written as 0.787×10^{-2}

III. 340 rounded to two significant figures is written as 0.34×10^3

IV. The number of significant figures in 0.020 is two

(A) II and III

(B) III and IV

(C) I, II and IV

(D) III only

Myoglobin, (Mb), an oxygen storage protein, contains 0.34% Fe by mass and in each molecule 80. of myoglobin one ion of Fe is present. Molar mass of Mb (g mol⁻¹) is (Molar mass of Fe = 5.845 g mol⁻¹) [NSEC-2019]

(A) 16407

(B) 164206

(C) 16425

(D) 164250

A balance having a precision of 0.0001 g was used to measure a mass of a sample of about 15 g. The 81. number of significant figures to be reported in this measurement is [NSEC-2019]

(A) 2

(B)3

(D) 1

82. Mercury is highly hazardous and hence its concentration is expressed in the units of ppb (micrograms of Hg present in 1 L of water). Permissible level of Hg in drinking water is 0.0335 ppb. Which of the following is an alternate representation of this concentration? **INSEC-20191**

(A) $3.35 \times 10^{-2} \text{ mg dm}^{-3}$

(B) $3.35 \times 10^{-5} \text{ mg dm}^{-3}$

(C) $3.35 \times 10^{-5} \text{ mg m}^{-3}$

(D) 3.35×10^{-4} g L⁻¹

83. Lipoic acid with the following structure is a growth factor required by many organisms. Percentages of 'S' and 'O' in lipoic acid respectively are (atomic masses of 'S' and 'O' are 32.065 g mol⁻¹ and 15.999 g mol-1 respectively) [NSEC-2019]

(A) 33.03, 16.48

(B) 31.11, 18.24

(C) 31.11, 15.52

(D) 31.42, 15.68

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVMOL - 59

PART - IV: ADDITIONAL PROBLEMS

SUBJECTIVE QUESTIONS

1. Carbon disulphide, CS₂, can be made from by-product SO₂. The overall reaction is

 $5C + 2SO_2 \longrightarrow CS_2 + 4CO$

How much CS₂ can be produced from 440 kg of waste SO₂ with 60 kg of coke if the SO₂ conversion is 80%?

ONLY ONE OPTION CORRECT TYPE

2. In a certain operation 358 g of TiCl₄ is reacted with 96 g of Mg. Calculate % yield of Ti if 32 g of Ti is actually obtained [At. wt. Ti = 48, Mg = 24]

(A) 35.38 %

(B) 66.6 %

(C) 100 %

(D) 60 %

3. Phosphoric acid (H₃PO₄) prepared in a two step process.

(1) $P_4 + 5O_2 \longrightarrow P_4O_{10}$

(2) $P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$.

We allow 62 g of phosphorus to react with excess oxygen which form P_4O_{10} in 85% yield. In the step (2) reaction 90% yield of H_3PO_4 is obtained. Produced mass of H_3PO_4 is:

(A) 37.48 g

(B) 149.94 g

(C) 125.47 g

(D) 564.48 g

4. For the redox reaction, $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the reactions for the balanced reaction are

 $C_2O_4^{2-}$ MnO_4 H⁺ (A) 2 5 16 (B) 16 5 2 (C) 5 16 2 (D) 2 16 5

5. A mineral water sample was analysed and found to contain 1×10^{-3} % ammonia (w/w). The mole of dissolved ammonia gas in one litre water bottle is ($d_{water} \approx 1 \text{ g/ml}$)

(A) 5.8×10^{-4} mol

(B) 1×10^{-2} mol

(C) 0.58 ×10⁻² mol

(D) same as w/w

- **6.** (i) 2Al + 6HCl
- \rightarrow 2AlCl₃ + 3H₂
- (ii) AlCl₃ + 3NaOH (iii) Al(OH)₃ + NaOH
- Al(OH)₃ + 3NaCl NaAlO₂ + 2H₂O

Above series of reactions are carried out starting with 18 g of Al and 109.5 g of HCl in first step and further 100 g of NaOH is added for step (ii) and (iii). Find out limiting reagent in each step and calculate the maximum amount of NaAlO₂ that can be produced in step (iii). (Assume reactions are taken in sequence and also that each reaction goes to 100% completion)

	L.R. in step (I)	L.R. in step (II)	L.R. in step (III)	Moles of NaAlO ₂
(A)	Al	AICI ₃	Al(OH)₃	0.66
(B)	Al	Na(OH)	Al(OH)₃	0.5
(C)	Al	AICI ₃	NaOH	0.5
(D)	HCI	AICI ₃	NaOH	0.5

MATCH THE COLUMN

7.

	Column – I		Column - II
(A)	Molarity	(p)	Dependent on temperature
(B)	Molality	(q)	$\frac{M_{\lambda} \times n_{\lambda}}{n_{\lambda}M_{\lambda} + n_{\beta}M_{\beta}} \times 100$
(C)	Mole fraction	(r)	Independent of temperature
(D)	Mass %	(s)	$\frac{X_A}{X_B} \times 1000$

Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

人

NUMERICAL VALUE QUESTIONS

- **8.** The measured density at NTP of He is 0.1784 g/L. What is the weight (in g) of one mole of He?
- 9. The 'roasting' of 100.0 g of a copper ore yielded 71.8 g pure copper. If the ore is composed of Cu₂S and CuS with 4.5 % inert impurity, calculate the percent of Cu₂S in the ore.

 The reactions are:

$$Cu_2S + O_2 \longrightarrow 2Cu + SO_2$$
 and $CuS + O_2 \longrightarrow Cu + SO_2$

- **10.** A piece of Al weighing 27 g is reacted with 200 ml of H₂SO₄ (specific gravity = 1.8 and 54.5 % by weight) After the metal is completely dissolved 73 g HCl is added and solution is further diluted to 500 ml solution then find the concentration of H⁺ ion in mol/litre.
- 11. 1 g of dry green algae absrobs 4.7×10^{-3} mole of CO₂ per hour by photosynthesis. If the fixed carbon atoms were all stored after photosynthesis as starch $(C_6H_{10}O_5)_n$. Aproximately how long (in hour) would it take for the algae to double their own weight assuming photosynthesis takes place at a constant rate?
- 12. CN⁻ ion is oxidised by a powerful oxidising agent to NO₃⁻ and CO₂ or CO₃²⁻ depending on the acidity of the reaction mixture.

$$CN^{-} \longrightarrow CO_2 + NO_3^{-} + H^{+} + ne^{-}$$

What is the number (n) of electrons per mole of CN-involved in the process?

To 100 ml of 5 M NaOH solution (density 1.2 g/ml) were added 200 ml of another NaOH solution which has a density of 1.5 g/ml and contains 20 mass percent of NaOH. What will be the volume of the gas (at STP) in litres liberated when aluminium reacts with this (final) solution.

The reaction is

$$AI + NaOH + H_2O \longrightarrow NaAIO_2 + H_2$$

14. A drop (0.05 mL) of 12 M HCl is spread over a thin sheet of aluminium foild (thickness 1 mm and density of Al = 2.7 g/mL). Assuming whole of the HCl is used to dissolve. At what will be the maximum area of hole produced in foil (in cm²). [Report your answer after multiplying by 100].

ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 15. In the reaction $I_2 + C_2H_5OH + OH^- \longrightarrow CHI_3 + HCOO^- + H_2O + I^-$ which of the following statements is/are correct?
 - (A) The coefficients of OH^- and I^- in the given in balanced equation are, respectively, 6 and 5.
 - (B) The coefficients of OH⁻ and I⁻ in the given balanced equation are, respectively, 5 and 6.
 - (C) C₂H₅OH is oxidised to CHI₃ and HCOO-.
 - (D) The number of electrons in the conversion of C₂H₅OH to CHI₃ and HCOO⁻ is 8.
- One mole of a mixture of N_2 , NO_2 and N_2O_4 has a mean molar mass of 55.4. On heating to a temperature at which all the N_2O_4 may be presumed to have dissociated : $N_2O_4 \Longrightarrow 2NO_2$, the mean molar mass tends to the lower value of 39.6. What is the mole ratio of N_2 : NO_2 : N_2O_4 in the original mixture?

- 17. Silver metal in ore is dissolved by potassium cyanide solution in the presence of air by the reaction $4 \text{ Ag} + 8 \text{ KCN} + O_2 + 2H_2O \longrightarrow 4 \text{ K[Ag (CN)_2]} + 4 \text{ KOH}$
 - (A) The amount of KCN required to dissolve 100 g of pure Ag is 120 g.
 - (B) The amount of oxygen used in this process is 0.742 g (for 100 g pure Ag)
 - (C) The amount of oxygen used in this process is 7.40 g (for 100 g pure Ag)
 - (D) The volume of oxygen used at STP is 5.20 litres.
- **18.** Crude calcium carbide, CaC₂, is made in an electric furnace by the following reaction,

$$CaO + 3C \longrightarrow CaC_2 + CO$$

The product contain 85% CaC₂ and 15% unreacted CaO.

- (A) 1051.47 kg of CaO is to be added to the furnace charge for each 1000 kg of CaC₂.
- (B) 893.8 kg of CaO is to be added to the furnace charge for each 1000 kg of crude product.
- (C) 708.2 kg of CaO is to be added to the furnace charge for each 1000 kg of CaC₂.
- (D) 910.3 kg of CaO is to be added to the furnace charge for each 1000 kg of crude product.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Mole Concept

19. Which of the following statement is/are correct?

Excess of H₂S(g) is bubbled into 1.0 L of 0.1 M CuCl₂ solution.

 $Cu^{2+} + H_2S(g) \longrightarrow CuS(s) + 2H^+$

- (A) 9.55 g of CuS is produced.
- (B) The concentration of H+ ions is 0.2 M
- (C) The concentration of H+ ions is 0.1 M.
- (D) 95.5 g CuS is produced.

PART - V : PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time: 1 Hr. Max. Marks: 66

Important Instructions

A. General:

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 22 questions. The maximum marks are 66.

B. Question Paper Format

- 3. Each part consists of five sections.
- 4. Section 1 contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.
- 5. Section 2 contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
- 6. Section 3 contains 6 questions. The answer to each of the questions is a numerical value, ranging from 0 to 9 (both inclusive).
- 7. Section 4 contains 1 paragraphs each describing theory, experiment and data etc. 3 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
- 8. Section 5 contains 1 multiple choice questions. Question has two lists (list-1: P, Q, R and S; List-2: 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.

C. Marking Scheme

- 9. For each question in Section 1, 4 and 5 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (–1) mark will be awarded.
- 10. For each question in Section 2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
- 11. For each question in Section 3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

SECTION-1: (Only One option correct Type)

This section contains 7 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

- 1. Calculate the number of Cl⁻ and Ca²⁺ ions in 222 g anhydrous CaCl₂
 - (A) 2NA ions of Ca+2, 2NA ions of Cl-

(B) 2NA ions of Ca+2, 4NA ions of Cl-

(C) 2NA ions of Ca+2, 8NA ions of Cl-

- (D) 4NA ions of Ca+2, 4NA ions of Cl-
- **2.** Equal masses of oxygen, hydrogen and methane are taken in a container in identical condition. Find the ratio of the volumes of the gases.

(A) O₂: H₂: CH₄

1:16:2

(B) O₂: H₂: CH₄

1:8:1

(C) O₂: H₂: CH₄

16:1:8

(D) O₂: H₂: CH₄

8:1:8

3. The elements A and B form a compound that contains 60% A and 40% B by mass. The atomic mass of B is twice that of A. Find the empirical formula of the compound.

(A) A₃B₂

(B) A₃B

(C) A₂B₃

(D) AB₃

4. Equal weight of Zn metal and iodine are mixed together and the iodine is completely converted to ZnI₂. What fraction of weight of the original Zinc remains unreacted. (Atomic wt. Zn = 65)

(A) 0.500

(B) 0.744

(C) 0.488

(D) 0.256

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Mole	Concept
------	---------

- 5. One litre of a mixture of CO and CO₂ is passed through red hot charcoal in tube. The new volume becomes 1.4 litre. Find out % composition of mixture by volume. All measurements are made at same P and T.
 - (A) CO₂ 40%, CO 60% (B) CO₂ 60%, CO 40% (C) CO₂ 25%, CO 75% (D) CO₂ 30%, CO 70%
- 6. The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 g of solvent.

(A) 1000 g

(B) 1098.6 g

(C) 980.4 a

(D) 1019.6g

7. Generally commercial hydrochloric acid is prepared by heating NaCl with concentrated H₂SO₄. How much H₂SO₄ solution containing 93.0% H₂SO₄ by mass is required for the production of 1000 kg of concentrated hydrochloric acid containing 43% HCl by weight.

(A) 590.0 kg solution of H₂SO₄.

(B) 310.3 kg solution of H₂SO₄.

(C) 620.7 kg solution of H₂SO₄.

(D) 708.2 kg solution of H₂SO₄.

Section-2: (One or More than one options correct Type)

This section contains 5 multipole choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.

8. If H_2SO_4 is formed from it's elements by taking 6.023×10^{23} atom of 'O' 5.6 litre of H_2 gas at STP and 8 g S then

(A) 0.125 moles of H₂SO₄ are formed

(B) 0.25 moles of H₂SO₄ are formed

(C) no moles of 'S' are left

- (D) 1/4 mole of O₂ is left
- 9. 1120 mL of ozonised oxygen at S.T.P. weigh 1.76 g. Report the composition of the ozonised oxygen.

(A) It contain 400 mL O₂

(B) It contain 224 mL O₃

(C) It contain 400 mL O₃

- (D) It contain 896 mL O₂
- 10. A 5L vessel contains 2.8 g of N₂. When heated to 1800 K, 30% molecules are dissociated into atoms.
 - (A) Total no. of moles in the container will be 0.13
 - (B) Total no. of molecules in the container will be close to 0.421×10^{23} .
 - (C) Total no. of moles in the container will be 0.098.
 - (D) All of these are correct.
- 11. Equal masses of SO₂ and O₂ are placed in a flask at STP choose the correct statement.
 - (A) The number of molecules of O₂ are more than SO₂
 - (B) Volume occupied at STP is more for O2 than SO2
 - (C) The ratio of number of atoms of SO₂ and O₂ is 3:4.
 - (D) Moles of SO₂ is greater than the moles of O₂.
- 12. For the reaction $2P + Q \rightarrow R$, 12 mol of P and 8 mol of Q are taken then

(A) 3 mol of R is produced

(B) 6 mol of R is produced

(C) 25% of Q is left behind

(D) 25% of Q has reacted

Section-3: (Numerical Value Questions)

This section contains 6 questions. Each question, when worked out will result in a numerical value from 0 to 9 (both inclusive)

- **13.** XeF₆ fluorinates I₂ to IF₇ and liberates Xenon(g). 3.5 mmol of XeF₆ can yield a maximum of _____ mmol of IF₇.
- **14.** Balance the following equation and choose the quantity which is the sum of the coefficients of all species:

..... CS_2 + Cl_2 \longrightarrow CCl_4 + S_2Cl_2

- Average atomic mass of magnesium is 24.31 a.m.u. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg. Report your answer after multiplying by 0.1.
- **16.** 200 g impure CaCO₃ on heating gives 5.6 lt. CO₂ gas at STP. Find the percentage of calcium in the lime stone sample.
- **17.** Molarity of H₂SO₄ is 18 M. Its density is 1.8 g/cm³, hence molality is (If your answer is 'x' then, Report your answer x/500).

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

18. 1 g of a mixture of equal number of moles of Li₂ CO₃ and M₂ CO₃ required 44.44 ml of 0.5 M HCl for completion of the reactions.

 $\begin{array}{l} \text{Li}_2\,\text{CO}_3 + 2\text{HCI} \longrightarrow 2\text{LiCI} + \text{H}_2\text{O} + \text{CO}_2 \\ \text{M}_2\,\text{CO}_3 + 2\text{HCI} \longrightarrow 2 \text{MCI} + \text{H}_2\text{O} + \text{CO}_2 \end{array}$

If the atomic mass of Li is 7, then find the Atomic mass of M. Report M - 16.

SECTION-4: Comprehension Type (Only One options correct)

This section contains 1 paragraphs, each describing theory, experiments, data etc. 3 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)

Comprehension

Cis-platin is used as an anticancer agent for the treatment of solid tumors, and its prepared as follows : $K_2[PtCl_4] + 2NH_3 \longrightarrow [Pt(NH_3)_2Cl_2] + 2KCl$

Potassium tetra

Cis-platin

chloro platinate (II)

Given 83.0 g of $K_2[PtCl_4]$ is reacted with 83.0 g of NH_3 . [Atomic weights : K = 39, Pt = 195, Cl = 35.5, N = 14]

19. Which reactant is the limiting reagent and which is in excess?

20. The number of mol of K₂[PtCl₄] and NH₃ used, respectively, are

(A) 0.1, 0.2 (B) 0.2, 0.4

(C) 0.3, 0.6

(D) 0.03, 0.06

21. The number of mol of excess reactant is

(A) 4.68

(B) 4.78

(C) 4.58

(D) 4.48

SECTION-5: Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct

22. Match the reactions given in List I with the number of electrons lost or gained in List II

	Column – I		Column – II
	Reaction		Number of electrons lost or gained
(P)	$Mn(OH)_2 + H_2O_2 \longrightarrow MnO_2 + 2H_2O$	(1)	8
(Q)	AlCl ₃ + 3K ——→ Al + 3KCl	(2)	2
(R)	$3Fe + 4H2O \longrightarrow Fe3O4 + 4H2$	(3)	3
(S)	$3H_2S + 2HNO_3 \longrightarrow 3S + 2NO + 4H_2O$	(4)	6

Code:

Ρ Q S Q R S 2 4 2 4 (A) 3 1 (B) 3 1 (C) 2 4 (D) 1 3

Practice Test-2 (IIT-JEE (ADVANCED Pattern))

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22								
Ans.										

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

APSP Answers

				PA	RT - I				
1.	(2)	2.	(3)	3.	(1)	4.	(3)	5.	(2)
6.	(1)	7.	(1)	8.	(3)	9.	(3)	10.	(2)
11.	(4)	12.	(1)	13.	(3)	14.	(1)	15.	(2)
16.	(4)	17.	(4)	18.	(4)	19.	(2)	20.	(4)
21.	32.10	22.	34.50	23.	12.934	24.	18.40	25.	42.89
				PA	RT - II				
1.	(1)	2.	(3)	3.	(4)	4.	(1)	5.	(4)
6.	(2)	7.	(1)	8.	(2)	9.	(2)	10.	(3)
11.	(4)	12.	(1)	13.	(3)	14.	(1)	15.	(4)
16.	(1)	17.	(3)	18.	(4)	19.	(4)	20. (E	Bonus)
21.	(1)	22.	(2)	23.	(4)				
					RT - III				
1.	(C)	2.	(B)	3.	(A)	4.	(A)	5.	(A)
6.	(D)	7.	(A)	8.	(B)	9.	(A)	10.	(D)
11.	(B)	12.	(B)	13.	(A)	14.	(B)	15.	(B)
16.	(C)	17.	(B)	18.	(C)	19.	(B)	20.	(D)
21.	(C)	22.	(A)	23.	(B)	24.	(C)	25.	(A)
26.	(B)	27.	(D)	28.	(B)	29.	(B)	30.	(D)
31.	(B)	32.	(B)	33.	(B)	34.	(C)	35.	(B)
36.	(C)	37.	(D)	38.	(C)	39.	(D)	40.	(C)
41.	(B)	42.	(B)	43.	(B)	44.	(D)	45.	(C)
46.	(C)	47.^	(D)	48.	(D)	49.	(C)	50.	(B)
51.	(A)	52.	(A)	53.	(A)	54.	(A)	55.	(C)
56.	(B)	57.	(B)	58.	(B)	59.	(B)	60.	(C)
61.	(D)	62.	(A)	63.	(C)	64.	(D)	65.	(A)
66.	(B)	67.	(C)	68.	(D)	69.	(C)	70.	(C)
71.	(C)	72.	(B)	73.	(C)	74.	(D)	75.	(D)
76.	(C)	77.	(D)	78.	(C)	79.	(B)	80.	(C)
81.	(C)	82.	(B)	83.	(C)				
				PAF	RT – IV				
1.	76 kg of CS ₂	2.	(A)	3.	(B)	4.	(A)	5.	(A)
6.	(C)	7.	(A - p); (B - r,s	s); (C - r); (D - r,q)	8.	4	9.	62%
10.	6	11.	8	12.	10	13.	67	14.	2
15.	(ACD)	16.	(A)	17.	(ACD)	18.	(AB)	19.	(AB)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PART - V

- **1.** (B)
- 2.
- (A)
- **3.** (B)
- **4.** (B)
- **5.** (A)

- **6.** (D)
- 7.
- (C)
- **8.** (BC)
- **9.** (BD)
- **10.** (AB)

- **11.** (ABC)
- 12.
- (BC)
- **13.** 3
- **14**. 6
- **15.** 1

- **16.** 5
- 17.
- 1
- **18.** 7
- **19.** (A)
- **20.** (B)

- **21.** (D)
- **22.** (A)

APSP Solutions

PART - I

1. Mole of NO₂=
$$\frac{112}{22400}$$
 = 5 x 10⁻³

Mass of
$$NO_2 = 5 \times 10^{-3} \times 46 = 0.23 \text{ g}$$

Volume of NO₂ =
$$\frac{\text{Mass}}{\text{Density}} = \frac{0.23}{1.15} = 0.2 \text{ m}$$

Number of molecule = $5 \times 10^{-3} \times 6.023 \times 10^{23} = 3.1 \times 10^{21}$.

$$2. \frac{32}{2x+3y} = 0.2$$

5.

$$\frac{92.8}{3x + 4y} = 0.4$$

Hence x = 56 & y = 16.

- 3. KI is limiting reagent
 - .. 3 mole of KI will give 33 mole of NO₂ according to stoichiometry.

0.48

4.
$$4A + 2B + 3C \longrightarrow A_4B_2C_3$$

final mole 0

C is limiting reagent.

.. moles of A₄B₂C₃ is 0.48.

Reduction $BiO_3^- + Mn^{2^+} \longrightarrow Bi^{3^+} + MnO_4^-$

- Oxidation
 (i) $2e + 6H^+ + BiO_3^- \longrightarrow Bi^{3+} + 3H_2O$
- (ii) $4H_2O + Mn^{2+} \longrightarrow MnO_4^- + 8H^+ + 5e$

(i)
$$\times$$
 5 + (ii) \times 2, we get 14 H⁺ + 5 BiO₃⁻ + 5Mn²⁺ \longrightarrow 5Bi³⁺ + 2MnO₄⁻ + 7 H₂O

Hence, (2) is the correct balanced reaction.

6. $3l_2 + OH^- \longrightarrow IO_3^- + 5l^-$ (balance reaction) So, ratio is 1 : 5.

7. Explanation :
$$m = \frac{M \times 1000}{(1000 \times d - M \times MWt.)}$$
 where 'm' is molality, M is molarity.

$$= \frac{10^2 \times 1000}{(1000 \times 1.1 - 10^2 \times 106)}$$

$$= \frac{10}{1100 - 1.6} = \frac{10}{1099.4} = 9.00 \times 10^{-3}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

- At 4°C i.e. 277 K density of water = 1 g/ml 8.
 - \therefore 1 kg water \Rightarrow 1000 ml water = 1 lit.
 - .. Molality & molarity remains same.
- Mole of NaCl = $\frac{5.85}{58.5}$ = 0.1 9.

Molarity =
$$\frac{0.1}{1}$$
 = 0.1 M

Moles in 1 ml of solution = MV = $0.1 \times 10^{-3} = 10^{-4}$ mole. Number of ions in 1 ml = $2 \times 10^{-4} \times 6.023 \times 10^{23} = 1.204 \times 10^{20}$.

10. Molarity = M

Let volume of be 1 ltr.

 \therefore mass of solvent = 1000 d - M × M₂

Molality = m =
$$\frac{M}{1000d-MM_2}$$
 × 1000

11.

Element	Percent	r.a.m.	No. of atoms	atomic ratio
С	74	12	74/12 = 6.16	6.16/1.23 = 5
Н	8.7	1	8.7/1 = 8.7	8.7/1.123 = 7
N	17.3	14	17.3/14 = 1.23	1.23/1.23 = 1

The ratio of atoms = C: H: N = 5:7:1

Empirical formula = C₅H₇N

Empirical formula mass = $5 C + 7H + N = 5 \times 12 + 7 \times 1 + 14 = 81$

Molecular mass = 162 (given)

 $\frac{\text{Molecular mass}}{\text{Empirical formula mass}} = \frac{162}{81} = 2$ No. of empirical units per molecule = n =

Molecular formula = (Empirical formula) \times 2 = (C₅ H₇N) \times 2 = C₁₀H₁₄N₂

 $C + O_2 \xrightarrow{\Delta} CO_2$ 12.

12g C = 1 mol O₂ = 22.4 L O₂ 1000 g C = $\frac{22.4}{12}$ × 1000

or 1866.67 L O₂.

13.

Initial mole

 $\frac{6\text{Li}}{7} = \frac{1}{2} \qquad \frac{84}{28} = 0.3$

2Li₃N

final mole

mass of Li₃N = $\frac{1}{6}$ × 35 = 5.83 g.

14.

2KO₂ +

2H₂O -0.1

2KOH + 0

 H_2O_2

Initial mole final mole

0.15 (0.15 - 0.1)

0.1

0.05

0 0.05

 O_2

15. $KCIO_3 \rightarrow KCI + O_2$

Applying POAC for O atoms in the eqn.(i),

moles of O in $KCIO_3$ = moles of O in O_2

 $3 \times \text{moles of KCIO}_3 = 2 \times \text{moles of O}_2$

 \therefore moles of $O_2 = 0.05$

$$3 \times \frac{\text{wt.of KOO}_3}{\text{md.wt.of KOO}_3} = 2 \times \frac{\text{volume at NTP(mL)}}{22400}$$

Wt. of KCIO₃ =
$$\frac{2 \times 146.8 \times 122.5}{3 \times 22400}$$
 = 0.5358 g.

In the second reaction:

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

The amount of KCIO₃ left = 1 - 0.5358 = 0.4642 g.

We have, KCIO₃ → KCIO₄ + KCI 0.4642 g.

Applying POAC for O atoms,

moles of O in KCIO₃ = moles of KCIO₄

 $3 \times \text{moles of KCIO}_3 = 4 \times \text{moles of KCIO}_4$

$$3 \times \frac{\text{wt. of KOO}_3}{\text{rnd. wt. of KOO}_4} = 4 \times \frac{\text{wt. of KOO}_4}{\text{rnd. wt. of KOO}_4}$$

Wt. of KCIO₄ =
$$\frac{3 \times 0.4642 \times 138.5}{122.5 \times 4}$$
 = 0.3937 g.(ii)

Wt. of residue = 1 - wt. of Oxygen

$$= 1 - \frac{146.8}{24400} \times 32 \text{ g} = 0.7902 \text{ g}.$$

$$\therefore$$
 % of KCIO₄ in the residue = $\frac{0.3937}{0.7902} \times 100 = 49.8$ %.

16. Let mass of Hq is w q

$$2Hg + I_2 \longrightarrow Hg_2I_2$$

Initial mole 2a fianl mole

$$Hg + I_2 \longrightarrow Hg_2I_2$$

Initial mole b

fianl mole

:. mole of Hg =
$$2a + b = \frac{W}{200.6}$$
(1

:. mole of
$$I_2 = a + b = \frac{W}{254}$$
(2)

eqution (1) - (2)

$$a = \frac{w}{200.6} - \frac{w}{254}$$

$$\therefore b = \frac{W}{254} - \left(\frac{W}{200.6} - \frac{W}{254}\right) = \frac{W}{127} - \frac{W}{200.6}$$

$$\therefore \frac{\text{Mess of Hg}_{12}}{\text{Mess of Hg}_{2}} = \frac{a \times 655.2}{b \times 454.6} = \frac{\left(\frac{W}{200.6} - \frac{W}{254}\right) 655.2}{\left(\frac{W}{127} - \frac{W}{200.6}\right) 454.6} = \frac{0.523}{1}.$$

Molarity of $H_2SO_4 = \frac{\text{sp. gravity} \times \% \text{w/w} \times 10}{\text{Molarity}}$ 17. Molecular mass

$$= \frac{1.2 \times 25 \times 10}{98} = \frac{12 \times 25}{98} = 3.06 \text{ M}$$

$$3H_2SO_4 + 2AI \longrightarrow Al_2(SO_4)_3 + 3H_2$$

$$\frac{27}{27} = 0.1$$

$$\frac{2.7}{27} = 0.7$$

Mole of H₂SO₄ used = $\frac{3}{2}$ × 0.1 = 0.15

Initial mole of $H_2SO_4 = 0.75 \times 3.06 = 0.2295$

Mole of H_2SO_4 remaining = 0.2295 - 0.15

Molarity of final $H_2SO_4 = \frac{0.0795}{0.4} = 0.198 \text{ M}.$

18. Moles of $Al_2(SO_4)_3 = M \times V = 0.15 \times 0.1 = 0.015$

Mass of Al₂(SO₄)₃ = Mole × Molar mass = $0.015 \times 342 = 5.13$ g.

Moles of Al³⁺ = 2 × moles of Al₂(SO₄)₃ = 2 × 0.015 = 0.03.

No. of Al³⁺ ions = $0.03 \times 6.023 \times 10^{23} = 1.81 \times 10^{22}$ ions.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

19.
$$CuSO_4.5H_2O(aq) + BaCl_2(aq) \longrightarrow BaSO_4(s) + CaCl_2(aq)$$

4.66 g

Mass of BaSO₄ = 4.66 g
Mole of BaSO₄ =
$$\frac{4.66}{233} = \frac{2}{100}$$
 : Mole of SO₄²⁻ = $\frac{2}{100}$

Mass of
$$SO_4^{2-} = \frac{2}{100}$$
 (ionic mass of SO_4^{2-}) = 1.92 g

%
$$SO_4^{2-} = \frac{1.92}{5} \times 100 = 38.4\%$$
.

20. Balance chemical equations are:

$$Ca_3 (PO_4)_2 + 8Mg \longrightarrow Ca_3P_2 + 8MgO$$

 $Ca_3 P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$
 $2PH_3 + 4O_2 \longrightarrow P_2O_5 + 3H_2O$
 $MgO + P_2O_5 \longrightarrow Mg(PO_3)_2$

$$MgO + P_2O_5 \longrightarrow Mg(PO_3)_2$$

moles of magnesium used = 0.8 moles

moles of MgO formed = 0.8 moles

moles of Ca₃ P₂ formed 0.1 moles

moles of PH₃ formed = 0.2 moles

moles of P₂O₅ formed = 0.1 mole (limiting reagent)

moles of $Mg(PO_3)_2 = 0.1$ moles

mass of $Mg(PO_3)_2 = 18.2 \text{ gram}$

Ans. 18 gram

21.
$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2 NaCl$$

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

Mole of CaCl₂ = mole of CaCO₃ = mole of CaO =
$$\left(\frac{1.62}{56}\right)$$

Mass of
$$CaCl_2 = \left(\frac{1.62}{56}\right)$$
 Molar mass of $CaCl_2$

$$=\left(\frac{1.62}{56}\right) \times 111 \text{ g}.$$

% of
$$CaCl_2 = \frac{3.21}{10} \times 100 = 32.10$$
 %.

22. Ag₂CO₃ (s)
$$\longrightarrow$$
 2Ag (s) + CO₂ (g) + $\frac{1}{2}$ O₂ (g)

$$C_2H_2 + \frac{5}{2}O_2 \longrightarrow 2CO_2 + H_2O$$

By Stoichiometry of reaction

Moles of CO₂ formed =
$$\frac{1.12}{224}$$
 = $\frac{1}{20}$

Moles of O₂ required =
$$\frac{5}{4} \times \frac{1}{20} = \frac{5}{80}$$

Moles of Ag₂CO₃ required =
$$2 \times \frac{5}{80} = \frac{5}{40}$$

Mass of Ag₂CO₃ required =
$$\frac{5}{40} \times 276 = 34.50 \text{ g}$$

23. Explanation : M. wt. of $NaNO_3 = 85$

70 mg of Na+ are present in 1 mL

50 ml of solution contains $50 \times 70 = 3500 \text{ mg} = 3.5 \text{ g Na}^+ \text{ ion}$

23 g of Na+ are present in 85 g of NaNO3

3.5 g of Na⁺ are present in $\frac{85}{23}$ × 3.5 = 12.934 g of NaNO₃

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

24. Molarity =
$$\frac{(\%\text{w}/\text{w}) \times \text{density} \times 10}{\text{Nolar mass of solute}} = \frac{98 \times 1.84 \times 10}{98} = 18.4 \text{ M}$$

Consider that mass of NaCl = xg 25.

$$\therefore \qquad \text{Moles of NaCl will be} = \frac{x}{58.5} \text{ and moles of KCl will be} = \frac{64-x}{74.5}$$

By using POAC for Na and K

or Moles of Na₂SO₄ = Moles of NaCl
$$\times \frac{1}{2}$$

: Moles of KCl
$$\times$$
 1 = Moles of K₂SO₄ \times 2

or Moles of
$$K_2SO_4$$
 = Moles of $KCI \times \frac{1}{2}$

Total weight of Na₂SO₄ and K₂SO₄ is 76 g

Hence
$$\frac{1}{2} \times \frac{x}{58.5} \times 142 + \frac{1}{2} \times \frac{64-x}{74.5} \times 174 = 76$$

$$\Rightarrow$$
 1.2137 × 74.74 – 1.1678 x = 76

$$\Rightarrow$$
 0.0459 x = 1.26

$$\Rightarrow$$
 x = 27.45 g

% mass of NaCl =
$$\frac{27.45}{64}$$
 ×100 = 42.89%

% mass of KCI =
$$100 - 42.89 = 57.11$$
%.

PART - II

Molar mass = 108 g/mole 1.

Element Wt. Ratio		Wt. ratio/Atomic mass	Simple Ratio	Simple Integer ratio	
С	9 x	$\frac{9x}{12} = \frac{3x}{4}$	3	3	
Н	1 x	X	4	4	
N	3.5 x	$\frac{3.5x}{14} = \frac{x}{4}$	1	1	

Empirical mass =
$$12 \times 3 + 4 + 14 = 54$$

$$n = \frac{108}{54} = 2$$

2.
$$Mn_{2}O_{3} \leftarrow +4e^{-} [KMnO_{4}] \xrightarrow{+e^{-}} [MnO_{4}]^{2-}$$

$$+5e^{-} +3e^{-}$$

3. The oxidation states show a change only in reaction

$$\begin{array}{cccc}
& & & & \downarrow \\
0 & +1 & -2e^{-} & 0 & +2 \\
Zn+2AgCN & \longrightarrow 2Ag+Zn(CN)_{2} \\
& & & & \downarrow \\
& & & & & +2e^{-}
\end{array}$$

4. Molarity depends on volume (volume changes with changes in temperature).

5.
$$2BCI_3 + 3H_2 \longrightarrow 2B + 6HCI$$

moles of B =
$$\frac{21.6}{10.8}$$
 = 2

So moles of
$$H_2 = 3$$

Now vol at STP =
$$3 \times 22.4 = 67.2$$
 lt.

6. Molarity =
$$\frac{\text{Moles of solute}}{V_{tt}} = \frac{6.02 \times 11^{20} / 6.02 \times 10^{23}}{100 / 1000} = 0.01 \text{ M}$$

$$x + 4(0) + 2(-1) = +1$$

$$x-2=+1$$
 or, $x=+1+2=+3$.

8. Final molarity =
$$\frac{M_1V_1 + M_2V_2}{V_1 + V_2} = \frac{1.5 \times 480 + 1.2 \times 520}{480 + 520} = 1.344M$$

$$\Rightarrow$$
 3 mole of Mg atom + 2 mole of P atom + 8 mole of O atom. 8 mole of oxygen atoms are present in = 1 mole of Mg₃ (PO₄)₂, 0.25 mole of oxygen atoms are present in $\frac{1 \times 0.25}{8}$ = 3.125 x 10⁻² moles of Mg₃ (PO₄)₂.

10. molality (m) =
$$\frac{M}{1000d-MM_1} \times 1000 = \frac{205}{(1000 \times 1.02) - (205 \times 60)} \times 1000 = 2.28 \text{ mol kg}^{-1}$$

$$M = Molarity$$
, $M_1 = Molecular mass of solute$, $d = density$

11.
$$2AI(s) + 6HCI(aq) \longrightarrow 2AI^{3+}(aq) + 6CI^{-}(aq) + 3H_2(g)$$

:. Mass of 3.6 moles of
$$H_2SO_4$$
 is = 3.6 x 98 g = 352.8 g

$$\therefore$$
 Mass of H₂SO₄ in 1000 ml of solution = 352.8 g

Given, 29g of H₂ SO₄ is present in 100 g of solution

:. 352.8 g of H₂SO₄ is present in
$$\frac{100}{29}$$
 x 352.8 = 1216 g of solution

Now density =
$$\frac{\text{Mess}}{\text{Volume}} = \frac{1216}{1000} = 1.216 \text{ g/mL} = 1.22 \text{ g/mL}$$

13.
$$X_{\text{ethyl alcohol}} = \frac{5.2}{5.2 + \frac{1000}{18}} = 0.086$$

14. Molality =
$$\frac{0.01/60}{0.3} = \frac{0.01}{60 \times 0.3}$$
; d = 1 g/ml = 5.55 × 10⁻⁴ m.

15. Molarity =
$$\frac{\text{mols of solute}}{\text{volume of sol.}(\ell)} = \frac{120 \times 1.15}{60 \times 1120} = 2.05 \text{ M}$$

16.
$$M_f = \frac{M_1 V_1 + M_2 V_2}{V_1 + V_2} = \frac{0.5 \times \frac{3}{4} + 2 \times \frac{1}{4}}{1} = 0.875 \text{ M}$$

17.
$$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^2 + CO_2 + H_2O$$

 $vf = 1(7-2)$ $vf = 2(3-2)$
 $vf = 2(3-2)$

Balanced Equation:

$$2MnO_4^- + 5C_2O_4^{2-} + 16 H^+ \longrightarrow 2Mn^{2+} + 10 CO_2 + 8H_2O$$

So, x = 2, y = 5 & z = 16.

18. H₂O₂ acts as reducing agent when it releases electrons. i.e. (b) & (d)

20.
$$C_xH_y(g) + \left(x + \frac{y}{4}\right) O_2(g) \to xCO_2(g) + \frac{y}{2} H_2O(\ell)$$

Volume of O₂ used =
$$\frac{20}{100}$$
 × 375 = 75 ml.

Volume of air remaining = 300 ml

Total volume of gas left after combustion = 330 ml

Volume of CO_2 gases after combustion = 330 - 300 = 30 ml.

$$C_xH_y(g) + \left(X + \frac{y}{4}\right)O_2(g) \rightarrow xCO_2(g) + \frac{y}{2}H_2O(\ell)$$

$$\frac{x + \frac{y}{4}}{1} = \frac{75}{15} \Rightarrow x + \frac{y}{4} = 5$$

$$\Rightarrow y = 12$$

$$\Rightarrow C_2H_{12}$$

Such compound is impossible and also not in option. So it should be bonus.

However if we seriously wish to give an answer then by looking at options, we can see that only C₃H₈ is able to consume 75 ml O₂. So (1) can also be given as answer.

21.
$$M_2CO_3 + 2HCI \longrightarrow MCI_2 + H_2O + CO_2$$

 $\frac{1}{M_0}MOI$ 0.01186 mol.

 M_0 = Molar mass of M_2CO_3

$$\frac{1}{M_0} = 0.0118$$

$$M_0 = 84.3 \text{ g/md}$$

- 22. 75 kg person contain 10% hydrogen i.e. 7.5 kg Hydrogen. If all H atom are replaced by ²H, the weight of Hydrogen become twice i.e. it increases by 7.5 kg.
- 23. 1, 2, 3 are non redox In 4, O₂F₂ is oxidising agent & XeF₄ is reducing agent.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

PART-IV

1. SO_2 that converted = $440 \times \frac{80}{100}$ Kg = 352 kg

Initial mole
$$5C + 2SO_2 \longrightarrow CS_2 + 4CO$$

$$5 \times 10^3 \qquad \frac{352}{64} \times 10^3 \qquad 0 \qquad 0$$

$$= 5.5 \times 10^3$$

final mole 0
$$5.5 \times 10^3 - \frac{2}{5} \times 5 \times 10^3$$
 1×10^3 4×10^3

mole of
$$CS_2 = 1000$$

mass = $1000 \times 76 \text{ g} = 76 \text{ Kg}$

2. TiCl₄ + 2Mg \longrightarrow Ti + 2MgCl₂
Initial mole $\frac{358}{190} = 1.88$ $\frac{96}{24} = 4$ final mole 0 $4 - 2 \times 1.88$ 1.88 2×1.88 wt of Ti obtained = $\frac{358}{190} \times 48$ % yield = $\frac{32 \times 100}{358 \times 48} = 35.38$ %

- 3. Produced mass of H₃PO₄ = $\left(\frac{62}{4 \times 31}\right) \times 0.85 \times 0.9 \times 4 \times 98 = 149.94 \text{ g}$
- 4. The balanced equation is $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_4^{2-}$
- 5. $10^{-3} \text{ g NH}_3 \text{ in } 100 \text{ g solution}$ one litre water has mass = $1000 \times 1 \text{ g}$ As NH₃ is very less hence we can say $100 \text{ g water has } 10^{-3} \text{ g NH}_3$ $\therefore 1000 \text{ g water has } = \frac{10^{-3}}{100} \times 1000 \text{ g} = 10^{-2} \text{ g NH}_3 = \frac{10^2}{17} \text{ mole NH}_3 = 5.88 \times 10^{-4} \text{ mole NH}_3.$
- 6. Mole of AI = $\frac{18}{27} = \frac{2}{3}$ Mole of HCI = $\frac{109.5}{36.5} = 3$

Moles of NaOH =
$$\frac{100}{40}$$
 = 2.5

AICI₃ + 3NaOH
$$\longrightarrow$$
 AI(OH)₃ + 3NaCl

Initial mole 2/3 2.5 0 0 final mole 0
$$2.5 - 2/3 \times 3$$
 2/3 $= 0.5$

$$\begin{array}{cccc} & & Al(OH)_3 + NaOH & \longrightarrow NaAlO_2 + 2H_2O \\ \text{Initial mole} & 2/3 & 0.5 & 0 & 0 \\ \text{final mole} & 0 & 0.5 & \end{array}$$

Ans. NaAlO₂ =
$$0.5$$
 moles.

- 8. Density of He = 0.1784 g/lit.
 - 1 mole of He will occupy 22.4 lit. at NTP
 - \therefore Mass of 1 mole = V x d = 22.4 x 0.1784 = 3.99 = 4 g.
- 9. Mass of Cu_2S & CuS = 100 - 4.5 = 95.5 q
 - Let mass of Cu₂S is x g.
 - $Cu_2S + O_2 \longrightarrow 2Cu + SO_2$ $CuS + O_2 \longrightarrow Cu + SO_2$

 - Mass of Cu from Cu₂S + Mass of Cu from CuS = 71.8 $\frac{x}{159} \times 63.3 \times 2 + \frac{(95.5 x)}{95.5} 63.5 = 71.8$
 - $x\left(\frac{127}{159} \frac{63.5}{95.5}\right) = 8.3$
 - $x = \frac{8.3}{0.134} = 62.01 \text{ g}.$
 - ∴ % of Cu₂S is 62.
- Molarity of $H_2SO_4 = \frac{1.8 \times 54.5 \times 10}{98} = 10$ 10.
 - $3H_2SO_4 \longrightarrow Al_2 (SO_4)_3 + 3H_2$
 - 1 moles 2 moles
 - (limiting)
 - Moles of H_2SO_4 left = 2 1.5 = 0.5 moles
 - moles of HCl added = 2 moles
 - final volume of the solution = 500 ml
 - moles of H^+ ion = 3
 - concentration of H+ ion = 6 M
- 11. 1 x moles of CO₂ = $6n \times moles$ of starch
 - $= 6n \times \frac{1}{162 n}$
 - moles of $CO_2 = \frac{6}{162}$ So
 - 4.7×10^{-3} moles of CO₂ are absorbed in 1 hr
 - $\frac{6}{162}$ moles of CO₂ are absorbed in = $\frac{1}{4.7 \times 10^3} \times \frac{6}{162} = 8$ hrs.
- 12. Balanced the equation.
 - $15H_2O + 3CN^- \longrightarrow 3CO_2 + 3NO_3^- + 30H^+ + 30e^-$
- Mole of NaOH in 1st solution = 0.5 moles 13.
 - moles of NaOH addded = $\frac{200 \times 1.5 \times 0.2}{40}$ = 1.5
 - moles of NaOH in the final solution = 1.5 + 0.5 = 2 moles
 - $AI + NaOH + H₂O \longrightarrow NaAIO₂ + 3/2 H₂$
 - moles of H₂ produced from 2 moles of NaOH = 3 moles
 - volume of H_2 produced at STP = $3 \times 22.4 = 67.2$ litre 67
- m moles of HCl = $12 \times 0.05 = 0.6$ 14.
 - Now AI + 3HCI \rightarrow AICI₃ + $\frac{3}{2}$ H₂
 - so m moles of AI = $\frac{1}{3}$ × 0.6
 - or weight of AI = $\frac{1}{3} \times \frac{0.6 \times 27}{1000} = 0.0054$ gram
 - Volume of foil = $\frac{0.0054}{27}$ mL or cm³ = 0.002 cm³

$$\therefore Area = \frac{0.002}{0.01} = 0.2 \text{ cm}^2 (thickness = 0.01 \text{ cm})$$

 $= 0.2 \times 10 = 2 \text{ Ans.}$

Note: The maximum area of hole is possible when 0.01 cm foil of Al is completely attacked.

16. Let
$$mol \text{ of } N_2 = x$$
, $mol \text{ of } NO_2 = y$, $mol \text{ of } N_2O_4 = z$ therefore $\frac{28x + 46y + 92z}{1} = 55.4$ (1)

If
$$N_2O_4 \longrightarrow 2NO_2$$

 $28x + (y + 2z)46 = 39.6$

$$\frac{-3.6}{X+y+z+z} = 39.6$$

$$28x + 46y + 92z$$

$$\Rightarrow \frac{28x + 46y + 92z}{1+z} = 39.6 \qquad \dots (2)$$

By deviding equation (1) by equation (2)

$$1 + z = \frac{55.4}{39.6} = 1.4$$

$$z = 0.4 \text{ mol}$$

Given x + y + z = 1

Put the value of z in eq. (1)

$$28x + 46y + 92 + 0.4 = 55.4$$

$$28x + 46y = 18.6$$
(4)

By equation (3) & (4)

$$y = 0.1$$

$$\therefore$$
 x = 0.5, y = 0.1, z = 0.4

17. (A), (C) and (D) Explanation:

4 x 108 g of Ag reacts with 8 x 65 g of KCN

100 g of Ag reacts with

$$\frac{8 \times 65}{4 \times 108} \times 100 = 120$$

Hence ,, to dissolve 100 g of Ag , the amount of KCN required = 120 g Hence, statement (A) is correct.

4 x 108 g of Ag require 32 g of O₂
1 g of Ag require
$$\frac{32}{4 \times 108}$$
 = 0.0740 g

100 g of Ag require = 7.4 g

Hence, choice (C) is correct.

Hence, volume of O₂ required =
$$\frac{7.4}{32}$$
 × 22.4 = 5.20 litre

Hence, (A), (C), (D) are correct while (B) is incorrect.

18.
$$CaO(s) + 3C(s) \longrightarrow CaC_2(s) + CO(g)$$

Final product contain 85% CaC₂ & 15% CaO (A)

Let mass of product is 100 g

Mass of $CaC_2 = 85 g$

Mass of CaO = 15 g

Used mole of CaO = mole of CaC₂ produced =
$$\frac{85}{64}$$

$$\therefore \qquad \text{mass of CaO for producing 85 g CaC}_2 = \frac{85}{64} \times 56 = 74.375 \text{ g}.$$

:. Initial total mass of CaO = 74.375 + 15 = 89.375.

85 g CaC₂ obtained from = 89.38 g CaO

1 g CaC₂ obtained from = $\frac{89.38}{85}$ g CaO ∴.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

$$10^6$$
 g CaC₂ obtained from = $\frac{89.38}{85}$ × 10^6 = 1051470 g

For 1000 kg CaC_2 requires = 1051.47 kg CaO.

1 g product requires =
$$\frac{89.38}{100}$$

$$10^6$$
 g product requires = $\frac{89.38}{100} \times 10^6$

For 1000 kg (crude) product = 893.8 kg CaO.

19. Mol of
$$Cu^{2+} = 1.0 L \times 0.1 M = 0.1 M Cu^{2+} = 0.1 \times 2 mol H^+$$

(A) Weight of
$$CuS = 0.1 \times 95.5 = 9.55 g$$

(B) Concentration of H⁺ =
$$\frac{0.2 \text{ md}}{1.01}$$
 = 0.2 M

PART - V

1. mol. wt.
$$CaCl_2 = 111 g$$

∴ 111 g CaCl₂ has N_A ions Ca⁺² (N_A = Avogadro number)
∴ 222 g CaCl₂ has N_A ions Ca⁺² =
$$\frac{N_A \times 222}{111}$$
 = 2 N_A ions of Ca⁺²

$$\therefore 222 \text{ g CaCl}_2 \text{ has 2 N}_A \text{ ions of Cl}^- = \frac{2 \times N_A \times 222}{111} \text{ ions of Cl}^- = 4 \text{ N}_A \text{ ions of Cl}^-$$

2. Suppose each gas has a mass of X g.

Therefore, Weight -

$$\hat{X}$$
 \hat{X} \hat{X}

$$\frac{2}{32}$$
 $\frac{2}{7}$ $\frac{2}{16}$

$$\frac{1}{2} : \frac{7}{2} : \frac{7}{16}$$

Elements	Atomic mass	%	Relative No. of atoms	Simple ratio	Simplest whole no.	
Α	x	60	60/x	3	3	
В	2x	40	40/2x = 20/x	1	1	

: Empirical formula A₃B

$$Zn + I_2 \longrightarrow ZnI_2$$

Mass

Initial mole

finally

$$\frac{X}{CC} - \frac{X}{CC} = 0$$

Fraction of Zn unreacted =
$$\frac{\frac{X}{65} - \frac{X}{254}}{\frac{X}{65}} = 1 - \frac{65}{254} = 0.744$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

5. On passing through charcoal only CO₂ reduces to CO.

Volume

$$CO_2 + C \longrightarrow 2 CO$$

a + b = 1

Volume before reaction b

As given

and
$$a + 2b = 1.4$$

$$\therefore \text{ % of } b = \frac{0.4}{1} \times 100 = 40 \%$$

$$a = 0.6 \text{ litre}$$

% of a =
$$\frac{0.6}{1}$$
 × 100 = 60 %

6. m = 0.2 mole / kg

weight of solvent = 1000 gram

weight of solute = $0.2 \times 98 = 19.6$ gram

Total weight of solution = 1000 + 19.6 = 1019.6 ml.

7. Mass of HCl =
$$1000 \times \left(\frac{43}{100}\right) = 430 \text{ kg}.$$

$$2NaCl + H_2SO_4 \longrightarrow Na_2SO_4 + 2HCl$$

$$\frac{\text{Mole of HO}}{2} = \frac{\text{Mole of H}_2\text{SO}_4}{1}$$

$$\frac{430 \times 10^3}{36.5 \times 2}$$
 = mole of H₂SO₄

Mass of
$$H_2SO_4 = \frac{98 \times 430 \times 10^3}{36.5 \times 2} = 577.26 \times 10^3 \text{ g}$$

Mass of 93%
$$H_2SO_4 = 577.26 \times \frac{100}{93} = 620.71 \text{ kg}.$$

8.
$$H_2 + S + 2O_2 \rightarrow H_2SO_4$$

$$n_{h} = \frac{5.6}{20.4} = \frac{1}{4}$$

As all reactants are in stoichiometric ratios, none will be left behind.

Hence $\frac{1}{4}$ mole of H₂SO₄ is formed.

9. Let the volume of oxygen in 1120 mL of ozonised oxygen be x mL at S.T.P.

We known that

vol. of mixture \times its density = mass

= vol. of oxygen x its density + vol. of ozone x its density

Also, density =
$$\frac{\text{mess}}{\text{vdume}}$$

$$\therefore \qquad \text{density of oxygen} = \frac{32}{22400} \text{ g/mL} \qquad \text{(at S.T.P.)}$$

and density of ozone =
$$\frac{48}{22400}$$
 g/mL (at S.T.P.)

Hence,
$$x \times \frac{32}{22400} + (1120 - x) \times \frac{48}{22400} = 1.76$$

or,
$$2x + (1120 - x) \times 3 = 1.76 \times 1400$$

or,
$$x = (3360 - 2464) \text{ mL} = 896 \text{ mL } O_2$$
.

10. (A) and (B) Explanation : 30% of molecule dissociated $N_2 \rightarrow 2N$

Amount of N₂ left =
$$\frac{28}{28} \times \frac{70}{100} = 0.1 \times 0.7 = 0.07$$
 (in moles)

No. of moles of N atoms formed = $2 \times \frac{30}{100} \times 0.1 = 0.06$

(A) Total no . of moles

$$= 0.07 + 0.06 = 0.13$$

- (B) Total number of molecules = $0.07 \times 6.023 \times 10^{23} = 4.2 \times 10^{22}$ molecule = 0.421×10^{23}
- We have to calculate molecule of nitrogen not atoms.
- 11. Let W gas of SO₂ and O₂ are taken

moles of
$$SO_2 = \frac{W}{64}$$
; moles of $O_2 = \frac{W}{32}$
molecules of $O_2 = \frac{WN_A}{32}$; molecules of $SO_2 = \frac{WN_A}{64}$

moles of
$$O_2 = \frac{W}{32}$$

molecules of
$$O_2 = \frac{WN_A}{32}$$
;

molecules of
$$SO_2 = \frac{VVN_A}{64}$$

hence molecules of O₂ > molecules of SO₂

since moles of O_2 > moles of SO_2 , hence volume of O_2 at STP > volume of SO_2 at STP.

12.

$$\begin{array}{cccc} & & 2P+Q & \longrightarrow & R \\ \text{initial mole} & & 12 & 8 & & 0 \\ \text{final mole} & & 0 & 8-6 & & 6 \\ \end{array}$$

moles of R formed = 6

% of Q left behind =
$$\frac{2}{8} \times 100 = 25\%$$

 $XeF_6 + I_2 \longrightarrow IF_7 + Xe$ 13.

6 (m.mole of XeF_6) = 7 (m.mole of IF_7)

$$\frac{3.5\times6}{7}$$
 = 3 m.moles of IF₇

14. $CS_2 + 3Cl_2 \longrightarrow CCl_4 + S_2Cl_2$

$$1 + 3 + 1 + 1 = 6$$

Let mole % of ²⁶Mg be x. 15.

$$\frac{(21-x)25+x(26)+79(24)}{100}=24.31$$

$$x = 10\%$$

Answer
$$= 1$$

 $CaCO_3 \longrightarrow CaO + CO_2$ 16.

$$\frac{5.6}{22.4} = \frac{1}{4}$$
 mole

mole of CaO = mole of Ca = $\frac{1}{4}$

mass of Ca =
$$\frac{1}{4} \times 40 = 10$$

% of Ca in sample = $\frac{10}{200}$ × 100 = 5%

17. Let volume of solution is 1000 ml

moles of $H_2SO_4 = 18$

mass of $H_2SO_4 = 18 \times 98 = 1764 g$

mass of solution = $1000 \times 1.8 = 1800$ g

mass of solution =
$$1000 \times 1.8 = 1800 \text{ g}$$

mass of solvent = $1800 - 1764 = 36 \text{ g}$
molality = $\frac{18}{1000} = 500 \Rightarrow \frac{500}{500} = 1$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

- 18. Let each species be a moles, M be molecular mass of metal a \times [2 \times 7 + 12 + 48] + a [2 \times M + 12 + 48] = 1(1) and a moles of each carbonate reacts with 2a mole of HCl hence $4a = 44.44 \times 0.5 \times 10^{-3}$ or $a = 11.11 \times 0.5 \times 10^{-3}$ (2) Thus M from solving the equation (1) and (2) is 23 g M = 23 g M 16 = 7
- 19. Mw of $K_2[PtCl_4] = 2 \times 39 + 195 + 4 \times 35.5 = 415 \text{ g}$ Mw of NH₃ = 17 g Mol of $K_2[PtCl_4] = \frac{83.0}{415} = 0.2 \text{ mol (limiting reagent)}$ Mol of NH₃ = $\frac{83}{17} = 4.88 \text{ mol (excess)}$
- 20. Mol of $K_2[PtCl_4]$ consumed = 0.2 mol = mol of cisplatin NH₃ consumed = $2 \times 0.2 \ 0.4 \ mol$
- **21.** Excess of NH₃ unreacted = 4.88 0.4 = 4.48 mol
- 22. $2e^- + H_2O_2 \longrightarrow 2H_2O$ (Reduction) (Q) $3K \longrightarrow 3K^+ + 3e^-$ (Oxidation) $3e^- + Al^{3+} \longrightarrow Al \text{ (Reduction)}$ (R) $3Fe \longrightarrow Fe_3O_4 + 8e^- \text{ (Oxidation)}$ 3x - 8 = 03x = 03x = 8 $8e^- + 4H_2O \longrightarrow 4H_2$ (Reduction) 8x - 8 = 08x = 08x = 8(S) $3H_2S \longrightarrow 3S + 6e^-$ (Oxidation) 2 + x = 0x = 0x = -2x - 2 = 0x - 6 = -1x = 5x = 2

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in