PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-140954

(43)Date of publication of application: 04.06.1996

(51)Int.CI.

A61B 5/0476 A61B 5/04

(21)Application number: 06-312658

(71)Applicant: NEC CORP

(22)Date of filing:

22.11.1994

(72)Inventor: KAMIJO KENICHI

(54) ELECTRODE POSITION MEASURING INSTRUMENT

(57)Abstract:

PURPOSE: To enable highly accurate and fast calculation by reducing burden on a measuring person and an examinee in the measurement of the positions of one or a plurality of electrodes attached onto the surface of the examinee.

CONSTITUTION: An electrode is provided below (on the side of head skin) a mounting part 5 mounted on a cap 1 and is connected to an organic amplifier 10. A plurality of electromagnetic wave generating sections (loop antenna) 3 are arranged on the cap 1 and driven one at a time by direction of a received data collecting section 13 to output an electromagnetic wave. A receiving section (loop antenna) is mounted above the mounting part 5 and the electromagnetic wave is received with the

receiving section to output a received data to the received data collecting secting 13 through a received data selecting section 11. The received data collecting secting 13 adds data for directing an electromagnetic wave source to the received data inputted and outputs then to a received data storage section 15. A position estimating section 17 calculates the position of the electrode using a numerical optimization method and a neural network, based on the aggregation of the received data outputted from the received data storage section 15.

LEGAL STATUS

[Date of request for examination]

22.11.1994

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

2624201

[Date of registration]

11.04.1997

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

1,1.04.2003

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-140954

(43)公開日 平成8年(1996)6月4日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

A61B 5/0476

5/04

Z

A61B 5/04

320 A

審査請求 有 請求項の数7 FD (全 7 頁)

(21)出願番号

(22)出願日

特顏平6-312658

平成6年(1994)11月22日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 上條 憲一

東京都港区芝5丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 小橋川 祥二

(54) 【発明の名称】 電極位置計測装置

(57)【要約】

【目的】本発明の目的は、生体表面上に付着した一つも しくは複数の電極の位置を計測する場合に、測定者や被 験者の負担を軽減し、高精度に電極位置を高速に算出す る電極位置計測装置を提供することにある。

【構成】キャップ1に取り付けられた装着部5の下側(頭皮側)に電極が設けられ、この電極は生体アンプ10に接続されている。電磁波発生部(ループアンテナ)3はキャップ1上に複数配置され、受信データ収集部13の指定により1つずつ駆動され電磁波が出力される。装着部5の上側には受信部(ループアンテナ)が装着され、電磁波は受信部で受信され、その受信データは受信データ選択部11を介して受信データ収集部13へ出力される。受信データ収集部13は入力された受信データに電磁波源を指定するデータを付加し、受信データ蓄積部15に出力する。位置推定部17は受信データ蓄積部15に出力する。位置推定部17は受信データ蓄積部15が出力する受信データの集合に基づいて、電極の位置を算出する。電極位置の算出は、数値最適化手法や、ニューラルネットワークを用いて行う。

20

1

【特許請求の範囲】

【請求項1】 生体等の測定対象の表面の電位を計測するための複数の電極と、複数の信号発生部と、前記信号発生部からの信号を受信する複数の受信部と、前記信号発生部を1つずつ駆動させて信号を発信し、各発信信号ごとに各受信部からの受信データを収集する受信データ収集部と、収集した受信データに基づいて各電極の位置を推定する位置推定部とを備え、前記信号発生部または前記受信部のいずれかが前記電極近傍に配置されていることを特徴とする電極位置計測装置。

【請求項2】 前記信号発生部および受信部のそれぞれがループアンテナを含み、前記信号発生部が双極子磁界を発生させる請求項1に記載の電極位置計測装置。

【請求項3】 前記信号発生部として超音波発生器を用い、前記受信部として超音波受信部を用いる請求項1の電極位置計測装置。

【請求項4】 前記信号発生部として所定の基本周波数を持つ電波を発生させる電波発生器を用い、前記受信部として前記電波を受信する受信部を用いる請求項1の電極位置計測装置。

【請求項5】 前記信号発生部として光線発生器を用い、前記受信部として光線受信部を用いる請求項1の電極位置計測装置。

【請求項6】 前記位置推定部として、ニューラルネットワークを用いる請求項1から5のいずれか1項に記載の電極位置計測装置。

【請求項7】 前記電極が前記受信部の装着具に取り付けられ、前記受信部は前記装着具に着脱自在であるとともに、受信部が前記装着具に装着されたときは受信部を機能させ、受信部が装着具から外されたときは前記電極 30 を機能させる切替手段を設けた請求項1から6のいずれか1項に記載の電極位置計測装置。

【発明の詳細な説明】

【産業上の利用分野】本発明は、生体等の測定対象の表面上に付着した1つもしくは複数の電極の位置を計測する電極位置計測装置に関する。

[0001]

【従来の技術】生体内の電気的活動に起因して生体上に生じる電場を計測するためには、電極を生体上を付着させて、その電位の導出を行なう。導出された電位データは電極が付着していた一点でのデータに過ぎないが、複数の電極を用いて複数の電位データを計測することによって、多角的な解析が可能となる。例えば、医療分野において、頭皮上に配置された複数の電極から導出される電位データに基づき、頭皮上の電場分布を推定し、等電位図(トポグラフィ)として示すことは、脳内の神経活動状況を知る上で、非常に分かりやすい表現手法である。また、同様の電位データを用いて、生体内に一個もしくは2個以上の双極子の存在を仮定し、それらの双極子の位置やモーメントを推定する双極子推定手法にも応

用することができる。これは、推定された双極子の位置 を生体内の主な電気的活動源とみなすことにより、生体 内の活動を無侵襲で観測できることになり、医療をはじ め、心理、教育などの分野で注目されている。

【0002】トポグラフィ法や双極子推定法では、複数の電位データと共に、電極の位置関係を表すデータが必要不可欠である。従来、例えば、国際脳波学会で推賞されているような10/20法(テン・トゥエンティ・エレクトロード・システム, Ten-twenty electorde system)に従って、電極を付着させていた。これは、鼻根から頭頂を経て後頭結節までの間を10%、20%、20%、20%、20%、10%となるように分割し、さらに、頭頂を通る左右耳介前点間も同様の割合で分割し、これらの分割線の交点に電極を配置するものである。この方法は頭部を球に近似したうえでの距離であり、しかも相対的な距離関係を得るに留まっていた。

【0003】複数の電極の3次元的位置を正確に求める ためには、三角測量の原理により、求めることができ る。3カ所以上の基準となる点を決めて、各基準点から 各電極の距離をすべて求め、連立方程式を解くことによ り、基準点からの絶対的な位置関係を得る。一般に、電 極と基準点の距離は、それらにデバイダなどをあて、デ バイダの角度から距離を計算したり、デバイダを定規に 当ててその距離を得ることによって、計測される。上述 の方法については、ムンク氏ら(J.C.De Munck etal.)が 「ア・プラクティカル・メソッド・フォー・デターミン グ・エレクトロード・ポジションズ・オン・ザ・ヘッ ド、エレクトロエンセファログラフィック・クリニカル ・ニューロフィジオロジー、78巻、第85-87頁、1991 年」(A Practical method for determing electrode p ositions on the head, Electroencephalographic Clin ical Neurophysiology, Vol.78, pp.85-87, 1991以下) と題して発表した論文に詳しい。

[0004]

【発明が解決しようとする課題】上述した従来の方法で は、例えば、10/20法では、頭部を球として近似し た座標が得られるが、人間の頭部は非常に複雑な形状を しているため、多くの誤差を含むものである。また、電 極を付着する場所や数が限定されており、任意の場所や 多くの電極に対して、対応することはできない。また、 デバイダを用いる方法は、頭部形状の複雑さや電極位 置、電極数に関わらず、電極の位置関係を得ることがで きるが、電極の数が増えるにつれて、計測しなければな らない距離も3倍以上にもなり(基準点3ヵ所の場 合)、煩雑になると同時に、長時間の計測に耐えなけれ ばなならい被験者の苦痛が増大する。また、距離を計測 する回数が増えることは、測定者による測定上の誤差が 蓄積されやすくなることを意味する。電流双極子法を用 いる場合、電極の位置関係の誤差がそのまま結果として 50 得られる電流双極子の位置に影響を与える。また、電流

3

双極子推定に用いるために付着される電極数は、近年、 大幅な増加傾向にあるが、例えばおよそ30個以上の電 極数では、デバイダによる方法では電極位置データの計 測は非常に困難である。このため、効率的かつ、高精度 の電極位置データの収集が必要不可欠である。

【0005】本発明の目的は、生体等の測定対象の表面上に付着した1つもしくは複数の電極の位置を計測する場合に、測定者や被験者の負担を軽減し、高精度の電極位置データを高速に算出する電極位置計測装置を提供することにある。

[0006]

【課題を解決するための手段】上記課題を解決するために、本発明においては、複数の信号発生部と、信号発生部からの信号を受信する複数の受信部とを設け、信号発生部または前記受信部のいずれかを電極近傍に配置する。さらに、信号発生部を1つずつ駆動させて信号を発信し、各発信信号ごとに各受信部からの受信データを収集する受信データ収集部と、収集した受信データに基づいて各電極の位置を推定する位置推定部とを設けるようにした。

[0007]

【作用】信号発生部を1つずつ駆動させて信号を発信し、各発信信号ごとに各受信部からの受信データを収集し、収集した受信データに基づいて各電極の位置を推定する。このため、基準点と電極間の距離に対応するデータを、高精度、かつ、高速に得ることができる。また、電極の数が飛躍的に増えても、容易に、かつ、高速に距離に対応するデータを収集することができる。

[0008]

【実施例】

(実施例 1) 本発明の電極位置計測装置の第 1 の実施例 として置く。ここでの構成を図 1, 2 に示す。被験者 H は網製の伸縮自在なキャップ 1 をかぶり、キャップ 1 には複数の電磁波発生 および装着部 5 が設けられている。装着部 5 の下側(頭皮側)には、複数の電極 7 が取り付けられ、装着部 5 の上側には、電磁波発生部 3 からの電磁波を受信する 受信部 9 が複数設けられている。キャップ 1 としては、たとえば日本電気三栄(株)製の商品名「エレクトロキャップ」のような帽子状の装着具を利用することができ * 40 できる。すなわち、

 $e = -d \phi / d t$

 $= \mu_0 \, \text{m n a}^2 \, \text{b}^2 \, \left\{ \, \left(\cos^2 \theta - \sin^2 \theta \right) \, / \, 2 \, \text{r}^3 \right\} \, \left(\, \text{d I} \, / \, \text{d t} \, \right) \tag{1}$

30

となる。

【0013】 μ o, m, n, a, bは定数、dI/dtは既知のデータであるので、上式は受信データeと、 r, θ との関係を表わす式となる。各電波発生部の位置は既知であるので、各電極7(受信部9)の r, θ を求めれば、解析的に電極位置を計算することができる。 r, θ の求め方については後述する。

【0014】受信データ選択部11は、入力される受信

*る。各電極7は生体アンプ10に接続され、受信部9は 受信データ選択部11に接続されている。さらに、受信 データ選択部11は受信データ蓄積部15に接続され、 受信データ蓄積部15は位置推定部17に接続されてい る。

【0009】電磁波発生部3としては、たとえば、小型のループ状アンテナを用いて双極子磁場を生成する。この場合、受信部9としては同様のループ状アンテナを複数使用することができる。このときの送受信の現象は電10 磁結合方式を用いており、これは航空機の誘導などに用いられている周知の方法である。具体的には、例えば、ア・カイザー・エアロスペース・アンド・エレクトロニクス社(A Kaiser Aerospace & Electronics Company)のアイソトラック・シリーズ(Isotrack serie)を用いることができる。これにより、受信部9において、所定の電磁波発生部3までの距離に応じた値をもつ信号を得ることができる。この点について、以下に詳述する。

【0010】図3(a)に示すように、電磁波発生部3として、半径a [cm]、巻数nをかためたコイルC1 を用いたとき、コイルC1に電流Iが流れているとき、コイルC1の中心からr [cm] 離れた点Pの磁束密度 B (Bはベクトル)は、ビオサバールの法則により、

 $B = B r \cdot i r + B \theta \cdot i \theta$

 $B r = \mu_0 (n l \pi a^2 / 2 \pi r^3) \cos \theta$

B $\theta = \mu$ 。(n I π a²/2 π r³)sin θ (μ 。: 空気中の透磁率)

となる。ここで、i r, $i \theta$ はそれぞれr, θ の単位べクトルであり、rはaに比べて十分に大きいとする。

【0011】図3(b)に示すように、点Pに、半径b [cm]、巻数mをかためた円形コイルC2を受信部9として置く。ここでは簡単のため、このコイルC2が電磁波発生部3のコイルC1とほぼ平行であり、その半径 bはコイルC1の半径aに比べて十分小さく、コイルC2内の磁束密度分布は均一であるとする。このときコイルC2と鎖交する磁束φは、

 $\phi = B r m \pi b^2 \cos \theta - B \theta m \pi b^2 \sin \theta$ となる。

【0012】ここで電流 I を変化させると受信コイル C ² に起電力 e が生じ、受信データとして観測することができる。 すなわち

データ9 a, 9 b, …, 9 nから、受信データ収集部13から受けた受信データ選択信号131に基づいて、1つの受信データ111を選択し、受信データ収集部13へ出力する。受信データ選択部11としては、たとえばフェッチ回路やリレー回路、パーソナルコンピュータなどを利用することができる。

【0015】受信データ収集部13は、電磁波発生部3 50 を1つずつ指定する指定信号135を出力する。1つの

指定に対してすべての受信データを得るように、受信デ ータ選択部11に対して、受信データ選択信号131を 出力し、対応する受信データ111を入力する。受信デ ータの入力があると、その値に電磁波源を指定するデー タを付加して、受信データ蓄積部15に出力する。受信 データ収集部13として、パーソナルコンピュータやワ ークステーションなどを用いることができる。

【0016】受信データ蓄積部15は、受信データ収集 部13から出力された、電磁波源を指定するデータを付 加された受信データ133を入力して蓄積する。受信デ 10 ータ蓄積部15として、磁気ディスク装置、半導体メモ リ装置などを用いることができる。

【0017】位置推定部17は、受信データ蓄積部15 が出力する受信データの集合151に基づいて、各電極 の位置を算出する。位置推定部17としてはパーソナル コンピュータやワークステーション、ニューラルネット ワークなどを用いることができる。

 $f(\theta, r) = \mu \circ m n a^2 b^2 \{ (\cos^2 \theta - \sin^2 \theta) / 2r^3 \} (dI/dt) - e$ (2)

とし、初期値として任意の θ 。,r。を代入し、f (θ_0, r_0) の大きさが小さくなるような θ , rを探索 20 する。探索方法としてはニュートン法、シンプレックス 法を利用することができる。

【0020】このとき(1)式だけでは θ , rを特定す るのが困難である場合があるが、たとえば受信コイルC 2、電磁波発生コイルC1をθ軸上に90度回転させた後 に同様の計測を行ったデータを使用することもできる。

e' = $\mu \circ m \, n \, a^2 \, b^2 \, \{ (\cos^2 (\theta \pm \pi/2) - \sin^2 (\theta \pm \pi/2$ $2)/2r^{3}$ (di/dt) となる。

【0021】(2)ニューラルネットワークを用いる方

位置が既知の複数の電磁波発生部3から、ある点Piの 相対的位置(xi, yi, zi)に受信コイルC2を置いた と仮定すると、各発生部3に電流を流したときの点Pi の受信データ e i は (1) 式によって求めることができ る。このような (xi, yi, zi) と {ei} のデータ対 を多数用意しておいて、ニューラルネットワークの学習 データとする。このとき入力データは {ei} で、教師 データは(xi, yi, zi)となる。学習によってニュ ーラルネットワークの重み係数を変更する。学習後、観 測された受信データ {ei} を入力することにより電位 の位置が出力される。

【0022】ニューラルネットワークとしては、階層型 ニューラルネットワークやリカレント型ニューラルネッ トワークを用いたり、併用することができる。このと・ き、上述したように入力信号と教師データを大量に用い て、予め、ニューラルネットワーク内の結合係数を求め ておく。結合係数の求め方は、例えば、誤差逆伝播学習 などを用いる。誤差逆伝播学習の詳細については、例え

*【0018】次に図4のフローチャートを用いて実施例 1の基本動作について説明する。まず受信データ収集部 13は指定信号135を出力して電磁波発生部3を1つ ずつ駆動し信号を発生させる(ステップ101)。この 信号は各受信部9に受信され、各受信部9からの受信デ ータは受信データ選択部11を介して1つずつ受信デー タ収集部13へ送られ(102)、受信データ収集部1 3において発信源データを付加され、データ133とし て受信データ蓄積部15へ出力される(103)。以上 の動作がすべての電磁波発生部3からの信号について行 われ、すべての発生部3から信号発信が終了したら(1 04)、位置推定部17は受信データに基づいて電極位 置を計算する(105)。

【0019】次に電極位置の計算方法の例を述べる。

(1)数值最適化手法

この方法は上記(1)式を満足するr, θ を探索する方 法である。(1) 式から

ば、「パラレル・ディストリビューテッド・プロセシン グ、第一巻、第318-362頁、1986年」(D.E.R umelhart at al., Paralell Distributed Processing, Vol. 1, pp. 318-362, MIT Press (1986)) にある。例え ば、受信データと距離の関係が非線形的なものであって も、受信データをニューラルネットワークの入力層に入 力することにより、各入力ユニットにおける入力の総和 の計算が結合係数を用いて行われ、最終的に出力層での 値が距離もしくは位置データとなり、容易に求めること

【0023】以上のような装置を使用すれば、電極の数 が飛躍的に増えても、容易に、かつ、高速に電極の位置 を計測することができる。

【0024】上記実施例における電磁波発生部3として は、電波波発生器を用いて、ある基本周波数を持つ電波 を発生させ、受信部9として、電波受信器を用いること もできる。これらのシステムは、携帯型テープレコーダ の音響データを転送する際に用いられており、受信した データの持つ位相差、大きさなどから距離に対応した受 信データを得ることができる。

【0025】また、電磁波発生部3として、赤外線発生 器のような光線発生器を用いて、パルス状の光線やある 基本周波数を持つ光線を発生させ、受信部9として、赤 外線受信機を用いることもできる。これらのシステム は、テレビのリモコンとして、広く一般に使われてお り、受信したデータの持つ、タイムラグ、位相差、大き さなどから距離に対応した受信データを得ることができ る。

【0026】さらに、上記実施例の電磁波発生部3に代 えて、超音波発生器を用いて、パルス状もしくはある基 本周波数を持つ超音波を発生させ、受信部9に代えて、 超音波受信器を用いることができる。この場合、パルス

50

7

の到達時間もしくは、受信データの位相差、大きさなど から、距離に応じた受信データを得ることができる。

【0027】(実施例2)次に本発明の第2実施例を説 明する。図5は第2実施例の回路構成を示すブロック図 であって、この実施例においては、受信部65(図2の 受信部9に対応する)と受信データ選択部11との間に 切替スイッチ68および受信・電位データ切替部69を 設けた。なお図5において図2の構成部分と同じ要素に ついて同じ番号を付して示した。図6(a)は、装着部 60の斜視図であり、装着部60はたとえば樹脂製であ 10 って図1の装着部5のようにキャップ1上に取り付け る。装着部60の底部に電極63が配置される。また図 68(b)に示すように、装着部60にコイル状の受信 部65が装着できるようになっている。図7は切替スイ ッチ68の構造を示す概略断面図である。受信部65が 装着される場合は、図7(b)に示すように、てこの原 理で、電極63に接続されている電極の接点64と、ケ ーブル62に接続されている導電体のてこ61の接点が 触れずに、受信部の接点66と導電体のてこ61の接点 が触れ、受信データがケーブル62を伝わることにな る。逆に、受信部65が装着されていない場合は、図7 (a) に示すように、電極の接点 6 4 が導電体のてこ 6 1に触れ、電位データがケーブル62を伝わる。

【0028】図5において受信・電位データ切替部69は、受信データ選択信号131に基づき、入力された信号を受信データ選択部11に接続するか、もしくは、生体アンプ1に接続する。切替部69は、たとえば、電磁リレー装置などを用いて実現することができる。

【0029】実施例2の装置によれば、電極からの信号線(ケーブル62)を受信データ用の信号線と供用する 30 ことができるため、受信データや電位データの品質を損なうことなく、信号線の数を著しく減少させることができる。

【0030】上記2つの実施例においては、受信部を電極に付着させ、電磁波発生部を予め決められた場所に置くようにしてが、逆に、これらを入れ替えることも可能である。

[0031]

【発明の効果】本発明を用いることにより、生体等の測 定対象の表面上に付着した1つもしくは複数の電極の位 40

置を計測する場合に、測定者や被験者の負担を軽減し、 高精度の電極位置データを容易に、かつ、高速に算出す ることができる。

【図面の簡単な説明】

- 【図1】本発明の第1実施例を示す基本構成図である。
- 【図2】本発明の第1実施例の構成を示すブロック図である。
- 【図3】電極位置検出の一例の原理説明図である。
- 【図 4 】実施例 1 の動作を説明するフローチャートである。
 - 【図5】本発明の第2実施例の構成を示すブロック図である。
 - 【図6】第2実施例の装着部の斜視図である。
 - 【図7】第2実施例の装着部の断面図である。

【符号の説明】

- 1 キャップ
- 3 電磁波発生部
- 5 装着部
- 7 電極
- 20 9 受信部
 - 9 a 受信データ
 - 11 受信データ選択部
 - 111 選択された受信データ
 - 13 受信データ収集部
 - 131 受信選択信号
 - 133 電磁波発生源データ付き受信データ
 - 135 電磁波発生源の指定信号
 - 15 受信データ蓄積部
 - 151 受信データの集合
- 30 17 位置推定部
 - 60 装着部
 - 61 導電体のてこ
 - 62 ケーブル
 - 63 電極
 - 64 電極の接点
 - 6 5 受信部
 - 66 受信部の接点
 - 67 てこの支点
 - 68 切替スイッチ
 -) 69 受信・電位データ切替部

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

HIS PAGE BLANK (USPTO)