maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER **5c. PROGRAM ELEMENT NUMBER** 5d. PROJECT NUMBER 6. AUTHOR(S) 4847 5e. TASK NUMBER 0249 5f. WORK UNIT NUMBER 549871 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT 10. SPONSOR/MONITOR'S 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ACRONYM(S) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/PRS NUMBER(S) 5 Pollux Drive Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030128 179 15. SUBJECT TERMS 19a. NAME OF RESPONSIBLE 18. NUMBER 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT OF PAGES **PERSON** Leilani Richardson 19b. TELEPHONE NUMBER c. THIS PAGE b. ABSTRACT a. REPORT (include area code) A (661) 275-5015 Unclassified Unclassified Unclassified

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Form Approved

OMB No. 0704-0188

484702

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

22 February 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2002-037 Rusty Blanski, "Molecularly Reinforced Polymers"

Minnesota Technology Forum (Minnesota, 15 February 2002) (<u>Deadline: PAST DUE</u>)

(Statement A)

Molecularly Reinforced Polymers

Dr. Rusty L. Blanski

Polymer Working Group

Air Force Research Lab, Edwards

DISTRIBUTION STATEMENT A: Approved for Public Release · Distribution Unlimited

Timothy S. Haddad, Frank J. Peher, Brent D. Viers, Rene I. Gonzalez, Maj Steven A. Svejda, Joe Lichtenhan, Joe Schwab

Overview

- Introduction
- POSS Monomer Synthesis
- POSS Blends
- POSS Applications

POSS-Polymer Research is a Large Collaboration Government-Academia-Industry

Acknowledgements

Polymer Working Group

Dr. Tim Haddad

Dr. Rusty Blanski

Dr. Brent Viers

Capt Rene Gonzalez

Brian Moore

Major Steve Svejda, Ph.D.

Justin Leland

Pat Ruth

New Post-Doc: Polymer Synthesis

Edwards

Dr. Kevin Chaffee

Mr. Paul Jones

External

Prof. Frank Feher - UCI

Prof. Andre Lee - MSU

Dr. Joe Lichtenhan - HP

Dr. Joe Schwab - HP

Prof. Pat Mather - UConn

Dr. Jeff Gilman - NIST Prof. Ben Hsiao - SUNY SB Prof. Bryan Coughlin - UMass

Prof. Gar Hoflund - UF

Dr. Barry Farmer - AFRL/MLBP

Dr. Rich Vaia - AFRL/MLBP Dr. Seng Tan - WMR

Prof. Mark Gordon - Iowa St. U

Dr. Howard Katzman - Aerospace

Mr. Don Geidt/Mike Blair - CSD/Thiokol

Funding: AFOSR (Dr. Charles Lee), AFRL, Hybrid Plastics

Basic R&D

Applications R&D

Air Force Research Laboratory Located ~ 100 miles from LA

Use Temperature & Oxidation Resistance

Toughness, Lightweight & Ease of Processing

- Improve High Performance Polymers/ Transform Commodity Polymers into High performance Polymers
- Develop Multi-Functional Materials/ Replace Metal Parts with Polymers

Silsesquioxane: General Synthesis POSS = Polyhedral Oligomeric

R=Cyclohexyl: Brown and Vogt 1965

Feher, Newman, Walzer 1989

Lichtenhan (AFRL, mid '90's) Optimized Purification

Cyclopentyl: Feher, Budzichowski, Weller, Blanski, Ziller 1990

Lichtenhan (AFRL, 1993) Optimization

All of these materials are colorless solids at ambient temp

Silsesquioxane: General Synthesis POSS = Polyhedral Oligomeric

R = cyclopentyl

Polymerization in traditional systems (styryl, Functionalized POSS Monomers for norbornyl, methacrylpropyl, etc.)

Silsesquioxane General Synthesis POSS = Polyhedral Oligomeric

All trans Isomer obtained
High melting white solid
US 5,942,638 (Feher, Lichtenhan, et al) Assignee: USAF

White Waxy Solid (mp 70 °C)

>100 polymer systems

arydiisocyanates

NO COLO

acid chlorides

aryldiacids

- POSS-rubber*
- POSS-urethane*
- POSS-epoxy*
- POSS-phenolic*
 - POSS-imide*

monomers and polymers.

"POSS-technology is sustainable via dual-use markets"

Anatomy of a Polyhedral Oligomeric Silsesquioxane (POSS) Molecule

May possess one or more Thermally and chemically Nanoscopic in size with an groups for solubilization Nonreactive organic (R) and compatibilization.

functional groups suitable for polymerization or grafting.

> and a R-R distance of 1.5 nm. Si-Si distance of 0.5 nm

(organic-inorganic) framework. robust hybrid

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

interaction at the nano-level (Edwards AFRL/PRSM ---> POSS monomers) The maximization of property enhancements in polymers results from

Key Roadblocks for POSS Materials, Sept. 1998

- Time for Production of POSS feedstocks
- Cost of POSS feedstocks/monomers/polymers
- Volume of POSS feedstocks/monomers
- Structure/Property Relationships
- · Blends & Processing

POSS™ Commercialization and Cost Reduction Campaigns

entered into a Cooperative Research and Development Agreement (CRADA) In October 1998 Hybrid Plastics and the Air Force Research Laboratory for the commercialization of POSS™ Nanotechnology.

Technical Objective:

Commercialization of POSS™ Technology.

Also in October 1998 Hybrid Plastics was awarded a 3-year, \$2 million grant by NIST's Advanced Technology Program (ATP) to reduce the cost of POSS Nanostructured™ Chemical Technology by a factor of 100.

Technical Objective:

Reduce costs of POSS™ Technology from \$1000-\$5000/lb to \$10-50/lb.

Technology Transfer = Scalability = Price Reduction, Sustainability

Hybrid & Plastics

Retail Prices of POSS

POSS Diversity

Cyclopentyl Phenethyl **Isobuty** R =Methyl

Cyclohexyl Octadecene Isooctyl Phenyl

Cyclopenty Cyclohexyl R =Isobutyl **Isoocty** Ethyl

Polydisperse Cages

R = Methyl

Trifluoromethylpropyl R = Phenyl

R =Vinyl Phenethyl

Nanostructured POSS Chemicals Physical Form of Products

Crystalline Solids
Wide melting range 24°C to 400°C+

Waxes

Liquids & Oils

Wide viscosity range 40cSt. to 400cSt

Global Sales of Nanostructured "Chemicals

R&D chemical catalog sales (1997 to present)

Aldrich Chemical Company

Gelest Inc.

Trends in Hybrid Plastics' R&D/bulk chemical sales

65% Asia and Europe

30% US Domestic

5% Government Sales

POSS Polymer Incorporation

POSS Copolymerization/Grafting

POSS Blending

Size & Shape

- improved mechanicals
 - increased $T_{\rm g}, T_{\rm m}, \, T_{\rm dec}$
 - decreased creep
- improved processing
 - optically transparent

POSS-Polymer Blends for Air Force

Applications

characteristics of polymers by blending GOAL: To increase the performance in POSS

Potential Applications of POSS-Polymer Blends

- High Temperature Insulation for Solid Rockets Motors
- · Capacitors
- Space-survivable Materials and Coatings
- Low/High Temp, Hybrid Lubricants
- Plastic Tubing and Ducting for Liquid Rockets Engines
- High Temperature/High Translation Strength Composites
- Improved Radome Materials

POSS-Polymer Blends Why Use Blendables?

- Easier to tailor the organic side groups of the POSS molecule to give a polymercompatible species
- POSS monomers: decreased development instead of copolymerization with reactive Simple blending techniques can be used time
- without requiring expensive replacement of Potential Drop-in molecular modifier processing equipment

Preparation of Polymer- POSS Blends

Twin Screw

Processing

- Place Polystyrene in Extruder
- Add POSS
- Blend 2-5 Minutes
- Use a DACA for small scale (4 g)
- Very High Shear

Preparation of Polymer-PUSS Blends

Traditional Processing:

Brabender Mixer

- Place Polystyrene in Mixer at temperature
- · Add POSS
- Blend 5-10 Minutes
- Grind
- Press into disks/extrude/ injection mold
- · 60 gram scale

Importance of Organic Side Groups POSS Blends

50 wt % Cp₈T₈ in 2 million mol. wt. Polystyrene

 $\mathrm{Cp}_8\mathrm{T}_8$

- TEM image clearly shows formation of immiscible POSS crystallites (20-50k molecules)
- Film is Cloudy

Importance of Organic Side Groups POSS Blends

50 wt % Cp₇T₈Styryl in 2 million mol. wt. Polystyrene

- ·TEM image shows significant decrease in size of crystallites
 - Film is Cloudy

Importance of Organic Side Groups POSS Blends

50 wt % Phenethyl₈T₈ in 2 million mol. wt. Polystyrene

- Demonstrated Complete Compatibility!
- Grey domains represent miscible POSS/polystyrene
- Black dots are POSS crystallites (<100 POSS molecules)
- Film is Clear

i-PP/Me₈T₈ Processing Studies

i-PP/Me₈T₈ Processing Studies

i-PP/Me₈T₈ Processing Studies

Twin-Screw Extruder i-PP/Me₈T₈ Blends – Processing Issues

Brabender

Nanoreinforced iso-PP via Molecular Silicas

Molecular Silica™ dispersion confirmed at molecular level * Each "black dot" represents a 1.5nm POSS cage. Imaging studies on Nanoreinforced TM-PP fibers

*scale of bar = 50nm

Prof. Andre Lee - Michigan State University Mechanical Data on Meg Tg/i-PP

<i>i</i> -PP blended 10 wt% Methyl ₈ T ₈	5200 psi (35.8 MPa)	262,000 psi (1.80 GPa)	255 °F (124 °C)	0.75 ft-lb/in
<i>i</i> -PP blended 5	5100 psi	255,000 psi	239 °F	0.62 ft-lb/in
wt% Methyl ₈ T ₈	(35.1 MPa)	(1.757 GPa)	(115 °C)	
<i>i</i> -PP blended 2	5000 psi	251,000 psi	221 °F	0.55 ft-lb/in
wt% Methyl ₈ T ₈	(34.5 MPa)	(1.730 GPa)	(105 °C)	
Neat <i>i</i> -PP	4800 psi	235,000 psi	210 °F	0.55 ft-lb/in
(processed)	(33.0 MPa)	(1.620 GPa)	(99 °C)	
Dow data	5000 psi (34.5 MPa)	240,000 psi (1.655 GPa)	210 °F (99 °C)	0.5 ft-lb/in
	Tensile Strength @ Yield; ASTM D638	Flexural Modulus (0.05 in/min, 1% secant); ASTM D790A	HDT @ 66 psi, as injected; ASTM D648	Impact Izod @25C ASTM D256A

[•] The above data (other than Dow's data) is an average of at least 10 samples for each test with acceptable S.D. of 5% or better.

Summary: POSS-Polymer Blends

- determining the compatibility of the POSS The organic side groups on the POSS molecule are extremely important in in polymers
- Distortion Temperature of 25 °C is observed In the case of Me_8T_8 (10%) in isotactic polypropylene, an increase in the Heat
- Processing issues can be critical

POSS Application: Develop Multi-Functional, Space-Survivable Materials

Satellites & Space Systems

Bond	Dissociation Energy (EV)	γ (nm)	Material
$-C_6H_4-C(=0)$ -	3.9	320	Kapton®
C-N	3.2	390	Kapton®
$\mathrm{CF}_3\mathrm{-CF}_3$	4.3	290	FEP Teflon®
CF ₂ -F	5.5	230	FEP Teflon®
Si-O	8.3	150	Nanocomposite
Zr-0	8.1	150	Nanocomposite
Al-O	5.3	230	Nanocomposite

Objectives

- · Increase Space Resistance (AO, particle & VUV radiation, thermal cycling) of Polymeric Materials by 10x
- · Self-Passivating/Self-Rigidizing/Self-Healing based on nanocomposite incorporation

AO undercutting of LDEF Aluminized-Kapton Multilayer Insulation

Atomic oxygen

POSS-polyurethane Properties

Hard Segment

POSS-polymer improvements

Up to 300 °C increase in the melt transition temperature (rheological studies show the transition from an oil to a true thermoplastic elastomer)

Up to a 100 $^{\circ}$ C increase in T_{dec} (29 wt% POSS, still TPE)

Up to 10X increase in moduli (>400% elongation with no destruction of hard segments))

17% POSS incorporation ----> 3X increase in Hardness (Shore A)

XPS Survey Spectra from a 60 wt% POSS-PU (a) after insertion into the vacuum system, (b) after a 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO XPS survey spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

High Resolution Si 2p spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 4.75-hr air exposure following the 63-hr AO exposure.

Low Cost/Low Volume Materials Screening In-House SRM Insulation Testing

POSS-Insulation Sample

Goal: 50% Lower Brosion of Insulation (44 % weight reduction, 7.4% booster payload increase) – Phase III IIHPRPT Objective: Development of Ceramic Forming Polymer

POSS-Polymer Insulation - Advantages:

- High loadings of POSS can be incorporated without embrittlement
- Si to O ratio is 1:1.5, proven to oxidize up to 1:2 (SiO2)
- Tailorability of POSS monomers improve physical/mechanical properties
 - Capabilities for Large and Small scale testing (Hybrid Plastics)

Formation of Silica Char Layer May lower ablation In-House SRM Insulation Testing

Traditional Polymer

POSS Polymer

increased melt temp

Low Cost/Low Volume Materials Screening In-House SRM Insulation Testing

Capabilities:

- Edwards AFRL (4" Pi-K Motor): volume reduction (5 Kg to 75 g)
- Total Cost (synthesis, part fabrication, ablation test, analysis) ~ \$1K
- Rapid testing of 5-6 samples per day

In-House SRM Insulation Testing Low Cost Screening of New Materials

CHAR-063 ABLATION

In-House SRM Insulation Testing Low Cost Screening of New Materials

CHAR-063 ABLATION

Ablation Rate Decreased when Using POSS In-House SRM Insulation Testing

CHAR-063 ABLATION RATE

Summary - Applications

- when exposed to atomic oxygen in space-like conditions Demonstrated that POSS forms protective Silica layer
- Initial evidence in SRM insulation tests suggests that Additional studies to confirm this are underway. POSS can act as an ablative in SRM insulation.

Programmatics: Dual Use & Leveraging

Polymer Working Group

Processing

Basic R&D

Applications R&D

MICHICAN STAT STANY PRPE UNIVERSITEBRANOK PRPE

A United Technologies Comp

FIOWA SIATE UNIVERSITY

AFRL/MUBP

Programmatics: Dual Use & Leveraging Polymer Working Group

Solid Rocket Motor Insulation

Liquid Rocket Engine Ducting High Temp Lubricants

Basic R&D

Processing

Applications R&D

Plastic Jet Canopies Missile Radomes Space-Survivable Materials

SMOJSYNDMOD

Academic/Government Lab Collaborations are essential

Polymer Working Group

Basic R&D goal for controlling/understanding POSS affects on polymer properties is already alhead of schedule (including processing).

Cost, Volume and Production time goals have all been met thanks to Hybrid Plastics & Prof. Frank Feher.

Understanding processing is a key area that is being heavily worked.

industrial interest has increased exponentially with technology transfer POSS applications Wilhin government are on ertifical paths, while m [998.