ESTRELAS E EVOLUÇÃO ESTELAR

UNICAMP 2025 2^a FASE

Professor Danilo

PROPRIEDADES DAS ESTRELAS

CLASSIFICAÇÃO ESPECTRAL

Classe	Cor da Estrela	Temperatura	Exemplo
Espectral		Superficial (K)	
0	azul	30.000	Mintaka
В	branco-azulado	20.000	Rigel
Α	branco	10.000	Sírius
F	branco-	7.000	Prócion
	amarelado		
G	amarelo	6.000	Capella
K	alaranjado	4.000	Aldebarã
M	vermelho	3.000	Betelgeuse

PROPRIEDADES DAS ESTRELAS

- Magnitude Aparente e
 Absoluta: Diferença entre
 essas duas grandezas e
 como calcular a distância
 das estrelas usando a lei do
 inverso do quadrado da
 distância.
- Diagrama de Hertzsprung-Russell (HR): Relação entre a luminosidade das estrelas e sua temperatura superficial. Estudo das principais regiões do diagrama (sequência principal, gigante vermelha, anã branca).

DIAGRAMA DE HERTZSPRUNG-RUSSELL (HR)

http://astro.if.ufrgs.br/livro.pdf#page=268

Características das estrelas

^{1 -} Spica 6 - Alpha Centauri 11 - Betelgeuse

^{2 -} Eridani B 7 - Sol 12 - Estrela de Barnard 3 - Rigel 8 - Procyon B 13 - Próxima Centauri

^{4 -} Deneb 9 - Pollux 5 - Polaris 10 - Aldebaran

LUMINOSIDA DE DE UMA ESTRELA VERSUS SUA MASSA

EVOLUÇÃO DAS ESTRELAS

ESTRELAS FUNDEM ÁTOMOS COMO FONTE DE ENERGIA

- A fusão (quando juntamos átomos) de átomos de Hélio é a principal fonte de energia do nosso Sol.
- Na medida em que o Hélio se acaba, outros átomos, com massa menor que o Ferro, passam a se fundir.
- Nota: apenas átomos com massas maiores que o Ferro podem sofrer fissão nuclear (quebra do núcleo).

FASES DA EVOLUÇÃO ESTELAR

- Gigante Vermelha: Quando uma estrela esgota seu hidrogênio no núcleo e começa a fundir hélio, expandindo-se consideravelmente.
- Supernova: Explosão de uma estrela massiva, que pode levar à formação de elementos pesados e ao surgimento de buracos negros ou estrelas de nêutrons.
- Anã Branca e Estrelas de Nêutrons: Destinos de estrelas com massas menores (anãs brancas) e de estrelas muito massivas (estrela de nêutrons ou buraco negro).