$12n_{0640} (K12n_{0640})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9.89972 \times 10^{17} u^{23} - 1.91877 \times 10^{15} u^{22} + \dots + 4.06813 \times 10^{18} b - 2.49679 \times 10^{18}, \\ & 8.63753 \times 10^{17} u^{23} - 1.70899 \times 10^{18} u^{22} + \dots + 4.06813 \times 10^{18} a - 1.68305 \times 10^{19}, \ u^{24} - 10u^{22} + \dots + 6u + 10^{18} u^{12} + 10^{18} u^{12$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 9.90 \times 10^{17} u^{23} - 1.92 \times 10^{15} u^{22} + \dots + 4.07 \times 10^{18} b - 2.50 \times 10^{18}, \ 8.64 \times 10^{17} u^{23} - \\ 1.71 \times 10^{18} u^{22} + \dots + 4.07 \times 10^{18} a - 1.68 \times 10^{19}, \ u^{24} - 10 u^{22} + \dots + 6 u + 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.212322u^{23} + 0.420093u^{22} + \dots + 3.09567u + 4.13716 \\ -0.243348u^{23} + 0.000471658u^{22} + \dots + 1.81524u + 0.613744 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.25860u^{23} + 0.336558u^{22} + \dots - 22.2342u - 4.64549 \\ -0.0840693u^{23} + 0.188815u^{22} + \dots - 7.10991u - 1.40341 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.483379u^{23} + 0.505798u^{22} + \dots - 2.99675u + 2.78091 \\ -0.208694u^{23} - 0.00110386u^{22} + \dots + 1.55323u + 0.479053 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.25860u^{23} + 0.336558u^{22} + \dots - 2.99675u + 2.78091 \\ -0.208694u^{23} - 0.00110386u^{22} + \dots + 1.55323u + 0.479053 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.25860u^{23} + 0.336558u^{22} + \dots - 22.2342u - 4.64549 \\ -0.226293u^{23} + 0.0998004u^{22} + \dots - 6.34916u - 1.06686 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.51744u^{23} + 0.547755u^{22} + \dots - 19.4211u - 3.44143 \\ -0.320558u^{23} + 0.0501945u^{22} + \dots - 5.21590u - 0.630497 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.40524u^{23} - 0.275084u^{22} + \dots + 14.6942u + 2.32021 \\ 0.344813u^{23} - 0.0300623u^{22} + \dots - 3.26431u - 0.145094 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{24} + 4u^{23} + \dots + 1789u + 1$
c_2, c_7	$u^{24} + 2u^{23} + \dots + 47u + 1$
c_3	$u^{24} - 3u^{23} + \dots + 14u + 1$
c_4, c_8	$u^{24} + 3u^{23} + \dots + 80u + 19$
c_5, c_{10}, c_{11}	$u^{24} - 10u^{22} + \dots + 6u + 1$
<i>c</i> ₆	$u^{24} + 3u^{23} + \dots + 696u + 37$
<i>c</i> ₉	$u^{24} - u^{23} + \dots + 40u - 8$
c_{12}	$u^{24} + 2u^{23} + \dots + 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} + 44y^{23} + \dots - 3160089y + 1$
c_2, c_7	$y^{24} - 4y^{23} + \dots - 1789y + 1$
<i>c</i> ₃	$y^{24} + 13y^{23} + \dots - 214y + 1$
c_4, c_8	$y^{24} + 29y^{23} + \dots - 5754y + 361$
c_5, c_{10}, c_{11}	$y^{24} - 20y^{23} + \dots - 26y + 1$
c_6	$y^{24} + 47y^{23} + \dots - 161850y + 1369$
<i>c</i> ₉	$y^{24} + 23y^{23} + \dots - 4064y + 64$
c_{12}	$y^{24} - 60y^{23} + \dots - 93y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.797828 + 0.678753I		
a = -1.02319 + 1.10302I	3.88067 - 2.62654I	-11.07995 + 2.70331I
b = -0.55673 - 1.65487I		
u = 0.797828 - 0.678753I		
a = -1.02319 - 1.10302I	3.88067 + 2.62654I	-11.07995 - 2.70331I
b = -0.55673 + 1.65487I		
u = 1.05078		
a = 0.906274	-4.93398	-18.0800
b = 0.133759		
u = 1.21774		
a = 1.31377	-6.34892	-11.4760
b = 1.26448		
u = -1.117180 + 0.558107I		
a = 0.264601 + 0.177693I	0.11807 + 2.01122I	-11.63298 - 1.47216I
b = -0.642330 - 1.001630I		
u = -1.117180 - 0.558107I		
a = 0.264601 - 0.177693I	0.11807 - 2.01122I	-11.63298 + 1.47216I
b = -0.642330 + 1.001630I		
u = 1.282720 + 0.266061I		
a = -0.417258 + 1.231710I	-2.36903 - 5.36546I	-17.8756 + 8.3270I
b = -0.313111 - 0.558407I		
u = 1.282720 - 0.266061I		
a = -0.417258 - 1.231710I	-2.36903 + 5.36546I	-17.8756 - 8.3270I
b = -0.313111 + 0.558407I		
u = -0.123057 + 1.316600I		
a = 0.002520 - 1.240400I	10.67480 + 4.86745I	-9.82219 - 2.45720I
b = -0.32423 + 2.21788I		
u = -0.123057 - 1.316600I		
a = 0.002520 + 1.240400I	10.67480 - 4.86745I	-9.82219 + 2.45720I
b = -0.32423 - 2.21788I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.315130 + 0.199500I		
a = 0.931929 + 0.744429I	-2.04826 + 3.83523I	-16.1350 - 2.1387I
b = 0.399732 - 1.228200I		
u = -1.315130 - 0.199500I		
a = 0.931929 - 0.744429I	-2.04826 - 3.83523I	-16.1350 + 2.1387I
b = 0.399732 + 1.228200I		
u = -0.410599 + 0.509120I		
a = 0.56444 + 1.46880I	2.03875 + 2.53994I	-11.82047 - 4.16914I
b = 0.821859 + 0.235411I		
u = -0.410599 - 0.509120I		
a = 0.56444 - 1.46880I	2.03875 - 2.53994I	-11.82047 + 4.16914I
b = 0.821859 - 0.235411I		
u = 1.49784		
a = 0.0823949	-11.6286	-23.4910
b = -1.05480		
u = 0.394751		
a = 1.18127	-7.19054	-5.70560
b = 1.60965		
u = -1.41645 + 0.78202I		
a = -0.817155 - 0.477348I	6.79929 + 2.45061I	-11.06872 - 1.28046I
b = -0.71160 + 2.00454I		
u = -1.41645 - 0.78202I		
a = -0.817155 + 0.477348I	6.79929 - 2.45061I	-11.06872 + 1.28046I
b = -0.71160 - 2.00454I		
u = 1.50198 + 0.60802I		
a = 0.868783 - 0.609431I	5.60719 - 11.65040I	-12.86830 + 5.47222I
b = 1.06909 + 1.77146I		
u = 1.50198 - 0.60802I		
a = 0.868783 + 0.609431I	5.60719 + 11.65040I	-12.86830 - 5.47222I
b = 1.06909 - 1.77146I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.313467		
a = -0.425309	-0.515739	-19.2450
b = -0.324845		
u = -0.232568 + 0.185578I		
a = 2.34163 + 3.73562I	2.00166 + 2.59049I	-13.9321 - 5.9466I
b = 0.349022 + 0.617701I		
u = -0.232568 - 0.185578I		
a = 2.34163 - 3.73562I	2.00166 - 2.59049I	-13.9321 + 5.9466I
b = 0.349022 - 0.617701I		
u = -1.78276		
a = -0.490994	-16.2087	-2.53170
b = -0.811626		

$$II. \\ I_2^u = \langle u^{11} - 7u^9 + \dots + b + 3u, \ u^9 - u^8 + \dots + a + 1, \ u^{12} - 8u^{10} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u^3 - 2u \\ -u^3 + u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u^9 + u^8 + 6u^7 - 6u^6 - 11u^5 + 11u^4 + 5u^3 - 6u^2 + 3u - 1 \\ -u^{11} + 7u^9 - 17u^7 - u^6 + 15u^5 + 3u^4 - 2u^2 - 3u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^2 + 1 \\ -u^4 + 2u^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^{10} + u^{10} + \dots + u + 3 \\ u^{10} - 6u^8 + 11u^6 + u^5 - 4u^4 - 2u^3 - 5u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^{11} - 8u^9 + u^8 + 24u^7 - 5u^6 - 31u^5 + 8u^4 + 12u^3 - 3u^2 + 4u - 2 \\ -u^{11} + 7u^9 - 17u^7 - u^6 + 15u^5 + 3u^4 - 2u^2 - 2u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u^{11} + u^{10} + \dots + u + 3 \\ -u^6 + 4u^4 - 4u^2 - u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -u^9 + u^8 + 6u^7 - 6u^6 - 11u^5 + 11u^4 + 5u^3 - 5u^2 + 3u - 3 \\ u^{10} - 7u^8 + 17u^6 + u^5 - 16u^4 - 3u^3 + 2u^2 + 2u + 2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^{11} - 8u^9 + u^8 + 24u^7 - 5u^6 - 32u^5 + 8u^4 + 16u^3 - 3u^2 - 3 \\ u^{11} + 2u^{10} + \dots + 7u + 3 \end{pmatrix}$$
(ii) Obstruction class = 1

(ii) Obstruction class = 1

$$= -6u^{11} + 4u^{10} + 43u^9 - 25u^8 - 108u^7 + 42u^6 + 108u^5 + u^4 - 21u^3 - 40u^2 - 14u - 8u^4 + 108u^4 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1	$u^{12} - 12u^{11} + \dots - 15u + 1$		
c_2	$u^{12} - 6u^{10} + u^9 + 15u^8 - 3u^7 - 21u^6 + 4u^5 + 17u^4 - 4u^3 - 7u^2 + u + 1$		
c_3	$u^{12} + 3u^{11} + u^{10} - 5u^9 - 8u^8 - 5u^7 + 2u^6 + 5u^5 + 5u^4 + 3u^3 - 1$		
c_4	$u^{12} + u^{11} - u^{10} - 3u^8 - 2u^7 - u^6 + u^5 + 3u^4 + u^3 + 2u^2 - 1$		
<i>C</i> ₅	$u^{12} - 8u^{10} + 24u^8 - u^7 - 32u^6 + 4u^5 + 15u^4 - 5u^3 + 2u^2 + 2u - 1$		
c_6	$u^{12} - 8u^{10} + \dots + 2u - 1$		
c_7	$u^{12} - 6u^{10} - u^9 + 15u^8 + 3u^7 - 21u^6 - 4u^5 + 17u^4 + 4u^3 - 7u^2 - u + 1$		
c ₈	$u^{12} - u^{11} - u^{10} - 3u^8 + 2u^7 - u^6 - u^5 + 3u^4 - u^3 + 2u^2 - 1$		
<i>C</i> 9	$u^{12} - 2u^{10} - u^9 - 3u^8 - u^7 + u^6 + 2u^5 + 3u^4 + u^2 - u - 1$		
c_{10}, c_{11}	$u^{12} - 8u^{10} + 24u^8 + u^7 - 32u^6 - 4u^5 + 15u^4 + 5u^3 + 2u^2 - 2u - 1$		
c_{12}	$u^{12} - 4u^{11} + \dots + 7u + 1$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} - 12y^{11} + \dots - 43y + 1$
c_2, c_7	$y^{12} - 12y^{11} + \dots - 15y + 1$
<i>c</i> 3	$y^{12} - 7y^{11} + \dots - 10y^2 + 1$
c_4, c_8	$y^{12} - 3y^{11} + \dots - 4y + 1$
c_5, c_{10}, c_{11}	$y^{12} - 16y^{11} + \dots - 8y + 1$
c_6	$y^{12} - 16y^{11} + \dots - 20y + 1$
<i>C</i> 9	$y^{12} - 4y^{11} + \dots - 3y + 1$
c_{12}	$y^{12} - 24y^{11} + \dots + 17y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.17998		
a = 0.800947	-9.65747	-15.7210
b = 1.82750		
u = -1.23606		
a = -1.56622	-6.93408	-26.3380
b = -1.10566		
u = -1.324120 + 0.237549I		
a = 0.849347 + 0.965329I	-1.41781 + 4.88882I	-10.78753 - 6.22489I
b = 0.107633 - 0.994842I		
u = -1.324120 - 0.237549I		
a = 0.849347 - 0.965329I	-1.41781 - 4.88882I	-10.78753 + 6.22489I
b = 0.107633 + 0.994842I		
u = 0.579754		
a = 0.128754	-7.57612	-27.2480
b = -1.45303		
u = -0.136756 + 0.512426I		
a = 1.53089 + 2.63864I	2.56609 - 2.20336I	-4.12994 + 0.41603I
b = 0.199486 - 0.931452I		
u = -0.136756 - 0.512426I		
a = 1.53089 - 2.63864I	2.56609 + 2.20336I	-4.12994 - 0.41603I
b = 0.199486 + 0.931452I		
u = 1.46831 + 0.31043I		
a = -0.963926 + 0.306069I	-2.88723 - 0.94663I	-11.62610 + 0.41133I
b = -0.527150 - 0.827184I		
u = 1.46831 - 0.31043I		
a = -0.963926 - 0.306069I	-2.88723 + 0.94663I	-11.62610 - 0.41133I
b = -0.527150 + 0.827184I		
u = 1.58481		
a = 0.328758	-11.0733	-8.22380
b = -0.536398		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.371528		
a = -2.93289	-4.02071	-7.78700
b = 0.802551		
u = -1.75183		
a = 0.408041	-16.4780	-32.5950
b = 0.905098		

III.
$$I_3^u = \langle b, a-1, u-1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{12}	u+1
c_2, c_4, c_5 c_7, c_8, c_{10} c_{11}	u-1
c_{6}, c_{9}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_{10}, c_{11} c_{12}	y-1		
c_6, c_9	y		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	-4.93480	-18.0000
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$ (u+1)(u^{12} - 12u^{11} + \dots - 15u + 1)(u^{24} + 4u^{23} + \dots + 1789u + 1) $	
c_2	$(u-1)$ $\cdot (u^{12} - 6u^{10} + u^9 + 15u^8 - 3u^7 - 21u^6 + 4u^5 + 17u^4 - 4u^3 - 7u^2 + u + (u^{24} + 2u^{23} + \dots + 47u + 1)$	1)
<i>c</i> ₃	$(u+1)(u^{12} + 3u^{11} + \dots + 3u^3 - 1)$ $\cdot (u^{24} - 3u^{23} + \dots + 14u + 1)$	
c_4	$(u-1)(u^{12} + u^{11} - u^{10} - 3u^8 - 2u^7 - u^6 + u^5 + 3u^4 + u^3 + 2u^2 - 1)$ $\cdot (u^{24} + 3u^{23} + \dots + 80u + 19)$	
c_5	$(u-1)(u^{12} - 8u^{10} + \dots + 2u - 1)$ $\cdot (u^{24} - 10u^{22} + \dots + 6u + 1)$	
c_6	$u(u^{12} - 8u^{10} + \dots + 2u - 1)(u^{24} + 3u^{23} + \dots + 696u + 37)$	
c_7	$(u-1)$ $\cdot (u^{12} - 6u^{10} - u^9 + 15u^8 + 3u^7 - 21u^6 - 4u^5 + 17u^4 + 4u^3 - 7u^2 - u + (u^{24} + 2u^{23} + \dots + 47u + 1)$	1)
c_8	$(u-1)(u^{12} - u^{11} - u^{10} - 3u^8 + 2u^7 - u^6 - u^5 + 3u^4 - u^3 + 2u^2 - 1)$ $\cdot (u^{24} + 3u^{23} + \dots + 80u + 19)$	
<i>c</i> ₉	$u(u^{12} - 2u^{10} - u^9 - 3u^8 - u^7 + u^6 + 2u^5 + 3u^4 + u^2 - u - 1)$ $\cdot (u^{24} - u^{23} + \dots + 40u - 8)$	
c_{10}, c_{11}	$(u-1)(u^{12} - 8u^{10} + \dots - 2u - 1)$ $\cdot (u^{24} - 10u^{22} + \dots + 6u + 1)$	
c_{12}	$(u+1)(u^{12}-4u^{11}+\cdots+7u+1)(u^{24}+2u^{23}+\cdots+5u-1)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^{12}-12y^{11}+\cdots-43y+1)(y^{24}+44y^{23}+\cdots-3160089y+1)$
c_2, c_7	$(y-1)(y^{12}-12y^{11}+\cdots-15y+1)(y^{24}-4y^{23}+\cdots-1789y+1)$
<i>C</i> 3	$(y-1)(y^{12}-7y^{11}+\cdots-10y^2+1)(y^{24}+13y^{23}+\cdots-214y+1)$
c_4, c_8	$(y-1)(y^{12}-3y^{11}+\cdots-4y+1)(y^{24}+29y^{23}+\cdots-5754y+361)$
c_5, c_{10}, c_{11}	$(y-1)(y^{12}-16y^{11}+\cdots-8y+1)(y^{24}-20y^{23}+\cdots-26y+1)$
c_6	$y(y^{12} - 16y^{11} + \dots - 20y + 1)(y^{24} + 47y^{23} + \dots - 161850y + 1369)$
<i>C</i> 9	$y(y^{12} - 4y^{11} + \dots - 3y + 1)(y^{24} + 23y^{23} + \dots - 4064y + 64)$
c_{12}	$(y-1)(y^{12}-24y^{11}+\cdots+17y+1)(y^{24}-60y^{23}+\cdots-93y+1)$