Lecture #9

Syntax Analysis - III

Parsing Table Generation

- Given the production $A \rightarrow \alpha$, and a token t
- $M[A, t] = \alpha$ occurs in two cases:
- 1. If $\alpha \rightarrow * t\beta$
 - α can derive a 't' in the first position in 0 or more moves
 - We say that t ϵ First(α)
 - 't' is one of the terminals that α can produce in the first position
- 2. If $A \rightarrow \alpha$ and $\alpha \rightarrow^* \epsilon$ and $S \rightarrow^* \beta At\delta$
 - Stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - Can work only if 't' follows A in at least one derivation
 - We say $t \in Follow(A)$

First Sets

- Definition
 - First(X) = { t | t is a terminal and X \rightarrow * t\alpha} or {\alpha | X \rightarrow * \alpha}
- To build FIRST(X):
 - 1. If $X \in \text{terminal}$, then FIRST(X) is $\{X\}$
 - 2. If $((X \rightarrow \varepsilon) \text{ or } ((X \rightarrow Y_1 ... Y_k) \text{ and } (\varepsilon \in [\forall i: 1 < i \le k \text{ First } (Y_i)]))$ then add ε to FIRST(X)
 - 3. If $((X \rightarrow Y_1 Y_2 ... Y_k \alpha)$ and $(\varepsilon \in [\forall i: 1 < i \le k \text{ First } (Y_i)]))$ then add $FIRST(\alpha)$ to FIRST(X)
- Find the first sets in the grammar:

$$\begin{array}{ll} E \rightarrow T \; X & X \rightarrow + E \mid \epsilon \\ T \rightarrow (\; E \;) \mid int \; Y & Y \rightarrow * \; T \mid \epsilon \end{array}$$

Next Lecture

Top-Down Predictive Parsing Continued...