

UNITED STATES PATENT APPLICATION

PRECISION PHASE GENERATOR

INVENTOR

WILLIAM A. HARRIS of Coon Rapids, Minnesota, USA

Charles E. Steffey
Schwegman, Lundberg, Woessner, & Kluth, P.A.
1600 TCF Tower
121 South Eighth Street
Minneapolis, Minnesota 55402
ATTORNEY DOCKET 256.058US1
HONEYWELL H16-26054

15

20

25

Technical Field

Electronic control systems, particularly precision phase generators for generating multiple phase clocking signals from a single phase clock signal.

Background of the Invention

In computer and other systems, a single oscillator produces a signal that is used as the source of clock and control signals to control the operation of various storage elements and latches elements in the system. Often it is found to be desirable to clock these elements using different phases of a clock signal. While a number of techniques have been used to generate two different clock pulse signal phases, such designs do not provide more than two phases from a single high frequency clock. Since it is often desirable to provide four or more different phases of a clock signal with precise phase relationships to control a wide variety of storage elements in a circuit, there is a need for a multiple phase providing two or more phases of a clock signal from a single high frequency clock. Such needs are satisfied by the present invention.

Summary of the invention

The present invention is directed to a multiple phase signal generator. It provides a circuit for dividing an input clock signal into N clock signals having a relative phase separation of $360^{\circ}/2N$ clock signals, where N is a positive integer. The circuit has a phase lock loop circuit receiving an input signal having a frequency F_0 and providing an output signal having a frequency $2NF_0$ and a Johnson counter having N stages connected to receive as an input the output signal of the phase lock loop circuit and providing an output signal as an error signal to the phase lock loop circuit. The Johnson counter is also connected for providing at least two output signals from each of the N stages of the Johnson counter as clock signals each having a phase displaced from the phase of the other $360/2N^{\circ}$.

A circuit for receiving an input clock signal and generating a plurality of

10

15

20

clock signals having frequencies identical to the input clock signal and predetermined phase displacements from the input signal. The circuit has a phase detector for comparing an input clock signal to a feedback signal and providing an output signal corresponding to the phase difference between the input clock signal and the feedback signal. It also has a low pass filter and gain stage receiving the output signal from the phase comparator and producing a control signal and a voltage controlled oscillator for receiving the control signal and producing an oscillator output signal having a frequency corresponding to the control signal. A multistage counting circuit is connected to receive the oscillator output signal and provide the feedback signal to the phase detector and a plurality of clock signals at the frequency of the input clock signal and phase shifted from the clock signal by fixed angular increments.

According to another feature of the present invention a method is provided for generating at least two clock signals displaced from each other by a predetermined phase shift of 360°/2N, where N is a positive integer. The method includes applying a clock signal to a signal input of a phase lock loop circuit at the desired clock frequency and applying a feedback signal to the other input of the phase lock loop and generating an output of the phase lock loop having a frequency of 2N. The method further provides for coupling the output of the phase locked loop to an N stage Johnson counter to provide a signal to the other input of the phase shift loop having a frequency corresponding to the frequency of the output signal of the phase locked loop divided by 2N and coupling the outputs of the stages of the Johnson counter for use as phase shifted clock outputs.

Other features and advantages of the present invention will become evident hereinafter.

Brief description of the Drawings

- FIG. 1 is a block diagram of an embodiment of a precision multiple phase generator; and
 - FIG. 2 is a block diagram of an embodiment of a precision multiple phase

10

15

20

25

Description of the preferred embodiment

The following detailed description, which references and incorporates
Figures 1 and 2, describes and illustrates specific embodiments of the invention.
These embodiments, offered not to limit but only to exemplify and teach the
concepts of the invention, are shown and described in sufficient detail to enable
those skilled in the art to implement or practice the invention. Thus, where
appropriate to avoid obscuring the invention, the description may omit certain
information known to those of skill in the art.

Exemplary System Incorporating Invention

Figure 1 shows an exemplary precision phase generator 100 incorporating the present invention. Phase generator 100 includes a phase lock loop circuit 102 and a Johnson counter 104.

Phase lock loop circuit 102 receives an input signal 104 having a frequency F_0 from a clock source. In phase lock loop 102, input signal 104 is compared to a reference signal which is applied to a reference input terminal 106 of phase lock loop 102 and an internal error signal is developed. The internal phase error signal is conditioned by a gain stage and a low pass filter to provide a control signal which is applied to the input of a voltage controlled oscillator which provides an output signal 108 which corresponds to the control signal.

The output signal 108 from the voltage controlled oscillator of phase lock loop 102 is connected to an input of Johnson counter 104. A Johnson counter is a specific form of shift register with a specific feedback to its serial input such that whatever the state of the output stage, the complement of that state is applied to the serial input at the next clock pulse. For a Johnson counter with four stages, n=4, the cycle length is 2n rather than 2^n . Hence, for a four stage counter the cycle length is 2n=8 rather than $2^n=16$. An output 110 of Johnson counter 104 is taken from the nth flip flop stage of the counter so that its frequency is F_0 .

In order to have the error signal at terminal 106 correspond to input clock

10

15

20

25

signal F_0 , it is necessary that the gain of the voltage controlled oscillator be set so that the output of phase lock loop 102 is $2n*F_0$. Additional outputs 112 are provided from each of the shift registers of Johnson counter 104. Each of those outputs has the same frequency as clock signal F_0 but are each shifted in phase by $360^\circ/2N$ from clock signal F_0 .

A more complete block diagram of an embodiment of a precision phase generator 200 according to the present invention is shown in Figure 2. An input clock signal 202 having a frequency F_0 is applied to an input terminal 202 of a phase detector 204. Phase detector 204 compares the phase of the input signal at terminal 202 to an error signal received at terminal 206 and provides an output signal at output terminal 208 which has an average value corresponding to the phase difference between the input signals at terminals 202 and 206.

The output signal from phase detector 204 is received by low pass filter 210 and gain stage 212 which produce a control signal which is connected to an input terminal 214 of a voltage controlled oscillator 216. Voltage controlled oscillator 216 produces an oscillator output voltage having a frequency corresponding to the control voltage. More specifically, the output signal 217 of oscillator 216 has a frequency which is scaled such that the output at terminal 218 of the Johnson counter formed of shift registers 220, 222, 224 and 226 has a frequency corresponding to the frequency of input clock signal F_0 . Thus, for the four stage Johnson counter illustrated, the frequency of input F_0 of the oscillator output signal from voltage controlled oscillator 216 is multiplied by 2n or 8.

The frequency of the signal at output 218 of the Johnson counter formed of registers 220, 222, 224 and 226 is 1/2n or 1/8 the frequency of output signal 217 due to the scaling or dividing action of the counter. The counter output signal is connected to the error input terminal 206 of phase detector 204 to close the loop of the phase lock loop so that the signal at output 218 of the Johnson counter is locked to the frequency F_0 of input clock signal 202.

Multiple clock output signals having frequencies identical to frequency F₀ of

10

15

20

25

input clock signal 202 are available on terminals 228, 230 and 232 as well as on terminal 218. In order to have counters 220, 222, 224 and 226 function as a Johnson counter, a feedback connection is made from output terminal 218 to an input of the first shift register 220 so that whatever the state of output stage 226, the complement of that state is applied to the serial input of the Johnson counter at the next clock pulse.

In the circuit shown in Figure 2, the phase difference between signals at at terminals 228 and 230, 230 and 232, 232 and 234 is precisely 45 degrees. Thus these four outputs and the complemented outputs of the respective counter stages provide eight precise internal clock signals separated by precisely 45 degrees from each other and covering the full 360 degree phase range. For a pulse generator with a divide by four rather than a divide by eight counter, as shown, the phase differences between the terminals would be 90 degrees. It can be seen that by appropriately designating n, it is possible to set a wide variety of possible phase shifts between the multiple of clock signals that may be produced by the precision phase generator.

In furtherance of the art, the inventor has presented new methods as well as circuits embodying these methods, for precision generating multiple phase shifted clock signals. One exemplary non-iterative method for generating at least two clock signals displaced from each other by a predetermined phase shift of 360°/2N, where N is a positive integer calls for applying a clock signal to a signal input of a phase lock loop circuit at the desired clock frequency and applying a feedback signal to the other input of the phase lock loop. It also involves generating an output of the phase lock loop having a frequency of 2N, coupling the output of the phase locked loop to an N stage Johnson counter to provide a signal to the other input of the phase lock loop having a frequency corresponding to the frequency of the output signal of the phase locked loop divided by 2N and coupling the outputs of the stages of the Johnson counter for use as phase shifted clock outputs.

The embodiments described above are intended only to illustrate and teach

one or more ways of practicing or implementing the present invention, not to restrict its breadth or scope. The actual scope of the invention, which embraces all ways of practicing or implementing the teachings of the invention, is defined only by the following claims and their equivalents.