L.M. Cabrer

reliminaries

Projective Algebras MV-algebras

Main Result

Duality Previous Results Sketch of the proof

Geometric description of projective MV-algebras

Leonardo Manuel Cabrer

Technische Universität Wien

ManyVal – 2015

Preliminaries

Projective Algebras

Let $\mathcal K$ be a class of algebras. An algebra $\mathbf A \in \mathcal K$ is **projective** if:

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras
MV-algebras

Main Result

Let $\mathcal K$ be a class of algebras. An algebra $\mathbf A \in \mathcal K$ is **projective** if:

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras

Main Result

Let $\mathcal K$ be a class of algebras. An algebra $\mathbf A \in \mathcal K$ is **projective** if:

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras

Main Result

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Previous Results

If $\mathcal V$ is a variety (equational class) of algebras then $\mathbf A\in\mathcal V$ is projective iff there exists a cardinal κ such that

Preliminaries

MV-algebras

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra

MV-algebras

Main Resul

An MV-algebra is an algebraic structure $(M, \oplus, \neg, 0)$ where:

- ▶ $(M, \oplus, 0)$ is a commutative monoid,
- → is a unary operation,
- ightharpoonup and \oplus satisfy the following
 - $\neg \neg x = x$.
 - $x \oplus \neg 0 = \neg 0$, and

An MV-algebra is an algebraic structure $(M, \oplus, \neg, 0)$ where:

- \blacktriangleright $(M, \oplus, 0)$ is a commutative monoid,
- → is a unary operation,
- ¬ and ⊕ satisfy the following
 - $\neg \neg X = X$.
 - \rightarrow $x \oplus \neg 0 = \neg 0$, and
 - $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$

Standard example: $[0,1]_{MV}=([0,1],\oplus,\neg,0)$ where

 $x \oplus y = \min\{x + y, 1\}$ and $\neg x = 1 - x$.

An MV-algebra is an algebraic structure $(M, \oplus, \neg, 0)$ where:

- ▶ $(M, \oplus, 0)$ is a commutative monoid,
- → is a unary operation,
- ightharpoonup ¬ and \oplus satisfy the following
 - ightharpoonup $\neg \neg X = X$,
 - \rightarrow $x \oplus \neg 0 = \neg 0$, and

Standard example: $[0,1]_{MV}=([0,1],\oplus,\neg,0)$ where

$$x \oplus y = \min\{x + y, 1\} \text{ and } \neg x = 1 - x.$$

Chang's completeness theorem states that $[0, 1]_{MV}$ generates the variety of MV-algebras.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

MV-algebras

Main Result

Duality Previous Results Sketch of the proo

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality Previous Results

Theorem

Let A be an MV-algebra. Then TFAE:

(a) A is finitely generated and projective,

Previous Results Sketch of the prod

Theorem

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$

Previous Results
Sketch of the proc

Theorem

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that
 - (i) P is contractible,

Theorem

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that
 - (i) P is contractible,
 - (ii) $P \cap \{0,1\}^n \neq \emptyset$,

Theorem

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that
 - (i) P is contractible,
 - (ii) $P \cap \{0,1\}^n \neq \emptyset$,
 - (iii) for each $v \in P \cap \mathbb{Q}^n$ there exist $w \in \mathbb{Z}^n$ and $\varepsilon > 0$ such that the convex segment $\operatorname{conv}(v, v + \varepsilon(w v))$ is contained in $P \Leftrightarrow P$ is strongly regular $\Leftrightarrow P$ is anchored), and

Theorem

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that
 - (i) P is contractible,
 - (ii) $P \cap \{0,1\}^n \neq \emptyset$,
 - (iii) for each $v \in P \cap \mathbb{Q}^n$ there exist $w \in \mathbb{Z}^n$ and $\varepsilon > 0$ such that the convex segment $\operatorname{conv}(v, v + \varepsilon(w v))$ is contained in $P \ (\Leftrightarrow P \ \text{is strongly regular} \Leftrightarrow P \ \text{is anchored})$, and
 - (iv) $A \cong \{f \upharpoonright_P | f : [0,1]^n \to [0,1] \text{ is a McNaughton map}\}.$

Main Result

Duality

Previous Results Sketch of the proc

A rational polyhedron $P \subseteq [0,1]^n$ is the pointset union of finitely many convex set with rational vertices.

Main Result

Duality

Previous Results
Sketch of the proof

A **rational polyhedron** $P \subseteq [0,1]^n$ is the pointset union of finitely many convex set with rational vertices.

That is, there exists a finite set $K \subseteq [0, 1]^n \cap \mathbb{Q}^n$

Main Result

Duality

Previous Results
Sketch of the proo

A **rational polyhedron** $P \subseteq [0,1]^n$ is the pointset union of finitely many convex set with rational vertices.

That is, there exists a finite set $K \subseteq [0,1]^n \cap \mathbb{Q}^n$ and a $L \subseteq \mathcal{P}(K)$

Main Result

Duality

revious Re

Sketch of the proof

A **rational polyhedron** $P \subseteq [0,1]^n$ is the pointset union of finitely many convex set with rational vertices.

That is, there exists a finite set $K \subseteq [0,1]^n \cap \mathbb{Q}^n$ and a $L \subseteq \mathcal{P}(K)$ such that

$$P = \bigcup \{ \operatorname{conv}(S) \mid S \in L \}.$$

Duality

Let $\mathcal{M}([0,1]^n)$ be the set of McNaugthon maps from $[0,1]^n$ to [0,1].

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality

Previous Results
Sketch of the proof

Let $\mathcal{M}([0,1]^n)$ be the set of McNaugthon maps from $[0,1]^n$ to [0,1].

Theorem

Let $P \subseteq [0,1]^n$. Then TFAE:

- (i) P is a rational polyhedron,
- (ii) $P = f^{-1}(1)$ for some $f \in \mathcal{M}([0,1]^n)$.
- (iii) $P = g^{-1}(0)$ for some $g \in \mathcal{M}([0,1]^n)$.

Let $\mathcal{M}([0,1]^n)$ be the set of McNaugthon maps from $[0,1]^n$ to [0,1].

Theorem

Let $P \subseteq [0, 1]^n$. Then TFAE:

- (i) P is a rational polyhedron,
- (ii) $P = f^{-1}(1)$ for some $f \in \mathcal{M}([0, 1]^n)$.
- (iii) $P = g^{-1}(0)$ for some $g \in \mathcal{M}([0, 1]^n)$.

Theorem

Let $f \in \mathcal{M}([0,1]^n)$ and $P = f^{-1}(1)$, then

$$\mathcal{M}([0,1]^n)/\langle f\approx 1\rangle\cong\mathcal{M}(P)=\{g\upharpoonright_P\mid g\in\mathcal{M}([0,1]^n)\}$$

Theorem (Marra, Spada – 2012)

The category of finitely presented MV-algebras is dually equivalent to the category of rational polyhedra with \mathbb{Z} -maps.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminarie

Projective Algebras MV-algebras

Main Result

Duality

Duality Previous B

Previous Results
Sketch of the proc

Theorem (Marra, Spada - 2012)

The category of finitely presented MV-algebras is dually equivalent to the category of rational polyhedra with \mathbb{Z} -maps.

Definition

A map $\eta: [0,1]^n \to [0,1]^m$ is called a \mathbb{Z} -map if it satisfies the following conditions:

- (i) η is continuous,
- (ii) piecewise (affine) linear, and each linear piece of η has integer coefficients.

Dual of Projective

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality

Dual of Projective

 $[0, 1]^n$

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

Main Result

Duality

Dual of Projective

 $P [0,1]^n$

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra: MV-algebras

Main Result

Duality

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality

Main Result Dual Problem

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra: MV-algebras

Main Result

Duality

Previous Results Sketch of the proof

Presented with $P \subseteq [0,1]^n$, find necessary and sufficient conditions for P to be a \mathbb{Z} -retract of $[0,1]^n$.

Theorem (C., Mundici - 2011)

Let A be a finitely generated and projective MV-algebra. Then there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that

- (i) P is contractible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$,
- (iii) for each $v \in P \cap \mathbb{Q}^n$ there exist $w \in \mathbb{Z}^n$ and $\varepsilon > 0$ such that the convex segment $\operatorname{conv}(v, v + \varepsilon(w v))$ is contained in $P(\Leftrightarrow P \text{ is strongly regular} \Leftrightarrow P \text{ is anchored})$, and
- (iv) $A \cong \mathcal{M}(P)$.

Theorem (C., Mundici - 2011)

Let A be a finitely generated and projective MV-algebra. Then there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that

- (i) P is contractible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$,
- (iii) **strongly regular:** P has a regular triangulation Δ such that for every maximal simplex $T \in \Delta$, the denominators of the vertices of T are coprime, and
- (iv) $A \cong \mathcal{M}(P)$.

Theorem (C., Mundici - 2011)

Let A be a finitely generated and projective MV-algebra. Then there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that

- (i) P is contractible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$,
- (iii) strongly regular: P has a regular triangulation Δ such that for every maximal simplex $T \in \Delta$, the denominators of the vertices of T are coprime, and
- (iv) $A \cong \mathcal{M}(P)$.

Regular Simplexes

For v in \mathbb{Q}^n we let den(v) denote the least common denominator of the coordinates of v.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Duality

Duality
Previous Results

Sketch of the proof

For v in \mathbb{Q}^n we let den(v) denote the least common denominator of the coordinates of v.

The vector $\tilde{v} = \operatorname{den}(v)(v, 1) \in \mathbb{Z}^{n+1}$ is called the homogeneous correspondent of v.

Duality
Previous Besults

Sketch of the proo

For v in \mathbb{Q}^n we let den(v) denote the least common denominator of the coordinates of v.

The vector $\tilde{v} = \operatorname{den}(v)(v, 1) \in \mathbb{Z}^{n+1}$ is called the homogeneous correspondent of v.

A simplex $S \subseteq [0,1]^n$ is called **regular** if the set of homogeneous correspondents of its vertices is part of a basis of the free Abelian group \mathbb{Z}^{n+1} .

L.M. Cabrer

Previous Results

Theorem (C., Mundici - 2011)

Let $P \subset [0,1]^n$ be a rational polyhedron such that

- (i) P is collapsible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$, and
- (iii) P is strongly regular.

Then $\mathcal{M}(P)$ is projective.

L.M. Cabrer

Previous Results

Theorem (C., Mundici - 2011)

Let $P \subset [0,1]^n$ be a rational polyhedron such that

- (i) P is collapsible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$, and
- (iii) P is strongly regular.
- Then $\mathcal{M}(P)$ is projective.

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

Main Result

Duality

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

Previous Results

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

nam Result

Previous Results

Sketch of the proof

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

Juality

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra

uality

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebra

uality

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebra MV-algebras

Duality Previous Results

evious Hesuits etch of the proof

Previous Results

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebra MV-algebras

Duality
Previous Results

Theorem

Let A be an MV-algebra. Then TFAE:

- (a) A is finitely generated and projective,
- (b) there exist $n \in \{1, 2, ...\}$ and a rational polyhedron $P \subseteq [0, 1]^n$ such that
 - (i) P is contractible,
 - (ii) $P \cap \{0,1\}^n \neq \emptyset$,
 - (iii) P is strongly regular, and
 - (iv) $A \cong \{f \upharpoonright_P | f : [0,1]^n \to [0,1] \text{ is a McNaughton map}\}.$

- (i) P is contractible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$, and
- (iii) P is strongly regular.

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebras MV-algebras

Main Result

Previous Resul

Sketch of the proof

Input: A rational polyhedron $P \subseteq [0, 1]^n$

- (i) P is contractible.
- (ii) $P \cap \{0,1\}^n \neq \emptyset$, and
- (iii) P is strongly regular.

Output:

- (a) $k \in \mathbb{Z}$,
- (b) $Q \subseteq [0, 1]^k$ a collapsible rational polyhedron, and
- (c) \mathbb{Z} -maps $\eta: [0,1]^k \to P$ and $\iota: P \to [0,1]^k$, such that

$$\eta \circ \iota = \mathrm{Id}_{P}.$$

 $[0, 1]^k$

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

Main Result

Sketch of the proof: 10

Input: A contractible rational polyhedron $P \subseteq [0, 1]^n$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

uality revious Resul

Sketch of the proof

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Previous Results

Sketch of the proof

11

Whitehead's Theorem combined with the Simplicial Approximation Lemma.

Input: A contractible rational polyhedron $P \subseteq [0, 1]^n$.

Previous Results
Sketch of the proof

Input: A contractible rational polyhedron $P \subseteq [0, 1]^n$.

1

Whitehead's Theorem combined with the Simplicial Approximation Lemma.

 \Downarrow

Output: A PL-retraction η_{10} : $[0,1]^n \rightarrow P$.

Sketch of the proof: 9

Input: A PL-retraction $\eta_{10} \colon [0,1]^n \to P$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Projective Algebras MV-algebras

Main Result

Previous Results
Sketch of the proof

Input: A PL-retraction η_{10} : $[0,1]^n \to P$.

1

Since $[0,1]^n$ is collapsible, applying finitely many stellar subdivisions to a collapsible triangulation of $[0,1]^n$:

Main Result

Duality

Previous Results
Sketch of the proof

Input: A PL-retraction η_{10} : $[0,1]^n \to P$.

 \Downarrow

Since $[0,1]^n$ is collapsible, applying finitely many stellar subdivisions to a collapsible triangulation of $[0,1]^n$:

Output: A collapsible triangulation Δ_9 of $[0,1]^n$ such that η_{10} is linear on each simplex of Δ_9 .

Sketch of the proof: 8

Input: A collapsible triangulation Δ_9 of $[0,1]^n$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebra MV-algebras

Main Result

Provious D

Sketch of the proof

Sketch of the proof: 8

Input: A collapsible triangulation Δ_9 of $[0,1]^n$.

 \Downarrow

Suitable stellar subdivisions.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Previous Resu

Sketch of the proof

Sketch of the proof

Suitable stellar subdivisions.

1

1

Output: A collapsible triangulation Δ_8 of $[0, 1]^n$ $\{S \in \Delta_8 \mid S \subseteq P\}$ is a triangulation of P.

Input: A collapsible triangulation Δ_9 of $[0,1]^n$.

Sketch of the proof: 7

Input: A collapsible triangulation Δ_8 of $[0,1]^n$ $\{S \in \Delta_8 \mid S \subseteq P\}$ is a triangulation of P.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

revious Resu

Sketch of the proof

Sketch of the proof

Input: A collapsible triangulation Δ_8 of $[0, 1]^n$ $\{S \in \Delta_8 \mid S \subseteq P\}$ is a triangulation of P.

Extending Beynon result about existence of rational triangulations for rational polyhedra.

Previous Results Sketch of the proof

Input: A collapsible triangulation Δ_8 of $[0,1]^n$ $\{S \in \Delta_8 \mid S \subseteq P\}$ is a triangulation of P.

1

Extending Beynon result about existence of rational triangulations for rational polyhedra.

Output: A collapsible triangulation Δ_7 of $[0,1]^n$ such that $\{S \in \Delta_7 \mid S \subseteq P\}$ is a rational triangulation of P.

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebra

Main Result

revious Results

Sketch of the proof

Input: A collapsible triangulation Δ_7 of $[0,1]^n$ such that $\{S \in \Delta_7 \mid S \subseteq P\}$ is a rational triangulation of P.

Sketch of the proof

1

Affine version of the desingularization process by stellar subdivisions (but only to $\{S \in \Delta_7 \mid S \subseteq P\}$).

Input: A collapsible triangulation Δ_7 of $[0,1]^n$ such that

 $\{S \in \Delta_7 \mid S \subseteq P\}$ is a rational triangulation of P.

Input: A collapsible triangulation Δ_7 of $[0,1]^n$ such that

 $\{S \in \Delta_7 \mid S \subseteq P\}$ is a rational triangulation of P.

Affine version of the desingularization process by stellar subdivisions (but only to $\{S \in \Delta_7 \mid S \subseteq P\}$).

 \downarrow

Output: A collapsible triangulation Δ_6 of $[0, 1]^n$ such that $\{S \in \Delta_6 \mid S \subseteq P\}$ is a regular triangulation of P.

Sketch of the proof: 5

Input: A collapsible triangulation Δ_6 of $[0,1]^n$ such that $\{S \in \Delta_6 \mid S \subseteq P\}$ is a regular triangulation of P, and the PL-retraction $\eta_{10} \colon [0,1]^n \to P$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Geometric

Main Result

Previous Results

Sketch of the proof

Input: A collapsible triangulation Δ_6 of $[0,1]^n$ such that $\{S \in \Delta_6 \mid S \subseteq P\}$ is a regular triangulation of P, and the PL-retraction $\eta_{10} \colon [0,1]^n \to P$.

1

For each ν vertex of Δ_6 we define

$$\eta_5(v) = \begin{cases} v & \text{if } v \in P; \\ \eta_{10}(v) & \text{if } \notin P. \end{cases}$$

Input: A collapsible triangulation Δ_6 of $[0,1]^n$ such that $\{S \in \Delta_6 \mid S \subseteq P\}$ is a regular triangulation of P, and the PL-retraction $\eta_{10} \colon [0,1]^n \to P$.

 \Downarrow

For each v vertex of Δ_6 we define

$$\eta_5(v) = \begin{cases} v & \text{if } v \in P; \\ \eta_{10}(v) & \text{if } \notin P. \end{cases}$$

 \Downarrow

Output: A PL-retraction η_5 : $[0,1]^n \to P$ such that η_5 is linear on each simplex of Δ_6 .

Sketch of the proof: 4

Input: A PL-retraction η_5 : $[0,1]^n \to P$ such that η_5 is linear on each simplex of Δ_6 .

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Duality Previous Res

Sketch of the proof

L.M. Cabrer

Sketch of the proof

Input: A PL-retraction η_5 : $[0,1]^n \to P$ such that η_5 is linear on each simplex of Δ_6 .

1

Suitable stellar subdivisions (only on $S \in \Delta_6$ such that $S \not\subseteq P$).

linear on each simplex of Δ_6 .

Main Result

Duality

Sketch of the proof

11

Suitable stellar subdivisions (only on $S \in \Delta_6$ such that $S \not\subseteq P$).

Input: A PL-retraction η_5 : $[0,1]^n \to P$ such that η_5 is

 \Downarrow

Output: A triangulation Δ_4 of $[0,1]^n$ such that for each n-simplex $S \in \Delta_4$, there exists $T_S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$.

Input: A triangulation Δ_4 of [0,1] such that for each n-simplex $S \in \Delta_4$, there exists $T_S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

/lain Result

revious Results

L.M. Cabrer

reliminaries

Projective Algebras MV-algebras

Main Result

Duality

Previous Results
Sketch of the proof

Input: A triangulation Δ_4 of [0,1] such that for each n-simplex $S \in \Delta_4$, there exists $T_S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$.

 $\downarrow \downarrow$

Modifying η_5 only on the vertices of Δ_4 that are not sent to vertices in Δ_4 .

Main Result
Duality

Previous Results

Sketch of the proof

Input: A triangulation Δ_4 of [0,1] such that for each n-simplex $S \in \Delta_4$, there exists $T_S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$.

1

Modifying η_5 only on the vertices of Δ_4 that are not sent to vertices in Δ_4 .

 \Downarrow

Output: A PL-retract $\eta_3 : [0,1]^n \to P$ linear on each simplex of Δ_4 such that $\eta_3(v) \in \mathbb{Q}^n$ for each $v \in \Delta_4$.

Main Result

Sketch of the proof: 2

Input: A PL-retract $\eta_3 : [0,1]^n \to P$ linear on each simplex of Δ_4 such that $\eta_3(v) \in \mathbb{Q}^n$ for each $v \in \Delta_4$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Input: A PL-retract $\eta_3 \colon [0,1]^n \to P$ linear on each simplex of Δ_4 such that $\eta_3(v) \in \mathbb{Q}^n$ for each $v \in \Delta_4$.

 \Downarrow

For each n-simplex $S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$, there exists a rational point $x_S \in T_S$ such that $den(x_S)$ is coprime with $den(\eta_5(v))$ for each vertex v of S.

Input: A PL-retract $\eta_3 : [0,1]^n \to P$ linear on each simplex of Δ_4 such that $\eta_3(v) \in \mathbb{Q}^n$ for each $v \in \Delta_4$.

 \Downarrow

For each n-simplex $S \in \Delta_4$ with $\eta_5(S) \subseteq T_S$, there exists a rational point $x_S \in T_S$ such that $den(x_S)$ is coprime with $den(\eta_5(v))$ for each vertex v of S.

Output: A triangulation Δ_2 and a PL-retract $\eta_2 \colon [0,1]^n \to P$ linear on each simplex of Δ_2 such that for each n-simplex $S \in \Delta_2$, $\gcd(\{\eta_2(v) \mid v \text{ vertex of } S\}) = 1$ (by strong regularity of P).

Input: A triangulation triangulation Δ_2 and a PL-retract $\eta_2 \colon [0,1]^n \to P$ linear on each simplex of Δ_2 such that for each n-simplex $S \in \Delta_2$, $\gcd(\{\eta_2(v) \mid v \text{ vertex of } S\}) = 1$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

> lain Result Duality

Previous Results
Sketch of the proof

Main Result
Duality

Previous Results
Sketch of the proof

1

Input: A triangulation triangulation Δ_2 and a PL-retract $\eta_2 \colon [0,1]^n \to P$ linear on each simplex of Δ_2 such that for each n-simplex $S \in \Delta_2$, $gcd(\{\eta_2(v) \mid v \text{ vertex of } S\}) = 1$.

Using canonical representation of abstract simplicial complexes.

Input: A triangulation triangulation Δ_2 and a PL-retract $\eta_2 \colon [0,1]^n \to P$ linear on each simplex of Δ_2 such that for each n-simplex $S \in \Delta_2$, $\gcd(\{\eta_2(v) \mid v \text{ vertex of } S\}) = 1$.

1

Using canonical representation of abstract simplicial complexes.

 \Downarrow

Output: A rational polyhedron $Q \subseteq [0,1]^k$ that admits a regular triangulation Δ_1 simplicially isomorphic to Δ_2 (given by f) and such that $\operatorname{den}(v) = \operatorname{den}(\eta_2(f(v)))$ for each v vertex of Δ_1 .

- Δ₁ is strongly regular,
- $ightharpoonup \Delta_1$ is collapsible,
- ▶ $Q \cap \{0,1\}^k \neq \emptyset$.

Geometric description of projective MV-algebras

L.M. Cabrer

Preliminaries

Projective Algebras MV-algebras

Main Result

Previous Results

- Δ₁ is strongly regular,
- $ightharpoonup \Delta_1$ is collapsible,
- ▶ $Q \cap \{0,1\}^k \neq \emptyset$.

Then Q is a \mathbb{Z} -retract of $[0, 1]^k$.

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebras MV-algebras

Main Result

Previous Results

- Δ₁ is strongly regular,
- Δ₁ is collapsible,
- ▶ $Q \cap \{0,1\}^k \neq \emptyset$.

Then Q is a \mathbb{Z} -retract of $[0,1]^k$.

The map $e_i/\text{den}(\eta_2(v_i)) \mapsto \eta_2(v_i)$ extends to \mathbb{Z} -map form Q onto P.

- Δ₁ is strongly regular,
- Δ₁ is collapsible,
- $Q \cap \{0,1\}^k \neq \emptyset.$

Then Q is a \mathbb{Z} -retract of $[0,1]^k$.

The map $e_i/\text{den}(\eta_2(v_i)) \mapsto \eta_2(v_i)$ extends to \mathbb{Z} -map form Q onto P.

Also, the map $v_i\mapsto e_i/\mathrm{den}(v_i)$ extends to a one-one $\mathbb Z$ -map from P into Q.

Geometric description of projective MV-algebras

L.M. Cabrer

reliminaries

Projective Algebra: MV-algebras

Main Result

Duality
Previous Results
Sketch of the proof

Thank you for your attention!

I.cabrer@disia.unifi.it

Theorem (C., Mundici - 2011)

Let $P \subseteq [0,1]^n$ be a rational polyhedron such that

- (i) P is collapsible,
- (ii) $P \cap \{0,1\}^n \neq \emptyset$, and
- (iii) for each $v \in P \cap \mathbb{O}^n$ there exist $w \in \mathbb{Z}^n$ and $\varepsilon > 0$ such that the convex segment $conv(v, v + \varepsilon(w - v))$ is contained in P.

Then $\mathcal{M}(P)$ is projective.

Projective Algebras

Duality

Provious Results

Previous Results
Sketch of the proof

Theorem (Whitehead's Theorem–contractible case)

Let $P \subseteq [0,1]^n$ be a polyhedron. If P is contractible, then P is a deformation retract of $[0,1]^n$, that is, there exists a retraction $f: [0,1]^n \to P$ homotopically equivalent to the identity on $[0,1]^n$ relative to P.

Theorem (Relative Simplicial Approximation)

Let $P \subseteq Q \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}^m$ be polyhedra and $f : Q \to R$ be a continuous map such that $f \upharpoonright_P$ is a piecewise linear. Then there exists a piecewise linear map $g : Q \to R$ homotopically equivalent to f such that f and agrees with g on P (in symbols, $g \upharpoonright_P = f \upharpoonright_P$).

Proposition

Let $P \subseteq \mathbb{R}^n$ and $Q \subseteq \mathbb{R}^m$ be polyhedra, and let Δ and ∇ be triangulations of P and Q, respectively. If $\eta \colon P \to Q$ is a piecewise linear map compatible with Δ , there exists a stellar subdivision Δ' of Δ such that

- (i) for each $S \in \Delta'$, there exists $T \in \nabla$ with $\eta(S) \subseteq T$, and
- (ii) if $S \in \Delta$ is such that there exists $T \in \nabla$ with $\eta(S) \subseteq T$, then $S \in \Delta'$.

Proposition

Let $P \subseteq Q \subseteq \mathbb{R}^n$ be such that P is a rational polyhedron and Q a convex polyhedron. Let Δ be a triangulation of Q such that the simplicial complex $\Delta_P = \{S \in \Delta \mid S \subseteq P\}$ is a triangulation of P. Then there is triangulation ∇ of Q such that:

- (i) the simplicial complex $\nabla_P = \{S \in \nabla \mid S \subseteq P\}$ is a rational triangulation of P, and
- (ii) ∇ and Δ are simplicially isomorphic.

For each k = 1, 2, ... there exists a rational point $v \in S$

such that gcd(k, den(v)) = 1.

Geometric description of projective MV-algebras

L.M. Cabrer