Comparing lightcurves of SN2014J to SN1987A between cooling phase and Nickel-56 peak

Hypatia Meraviglia 3 April 2022

1 Abstract

When a supernova explodes, the matter of the star is ripped apart with such force that even neutrons are ripped from protons. As the expanding cloud cools, the matter forms into 56 Ni, a relatively stable atom. 56 Ni decays over time into 56 Co, then 56 Fe. Each of step of this decay process releases gamma rays, which deposit energy into the surrounging gas, "propping up" the supernova's luminosity.

Preceding the peak of 56 Ni and thus luminosity in the supernova and after the drop in luminosity due to cooling, Type Ia supernovae like SN2014J and Type II-P supernovae like 1987A differ significantly. Here we compare example lightcurves from each category and discuss implications for how the supernovae explode and how we decide taxonomy.