Homework 3, Computational Physics

Seann Smallwood

October 24, 2020

Abstract

This goal of this work was to analyze systems for which curve fittings and approximations were essential. The first problem we fit a curve to a specified function, the second, we used a summation relationship and its partial sums to approximate values for which the sum diverges.

1 Introduction

1.1 Harmonic Oscillator Fit

We used a potential function V(x)

$$V(x) = -2 + 2(1 - \frac{1}{2}exp(-\frac{x}{2} + 2))^2$$

The objective for this problem was to use the potential function for a harmonic oscillator to fit a curve to the absolute minimum of the given function V(x).

1.2 Sum Approximation

Given the following sum $\zeta(s)$

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$

The objective of this task was to calculate a few values of ζ and use these to predict the value of ζ when s=1.

1.3 Setup and General Methods

Fortran was used to analyze each system. To implement common mathematical terms and define the precision to which values were calculated a file was created. This file, named numtype, is shown below.

```
integer,parameter :: dp = selected_real_kind(15,307)
    integer,parameter :: qp = selected_real_kind(33,4931)
    real(dp), parameter :: pi = 4*atan(1._dp)
    complex(dp), parameter :: iic = (0._dp,1._dp)
    end module numtype
A Makefile, figure 3, was used to compile the fortran code and create and exe-
cutable file.
OBJS1 = numtype.o thielecf.o prob2.o
PROG1 = approx
F90 = gfortran
F90FLAGS = -03 -funroll-loops -fexternal-blas
LIBS = -framework Accelerate
LDFLAGS = $(LIBS)
all: $(PROG1)
$(PROG1): $(OBJS1)
$(F90) $(LDFLAGS) -o $@ $(OBJS1)
clean:
rm -f $(PROG1) *.{o,mod} fort.*
.SUFFIXES: $(SUFFIXES) .f90
.f90.o:
$(F90) $(F90FLAGS) -c $<
```

module numtype

2 Solutions

2.1 Harmonic Oscillator Fit

First, the potential function V(x) was plotted to find the minimum.

$$V(x) = -2 + 2(1 - \frac{1}{2}exp(-\frac{x}{2} + 2))^{2}$$

The initial plot of the function did not make the minima immediately obvious, so we tooke the derivative of V(x) giving

$$dV(x)/dx = 7.389e^{-x}(e^{x/2} - 3.69453)$$

Finding the zero's of dV/dx narrowed our parameters to find the minimum of V(x) The following is the plot of the minimum of V(x)

Figure 1: Minimum of V(x)

The goal was then to fit a standard harmonic oscillator potential function U(x) to the minimum of V(x).

$$U(x) = \frac{1}{2}a(x-b)^{2} + c$$

a, b, c are parameters that define and shape the harmonic potential function. An intial guess was made for each, a, b, and c based on the plot of V(x). These parameters were then used to iterate through a fitting algorithm to fit the harmonic oscillator potential, U(x), to the given potential function, V(x).

Below is the code used to genarte the plot, initialize and call the fitting

```
algorithim, and asses the strength of fit using a chi squared calculation.
```

```
module setup
    use numtype
    implicit none
    integer, parameter :: npmax = 400, npar = 3
    integer, parameter :: nspmin = 1, nspmax = 250
    real(dp) :: xx(1:npmax), yy(1:npmax)
    integer :: nsp, ical, iprint
end module setup
program problem_1
    use setup
    implicit none
    integer :: stat, i, itmin, itmax, in
    real(dp), external :: chi2
    real(dp) :: xstart(npar), fstart, stepi, epsf, dx
    xx(1) = 1.0_dp
                                                                        !-----
    dx = .02_dp
                                                                        !This loop populat
    do in = 1, 250
                                                                        !given function
        yy(in) = -2.0_dp + (2 * ((1 - (0.5*(exp((-xx(in)/2)+2))))**2))
        write(11,*) xx(in), yy(in)
                                                                        !used to graph the
        xx(in+1) = xx(in) + dx
    end do
    xstart(1:npar) = (/ 2.0_dp , 2.5_dp, -2.0_dp /)
```

 $xstart(1:npar) = (/ 0.5573_dp , 3.2226_dp, -2.0384_dp /)$

```
ical = 0
   iprint = 7
    fstart = chi2 (xstart)
   stepi= 0.05_dp
    epsf = 0.001_dp
    itmin = 100
    itmax = 1000
    iprint = 0
    call downhill(npar,chi2,xstart,fstart,stepi,epsf,itmin,itmax)
    iprint = 17
    fstart = chi2 (xstart)
   print *, xstart(1:npar)
end program problem_1
function chi2( par )
   use setup
    implicit none
   real(dp) :: chi2
   real(dp) :: par(npar)
    real(dp) :: K, mid, x, fi, height
    integer :: i
   ical = ical + 1
   K = par(1); mid = par(2); height = par(3)
                                                     !using harmonic function V(x) = 1/2
    chi2 = 0
                   ! chi^2
   do i = nspmin, nspmax
       x = xx(i)
       fi = 0.5_dp * K * (x - mid)**2 + height
                                                !harmonic function V(x) = 1/2 K (x)
        chi2 = chi2 + (yy(i) - fi)**2 * 1/sqrt( 2._dp + yy(i) )
    end do
    chi2 = chi2 / abs(nspmax-nspmin)
```

end function chi2

The fitting algorithm used the inital parameters and iterates through to optimize these parameters. It is called the downhill method and was used as follows

```
subroutine downhill(n,func,xstart,fstart,stepi,epsf,itmin,iter)
ı
   n
                dimension of the problem
!
   func
                function
   xstart
                starting values
   fstart
                conrespoding function value
   stepi
                relative stepsize for initial simplex
   epsf
                epsilon for termination
   itmin
                termination is tested if itmin < it
   iter
                maximum number of iterations
   use numtype
   implicit none
   integer :: n, iter, itmin
   real(dp), external :: func
   real(dp) :: xstart(1:n), fstart, stepi, epsf
   real(dp), parameter :: alph=1._dp, gamm=2._dp, &
                            rho=0.5_dp, sig=0.5_dp
```

```
real(dp) :: xi(1:n,1:n+1), x(1:n,1:n+1), &
    fi(1:n+1), f(1:n+1), &
    x0(1:n), xr(1:n), xe(1:n), xc(1:n), &
    fxr, fxe, fxc, deltaf
integer :: i, ii, it
xi(1:n,1) = xstart(1:n); fi(1) = fstart
do i = 2, n+1
    xi(1:n,i)=xi(1:n,1)
    xi(i-1,i)=xi(i-1,i)*(1+stepi)
    fi(i)=func(xi(1:n,i))
end do
do it = 1, iter
    do i = 1, n+1
                                            ! ordering
        ii = minloc(fi(1:n+1),dim=1)
        x(1:n,i) = xi(1:n,ii); f(i) = fi(ii)
        fi(ii) = huge(0._dp)
    end do
    xi(1:n,1:n+1) = x(1:n,1:n+1)
    fi(1:n+1) = f(1:n+1)
    x0(1:n) = sum(x(1:n,1:n),dim=2)/n
                                       ! central
    if ( itmin < it ) then
                                        ! condition for exit
        deltaf = (f(n)-f(1))
        !write(777,*) it,deltaf
        if(deltaf < epsf ) exit</pre>
    end if
    xr(1:n) = x0(1:n)+alph*(x0(1:n)-x(1:n,n+1))
    fxr = func(xr)
    if( fxr < f(n) .and. &
                                        ! reflection
            f(1) \le fxr ) then
        xi(1:n,n+1) = xr(1:n); fi(n+1) = fxr
        cycle
    else if (fxr < f(1)) then
                                        ! expansion
        xe(1:n) = x0(1:n)+gamm*(x0(1:n)-x(1:n,n+1))
```

```
fxe = func(xe)
        if( fxe < fxr ) then
            xi(1:n,n+1) = xe(1:n); fi(n+1) = fxe
            cycle
        else
            xi(1:n,n+1) = xr(1:n); fi(n+1) = fxr
            cycle
        end if
    else if (fxr >= f(n)) then
                                      ! contraction
        xc(1:n) = x(1:n,n+1)+rho*(x0(1:n)-x(1:n,n+1))
        fxc = func(xc)
        if( fxc \le f(n+1) ) then
            xi(1:n,n+1) = xc(1:n); fi(n+1) = fxc
            cycle
        else
                                             ! reduction
            do i = 2, n+1
                xi(1:n,i) = x(1:n,1)+sig*(x(1:n,i)-x(1:n,1))
               fi(i) = func(xi)
            end do
            cycle
        end if
    end if
end do
xstart(1:n)=xi(1:n,1); fstart = fi(1)
```

8

end subroutine downhill

2.2 Sum Approximation

We analyzed the function

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$

The sum $\zeta(1)$ diverges, so we used other local convergent s values to make an approximation for $\zeta(1)$ by means of a continuous fraction algorithm.

We used s values from 2 to 4 and calculated each corresponding $\zeta(s)$ sum. The s and $\zeta(s)$ values were input into the continuos fraction algorithm to then evaluate $\zeta(1)$.

The sums were calculated as follows:

```
program prob_2
use numtype
use thiele_approx
implicit none
integer, parameter :: np = 11
integer :: inmax, in, i
real(dp), dimension(1:np) :: sums, xx, yy
real(dp) :: x
inmax = 10**7
sums = 0
do in = 1,inmax
                                             !itereate sums for function chi(s)
    sums(1) = sums(1) + 1/(in**2.0_dp)
                                             !chi(s) = sum from 1 to inf. of n^-s
    sums(2) = sums(2) + 1/(in**2.2_dp)
                                             !at various values of s
    sums(3) = sums(3) + 1/(in**2.4_dp)
    sums(4) = sums(4) + 1/(in**2.6_dp)
    sums(5) = sums(5) + 1/(in**2.8_dp)
    sums(6) = sums(6) + 1/(in**3.0_dp)
    sums(7) = sums(7) + 1/(in**3.2_dp)
    sums(8) = sums(8) + 1/(in**3.4_dp)
    sums(9) = sums(9) + 1/(in**3.6_dp)
    sums(10) = sums(10) + 1/(in**3.8_dp)
    sums(11) = sums(11) + 1/(in**4.0_dp)
```

end do

```
xx(1) = 2.0_dp
                                            !chosen values for s to analyze sum
xx(2) = 2.2_dp
                                             !to input into thiele cf approximation
xx(3) = 2.4_dp
xx(4) = 2.6_dp
xx(5) = 2.8_dp
xx(6) = 3.0_dp
xx(7) = 3.2_dp
xx(8) = 3.4_dp
xx(9) = 3.6_dp
xx(10) = 3.8_dp
xx(11) = 4.0_dp
yy(1) = sums(1)
                                             !resulting sums of corresponding s values
yy(2) = sums(2)
                                            !yy is a function of xx
yy(3) = sums(3)
yy(4) = sums(4)
yy(5) = sums(5)
yy(6) = sums(6)
yy(7) = sums(7)
yy(8) = sums(8)
yy(9) = sums(9)
yy(10) = sums(10)
yy(11) = sums(11)
write(10,*) xx, yy
                                            !make sure s values and partial sums are g
call thiele_coef( np, xx, yy, an )
                                            !generate continued fraction coefficients
x = 1.0_dp
print *, x, thiele_cf (x, np, xx, an)
                                       !use cf coeffs to evalutae the function at
```

end program

The continued fraction method used was the Thiele method and this was the code used:

module thiele_approx

```
use numtype
implicit none
integer, parameter :: maxpt = 50
    real(dp), dimension(maxpt) :: zn, fn, an
contains
        subroutine thiele_coef( nn, zn, fn, an )
        ! coefficients of Thiele continued fraction
            use numtype
            implicit none
            real(dp), dimension(maxpt) :: zn, fn, an
            real(dp), dimension(maxpt,maxpt) :: gn
            integer :: nn, n, nz
            gn(1,1:nn) = fn(1:nn)
            do n = 2, nn
                do nz = n, nn
                    gn(n,nz) = (gn(n-1,n-1) - gn(n-1,nz)) / &
                        ((zn(nz)-zn(n-1))*gn(n-1,nz))
                end do
            end do
            forall ( n = 1:nn ) an(n) = gn(n,n)
        end subroutine thiele_coef
        function thiele_cf (z, nn, zn, an) result(cfrac)
        ! evaluate the Thiele continued fraction
            use numtype
            implicit none
            real(dp) :: z
            real(dp), dimension(maxpt) :: zn, an
            integer :: nn, n
            real(dp) :: cf0(2), cf1(2), cf(2), cfrac
            cf0(1) = 0._dp; cf0(2) = 1._dp
```

```
cf1(1) = an(1); cf1(2) = 1._dp
do n = 1, nn-1
    cf = cf1 + (z - zn(n)) * an(n+1) * cf0
    cf0 = cf1; cf1 = cf
end do
cfrac = cf(1)/cf(2)
```

end function thiele_cf

end module thiele_approx

3 Results

3.1 Harmonic Oscillator Fit

With x ranging from 1 to 6 the resulting Chi^2 value was 0.1650 and the plots are shown in figure 2.

Figure 2: U(x) fit to V(x)

To get a better fit, the range of x would need to be shrunk, closer to the absolute minimum of V(x).

3.2 Sum Approximation

Using 10^8 terms in each sum and eleven pairs of s and $\zeta(s)$ values, $\zeta(1)$ was approximated to be

$$\zeta(1) = 542548.10289$$