How beliefs respond to news: implications for asset prices

by Ian Dew-Becker, Stefano Giglio, and Pooya Molavi

Discussed by **Sergei Glebkin**

INSEAD Finacne Symposium 2025

Motivation: leverage effect

Connects the sign of leverage effect to skewness

• $sign(corr(\Delta p_t, \Delta vol_t)) = sign(skew(\Delta p_t))$

Connects the sign of leverage effect to skewness

•
$$sign(corr(\Delta p_t, \Delta vol_t)) = sign(skew(\Delta p_t))(*)$$

Theory: when innovations in prices and vol are driven by the same news, standard Bayesian filtering yields (*).

Connects the sign of leverage effect to skewness

• $sign(corr(\Delta p_t, \Delta vol_t)) = sign(skew(\Delta p_t))$

Connects the sign of leverage effect to skewness

•
$$sign(corr(\Delta p_t, \Delta vol_t)) = sign(skew(\Delta p_t))(*)$$

•
$$\Delta vol_t = \beta \Delta p_t + \cdots$$
,

Theory: prediction about the magnitude of the leverage effect

$$\beta = \left(\frac{1}{3}\Delta t^{-1/2}\right) \operatorname{skew}_t(p_{t+\Delta t})$$

Connects the sign of leverage effect to skewness

•
$$sign(corr(\Delta p_t, \Delta vol_t)) = sign(skew(\Delta p_t))(*)$$

•
$$\Delta vol_t = \beta \Delta p_t + \cdots$$
,

Theory: prediction about the magnitude of the leverage effect

$$\beta = \left(\frac{1}{3}\Delta t^{-1/2}\right) \operatorname{skew}_t(p_{t+\Delta t})$$

Empirics: strong support for the theory, at monthly frequency $(\Delta t = 21 \text{ days})$

Plan

- A simple example to illustrate the theory
- Comments
- * Hereafter, the comments are underlined

A simple example

- Consider an asset that pays off f(v) at time t = 1
- Suppose, for simplicity, E[f(v)] = E[v] = 0 and var[v] = 1.
- An agent learns about v from

$$ds = vdt + dB$$

- How do first and second moments react to news?
 - For simplicity, ask this question at t = 0.
 - Looking for x and y in

$$E[f(v)|ds] = xds + \cdots \qquad \qquad E[f(v)^2|ds] = yds + \cdots$$

A simple example

Looking for x in

$$E[f(v)|ds] = xds + \cdots$$

- Since ds is small, E[f(v)|ds] is linear in ds
- x is then given by the familiar Best Linear Predictor/ Linear Regression formula

$$x = \frac{cov(f(v), ds)}{var(ds)}$$

• Let f(v) = v. Looking for x and y in

$$E[v|ds] = xds + \cdots \qquad \qquad E[v^2|ds] = yds + \cdots$$

Familiar linear regression formula yields

$$x = \frac{cov(v, ds)}{var(ds)} \text{ and } y = \frac{cov(v^2, ds)}{var(ds)}$$

• $var(ds) = var(vdt + dB) = dt^2var(v) + var(dB) = dt$

• Let f(v) = v. Looking for x and y in

$$E[v|ds] = xds + \cdots \qquad \qquad E[v^2|ds] = yds + \cdots$$

Familiar linear regression formula yields

$$x = \frac{cov(v, ds)}{var(ds)} \text{ and } y = \frac{cov(v^2, ds)}{var(ds)}$$

- $var(ds) = var(vdt + dB) = dt^2var(v) + var(dB) = dt$
- cov(v, ds) = cov(v, vdt + dB) = dt var(v)

• Let f(v) = v. Looking for x and y in

$$E[v|ds] = xds + \cdots \qquad \qquad E[v^2|ds] = yds + \cdots$$

Familiar linear regression formula yields

$$x = \frac{cov(v, ds)}{var(ds)} \text{ and } y = \frac{cov(v^2, ds)}{var(ds)}$$

- $var(ds) = var(vdt + dB) = dt^2var(v) + var(dB) = dt$
- cov(v, ds) = cov(v, vdt + dB) = dt var(v)
- $cov(v^2, ds) = cov(v^2, vdt + dB) = dt \ skew(v)$

• Let f(v) = v. Looking for x and y in

$$E[v|ds] = xds + \cdots \qquad \qquad E[v^2|ds] = yds + \cdots$$

Familiar linear regression formula yields

$$x = var(v)$$
 and $y = skew(v)$

- $var(ds) = var(vdt + dB) = dt^2var(v) + var(dB) = dt$
- cov(v, ds) = cov(v, vdt + dB) = dt var(v)
- $cov(v^2, ds) = cov(v^2, vdt + dB) = dt \ skew(v)$

• Let f(v) = v. Looking for x and y in

$$E[v|ds] = xds + \cdots \qquad \qquad E[v^2|ds] = yds + \cdots$$

- Familiar linear regression formula + some work yield x = var(v) and y = skew(v)
- When skew(v) < 0 (> 0), the first and second moments respond to news in opposite (same) directions.

Simple example: discussion

- Let f(v) = v
- When skew(v) < 0 (> 0), the first and second moments respond to news in opposite (same) directions.
- We need to link the moments of v to the moments of price.
- In my example, it can be achieved by assuming that prices are set by a competitive RN market maker who observes ds

$$p_t = E[v|\{ds_\tau\}_{\tau \in [0,t]}]$$

Simple example: discussion

- Let f(v) = v
- When skew(v) < 0 (> 0), the first and second moments respond to news in opposite (same) directions.
- I'd like to see a fully closed model in the paper
 - How prices are set? Is ds a private or public info?
 - You can have one concrete example + argue that things hold more generally

A simple example

• Consider a generic, well-behaved f(v). Suppose $v \sim N(0,1)$. Looking for x and y in

$$E[f(v)|ds] = xds + \cdots \qquad \qquad E[f(v)^2|ds] = yds + \cdots$$

Familiar linear regression formula + Stein's Lemma yield

$$x = \frac{cov(f(v), ds)}{var(ds)} = var(v)E[f'(v)] \text{ and}$$
$$y = \frac{cov(f(v)^2, ds)}{var(ds)} = var(v)2E[f(v)f'(v)]$$

* Stein's lemma:

Suppose *X* and *Y* are jointly normally distributed. Then Cov(g(X), Y) = Cov(X, Y)E(g'(X)).

A simple example

• Consider a generic, well-behaved f(v). Suppose $v \sim N(0,1)$. Familiar linear regression formula + Stein's Lemma yield

$$x = \frac{cov(f(v), ds)}{var(ds)} = var(v)E[f'(v)] \text{ and}$$
$$y = \frac{cov(f(v)^2, ds)}{var(ds)} = var(v)2E[f(v)f'(v)]$$

- $\operatorname{sign}\left(\frac{x}{y}\right)$ is no longer proportional to $\operatorname{skew}(f(v))!$
 - Importance of info structure. Do we learn about discounted cashflows, or about some transformation of them (like earnings)? Maybe we learn about second moment, i.e. $ds = v^2dt + dB$...
 - Log-linearization in the paper is perhaps not wlog

Comments

- Currently, the writing overstates the generality of the results—you present them as if they were almost modelfree.
 - They are not: different learning specifications will yield different results
- I think the best way to address these comments is to present a closed, equilibrium model that links the leverage effect to skewness.
- Then, you can validate this model with your empirical findings.
 - After that, it's acceptable that another model might produce different results, since that would be considered counterfactual.

Suggestions for empirics

It would be nice if the evidence for the opposite signs of skew came from more similar asset classes.

Suggestion for empirics

Play with Δt in the prediction about the magnitude of the leverage effect

$$\beta = \left(\frac{1}{3}\Delta t^{-1/2}\right) \operatorname{skew}_t(p_{t+\Delta t})$$

- Show β aligns with theory not only for monthly frequency ($\Delta t = 21$).
- Do you get $\Delta t^{-1/2}$ scaling?

A (somewhat) related result

In my JMP, I connected (theoretically) price impact asymmetry to skewness.

(e.g., stock market index) sells move prices more than purchases

(e.g., individual stocks)
purchases move prices more
than sells

*Another mechanism for why skewness matters: many preferences are such that agents like >0 skewness.

Conclusion

This is a great paper

- Simple, intuitive idea
- Supporting evidence

I like it.

Better packaging for more impact and easier publishing