Practical Methodology

Arun Chauhan

Hyperparameter Search

Transfer Learning/ Less Data

Practioners rarely train a CNN "from scratch". Instead we could:

- Take a pre-trained CNN model (e.g. AlexNet), and use its features network to compute image features, which we then use to classify our own images
- Initialize our weights using the weights of a pre-trained CNN model (e.g. AlexNet)

Variants of CNN

Classic Networks

LeNet - 5

VGG - 16

Similarly VGG-19 Network

CONV=3X3 filter, s=1, same

 $MAX-POOL = 2 \times 2$, s = 2

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

ResNets

Residual block

$$a^{[l]} \longrightarrow \boxed{\bigcirc} a^{[l+1]} \bigcirc \longrightarrow a^{[l+2]}$$

$$z^{[l+1]} = W^{[l+1]} \; a^{[l]} + b^{[l+1]} \quad a^{[l+1]} = g(z^{[l+1]}) \qquad z^{[l+2]} = W^{[l+2]} a^{[l+1]} + b^{[l+2]} \qquad a^{[l+2]} = g(z^{[l+2]})$$

Single Residual Block

Residual Network

[He et al., 2015. Deep residual networks for image recognition]

Why do residual networks works?

ReLU a>=0

$$A^{[l+2]} = g(Z^{[l+2]} + A^{[l]})$$

 $= g(W^{[l+2]} A^{[l+1]} + b^{[l+2]} + A^{[l]})$
If
 $W^{[l+2]} = 0$, $b^{[l+2]} = 0$
Then
 $A^{[l+2]} = g(A^{[l]})$
 $= A^{[l]}$

ResNet

Networks in Networks and 1x1 Convolutions

Why does a 1×1 convolution do?

Using 1×1 convolutions

The problem of computational cost

28X28X32

X

5X5X192 ≈

120 M

Using 1×1 convolution

28X28X16	X	192 ≈	2.4M
28X28X32	Х	5X5X16 ≈	10M
Total		\approx	12.4 M

Inception Network

Inception network

Autoencoders

Convolution

Vs

Deconvolution

Convolution

Vs

Deconvolution

(a) Convolutional layer: the input size is $W_1 = H_1 = 5$; the receptive field F = 3; the convolution is performed with stride S = 1 and no padding (P = 0). The output Yis of size $W_2 = H_2 = 3$.

(b) Transposed convolutional layer: input size $W_1 = H_1 = 3$; transposed convolution with stride S = 2; padding with P = 1; and a receptive field of F = 3. The output Yis of size $W_2 = H_2 = 5$.

What are autoencoders?

Image Autoencoder

An image autoencoder is a neural network used to find a **low-dimensional representation** of some images. This is an **unsupervised learning** task (no labels).

An image autoencoder has two components:

- An encoder neural network that takes the image as input, and produces a low-dimensional embedding.
- A decoder neural network that takes the low-dimensional embedding as input, and reconstructs the image.

Idea: A good, low-dimensional representation should allow us to reconstruct everything about the image.

The components of an autoencoder

Encoder:

- ► Input = image
- Output = low-dimensional embedding

Decoder:

- ► Input = low-dimensional embedding
- Output = image

Why autoencoders?

- Dimension reduction:
 - find a low dimensional representation of the image
- ► Image Generation:
 - generate new images not in the training set

Autoencoders are considered a generative model.

How to train autoencoders?

- Loss function:
 - How close were the reconstructed image from the original?
 - Mean Square Error Loss: look at the mean square error across all the pixels.

Architectures with Transpose Convolution

More than one upsampling layer

DeconvNet:

VGG-16 (conv+Relu+MaxPool) + mirrored VGG (Unpooling+'deconv'+Relu)

Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

• END with Intro to Variational Autoencoder.	