Implementación de redes neuronales convolucionales para el meta-análisis de acoplamientos moleculares de complejos proteína-ligando

Adrián Antonio Rodríguez Pié 21 de noviembre de 2019

Universidad Nacional Autónoma de México

Outline

Sobre proteínas

Sobre inteligencia artificial

Sobre redes y neuronas

Sobre proteínas

Proteínas

Orígen

Originado del griego *proteios* que significa "primario" o "de primer orden".

Proteínas

Orígen

Originado del griego *proteios* que significa "primario" o "de primer orden".

Definición (según la RAE)

Sustancia constitutiva de la materia viva, formada por una o varias cadenas de aminoácidos.

3

Ligandos

• Un ligando es una molécula que se une a otra molécula específica, en algunos casos mandando una señal en el proceso.

Ligandos

- Un ligando es una molécula que se une a otra molécula específica, en algunos casos mandando una señal en el proceso.
- Estos ligandos interactuan con moleculas objetivo (usualmente otras proteínas). Son a estas proteínas a las que llamamos receptores o residuos.

Docking

Acoplamiento molecular

Método cuyo objetivo es predecir los estados tanto estructurales, llamadas poses, como energéticos, prediciendo la afinidad del enlace entre moléculas.

5

Pasos del docking

Sobre inteligencia artificial

La prueba de Turing

IA y agentes

Inteligencia artrificial

Agentes racionales que, mediante sensores, pueden percibir su entorno y actuar sobre él a partir de un sistema de decisión.

IA y agentes

Inteligencia artrificial

Agentes racionales que, mediante sensores, pueden percibir su entorno y actuar sobre él a partir de un sistema de decisión.

Agentes

Máquina compuesta por un conjunto finito de estados, cuyas transiciones están dadas por reglas de inferencias.

Sobre redes y neuronas

Inspiración en la biología

El perceptrón

Definiciónes

- $\mathbf{x} \in \mathbb{R}^n$ (muestra)
- $\mathbf{w} \in \mathbb{R}^n$ (vector de pesos)
- $\theta \in \mathbb{R}^n$ (umbral de activación)
- $\bullet \ \ \textbf{y} \in \{0,1\} \ \big(\text{valor real de la muestra} \big)$
- $\hat{y} \in \{0,1\}$ (valor predicho de la muestra)

Por último, definimos z como una combinación líneal de x y w

$$z = w_1 x_1 + \dots w_n x_n$$

Llamamos a z la entrada de la red.

El perceptrón

Definiciónes

- $\mathbf{x} \in \mathbb{R}^n$ (muestra)
- $\mathbf{w} \in \mathbb{R}^n$ (vector de pesos)
- $\theta \in \mathbb{R}^n$ (umbral de activación)
- $y \in \{0,1\}$ (valor real de la muestra)
- $\hat{y} \in \{0,1\}$ (valor predicho de la muestra)

Por último, definimos z como una combinación líneal de x y w

$$z = w_1 x_1 + \dots w_n x_n$$

Llamamos a z la entrada de la red.

Función de activación

Definimos

$$\phi(z) = \begin{cases} 1 & \text{si } z \ge \theta \\ -1 & \text{en otro caso} \end{cases}$$

Pasos del perceptrón

- Inicializar los pesos en cero o en números aleatorios cercanos a cero.
- 2. Para cada muestra de entrenamiento x, realizar lo siguiente:
 - a) Calcular el valor de salida \hat{y} ($\hat{y} = \phi(z)$).
 - b) Actualizar los pesos en w a partir del error Δw . Con Δw dado por:

$$\Delta w = \eta (y - \hat{y}) x$$

Donde $\eta \in [0,1]$ es el *índice de aprendizaje*.

Diagrama del perceptrón

El perceptrón multicapa

El perceptrón multicapa

Función de costo o error

Definimos la función de costo J para el perceptrón multicapa como la suma de los errores cuadrados entre la salida calculada y el valor real:

$$J(w) = 1/2n \sum_{i=1}^{n} (\hat{y}_i - y_i^2)$$

El perceptrón multicapa

Función de costo o error

Definimos la función de costo J para el perceptrón multicapa como la suma de los errores cuadrados entre la salida calculada y el valor real:

$$J(w) = 1/2n \sum_{i=1}^{n} (\hat{y}_i - y_i^2)$$

¡Es diferenciable!

Descenso por el gradiente

