Lecture -2 Sum-of-Products, Product-of-Sum

Prepared By: Asif Mahfuz

Standardization

- All Boolean expression, regardless of their form, can be converted into either of the two standard forms.
- The two standard forms are: Sum-of-Products (SOP) and Product-of-Sum (POS).
- Standardization makes evaluation, simplification and implementation of Boolean expression much more systematic and easier.

Domain of a Boolean Expression

- The domain of a general Boolean expression is the set of variable contained in the Boolean expression in either complemented or uncomplemented form.
- For example, the domain of the expression $A\overline{B} + \overline{A}C$ is the set of variable A,B and C.
- And for example, the domain of the expression $A\overline{B}C + \overline{C}E + \overline{A}\overline{D}$ is the set of variables A,B,C,D and E.

Sum-of-Product (SOP)

• Sum of Products: A Product is defined as a term consisting of products of the literals. When two or more products are summed in a Boolean expression, it is called the Sum-of-Products (SOP).

$$A + \overline{A}B + B\overline{C}$$

• Standard SOP: It is an expression where all the variables are present in each product terms. The products in a SSOP are called min terms $(\mathbf{m_i})$.

$$\overline{ABC} + \overline{ABC} + \overline{ABC}$$

- Conversion of SOP to Standard SOP
 - Step1: Multiply each of the non-standard terms with a term made up of the sum of the missing variable and its complement. This do not change the function as we are just multiplying by 1.
 - Step2: Repeat step 1 until all the non-standard terms become standard terms.
- $oldsymbol{\circ}$ Sum-of-Products is used to describe when the function is 1. $oldsymbol{\circ}$

Product-of-Sum (POS)

Product of Sum: A Sum is defined as a term consisting of sum of the literals. When two
or more sum terms are multiplied in a Boolean Expression, it is called the Product-ofSum (POS).

$$(\mathbf{B} + \overline{\mathbf{C}})(\mathbf{A} + \overline{\mathbf{B}})$$

• Standard POS: It is an expression where all the variables are present in each sum terms Each sum terms are called max terms (M_i)

$$(\overline{A} + B + C)(A + \overline{B} + \overline{C})$$

- Conversion of POS to Standard POS
 - Step1: Add to each non-standard product terms a term made up of the product of the missing variable and its complement. This does not change the expression as we are just adding a 0.
 - Step2: Apply rule 12: $\mathbf{A} + \mathbf{BC} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$
 - Step3: Repeat step 1 until all the sum terms contain all the variable in the domain.
- Product-of-Sum is used to describe when the function is 0.

SOP & POS

Convert the following Boolean expression into standard SOP form:

$$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

Convert the expression $W\overline{X}Y + \overline{X}Y\overline{Z} + WX\overline{Y}$ to standard SOP form.

Convert the following Boolean expression into standard POS form:

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

Convert the expression $(A + \overline{B})(B + C)$ to standard POS form.

Min Terms and Max Terms

- Each variable in a Boolean expression is a literal. —
- Boolean variable can appear in normal (A) or complemented (\overline{A}) form.
- Each product of all variables in the domain is called Min-Term.
- Each sum of all variables in the domain is called Max-Term.

Α	В	С	Min-Terms	
0	0	0	$\overline{A}\overline{B}\overline{C}$	\mathbf{m}_0
0	0	1	$\overline{A}\overline{B}C$	$\mathbf{m_1}$
0	1	0	$\overline{A}B\overline{C}$	\mathbf{m}_2
0	1	1	Ā₿€	\mathbf{m}_3
1	0	0	$A\overline{B}\overline{C}$	$\mathbf{m_4}$
1	0	1	$A\overline{B}C$	$\mathbf{m_5}$
1	1	0	$AB\overline{C}$	m ₆
1	1	1	ABC	\mathbf{m}_7

A	В	С	Max-Terms	
0	0	0	A + B + C	M_0
0	0	1	$A + B + \bar{C}$	M_1
0	1	0	$A + \overline{B} + C$	\mathbf{M}_2
0	1	1	$A + \overline{B} + \overline{C}$	M_3
1	0	0	$\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C}$	M_4
1	0	1	$\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}$	M_5
1	1	0	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C}$	M_6
1	1	1	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$	M_7

For Min-Terms:

When $0 \rightarrow$ Complemented Form When $1 \rightarrow$ Normal Form

For Max-Terms:

When $1 \rightarrow$ Complemented Form When $0 \rightarrow$ Normal Form

Boolean Expression(SOP) to Truth-Table

- Truth-table can be formed for any Boolean expression.
- Converting a Boolean Expression to SSOP can make this task a lot easier.
- Find the truth-table for the following Boolean expression:

$$\begin{split} F(A,B,C) &= AB + \overline{B}\overline{C} \\ F(A,B,C) &= AB(C+\overline{C}) + (A+\overline{A})\overline{B}\overline{C} \\ F(A,B,C) &= ABC + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} \end{split}$$

Α	В	С	Min-Terms
0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	$\overline{A}\overline{B}C$
0	1	0	$\overline{A}B\overline{C}$
0	1	1	ĀBC
1	0	0	$A\overline{B}\overline{C}$
1	0	1	$A\overline{B}C$
1	1	0	$AB\overline{C}$
1	1	1	ABC

	Α	В	С	F
	0	0	0	1
	0	0	1	0
	0	1	0	0
>	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	1

Truth-Table to Function Implementation

Find and implement the function from the following truth-table.

Α	В	С	F		A	В	С	F
0	0	0	1		0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	0		0	0	1	
0	1	0	1		0	1	0	$\overline{A}B\overline{C}$
0	1	1	0		0	1	1	
1	0	0	0	,	1	0	0	
1	0	1	0		1	0	1	
1	1	0	1		1	1	0	$AB\overline{C}$
1	1	1	1		1	1	1	ABC

$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

$$F(A, B, C) = \overline{A}\overline{C} + AB$$

- For the function $F = \sum (2,3,5,7)$:
 - a) Construct the truth table.
 - b) Implement the function.

Boolean Expression(POS) to Truth-Table

• Form a truth-table for the following Boolean expression.

$$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = (\mathbf{A} + \mathbf{B}) \cdot (\overline{\mathbf{B}} + \overline{\mathbf{C}})$$

• In the first step, we will convert the POS to SPOS:

$$F(A, B, C) = (A + B + C\overline{C}) \cdot (\overline{B} + \overline{C} + A\overline{A})$$

$$F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{B} + \overline{C} + A) \cdot (\overline{B} + \overline{C} + \overline{A})$$

• Once we have converted the expression to SPOS, now we can directly form the truth-table.

Α	В	С	Max-Terms
0	0	0	A + B + C
0	0	1	$A + B + \overline{C}$
0	1	0	$A + \overline{B} + C$
0	1	1	$A + \overline{B} + \overline{C}$
1	0	0	$\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C}$
1	0	1	$\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}$
1	1	0	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C}$
1	1	1	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$

A	В	С	Max-Terms
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
. 1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Function Implementation using POS

- For the function $F = \prod (1,2,5,6)$:
 - a) Construct the truth table.
 - b) Implement the function.

Solution:

Step 1

	•		
A	В	С	Max-Terms
0	0	0	
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	0
1	1	0	0
	4	4	

Step 2

Α	В	С	Max-Terms
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Step 3
$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$$

Now that we have the Boolean expression, we can simplify it and implement it.

Connecting the Dots between SOP and POS

• From the truth table determine the standard SOP expression and the equivalent POS expression.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Standard SOP expression:

• Write down the sum of min terms of the combinations for which the function is 1.

$$\mathbf{F} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$$

Equivalent POS expression:

• Write down the product of max terms of the combinations for which the function is 0.

$$\mathbf{F} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \cdot (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}) \cdot (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C})$$

HOW DOES THIS EVEN WORK!!!!!!!

Connecting the Dots between SOP and POS

Α	В	С	F	A	В	С	F	F
0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	1	0	1
0	1	0	0	0	1	0	0	1
0	1	1	1	0	1	1	1	0
1	0	0	1	1	0	0	1	0
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	0	1	0
1	1	1	1	1	1	1	1	0

$$\mathbf{F} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$$

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

Now we have the SOP expression of the complement of the function:

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

- This means we have converted the 0s of the function 1s and vice versa.
- What if we turn the 0s back to 1, that is we convert \overline{F} to F

Connecting the Dots between SOP and POS

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

• Now to convert the 0s back to 1s we complement \overline{F} that is $\overline{\overline{F}}$.

$$\overline{F} = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

$$F = \overline{A}\overline{B}\overline{C} \cdot \overline{A}\overline{B}C \cdot \overline{A}B\overline{C}$$

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C)$$

- So we have reached the same expression of POS as we did earlier.
- SOP is the positive logic definition of the function.
- POS is the negative logic definition of the function.

What is positive logic and what is negative logic????

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You