Modul 3: forelæsning 1 Differentialligninger af 1. orden Matematik og modeller 2018

Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

22. maj 2018 — Dias 1/21

ØBENHAVNS UNIVERSITET

Oversigt

Mest repetition med fokus på de sværeste emner. God tid til at regne opgaver.

- 3 simple typer differentialligninger
 Eksponentiel vækst (med konstantled)
 Logistisk vækst (med variationer)
- Separation af de variable
- S Lineære 1. ordens differentialligninger "Panserformlen" "Nålestiksmetoden"
- 4 Eksistens- og entydighed af løsninger
- **6** Ligevægt og stabilitet

KØBENHAVNS UNIVERSITE

Kort oversigt over kurset

- Lineære differensligninger: $x_{t+1} = ax_t + b_t$ (Modul 2)
- Generelle differensligninger: $x_{t+1} = f(t, x_t)$ (Modul 2)
- Lineære systemer af differensligninger: $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}_t$ (Modul 1,2)
- ullet Generelle systemer af differensligninger: $oldsymbol{x}_{t+1} = oldsymbol{f}(t,oldsymbol{x}_t)$ (Modul 2)
- Lineære differentialligninger: x' = ax + b(t) (Modul 3)
- Generelle differentialligninger: x' = f(t, x) (Modul 3)
- Lineære systemer af differentialligninger: $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}(t)$ (Modul 4)
- Generelle systemer af differentialligninger: $\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$ (Modul 5)

Dias 2/21

KØBENHAVNS UNIVERSITE

Eksponentiel vækst

Sætning Eksponentiel vækst

Differentialligningen for eksponentiel vækst

$$\frac{dy}{dx} = ry,$$

hvor r er en konstant, har den fuldstændige løsning

$$y = y(x) = ce^{rx}$$
 $(c \in \mathbb{R})$

Eksponentiel vækst med konstantled

Sætning Eksponentiel vækst med konstantled

Differentialligningen for eksponentiel vækst med konstantled

$$\frac{dy}{dx} = ry + q,$$

hvor $r \neq 0$ og q er konstanter, har den fuldstændige løsning

$$y = y(x) = -\frac{q}{r} + ce^{rx}$$
 $(c \in \mathbb{R})$

Dias 5/21

Logistisk vækst

Sætning Logistisk vækst

Den logistiske differentialligning

$$\frac{dy}{dx} = ry\left(1 - \frac{y}{K}\right),$$

hvor r og K er konstanter, har den fuldstændige løsning

$$y = y(x) = \frac{K}{1 + ce^{-rx}} \qquad (c \in \mathbb{R}).$$

Konstanten K kaldes bærekapaciteten.

Grafer for y = y(x) når K = 1, y(0) = 0.1 og forskellige værdier af r

KØBENHAVNS UNIVERSITET

Eksponentiel vækst med konstantled – fortsat

Bemærkning $\frac{dy}{dx} = ry + q$ kan omskrives til $\frac{dy}{dx} = r(y - y^*)$ og omvendt.

Sætning Eksponentiel vækst med konstantled (alternativ)

Differentialligningen for eksponentiel vækst med konstantled

$$\frac{dy}{dx} = r(y - y^*),$$

hvor r og y^* er konstanter, har den fuldstændige løsning

$$y = y(x) = y^* + ce^{rx}$$
 $(c \in \mathbb{R})$

Bemærkning Når r < 0, vil $y(x) \rightarrow y^*$ når $x \rightarrow \infty$ $(y^*$ er en *ligevægt*)

Dias 6/21

KØBENHAVNS UNIVERSITE

Logistisk vækst – fortsat

Omskrivning af den logistiske løsningsfunktion $y(x) = \frac{K}{1 + ce^{-rx}}$:

Hvis c > 0 så er $c = e^{rx_0} \mod x_0 = \frac{\ln c}{r}$. Dermed er

$$y(x) = \frac{K}{1 + e^{-r(x - x_0)}}$$

Bemærkning

- Vi har $y(x_0) = \frac{K}{2}$ så halvdelen af bærekapaciteten er nået, når $x = x_0$. Derfor kaldes x_0 nogle gange for halvmætningskonstanten.
- Man kan vise, at y'(x) har maksimum i $x = x_0$, dvs. x_0 er det "tidspunkt", hvor væksten er størst. Da

$$y'(x_0) = ry(x_0)\left(1 - \frac{y(x_0)}{K}\right) = r \cdot \frac{K}{2}\left(1 - \frac{1}{2}\right) = \frac{rK}{4}$$

er den største vækstrate altså

$$y'(x_0) = \frac{rK}{4}$$

Model for sygdomsepidemi

K: Befolkningens størrelse N = N(t): Antal smittede til tiden t

Antagelser om smitteraten $\frac{dN}{dt}$:

- $\frac{dN}{dt}$ er proportional med N (antallet af smittede) Sygdommen breder sig langsomt, så længe der kun er få smittede
- $\frac{dN}{dt}$ er proportional med K N (antallet af ikke-smittede) Sygdommen breder sig langsomt, når der kun er få tilbage, som ikke er smittede]

Fører til (med r = aK)

$$rac{dN}{dt} = aN(K - N) = aKN\left(1 - rac{N}{K}
ight) = rN\left(1 - rac{N}{K}
ight)$$

dvs. en logistisk differentialligning med "bærekapacitet" K.

Dias 9/21

Eksempel på modificeret logistisk model

Antager at væksten aftager med tiden f.eks.

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)\left(1 - \frac{t}{T}\right)$$

- T er et "sluttidspunkt" (bemærk at N'(T) = 0).
- Kan f.eks. benyttes til at beskrive sygdomsvækst på en plante, der med tiden bliver mere modstandsdygtig over for sygdommen.
- Fuldstændig løsning: $N(t) = \frac{K}{1 + c \exp\left(-r\left(t \frac{t^2}{2T}\right)\right)}$ $(c \in \mathbb{R})$
- Løsningskurver (K = 1 og T = 1):

Bemærk at N(t) ikke har tid til at nå (tæt på) bærekapaciteten.

Model for sygdomsepidemi – taleksempel

• Influenzaepidemi i en befolkning på 2000 med r = 1.5, dvs.

$$\frac{dN}{dt} = 1.5 N \left(1 - \frac{N}{2000} \right)$$

• Fuldstændig løsning $N(t) = \frac{2000}{1 + ce^{-1.5t}}$

$$N(t) = \frac{2000}{1 + ce^{-1.5t}} \qquad (c \in \mathbb{R})$$

• Til tiden t = 0 er der to smittede, dvs. N(0) = 2. Dette giver c = 999 og dermed $N(t) = \frac{2000}{1 + 9000 \, e^{-1.5 \, t}}$

• Vi har $t_0 = \frac{\ln c}{r} = \frac{\ln 999}{1.5} \simeq 4.6$ og $N'(t_0) = \frac{rK}{4} = \frac{1.5 \cdot 2000}{4} = 750$

Dias 10/21

En anden slags modificeret logistisk differentialligning (Indgår i miniprojektet)

$$\frac{dy}{dt} = ry\left(1 - \left(\frac{y}{K}\right)^{\alpha}\right)$$

hvor r, K, α er positive parametre.

Den normale logistiske differentialligning svarer til $\alpha = 1$.

Sætning Separation af de variable

En differentialligning af formen

$$\frac{dy}{dx} = f(x)g(y)$$

løses ved at bruge følgende fire trin:

- (1) Separér de variable: $\frac{1}{g(y)} dy = f(x) dx$
- (2) Sæt integraltegn på ligningen: $\int \frac{1}{g(y)} dy = \int f(x) dx$
- (3) Find stamfunktioner på begge sider af ligningen (husk int.konstant)
- (4) Løs ligningen: find y udtrykt ved x

Bemærkning "Separation af de variable" er en metode:

- For en konkret differentialligning går man igennem de fire trin nævnt i sætningen.
- Man sætter ikke ind i formlerne i sætningen.

Dias 13/21

KØBENHAVNS UNIVERSITET

Homogen lineær 1. ordens differentialligning

Sætning Homogen lineær 1. ordens differentialligning

Den homogene lineære 1. ordens differentialligning

$$\frac{dy}{dx} + f(x)y = 0$$

har den fuldstændige løsning

$$y = y(x) = ce^{-F(x)}$$
 $(c \in \mathbb{R})$

hvor F'(x) = f(x).

KØBENHAVNS UNIVERSITET

Lineær 1. ordens differentialligning

Definition Lineær 1. ordens differentialligning

En lineær 1. ordens differentialligning er en differentialligning af formen

$$\frac{dy}{dx} + f(x)y = g(x)$$

hvor f(x) og g(x) er givne funktioner.

Differentialligningen kaldes homogen når g = 0; ellers inhomogen.

Bemærkning Differentialligninger på formen

$$\frac{dy}{dx} = h(x)y + g(x)$$

skal først omskrives til

$$\frac{dy}{dx} - h(x)y = g(x)$$

før de følgende resultater kan benyttes.

Dias 14/21

KØBENHAVNS UNIVERSITE

"Panserformlen"

Sætning "Panserformlen"

Den inhomogene lineære 1. ordens differentialligning

$$\frac{dy}{dx} + f(x)y = g(x)$$

har den fuldstændige løsning

$$y = y(x) = e^{-F(x)} \int e^{F(x)} g(x) dx$$

hvor F'(x) = f(x).

Hvor er konstanten "c" i den fuldstændige løsning?

$$y(x) = e^{-F(x)} \int e^{F(x)} g(x) dx = e^{-F(x)} \left(\int e^{F(x)} g(x) dx + c \right)$$
$$= e^{-F(x)} (u_0(x) + c) = y_0(x) + ce^{-F(x)}$$

$\mbox{Fortolkning af ligningen} \qquad \mbox{$y(x) = y_0(x) + ce^{-F(x)}$} \label{eq:center}$

- FIL = fuldstændig inhomogen løsning y(x)
- FHL = fuldstændig homogen løsning $ce^{-F(x)}$

Så er

$$FIL = y_0(x) + FHL$$

hvor $y_0(x)$ er en partikulær løsning til den inhomogene ligning.

- I ord "Fuldstændig inhomogen løsning = partikulær løsning $[y_0(x)]$ + fuldstændig homogen løsning"
 - Uddybes i "nålestiksmetoden" ("gættemetoden").
 - Gælder også for (systemer af) lineære differensligninger (Modul 1 og 2) og systemer af lineære differentialligninger (Modul 4).

Dias 17/21

KØBENHAVNS UNIVERSITE'

Eksistens og entydighed af løsninger

- I eksemplerne indtil nu har vi set følgende:
 I den fuldstændige løsning indgår en konstant "c", som bestemmes ud fra en begyndelsesbetingelse φ(x₀) = y₀.
- Gælder det altid, at der er netop én løsning $\varphi(x)$ med $\varphi(x_0) = y_0$?

Sætning Eksistens og entydighed

Gennem et givet punkt (x_0, y_0) går netop én løsning til diff.ligningen

$$\frac{dy}{dx} = \Phi(x, y) \qquad \text{("et udtryk i } x \text{ og } y\text{")}$$

(hvis funktionen $\Phi(x, y)$ er "tilstrækkeligt pæn")

dvs. der findes netop én funktion $y = \varphi(x)$ således, at

- (a) $\varphi'(x) = \Phi(x, \varphi(x))$
- (b) $\varphi(x_0) = y_0$

KØBENHAVNS UNIVERSITET

"Nålestiksmetoden" ("gættemetoden")

Sætning "Nålestiksmetoden"

Differentialligningen (NB: f(x) = a er konstant)

$$\frac{dy}{dx} + ay = g(x)$$

har den fuldstændige løsning

$$y = y_0(x) + ce^{-ax}$$
 $(c \in \mathbb{R})$ $(dvs. FIL = y_0(x) + FHL)$

hvor man som $y_0(x)$ "gætter" på en funktion "af samme slags" som g(x):

g(x)	$y_0(x)$
polynomium	polynomium af samme grad
be ^{rx}	$egin{cases} Ae^{rx} & ext{når } r eq -a \ Axe^{-ax} & ext{når } r = -a \end{cases}$
$b_1 \cos rx + b_2 \sin rx$	$A\cos rx + B\sin rx$

I skemaet er b, b_1, b_2 og r givne konstanter, mens A og B er konstanter, der skal bestemmes, således at $y_0(x)$ er løsning.

Dias 18/21

KØBENHAVNS UNIVERSITE

Ligevægt og stabilitet

Definition Autonom differentialligning

En 1. ordens differentialligning af formen

$$\frac{dx}{dt} = f(x) \qquad \text{("et udtryk i } x\text{")}$$

kaldes *autonom* (fordi *t* ikke indgår på højresiden).

Definition Ligevægt

En værdi x* kaldes en *ligevægt* for den autonome differentialligning

$$\frac{dx}{dt} = f(x) \qquad \text{hvis} \qquad f(x^*) = 0.$$

Når x^* er en ligevægt, så vil den konstante funktion $x(t) = x^*$ være en løsning til differentialligningen.

(**Bemærk** forskellen til diffe*rens*ligninger, hvor x^* er en ligevægt for differensligningen $x_{t+1} = f(x_t)$, hvis $f(x^*) = x^*$.)

Ligevægt og stabilitet – fortsat

Definition Stabil ligevægt

En ligevægt x* kaldes stabil, hvis der gælder

$$x(t) \to x^*$$
 for $t \to \infty$

for alle løsninger x = x(t), der ikke "starter for langt fra x^* "

Sætning Stabil ligevægt

En ligevægt x^* for differentialligningen $\frac{dx}{dt} = f(x)$ er

- stabil hvis $f'(x^*) < 0$
- ustabil hvis $f'(x^*) > 0$

(Ingen generel konklusion hvis $f'(x^*) = 0$)

(**Bemærk** forskellen til diffe*rens*ligninger, hvor en ligevægt x^* er stabil hvis $|f'(x^*)| < 1$ og ustabil hvis $|f'(x^*)| > 1$.)

Dias 21/21