- 1. 计划与控制 (相辅相成)
  - o 1.1. 现代计划方法
    - 1.1.1. 滚动计划法
    - 1.1.2. 计划评审技术PERT
      - 1.1.2.1. 网络图的构成
      - 1.1.2.2. PERT的运用步骤
      - 1.1.2.3. 例题

# 1. 计划与控制 (相辅相成)

## 1.1. 现代计划方法

## 1.1.1. 滚动计划法

1. 概念

指有机地结合短期、中期和长期计划,根据计划的执行情况和环境的变化情况,定期修订未来计划并逐期向前推移的方法,适用于任何类型的计划。

#### 2. 具体做法

- ①同时制定未来若干期的计划, 采用 近细远粗 的办法。
- ② 在计划期的第一阶段结束时,根据该阶段计划的执行情况和内外环境的变化情况,对原计划进行修订,并将计划向前滚动一个阶段。
  - ③以后根据同样的原则逐期滚动。
- 3. 滚动计划法的适用

适用于任何类型的计划,计算机的应用解决了计划编制任务量加大的问题。

## 4. 优点

- ①使计划更加符合实际。相对缩短了计划期,提高了准确性和质量。
- ②使短期、中期和长期计划相互衔接,可根据环境的变化及时进行调节,使各期计划基本一致。
- ③增加了计划的弹性,提高了组织在剧烈变化的环境中的应变能力。

## 1.1.2. 计划评审技术PERT

计划评审技术,是指用 网络图 来表达 项目中各项活动的进度和它们之间的相互关系 ,在此基础上进行 网络分析和时间估计 。

#### 1.1.2.1. 网络图的构成

PERT主要表示为一种由节点和箭线组成的网络图。

- ①箭线表示一项活动, 箭尾代表活动的开始 , 箭头代表活动的结束 , 活动要消耗时间和资源。 虚箭线表示不消耗时间和资源。
- ②节点表示一项活动的开始或结束的那一点,它不占用时间和资源。网络图中第一个节点为始点,最后一个节点为终点。

在网络图中,从始点开始沿箭线方向到终点为止,一系列首尾相连的节点和箭线所组成的序列称为一条路线。该路线上各项活动的作业时间之和称为路线的长度。

**关键路线**: 各项活动的作业时间之和【最长】的路线 , **决定着整个计划完成的期限**, **即** 该工程项目的总工期 。 关键路线上的总时差为**0**。

#### 1.1.2.2. PERT**的运用步**骤

- 1. 确定活动和逻辑关系。确定完成项目必须进行的每一项活动,并 确定活动之间的逻辑关系。
- 2. 绘制网络图 (虚箭线,不消耗时间和资源)
- 3. 估计和计算【每项活动】的完成时间 。平均活动时间由理想条件下和最差条件下完成该活动所需的时间与4倍的正常 条件下完成该活动所需的时间的和除以6所得。 计算活动的完成时间公式如下: 【t = (a+4m+b)/6】, a最乐观时间; b最 悲观时间; m最可能时间; t平均活动时间
- 4. 计算网络图的时间参数并确定【关键路线】。

| 时间参数 | 具体内容   |                        |  |  |  |  |
|------|--------|------------------------|--|--|--|--|
| 节点的时 | 最早时间   | 从该节点出发的各活动最早可能开工的时间    |  |  |  |  |
| 间参数  | 最迟时间   | 进入该节点的各活动最迟必须完工的时间     |  |  |  |  |
|      | 最早开工时间 | 该活动最早可能开工的时间           |  |  |  |  |
| 活动的时 | 最早完工时间 | 该活动最早可能完工的时间           |  |  |  |  |
| 间参数  | 最迟开工时间 | 为了不影响后续活动的该活动最迟必须开工的时间 |  |  |  |  |
|      | 最迟完工时间 | 最迟必须完工的时间              |  |  |  |  |

**总时差:指在不影响整个工程项目完工时间的条件下,某项活动** 开工时间允许推迟的最大限度。 【总时差为零的活动】为【关键活动】, 由关键活动所组成的路线为关键路线。



#### 5. 进行网络优化

时间—费用优化:指综合考虑工期和费用的关系,寻求以最低的工程总费用获得最佳工期的一种方法。

直接费用: 指与工程的各项活动直接有关的费用, 赶工会引起直接费用的增加。

间接费用:与各项活动没有直接的关系,维持工程所需的费用;缩短或延长总工期会相应减少或增加这一费用的支出。

# 7.2 PERT 网络图时间的计算

- 一、有关时间的概念及表示
- ① 作业时间t;;: 完成某项作业(i, j)所需要的时间。
- $\triangle$  ② 作业最早开始时间 $t_{ES}$ : 某项作业最早可能开始的时间。它受其紧前作业(最早)结束时间的限制。
- ③ 作业最早结束时间 $t_{EF}$ : 某项作业最早可能结束的时间。  $t_{EF}(i,j)=t_{ES}(i,j)+t_{ii}$
- $\triangle$  ④ 作业最迟结束时间  $t_{LF}$ : 在不延误整个工期情况下,某项作业被允许最迟结束的时间。
- ⑤ 作业最迟开始时间  $t_{LS}$ : 在不延误工期情况下,某项作业最迟必须开始的时间。

$$t_{LS}(i,j) = t_{LF}(i,j) - t_{ij}$$

## 6. 时差

总时差R<sub>ij</sub>: 网络上(i, j)作业可利用的时差总数,即作业可推迟开工的最多时间。

$$R_{ij} = t_{LF} - t_{ES} - t_{ij} = t_{LF} - t_{EF} = t_{LS} - t_{ES}$$

# 总时差为0的作业组成的路(始点至终点间)构成关键路线。

自由时差F<sub>ij</sub>: (i, j) 作业在不影响紧后作业最早开始条件下,可推迟开工的最大幅度,又称单项时差。

$$F_{ij} = t_{ES}(j,k) - t_{EF}(i,j) = t_{ES}(j,k) - t_{ES}(i,j) - t_{ij}$$

注:某项作业使用了总时差,可能会减少其后续作业的总时差;自由时差不会影响其后续作业的总时差和自由时差。

@小强文学

# 二、PERT网络图计算的范例

例: 如下为一铸件制造过程,计算各项时间和工期,找出关键路线。

| 序号 | 作业内容    | 计划完成时间(h) | 紧前作业     |
|----|---------|-----------|----------|
| 1  | 型砂准备    | 2         | <u> </u> |
| 2  | 造 型     | 4         | 1        |
| 3  | 砂型烘干    | 4         | 2        |
| 4  | 芯砂准备    | 4.7       | _        |
| 5  | 芯骨浇铸    | 7.2       | _        |
| 6  | 芯骨装配    | 2         | 5        |
| 7  | 造4个1号泥芯 | 6.2       | 4, 6     |
| 8  | 造4个2号泥芯 | 4         | 4, 6     |
| 9  | 2号泥芯干燥  | 4.3       | 8        |

## 画PERT图时应注意以下几点:

- (1) 先绘作业及空圈, 节点标号在最后进行;
- (2) tii通常标在箭线的上方;
- (3) 观察有共同节点的作业:若某项作业有共同的紧前作业,则其紧前作业可形成同一节点。
- (4) 最初事件、最终事件:无紧前作业的箭尾是最初事件;没成为紧前作业(无紧后作业)的箭头为最终事件。

## 计算时应注意:

- (1) 先计算t<sub>ES</sub> , 从最初事件向后推算, 有共同紧前作业的t<sub>ES</sub>相同;
- (2) 再计算 $t_{LF}$  , 由最终事件向前推算,有共同紧后作业的 $t_{LF}$ 相同;
- (3)  $R_{ij}$ 、 $F_{ij}$ 在图上标注(通常在箭线的下方):  $R_{ij} = t_{LF} t_{ES} t_{ij} = t_{LF} t_{ES} = t_{LS} t_{ES}$   $F_{ii} = t_{ES}(j,k) t_{EF}(i,j) = t_{ES}(j,k) t_{ES}(i,j) t_{ii}$
- (4) 其他参数,通过列表算出。

注:在图上标注时,可视作标注节点事件的t<sub>Es</sub>、t<sub>LF</sub>。 @小强文学



正方形,Tes,作业最早开始时间; 三角形,Tlf,作业最迟结束时间;

- 作业最早开始时间,由前序活动决定;
- 作业最迟结束时间,由 后序 活动决定;

**列表计算有关参数**:按起点事件序号由小到大顺序排列;相同起点事件按终点事件序号由小到大顺序。

| AT THE       | t <sub>ES</sub> | t <sub>ij</sub> | t <sub>EF</sub> | $t_{LF}$ | t <sub>ij</sub> | t <sub>LS</sub> | $R_{ij}$ | $F_{ij}$ |
|--------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|----------|----------|
| TE YE CI, j) | 1               | 2               | 3=1+2           | 4        | (5)             | 6=4-5           | 7        | 8        |
| (1,2)        | 0               | 2               | 2               | 9.5      | 2               | 7.5             | 7.5      | 0        |
| (1,3)        | 0               | 7.2             | 7.2             | 7.2      | 7.2             | 0               | 0        | 0        |
| (1,4)        | 0               | 4.7             | 4.7             | 9.2      | 4.7             | 4.5             | 4.5      | 4.5      |
| (2,5)        | 2               | 4               | 6               | 13.5     | 4               | 9.5             | 7.5      | 0        |
| (3,4)        | 7.2             | 2               | 9.2             | 9.2      | 2               | 7.2             | 0        | 0        |
| (4,6)        | 9.2             | 4               | 13.2            | 13.2     | 4               | 9.2             | 0        | 0        |
| (4,7)        | 9.2             | 6.2             | 15.4            | 17.5     | 6.2             | 11.3            | 2.1      | 2.1      |
| (5,7)        | 6               | 4               | 10              | 17.5     | 4               | 13.5            | 7.5      | 7.5      |
| (6,7)        | 13.2            | 4.3             | 17.5            | 17.5     | 4.3             | 13.2            | 0        | 0        |

#### 1.1.2.3. 例题

- 1. 2004年真题 D节点、H节点、I节点
  - 3. (18分)某工程的工序关系如下表所示:

| 工序 | 紧前工序   | 作业时间(天) |
|----|--------|---------|
| A  | A 1.3° | 15      |
| В  | A      | 15      |
| C  | A      | 14      |
| D  | В, С   | 10      |
| E  | В      | 6       |
| F  | D      | 6       |
| G  | D      | 10      |
| H  | E, G   | 30      |
| I  | F, H   | 8       |

- (1) 绘制该工程的 PERT 网络图。(3分)
- (2) 计算该工程的总工期。(1分)
- (3) 若工序 C 的作业时间延长 18 天, 关键路线和总工期有什么变化?请根据节点时间变化解释原因。(4分)
  - 解: (1) 根据工程的工序关系, 绘制该工程的 PERT 网络图, 如图 6 所示:



图 6 该工程的 PERT 网络图

- (2) 由上图可知, 关键线路为: ①—②—③—④—⑤—⑥—⑦—⑧。
- 总工期为: 15+15+10+10+30+8=88 (天)。
- (3) 若 C 的作业时间延长 18 天变为 32 天, 关键线路变为: ①—②—①—⑤—⑥—⑦—⑧, 总工期
- 为: 15+32+10+10+30+8=105 (天), 即总工期增加 18 天, 变为 105 天。
- 2. ★★★2011年真题

# 2. (9 分) 某作业项目的各个活动之间的关系及平均作业时间如表 1: 表 1 各活动间的关系及平均作业时间表

| 活动名称 | A | В  | C | D | E | F   | G    |
|------|---|----|---|---|---|-----|------|
| 先行活动 |   |    | A | В | В | C、E | D, F |
| 平均时间 | 1 | 10 | 2 | 2 | 6 | 10  | 3    |

## 请画出网络图、计算时间参数并确定关键路线。

答:(1)作出的网络图如图3所示。



(2) 计算时间参数, 如表 2 所示。

表 2 各项活动的时间参数值

| 活动编号                | 活动名称 | 最早开工<br>时间 | 最早完工<br>时间 | 最迟开工<br>时间 | 最迟完工<br>时间 | 总时差 |
|---------------------|------|------------|------------|------------|------------|-----|
| 0-0                 | A    | 0          | 1          | 13         | 14         | 13  |
| 0—3                 | В    | 0          | 10         | 0          | 10         | 0   |
| <b>2</b> — <b>4</b> | С    | 1          | 3          | 14         | 16         | 13  |
| ③—⑤                 | D    | 10         | 12         | 24         | 26         | 14  |
| 3-4                 | E    | 10         | 16         | 10         | 16         | 0   |
| <b>@</b> — <b>⑤</b> | F    | 16         | 26         | 16         | 26         | 0   |
| <u>G</u> —6         | G    | 26         | 29         | 26         | 29         | 0   |

<sup>(3)</sup> 由总时差值可知, 关键活动有 B、E、F、G。因此关键路线是: ①—③—④—⑤—⑥。

活动的最早开工时间和最早完工时间由前往后依次计算。 活动的最迟开工时间和最迟完工时间由后往前依次计算。 总时差 = 最迟完工时间 - 最早完工时间

|   | 活动编号                | 活动名称     | 最早开工 | 最早完工 | 最迟开工 | 最迟完工 | ו+* |
|---|---------------------|----------|------|------|------|------|-----|
|   | 1日4//2州ラ            | 104/1070 | 时间   | 时间   | 时间   | 时间   | 总时差 |
|   | <b>①</b> —②         | A        | 8    |      | 13   | 14   | 13  |
| L | ①—③                 | В        | 0    | 10   | 0    | 10   | 0   |
|   | <b>②</b> — <b>④</b> | С        | 1    | 3    | 14   | 16   | 13  |
| L | <b>3—</b> 5         | D        | 10   | 12   | 24   | 26   | 14  |
|   | 3-4                 | E        | 10   | 16   | 10   | 16   | 0   |
|   | <b>4</b> — <b>5</b> | F        | 16   | 26   | 16   | 26   | 0   |
|   | S-6                 | G        | 26   | 29   | 26   | 25   | 0   |

<sup>(3)</sup> 由总时差值可知, 关键活动有 B、E、F、G。因此关键路线是: ①—③—④—⑤—⑥。

#### 3. 2013年真题

2.(9分)如下为一铁制造过程,要求绘制网络图,计算各项时间和工期,找出关键路线。

| -   | Andread had been been seen |
|-----|----------------------------|
| 表 2 | 铁制造过着                      |

| 序号 | 作业内容    | 计划完成时间 (小时) | 紧前作业 |
|----|---------|-------------|------|
| 1  | 型砂准备    | 2           | l –  |
| 2  | 造型      | 4           | 1    |
| 3  | 砂型烘干    | 4           | 2    |
| 4  | 芯砂准备    | 4.7         | _    |
| 5  | 芯骨浇筑    | 7.2         | _    |
| 6  | 芯骨装配    | 2           | 5    |
| 7  | 造4个1号泥芯 | 6.2         | 4.6  |
| 8  | 造4个2号泥芯 | 4           | 4.6  |
| 9  | 2号泥芯干燥  | 4.3         | 8    |

## 答:绘制网络图如图 6 所示。



图 6 网络图

在网络图中,从始点开始沿箭线方向到终点为止,一系列首尾相连的节点和箭线所组成的序列称为一条路线。该路线上各项活动的作业时间之和称为路线的长度。网络图中往往有多条路线,其中最长的路线称为关键路线,它决定着整个计划完成的期限,即该工程项目的总工期。由图可知:

路线 A→B→C→H, 用时: 2+4+4=10 (小时)。

路线 A→E→F→H, 用时: 7.2+2+6.2=15.4 (小时)。

路线 A→E→F→G→H, 用时: 7.2+2+4+4.3=17.5 (小时)。

用时最长的路线是关键路线,因此、关键路线为:  $A \rightarrow E \rightarrow F \rightarrow G \rightarrow H$ 。