Улучшение разделимости и автоматизация метода SSA для анализа временных рядов

Дудник Павел Дмитриевич, 19Б.04-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. **Н.Э. Голяндина** Рецензент — программист **А.Ю. Шлемов**, Майкрософт Израиль

> Санкт-Петербург 2023г.

Введение: Постановка задачи

 $\mathsf{X}_N=(x_1,\ldots,x_N)$ — временной ряд длины N, $x_i\in\mathbb{R}$ — наблюдение в момент времени i.

$$\mathsf{X}_N = \mathsf{X}_{\mathrm{Trend}} + \mathsf{X}_{\mathrm{Periodics}} + \mathsf{X}_{\mathrm{Noise}}$$
, — временной ряд, где

- ullet X_{Trend} тренд, медленно меняющаяся компонента
- X_{Periodics} сумма периодических компонент
- X_{Noise} шум, случайная составляющая

Введение: Постановка задачи

 $\mathsf{X}_N=(x_1,\ldots,x_N)$ — временной ряд длины N, $x_i\in\mathbb{R}$ — наблюдение в момент времени i.

$$\mathsf{X}_N = \mathsf{X}_{\mathrm{Trend}} + \mathsf{X}_{\mathrm{Periodics}} + \mathsf{X}_{\mathrm{Noise}}$$
, — временной ряд, где

- ullet X_{Trend} тренд, медленно меняющаяся компонента
- X_{Periodics} сумма периодических компонент
- X_{Noise} шум, случайная составляющая

Метод: Анализ сингулярного спектра (Singular spectrum analysis, SSA) — непараметрический метод, позволяющий раскладывать временной ряд в сумму тренд+периодичность+шум. (Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001, Analysis of Time Series Structure: SSA and Related Techniques)

Введение: Постановка задачи

 $\mathsf{X}_N=(x_1,\ldots,x_N)$ — временной ряд длины N, $x_i\in\mathbb{R}$ — наблюдение в момент времени i.

$$\mathsf{X}_N = \mathsf{X}_{\mathrm{Trend}} + \mathsf{X}_{\mathrm{Periodics}} + \mathsf{X}_{\mathrm{Noise}}$$
, — временной ряд, где

- X_{Trend} тренд, медленно меняющаяся компонента
- X_{Periodics} сумма периодических компонент
- X_{Noise} шум, случайная составляющая

Метод: Анализ сингулярного спектра (Singular spectrum analysis, SSA) — непараметрический метод, позволяющий раскладывать временной ряд в сумму тренд+периодичность+шум. (Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001, Analysis of Time Series Structure: SSA and Related Techniques)

Задача: Разработать алгоритм, который автоматически выделяет тренд в рамках метода SSA.

 $\mathsf{X}_N = (x_1, \dots, x_N)$ — временной ряд, N — его длина. Алгоритм SSA для выделения тренда (параметр 1 < L < N — длина окна):

Построение траекторной матрицы:

$$\mathbf{X} = \mathfrak{T}(\mathsf{X}) = [X_1:\ldots:X_K]$$
, где $X_i = (x_i,\ldots,x_{i+L-1})^\mathrm{T}$, $1 < i < K$, $K = N-L+1$.

 ${\sf X}_N = (x_1, \dots, x_N)$ — временной ряд, N — его длина. Алгоритм SSA для выделения тренда (параметр 1 < L < N — длина окна):

Построение траекторной матрицы:

$$\mathbf{X} = \mathfrak{I}(\mathsf{X}) = [X_1 : \ldots : X_K]$$
, где $X_i = (x_i, \ldots, x_{i+L-1})^\mathrm{T}$, $1 < i < K$, $K = N - L + 1$.

② Сингулярное разложение (SVD) траекторной матрицы:

$$\mathbf{X} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}} = \sum_{i=1}^d \mathbf{X}_i, \ d = \mathrm{rank}\,\mathbf{X}.$$
 Компоненты SVD \mathbf{X}_i — элементарные матрицы ранга $1.$

 ${\sf X}_N = (x_1, \dots, x_N)$ — временной ряд, N — его длина. Алгоритм SSA для выделения тренда (параметр 1 < L < N — длина окна):

Построение траекторной матрицы:

$$\mathbf{X} = \mathfrak{I}(\mathsf{X}) = [X_1:\ldots:X_K]$$
, где $X_i = (x_i,\ldots,x_{i+L-1})^\mathrm{T}$, $1 < i < K$, $K = N-L+1$.

② Сингулярное разложение (SVD) траекторной матрицы:

$$\mathbf{X}=\sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}=\sum_{i=1}^d \mathbf{X}_i,\ d=\mathrm{rank}\,\mathbf{X}.$$
 Компоненты SVD \mathbf{X}_i — элементарные матрицы ранга $1.$

③ Идентификация медленно меняющихся компонент SVD с номерами $I = \{i_1, \dots, i_p\}.$

 ${\sf X}_N = (x_1, \dots, x_N)$ — временной ряд, N — его длина. Алгоритм SSA для выделения тренда (параметр 1 < L < N — длина окна):

- ① Построение траекторной матрицы: $\mathbf{X} = \mathfrak{I}(\mathsf{X}) = [X_1:\ldots:X_K]$, где $X_i = (x_i,\ldots,x_{i+L-1})^\mathrm{T}$, 1 < i < K, K = N L + 1
- **3** Сингулярное разложение (SVD) траекторной матрицы: $\mathbf{X} = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}} = \sum_{i=1}^d \mathbf{X}_i, \ d = \mathrm{rank} \ \mathbf{X}.$ Компоненты SVD \mathbf{X}_i элементарные матрицы ранга 1.
- **③** Идентификация медленно меняющихся компонент SVD с номерами $I = \{i_1, \dots, i_p\}$.
- Получение оценки тренда $\widetilde{\mathsf{X}} = \sum_{i \in I} \widetilde{\mathsf{X}}_i$, где $\widetilde{\mathsf{X}}_i = \mathfrak{T}^{-1}(\mathcal{H}(\mathbf{X}_i))$ элементарные временные ряды, отнесенные к тренду; \mathcal{H} оператор ганкелизации.

Этап идентификации тренда:

- В базовом варианте идентификация визуальная.
- Есть алгоритмы автоматической идентификации.

Этап идентификации тренда:

- В базовом варианте идентификация визуальная.
- Есть алгоритмы автоматической идентификации.
- Проблема: Идентификация возможна, только если в разложении трендовые компоненты не смешались с нетрендовыми (если есть разделимость).

Этап идентификации тренда:

- В базовом варианте идентификация визуальная.
- Есть алгоритмы автоматической идентификации.
- Проблема: Идентификация возможна, только если в разложении трендовые компоненты не смешались с нетрендовыми (если есть разделимость).

Решение: совместить методы улучшения разделимости и автоматическую идентификацию трендовых компонент.

Этап идентификации тренда:

- В базовом варианте идентификация визуальная.
- Есть алгоритмы автоматической идентификации.
- Проблема: Идентификация возможна, только если в разложении трендовые компоненты не смешались с нетрендовыми (если есть разделимость).

Решение: совместить методы улучшения разделимости и автоматическую идентификацию трендовых компонент.

Новая проблема: автоматизация методов улучшения разделимости, выбор параметров.

Автоматическое извлечение тренда

Тренд — медленно меняющаяся компонента. Воспользуемся разложением Фурье. Для $\mathsf{F} = (f_1, \dots, f_N)$:

$$f_n = c_0 + \sum_{k=1}^{\left\lfloor \frac{N-1}{2} \right\rfloor} \sqrt{c_k^2 + s_k^2} \cos\left(\frac{2\pi nk}{N} + \phi_k\right) + c_{\frac{N}{2}} \left(-1\right)^n$$

Автоматическое извлечение тренда

Тренд — медленно меняющаяся компонента. Воспользуемся разложением Фурье. Для $\mathsf{F} = (f_1, \dots, f_N)$:

$$f_n = c_0 + \sum_{k=1}^{\left\lfloor \frac{N-1}{2} \right\rfloor} \sqrt{c_k^2 + s_k^2} \cos\left(\frac{2\pi nk}{N} + \phi_k\right) + c_{\frac{N}{2}} (-1)^n$$

- ullet Периодограмма ряда $\Pi_N^f\left(rac{k}{N}
 ight)$ вклад частоты $rac{k}{N}$ в ряд F.
- ullet Мера $P_{N,\omega_0}(\mathsf{F})$ относительный вклад низких частот в ряд F :

$$P_{N,\omega_0}(\mathsf{F}) = \sum_{0 \leq \frac{k}{N} < \omega_0} \Pi_N^f(\frac{k}{N}) / ||\mathsf{F}||^2$$

Автоматическое извлечение тренда

Тренд — медленно меняющаяся компонента. Воспользуемся разложением Фурье. Для $\mathsf{F} = (f_1, \dots, f_N)$:

$$f_n = c_0 + \sum_{k=1}^{\left\lfloor \frac{N-1}{2} \right\rfloor} \sqrt{c_k^2 + s_k^2} \cos\left(\frac{2\pi nk}{N} + \phi_k\right) + c_{\frac{N}{2}} (-1)^n$$

- ullet Периодограмма ряда $\Pi_N^f\left(rac{k}{N}
 ight)$ вклад частоты $rac{k}{N}$ в ряд ${\sf F}.$
- ullet Мера $P_{N,\omega_0}(\mathsf{F})$ относительный вклад низких частот в ряд F :

$$P_{N,\omega_0}(\mathsf{F}) = \sum_{0 \le \frac{k}{N} < \omega_0} \Pi_N^f(\frac{k}{N}) / ||\mathsf{F}||^2$$

Идентификация тренда, **TAI(** ω_0, T_0 **)** (Alexandrov Th., Golyandina N., 2004):

- Входные данные: временной ряд F, параметры $\omega_0: 0 < \omega_0 < \frac{1}{2}$ и порог $T_0: 0 < T_0 < 1$.
- ullet Ряд ${\sf F}$ считается трендовым, если $P_{N,\omega_0}({\sf F}) > T_0.$

Рассмотрим ряд $\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2$ длины N. Длина окна L.

 \mathbf{X},\mathbf{X}_1 и \mathbf{X}_2 — траекторные матрицы рядов X,X_1 и $\mathsf{X}_2.$

SVD разложения тр. матриц:

$$\mathbf{X} = \sum_{k=1}^{r_1 + r_2} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{X}_1 = \sum_{i=1}^{r_1} \sqrt{\lambda_{1i}} U_{1i} V_{1i}^{\mathrm{T}}, \\ \mathbf{X}_2 = \sum_{i=1}^{r_2} \sqrt{\lambda_{2i}} U_{2i} V_{2i}^{\mathrm{T}}.$$

6/18

Рассмотрим ряд $\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2$ длины N. Длина окна L.

 \mathbf{X},\mathbf{X}_1 и \mathbf{X}_2 — траекторные матрицы рядов X,X_1 и $\mathsf{X}_2.$

SVD разложения тр. матриц:

$$\mathbf{X} = \sum_{k=1}^{r_1 + r_2} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{X}_1 = \sum_{i=1}^{r_1} \sqrt{\lambda_{1i}} U_{1i} V_{1i}^{\mathrm{T}}, \\ \mathbf{X}_2 = \sum_{j=1}^{r_2} \sqrt{\lambda_{2j}} U_{2j} V_{2j}^{\mathrm{T}}.$$

ullet Ряды $old X_1$ и $old X_2$ слабо разделимы, если $old X_1 old X_2^{
m T} = \mathbb{O}_{L,L}$ и $old X_1^{
m T} old X_2 = \mathbb{O}_{K,K}.$

Рассмотрим ряд $\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2$ длины N. Длина окна L.

 \mathbf{X},\mathbf{X}_1 и \mathbf{X}_2 — траекторные матрицы рядов X,X_1 и $\mathsf{X}_2.$

SVD разложения тр. матриц:

$$\mathbf{X} = \sum_{k=1}^{r_1 + r_2} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{X}_1 = \sum_{i=1}^{r_1} \sqrt{\lambda_{1i}} U_{1i} V_{1i}^{\mathrm{T}}, \\ \mathbf{X}_2 = \sum_{j=1}^{r_2} \sqrt{\lambda_{2j}} U_{2j} V_{2j}^{\mathrm{T}}.$$

- ullet Ряды X $_1$ и X $_2$ слабо разделимы, если ${f X}_1^{
 m T}{f X}_2={\Bbb O}_{L,L}$ и ${f X}_1^{
 m T}{f X}_2={\Bbb O}_{K,K}.$
- ullet Ряды X_1 и X_2 называются **разделимыми по вкладам**, если $\lambda_{1i} \neq \lambda_{2j} orall i=1\dots r_1, j=1\dots r_2.$

Рассмотрим ряд $\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2$ длины N. Длина окна L.

 \mathbf{X},\mathbf{X}_1 и \mathbf{X}_2 — траекторные матрицы рядов X,X_1 и $\mathsf{X}_2.$

SVD разложения тр. матриц:

$$\mathbf{X} = \sum_{k=1}^{r_1 + r_2} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{X}_1 = \sum_{i=1}^{r_1} \sqrt{\lambda_{1i}} U_{1i} V_{1i}^{\mathrm{T}}, \\ \mathbf{X}_2 = \sum_{j=1}^{r_2} \sqrt{\lambda_{2j}} U_{2j} V_{2j}^{\mathrm{T}}.$$

- ullet Ряды $old X_1$ и $old X_2$ слабо разделимы, если $old X_1 old X_2^{
 m T} = \mathbb{O}_{L,L}$ и $old X_1^{
 m T} old X_2 = \mathbb{O}_{K,K}.$
- ullet Ряды X_1 и X_2 называются **разделимыми по вкладам**, если $\lambda_{1i} \neq \lambda_{2i} \forall i=1\dots r_1, j=1\dots r_2.$
- ullet Сильная разделимость состоит из слабой разделимости и разделимости по вкладам. Т.е. $\exists I: \mathbf{X}_1 = \sum_{i \in I} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$

Рассмотрим ряд $\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2$ длины N. Длина окна L.

 \mathbf{X},\mathbf{X}_1 и \mathbf{X}_2 — траекторные матрицы рядов X,X_1 и $\mathsf{X}_2.$

SVD разложения тр. матриц:

$$\mathbf{X} = \sum_{k=1}^{r_1 + r_2} \sqrt{\lambda_k} U_k V_k^{\mathrm{T}}, \mathbf{X}_1 = \sum_{i=1}^{r_1} \sqrt{\lambda_{1i}} U_{1i} V_{1i}^{\mathrm{T}}, \\ \mathbf{X}_2 = \sum_{j=1}^{r_2} \sqrt{\lambda_{2j}} U_{2j} V_{2j}^{\mathrm{T}}.$$

- ullet Ряды $f X_1$ и $f X_2$ слабо разделимы, если $f X_1^T f X_2^T = f 0_{L,L}$ и $f X_1^T f X_2 = f 0_{K,K}$.
- ullet Ряды X_1 и X_2 называются **разделимыми по вкладам**, если $\lambda_{1i} \neq \lambda_{2j} \forall i=1\dots r_1, j=1\dots r_2.$
- Сильная разделимость состоит из слабой разделимости и разделимости по вкладам. Т.е. $\exists I: \mathbf{X}_1 = \sum_{i \in I} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$

Вывод:

- Для улучшения слабой разделимости нужно подстраивать под временной ряд понятие ортогональности.
- Для улучшения разделимости по вкладам нужно менять вклады компонент.

Идентификация с улучшением разделимости: вложенные разложения

Схема:

- Вычислить сингулярное разложение траекторной матрицы
- Выбрать t первых компонент SVD, предположительно относящихся к сигналу.

Идентификация с улучшением разделимости: вложенные разложения

Схема:

- Вычислить сингулярное разложение траекторной матрицы
- Выбрать t первых компонент SVD, предположительно относящихся к сигналу.
- Переразложить их сумму специальным образом, чтобы улучшить разделимость компонент сигнала (вложенное разложение).
- Применить метод автоматической идентификации тренда.

OSSA (Oblique SSA) — метод улучшения разделимости с некоторым косоугольным скалярным произведением.

FOSSA, IOSSA, EOSSA — версии OSSA.

• FOSSA(t): улучшает только разделимость по вкладам, начальная группировка не нужна, итераций нет.

- FOSSA(t): улучшает только разделимость по вкладам, начальная группировка не нужна, итераций нет.
- IOSSA с пред-группировкой FOSSA (t,n_{iter},I) : улучшает сильную разделимость, на вход нужна начальная трендовая группа I, итеративный метод. n_{iter} максимальное число итераций, число итераций небольшое.

- FOSSA(t): улучшает только разделимость по вкладам, начальная группировка не нужна, итераций нет.
- IOSSA с пред-группировкой FOSSA (t,n_{iter},I) : улучшает сильную разделимость, на вход нужна начальная трендовая группа I, итеративный метод. n_{iter} максимальное число итераций, число итераций небольшое.
- IOSSA без начальной группировки (t, n_{iter}) : улучшает сильную разделимость, начальная группировка не нужна. Большое число итераций.

- FOSSA(t): улучшает только разделимость по вкладам, начальная группировка не нужна, итераций нет.
- IOSSA с пред-группировкой FOSSA (t,n_{iter},I) : улучшает сильную разделимость, на вход нужна начальная трендовая группа I, итеративный метод. n_{iter} максимальное число итераций, число итераций небольшое.
- IOSSA без начальной группировки (t,n_{iter}) : улучшает сильную разделимость, начальная группировка не нужна. Большое число итераций.
- EOSSA(t): улучшает сильную разделимость, на вход нужно подать способ кластеризации так называемых сигнальных корней, итераций нет.

FOSSA и IOSSA — Golyandina, Shlemov 2015 EOSSA — Шлемов 2017 и Дудник, Голяндина 2023 Реализация — R-пакет Rssa + Дудник 2023.

Модель сигнала: Общий случай

Ряд конечного ранга r, который управляется ЛРФ:

$$s_{n+r} = \sum_{j=1}^{r} a_j s_{n+r-j}.$$
 (1)

Характеристический полином ЛРФ: $\rho(\mu) = \mu^r - \sum_{j=1}^r a_j \mu^{r-j}$.

Модель сигнала: Общий случай

Ряд конечного ранга r, который управляется ЛРФ:

$$s_{n+r} = \sum_{j=1}^{r} a_j s_{n+r-j}.$$
 (1)

Характеристический полином ЛРФ: $\rho(\mu) = \mu^r - \sum_{j=1}^r a_j \mu^{r-j}$. Известно, что ряд конечного ранга представим в виде:

$$s_n = \sum_{z=1}^h P_{m_z}(n)\mu_z^n,$$
 (2)

где P_{m_z} — полином степени m_z от n, $\sum_{z=1}^h m_z = r$, r — ранг ряда S, μ_z — сигнальные корни (корни х.п.).

Модель сигнала: Общий случай

Ряд конечного ранга r, который управляется ЛРФ:

$$s_{n+r} = \sum_{j=1}^{r} a_j s_{n+r-j}.$$
 (1)

Характеристический полином ЛРФ: $\rho(\mu) = \mu^r - \sum_{j=1}^r a_j \mu^{r-j}$. Известно, что ряд конечного ранга представим в виде:

$$s_n = \sum_{z=1}^h P_{m_z}(n)\mu_z^n,$$
 (2)

где P_{m_z} — полином степени m_z от n, $\sum_{z=1}^h m_z = r$, r — ранг ряда S, μ_z — сигнальные корни (корни х.п.).

ESPRIT(Roy R., Kailath T., 1989): пусть $\Im(\mathsf{S}) = \mathbf{P}\mathbf{Q}^\mathrm{T}$ — минимальное разложение. Тогда μ_i находятся как с.ч. **сдвиговой** матрицы $\mathbf{M} = \underline{\mathbf{P}}^\dagger \overline{\mathbf{P}}$.

Модель сигнала: Вещественный случай

Для вещественного случая элементы ряда ранга r представимы в виде:

$$s_n = \sum_z P_{m_z}(n)\beta_z^n \cos(2\pi\omega_z + \phi_z), \tag{3}$$

где P_{m_z} — полином степени m_z от n.

Модель сигнала: Вещественный случай

Для вещественного случая элементы ряда ранга r представимы в виде:

$$s_n = \sum_{z} P_{m_z}(n)\beta_z^n \cos(2\pi\omega_z + \phi_z), \tag{3}$$

где P_{m_z} — полином степени m_z от n.

Пример:

- $s_n = Aa^n \Rightarrow \mu_1 = a, m_1 = 1.$
- $s_n = B\cos(2\pi\omega + \phi) \Rightarrow \mu_1 = e^{2\pi\omega i}$, $\mu_2 = e^{-2\pi\omega i}$ комплексно-сопряженные, $m_{1,2} = 1$.
- $s_n = an + b \Rightarrow \mu_1 = 1, m_1 = 2.$

Алгоритм EOSSA (ESPRIT-motivated OSSA)

Алгоритм (Шлемов, 2017)

Входные данные: оценка ранга сигнала t, SVD матрицы $\mathbf{Y} = \sum_{i=1}^t \sqrt{\lambda_i} U_i V_i^\mathrm{T}$, $Y = \mathfrak{T}^{-1} \circ \Pi_{\mathfrak{H}}(\mathbf{Y})$ — оценка сигнала некоторого ряда, длина окна L, способ кластеризации сигнальных корней. Результат: разложение ряда $Y = Y^{(1)} + \cdots + Y^{(k)}$.

- $oldsymbol{\Theta}$ Вычисляются матрицы $oldsymbol{\mathbf{P}} = [U_1:\dots:U_t], oldsymbol{\mathbf{Q}} = [\sqrt{\lambda_1}V_1:\dots:\sqrt{\lambda_r}V_t].$
- $oldsymbol{\Theta}$ Вычисляется сдвиговая матрица $\mathbf{M} = \underline{\mathbf{P}}^\dagger \overline{\mathbf{P}} \left(\overline{\mathbf{P}} pprox \underline{\mathbf{P}} \mathbf{M}
 ight)$;
- $lacksymbol{\bullet}$ Находится матрица \mathbf{T} из $EVD\ \mathbf{M} = \mathbf{T}\operatorname{diag}(\hat{\mu}_1,...,\hat{\mu}_t)\mathbf{T}^{-1}$.

Алгоритм EOSSA (ESPRIT-motivated OSSA)

Алгоритм (Шлемов, 2017)

Входные данные: оценка ранга сигнала t, SVD матрицы $\mathbf{Y} = \sum_{i=1}^t \sqrt{\lambda_i} U_i V_i^\mathrm{T}$, $Y = \mathfrak{T}^{-1} \circ \Pi_{\mathfrak{H}}(\mathbf{Y})$ — оценка сигнала некоторого ряда, длина окна L, способ кластеризации сигнальных корней. Результат: разложение ряда $Y = Y^{(1)} + \dots + Y^{(k)}$.

- $oldsymbol{\Theta}$ Вычисляются матрицы $\mathbf{P} = [U_1: \cdots: U_t], \mathbf{Q} = [\sqrt{\lambda_1}V_1: \cdots: \sqrt{\lambda_r}V_t].$
- $oldsymbol{f \Theta}$ Вычисляется сдвиговая матрица ${f M}={f P}^\dagger {f \overline P}\left({f \overline P}pprox {f \underline P}{f M}
 ight)$;
- **9** Находится матрица ${f T}$ из EVD ${f M} = {f T} \, {
 m diag}(\hat{\mu}_1,...,\hat{\mu}_t) {f T}^{-1}$.
- Производится кластеризация пар $(\text{Re}(\hat{\mu}_i), |\text{Im}(\hat{\mu}_i)|)$ заданным методом. Результат: разбиение $\{1 \dots t\} = \bigsqcup_{j=1}^k G_j$.

Алгоритм EOSSA (ESPRIT-motivated OSSA)

Алгоритм (Шлемов, 2017)

Входные данные: оценка ранга сигнала t, SVD матрицы $\mathbf{Y} = \sum_{i=1}^t \sqrt{\lambda_i} U_i V_i^\mathrm{T}$, $\mathbf{Y} = \mathfrak{T}^{-1} \circ \Pi_{\mathfrak{H}}(\mathbf{Y})$ — оценка сигнала некоторого ряда, длина окна L, способ кластеризации сигнальных корней. Результат: разложение ряда $\mathbf{Y} = \mathbf{Y}^{(1)} + \cdots + \mathbf{Y}^{(k)}$.

- $oldsymbol{\Theta}$ Вычисляются матрицы $\mathbf{P} = [U_1:\dots:U_t], \mathbf{Q} = [\sqrt{\lambda_1}V_1:\dots:\sqrt{\lambda_r}V_t].$
- $oldsymbol{2}$ Вычисляется сдвиговая матрица $\mathbf{M} = \underline{\mathbf{P}}^\dagger \overline{\mathbf{P}} \left(\overline{\mathbf{P}} pprox \underline{\mathbf{P}} \mathbf{M}
 ight)$;
- f O Находится матрица f T из $EVD\ {f M}={f T}\,{
 m diag}(\hat{\mu}_1,...,\hat{\mu}_t){f T}^{-1}$.
- Производится кластеризация пар $(\text{Re}(\hat{\mu}_i), |\text{Im}(\hat{\mu}_i)|)$ заданным методом. Результат: разбиение $\{1 \dots t\} = \bigsqcup_{j=1}^k G_j$.
- f T Составляются матрицы $f T_j$ из базиса $\operatorname{colspan} {f T}[G_j]$. Положим $f T=[f T_1:\ldots:f T_k]$.
- $oldsymbol{O}$ Положим $oldsymbol{\Phi}_j = \mathbf{P}\widetilde{\mathbf{T}}_j$, $oldsymbol{\Psi}_j = (\mathbf{Q}(\widetilde{\mathbf{T}}^{-1})^\mathrm{T})[G_j]$.

Результаты: Обоснование EOSSA

Обоснование метода EOSSA было дополнено. Было доказано, что в случае сигналов без шума с простыми сигнальными корнями выполняется следующее:

Теорема

Пусть $S=S^{(1)}+\cdots+S^{(k)}$, $k=r_1+r_2/2$, где слагаемые $S^{(i)}$ имеют вид $s_j^{(i)}=A_ia_i^j$ (rank $S^{(j)}=1$), $i=1,\ldots,r_1$ и $s_j^{(i)}=B_zb_z^j\cos(2\pi\omega_zj+\phi_z)$ (rank $S^{(j)}=2$), $i=r_1+1,\ldots,r_1+r_2/2$, где $a_i\neq 0,b_z>0,\omega_z\in(0;\frac{1}{2})$. Выполняется $r=\mathrm{rank}\,S=r_1+r_2$. Пусть $\min(L,K)\geq r$ и алгоритм EOSSA получил $k=r_1+\frac{r_2}{2}$ кластеров. Тогда алгоритм EOSSA получает разложение $\mathbf{Y}^{(i)}=S^{(i)}$, с точностью до перестановки.

Результаты: Обоснование EOSSA

Обоснование метода EOSSA было дополнено. Было доказано, что в случае сигналов без шума с простыми сигнальными корнями выполняется следующее:

Теорема

Пусть $S=S^{(1)}+\cdots+S^{(k)},\ k=r_1+r_2/2,\$ где слагаемые $S^{(i)}$ имеют вид $s_j^{(i)}=A_ia_i^j$ ($\mathrm{rank}\ S^{(j)}=1$), $i=1,\ldots,r_1$ и $s_j^{(i)}=B_zb_z^j\cos(2\pi\omega_z j+\phi_z)$ ($\mathrm{rank}\ S^{(j)}=2$), $i=r_1+1,\ldots,r_1+r_2/2$, где $a_i\neq 0,b_z>0,\omega_z\in(0;\frac{1}{2}).$ Выполняется $r=\mathrm{rank}\ S=r_1+r_2.$ Пусть $\min(L,K)\geq r$ и алгоритм EOSSA получил $k=r_1+\frac{r_2}{2}$ кластеров. Тогда алгоритм EOSSA получает разложение $\mathbf{Y}^{(i)}=S^{(i)}$, с точностью до перестановки.

Замечание

Таким образом, в случае отсутствия шума, для алгоритма EOSSA **нет** проблемы отсутствия сильной разделимости.

Результаты: Модификация EOSSA

• Реализация в Rssa (Шлемов) использовала **иерархическую** кластеризацию пар $x_i = (\text{Re}(\mu_i), |\text{Im}(\mu_i)|)$ с заданным количеством кластеров.

Результаты: Модификация EOSSA

- Реализация в Rssa (Шлемов) использовала иерархическую кластеризацию пар $x_i = (\mathsf{Re}(\mu_i), |\mathsf{Im}(\mu_i)|)$ с заданным количеством кластеров.
- Предлагаемая модификация использует кластеризацию пар $x_i = (\text{Re}(\mu_i), |\text{Im}(\mu_i)|)$ методом k средних, где k находится как наименьшее, при котором выполняется:

$$\frac{WCSS(x,C)}{BCSS(x,C)} < \delta, \tag{4}$$

где WCSS(x,C) — внутрикластерная сумма квадратов, BCSS(x,C) — межкластерная сумма квадратов, C — вектор с центрами кластеров, δ — параметр алгоритма.

Результаты: Комбинированные методы

Предлагаемые методы, совмещающие улучшение разделимости и автоматическую идентификацию (TAI):

- Метод autoSSA (t, ω_0, T_1) :
 - Нет улучшения разделимости.
- Метод **autoFOSSA** (t, ω_0, T_1) :
 - Применяется FOSSA(t).

Результаты: Комбинированные методы

Предлагаемые методы, совмещающие улучшение разделимости и автоматическую идентификацию (TAI):

- Метод **autoSSA** (t, ω_0, T_1) :
 - Нет улучшения разделимости.
- Метод autoFOSSA (t, ω_0, T_1) :
 - Применяется FOSSA(t).
- Метод autolOSSA+FOSSA (t, ω_0, T_0, T_1) :
 - Применяется FOSSA(t) вместе с TAI (ω_0,T_0) получаем начальную группировку $I_0.$
 - Применяется $IOSSA(n_{iter}, I_0)$.

Результаты: Комбинированные методы

Предлагаемые методы, совмещающие улучшение разделимости и автоматическую идентификацию (TAI):

- Метод **autoSSA** (t, ω_0, T_1) :
 - Нет улучшения разделимости.
- Метод **autoFOSSA** (t, ω_0, T_1) :
 - Применяется FOSSA(t).
- Метод autolOSSA+FOSSA (t, ω_0, T_0, T_1) :
 - Применяется FOSSA(t) вместе с TAI(ω_0, T_0) получаем начальную группировку I_0 .
 - Применяется $IOSSA(n_{iter}, I_0)$.
- Метод **autoEOSSA** $(t, \omega_0, T_1, \delta)$:
 - Применяется EOSSA (t,δ) (модификация).

Во всех методах на последнем этапе применяется $TAI(\omega_0,T_1)$. Итог: результат работы методов — группа элементарных компонент I в уточненном разложении.

Численные результаты: Рассмотренные примеры

Были рассмотрены:

- Ряды с точной отделимостью тренда и периодик.
- Ряды конечного ранга с наличием/отсутствием слабой разделимости и наличием/отсутствием разделимости по вкладам.
- Ряды неконечного ранга и реальные временные ряды.

Численные результаты: Рассмотренные примеры

Были рассмотрены:

- Ряды с точной отделимостью тренда и периодик.
- Ряды конечного ранга с наличием/отсутствием слабой разделимости и наличием/отсутствием разделимости по вкладам.
- Ряды неконечного ранга и реальные временные ряды. Рекомендованные по численному исследованию параметры автоматической группировки:
 - $T_0 = 0.2$ (для метода autolOSSA+FOSSA)
 - $T_1 = 0.5$
 - ω_0 исходя из задачи, в примере ниже $\frac{1}{40}$.

Численные результаты: Рассмотренные примеры

Были рассмотрены:

- Ряды с точной отделимостью тренда и периодик.
- Ряды конечного ранга с наличием/отсутствием слабой разделимости и наличием/отсутствием разделимости по вкладам.
- Ряды неконечного ранга и реальные временные ряды.

Рекомендованные по численному исследованию параметры автоматической группировки:

- $T_0 = 0.2$ (для метода autoIOSSA+FOSSA)
- $T_1 = 0.5$
- ullet ω_0 исходя из задачи, в примере ниже $\frac{1}{40}.$

Пример ряда конечного ранга r=5 с отсутствием слабой разделимости и наличием разделимости по вкладам для тренда и периодик: $N=100,\ L=50.$

- Тренд $0.2e^{0.05n} + 2\cos\left(\frac{2\pi n}{60}\right)$
- \bullet Гармоника $4.12\cos\left(rac{2\pi n}{30}
 ight)$
- Шум: N(0,1)

Максимальное число итераций в IOSSA — 10. Число повторов для усреднения ошибок — 1000.

Численные результаты: Устойчивость к превышению ранга

Методы были исследованы на устойчивость к превышению ранга сигнала (ранг сигнала r=5):

 В порядке уменьшения устойчивости: autoSSA, autoFOSSA, autoIOSSA+FOSSA, autoEOSSA.

Рис.: Зависимость средней MSE от оценки ранга сигнала. Пример.

Пример: Реальный временной ряд

Рис.: Выделенные тренды на фоне исходного ряда. Продажа австралийских вин.

• Предложен новый подход к автоматической идентификации, совмещающий улучшение разделимости и автоматическую идентификацию компонент ряда.

- Предложен новый подход к автоматической идентификации, совмещающий улучшение разделимости и автоматическую идентификацию компонент ряда.
- Теоретическое обоснование метода EOSSA было формализовано и дополнено. Предложена модификация метода, которая оказалась лучшей для автоматического выделения в случае рядов конечного ранга, при небольшом превышении ранга.
- Теоретически обосновано обобщение алгоритма EOSSA на случай кратных сигнальных корней при отсутствии шума.

- Предложен новый подход к автоматической идентификации, совмещающий улучшение разделимости и автоматическую идентификацию компонент ряда.
- Теоретическое обоснование метода EOSSA было формализовано и дополнено. Предложена модификация метода, которая оказалась лучшей для автоматического выделения в случае рядов конечного ранга, при небольшом превышении ранга.
- Теоретически обосновано обобщение алгоритма EOSSA на случай кратных сигнальных корней при отсутствии шума.
- С помощью численных экспериментов составлены рекомендации по выбору параметров и исследована устойчивость к превышению ранга.

- Предложен новый подход к автоматической идентификации, совмещающий улучшение разделимости и автоматическую идентификацию компонент ряда.
- Теоретическое обоснование метода EOSSA было формализовано и дополнено. Предложена модификация метода, которая оказалась лучшей для автоматического выделения в случае рядов конечного ранга, при небольшом превышении ранга.
- Теоретически обосновано обобщение алгоритма EOSSA на случай кратных сигнальных корней при отсутствии шума.
- С помощью численных экспериментов составлены рекомендации по выбору параметров и исследована устойчивость к превышению ранга.
- Составлены рекомендации по выбору методов в случае рядов конечного ранга:
 - Ранг сигнала не сильно превышен autoEOSSA.
 - Нет недостатка слабой разделимости autoFOSSA.
 - Случай точной отделимости autoSSA.