SAG AND SWING CALCULATIONS FOR 165/167 MT. PLEASANT ST:

GrandBridge Energy - Grant Chapman

03/25/2024

Conductor: Aluminum

Conductor Type: 1/0 Triplex

Conductor Span: 27.1m

Conductor weight (kg/m): w = 0.62 [1]

Conductor Diameter (mm): d = 8.25 [2]

Conductor Sag at 100 °C (m): 1.09m (Figure 1)

d/w: 8.25/0.62 = 13

Thus, the factor is 0.31 as seen in Figure 2

 $1.09 \text{m} \times 0.31 = 0.34 \text{m}$

... The conductor swing is 0.34m horizontally

						TABLE 2 (1/	0 ALUMINI	JM TRIPLEX	:)						
			Initial (Stringing) Condition								RTS = 3883kg				
			Span (m)												
			22 26 30 34 38							Tension					
Ambient temperature (*C)			Sag (cm)							kg	lbs	kN	%RTS		
30			66	92	122	157	196				53	117	0.52	2.6	
20			64	89	119	153	191				55	121	0.54	2.7	
10			62	87	116	149	186				56	123	0.55	2.8	
	0			84	112	144	180				58	128	0.57	2.9	
	-10			82	109	140	175				60	132	0.59	3	
	-20			79	105	135	168				62	137	0.61	3.1	
	-30			77	102	131	164				64	141	0.63	3.2	
						Fi	nal Conditi	on							
Loa	ding Condi	tion	Span (m)												
	Wind	Ice	22	26	30	34	38					Ten	sion		
Temp (°C)	(N/m²)	(mm)	Sag (cm)						kg	lbs	kN	%RTS			
-20	400	12.5	63	88	117	150	188				270	595	2.65	13.3	
0	0	0	62	87	116	149	186				56	123	0.55	2.8	
50	0	0	70	98	131	168	210				50	110	0.49	2.5	
100	0	0	78	109	145	186	233				45	99	0.44	2.2	

(Figure 1)

(Figure 2)

Bibliography

- [1] "1/0-1/0 neritina aluminum Triplex Overhead Service Drop Cable," 1/0 1/0 1/0 Nerltina ACSR Aluminum Triplex Overhead Service Drop Cable | WireAndCableYourWay.com, https://www.wireandcableyourway.com/1-0-1-0-nerlina-acsr-aluminum-triplex-overhead-service-drop-cable (accessed Mar. 21, 2024).
- [2] "FAQ: AWG Chart and the metric system: Eland cables," FAQ: AWG chart and the metric system | Eland Cables, https://www.elandcables.com/the-cable-lab/faqs/faq-what-is-the-conversion-between-awg-and-the-metric-system (accessed Mar. 25, 2024).