

高等数学(上)补充专题

一、数列极限

1.直接化简

例题1 求极限:

$$\lim_{n \to \infty} \left[\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} \right]^{n}$$

$$\text{\texttt{M}: } \mathbb{R} \stackrel{!}{\mathbf{x}} = \lim_{n \to \infty} \left[\left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right]^{n}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right)^{n} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right)^{-(n+1)\frac{-n}{n+1}} = e^{\lim_{n \to \infty} \frac{-n}{n+1}} = e^{-1}$$

2.利用夹逼准则

例题 2 求极限:

$$\lim_{n \to \infty} \left(\frac{n+1}{\sqrt{n^4+1^2}} + \frac{n+2}{\sqrt{n^4+2^2}} + \frac{n+3}{\sqrt{n^4+3^2}} + \dots + \frac{n+n}{\sqrt{n^4+n^2}} \right)$$

解:

$$\lim_{n\to\infty}\frac{1}{\sqrt{n^4+n^2}}\big[(n+1)+\cdots(n+n)\big]<\text{\mathbb{R}} \vec{\mathbb{X}}<\lim_{n\to\infty}\frac{1}{\sqrt{n^4+1^2}}\big[(n+1)+\cdots(n+n)\big]$$

$$\lim_{n \to \infty} \frac{n^2 + \frac{n(n+1)}{2}}{\sqrt{n^4 + n^2}} < 原式 < \lim_{n \to \infty} \frac{n^2 + \frac{n(n+1)}{2}}{\sqrt{n^4 + 1^2}}$$

$$\lim_{n \to \infty} \frac{n^2 + \frac{n(n+1)}{2}}{\sqrt{n^4 + n^2}} = \lim_{n \to \infty} \frac{n^2 + \frac{n(n+1)}{2}}{\sqrt{n^4 + 1^2}} = \frac{3}{2}$$

3.转化为定积分

例题 3 求极限:

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+n} \right)$$

解:

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+n} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \frac{1}{1+\frac{3}{n}} + \dots + \frac{1}{1+\frac{n}{n}} \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \cdot \frac{1}{1+\frac{i}{n}} = \int_{0}^{1} \frac{1}{1+x} dx = \ln(1+x) \Big|_{0}^{1} = \ln 2$$

4.数学归纳与单调有界

例题 4 设 $a_1 = 1$, $a_{n+1} = \frac{2(1+a_n)}{2+a_n}$ $(n=1,2,\cdots)$, 证明该数列存在极限并求该极

限值。

解: 首先根据单调有界准则来证明该数列有极限:

用数学归纳法,证明其单调性:

$$a_1 = 1, a_2 = \frac{2(1+a_1)}{2+a_1} = \frac{4}{3} > a_1$$

n=1时, $a_{n+1}>a_n$ 成立;设n=k时, $a_{n+1}>a_n$ 成立,则:

$$a_{k+2} - a_{k+1} = \frac{2(1+a_{k+1})}{2+a_{k+1}} - \frac{2(1+a_k)}{2+a_k} = \frac{2(a_{k+1} - a_k)}{(2+a_{k+1})(2+a_k)} > 0$$

所以n=k+1时, $a_{n+1}>a_n$ 也成立,所以该数列单调递增。

然后<u>证明其有界性</u>: $a_1 = 1$, $a_{n+1} = 1 + \frac{a_n}{2 + a_n}$, 则 $1 < a_{n+1} < 2$, 数列有界。

设 $\lim_{n\to\infty} a_n = a$, 则由极限的唯一性可知, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1} = a$, 于是有:

$$a = \frac{2(1+a)}{2+a}$$
,解得 $a = \sqrt{2}$, $a = -\sqrt{2}$ (与 $a_n > 1$ 不符,舍去)

所以极限值 $\lim_{n\to\infty} a_n = \sqrt{2}$.

练习1 求下列极限:

$$(1) \lim_{n \to \infty} \left(\frac{n+1}{n^2+1} + \frac{n+\frac{1}{2}}{n^2+2} + \dots + \frac{n+\frac{1}{n}}{n^2+n} \right)$$

$$n \cdot \frac{n + \frac{1}{n}}{n^2 + n} \le \sum_{i=1}^{n} \frac{n + \frac{1}{i}}{n^2 + i} \le n \cdot \frac{n+1}{n^2 + 1}$$

$$\lim_{n\to\infty} n \cdot \frac{n+\frac{1}{n}}{n^2+n} = \lim_{n\to\infty} n \cdot \frac{n+1}{n^2+1} = 1$$

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{n+\frac{1}{i}}{n^2+i}=1$$

$$(2) \lim_{n\to\infty}\frac{\sin\left(\frac{1}{n}\right)}{n}+\frac{\sin\left(\frac{2}{n}\right)}{n}+\frac{\sin\left(\frac{3}{n}\right)}{n}+\cdots\frac{\sin\left(\frac{n}{n}\right)}{n}$$

原式 =
$$\int_0^1 \sin x \, \mathrm{d}x = \cos 0 - \cos 1$$

练习 2 设 $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$ $(n = 1, 2, \cdots)$, 证明该数列存在极限并求该极限值。

解:

 $a_1 = \sqrt{2}, a_2 = \sqrt{2 + a_1} > \sqrt{2}$,猜想数列 $\{a_n\}$ 是递增的,假设 $a_k > a_{k-1}$ $(k \ge 2)$,

则 $a_{k+1} = \sqrt{2+a_k} > \sqrt{2+a_{k-1}} = a_k$, 根据数学归纳法得证数列 $\{a_n\}$ 递增;

猜想数列 $\{a_n\}$ 有上界为 2,已知 $a_1 = \sqrt{2} < 2$,假设 $a_k \le 2$ ($k \ge 2$),则有 $a_{k+1} = \sqrt{2+a_k} \le \sqrt{2+2} = 2$,根据数学归纳法得证数列 $a_n \le 2$.

综上所述,数列 $\{a_n\}$ 单调递增且有上界,则存在极限a,有 $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n=a$,

所以: $a = \sqrt{2+a}$, 解得极限a = 2.

二、中值定理

前提条件	定理名称	定理主要内容
函数 f(x) 在区	罗尔定理	如果 $f(a) = f(b)$,则在 (a,b) 中存在一个 ξ ,使得: $f'(\xi) = 0 (一般用于证明等式)$
國 (<i>a</i>) 社 (((a , <i>b</i>) 上 ((a , <i>b</i>) 上	拉格朗日中值定理	在 (a,b) 中存在一个 ξ ,使得: $f'(\xi) = \frac{f(b) - f(a)}{b - a}$ (一般用于证明双侧不等式)
可导。	柯西中值定理 (不常考)	$f(x)$ 、 $g(x)$ 均满足前提条件,则在 (a,b) 中存在一个 ξ ,使得: $\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$ (不常考)

从图像上理解罗尔/拉格朗日中值定理:

1.利用罗尔中值定理证明等式

第一步:将需要证明的等式中的" ξ "换为"x",将右侧项移至左侧,设左侧的内容为g(x),则原题需要证明的结论转化为:需要证明g(x)=0在(0,a)内有实根;

第二步: 需要构造辅助函数G(x),满足G'(x) = g(x),或者G'(x)中含有g(x);第三步: 结合题目给出的其他条件,在区间[0,a]上找到两点,使辅助函数G(x)在这两点处函数值相等,结合罗尔定理,证明结论。

此类题目的难点无非两点:构造辅助函数,证明两处值相等。

- 1.构造辅助函数的方法:
- a.常用辅助函数对应关系:

需要证明根存在的 $g(x)$	辅助函数 $G(x)$
xf'(x) + f(x)	xf(x)
xf'(x)-f(x)	$\frac{f(x)}{x} (x \neq 0)$
f'(x) + f(x)	$\mathrm{e}^x f(x)$
f'(x) - f(x)	$\mathrm{e}^{-x}f(x)$

b.通过计算不定积分得到辅助函数:

将需要证明的等式写成下列格式:

$$f'(x) + q(x)f(x) = 0$$

计算不定积分 $\int g(x) dx$,则辅助函数为 $f(x) e^{\int g(x) dx}$.

- c.观察题目条件中有无合适的格式.
- 2.找到两处辅助函数值相等
- a. 区间的两端
- b. 利用介质定理进行构造
- c. 利用拉格朗日中值定理

例题 1 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 bf(a) - af(b) = 0.请证明:至 少存在一点 $\xi \in (0,a)$,使得: $f(\xi) = \xi f'(\xi)$.

第一步: 设q(x) = f(x) - xf'(x);

第二步: 设
$$G(x) = \frac{f(x)}{x}$$
, 有 $G'(x) = \frac{xf'(x) - f(x)}{x^2} = \frac{-g(x)}{x^2}$;

第三步: 由于 $G(a) = \frac{f(a)}{a}$, $G(b) = \frac{f(b)}{b}$, 由题意bf(a) - af(b) = 0可知:

G(a) = G(b), 由罗尔定理可知, 存在 $\xi \in (a,b)$, 使得 $G'(\xi) = 0$, 即 $g(\xi) = 0$, $f(\xi) = \xi f'(\xi)$.

例题 2 设函数f(x)在 $\left[0,\frac{\pi}{2}\right]$ 上连续,在 $\left(0,\frac{\pi}{2}\right)$ 内可导,且 $f\left(\frac{\pi}{2}\right)=0$,试证明至 少有一点存在 $\xi \in \left(0,\frac{\pi}{2}\right)$,使得 $f'(\xi)\tan\xi + f(\xi)=0$.

第一步: 设 $g(x) = f(x) + f'(x) \tan x$;

第二步: 设 $G(x) = f(x) \cdot \sin x$, 且有:

 $G'(x) = f(x)\cos x + f'(x)\sin x = \cos x[f(x) + f'(x)\tan x];$

第三步:由于 $G(0) = G\left(\frac{\pi}{2}\right) = 0$,由罗尔定理可知,存在 $\xi \in \left(0, \frac{\pi}{2}\right)$,使得 $G'(\xi) = 0$,又有 $\cos \xi \neq 0$,所以 $f'(\xi)\tan \xi + f(\xi) = 0$.

例题 3 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 $f(a) \cdot f(b) > 0$,

$$f(a) \cdot f\left(\frac{a+b}{2}\right) < 0$$
, 试证明至少有一点存在 $\xi \in (a,b)$, 使得 $f'(\xi) = f(\xi)$.

第一步: 设g(x) = f'(x) - f(x);

第二步: 设 $G(x) = e^{-x} f(x)$, 有 $G'(x) = e^{-x} [f'(x) - f(x)]$;

第三步:
$$G(a) = e^{-a} f(a), \quad G\left(\frac{a+b}{2}\right) = e^{-\frac{a+b}{2}} f\left(\frac{a+b}{2}\right), \quad G(b) = e^{-b} f(b),$$

则有:
$$G(a) \cdot G\left(\frac{a+b}{2}\right) < 0$$
, $G(b) \cdot G\left(\frac{a+b}{2}\right) < 0$

则于区间 $\left(a, \frac{a+b}{2}\right)$ 、 $\left(\frac{a+b}{2}, b\right)$ 中分别存在 ξ_1 、 ξ_2 使得: $G(\xi_1) = G(\xi_2) = 0$,根据罗尔中值定理,则在区间 (ξ_1, ξ_2) 中存在 ξ 使得: $G'(\xi) = 0$,即 $f'(\xi) = f(\xi)$.

例题 4 设函数 f(x) 在闭区间 [-2,2] 上二阶可导,且 $|f(x)| \le 1$,又 $f^2(0) + [f'(0)]^2 = 4$,证明:在(-2,2)内至少存在一点 ξ ,使得 $f(\xi) + f''(\xi) = 0$.

证明:

令 $g(x) = f^2(x) + [f'(x)]^2$,则有g'(x) = 2f'(x)[f(x) + f''(x)],g(0) = 4. 由Lagrange中值定理,

$$\exists \, \xi_1 \! \in \! (-2,0)$$
,使得 $f'(\xi_1) \! = \! rac{f(0) \! - \! f(-2)}{2}$,

$$\exists \xi_2 \in (0,2)$$
,使得 $f'(\xi_2) = \frac{f(2) - f(0)}{2}$,

由 $|f(x)| \le 1$,得 $|f'(\xi_1)| \le 1$, $|f'(\xi_2)| \le 1$ 。

则 $g(\xi_1) \le 2$, $g(\xi_2) \le 2$,又因为g(x)在 $[\xi_1,\xi_2]$ 上连续,

 $\exists \xi \in (\xi_1, \xi_2)$,使得 $g(\xi)$ 为g(x)在 $[\xi_1, \xi_2]$ 上的最大值,即 $g(\xi) = M$,且 $g(\xi) \ge 4$,

又
$$g(x)$$
在 (ξ_1,ξ_2) 上可导,故 $g'(\xi) = 2f'(\xi)[f(\xi) + f''(\xi)] = 0$

若
$$f'(\xi) = 0$$
, 由 $g(\xi) = f^2(\xi) + [f'(\xi)]^2 \ge 4$ 知 $|f(\xi)| \ge 2$

与 条 件 $|f(x)| \le 1$ 矛 盾 , 故 $f'(\xi) \ne 0$ 。 即 $\exists \xi \in (\xi_1, \xi_2) \subset (-2, 2)$, 使 得 $f(\xi) + f''(\xi) = 0$ 。

2.利用拉格朗日中值定理证明不等式

例题 5 设
$$0 < a < b$$
,证明: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$.

方法: 在处理这类双侧不等式的时候,常常用到的就是拉格朗日中值定理。

第一步: 需要找到一个辅助函数F(x), 它的导数F'(x)也应在不等式中出现: 一般来说不等式的中间部分F(b)-F(a), 左右两侧分别含有F'(a)、F'(b).

第二步: 找到F(x)后, 根据拉格朗日中值定理, $F'(\xi) = \frac{F(b) - F(a)}{b - a}$, $a < \xi < b$.

第三步:证明题目给出的不等式。

证明: 设 $F(x) = \ln x$, 则 $F'(x) = \frac{1}{x}$.

根据拉格朗日中值定理,存在 $\xi \in (a,b)$,使得 $F'(\xi) = \frac{F(b) - F(a)}{b-a}$,即

$$\frac{1}{\xi} = \frac{\ln b - \ln a}{b - a} \,.$$

由于 $a < \xi < b$, $\frac{1}{b} < \frac{1}{\xi} < \frac{1}{a}$.将 $\frac{1}{\xi} = \frac{\ln b - \ln a}{b - a}$ 代入,得:

$$\frac{1}{b} < \frac{\ln b - \ln a}{b - a} < \frac{1}{a}$$

进而证得:

$$\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$$

3.利用拉格朗日中值定理求极限

例题 6 求下列极限

$$(1) \lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$

根据拉格朗日中值定理可知: $e^b - e^a = e^{\theta}(b-a)$ $(a < \theta < b)$, 题目中套用该形式可知:

$$\lim_{x\to 0} \frac{\mathrm{e}^x - \mathrm{e}^{\sin x}}{x - \sin x} = \lim_{\theta\to 0} \mathrm{e}^{\theta} = 1$$

(2)
$$\lim_{n\to\infty} n^2 \left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right)$$

根据拉格朗日中值定理可知: $\arctan b - \arctan a = \frac{1}{1+\theta^2}(b-a)$ $(a < \theta < b)$

$$\left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right) = \frac{1}{1+\theta^2} \cdot \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{1}{1+\theta^2} \cdot \frac{1}{n(n+1)}$$

其中
$$\frac{1}{n+1}$$
< θ < $\frac{1}{n}$, 当 $n\to\infty$ 时, $\theta\to 0$

$$\lim_{n\to\infty} n^2 \left(\arctan\frac{1}{n} - \arctan\frac{1}{n+1}\right)$$

$$=\lim_{\substack{n o\infty\ heta o 0}} n^2 \cdot rac{1}{1+ heta^2} \cdot rac{1}{n(n+1)}$$

$$= \lim_{\substack{n \to \infty \\ \theta \to 0}} \frac{1}{1 + \theta^2} \cdot \frac{1}{\left(1 + \frac{1}{n}\right)} = 1$$

三、导数

1.利用泰勒公式求高阶导数

例题 1 求函数 $f(x) = x^2 \cdot \ln(1+x)$ 在 x = 0 处的 5 阶导数 $f^{(5)}(0)$

解: $在x \rightarrow 0$ 时:

己知:
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)$$

$$f(x) = x^2 \cdot \ln(1+x) = x^2 \left(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)\right)$$

= $x^3 - \frac{1}{2}x^4 + \frac{1}{3}x^5 + o(x^5)$

根据泰勒公式将f(x)在x=0处附近展开:

$$f(x) = f(0) + \frac{f'(0) \cdot x}{1!} + \frac{f''(0) \cdot x^2}{2!} + \frac{f'''(0) \cdot x^3}{3!} + \frac{f^{(4)}(0) \cdot x^4}{4!} + \frac{f^{(5)}(0) \cdot x^5}{5!} + o(x^5)$$

所以:
$$\frac{1}{3} = \frac{f^{(5)}(0)}{5!}$$
, $f^{(5)}(0) = \frac{5!}{3} = 40$

2.相关变化率

例题 2 已知路灯高 4.8 米,行人身高 1.6 米,行人在距离路灯 4 米远处,以 2m/s 的速度沿着路灯指向行人的方向移动,请问行人影子最远点的移动速度。

人的位置为x,影子最远点的位置为h,则有:

$$\frac{h-x}{h} = \frac{1.6}{4.8}, \ h = \frac{3x}{2}$$

已知
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2$$
,那么 $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3}{2} \cdot 2 = 3$ (单位: m/s).

四、特殊类型的积分

1.有理函数的积分

最简分式的四种形式:

$$egin{array}{ll} rac{A}{x-a} & rac{A}{(x-a)^k} \ & rac{Ax+B}{x^2+px+q} & rac{Ax+B}{(x^2+px+q)^k} \end{array}$$

注意,其中 $p^2-4q<0$,否则最简形式应是上面两行的类型.

例题 2 请将下列分式化为上述四种最简分式的类型:

$$\frac{x^4-3}{x^2-2x+2}$$

设其拆解后为:
$$\frac{x^4-3}{x^2-2x+2} = ax^2 + bx + c + \frac{dx+e}{x^2-2x+2}$$

$$ax^2 + bx + c + \frac{dx + e}{x^2 - 2x + 2} = \frac{ax^4 + (b - 2a)x^3 + (2a - 2b + c)x^2 + (2b - 2c + d)x + 2c + e}{x^2 - 2x + 2}$$

于是:

$$\begin{cases} a = 1 \\ b - 2a = 0 \\ 2a - 2b + c = 0 \\ 2b - 2c + d = 0 \\ 2c + e = -3 \end{cases} \rightarrow \begin{cases} a = 1 \\ b = 2 \\ c = 2 \\ d = 0 \\ e = -7 \end{cases}$$

所以:
$$\frac{x^4-3}{x^2-2x+2} = x^2+2x+2-\frac{7}{x^2-2x+2}$$

例题 3 求解不定积分 $\int \frac{x^5-1}{x^3+1} dx$

$$\frac{x^5 - 1}{x^3 + 1} = \frac{x^5 - 1}{(x+1)(x^2 - x + 1)} = ax^2 + bx + c + \frac{d}{x+1} + \frac{ex + f}{x^2 - x + 1}$$
$$= x^2 - \frac{2}{3} \cdot \frac{1}{1+x} - \frac{1}{3} \cdot \frac{x+1}{x^2 - x + 1}$$

原式 =
$$\int \left(x^2 - \frac{2}{3} \cdot \frac{1}{1+x} - \frac{1}{3} \cdot \frac{x+1}{x^2 - x + 1} \right) dx$$
=
$$\int x^2 dx - \frac{2}{3} \int \frac{1}{1+x} dx - \frac{1}{3} \int \frac{x+1}{x^2 - x + 1} dx$$
=
$$\frac{1}{3} x^3 - \frac{2}{3} \ln|1+x| - \frac{1}{3} \int \frac{x+1}{x^2 - x + 1} dx$$

其中:

$$\int \frac{x+1}{x^2 - x + 1} dx = \frac{1}{2} \int \frac{2x-1}{x^2 - x + 1} dx + \frac{1}{2} \int \frac{3}{x^2 - x + 1} dx$$

$$= \frac{1}{2} \int \frac{d(x^2 - x + 1)}{x^2 - x + 1} + \frac{1}{2} \int \frac{3}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} dx$$

$$= \frac{1}{2} \ln|x^2 - x + 1| + \sqrt{3} \arctan \frac{2x - 1}{\sqrt{3}} + C$$

综上,原式 =
$$\frac{1}{3}x^3 - \frac{2}{3}\ln|1+x| - \frac{1}{6}\ln|x^2 - x + 1| + \frac{\sqrt{3}}{3}\arctan\frac{2x-1}{\sqrt{3}} + C$$

2.三角有理式的积分

万能代换: 令
$$\tan \frac{x}{2} = t$$
, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$

但同时,若积分式 $R(\sin x,\cos x)$ 存在下列条件:

- (1) $R(-\sin x,\cos x) = -R(\sin x,\cos x)$, 凑出 $\sin x \, \mathrm{d}x = -\operatorname{dcos}x$;
- (2) $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, 凑出 $\cos x \, dx = d\sin x$;
- (3) $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, 凑出 $\sec^2 x dx = \operatorname{dtan} x$;

例题 4 求解下列不定积分

(1)
$$\int \sin^3 x \cos^2 x \, \mathrm{d}x$$

原式 =
$$-\int \sin^2 x \cos^2 x \, d\cos x = -\int (1 - \cos^2 x) \cos^2 x \, d\cos x$$

= $\int (t^4 - t^2) \, dt = \frac{1}{5} t^5 - \frac{1}{3} t^3 + C = \frac{1}{5} \cos^5 x - \frac{1}{3} \cos^3 x + C$

$$(2) \int \frac{1}{\sin 2x + 2\sin x} dx$$

原式 =
$$\int \frac{1}{2\sin x \cos x + 2\sin x} dx = \int \frac{\sin x}{2\sin^2 x \cos x + 2\sin^2 x} dx$$

$$= -\int \frac{d\cos x}{2(1 - \cos^2 x)\cos x + 2(1 - \cos^2 x)} = -\frac{1}{2} \int \frac{1}{(1 - t)(1 + t)^2} dt$$

$$= -\frac{1}{8} \int \frac{1}{(1 - t)} + \frac{2}{(1 + t)^2} + \frac{1}{1 + t} dt$$

$$= -\frac{1}{8} \left[-\ln(1 - t) - \frac{2}{1 + t} + \ln(1 + t) \right] + C$$

$$= \frac{1}{8} \left[\ln(1 - \cos x) + \frac{2}{1 + \cos x} - \ln(1 + \cos x) \right] + C$$

$$(3) \int \frac{1}{1 + \sin 2x} dx$$

$$\boxed{\text{原式}} = \int \frac{1}{1 + 2\sin x \cos x} dx$$

$$= \int \frac{1}{\sec^2 x + 2\tan x} d\tan x$$

$$= \int \frac{1}{(1 + t)^2} dt = -\frac{1}{1 + t} + C$$

$$= -\frac{1}{1 + \tan x} + C$$

3.变上限积分

例题 1 求下列不同函数S(x)所对应的 $\frac{\mathrm{d}S}{\mathrm{d}x}$.

(1)
$$S(x) = \int_0^x e^{t^2} dt$$
 $\frac{dS}{dx} = e^{x^2}$

(2)
$$S(x) = \int_0^{\sin x} e^t dt$$
 $\frac{dS}{dx} = e^{\sin x} \cdot \cos x$

$$(3) S(x) = \int_{\sin x}^{x^2} t^2 dt$$

$$S(x) = \int_{\sin x}^{0} t^{2} dt + \int_{0}^{x^{2}} t^{2} dt = -\int_{0}^{\sin x} t^{2} dt + \int_{0}^{x^{2}} t^{2} dt$$

$$\frac{\mathrm{d}S}{\mathrm{d}x} = -\sin^2 x \cdot \cos x + x^4 \cdot 2x = -\sin^2 x \cdot \cos x + 2x^5$$

(4)
$$S(x) = \int_0^x \sin(t+x) dt$$

$$S(x) = \int_{x}^{2x} \sin(n) dn$$

$$= \int_{x}^{0} \sin(n) dn + \int_{0}^{2x} \sin(n) dn$$

$$= -\int_{0}^{x} \sin(n) dn + \int_{0}^{2x} \sin(n) dn$$

$$\frac{\mathrm{d}S}{\mathrm{d}x} = -\sin x + 2\sin 2x$$