Contents

Preface				page xv	
1	T 4.	roduc	at our	1	
1			is a Monte Carlo simulation?	1 1	
			problems can we solve with it?	2	
			difficulties will we encounter?	3	
	1.3		Limited computer time and memory	3	
			Statistical and other errors	3	
	1 4		strategy should we follow in approaching a problem?	4	
			do simulations relate to theory and experiment?	4	
		Persp	• • •	5	
		erence		6	
_				7	
2		Some necessary background			
	2.1		modynamics and statistical mechanics: a quick	_	
		remin		7	
			Basic notions	7	
			Phase transitions	15	
			Ergodicity and broken symmetry	27	
			Fluctuations and the Ginzburg criterion	27	
	2.2		A standard exercise: the ferromagnetic Ising model	28	
	2.2		bility theory	30	
			Basic notions	30	
		2.2.2	Special probability distributions and the central limit	21	
		222	theorem	31	
			Statistical errors	33 33	
			Markov chains and master equations	35 35	
	2 2		The 'art' of random number generation	33	
	2.3		equilibrium and dynamics: some introductory	41	
		comn			
			Physical applications of master equations	41 43	
			Conservation laws and their consequences Critical slowing down at phase transitions	46	
			•		
		2.3.4	Transport coefficients	48	

		2.3.5	Concluding comments: why bother about dynamics			
			when doing Monte Carlo for statics?	48		
	Ref	erence	S	48		
3	Sin	nple sa	ampling Monte Carlo methods	51		
		_	duction	51		
	3.2	Comp	parisons of methods for numerical integration of given			
		functi		51		
		3.2.1	Simple methods	51		
			Intelligent methods	53		
	3.3		dary value problems	54		
			lation of radioactive decay	56		
	3.5	Simu	lation of transport properties	57		
			Neutron transport	57		
		3.5.2	Fluid flow	58		
	3.6	The p	percolation problem	58		
		3.6.1	Site percolation	59		
		3.6.2	Cluster counting: the Hoshen–Kopelman algorithm	62		
		3.6.3	Other percolation models	63		
	3.7	Findi	ng the groundstate of a Hamiltonian	63		
	3.8	Gene	ration of 'random' walks	64		
		3.8.1	Introduction	64		
		3.8.2	Random walks	65		
		3.8.3	Self-avoiding walks	66		
		3.8.4	Growing walks and other models	68		
	3.9	Final	remarks	69		
	Ref	erence	s	69		
4	Importance sampling Monte Carlo methods					
	4.1 Introduction					
	4.2	The s	simplest case: single spin-flip sampling for the simple			
		Ising	model	72		
		4.2.1	Algorithm	73		
		4.2.2	Boundary conditions	76		
		4.2.3	Finite size effects	79		
		4.2.4	Finite sampling time effects	93		
		4.2.5	Critical relaxation	100		
	4.3	Other	discrete variable models	108		
		4.3.1	Ising models with competing interactions	108		
		4.3.2	<i>q</i> -state Potts models	112		
		4.3.3	Baxter and Baxter-Wu models	113		
		4.3.4	Clock models	114		
		4.3.5	Ising spin glass models	115		
		4.3.6	Complex fluid models	116		
	4.4	Spin-	exchange sampling	117		
		4.4.1	Constant magnetization simulations	117		
		4.4.2	Phase separation	118		

			Contents	V11
		4.4.3	Diffusion	120
			Hydrodynamic slowing down	122
	4 5		ocanonical methods	123
	1.5		Demon algorithm	123
			Dynamic ensemble	123
			Q2R	124
	4 6		ral remarks, choice of ensemble	124
			es and dynamics of polymer models on lattices	126
	1.,		Background	126
			Fixed bond length methods	126
			Bond fluctuation method	128
			Enhanced sampling using a fourth dimension	128
			The 'wormhole algorithm' – another method to	120
		1.7.5	equilibrate dense polymeric systems	130
		4.7.6	Polymers in solutions of variable quality: θ -point,	100
			collapse transition, unmixing	130
		4.7.7	Equilibrium polymers: a case study	133
			The pruned enriched Rosenbluth method (PERM): a	
			biased sampling approach to simulate very long	•
			isolated chains	136
	4.8	Some	advice	139
	Ref	erence	S	140
5	Mo	re on	importance sampling Monte Carlo methods for	
J			stems	144
		•	er flipping methods	144
	0.1		Fortuin–Kasteleyn theorem	144
			Swendsen-Wang method	145
			Wolff method	148
			'Improved estimators'	149
			Invaded cluster algorithm	149
			Probability changing cluster algorithm	150
	5.2		alized computational techniques	151
		-	Expanded ensemble methods	151
			Multispin coding	151
			N-fold way and extensions	152
			Hybrid algorithms	155
			Multigrid algorithms	155
		5.2.6	Monte Carlo on vector computers	155
		5.2.7	Monte Carlo on parallel computers	156
	5.3	Classi	ical spin models	157
		5.3.1	Introduction	157
		5.3.2	Simple spin-flip method	158
		5.3.3	Heatbath method	160
		5.3.4	Low temperature techniques	161

6

	5.3.6	Wolff embedding trick and cluster flipping	162
	5.3.7	Hybrid methods	163
	5.3.8	Monte Carlo dynamics vs. equation of motion	
		dynamics	163
	5.3.9	Topological excitations and solitons	164
5.4	System	ms with quenched randomness	166
	5.4.1	General comments: averaging in random systems	166
	5.4.2	Parallel tempering: a general method to better	
		equilibrate systems with complex energy landscapes	171
	5.4.3	Random fields and random bonds	172
	5.4.4	Spin glasses and optimization by simulated	
		annealing	173
	5.4.5	Ageing in spin glasses and related systems	178
	5.4.6	Vector spin glasses: developments and surprises	178
5.5		els with mixed degrees of freedom: Si/Ge alloys,	
		study	179
5.6	Meth	ods for systems with long range interactions	181
5.7		el tempering, simulated tempering, and related	
		ods: accuracy considerations	183
5.8		ling the free energy and entropy	186
	-	Thermodynamic integration	186
		Groundstate free energy determination	187
		Estimation of intensive variables: the chemical	
		potential	188
	5.8.4	Lee-Kosterlitz method	189
		Free energy from finite size dependence at T_c	189
5.9		ellaneous topics	190
		Inhomogeneous systems: surfaces, interfaces, etc.	190
		Anisotropic critical phenomena: simulation boxes	
		with arbitrary aspect ratio	196
	5.9.3	Other Monte Carlo schemes	198
		Inverse and reverse Monte Carlo methods	200
		Finite size effects: review and summary	202
		More about error estimation	202
		Random number generators revisited	204
5.10		nary and perspective	207
	rences	and perspective	208
_		e models	212
6.1	Fluid		212
		<i>NVT</i> ensemble and the virial theorem	212
		NpT ensemble	216
		Grand canonical ensemble	220
		Near critical coexistence: a case study	224
		Subsystems: a case study	226
	6.1.6	Gibbs ensemble	231

		Contents	ix
	6.1.7	Widom particle insertion method and variants	234
	6.1.8	Monte Carlo phase switch	236
	6.1.9	Cluster algorithm for fluids	239
	6.1.10	Event chain algorithms	241
6.2	'Short	range' interactions	242
		Cutoffs	242
	6.2.2	Verlet tables and cell structure	242
	6.2.3	Minimum image convention	243
	6.2.4	Mixed degrees of freedom reconsidered	243
6.3	Treatn	ment of long range forces	243
	6.3.1	Reaction field method	243
	6.3.2	Ewald method	244
	6.3.3	Fast multipole method	245
6.4	Adsort	bed monolayers	246
	6.4.1	Smooth substrates	246
	6.4.2	Periodic substrate potentials	246
6.5	Comp	lex fluids	247
	6.5.1	, ,	
		a binary fluid mixture	250
6.6	Polym	ers: an introduction	251
	6.6.1	Length scales and models	251
		Asymmetric polymer mixtures: a case study	257
	6.6.3	Applications: dynamics of polymer melts; thin	
		adsorbed polymeric films	261
	6.6.4	Polymer melts: speeding up bond fluctuation	
		model simulations	265
6.7	_	gurational bias and 'smart Monte Carlo'	267
6.8		ation of excess free energies due to walls for fluids	
	and so		270
6.9	•	metric, Lennard–Jones mixture: a case study	272
		size effects on interfacial properties: a case study	275
	Outloo	ok –	277
Refe	rences		278
Rew	eightir	ng methods	282
7.1	Backgr	round	282
	7.1.1	Distribution functions	282
	7.1.2	Umbrella sampling	282
7.2	Single	histogram method	285
	7.2.1	The Ising model as a case study	286
	7.2.2	The surface-bulk multicritical point: another case	
		study	292
7.3		nistogram method	295
7.4		histogram method	296
7.5		tion matrix Monte Carlo	296
7.6	Multic	canonical sampling	297

7

Contents

X

		7.6.1	The multicanonical approach and its relationship	
			to canonical sampling	297
		7.6.2	Near first order transitions	299
		7.6.3	Groundstates in complicated energy landscapes	300
		7.6.4	Interface free energy estimation	301
	7.7	A case	study: the Casimir effect in critical systems	302
	7.8		-Landau sampling	303
		7.8.1	Basic algorithm	303
		7.8.2	Applications to models with continuous variables	307
		7.8.3	A simple example of two-dimensional	
			Wang-Landau sampling	307
		7.8.4	Microcanonical entropy inflection points	308
		7.8.5		309
		7.8.6	Replica exchange Wang–Landau sampling	310
	7.9	A case	study: evaporation/condensation transition	
		of drop		314
	Refe	rences		316
Q	O110	ntum I	Monte Carlo methods	319
O	8.1	Introd		319
	8.2		nan path integral formulation	320
	0.2	8.2.1		320
		0.2.1	of crystals	320
		8.2.2	•	327
		8.2.3	Path integral formulation for rotational degrees	327
		0.2.3	of freedom	328
	8.3	Lattice	e problems	331
	0.5	8.3.1	The Ising model in a transverse field	331
		8.3.2	Anisotropic Heisenberg chain	332
		8.3.3	Fermions on a lattice	336
		8.3.4	An intermezzo: the minus sign problem	338
		8.3.5	Spinless fermions revisited	340
		8.3.6	Cluster methods for quantum lattice models	342
		8.3.7	Continuous time simulations	344
		8.3.8	Decoupled cell method	345
		8.3.9	Handscomb's method and the stochastic series	313
		0.5.7	expansion (SSE) approach	346
		8 3 10	Wang–Landau sampling for quantum models	347
			Fermion determinants	349
	8.4		e Carlo methods for the study of groundstate	017
	0.1	proper		350
		8.4.1	Variational Monte Carlo (VMC)	351
		8.4.2	Green's function Monte Carlo methods (GFMC)	353
	8.5		rds constructing the nodal surface of off-lattice,	333
	0.5		Fermion systems: the 'survival of the fittest'	
		algorit		355
			=====	000

		Contents	xi		
	8.6	Concluding remarks	359		
	Refere		360		
9	Mont	e Carlo renormalization group methods	364		
	9.1	Introduction to renormalization group theory	364		
	9.2	Real space renormalization group	368		
	9.3	Monte Carlo renormalization group	369		
		9.3.1 Large cell renormalization	369		
		9.3.2 Ma's method: finding critical exponents and			
		the fixed point Hamiltonian	371		
		9.3.3 Swendsen's method	372		
		9.3.4 Location of phase boundaries	374		
		9.3.5 Dynamic problems: matching time-dependent			
		correlation functions	375		
		9.3.6 Inverse Monte Carlo renormalization group			
		transformations	376		
	Refere	ences	376		
10	Non-equilibrium and irreversible processes				
	10.1	Introduction and perspective	378		
	10.2	Driven diffusive systems (driven lattice gases)	378		
	10.3	Crystal growth	381		
	10.4	Domain growth	384		
	10.5	Polymer growth	387		
		10.5.1 Linear polymers	387		
		10.5.2 Gelation	387		
	10.6	Growth of structures and patterns	389		
		10.6.1 Eden model of cluster growth	389		
		10.6.2 Diffusion limited aggregation	389		
		10.6.3 Cluster–cluster aggregation	392		
		10.6.4 Cellular automata	392		
	10.7	Models for film growth	393		
		10.7.1 Background	393		
		10.7.2 Ballistic deposition	394		
		10.7.3 Sedimentation	395		
		10.7.4 Kinetic Monte Carlo and MBE growth	396		
	10.8	Transition path sampling	398		
	10.9	Forced polymer pore translocation: a case study	399		
		The Jarzynski non-equilibrium work theorem and its			
		application to obtain free energy differences from			
		trajectories	402		
	10.11	Outlook: variations on a theme	404		
	Refere		404		
11		ce gauge models: a brief introduction	408		
11	11.1	Introduction: gauge invariance and lattice gauge theory	408		
		Some technical matters	410		

	11.3	Results for $Z(N)$ lattice gauge models	410		
	11.4	Compact U(1) gauge theory	411		
	11.5	SU(2) lattice gauge theory	412		
	11.6	Introduction: quantum chromodynamics (QCD) and			
		phase transitions of nuclear matter	413		
	11.7	The deconfinement transition of QCD	415		
	11.8	Towards quantitative predictions	418		
	11.9	Density of states in gauge theories	420		
	11.10	Perspective	421		
	Refere	•	421		
12	A brie	ef review of other methods of computer simulation	423		
		Introduction	423		
	12.2	Molecular dynamics	423		
		12.2.1 Integration methods (microcanonical ensemble)	423		
		12.2.2 Other ensembles (constant temperature, constant			
		pressure, etc.)	427		
		12.2.3 Non-equilibrium molecular dynamics	430		
		12.2.4 Hybrid methods (MD + MC)	430		
		12.2.5 <i>Ab initio</i> molecular dynamics	431		
		12.2.6 Hyperdynamics and metadynamics	432		
	12.3	Quasi-classical spin dynamics	432		
	12.3		436		
	12.4	Langevin equations and variations (cell dynamics) Micromagnetics	437		
		e			
	12.6	Dissipative particle dynamics (DPD)	438		
	12.7	Lattice gas cellular automata	439		
	12.8	Lattice Boltzmann equation	440		
		Multiscale simulation	440		
		Multiparticle collision dynamics	442		
	Refere	ences	444		
13	Monte Carlo simulations at the periphery of physics				
		eyond	447		
	13.1	Commentary	447		
		Astrophysics	447		
		Materials science	448		
		Chemistry	449		
	13.5	'Biologically inspired' physics	451		
		13.5.1 Commentary and perspective	451		
		13.5.2 Lattice proteins	451		
		13.5.3 Cell sorting	453		
	13.6	Biology	454		
	13.7	Mathematics/statistics	455		
	13.8	Sociophysics	456		
	13.9	Econophysics	456		
	13.10	'Traffic' simulations	457		
	13.11	Medicine	459		

		Contents	xiii	
	13.12	Networks: what connections really matter?	460	
		Finance	461	
	Refere	ences	462	
14	Mont	e Carlo studies of biological molecules	465	
	14.1	Introduction	465	
	14.2	Protein folding	466	
		14.2.1 Introduction	466	
		14.2.2 How to best simulate proteins: Monte Carlo or		
		molecular dynamics?	467	
		14.2.3 Generalized ensemble methods	467	
		14.2.4 Globular proteins: a case study	469	
		14.2.5 Simulations of membrane proteins	470	
	14.3	Monte Carlo simulations of RNA structures	472	
	14.4	Monte Carlo simulations of carbohydrates	472	
	14.5	Determining macromolecular structures	474	
	14.6	Outlook	475	
	Refere	ences	475	
15	Outlo	ook	477	
Ap	pendi	x: Listing of programs mentioned in the text	479	
Ind	Index			