TD 09 - Méthode probabiliste

Exercice 1. Coloriages

La coloration d'un graphe G consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleurs différentes. Le nombre minimal de couleurs est appelé *nombre chromatique*, on le note $\chi(G)$.

Clairement, les graphes contenant de grandes cliques ont un grand nombre chromatique, mais la réciproque n'est pas vraie. Le but de cet exercice est de prouver le théorème de Mycielski¹: pour tout entier $k \ge 2$, il existe un graphe G tel que G ne contient aucun triangle et avec pourtant $\chi(G) \ge k$.

- 1. Soit $0 < \varepsilon < \frac{1}{3}$ et soit G un graphe aléatoire avec n sommets où chaque arrête est présente indépendamment des autres avec probabilité $p = n^{\varepsilon 1}$. Montrer que quand n tend vers l'infini, la probabilité que G ait plus de n/2 triangles tend vers 0.
- 2. Soit $\alpha(G)$ la taille du plus grand *ensemble indépendant* de G (un ensemble indépendant est un ensemble de sommets deux à deux non adjacents). Montrer que $\chi(G) \geq \frac{n}{\alpha(G)}$.
- 3. Soit $a = 3n^{1-\varepsilon} \ln n$. Montrer que :

$$\mathbf{P}\left\{\alpha(G) < a\right\} \xrightarrow[n \to \infty]{} 1.$$

En déduire qu'il existe n et G de taille n tels que G a au plus $\frac{n}{2}$ triangles et $\alpha(G) < a$.

4. Soit G un tel graphe. Soit G' un graphe obtenu à partir de G en supprimant le minimum de sommets afin que G' ne contienne aucun triangle. Montrer que :

$$\chi(G') > \frac{n^{\varepsilon}}{6 \ln n}$$

et conclure la preuve du théorème de Mycielski.

Exercice 2. Un c'est bien, deux c'est mieux

Deux cent étudiant·es participent à un concours de maths. Le concours comporte 6 questions. Pour chaque question, au moins 120 étudiant·es ont réussi à répondre correctement. Montrer qu'il existe deux étudiant·es qui avaient tout bon à elleux deux (*i.e.* tels que pour chaque question, au moins un·e des étudiant·es a bien répondu).

Exercice 3. Union d'intervalles

Soit *S* une union d'intervalles inclus dans le segment [0;1]. On suppose que la longueur totale de *S* est strictement supérieure à $\frac{1}{2}$. Montrer qu'il existe deux points $x, y \in S$ tels que |x - y| = 0, 1.

Exercice 4. Un problème complexe

Soit $a, b \in \mathbb{C}$ et $P = z^2 + az + b$ un polynôme de degré 2 tels que pour tout $z \in \mathbb{C}$, $|z| = 1 \Rightarrow |P(z)| = 1$. Montrer que a = b = 0.

Indication: on pourra considérer $\mathbf{E}[|P(Z)|^2]$, où Z est choisi uniformément sur le cercle unité.

Exercice 5. Lemme local de Lovász

Soit k > 6. On se donne une famille $(A_i)_{i \in I}$ de sous-ensembles d'un ensemble fini F telle que :

- 1. Pour tout $i \in I$, $|A_i| = k$,
- 1. Jan Mycielski (1932–2025), mathématicien polono-américain.

2. Pour tout $x \in F$, $|\{i \in I \mid x \in A_i\}| \le \frac{2^k}{8k}$.

En utilisant le lemme local de Lovász², montrer qu'il existe une partition $F=F_1\cup F_2$ telle que

$$\forall i \in I$$
, $A_i \cap F_1 \neq \emptyset$ et $A_i \cap F_2 \neq \emptyset$.

Lemme Local de Lovász (rappel) : Soient n, d des entiers, $0 \le p \le 1$ et A_1, \ldots, A_n des événements tels que :

- 1. pour tout $1 \le i \le n$, on a **P** $\{A_i\} \le p$,
- 2. les événements $(A_i)_{1 \leq i \leq n}$ admettent un graphe de dépendance de degré $\leq d$,
- 3. on a $4dp \le 1$.

Alors on a $\mathbf{P}\left\{\overline{A_1}\cap\ldots\cap\overline{A_n}\right\}>0$.

Exercice 6. Partition de graphe

Soit G = (V, E) un graphe non dirigé avec n sommets et m arrêtes.

Montrer qu'il existe une partition de *V* en deux ensembles disjoints *A* et *B* telle que au moins la moitié des arrêtes de *G* relie un sommet de *A* et un sommet de *B*.

^{2.} László Lovász (né en 1948), mathématicien hongrois.