Démystifier le Machine Learning à travers AzureML

Pierre LEROY – Clément ROMAC

2017 Global Azure BOOTCAMP

Speakers

Pierre LEROYAlternant Data Scientist, Entrepreneur

Co-fondateur d'Enimia Big Data, Machine Learning

Clément ROMAC
Alternant Machine Learning & IA

Co-directeur d'Enimia Machine Learning, Deep Learning

Qu'est ce que le machine learning?

«L'apprentissage automatique est la science permettant aux ordinateurs d'accomplir des tâches sans avoir été explicitement programmé dans ce sens.» Andrew Ng

Qu'est ce que le machine learning?

Le machine Learning, des statistiques faites par les développeurs ?

Compréhension des résultats Très grande précision Approche rigoureuse Adaptable à toutes les prédictions Modèle difficilement compréhensible « Faible » quantité de données boîte noir Validation en accord Validation par le test avec le modèle théorique Statistiques Machine Learning Convergence des méthodes www.azug.fr

© 2017 AZUG FR. All Rights Reserved.

Deux familles d'algorithmes

Supervisé (données labellisées)

Non Supervisé (données non labellisées)

Prix d'un appartement

Taille du buste

Largeur du tronc

Non supervisé

Connaître l'âge d'un utilisateur

Détecter d'anomalies

Prévoir si un programme est malveillant

Reconnaître un visage sur une image

Prévoir le temps de rentabilité d'une action en bourse

Comment choisir le « bon » algorithme?

Quelles métriques pour valider mon algorithme

<u>Données connues en</u> <u>base de données</u>

Prix d'un appartement

Nouvelles données entrantes

Prix d'un appartement

Vérifier son algorithme

Train set 70%

Test set

Plusieurs caractéristiques

Récapitulatif

Nécessite des données

2 Phénomènes : Overfitting et Underfitting

Adaptable à chaque problématique : Supervisé ou Non Supervisé

Plus ou moins une boîte noir

Il existe plusieurs algorithmes qui sont plus ou moins efficaces en fonction de la problématique

Séparation du jeu de données en 2 parties : Entraînement et Test

Modèle en x dimension(s), où x = nombre de paramètres

Un rapide tour

Création d'une expérience

Exploration des données

Entrainement d'un modèle

Choix du meilleur algorithme

Expérience prédictive

Aller plus loin

Aller plus loin

Vision globale d'un projet de Machine Learning

Merci à nos sponsors

LOCAUX

PARTENAIRES MEDIA

Sponsors internationaux

SERVICEBUS 360

Nous suivre

http://www.spsevents.org/city/Monaco/Monaco2017

3 juin 2017 #SPSMonaco

