Project 2. Human Action Recognition using Hidden Markov Model

Sangjun Son

Department of Computer Science & Engineering, Seoul National University lucetre@snu.ac.kr

Backgrounds

- Human Activity Recognition is nowadays an active research field which aims to understand human.
- Human Activities and Postural Transitions datasets (HAPT) → Data selection
 - Performs basic activities and postural transitions while carrying a waistmounted smartphone with embedded inertial sensors.
 - Includes 61 experiments and was measured 50Hz in 400s duration.
- Temporal models like HMM enables to learn the observation patterns from time serial dataset. → Time-serial

Action Type			
Walking	Stand to Sit		
Walking Upstairs	Sit to Stand		
Walking Downstairs	Sit to Lie		
Sitting	Lie to Sit		
Standing	Stand to Lie		
Laying	Lie to Stand		

Research Goals

- To study the Hidden Markov Model and its applications
 - Build a model finding a latent temporal pattern.
- Fast and accurate Human Action Recognition system
 - Extract relevant features from sensor data (acceleration, gyro sensors)
 - Use the multinomial HMM package
 - Model complexity vs. Accuracy trade-offs

Preliminaries

- Hidden Markov Model
 - Probabilistic model that infers hidden states with observation events as causal factors.

Markov process:

Three Fundamental Problems in HMM

Observations:

1. Likelihood 2. Decoding 3. Learning

Methodology

- Feature Extraction
 - Feature metric describing our hidden states.
 - Jerk and Angular velocity

$$\vec{\jmath}(t) = rac{\mathrm{d} \vec{a}(t)}{\mathrm{d} t} = rac{\mathrm{d}^2 \vec{v}(t)}{\mathrm{d} t^2} = rac{\mathrm{d}^3 \vec{r}(t)}{\mathrm{d} t^3}$$

Direction separated into 8 sections

- Multinomial HMM
 - Observation values are all in discrete number.
 - 12 Activity Models
 - Each model learns corresponding activity and classifies test data set with one vs rest method (OVR) with maximum likelihood.

Experimental Results

Data Manipulation Flow

One-iteration Trained Model Comparison

Model Name	jerk j	acc a	vel α	Accuracy
jerk8	✓			50.81%
acc8		\checkmark		35.24%
vel8			\checkmark	60.65%
acc8vel8		\checkmark	\checkmark	78.68%
jerk8acc8	✓	✓		40.16%
jerk2vel8	✓		\checkmark	63.93%
jerk4vel8	✓		\checkmark	79.50%
jerk8vel8	✓		✓	84.42%
jerk8acc2vel8	✓	✓	\checkmark	63.11%

- Feature Metric Approach
 - Angular velocity as significant evaluation metric

Combination of jerk and velocity directions were used as observations.

- Model Complexity Approach
 - Avoid overfitting issues for constructing model with too many states.

- → Selected our model as *jerk8vel8 and* trained for 50 iterations, *jerk8vel8iter50*
- Model jerk8vel8iter50
 - 92.62% as test accuracy and 24623.64s as total training time

jerk8vel8iter50					
Action Types	Log Likelihood	Training Time			
WALKING	-202473.76	3876.99s			
WALKING UPSTAIRS	-140582.82	3704.82s			
WALKING DOWNSTAIRS	-186022.69	3408.61s			
SITTING	-156591.76	3681.86s			
STANDING	-161618.97	4011.79s			
LAYING	-188243.51	3956.03s			
STAND TO SIT	-8980.82	305.05s			
SIT TO STAND	-6546.16	221.56s			
SIT TO LIE	-11448.79	370.29s			
LIE TO SIT	-9051.13	331.27s			
STAND TO LIE	-14043.55	428.47s			
LIE TO STAND	-10045.41	326.90s			

Concluding Remarks

- Constructed a fast and accurate HMM model to recognize human action
 - A probabilistic model simply learning the observation patterns
 - Found latent states by appropriate feature extraction.
- Future works to improve our model
 - 1. Train with numerous instances created from more experiments.
 - 2. Use other additional sensors to extract various states features.

X