Basics of Machine Learning

By: Raja Hasnain Anwar

What is learning?

Machine's Learning

Components of Learning Process

Representation

Representation/format of data i.e., its features.

Also involves operations done on data as pre-processing.

Evaluation

Standard metrics to compare results of different algorithms. E.g., L1 loss.

Optimization

Actual learning to fit and generalize on given data with maximum efficiency.

Data Representation

- k-nearest neighbors
- k-means clustering
- Decision Tree

k-Nearest Neighbors

k-Means Clustering

Decision Tree

Evaluation

- L1 & L2 Loss
- Cross Entropy Loss
- K-L Divergence
- Git Loss
- Precision and Recall => F1

L1 & L2 Loss

$$L1LossFunction = \sum_{i=1}^{n} |y_{true} - y_{predicted}|$$

$$L2LossFunction = \sum_{i=1}^{n} (y_{true} - y_{predicted})^2$$

Precision and Recall

Optimization

- Searching
- Gradient Descent
- Linear/Quadratic Programming

Gradient Descent

Things to keep in mind while

OPTIMIZING

Activation Functions

Identity	f(x) = x	f'(x) = 1
Binary step	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)	 $f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH	$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan	$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$

Model Complexity

