Python For Data Science Cheat Sheet (3) Plotting With Seaborn

Seaborn

Learn Data Science Interactively at www.DataCamp.com

Statistical Data Visualization With Seaborn

The Python visualization library Seaborn is based on matplotlib and provides a high-level interface for drawing attractive statistical graphics.

Make use of the following aliases to import the libraries:

```
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
```

The basic steps to creating plots with Seaborn are:

- 1. Prepare some data
- 2. Control figure aesthetics
- 3. Plot with Seaborn
- 4. Further customize your plot

```
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> tips = sns.load dataset("tips")
>>> sns.set style("whitegrid") < Step 2
>>> g = sns.lmplot(x="tip",
y="total_bill",
                                         Step 3
                    data=tips,
                   aspect=2)
>>> g = (g.set axis labels("Tip", "Total bill(USD)").
set(xlim=(0,10),ylim=(0,100)))
>>> plt.title("title")
>>> plt.show(g)
```

Data Also see Lists, NumPy & Pandas

```
>>> import pandas as pd
>>> import numpy as np
>>> uniform data = np.random.rand(10, 12)
```

Seaborn also offers built-in data sets:

```
>>> titanic = sns.load dataset("titanic")
>>> iris = sns.load dataset("iris")
```

Axis Grids

```
>>> g = sns.FacetGrid(titanic,
                      col="survived".
                      rows"sey")
>>> g = g.map(plt.hist, "age")
>>> sns.factorplot(x="pclass",
                   y="survived",
                   hue="sex",
                   data=titanic)
>>> sns.lmplot(x="sepal width",
               y="sepal length",
               hue="species",
               data=iris)
```

Subplot grid for plotting conditional relationships

Draw a categorical plot onto a Facetgrid

Plot data and regression model fits across a FacetGrid

```
>>> h = sns.PairGrid(iris)
                                        Subplot grid for plotting pairwise
>>> h = h.map(plt.scatter)
                                        relationships
                                        Plot pairwise bivariate distributions
>>> sns.pairplot(iris)
>>> i = sns.JointGrid(x="x",
                                        Grid for bivariate plot with marginal
                                        univariate plots
                        y="y",
                        data=data)
>>> i = i.plot(sns.regplot,
                 sns.distplot)
>>> sns.jointplot("sepal length",
                                         Plot bivariate distribution
                     "sepal width",
                     data=iris,
                     kind='kde')
```

Categorical Plots

```
Scatterplot
>>> sns.stripplot(x="species",
                  y="petal length",
                  data=iris)
>>> sns.swarmplot(x="species",
                  y="petal length",
                  data=iris)
```

Bar Chart

```
>>> sns.barplot(x="sex",
               y="survived",
               hue="class",
               data=titanic)
```

Count Plot

```
>>> sns.countplot(x="deck",
                 data=titanic,
                 palette="Greens d")
Point Plot
```

>>> sns.pointplot(x="class", y="survived", hue="sex", data=titanic, palette={"male":"g", "female": "m"), markers=["^","o"],

linestyles=["-", "--"])

Boxplot

```
>>> sns.boxplot(x="alive",
                y="age",
                hue="adult male",
                data=titanic)
>>> sns.boxplot(data=iris,orient="h")
Violinplot
```

>>> sns.violinplot(x="age", v="sex". hue="survived", data=titanic)

Scatterplot with one categorical variable

Categorical scatterplot with non-overlapping points

Show point estimates and confidence intervals with scatterplot glyphs

Show count of observations

Show point estimates and confidence intervals as rectangular bars

Boxplot

Boxplot with wide-form data

Also see Matplotlib

Violin plot

Regression Plots

```
>>> sns.regplot(x="sepal width",
                y="sepal length",
                data=iris.
                ax=ax)
```

Plot data and a linear regression model fit

Distribution Plots

```
>>> plot = sns.distplot(data.y,
                                         Plot univariate distribution
                           color="b")
```

Matrix Plots

```
>>> sns.heatmap(uniform data,vmin=0,vmax=1) Heatmap
```

Further Customizations

Also see Matplotlib

Axisarid Objects

```
>>> g.despine(left=True)
                                          Remove left spine
                                          Set the labels of the y-axis
>>> g.set ylabels("Survived")
                                          Set the tick labels for x
>>> g.set xticklabels(rotation=45)
>>> g.set_axis_labels("Survived",
                                          Set the axis labels
                                          Set the limit and ticks of the
>>> h.set(xlim=(0,5),
                                          x-and y-axis
            ylim=(0,5),
xticks=[0,2,5,5],
```

vticks=[0,2.5,5])

Plot

>>> plt.title("A Title") >>> plt.ylabel("Survived") >>> plt.xlabel("Sex") >>> plt.ylim(0,100) >>> plt.xlim(0,101) >>> plt.xlim(0,101) >>> plt.xlim(0,101) >>> plt.tight_layout()	Add plot title Adjust the label of the y-axis Adjust the label of the x-axis Adjust the limits of the y-axis Adjust the limits of the x-axis Adjust a plot property Adjust subplot params
--	---

igure Aesthetics

>>> f, ax = plt.subplots(figsize=(5,6)) Create a figure and one subplot

Seaborn styles

```
>>> sns.set()
>>> sns.set style("whitegrid")
>>> sns.set_style("ticks",
                    ("xtick.major.size":8,
                     "vtick.major.size":8)
>>> sns.axes style("whitegrid")
```

Re)set the seaborn default Set the matplotlib parameters Set the matplotlib parameters

Return a dict of params or use with with to temporarily set the style

Context Functions

٠.	CONTENT ANCEONS	
	>>> sns.set_context("talk") >>> sns.set_context("notebook",	Set context to "talk" Set context to "notebook", scale font elements and override param mapping

Color Balatta

>>>	<pre>sns.set_palette("husl",3) sns.color_palette("husl") flatui = ("*9b59b6","*3498db", sns.set_palette(flatui)</pre>	Define the color palette Use with with to temporarily set palette "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] Set your own color palette

5) Show or Save Plot

>>> plt.show() >>> plt.savefig("foo.png") >>> plt.savefig("foo.png", transparent=True)

Show the plot Save the plot as a figure Save transparent figure

Close & Clear

Also see Matplotlib

Also see Matplotlib

>> plt.cla()	Clear an axis
>> plt.clf()	Clear an entire figure
>> plt.close()	Close a window

DataCamp Learn Python for Data Science

