Lecture 1:

Radioactive decay

Euler's method for solving differential equations

Mathematical model & analytical solution

Constant fraction of atoms decays per unit time

$$\frac{\mathrm{d}N}{N} \propto -\mathrm{d}t \,
ightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau} \equiv f(N,t)$$

where N(t) is the number of radio-active atoms at time t, and the constant τ is called mean life-time in this specific example, the function f does not actually depend on time t

Analytical solution: $N(t) = N_0 \exp(-t/\tau)$ N_0 : number of radio-active atoms at t = 0. $N(t) = N_0/2$ for $\exp(-t/\tau) = 1/2$, so half life-time $T_{1/2} = \tau \ln(2)$.

examples: (element, $T_{1/2}$): (U²³⁸, 4.5 Gyr), (C¹⁴, 5.7 kyr), (Am²⁴¹, 432 yr)

Numerical solution: Euler's method. (Using discretisation)

- ▶ Basic idea: replace continuous time t by discrete times t_i $i \in N$.
- ► How does this work out?
 - Remember definition of derivative:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \lim_{\mathrm{d}t \to 0} \frac{N(t + \mathrm{d}t) - N(t)}{\mathrm{d}t}$$

 $lackbox{ }$ Approximate $\mathrm{d}t o 0$ with finite Δt which is 'small enough':

$$rac{\mathrm{d} extit{ extit{N}}}{\mathrm{d}t}pproxrac{ extit{ extit{N}}(t+\Delta t)- extit{ extit{N}}(t)}{\Delta t}$$

Approximate differential eqn by difference eqn:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau} o \frac{N(t+\Delta t)-N(t)}{\Delta t} = -\frac{N(t)}{\tau}.$$

Numerical solution: Euler's method. (cont'd)

With discrete times:

$$N(t_{i+1}) \equiv N_{i+1} = (1 - \frac{\Delta t}{\tau})N_i$$

 $t_i = i \times \Delta t$

This is an example of Euler's method

for solving linear differential equations numerically

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x},t) o \frac{\mathbf{x}(t+\Delta t) - \mathbf{x}(t)}{\Delta t} = \mathbf{f}(\mathbf{x}(t),t)$$

in general, where $\mathbf{x}(t)$ is a vector and \mathbf{f} is a given function

Euler's method: choosing the step size

- - 1. Requires $\Delta t < \tau$, otherwise $N_{i+1} < 0$ method is not unconditionally stable
 - 2. Accuracy improves with decreasing $\Delta t/\tau$
 - 3. Taking Δt constant gives constant relative error per step
- ▶ In general: $f(x) \rightarrow f(x,t)$

Euler's method: error estimate

Start with Taylor expansion,

$$x(t + \Delta t) = x(t) + \frac{\mathrm{d}x(t)}{\mathrm{d}t} \Delta t + \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} \frac{(\Delta t)^2}{2!} + \dots$$

► Euler method uses first two terms, but ignores all others starting at the third one.

$$\Longrightarrow$$
 Error per step: $\mathcal{O}[(\Delta t)^2]$

▶ But number of steps from t_0 to $t_{\rm end} \sim 1/\Delta t!$

$$\Longrightarrow$$
 Overall error: $\mathcal{O}[(\Delta t)]$

► Take Δt small enough: compare to time-scale in the problem in the current problem, take $\Delta t \ll \tau$

Pseudo-code for solution

Main program

- ▶ Input initial conditions (N_0, τ) and run time parameter (final time)
- ► Initialise classes "Radioactive" and "DEq_Solver"
- Calculate the evolution
- Print/plot the result.

Initialisation of physics problem (in "Radioactive")

- Fix $t_0 = 0$, $t_{\rm end}$, N_0 , τ
- $ightharpoonup \Delta t$ part of the calculation, not the physics

Calculation (in "DEq_Solver")

lterate time steps until $t_i \ge t_{\text{end}}$ is reached:

$$egin{array}{lll} t_{i+1} &=& t_i + \Delta t \ \underline{x}(t_{i+1}) = \underline{x}_{i+1} &=& \underline{x}_i + \underline{f}(\underline{x}_i) \Delta t \; . \end{array}$$

Example solution

Radioactive decay: a change of variables

- ▶ Original equation: $\frac{dN}{dt} = -\frac{N}{\tau}$
- ► Change of variables: $x = \ln \left(\frac{N}{N_0} \right) N_0 \text{ is } N(t=0)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{\tau}.$$

Trivial to integrate using Euler's method as well as analytically, of course **No limit on time-step!**

• Even better: $t o t' \equiv rac{t}{ au}$

$$\frac{\mathrm{d}x}{\mathrm{d}t'} = -1.$$

In the lab session/homework, we stick with the original equation to check for precision of the numerical solution

Summary

- ► Euler's method is work horse for solving linear differential equations
- ► First-order accurate
- Method is not unconditionally stable precision depends on discretisation step

require $\Delta t \ll au$ in our example

Understanding the basics

- ► The function ln(x) is the *natural logarithm*. If you are unfamiliar with this concept, please read-up on it!
- ▶ Derive the relation between the half-life of a radioactive element, and the time-scale τ .
- In COVID-19 modelling, what is often report in the daily news is the current 'R' value of the infectious spread. Discuss how this is related to τ or $T_{1/2}$.
- Integrating a radio-active decay problem with a time-step Δt , we find that the numerical integration differs from the exact relation by 5 per cent. How much would you need to reduce Δt by to improve the accuracy to 2.5 per cent?

