Доклад на тему "Тепловые двигатели"

Чубий Савва

Содержание

1	Принцип работы и КПД тепловых двигателей	1
2	Паровой поршневой двигатель	1
3	Бензиновый двигатель 3.1 Бензиновый четырехтактный двигатель	
4	Дизельный двигатель	9
5	Паровая турбина	3
6	ГТД, ТВД и ТРД 6.1 Газотурбинный двигатель(ГТД) 6.2 Турбореактивный двигатель(ТРД) 6.3 Турбовентиляторный двигатель(ТВД)	4
7	Ракетные двигатели 7.1 Твердотопливный ракетный двигатель	
8	Двигатель Стирлинга	6
9	Список источников	7

1 Принцип работы и КПД тепловых двигателей

 $\overline{\text{Тепловой двигатель}}$ — это устройство, превращающее внутреннюю энергию топлива в механическую работу.

Тепловой двигатель состоит из *рабочего тела* (обычно газа), нагревателя и холодильника (холоднее нагревателя). Нагреватель греет рабочее тело, тело расширяется, совершая работу, потом отдает тепло холодильнику, для возврата в изначальное состояние.

Рис. 1: Схема теплового двигателя

<u>КПД</u> теплового двигателя считают по формуле $\eta = \frac{A'}{Q_1}$, где A' – работа, совершенная двигателем, Q_1 – количество теплоты, полученное телом от нагревателя.

2 Паровой поршневой двигатель

В этом двигателе рабочим телом является водяной пар, поступающий из котла, который толкает поршень.

Рис. 2: Схема парового поршневого двигателя

3 Бензиновый двигатель

3.1 Бензиновый четырехтактный двигатель

Двигатель состоит из нескольких поршней. Каждый поршень состоит из двух клапанов (впускного и выпускного), камеры сгорания, поршня (вращающего вал) и других деталей.

Работа каждого цилиндра состоит из постоянно повторяющихся *рабочих циклов*. Каждый цикл состоит из *четырех тактов*:

1. Впуск

Впускной клапан открывается (выпускной закрыт), поршень переходит из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ), топливо заходит в камеру.

2. Сжатие

Клапан закрывается, поршень переходит в ВМТ, сжимая топливо.

3. Рабочий ход (расширение)

Топливо поджигается и расширяется, толкая поршень (он переходит в НМТ).

4. Выпуск

Открывается выпускной клапан, поршень движется к ВМТ, выталкивая сгоревшее топливо через клапан.

Рис. 3: Схема работы бензинового четырехтактного двигателя

В один момент времени разные поршни находятся на разных тактах (это повышает плавность работы двигателя).

3.2 Бензиновый двухтактный двигатель

В отличие от четырехтактного, в цилиндрах двухтактного двигателя нет выпускного клапана (его роль играет поршень), а впускной клапан расположен в другом месте. Рабочий ход состоит из двух тактов:

1. Сжатие

Поршень движется из НМТ к ВМТ, закрывая впускное, а потом выпускное отверстия и сжимая топливо.

2. Рабочий ход (расширение)

Топливо поджигается и расширяется, толкая поршень (он переходит в НМТ).

Рис. 4: Схема работы бензинового двухтактного двигателя

4 Дизельный двигатель

Дизельный двигатель сильно похож на четырехтактный бензиновый, но есть несколько отличий. В бензиновом воздух смешивают с топливом до подачи в цилиндр, потом поджигают во время такта расширения, в дизельном – топливо (на том же такте) впрыскивается в горячий воздух и самовоспламеняется (по этой причине в первом случае используется свеча зажигания, а во втором – топливный инжектор).

Бензиновые двигатели тише и меньше вибрируют. Это объясняется тем, что смесь бензина и воздуха горит плавнее, чем дизель.

5 Паровая турбина

Турбина состоит из $\partial ucka$ с лопастями (лопатками), насаженного на вал, и сопла. Водяной пар с большой температурой (около $600^{\circ}C$) подается в сопло и там расширяется, увеличивая свою скорость. Струя пара подается на лопасти турбины, вращая диск и вал.

Обычно турбины состоят из большого количества сопл и дисков.

Рис. 5: Схема паровой турбины

6 ГТД, ТВД и ТРД

6.1 Газотурбинный двигатель(ГТД)

Простейшая модель газотурбинного двигателя состоит из вала, на котором закреплены два диска с лопатками (диск компрессора и диск турбины), между которыми расположена камера сгорания.

Компрессор сжимает воздух и подает его в камеру сгорания. Сжатый воздух смешивается с топливом и поджигается, расширяясь, раскручивает диск турбины, который раскручивает вал и диск компрессора.

Рис. 6: Схема модели газотурбинного двигателя

6.2 Турбореактивный двигатель(ТРД)

ТРД очень похож на ГТД, но в ГТД полезная мощность снимается с вала, а в ТРД полезная мощность – это реактивная струя (для получения струи в ТРД имеется сопло).

Рис. 7: Схема модели турбореактивного двигателя

6.3 Турбовентиляторный двигатель(ТВД)

TBД и TPД также очень похожи, но в TBД на входе расположен большой вентилятор. Всасываемый вентилятором воздух разделяется на два потока (один, как и в TPД, идет внутреннее ядро двигателя (примерно 15% всасываемого воздуха), другой – обтекает ядро снаружи и попадает в сужающую камеру, потом выбрасывается наружу). Обтекающий ядро воздух выдает, примерно, 80% мощности.

Рис. 8: Схема модели турбовентиляторного двигателя

7 Ракетные двигатели

Задача ракетного двигателя – выбрасывать большую массу с большой скоростью, тогда по третьему закону Ньютона ракете будет сообщаться импульс, за счет которого она будет лететь.

7.1 Твердотопливный ракетный двигатель

Топливо должно быстро гореть, но не взрываться. По этой причине оружейный порох не подойдет, но если изменить пропорции ингредиентов, то получится подходящая смесь.

Принцип работы прост: топливо размещают определенным образом и поджигают.

Твердотопливные двигатели обладают важными преимуществами:

- простота
- низкая стоимость
- безопасность

Но есть и недостатки:

- невозможно контролировать тягу
- после зажигания двигатель нельзя отключить

Из-за этих недостатков двигатели можно использовать только для непродолжительных задач или систем ускорения.

Рис. 9: Схема твердотопливного ракетного двигателя до и после зажигания (зеленым обозначено топливо)

7.2 Жидкотопливный ракетный двигатель

Двигатель состоит из бака c топливом, бака c окислителем, насосов, клапанов, камеры сгорания u сопла.

В камере сгорания смешиваются и сгорают смесь топлива и окислителя, продукты горения поступают в сопло, которое ещё больше увеличивает их скорость (от до- до сверхзвуковой), затем выбрасываются наружу.

Рис. 10: Схема жидкотопливного ракетного двигателя

8 Двигатель Стирлинга

Принцип работы заключается в том, что рабочее тело, находящееся в закрытом цилиндре поочередно перегоняется вытеснителем от источника тепла к источнику холода. Maxosuk позволяет двигателю не останавливаться в мертвых точках.

Рис. 11: Схема двигателя Стирлинга

9 Список источников

- Н.С.Пурышева, Н.Е.Важеевская, Физика, 8 класс
- https://www.calc.ru/Teplovoy-Dvigatel-Printsip-Deystviya-Teplovykh-Dvigateley.html
- https://www.booksite.ru/fulltext/1/001/008/087/088.htm
- https://www.youtube.com/watch?v=yZ8w_WEMbEU
- https://www.studiplom.ru/Technology-DVS/2-x_DVS.html
- https://www.youtube.com/watch?v=Ob5M0EVh9lo
- https://www.youtube.com/watch?v=4JJsIuqZbbA
- https://hi-news.ru/technology/kak-rabotayut-raketnye-dvigateli.html
- https://ru.wikipedia.org/wiki/Газотурбинный_двигатель
- https://www.youtube.com/watch?v=qrNV_JQawJw
- https://www.youtube.com/watch?v=XMR9dfm0EoI