Microlensing by Galactic Center Supermassive BH

Yixian Chen Instructor: Jessica Lu

Dep of Astronomy, UC Berkeley Dep of Physics, Tsinghua University

Two Cases

Alexander & Sternberg 1999: lensing of GC stellar population by the SMBH

Alexander & Loeb 2001: lensing of distant stars by SMBH perturbed by GC stars as secondary lenses

Motivation: Discovery of IR variable sources in the direction of the SMBH

Basics of Micro-lensing

General Setup

Einstein Angle

$$heta_E = \sqrt{rac{4GM}{c^2}rac{d_S-d_L}{d_Sd_L}}$$

Einstein Radius

$$R_E = heta_E D$$

https://www.youtube.com/watch?v=emNAxv8_aXU

Basics of Micro-lensing

Impact parameter and Magnification

$$\vec{u} = \frac{\vec{\theta}_S - \vec{\theta}_L}{\theta_E} \qquad A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

Faint-star lensing $K_s \gtrsim K_0$

Need extra amplification to be detected within a timescale

$$A_s(K_s; K_0) = 10^{-0.4(K_0 - K_{s,ab} - \Delta - A_K)} = 10^{-0.4(K_0 - K_s)}$$

Bright-star lensing $K_s \lesssim K_0$

Can always be detected, care about amplification timescale – Nearly exactly the time for source to pass the ER!

$$u_{0,s} \approx 1$$

$$\tau = \frac{2R_S \sqrt{u_{0,s}^2 - u^2}}{v_s}$$

Basics of Micro-lensing

Resolved Lensing

Requirement:

Angular separation between central stars bigger than between two images

$$\Sigma_{center}(K_0)^{-1/2} \gtrsim \theta_E$$

Effect: effective amplification halved

$$A' = A/2$$

These are all models for ONE lensing event.

How about for a population of stars in the galactic center?

Model of Galactic Center NSC

KLF:

Luminosity probability distribution

Gallego-Cano + 18

Velocity Distribution:

Transverse Gaussian dispersion

$$v_{\rm rot}(r)$$

$$\sigma^2 = \sigma_l^2 + \sigma_b^2$$

Number density: Gallego-Cano + 18

 10^{-1}

10°

r [pc]

10¹

Event Rates
$$R_{\rm E} = \left(\frac{4GM_{\bullet}}{c^2} \cdot \frac{Dr}{D+r}\right)^{1/2} \sim 2.73 \times 10^{15} \left(\frac{r}{1 \text{ pc}} M_{4.0}\right)^{1/2} \text{cm}$$

Given luminosity and distance:

For every dr.

$$d\Gamma = \frac{d\tau_*}{\bar{\tau}} = \frac{n_* \pi (R_E u_{0,s})^2 dr}{\bar{\tau}}$$

Kiraga & Paczynski 1994

$$=2u_{0,s}R_E\bar{v_2}dr$$

Total Rate

$$\Gamma(K_0) = 2 \langle u_{0,s} \rangle \int_{r_1}^{r_2} R_{\mathcal{E}}(r) \overline{v_2}(r) n_*(r) dr$$

0.005-20pc

For Specific Observation Campaign

Long Events

$$\tau = \frac{2R_S \sqrt{u_{0,s}^2 - u^2}}{v_2} > \Delta T$$

Short Events

$$\tau < \Delta T, P_{short}/P_{long} = \tau_{short}/\Delta T$$

$$P = P_{\text{short}} + P_{\text{long}} = n\bar{\tau}_{\text{short}} \Gamma_{\text{short}} + T\Gamma_{\text{long}}, \Gamma_{\text{short}} + \Gamma_{\text{long}} = \Gamma_{\text{total}}$$

Results (E.g. Unresolved lensing)

Chen+ 19 in prep

Long event rate with respect to detection interval

Long event average amplification with respect to detection interval

Short event average timescale with respect to detection interval

 $n\bar{\tau}_{\rm short} \; \Gamma_{\rm short} \; + T\Gamma_{\rm long}$

10¹

E.g. 10 yrs, 10 runs, 19 mag

10°

 $\Delta T[yr]$

— 17 ---- 18

___ 20

 10^{-1}

 3×10^{0}

10*0.2*0.004+10*0.005=0.06 times

Average 1 magnitude amplification

Secondary lens

$$R_{\rm E} = \left(\frac{4GM_{\bullet}}{c^2} \cdot \frac{Dr}{D+r}\right)^{1/2}$$

Secondary lens

2nd unperturbed image

Observer

Source plane

Lens plane

1st unperturbed image

Perturbed image

Figure 8. Areas in the (ξ_p, η_p) plane that satisfy the constraint of A > 300% (for any of the perturbed images generated), left panel: $\gamma = 1.3$; right panel: $\gamma = 0.6$. The intrinsic shapes differ for γ larger and smaller than 1, and approaches infinity for γ approaching 1, these images are consistent with (Gould & Loeb 1992)

$$\tau_*(>A, x_{BH}) = \sigma_*(>A, x_{BH}) \Sigma_*(x_{BH}) \ll 1$$

 $\Sigma_*(r) = 2 \int_r^\infty \frac{x n_*(x) dx}{\sqrt{x^2 - r^2}}$

Higher order terms are neglected (lower probability for TWO secondary lenses)

Cross Section in Source Plane

$$P(>A, x_{\rm BH}) \simeq \tau_* (>A, x_{\rm BH}) + \Theta(A_{\rm BH} - A)$$

 $\sigma_s(>A) = 2 \int P(>A, x_{i \rm BH}) A_{\rm BH}^{-1}(x_{i \rm BH}) x_{i \rm BH} dx_{i \rm BH}$

Cross Section in Source Plane

Lens Plane

$$\sigma_s(>A) = 2 \int P(>A, x_{iBH}) A_{BH}^{-1}(x_{iBH}) x_{iBH} dx_{iBH}$$

- Annulus around ER on lens plane = one point behind lens the source plane
 - Contribution by BH alone projected back with weight 1
 - Contribution by secondary lenses projected back with weight optical depth

Results

Background star surface density (in KLF form)

$$\Sigma_s(< K) = \hat{\Sigma}_s 10^{bK}$$

$$\Sigma_s(< K) = \hat{\Sigma}_s 10^{bK} \qquad \langle N_i \, (>A; K_0) \rangle = \int_A^\infty dA' \int_{-\infty}^{K_0} dK \left| \frac{d\sigma_s}{dA} \right|_{A'} \left| \frac{d\Sigma_s}{dK} \right|_{K+K_{A'}}$$
 Alexander & Loeb 2001

$$\Gamma = N_i/\bar{\tau}$$
?

Velocity brings too much complication into RATE and timescale calculation

Snapshot of the Source Plane

How many events can we see looking at the GC 2" ANY TIME?

Future Prospects

 Density profiles for GC Disk and Bulge

Background stellar density calls for better model

$$\Sigma_s(< K) = \hat{\Sigma}_s 10^{bK}$$

Uncertainty in velocity, density, extinction.....

Distribution of Secondary lens mass

Assumed uniformly solar-mass Different $\epsilon=m_*/M_{\rm SMBH}$ might have different probability weight at different annulus.

This has potentials to solve problems for microlensing in other galaxies and asteroid in planetary systems

Analysis of survey-data:
 Hypothesis test

Non periodic variable K-band source with predicted typical magnification and timescale in direction of SMBH (0.01-0.1")?

Microlensing events from campaigns Within central 2"? VVV, OGLE...