Дисциплина: Численные методы

Лабораторное задание №2

Отчет

Тема: Метод исключения Гаусса со схемой единственного деления для ленточных матриц

Выполнили: студенты 3 курса 62 группы Голенский Д.В. Землянухин А.С. Проверила: старший преподаватель Фролова О.А.

1. Постановка задачи

Требуется найти решение СЛАУ методом исключения Гаусса со схемой единственного деления для ленточных матриц.

2. Метод решения

Схемой единственного деления метода Гаусса называют алгоритм решения систем линейных уравнений

$$\widetilde{A}x = b$$
, (1.2.1)

состоящий из двух частей – прямого хода и обратного хода.

Прямой ход — это приведение системы (1.2.1) к системе с верхней треугольной матрицей с единицами на главной диагонали. Обратный ход — непосредственное определение вектора неизвестных из полученной системы уравнений с треугольной матрицей

Для удобства будем использовать расширенную матрицу A размерности N \times (N + 1). В первых N столбцах матрицы A размещена матрица \widetilde{A} системы (1.2.1), в последнем столбце — вектор правой части системы (1.2.1). Символически прямой ход изображен на рис.1.2.1.

Puc. 1.2.1

Шаг 1 — это исключение x_1 с помощью 1-го уравнения из всех уравнений, начиная со 2-го.

Шаг 2 — это исключение x_2 с помощью 2-го уравнения из всех уравнений, начиная со 3-го.

На i-ом шаге прямого хода уравнения с 1-го по (i-1)-ое не изменяются, i-е уравнение делится на $a_{ii}^{(i-1)}$, из уравнений с (i+1)-ого по n-ое исключается неизвестное \mathcal{X}_i .

Элемент матрицы A, стоящий множителем перед компонентой вектора x, которая подлежит исключению, в уравнении, с помощью которого будет исключаться эта компонента x из других уравнений, называется ведущим элементом.

Расчетные формулы обратного хода в схеме единственного деления представляются в виде

$$x_i = a_{i,n+1} - \sum_{k=i+1}^{N} a_{ik} x_k, \quad i = N \div 1.$$

3. Основные процедуры

Входные параметры основной процедуры:

N - размерность системы (N x N - размерность исходной матрицы);

L - половина ширины ленты матрицы;

А - массив размерности N (2L - 1), содержащий ленту матрицы исходной системы уравнений;

f - вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER - код завершения;

х - вектор решения размерности N.

Поскольку при численной реализации запрещено использовать массивы размерности N x N, символически схему хранения симметричной ленточной матрицы можно представить в виде:

Реализованные методы:

1. GenerateAndMultiply(decimal left, decimal right)

Этот метод генерирует случайные значения для матрицы и вектора, умножает сгенерированную матрицу на вектор и вычисляет вектор правой части для системы уравнений.

2. Generate(decimal left, decimal right)

Этот метод также генерирует случайные значения для матрицы и вектора, подготавливая их для дальнейших вычислений.

3. DivideLine(int rowIndex)

Выполняет деление строки матрицы на число (коэффициент), чтобы получить диагональный элемент равный 1.

4. SubtractDirectStroke(int firstRow, int secondRow)

Вычитает из второй строки первую, умноженную на коэффициент, чтобы обнулить элементы ниже главной диагонали.

5. SubtractBackwardStroke(int firstRow, int secondRow)

Вычитает из второй строки первую, умноженную на коэффициент, чтобы обнулить элементы выше главной диагонали.

6. **PrintToFile(string path)**

Метод выводит матрицу и вектор правой части в файл, форматируя значения и разделяя их пробелами.

7. PrintSolutionsToFile(string path)

Этот метод выводит найденные решения системы уравнений в файл.

8. PrintGeneratedSolutionsToFile(string path)

Выводит сгенерированные начальные значения вектора решений в файл.

9. InnacuracyTest(decimal[] _x, decimal[] _x_expect)

Вычисляет погрешность между ожидаемым решением и реальным решением системы уравнений.

10. PrintInnacuracy(string path)

Выводит значение погрешности в файл.

Алгоритм:

- 1. Инициализируем объект класса Matrix, создаем матрицу, векторы и устанавливаем размерности N и L.
- 2. Генерируем случайные значения для ленточной матрицы и вектора правой части:
 - 。 Создаем ленточные матрицы L и U.
 - Заполняем матрицу matrix значениями, учитывая ленточную структуру.
 - Заполняем вектор правой части f путем домножения ленточной матрицы на случайно сгенерированный вектор x_generated.
- 3. Проходим по каждой строке матрицы и делим строку на диагональный элемент (метод DivideLine).
- 4. Выполняем прямой ход метода исключения Гаусса:
 - \circ Для каждой строки от 0 до N-L:
 - Выполняем операцию вычитания строк: из второй строки вычитаем первую, умноженную на коэффициент (метод SubtractDirectStroke).
 - Повторяем пока не доходим до последней строки с индексом N-L.
- 5. Выполняем обратный ход метода Гаусса:
 - о Для каждой строки с индексами от N-L до L:
 - Вычитаем предыдущую строку (метод SubtractBackwardStroke).
 - Записываем полученные решения в вектор х.

- 6. Проводим тест на точность решения (метод InnacuracyTest), вычисляя погрешность между полученным вектором решений и сгенерированным вектором.
- 7. Записываем результаты в файлы:
 - о Матрицу, вектор правой части и результаты решения.
 - о Сгенерированные решения.
 - о Погрешность в решении.

4. Тестирование

1. Данные о решении систем уравнений с ленточными матрицами порядка 10^1 , 10^2 с диапазоном элементов матриц -10^1 ÷ 10^1 и отношением L/N≅1/10, 1/L.

№ Теста	Размерность системы	Отношение L/N	Средняя относительная погрешность
1	50	1/10	6,040000e-025
2	50		
3	500	1/10	4,925300e-024
4	500		
5			

2. Данные о решении систем уравнений с хорошо обусловленными квадратными матрицами (размерность системы N и ширина ленты L будут совпадать). Матрица со случайно сгенерированными элементами с очень большой вероятностью хорошо обусловлена, поэтому генерируем данные матрицы без ограничения на диапазон генерируемых элементов. Тестируется для двух размерностей порядка 10^1 и двух размерностей порядка 10^2.

№ Теста	Размерность системы	Средняя относительная погрешность
1	30	4,000000e-026
2	50	8,866000e-025
3	300	8,925390e-023
4	500	9,515900e-023

3. Данные о решении систем уравнений с плохо обусловленными матрицами. Тестирование происходит для двух размерностей порядка 10^1, заполнение - случайно сгенерированными элементами в диапазоне -10^1 ÷ 10^1, после чего диагональные элементы умножаются на 10–k. В таблице приведены данные для k = 2,4,6.

№ Теста	Порядок к	Размерность системы	Средняя относительная погрешность
1	2	30	2,325600e-024
2	4	30	4,400000e-024
3	6	30	2,794300e-024
4	2	70	1,981360e-022

5	4	70	6,692390e-023
6	6	70	7,400000e-024