Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

З дисципліни «Методи наукових досліджень» Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів

> ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Микитенко В.О. Залікова № IB-9119

> > ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета: Провести трьохфакторний експеримент з урахуванням квадратичних членів, використовуючи центральний ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Варіант завдання:

Варіант	Σ	\mathbf{X}_{1}	Σ	ζ_2	X_3				
	min	max	min	max	min	max			
118	-3	10	-8	2	-6	1			

Лістинг програми:

```
import random
from sklearn.linear model import LinearRegression
from scipy.stats import f, t
from functools import partial
from pyDOE2 import *
from prettytable import PrettyTable
from time import time
x \text{ range} = ((-3, 10), (-8, 2), (-6, 1))
y \min = 200 + int(sum([x[0] for x in x range]) / 3)
y_max = 200 + int(sum([x[1] for x in x range]) / 3)
def plan matrix(n, m):
    y = np.zeros(shape=(n, m))
    for i in range(n):
        for j in range(m):
            y[i][j] = random.randint(y min, y max)
    x norm = ccdesign(3, center=(0, 1))
    permutation = [2, 1, 0]
    idx = np.empty like(permutation)
    idx[permutation] = np.arange(len(permutation))
    x norm = x norm[:, idx]
    x \text{ norm} = \text{np.insert}(x \text{ norm}, 0, 1, axis=1)
    for i in range (4, 11):
        x norm = np.insert(x norm, i, 0, axis=1)
    1 = 1.215
    x norm[8][1] = -1
    x norm[9][1] = 1
    x_norm[8][3] = 0
    x norm[9][3] = 0
    x norm[10][2] = -1
    x norm[11][2] = 1
    x norm[12][3] = -1
    x norm[13][3] = 1
    x norm[12][1] = 0
    x norm[13][1] = 0
    def fill tabs(x):
        for i in range(len(x)):
            x[i][4] = x[i][1] * x[i][2]
            x[i][5] = x[i][1] * x[i][3]
            x[i][6] = x[i][2] * x[i][3]
            x[i][7] = x[i][1] * x[i][3] * x[i][2]
            x[i][8] = round(x[i][1] ** 2, 3)
            x[i][9] = round(x[i][2] ** 2, 3)
            x[i][10] = round(x[i][3] ** 2, 3)
        return x
    x norm = fill tabs(x norm)
```

```
x = np.ones(shape=(len(x norm), len(x norm[0])), dtype=np.float64)
    for i in range(8):
        for j in range (1, 4):
            if x \text{ norm}[i][j] == -1:
                x[i][j] = x range[j - 1][0]
            else:
                x[i][j] = x range[j - 1][1]
    for i in range(8, len(x)):
        for j in range (1, 4):
            x[i][j] = (x range[j - 1][0] + x range[j - 1][1]) / 2
    dx = [(x range[i][1] - x range[i][0]) / 2 for i in range(3)]
    x[8][1] = -1 * dx[0] + x[9][1]
    x[9][1] = 1 * dx[0] + x[9][1]
    x[10][2] = -1 * dx[1] + x[9][2]
    x[11][2] = 1 * dx[1] + x[9][2]
    x[12][3] = -1 * dx[2] + x[9][3]
    x[13][3] = 1 * dx[2] + x[9][3]
    x = np.around(fill tabs(x), 3)
    x table = PrettyTable()
    for i in range(n):
        x table.add row([*x[i]])
    print('Матриця планування:')
    print(x table)
    x norm table = PrettyTable()
    for i in range(n):
        x norm table.add row([*x norm[i]])
    print('Нормована матриця планування:')
    print(x norm table)
    return x, y, x norm
def coef finding(x, y, norm=False):
    skm = LinearRegression(fit intercept=False)
    skm.fit(x, y)
    b = skm.coef
    if norm == 1:
        print('\nKoeфiцiєнти з нормаваними значеннями:')
    else:
        print('\nKoeфiцiєнти:')
    b = [round(i, 3) for i in b]
    print(b)
    print(y)
    print('\nЗначення рівняння зі знайденими
коефіцієнтами: \n{}'.format(np.dot(x, b)))
    return b
def regression(x, b):
    y = sum([x[i] * b[i] for i in range(len(x))])
    return y
def s kv(y, y_aver, n, m):
    res = []
    for i in range(n):
        s = sum([(y aver[i] - y[i][j]) ** 2 for j in range(m)]) / m
        res.append(round(s, 3))
    return res
def checkFull(x, y, b, n, m):
    print('\nCTaTucTuчнi перевірки:')
    f1 = m - 1
    f2 = n
```

```
f3 = f1 * f2
    q = 0.05
    kohren = {2: 3346, 3: 2758, 4: 2419, 5: 2159, 6: 2034, 7: 1911, 8: 1815, 9:
1736, 10: 1671}
    g kr = kohren.get(f1) / 10000
    student = partial(t.ppf, q=1 - q)
    t student = student(df=f3)
    y \text{ aver} = [\text{round}(\text{sum}(i) / \text{len}(i), 3) \text{ for } i \text{ in } y]
    print('\nCepeднi значення Y:', y aver)
    disp = s_kv(y, y_aver, n, m)
    print('Дисперсія Y:', disp)
    ck = time()
    f1 = m - 1
    f2 = n
    q = 0.05
    skv = s kv(y, y aver, n, m)
    gp = max(skv) / sum(skv)
    ck = time() - ck
    print(f'\nKpитерій Koxpeнa:\ngp = {gp}')
    if gp < g kr:
        print('Дисперсія однорідна')
    else:
        print ("Дисперсія неонорідна")
        m += 1
        start(n, m)
    cs = time()
    skv = s kv(y, y aver, n, m)
    skv aver = sum(skv) / n
    sbs tmp = (skv aver / n / m) ** 0.5
    def bs(x, y aver, n):
        res = [sum(1 * y for y in y aver) / n]
        for i in range (len (x[0])):
            b = sum(j[0] * j[1] for j in zip(x[:, i], y aver)) / n
            res.append(b)
        return res
    bs_tmp = bs(x[:, 1:], y_aver, n)
    ts = [round(abs(b) / sbs tmp, 3) for b in bs tmp]
    cs = time() - cs
    print('\nКритерій Стьюдента:\n{}:'.format(ts))
    res = [t for t in ts if t > t student]
    final_k = [b[i] for i in range(len(ts)) if ts[i] in res]
   print('\nKoeфiцieнти {} незначимі'.format([round(i, 3) for i in b if i not
in final k]))
    y_new = []
    for j in range(n):
       y new.append(round(regression([x[j][i] for i in range(len(ts)) if ts[i]
in res], final k), 3))
    print('Значення функції відгуку зі значимими коефіцієнтами {}:
'.format(final_k))
    print(y new)
    d = len(res)
    if d \ge n:
        print('\nF4 <= 0')</pre>
       return
    f4 = n - d
    cr = time()
    S = M = M / (n - d) * sum([(y new[i] - y aver[i]) ** 2 for i in
range(len(y))])
    skv = s kv(y, y aver, n, m)
    skv aver = sum(skv) / n
```

```
f_p = S_ad / skv_aver
   fisher = partial(f.ppf, q=1 - q)
   f t = fisher(dfn=f4, dfd=f3)
   cr = time() - cr
   print('\nКритерій Фішера:')
   print('fp =', f p)
   print('ft =', f t)
   if f p < f t:
       print('Математична модель адекватна')
    else:
       print('Математична модель неадекватна')
    print("час проведення перевірки за критерієм Кохрена ", ck * 1000, " мс")
   print("час проведення перевірки за критерієм Стьюдента ", cs * 1000, " мс")
   print("час проведення перевірки за критерієм Фішера ", cr * 1000, " мс")
def start(n, m):
   x, y, x norm = plan matrix(n, m)
    y aver = [round(sum(i) / len(i), 3) for i in y]
   b = coef_finding(x, y_aver)
   checkFull(x norm, y, b, n, m)
start(15, 3)
```

Результати виконання:

Матриця планування:

Field 1	Field 2	Field 3			Field 5										Ţ	Field 11
1.0	-3.0	-8.0		0		Ī			48.0		-144.0		Ī	64.0	1	36.0
1.0	-3.0	-8.0	1.0)	24.0	1	-3.0	I	-8.0	l	24.0	9.0	1	64.0		1.0
1.0	-3.0	2.0	-6.	0	-6.0	1	18.0	I	-12.0	L	36.0	9.0	1	4.0		36.0
1.0	-3.0	2.0	1.0		-6.0	1	-3.0	I	2.0	L	-6.0	9.0		4.0		1.0
1.0	10.0	-8.0	-6.	0	-80.0		-60.0	I	48.0	l	480.0	100.0		64.0		36.0
1.0	10.0	-8.0	1.0		-80.0	1	10.0	I	-8.0	l	-80.0	100.0	1	64.0		1.0
1.0	10.0	2.0	-6.	0	20.0		-60.0	I	-12.0	l	-120.0	100.0	1	4.0		36.0
1.0	10.0	2.0	1.0		20.0	1	10.0	I	2.0	l	20.0	100.0	1	4.0		1.0
1.0	-4.398	-3.0	-2.	5	13.193		10.994	I	7.5	-	32.981	19.338	1	9.0		6.25
1.0	11.398	-3.0	-2.	5	-34.192		-28.494	I	7.5	L	85.481	129.903		9.0		6.25
1.0	3.5	-9.075	-2.	5	-31.762		-8.75	I	22.688	l	79.406	12.25		82.356		6.25
1.0	3.5	3.075	-2.	5	10.763		-8.75	I	-7.688	-	26.906	12.25		9.456		6.25
1.0	3.5	-3.0	-6.7	52	-10.5	1	-23.634	I	20.258	L	70.901	12.25	1	9.0		45.596
1.0	3.5	-3.0	1.75	3	-10.5	1	6.134	I	-5.258	-	18.401	12.25	1	9.0		3.071
1.0	3.5	-3.0	-2.	5	-10.5	1	-8.75	I	7.5	1	26.25	12.25	1	9.0		6.25

Нормована матриця планування:

İ	Field 1	İ	Field 2	İ	Field 3	İ	Field 4	İ	Field 5	İ	Field 6	F	ield 7	İ	Field 8	İ	Field 9	į	Field 10	İ	Field 11	ij
	1.0	1	-1.0	Ī	-1.0	Ī	-1.0		1.0	1	1.0		1.0	†- 	-1.0	Ī	1.0	1	1.0	1	1.0	1
	1.0	-	-1.0	ľ	-1.0	1	1.0		1.0	I	-1.0		-1.0	l	1.0	I	1.0	-	1.0	- 1	1.0	
	1.0	-1	-1.0	l	1.0	1	-1.0		-1.0		1.0		-1.0	l	1.0	1	1.0	-	1.0	-1	1.0	
	1.0	- 1	-1.0	l	1.0	1	1.0		-1.0		-1.0		1.0	l	-1.0		1.0		1.0	-1	1.0	
	1.0	- 1	1.0		-1.0		-1.0		-1.0		-1.0		1.0	l	1.0		1.0		1.0	-1	1.0	
	1.0	- 1	1.0		-1.0	1	1.0		-1.0		1.0		-1.0	l	-1.0		1.0		1.0	-1	1.0	
	1.0	- 1	1.0		1.0		-1.0		1.0		-1.0		-1.0	l	-1.0		1.0		1.0	-1	1.0	
	1.0	- 1	1.0	l	1.0		1.0		1.0		1.0		1.0	l	1.0		1.0		1.0	- 1	1.0	
	1.0	- 1	-1.215		0.0		0.0		-0.0		-0.0		0.0	l	-0.0		1.476		0.0	-1	0.0	
	1.0	- 1	1.215		0.0	1	0.0		0.0		0.0		0.0	l	0.0		1.476		0.0	-1	0.0	
	1.0	- 1	0.0	l	-1.215		0.0		-0.0		0.0		-0.0	l	-0.0		0.0		1.476	-1	0.0	
	1.0	- 1	0.0		1.215	1	0.0		0.0		0.0		0.0	l	0.0		0.0		1.476	-1	0.0	
	1.0	- 1	0.0	l	0.0	1	-1.215		0.0		-0.0		-0.0	l	-0.0		0.0		0.0	-1	1.476	
	1.0	-1	0.0	l	0.0	1	1.215		0.0	I	0.0	ı	0.0	l	0.0	I	0.0		0.0	-1	1.476	
	1.0	-1	0.0	l	0.0		0.0	L	0.0	I	0.0	ı	0.0	L	0.0	I	0.0	-	0.0	\perp	0.0	- 1
+-		-+		+-		-+-		+-		+-		+		+-		+-		-+		-+-		-+

```
[199.996, 0.178, 0.009, -0.115, -0.016, 0.001, -0.018, -0.004, -0.035, 0.027, -0.028]
[200.0, 200.667, 199.0, 199.333, 198.0, 202.0, 198.333, 198.0, 198.333, 197.333, 201.333, 200.667, 199.333, 199.667, 201.667]
Значення рівняння зі знайденими коефіцієнтами:
[199.831 200.321 199.141 199.211 198.05 201.543
198.4 197.833 198.661656 197.848393 202.218121 200.650787
199.40216 200.461049 200.438 ]
Статистичні перевірки:
Середні значення Y: [200.0, 200.667, 199.0, 199.333, 198.0, 202.0, 198.333, 198.0, 198.333, 197.333, 200.667, 199.333, 199.667, 201.667]
Дисперсія У: [8.667, 8.222, 4.667, 6.222, 2.0, 4.667, 16.222, 4.667, 5.556, 3.556, 9.556, 16.222, 2.889, 6.889, 2.889]
qp = 0.15766199181658264
Лисперсія однорідна
Критерій Стьюлента:
[511.182, 0.663, 1.163, 0.866, 0.228, 0.455, 0.797, 0.683, 372.131, 373.728, 372.972]:
Коефіцієнти [0.178, 0.009, -0.115, -0.016, 0.001, -0.018, -0.004] незначимі
Значення функції відгуку зі значимими коефіцієнтами [199.996, -0.035, 0.027, -0.028]:
[199.96,\ 199.96,\ 199.96,\ 199.96,\ 199.96,\ 199.96,\ 199.96,\ 199.96,\ 199.944,\ 199.944,\ 200.036,\ 200.036,\ 199.955,\ 199.955,\ 199.996]
Критерій Фішера:
fn = 1.2350611635791093
ft = 2.125558760875511
Математична модель адекватна
час проведення перевірки за критерієм Кохрена 2.7124881744384766 мс
час проведення перевірки за критерієм Стьюдента 1.0421276092529297 мс
час проведення перевірки за критерієм Фішера 0.0 мс
```

Висновок:

В даній лабораторній роботі я провів трьохфакторний експеримент з урахуванням квадратичних членів, використовуючи центральний ортогональний композиційний план. Знайшов рівняння регресії, яке буде адекватним для опису об'єкту.