AD-A265 055

DOT/FAA/CT-91/20

FAA Technical Center Atlantic City International Airport N.J. 08405 General Aviation Aircraft-Normal Acceleration Data Analysis and Collection Project

February 1993

Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

DIETRIEUTION STATEMENT

U.S. Department of Transportation Federal Aviation Administration

93-10955

426590

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

T. P No.	2. Government Acces	5100 No. 13 D.	copient's Catalog N	0
1. Report No	4. Government Acces	3. Re	Copress & Colding II	-
DOT/FAA/CT-91/20				
4. Title and Subtitle		5. Re	February 19	203
GENERAL AVIATION AIRCRAFT-N	ODMAT ACCETEDA	TTOM A B	repruary 1:	
DATA ANALYSIS AND COLLECTION		LI TON	2231	on Cope
DATA ANALISIS AND COLLECTION	N I ROJECI	A P	erforming Organization	n Report No
7. Author(s) James E. Locke	and Howard W		riorming Organization	
Edward A. Gabriel ACE-111, a			KU-FRL-926-	-1
9. Performing Organization Name and Addres	5 \$		fork Unit No (TRAIS	\$;
Flight Research Laboratory				
The University of Kansas Fl	ight Research	Laboratory 11. 6	Contract or Grant No	
2291 Irving Hill Drive Lawrence, KS 66045-2969		1.2		
L		13. 1	ype of Report and P	eriod Covered
12 Spansaring Agency Name and Address U.S. Department of Transpor	rtation		Final Rep	ort
Federal Aviation Administra				
Technical Center		14. S	ponsoring Agency C	ode
Atlantic City International	Airport, NJ (ACD-220	
15. Supplementary Notes				
This work was performed as				
Aviation Research, Wichita		ity, Wichita, Kans	as 67208.	
Mr. Dave Ellis was Sub-Tas	k Director.			
16. Abstract This report contains the an	alusis and oor	denestion of ropes	tod flight 1	ands
obtained from 77 airplanes				
Program. In addition, the				
base are presented as plott				
listed for the original dat				
statistical analysis. Airs		•		
recorded continuously durin				ed into
gust and maneuver normal ac	celerations.	The reduced data a	re presented	as
cumulative number of occurr	_			
fraction (incremental norma				
factor). For statistical a				
single and twin-engine oper	~	~ .		*
time); weighted mean plus o				a; and
the 90% probability/95% con				3
operational usage group and of the scatter associated w				
by computing a pooled varia				
load spectra are to be used				_
The Federal Aviation Admini				
results of this report are				
to produce a revised fatigu				
certification under Part 23				-
17. Key Words		18. Distribution Statement		
1116	ral Aviation	Document is avail		-
Fatigue Load Spectra Smal	l Airplane	through the Natio		
	Factors	Information Servi	ce, Springfi	eld,
Maneuver Load Spectra		Virginia, 22161		
10 Same Classif (-(4)	20 5	ail (alaba a a a a a	21. No. of Pages	22. Price
19. Security Classif, (of this report)	20. Security Clas	sit, (of this page)	Att NO. OF Fages	ZZ. FIICE
Unclassified	Uncla	ssified	348	

PREFACE

A work of the kind presented herein cannot be done without the labor of many people. In addition to those cited in the References, Henry Nauert, Aerospace Engineer (Retired), from the FAA Small Airplane Certification Directorate, should be recognized for his important contribution in guiding the work reported in References 3, 10, 11, and 12.

In addition, three University of Kansas students participated:
Greg Miller
Steve Maley
Clinton Povich

TABLE OF CONTENTS

		Page No.
1.	INTRODUCTION	1-1
	1.1 Initiation of NASA Data Collection Program	. 1-1
	1.2 Recorder Types	. 1-1
	1.3 Airplane Certification Categories and Types of Operations	. 1-1
	1.4 FAA Program	. 1-2
	1.5 FAA/Industry Working Group	. 1-2
	1.6 Future Work and Application of Results of This Report	. 1-4
2.	DISCUSSION	2-1
	2.1 Identification of Airplanes in Operational Usage Groups	. 2-1
	2.2 Rationale for Selection of Airplanes in Operational Usage Groups	. 2-1
	2.3 Data Presentation	. 2-5
	2.4 Extrapolation of Exceedance Spectra	. 2-7
	2.5 Statistically Derived Exceedance Curves	. 2-10
3.	CONCLUSIONS	3-1
	3.1 Statistical Analysis	. 3-1
	3.2 General	. 3-1
	3.3 Comparison of Normal Acceleration Exceedance Spectra	. 3-1
	3.4 Analytical Studies and Future Work	. 3-3
4.	REFERENCES	. 4-1

TABLE OF CONTENTS, Concluded

	Page No.
AP	PENDICES:
A.	Airplane Descriptive Data
В.	Airplane IdentificationNASA and University of Kansas, Operating Altitudes, Operating Locations, Primary Use and Operator Category
C.	Normal Acceleration Exceedance Curves and Data Tables for Individual Airplanes
D.	Statistical Analysis
E.	Analysis of the Distribution of the Data E-1
F.	Instrumentation, Data Precision, Reading VGH Oscillograms, Data Processing

LIST OF FIGURES

Number	<u>Title</u>	Page No.
1-1	FAA-NASA VGH General Aviation Program	1-3
1-2	FAA Part 23 Fatigue Program (Continued from Figure 1-1)	1-6
2-1	Maneuver Spectrum, Basic Flight Instruction	2-9
2-2	Gust Load Spectra: Single-Engine General Usage, Basic Flight Instruction	2-12
2-3	Maneuver Load Spectra: Single-Engine General Usage, Basic Flight Instruction	2-14
2-4	Gust Load Spectra: Single-Engine General Usage, Business/Personal	2-16
2-5	Maneuver Load Spectra: Single-Engine General Usage, Business/Personal	2-18
2-6	Gust Load Spectra: Single Engine General Usage	2-20
2-7	Maneuver Load Spectra: Single-Engine General Usage	2-22
2-8	Gust Load Spectra: Single-Engine Special Usage	2-24
2-9	Maneuver Load Spectra: Single-Engine Special Usage	2-26
2-10	Gust Load Spectra: Single-Engine Aerial Application	2-28
2-11	Maneuver Load Spectra: Single-Engine Aerial Application .	2-30
2-12	Gust Load Spectra: Twin-Engine General Usage	2-32
2-13	Maneuver Load spectra: Twin-Engine General Usage	2-34
2-14	Gust Load Spectra: Twin-Engine Special Usage	2-36
2-15	Maneuver Load Spectra: Twin-Engine Special Usage	2-38
2-16	Gust Load Spectra: Single and Twin-Engine Special Usage	2-40
2-17	Maneuver Load Spectra: Single and Twin-Engine Special Us	sage 2-42
2-18	Gust Load Spectra: Single and Twin-Engine Pressurized General Usage	2-44
2-19	Maneuver Load Spectra: Single and Twin-Engine Pressurized General Usage	2-46

LIST OF TABLES

Number	<u>Title</u>	Page No.
1-1	Operational Usage Groups	1-5
2-1	Identification of Airplanes in Operational Usage Groups	2-2
2-2	Gust Load Spectra: Single-Engine General Usage, Basic Flight Instruction	2-11
2-3	Maneuver Load Spectra: Single-Engine General Usage, Basic Flight Instruction	2-13
2-4	Gust Load Spectra: Single-Engine General Usage, Business/Personal	2-15
2-5	Maneuver Load Spectra: Single-Engine General Usage, Business/Personal	2-17
2-6	Gust Load Spectra: Single-Engine General Usage	2-19
2-7	Maneuver Load Spectra: Single-Engine General Usage	2-21
2-8	Gust Load Spectra: Single-Engine Special Usage	2-23
2-9	Maneuver Load Spectra: Single-Engine Special Usage	2-25
2-10	Gust Load Spectra: Single-Engine Aerial Application	2-27
2-11	Maneuver Load Spectra: Single-Engine Aerial Application	2-29
2-12	Gust Load Spectra: Twin-Engine General Usage	2-31
2-13	Maneuver Load Spectra: Twin-Engine General Usage	2-33
2-14	Gust Load Spectra: Twin-Engine Special Usage	2-35
2-15	Maneuver Load Spectra: Twin-Engine Special Usage	2-37
2-16	Gust Load Spectra: Single and Twin-Engine Special Usage .	2-39
2-17	Maneuver Load Spectra: Single and Twin-Engine Special Usa	age 2-41
2-18	Gust Load Spectra: Single and Twin-Engine Pressurized General Usage	2-43
2-19	Maneuver Load Spectra: Single and Twin-Engine Pressurized General Usage	2-45

LIST OF SYMBOLS

Latin	
a	normal acceleration
a	slope of the airplane normal force coefficient curve C_{NA} (per radian)
a _n	incremental normal acceleration (normal acceleration -1.0), g units
$a_{n_{LLF}}$	incremental limit load factor (limit load factor - 1.0)
$a_{n}/a_{n_{LLF}}$	normal acceleration fraction
a ₀ , a ₁ , a ₂ , a ₃	, a4 coefficients of the terms in the curve fit equations
g	acceleration due to gravity, 32.2 ft/sec ²
IAS	indicated airspeed, knots
ln	Naperian logarithm
log	common logarithm
m	slope of lift curve, per radian
n	number of airplanes in a group
n	limit load factor
n _g	gust limit load factor
n _m	maneuver limit load factor
S	wing area, ft ²
S	sample standard deviation
S_w	weighted sample standard deviation
SL	sea level
t	"t" statistic
$\mathbf{t_i}$	total flight hours for an individual airplane
Т	total flight hours for a group (hrs)

LIST OF SYMBOLS, Concluded

U gust velocity, ft/sec

V airplane equivalent airspeed, knots

V_C design cruising speed

V_D design dive speed, knots

V_{NE} never-exceed speed, knots

 V_s stalling speed, knots

W airplane weight, lb

W/S wing loading, lb/ft²

x acceleration fraction (abscissa)

y cumulative frequency of exceedance per nautical mile (ordinate)

y sample mean

 \bar{y}_w weighted sample mean

Z "z" statistic

Greek

μ population mean

 π 3.1416

ρ air density, slugs/ft³

ρ_o air density at sea level, slugs/ft³

σ population standard deviation

 χ^2 chi-squared statistic

Arabic

1¹, 1², 1³, ... superscripts indicate additional airplanes of same type involved in different operations

DEFINITIONS AND ACRONYMS

A Basis: At least 99 percent of the population of values is expected to equal or

exceed the A basis mechanical property allowable, with a confidence

of 95 percent. (Reference 8)

B Basis: At least 90 percent of the population of values is expected to equal or

exceed the B basis mechanical property allowable, with a confidence

of 95 percent. (Reference 8)

FAA: Federal Aviation Administration

FAR: Federal Aviation Regulations

General Aviation: All civil aviation except scheduled air transport.

However, the NASA VGH General Aviation Program included two small airplanes used in commuter airline operations. General aviation airplanes may be of any certification category (e.g., normal, utility, acrobatic, commuter, transport, etc.) or weight class (i.e.,

small or large airplane).

Part 23: Refers to Part 23 of the Federal Aviation Regulations (FAR) [Reference 9]. This Part contains airworthiness certification standards for normal, utility, acrobatic, and commuter category airplanes.

- Normal, utility, and acrobatic category airplanes have a seating configuration, excluding pilot seats, of nine or less, and have a maximum certificated take-off weight of 12,500 lbs. or less.
- Normal category airplanes are intended for nonacrobatic operation (refer to § 23.3 of Reference 9 for permitted maneuvers).
- <u>Utility category</u> airplanes are designed for limited acrobatic operations (refer to § 23.3 of Reference 9).
- Acrobatic category airplanes are designed for maneuvers without restrictions, other than those shown to be necessary as a result of required flight tests.
- The commuter category is limited to propeller-driven multiengine airplanes having a seating configuration, excluding pilot seats, of 19 or less, and a maximum certificated take-off weight of 19,000 lbs. or less.

Large airplane: An airplane of more than 12,500 lbs. maximum certificated

takeoff weight.

Small airplane: An airplane of 12,500 lbs. or less, maximum certificated

takeoff weight.

DEFINITIONS AND ACRONYMS, continued

Maximum weight: The highest weight at which compliance with the

applicable certification requirements (other than design landing

weight requirements) has been shown.

KU-FRL: The University of Kansas Flight Research Laboratory

KU-CRINC: The University of Kansas Center for Research, Inc.

NASA: National Aeronautics and Space Administration

V-G: Velocity, normal acceleration (determined by a recorder installed in

an airplane).

VGH: Velocity, normal acceleration, pressure altitude (determined by a

recorder installed in an airplane).

Note: Part 1 of the FAR contains additional definitions and abbreviations.

1. INTRODUCTION

1.1 Initiation of NASA Data Collection Program

In 1962, at the request of the Federal Aviation Administration (FAA), and upon recommendation of the National Aeronautics and Space Administration (NASA) Committee on Aircraft Operating Problems, the NASA V-G/VGH General Aviation Program was established. The purpose of the program was to define the gust and maneuver loads, airspeed practices, and altitude usages of general aviation airplanes and to provide a data bank of information for use by airplane designers.

1.2 Recorder Types

The VGH recorder provides a time-history record of the indicated airspeed, pressure altitude, and normal acceleration near the center of gravity of the instrumented airplanes. The V-G recorder provides envelope-type information of the maximum in-flight accelerations and their corresponding airspeeds. Only the VGH data is presented in this report since the V-G data is not applicable to airplane fatigue substantiation. A brief description of the NASA VGH recorder is included in Appendix F.

1.3 Airplane Certification Categories and Types of Operations

FAA's definitions of airplane categories (e.g., normal, utility, acrobatic, commuter) and maximum weight ranges (i.e., small airplane, large airplane) are listed on the page titled Definitions and Acronyms. From October 17, 1979, to September 13, 1983, commuter category airplanes were type certificated to Special Federal Aviation Regulation (SFAR) No. 41, and production was permitted until October 17, 1991. These airplanes were generally derived from small airplane designs that were certificated under Part 23. Amendment 23-34 (effective February 17, 1987) expanded Part 23 to include additional requirements applicable to certification of commuter category airplanes. Some commuter category airplanes have been delivered as normal category small airplanes with executive seating for nine or fewer passengers.

A further clarification of commuter operations may be in order. Small multiengine airplanes, commuter category, and transport category airplanes are being used in commuter airplane operations. FAA's Aging Commuter Airplane Program addresses multiengine airplanes having maximum weights greater than 6,000 lbs., with any seating capacity up to 60 passengers.

To obtain a representative sample of general aviation operations, eight types of operations, as follows, were covered in the NASA data collection program: twin-engine executive, single-engine executive, personal, instructional, commercial survey, aerobatic, aerial application, and commuter airline. These operations are described further in Appendix B.

Care was taken in selecting airplanes in a particular operation to insure that the home bases were located throughout the continental United States. By selectively taking the data from different geographical locations, biasing of the data because of similar topography was eliminated. Generally, for each recorder installation, an attempt was made to collect data over at least four seasons.

1.4 FAA Program

In 1973, FAA published Report No. AFS-120-73-2, "Fatigue Evaluation of Wing and Associated Structure on Small Airplanes" (Reference 1). The flight load spectra in that report was based on the VGH recorder data available at that time from the NASA VGH General Aviation Program. The data was collected on 36 airplanes flying approximately 12,400 hours. Data collection continued until 1981, at which time 42,155 hours of VGH data were accumulated on 105 airplanes. NASA evaluated the data for 95 airplanes flying 35,286 hours and presented it in tabular form in Reference 2. In 1984, the FAA Small Airplane Directorate contracted with the University of Kansas Center for Research (KU-CRINC) to process approximately 7,000 hours of data that had not been reduced by NASA, and to combine it with the data base published by NASA in Reference 2. The work done by KU-CRINC was completed in July 1986, and the results published in Reference 3.

The history of this program is diagrammed in Figure 1-1. NASA involvement ended with the publication of Reference 4. This report contains histograms which show the distribution of (and average) airspeed, altitude, and flight duration of the individual airplanes in the NASA VGH General Aviation Program. These aspects of this program will not be analyzed further by FAA, and the reader is directed to Reference 4 for detailed information on airspeed, altitude, and flight duration practices.

1.5 FAA/Industry Working Group

The Part 23 Airplane Fatigue Working Group was established in 1987, with members from FAA and the small/commuter airplane industry. The initial task of this Working Group is to assist the Small Airplane Directorate in developing updated fatigue substantiation guidance material with load spectra based on the complete VGH General Aviation Data Base. The Working Group first met in August 1987, to develop a plan to complete this task and to review Reference 5 which presented load spectra plots for the complete VGH General Aviation data base (105 airplanes, 42,155 flight hours). The load spectra in Reference 5 were grouped according to airplane operational usage (e.g., single-engine general usage) and compared with the original load spectra in Reference 1. One of the Working Group's recommendations was that the Small Airplane Directorate proceed to investigate the application of statistical analysis for determining and presenting load spectra in probabalistic terms for each airplane operational usage group.

In accordance with the Working Group's recommendation, the Small Airplane Directorate performed an example statistical analysis of the positive maneuver load spectra for the single-engine basic flight instruction group, consisting of ten airplanes. This study was reported in Reference 6. The Working Group met on February 15, 1990, to discuss the results of this study and to decide the course for proceeding further. The discussion of the meeting and agreements

FIGURE 1-1

FAA-NASA VGH GENERAL AVIATION PROGRAM

reached are reported in Reference 7. Regarding the NASA VGH General Aviation Data Base, the Working Group agreed that the determination of the fatigue load spectra, which will be included in a report that will supersede Reference 1, will be done by statistical analysis. Specifically, it was agreed that for the next phase of this program, the load spectra for the operational usage groups shown in Table 1-1 will be determined for the mean plus 1 and the mean plus 2 standard deviations, and for the 90% probability/95% confidence level. The latter corresponds to the statistical definition of the "B basis" mechanical property strength allowable in Reference 8. Considering that fatigue life prediction is not an exact science, the Working Group selected the "B basis" rather than the more stringent "A basis" (99% probability/95% confidence level). Refer to the List of Definitions for definition of "A basis" and "B basis". This agreement led to a contract with the University of Kansas Center for Research, Inc., to complete the final phase of this research effort; i.e., probabalistic load spectra development. The results of this effort are presented in this report.

1.6 Future Work and Application of Results of This Report

The plan for continuing this work to produce a revised fatigue evaluation report for Part 23 airplane certification is diagrammed in Figure 1-2. The effect on airplane fatigue life using the load spectra determined in this report, by statistical analysis, needs to be studied using the method of analysis in Reference 1.

A scatter factor is applied to the life determined by analysis or test to assure that an extremely low probability of failure will be realized during the operational life of the airplanes produced to the type design. The scatter factor is intended to account for service load variability, environmental effects, and fatigue test result variability, which in turn is influenced by such factors as material variability, detail design, quality of construction, loading sequence, etc. The service load variability will be better accounted for by using the load spectra determined by statistical analysis and possible reduction of the scatter factor will be studied.

TABLE 1-1

OPERATIONAL USAGE GROUPS

				Airpla (Spec		Flight Hours
				SINGLE ENGINE		
1.	Gener	al Usage				
*		asic Fligh Severe Ma			10	5,470
	b. B	usiness/Pe	ersonal:	Includes executive transport, charter, cargo, pleasure, instruction, fish spotting	23	5,956
*2.	Specia	al Usage:		ne patrol, forest fire patrol, fire fighting	4	3,631
3.	Aerial	Applicati	on.		28	7,904
4.	Acrob	atic			1	117
				TWIN-ENGINE		
5.	Gener	ral Usage:	comm	ess, charter, cargo, uter airlines, flight instruction, flights, ambulance, sales demonstration	n 10	10,522
*6.	Specia	al Usage:	Pipelin lead p	ne patrol, forest fire fighting lane	3	1,281
7.	Busin	ess Jet, G	eneral	Usage	2	1,986
			<u> </u>	SINGLE AND TWIN-ENGINE		
8.	Press	urized, Ge	neral U	sage	4	2,662

^{*}Note: 1) Groups 1a and 1b will be combined for gust spectra.
2) Load spectra will be determined for groups 2 and 6 both singly and combined.

FIGURE 1-2

FAA PART 23 FATIGUE PROGRAM (CONTINUED FROM FIGURE 1-1)

REVISION OF REPORT FOR FATIGUE EVALUATION OF WING AND ASSOCIATED STRUCTURE, AFS-120-73-2 REPORT

WORKING GROUP MEETING, Feb. 15, 1990 ACE-111 Report Jan.7, 1991 (Reference 7) FAA CONTRACT WITH KU-CRINC **Statistical Analysis** of Load Spectra March 1991 - Dec 1992 **FATIGUE LIFE STUDY** Comparison of Original and New Load Spectra and Scatter Factor Variation **WORKING GROUP MEETING** DRAFT OF REVISED WING FATIGUE **EVAULATION REPORT Final Coordination of Report** with Working Group PUBLICATION OF REVISED WING **FATIGUE EVALUATION REPORT**

2. DISCUSSION

2.1 Identification of Airplanes in Operational Usage Groups

For purposes of performing statistical analysis, the operational usage groups are as shown in Table 2-1. This grouping is essentially the same as shown in Table 1-1 with minor changes and deletions as discussed in the next section. The data was read from Reference 3. The physical characteristics of the individual airplanes in each group are listed in the Tables in Appendix A. A description of the airplane use, operator category, average operating altitude, and geographical location of the airplanes' home bases is contained in Appendix B. The instrumented airplane's home bases were located in various parts of the United States, thus providing for operations over varied terrain and meteorological conditions.

2.2 Rationale for Selection of Airplanes in Operational Usage Groups

a. Airplanes not included

Only airplanes covered by Part 23 of the FAR (Reference 9) were included. The following large airplanes which have maximum weights ranging from 26,300 to 126,000 pounds, were not included: Twin-Engine Executive, No. 1; Commercial Survey airplanes used in forest fire fighting, Nos. 19, 20, 21, 22, 23, and 24. There are only two business jet airplanes, Nos. 2 and 2A; and only one aerobatic airplane, No. 38. Statistical analysis was not performed on these airplanes. The characteristics of these airplanes are listed in Tables A-9, A-10, and A-11.

b. Single-Engine Business/Personal Sub-group

- (1) An overlay of the gust load spectra for airplanes in the Executive class and the Personal class showed that the spectra cover approximately the same data range. The same comparison was shown for the maneuver load spectra; therefore, these classes were grouped together in the Business/Personal sub-group of the Single-Engine General Usage Group.
- (2) Inclusion of Fish Spotting Airplane (No. 28) in the Business/Personal subgroup. This airplane is included in the Commercial Survey Group in References 2, 3 and 4. It is very similar (identical in maximum weight, horsepower, and wingspan) to airplane No. 18 in the Instructional Group (Table A-1, Appendix A). These airplanes are low-powered light airplanes in the personal/training class.

The gust and maneuver load spectra is the least severe of all the data. Except for negative maneuver, the No. 28 spectra plots well below the spectra for the four airplanes in the Single-Engine Commercial Survey Group. If the No. 28 spectra were included in this group, it would greatly increase the dispersion of the data. For determining final load spectra by statistical analysis, it would be best to

TABLE 2-1

IDENTIFICATION OF AIRPLANES IN OPERATIONAL USAGE GROUPS

SINGLE ENGINE

- 1. General Usage
 - a. <u>Basic Flight Instruction</u> 10 airplanes: Appendix D*: All airplanes except No. 4A (twin-engine).
 - b. <u>Business/Personal</u> 24 airplanes:

Appendix B*: All airplanes (11) (Executive class). Appendix C*: All airplanes (11) (Personal class).

Appendix E*: Airplane No. 28 only (personal/training type airplane used in fish spotting).

Appendix I*: One float plane, No. 41.

- 2. Special Usage 4 airplanes: Appendix E*: Airplane 6A, 9B, 17¹ and 27 only.
- 3. Aerial Application 25 airplanes:
 Appendix F*: All those listed except No. 32¹; also for No. 33A², do not use negative maneuver data less than 3.7 x 10⁻³ frequency of exceedance.

TWIN-ENGINE

4. General Usage - 8 airplanes:

Appendix A*: Airplanes Nos. 4, 5, and 5¹ only

Appendix D*: Airplane No. 4A only Appendix H*: Airplane Nos. 39 and 40

Ref. 11: Airplane 310-110 (Instruction operations)

Ref. 12 (pages D.23 to D.29): Airplane No. 255-203

5. Special Usage - 3 airplanes:

Appendix E*: Airplane Nos. 4¹, 25, and 26 only

SINGLE AND TWIN-ENGINE

6. Pressurized General Usage - 3 airplanes:

Appendix A*: Airplane Nos. 3 and 31 only

Appendix B*: Airplane No. 6 only

^{*} Appendices in Reference 3

minimize the dispersion of the data. Therefore, the No. 28 spectra is included in the Single-Engine General Usage, Business/Personal sub-group.

(3) Inclusion of floatplane (No. 41) in the Business/Personal sub-group. This airplane was operated by a fixed-base operator in personnel and cargo charter (bush-type operations). The Single-Engine Executive sub-group includes personnel and cargo charter operations by a fixed-base operator. An overlay of the No. 41 spectra on the Business/Personal sub-group spectra shows that No. 41 fits in well in this sub-group.

c. Single-Engine Special Usage Group

There are only four single-engine airplanes in the Special Usage Group. Their characteristics are listed in Table A-4, Appendix A. Airplane Nos. 6A and 17¹ were used in pipeline patrol over level and mountainous terrain; 9B was used in scouting for forest fires and transporting cargo and personnel in forest fire fighting operations; No. 27 was used in forest fire fighting as lead plane for retardant bombers. The lead planes check for excessive turbulence and mark the drop site.

d. Aerial Application Group

The characteristics of these airplanes are listed in Table A-5, Appendix A. The airplanes in this group were used to disperse chemicals for control of herbs, pests, and insects on farmlands. One was used to disperse chemicals for control of herbs and insects on lakes and streams. The data from several of the airplanes in References 3 and 10 were not used for the following reasons:

- (1) Airplane 32¹ was an unusually severe operation treating very short fields. This operation is considered to be unlike typical aerial application operations and, therefore, is not used. The severity of this data is seen in Figures 8A and 9 in Reference 5.
- (2) The negative maneuver load spectrum for airplane $33A^2$ diverges sharply below 3.7×10^{-3} frequency of exceedance and, therefore, data below this value was not used (page F.71 in Reference 3 and Figure 9 in Reference 5).
- (3) Airplane 555-306 was an unusual and very severe operation in Australia. Phosphate loads were salvoed on very short flights having a duration as little as 2.5 minutes. This was done in windy, gusty weather with no concern for drifting dust. The load spectra for this airplane is plotted in Figures 8A and 9 in Reference 5, and also in Reference 10. Data was collected for only 51 flight hours. This operation is considered to be unlike typical aerial application operations and, therefore, was not used.
- (4) The gust data for airplane 190-396 is suspect and was not used. It is plotted in Figure 8A of Reference 5. It is believed that the acceleration trace was underdamped, or the accelerometer was mounted on a non-rigid surface.

e. Twin-Engine General Usage Group

The characteristics of these airplanes are listed in Table A-6 of Appendix A.

- (1) Piston engine powered airplanes 4, 5, and 5¹ are from the Twin-Engine Executive Group in References 2 and 4. Airplanes 5 and 5¹ are the same type and model. The superscript denotes different operators, operations, or geographical areas.
- (2) Airplanes 3 and 3¹ were included in the Twin-Engine General Usage Group in Table 1-1 and in Reference 5. These airplanes have been deleted from this group because their average pressure altitudes flown were 11,143 feet and 9,914 feet, respectively (as reported in Reference 2). These airplanes are included in the Pressurized General Usage Group. The airplanes in the Twin-Engine General Usage Group had an average pressure altitude flown below 5,000 feet, except airplane No. 5, which was 7,400 feet.
- (3) Airplanes 39 and 40 were used in commuter airline operations. Average pressure altitudes were below 5,000 feet. Average flight durations were 17 minutes and 31 minutes, respectively. Ninety-five percent of the flights were less than one hour in duration (Reference 4).
- (4) Airplane No. 310-110 (data in Reference 11) does not have a NASA published designation and is the same model as No. 4A. These airplanes were used in flight instruction, including instrument flying instruction.
- (5) The data for airplane No. 255-203, which was used in executive operations, was obtained from Reference 12. This airplane is the same type as airplane No. 3.

f. Twin-Engine Special Usage Group

The characteristics of these airplanes are listed in Table A-7, Appendix A. There are only three twin-engine small airplanes in the Commercial Survey category in References 2 and 4. Airplanes 4¹ and 25 were used in forest fire fighting as lead planes for retardant bombers. The lead planes check for excessive turbulence and mark the drop site. Airplane 26 was used for pipeline patrol over level and mountainous terrain.

g. Pressurized General Usage Group

The characteristics of these airplanes are listed in Table A-8, Appendix A. There are only three airplanes in this group. Airplanes 3 and 3¹ are twin-engine executive turboprops. Airplane No. 6 is a single (reciprocating) engine airplane. Airplane 255-203 was included in this group in Table 1-1 and in Reference 5. This airplane was deleted from this group because the average altitude flown is estimated at 6,000 feet. This airplane is included in the Twin-Engine General Usage Group. Average pressure altitudes flown are as follows:

Airplane No. 3 11,143 feet

Airplane No. 3¹ 9,914 feet

Airplane No. 6 11,400 feet

2.3 Data Presentation

The data is plotted (and tabulated) as cumulative number of occurrences of normal accelerations per nautical mile versus acceleration fraction for gusts and for maneuvers. The acceleration fraction (a_n/a_{nLLF}) is the recorded incremental normal limit load factor (airplane limit load factor minus 1.0 g). The airplane limit load factor was determined from the airplane manufacturer, or in some cases was calculated from the appropriate certification regulation. Only accelerations equal to or greater than \pm 0.4 g (measured from a 1.0 g base) were counted in the data read by KU-CRINC. This was also generally the case for data read by NASA. An exception to this rule was that normal accelerations for airplanes with maximum weight greater than 13,000 pounds (read by NASA and reported in Reference 2) were read to a threshold of \pm 0.3 g. Further exceptions to the NASA read data are as follows: large airplanes Nos. 1, 1^1 , 1^2 , 1^3 , 2^1 , and small airplane No. 28 (used in fish spotting), normal accelerations were read to a threshold of \pm 0.2 g.

It has been common to present flight fatigue loads data as cumulative frequency of exceedance curves with normal acceleration (n,), incremental normal acceleration ($n_z - 1.0$), or derived gust velocity (U_{de}) on the abscissa and cumulative frequency per hour, or per thousand hours, etc., on the ordinate. In the safe-life fatigue analysis method in Reference 1, the fatigue load spectra are presented as cumulative frequency of exceedance per nautical mile versus acceleration fraction. This method of presentation is used in this report to maintain consistency with the method of analysis in Reference 1 that has been in use for many years, and because this method helps reduce the data spread inherent in general aviation airplanes of various designs (see Appendix A) being flown in varied operations by a variety of operators (see Appendix B). Reducing the data collected on a particular airplane to occurrences per nautical mile flown, rather than occurrences per hour, reduces the data spread due to the wide range of operating speeds in a particular usage group. To illustrate, this spread is approximately a factor of two for the airplanes in the Single-Engine General Usage Group which have design cruise speeds (V_c) ranging from 87 to 165 knots.

The acceleration fraction, a_n/a_{nLLF} , relates the recorded gust accelerations to the airplane's limit gust load factor and relates the recorded maneuver accelerations to the airplane's limit maneuver load factor. When the acceleration fraction is zero, the airplane is in 1.0 g flight. An acceleration fraction of 1.0 on a gust exceedance plot indicates that limit gust load factor has been reached, and on a maneuver exceedance plot indicates that limit maneuver load factor has been reached. Expressing the recorded normal acceleration as an acceleration fraction helps reduce the data spread for airplanes of differing design load factors.

If the limit load factors were not available from the airplane manufacturer, they were calculated by the equations in Section 23.341 of the FAR prior to Amendment 23-7 (effective September 14, 1969). Those that were calculated are noted in the tables in Appendix A. The pre-amendment 23-7 equation for the incremental gust limit load factor is as follows:

$$a_{nLLF} = \frac{30 \text{ K V m}}{498 \text{ W/S}}$$
 (2.1)

where K = $1/2(W/S)^{1/4}$ for W/S>16 psf

$$K = 1.33 - \frac{2.67}{(W/S)^{3/4}}$$
 for W/S>16 psf

W/S = wing loading at maximum weight, lb/ft²

V = airplane design cruise speed (V_c), knots EAS

m = wing lift curve slope, C_L per radian, corrected for aspect

A = wing aspect ratio

Notes:

1. 30: Nominal gust velocity in feet per second.

2.
$$498 = \frac{1}{\frac{\rho_0}{2}(1.689)}$$

3. m may be determined approximately as $\frac{6A}{2+A}$ per radian.

A gust acceleration fraction spectrum for a particular airplane in Appendix C may be converted to a derived gust velocity spectrum by the following procedure:

- 1. Obtain the gust limit load factor $(\underline{+} n_g)$ from the airplane characteristics tables in Appendix A.
- 2. Determine the incremental gust limit load factor (±) from:

$$a_{nLLF} = n_g - 1.$$

- 3. Develop an incremental gust acceleration (a_n) spectrum by multiplying each gust acceleration fraction (a_n/a_{nll}) value by a_{nll} .
- **4.** Determine derived gust velocity values from the above equation rearranged:

$$U_{de} = \frac{498 \text{ a}_{n} \text{ (W/S)}}{\text{KV m}} = \text{ft/sec, equivalent velocity}$$
 (2.2)

It should be noted that the statistically derived gust acceleration fraction spectra in Section 2.5 may not be accurately converted to derived gust velocity spectra using the above procedure since they are determined from data collected on airplanes of various wing loadings, wing aspect ratios, and design cruise speeds. If it is desired to make such a conversion, the derived gust acceleration for each airplane in a group of airplanes of interest would have to be determined by the procedure described above, and then the representative spectra could be determined using the statistical methods employed in this report.

It should be mentioned here that from Amendment 23-7 to the present time, Part 23 of the FAR uses a revised gust load formula (see Section 23.341 of Reference 9). The revised formula is considered to provide a more appropriate basis for gust load calculation. The formula is essentially as stated above except as follows: The gust alleviation factor (K) is calculated on the basis of a one-minuscosine gust shape and is a function of the airplane mass divided by the mass of a cylinder of air about the wing, whereas K in equations 2.1 and 2.2 is based on a ramp gust shape and is only a function of wing loading. Also, the wing lift curve slope is replaced by the slope of the airplane normal force coefficient curve. The work on the development of these gust load formulas is reported in Reference 13. Gust load fundamentals and the history of the FAR gust load requirements are also discussed in Reference 14.

2.4 Extrapolation of Exceedance Spectra

When normal acceleration data is recorded over many flights there will be a large number of occurrences at low acceleration levels and very few occurrences at high acceleration levels. This is illustrated in Figure 2-1. The number of accelerometer counts (not cumulative) is indicated by each data point. It is evident, from the number of counts, that there is great confidence in the upper part of the spectra and the least confidence in the lowest part. Note that the ordinate values are cumulative occurrences per nautical mile. There are no accelerometer counts associated with the shaded data points; these points are the result of cumulative data processing. In this case, the data for the positive maneuver spectrum low frequency end of the curve is as follows:

Incremental accel. range	Number of occurrences	Cumulative number of occurrences	Accel. fraction	Cumulative occurrences per nau.mi.
9.04. 9.1	1	-	1.000	0.400 10:5
3.0 to 3.1	1	1	1.089	2.468×10^{-5}
2.9 - 3.0	0	1	1.054	2.468
2.8 - 2.9	0	1	1.018	2.468
2.7 - 2.8	0	1	0.982	2.468
2.6 - 2.7	0	1	0.946	2.468
2.5 - 2.6	1	2	0.911	4.935
2.4 - 2.5	0	2	0.875	4.935

It is seen that when there are no occurrences, cumulative data points are plotted at constant cumulative frequency until there is another occurrence. The next data point when there is a non-zero count is plotted at a higher cumulative frequency. The zero counts result in there being a number of cumulative data points that do not fit the trend line of the majority of the data. Also it is expected that if recording of flight data were continued, these high g data points would be plotted at a lower cumulative frequency (because of the greater total distance flown) and fall closer to the data trend line. In order that these cumulative repeat points with zero counts would not unduly affect extrapolation of the data trend line, the curve fit program was instructed to neglect any repeat points at high acceleration fractions having the same value of cumulative frequency as the previous point. This same problem was discussed in Reference 15 for gust exceedance curves and a similar solution was employed.

Figure 2-1:

100

10⁻¹

10-2

10-3

10-4

10⁻⁵

10⁻⁶

-1.2

-0.8

CUMULATIVE FREQUENCY OF EXCEEDANCE, CUM. # OCCURRENCES/NAUTICAL MILE

-0.4 0.0 0.4

ACCELERATION FRACTION, a_n/a_n LLF

0.8

1.2

2.5 Statistically Derived Exceedance Curves

The development of acceleration cumulative exceedance curves are the principal goal of this work. For each of the operational usage groups shown in Table 2-1, the following load spectra are presented: the weighted mean (based on flight hours), the weighted mean plus one, two, and three standard deviations, and the 90% probability/95% confidence level. Results are also presented for groups 1a and 1b combined and groups 2 and 5 combined, for a total of nine statistical groups. All results (plotted and tabular) are presented as cumulative number of occurrences (cumulative frequency of exceedance) of normal accelerations per nautical mile versus acceleration fraction. Plotted results are also presented with the original airplane data in Appendix D. The following is an overview of the statistical analysis process (a more detailed explanation is given in Appendices D and E):

- 1. Curve fit the original data for each of the airplanes identified in Table 2-1. This produces a best fit equation for the cumulative frequency of exceedance as a function of acceleration fraction. Plotted and tabulated results obtained from the curve fit equations are presented with the original airplane data in Appendix C. Results are also presented for airplanes not included in the statistical analysis. These are denoted as non-statistical airplanes.
- 2. For each operational usage group, compute the weighted mean and weighted standard deviation as a function of acceleration fraction. These statistics are calculated by passing a vertical cut through each of the curve fits at a given acceleration fraction. To improve the estimate for the standard deviation, a pooled standard deviation is used for all spectra except the group 3 (Aerial Application) maneuver spectra.
- 3. Compute the 90% probability/95% confidence level (referred to as the 90/95% spectra). With the exception of group 3, a pooled standard deviation is also used for this spectra. The use of a pooled standard deviation minimizes potential uncertainties when dealing with small sample sizes (e.g., groups 5 and 6, three airplanes; group 2, four airplanes) and results in more consistent estimates for the 90/95% spectra within each operational usage group.
- 4. Analyze the distribution of the original data. All of the above-mentioned spectra are based on the assumption that the data is from a normal population. To examine whether this assumption is reasonable, all of the airplanes used for the statistical analysis are included in one group, and histograms for the cumulative frequency of exceedance are generated by passing a vertical cut through all of the airplane curve fits at a given acceleration fraction. The validity of pooling the group variances is also examined (Appendix E) using Bartlett's Test of Variance Homogeneity (Reference 16).

Table 2-2 Gust Load Spectra: Single-Engine General Usage, Basic Flight Instruction

Accel. V Fraction	Accel. Weighted mean '1 std. dev.	·1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra Accel. Weighted mean .1std.dev. Fraction	Accel. W Fraction	Veighted mean	·1 std. dev.	-2 std. dev.	·3 std. dev.	90/95% spectra
-0.150	0.45548E-00	0.16421E-01	0.28286E+01	0.40152E+01	0.25936E-01	0.150	0.29359E-00	0.55986E-01	0.10904E+02	0.16209E-02	0.98526E-01
-0.200	0.40375E-01	0.19856E·00	0.35675E+00	0.51494E+00	0.32542E-00	0.200	0.38107E-01	0,49965E-00	0.96120E-00	0.14227E-01	0.86976E+00
-0.250	0.70736E-02	0.40576E-01	0.74079E-01	0.10758E-00	0.67441E-01	0.250	0.82916E-02	0.80988E-01	0.15368E-00	0.22638E-00	0.13928E+00
-0.300	0.17177E-02	0.11204E-01	0.20691E-01	0.30177E-01	0.18811E-01	0.300	0.23728E-02	0.19029E-01	0.35686E-01	0.52342E-01	0.32386E-01
-0.350	0.51276E-03	0.37885E-02	0.70643E-02	0.10340E-01	0.64154E-02	0.350	0.79328E-03	0,57336E-02	0.10674E-01	0.15614E-01	0.96952E-02
-0.400	0.18389E-03	0.14896E-02	0.27954E-02	0.41011E-02	0.25367E-02	0.400	0.29218E-03	0.20614E-02	0.38306E-02	0.55998E-02	0.34801E-02
-0.450	0.78659E-04	0.65856E-03	0.12385E-02	0.18184E-02	0.11236E-02	0.450	0.11558E-03	0.84695E-03	0.15783E-02	0.23097E-02	0.14334E-02
-0.500	0.39487E-04	0.31958E-03	0.59967E-03	0.87976E-03	0.54418E-03	0.500	0.48814E-04	0.38728E-03	0.72575E-03	0.10642E-02	0.65870E-03
-0.550	0.22246E-04	0.16686E-03	0.31147E-03	0.45608E-03	0.28282E-03	0.550	0.21785E-04	0.19335E-03	0.36491E-03	0.53647E-03	0.33092E-03
-0.600	0.13340E-04	0.92142E-04	0.17094E-03	0.24975E-03	0.15533E-03	0.600	0.10221E-04	0.10394E-03	0.19766E-03	0.29138E-03	0.17909E-03
-0.650	0.83018E-05	0.53187E-04	0.98071E-04	0.14296E-03	0.89179E-04	0.650	0.50626E-05	0.59563E-04	0.11406E-03	0.16856E-03	0.10327E-03
-0.700	0.52831E-05	0.31806E-04	0.58329E-04	0.84852E-04	0.53075E-04	0.700	0.26307E-05	0.36051E-04	0.69472E-04	0.10289E-03	0.62851E-04
-0.750	0.34176E-05	0.19581E-04	0.35744E-04	0.51907E-04	0.32542E-04	0.750	0.14218E-05	0.22869E-04	0.44316E-04	0.65764E-04	0.40068E-04
-0.800	0.22378E-05	0.12347E-04	0.22456E-04	0.32565E-04	0.20453E-04	0.800	0.79204E-06	0.15109E-04	0.29425E-04	0.43742E-04	0.26589E-04
-0.850	0.14785E-05	0.79422E-05	0.14406E-04	0.20870E-04	0.13125E-04	0.850	0.45107E-06	0.10342E-04	0.20233E-04	0.30124E-04	0.18274E-04
-0.900	0.98337E-06	0.51947E-05	0.94061E-05	0.13617E-04	0.85718E-05	0.900	0.26093E-06	0.73044E-05	0.14348E-04	0.21391E-04	0.12953E-04
-0.950	0.65731E-06	0.34457E-05	0.62340E-05	0.90224E-05	0.56816E-05	0.950	0.15259E-06	0.53047E-05	0.10457E-04	0.15609E-04	0.94361E-05
-1.000	0.44099E-06	0.23128E-05	0.41845E-05	0.60563E-05	0.38137E-05	1.000	0.89899E-07	0.39495E-05	0.78092E-05	0.11669E-04	0.70446E-05
-1.050	0.29668E-06	0.15681E-05	0.28395E-05	0.41109E-05	0.25876E-05	1.050	0.53238E-07	0.30072E-05	0.59611E-05	0.89150E-05	0.53759E-05
-1.100	0.20000E-06	0.10724E-05	0.19448E-05	0.28172E-05	0.17719E-05	1.100	0.31640E-07	0.23363E-05	0.46410E-05	0.69456E-05	0.41844E-05
-1.150	0.13503E-06	0.73882E-06	0.13426E-05	0.19464E-05	0.12230E-05	1.150	0.18851E-07	0.18485E-05	0.36781E-05	0.55077E-05	0.33156E-05
-1.200	0.91271E-07	0.51225E-06	0.93323E-06	0.13542E-05	0.84984E-06	1.200	0.11251E-07	0.14868E-05	0.29624E-05	0.44379E-05	0.26700E-05

Table 2-3 Maneuver Load Spectra: Single-Engine General Usage, Basic Flight Instruction

£ .	
90/95% spectra	0.27826E-00 0.73677E-01 0.28715E-01 0.13633E-01 0.72289E-02 0.41124E-02 0.4625E-02 0.92295E-03 0.66010E-03 0.44933E-03 0.21909E-03 0.11559E-03 0.11511E-03 0.11511E-03 0.1108E-04 0.20229E-04 0.20825E-04 0.20825E-04
•3 std. dev.	0.42203E·00 0.10492E·00 0.39008E-01 0.18003E-01 0.94206E-02 0.53453E-02 0.32148E-02 0.3215E-02 0.61171E-03 0.61171E-03 0.42858E-03 0.30409E-03 0.215642E-03 0.11263E-03 0.81012E-04 0.81012E-04 0.8078E-04 0.41425E-04 0.29356E-04
·2 std. dev.	0.30203E-00 0.78843E-01 0.14355E-01 0.75913E-02 0.43163E-02 0.25869E-02 0.16174E-02 0.10473E-02 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.47618E-03 0.11868E-04 0.61160E-04 0.61160E-04 0.61160E-04 0.61160E-04
·1 std. dev.	0.18204E-00 0.52769E-01 0.10708E-01 0.57621E-02 0.32873E-02 0.12111E-02 0.12111E-02 0.34065E-03 0.23329E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03 0.16221E-03
/eighted mean	0.62051E-01 0.26695E-01 0.13235E-01 0.70607E-02 0.39328E-02 0.2582E-02 0.80485E-03 0.49884E-03 0.40884E-03 0.40884E-03 0.40884E-03 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04 0.40835E-04
Accel. W Fraction	0.150 0.250 0.250 0.300 0.300 0.450 0.450 0.550 0.650 0.750 0.750 0.750 0.800 0.800 0.900 0.950 0.950 0.950 0.950 0.950
90/95% spectra Accel. Weighted mean 11std. dev. Fraction	0.38619E-00 0.39159E-01 0.93079E-02 0.29832E-02 0.11032E-03 0.21366E-03 0.26644E-04 0.26644E-04 0.12246E-05 0.11224E-05
•3 std. dev.	0.61738E-00 0.56417E-01 0.12399E-01 0.38914E-02 0.14608E-02 0.62821E-03 0.29955E-03 0.15156E-03 0.77951E-04 0.39514E-04 0.397365E-04 0.90439E-05 0.16402E-05
·2 std. dev.	0.42442E-00 0.42013E-01 0.98190E-02 0.31333E-02 0.11623E-03 0.2787E-03 0.1322E-03 0.57397E-04 0.14008E-04 0.65362E-05 0.65362E-05 0.12080E-05
·1 std. dev.	0.23146E-00 0.27608E-01 0.72393E-02 0.23753E-02 0.86377E-03 0.34903E-03 0.74882E-04 0.36843E-04 0.36855E-05 0.40285E-05 0.18030E-04 0.18030E-05 0.40285E-05 0.77584E-06
Accel. Weighted mean 11std. dev. Fraction	0.38504E-01 0.13204E-01 0.46596E-02 0.16172E-02 0.56524E-03 0.20944E-03 0.36545E-04 0.16289E-04 0.15208E-05 0.15208E-05 0.15308E-05 0.15308E-05
Accel. W Fraction	0.150 0.250 0.250 0.300 0.400 0.400 0.450 0.650 0.650 0.750 0.750 0.750

Weighted mean 90/95% ѕресиа Figure 2-3 Maneuver Load Spectra: Single-Engine General Usage, Basic Flight Instruction +2 std. dev. - +1 std. dev. 0.8 0.4 -0.4 10^0 10^{-2} 10-3 10.5 10.6 10-4 10.₁ 10¹

1.2

Acceleration Fraction, a / a 11.15

2-14

Cumulative Frequency of Exceedance Cumulative No. Occurrences/Nautical Mile

Table 2-4 Gust Load Spectra: Single-Engine General Usage, Business/Personal

Accel. W Fraction	Accel. Weighted mean .1 std. dev.	·1 std. dev.	·2 std. dev.	•3 std. dev.	90/95% spectra Accel. Weightedmean 11std.dev. Fraction	Accel. W	Veighted mean	·1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra
-0.100	0.15587E-01	0.22383E-02	0.43208E-02	0.64032E+02	0.35242E-02	0.100	0.12287E·02	0.19267E+03	0.37305E-03	0.55343E·03	0.30405E-03
-0.150	0.16670E-00	0.13533E-01	0.25399E-01	0.37265E+01	0.20860E-01	0.150	0.24866E-00	0.55536E-01	0.10859E+02	0.16164E-02	0.88294E-01
-0.200	0.36992E-01	0.19518E-00	0.35337E-00	0.51156E-00	0.29286E-00	0.200	0.45809E-01	0.50735E+00	0.96890E-00	0.14304E-01	0.79235E-00
-0.250	0.11112E-01	0.44614E-01	0.78117E-01	0.11162E-00	0.65301E-01	0.250	0.12966E-01	0.85663E-01	0.15836E-00	0.23106E+00	0.13055E+00
-0.300	0.37851E-02	0.13272E-01	0.22758E-01	0.32245E-01	0.19129E-01	0.300	0.44038E-02	0.21060E-01	0.37717E-01	0.54373E-01	0.31345E-01
-0.350	0.13487E-02	0.46244E-02	0.79002E-02	0.11176E-01	0.66472E-02	0.350	0.16529E-02	0.65932E-02	0.11533E-01	0.16474E-01	0.96437E-02
-0.400	0.48441E-03	0.17902E-02	0.30959E-02	0.44016E-02	0.25964E-02	0.400	0.66228E-03	0.24315E-02	0.42007E-02	0.59699E-02	0.35239E-02
-0.450	0.17298E-03	0.75288E-03	0.13328E-02	0.19127E-02	0.11110E-02	0.450	0.27833E-03	0.10097E-02	0.17411E-02	0.24724E-02	0.14613E-02
-0.500	0.61618E-04	0.34171E-03	0.62180E-03	0.90189E-03	0.51466E-03	0.500	0.12153E-03	0.46000E-03	0.79848E-03	0.11369E-02	0.66900E-03
-0.550	0.22291E-04	0.16690E-03	0.31151E-03	0.45613E-03	0.25620E-03	0.550	0.54934E-04	0.22650E-03	0.39806E-03	0.56962E-03	0.33243E-03
-0.600	0.84159E-05	0.87218E-04	0.16602E-03	0.24482E-03	0.13588E-03	0.600	0.25751E-04	0.11947E-03	0.21319E-03	0.30691E-03	0.17734E-03
-0.650	0.34065E-05	0.48291E-04	0.93176E-04	0.13806E-03	0.76007E-04	0.650	0.12611E-04	0.67112E-04	0.12161E-03	0.17611E-03	0.10077E-03
-0.700	0.14771E-05	0.28000E-04	0.54523E-04	0.81046E-04	0.44378E-04	0.700	0.65081E-05	0.39929E-04	0.73349E-04	0.10677E-03	0.60565E-04
-0.750	0.67559E-06	0.16839E-04	0.33002E-04	0.49165E-04	0.26819E-04	0.750	0.35311E-05	0.24978E-04	0.46426E-04	0.67873E-04	0.38222E-04
-0.800	0.32129E-06	0.10430E-04	0.20540E-04	0.30649E-04	0.16673E-04	0.800	0.19987E-05	0.16315E-04	0.30632E-04	0.44948E-04	0.25155E-04
-0.850	0.15709E-06	0.66208E-05	0.13085E-04	0.19548E-04	0.10612E-04	0.850	0.11700E-05	0.11061E-04	0.20952E-04	0.30843E-04	0.17169E-04
-0.900	0.78327E-07	0.42897E-05	0.85011E-05	0.12712E-04	0.68902E-05	0.900	0.70272E-06	0.77462E-05	0.14790E-04	0.21833E-04	0.12095E-04
-0.950	0.39606E-07	0.28280E-05	0.56163E-05	0.84046E-05	0.45497E-05	0.950	0.43023E-06	0.55823E-05	0.10734E-04	0.15886E-04	0.87636E-05
-1.000	0.20233E-07	0.18920E-05	0.37638E-05	0.56355E-05	0.30478E-05	1.000	0.26718E-06	0.41268E-05	0.79864E-05	0.11846E-04	0.65101E-05
-1.050	0.10417E-07	0.12818E-05	0.25532E-05	0.38246E-05	0.20669E-05	1.050	0.16768E-06	0.31216E-05	0.60755E-05	0.90294E-05	0.49456E-05
-1.100	0.53955E-08	0.87778E-06	0.17502E-05	0.26226E-05	0.14165E-05	1.100	0.10608E-06	0.24107E-05	0.47154E-05	0.70201E-05	0.38338E-05
-1.150	0.28083E-08	0.60660E-06	0.12104E-05	0.18142E-05	0.97943E-06	1.150	0.67530E-07	0.18971E-05	0.37268E-05	0.55564E-05	0.30269E-05
-1.200	0.14676E-08	0.42245E-06	0.84343E-06	0.12644E-05	0.68240E-06	1.200	0.43198E-07	0.15188E-05	0.29943E-05	0.44699E-05	0.24299E-05

+2 std. dev. 90/95% spectra Weighted mean - +1 std. dev. 0.8 Figure 2-4 Gust Load Spectra: Single-Engine General Usage, Business/Personal ŧ 0.4 Acceleration Fraction, a / a 11.13 -0.4 -0.8 100 10^{-2} 10-5 10.6 10⁻¹ 10^{-3} 10^{1} 10.4

1.2

2-16

Cumulative Frequency of Exceedance Cumulative No. Occurrences/Nautical Mile

Table 2-5 Maneuver Load Spectra: Single-Engine General Usage, Business/Personal

0.1385E-00 0.15284E-02 0.29330E-02 0.64375E-02 0.24483E-02 0.056 0.65187E-02 0.14673E-03 0.2388E-01 0.234647E-01 0.24580E-00 0.25487E-00 0.150 0.22157E-00 0.14384E-01 0.234647E-01 0.34647E-01 0.24647E-01 0.24647E-01 0.24647E-01 0.246640E-02 0.20154E-02 0.20156E-04 0.24500E-04 0.2590E-04 0.2590	Accel. Weighted mean *1std. dev. Fraction	•1 std. dev.	·2 std.dev.	·3 std. dev.	90/95% spectra Accel. Weighted mean 11std. dev. Fraction	Accel. W Fraction	Veighted mean	•1 std. dev.	•2 std. dev.	•3 std. dev.	90/95% spectra
0.4280E-00 0.61876E-00 0.35487E-00 0.100 0.23157E-00 0.14384E-01 0.66404E-02 0.9952E-01 0.2952E-01 0.150 0.23088E-01 0.14308E-00 0.66404E-02 0.92201E-02 0.56922E-02 0.250 0.21233E-02 0.10714E-01 0.78931E-03 0.20154E-02 0.27735E-02 0.1738E-02 0.2500 0.21233E-02 0.10714E-01 0.78931E-03 0.49821E-03 0.30731E-03 0.350 0.38929E-03 0.45366E-02 0.35862E-04 0.17868E-03 0.4506E-03 0.17808E-04 0.450 0.017507E-03 0.12041E-02 0.35862E-04 0.70059E-04 0.79148E-04 0.450 0.045075E-03 0.12041E-02 0.2509E-04 0.70059E-04 0.49821E-04 0.70059E-04 0.70059E-04 0.200731E-04 0.500 0.40505E-04 0.44679E-03 0.13184E-04 0.25009E-04 0.200731E-04 0.500 0.40505E-04 0.20559E-03 0.10746E-03 0.2509E-04 0.18498E-04 0.11771E-04 0.500 0.40505E-04 0.20559E-03 0.10734E-05 0.11734E-05 0.11734E-05 0.17195E-05 0.11734E-05 0.71006E-03 0.29359E-05 0.40113E-05 0.17284E-05 0.700 0.46319E-05 0.14266E-03 0.29359E-04 0.2893E-05 0.17195E-05 0.11284E-05 0.700 0.46319E-05 0.19241E-04 0.0950 0.11921E-05 0.19241E-04 0.0950 0.19241E-05 0.19241		0.15284E-02	0.29830E-02	0.44375E-02	0.24483E-02	0.050	0.61587E-02	0.14673E+03	0.23188E·03	0.31702E-03	0.19931E-03
0.34647E-01 0.49052E-01 0.29352E-01 0.150 0.23088E-01 0.14308E-00 0.66404E-02 0.92201E-02 0.26922E-02 0.200 0.57869E-02 0.31861E-01 0.738E-02 0.2733E-02 0.10714E-01 0.7382E-03 0.10878E-03 0.2735E-03 0.38929E-03 0.45366E-02 0.35862E-03 0.49821E-03 0.3731E-03 0.350 0.38929E-03 0.22187E-02 0.17840E-04 0.13188E-04 0.7509E-04 0.71505E-04 0.7509E-04 0.71006E-03 0.49505E-04 0.7009SE-04 0.7009SE-04 0.71006E-04 0.2509E-04 0.7009SE-04 0.71006E-04 0.2509E-04 0.7009SE-04 0.71006E-04 0.2509E-04 0.7009SE-04		0.23284E·00	0.42580E-00	0.61876E-00	0.35487E+00	0.100	0.23157E-00	0.14384E-01	0.26451E·01	$0.38519E \cdot 01$	0.21835E-01
0.26404E-02 0.92201E-02 0.56922E-02 0.200 0.57869E-02 0.31861E-01 0.20154E-02 0.27735E-02 0.17368E-02 0.250 0.2733E-02 0.10774E-01 0.78931E-03 0.10878E-02 0.27731E-03 0.300 0.88929E-03 0.45366E-02 0.35862E-03 0.49821E-03 0.30731E-03 0.350 0.38942E-03 0.49821E-03 0.25099E-03 0.49821E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-04 0.13188E-04 0.13188E-04 0.13188E-04 0.70059E-04 0.49505E-04 0.70059E-04 0.49505E-04 0.70059E-04 0.70059E-04 0.22001E-04 0.500 0.40505E-04 0.70059E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-03 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.25049E-04 0.20059E-04 0.20059E-05 0		0.20243E-01	0.34647E-01	0.49052E-01	0.29352E-01	0.150	0.23088E-01	0.14308E+00	0.26307E-00	0.38306E·00	0.21717E+00
0.20154E-02 0.27735E-02 0.17368E-02 0.250 0.21233E-02 0.10714E-01 0.78931E-03 0.10878E-02 0.67958E-03 0.300 0.88929E-03 0.45366E-02 0.35862E-03 0.49821E-03 0.30731E-03 0.350 0.38942E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-03 0.25099E-04 0.13188E-04 0.70059E-04 0.70059E-05 0.70059E-05 0.70059E-05 0.70059E-03 0.70059E-04 0.70050E-04		0.40607E-02	0.66404E-02	0.92201E-02	0.56922E-02	0.200	0.57869E-02	0.31861E-01	0.57934E-01	0.84008E-01	0.47961E-01
0.78931E-03 0.10878E-02 0.67958E-03 0.300 0.88929E-03 0.45366E-02 0.35862E-03 0.49821E-03 0.30731E-03 0.350 0.35942E-03 0.25099E-03 0.25099E-03 0.15205E-03 0.400 0.17507E-03 0.25099E-03 0.25099E-04 0.13188E-04 0.70059E-04 0.70059E-05 0.700571E-04 0.70050E-04 0.70050E-04 0.70050E-05 0.70050E-04 0.70050E-05 0.70050E-05 0.70050E-04 0.70050E-04 0.70050E-05 0.70050E-05 0.70050E-04 0.70050E-04 0.70050E-04 0.70050E-05 0.70050E-05 0.70050E-04 0.70050E-04 0.70050E-04 0.70050E-04 0.70050E-04 0.70050E-05 0.70050E-05 0.70050E-04 0.70050E-05 0.70050E-04 0.70050E-04 0.70050E-05 0.70050E-05 0.70050E-04 0.70050E-05 0.70050E-04		0.12573E-02	0.20154E-02	0.27735E-02	0.17368E-02	0.250	0.21233E-02	0.10714E-01	0.19305E-01	0.27896E-01	0.16019E-01
0.35862E-03 0.49821E-03 0.30731E-03 0.350 0.38942E-03 0.22187E-02 0.17840E-03 0.25009E-03 0.15205E-03 0.400 0.17507E-03 0.12041E-02 0.93240E-04 0.13158E-03 0.79148E-04 0.450 0.4505E-04 0.70059E-04 0.70059E-04 0.70059E-04 0.2001E-04 0.550 0.21143E-04 0.71006E-03 0.25949E-04 0.36692E-04 0.22001E-04 0.550 0.21143E-04 0.29536E-03 0.23541E-04 0.18498E-04 0.1171E-04 0.600 0.11830E-04 0.20536E-03 0.23551E-05 0.88628E-05 0.54333E-05 0.700 0.46319E-05 0.10228E-03 0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.23638E-05 0.74159E-04 0.860 0.18459E-05 0.17284E-04 0.990 0.14549E-05 0.19249E-04 0.990 0.14549E-05 0.19249E-04 0.990 0.14549E-05 0.19248E-04 0.990 0.19249E-05 0.19248E-04 0.990 0.19248E-05 0.19248E-04 0.990 0.19249E-05 0.19248E-05 0.1		0.49078E-03	0.78931E-03	0.10878E-02	0.67958E-03	0.300	0.88929E-03	0.45366E-02	0.81839E-02	0.11831E-01	0.67888E-02
0.17840E-03 0.25009E-03 0.15205E-03 0.400 0.17507E-03 0.12041E-02 0.93240E-04 0.13188E-03 0.79148E-04 0.500 0.40505E-04 0.71006E-03 0.29240E-04 0.70059E-04 0.20201E-04 0.550 0.40505E-04 0.71006E-03 0.25949E-04 0.36692E-04 0.22001E-04 0.550 0.21143E-04 0.29536E-03 0.13141E-04 0.18498E-04 0.11171E-04 0.600 0.11830E-04 0.20536E-03 0.2929E-05 0.40113E-05 0.12842E-05 0.7700 0.46319E-05 0.10228E-03 0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.23638E-05 0.21038E-04 0.88608E-05 0.11284E-05 0.11284E-05 0.18498E-04 0.9900 0.11830E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.99563E-04 0.1021E-04 0.99563E-05 0.15243E-04 0.9900 0.1921E-05 0.1921E-05 0.1921E-05 0.1921E-05 0.1921E-05 0.1921E-05 0.1921E-05 0.1921E-05 0.2929E-05 0.1921E-05 0.2929E-05 0.19228E-05 0.19228E-05 0.39228E-05 0.19228E-05 0.39228E-05 0.39228E-0		0.21903E-03	0.35862E-03	0.49821E-03	0.30731E-03	0.350	0.38942E-03	0.22187E-02	0.40479E-02	0.58772E-02	0.33482E-02
0.93240E-04 0.13158E-03 0.79148E-04 0.450 0.82119E-04 0.71006E-03 0.49505E-04 0.70059E-04 0.41950E-04 0.500 0.40505E-04 0.44679E-03 0.25949E-04 0.36692E-04 0.22001E-04 0.550 0.21143E-04 0.29536E-03 0.13141E-04 0.18498E-04 0.11171E-04 0.600 0.11830E-04 0.20536E-03 0.23551E-05 0.88638E-05 0.54333E-05 0.700 0.46319E-05 0.14266E-03 0.29239E-05 0.40113E-05 0.17284E-05 0.7700 0.46319E-05 0.14266E-03 0.12873E-05 0.17195E-05 0.17284E-05 0.750 0.2363E-05 0.39563E-04 0.850 0.18439E-04 0.990 0.118449E-05 0.1944E-04 0.990 0.118449E-05 0.1944E-04 0.990 0.194449E-05 0.1944E-04 1.050 0.84302E-06 0.1921E-05 0.19412E-05 1.100 0.72099E-06 0.78412E-05 1.100 0.73899E-06 0.39542E-05 0.39528E-05 0.39528		0.10672E-03	0.17840E-03	0.25009E-03	0.15205E-03	0.400	0.17507E-03	0.12041E-02	0.22331E-02	0.32622E-02	0.18395E-02
0.49505E-04 0.70059E-04 0.41950E-04 0.550 0.40505E-04 0.44679E-03 0.25949E-04 0.36692E-04 0.22001E-04 0.550 0.21143E-04 0.29536E-03 0.13141E-04 0.18498E-04 0.11171E-04 0.600 0.11830E-04 0.20259E-03 0.63551E-05 0.88628E-05 0.54333E-05 0.650 0.71354E-05 0.1426E-03 0.29239E-05 0.40113E-05 0.17284E-05 0.7700 0.46319E-05 0.14266E-03 0.29239E-05 0.17195E-05 0.17284E-05 0.7700 0.46319E-05 0.14159E-04 0.880 0.23658E-05 0.17195E-04 0.990 0.18237E-05 0.39563E-04 0.990 0.18249E-05 0.29563E-04 0.990 0.19249E-05 0.19248E-04 0.990 0.19249E-05 0.19248E-04 1.000 0.99562E-06 0.19241E-05 1.100 0.72099E-06 0.78412E-05 1.150 0.53809E-06 0.39228E-05 0.392		0.54903E-04	0.93240E-04	0.13158E-03	0.79148E-04	0.450	0.82119E-04	0.71006E-03	0.13380E-02	0.19660E-02	0.10978E-02
0.25949E-04 0.36692E-04 0.22001E-04 0.550 0.21143E-04 0.29536E-03 0.13141E-04 0.18498E-04 0.11171E-04 0.600 0.11830E-04 0.20259E-03 0.63551E-05 0.88628E-05 0.54333E-05 0.650 0.71354E-05 0.14266E-03 0.29239E-05 0.40113E-05 0.17284E-05 0.7700 0.46319E-05 0.17159E-04 0.20239E-05 0.17195E-05 0.17284E-05 0.7700 0.46319E-05 0.17159E-04 0.8800 0.23658E-05 0.74159E-04 0.8800 0.18227E-05 0.39563E-04 0.9900 0.18249E-05 0.29902E-04 0.9900 0.19549E-05 0.29902E-04 0.9900 0.19549E-05 0.29902E-04 0.99562E-06 0.1921E-05 0.1971E-04 1.000 0.72099E-06 0.78412E-05 1.150 0.53809E-06 0.39228E-05 0.39228E-05 0.39228E-05		0.28951E-04	0.49505E-04	0.70059E-04	0.41950E-04	0.500	0.40505E-04	0.44679E-03	0.85308E-03	0.12594E-02	0.69767E-03
0.13141E-04 0.18498E-04 0.11171E-04 0.600 0.11830E-04 0.20259E-03 0.6351E-05 0.88628E-05 0.54333E-05 0.650 0.71354E-05 0.14266E-03 0.29239E-05 0.40113E-05 0.11284E-05 0.700 0.46319E-05 0.10228E-03 0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.23163E-05 0.74159E-04 0.800 0.23658E-05 0.54166E-04 0.800 0.23658E-05 0.54166E-04 0.800 0.13658E-05 0.54166E-04 0.9950 0.11921E-05 0.29902E-04 0.9950 0.11921E-05 0.1971E-04 1.000 0.72099E-06 0.1971E-04 1.100 0.72099E-06 0.78412E-05 1.150 0.53809E-06 0.39228E-05 0.39228E-05 0.39228E-05		0.15207E-04	0.25949E-04	0.36692E-04	0.22001E-04	0.550	0.21143E-04	0.29536E-03	0.56958E-03	0.84379E-03	0.46468E-03
0.63551E-05 0.88628E-05 0.54333E-05 0.0700 0.71354E-05 0.14266E-03 0.29239E-05 0.40113E-05 0.25242E-05 0.700 0.46319E-05 0.10228E-03 0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.23163E-05 0.74159E-04 0.800 0.23658E-05 0.74159E-04 0.800 0.23658E-05 0.54166E-04 0.850 0.1827E-05 0.39563E-04 0.9950 0.11921E-05 0.28902E-04 0.9950 0.11921E-05 0.1971E-04 1.100 0.72099E-06 0.1971E-04 1.100 0.72099E-06 0.78412E-05 1.150 0.53809E-06 0.39228E-05 0.39228E-05		0.77832E-05	0.13141E-04		0.11171E-04	0.600	0.11830E-04	0.20259E-03	0.39334E-03	0.58410E-03	0.32038E-03
0.29239E-05 0.40113E-05 0.25242E-05 0.700 0.46319E-05 0.10228E-03 0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.32163E-05 0.74159E-04 0.800 0.2368E-05 0.74159E-04 0.800 0.2368E-05 0.54106E-04 0.850 0.18277E-05 0.39563E-04 0.9900 0.11921E-05 0.399563E-04 0.995 0.11921E-05 0.29902E-04 0.995 0.11921E-05 0.29902E-04 0.995 0.11921E-05 0.19571E-04 0.995 0.21044E-04 0.995 0.29902E-05 0.29902E-05 0.29902E-05 0.299028E-05 0.299228E-05 0.290228E-05 0.29028E-05 0.29028E-0		0.38474E-05	0.63551E-05		0.54333E-05	0.650	0.71354E-05	0.14266E-03	0.27819E-03	0.41372E-03	0.22635E-03
0.12873E-05 0.17195E-05 0.11284E-05 0.750 0.32163E-05 0.74159E-04 0.800 0.23658E-05 0.54106E-04 0.850 0.18227E-05 0.39563E-04 0.900 0.14549E-05 0.39563E-04 0.950 0.14549E-05 0.28902E-04 0.950 0.11921E-05 0.21044E-04 0.950 0.11921E-05 0.15243E-04 0.1050 0.84302E-06 0.15243E-04 0.1150 0.72099E-06 0.78412E-05 0.1150 0.62116E-06 0.55642E-05 0.1200 0.53809E-05 0.39228E-05 0.3928E-05 0.39228E-05 0.3928E-05 0.3928		0.18365E-05	0.29239E-05	0.40113E-05	0.25242E-05	0.700	0.46319E-05	0.10228E-03	0.19992E-03	0.29757E-03	0.16257E-03
0.23658E-05 0.54106E-04 0.18227E-05 0.39563E-04 0.14549E-05 0.28902E-04 0.1921E-05 0.21044E-04 0.99562E-06 0.15243E-04 0.72099E-06 0.78412E-05 0.62116E-06 0.53809E-05 0.53809E-05 0.53809E-05 0.53809E-05		0.85508E-06	0.12873E-05	0.17195E-05	0.11284E-05	0.750	0.32163E-05	0.74159E-04	0.14510E-03	0.21604E-03	0.11796E-03
0.18227E-05 0.39563E-04 0.14549E-05 0.28902E-04 0.11921E-05 0.21044E-04 0.99562E-06 0.15243E-04 0.72099E-06 0.78412E-05 0.62116E-06 0.55642E-05 0.53809E-06 0.39228E-05 0						0.800	0.23658E-05	0.54106E-04	0.10585E-03	0.15759E-03	0.86055E-04
0.14549E-05 0.28902E-04 0.11921E-05 0.21044E-04 (0.99562E-06 0.15243E-04 0.84302E-06 0.10971E-04 0.72099E-06 0.55642E-05 0.53809E-06 0.39228E-05 0						0.850	0.18227E-05	0.39563E-04	0.77303E-04	0.11504E-03	0.62867E-04
0.11921E-05 0.21044E-04 (0.99562E-06 0.15243E-04 (0.84302E-06 0.10971E-04 (0.72099E-06 0.78412E-05 (0.53809E-06 0.39228E-05 (0.53809E-06 0.39228E-05 (0.53809E-06 0.39228E-05 (0.53809E-06 0.53809E-05 (0.53809E-05 (0.600	0.14549E-05	0.28902E-04	0.56350E-04	0.83797E-04	0.45851E-04
0.99562E-06 0.15243E-04 0.84302E-06 0.10971E-04 0.72099E-06 0.78412E-05 0.62116E-06 0.55642E-05 0.53809E-06 0.39228E-05 0						0.950	0.11921E-05	0.21044E-04	0.40895E-04	0.60747E-04	0.33302E-04
0.84302E-06 0.10971E-04 0.72099E-06 0.78412E-05 0.62116E-06 0.55642E-05 0.53809E-06 0.39228E-05						1.000	0.99562E-06	0.15243E-04	0.29491E-04	0.43739E-04	0.24041E-04
0.72099E-06 0.78412E-05 0.62116E-06 0.55642E-05 0.53809E-06 0.39228E-05 0						1.050	0.84302E-06	0.10971E-04	0.21100E-04	0.31228E-04	0.17226E-04
0.53809E-06 0.55642E-05 0.53809E-05 0.39228E-05						1.100	0.72099E-06	0.78412E-05	0.14961E-04	0.22082E-04	0.12238E-04
0.53809E-06 0.39228E-05						1.150	0.62116E-06	0.55642E-05	0.10507E-04	0.15450E-04	0.86164E-05
						1.200	0.53809E-06	0.39228E-05	0.73075E-05	0.10692E-04	0.60128E-05

Figure 2-5 Maneuver Load Spectra: Single-Engine General Usage, Business/Personal

1:2

Table 2-6 Gust Load Spectra: Single-Engine General Usage (Basic Flight Instruction and Business/Personal Combined)

Accel. V Fraction	Accel. Weighted mean 11std. dev.	·1 std. dev.	·2 std. dev.	-3 std. dev.	90/95% spectra Accel. Weighted mean 11std. dev. Fraction	Accel. V	Veighted mean	•1 std. dev.	·2 std. dev.	-3 std. dev.	90/95% spectra
-0.100	0.10326E·02	0.31151E-02	0.51975E-02	0.72800E+02	0.42892E-02	0.100	0.97302E-01	0.19011E+03	0.37049E-03	0.55088E+03	0.29181E-03
-0.150	0.29097E-00	0.14776E-01	0.26641E+01	0.38507E+01	0.21466E-01	0.150	0.26799E-00	0.55730E+01	0.10878E-02	0.16183E+02	0.85640E·01
-0.200	0.38448E-01	0.19664E-00	0.35483E+00	0.51302E·00	0.28583E+00	0.200	0.42495E-01	0.50404E-00	0.96558E+00	0.14271E·01	0.76427E+00
-0.250	0.93739E-02	0.42876E-01	0.76379E-01	0.10988E+00	0.61766E-01	0.250	0.10955E-01	0.83651E-01	0.15635E·00	0.22904E+00	0.12464E+00
-0.300	0.28954E-02	0.12382E-01	0.21868E-01	0.31355E-01	0.17731E-01	0.300	0.35298E-02	0.20186E-01	0.36843E-01	0.53499E-01	0.29577E-01
-0.350	0.98894E-03	0.42647E-02	0.75405E-02	0.10816E-01	0.61117E-02	0.350	0.12830E-02	0.62233E-02	0.11164E-01	0.16104E-C1	0.90087E-02
-0.400	0.35509E-03	0.16608E-02	0.29666E-02	0.42723E-02	0.23970E-02	0.400	0.50302E-03	0.22722E-02	0.40414E-02	0.58106E-02	0.32697E-02
-0.450	0.13239E-03	0.71229E-03	0.12922E-02	0.18721E-02	0.10392E-02	0.450	0.20830E-03	0.93967E-03	0.16710E-02	0.24024E-C2	0.13520E-02
-0.500	0.52094E-04	0.33218E-03	0.61228E-03	0.89237E-03	0.49010E-03	0.500	0.90242E-04	0.42871E-03	0.76718E-03	0.11057E-02	0.61955E-03
-0.550	0.22272E-04	0.16688E-03	0.31149E-03	0.45611E-03	0.24842E-03	0.550	0.40669E-04	0.21223E-03	0.38379E-03	0.55535E-03	0.30896E-03
-0.600	0.10535E-04	0.89337E-04	0.16814E-03	0.24694E-03	0.13377E-03	0.600	0.19068E-04	0.11279E-03	0.20650E-03	0.30022E-03	0.16563E-03
-0.650	0.55131E-05	0.50398E-04	0.95283E-04	0.14017E-03	0.75704E-04	0.650	0.93629E-05	0.63864E-04	0.11836E-03	0.17286E-03	0.94592E-04
-0.700	0.31149E-05	0.29638E-04	0.56161E-04	0.82684E-04	0.44592E-04	0.700	0.48396E-05	0.38260E-04	0.71680E-04	0.10510E-03	0.57103E-04
-0.750	0.18556E-05	0.18019E-04	0.34182E-04	0.50345E-04	0.27132E-04	0.750	0.26235E-05	0.24071E-04	0.45518E-04	0.66965E-04	0.36163E-04
-0.800	0.11460E-05	0.11255E-04	0.21364E-04	0.31473E-04	0.16955E-04	0.800	0.14794E-05	0.15796E-04	0.30112E-04	0.44429E-04	0.23868E-04
0.850	0.72573E-06	0.71895E-05	0.13653E-04	0.20117E-04	0.10834E-04	0.850	0.86063E-06	0.10752E-04	0.20643E-04	0.30534E-04	0.16328E-04
-0.900	0.46779E-06	0.46792E-05	0.88905E-05	0.13102E-04	0.70536E-05	0.900	0.51261E-06	0.75561E-05	0.14600E-04	0.21643E-04	0.11527E-04
-0.950	0.30542E-06	0.30938E-05	0.58821E-05	0.86705E-05	0.46659E-05	0.950	0.31076E-06	0.54628E-05	0.10615E-04	0.15767E-04	0.83676E-05
-1.000	0.20130E-06	0.20731E-05	0.39448E-05	0.58166E-05	0.31284E-05	1.000	0.19089E-06	0.40505E-05	0.79102E-05	0.11770E-04	0.62266E-05
-1.050	0.13360E-06	0.14050E-05	0.26764E-05	0.39478E-05	0.21218E-05	1.050	0.11843E-06	0.30724E-05	0.60263E-05	0.89802E-05	0.47378E-05
-1.100	0.89139E-07	0.96153E-06	0.18339E-05	0.27063E-05	0.14534E-05	1.100	0.74050E-07	0.23787E-05	0.46834E-05	0.69880E-05	0.36781E-05
-1.150	0.59708E-07	0.66350E-06	0.12673E-05		0.10039E-05	1.150	0.46583E-07	0.18762E-05	0.37058E-05	0.55354E-05	0.29078E-05
-1.200	0.40113E-07	0.46109E-06	0.88208E-06	0.13031E-05	0.69845E-06	1.200	0.29450E-07	0.15050E-05	0.29806E-05	0.44561E-05	0.23369E-05

Cumulative Frequency of Exceedance Cumulative No. Occurrences/Nautical Mile

Table 2-7 Maneuver Load Spectra: Single-Engine General Usage (Basic Flight Instruction and Business/Personal Combined)

Accel. V Fraction	Accel. Weighted mean 11std. dev.	·1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra		Accel. Weighted mean Fraction	·1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra
-0.100	0.47752E-00 0.39274E-01	0.15023E-02 0.23223E-00	0.29568E·02 0.42519E·00	0.44114E-02 0.6181; E-00	0.23350E-02 0.34270E-00	0.050	0.35729E-02 0.21663E-00	0.12087E·03 0.14234E·01	0.20602E·03 0.26302E·01	0.29117E-03 0.38370E-01	0.16888E-03 0.21038E-01
-0.200	0.90866E-02	0.23491E-01	0.37896E-01	0.52300E-01	0.31738E-01	0.150	0.39855E-01	0.15985E-00	0.27984E-00	0.39983E-00	0.22750E+00
-0.250	0.28830E-02	0.54627E-02	0.80423E-02	0.10622E-01	0.69395E-02	0.200	0.14784E-01	0.40858E-01	0.66932E-01	0.93005E-01	0.55559E-01
-0.300	0.99230E-03	0.17504E-02	0.25085E-02	0.32666E-02	0.21844E-02	0.250	0.69049E-02	0.15496E-01	0.24087E-01	0.32678E-01	0.20340E-01
-0.350	0.35676E-03	0.65529E-03	0.95382E-03	0.12524E-02	0.82620E-03	0.300	0.35450E-02	0.71923E-02	0.10840E-01	0.14487E-01	0.92488E-02
-0.400	0.13578E-03	0.27636E-03	0.41595E-03	0.55554E-03	0.35628E-03	0.350	0.19143E-02	0.37435E-02	0.55728E-02	0.74020E-02	0.47749E-02
.0.450	0.56847E-04	0.12853E-03	0.20022E-03	0.27191E-03	0.16957E-03	0.400	0.10715E-02	0.21006E-02	0.31296E-02	0.41586E-02	0.26807E-02
-0.500	0.25378E-04	0.63715E-04	0.10205E-03	0.14039E-03	0.85662E-04	0.450	0.61954E-03	0.12475E-02	0.18754E-02	0.25034E-02	0.16015E-02
-0.550	0.11878E-04	0.32432E-04	0.52986E-04	0.73540E-04	0.44199E-04	0.500	0.36943E-03	0.77571E-03	0.11820E-02	0.15883E-02	0.10048E-02
009'0-	0.57102E-05	0.16452E-04	0.27194E-04	0.37936E-04	0.22602E-04	0.550	0,22671E-03	0.50092E-03	0.77514E-03	0.10494E-02	0.65553E-03
-0.650	0.28085E-05	0.81658E-05	0.13523E-04	0.18880E-04	0.11233E-04	0.600	0.14288E-03	0.33364E-03	0.52440E-03	0.71515E-03	0.44119E-03
-0.700	0.14196E-05	0.39273E-05	0.64350E-05	0.89427E-05	0.53629E-05	0.650	0.92337E-04	0.22786E-03	0.36339E-03	0.49892E-03	0.30428E-03
-0.750	0.73465E-06	0.18220E-05	0.29094E-05	0.39968E-05	0.24446E-05	0.700	0.61012E-04	0.15866E-03	0.25630E-03	0.35395E-03	0.21371E-03
-0.800	0.38795E-06	0.82013E-06	0.12523E-05	0.16845E-05	0.10676E-05	0.750	0.41105E-04	0.11205E-03	0.18299E-03	0.25393E-03	0.15205E-03
						0.800	0.28181E-04	0.79922E-04	0.13166E-03	0.18340E-03	0.10909E-03
						0.850	0.19630E-04	0.57370E-04	0.95111E-04	0.13285E-03	0.78649E-04
						0.900	0.13864E-04	0.41311E-04	0.68759E-04	0.96206E-04	0.56787E-04
						0.950	0.99127E-05	0.29764E-04	0.49616E-04	0.69468E-04	0.40957E-04
						1.000	0.71663E-05	0.21414E-04	0.35662E-04	0.49909E-04	0.29447E-04
						1.050	0.52310E-05	0.15359E-04	0.25488E-04	0.35616E-04	0.21070E-04
						1.100	0.38514E-05	0.10972E-04	0.18092E-04	0.25212E-04	0.14986E-04
						1.150	0.28578E-05	0.78009E-05	0.12744E-04	0.17687E-04	0.10588E-04
						1.200	0.21361E-05	0.55208E-05	0.89055E-05	0.12290E-04	0.74291E-05

2-22

Cumulative Frequency of Exceedance

Table 2-8 Gust Load Spectra: Single-Engine Special Usage

+2 std. dev. 90/95% spectra Weighted mean - +1 std. dev. 0.8 Figure 2-8 Gust Load Spectra: Single-Engine Special Usage 0.4 Acceleration Fraction, a / a LLF -0.4 -0.8 107 100 10^{-2} 10^{-3} 10.5 9.01 10.1 10.4

7.

2-24

Table 2.9 Maneuver Load Spectra: Single-Engine Special Usage

Accel. V Fraction	Accel. Weighted mean 11std. dev.	·1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra Accel. Weighted mean 1std. dev. Fraction	Accel. V Fraction	Veighted mean	•1 std. dev.	·2 std. dev.	•3 std. dev.	90/95% spectra
-0.100 -0.150 -0.250 -0.250 -0.350 -0.450 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550	0.17799E-01 0.15284E-00 0.25211E-01 0.58126E-02 0.16409E-02 0.53245E-03 0.19276E-03 0.76068E-04 0.31373E-04 0.12690E-04 0.31785E-05 0.81538E-06 0.33785E-06	0.16325E-02 0.34579E-00 0.39616E-01 0.83923E-02 0.23990E-02 0.33235E-03 0.14775E-03 0.69710E-04 0.3324E-04 0.3324E-04 0.3324E-06 0.37549E-05	0.30871E-02 0.53875E-00 0.54020E-01 0.10972E-01 0.31571E-02 0.47194E-03 0.21944E-03 0.283797E-04 0.53797E-04 0.53797E-04 0.25126E-05 0.25126E-05	0.45416E·02 0.73171E·00 0.68425E·01 0.13552E·01 0.39152E·02 0.14280E·02 0.61153E·03 0.29113E·03 0.74351E·04 0.37241E·04 0.37241E·04 0.37385E·05 0.14399E·05	0.32387E-02 0.55886E-00 0.55521E-01 0.11241E-01 0.32361E-02 0.11606E-02 0.48649E-03 0.22691E-03 0.1204E-03 0.25539E-04 0.27618E-04 0.027618E-04 0.026259E-05 0.10527E-05	0.100 0.150 0.200 0.200 0.300 0.350 0.450 0.550 0.550 0.650 0.700 0.750 0.850 0.850 0.950 0.950 1.000 1.100	0.52711E-00 0.21235E-00 0.10205E-00 0.48663E-01 0.21625E-01 0.88699E-02 0.34227E-02 0.12875E-02 0.48947E-03 0.48947E-03 0.19159E-04 0.31687E-04 0.31688E-04 0.33261E-05 0.53261E-05 0.59015E-06 0.43426E-06 0.43426E-06 0.43426E-06 0.43426E-07 0.37913E-07 0.37913E-07	0.17339E-01 0.33235E-00 0.12812E-00 0.5724E-01 0.25272E-01 0.10699E-01 0.44517E-02 0.19154E-02 0.89576E-03 0.4659E-03 0.11033E-03 0.76269E-04 0.26775E-04 0.2673E-04 0.2673E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04 0.20643E-04	0.29407E-01 0.45234E-00 0.15420E-00 0.65845E-01 0.28919E-01 0.12528E-01 0.5434E-02 0.13020E-02 0.13020E-03 0.30212E-03 0.30212E-03 0.14721E-03 0.14721E-04 0.65329E-04 0.65329E-04 0.65329E-04 0.65329E-04 0.65329E-04 0.65609	0.41475E-01 0.57233E-00 0.18027E-00 0.74436E-01 0.32567E-01 0.65098E-02 0.31713E-02 0.17083E-02 0.17083E-02 0.10142E-02 0.64926E-03 0.43765E-03 0.15750E-03 0.15750E-04 0.1421E-03 0.1421E-03 0.1421E-04 0.30422E-04 0.30423E-04	0.30664E-01 0.46484E-00 0.15691E-00 0.66740E-01 0.29300E-01 0.12719E-01 0.55880E-02 0.26088E-02 0.76860E-03 0.78860E-03 0.71815E-03 0.1185E-03 0.11115E-03 0.11115E-03 0.11115E-04 0.21350E-04 0.21350E-04 0.21350E-04
						1.200	0.33875E-08	0.33881E-05	0.67728E-05	0.10157E-04	0.71255E-05

..... +2 std. dev. 90/95% spectra Weighted mean+1 std. dev. 0.8 Figure 2-9 Maneuver Load Spectra: Single-Engine Special Usage 1 . 0.4 ຜີ Acceleration Fraction, a / -0.4 ÷0.8 100 10^{-2} 10-3 10-5 10-6 101 10.1 10-4

1.2

2-26

Table 2-10 Gust Load Spectra: Single-Engine Aerial Application

Accel. W Fraction	Accel. Weighted mean .1std.dev.	•1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra Accel. Weighted mean '1 std. dev. Fraction	Accel. V Fraction	Veighted mean	·1 std. dev.	·2 std. dev.	•3 std. dev.	90/95% spectra
-0.200	0.78382E-01	0.23657E-00	0.39476E+00	0.55295E+00	0.33425E-00	0.200	0.19544E-00	0.65698E-00	0.11185E-01	0.15801E-01	0.94198E-00
-0.250	0.17210E-01	0.50712E-01	0.84215E-01	0.11772E+00	0.71399E-01	0.250	0.41523E-01	0.11422E-00	0.18692E·00	0.25961E-00	0.15911E-00
-0.300	0.48073E-02	0.14294E-01	0,23780E-01	0.33267E-01	0.20152E-01	0300	0.12620E-₹1	0.29277E-01	0.45933E-01	0.62590E-01	0.39562E-01
-0.350	0.14737E-02	0.47495E-02	0.80252E-02	0.11301E-01	0.67722E-02	0.350	0.44364E-02	0.93767E-02	0.14317E-01	0.19257E-01	0.12427E-01
-0.400	0.47607E-03	0.17818E-02	0.30876E-02	0,43933E-02	0.25881E-02	0.400	0.16671E-02	0.34363E-02	0.52055E-02	0.69747E-02	0.45287E-02
-0.450	0.16634E-03	0.74624E-03	0.13261E-02	0.19060E-02	0.11043E-02	0.450	0.65154E-03	0.13829E-02	0.21143E-02	0.28456E-02	0.18345E-02
-0.500	0.64534E-04	0.34462E-03	0.62472E-03	0.90481E-03	0.51758E-03	0.500	0.26593E-03	0.60440E-03	0.94287E-03	0.12813E-02	0.81340E-03
-0.550	0.27301E-04	0.17191E-03	0.31652E-03	0.46114E-03	0.26121E-03	0.550	0.11449E-03	0.28606E-03	0.45762E-03	0.62918E-03	0.39199E-03
-0.600	0.12308E-04	0.91110E-04	0.16991E-03	0.24871E-03	0.13977E-03	0.600	0.52634E-04	0.14635E-03	0.24007E-03	0.33379E-03	0.20422E-03
-0.650	0.58920E-05	0.50777E-04	0.95661E-04	0.14055E-03	0.78492E-04	0.650	0.26068E-04	0.80568E-04	0.13507E-03	0.18957E-03	0.11422E-03
-0.700	0.30008E-05	0.29524E-04	0.56047E-04	0.82570E-04	0.45901E-04	0.700	0.13809E-04	0.47229E-04	0.80649E-04	0.11407E-03	0.67866E-04
-0.750	0.16277E-05	0.17791E-04	0.33954E-04	0.50117E-04	0.27771E-04	0.750	0.77407E-05	0.29188E-04	0.50635E-04	0.72083E-04	0.42431E-04
-0.800	0.93802E-06	0.11047E-04	0.21156E-04	0.31265E-04	0.17289E-04	0.800	0.45406E-05	0.18857E-04	0.33174E-04	0.47490E-04	0.27697E-04
-0.850	0.57068E-06	0.70344E-05	0.13498E-04	0.19962E-04	0.11026E-04	0.850	0.27664E-05	0.12657E-04	0.22548E-04	0.32439E-04	0.18765E-04
-0.900	0.36321E-06	0.45746E-05	0.87859E-05	0.12997E-04	0.71750E-05	0.60	0.17404E-05	0.87839E-05	0.15827E-04	0.22871E-04	0.13133E-04
-0.950	0.23945E-06	0.30278E-05	0.58161E-05	0.86045E-05	0.47496E-05	0.950	0.11250E-05	0.62771E-05	0.11429E-04	0.16581E-04	0.94584E-05
-1.000	0.16207E-06	0.20338E-05	0.39056E-05	0.57774E-05	0.31896E-05	1.000	0.74411E-06	0.46037E-05	0.84634E-05	0.12323E-04	0.69870E-05
-1.050	0.11178E-06	0.13832E-05	0.26546E-05	0.39260E-05	0.21683E-05	1.050	0.50185E-06	0.34558E-05	0.64097E-05	0.93636E-05	0.52798E-05
-1.100	0.78130E-07	0.95052E-06	0.18229E-05	0.26953E-05	0.14892E-05	1.100	0.34412E-06	0.26488E-05	0.49534E-05	0.72581E-05	0.40719E-05
-1.150	0.55117E-07	0.65891E-06	0.12627E-05	0.18665E-05	0.10317E-05	1.150	0.23932E-06	0.20689E-05	0.38986E-05	0.57282E-05	0.31987E-05
-1.200	0.39130E-07	0.46011E-06	0.88109E-06	0.13021E-05	0.72006E-06	1.200	0.16846E-06	0.16440E-05	0.31196E-05	0.45951E-05	0.25551E-05

Figure 2-10 Gust Load Spectra: Single-Engine Aerial Application

Table 2-11 Maneuver Load Spectra: Single-Engine Aerial Application

ectra	
90/95% spectra	0.29409E-01 0.22834E-01 0.1738E-01 0.12639E-01 0.87802E-00 0.58307E-00 0.32578E-00 0.74851E-01 0.40909E-01 0.51647E-01 0.55790E-02 0.25790E-03 0.3678E-03 0.3678E-03 0.3678E-03 0.3678E-03 0.07870E-03 0.07870E-03 0.07870E-03
•5 std. dev.	0.35220E-01 0.27682E-01 0.1365E-01 0.15726E-01 0.11060E-01 0.74334E-00 0.47775E-00 0.54838E-01 0.59495E-01 0.59232E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.15113E-01 0.16207E-02 0.18756E-03 0.18756E-03 0.18756E-03
-2 std. dev.	0.29232E-01 0.22687E-01 0.17267E-01 0.12546E-01 0.87109E-00 0.57819E-00 0.36722E-00 0.13109E-00 0.74101E-01 0.21417E-01 0.21417E-01 0.21416E-02 0.55169E-02 0.55169E-02 0.55169E-03 0.55169E-03 0.55169E-03 0.55169E-03 0.67075E-03 0.93849E-04 0.93849E-04
•1 std. dev.	0.23245E-01 0.17692E-01 0.13168E-01 0.93649E-00 0.63617E-00 0.41305E-00 0.25669E-00 0.15307E-01 0.48708E-01 0.48708E-01 0.48708E-01 0.13602E-01 0.16681E-02 0.16681E-02 0.16681E-02 0.16681E-02 0.16881E-02 0.16881E-02 0.16881E-02 0.16881E-03 0.20237E-03 0.20237E-03 0.20332E-04 0.28352E-04
eighted mean	0.17258E-01 0.12697E-01 0.90694E-00 0.61841E-00 0.40125E-00 0.24791E-00 0.23315E-01 0.1780E-01 0.57865E-02 0.57773E-02 0.13094E-02 0.6099E-03 0.6099E-04 0.30043E-04 0.14802E-04
Accel. We Fraction	0.150 0.200 0.200 0.200 0.300 0.400 0.450 0.550 0.650 0.650 0.750 0.750 0.800
90/95% spectra Accel. Weighted mean ·1std. dev. Fraction	0.20612E-01 0.13762E-01 0.81774E-00 0.42911E-00 0.19759E-00 0.81450E-01 0.30267E-01 0.29879E-02 0.79160E-03 0.39821E-04 0.77098E-05 0.14454E-05
-3 std. dev.	0.27700E-01 0.18571E-01 0.18571E-01 0.58737E-00 0.27300E-00 0.42445E-01 0.42073E-02 0.11154E-02 0.26410E-03 0.56059E-04 0.10833E-04 0.20265E-05
·2 std. dev.	0.20397E-01 0.13616E-01 0.80885E-00 0.42430E-00 0.19530E-00 0.80474E-01 0.29897E-01 0.29897E-01 0.29509E-02 0.78175E-03 0.18510E-03 0.18510E-03 0.14277E-05
•1 std. dev.	0.13093E-01 0.86610E-00 0.50727E-00 0.26123E-00 0.11760E-00 0.47377E-01 0.17349E-01 0.57293E-02 0.16945E-02 0.16945E-03 0.10610E-03 0.22596E-04 0.43973E-05
Accel. Weighted mean 11std. dev. Fraction	0.57901E-00 0.37058E-00 0.20569E-00 0.98155E-01 0.14280E-01 0.15174E-02 0.15174E-02 0.15174E-03 0.11739E-03 0.11797E-05 0.23013E-06
Accel. W Fraction	0.150 0.250 0.250 0.300 0.400 0.450 0.500 0.550 0.550 0.750 0.750

Weighted mean+1 std. dev. +2 std. dev 90/95% sp. ctra 0.8 Figure 2-11 Maneuver Load Spectra: Single-Engine Aerial Application 0.4 Acceleration Fraction, a / a -0.4 100 10^{-2} 10-610-3 10.5 10.1 10-4 101

CHILL

7.

2-30

Table 2-12 Gust Load Spectra: Twin-Engine General Usage

0.200 0.43370E-01 0.20056E-00 0.33873E-00 0.31712E-00 0.2486E-01 0.50943E-00 0.97098E-00 0.1432E-01 0.3703E-01 0.3703	Accel. V Fraction	Accel. Welghted mean 11 std. dev. Fraction	•1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra Accel. Weighted mean 11std. dev. Fraction	Accel. W	Velghted mean	•1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra
0.11612E-01 0.45114E-01 0.78617E-01 0.1121E-00 0.12654E-01 0.12554E-01 0.125054E-00 0.22054E-00 0.39171E-02 0.13406E-01 0.1340E-01 0.1371E-02 0.1440E-02 0.14786E-03 0.14478E-03 0.14448E-03 0.14448E-03 0.14448E-03 0.1444	-0.200	_	0.20056E-00	0.35875E-00	0.51694E-00	0.33712E-00	0.200	0.47889E-01	0.50943E-00	0.97098E·00	0.14325E-01	0.90788E+00
0.39171E-02 0.13404E-01 0.22890E-01 0.21593E-01 0.21593E-01 0.24054E-01 0.37398E-01 0.24054E-01 0.37398E-01 0.24054E-01 0.37398E-01 0.1338E-02 0.4738E-02 0.4738E-02 0.1338E-02 0.1338E-02 0.4738E-02 0.1338E-02 0.1338E-02 0.1449E-02 0.24556E-02 0.3737E-02 0.4738E-02 0.24556E-03 0.2404E-02 0.1440E-02 0.24556E-02 0.24758E-02 0.24758E-02 0.24758E-02 0.1440E-02 0.1440E-02 0.24758E-02 0.1440E-02 0.1443E-02 0.1443E-02 0.1443E-02 0.1443E-02 0.1443E-02 0.1443E-02 0.1443E-0	-0.250	0	0.45114E-01	0.78617E-01	0.11212E-00	0.74037E-01	0.250	0.12456E-01	0.85152E-01	0.15785E-00	0.23054E·00	0.14791E-00
0.15103E-02 0.47860E-02 0.80618E-02 0.11338E-01 0.76140E-02 0.1538E-02 0.64788E-02 0.11419E-01 0.16539E-01 0 0.03897E-03 0.19445E-02 0.3250EE-02 0.3270TE-02 0.400 0.65340E-03 0.24046E-02 0.41738E-02 0.59930E-02 0.03897E-03 0.19445E-02 0.2320E-02 0.23700E-02 0.400 0.6540E-03 0.6440B-03 0.41440E-02 0.41470E-02 0.41479E-02 0.4479E-02 0.4479E-03 0.4479E-03 0.24440E-02 0.24440E-02 0.4479E-03 0.4479E-03 0.14479E-02 0.14479E-02 0.4479E-03 0.14479E-03 0.14479E-03 0.14479E-03 0.14479E-03 0.14479E-03 0.14479E-03 0.14449E-03 0.14479E-03 0.14479E-03 0.14449E-03	-0.300	_	0.13404E-01	0.22890E-01	0.32377E-01	0.21593E-01	0.300	0.40849E-02	0.20741E-01	0.37398E-01	0.54054E-01	0.35121E-01
0.63876E-03 0.19445E-02 0.32502E-02 0.45560E-02 0.370717E-02 0.400 0.63340E-03 0.24046E-02 0.41738E-02 0.59430E-02 0.28951E-03 0.18945E-02 0.1493E-02 0.1370E-02 0.1370E-03 0.11476E-02 0.1476E-02 0.11476E-02 0.11476E-02 0.11476E-02 0.11476E-02 0.11476E-02 0.11476E-02 0.11476E-02 0.11476E-03	-0.350	Ç	0.47860E-02	0.80618E-02	0.11338E-01	0.76140E-02	0.350	0.15385E-02	0.64788E-02	0.11419E-01	0.16359E-01	0.10744E-01
0.28951E-03 0.86941E-03 0.14493E-02 0.13700E-02 0.1370E-03 0.10126E-02 0.11440E-02 0.24753E-02 0 0.13876E-03 0.41885E-03 0.69894E-03 0.60665E-03 0.500 0.1324E-03 0.10126E-02 0.17440E-02 0.24753E-02 0 0.13876E-03 0.41885E-03 0.69894E-03 0.5036E-03 0.33926E-03 0.13456E-03 0.13456E-03 0.13456E-03 0.1346E-03 0.1346E-03 0.1446E-02 0.24758E-03 0.1446E-02 0.1446E-02 0.1446E-03 0.1446E-03 0.1446E-03 0.1446E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1346E-03 0.1366E-04 0.1276G-03 0.1346E-03 0.1346E-03 0.1366E-04 0.1276G-04 0.1276G-03 0.1341E-03 0.1341E-03 0.1341E-03 0.1341E-03 0.1341E-03 0.1346E-03 0.1366E-04 0.1276G-04 0.12940E-03 0.1341E-03 0.1341E-03 0.1341E-03 0.1341E-03 0.1341E-03 0.13446E-03 0.13446E-03 0.13446E-03 0.13446E-03 0.13446E-03	-0.400	Ī	0.19445E-02	0.32502E-02	0.45560E-02	0.30717E-02	0.400	0.63540E-03	0.24046E-02	0.41738E-02	0.59430E-02	0.39319E-02
0.13876E-03 0.41885E-03 0.69894E-03 0.97903E-03 0.66065E-03 0.500 0.13224E-03 0.40029E-03 0.11476E-02 0.11441E-03 0.23903E-03 0.11441E-03 0.23903E-03 0.11441E-03 0.114411E-03 0.114411E-03 0.114411E-03	-0.450	_	0.86941E-03	0.14493E-02	0.20292E-02	0.13700E-02	0.450	0.28122E-03	0.10126E-02	0.17440E-02	0.24753E-02	0.16440E-02
0.69803E-04 0.2144IE-03 0.5364E-03 0.53926E-03 0.5506E-04 0.23773E-03 0.40929E-03 0.58085E-03	-0.500	_	0.41885E-03	0.69894E-03	0.97903E-03	0.66065E-03	0.500	0.13224E-03	0.47071E-03	0.80918E-03	0.11476E-02	0.76291E-03
0.36720E-04 0.11552E-03 0.19432E-03 0.27313E-03 0.18355E-03 0.6600 0.35485E-04 0.12920E-03 0.2292E-03 0.31664E-03 0 0.20105E-04 0.64989E-04 0.10987E-03 0.15476E-03 0.10374E-03 0.650 0.20603E-04 0.75104E-04 0.12960E-03 0.13411E-03 0.18411E-03 0.184111E-03 0.18411E-03 0.18411E-03	-0.550	٠	0.21441E-03	0.35903E-03	0.50364E-03	0.33926E-03	0.550	0.66166E-04	0.23773E-03	0.40929E-03	0.58085E-03	0.38584E-03
0.20105E-04 0.64989E-04 0.10987E-03 0.10374E-03 0.10374E-03 0.650 0.20603E-04 0.75104E-04 0.12960E-03 0.1841IE-03 0 0.11402E-04 0.37925E-04 0.6448E-04 0.90971E-04 0.60822E-04 0.700 0.13067E-04 0.75104E-04 0.79908E-04 0.1333E-03 0 0.66859E-05 0.22849E-04 0.3448E-04 0.55175E-04 0.56875E-04 0.750 0.90451E-05 0.30492E-04 0.71940E-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7133F-04 0.7137F-04 0.72859E-04 0.72854E-05 0.71056E-04 0.71056E-04 0.71056E-04 0.71056E-04 0.71056E-04 0.71056E-04 0.71056E-04 0.71056E-04 0.72854E-05 0.71056E-04 0.72854E-04 0.72866E-04 0.7286	-0.600	Ī	0.11552E-03	0.19432E-03	0.27313E-03	0.18355E-03	0.600	0.35485E-04	0.12920E-03	0.22292E-03	0.31664E-03	0.21011E-03
0.11402E-04 0.37925E-04 0.64448E-04 0.90971E-04 0.60822E-04 0.730 0.13067E-04 0.44487E-04 0.79908E-04 0.1333E-03 0 0.66859E-05 0.22849E-04 0.39012E-04 0.55175E-04 0.56802E-04 0.750 0.90451E-05 0.30492E-04 0.51940E-04 0.7337E-04 0.7387E-04 0.7337E-04 0.7387E-04	0.650	Ī	0.64989E-04	0.10987E-03	0.15476E-03	0.10374E-03	0.650	0.20603E-04	0.75104E-04	0.12960E-03	0.18411E-03	0.12215E-03
0.66859E-05 0.22849E-04 0.39012E-04 0.55175E-04 0.36802E-04 0.750 0.90451E-05 0.30492E-04 0.51940E-04 0.73387E-04 0 0.40228E-05 0.14132E-04 0.24241E-04 0.34350E-04 0.22859E-04 0.880 0.67392E-05 0.21056E-04 0.35372E-04 0.49689E-04 0 0.24696E-05 0.14132E-04 0.21861E-04 0.14514E-04 0.880 0.67384E-05 0.15176E-04 0.25067E-04 0.49689E-04 0 0.15483E-05 0.6589E-05 0.14182E-04 0.93953E-05 0.990 0.42828E-05 0.11326E-04 0.18370E-04 0.24958E-04 0.99217E-06 0.37805E-05 0.61877E-05 0.61877E-05 0.41381E-05 0.35468E-05 0.13356E-04 0.14539E-04 0.14559E-04 0.65040E-06 0.25222E-05 0.42805E-05 0.41381E-05 0.42808E-05 0.14639E-04 0.14559E-04 0.14559E-04 0.65040E-06 0.27222E-05 0.42805E-05 0.41381E-05 0.42808E-05 0.68989E-05 0.14559E-04 0.14559E-04 0.29937E-06 0.	-0.700	_	0.37925E-04	0.64448E-04	0.90971E-04	0.60822E-04	0.700	0.13067E-04	0.46487E-04	0.79908E-04	0.11333E-03	0.75339E-04
0.40228E-05 0.14132E-04 0.24241E-04 0.34350E-04 0.22859E-04 0.800 0.67392E-05 0.21056E-04 0.35372E-04 0.49689E-04 0 0.24696E-05 0.89334E-05 0.15397E-04 0.21861E-04 0.14514E-04 0.850 0.52854E-05 0.15176E-04 0.25067E-04 0.34958E-04 0 0.15483E-05 0.65897E-05 0.14182E-04 0.93953E-05 0.900 0.42828E-05 0.11376E-04 0.18370E-04 0.25413E-04 0 0.99217E-06 0.37805E-05 0.62689E-05 0.61877E-05 0.61877E-05 0.950 0.32868E-05 0.18370E-04 0.19903E-04 0 0 0.1859E-04 0 <td>-0.750</td> <td>Ī</td> <td>0.22849E-04</td> <td>0.39012E-04</td> <td>0.55175E-04</td> <td>0.36802E-04</td> <td>0.750</td> <td>0.90451E-05</td> <td>0.30492E-04</td> <td>0.51940E-04</td> <td>0.73387E-04</td> <td>0.49008E-04</td>	-0.750	Ī	0.22849E-04	0.39012E-04	0.55175E-04	0.36802E-04	0.750	0.90451E-05	0.30492E-04	0.51940E-04	0.73387E-04	0.49008E-04
0.24696E-05 0.89334E-05 0.15397E-04 0.21861E-04 0.14514E-04 0.14514E-04 0.850 0.52854E-05 0.15176E-04 0.25067E-04 0.34958E-04 0 0.15483E-05 0.57597E-05 0.99710E-05 0.14182E-04 0.9953E-05 0.900 0.42828E-05 0.11326E-04 0.18370E-04 0.25413E-04 0 0.99217E-06 0.37805E-05 0.6589E-05 0.61877E-05 0.61877E-05 0.61877E-05 0.4381E-05 0.10809E-05 0.13851E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.19903E-04 0.14559E-04	0.800	Ī	0.14132E-04	0.24241E-04	0.34350E-04	0.22859E-04	0.800	0.67392E-05	0.21056E-04	0.35372E-04	0.49689E-04	0.33415E-04
0.15483E-05 0.57597E-05 0.99710E-05 0.14182E-04 0.93953E-05 0.900 0.42828E-05 0.11326E-04 0.18370E-04 0.25413E-04 0 0.99217E-06 0.37805E-05 0.6589E-05 0.61877E-05 0.61877E-05 0.61877E-05 0.61877E-05 0.63468E-05 0.186989E-05 0.13851E-04 0.19903E-04 0.19003E-04 0.19003E-04 0.19003E-04 0.19003E-04 0.19003E-04 0.19003E-04 0.19503E-04 0.19503E-04 0.19503E-04 0.19503E-04 0.19559E-04 0.19559E-04 0.14559E-04	-0.850	_	0.89334E-05	0.15397E-04	0.21861E-04	0.14514E-04	0.850	0.52854E-05	0.15176E-04	0.25067E-04	0.34958E-04	0.23715E-04
0.99217E-06 0.37805E-05 0.6589E-05 0.61877E-05 0.61877E-05 0.950 0.35468E-05 0.86989E-05 0.13851E-04 0.19903E-04 0 0.65040E-06 0.25222E-05 0.43939E-05 0.62657E-05 0.41381E-05 1.000 0.29800E-05 0.68396E-05 0.10699E-04 0.14559E-04 0 0.43628E-06 0.17077E-05 0.29791E-05 0.428053E-05 0.28053E-05 1.050 0.25281E-05 0.54820E-05 0.84359E-05 0.11390E-04 0 0.29937E-06 0.11718E-05 0.2041E-05 0.29165E-05 0.19249E-05 1.100 0.21591E-05 0.44637E-05 0.5784E-05 0.9730E-05 0.20992E-06 0.81371E-06 0.14175E-05 0.20213E-05 0.13350E-05 1.150 0.18527E-05 0.3624E-05 0.5746E-05 0.45466E-05 0.60222E-05	-0.900	0	0.57597E-05	0.99710E-05	0.14182E-04	0.93953E-05	0.900	0.42828E-05	0.11326E-04	0.18370E-04	0.25413E-04	0.17407E-04
0.65040E-06 0.25222E-05 0.43939E-05 0.61381E-05 0.63800E-05 0.6396E-05 0.6396E-04 0.14559E-04 0.14559E-04 0 0.43628E-06 0.17077E-05 0.29791E-05 0.28053E-05 0.28053E-05 1.050 0.25281E-05 0.54820E-05 0.84359E-05 0.11390E-04 0 0.29937E-06 0.11718E-05 0.2041E-05 0.29165E-05 0.19249E-05 1.100 0.21591E-05 0.44637E-05 0.67684E-05 0.90730E-05 0.20992E-06 0.81371E-06 0.14175E-05 0.20213E-05 0.13350E-05 1.150 0.18527E-05 0.36824E-05 0.55120E-05 0.73416E-05 0.15017E-06 0.57115E-06 0.99214E-06 0.14131E-05 0.93459E-06 1.200 0.15955E-05 0.30711E-05 0.45466E-05 0.60222E-05	-0.950	_	0.37805E-05	0.65689E-05	0.93572E-05	0.61877E-05	0.950	0.35468E-05	0.86989E-05	0.13851E-04	0.19003E-04	0.13147E-04
0.43628E-06 0.17077E-05 0.29791E-05 0.42505E-05 0.28053E-05 1.050 0.25281E-05 0.54820E-05 0.84359E-05 0.11390E-04 0 0.29937E-06 0.11718E-05 0.20441E-05 0.29165E-05 0.19249E-05 1.100 0.21591E-05 0.44637E-05 0.67684E-05 0.90730E-05 0.20932E-06 0.81371E-06 0.14175E-05 0.20213E-05 0.13350E-05 1.150 0.18527E-05 0.36824E-05 0.55120E-05 0.73416E-05 0.15017E-06 0.57115E-06 0.99214E-06 0.14131E-05 0.93459E-06 1.200 0.15955E-05 0.30711E-05 0.45466E-05 0.60222E-05 0	-1.000	پ	0.25222E-05	0.43939E-05	0.62657E-05	0.41381E-05	1.000	0.29800E-05	0.68396E-05	0.10699E-04	0.14559E-04	0.10172E-04
0.29937E-06 0.11718E-05 0.2041E-05 0.29165E-05 0.19249E-05 1.100 0.21591E-05 0.44637E-05 0.67684E-05 0.90730E-05 0.20992E-06 0.81371E-06 0.14175E-05 0.20213E-05 0.93459E-06 1.150 0.18527E-05 0.36824E-05 0.55120E-05 0.73416E-05 0.15017E-06 0.57115E-06 0.99214E-06 0.14131E-05 0.93459E-06 1.200 0.15955E-05 0.30711E-05 0.45466E-05 0.60222E-05 0	-1.050	0	0.17077E-05	0.29791E-05	0.42505E-05	0.28053E-05	1.050	0.25281E-05	0.54820E-05	0.84359E-05	0.11390E-04	0.80321E-05
0.20992E-06 0.81371E-06 0.14175E-05 0.20213E-05 0.13350E-05 1.150 0.18527E-05 0.36824E-05 0.55120E-05 0.73416E-05 0 0.15017E-06 0.57115E-06 0.99214E-06 0.14131E-05 0.93459E-06 1.200 0.15955E-05 0.30711E-05 0.45466E-05 0.60222E-05 0	-1.100	0	0.11718E-05	0.20441E-05	0.29165E-05	0.19249E-05	1.100	0.21591E-05	0.44637E-05	0.67684E-05	0.90730E-05	0.64°33E-05
0.15017E-06 0.57115E-06 0.99214E-06 0.14131E-05 0.93459E-06 1.200 0.15955E-05 0.30711E-05 0.45466E-05 0.60222E-05 (-1.150	0	0.81371E-06	0.14175E-05	0.20213E-05	0.13350E-05	1.150	0.18527E-05	0.36824E-05	0.55120E-05	0.73416E-05	0.52619E-05
	-1.200	0	0.57115E-06	0.99214E-06		0.93459E-06	1.200	0.15955E-05	0.30711E-05	0.45466E-05	0.60222E-05	0.43449E-05

+2 std. dev. 90/95% spectra Weighted mean +1 sid. dev 0.8 Figure 2-12 Gust Load Spectra: Twin-Engine General Usage 0.4 Acceleration Fraction, a -0.4 -0.8 100 10-5 10^{-2} 10^{-3} 10.4 10.6 10.1 101

2-32

Table 2-13 Maneuver Load Spectra: Twin-Engine General Usage

Accel. V Fraction	Accel. Weighted mean 11std. dev. fraction	•1 std. dev.	•2 std. dev.	•3 std. dev.	90/95% spectra Accel. Weighted mean 1std. dev. Fraction	Accel. W Fraction	Veighted mean	•1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra
-0.200	0.41795E-02	0.18584E-01	0.32989E-01	0.47393E-01	0.31020E-01	0.150	0.31391E-01	0.15138E+00	0.27137E-00	0.39137E-00	0.25497E-00
-0.250	0.10982E-02	0.36779E-02	0.62575E-02	0.88372E-02	0.59049E-02	0.200	0.10128E-01	0.36201E-01	0.62275E-01	0.88349E-01	0.58711E-01
-0300	0.31095E-03	0.10690E-02	0.18271E-02	0.25852E-02	0.17235E-02	0.250	0.39709E-02	0.12562E-01	0.21153E-01	0.29744E-01	0.19978E-01
-0.350	0.87507E-04	0.38604E-03	0.68457E-03	0.98310E-03	0.64376E-03	0300	0.17331E-02	0.53804E-02	0.90277E-02	0.12675E-01	0.85291E-02
-0.400	0.25232E-04	0.16482E-03	0.30441E-03	0.44400E-03	0.28533E-03	0.350	0.80276E-03	0.26320E-02	0.44613E-02	0.62905E-02	0.42112E-02
-0.450	0.79498E-05	0.79636E-04	0.15132E-03	0.22301E-03	0.14152E-03	0.400	0.38384E-03	0.14129E-02	0.24419E-02	0.34709E-02	0.23012E-02
-0.500	0.27717E-05	0.41109E-04	0.79446E-04	0.11778E-03	0.74205E-04	0.450	0.18658E-03	0.81453E-03	0.14425F-02	0.20704E-02	0.13566E-02
-0.550	_	0.21609E-04	0.42163E-04	0.62717E-04	0.39353E-04	0.500	0.91679E-04	0.49797E-03	0.90426E-03	0.13105E-02	0.84871E-03
009:0-	0.43014E-06	0.11172E-04	0.21914E-04	0.32656E-04	0.20446E-04	0.550	0.45682E-04	0.31990E-03	0.59412E-03	0.86833E-03	0.55663E-03
-0.650	0.18315E-06	0.55404E-05	0.10898E-04	0.16255E-04	0.10165E-04	0.600	0.23391E-04	0.21415E-03	0.40490E-03	0.59566E-03	0.37883E-03
-0.700	0.80135E-07	0.25878E-05	0.50955E-05	0.76032E-05	0.47527E-05	0.650	0.12619E-04	0.14815E-03	0.28367E-03	0.41920E-03	0.26515E-03
-0.750	0.35655E-07	0.11230E-05	0.22104E-05	0.32978E-05	0.20618E-05	0.700	0.74435E-05	0.10509E-03	0.20273E-03	0.30038E-03	0.18938E-03
-0.800	0.16028E-07	0.44821E-06	0.88040E-06	0.13126E-05	0.82132E-06	0.750	0.49126E-05	0.75855E-04	0.14680E-03	0.21774E-03	0.13710E-03
						0.800	0.35732E-05	0.55314E-04	0.10705E-03	0.15879E-03	0.99981E-04
						0.850	0.27927E-05	0.40533E-04	0.78273E-04	0.11601E-03	0.73114E-04
						0.60	0.22870E-05	0.29734E-04	0.57182E-04	0.84629E-04	0.53430E-04
						0.950	0.19257E-05	0.21777E-04	0.41629E-04	0.61481E-04	0.38915E-04
						1.000	0.16475E-05	0.15895E-04	0.30143E-04	0.44391E-04	0.28195E-04
						1.050	0.14220E-05	0.11550E-04	0.21679E-04	0.31807E-04	0.20294E-04
						1.100	0.12334E-05	0.83536E-05	0.15474E-04	0.22594E-04	0.14500E-04
						1.150	0.10727E-05	0.60157E-05	0.10959E-04	0.15902E-04	0.10283E-04
						1.200	0.93430E-06	0.43190E-05	0.77037E-05	0.11088E-04	0.72410E-05

Figure 2-13 Maneuver Load Spectra: Twin-Engine General Usage

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table 2-14 Gust Load Spectra: Twin-Engine Special Usage

Accel. W Fraction	Accel. Weighted mean 11std. dev.	·1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra	Accel. V Fraction	Accel. Weighted mean 11std. dev. Fraction	+1 std. dev.	+2 std, dev.	+3 std. dev.	90/95% spectra
-0.150	0.65504E-00	0.18416E-01	0.30282E-01	0.42148E-01	0.33028E-01	0.150	0.10628E-01	0.63678E+01	0.11673E-02	0.16978E-02	0.12901E-02
-0.200	0.13489E-00 0.44390E-01	0.77893E-01	0.47127E'00 0.11140E'00	0.62946E*UU 0.14490E*00	0.50/88E-00 0.11915E-00	0.250	0.22734E-00 0.63579E-01	0.13628E-00	0.20897E-00	0.16120E*01 0.28167E*00	0.125/3E*01 0.22580E*00
-0.300	0.14444E-01	0.23931E-01	0.33417E-01	0.42904E-01	0.35613E-01	0.300	0.21139E-01	0.37796E-01	0.54452E-01	0.71109E-01	0.58307E-01
-0.350	0.53068E-02	0.85826E-02	0.11858E-01	0.15134E-01	0.12617E-01	0.350	0.80311E-02	0.12971E-01	0.17912E-01	0.22852E-01	0.19055E-01
-0.400	0.22193E-02	0.35250E-02	0.48308E-02	0.61365E-02	0.51330E-02	0.400	0.34062E-02	0.51754E-02	0.69446E-02	0.87138E-02	0.73541E-02
-0.450	0.10474E-02	0.16273E-02	0.22072E-02	0.27871E-02	0,23414E-02	0.450	0.15780E-02	0.23093E-02	0.30407E-02	0.37721E-02	0.32100E-02
-0.500	0.54297E-03	0.82306E-03	0.11031E-02	0.13832E-02	0.11680E-02	0.500	0.78093E-03	0.11194E-02	0.14579E-02	0.17963E-02	0.15362E-02
-0.550	0.29926E-03	0.44387E-03	0.58848E-03	0.73309E-03	0.62195E-03	0.550	0.40432E-03	0.57588E-03	0.74744E-03	0.91901E-03	0.78715E-03
-0.600	0.17146E-03	0.25026E-03	0.32906E-03	0.40787E-03	0.34730E-03	0.600	0.21530E-03	0.30902E-03	0.40274E-03	0.49646E-03	0.42443E-03
-0.650	0.10086E-03	0.14575E-03	0.19063E-03	0.23552E-03	0.20102E-03	0.650	0.11634E-03	0.17084E-03	0.22534E-03	0.27984E-03	0.23796E-03
-0.700	0.60468E-04	0.86991E-04	0.11351E-03	0.14004E-03	0.11965E-03	0.700	0.63204E-04	0.96625E-04	0.13005E-03	0.16347E-03	0.13778E-03
-0.750	0.36767E-04	0.52930E-04	0.69093E-04	0.85256E-04	0.72834E-04	0.750	0.34319E-04	0.55767E-04	0.77214E-04	0.98661E-04	0.82178E-04
-0.800	0.22594E-04	0.32703E-04	0.42812E-04	0.52921E-04	0.45152E-04	0.800	0.18554E-04	0.32870E-04	0.47187E-04	0.61503E-04	0.50500E-04
-0.850	0.13945E-04	0.20409E-04	0.26873E-04	0.33336E-04	0.28369E-04	0.850	0.10001E-04	0.19892E-04	0.29783E-04	0.39674E-04	0.32072E-04
0.900	0.86073E-05	0.12819E-04	0.17030E-04	0.21241E-04	0.18005E-04	0.900	0.53918E-05	0.12435E-04	0.19479E-04	0.26522E-04	0.21109E-04
0.950	0.53126E-05	0.81010E-05	0.10889E-04	0.13678E-04	0.11535E-04	0.950	0.29073E-05	0.80594E-05	0.13211E-04	0.18364E-04	0.14404E-04
-1.000	0.32791E-05	0.51509E-05	0.70226E-05	0.88944E-05	0.74558E-05	1.000	0.15678E-05	0.54274E-05	0.92870E-05	0.13147E-04	0.10180E-04
-1.050	0.20239E-05	0.32953E-05	0.45668E-05	0.58382E-05	0.48610E-05	1.050	0.84543E-06	0.37993E-05	0.67533E-05	0.97072E-05	0.74369E-05
-1.100	0.12492E-05	0.21216E-05	0.29940E-05	0.38664E-05	0.31959E-05	1.100	0.45591E-06	0.27606E-05	0.50652E-05	0.73699E-05	0.55986E-05
-1.150	0.77105E-06	0.13748E-05	0.19786E-05	0.25824E-05	0.21184E-05	1.150	0.24586E-06	0.20755E-05	0.39051E-05	0.57347E-05	0.43285E-05
-1.200	0.47591E-06	0.89690E-06	0.13179E-05	0.17389E-05	0.14153E-05	1.200	0.13259E-06	0.16081E-05	0.30837E-05	0.45592E-05	0.34252E-05

Figure 2-14 Gust Load Spectra: Twin-Engine Special Usage

Table 2-15 Maneuver Load Spectra: Twin-Engine Special Usage

pectra	66 64 64 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65
90/95% spectra	0.34251E-00 0.95390E-01 0.38754E-01 0.18108E-01 0.43930E-02 0.43930E-02 0.22573E-02 0.72948E-03 0.72948E-03 0.15109E-03 0.11676E-03 0.11676E-04 0.48446E-04 0.48446E-04 0.48446E-04 0.48446E-04 0.48446E-04 0.48446E-04 0.48446E-04
·3 std. dev.	0.43473E-00 0.11543E-00 0.45356E-01 0.20911E-01 0.51839E-02 0.57399E-02 0.57399E-02 0.5447E-02 0.42205E-03 0.61382E-03 0.61382E-03 0.61385E-03 0.11385E-04 0.2925E-04 0.11385E-04 0.11385E-04 0.11385E-04 0.11385E-04 0.11385E-04
·2 std. dev.	0.31474E-00 0.89355E-01 0.36765E-01 0.17263E-01 0.84098E-02 0.41548E-02 0.21120E-02 0.66601E-03 0.28653E-03 0.14467E-03 0.10478E-03 0.10478E-04 0.55207E-04 0.55207E-04 0.20297E-04 0.20297E-04 0.20297E-04 0.20297E-04
•1 std. dev.	0.19475E-00 0.63282E-01 0.28174E-01 0.13616E-01 0.58806E-02 0.1328E-02 0.14840E-02 0.73217E-03 0.39179E-03 0.2330E-03 0.15100E-03 0.15100E-04 0.15100E-04 0.15100E-04 0.15100E-04 0.15100E-04 0.15100E-04 0.15760E-04 0.2000E-04 0.10169E-04 0.10169E-04 0.10169E-06
eighted mean	0.74754E-01 0.37208E-01 0.99688E-02 0.47513E-02 0.20968E-02 0.20968E-03 0.32588E-03 0.11758E-03 0.11758E-04 0.15473E-04 0.15473E-04 0.15709E-05 0.15709E-06 0.15709E-06 0.15709E-06 0.15709E-06 0.15709E-06 0.15709E-06
Accel. W Fraction	0.150 0.200 0.200 0.250 0.300 0.400 0.400 0.500 0.500 0.500 0.750 0.750 0.800 0.850 0.900 0.950 0.900 1.100 1.100
90/95% spectra Accel. Weighted mean ·lstd. dev. Fraction	0.32953E-02 0.46543E-00 0.36283E-01 0.63704E-02 0.17910E-02 0.68253E-03 0.31420E-03 0.16043E-03 0.85627E-04 0.45879E-04 0.23973E-04 0.23973E-04 0.23973E-04 0.05959E-05 0.96440E-06
•3 std. dev.	0.44132E·02 0.61373E·00 0.47354E·01 0.83530E·02 0.23736E·03 0.42149E·03 0.21552E·03 0.11509E·03 0.61676E·04 0.32229E·04 0.32222E·05 0.12066E·05
·2 std. dev.	0.29587E-02 0.42077E-00 0.32949E-01 0.57733E-02 0.16155E-02 0.61343E-03 0.28190E-03 0.76755E-04 0.41122E-04 0.10715E-04 0.10715E-04 0.21748E-05 0.86438E-05
·1 std. dev.	0.15041E-02 0.22781E-00 0.18545E-01 0.31937E-02 0.85742E-03 0.31490E-03 0.72148E-04 0.38418E-04 0.20568E-04 0.10745E-04 0.53578E-05 0.25078E-05 0.43219E-06
Accel. Weighted mean 11std. dev. Fraction	0.49571E-00 0.34857E-01 0.41399E-02 0.61398E-03 0.99326E-04 0.16375E-04 0.27187E-05 0.46128E-06 0.80534E-07 0.27485E-08 0.54215E-09 0.1177E-09 0.23984E-10 0.53217E-11
Accel, W Fraction	0.100 -0.150 -0.150 -0.250 -0.250 -0.350 -0.450 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550 -0.550

Figure 2-15 Maneuver Load Spectra: Twin-Engine Special Usage

Cumulative Frequency of Exceedance

Table 2-16 Gust Load Spectra: Single and Twin-Engine Special Usage

Accel. V Fraction	Accel. Weighted mean 11std. dev. Fraction	·1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra Accel. Welghted mean Fraction	Accel. W	Velghted mean	·1 std. dev.	+2 std. dev.	·3 std. dev.	90/95% spectra
-0.150	0.23865E-01	0.35731E-01	0.47597E·01	0.59463E-01	0.46451E-01	0.150	0.30838E+01	0.83888E·01	0.13694E-02	0.18999E+02	0.13182E-02
-0.200	0.46135E-00	0.61953E-00	0.77772E-00	0.93591E+00	0.76245E-00	0.200	0.46895E+00	0.93050E+00	0.13920E-01	0.18536E+01	0.13475E-01
-0.250	0.12163E-00	0.15513E-00	0.18864E·00	0.22214E-00	0.18540E-00	0.250	0.10650E-00	0.17920E-00	0.25189E-00	0.32459E+00	0.24487E-00
-0.300	0.38501E-01	0.47988E-01	0.57474E-01	0.66961E-01	0.56558E-01	0.300	0.31305E-01	0.47962E-01	0.64618E-01	0.81275E-01	0.63010E-01
-0.350	0.13740E-01	0.17016E-01	0.20291E-01	0.23567E-01	0.19975E-01	0.350	0.11082E-01	0.16022E-01	0.20962E-01	0.25902E-01	0.20485E-01
-0.400	0.53427E-02	0.66484E-02	0.79542E-02	0.92599E-02	0.78281E-02	0.400	0.45192E-02	0.62884E-02	0.80576E-02	0.98268E-02	0.78868E-02
-0.450	0.22182E-02	0.27981E-02	0.33780E-02	0.39579E-02	0.33220E-02	0.450	0.20530E-02	0.27844E-02	0.35158E-02	0.42472E-02	0.34452E-02
-0.500	0.97076E-03	0.12509E-02	0.155.99E-02	0.18110E-02	0.15039E-02	0.500	0.10104E-02	0.13489E-02	0.16873E-02	0.20258E-02	0.16546E-02
-0.550	0.44385E-03	0.58846E-03	0.73307E-03	0.87768E-03	0.71911E-03	0.550	0.52651E-03	0.69807E-03	0.86963E-03	0.10412E-02	0.85307E-03
-0.600	0.21078E-03	0.28958E-03	0.36838E-03	0.44718E-03	0.36077E-03	0.600	0.28547E-03	0.37918E-03	0.47290E-03	0.56662E-03	0.46385E-03
-0.650	0.10359E-03	0.14847E-03	0.19336E-03	0.23824E-03	0.18902E-03	0.650	0.15902E-03	0.21352E-03	0.26802E-03	0.32252E-03	0.26276E-03
-0.700	0.52521E-04	0.79044E-04	0.10557E-03	0.13209E-03	0.10301E-03	0.700	0.90102E-04	0.12352E-03	0.15694E-03	0.19036E-03	0.15372E-03
-0.750	0.27390E-04	0.43553E-04	0.59717E-04	0.75880E-04	0.58156E-04	0.750	0.51559E-04	0.73006E-04	0.94453E-04	0.11590E-03	0.92383E-04
-0.800	0.14667E-04	0.24776E-04	0.34885E-04	0.44994E-04	0.33909E-04	0.800	0.29674E-04	0.43991E-04	0.58307E-04	0.72624E-04	0.56925E-04
-0.850	0.80317E-05	0.14495E-04	0.20959E-04	0.27423E-04	0.20335E-04	0.850	0.17140E-04	0.27031E-04	0.36922E-04	0.46813E-04	0.35967E-04
-0.900	0.4474E-05	0.86858E-05	0.12897E-04	0.17109E-04	0.12491E-04	0.900	0.99222E-05	0.16966E-04	0.24009E-04	0.31053E-04	0.23329E-04
-0.950	0.25287E-05	0.53171E-05	0.81054E-05	0.10894E-04	0.78362E-05	0.950	0.57538E-05	0.10906E-04	0.16058E-04	0.21210E-04	0.15561E-04
-1.000	0.14465E-05	0.33183E-05	0.51900E-05	0.70618E-05	0.50093E-05	1.000	0.33421E-05	0.72017E-05	0.11061E-04	0.14921E-04	0.10689E-04
-1.050	0.83593E-06	0.21073E-05	0.33787E-05	0.46502E-05	0.32560E-05	1.050	0.19443E-05	0.48982E-05	0.78521E-05	0.10806E-04	0.75669E-05
-1.100	0.48727E-06	0.13597E-05	0.22320E-05	0.31044E-05	0.21478E-05	1.100	0.11328E-05	0.34375E-05	0.57422E-05	0.80468E-05	0.S5196E-05
-1.150	0.28612E-06	0.88992E-06	0.14937E-05	0.20975E-05	0.14354E-05	1.150	0.66106E-06	0.24907E-05	0.43203E-05	0.61499E-05	0.41436E-05
-1.200	0.16907E-06	0.59005E-06	0.10110E-05	0.14320E-05	0.97039E-06	1.200	0.38633E-06	0.18619E-05	0.33374E-05	0.48130E-05	0.31950E-05

+2 std. dev. 90/95% spectra Weighted mean +1 std. dev. 0.8 Figure 2-16 Gust Load Spectra: Single and Twin-Engine Special Usage ŧ 0.4 Acceleration Fraction, a / a LIF -0.4 10₀ 10^{-2} 10-3 10-4 10.5 10-1 101

1.2

2-40

Table 2-17 Maneuver Load Spectra: Single and Twin-Engine Special Usage

Accel, V Fraction	Accel. Weighted mean 11std. dev. Fraction	•1 std. dev.	+2 std. dev.	·3 std. dev.	90/95% spectra Accel. Weighted mean 11std.dev. Fraction	Accel. V Fraction	Veighted mean	•1 std. dev.	·2 std. dev.	·3 std. dev.	90/95% spectra
0.100 0.150 0.250 0.350 0.350 0.350 0.550 0.550 0.750 0.750 0.750	0.14450E-01 0.12207E-00 0.19716E-01 0.44568E-02 0.12389E-02 0.39786E-03 0.56351E-04 0.23212E-04 0.93841E-05 0.37075E-05 0.14832E-06 0.24975E-06	0.15991E-02 0.31503E-00 0.3121E-01 0.70365E-02 0.19970E-02 0.28279E-03 0.12804E-03 0.1249E-04 0.1449E-04 0.1449E-04 0.13371E-05 0.33812E-06	0.30536E-02 0.50798E-00 0.48525E-01 0.26162E-02 0.27551E-02 0.99492E-03 0.19972E-03 0.50492E-04 0.50492E-04 0.25192E-04 0.25192E-04 0.25192E-04 0.25192E-04	0.45082E-02 0.70094E-01 0.62930E-01 0.32132E-02 0.35132E-02 0.56197E-03 0.27141E-03 0.71046E-04 0.35934E-04 0.1555E-04 0.17555E-04 0.81259E-05 0.14025E-05	0.29132E·02 0.48935E·00 0.47134E·01 0.95610E·02 0.26819E·02 0.9610E·03 0.19280E·03 0.19280E·04 0.24154E·04 0.24154E·04 0.53761E·05 0.23195E·05	0.100 0.150 0.250 0.250 0.330 0.440 0.450 0.550	0.44303E-00 0.17647E-00 0.85140E-01 0.41079E-01 0.18585E-01 0.1750E-02 0.11750E-02 0.44681E-03 0.17229E-03 0.67747E-04 0.27000E-04 0.1025E-04 0.46629E-05 0.46629E-05 0.80245E-06 0.40252E-06 0.8275E-06 0.83673E-07 0.38573E-07 0.38573E-07	0.16498E-01 0.29646E-00 0.11121E-00 0.49670E-01 0.96250E-02 0.18029E-02 0.18029E-02 0.18029E-02 0.18029E-03 0.16253E-03 0.16253E-04 0.25850E-04 0.27850E-04 0.27850E-04 0.27850E-04 0.27850E-04 0.20034E-04 0.1311E-04 0.1167E-04	0.28566E-01 0.41645E-00 0.13729E-00 0.58261E-01 0.25880E-01 0.51350E-02 0.72072E-03 0.72072E-03 0.20631E-03 0.10551E-03 0.10551E-04 0.20539E-04 0.20539E-04 0.20539E-04 0.20539E-04 0.20539E-04 0.20539E-04 0.20539E-04	0.40634E-01 0.53645E-00 0.16336E-00 0.66852E-01 0.013284E-01 0.61640E-02 0.3058E-02 0.99494E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.64002E-03 0.1412E-03 0.65073E-04 0.65073E-04 0.6677E-04	0.27401 E-01 0.40487E-00 0.13477E-00 0.57432E-01 0.25528E-01 0.11278E-01 0.50356E-02 0.23702E-02 0.69424E-03 0.43084E-03 0.43084E-03 0.13970E-03 0.19689E-03 0.10051E-04 0.72733E-04 0.72733E-04 0.72734E-04 0.72734E-04 0.72734E-04
						1.200	0.39041E-08	0.33886E-05	0.67733E-05	0.10158E-04	0.64465E-05

+2 std. dev. 90/95% spectra Weighted mean - +1 std. dev. 0.8 Figure 2-17 Maneuver Load Spectra: Single and Twin-Engine Special Usage 0.4 Acceleration Fraction, a -0.4 100 10^{-2} 10.3 10-4 10.5 101 10^{-6} 10.1

LL.F

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table 2-18 Gust Load Spectra: Single and Twin-Engine Pressurized General Usage

Accel. V Fraction	Accel. Weighted mean 11std. dev. Fraction	•1 std. dev.	·2 std. dev.	•3 std. dev.	90/95% spectra Accel. Weighted mean .1 std. dev. Fraction	Accel. V Fraction	Veighted mean	•1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra
-0.200	0.10535E-01	0.16872E+00	0.32691E+00	0.48510E+00	0.36352E+00	0.200	0.13600E-01	0.47515E+00	0.93669E+00	0.13982E-01	0.10435E+01
-0.250	0.33603E-02	0.36863E-01	0.70365E-01	0.10387E+00	0.78119E-01	0.250	0.37495E-02	0.76446E-01	0.14914E.00	0.22184E+00	0.16597E+00
-0.300	0.12185E-02	0.10705E-01	0.20191E-01	0.29678E-01	0.22387E-01	0.300	0.12117E-02	0.17868E-01	0.34525E-01	0.51181E-01	0.38380E-01
-0.350	0.47009E-03	0.37459E-02	0.70216E-02	0.10297E-01	0.77798E-02	0.350	0.43063E-03	0.53709E-02	0.10311E-01	0.15252E-01	0.11455E-01
-0.400	0.18687E-03	0.14926E-02	0.27984E-02	0.41041E-02	0.31006E-02	00,100	0.16609E-03	0.19353E-02	0.37045E-02	0.54737E-02	0.41139E-02
-0.450	0.75480E-04	0.65538E-03	0.12353E-02	0.18152E-02	0.13695E-02	0.450	0.69962E-04	0.80133E-03	0.15327E-02	0.22641E-02	0.17020E-02
-0.500	0.30901E-04	0.31099E-03	0.59108E-03	0.87117E-03	0.65591E-03	0.500	0.32396E-04	0.37087E-03	0.70934E-03	0.10478E-02	0.78767E-03
-0.550	0.12872E-04	0.15748E-03	0.30210E-03	0.44671E-03	0.33556E-03	0.550	0.16189E-04	0.18775E-03	0.35931E-03	0.53087E-03	0.39902E-03
-0.600	0.55147E-05	0.84317E-04	0.16312E-03	0.24192E-03	0.18136E-03	0.600	0.85120E-05	0.10223E-03	0.19595E-03	0.28967E-03	0.21764E-03
-0.650	0.24398E-05	0.47325E-04	0.92209E-04	0.13709E-03	0.10260E-03	0.650	0.45857E-05	0.59086E-04	0.11359E-03	0.16809E-03	0.12620E-03
-0.700	0.11108E-05	0.27634E-04	0.54157E-04	0.80680E-04	0.60295E-04	0.700	0.24834E-05	0.35904E-04	0.69324E-04	0.10274E-03	0.77059E-04
-0.750	0.51808E-06	0.16681E-04	0.32844E-04	0.49007E-04	0.36585E-04	0.750	0.13484E-05	0.22796E-04	0.44243E-04	0.65690E-04	0.49207E-04
-0.800	0.24644E-06	0.10356E-04	0.20465E-04	0.30574E-04	0.22804E-04	0.800	0.73310E-06	0.15050E-04	0.29366E-04	0.43683E-04	0.32680E-04
-0.850	0.11905E-06	0.65828E-05	0.13047E-04	0.19510E-04	0.14543E-04	0.850	0.39891E-06	0.10290E-04	0.20181E-04	0.30072E-04	0.22470E-04
006:0-	0.58198E-07	0.42696E-05	0.84809E-05	0.12692E-04	0.94556E-05	0.600	0.21718E-06	0.72607E-05	0.14304E-04	0.21348E-04	0.15934E-04
-0.950	0.28709E-07	0.28171E-05	0.56054E-05	0.83938E-05	0.62507E-05	0.950	0.11829E-06	0.52704E-05	0.10422E-04	0.15574E-04	0.11615E-04
-1.000	0.14259E-07	0.18860E-05	0.37578E-05	0.56296E-05	0.41910E-05	1.000	0.64447E-07	0.39241E-05	0.77837E-05	0.11643E-04	0.86770E-05
-1.050	0.71191E-08	0.12785E-05	0.25499E-05	0.38213E-05	0.28442E-05						
-1.100	0.35686E-08	0.87596E-06	0.17483E-05	0.26207E-05	0.19502E-05						
-1.150	0.17944E-08	0.60559E-06	0.12094E-05	0.18132E-05	0.13491E-05						
-1.200	0.90453E-09	0.42189E-06	0.84287E-06	0.12638E-05	0.94030E-06						

Weighted mean 90/95% spectra +1 std. dev. +2 std. dev. Figure 2-18 Gust Load Spectra: Single and Twin-Engine Pressurized General Usage 0.8 į 0.4 -0.4 -0.8 10₀ 10^{-2} 10.5 10-3 10.1 10-4 10¹

Acceleration Fraction, a / a

Cumulative Frequency of Exceedance Cumulative No. Occurrences/Nautical Mile

Table 2-19 Maneuver Load Spectra: Single and Twin-Engine Pressurized General Usage

Accel, W Fraction	Accel. Weighted mean .1 std. dev.	·1 std. dev.	·2 std. dev.	+3 std. dev.	90/95% spectra	Accel. V Fraction	Accel. Weighted mean Fraction	·1 std. dev.	-2 std. dev.	•3 std. dev.	90/95% spectra
-0.150	0.79476E-02	0.20091E-00	0.39386E-00	0.58682E·00	0.43852E-00	0.150	0.57296E-02	0.12572E+00	0.24571E·00	0.36571E·00	0.27348E+00
-0.200	0.73681E-03	0.15141E-01	0.29546E-01	0.43951E-01	0.32880E-01	0.200	0.97738E-03	0.27051E-01	0.53125E-01	0.79198E-01	0.59159E-01
-0.250	0.11667E-03	0.26963E-02	0.52760E-02	0.78557E-02	•	0.250	0.25949E-03	0.88505E-02	0.17441E-01	0.26033E-01	0.19430E-01
-0.300	0.26463E-04	0.78455E-03	0.15426E-02	0.23007E-02	0.17181E-02	0.300	0.92103E-04	0.37394E-02	0.73867E-02	0.11034E-01	0.82309E-02
-0.350	0.75056E-05	0.30604E-03	0.60457E-03	0.90310E-03		0.350	0.39387E-04	0.18686E-02	0.36979E-02	0.55271E-02	0.41213E-02
0.400	0.25593E-05	0.14215E-03	0.28174E-03	0.42133E-03		0.400	0.18940E-04	0.10480E-02	0.20770E-02	0.31060E-02	0.23152E-02
-0.450	0.10462E-05	0.72733E-04	0.14442E-03	0.21611E-03		0.450	0.96859E-05	0.63763E-03	0.12656E-02	0.18935E-02	0.14109E-02
-0.500	0.49281E-06	0.38830E-04	0.77167E-04	0.11550E-03	_	0.500	0.51005E-05	0.41139E-03	0.81768E-03	0.12240E-02	0.91171E-03
-0.550	0.25257E-06	0.20806E-04	0.41360E-04	0.61914E-04		0.550	0.27396E-05	0.27696E-03	0.55117E-03	0.82539E-03	0.61464E-03
-0.600	0.13500E-06	0.10877E-04	0.21619E-04	0.32361E-04	0.24105E-04	0.600	0.14920E-05	0.19225E-03	0.38301E-03	0.57376E-03	0.42715E-03
-0.650	0.73543E-07	0.54308E-05	0.10788E-04	0.16145E-04	0.12028E-04	0.650	0.82041E-06	0.13635E-03	0.27187E-03	0.40740E-03	0.30324E-03
0.700	0.40397E-07	0.25481E-05	0.50558E-05	0.75635E-05	0.56362E-05	0.700	0.45417E-06	0.98099E-04	0.19574E-03	0.29339E-03	0.21834E-03
0.750	0.22268E-07	0.11097E-05	0.21970E-05	0.32844E-05	0.24487E-05	0.750	0.25259E-06	0.71195E-04	0.14214E-03	0.21308E-03	0.15856E-03
-0.800	0.12293E-07	0.4448E-06	0.87667E-06	0.13089E-05	0.97669E-06	0.800	0.14092E-06	0.51881E-04	0.10362E-03	0.15536E-03	0.11560E-03
						0.850	0.78797E-07	0.37819E-04	0.75560E-04	0.11330E-03	0.84294E-04
						0.60	0.44123E-07	0.27492E-04	0.54939E-04	0.82386E-04	0.61291E-04
						0.950	0.24732E-07	0.19876E-04	0.39728E-04	0.59580E-04	0.44322E-04
						1.000	0.13873E-07	0.14262E-04	0.28509E-04	0.42757E-04	0.31807E-04

Figure 2-19 Maneuver Load Spectra: Single and Twin-Engine Pressurized General Usage

		•	
		•	٠
			1
		•	
		•	
			•

3. CONCLUSIONS

3.1 Statistical Analysis

A general procedure has been presented for the development of representative gust and maneuver normal acceleration cumulative exceedance spectra for a group of airplanes having varying data collection times. The process consists of curve fitting the individual airplane repeated loads data; computing the mean weighted by flight time, weighted standard deviation, pooled standard deviation, and 90% probability/95% confidence spectra; and analyzing the distribution of the data. Curve fitting the individual airplane data was the most difficult aspect of the process. A general least squares curve fit equation was applied by trial and error to obtain the best fit for each airplane. This process required a considerable amount of iteration for most airplanes. An improvement would be a curve fit method that required no iteration. The methods used to compute the 90% probability/95% confidence spectra also merit further study. It was assumed that all of the data was from a normal population. The cumulative frequency of exceedance histograms in Appendix E demonstrate that this is not the case: the data does not follow a normal distribution.

3.2 General

Since the information and data presented are based on flight measurements, it is prudent to continue to improve their statistical significance. Such improvements can be obtained by using current technology instrumentation, more airplanes added to the sample in a continuing program, and further analysis of all available data.

The original NASA VGH program focused on normal (z-direction) accelerations. A similar program is needed for fatigue of vertical aerodynamic surfaces such as fins, rudders, winglets, and their supporting structures. A lateral gust (y-direction), and corresponding maneuver loads program would be a valuable supplement to the work presently completed.

3.3 Comparison of Normal Acceleration Exceedance Spectra

The following observations are made for the 90% probability/ 95% confidence spectra, by visual comparison of overlays of the following figures:

a. Gust Spectra

(1) Single-Engine General Usage, Fig. 2-6 (34 airplanes): There is negligible difference when comparing this spectrum with the Basic Flight Instruction, Fig.2-2 (10 airplanes), and Business/Personal, Fig. 2-4 (24 airplanes), spectra. Fig. 2-6 contains all the data in Figs. 2-2 and 2-4.

- (2) The Single-Engine General Usage, Fig. 2-6 (34 airplanes), and the Twin-Engine General Usage, Fig. 2-12 (8 airplanes), curves are very close, except the Single-Engine curves are slightly less severe at acceleration fractions greater than 0.4 and less than -0.2.
- (3) Special Usage: The spectrum, Fig. 2-16 (7 airplanes) combining both Single-Engine, Fig. 2-8 (4 airplanes), and Twin-Engine, Fig. 2-14 (3 airplanes) is very close to the individual spectra. It is recommended to use the combined spectrum, Fig. 2-16, which includes all of the available small airplane Special Usage data and, therefore should be more statistically significant.
- (4) The combined Special Usage spectrum (Fig. 2-16) is more severe than either the Single-Engine (Fig. 2-6) or the Twin-Engine General Usage spectrum (Fig. 2-12). This is as expected since Special Usage operations are generally flown at low altitudes where turbulence is greater.
- (5) The Pressurized General Usage spectrum (Single and Twin-Engine combined), Fig. 2-18, is very close to the Single Engine (Fig. 2-6) and Twin-Engine General Usage spectra (Fig. 2-12). However, the mean curve is lower, reflecting the higher altitude operations for pressurized airplanes. The pressurized operations are only for 3 airplanes. It is expected that if more data were available, the 90% probability/95% confidence curves would decrease in severity with a larger sample size.
- (6) The Aerial Application spectrum, Fig. 2-10 (25 single-engine airplanes), is nearly identical to the Single-Engine General Usage spectrum (Fig. 2-6). Although these airplanes are operated at very low altitude, they are usually flown early in the day when wind (and turbulence) is very low. The Aerial Application spectrum also compares very closely with the Twin-Engine General Usage spectrum (Fig. 2-12).

b. Maneuver Spectra

- (1) The Single-Engine Basic Flight Instruction, Fig. 2-3 (10 airplanes), spectrum is more severe than the Single-Engine Business/Personal, Fig. 2-5 (24 airplanes) spectrum. The positive mean spectrum is very much less severe for the latter group and this indicates the wide variability in usage of Business/Personal type airplanes.
- (2) The Single-Engine General Usage spectrum, Fig. 2-7, (34 airplanes) combines the data in the Basic Flight Instruction and Business/Personal subgroups (discussed in b(1) above) and lies between those two spectra. It appears to be a close representation of the two sub-groups.

- (3) The Single-Engine General Usage, Fig. 2-7 (34 airplanes), and the Twin-Engine General Usage, Fig. 2-13 (8 airplanes), curves are very close (although the means differ considerably).
- (4) Special Usage: The spectrum, Fig. 2-17 (7 airplanes) combining both Single-Engine, Fig. 2-9 (4 airplanes), and Twin-Engine, Fig. 2-15 (3 airplanes) is very close to the individual spectra. It is recommended to use the combined spectrum, Fig. 2-17, which includes all of the available small airplane Special Usage data and, therefore should be more statistically significant.

The Special Usage (combined) spectrum, Fig. 2-17, is very close to the Single-Engine General Usage spectrum, Fig. 2-7, except it is more severe for the acceleration fraction range 0.1 to 0.6.

- (5) The Pressurized General Usage spectrum (Single and Twin-Engine combined), Fig. 2-19, is very close to the Single Engine (Fig. 2-7) and Twin-Engine General Usage spectra (Fig. 2-13). However, the mean spectrum is lower, reflecting the expectation of less maneuvering with higher altitude operations for pressurized airplanes. The pressurized operations are only for 3 airplanes. It is expected that if more data were available, the 90% probability/95% confidence spectrum would decrease in severity with a larger sample size.
- (6) The Aerial Application spectrum, Fig. 2-11 (25 single-engine airplanes) is very much more severe than all of the other maneuver spectra. To illustrate, it is about 200 times more severe than the Single-Engine General Usage spectrum, Fig. 2-7, at an acceleration fraction of 6.4.

3.4 Analytical Studies and Future Work

This is discussed in Section 1.6 (page 1-4). The effect (or confirmation of negligible effect) on airplane fatigue life of the load spectra comparisons made above should also be studied analytically.

		:
		•
		-

4. REFERENCES

- 1. Anon., "Fatigue Evaluation of Wing and Associated Structure on Small Airplanes," Report No. AFS-120-73-2, Federal Aviation Administration, Washington, D.C., 1973.
- 2. Jewel, Joseph W., Jr., "Tabulation of Recorded Gust and Maneuver Accelerations and Derived Gust Velocities for Airplanes in the NASA VGH General Aviation Program," NASA Technical Memorandum 84660, Langley Research Center, Hampton, Virginia, September 1983.
- 3. Reyer, W. M., and Ogg, J.C., "Tabulated Data Report (NASA VGH General Aviation Program)," KU-FRL-689-5, Flight Research Laboratory, The University of Kansas Center for Research, Inc., Lawrence, Kansas, July 1986.
- 4. Jewel, Joseph W., Jr., "Flight Duration, Airspeed Practices, and Altitude Management of Airplanes involved in the NASA VGH General Aviation Program," NASA TM 89074, Langley Research Center, Hampton, Virginia, August 1987.
- 5. Gabriel, Edward A., "A Study of the Expanded NASA VGH Data Base and Revision of Fatigue Spectra in FAA Report AFS-120-73-2," FAA ACE-111 Report, Kansas City, Missouri, Revision A, December 1, 1988.
- Gabriel, Edward A., "An Investigation of Statistical Analysis of Fatigue Load (VGH) Data to Establish Representative Spectra with Selected Confidence Levels," FAA ACE-111 Report, Kansas City, Missouri, December 9, 1988 (Revised September 9, 1989).
- 7. Gabriel, Edward A. (Chairman), "Part 23 Airplane Fatigue Working Group Meeting, February 15, 1990: Wing Fatigue," FAA ACE-111 Report, Kansas City, Missouri, January 7, 1991.
- 8. Anon., "Metallic Materials and Elements for Aerospace Vehicle Structures," *Military Handbook 5E*, Volume 1, June 1, 1987.
- 9. Federal Aviation Regulations, Part 23, "Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes," Department of Transportation, Federal Aviation Administration. (The original Part 23 was effective February 1, 1965. The current Part 23 includes amendments through 23-42; the latter was effective February 4, 1991.)
- 10. Egner, J.W., and Ogg, J.C., "Phase I: Agricultural Aircraft Operations," KU-FRL-689-1 (Volume 1), Flight Research Laboratory University of Kansas Center for Research, Inc., Lawrence, Kansas, June 1985.

- 11. Reyer, W.M., and Ogg, J.C., "Phase III: Twin-Engine Instruction Operations," KU-FRL-689-3, University of Kansas Center for Research, Inc., Lawrence, Kansas, August 1985.
- 12. Reyer, W.M., and Ogg, J.C., "Phase IV: Assorted Operations," KU-FRL-689-4, University of Kansas Center for Research, Inc., Lawrence, Kansas, August 1985.
- 13. Pratt, Kermit G., and Walker, Walter G., "A Revised Gust-Load Formula and a Re-Evaluation of V-G Data Taken on Civil Transport Airplanes from 1933 to 1950," NACA Technical Report 1206, dated 1954. (Supersedes NACA TN's 2964 by Kermit G. Pratt and 3041 by Walter G. Walker.)
- 14. Hoblit, Frederic M., "Gust Loads on Aircraft: Concepts and Applications," American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1988.
- 15. Rustenburg, John W., "Development of Generalized Gust Exceedance Curves for Low Altitude Contour Flight," USAF Technical Report ASD-TR-88-5001, Wright-Patterson AFB, Ohio, May 1988.
- 16. Snedecor, G. W., and Cochran, W. G., "Statistical Methods," Iowa State University Press, Ames, Iowa, 1989.
- 17. Richardson, Norman R., "NACA VGH Recorder," NACA TN 2265, 1951.
- 18. Staff of Langley Airworthiness Branch, "Operational Experiences of Turbine-Powered Commercial Transport Airplanes," NASA TN D-1392, 1962.
- "Instructions for Processing Photographic-Type VGH Oscillograms," KU-FRL report under document DTFA09-84-C-20292, DOT/FAA/ACE-100 Contract Specifications, KU Center for Research, Inc., Project 6890, July 11, 1984.

APPENDIX A:

AIRPLANE DESCRIPTIVE DATA

This appendix contains data describing the airplanes in the NASA VGH General Aviation Program (Refs. 2 and 4). Airplane manufacturers' model designations have been purposely omitted. Each specific airplane type was assigned a number, and different models of that type were assigned a letter designation after the number. Types of airplane operations selected to represent general aviation usage are as follows: twin-engine executive, single-engine executive, personal, instructional, commercial survey, aerial application, aerobatic, commuter, and floatplane. When there were two or more airplanes of the same type or model, a numerical superscript was used to distinguish one from the other, thereby noting the 1 se of the same airplane type and model in different operations and different geographical locations.

TABLE A-1: GROUP 1A -- SINGLE-ENGINE, INSTRUCTIONAL

				AIRPLANE			
CHARACTERISTIC	12B	14	14A	15	16	17	18
Maximum weight, lb	2150	2450	2200	2250	1650	1500	1500
Wing span, ft	30.0	32.8	32.8	92.0	30.0	33.4	35.2
Wing area, ft ²	160.0	146.0	146.0	180.0	147.0	160.0	170.0
Type propulsion Power per engine, hp	Piston 140	Piston 180	Piston 150	Piston 150	Piston 108	Piston 100	Piston 95
$ m V_C$ at sea level, knots	122	128	128	117	96	104	28
V _{NE} at sea level, knots	148	162	162	. , T	129	137	117
${ m V_D}$ at sea level, knots	165	180	180	164	143	152	130
n_{m} at V_{C}	3.80	4.40	4.40	3.60	4.40	4.40	4.52
-n _m at V _C	1.52	1.90	1.90	1.52	1.76	1.76	1.20
$_{ m g}$ at ${ m V}_{ m C}$	3.30	^a 3.58	93.80	^a 3.46	3.00	3.46	3.38
-ng at V _C	1.30	^a 1.58	⁸ 1.80	^a 1.46	1.00	1.46	1.38

^aCalculated.

TABLE A-2: GROUP 1B -- SINGLE-ENGINE, EXECUTIVE

					AIRPLANE	E			
CHARACTERISTIC	*9	7	7A	7B	<i>21</i>	8	8 A	6	9A
Maximum weight, lb	4000	3400	3300	3125	2650	3200	2900	2650	2500
Wing span, ft	36.8	33.5	33.5	33.5	32.8	36.0	36.0	36.0	36.0
Wing area, ft ²	175.0	181.0	181.0	181.0	177.6	178.0	178.0	174.0	174.0
Type propulsion Power per engine, hp	Piston 310	Piston 180	Piston 285	Piston 260	Piston 185	Piston 260	Piston 250	Piston 230	Piston 225
V _C at sea level, knots	165	285	165	161	139	156	156	139	139
V _{NE} at sea level, knots	198	195	195	195	175	197	197	162	160
V_{D} at sea level, knots	220	217	217	217	217	219	219	180	177
n _m at V _C	3.80	4.40	4.40	4.40	4.40	3.80	3.80	3.80	3.80
-n _m at V _C	1.52	1.76	1.76	1.76	1.76	1.52	1.52	1.52	1.52
$_{ m n_g}$ at $ m V_C$	3.30	3.37	3.35	3.43	3.40	3.48	3.65	3.33	3.50
-ng at V _C	1.30	1.37	1.35	1.43	1.40	1.48	1.65	1.33	1.50

*This airplane is also included in Group 6.

TABLE A-3: GROUP 1B -- SINGLE-ENGINE, PERSONAL

				AIRF	AIRPLANE			
CHARACTERISTIC	10	10A	11	12	12A	13	28 ^b	41 ^c
Maximum weight, lb	2740	2575	2475	2400	2200	2250	1500	5090
Wing span, ft	35.0	35.0	35.0	30.0	30.0	36.0	35.2	48.0
Wing area, ft ²	167.0	167.0	180.0	160.0	160.0	174.0	178.5	250.0
Type propulsion Power per engine, hp	Piston 200	Piston 180	Piston 180	Piston 180	Piston 160	Piston 174.0	Piston 95	Piston 450
V _C at sea level, knots	152	130	122	122	122	122	26	126
V _{NE} at sea level, knots	175	164	153	148	148	139	129	135
V _D at sea level, knots	194	182	170	165	165	165	143	152
n _m at V _C	3.80	3.80	3.80	3.80	3.80	3.80	4.40	69.E ⁸
-n _m at V _C	1.52	1.52	1.52	1.52	1.52	1.52	1.76	a _{1.48}
ng at V _C	3.37	3.42	^a 3.41	3.30	3.30	3.39	3.59	₈ 2.79
$^{-n_{ m g}}$ at ${ m V}_{ m C}$	1.37	1.42	⁸ 1.41	1.30	1.30	1.39	1.59	⁸ 0.79

^aCalculated. ^bUsed in commercial fish spotting operations.

'Floatplane used in "bush" operations.

TABLE A-4: GROUP 2 -- SINGLE-ENGINE, SPECIAL USAGE

CHARACTERISTIC	6A	9B	171	27
Maximum weight, lb	3800	2800	1500	2950
Wing span, ft	36.8	36.2	33.4	32.8
Wing area, ft ²	175.0	174.0	160.0	177.6
Type propulsion Power per engine, hp	Piston 285	Piston 230	Piston 100	Piston 225
V _C at sea level, knots	165	139	104	152
V _{NE} at sea level, knots	195	167	137	219
V _D at sea level, knots	217	186	152	243
$n_{\rm m}$ at $V_{ m C}$	3.80	3.80	4.40	6.00
-n _m at V _C	1.52	1.52	1.76	3.00
$_{ m n_g}$ at $ m V_C$	3.41	3.33	3.46	3.26
$^{-n_{ m g}}$ at ${ m V}_{ m C}$	1.41	1.33	1.46	1.26

TABLE A.5: GROUP 3 -- AERIAL APPLICATION

					7	AIRPLANE	E					
CHARACTERISTIC	29	30	30A	31	32	33	33A	34	35	36	36A	37
Maximum weight, lb	8200	0069	0009	0069	9209	6075	6075	4400	4200	4000	3800	2900
Wing span, ft	44.4	44.4	42.6	45.1	Upper 35.7*	Upper 35.7*	Upper 35.7*	38.8	41.1	40.7	40.7	36.2
Wing area, ${ m ft}^2$	326.6	326.6	312.4	270.6	328.0	326.0	326.0	255.0	208.7	202.0	202.0	183.0
Type propulsion Power per engine, hp	Turboprop 750	Piston 600	Piston 650	Piston 600	Turboprop 750	Piston 650	Piston 600	Piston 285	Piston 300	Piston 300	Piston 230	Piston 235
V _C at sea level, knots	117	117	109	113	128	128	128	130	125	125	125	108
V _{NE} at sea level	148	148	138	153	128	128	128	158	158	1158	158	135
V _D at sea level, knots	164	164	153	170	142	142	142	175	175	175	175	151
n _m at V _C	3.80	3.80	3.80	3.80	4.20	4.20	4.20	3.80	3.80	3.80	3.80	3.80
-n _m at V _C	1.52	1.90	1.90	1.90	1.00	1.00	1.00	1.52	1.52	1.52	1.52	1.52
ng at V _C	b3.07	^b 2.78	^b 2.78	2.51	⁶ 2.60	^b 2.62	_b 2.62	3.25	3.31	3.31	3.31	2.83
$^{-n}_{ m g}$ at ${ m V}_{ m C}$	b _{1.07}	^b 0.78	_b 0.78	0.51	₉ 0.60	^b 0.62	b _{0.62}	1.25	1.31	1.31	1.31	0.83

 All airplanes, except 30A and 37, are Restricted Category.
 All airplanes are single engine.
 * indicates Biplane Notes:

* indicates Biplane.

TABLE A-6: GROUP 4 -- TWIN-ENGINE, GENERAL USAGE

CHARACTERISTIC	4	¥¥	5	39	40
Maximum weight, lb	4830	2300	4800	11,600	10,400
Wing span, ft	36.0	37.0	37.0	65.0	45.9
Wing area, ${ m tt}^2$	175.0	179.0	207.0	420.0	279.7
Type propulsion Power per engine, hp	Piston 260	Piston 260	Piston 250	Turboprop 550	Turboprop 550
V _C at sea level, knots	182	182	172	160	226
V _{NE} at sea level, knots	215	223	216	178	254
V _D at sea level, knots	239	248	240	225	282
$n_{ m m}$ at $V_{ m C}$	3.80	3.80	3.80	3.21	3.29
-n _m at V _C	1.52	1.52	1.52	1.50	1.32
$n_{f g}$ at $V_{f C}$	2.97	2.84	3.10	3.35	2.95
-ng at $ m V_C$	0.97	0.84	1.10	1.35	0.95

TABLE A-7: GROUP 5 -- TWIN-ENGINE, SPECIAL USAGE

		AIRPLANE	
CHARACTERISTIC	4^1	25	26
Maximum weight, lb	4830	5400	4300
Wing span, ft	36.0	37.8	38.0
Wing area, ft ²	175.0	199.2	201
Type propulsion Power per engine, hp	Piston 260	Piston 285	Piston 210
V _C at sea level, knots	182	195	165
V _{NE} at sea level, knots	215	223	202
V _D at sea level, knots	239	247	215
n _m at V _C	3.80	4.20	3.80
-n _m at V _C	1.52	3.00	1.52
ng at V _C	2.97	3.20	3.16
$^{-n}_{ m g}$ at $ m V_{ m C}$	0.97	1.20	1.16

TABLE A-8: GROUP 6 -- PRESSURIZED, GENERAL USAGE

	AIRPLANE	ANE
CHARACTERISTIC	3	*9
Maximum weight, lb	0006	4000
Wing span, ft	45.9	36.8
Wing area, ft ²	279.9	175.0
Type propulsion	Turboprop	Piston
Power per engme, hp	500 Twin-Engine	o 10 Single-Engine
V _C at sea level, knots	208	165
V _{NE} at sea level, knots	234	198
V _D at sea level, knots	260	220
n _m at V _C	3.40	3.80
-n _m at V _C	1.68	1.52
$_{ m ng}$ at $ m V_{ m C}$	3.10	3.30
$-n_{ m g}$ at $ m V_{ m C}$	1.10	1.30

*This airplane is also included in Group 1B.

TABLE A-9: TWIN-ENGINE, EXECUTIVE JET

	Twin-engine ex	Twin-engine executive operations for airplane type	airplane type
Airplane Data	1	2	2A
Maximum weight, lb	26,455	13,000	12,500
Wing span, ft	53.5	35.8	35.8
Wing area, ft ²	441	231.8	231.8
Type propulsion Thrust per engine, lb	Turbojet 4200	Turbojet 2850	Turbojet 2850
V_{C} at sea level, knots	388	350	350
V _{NE} at sea level, knots	437	300	358
$ m V_D$ at sea level, knots	485	400	400
$n_{\rm m}$ at $V_{ m C}$	2.50	4.40	4.40
-n _m at V _C	1.00	1.76	1.76
ng at $ m V_C$	4.40	3.44	3.44
$ ext{-n}_{ m g}$ at ${ m V}_{ m C}$	2.40	1.44	1.44

TABLE A-10: LARGE AIRPLANES, SPECIAL USAGE

)	Commercial survey operations for airplane type	survey opera	tions for air	plane type-	
Airplane Data	19	20	21	22	23	24
Maximum weight, lb	126,000	106,000	80,000	64,000	31,000	26,300
Wing span, ft	117.5	117.5	98.0	109.3	95.0	69.7
Wing area, ft ²	1463	1457	1000	1447	987.0	485.0
Type propulsion	Piston	Piston	Piston,	Piston	Piston	Piston
Power per engine, hp Thrust per engine, lb	3250	2400	turbojet 3500 3400	3250	1475	1525
V _C at sea level, knots	269	260	175	†NA	163	130
V _{NE} at sea level, knots	313	313	225	NA	188	336
V _D at sea level, knots	346	346	360	†NA	209	373
n _m at V _C	2.50	2.50	3.00	3.00	2.50	3.00
-n _m at V _C	1.00	1.00	1.00	1.00	1.00	1.00
ng at V _C	*2.42	*2.79	*2.31	*2.81	*3.74	*3.16
-ng at V _C	*0.42	*0.79	*0.31	*0.81	*1.74	*1.16

*Calculated. †Not available.

TABLE A-11: AEROBATIC AIRPLANE

·	Aerobatic operations for airplane type
Airplane Data	38
Maximum weight, lb	1650
Wing span, ft	33.4
Wing area, ft ²	165.0
Type propulsion Power per engine, hp	Piston 150
V _C at sea level, knots	104
V _{NE} at sea level, knots	140
$ m V_D$ at sea level, knots	156
n _m at V _C	5.07
$^{-n}_{m}$ at $^{ m C}_{ m C}$	2.29
$n_{ m g}$ at ${ m V}_{ m C}$	4.38
-ng at V _C	2.38

APPENDIX B:

AIRPLANE IDENTIFICATION-NASA AND UNIVERSITY OF KANSAS

OPERATING ALTITUDES

OPERATING LOCATIONS

PRIMARY USE AND OPERATOR CATEGORY

AIRPLANE IDENTIFICATION EQUIVALENTS

(Cross Index)

NASA I.D.	KU I.D.
2	251-777
3	255-203
4	310-110
$\mathbf{4^{1}}$	310-117
6	210-140
6A	210-606
14	223-110
19	437-318
30	945-193
30A	945-634
31	190-410
32^1	782-722
33	781-395
$33A^2$	781-792
34^{1}	281-600
34^3	625-993
35	170-200
35^1	170-217
35^2	170-864
38	753-049
41	252-772

AIRPLANE IDENTIFICATION NUMBERS

1A. Single-Engine, Basic Flight Instructions (10 Airplanes)

<u>NASA</u>	<u>KU</u>	Home Base State	Altitude [*] , <u>Feet</u>	Comments
12B		NB	2,500	
12B ¹		IN	2,385	
$12B^2$		IL	2,170	
14	223-110	IL	1,705	
14A		ОН	2,380	
15		TX	2,720	
16		SC	1,505	
17		СО	6,905	
18		CA	2,000	
18 ¹		CA	2,030	
1B. Singl	e-Engine, Bu	siness/Personal	(24 Airplanes)	
6	210-140	NY	13,085	Executive class
7		MT	7,520	Executive class
7A		VA	4,765	Executive class
7B		NM	8,045	Executive class
7C		DC	4,555	Executive class
$7C^1$		NY	3,720	Executive class
8		ID	7,345	Executive class

^{*}From Table II, Ref. 4. Average Pressure Altitude.

NASA	<u>KU</u>	Home State Base	Altitude [*] , <u>Feet</u>	Comments
8A		WY	8,350	Executive class
8A ¹		TX	5,000	Executive class
9		IN	4,540	Executive class
9A		ID	7,395	Executive class
10	437-318	TX	6,120	Personal class
10 ¹		VA	3,515	Personal class
10A		CA	5,735	Personal class
11		CA	4,115	Personal class
12		FL	2,215	Personal class
12^1		FL	1,175	Personal class
12^2		FL	2,415	Personal class
12^3		SC	2,790	Personal class
12A		FL	1,440	Personal class
13		SC	3,005	Personal class
13 ¹		UT	6,755	Personal class
28		VA	1,705	Fish spotting
41	252-772	WA	2,505	Floatplane
2. Single-Engine, Special Usage (4 Airplanes)				
6A	210-606	WY	6,080	Pipeline patrol
9B		OR	6,895	Forest fire patrol and transport

^{*}From Table II, Ref. 4. Average Pressure Altitude.

<u>NASA</u>	<u>KU</u>	Home Base State	Altitude [*] , <u>Feet</u>	Comments
17 ¹		OK	1,150	Pipeline patrol
27		OR	5,060	Forest fire lead plane
3. Aerial A	pplication (2	5 Airplanes; all a	are single-engine.)	
29		AL	165	
29 ¹		TX	195	
30	945-193	OR	840	
30 ¹		NE	2,370	
30^2		OR	665	
30A	945-634	AZ	1,150	
31	190-410	AZ	2,995	
32		TX	85	
32^2		TX	535	
33	781-395	VA	490	
33 ¹		TX	10	
33A		CA	150	
33A ¹		TX	85	
33A ²	781-792	CA	145	
34		AZ	2,380	
34^1	281-600	TX	1,295	
34^2		FL	660	

^{*}From Table II, Ref. 4. Average Pressure Altitude.

NASA	<u>KU</u>	Home Base State	Altitude [*] , <u>Feet</u>	<u>Comments</u>	
34 ³	625-993	FL	195		
35	170-200	MT	4,980		
35 ¹	170-217	TX	1,350		
35 ²	170-864	TX	3,770		
36		TX	95		
36A		AZ	930		
37		FL	170		
37^1		TX	2,690		
4. Twin-E	ngine, Gene	ral Usage, (8 Ai	rplanes)		
4		WI	4,445	Charter, Check flights	
5		VA	4,695	Charter, Check flights	
5 ¹		CA	7,410	Business/Pleasure	
4A		FL	2,010	Flight instruction	
	255-203 310-110			Flight instruction	
39		CA	2,325	Commuter	
40		PA	4,280	Commuter	
5. Twin-Engine, Special Usage (3 Airplanes)					
4 ¹	310-117	ID	6,910	Forest fire lead plane	
25		NM	7,478	Forest fire lead plane	
26		NE	2,870	Pipeline patrol	

^{*}From Table II, Ref. 4. Average Pressure Altitude.

NASA	<u>KU</u>	Home Base State	Altitude [*] , <u>Feet</u>	<u>Comments</u>
6. Pressu	rized, Genera	al-Usage (3 Airpl	anes)	
3		KS	11,145	Twin, Turboprop
31		VA	9,915	Twin, Turboprop
6	210-140	NY	13,085 (11,400)	Single, Recip. (Estimated, including data reduced by KU.)
7. Twin-E	ngine, Execu	tive Jet (3 Airpl	anes)	
1		FL	24,535	
2	251-777	IA	29,905	
2A		ОН	23,215	
8. Large	Airplanes, Sp	ecial Usage (6 A	irplanes)	
19	437-318	OR	4,950	Forest fire fighting
19 ¹		AZ	5,165	Forest fire fighting
20		OR	5,015	Forest fire fighting
20^{1}		OR	5,368	Forest fire fighting
21		OR	5,260	Forest fire fighting
22		CA	2,960	Forest fire fighting
23		ID	8,162	Forest fire fighting
24		CA	2,905	Forest fire fighting
241		CA	2,920	Forest fire fighting
24 ²		CA	2,835	Forest fire fighting
24 ³		CA	3,355	Forest fire fighting
24 ⁴		CA	2,855	Forest fire fighting
24^5		CA	1,955	Forest fire fighting

^{*}From Table II, Ref. 4. Average Pressure Altitude.

NASA	<u>KU</u>	Home Base State	Altitude [*] , Feet	Comments
9. Acro	<u>batic Airplane</u>			
38	753-049	VA	1,660	Aerobatic flying

^{*}From Table II, Ref. 4. Average Pressure Altitude.

Map indicating instrumented airplane's home bases (Ref. 2).

■ Aerial application ▼ Commercial survey

Aerobatic

Commuter • Float

Instructional

▼ Personal

PRIMARY USE AND OPERATOR CATEGORY OF INSTRUMENTED AIRPLANES

(References 2 and 4)

Twin-engine executive:

Airplane type	Operated by	Primary use
1,2,2A,3 ¹	Companies	Business flights
1 ¹ ,1 ² ,1 ³ ,3	Airplane manufacturers	Flight demonstration; executive transport; cargo carrier
4 and 5	Fixed-base operator	Charter flights; transition to heavier aircraft; instrument flights; and check flights
s ¹	Individual	Ambulance; business; pleasure
Single-engine executi	ve:	
Airplane type	Operated by	Primary use
6,7c,7c ¹ ,9	Individuals	Business and pleasure flights
7,7A,7B,8A	Companies	Business and cargo flights
8,8A ¹ ,9A	Fixed-base operator	Charter flights for personnel and cargo; instrument check flights; transition to heavier aircraft

Personal:

Airplane type	Operated by	Primary use
10 ¹ ,10A,12,12 ¹ , 12 ² ,12 ³ ,12A,13,13 ¹	Flying club	Pleasure, business, and instructional flights
10	Indívidual	Pleasure and business flights
11	Fixed-base operator	Pleasure, business, and instructional flights
Instructional:		
Airplane type	Operated by	Primary use
12B,15,16,17, 18,18 ¹	Fixed-base operators	Basic flight instruction
12B ¹ ,12B ² ,14,14A	University	Basic flight instruction
4A	University	Twin-engine basic and advanced flight instruction; instrument instruction
Commercial survey:		
Airplane type	Operated by	Primary use
4 ¹ ,25,27	Contracted for by U.S. Forest Service	Lead planes for retardant tankers; check for excessive turbulence; mark drop site
98	Contracted for by U.S. Forest Service	Scout for forest fires; transport cargo and personnul
23	U.S. Forest Service	Smoke jumper for fire fighters; personnel and cargo carrier
$19,19^{1},20,20^{1},21,$ $22,24,24^{1},24^{2},24^{3}$ $24^{4},24^{5}$	Contracted for by U.S. Forest Service	Drop retardant on forest fires
6A,17 ¹ ,26	Gas and oil pipeline companies	Pipeline patrol over level and mountainous terrain
28	Individual	Fish spotting for commercial trawlers

Aerial application:

Airplane type	Operated by	Primary use
29, 29 ¹ , 30, 30 ¹ 30 ² , 30A, 31, 32, 32 ¹ , 32 ² , 33, 33 ¹ , 33A, 33A ¹ , 33A ² , 34, 34 ¹ , 34 ² , 35, 35 ¹ , 35 ² , 36, 36A, 37, 37 ¹	Individuals and companies	Disperse chemicals for control of herbs, pests, and insects on farmlands
34 ³	State	Disperse chemicals for con- trol of herbs and insects on lakes and streams
Aerobatic:		
Airplane type	Operated by	Primary use
38	Fixed-base operator	Aerobatic instruction and practice
Commuter:		
Airplane type	Operated by	Primary use
39,40	Commuter airlines	Passenger flights; test and check flights
Float:		
Airplane type	Operated by	Primary use
41	Fixed-base operator	Personnel and cargo charter;

bush-type operations

APPENDIX C:

NORMAL ACCELERATION EXCEEDANCE CURVES AND DATA TABLES FOR INDIVIDUAL AIRPLANES

Airplane	Tabulated Data	Load Spectra Plots
331	C-105	C-106
33A	C-107	C-108
33A ¹	C-109	C-110
$33A^2$	C-111	C-112
34	C-113	C-114
34 ¹	C-115	C-116
34 ²	C-117	C-118
34 ³	C-119	C-120
35	C-121	C-122
35 ¹	C-123	C-124
35^2	C-125	C-126
36	C-127	C-128
36A	C-129	C-130
37	C-131	C-132
37 ¹	C-133	C-134
4. Twin-Engine, General Us	age	
4	C-135	C-136
5	C-137	C-138
5 ¹	C-139	C-140
4A	C-141	C-142
39	C-143	C-144
40	C-145	C-146
255-203	C-147	C-148
310-110	C-149	C-150
5. Twin-Engine, Special Usa	oge	
41	C-151	C-152
25	C-153	C-154
26	C-155	C-156

Airplane	Tabulated Data	Load Spectra Plots
6. Pressurized, General Usa	nge	
3	C-157	C-158
31	C-159	C-160
6	C-27	C-28
7. Twin-Engine, Executive	let	
*1	C-161	C-162
*11	C-163	C-164
*12	C-165	C-16ó
*13	C-167	C-168
*2	C-169	C-170
*2A	C-171	C-172
8. Large Airplanes, Special	<u>Usage</u>	
*19	C-173	C-174
*19 ¹	C-175	C-176
*20	C-177	C-178
*201	C-179	C-180
*21	C-181	C-182
*22	C-183	C-184
*23	C-185	C-186
*24	C-187	C-188
*241	C-189	C-190
*24 ²	C-191	C-192
*24 ³	C-193	C-194
*24 ⁴	C-195	C-196
*24 ⁵	C-197	C-198

Airplane Tabulated Data Load Spectra Plots

9. Aerobatic Airplane

*38

C-199

C-200

* - Non-Statistical Airplane

Table C-1 Tabulated Data for Airplane 12B

Total Hours = 311 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0782664 0.200 0.0325504 0.250 0.0163077 0.300 0.0053755 0.400 0.0053827 0.450 0.003384 0.500 0.001713 0.500 0.000641 0.650 0.000641 0.650 0.000641 0.650 0.000412 0.800 0.0003412 0.800 0.0001937 0.850 0.0001103		Curve fit for original data (0.161 < x < 0.800) log(y) = -3.548 - 0.518 x^2 - 2.977log(x) Curve fit for extrapolation (0.800 < x < 1.600) log(y) = -1.635 - 2.445 x
Total Nautical Miles = 25703 MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0063628 -0.250 0.0022851 -0.300 0.0099071 -0.350 0.0003801 -0.400 0.0001636		Curve fit for original data (-0.400 < $x < -0.179$) log(y) = -4.564 · 4.156 x^2 · 3.624 log(x) Curve fit for extrapolation (-0.800 < $x < -0.400$) log(y) = -0.882 · 7.260 x
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0421813 0.250 0.0115093 0.300 0.0031641 0.350 0.0008409 0.400 0.0002107 0.450 0.4902E-04		Curve fit for original data (0.196 < x < 0.450) log(y) = -3.226 - 10.960 x^2 - 3.276log(x) Curve fit for extrapolation (0.450 < x < 1.362) log(y) = 1.552 - 13.026 x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0355268 -0.250 0.0095696 -0.300 0.0028579 -0.350 0.0008954 -0.400 0.0002348	NOTE: for curve fits $x = x $	Curve fit for original data (-0.400 < $x < -0.196$) log(y) = 4.240 - 6.516 x^2 - 4.366log(x) Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = $\frac{1}{2}$.435 - 9.952x

Figure C-1 Load Spectra for Airplane 12B, Single-Engine, Basic Flight Instruction

Table C-2 Tabulated Data for Airplane 12B¹

Total Hours = 448

Total Nautical Miles = 40524

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.1078405 0.200 0.0519350 0.250 0.0278226 0.300 0.0157567 0.350 0.0051802 0.400 0.0051802 0.400 0.0051802 0.400 0.00118791 0.500 0.00118791 0.500 0.0011924 0.650 0.0001948 0.700 0.0001948 0.700 0.0001054 0.700 0.2514E-04 0.850 0.2514E-04 0.850 0.1523E-04 0.950 0.1651E-05 1.050 0.2175E-05		Curve fit for original data (0.161 < $x < 0.800$) log(y) = -2.675 - 2.793 x^2 - 2.149log(x) Curve fit for extrapolation (0.800< $x < 1.600$) log(y) = 0.254 - 5.635 x
MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0166386 -0.250 0.0087528 -0.300 0.0046060 -0.350 0.0023765 -0.450 0.0003710 -0.500 0.0003149 -0.500 0.4783E-04		Curve fit for original data (-0.600c x < -0.179) $\log(y) = -2.662 - 5.582x^2 - 1.583 \log(x)$ Curve fit for extrapolation (-0.800 < x < -0.600) $\log(y) = 0.386 - 7.844x$
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0152346 0.250 0.0035387 0.300 0.0010862 0.350 0.0004049 0.400 0.0001743 0.450 0.8391E-04		Curve fit for original data (0.196 < $x < 0.450$) log(y) = -6.503 + 0.558 x^2 - 6.672log(x) Curve fit for extrapolation (0.450 < $x < 1.362$) log(y) = -1.405 - 5.937 x
GUST negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.20 0.0153941 -0.250 0.0044298 -0.300 0.0011183 -0.350 0.0002427 -0.400 0.4471E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.400 < x < -0.196) $\log(y) = -2.257 \cdot 17.093 x^2 \cdot 1.614 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.400) $\log(y) = 1.821 \cdot 15.427 x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 o MANEUVER Figure C-2 Load Spectra for Airplane 12B¹, Single-Engine, Basic Flight Instruction ամասիավոտկամարա ÷.0; -0.8 10.2 10^{-3} 10^{0} 10.₁ 10.5 104 10.6 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLIF 0.4 0 GUST 0 -0.4 -0.8 103 10.5 9.01 00 10.₁ 10.2 10.4 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1.2

Table C-3 Tabulated Data for Airplane 12B²

					Total Nautical	Total Nautical Miles = 64872	Total Hours = 754	754
	negative	GUST	positive	, e	negative	MANEUVER	positive	9
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
C-11	6.250 6.250 6.350 6.350 6.550 6.550 6.550 6.550	0.0942538 0.0180708 0.0046374 0.0005257 0.0002122 0.9318E-04 0.4378E-04	0.200 0.250 0.350 0.350 0.450 0.550 0.650 0.650	0.0650243 0.0161310 0.0047688 0.0015698 0.0002026 0.7599E-04 0.1094E-04 0.1094E-04	-0.200 -0.350 -0.350 -0.450 -0.550 -0.550 -0.550	0.0098082 0.0033519 0.0013412 0.0005944 0.0001407 0.7245E-04 0.3817E-04 0.2029E-04	0.150 0.250 0.250 0.350 0.350 0.450 0.550 0.650 0.850 0.850 0.950 0.950 0.1100 0.1100	0.0818813 0.0336556 0.0166524 0.0055328 0.0034972 0.0015566 0.0010776 0.0007788 0.0007588 0.0007588 0.0007588 0.0007588 0.0001776 0.0001515 0.0001113 0.8181E-04 0.4428E-04 0.2392E-04
	NOTE: for curve fits x = x Curve fit for original data (-0 log(y) = -6.097 - 0.505x ² - 7. Curve fit for extrapolation (- log(y) = -1.136 - 5.879x	NOTE: for curve fits $x = x $ Curve fit for original data (-0.600< x < -0.196) $\log(y) = -6.097 \cdot 0.505x^2 \cdot 7.285 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.600) $\log(y) = -1.136 \cdot 5.879x$	Curve fit for original ds log(y) = -4.786 - 3.795s Curve fit for extrapolat log(y) = 0.086 - 8.412x	Curve fit for original data (0.196 < x < 0.550) log(y) = -4.786 - 3.795 x^2 - 5.366log(x) Curve fit for extrapolation (0.550 < x < 1.362) log(y) = 0.086 - 8.412 x	Curve fit for original dai log(y) = 4.999 - 1.844x Curve fit for extrapolati log(y) = -1.399 - 5.489x	Curve fit for original data $(-0.550 < x < -0.179)$ $\log(y) = -4.999 - 1.844x^2 - 4.384 \log(x)$ Curve fit for extrapolation $(-0.800 < x < -0.550)$ $\log(y) = -1.399 - 5.489x$	Curvefit for original day log(y) = -3.539 - 0.681 x Curve fit for extrapolati log(y) = -1.550 - 2.671 x	Curve fit for original data $(0.161 < x < 0.900)$ $\log(y) = -3.539 - 0.681x^2 - 2.995\log(x)$ Curve fit for extrapolation $(0.900 < x < 1.600)$ $\log(y) = -1.550 - 2.671x$

90 Original Data Curve Fit 0.8 <u>արկայիակարանակարտեսիա հարարակարակարիակարիա</u> Acceleration Fraction, a / a 0.4 o MANEUVER منة 0 Figure C-3 Load Spectra for Airplane 12B2, Single-Engine, Basic Flight Instruction -0.8 -1.2 ننشا تنننا 10.5 100 9.01 10.1 10^{-2} 10.3 104 _0 ? Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLLF 0.4 0 e----GUST -0.4 ÷0.8 10.5 10.6 10.5 10.3 104 100 10-1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1.2

Table C-4 Tabulated Data for Airplane 14

				Total Nautical Miles = 42187	Miles = 42187	Total Hours = 489	489
negative	GUST	positive	e.	negative	MANEUVER	positive	, e
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.150 -0.250 -0.350 -0.350	0.0538474 0.0166849 0.0042529 0.0008719 0.0001420	0.150 0.200 0.250 0.350 0.450 0.450 0.550 0.600	0.0694722 0.0269236 0.0113497 0.0049142 0.0003646 0.0001646 0.0001646 0.5316E-04 0.1932E-04	-0.150 -0.250 -0.350 -0.350 -0.450 -0.450	0.0156393 0.0049092 0.0017549 0.000631 0.9691E-04 0.3605E-04	0.150 0.200 0.250 0.350 0.450 0.550 0.750 0.850 0.850	0.1628982 0.0684196 0.0337538 0.0183085 0.0183085 0.0038693 0.0038693 0.0003814 0.0013166 0.0009579 0.0003816 0.0003816 0.0003816 0.000395 0.000395
NOTE: for ci	NOTE: for curve fits $x = x $						
Curvefitfor original data log(y) = -1.551 - 22.290 Curvefitfor extrapolatiog(y) = 2.026 - 16.782x	Curvefit for original data (-0.350 < x < -0.166) log(y) = -1.551 · 22.290x ² · 0.951 log(x) Curvefit for extrapolation (-1.200 < x < -0.350) log(y) = $2.026 \cdot 16.782$	Curve fit for original di log(y) = -3.010 - 6.254; Curve fit for extrapolat log(y) = 0.560 - 8.790x	Curve fit for original data (0.166 < x < 0.550) log(y) = -3.010 · 6.254 x^2 · 2.419log(x) Curve fit for extrapolation (0.550 < x < 1.362) log(y) = 0.560 · 8.790x	Curve fit for original dai log(y) = -4.252 - 6.2 4x Curve fit for extrapolati log(y) = -0.518 - 8.723x	Curve fit for original data (-0.450 < x < -0.155) log(y) = -4.252 · 6.24 x^2 - 3.142 log(x) Curve fit for extrapolation (-0.800 < x < -0.450) log(y) = -0.518 · 8.723 x	Curve fit for original da log(y) = -3.046 - 1.640x Curve fit for extrapolati log(y) = -0.381 - 4.296x	Curve fit for original data $(0.161 < x < 0.900)$ $\log(y) = -3.046 - 1.640 x^2 - 2.786 \log(x)$ Curve fit for extrapolation $(0.900 < x < 1.600)$ $\log(y) = -0.381 - 4.296 x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-4 Load Spectra for Airplane 14, Single-Engine, Basic Flight Instruction -0.8 للنننا نننننا ننننا 10.5 10.3 10.5 10^{0} 10.1 104 10.6 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.8 10^{-3} 10.2 00 10^{-2} 104 10.6 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1.2

Table C-5 Tabulated Data for Airplane 14A

Total Hours = 935

negative	GUST	positiv	ve	negative	MANEUVER	ER positive	ive
cceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
0.150 -0.200 -0.250 -0.350 -0.350	0.0700234 0.0107510 0.0020048 0.0004036 0.8234E-04	0.150 0.200 0.250 0.300 0.400 0.450	0.0770067 0.0122008 0.0027875 0.0007950 0.0002621 0.9538E-04	-0.150 -0.200 -0.250 -0.350	0.0242992 0.0066564 0.0019044 0.0005323 0.0001402	0.150 0.200 0.250 0.250 0.250 0.450 0.550 0.550 0.650 0.650	0.0384667 0.0121672 0.0047734 0.0001272 0.0005229 0.0001484 0.8053E-04 0.4372E-04
NOTE: for cı	NOTE: for curve fits $x = x $						

10 E.C. 101 C.U. 10 L.U. A - (A)			
Curve fit for original data (-0.350 < x < -0.161) $log(y) = -5.005 \cdot 10.995x^2 \cdot 4.973 log(x)$ Curve fit for extrapolation (-1.200 < x < -0.350) $log(y) = 0.769 \cdot 13.868x$	Curve fit for original data (0.161 < $x < 0.450$) log(y) = -6.073 - 2.301 x^2 - 6.082log(x) Curve fit for extrapolation (0.450 < $x < 1.362$) log(y) = -0.856 - 7.940 x	Curve fit for original data (-0.350 < x < -0.155) log(y) = -3.665 - 12.019 x^2 - 2.817 log(x) Curve fit for extrapolation (-0.800 < x < -0.350) log(y) = 0.315 - 11.910x	Curve fit for original data (-0.350 < x < -0.161) Curve fit for original data (0.150 x < 0.161) Curve fit for original data (0.150 x < 0.155) Curve fit for original data (0.132 < x < 0.500) log(y) = -5.005 \cdot 10.995 x^2 \cdot 4.973 log(x) log(y) = -6.073 \cdot 2.301 x^2 \cdot 6.082 log(x) log(y) = -5.005 \cdot 10.995 x^2 \cdot 4.973 log(x) log(y) = -6.073 \cdot 2.301 x^2 \cdot 6.082 log(x) log(y) = -6.073 \cdot 2.301 x^2 \cdot 6.082 log(x) log(y) = -6.073 \cdot 2.301 x^2 \cdot 6.082 log(x) log(y) = -6.073 \cdot 2.301 x^2 \cdot 6.082 log(x) log(y) = -6.073 log(y) = -6.073 \cdot 2.301 x log(y) = -6.073 log(y) log(y) = -6.073 log(y)

C-16

Table C.6 Tabulated Data for Airplane 15

					Total Nautical Miles = 19057	Miles = 19057	Total Hours = 219	219
	negative	GUST	positive	gu.	negative	MANEUVER	positive	
	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
C-17	-0.200 0.0143388 -0.250 0.0026099 -0.300 0.00005350 -0.400 0.7699E-0 -0.450 0.3084E-0	0.0143388 0.0026099 0.0006536 0.0002062 0.7699E-04 0.3084E-04	0.200 0.250 0.300	0.0030968 0.0005875 0.0005875	-0.200 -0.250 -0.350 -0.400	0.0175959 0.0055450 0.0015690 0.0003904 0.8438E-04	0.150 0.250 0.250 0.350 0.450 0.450 0.650 0.650 0.750 0.850 0.850	0.1161324 0.0447494 0.0047129 0.0092965 0.00023364 0.0002376 0.0002378 0.0001223 0.5806E-04 0.1308E-04 0.1398E-05
	Curvefit for ort log(y) = -7.324 Curvefit for ext log(y) = -0.935	Curve fit for original data (-0.400 < $x < -0.183$) log(y) = -7.324 + 0.656 x^2 - 7.803 log(x) Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = -0.935 - 7.947 x	Curve fit for or! log(y) = -2.755 Curve fit for ext log(y) = 1.292	Curve fit for original data (0.183 < x < 0.300) log(y) = -2.755 - 19.305 x^2 - 2.412log(x) Curve fit for extrapolation (0.300< x < 1.362) log(y) = 1.292 - 15.075 x	Curve fit for original dat log(y) = -2.298 - 15.194; Curve fit for extrapolatic log(y) = 1.504 - 13.944x	Curve fit for original data (-0.400 < $x < -0.179$) log(y) = -2.298 - 15.194 x^2 - 1.647 log(x) Curve fit for extrapolation (-0.800 < $x < -0.400$) log(y) = 1.504 - 13.944 x	Curvefit for original da log(y) = -3.129 - 3.897x Curvefit for extrapolati log(y) = -0.028 • 6.473x	Curve fit for original data $(0.173 < x < 0.550)$ log(y) = -3.129 - 3.897 x^2 - 2.769log(x) Curve fit for extrapolation $(0.550 < x < 1.600)$ log(y) = -0.028 - 6.473 x

Original Data Curve Fit 0.8 որեսարորեր և արերերությունը որ հայարակարևում արերական Acceleration Fraction, a / a nus 0.4 0 MANEUVER 0 Figure C-6 Load Spectra for Airplane 15, Single-Engine, Basic Flight Instruction -0.4 -0.8 10-2 10.3 10.2 10.6 100 10^{-1} 104 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLIF 0.4 GUST -0.4 -0.8 10.6 10^{0} 10₋1 10^{-2} 10^{-3} 104 10.5 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

~

Table C-7 Tabulated Data for Airplane 16

Total Hours = 494	/ER positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0275445 0.200 0.0130013 0.250 0.0066527 0.350 0.0018749 0.400 0.0009915 0.450 0.0002614 0.550 0.0002614 0.550 0.0001288		3) Curvefit for original data (0.132 < x < 0.600) log(y) = -3.122 - 4.267x ² - 2.012log(x) Curve fit for extrapolation (0.600 < x < 1.600) log(y) = -0.266 - 6.576x
Tota! Nautical Miles = 37420	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0244972 -0.200 0.0042480 -0.300 0.0009644 -0.300 0.0002531		Curve fit for original data (-0.300< $x<-0.163$) log(y) = -5.799 - 6.018 x^2 - 5.248log(x) Curve fit for extrapolation (-0.800< $x<-0.300$) log(y) = -0.235 - 11.207x
To	positive	Acceleration Cumulative Frequency Ac Fraction of Exceedance	0.250 0.0197320 0.300 0.0040192 0.350 0.0010235 0.400 0.0003059 0.450 0.0001030 0.500 0.3804E-04		Curve fit for original data $(0.225 < x < 0.500)$ C $\log(y) = -6.672 - 1.058x^2 - 8.360\log(x)$ lo Curve fit for extrapolation $(0.500 < x < 1.362)$ C $\log(y) = -0.260 - 8.319x$
	GUST	Acceleration Cumulative Frequency Ac Fraction of Exceedance	-0.250 0.0152106 -0.300 0.0025976 -0.350 0.0006230 -0.400 0.000?935 -0.450 0.7379E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.450 < $x < -0.225$) C log(y) = -8.503 + 3.125 x^2 - 10.779log(x) log(y) = -6.7.6 - 7.591x log(y) = -0.7.6 - 7.591x

Cumulative Frequency of Exceedance

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nets 0.4 0 MANEUVER Figure C-7 Load Spectra for Airplane 16, Single-Engine, Basic Flight Instruction -0.4 100 10^{-2} 10-3 10.5 10.6 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1:2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLIP 0.4 0 GUST 10^{-2} 10^{-3} 10.5 ₀0 20₹ 10 10.1 Cumulative No. Occurrences/Nautical Mile

1:2

Table C-8 Tabulated Data for Airplane 17

				Total Nautical	Total Nautical Miles = 65991	Total Hours = 813	813
negative	GUST	positive	9	negative	MANEUVER	positive	ve
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0200	0.0295015	0.200	0.0319050 0.0067451	-0.150	0.0249842	0.150	0.0305492 0.0167716
-0.300 -0.350	0.0020237	0.300	0.0019772 0.0007314	0.250	0.0041082 0.0013132	0.250	0.0092434
-0.400 -0.450	0.0003881 0.0002182	0.400 0.450	0.0003229 0.0001640	0.350 0.400	0.0003538 0.8000E-04	0.350 0.400	0.0025699
-0.500 -0.550	0.0001396 0.9468E-04	0.500 0.550	0.9351E 04 0.5614E-04	-0.450 -0.500	0.1513E-04 0.2617E-05	0.450 0.500	0.0005902 0.0002597
0.600	0.6421E-04 0.4355E-04	0.600 0.650	0.3371E-04 0.2024E-04			0.550 0.600	0.0001075 0.4174E-04
-0.700	0.2953E-04 0.2003E-04	0.700 0.750 0.800	0.1215E-04 0.7294E-05 0.4379E-05				
		0.900	0.2629E-05 0.1578E-05				
NOTE: for ci	NOTE: for curve fits $x = x $						
Curvefitfore log(y) = -6.85 Curvefitfore log(y) = -2.16	Curve fit for original data (-0.500 < x < -0.183) log(y) = -6.899 + 3.142x ² - 7.501 log(x) Curve fit for extrapolation (-1.200 < x < -0.500) log(y) = -2.169 + 3.373x	Curvefit for original dai log(y) = -6.773 + 2.026x Curvefit for extrapolati log(y) = -1.813 - 4.432x	Curve fit for original data (0.183 < $x < 0.500$) log(y) = -6.773 + 2.026 x^2 - 7.434log(x) Curve fit for extrapolation (0.500 < $x < 1.362$) log(y) = -1.813 - 4.432x	Curvefit for or log(y) = -1.72(Curvefit for ex log(y) = 2.039	Curve fit for original data (-0.450 < x < -0.163) log(y) = -1.726 - 16.298 x^2 - 0.595 log(x) Curve fit for extrapolation (-0.800 < x < -0.450) log(y) = 2.039 - 15.243 x	Curve fit for original da log(y) = -2.356 - 6.3577 Curve fit for extrapolat log(y) = 0.716 - 8.493x	Curve fit for original data (0.132 < $x < 0.600$) log(y) = -2.356 - 6.357 x^2 - 1.194 log(x) Curve fit for extrapolation (0.600 < $x < 1.600$) log(y) = 0.716 - 8.493x

Figure C-8 Load Spectra for Airplane 17, Single-Engine, Basic Flight Instruction

Table C-9 Tabulated Data for Airplane 18

					Total Nautical Miles = 6962	Miles = 6962	Total Hours = 96	%
	negative	GUST	positive	y	negative	MANEUVER	positive	, ,
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0200	0.0362789	0.200	0.0261791 0.0104489	-0.200	0.0241158	0.150	0.0290961
	-0320 -0320	0.0027717 0.0008686	03300	0.0039668 0.0014019	-0.300 -0.350	0.0022441 0.0004818	0.250	0.0088914
			0.400	0.0004553			0.350	0.0014119
							0.450 0.500	0.0002306 0.9153E-04
							0.550	0.3633E-04 0.1442E-04
	NOTE: for curve fits $x = x $	$ve \mathbf{fts} _{\mathbf{x} = \mathbf{x} }$						
C-23	Curve fit for or log(y) = -4.472 Curve fit for ext log(y) = 0.409 -	Curve fit for original data (-0.350 < x < -0.189) log(y) = $-4.472 - 5.877x^2 - 4.674 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.350) log(y) = $0.409 - 9.914x$	Curve fit fororiog(y) = -2.357 Curve fit for ext log(y) = 0.723 -	Curve fit for original data (0.189 < $x < 0.400$) log(y) = -2.357 - 10.390 x^2 - 1.704log(x) Curve fit for extrapolation (0.400< $x < 1.362$) log(y) = 0.723 - 10.162 x	Curve fit for original data log(y) = -0.830 - 20.469x Curve fit for extrapolatic log(y) = 1.717 - 14.383x	Curve fit for original data (-0.350 < $x < -0.205$) log(y) = -0.830 - 20.469 x^2 - 0.044log(x) Curve fit for extrapolation (-0.800 < $x < -0.350$) log(y) = 1.717 - 14.383 x	Curve fit for original day log(y) = -2.454 · 8.216x Curve fit for extrapolative (y) = -0.026 · 8.026x	Curve fit for original data $(0.128 < x < 0.400)$ log(y) = -2.454 - 8.216 x^2 - 1.338log(x) Curve fit for extrapolation $(0.400 < x < 1.600)$ log(y) = -0.026 - 8.026 x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-9 Load Spectra for Airplane 18, Single-Engine, Basic Flight Instruction -0.4 -0.8 00 10^{-2} 10^{-3} 10.5 9.01 10^{-1} 104 10₁ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a LLF 0.4 0 GUST 0 -0.4 9.0 10.6 100 10.1 10-2 10^{-3} 104 10.5 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-10 Tabulated Data for Airplane 181

Total Hours = 911

				e e
ive	Acceleration Cumulative Frequency Fraction of Exceedance	0.0249533 0.0122948 0.0060965 0.0029415 0.0013563 0.0005913 0.0002420 0.9584E-04	0.1503E-04	Curve fit for original data (0.128 < $x < 0.450$) log(y) = -2.607 - 7.416 x^2 - 1.422log(x) Curve fit for extrapolation (0.450 < $x < 1.600$) log(y) = 0.005 - 8.047 x
positive	Acceleration Fraction	0.150 0.200 0.250 0.350 0.450 0.550 0.550	0.600	Curve fit for o log(y) = -2.60 Curve fit for e log(y) = 0.005
MANEUVER	Cumulative Frequency of Exceedance	0.0325233 0.0108295 0.0032003 0.0008248 0.0001834 0.3498E-04		Curve fit for original data (-0.450 < $x < -0.205$) log(y) = -1.844 - 15.270 x^2 - 1.383 log(x) Curve fit for extrapolation (-0.800 < $x < -0.450$) log(y) = 2.329 - 15.078x
negative	Acceleration Fraction	-0.200 -0.250 -0.350 -0.350 -0.400 -0.450		Curve fit for original data log(y) = -1.844 - 15.270x Curve fit for extrapolatio log(y) = 2.329 - 15.078x
, c	Acceleration Cumulative Frequency Fraction of Exceedance	0.0184174 0.0032458 0.0007283 0.0001906 0.5519E-04		Curve fit for original data $(0.189 < x < 0.400)$ $log(y) = -6.440 \cdot 3.622x^2 \cdot 6.938 log(x)$ Curve fit for extrapolation $(0.400 < x < 1.362)$ $log(y) = -0.086 \cdot 10.431x$
positive	Acceleration Fraction	0.200 0.250 0.300 0.350 0.400		Curve fit for original data $log(y) = -6.440 \cdot 3.622x^2$ $log(y) = for extrapolatio log(y) = -0.086 \cdot 10.431x$
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	0.0133911 0.0020525 0.0004037 0.9283E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.350 < x < -0.189) log(y) = -6.845 - 4.463 x^2 - 7.369log(x) Curve fit for extrapolation (-1.200 < x < -0.350) log(y) = 0.261 · 12.268x
negative	Acceleration Fraction	-0.250 -0.250 -0.350 -0.350	NOTE: for ca	Curve fit for original data log(y) = -6.845 - 4.463x ² Curve fit for extrapolatio log(y) = 0.261 - 12.268x

Figure C-10 Load Spectra for Airplane 181, Single-Engine, Basic Flight Instruction

Table C-11 Tabulated Data for Airplane 6

Total Hours = 584.2

Total Nautical Miles = 95867.7

negative	GUST	positive	*	neoative	MANEUVER	auffloor	9
			•				
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance
-0.200 -0.250	0.0121502 0.0030976	0.200	0.0139248 0.0046215	-0.200	0.0026230	0.150	0.0130789
0.300	0.0009920	0.300	0.0014983	-0.300	0.8132E-04	0.250	0.0002077
0.400	0.0001543	0.400	0.0001313			0320	0.5555E-05
0.500	0.3345E-04	0.450	0.34425-04				
-0.550	0.1683E-04						
-0.800	0.863/E-05 0.4432E-05						
NOTE: for curve fits $x = x $	x = x						
 Curve fit for original dai log(y) = -5.985 - 1.045x Curve fit for extrapolati log(y) = -1.587 - 5.794x	Curve fit for original data (-0.550 < x < -0.196) log(y) = -5.985 - 1.045 x^2 - 5.882log(x) Curve fit for extrapolation (-1.200 < x < -0.550) log(y) = -1.587 - 5.794 x	Curve fit for original dat log(y) = -3.141 · 10.7293 Curve fit for extrapolatic log(y) = 0.947 · 12.023x	Curve fit for original data (0.196 < $x < 0.450$) log(y) = -3.141 · 10.729 x^2 · 2.452log(x) Curve fit for extrapolation (0.450 < $x < 1.667$) log(y) = 0.947 · 12.023 x	Curve fit for original data log(y) = -8.196 - 1.566x ² . Curve fit for extrapolation log(y) = -0.280 - 12.698x	Curve fit for original data (-0.300 < x < -0.179) log(y) = -8.196 - 1.566x ² - 8.122log(x) Curve fit for extrapolation (-0.800 < x < -0.300) log(y) = -0.280 - 12.698x	Curve fit for original dat log(y) = -6.618 - 11.384x Curve fit for extrapolatic log(y) = 0.205 - 15.600x	Curve fit for original data (0.161 < x < 0.300) log(y) = -6.618 - 11.384 x^2 - 6.058 log(x) Curve fit for extrapolation (0.300 < x < 1.700) log(y) = 0.205 - 15.600 x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 Figure C-11 Load Spectra for Airplane 6, Single-Engine, Business/Personal -0.4 -0.8 100 10^{-2} 10^{-3} 10.5 901 10₋1 10.4 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0 GUST -0.4 -0.8 10.5 9.01 10^{-2} 00 10^{-1} 10^{-3} 104 10 Cumulative Frequency of Exceedance Cumulative No. Occurrences/Nautical Mile

Table C-12 Tabulated Data for Airplane 7

Total Hours = 402

		GUST				MANEUVER		
	negative	ive	positive	ve	negative	ļve	positive	
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0.200 -0.250	0.1759156	0.200	0.2360924 0.3874470	-0.150	0.0031642 0.0005700	0.150	0.0037965 0.0012826
	0.300	0.0296189	0.300	0.0351139 0.0146543	-0.250 -0.300	0.0001530 0.5301E-04	0.250	0.0005069
	0.400	0.0041528	0.400	0.0061982			0.350	0.9704E-04 0.4409E-04
	0.500	0.0004384	0.500	0.0010873			0.450	0.2006E-04
	0.550	0.0001262	0.550	0.0004424				
	0.650 0.650 0.650	0.3332E-04 0.8423E-05	0.600	0.0001751 0.6713E-04				
			0.700	0.2529E-04 0.9527E-05				
	NOTE: for cu	NOTE: for curve fits $x = x $						
C-29	Curvefit for original dat log(y) = -1.724 - 8.813x ² Curvefit for extrapolatic log(y) = 2.689 - 11.945x	Curve fit for original data (-0.600 < x < -0.190) log(y) = -1.724 - 8.813 x^2 - 1.892log(x) Curve fit for extrapolation (-100 < x < -0.600) log(y) = 2.689 - 11.945 x	Curve fit for original diag(y) = -2.765 • 4.809 Curve fit for extrapolatiog(y) = 1.338 • 8.479x	Curvefit for original data (0.190 < $x < 0.650$) log(y) = -2.765 - 4.809 x^2 - 3.334log(x) Curvefit for extrapolation (0.650 < $x < 1.56$ 7) log(y) = 1.338 - 8.479 x	Curve fit for original data log(y) = -7.504 + 0.695x Curve fit for extrapolati log(y) = -1.771 - 8.349x	Curve fit for original data (-0.300 < x < -0.163) $\log(y) = -7.504 + 0.695x^2 + 6.055 \log(x)$ Curve fit for extrapolation (-0.800 < x < -0.300) $\log(y) = -1.771 - 8.349x$	Curve fit for original dai log(y) = 4.947 - 4.216x Curve fit for extrapolati log(y) = -1.608 - 6.865x	Curve fit for original data $(0.132 < x < 0.450)$ $\log(y) = -4.947 - 4.216x^2 - 3.182\log(x)$ Curve fit for extrapolation $(0.450 < x < 1.700)$ $\log(y) = -1.608 - 6.865x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 Figure C-12 Load Spectra for Airplane 7, Single-Engine, Business/Personal -0.4 -0.8 10^{0} 10^{-3} 10^{-2} 10.5 9.01 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLLF 0.4 0 GUST 0 -0.4 ****** -0.8 -1:2 10.3 10^{-3} 10.5 9.01 100 10.1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

 $\stackrel{\sim}{:}$

Table C-13 Tabulated Data for Airplane 7A

Total Hours = 15	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0201476 0.200 0.0092746 0.250 0.004202 0.300 0.0020926 0.350 0.0009792 0.400 0.0004582 0.450 0.0002144 0.500 0.0001003		Curve fit for original data $(0.132 < x < 0.300)$ $\log(y) = -2.983 \cdot 6.778x^2 \cdot 1.747 \log(x)$ Curve fit for extrapolation $(0.300 < x < 1.700)$ $\log(y) = -0.700 \cdot 6.597x$
Total Nautical Miles = 2241	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0015567 -0.250 0.0007594		Curve fit for original data (-0.200 < $x < -0.163$) log(y) = -2.254 • 13.856 x^2 Curve fit for extrapolation (-0.800 < $x < -0.200$) log(y) = -2.254 • 13.856 x^2
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0585052 0.250 0.0112109 0.300 0.0034956 0.350 0.0015737 0.400 0.0009525 0.450 0.0006574		Curve fit for original data (0.191 < $x < 0.400$) log(y) = -8.187 + 8.793 x^2 - 9.446log(x) Curve fit for extrapolation (0.400 < $x < 1.667$) log(y) = -1.733 - 3.221 x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0302626 -0.250 0.0056093 -0.300 0.0009633	NOTE: for curve fits $x = x $	Curve fit for original data (-0.300 < $x < -0.191$) log(y) = -3.092 · 18.326 x^2 · 3.299log(x) Curve fit for extrapolation (-1.200 < $x < -0.300$) log(y) = 1.715 - 15.771x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nut 8 ավորերդեր հունակավայհավումայաց**ն**ակակակակակա 0.4 0 MANEUVER ٠٠٠٠ 0 Figure C-13 Load Spectra for Airplane 7A, Single-Engine, Business/Personal -0.4 -0.8 10.6 10-2 10.3 10.5 10^{0} 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1:2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.4 9.0 -1.2 تنتللا 10^{-2} 10^{-3} 10.5 10.0 °0 10.1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-14 Tabulated Data for Airplane 7B

				Total Nautical	Total Nautical Miles = 34419	Total Hours = 229	229
negative	GUST	positive	, «e	negative	MANEUVER	positive	
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200 -0.250 -0.300 -0.350	0.0360725 0.0077393 0.0018442 0.0004585	0.220 0.250 0.350 0.400 0.450	0.0762953 0.0238968 0.0068432 0.0017500 0.0003940 0.7742E-04	-0.150 -0.250 -0.250 -0.350	0.0005022 0.0002547 0.0001022 0.3657E-04 0.1309E-04	0.150 0.200 0.250 0.300 0.350	0.0013281 0.0003129 0.6556E-04 0.1272E-04 0.2468E-05
NOTE: for cu	NOTE: for curve fits $x = x $						
Curvefit for original day log(y) = -4.562 - 8.415x ² Curvefit for extrapolatio log(y) = 0.870 - 12.025x	Curve fit for original data $(-0.350 < x < -0.185)$ log(y) = $-4.562 - 8.415x^2 - 4.944 \log(x)$ Curve fit for extrapolation $(-1.200 < x < -0.350)$ log(y) = $0.870 - 12.025x$	Curve fit for original dat log(y) = -1.844 - 14.3873 Curve fit for extrapolatic log(y) = 2.524 - 14.745x	Curve fit for original data (0.185 < x < 0.450) log(y) = -1.844 - $14.387x^2$ - $1.862\log(x)$ Curve fit for extrapolation (0.450 < x < 1.667) log(y) = 2.524 - $14.745x$	Curve fit for original data log(y) = -2.651 - 18.801. Curve fit for extrapolar log(y) = -1.759 - 8.926x	Curve fit for original data $(-0.250 < x < -0.163)$ log(y) = $-2.651 - 18.01x^2 + 0.273\log(x)$ Curve fit for extrapolation $(-0.800 < x < -0.250)$ log(y) = $-1.759 - 8.926x$	Curve fit for original data log(y) = -4.054 - 21.484x Curve fit for extrapolatio log(y) = -0.622 - 14.244x	Curve fit for original data (0.132 < x < 0.250) log(y) = $4.054 \cdot 21.494x^2 \cdot 2.016 \log(x)$ Curve fit for extrapolation (0.250 < x < 1.700) log(y) = $-0.622 \cdot 14.244x$

C-34

Table C-15 Tabulated Data for Airplane 7C

Total Hours = 150	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0032173 0.200 0.0014735 0.250 0.0006368 0.300 0.0002529 0.350 0.9094E-04		Curve fit for original data (0.132 < $x < 0.350$) log(y) = -3.164 - 11.347 x^2 - 1.125log(x) Curve fit for extrapolation (0.350 < $x < 1.700$) log(y) = -0.773 - 9.339 x
Total Nautical Miles = 18351	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0039952 -0.200 0.0004370 -0.250 0.8900E-04 -0.300 0.2288E-04		Curve fit for original data (-0.250 < x < -0.163) log(y) = -9.577 + 6.096 x^2 - 8.546 log(x) Curve fit for extrapolation (-0.800 < x < -0.250) log(y) = -1.101 - 11.798 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0361708 0.250 0.0074857 0.300 0.0019920 0.350 0.0006265 0.400 0.000215		Curvefit for original data (0.188 < $x < 0.400$) log(y) = -6.021 - 1.753 x^2 - 6.652log(x) Curvefit for extrapolation (0.400 < $x < 1.667$) log(y) = -0.205 - 8.625 x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0213617 -0.250 0.0047190 -0.300 0.0012053 -0.350 0.0003327	NOTE: for curve fits $x = x $	Curve fit for original data (-0.350< $x<-0.188$) log(y) = -5.136 - 6.248 x^2 - 5.316log(x) Curve fit for extrapolation (-1.200< $x<-0.350$) log(y) = 0.362 - 10.970x

Cumulative Frequency of Exceedance

Original Data ուսնում իրդ կումեր ու հումերը հիմ հումերը հումերը հումերը հրակարհային հումերը հետ հետ հումերը Curve Fit Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-15 Load Spectra for Airplane 7C, Single-Engine, Business/Personal 800 -0.4 -0.8 خننتا 10.5 9.01 10^{-2} 10.3 104 100 10^{-1} -01 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST .08 10^{-2} 10.3 10-5 10.0 10.1 104 100 101 Cumulative No. Occurrences/Nautical Mile

Table C-16 Tabulated Data for Airplane 7C1

Total Hours = 164

negative	GUST	positive	٠,	negative	MANEUVER	positive	ķ
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0200	0.0438821 0.0155416	0.200	0.0577689 0.0154421	-0.150	0.0141144 0.0065268	0.150	0.0263557 0.0145057
-0.300 -0.350	0.0058148 0.0022083 0.0008312	0.300 0.350	0.0049572 0.0017879 0.0004862	-0.250 -0.300 0.350	0.0027578 0.0010426 0.0010488	0.250 0.300 0.350	0.0072697 0.0032765 0.0013193
-0.450 -0.500	0.0001083	0.500	0.0002853 0.0001209	-0.400	0.0001025	0.400 0.450 0.500	0.0004727 0.0001596 0.5389E-04
NOTE: for cu	NOTE: for curve fits $x = x $						
Curve fit for original da log(y) = -3.308 - 6.432x Curve fit for extrapolati log(y) = 0.622 - 9.175x	Curve fit for original data (-0.500 < x < -0.188) log(y) = -3.308 - 6.432 x^2 - 3.158log(x) Curve fit for extrapolation (-1.200 < x < -0.500) log(y) = 0.622 - 9.175x	Curvefit for original dai log(y) = -4.810 - 2.776x* Curvefit for extrapolati log(y) = -0.242 - 7.351x	Curve fit for original data (0.188 < $x < 0.500$) log(y) = -4.810 · 2.776 x^2 · 5.268log(x) Curve fit for extrapolation (0.500 < $x < 1.667$) log(y) = -0.242 · 7.351 x	Curve fit for original dati log(y) = -2.293 - 12.8073 Curve fit for extrapolatic log(y) = 0.494 + 11.2093	Curve fit for original data (-0.400 < $x < -0.163$) log(y) = -2.293 - 12.807 x^2 - 0.887log(x) Curve fit for extrapolation (-0.800 < $x < -0.400$) log(y) = 0.494 - 11.209 x	Curve fit for original du log(y) = -1.762 - 11.074 Curve fit for extrapolatiog(y) = 0.447 - 9.430x	Curve fit for original data (0.132 < $x < 0.400$) log(y) = -1.762 - 11.076 x^2 - 0.524 log(x) Curve fit for extrapolation (0.400 < $x < 1.700$) log(y) = 0.447 - 9.430x

C-38

Original Data Curve Fit 0.8 Acceleration Fraction, a / a new 0.4 0 MANEUVER 0 Figure C-16 Load Spectra for Airplane 7C1, Single-Engine, Business/Personal -0.4 -0.8 ننننا 10^{-2} 10^3 10-5 100 10^{-1} 104 10.6 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.4 %. O--1.2 10.6 10.2 10-3 10.5 10.1 10 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-17 Tabulated Data for Airplane 8

				ଚ ହି
:= 253	positive	n Cumulative Frequency of Exceedance	0.0067916 0.0021852 0.0009157 0.0004544 0.0001549	Curve fit for original data (0.161 < x < 0.400) log(y) = -5.481 + 0.476 x^2 - 4.008 log(x) Curve fit for extrapolation (0.400 < x < 1.700) log(y) = -2.222 - 3.971 x
Total Hours $= 253$		Acceleration Fraction	0.150 0.200 0.250 0.300 0.400	Curve fit for log(y) = -5.4 Curve fit for log(y) = -2.4 log(y) = -2.2
Total Nautical Miles = 38678	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0005849 -0.250 0.0001356 -0.300 0.2573E-04 -0.350 0.4883E-05	Curve fit for original data (-0.250 < x < -0.179) log(y) = -1.420 · 31.599 x ² + 0.785log(x) Curve fit for extrapolation (-0.800 < x < -0.250) log(y) = -0.259 · 14.435 x
Total !		Accele Fra	9999	
	e,	Cumulative Frequency of Exceedance	0.1292134 0.0362989 0.0123607 0.0047743 0.0008997 0.0004204 0.0002026 0.9981E-04 0.4989E-04	0.750 0.1260E-04 0.800 0.6333E-05 Curve fit for original data (0.181 < x < 0.650) log(y) = -4.482 - 1.899x ² - 5.249log(x) log(y) = -0.418 - 5.976x
	positive	Acceleration Fraction	0.200 0.250 0.300 0.300 0.450 0.550 0.650 0.700	0.750 0.126 0.800 0.633 Curve fit for original dai log(y) = -4.482 - 1.899x Curve fit for extrapolati log(y) = -0.418 - 5.976x
	GUST	Cumulative Frequency of Exceedance	0.0926825 0.0293778 0.0102698 0.0014693 0.0005270 0.0001945 0.7022E-04 0.2500E-04 0.3904E-05	NOTE: for curve fits $x = x $ Curve fit for original data (-0.550 < x < -0.181) $\log(y) = -3.550 \cdot 5.349x^2 \cdot 3.907 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.550) $\log(y) = 0.779 \cdot 8.969x$
	negative	Acceleration Fraction	0.250 0.250 0.450 0.450 0.655 0.655 0.700	NOTE: for cu. Curve fit for or log(y) = -3.550 Curve fit for ex log(y) = 0.779
				C-39

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0 0.4 MANEUVER 0 Figure C-17 Load Spectra for Airplane 8, Single-Engine, Business/Personal 0.4 -0.8 00 10-2 10.3 10.6 101 10^{-1} 10.2 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit ****************************** 0.8 Acceleration Fraction, a / a n_{LLF} GUST 10.2 10.3 100 10.5 101 10.1 104 10.6 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1:2

Table C-18 Tabulated Data for Airplane 8A

					Total Nautical Miles = 21481	Miles = 21481	Total Hours = 162	162
	negative	GUST	positive	e,	negative	MANEUVER	CR positive	, ee
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0.150	0.1953035	0.150	0.1992975 0.0265469	-0.179	0.9311E-04	0.150	0.0025245 0.0005958
	-0.250 -0.300	0.0062092 0.0015606	0.250 0.300	0.0055936 0.0015773			0.250 0.300	0.0002681 0.0001937
	-0.350 -0.400	0.0004371 0.0001305	0.350 0.400	0.0005444 0.0002181				
	-0.450	0.3984E-04 0.1216E-04	0.450	0.9797E-04				
	-0.550 -0.600	0.3710E-05 0.1132E-05						
	NOTE: for cu	NOTE: for curve fits $x = x $						
0.41	Curvefit for original day log(y) = -5.428 - 4.931x ² Curvefit for extrapolatic log(y) = 0.239 - 10.309x	Curve fit for original data (-0.400< $x < -0.170$) log(y) = -5.428 - 4.931 x^2 - 5.862log(x) Curve fit for extrapolation (-1.200< $x < -0.400$) log(y) = 0.239 - 10.309 x	Curve fit for on log(y) = -6.517 Curve fit for ex log(y) = -1.072	Curve fit for original data (0.170 < x < 0.450) $\log(y) = -6.517 + 0.309x^2 - 7.051 \log(x)$ Curve fit for extrapolation (0.450 < x < 1.667) $\log(y) = -1.072 - 6.527x$			Curve III for original dai log(y) = -8.887 + 15.624 Curve III for extrapolati log(y) = -3.395 - 1.059x	Curve fit for original data (0.161 < $x < 0.300$) log(y) = -8.887 + 15.624 x^2 - 7.207log(x) Curve fit for extrapolation (0.300 < $x < 1.700$) log(y) = -3.395 - 1.059 x

Figure C-18 Load Spectra for Airplane 8A, Single-Engine, Business/Personal

Table C-19 Tabulated Data for Airplane 8A1

Total Heurs = 147	ER positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0008628 0.200 0.8668E-04 0.250 0.2162E-04		Curve fit for original data $(0.161 < x < 0.200)$ $\log(y) = -17.249 + 55.138x^2 - 15.711 \log(x)$ Curve fit for extrapclation $(0.200 < x < 1.700)$ $\log(y) = -1.650 \cdot 12.061x$
Total Nautical Miles = 20540	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	9 0.9737E-04		
Total Na			-0.179		170 <x<0.400) 942log(x) 1,400<x<1.667)< th=""></x<1.667)<></x<0.400)
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.2178761 0.200 0.0374748 0.250 0.0080503 0.300 0.0019209 0.350 0.0004783 0.400 0.0001197		Curve fit for original data $(0.170 < x < 0.400)$ $\log(y) = -4.545 - 8.398x^2 - 4.942 \log(x)$ Curve fit for extrapolation $(0.400 < x < 1.667)$ $\log(y) = 0.912 - 12.085x$
	GUST	Cumulative Frequency of Exceedance	0.1398999 0.0317764 0.0070583 0.0014369 0.0002590	rve fits x = x	Curve fit for original data (-0.350 < $x < -0.170$) log(y) = -2.718 - 17.265 x^2 - 2.734 log(x) Curve fit for extrapolation (-1.200 < $x < -0.350$) log(y) = 1.831 - 15.478x
	negative	Acceleration Fraction	-0.150 -0.200 -0.250 -0.360 -0.350	NOTE: for curve fits $x = x $	Curvefit for original data log(y) = -2.718 - 17.265x Curvefit for extrapolatic log(y) = 1.831 - 15.478x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 Figure C-19 Load Spectra for Airplane 8A1, Single-Engine, Business/Personal -0.4 -0.8 10^{-2} 10.3 10.5 9.01 00 10.1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 GUST -0.8 10.6 10.3 10^{2} 104 10.5 100 10.1 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-20 Tabulated Data for Airplane 9

Total Hours = 301

Ive	Cumulative Frequency of Exceedance	0.0038025 0.0012651 0.0005505 0.0001671 0.0001076 0.7465E-04 0.5506E-04		Curve fit for original data (0.161 < $x < 0.500$) log(y) = -5.716 + 1.044 x^2 - 3.972log(x) Curve fit for extrapolation (0.500 < $x < 1.700$) log(y) = -3.056 - 2.406x
positive	Acceleration Fraction	0.150 0.250 0.250 0.350 0.450 0.500		Curvefit for original dailog(y) = -5.716 + 1.044x Curvefit for extrapolatic log(y) = -3.056 - 2.406x
MANEUVER	Cumulative Frequency of Exceedance	0.0005387 0.9084E-04 0.1936E-04		Curve fit for original data $(-0.250 < x < -0.179)$ log(y) = -9.742 + 4.438x ² - 9.008log(x) Curve fit for extrapolation $(-0.800 < x < -0.250)$ log(y) = -0.684 - 13.429x
negative	Acceleration Fraction	-0.200 -0.250 -0.300		Curve fit for original data log(y) = -9.742 + 4.438x ² log(y) = -0.684 - 13.429x
۸e	Acceleration Cumulative Frequency Fraction of Exceedance	0.0703556 0.0157897 0.0046880 0.0016902 0.000131 0.0001266 0.9017E-04 0.5068E-04		Curve fit for original data $(0.193 < x < 0.550)$ $\log(y) = -5.896 + 0.309x^2 - 6.768 \log(x)$ Curve fit for extrapolation $(0.550 < x < 1.667)$ $\log(y) = -1.293 \cdot 5.004x$
positive	Acceleration Fraction	0.200 0.250 0.350 0.450 0.560 0.600 0.650		Curve fit for original d log(y) = -5.896 + 0.309 Curve fit for extrapola log(y) = -1.293 - 5.004
GUST	Cumulative Frequency of Exceedance	0.0528739 0.0133240 0.0036013 0.0009904 0.0002686 0.7038E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.450 < x < -0.193) log(y) = -3.839 - 8.675 x^2 - 4.163 log(x) Curve fit for extrapolation (-1.200 < x < -0.450) log(y) = 1.169 - 11.825 x
negative	Acceleration Fraction	-0.200 -0.250 -0.300 -0.350 -0.400 -0.450	NOTE: for ci	Curve fit for original data $log(y) = -3.839 - 8.675x^2$ $log(y) = -3.839 - 8.675x^2$ Curve fit for extrapolatio $log(y) = 1.169 - 11.825x$

Δ. Original Data Curve Fit 0.8 Acceleration Fraction, a / a ****** 0.4 0 MANEUVER Figure C-20 Load Spectra for Airplane 9, Single-Engine, Business/Personal -O.4 -0.8 100 10^{-2} 10.3 10.5 10.6 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 0 GUST -0.4 -0.8 ****** ****** ***** 10.3 10.6 10.2 10.5 101 00 10.1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-21 Tabulated Data for Airplane 9A

Total Hours = 423

positive	n Cumulative Frequency of Exceedance	0.0097858 0.0039883	0.0018977 0.0009863	0.0005405 0.0003057	0.0001761			Curve fit for original data $(0.161 < x < 0.500)$ $\log(y) = -4.268 \cdot 2.264x^2 - 2.803 \log(x)$ Curve fit for extrapolation $(0.500 < x < 1.700)$ $\log(y) = -1.641 \cdot 4.699x$
	Acceleration Fraction	0.150	0.250 0.300	0.350 0.400	0.450	!		Curve fit fo log(y) = -4. Curve fit for log(y) = -1.
MANEUVER	Cumulative Frequency of Exceedance	0.0029559 0.0017334	0.0008751 0.0003821	0.0001446				Curve fit for original data (-0.400 < $x < -0.179$) log(y) = -1.818 · 11.784 x^2 + 0.344 log(x) Curve fit for extrapolation (-0.800 < $x < -0.400$) log(y) = -0.218 · 9.054 x
negs	Acceleration Fraction	-0.200	-0.300 -0.350	-0.400				Curve fit for original data log(y) = -1.818 • 11.784; Curve fit for extrapolati log(y) = -0.218 • 9.054x
e Ke	Cumulative Frequency of Exceedance	0.0730688 0.0184783	0.0055256 0.0018286	0.0006438 0.0002350	0.8746E-04 0.3276E-04	0.1227E-04		Curve flt for original data (0.180 < x < 0.550) $\log(y) = -4.634 \cdot 3.998x^2 \cdot 5.233 \log(x)$ Curve flt for extrapolation (0.550 < x < 1.667) $\log(y) = 0.207 \cdot 8.530x$
positive	Acceleration Fraction	0.200	0300 0350	0.400	0.500	0.600		Curve fit for original d log(y) = -4.634 - 3.998 Curve fit for extrapola log(y) = 0.207 - 8.530x
GUST	Cumulative Frequency of Exceedance	0.0530022 0.0138110	0.0044752 0.0016775	0.0006966	0.0001474 0.7275F-04	0.3706E-04 0.1913E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.600< x < -0.180) $\log(y) = -5.218 - 1.337x^2 - 5.716\log(x)$ Curve fit for extrapolation (-1.200 < x < -0.600) $\log(y) = -0.986 - 5.743x$
nega	Acceleration Fraction	-0.200 -0.250	-0.300 -0.350	0.400	0.500	0.650	NOTE: for a	Curvefitfor log(y) = -5.2 Curvefitfor log(y) = -0.9
								C-47

C-48

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER Figure C-21 Load Spectra for Airplane 9A, Single-Engine, Business/Personal . 0.8 10^{-2} 10^{-3} 00 10.5 10¹ 104 9.01 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit Acceleration Fraction, a / a 0.4 0 GUST -0.4 00 10^{-2} 10.3 10.5 10₁ 10.₁ 10₋e 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-22 Tabulated Data for Airplane 10

				Total Nautical	Total Nautical Miles = 31563	Total Hours = 225	225
negative	GUST	positive	a	negative	MANEUVER	positive	9
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200 -0.250 -0.300 -0.350 -0.400 -0.450	0.0503258 0.0147547 0.0043805 0.0012654 0.0003473 0.8919E-04	0.200 0.250 0.300 0.300 0.400 0.400 0.500	0.0551744 0.0162657 0.0053053 0.0018172 0.0006337 0.0002205	-0.200	0.0002245	0.150 0.200 0.250 0.300	0.0051248 0.0008378 0.0001768 0.4247E-04
NOTE: for ci	NOTE: for curve fits $x = x $						
Curve fit for original data log(y) = -3.099 - 10.095x Curve fit for extrapolatio log(y) = 1.409 - 12.130x	Curve fit for original data (-0.450 < $x < -0.190$) log(y) = -3.099 - 10.095 x^2 - 3.155 log(x) Curve fit for extrapolation (-1.200 < $x < -0.450$) log(y) = 1.409 - 12.130 x	Curvefit for original ds log(y) = -3.905 • 5.8291 Curvefit for extrapolat log(y) = 0.582 • 9.408x	Curve fit for original data $(0.190 < x < 0.500)$ log(y) = -3.905 · 5.829 x^2 · 4.120log(x) Curve fit for extrapolation $(0.50^{\circ} < x < 1.667)$ log(y) = $0.582 - 9.408x$	Curve fit for original data log(y) = 2.455 - 30.521x Curve fit for extrapolatio log(y) = 2.455 - 30.521x	Curve fit for original data (-0.200 < $x < -0.179$) log(y) = 2.455 - 30.521x Curve fit for extrapolation (-0.800 < $x < -0.200$) log(y) = 2.455 - 30.521x	Curve fit for original data log(y) = -6.462 - 7.364x ² . Curve fit for extrapolation log(y) = -0.760 - 12.038x	Curve fit for original data (0.161 < x < 0.300) log(y) = -6.462 - 7.364 x^2 - 5.264log(x) Curve fit for extrapolation (0.300 < x < 1.700) log(y) = -0.760 - 12.038 x

Original Data Curve Fit Acceleration Fraction, a / a nus 0.4 0 MANEUVER Figure C-22 Load Spectra for Airplane 10, Single-Engine, Business/Personal -0.4 -0.8 لننننا 10^{-2} 10.3 10^{0} 104 10.5 10.6 <u>-0</u> 10^{-1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 *---0.4 -0.8 iiii 10.2 10.3 10-5 10.0 00 10.₁ 10 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-23 Tabulated Data for Airplane 10^1

				Total Nautical	Total Nautical Miles = 22436	Total Hours = 175	175
negative	GUST	positive	e.	negative	MANEUVER	positive	, e
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200 -0.250 -0.300 -0.350	0.024637 0.0061691 0.0018091 0.0005826	0.200 0.250 0.300 0.350 0.400 0.450 0.500	0.0253471 0.0062819 0.0019617 0.0007156 0.0002914 0.5878E-04 0.2684E-04	0.200 -0.250 -0.350 -0.450 -0.450	0.0015795 0.0003247 0.9275E-04 0.3014E-04 0.9795E-05 0.3183E-05	0.150 0.200 0.250 0.300 0.400 0.450 0.500	0.0195901 0.0123401 0.0071103 0.0037216 0.0007542 0.0002509 0.0002009
NOTE: for cu	NOTE: for curve fits $x = x $						
Curve fit for original da log(y) = -5.038 - 4.500 Curve fit for extrapolat log(y) = 0.111 - 9.560x	Curve fit for original data (-0.350 < x < -0.190) log(y) = -5.038 - 4.500 x^2 - 5.165log(x) Curve fit for extrapolation (-1.200 < x < -0.350) log(y) = 0.111 - 9.560 x	Curve fit for on log(y) = -5.73- Curve fit for est log(y) = -0.826	Curve fit for original data (0.190 < $x < 0.450$) log(y) = -5.734 - 1.147 x^2 - 5.985log(x) Curve fit for extrapolation (0.450 < $x < 1.667$) log(y) = -0.826 - 6.809x	Curvefitfororiginaldat log(y) = -8.141 + 1.898x Curvefitforextrapolati log(y) = -1.104 - 9.763x	Curve fit for original data (-0.300 < $x < -0.179$) log(y) = -8.141 + 1.898 x^2 - 7.531log(x) Curve fit for extrapolation (-0.800 < $x < -0.300$) log(y) = -1.104 - 9.763 x	Curve fit for original da log(y) = -1.738 - 9.3823 Curve fit for extrapolat log(y) = 0.823 - 9.636x	Curve fit for original data (0.161 < x < 0.500) $\log(y) = -1.738 - 9.382x^2 - 0.292 \log(x)$ Curve fit for extrapolation (0.500 < x < 1.700) $\log(y) = 0.823 - 9.636x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER Figure C-23 Load Spectra for Airplane 101, Single-Engine, Business/Personal -0.4 -0.8 00 10^{-2} 10.3 10^{-5} 10.6 10^{-1} ₽0 10¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST -0.4 -0.8 9.01 10^{-3} 10.5 10^{0} 10.1 10^{-2} 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-24 Tabulated Data for Airplane 10A

Total Hours = 265

Total Nautical Miles = 34231

		COST				MANEUVER		
	negative		positive	ىو	negative	lve	positive	Ve
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0.200 -0.250 -0.300	0.0172749 0.0034826 0.0009715	0.200 0.250 0.300	0.0267541 0.0073910 0.0021597	-0.200 -0.250 -0.300	0.0001044 0.3159E-04 0.1771E-04	0.150 0.200 0.250	0.0038008 0.0007647 0.0002543
	-0.350 -0.400 -0.450	0.0003409 0.0001422 0.6792E-04	0320	0.0006363			0.300 0.350 0.400	0.0001196 0.6490E-04 0.3521E-04
	-0.500	0.3626E-04					0.450 0.500 0.530	0.1910E-04 0.1036E-04 0.5623E-05 0.3050E-05
	NOTE: for cu	NOTE: for curve fits $x = x $					0.650	0.1655E-05
0.55	Curve fit for original data log(y) = -7.085 + 1.513x Curve fit for extrapolatic log(y) = -1.928 - 5.026x	Curve fit for original data (-0.500 < x < -0.186) $\log(y) = -7.085 + 1.513x^2 - 7.528 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.500) $\log(y) = -1.928 - 5.026x$	Curve fit for original da log(y) = -3.875 - 8.539x Curve fit for extrapolatic log(y) = 0.538 - 10.671x	Curve fit for original data (0.186 < x < 0.350) $\log(y) = -3.875 - 8.539x^2 - 3.783 \log(x)$ Curve fit for extrapolation (0.350 < x < 1.667) $\log(y) = 0.538 - 10.671x$	Curve fit for original dai log(y) = -16.683 + 44.27 Curve fit for extrapolati log(y) = -3.244 - 5.028x	Curve fit for original data (-0.250 < x < -0.179) log(y) = -16.683 + 44.279 x^2 · 15.639 log(x) Curve fit for extrapolation (-0.800 < x < -0.250) log(y) = -3.244 - 5.028x	Curve fit for ol log(y) = -7.97(Curve fit for ex) log(y) = -2.329	Curve fit for original data (0.161 < x < 0.300) log(y) = -7.970 + 6.941 x^2 - 6.546log(x) Curve fit for extrapolation (0.300 < x < 1.700) log(y) = -2.329 - 5.312 x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nur 0.4 ٥ MANEUVER 0 Figure C-24 Load Spectra for Airplane 10A, Single-Engine, Business/Personal -0.4 10.7 ₀0 10-3 10₋1 104 10.5 10.6 10, Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST -0.4 -0.8 100 10^{-2} 10^{-3} 10.1 10-5 10.6 101 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-25 Tabulated Data for Airplane 11

				Total Nautical	Total Nautical Miles = 12596	Total Hours = 131	131
negative	GUST	positive	ų.	negative	MANEUVER	positive	a _A .
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.700 -0.250 -0.300 -0.350	0.0273982 0.0088862 0.0027082 0.0007554	0.200 0.250 0.350 0.350	0.0212591 0.0059083 0.0015034 0.0003408	-0.200 -0.250 -0.350 -0.400	0.0052085 0.0016747 0.0005728 0.0001988 0.6897E-04	0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.550	0.0522329 0.0203248 0.0087593 0.0039370 0.0017874 0.0008040 0.0001513 0.6354E-04
NOTE: for ca	NOTE: for curve fits $x = x $						
Curve fit for original data log(y) = -2.504 · 12.778x Curve fit for extrapolatio log(y) = 0.912 · 11.525x	Curveflt for original data $(-0.350 < x < -0.187)$ log(y) = $-2.504 \cdot 12.778x^2 \cdot 2.079 \log(x)$ Curveflt for extrapolation $(-1.200 < x < -0.350)$ log(y) = $0.912 \cdot 11.525x$	Curve fit for on log(y) = -2.57(Curve fit for ex log(y) = 1.239	Curve fit for original data (0.187 < $x < 0.350$) log(y) = -2.576 - 15.361 x^2 - 2.172log(x) Curve fit for extrapolation (0.350 < $x < 1.667$) log(y) = 1.239 - 13.447 x	Curve fit foro log(y) = -4.43 Curve fit fore; log(y) = -0.48	Curve fit for original data (-0.300< x < -0.179) log(y) = -4.433 - 6.944 x^2 - 3.473log(x) Curve fit for extrapolation (-0.800 < x < -0.300) log(y) = -0.484 - 9.193 x	Curve fit for original day log(y) = -3.250 - 5.333x Curve fit for extrapolatic log(y) = -0.053 - 7.534x	Curve fit for original data $(0.161 < x < 0.500)$ log(y) = -3.250 - 5.333 x^2 - 2.534log(x) Curve fit for extrapolation $(0.500 < x < 1.700)$ log(y) = -0.053 - 7.534x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 ույնույնուկայերդերիակայիակարևու Figure C-25 Load Spectra for Airplane 11, Single-Engine, Business/Personal -0.4 -0.8 لنلنانا تتناتلا 10.5 10^{-2} 10^{-3} 10₋₆ 100 104 10.1 ₋0 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a LIF 0.4 0 GUST -0.4 -0.8 -1:2 10^{-2} 10.3 10-5 10.6 10^{0} 10.1 101 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-26 Tabulated Data for Airplane 12

				Total Nautical Miles = 3101	Miles = 3101	Total Hours = 30	30
negative	GUST	positive	, ,	negative	MANEUVER	positive	
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200	0.0052651	0.200 0.250 0.300 0.350 0.400	0.0237631 0.0041013 0.0011207 0.0004305 0.0001910	-0.200	0.0015365 0.0004051	0.150 0.200 0.250 0.300 0.350	0.0099943 0.004496 0.0018462 0.0006955 0.0002484
NOTE: for cu	NOTE: for curve fits $x = x $						
Curve fit for original day $\log(y) = -4.829 - 8.915x^2$ $\log(y) = 4.829 - 8.915x^2$ Curve fit for extrapolatio $\log(y) = 1.0/7 - 13.424x$	Curve fit for original data $(-0.250 < x < -0.196)$ log(y) = $-4.829 - 8.915x^2 - 5.162log(x)$ Curve fit for extrapolation $(-1.200 < x < -0.250)$ log(y) = $1.0/7 - 13.424x$	Curve flt for original ds log(y) = -8.458 + 6.579 Curve flt for extrapolat log(y) = -0.895 • 7.059)	Curve fit for original data $(0.196 < x < 0.350)$ log(y) = -8.458 + 6.579 x^2 - 9.400log(x) Curve fit for extrapolation $(0.350 < x < 1.667)$ log(y) = -0.895 - 7.059 x	Curve fit for original data log(y) = -3.053 - 19.459x ² Curve fit for extrapolation log(y) = -0.327 - 12.260x	Curve fit for original data (-0.250 < x < -0.179) log(y) = -3.053 - 19.459 x^2 - 1.457log(x) Curve fit for extrapolation (-0.800 < x < -0.250) log(y) = -0.327 - 12.260 x	Curve fit for original dai log(y) = -2.627 - 12.264. Curve fit for extrapolati log(y) = -0.475 - 8.943x	Curve fit for original data (0.161 < $x < 0.300$) log(y) = -2.627 - 12.264 x^2 - 1.095log(x) Curve fit for extrapolation (0.300 < $x < 1.700$) log(y) = -0.475 - 8.943 x

an makin kan kankan kacamaran harikin ka Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 a MANEUVER 0 Figure C-26 Load Spectra for Airplane 12, Single-Engine, Business/Personal 4.0--0.8 ننننا ننننا 10.2 10^{-3} 001 10-4 10.5 9.01 10.1 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.8 10^{-1} 10.7 10.3 10.5 9.01 10 100 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

7:

Table C-27 Tabulated Data for Airplane 121

		Frequency dance	24-2888225 <u>4</u> 49	Curve fit for original data (0.161 < $x < 0.550$) log(y) = -2.934 - 4.612 x^2 - 2.081 log(x) Curve fit for extrapolation (0.550 < $x < 1.700$) log(y) = -0.095 - 6.716 x
199	ilve	Cumulative Frequency of Exceedance	0.0475123 0.0216849 0.0107341 0.0054853 0.0028186 0.0007145 0.0001627 0.7511E-04 0.5467E-04	Curve fit for original data $(0.161 < x < \log(y) = -2.934 - 4.612x^2 - 2.081 \log(x)$ Curve fit for extrapolation $(0.550 < x < \log(y) = -0.095 - 6.716x$
Total Hours = 199	t positive	Acceleration Fraction	0.150 0.200 0.250 0.350 0.450 0.550 0.650 0.650	Curvefit for original daj log(y) = -2.934 - 4.612x; Curvefit for extrapolati log(y) = -0.095 - 6.716x
Total Nautical Miles = 16836	MANEUVER	Cumulative Frequency of Exceedance	0.0070208 0.0031913 0.0015585 0.0004072 0.0002105 0.0001082	Curve fit for original data $(-0.500 < x < -0.179)$ $\log(y) = -3.925 - 3.452x^2 - 2.732 \log(x)$ Curve fit for extrapolation $(-0.800 < x < -0.500)$ $\log(y) = -1.053 - 5.825x$
Total Nautica	negative	Acceleration Fraction	-0.200 -0.250 -0.300 -0.350 -0.450 -0.500	Curve fit for original dai log(y) = -3.925 - 3.452x Curve fit for extrapolati log(y) = -1.053 - 5.825x
	-e	Cumulative Frequency of Exceedance	0.0202239 0.0048128 0.0014362 0.0004979 0.0001916 0.7950E-04	Curve fit for original data $(0.196 < x < 0.450)$ $\log(y) = -5.841 - 1.731x^2 - 6.032 \log(x)$ Curve fit for extrapolation $(0.450 < x < 1.667)$ $\log(y) = -0.779 - 7.379x$
	positive	Acceleration Fraction	0.200 0.250 0.300 0.350 0.400 0.450	Curve fit for original d log(y) = -5.841 - 1.731 Curve fit for extrapola log(y) = -0.779 - 7.379
	GUST	Cumulative Frequency of Exceedance	-0.200 0.0229331 -0.250 0.0045752 -0.300 0.0012251 -0.350 0.0004019 -0.450 0.6188E-04 -0.550 0.2504E-04 -0.550 0.1013E-04	Curve fit for original data (-0.400 < $x < -0.196$) log(y) = -6.683 - 0.029 x^2 - 7.217 log(x) Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = -0.672 - 7.859x
	negative	Acceleration Fraction	-0.200 -0.250 -0.300 -0.350 -0.400 -0.500 -0.550 NOTE: for cu	Curve fit for original dai log(y) = -6.683 - 0.029x Curve fit for extrapolati log(y) = -0.672 - 7.859x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 ٥ MANEUVER 0 Figure C-27 Load Spectra for Airplane 121, Single-Engine, Business/Personal -0.4 -0.8 10.3 ₀0 10.1 10^{-2} 104 10.5 10.6 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n.l.F 0.4 0 GUST 0 -0.4 -0.8 10.6 10^{-2} 10^{-3} 10.5 100 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-28 Tabulated Data for Airplane 122

Total Hours = 81	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0211008 0.200 0.0079563 0.250 0.0030552 0.300 0.0011388 0.350 0.0004016		Curve fit for original days (0.161 < x < 0.350) log(y) = -3.123 - 9.760 x^2 - 2.023 log(x) Curve fit for extrapolation (0.350 < x < 1.700) log(y) = -0.126 - 9.342x
Total Nautical Miles = 8222	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0011173 -0.250 0.0001725		Curve fit for original data $(-0.250 < x < -0.179)$ log(y) = $-0.276 - 42.154x^2 + 1.416\log(x)$ Curve fit for extrapolation $(-0.800 < x < -0.250)$ log(y) = $0.891 - 18.618x$
To	positive	Acceleration Cumulative Frequency Ac	0.200 0.0313561 0.250 0.0027356 0.300 0.0006804		Curve fit for original data $(0.196 < x < 0.300)$ Culog(y) = -14.939 + 28.651 x^2 - 17.583log(x) ho Curve fit for extrapolation $(0.300 < x < 1.667)$ Culog(y) = -0.688 - 8.263 x
	GUST	Acceleration Cumulative Frequency Ac	-0.200 0.0201958 -0.250 0.0045416 -0.300 0.0010611 -0.350 0.0002446	NOTE: for curve fits $x = x $	Curve fit for original data (-0.350 < x < -0.196) C log(y) = $-4.106 \cdot 11.185x^2 - 4.090 \log(x)$ log(y) = $-4.106 \cdot 11.185x^2 - 4.090 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.350) C log(y) = $0.905 \cdot 12.905x$ log

Figure C-28 Load Spectra for Airplane 122, Single-Engine, Business/Personal

Table C-29 Tabulated Data for Airplane 12^3

				Total Nautical	Total Nautical Miles = 19192	Total Hours = 193	193
negative	GUST	positive	es >	negative	MANEUVER	positive	ě
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200	0.1066760	0.250	0.066202	-0.200	0.0073946	0.150	0.0544551 0.0133517 0.0030140
-0.300 -0.350 -0.400	0.0016438 0.0016438 0.0005192	0.300 0.350 0.400	0.0005424 0.0006138 0.0001582	-0.350 -0.400 -0.400	0.00016486 0.0001572	03000	0.0012498 0.0004132
-0.450 NOTE: for cu	-0.450 0.0001730 NOTE: for curve fits x = x			-0.450	0.5884E-04	0.400	0.0001575
Curve fit for original da log(y) = -5.125 - 3.820x Curve fit for extrapolati log(y) = 0.460 - 9.383x	Curve fit for original data (-0.450 < x < -0.196) log(y) = -5.125 - 3.820 x^2 - 6.160log(x) Curve fit for extrapolation (-1.200 < x < -0.450) log(y) = 0.460 - 9.383 x	Curve fit for original du log(y) = -5.428 - 5.782. Curve fit for extrapolal log(y) = 0.835 - 11.588	Curve fit for original data (0.196 < $x < 0.400$) log(y) = -5.428 · 5.782 x^2 - 6.413log(x) Curve fit for extrapolation (0.400 < $x < 1.667$) log(y) = 0.835 · 11.588 x	Curve fit for original data log(y) = -3.961 - 6.446x* Curve fit for extrapolative log(y) = -0.323 - 8.684x	Curve fit for original data $(-0.450 < x < -0.179)$ log(y) = -3.961 - 6.446 x^2 - 2.987log(x) Curve fit for extrapolation $(-0.800 < x < -0.450)$ log(y) = -0.323 - 8.684 x	Curve fit for original dag log(y) = -4.374 - 6.64 1 x* Curve fit for extrapolatic log(y) = -0.019 - 9.608 x	Curve fit for original data (0.161 < x < 0.400) log(y) = -4.374 - 6.641 x^2 - 3.956log(x) Curve fit for extrapolation (0.400 < x < 1.700) log(y) = -0.019 - 9.608 x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER Figure C-29 Load Spectra for Airplane 123, Single-Engine, Business/Personal -0.4 .O. 10^{-2} 10.5 901 10^{-3} 104 100 10-1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit TATAL CONTRACTOR CONTRACTOR CONTRACTOR 0.8 Acceleration Fraction, a / a ումուկու և սկականա համարակումուն 0.4 0 GUST -0.4 -0.8 10^{-3} 10.5 10-6 10^{-2} 90 10.1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-30 Tabulated Data for Airplane 12A

					Total Nautical Miles = 3141	Miles = 3141	Total Hours = 34	34	
	negative	GUST	positive	e.	negative	MANEUVER	positive	, e	
	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	
	-0.200 -0.250 -0.300 -0.350 -0.400	0.0649354 0.0137951 0.0036481 0.0011099 0.0003706	0.200 0.250 0.300 0.330 0.400 0.450	0.0645972 0.0108743 0.0027019 0.0003878 0.0003612 0.0001611	-0.200 -0.250 -0.300 -0.350	0.0053497 0.0028326 0.0013088 0.0005274	0.150 0.250 0.250 0.350 0.400 0.450	0.0286802 0.0158086 0.0091763 0.0054116 0.0031810 0.0018425 0.0010440	
	NOTE: for curve fits $x = x $	$\mathbf{rve} \mathbf{fits} \mathbf{x} = \mathbf{x} $					0.550	0.0003128	
-	Curvefit for original da log(y) = -5.419 - 3.069x Curvefit for extrapolati log(y) = 0.256 - 9.219x	Curvefit for original data (-0.400 < x < -0.196) log(y) = -5.419 · 3.069 x^2 - 6.229 log(x) Curvefit for extrapolation (-1.200 < x < -0.400) log(y) = 0.256 · 9.219 x	Curvefit for original da log(y) :: -7.382 + 3.019x Curve fit for extrapolatiog(y) = -0.636 - 7.015x	Curve fit for original data (0.196 < $x < 0.400$) log(y) :: -7.382 + 3.019 x^2 - 8.686log(x) Curve fit for extrapolation (0.400 < $x < 1.667$) log(y) = -0.636 - 7.015 x	Curve fit for original data log(y) = -1.830 - 12.030 Curve fit for extrapolatic log(y) = -0.306 - 8.491x	Curve fit for original data (-0.350 < $x < -0.179$) log(y) = -1.830 - 12.030 x^2 - 0.056 log(x) Curve fit for extrapolation (-0.800 < $x < -0.350$) log(y) = -0.306 - 8.491x	Curve fit for original day log(y) = -2.699 - 3.985x* Curve fit for extrapolating log(y) = -0.590 - 5.299x*	Curve fit for original data $(0.161 < x < 0.500)$ $\log(y) = -2.699 - 3.985x^2 - 1.512\log(x)$ Curve fit for extrapolation $(0.500 < x < 1.700)$ $\log(y) = -0.590 - 5.299x$	

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER Figure C-30 Load Spectra for Airplane 12A, Single-Engine, Business/Personal -0.4 -0.8 100 10^{-2} 10.3 10.5 9.01 10.1 104 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST -0.8 9.01 100 10^{-2} 10^{-3} 10.5 10-1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-31 Tabulated Data for Airplane 13

				Total Nautical	Total Nautical Miles = 75331	Total Hours = 782	782
negative	GUST	positive	Ae.	negative	MANEUVER	positive	۷e ×
Cum of	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
00	0.0379344	0.200	0.0398620	-0.200	0.0028289	0.150 0.200	0.0172017 0.0075871
000	0.0030415	0300	0.0016055	-0.300	0.0005135	0.250	0.0031890 0.0012396
0	0.0003403	0.400	0.0001403	-0.400	0.0001048	0.350	0.0004385
00	0.0001183 0.4117F-04	0.450	0.4854E-04 0.1798E-04	-0.450	0.4698E-04	0.400	0.4224E-04
•		0.550	0.6851E-05 0.2610E-05			0.500 0.550	0.1276E-04 0.3855E-05
						0.600	0.1165E-05
ırve fi	NOTE: for curve fits $x = x $						
Curvefit for original da log(y) = 4.572 • 5.028x Curvefit for extrapolati log(y) = 0.212 • 9.194x	Curve fit for original data (-0.500< $x<$ -0.188) log(y) = 4.572 - $5.028x^2$ - $4.796\log(x)$ Curve fit for extrapolation (-1.200< $x<$ -0.500) log(y) = 0.212 - 9.194 x	U-U-	Curve fit for original data (0.188 < $x < 0.500$) log(y) = -6.461 - 1.993 x^2 - 7.356log(x) Curve fit for extrapolation (0.500 < $x < 1.667$) log(y) = -0.554 - 8.382 x	Curvefit for original dai log(y) = -4.354 - 4.762x Curvefit for extrapolati log(y) = -1.159 - 7.042x	Curve fit for original data (-0.450 < x < -0.179) log(y) = $-4.354 - 4.762x^2 - 2.856 \log(x)$ Curve fit for extrapolation (-0.800 < x < -0.450) log(y) = -1.159 - 7.042x	Curve fit foro log(y) = ·2.55 Curve fit fore: log(y) = 0.305	Curve fit for original data (0.161 < x < 0.400) log(y) = .2.533 - 11.279 x^2 - 1.266bg(x) Curve fit for extrapolation (0.400 < x < 1.700) log(y) = 0.305 \times 10.397 x

Original Data Curve Fit 0.8 Acceleration Fraction, a 0.4 0 MANEUVER Figure C-31 Load Spectra for Airplane 13, Single-Engine, Business/Personal -0.4 -0.8 -1.2 10^{0} 10.3 10.6 10^{-2} 104 10.5 10^{-1} 10, Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLLF 0.4 0 GUST 0 -0.8 -1:2 لننتا 10-2 10.3 10.5 9-01 00 10.1 101 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-32 Tabulated Data for Airplane 13¹

Total Hours = 123 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0110202 0.200 0.0066219 0.250 0.0033918 0.300 0.0014843 0.350 0.0005556 0.400 0.0001780		Curve fit for original data (0.161 < $x < 0.400$) log(y) = -1.578 - 13.329 x^2 + 0.096log(x) Curve fit for extrapolation (0.400 < $x < 1.700$) log(y) = 0.474 - 10.559 x
Total Nautical Miles = 11290 MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0021397 -0.250 0.0009354 -0.300 0.0003402		Curve fit for original data (-0.300 < x < -0.179) (log(y) = -2.031 - 15.972 x^2 Curve fit for extrapolation (-0.800 < x < -0.300) (log(y) = -2.031 - 15.972 x^2
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0544594 0.250 0.0116669 0.300 0.0034356 0.350 0.0012679 0.450 0.0002779 0.500 0.0001555 0.550 0.9139E-04 0.600 0.5370E-04		Curve fit for original data (0.188 < x < 0.500) log(y) = -6.440 + 1.728 x^4 - 7.306log(x) Curve fit for extrapolation (0.500 < x < 1.667) log(y) = -1.500 - 4.617 x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0578506 -0.250 0.0109124 -0.300 0.0027843 -0.400 0.0008746 -0.450 0.0001312 -0.500 0.2435E-04	NOTE: for curve fits $x = x $	Curve fit for original data $(-0.450 < x < -0.188)$ log(y) = -6.433 · 0.147 x^2 · 7.441log(x) Curve fit for extrapolation $(-1.200 < x < -0.450)$ log(y) = -0.591 · 7.313 x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER Figure C-32 Load Spectra for Airplane 13¹, Single-Engine, Business/Personal -0.4 -0.8 -0.8 10^{-2} 10.3 10.5 9.01 10^{0} 104 10.1 -⊡ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a LLP 0.4 0 0 -0.4 ÷0.8 -1:2 10.و 10-3 10.5 10.2 001 101 504 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-33 Tabulated Data for Airplane 28

cceleration Cumulative Frequency Fraction of Exceedance	0.050 0.3346986 0.100 0.0171562 0.15 0.0026306 0.25 0.0001644 0.300 0.4885E-04 0.350 0.1484E-04		Curve fit for original data $(0.074 < x < 0.300)$ log(y) = -5.795 - 7.350 x^2 - 4.103log(x) Curve fit for extrapolation $(0.300 < x < 1.700)$ log(y) = -1.206 - 10.350 x
Acceleration Cumulative Frequency A	-0.100 0.0182349 -0.150 0.0004935 -0.200 0.0001423 -0.250 0.6218E-04		Curve fit for original data (-0.250 $< x < -0.091$) Curve fit for original data (0.074 $< x < 0.300$) log(y) =-50.66 + 139.91x · 169.16x² · 36.62log(x) log(y) = -5.795 · 7.350x² · 4.103log(x) Curve fit for extrapolation (-0.800 $< x < -0.250$) Curve fit for extrapolation (0.300 $< x < -1.200$) log(y) = -2.135 - 8.286x log(y) = -1.206 · 10.350x
Acceleration Cumulative Frequency Fraction of Exceedance	0.100 0.0270981 0.150 0.0051288 0.200 0.0013638 0.250 0.0004208 0.300 0.0001383 0.350 0.4630E-04 0.400 0.1536E-04		Curvefit for original data (0.097 < $x < 0.400$) log(y) = -5.087 - 7.225 x^2 - 3.593log(x) Curvefit for extrapolation (0.400< $x < 1.667$) log(y) = -0.942 - 9.680 x
Cumulative Frequency of Exceedance	-0.100 0.0191765 -0.150 0.0039688 -0.200 0.0011721 -0.250 0.0004096 -0.300 0.0001558 -0.350 0.6165E-04 -0.400 0.2474E-04 -0.450 0.9930E-05	NOTE: for curve fits $x = x $	Curve fit for original data $(-0.400 < x < -0.097)$ log(y) = -5.187 - 5.132 x^2 - 3.521log(x) Curve fit for extrapolation $(-1.200 < x < -0.400)$ log(y) = -1.436 - 7.928x
	n Cumulative Frequency Acceleration of Exceedance Fraction	Cumulative Frequency Acceleration Cumulative Frequency Acceleration Cumulative Frequency Acceleration Cumulative Frequency of Exceedance Fraction of Exceedance Fraction of Exceedance 0.0191765 0.0150 0.0270981 -0.100 0.0182349 0.003688 0.150 0.0051288 -0.150 0.0004935 0.0001721 0.200 0.0013638 -0.200 0.0001423 0.000158 0.300 0.0001383 -0.250 0.6218E-04 0.2474E-04 0.460 0.1536E-04 0.1536E-04 0.1536E-04	Cumulative Frequency Acceleration Of Exceedance Fraction Of Exceedance Acceleration Of Exceedance Acceleration Of Exceedance Of Of Ex

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-33 Load Spectra for Airplane 28, Single-Engine, Business/Personal -0.4 -0.8 10^{-2} 10.3 10.2 10.6 104 100 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 and the state of the land of the state of the Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.4 -0.8 10.3 10.5 9.01 10^{0} 10^{-2} 104 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

?

Table C-34 Tabulated Data for Airplane 41

1285	A.	Cumulative Frequency of Exceedance	0.0111285 0.0026239 0.0008089 0.0003002 0.0001277 0.6033E-04 0.1471E-04 0.1726E-05 0.172E-05		Curve fit original data (0.180 < x < 0.450) $\log(y) = -6.515 + 0.179x^2 - 6.516\log(x)$ Curve fit for extrapolation (0.450 < x < 1.700) $\log(y) = -1.462 - 6.128x$
Total Hours = 1285	positive	Acceleration Fraction	0.200 0.250 0.350 0.350 0.450 0.550 0.660 0.650		Curve fit original data (log(y) = -6.515 + 0.179x Curve fit for extrapolatiog(y) = -1.462 - 6.128x
Total Nautical Miles = 129065	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0046903 0.300 0.0013226 0.350 0.0004638 0.400 0.8967E-04 0.500 0.4656E-04 0.550 0.2634E-04		Curve fit original data (-0.550 < x < -0.225) $\log(y) = -6.793 + 1.048x^2 - 7.307 \log(x)$ Curve fit for extrapolation (-0.800 < x < -0.550) $\log(y) = -2.040 - 4.617x$
To	positive	Cumulative Frequency of Exceedance	0.0098877 0.0032730 0.0013149 0.000629 0.0001649 0.9448E-04 0.3512E-04 0.224E-04 0.1452E-04 0.1452E-04 0.1452E-04 0.1650E-05 0.1650E-05		Curve fit original data (0.205 < x < 0.650) C1 log(y) = -5.385 - 0.409 x^2 - 4.860log(x) log Curve fit for extrapolation (0.650 < x < 1.667) Curve (0) = -2.193 - 3.779 x
	[Acceleration Fraction	0.200 0.250 0.350 0.450 0.450 0.550 0.650 0.650 0.750		
	GUST	A releration Cumulative Frequency Fraction of Exceedance	0.200 0.0064303 0.250 0.0020448 0.300 0.0007465 0.350 0.0002261 0.400 0.5304E-04 0.550 0.2312E-04 0.550 0.1012E-04	NOTE: for curve fits $x = x $	Curve fit original data (-0.550 < x < -0.188) log(y) = -5.091 - 3.411 x ² - 4.343 log(x) Curve fit for extrapolation (-1.200 < x < -0.550) log(y) = -1.046 - 7.181 x
		₹ ₩		Z	2 2 2 3

MANEUVER Figure C-34 Load Spectra for Airplane 41, Single-Engine, Business/Personal GUST

Table C-35 Tabulated Data for Airplane 6A

				Total Nautical	Total Nautical Miles = 209750	Total Hours = 1380	1380	
negative	GUST	positive	, ,	negative	MANEUVER	positive	.	
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	
0.200 -0.250 -0.250 -0.350 -0.450 -0.450 -0.450 -0.450 -0.450 -0.450 -0.950 -0.950 -0.950 -0.950	0.3335950 0.0884207 0.028883 0.0108414 0.004807 0.0019848 0.0001237 0.000130 0.5824E-04 0.3030E-04 0.4387E-05 0.2305E-05	0.200 0.250 0.350 0.450 0.450 0.550 0.550 0.750 0.750 0.850 0.850 0.850 0.850 0.950 1.100 1.100	0.3770342 0.111740 0.0402630 0.0165127 0.0074167 0.0017921 0.0003579 0.0003579 0.000356 0.000356 0.000356 0.0001535 0.8640E-04 0.2795E-04 0.1597E-04 0.1597E-04 0.2795E-05 0.2795E-05	0.200 -0.250 -0.350 -0.400 -0.450 -0.500	0.0657484 0.0150804 0.0041982 0.00043188 0.0001595 0.5861E-04	0.150 0.250 0.250 0.350 0.450 0.550 0.550 0.750 0.750	0.3394602 0.1291976 0.0532401 0.0224279 0.0093668 0.0014894 0.0005559 0.00005559 0.6587E-04 0.2076E-04 0.6341E-05 0.1937E-05	
NOTE: for cu	NOTE: for curve fits $x = x $							
Curve fit original data (log(y) = -4.311 - 1.608x Curve fit for extrapolati log(y) = -0.333 - 5.583x	Curve fit original data (-0.850 < x < -0.187) $\log(y) = -4.311 - 1.608x^2 - 5.577 \log(x)$ Curve fit for extrapolation (-1.650 < x < -0.850) $\log(y) = -0.333 - 5.583x$	Curve fit original data log(y) = -3.966 - 1.3165 Curve fit for extrapolati log(y) = -0.419 - 4.865	Curve fit original data (0.187 < $x < 0.850$) log(y) = -3.966 - 1.316 x^2 - 5.143log(x) Curve fit for extrapolation (0.850 < $x < 1.600$) log(y) = -0.419 - 4.865 x	Curve fit original data log(y) = -5.065 · 3.605; Curve fit for extrapolatiog(y) = 0.073 - 8.610x	Curve fit original data (-0.500 < x < -0.179) log(y) = -5.065 - 3.605 x^2 - 5.762log(x) Curvefitfor extrapolation (-0.813 < x < -0.500) log(y) = 0.073 - 8.610x	Curve fit original data (log(y) = -2.315 - 6.677x Curve fit for extrapolati log(y) = 2.011 - 10.299x	Curve fit original data (0.161 < x < 0.650) $\log(y) = -2.315 - 6.677x^2 - 2.423 \log(x)$ Curve fit for extrapolation (0.650 < x < 1.500) $\log(y) = 2.011 - 10.299x$	

Cumulative Frequency of Exceedance

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER Figure C-35 Load Spectra for Airplane 6A, Single-Engine, Special Usage **-**0.4 -0.8 تتنشأ 10^{-2} 10^{-3} 10.6 104 10-5 10⁰ 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 1.6 1:2 Acceleration Fraction, a / a 0.8 0 0.4 GUST 0 -1.6 -1.2 -0.8 -0.4 10-5 10^{-2} 10-3 9.01 00 10.1 104 101 Cumulative No. Occurrences/Nautical Mile

Table C-36 Tabulated Data for Airplane 9B

					Total Nautical Miles = 82334	Miles = 82334	Total Hours = 740	740
	negative	GUST	positive	ě	negative	MANEUVER	positive	پو
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0.280 -0.250 -0.350 -0.350	0.1338738 0.0434474 0.0151109 0.0053861	0.250 0.250 0.350 0.350	0.1255507 0.0286020 0.0085827 0.0031174 0.0013031	-0.280 -0.280 -0.380 -0.380	0.0005592 0.0002383 0.0001567 0.0001214 0.9442E-04	0.150 0.250 0.360 0.350	0.0056568 0.0029592 0.0015823 0.0008364 0.0004293
	-0.450 -0.50 -0.50 -0.600	0.0006683 0.0002260 0.7348E-04 0.2282E-04	0.450 0.50 0.50 0.600 0.700	0.0006068 0.0003078 0.0001675 0.9655E-04 0.3622E-04 0.2243E-04	0.453 0.500 0.550 0.600 0.700	0.6647E-04 0.3946E-04 0.1878E-04 0.7898E-05 0.3322E-05 0.1397E-05	0.400 0.450 0.500 0.550 0.650	0.0002117 0.9961E-04 0.4451E-04 0.1936E-04 0.3663E-05
	NOTE: for curve fits x = x	rve fits x = x						
C-77	Curve fit original data () log(y) = -3.081 - 6.511x ² Curve fit for extrapolatic log(y) = 1.580 - 10.369x	$\begin{array}{l} \text{Curve fit original data (-0.600 < x < -0.193)} \\ \log(y) = -3.081 - 6.511 x^2 - 3.532 \log(x) \\ \text{Curve fit for extrapolation (-1.650 < x < -0.600)} \\ \log(y) = 1.580 - 10.369x \end{array}$	Curve fit original data (log(y) = -5.582 + 0.233x Curve fit for extrapolati log(y) = -1.528 - 4.162x	Curve fit original data $(0.193 < x < 0.650)$ log(y) = -5.582 + 0.233 x^2 - 6.683log(x) Curve fit for extrapolation $(0.650 < x < 1.600)$ log(y) = -1.528 - 4.162 x	Curve fit original data (log(y) = -26.77 + 50.80x Curve fit for extrapolatic log(y) = -0.588 - 7.523x	Curve fit original data $(-0.550 < x < -0.179)$ log(y) = $-26.77 + 50.80x - 37.75x^2 - 21.27log(x)$ Curve fit for extrapolation $(-0.813 < x < -0.550)$ log(y) = $-0.588 - 7.523x$	Curve fit original data (log(y) = -3.275 - 6.005x Curve fit for extrapolati log(y) = -0.736 - 7.231x	Curve fit original data (0.161 < $x < 0.500$) log(y) = -3.275 - 6.005 x^2 - 1.411log(x) Curve fit for extrapolation (0.500< $x < 1.500$) log(y) = -0.736 - 7.231x

C-78

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 -0.4 -0.8 -1.2 10₀ 10^{-2} 10^{-3} 10-5 9.01 10-1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 0 Original Data Curve Fit 0.8 Acceleration Fraction, a 0 0.4 -0.4 -0.8 -1.2 001 10.3 10.1 10^{-2} 104 10-5 10^{-6} 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Figure C-36 Load Spectra for Airplane 9B, Single-Engine, Special Usage

Table C-37 Tabulated Data for Airplane 171

				Total Nautical	Total Nautical Miles = 111407	Total Hours = 1258	1258
negative	GUST	positive	Ve	negative	MANEUVER	positive	- -
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200	1.1467170 0.2902523 0.0885439	0.200 0.250 0.300	1.0565190 0.1899555 0.0417285	-0.150 -0.200 -0.250	0.0008020 0.0001301 0.5153E-04	0.150 0.200 0.250	0.2172265 0.1381743 0.0728134
-0.400 -0.400 -0.450	0.0303884 0.0112610 0.0043879	0.350 0.400 0.450	0.0103245 0.0027407 0.0007565	-0.300 -0.350 -0.400	0.2922E-04 0.1656E-04 0.9392E-05	0.300 0.350 0.400	0.0320923 0.0118906 0.0037148
0.500	0.0017655 0.0007242	0.500	0.0002125 0.5985E-04			0.450 0.500 0.550	0.0009805 0.0002189 0.4140E-04
-0.600 -0.650 -0.700	0.0002333 0.001245 0.5153E-04	0.650 0.700	0.1670E-05 0.4627E-05 0.1282E-05			0090	0.7204E-05
-0.750 -0.800 -0.850	0.2117E-04 0.8649E-05 0.3534E-05						
NOTE: for ci	NOTE: for curve fits $x = x $						
Curve fit original data log(y) = -3.621 - 3.0823 Curve fit for extrapolati log(y) = 1.156 - 7.774x	Curve fit original data (-0.750 < $x < -0.183$) log(y) = -3.621 - 3.082 x^2 - 5.442log(x) Curve fit for extrapolation (-1.650 < $x < -0.750$) log(y) = 1.156 - 7.774x	Curve fit original data (log(y) = 4.257 - 5.411x* Curve fit for extrapolati log(y) = 1.913 - 11.150x	Curve fit original data (0.183 < x < 0.600) $log(y) = 4.257 - 5.411x^2 - 6.434log(x)$ Curve fit for extrapolation (0.600 < x < 1.600) log(y) = 1.913 - 11.150x	Curve fit original data (log(y) = -11.559 + 23.59 Curve fit for extrapolatic log(y) = -3.056 - 4.929x	Curve fit original data (-0.250 < $x < -0.163$) log(y) = -11.559 + 23.591 x^2 - 9.627log(x) Curvefit for extrapolation (-0.813 < $x < -0.250$) log(y) = -3.056 - 4.929 x	Curve fit original data (log(y) = -0.015 - 14.095, Curve fit for extrapolaticlog(y) = 3.970 - 15.187x	Curve fit original data (0.132 < x < 0.550) log(y) = $-0.015 - 14.095x^2 + 0.402\log(x)$ Curve fit for extrapolation (0.550 < x < 1.500) log(y) = $3.970 - 15.187x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0 MANEUVER Figure C-37 Load Spectra for Airplane 171, Single-Engine, Special Usage -0.8 -1.2 100 10^{-2} 10.3 10.5 101 10.1 104 10.6 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1:2 Original Data Curve Fit Acceleration Fraction, a / 0.4 0 ****** -0.8 10.2 00 10.1 10^{-3} 104 10.5 10.6 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-38 Tabulated Data for Airplane 27

GUST	GUST Frequency dance 39 37 37 32 33 48 48 48 48 48 48 48 48 48 48 48 48 48	Positive Acceleration C Fraction 0.200 0.250 0.350 0.450 0.500	ve Cumulative Frequency of Exceedance 0.2765134 0.0485525 0.0239620 0.0126001 0.0069272 0.0039306 0.0013443 0.00013443 0.0004799 0.0001737 0.0001737	negative Acceleration Cu Fraction -0.150 -0.200 -0.250	MANEUVER Cumulative Frequency of Exceedance 0.0221225 0.0040808 0.0009139 0.0002106	Acceleration Fraction 0.100 0.250 0.250 0.300 0.400 0.400 0.500 0.500 0.550 0.600	cumulative Frequency of Exceedance 0.1603772 0.099381 0.0641806 0.0413184 0.0260014 0.0158770 0.0092603 0.0051871 0.0006852 0.0003157
Curve fit original data (-0.800 < x < -0.199) log(y) = -3.780 - 1.668 x^2 - 4.666log(x) Curve fit for extrapolation (-1.650 < x < -0.800) log(y) = -0.234 - 5.202 x	800 < x < -0.199) 4.666log(x) (-1.650 < x < -0.800)	Curve fit original data (log(y) = -3.213 - 1.442x* Curve fit for extrapolation(y) = -0.212 - 4.435x	Curve fit original data (0.199 < $x < 0.850$) log(y) = -3.213 - 1.442 x^2 - 3.881log(x) Curve fit for extrapolation (0.850 < $x < 1.600$) log(y) = -0.212 - 4.435 x	Curve fit original data (-) $\log(y) = -4.613 - 14.947x$ Curve fit for extrapolation $\log(y) = -0.459 - 12.872x$	Curve fit original data (-0.250 < $x < -0.113$) log(y) = -4.613 - 14.947 x^2 - 3.108log(x) Curve fit for extrapolation (-0.813 < $x < -0.250$) log(y) = -0.459 - 12.872 x	Curve fit origi log(y) = -1.576 Curve fit for ex log(y) = 1.020	Curve fit original data $(0.090 < x < 0.650)$ $\log(y) = -1.576 - 4.923x^2 - 0.831\log(x)$ Curve fit for extrapolation $(0.650 < x < 1.500)$ $\log(y) = 1.020 - 6.954x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / 0.4 0 MANEUVER 0 Figure C-38 Load Spectra for Airplane 27, Single-Engine, Special Usage -0.8 10^{-2} 10^3 10.5 10.6 100 104 10.₁ 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a 0.4 0 GUST -0.8 10.5 ₉.0I 100 10^{-2} 10-3 104 107 10-1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-39 Tabulated Data for Airplane 29

				Total Nautical	Total Nautical Miles = 39219	Total Hours = 339	339
negative	GUST	positive	Ve	negative	MANEUVER	positive	'Ae
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200 -0.250 -0.300 -0.450 -0.450	0.0094866 0.0039202 0.0014019 0.0001132 0.2538E-04	0.200 0.250 0.250 0.350 0.450 0.550 0.650 0.650	0.0456167 0.0185266 0.0036271 0.0016461 0.0007432 0.0001438 0.6086E-04 0.2496E-04 0.1007E-04	-0.200 -0.250 -0.350 -0.400 -0.450	0.2776887 0.1180137 0.0414690 0.0120484 0.0028944 0.0005749	0.150 0.250 0.250 0.350 0.400 0.550 0.550 0.750 0.750 0.850	2.1444571 1.6829550 1.2324160 0.8421170 0.5369296 0.0918612 0.0444015 0.0200259 0.0033096 0.0012127 0.0001323 0.3938E-04
NOTE: for c	NOTE: for curve fits $x = x $						
Curve fit original data (log(y) = -1.840 - 14.590) Curve fit for extrapolatic log(y) = 1.562 - 13.684x	Curve fit original data (-0.450 < x < -0.217) log(y) = -1.840 - 14.590 x^2 - 0.573 log(x) Curve fit for extrapolation (-1.200 < x < -0.450) log(y) = 1.562 - 13.684 x	Curve fit origing log(y) = -3.24. Curve fit for ex log(y) = 0.523	Curve fit original data (0.217 < x < 0.650) $\log(y) = -3.247 - 4.532x^2 - 2.986 \log(x)$ Curve fit for extrapolation (0.650 < x < 1.400) $\log(y) = 0.523 - 7.886x$	Curve fit origing log(y) = 0.104 Curve fit fores log(y) = 0.104	Curve fit original data (-0.450 < x < -0.179) $\log(y) = 0.104 - 16.517x^2$ Curve fit for extrapolation (-0.900 < x < -0.450) $\log(y) = 0.104 - 16.517x^2$	Curve fit orig log(y) = 0.467 Curve fit fore: log(y) = 0.467	Curve fit original data $\{0.161 < x < 0.900\}$ $\log(y) = 0.467 - 6.014x^2$ Curve fit for extrapolation $(0.900 < x < 1.500)$ $\log(y) = 0.467 - 6.014x^2$

Original Data Curve Fit Acceleration Fraction, a / a 0.4 0 MANEUVER 8 0 -0.4 Figure C-39 Load Spectra for Airplane 29, Aerial Application -1:2 10^{0} 10.1 10^{-2} 10^{-3} 104 10.2 10^{6} 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 -0.8 **** °0 10^{-2} 10^{-3} 10.5 10.6 101 104 . 10-Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-40 Tabulated Data for $\text{Airplane } 29^1$

					Total Nautical Miles = 30818	Ailes = 30818	Total Hours = 298	588
	negative	GUST	positive	a.	negative	MANEUVER	positive	e)
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
C-	-0.200 -0.250 -0.300 -0.350 -0.400	0.0074142 0.0059515 0.0031128 0.0011187 0.0002852	0.200 0.300 0.300 0.400 0.450	0.0253440 0.0215620 0.0140027 0.0071725 0.0029551 0.0009917	-0.200 -0.250 -0.350 -0.400 -0.450	0.1417121 0.0575218 0.0165183 0.0034250 0.0065190 0.5794E-04	0.150 0.250 0.250 0.350 0.350 0.450 0.550 0.750 0.750 0.750 0.750 0.750 0.750	1.2101810 1.0609890 0.8395134 0.6058450 0.4010009 0.2442483 0.03711804 0.0341428 0.0151534 0.0062265 0.0062265 0.0008357 0.00023698 0.0008357 0.00023698
2 5	NOTE: for curve fits $x = x $	rve fits x = x						
	Curve fit original data (log(y) = 1.697 - 22.322x Curve fit for extrapolatic log(y) = 1.775 - 13.300x	Curve fit original data (-0.400 < x < -0.217) log(y) = $1.697 \cdot 22.322x^2 + 4.1981$ °s(x) Curvefit for extrapolation (-1.200 < x < -0.400) log(y) = $1.775 \cdot 13.300$ x	Curve fit original data (log(y) = 0.785 - 14.275x Curve fit for extrapolatiog(y) = 1.653 · 10.348x	log(y) = $0.785 - 14.275x^2 + 2.590\log(x)$ Curvefit for extrapolation ($0.450 < x < 1.400$) $\log(y) = 1.653 - 10.348x$	Curve fit original data (log(y) = 1.252 - 24.344x Curve fit for extrapolatic log(y) = 4.923 - 20.355x	Curve fit original data (-0.450 < x < -0.179) log(y) = 1.252 - 24.344 x^2 + 1.612log(x) Curve fit for extrapolation (-0.900 < x < -0.450) log(y) = 4.923 - 20.355 x	Curve fit original data ($\log(y) = 0.592 \cdot 6.426x^2$ Curve fit for extrapolation $\log(y) = 5.585 \cdot 11.354x$	Curve fit original data ($0.161 < x < 0.900$) $\log(y) = 0.592 - 6.426x^2 + 0.443\log(x)$ Curve fit for extrapolation ($0.900 < x < 1.600$) $\log(y) = 5.585 - 11.354x$

Original Data Curve Fit Acceleration Fraction, a / a 0.4 0 MANEUVER 0 -0.4 Figure C-40 Load Spectra for Airplane 291, Aerial Application -0.8 10^{0} 10^{-2} 10.3 10.2 10.6 10.1 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.4 ÷0.8 10^{0} 10.3 10.2 9.01 10^{-2} 104 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-41 Tabulated Data for Airplane 30

Total Hours = 248

Total Nautical Miles = 22835

	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.4935420 0.200 0.8671626 0.250 0.4947989 0.300 0.2713435 0.350 0.1413211 0.400 0.0694079 0.450 0.0319990 0.500 0.0138049 0.550 0.002879 0.650 0.0002879 0.650 0.0002373 0.750 0.7169E-04		Curve fit original data (0.161 < $x < 0.750$) log(y) = -0.448 - 6.781 x^2 - 0.940log(x) Curve fit for extrapolation (0.750 < $x < 1.600$) log(y) = 3.892 - 10.716 x
MANEUVER	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.2701153 -0.200 0.1025698 -0.250 0.0231514 -0.300 0.0032308		Curve fit original data (-0.300 < x < -0.155) log(y) = 1.606 - 35.879 x^2 + 1.660log(x) Curve fit for extrapolation (-0.900 < x < -0.300) log(y) = 3.247 - 19.125 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0137767 0.300 0.0076990 0.350 0.0039435 0.400 0.0018471 0.450 0.0007900 0.500 0.0003082 0.550 0.0001096		Curve fit original data (0.253 < x < 0.550) $\log(y) = -1.525 - 8.313x^2 - 0.304\log(x)$ Curve fit for extrapolation (0.550 < x < 1.400) $\log(y) = 1.201 - 9.384x$
GUST	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0023976 -0.300 0.0009783 -0.350 0.0003391 -0.400 0.9987E-04	NOTE: for curve fits $x = x $	Curve fit original data (-0.400 < $x < -0.253$) log(y) = -1.735 - 14.157 x^2 Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = -1.735 - 14.157 x^2

Original Data Curve Fit Acceleration Fraction, a / a 0.4 0 MANEUVER -0.4 Figure C-41 Load Spectra for Airplane 30, Aerial Application -0.8 100 10.5 10^{-3} 104 10.5 10.6 10.1 10^{1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 0 GUST 0 <u>-</u>0.4 -0.8 10^{-2} 10.3 10.6 10^{0} 10.1 ₋₀ 104 10.5 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-42 Tabulated Data for Airplane 30^1

				Total Nautical Miles = 4437	Miles = 4437	Iotal Hours = 47	4,
negative	GUST	positive	«e	negative	MANEUVER	positive	۸e
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Cumul Fraction of E	Cumulative Frequency of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.250 -0.300	0.0029882 0.0021519	0.250 0.300 0.350	0.0111754 0.0039196 0.0011363	-0.150 -0.200 -0.250 -0.350 -0.350	0.1214501 0.0464118 0.0134740 0.0029717 0.0004979	0.150 0.200 0.250 0.300 0.350 0.450 0.500	0.7829325 0.5645016 0.3547994 0.1957734 0.0951961 0.0408845 0.0155512 0.0052238
NOTE: for cu	NOTE: for curve fits $x = x $						
Curve fit original data (log(y) = -1.812 - 2.85"x Curve fit for extrapolativing(y) = -1.812 - 2.852x	Curve fit original data (-0.300 < $x < -0.253$) log(y) = -1.812 - 2.85. x Curve fit for extrapolation (-1.200 < $x < -0.300$) log(y) = -1.812 - 2.852 x	Curve fit origi log(y) = -0.918 Curve fit for ex log(y) = -0.918	Curve fit original data ($0.253 < x < 0.350$) log(y) = -0.918 - 16.546 x^2 Curve fit for extrapolation ($0.350 < x < 1.400$) log(y) = -0.918 - 16.546 x^2	Curve fit original data (-0) $\log(y) = -0.378 - 23.873x^2$ Curve fit for extrapolation $\log(y) = -0.378 - 23.873x^2$	Curve fit original data (-0.350 < x < -0.155) $\log(y) = -0.378 - 23.873x^2$ Curve fit for extrapolation (-0.900 < x < -0.350) $\log(y) = -0.378 - 23.873x^2$	Curve fit original data (log(y) = 0.370 - 10.250x Curve fit for extrapolatic log(y) = 3.264 - 11.039x	Curve fit original data (0.161 < $x < 0.550$) log(y) = 0.370 - 10.250 x^2 + 0.299log(x) Curve fit for extrapolation (0.550 < $x < 1.600$) log(y) = 3.264 - 11.039 x

10.5 10^{-3} 100 10.1 104 -01 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Figure C-42 Load Spectra for Airplane 301, Aerial Application

Table C-43 Tabulated Data for Airplane 30^2

Total Hours = 140	J.R. positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.7832750 0.200 0.5544180 0.250 0.2158168 0.300 0.0961062 0.350 0.0466573 0.450 0.01283941 0.450 0.0128308 0.550 0.0023957 0.600 0.002225 0.650 0.0002225 0.650 0.0001262 0.750 0.0001779 0.750 0.0001298 0.850 0.0001298 0.950 0.4076E-04 1.000 0.1280E-04 1.150 0.1280E-04		Curve fit original data (0.161 < $x < 0.850$) (x) $log(y) = -2.844 - 1.815x^2 - 3.807log(x)$) Curve fit for extrapolation (0.850 < $x < 1.600$) log(y) = 0.389 - 5.030x
Total Nautical Miles = 12459	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.2546294 -0.200 0.0910308 -0.250 0.0238235 -0.300 0.005386 -0.350 0.0016226 -0.400 0.0005284		Curve fit original data $(-0.400 < x < -0.155)$ log(y) = 15.11 - 48.97x + 35.13x ² + 11.10log(x) Curve fit for extrapolation $(-0.900 < x < -0.400)$ log(y) = 0.247 - 8.810x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0058871 0.300 0.0011195 0.350 0.0001546 0.400 0.1822E-04 0.450 0.2147E-05		Curve fit original data ($0.253 < x < 0.350$) log(y) = $-0.364 - 27.053x^2 + 0.292\log(x)$ Curve fit for extrapolation ($0.350 < x < 1.400$) log(y) = $2.691 - 18.575x$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0036681 -0.300 0.0006487 -0.350 0.0001286	NOTE: for curve fits $x = x $	Curve fit original data (-0.350 < $x < -0.253$) log(y) = -6.202 - 7.197 x^2 - 7.003log(x) Curve fit for extrapolation (-1.200 < $x < -0.350$) log(y) = 0.914 - 13.727 x

Original Data Curve Fit 1:2 Acceleration Fraction, a / a nus 0.8 0.4 MANEUVER 0 -0.4 -0.8 Figure C-43 Load Spectra for Airplane 302, Aerial Application -1.2 -1.6 10^{-3} 10.5 10^{0} 10.2 104 $10.^{6}$ 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 0 0 Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 o -0.4 0.8 10.2 10^{-3} 10.5 10.6 101 100 104 10^{-1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

9:1

Table C-44 Tabulated Data for Airplane 30A

Total Hours = 830	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.6802011 0.200 1.5169400 0.250 1.2317330 0.350 0.9107518 0.350 0.6173005 0.400 0.3850560 0.450 0.2216102 0.500 0.1178829 0.550 0.0580292 0.650 0.0043830 0.750 0.0015939 0.800 0.0005380 0.800 0.0001686 0.900 0.4905E-04	Curve fit original data (0.161 < x < 0.900) log(y) = 0.798 - 6.276 x^2 + 0.524log(x) Curve fit for extrapolation (0.900 < x < 1.600) log(y) = 5.630 - 11.044 x
Total Nautical Miles = 72228	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.5325209 -0.200 0.4096847 -0.250 0.2837612 -0.350 0.1452327 -0.350 0.069660 -0.450 0.0004398	Curve fit original data $(-0.500 < x < -0.155)$ log(y) = 0.652 - 12.524x + 59.504x ² - 114.376x ³ Curve fit for extrapolation $(-0.900 < x < -0.500)$ log(y) = 0.652 - 12.524x + 59.504x ² - 114.376x ³
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0020481 0.300 0.0004791 0.350 0.0001142 0.400 0.2678E-04	Curve fit original data $(0.253 < x < 0.400)$ $\log(y) = 4.860 - 9.667x^2 - 4.610\log(x)$ Curve fit for extrapolation $(0.400 < x < 1.400)$ $\log(y) = 0.523 - 12.739x$
	GUST	Acceleration Cumulative Frequency Fraction of Exce. dance	-0.250 0.0018866 -0.300 0.0006326 -0.350 0.0002521 -0.400 0.0001142 -0.450 0.5698E-04 -0.500 0.2965E-04	Curve fit original data (-0.450 < x < -0.253) log(y) = -6.386 + 0.196 x^2 - 6.062log(x) Curve fit for extrapolation (-1.200 < x < -0.450) log(y) = -1.691 - 5.674x
			0.00	

MANEUVER Figure C-44 Load Spectra for Airplane 30A, Aerial Application 10^{1} ø GUST

Cumulative Frequency of Exceedance

Table C-45 Tabulated Data for Airplane 31

				Total Nautical	Total Nautical Miles = 47812	Total Hours = 514	514
negative	GUST	positive	₩	negative	MANEUVER	positive	۷e
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.300 -0.350 -0.400 -0.450	-0.300 0.0098601 -0.350 0.0029318 -0.450 0.0006841 -0.450 0.0001261	0.300 0.350 0.400 0.450 0.550 0.650 0.700 0.800 0.950 0.950	0.0096320 0.0021509 0.000589 0.0002607 0.7556E-04 0.3952E-04 0.2969E-04 0.2969E-04 0.1676E-04 0.1259E-04 0.1106E-05	-0.150 -0.200 -0.250 -0.350 -0.400	0.4240738 0.3434145 0.1371435 0.0299850 0.0037950 0.0002875	0.150 0.200 0.250 0.350 0.450 0.550 0.650 0.750 0.750	2.0983040 1.6714990 1.1860170 0.7557598 0.4343953 0.2258025 0.1063276 0.0454084 0.0176018 0.0061968 0.0019823 0.0001524 0.3664E-04
Curve fit origing to the fit origing to the fit for th	Curve fit original data (-0.450 < $x < -0.298$) log(y) = 0.343 · 18.797 x^2 + 1.257log(x) Curve fit for extrapolation (-1.200 < $x < -0.450$) log(y) = 3.167 · 15.704x	Curve fit original data (log(y) = -8.948 + 5.369x Curve fit for extrapolati log(y) = -2.789 - 2.484x	Curve fit original data (0.298 < x < 0.600) $\log(y) = -8.948 + 5.369x^2 - 12.332\log(x)$ Curve fit for extrapolation (0.600 < x < 1.400) $\log(y) = -2.789 - 2.484x$	Curve fit origi log(y) = 4.084 Curve fit for ex log(y) = 6.288	Curve fit original data (-0.400 < x < -0.155) log(y) = $4.084 \cdot 36.699x^2 + 4.407 log(x)$ Curve fit for extrapolation (-0.900 < x < -0.400) log(y) = $6.288 \cdot 24.574x$	Curve fit origi log(y) = 0.789 Curve fit for ex log(y) = 5.797	Curve fit original data ($0.161 < x < 0.800$) $\log(y) = 0.789 - 8.112x^2 + 0.346\log(x)$ Curve fit for extrapolation ($0.800 < x < 1.600$) $\log(y) = 5.797 - 12.792x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a new 0 MANEUVER 0 ø -0.4 Figure C-45 Load Spectra for Airplane 31, Aerial Application 0.8 -1.2 9.01 10^{-2} 10.3 104 10.5 100 10.1 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 0 GUST 0 -0.8 01. 100 10^{-2} 10^{-3} 10.2 ⁷0 104 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-46 Tabulated Data for Airplane 32

Acceleration Cumulative Frequency Fraction of Exceedance	0.150 2.0169549 0.200 1.5055170 0.250 1.0336800 0.300 0.6528267 0.350 0.3792458 0.400 0.2026539 0.450 0.0450357 0.500 0.0450357 0.600 0.0071648 0.650 0.0008160		Curve fit original data (0.141 < x < 0.700) $\log(y) = 0.468 - 7.258x^2$ Curve fit for extrapolation (0.700 < x < 1.500) $\log(y) = 0.468 - 7.258x^2$
Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.1251628 -0.300 0.0413584 -0.350 0.0112297 -0.460 0.0025040 -0.450 0.0004583		Curve fit original data ($.0.450 < x < -0.225$) $log(y) = 0.127 - 17.255x^2 - 0.081 log(x)$ Curve fit for extrapolation ($-0.900 < x < -0.450$) $log(y) = 3.684 - 15.607x$
Acceleration Cumulative Frequency Fraction of Exceedance	0.300 0.0055549 0.350 0.0018552 0.400 0.0007330 0.450 0.0003302 0.500 0.0001654 0.550 0.8675E-04		Curve fit original data ($0.278 < x < 0.500$) log(y) = -6.318 +0.996 x^2 - 7.598log(x) Curve fit for extrapolation (0.500 < x < 1.400) log(y) = -0.980 - 5.603 x
	-0.300 0.0049514 -0.350 0.0016061 -0.400 0.0005658	OTE: for curve fits $x = x $	Curve fit original data (-0.400 < $x < -0.278$) log(y) = -5.038 - 3.159 x^2 - 5.770log(x) Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = 0.269 - 8.792 x
	uency Acceleration Cumulative Frequency Acceleration Acceleration Acceleration Acceleration Fraction of Exceedance Fraction	Acceleration Cumulative Frequency Acceleration Cumulative Frequency Acceleration <	Acceleration Cumulative Frequency Acceleration Cumulative Frequency Acceleration <

100 10^{-2} 10.3 10₋1 104 101

Figure C-46 Load Spectra for Airplane 32, Aerial Application

C.

Table C-47 Original Data for Airplane 32¹

Total hours = 380	2 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 2.6044500 0.200 1.9417551 0.250 1.4763750 0.300 1.1257859 0.350 0.8532876 0.450 0.4721540 0.500 0.3427052 0.500 0.3427052 0.500 0.1762162 0.650 0.1165162 0.650 0.0779464 0.750 0.0509944 0.800 0.00326110 0.850 0.0023776 0.950 0.00043147 1.050 0.0043147		Curve fit for original data (0.141 < x < 1.050) $\log(y) = -0.115 \cdot 2.250x^2 - 0.706\log(x)$
Total Nautical Miles = 36672	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.1102415 -0.300 0.0534564 -0.350 0.0239010 -0.400 0.0036618 -0.450 0.0012463 -0.550 0.003853		Curve ii·*ororiginal data (-0.550 <x<-0.225) log(y) = -0.887 -9.061x² -0.823log(x)</x<-0.225)
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.300 0.0337713 0.350 0.0194318 0.450 0.0119938 0.450 0.0078068 0.500 0.0052967 0.650 0.0026787 0.650 0.0014811 0.750 0.0014811 0.750 0.0014811 0.750 0.0014811 0.750 0.0001837 0.850 0.000837 0.950 0.000837 0.950 0.0002801 1.100 0.0002801 1.150 0.0001265 1.200 0.0001265 1.200 0.0001265 1.300 0.0001265 1.450 0.8648E-04 1.450 0.4488E-04 1.550 0.4488E-04 1.550 0.3341E-04 1.650 0.3341E-04		Curve fit for original data (0.278 < x < 1.250) log(y) = -3.286 -0.174 2 -3.501 log(x) Curve fit for extrapolation (1.250 < x < 1.698) log(y) = -1.833 -1.652x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.300 0.0019841 -0.350 0.0011096 -0.400 0.0006185 -0.450 0.0003404 -0.500 0.0001838 -0.550 0.9690E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.550 < x < -0.778) log(y) ≈ -3.380 -3.763² -1.943 log(x)
		*	C 00	<i>C.</i>	O A

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER **.**0-Figure C-47 Load Spectra for Airplane 321, Aerial Application -0.8 100 10.3 10.5 10.1 10.2 104 9.01 10, Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit Acceleration Fraction, a / a n_{11.5} 0.4 0.8 GUST 0 -0.8 -0.4 -1.2 -1.6 10.1 10^{-2} 10^{-3} 104 10.5 10.₆ 101 100 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-48 Tabulated Data for Airplane 32²

				Total Nautical Miles = 17257		Total Hours = 198	198
negative	GUST	positive	ě	negative	MANEUVER .ve	positive	e.
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.300 -0.350 -0.400	0.00017923 0.0005424 0.0001366	0.300 0.350 0.450 0.500 0.550 0.600	0.0009171 0.0004014 0.0002033 0.0001155 0.7226E-04 0.3076E-04	0.250 -0.300 -0.450 -0.450 -0.550 -0.600	0.1766829 0.0787225 0.0302808 0.0100554 0.0007134 0.0001524 0.2812E-04	0.150 0.250 0.250 0.350 0.450 0.550 0.750 0.850 0.850 0.950	1.2046170 1.0322419 0.8377843 0.6450821 0.4716404 0.3276029 0.1357013 0.080572 0.0459238 0.0028772 0.0028772 0.00028772 0.00028772
NOTE: for ca	NOTE: for curve fits $x = x $						
Curve fit orig log(y) = -1.30 Curve fit fores log(y) = -1.30	Curve fit original data (-0.400 < x < -0.278) $\log(y) = -1.309 - 15.973x^2$ Curve fit for extrapolation (-1.200 < x < -0.400) $\log(y) = -1.309 - 15.973x^2$	Curve fit original data (log(y) = -6.403 + 1.637x Curve fit for extrapolatilog(y) = -2.287 - 3.709x	Curve fit original data (0.278 < x < 0.500) $\log(y) = -6.403 + 1.637x^2 - 6.155\log(x)$ Curve fit for extrapolation (0.500 < x < 1.400) $\log(y) = -2.287 - 3.709x$	Curve fit originogy) = 0.045 Curve fit for ext log(y) = 0.045	Curve fit original data (-0.600 < $x < -0.225$) log(y) = 0.045 - 12.767 x^2 Curve fit for extrapolation (-0.900 < $x < -0.600$) log(y) = 0.045 - 12.767 x^2	Curve fit origi log(y) = 0.235 Curve fit for ex log(y) = 4.109	Curve fit original data (0.141 < x < 0.950) log(y) = 0.235 · 4.328 x^2 + 0.069log(x) Curve fit for extrapolation (0.950 < x < 1.600) log(y) = 4.109 · 8.191x

Original Data Curve Fit 0.8 Acceleration Fraction, a 0.4 0 MANEUVER 0 -0.4 Figure C-48 Load Spectra for Airplane 322, Aerial Application 0 ÷0.8 °0 2 10-2 10^{-3} 104 10.5 10.6 10¹ 10-1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 7. Original Data Curve Fit 0.8 Acceleration Fraction, a / 0.4 0 GUST 0 -0.4 **9.0** 10^{-2} 10^{-3} 10^{0} 10-5 10.6 104 10 10,1 Cumulative No. Occurrences/Nautical Mile

<u>~</u>

C-102

Cumulative Frequency of Exceedance

Table C-49 Tabulated Data for Airplane 33

negative Acceleration Ci Fraction -0.300 -0.350 -0.450 -0.500 -0.550	GUST Cumulative Frequency of Exceedance 0.0173835 0.0045097 0.0013086 0.0004100 0.0001355 0.4639E-04	Positive Acceleration C Fraction 0.300 0.450 0.450 0.500 0.600 0.600 0.750 0.750 0.800	ve Cumulative Frequency of Exceedance 0.0631337 0.0203891 0.0073170 0.0073170 0.0073170 0.0004900 0.0004900 0.0004900 0.09509E-04 0.4285E-04 0.1946E-04 0.8858E-05	Total Nautical Miles = 55073 negative Acceleration Cumulative F Fraction of Exceeds -0.250 0.5878060 -0.350 0.2878060 -0.350 0.2878060 -0.450 0.0437310 -0.500 0.01167054 -0.550 0.0043424 -0.550 0.0043424 -0.550 0.0011507 -0.650 0.0011507	Miles = 55073 MANEUVER Ive Cumulative Frequency of Exceedance 1.1093690 0.2878060 0.2774847 0.1167054 0.0437310 0.0013507 0.0013507 0.0002717 0.5715E-04	Acceleration Cu Fraction 0.150 0.250 0.250 0.350 0.450 0.450 0.500	ive Cumulative Frequency of Exceedance 1.6318460 1.4720520 1.2475049 0.9985154 0.7570003 0.5445079 0.3720104 0.2415871 0.1422079 0.0876760 0.0490309 0.0261012 0.0132292 0.0063849 0.00012848 0.00012848
mag 1994 (*) tal	NOTE: for curve fits $x = x $ Curve fit original data (-0.550 < x < -0.278) $\log(y) = -5.243 - 3.182x^2 - 7.208\log(x)$ Curve fit for extrapolation (-1.200 < x < -0.550) $\log(y) = 0.722 - 9.192x$	Curve fit original data log(y) = 4.303 - 2.124; Curve fit for extrapolat log(y) = 0.416 - 6.835x	Curve fit original data (0.278 < x < 0.750) log(y) = $4.303 \cdot 2.124x^2 \cdot 6.301\log(x)$ Curve fit for extrapolation (0.750 < x < 1.400) log(y) = $0.416 \cdot 6.835x$	Curve fit origi log(y) = 0.672 Curve fit forex log(y) = 0.672	Curve fit original data (-0.700 < x < -0.225) log(y) = 0.672 - 10.031 x^2 Curve fit for extrapolation (-0.900 < x < -0.700) log(y) = 0.672 - 10.031 x^2	Curve fit original data (0.141 < x < 0.950, log(y) = 0.492 - 4.164 x^2 + 0.225log(x) Curve fit for extrapolation (0.950 < x < 1.6(l0) log(y) = 4.147 - 7.808 x	ginal dati 2 - 4.164) xtrapola 7 - 7.808)

Original Data Curve Fit Acceleration Fraction, a / a 0.4 MANEUVER -0.4 Figure C-49 Load Spectra for Airplane 33, Aerial Application -0.8 10^{-2} 10^{-3} 10.2 10_{-e} 100 10.1 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 -0.4 .0 -1.2 10.6 10.3 100 10.2 104 10.5 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-50 Tabulated Data for Airplane 33¹

				Total Nautical	Total Nautical Miles = 10689	Total Hours = 124	124
	GUST				MANEUVER		
negative	tive	positive	ve	negative	ilve	positive	ve
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.300 -0.350 -0.400 -0.450	0.0058720 0.0017613 0.0006072 0.0002322	0.300 0.350 0.400 0.500	0.0058008 0.0022254 0.0009002 0.0003756 0.0001592	-0.250 -0.300 -0.350 -0.450 -0.500	0.0950349 0.0409951 0.0151771 0.0048223 0.0013150 0.0003078	0.150 0.200 0.250 0.300 0.350 0.550 0.600 0.750	1.7124400 0.8349295 0.4175794 0.2063904 0.098242 0.098242 0.0081197 0.0031466 0.0011450 0.0001245 0.3840E-04
NOTE: for c	NOTE: for curve fits $x = x $						
Curve fit ortg log(y) = -5.96 Curve fit fore: log(y) = -0.04	Curve fit original data (-0.450 < $x < -0.278$) log(y) = -5.967 - 1.014 x^2 - 7.319log(x) Curve fit for extrapolation (-1.200 < $x < -0.450$) log(y) = -0.045 - 7.976 x	Curve fit origi log(y) = -4.282 Curve fit fores log(y) = -0.089	Curve fit original data (0.278 < x < 0.500) log(y) = $-4.285 - 3.493x^2 - 4.519\log(x)$ Curve fit for extrapolation (0.500< x < 1.400) log(y) = $-0.089 - 7.418x$	Curve fit origi log(y) = -0.19; Curve fit for ex log(y) = -0.195	Curve fit original data (-0.500 < $x < -0.225$) log(y) = -0.192 - 13.278 x^2 Curve fit for extrapolation (-0.900 < $x < -0.500$) log(y) = -0.192 - 13.278 x^2	Curve fit origing log(y) = -0.913 Curve fit for ex log(y) = 3.248	Curve fit original data ($0.141 < x < 0.700$) log(y) = $-0.913 \cdot 6.602x^2 \cdot 1.572\log(x)$ Curve fit for extrapolation ($0.700 < x < 1.600$) log(y) = $3.248 \cdot 10.219x$

~; Original Data Curve Fit 0.8 Acceleration Fraction, a / a n₁₁₁ 0.4 0 MANEUVER 0 8 -0.4 Figure C-50 Load Spectra for Airplane 33¹, Aerial Application -0.8 -1:2 10^{0} 10^{-2} 10,3 104 10^{-5} 10.6 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance <u>նումեր վայհակավափականում անահակարի արարդեր իրանում արհակականում արարդանում անանում</u> Original Data Curve Fit 0.8 0.4 Acceleration Fraction, a 0 GUST 0 9.0 -1:2 100 10.7 10.3 10.5 104 10.6 10 10^{-1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-51 Tabulated Data for Airplane 33A

Positive Praction Of Exceedance Or
--

Cumulative Frequency of Exceedance

Figure C-51 Load Spectra for Airplane 33A, Aerial Application

Table C-52 Tabulated Data for Airplane 33A¹

				Total Nautical Miles = 1815		lotal Hours = 23	23
negative	GUST	r ositive	Ve	negative	MANEUVER	positive	, ke
Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Acceleration Cumulative Frequency Fraction of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.278	0.0005510	0.300	0.0028553	-0.250	0.0704687	0.150	1.2272290 0.9317526
				-0.350	0.0113052	0.250	0.6692138 0.4529926
				3		0.350	0.2884105
						0.450	0.0968599
						0.500	0.051026
						0.550	0.0252114
						0.600	0.0116796
						0.650	0.0050722
						0.700	0.0020646
NOTE: for ci	NOTE: for curve fits $x = x $						
		Curve fit origing to the control of	Curve fit original data ($0.278 < x < 0.300$) log(y) = -0.764 - 5.935x Curve fit for extrapolation ($0.300 < x < 1.400$) log(y) = -0.764 - 5.935x		Curve fit original data (-0.400 < x < -0.225) log(y) = -0.324 - 13.245 x^2 Curve fit for extrapolation (-0.900 < x < -0.400) log(y) = -0.324 - 13.245 x^2	Curve fit origing to the control of	Curve fit original data ($0.141 < x < 0.700$) log(y) = $0.087 \cdot 5.708x^2 \cdot 0.158 \log(x)$ Curve fit for extrapolation ($0.700 < x < 1.600$) log(y) = $2.977 \cdot 8.089x$

<u>ասխորհակավոտիալիախորհայանակարհունունունակակարարականունունունունու</u> Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER -0.4 Figure C-52 Load Spectra for Airplane 33A1, Aerial Application -0.8 0₀ 10^{-2} 10-3 10-5 10.6 10. 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a 0.4 0 -0.8 10^{0} 10.5 10^{-3} 10.5 9.01 104 10 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

2:

Table C-53 Tabulated Data for Airplane 33A²

Total Hours = 128 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.8162700 0.200 1.2470959 0.250 0.8474467 0.300 0.3581789 0.400 0.2206827 0.450 0.130374 0.500 0.0732644 0.500 0.0202101 0.650 0.0098749 0.750 0.0098749 0.750 0.0008561 0.800 0.0008561 0.850 0.0008561 0.950 0.000337		Curve fit original data $(0.141 < x < 0.850)$ log(y) = $-0.182 \cdot 4.609x^2 \cdot 0.661\log(x)$ Curve fit for extrapolation $(0.850 < x < 1.600)$ log(y) = $3.482 \cdot 8.173x$
Total Nautical Miles = 10258 MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0866786 -0.300 0.0527025 -0.350 0.0282952 -0.450 0.0134702 -0.450 0.0057014 -0.550 0.0007228		Curve fit original data (-0.550 < x < -0.225) $\log(y) = -0.138 - 9.452x^2 + 0.554 \log(x)$ Curve fit for extrapolation (-0.900 < x < -0.550) $\log(y) = 2.337 - 9.960x$
positive	Acceleration Cumulative Frequency Fraction of Expeedance	0.300 0.0342739 0.350 0.0148085 0.400 0.0069980 0.450 0.0018715 0.500 0.0018715 0.600 0.0003832 0.650 0.0003837 0.650 0.0001180		Curve fit original data ($0.278 < x < 0.700$) log(y) = $-3.950 - 1.053x^2 - 4.933log(x)$ Curve fit for extrapolation ($0.700 < x < 1.400$) log(y) = $-0.527 - 4.534x$
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.300 0.0142965 -0.350 0.0053365 -0.400 0.0022023 -0.450 0.0009774 -0.500 0.0004577	NOTE: for curve fits x = x	Curve fit original data (-0.500 < $x < -0.278$) log(y) = -4.685 - 1.461 x^2 - 5.683log(x) Curve fit for extrapolation (-1.200 < $x < -0.500$) log(y) = -0.141 - 6.398 x

Original Data Curve Fit 0.80 Acceleration Fraction, a / a 0.1 0 MANEUVER 18 \bigcirc unharikalian hashasharin suutkadan Figure C-53 Load Spectra for Airplane 33A2, Aerial Application × 0--1.2 10^{0} 10.5 10^{-3} 10.5 9.01 10.₁ 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a nit 0.4 0 GUST 0 -0.4 -0.8 00 10.2 10^{-3} 10^{-5} 10.0 101 104 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-54 Tabulated Data for Airplane 34

				Total Nautical Miles = 2888	Miles = 2888	Total Hours = 31	31
negative	GUST	positive	v	negative	MANEUVER	positive	ų.
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.250 -0.300 -0.350	0.0029095 0.0014409 0.0006514	0.250 0.350 0.400	0.0051668 0.0020657 0.0007406 0.0002508	-0.200 -0.250 -0.300 -0.350 -0.400	0.1760291 0.0643248 0.0203724 0.0055293 0.0012775	0.250 0.250 0.350 0.450 0.450 0.550 0.650 0.700 0.850 0.850	0.7013457 0.6104666 0.4984374 0.3835231 0.2788729 0.1919686 0.152543 0.0775302 0.0455558 0.0254228 0.0067924 0.0014819
NOTE: for ca	NOTE: for curve fits $x = x $						
Curve fit original data (log(y) = -2.308 - 9.383x Curve fit for extrapolati log(y) = -0.629 - 7.307x	Curve fit original data (-0.350 < x < -0.233) log(y) = -2.308 - 9.383 x^2 - 0.596log(x) Curve fit for extrapolation (-1.200 < x < -0.350) log(y) = -0.629 - 7.307 x	Curve fit original data log(y) = -2.118 - 11.766 Curve fit for extrapolat log(y) = 0.161 - 9.405x	Curve fit original data ($0.233 < x < 0.350$) log(y) = -2.118 - 11.766 x^2 - 0.942log(x) Curve fit for extrapolation ($0.350 < x < 1.400$) log(y) = $0.161 - 9.405x$	Curve fit original data (log(y) = -0.754 - 15.589) Curve fit for extraolati log(y) = 2.482 - 13.440x	Curve fit original data (-0.400 < $x < -0.192$) log(y) = -0.754 - 15.589 x^2 - 0.892log(x) Curve fit forextrapolation (-0.900 < $x < -0.400$) log(y) = 2.482 - 13.440 x	Curve fit original data log(y) = 0.272 - 4.257x Curve fit for extrapolat log(y) = 3.163 - 7.050x	Curve fit original data ($0.192 < x < 0.850$) log(y) = $0.272 - 4.257x^2 + 0.366\log(x)$ Curve fit for extrapolation ($0.850 < x < 1.600$) log(y) = $3.163 - 7.050x$

Table C-55 Tabulated Data for Airplane 341

				Total Nautical Miles = 42184	Miles = 42184	Total Hours = 477	477
negative	GUST	positive	g.	negative	MANEUVER	positive	ų.
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
6.250 6.350 6.450 6.550 6.550 6.700 6.700 6.700 6.700 6.700 6.700	0.012.370 0.0036547 0.0012551 0.0001981 0.3876E-04 0.1735E-04 0.3776E-05 0.3476-05 0.354E-05	0.250 0.350 0.400 0.450 0.550 0.600 0.700	0.0095572 0.0029179 0.0010008 0.0001438 0.5762E-04 0.2334E-04 0.9456E-05 0.3831E-05 0.1552E-05	0.200 -0.250 -0.350 -0.450 -0.550 -0.550 -0.550	0.3628680 0.2117706 0.1043204 0.0436805 0.00156109 0.001252 0.0002819 0.5455E-04	0.250 0.250 0.350 0.350 0.450 0.450 0.550 0.750 0.850 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950	1.4988641 1.0167410 0.6762516 0.4421897 0.2847078 0.1806857 0.0131059 0.0626118 0.0256618 0.0152642 0.002873 0.0029873 0.0002874 0.0002876 0.0002876 0.0002876 0.0002876 0.0002876 0.0002876
NOTE: for ci	NOTE: for curve fits $x = x $						
Curve fit original data (log(y) = -5.491 - 1.663x* Curve fit for extrapolati log(y) = -0.570 - 6.984x	Curve fit original data (-0.500 < x < -0.233) $\log(y) = -5.491 - 1.663x^2 \cdot 6.126\log(x)$ Curve fit for extrapolation (-1.200 < x < -0.500) $\log(y) = -0.570 - 6.984x$	Curve fit original data (log(y) = -5.083 - 3.145x* Curve fit for extrapolati log(y) = -0.315 - 7.848x	Curve fit original data (0.233 < x < 0.500) $\log(y) = -5.083 - 3.145x^2 - 5.415\log(x)$ Curve fit for extrapolation (0.500 < x < 1.400) $\log(y) = -0.315 - 7.848x$	Curve fit original data (, log(y) = 0.456 - 12.769x Curve fit for extrapolatiog(y) = 4.691 - 14.923x	Curve fit original data (-0.600 < $x < -0.192$) log(y) = 0.456 - 12.769 x^2 + 0.551log(x) Curve fit for extrapolation (-0.900 < $x < -0.600$) log(y) = 4.691 - 14.923 x	Curve fit original data log(y) = 1.030 - 3.343x Curve fit for extrapolat log(y) = 2.347 - 5.586x	Curve fit original data (0.192 $< x < 1.200$) $\log(y) = 1.030 - 3.343x - 0.966x^2 + 0.210\log(x)$ Curve fit for extrapolation (1.200 $< x < 1.600$) $\log(y) = 2.347 - 5.586x$

Cumulative Frequency of Exceedance

Table C-56 Tabulated Data for Airplane 342

log(y) = 2.328 - 9.029x
Curventiorextrapolation (-0.500 <x<-0.450) -="" 7.504x<="" log(y)="-0.141" th="" =""></x<-0.450)>
Curvefit for extrapolation $(0.450 < x < 1.400)$ Ing(y) = 0.589 - 9.868x
Curvefit for extrapolation (-1.200 < $x < -0.450$) (log(y) = -0.486 - 7.660 x
0) Curve fit for extrapolation (0.450 < x < 1.400)

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 o MANEUVER -0.4 Figure C-56 Load Spectra for Airplane 342, Aerial Application -0.8 100 10^{-2} 10^{-3} 104 10.5 10.0 10-1 10¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 GUST 10^{-2} 10-3 10.5 10.6 °0 101 10₋₁ 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

7:

Table C-57 Tabulated Data for Airplane 34^3

Total Hours = 661	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.6546080 0.250 0.3030485 0.300 0.1468053 0.350 0.0721959 0.450 0.0171022 0.500 0.0080779 0.550 0.0007089 0.650 0.0007069 0.650 0.0007069 0.750 0.0002918 0.750 0.4401E-04		Curve fit original data (0.192 < $x < 0.800$) log(y) = -1.676 - 4.551 x^2 - 2.395log(x) Curve fit for extrapolation (0.800< $x < 1.600$) log(y) = 2.509 - 8.582x
Total Nautical Miles = 57709	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0508049 -0.250 0.0182151 -0.300 0.0064038 -0.350 0.0021442 -0.400 0.0006720 -0.450 0.0001949 -0.500 0.5192E-04		Curve fit original data (-0.500 < $x < -0.192$) log(y) = -2.510 - 9.874 x^2 - 2.304log(x) Curve fit for extrapolation (-0.900 < $x < -0.500$) log(y) = 1.653 - 11.876 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0669792 0.300 0.0269963 0.350 0.0107115 0.450 0.0015043 0.500 0.0005219 0.550 0.000706 0.600 0.5227E-04		Curve fit original data (0.233 < x < 0.600) log(y) = -2.184 - 7.330 x^2 - 2.438log(x) Curve fit for extrapolation (0.600 < x < 1.400) log(y) = 2.055 - 10.561 x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0170951 -0.300 0.0051493 -0.350 0.0017526 -0.400 0.0006464 -0.450 0.0002514 -0.500 0.0001013	NOTE: for curve fits $x = x $	Curve fit original data (-0.500 < x < -0.233) log(y) = -4.923 - 2.968 x² - 5.550log(x) Curve fit for extrapolation (-1.200 < x < -0.500) log(y) = -0.100 - 7.789x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{1,1,5} 0.4 ٥ MANEUVER 0 -0.4 Figure C-57 Load Spectra for Airplane 3.13, Aerial Application -0.8 -1.2 ₀0 10^{-2} 10-3 104 10.5 10.6 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / 0.4 0 GUST 0 -0.4 -0.8 10.6 100 10^{-2} 10.3 10.5 104 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-58 Tabulated Data for Airplane 35

				Total Nautical	Total Nautical Miles = 33858	Total Hours = 360	360
negative	GUST	positive	ر و	negative	MANEUVER	positive	ų.
Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceedance
-0.200 -0.250 -0.300	0.0078987 0.0025188 0.0008362	0.200 0.250 0.300	0.0060569 0.0014034 0.0003424	-0.200 -0.250 -0.300	0.0948252 0.0533860 0.0243974	0.150 0.200 0.250	1.1757. 0 0.8175621 0.4923529
-0.350 -0.400 -0.450	0.0021/3 0.8967E-04 0.2782E-04	0.400 0.450 0.500	0.8345E-04 0.2009E-04 0.4838E-05 0.1165E-05	-0.530 -0.460 -0.500	0.0091538 0.0028386 0.0007308 0.0001566	0.350 0.400 0.450	0.1445087 0.1445087 0.0742622 0.0375637
						0.500 0.550 0.650	0.0188661 0.0094670 0.0047682 0.0024189
						0.700 0.750 0.800 0.850 0.900	0.0012394 0.0006427 0.0003379 0.0001804 0.9789E-04
NOTE: for c	NOTE: for curve fits $x = x $						
Curve fit orther log(y) = 4.05 Curve fit fore log(y) = 0.111.	Curve fit original data (-0.450 < $x < -0.195$) log(y) = 4.055 · 8.044 x^2 · 3.254log(x) Curve fit for extrapolation (-1.200 < $x < -0.450$) log(y) = 0.115 · 10.380 x	Curve fit original data (log(y) = -4.718 - 10.284) Curve fit for extrapolati log(y) = 0.250 - 12.368x	Curve fit original data (0.195 < x < 0.350) $\log(y) = -4.718 - 10.284x^2 - 4.166\log(x)$ Curve fit for extrapolation (0.350 < x < 1.400) $\log(y) = 0.250 - 12.368x$	Curve fit original data (log(y) = 0.200 - 14.944x Curve fit for extrapolatiog(y) = 3.278 - 14.166x	Curve fit original data (-0.500 < x < -0.179) log(y) = 0.200 - 14.944 x^2 + 0.895log(x) Curvefit for extrapolation (-0.900 < x < -0.500) log(y) = 3.278 - 14.166x	Curve fit original data log(y) ≈ 3.754 - 10.48x Curve fit for extrapolat log(y) = 0.703 - 5.235x	Curve fit original data (0.161 < x < 0.90X log(y) = 3.754 - 10.48x + 2.213x ² + 2.623 Curve fit for extrapolation (0.900 < x < 1.6 log(y) = 0.703 - 5.235x

<u>հրանակում հարերակում արևումիոր հարեր ու հարաքում հայ հարերակում հարերի հայ հայ հայ հարարար</u> Original Data Curve Fit 0.8 Acceleration Fraction, a / a ALIF 0.4 0 MANEUVER 0 • -0.4 Figure C-58 Load Spectra for Airplane 35, Aerial Application 0.8 -1.2 10-2 10^{0} 10.3 104 10.5 10.6 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 -0.4 -O.8 ****** 10-2 10.3 10 00 10.5 10.6 10-1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-59 Tabulated Data for Airplane 35¹

Total Hours = 623	UVER positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.6096860 0.200 1.4349951 0.250 1.1443250 0.350 0.8683925 0.350 0.5985118 0.450 0.2269477 0.550 0.1252881 0.550 0.038465 0.650 0.038465 0.650 0.0057372 0.750 0.0057372 0.850 0.0022296 0.850 0.0022296 0.850 0.002738 0.950 0.2555E-04 0.950 0.2555E-04 1.000 0.2079E-05		Curve fit original data (0.161 < $x < 0.950$) log(y) = 0.682 · 5.834 x^2 + 0.418log(x) (500) Curve fit for extrapolation (0.950 < $x < 1.600$) log(y) = 5.757 · 10.894 x
Total Nautical Miles = 62879	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.2496670 -0.250 0.1483958 -0.300 0.0657307 -0.400 0.0058389 -0.450 0.0012000 -0.500 0.001944		Curve fit original data (-0.500 < $x < -0.179$) log(y) = 1.519 - 18.544 x^2 + 1.974log(x) Curve fit for extrapolation (-0.900 < $x < -0.500$) log(y) = 4.703 - 16.829 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0474794 0.250 0.0186933 0.300 0.0058867 0.350 0.0014861 0.450 0.0003012 0.450 0.4903E-04 0.550 0.1045E-05		Curve fit original data ($Q.195 < x < 0.450$) $\log(y) = -0.448 - 18.764x^2 + 0.179 \log(x)$ Curve fit for extrapolation ($0.450 < x < 1.400$) $\log(y) = 3.212 - 16.715x$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0526482 -0.250 0.0141934 -0.300 0.0014998 -0.350 0.0015746 -0.450 0.0002258 -0.500 0.8881E-04	NOTE: for curve fits $x = x $	Curve fit original data (-0.500 < $x < -0.195$) log(y) = -4.636 - 3.701 x^2 - 5.015log(x) Curve fit for extrapolation (-1.200 < $x < -0.500$) log(y) = -0.023 - 8.057x

Cumulative Frequency of Exceedance fumulative No. Occurrences/Nautical M.

Table C-60 Tabulated Data for Airplane 35²

Total Hours = 445 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.8041270 0.200 1.4750600 0.250 1.1385829 0.300 0.8297204 0.350 0.8297204 0.400 0.5708356 0.450 0.2273559 0.550 0.0713559 0.550 0.071185 0.600 0.00180818 0.700 0.0036106 0.850 0.0014800 0.850 0.0005728 0.950 0.0005728		Curve fit original data (0.161 < x < 0.950) log(y) = 0.369 - 4.998x ² Curve fit for extrapolation (0.950 < x < 1.600) log(y) = 0.369 - 4.998x ²
Total Nautical Miles = 44895 MANEUVER negative	Acceleration Cumulative Frequency Acc Fraction of Exceedance F	-0.200 0.1309917 -0.250 0.0473736 -0.300 0.0160348 -0.350 0.0013896 -0.450 0.0003481 -0.500 0.7760E-04		Curve fit original data $(-0.500 < x < -0.179)$ Cu log(y) = -1.637 - 12.020 x^2 - 1.767log(x) log Curve fit for extrapolation (-0.900 < x < -0.500) Cu log(y) = 2.667 - 13.555x
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0307744 0.250 0.0099505 0.300 0.0039221 0.350 0.0017698 0.400 0.0008806 0.450 0.0004716 0.500 0.0001586 0.600 0.9759E-04		Curve fit original data (0.195 < x < 0.600) log(y) = 4.967 - 0.405 x^2 - 4.966log(x) Curve fit for extrapolation (0.600 < x < 1.400) log(y) = -1.563 - 4.080 x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0168402 -0.250 0.0050197 -0.300 0.0012945 -0.350 0.0002838	NOTE: for cur \cdot e fits $x = x $	Curve fit original data (-0.350 $< x < -0.195$) $\log(y) = -2.035 - 17.451x^2 - 1.373\log(x)$ Curve fit for extrapolation (-1.200 $< x < -0.350$) $\log(y) = 1.325 - 13.919x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 -0.4 Figure C-60 Load Spectra for Airplane 352, Aerial Application -0.8 00 10-2 10.3 10.5 10.6 10.1 104 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 GUST ***** 1111111 0 -0.8 10-2 10.3 10.5 10.6 9 10.1 10 **₹**0 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-61 Tabulated Data for Airplane 36

Total Hours = 208	MANEUVER positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.3629780 0.200 0.7370383 0.250 0.4134452 0.300 0.2324708 0.350 0.1286444 0.450 0.0693010 0.450 0.0180777 0.550 0.00186820 0.650 0.0017478 0.650 0.0007301 0.750 0.0002903 0.800 0.0001098	179) Curve fit original data (0.161 < x < 0.800)) log(y) = -0.947 - 4.926x ² - 1.447log(x) -0.450) Curve fit for extrapolation (0.800 < x < 1.600) log(y) = 2.975 - 8.668x
Total Nautical Miles = 18838	MAN	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0763287 -0.250 0.0485367 -0.300 0.0239397 -0.350 0.0093574 -0.400 0.0029360 -0.450 0.0007456	Curve fit original data (-0.450 < $x < -0.179$) log(y) = 0.711 · 16.049 x^2 + 1.697log(x) Curve fit for extrapolation (-0.900 < $x < -0.450$) log(y) = 2.635 · 12.806x
L	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0906058 0.250 0.0300294 0.300 0.0087516 0.350 0.0022064 0.400 0.0004765 0.450 0.8761E-04	Curve fit original data ($0.195 < x < 0.450$) log(y) = -1.316 - 15.751x ² - 1.292log(x) Curve fit for extrapolation ($0.450 < x < 1.400$) log(y) = 2.883 - 15.423x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0865083 -0.250 0.0274962 -0.300 0.0090155 -0.350 0.0029298 -0.400 0.0005214 -0.450 0.0002761	Curve fit original data (-0.450 < x < -0.195) log(y) = -2.932 - 8.508 x^2 - 3.161log(x) Curve fit for extrapolation (-1.200 < x < -0.450) log(y) = 1.260 - 10.708 x

Original Data Curve Fit 0.8Acceleration Fraction, a / a 0.4 0 MANEUVER 0 -0.4 Figure C-61 Load Spectra for Airplane 36, Aerial Application -0.8 -1:2 أنننا ننننا ننئنا 100 10.1 10.2 10-3 104 10.5 10.6 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 ٥ 9 GUST 4 1 -0.4 -0.8 9.01 100 10^{-2} 10^{-3} 10.5 104 10 10-1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1:2

Table C-62 Tabulated Data for Airplane 36A

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 1.5856330 0.200 0.8950107 0.250 0.5024049 0.300 0.2733993 0.350 0.1422812 0.400 0.0702385 0.450 0.0143312 0.550 0.0058871 0.650 0.0022638		Curve fit original data (0.161 < $x < 0.650$) log(y) = -0.540 - 6.511 x^2 - 1.076log(x) Curve fit for extrapolation (0.650 < $x < 1.600$) log(y) = 2.880 - 9.184 x
MANEUVER		666666666		
	Cumulative Frequency of Exceedance	0.3492737 0.1203025 0.0326978 0.0070129 0.0011869		Curve fit original data (-0.400 < $x < -0.179$) log(y) = 0.366 - 20.573 x^2 Curve fit for extrapolation (-0.900 < $x < -0.400$) log(y) = 0.366 - 20.573 x^2
negative	Acceleration Fraction	-0.200 -0.250 -0.350 -0.350 -0.400		-
ve	Acceleration Cumulative Frequency Fraction of Exceedance	0.0047085 0.0008916		Curve fit original data (0.195 < $x < 0.250$) log(y) = -5.209 - 11.524 x^2 - 4.782log(x) Curve fit for extrapolation (0.250 < $x < 1.400$) log(y) = 0.467 - 14.069 x
GUST GUST positive	Acceleration Fraction	0.250		
	Acceleration Cumulative Frequency Fraction of Exceedance	0.0011482	NOTE: for curve fits $x = x $	Curve fit original data (-0.200 < x < -0.195) log(y) = 1.499 - 22.193x Curve fit for extrapolation (-1.200 < x < -0.200) log(y) = 1.499 - 22.193x
nega	Acceleration Fraction	-0.200	NOTE: for c	Curve fit original data (- log(y) = 1.499 - 22.193x Curve fit for extrapolatio log(y) = 1.499 - 22.193x
				C 100

Original Data Curve Fit Acceleration Fraction, a / a 0 MANEUVER 0 -0.4 Figure C-62 Load Spectra for Airplane 36A, Aerial Application -0.8 100 10-2 10^{-3} 104 10.5 10.6 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST -0.4 -0.8 10-2 10.6 10^{0} 10^{-3} 101 10.5 104 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-63 Tabulated Data for Airplane 37

Total Hours = 175

	Cumulative Frequency of Exceedance	0.6872298 0.4067096 0.1820371 0.0720160 0.0104965 0.0017870 0.0008234	3.0004153	Curve fit original data ($0.161 < x < 0.600$ log(y) = $8.777 - 25.39x + 12.58x^2 + 6.5731x$ Curve fit for extrapolation ($0.600 < x < 1.60$ log(y) = $-0.066 - 5.526x$
positive	Acceleration Cum Fraction of	0.150 0.200 0.250 0.330 0.330 0.450 0.500 0.500 0.500		Curve fit original data (log(y) = 8.777 - 25.39x Curve fit for extrapolati log(y) ≈ -0.066 - 5.526x
MANEUVER	Cumulative Frequency of Exceedance	9.0437780 0.0100931 0.0018209		Curve fit original data (-0.300 < x < -0.179) log(y) = -1.005 - 24.472 x^2 - 0.894log(x) Curve fit for extrapolation (-0.900 < x < -0.300) log(y) = 2.053 - 15.977 x
negative	Acceleration Fraction	-0.200 -0.250 -0.300		Curve fit original data (log(y) = -1.005 - 24.472. Curve fit for extrapolatic log(y) = 2.053 - 15.977x
ě	Cumulative Frequency of Exceedance	0.0119019 0.0022772 0.0004612 0.9464E-04		Curve fit original data ($0.246 < x < 0.400$) log(y) = $-4.853 - 9.325x^2 - 5.832\log(x)$ Curve fit for extrapolation ($0.400 < x < 1.400$) log(y) = $1.493 - 13.792x$
positive	Acceleration Fraction	0.250 0.300 0.400		Curve fit original data (log(y) = -4.853 - 9.325x* Curve fit for extrapolati log(y) = 1.493 - 13.792x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	0.0095625 0.0018211 0.0003991 0.9532E-04	NOTE: for curve fits x = x	Curve fit original data $(-0.400 < x < -0.246)$ log(y) = -6.019 - 5.437 2 - 7.208log(x) Curve fit for extrapolation $(-1.200 < x < -0.400)$ log(y) = 0.849 - 12.176 x
negative	Acceleration Fraction	-0.250 -0.350 -0.400	NOTE: for cu	Curve fit original data (log(y) = -6.019 - 5.437x ² Curve fit for extrapolatio log(y) = 0.849 - 12.176x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0 MANEUVER 0 Figure C-63 Load Spectra for Airplane 37, Aerial Application .0.8 -1:2 10^{-2} 10.5 10.6 10^{-1} 10.3 104 101 10^{0} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n.l.F 0.4 0 -0.8 10-3 10.5 10.0 10^{-2} 101 10⁰ 104 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-64 Tabulated Data for Airplane 371

Total Hours = 342

			(00
lve	Cumulative Frequency of Exceedance	3.8290761 2.5837619 1.5581141 0.8397194 0.404429 0.1740878 0.0669680 0.0230226 0.0019422 0.0004766	Curve fit original data ($0.161 < x < 0.650$) log(y) = $0.803 - 9.762x^2$ Curve fit for extrapolation ($0.650 < x < 1.600$) log(y) = $0.803 - 9.762x^2$
positive	Acceleration Fraction	0.150 0.200 0.200 0.350 0.450 0.550 0.650	Curve fit orig log(y) = 0.803 Curve fit for es log(y) = 0.803
MANEUVER 'e	Cumulative Frequency of Exceedance	0.3192527 0.1477520 0.0576204 0.0189349 0.0052432 0.0012234 0.0002405	Curve fit original data ($\frac{20.500 < x < -0.179}{10g(y)} = 0.099 - 14.871x^2$ Curve fit for extrapolation (-0.900 < x < -0.500) $\log(y) = 0.099 - 14.871x^2$
negative	Acceleration Fraction	-0.200 -0.250 -0.300 -0.400 -0.450 -0.500	Curve fit origing to the control of
, ve	Acceleration Cumulative Frequency Fraction of Exceedance	0.0126262 0.0043292 0.0014928 0.0005050 0.0001650	Curve fit original data (0.246 < x < 0.450) $log(y) = -3.396 - 7.501x^2 - 3.266log(x)$ Curve fit for extrapolation (0.450 < x < 1.400) $log(y) = 0.674 - 9.903x$
positive	Acceleration Fraction	0.250 0.300 0.350 0.450	Curve fit original data log(y) = -3.396 - 7.501 Curve fit for extrapolar log(y) = 0.674 - 9.903x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0096155 -0.300 0.0028831 -0.350 0.0010426 -0.450 0.0001993 -0.500 0.9977E-04	Curve fit original data (-0.500 < $x < -0.246$) log(y) = -6.010 + 0.058 x^2 - 6.627log(x) Curve fit for extrapolation (-1.200 < $x < -0.500$) log(y) = -1.152 - 5.698 x
	Ą	Ž	೧೪೦೪

Table C-65 Tabulated Data for Airplane 4

Total Hours = 1254

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0065868 0.200 0.0022987 0.250 0.0009669 0.300 0.000267 0.400 0.0002182 0.450 0.314E-04 0.500 0.1862E-04		Curve fit original data (0.161 < $x < 0.550$) 10g(y) = -4.864 - 2.407 x^2 - 3.32210g(x) Curve fit for extrapolation (0.550 < $x < 1.600$) 10g(y) = -1.831 - 5.271 x
MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0004165 -0.250 0.0001540 -0.300 0.7705E-04 -0.350 0.1892E-04		Curve fit original data (-0.350<-x<-0.179) Curve fit original data (0.161<-x<0 log(y) = -101.57 + 262.6x - 257.75 x^2 -80.09log(x) log(y) = -4.864 - 2.407 x^2 - 3.322log(x) Curve fit for extrapolation (-0.800<-x<-0.350) Curve fit for extrapolation (0.550<-x<-log(y) = 1.306 - 17.226 x
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0149342 0.300 0.0041713 0.350 0.0014444 0.400 0.0005869 0.450 0.0002700 0.550 0.7588E-04 0.600 0.2831E-04 0.700 0.1879E-04 0.750 0.1307E-04 0.750 0.9485E-05		Curve fit original data (0.228 < $x < 0.800$) log(y) = -6.265 + 0.837 x^2 - 7.286log(x) Curve fit for extrapolation (0.800 < $x < 2.000$) log(y) = -2.930 - 2.616 x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0116069 -0.300 0.0036047 -0.350 0.0012810 -0.400 0.0002073 -0.500 0.9015E-04 -0.550 0.4047E-04 -0.600 0.8601E-05 -0.700 0.3981E-05	NOTE: for curve fits $x = x $	Curve fit original data (-0.600 < x < -0.228) log(y) = -5.210 - 2.158 x^2 - 5.664log(x) Curve fit for extrapolation (-1.200 < x < -0.600) log(y) = -0.717 - 6.690x

Cumulative Frequency of Exceedance

Table C-66 Tabulated Data for Airplane 5

Total Hours = 563 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0042300 0.200 0.0011507 0.250 0.0004018 0.300 0.7262E-04 0.400 0.3451E-04 0.450 0.1680E-04 0.500 0.8181E-05	Curve fit original data (0.161 < $x < 0.400$) log(y) = -5.817 - 2.066 x^2 - 4.236log(x) Curve fit for extrapolation (0.400 < $x < 1.600$) log(y) = -1.961 - 6.252x
Total Nautical Miles = 86977 MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0003514 -0.250 0.6371E-04 -0.300 0.1159E-04	Curve fit original data (-0.250 < $x < -0.179$) log(y) = -5.648 - 15.601 x^2 - 4.031log(x) Curve fit for extrapolation (-0.800 < $x < -0.250$) log(y) = -0.495 - 14.802x
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0565900 0.250 0.0185538 0.300 0.0069742 0.350 0.0028481 0.400 0.0012237 0.450 0.0002437 0.550 0.000143 0.600 0.4982E-04 0.650 0.2234E-04	Curve fit original data (0.214 < x < 0.650) $\log(y) = 4.092 - 3.207x^2 - 4.253\log(x)$ Curve fit for extrapolation (0.650 < x < 2.000) $\log(y) = -0.094 - 7.010x$
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0484977 -0.250 0.0171612 -0.300 0.0069111 -0.350 0.0030118 -0.400 0.0013782 -0.450 0.0006495 -0.550 0.0003111 -0.550 0.7233E-04 -0.550 0.3468E-04 -0.700 0.1656E-04 -0.750 0.7905E-05	Curve fit original data (-0.650 < $x < -0.214$) log(y) = -3.983 - 2.892 x^2 - 3.984log(x) Curve fit for extrapolation (-1.200 < $x < -0.650$) log(y) = -0.286 - 6.422x

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 Figure C-66 Load Spectra for Airplane 5, Twin-Engine, General Usage -0.4 %.O--1.2 10.5 10₀ 10^{-3} 10.5 10.1 104 9.01 107 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST -0.4 -0.8 100 10^{-2} 10.6 10-1 10^{-3} 104 10.5 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-67 Tabulated Data for Airplane 51

	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0092687 0.200 0.0044103 0.250 0.0022664 0.300 0.0012004 0.350 0.0006391	0.400 0.0003370 0.450 0.0001743 0.500 0.8790E-04		Curve fit for original data $(0.161 < x < 0.500)$ $\log(y) = -3.558 - 4.364x^2 - 1.970 \log(x)$ Curve fit for extrapolation $(0.500 < x < 1.600)$ $\log(y) = -1.018 - 6.075x$
MANEUVER		Cumulative Frequency Accel		4		
	negative	Acceleration Cumulati Fraction of Exc	-0.200 0.0038834 -0.250 0.0019665 -0.300 0.0010109 -0.350 0.0005153			Curvefit for original data (-0.500 < $x < -0.179$) log(y) = -3.487 · 5.218 x^2 - 1.838 log(x) Curvefit for extrapolation (-0.800 < $x < -0.500$) log(y) = -0.831 · 6.814 x
	ive	Cumulative Frequency of Exceedance	0.0624145 0.0191551 0.0067098 0.0025385	0.0004059 0.0001655 0.6736E-04 0.1107E-04 0.1819E-05		Curve fit for original data (0.214 < x < 0.550) log(y) = -4.097 - 3.996 x^2 - 4.366log(x) Curve fit for extrapolation (0.550 < x < 2.000) log(y) = 0.142 - 7.842x
positive	positi	Acceleration Fraction	0.200 0.250 0.300 0.350	0.400 0.50 0.530 0.600 0.600 0.700 0.730		
TSHE	negative	on Cumulative Frequency	0.0550154 0.0162143 0.0056964 0.0022408	0.0009308 0.0001966 0.9317E-04 0.4480E-04 0.2165E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.600< $x<-0.214$) log(y) = -4.625 - 2.280 x^2 - 4.946log(x) Curve fit for extrapolation (-1.200< $x<-0.600$) log(y) = -0.560 - 6.315 x
	ne	Acceleration Fraction	-0.200 -0.250 -0.300 -0.350	-0.450 -0.450 -0.550 -0.650 -0.650	NOTE: for	Curvefith log(y) = -4 Curvefitfo log(y) = -0

The formal manner of the contraction of the contrac Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-67 Load Spectra for Airplane 51, Twin-Engine, General Usage -0.8 -1.2 9.01 100 10.5 10.3 10.5 ₩9 101 10,1 Cumulative No. Occurrences/Naurical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 -+11++++ GUST 0 -0.8 -1.2 10^{-2} 10.3 104 10.2 10.0 10^{0} 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

 $\stackrel{\sim}{\sim}$

Table C-68 Tabulated Data for Airplane 4A

Total Hours = 342

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0688580 0.200 0.0262826 0.250 0.0116720 0.350 0.00166291 0.400 0.0014690 0.450 0.0004601 0.500 0.0002073 0.600 0.5349E-04 0.700 0.2671E-04		Curve fit for original data $(0.161 < x < 0.650)$ $\log(y) = -3.487 - 3.145x^2 - 2.907 \log(x)$ Curve fit for extrapolation $(0.650 < x < 1.600)$ $\log(y) = -0.351 - 6.032x$
MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0167079 -0.250 0.0061997 -0.300 0.0018456 -0.350 0.0004408 -0.400 0.8446E-04		Curvefit for original data (-0.400 < $x < -0.179$) log(y) = -1.012 - 19.135 x^2 Curvefit for extrapolation (-0.800 < $x < -0.400$) log(y) = -1.012 - 19.135 x^2
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0166440 0.300 0.0062916 0.350 0.0024260 0.400 0.0003314 0.450 0.0003505 0.500 0.4493E-04		Curve fit for original data $(0.245 < x < 0.550)$ log(y) = -3.328 - 6.126 x^2 - 3.208 log(x) Curve fit for extrapolation $(0.550 < x < 2.000)$ log(y) = $0.752 - 9.272x$
GUST	Acceleration Cumulative Frequency A Fraction of Exceedance	-0.250 0.0142161 -0.300 0.0055784 -0.350 0.0021857 -0.400 0.0003375 -0.450 0.0003097 -0.550 0.3677E-04 -0.600 0.1201E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.550 < $x < -0.245$) (0.50(y) = -3.073 - 6.859 x ² - 2.749log(x) Curve fit for extrapolation (-1.200 < x < -0.550) (1.9(y) = 0.909 - 9.715 x

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Figure C-68 Load Spectra for Airplane 4A, Twin-Engine, General Usage Original Data Curve Fit 0 GUST

Table C-69 Tabulated Data for Airplane 39

Total Hours = 2056

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0027257 0.250 0.0008828	0.300 0.0003630	,		0.500 0.4053E-04	0.000	-	0.700 0.1548E-04		Curve fit for original data (0.204 < $x < 0.700$) log(y) = -6.410 + 1.554 x^2 - 5.413log(x) Curve fit for extrapolation (0.700 < $x < 1.600$) log(y) = -3.983 - 1.182x
MANEUVER	Acceleration Cumulative rrequency Fraction of Exceedance	-0.200 0.0006427 -0.250 0.0001768	-0.300 0.4505E-04 -0.350 0.1032E-04								Curve fit for original data (-0.350 < $x < -0.180$) log(y) = -4.217 - 14.916 x^2 - 2.319log(x) Curve fit for extrapolation (-0.800 < $x < -0.350$) log(y) = -0.325 - 13.319 x
nosifive	 Acceleration Cumulative requency Fraction of Exceedance	0.200 0.0171301 0.250 0.0040383	0.300 0.0012361			0.500 0.4351E-04		0.650 0.6892E-05	0.700 0.3764E-05		Curve fit for original data (0.191 < $x < 0.550$) log(y) = -6.261 - 0.155 x^2 - 6.440log(x) Curve fit for extrapolation (0.550 < $x < 2.000$) log(y) = -1.746 - 5.255 x
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0132551 -0.250 0.0035574	-0.300 0.0011009 -0.350 0.00013597	_	0	-0.500 0.1686E-04				NOTE: for curve fits $x = x $	Curve fit for original data (-0.500 < x < -0.191) $\log(y) = -5.052 - 4.675x^2 - 4.809 \log(x)$ Curve fit for extrapolation (-1.200 < x < -0.500) $\log(y) = -0.347 - 8.852x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nill 0.4 MANEUVER 0 Figure C-69 Load Spectra for Airplane 39, Twin-Engine, General Usage -0.4 -0.8 10.5 10.5 10.6 100 10^{-3} 104 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 -0.4 -0.8 10^{-3} 10.5 10.6 10^{-2} ₀0 101 10-1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-70 Tabulated Data for Airplane 40

Total Hours = 2684

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0019688 0.250 0.0006450 0.300 0.0002424 0.350 0.9905E-04 0.450 0.1889E-04 0.500 0.8515E-05 0.600 0.1746E-05	Curve fit for original data (0.197 < $x < 0.500$) log(y) = -5.558 - 3.179 x^2 - 4.263log(x) Curve fit for extrapolation (0.500 < $x < 1.600$) log(y) = -1.629 - 6.882x
MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0006099 -0.250 0.0001847 -0.300 0.5101E-04 -0.350 0.2702E-05	Curve fit for original data (-0.400 < x < -0.194) log(y) = -3.960 - 14.813 x^2 - 1.913log(x) Curve fit for extrapolation (-0.800 < x < -0.400) log(y) = 0.003 - 13.928 x
positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0194892 0.300 0.0064796 0.350 0.0064744 0.400 0.000416 0.450 0.0004193 0.500 0.0001858 0.550 0.8429E-04 0.650 0.3833E-04 0.750 0.3902E-05 0.750 0.1811E-05	Curve fit for original data (0.231 < x < 0.750) $\log(y) = -4.683 \cdot 2.443x^2 \cdot 5.191 \log(x)$ Curve fit for extrapolation (0.750 < x < 2.000) $\log(y) = -0.406 \cdot 6.671x$
GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0210494 -0.300 0.0070791 -0.350 0.0077685 -0.400 0.0002663 -0.450 0.0002693 -0.500 0.0002857 -0.550 0.0001504 -0.650 0.0001504 -0.650 0.2673E-04 -0.750 0.2673E-04 -0.750 0.2673E-04 -0.750 0.2673E-04 -0.750 0.2573E-04 -0.750 0.2573E-04	Curve fit for original data $(-0.750 < x < -0.231)$ log(y) = $-5.052 \cdot 0.822x^2 \cdot 5.692\log(x)$ Curve fit for extrapolation $(-1.200 < x < -0.750)$ log(y) = $-1.407 \cdot 4.528x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLLF **5.** MANEUVER Figure C-70 Load Spectra for Airplane 40, Twin-Engine, General Usage -0.8 10⁻² 10-3 104 10.5 10.6 100 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a /a 0 -14-3-1-1-1-1 -14-3-1-1-1-1 -14-3-1-1-1-1 -0.8 °0 10.2 10.3 10-5 10.6 104 10 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-71 Tabulated Data for Airplane 255-203

Total Hours = 438.22

Total Nautical Miles = 88458.34

au filiann	Posting	Acceleration Cumulative Frequency Fraction of Exceedance	0.2(0 0.0089099 0.2(0 0.0016555 0.3(0 0.0002786 0.3(0 0.4088E-04	0.400 0.5553E-05		Curve fit for original data (0.200 < $x < 0.350$) log(y) = -3.403 - 19.376 x^4 - 3.044log(x) Curve fit for extrapolation (0.350 < $x < 1.600$) log(y) = 1.681 - 17.340 x
MANEUVER		Acceleration Cumulative Frequency Fraction of Exceedance		-0.400 0.5378E-05 -0.450 0.1438E-05		Curve fit for original data (-0.350 < $x < -0.200$) log(y) = -6.803 - 5.541 x^2 - 6.108 log(x) Curve fit for extrapolation (-0.800 < $x < -0.350$) log(y) = -0.686 - 11.457 x
e di Joseph		Acceleration Cumulative Frequency Fraction of Exceedance		0.450 0.0002771 0.500 0.0001337 0.550 0.6637E-04 0.600 0.3366E-04 0.650 0.1725E-04 0.750 0.457E-05 0.800 0.2359E-05 0.850 0.1216E-05		Curve fit for original data (0.240 < x < 0.650) $\log(y) = -4.902 - 1.874x^2 - 4.972\log(x)$ Curve fit for extrapolation (0.650 < x < 2.000) $\log(y) = -1.021 - 5.758x$
GUST	וופאוווים	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0044864 -0.300 0.0012991 -0.350 0.0004856 -0.400 0.0002209	-0.450 0.0001177 -0.500 0.7155E-04 -0.550 0.4872E-04 -0.600 0.3665E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.600 < $x < -0.240$) log(y) = -7.256 + 3.003 x^2 - 7.84 llog(x) Curve fit for extrapolation (-1.200 < $x < -0.600$) log(y) = -3.193 - 2.072x

Original Data Curve Fit 0.8 Acceleration Fraction, a 0 0.4 և սհամավակակականքութակակակակակակական<u>ի</u> MANEUVER 0 Figure C-71 Load Spectra for Airplane 255-203, Twin-Engine, General Usage -0.4 -0.8 -1.2 00 10.1 10^{-2} 10.3 10.5 10.0 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.6 Original Data Curve Fit 1.2 Acceleration Fraction, a / a n_{ILF} 0.8 0 0.4 GUST -0.4 9.0 10.5 100 10^{-2} 10^{-3} 101 104 10^{-1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-72 Tabulated Data for Airplane 310-110

Total Hours = 1155.77	SR positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.1490869 0.200 0.0520928 0.250 0.0211728 0.350 0.0093054 0.450 0.009756 0.450 0.0009186 0.550 0.000918 0.650 0.8501E-04 0.650 0.3672E-04 0.700 0.1540E-04
Total Nautical Miles = 155074.7	MANEUVER negative	Cumulative Frequency of Exceedance	0.0219864 0.0049681 0.0012621 0.0003386 0.9241E-04 0.2504E-04 0.6723E-05 0.1805E-05
Total Nautic	Beu	Acceleration Fraction	-0.200 -0.250 -0.350 -0.400 -0.450 -0.550 -0.550
	e.	Cumulative Frequency of Exceedance	0.0223185 0.0038241 0.0011075 0.000435 0.0002345 0.09910E-04 0.755E-04 0.755E-04 0.4973E-04 0.3247E-04 0.2247E-04 0.2478-04
	positive	Acceleration Fraction	0.250 0.250 0.350 0.350 0.450 0.450 0.650 0.650 0.750 0.850 0.950 0.950
	GUST	Cumulative Frequency of Exceedance	0.0103298 0.0022081 0.0005603 0.0001570 0.4658E-04
	negative	Acceleration Fraction	-0.200 -0.250 -0.350 -0.400

Z
H
>
٤
A STATE OF
3
CZ

Curve fit for original data $(0.160 < x < 0.700)$ $\log(y) = -3.270 - 4.121x^2 - 3.078 \log(x)$ Curve fit for extrapolation $(0.700 < x < 1.600)$ $\log(y) = 0.563 - 7.679x$
Idata (0.190 < x < 0.750) Curve fit for original data (-0.450 < x < -0.180) Curve fit for original data (0.160 < x < 0.700)56x > 4.975x^2 - 14.26log(x) log(y) = -4.824 - 7.382x^2 - 4.952log(x) log(y) = -3.270 - 4.121x^2 - 3.078log(x) lation (0.750 < x < 2.000) Curve fit for extrapolation (-0.800 < x < -0.450) Curve fit for extrapolation (0.700 < x < 1.600) log(y) = 0.563 - 7.679x
Curve fit for original data (0.190 < $x < 0.750$) log(y) = -14.33 + 14.56x - 4.975 x^2 - 14.26log(x) Curve fit for extrapolation (0.750 < $x < 2.000$) log(y) = -3.559 - 1.162x
Curve fit for original data (-0.400 < $x < -0.190$) Curve fit for original log(y) = -5.751 - 5.278 x^2 - 5.689log(x) log(y) = -14.33 + 14.5 Curve fit for extrapolation (-1.200 < $x < -0.400$) Curve fit for extrapolation (-1.200 < $x < -0.400$) log(y) = -3.559 - 1.16

Original Data Curve Fit ж. С. 0.8 Acceleration Fraction, a / a 0 0.4 MANEUVER Figure C-72 Load Spectra for Airplane 310-110, Twin-Engine, General Usage **-**0.4 ÷0.8 10^{0} 10.1 10^{-2} 10^{-3} 104 10.5 9.01 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n.1.F 0.4 0 GUST 0 -0.4 -0.8 10.5 100 10^{-2} 10.3 104 101 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-73 Tabulated Data for Airplane 41

Total Hours = 134

positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0541202 0.200 0.0256594 0.250 0.0132956 0.300 0.0071703 0.350 0.0039213 0.400 0.001411 0.450 0.0001435 0.550 0.0006123 0.600 0.0006129 0.650 0.8274E-04		Curve fit for original data (0.161 < $x < 0.550$) log(y) = -2.877 - 3.825 x^2 - 2.058log(x) Curve fit for extrapolation (0.550 < $x < 1.500$) log(y) = -0.291 - 5.832 x
MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.250 0.0048133 -0.250 0.0007732		Curve fit for original data (-0.250 < $x < -0.179$) log(y) = -5.324 - 13.455 x^2 - 5.071log(x) Curve fit for extrapolation (-0.800 < $x < -0.250$) log(y) = 0.772 - 15.537x
positive	Acceleration Cumulative Frequency Accele Fraction of Exceedance Fra	0.150 0.0362371 -0.5 0.200 0.0160957 -0.5 0.250 0.0047085 0.300 0.0001280		Curve fit for original data (0.173 < $x < 0.350$) Curv log(y) = 0.259 - 29.180 $x^2 + 1.266\log(x)$ log(y) Curve fit for extrapolation (0.350 < $x < 1.400$) Curv log(y) = 2.706 - 18.855 x
GUST	Acceleration Cumulative Frequency Accele	4	NOTE: for curve fits $x = x $	Curve fit for original data ($-0.400 < x < -0.173$) Curve log(y) = $-2.221 - 16.201x^2 - 1.469 \log(x)$ Curve fit for extrapolation ($-1.500 < x < -0.400$) Curve log(y) = $1.543 - 14.490x$ log(y)

Original Data Curve Fit 0.8Acceleration Fraction, a / a nus 0.4 0 MANEUVER 0 Figure C-73 Load Spectra for Airplane 41, Twin-Engine, Special Usage 0.8 10.5 10^{-3} 10.5 10.6 00 10° 104 10^{-1} 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / 0.4 0 GUST -0.8 10-5 10^{0} 10.2 10.3 104 101 <u>.</u>0 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-74 Tabulated Data for Airplane 25

	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.2290210 0.200 0.145332 0.250 0.0847099 0.300 0.0450224 0.350 0.0217354 0.450 0.0037646 0.500 0.0013472 0.500 0.0004355 0.600 0.3524E.04 0.700 0.3524E.04	Curve fit for original data (0.141 < x < 0.600) $log(y) = -0.688 - 9.100x^2 - 0.306log(x)$ Curve fit for extrapolation (0.600 < x < 1.500) $log(y) = 2.789 - 11.142x$
MANEUVER	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.100 0.1003894 -0.150 0.0052014 -0.200 0.0006498 -0.250 0.0001322 -0.300 0.3209E-04	Curve fit for original data (-0.250 < $x < -0.113$) log(y) = -8.381 + 1.020 x^2 - 7.373 log(x) Curve fit for extrapolation (-0.800 < $x < -0.250$) log(y) = -0.804 - 12.298x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.3734160 0.250 0.1392042 0.300 0.0595912 0.350 0.0278644 0.450 0.0071207 0.450 0.0077207 0.550 0.0077674 0.550 0.0077674 0.650 0.0001764 0.650 0.0001784 0.750 0.0001784 0.750 0.0001784 0.750 0.0001784 0.750 0.0001784 0.750 0.001784 0.750 0.001784	Curve fit for original data $(0.205 < x < 0.800)$ (e.g.(y) = -3.112 - 2.010 x^2 - 3.955 log(x) Curve fit for extrapolation $(0.800 < x < 1.400)$ (e.g.(y) = 0.276 - 5.364x
. GUST	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.3779985 -0.250 0.1216147 -0.300 0.0471762 -0.400 0.0207500 -0.400 0.0207506 -0.450 0.0027596 -0.500 0.0027596 -0.500 0.001346 -0.600 0.0008901 -0.600 0.0008901 -0.600 0.0001348 -0.750 0.0001348 -0.750 0.0001348 -0.750 0.0001176 -0.950 0.0001176 -0.950 0.2766E-04 -1.000 0.1708E-04 -1.150 0.2766E-04 -1.150 0.4482E-04 -1.150 0.4482E-04 -1.150 0.4482E-04 -1.150 0.4482E-05 -1.150 0.4482E-05 -1.150 0.4482E-05 -1.150 0.4482E-05 -1.150 0.1530E-05	1.800 < x < -0.205) 856log(x) 1.500 < x < -0.800)
		-2. ,	0.152	

Original Data Curve Fit Acceleration Fraction, a / a Bitt 7.0 MANEUVER ÷.(). Figure C-74 Load Spectra for Airplane 25, Twin-Engine, Special Usage % () () -1.6 9.0I 10.1 10,2 10.3 10.2 10 10^{0} 10.4 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data <u>~</u>! Curve Fit Acceleration Fraction, a / a 0.8 0.4 GUST 0 ÷0.4 -0.8 -1.6 10.6 10.1 10^{-2} 10.3 10.2 101 100 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-75 Tabulated Data for Airplane 26

Total Hours = 901 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0357037 0.200 0.0094040 0.250 0.0027369 0.300 0.0008143 0.350 0.0002376 0.400 0.6634E-04 0.450 0.1744E-04	Curve fit for original data $(0.161 < x < 0.450)$ $\log(y) = -3.930 \cdot 9.706x^2 \cdot 3.278\log(x)$ Curve fit for extrapolation $(0.450 < x < 1.500)$ $\log(y) = 0.596 \cdot 11.899x$
Total Nautical Miles = 126142 MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0049927 -0.250 0.0007218 -0.300 0.0001132 -0.350 0.1794E-04	Curve fit for original data $(-0.350 < x < -0.179)$ $\log(y) = -5.736 - 12.970x^2 - 5.655 \log(x)$ Curve fit for extrapolation $(-0.800 < x < -0.350)$ $\log(y) = 0.888 - 16.096x$
T	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.2188777 0.250 0.0516867 0.300 0.0136458 0.350 0.0037914 0.400 0.0010693 0.450 0.00022991 0.500 0.8164E-04 0.550 0.2151E-04 0.650 0.4432E-05	Curve fit for original data (0.208 < $x < 0.550$) (0.8(y) = -3.711 - 7.265 x^2 - 4.781log(x) Curve fit for extrapolation (0.550 < $x < 1.400$) log(y) = 1.804 - 11.767 x
GUST	imulative Frequency of Exceedance	-0.200 0.1150681 -0.250 0.0292962 -0.300 0.0074861 -0.350 0.0018390 -0.400 0.0004233 -0.450 0.8979E-04	NOTE: for curve fits $x = x $ Curve fit for original data (-0.450 < x < -0.208) $\log(y) = -2.848 - 11.749x^2 - 3.403 \log(x)$ Curve fit for extrapolation (-1.500 < x < -0.450) $\log(y) = 2.190 - 13.858x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 Figure C-75 Load Spectra for Airplane 26, Twin-Engine, Special Usage -0.4 -0.8 10^{-2} 10^{-3} 10.5 10^{0} 104 10.1 9.01 10¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a 0.4 0 GUST -0.4 -0.8 10-6 10.1 10^{-2} 10^{-3} 104 10.5 100 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-76 Tabulated Data for Airplane 3

av Hissan		Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0023140 0.250 0.0010201 0.300 0.0005023 0.350 0.0002652 0.400 0.0001465 0.450 0.8226E-04 0.500 0.4621E-04 0.600 0.1458E-04 0.600 0.459E-05 0.700 0.4599E-05	Curve fit for original data $(0.188 < x < 0.400)$ $\log(y) = -4.823 \cdot 1.870x^2 \cdot 3.236\log(x)$ Curve fit for extrapolation $(0.400 < x < 1.000)$ $\log(y) = -1.830 \cdot 5.010x$
MANEUVER		Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0011361 -0.200 0.3548E-04	Curve fit for original data (-0.200 < x < -0.168) log(y) = 1.572 - 30.108x Curve fit for extrapolation (-0.800 < x < -0.200) log(y) = 1.572 - 30.108x
nositive	positive	Acceleration Cumulative Frequency Acceleration of Exceedance Fr	0.200 0.017977 -0 0.250 0.0046380 -0 0.300 0.0015184 0.350 0.0005850 0.400 0.000235 0.450 0.0001201 0.500 0.6093E-04 0.550 0.3184E-04	Curve fit for original data (0.214 < x < 0.500) Curv log(y) = -5.897 - 0.455x ² - 5.966log(x) log(y) Curve fit for extrapolation (0.500 < x < 1.000) Curv log(y) = -1.396 - 5.638x
TSOS	IICRAINC	Acceleration Cumulative Frequency Acce Fraction of Exceedance Fi	-0.200 0.0164582 0 -0.250 0.0049480 0 -0.300 0.0017621 0 -0.350 0.0006993 0 -0.450 0.0002982 0 -0.450 0.001334 0 -0.550 0.6168E-04 0 -0.550 0.2885E-04 0	Curve fit for original data $(-0.500 < x < -0.214)$ Curleg(y) = $-5.062 - 2.406x^2 - 4.827 \log(x)$ log(Curve fit for extrapolation $(-1.200 < x < -0.500)$ Curlog(y) = $-0.910 - 6.599x$ log(
		•		

10.2 10^{-3} ₹ 0 10⁰ 107 10.1

Original Data Curve Fit

٥

MANEUVER

Figure C-76 Load Spectra for Airplane 3, Pressurized, General Usage

1:2

0.8

0.4

0

-0.4

-0.8

Acceleration Fraction, a / a

Table C-77 Tabulated Data for Airplane 31

Total Hours = 1427	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0005855 0.250 0.0001672 0.300 0.5488E-04 0.350 0.1954E-04 0.400 0.7283E-05	Curve fit for original data (0.188 < $x < 0.400$) $log(y) = -6.294 - 4.276 x^2 - 4.625 log(x)$ Curve fit for extrapolation (0.400 < $x < 1.000$) $log(y) = -1.761 - 8.442 x$
Total Nautical Miles = 281300	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0003842 -0.200 0.6932E-04 -0.250 0.2004E-04 -0.300 0.7949E-05 -0.350 0.3981E-05	Curve fit for original data (-0.350 $<$ x < -0.168) log(y) = -8.906 + 4.248 x^2 - 6.547log(x) Curvefit for extrapolation (-0.800 $<$ x < -0.350) log(y) = -3.597 - 5.151x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0128137 0.250 0.0032599 0.300 0.0010487 0.350 0.0003956 0.400 0.0001673 0.450 0.7703E-04 0.550 0.1960E-04 0.600 0.1056E-04	Curve fit for original data (0.214 < x < 0.600) log(y) = -6.028 - 0.751 x^2 - 5.960log(x) Curve fit for extrapolation (0.600 < x < 1.000) log(y) = -1.847 - 5.215x
	GUST negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0089890 -0.250 0.0032309 -0.300 0.0012301 -0.350 0.0004767 -0.450 0.0001836 -0.500 0.2526E-04 -0.550 0.8867E-05	NOTE: for curve fits $\mathbf{x} = \mathbf{x} $ Curve fit for original data (-0.550 < x < -0.214) $\log(y) = -4.002 - 6.177x^2 - 3.151\log(x)$ Curve fit for extrapolation (-1.200 < x < -0.550) $\log(y) = 0.053 - 9.283x$

Original Data Curve Fit 0.8 Acceleration Fraction, a / a nus 0.4 0 MANEUVER 0 Figure C-77 Load Spectra for Airplane 31, Pressurized, General Usage -0.4 .O.8 10^{-2} 10,3 10.5 100 01-و 10₋1 104 10^{1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{LLF} 0.4 0 0 -0.8 10.5 10^{-2} 10^{-3} 9.01 100 ⁷0 10-1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-78 Tabulated Data for Airplane 1

Total Hours ≈ 578	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0123351 0.200 0.0038257 0.250 0.0013406 0.300 0.0001829 0.350 0.0001829 0.400 0.6690E-04 0.450 0.2375E-04	Curve fit for original data $(0.167 < x < 0.450)$ $\log(y) = -4.319 \cdot 6.838x^2 \cdot 3.112 \log(x)$
Total Nautical Miles = 219656 Tot	MANEUVER negative	Cumulative Frequency of Exceedance	0.0019597 0.0003224 0.7517E-04 0.2161E-04 0.7105E-05 0.2458E-05	Curve fit for original data (-0.350 < x < -0.125) Cu log(y) = -7.501 - 2.725 x^2 - 5.8921og(x) log Curve fit for extrapolation (-0.525 < x < -0.350) log(y) = -1.922 - 9.219x
Total Nau		Cumulative Frequency Acceleration of Exceedance Fraction	0.0555101 -0.150 0.0046206 -0.200 0.0008992 -0.250 0.0002318 -0.300 0.6626E-04 -0.350 0.1940E-04 -0.400	Curve fit for original data $(0.074 < x < 0.300)$ Curve fit for original data $(0.074 < x < 0.300)$ log(y) = -5.581 - 9.773 x^2 - 3.343log(x) Curve fit for original log(y) = -10 (y) = -10 (x)
	GUST positive	Acceleration Fraction	0.050 0.100 0.150 0.200 0.250	
	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.050 0.0659732 -0.100 0.0036885 -0.150 0.0006295 -0.200 0.0001647 -0.250 0.5328E-04 -0.350 0.1934E-04	NOTE: for curve flts $x = x $ Curve fit for original data (-0.300 < x < -0.074) $\log(y) = -6.443 - 4.334x^2 - 4.053\log(x)$ Curve fit for extrapolation (-0.368 < x < -0.300) $\log(y) = -2.173 - 8.467x$

Cumulative Frequency of Exceedance

Table C-79 Tabulated Data for Airplane 11

10tal Hours = 760	MANEUVER positive	Frequency Acceleration Cumulative Frequency	17 0.150 0.0097422 14 0.200 0.0048404 2 0.250 0.0027462 0.04 0.050 0.0010885 0.400 0.0010885 0.450 0.00010885 0.500 0.00013431 0.550 0.00013431 0.550 0.0001185 0.600 0.0001185 0.700 0.884E-04 0.800 0.1980E-04 0.850 0.090E-04 0.950 0.1363E-04		0.350< x < -0.125) Curve fit for original daya (0.167 < x < 0.950) 3.273log(x) $\log(y) = -3.852 - 1.179x^2 - 2.266log(x)$
Total Nautical Miles = 250447	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0015547 -0.200 0.0003974 -0.250 0.0001112 -0.300 0.3153E-04 -0.350 0.8685E-05		Curve fit for original data (-0.350 < $x < -0.125$) log(y) = -5.269 - 10.486 x^2 - 3.273 log(x)
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.050 0.0969203 0.100 0.0036172 0.150 0.0003907 0.200 0.5841E-04 0.250 0.9594E-05		Curve fit for original data (0.074 < x < 0.250) $\log(y) = -6.621 - 16.170x^2 - 4.341\log(x)$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.050 0.1217939 -0.100 0.0029055 -0.150 0.0002775 -0.200 0.4405E-04 -0.250 0.8831E-05	NOTE: for curve fits $x = x $	Curve fit for original data $(-0.250 < x < -0.074)$ $\log(y) = -7.621 - 8.748x^2 - 5.172\log(x)$

Cumulative Frequency of Exceedance Manulative No. Occurrences/Nautical M

Figure C-79 Load Spectra for Airplane 11, Twin-Engine, Executive Jet

Table C-80 Tabulated Data for Airplane 12

Total Hours = 244	MANEUVER positive	ency Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0077819 0.200 0.0033124 0.250 0.0016947 0.300 0.00069725 0.400 0.0006933 0.400 0.0003957 0.450 0.0003957 0.500 0.0001911 0.550 0.0001911 0.550 0.0001022 0.650 0.3829E-04 0.750 0.3459E-04 0.850 0.2670E-04		$c(x < -0.125)$ Curve fit for original data $(0.167 < x < 0.750)$ $cg(x)$ $cg(x) = -4.504 - 0.372x^2 - 2.917 log(x)$ $cx < -0.300$ Curve fit for extrapolation $(0.750 < x < 0.900)$
Total Nautical Miles = 88624	M negative	n Cumulative Frequency of Exceedance	0.0013219 0.0003856 0.0001048 0.2535E-04 0.5733E-05 0.1297E-05		Curve flt for original data (-0.300 < $x < -0.125$) log(y) = -4.077 - 16.898 x^2 - 1.915log(x) Curve flt for extrapolation (-0.425 < $x < -0.300$)
Total Nauti	ae Be	Acceleration Fraction	-0.150 -0.250 -0.350 -0.350 -0.400		
	ive	Cumulative Frequency of Exceedance	0.1610174 0.0027947 0.0001651		riginal data $(0.074 < x < 0.150)$ i.6 - 24.512 x^2 - 5.238log(x)
	positive	Acceleration Fraction	0.050 0.100 0.150		Curve fit for original $\log(y) = -7.546 - 24.5$
	GUST	Cumulative Frequency of Exceedance	0.0739278 0.0036598 0.0001894	NOTE: for curve fits $x = x $	Curve fit for original data (-0.150 < x < -0.074) $\log(y) = -4.525 - 64.394 x^2 - 2.732 \log(x)$
	negative	Acceleration Fraction	-0.050 -0.100 -0.150	NOTE: for cu	Curve fit for on log(y) = -4.52.

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER .0.4 Figure C-80 Load Spectra for Airplane 12, Twin-Engine, Executive Jet -0.8 10.5 00 10.1 10^{-2} 10^{-3} 104 10.6 10^{1} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance -----Original Data Curve Fit 0.8 Acceleration Fraction, a / a n_{1.1.F} 0.4 ٥ 111111 10-2 10-3 10.5 10.6 90 104 101 10-1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-81 Tabulated Data for Airplane 1³

) positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0143898 0.200 0.0081882 0.250 0.0050313 0.300 0.0020879 0.450 0.0013447 0.450 0.0003800 0.500 0.000384 0.500 0.0003759 0.500 0.0003784 0.600 0.0001441 0.700 0.8858E-04 0.750 0.3348E-04		Curve fit for original data $(0.167 < x < 0.650)$ $\log(y) = -3.123 - 2.417x^2 - 1.621\log(x)$ Curve fit for extrapolation $(0.650 < x < 0.833)$ $\log(y) = -1.095 - 4.226x$
MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0023040 -0.200 0.0006177 -0.250 0.0001550		Curve fit for original data (-0.250 < x < -0.125) $\log(y) = -3.982 \cdot 17.586x^2 \cdot 2.113 \log(x)$
positive	Acceleration Cumulative Frequency Acce Fraction of Exceedance Fr	0.050 0.1139650C 0.100 0.0208763C 0.0513809CC 0.0513809CC 0.0513809CC 0.0513809CC 0.0513809C 0.		Curve fit for original data (0.074 < x < 0.150) Cur log(y) = $-0.909 - 92.237x^2 - 0.151 \log(x)$ log(
GUST	Acceleration Cumulative Frequency Acceleration of Exceedance Fr	-0.050 0.2213605 0 -0.100 0.0182266 0 -0.150 0.0013916 0	NOTE: for curve fits $x = x $	Curve fit for original data (-0.150 < $x < -0.074$) Curlog(y) = -3.237 - 59.985 x^2 - 2.100 log(x) log(g

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 o MANEUVER 0 Figure C-81 Load Spectra for Airplane 13, Twin-Engine, Executive Jet ÷.0-8.0-10.5 0₀ 10.1 10.3 10.5 9.01 104 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 7: Original Data Curve Fit 0.8 Acceleration Fraction, a / 0.4 0 GUST 0 -0.4 -0.8 100 10^{-2} 10.3 10.5 10.1 10.0 10 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-82 Tabulated Data for Airplane 2

Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0007096 0.200 0.0003144 0.250 0.0001570 0.300 0.8340E-04 0.400 0.254E-04 0.450 0.1418E-04 0.500 0.7860E-05	Curve fit for original data (0.132 < $x < 0.500$) log(y) = -5.054 - 3.088 x^2 - 2.397log(x)
Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0006041 -0.200 0.0001760 -0.250 0.5904E-04 -0.350 0.2104E-04 -0.350 0.2772E-05	Curve fit for original data (-0.350 < x < -0.163) log(y) = -5.837 · 6.622 x^2 - 3.359 log(x) Curve fit for extrapolation (-0.417 < x < -0.350) log(y) = -2.036 · 8.803 x
Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0016967 0.200 0.0003166 0.250 0.7431E-04 0.300 0.1957E-04 0.350 0.5441E-05 0.400 0.1533E-05	Curve fit for original data $(0.153 < x < 0.350)$ $\log(y) = .6.593 - 7.148x^2 - 4.835 \log(x)$ Curve fit for extrapolation $(0.350 < x < 0.424)$ $\log(y) = -1.413 - 11.003x$
	50 0.0013584 :00 0.0002400 :50 0.5664E.04 :00 0.1573E.04 :50 0.1516E.05 :60 0.1516E.05	Curvefitfor original data (-0.350< x < -0.153) log(y) = -7.166 - 4.830x ² - 5.349log(x) Curvefitfor extrapolation (-0.458 < x < -0.350) log(y) = -1.812 - 10.018x
	uency Acceleration Cumulative Frequency Acceleration Cumulative Frequency Fraction of Exceedance Fraction of Exceedance	Acceleration Cumulative Frequency Acceleration Cumulative Frequency Fraction of Exceedance Fraction of Exceedance 0.150 0.0016967 -0.150 0.0006041 0.200 0.0003166 -0.200 0.0001760 0.250 0.7431E-04 -0.250 0.5904E-04 0.300 0.1957E-04 -0.350 0.7104E-04 0.350 0.5441E-05 -0.400 0.2772E-05

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 MANEUVER 0 -0.4 Figure C-82 Load Spectra for Airplane 2, Twin-Engine, Executive Jet -0.8 -1.2 100 10.5 10^{-3} 104 10.5 10.6 10^{-1} 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data ************************ Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 9.0 10.5 10.6 10.5 10^{0} 101 10.1 10-3 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

<u>~</u>

Table C-83 Tabulated Data for Airplane 2A

	Cumulative Frequency of Exceedance	0.0029815 0.0007170 0.0001070 0.3205E-04 0.3205E-04	0.9498E-05 0.6428E-05 0.4351E-05	Curve flt for original date $(0.132 < x < 0.450)$ $\log(y) = -6.858 + 1.818x^2 - 5.209 \log(x)$ Curve flt for extrapolation $(0.450 < x < 0.662)$ $\log(y) = -3.158 - 3.390x$
t positive	Acceleration Cun Fraction o		0.000 0.000 0.000 0.000 0.000	Curvefit for original dat log(y) = -6.858 + 1.818x Curve fit for extrapolatic log(y) = -3.158 - 3.390x
MANEUVER	Cumulative Frequency of Exceedance	0.0036824 0.0006431 0.0001477 0.3937E-04		Curve fit for original data (-0.300 < x < -0.163) $\log(y) = -6.642 - 5.723x^2 - 5.264 \log(x)$
negative	Acceleration Fraction	-0.150 -0.200 -0.250 -0.300		Curve fit for or log(y) = -6.643
ķ	tive Cumulative Frequency of Exceedance	0.0029091 0.0007907 0.0002349 0.7234E-04 0.2237E-04 0.6810E-05 0.2046E-05		Curve fit for original data (0.184 < $x < 0.450$) log(y) = -5.177 - 7.119 x^2 - 4.185log(x) Curve fit for extrapolation (0.450 < $x < 0.676$) log(y) = -0.466 - 10.446 x
positive	Acceleration Fraction	0.200 0.250 0.300 0.350 0.400 0.500		Curve fit for original data log(y) = -5.177 - 7.119x ² . Curve fit for extrapolatio log(y) = -0.466 - 10.446x
GUST negative	Acceleration Cumulative Frequency Fraction of Exceedance	on Cumulative Frequency of Exceedance 0.0027116 0.0006249 0.0001611 0.4373E-04 0.1204E-04		Curve fit for original data ($.0.400 < x < -0.184$) $\log(y) = -5.660 - 7.437x^2 - 4.851 \log(x)$
•	Acceleratio Fraction	-0.200 -0.250 -0.300 -0.350 -0.400	NOTE: for curve fits x = x	Curve fit

 10^{-2} 10.3 00 104 101 10-1 Cumulative Frequency of Exceedance

Table C-84 Tabulated Data for Airplane 19

Total Hours = 143	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.1013071 0.300 0.0647826 0.350 0.0433880 0.400 0.0299607 0.450 0.0150842 0.550 0.0150842 0.650 0.0078694 0.650 0.0078694 0.650 0.0078694 0.650 0.0078694 0.650 0.0078694 0.650 0.0078694 0.650 0.0078694 0.850 0.0001155 0.950 0.001155 0.950 0.0001594 1.050 0.0007393 1.100 0.0002393 1.250 0.8837E-04 1.350 0.4110E-04 1.350 0.2803E-04		Curve fit for original data $(0.233 < x < 1.200)$ $\log(y) = -2.180 \cdot 1.072x^2 \cdot 2.080 \log(x)$ Curve fit for extrapolation $(1.200 < x < 1.433)$ $\log(y) = 0.102 \cdot 3.324x$
Total Nautical Miles = 24743	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0306278 -0.250 0.0116142 -0.300 0.0044994 -0.350 0.0016685 -0.400 0.0006010 -0.450 0.0002055 -0.500 0.6610E-04 -0.550 0.6610E-04 -0.600 0.6411E-05		Curvefit for original data (-0.500 < x < -0.175) log(y) = -2.940 - 7.964 x^2 - 2.496log(x) Curvefit for extrapolation (-0.625 < x < -0.500) log(y) = 0.887 - 10.133 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.300 0.0071018 0.350 0.0040161 0.400 0.0023857 0.450 0.0014664 0.500 0.0009231 0.550 0.0005909 0.650 0.0003824 0.650 0.0001631 0.700 0.0001631 0.700 0.0001069 0.800 0.6996E-04 0.800 0.2980E-04		Curve fit for original data (0.315 < x < 0.850) $\log(y) = -3.650 \cdot 1.257x^2 \cdot 3.088 \log(x)$ Curve fit for extrapolation (0.850 < x < 0.946) $\log(y) = -1.183 \cdot 3.714x$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.300 0.0044166 -0.350 0.0025037 -0.400 0.0014460 -0.450 0.0008410 -0.500 0.0008486 -0.550 0.0002820 -0.600 0.9066E-04 -0.700 0.2829E-04 -0.800 0.1580E-04 -0.800 0.4932E-05 -0.900 0.4932E-05	NOTE: for curve fits $x = x $	Curve fit for original data (-0.650 < x < -0.313) log(y) = -3.365 - 2.662 x^2 - 2.390log(x) Curve fit for extrapolation (-0.938 < x < -0.650) log(y) = -0.755 - 5.058 x
			C-173		

Table C-85 Tabulated Data for Airplane 191

positive	ation Cumulative Frequency	0.0515632 0.0330597 0.0204980 0.0122193 0.0069770 0.0019799 0.0009809		Curve fit for original data $(0.233 < x < 0.700)$ $\log(y) = -1.452 - 4.798x^2 - 0.772 \log(x)$
e R	Acceleration Fraction	0.250 0.300 0.350 0.400 0.450 0.500 0.500 0.600		
MANEUVER	Cumulative Frequency of Exceedance	0.0022346		Curve fit for original data (-0.250 < x < -0.175) $\log(y) = -1.948 - 17.572x^2$
negative	Acceleration Fraction	-0.200		Curve fit for o log(y) = -1.94
ive	Cumulative Frequency of Exceedance	0.0057435 0.0035293 0.0020122 0.0010644		Curve fit for original data (0.315 < $x < 0.450$) log(y) = -1.655 - 6.507 x^2
positive	Acceleration Fraction	0.300 0.350 0.450 0.450		
GUST	Acceleration. Cumulative Frequency Fraction of Exceedance	0.0010427 0.0007064 0.0004785	NOTE: for curve fits $x = x $	Curve fit for original data (-0.400 < x < -0.313) $log(y) = -1.967 - 3.383x$
negative	Acceleration Fraction	-0.300 -0.350 -0.400	NOTE: for c	Curve fit forc log(y) = -1.9¢

Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 MANEUVER 0 Figure C-85 Load Spectra for Airplane 191, Large Airplanes, Special Usage -0.4 -0.8 -1:2 10^{-2} 10.5 10.6 100 10^{-3} 104 101 10.¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 0 -0.4 -0.8 9.01 100 10.2 10.5 10.1 10.3 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-86 Tabulated Data for Airplane 20

Total Hours = 285	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0611892 0.300 0.0419829 0.350 0.0242839 0.450 0.0170606 0.550 0.0132033 0.550 0.0103497 0.600 0.0081904 0.650 0.008272 0.750 0.008272 0.850 0.0052281 0.850 0.0022037 0.950 0.001738 0.950 0.001738 1.000 0.0011534 1.100 0.00011534 1.150 0.00011534 1.150 0.00011534 1.250 0.00011852 1.250 0.00011852 1.250 0.00011852 1.250 0.00011852 1.250 0.00011852 1.250 0.00011852 1.250 0.2383E-04 1.850 0.2383E-04 1.850 0.1832E-04		Curve fit for original data (0.233 < $x < 1.700$) log(y) = -2.313 - 0.531 x^2 - 1.882log(x) Curve fit for extrapolation (1.700 < $x < 1.967$) log(y) = -0.396 - 2.285 x
Total Nautical Miles = 50316	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0130974 -0.250 0.0062428 -0.300 0.0028250 -0.350 0.0011946 -0.400 0.0004677 -0.450 0.0001685 -0.550 0.1756E-04 -0.650 0.5542E-05 -0.650 0.1749E-05		Curve fit for original data $(-0.500 < x < -0.175)$ log(y) = -2.397 - 8.933 x^2 - 1.247log(x) Curve fit for extrapolation $(-0.925 < x < -0.500)$ log(y) = 0.753 - 10.016 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0358179 0.250 0.0127518 0.300 0.0052100 0.350 0.0023206 0.400 0.0010927 0.450 0.0002662 0.550 0.0001346 0.650 0.6828E-04 0.650 0.3465E-04		Curve fit for original data (0.196 < $x < 0.550$) log(y) = -4.187 · 2.441 x^2 · 4.062log(x) Curve fit for extrapolation (0.550 < $x < 0.698$) log(y) = -0.630 · 5.892 x
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0221640 -0.250 0.0080142 -0.300 0.003765 -0.400 0.0006642 -0.450 0.0003139 -0.550 0.7229E-04 -0.600 0.3467E-04	NOTE: for curve fits $x = x $	Curve fit for original data (-0.600 < x < -0.196) $\log(y) = -4.231 - 3.014x^2 - 3.859 \log(x)$

Figure C-86 Load Spectra for Airplane 20, Large Airplanes, Special Usage

Table C-87 Tabulated Data for Airplane 201

Total Hours = 328	s positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0469567 0.300 0.0373272 0.350 0.0373272 0.450 0.03040477 0.450 0.0162632 0.550 0.0162632 0.550 0.0107254 0.650 0.0107254 0.650 0.0107254 0.650 0.0107254 0.750 0.0065512 0.750 0.0065512 0.850 0.0063772 0.950 0.0026695 0.950 0.0026695 0.950 0.0026695 1.150 0.0004925 1.250 0.0004925 1.350 0.0004925 1.450 0.0004859 1.450 0.0004859 1.550 0.0001859 1.550 0.2996E-04 1.550 0.2996E-04 1.650 0.1371E-04		Curve fit for original data $(0.233 < x < 1.600)$ $log(y) = -1.819 - 0.983x^2 - 6.917 log(x)$ Curve fit for extrapolation $(1.600 < x < 1.700)$ log(y) = 0.909 - 3.395x
Total Nautical Miles = 58213	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0153189 -0.250 0.0060050 -0.300 0.0026391 -0.350 0.0012430 -0.400 0.0001370 -0.500 0.0001570 -0.550 0.0001570 -0.550 0.0001570 -0.550 0.3052E-04 -0.750 0.1062E-04 -0.750 0.375E-05		Curve fit for original data (-0.650 < x < -0.175) log(y) = -4.199 - 2.714 x^2 - 3.567log(x) Curve fit for extrapolation (-0.775 < x < -0.650) log(y) = -0.836 - 5.911x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0187393 0.250 0.0081427 0.300 0.0034981 0.350 0.0014500 0.400 0.0005716 0.450 0.0002123		Curve fit for original data (0.196 < x < 0.450) $\log(y) = -2.759 - 7.807x^2 - 1.923 \log(x)$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.1421249 -0.250 0.0934276 -0.300 0.0487735 -0.350 0.0206128 -0.400 0.0071337 -0.450 0.0004821 -0.550 0.0497E-04	NOTE: for curve fits $x = x $	Curvefit for original data (-0.550 < x < -0.196) log(y) = 0.799 - 14.636x ² + 1.518 log(x)
		Ac _	Q 170	ž	log Tog

Original Data Curve Fit 1.2 Acceleration Fraction, a / a new 8.0 MANEUVER 0.4 -0.8 -0.4 Figure C-87 Load Spectra for Airplane 201, Large Airplanes, Special Usage -1.2 -1.6 100 10^{-2} 10.5 101 10^{-3} 9-01 10-1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 Acceleration Fraction, a / a nLIF 0.4 o GUST 0 -0.8 100 10-2 10^{-6} ₁0 10^{-3} 10-5 10.1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-88 Tabulated Data for Airplane 21

Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0591934 0.200 0.0369642 0.250 0.0180148 0.350 0.0180148 0.450 0.0133109 0.450 0.007635 0.500 0.0058981 0.500 0.0058981 0.650 0.0027310 0.750 0.0027310 0.750 0.0012450 0.800 0.0027204 0.850 0.000244 0.950 0.0003201 1.100 0.0003201 1.150 0.0003201 1.150 0.0003201 1.150 0.0003201 1.150 0.0003201 1.150 0.000192 1.250 0.8692E-04 1.350 0.4624E-04 1.450 0.2460E-04		Curve fit for original data $(0.125 < x < 1.150)$ $\log(y) = -2.446 - 0.945x^2 - 1.504 \log(x)$ Curve fit for extrapolation $(1.150 < x < 1.475)$ $\log(y) = -0.634 - 2.741x$
Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0299710 -0.200 0.0139142 -0.250 0.0071494 -0.300 0.0038604 -0.450 0.0001825 -0.450 0.0006529 -0.500 0.0001907 -0.500 0.0001907 -0.600 0.0001907		Curve fit for original data (-0.600 < x < -0.125) $\log(y) = -3.247 - 3.440x^2 - 2.185 \log(x)$
Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0115621 0.250 0.0064551 0.300 0.0038892 0.350 0.0024570 0.450 0.0015999 0.450 0.0015999 0.550 0.000130 0.550 0.0002261 0.650 0.0002261 0.650 0.0002261 0.650 0.0002261 0.650 0.0002261 0.650 0.0002261 0.650 0.0002261 0.750 0.2984F.04 0.800 0.2938E.04 0.950 0.1295E.04 0.950 0.1295E.04 1.000 0.2938E.05 1.100 0.5709E.05 1.200 0.25708E.05 1.200 0.25708E.05 1.200 0.1111E-05		Curve fit for original data (0.191 < $x < 0.800$) log(y) = -3.469 - 1.450 x - 2.275 log(x) Curve fit for extrapolation (0.800 < $x < 1.794$) log(y) = -1.333 - 3.555 x
Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0097404 -0.250 0.0051328 -0.350 0.0028259 -0.450 0.0008896 -0.450 0.0008896 -0.450 0.0004958 -0.500 0.0001466 -0.650 0.0001466 -0.650 0.0001466 -0.650 0.0001466 -0.650 0.001466 -0.650 0.001466	NOTE: for curve fits $x = x $	Curve fit for original data (-0.600 < x < -0.191) log(y) = -3.311 - 3.495 x^2 - 2.059 log(x) Curve fit for extrapolation (-0.954 < x < -0.600) log(y) = -0.701 - 5.685 x
	Cumulative Frequency Acceleration Cumulative Frequency Acceleration Acceleration of Exceedance Fraction Fraction	Cumulative Frequency Acceleration Cumulative Frequency Acceleration <	Cumulative Frequency Acceleration Cumulative Frequency Acceleration Cumulative Frequency Acceleration Acceleration

Original Data Curve Fit Acceleration Fraction, a / a MANEUVER Figure C-88 Load Spectra for Airplane 21, Large Airplanes, Special Usage -0:1 -0.8 9:1-100 10.5 10.2 10.1 10^3 101 10^{4} Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0.8 1.2 Acceleration Fraction, a / a 0.4 0 ÷0,4 8.0--1.2 -1.6 10^{2} 103 10 104 10 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-89 Tabulated Data for Airplane 22

Total Hours = 29	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0684868 0.250 0.0511572 0.300 0.0396066 0.350 0.0313381 0.400 0.0251288 0.450 0.0203099 0.500 0.0108894 0.650 0.0108894 0.650 0.0088324 0.750 0.0088324 0.750 0.007532 0.800 0.007532 0.800 0.0029171 0.900 0.0029171 0.950 0.002999 1.050 0.0013999 1.150 0.0008404 1.200 0.0006513 1.250 0.0003330 1.350 0.0003348		Curve fit for original data (0.175 < x < 1.050) $\log(y) = -1.909 \cdot 0.836x^2 \cdot 1.113 \log(x)$ Curve fit for extrapolation (1.050 < x < 1.425) $\log(y) = -0.528 \cdot 2.115x$
Total Nautical Miles = 4052	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0427235 -0.250 0.0170387 -0.300 0.0077098 -0.350 0.0019522 -0.450 0.0010439 -0.550 0.0003709 -0.550 0.0003165		Curve fit for original data (-0.550 < x < -0.175) $log(y) = -3.845 - 1.996x^2 - 3.656log(x)$
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0114873 0.250 0.0051926 0.300 0.0025082 0.350 0.0012514 0.400 0.0006319 0.450 0.0003188		Curve fit for original data (0.193 < x < 0.450) $\log(y) = -3.666 - 3.760x^2 - 2.685 \log(x)$
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0103500 -0.250 0.0048669 -0.300 0.0018689 -0.350 0.0005890	NOTE: for curve fits $x = x $	Curve fit for original data (-0.350 < x < -0.193) log(y) = -1.067 - 16.225x ² + 0.386 log(x)
		Accele	C-183	VOT	Curve

Original Data Curve Fit 1.2 Acceleration Fraction, a / a n_{11.5} 0.4 MANEUVER 0 Figure C-89 Load Spectra for Airplane 22, Large Airplanes, Special Usage -0.4 -0.8 -1.2 -1.6 10.1 10^{-2} 10.3 10.5 10 10^{0} 10-4 0.0 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit Acceleration Fraction, a / a 0.4 0 -0.4 -0.8 100 10.5 9.01 10.5 10.3 10 10.1 104 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-90 Tabulated Data for Airplane 23

Total Hours = 222

	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.250 0.0373917 0.300 0.0169644 0.350 0.0079785 0.400 0.0038046 0.450 0.0018135 0.500 0.0008556 0.500 0.0001800 0.650 0.7955E-04 0.700 0.3466E-04	Curve fit for original data $(0.233 < x < 0.650)$ $\log(y) = -2.938 - 4.045x^2 - 2.930\log(x)$ Curve fit for extrapolation $(0.650 < x < 0.767)$ $\log(y) = 0.591 - 7.217x$
MANEUVER	negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0067751 -0.250 0.0013943 -0.300 0.0001363	Curve fit for original data (-0.300 <x<-0.175) log(y) = 2.840 - 49.241x² + 4.348log(x)</x<-0.175)
	positive	Acceleration Cumulative Frequency A	0.150 0.0375362 0.200 0.0087594 0.250 0.0020409 0.300 0.000441 0.350 0.8705E-04	Curve fit for original data $(0.128 < x < 0.350)$ C $\log(y) = -3.392 - 15.959x^2 - 2.823 \log(x)$ k
GUST	negative	Acceleration Cumulative Frequency Ac Fraction of Exceedance	-0.150 0.0229210 -0.200 0.0046135 -0.250 0.0013125 -0.300 0.0004634 -0.350 0.0001895 -0.400 0.8610E-04 -0.450 0.4232E-04	.450 <x<-0.128) 480log(x)</x<-0.128)
		~ ;	•	C 185

Table C-91 Tabulated Data for Airplane 24

Total Hours = 78	2 positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0903954 0.250 0.0716807 0.350 0.0586174 0.350 0.0488671 0.450 0.0412463 0.450 0.030029 0.550 0.0257229 0.650 0.0257229 0.650 0.0182072 0.750 0.0182091 0.750 0.018781 0.850 0.018781 0.950 0.018781 0.950 0.018781 1.150 0.0042887 1.150 0.0029527 1.150 0.001941 1.250 0.001941 1.350 0.0010655 1.550 0.0008833 1.550 0.0008433		Curve fit for original data $(0.175 < x < 1.550)$ $\log(y) = -1.658 \cdot 0.555x^2 \cdot 0.911\log(x)$ Curve fit for extrapolation $(1.550 < x < 1.675)$ $\log(y) = -0.102 \cdot 1.976x$
Total Nautical Miles = 11969	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0167215 -0.250 0.0072282 -0.300 0.0034944 -0.350 0.0018121 -0.450 0.0009831 -0.450 0.0005492 -0.550 0.0003124 -0.550 0.0001796		Curve fit for original data (-0.550 < x < -0.175) $\log(y) = -4.003 \cdot 1.980x^2 - 3.299 \log(x)$
F	positive	Acceleration Cumulative Frequency A	0.150 0.0858353 0.200 0.0129773 0.250 0.0007712 0.300 0.0007244 0.350 0.0002148		Curve fit for original data (0.162 < x < 0.350) C log(y) = -5.950 - 3.821x ² - 6.032log(x)
	GUST	Acceleration Cumulative Frequency Ac Fraction of Exceedance	0.150 0.0569868 -0.200 0.0101153 -0.250 0.0024150 -0.300 0.0006825 -0.350 0.0002133	NOTE: for curve fits $x = x $	Curve fit for original data $(-0.350 < x < -0.162)$ C $\log(y) = -5.582 - 4.447x^2 - 5.386 \log(x)$ is

Original Data Curve Fit 1.6 1:2 Acceleration Fraction, a / a nur 0.8 MANEUVER 0.4 0 -0.8 -0.4 Figure C-91 Load Spectra for Airplane 24, Large Airplanes, Special Usage -1.2 -1.6 10^{0} 10-2 10 10^{-1} 10^{-3} 104 10-5 9.01 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 0.4 Acceleration Fraction, a, 0 -0.8 00 10.7 10.3 10.5 10.6 107 104 10.1 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Table C-92 Tabulated Data for Airplane 241

Total Hours = 92 positive Acceleration Cumulative Frequency		Curve fit for original data $(0.175 < x < 1.450)$ $\log(y) = -1.893 \cdot 0.759x^2 \cdot 1.000 \log(x)$ Curve fit for extrapolation $(1.450 < x < 1.675)$ $\log(y) = -0.025 \cdot 2.499x$
Total Nautical Miles = 13597 MANEUVER negative Acceleration Cumulative Frequency Frequency		Curve flt for original data (-0.450 < $x < -0.175$) log(y) = -3.969 - 3.566 x^2 - 3.105log(x) Curve flt for extrapolation (-0.525 < $x < -0.450$) log(y) = -0.821 - 6.207 x
positive Acceleration Cumulative Frequency		Curve fit for original data (0.162 < $x < 0.350$) log(y) = -5.353 - 4.330 x^2 - 4.750log(x)
GUST negative Acceleration Cumulative Frequency	NOTE: for curve fits $x = x $	Curve fit for original data $(-0.250 < x < -0.162)$ $log(y) = -0.310 - 38.523x^2 + 0.798 log(x)$

 10^{-2} 10.3 100 104 101 10^{-1}

Original Data Curve Fit

0

MANEUVER

Figure C-92 Load Spectra for Airplane 241, Large Airplanes, Special Usage

7:

0.8

0.4

0

Acceleration Fraction, a

Table C-93 Tabulated Data for Airplane 242

				Total Nautical	Total Nautical Miles = 10222	Total Hours = 67	29
	GUST	,			MANEUVER		
negative	ıtive	positive	ve	negative	iive	positive	.ve
Acceleration Fraction	Cumulative Frequency of Exceedance						
-0.150	0.0476588	0.150	0.0643354	-0.200	0.0101610	0.200	0.0604476
0.200	0.0061376	0.200	0.0059809	-0.250	0.0030531	0.250	0.0343742
-0.300	0.0001072	0.300	0.0003623	-0.350	0.0003842	0.350	0.0187949
		0.350	0.0001667	-0.400	0.0001473	0.400	0.0158901
						0.450	0.0140144
						0.500	0.0126235
						0.550	0.0114590
						0.650	0.0091707
						0.700	0.0079923
						0.750	0.0067904
						0.800	0.0056007
						0.850	0.0044692
						0.000	0.0034404
						0.950	0.0025488
						1.000	0.0018137
						1.050	0.0012374
						1.100	0.0008082
						1.150	0.0005048
						1.200	0.0003011
NOTE: for c	NOTE: for curve fits $x = x $						

Curve fit for original data (0.162 < x < 0.350) log(y) = $-9.282 + 9.332x^2 - 9.565 \log(x)$ Curve fit for original data (-0.300< x < -0.162) log(y) = -4.453 - 19.858x² - 4.343log(x) Curve fit for extrapolation (-0.347 < x < -0.300) log(y) = 1.491 - 18.202x

Curve fit for original data (0.175 < x < 1.200)log(y) = -7.409 + 9.705x - 5.038x² - 6.367log(x)

Curve fit for original data (-0.400 < x < -0.175) log(y) = -4.885 - 4.324 x^2 - 4.385log(x)

Cumulative Frequency of Exceedance

 10^{-3} 100 10-2 104 101 10.I Cumulative No. Occurrences/Nautical Mile

Figure C-93 Load Spectra for Airplane 242, Large Airplanes, Special Usage

Table C-94 Tabulated Data for Airplane 243

Total Hours = 67	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0493745 0.250 0.0369380 0.300 0.0288253 0.350 0.021166 0.450 0.018820 0.450 0.018820 0.550 0.0186190 0.650 0.019390 0.650 0.0092168 0.650 0.0077833 0.700 0.0055624 0.750 0.0055624 0.850 0.0055624 0.850 0.0035645 0.900 0.003384 0.950 0.003384 0.950 0.003384 1.100 0.001361 1.150 0.001361 1.250 0.001361 1.350 0.0001361 1.350 0.0001361 1.350 0.0001361 1.350 0.0001361		Curve fit for original data (0.175 < x < 1.300) $\log(y) = -2.111 \cdot 0.518x^2 \cdot 1.180\log(x)$ Curve fit for extrapolation (1.300 < x < 1.475) $\log(y) = -0.857 \cdot 1.742x$
Total Nautical Miles = 10300	MANEUVER negative	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0239276 -0.250 0.0104542 -0.300 0.0052007 -0.350 0.0028193 -0.450 0.0016224 -0.550 0.00063829 -0.550 0.0002469 -0.650 0.0001612		Curve fit for original data (-0.650 < x < -0.175) $log(y) = -4.006 - 1.032x^2 - 3.471 log(x)$
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0104400 0.200 0.0044116 0.250 0.0018681 0.300 0.0007616		Curve fit for original data (0.162 < $x < 0.300$) log(y) = -3.166 - 9.300 x^2 - 1.692log(x)
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	-0.150 0.0187288 -0.200 0.0048204 -0.250 0.0015501 -0.300 0.0002206 -0.350 0.0002206	NOTE: for curve fits $x = x $	Curve fit for original data (-0.350< x < -0.162) $\log(y) = -5.065 - 3.981x^2 - 4.160\log(x)$

Table C-95 Tabulated Data for Airplane 244

Total Hours = 101		Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0645494 0.250 0.045494 0.250 0.0454608 0.300 0.029425 0.400 0.029425 0.450 0.0197232 0.500 0.0161707 0.550 0.0161707 0.550 0.0163298 0.650 0.006492 0.800 0.006492 0.800 0.006492 0.800 0.006492 0.800 0.006492 0.850 0.0020916 1.000 0.0020916 1.150 0.0001370 1.250 0.0004858 1.400 0.0004858 1.400 0.0004893 1.400 0.0001330 1.500 0.0001330 1.500 0.0001330		Curve fit for original data (0.175 < x < 1.400) $\log(y) = -1.946 \cdot 0.733x^2 \cdot 1.124 \log(x)$ Curve fit for extrapolation (1.400 < x < 1.625) $\log(y) = -0.185 \cdot 2.402x$
Total Nautical Miles = 16205	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	-0.200 0.0099618 -0.250 0.0033191 -0.350 0.0013471 -0.400 0.000261 -0.450 0.0001775 -0.550 0.0001041 -0.550 0.6255E-04		Curve fit for original data (-0.500 < $x < -0.175$) log(y) = -5.408 - 0.179 x^2 - 4.884log(x) Curve fit for extrapolation (-0.575 < $x < -0.500$) log(y) = -1.772 - 4.421 x
	positive	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.032442 0.200 0.0165066 0.250 0.0075350 0.300 0.0030442 0.350 0.0010806 0.400 0.0003355		Curve fit for original data (0.162 < $x < 0.400$) log(y) = -1.679 - 12.653 x^2 - 0.577log(x)
	GUST	Acceleration Cumulative Frequency Fraction of Exceedance	0.150 0.0122170 -0.200 0.0063425 -0.250 0.0023199 -0.300 0.0006138	NOTE: for curve fits $x = x $	Curve fit for original data (-0.300 < x < -0.162) $\log(y) = -0.454 - 24.194x^2 + 1.110 \log(x)$
		₹	C 105	<i>T.</i>	Ú.Z

Table C-96 Tabulated Data for Airplane 24⁵

		ncy			x < 1.200) $g(x)$
%	ve	Cumulative Frequency of Exceedance	0.0458279 0.0311025 0.0221972 0.0163435 0.0122741 0.0023334 0.0071502 0.0054987 0.0054987 0.0025001 0.0019120 0.0019120 0.001856 0.0014556 0.0014556 0.0006201 0.0006201 0.0006201 0.0004603		Curve fit for original data (0.175 < $x < 1.200$) log(y) = -2.354 - 0.983 x^2 - 1.509 log(x)
Total Hours = 86	positive	Acceleration Fraction	0.200 0.250 0.350 0.350 0.450 0.450 0.550 0.650 0.750 0.850		Curve fit ford log(y) = -2.35
Total Nautical Miles = 12302	MANEUVER	Acceleration Cumulative Frequency Fraction of Exceedance	0.200 0.0277413 0.250 0.0141000 0.300 0.0065901 0.350 0.0029296 0.400 0.0011760 0.450 0.0004308 0.550 0.4562E-04 0.650 0.4663E-04 0.650 0.1463E-05 0.1463E-05		Curve fit for original data $(-0.500 < x < -0.175)$ log(y) = -1.821 · 9.175 x^2 · 0.903 log(x) Curve fit for extrapolation (-0.725 < x < -0.500) log(y) = 1.137 · 9.959x
Tot					
	ě	Cumulative Frequency of Exceedance	0.0191206 0.0047058 0.0012081 0.0003012		Curve fit for original data (0.162 < $x < 0.300$) log(y) = -3.907 - 13.248 x^2 - 3.018log(x)
	positive	Acceleration Fraction	0.150 0.200 0.250 0.300		Curvefit for or log(y) = -3.907
	GUST	Cumulative Frequency of Exceedance	0.0359470 0.0193755 0.0088260 0.0033933 0.0011003 0.0003008	NOTE: for curve fits $x = x $	Curve fit for original data (-0.400 < x < -0.162) log(y) = -1.155 - 14.93 x^2 - 0.057log(x)
	neg.	Acceleration Fraction	-0.150 -0.200 -0.300 -0.300 -0.400	NOTE: for	Curve fit for log(y) = -1.1

Original Data Curve Fit 1.2 Acceleration Fraction, a / a nur 0.8 MANEUVER Figure C-96 Load Spectra for Airplane 245, Large Airplanes, Special Usage -0.4 -0.8 -1.2 -1.6 10^{-2} 10.5 100 10^{-3} 104 10.1 101 Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance 1.2 Original Data Curve Fit 0.8 Acceleration Fraction, a / a 0.4 0 GUST 0 9.01 10-3 10^{-2} 10-5 00 104 101 10⁻¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1.6

Table C-97 Tabulated Data for Airplane 38

					Total Nautical Miles = 35333	Miles = 35333	Total Hours = 453	53
	:legative	GUST	positive	v	negative	MANEUVER	positive	e.
	Acceleration Fraction	Cumulative Frequency of Exceedance	Acceleration (Fraction	Cumulative Frequency of Exceedance	Acceleration Fraction	Cumulative Frequency of Exceeds nce	Acceleration Fraction	Cumulative Frequency of Exceedance
	-0.150 -0.250 -0.250	0.0594127 0.0106358 0.0027134 0.0002604	0.150 0.200 0.250	0.1110776 0.0328002 0.0124280 0.0124847	-0.150 -0.260 -0.250 -0.330	0.3193012 0.1470115 0.074:132 0.038866	0.100 0.150 0.200 0.250	0.5690045 0.3334716 0.2540249 0.2149704
	-0.350 -0.400 -0.450	0.0003153 0.0001278 0.5576E-04	0.350 0.400 50	0.0026791 0.0014038 0.0007337	0.350 0.400 4.400	0.0206872 0.0109721 0.0057434	0.300 0.350	0.1884491 0.1648617 0.1407617
	0.500 0.550 0.600	0.2503E-04 0.1125E-04 0.5055E-05	0.550 0.550 0.600	0.0004425 0.0002601 0.0001560	0.500 0.550 0.600	0.0029463 0.0014737 0.0007160	0.500 0.500 0.550	0.1156247 0.0904813 0.0669840
_	-0.550 -0.700	0.2271E-05 0.1020E-05	0.650 0.700 0.750 0.800 0.850	0.9431E-04 0.5702E-04 0.3448E-04 0.2085E-04 0.1260E-04	-0.650 -0.700 -0.750 -0.800 -0.850	0.0003370 0.0001533 0.6853E-04 0.3063E-04 0.1369E-04	0.600 0.650 0.700 0.750 0.800	0.0466707 0.0304842 0.0186097 0.0105922 0.0056101
	NOTE: for curve fits x = x	ve fils x = [x]					0.900 0.950 1.000 1.050	0.0012604 0.0005333 0.0002090 0.7575E-04
	Curve fit for original da log(y) = -5.940 - 1.542x Curve fit for extrapolati log(y) = -1.126 - 6.950x	Curve fit for original data (-0.450 < x < -0.153) log(y) = -5.940 - 1.542 x^2 - 5.764 log(x) Curve fit for extrapolation (-0.932 < x < -0.450) log(y) = -1.126 - 6.950 x	Curve fit for original da log(y) = -4.285 · 1.184x Curve fit for extrapolati log(y) = -1.185 · 4.370x	Curve flt for original data (0.174 < x < 0.600) $\log(y) = -4.285 \cdot 1.184x^2 - 4.074 \log(x)$ Curve flt for extrapolation (0.600 < x < 0.872) $\log(y) = -1.185 \cdot 4.370x$	Curve At for original da log(y) = -2.158 - 4.0533 Curve At for extrapolat log(y) = 1.082 - 6.994x	Curve flt for original data (-0.700 < x < -0.150) log(y) = -2.158 - 4.053 x^2 - 2.128 log(x) Curve flt for extrapolation (-0.883 < x < -0.700) log(y) = 1.082 - 6.994x	Curve fit for or log(y) = -3.879	Curve fit for original data (0.113 < x < 1.0 log(y) = -3.879 + 7.593x - 7.393x ² - 2.949

Original Data Curve Fit MANEUVER Figure C-97 Load Spectra for Airplane 38, Aerobatic Airplane -0.8 -1.2 ننننا 10^{-2} 10^{-3} 10.5 10.6 00 10.1 104 ~ ⊇ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance Original Data Curve Fit 0 . 0.8 Þ 10^{-2} 10.5 10,6 **-**0 100 10-3 20₹ 10⁻¹ Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

1:2

Acceleration Fraction, a / a

Acceleration Fraction, a / a

APPENDIX D:

STATISTICAL ANALYSIS

Appendix D Table of Contents

Load Spectra Plots

Statistical Group	Gust	<u>Maneuver</u>
	Page	Page
1A. Single-Engine, Basic Flight Instruction	D-3	D-4
1B. Single-Engine, Business/Personal	D-5	D-6
1A. and 1B. Single Engine, General Usage	D-7	D-8
2. Single-Engine, Special Usage	D-9	D-10
3. Aerial Application	D-11	D-12
4. Twin-Engine, General Usage	D-13	D-14
5. Twin-Engine, Special Usage	D-15	D-16
2. and 5. Single and Twin-Engine, Special Usage	D-17	D-18
6. Pressurized, General Usage	D-19	D-20
Statistical Methods and Equations		D-21

Cumulative Frequency of Exceedance
Cumulative Mo. Occurrences/Nautical Mile

Figure D-2 Maneuver Load Spectra: Single-Engine General Usage, Basic Flight Instruction

Figure D-3 Gust Load Spectra: Single-Engine General Usage, Business/Personal

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Weighted mean 90/95% spectra 9. Original data +2 std. dev. +1 std. dev. <u>.</u>; Figure D-5 Gust Load Spectra: Single Engine General Usage (Basic Flight Instruction and Business/Personal Combined) 0 Acceleration Fraction, a / a -0.8 ? 10^{0} 10^{-2} 10-5 10-3 10.4 10.6 10.1 101

D-7

Cumulative Frequency of Exceedance
Cumulative No. Occurrences/Nautical Mile

101 100 10.1 10-2 10-3 104

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Figure D-8 Maneuver Load Spectra: Single-Engine Special Usage

Figure D-9 Gust Load Spectra: Single-Engine Aerial Application

Figure D-10 Maneuver Load Spectra: Single-Engine Aerial Application

Figure D-11 Gust Load Spectra: Twin-Engine General Usage

Cumulative Frequency of Exceedance

Original data Figure D-12 Maneuver Load Spectra: Twin-Engine General Usage

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Cumulative Frequency of Exceedance
Cumulative No. Occurrences/Nautical Mile

Figure D-13 Gust Load Spectra: Twin-Engine Special Usage

9.1

Figure D-14 Maneuver Load Spectra: Twin-Engine Special Usage

Figure D-15 Gust Load Spectra: Single and Twin-Engine Special Usage

N

Cumulative No. Occurrences/Nautical Mile Cumulative Frequency of Exceedance

Figure D-16 Maneuver Load Spectra: Single and Twin-Engine Special Usage

Figure D-17 Gust Load Spectra: Single and Twin-Engine Pressurized General Usage

րուսակառակառակառակարակարարեր ագերատերությերը անահատակարությունը և արդարդակարարի հարարդարարարարարարարարարարարար 90/95% ѕресиа Weighted mean Original data Figure D-18 Maneuver Load Spectra: Single and Twin-Engine Pressurized General Usage +1 std. dev. +2 std. dev. 0.8 0000 o . 0 Acceleration Fraction, a p , 0, -0.4 00 10.2 10-3 10-5 10.6 104 10 10.1

D-20

Statistical Methods and Equations

This appendix contains a detailed explanation of the statistical analysis process. As mentioned in Section 2.5, the process involves four steps: (1) Curve fit the original data for each of the airplanes. (2) For each operational usage group, compute the weighted mean and weighted standard deviation; compute a pooled standard deviation by combining the group standard deviations; and compute the mean plus one, two and three standard deviation spectra. (3) Compute the 90% probability/95% confidence spectra. (4) Analyze the distribution of the original data. Steps 1 through 3 are covered in this appendix; step 4 is covered in Appendix E.

1. The Curve Fit Process

The objective of the curve fit process is to obtain for each airplane an equation for the cumulative frequency of exceedance (a y-value) as a function of acceleration fraction (an x-value). The first step is to determine the minimum and maximum values of the acceleration fraction (x_{\min} and x_{\max}) for the original data. This is done for each airplane. The original data for each airplane is then curve fitted using the general equation

$$\log y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 \log x \tag{EQ 1}$$

where the coefficients a_0 through a_4 are determined using the method of least squares and x = |x| for negative acceleration fractions. The best curve fit for most airplanes is a special case of the general equation (i.e., one or more of the coefficients are equal to zero, $a_i = 0$ for i = 0...4). For each special case the curve fit and original data were plotted and inspected. This process was applied by trial and error until: (1) the curve fit clearly followed the basic trend of the original data, and (2) the deviation of the curve fit from the original data was minimal. The resulting curve fit equations for each airplane, including non-statistical airplanes, are given in Appendix C. Plotted and tabulated results obtained from the curve fit equations are also presented with the original airplane data.

As discussed in Section 2.4, for some cases extreme data points at the highest accelerations produce a constant cumulative frequency of exceedance for several values of acceleration fraction. This is seen, for example, in the data for airplane No. 17, page C-22. If more data were collected, this peculiarity would either disappear or occur at a lower frequency. Therefore, to obtain curve fits that were consistent with the trend for the bulk of the data, extreme data points that resulted in a constant cumulative frequency of exceedance were excluded from the least squares curve fit analysis.

In performing any statistical analysis it is always difficult to precisely extrapolate beyond the limits of the original data. A direct application of the curve fit equation, beyond the limits $(x_{\min} \text{ and } x_{\max})$ of the original airplane data, was found to be unsatisfactory due to the tendency of nonlinear functions (EQ 1) to exhibit minimums. For many cases the predicted cumulative frequency of exceedance was excessively high and clearly did not follow the trend of the data. To alleviate this problem, a linear extrapolation was used for $x > x_{\max}$. Thus, two curve fits are used for all airplanes included in the statistical analysis: a curve fit for the original data and a curve fit for extrapolation. The extrapolation curve fit equations are also given in Appendix C.

2. Mean and Standard Deviation

For each operational usage group the weighted mean and weighted standard deviation are calculated as a function of acceleration fraction by passing a vertical cut through each of the curve fits. This produces a cumulative frequency of exceedance (y_i) for each airplane in the group. The weighted statistics are then computed as

$$y_w = \frac{1}{n} \sum_{i}^{nt_i} y_i$$
 $S_w = \sqrt{\frac{\sum_{i}^{nt_i} (y_i - y_w)^2}{n - 1}}$ (EQ 2)

where y_w is the weighted mean, S_w is the weighted standard deviation, n is the number of airplanes in the group, t_i is the flight hours for airplane i, and T is the total flight hours of the group. Weighted statistics were used to account for the large variation of flight data hours collected on the individual airplanes in each group.

After the weighted standard deviation has been computed for each operational usage group, an improved estimate of the standard deviation (for groups with small sample sizes) can be computed using a pooled variance approach:

$$S_p^2 = \frac{\sum (n_i - 1) S_{wi}^2}{\sum (n_i - 1)}$$
 (EQ 3)

where S_{wi} is the weighted standard deviation for group i, n_i is the number of airplanes in group i, and S_p is the pooled standard deviation. As mentioned in Section 2.5, using a pooled standard deviation minimizes the large uncertainties (and scatter) associated with small sample sizes (e.g., groups 5 and 6 - three airplanes, group 2 - four airplanes) and results in more consistent estimates for the 90/95% usage spectra. The pooled standard deviation approach was used for all spectra except the group 3 (Aerial Application) maneuver spectra. This group was excluded since the Aerial Application maneuver loads are substantially higher than maneuver loads for the other groups. The rationale for pooling the group variances (with the exclusion of group 3) is examined in Appendix E.

3. Confidence Spectra Estimates

In accordance with the Part 23 Airplane Fatigue Working Group's recommendation (see Section 1.5) the confidence spectra for each statistical group were determined based on 90% probability with a 95% confidence level. Mathematically the 90/95% spectra can be expressed as

$$y_{90/95} = \mu + \delta \tag{EQ 4}$$

where μ is the estimate of the population mean with 95% confidence and δ corresponds to the scatter for 90% of the population. For all groups (except group 3, maneuver) the population

standard deviation was assumed to be equal to the pooled standard deviation S_p . Based on this assumption, for a population with a known standard deviation ($\sigma = S_p$) the 95% confidence level for the population mean μ is

$$\mu = \tilde{y}_w + 1.645 \frac{S_p}{\sqrt{n}}$$
 (EQ 5)

where y_w is the group weighted mean and n is the number of airplanes in the group. This equation is based on a normal distribution with 1.645 being the z-value corresponding to the 95% cumulative probability level of the normal distribution. For the Aerial Application maneuver spectra, the population standard deviation is assumed to be unknown. The 95% confidence level for μ with σ unknown is

$$\mu = \bar{y}_w + t_{\alpha, n-1} \frac{S_w}{\sqrt{n}}$$
 (EQ 6)

where $t_{\alpha,n-1}$ is the t-value (for the Student's t distribution) corresponding to a confidence interval $1-\alpha$. Thus, for a 95% confidence interval the t-value is $t_{0.05,n-1}$. Corresponding equations for the scatter factor δ are given by

$$\delta = 1.282\sigma$$
where $\sigma = S_p$ for σ known
$$\sigma = \sqrt{\frac{n-1}{\chi_{0.95,n-1}^2}} S_w$$
 for σ unknown
(EQ 7)

where $\chi^2_{0.95,n-1}$ is the Chi-square value for a 95% confidence interval and 1.282 is the 90% cumulative probability level of the normal distribution. Equations (5) - (7) along with *t*-values and χ^2 -values can be found in any standard statistical text.

APPENDIX E:

ANALYSIS OF THE DISTRIBUTION OF THE DATA

Appendix E Table of Contents

Data Analysis Logarithmic Normal **Histograms** Page Page Pooled: F-4 Negative Gust E-3 E-5 E-6 Positive Gust E-7 E-8 Negative Maneuver E-9 E-10 Positive Maneuver Pooled without Group 3: E-11 Negative Maneuver E-12 Positive Maneuver **Group Standard Deviations** E-13 E-16 **Bartlett's Test** E-17 **Discussion**

Figure E-1 Normal Histogram: Negative Gust, All Statistical Aircraft

Figure E-2 Logarithmic Histogram: Negative Gust, All Statistical Aircraft

= -0.4025 Number of Occurences 20 15 10 5 0 8.61 10.8 2.46 10 4 $2.68 \cdot 10^{-7}$ $8.36\,10^{-7}$ 7.89 10°5 7.66 10⁻⁴ $2.39 \cdot 10^{-3}$ 7,44 10⁻³ 8.12 10-6 2.61 10.6 2.53 10⁻⁵ Cummulative Frequency of Excedance

Cummulative No. Occurences/Nautical Mile

Figure E-3 Normal Histogram: Positive Gust, All Statistical Aircraft

Figure E-4 Logarithmic Histogram: Positive Gust, All Statistical Aircraft

Cummulative No. Occurences/Nautical Mile

Figure E-5 Normal Histogram: Negative Maneuver, All Statistical Aircraft

Figure E-6 Logarithmic Histogram: Negative Maneuver, All Statistical Aircraft

25 Number of Occurences 20 15 10 5 1.41 10⁻¹⁰ 0 Crimming Community Communi $6.63 \cdot 10^{-2}$ 1.04 10"9 7.66 10.9 $1.66\,10^4$ 1.22 10⁻³ 9.00 10⁻³ Cummulative No. Occurences/Nautical Mile

Figure E-7 Normal Histogram: Positive Maneuver, All Statistical Aircraft

Cummulative No. Occurences/Nautical Mile

70 Number of Occurences 60 50 40 30 20 10 $1.99\ 10^{-2}$ $2.79 \, 10^{-2}$ $3.59 \, 10^{-2}$ $7.57\ 10^{-2}$ $8.37 \cdot 10^{-2}$ $4.38\ 10^{-2}$ Cummulative Frequency of Excedance Cummulative No. Occurences/Nautical Mile

Figure E-8 Logarithmic Histogram: Positive Maneuver, All Statistical Aircraft

15 Number of Occurences 10 5 0 9.44 10.2 7.83 10" 2.87 10.6 1.05 10⁻⁵ 3.87 10.5 1.42 10.4 5.21 104 1.91 10⁻³ 7.01 10⁻³ $2.57 \cdot 10^{2}$ 3.46 101 Cummulative Frequency of Excedance Cummulative No. Occurences/Nautical Mile

Figure E-9 Logarithmic Histogram: Negative Maneuver, All Statistical Aircraft Except Group 3

@ a /a 20 Number of Occurences 15 10 5 0 4.80 10.10 9.88 10⁻¹¹ 2.33 10-9 1.13 10.8 5.48 10.8 2.66 10⁻⁷ 1.29 10.6 6.27 10.6 3.04 10.5 7.16 10"4 $1.48 \, 10^4$ Cummulative Frequency of Excedance Cummulative No. Occurences/Nautical Mile

Figure E-10 Logarithmic Histogram: Positive Maneuver, All Statistical Aircraft **Except Group 3**

Cummulative No. Occurences/Nautical Mile

E-13

\$ (4.7.1.1.0) Figure E-13 Gust:Weighted Standard Deviation for Each Group and Pooled 0.8 Acceleration Fraction, a / a nere -0.4 Pooled Dev. Group 1A Group 1B -0.8 Group 2 Group 3 Group 6 Group 4 Group 5 10^{0} 10^{-2} 10-3 10-4 10-5 101 10.1

E-15

Cumulative Frequency of Exceedance Cum. # Occurrences/Nautical Mile

Table E-1 Bartlett Test

χ^{2}		89261 13.6504797 3E-05 1.67423268 E-06 0.7723348	0.00184172 31.9612731 3.9712E-05 2.7743574 6.2096E-06 1.31542724 3	3.00137881 1.34745217 1.5349E-06 1.8872805 1.1519E-07 1.6576399 3	70098 3.81642967 3E-05 1.68421639 3E-06 1.28566362
	9	5282 0.00289261 3331 4.6983E-05 2908 4.343E-06 3			3841 0.00070098 3186 5.0933E-05 E-05 5.2163E-06
th Group	w	201 0.13845282 182 0.00463331 -05 0.00042908	449 0.11499715 262 0.00622603 -05 0.00052873 3	813 0.00208498 35 5.7638E-07 -06 2.3127E-09 3	486 0.06483841 543 0.00449186 -05 7.8603E-05
Weighted Standard Deviation for Each Group	4	e Gust 56 0.02945201 56 0.00054182 5 3.7678E-05 8	Gust 0.02568449 0.00039262 0.00039262 0.1.6802E-05	laneuver 0.00814813 5.614E-05 2.1911E-06 8	aneuver 0.01823486 0.00072543 3.3718E-05
andard Devi	m	Negative Gusi 0.12917266 0.00044666 2.8258E-05 24	Positive Gust 0.3338448 0.00233289 9.5577E-05 24	Negative Maneuver 0 5	Positive Maneuver
- 33		O) O)	→ ∧	0) 00 10	~ ~ ~
Weighted Sta	7	0.49252702 0.00427132 0.00013591 4	0.4353745 0.00379304 0.00041272 4	0.03665082 0.00023328 4.1089E-06 4	0.06146218 0.00246623 0.00019483
Weighted St	1b 2	0.04286886 0.49252702 0.00095492 0.00427132 1.1083E-05 0.00013591 22 4	0.05592637 0.4353745 0.00142434 0.00379304 4.4423E-05 0.00041272 24	0.00846136 0.03665082 9.7425E-05 0.00023328 7.247E-06 4.1089E-06 20 4	1594 1037 105
Weighted St	1a 1b 2				

Discussion

This appendix contains a detailed examination of the distribution of the data. As mentioned in Section 2.5, all of the load spectra are based on the assumption that the data is from a normal population. To examine whether this assumption is valid, all of the airplanes used for the statistical analysis are included in one group, and histograms for the cumulative frequency of exceedance distribution are generated by passing a vertical cut through all of the airplane curve fits at a given acceleration fraction. The rationale of pooling the group variances is also examined using Bartlett's Test of Variance Homogeneity (Reference 16).

For each loading condition (positive gust, negative gust, positive maneuver, and negative maneuver), histograms for the cumulative frequency of exceedance distribution are generated at acceleration fractions of $\pm 0.2, \pm 0.4, \pm 0.6$. The resulting distributions are shown in Figs. E-1 through E-10. As demonstrated, the cumulative frequency of exceedance (at a given acceleration fraction) does not follow a normal distribution on a linear scale. But on a logarithmic scale, the cumulative frequency of exceedance distribution appears to be reasonably normal for a large portion of the data, especially for lower acceleration fractions. As would be expected, gust load distributions are more normal than maneuver load distributions, especially when group 3 (Aerial Application) is included in the maneuver distributions. Comparing Figs. E-6 and E-8 with Figs. E-9 and E-10, the maneuver distributions are generally more normal when the Aerial Application group is not included. This would be expected since the Aerial Application maneuver loads are substantially higher than maneuver loads for the other groups.

As mentioned in Section 2.5 and Appendix D, using a pooled standard deviation minimizes the large uncertainties (and scatter) associated with small sample sizes (e.g., groups 5 and 6 - three airplanes, group 2 - four airplanes) and results in more consistent estimates for the 90/95% spectra. In order to use the technique of pooling the group standard deviations, it must first be shown that all of the groups can reasonably be assumed to come from the same population. Based on the logarithmic histograms, the assumption that all of the groups (with the exception of Aerial Application, maneuver) are from a similar population seems reasonable. To examine the validity of this assumption, the group weighted standard deviations S_{wi} and the pooled standard deviation S_p were plotted (Figs. E-11 through E-13). These figures further confirm (at least intuitively) the validity of pooling the standard deviations. Another way to examine the validity of pooling is to employ Bartlett's Test of Variance Homogeneity:

$$M = (\sum v_i) \ln s^2 - \sum v_i \ln s_i^2 \qquad s^2 = \frac{\sum v_i s_i^2}{\sum v_i}$$

$$C = 1 + \frac{1}{3(a-1)} \left(\sum \frac{1}{v_i} - \frac{1}{\sum v_i} \right)$$

$$\chi^2 = M/C \quad \text{with} \quad (a-1) df$$
(EQ 1)

where $v_i = n_i - 1$ with n_i being the number of airplanes in group i, a is the total number of groups, and for a logarithmic scale $s_i = \log S_{wi}$, where S_{wi} is the weighted standard deviation for group i.

For each loading condition (positive gust, negative gust, positive maneuver, and negative maneuver), Bartlett's test was performed at acceleration fractions of $\pm 0.2, \pm 0.4, \pm 0.6$. For gust loads all of the operational usage groups were combined (a=7), and for maneuver loads the Aerial Application group was excluded (a=6). The resulting χ^2 -values are given in Table E-1. At the 5% level, critical χ^2 -values for 5 and 6 degrees of freedom are 11.07 and 12.59, respectively. Corresponding 1% χ^2 -values are 15.09 and 16.81. With the exception of the gust results at acceleration fractions of ± 0.2 , all of the results are acceptable at the 5% level. The -0.2 acceleration fraction gust results are acceptable at the 1% level. Thus, it seems reasonable to pool the variances.

APPENDIX F:

INSTRUMENTATION

DATA PRECISION

READING VGH OSCILLOGRAMS

DATA PROCESSING

NOTE:

Sections 1 and 2 of this Appendix were excerpted or adapted from References 2 and 4.

1 Instrumentation

Data were obtained from NASA VGH recorders described in Reference 17, Briefly, these instruments record (on a time-history basis) the indicated airspeed of the airplane, pressure altitude based on standard atmospheric conditions, and normal acceleration measured near the airplane center of gravity. The accelerometer was rigidly mounted within the airplane center of gravity range. The recorder has three main components: a base containing the recording elements, a drum containing the recording paper, and a remote accelerometer. The recording base with the drum attached occupies a space about 8 in. high by 6 in. wide by 12 in. long. Their combined weight is 17 lb. The remote accelerometer is about 2 in. high by 2 in. wide by 7 in. long and weighs 2 1/4 lb. A photograph of the recorder is shown in Figure F-1.

Recorders used in the NASA VGH General Aviation Program were selected for a particular installation according to the airspeed capabilities of the airplane to be instrumented. These airplanes were instrumented with a 0 to 240 knot recorder, a 0 to 350 knot recorder, or a 0 to 460 knot recorder. All recorders used the same altitude range (-1000 ft up to infinity), and all except the aerobatic installation (6g to -3g) used the same acceleration range (4g to -2g).

2 Data Precision

The reliability of the data is affected by instrument error, installation error, and reading error. Total overall errors for the VGH recorder are discussed in section I of Reference 18 and are estimated to be

a. Acceleration, g units: ±.05

b. Airspeed Error

Flight regime	Airspeed interval (with corresponding maximum error), knots	Recorder
Takeoff/landing Cruise High speed	40 (±5.0) to 80 (±2.0) 80 (±2.0) to 180 (±1.0) 180 (±1.0) to 240 (±1.0)	0 to 240 knots
Takeoff/landing Cruise High speed	60 (±7.0) to 120 (±3.0) 120 (±3.0) to 200 (±2.0) 200 (±2.0) to 350 (±1.0)	0 to 350 knots
Takeoff/landing Cruise High speed	100 (±7.0) to 150 (±4.0) 150 (±4.0) to 320 (±2.0) 320 (±2.0) to 450 (±1.0)	0 to 460 knots

c. Altitude Error

Pressure altitude, ft.	Maximum error, ft.
0	±160
5000	±185
10000	±205
15000	±240
20000	±275
25000	±320
30000	±385

d. Reading Errors

Reading errors are believed to be small in terms of magnitudes of the particular quantities read, inasmuch as each tabulation has been checked and corrected for gross errors. The reading errors for acceleration, although small, may affect the count of accelerations exceeding given values. Reading checks have indicated that for individual records, the number of acceleration counts may have a reliability of about ±30 percent, except for the extreme values, which were individually verified by detailed review of the time histories. Therefore, it is believed that the reliability of the frequency of occurrence of the extreme values is much better than ±30 percent. Since reading errors tend to balance out as the

sample size increases, the value of cumulative frequency per mile for the overall distributions of gust and maneuver accelerations and of derived gust velocities are estimated to be within ±20 percent.

3 Reading VGH Oscillograms

Approximately 7,000 hours of oscillogram data was read by the University of Kansas Center for Research (KU-CRINC) under contract to the FAA Small Airplane Certification Directorate during the time period September 1984 to August 1986. The rules and procedures for reading oscillograms were defined by FAA in consultation with NASA personnel who managed the previous task of reading the 35,286 hours of data reported in Reference 2. These instructions for reading oscillograms are contained in Reference 19.

Figure F-2 shows sample VGH records as reproduced from Reference 4. Each acceleration reading was identified on the oscillograms as gust or maneuver. This was done by visual inspection, gusts normally being high frequency spikes that are narrow in width and closed at the bottom. In cases where it was difficult to distinguish a gust acceleration from a maneuver acceleration, the airspeed and altitude traces were studied to assist in this determination. Gust trace deflections were of two types as follows:

- 1. Gust response that occurs when the airplane is <u>initially</u> at a 1.0 g condition. These trace deflections were measured from the 1.0 g line.
- 2. Gust response that occurs while the airplane is undergoing a maneuver acceleration. These trace deflections were measured from the maneuver trace on which they occur (not from the l.0 g line).

Maneuver trace deflections were of two types as follows:

- 1. Maneuver accelerations that originate from a 1.0 g condition.
- 2. Maneuver accelerations that do not originate from a 1.0 g condition or do not return to the 1.0 g condition.

Both types were measured from the 1.0 g line, however, only the largest of a group of maneuver trace deflections were reported, i.e., a group of deflections that did not return to the 1.0 g line.

NOTE: A group of maneuver accelerations are those that occur between the time the trace departs from the 1.0 g line and returns to the 1.0 g line. Only the largest of these were reported (provided, of course, that it exceeded the threshold value).

The threshold value for reading gust or maneuver accelerations was ± 0.4 g for the data read by KU-CRINC. Some of the data read by NASA used a lesser threshold value of ± 0.3 g or ± 0.2 g as discussed in Section 2.3 of this report.

Airspeed and altitude trace deflections were read at every minute (time) mark, and also were read when the normal acceleration trace was read. A digitizing tablet and cursor was employed to record all readings directly in the computer used for data processing.

Landing impacts were not recorded.

Considerable effort was expended on quality control to ensure that the data read from the oscillograms was accurate. The quality control procedures are described in Reference 10, 11, 12, and 19. Every fifth flight was checked for quality. For a typical 30-minute flight, not less than 10 sets of points were checked for accuracy. A set included one point from each trace (altitude, velocity, and acceleration) at the same X-coordinate. If a discrepancy was found, the flight was reread. If one check on a roll failed (e.g. flight 5) and the next check also failed (flight 10), the flights between those two check flights were analyzed. This process was repeated as required until all flights were satisfactory. If two or three such failure events occurred on a given oscillogram, the entire roll was reread.

4 Data Processing

Data processing procedures, quality control procedures, equipment list, calibration charts and computer program listings are contained in References 10, 11, and 12.

Figure F-1:
NASA VGH recorder.

Figure F-2:
Sample VGH record from flight performed in instructional operations.

