Algebra

Generated by Doxygen 1.8.17

1 Namespace Index	1
1.1 Namespace List	1
2 File Index	3
2.1 File List	3
3 Namespace Documentation	5
3.1 Algebra Namespace Reference	5
3.1.1 Detailed Description	6
3.1.2 Function Documentation	6
3.1.2.1 ad()	6
3.1.2.2 Adjoint()	7
3.1.2.3 AxisAng3()	7
3.1.2.4 AxisAng6()	7
3.1.2.5 DistanceToSE3()	8
3.1.2.6 DistanceToSO3()	8
3.1.2.7 Epsilon()	8
3.1.2.8 MatrixExp3()	9
3.1.2.9 MatrixExp6()	9
3.1.2.10 MatrixLog3()	9
3.1.2.11 MatrixLog6()	0
3.1.2.12 Normalize()	0
3.1.2.13 ProjectToSE3()	0
3.1.2.14 ProjectToSO3()	1
3.1.2.15 Rotlnv()	1
3.1.2.16 RpToTrans()	2
3.1.2.17 ScrewToAxis()	2
3.1.2.18 se3ToVec()	2
3.1.2.19 so3ToVec()	3
3.1.2.20 TestlfSE3()	3
3.1.2.21 TestlfSO3()	4
3.1.2.22 TransInv()	4
3.1.2.23 TransToRp()	4
3.1.2.24 VecTose3()	5
3.1.2.25 VecToso3()	5
4 File Documentation 1	7
4.1 /home/poetry/recovery/MR/algebra/source/algebra.cpp File Reference	7
4.2 /home/poetry/recovery/MR/algebra/source/algebra.hpp File Reference	7
4.2.1 Macro Definition Documentation	9
4.2.1.1 M_PI	9
4.3 /home/poetry/recovery/MR/algebra/source/exercise.cpp File Reference	9
4.3.1 Function Documentation	9

	4.3.1.1 main()	19
Index		21

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

Algebra

Is Linear Algebra library of required mathematics for, Kinetics, and Kinematics mechanics . . .

2 Namespace Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

/home/poetry/recovery/MR/algebra/source/algebra.cpp	 17
/home/poetry/recovery/MR/algebra/source/algebra.hpp	 17
/home/poetry/recovery/MR/algebra/source/exercise.cpp	 19

File Index

Chapter 3

Namespace Documentation

3.1 Algebra Namespace Reference

Is Linear Algebra library of required mathematics for, Kinetics, and Kinematics mechanics.

Functions

bool Epsilon (const double val)

Find if the value is negligible, or close to zero.

• Eigen::Matrix3d VecToso3 (const Eigen::Vector3d &omg)

$$\textit{Get the skew symmetric matrix representation of a vector } v = \begin{vmatrix} v_1 & v_2 & v_3 \end{vmatrix} skew(v) = \begin{vmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{vmatrix}.$$

Eigen::Vector3d so3ToVec (const Eigen::MatrixXd &so3mat)

Returns vector represented by the skew symmetric matrix.

• Eigen::MatrixXd RpToTrans (const Eigen::Matrix3d &R, const Eigen::Vector3d &p)

Combines a rotation matrix and position vector into a single Special Euclidian Group (SE3) homogeneous transformation matrix.

• std::vector< Eigen::MatrixXd > TransToRp (const Eigen::MatrixXd &T)

Separates the rotation matrix and position vector from the transformation matrix representation.

• Eigen::MatrixXd VecTose3 (const Eigen::VectorXd &V)

Translates a spatial velocity vector into a transformation matrix.

• Eigen::VectorXd se3ToVec (const Eigen::MatrixXd &T)

Translates a transformation matrix into a spatial velocity vector.

• Eigen::MatrixXd Normalize (Eigen::MatrixXd V)

Returns a normalized version of the input vector.

- Eigen::Vector4d AxisAng3 (const Eigen::Vector3d &expc3)
- Eigen::Matrix3d MatrixExp3 (const Eigen::Matrix3d &so3mat)

Translates an exponential rotation into a rotation matrix using rodrigues formula.

• Eigen::Matrix3d MatrixLog3 (const Eigen::Matrix3d &R)

Function: Computes the matrix logarithm of a rotation matrix.

Eigen::MatrixXd Adjoint (const Eigen::MatrixXd &T)

Provides the adjoint representation of a transformation matrix Used to change the frame of reference for spatial velocity vectors.

• Eigen::MatrixXd MatrixExp6 (const Eigen::MatrixXd &se3mat)

Rotation expanded for screw axis.

Eigen::MatrixXd MatrixLog6 (const Eigen::MatrixXd &T)

Computes the matrix logarithm of a homogeneous transformation matrix.

• Eigen::MatrixXd TransInv (const Eigen::MatrixXd &transform)

Inverts a homogeneous transformation matrix.

Eigen::MatrixXd RotInv (const Eigen::MatrixXd &rotMatrix)

Inverts a rotation matrix.

• Eigen::VectorXd ScrewToAxis (Eigen::Vector3d q, Eigen::Vector3d s, double h)

Takes a parametric description of a screw axis and converts it to a normalized screw axis.

Eigen::VectorXd AxisAng6 (const Eigen::VectorXd &expc6)

Converts a 6-vector of exponential coordinates into screw axis-angle form.

• Eigen::MatrixXd ProjectToSO3 (const Eigen::MatrixXd &M)

Returns a projection of mat into SO(3)

• Eigen::MatrixXd ProjectToSE3 (const Eigen::MatrixXd &M)

Returns a projection of mat into SE(3)

double DistanceToSO3 (const Eigen::Matrix3d &M)

Returns the Frobenius norm to describe the distance of mat from the SO(3) manifold.

double DistanceToSE3 (const Eigen::Matrix4d &T)

Returns the Frobenius norm to describe the distance of mat from the SE(3) manifold.

- bool TestIfSO3 (const Eigen::Matrix3d &M)
- bool TestIfSE3 (const Eigen::Matrix4d &T)
- Eigen::MatrixXd ad (Eigen::VectorXd V)

Calculate the 6x6 matrix of the given 6-vector V.

3.1.1 Detailed Description

Is Linear Algebra library of required mathematics for, Kinetics, and Kinematics mechanics.

Build on top of Kevin M. Lynch's, and Frank C. Park 'Modern Robotics' Book http://hades.mech.
northwestern.edu/index.php/Modern_Robotics, and courses from Princeton.

3.1.2 Function Documentation

3.1.2.1 ad()

Calculate the 6x6 matrix of the given 6-vector V.

Parameters

V Eigen::VectorXd (6x1), V=[omg, v]

Returns

Eigen::MatrixXd (6x6) Note: Can be used to calculate the Lie bracket [V1, V2] = [adV1]V2

3.1.2.2 Adjoint()

Provides the adjoint representation of a transformation matrix Used to change the frame of reference for spatial velocity vectors.

Parameters

```
T 4x4 Transformation matrix SE(3) \begin{vmatrix} R & p \\ 0 & 1 \end{vmatrix}.
```

Returns

```
6x6 Adjoint Representation of the matrix T adj(T) = \begin{vmatrix} R & 0 \\ [p]R & R \end{vmatrix}
```

3.1.2.3 AxisAng3()

3.1.2.4 AxisAng6()

Converts a 6-vector of exponential coordinates into screw axis-angle form.

Parameters

expc6 A 6-vector of exponential coordinates for rigid-body motion S*theta

Returns

S The corresponding normalized screw axis theta The distance traveled along/about S

3.1.2.5 DistanceToSE3()

Returns the Frobenius norm to describe the distance of mat from the SE(3) manifold.

Parameters

```
mat A 4x4 matrix
```

Returns

A quantity describing the distance of mat from the SE(3) manifold Computes the distance from mat to the SE(3) manifold using the following method: Compute the determinant of matR, the top 3x3 submatrix of mat. If det(matR) <= 0, return a large number. If det(matR) > 0, replace the top 3x3 submatrix of mat with $mat \leftarrow R^T.matR$, and set the first three entries of the fourth column of mat to zero. Then return norm(mat - I).

3.1.2.6 DistanceToSO3()

Returns the Frobenius norm to describe the distance of mat from the SO(3) manifold.

Parameters

```
M A 3x3 matrix
```

Returns

A quantity describing the distance of mat from the SO(3) manifold Computes the distance from mat to the SO(3) manifold using the following method: If $det(mat) \le 0$, return a large number. If det(mat) > 0, return $norm(mat^T.mat - I)$.

3.1.2.7 Epsilon()

Find if the value is negligible, or close to zero.

Parameters

val double value to be checked.

Returns

Boolean of true-ignore or false-can't ignore.

3.1.2.8 MatrixExp3()

Translates an exponential rotation into a rotation matrix using rodrigues formula.

Parameters

	so3mat	exponenential representation of a rotation in so3 $[w]\theta$.	
--	--------	---	--

Returns

Rotation matrix $e^{[w]\theta}$.

3.1.2.9 MatrixExp6()

Rotation expanded for screw axis.

Parameters

se3mat	se3 matrix representation of exponential coordinates $[\boldsymbol{s}]\boldsymbol{\theta}$
--------	--

Returns

6x6 Matrix exponential Transformation $T=e^{[s]\theta}$

3.1.2.10 MatrixLog3()

Function: Computes the matrix logarithm of a rotation matrix.

Parameters

```
R Rotation matrix [w]\theta.
```

Returns

matrix logarithm of a rotation $e^{[w]\theta}$.

3.1.2.11 MatrixLog6()

Computes the matrix logarithm of a homogeneous transformation matrix.

Parameters

```
T A matrix in SE3.
```

Returns

The matrix logarithm of $e^{[s]\theta}$.

3.1.2.12 Normalize()

Returns a normalized version of the input vector.

Parameters

```
V Eigen::MatrixXd
```

Returns

Eigen::MatrixXd normalized V Note: MatrixXd is used instead of VectorXd for the case of row vectors Requires a copy Useful because of the MatrixXd casting

3.1.2.13 ProjectToSE3()

Returns a projection of mat into SE(3)

Parameters

M A 4x4 matrix to project to SE(3)

Returns

The closest matrix to T that is in SE(3) Projects a matrix mat to the closest matrix in SE(3) using singular-value decomposition (see http://hades.mech.northwestern.edu/index.php/Modern_cobotics_Linear_Algebra_Review). This function is only appropriate for matrices close to SE(3).

3.1.2.14 ProjectToSO3()

Returns a projection of mat into SO(3)

Parameters

M A matrix near SO(3) to project to SO(3)

Returns

The closest matrix to R that is in SO(3) Projects a matrix mat to the closest matrix in SO(3) using singular-value decomposition (see http://hades.mech.northwestern.edu/index.php/Modern_condition-linear_Algebra_Review). This function is only appropriate for matrices close to SO(3).

3.1.2.15 Rotlnv()

Inverts a rotation matrix.

Parameters

R A rotation matrix

Returns

: The inverse of R

3.1.2.16 RpToTrans()

Combines a rotation matrix and position vector into a single Special Euclidian Group (SE3) homogeneous transformation matrix.

Parameters

R	Rotation Matrix
р	Position Vector

See also

TransToRp

Returns

```
Transformation Matrix \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}.
```

3.1.2.17 ScrewToAxis()

Takes a parametric description of a screw axis and converts it to a normalized screw axis.

Parameters

(7	A point lying on the screw axis
5	s	A unit vector in the direction of the screw axis
ŀ	h	The pitch of the screw axis

Returns

A normalized screw axis described by the inputs

3.1.2.18 se3ToVec()

Translates a transformation matrix into a spatial velocity vector.

Parameters

```
T Transformation matrix \begin{vmatrix} [w] & v \\ 0 & 0 \end{vmatrix}
```

See also

VecTose3

Returns

```
Spatial velocity vector \begin{bmatrix} w \\ v \end{bmatrix}
```

3.1.2.19 so3ToVec()

Returns vector represented by the skew symmetric matrix.

$$v = \begin{vmatrix} v_1 & v_2 & v_3 \end{vmatrix} skew(v) = \begin{vmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & 1v_1 \\ -v_2 & v_1 & 0 \end{vmatrix}$$

Parameters

See also

VecToso3

Returns

v_ret Eigen::Vector3d 3x1 vector

3.1.2.20 TestIfSE3()

3.1.2.21 TestIfSO3()

3.1.2.22 TransInv()

Inverts a homogeneous transformation matrix.

Parameters

T A homogeneous transformation matrix

Returns

The inverse of T Uses the structure of transformation matrices to avoid taking a matrix inverse, for efficiency.

3.1.2.23 TransToRp()

```
\label{eq:std::vector} $$ std::vector< Eigen::MatrixXd > Algebra::TransToRp ( const Eigen::MatrixXd & T ) [inline]
```

Separates the rotation matrix and position vector from the transfomation matrix representation.

Parameters

See also

RpToTrans

Returns

Rp_ret std::vector of rotation matrix (R), and position vector (p).

3.1.2.24 VecTose3()

Translates a spatial velocity vector into a transformation matrix.

Parameters

See also

se3ToVec

Returns

linear representation of Twist in special Euclidian group se3 $egin{bmatrix} [w] & v \\ 0 & 0 \end{bmatrix}$

3.1.2.25 VecToso3()

 $\text{Get the skew symmetric matrix representation of a vector } v = \begin{vmatrix} v_1 & v_2 & v_3 \end{vmatrix} skew(v) = \begin{vmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{vmatrix}.$

Parameters

omg | Eigen::Vector3d 3x1 angular velocity vector

See also

so3ToVec

Returns

Eigen::MatrixXd 3x3 skew symmetric matrix in so3

Chapter 4

File Documentation

4.1 /home/poetry/recovery/MR/algebra/source/algebra.cpp File Reference

```
#include <Eigen/Dense>
#include <cmath>
#include <vector>
#include <iostream>
Include dependency graph for algebra.cpp:
```

4.2 /home/poetry/recovery/MR/algebra/source/algebra.hpp File Reference

```
#include <Eigen/Dense>
#include <cmath>
#include <vector>
#include <iostream>
```

Include dependency graph for algebra.hpp: This graph shows which files directly or indirectly include this file:

Namespaces

Algebra

Is Linear Algebra library of required mathematics for, Kinetics, and Kinematics mechanics.

Macros

• #define M_PI 3.14159265358979323846 /* pi */

18 File Documentation

Functions

bool Algebra::Epsilon (const double val)

Find if the value is negligible, or close to zero.

• Eigen::Matrix3d Algebra::VecToso3 (const Eigen::Vector3d &omg)

Get the skew symmetric matrix representation of a vector $v = \begin{vmatrix} v_1 & v_2 & v_3 \end{vmatrix} skew(v) = \begin{vmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{vmatrix}$

Eigen::Vector3d Algebra::so3ToVec (const Eigen::MatrixXd &so3mat)

Returns vector represented by the skew symmetric matrix.

Eigen::MatrixXd Algebra::RpToTrans (const Eigen::Matrix3d &R, const Eigen::Vector3d &p)

Combines a rotation matrix and position vector into a single Special Euclidian Group (SE3) homogeneous transformation matrix.

std::vector< Eigen::MatrixXd > Algebra::TransToRp (const Eigen::MatrixXd &T)

Separates the rotation matrix and position vector from the transformation matrix representation.

• Eigen::MatrixXd Algebra::VecTose3 (const Eigen::VectorXd &V)

Translates a spatial velocity vector into a transformation matrix.

Eigen::VectorXd Algebra::se3ToVec (const Eigen::MatrixXd &T)

Translates a transformation matrix into a spatial velocity vector.

• Eigen::MatrixXd Algebra::Normalize (Eigen::MatrixXd V)

Returns a normalized version of the input vector.

- Eigen::Vector4d Algebra::AxisAng3 (const Eigen::Vector3d &expc3)
- Eigen::Matrix3d Algebra::MatrixExp3 (const Eigen::Matrix3d &so3mat)

Translates an exponential rotation into a rotation matrix using rodrigues formula.

Eigen::Matrix3d Algebra::MatrixLog3 (const Eigen::Matrix3d &R)

Function: Computes the matrix logarithm of a rotation matrix.

Eigen::MatrixXd Algebra::Adjoint (const Eigen::MatrixXd &T)

Provides the adjoint representation of a transformation matrix Used to change the frame of reference for spatial velocity vectors.

• Eigen::MatrixXd Algebra::MatrixExp6 (const Eigen::MatrixXd &se3mat)

Rotation expanded for screw axis.

• Eigen::MatrixXd Algebra::MatrixLog6 (const Eigen::MatrixXd &T)

Computes the matrix logarithm of a homogeneous transformation matrix.

Eigen::MatrixXd Algebra::TransInv (const Eigen::MatrixXd &transform)

Inverts a homogeneous transformation matrix.

• Eigen::MatrixXd Algebra::RotInv (const Eigen::MatrixXd &rotMatrix)

Inverts a rotation matrix.

• Eigen::VectorXd Algebra::ScrewToAxis (Eigen::Vector3d g, Eigen::Vector3d s, double h)

Takes a parametric description of a screw axis and converts it to a normalized screw axis.

Eigen::VectorXd Algebra::AxisAng6 (const Eigen::VectorXd &expc6)

Converts a 6-vector of exponential coordinates into screw axis-angle form.

Eigen::MatrixXd Algebra::ProjectToSO3 (const Eigen::MatrixXd &M)

Returns a projection of mat into SO(3)

• Eigen::MatrixXd Algebra::ProjectToSE3 (const Eigen::MatrixXd &M)

Returns a projection of mat into SE(3)

double Algebra::DistanceToSO3 (const Eigen::Matrix3d &M)

Returns the Frobenius norm to describe the distance of mat from the SO(3) manifold.

double Algebra::DistanceToSE3 (const Eigen::Matrix4d &T)

Returns the Frobenius norm to describe the distance of mat from the SE(3) manifold.

- bool Algebra::TestIfSO3 (const Eigen::Matrix3d &M)
- bool Algebra::TestIfSE3 (const Eigen::Matrix4d &T)
- Eigen::MatrixXd Algebra::ad (Eigen::VectorXd V)

Calculate the 6x6 matrix of the given 6-vector V.

4.2.1 Macro Definition Documentation

4.2.1.1 M_PI

```
#define M_PI 3.14159265358979323846 /* pi */
```

4.3 /home/poetry/recovery/MR/algebra/source/exercise.cpp File Reference

```
#include <iostream>
#include "algebra.hpp"
Include dependency graph for exercise.cpp:
```

Functions

• int main (int argc, char **args)

4.3.1 Function Documentation

4.3.1.1 main()

```
int main (
          int argc,
          char ** args )
```

20 File Documentation

Index

/home/poetry/recovery/MR/algebra/source/algebra.cpp,	Algebra, 8
17	exercise.cpp
/home/poetry/recovery/MR/algebra/source/algebra.hpp,	main, 19
/home/poetry/recovery/MR/algebra/source/exercise.cpp,	M_PI
19	algebra.hpp, 19
	main
ad	exercise.cpp, 19
Algebra, 6	MatrixExp3
Adjoint	Algebra, 9
Algebra, 7	MatrixExp6
Algebra, 5	Algebra, 9
ad, 6	MatrixLog3
Adjoint, 7	Algebra, 9
AxisAng3, 7	MatrixLog6
AxisAng6, 7	Algebra, 10
DistanceToSE3, 7	3 , -
DistanceToSO3, 8	Normalize
Epsilon, 8	Algebra, 10
MatrixExp3, 9	-
MatrixExp6, 9	ProjectToSE3
MatrixLog3, 9	Algebra, 10
MatrixLog6, 10	ProjectToSO3
Normalize, 10	Algebra, 11
ProjectToSE3, 10	RotInv
ProjectToSO3, 11	Algebra, 11
Rotlnv, 11	RpToTrans
RpToTrans, 11	Algebra, 11
ScrewToAxis, 12	
se3ToVec, 12	ScrewToAxis
so3ToVec, 13	Algebra, 12
TestlfSE3, 13	se3ToVec
TestlfSO3, 13	Algebra, 12
Translnv, 14	so3ToVec
TransToRp, 14	Algebra, 13
VecTose3, 14	
VecToso3, 15	TestIfSE3
algebra.hpp	Algebra, 13
M_PI, 19	TestlfSO3
AxisAng3	Algebra, 13
Algebra, 7	TransInv
AxisAng6	Algebra, 14
Algebra, 7	TransToRp
	Algebra, 14
DistanceToSE3	
Algebra, 7	VecTose3
DistanceToSO3	Algebra, 14
Algebra, 8	VecToso3
	Algebra, 15
Epsilon	