Matemática IV Integrales en Variable Compleja

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniería Mecánica

2019

Contenido

- Integrales de contorno
- Primitivas
- Teorema de Cauchy
- Fórmula integral de Cauchy
- Principio del módulo máximo
- Bibliografía

2/14

Arcos, curvas y contornos

Dada una función **continua** z = z(t) para $a \le t \le b$. El arco C (puntos de la imagen de z ordenados por valores crecientes de t) se llama:

- Arco de Jordan (Arco simple) : si z(t) no se corta a sí misma.
- Curva de Jordan (Curva cerrada simple)si es un arco de Jordan con z(a) = z(b).
- Arco diferenciable si z'(t) es continua (así se puede calcular la long. de arco).
- Arco suave si es un arco diferencaible con $z'(t) \neq 0$.(así existe el vector tangente)
- Contorno arco suave a trozo (pede cortarse a sí mismo)
- Contorno cerrado simple Curva de Jordan suave.

Ejemplos:

- Región conexa: conjunto conexo (dos puntos cualquiera del conjunto se pueden unir por un arco dentro del conjunto).
- Región simplemente conexa: Todo arco cerrado dentro de la región tiene su interior contenido en la región (no tiene agujeros).

Teorema de la curva de Jordan: Toda curva cerrada simple del plano (curva de Jordan) divide al plano en dos componentes conexas disjuntas que tienen a la curva como frontera común. Una de estas componentes está acotada (el interior de la curva) y la otra es no acotada y se le llama exterior.

https://elpais.com/elpais

Integral definida

Sea $w:[a,b]\to C$ una función compleja de variable real dada por: $w(t)=x(t)+\mathbf{i}y(t)$ para $a\leq t\leq b$. Se define la integral definida de w sobre el intervalo [a,b]:

$$\int_{C} w(t)dt = \int_{a}^{b} x(t)dt + \mathbf{i} \int_{a}^{b} y(t)dt$$
 (1)

Sea

Integrales de contorno

Sea C el contorno dado por: z=z(t) para $a \le t \le b$. Sea f(z) continua a trozo sobre C. Se define la integral de contorno de f a lo largo de C como:

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$
 (2)

Primitivas

Definición

Sea $D \subset \mathbb{C}$ un dominio y $f : D \to \mathbb{C}$ una función continua. Se dice F es una primitiva en D de f si F'(z) = f(z) para todo $z \in D$.

Teorema

Sea f(z) una función continua en un dominio D. Son equivalentes:

- a) f tiene una primitiva F en D.
- b) Las integrales de línea a través de contornos contenidos en D que une los puntos z_1 y z_2 tienen el mismo valor (independencia de la trayectoria). Además:

$$\int_C f(z) dz = \int_{z_1}^{z_2} f(z) dz = F(z_2) - F(z_1)$$

c) Las integrales de línea a través de contornos cerrados contenidos (junto con su inerior) en D tienen el mismo valor (cero).

Teorema de Cauchy

Teorema (Cauchy-Goursat)

Si una función f es analítica en un contorno cerrado simple C y en los puntos interiores a C entonces:

$$\int_C f(z)dz = 0$$

Demostración: Probar para *f* con derivada continua.

Teorema (Extensión del T. C-G)

Si una función f es analítica en un dominio simplemente conexo E entonces:

$$\int_C f(z)dz = 0$$

para todo contorno cerrado C (no necesariamente simple)en E.

Con estas hipótesis f tiene una primitiva F en E.

Consecuencias

Teorema

Si R es la región comprendida en el interior del contorno cerrrado simple con orientación positiva C y el exterior de los contornos cerrados simples con orientación positiva C_1 ; ...; C_n (con interiores disjuntos) y f es analítica en R entonces:

$$\int_{C} f(z) dz = \sum_{i=1}^{i=n} \int_{C_{i}} f(z) dz$$

$$\int_{C_1} f(z) dz + \int_{-C_2} f(z) dz + \int_{-C_3} f(z) dz + \int_{-C_4} f(z) dz = 0$$

Teorema (Fórmula integral de Cauchy)

Sea f analítica en una región que contine al contorno cerrrado simple C (con orientación positiva) y su interior.

a) Si z₀ está en el interior de C entonces

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

b) Si z₀ está en el exterior de C entonces

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz = 0$$

Demostración:

Observación: Conociendo el valor de *f* en el contono *C* podemos conocer *f* en todo su interior!

- Calcular $\int_C \frac{z}{(9-z^2)(z+i)} dz$ sobre el círculo |z|=2.
- Calcular $\int_C \frac{1}{z} dz$ sobre un círculo cerrado que rodea el origen.

Teorema (Fórmula integral de Cauchy para la derivada)

Sea f analítica en el contorno cerrrado simple C (orientado positivamente) y su interior. Si z_0 está en el interior de C entonces f tiene derivada de todos los órdenes en z_0 y

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz; \qquad n \in \mathbb{N}$$

Si *f* es analítica en un punto, sus derivadas de todos los ódenes son funciones analíticas en ese punto.

Si f = u + iv es analítica en un punto, las funciones u y v tienen dervadas parciales continuas de todo orden en ese punto.

Teorema (de Morera)

Si f es continua en un dominio D y si $\int_C f(z)dz = 0$ para todo contorno cerrado C en D, entonces f es analítica en D.

Lema: Si f es analítica en un entorno $B(z_0, \epsilon)$ y si $||f(z)|| \le ||f(z_0)||$ para todo $z \in B(z_0, \epsilon)$, entonces f es constante con valor $f(z_0)$ en ese entorno.

Además (T. del valor medio de Gauss), para $0<\rho<\epsilon$

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{i\theta}) d\theta$$

Teorema (Principio del Módulo Máximo)

Si una función f es analítica y no constante en un dominio D, entonces f no tiene un valor máximo en D.

Si f analítica en el interior de una una región conexa cerrada y acotada R, y es continua en R, entonces ó f es constante en R ó el máximo valor de ||f(z)|| se alcanza sólo en la frontera de R.

• (T. de Liouville) Si f es entera y acotada en $\mathbb C$ entonces f es constante en $\mathbb C$.

Teorema (Fundamental del Álgebra)

Todo polinomio $P(z) = a_0 + a_1 z + ... + a_n z^n$; $(a_n \neq 0; n \geq 1)$ tiene exactamente n raíces.

Idea de dem:

Si P(z) no tiene ningún cero en $\mathbb C$ entonces $f(z) = \frac{1}{P(z)}$ es entera y acotada.

Bibliografía

Churchill, Ruel V. y Brown, James W. Variable Compleja y Aplicaciones, 5ta Ed, McGrawHill, 1992.

GRACIAS POR SU ATENCIÓN!!

