University of Moratuwa

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

EN2063—SIGNALS AND SYSTEMS

FIR and IIR Filter Design

BANDARA.H.M.S. D Index Number: 200064C

Specification	Symbol	Value	Units
Maximum pass-band ripple	$\widetilde{\mathcal{A}}_p$	0.1	dB
Maximum stop band attenuation	$ ilde{\mathcal{A}}_a$	56	dB
Lower pass band edge	$\Omega_{ ho 1}$	800	rads⁻¹
Upper pass band edge	Ω_{p2}	1300	rads⁻¹
Lower stop band edge	Ω_{s1}	500	rads⁻¹
Upper stop band edge	Ω_{s2}	1500	rads⁻¹
Sampling frequency	Ω_{sm}	3800	rads⁻¹

The specifications of the digital filter

- 1. Design an FIR bandpass digital filter Using the windowing method in conjunction with the Kaiser window.
 - a) Impulse response of FIR bandpass digital filter

Figure 1: Impulse response

b) Magnitude response of FIR bandpass digital filter for $\pi \le \omega < \pi$ rad/sample.

Figure 2: Magnitude response

c) Magnitude response for ($\omega p1 \le \omega \le \omega p2$) FIR bandpass digital filter

Figure 3: Magnitude response in the passband

2) Design an IIR bandpass digital filter Using the bilinear transformation method (Butterworth Approximation method).

a) Coefficients of the transfer function of the IIR filter

Value	Count	Percent
0	22	47.83%
1	1	2.17%
11442	1	2.17%
8.86063e+07	1	2.17%
4.86966e+11	1	2.17%
2.15774e+15	1	2.17%
7835333689384171520	1	2.17%
2.42048e+22	1	2.17%
6.40433e+25	1	2.17%
1.47414e+29	1	2.17%
2.95782e+32	1	2.17%
2.13439e+35	1	2.17%
5.21179e+35	1	2.17%
8.0572e+38	1	2.17%
1.09669e+42	1	2.17%
1.30968e+45	1	2.17%
1.37349e+48	1	2.17%
1.25562e+51	1	2.17%
9.98577e+53	1	2.17%
6.80194e+56	1	2.17%
3.94157e+59	1	2.17%
1.87183e+62	1	2.17%
7.16683e+64	1	2.17%
1.94742e+67	1	2.17%
3.58141e+69	1	2.17%

b) Magnitude response of the IIR digital filter for $(\pi \le \omega < \pi)$ rad/sample.

Figure 4: Magnitude response

c) Magnitude response for ($\omega p1 \le \omega \le \omega p2$) IIR bandpass digital filter

Figure 5: Magnitude response in the passband

3) Order and the number of multiplications and additions required to process a sample by the two designed filters

FIR Filter IIR Filter

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form II Transposed

Numerator Length : 65 Denominator Length : 1 Stable : Yes

Linear Phase : Yes (Type 1)

Implementation Cost

Number of Multipliers : 65 Number of Adders : 64 Number of States : 64 Multiplications per Input Sample : 65 Additions per Input Sample : 64

Discrete-Time IIR Filter (real)

Filter Structure : Direct-Form II Transposed

Numerator Length : 23
Denominator Length : 23
Stable : Yes
Linear Phase : No

Implementation Cost

Number of Multipliers : 45 Number of Adders : 44 Number of States : 22 Multiplications per Input Sample : 45 Additions per Input Sample : 44

APPENDIX

MATLAB code for FIR filter

```
fsamp = 3800/(2*pi);
fedges = [500/(2*pi) 800/(2*pi) 1300/(2*pi) 1500/(2*pi)];
mags = [0 1 0];
devs = [0.01157945426 0.00154893192 0.01157945426];
c = kaiserord(fedges,mags,devs,fsamp,'cell');
bcell = fir1(c{:});
hfvt = fvtool(bcell,1,'Fs',fsamp);
```

MATLAB code for IIR filter

```
CT_w_given =[800 1300 500 1500]/(2*pi);
fs=3800/(2*pi);

DT_w=2*pi*CT_w_given/fs;
CT_w_prewarpped=2*fs*tan(DT_w/2);
wp=CT_w_prewarpped(1:2);
ws=CT_w_prewarpped(3:4);
Rp=0.1;
Rs=56;
[n,wn]=buttord(wp,ws,Rp,Rs,'s');
[b,a]=butter(n,wn,'s');
[numd,dend]=bilinear(b,a,fs);
fvtool(numd,dend);
tabulate([b,a])
```