Álgebra Clase 7

Tomás Ricardo Basile Álvarez 316617194

7 de octubre de 2020

Ejercicio 7.15

a) Existe un Morfismo no nulo $\mathbb{Z}_3 \to \mathbb{Z}_2$

No. Supongamos que $f: \mathbb{Z}_3 \to \mathbb{Z}_2$ es un morfismo. Entonces, tenemos que:

$$f(\overline{2}) + f(\overline{2}) = f(\overline{2} + \overline{2}) = f(\overline{4}) = f(\overline{1})$$

La primera igualdad debido a que f es un morfismo y la última debido a que estos elementos están en \mathbb{Z}_3 .

Similarmente, se tiene que:

$$f(\overline{1}) + f(\overline{2}) = f(\overline{1} + \overline{2}) = f(\overline{3}) = f(\overline{0}) = \overline{0}$$

Donde la primera igualdad se debe a que f es un morfismo, y la última también ya que todo morfismo manda el 0 al 0.

Entonces:

$$f(\overline{2}) + f(\overline{2}) = f(\overline{1})$$
$$f(\overline{1}) + f(\overline{2}) = \overline{0}$$

Juntando estas dos ecuaciones, vemos que $f(\overline{2}) + f(\overline{2}) + f(\overline{2}) = \overline{0}$. Lo que implica que $f(\overline{2}) = \overline{0}$ porque la única otra opción es que $f(\overline{2}) = \overline{1}$ y esto es imposible ya que eso daría que $f(\overline{2}) + f(\overline{2}) + f(\overline{2}) = \overline{1} + \overline{1} + \overline{1} = \overline{3} = \overline{1} \neq \overline{0}$ (Recordar que las imágnes están en \mathbb{Z}_2 y por eso $\overline{1} + \overline{1} + \overline{1} = \overline{1}$.

Luego, como $f(\overline{2}) = 0$, la primera ecuación se reduce a $f(\overline{1}) = \overline{0}$.

Y ya probamos que todos los elementos de \mathbb{Z}_3 son mandados al 0.

f) Existe un Morfismo no nulo $\mathbb{Z}_n \to \mathbb{C}$

Sí, pero la imagen del morfismo no será todo $\mathbb C$ sino solamente un subgrupo. Supongo que con $\mathbb C$ se refiere a $(\mathbb C,\cdot)$ y no a $(\mathbb C,+)$

Consideramos $\mathcal{V}_n \subset \mathbb{C}_n$ como el conjunto de las raíces n-ésimas de la unidad. Las raíces n-ésimas de la unidad según se ven en variable compleja son $e^{[2\pi ik]/n}$ para k=0,1...,n-1. Y ya mencionamos en alguna de las notas que este conjunto es un grupo.

Consideramos ahora la función entre grupos $f: \mathbb{Z} \to \mathcal{V}_n$ dada por $f(m) = e^{[2\pi i m]/n}$ Vemos que éste es un morfismo porque:

$$f(m_1 + m_2) = e^{[2\pi i(m_1 + m_2)]/n} = e^{[2\pi i m_1]/n} e^{[2\pi i m_2]/n} = f(m_1) \cdot f(m_2)$$

Y como tanto $(\mathbb{Z}_n, +)$ y (\mathcal{V}_n, \cdot) son grupos, esta función f es un morfismo entre estos grupos.

k) $D_{2(4)}$ y S_4 son isomorfos

No, porque ni siquiera existen funciones biyectivas entre ellos porque no tienen la misma cardinalidad. $D_{2(4)}$ tiene 8 elementos mientras que S_4 tiene 4! = 24 elementos.

q) Sea $a \in G$. La función $\phi_a : G \to G$, definida como $x \to axa^{-1}$ es un morfismo.

Consideramos $x, y \in G$ y tenemos que:

$$\phi(xy) = a(xy)a^{-1}$$

$$= a(x1y)a^{-1}$$

$$= a(x(a^{-1}a)y)a^{-1}$$

$$= (axa^{-1})(aya^{-1}) \quad \text{Por asociatividad}$$

$$= \phi(x) \cdot \phi(y)$$

Con lo que se prueba que ϕ es un morfismo.

r) Si $f: G \to H$ es un isomorfismo, entonces G es abeliano si y sólo si H es abeliano.

Sea $h_1, h_2 \in H$ elementos arbitrarios. Como f es un isomorfismo, es biyectivo y tiene inversa f^{-1} y en clase vimos que esta f^{-1} es también un morfismo. Entonces:

$$f^{-1}(h_1h_2)=f^{-1}(h_1)f^{-1}(h_2)$$

$$=f^{-1}(h_2)f^{-1}(h_1)\quad \text{Como estos son elementos de G, conmuta}$$

$$=f^{-1}(h_2h_1)$$

Luego, como $f^{-1}(h_1h_2) = f^{-1}(h_2h_1)$ y si aplicamos f de ambos lados, tenemos que:

$$h_1h_2 = h_2h_1$$

Lo que prueba que ${\cal H}$ es abeliano.

El regreso se hace igual, pero se supone que H es abeliano y ahora empezamos con el isomorfismo $f^{-1}:H\to G$