The germinationmetrics Package: A Brief Introduction

Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and Kalyani Srinivasan 2020-06-16

ICAR-National Bureau of Plant Genetic Resources, New Delhi.

Contents

Overview
Installation
Version History
Germination count data
Single-value germination indices
Non-linear regression analysis
Four-parameter hill function
Wrapper functions
Citing germinationmetrics 38
Session Info
References 4

Overview

The package germinationmetrics is a collection of functions which implements various methods for describing the time-course of germination in terms of single-value germination indices as well as fitted curves.

The goal of this vignette is to introduce the users to these functions and get started in describing sequentially recorded germination count data. This document assumes a basic knowledge of R programming language.

Installation

The package can be installed using the following functions:

```
# Install from CRAN
install.packages('germinationmetrics', dependencies=TRUE)

# Install development version from Github
devtools::install_github("aravind-j/germinationmetrics")
```

Then the package can be loaded using the function

library(germinationmetrics)

To know how to use this package type:
 browseVignettes(package = 'germinationmetrics')
 for the package vignette.

To know whats new in this version type:
 news(package='germinationmetrics')
 for the NEWS file.

To cite the methods in the package type:
 citation(package='germinationmetrics')

To suppress this message use:

suppressPackageStartupMessages(library(germinationmetrics))

Version History

The current version of the package is 0.1.4. The previous versions are as follows.

Table 1. Version history of germinationmetrics R package.

Version	Date
0.1.0	2018-04-17
0.1.1	2018-07-26
0.1.1.1	2018-10-16
0.1.2	2018-10-31

To know detailed history of changes use news(package='germinationmetrics').

Germination count data

Typically in a germination test, the germination count data of a fixed number of seeds is recorded at regular intervals for a definite period of time or until all the seeds have germinated. These germination count data can be either partial or cumulative (Table 2).

Table 2: A typical germination count data.

intervals	counts	cumulative.counts
1	0	0
2	0	0
3	0	0
4	0	0
5	4	4
6	17	21
7	10	31
8	7	38
9	1	39
10	0	39
11	1	40
12	0	40
13	0	40
14	0	40

The time-course of germination can be plotted as follows.

Single-value germination indices

The details about the single-value germination indices implemented in germinationmetrics are described in Table 3.

 ${\bf Table~3:}~{\bf Single-value~germination~indices~implemented~in~germinationmetrics.}$

Germination index	Function	Details	Unit	Measures	Reference
Germination percentage or Final germination percentage or Germinability (GP)	GermPercent	It is computed as follows. $GP = \frac{N_g}{N_t} \times 100$ Where, N_g is the number of germinated seeds and N_t is the total number of seeds.	Percentage (%)	Germination capacity	ISTA (2015)
Time for the first germination or Germination time lag (t_0)	FirstGermTime	It is the time for first germination to occur (e.g. First day of germination)	time	Germination time	Edwards (1932); Czabator (1962); Goloff and Bazzaz (1975); Labouriau (1983a); Ranal (1999); Quintanilla et al. (2000)
Time for the last germination (t_g)	LastGermTime	It is the time for last germination to occur (e.g. Last day of germination)	time	Germination time	Edwards (1932)
Time spread of germination or Germination distribution	TimeSpreadGerm	It is the difference between time for last germination (t_g) and time for first germination (t_0) . Time spread of germination = $t_g - t_0$	time	Germination time	Al-Mudaris (1998); Schrader and Graves (2000); Kader (2005)
Peak period of germination or Modal time of germination	PeakGermTime	It is the time in which highest frequency of germinated seeds are observed and need not be unique.	time	Germination time	Ranal and Santana (2006)
Median germination time (t_{50}) (Coolbear)	t50	It is the time to reach 50% of final/maximum germination. With argument method specified as "coolbear", it is computed as follows. $t_{50} = T_i + \frac{(\frac{N+1}{2} - N_i)(T_j - T_i)}{N_j - N_i}$ Where, t_{50} is the median germination time, N is the final number of germinated seeds, and N_i and N_j are the total number of seeds germinated in adjacent counts at time T_i and T_j respectively, when $N_i < \frac{N+1}{2} < N_j$.	time	Germination time	Coolbear et al. (1984)
Median germination time (t_{50}) (Farooq)	t50	With argument method specified as "farooq", it is computed as follows. $t_{50} = T_i + \frac{(\frac{N}{2} - N_i)(T_j - T_i)}{N_j - N_i}$ Where, t_{50} is the median germination time, N is the final number of germinated seeds, and N_i and N_j are the total number of seeds germinated in adjacent counts at time T_i and T_j respectively, when $N_i < \frac{N}{2} < N_j$.	time	Germination time	Farooq et al. (2005)

Germination index	Function	Details	Unit	Measures	Reference
Mean germination time or Mean length of incubation time (\overline{T}) or Germination resistance (GR) or Sprouting index (SI) or Emergence index (EI)	MeanGermTime	It is the average length of time required for maximum germination of a seed lot and is estimated according to the following formula. $\overline{T} = \frac{\sum_{i=1}^k N_i T_i}{\sum_{i=1}^k N_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. It is the inverse of mean germination rate (\overline{V}) . $\overline{T} = \frac{1}{\overline{V}}$	time	Germination time	Edmond and Drapala (1958); Czabator (1962); Smith and Millet (1964); Gordon (1969); Gordon (1971); Mock and Eberhart (1972); Ellis and Roberts (1980) Labouriau (1983a); Ranal and Santana (2006)
Variance of germination time (s_T^2)	VarGermTime	It is computed according to the following formula. $s_T^2 = \frac{\sum_{i=1}^k N_i (T_i - \overline{T})^2}{\sum_{i=1}^k N_i - 1}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	time	Germination time	Labouriau (1983a); Ranal and Santana (2006)
Standard error of germination time $(s_{\overline{T}})$	SEGermTime	It signifies the accuracy of the calculation of the mean germination time. It is estimated according to the following formula: $s_{\overline{T}} = \sqrt{\frac{s_T^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval) and k is the total number of time intervals.	time	Germination time	Labouriau (1983a); Ranal and Santana (2006)

Germination index	Function	Details	Unit	Measures	Reference
Mean germination rate (\overline{V})	MeanGermRate	It is computed according to the following formula: $\overline{V} = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. It is the inverse of mean germination time (\overline{T}) . $\overline{V} = \frac{1}{\overline{T}}$	time ⁻¹	Germination rate	Labouriau and Valadares (1976); Labouriau (1983b); Ranal and Santana (2006)
Coefficient of velocity of germination (CVG) or Coefficient of rate of germination (CRG) or Kotowski's coefficient of velocity	CVG	It is estimated according to the following formula. $CVG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k N_i T_i} \times 100$ $CVG = \overline{V} \times 100$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	% day ⁻¹	Germination rate	Kotowski (1926), Nichols and Heydecker (1968); Bewley and Black (1994); Labouriau (1983b); Scott et al. (1984)
Variance of germination rate (s_V^2)	VarGermRate	It is calculated according to the following formula. $s_V^2=\overline{V}^4\times s_T^2$ Where, s_T^2 is the variance of germination time.	${ m time}^{-2}$	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Standard error of germination rate $(s_{\overline{V}})$	SEGermRate	It is estimated according to the following formula. $s_{\overline{V}} = \sqrt{\frac{s_V^2}{\sum_{i=1}^k N_i}}$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.	time ⁻¹	Germination rate	Labouriau (1983b); Ranal and Santana (2006)
Germination rate as the reciprocal of the median time (v_{50})	GermRateRecip	It is the reciprocal of the median germination time $(t_{50}).$ $v_{50} = \frac{1}{t_{50}}$	time ⁻¹	Germination rate	Went (1957); Labouriau (1983b); Ranal and Santana (2006)

Germination index	Function	Details	Unit	Measures	Reference
Speed of germination or Germination rate Index or index of velocity of germination or Emergence rate index (Allan, Vogel and Peterson; Erbach; Hsu and Nelson) or Germination index (AOSA)	GermSpeed	It is the rate of germination in terms of the total number of seeds that germinate in a time interval. It is estimated as follows. $S = \sum_{i=1}^k \frac{N_i}{T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.	% time ⁻¹	Mixed	Throneberry and Smith (1955); Maguire (1962); Allan et al. (1962); Kendrick and Frankland (1969); Bouton et al. (1976); Erbach (1982); AOSA (1983); Khandakar and Bradbeer (1983); Hsu and Nelson (1986); Bradbeer (1988); Wardle et al. (1991)
Speed of accumulated germination	GermSpeedAccumula	It is the rate of germination in terms of the accumulated/cumulative total number of seeds that germinate in a time interval. It is estimated as follows. $S_{accumulated} = \sum_{i=1}^k \frac{\sum_{j=1}^i N_j}{T_i}$ Where, T_i is the time from the start of the experiment to the i th interval, $\sum_{j=1}^i N_j$ is the cumuative/accumulated number of seeds germinated in the i th interval, and k is the total number of time intervals. Instead of germination counts, germination percentages may also be used for computation of speed of germination.	% time ⁻¹	Mixed	Bradbeer (1988); Wardle et al. (1991); Haugland and Brandsaeter (1996); Santana and Ranal (2004)
Corrected germination rate index	GermSpeedCorrecte	It is computed as follows. $S_{corrected} = \frac{S}{FGP}$ Where, FGP is the final germination percentage or germinability.	${ m time}^{-1}$	Mixed	Evetts and Burnside (1972)
Weighted germination percentage (WGP)	WeightGermPercent	It is estimated as follows. $WGP = \frac{\sum_{i=1}^k (k-i+1)N_i}{k\times N}\times 100$ Where, N_i is the number of seeds that germinated in the time interval i (not cumulative, but partial count), N is the total number of seeds tested, and k is the total number of time intervals.		Mixed	Reddy et al. (1985); Reddy (1978)

Germination index	Function	Details	Unit	Measures	Reference
Mean germination percentage per unit time (\overline{GP})	MeanGermPercent	It is estimated as follows. $\overline{GP} = \frac{GP}{T_k}$ Where, GP is the final germination percentage, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.		Mixed	Czabator (1962)
Number of seeds germinated per unit time \overline{N}	MeanGermNumber	It is estimated as follows. $\overline{N} = \frac{N_g}{T_k}$ Where, N_g is the number of germinated seeds at the end of the germination test, T_k is the time at the k th time interval, and k is the total number of time intervals required for final germination.		Mixed	Khamassi et al. (2013)
Timson's index $[\sum 10 \text{ (Ten summation)}, \sum 5 \text{ or } \sum 20] \text{ or Germination energy index } (GEI)$	TimsonsIndex	It is the progressive total of cumulative germination percentage recorded at specific intervals for a set period of time and is estimated in terms of cumulative germination percentage (G_i) as follows. $\Sigma k = \sum_{i=1}^k G_i$ Where, G_i is the cumulative germination percentage in time interval i , and k is the total number of time intervals. It also estimated in terms of partial germination percentage as follows. $\Sigma k = \sum_{i=1}^k g_i(k-j)$ Where, g_i is the germination (not cumulative, but partial germination) in time interval i $(i$ varying from 0 to k), k is the total number of time intervals, and $j=i-1$.		Mixed	Grose and Zimmer (1958); Timson (1965); Lyon and Coffelt (1966); Chaudhary and Ghildyal (1970); Negm and Smith (1978); Brown and Mayer (1988); Baskin and Baskin (1998); Goodchild and Walker (1971)
Modified Timson's index (Σk_{mod}) (Labouriau)	TimsonsIndex	It is estimated as Timson's index Σk divided by the sum of partial germination percentages. $\Sigma k_{mod} = \frac{\Sigma k}{\sum_{i=1}^k g_i}$		Mixed	Ranal and Santana (2006)

Germination					
index	Function	Details	Unit	Measures	Reference
Modified Timson's index (Σk_{mod}) (Khan and Unger)	TimsonsIndex	It is estimated as Timson's index (Σk) divided by the total time period of germination (T_k) . $\Sigma k_{mod} = \frac{\Sigma k}{T_k}$		Mixed	Khan and Ungar (1984)
George's index (GR)	GermRateGeorge	It is estimated as follows. $GR = \sum_{i=1}^k N_i K_i$ Where N_i is the number of seeds germinated by i th interval and K_i is the number of intervals(eg. days) until the end of the test, and and k is the total number of time intervals.		Mixed	George (1961); Tucker and Wright (1965); Nichols and Heydecker (1968)
Germination Index (GI) (Melville)	GermIndex	It is estimated as follows. $GI = \sum_{i=1}^k \frac{ (T_k - T_i) N_i }{N_t}$ Where, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), N_t is the total number of seeds used in the test, and k is the total number of time intervals.		Mixed	Melville et al. (1980)
Germination Index (GI_{mod}) (Melville; Santana and Ranal)	GermIndex	It is estimated as follows. $GI_{mod} = \sum_{i=1}^k \frac{ (T_k - T_i) N_i }{N_g}$ Where, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), N_g is the total number of germinated seeds at the end of the test, and k is the total number of time intervals.		Mixed	Melville et al. (1980); Santana and Ranal (2004); Ranal and Santana (2006)

time intervals.

Germination					
index	Function	Details	Unit	Measures	Reference
Emergence Rate Index (ERI) or Germination Rate Index (Shmueli and Goldberg)	EmergenceRateInde	It is estimated as follows. $ERI = \sum_{i=i_0}^{k-1} N_i(k-i)$ Where, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), i_0 is the time interval when emergence/germination started, and k is the total number of time intervals.		Mixed	Shmueli and Goldberg (1971)
Modified Emergence Rate Index (ERI _{mod}) or Modified Germination Rate Index (Shmueli and Goldberg; Santana and Ranal)	EmergenceRateInde	It is estimated by dividing Emergence rate index (ERI) by total number of emerged seedlings (or germinated seeds). $ERI_{mod} = \frac{\sum_{i=i_0}^{k-1} N_i(k-i)}{N_g} = \frac{ERI}{N_g}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), i_0 is the time interval when emergence/germination started, and k is the total number of time intervals.		Mixed	Shmueli and Goldberg (1971); Santana and Ranal (2004); Ranal and Santana (2006)
Emergence Rate Index (ERI) or Germination Rate Index (Bilbro & Wanjura)	EmergenceRateInde	It is the estimated as follows. $ERI = \frac{\sum_{i=1}^k N_i}{\overline{T}} = \frac{N_g}{\overline{T}}$ Where, N_g is the total number of germinated seeds at the end of the test, N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and \overline{T} is the mean germination time or mean emergence time.		Mixed	Bilbro and Wanjura (1982)
Emergence Rate Index (ERI) or Germination Rate Index $(Fakorede)$	EmergenceRateInde	It is estimated as follows. $ERI=\frac{\overline{T}}{FGP/100}$ Where, \overline{T} is the Mean germination time and FGP is the final germination time.		Mixed	Fakorede and Ayoola (1980); Fakorede and Ojo (1981); Fakorede and Agbana (1983)

Germination index	Function	Details	Unit	Measures	Reference
Peak value(PV) (Czabator) or Emergence Energy (EE)	PeakValue	It is the accumulated number of seeds germinated at the point on the germination curve at which the rate of germination starts to decrease. It is computed as the maximum quotient obtained by dividing successive cumulative germination values by the relevant incubation time. $PV = \max\left(\frac{G_1}{T_1}, \frac{G_2}{T_2}, \cdots \frac{G_k}{T_k}\right)$ Where, T_i is the time from the start of the experiment to the i th interval, G_i is the cumulative germination percentage in the i th time interval, and k is the total number of time intervals.	% time ⁻¹	Mixed	Czabator (1962); Bonner (1967)
Germination value (GV) (Czabator)	GermValue	$GV = PV \times MDG$ Where, PV is the peak value and MDG is the mean daily germination percentage from the onset of germination. It can also be computed for other time intervals of successive germination counts, by replacing MDG with the mean germination percentage per unit time (\overline{GP}) . GV value can be modified (GV_{mod}) , to consider the entire duration from the beginning of the test instead of just from the onset of germination.		Mixed	Czabator (1962); Brown and Mayer (1988)
Germination value (GV) (Diavanshir and Pourbiek)	GermValue	It is computed as follows. $GV = \frac{\sum DGS}{N} \times GP \times c$ Where, DGS is the daily germination speed computed by dividing cumulative germination percentage by the number of days since the since the onset of germination, N is the frequency or number of DGS calculated during the test, GP is the germination percentage expressed over 100, and c is a constant. The value of c is decided on the basis of average daily speed of germination $(\frac{DGS}{N})$. If it is less than 10, then c value of 10 can be used and if it is more than 10, then value of 7 or 8 can be used for c . GV value can be modified (GV_{mod}) , to consider the entire duration from the beginning of the test instead of just from the onset of germination.		Mixed	Djavanshir and Pourbeik (1976); Brown and Mayer (1988)

Germination index	Function	Details	Unit	Measures	Reference
Coefficient of uniformity of germination (CUG)	CUGerm	It is computed as follows. $CUG = \frac{\sum_{i=1}^k N_i}{\sum_{i=1}^k (\overline{T} - T_i)^2 N_i}$ Where, \overline{T} is the the mean germination time, T_i is the time from the start of the experiment to the i th interval (day for the example), N_i is the number of seeds germinated in the i th time interval (not the accumulated number, but the number corresponding to the i th interval), and k is the total number of time intervals.		Germination unifromity	Heydecker (1972); Bewley and Black (1994)
Coefficient of variation of the germination time (CV_T)	CVGermTime	It is estimated as follows. $CV_T=\sqrt{\frac{s_T^2}{\overline{T}}}$ Where, s_T^2 is the variance of germination time and \overline{T} is the mean germination time.		Germination unifromity	Gomes (1960); Ranal and Santana (2006)
Synchronization index (\overline{E}) or Uncertainty of the germination process (U) or informational entropy (H)	GermUncertainty	It is estimated as follows. $\overline{E} = -\sum_{i=1}^k f_i \log_2 f_i$ Where, f_i is the relative frequency of germination $(f_i = \frac{N_i}{\sum_{i=1}^k N_i}), N_i \text{ is the number of seeds germinated on the } ith time interval, and } k \text{ is the total number of time intervals.}$	bit	Germination synchrony	Shannon (1948); Labouriau and Valadares (1976); Labouriau (1983b)
Synchrony of germination (Z index)	GermSynchrony	It is computed as follows. $Z = \frac{\sum_{i=1}^k C_{N_i,2}}{C_{\Sigma N_i,2}}$ Where, $C_{N_i,2}$ is the partial combination of the two germinated seeds from among N_i , the number of seeds germinated on the i th time interval (estimated as $C_{N_i,2} = \frac{N_i(N_i-1)}{2}$), and $C_{\Sigma N_i,2}$ is the partial combination of the two germinated seeds from among the total number of seeds germinated at the final count, assuming that all seeds that germinated did so simultaneously.		Germination synchrony	Primack (1985); Ranal and Santana (2006)

Examples

```
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
# From partial germination counts
GermPercent(germ.counts = x, total.seeds = 50)
GermPercent()
[1] 80
# From cumulative germination counts
GermPercent(germ.counts = y, total.seeds = 50, partial = FALSE)
[1] 80
# From number of germinated seeds
GermPercent(germinated.seeds = 40, total.seeds = 50)
[1] 80
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
z \leftarrow c(0, 0, 0, 0, 11, 11, 9, 7, 1, 0, 1, 0, 0, 0)
int <- 1:length(x)</pre>
# From partial germination counts
FirstGermTime(germ.counts = x, intervals = int)
FirstGermTime(), LastGermTime(), PeakGermTime(), TimeSpreadGerm()
LastGermTime(germ.counts = x, intervals = int)
TimeSpreadGerm(germ.counts = x, intervals = int)
[1] 6
PeakGermTime(germ.counts = x, intervals = int)
[1] 6
# For multiple peak germination times
PeakGermTime(germ.counts = z, intervals = int)
Warning in PeakGermTime(germ.counts = z, intervals = int): Multiple peak
germination times exist.
[1] 5 6
# From cumulative germination counts
FirstGermTime(germ.counts = y, intervals = int, partial = FALSE)
```

```
[1] 5
LastGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 11
TimeSpreadGerm(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
PeakGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6
# For multiple peak germination time
PeakGermTime(germ.counts = cumsum(z), intervals = int, partial = FALSE)
Warning in PeakGermTime(germ.counts = cumsum(z), intervals = int, partial =
FALSE): Multiple peak germination times exist.
[1] 5 6
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
t50(germ.counts = x, intervals = int, method = "coolbear")
t50()
[1] 5.970588
t50(germ.counts = x, intervals = int, method = "farooq")
[1] 5.941176
# From cumulative germination counts
t50(germ.counts = y, intervals = int, partial = FALSE, method = "coolbear")
[1] 5.970588
t50(germ.counts = y, intervals = int, partial = FALSE, method = "farooq")
[1] 5.941176
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermTime(germ.counts = x, intervals = int)
MeanGermTime(), VarGermTime(), SEGermTime(), CVGermTime()
```

[1] 6.7

```
VarGermTime(germ.counts = x, intervals = int)
[1] 1.446154
SEGermTime(germ.counts = x, intervals = int)
[1] 0.1901416
CVGermTime(germ.counts = x, intervals = int)
[1] 0.1794868
# From cumulative germination counts
MeanGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.7
VarGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 19.04012
SEGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.2394781
CVGermTime(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.6512685
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermRate(germ.counts = x, intervals = int)
MeanGermRate(), CVG(), VarGermRate(), SEGermRate(), GermRateRecip()
[1] 0.1492537
CVG(germ.counts = x, intervals = int)
[1] 14.92537
VarGermRate(germ.counts = x, intervals = int)
[1] 0.0007176543
SEGermRate(germ.counts = x, intervals = int)
[1] 0.004235724
GermRateRecip(germ.counts = x, intervals = int, method = "coolbear")
[1] 0.1674877
GermRateRecip(germ.counts = x, intervals = int, method = "farooq")
[1] 0.1683168
```

```
# From cumulative germination counts
MeanGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.1492537
CVG(germ.counts = y, intervals = int, partial = FALSE)
[1] 14.92537
VarGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.009448666
SEGermRate(germ.counts = y, intervals = int, partial = FALSE)
[1] 0.005334776
GermRateRecip(germ.counts = y, intervals = int,
              method = "coolbear", partial = FALSE)
[1] 0.1674877
GermRateRecip(germ.counts = y, intervals = int,
             method = "farooq", partial = FALSE)
[1] 0.1683168
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
GermSpeed(germ.counts = x, intervals = int)
GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()
[1] 6.138925
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                  method = "normal")
[1] 0.07673656
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "accumulated")
[1] 0.4326958
# From partial germination counts (with percentages instead of counts)
GermSpeed(germ.counts = x, intervals = int,
percent = TRUE, total.seeds = 50)
```

17

[1] 12.27785

```
GermSpeedAccumulated(germ.counts = x, intervals = int,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
# From cumulative germination counts
GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.07673656
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.4326958
# From cumulative germination counts (with percentages instead of counts)
GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
          percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
GermSpeed(germ.counts = x, intervals = int)
GermSpeed(), GermSpeedAccumulated(), GermSpeedCorrected()
[1] 6.138925
GermSpeedAccumulated(germ.counts = x, intervals = int)
[1] 34.61567
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "normal")
[1] 0.07673656
GermSpeedCorrected(germ.counts = x, intervals = int, total.seeds = 50,
                   method = "accumulated")
```

```
[1] 0.4326958
# From partial germination counts (with percentages instead of counts)
GermSpeed(germ.counts = x, intervals = int,
          percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = x, intervals = int,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
# From cumulative germination counts
GermSpeed(germ.counts = y, intervals = int, partial = FALSE)
[1] 6.138925
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE)
[1] 34.61567
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "normal")
[1] 0.07673656
GermSpeedCorrected(germ.counts = y, intervals = int,
                   partial = FALSE, total.seeds = 50, method = "accumulated")
[1] 0.4326958
# From cumulative germination counts (with percentages instead of counts)
GermSpeed(germ.counts = y, intervals = int, partial = FALSE,
         percent = TRUE, total.seeds = 50)
[1] 12.27785
GermSpeedAccumulated(germ.counts = y, intervals = int, partial = FALSE,
                     percent = TRUE, total.seeds = 50)
[1] 69.23134
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
WeightGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
WeightGermPercent()
[1] 47.42857
# From cumulative germination counts
```

```
WeightGermPercent(germ.counts = y, total.seeds = 50, intervals = int,
                  partial = FALSE)
[1] 47.42857
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
MeanGermPercent(germ.counts = x, total.seeds = 50, intervals = int)
MeanGermPercent(), MeanGermNumber()
[1] 5.714286
MeanGermNumber(germ.counts = x, intervals = int)
[1] 2.857143
# From cumulative germination counts
MeanGermPercent(germ.counts = y, total.seeds = 50, intervals = int, partial = FALSE)
[1] 5.714286
MeanGermNumber(germ.counts = y, intervals = int, partial = FALSE)
[1] 2.857143
# From number of germinated seeds
MeanGermPercent(germinated.seeds = 40, total.seeds = 50, intervals = int)
[1] 5.714286
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
# Wihout max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50)
TimsonsIndex(), GermRateGeorge()
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "labouriau")
```

```
[1] 8.3
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
             modification = "khanungar")
[1] 47.42857
GermRateGeorge(germ.counts = x, intervals = int)
[1] 332
# With max specified
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50, max = 10)
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
            max = 10, modification = "none")
[1] 344
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
            max = 10, modification = "labouriau")
[1] 4.410256
TimsonsIndex(germ.counts = x, intervals = int, total.seeds = 50,
            max = 10, modification = "khanungar")
[1] 24.57143
GermRateGeorge(germ.counts = x, intervals = int, max = 10)
[1] 172
GermRateGeorge(germ.counts = x, intervals = int, max = 14)
[1] 332
# From cumulative germination counts
# Wihout max specified
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50)
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "none")
[1] 664
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50,
             modification = "labouriau")
[1] 8.3
TimsonsIndex(germ.counts = y, intervals = int, partial = FALSE,
             total.seeds = 50.
             modification = "khanungar")
```

```
[1] 47.42857
```

```
GermRateGeorge(germ.counts = y, intervals = int, partial = FALSE,)
```

[1] 332

[1] 344

[1] 344

[1] 4.410256

[1] 24.57143

[1] 172

[1] 332

GermIndex()

[1] 5.84

[1] 5.84

[1] 7.3

```
# From cumulative germination counts
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
total.seeds = 50)
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "none")
[1] 5.84
GermIndex(germ.counts = y, intervals = int, partial = FALSE,
          total.seeds = 50,
          modification = "santanaranal")
[1] 7.3
x \leftarrow c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)</pre>
# From partial germination counts
EmergenceRateIndex(germ.counts = x, intervals = int)
EmergenceRateIndex()
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "melville")
[1] 292
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "melvillesantanaranal")
[1] 7.3
EmergenceRateIndex(germ.counts = x, intervals = int,
                   method = "bilbrowanjura")
[1] 5.970149
EmergenceRateIndex(germ.counts = x, intervals = int,
                   total.seeds = 50, method = "fakorede")
[1] 8.375
# From cumulative germination counts
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,)
EmergenceRateIndex(germ.counts = y, intervals = int, partial = FALSE,
                   method = "melville")
```

```
[1] 292
```

[1] 7.3

[1] 5.970149

[1] 8.375

PeakValue(), GermValue()

[1] 9.5

```
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
    method = "czabator")
```

\$`Germination Value`

[1] 38.95

[[2]]

LL					
	germ.counts	${\tt intervals}$	Cumulative.germ.counts	Cumulative.germ.percent	
3	34	3	34	17.0	
4	40	4	74	37.0	
5	21	5	95	47.5	
6	10	6	105	52.5	
7	4	7	109	54.5	
8	5	8	114	57.0	
9	3	9	117	58.5	
10	5	10	122	61.0	
11	8	11	130	65.0	
12	7	12	137	68.5	
13	7	13	144	72.0	
14	6	14	150	75.0	
15	6	15	156	78.0	
16	4	16	160	80.0	
17	0	17	160	80.0	
18	2	18	162	81.0	
19	0	19	162	81.0	
20	2	20	164	82.0	

```
DGS
3 5.666667
4 9.250000
5 9.500000
6 8.750000
7 7.785714
8 7.125000
9 6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "dp", k = 10)
$`Germination Value`
[1] 53.36595
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3
            34
                       3
                                              34
                                                                     17.0
                                              74
4
            40
                       4
                                                                     37.0
                                              95
5
            21
                       5
                                                                     47.5
                       6
6
            10
                                             105
                                                                     52.5
7
                       7
             4
                                             109
                                                                     54.5
8
             5
                       8
                                             114
                                                                     57.0
9
             3
                       9
                                                                     58.5
                                             117
10
             5
                      10
                                             122
                                                                     61.0
                                             130
                                                                     65.0
             8
11
                      11
12
             7
                      12
                                             137
                                                                     68.5
             7
13
                      13
                                             144
                                                                     72.0
14
             6
                      14
                                             150
                                                                     75.0
15
             6
                      15
                                             156
                                                                     78.0
16
             4
                      16
                                             160
                                                                     80.0
             0
                                                                     80.0
17
                      17
                                             160
             2
                                                                     81.0
18
                      18
                                             162
19
             0
                      19
                                             162
                                                                     81.0
20
             2
                      20
                                             164
                                                                     82.0
        DGS SumDGSbyN
                             GV
3 5.666667 5.666667 9.633333
4 9.250000 7.458333 27.595833
5 9.500000 8.138889 38.659722
6 8.750000 8.291667 43.531250
7 7.785714 8.190476 44.638095
8 7.125000 8.012897 45.673512
9 6.500000 7.796769 45.611097
```

10 6.100000 7.584673 46.266503

6 8.750000 7 7.785714 8 7.125000 9 6.500000 10 6.100000 11 5.909091 12 5.708333

```
11 5.909091 7.398497 48.090230
12 5.708333 7.229481 49.521942
13 5.538462 7.075752 50.945411
14 5.357143 6.932534 51.994006
15 5.200000 6.799262 53.034246
16 5.000000 6.670744 53.365948
17 4.705882 6.539753 52.318022
18 4.500000 6.412268 51.939373
19 4.263158 6.285850 50.915385
20 4.100000 6.164414 50.548194
$testend
[1] 16
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "czabator", from.onset = FALSE)
$`Germination Value`
[1] 38.95
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1
             0
                       1
                                               0
                                                                      0.0
                       2
                                               0
                                                                      0.0
2
             0
3
            34
                       3
                                              34
                                                                     17.0
4
            40
                       4
                                              74
                                                                     37.0
                       5
5
            21
                                              95
                                                                     47.5
            10
                       6
                                             105
6
                                                                     52.5
7
             4
                       7
                                             109
                                                                     54.5
8
             5
                       8
                                             114
                                                                     57.0
9
             3
                       9
                                             117
                                                                     58.5
             5
                      10
10
                                             122
                                                                     61.0
11
             8
                      11
                                             130
                                                                     65.0
             7
12
                      12
                                             137
                                                                     68.5
13
             7
                      13
                                             144
                                                                     72.0
14
             6
                      14
                                             150
                                                                     75.0
15
             6
                      15
                                             156
                                                                     78.0
                      16
16
             4
                                             160
                                                                     80.0
17
             0
                      17
                                             160
                                                                     80.0
             2
18
                      18
                                             162
                                                                     81.0
19
             0
                      19
                                             162
                                                                     81.0
20
                      20
                                             164
                                                                     82.0
       DGS
1 0.000000
2 0.000000
3 5.666667
4 9.250000
5 9.500000
```

```
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = x, intervals = int, total.seeds = 200,
          method = "dp", k = 10, from.onset = FALSE)
$`Germination Value`
[1] 46.6952
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1
             0
                       1
                                               0
                                                                     0.0
2
             0
                       2
                                               0
                                                                     0.0
                       3
3
            34
                                              34
                                                                    17.0
4
            40
                       4
                                              74
                                                                    37.0
5
            21
                       5
                                                                    47.5
                                              95
6
            10
                       6
                                             105
                                                                    52.5
7
             4
                       7
                                             109
                                                                    54.5
             5
                       8
8
                                             114
                                                                    57.0
                       9
9
             3
                                                                    58.5
                                             117
10
             5
                      10
                                             122
                                                                    61.0
11
             8
                      11
                                             130
                                                                    65.0
12
             7
                      12
                                             137
                                                                    68.5
13
             7
                      13
                                             144
                                                                    72.0
14
             6
                      14
                                             150
                                                                    75.0
             6
                      15
15
                                             156
                                                                    78.0
16
             4
                      16
                                             160
                                                                    80.0
17
             0
                      17
                                             160
                                                                    80.0
             2
18
                      18
                                             162
                                                                    81.0
19
             0
                      19
                                             162
                                                                    81.0
             2
20
                      20
                                             164
                                                                    82.0
        DGS SumDGSbyN
                             GV
1 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000
3 5.666667 1.888889 3.211111
4 9.250000 3.729167 13.797917
5 9.500000 4.883333 23.195833
6 8.750000 5.527778 29.020833
7 7.785714 5.850340 31.884354
8 7.125000 6.009673 34.255134
9 6.500000 6.064153 35.475298
10 6.100000 6.067738 37.013202
11 5.909091 6.053316 39.346552
12 5.708333 6.024567 41.268285
13 5.538462 5.987174 43.107655
14 5.357143 5.942172 44.566291
15 5.200000 5.892694 45.963013
16 5.000000 5.836901 46.695205
```

17 4.705882 5.770370 46.162961

```
18 4.500000 5.699794 46.168331
19 4.263158 5.624182 45.555871
20 4.100000 5.547972 45.493374
$testend
[1] 16
# From cumulative germination counts
#-----
PeakValue(germ.counts = y, interval = int, total.seeds = 200,
         partial = FALSE)
[1] 9.5
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
         partial = FALSE, method = "czabator")
$`Germination Value`
[1] 38.95
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
3
           34
                      3
                                           34
                                                                17.0
           40
                      4
                                           74
4
                                                                37.0
5
           21
                      5
                                           95
                                                                47.5
                      6
6
           10
                                          105
                                                                52.5
7
            4
                      7
                                          109
                                                                54.5
8
            5
                      8
                                          114
                                                                57.0
9
            3
                      9
                                                                58.5
                                          117
10
            5
                     10
                                          122
                                                                61.0
            8
                                                                65.0
11
                     11
                                          130
12
            7
                     12
                                          137
                                                                68.5
            7
                                                                72.0
13
                     13
                                          144
                     14
14
            6
                                          150
                                                                75.0
15
            6
                     15
                                                                78.0
                                          156
16
            4
                     16
                                          160
                                                                80.0
17
            0
                     17
                                          160
                                                                80.0
18
            2
                     18
                                          162
                                                                81.0
19
                     19
                                          162
                                                                81.0
20
            2
                     20
                                          164
                                                                82.0
       DGS
3 5.666667
4 9.250000
5 9.500000
6 8.750000
7 7.785714
8 7.125000
9 6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
```

16 5.000000

17 4.705882 18 4.500000

[1] 16

```
19 4.263158
20 4.100000
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "dp", k = 10)
$`Germination Value`
[1] 53.36595
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
                       3
                                             34
3
            34
                                                                    17.0
                                             74
            40
                       4
                                                                    37.0
4
                       5
5
            21
                                             95
                                                                    47.5
            10
                       6
6
                                            105
                                                                    52.5
7
             4
                       7
                                            109
                                                                    54.5
8
             5
                       8
                                            114
                                                                    57.0
                       9
9
             3
                                                                    58.5
                                            117
10
             5
                      10
                                            122
                                                                    61.0
                                            130
                                                                    65.0
11
             8
                      11
12
             7
                      12
                                            137
                                                                    68.5
13
             7
                      13
                                            144
                                                                    72.0
14
             6
                      14
                                                                    75.0
                                            150
15
             6
                      15
                                            156
                                                                    78.0
16
             4
                      16
                                            160
                                                                    80.0
17
             0
                      17
                                            160
                                                                    80.0
18
             2
                      18
                                            162
                                                                    81.0
19
             0
                      19
                                            162
                                                                    81.0
20
             2
                      20
                                            164
                                                                    82.0
        DGS SumDGSbyN
                             GV
3 5.666667 5.666667 9.633333
4 9.250000 7.458333 27.595833
5 9.500000 8.138889 38.659722
6 8.750000 8.291667 43.531250
7 7.785714 8.190476 44.638095
8 7.125000 8.012897 45.673512
9 6.500000 7.796769 45.611097
10 6.100000 7.584673 46.266503
11 5.909091 7.398497 48.090230
12 5.708333 7.229481 49.521942
13 5.538462 7.075752 50.945411
14 5.357143 6.932534 51.994006
15 5.200000 6.799262 53.034246
16 5.000000 6.670744 53.365948
17 4.705882 6.539753 52.318022
18 4.500000 6.412268 51.939373
19 4.263158 6.285850 50.915385
20 4.100000 6.164414 50.548194
$testend
```

```
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "czabator", from.onset = FALSE)
$`Germination Value`
[1] 38.95
[[2]]
   germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
             0
                       1
                       2
2
             0
                                               0
                                                                      0.0
                       3
3
            34
                                              34
                                                                     17.0
4
            40
                       4
                                              74
                                                                     37.0
5
            21
                       5
                                              95
                                                                     47.5
                       6
                                             105
                                                                     52.5
6
            10
                       7
7
             4
                                             109
                                                                     54.5
                       8
8
             5
                                             114
                                                                     57.0
9
             3
                       9
                                             117
                                                                     58.5
10
             5
                      10
                                             122
                                                                     61.0
             8
                                             130
                                                                     65.0
11
                      11
12
             7
                      12
                                             137
                                                                     68.5
             7
                      13
                                             144
                                                                     72.0
13
14
             6
                      14
                                             150
                                                                     75.0
15
             6
                      15
                                             156
                                                                     78.0
16
             4
                      16
                                             160
                                                                     80.0
17
             0
                      17
                                             160
                                                                     0.08
             2
                      18
18
                                             162
                                                                     81.0
19
             0
                      19
                                             162
                                                                     81.0
20
             2
                      20
                                             164
                                                                     82.0
        DGS
1 0.000000
2 0.000000
3 5.666667
4 9.250000
5 9.500000
6 8.750000
7 7.785714
8 7.125000
9 6.500000
10 6.100000
11 5.909091
12 5.708333
13 5.538462
14 5.357143
15 5.200000
16 5.000000
17 4.705882
18 4.500000
19 4.263158
20 4.100000
GermValue(germ.counts = y, intervals = int, total.seeds = 200,
          partial = FALSE, method = "dp", k = 10, from.onset = FALSE)
```

\$`Germination Value`

[1] 46.6952

```
[[2]]
```

```
germ.counts intervals Cumulative.germ.counts Cumulative.germ.percent
1
             0
                       1
                                                                     0.0
2
             0
                       2
                                              0
                                                                     0.0
3
            34
                       3
                                             34
                                                                    17.0
                       4
4
            40
                                             74
                                                                    37.0
5
            21
                       5
                                             95
                                                                    47.5
6
            10
                       6
                                             105
                                                                    52.5
                       7
7
             4
                                             109
                                                                    54.5
8
             5
                       8
                                                                    57.0
                                             114
9
             3
                       9
                                             117
                                                                    58.5
             5
10
                      10
                                             122
                                                                    61.0
11
             8
                      11
                                             130
                                                                    65.0
             7
12
                      12
                                             137
                                                                    68.5
13
             7
                      13
                                             144
                                                                    72.0
             6
                      14
14
                                             150
                                                                    75.0
15
             6
                      15
                                             156
                                                                    78.0
16
             4
                      16
                                             160
                                                                    80.0
17
             0
                      17
                                             160
                                                                    80.0
18
             2
                      18
                                             162
                                                                    81.0
19
                                                                    81.0
             0
                      19
                                             162
20
             2
                                             164
                                                                    82.0
        DGS SumDGSbyN
                             GV
1 0.000000 0.000000 0.000000
2 0.000000 0.000000 0.000000
3 5.666667 1.888889 3.211111
4 9.250000 3.729167 13.797917
5 9.500000 4.883333 23.195833
6 8.750000 5.527778 29.020833
7 7.785714 5.850340 31.884354
8 7.125000 6.009673 34.255134
9 6.500000 6.064153 35.475298
10 6.100000 6.067738 37.013202
11 5.909091 6.053316 39.346552
12 5.708333 6.024567 41.268285
```

\$testend

 13
 5.538462
 5.987174
 43.107655

 14
 5.357143
 5.942172
 44.566291

 15
 5.200000
 5.892694
 45.963013

 16
 5.000000
 5.836901
 46.695205

 17
 4.705882
 5.770370
 46.162961

 18
 4.500000
 5.699794
 46.168331

 19
 4.263158
 5.624182
 45.555871

 20
 4.100000
 5.547972
 45.493374

[1] 16

```
x <- c(0, 0, 0, 0, 4, 17, 10, 7, 1, 0, 1, 0, 0, 0)
y <- c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
int <- 1:length(x)
```

```
# From partial germination counts
#-----
CUGerm(germ.counts = x, intervals = int)
```

CUGerm()

[1] 0.7092199

```
# From cumulative germination counts
#-----
CUGerm(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.05267935

GermSynchrony(), GermUncertainty()

[1] 0.2666667

```
GermUncertainty(germ.counts = x, intervals = int)
```

[1] 2.062987

```
# From cumulative germination counts
#-----
GermSynchrony(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 0.2666667

```
GermUncertainty(germ.counts = y, intervals = int, partial = FALSE)
```

[1] 2.062987

Non-linear regression analysis

Several mathematical functions have been used to fit the cumulative germination count data and describe the germination process by non-linear regression analysis. They include functions such as Richard's, Weibull, logistic, log-logistic, gaussian, four-parameter hill function etc. Currently germinationmetrics implements the four-parameter hill function to fit the count data and computed various associated metrics.

Four-parameter hill function

The four-parameter hill function defined as follows (El-Kassaby et al., 2008).

$$f(x) = y = y_0 + \frac{ax^b}{x^b + c^b}$$

Where, y is the cumulative germination percentage at time x, y_0 is the intercept on the y axis, a is the asymptote, b is a mathematical parameter controlling the shape and steepness of the germination curve and c is the "half-maximal activation level".

The details of various parameters that are computed from this function are given in Table 4.

 ${\bf Table~4~Germination~parameter~sestimated~from~the~four-parameter~hill~function.}$

Germination parameters	Details	Unit	Measures
y intercept (y_0)	The intercept on the y axis.		
Asymptote (a)	It is the maximum cumulative germination percentage, which is equivalent to germination capacity.	%	Germination capacity
Shape and steepness (b)	Mathematical parameter controlling the shape and steepness of the germination curve. The larger the b , the steeper the rise toward the asymptote a , and the shorter the time between germination onset and maximum germination.		Germination rate
Half-maximal activation level (c)	Time required for 50% of viable seeds to germinate.	time	Germination time
lag	It is the time at germination onset and is computed by solving four-parameter hill function after setting y to 0 as follows.	time	Germination time
	$lag = b\sqrt{\frac{-y_0c^b}{a+y_0}}$		
D_{lag-50}	The duration between the time at germination onset (lag) and that at 50% germination (c) .	time	Germination time
$t_{50_{total}}$	Time required for 50% of total seeds to germinate.	time	Germination time
$t_{50_{germinated}}$	Time required for 50% of viable/germinated seeds to germinate	time	Germination time
$t_{x_{total}}$	Time required for $x\%$ of total seeds to germinate.	time	Germination time
$t_{x_{germinated}}$	Time required for $x\%$ of viable/germinated seeds to germinate	time	Germination time
Uniformity $(U_{t_{max}-t_{min}})$	It is the time interval between the percentages of viable seeds specified in the arguments umin and umin to germinate.	time	Germination time
Time at maximum germination rate $(TMGR)$	The partial derivative of the four-parameter hill function gives the instantaneous rate of germination (s) as follows.	time	Germination time
	$s = \frac{\partial y}{\partial x} = \frac{abc^b x^{b-1}}{(c^b + x^b)^2}$		
	From this function for instantaneous rate of germination, $TMGR$ can be estimated as follows.		
	$TMGR = b\sqrt{\frac{c^b(b-1)}{b+1}}$		
	It represents the point in time when the instantaneous rate of germination starts to decline.		

Germination parameters	Details	Unit	Measures
Area under the curve (AUC)	It is obtained by integration of the fitted curve between time 0 and time specified in the argument tmax.		Mixed
MGT	Calculated by integration of the fitted curve and proper normalisation.	time	Germination time
Skewness	It is computed as follows. $\frac{MGT}{t_{50_{qerminated}}}$		

Examples

FourPHFfit()

\$data

	gp	csgp	intervals
1	0	0	1
2	0	0	2
3	0	0	3
4	0	0	4
5	8	8	5
6	34	42	6
7	20	62	7
8	14	76	8
9	2	78	9
10	0	78	10
11	2	80	11
12	0	80	12
13	0	80	13
14	0	80	14

\$Parameters

```
term estimate std.error statistic p.value
1 a 80.000000 1.24158595 64.43372 1.973240e-14
2 b 9.881947 0.70779379 13.96162 6.952322e-08
3 c 6.034954 0.04952654 121.85294 3.399385e-17
4 y0 0.000000 0.91607007 0.00000 1.000000e+00
```

\$Fit

sigma isConv finTol logLik AIC BIC deviance df.residual

```
1 1.769385
           TRUE 1.490116e-08 -25.49868 60.99736 64.19265 31.30723
                                                                              10
$a
[1] 80
$ъ
[1] 9.881947
$с
[1] 6.034954
$y0
[1] 0
$lag
[1] 0
$Dlag50
[1] 6.034954
$t50.total
[1] 6.355122
$txp.total
      10
               60
4.956266 6.744598
$t50.Germinated
[1] 6.034954
$txp.Germinated
      10
               60
4.831809 6.287724
$Uniformity
       90
                   10 uniformity
  7.537688 4.831809
                       2.705880
$TMGR
[1] 5.912195
$AUC
[1] 1108.975
$MGT
[1] 6.632252
$Skewness
[1] 1.098973
[1] "#1. Relative error in the sum of squares is at most `ftol'."
$isConv
```

```
[1] TRUE
attr(,"class")
[1] "FourPHFfit"
\# From cumulative germination counts
FourPHFfit(germ.counts = y, intervals = int, total.seeds = 50, tmax = 20,
partial = FALSE)
$data
  gp csgp intervals
1
  0
        0
                 1
2
   0
        0
3
  0
       0
                 3
4
  0
       0
                 4
5
  8
      8
6 34 42
                 6
7 20
       62
                 7
8 14
       76
                 8
9
  2
       78
                 9
10 0 78
                10
11 2 80
                11
12 0
       80
                12
13 0
       80
                13
14 0
       80
                14
$Parameters
                                       p.value
 term estimate std.error statistic
   a 80.000000 1.2415867 64.43368 1.973252e-14
    b 9.881927 0.7077918 13.96163 6.952270e-08
  c 6.034953 0.0495266 121.85275 3.399437e-17
  y0 0.000000 0.9160705 0.00000 1.000000e+00
$Fit
    sigma isConv
                      finTol
                                logLik
                                           AIC
                                                   BIC deviance df.residual
1 1.769385 TRUE 1.490116e-08 -25.49868 60.99736 64.19265 31.30723
$a
[1] 80
$Ъ
[1] 9.881927
$с
[1] 6.034953
$v0
[1] 0
$lag
[1] 0
$Dlag50
[1] 6.034953
```

```
$t50.total
[1] 6.355121
$txp.total
              60
     10
4.956263 6.744599
$t50.Germinated
[1] 6.034953
$txp.Germinated
     10
4.831806 6.287723
$Uniformity
       90
                  10 uniformity
 7.537691 4.831806
                     2.705885
$TMGR
[1] 5.912194
$AUC
[1] 1108.976
$MGT
[1] 6.632252
$Skewness
[1] 1.098973
$msg
[1] "#1. Relative error in the sum of squares is at most `ftol'."
$isConv
[1] TRUE
attr(,"class")
[1] "FourPHFfit"
## No test:
\#\#D\ x\ \leftarrow\ c(0,\ 0,\ 0,\ 0,\ 4,\ 17,\ 10,\ 7,\ 1,\ 0,\ 1,\ 0,\ 0)
##D y \leftarrow c(0, 0, 0, 0, 4, 21, 31, 38, 39, 39, 40, 40, 40, 40)
##D int <- 1:length(x)
##D total.seeds = 50
##D
##D # From partial germination counts
##D #-----
##D fit1 <- FourPHFfit(germ.counts = x, intervals = int,
##D
                     total.seeds = 50, tmax = 20)
##D # From cumulative germination counts
##D #----
##D fit2 <- FourPHFfit(germ.counts = y, intervals = int,
```

```
##D
                        total.seeds = 50, tmax = 20, partial = FALSE)
##D
##D # Default plots
##D plot(fit1)
##D plot(fit2)
##D
##D # No labels
##D plot(fit1, plotlabels = FALSE)
##D plot(fit2, plotlabels = FALSE)
##D # Only the FPHF curve
##D plot(fit1, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
         tmgr = FALSE, mgt = FALSE, uniformity = FALSE)
##D plot(fit2, rog = FALSE, t50.total = FALSE, t50.germ = FALSE,
##D
         tmqr = FALSE, mqt = FALSE, uniformity = FALSE)
##D
##D # Without y axis limits adjustment
##D plot(fit1, limits = FALSE)
##D plot(fit2, limits = FALSE)
## End(No test)
```

Wrapper functions

Wrapper functions germination.indices() and FourPHFfit.bulk() are available in the package for computing results for multiple samples in batch from a data frame of germination counts recorded at specific time intervals.

germination.indices() This wrapper function can be used to compute several germination indices simultaneously for multiple samples in batch.

FourPHFfit.bulk() This wrapper function can be used to fit the four-parameter hill function for multiple samples in batch.

To cite the R package 'germinationmetrics' in publications use:

```
##D fix.y0 = TRUE, fix.a = TRUE, xp = c(10, 60),
##D tmax = 20, tries = 3, umax = 90, umin = 10
## End(No test)
```

Citing germinationmetrics

[5] pillar_1.4.4

```
Aravind, J., Vimala Devi, S., Radhamani, J., Jacob, S. R., and
  Kalyani Srinivasan (2020). germinationmetrics: Seed Germination
  Indices and Curve Fitting. R package version 0.1.4,
  https://github.com/aravind-j/germinationmetricshttps://cran.r-project.org/package=germinationmetrics.
A BibTeX entry for LaTeX users is
  @Manual{,
   title = {germinationmetrics: Seed Germination Indices and Curve Fitting},
    author = {J. Aravind and S. {Vimala Devi} and J. Radhamani and Sherry Rachel Jacob and {Kalyani Sri
   year = {2020},
   note = {R package version 0.1.4},
   note = {https://github.com/aravind-j/germinationmetrics},
   note = {https://cran.r-project.org/package=germinationmetrics},
  }
This free and open-source software implements academic research by the
authors and co-workers. If you use it, please support the project by
citing the package.
Session Info
sessionInfo()
R Under development (unstable) (2020-05-06 r78376)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=C
                                  LC_CTYPE=English_India.1252
[3] LC_MONETARY=English_India.1252 LC_NUMERIC=C
[5] LC_TIME=English_India.1252
attached base packages:
             graphics grDevices utils
[1] stats
                                          datasets methods base
other attached packages:
[1] germinationmetrics_0.1.4
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6
                     highr_0.8
                                        plyr_1.8.6
                                                         compiler_4.1.0
```

bitops_1.0-6

tools 4.1.0

mathjaxr_1.0-0

[9]	digest_0.6.25	lattice_0.20-41	nlme_3.1-147	evaluate_0.14
[13]	lifecycle_0.2.0	tibble_3.0.1	gtable_0.3.0	pkgconfig_2.0.3
[17]	rlang_0.4.6	bibtex_0.4.2.2	curl_4.3	ggrepel_0.8.2
[21]	yaml_2.2.1	xfun_0.14	httr_1.4.1	stringr_1.4.0
[25]	dplyr_0.8.5	knitr_1.28	generics_0.0.2	vctrs_0.2.4
[29]	gbRd_0.4-11	grid_4.1.0	tidyselect_1.1.0	glue_1.4.1
[33]	data.table_1.12.8	R6_2.4.1	Rdpack_0.11-2	XML_3.99-0.3
[37]	minpack.lm_1.2-1	rmarkdown_2.1	pander_0.6.3	tidyr_1.0.3
[41]	ggplot2_3.3.1	purrr_0.3.4	magrittr_1.5	backports_1.1.7
[45]	scales_1.1.1	ellipsis_0.3.1	htmltools_0.4.0	${\tt assertthat_0.2.1}$
[49]	colorspace_1.4-1	stringi_1.4.6	RCurl_1.98-1.2	munsell_0.5.0
[53]	broom_0.5.6	crayon_1.3.4		

References

Allan, R. E., Vogel, O. A., and Peterson, C. J. (1962). Seedling emergence rate of fall-sown wheat and its association with plant height and coleoptile length. *Agronomy Journal* 54, 347. doi:10/cm7jct.

Al-Mudaris, M. A. (1998). Notes on various parameters recording the speed of seed germination. *Der Tropenlandwirt-Journal of Agriculture in the Tropics and Subtropics* 99, 147–154.

AOSA (1983). Seed Vigor Testing Handbook. Ithaca, NY, USA: Association of Official Seed Analysts.

Baskin, C. C., and Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego: Academic Press.

Bewley, J. D., and Black, M. (1994). Seeds: Physiology of Development and Germination. New York, USA: Plenum Publishing Corporation Available at: https://www.cabdirect.org/cabdirect/abstract/19950315483.

Bilbro, J. D., and Wanjura, D. F. (1982). Soil crusts and cotton emergence relationships. Transactions of the $ASAE\ 25,\ 1484-1487.\ doi:10/ggjc3x.$

Bonner, F. T. (1967). Ideal sowing depth for sweetgum seed. *Tree Planters' Notes* 18, 1–1. Available at: https://www.fs.usda.gov/treesearch/pubs/download/42583.pdf.

Bouton, J. H., Dudeck, A. E., and Smith, R. L. (1976). Germination in freshly harvested seed of centipedegrass. *Agronomy Journal* 68, 991. doi:10/cskpqh.

Bradbeer, J. W. (1988). *Seed Dormancy and Germination*. Glasgow; London: Blackie Available at: www.springer.com/in/book/9780216916364 [Accessed January 15, 2018].

Brown, R. F., and Mayer, D. G. (1988). Representing cumulative germination. 1. A critical analysis of single-value germination indices. *Annals of Botany* 61, 117–125. doi:10.1093/oxfordjournals.aob.a087534.

Chaudhary, T. N., and Ghildyal, B. P. (1970). Effect of temperature associated with levels of bulk density on rice seedling emergence. *Plant and Soil* 33, 87–90. doi:10/bzdwmt.

Coolbear, P., Francis, A., and Grierson, D. (1984). The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. *Journal of Experimental Botany* 35, 1609–1617. doi:10.1093/jxb/35.11.1609.

Czabator, F. J. (1962). Germination value: An index combining speed and completeness of pine seed germination. Forest Science 8, 386–396. doi:10.1093/forestscience/8.4.386.

Djavanshir, K., and Pourbeik, H. (1976). Germination value-A new formula. Silvae genetica 25, 79–83.

Edmond, J. B., and Drapala, W. J. (1958). The effects of temperature, sand and soil, and acetone on germination of okra seed. *Proceedings of the American Society for Horticultural Science* 71, 428–434.

Edwards, T. I. (1932). Temperature relations of seed germination. The Quarterly Review of Biology 7, 428–443.

El-Kassaby, Y. A., Moss, I., Kolotelo, D., and Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. *Forest Science* 54, 220–227. doi:10.1093/forestscience/54.2.220.

Ellis, R. H., and Roberts, E. H. (1980). Improved equations for the prediction of seed longevity. *Annals of Botany* 45, 13–30. doi:10.1093/oxfordjournals.aob.a085797.

Erbach, D. C. (1982). Tillage for continuous corn and corn-soybean rotation. Transactions of the ASAE 25, 906–0911. doi:10/ggjc4g.

Evetts, L. L., and Burnside, O. C. (1972). Germination and seedling development of common milkweed and other species. *Weed Science* 20, 371–378. doi:10.1017/S004317450003589x.

Fakorede, M. A. B., and Agbana, S. B. (1983). Heterotic effects and association of seedling vigour with mature characteristics and grain yield in some tropical maize cultivars. *Maydica* 28, 327–338.

Fakorede, M. A. B., and Ayoola, A. O. (1980). Relation between seedling vigor and selection for yield improvement in maize. *Maydica* 25, 135–147.

Fakorede, M. A. B., and Ojo, D. K. (1981). Variability for seedling vigour in maize. *Experimental Agriculture* 17, 195–201. doi:10/cxr9cn.

Farooq, M., Basra, S. M. A., Ahmad, N., and Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. *Journal of Integrative Plant Biology* 47, 187–193. doi:10.1111/J.1744-7909.2005.00031.x.

George, D. W. (1961). Influence of germination temperature on the expression of post-harvest dormancy in wheat. Crop Science Abstracts; Western Society of Crop Science Annual Meeting, 1961, 15.

Goloff, A. A., and Bazzaz, F. A. (1975). A germination model for natural seed populations. *Journal of Theoretical Biology* 52, 259-283. doi:10.1016/0022-5193(75)90001-6.

Gomes, F. P. (1960). *Curso De Estatística Experimental*. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Available at: https://books.google.de/books?id=ZckqGwAACAAJ.

Goodchild, N. A., and Walker, M. G. (1971). A method of measuring seed germination in physiological studies. *Annals of Botany* 35, 615–621. Available at: https://www.jstor.org/stable/42908843 [Accessed January 15, 2018].

Gordon, A. G. (1969). Some observations on the germination energy tests for cereals. *Proceedings of the Association of Official Seed Analysts* 59, 58–72. Available at: https://www.jstor.org/stable/23432357 [Accessed December 11, 2018].

Gordon, A. G. (1971). The germination resistance test - A new test for measuring germination quality of cereals. *Canadian Journal of Plant Science* 51, 181–183. doi:10/fh6586.

Grose, R. J., and Zimmer, W. J. (1958). Some laboratory germination responses of the seeds of river red gum, *Eucalyptus camaldulensis* Dehn. Syn. *Eucalyptus rostrata* Schlecht. *Australian Journal of Botany* 6, 129. doi:10/bkp42t.

Haugland, E., and Brandsaeter, L. O. (1996). Experiments on bioassay sensitivity in the study of allelopathy. *Journal of Chemical Ecology* 22, 1845–1859.

Heydecker, W. (1972). Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. University Park, USA: Pennsylvania State University Press.

Hsu, F. H., and Nelson, C. J. (1986). Planting date effects on seedling development of perennial warm-season forage grasses. I. Field emergence. *Agronomy Journal* 78, 33–38. doi:10/bh39mm.

ISTA (2015). Chapter 5: The germination test. International Rules for Seed Testing. International Seed Testing Association, Zurich, Switzerland. 2015, i-5-56. Available at: https://doi.org/10.15258/istarules.2015.05.

Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. *Journal and Proceedings of the Royal Society of New South Wales* 138, 65–75.

Kendrick, R. E., and Frankland, B. (1969). Photocontrol of germination in *Amaranthus caudatus*. *Planta* 85, 326–339. doi:10.1007/bf00381281.

Khamassi, K., Harbaoui, K., Jaime, A. T. da S., and Jeddi, F. B. (2013). Optimal germination temperature assessed by indices and models in field bean (*Vicia faba L. Var. Minor*). *Agriculturae Conspectus Scientificus* 78, 131–136. Available at: https://hrcak.srce.hr/104663.

Khan, M. A., and Ungar, I. A. (1984). The effect of salinity and temperature on the germination of polymorphic seeds and growth of *Atriplex triangularis* Willd. *American Journal of Botany* 71, 481–489. doi:10.2307/2443323.

Khandakar, A. L., and Bradbeer, J. W. (1983). Jute seed quality. Bangladesh Agricultural Research Council, Dhaka.

Kotowski, F. (1926). Temperature relations to germination of vegetable seeds. *Proceedings of the American Society for Horticultural Science* 23, 176–184.

Labouriau, L. G. (1983a). A Germinação Das Sementes. Organização dos Estados Americanos. Programa Regional de Desenvolvimento Científico e Tecnológico. Série de Biologia. Monografia 24.

Labouriau, L. G. (1983b). Uma nova linha de pesquisa na fisiologia da germinação das sementes. *Anais do XXXIV Congresso Nacional de Botânica. SBB, Porto Alegre*, 11–50.

Labouriau, L. G., and Valadares, M. E. B. (1976). On the germination of seeds of *Calotropis procera* (Ait.) Ait. F. *Anais da Academia Brasileira de Ciências* 48.

Lyon, J. L., and Coffelt, R. J. (1966). Rapid method for determining numerical indexes for time-course curves. *Nature* 211, 330–330. doi:10/b46knw.

Maguire, J. D. (1962). Speed of germination - Aid in selection and evaluation for seedling emergence and vigor. *Crop Science* 2, 176–177. doi:10.2135/cropsci1962.0011183x000200020033x.

Melville, A. H., Galletta, G. J., Draper, A. D., and Ng, T. J. (1980). Seed germination and early seedling vigor in progenies of inbred strawberry selections. *HortScience* 15, 749–750.

Mock, J. J., and Eberhart, S. A. (1972). Cold tolerance in adapted maize populations. *Crop Science* 12, 466–469. doi:10/cvtgtd.

Negm, F. B., and Smith, O. E. (1978). Effects of Ethylene and Carbon Dioxide on the Germination of Osmotically Inhibited Lettuce Seed. *Plant Physiology* 62, 473–476. doi:10/bd98fn.

Nichols, M. A., and Heydecker, W. (1968). Two approaches to the study of germination data. *Proceedings of the International Seed Testing Association* 33, 531–540.

Primack, R. B. (1985). Longevity of individual flowers. *Annual Review of Ecology and Systematics* 16, 15–37. doi:10.1146/annurev.es.16.110185.000311.

Quintanilla, L. G., Pajarón, S., Pangua, E., and Amigo, J. (2000). Effect of temperature on germination in northernmost populations of *Culcita macrocarpa* and *Woodwardia radicans*. *Plant Biology* 2, 612–617. doi:10.1055/s-2000-16638.

Ranal, M. A. (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. *American Fern Journal* 89, 149. doi:10.2307/1547349.

Ranal, M. A., and Santana, D. G. de (2006). How and why to measure the germination process? *Brazilian Journal of Botany* 29, 1–11. doi:10.1590/s0100-84042006000100002.

Reddy, L. V. (1978). Effect of temperature on seed dormancy and alpha-amylase activity during kernel maturation and germination in wheat (*Triticum aestivum* L.) Cultivars. Available at: https://ir.library.oregonstate.edu/concern/graduate thesis or dissertations/1j92gb854.

Reddy, L. V., Metzger, R. J., and Ching, T. M. (1985). Effect of temperature on seed dormancy of wheat. *Crop Science* 25, 455. doi:10.2135/cropsci1985.0011183X002500030007x.

Santana, D. G. de, and Ranal, M. A. (2004). Análise Da Germinação: Um Enfoque Estatístico. Brasília: Universidade de Brasília.

Schrader, J. A., and Graves, W. R. (2000). Seed germination and seedling growth of *Alnus maritima* from its three disjunct populations. *Journal of the American Society for Horticultural Science* 125, 128–134. Available at: http://journal.ashspublications.org/content/125/1/128 [Accessed December 12, 2018].

Scott, S. J., Jones, R. A., and Williams, W. A. (1984). Review of data analysis methods for seed germination. $Crop\ Science\ 24,\ 1192-1199.\ doi:10.2135/cropsci1984.0011183x002400060043x.$

Shannon, C. E. (1948). A mathematical theory of communication. *Bell System Technical Journal* 27, 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

Shmueli, M., and Goldberg, D. (1971). Emergence, early growth, and salinity of five vegetable crops germinated by sprinkle and trickle irrigation in an arid zone. *HortScience* 6, 563–565.

Smith, P. G., and Millet, A. H. (1964). Germinating and sprouting responses of the tomato at low temperatures. *Journal of the American Society for Horticultural Science* 84, 480–484.

Throneberry, G. O., and Smith, F. G. (1955). Relation of respiratory and enzymatic activity to corn seed viability. *Plant Physiology* 30, 337–343.

Timson, J. (1965). New Method of Recording Germination Data. Nature 207, 216. doi:10.1038/207216a0.

Tucker, H., and Wright, L. N. (1965). Estimating rapidity of germination. Crop Science 5, 398-399. doi:10.2135/cropsci1965.0011183X000500050006x.

Wardle, D. A., Ahmed, M., and Nicholson, K. S. (1991). Allelopathic influence of nodding thistle (*Carduus nutans* L.) Seeds on germination and radicle growth of pasture plants. *New Zealand Journal of Agricultural Research* 34, 185–191. doi:10.1080/00288233.1991.10423358.

Went, F. W. (1957). The experimental control of plant growth. Chronica Botanica Co., Waltham, Mass., USA; The Ronald Press Co., New York.