Verzani Problem Set

Next are considered the problems from Verzani's book on page 92.

Problem 15.1

The dataset InsectSpray has data on the count of insects in areas treated with one of 6 different types of sprays. The dataset is already in the proper format for the one-way analysis of variance - a vector with the data count, and one with a factor describing the level spray. First make a side-by-side boxplot to see if the means are equal. Then perform a one-way ANOVA to check if they are. Do they agree?

Y is the count of insects.

X is the type of the spray. It has 6 levels: A, B, C, D and F.

> head(InsectSprays)

count spray 10 1 Α 7 Α 2 3 20 Α 4 14 Α 5 14 Α 6 12 Α

> boxplot(InsectSprays\$count ~ InsectSprays\$spray)

Are the differences between these means statistically significant?

$$H_0$$
: $\mathbb{E}(Y|X=A) = \mathbb{E}(Y|X=C) = \mathbb{E}(Y|X=D) =$
= $\mathbb{E}(Y|X=E) = \mathbb{E}(Y|X=F)$

$$H_A$$
: At least two of $\mathbb{E}(Y \mid X = A)$, $\mathbb{E}(Y \mid X = B)$, $\mathbb{E}(Y \mid X = C)$, $\mathbb{E}(Y \mid X = D)$,

 $\mathbb{E}(Y|X=E)$ and $\mathbb{E}(Y|X=F)$ are different.

or which is the same as

```
\begin{split} H_0: \sigma_B^2 &= \sigma_W^2 \\ H_A: \sigma_B^2 \neq \sigma_W^2 \\ > &\text{myanova} <-\text{aov(count} \sim \text{spray, data} = \text{InsectSprays)} \\ > &\text{summary(myanova)} \\ &\text{Df Sum Sq Mean Sq F value Pr(>F)} \\ &\text{spray} \qquad 5 \quad 2669 \quad 533.8 \quad 34.7 < 2\text{e-}16 \ ^{***} \\ &\text{Residuals} \quad 66 \quad 1015 \quad 15.4 \end{split}
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first three numbers in the row spray are for the degrees of freedom, SS_R and MS_R .

The first three numbers in the row Residuals are for the degrees of freedom, SS_W and MS_W .

The number F value is for

$$F_{emp} = \frac{MS_B}{MS_W} = 34.702$$

The corresponding

$$p-value = \mathbb{P}(F_{stat} > F_{emp} \,|\, H_0) = \mathbb{P}(\eta > F_{emp}) < 2.2e - 16 < 0.05 = \alpha,$$

so we reject H_0 . According to the data the spray is statistically significant for the number of the insects in the area.

Problem 15.2

The newcar data set from <u>here</u> contains the interest rates in 6 different towns. Customer would like to know if there is statistically significant difference between the interest rates in these towns. Do a one-way analysis of variance to test the hypothesis that the interest rates are the same for all 6 towns. What do you conclude?

```
> library(readr)
> newcar <- read_table2("Data/newcar.dat", col_names = c("Rate", "City"), skip = 24,
comment = "--")</pre>
```

```
-- Column specification -----
cols(
 Rate = col double(),
 City = col_double()
> head(newcar)
# A tibble: 6 x 2
 Rate City
 <dbl> <dbl>
1 13.8
        1
2 13.8
3 13.5
       1
4 13.5
       1
5 13
6 13
       1
> myanova <- aov(Rate ~ City, data = newcar)
> summary(myanova)
      Df Sum Sq Mean Sq F value Pr(>F)
City
        1 0.75 0.7516 1.223 0.274
Residuals 52 31.95 0.6145
```

The first three numbers in the row City are for the degrees of freedom, SS_B and MS_B .

The first three numbers in the row Residuals are for the degrees of freedom, SS_W and MS_W .

The number F value is for

$$F_{emp} = \frac{MS_B}{MS_W} = 1.223$$

The corresponding

$$p-value = \mathbb{P}(F_{stat} > F_{emp} \,|\, H_0) = \mathbb{P}(\eta > F_{emp}) = 0.274 > 0.05 = \alpha,$$

so we have no evidence to reject H_0 . According to the data the cities are not statistically significant for the interest rates.