NODEA Note

Basic Knowledge

Def of ODE & ODEs: $\frac{dy}{dt} = f(t, y)$ & ODEs: $\frac{dy}{dt} = \mathbf{f}(t, \mathbf{y})$, $\mathbf{y} = (y_1, ..., y_d)^T$, $\mathbf{f}(t, \mathbf{y}) = (f_1(t, \mathbf{y}), ..., f_d(t, \mathbf{y}))^T$ **Autonomous**: $\frac{dy}{dt} = \mathbf{f}(\mathbf{y}) \Rightarrow \text{ autonomous ODE}(\mathbf{s})$. $|| \Downarrow \text{ New Autonomous ODEs}: \frac{dy}{ds} = \mathbf{f}(y_{d+1}, \mathbf{y}) \text{ and } \frac{dy_{d+1}}{ds} = 1$ • **Change to Autonomous**: For $\frac{dy}{dt} = \mathbf{f}(t, \mathbf{y})$. Let $y_{d+1} = t$ and *new* independent variable s s.t. $\frac{dt}{ds} = 1$ \uparrow

Linearity: ODE: $\frac{dy}{dt} = f(t, y)$ is linearity if f(t, y) = a(t)y + b(t) || ODEs: If each ODE is linear, then the ODEs are linear.

Picard's Theorem: If f(t,y) is continuous in $D := \{(t,y) : t_0 \le t \le T, |y-y_0| < K\}$ and $\exists L > 0$ (Lipschitz constant) s.t.

 $\forall (t,u), (t,v) \in D \quad |f(t,u)-f(t,v)| \leq L|u-v| \text{ (ps:Can use MVT)}. \text{ And Assume that } M_f(T-t_0) \leq K, M_f := \max\{|f(t,u)|: (t,u) \in D\}$ \Rightarrow **Then**, \exists a unique continuously differentiable solution y(t) to the IVP $\frac{dy}{dt} = f(t,y), y(t_0) = y_0$ on $t \in [t_0,T]$.

Existence & Uniqueness Theorem: IVP $\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \mathbf{y}(t_0) = \mathbf{y}_0$. If f(t, y) and $\frac{\partial f}{\partial y_i}$ are continuous in a neighborhood of (t_0, \mathbf{y}_0) . ⇒ **Then**, $\exists I := (t_0 - \delta, t_0 + \delta)$ s.t. \exists a unique continuously differentiable solution $\mathbf{y}(t)$ to the IVP on $t \in I$.

Acknowledge

Notation	Meaning	Notation	Meaning
[<i>a</i> , <i>b</i>]	Approximate function for $t \in [a, b]$	$t_0 = a \mid t_N = b$	Assume that $t_0 = a$, $t_N = b$
N	number of timesteps (i.e. Break up interval [a, b] into N equal-length sub-intervals)	h	stepsize $(h = \frac{b-a}{N})$
t_i	Define $N + 1$ points: $t_0, t_1,, t_N$	t_m	$t_m = a + h \cdot m = t_0 + h \cdot m$
y_i	Approximation of y at point $t = t_i$ (Except y_0)	$y(t_i)$	Exact value of y at point $t = t_i$

Euler's Method and Taylor Series Method

Euler's Method Algorithm: Approximate ODE $\frac{dy}{dt} = f(t, y), y(t_0) = y_0$ with number of steps N. (Similarly for ODEs)

 $\Rightarrow \textbf{for } n = 0, 1, 2, ..., N-1: \quad y_{n+1} = y_n + hf(t_0 + nh, y_n) = y_n + hf(t_n, y_n) \quad \textbf{end}$ (ps: \$\psi\$ Can get **Boundedness Theorem**: For $\frac{dy}{dt} = f(t, y), y(a) = y_0$ and suppose there exists a unique, twice differentiable, solution y(t) on [a, b]. Suppose: y is continuous and $\left|\frac{\partial f}{\partial y}\right| \le L$. \Rightarrow the solution y_n given Euler's method satisfies: $e_n = |y_n - y(t_n)| \le Dh$, $D = e^{(b-a)L} \frac{M}{2L}$

• **Lemma**: If $v_{n+1} \le Av_n + B$, then $v_n \le A^n v_0 + \frac{A^n - 1}{A - 1}B$ If $v_n = e_n := y_n - y(t_n)$, then A = 1 + hL, $B = h^2 M/2$ (suppose |y''| < M) **Order Notation (** \mathcal{O} **)**: we write $z(h) = \mathcal{O}(h^p)$ if $\exists \hat{C}, \hat{h}_0 > 0$ s.t. $|z| \le Ch^p, 0 < h < h_0$

Flow Map (Φ , Ψ **)**: $\Phi_{t_0,h}(y_0) = y(t_0 + h)$ Clearly, $\Phi(t_n + h) = y(t_n + h) = \Phi_h(y(t_n)) = y(t_{n+1})$.

 $\cdot \ \Psi_{t_n,h}(y_n) = y_{n+1} \text{:= Numerical method for ODE} \quad \text{Clearly, } \Psi(t_n+h) = y_{n+1} = \Psi_h(y_n)$

Taylor Series Method: Approximate ODE $\frac{dy}{dt} = f(t,y)$, $y(t_0) = y_0$ with *n-order Methods*: 用 Taylor Series 在 $t_0 + h$ 处展开保留到 n 阶

 $\Phi_{t,h}(y) = y + hf(t,y) + \frac{1}{2}h^2[f_t(t,y) + f_y(t,y)f(t,y)] + \frac{1}{6}y'''(t,y)h^3 + \cdots \qquad \text{(For one variable } y)$ $\cdot \text{ps: Taylor Series: } y(t_0 + h) = y(t_0) + hy'(t_0) + \frac{h^2}{2}y''(t_0) + \cdots + \frac{h^{n-1}}{(n-1)!}y^{(n-1)}(t_0) + \frac{h^n}{n!}y^{(n)}(t^*), t^* \in [t,t+h] \qquad \text{ps: } y' = f,y'' = f_t + f_y f_t$

Convergence of One-Step Methods consider for autonomous y' = f(y)

Convergence | Consistent | Stable

Global Error: global error after n steps: $e_n := y_n - y(t_n)$ **Local Error**: For *one-step* method is: $le(y,h) = \Psi_h(y) - \Phi_h(y)$

Consistent: If $||le(y,h)|| \le Ch^{p+1} (\le \mathcal{O}(h^{p+1}))$, C > 0. \Rightarrow Consistent at order p. **Stable**: If $||\Psi_h(u) - \Psi_h(v)|| \le (1 + h\hat{L})||u - v||$

Convergent: A method is convergent if: $\forall T$, $\lim_{h \to 0, h = T/N} \max_{n = 0, 1, \dots, N} ||e_n|| = 0$ \Downarrow Then the global error satisfies: $\max_{n = 0, 1, \dots, N} ||e_n|| = \mathcal{O}(h^p)$ p-th order **Convergence of One-Step Method**: For y' = f(y), and a one-step method $\Psi_h(y)$ is 1 consistent at order p and 2 stable with \hat{L} $\hat{\Pi}$. (ps: $C = \frac{C}{\hat{l}}(e^{T\hat{L}} - 1)$)

More One-Step Methods | Runge-Kutta Methods | Collocation

Construction of More General one-step Method: For y' = f(y), $y(t_0) = y_0 \Rightarrow y(t+h) - y(t) = \int_t^{t+h} f(y(\tau)) d\tau$

Trapezoidal Method: $y_{n+1} = y_n + \frac{h}{2}(f(y_n) + f(y_{n+1}))$ Midpoint Method: $y_{n+1} = y_n + hf(\frac{y_n + y_{n+1}}{2})$

One-Step Collocation Methods (By Lagrange Interpolating Polynomials):

1. Lagrange Interpolating Polynomials: $\ell_i(x) = \prod_{j=1, j \neq i}^{s} \frac{x-c_j}{c_i-c_j} \in \mathbb{P}_{s-1}$ where $c_i \in F \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$

 \Rightarrow **Polynomial Interpolation**: $\forall p(x) \in \mathbb{P}_{s}$ with $p(c_{i}) = g_{i} \in F \Rightarrow \exists ! \ p(x) = \sum_{i=1}^{s} g_{i}\ell_{i}(x)$ (Can be proved by Honour Algebra)

2. Quadrature Rule: If $g(t) \in \mathbb{P}_{p-1} \Rightarrow \text{Order } p$ $\int_{t_0}^{t_0+h} g(t)dt = \int_0^1 g(t_0+hx)dx \approx h\sum_{i=1}^s b_i g(t_0+hc_i), b_i := \int_0^1 \ell_i(x)dx$ ps: $c_i \bowtie [0,1] \neq \emptyset$

3. Collocation Methods: For: $y(t_0) = y_0$, $y'(t_0 + c_i h) = f(y(t_0 + c_i h))$ ps: $c_i \bowtie_{[0,1]} + y_0 \neq 0$ Let: $a_{ij} := \int_0^{c_i} \ell_j(x) dx$ and $b_i := \int_0^1 \ell_i(x) dx$ $\Rightarrow F_i = f(y_n + h\sum_{j=1}^{s} a_{ij}F_j) \text{ and } y_{n+1} = y_n + h\sum_{i=1}^{s} b_iF_i$ where $F_i := y'(t_0 + c_i h)$

 \cdot **Remark:** For choice of c_i : The optimal choice is attained by *Gauss-Legendre collocation methods*.

Runge-Kutta Methods: Let y' = f(t, y) Stage Values: $Y_i = y_n + h \sum_{j=1}^s a_{ij} f(Y_j)$ $i \in \{1, ..., s\}$ $F_i = f(Y_i)$

1. The RK method is the form: $y_{n+1} = y_n + h \sum_{i=1}^{s} b_i f(t_n + c_i, Y_i)$ for some values of b_i , a_{ij} , s, c_i for Autonomous: $c_i = \sum_{j=1}^{s} a_{ij}$

2. Flow-map: $\Psi_h(y) = y + h \sum_{i=1}^s b_i f(t_n + c_i, Y_i(y, h))$ ps:weights: b_i ; internal coefficients: a_{ij}

3. We can using **Butcher Table** to represent the RK method (Appendix) **Explicit**: $a_{ij} = 0$ for $j \ge i$ (严格下三角行) **Implicit**: $\exists a_{ij} \ne 0$ for $j \ge i$ (Not Explicit)

4.3 Accuracy of RK Method | Order Condition

Some Notations: If $\mathbf{y} = f'(\mathbf{y})$ where $f(\mathbf{y}) : \mathbb{R}^d \to \mathbb{R}^d$. Def $f' = (\frac{\partial f_i}{\partial y_j}), 1 \le i \le d, 1 \le j \le d$ (frigh) $f'' = (\frac{\partial^2 f_i}{\partial y_j \partial y_k}), 1 \le i \le d, 1 \le j, k \le d$. Def: $f''(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f_i}{\partial y_j \partial y_k} a_j b_k \quad | \ y' = f \quad y'' = \sum_{j=1}^d \frac{\partial f_i}{\partial y_j} f_j = f'f \quad y''' = \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f_i}{\partial y_j \partial y_k} y_j'(t) y_k'(t) + \sum_{j=1}^d \frac{\partial f_j}{\partial y_j} y_j''(t) = f''(f, f) + f'f'f$ $\Phi_h(y) = y + hf + \frac{h^2}{2}f'f + \frac{h^3}{6}[f''(f,f) + f'f'f] + \mathcal{O}(h^4)$ $\textbf{Order Condition}: \text{ RK method: } y_{n+1} = y_n + h\sum_{i=1}^s b_i f(Y_i), \text{ Let } z(h) = \Phi_h(y) \\ \Rightarrow \text{ If } z'(0) = y', z''(0) = y'', ..., z^{(n)} = y^{(n)} \Rightarrow \text{ Convergent at order } n$ $\cdot \text{ Order 1: } \sum_{i=1}^s b_i = 1 \qquad \text{ Order 2: (add) } \sum_{i=1}^s b_i c_i = \frac{1}{2} \qquad \text{ Order 3: (add) } \sum_{i=1}^s b_i c_i^2 = \frac{1}{3} \text{ and } \sum_{i=1}^s \sum_{j=1}^s b_i a_{ij} c_j = \frac{1}{6}$

5 Appendix

5.1 Useful Series | Common RK Methods

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \quad \cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n} \quad \arctan(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \quad \sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \\ \cosh(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \quad (1+x)^{k} = 1 + kx + \frac{k(k-1)x^{2}}{2!} + \dots = \sum_{n=0}^{\infty} {k \choose n} x^{n} \frac{1}{1-x} = 1 + x + x^{2} + \dots = \sum_{n=0}^{\infty} x^{n} \\ \frac{1}{1+x} = 1 - x + x^{2} + \dots = \sum_{n=0}^{\infty} (-1)^{n} x^{n} \quad \ln(x) = (x-1) - \frac{(x-1)^{2}}{2} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^{n}}{n}, x > 0 \\ \text{Common Runge-Kutta Methods (Butcher Table):}$$

c_1 \vdots c_s	a_{11} \vdots a_{s1}	 % 	a_{1s} \vdots a_{ss}	0 1	0 1 1 1/2 1/2	0 1/2 1		2	2	0 1/2 1/2 1	1/2 0 0	1/2	1		
	b₁ Exan	$b_1 \cdots b_s$ Example	b_s	RK1 (Euler's Method)	RK2 (Heun's Method)		1/6 2/3 RK3	1/6		1/6 RK4 (Cl	1/3 assical/F	1/3 (amous)	1/6	-	