试题科目: 2017-2018 学年第二学期《高等数学 A2》试卷

题号	_	=	三	四	五	六	七	八	九	总分
得分										

(本试卷共 9 个题, 满分为 100 分)

得分

1. (每小题 3 分, 共 15 分) 填空题

- (1) 二重极限 $\lim_{(x,y)\to(0,3)}\frac{\sin(xy)}{x}=-$
- (2) $I = \int_0^2 dx \int_x^{2x} f(x, y) dy$, 交换积分顺序后, I =______
- (3) 若级数 $\sum_{n_p}^{\infty} \frac{(-1)^{n-1}}{n^p}$ 发散,则 p 应满足条件 ______.
- (4) 曲面 S 是半径为 R 的球面,方向取外侧,则 $\iint_{\mathcal{L}} x dy dz + y dz dx + z dx dy = ___$
- (5) 已知向量 \vec{a} , \vec{b} 满足 $\vec{a} + \vec{b} = \vec{0}$, $|\vec{a}| = 2$, $|\vec{b}| = 2$, 则 $\vec{a} \cdot \vec{b} =$ ______

得分

2. (每小题 3 分. 共 15 分) 单项选择题

- (1) 设 $z = x^y, x > 0$, 则全微分 dz = ().
- A. $yx^{y-1}dx + x^y lnxdy$; B. $x^y lnxdx + yx^{y-1}dy$;
- C. $yx^{y-1}dx + x^y lnydy$: D. $yx^{y-1}dx + x^y lnydy$.
- (2) 函数 $u = xy^2z$ 在点 P(1,-1,2) 处沿 $\vec{l} = ($) 的方向导数最大.
- A. (2,4,1); B.(2,4,-1); C. (2,-4,1); D. (-2,4,1).

- (3) 设有直线 $L: \left\{ \begin{array}{ll} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{array} \right.$ 及平面 $\pi: 4x-2y+z-2=0$, 则直线 $L(\)$.
- A. 与 π 斜交; B. 在平面 π 上; C. 垂直于 π ; D. 平行于 π .
- (4) 在曲线 $x = t, y = t^2, z = t^3$ 的所有切线中与平面 x + 2y + z = 4 平行的切线有 (
- A. 只有一条; B. 只有两条; C. 至少有三条; D. 不存在.
- (5) 二元函数 f(x,y) 在 (x_0,y_0) 处偏导数存在与函数可微之间的关系是 ().
- A. 偏导数存在必可微; B. 偏导数存在与函数可微等价;
- C. 函数可微必有偏导数存在; D. 偏导数存在与函数可微之间没有关系.

得分 3. (10 分) 计算曲线积分 $\int_L (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$, 其中 L 为沿上 半圆周 $(x-a)^2 + y^2 = a^2, y \ge 0$ 上从 A(2a,0) 到 (0,0) 的弧段.

得分 4. (10 分) 求函数 $f(x,y) = x^2y(4-x-y)$ 在由直线 x+y=6, y=0, x=0 所 围成的闭区域 D 上的最大值和最小值.

得分 5. (10 分) 计算二重积分 $\iint_D arctan^y dxdy$, 其中 $D = \{(x,y)|x^2+y^2 \le 1, 0 \le y \le x\}$.

[得分] 6. (10 分) 已知二元函数 $z = f(sinxcosy, e^{x+y})$, 其中函数 f(x,y) 具有两阶连续偏导数,求二阶偏导数 $\frac{\partial^2 z}{\partial y^2}$ 和 $\frac{\partial^2 z}{\partial z \partial y}$.

得分 的和.

7. (10 分) 将函数 f(x) = x 在 $[0,\pi]$ 上展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$

得分 8. (10 分) 计算曲面积分 $\oint 2xydydz + yzdxdz - z^2dxdy$, 其中 \sum 是圆锥面 $z = \sqrt{x^2 + y^2}$ 与上半球面 $z = \sqrt{a^2 - x^2 - y^2}$ 所围立体表面的外侧.

9. (10 分) 求幂级数 $\sum_{n=2}^{\infty} \frac{z^n}{n(n-1)4^n}$ 的收敛域,和函数.

姓名:

高京

专业:

科目:

日描全能王 创建

共3页