- 6.8

 1) Soit $(e_1; \ldots; e_n)$ une famille génératrice de E.

 Soit $u \in \text{Im}(h)$. Il existe $u^* \in \text{E}$ tel que $u = h(u^*)$.

 Puisque $(e_1; \ldots; e_n)$ une famille génératrice de E, il existe des scalaires (non nécessairement uniques) $\alpha_1, \ldots, \alpha_n$ tels que $u^* = \alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n$.

 Ainsi $u = h(u^*) = h(\alpha_1 \cdot e_1 + \ldots + \alpha_n \cdot e_n) = \alpha_1 \cdot h(e_1) + \ldots + \alpha_n \cdot h(e_n)$.

 On a donc montré que $\text{Im}(h) = \langle h(e_1); \ldots; h(e_n) \rangle$.
 - 2) (a) Supposons f surjective. L'égalité Im(f) = F implique immédiatement $\dim(\text{Im}(h)) = \dim(F)$.
 - (b) Supposons que $\dim(\operatorname{Im}(h)) = \dim(F)$. Soit $y \in F$.

Puisque $\operatorname{Im}(h)$ est un sous-espace vectoriel de F tel que $\dim(\operatorname{Im}(h)) = \dim(F)$, on conclut que $\operatorname{Im}(h) = F$ (pour autant que F soit de dimension finie).

Mais Im(h) = F signifie que h est surjective.