# Reinforcement Learning Intelligent Systems Series

Georg Martius
Slides adapted from Christoph Lampert, IST Austria

MPI for Intelligent Systems, Tübingen, Germany

October 19, 2018







# Lecture 1: Supervised learning Regression

- Linear Regression
- Regularization
- Model Evaluation and Model Selection
- Nonlinear Regression
- Robust Regression

Given this data:

| value   | 5.88 | 8.28 | 2.91 | 0.87 | 10.72 | 6.16 | 7.64 | 3.46 | 1.23 | 1.36 |
|---------|------|------|------|------|-------|------|------|------|------|------|
| outcome | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

How to fit a model that can predict future outcomes?

#### Given this data:

| value   | 5.88 | 8.28 | 2.91 | 0.87 | 10.72 | 6.16 | 7.64 | 3.46 | 1.23 | 1.36 |
|---------|------|------|------|------|-------|------|------|------|------|------|
| outcome | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

How to fit a model that can predict future outcomes?



Looks more or less straight...

black board Data:

|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

Let's fit a linear model:

$$f(x) = ax$$

f(x) = ax for unknown  $a \in \mathbb{R}$ .

|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

Let's fit a linear model:

$$f(x) = ax$$

for unknown  $a \in \mathbb{R}$ .

How to choose a? Least squares criterion:

$$\min_{a\in\mathbb{R}} \sum_{i=1}^n (ax_i - y_i)^2$$

|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

Let's fit a linear model:

$$f(x) = ax$$

for unknown  $a \in \mathbb{R}$ .

How to choose a? Least squares criterion:

$$\min_{a \in \mathbb{R}} \sum_{i=1}^{n} (ax_i - y_i)^2$$

To find minimum, compute derivative:

$$\frac{d}{da} \sum_{i=1}^{n} (ax_i - y_i)^2 = 2\sum_{i} x_i (ax_i - y_i) = 2a\sum_{i} (x_i)^2 - 2\sum_{i} x_i y_i$$

Set derivative to 0 and solve for a:

$$a = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} (x_{i})^{2}} = \frac{281.56}{339.06} = 0.83$$
  $\rightarrow$   $f(x) = 0.83x$ 



|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |

What else could we have done?

Since we want  $f(x) \approx y$  for f(x) = ax. Since  $a = \frac{f(x)}{x}$ , how about

$$\min_{a} \sum_{i=1}^{n} \left( a - \frac{y_i}{x_i} \right)^2$$

| ſ | $x_i$     | 5.88 | 8.28 | 2.91 | 0.87 | 10.72 | 6.16 | 7.64 | 3.46 | 1.23 | 1.36 |
|---|-----------|------|------|------|------|-------|------|------|------|------|------|
| ĺ | $y_i$     | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |
|   | $y_i/x_i$ | 0.57 | 1.00 | 0.52 | 1.64 | 0.73  | 0.75 | 0.95 | 1.23 | 3.12 | 0.07 |

What else could we have done?

Since we want  $f(x) \approx y$  for f(x) = ax. Since  $a = \frac{f(x)}{x}$ , how about

$$\min_{a} \sum_{i=1}^{n} \left( a - \frac{y_i}{x_i} \right)^2 \qquad \to \quad a = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i} = 1.06$$

| $x_i$     | 5.88 | 8.28 | 2.91 | 0.87 | 10.72 | 6.16 | 7.64 | 3.46 | 1.23 | 1.36 |
|-----------|------|------|------|------|-------|------|------|------|------|------|
|           |      | 8.30 |      |      |       |      |      |      |      |      |
| $y_i/x_i$ | 0.57 | 1.00 | 0.52 | 1.64 | 0.73  | 0.75 | 0.95 | 1.23 | 3.12 | 0.07 |

What else could we have done?

Since we want  $f(x) \approx y$  for f(x) = ax. Since  $a = \frac{f(x)}{x}$ , how about

$$\min_{a} \sum_{i=1}^{n} \left( a - \frac{y_i}{x_i} \right)^2 \qquad \to \quad a = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i} = 1.06$$

Arithmetic mean of ratios? Maybe rather geometric mean:

$$a = \sqrt[n]{\prod_{i} \frac{y_i}{x_i}} = 0.77$$

|   | ٠ ١       |      |      |      |      | 10.72 |      |      |      |      |      |
|---|-----------|------|------|------|------|-------|------|------|------|------|------|
| ĺ | $y_i$     | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |
| Г | $y_i/x_i$ | 0.57 | 1.00 | 0.52 | 1.64 | 0.73  | 0.75 | 0.95 | 1.23 | 3.12 | 0.07 |

What else could we have done?

Since we want  $f(x) \approx y$  for f(x) = ax. Since  $a = \frac{f(x)}{x}$ , how about

$$\min_{a} \sum_{i=1}^{n} \left( a - \frac{y_i}{x_i} \right)^2 \qquad \to \quad a = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i} = 1.06$$

Arithmetic mean of ratios? Maybe rather geometric mean:

$$a = \sqrt[n]{\prod_{i} \frac{y_i}{x_i}} = 0.77$$

Something completely different: piecewise linear?



#### Data:

|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |



#### Data:

|       |      |      |      |      | 10.72 |      |      |      |      |      |
|-------|------|------|------|------|-------|------|------|------|------|------|
| $y_i$ | 3.35 | 8.30 | 1.52 | 1.43 | 7.81  | 4.64 | 7.27 | 4.26 | 3.85 | 0.10 |



Visual inspection: least squares (green) might be best...

Real data is large and high-dimensional: Boston housing dataset

| y     |       |        |       |        |      | $^{13}$ | $x \in \mathbb{R}$ |      |      |      |      |       |      |
|-------|-------|--------|-------|--------|------|---------|--------------------|------|------|------|------|-------|------|
| 24.00 | 4.98  | 396.90 | 15.30 | 296.00 | 1.00 | 4.09    | 65.20              | 6.58 | 0.54 | 0.00 | 2.31 | 18.00 | 0.01 |
| 21.60 | 9.14  | 396.90 | 17.80 | 242.00 | 2.00 | 4.97    | 78.90              | 6.42 | 0.47 | 0.00 | 7.07 | 0.00  | 0.03 |
| 34.70 | 4.03  | 392.83 | 17.80 | 242.00 | 2.00 | 4.97    | 61.10              | 7.18 | 0.47 | 0.00 | 7.07 | 0.00  | 0.03 |
| 33.40 | 2.94  | 394.63 | 18.70 | 222.00 | 3.00 | 6.06    | 45.80              | 7.00 | 0.46 | 0.00 | 2.18 | 0.00  | 0.03 |
| 36.20 | 5.33  | 396.90 | 18.70 | 222.00 | 3.00 | 6.06    | 54.20              | 7.15 | 0.46 | 0.00 | 2.18 | 0.00  | 0.07 |
| 28.70 | 5.21  | 394.12 | 18.70 | 222.00 | 3.00 | 6.06    | 58.70              | 6.43 | 0.46 | 0.00 | 2.18 | 0.00  | 0.03 |
| 22.90 | 12.43 | 395.60 | 15.20 | 311.00 | 5.00 | 5.56    | 66.60              | 6.01 | 0.52 | 0.00 | 7.87 | 12.50 | 0.09 |
| 27.10 | 19.15 | 396.90 | 15.20 | 311.00 | 5.00 | 5.95    | 96.10              | 6.17 | 0.52 | 0.00 | 7.87 | 12.50 | 0.14 |
| 16.50 | 29.93 | 386.63 | 15.20 | 311.00 | 5.00 | 6.08    | 100.00             | 5.63 | 0.52 | 0.00 | 7.87 | 12.50 | 0.21 |
| 18.90 | 17.10 | 386.71 | 15.20 | 311.00 | 5.00 | 6.59    | 85.90              | 6.00 | 0.52 | 0.00 | 7.87 | 12.50 | 0.17 |
| 15.00 | 20.45 | 392.52 | 15.20 | 311.00 | 5.00 | 6.35    | 94.30              | 6.38 | 0.52 | 0.00 | 7.87 | 12.50 | 0.22 |
| 18.90 | 13.27 | 396.90 | 15.20 | 311.00 | 5.00 | 6.23    | 82.90              | 6.01 | 0.52 | 0.00 | 7.87 | 12.50 | 0.12 |
| 21.70 | 15.71 | 390.50 | 15.20 | 311.00 | 5.00 | 5.45    | 39.00              | 5.89 | 0.52 | 0.00 | 7.87 | 12.50 | 0.09 |
| 20.40 | 8.26  | 396.90 | 21.00 | 307.00 | 4.00 | 4.71    | 61.80              | 5.95 | 0.54 | 0.00 | 8.14 | 0.00  | 0.63 |
| 18.20 | 10.26 | 380.02 | 21.00 | 307.00 | 4.00 | 4.46    | 84.50              | 6.10 | 0.54 | 0.00 | 8.14 | 0.00  | 0.64 |
| 19.90 | 8.47  | 395.62 | 21.00 | 307.00 | 4.00 | 4.50    | 56.50              | 5.83 | 0.54 | 0.00 | 8.14 | 0.00  | 0.63 |
| 23.10 | 6.58  | 386.85 | 21.00 | 307.00 | 4.00 | 4.50    | 29.30              | 5.93 | 0.54 | 0.00 | 8.14 | 0.00  | 1.05 |
| 17.50 | 14.67 | 386.75 | 21.00 | 307.00 | 4.00 | 4.26    | 81.70              | 5.99 | 0.54 | 0.00 | 8.14 | 0.00  | 0.78 |
| 20.20 | 11.69 | 288.99 | 21.00 | 307.00 | 4.00 | 3.80    | 36.60              | 5.46 | 0.54 | 0.00 | 8.14 | 0.00  | 0.80 |
| 18.20 | 11.28 | 390.95 | 21.00 | 307.00 | 4.00 | 3.80    | 69.50              | 5.73 | 0.54 | 0.00 | 8.14 | 0.00  | 0.73 |
| 13.60 | 21.02 | 376.57 | 21.00 | 307.00 | 4.00 | 3.80    | 98.10              | 5.57 | 0.54 | 0.00 | 8.14 | 0.00  | 1.25 |
| 19.60 | 13.83 | 392.53 | 21.00 | 307.00 | 4.00 | 4.01    | 89.20              | 5.96 | 0.54 | 0.00 | 8.14 | 0.00  | 0.85 |
| 15.20 | 18.72 | 396.90 | 21.00 | 307.00 | 4.00 | 3.98    | 91.70              | 6.14 | 0.54 | 0.00 | 8.14 | 0.00  | 1.23 |
| 14.50 | 19.88 | 394.54 | 21.00 | 307.00 | 4.00 | 4.10    | 100.00             | 5.81 | 0.54 | 0.00 | 8.14 | 0.00  | 0.99 |
| 15.60 | 16.30 | 394.33 | 21.00 | 307.00 | 4.00 | 4.40    | 94.10              | 5.92 | 0.54 | 0.00 | 8.14 | 0.00  | 0.75 |
| 13.90 | 16.51 | 303.42 | 21.00 | 307.00 | 4.00 | 4.45    | 85.70              | 5.60 | 0.54 | 0.00 | 8.14 | 0.00  | 0.84 |
| 16.60 | 14.81 | 376.88 | 21.00 | 307.00 | 4.00 | 4.68    | 90.30              | 5.81 | 0.54 | 0.00 | 8.14 | 0.00  | 0.67 |
| 14.80 | 17.28 | 306.38 | 21.00 | 307.00 | 4.00 | 4.45    | 88.80              | 6.05 | 0.54 | 0.00 | 8.14 | 0.00  | 0.96 |
| 18.40 | 12.80 | 387.94 | 21.00 | 307.00 | 4.00 | 4.45    | 94.40              | 6.50 | 0.54 | 0.00 | 8.14 | 0.00  | 0.77 |
| 21.00 | 11.98 | 380.23 | 21.00 | 307.00 | 4.00 | 4.24    | 87.30              | 6.67 | 0.54 | 0.00 | 8.14 | 0.00  | 1.00 |
| 12.70 | 22.60 | 360.17 | 21.00 | 307.00 | 4.00 | 4.23    | 94.10              | 5.71 | 0.54 | 0.00 | 8.14 | 0.00  | 1.13 |
| 14.50 | 13.04 | 376.73 | 21.00 | 307.00 | 4.00 | 4.17    | 100.00             | 6.07 | 0.54 | 0.00 | 8.14 | 0.00  | 1.35 |
| 13.20 | 27.71 | 232.60 | 21.00 | 307.00 | 4.00 | 3.99    | 82.00              | 5.95 | 0.54 | 0.00 | 8.14 | 0.00  | 1.39 |
| 13.10 | 18.35 | 358.77 | 21.00 | 307.00 | 4.00 | 3.79    | 95.00              | 5.70 | 0.54 | 0.00 | 8.14 | 0.00  | 1.15 |
|       | 20.34 | 248.31 | 21.00 | 307.00 | 4.00 | 3.76    | 96.90              | 6.10 | 0.54 | 0.00 | 8.14 | 0.00  | 1.61 |

5.96

0.00

0.50

5.85

0.00

0.08

41.50

5.00

279.00 19.20 396.90

Given  $(x_1,y_1),\ldots,(x_n,y_n)$  with  $x_i=(x_i^1,\ldots,x_i^d)\in\mathbb{R}^d$  and  $y_i\in\mathbb{R}.$  black board

Linear model:  $f(x) = w^{\!\scriptscriptstyle \top} \! x \quad \text{ for } w^{\!\scriptscriptstyle \top} \! x = \sum_{j=1}^d w^j x^j$ 

Given  $(x_1,y_1),\ldots,(x_n,y_n)$  with  $x_i=(x_i^1,\ldots,x_i^d)\in\mathbb{R}^d$  and  $y_i\in\mathbb{R}.$  black board

Linear model:  $f(x) = w^{\mathsf{T}}x$  for  $w^{\mathsf{T}}x = \sum_{j=1}^d w^j x^j$ 

Least squares: 
$$\min_{w \in \mathbb{R}^d} \ \mathcal{L}(w)$$
 with  $\mathcal{L}(w) = \sum_i (w^{\scriptscriptstyle \mathsf{T}} x_i - y_i)^2$ 

Given  $(x_1,y_1),\ldots,(x_n,y_n)$  with  $x_i=(x_i^1,\ldots,x_i^d)\in\mathbb{R}^d$  and  $y_i\in\mathbb{R}.$  black board

Linear model:  $f(x) = w^{\mathsf{T}} x$  for  $w^{\mathsf{T}} x = \sum_{j=1}^d w^j x^j$ 

Least squares:  $\min_{w \in \mathbb{R}^d} \mathcal{L}(w)$  with  $\mathcal{L}(w) = \sum_i (w^{\scriptscriptstyle \mathsf{T}} x_i - y_i)^2$ 

$$\nabla_{w} \mathcal{L}(w) = 2 \sum_{i} x_{i} (x_{i}^{\mathsf{T}} w - y_{i}) = 2 \sum_{i} x_{i} x_{i}^{\mathsf{T}} w - 2 \sum_{i} x_{i} y_{i}$$

Setting the gradient to zero:

$$\sum_{i} x_i x_i^{\top} w = \sum_{i} x_i y_i$$

We can solve for w if  $\sum_i x_i x_i$  is full rank (at least:  $n \ge d$ ),

$$w = \left(\sum_{i} x_i x_i^{\mathsf{T}}\right)^{-1} \sum_{i} x_i y_i$$

In matrix notation:  $X=\left(x_1|x_2|\dots|x_n\right)\in\mathbb{R}^{d\times n}$ ,  $Y\in\mathbb{R}^n$ ,  $w\in\mathbb{R}^d$ .

Least squares:  $\min_{w \in \mathbb{R}^d} \ \mathcal{L}(w)$  with  $\mathcal{L}(w) = \|X^{\scriptscriptstyle T} w - Y\|^2$ 

In matrix notation:  $X = (x_1|x_2|\dots|x_n) \in \mathbb{R}^{d \times n}$ ,  $Y \in \mathbb{R}^n$ ,  $w \in \mathbb{R}^d$ .

Least squares:  $\min_{w \in \mathbb{R}^d} \mathcal{L}(w)$  with  $\mathcal{L}(w) = \|X^{\mathsf{T}}w - Y\|^2$ 

$$\nabla_{\!w} \mathcal{L}(w) = \nabla_{\!w} \left( w^{\mathsf{T}} X X^{\mathsf{T}} w - Y^{\mathsf{T}} X^{\mathsf{T}} w - w^{\mathsf{T}} X Y + Y^{\mathsf{T}} Y \right) = 2 X X^{\mathsf{T}} w - 2 X Y$$

Very useful to memorize: matrix calculus

$$\nabla_{a}a=0$$

$$\nabla_x c^{\mathsf{T}} x = c$$

$$\nabla_x x^{\mathsf{T}} c = c$$

$$\nabla_x a = 0$$
  $\nabla_x c^{\mathsf{T}} x = c$   $\nabla_x x^{\mathsf{T}} c = c$   $\nabla_x x^{\mathsf{T}} A x = (A^{\mathsf{T}} + A) x$ 

In matrix notation:  $X = (x_1 | x_2 | \dots | x_n) \in \mathbb{R}^{d \times n}$ ,  $Y \in \mathbb{R}^n$ ,  $w \in \mathbb{R}^d$ .

Least squares:  $\min_{w \in \mathbb{R}^d} \mathcal{L}(w)$  with  $\mathcal{L}(w) = \|X^{\mathsf{T}}w - Y\|^2$ 

$$\nabla_{\!w} \mathcal{L}(w) = \nabla_{\!w} \left( w^{\mathsf{T}} \! X X^{\mathsf{T}} \! w - Y^{\mathsf{T}} \! X^{\mathsf{T}} \! w - w^{\mathsf{T}} \! X Y + Y^{\mathsf{T}} \! Y \right) = 2 X X^{\mathsf{T}} \! w - 2 X Y$$

Setting the gradient to zero:

$$XX^{\mathsf{T}}w = XY$$

If  $XX^{\mathsf{T}}$  is full rank, we can solve for w:

$$w = (XX^{\mathsf{T}})^{-1}XY$$
 or  $x = \det(X, X, T)$  where  $x = \det(X, Y)$  where  $x = \det(X, Y)$  and  $x = \det(X, Y)$ 

Very useful to memorize: matrix calculus

$$\nabla_x a = 0$$
  $\nabla_x c^{\mathsf{T}} x = c$   $\nabla_x x^{\mathsf{T}} c = c$   $\nabla_x x^{\mathsf{T}} A x = (A^{\mathsf{T}} + A) x$ 

#### Boston housing dataset

| $x \in \mathbb{R}^{13}$ |       |      |      |      |      |        |      |      |        |       |        | y     |       |
|-------------------------|-------|------|------|------|------|--------|------|------|--------|-------|--------|-------|-------|
| 0.01                    | 18.00 | 2.31 | 0.00 | 0.54 | 6.58 | 65.20  | 4.09 | 1.00 | 296.00 | 15.30 | 396.90 | 4.98  | 24.00 |
| 0.03                    | 0.00  | 7.07 | 0.00 | 0.47 | 6.42 | 78.90  | 4.97 | 2.00 | 242.00 | 17.80 | 396.90 | 9.14  | 21.60 |
| 0.03                    | 0.00  | 7.07 | 0.00 | 0.47 | 7.18 | 61.10  | 4.97 | 2.00 | 242.00 | 17.80 | 392.83 | 4.03  | 34.70 |
| 0.03                    | 0.00  | 2.18 | 0.00 | 0.46 | 7.00 | 45.80  | 6.06 | 3.00 | 222.00 | 18.70 | 394.63 | 2.94  | 33.40 |
| 0.07                    | 0.00  | 2.18 | 0.00 | 0.46 | 7.15 | 54.20  | 6.06 | 3.00 | 222.00 | 18.70 | 396.90 | 5.33  | 36.20 |
| 0.03                    | 0.00  | 2.18 | 0.00 | 0.46 | 6.43 | 58.70  | 6.06 | 3.00 | 222.00 | 18.70 | 394.12 | 5.21  | 28.70 |
| 0.09                    | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 66.60  | 5.56 | 5.00 | 311.00 | 15.20 | 395.60 | 12.43 | 22.90 |
| 0.14                    | 12.50 | 7.87 | 0.00 | 0.52 | 6.17 | 96.10  | 5.95 | 5.00 | 311.00 | 15.20 | 396.90 | 19.15 | 27.10 |
| 0.21                    | 12.50 | 7.87 | 0.00 | 0.52 | 5.63 | 100.00 | 6.08 | 5.00 | 311.00 | 15.20 | 386.63 | 29.93 | 16.50 |
| 0.17                    | 12.50 | 7.87 | 0.00 | 0.52 | 6.00 | 85.90  | 6.59 | 5.00 | 311.00 | 15.20 | 386.71 | 17.10 | 18.90 |
| 0.22                    | 12.50 | 7.87 | 0.00 | 0.52 | 6.38 | 94.30  | 6.35 | 5.00 | 311.00 | 15.20 | 392.52 | 20.45 | 15.00 |
| 0.12                    | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 82.90  | 6.23 | 5.00 | 311.00 | 15.20 | 396.90 | 13.27 | 18.90 |
| 0.09                    | 12.50 | 7.87 | 0.00 | 0.52 | 5.89 | 39.00  | 5.45 | 5.00 | 311.00 | 15.20 | 390.50 | 15.71 | 21.70 |
| 0.63                    | 0.00  | 8.14 | 0.00 | 0.54 | 5.95 | 61.80  | 4.71 | 4.00 | 307.00 | 21.00 | 396.90 | 8.26  | 20.40 |
| 0.64                    | 0.00  | 8.14 | 0.00 | 0.54 | 6.10 | 84.50  | 4.46 | 4.00 | 307.00 | 21.00 | 380.02 | 10.26 | 18.20 |
| 0.63                    | 0.00  | 8.14 | 0.00 | 0.54 | 5.83 | 56.50  | 4.50 | 4.00 | 307.00 | 21.00 | 395.62 | 8.47  | 19.90 |
|                         |       |      |      |      |      |        | :    |      |        |       |        |       | '     |
| 0.08                    | 0.00  | 5.96 | 0.00 | 0.50 | 5.85 | 41.50  | 3.93 | 5.00 | 279.00 | 19.20 | 396.90 | 8.77  | 11.90 |

Learned linear least-square model:

$$f(x) = w^{\scriptscriptstyle \intercal} x$$

for

$$w = (0.11, 0.02, 0.08, -0.96, 19.2, -2.9, 0.09, 0.63, -0.07, 0, 0.64, 0)^{\mathsf{T}}$$

#### Boston housing dataset

|      |       |      |      |      |      | $x \in \mathbb{R}$ | $2^{13}$ |      |        |       |        |       | y     |
|------|-------|------|------|------|------|--------------------|----------|------|--------|-------|--------|-------|-------|
| 0.01 | 18.00 | 2.31 | 0.00 | 0.54 | 6.58 | 65.20              | 4.09     | 1.00 | 296.00 | 15.30 | 396.90 | 4.98  | 24.00 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 6.42 | 78.90              | 4.97     | 2.00 | 242.00 | 17.80 | 396.90 | 9.14  | 21.60 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 7.18 | 61.10              | 4.97     | 2.00 | 242.00 | 17.80 | 392.83 | 4.03  | 34.70 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 7.00 | 45.80              | 6.06     | 3.00 | 222.00 | 18.70 | 394.63 | 2.94  | 33.40 |
| 0.07 | 0.00  | 2.18 | 0.00 | 0.46 | 7.15 | 54.20              | 6.06     | 3.00 | 222.00 | 18.70 | 396.90 | 5.33  | 36.20 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 6.43 | 58.70              | 6.06     | 3.00 | 222.00 | 18.70 | 394.12 | 5.21  | 28.70 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 66.60              | 5.56     | 5.00 | 311.00 | 15.20 | 395.60 | 12.43 | 22.90 |
| 0.14 | 12.50 | 7.87 | 0.00 | 0.52 | 6.17 | 96.10              | 5.95     | 5.00 | 311.00 | 15.20 | 396.90 | 19.15 | 27.10 |
| 0.21 | 12.50 | 7.87 | 0.00 | 0.52 | 5.63 | 100.00             | 6.08     | 5.00 | 311.00 | 15.20 | 386.63 | 29.93 | 16.50 |
| 0.17 | 12.50 | 7.87 | 0.00 | 0.52 | 6.00 | 85.90              | 6.59     | 5.00 | 311.00 | 15.20 | 386.71 | 17.10 | 18.90 |
| 0.22 | 12.50 | 7.87 | 0.00 | 0.52 | 6.38 | 94.30              | 6.35     | 5.00 | 311.00 | 15.20 | 392.52 | 20.45 | 15.00 |
| 0.12 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 82.90              | 6.23     | 5.00 | 311.00 | 15.20 | 396.90 | 13.27 | 18.90 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 5.89 | 39.00              | 5.45     | 5.00 | 311.00 | 15.20 | 390.50 | 15.71 | 21.70 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.95 | 61.80              | 4.71     | 4.00 | 307.00 | 21.00 | 396.90 | 8.26  | 20.40 |
| 0.64 | 0.00  | 8.14 | 0.00 | 0.54 | 6.10 | 84.50              | 4.46     | 4.00 | 307.00 | 21.00 | 380.02 | 10.26 | 18.20 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.83 | 56.50              | 4.50     | 4.00 | 307.00 | 21.00 | 395.62 | 8.47  | 19.90 |
|      |       |      |      |      |      |                    | :        |      |        |       |        |       |       |
| 0.08 | 0.00  | 5.96 | 0.00 | 0.50 | 5.85 | 41.50              | 3.93     | 5.00 | 279.00 | 19.20 | 396.90 | 8.77  | 11.90 |

Learned linear least-square model:

$$f(x) = w^{\mathsf{\scriptscriptstyle T}} x$$

for

$$w = (0.11, 0.02, 0.08, -0.96, 19.2, -2.9, 0.09, 0.63, -0.07, 0, 0.64, 0)^{\mathsf{T}}$$

Is this a good model? What else could we do?



# Linear model with bias term (= "intercept"):

$$f(x) = w^{\mathsf{\scriptscriptstyle T}} x + b \text{ for } w \in \mathbb{R}^d, b \in \mathbb{R}$$

Least squares: 
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \mathcal{L}(w,b)$$
 with  $\mathcal{L}(w,b) = \sum_i (w^{\scriptscriptstyle T} x_i + b - y_i)^2$ 

# Linear model with bias term (= "intercept"):

$$f(x) = w^{\mathsf{T}}x + b \text{ for } w \in \mathbb{R}^d, b \in \mathbb{R}$$

Least squares:  $\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \mathcal{L}(w,b)$  with  $\mathcal{L}(w,b) = \sum_i (w^{\mathsf{T}} x_i + b - y_i)^2$ 

$$0 = \nabla_{\!b} \mathcal{L}(w, b) = 2 \sum_i (x_i^{\scriptscriptstyle \top} w + b - y_i) \quad \rightarrow \quad b^{\mathsf{opt}} = \bar{y} - \bar{x}^{\scriptscriptstyle \top} w$$

for  $\bar{x} = \frac{1}{n} \sum_i x_i$  and  $\bar{y} = \frac{1}{n} \sum_i y_i$ .

# Linear model with bias term (= "intercept"):

$$f(x) = w^{\mathsf{T}}x + b \text{ for } w \in \mathbb{R}^d, b \in \mathbb{R}$$

Least squares:  $\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \mathcal{L}(w,b)$  with  $\mathcal{L}(w,b) = \sum_i (w^{\mathsf{T}} x_i + b - y_i)^2$ 

$$0 = \nabla_{\!b} \mathcal{L}(w, b) = 2 \sum_{i} (x_i^{\mathsf{T}} w + b - y_i) \quad \rightarrow \quad b^{\mathsf{opt}} = \bar{y} - \bar{x}^{\mathsf{T}} w$$

for  $\bar{x} = \frac{1}{n} \sum_i x_i$  and  $\bar{y} = \frac{1}{n} \sum_i y_i$ .

$$\begin{split} \bar{\mathcal{L}}(w) &= \bar{\mathcal{L}}(w, b^{\mathsf{opt}}) = \sum_i \left( \ (x_i - \bar{x})^{\!\top}\!w - (y_i - \bar{y}) \ \right)^2 \\ 0 &= \nabla_{\!w} \bar{\mathcal{L}}(w) = 2 \sum_i \left( \ (x_i - \bar{x})(x_i - \bar{x})^{\!\top}\!w - (y_i - \bar{y}) \ \right) \end{split}$$

Solve for w (if possible):

$$\begin{split} w &= \big(\underbrace{\sum_i (x_i - \bar{x})(x_i - \bar{x})^{\!\top}}_{=n \mathrm{Cov}(x_1, \dots, x_n)} \big)^{-1} \underbrace{\sum_i (x_i - \bar{x})(y_i - \bar{y})}_{=n \mathrm{Cov}(x_1, \dots, x_n; y_1, \dots, y_n)} \\ &= \mathrm{Cov}(X)^{-1} \mathrm{Cov}(X, Y) \end{split}$$

11 / 34

### Feature augmentation

#### Observation: centered data

If the training data is centered, i.e.  $\frac{1}{n}\sum_i x_i = 0$ ,  $\frac{1}{n}\sum_i y_i = 0$ , we don't need a bias term  $\to$  we can reuse code for linear regression without bias.

# Alternative trick: feature augmentation

Adding a constant feature allows us to avoid models with explicit bias term:

- instead of  $x=(x^1,\ldots,x^d)\in\mathbb{R}^d$ , use  $\tilde{x}=(x^1,\ldots,x^d,1)\in\mathbb{R}^{d+1}$
- for any  $\tilde{w} \in \mathbb{R}^{d+1}$ , think  $\tilde{w} = (w,b)$  with  $w \in \mathbb{R}^d$  and  $b \in \mathbb{R}$

Linear model in  $\mathbb{R}^{d+1}$ :

$$f(\tilde{x}) = \tilde{w}^{\mathsf{T}} \tilde{x} = \sum_{i=1}^{d+1} \tilde{w}_i \tilde{x}_i = \sum_{i=1}^{d} \tilde{w}_i \tilde{x}_i + \tilde{w}_{d+1} \tilde{x}_{d+1} = w^{\mathsf{T}} x + b$$

Linear model with bias term in  $\mathbb{R}^d \equiv \operatorname{linear}$  model with no bias term in  $\mathbb{R}^{d+1}$ 

## Boston housing dataset

|      |       |      |      |      |      | $x \in \mathbb{R}$ | $^{13}$ |      |        |       |        |       | y     |
|------|-------|------|------|------|------|--------------------|---------|------|--------|-------|--------|-------|-------|
| 0.01 | 18.00 | 2.31 | 0.00 | 0.54 | 6.58 | 65.20              | 4.09    | 1.00 | 296.00 | 15.30 | 396.90 | 4.98  | 24.00 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 6.42 | 78.90              | 4.97    | 2.00 | 242.00 | 17.80 | 396.90 | 9.14  | 21.60 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 7.18 | 61.10              | 4.97    | 2.00 | 242.00 | 17.80 | 392.83 | 4.03  | 34.70 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 7.00 | 45.80              | 6.06    | 3.00 | 222.00 | 18.70 | 394.63 | 2.94  | 33.40 |
| 0.07 | 0.00  | 2.18 | 0.00 | 0.46 | 7.15 | 54.20              | 6.06    | 3.00 | 222.00 | 18.70 | 396.90 | 5.33  | 36.20 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 6.43 | 58.70              | 6.06    | 3.00 | 222.00 | 18.70 | 394.12 | 5.21  | 28.70 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 66.60              | 5.56    | 5.00 | 311.00 | 15.20 | 395.60 | 12.43 | 22.90 |
| 0.14 | 12.50 | 7.87 | 0.00 | 0.52 | 6.17 | 96.10              | 5.95    | 5.00 | 311.00 | 15.20 | 396.90 | 19.15 | 27.10 |
| 0.21 | 12.50 | 7.87 | 0.00 | 0.52 | 5.63 | 100.00             | 6.08    | 5.00 | 311.00 | 15.20 | 386.63 | 29.93 | 16.50 |
| 0.17 | 12.50 | 7.87 | 0.00 | 0.52 | 6.00 | 85.90              | 6.59    | 5.00 | 311.00 | 15.20 | 386.71 | 17.10 | 18.90 |
| 0.22 | 12.50 | 7.87 | 0.00 | 0.52 | 6.38 | 94.30              | 6.35    | 5.00 | 311.00 | 15.20 | 392.52 | 20.45 | 15.00 |
| 0.12 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 82.90              | 6.23    | 5.00 | 311.00 | 15.20 | 396.90 | 13.27 | 18.90 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 5.89 | 39.00              | 5.45    | 5.00 | 311.00 | 15.20 | 390.50 | 15.71 | 21.70 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.95 | 61.80              | 4.71    | 4.00 | 307.00 | 21.00 | 396.90 | 8.26  | 20.40 |
| 0.64 | 0.00  | 8.14 | 0.00 | 0.54 | 6.10 | 84.50              | 4.46    | 4.00 | 307.00 | 21.00 | 380.02 | 10.26 | 18.20 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.83 | 56.50              | 4.50    | 4.00 | 307.00 | 21.00 | 395.62 | 8.47  | 19.90 |
|      |       |      |      |      |      |                    | :       |      |        |       |        |       |       |
| 0.08 | 0.00  | 5.96 | 0.00 | 0.50 | 5.85 | 41.50              | 3.93    | 5.00 | 279.00 | 19.20 | 396.90 | 8.77  | 11.90 |

Learned linear least-square model:  $f(x) = w^{T}x + b$ 

$$f(x) = w'x + b$$

for 
$$w = (0.10, 0.01, 0.01, -1.02, 5.20, -4.41, 0.09, 0.15, 0.05, 0, -0.12, 0)$$
  
 $b = 30.15$ 

#### Boston housing dataset

|      |       |      |      |      |      | $x \in \mathbb{R}$ | $^{2}$ 13 |      |        |       |        |       | y     |
|------|-------|------|------|------|------|--------------------|-----------|------|--------|-------|--------|-------|-------|
| 0.01 | 18.00 | 2.31 | 0.00 | 0.54 | 6.58 | 65.20              | 4.09      | 1.00 | 296.00 | 15.30 | 396.90 | 4.98  | 24.00 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 6.42 | 78.90              | 4.97      | 2.00 | 242.00 | 17.80 | 396.90 | 9.14  | 21.60 |
| 0.03 | 0.00  | 7.07 | 0.00 | 0.47 | 7.18 | 61.10              | 4.97      | 2.00 | 242.00 | 17.80 | 392.83 | 4.03  | 34.70 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 7.00 | 45.80              | 6.06      | 3.00 | 222.00 | 18.70 | 394.63 | 2.94  | 33.40 |
| 0.07 | 0.00  | 2.18 | 0.00 | 0.46 | 7.15 | 54.20              | 6.06      | 3.00 | 222.00 | 18.70 | 396.90 | 5.33  | 36.20 |
| 0.03 | 0.00  | 2.18 | 0.00 | 0.46 | 6.43 | 58.70              | 6.06      | 3.00 | 222.00 | 18.70 | 394.12 | 5.21  | 28.70 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 66.60              | 5.56      | 5.00 | 311.00 | 15.20 | 395.60 | 12.43 | 22.90 |
| 0.14 | 12.50 | 7.87 | 0.00 | 0.52 | 6.17 | 96.10              | 5.95      | 5.00 | 311.00 | 15.20 | 396.90 | 19.15 | 27.10 |
| 0.21 | 12.50 | 7.87 | 0.00 | 0.52 | 5.63 | 100.00             | 6.08      | 5.00 | 311.00 | 15.20 | 386.63 | 29.93 | 16.50 |
| 0.17 | 12.50 | 7.87 | 0.00 | 0.52 | 6.00 | 85.90              | 6.59      | 5.00 | 311.00 | 15.20 | 386.71 | 17.10 | 18.90 |
| 0.22 | 12.50 | 7.87 | 0.00 | 0.52 | 6.38 | 94.30              | 6.35      | 5.00 | 311.00 | 15.20 | 392.52 | 20.45 | 15.00 |
| 0.12 | 12.50 | 7.87 | 0.00 | 0.52 | 6.01 | 82.90              | 6.23      | 5.00 | 311.00 | 15.20 | 396.90 | 13.27 | 18.90 |
| 0.09 | 12.50 | 7.87 | 0.00 | 0.52 | 5.89 | 39.00              | 5.45      | 5.00 | 311.00 | 15.20 | 390.50 | 15.71 | 21.70 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.95 | 61.80              | 4.71      | 4.00 | 307.00 | 21.00 | 396.90 | 8.26  | 20.40 |
| 0.64 | 0.00  | 8.14 | 0.00 | 0.54 | 6.10 | 84.50              | 4.46      | 4.00 | 307.00 | 21.00 | 380.02 | 10.26 | 18.20 |
| 0.63 | 0.00  | 8.14 | 0.00 | 0.54 | 5.83 | 56.50              | 4.50      | 4.00 | 307.00 | 21.00 | 395.62 | 8.47  | 19.90 |
|      |       |      |      |      |      |                    | :         |      |        |       |        |       |       |
| 0.08 | 0.00  | 5.96 | 0.00 | 0.50 | 5.85 | 41.50              | 3.93      | 5.00 | 279.00 | 19.20 | 396.90 | 8.77  | 11.90 |

Learned linear least-square model:  $f(x) = w^{T}x + b$ 

$$f(x) = w'x + b$$

for 
$$w = (0.10, 0.01, 0.01, -1.02, 5.20, -4.41, 0.09, 0.15, 0.05, 0, -0.12, 0)$$
  
 $b = 30.15$ 

Is this model better than the one without bias term?



# **Understanding model quality**

So you've trained a model. How good it is?

You've trained multiple models. Which one to choose?

Is the model 'good enough'? What would be the best possible model?

# **Understanding model quality**

So you've trained a model. How good it is?

You've trained multiple models. Which one to choose?

Is the model 'good enough'? What would be the best possible model?

# Wrong approach to evaluate predictive models: explained variance

Evaluate model error by checking how well it fits the training data.





# **Understanding model quality**

So you've trained a model. How good it is?

You've trained multiple models. Which one to choose?

Is the model 'good enough'? What would be the best possible model?

# Wrong approach to evaluate predictive models: explained variance

Evaluate model error by checking how well it fits the training data.







Explained variance prefers complex models over simple ones (always!)

#### Right approach to model evaluation

The model is *not for you*, it's send out to be used by a *user*.

# You: train the model on your data

```
input training data \mathcal{D}_{trn}
f \leftarrow some procedure using \mathcal{D}_{trn}
output predictive model f: \mathcal{X} \rightarrow \mathbb{R}
```

# The user: make predictions on his/her own data

```
\begin{array}{l} \textbf{input} \  \, \text{trained predictive model} \  \, f: \mathcal{X} \rightarrow \mathbb{R} \\ \textbf{input} \  \, \text{new data} \  \, \mathcal{D}_{tst} \\ \textbf{use} \  \, f \  \, \text{to make predictions on} \  \, \mathcal{D}_{tst} \\ \textbf{output} \  \, \text{happy face or lawsuit} \end{array}
```

What matters isn't how good the model is on the training set, but on **new data**.

# **Central questions**

# Evaluate predictive models: generalization performance

Evaluate model error on data that has not been used for training.



For trained model f and new data  $\mathcal{D}_{tst} = \{(x_1', y_1'), \dots, (x_m', y_m')\}$ ,

$$E(f) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i') - y_i')^2$$

**Observation**: A model can be perfect on training data (blue), but still not do great on new data (yellow).

October 19, 2018

#### Model evaluation

In practice, we don't get "new" data. We'll have to use the available data both for training and for evaluation.

# **Model Training and Evaluation**

```
input data \mathcal{D} input learning method A randomly split \mathcal{D} = \mathcal{D}_{trn} \dot{\cup} \mathcal{D}_{tst} disjointly set aside \mathcal{D}_{tst} to a safe place // do not look at it! f \leftrightarrow A[\mathcal{D}_{trn}] // i.e. train model on training set E(f) \leftrightarrow performance of f on \mathcal{D}_{tst} output trained model f, performance estimate E(f)
```

- Do not use  $\mathcal{D}_{tst}$  for anything except the very last step.
- Do not look at  $\mathcal{D}_{tst}$ ! Even if the learning algorithm doesn't see it, you looking at it can and will influence your model design or parameter selection (human overfitting).



Fact 1: Predictive models tend to get better when trained on more data.

**Fact 2:** A too small test set makes the quality estimate unreliable.

**Guideline:**  $\mathcal{D}_{trn}$  should be as big as possible, but  $\mathcal{D}_{tst}$  must be large enough to be convincing.



**Fact 3:** With very little training data, the training error is very small, but the test error is very large.

19 / 34



**Fact 3:** With very little training data, the training error is very small, but the test error is very large.

### **OVERFITTING!**

The model has learned to reproduce idiosyncracies/noise. On new data, this causes a large error.

How to avoid overfitting?

## How to avoid overfitting?

### **Feature Selection**

Idea: reduce the dimensionality of the data by dropping some dimensions

Problems: 1) which ones? 2) simply throwing away data is rarely a good idea

October 19, 2018

## How to avoid overfitting?

### **Feature Selection**

Idea: reduce the dimensionality of the data by dropping some dimensions

Problems: 1) which ones? 2) simply throwing away data is rarely a good idea

## **Dimensionality Reduction**

**Idea:** reduce data dimensionality differently, e.g. Principal Component Analysis.

Problems: 1) can destroy structure, 2) few dimensions might not be enough

## How to avoid overfitting?

### **Feature Selection**

Idea: reduce the dimensionality of the data by dropping some dimensions

Problems: 1) which ones? 2) simply throwing away data is rarely a good idea

## **Dimensionality Reduction**

Idea: reduce data dimensionality differently, e.g. Principal Component Analysis.

Problems: 1) can destroy structure, 2) few dimensions might not be enough

### Regularization

Idea: prevent the model from overfitting by making it robust

Problems: almost none. This is actually a good idea.

## What do we mean by robustness?

## Robustness of model parameters

How robust are the linear least squares model parameters

$$w = (XX^{\mathsf{T}})^{-1}XY$$

against small changes in the training data X?

## Robustness of predictions

How robust are the predictions

$$f(x) = w^{\mathsf{T}} x$$

against small changes of x ?

### **Numerical Robustness**

Robustness of the parameter vector  $w=(XX^{\!\scriptscriptstyle {\rm T}})^{-1}XY$  is determined by the condition number of the matrix  $XX^{\!\scriptscriptstyle {\rm T}}$ :

$$\kappa = \frac{\sigma_{\max}(XX^{\scriptscriptstyle \intercal})}{\sigma_{\min}(XX^{\scriptscriptstyle \intercal})}.$$



• for real data,  $\kappa$  is often large unless n is much larger than d  $\to$  randomness in X can have large impact on w

### Robustness of Predictions

black board

For any linear model, the robustness of the predictions  $f(x) = w^{\mathsf{T}} x$  is determined by the **norm** of the weight vector  $\|w\|$ :

$$\frac{f(x+\epsilon)-f(x)}{\|\epsilon\|} = \frac{\langle w, x+\epsilon\rangle - \langle w, x\rangle}{\|\epsilon\|} = \frac{\langle w, \epsilon\rangle}{\|\epsilon\|} \leq \frac{\|w\|\|\epsilon\|}{\|\epsilon\|} = \|w\|$$

## Insight:

- if many different w work well on the training data, prefer the one with small  $\|w\|$
- ullet maybe even: allows for higher  $E_{\rm trn}$  to avoid models with very large  $\|w\|$

## Regularization

# So far:

learn model parameters by minimizing error on training set

### Now:

take robustness into account as well when learning parameters

## Regularized Least Squared Regression (= Ridge Regression)

For some  $\lambda \geq 0$  (=regularization parameter), solve

$$\min_{w \in \mathbb{R}^d} \quad \sum_{i} (w^{\mathsf{T}} x_i - y_i)^2 + \lambda \quad \|w\|^2$$

## Regularization

# So far:

learn model parameters by minimizing error on training set

### Now:

• take robustness into account as well when learning parameters

## Regularized Least Squared Regression (= Ridge Regression)

For some  $\lambda \geq 0$  (=regularization parameter), solve

$$\min_{w \in \mathbb{R}^d} \quad \underbrace{\sum_i (w^{\mathsf{T}} x_i - y_i)^2}_{\text{training error}} + \lambda \underbrace{\|w\|^2}_{\text{"regularizer"}}$$

## Regularization

## So far:

learn model parameters by minimizing error on training set

### Now:

take robustness into account as well when learning parameters

## Regularized Least Squared Regression (= Ridge Regression)

For some  $\lambda \geq 0$  (=regularization parameter), solve

$$\min_{w \in \mathbb{R}^d} \quad \underbrace{\sum_i (w^{\!\top} \! x_i - y_i)^2}_{\text{training error}} + \lambda \underbrace{\|w\|^2}_{\text{"regularizer"}}$$

#### Observation:

- ullet the bigger  $\lambda$ , the more emphasis we put on *robustness* versus *training error*
- $\lambda = 0$   $\rightarrow$  no regularization, original least squares regression
- $\lambda \to \infty$  training error ignored  $(w \to 0)$ , but perfectly robust

Open question: what's the best value for  $\lambda$ ?



$$\min_{w \in \mathbb{R}^d} \ \mathcal{L}(w) + \lambda \Omega(w)$$

for 
$$\mathcal{L}(w) = \sum_i (w^{\mathsf{T}} x_i - y_i)^2$$
 and  $\Omega(w) = \|w\|^2$ .

black board

$$\min_{w \in \mathbb{R}^d} \ \mathcal{L}(w) + \lambda \Omega(w)$$

for 
$$\mathcal{L}(w) = \sum_i (w^{\scriptscriptstyle \mathsf{T}} x_i - y_i)^2$$
 and  $\Omega(w) = \|w\|^2$ .

$$\nabla_{w} \left[ \mathcal{L}(w) + \lambda \Omega(w) \right] = 2 \sum_{i} x_{i} x_{i}^{\mathsf{T}} w - 2 \sum_{i} x_{i} y_{i} + 2\lambda w$$

Ridge regression is as easy to learn as least squares:

black board

$$\min_{w \in \mathbb{R}^d} \ \mathcal{L}(w) + \lambda \Omega(w)$$

for 
$$\mathcal{L}(w) = \sum_i (w^{\scriptscriptstyle op} x_i - y_i)^2$$
 and  $\Omega(w) = \|w\|^2$ .

$$\nabla_w \left[ \mathcal{L}(w) + \lambda \Omega(w) \right] = 2 \sum_i x_i x_i^{\mathsf{T}} w - 2 \sum_i x_i y_i + 2\lambda w$$

Set gradient to zero:

$$\sum_{i} x_{i} x_{i}^{\mathsf{T}} w + \lambda w = \sum_{i} x_{i} y_{i}$$

Ridge regression is as easy to learn as least squares:

black board

$$\min_{w \in \mathbb{R}^d} \mathcal{L}(w) + \lambda \Omega(w)$$

for 
$$\mathcal{L}(w) = \sum_i (w^{\scriptscriptstyle \mathsf{T}} x_i - y_i)^2$$
 and  $\Omega(w) = \|w\|^2$ .

$$\nabla_{w} \left[ \mathcal{L}(w) + \lambda \Omega(w) \right] = 2 \sum_{i} x_{i} x_{i}^{\mathsf{T}} w - 2 \sum_{i} x_{i} y_{i} + 2\lambda w$$

Set gradient to zero:

$$\underbrace{\sum_{i} x_{i} x_{i}^{\top} w + \lambda w}_{=(\sum_{i} x_{i} x_{i}^{\top} + \lambda \operatorname{Id}_{n \times n}) w} = \sum_{i} x_{i} y_{i}$$

For  $\lambda > 0$ , we can *always* solve for w (regardless if  $n \ge d$ ),

$$w = \left(\sum_{i} x_{i} x_{i}^{\mathsf{T}} + \lambda \operatorname{Id}\right)^{-1} \sum_{i} x_{i} y_{i}$$

## Ridge Regression

Already small regularization strongly increases robustness (here:  $\lambda = 0.0001n$ )



## Ridge Regression

Training and test error for different regularization constants:



## Ridge Regression

Training and test error for different regularization constants:



### **Model Selection**

### Question:

- How to select one model from many possible ones.
- How to set free parameters of a model (e.g. regularization)?

## Training and Choosing between Multiple Models (suboptimal, don't use)

```
input data \mathcal{D}, set of method \mathcal{A} = \{A_1, \dots, A_K\} randomly split \mathcal{D} = \mathcal{D}_{trn} \dot{\cup} \mathcal{D}_{tst} disjointly for all possible procedures A_i \in \mathcal{A} do f_i \leftarrow A_i[\mathcal{D}_{trn}] E(f_i) \leftarrow performance of f_i on \mathcal{D}_{tst} end for output f \leftarrow f_i for i = \mathbf{argmin}_i E(f_i) // pick best performing f_i
```

### **Model Selection**

### Question:

- How to select one model from many possible ones.
- How to set free parameters of a model (e.g. regularization)?

## Training and Choosing between Multiple Models (suboptimal, don't use)

```
input data \mathcal{D}, set of method \mathcal{A} = \{A_1, \dots, A_K\} randomly split \mathcal{D} = \mathcal{D}_{trn} \dot{\cup} \mathcal{D}_{tst} disjointly for all possible procedures A_i \in \mathcal{A} do f_i \leftrightarrow A_i[\mathcal{D}_{trn}] E(f_i) \leftrightarrow \text{performance of } f_i \text{ on } \mathcal{D}_{tst} end for output f \leftrightarrow f_i for i = \mathbf{argmin}_i E(f_i) // pick best performing f_i
```

Problem: How good is the selected model? We don't know!  $\mathcal{D}_{tst}$  was used to select f, so it became part of the *training* stage.

**Proper model selection:** We simulate the model evaluation step during the training procedure. This requires one additional data split:

## Training and Selecting between Multiple Models

```
input data \mathcal{D}
input set of method \mathcal{A} = \{A_1, \dots, A_K\}
   randomly split \mathcal{D} = \mathcal{D}_{trnval} \dot{\cup} \mathcal{D}_{tst} disjointly
   set aside \mathcal{D}_{tst} to a safe place (and do not look at it)
   randomly split \mathcal{D}_{trnval} = \mathcal{D}_{trn} \dot{\cup} \mathcal{D}_{val} disjointly
   for all possible procedures A_i \in \mathcal{A} do
       f_i \leftarrow A_i[\mathcal{D}_{trn}]
       E_{val}(f_i) \leftarrow \text{performance of } f_i \text{ on } \mathcal{D}_{val}
   end for
   f \leftarrow f_i for i = \operatorname{argmin}_i E_{val}(f_i)
                                                                        // pick best performing f_i
   (optional) f \leftarrow A_i[\mathcal{D}_{trnval}]
                                                              // retrain best method on full data
   E_{tst}(f) \leftarrow \text{performance of } f \text{ on } \mathcal{D}_{tst}
output trained model f, performance estimate E_{tst}(f)
```

### Discussion.

- ullet Each model is trained on  $\mathcal{D}_{trn}$  and evaluated on disjoint  $\mathcal{D}_{val}$   $\checkmark$
- Which model is selected depends on  $\mathcal{D}_{trn}$  and  $\mathcal{D}_{val}$   $\checkmark$
- Only then the "new"  $\mathcal{D}_{tst}$  is used to evaluate the single final model  $\checkmark$

### Discussion.

- ullet Each model is trained on  $\mathcal{D}_{trn}$  and evaluated on disjoint  $\mathcal{D}_{val}$   $\checkmark$
- Which model is selected depends on  $\mathcal{D}_{trn}$  and  $\mathcal{D}_{val}$   $\checkmark$
- Only then the "new"  $\mathcal{D}_{tst}$  is used to evaluate the single final model  $\checkmark$

### Problems.

- small  $\mathcal{D}_{val}$  is bad:  $E_{val}$  could be bad estimate of  $f_i$ 's true performance, and we might pick a suboptimal method.
- large  $\mathcal{D}_{val}$  is bad:  $\mathcal{D}_{trn}$  is much smaller than  $\mathcal{D}_{trnval}$ , so the classifier learned on  $\mathcal{D}_{trn}$  might be much worse than necessary.
- retraining the best model on  $\mathcal{D}_{trnval}$  might overcome that, but that comes at a risk: just because a model/parameter was the best for  $\mathcal{D}_{trn}$ , does not mean it is also the best for the larger  $\mathcal{D}_{trnval}$ .

### **Model Selection**

Validation error and test error for different regularization constants:



October 19, 2018

Validation error and test error for different regularization constants:





Parameters from model selection are rarely optimal, but usually reasonable.

15 20 25 30 9-20 9-15 9-10 9-5 20 25 210 0 5 10

Can we use all data for training as well as model selection?

## Leave-One-Out Evaluation (for a single model/algorithm)

```
input algorithm A input data \mathcal{D} (trnval part only: tst part was set aside earlier) for all (x_i,y_i)\in\mathcal{D} do f_{\neg i} \leftarrow A[\ \mathcal{D}\setminus\{(x_i,y_i)\}\ ] \qquad //\ \mathcal{D}_{trn} \text{ is } \mathcal{D} \text{ with } i\text{-th example removed} \\ r_i \leftarrow \text{performance of } f_i \text{ on } (x_i,y_i) \qquad // \text{ i.e. } \mathcal{D}_{val} \text{ is } \{(x_i,y_i)\} \\ \text{end for} \\ \text{output } E_{loo}(f) = \frac{1}{n}\sum_{i=1}^n r_i \qquad // \text{ average leave-one-out risk}
```

## Properties.

- ullet Each  $r_i$  is a unbiased (but high variance) estimate of the quality of  $f_{\lnot i}$
- $\mathcal{D} \setminus \{(x_i, y_i)\}$  is almost the same as  $\mathcal{D}$ , so we can hope that each  $f_{\neg i}$  is almost the same as  $f = A[\mathcal{D}]$ .
- Therefore,  $E_{loo}$  can be expected a good estimate of E on new data

**Problem:** slow, trains n times on n-1 examples instead of once on n **Problem:** all training sets are almost the same,  $r_i$  are correlated

Compromise: use fixed number of small  $\mathcal{D}_{val}$ 

## *K*-fold Cross Validation (CV)

```
input algorithm A, loss function \ell, data \mathcal{D} (trnval part) split \mathcal{D} = \dot{\bigcup}_{k=1}^K \mathcal{D}_k into K equal sized disjoint parts for k=1,\ldots,K do f_{\neg k} \hookleftarrow A[\mathcal{D} \setminus \mathcal{D}_k] r_k \hookleftarrow performance of f_{\neg k} on \mathcal{D}_k end for output R_{K\text{-CV}} = \frac{1}{K} \sum_{k=1}^K r_k (K\text{-fold cross-validation risk})
```

### Observation.

- for  $K = |\mathcal{D}|$  same as leave-one-out error.
- ullet approximately k times increase in runtime.
- most common: k = 10 or k = 5.

**Remaining problem**: training sets overlap, so the error estimates are not independent, and it's hard to interpret error bars or design statistical tests