Computing Least Fixed Points of Probabilistic Systems of Polynomials STACS 2010 / GPMFV 2010

Javier Esparza¹, Andreas Gaiser¹, Stefan Kiefer²

¹Technische Universität München

²Oxford University

September 28, 2010

Outline

- What is a Probabilistic System of Polynomials (PSP)?
- 2 Why studying PSPs?
- 3 Algorithms
 - An Exact Algorithm for Consistency
 - ullet An Exact Algorithm for Lower and Upper Bounds of LFP(f)
- 4 Case study: PSPs in Physics

Definition of a PSP

We investigate polynomial equation systems

$$X_1 = f_1(X_1, \dots, X_n)$$
 \dots
 $X_n = f_n(X_1, \dots, X_n)$

where the f_i are polynomials over X_1, \ldots, X_n .

- Important restriction: The coefficients of each f_i are nonnegative and sum up to 1.
- The vector $f := (f_1, \dots, f_n)^{\top}$ is called a probabilistic system of polynomials (PSP).

An Example

2-dimensional PSP

$$X_1 = \frac{4}{5}X_1X_2 + \frac{1}{5}$$

$$X_2 = \frac{2}{5}X_1X_1 + \frac{1}{10}X_2 + \frac{1}{2}$$

leads to the PSP $f: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$f_1(X_1, X_2) = \frac{4}{5}X_1X_2 + \frac{1}{5}$$

 $f_2(X_1, X_2) = \frac{2}{5}X_1X_1 + \frac{1}{10}X_2 + \frac{1}{2}.$

Fixed Points

- For every PSP, $\overline{1} = (1, ..., 1)$ is a fixed point.
- We are interested in the least nonnegative fixed point (LFP) of f, where we mean "least" with respect to the order "≤" defined componentwise.

An Example

$$X_1 = \frac{4}{5}X_1X_2 + \frac{1}{5}$$

$$X_2 = \frac{2}{5}X_1X_1 + \frac{1}{10}X_2 + \frac{1}{2}$$

Problems

Problem 1 (Consistency problem)

Given a PSP f, decide whether LFP $(f) = \overline{1}$.

Problem 2 (Computing Lower and Upper bounds)

Given a PSP f, for a given $\epsilon > 0$, compute \mathbf{lb} , \mathbf{ub} such that $\mathbf{lb} \leq \mathsf{LFP}(f) \leq \mathbf{ub}$ with $\mathbf{ub} - \mathbf{lb} \leq \overline{\epsilon}$.

- If LFP $(f) = \overline{1}$ then f is consistent, otherwise inconsistent.
- Why are those problems interesting?

Termination probability of probabilistic recursive programs

- Probabilistic flow graphs of two simple procedures P_1 and P_2 .
- Termination probability for P_i = Probability that a call P_i () eventually terminates.

Corresponding equation system

$$X_1 = 0.6X_1X_2 + 0.4$$

$$X_2 = 0.1X_1X_1 + 0.3X_2 + 0.6$$

- Termination probabilities = LFP of the corresponding PSP.
- Here: LFP(f) = (1,1) \Rightarrow Termination with probability 1.
- Termination with prob. 1 depends not only on the program structure.

Applications of PSPs: Multi-type branching processes

$$X_{1} \stackrel{0.6}{\longleftrightarrow} \{X_{1}, X_{2}\} \qquad \qquad X_{2} \stackrel{0.1}{\longleftrightarrow} \{X_{1}, X_{1}\}$$

$$X_{1} \stackrel{0.4}{\longleftrightarrow} \{\} \qquad \qquad X_{2} \stackrel{0.3}{\longleftrightarrow} \{X_{2}\}$$

$$X_{2} \stackrel{0.6}{\longleftrightarrow} \{\}$$

Applications in various areas:

- Verification of probabilistic programs: Termination probability of Probabilistic Pushdown Systems and Recursive Markov Chains
- Biology: Reproduction and extinction of species
- Natural Language processing: Stochastic context-free grammars
- Physics: See case study at the end

- 1 What is a Probabilistic System of Polynomials (PSP)?
- Why studying PSPs?
- 3 Algorithms
 - An Exact Algorithm for Consistency
 - An Exact Algorithm for Lower and Upper Bounds of LFP(f)
- 4 Case study: PSPs in Physics

Consistency can be decided in weakly polynomial time.

Problem 1 (Consistency problem)

Given a PSP f, decide whether LFP $(f) = \overline{1}$.

 This can be decided [Etessami/Yannakakis, 2009] in (weakly) polynomial time by checking whether the following LP problem has a solution:

$$f'(\overline{1})\mathbf{x} \geq (1+2^{-c_f})\mathbf{x}$$
 with $\mathbf{x} \geq \overline{0}$ and $\sum_{i=1}^{n} \mathbf{x}_i = 1$.

• Problem: c_f , although polynomial in f, can be very large...

An almost consistent family of PSPs

a family of inconsistent (but "almost consistent") PSPs:

$$X_1 = 0.5X_1^2 + 0.1X_n^2 + 0.4$$

 $X_2 = 0.01X_1^2 + 0.5X_2 + 0.49$
...
 $X_n = 0.01X_{n-1}^2 + 0.5X_n + 0.49$.

- Inexact LP-solvers cannot handle the instances with n > 10.
- Experiments with Maple's exact Simplex package

	n = 100	n = 200	n = 400	n = 600	n = 1000
Exact LP	2 sec	8 sec	67 sec	208 sec	> 2h

Our new consistency-check algorithm

- Algorithm for consistency of strongly connected PSPs:
 - Solve the system $(Id f'(\overline{1}))\mathbf{v} = \overline{0}$.
 - 2 If a solution $\mathbf{v} \neq \overline{\mathbf{0}}$ exists, return true iff $\mathbf{v} \succ \overline{\mathbf{0}}$ or $\mathbf{v} \prec \overline{\mathbf{0}}$.
 - 3 Else find the unique solution of the system $(Id f'(\overline{1}))\mathbf{v} = \overline{1}$.
 - If $\mathbf{v} \geq \overline{\mathbf{1}}$ and $f'(\overline{\mathbf{1}})\mathbf{v} < \mathbf{v}$ return true, else return false.
- ⇒ It suffices to solve two linear equation systems.
 - We can generalize the algorithm easily to arbitrary PSPs.

Assessment

- No need for invoking Linear Programming
- The algorithm is strongly polynomial and very easy to implement.
- Comparison on the "almost consistent" family:

	n = 100	n = 200	n = 400	n = 600	n = 1000
Exact LP	2 sec	8 sec	67 sec	208 sec	> 2h
New alg.	1 sec	1 sec	4 sec	10 sec	29 sec

- 1 What is a Probabilistic System of Polynomials (PSP)?
- 2 Why studying PSPs?
- 3 Algorithms
 - An Exact Algorithm for Consistency
 - An Exact Algorithm for Lower and Upper Bounds of LFP(f)
- 4 Case study: PSPs in Physics

Problem 2 (Computing Lower and Upper Bounds)

Given a PSP f, for a given $\epsilon > 0$, compute \mathbf{lb} , \mathbf{ub} such that $\mathbf{lb} \leq \mathsf{LFP}(f) \leq \mathbf{ub}$ with $\mathbf{ub} - \mathbf{lb} \leq \overline{\epsilon}$.

Pre-fixed and Post-fixed Points

- $\mathbf{x} \in \mathbb{R}^n$ is a pre-fixed (post-fixed) point if $f(\mathbf{x}) \ge \mathbf{x}$ ($f(\mathbf{x}) \le \mathbf{x}$).
- If x is strictly greater than y in all components we write x > y.
- $\mathbf{x} \in \mathbb{R}^n$ is a strict pre-fixed (post-fixed) point if $f(\mathbf{x}) \succ \mathbf{x}$ ($f(\mathbf{x}) \prec \mathbf{x}$).
- Pre-fixed points are lower bounds,
 post-fixed points are upper bounds for LFP(f).

Obtaining lower bounds: Newton's method

- $\overline{0}, f(\overline{0}), f^2(\overline{0}), \ldots$ are all pre-fixed points. The sequence converges (in general slowly) to LFP(f).
- \Rightarrow Apply Newton's method for finding zeros of the map f(X) X
 - Applying Newton to an approximation \mathbf{x} gives a better approximation $\mathcal{N}_f(\mathbf{x})$.
 - $\overline{0}$, $\mathcal{N}_f(\overline{0})$, $\mathcal{N}_f(\mathcal{N}_f(\overline{0}))$, . . . converges linearly to LFP(f) from below [Esparza, K., Luttenberger, 2010]
 - But what about upper bounds? (Newton cannot be used for that)

• LFP(f) $\neq \overline{1} \Rightarrow$ there exists a green area of points \mathbf{x} with $f'(\overline{1})(\overline{1} - \mathbf{x}) \succ (\overline{1} - \mathbf{x})$.

• LFP(f) $\neq \overline{1} \Rightarrow$ there exists a green area of points \mathbf{x} with $f'(\overline{1})(\overline{1} - \mathbf{x}) \succ (\overline{1} - \mathbf{x})$.

- LFP(f) $\neq \overline{1} \Rightarrow$ there exists a green area of points \mathbf{x} with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.

- LFP $(f) \neq \overline{1} \Rightarrow$ there exists a green area of points **x** with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point **p**.

- LFP $(f) \neq \overline{1} \Rightarrow$ there exists a green area of points **x** with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point p.

- LFP(f) $\neq \overline{1} \Rightarrow$ there exists a green area of points \mathbf{x} with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point p.

- LFP $(f) \neq \overline{1} \Rightarrow$ there exists a green area of points **x** with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point p.
- \mathbf{p} , $f(\mathbf{p})$, $f(f(\mathbf{p}))$, ... converges linearly to LFP(f) from above.

- LFP $(f) \neq \overline{1} \Rightarrow$ there exists a green area of points **x** with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point p.
- \mathbf{p} , $f(\mathbf{p})$, $f(f(\mathbf{p}))$, ... converges linearly to LFP(f) from above.

- LFP(f) $\neq \overline{1} \Rightarrow$ there exists a green area of points \mathbf{x} with $f'(\overline{1})(\overline{1} \mathbf{x}) \succ (\overline{1} \mathbf{x})$.
- Any sequence y⁽¹⁾, y⁽²⁾,... of points converging to LFP(f)
 (e.g. Newton iterates) enters the green area.
- Using such a point we compute a strict post-fixed point p.
- \mathbf{p} , $f(\mathbf{p})$, $f(f(\mathbf{p}))$, . . . converges linearly to LFP(f) from above.

The algorithm so far

- **2** Set $\mathbf{lb} := \mathcal{N}_f(\mathbf{lb})$.
- If $f'(\overline{1})(\overline{1} \mathbf{lb}) \succ (\overline{1} \mathbf{lb})$ and $\mathbf{ub} = \overline{1}$, compute strict post-fixed point \mathbf{p} and set $\mathbf{ub} := \mathbf{p}$.
- If $\mathbf{ub} \neq \overline{1}$, set $\mathbf{ub} := f(\mathbf{ub})$.
- **5** If $\mathbf{ub} \mathbf{lb} \not\leq \overline{\epsilon}$ go to (2).

Problems with exact computations

- For computing a Newton iterate $\mathcal{N}_f(\mathbf{x})$ we have to solve a linear equation system.
- For reliable results: Exact (rational) arithmetic
- The number of bits needed to represent the exact iterates grows exponentially with the number of iterations.
- Similar problem with exact upper bounds.
- We want to use "inexact" arithmetic operations with finite precision, e.g. floating-point arithmetic, in a "controlled" and "local" fashion...
- ... Especially: Detection and correction of round-off errors

• Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.

• Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.

• Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

- Each Newton iterate $\mathcal{N}_f(\mathbf{x})$ is surrounded by a ϵ -ball $C_{\mathbf{x}}$ of points \mathbf{y} with $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- Idea: Instead of $\mathcal{N}_f(\mathbf{x})$ compute any $\mathbf{y} \in \mathcal{C}_{\mathbf{x}}$: Still converges!
- Advantage: fewer bits to store and work with.

The Floating Assignment

We write

$$\mathbf{y} \leftrightarrow \mathcal{N}_f(\mathbf{x})$$
 such that $\mathbf{\overline{1}} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$

as syntactic sugar for

- ① Set i := 0.
- **2** Compute $\mathbf{y} := g^{(i)}(\mathbf{x})$.
- If not $\overline{1} \succ f(y) \succ y \succ f(x)$ set i := i + 1 and go to (2).
- Computation of $g^{(i)}$: E.g. convert \mathbf{x} to a floating-point number, perform the operation, convert the result back.
- $g^{(0)}(\mathbf{x}), g^{(1)}(\mathbf{x}), g^{(2)}(\mathbf{x}), \ldots \to \mathcal{N}_f(\mathbf{x})$
- Precision of the numbers/operations increases with i.
 (Maple, GNU Multi-Precision Library)
- We replace the computation of the iterates by floating assignments.

The Algorithm

- ② Set $\mathbf{y} \leftrightarrow \mathcal{N}_f(\mathbf{x})$ such that $\overline{1} \succ f(\mathbf{y}) \succ \mathbf{y} \succ f(\mathbf{x})$.
- If $f'(\overline{1})(\overline{1} \mathbf{lb}) \succ (\overline{1} \mathbf{lb})$ and $\mathbf{ub} = \overline{1}$, compute strict post-fixed point \mathbf{p} and set $\mathbf{ub} := \mathbf{p}$.
- **1** If $\mathbf{ub} \neq \overline{1}$, set $\mathbf{ub} := f(\mathbf{ub})$.
- **1** If $\mathbf{ub} \mathbf{lb} \not\leq \overline{\epsilon}$ go to (2).
- Floating-Assignments also for upper bounds possible.

Summary

- The algorithm
 - computes reliable lower and upper bounds for LFP(f), which are arbitrarily close.
 - uses inexact arithmetic for costly computations
 - ⇒ In practice, the precision needs to be increased only rarely.
 - \Rightarrow We observe a significant speed-up.

- 1 What is a Probabilistic System of Polynomials (PSP)?
- Why studying PSPs?
- Algorithms
 - An Exact Algorithm for Consistency
 - An Exact Algorithm for Lower and Upper Bounds of LFP(f)
- Case study: PSPs in Physics

Explosion risk

Nuclear Fission

- Example from [Harris, 1963].
- Single neutron with distance x to the centre of a ball of radius D of radioactive material.
- Before exiting the ball, the neutron might collide with a nucleus.
- Other free neutrons may emerge from the collision, which may trigger more collisions ⇒ Danger (or chance?) of chain reaction!

- In case of a collision, with probability ...
 - **1** 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - 0.830, the neutron will be deflected by the nucleus.
 - O.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- In case of a collision, with probability ...
 - 0.025, the neutron will be absorbed into the nucleus.
 - ② 0.830, the neutron will be deflected by the nucleus.
 - 0.070, the nucleus will break up and two neutrons emerge.
 - 0.050, nucleus breaks and 3 new neutrons.
 - 0.025, nucleus breaks and 4 new neutrons.

- Given is $\ell(x)$: the probability that a neutron starting at x leaves the ball without collision.
- Given is R(x, y): the probability that a neutron starting at x collides with a nucleus at y.

Wanted Values

- Wanted: $Q_D(x)$, the probability that from a single neutron, starting at x, only finitely many free neutrons emerge = Probability of NO EXPLOSION
- Wanted: Critical radius, i.e., the largest D with $Q_D(0) = 1$

Discretization gives a PSP

• $Q_D(x)$ satisfies the functional equation

$$Q_D(x) = \ell(x) + \int_0^D R(x, y) f(Q_D(y)) dy.$$

with
$$f(z) = 0.025 + 0.83z + 0.07z^2 + 0.05z^3 + 0.025z^4$$
.

- We discretize the interval [0, D] into n shells with thickness D/n.
- \Rightarrow PSP with *n* variables X_1, \ldots, X_n .

Discretization gives a PSP

• Resulting equation system (constants $\ell_1, r_{i,j}$ can be numerically computed):

$$X_{1} = \ell_{1} + \sum_{i=1}^{n} r_{1,i} \cdot (0.025 + 0.83X_{i} + 0.07X_{i}^{2} + 0.05X_{i}^{3} + 0.025X_{i}^{4})$$

$$X_{2} = \ell_{2} + \sum_{i=1}^{n} r_{2,i} \cdot (0.025 + 0.83X_{i} + 0.07X_{i}^{2} + 0.05X_{i}^{3} + 0.025X_{i}^{4})$$

$$\dots$$

$$X_{n} = \ell_{n} + \sum_{i=1}^{n} r_{n,i} \cdot (0.025 + 0.83X_{i} + 0.07X_{i}^{2} + 0.05X_{i}^{3} + 0.025X_{i}^{4})$$

Experiments

• Computation for n = 100, different radii D

D	2	3	6	10
Still safe?	✓	©	Xes	S
Cons. check (our algorithm)	2s	2s	2s	2s
Cons. check (exact LP)	258s	124s	168s	222s
Approx. Q_D ($\epsilon=0.001$)	4s	32s	21s	17s

- Numerical results are similar to [Harris, 1963].
- We observed at most two increases of precision per computation.

Experiments

- Values of $Q_D(0)$ for different radii D
- Binary search using consistency algorithm: Critical radius lies in [2.981, 2.991] (Harris: ca. 2.9).

Thank you!

- Theodore E. Harris
 The theory of branching processes
 Springer-Verlag, 1963
- Kousha Etessami and Mihalis Yannakakis
 Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations
 Journal of the ACM, 56(1):1-66, 2009
- Javier Esparza, Andreas Gaiser, Stefan Kiefer Computing least fixed points of probabilistic systems of polynomials STACS 2010
- Javier Esparza, Stefan Kiefer, Michael Luttenberger Computing the least fixed point of positive polynomial systems SIAM Journal on Computing, 39(6):2282-2335, 2010