UNIDAD VI: FUNCIONES DE VARIAS VARIABLES (CÁLCULO INTEGRAL)

6.2 INTEGRALES DOBLES EN COORDENADAS POLARES

Algunas integrales dobles son mucho más fáciles de evaluar en forma polar que en forma rectangular. Recordemos que las coordenadas polares de un punto (r, θ) están relacionadas con las coordenadas rectangulares del punto (x, y), mediante:

$$x = rCos(\theta) r^{2} = x^{2} + y^{2}$$

$$y = rSen(\theta) Tan^{-1}(y)$$

Ejemplo: escribir en coordenadas polares la siguiente región rectangular:

$$R = \left\{ (x,y) \in \mathbb{R}/-3 \le x \le 3 \land 0 \le y \le \sqrt{9 - x^2} \right\}$$

Notemos que dentro de la región R, el menor r que podemos obtener es r=0 y el mayor valor es r=3 (para cualquier ángulo). En cuanto al ángulo el menor es $\theta=0$ y el mayor ángulo es $\theta=\pi$. Luego la región R en polares es:

$$R = \{(r,\theta)/0 \le r \le 3 \ \square \ 0 \le \theta \le \pi\}$$

Teorema: (Cambio de variable a la forma polar)

Sea R una región plana que consta de todos los puntos $(x, y) = (rCos\theta, rSen\theta)$ que satisfacen las condiciones $0 \le g_1(\theta) \le r \le g_2(\theta)$, $\alpha \le \theta \le \beta$, donde $0 \le (\beta - \alpha) \le 2\pi$. Si $g_1 y g_2$ son continuas en $[\alpha, \beta] y f$ es continua en R, entonces:

$$\iint\limits_{R} f(x,y) dA = \int\limits_{\alpha} \int\limits_{g_{1}(\theta)} f(r Cos\theta, r Sen\theta) r dr d\theta$$

NOTA:

Si z = f(x, y) es no negativa en R, entonces la integral del teorema anterior puede interpretarse como el volumen de la región sólida entre la gráfica de f y la región R.

Ejemplo:

Evaluar la integral:

$$V = \int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \sqrt{2x^2 + 2y^2} \, dy dx$$

Solución

Se dibuja la región de integración

En la forma polar

El ángulo
$$\theta$$
 varía de 0 a π , mientras r varía de 0 a la curva polar $r=2$

$$0 \leq \theta \leq \pi$$

 $r^2 = 4$

r = 2

$$0 \le r \le 2$$

Ya tenemos los límites de integración en la forma polar. Ahora hay que convertir a la forma polar el integrando:

$$\sqrt{2x^2 + 2y^2}$$

$$\sqrt{2(x^2 + y^2)}$$

$$\sqrt{2(r^2)}$$

$$\sqrt{2} r$$

Luego la integral inicial en la forma polar es:

$$V = \int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \sqrt{2x^2 + 2y^2} \, dy dx = \int_{0}^{\pi} \int_{0}^{2} \sqrt{2} \, rr dr d\theta; \text{ (Diferencial de área en polares)}$$

$$V = \int_{0}^{\pi} \int_{0}^{2} \sqrt{2} \, rr dr d\theta$$

$$V = \int_{0}^{\pi} \sqrt{2} \left[\frac{r^3}{3} \right]_{0}^{2} d\theta$$

$$V = \int_{0}^{\pi} \sqrt{2} \left[(2)^3 - (0)^3 \right] d\theta$$

$$V = \int_{0}^{\pi} \frac{8\sqrt{2}}{3} d\theta$$

$$V = \frac{8\sqrt{2}}{3} \int_{0}^{\pi} d\theta$$

$$V = \frac{8\sqrt{2}}{3} [\theta]|_{0}^{\pi}$$

$$V = \frac{8\sqrt{2}}{3} [\pi - 0]$$

$$V = \frac{8\sqrt{2}}{3} \pi \text{ (Unidades de longitud)}^3$$

Ejemplo:

Cambiar la integral cartesiana a una integral polar equivalente

$$V = \int_{0}^{2} \int_{0}^{\sqrt{1 - (x - 1)^{2}}} \frac{x + y}{x^{2} + y^{2}} dy dx$$

Solución

Según los límites de integración

$$0 \le x \le 2$$

$$0 \le y \le \sqrt{1 - (x - 1)^2}$$

¿Qué tipo de gráfica representa $\sqrt{1-(x-1)^2}$?

$$y = \sqrt{1 - (x - 1)^2}$$
$$(y)^2 = \left(\sqrt{1 - (x - 1)^2}\right)^2$$
$$y^2 = 1 - (x - 1)^2$$
$$(x - 1)^2 + y^2 = 1$$

Circunferencia de radio 1 y centro en (1,0)

Entonces la gráfica de la región de integración es:

Recordemos que en polares ese tipo de circunferencia se escribe como $r=2\cos(\theta)$

La región de integración correspondiente a polares es:

$$0 \le \theta \le \frac{\pi}{2}$$
$$0 \le r \le 2Cos(\theta)$$

Por lo tanto, la integral inicial convertida a polares se escribe como:

$$V = \int_{0}^{2\sqrt{1 - (x - 1)^{2}}} \int_{0}^{x + y} \frac{x + y}{x^{2} + y^{2}} dy dx = \int_{0}^{\frac{\pi}{2} 2\cos(\theta)} \frac{rCos(\theta) + rSen(\theta)}{r^{2}} r dr d\theta$$

$$\int\limits_{0}^{\frac{\pi}{2}2Cos(\theta)}\int\limits_{0}^{rCos(\theta)+rSen(\theta)}rdrd\theta=\int\limits_{0}^{\frac{\pi}{2}2Cos(\theta)}\int\limits_{0}^{r[Cos(\theta)+Sen(\theta)]}rdrd\theta$$

$$\int_{0}^{\frac{\pi}{2}2Cos(\theta)} \int_{0}^{r^{2}[Cos(\theta) + Sen(\theta)]} drd\theta = \int_{0}^{\frac{\pi}{2}2Cos(\theta)} \int_{0}^{\frac{r^{2}[Cos(\theta) + Sen(\theta)]}{r^{2}} drd\theta$$

$$\int_{0}^{\frac{\pi}{2}2Cos(\theta)} \int_{0}^{\infty} \left[Cos(\theta) + Sen(\theta) \right] dr d\theta$$

Ejemplo:

Convertir la integral $\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (x^2+y^2) \, dy dx$ a sistema de coordenadas polares.

Solución

Región de integración

 $0 \le x \le 2$ "x" varía desde x = 0 (eje y) hasta x = 2

Región de integración en polares

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
$$0 \le r \le 2$$

Por lo tanto:

$$\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} (x^{2} + y^{2}) \, dy dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2} r^{2} r \, dr d\theta$$

Siendo esta integral más fácil de resolver.