Intro to NGS data

Anders Albrechtsen

slido

Join at slido.com #9464757

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

Many type of sequencing

slido

Which kind of sequencing data are you working with?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

This session

This afternoon

- Sequencing data types
- QC
- Alignment and mapping
- Exploring bam files

This session

Tomorrow

- Genotype likelihoods (GL)
- Estimate allele frequencies
- Calling variable sites
- Calling genotype

Later

Perform analysis from Genotypes or GLs

Objectives this afternoon

To understand

- Types of sequencing
 - Single/pair end, mate pair
- FastQ files
 - Quality
 - reads
- QC
 - Adapter contamination
 - Duplicated read
 - Sequenicng errors
 - 0
- Bam files
 - Mapping quality
 - Exploring variants

High throughput sequencing

Multiple versions of the same genome (DNA from many cells)

Next generation sequencing

Next generation sequencing

Data formats

Genome (FASTA)

>ARPM2ref|NC_000001.10|:2938046-2939467 Homo sapiens chromosome 1, GRCh37 primary reference assembly
TGGAAGAGGCCCCAGGCCACCTGGAGGGAGAGCCAGCCTGCGGCTGAGGATGCAGGGCTCC
CGGGCACGGTGCTAGCCCTGCCTTGAGACACCCCGAGAGCTGTGGGAAGAGCTGTGGGATCCCCTATTGC
ATCACAAAGCGGCCCTGGAGGGCTGGTCTTTATTTTGATGAGGCTGAGAAGGGAAGGCTGCGGGCATGTT
TAATCCGCACGCTTTAGACTCCCCGGCTGTGATTTTTTGACAATGGCTCGGGGTTCTGCAAAGCGGGCCTG
TCTGGGGAGTTTTGGACCCCGGCACATGGTCAGCTCCATCGTGGGGCACCTGAAATTCCAGGCTCCCTCAG

Reads (FASTQ)

CCAATGATTTTTTTCCGTGTTTCAGAATACGGTTAA +SRR038845.41 HWI-EAS038:6:1:0:1474 length=36 BCCBA@BB@BBBAB@B9@=BAB@A:@693:@B= @SRR038845.53 HWI-EAS038:6:1:1:360 length=36 GTTCAAAAAGAACTAAATTGTGTCAATAGAAAACTC +SRR038845.53 HWI-EAS038:6:1:1:360 length=36

Mapped Reads (mpileup, BAM)

	•			
seql	272	T	24	,.\$,.,.,.,
seq1	273	T	23	,,.,.,
seq1	274	T	23	,.\$,.,.,
seq1	275	A	23	,\$,1. <+;9*<<<<<<<<<<<<<<
seq1	276	G	22	T,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
seq1	277	T	22	,,.,.C.,,,G. +7<;<<<<<&<=<<:;<<&<
seq1	278	G	23	,
seq1	279	C	23	AT,,,,,,,,,,,,,;75&<<<<<<<<<<<<<<<<<<<<<

Variants (VCF)

tomorrow

Fragment library

Fragment DNA

Single or pair of fq files.

single-end

paired-end

two inwardly oriented reads separated by ~200 nt

mate-paired

two outwardly oriented reads separated by ~3000 nt

fastQ (.fq.gz)

<-- quality score

<-- read ID

<-- read (bases)

Selected issues with sequencing data

- Adapter contamination of data
 - o If the DNA is too short we will sequence the adapters

Adapter contamination

If the DNA fragment is too small you will sequencing into the adapter+junk

AACAGTGGGAGGCTGCAGCAGGAGGAAAAAAAAA

Solution: Identify the problem using fastQC and trim the 3' end of the read to remove the adapter + junk (AAA...) if needed

Selected issues with sequencing data

- Adapter contamination of data
 - If the DNA is too short we will sequence the adapters
- Sequencing errors
 - The reads by have errors

Sequencing error

Solution: Translate the quality score to error rates

Identify the scale of the problem using fastQC

Use the error rates when calling genotypes


```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
                                       32 20 040   Space
                                                             64 40 100 6#64; 0
                                                                                96 60 140 6#96;
    0 000 NUL (null)
    1 001 SOH (start of heading)
                                       33 21 041 6#33;
                                                             65 41 101 A A
                                                                                97 61 141 6#97;
    2 002 STX (start of text)
                                       34 22 042 6#34; "
                                                             66 42 102 6#66; B
                                                                                98 62 142 6#98; b
    3 003 ETX (end of text)
                                       35 23 043 6#35; #
                                                             67 43 103 4#67; C
                                                                                99 63 143 @#99; 0
    4 004 EOT (end of transmission)
                                       36 24 044 6#36; $
                                                             68 44 104 6#68; D
                                                                               100 64 144 @#100; d
    5 005 ENQ (enquiry)
                                       37 25 045 @#37; %
                                                             69 45 105 6#69; E
                                                                               101 65 145 @#101; @
                                       38 26 046 @#38; @
                                                             70 46 106 @#70; F
    6 006 ACK (acknowledge)
                                                                               102 66 146 @#102; f
    7 007 BEL (bell)
                                       39 27 047 6#39;
                                                             71 47 107 @#71; G
                                                                               103 67 147 @#103; g
    8 010 BS
              (backspace)
                                       40 28 050 6#40;
                                                             72 48 110 @#72; H
                                                                               104 68 150 @#104; h
                                       41 29 051 6#41;
    9 011 TAB
              (horizontal tab)
                                                             73 49 111 6#73; I
                                                                               105 69 151 6#105; 1
    A 012 LF
              (NL line feed, new line)
                                       42 2A 052 * *
                                                             74 4A 112 6#74; J
                                                                               106 6A 152 @#106; j
                                       43 2B 053 6#43; +
                                                             75 4B 113 6#75; K
                                                                               107 6B 153 6#107; k
   B 013 VT
              (vertical tab)
              (NP form feed, new page)
                                       44 2C 054 @#44;
                                                             76 4C 114 a#76; L
                                                                               108 6C 154 l 1
   C 014 FF
                                       45 2D 055 6#45; -
13 D 015 CR
              (carriage return)
                                                             77 4D 115 @#77; M
                                                                               109 6D 155 @#109; 10
14 E 016 SO
              (shift out)
                                       46 2E 056 .
                                                             78 4E 116 @#78; N
                                                                               110 6E 156 n n
15 F 017 SI
              (shift in)
                                       47 2F 057 /
                                                             79 4F 117 O 0
                                                                               111 6F 157 o 0
16 10 020 DLE (data link escape)
                                       48 30 060 4#48; 0
                                                             80 50 120 6#80; P
                                                                               112 70 160 @#112; p
                                       49 31 061 6#49; 1
                                                             81 51 121 6#81; 0
                                                                               113 71 161 @#113; q
17 11 021 DC1 (device control 1)
                                       50 32 062 4#50; 2
                                                             82 52 122 6#82; R
                                                                               114 72 162 @#114; r
18 12 022 DC2 (device control 2)
                                       51 33 063 6#51; 3
                                                             83 53 123 6#83; $
                                                                               115 73 163 6#115; 8
19 13 023 DC3 (device control 3)
20 14 024 DC4 (device control 4)
                                       52 34 064 6#52; 4
                                                             84 54 124 6#84; T
                                                                               116 74 164 @#116; t
                                                             85 55 125 @#85; U
21 15 025 NAK (negative acknowledge)
                                       53 35 065 6#53; 5
                                                                               117 75 165 @#117; u
22 16 026 SYN (synchronous idle)
                                       54 36 066 @#54; 6
                                                             86 56 126 V V
                                                                               118 76 166 @#118; V
23 17 027 ETB (end of trans. block)
                                       55 37 067 4#55; 7
                                                             87 57 127 @#87; W
                                                                               119 77 167 @#119; W
24 18 030 CAN (cancel)
                                       56 38 070 4#56; 8
                                                             88 58 130 a#88; X
                                                                               120 78 170 @#120; X
                                       57 39 071 6#57; 9
25 19 031 EM
              (end of medium)
                                                             89 59 131 6#89; Y
                                                                               121 79 171 @#121; Y
                                       58 3A 072 @#58; :
                                                             90 5A 132 6#90; Z
                                                                               122 7A 172 @#122; Z
26 1A 032 SUB (substitute)
27 1B 033 ESC (escape)
                                       59 3B 073 4#59; ;
                                                             91 5B 133 6#91; [
                                                                               123 7B 173 6#123;
28 1C 034 FS
              (file separator)
                                       60 3C 074 < <
                                                             92 5C 134 @#92; \
                                                                               124 70 174 @#124;
                                       61 3D 075 = =
29 1D 035 GS
              (group separator)
                                                             93 5D 135 6#93;
                                                                               125 7D 175 }
30 1E 036 RS
              (record separator)
                                       62 3E 076 > >
                                                             94 5E 136 ^
                                                                               126 7E 176 ~ ~
                                                                              127 7F 177 @#127; DEL
                                       63 3F 077 ? ?
31 1F 037 US
              (unit separator)
                                                             95 5F 137 _
                                                                          Source: www.LookupTables.com
```

www.asciitable.com/

Table 1 ASCII Characters Encoding Q-scores 0-40

Symbol	ASCII Code	Q- Score	Symbol	ASCII Code	Q- Score	Symbol	ASCII Code	Q- Score
!	33	0	1	47	14	=	61	28
**	34	1	0	48	15	>	62	29
#	35	2	1	49	16	?	63	30
\$	36	3	2	50	17	@	64	31
%	37	4	3	51	18	A	65	32
&	38	5	4	52	19	В	66	33
,	39	6	5	53	20	C	67	34
(40	7	6	54	21	D	68	35
)	41	8	7	55	22	Е	69	36
*	42	9	8	56	23	F	70	37
+	43	10	9	57	24	G	71	38
,	44	11	:	58	25	Н	72	39
-	45	12	;	59	26	I	73	40
	46	13	<	60	27			

quality scores/Phred scores

a'X_\Va\J'KaYJHG^]b\a^BBBBBBBBBBBBB <-- quality score

Ascii	Dec	Qscore (Dec -33)	Error (ε)
+	43	10	10%
5	53	20	1%
?	63	30	0.1%
I	73	40	0.01%

Convert Qscores to seuquencing error rates

Qscore =
$$-10\log_{10}(\epsilon)$$

Selected issues with sequencing data

- Adapter contamination of data
 - If the DNA is too short we will sequence the adapters
- Sequencing errors
 - The reads by have errors
- PCR or optical duplicates
 - Reads can be duplicated ether from PCR or from the chip

Duplicated reads

Duplicated reads can cause

```
CGATGTGCTTCTCTACAAGACTGGTGAGGGAAAGGTGTAACC
      Human HapMap individual NA12005 - chr20:8660-8790
```

Solution: Identify the problem using fastQC

Identify the duplicated reads and remove or mark them

FAST QC

Easy to use tool for evaluating the quality of your data (fastQ or Bam files)

Quality for each cycle

Kmer/ adapter

Mapping - alignment of reads

Alignment and mapping

.bam/.sam file

```
reads    TTTGTTCTTTCTTTCTCTCTAGTCTTCTT
    Qscore    NVFVN]^] \^_]^^U]] \][_VS[_^Z]_    ...
Position chr4 53351385

Mismatch 2 (in cigar string)
strand +
mapQ    30
Mate    mapped chr4 53351145
Alt map    chr2 15331145 with 2 mismatch
```


bam/sam file

Mapping quality

Mapping quality – what is the probability that the read is correctly mapped to this location in the reference genome?

Reference Sequence

Read 1 can be mapped two places on the genome while Read 2 only maps to one

Which of the two reads has the highest mapping quality?

Read 1 Read 2

Reference Sequence

Which read will have the highest mapping quality

Click Present with Slido or install our <u>Chrome extension</u> to activate this poll while presenting.
KØBENHAVN

Mapping quality

Mapping quality – what is the probability that the read is correctly mapped to this location in the reference genome?

Reference Sequence

High **alignment** score ≠ high **mapping** quality.

Why use paired end sequencing?

single-end

paired-end

two inwardly oriented reads separated by ~200 nt

mate-paired

two outwardly oriented reads separated by ~3000 nt

Sequencing Depth

Sequencing depth is the number of reads covering a position Average depth is often written as X e.g. 15X sequencing Coverage = depth or the fraction of genome with data

GTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCACGGTCAC

TGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCACGGTCACCAGACCGAAATCTCT

AGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCACGGTC

AGACCAGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCA

Depth distribution

Theoretical distribution (Poisson) for 8X avg. depth if reads mapped perfectly and there was no bias

Why don't we observe genotype

Each allele is sequenced separately and alleles are sampled with replacement

Why don't we observe genotype

AGACCAGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCA

Question: Assuming an error rate of 1% Is the individual heterozygous C/T?

slido

Genotype is more likely

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Assuming heterozygous (C/T)

Assuming homozygous (T/T)

Why don't we observe genotype

 $P(\ge 2 \text{ errors} \mid T/T) = 0.0052$

 $P(\leq 2 \text{ minor bases} \mid T/C) = 0.065$

Question: Assuming an error rate of 1% Is the individual heterozygous C/T?

Why don't we observe genotype

P(≥2 errors | T/T) = 0052

 $P(\leq 2 \text{ minor bases} \mid T/C) = 0.065$

Heterozygosity is 0.1%

Question: Assuming an error rate of 1% Is the individual heterozygous C/T?

AGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCACGGTC
AGACCAGAGATGAAAACCCATTTGCCAGTCTGACAGCCACATCACAGCCAATTGCTGCAGCAGCA

Multiple variants on the same reads

- Assembly-based caller (as in GATK)
 Local re-alignment around putative variants; better resolution for INDELs detection.
- Haplotype-based caller (as in freebayes)

How many variants?

Figure from Erik Garrison

Time for exercises

Go to popgen.dk/popgen24github

