CSE1003 Digital Logic and Design

Module 2 BOOLEAN ALGEBRA L2

Dr. S. Hemamalini
Professor
School of Electrical Engineering
VIT Chennai

Module 2 BOOLEAN ALGEBRA 8 hrs

Boolean algebra

- Properties of Boolean algebra
- Boolean functions
- Canonical and Standard forms
- Logic gates Universal gates
- Karnaugh map Don't care conditions
- Tabulation Method

Logic 0	Logic 1		
False	True		
Off	On		
Low	High		
No	Yes		
Open switch	Closed switch		

1854 George Boole

Boolean Algebra

- Boolean algebra is mathematics of logic.
- The algebra which deals with the logical operations of binary variables is called Boolean Algebra.
- Boolean algebra is a means for expressing the relationship between a logic circuit's inputs and outputs.
- The inputs are considered logic variables whose logic levels at any time determine the output levels.
- It is one of the most basic tools available to the logic designer and thus can be effectively used for simplification of complex logic expressions.

Boolean algebra

Boolean function

- Is an expression formed with binary variables, Boolean operators and the equality sign.
- Can also be represented in the form of a truth table.

Expression: a set of literals (possibly with repeats) combined with logic operations (and possibly ordered by parentheses) AB+C AB+C AB+C

Equation: expression1 = expression2 $\sqrt{4}$

$$(\bar{A}+B)C = ((\bar{A})+B)C$$

Boolean algebra

Variables, Literals and Terms in Boolean Expressions

- Variables are the letters in a Boolean expression which represents a physical quantity such as a voltage signal. They may take on the value '0' or '1'.
- The complement of a variable is not considered as a separate variable. Each occurrence of a variable or its complement is called a *literal*.
- A term is the expression formed by literals and operations at one level.

$$\overline{A} + A.B + A.\overline{C} + \overline{A}.B.C$$

 $(\overline{P} + Q).(R + \overline{S}).(P + \overline{Q} + R)$

A B C C

BOOLEAN THEOREMS

• help to simplify logic expressions and logic circuits

Laws of Boolean Algebra

Distributive Law

$$\begin{array}{c}
B \\
C
\end{array}$$

$$A \\
A \\
C$$

$$A \\
C$$

$$C$$

$$A \\
C$$

$$C$$

$$A \\
C$$

$$C$$

DeMorgan's Theorem

DeMorgan's theorems are extremely useful in simplifying expressions in which a product or sum of variables is inverted.

Boolean Logic

Truth Table: all combinations of input variables

Truth Tables specifies how a logic circuit's output depends on the logic levels present at the inputs.

• k variables \rightarrow 2^k input combinations

	Output					
	Inpu	uts				
	↓	\				
	Α	В	X			
	0	0	1			
	0	1	0			
<	1	0	1			
	1	1	0			
A B)	?	×			
			Ŏ.			

Α	В	С	X	
0	0	0	0	
0	0 1		1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Α	В	С	D	х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	0 0 0 1 1 1 1 0 0 0 1 1 1 1	1	0	0
0 0 0 0 0 0 0 0 1 1 1 1 1 1	1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1

Laws of Boolean Algebra used for simplifying logical expressions

$(A^l = \bar{A} \text{ denotes the complement/inverse/NOT of } A)$

$$A+0=A$$

$$A+1=A$$

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A + A = A$$

$$A + A^l = 1$$

$$A \cdot A = A$$

$$A \cdot A^l = 0$$

$$(A^l)^l = A$$

$$A + AB = A$$

$$A + A^l B = A + B$$

$$A+B=B+A$$

$$A \cdot B = B \cdot A$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$(A+B)(A+C) = A+BC$$

A.B.1=A.B

A+B+1=1

A.B.0=0

A+B+0=A+B

UNIVERSALITY OF NAND GATES

UNIVERSALITY OF NOR GATES

Precedence rules in Boolean algebra

- Scan the expression from left to right.
- First evaluate expression enclosed in parentheses.
- Perform all the complement operations.
- Perform all the AND operations in the order.
- Perform all the OR operations.

DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY FROM BOOLEAN EXPRESSIONS

A Boolean function from an algebraic expression can be realized to a logic diagram composed of

DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY FROM BOOLEAN EXPRESSIONS

Determining output value from a logic diagram

Simplification Techniques

- The primary objective of all simplification procedures is to obtain an expression that has the minimum number of terms.
- Obtaining an expression with the minimum number of literals is usually the secondary objective.

• If there is more than one possible solution with the same number of terms, the one having the

minimum number of literals is the choice.

Algebraie Method K-Map 11 Tabulation

Simplify using Boolean Algebra

Simplify using Boolean Algebra

$$y = A\overline{B}D + A\overline{B}D$$

$$y = A\overline{B}$$

$$z = (\overline{A} + B)(A + B)$$

$$z = B$$

$$z = ACD + BCD$$

Simplify using Boolean Algebra

Determine the output expression for the circuit below and simplify it using DeMorgan's Theorem

Simplify the logic circuit shown in Figure

