3_2_Distributed control systems over Controller Area Network (CAN) communication bus

- 1. CAN
- 2. FPNP Policies

Response Time Analysis

Busy Period

Response Time

3. Distributed Embedded Controllers

Design Example

1. CAN

Introduction

- simple and robust broadcast bust
- speed up to 1 Mbit

Message Frame

- Identifier indicates the priority of the message
- It helps the receiving PU to filter out the messages that they not interested in

Arbitration Mechanism

- messages are sent as if all the PUs on the network shared a single global priority-based queue
- · fixed priority non-preemptive scheduling

Scheduling Model

- message size s_i : $c_i = s_i \tau_{bit}$
- ullet period p_i with unique priority i and hard deadline D_{m_i}

Schedulability

- A message is said to be **schedulable** if and only if $R_{mi} \leq D_{mi}$
- The system is **schedulable** if and only if all of the messages in the system are schedulable
- The timing behavior of the CAN messages is considered to be a same as scheduling periodic non-preemptive tasks on uniprocessor.
- The worst-case scenario for CAN message is the one arising at the critical instant when all the messages are generated simultaneously

2. FPNP Policies

Response Time Analysis

$$R_{mi} = w_{mi} + c_i$$

where

 w_{mi} is queuing delay

Busy Period

Block Time

The queuing delay w_{mi} includes blocking time B_{mi} due to lower priority messages which may be in the process of being transmitted when message m_i is queued:

$$B_{mi} = \max_{k \in lp(mi)} c_i$$

Busy Period

$$t_{mi}^{k+1} = B_{mi} + \sum_{orall m \in hp(m_i) \cup m_i} \left\lceil rac{t_{mi}^k}{p_{mi}}
ight
ceil c_{mi}$$

- ullet start as $t_{mi}^0=c_{mi}$
- ullet stop when $t_{mi}^{k+1}=t_{mi}^{k}$
- converge guaranteed when $U_{mi} = \sum_{\forall m \in hp(m_i) \cup m_i} rac{c_{mi}}{p_{mi}} < 1$

Response Time

$t_{mi} < p_i$:

one instance the message m_i arrives at within busy period, the busy period wil be the response time

$t_{mi} > p_i$

• multiple instance of the message arrives within the busy period

$$Q_{mi} = \left\lceil rac{t_{mi}}{p_{mi}}
ight
ceil$$

• In this case, the response time analysis should compute the response time all Q_{mi} instances, the response time of the message is the **longest** among them

$$egin{aligned} w_{mi}^{k+1} &= B_{mi} + q c_{mi} + \sum_{orall m \in hp(m_i)} \left[rac{w_{mi}^k(q) + au_{bit}}{p_{mi}}
ight] c_{mi} \ R_{mi}(q) &= w_{mi}(q) - q p_{mi} + c_{mi} \end{aligned}$$

initialization and termination:

-

$$w_{mi}^{0}(q) = B_{mi} + q c_{mi} \ w_{mi}^{k+1}(q) = w_{mi}^{k}(q)$$

3. Distributed Embedded Controllers

Design Example