Prova tipo C. Respostas

- 1) Considere os vetores $\bar{v} = (0, 1, 1)$ e $\bar{w} = (1, 1, -1)$.
- a) Determine um vetor \bar{a} de módulo igual a $\sqrt{6}$ tal que $\bar{a} \times \bar{v} = \bar{w}$.
- b) Determine o valor de c para que se verifique a igualdade

$$(1, c, 2) \cdot ((0, 1, 1) \times (1, 1, -1)) = 6.$$

 \mathbf{c}) Determine o valor de d para que se verifique a igualdade

$$(1,d,2)\cdot((0,1,1)\times(1,1,-1))=(1,d,2)\cdot((1,1,-1)\times(0,1,1)).$$

Respostas:

a)
$$\bar{a} = (-1, 2, 1)$$
 ou $\bar{a} = (-1, -1, -2)$

b)
$$c = 10$$

c)
$$d=4$$

2) Considere o ponto P=(1,1,1) e a reta r e o plano π de equações

$$r: (-1+3t, 1+t, -3+2t)$$
 $t \in \mathbb{R}$, $\pi: x-y+z=7$.

- a) Determine o ponto Q da reta r mais próximo de P.
- b) Determine a distância d entre o ponto P e a reta r.
- c) Determine um ponto A de r tal que a distância entre P e A seja $\sqrt{20}$.
- d) Determine o ponto B da reta r tal que B, P e o ponto (-1, 1, -3) da reta r sejam os vêrtices de um triângulo de área $\sqrt{21}$.
- e) Determine o ponto C do plano π mais próximo de P.
- f) Determine a distância d' entre o ponto P e o plano π .

Respostas:

- a) Q = (2, 2, -1)
- $\mathbf{b)} \qquad d = \sqrt{6}$
- c) A = (5, 3, 1) ou A = (-1, 1, -3)
- d) B = (-4, 0, -5) ou B = (2, 2, -1)
- e) C = (3, -1, 3)
- $\mathbf{f)} \qquad d' = \sqrt{12}$

- 3) Considere o ponto P=(1,1,2) e as retas r_1 e r_2 de equações paramétricas $r_1: (1-t,2t,1-t), \quad t \in \mathbb{R}, \qquad r_2: (3+2t,2-t,-3-t), \quad t \in \mathbb{R}.$
- a) Escreva a reta r_1 como interseção de dois planos (escritos de forma cartesiana) π e ρ , onde π é paralelo ao eixo \mathbb{Z} e ρ é paralelo ao plano

$$\tau : x + y + z = 0.$$

- **b)** Determine a equação cartesiana do plano β que contém o ponto P e a reta r_1 .
- c) As retas r_1 e r_2 são concorrentes. Determine o ponto C de interseção destas duas retas.
- d) Determine as equações paramétricas da reta r_3 perpendicular comum a r_1 e r_2 (isto é, r_3 intercepta as retas r_1 e r_2 e é perpendicular a ambas retas).

Respostas:

a)
$$\pi: 2x + y = 2, \quad \rho: x + y + z = 2$$

$$\beta = 3x + y - z = 2$$

c)
$$C = (-1, 4, -1)$$

d)
$$r_3 = (-1+t, 4+t, -1+t), t \in \mathbb{R}$$