Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, Kaiming He

2023.01.13 논문 리뷰 배성훈

Research Background

- 정지영상의 경우, 모든 orientation이 동일하면서 이동 불변성 (shifted invariant)의 특징을 가짐
- Video의 경우, 모든 motion의 spatiotemporal orientation은 같지 않음
- 즉, Video recognition에서 slow motion과 fast motion의 기여도가 다름
- 이러한 이유로, 저자는 Spatial structures와 temporal events를 서로 분리해서 다룸
 - Spatial semantics of visual content는 느리게 변함 예를 들어, 손을 흔드는 행위에서 '손'이란 객체의 identity는 고유함
 - 이러한 categorical semantics (colors, textures, lighting..)을 인식하는 것은 상대적으로 느리게 인식
 - 이와 반대로 motion은 상대적으로 빠르게 변화
- 이런 직관을 통해 Two-pathway SlowFast 모델 제안

Motivation

- Retinal ganglion cells에 대한 연구에 motivate
- 사람 시각 시스템에 대한 연구로, cell들이 80% Parveocellular(P-cells)와 15~20%의 Magnocellular(M-cells)로 이뤄짐
- M-cells는 high temporal frequency에 대한 연산 및 fast-temporal change에 반응
 -> spatial detail이나 color에는 거의 반응을 하지 않음
- P-cells는 spatial detail, color에 대해 반응, temporal information에는 천천히 반응
- 이러한 연구 결과를 기반으로, SlowFast 모델 설계
- 각 pathway가 P-cells와 M-cells의 비율 (80:20)인 것과 같이 각 pathway의 계산량이 80:20을 보임
- 즉, 각 pathway가 M-cells와 P-cells의 기능을 하도록 설계
- 인간 시각 시스템을 적용해 Video recognition 성능 향상

Method:

- SlowFast Network
- 기존의 모델 (Two stream design)과 차이
 - 서로 다른 temporal speed를 탐지하지 못함
 - Optical flow 계산 X, End-to-End 학습
- Slow pathway
 - ✔ Semantic information을 image or few sparse frames에서 추출 (lower temporal rate)
 - ✓ Low frame rates와 flow refreshing speed로 작동
- Fast pathway
 - ✓ Motion 포착
 - ✓ High temporal resolution, Fast refreshing speed
 - ✓ 전체 계산량의 20%만 차지 -> 모델 경량화 기여
 Fewer channel을 가지고, spatial information 처리에 많은 자원을 쓰지 않도록 설계
 - ✔ Temporal pooling을 진행하지 않음 ->high frame rate로 동작해 temporal fidelity 유지

Method:

SlowFast Network

2개의 서로 다른 frame rates로 동작

Slow pathway와 Fast pathway로 분할해서 각각 spatial information, temporal information 학습 각 과정에서 lateral connection을 사용해 Fast information을 Slow information과 합침

Method:

- Slow pathway
 - Input frames에 대해 temporal stride τ 적용 -> low frame rate τ: 16, Raw video clip에서 16 frames 마다 샘플링, 30fps 영상에서 대략 1초에 2frame만 추출
 - 샘플링된 frame 수가 T이면, Raw video의 frame 수는 Txt
 - 일반적인 C3D, I3D와 다르게, non-degenerate temporal convolution 사용 (temporal kernel size > 1) Slow pathway에서는 res4와 res5에만 적용
 - -> 초기 layer에서 temporal convolution 사용이 정확도를 저하시키는 실험에 의거

Method:

- Fast pathway:
 - 더 큰 temporal resolution과 작은 channel capacity를 가짐 $\alpha=8$, $\beta=\frac{1}{8}$
 - 모든 block에서 non-degenerate temporal convolution 사용 (temporal kernel size > 1)
 - Detailed motion을 포착하기 위해 temporal convolution에 대해 fine temporal resolution 유지
 -> 이를 위해 temporal downsampling layer X

Method:

- Fast pathway: High temporal resolution features
 - High input resolution을 입력으로 받으면서 Network layer 전체에서 high resolution features 추구 (Temporal downsampling layer X, time-strided convolution X)
 - Downsampling은 global pooling layer 전까지 사용하지 않음
 - Feature tensor는 temporal dimension에 따라 항상 lpha T frames를 갖도록 temporal fidelity 유지

Fast pathway의 high temporal resolution 유지 ($\alpha T: 8x4$)

Method:

- Fast pathway: Low channel capacity
 - 좋은 accuracy 달성을 위해 lower channel capacity 사용
 -> 모델 경량화
 - Fast pathway는 slow pathway와 유사한 convolution layer로 구성되지만, Slow pathway의 β (β < 1) channels의 비율을 가짐 -> β = $\frac{1}{8}$
 - 공통된 layer의 FLOPs가 layer의 channel scaling 비율에 따라 Quadratic 할 수 있음
 -> Fast pathway가 Slow pathway보다 계산이 효율적 (모델 경량화 및 FLOPs={80:20})

Fast pathway | Lower channel capacity $(\beta:\frac{1}{8})$

Method:

- Fast pathway: Low channel capacity
 - Fast pathway는 spatial dimension에서 특별한 처리 과정이 없기 때문에 spatial modeling capacity가 낮음
 - Fast pathwa는 spatial modeling ability가 약할 수록 temporal modeling ability가 강한 trade off 가짐
 - 위의 개념을 motivate해, input spatial resolution의 감소, color information 제거 -> accuracy 향상 기여
 - 모델 경량화 측면에서 less spatial capacity가 더 이득

Channel capacity ratio

	top-1	top-5	GFLOPs
Slow-only	72.6	90.3	27.3
$\beta = 1/4$	75.6	91.7	54.5
1/6	75.8	92.0	41.8
1/8	75.6	92.1	36.1
1/12	75.2	91.8	32.8
1/16	75.1	91.7	30.6
1/32	74.2	91.3	28.6

Weaker spatial input to Fast pathway

Fast pathway	spatial	top-1	top-5	GFLOPs
RGB	-	75.6	92.1	36.1
RGB, β =1/4	half	74.7	91.8	34.4
gray-scale	-	75.5	91.9	34.1
time diff	-	74.5	91.6	34.2
optical flow	-	73.8	91.3	35.1

Method:

Lateral connections

- Object Detection에서 <u>서로 다른 level의 spatial resolution과 semantics를 합치는 기법</u>
- 2 Pathway의 정보가 합쳐짐 (Fast pathway의 정보가 Slow pathway에 추가되는 단방향 연결)
- 하나의 Lateral connection을 모든 stage마다 two pathways 사이에 추가
- In ResNet. pool1, res2, res3, res4, res5 각각의 뒤에 추가
- 2 Pathway의 서로 다른 temporal dimension을 맞추기 위한 transformation 수행
- 이때 features를 pathway에 연결하는 다양한 전략을 사용해 성능 비교

Lateral connections

- Method:
 - Lateral connections: Transformation

• Experiments: Action classification

• Kinetics-400, -600, Charades

Training

- Kinetics dataset: Non Pretrained random initialization으로 학습
- Synchronized SGD
- **Temporal domain**: Full-length video에서 clip random sampling ($\alpha T x \tau$ frames) **Input temporal**: Slow pathway (T), Fast pathway (αT)
- **Spatial domain**: Video로부터 [256,320] pixels로 resize 후 224x224 pixels로 random crop or Horizontal flips

Inference

- Temporal axis 따라 10개의 clip으로 sampling
- 각 clip에 대해, 더 짧은 spatial side를 256pixels로 확장, 256x256의 3개의 crop (spatial dimension cover)
- Prediction을 위해 Average softmax score
- 사용된 View 수에서 spacetime "View"당 FLOP 계산 (spatial clip이 있는 temporal clip)
- Spatial size: 256², 307 Views (3 Spatial crop x 10 temporal clip)

• Experiments: Action classification

Datasets

- Kinetics-400: 240K training videos, 20K validation, 400 human action categories
- Kinetics-600: 392K training videos, 30K validation, 600 classes Single spatially centered flip -> FLOPs computational cost 계산
- Charades: 9.8K training videos, 1.8K validation, 157 classes 평균 최대 30초 간격으로 길게 수행된 action을 찍은 multi-label classification

Metrics: mAP

• Experiments: Action classification

- Kinetics-400, Input sampling $(Tx\tau)$, Backbones: ResNet-50/101, Non local(NL)
 - 기존 SOTA보다 2.1% 더 높은 Top-1 accuracy
 - ImageNet pretrained 없는 모델에서도 더 높은 Top-1 accuracy 달성 (73.9% -> 79.8% / 5.8% Up)
 - Pretrained의 유무에 관계없이 성능 향상

Comparison with the state-of-the-art on Kinetics-400

model	flow	pretrain	top-1	top-5	GFLOPs×views
I3D [5]		ImageNet	72.1	90.3	108 × N/A
Two-Stream I3D [5]	✓	ImageNet	75.7	92.0	$216 \times N/A$
S3D-G [61]	✓	ImageNet	77.2	93.0	$143 \times N/A$
Nonlocal R50 [56]		ImageNet	76.5	92.6	282×30
Nonlocal R101 [56]		ImageNet	77.7	93.3	359×30
R(2+1)D Flow [50]	✓	-	67.5	87.2	152 × 115
STC [9]		-	68.7	88.5	$N/A \times N/A$
ARTNet [54]		-	69.2	88.3	23.5×250
S3D [61]		-	69.4	89.1	$66.4 \times N/A$
ECO [63]		-	70.0	89.4	$N/A \times N/A$
I3D [5]	✓	-	71.6	90.0	$216 \times N/A$
R(2+1)D [50]		-	72.0	90.0	152×115
R(2+1)D [50]	✓	-	73.9	90.9	304×115
SlowFast 4×16, R50		-	75.6	92.1	36.1×30
SlowFast 8×8, R50		-	77.0	92.6	65.7×30
SlowFast 8×8, R101		-	77.9	93.2	106×30
SlowFast 16×8, R101		-	78.9	93.5	213×30
SlowFast 16×8, R101+NL		-	79.8	93.9	234×30

• Experiments: Action classification

- Kinetics-400, Input sampling $(Tx\tau)$, Backbones: ResNet-50/101, Non local(NL)
 - Low inference-time cost 달성
 - 기존의 연구는 temporal axis에 따라 clip이 상당히 dense한 sampling 사용 (Inference time: > 100 views)
 - In SlowFast, 많은 temporal clip이 필요하지 않음 (Spacetime view 당 cost 낮음, **36.1 GFLOPs**)
 - -> High temporal resolution을 사용해 모델 경량화 기여

model	flow	pretrain	top-1	top-5	GFLOPs×views
I3D [5]		ImageNet	72.1	90.3	108 × N/A
Two-Stream I3D [5]	✓	ImageNet	75.7	92.0	$216 \times N/A$
S3D-G [61]	✓	ImageNet	77.2	93.0	143 × N/A
Nonlocal R50 [56]		ImageNet	76.5	92.6	282×30
Nonlocal R101 [56]		ImageNet	77.7	93.3	359×30
R(2+1)D Flow [50]	✓	-	67.5	87.2	152 × 115
STC [9]		-	68.7	88.5	$N/A \times N/A$
ARTNet [54]		-	69.2	88.3	23.5×250
S3D [61]		-	69.4	89.1	$66.4 \times N/A$
ECO [63]		-	70.0	89.4	$N/A \times N/A$
I3D [5]	✓	-	71.6	90.0	216 × N/A
R(2+1)D [50]		-	72.0	90.0	152×115
R(2+1)D [50]	✓	-	73.9	90.9	304×115
SlowFast 4×16, R50		-	75.6	92.1	36.1×30
SlowFast 8×8, R50		-	77.0	92.6	65.7×30
SlowFast 8×8, R101		-	77.9	93.2	106×30
SlowFast 16×8, R101		-	78.9	93.5	213×30
SlowFast 16×8, R101+NL		-	79.8	93.9	234×30

- Experiments: Action classification
 - Trade off accuracy / complexity
 - Slow-only와 SlowFast에 따른 성능 비교
 - **Horizontal axis**: 전체 Inference cost의 $\frac{1}{30}$ 에 비례하는 256² spatial size의 단일 input clip에 대한 model capacity 측정
 - Slow-only보다 SlowFast를 사용할 때 더 낮은 cost로 더 좋은 성능을 나타냄

Model capacity in GFLOPs for a single clip with 2562 spatial size

- Experiments: Slow, Fast pathway 사용 전략에 따른 결과 비교
 - Frame rate ratio α
 - Slow pathway에서 frame 수를 2배로 늘리면, computation cost (horizontal axis)가 2배로 증가
 - 더 높은 frame rate에서 작동해도 computation cost의 작은 증가 -> 서로 다른 전략 모두 성능 향상 기여
 - 녹색 화살표: slow pathway 정보에 fast pathway 정보를 추가하는 이점
 - 빨간색 화살표: SlowFast가 더 높은 정확도와 적은 cost

Model capacity in GFLOPs for a single clip with 2562 spatial size

• Experiments: Action classification

- Kinetics-600, Input sampling $(Tx\tau)$, Backbones: ResNet-50/101, Non local(NL)
 - Kinetics-600의 validation set은 Kinetics-400의 training set과 겹침
 - Kinetics-400을 pretrained X
 - SOTA인 ActivityNet보다 높은 성능 보임 (79.0% -> 81.8%)

Comparison with the state-of-the-art on Kinetics-600

model	pretrain	top-1	top-5	GFLOPs×views
I3D [3]	-	71.9	90.1	108 × N/A
StNet-IRv2 RGB [21]	ImgNet+Kin400	79.0	N/A	N/A
SlowFast 4×16, R50	-	78.8	94.0	36.1×30
SlowFast 8×8, R50	-	79.9	94.5	65.7×30
SlowFast 8×8, R101	-	80.4	94.8	106×30
SlowFast 16×8, R101	-	81.1	95.1	213×30
SlowFast 16×8, R101+NL	-	81.8	95.1	234×30

• Experiments: Action classification

- Charades, Non local(NL)
 - Baseline (Slow-only) 사용시 (Pretrained Kinetics-400) mAP= 39.0
 - SlowFast에 NL과 Pretrained Kinetics-600 사용시 3.1 mAP 성능 향상 (42.1 -> 45.2)
 - 기존 SOTA보다 더 낮은 computation cost, 높은 mAP 달성

Comparison with the state-of-the-art on Charades

model	pretrain	mAP	GFLOPs×views
CoViAR, R-50 [59]	ImageNet	21.9	N/A
Asyn-TF, VGG16 [42]	ImageNet	22.4	N/A
MultiScale TRN [62]	ImageNet	25.2	N/A
Nonlocal, R101 [56]	ImageNet+Kinetics400	37.5	544×30
STRG, R101+NL [57]	ImageNet+Kinetics400	39.7	630×30
our baseline (Slow-only)	Kinetics-400	39.0	187×30
SlowFast	Kinetics-400	42.1	213×30
SlowFast, +NL	Kinetics-400	42.5	234×30
SlowFast, +NL	Kinetics-600	45.2	234×30

- Experiments: Slow, Fast pathway 사용 전략에 따른 결과 비교
 - Fast pathway design $(Tx\tau = 4x16)$
 - Individual pathways:
 - Slow, Fast pathway 각각 따로 사용했을 때 각각 모델 경량화 기여 (GFLOPs: 27.3, 6.4)
 - SlowFast fusion:
 - Naïve fusion (No lateral connection), two pathway의 Final output 연결 -> 73.5 mAP
 - Time-to-Channel, Time-strided sampling, Time-strided convolution: 모두 Slow-only보다 좋은 성능

SlowFast fusion

	lateral	top-1	top-5	GFLOPs	
Slow-only	-	72.6	90.3	27.3	_
Fast-only	-	51.7	78.5	6.4	_
SlowFast	-	73.5	90.3	34.2	_
SlowFast	TtoC, sum	74.5	91.3	34.2	
SlowFast	TtoC, concat	74.3	91.0	39.8	
SlowFast	T-sample	75.4	91.8	34.9	
SlowFast	T-conv	75.6	92.1	36.1	→ Best mAP

- Experiments: Slow, Fast pathway 사용 전략에 따른 결과 비교
 - Fast pathway design (Channel capacity of Fast Pathway)
 - 목적: detailed spatial representation 없이도 motion 포착에 대한 lower channel capacity 유지
 -> Channel ratio β로 제어
 - Best mAP: $\beta = \frac{1}{6}, \frac{1}{8}$
 - $\beta = \frac{1}{32} \sim \frac{1}{4}$ 까지 모두 Slow-only 보다 더 좋은 성능 달성
 - $\beta = \frac{1}{32}$ 일 때, Fast pathway는 1.3 GFLOPs의 약간의 cost 증가가 있지만 1.6 mAP 성능 증가

Channel capacity ratio

- Experiments: Slow, Fast pathway 사용 전략에 따른 결과 비교
 - Fast pathway design (Weaker spatial input to fast pathway)
 - Fast pathway에 서로 다른 weaker spatial input을 사용하는 연구
 - 1) Half spatial resolution (112x112) $\beta = \frac{1}{4}$ (FLOPs 유지 위해)
 - 2) Gray-scale input frames
 - 3) Time difference frames, 이전 frame에 현재 frame 빼서 계산
 - 4) Fast pathway input으로 optical flow 사용
 - 전체 방법이 Slow-only baseline 보다 좋은 성능
 - Grayscale은 RGB만큼의 성능, FLOPs는 5% 감소

Weaker spatial input to Fast pathway

Fast pathway	spatial	top-1	top-5	GFLOPs
RGB	-	75.6	92.1	36.1
RGB, β =1/4	half	74.7	91.8	34.4
gray-scale	-	75.5	91.9	34.1
time diff	-	74.5	91.6	34.2
optical flow	-	73.8	91.3	35.1

• 결론적으로, Fast pathway에 weaker spatial input과 channel capacity 적용은 모델 경량화 및 temporally high resolution에 영향을 줌

• Experiments: Action Detection

AVA dataset

- Spatiotemporal localization of human action
- 437 movie에서 추출
- Spatiotemporal label은 초당 하나의 frame으로 제공
- 모든 사람은 bounding box로 annotate
- Action detection이 어려운 대신 Actor localization은 덜 어려움
- 211K training, 57K validation video segments
- 60 classes로 evaluate 60 classes에 대해 frame-level IoU threshold 0.5로 mAP

- Experiments: Action Detection
 - Detection Architecture (약간의 수정)
 - Res5의 Filters에 **Spatial stride=1, Dilation=2** 추가 -> Res5의 spatial resolution **2배** 증가
 - Res5의 마지막 feature map에서 Rol features 추출
 - 먼저, temporal axis에 따라 frame의 각 2D Rol를 복제해 3D Rol로 연장
 - RolAlign을 통해 Spatially로 Rol features, Temporally로 global average pooling 계산
 - Rol features는 max-pool 되고 class별로 multi-label predictio을 위해 sigmoid기반 classifier로 전달
 - Action detection models과 공동으로 학습되지 않는 off-the-shelf person detector에 의해 Region proposals 계산
 - Person-detection model은 Detectron에 의해 학습됨: ResNeXt-101-FPN을 사용한 Faster R-CNN Backbone: Pretrained ImageNet & COCO human keypoint images
 - 학습된 모델의 detector를 AVA의 person detection에 맞춰 fine-tune
 - Action detection을 위한 Region proposals: confidence > 0.8로 detect된 Person boxes
 - Person class에 대해 Recall 91.1%, precision 90.7%

• Experiments: Action Detection

- Training
 - Kinetics-400 classification models로부터 SlowFast weight 초기화
 - (Pretrained Kinetics-400 model's weight 사용 -> 빠른 수렴, Transfer learning)
 - Step-wise learning rate 사용
 - (특정 epoch마다 learning rate 감소), validation error가 포화될 때 learning rate를 10배 감소
 - AVA의 211k training dataset
 - 68 epoch, 각 epoch: 14000 iteration (첫 번째 1000 iteration에서 linear warm-up을 사용)
 - Weight decay: 10^{-7}
 - 다른 hyper parameter는 Kinetics Experiment와 같음
 - Input: $224x224 \exists 7 | 2 \alpha T x \tau$ frames
 - Ground truth boxes는 training sample로 사용

• Experiments: Action Detection

Inference

- 평가할 frame 주위의 αΤχτ frames을 사용해 single clip에 대한 inference 수행
- Height와 width 중 짧은 쪽이 256 pixels이 되도록 spatial dimension size 조정
- Backbone feature extractor는 표준 Faster R-CNN에서 fully convolution을 사용해 계산

• Experiments: Action Detection

- Main results
 - Pretrained Kinetics-400 사용한 경우 기존의 SOTA보다 **5.6 mAP** 높은 <mark>26.3 mAP</mark> 달성
 - Optical flow 없이 학습한 경우에도 **7.3 mAP** 높게 성능 달성
 - Kinetics-600 사용시 0.5 mAP 상승한 26.8 mAP 달성
 - Non local block 추가시 27.3 mAP로 상승
 - Test set에 대해 single crop set accuracy에 대해 27.1 mAP 달성
 - Ground-truth boxes를 IoU > 0.9 겹치도록 예측한 Proposals를 사용한 경우 <mark>28.2 mAP</mark> 달성 -> <mark>SOTA</mark>

model	flow	video pretrain	val mAP	test mAP
I3D [20]		Kinetics-400	14.5	-
I3D [20]	✓	Kinetics-400	15.6	-
ACRN, S3D [46]	✓	Kinetics-400	17.4	-
ATR, R50+NL [29]		Kinetics-400	20.0	-
ATR, R50+NL [29]	✓	Kinetics-400	21.7	-
9-model ensemble [29]	✓	Kinetics-400	25.6	21.1
I3D [16]		Kinetics-600	21.9	21.0
SlowFast		Kinetics-400	26.3	-
SlowFast		Kinetics-600	26.8	-
SlowFast, +NL		Kinetics-600	27.3	27.1
SlowFast*, +NL		Kinetics-600	28.2	-

• Experiments: Action Detection

- Main results
 - AVA v2.2 에서는 <mark>29.0 mAP</mark>까지 증가
 - 16x8 SlowFast 모델 사용 시 29.8 mAP
 - Testing을 위해 **Multiple spatial scales**와 **Horizontal flip** 사용해 <mark>30.7 mAP</mark> 달성
 - 전체 **ensemble** 통해 Challenge: Test set에 대해 <mark>34.3 mAP</mark> 달성

SlowFast models on AVA v2.2

model	flow	video pretrain	val mAP	test mAP
SlowFast, 8×8		Kinetics-600	29.0	-
SlowFast, 16×8		Kinetics-600	29.8	-
SlowFast++, 16×8		Kinetics-600	30.7	-
SlowFast++, ensemble		Kinetics-600	-	34.3

Conclusion

- 본 논문에서는 사람의 인지 시스템을 모방해 새로운 Two-pathway Network를 제안
- 각 Pathway의 효과에 대해 다양한 실험을 통해 입증했고, 다양한 전략을 사용해 성능 향상에 기여
- 특히, Fast pathway design에 대한 저자의 고찰이 담겨있어 상당히 의미있는 논문이라고 생각함
- 실험에 사용된 Dataset 모두에서 성능을 향상시키고 계산량을 감소시킨 만큼 추후 Action classification의 Backbone이 될 연구라고 생각함