About CAT(-1) surfaces

Wang Xu (2024312457)

2025.1.12

The main result

The goal is to present the following theorem, the main reference is [SJ24].

 \succ Let Σ be a non-simply connected closed surface, we denote by \mathcal{A}_{Σ} the collection of CAT(-1) surface M, which is homeomorphic to Σ .

Theorem

Let Σ be a non-simply connected closed surface, $U \subset \mathcal{A}_{\Sigma}$ be an open subset, then there exists a hyperbolic surface $M \in U$, s.t.

$$\operatorname{sys}(M) = \sup_{M' \in U} \operatorname{sys}(M')$$

Corollary

Let Σ be a non-simply connected closed surface, then the maximal systole of the CAT(-1) metrics on Σ is attained by a hyperbolic metric.

Definitions and results

Throughout, we consider only closed surfaces.

Definition (conical singularity)

Let (M,g) be a closed surface with metric g. We say g has a conical singularity of order β at p, if g can be written as

$$g = e^{2u(z)}|z|^{2\beta}|dz|^2, \beta > -1 \in \mathbb{R}$$

around p, where $u: \mathbb{C} \to \mathbb{R}$ is continuous. The *total angle* is defined as $2\pi(\beta+1)$.

- > Every closed *Alexandrov surface* can be approximated by a piecewise hyperbolic surface with conical singularities[SJ24]. We consider mainly this kind of surfaces.
- ightharpoonup **CAT(**-1**)** surfaces are Alexandrov surfaces of Alexandrov curvature at most -1.
- ightharpoonup For closed piecewise hyperbolic surface with conical singularities, it is a CAT(-1) surface \iff all the total angles are not less than 2π .
- $ightharpoonup \operatorname{Fix} N\geqslant 0$ and s>0, let Σ be a non-simply connected closed surface. Then the space of piecewise hyperbolic surfaces $M\cong \Sigma$ of $\operatorname{CAT}(-1)$ surface with **at most** N conical singularities and systoles at least s is compact.

Systolic decomposition and kite excision I

- ightharpoonup The intersecting systolic loops of M meet at **one** or **two points**, or **along a line**.
- \succ The *systolic decomposition* of M is the collection of the connected components of the complementary set in M of the systolic loops.
 - the *vertices* are the intersection points and the endpoints of intersecting lines;
 - the *edges* are the separated geodesic arcs by the vertices.
- \succ The number of domains, edges and vertices in the systolic decomposition of M have an upper bound which depends only on the topology of M.

The vertices(both conical singularities) p,q are called the *main vertices* of the kite K, and the length w of diagonal [r,r'] is called the *width* of K.

- \triangleright We say K is exact at p, if
- (1) p is a small singularity, i.e. $\theta_p \in [2\pi, 3\pi)$;
- (2) $\angle rpr' = \theta_p 2\pi < \pi, \angle rqr' \leqslant \min\{\theta_q 2\pi, \pi\}.$

 $M_w := (M \setminus K_w) / \sim$, \sim means identifying [p, r], [q, r] with [p, r'], [q, r'] respectively.

Systolic decomposition and kite excision II

Proposition

Let K_w be an exact kite, then

- (1) M_w is a CAT(-1) surface, with the same number of conical singularities as M;
- (2) M_w converges to M w.r.t. the bilipschitz distance as w tends to zero.

We now consider systolic decomposition with kite excision. There are three typical cases of position for a kite with main diagonal [p, q] within a systolic domain D.

Systolic decomposition and kite excision III

Proposition

Let M be a closed piecewise hyperbolic CAT(-1) surfaces. Consider a kite $K_w \subset M$ exact at p and satisfying one of the three cases. Then for sufficiently small width w, we have

$$\operatorname{sys}(M_w) \geqslant \operatorname{sys}(M)$$
.

Theorem (piecewise hyperbolic)

Let Σ be a non-simply connected closed surface. Let $U \subset \mathcal{A}_{\Sigma}$ be an open set. Then there exists a const N which depends only on the topology of Σ and a piecewise hyperbolic surface $M \in U$ with at most N conical singularities, s.t.

$$\operatorname{sys}(M) = \sup_{M' \in U} \operatorname{sys}(M').$$

Kite insertion and deformation I

Let $m \in M$ be a conical singularity, (p,q) be a geodesic arc passing through m, s.t. m is the only conical singularity on [p,q].

- For $0<\alpha<\frac{1}{2}(\theta_m-2\pi)$, take $q_\alpha\in M$ with $|mq_\alpha|=|mq|$ and $\angle qmq_\alpha=\alpha$. Denote by M' the surface by cutting along $[p,m],[m,q_\alpha]$.

Proposition (approximation)

- (1) M_{α} is also a CAT(-1) surface, with more conical singularities than M;
- (2) The surface M_{α} converges to M w.r.t. the bilipschitz distance as α tends to zero.

Now we consider the deformation of systolic loop with kite insertion.

Kite insertion and deformation II

Let M be a closed CAT(-1) surface, C be a loop free homotopy class.

$$(1) \ L_M(C) := \min\{\ell(S) \, | \, S \in C\}.$$

$$(2) \ \#_s(M) := \#\{\text{systolic loops of } M\}.$$

Let $m\in M$ be a conical singularity. we can choose a geodesic arc (p,q) passing through m, s.t. at least one systolic loop of M transversely intersects (p,q).

Proposition (loop length)

Let C be the free homotopy class of a systolic loop γ of M, for $\alpha>0$ small enough

- (1) if γ does not transversely intersect [p,q], then $L_{M_{\alpha}}(C) = L_{M}(C) = \operatorname{sys}(M)$;
- (2) if γ transversely intersects [p,q], then $L_{M_{\alpha}}(C) > L_{M}(C) = \operatorname{sys}(M)$.

Theorem (deformation via kite insertion)

Let (M) be a closed piecewise hyperbolic CAT(-1) surface, with a conical singularity m. Then M can be deformed into a closed piecewise hyperbolic CAT(-1) surface M_{α} , s.t. for $\alpha>0$ small enough, one of the following statements holds

(1)
$$\operatorname{sys}(M_{\alpha}) > \operatorname{sys}(M)$$
; (2) $\operatorname{sys}(M_{\alpha}) = \operatorname{sys}(M)$ and $\#_s(M_{\alpha}) < \#_s(M)$.

Proof of the main result

Now we can show the proof.

Proof.

According to Theorem(piecewise hyperbolic), the supremum of the systole on U is attained by some piecewise hyperbolic surfaces in U with conical singularities.

Among these surfaces, take M to be of minimal $\#_s(M)$.

 ${f Goal} \colon M$ has no conical singularity, thus M is a hyperbolic surface.

Suppose by contradiction that m is a conical singularity. By Theorem(deformation via kite insertion), we can deform M by a kite insertion into some $M_{\alpha} \in U$, for $\alpha > 0$ small enough (approximation) with one of the following properties

(1)
$$\operatorname{sys}(M_{\alpha}) > \operatorname{sys}(M)$$
;

(2)
$$\operatorname{sys}(M_{\alpha}) = \operatorname{sys}(M)$$
 and $\#_s(M_{\alpha}) < \#_s(M)$.

But M attains the maximal of the systoles, so (1) is impossible.

Since M has a minimal $\#_s(M)$, (2) is also impossible.

Thank you for your attention!