Finite-Difference modelling

B. Arntsen

NTNU
Department of Geoscience
borge.arntsen@ntnu.no

UNIS, Svalbard April 2024

Content

- 1. Why do we need Finite Difference modelling?
- 2. Newton and Hook's law
- 3. Finite Difference Grids
- 4. The Finite Difference Method

Diffracted waves

Diffracted waves

Newton's and Hook's laws

Seismic waves can be completely described by Newton's law

$$\partial_t v(x,t) = \rho^{-1}(x)\partial_x \sigma(x,t) + f(x,t),$$

and Hook's law

$$\partial_t \sigma(x,t) = \kappa(x) \partial_x v(x,t).$$

Here:

ightharpoonup
ho(x) : Density

 \triangleright v(x,t): Particle velocity

 $ightharpoonup \sigma(x,t)$: Stress

• f(x,t): External force (Source of energy)

 $ightharpoonup \kappa(x)$: Bulk modulus (Stiffnes)

Gridded Models

Gridded Models

Time derivative of v(x,t)

$$\partial_t v(x,t) \approx \frac{v(x,t+\Delta t)-v(x,t)}{\Delta t}$$

 $\partial_t v(x,t)$ is the slope of the line above.

Predict ahead in time

$$v(x, t + \Delta t) \approx v(x, t) + \partial_t v(x, t) \Delta t$$

It is possible to predict future values of v(x, t) if the derivative (slope) is known.

Finite Difference solution

Seismic waves can be completely described by Newton's law

$$\partial_t v(x,t) = \rho^{-1} \partial_x \sigma(x,t) + f(x,t),$$

If we know $\sigma(x,t)$ and v(x,t) we can compute $v(x,t+\Delta t)$ by using the formula from the previous slide:

$$v(x, t + \Delta t) \approx v(x, t) + \Delta t [\rho^{-1} \partial_x \sigma(x, t) + f(x, t)].$$

The derivative of σ on the right hand side can be computed by the same formula

$$\partial_x \sigma(x,t) \approx \frac{\sigma(x+\Delta x,t) - \sigma(x,t)}{\Delta x}$$

Finite Difference solution

Seismic waves can be completely described by Newton's law

$$\partial_t \sigma(x,t) = \rho^{-1} \partial_x v(x,t),$$

If we know $\sigma(x,t)$ and v(x,t) we can compute $\sigma(x,t+\Delta t)$ by using the formula from the previous slide:

$$\sigma(x, t + \Delta t) \approx \sigma(x, t) + \Delta t [\kappa(x) \partial_x v(x, t)].$$

The derivative of v on the right hand side can be computed by the same formula

$$\partial_x v(x,t) \approx \frac{v(x+\Delta x,t)-v(x,t)}{\Delta x}$$

Initial conditions

By repating the formulas on the previous slides we can compute the particle velocity and stress at any future time t. The computation is started by assuming that the particle velocity and stress is zero at the beginning, only the external force f (source) is acting.

Outer Boundaries

Outer Boundaries

Perfectly Matched Layer (PML)

Fibrous Sound absorbing material

eta: 0.5 Porosity Fluid density ho_s :2600 kg/m^3 Fiber density η : $10^{-3}kg/m \times s$ Viscosity κ : 0.5 \times 10⁻⁷ m^2 Permeability α : 1.2 Tortuosity

Gives Q ≈ 1.0 Wave velocity: 1500 m/s

Perfectly Matched Layer (PML)

Perfectly Matched Layer (PML)

