學號: 806902017 系級: 資工三 姓名: 趙允祥

1. 請說明你實作的 CNN 模型(best model),其模型架構、訓練參數量和準確率為何?(1%)

模型架構:

Layer (type)	Output Shape	Param #		
conv2d_1 (Conv2D)	(None, 128, 128, 6			
batch_normalization_1 (Batch (None, 128, 128, 64) 256				
max_pooling2d_1 (MaxPooling2 (None, 64, 64, 64) 0				
conv2d_2 (Conv2D)	(None, 64, 64, 12	8) 73856		
batch_normalization_2 (Batch (None, 64, 64, 128) 512				
conv2d_3 (Conv2D)	(None, 64, 64, 12	8) 147584		
batch_normalization_3 (Batch (None, 64, 64, 128) 512				
max_pooling2d_2 (MaxPooling2 (None, 32, 32, 128) 0				
conv2d_4 (Conv2D)	(None, 32, 32, 25	56) 295168		
batch_normalization_4 (Batch (None, 32, 32, 256) 1024				
conv2d_5 (Conv2D)	(None, 32, 32, 25	56) 590080		
batch_normalization_5 (Batch (None, 32, 32, 256) 1024				
max_pooling2d_3 (MaxPooling2 (None, 16, 16, 256) 0				
conv2d_6 (Conv2D)	(None, 16, 16, 512	2) 1180160		
batch_normalization_6 (Batch (None, 16, 16, 512) 2048				
conv2d_7 (Conv2D)	(None, 16, 16, 512	2) 2359808		
	/D-t-b /N 10 10 F	210) 0040		

2048

batch_normalization_7 (Batch (None, 16, 16, 512)

max_pooling2d_4 (MaxPooling2 (None, 8, 8, 512) 0				
dropout_1 (Dropout)	(None, 8, 8, 512)	0		
flatten_1 (Flatten)	(None, 32768)	0		
dense_1 (Dense)	(None, 1024)	33555456		
dense_2 (Dense)	(None, 512)	524800		
dropout_2 (Dropout)	(None, 512)	0		
dense_3 (Dense)	(None, 11)	5643		
=======================================				

訓練參數量:

Total params: 38,741,771

Trainable params: 38,738,059

Non-trainable params: 3,712

準確率:0.80693 on Kaggle public leaderboard,0.78 on validation set

2. 請實作與第一題接近的參數量,但 CNN 深度 (CNN 層數)減半的模型,並說明其模型架構、訓練參數量和準確率為何?(1%)

模型架構:只留四層 convolution,每層都 max pooling 與 batch normalize, 一層全聯接層,然後 softmax 輸出結果

訓練參數量:35490827

準確率: 0.85 on testing set 0.56 on validation set

3. 請實作與第一題接近的參數量,簡單的 DNN 模型,同時也說明其模型架構、訓練參數和準確率為何?(1%)

模型架構:三層全聯接層,每層都 batch normalize,然後 softmax 輸出結果

訓練參數量:36080755

準確率: 0.32 on testing set 0.35 on validation set

4. 請說明由 1~3 題的實驗中你觀察到了什麼?(1%)

從一、二題的比較,得知 CNN 層數如果過少,可能無法很好的辨識各個特徵,也因此得到的準確率很低。 但由於 CNN 本身還是很強,所以在 training set 上的準確率還是蠻高的。

從一、三題的比較,得知 dnn 就算參數跟原先的 model 一樣,在 validation set 上的辨識還是很糟。因為 dnn 是取全部的特徵,包括那些沒必要的,因此在跟 cnn 相同的參數數目上,得到的結果一定比較糟。

5. 請嘗試 data normalization 及 data augmentation, 說明實作方法並且說明實行 前後對準確率有什麼樣的影響?(1%)

我最後上傳的就是 normalization 及 argumentation 都有做的。

Normalization 是把每個 pixel 都除以 255.0

Argumentation 是用 keras 的 image generator 來處理圖片,分別是:旋轉、放大、斜變、平移、左右翻轉。

在沒做 normalization 之前,training accuracy 跟 validation accuracy 都很低;沒做 argumentation 則是 training 很高、validation 很低。

都做之後不只 training accuracy 可以超過 95%,也能有效減低 overfitting 的問題。

6. 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析](1%)

0-麵包 1-乳製品 2-甜點 3-蛋 4-炸物 5-牛肉 6-麵食 7-飯食 8-海鮮 9-湯 A-蔬果

其中「乳製品」跟「甜點」是最容易用混的。