

# 强化学习原理及应用 Reinforcement Learning (RL): Theories & Applications

DCS3015 Autumn 2022

Chao Yu (余超)

School of Computer Science and Engineering Sun Yat-Sen University



Lecture 5: 强化学习-3

Model-free Prediction & Control

#### Recap



- Last lecture:
  - MDP
  - policy evaluation
  - policy iteration and value iteration for solving a known MDP
- This lecture:
  - Model-free prediction: Estimate value function of an unknown MDP
  - Model-free control: Optimize value function of an unknown MDP

#### RL with knowing how the world works



■ Both of the policy iteration and value iteration assume the direct access to the dynamics and rewards of the environment



- ☐ In a lot of real-world problems, MDP model is either unknown or known by too big or too complex to use
  - ☐ Atari Game, Game of Go, Helicopter, Portfolio management, etc

### Model-free RL: Learning by interaction



■ Model-free RL can solve the problems through interaction with the environment



- No more direct access to the known transition dynamics and reward function
- ☐ Trajectories/episodes are collected by the agent's interaction with the environment
- $\square$  Each trajectory/episode contains  $\{S_1, A_1, R_1, S_2, A_2, R_2, ..., S_T, A_T, R_T\}$

### Model-free RL: Learning by interaction



■ Model-free RL can solve the problems through interaction with the environment



- No more direct access to the known transition dynamics and reward function
- ☐ Trajectories/episodes are collected by the agent's interaction with the environment
- $\square$  Each trajectory/episode contains  $\{S_1, A_1, R_1, S_2, A_2, R_2, ..., S_T, A_T, R_T\}$

#### Model-free prediction



- Model-free prediction: policy evaluation without the access to the model
- Estimating the expected return of a particular policy if we don't have access to the MDP models
  - Monte Carlo policy evaluation
  - Temporal Difference (TD) learning

### Monte-Carlo Policy Evaluation



- □ Return:  $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...$
- $\square v^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$  thus expectation over trajectories  $\tau$  generated by following  $\pi$
- MC simulation: we can simply sample a lot of trajectories, compute the actual returns for all the trajectories, then average them
- MC policy evaluation uses empirical mean return instead of expected return
- ☐ MC does not require MDP dynamics/rewards, no bootstrapping, and does not assume state is Markov.
- ☐ Only applied to episodic MDPs (each episode terminates)

## Monte-Carlo Policy Evaluation



- $\square$  To evaluate state v(s)
  - Every time-step t that state s is visited in an episode,
  - 2 Increment counter  $N(s) \leftarrow N(s) + 1$
  - **3** Increment total return  $S(s) \leftarrow S(s) + G_t$
  - 4 Value is estimated by mean return v(s) = S(s)/N(s)
- By law of large numbers,  $v(s) \rightarrow v^{\pi}(s)$  as  $N(s) \rightarrow \infty$

### Incremental MC Updates



 $\square$  Mean from the average of samples  $x_1, x_2,...$ 

- $\square$  Collect one episode  $(S_1, A_1, R_1, ..., S_t)$
- $\square$  For each state  $s_t$  with computed return  $G_t$

$$N(S_t) \leftarrow N(S_t) + 1$$
  
 $v(S_t) \leftarrow v(S_t) + \frac{1}{N(S_t)}(G_t - v(S_t))$ 

$$\mu_{t} = \frac{1}{t} \sum_{j=1}^{t} x_{j}$$

$$= \frac{1}{t} \left( x_{t} + \sum_{j=1}^{t-1} x_{j} \right)$$

$$= \frac{1}{t} (x_{t} + (t-1)\mu_{t-1})$$

$$= \mu_{t-1} + \frac{1}{t} (x_{t} - \mu_{t-1})$$

☐ Or use a running mean (old episodes are forgotten). Good for non-stationary problems.

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$

#### Difference between DP and MC



- Dynamic Programming (DP) computes  $v_i$  by bootstrapping the rest of the expected return by the value estimate  $v_{i-1}$
- ☐ Iteration on Bellman expectation backup:

$$v_i(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \Big( R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) v_{i-1}(s') \Big)$$

■ MC updates the empirical mean return with one sampled episode

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$







= Expectation

= Terminal state

#### Advantages of MC over DP



- ☐ MC works when the environment is unknown
- Working with sample episodes has a huge advantage, even when one has complete knowledge of the environment's dynamics, for example, transition probability is complex to compute
- ☐ Cost of estimating a single state's value is independent of the total number of states. So you can sample episodes starting from the states of interest then average returns

### Temporal-Difference (TD) Learning



- ☐ TD methods learn directly from episodes of experience
- ☐ TD is model-free: no knowledge of MDP transitions/rewards
- ☐ TD learns from incomplete episodes, by bootstrapping
- $\square$  Objective: learn  $v_{\pi}$  online from experience under policy  $\pi$
- ☐ Simplest TD algorithm: TD(0)
  - **1** Update  $v(S_t)$  toward estimated return  $R_{t+1} + \gamma v(S_{t+1})$

$$v(S_t) \leftarrow v(S_t) + \alpha (R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$

$$\delta_t = R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \Longrightarrow TD \text{ error}$$
 TD target

- ☐ Comparison: Incremental Monte-Carlo
  - 1 Update  $v(S_t)$  toward actual return  $G_t$  given an episode i

$$v(S_t) \leftarrow v(S_t) + \alpha(G_{i,t} - v(S_t))$$

#### Advantages of TD over MC







= Expectation

**□** = Terminal state

## Comparison of TD and MC



- ☐ TD can learn online after every step
- ☐ MC must wait until end of episode before return is known
- ☐ TD can learn from incomplete sequences
- MC can only learn from complete sequences
- □ TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments
- ☐ TD exploits Markov property, more efficient in Markov environments
- MC does not exploit Markov property, more effective in non-Markov environments

#### Bias/Variance Trade-Off



- Return  $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$  is unbiased estimate of  $v_{\pi}(S_t)$
- True TD target  $R_{t+1} + \gamma v_{\pi}(S_{t+1})$  is *unbiased* estimate of  $v_{\pi}(S_t)$
- TD target  $R_{t+1} + \gamma V(S_{t+1})$  is biased estimate of  $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
  - Return depends on many random actions, transitions, rewards
  - TD target depends on one random action, transition, reward

#### Comparison of TD and MC



- ☐ MC has high variance, zero bias
  - ☐ Good convergence properties
  - ☐ (even with function approximation)
  - Not very sensitive to initial value
  - ☐ Very simple to understand and use
- ☐ TD has low variance, some bias
  - ☐ Usually more efficient than MC
  - $\square$  TD(0) converges to  $V_{\pi}(s)$
  - ☐ (but not always with function approximation)
  - More sensitive to initial value

#### Bootstrapping and Sampling for DP, MC, and TD



- Bootstrapping: update involves an estimate
  - ☐ MC does not bootstrap
  - ☐ DP bootstraps
  - ☐ TD bootstraps
- ☐ Sampling: update samples an expectation
  - MC samples
  - ☐ DP does not sample
  - ☐ TD samples

#### **Unified View**







**Dynamic Programming Backup** 

$$v(S_t) \leftarrow v(S_t) + \alpha(G_t - v(S_t))$$



Monte-Carlo Backup

$$TD(0): v(S_t) \leftarrow v(S_t) + \alpha(R_{t+1} + \gamma v(S_{t+1}) - v(S_t))$$



Temporal-Difference Backup

#### Unified View of RL





#### n-step TD



- □ n-step TD methods that generalize both one-step TD and MC.
- We can shift from one to the other smoothly as needed to meet the demands of a particular task.



#### n-step TD prediction



 $\square$  Consider the following n-step returns for  $n = 1,2,\infty$ 

$$n = 1(TD) \quad G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1})$$

$$n = 2 \qquad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2})$$

$$\vdots$$

$$n = \infty(MC) \quad G_t^{\infty} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

☐ Thus the n-step return is defined as

$$G_t^n = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

■ n-step TD: 
$$v(S_t) \leftarrow v(S_t) + \alpha \left( G_t^n - v(S_t) \right)$$

#### Model-free Control



- Model-Free Reinforcement Learning
  - Model-free prediction
  - ☐ Estimate the value function of an unknown MDP
- ☐ This part:
  - Model-free control
    - Monte-Carlo control
    - ☐ Temporal Difference (TD) control
    - □ Off-Policy Learning
  - ☐ Optimise the value function of an unknown MDP
  - Solve large RL problems

#### Uses of Model-Free Control



#### Some example problems that can be modelled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactor
- Helicopter
- Aeroplane Logistics

- Robocup Soccer
- Quake
- Portfolio management
- Protein Folding
- Robot walking
- Game of Go

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

## Policy Iteration



- ☐ Iteration through the two steps
  - $\blacksquare$  Evaluate the policy  $\pi$  (computing  $\nu$  given current  $\pi$ )
  - lacksquare Improve the policy by acting greedily with respect to  $v_{\pi}$

$$\pi' = \operatorname{greedy}(v_{\pi})$$





### Policy Iteration for a Known MDP



 $\square$  Compute the state-action value of a policy  $\pi$ :

$$q_{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) v_{\pi_i}(s')$$

 $\square$  Compute new policy  $\pi_{i+1}$  for all  $s \in S$  following

$$\pi_{i+1}(s) = \operatorname*{arg\,max}_{a} q_{\pi_i}(s,a)$$

□ Problem: what to do if there is neither R(s, a) nor P(s'|s, a) known/available

### Using Action-Value Function



■ Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \operatorname*{argmax}_{s \in \mathcal{A}} \mathcal{R}^{a}_{s} + \mathcal{P}^{a}_{ss'} V(s')$$

■ Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

### Monte Carlo with $\epsilon$ – *Greedy* Exploration



- $\Box \epsilon greedy$  Exploration: Ensuring continual exploration
  - ☐ All actions are tried with non-zero probability
  - $\square$  With probability  $1 \epsilon$  choose the greedy action
  - $\square$  With probability  $\epsilon$  choose an action at random

$$\pi(a|s) = egin{cases} \epsilon/|\mathcal{A}| + 1 - \epsilon & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s,a) \\ \epsilon/|\mathcal{A}| & ext{otherwise} \end{cases}$$

### Monte Carlo with $\epsilon$ – *Greedy* Exploration



Policy improvement theorem: For any policy  $\pi$ , the  $\epsilon$  – greedy policy  $\pi'$  with respect to  $q_{\pi}$  is an improvement,  $v_{\pi'}(s) \geq v_{\pi}(s)$ 

$$\begin{aligned} q_{\pi}(s, \pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s, a) \\ &= \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a) \\ &\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \frac{\epsilon}{|\mathcal{A}|}}{1 - \epsilon} q_{\pi}(s, a) \\ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a) = v_{\pi}(s) \end{aligned}$$

Therefore,  $v_{\pi'}(s) \ge v_{\pi}(s)$  from the policy improvement theorem

### Monte-Carlo Policy Iteration





Policy evaluation Monte-Carlo policy evaluation,  $Q=q_{\pi}$ Policy improvement  $\epsilon$ -greedy policy improvement

#### MC VS. TD for Prediction and Control



- □ Temporal-difference(TD) learning has several advantages over Monte-Carlo(MC)
   □ Lower variance
   □ Online
   □ Incomplete sequences
- ☐ So we can use TD instead of MC in our control loop
  - $\square$  Apply TD to Q(S, A)
  - $\square$  Use  $\epsilon$  greedy policy improvement
  - □ Update every time-step rather than at the end of one episode

## On-policy learning and Off-policy learning



- ☐ On-policy learning
  - ☐ Learn on the job
  - $\blacksquare$  Learn about policy  $\pi$  from experience sampled from  $\pi$
- **□** Off-policy learning
  - ☐ Look over someone's shoulder
  - $\square$  Learn about policy  $\pi$  from experience sampled from  $\mu$

## Sarsa: On-policy TD Control



■ An episode consists of an alternating sequence of states and stateaction pairs:

$$\cdots$$
  $S_t$   $A_t$   $S_{t+1}$   $S_{t+1}$   $A_{t+1}$   $S_{t+2}$   $A_{t+2}$   $A_{t+3}$   $A_{t+3}$   $A_{t+3}$   $A_{t+3}$ 

 $\Box$   $\epsilon$  – *Greedy* policy for one step, then bootstrap the action value function:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[ R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big]$$

- $\square$  The update is done after every transition from a nonterminal state  $S_t$
- $\square \text{ TD target: } \delta_{t} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

#### N-step Sarsa



 $\square$  Consider the following *n-step* Q-returns for n=1,2, $\infty$ 

$$n = 1(Sarsa)q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$$
  
 $n = 2$   $q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}, A_{t+2})$   
 $\vdots$   
 $n = \infty(MC)$   $q_t^{\infty} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T$ 

☐ Thus the n-step Q-return is defined as

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

 $\square$  N-step Sarsa updates Q(s, a) towards the n-step Q-return:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

## Off-policy control with Q learning



- We allow both behavior and target policies to improve
- $\square$  The target police  $\pi$  is greedy on Q(s, a)

$$\pi(S_{t+1}) = \argmax_{a'} Q(S_{t+1}, a')$$

- □ The behavior policy  $\mu$  could be totally random, but we let it improve following  $\epsilon \text{greedy}$  on Q(s, a)
- ☐ Thus Q-learning target

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$$
  
=  $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$ 

☐ Thus the Q-learning update

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

## Comparison of Sarsa and Q-learning



#### ☐ Sarsa: On-Policy TD control

Choose action  $A_t$  from  $S_t$  using policy derived from Q with  $\epsilon$  – greedy Take action  $A_t$ , observe  $R_{t+1}$  and  $S_{t+1}$  Choose action  $A_{t+1}$  from  $S_{t+1}$  using policy derived from Q with  $\epsilon$  – greedy  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$ 

#### ☐ Q-learning: Off-Policy TD control

Choose action  $A_t$  from  $S_t$  using policy derived from Q with  $\epsilon - \operatorname{greedy}$  Take action  $A_t$ , observe  $R_{t+1}$  and  $S_{t+1}$  Then 'imagine'  $A_{t+1}$  as argmax  $Q(S_{t+1}, a')$  in the update target  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$ 

## Comparison of Sarsa and Q-learning



■ Backup diagram for Sarsa and Q-learning





- $\square$  In Sarsa, A and A' are sampled from the same policy so it is onpolicy
- ☐ In Q-learning, A and A' are from different policies, with A being more exploratory and A' determined directly by the max operator

## Comparison of Sarsa and Q-learning



#### □ Sarsa

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

#### □ Q learning

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
   S \leftarrow S';
   until S is terminal
```

#### Example on Cliff Walk







#### 

Result of Q-Learning



On-line performance of Q-learning is worse than that of Sarsa

## Summary of DP and TD



| Expected Update (DP)                                                              | Sample Update (TD)                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Iterative Policy Evaluation                                                       | TD Learning                                                                |
| $V(s) \leftarrow \mathbb{E}[R + \gamma V(S') s]$                                  | $V(S) \leftarrow^{\alpha} R + \gamma V(S')$                                |
| Q-Policy Iteration                                                                | Sarsa                                                                      |
| $Q(S,A) \leftarrow \mathbb{E}[R + \gamma Q(S',A') s,a]$                           | $Q(S,A) \leftarrow^{\alpha} R + \gamma Q(S',A')$                           |
| Q-Value Iteration                                                                 | Q-Learning                                                                 |
| $Q(S,A) \leftarrow \mathbb{E}[R + \gamma \max_{a' \in \mathcal{A}} Q(S',A') s,a]$ | $Q(S,A) \leftarrow^{\alpha} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$ |

where  $x \leftarrow^{\alpha} y$  is defined as  $x \leftarrow x + \alpha(y - x)$ 

#### Conclusion



- Model-free prediction
   Evaluate the state value without knowing the MDP model,
   by only interacting with the environment
  - Main methods
    - Monte-Carlo Policy Evaluation
    - ☐ Temporal-Difference (TD) Learning
- Model-free control
  - $\square$  learn two Model-free control,  $\epsilon$  *greedy* exploration, Sarsa, Q-learning, on-policy, off-policy.
- Be able to implement MC and TD, including prediction and control.