

Вихретоковые датчики

Вихретоковые датчики расстояния и перемещения

- Диапазоны измерений 0,5...10 мм
- Одно- или 2-х канальные блоки электроники
- Выходы: 10 В, 5 В, ±5 В, (0)4...20 мА, шина САN
- Нелинейность ±0,25 % полной шкалы
- Высокочастотные измерения (35 кГц)
- Температура эксплуатации: -35...+185 °C
- Отсутствие воздействия на неметаллические среды в измерительном окружении (например, вода, масла, загрязнения, синтетика)
- Измерение расстояния до неподвижных и вращающихся объектов
- Измерение дисбаланса и вибрации
- Бесконтактная проверка качества при автоматизации

Введение

WayCon Positionsmesstechnik GmbH является производителем высококачественных вихретоковых датчиков перемещения для промышленного применения. Данные устройства бесконтактно измеряют расстояния до объектов с высокой вибрацией, вибрирующих и вращающихся металлических проводящих объектов, независимо от неметаллической среды в измеряемом окружении (например, масла).

Принцип измерения основан на создании в катушке датчика переменного магнитного поля. Силовые линии магнитного поля выходят из датчика, проходят через объект и возвращаются в датчик.

Таким образом переменное магнитное поле наводит вихревые токи в электропроводящем объекте, что приводит к энергетическим потерям.

Затухание вихревых токов в объекте возрастает с увеличением расстояния до датчика.

На внешней стороне катушки датчика данное извлечение затухания вихревых токов оценивается с помощью изменения комплексного входа-полного сопротивления.

Микроконтроллер, используемый WayCon, обеспечивает управление только определёнными спектральными компонентами из строго ограниченной ширины спектра.

Помехи от других диапазонов спектров удалены. Сигнал аналогового выхода формируется и выдаётся микроконтроллером.

Блок электроники может быть одно- или 2-х канальным. Возможно подключение датчиков с разными диапазонами измерений к 2-х канальному блоку электроники.

- Встроенный процессор цифровых сигналов
 - Одно- или 2-х канальная конструкция
 - Низковольтовая архитектура (1,9 В питание ядра)
 - Встроенная шина CAN
 - Edity Corrent Lamadan

 Wasser Correct Lamadan

 Wasser

• Возможности ПО

WayCon

датчик

 Последовательное включение, объдинение, функция главный/подчинённый

Диапазон измерений

- Адаптация материала
- Формфактор
- Компенсация длины кабеля
- Задаваемая пользователем линеаризация
- Сохранение данных
- Передача данных по шине CAN
- Обучение, мин-макс, пик, сигнал по достижении порогового значения, фильтр

- Датчики
 - Расширенные диапазоны измерений
 - Конструкция с сопротивлением давлению
 - Частный случай/встраивание в оборудование заказчика.

Применение

- Осевое и радиальное перемещение волны
- Дисбаланс, вибрация и удар
- Измерение округлости, овальности
- Изгиб и деформация
- Измерение зазора в подшипнике и обнаружение эрозии подшипника
- Измерение расслоения смазки в системе подачи смазки под давлением
- Обнаружение боковых поверхностей зуба
- Обнаружение кулачков и хода кулачка
- Обнаружение щелей и измерение глубины щелей
- Зазоры пресса
- Формирование каретки, проверка формы
- Измерение толщины фольг и непроводящих сред

Технические данные

Тип	T05	T2	T3	T4	T5	T10
Диапазоны измерений	00,5 мм	02 мм	03 мм	04 мм	05 мм	010 мм
Диаметр корпуса	ø 5 мм	ø 8 мм	ø 12 мм	ø 14 мм	ø 18 мм	ø 30 мм
Разрешение*	10 Гц: 0,007 %, 1 кГц: 0,018 %, 35 кГц: 0,1 %					
Нелинейность	±0,25 %					
Фильтр частоты сопряжения	10 Гц / 100 Гц / 1 кГц / 10 кГц / 35 кГц (-3 дБ)					
Динамика	Скорость выхода 120 кГц (1-канал), 70 кГц (2-канала)					
Выход	010 B / 05 B / ±5 B / 020 MA / 420 MA					
Диапазон температур датчика	-35185°C					
Диапазон температур электроники	-1070°C					
Питание	936 В постоянного тока, широкий вход					
Макс. потребление энергии	190 мА (24 В), 300 мА (12 В), 390 мА (9 В)					
Защита от короткого замыкания	Да					
Защита от обратной полярности	Да					
Материал корпуса датчика	Нержавеющая сталь 1.4305, измерительная головка ПЭЭК (полиэфирэфиркетон)					
Кабель датчика	ПТФЭ-коаксиальный, длина 3 или 6 м и на заказ					
Класс защиты датчика	IP67/IP68					
Класс защиты электроники	IP40					

^{* 99,0 %} доверительный интервал, средний уровень

Схема электрических соединений

Цифровой вход выход/CAN (D-SUB 9-контактный штепсель)

Контакт	Обозначение	Описание
1	EXT OPTO OUT1	Цифровой выход I/O 1
2	CANL	CAN низкий сигнал
3	CAN GND	CAN земля
4	EXT IN 1	Цифровой вход I/O 1
5	EXT IN 2	Цифровой вход I/O 2
6	IN GND	Земля І/О
7	CANH	CAN высокий сигнал
8	EXT OPTO OUT2	Цифровой выход I/O 2
9	CAN GND	CAN земля

Разъём питания M12
2 белый: не задействован (1 коричневый: В+ (9...36 В)
3 синий: земля 4 чёрный: не задействован

Примечание: все входы и выходы гальванически разделены с помощью оптопар

Технические чертежи электроники

