

SEQUENCE LISTING

<110> SHIBATA, Takashi
 ICHIKAWA, Chiyo
 MATSUURA, Mitsutaka
 NOGUCHI, Yuji
 SAITO, Yoshimasa
 YAMASHITA, Michio
 TAKATA, Yoko

<120> SORBITOL DEHYDROGENASE, GENE ENCODING THE SAME AND USE THEREOF

<130> 213930US0PCT

<140> 09/926,163 <141> 2001-09-17

<150> PCT/JP00/01608

<151> 2000-03-16

<150> JP11/72810

<151> 1999-03-17

<150> JP11/224679

<151> 1999-08-06

<160> 20

<170> PatentIn version 3.1

<210> 1

<211> 4115

<212> DNA

<213> Gluconobacter oxydans

<220>

<221> CDS

<222> (537)..(1994)

<223>

<400> 1 60 aagettgeat geetgeaggt egactetaga ggateeggtt ttggeagege teeetagatt gatgcggcgt ctgttgaccg acatgatgct ggtggcacgt gccattgcga cggggcgtgc 120 gaccgggaac acaggcctgc tgcctttgta caaggggctg agtcatgcgc tgcgtgggct 180 ggcacatagt tgcgaagagc agttgcgcgc aaagcagaac cagcatgaac agcagtccga 240 agacgaggaa atcctcggcc tcctaccgcg attggaagag cagacccgtc ctgagatgcg 300 ttttgtgatg tccctgttcc gcgaggatct cgaacggg¢t gttggggtgc tcatgcgttc 360 tgatgcgagt gccgcaaaag gtctctgaac aggacgtccc gcggagggca gtcagaggtc 420 gaaatggctc ctgttgaaac cgtcattcgg tttttacgtt gtttcggggc tatgatggca 480

catgecegge ettgteggte	codatcaaca acc	raaccaa aa	accacacaa aatto	c atq 539
catgeodye cttytogyto	codgecageg acc	.ggcccga aa	iccaeggag aaree	Met 1
att acg cgc gaa acc c Ile Thr Arg Glu Thr L 5	tt aag tct ctt eu Lys Ser Leu 10	cct gcc aa Pro Ala As	at gtc cag gct sn Val Gln Ala 15	ccc 587 Pro
ccc tat gac atc gac g Pro Tyr Asp Ile Asp G 20	gg atc aag cct ly Ile Lys Pro 25	ggg atc gt Gly Ile Va	tg cat ttc ggt al His Phe Gly 30	gta 635 Val
ggt aac ttt ttt cga g Gly Asn Phe Phe Arg A 35	cc cat gag\gcg la His Glu Ala 40	ttc tac gt Phe Tyr Va 45	al Glu Gln Ile	ctt 683 Leu
gaa cac gct ccg gac t Glu His Ala Pro Asp T 50 5	gg gcg att gtt rp Ala Ile Val 5	ggt gtt gg Gly Val Gl 60	gc ctg acg ggc ly Leu Thr Gly	agt 731 Ser 65
gac cgt tca aag aaa a Asp Arg Ser Lys Lys L 70	aa gcc gag gaa ys Ala Glu Glu	ttc aag go Phe Lys Al 75	cc cag gac tgc la Gln Asp Cys 80	ctg 779 Leu
tat tcc ctg acc gag a Tyr Ser Leu Thr Glu T 85	cg gct ccg tcc hr Ala Pro Ser 90	ggc aag ag	gc acg gtg cgc er Thr Val Arg 95	gtc 827 Val
atg ggc gcg ctg cgt g Met Gly Ala Leu Arg A 100	ac tat ctg ctt sp Tyr Leu Leu 105	gdc ccg gd	cc gat ccg gaa la Asp Pro Glu 110	gcc 875 Ala
gtg ctg aag cat ctt g Val Leu Lys His Leu V 115		Ile Arg I		
atc acg gaa ggc ggc t Ile Thr Glu Gly Gly T 130	ac aac atc aac Yr Asn Ile Asn 35	gag acg ac Glu Thr Tl	cc ggt gcg ttc hr Gly Ala Phe	gat 971 Asp 145
ctg gag aat gcg gca g Leu Glu Asn Ala Ala V 150	ta aag gcc gac al Lys Ala Asp	ctc aag aa Leu Lys As 155	ac ccg gaa aag sn Pro Glu Lys 160	ccg 1019 Pro
tct acc gtt ttc ggt t Ser Thr Val Phe Gly T 165	ac gtg gtc gag 'yr Val Val Glu 170	gcc ctg c	gt cgt cgt tgg rg Arg Arg Trp 175	gat 1067 Asp
gcc ggt ggt aag gca t Ala Gly Gly Lys Ala P 180	tt acg gtc atg The Thr Val Met 185	tcc tgt ga	at aac ctg cgt sp Asn Leu Arg	cat 1115 His
aac ggc aat gtc gcc c Asn Gly Asn Val Ala A 195	gc aag gcc ttc rg Lys Ala Phe 200	Leu Gly T	at gcg aag gcg yr Ala Lys Ala 05	cgc 1163 Arg

() 15 (

					{·												
										aac Asn 220						:	1211
										tcg Ser							1259
										gac Asp							1307
gag Glu	gat Asp	ttc Phe 260	cat His	cag Gln	tgg Trp	gtg Val	ctg Leu 265	gaa Glu	gac Asp	cag Gln	ttt Phe	gcg Ala 270	gat Asp	ggc Gly	cgt Arg		1355
										gtc Val							1403
tgg Trp 290	gag Glu	tac Tyr	gtc Val	aag Lys	atc Ile 295	cga Arg	atg Met	ctc Leu	aat Asn	gca Ala 300	Gly 999	cat His	gtc Val	atg Met	ctc Leu 305		1451
										aat Asn							1499
gaa Glu	gac Asp	agc Ser	gaa Glu 325	ctc Leu	ctt Leu	ggc Gly	aat Asn	ctg Leu 330	aag Lys	aac Asn	tat Tyr	ctc Leu	aac Asn 335	aag Lys	gat Asp		1547
gtc Val	atc Ile	ccg Pro 340	acc Thr	ctg Leu	aag Lys	gcg Ala	cct Pro 345	tda Ser	ggc Gly	atg Met	acg Thr	ctc Leu 350	gaa Glu	ggc Gly	tat Tyr		1595
															cag Gln		1643
acg Thr 370	ctc Leu	cgg Arg	att Ile	gct Ala	agc Ser 375	gat Asp	ggc Gly	tgt Cys	t dc Ser	aag Lys 380	gtt Val	cag Gln	gtg Val	ttc Phe	tgg Trp 385		1691
															cgt Arg		1739
															gac Asp		1787
gag Glu	aag Lys	ggc Gly 420	Gly 999	acg Thr	tat Tyr	gaa Glu	tcg Ser 425	tcc Ser	gag Glu	ccg Pro	act	tat Tyr 430	ggc Gly	gac Asp	gcc Ala		1835
gaa	tgg	aag	ttg	gcc	aag	gcg	gac	gac	ttc	gaa	agk	tct	ctg	aag	ctc		18,83

Glu Trp Lys Leu Ala Lys Ala Asp Asp 435	Phe Glu Ser Ser Leu Lys Leu 445	
ccg gcg ttc gat ggg tgg cgc dat ctg Pro Ala Phe Asp Gly Trp Arg Asp Leu 450 455	gat acg tcc gaa ctg gat caa 1931 Asp Thr Ser Glu Leu Asp Gln 460 465	L
aag gtc atc gtg ctg cgg aag atd atc Lys Val Ile Val Leu Arg Lys Ile Ile 470	cgc gaa aag ggc gta aaa gcc 1979 Arg Glu Lys Gly Val Lys Ala 475 480	€
gcc atc ccg gcc tga attcggcttt tagg Ala Ile Pro Ala 485	gtagcg actgaaacag aaaaccgcgc 2034	1
tctggaagga gcgcggtttt ttttatgctc ag	atctgtcc catcaggaca aggatcacga 2094	4
cgaccacgat caggacaagt ccgctggagg gg	gagececa tttegaactg taeggeeatg 2154	4
acggcagcgc accgagatca ggattacaag aa	aggatcagt cccatggcac atctctcttg 2214	4
ccggttgaga ctggtctgtg ttccgggtgt ct	aaaaagtt teegtagggg egegaaagat 2274	4
caaagctgtc ggtcgcgctt aatccggtcc ca	aagcegcat tgatgeggge caceeggtee 2334	4
tgtgcgcgtt tgcgctctgt ctctgacata gg	gtttctggg ccagcacgtc cggatgatgt 2394	4
tegeggatea gggtgegeea gegeaegegg at	ttctgtgt cagttgcgct gcgggtgatg 245	4
ccgagaatac gataggcatc cggctcgttt cc	egetggdgg egegattgtt geegettteg 251	4
gcccggtccc atgctcctgg cggcaggcca aa	atgccccqt gaacgcgctg cagaaaatcg 257	4
atttectteg ggtgaagete geggetgggg ee	eggcategy caegggegat aeggaaeagt 263	4
gccgtcatga ggttctcaag cggcgccgta tt	catcggcat aggcettgee catttegegg 269	4
gcatacatet egaaategte egteeggteg eg	gggcgcgat cgaacagcat gccgacttcc 275	4
ttggtgttat cgggggggaa ctggaagcag gt	ccttgaaag dittgattte gtgteggtte 281	4
accggcccgt cgatcttcgc cagcttcgcg ca	acagggcaa caggccgat ggcgtaaagc 287	4
tgatctcgtt tgcccagggc cgcagcaatc tt	eggeagege egaaaagge egegetgttg 293	4
ggatcgggac ggccattcgc gggaaagcgc to	cactccage cgdccgttga gggcttgagt 299	4
agcgaaccgt tatcggcggc atgccccagc go	etgegecca teadtgetee gaaaggacca 305	4
ccaaccgcga agcccgcgac accaccgaac at	cettgeece agatageeat gteateaace 311	4
tagcacgccc gctcacagcg gcaaatgaca ga	atcgcaggc taggt tagg tgctgatgcg 317	4
ccaaccgccc gggcttgcgg tgtggtagaa go	ctaggagtt acgaacttat cgctgtctca 323	4
tgcttttgag gcgcaggttc ttctgttcgt tt	tcatgacgg atatttttat gcccaccttg 329	4

		\				
atccagactg	ctacttcgat	ccctt	tctgatgacg	aactgatgga	tcttttgatc	3354
aagcgtctgc	caatgtggct	gcagaaagtg	ctgaactggt	tgcgggaagc	ggatcataaa	3414
tgggttcgga	ttccggcggg	cgtgctgttc	atgctgggcg	gcgttctgtc	catcctgcct	3474
gttctgggtc	tgtggatgct	gccggtcggc	gtgatgttgc	ttgcgcagga	tattccgttc	3534
ttccgtcgcc	ttcagggccg	cctcttgcdc	tggatcgaac	gtcaacatcc	ggattggctg	3594
ggccttccgg	cgaaaagcgg	cagaagcta	ccgttcgtct	ggacgtgttt	ctgaagatgt	3654
gtcagtgctg	caacccgcag	ggctgaagcc	agtgggcgct	ctggtggtcg	cgcggcatcg	3714
agagaagcca	ccagagacgc	aaagctctgc	tggcggactg	cggccatcgc	gtccagtata	3774
gcccagaact	cgggttccag	tgccacggac	dtccggtgtc	ctgacagaga	caggctgcgt	3834
ttgacgagat	cactcattcc	ggttgtttct	caggcgctt	caaagcccat	tgtgcggttt	3894
cggaaacatc	agggtccgga	tcactcagca	actcccacac	agaagatata	agcgacggat	3954
cggccgagtt	gccgatcgcg	atcaggacag	ttacgtacga	accggttgcg	tccaatccgt	4014
ttgaccggag	agccagaaaa	aaacgtccgg	aatdtcgcat	tatccagccg	caccagttcg	4074
tcgagttttg	gtgcaatcag	ctccgggcgg	gcctgaagct	t		4115

<210> 2

<211> 485

<212> PRT

<213> Gluconobacter oxydans

<400> 2

Met Ile Thr Arg Glu Thr Leu Lys Ser Leu Pro Ala Asn Val Gln Ala 1 5 10 15

Pro Pro Tyr Asp Ile Asp Gly Ile Lys Pro Gly Ile Val His Phe Gly 20 25 30

Val Gly Asn Phe Phe Arg Ala His Glu Ala Phe Tyr Val Glu Gln Ile 35 40 45

Leu Glu His Ala Pro Asp Trp Ala Ile Val Gly Val Gly Leu Thr Gly 50 55

Ser Asp Arg Ser Lys Lys Lys Ala Glu Glu Phe Lys Ala Gln Asp Cys
65 70 75 80

Leu Tyr Ser Leu Thr Glu Thr Ala Pro Ser Gly Lys Ser Thr Val Arg

85 \ 90 95

Val Met Gly Ala Leu Arg Asp Tyr Leu Leu Ala Pro Ala Asp Pro Glu 100 105 110

Ala Val Leu Lys His Leu Val Asp Pro Ala Ile Arg Ile Val Ser Met
115 120 125

Thr Ile Thr Glu Gly Gly Tyr Asn Ile Asn Glu Thr Thr Gly Ala Phe 130 135 140

Asp Leu Glu Asn Ala Ala Val Lys Ala Asp Leu Lys Asn Pro Glu Lys
145 150 160

Pro Ser Thr Val Phe Gly Tyr Val Val Glu Ala Leu Arg Arg Trp
165 170 175

Asp Ala Gly Gly Lys Ala Phe Thr Val Met Ser Cys Asp Asn Leu Arg
180 185 190

His Asn Gly Asn Val Ala Arg Lys Ala Phe Leu Gly Tyr Ala Lys Ala
195 200 205

Arg Asp Pro Glu Leu Ala Lys Trp Ile Glu Glu Asn Ala Thr Phe Pro 210 220

Asn Gly Met Val Asp Arg Ile Thr Pro Thr Val Ser Ala Glu Ile Ala 225 230 235 240

Lys Lys Leu Asn Ala Ala Ser Gly Leu Asp Asp Asp Leu Pro Leu Val 245 250 255

Ala Glu Asp Phe His Gln Trp Val Leu Glu Asp Gln Phe Ala Asp Gly 260 265 270

Arg Pro Pro Leu Glu Lys Ala Gly Val Gln Met Val Gly Asp Val Thr 275 280 285

Asp Trp Glu Tyr Val Lys Ile Arg Met Leu Asn Ala Gly His Val Met 290 295 300

Leu Cys Phe Pro Gly Ile Leu Val Gly Tyr Glu Asn Val Asp Asp Ala 305 310 315 320

Ile Glu Asp Ser Glu Leu Leu Gly Asn Leu Lys Asn Tyr Leu Asn Lys 325 330 335

Asp Val Ile Pro Thr Leu Lys Ala Pro Ser Gly Met Thr Leu Glu Gly 340 345 350

Tyr Arg Asp Ser Val Ile Ser Arg Phe Ser Asn Lys Ala Met Ser Asp 355 360 365

Gln Thr Leu Arg Ile Ala Ser Asp Gly Cys Ser Lys Val Gln Val Phe 370 380

Trp Thr Glu Thr Val Arg Arg Ala Ile Glu Asp Lys Arg Asp Leu Ser 385 390 400

Arg Ile Ala Phe Gly Ile Ala Ser Tyr Leu Glu Met Leu Arg Gly Arg

Asp Glu Lys Gly Gly Thr Tyr Glu Ser Ser Glu Pro Thr Tyr Gly Asp
420 425 430

Ala Glu Trp Lys Leu Ala Lys Ala Asp Asp Phe Glu Ser Ser Leu Lys
435
440
445

Leu Pro Ala Phe Asp Gly Trp Arg Asp Leu Asp Thr Ser Glu Leu Asp 450 460

Gln Lys Val Ile Val Leu Arg Lys Ile Ile Arg Glu Lys Gly Val Lys 465 470 475 480

Ala Ala Ile Pro Ala 485

<210> 3

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 3

gctgctgagt gatccg

7

<210>	4
<210> <211>	17
<212>	DNA
	Artificial Sequence
<213>	Artificial Sequence
<220>	\
-2202	synthetic\DNA
<2237	Synchecic DNA
<400>	4
gactgc	tact tcgatcd
, ,	-
	\
<210>	5
<211>	16
<212>	
<213>	Artificial Sequence
	I
<220>	\
<223>	synthetic DNA \
<400>	5
cctaca	ccta gcctgc \
	\
	1
<210>	6
<211>	
<212>	DNA
<213>	Artificial Sequence
	-
<220>	\
<223>	synthetic DNA
	1
<400>	· · · · · · · · · · · · · · · · · · ·
cagtgc	cgtc atgagg
	1
	_
<210>	/
<211> <212>	16
<213>	Artificial Sequence
-000	1
<220>	
<223>	synthetic DNA
<400>	7
	tctc ggtgcg \
ccccya	coco aacaca
<210>	8
<211>	
<212>	DNA
<213>	Artificial Sequence
-215/	Jarabana andanina
<220>	

<223> synthetic DNA

		17
		16
		16
		16

<400> gatgct	8 tcag cacggc	16
	·	
<210>	9	
<211>	16	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	syntheti¢ DNA	
<400>	9	16
gacgat	cacg gaaggc	16
<210>	10	
<211>	16	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	synthetic DNA	
400	10	
<400>	10	16
ggilac	gtgg tcgacg	
<210>	11	
<211>	17	
<212>	i	
<213>	V	
(213/	Altificial dedament	
<220>		
<223>	synthetic DNA	
(223)		
<400>	11	
	ctga caggtcc	17
<210>	12	
<211>	16	
<212>	DNA	
<213>	Artificial Sequence	
		•
<220>		
<223>	synthetic DNA	
<400>		
gcgcga	tetg gatacg	16
<210>	13	
<211>	16	
<212>		
<213>	Artificial Sequence	

09926163.122101

<220>		
<223>	synthetic DNA	
<400>		
cgagga	tete gaadgg	16
<210>	14	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	synthetid DNA	
<400>	14	
cggatt	gcta gcgatggc	18
<210>	15	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	synthetic DNA	
<400>	15	
atcgag	gatc ctcaatqatg atgatgatga tgggccggga tggcggc	47
<210>	16	
<211>		
<212>	\	
<213>	Artificial \$equence	
<220>		
<223>	synthetic DNA	
<400>	16	
atcgag	gatc cattcggctt ttagggtagc	30
<210>	17	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic DNA	
	$\sqrt{}$	
<400>	17	~ ~
tagctg	agct catgggacag \atctgagc	28
010		
<210>	18	
<211>	10 /	

<212> PRT

<213> Gluconoba¢ter oxydans

<400> 18

Met Ile Thr Arg Glu Thr Leu Lys Ser Leu

<210> 19

<211> 33 <212> DNA <213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 19

taggaatatt tctcatgatt acgcgcgaaa ccc

33

<210> 20

<211> 16

<212> DNA

<213> Artificial \$equence

<220>

<223> synthetic DNA

<400> 20

gatgcttcag cacggc

16