Análise de Fourier

Notas de Aula: **MAT0464** Professor Dr. Paulo D. Cordaro

Gustavo P. Mezzovilla

Capítulo 1

A série de Fourier

...

1.1 O núcleo de *Dirichlet*

Definição 1.1.1. Seja X espaço topológico, $\varphi: X \longrightarrow]-\infty, \infty]$. Dizemos que φ é semi-contínua inferiormente (s.c.i) em X quando $\{x: \varphi(x) > \alpha\}$ é aberto em $X, \forall \alpha \in \mathbb{R}$.

Note que
$$\varphi^{-1}(\{\infty\}) = \bigcap_{n \in \mathbb{Z}} \{x \in X \mid \varphi(x) > n\} \text{ \'e } G_{\delta}.$$

Exercício 1.1.2. Se $\{\varphi_i\}_{i\in I}$ é uma família de funções S.C.I., mostre que $\sup_{i\in I}\varphi_i$ é S.C.I.

Solução. Seja $U(f)=\{x\in X\mid f(x)>\alpha\}$ para um α qualquer e um dado funcional f. Note que

$$U\left(\underbrace{\sup_{i\in I}\varphi_i}_{\psi}\right) = \bigcup_{i\in I}U(\varphi_i)$$

De fato, seja x tal que $\psi(x) > \alpha$. Por ser o supremo, existe $i \in I$ tal que $\psi(x) \geqslant \varphi_i(x) > \alpha$. Logo $xU(\varphi_i)$, mostrando que $U(\psi)$ está contido na união acima. A outra inclusão é evidente.

Como cada φ_i é S.C.I., o conjunto acima é uma união de abertos, i.e., $U(\psi)$ é aberto. Como o argumento acima funciona para todo α , segue o resultado.

Escolha uma sequência $\{\theta_j\}_j \subset \mathbb{T}$. Pelo teorema de Baire (1899)¹, existe $H \subset C(\mathbb{T})$ tal que $\sup_{N \in \mathbb{N}} |S_N(f,\theta_j)| = \infty$ para qualquer $f \in H$. Fixando uma f, note que aplicação $|S_N(f,\cdot)|$ é contínua no intervalo $[-\pi,\pi[$. Logo, a função

$$\lambda_f: [-\pi, \pi[\longrightarrow] - \infty, \infty]$$

$$\theta \longmapsto \sup_{N \in \mathbb{N}} |S_N(f, \theta)|$$

é semi-contínua inferiormente (s.c.i) em \mathbb{T} . Além disso, o conjunto dos ângulos tais que $\lambda_f(\theta) = \infty$ é G_δ . Escolhendo $\{\theta_j\}_j$ denso em \mathbb{T} , concluímos o seguinte Teorema:

Teorema 1.1.3. Existe $H \subset C(\mathbb{T})$ G_{δ} -denso tal que, se $f \in H$ o conjunto

$$\left\{\theta \in \mathbb{T} \,\Big| \, \sup_{N \in \mathbb{N}} |S_N(f, \theta)| = \infty \right\}$$

é G_{δ} -denso e tem medida zero.

Observação 1.1.4. Em um espaço métrico completo sem pontos isolados, todo conjunto G_{δ} -denso é não enumerável. De fato, se um conjunto enumerável $G = \{g_n\}_{n \in \mathbb{N}}$ for denso e puder ser escrito como a intersecção de abertos U_n não triviais, cada U_n também seria denso. Note que todo $V_n := U_n \setminus \{g_n\}$ é um aberto-denso visto que o espaço não possui pontos isolados. Entretanto, $\bigcap_n V_n = \emptyset$ contrariando o Teorema de Baire.

Invocação 1.1.5 (Carleson (1966)). Se $f \in L^2(\mathbb{T})$, então as somas parciais $S_N(f, \cdot)$ convergem para f para quase todo ponto em \mathbb{T} .

¹A intersecção de abertos densos em um espaço métrico completo é densa.

1.2 Decaimento dos Coeficientes

Teorema 1.2.1. Seja $k \ge 1$ e $f \in C^k(\mathbb{T})$. Então existe uma constante c = c(f, k) > 0 que estima o *n*-ésimo coeficiente da expansão de Fourier:

$$|C_n(f)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta \right| \leqslant \frac{c}{|n^k|}$$

para qualquer inteiro $n \in \mathbb{Z}$.

Demonstração. Note que a k-ésima derivada de $e^{-in\theta}$ é igual a $(-in)^k e^{-in\theta}$. Substituindo na expressão do n-ésimo termo, podemos integrar por partes para obter a seguinte relação:

(1.1)
$$C_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \frac{1}{(-in)^k} \frac{\mathrm{d}^k}{\mathrm{d}\theta^k} \left[e^{-in\theta} \right] d\theta$$
$$= \frac{1}{2\pi} \frac{1}{(-in)^k} \int_{-\pi}^{\pi} f^{(k)}(\theta) e^{-in\theta} d\theta$$

Tomando o valor absoluto em (1.1), o valor $c := (2\pi)^{-1} \int_{-\pi}^{\pi} |f^{(k)}|$ satisfaz a propriedade desejada.

Lema 1.2.2 (Riemann-Lebesgue). Se $f \in L^1(\mathbb{T})$, então $C_n(f) \stackrel{|n| \to \infty}{\longrightarrow} 0$.

Demonstração. Seja $\varepsilon > 0$. Note que para qualquer $g \in L^1(\mathbb{T})$, temos a seguinte expressão:

$$|C_n(f)| = |C_n(f - g + g)|$$

$$= |C_n(f - g) + C_n(g)|$$

$$\leqslant |C_n(f - g)| + |C_n(g)|$$

$$\leqslant ||f - g||_{L^1(\mathbb{T})} + |C_n(g)|$$

Como $C^1(\mathbb{T})$ é denso em $L^1(\mathbb{T})$, existe $g \in C^1(\mathbb{T})$ tal que $||f - g||_{L^1(\mathbb{T})} \leq \varepsilon/2$. E pelo Teorema 1.2.1, existe $n_0 \in \mathbb{N}$ tal que $|C_n(g)| < \varepsilon/2$ para $|n| \geqslant n_0$. Corolário 1.2.3. Considerando a forma integral dos coeficientes de Fourier, é possível definir $C_{\alpha}(f)$ para qualquer $\alpha \in \mathbb{R}$. Consequentemente, os resultados 1.2.1 e 1.2.2 continuam válidos sobre essa extensão.

Teorema 1.2.4. Sejam $f \in C(\mathbb{T})$ e $t_0 \in \mathbb{T}$. Suponha que existem c > 0 e $\delta > 0$ tais que:

$$|f(t) - f(t_0)| \le c|t - t_0|$$
 $(\forall \ t : |t - t_0| < \delta)$

Então $S_N(f,t_0) \stackrel{N\to\infty}{\longrightarrow} f(t_0)$.

Demonstração. Sabemos que $S_N(f,t_0) = (2\pi)^{-1} \int_{-\pi}^{\pi} f(t_0 - \theta) D_N(\theta) d\theta$ e portanto:

$$(1.2) S_{N}(f, t_{0}) - f(t_{0}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t_{0} - \theta) D_{N}(\theta) d\theta$$

$$-f(t_{0}) \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} D_{N}(\theta) d\theta}_{=1}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(t_{0} - \theta) - f(t_{0}) \right] D_{N}(\theta) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(t_{0} - \theta) - f(t_{0})}{\sin \theta/2} \sin \left(N + \frac{1}{2}\right) \theta d\theta$$

Vamos verificar no lema 1.2.5 abaixo que a aplicação dada por

(1.3)
$$h: [-\pi, \pi] \longrightarrow \mathbb{R}$$

$$\theta \longmapsto \frac{f(t_0 - \theta) - f(t_0)}{\sin \theta/2}$$

pertence a $L^1(\mathbb{T})$. Isso possibilitará aplicar o lema de Riemman-Lebesgue 1.2.2. Assim, reescrevendo a expressão em (1.2) em função de h e da ex-

pressão exponencial do $\sin(\cdot)$, temos:

$$S_{N}(f, t_{0}) - f(t_{0}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\theta) \sin\left(N + \frac{1}{2}\right) \theta \, d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\theta) \frac{e^{i(N + \frac{1}{2})\theta} - e^{-i(N + \frac{1}{2})\theta}}{2i} \, d\theta$$

$$= \frac{1}{2i} \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\theta) e^{i(N + \frac{1}{2})\theta} d\theta$$

$$- \frac{1}{2i} \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\theta) e^{-i(N + \frac{1}{2})\theta} d\theta$$

Pelo lema de Riemman-Lebesgue 1.2.2, os dois termos acima convergem para 0 e portanto, temos que $S_N(f,t_0) - f(t_0) \stackrel{N \to \infty}{\longrightarrow} 0$.

Lema 1.2.5. A aplicação h definida em (1.3) pertence a L^1 .

Demonstração. Note que

$$h(\theta) = \frac{f(t_0 - \theta) - f(t_0)}{\theta} \cdot \underbrace{\frac{\theta}{\sin \theta/2}}_{\in L^{\infty}(\mathbb{T})}$$

Por hipótese, se $\theta \in \mathbb{T}$ satisfaz $|\theta| < \delta$, então $|f(t_0 - \theta) - f(t_0)| \le c|\theta|$. Por outro lado, se $|\theta| \ge \delta$, considere M > 0 tal que $|f(\theta)| \le M$ (que existe pois f é uma contínua definida num compacto). Assim $|f(t_0 - \theta) - f(t_0)| \le 2M|\theta|/\delta$. Ou seja:

$$\frac{|f(t_0 - \theta) - f(t_0)|}{|\theta|} \leqslant \begin{cases} c, & \text{se } |\theta| < \delta \\ 2M/\delta, & \text{se } |\theta| \geqslant \delta \end{cases}$$

Considerando os dois casos, nota-se que h é o produto de uma função limitada por uma que pertence a $L^{\infty}(\mathbb{T})$. Portanto, $h \in L^{1}(\mathbb{T})$.

...

1.3 O Teorema de Fejer

Definição 1.3.1. O núcleo de Fejer é dado por $F_N(\theta) = \sum_{n=0}^N D_n(\theta)$.

Lema 1.3.2.
$$F_N(\theta) = \sin^2[(N+1)\theta/2]/[\sin^2\theta/2\cdot(N+1)]$$

Teorema 1.3.3 (Fejer). Se $f \in L^{\infty}(\mathbb{T})$ é cont $\tilde{3}$ nua em um ponto $t_0 \in \mathbb{T}$, ent \tilde{a} o $\sigma_N(f,t_0) \longrightarrow f(t_0)$. Caso f seja contínua em todo ponto, ent \tilde{a} o $\sigma_N(f,\cdot) \longrightarrow f$ uniformemente em \mathbb{T} .

Para demonstrar este Teorema, vamos estudar algumas propriedades do núcleo de Fejer na 1.3.4

Proposição 1.3.4. A respeito do núcleo de *Fejer* 1.3.1, valem as seguintes propriedades:

(i)
$$\forall \theta \in [-\pi, \pi[, F_N(\theta) \geqslant 0;$$

(ii)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(\theta) d\theta = 1.$$

 $(iii) \ \text{Para um dado} \ \varepsilon>0, \ \text{seja} \ T_\varepsilon\coloneqq [-\pi,\pi[\backslash\{\theta\in\mathbb{T}\mid |\theta|<\varepsilon\}. \ \text{Assim},$

$$\int_{T_{\varepsilon}} F_N(\theta) d\theta \stackrel{N \to \infty}{\longrightarrow} 0$$

para qualquer $\varepsilon > 0$.

1.4 $L^2(\mathbb{T})$ como espaço de Hilbert

Vamos utilizar o seguinte resultado sobre ortonormalidade em espaços de Hilbert.

Invocação 1.4.1. Seja $\{e_n\}_{n\in\mathbb{Z}}$ um conjunto de vetores ortonormais em um espaço de Hilbert H, e suponha que $\operatorname{Span}\{e_n\}_{n\in\mathbb{Z}}$ forme um

subespaço denso. Assim, todo $x \in H$ pode ser escrito como

$$x = \sum_{n \in \mathbb{Z}} x_n e_n$$

onde $x_n := \langle x, e_n \rangle$ é o *n*-ésimo coeficiente de Fourier de x. Além disso, temos que $\langle x, y \rangle = \sum_{n \in \mathbb{Z}} x_n \overline{y_n}$. Em particular, temos a seguinte versão do teorema de Pitágoras para espaços de Hilbert:

$$||x||^2 = \sum_{n \in \mathbb{Z}} |x_n|^2.$$

Consideramos o seguinte produto interno em $L^2(\mathbb{T})$, tornando-o em um espaço de Hilbert:

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \overline{g(\theta)} \, \mathrm{d}\theta$$

Considerando $e_n := (\theta \longmapsto e^{in\theta}) \in L^2(\theta)$, nota-se que $\langle e_n, e_m \rangle = \delta_{nm}$, de modo que $\{e_n\}_{n \in \mathbb{Z}}$ forma um sistema ortonormal em $L^2(\mathbb{T})$. Portanto, podemos utilizar a estrutura de Hilbert 1.4.1 e concluir a fórmula de Parseval para funções $f, g \in L^2(\mathbb{T})$:

$$\langle f, g \rangle = \sum_{n \in \mathbb{Z}} C_n(f) \overline{C_n(g)}$$

Combinações lineares desses vetores resultam em polinômios na variável $e^{i\theta}$ ($\mathbb{C}[e^{i\theta}] = \mathbb{C}[\cos\theta,\sin\theta]$), e por tanto, $\mathrm{Span}_{n\in\mathbb{Z}}\{e_n\}$ é conhecido como o conjunto dos $polinômios\ trigonométricos$.

Proposição 1.4.2. O espaço dos polinômios trigonométricos $\mathbb{C}[e^{i\theta}]$ é denso em $L^2(\mathbb{T})$.

Demonstração. Escolha $f \in L^2(\mathbb{T})$ e $\varepsilon > 0$. Como as funções contínuas são densas em $L^2(\mathbb{T})$, tome $u \in C(\mathbb{T})$ tal que $||f - u|| < \varepsilon/2$.

Pelo Teorema da aproximação de Weierstraß, existe um polinômio trigonométrico $p \in \mathbb{C}[e^{i\theta}]$ tal que $\left(\sup_{t \in \mathbb{T}} |u(t) - p(t)|\right)^{1/2} < \varepsilon/2$. Em particular,

$$||u - p|| = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{|u(\theta) - p(\theta)|}_{\le \sup_{t \in \mathbb{T}} |u(t) - p(t)|} d\theta\right)^{\frac{1}{2}} < \frac{\varepsilon}{2}.$$

O resultado segue da desigualdade triangular.

Como consequência do resultado acima 1.4.2, obtemos $S_N(f, \cdot) \stackrel{N \to \infty}{\longrightarrow} f$ para as funções $f \in L^2(\mathbb{T})$.

Corolário 1.4.3. Se $f \in L^2(\mathbb{T})$, então existe uma sequência de índices $N_j \to \infty$ tal que $S_{N_j}(f,\theta) \stackrel{j \to \infty}{\longrightarrow} f(\theta)$ para quase todo $\theta \in \mathbb{T}$.

Corolário 1.4.4. Se $f \in L^2(\mathbb{T})$ e P_R é o núcleo de Poisson, então $P_R(f, \cdot) \xrightarrow{R \to 1} f$ em $L^2(\mathbb{T})$.

Demonstração. Como $\{e^{in\theta}\}_n$ forma um sistema ortonormal, vale o Teorema de Pitágoras:

$$||P_R(f,\theta) - f(\theta)||_{L^2(\mathbb{T})}^2 = \sum_{n \in \mathbb{Z}} (R^{|n|} - 1)^2 |C_n(f)|^2 \underbrace{|e^{in\theta}|^2}_{1} \xrightarrow{R \to 1} 0.$$

Corolário 1.4.5. Se $f \in C^1(\mathbb{T})$, então $S_N(f, \cdot) \xrightarrow{N \to \infty} f$ uniformemente em $L^2(\mathbb{T})$.

Demonstração. Como f é diferenciável em todo ponto, a convergência das somas parciais se da de maneira pontual. De modo a garantir a uniformidade, vejamos que a série $\sum_{n\in\mathbb{Z}} C_n(f)e^{in\theta}$ converge uniformemente para $f(\theta)$ em \mathbb{T} .

Apliquemos o M-teste de Weierstraß (Rudin, 1976, Theorem 7.10), obtendo estimativas do termo genérico $C_n(f)$, assim como na demonstração do

Teorema 1.2.1. Integrando por partes e usando a desigualdade das médias na seguinte forma, $ab \leq \frac{1}{2}(a^2 + b^2)$ para quaisquer $a, b \geq 0$, obtemos:

$$C_{n}(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \frac{1}{-in} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[e^{-in\theta} \right] d\theta$$

$$= \frac{1}{-in} \left[\underbrace{\frac{1}{2\pi} f(\theta) e^{-in\theta}}_{0} \right]_{\theta=-\pi}^{\theta=\pi} - \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} f'(\theta) e^{-in\theta} d\theta}_{C_{n}(f')}$$

$$= \frac{1}{in} C_{n}(f')$$

$$\stackrel{\text{MA-MG}}{\leqslant} \frac{1}{2} \left(\frac{1}{|n|^{2}} + |C_{n}(f')|^{2} \right) =: M_{n}.$$

Como $f \in C^1(\mathbb{T})$, temos que f' é contínua e, portanto, $C_n(f') \stackrel{|n| \to \infty}{\longrightarrow} 0$ pelo Lema de Riemann-Lebesgue ??. Assim, a série $\sum_{n \in \mathbb{Z}} M_n$ converge, e o M-teste garante a convergência uniforme da série $\sum_{n \in \mathbb{Z}} C_n(f) e^{in\theta}$.

Corolário 1.4.6. Se $f \in C^{\infty}(\mathbb{T})$, então $S_N(f,\cdot)^{(j)} \xrightarrow{N \to \infty} f^{(j)}$ uniformemente em $L^2(\mathbb{T})$ para qualquer ordem $j \geqslant 0$ de derivada.

Demonstração. A ideia é a mesma da demonstração do corolário anterior. A j-ésima derivada da série é dada por $\sum_n C_n(f)(in)^j e^{in\theta}$. Como f é em particular de classe C^{j+2} , existe² uma constante $\alpha = \alpha(j, f)$ tal que $|C_n(f)| \leq \alpha/|n|^2$ para todo $n \in \mathbb{Z}$. O resultado segue do M-teste de Weierstraß.

²Basta integrar por partes introduzindo a derivada de ordem j + 2.

Capítulo 2

Aplicações na Análise Complexa

Antes de prosseguir, definimos a terminologia que será utilizada ao longo deste capítulo. Para evitar confusões com as funções analíticas reais, chamaremos de função holomorfa toda função $f:\Omega \longrightarrow \mathbb{C}$ que é diferenciável em todo ponto de um conjunto aberto $\Omega \subseteq \mathbb{C}$. É denotado por $\mathscr{O}(\Omega)$ o conjunto de todas as funções holomorfas em Ω . Além disso, definimos um anel complexo $A(z_0, a, b) \coloneqq \{z \in \mathbb{C} \mid a < |z - z_0| < b\}$.

Com as definições acima, podemos enunciar a questão fundamental da qual iremos investigar:

Questão. Seja $f \in L^1(\mathbb{T})$. Quando é possível determinar $\varepsilon > 0$ $h \in \mathcal{O}A(0, 1 - \varepsilon, 1 + \varepsilon)$ tal que $h \upharpoonright_{\mathbb{T}} = f$?

Índice Remissivo

Baire, 3

M-teste de Weierstraß, 9

Referências Bibliográficas

Baire, R. (1899). Sur les fonctions de variables réelles. Annali di Matematica Pura ed Applicata (1898-1922), 3:1–123.

Carleson, L. (1966). On convergence and growth of partial sums of fourier series. *Uppsala*, *Sweden*, *and Stanford California*, *U.S.A.* http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/6015-11511_2006_Article_BF02392815.pdf.

Rudin, W. (1976). *Principles of Mathematical Analysis*. International series in pure and applied mathematics. McGraw-Hill.