Session 11 -Theory

Genome Assembly with Short Reads

Date: 19/02/2024, 15:00-17:00

Teacher: **Fernando Cruz** (CNAG)

fernando.cruz@prof.esci.upf.edu

Bachelor's Degree in Bioinformatics
Course 2023-2024

52115 - Algorithms for sequence analysis in Bioinformatics (ASAB)

What is 'de novo' genome assembly?

De novo genome assembly

- Resolving a puzzle
- The pieces are reads
 - Reads are "reproductions" (with varying length and accuracy) of real DNA sequence stretches.
- Closing Paths in Carcassone

Short Reads assemble into Contigs

<u>Contigs</u> are blocks of contiguous sequence obtained by assembly of smaller DNA sequences (e.g. reads)

Scaffolds

<u>Scaffolds</u> are contigs connected by an unknown portion of sequence (gaps)

Short gaps can be filled

Assembly Graphs

Assembly Graphs

We would like to achieve high contiguity

Genome size is a limiting factor

≥30x ONT and ≥60x Illumina (Unicycler v0.4.6)

Human genome

2n = 46

22 Autosomes + 2 sex chromosomes

Ideally. 24 scaffolds/contigs!

https://sites.google.com/ucsc.edu/t2tworkinggroup/home?authuser=0

- Haploid sample (CHM13 Hiatidiform)
- Terlomere-To-Telomere(T2) assembly
- Not perfect yet

Remaining Issues:

- Coverage gaps (GA-rich)
- Centromeric Satellite repeats
- rDNAs array

How do we know our assembly is good enough?

An assembly is a set of artificial sequences (i.e. contigs/scaffolds) that tries to 'capture' an accurate linear representation of the 'real' genome sequence.

Assembly Properties

The main properties to evaluate the quality of an assembly are:

- Contiguity
- Gene completeness
- Sequence Accuracy

How do we measure **contiguity**?

Contiguity metrics - **Nseries**

To measure an assembly contiguity we use *Nseries* metrics (Nx)

- 1. All sequences are sorted by length.
- 2. Nx: We determine the length of the sequence at which the cumulative length is ≥ x% of the total assembly length
- 3. Lx: We count the number of sequences at which the cumulative length is ≥x% (Lx)

Can be applied to contigs or scaffolds!!!

Contiguity metrics – N50

- contig 'N50 length', defined as the largest length L such that 50% of all nucleotides are contained in contigs of size at least L.
- scaffold 'N50 length', defined as the largest length L such that 50% of all nucleotides are contained in scaffolds of size at least L.

N50 and L50

All contigs are sorted by length

N50 and L50

$$N50 = 60 \text{ Kbp}$$

$$L50 = 3$$

N100

N100?

L100?

How do we measure **gene completeness**?

Gene Completeness – **BUSCO**

OrthoDB

- It uses orthodb, a database containing single copy orthologues (buscos) on a clade.
- Searches these genes against our assembly.
- Reports how many are Complete, how many are Fragmented and how many are Missing

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM: **BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.** *Bioinformatics* 2015, **31**.

Gene Completeness – **BUSCO**

BUSCO v4.0.6 Assessment Results

6 Ostreococcus tauri strains assembled twice

Gene Completeness – **BUSCO**

What are the reasons for missingness?

- Not assembled
- Not close-enough database
- Not enough sequence quality in assembly

How do we measure Sequence Accuracy?

Sequence Accuracy— Consensus Quality (QV)

 The QV score is expressed logarithmically, and represents the logscale probability of errors for the consensus basecalls

$$QV = 30$$

1 error in 1,000 bp

$$QV = 40$$

1 error in 10,000 bp

Current goal is to meet EBP standards: 6CQ40

- Main criteria (6CQ40)
- >1 Mbp contig N50
- Chromosome-scale scaffolds
- Error rate <1/10,000bp = QV40

- Additional requirements
- >90% single copy complete BUSCOs
- <5% false duplications</p>
- >90% kmer completeness
- >90% sequence assigned to chr
- >90% transcripts from same organism mappable
- Separate symbionts, organellar genomes, haplotypic alternate seqs

Assembling Short Reads

Illumina

- Sequencing by synthesis
 - reversible terminators
- Ultra-high throughput
 - 100s of millions to billions of reads per run (high coverage)
- Short reads
 - 100-250bp
- Good quality
 - ~1% error (0.1 % after trimming)

What are K-mers?

Total 2-mers: 8

A **K-mer** is a substring of length K in a string T of DNA with L bases.

L=9

AATTGGCCG 2-mers 3-mers **AATTGGCCG AATTGGCCG** AAT AA ATT AT TTG Total k-mers (n)= L - K + 1TGG TG GGC GG GCC GC CCG CG

Total 3-mers: 7

All **K-mers** from substring T will **overlap K-1 bases!**

Reads are broken into K-mers

>read_1 CGATTCTAAGTGTACTGC...

- Break the reads into overlapping bits of length k (k-mers)
- Make each k-mer a node in the graph
- Make links between overlapping kmers
- Follow paths

CGATTCTAAGT

Anything unusual on the edges?

Why eads are broken into K-mers?

- Trap sequencing errors in smaller substrings
- Compute a higher number of overlaps across the genome
- Overcome coverage 'holes'

Total Kmer coverage = ((L - K + 1)/L) * Read Coverage

De Bruijn Graphs

 More efficient (memory and time) for billions of short reads

Decompose reads into k-mers

 Construct graph where nodes are kmers and edges are k-1 overlaps

Figure 3: De Bruijn Graph for Read with K=3

The length of overlaps is k-1=2. Gray arrows indicate where all the k-mers derived from the one read are placed in the graph. Blue arrows indicate the order of the k-mers and their overlaps.

Figure 1 Bridges of Königsberg problem. (a) A map of old Königsberg, in which each area of the city is labeled with a different color point. (b) The Königsberg Bridge graph, formed by representing each of four land areas as a node and each of the city's seven bridges as an edge.

De Bruijn Graph

Compeau PE, Pevzner PA, Tesler G: How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 2011, 29:987-991.

SNPs create 'Bubbles' in the graph

Unlike errors these branches have similar K-mer coverage

Effect of K-mer Length

K-mer overlap: K determines the length of the overlap between k-mers (K-1)

AATTGGCCG L=9 2-mers 3-mers **AATTGGCCG AATTGGCCG** AAT AAATT ATTTG Total k-mers (n)= L - K + 1TGG TG GGC GG GCC GC CCG CC CG Total 2-mers: 8 Total 3-mers: 7 K-overlap= 1 K-overlap= 2

Effect of K-mer Length

- K-mer overlap increase with K (+)
- K-mer coverage drops with K (-)
- **Likelihood of error -** increase with K (-)

Effect of K-mer Length

We need to find a balance !!!!!!!!

K

Long enough for reliable overlaps,

Short enough to avoid errors

and represent most of the genome (coverage)

Optimal K-mer Length

Optimal K-mer Length

It will depend on:

- Read Length
- Error Rate (reads)
- Sequencing Coverage (reads)
- Repeats and Heterozygosity Rates (genome)

Key factors for a good assembly

Key factors for a good assembly

Coverage

Lander-Waterman statistics

E(#islands) = Ne^{-c σ} E(island size) = L((e^{c σ} - 1) / c + 1 - σ) contig = island with 2 or more reads L = read length

T = minimum detectable overlap

G = genome size

N = number of reads

c = coverage (NL/G)

$$\sigma = 1 - T/L$$

Balls in Bins 1x

Balls in Bins Total balls: 1000

Courtesy of T. Alioto

Balls in Bins 2x

balls in bin

Balls in Bins Total balls: 2000

Balls in Bins 3x

Balls in Bins Total balls: 3000

Balls in Bins 4x

Balls in Bins Total balls: 4000

Balls in Bins 5x

Balls in Bins Total balls: 5000

Balls in Bins 6x

Balls in Bins Total balls: 6000

Courtesy of T. Alioto

Balls in Bins 7x

Balls in Bins Total balls: 7000

Balls in Bins 8x

Balls in Bins Total balls: 8000

Coverage Distribution: Normal

Normal genome coverage with mean 33.2x

Coverage Distribution: Even

Avoid Abnormal Coverage!

Truncated Distribution

Skewed towards low coverage

coverage, mean 3x

80% of the genome at $\geq 2x$