Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 14

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = OBOA_{(16)}, \quad CX = A78C_{(16)}, \quad DX = 64E7_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& \mathtt{BX} \vee ((\mathtt{DX}+63)-\mathtt{BX}) \\ \mathtt{VAR2} &=& ((\mathtt{CX}+81)-87) \vee \mathtt{DX} \\ \mathtt{VAR3} &=& ((\mathtt{DX} \wedge 32)+\mathtt{CX})-\mathtt{BX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat çift ndërmjet numrit 19 dhe numrit 61 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin CX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $68_{(16)} + 24_{(16)}$
- b) $3F_{(16)} E1_{(16)}$
- c) $04_{(16)} 63_{(16)}$
- d) $9C_{(16)} \wedge AB_{(16)}$
- e) $3C_{(16)} + F9_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 512 bajtëshe. Cache memoria L1 ka kapacitet prej 128KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$045B07E0_{(16)}$$
, BEC8718E₍₁₆₎, EB463E71₍₁₆₎

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

 B_C

 B_D

 B_E

 B_F

36

C1

47

8D

3C

8C

DO

F3

45

4E

04

66

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Blloku w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 B_0 BC 97 75 59 C2 47 17 81 5B CC B_1 AЗ 80 20 F1 FD F7 B_2 93 2B 2E E2 6F 6B 6E 22 E1 EF 4E F9 B_3 5B 82 72 CA B_4 96 99 CA 89 C8 96 53 D1 C2 55 F3 D7 B_5 40 32 DЗ 15 3B 71 6B 9F 6D CB 2E B_6 1A D2 47 9E 68 6F BA**B6** 4E B_7 53 2B DF 1C 87 FB D2 EΒ B_8 B_9 95 0E 17 6B 71 23 41 26 B_A C1 84 97 D2 C4 84 80 C1 B_B 4E 61 11 Α9 1F 6B E1 18

Table 1: RAM Memoria.

Table 2: Cache Memoria.

59

93

E9

C6

61

0B

C9

11

3E

5F

9A

E3

D5

AB

69

3B

91

16

65

07

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?