

CSE422: Artificial Intelligence

Project : Stress Level Detection

Section: 6
Group:14

Name	ID
Tasnuva Tanzim	21201802
Anika Islam	21101298

Table of Contents

Section No.	Content	Page
1	Introduction	3
2	Dataset Description	4
3	Dataset Pre-Processing	7
4	Feature scaling	9
5	Dataset splitting	10
6	Model Training & testing	10
7	Model Selection/ Comparison Analysis	12
8	Conclusion	18

1. Introduction

With every passing day and year, the stress level of a student is varying due to various factors. Some of the factors include: peer pressure, anxiety level, study load, future career concern. Owing to these factors and the student's health, stress level detection is a dire need. If this detection can be correctly accomplished using a machine learning model, then these students can be taken care of. For these reasons, our project has focused on the main factors causing stress to a student to find out which level of stress they are currently in. Using a dataset with these factors collected from students, we have trained some ML models, which we have used to predict the stress level and compared their accuracy score to come to a conclusion which model is most likely to detect stress level correctly.

2. Dataset Description

Source: Kaggle

Link:

https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis/data

Reference:

Student Stress Factors: A Comprehensive analysis. (2023, October 14). Kaggle. https://www.kaggle.com/datasets/rxnach/student-stress-factors-a-comprehensive-analysis/data

Data description:

Our collected dataset has a total of 21 columns, which means a total of 20 features and 1 target. All the features involved are quantitative. A total of 1100 data points have been included into this dataset from students.

Stress_level is the target and all the features involved are listed under the factors they belong to:

Psychological factors: Anxiety_level, Self_esteem, mental_health_history, Depression

Physiological factors : Headache, Blood_pressure, Sleep_quality, Breathing_problem

Environmental factors : Noise_level,Living_conditions,Safety,Basic_needs

Academic factors : Academic_performance, Study_load, Teacher_student_relationship, Future career concerns

Social factors: Social support, Peer pressure, Extracurricular activities, Bullying

To determine whether to implement regression or classification on this problem, we have viewed the target properly and have come up to the conclusion that the outputs such as 0,1 and 2 are the stress level indicating low, moderate and high stress levels respectively. These put forth that three different classes are involved in the target. Thus, the target indicates three different stress levels have been dedicated with numeric numbers to make the process of educating students with different stress levels easier. To deal with qualitative data variables, classification models have been taken into consideration.

Heatmap displaying the correlation between all features

Null value representation

According to the plot above, breathing problems and headache have some null values which need to be handled.

Class imbalance chart for all stress level in the target

According to the chart, all the stress levels are evenly distributed in the dataset.

3. Dataset Pre-Processing

Null values:

There were no null values in the original dataset. However, we have included in some null values in order to show the pre-processing of null values. Preprocessing of null values is required because null values would have an impact on the learning rate if not removed.

To resolve this problem, we have used the imputing missing values approach to replace the null values with the mean of the non-null values of the columns using SimpleImputer. The columns containing the null values are headache and breathing problem.

Before imputing	missing values	After imputing missing va	lues
anxiety_level self_esteem mental_health_history depression headache blood_pressure sleep_quality breathing_problem noise_level living_conditions safety basic_needs academic_performance study_load teacher_student_relationship future_career_concerns social_support peer_pressure extracurricular_activities bullying stress_level dtype: int64 Index(['headache', 'breathing_	0 0 0 18 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	anxiety_level self_esteem mental_health_history depression headache blood_pressure sleep_quality breathing_problem noise_level living_conditions safety basic_needs academic_performance study_load teacher_student_relationship future_career_concerns social_support peer_pressure extracurricular_activities bullying stress_level dtype: int64 Index([], dtype='object')	

Categorical Values:

However, there were no categorical values in the original dataset. So, we have included non-numeric values in the mental_health_history column to introduce categorical variables. Preprocessing of categorical variables is needed as ML models can understand only numeric values, so with the existence of non-numeric values, errors can rise while splitting the dataset and training the models.

To overcome this problem, Label Encoder has been used as there are only two possible outcomes in the mental_health_history, where 'Good' and 'Bad' are encoded with 1 and 0 respectively.

Before Label encoding:

	nxiety_level	self_esteem	mental_health_history	depression	headache	blood_pressure	sleep_quality	breathing_problem	noise_level	living_conditions	basic_nee	ds academic_performan	ice study_loa	d teacher_student_relationship	future_ca
0			Bad												
1			Good												
2			Bad												
3			Good												
4			Bad												
1095			Bad												
1096			Good												
1097			Bad												
1098			Bad												
1099															
1100 row	s × 21 columns														

After Label encoding:

ā	nxiety_level	self_esteem	mental_health_history	depression	headache	blood_pressure	sleep_quality	breathing_problem	noise_level	living_conditions	basic_	eeds academic_performa	nce study_lo	ad teacher_student_relationshi	p future_
0															
1															
2															
3															
4															
1095															
1096															
1097															
1098															
1099															
1100 row	s × 21 columns														

Similar impact on the dataset:

Correlation of the dataset is checked and the columns with 0.75 correlation have similar impact on the dataset. So, removing a feature with the same correlation would not have a drastic impact on the prediction. As a result, bullying has the most correlation with 0.75 as shown on the heatmap shown above, so this feature has been dropped out.

4. Feature Scaling

In our dataset, columns have large and small valued numeric values. The largely valued numbers may show more importance than the small valued numbers in cases where the latter has to take the dominance. To overcome this, numbers need to be equally distributed using feature scaling.

In our project, we have applied MinMaxScaler and StandardScaler on our training and testing dataset. KNN is trained with these scaled datasets and the accuracy with StandardScaler (88%) is found to be greater than that of MinMaxScaler (87%). So, we have used StandardScaler for feature scaling purposes.

Before scaling:

```
per-feature minimum before scaling:
headache
                                  0.0
blood pressure
                                  1.0
sleep_quality
breathing_problem
noise_level
                                  0.0
living_conditions
safety
basic_needs
                                  0.0
academic_performance
study_load
future_career_concerns
social_support
                                  0.0
peer_pressure
extracurricular_activities
per-feature maximum before scaling:
 anxiety_level
self esteem
                                  30.0
depression
                                  27.0
blood_pressure
sleep_quality
breathing_problem
                                    5.0
noise_level
                                    5.0
living_conditions
                                    5.0
academic_performance
study load
teacher_student_relationship
future_career_concerns
social_support
extracurricular_activities
dtype: float64
```

After scaling:

```
per-feature minimum after scaling:
[-1.83058064 -2.01391324 -1.64778344 -1.80761938 -1.41865959 -1.6982084
-1.91485667 -2.02929326 -2.23967631 -1.95142334 -1.93113626 -1.94598872
-2.00863607 -1.9124246 -1.74286069 -1.79861142 -1.90237237 -1.93729249]
per-feature maximum after scaling:
[1.6193598 1.37587078 1.85466188 1.78427984 0.97164213 1.51619786
1.60996723 1.77624939 2.25602431 1.63643715 1.56269579 1.57140873
1.80836732 1.70745481 1.54475011 1.09671428 1.59196619 1.57097472]
```

5. Dataset splitting

After preprocessing, the dataset has been split into training and testing datasets with a size of 70% and 30% each using train_test_split function of the sklearn library. We have stratified our dataset using the target column to get rid of the effect of any imbalanced dataset present. Target outcomes are uniformly distributed using stratify.

```
Original dataset: (1100, 19)
Data for Training: (770, 18)
Data for Testing: (330, 18)
```

6. Model Training & testing

We have trained 5 ML models using the training dataset and processed with the inference using the testing dataset to obtain the accuracy score for training and testing. The models used are given below:

Logistic Regression

Choosing Logistic Regression for predicting student stress levels was based on its capability to provide probabilistic outputs and ease of interpretation, which are crucial for making informed decisions about interventions. Compared to models like Decision Trees and SVM, Logistic Regression offers a straightforward understanding of how each feature influences the prediction, through its coefficients. Unlike KNN, which relies heavily on the local structure of the data, Logistic Regression assumes a linear relationship between the features and the logarithm of the odds of the outcomes, making it more scalable and generally faster for predictions on large datasets. This model of ours gave training accuracy of 90.0% and testing accuracy of 89.39%.

Naive Bayes

GaussianNB calculates the probability of a data point belonging to each class based on the feature values using Bayes' theorem. It assumes that features are independent and follows a Gaussian distribution, hence "naive", and then selects the class with the highest probability. The classifier shows a training accuracy of approximately 87.9% and a test accuracy of about 90.91%.

Support Vector Machine (SVM)

Choosing a Support Vector Machine (SVM) for your stress level detection project was driven by SVM's strength in handling high-dimensional data and its ability to find the optimal hyperplane for class separation. Unlike Logistic Regression, which assumes a linear relationship, SVM can efficiently manage both linear and non-linear relationships through the use of kernel functions, making it versatile for complex datasets. Compared to KNN, SVM is less sensitive to noise and does not rely on the entire data set for making predictions, leading to potentially better performance in environments where features strongly influence class distinctions. This makes SVM particularly effective for your nuanced and feature-rich dataset. Our Support Vector Machine gave us training accuracy of 91.17% and testing accuracy of 89.7%.

Random Forest

The random forest uses 50 decision trees, each predicting 50 different predictions. Each decision tree selects the best features to split the data based on certain criteria (like information gain for classification tasks) to create branches in the tree. Unlike Logistic Regression, which is limited to linear boundaries, Decision Trees can handle complex datasets with a mixture of categorical and numerical features effectively. Compared to SVM and KNN, Decision Trees are faster to train and provide a clear visualization of how decisions are made, making them ideal for stakeholder presentations. However, they can be prone to overfitting, especially with very detailed trees. This model here, gives training accuracy of 100% and testing accuracy of 87.88%.

KNN Classifier

KNN classifies data points based on the majority class among their k nearest neighbors. It measures distance between points in a multi-dimensional space, assigning the class most common among its k nearest neighbors. We have set the value of k as 5, and got training accuracy of 90.26% and testing accuracy of 88.79%.

7. Model selection/ comparison Analysis

Prediction Accuracy of all models

According to the prediction accuracy chart above, Naive Bayes has provided relatively better accuracy. This model can be used for stress level detection.

Confusion Matrix Table

Classification Report Table

Model		Classif	ication Re	eport		
	Classification p	Report recision	recall	f1-score	support	
Logistic	Ø	0.91	0.88	0.89	116	
Logistic	1	0.86	0.93	0.89	99	
Regression	2	0.91	0.88	0.89	115	
	accuracy			0.89	330	
	macro avg	0.89	0.90	0.89	330	
	weighted avg	0.90	0.89	0.89	330	
	Classification	n Penent				
	Classificatio	precision	recall	f1-score	support	
Naive Bayes	0	0.90	0.94	0.92	108	
	1	0.84	1.00	0.91	90	
	2	0.98	0.83	0.90	132	
	accuracy			0.91	330	
	macro avg	0.91	0.92	0.91	330	
	weighted avg	0.92	0.91	0.91	330	
	61	- Bt				<u>-</u>
	Classificatio	precision	recall	. f1-score	support	
	0	0.92	0.91	0.92	113	
SVM	1	0.88	0.91			
	2	0.89	0.87			
	accuracy			0.90	330	
	macro avg	0.90	0.90			
	weighted avg	0.90	0.90			

	Classification	Report			
		precision	recall	f1-score	support
	0	0.91	0.80	0.85	127
	1	0.84	0.91	0.87	99
Random Forest	2	0.85	0.90	0.87	104
	accuracy			0.87	
	macro avg	0.87			
	weighted avg	0.87	0.87	0.87	330
	Classification R	eport			
	pr	ecision	recall f	f1-score	support
IZNINI	pr		recall 1	f1-score	support
KNN	pr 0				support 114
KNN		ecision	0.90	0.91	
KNN	0	ecision 0.92	0.90 0.87	0.91 0.87	114 107
KNN	0 1	0.92 0.87	0.90 0.87	0.91 0.87	114 107
KNN	0 1	0.92 0.87	0.90 0.87	0.91 0.87	114 107
KNN	0 1 2	0.92 0.87	0.90 0.87	0.91 0.87 0.88 0.89	114 107 109
KNN	0 1 2 accuracy	0.92 0.87 0.87	0.90 0.87 0.89	0.91 0.87 0.88 0.89 0.89	114 107 109

8. Conclusion

In our project, we tested five different classification models to predict the Stress level. All the models we used in the project work in a different mechanism, but the purpose of all of them here is to get which model efficiently uses. Every model could do that in their own way. We have used classification report to obeserve precision, recall, fl_score for all three classes using all the models. The dataset presents a comprehensive collection of human attributes and stress level metrics, suitable for exploratory data analysis and predictive modeling. However, challenges such as null values and categorical data require preprocessing techniques like imputation and encoding for effective analysis. With proper handling, this dataset offers valuable insights into factors influencing stress efficiency and can support the development of robust predictive models.