填空题	:
1.	集成电路的加工过程主要是三个基本操作,分别是:形成某种材料的
	<u>膜薄层</u> , 在各种薄膜材料上形成需要的图形 ,
	通过_掺杂改变材料的电阻率或杂质类型。
2.	MO\$晶体管的工作原理是利用栅_极与衬底之间形成的电场,在半导体
	表面形成反型层,使源、漏之间形成导电沟道。
3.	用 CMO电路设计静态数字逻辑电路,如果设计与非逻辑下拉支路应该是

- <u>串</u>联,如果设计或非逻辑下拉支路应该是 <u>并</u>联。 4. MOS存储器主要分为两大类,分别是: <u>随机存储器(RAM</u>和只读存储
- 器(ROM)。
 5. CMO集成电路是利用 __NMOS __和 __PMOS __的互补性来改善电路性能的,因此叫做 CMO集成电路。在 P型衬底上用 _n __阱工艺制作 _CMOS __集成电路。
- 7. CMO**逻**辑电路的功耗由三部分组成: <u>动态功耗</u>、<u>静态功耗</u>、<u>开</u>关过程中的短路功耗。
- 8. 静态 CMO逻辑电路中,一般 PMO室的衬底接 ____电压,NOM室的衬底接 ___地___电压;NMO写拉网络的构成规律是: NMO室串联实现 _与操作; NMO室并联实现 __或__操作; PMOS上拉网络则是按对偶原则构成,即 PMO室____串__联实现或操作; PMO室____并__联实现与操作。
- 9. 集成电路中非易失存储器包括即: <u>不可擦除 ROM</u>、<u>EPROM</u>、_ E~2PROM 。
- 10. 等比例缩小理论包括 <u>恒定电场</u>等比例缩小定律、恒定电压等比例缩小定律、 <u>准恒定电场</u>等比例缩小定律。
- 11. 集成电路产业按照职能划分为 <u>设计</u>、<u>制造</u>、<u>封装</u>三业。
- 12. CMO逻辑电路的功耗由三部分组成: _____ 动态_____ 功耗 Pd、开关过程中的_____ 短路_____ 功耗 PSC __ 静态_ 功耗 Ps。
- 13. <u>时序</u>电路的输出不仅与当前的 <u>输入</u>有关,还与系统 <u>原来</u>的状态有关。

1.	N阱 CMOS工艺是指在 N阱中加工 NMOS的工艺。 ()
2.	非易失存储器就是只能写入,不能擦除的存储器。 ()
3.	用二极管在电路中防止静电损伤就是利用二极管的正向导电性能。 ()
4.	DRAN在存储的过程中需要刷新以保持所存储的值。 ()
5.	MO\$晶体管与 BJT晶体管一样,有三个电极。 ()
6.	为保证沟道长度相同的 PMO 全和 NMO 等效导电因子相同,PMO 全的沟道宽度一般比 NMO 全的大。 ()
7.	集成电路是以平面工艺为基础,经过多层加工形成的。 ()
8.	为保证沟道长度相同的 PMO 全和 NMO 等效导电因子相同 PMO 全的沟道宽
	度一般比 NMO管的大。 ()
9.	非易失存储器就是只能写入,不能擦除的存储器。 ()
10.	DRAM在存储的过程中需要刷新以保持所存储的值。 ()
11.	用于模拟集成电路设计的 SPICE模型中的 "SPICE"是 Simulation Program
	with Integrated Circuit Emphasis 的缩写。 ()
12.	N阱 CMOS 艺是指在 N阱中加工 NMO的工艺。 ()
13.	ESD保护的定义为:为防止静电释放导致 CMO集成电路失效所采取的保护措
	施。

简答题:

1. 请简述 MO\$晶体管的阈值电压。

使沟道区源端半导体表面达到强反型所需的栅压 强反型:即反型层多子浓度大于等于衬底多子浓度

- 费米能级:电子占据几率为 1/2 的能级
- 影响阈值电压的因素
- 栅电极材料:不同的功函数影响平带电压
- 栅氧化层:
 - 厚度
 - 栅氧化层电荷密度
- 衬底掺杂浓度
 - 掺杂浓度越大,阈值电压绝对值越大。

体效应对阈值电压的影响

- 2. 请简述 CMO 晶体管的五个二级效应。
 - 短沟道效应
 - 窄沟道效应
 - 饱和区沟道调制效应
 - 迁移率退化和速度饱和
 - 热电子效应
- 3、可恢复逻辑电路: 需要补充

当输入逻辑电平偏离理想电平时, 能使偏离理想电平的信号经过几级电路逐渐收敛到理想工作点,最终达到合格的逻辑电平的电路。

为什么说 CMOS 反相器是可恢复逻辑电路:

CMOS 反相器具有可恢复逻辑性是因为 CMOS 反相器的电压传输特性曲线共有这样的特点:在稳定的输出高电平或输出低电平区, 电路的增益很小, 而在逻辑状态转变区电路的增益很大。

4、请画图并解释 N 阱 CMOS 结构中的闩锁效应。

在 n 阱 CMOS中 PMOS管的源、漏区通过 n 阱到衬底形成了寄生的纵向 PNP晶体管,而 NMOS的源、漏区 与 P型衬底和 n 阱形成寄生的横向 NPN晶体管。 PNP晶体管的集电极和 NPN晶体管的基极通过衬底连接, 同时 NPN晶体管的集电极通过阱和 PNP晶体管的基极相连,从 而构成交叉耦合形成的正反馈回路, 一旦其中有一个晶体管导通, 电流将在两支晶体管之间循环放大, 使电流不断加大, 最终导致电源和地之间形成极大的电流, 并使电源和地之间锁 定在一个很低的电压,这就是闩锁效应。

3. 请简述集成电路设计过程中的六个抽象级别和每个级别的表现形式。

4. 假设有两个逻辑信号 A、B,在某状态下 A的上升沿先于 B的上升沿到达图 1所示电路,为了使电路得到最好的瞬态特性,请在图 1中标注出 A、B接入方法,并解释其原因。

将先到达的逻辑信号 A 接于靠近地线的 NMOS管 MN1 的栅极上,将有利于使先到达的信号 A 对串联支路的中间结点寄生电容放电,其原因是只有中间结点的电容放电后,才能使输出结点寄生电容放电,这样有利于提高电路的响应速度。

- 5. 概括版图设计规则的三种尺寸限制。
- 1) 各层图形的最小尺寸即最小线宽
- 2) 同一层次图形之间的最小间距
- 3) 不同层次图形之间的对准容差或套刻间距
- 1. 画出 CMOS IC 中采用双二极管输入 ESD 保护电路,说明输入电压的钳位范

围。

静电释放是 MOS 集成电路设计中必须考虑的一个可靠性问题, 静电释放对 CMOS 集成电路的损伤不仅会引起 MOS 器件栅击穿,还可能诱发电路内部的闩锁效应,防止 ESD 应力损伤的方法是在芯片的输入、输出端增加 ESD 保护电路。

作用是:

一:提供 ESD 电流释放通路。

二:电压钳位,防止过大的电压加在 MOS 器件上。

这两个二极管把加到输入级

MOS 晶体管栅极的电压钳制在

-0.7V<Vin<Vdd+0.7V

2. 请给出六管 SRAM 单元电路图,并说明读写操作过程。

写操作:某单元写入信息时,该单元的字线为高电平,使门管 M5 和 M6 导通。若写入" 1"则 VBL =VDD, V(BL) '=0,使 V1 充电到高电平, V2 充电到低电平,写入信息。

读操作时: 位线 BL,(BL) '都预充电到高电平 VDD,同时通过行译码器使该单元字线为高电平。若读" 1", V1 = VOH , V2 = 0,使 M1 截止,位线 BL不能放电 , M2和 M6 导通 , 对位线 (BL)'放电。若读" 0",则对位线 (BL)'保持高电平,而 BL通过 M5 和 M1放电 .

综合题:

3. 请在图 3 中补画实现 $Y = \overline{AB + CD}$ 逻辑功能的、 采用 N 阱工艺的 CMOS 电路的棍图和 相应的版图。

图 3

4.图 1为 NMOS 管的三维图,请写出图中字母 A 至 F 所对应部位的中文名称, 并简述 NMOS 晶体管的工作原理,画出 NMOS 管的输出特性曲线、标出三个工作区域,说明三个工作区域的界限。

图 1

5.请画出用静态 CMOS 电路和动态 CMOS 电路(提示:时钟控制预充和求值, 并带有 Footed管)实现 Y = A(B + C)逻辑功能的电路图,并给出两种电路的 真值表。图例:

6.请画出用 CMOS电路实现 Y=A(B+C)+DE 逻辑功能的电路图,并给出该电路的真值表。

7. 请画出 NMO 全的输出特性曲线、标出三个工作区域 , 并说明三个工作区域的界限。