

SUPERVISOR: Professor Giacinta Parish

Student Name: ZHU QIAN Student number: 22113255

9 Oct 2019

Introduction

- 1. Requirement
- 2. Hardware design
 - Power
 - Analog to Digital converter
- 3. Software design
 - Basic function
 - Human interface
- 4. Result
- 5. Conclusion

Requirements – Part1

Equipment using right now		
Datalogger	NI 9239	
USB Chassis	NI cDAQ -9171	
Computer	Windows computer	
Price>5000\$	Include software and hardware	

Screen

Computer

Requirements – Part2

Requirement	
Speed	>1kS/s
Input Range	±5Vpp
Power supply	Directly powered by Raspberry Pi
Resolution	0.1mv

AlGaN/GaN Sensor Device2 and Gate area (<10*10mm) **Constant Current Source**

Raspberry Pi Sensor

Hardware

Screen

Hardware Design – Power supply Part1

TPS7A39

- High-Precision Positive and Negative LDOs for High-Precision Analog Circuitry.
- High Power-Supply Rejection Ratio
 69dB(120Hz) and >50dB(10Hz to 2Mhz)
- 150mA per Channel

TPS61087 and TPS63700

- Buck and boost converter switch at 1.2MHz
- 10-Pin QFN Package

Hardware Design – Power supply Part2

BCM 20 (MOSI) BCM 21 (SCLK)

REF5050

- Low temperature Drift:
 - -Standard-Grade:8ppm/°C (Max)
- High Accuracy
 - -Standard-Grade: 0.1% (MAX)
- Low Noise: 3 µVpp/V
- Excellent Long-Term Stability

Hardware Design – ADC converter and front end Part1

- High performance instrumentation amplifier with very high gain accuracy.
- Pin strappable gains of 10 and 100.
- Low noise: 8 nV/√Hz 0.3uVpp from 0.1Hz to 10Hz

Hardware Design – ADC converter and front end Part2

LTC2453

- 16Bit ΔΣ ADC with I2C interface
- 2LSB offset Error
- Differential input range
- 60 conversions Per Second

Hardware Design – Result

Hardware Design – Result

Software Design

- Smbus2
 - I2C interface to let Raspberry pi can easy to communicate with ADC
- QT PySide2 for Raspberry Pi
 A official Python module from Qt for Python project. Which provide access to the complete Qt 5.12+ framework.
- Matplotlib for 2D plotting

A Python 2D plotting library which publication quality figures in Python

scripts

Software Design – I2C interface

smbus2_0.30
 Pure Python
 Drop-in replacement of smbus
 easy to use directly in Python

```
>>> b = bus.i2c_rdwr(msg)
>>> data = list(msg)
>>> print(len(data))
2
>>> print(data)
[128, 0]
>>> [
```


Software Design – PySide2

QT PySide2 for Raspberry Pi
 A official Python module from Qt for Python project. Which provide access to the complete Qt 5.12+ framework.

Matplotlib for 2D plotting

A Python 2D plotting library which publication quality figures in

Python scripts

Result

Price

		Prices(\$)
Single Board Computer	Raspberry Pi4 2G RAM	60
Analog to Digital Converter	LT2453 16Bit	4.87
AMP	AD8228	7.9
Voltage reference	REF5050	4
DCDC Boost	TPS63700	2
DCDC Boost	TPS61087	2
High precise linear regulator	TPS7A39	6
PCB	5pcs PCB	3
Total		89.77

Conclusion

- Future work
- Protection
- Isolate power supply

Thank you for listening

Also thanks for Brett, Gilberto and Jeremy helps me a lot of this project