- $\mathbf{v}_{Schall} = \lambda \cdot f$
- messen des Schalldrucks um charakteristische Punkte der stehenden Welle aufzuzeichnen
- Lineare Regression durchführen
- *v*_{Schall} aus Steigung der Linearen Regression bestimmen

Aufbau

Durchführung

Abbildung: Amplitude des Schalldrucks aufgetragen gegen eingeführte Länge des Richtmikrofons, $I = (0.025 + n \cdot 0.005) - 0.425$ in m

Rohdaten

Position Bauch N	Messpunkt n	Länge [m]
1.5	1	0.395
2.5	15	0.325
3.5	30	0.25
4.5	45	0.175

Tabelle: Druckbäuche für $f = 2400 \,\mathrm{Hz}$, mit $\sigma_I = 0.0028 \,\mathrm{m}$

Transformation der Rohdaten

Abbildung: Lineare Regression der 4 oben genannten Peaks, die Steigung beträgt $\frac{\lambda}{2}$, $\frac{\chi^2}{f}=0.47$

Auswertung der Anpassung

Abbildung: Residuenplot (Daten - Fit) mit den jeweiligen Fehlern

Fehlerrechnung und Ergebnis

$$\sigma_{\rm v} = \sqrt{f^2 \cdot \sigma_{\lambda}^2 + \lambda^2 \cdot \sigma_{\rm f}^2} \tag{1}$$

mit
$$\sigma_{\lambda} = 0.0025 \,\mathrm{m}$$

$$v = 352.8 \pm 4.5 \frac{m}{s}$$

Fazit

- unser Wert: $v = 352.8 \pm 4.5 \frac{m}{s}$
- Literaturwert: $v = 344.98 \frac{m}{s}$
- Güte unserer Anpassung: $\frac{\chi^2}{f} = 0.47$

