INFO 6210 Ski Resort Recommend

JIAYUE XU LIN SHI RUOLAN LIAO

Abstract

People like ski but select a good ski resort is a very struggling thing because there are too many factors for customers to decide. This project gathers all information about ski resort including ticket price, ski facility, weather of its city, number of customers per year and so on from 3 social medias to create a database and then we write a function. When customer insert their requirement on our database, we can extract useful information to recommend fitful ski resorts to them.

Keywords

Ski resort, database, function, social media, recommend

I. Introduction

Skiing is a popular sport in the United States. Most people would like to the ski resort to spending vacations with their families. However, there are many choices for them to choose a good ski resort, like weather, location, hill heights, and so on, that all these factors will affect their skiing time.

Besides, people go to vacation may not only for skiing purpose, they maybe still interested in different scenes and views in the same city. Looking for a good vacation place including ski resorts seems to be a task which involve bunch of research works. People even need to check the weather forecast for each of dream resort.

As a result, we want to build a database about all information about ski resorts and other kind of information for the cities, weather forecast, scenes and so on. The database will help people evaluate the comprehensive destination that satisfies ski purpose. It helps people to make a better choice.

II. Data Resource

1. Ski resort information from Kaggle

We get ski resort information from Kaggle, but it includes other countries' ski resort information excepted to the America. So we need classify ski resorts those in the USA.

• ski resort usa

Resort_Name	google_search_name	Resort_INS_has	twitter_account_name	twitter_screen	Continent	Coun	State
49-degrees-north-m	49-degrees-north-mountain	49degreesnorth	NULL	NULL	North Amer	USA	Washington State
abenaki	abenaki skiresort	abenaki	NULL	NULL	North Amer	USA	New Hampshire
afton-alps	afton-alps skiresort	aftonalps	Afton Alps	aftonalpsmn	North Amer	USA	Minnesota
al-quaal	al-quaal skiresort	alquaal	Al Quaal	AlQuaal	North Amer	USA	Michigan
aldis-hill-park-st-alb	aldis-hill-park-st-albans skire	aldishill	NULL	NULL	North Amer	USA	Vermont
alpenglow-at-arctic	alpenglow-at-arctic-valley sk	alpenglow	Arctic Valley Inc	arcticvalleyinc	North Amer	USA	Alaska
alpental	alpental skiresort	alpental	Alpental Ski Club	AlpentalSkiClub	North Amer	USA	Washington State

2. Ski resort information from Twitter

From Kaggle, we can get all the ski resort names, use these names as Twitter names to search location of ski resorts, followers and so on.

Some ski resort name may not have Twitter name, so when we run the code, we need ignore error and continue running.

```
#define a function that can get the account information

def status(i):
    temp = pd.DataFrame()
    try:
        status = api_json.get_user(screen_name = i )
            c = pd.DataFrame(status)
            d = c.drop(['description'] ,axis = 0 )
            e = c.drop(d.index, axis = 0 )
            f = e[['id', 'name', 'screen_name', 'location', 'description', 'url', 'followers_count', 'friends_count', 'listed_count', 'cre
            g = np.array(f)
            h = g.tolist()
            time.sleep(6)
            final.append(h)
            except:
            time.sleep(6)
            pass
            return final;
```

Resort_twitter(table in mysql)

twitter_id	twitter_na	twitter_sc	location	descriptation	URL	followers_	followings	friends_cc	created_a	favourites	_count
89812972	Afton Alps	aftonalpsr	Hastings, I	One of the la	r https://t.co	3531	473	72	Fri Nov 13	977	
7.71E+17	Al Quaal	AlQuaal	The Froze	n Tundra		16	201	0	Thu Sep 0	1508	
9.10E+17	Arctic Vall	arcticvalle	yinc	"Delivering Se	ervice A Deg	0	0	0	Mon Sep 1	0	
3033687667	Alpental S	AlpentalSl	Washingto	Ski Club	http://t.co	20	0	0	Sat Feb 21	. 0	
24569387	Squaw Va	l squawal pi	Olympic V	Lake Tahoe, C	http://t.co	40116	337	867	Sun Mar 1	4469	
874270242	Alpine Val	AlpineVall	White Lak	Alpine Valley	http://t.co	455	361	15	Thu Oct 13	0	
189981223	Alta Ski Ar	AltaSkiAre	Alta, Utah	Since 1938. C	https://t.co	28724	457	441	Sun Sep 12	7637	
2928931351	Alta Sierra	Altasierra	At the top	Alta Sierra Sk	i http://t.co	592	1167	2	Sat Dec 13	1270	
35872795	Alyeska Re	resortalye	Girdwood	Some have a	https://t.co	5980	426	229	Mon Apr 2	85	
1566091680	Andes To	andestow	erhills			77	29	2	Wed Jul 03	7	
26343212	Angel Fire	AngelFireF	Angel Fire	With over 200	http://t.co	6444	970	144	Tue Mar 2	2757	
3829977073	Antelope	Antelope	Bighorn N	Reopening th	https://t.co	131	263	1	Thu Oct 08	15	
7.94E+17	Anthony L	.anthonyla	Baker City	A mountain s	https://t.co	260	228	2	Thu Nov 0	3	
26335230	Ski Apach	SkiApache	Alto, New	Ski Apache of	https://t.co	3975	148	87	Tue Mar 2	171	
62696631	Appalachi	App_Ski_N	Blowing R	Celebrating 5	(http://t.co	893	32	35	Tue Aug 0	0	
15934541	Arizona Sr	AZSnowbo	High abov	The official To	https://t.co	13642	187	282	Thu Aug 2	1233	
46828073	Aspen Hig	HighlandB	Aspen, Co	Aspen Highla	rhttp://t.co	2915	216	114	Sat Jun 13	7	
89988075	Attitash M	AttitashRe	Bartlett, N	In the heart o	https://t.co	9120	1741	293	Sat Nov 14	3060	
19045182	Big Bear N	BigBearM	Big Bear La	Official Twitte	https://t.co	21358	1838	378	Thu Jan 15	2587	

3. Consumer information from Instagram

We use ski resort name got from Kaggle as hashtag and we use instaloader to get users' information those post posts in specific hashtags. In order to simplify data, we just extract those who posts during 24 hours and get posts likes, post comments and so on.

Some ski resort name may not have hashtag, when we run the code, we need ignore error and continue running. Some ski resort as hashtags may not have posts during 24 hours, so we will get empty list in our table, we need drop it and finally create a whole table.

```
post_info_list = []
  L = instaloader.Instaloader()
  for x in ins hashtag:
      final = []
      try:
         posts = L.get_hashtag_posts(x)
          #resort = pd.DataFrame()
          #ar = np.array(resort)
          #temp = ar.tolist()
          temp =[]
          SINCE = datetime.now()
UNTIL = datetime.now() - timedelta(days = 1)
          for post in takewhile(lambda p: p.date > UNTIL, dropwhile(lambda p: p.date > SINCE, posts)):
              tt = [x,post.owner_id,post.owner_username,post.date,post.caption,post.likes,post.comments]
          final.append(temp)
      except:
          pass
      a list=[]
      for i in range(len(final)):
          a_list.extend(final[i])
      for i in range(len(a_list)):
          a_list[i][3]=str(a_list[i][3])
      for i in range(len(a_list)):
          query = 'insert into inshashtag(hashtag, owner_id, owner_username, post_date, post_caption, post_likes,post_com
          hashtag = a_list[i][0]
owner_id = a_list[i][1]
          owner username = a list[i][2]
          post_date = a_list[i][3]
post_caption = a_list[i][4]
          post_likes = a_list[i][5]
```

Inshashtag

record_id	hashtag	owner_id	owner_username	post_date	post_caption	post_likes	post_comment
1	49degreesnorth	3845136	whitneyleew	4/16/2019 4:44	Made it out to 49 degre	28	4
2	alpenglow	5755593588	amagillphoto	4/16/2019 14:58	Spring sunset in	58	2
3	alpenglow	12558447465	berganbeterin	4/16/2019 14:57	#Beautiful Schlern â~€ï	7	0
4	alpenglow	1697052423	mountaingaia	4/16/2019 14:46	Good-morrow,	14	2
5	alpenglow	3655780094	ferdigraph	4/16/2019 14:37	One of the best	60	1
6	alpenglow	3163388866	allencoke	4/16/2019 14:31	ðŸŒðŸŒ™ Darkness	197	22
7	alpenglow	1935811608	nakatography	4/16/2019 14:14	Good Morning! #bythe	32	4
8	alpenglow	3435848416	rivryan_photography	4/16/2019 14:03	Great park-and-shoot	191	10
9	alpenglow	7892001484	_favorite_place_	4/16/2019 13:35	• Time's flying so	23	1
10	alpenglow	10570381185	my_view_of_mt_baker		Not only did #mtbaker	33	0
11	alpenglow	6212305001	wildlifeexpeditions	4/16/2019 13:15	🎶Sunshine on my	60	1
12	alpenglow	280215439	laurabostonthek	4/16/2019 11:42	Week 12 of his life. #BA	85	4
13	alpenglow	2246279869	miraclecacao	4/16/2019 10:02	Juste Moi et les Alpes	52	3
14	alpenglow	2334129639	david_pesek_	4/16/2019 7:47	Small austrian giant	133	4
15	alpenglow	4121888979	mnf_pictures	4/16/2019 6:09	#naturelovers #frühli	55	4
16	alpenglow	454633466	krysti_37	4/16/2019 5:17	Evening walk to the ma	29	0
17	alpenglow	3090832344	randysmallphotography	4/16/2019 4:48	Tonight's #alpenglow	55	1
18	alpenglow	234184680	askrause	4/16/2019 4:32	Ze #alpenglow ðŸ"ðŸŒ	41	2
19	alpenglow	11871797342	agapi horticulture	4/16/2019 3:44	Graptosedum	12	0

4. Ski resort information from google map

When we get ski resort name, we need input these names to google map, but these ski resort name may not the accurate name in google map. Therefore, the first step, we need add *ski resort* after every ski resort name. Then we use these names to get longitude and latitude.

The result of format we get from google map API is string, we need exchange it to list.

```
: resort_loc_state = resort_loc_sz[:]
  resort_loc_zipcode = resort_loc_sz[:]
: for i in range(len(resort_loc_zipcode)):
       resort_loc_zipcode[i] = str(resort_loc_zipcode[i]).split(' ')[2]
: for i in range(len(resort_loc_state)):
       resort_loc_state[i] = str(resort_loc_state[i]).split(' ')[1]
: test_df = pd.DataFrame({"resort_ggid":resort_ggid,"resort_name":resort_name,"resort_ggsearch_name":resort_ggsearch_name
      resorts_googleinfo
        resort_ggid
                               resort_name
                                                                                                     resort_geo_lat resort_geo_lng resort_loc_stree
                                                             resort_ggsearch_name

      49-degrees-north-mountain-resort skiresort
      48.3010972
      -117.5629161

      abenaki skiresort
      43.611548
      -71.229107

      afton-alps skiresort
      44.8576608
      -92.78780619999...

      ■ a06216f0dc734ac7f19... 49° North Mountain Resort
                                                                                                                                             3311 Flowery Tra
        efdc4393a9008170e1... Wolfeboro Abenaki Ski Area
                                                             abenaki skiresort
                                                                                                                                             390 Pine Hill Rd
        24b0dd83beeaba956... Afton Alps
                                                                                                                         -92.78780619999... 6600 Peller Ave $
        4b09b61472cd7d3ac2... Al Quaal Recreation Area al-quaal skiresort
                                                                                                    46.5128663 -87.6603544 501 Poplar St
        8881d3f45e0c8e0ba7... Aldis Hill Park
                                                                                                      44.8194721
                                                                                                                         -73.0697422
                                                             aldis-hill-park-st-albans skiresort
                                                                                                                                             St Albans City
                                                                                                   61.24672229999... -149.53491
                                                             alpenglow-at-arctic-valley skiresort
        ea8a431e81a4066b7... Arctic Valley
                                                                                                                                            Arctic Valley Rd
```

5. Ski resort information from Dark Sky website

When we get all the longitude and latitude from Google map API, we put it to the Dark Sky website. Then we will get all information like cloud cover, humidity, pressure and so on.

However, in order to do normalization, we need divide all information to 8 tables.

```
In [17]: all data=[]
                  for i in range(len(test2)):
                          temp=request_data(test2[i][0],test2[i][1])
                          all data.append(temp)
In [18]: all_data[1]["daily"]["data"][7]['humidity']
Out[18]: 0.53
In [19]: temperature min=[]
                   temperature_max=[]
                  humidity=[]
                  pressure=[]
                   windspeed=[]
                  cloudcover=[]
                   visibility=[]
                   for i in range(len(all_data)):
                          temp_min=[]
                          temp_max=[]
                          temp_hum=[]
                          temp pre=[]
                          temp_wind=[]
                          temp_cc=[]
                           temp_vis=[]
                         temp_vis=[]
for x in [0,1,2,3,4,5,6,7]:
    temperaturemin=all_data[i]["daily"]["data"][x]['temperatureMin']
    temperaturemax=all_data[i]["daily"]["data"][x]['temperatureMax']
    humidity_test=all_data[i]["daily"]["data"][x]['humidity']
    pressure_test=all_data[i]["daily"]["data"][x]['pressure']
    windspeed_test=all_data[i]["daily"]["data"][x]['windSpeed']
    cloudcover_test=all_data[i]["daily"]["data"][x]['cloudCover']
    visibility_test=all_data[i]["daily"]["data"][x]['visibility']
```

cloudcover

	resort_geo_lat	resort_geo_lng	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
⊳	28.6028623	-81.311967	0.28	0.65	0.21	0.04	0.02	0.08	0.53	0.8
	32.4474562	-110.7816719	0.01	0.01	0.04	0.22	0.43	0	0.27	0.7
	32.9525296	-105.7089861	0.14	0.14	0.08	0.27	0.62	0.11	0.07	0.89
	33.3973802	-105.7887037	0.08	0.23	0.13	0.2	0.54	0.01	0.09	0.75

humidity

	resort_geo	resort_geo_l	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
Þ	28.6028623	-81.311967	0.63	0.71	0.52	0.55	0.6	0.66	0.69	0.7
	32.4474562	-110.7816719	0.33	0.28	0.25	0.27	0.29	0.38	0.37	0.25
	32.9525296	-105.7089861	0.52	0.49	0.29	0.25	0.25	0.29	0.3	0.27
	33.3973802	-105.7887037	0.51	0.53	0.32	0.26	0.25	0.32	0.32	0.29
	33.9737977	-109.564314	0.57	0.48	0.37	0.37	0.5	0.63	0.44	0.37

pressure

	resort_geo	resort_geo_l	current	day_1	day_2	day_3	day_4	day_5	day_6	day_7
⊳	28.6028623	-81.311967	1015.17	1012	1016.3	1018.15	1020.92	1022.78	1022.46	1022.39
	32.4474562	-110.7816719	1012.7	1012.97	1011.67	1010.45	1008.99	1011.9	1011.59	1012
	32.9525296	-105.7089861	1013.16	1016.45	1011.36	1009.6	1007.96	1009.11	1008.98	1011.14
	33.3973802	-105.7887037	1013.29	1016.1	1011.05	1009.37	1008.02	1009.1	1008.95	1011.29
	33.9737977	-109.564314	1015.04	1016	1013.91	1011.39	1008.97	1010.77	1011.18	1012.2

• temperature_max

	resort_geo_lat	resort_geo_lng	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
⊳	28.6028623	-81.311967	30.73	28.93	28.19	29.67	30.05	30.6	31.09	30.41
	32.4474562	-110.7816719	26.51	28.64	26.89	23.99	23.93	20.89	24.39	24.97
	32.9525296	-105.7089861	18.1	19.71	20.15	18.63	20.15	17.37	18.73	18.14
	33.3973802	-105.7887037	19.87	19.99	19.6	18.99	20.96	17.48	19.17	19.92
	33.9737977	-109.564314	14.17	14.71	14.42	11.41	11.8	9.46	12.99	13.41

• temperature_min

	resort_geo	resort_geo_l	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
▶	28.6028623	-81.311967	17.11	19.66	16.06	17.05	17.34	20.62	20.79	20.62
	32.4474562	-110.7816719	8.7	12.29	11.39	9.47	9.81	7.33	7.1	8.74
	32.9525296	-105.7089861	4.14	6.41	9.15	8.19	7.41	6.62	4.26	6.48
	33.3973802	-105.7887037	3.18	5.95	8.56	7.13	6.97	5.63	3.74	5.37
	33.9737977	-109.564314	0.51	3.47	3.38	4.05	1.32	0.63	1.86	-0.22

visibility

	resort_geo	resort_geo_l	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
▶	28.6028623	-81.311967	16.09	16.09	16.09	16.09	16.09	16.09	16.09	16.09
	32.4474562	-110.7816719	16.08	16.09	16.09	16.09	16.09	16.09	16.09	16.09
	32.9525296	-105.7089861	15.84	16.09	16.09	16.09	16.09	16.09	16.09	16.09
	33.3973802	-105.7887037	16.09	16.09	16.09	16.09	16.09	16.09	16.09	16.09

windspeed

r	resort_geo	resort_geo_l	curr	day_1	day_2	day_3	day_4	day_5	day_6	day_7
▶ 2	28.6028623	-81.311967	2.41	4.47	2.24	2.61	3.59	4.42	4.13	4.43
3	32.4474562	-110.7816719	1.41	1.3	2.23	2.87	5.17	2.28	2.34	2.43
3	32.9525296	-105.7089861	0.51	2.59	2.8	4.34	3.62	4.33	3.56	3.14
3	33.3973802	-105.7887037	0.8	2.95	2.68	4.52	3.71	4.38	3.51	3.15
3	33.9737977	-109.564314	1.6	2.98	3.28	4.67	4.61	3.49	3.96	3.16
	1 00 10001	447.000477	4 70	0.44	0.40	0.40	4 70	0.00	4 47	4 70

III. ER Diagram

IV. Code with Documentation

https://github.com/howardxjy/info6210 project team Cerberus

V. News and Trend

We just extract those consumers information from Instagram who post posts during 24 hours in 500 hashtags, everyday we will get total about 1000 posts to MySQL and we have get 5000 posts till today.

And same situation, we extract weather information from Dark sky website during 7 days. Every 7 days, we will update the information in database.

record_id	hashtag	owner_id	owner_username	post_date	post_caption	post_likes	post_comment
4660	mammothmoun	961481	brendalex	2019-04-23 13:48:53	Proud moment for all of us. Mateo and Felix (th	29	0
4661	mammothmoun	4094907204	patelasif	2019-04-23 13:26:33	There's nothing more dangerous than a boy wit	70	17
4662	mammothmoun	5887003085	mammothbluejaychalet	2019-04-23 12:51:41	Always #mammothmountain #mammothlakes	15	0
4663	mammothmoun	5887003085	mammothbluejaychalet	2019-04-23 12:46:29	No better place to celebrate Thanksgiving $\mathbb{A}\#$	13	1
record_id	hashtag	owner_id	owner_username	post_date	post_caption	post_likes	post_comments
730	powdermountain	2354235524	maureenmitchell 1022	2019-04-19 06:03:41	Hi, from Mary's #PowderMountain #PowMowPh	12	2
731	powdermountain	198269262	brittanywatkinstapping	2019-04-19 03:39:02	I'm looking at photos of Powder Mountain, Utah	372	1
732	powdermountain	54063907	thetourofutah	2019-04-18 18:40:09	We are excited to announce your 2019 Tour of	440	21
733	powderridge	12666689602	9thgen_el_diablo	2019-04-19 13:05:00	Should I start postin snowboard shit? ▮₽₽₽	7	0
734	powderridge	3064415750	fireattheridge	2019-04-18 17:28:08	Half Price Bottles of Wine all day every Thursda	11	0
record_id	hashtag	owner_id	owner_username	post_date	post_caption	post_likes	post_comment
1	49degreesnorth	3845136	whitneyleew	2019-04-16 04:44:00	Made it out to 49 degrees ski resort to ride the	28	4
2	alpenglow	5755593588	amagillphoto	2019-04-16 14:58:56	Spring sunset in Montana. A few scattered rain	. 58	2
3	alpenglow	12558447465	berganbeterin	2019-04-16 14:57:21	#Beautiful Schlern O#seiseralm #südtirol #alp	7	0
4	alpenglow	1697052423	mountaingaia	2019-04-16 14:46:19	Good-morrow, friends! It's a new day! May you	14	2
_							

VI. Use case to answer those question

What are people saying about me(somebody)?

Usecase_1: Find all the posts with a special hashtag or context?

```
# find all the posts with a special hashtag or context
# also answer the question 1) What are the people talking about me?

SELECT post_caption , post_likes , post_comments FROM inshashtag WHERE post_caption LIKE "%alpenglow%";
```

• How viral are my posts?

Usecase_2: Find the ins user with the most posts' likes?

Who should I be following?

Usecase 3: Find someone all posts who have the most posts' likes.

```
# find the Instuser with the most posts' likes , and find all his posts
# also answer the question 2) How viral are my posts?
# also answer the question 6) Who should I be following?

SELECT owner_username , SUM(post_likes) FROM inshashtag group by owner_username ORDER BY sum(post_likes) DESC LIM

SELECT post_caption , post_likes , post_comments FROM inshashtag WHERE owner_username LIKE "squawalpine";
```

What posts are likely to be interesting to me?

Usecase_4: Find all the posts with a particular hashtag and many comments?

```
# find all the posts with a particular hashtag and many comments
# also answer the question 3) What posts are likely interesting to me?
SELECT post_caption , hashtag , post_likes , post_comments FROM inshashtag WHERE hashtag LIKE "bigskyresort" AND
```

What post are like mine?

Usecase_5: Find all the posts give a positive comment to the ski resort?

```
# find all the posts give a positive comment to the skiresort
# also answer the question 4) What posts are like mine ?

SELECT post caption , post likes , post comments FROM inshashtag WHERE post caption LIKE "%alpenglow%good%";
```

What users post like me?

Usecase 6: Find all the user post between 22:00 between 23:00?

```
# find all the user post between 22:00 between 23:00
# also answer the question 5) Who post like me?
SELECT owner_id , owner_username, post_date FROM inshashtag WHERE post_date LIKE "2019-04-__ 22:%";
```

What topics are trending in my domain?

Usecase_7: Find the most popular resorts' name based on Instagram likes?

```
# find the most popular resorts' name based on Instgram likes
# also answer the question 7) What topics are trending in my domain?

• SELECT hashtag , SUM(post_likes) FROM inshashtag group by hashtag ORDER BY sum(post_likes) DESC LIMIT 5;
```

What keywords/hashtag should I add to my post?

Usecase_8: Add the most likely hashtag to "Abenaki" into my post caption?

```
# add the most likely hashtag to "abenaki" into my post caption
# also answer the question 8) What hashtag should I add to my posts?

SELECT hashtag_1 FROM synonymstag WHERE hashtag LIKE "abenaki";
```

• Should I follow somebody back?

Usercase_9: Find the consumer who has the most Instagram posts likes for one particular ski resort

```
# Find the consumer who has the most instposts likes for one particular skiresort

# also answer the question 9) Should I follow somebody back?

SELECT hashtag, owner_id, post_likes

FROM inshashtag

WHERE hashtag in (SELECT hashtag FROM inshashtag GROUP BY hashtag)

and post_likes in (SELECT MAX(post_likes) FROM inshashtag GROUP BY hashtag);

# also answer the question 9) Should I follow somebody back?

SELECT hashtag, owner_id, post_likes

FROM inshashtag GROUP BY hashtag);
```

VII. Fuzzy search

1. Synonyms

When we extract users' posts from Instagram, we will also get many synonyms hashtag cause they are included in those posts. Therefore, we use fuzzywuzzy library to classify those hashtags and select the most matching hashtag as the synonymous hashtags

	hashtag	hashtag_1	hashtag_2	
٠	abenaki	chanel_abenaki	A historic day for the Abenaki an	
	alpenglow 💗	alpenglow 🚵 🌄	alpenglow	
	alpental	Alpental	alpental	
	AlpineMeadows	alpinemeadows	meadows	
	alpinevalley	alpinevalley	AlpineValley	
	altaskiresort	ski	altaskiarea	
	ArapahoeBas	arapahoebasin	ArapahoeBasin	

2. Mis-spellings

When users search a ski resort name, maybe they have a wrong spelling. We need correct them and create a table to update all possible misspelling.

3. Semantic information

When users post posts, they maybe have many hashtags, those irrelevant hashtags are Semantic information.

VIII. Results

We create a database about all ski resort information and then we write code in python to connect our database. Beside we write function to help users to find ideal ski resort. For example, if customers input location they want to go and the ticket price they can afford, they will find all information from our database to recommend some ski resort and customers can choice one of they like.

Case1 price and location

```
In [29]: M def f5():
                         d = input('please input your state : ')
                         a = input('please input your expected ticket price : ')
                         b = int(a)
                         if b >= 120:
                              c.execute(sql_6, d)
                               for row in c.fetchall():
                                   print(row,'expensive');
                         elif 60 <= b < 120:
                               c.execute(sql_7, d)
                               for row in c.fetchall():
                                   print(row,'medium');
                              c.execute(sql_8, d)
                               for row in c.fetchall():
                                    print(row,'cheap') ;
 In [41]: M f5()
                   please input your state : New York
                   please input your expected ticket price : 90
                   please input your expected tieset price . 30
('belleayre-mountain', 'New York', 68) medium
('bristol-mountain', 'New York', 72) medium
('gore-mountain', 'New York', 83) medium
('greek-peak', 'New York', 68) medium
                    ('holiday-valley', 'New York', 75) medium
('holimont', 'New York', 70) medium
                   ('hunter-mountain', 'New York', 80) medium
('kissing-bridge', 'New York', 60) medium
('plattekill', 'New York', 61) medium
('whiteface-lake-placid', 'New York', 94) medium
('windham-mountain', 'New York', 85) medium
Case2: state and altitude
In [17]: M def f2():
                          b = input('Please input altitude :')
                          d = input('Please input state :')
                          c.execute(sql_3, (b,d))
                          for row in c.fetchall():
                                print(row)
In [43]: ► f2()
                    Please input altitude :2500
                    Please input state :california
                    ('mammoth-mountain', 'California', 3369, 51725)
                   ('bear-mountain-big-bear-lake', 'California', 2684, 21358)
('june-mountain', 'California', 3075, 4425)
('china-peak', 'California', 2654, 2997)
```

IX. Conclusion and Difficulties

We create a database and python as the bottom of the website we connected to the database. Then we write switch case to call database. Therefore, when user search information, we will call function to extract the information they want.

However, the most difficult thing is that we don't know how to use Django to create a website. There are have not enough time to learn by ourselves this library. So, it's clearly what we need to do in future. We need use Django to create a website such as search engine and so on.

X. Citation

1. Kaggle: https://www.kaggle.com/beaubellamy/ski-resort

2. Instagram API: https://instaloader.github.io/index.html

3.Twitter API: https://developer.twitter.com/en/docs.html

4. Google map API:

https://developers.google.com/maps/documentation/maps-static/intro

5. Weather API: https://rapidapi.com/darkskyapis/api/dark-sky?utm_source=google&utm_medium=cpc&campaign=1755331082&keyword=dark%20sky%20api&gclid=CjwKCAjwtYXmBRAOEiwAYsyl3E0glvlOExfTBLunnM7PgWco4SrEjF8P_3YfVcp60wT77yQoh_zYWxoCRHgQAvDBwE

MIT License

Copyright (c) 2019 Jiayue Xu, Lin shi, Ruolan Liao

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.