# Chapter 14 MPEG Audio Compression

- 14.1 Psychoacoustics
- 14.2 MPEG Audio
- 14.3 Other Audio Codecs
- 14.4 MPEG-7 Audio and Beyond

## 14.1 Psychoacoustics

- The range of human hearing is about 20 Hz to about 20 kHz
- The frequency range of the voice is typically only from about 500 Hz to 4 kHz
- The dynamic range, the ratio of the maximum sound amplitude to the quietest sound that humans can hear, is on the order of about 120 dB

## **Equal-Loudness Relations**

- Fletcher-Munson Curves
  - Equal loudness curves that display the relationship between perceived loudness ("Phons", in dB) for a given stimulus sound volume ("Sound Pressure Level", also in dB), as a function of frequency
- Fig. 14.1 shows the ear's perception of equal loudness:
  - The bottom curve shows what level of pure tone stimulus is required to produce the perception of a 10 dB sound
  - All the curves are arranged so that the perceived loudness level gives the same loudness as for that loudness level of a pure tone at 1 kHz



Fig. 14.1: Fletcher-Munson Curves (re-measured by Robinson and Dadson)

## Frequency Masking

- Lossy audio data compression methods, such as MPEG/Audio encoding, remove some sounds which are masked anyway
- The general situation in regard to masking is as follows:
  - 1. A lower tone can effectively mask (make us unable to hear) a higher tone
  - The reverse is not true a higher tone does not mask a lower tone well
  - 3. The greater the power in the masking tone, the wider is its influence the broader the range of frequencies it can mask.
  - 4. As a consequence, if two tones are widely separated in frequency then little masking occurs

## Threshold of Hearing

A plot of the threshold of human hearing for a pure tone



Fig. 14.2: Threshold of human hearing, for pure tones

# Threshold of Hearing (Cont'd)

- The threshold of hearing curve: if a sound is above the dB level shown then the sound is audible
- Turning up a tone so that it equals or surpasses the curve means that we can then distinguish the sound
- An approximate formula exists for this curve:

Threshold
$$(f) = 3.64(f/1000)^{-0.8} - 6.5e^{-0.6(f/1000-3.3)^2} + 10^{-3}(f/1000)^4$$
(14.1)

The threshold units are dB; the frequency for the origin (0,0) in formula (14.1) is 2,000 Hz: Threshold(f) = 0 at f = 2 kHz

# **Frequency Masking Curves**

- Frequency masking is studied by playing a particular pure tone, say 1 kHz again, at a loud volume, and determining how this tone affects our ability to hear tones nearby in frequency
  - one would generate a 1 kHz masking tone, at a fixed sound level of 60 dB, and then raise the level of a nearby tone, e.g.,
     1.1 kHz, until it is just audible
- The threshold in Fig. 14.3 plots the audible level for a single masking tone (1 kHz)
- Fig. 14.4 shows how the plot changes if other masking tones are used



Fig. 14.3: Effect on threshold for 1 kHz masking tone



Fig. 14.4: Effect of masking tone at three different frequencies

#### **Critical Bands**

- Critical bandwidth represents the ear's resolving power for simultaneous tones or partials
  - At the low-frequency end, a critical band is less than 100 Hz wide, while for high frequencies the width can be greater than 4 kHz
- Experiments indicate that the critical bandwidth:
  - for masking frequencies <500Hz: remains approximately constant in width (about 100 Hz)
  - For masking frequencies >500Hz: increases approximately linearly with frequency

Table 14.1: 25-Critical Bands and Bandwidth

| Band # | Lower Bound | Center | Upper Bound | Bandwidth |
|--------|-------------|--------|-------------|-----------|
|        | (Hz)        | (Hz)   | (Hz)        | (Hz)      |
| 1      | -           | 50     | 100         | -         |
| 2      | 100         | 150    | 200         | 100       |
| 3      | 200         | 250    | 300         | 100       |
| 4      | 300         | 350    | 400         | 100       |
| 5      | 400         | 450    | 510         | 110       |
| 6      | 510         | 570    | 630         | 120       |
| 7      | 630         | 700    | 770         | 140       |
| 8      | 770         | 840    | 920         | 150       |
| 9      | 920         | 1000   | 1080        | 160       |
| 10     | 1080        | 1170   | 1270        | 190       |
| 11     | 1270        | 1370   | 1480        | 210       |
| 12     | 1480        | 1600   | 1720        | 240       |

| Band # | Lower Bound | Center | Upper Bound | Bandwidth |
|--------|-------------|--------|-------------|-----------|
|        | (Hz)        | (Hz)   | (Hz)        | (Hz)      |
| 13     | 1720        | 1850   | 2000        | 280       |
| 14     | 2000        | 2150   | 2320        | 320       |
| 15     | 2320        | 2500   | 2700        | 380       |
| 16     | 2700        | 2900   | 3150        | 450       |
| 17     | 3150        | 3400   | 3700        | 550       |
| 18     | 3700        | 4000   | 4400        | 700       |
| 19     | 4400        | 4800   | 5300        | 900       |
| 20     | 5300        | 5800   | 6400        | 1100      |
| 21     | 6400        | 7000   | 7700        | 1300      |
| 22     | 7700        | 8500   | 9500        | 1800      |
| 23     | 9500        | 10500  | 12000       | 2500      |
| 24     | 12000       | 13500  | 15500       | 3500      |
| 25     | 15500       | 18775  | 22050       | 6550      |

### **Bark Unit**

- Bark unit is defined as the width of one critical band, for any masking frequency
- The idea of the Bark unit: every critical band width is roughly equal in terms of Barks (refer to Fig. 14.5)



Fig. 14.5: Effect of masking tones, expressed in Bark units

## Conversion: Frequency & Critical Band Number

Conversion expressed in the Bark unit:

Critical band number (Bark) = 
$$\begin{cases} f/100, & \text{for } f < 500 \\ 9 + 4\log_2(f/1000), & \text{for } f \ge 500 \end{cases}$$
 (14.2)

Another formula used for the Bark scale:

$$b = 13.0\arctan(0.76 f) + 3.5\arctan(f^2/56.25)$$
 (14.3)

where f is in kHz and b is in Barks (the same applies to all below)

The inverse equation:

$$f = [(\exp(0.219*b)/352)+0.1]*b-0.032*\exp[-0.15*(b-5)2]$$
 (14.4)

 The critical bandwidth (df) for a given center frequency f can also be approximated by:

$$df = 25 + 75 \times [1 + 1.4(f^2)]^{0.69}$$
(14.5)

## Temporal Masking

- Phenomenon: any loud tone will cause the hearing receptors in the inner ear to become saturated and require time to recover
- The following figures show the results of masking experiments:



Fig. 14.6: The louder the test tone, the shorter the amount of time required before the test tone is audible once the masking tone is removed.



Fig. 14.7: Effect of temporal masking depends on both time and closeness in frequency.

18



Fig. 14.8: For a masking tone that is played for a longer time, it takes longer before a test tone can be heard. Solid curve: masking tone played for 200 msec; dashed curve: masking tone played for 100 msec.

### 14.2 MPEG Audio

 MPEG audio compression takes advantage of psychoacoustic models, constructing a large multi-dimensional lookup table to transmit masked frequency components using fewer bits

#### MPEG Audio Overview

- 1. Applies a filter bank to the input to break it into its frequency components
- In parallel, a psychoacoustic model is applied to the data for bit allocation block
- 3. The number of bits allocated are used to quantize the info from the filter bank providing the compression

## **MPEG Layers**

- MPEG audio offers three compatible layers:
  - Each succeeding layer able to understand the lower layers
  - Each succeeding layer offering more complexity in the psychoacoustic model and better compression for a given level of audio quality
  - each succeeding layer, with increased compression effectiveness, accompanied by extra delay
- The objective of MPEG layers: a good tradeoff between quality and bit-rate

# MPEG Layers (Cont'd)

- Layer 1 quality can be quite good provided a comparatively high bit-rate is available
  - Digital Audio Tape typically uses Layer 1 at around 192 kbps
- Layer 2 has more complexity; was proposed for use in Digital Audio Broadcasting
- Layer 3 (MP3) is most complex, and was originally aimed at audio transmission over ISDN lines
- Most of the complexity increase is at the encoder, not the decoder
   accounting for the popularity of MP3 players

## **MPEG Audio Strategy**

- MPEG approach to compression relies on:
  - Quantization
  - Inaccuracy of human auditory system within the width of a critical band
- MPEG encoder employs a bank of filters to:
  - Analyze the frequency ("spectral") components of the audio signal by calculating a frequency transform of a window of signal values
  - Decompose the signal into subbands by using a bank of filters (Layer 1 & 2: "quadrature-mirror"; Layer 3: adds a DCT; psychoacoustic model: Fourier transform)

## MPEG Audio Strategy (Cont'd)

- Frequency masking: by using a psychoacoustic model to estimate the just noticeable noise level:
  - Encoder balances the masking behavior and the available number of bits by discarding inaudible frequencies
  - Scaling quantization according to the sound level that is left over, above masking levels
- May take into account the actual width of the critical bands:
  - For practical purposes, audible frequencies are divided into 25 main critical bands (Table 14.1)
  - To keep simplicity, adopts a *uniform* width for all frequency analysis filters, using 32 overlapping subbands

#### **MPEG Audio Compression Algorithm**



(a) MPEG Audio Encoder



(b) MPEG Audio Decoder

Fig. 14.9: Basic MPEG Audio encoder and decoder.

# Basic Algorithm (Cont'd)

- The algorithm proceeds by dividing the input into 32 frequency subbands, via a filter bank
  - A linear operation taking 32 PCM samples, sampled in time; output is 32 frequency coefficients
- In the Layer 1 encoder, the sets of 32 PCM values are first assembled into a set of 12 groups of 32s
  - an inherent time lag in the coder, equal to the time to accumulate 384 (i.e., 12×32) samples
- Fig.14.11 shows how samples are organized
  - A Layer 2 or Layer 3, frame actually accumulates more than 12 samples for each subband: a frame includes 1,152 samples



Fig. 14.11: MPEG Audio Frame Sizes

## Bit Allocation Algorithm

- Aim: ensure that all of the quantization noise is below the masking thresholds
- One common scheme:
  - For each subband, the psychoacoustic model calculates the Signalto-Mask Ratio (SMR)in dB
  - Then the "Mask-to-Noise Ratio" (MNR) is defined as the difference (as shown in Fig.14.12):

$$MNR_{dB} \equiv SNR_{dB} - SMR_{dB}$$
 (14.6)

- The lowest MNR is determined, and the number of code-bits allocated to this subband is incremented
- Then a new estimate of the SNR is made, and the process iterates until there are no more bits to allocate



Fig. 14.12: MNR and SMR. A qualitative view of SNR, SMR and MNR are shown, with one dominate masker and m bits allocated to a particular critical band.

 Mask calculations are performed in parallel with subband filtering, as in Fig. 4.13:



Fig. 14.13: MPEG-1 Audio Layers 1 and 2.

## Layer 2 of MPEG-1 Audio

#### Main difference:

- Three groups of 12 samples are encoded in each frame and temporal masking is brought into play, as well as frequency masking
- Bit allocation is applied to window lengths of 36 samples instead of 12
- The resolution of the quantizers is increased from 15 bits to 16

#### Advantage:

- a single scaling factor can be used for all three groups

## Layer 3 of MPEG-1 Audio

#### Main difference:

- Employs a similar filter bank to that used in Layer 2, except using a set of filters with non-equal frequencies
- Takes into account stereo redundancy
- Uses Modified Discrete Cosine Transform (MDCT) addresses problems that the DCT has at boundaries of the window used by overlapping frames by 50%:

$$F(u) = 2\sum_{i=0}^{N-1} f(i) \cos \left[ \frac{2\pi}{N} \left( i + \frac{N/2 + 1}{2} \right) \left( u + 1/2 \right) \right], u = 0, ..., N/2 - 1$$

(14.7)



Fig 14.14: MPEG-Audio Layer 3 Coding.

Table 14.2 shows various achievable MP3 compression ratios:

Table 14.2: MP3 compression performance

| Sound Quality | Bandwidth | Mode   | Compression |
|---------------|-----------|--------|-------------|
|               |           |        | Ratio       |
| Telephony     | 3.0 kHz   | Mono   | 96:1        |
| Better than   | 4.5 kHz   | Mono   | 48:1        |
| Short-wave    |           |        |             |
| Better than   | 7.5 kHz   | Mono   | 24:1        |
| AM radio      |           |        |             |
| Similar to    | 11 kHz    | Stereo | 26 - 24:1   |
| FM radio      |           |        |             |
| Near-CD       | 15 kHz    | Stereo | 16:1        |
| CD            | > 15 kHz  | Stereo | 14 - 12:1   |

## MPEG-2 AAC (Advanced Audio Coding)

- AAC was developed to succeed MP3 for digital audio; delivers better sound quality than MP3 for the same bitrate
- Default audio format for YouTube, iPhone, iTunes, Nintendo, and PlayStation
- The standard vehicle for DVDs:
  - Audio coding technology for the DVD-Audio Recordable (DVD-AR) format, also adopted by XM Radio
- Aimed at transparent sound reproduction for theaters
  - Can deliver this at 320 kbps for five channels so that sound can be played from 5 different directions: Left, Right, Center, Left-Surround, and Right-Surround
  - 5.1 channel systems also include a low-frequency enhancement (LFE) channel (a "woofer")
- Also capable of delivering high-quality stereo sound at bit-rates below 128 kbps

## MPEG-2 AAC (Cont'd)

- Support up to 48 channels, sampling rates between 8 kHz and 96 kHz, and bit-rates up to 576 kbps per channel
- Like MPEG-1, MPEG-2, supports three different "profiles", but with a different purpose:
  - Main profile
  - Low Complexity(LC) profile
  - Scalable Sampling Rate (SSR) profile

### **MPEG-4 Audio**

- Integrates several different audio components into one standard: speech compression, perceptually based coders, text-to-speech, and MIDI
- MPEG-4 AAC (Advanced Audio Coding), is similar to the MPEG-2 AAC standard, with some minor changes
- Perceptual Coders
  - Incorporate a Perceptual Noise Substitution module
  - Include a Bit-Sliced Arithmetic Coding (BSAC) module
  - Also include a second perceptual audio coder, a vector-quantization method entitled TwinVQ

## MPEG-4 Audio (Cont'd)

#### Structured Coders

- Takes "Synthetic/Natural Hybrid Coding" (SNHC) in order to have very low bit-rate delivery an option
- Objective: integrate both "natural" multimedia sequences, both video and audio, with those arising synthetically -"structured" audio
- Takes a "toolbox" approach and allows specification of many such models.
- E.g., Text-To-Speech (TTS) is an ultra-low bit-rate method, and actually works, provided one need not care what the speaker actually sounds like

#### 14.3 Other Commercial Audio Codecs

 Table 14.3 summarizes the target bit-rate range and main features of other modern general audio codecs

Table 14.3: Comparison of MP3, MPEG-4 AAC, and Ogg vorbis

|                | MP3                              | MPEG-4 AAC                      | Ogg vorbis                      |
|----------------|----------------------------------|---------------------------------|---------------------------------|
| File extension | .mp3                             | .aac, .mp4, .3gp                | .ogg                            |
| Original name  | MPEG-1 Audio Layer 3             | Advanced Audio Coding           | Ogg                             |
| Developer      | CCETT, IRT,                      | Fraunhofer IIS, AT&T Bell Labs, | Xiph.org Foundation             |
|                | Fraunhofer Society               | Dolby, Sony Corp., and Nokia    |                                 |
| Released       | 1994                             | 1997                            | v1.0 frozen May 2000            |
| Algorithm      | lossy compression                | lossy compression               | lossy comrpession               |
| Quality        | Lower quality than               | Better quality at same          | Better quality and smaller file |
|                | AAC and Ogg                      | bit rate as MP3                 | size than MP3 at same bit rates |
| Used in        | Default standard for audio files | iTunes raised its popularity    | Open-source platform            |

 Table 14.4 summarizes the target bitrate range and main features of other modern general audio codecs

Table 14.4: Comparison of audio coding systems

| Codec                    | Bitrate      | Complexity                         | Main                             |
|--------------------------|--------------|------------------------------------|----------------------------------|
|                          | kbps/channel |                                    | application                      |
| Dolby AC-2               | 128-192      | Low (encoder/decoder)              | Point-to-point, cable            |
| Dolby AC-3               | 32-640       | Low (decoder)                      | HDTV, cable, DVD                 |
| Dolby Digital            |              |                                    |                                  |
| (Enhanced AC-3)          | 32-6144      | Low (decoder)                      | HDTV, cable, DVD                 |
| DTS: Digital Surround    | 8-512        | Low (for lossless audio extension) | DVD, entertainment, professional |
| WMA: Windows Media Audio | 128-768      | Low (low-bit-rate streaming)       | Many applications                |
| MPEG SAOC                | As low as 48 | Low (decoder/rendering)            | Many applications                |

## 14.4 MPEG-7 Audio and Beyond

- Difference from current standards:
- MPEG-4 is aimed at compression using objects.
- MPEG-7 is mainly aimed at "search": How can we find objects, assuming that multimedia is indeed coded in terms of objects
  - The objective, in terms of audio, is to facilitate the representation and search for sound content, perhaps through the tune or other descriptors
  - An example application supported by MPEG-7 is automatic speech recognition (ASR)
  - Further standards in the MPEG sequence are mostly not aimed at further audio compression standardization. For example, MPEG-DASH (Dynamic Adaptive Streaming over HTTP) is aimed at streaming of multimedia