Lecture 2: Vector equations, Matrix equations (book: 1.3, 1.4)

Previous lecture: geometric/row point of view to an SLE + 5 aussian elimination.

Today: column point of view to an SLE.

$$x + y = 30$$

 $2x + 4y = 74$

$$A = \begin{cases} 1 & 1 \\ 2 & 4 \end{cases} \qquad \underline{b} = \begin{bmatrix} 30 \\ 74 \end{bmatrix}$$

From a machine learning perspective: columns of A cire feature vectors vectors that collect features that we masured for each animal.

For on Stance, height and weight p = fh?

Collect data from N animals -> N feature vectors:

$$P_1 = \begin{bmatrix} h_1 \\ w_1 \end{bmatrix}, P_2 = \begin{bmatrix} h_2 \\ w_2 \end{bmatrix}, \dots, p_N = \begin{bmatrix} h_N \\ w_N \end{bmatrix}$$

These vectors are points in the feature space (\mathbb{R}^2) .

In general: n features -> (nx1) vector $V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^n$ $\begin{bmatrix} 2 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

We can perform operations with vectors:

$$2\underline{u} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
 $-\underline{u} = (-1) \cdot \underline{u} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$

$$\underline{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \underline{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \underline{u} + \underline{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\underline{u} + \underline{y} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Algebraic properties of IR": book ps3.

Combining these two operations;

Given vectors [K., Yz, ..., yp] in IR" and C1, ..., cp the vector $\underline{\vee} = \underline{\vee}_1 + \underline{\vee}_2 \cdot \underline{\vee}_2 + \cdots + \underline{\vee}_p \cdot \underline{\vee}_p$

is called a linear combination of y,..., up with weights c,... q.

Brample: $\underline{U} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\underline{V} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\underline{b} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$

$$b = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Q: can be be written as a linear combination of \underline{u} and \underline{v} ? i.e., can we find \underline{q} and \underline{c} such that $\underline{q} \cdot \underline{u} + \underline{c} \cdot \underline{v} = \underline{b}$?

 $C_1 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 57 \\ 4 \end{bmatrix}$ \(\text{\text{eutor equation}}

 $\begin{pmatrix} c_1 \\ 2c_1 \end{pmatrix} + \begin{pmatrix} 2c_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$

 $\int C_1 + 2C_2 = 5$

 \leftarrow hey, that is an 5LE?

* Every SLE can be written as a vertor equation, and the other way around.

* Solving an SLE means investigating whether b can be written as a linear combination of the columns of A. (column point of view).

$$\underline{\mathsf{u}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \underline{\mathsf{v}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\underline{b} = \underline{U} + 2 \cdot \underline{V}.$$

$$d = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Example: (no sol.)
$$\underline{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\underline{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

Hence, there is no way to obtain to by talking a linear combination of the and the

Example (es many solutions in \mathbb{R}^2): $\underline{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\underline{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\underline{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\underline{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \underline{v} = \begin{bmatrix} 2 \\ u \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$2 \cdot \underline{U} + (-1) \cdot \underline{V} = \underline{b}$$

$$0 \cdot \underline{U} + 0 \cdot \underline{V} = \underline{b}$$

$$U + (-1/2) \cdot \underline{V} = \underline{b}$$

there are so many ways to linearly combine u and v.

$$\int_{2x_{1}} + 2x_{2} = 0$$

$$2x_{1} + 4x_{2} = 0$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \end{bmatrix} \begin{matrix} N_2 : R_2 - 2 \cdot R_1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 = -2x_2 \\ x_2 \text{ is free} \end{cases}$$
 (parametric form)

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 (parametric vector form)

Hence, the solution set is $x_2 \cdot \underline{w}$, where $\underline{w} = \begin{bmatrix} -27 \\ -27 \end{bmatrix}$, i.e., Span $[\underline{w}]$ Ly any scalar multiple of \underline{w} .

any solution on this line is a solution to the SUE.

Example (co many solutions in IR3)

$$x_1 - 3x_2 + 2x_3 = 0$$

 $2x_1 - 6x_2 + 4x_3 = 0$

$$\begin{bmatrix} 0 & -3 & 2 & 0 \\ 2 & -6 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & -3 & 2 & 0 \\ R_2 & R_2 & -2 & R_1 & 0 & 0 & 0 \end{bmatrix}$$

$$|x_1 = 3212 - 2223$$
 parametric form
 $|x_2|$ is free

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_2 - 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \cdot \begin{bmatrix} 3 \\ 0 \\ \underline{w}_1 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -2 \\ 0 \\ \underline{w}_2 \end{bmatrix}$$

Hence, a solution is any linear combination of \underline{w}_1 , and \underline{w}_2 . Span $\{\underline{w}_1,\underline{w}_2\}$

So, the solution set is a plane in 123.

Given a set of p vectors $\{V_1,\dots,V_p\}$ in \mathbb{R}^n , the span of this set of vectors is the set of all possible linear combinations of the vectors in this set.

 \Rightarrow Span $\{v_1, \dots, v_p\}$ contains any vertor y that can be written as $y = q \cdot y_1 + q \cdot y_2 + \dots + q_p \cdot y_p$.

Mence solving an SIE boils down to investigating whether belongs to the Span of the columns of A.

We can see a linear combination of vectors as the product of a matrix (A) and a vector (2).

Definition of $A \times :$ linear combination of the columns of A with the entries of \times being the weights.

$$A \propto = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 47 & = 4 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ -5 \end{bmatrix} + 7 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}.$$

More efficient
$$A = \begin{bmatrix} 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 1.4 + 2.3 + (-1).7 \\ 0.4 + (-5).3 + 3.7 \end{bmatrix} = \begin{bmatrix} 37 \\ 6 \end{bmatrix}$$

We need: # columns of A = # rowlentries of x.

Properties of the matrix-vector product: p. 65

Three things with the same solution set:

* the SLE with augmented matrix [a, az ... an [b]

* the vector equation of a, + xr. azt + xn. an = b.

* the matrix equation
$$[a, a_2 \cdots a_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \underline{b}$$
. $A\underline{x} = \underline{b}$

Example:
$$A = \begin{bmatrix} 1 & 5 & -3 \\ 0 & 1 & -2 \\ -2 & -10 & 6 \end{bmatrix}$$

 $A = \begin{bmatrix} 1 & 5 & -3 \\ 0 & 1 & -2 \\ -2 & -10 & 6 \end{bmatrix}$ Q: Is Ax = b consistent for every $b \in \mathbb{R}^3$? No?

$$\begin{bmatrix} 1 & 5 & -3 & | & b_1 \\ 0 & 1 & -2 & | & b_2 \\ -2 & -10 & 0 & | & b_3 \end{bmatrix} \begin{bmatrix} 0 & 5 & -3 & | & b_1 \\ 0 & 0 & -2 & | & b_2 \\ 0 & 0 & 0 & | & b_3 + 2 \cdot b_1 \end{bmatrix}$$

The SLE is consistent iff by + 2b, =0.

For example, the SLE is inconsistent if
$$b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 consistent if $b = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$

4 equivalent statements:

* The columns of A span IR".

* Each be R" is a linear combination of the columns of A.

* For each be IR", Az=b has a solution.

* A has a pivot position in every row.

Lo (coefficient matrix!)