Rank-76292 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1361351246

General information

Number of lines	2
Number of points	73
Number of singular points	2
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	56
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{56}$

Singular Points

The surface has 2 singular points:

$$\begin{aligned} 0: \ P_{75} &= \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1) \\ 1: \ P_{139} &= \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1) \end{aligned}$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{10}$$

Rank of lines: (4744, 648)

Rank of points on Klein quadric: (1, 10)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

$0: P_3 = (0,0,0,1)$ lies on line ℓ_0	9: $P_{330} = (1,0,4,1)$ lies on line ℓ_1
1: $P_{75} = (1, 0, 0, 1)$ lies on line ℓ_1	10: $P_{393} = (0, 0, 5, 1)$ lies on line ℓ_0
2: $P_{138} = (0, 0, 1, 1)$ lies on line ℓ_0	11: $P_{394} = (1, 0, 5, 1)$ lies on line ℓ_1
$3: P_{139} = (1,0,1,1)$ lies on line ℓ_1	12: $P_{457} = (0,0,6,1)$ lies on line ℓ_0
4: $P_{201} = (0, 0, 2, 1)$ lies on line ℓ_0	13: $P_{458} = (1, 0, 6, 1)$ lies on line ℓ_1
$5: P_{202} = (1,0,2,1)$ lies on line ℓ_1	$14: P_{521} = (0,0,7,1)$ lies on line ℓ_0
6: $P_{265} = (0,0,3,1)$ lies on line ℓ_0	15: $P_{522} = (1, 0, 7, 1)$ lies on line ℓ_1
7: $P_{266} = (1,0,3,1)$ lies on line ℓ_1	
8: $P_{329} = (0,0,4,1)$ lies on line ℓ_0	

The single points on the surface are:

Points on surface but on no line

The surface has 56 points not on any line: The points on the surface but not on lines are:

$0: P_1 = (0, 1, 0, 0)$	11: $P_{108} = (2, 4, 0, 1)$
$1: P_{22} = (3, 1, 1, 0)$	$12: P_{134} = (4,7,0,1)$
$2: P_{24} = (5, 1, 1, 0)$	13: $P_{146} = (0, 1, 1, 1)$
$3: P_{25} = (6, 1, 1, 0)$	$14: P_{158} = (5, 2, 1, 1)$
$4: P_{37} = (2, 3, 1, 0)$	$15: P_{167} = (6, 3, 1, 1)$
$5: P_{55} = (4, 5, 1, 0)$	$16: P_{175} = (6,4,1,1)$
$6: P_{66} = (7, 6, 1, 0)$	17: $P_{180} = (3, 5, 1, 1)$
$7: P_{85} = (3, 1, 0, 1)$	$18: P_{190} = (5, 6, 1, 1)$
$8: P_{87} = (5, 1, 0, 1)$	$19: P_{196} = (3,7,1,1)$
$9: P_{88} = (6, 1, 0, 1)$	$20: P_{233} = (0,4,2,1)$
$10: P_{97} = (7, 2, 0, 1)$	$21: P_{235} = (2,4,2,1)$

```
22: P_{244} = (3, 5, 2, 1)
                                                                  40: P_{439} = (6, 5, 5, 1)
23: P_{250} = (1, 6, 2, 1)
                                                                  41: P_{441} = (0,6,5,1)
24: P_{260} = (3,7,2,1)
                                                                  42: P_{444} = (3,6,5,1)
25: P_{276} = (3, 1, 3, 1)
                                                                  43: P_{455} = (6, 7, 5, 1)
26: P_{294} = (5, 3, 3, 1)
                                                                  44: P_{471} = (6, 1, 6, 1)
27: P_{302} = (5, 4, 3, 1)
                                                                  45: P_{476} = (3, 2, 6, 1)
28: P_{305} = (0, 5, 3, 1)
                                                                  46: P_{481} = (0, 3, 6, 1)
29: P_{311} = (6, 5, 3, 1)
                                                                  47: P_{486} = (5, 3, 6, 1)
30: P_{314} = (1,6,3,1)
                                                                  48: P_{494} = (5, 4, 6, 1)
31: P_{327} = (6,7,3,1)
                                                                  49: P_{498} = (1, 5, 6, 1)
32: P_{350} = (5, 2, 4, 1)
                                                                  50: P_{508} = (3, 6, 6, 1)
                                                                  51: P_{537} = (0, 2, 7, 1)
33: P_{354} = (1, 3, 4, 1)
34: P_{382} = (5, 6, 4, 1)
                                                                  52: P_{544} = (7, 2, 7, 1)
35: P_{385} = (0, 7, 4, 1)
                                                                  53: P_{551} = (6, 3, 7, 1)
36: P_{389} = (4,7,4,1)
                                                                  54: P_{559} = (6, 4, 7, 1)
37: P_{406} = (5, 1, 5, 1)
                                                                  55: P_{562} = (1, 5, 7, 1)
38: P_{412} = (3, 2, 5, 1)
39: P_{418} = (1, 3, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ \end{array}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line	ℓ_1
in point	P_2

Line 1 intersects

Line	ℓ_0
in point	P_2

The surface has 73 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$18: P_{146} = (0, 1, 1, 1)$	$36: P_{302} = (5, 4, 3, 1)$
$1: P_2 = (0,0,1,0)$	$19: P_{158} = (5, 2, 1, 1)$	$37: P_{305} = (0, 5, 3, 1)$
$2: P_3 = (0,0,0,1)$	$20: P_{167} = (6, 3, 1, 1)$	$38: P_{311} = (6, 5, 3, 1)$
$3: P_{22} = (3, 1, 1, 0)$	$21: P_{175} = (6, 4, 1, 1)$	$39: P_{314} = (1,6,3,1)$
$4: P_{24} = (5, 1, 1, 0)$	$22: P_{180} = (3, 5, 1, 1)$	$40: P_{327} = (6,7,3,1)$
$5: P_{25} = (6, 1, 1, 0)$	$23: P_{190} = (5, 6, 1, 1)$	$41: P_{329} = (0, 0, 4, 1)$
$6: P_{37} = (2, 3, 1, 0)$	$24: P_{196} = (3,7,1,1)$	$42: P_{330} = (1,0,4,1)$
$7: P_{55} = (4, 5, 1, 0)$	$25: P_{201} = (0, 0, 2, 1)$	$43: P_{350} = (5, 2, 4, 1)$
$8: P_{66} = (7, 6, 1, 0)$	$26: P_{202} = (1, 0, 2, 1)$	$44: P_{354} = (1, 3, 4, 1)$
$9: P_{75} = (1,0,0,1)$	$27: P_{233} = (0, 4, 2, 1)$	$45: P_{382} = (5, 6, 4, 1)$
$10: P_{85} = (3, 1, 0, 1)$	$28: P_{235} = (2, 4, 2, 1)$	$46: P_{385} = (0, 7, 4, 1)$
$11: P_{87} = (5, 1, 0, 1)$	$29: P_{244} = (3, 5, 2, 1)$	$47: P_{389} = (4,7,4,1)$
$12: P_{88} = (6, 1, 0, 1)$	$30: P_{250} = (1, 6, 2, 1)$	$48: P_{393} = (0, 0, 5, 1)$
13: $P_{97} = (7, 2, 0, 1)$	$31: P_{260} = (3,7,2,1)$	$49: P_{394} = (1, 0, 5, 1)$
$14: P_{108} = (2, 4, 0, 1)$	$32: P_{265} = (0,0,3,1)$	$50: P_{406} = (5, 1, 5, 1)$
15: $P_{134} = (4,7,0,1)$	$33: P_{266} = (1,0,3,1)$	$51: P_{412} = (3, 2, 5, 1)$
16: $P_{138} = (0, 0, 1, 1)$	$34: P_{276} = (3, 1, 3, 1)$	$52: P_{418} = (1, 3, 5, 1)$
$17: P_{139} = (1, 0, 1, 1)$	$35: P_{294} = (5, 3, 3, 1)$	$53: P_{439} = (6, 5, 5, 1)$

$54: P_{441} = (0, 6, 5, 1)$	$61: P_{481} = (0, 3, 6, 1)$	$68: P_{537} = (0, 2, 7, 1)$
$55: P_{444} = (3, 6, 5, 1)$	$62: P_{486} = (5, 3, 6, 1)$	$69: P_{544} = (7, 2, 7, 1)$
$56: P_{455} = (6, 7, 5, 1)$	$63: P_{494} = (5, 4, 6, 1)$	$70: P_{551} = (6, 3, 7, 1)$
$57: P_{457} = (0, 0, 6, 1)$	$64: P_{498} = (1, 5, 6, 1)$	$71: P_{559} = (6, 4, 7, 1)$
$58: P_{458} = (1, 0, 6, 1)$	$65: P_{508} = (3, 6, 6, 1)$	$72: P_{562} = (1, 5, 7, 1)$
$59: P_{471} = (6, 1, 6, 1)$	$66: P_{521} = (0, 0, 7, 1)$	
$60: P_{476} = (3, 2, 6, 1)$	$67: P_{522} = (1, 0, 7, 1)$	