Semaine du 24/03 - Colle MP2I v.hanecart@orange.fr

I Questions de cours

1 - Soient E et F deux ensembles finis de cardinaux respectifs n et p non nuls. Donner le cardinal de $\mathcal{F}(E,F)$ puis en déduire le cardinal de $\mathcal{P}(E)$.

2 - Soient E un ensemble fini de cardinal n et $p \in \mathbb{N}$.

Montrer que le nombre de p-combinaisons de E est le coefficient binomial $\binom{n}{p}$

Énoncer et démontrer les relations sur les coefficients binomiaux par des arguments combinatoires.

3 - Énoncer et démontrer l'inégalité de Jensen.

II Exercices sur le dénombrement

Exercice 1:

Soit $n \in \mathbb{N}^*$.

- 1 Combien y a-t-il de surjections de [1; n] dans [1; 2]?
- 2 Combien y a-t-il de surjections de [1; n] dans [1; 3]?

Exercice 2:

Soit E un ensemble fini de cardinal n.

Démontrer que le nombre de couples (A, B) de parties de E telles que $A \subseteq B$ est 3^n .

Exercice 3:1 - Soient m, n et p trois entiers naturels.

Démontrer la formule :

$$\sum_{k=0}^{p} \binom{m}{k} \binom{n}{p-k} = \binom{m+n}{p}$$

Indication : On pourra considérer un ensemble de cardinal m + n, réunion d'un ensemble de cardinal m et d'un ensemble de cardinal n.

2 - En déduire que l'on a, pour tout entier nature l n, la formule :

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

Exercice 4:

Étant donné un ensemble E, on appelle recouvrement de E un couple (A,B) tel que $A \cup B = E$. Pour $n \in \mathbb{N}$, on notera r_n le nombre de recouvrements d'un ensemble E avant n éléments.

1 - Quel valent r_0 et r_1 ?

À partir de maintenant, on considère $n \in \mathbb{N}$ et E un ensemble à n éléments.

- 2 Pour $k \in [\![0;n]\!]$, si A est une partie de E à k éléments, combien y a-t-il de parties B telles que $A \cup B = E$?
- 3 En déduire r_n , sous la forme d'une somme puis simplifier cette somme. Ce résultat est-il cohérent avec le résultat trouvé à la question 1?

Exercice 5:

Soient k, p et n trois entiers naturels tels que $0 \le k \le p \le n$.

En dénombrant de deux manières les couples (A, B) de parties d'un ensemble de cardinal n telles que $\operatorname{Card}(A) = k$, $\operatorname{Card}(B) = p$ et $A \subseteq B$, montrer que :

$$\binom{n}{p}\binom{p}{k} = \binom{n}{k}\binom{n-k}{p-k}$$

Exercice 6:

Soit E un ensemble fini de cardinal n.

- 1 Combien y a-t-il de couples (X,Y) de parties disjointes de E?
- 2 Combien y a-t-il de couples (X,Y) de parties de E telles que $X \cap Y$ soit un singleton?

III Exercices sur la convexité

Exercice 7:

Soit $f: x \mapsto e^{-\frac{x^2}{2}}$

- 1 Vérifier qu'il existe un réel c tel que f est concave sur [0;c] et convexe sur $[c;+\infty[$.
- 2 Représenter l'allure de la courbe représentative de f au voisinage du point (c; f(c)) (on fera figurer la tangente en ce point).

$\underline{Exercice\ 8}$:

Soit f définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x^2}$.

- 1 Vérifier que f est convexe sur $]0; +\infty[$.
- 2 Montrer que f est une bijection de $]0;+\infty[$ dans lui-même et déterminer g sa bijection réciproque.
- 3 Vérifier que g est également convexe sur $]0; +\infty[$.

Exercice 9:

- 1 Montrer que $f: x \mapsto \ln(\ln(x))$ est concave sur $]1; +\infty[$.
- 2 En déduire :

$$\forall x, y \in]1; +\infty[, \sqrt{\ln(x)\ln(y)} \le \ln\left(\frac{x+y}{2}\right)$$