Image Primitives and Correspondence

Image

10

Brightness values

I(x,y)

Image Features

Local, meaningful, detectable parts of the image.

- Edge detection
- Line detection
- Corner detection

Motivation

- Information content high
- Invariant to change of view point, illumination
- Reduces computational burden
- Uniqueness
- Can be tuned to a task at hand

Filetring and Image Features

Given a noisy image

How do we reduce noise? How do we find useful features?

Today:

- Filtering
- Point-wise operations
- Edge detection

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighborhood?

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

"box filter"

Defining convolution

Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

MATLAB functions: conv2, filter2, imfilter

Details

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Averaging filter 1-D example

$$g[x] = \sum_{k=-\infty}^{\infty} f[k]h[x-k]$$

$$f[x] = [...0, 0, 2, -2, 2, 0, 0, ...]$$
 $h[x] = \frac{1}{3}[1, 1, 1]$ $h[-1] = \frac{1}{3}, h[0] = \frac{1}{3}, h[1] = \frac{1}{3}$ and 0 everywhere else $f[-1] = -2, f[0] = 2, f[1] = -2$

Box filter
$$g[x] = \sum_{k=-1}^{1} f[k]h[x-k]$$

Ex. cont.

$$g[-1] = f[-1]h[-1 - 1] + f[0]h[-1] + f[1]h[0]$$
$$g[0] = f[-1]h[-1] + f[0]h[0] + f[1]h[1]$$

Averaging filter center pixel weighted more

$$h[x] = [0.25, 0.5, 0.25]$$

Averaging filter

Convolution in 2D

Example:

	10	11	10	0	0	1					X	X	X	X	X
	9	10	11	1	0	1					Χ	10	7	4	
I	10	9	10	0	2	1				0	X				
	11	10	9	10	9	11					X				
	9	10	11	9	99	11			F		Χ				
	10	9	9	11	10	10		1	1	1	X	X	X	X	X
						1/9	 a	1	1	1		/	/		
						- /-		1	1	1					

X

X

X

$$1/9.(10x^{1} + 0x^{1} + 0x^{1} + 11x^{1} + 1x^{1} + 0x^{1} + 10x^{1} + 0x^{1} + 2x^{1}) = 1/9.(34) = 3.7778$$

Example:

	10	11	10	0	0	1					X	X	X	Χ	X	X
	9	10	11	1	0	1						10	7	4	1	X
I	10	9	10	0	2	1				O	X					X
-	11	10	9	10,	9	11					X					Χ
	9	10	11	9	99	11			F		X				20	Χ
	10	9	9	11	10	10		1,	1	1	Χ	Χ	X	Χ/	Χ	X
									1	1				_/_		
					_	1/	9	1	1	1			/			
			/			-,		1	1	1						
1/9	1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) =															
	1/9.(180) = 20															

Example:

	10	11	10	0	0	1					X	X	X	X	X	X
	9	10	11	1	0	1					Χ	10	7	4	1	X
I	10	9	10	0	2	1				0	X					Х
	11	10	9/	10	9	11					Х			18		Х
	9	10	11	9	99	11			F		X				20	Х
	10	9	9	11	10	10		1	1	1	X	X	X/	X	X	X
						1/9) 1	1	1	1						
						1/:	9	1	1	1			/			

$$1/9.(10x1 + 0x1 + 2x1 + 9x1 + 10x1 + 9x1 + 11x1 + 9x1 + 99x1) = 1/9.(159) = 17.6667$$

How big should the mask be?

- The bigger the mask,
 - more neighbors contribute.
 - smaller noise variance of the output.
 - bigger noise spread.
 - more blurring.
 - more expensive to compute.
 - In Matlab function conv, conv2

Example: Smoothing by Averaging

Gaussian Filter

- A particular case of averaging
 - The coefficients are samples of a 1D Gaussian.
 - Gives more weight at the central pixel and less weights to the neighbors.
 - The further away the neighbors, the smaller the weight.

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-x^2}{2\sigma^2}},$$

Sample from the continuous Gaussian

Smoothing with a Gaussian

How big should the mask be?

- The std. dev of the Gaussian σ determines the amount of smoothing.
- The samples should adequately represent a Gaussian
- For a 98.76% of the area, we need

$$m = 5\sigma$$

 $5.(1/\sigma) \le 2\pi \Rightarrow \sigma \ge 0.796, m \ge 5$

5-tap filter

$$g[x] = [0.136, 0.6065, 1.00, 0.606, 0.136]$$

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y*

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1	
2	4	2	*
1	2	1	

2 3 3 * 3 5 5 4 4 6

The filter factors into a product of 1D filters:

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

Image Smoothing

Convolution with a 2D Gaussian filter

$$\tilde{I}(x,y) = I(x,y) * g(x,y) = I(x,y) * g(x) * g(y)$$

 Gaussian filter is separable, convolution can be accomplished as two 1-D convolutions

$$\tilde{I}[x,y] = I[x,y] * g[x,y] = \sum_{k=-\frac{w}{2}}^{\frac{w}{2}} \sum_{l=-\frac{w}{2}}^{\frac{w}{2}} I[k,l]g[x-k]g[y-l]$$

How big should the mask be?

- The bigger the mask,
 - more neighbors contribute.
 - smaller noise variance of the output.
 - bigger noise spread.
 - more blurring.
 - more expensive to compute.

Edges

They happen at places where the image values exhibit sharp variation

Edge detection (1D)

Edge= sharp variation

Large first derivative

Digital Approximation of 1st derivatives

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{df(x)}{dx} \cong \frac{f(x+1) - f(x-1)}{2}$$

Convolve with:

Edge Detection (2D)

Vertical Edges:

Convolve with:

-1 0 1

Horizontal Edges:

Convolve with:

-1

0

1

Noise cleaning and Edge Detection

- we need to also deal with noise
- Combine Linear Filters
- Instead of smoothing, followed by derivative computation
- Convolve with derivative of the smoothing filter

Noise Smoothing & Edge Detection

Convolve with:

Noise Smoothing

Vertical Edge Detection

This mask is called the (vertical) Prewitt Edge Detector

Outer product of box filter $[1 \ 1 \ 1]^T$ and $[-1 \ 0 \ 1]$

Noise Smoothing & Edge Detection

This mask is called the (horizontal) Prewitt Edge Detector

Gaussian and its derivative

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-x^2}{2\sigma^2}}, \quad g'(x) = -\frac{x}{\sigma^2 \sqrt{2\pi}\sigma} e^{\frac{-x^2}{2\sigma^2}}.$$

Vertical edges $I_x(x,y) = \frac{\partial I}{\partial x}$

First derivative - one column

$$I_y(x,y) = \frac{\partial I}{\partial y}$$

Horizontal edges

Gradient orientation

$$\frac{\text{- Image Gradient}}{\nabla I} \nabla I = [\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}]$$

Gradient Magnitude

$$m = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Gradient Orientation

$$\theta = \tan^{-1}(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y})$$

Canny Edge Detector

- Edge detection involves 3 steps:
 - Noise smoothing
 - Edge enhancement
 - Edge localization
- J. Canny formalized these steps to design an optimal edge detector
- How to go from derivatives to edges ?

Edge Detection

original image

gradient magnitude

Canny edge detector

- Compute image derivatives
- if gradient magnitude $> \tau$ and the value is a local maximum along gradient direction pixel is an edge candidate

Algorithm Canny Edge detector

The input is image I; G is a zero mean Gaussian filter (std = σ)

```
J = I * G (smoothing)
```

- 2. For each pixel (i,j): (edge enhancement)
 - Compute the image gradient

$$\nabla J(i,j) = (J_{x}(i,j),J_{y}(i,j))'$$

Estimate edge strength

•
$$e_s(i,j) = (J_x^2(i,j) + J_y^2(i,j))^{1/2}$$

Estimate edge orientation

$$\bullet \quad e_o(i,j) = \arctan(J_x(i,j)/J_v(i,j))$$

- The output are images E_s Edge Strength Magnitude
- and Edge Orientation E_o_

E_s has large values at edges: Find local maxima

 ... but it also may have wide ridges around the local maxima (large values around the edges)

NONMAX_SUPRESSION

The output is the thinned edge image I_N

```
The inputs are E_s & E_o (outputs of CANNY_ENHANCER)

Consider 4 directions D=\{0,45,90,135\} wrt x

For each pixel (i,j) do:

1. Find the direction d\in D s.t. d\in E_o(i,j) (normal to the edge)

2. If \{E_s(i,j) \text{ is smaller than at least one of its neigh. along } d\}

I<sub>N</sub>(i,j)=0

Otherwise, I<sub>N</sub>(i,j)= E_s(i,j)
```

Graphical Interpretation

Thresholding

- Edges are found by thresholding the output of NONMAX_SUPRESSION
- If the threshold is too high:
 - Very few (none) edges
 - High MISDETECTIONS, many gaps
- If the threshold is too low:
 - Too many (all pixels) edges
 - High FALSE POSITIVES, many extra edges

SOLUTION: Hysteresis Thresholding

Canny Edge Detection (Example)

gap is gone

Original image

Strong + connected weak edges

Strong edges only

Weak edges

courtesy of G. Loy

Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Filtering the image is a set of dot products

- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like

Robinson Compass Masks

-1	0	1
-2	0	2
-1	0	1

0	1	2
-1	0	1
-2	-1	0

1	2	1
0	0	0
-1	-2	-1

2	1	0
1	0	-1
0	-1	-2

1	0	-1
2	0	-2
1	1	-1

0	-1	-2
-1	0	-1
2	1	0

-1	-2	-1
0	0	0
1	2	1

-2	-1	0
-1	0	1
0	1	2

Filter Bank

Leung & Malik, Representing and Recognizing the Visual Apperance using 3D Textons, IJCV 2001