CMPUT 367

Roderick Lan

Contents

1	Lecture 4 - Jan 23			
	1.1	Review from prev lec	2	
	1.2	Multiclass Classification	3	

1 Lecture 4 - Jan 23

1.1 Review from prev lec

Classification:

Logistic regression

$$\mathbf{x}^{(m)} \in \mathbb{R}^d$$
$$t^{(m)} \in \{0, 1\}$$

Scoring Function: (not in input space)

$$z^{(m)} = \mathbf{w}^{\top} \mathbf{x}^{(m)} + b$$

Linear/affine function used because it is simple; have to specify human/function preference.

Can also build nonlinear models

Design non linear features (ie. $x_2 = x^2$) \rightarrow model no longer linear in terms of raw output, but function still linear

Kernel method = uses nonlinear inner product

Stacking multiple (learnable) linear classifiers (basis of NN)

Complex models can reduce to simpler models

Linear models are the basis for all ML

Linear scoring function \rightarrow sigmoid function ('squish' it to have range (0,1))

Definition 1.1.1: Sigmoid Function

$$y^{(m)} = \sigma(z^{(m)}) = \frac{1}{1 + e^{-z^{(m)}}} = \frac{1}{1 + e^{-\mathbf{w}^{\top}}\mathbf{x}^{(m)} + b}$$

"goodness" function; no negative \rightarrow "badness" function

$$\begin{aligned} &\Pr[t^{(m)} = 1 | x^{(m)}] = y^{(m)} \\ &\Pr[t^{(m)} = 0 | x^{(m)}] = 1 - y^{(m)} \\ &\mathcal{D}_{\text{train}} = \{(x^{(m)}, t^{(m)})_{m=1}^{M} \end{aligned}$$

Likelihood:

$$p(\mathcal{D}_{\text{train}}; w, b) = \prod_{m=1}^{M} y^{(m)t^{(m)}} (1 - y^{(m)})^{1 - t^{(m)}}$$

Loss: (CE loss)

$$J(w,b) = \frac{1}{M} \sum_{m=1}^{M} \left[-t^{(m)} \ln y^{(m)} - (1 - t^{(m)}) \ln(1 - y^{(m)}) \right]$$

1.2 Multiclass Classification

(softmax)

$$\mathbf{x}^{(m)} \in \mathbb{R}^d$$

$$t^{(m)} \in \{1, 2, \dots, k\}$$

Need multiple scoring functions for multiple classes;

Convenient to have scoring function for each class

$$z_1^{(m)} = \mathbf{w}_1^{\mathsf{T}} \mathbf{x}^{(m)} + b_1, \cdots, \mathbf{w}_k^{\mathsf{T}} \mathbf{x}^{(m)} + b_k$$

k scoring functions for convenience, but one is redundant

Definition 1.2.1: Categorical Distribution

$$Cat(\pi_1, \cdots, \pi_k) \quad \pi_k \ge 0 \ \forall k$$

Probability of $k = \pi_k$

$$\sum_{k} \pi_k = 1$$

use exp because it is monotonically increasing and unbounded; maps $\mathbb{R} \to \mathbb{R}_{++}$

$$T = \sum_{k=1}^{k} \exp(\mathbf{w}_{k}^{\top} \mathbf{x}^{(m)} + b_{k}) \text{ for normalizing}$$

$$y^{(1)} = \frac{\exp(\mathbf{w}_1^{\top} \mathbf{x}^{(m)} + b_1)}{T}, \cdots, \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x}^{(m)} + b_k)}{T} = y^{(k)}$$

Range of function should be $(0, +\infty)$

"Why does it have to be positively unbounded, what would happen if bounded?" Can't tell the difference b/w two similar samples

$$\Pr[t^{(m)} = k | x^{(m)}] = y_k^{(m)}$$

$$\mathcal{D}_{\text{train}} = \{(x^{(m)}, t^{(m)})\}_{m=1}^{M}$$

Likelihood:

$$p(\mathcal{D}_{\text{train}}; \{w_k, b_k\}_{k=1}^K) = \prod_{m=1}^M y_1^{(m)} \mathbb{I}_{\{t^{(m)}=1\}} y_2^{(m)} \mathbb{I}_{\{t^{(m)}=2\}} \cdots y_k^{(m)} \mathbb{I}_{\{t^{(m)}=k\}}$$

$$t_k^{(m)} = \mathbb{I}\{t^{(m)} = k\}$$

$$p(\mathcal{D}_{\text{train}}; \{w_k, b_k\}_{k=1}^K) = \prod_{m=1}^M y_1^{(m)^{t_1^{(m)}}} y_2^{(m)^{t_2^{(m)}}} \cdots y_k^{(m)^{t_k^{(m)}}}$$

Log-Likelihood:

$$\ln p(\mathcal{D}_{\text{train}}) = \sum_{m=1}^{M} \ln y_1^{(m)} t_1^{(m)} \cdots y_k^{(m)} t_k^{(m)}$$

$$= \sum_{m=1}^{M} \left[t_1^{(m)} \ln y_1^{(m)} + \cdots + t_k^{(m)} \ln y_k^{(m)} \right]$$

$$= \sum_{m=1}^{M} \sum_{k=1}^{K} t_k^{(m)} \ln y_k^{(m)}$$

Loss:

$$\begin{split} J &= -\sum_{m=1}^{M} \sum_{k=1}^{K} t_{k}^{(m)} \ln y_{k}^{(m)} \\ &= -\sum_{m=1}^{M} \ln y_{t^{(m)}}^{(m)} \qquad t^{(m)} \text{ serves as index} \end{split}$$

 $t^{(m)} \in \{1, \dots, k\}$ index representation

$$\mathbf{t}^{(m)} = \begin{bmatrix} t_1^{(m)} \\ \vdots \\ t_k^{(m)} \end{bmatrix} = \begin{bmatrix} \mathbb{I}\{t^{(m)} = 1\} \\ \vdots \\ \mathbb{I}\{t^{(m)} = k\} \end{bmatrix}$$
 one-hot representation

$$\begin{split} \hat{t}_* &= \arg\max_k = y_k^* \\ y_k^* &= \Pr[t^* = k|x^*] \end{split}$$

[Max A Posteriori Inference]

Questions:

For softmax, what if k = 2? Optimization for log. regression and softmax?