1.3.2 补集

基础达标

一、选择题	
1.若全集 <i>U</i> ={0, 1, 2, 3}且[<i>UA</i> ={2},	则集合 A 的真子集共有()
A.3 ↑	B.5 ↑
C.7 个	D.8 个
解析 $A = \{0, 1, 3\}$, 真子集有 $2^3 - 1 = 7(\uparrow)$.	
答案 C	
2.已知全集 <i>U</i> ={1, 2, 3, 4, 5, 6, 7,	8 }, 集合 $A = \{2, 3, 5, 6\}$, 集合 $B = \{1, 6\}$
3, 4, 6, 7}, 则集合 <i>A</i> ∩ ([<i>UB</i>)=()	
A.{2, 5}	B.{3, 6}
C.{2, 5, 6}	D.{2, 3, 5, 6, 8}
解析 因为 $C_UB = \{2, 5, 8\}$,所以 $A \cap ([UB) = \{2, 5\}$,故选 A.	
答案 A	
3.已知 U 为全集,集合 M , N 是 U 的子集.若 $M \cap N = N$,则()	
A.($[UM)\supseteq (UN)$	$B.M\subseteq (UN)$
C.($[UM)\subseteq (UN)$	$D.M\supseteq([UN)$
解析 $:M \cap N = N$, $:N \subseteq M$, $:([UM) \subseteq ([UN))$.	
答案 C	
4.已知 M , N 为集合 I 的非空真子集,且	M , N 不相等,若 $N \cap ([_{I}M) = \emptyset$,则 $M \cup N$
等于()	
A.M	B.N
C.I	D.Ø
解析 如图,因为 $N\cap (\lceil \iota M)=\varnothing$,所以 $N\subseteq M$,所以 $M\cup N=M$.	
答案 A	

5.设全集 $U=\mathbb{R}$, 集合 $A=\{x|x\leq 1 \text{ 或 } x\geq 3\}$, 集合 $B=\{x|k< x< k+1, k\in \mathbb{R}\}$, 且 $B\cap([$

UA)≠∅,则()

A.k<0 或 k>3

B.2<*k*<3

C.0<*k*<3

D. -1 < k < 3

解析 $: A = \{x \mid x \le 1 \text{ 或 } x \ge 3\}$, $:: [UA = \{x \mid 1 \le x \le 3\}.$ 若 $B \cap ([UA) = \emptyset$, 则 $k + 1 \le 1$ 或 $k \ge 3$, 即 $k \le 0$ 或 $k \ge 3$, : 若 $B \cap ([UA) \ne \emptyset$, 则 $0 \le k \le 3$.

答案 C

二、填空题

5}, $B = \{2, 4, 6\}$, 则图中的阴影部分表示的集合为 . .

解析 全集 U = {1,2,3,4,5,6,7,8},集合 A = {1,2,

3 , 5} , $B = \{2 , 4 , 6\}$, 由韦恩图可知阴影部分表示的集合为($[vA) \cap B$, $\because [vA = \{4 , 6 , 7 , 8\}$, $\therefore ([vA) \cap B = \{4 , 6\}.$

答案 {4, 6}

7.已知集合 $A = \{x | -4 \le x \le -2\}$,集合 $B = \{x | x - a \ge 0\}$,若全集 $U = \mathbf{R}$,且 $A \subseteq \mathcal{U} B$,则 a 的取值范围为______.

解析 $\int UB = \{x | x < a\}$, 如图所示.

因为 $A\subseteq \bigcup B$, 所以 a>-2.

答案 $\{a|a>-2\}$

8.已知全集 $U=\mathbf{R}$, $A=\{x|1\leq x\leq b\}$, $\int_U A=\{x|x\leq 1\ \ \text{或 }x\geq 2\}$,则实数 b=_____.

所以 $A = \{x | 1 \le x \le 2\}$. 所以 b = 2.

答案 2

三、解答题

9.设全集为 **R**, $A = \{x | 3 \le x < 7\}$, $B = \{x | 2 < x < 10\}$, 求:

 $(1)A \cap B$; $(2) \upharpoonright_{\mathbf{R}}A$; $(3) \upharpoonright_{\mathbf{R}}(A \cup B)$.

 \mathbf{H} (1): $A = \{x | 3 \le x < 7\}$, $B = \{x | 2 < x < 10\}$,

- ∴ $A \cap B = \{x | 3 \le x < 7\}.$
- (2):全集为 R, $A = \{x | 3 \le x < 7\}$,
- $∴ \{_{\mathbf{R}}A = \{x | x < 3 \ \mathbf{o} \ x \ge 7\}.$
- $(3):A \cup B = \{x | 2 < x < 10\}$
- ∴ $\int_{\mathbf{R}} (A \cup B) = \{x | x \leq 2$ 或 $x \geq 10\}$.

10.已知集合 $A = \{1, 3, -x\}$, $B = \{1, x+2\}$, 是否存在实数 x, 使得 $B \cup ([AB])$ = A? 若存在, 求出集合 A 和 B; 若不存在, 说明理由.

解 假设存在x, 使 $B \cup ([AB] = A$, $\therefore B \cup A$.

- (1)若x+2=3,则x=1符合题意.
- (2)若 x+2=-x ,则 x=-1 不满足 A 或 B 中元素的互异性不符合题意.∴存在 x=1 ,使 $B\cup({}^{}_{A}B)=A$,

此时 $A = \{1, 3, -1\}$, $B = \{1, 3\}$.

能力提升

11.已知全集 $U=A\cup B$ 中有 m 个元素,($[UA)\cup([UB)$)中有 n 个元素.若 $A\cap B$ 非空,则 $A\cap B$ 的元素个数为_____.

答案 m-n

- 12.已知集合 $A = \{x | 0 \le x \le 2\}$, $B = \{x | a \le x \le a + 3\}$.
- (1)若 $([_{\mathbf{R}}A) \cup B = \mathbf{R}$,求 a 的取值范围;
- (2)是否存在实数 a 使($[_{\mathbf{R}}A) \cup B = \mathbf{R}$ 且 $A \cap B = \emptyset$?

解 (1)因为 $A = \{x | 0 \le x \le 2\}$,

所以[$RA = \{x | x < 0 或 x > 2\}$].

因为
$$(l_{\mathbf{R}}A) \cup B = \mathbf{R}$$
,所以 $\begin{cases} a \leq 0 \ , \\ a+3 \geq 2 \ , \end{cases}$

解得 - 1≤*a*≤0.

所以 a 的取值范围为 $\{a \mid -1 \le a \le 0\}$.

(2)因为 $A \cap B = \emptyset$, 所以a > 2或a + 3 < 0,

解得 a>2 或 a< - 3.

由(1)知,若 $([_{\mathbf{R}}A) \cup B = \mathbf{R}$,则 - $1 \le a \le 0$,

故不存在实数 a 使($[_{\mathbf{R}}A) \cup B = \mathbf{R} \coprod A \cap B = \varnothing$.