PREVIOUS YEAR QUESTIONS

1.	Let W denotes the words in the English dictionary. Define the relation R by $R = \{(x, y) \in W \times W\}$ the words x and y have at least one letter in							
	common). Then R is: [1							
	(A) Reflexive, symmetric and not transitive (B) reflexive, symmetric and transitive							
	(C) Reflexive, not symmentric and transitive							
	(D) not reflexive, symmetric and transitive							
2.	The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function							
	$f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$ is defined, is:							
	(A) $[0, \pi]$ (B) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (C)	$-\frac{\pi}{4}, \frac{\pi}{2}$ (D) $\left[0, \frac{\pi}{2}\right]$						
3.	Let R be the real line, consider the following subsets of the							
	$S = \{(x, y): y = x + 1 \text{ and } 0 \le x \le 2\}$ $T = \{(x, y): x - y \text{ is an integer}\}$ Which one of the following is true?							
	(A) T is an equivalence relation on R but S is not							
	(B) neither S nor T is an equivalence relation on R.(C) Both S and T are equivalence relations on R.							
	(D) S is an equivalence relation on R but T is not							
4.	Let $f: \mathbb{N} \longrightarrow Y$ be a function defined as $f(x) = 4x + 3$ where							
	$Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}.$							
	Show that f is invertible and its inverse is: $v = 3$	3×+4						
	(A) $g(y) = \frac{y-3}{4}$ (B) g	$y(y) = \frac{3y+4}{3}$						
	(C) $g(y) = 4 + \frac{y+3}{4}$ (D) $g(y) = 4 + \frac{y+3}{4}$	$(y) = \frac{y+3}{4}$						
	(6) 30)=44-4	4						
5.	For real x let $f(x) = x^3 + 5x + 1$, then:	[2009]						
		is onto R but not one- one is neither one - one nor onto R						
Direc	ctions: Statement I (Assertion) and Statement II (Reason							
(A)	Statement I is true, Statement II is true; Statement II is a c	orrect explanation for Statement I.						
(B)	Statement I is ture, Statement II is true; Statement Statement I.	II is not a correct explanation for						
(C)	Statement I is true, Statement II is false.							
	Statement I is false, Statement II is true.							
Each	of these questions also have four alternative choice answer. You have to select the correct choice.	es, only one of which is the correct						
6.	Let $f(x) = (x + 1)^2 - 1$, $x \ge -1$.							
	Statement I the set $\{x:f(x)=f^{-1}(x)\}=\{0,-1\}$							
	Statement II f is a bijection	[2009]						
7.	Let $f(x) = x x $ and $g(x) = \sin x$							
	Statement I gof is differentiable at x = 0 and its deriv							
8.	Statement II gof is twice differentiable at $x = 0$ Consider the following relations:	[2009]						
0.	$R = I/x$ y/x y are real numbers and $x = my$ for some rational number m^2 .							
	$S = \left\{ \left(\frac{m}{n}, \frac{p}{q} \right) \right\} \text{ m, n, p and q are integers such that n, q = 0 and qm = pn}. \text{ then } [2010]$							
	(A) R is an equivalence relation but S is not an equivalence relation							
	(B) neither R nor S is an equivalence relation (C) S is an equivalence relation but R is not an equivalence relation							
	(C) S is an equivalence relation but R is not an equiva							
0	S is an equivalence relation but R is not an equiva B and S both are equivalence relations	alence relation						
9.	(C) S is an equivalence relation but R is not an equivalence of R and S both are equivalence relations. If two tangents drawn from a point P to the parabola y ² = P is:	alence relation 4x are at right angles, then the locus of						
9.	(C) S is an equivalence relation but R is not an equivalence of R and S both are equivalence relations. If two tangents drawn from a point P to the parabola y ² = P is:	alence relation 4x are at right angles, then the locus of						
9. 10.	(C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following	alence relation $4x \text{ are at right angles, then the locus of} \\ 1=0 \qquad \qquad \text{(D) } x=-1$						
	(C) S is an equivalence relation but R is not an equiva (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola $y^2 = P$ is: (A) $2x - 1 = 0$ (B) $x = 1$ (C) $2x + 1$ Let S be a non - empty subset of R. Consider the following P: There is a rational number $x \in S$ such that $x > 0$.	alence relation $4x$ are at right angles, then the locus of $[2010]$ $1=0$ (D) $x=-1$ g statement:						
	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the (A) x ∈ S and x ≤ 0 ⇒ x is not rational 	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010]						
	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the following statements in the following statements is the negation of the following statements in the following statements is the negation of the following statements in the following statements is the negation of the following statements in the following statements is the negation of the following statements in the following statements in the following statements is the negation of the following statements in the following statements in the following statements in the following statements in the following statements	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010]						
	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of (A) x ∈ S and x ≤ 0 ⇒ x is not rational (B) There is a rational number x ∈ S such that x ≤ 0. (C) There is no rational number x ∈ S such that x ≤ 0. 	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010] 0						
10.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of (A) x ∈ S and x ≤ 0 ⇒ x is not rational (B) There is a rational number x ∈ S such that x ≤ 0. (C) There is no rational number x ∈ S such that x ≤ 0. 	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010] 0						
	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of (A) x ∈ S and x ≤ 0 ⇒ x is not rational (B) There is a rational number x ∈ S such that x ≤ 0. (C) There is no rational number x ∈ S such that x ≤ 0. 	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010] 0						
10.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of (A) x ∈ S and x ≤ 0 ⇒ x is not rational (B) There is a rational number x ∈ S such that x ≤ 0. (C) There is no rational number x ∈ S such that x ≤ 0. 	alence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010] 0						
10.	(C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola $y^2 = P$ is: (A) $2x - 1 = 0$ (B) $x = 1$ (C) $2x + 1$ Let S be a non - empty subset of R. Consider the following P: There is a rational number $x \in S$ such that $x > 0$. Which of the following statements is the negation of the following statements is the negation of the following statements of the second (B) There is a rational number $x \in S$ such that $x \le 1$ (C) There is no rational number $x \in S$ such that $x \le 1$ (D) Every rational number $x \in S$ satisfies $x \le 1$ The domain of the function $f(x) = \frac{1}{\sqrt{ x - x}}$ is: (A) $(-\infty, \infty)$ (B) $(0, \infty)$ (C) $(-\infty, \infty)$ Let R be the set of real numbers.	alence relation 4x are at right angles, then the locus of [2010] $1=0$ (D) $x=-1$ g statement: the statement P? [2010] $0=0$ [2011] $0=0$ $0=0$ [2011]						
10. 11.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non-empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of (A) x ∈ S and x ≤ 0 ⇒ x is not rational (B) There is a rational number x ∈ S such that x ≤ 0. (C) There is no rational number x ∈ S such that x ≤ 0. 	slence relation 4x are at right angles, then the locus of [2010] $1 = 0$ (D) $x = -1$ g statement: the statement P? [2010] 0 0 [2011] 0, 0) (D) $(-\infty, \infty) - \{0\}$ [2011] is an equivalence relation on R.						
10. 11.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following P: There is a rational number x ∈ S such that x ≥ 0. Which of the following statements is the negation of the following statements is the negation of the following statements is the negation of the file of the parabola of the following statements is the negation of the file of the parabola of the following statements is the negation of the file of the parabola of the file of the file of the parabola of the parabola	alence relation 4x are at right angles, then the locus of [2010] 1 = 0 (D) $x = -1$ g statement: the statement P? [2010] 0 (0) [2011] 0, 0) (D) $(-\infty, \infty) - \{0\}$ [2011] as an equivalence relation on R. rational number α } is an equivalence						
10. 11.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the functional number x ∈ S such that x ≤ 0. (C) There is a rational number x ∈ S such that x ≤ 0. (D) Every rational number x ∈ S satisfies x ≤ 0. The domain of the function f(x) = 1/√(x -x) (A) (-∞, ∞) (B) (0, ∞) (C) (-∞ Let R be the set of real numbers. Statement-1: A = {(x, y) ∈ R × R : y - x is an integer} is Statement-1: A = {(x, y) ∈ R × R : x = αy for some relation on R. (A) Statement-1 is true, Statement-2 is true; Statement-2 	alence relation 4x are at right angles, then the locus of [2010] 1 = 0 (D) $x = -1$ g statement: the statement P? [2010] 0 (0) [2011] 0, 0) (D) $(-\infty, \infty) - \{0\}$ [2011] as an equivalence relation on R. rational number α } is an equivalence						
10. 11.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following P: There is a rational number x ∈ S such that x ≥ 0. Which of the following statements is the negation of the following statements is the negation of the following statements is the negation of the file of the parabola of the following statements is the negation of the file of the parabola of the following statements is the negation of the file of the parabola of the file of the file of the parabola of the parabola	alence relation 4x are at right angles, then the locus of [2010] 1 = 0 (D) $x = -1$ g statement: the statement P? [2010] 0 10 [2011] 10 (0) (D) $(-\infty, \infty) - \{0\}$ [2011] 11 12 13 14 an equivalence relation on R. rational number α } is an equivalence ent-2 is a correct explanation for						
10. 11.	 (C) S is an equivalence relation but R is not an equivalence (D) R and S both are equivalence relations If two tangents drawn from a point P to the parabola y² = P is: (A) 2x - 1 = 0 (B) x = 1 (C) 2x + Let S be a non - empty subset of R. Consider the following P: There is a rational number x ∈ S such that x > 0. Which of the following statements is the negation of the following statements are S such that x ≤ (C). There is no rational number x ∈ S such that x ≤ (D). Every rational number x ∈ S satisfies x ≤ 0. The domain of the function f(x) = 1/(x - x) is: (A) (-∞, ∞) (B) (0, ∞) (C) (-∞ to the following that x ∈ x ∈ x ∈ x ∈ x ∈ x ∈ x ∈ x ∈ x ∈ x	alence relation 4x are at right angles, then the locus of [2010] 1 = 0 (D) $x = -1$ g statement: the statement P? [2010] 0 10 [2011] 10 (0) (D) $(-\infty, \infty) - \{0\}$ [2011] 11 12 13 14 an equivalence relation on R. rational number α } is an equivalence ent-2 is a correct explanation for						

- (C) Statement-1 is true, Statement-2 is false.
- (D) Statement-1 is false, Statement-2 is true.
- Let A and B be two sets containing four and two elements respectively. Then the number of [2015] subsets of the set A×B each having at least three elements is

- (A) 219 (B) 256 (C) 275 (D) 510 14. For $x \in R, x \neq 0, x \neq 1$, let $f_0(x) = \frac{1}{1-x}$ and $f_{n+1}(x) = f_0(f_n(x)), n = 0, 1, 2, ...$ Then the

value of $f_{100}(3) + f_1(\frac{2}{3}) + f_2(\frac{3}{2})$ is equal to:

[2016]

- 15. If $f(x) + 2f(\frac{1}{x}) = 3x, x \neq 0$ and $S = \{x \in R : f(x) = f(-x)\}$; then S:

- (B) Contains exactly one element (D) Contains more than two elements
- 16. The function $f: R \to \left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as $f(x) = \frac{x}{1+x^2}$, is

 (A) Injective but not surjective
 (B) Surjective but not injective
 (C) Neither injective nor surjective
 (D) Invertible [2017]

- 17. Let $f(x) = 2^{10}x + 1$ and $g(x) = 3^{10}x 1$. If $(f \circ g)(x) = x$, then x is equal to:

 (A) $\frac{3^{20} 1}{3^{10} 2^{-10}}$ (B) $\frac{2^{10} 1}{2^{10} 3^{-10}}$ (C) $\frac{1 3^{-10}}{2^{10} 3^{-10}}$ (D) $\frac{1 2^{-10}}{3^{10} 2^{-10}}$
- The function $f: N \to N$ defined by $f(x) = x 5\left[\frac{x}{5}\right]$, where N is the set of natural numbers and [x] denotes the greatest integer less than or equal to x, is: [2017]

 (A) One One and onto
 (B) One One but not onto
 (C) Onto but not one one
 (D) Neither one one nor onto.

- 19. Let $f:A\to B$ be a function defined as $f(x)=\frac{x-1}{x-2}$, where $A=R-\{2\}$ and $B=R-\{1\}$
- (A) Invertible and $f^{-1}(y) = \frac{3y-1}{y-1}$ (B) Invertible and $f^{-1}(y) = \frac{2y-1}{y-1}$ (C) Invertible and $f^{-1}(y) = \frac{2y+1}{y-1}$ (D) Not invertible
- Consider the following two binary relations on the set $A = \{a, b, c\}$: [2018]

$$\begin{split} R_{:} = & \{ (c,a), (b,b), (a,c), (c,c), (b,c), (a,a) \} \text{ and } \\ R_{:} = & \{ (a,b), (b,a), (c,c), (c,a), (a,a), (b,b), (a,c) \} \end{split}$$

- (A) Both R₁ and R₂ are not symmetric (B) R₁ is not symmetric but it is transitive
- (C) R_2 is symmetric but it is not transitive (D) Both R_1 and R_2 are transitive
- 21. Let N denote the set of all natural numbers. Define two binary relations on N as $R_1 = \{(x,y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x,y) \in N \times N : x + 2y = 10\}$. [2018] Then:
 - (A) Range of R, is {2,4,8}
 - (B) Range of R, is {1,2,3,4}.
 - (C) Both R, and R, are symmetric relations
 - (D) Both R, and R, are transitive relations.

- 22. For $x \in R \{0,1\}$, let $f_1(x) = \frac{1}{x}$, $f_2(x) = 1 x$ and $f_3(x) = \frac{1}{1 x}$ be three given functions. If a function, J(x) satisfies $(f_2 \circ J \circ f_1)(x) = f_3(x)$ then J(x) is equal to:

 - (A) $f_1(x)$ (B) $\frac{1}{x}f_1(x)$ (C) $f_1(x)$ (D) $f_2(x)$
- 23. Let $A = \{x \in R : x \text{ is not a positive integer}\}$. Define a function $f: A \to R$ as $f(x) = \frac{2x}{x-1}$.
 - (A) Surjective but not injective
 (C) Injective but not surjective
- (B) Not injective
- (D) Neither injective nor surjective
- Let N be the set of natural numbers and two functions f and g be defined as $f,g:N\to N$ such

$$f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

- and $g(n) = n (-1)^n$. Then fog is:
- (A) Both one one and onto
- (C) onto but not one one
- (B) One one but not onto (D) Neither one one nor onto
- 25. Let $f: R \to R$ be defined by $f(x) = \frac{x}{1+x^2}$, $x \in R$. Then the range of f is: [2019]

- $\text{(A)} \quad \left[-\frac{1}{2}, \frac{1}{2} \right] \qquad \text{(B)} \quad R = \left[-1, 1 \right] \qquad \text{(C)} \quad \left(-1, 1 \right) \left\{ 0 \right\} \qquad \text{(D)} \quad R = \left[-\frac{1}{2}, \frac{1}{2} \right] .$
- 26. Let $f:(1,3)\to R$ be a function defined by $f(x)=\frac{x[x]}{1+x^2}$, where [x] denotes the greatest integer $\le x$. Then the range of f is: (A) $\left(\frac{3}{4}, \frac{4}{5}\right)$
- (B) $\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right)$
- (C) $\left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$
- (D) $\left(\frac{2}{5}, \frac{4}{5}\right]$
- 27. The inverse function of $f(x) = \frac{8^{2x} 8^{-2x}}{8^{2x} + 8^{-2x}}, \ x \in (-1, 1)$ is
- [2020]

[2020]

- (A) $\frac{1}{4}\log_e\left(\frac{1+x}{1-x}\right)$

- $\begin{array}{lll} \text{(A)} & \frac{1}{4} \log_e \left(\frac{1+x}{1-x} \right) & \text{(B)} & \frac{1}{4} \log_e \left(\frac{1-x}{1+x} \right) \\ \text{(C)} & \frac{1}{4} \left(\log_8 e \right) \log_e \left(\frac{1+x}{1-x} \right) & \text{(D)} & \frac{1}{4} \left(\log_8 e \right) \log_e \left(\frac{1-x}{1+x} \right) \end{array}$
- 28. If $g(x) = x^2 + x 1$ and $(gof)(x) = 4x^2 10x + 5$, then $f(\frac{5}{4})$ is equal to:
- (A) $\frac{1}{2}$ (B) $-\frac{3}{2}$ (C) $-\frac{1}{2}$ (D) $\frac{3}{2}$

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	Α	D	Α	Α	С	С	С	С	D	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	С	Α	В	С	В	D	D	В	С
Que.	21	22	23	24	25	26	27	28		
Ans.	В	D	С	С	Α	В	С	С		