

planetmath.org

Math for the people, by the people.

Puiseux parametrization

Canonical name PuiseuxParametrization

Date of creation 2013-03-22 15:20:32 Last modified on 2013-03-22 15:20:32

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 6

Author jirka (4157) Entry type Theorem Classification msc 32B10

Synonym Puiseux series parametrization

Synonym Puiseux normalization

Synonym Puiseux series normalization Synonym Puiseux parameterization

Synonym Puiseux series parameterization

Related topic PuiseuxSeries

Theorem. Suppose that $V \subset U \subset \mathbb{C}^2$ is an irreducible complex analytic subset of (complex) dimension 1 where U is a domain. Suppose that $0 \in V$. Then there exists an analytic (holomorphic) map $f : \mathbb{D} \to V$, where \mathbb{D} is the unit disc, such that f(0) = 0 and $f(\mathbb{D}) = N$ where $N \subset V$ is a neighbourhood of 0 in V, f is one to one, and further $f|_{\mathbb{D}\setminus\{0\}}$ is a biholomorphism onto $N\setminus\{0\}$. In fact there exist suitable local coordinates (z,w) in \mathbb{C}^2 such that f is then given by $\xi \mapsto (z,w)$ where $z = \xi^k$, $w = \sum_{n=m}^{\infty} a_n \xi^n$ where m > k.

This is sometimes written as

$$w = \sum_{n=m}^{\infty} a_n z^{n/k}$$

and hence the name *Puiseux series parametrization*. If you do however write it like this, it must be properly interpreted, as the Puiseux series is in general not single valued.

A similar result for arbitrary complex analytic sets with singularities of codimension 1 in higher dimensional spaces under further conditions on the singular set was obtained by Stutz, see Chirka [?] page 98.

References

- [1] E. M. Chirka. . Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
- [2] Alexandru Dimca. . Vieweg, Braunschweig, Germany, 1987.