WHAT IS CLAIMED IS:

- 1. A coated sintered cemented carbide body, comprising:
 - a cemented carbide body;
- a first layer adjacent the cemented carbide body, the first layer including Ti(C,N) and having a thickness of from about 3 to about 20 μm ;

an alumina layer adjacent said first layer, the alumina layer including α -Al₂O₃ or κ -Al₂O₃ and having a thickness of from about 1 to about 15 μ m;

a further layer adjacent the aluminum layer of a carbide, carbonitride or carboxynitride of one or more of Ti, Zr and Hf, the further layer having a thickness of from about 1 to 15 μ m.

2. The coated cemented carbide body of claim 1, comprising: a friction-reducing layer adjacent to the further layer, the friction-reducing layer including one or more of γ -Al₂O₃, κ -Al₂O₃ and nanocrystalline Ti(C,N),

wherein the friction-reducing layer has a thickness of from about 1 to about 5 μm .

- 3. The coated cemented carbide body of claim 1, comprising: a bonding layer of TiN between the cemented carbide body and the first layer.
- 4. The coated cemented carbide body of claim 3, wherein the bonding layer has a thickness of from about 0.5 to about 2 μ m.
- 5. The coated cemented carbide body of claim 1, wherein the Ti(C,N) of the first layer includes CVD Ti(C,N), MTCVD Ti(C,N) or combinations thereof.

- 6. The coated cemented carbide body of claim 5, wherein the first layer includes a first portion adjacent the cemented carbide body of columnar Ti(C,N) and a second portion of equiaxed Ti(C,N).
- 7. The coated cemented carbide body of claim 6, comprising a layer of TiN between the first portion and the second portion.
- 8. The coated cemented carbide body of claim 1, wherein the first layer includes a multilayer of MTCVD Ti(C,N), TiN and TiC.
- 9. The coated cemented carbide body of claim 1, wherein the alumina layer is α -Al₂O₃.
- 10. The coated cemented carbide body of claim 1, wherein the alumina layer is κ -Al₂O₃.
- 11. The coated cemented carbide body of claim 1, wherein the alumina layer includes a multilayer of from about 4 to about 150 layers of alumina.
- 12. The coated cemented carbide body of claim 11, wherein each layer of the multilayer has a thickness of from about 0.05 to about 1.0 μ m.
- 13. The coated cemented carbide body of claim 1, wherein the first layer includes a multilayer of from about 4 to about 150 layers of Ti(C,N).
- 14. The coated cemented carbide body of claim 13, wherein each layer of the multilayer has a thickness of from about 0.05 to about 1.0 μ m.

- 15. The coated cemented carbide body of claim 13, wherein the multilayer of Ti(C,N) comprises multilayers of Ti(C,N) interspersed with multilayers of one or more of Al₂O₃ and a carbide, nitride, carbonitride or carboxynitride of Ti, Zr, and Hf.
- 16. The coated cemented carbide body of claim 15, wherein each layer of the multilayer has a thickness of from about 0.05 to about 1.0 μ m.
- 17. The coated cemented carbide body of claim 1, comprising a layer of TiN disposed atop the further layer, the layer of TiN having a thickness of from about 0.5 to 2 μ m.
- 18. The coated cemented carbide body of claim 1, wherein the first layer has a thickness of from 5 to 10 μ m.
- 19. The coated cemented carbide body of claim 1, wherein the alumina layer has a thickness of from 5 to 10 μm .
- 20. The coated cemented carbide body of claim 1, wherein the further layer has a thickness of from 2 to 5 μ m.
 - 21. A method of cutting cast iron comprising using the insert of claim 9.
 - 22. A method of cutting steel comprising using the insert of claim 9.
 - 23. A method of cutting steel comprising using the insert of claim 10.
 - 24. A method of cutting steel comprising using the insert of claim 11.