#### Programming III

Ricardo Wehbe

**UADE** 

4 de noviembre de 2021

#### Programme

Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BB
  - LC-BB

Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BB
  - LC-BB





Max chooses the maximum between B and C; it calls first B.



*Min* chooses the minimum between D and E; it calls first D.



Max chooses the maximum between H and I; it calls first H.



Node *H* yields 3.



Node / yields 5.



Node D yields max(3,5) = 5.



Max chooses the maximum between J and K; it calls first J.



Node J yields 6.



Node K yields 9.



Node E yields  $\max(6,9) = 9$ .



Node B yields min(5, 9) = 5.



*Min* chooses the minimum between F and G; it calls first F.



Max chooses the maximum between L and M; it calls first L.



Node *L* yields 1.



Node M yields 2.



Node F yields max(1,2) = 2.



Max chooses the maximum between N and O; it calls first N.



Node N yields 0.



Node O yields -1.



Node 
$$F$$
 yields  $\max(0, -1) = 0$ .



Node C yields min(2,0) = 0.



Node A yields min(5,0) = 5.





The process starts at A

The initial values are  $\alpha = -\infty$  and  $\beta = \infty$ .



Max chooses the maximum between B and C; it calls first B.



The values of  $\alpha$  and  $\beta$  are passed downwards to B. *Min* chooses the minimum between D and E; it calls first D.



The values of  $\alpha$  and  $\beta$  are passed downwards to D. Max chooses the minimum between H and I; it calls first H.



Node H yields 3.

The value of  $\alpha$  at D is updated to 3.



Node / yields 5.

The value of  $\alpha$  at D is updated to 5.



Node D yields max(3,5) = 5.

The value of  $\beta$  at B is updated to 5.



The values of  $\alpha$  and  $\beta$  are passed downwards to E.

Max chooses the maximum between J and K; it calls first J.



Node J yields 6.

The value of  $\alpha$  at E is updated to 6.

## Alpha-Beta Pruning. An Example



We have now  $\alpha \geq \beta$ 

The exploration finishes. The branch is pruned.

# Alpha–Beta Pruning. An Example



Node *E* yields 6.

### Alpha-Beta Pruning. An Example



Node B yields min(5,6) = 5.

The value of  $\alpha$  at A is updated to 5.

# Alpha–Beta Pruning. An Example



The values of  $\alpha$  and  $\beta$  are passed downwards to C. *Min* chooses the minimum between F and G; it calls first F.

## Alpha-Beta Pruning. An Example



The values of  $\alpha$  and  $\beta$  are passed downwards to F.

Max chooses the maximum between L and M; it calls first L.

# Alpha–Beta Pruning. An Example



Node L yields 1.

The value of  $\alpha$  does not change at F.

## Alpha-Beta Pruning. An Example



Node *M* yields 2.

The value of  $\alpha$  does not change at F.

## Alpha-Beta Pruning. An Example



Node F yields min(1,2) = 2.

The value of  $\beta$  at C is updated to 2.

# Alpha–Beta Pruning. An Example



We have now  $\alpha \geq \beta$ 

The exploration finishes. The branch is pruned.

## Alpha-Beta Pruning. An Example



Node C yields 2.

# Alpha-Beta Pruning. An Example



Node A yields max(5,2) = 5.

Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BB
  - LC-BB

 This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.

- This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.
- There is a global variable, which we call *upper*, that contains the minimal value that it is so far guaranteed.

- This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.
- There is a global variable, which we call upper, that contains the minimal value that it is so far guaranteed.
- For each node, two magnitudes are calculated: u (the top)and c (the cost.)

- This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.
- There is a global variable, which we call upper, that contains the minimal value that it is so far guaranteed.
- For each node, two magnitudes are calculated: u (the top)and c (the cost.)
- The number c represents the cost to reach the vertex; the top u is the minimum score that we have guaranteed at that point. It could improve but not get worse.

- This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.
- There is a global variable, which we call upper, that contains the minimal value that it is so far guaranteed.
- For each node, two magnitudes are calculated: u (the top)and c (the cost.)
- The number c represents the cost to reach the vertex; the top u is the minimum score that we have guaranteed at that point. It could improve but not get worse.
- if u < upper, the variable upper is updated to the new minimum guaranteed result.

- This technique is used mainly in optimisation problems, more specifically minimisation problems. Maximisation problems may be easily adapted.
- There is a global variable, which we call upper, that contains the minimal value that it is so far guaranteed.
- For each node, two magnitudes are calculated: u (the top)and c (the cost.)
- The number c represents the cost to reach the vertex; the top u is the minimum score that we have guaranteed at that point. It could improve but not get worse.
- if u < upper, the variable upper is updated to the new minimum guaranteed result.
- If c > upper, the branch is killed, since it not worth further exploring.



























Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BE
  - LC-BB

# First-In-First-Out-Branch and Bound (FIFO-BB)



## First-In-First-Out-Branch and Bound (FIFO-BB)

































































Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BB
  - LC-BB



































































Review of the Previous Class

- Branch and Bound
  - FIFO-BB
  - LIFO-BB
  - LC-BB

• There is a set of jobs  $j_i$ , each one with a time duration  $t_i$ , a deadline  $d_i$  and a penalty  $p_i$  if the job is not finished by deadline  $d_i$ .

- There is a set of jobs j<sub>i</sub>, each one with a time duration t<sub>i</sub>, a deadline d<sub>i</sub> and a penalty p<sub>i</sub> if the job is not finished by deadline d<sub>i</sub>.
- The goal is to minimise the penalty paid.

- There is a set of jobs  $j_i$ , each one with a time duration  $t_i$ , a deadline  $d_i$  and a penalty  $p_i$  if the job is not finished by deadline  $d_i$ .
- The goal is to minimise the penalty paid.
- Each level corresponds to a job; we decide whether to include it or not.
   The inclusion must be feasible (i.e., it should be possible to complete the jobs in due time.)

- There is a set of jobs  $j_i$ , each one with a time duration  $t_i$ , a deadline  $d_i$  and a penalty  $p_i$  if the job is not finished by deadline  $d_i$ .
- The goal is to minimise the penalty paid.
- Each level corresponds to a job; we decide whether to include it or not.
   The inclusion must be feasible (i.e., it should be possible to complete the jobs in due time.)
- For each node we define two values: cost (c) and upper bound (u).

- There is a set of jobs  $j_i$ , each one with a time duration  $t_i$ , a deadline  $d_i$  and a penalty  $p_i$  if the job is not finished by deadline  $d_i$ .
- The goal is to minimise the penalty paid.
- Each level corresponds to a job; we decide whether to include it or not.
   The inclusion must be feasible (i.e., it should be possible to complete the jobs in due time.)
- For each node we define two values: cost (c) and upper bound (u).
- Cost is defined as the sum of all penalties up to the last job considered.

#### The Problem of Job Sequencing with Deadlines

- There is a set of jobs j<sub>i</sub>, each one with a time duration t<sub>i</sub>, a deadline d<sub>i</sub> and a penalty p<sub>i</sub> if the job is not finished by deadline d<sub>i</sub>.
- The goal is to minimise the penalty paid.
- Each level corresponds to a job; we decide whether to include it or not.
   The inclusion must be feasible (i.e., it should be possible to complete the jobs in due time.)
- For each node we define two values: cost (c) and upper bound (u).
- Cost is defined as the sum of all penalties up to the last job considered.
- The upper bound will be the sum of all penalties except those already included in the solution.



Penalty 4 11 7 Deadline Duration 1

Penalty 4 11 7 2
Deadline 1 3 2 1
Duration 1 2 1 1  $u = \Sigma$  penalties not already included  $c = \Sigma$  penalties not included so far

Ricardo Wehbe



















































