Equality Theorem

kankanray

Theorem 1. Equality Theorem

Assume $\varphi \in \mathcal{L}$ has no quantifiers, $\sigma_1, ..., \sigma_n$ and $\tau_1, ..., \tau_n$ are two collection of terms. Given variables $x_{m_1},...,x_{m_n}$, if each of them occurs nowhere in σ_i,τ_i for every $1 \leq i \leq n$, then we have

$$\{\tau_i \hat{=} \sigma_i | 1 \leq i \leq n\} \cup \{\varphi(x_{m_1},...,x_{m_n};\tau_1,...,\tau_n)\} \vdash \varphi(x_{m_1},...,x_{m_n};\sigma_1,...,\sigma_n)$$

Proof.

(1) Assume τ and σ are terms, variable x_m appears nowhere in τ or σ , and formula φ has no quantifiers, then we show that $\vdash ((\tau = \sigma) \to (\varphi(x_m; \tau) \to \tau))$ $\varphi(x_m;\sigma))$.

Take k large enough such that x_k appears nowhere in φ , then x_k can substitute x_m in φ . So consider two formulas φ and $\varphi(x_m; x_k)$. Note that x_k can substitute x_m in both two formulas, and after substitution, two formulas are identical. So we have:

 $((x_k = x_m) \to (\varphi(x_m; x_k) \to \varphi)) \in \mathbb{L}.$

Then use generalization law, we have:

$$(\forall x_k(\forall x_m((x_k \hat{=} x_m) \to (\varphi(x_m; x_k) \to \varphi)))) \in \mathbb{L}.$$

Note that τ can substitute x_k in $(\forall x_m((x_k = x_m) \to (\varphi(x_m; x_k) \to \varphi)))$, so use specialization law, we get $\vdash (\forall x_m((\tau = x_m) \to (\varphi(x_m; \tau) \to \varphi))).$

Again, since σ can substitute x_m in $((\tau = x_m) \to (\varphi(x_m; \tau) \to \varphi))$, so use specialization law, we get $\vdash ((\tau = \sigma) \to (\varphi(x_m; \tau) \to \varphi(x_m; \sigma)))$.

Now we use induction on the index $i, 1 \le i \le n$.

Base step: By (1), we have $\vdash ((\tau_1 = \sigma_1) \to (\varphi(x_{m_1}; \tau_1) \to \varphi(x_{m_1}; \sigma_1)))$. Use Deduction Theorem twice, we have $\{(\tau_1 = \sigma_1)\} \cup \{\varphi(x_{m_1}; \tau_1)\} \vdash \varphi(x_{m_1}; \sigma_1)$.

Induction step: Assume $\{\tau_j = \sigma_j | 1 \leq j \leq i\} \cup \{\varphi(x_{m_1}, ..., x_{m_i}; \tau_1, ..., \tau_i)\}$ $\varphi(x_{m_1},...,x_{m_i};\sigma_1,...,\sigma_i)$, for $1 \leq i < n$. Then by (1) again, we have $\vdash ((\tau_{i+1} = \sigma_{i+1}) \rightarrow \sigma_i)$ $(\varphi(x_{m_{i+1}};\tau_{i+1})\to\varphi(x_{m_{i+1}};\sigma_{i+1})))$, combined with results above and Deduction Theorem, we have $\{\tau_j = \sigma_j | 1 \le j \le (i+1)\} \cup \{\varphi(x_{m_1},...,x_{m_{i+1}};\tau_1,...,\tau_{i+1})\} \vdash$ $\varphi(x_{m_1},...,x_{m_{i+1}};\sigma_1,...,\sigma_{i+1}).$

By induction, we proved our theorem.