Formal Modeling and Verification Master CORO M2 – Embedded Real-time Systems Track Lab work

Duration: 8h

1 Basic Understanding of Uppaal

- Q1. (If using your own machine) Download UPPAAL at http://www.uppaal.org;
- **Q2.** Look at the demo of the teacher and do the same;
- Q3. For further inspiration, you may want to also look at examples fischer.xml and train-gate.xml in the UPPAAL distribution. You can find their descriptions and some explanations, as well as some material explaining how UPPAAL works, in the *Uppaal Tutorial* at http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf.

2 Peterson's Mutual Exclusion Protocol

- **Q4.** Model Peterson's mutual exclusion protocol;
- Q5. Verify mutual exclusion and the absence of deadlocks;
- **Q6.** Verify the possibility of starvation;
- Q7. Suppose now that each process always waits at least 10 time units between two accesses to the critical section. Suppose also that the work in critical section takes 3 time units or less to complete. Add these constraints to the model and verify again the starvation property.

3 A Real-time Scheduling Problem

We consider a scheduling problem, adapted from [BFSV04] for a non-preemptive setting in [JLR15]: we have three real-time tasks τ_1 , τ_2 and τ_3 . Task τ_1 is periodic with period a and has an execution time $C_1 \in [10, 20]$. Task τ_2 is sporadic: it only has a minimal delay between two activations and that delay is 2a. The execution time of τ_2 is $C_2 \in [18, 28]$, with $c \leq d$. Finally, τ_3 is periodic with period 3a and has an execution time $C_3 \in [20, 28]$. These three tasks are scheduled

using a non-preemptive ¹ priority policy defined by $\tau_1 > \tau_2 > \tau_3$.

We first assume that a = 50.

- **Q8.** Model this system using UPPAAL;
- **Q9.** Is the system schedulable, when deadlines are supposed to be on requests (i.e. only one instance of each task may exist at all times)?
- **Q10.** What is the smallest value of a for which the system is schedulable?
- **Q11.** What is the worst-case response time of task τ_3 ?

4 A Job-shop Scheduling Problem

We now look into a problem of job-shop scheduling. In such problems, we are given m machines and n jobs to perform. Each of those job use in sequence all the machines, but not necessarily in the same order. A given machine can only process one job at all times, and each job may need a different duration on a given machine. The example described here is taken from [AAM06].

The following table gives the order of use of machines for each job (m = 6, n = 4).

Job	M1	M2	М3	M4	M5	M6
1	2	4	3	5	1	6
2	2	5	1	3	6	4
3	6	5	3	1	2	4
4	1	3	6	4	5	2

The next table gives the minimum and maximum time that each job spends on each machine.

Job	M1	M2	M3	M4	M5	M6
1	[34, 34]	[21, 54]	[74, 74]	[6, 26]	[5, 5]	[43, 43]
2	[24, 24]	[13, 28]	[53, 53]	[8, 8]	[16, 23]	[45, 45]
3	[35, 75]	[14, 14]	[8, 15]	[31, 31]	[24, 24]	[6, 6]
4	[12, 42]	[25, 32]	[15, 15]	[42, 42]	[62, 62]	[18, 18]

Question 12 Model this problem with UPPAAL;

Question 13 Find the minimum time for the completion of all jobs.

Références

- [AAM06] Yasmina Abdeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata. *Theoretical Computer Science*, 354(2):272 300, 2006.
- [BFSV04] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Timed state space analysis of real-time preemptive systems. *IEEE Trans. on Soft. Eng.*, 30(2):97–111, February 2004.
- [JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter synthesis for real-time systems. *IEEE Transactions on Software Engineering (TSE)*, 41(5):445–461, 2015.

^{1.} A running task cannot be interrupted even if another task with a greater priority is ready.