Τεχνητή Νοημοσύνη Εργασία 2

Κωνσταντίνος Χαϊδεμένος sdi2200262

Πρόβλημα 1

Ισχυρισμός με λίγα λόγια:

Η χρησιμότητα του ΜΑΞ εναντίον ενός μη βέλτιστου ΜΙΝ δεν είναι ποτέ μικρότερη από την χρησιμότητα εναντίον ενός βέλτιστου ΜΙΝ.

Ο ισχυρισμός φαίνεται αυτονόητος με την πρώτη ματιά.

Λαμβάνοντας υπόψην πως ο ΜΑΞ παίζει εναντίον ενός μη βέλτιστου ΜΙΝ ο οποίος κάνει λάθη, η στρατιγική του ΜΑΞ θα εκμεταλλευτεί αυτά τα λάθη και θα εγγυείται κάθε φορά την ίδια ή μεγαλύτερη χρησιμότητα από αυτήν που θα είχε ενάντια ενός βέλτιστου αντιπάλου.

Παρόλα αυτά θα τον αποδείξουμε με απαγωγή σε άτοπο:

Ο στόχος του MAΞ είναι να μεγιστοποιήσει την χρησιμότητά του και ο στόχος του MIN είναι να ελαχιστοποιήσει την χρησιμότητα του MAΞ.

Έστω πως παίζοντας ο ΜΑΞ ενάντια με έναν βέλτιστο αντίπαλο ΜΙΝ έχει χρησιμότητα x. Αυτό σημαίνει πως ο ΜΙΝ με την βέλτιστη στρατηγική του ελαχιστοποίησε την παραπάνω τιμή.

Έστω πως αμέσως μετά ο ΜΑΞ παίζει με έναν μη βέλτιστο αντίπαλο ΜΙΝ ωστόσο έχει χρησιμότητα x' < x.

Ώπα... άρα η στρατηγική του μη βέλτιστου ΜΙΝ ελαχιστοποίησε 'ἀκόμα περισσότερο" την τιμή χρησιμότητας του ΜΑΞ; Άρα είναι η πλέον βέλτιστη στρατηγική! Άρα Άτοποοοοο.

Ένα δένδρο παιχνιδιού στο οποίο ο ΜΑΞ έχει ακόμα καλύτερη χρησιμότητα, όμως με μη βέλτιστη στρατηγική και μη βέλτιστο αντίπαλο, είναι το εξής:

Στο συγκεκριμένο δέντρο παιχνιδιού φαίνονται με μ πόλντ κόκκινα γράμματα οι επιλογές των κινήσεων των $MIN/MA\Xi$

Αυτή η ροή παιχνιδιού είναι αποτέλεσμα της στρατηγικής των ΜΑΞ και ΜΙΝ να διαλέγουν, από τους δύο κόμβους-επιλογές, πάντα αυτόν με την "χειρότερη" χρησιμότητα για τους ίδιους.

Επομένως αρχικά ο ΜΑΞ επιλέγει τον αριστερό ΜΙΝ κόμβο καθώς έχει το φύλλο του δέντρου με τη μικρότερη τιμή χρησιμότητας.

Τελικά όμως ο ΜΙΝ θα επιλέξει την τιμή 20 που προς έκπληξη όλων μας (εκτός από εμένα που σκέφτηκα αυτό το παράδειγμα) είναι και το φύλλο του δέντρου με τη μεγαλύτερη τιμή χρησιμότητας!

Πρόβλημα 2

α) Το πλήρες δέντρο είναι ώς εξής:

β) Η απόφαση minimax στη ρίζα του δέντρου είναι να ακολουθήσει το μονοπάτι που καταλήγει στο κόμβο φύλλο με τιμή 8. Στο σχήμα φαίνεται με κόκκινο:

γ) Εφαρμόζοντας τον αλγόριθμο alpha beta search στο δέντρο του προβλήματος ξεκινόντας από τα αριστερά θα έχουμε με μπλέ τους κόμβους που κόπηκαν:

Πρόβλημα 3

α) Το δέντρο φαίνεται στο παρακάτω σχήμα. Ο έντονα χρωματισμένος κόμβος τύχης αποτελεί την καλύτερη κίνηση για την ρίζα:

Για να αποφασίσουμε ποιόν κόμβο τύχης θα επιλέξει η ρίζα πρέπει να βρούμε την αναμενόμενη evaluation τιμή για κάθε branch.

Απλά παίρνουμε το άθροισμα των τιμών των κόμβων-φύλλα για το κάθε branch και το διαιρούμε με 2. Ο μεγαλύτερος αριθμός από τους δύο που θα προκύψουν θα μας οδηγήσει στην πιο κατάλληλη κίνηση για την ρίζα.

Με άλλα λόγια η ρίζα έχει μεγαλύτερη "πιθανότητα" να πετύχει υψηλότερη evaluationτιμή αν επιλέξει τον αριστερό κόμβο τύχης, καθώς οι τιμές στα φύλλα από εκείνο το branchείναι κατά μέσο όρο υψηλότερες.

β) Περίπτωση 1: Γνωρίζουμε τις τιμές των πρώτων 6 κόμβων

Στη συγκεκριμένη περίπτωση δεν μπορούμε να καταλήξουμε σε ποιό κόμβοφύλλο θα επιλέξει ο 4ος κόμβος min επομένως δεν ξέρουμε την τιμή του δεξιού κόμβου-τύχης.

Άρα δεν θα μπορούμε να βρούμε με σιγουριά την κατάλληλη επιλογή της ρίζας.

Περίπτωση 2: Γνωρίζουμε τις τιμές των πρώτων 7 κόμβων

Εδώ διαχρίνουμε δύο υποπεριπτώσεις:

• τιμή 8ου κόμβου ≥ 0

Τότε προφανώς ο 4ος min επιλέγει την τιμή -1 και έπειτα η τιμή του δεξιού κόμβου-τύχης υπολογίζεται σε -0.5. Άααααρα ο η καλύτερη επιλογή της ρίζας είναι να πάει αριστερά πάλι.

• τιμή 8ου κόμβου < 0

Τότε δεν ξέρουμε ποιόν θα διαλέξει ο 4ος min, ωστόσο είναι προφανές πως η τιμή του δεξιού κόμβου-τύχης θα είναι ξανά αρνητική. Επομένως πάλι η καλύτερη επιλογή της ρίζας είναι να πάει αριστερά.

γ) Τα δύο πρώτα φύλλα του δέντρου έχουν τιμές 2 και 2. Επομένως, υποθέτοντας πως ο min κόμβος σε περίπτωση ισοτιμίας διαλέγει τον αριστερότερο κόμβο, η τιμή του πρώτου min είναι 2.

Οι δυνατές τιμές του αριστερού κόμβου-τύχης εξαρτούνται από το σύνολο τιμών του δεύτερου min κόμβου. Από την εκφώνηση γνωρίζουμε πως το σύνολο αυτό είναι [-2,2].

Διακρίνουμε λοιπόν, πάλι δύο ακραίες περιπτώσεις:

- Το 3ο και το 4ο φύλλο έχουν τιμές -2 και η τελική τιμή του 2ου min κόμβου είναι -2:
 - Σ ε αυτή τη περίπτωση η τιμή του αριστερού κόμβου τύχης είναι 0.
- Το 3ο και το 4ο φύλλο έχουν τιμές 2 και η τελική τιμή του 2ου min κόμβου είναι 2:
 Σε αυτή τη περίπτωση η τιμή του αριστερού κόμβου τύχης είναι 2.

Εφόσον ο 2ος κόμβος min μπορεί να πάρει οποιαδήποτε τιμή μεταξύ -2 και 2 και οι ακραίες τιμές του αριστερού κόμβου τύχης είναι 0 και 2, συμπεραίνουμε πως οι δυνατές τιμές του αριστερού κόμβου τύχης είναι το σύνολο [0,2].

δ) $\Sigma \text{το παραχάτω δέντρο συμβολίζονται με } X \text{ οι χόμβοι τους οποίους δεν θα επισχεφτεί ο αλγόριθμος χλάδεμα - } AB:$

Όπως διαπιστώσαμε στο ερώτημα (γ) άν γνωρίζουμε το σύνολο τιμών τών φύλλων, γνωρίζουμε αυτόματα το σύνολο τιμών του κάθε min κόμβου και τις δυνατές τιμές του κάθε κόμβου-τύχης.

Στη συγκεκριμένη περίπτωση διαπιστώνουμε, εφαρμόζοντας την ίδια λογική με το προηγούμενο ερώτημα, πως οι δυνατές τιμές του αριστερού-κόμβου τύχης είναι [-2,2]. Το ίδιο συμβαίνει και με τον δεξιά κόμβο-τύχης.

Στην περίπτωση που γίνεται κλάδεμα - AB αρκεί για κάθε κόμβο τύχης να ελεγχτούν μόνο οι τιμές των φύλλων του αριστερού παιδιού min.

Πρόβλημα 4

α) Το δέντρο του παιχνιδιού Nim με τον πρώτο παίκτη να είναι ο MAX είναι:

με χοχχινο οι μαξ χόμβοι και με μπλε οι μιν χόμβοι

