Analiza lotu – wyznaczenie współczynników siły nośnej i siły oporu dla rakiety Twardowski

Filip Solarczyk

Model geometryczny

Model geometryczny rakiety do obliczeń został zaimportowany z Catii. Wygenerowano obszar dookoła rakiety – powierzchnię walcową z sferycznym zakończeniem, tak by wlot powietrza w analizie był równomierny (w przypadku działania oporu powietrza w kilku osiach).

Model dyskretny

Siatka którą wygenerowano jest typu tetra, jeden element posiada 4 punkty całkowania (na każdym węźle). Siatka w obszarze głowicy, skrzydeł a także przy złączce do tankowania jest dokładniejsza i wynosi 9 mm. Siatka na długości rakiety jest równa 22,5 mm. Wysokość siatki przy ściance rakiety: 0,0005mm, współczynnik wzrostu siatki: 1,2 (mniejsza gęstość na zewnętrznych ściankach powierzchniii walcowej).

Statystyki siatki: Liczba elementów: 511752 Liczba node'ów: 151425

Ustawienia symulacji

- Materiał: powietrze (standardowe ustawienia, gęstość gaz idealny obliczane z równania Clapeyrona)
- Model lepkościowy: k-omega SST (standardowe wartości)
- Metoda obliczeniowa: implicit (iteracyjne znajdowanie zbieżności po każdym kroku obliczeniowym)
- Liczba Couranta: 10 (określenie związku między wielkością siatki, prędkością propagacji fali
 przepływającej przez badany ośrodek a wielkością kroku czasowego/ w tym wypadku obliczeniowego) →
 w przypadku obliczeń typu implicit liczba Couranta jest dostosowywana do ilości iteracji potrzebnych do
 osiągnięcia zbieżności (wartość 10 jest tylko wyjściowa dla pierwszej iteracji)
- Przed każdymi obliczeniami przeprowadzona została inicjalizacja (standardowa) z zadanymi wartościami prędkości, tak aby wlot powietrza był ciągły w trakcie obliczeń a nie gwałtowny (czas w symulacji nie gra roli; tzn nie zmieniają się warunki brzegowe z czasem)

Dane wsadowe do modelu obliczeniowego

Obszar wlotu powietrza – oznaczony jako pressure far field, pełna powierzchnia przednia i boczna walca

Obszar który opływa powietrze – oznaczony jako wall, czyli zewnętrzne ścianki rakiety

Rozpatrywane przypadki

Prędkość powietrza (Ma)\kat natarcia (deg)	0	1	2	3	5	7	10	15	20	25
0,05	0	1	2	3	5	7	10	15	20	25
0,1	0	1	2	3	5	7	10	15	-	-
0,2	0	1	2	3	5	7	10	-	-	-
0,3	0	1	2	3	5	7	10	-	-	-
0,5	0	1	2	3	5	7	10	-	-	-
0,6	0	1	2	3	5	7	10	-	-	-

A więc rozpatrywane prędkości to 0,05 Ma, 0,1; 0,2; 0,3; 0,5; 0,6 Ma, o kilku wariantach kąta pod jakim powietrze uderza w zewnętrzne ścianki rakiety.

Przykładowo dla prędkości 0,3 Ma i kąta7deg:

- Prędkość w osi Z to -103.36 m/s
- Prędkość w osi X to 12.69 m/s

Wykresy rezyduułów dla przypadku 0,3Ma i 7deg – w tym wypadku solver potrzebował około 420 iteracji do osiągnięcia zbieżności

Rozkład ciśnień na płaszczyźnie XZ [Pa]

Wykresy pochodzą z przypadku 0,3 Ma i kąta natarcia 7deg

Rozkład prędkości w płaszczyźnie ZX [m/s]

Wyświetlanie wyników

Sposób wyświetlania siły na osi X (współczynników sił nośnej)

prędkość [Ma]	kąt [deg]	współczynnik siły oporu [-]	współczynnik siły nośnej [-]	współczynnik Y [-]
0,05		0,549		
0,1	0	0,524	0,003	0,013
0,2	0	0,520	0,004	0,021
0,3	0	0,504	0,003	0,014
0,5	0	0,520	0,004	
0,6	0	0,513	0,005	
0,05	1	0,552		
0,1	1	0,528	0,218	
0,2		0,513		
0,3		0,507	0,222	1,239
0,5		0,524	0,229	1,274
0,6		0,517	0,231	1,262
0,05	2	0,563	0,431	2,444
0,1	2	0,539		2,447
0,2		′	0,437	2,455
0,3	2	0,519	0,442	
0,5		0,535	0,457	2,539
0,6			0,458	
0,05			0,650	
0,1	3	·	0,653	
0,2				
0,3				
0,5				
0,6	3	0,545	0,689	3,774

Wyniki współczynników siły oporu, siły nośnej oraz momentu po osi Y Pełne wyniki zebrane są w tabeli w pliku excel

prędkość [Ma]	kąt [deg]	współczynnik siły oporu [-]	współczynnik siły nośnej [-]	współczynnik Y [-]
0,05	5	0,644	1,102	6,184
0,1	5	0,619	1,106	6,186
0,2	5	0,606	1,113	
0,3	5	0,604	1,124	
0,5	5	0,614	1,163	
0,6	5	0,605	1,165	
0,05	7	0,741	1,578	
0,1	7	0,716	1,583	8,768
0,2	7	0,702	1,593	8,792
0,3	7	0,673	1,587	
0,5	7	0,708	1,660	
0,6	7	0,715	1,677	9,003
0,05	10	0,953	2,329	
0,1	10	0,928	2,336	12,760
0,2	10	0,913	2,349	
0,3	10	0,911	2,371	12,861
0,5	10	0,925	2,446	13,192
0,6			2,459	13,103
0,05	15	1,477	3,526	
0,1	15	1,451	3,533	19,646
0,05	20	2,175	4,444	26,672
0,05	25	3,043	5,253	34,144

Wyniki współczynników siły oporu, siły nośnej oraz momentu po osi Y Pełne wyniki zebrane są w tabeli w pliku excel

Wykres współczynnika siły oporu dla różnych kątów natarcia i prędkości

Wykres współczynnika siły nośnej dla różnych kątów natarcia i prędkości

Wykres współczynnika momentu Y dla różnych kątów natarcia i prędkości

