MLDS 401/IEMS 404-1 (Fall 2023): Lab 4 Solution – 10/17/2023

3.7 (Derivation of the one-way ANOVA F-test using the extra SS method):

- a. The ANOVA identity follows immediately from (3.13) by noting that $\widehat{y}_{ij} = \overline{y}_i$ and $e_{ij} = y_{ij} - \widehat{y}_{ij} = y_{ij} - \overline{y}_i$ for $j = 1, \dots, n_i$ and $i = 1, \dots, k$. The squared norms of the vectors are then given by the corresponding sums of squares.
- b. Under H_0 , the one-way ANOVA model becomes $y_{ij} = \mu + \varepsilon_{ij}$, where μ is the common mean of all groups under H_0 . It is easy to show that the LS estimate of μ is $\widehat{\mu} = \overline{\overline{y}}$. So $SSE_0 = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{\overline{y}})^2 = SST$. Therefore $SSH_0 = SSE_0 - SSE = SST - SSE = SSG$ from the ANOVA identity. The hypothesis d.f. is k-1 since without H_0 there are k independent parameters, μ_1, \ldots, μ_k , while under H_0 , there is only one, μ ; so H_0 imposes k-1 linearly independent restrictions.. The error d.f. is, of course, N-k. This explains the extra SS F-statistic, which equals the ANOVA F-statistic.
- **6.2** (Extra sum of squares test in terms of \mathbb{R}^2): The extra SS test statistic for comparing the two models is given by

$$F = \frac{(SSE_q - SSE_p)/(p-q)}{SSE_p/[n - (p+1)]}.$$

We have $SSE_p = SST(1 - R_p^2)$ and $SSE_q = SST(1 - R_q^2)$. Substituting in the extra SS F-statistic we get

$$F = \frac{\text{SST}[(1 - R_q^2) - (1 - R_p^2)]}{\text{SST}(1 - R_p^2)/[n - (p + 1)]}$$
$$= \frac{(R_p^2 - R_q^2)/(p - q)}{(1 - R_p^2)/[n - (p + 1)]}.$$

For the given data

$$F=\frac{(0.90-0.80)/(5-3)}{(1-0.90)/(26-6)}=10>f_{2,20,.01}=5.85.$$
 So the increase R^2 is significant at $\alpha=.01$.

3.9 (Alternate coding of categorical variables): With the new coding: $x_1 = \pm 1$ and $x_2 = \pm 1$, we get the following equations:

$$\beta_{0} - \beta_{1} - \beta_{2} + \beta_{3} = 40$$

$$\beta_{0} + \beta_{1} - \beta_{2} - \beta_{3} = 45$$

$$\beta_{0} - \beta_{1} + \beta_{2} - \beta_{3} = 50$$

$$\beta_{0} + \beta_{1} + \beta_{2} + \beta_{3} = 65.$$

The solution to this square system of equations $X\beta = y$ is the LS estimate $\widehat{\beta} = (X'X)^{-1}X'y$ where

$$m{X} = egin{bmatrix} 1 & -1 & -1 & 1 \ 1 & 1 & -1 & -1 \ 1 & -1 & 1 & 1 \end{bmatrix}, m{y} = egin{bmatrix} 40 \ 45 \ 50 \ 65 \end{bmatrix} \quad ext{and} \quad m{eta} = egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ eta_3 \end{bmatrix}.$$

Note that X is an orthogonal matrix and X'X = 4I. Hence

The interpretations of these coefficients are as follows.

- 1. $\widehat{\beta}_0$ is the overall mean of all the y's.
- 2. $\widehat{\beta}_1$ is (1/4)th times the change in y when x_1 is changed from -1 to +1 summed over the two levels of x_2 (called the main effect of x_1).
- 3. $\widehat{\beta}_2$ is (1/4)th times the change in y when x_2 is changed from -1 to +1 summed over the two levels of x_1 (called the main effect of x_2).
- 4. $\widehat{\beta}_3$ is (1/4)th times the difference in the changes in y when x_1 is changed from -1 to +1 between the two levels of x_2 (called the interaction between x_1 and x_2). This is also equal to (1/4)th times the difference in the changes in y when x_2 is changed from -1 to +1 between the two levels of x_1 .