# Chapter 8 Interconnecting Networks with TCP/IP



### **Objectives**

### Upon completion of this chapter you will be able to perform the following tasks:

- Identify the IP protocol stack, its protocol layer functions, and commonly used IP protocols
- Identify IP address classes, IP addresses, IP subnet masks, IP network numbers, subnet numbers, and possible host numbers.
- Configure IP addresses and subnet masks on a router interface and optionally configure a host table.
- Interconnect the VLANs with a layer three device such as a router on a stick.

#### Introduction to TCP/IP



Early protocol suite Universal

### TCP/IP Protocol Stack



### **Application Layer Overview**



### **Transport Layer Overview**

**Application** 

**Transport** 

Internet

**Data Link** 

**Physical** 

**Transmission Control** 

**Protocol (TCP)** 

**User Datagram Protocol (UDP)** 

Connection-

**Oriented** 

Connectionless

### **TCP Segment Format**

| Bit 0                       |              | Bit 15        | Bit 16                | Bit 31 |  |  |  |
|-----------------------------|--------------|---------------|-----------------------|--------|--|--|--|
| Source port (16)            |              |               | Destination port (16) |        |  |  |  |
| Sequence number (32)        |              |               |                       |        |  |  |  |
| Acknowledgement number (32) |              |               |                       |        |  |  |  |
| Header<br>length (4)        | Reserved (6) | Code bits (6) | Window (16)           |        |  |  |  |
| Checksum (16)               |              |               | Urgent (16)           |        |  |  |  |
| Options (0 or 32 if any)    |              |               |                       |        |  |  |  |
| Data (varies)               |              |               |                       |        |  |  |  |

20 Bytes

#### **Port Numbers**



### **TCP Port Numbers**



# TCP Three Way Handshake/Open Connection



# TCP Three Way Handshake/Open Connection



# TCP Three Way Handshake/Open Connection





© 2000, Cisco Systems, Inc. WWW.cisco.com ICND v1.0a—8-13





















Sender Receiver



Receiver







### **UDP Segment Format**



#### No sequence or acknowledgment fields

### **Internet Layer Overview**



### OSI network layer corresponds to the TCP/IP internet layer

### IP Datagram

Bit 0 Bit 15 Bit 16 Bit 31

| Version<br>(4)              | Header<br>Length (4) | Priority & Type of Service (8) | Total Length (16)    |                      |  |  |  |
|-----------------------------|----------------------|--------------------------------|----------------------|----------------------|--|--|--|
| Identification (16)         |                      |                                | Flags<br>(3)         | Fragment offset (13) |  |  |  |
| Time to live (8)            |                      | Protocol (8)                   | Header checksum (16) |                      |  |  |  |
| Source IP Address (32)      |                      |                                |                      |                      |  |  |  |
| Destination IP Address (32) |                      |                                |                      |                      |  |  |  |
| Options (0 or 32 if any)    |                      |                                |                      |                      |  |  |  |
| Data (varies if any)        |                      |                                |                      |                      |  |  |  |

20 Bytes

#### **Protocol Field**



#### Determines destination upper-layer protocol

## Internet Control Message Protocol



#### **Address Resolution Protocol**



#### **Address Resolution Protocol**



#### **Address Resolution Protocol**



### **Address Resolution Protocol**











## Introduction to TCP/IP Addresses



- Unique addressing allows communication between end stations
- Path choice is based on destination address

## **IP Addressing**

|                   | 32 bits |      |      |     |  |
|-------------------|---------|------|------|-----|--|
| Dotted<br>Decimal | Net     | work | Host |     |  |
| Maximum           | 255     | 255  | 255  | 255 |  |

## IP Addressing



### IP Addressing



#### **IP Address Classes**

8 bits 8 bits 8 bits 8 bits Class A: **Network** Host Host Host Class B: **Network Network** Host Host Class C: Network **Network Network** Host

Class D: Multicast

Class E: Research

#### **IP Address Classes**



© 2000, Cisco Systems, Inc.

WWW.cisco.com

ICND v1.0a—8-47

#### **Host Addresses**



© 2000, Cisco Systems, Inc.

WWW.cisco.com

ICND v1.0a—8-48

## Determining Available Host Addresses

| Netw     | ork      | Но                    | st                              |                |
|----------|----------|-----------------------|---------------------------------|----------------|
| 172      | 16       | 0                     | 0                               |                |
|          | _        | <del>6</del> 74457-60 | ∞ <b>८</b> 0₽4€21               | N              |
| 10101100 | 00010000 | 00000000              | 00000000<br>0000001<br>00000011 | 1<br>2<br>3    |
|          |          | 11111111<br>11111111  | :<br>11111101<br>1111110        | 65534<br>65535 |
|          |          | 11111111              | 11111111                        | 65536<br>- 2   |
|          |          | $2^{N}-2=2^{16}-2$    | 2 = 65534                       | 65534          |

### **IP Address Classes Exercise**

| A alalyses | Class | Maturant | 11001 |
|------------|-------|----------|-------|
| Address    | Class | Network  | Host  |

10.2.1.1

128.63.2.100

201.222.5.64

192.6.141.2

130.113.64.16

256.241.201.10

## IP Address Classes Exercise Answers

| Class       | Network               | Host                                                                  |
|-------------|-----------------------|-----------------------------------------------------------------------|
| A           | 10.0.0.0              | 0.2.1.1                                                               |
| В           | 128.63.0.0            | 0.0.2.100                                                             |
| С           | 201.222.5.0           | 0.0.0.64                                                              |
| С           | 192.6.141.0           | 0.0.0.2                                                               |
| В           | 130.113.0.0           | 0.0.64.16                                                             |
| Nonexistent |                       |                                                                       |
|             | A<br>B<br>C<br>C<br>B | A 10.0.0.0  B 128.63.0.0  C 201.222.5.0  C 192.6.141.0  B 130.113.0.0 |

### **Addressing without Subnets**



**Network 172.16.0.0** 

## **Addressing with Subnets**



**Network 172.16.0.0** 

### **Subnet Addressing**



© 2000, Cisco Systems, Inc.

WWW.cisco.com

ICND v1.0a—8-54

### **Subnet Addressing**



© 2000, Cisco Systems, Inc.

WWW.cisco.com

ICND v1.0a—8-55

### **Subnet Mask**



Also written as "/24" where 24 represents the number of 1s in the mask.

## Decimal Equivalents of Bit Patterns

|     |   | 1 | 2 | 4 | 8 | 16 | <b>32</b> | 64 | 128 |
|-----|---|---|---|---|---|----|-----------|----|-----|
|     |   |   |   |   |   |    |           |    |     |
| 0   | = | 0 | 0 | 0 | 0 | 0  | 0         | 0  | 0   |
| 128 | = | 0 | 0 | 0 | 0 | 0  | 0         | 0  | 1   |
| 192 | = | 0 | 0 | 0 | 0 | 0  | 0         | 1  | 1   |
| 224 | = | 0 | 0 | 0 | 0 | 0  | 1         | 1  | 1   |
| 240 | = | 0 | 0 | 0 | 0 | 1  | 1         | 1  | 1   |
| 248 | = | 0 | 0 | 0 | 1 | 1  | 1         | 1  | 1   |
| 252 | = | 0 | 0 | 1 | 1 | 1  | 1         | 1  | 1   |
| 254 | = | 0 | 1 | 1 | 1 | 1  | 1         | 1  | 1   |
| 255 | = | 1 | 1 | 1 | 1 | 1  | 1         | 1  | 1   |

### **Subnet Mask without Subnets**

|                   | Netv     | vork     | Hos      | st       |
|-------------------|----------|----------|----------|----------|
| 172.16.2.160      | 10101100 | 00010000 | 00000010 | 10100000 |
| 255.255.0.0       | 11111111 | 11111111 | 00000000 | 0000000  |
|                   | 10101100 | 00010000 | 00000000 | 00000000 |
| Network<br>Number | 172      | 16       | 0        | 0        |

Subnets not in use—the default

### **Subnet Mask with Subnets**

|                                              | Netv                 | vork                 | Subnet                                                                                | Host                 |
|----------------------------------------------|----------------------|----------------------|---------------------------------------------------------------------------------------|----------------------|
| 172.16.2.160<br>255.255. <mark>255.</mark> 0 | 10101100<br>11111111 | 00010000<br>11111111 | 00000010<br>11111111                                                                  | 10100000<br>00000000 |
|                                              | 10101100             | 00010000             | 01000000<br>524<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527 | 00000000             |
| Network<br>Number                            | 172                  | 16                   | 2                                                                                     | 0                    |

#### Network number extended by eight bits

## **Subnet Mask with Subnets** (cont.)

|                        | Netv                 | Subnet               |                                        | Host                     |                                               |
|------------------------|----------------------|----------------------|----------------------------------------|--------------------------|-----------------------------------------------|
| 172.16.2.160           | 10101100<br>11111111 | 00010000<br>11111111 | 00000010                               |                          | 100000                                        |
| <b>255.255.255.192</b> | 10101100             | 00010000             | 00000010                               |                          | 000000                                        |
| Network                |                      |                      | 128<br>192<br>224<br>240<br>252<br>253 | 128<br>1 <mark>92</mark> | 252<br>252<br>254<br>254<br>254<br>254<br>254 |
| Number                 | 172                  | 16                   | 2                                      |                          | 128                                           |

#### Network number extended by ten bits

### **Subnet Mask Exercise**

| Address     | Subnet Mask   | Class | Subnet |
|-------------|---------------|-------|--------|
| 172.16.2.10 | 255.255.255.0 |       |        |
| 10.6.24.20  | 255.255.240.0 |       |        |
| 10.30.36.12 | 255.255.255.0 |       |        |

# Subnet Mask Exercise Answers

| Address     | Subnet Mask   | Class | Subnet     |
|-------------|---------------|-------|------------|
| 172.16.2.10 | 255.255.255.0 | В     | 172.16.2.0 |
| 10.6.24.20  | 255.255.240.0 | Α     | 10.6.16.0  |
| 10.30.36.12 | 255.255.255.0 | A     | 10.30.36.0 |

### **Broadcast Addresses**





Last

**First** 

**Broadcast** 

| 172 16 | 2 | 160 |
|--------|---|-----|
|--------|---|-----|

172.16.2.160 10101100 00010000 00000010 10100000 Host

255.255.255.192 11111111 11111111 11111111 11000000 Mask

Subnet

**Broadcast** 

**First** 

Last















#### Class B Subnet Example

IP Host Address: 172.16.2.121 Subnet Mask: 255.255.255.0

|                | Network  | Network  | Subnet   | Host     |
|----------------|----------|----------|----------|----------|
| 172.16.2.121:  | 10101100 | 00010000 | 00000010 | 01111001 |
| 255.255.255.0: | 11111111 | 11111111 | 11111111 | 0000000  |
| Subnet:        | 10101100 | 00010000 | 00000010 | 00000000 |
| Broadcast:     | 10101100 | 00010000 | 00000010 | 11111111 |

**Subnet Address = 172.16.2.0** 

**Host Addresses = 172.16.2.1–172.16.2.254** 

**Broadcast Address = 172.16.2.255** 

Eight bits of subnetting

### Subnet Planning



### Class C Subnet Planning Example

IP Host Address: 192.168.5.121 Subnet Mask: 255.255.255.248

|                                    | Network              | Network              | Network              | Subnet         | Host |
|------------------------------------|----------------------|----------------------|----------------------|----------------|------|
| 192.168.5.121:<br>255.255.255.248: |                      | 10101000<br>11111111 | 00000101<br>11111111 | 01111<br>11111 |      |
| Subnet:<br>Broadcast:              | 11000000<br>11000000 | 10101000<br>10101000 | 00000101<br>00000101 | 01111<br>01111 |      |

**Subnet Address = 192.168.5.120** 

Host Addresses = 192.168.5.121-192.168.5.126

**Broadcast Address = 192.168.5.127** 

**Five Bits of Subnetting** 

#### **Broadcast Addresses Exercise**

| Address       | Subnet Mask     | Class | Subnet | Broadcast |   |
|---------------|-----------------|-------|--------|-----------|---|
| 201.222.10.60 | 255.255.255.248 |       |        |           |   |
| 15.16.193.6   | 255.255.248.0   |       |        |           |   |
| 128.16.32.13  | 255.255.255.252 |       |        |           |   |
| 153.50.6.27   | 255.255.255.128 |       |        |           | / |

# Broadcast Addresses Exercise Answers

| _ |               |                 |       |               |               |  |
|---|---------------|-----------------|-------|---------------|---------------|--|
|   | Address       | Subnet Mask     | Class | Subnet        | Broadcast     |  |
|   | 201.222.10.60 | 255.255.255.248 | С     | 201.222.10.56 | 201.222.10.63 |  |
|   | 15.16.193.6   | 255.255.248.0   | Α     | 15.16.192.0   | 15.16.199.255 |  |
|   | 128.16.32.13  | 255.255.252     | В     | 128.16.32.12  | 128.16.32.15  |  |
|   | 153.50.6.27   | 255.255.255.128 | В     | 153.50.6.0    | 153.50.6.127  |  |
|   |               |                 |       |               |               |  |

# Switch IP Address Configuration

Switch (config) #ip address ip-address subnet-mask

- Assigns an address and subnet mask
- Starts IP processing on a switch

Switch (config) #ip default-gateway ip-address

Specifies a default gateway

# Router IP Address Configuration

Router(config-if)#ip address ip-address subnet-mask

- Assigns an address and subnet mask
- Starts IP processing on a router interface

# Router IP Address Configuration

```
Router#term ip netmask-format {bitcount| decimal | hexadecimal}
```

 Sets display format of network mask for current session

```
Router(config-line)#ip netmask-format
{bitcount | decimal | hexadecimal}
```

 Sets format of network mask for a specific line

#### **Router IP Host Names**

```
Router (config) #ip host name [tcp-port-number] address [address]
```

Defines static host name to IP address mapping

```
ip host Norine 172.16.3.1 192.168.3.1
ip host Roger 172.16.4.3
```

Hosts/interfaces selectable by name or IP address

# Router Name Server Configuration



Router (config) #ip name-server server-address1 [[server-address2]...[server-address6]]

 Specifies one or more hosts that supply host name to logical address resolution

#### Router Name System

```
Router(config) #ip domain-lookup
Router(config) #end
Router#pat
Translating "pat"...domain server (255.255.255.255)
% Unknown command or computer name, or unable to find computer address
Router#config t
Router(config) #no ip domain-lookup
Router(config) #end
Router#pat
Translating "pat"
% Unknown command or computer name, or unable to find computer address
Router#
```

#### DNS enabled by default

#### Router Display Host Names

```
Router#show hosts
Default domain is not set
Name/address lookup uses domain service
Name servers are 255,255,255,255
Host
                       Flags Age Type
                                            Address (es)
                                   0 IP
                                            172.16.100.100
Norine
                        (perm, OK)
                        (perm, OK) 0 IP
                                            172.16.100.101
Roger
Frank
                                   0 IP
                                            172.16.200.200
                        (perm, OK)
Bob
                                             172.16.200.201
                        (perm, OK)
                                       IP
```

#### Shows the host table

#### **VLAN to VLAN Overview**



Network layer devices combine multiple broadcast domains

### Dividing a Physical Interface into Subinterfaces



Physical interfaces can be divided into multiple subinterfaces

### ISL Encapsulation

Router(config-subif) #encapsulation isl vlan identifier

Enables ISL on a subinterface

#### Routing Between VLANs



#### Routing Between WANs



#### Visual Objective



#### Summary

### After completing this chapter, you should be able to perform the following tasks:

- Identify the TCP/IP protocol stack and the functions of each layer
- Separate an IP address into its subcomponents: the network, subnet, and host portions
- Configure IP addresses on Cisco router and switch interfaces
- Interconnect VLANs using a layer three device such as a "router on a stick"

#### **Review Questions**

- 1. What is the difference between the TCP and UDP transport layer protocols?
- 2. Given a host with IP address, 192.168.20.1 255.255.255.240, how many other hosts can you have in that network?
- 3. What is required to interconnect separate VLANs?