## Университет ИТМО

Лабораторная работа №4 по "Вычислительной математике" Аппроксимация функции методом наименьших квадратов Вариант 4

Выполнил: Дьяконов Михаил Павлович

Группа: Р3211

Преподаватель: Малышева Татьяна Алексеевна

## Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

## Рабочие формулы

Линейная функция:

$$\phi = ax + b$$
 
$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

Квадратичная функция:

$$\phi = ax^{2} + bx + c$$
 
$$\begin{cases} cn + bSX + aSXX = SY \\ cSX + bSXX + aSXX = SXY \\ cSXX + bSXXX + aSXXX = SXXY \end{cases}$$

Степенная функция:

$$\phi = ax^b$$

Замена 
$$Y = ln(\phi(x)); A = ln(a); B = b; X = ln(x)$$

Экспоненциальная функция:

$$\phi = ae^{(}bx)$$

Замена 
$$Y = ln(\phi(x)); A = ln(a); B = b$$

Логарифмическая функция:

$$\phi = aln(x) + b$$

Замена 
$$X = ln(x); A = ln(a); B = b$$

## Блок-схема



## Листинг программы

#### FunctionResearcher.ts

```
export class FunctionResearcher {
   private static readonly FUNCTION_COLORS: string[] = ['green', 'red', 'blue', 'pink', 'yellow'];
   private static readonly MANAGERS: ApproximationManager[] = [new LinearApproximationManager(),
       new QuadraticApproximationManager(), new SedateApproximationManager(),
       new ExponentialApproximationManager(), new LogarithmicApproximationManager()];
   private static readonly FUNCTION_VIEWS: string[] = ['ax+b', 'ax^2+bx+c', 'ax^b', 'ae^(bx)',
        'a*ln(x)+b'];
   research(points: Point[]): FinalResult {
       const functions: ApproximatingFunction[] =
           FunctionResearcher.MANAGERS.map((m) => m.solve(points));
       const resultFunctions: ResearchResult[] = functions.map((f, i) => {
           const s: number = points.map((point) => Math.pow(f.fnc(point.x) - point.y, 2))
               .reduce((a, b) \Rightarrow a + b);
              color: FunctionResearcher.FUNCTION_COLORS[i],
              view: FunctionResearcher.FUNCTION_VIEWS[i],
              fnc: f.fnc,
              a: MathUtils.roundToFixed(f.a),
              b: MathUtils.roundToFixed(f.b),
              c: f.c === undefined ? f.c : MathUtils.roundToFixed(f.c),
              deviationMeasure: MathUtils.roundToFixed(s),
              standardDeviation: MathUtils.roundToFixed(Math.sqrt(s / points.length))
           };
       });
       const correlationCoeff: number =
           MathUtils.roundToFixed(CorrelationCalculator.calculate(points));
       return {functions: resultFunctions, correlationCoeff: correlationCoeff};
   }
}
   CorrelationCalculator.ts:
```

```
export class CorrelationCalculator {
    static calculate(points: Point[]): number {
        const xMiddle = points.map(point => point.x).reduce((a, b) => a + b) / points.length;
        const yMiddle = points.map(point => point.y).reduce((a, b) => a + b) / points.length;

    return points.map(point => (point.x - xMiddle) * (point.y - yMiddle)).reduce((a, b) => a+b) /
        Math.sqrt(points.map(point => Math.pow(point.x - xMiddle, 2)).reduce((a, b) => a+b)
        * points.map(point => Math.pow(point.y - yMiddle, 2)).reduce((a, b) => a+b));
}
```

#### MatrixUtils.ts:

```
export class MatrixUtils {
    static solveSLAU(coeffs: number[][], freeMembers: number[]): number[] {
        if (coeffs === undefined ||
            freeMembers === undefined
            || coeffs.length !== freeMembers.length) {
            return undefined;
        }
}
```

```
const det: number = math.det(coeffs);
const dets: number[] = [];

for (let i = 0; i < freeMembers.length; i++) {
    const matrix = coeffs.map(arr => arr.slice());
    for (let j = 0; j < freeMembers.length; j++) {
        matrix[j][i] = freeMembers[j];
    }
    dets.push(math.det(matrix));
}

return Array(freeMembers.length).fill(0).map((v, i) => dets[i] / det);
}
```

#### PointsUtils.kt:

```
export class PointUtils {
   static calculatePointsCharacteristics(points: Point[]): PointsCharacteristics {
       return {
          n: points.length,
          sx: this.calculateSumFromPointMapper(points, (point) => point.x),
          sxx: this.calculateSumFromPointMapper(points, (point) => point.x * point.x),
          sxxx: this.calculateSumFromPointMapper(points, (point) => point.x * point.x * point.x),
           sxxxx: this.calculateSumFromPointMapper(points, (point) => Math.pow(point.x, 4)),
           sy: this.calculateSumFromPointMapper(points, (point) => point.y),
           sxy: this.calculateSumFromPointMapper(points, (point) => point.x * point.y),
           sxxy: this.calculateSumFromPointMapper(points, (point) => point.x * point.x * point.y)
       };
   }
   static calculateSumFromPointMapper(points: Point[], mapper: (Point) => number) {
       return points.map(mapper).reduce((a, b) => a + b);
   }
}
```

# Примеры

## Аппроксимация функции методом наименьших квадратов



Введите точки для аппроксимации функции, кол-во точек должно быть от 12 до 20

Выберите формат ввода и вывода

О Из файла

• Из формы

| x    | 1,1  | 2,3  | 3,7  | 4,5  | 5,4   | 6,8   | 7,5   | 8,2   | 9,0   | 9,9   | 10,6  | 11,3  |
|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| f(x) | 2,73 | 5,12 | 7,74 | 8,91 | 10,59 | 12,75 | 13,43 | 15,01 | 15,77 | 17,02 | 18,32 | 18,99 |



Удалить точку

### Провести исследование

| Цвет   | Вид функции               | a       | b       | c      | Мера отклонения S | Среднеквадратичное отклонение δ |
|--------|---------------------------|---------|---------|--------|-------------------|---------------------------------|
| green  | $\phi(x) = ax + b$        | 1.5769  | 1.6461  | -      | 1.3491            | 0.3353                          |
| red    | $\phi(x) = ax^2 + bx + c$ | -0.0324 | 1.9859  | 0.6871 | 0.3113            | 0.1611                          |
| blue   | $\phi(x) = ax^b$          | 2.5573  | 0.8323  | -      | 0.3524            | 0.1714                          |
| pink   | $\phi(x) = ae^(bx)$       | 3.5468  | 0.1661  | -      | 39.5932           | 1.8164                          |
| yellow | $\phi(x) = a*In(x)+b$     | 7.2479  | -0.3276 | -      | 19.7758           | 1.2837                          |

Коэффициент корреляции

0.9978





Вывод

Результат

В результате выполнения данной лабораторной работы я узнал, как работает аппроксимация методом наименьших квадратов. Также научился выбирать лучшую аппроксимацию по среднеквадратичному отклонению.