Matlab Code

```
% Hunter Phillips
% Problem 8 - (b) and (c)
% MAE 488
% 02/11/19
clc
%% Header
d bullets = repmat('*', 50, 1); % concise way to make a lot of chars
fprintf('%c',d bullets)
fprintf('\nMAE 488, Homework #3, Spring 2019, Hunter Phillips\n')
fprintf('%c',d bullets)
fprintf('\n\n')
%% Problem 8 (b)
clear
clf
f1 = figure(1);
su bullets = repmat('*', 25, 1); % setting up cmd line output
un bullets = repmat('-', 25, 1);
fprintf('%c',su bullets)
fprintf('\nProblem 8 - Part b\n')
fprintf('%c',su bullets)
fprintf('\n\n')
num = [0 \ 0 \ 3];
denom = [4 28 24];
transfer function = tf(num, denom)
t = 0:0.\overline{1}:5;
x t = (1/8) + (1/40)*(exp(-6*t)) - (3/20)*(exp(-t));
[x t 2, t2] = step(transfer function, t);
% For Table Output
t hand calculated = t';
x t hand calculated = x t';
t matlab calculated = t2;
x t matlab calculated = x t 2;
Table of Values = table(t hand calculated, x t hand calculated,
t matlab calculated,x t matlab calculated )
%% Problem 8 (c)
subplot(2,1,1)
plot(t2,x t 2,'r-')
title({'MAE 488, Homework 3, Problem 8, Part c'})
legend('Matlab Calculated', 'location', 'southeast')
xlabel('Time (s)')
ylabel('Function x(t)')
```

```
subplot(2,1,2)
plot(t,x_t,'b-')
legend('Hand Calculated', 'location', 'southeast')
xlabel('Time (s)')
ylabel('Function x(t)')
%% print
% print(f1,'problem_8_c.png','-dpng','-r1200');
```

Matlab Output

Problem 8 - Part b ***********

 $transfer_function =$

3

4 s^2 + 28 s + 24

Continuous-time transfer function.

 $Table_of_Values =$

51×4 table

t_hand_calculated	x_t_hand_calculated	t_matlab_calculated	x_t_matlab_calculated
0	0	0	0
0.1	0.0029947	0.1	0.0029947
0.2	0.0097202	0.2	0.0097202
0.3	0.01801	0.3	0.01801
0.4	0.02672	0.4	0.02672
0.5	0.035265	0.5	0.035265
0.6	0.043361	0.6	0.043361
0.7	0.050887	0.7	0.050887
0.8	0.057806	0.8	0.057806
0.9	0.064127	0.9	0.064127
1	0.06988	1	0.06988
1.1	0.075103	1.1	0.075103
1.2	0.07984	1.2	0.07984
1.3	0.08413	1.3	0.08413
1.4	0.088016	1.4	0.088016
1.5	0.091534	1.5	0.091534
1.6	0.094717	1.6	0.094717
1.7	0.097598	1.7	0.097598
1.8	0.10021	1.8	0.10021
1.9	0.10256	1.9	0.10256
2	0.1047	2	0.1047
2.1	0.10663	2.1	0.10663
2.2	0.10838	2.2	0.10838
2.3	0.10996	2.3	0.10996
2.4	0.11139	2.4	0.11139
2.5	0.11269	2.5	0.11269
2.6	0.11386	2.6	0.11386
2.7	0.11492	2.7	0.11492

2.8	0.11588	2.8	0.11588
2.9	0.11675	2.9	0.11675
3	0.11753	3	0.11753
3.1	0.11824	3.1	0.11824
3.2	0.11889	3.2	0.11889
3.3	0.11947	3.3	0.11947
3.4	0.11999	3.4	0.11999
3.5	0.12047	3.5	0.12047
3.6	0.1209	3.6	0.1209
3.7	0.12129	3.7	0.12129
3.8	0.12164	3.8	0.12164
3.9	0.12196	3.9	0.12196
4	0.12225	4	0.12225
4.1	0.12251	4.1	0.12251
4.2	0.12275	4.2	0.12275
4.3	0.12296	4.3	0.12296
4.4	0.12316	4.4	0.12316
4.5	0.12333	4.5	0.12333
4.6	0.12349	4.6	0.12349
4.7	0.12364	4.7	0.12364
4.8	0.12377	4.8	0.12377
4.9	0.12388	4.9	0.12388
5	0.12399	5	0.12399

Matlab Figures

Figure 1: Problem 8, Part c