Homotopy Groups of Spheres

D. Zack Garza

Introduction

Examples

Homotopy Groups of Spheres

Graduate Student Seminar

D. Zack Garza

April 2020

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Examples

Introduction

Outline

Homotopy Groups of Spheres

D. Zack Garz

Introduction

- Homotopy as a means of classification somewhere between homeomorphism and cobordism
- Comparison to homology
- Higher homotopy groups of spheres exist
- Homotopy groups of spheres govern gluing of CW complexes
- CW complexes fully capture that homotopy category of spaces
- There are concrete topological constructions of many important algebraic operations at the level of spaces (quotients, tensor products)
- Relation to framed cobordism?
- "Measuring stick" for current tools, similar to special values of L-functions
- Serre's computation

Intuition

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Homotopies of paths:

– Regard paths γ in X and homotopies of paths H as morphisms

$$\gamma \in \mathsf{hom}_{\mathsf{Top}}(I, X)$$
 $H \in \mathsf{hom}_{\mathsf{Top}}(I \times I, X).$

- Yields an equivalence relation: write

$$\gamma_0 \sim \gamma_1 \iff \exists H \text{ with } H(0) = \gamma_0, H(1) = \gamma(1)$$

- Write $[\gamma]$ to denote a homotopy class of paths.

Intuition

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Examples

– Why care about path homotopies? Historically: contour integrals in $\ensuremath{\mathbb{C}}$

– By the residue theorem, for a meromorphic function f with simple poles $P = \{p_i\}$ we know that

$$\oint_{\gamma} f(z) \ dz \text{ is determined by } [\gamma] \in \pi_1(\mathbb{C} \setminus P)$$

Definitions

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Generalize to a homotopy of morphisms:

$$f, g \in \mathsf{hom}_{\mathsf{Top}}(X, Y) \quad f \sim g \iff \exists F \in \mathsf{hom}_{\mathsf{Top}}(X \times I, Y)$$

- such that F(0) = f, F(1) = g.
- This yields an equivalence relation on morphisms, homotopy classes of maps

$$[X, Y] := \mathsf{hom}_{\mathsf{Top}}(X, Y) / \sim$$

Definition of homotopy equivalence:

$$X \sim Y \iff \exists \begin{cases} f \in \mathsf{hom}(X,Y) \\ g \in \mathsf{hom}(Y,X) \end{cases}$$
 such that $\begin{cases} f \circ g \sim \mathsf{id}_Y \\ g \circ f \sim \mathsf{id}_X \end{cases}$

- Similarly write

$$[X] = \{ Y \in \mathsf{Top} \mid Y \sim X \}.$$

The Fundamental Group

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- $-\pi_1(X)$ is the group of homotopy classes of loops:
- Can recover this definition by finding a (co)representing object:

$$\pi_1(X) = [S^1, X]$$

Higher Homotopy Groups

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Example:

- Can now generalize to define

$$\pi_k(X) := [S^k, X]$$

Classification

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- Holy grail: understand the topological category completely
 - I.e. have a well-understood geometric model one space of each homeomorphism type

Also have the derived category DTop, its interplay with hoTop is the subject of e.g. the Poincare conjecture(s).

- Any representative from a green box: a homotopy type.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction Examples **Proposition**: Let B be a CW complex; then isomorphism classes of \mathbb{R}^1 -bundles over B are given by $H^1(X, \mathbb{Z}/2\mathbb{Z})$.

- Use the fact that for any fixed group G, the functor

$$h_G(\cdot)$$
: hoTop^{op} \longrightarrow Set

$$X \mapsto G$$
-bundles over X

is representable by a space called BG (Brown's representability theorem).

- Letting $I(G, X) = \{G\text{-bundles}/B\} / \sim$, there is an isomorphism $I(G, X) \cong [X, BG]$. In general, identify $G = \operatorname{Aut}(F)$ the automorphism group of the fibers – for vector bundles of rank n, take $G = GL(n, \mathbb{R})$.

Note that for a poset of spaces (M_i, \hookrightarrow) , the space $M^{\infty} := \varinjlim M_i$. This are infinite dimensional "Hilbert manifolds".

Proof:

$$I(\mathbb{R}^1, X) = [X, B(GL(1, \mathbb{R}))] \tag{1}$$

Point 1

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Point 2

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Examples

Sphere 1

Homotopy Groups of Spheres

D. Zack Garza

Introduction