Hidrodinamske nestabilnost v tankih plasteh

Miha Čančula

21. marec 2012

Vsebina

- Stabilnost
- Enačbe toka tekočin
- Lubrikacijski približek enačba tankega filma
- Primeri
 - Plast tekočine na klancu
 - Razpad milnega mehurčka
 - Nastanek kraških žlebičev

Stabilnost

- Občutljivost na majhne motnje
- ► Zlom simetrije

Enačbe

Navier-Stokes

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla \rho + \mu \Delta \mathbf{u}$$

Nestisljivost

$$\nabla \mathbf{u} = 0$$

Lubrikacijski približek

Predpostavke

- Značilna dimenzija v smeri z mnogo manjša
- ▶ Hitrost v tej smeri majhna, $u_z \ll u_x, u_y$.

Učinek

- ▶ Povprečenje v z smeri \Rightarrow izgubimo profil v z smeri
- ► Menjava spremenljivke $\mathbf{u}(x, y, z, t) \rightarrow h(x, y, t)$
- **>** 4 skalarne količine $(\mathbf{u},p) o 1$ skalarna količina.

Plast tekočine na klancu

Stabilnost