Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт Прикладной математики, информатики и управления

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО КУРСУ «МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ»

ЛАБОРАТОРНАЯ РАБОТА №4

«Показатели качества цифровых систем управления»

Цель работы: изучить основные показатели качества цифровых систем автоматического управления.

1. ТЕОРЕТИЧЕСКИЕ УКАЗАНИЯ

1.1 Общие сведения. Оценка качества цифровых САУ.

Качество дискретных систем управления определяется аналогично непрерывным системам, и разделяются на показатели качества *в переходном* и *установившемся* режимах.

1.2 Показатели качества в переходном режиме

Показатели качества в переходном режиме делятся на *прямые* и *косвенные*. Прямыми показателями качества называются числовые показатели, которые определяются по переходной характеристике. Показатели качества, определяемые не по переходной характеристике, называются косвенными.

Прямые показатели качества

Среди прямых показателей наиболее часто используются время регулирования и перерегулирование.

Временем регулирования t_p называется минимальное время, по истечении которого отклонение переходной характеристики от установившегося значения $h(\infty)$ не превышает заданной величины Δ (Обычно принимают $\Delta = (0,02-0,1) \ h(\infty)$).

Перерегулированием называют максимальное отклонение переходной характеристики от установившегося значения, выраженное в процентах к установившемуся значению.

Для графического определения прямых показателей качества необходимо иметь переходную характеристику. Ее можно построить по дискретной переходной функции h[nT], соединяя дискретные точки плавной кривой.

Рассмотрим вычисление переходной функции. По определению переходная функция h[nT] есть функция, которая описывает реакцию системы на единичное воздействие g[nT] = 1[nT] при нулевых начальных условиях. И так как z-изображение от единичной решетчатой функции имеет вид $G(z) = Z\{1[nT]\} = z/(z-1)$, z-изображение переходной функции равно

$$H(z) = W_{vg}(z)G(z) = W_{vg}(z)z/(z-1),$$
 (1.1)

где $W_{vg}(z)$ — передаточная функция относительно входа g[nT] и выхода v[nT].

Изображение переходной функции есть отношение полиномов:

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{a_0 z^l + a_1 z^{l-1} + \dots + a_l} \quad (m \le l)$$
(1.2)

С другой стороны, по определению *z*-преобразования:

$$H(z) = \sum_{n=0}^{\infty} h[nT]z^{-n}$$
 (1.3)

Поэтому значения переходной функции h[nT] можно найти, разложив H(z) в ряд Лорана путем деления числителя B(z) на знаменатель A(z) по правилу деления многочленов. При этом в многочленах B(z) и A(z) слагаемые должны располагаться в порядке убывания степени z.

Косвенные показатели качества.

Как и в случае непрерывных систем, для оценки качества дискретных систем используются следующие косвенные показатели качества: корневые, частотные и суммарные.

Корневым показателем качества является *степень устойчивости* η , которая определяется следующим образом:

$$\eta = \min_{\nu} \left\{ -\ln |z_{\nu}| \right\},\tag{1.4}$$

где z_{ν} — корни характеристического уравнения.

Степень устойчивости является косвенной мерой быстродействия системы.

Суммарной квадратической ошибкой называется ряд

$$J_{20} = \sum_{n=0}^{\infty} e_{\Pi}^{2}[nT], \quad e_{\Pi}[nT] = e[nT] - e_{\infty}[nT]$$
 (1.5)

где $e_n[nT]$ – переходная составляющая ошибки,

e[nT] – ошибка,

 $e \propto [nT]$ — установившаяся ошибка (вынужденная составляющая ошибки).

1.3 Условие оптимальности системы (по переходному процессу).

В непрерывных линейных системах переходная функция всегда принимает установившееся значение при $t=\infty$. Однако возможны линейные дискретные системы, в которых переходный процесс заканчивается за конечное число шагов, т. е. существует такое положительное число n_0 , что

$$h[nT] = h[n_0T] = h[\infty] \tag{1.6}$$

Если выполняется условие (1.6), то переходный процесс называется *оптимальным*, а система, в которой происходит такой процесс, называется *оптимальной (по переходному процессу) системой*.

В общем случае передаточная функция $W_{yg}(z)$ представляет собой отношение полиномов:

$$W_{yg}(z) = \frac{b_0 z^m + b_1 z^{m-1} + \dots + b_m}{a_0 z^l + a_1 z^{l-1} + \dots + a_l} \quad (m \le l)$$
(1.7)

и она при разложении в ряд Лорана будет иметь конечное число слагаемых, если

$$a_1 = a_2 = \dots = a_l = 0.$$
 (1.8)

Действительно, в этом случае имеем:

$$W_{yg}(z) = \frac{b_0}{a_0} z^{m-l} + \frac{b_1}{a_0} z^{m-l-1} + \dots + \frac{b_0}{a_0} z^{-l}$$
(1.9)

Таким образом, система (1.7) является оптимальной (переходный процесс в ней заканчивается за конечное число шагов), если выполняется условие (1.8).

1.4 Показатели качества в установившемся режиме

Наиболее полной характеристикой качества в установившемся режиме является установившаяся ошибка, а также показателем качества в установившемся режиме являются коэффициенты ошибки. Переходя к оригиналам, из равенства

$$E(z)=W_{eg}(z)G(z)$$

Используя теорему о свертке и разложив входную функцию в ряд Тейлора получим:

$$e_{\infty}[nT] = \sum_{k=0}^{\infty} C_k g[nT],$$
 (1.10)

где

$$C_k = (-1)^k \sum_{i=0}^{\infty} \frac{w_{eg}[nT](iT)^k}{k!}$$

или

$$C_k = \frac{1}{k!} W_{0k}(z) \Big|_{z=1}, \quad k = 0,1,2,...$$
 (1.11)

где $W_{0k}(z)$ определяется по рекуррентной формуле:

$$W_{00}(z) = W_{eg}(z)$$
 $W_{0k}(z) = Tz \frac{dW_{0,k-1}(z)}{dz}$, $k = 0,1,2,...$

Откуда следует, что коэффициент позиционной ошибки $C_0 = W_{eg}(1)$.

Коэффициенты C_k характеризуют качество системы в установившемся режиме и называются коэффициентами ошибки. При этом C_0 называют коэффициентом позиционной ошибки, C_1 — коэффициентом скоростной ошибки и C_2 — коэффициентом ошибки по ускорению.

1.5 Статические и астатические системы

Система называется *статической*, если статическая ошибка отлична от нуля, и *астатической*, если статическая ошибка равна нулю. Статическая ошибка — это установившаяся ошибка при постоянных внешних воздействиях.

Система является астатической и обладает астатизмом r-го порядка, если первые r коэффициентов равны нулю, а (r+1)- \tilde{u} коэффициент ошибки отличен от нуля:

$$C_0 = C_1 = \dots = C_{r-1} = 0, C_r \neq 0.$$
 (1.12)

Для астатической системы с астатизмом r-го порядка первые r+1 коэффициентов ошибки можно определить по формуле

$$C_{k} = \frac{T^{k}W_{eg}(z)}{(z-1)^{k}} \Big|_{z=1} \qquad k = 0,1,2,...r$$
 (1.13)

Иначе говоря, этой формулой можно пользоваться при вычислении до первого отличного от нуля коэффициента ошибки.

Система обладает астатизмом r-го порядка, если передаточная функция ошибки $W_{yg}(z)$ может быть представлена в виде

$$W_{eg}(z) = (z-1)^r W_{eg}^0(z), \quad W_{eg}^0(z) \neq 0.$$
 (1.14)

Передаточная функция разомкнутой системы может быть представлена в указанном выше виде, если передаточная она имеет вид:

$$W(z) = \frac{W^{0}(z)}{(z-1)^{r}}, \quad W^{0}(1) \neq 0, \quad W^{0}(1) < 0$$
 (1.15)

Пусть дискретная система состоит из дискретного фильтра (регулятора) и приведенной непрерывной части (рисунок 1) Передаточная функция разомкнутой системы имеет вид:

$$W(z) = W_p(z)W_{Hy}(z) \tag{1.16}$$

Рисунок 1 – Структурная схема дискретной системы

Система будет астатической и иметь астатизм r-ого порядка, если передаточная функция W(z) включает множитель $1/(z-1)^r$.

2. Задание

- 1. Изучить основные теоретические сведения.
- 2. Для заданной передаточной функции¹ замкнутой системы: путем разложения переходной функции в ряд Лорана, построить переходную характеристику замкнутой системы. Определить время регулирования, перерегулирование (если возможно), степень устойчивости и суммарную квадратическую ошибку (T=0,1 с.).
- 3. Найти первый ненулевой коэффициент ошибки для полученной системы и определить степень астатизма системы.
- 4.Подготовить отчет.

5. Таблица 1 – Варианты индивидуального задания

	Коэффициенты передаточной функции замкнутой системы управления										
Номер	$W(z) = \frac{b_0 z^2 + b_1 z + b_2}{a_0 z^3 + a_1 z^2 + a_2 z^1 + a_3}$										
задания		$a_0 z^3 + a_1 z^2 + a_2 z^1 + a_3$									
	a_{θ}	a_1	a_2	<i>a</i> ₃	b_{θ}	b_1	b_2				
1	10	-13	3.2	-0.2	0	1,2	0,37				
2	20	-28	8.6	-0.6	0	0,54	3,5				
3	30	-45	16.8	-1.8	0	1,3	-0.34				
4	40	-64	27.2	-3.2	0	-2	1,13				
5	50	-95	55	-10	0	-2,56	-1,3				
6	60	-126	84	-18	0	-8,95	7,62				
7	70	-161	120.4	-29.4	0	-2,56	-1,3				
8	80	-200	164.8	-44.8	0	0,45	-0,71				
9	90	-243	217.8	-64.8	0	-0,78	0,43				
10	5	-3	0.55	-0.03	5	-85	350				
11	10	-9	2.6	-0.24	10	-110	180				
12	15	-18	7.05	-0.9	1.5	-16.5	36				
13	20	-30	14.8	-2.4	2	-22	56				
14	25	-45	26.75	-5.25	2.5	-27.5	75				
15	30	-63	43.8	-10.08	3	-39	126				
16	35	-84	66.85	-17.64	3.5	-38.5	98				
17	40	-72	35.6	-2.88	4	-44	96				
18	45	-54	13.05	-0.81	4.5	-49.5	81				

-

¹ Индивидуальное задание полностью определяется таблицей 1 и номером, который выдается каждому студенту преподавателем лично, после проверки основных теоретических знаний.

19	50	-70	25.5	-2.7	5	-60	100
20	55	-82.5	37.4	-5.28	5.5	-66	148.5
21	60	-96	49.8	-8.4	6	-72	192
22	65	-110.5	62.4	-11.7	6.5	-78	227.5
23	70	-126	74.9	-14.7	7	-84	252
24	75	-142.5	87	-16.8	7.5	-90	262.5
25	80	-152	88.8	-15.12	8	-96	256
26	85	-93.5	22.1	-1.36	8.5	-102	229.5
27	90	-108	26.1	-1.62	9	-99	162
28	95	-114	33.25	-2.28	9.5	-85.5	76
29	100	-130	50	-5.6	2	-34	140
30	5	-3	0.55	-0.03	5	-85	350
31	100	-60	11	-0.6	5	-55	50
32	95	-85.5	24.7	-2.28	10	-100	90
33	90	-108	42.3	-5.4	1.5	-13.5	12
34	80	-120	59.2	-9.6	2	-16	14
35	75	-135	80.25	-15.75	2.5	-17.5	15
36	70	-147	102.2	-23.52	3	-24	21
37	65	-156	124.15	-32.76	3.5	-17.5	14
38	60	-108	53.4	-4.32	4	-16	12
39	55	-66	15.95	-0.99	4.5	-13.5	9
40	53	-74.2	27.03	-2.862	5	-15	10
41	45	-67.5	30.6	-4.32	5.5	-22	16.5
42	40	-64	33.2	-5.6	6	-12	6
43	35	-59.5	33.6	-6.3	6.5	-13	6.5
44	30	-54	32.1	-6.3	7	-14	7
45	25	-47.5	29	-5.6	7.5	-15	7.5
46	20	-38	22.2	-3.78	8	-16	8
47	15	-16.5	3.9	-0.24	8.5	-17	8.5
48	10	-12	2.9	-0.18	9	-18	9
49	5	-6	1.75	-0.12	9.5	-19	9.5
50	1	-1.3	0.5	-0.056	2	-4	2
51	0.5	-0.3	0.055	-0.003	5	-55	50
52	0.6	-0.54	0.156	-0.014	-8,95	-215,6	100,3
53	0.7	-0.84	0.329	-0.042	-2,56	0,13	-0,4

3. Содержание отчета

Отчет по лабораторной работе должен содержать:

- 1. Титульный лист (Приложение А).
- 2. Цель лабораторной работы.
- 3. Основные теоретические сведения.
- 4. Описание хода выполнения индивидуального задания (выполнение п. 2-3 заданий на лабораторную работу, переходную характеристику полученной системы)
- 5. Выводы по лабораторной работе.

4. Контрольные вопросы

- 1. Перечислите основные оценки качества цифровых систем управления.
- 2. Поясните алгоритмы построения переходной характеристики и дальнейшего исследования качества системы с ее помощью
- 3. Сформулируйте условие оптимальности системы по переходному процессу.
- 4. Объясните физический смысл коэффициентов ошибки. Дайте определения статической и астатической систем.

5. Список рекомендуемой литературы

- 1. Куо Б. Теория и проектирование цифровых систем управления: Пер с англ. М.: Машиностроение, 1986. 448 с.
- 2. Бесекерский В.А. Цифровые автоматические системы. М.: Наука, 1976. 576 с.
- 3. Ким Д.П. Теория автоматического управления. Т.1. Линейные системы. М.: Физматлит, 2003. 288 с.

Приложение А

Пример оформления титульного листа

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт Прикладной математики, информатики и управления

Отчет по лабораторной работе № <Тема лабораторной работы> по дисциплине «Микропроцессорные системы управления»

Выполнил: студент группы <номер группы>

<Фамилия И.О.>

Проверил: преподаватель С.Н. Горбунов