华中科技大学 人工智能与自动化学院

精密全波整流电路

彭杨哲

U201914634

2021年6月10日

1 实验目的

- 1. 进一步了解精密半波和全波整流电路工作原理。
- 2. 掌握运算放大器构成精密全波整流电路原理。
- 3. 掌握电压传输特性测量方法。

2 实验元器件

类型	型号(参数)	数量
集成运算放大器	LM324	1 片
电位器	$100 \mathrm{k}\Omega$	1 只
	$3.3 \mathrm{k}\Omega$	1 只
电阻	$10 \mathrm{k}\Omega$	5 只
	$20 \mathrm{k}\Omega$	1 只
二极管	2AP7	2 只

3 实验原理及参考电路

3.1 参考电路

精密全波整流电路如图1所示:

Figure 1: 精密全波整流电路

3.2 实验原理

• 当输入电压 $V_i > 0$ 时,二极管 D1 截止,D2 导通,A1 为反相比例运 算电路,A2 为加法运算电路,可计算得到输出端电压为:

$$v_{o1} = \frac{20k\Omega}{10k\Omega}v_i = -2v_1$$

$$v_o = -\left(\frac{10k\Omega}{10k\Omega}v_{o1}\right) + \left(-\frac{10k\Omega}{10k\Omega}\right)v_I = v_I$$

• 输入电压 $V_I < 0$ 时,二极管 D1 导通,D2 截止。

$$v_{o1} = 0, v_o = -v_I$$

上述分析表明,该电路在输出端可得到全波整流波形,其输入,输出电压波形应如图2所示。

Figure 2: 信号波形

4 实验内容

- 1. 用分压法输入直流电压,逐点测量传输特性,并完成如图3表格。
- 2. 输入 $V_{pp} = 4V$, f = 1KHz 正弦信号,观察并记录 V_i , V_{o1} , V_{o2} 波形,标出它们的幅值和相位。(注意使用 v_i 信号作为触发源)
- 3. 用示波器 "XY"显示方式直接显示传输特性曲线测量传输特性。

输入负 电压		0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1	2	3	4	5
输出电压	V_{01}'													
	V_{01}						,							
	$V_{\rm o}$													
输入正 电压		0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1	2	3	4	5
输出电压	V_{01}'													
	V_{01}													
	$V_{\rm o}$													

Figure 3: 输出电压记录

5 实验结果及分析

5.1 传输特性

实验结果

记录如下表1

输出负直流	n电压 V _i /V	0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1	2	3	4	5
输出电压	V'_{o1}	0.19	0.4	0.42	0.44	0.45	0.46	0.47	0.48	0.49	0.52	0.55	0.56	0.57
	V_{o1}	0	0	0	0	0	0	0	0	0	0	0	0	0
	V_o	0	0.1	0.19	0.28	0.38	0.49	0.58	0.78	0.98	1.94	2.91	3.91	4.84
输入正直流电压 V _i /V		0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1	2	3	4	5
输出电压	V'_{o1}	-0.236	-0.634	-0.875	-1.1	-1.31	-1.5	-1.73	-2.14	-2.46	-4.5	-6.5	-8.5	-10.2
	V_{o1}	0	-0.2	-0.394	-0.6	-0.809	-1	-1.2	-1.6	-2	-4	-6	-8	-10
	V_o	0	0.1	0.203	0.3	0.4	0.49	0.6	0.81	1.02	2.02	3	4.01	5.03

Table 1: 输出电压记录

实验结果分析结论

根据分析, 当输入正直流电压时, D1 截止, D2 导通, 此时 $V_{o1}=-2V_i,V_o=V_i$ 而因为二极管的压降, 所以 $V'_{o1}=V_{o1}-V_th$, 根据实验可见二极管的正向导通压降约为 0.5V 左右

当输入负直流电压时, D1 导通, D2 截止, 此时 $V_{o1}=0, V_o=-V_i, V_{o1}'=0$

与实验结果进行比较发现,结果与预期结果基本相符,可见实验结果在误差范围内,满足实验预期.

5.2 输入正弦波的输出

输入正弦信号后的输出波形如图4所示, 经测量, V_{o1} 超前 V_{i} $\pi/6$ 的相位, V_{o} 落后 V_{i} $\pi/6$ 的相位

Figure 4: 输入正弦波时的输出波形

实验结果分析结论

由结果波形可见, 结果与预期结果相符, 当输入为正电压时, 此时 $V_{o1} = -2V_i, V_o = V_i$, 当输入为负电压时, 此时 $V_{o1} = 0, V_o = -V_i$. 可见实验结果较为理想, 效果较好.

5.3 观察传输特性曲线

利用示波器的 X-Y 方式观察电压传输特性如图5所示

实验结果分析结论

对实验结果进行分析,可以看出在特性曲线的右侧具有一处呈十字样,实验过程中也曾做过多次调整,但始终无法消除,考虑可能为在某处引入了干扰,使得输出波形出现些许瑕疵.总体来看,实验效果尚可,基本可以看出其呈现出了一条绝对值曲线的形状,实验结果基本满足要求

6 思考题

1. 如果运算放大器的零漂很大,则 v。波形会怎样?

答:输出波形会向上或向下平移一段距离,即具有一定的直流偏移量

Figure 5: 电压传输特性

2. 如果本实验所选的电阻不匹配,则传输特性会怎样? 答: 会使得传输特性曲线的斜率发生变化

7 小结

通过此次实验,我进一步夯实了模电中学到的整流的相关知识,对整流 电路的理解加深了不少,同时也认识到了输入中的干扰信号对于输出的巨大 影响,在今后的实验中还要更加小心,避免引入过多的干扰使得输出结果发 生较大变化

8 实验中出现的问题,分析及解决方案

在本次实验过程中, 我收集了一些常见的问题, 小结如下:

- 连接电路时要注意按照电路图的顺序进行连接, 在分别将两级放大电路连接完成之后, 不要忘记连接级间反馈电阻
- 使用二极管时,要注意区分一般的二极管和发光二极管,二者不可混用,且注意标有黑色记号的一端为二极管的负极