

Tel: 02-2875-7449

Date: 30 Sep 2020 1 of 8

Sample Information

Patient Name: 陳憶琍 Gender: Female ID No.: Q220087232 History No.: 46378716

Age: 53

Ordering Doctor: DOC3127D 趙恒勝

Ordering REQ.: D5E1PF9 Signing in Date: 2020/09/29

Path No.: \$109-89673 **MP No.:** F20080

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-32371A+B Percentage of tumor cells: 40%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	Page 2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	4

Report Highlights

1 Relevant Biomarkers1 Therapies Available26 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	ERBB2 exon 20 insertion	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	Not detected		

Tel: 02-2875-7449

Date: 30 Sep 2020 2 of 8

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	ERBB2 exon 20 insertion	ado-trastuzumab emtansine	None	26
	erb-b2 receptor tyrosine kinase 2 Allele Frequency: 34.21%			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
ERBB2	p.(E770_A771insAYV M)	c.2324_2325insATAC GTGATGGC	COSM20959	chr17:37880981	34.21%	NM_004448.3	nonframeshift Insertion	1979
FGFR4	p.(V47I)	c.139G>A		chr5:176517438	37.14%	NM_213647.2	missense	1998

Biomarker Descriptions

ERBB2 (erb-b2 receptor tyrosine kinase 2)

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor (HER) family. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family¹. All ERBB/HER proteins encode transmembrane receptor tyrosine kinases. However, ERBB2/HER2 is an orphan receptor with no known ligand. ERBB2 preferentially binds other ligand bound ERBB/HER family members to form hetero-dimers resulting in the activation of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which promote cell proliferation, differentiation, and survival². Recurrent focal amplification of the ERBB2 gene leads to increased expression in several cancer types. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and activation without ligand binding³4.5.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-20% of breast, esophageal, and gastric cancers, 5-10% of bladder, cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers^{6,7,8,9,10,11,12,13}. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types^{13,14,15}. In breast, bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2^{16,17}. Trastuzumab¹⁸ was FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for HER2-positive breast cancer including pertuzumab¹⁹ (2012), a humanized monoclonal antibody that inhibits HER2 dimerization, and ado-trastuzumab emtansine²⁰ (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer²¹. In addition to monoclonal antibodies, the small molecule inhibitor lapatinib²², with specificity for both EGFR and ERBB2, was FDA approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In 2017, the FDA approved the use of neratinib²³, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved neratinib²³ in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-directed therapies. The vaccine,

Both for use and

Tel: 02-2875-7449

Date: 30 Sep 2020 3 of 8

X No evidence

Biomarker Descriptions (continued)

nelipepimut-S²⁴, was granted fast-track designation by the FDA (2016) in patients with low to intermediate HER2 expressing (IHC score 1+ or 2+) breast cancer. Additionally, fast-track designation was granted (2018) to the monoclonal antibody margetuximab²⁵ in patients with ERBB2 positive breast cancer previously treated with an anti-HER2 therapy as well as the novel bispecific antibody ZW25²⁶ (2019) in combination with standard chemotherapy for patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA). Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and ongoing clinical studies^{27,28,29,30,31}. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown to confer resistance to hormone therapy³². However, this was shown to be overcome by neratinib in combination with therapies targeting ER³².

Relevant Therapy Summary

In this cancer type O In other cancer

	type	other cancer types	contraindicated			
ERBB2 exc	on 20 insertion					
Relevant Therap	у	FDA	NCCN	EMA	ESMO	Clinical Trials*
ado-trastuzum	ab emtansine	×		×	×	(II)
afatinib		×	×	×	×	(II)
anti-PD-L1 anti	body, pyrotinib	×	×	×	×	(II)

Contraindicated

In this cancer type and

		_			_
afatinib	×	×	×	×	(II)
anti-PD-L1 antibody, pyrotinib	×	×	×	×	(II)
neratinib	×	×	×	×	(II)
pertuzumab + trastuzumab	×	×	×	×	(II)
pertuzumab, trastuzumab	×	×	×	×	(II)
poziotinib	×	×	×	×	(II)
pyrotinib	×	×	×	×	(II)
sintilimab	×	×	×	×	(II)
targeted therapy, chemotherapy	×	×	×	×	(II)
tarloxotinib	×	×	×	×	(II)
trastuzumab deruxtecan	×	×	×	×	(II)
trastuzumab, pertuzumab, chemotherapy	×	×	×	×	(II)
BDTX-189	×	×	×	×	(I/II)
CBT-502, anlotinib hydrochloride	×	×	×	×	(/)
DZD-9008	×	×	×	×	(/)
zotatifin	×	×	×	×	(1/11)
disitamab vedotin	×	×	×	×	(1)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 30 Sep 2020 4 of 8

Relevant Therapy Summary (continued)

In this cancer type \(\cap \) In other cancer tvpe

In this cancer type and other cancer types

Contraindicated

Both for use and contraindicated

No evidence

ERBB2 exon 20 insertion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
neratinib, palbociclib, everolimus, trametinib	×	×	×	×	(l)
pirotinib	×	×	×	×	(I)
trastuzumab deruxtecan, pembrolizumab	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current NCCN Information

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2020-05-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

ERBB2 exon 20 insertion

ado-trastuzumab emtansine

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Emerging biomarker in metastatic disease (Not specified)

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"The NCCN NSCLC Panel does not recommend single-agent therapy with trastuzumab or afatinib (both for ERBB2 mutations), because response rates are lower and treatment is less effective when these agents are used for patients with ERBB2 mutations."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 30 Sep 2020 5 of 8

ERBB2 exon 20 insertion (continued)

trastuzumab

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"The NCCN NSCLC Panel does not recommend single-agent therapy with trastuzumab or afatinib (both for ERBB2 mutations), because response rates are lower and treatment is less effective when these agents are used for patients with ERBB2 mutations."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 4.2020]

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 6 of 8

	Date. 30 Sep 2020	0 01 0
Signatures		
Testing Personnel:		
Laboratory Supervisor:		
Pathologist:		

Tel: 02-2875-7449

Date: 30 Sep 2020 7 of 8

References

- 1. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 2. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 3. Di et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178-82. PMID: 2885917
- 4. Hudziak et al. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 1987 Oct;84(20):7159-63. PMID: 2890160
- Lonardo et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992-1003. PMID: 1983208
- Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 8. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- 9. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7. PMID: 22810696
- 10. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 11. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. PMID: 21720365
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 14. Petrelli et al. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. Breast Cancer Res. Treat. 2017 Nov;166(2):339-349. PMID: 28762010
- 15. Bose et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7. PMID: 23220880
- 16. Hudis. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007 Jul 5;357(1):39-51. PMID: 17611206
- 17. Slamon et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177-82. PMID: 3798106
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103792s5345lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125409s124lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125427s105lbl.pdf
- 21. NCCN Guidelines® NCCN-Breast Cancer [Version 4.2020]
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022059s024lbl.pdf
- 23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208051s005s006lbl.pdf
- 24. https://www.globenewswire.com/news-release/2016/06/01/845166/0/en/Galena-Biopharma-Receives-Fast-Track-Designation-for-NeuVax-nelipepimut-S-PRESENT-Clinical-Trial.html
- http://ir.macrogenics.com/news-releases/news-release-details/macrogenics-announces-continuation-sophia-studymargetuximab?ReleaseID=1055055
- 26. https://ir.zymeworks.com/News-Releases/news-details/2019/Zymeworks-Lead-Asset-ZW25-Granted-Fast-Track-Designation-from-the-FDA/default.aspx

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 30 Sep 2020 8 of 8

References (continued)

- 27. Ma et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017 Oct 1;23(19):5687-5695. PMID: 28679771
- 28. De et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012 Apr;76(1):123-7. PMID: 22325357
- 29. Kris et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015 Jul;26(7):1421-7. PMID: 25899785
- 30. Falchook et al. Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. J Thorac Oncol. 2013 Feb;8(2):e19-20. PMID: 23328556
- 31. David et al. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study. AACR 2017. Abstract CT001
- 32. Nayar et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 2019 Feb;51(2):207-216. PMID: 30531871