Topologie et Calcul Différentiel —

Exercices complémentaires – Feuille 1

1 Rappel: Ensembles et applications

Exercice 1. Soient $f: X \to Y$ une application et $A, B \subseteq X, C, D \subseteq Y$. Prouver:

- i) Si $A \subset B \Longrightarrow f(A) \subseteq f(B)$; et si $C \subset D \Longrightarrow f^{-1}(C) \subseteq f^{-1}(D)$.
- ii) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ et $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- iii) $f(A \cup B) = f(A) \cup f(B)$ mais $f(A \cap B) \subseteq f(A) \cap f(B)$.

Exercice 2. Soient $f: X \to Y$ une application et $A \subseteq X$, $C \subseteq Y$:

- i) Démontrer que $A \subseteq f^{-1}(f(A))$ et $f(f^{-1}(C)) \subseteq C$. Donner un exemple pour lequel les contenues des relations précédentes sont strictes.
- ii) Prouver que $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$ et donner un exemple qui montre que, en général, on a $f(X \setminus A) \neq Y \setminus f(A)$.

Exercice 3. Soit $f: X \to Y$ une application. Prouver que les affirmation suivantes sont équivalentes :

- i) f est injective.
- ii) $\forall y \in Y : f^{-1}(y)$ est ou bien l'ensemble vide ou bien un singleton.
- iii) $\forall A \subseteq X : f(X \setminus A) \subseteq Y \setminus f(A)$.
- iv) $\forall A \subseteq X : A = f^{-1}(f(A)).$

Exercice 4. Soit $f: X \to Y$ une application. Prouver que les affirmation suivantes sont équivalentes :

- i) f est surjective.
- ii) $\forall y \in Y : f^{-1}(y) \neq \emptyset$.
- iii) $\forall A \subseteq X : f(X \setminus A) \supseteq Y \setminus f(A)$.
- iv) $\forall C \subseteq Y : f(f^{-1}(C)) = C$.

Exercice 5. Soit $f: X \to Y$ une application. Démontrer :

- i) f est injective ssi il existe $g: Y \to X$ telle que $g \circ f = 1_X$.
- ii) f est surjective ssi il existe $h: Y \to X$ telle que $f \circ h = 1_Y$.
- iii) f est bijective ssi il existe $f^{-1}: Y \to X$ telle que $f^{-1} \circ f = 1_X$ et $f \circ f^{-1} = 1_Y$.

Exercice 6. Déterminer qui sont les ensembles suivantes :

- i) $A = \{ n \in \mathbb{Z}^+ \mid \forall m \in \mathbb{Z}^+ \text{ t.q. } 1 < m < n : m \nmid n \}.$
- ii) $B = \bigcup_{\lambda \in \Lambda} \{A_{\lambda}\}$ où $A_{\lambda} = \{\lambda\}.$
- iii) $C = \{2r \mid r \in \mathbb{R}\}.$

Exercice 7. Soit $\mathcal C$ une collection de sous-ensembles, on définit les ensembles

$$\cap \mathcal{C} = \bigcap_{A \in \mathcal{C}} A \qquad \cup \mathcal{C} = \bigcup_{A \in \mathcal{C}} A.$$

Calculer $\cap \mathcal{C}$ et $\cup \mathcal{C}$ pour les collections suivantes :

- i) $C = \{ [-n, n] \mid n \in \mathbb{Z}^+ \}.$
- ii) $C = \{ |-n, n[| n \in \mathbb{Z}^+ \}.$
- iii) $C = \{ [-1 + \frac{1}{n}, 1 \frac{1}{n}] \mid n \in \mathbb{Z}^+ \}.$
- iv) $C = \{|a, b| | a, b \in \mathbb{Q}, a < 0, b > 0\}.$
- v) $C = \{ [r, +\infty[| r \in \mathbb{R} \}.$

2 Normes et boules

Exercice 8. Soit E un \mathbb{R} -espace vectoriel et N_1, N_2 deux normes sur E. On note $B_1 = \{x \in E \mid N_1(x) \leq 1\}$ et $B_2 = \{x \in E \mid N_2(x) \leq 1\}$. Montrer

$$B_1 = B_2 \iff N_1 = N_2$$

Exercice 9. Soit \mathbb{K} un corps. Considérons $a_1,\ldots,a_n\in\mathbb{R}$ et soit $N:\mathbb{K}^n\to\mathbb{R}$ l'application définie par

$$N(x_1,...,x_n) = a_1|x_1| + \cdots + a_n|x_n|$$

A quelle condition sur les a_1, \ldots, a_n l'application N définit-elle une norme sur \mathbb{K}^n ?

Exercice 10. Montrer que l'application $N: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$N(x_1, x_2) = \sup_{t \in [0,1]} |x_1 + tx_2|$$

est une norme sur \mathbb{R}^2 . Représenter la boule unité fermée pour cette norme comparer celle-ci à $\|\cdot\|_{\infty}$.

Exercice 11. Soient $f_1, \ldots, f_n \in \mathcal{C}^0([0,1], \mathbb{R})$ et l'application $N : \mathbb{R}^n \to \mathbb{R}$ définie par

$$N(x_1,...,x_n) = ||x_1f_1 + ... + x_nf_n||_{\infty}$$

Á quelle condition N définit-elle une norme sur \mathbb{R}^n ?

3 Introduction aux voisinages et ouverts

Dans la suite, on considère tous les espaces normées munis de la respective norme euclidienne $\|\cdot\|_2$ ou d'une autre équivalente.

Exercice 12. Montrer et justifier si les affirmations suivantes relatives aux voisinages des points donnés sont vraies ou fausses :

- i) \mathbb{Q} est un voisinage de 0 dans \mathbb{R} .
- ii) $U = \overline{B}(-1;1) \cup \overline{B}(1;1)$ est un voisinage de 0 dans \mathbb{R} .
- iii) $U = \overline{B}((-1,0);1) \cup \overline{B}((1,0);1)$ est un voisinage de (0,0) dans \mathbb{R}^2 .
- iv) Soit $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Alors $U = \mathbb{R} \setminus A$ est un voisinage de 0 dans \mathbb{R} .

Exercice 13. Soit $\{U_{\lambda}^x\}_{\lambda\in\Lambda}$ une collection de voisinages de $x\in\mathbb{R}$. Démontrer :

- i) $\bigcup_{\lambda \in \Lambda} U_{\lambda}^x$ est un voisinage de x.
- ii) Si $\{\lambda_1, \ldots, \lambda_n\} \subseteq \Lambda$ alors $\bigcap_{i=1}^n U_{\lambda_i}^x$ est un voisinage de x.
- iii) Si $A \subseteq \mathbb{R}^n$ alors $U_{\lambda}^x \cup A$ est aussi un voisinage de x. Si $x \in A$, est-ce que $U_{\lambda}^x \cap A$ est-il un voisinage de x?

Exercice 14. Soient $a, b \in \mathbb{R}$. Montrer que les semi-planes définis sous la forme $\{(x,y) \mid x < a\}$, $\{(x,y) \mid x > a\}$, $\{(x,y) \mid y < b\}$, $\{(x,y) \mid y > b\}$ sont ouverts dans \mathbb{R}^2 .

Exercice 15. Répondre de façon suffisamment justifié aux questions suivantes à propos de sousensembles de \mathbb{R}^n :

- i) Si $D = \overline{B}(x, \varepsilon)$ est une boule fermée, est-ce que $B = \mathbb{R}^n \setminus D$ est-il un ouvert?
- ii) Si $U = B(x, \varepsilon)$ est une boule ouverte, est-ce que U est-il un ouvert?
- iii) Est-ce que $A = \mathbb{R}^n \setminus \{\bar{0}\}$ est-il un ouvert?
- iv) Si $C = \{x_1, \dots, x_k\}$ est un sous-ensemble fini de \mathbb{R}^n , est-ce que $C = \mathbb{R}^n \setminus C$ est-il un ouvert?