Fluides et Electromagnetisme

David Wiedemann

Table des matières

Not	tations du cours et maths necessaires	;
1.1	Scalaires et Vecteurs	
1.2	L'operateur ∇ (nabla) et la definition du gradient, de la diver-	
	gence et du rotationnel	
1.3	Formules d'integration	
Flu	ides au repos	
2.1	Introduction	
2.2	Densite de fluide	
Pre	ession dans un fluide	ļ
3.1	Pression hydrostatique	
3.2	Densite de force associee a la pression	
3.3	Poussee d'Archimede	
3.4	Tension superficielle	
	3.4.1 Origine et definition de la tension superficielle	
	3.4.2 Quelques consequences immediates de la tension superficielle	
3.5	$Interface\ solide/liquide/gaz . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	
3.6	Loi de laplace	
Dyı	namique des fluides	9
4.1	Types d'ecoulement	
4.2	Derivee convective	
4.3	Equations fluides	
	4.3.1 Equations de continuite(description Eulerienne)	1
4.4	Equation d'Euler	1
4.5	Equation d'état	1
ist	of Theorems	
4	Theorème (Theoreme du gradient)	
5	Theorème (Theoreme de La divergence (de Gauss))	
	1.1 1.2 1.3 Flu 2.1 2.2 Pre 3.1 3.2 3.3 3.4 3.5 3.6 Dyn 4.1 4.2 4.3 4.4 4.5	1.2 L'operateur ∇ (nabla) et la definition du gradient, de la divergence et du rotationnel

1 Notations du cours et maths necessaires

1.1 Scalaires et Vecteurs

On distingue les quantites scalaires (pression, masse, la charge electrique) et les quantites vectorielles (vitesse, force) .

Dans un repere 3D, les vecteurs de base unitaires e_x, e_y, e_z

On definit un champ scalaire (resp. vectoriel) par une fonction $p(\overrightarrow{r},t)$ qui depend de la position et du temps.

1.2 L'operateur ∇ (nabla) et la definition du gradient, de la divergence et du rotationnel

En coordonnes cartesiennes, on a

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

On note

$$\frac{\partial p}{\partial x}(\overrightarrow{r},t) = \lim_{h \to 0} \frac{p(x+h,y,z,t) - p(x,y,z,t)}{h}$$

— Le gradient, note ∇f d'un champ scalaire $f(\overrightarrow{r},t)$ est un champ vectoriel donne par

$$\nabla f(\overrightarrow{r},t) = e_x \frac{\partial f}{\partial x} + e_y \frac{\partial f}{\partial y} + e_z \frac{\partial f}{\partial z}$$

— La divergence, notee $\nabla \cdot \overrightarrow{u}$ d'un champ vectoriel $\overrightarrow{u}(\overrightarrow{r},t)$ est un champ scalaire donne par

$$\nabla \cdot \overrightarrow{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

— Le rotationnel $\nabla \times \overrightarrow{u}$ d'un champ vectoriel est un champ vectoriel donne par

$$\nabla \times \overrightarrow{u}(\overrightarrow{r},t) = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (u_x, u_y, u_z)$$

Remarque

On peut utiliser ∇ comme un vecteur, mais il faut faire attention a ce que les operations sont pas commutatives.

Remarque

Souvent, on ecrit ∂_x pour $\frac{\partial}{\partial x}$

Remarque

Les expressions du gradient, divergence, rotationel sont independantes du systeme de coordonnees

1.3 Formules d'integration

Theorème 4 (Theoreme du gradient)

Soit un volume V quelconque dans l'espace et soit S la surface fermee limitant le volume V (on note $S = \partial V$).

A chaque element de la surface, on assimile un vecteur orthogonal a la surface en ce point. On le note \overrightarrow{dS} et il represente le "petit element" de surface.

Alors on a

$$\int \int_{S} f d\overrightarrow{S} = \int \int \int_{V} \nabla f dV$$

Theorème 5 (Theoreme de La divergence (de Gauss))

Le flux d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ au travers d'une surface S:

$$\phi = \int \int_{S} \overrightarrow{A} \cdot \overrightarrow{dS}$$

Soit une surface fermee $S=\partial V$ et $d\overrightarrow{S}$ qui point vers l'exterieur de V, alors on a

$$\int \int_{S} \overrightarrow{A} \cdot d\overrightarrow{S} = \int \int \int_{V} (\nabla \cdot \overrightarrow{A}) dV$$

Theorème 6 (Theoreme de Stokes)

On definit la circulation d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ le long d'une courbe fermee Γ :

$$\Sigma = \oint_{\Gamma} \overrightarrow{A} \cdot d\overrightarrow{l}$$

Dans ce cas la, on a

$$\oint_{\Gamma} \overrightarrow{A} \times \overrightarrow{dl} = \int \int_{S} (\nabla \times \overrightarrow{A}) \cdot \overrightarrow{dS}$$

L'orientation relative de \overrightarrow{dl} et \overrightarrow{dS} est donnee par la regle de la main droite.

2 Fluides au repos

2.1 Introduction

On appelle un fluide un corps qui est a l'etat liquide, gazeux, ou plasma, systeme d'un grand nombre de particules qui est susceptible de s'ecouler facilement.

Autrement dit, un corps deformable/qui n'a pas de forme propre.

Pour beaucoup d'applications : un fluide est decrit par sa densite de masse $\rho(\overrightarrow{r},t)$, la pression ($p(\overrightarrow{r},t)$) et la vitesse $\overrightarrow{u}(\overrightarrow{r},t)$

Dans ce chapitre, on suppose $\overrightarrow{u}(\overrightarrow{r},t)=0, \rho(\overrightarrow{r},t)=\rho(\overrightarrow{r})$ et $p(\overrightarrow{r},t)=p(\overrightarrow{r})$

2.2 Densite de fluide

Supposons un recipient avec un fluide dedans et un systeme de coordonnees.

On note

$$\bar{\rho} = \frac{\Delta m}{\Delta V}$$

pour la densite moyenne.

On prend ensuite la limite $\Delta V \to dV$ et on obtient ainsi

$$\rho(\overrightarrow{r},t) = \lim_{\Delta V \to dV} \frac{\Delta m}{\Delta V}$$

Lecture 2: Pression dans un fluide

Fri 26 Feb

3 Pression dans un fluide

La pression dans un fluide est definie par la force par unite de surface exercee par le fluide sur une paroi ou sur une autre partie du fluide. Cette force sera perpendiculaire a la surface. On note

$$\overrightarrow{dF} \left[\frac{N}{m^2} = \text{ Pascal } = \text{ Pa } \right] = p \overrightarrow{dS}$$

La pression est donnee par un champ scalaire.

L'isotropie de la pression suit naturellement dans le cas ou il n'y a pas de forces de cisaillement (= forces tangentielles a la surface)

3.1 Pression hydrostatique

On veut determiner $p(\overrightarrow{r})$ pour un fluide au repos.

On supposera un fluide incompressible (la densite est constante).

On considere un recipient contenant un fluide et un pave droit de dimension dy, dx et $z_2 - z_1$.

On utilise

$$\sum_{i} \overrightarrow{F}_{i} = 0$$

selon z.

On a donc une force F_1 s'appliquant en haut et F_2 s'appliquant en bas et finalement F_g , on a donc

$$F_1 + F_g - F_2 = 0$$

$$p(z_1)dxdy + \rho dxdy(z_2 - z_1)g - p(z_2)dxdy = 0$$

$$p(z_2) = p(z_1) + \rho g(z_2 - z_1)$$

pour z_1 et $z_2 = h$, on trouve

$$p(h) = p(0) + \rho g h = p_0 + \rho g h$$

Ainsi, la variation d'un fluide au repos ne depend que de la profondeur, mais est independante de la forme du fluide et ne varie pas perpendiculairement a la pesanteur.

Lecture 3: Hydrostatique

Tue 02 Mar

3.2 Densite de force associee a la pression

Calculons la force exercee sur un volume de fluide infinitesimal du a la pression.

On suppose qu'on connait $p(\overrightarrow{r})$.

$$\overrightarrow{F}_1 = p(\overrightarrow{r}(-\frac{dx}{2},0,0))dydz\overrightarrow{e}_x$$

Donj

$$\sum_{i=1}^{6} \overrightarrow{F}_{i} = \left(-p(\frac{dx}{2},0,0) - p(-\frac{dx}{2},0,0)/dx\right) dx dy dz = -\frac{\partial p}{\partial x} dV \overrightarrow{e}_{x} + \ldots = -\nabla p dV$$

donc la densite de force associee a la pression est $-\nabla p$.

3.3 Poussee d'Archimede

Tout corps plonge dans un fluide recoit de la part de celui-ci une poussee verticale egale au poids du fluide deplace

3.4 Tension superficielle

Experience:

On a des tubes de largeurs differentes, ouverts en haut et plonge dans l'eau.

On note que le niveau d'eau monte a un niveau de $h\alpha \frac{1}{r}$

Semble etre une contradiction de la pression hydrostatique.

On verra que ce phenomene est du a la tension superficielle. La loi $p(h) = p_0 + \rho g h$ reste valable dans le fluide, mais pas necessairement a la surface.

3.4.1 Origine et definition de la tension superficielle

On considere a nouveau un fluide, il est constitue de particules ayant des interactions entre elles (inter moleculaires, etc)

Il y a moins de telles liaisons pour une molecule a la surface du fluide. Pour amener cette molecule la-bas et pour augmenter la surface, il faut faire un travail. Experience :

Soit un film de liquide (eau savonneuse) tendu dans un cadre ABCD.

Si on tend le cadre, il ya une force qui s'y oppose.

Le travail est donc proportionel au changement de surface

$$\Delta W = \gamma \Delta S = \gamma B C \Delta k \cdot 2$$

Le 2 apparait parce que il y a 2 surfaces (liquide/gaz)

Donc on a

$$F = 2F_{\gamma} = 2BC\gamma$$

L'interface liquide/gaz est un peu comme une membrane elastique, mais la force est independante de la deformation.

Experience

Mesure de γ On plonge un cylindre attache a un newton metre dans le liquide. On mesure la force necessaire pour faire apparaître un film lie au cylindre et on prend la difference entre cette force et la force F_G .

3.4.2 Quelques consequences immediates de la tension superficielle

Les bulles de savon minimisent leur surface et c'est pour cela qu'elles sont spheriques.

Meme chose pour les bulles d'eau en apesanteur.

Meme chose pour les cheveux mouilles qui collent.

Certains objets (trombone, punaises) ou des insectes qui flottent (qui marchent sur la surface)

Lecture 4: Interfaces solide/liquide

Fri 05 Mar

3.5 Interface solide/liquide/gaz

On considere une goutte sur une surface.

En equilibre la somme des forces sur la ligne tripe est nulle.

Selon l'axe horizontal, on trouve

$$\gamma_{sg} = \gamma_{sl} + \cos\theta\gamma_{lg}$$

Cette propriete s'appelle la loi de Young. Si $0 < \theta < 90$, on a un bon mouillage.

Si $\gamma_{sg} - \gamma_{sl} > \gamma_{lg}$, on a $\cos \theta > 1$, cette situation est non-stationnaire. On parle alors de mouillage total.

Si $-\gamma_{lg} < \gamma_{sg} - \gamma_{sl} < 0$, alors $-1 < \cos \theta < 0$ et donc $90 < \theta < 180$, \Rightarrow mauvais mouillage.

Si $\gamma_{sq} - \gamma_{sl} < -\gamma_{lg}$, alors $\cos \theta < -1$, on parle alors de super-hydrophobie ou effet lotus.

3.6 Loi de laplace

Notons qu'a l'interieur d'un ballon, il y a une surpression.

Et a l'interieur d'une goutte d'eau, d'une bulle de savon, ...?

On suppose une goutte de liquide spherique en apesanteur. Les forces s'appliquant sur la goutte donnent

$$\sum F_i^{ext} = 0 = \overrightarrow{F}_{p_2} + \underbrace{\overrightarrow{F}_{p_1}}_{=\pi R^2 p_1 \overrightarrow{e}_z} + \underbrace{\overrightarrow{F}_{\gamma}}_{=-2\pi R \gamma \overrightarrow{e}_z}$$

Pour \overrightarrow{F}_{p_2} , on a

$$\overrightarrow{F}_{p_2} = \int \int -p_2 \overrightarrow{dS} = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} -p_2 \overrightarrow{e}_r R^2 \sin\theta d\theta d\phi = \overrightarrow{e}_z \int_0^{2\pi} \int_0^{\frac{\pi}{2}} -p_2 R^2 \sin\theta \cos\theta d\theta d\phi = -\pi R^2 p_2 \overrightarrow{e}_z$$

Donc

$$\sum F^{ext} = -2\pi R \gamma \overrightarrow{e}_z + \pi R^2 p_1 \overrightarrow{e}_z$$

Et donc

$$p_1 - p_2 = \frac{2\gamma}{R}$$

Lecture 5: Hydrostatique continuation

Tue 09 Mar

Exemple (Bulle de Savon-deux interfaces)

On note p_1 la pression interne, p_2 la pression externe et p_0 la pression dans l'interface, on a donc

$$p_0 = p_2 + \frac{2\gamma}{R_e} \ et \ p_1 = p_0 + \frac{2\gamma}{R_i}$$

$$p_1 = p_2 + \frac{2\gamma}{R_i} + \frac{2\gamma}{R_e}$$

comme $R_i = R_e = R$, $p_1 = p_2 + \frac{4\gamma}{R}$

Exemple (Capilarite)

On considere h>>l et que l'interface liquide/gaz est quasiment spherique. On a $p_1=p_2+2\frac{\gamma}{R}$ et $p_3=p_2+\rho gh$.

$$p_1 = p_3 = p_{atm}$$

On trouve que $\frac{2\gamma}{R} = \rho g h$ et donc

$$h = \frac{2\gamma}{\rho gR} = \frac{2\gamma\cos\theta}{\rho gr} = \alpha\frac{1}{r}$$

4 Dynamique des fluides

On considere des fluides decris par

$$\rho(\overrightarrow{r},t), p(\overrightarrow{r},t), \overrightarrow{u}(\overrightarrow{r},t)$$

Vitesse d'un element fluide infinitesimal(vitesse moyenne de toutes les particules dans cet element) .

4.1 Types d'ecoulement

- $-\overrightarrow{u}(\overrightarrow{r},t)=0$, ecoulement statique
- $-\partial_t \overrightarrow{u} = 0, \partial_t \rho = 0, \partial_t p = 0,$ ecoulement stationnaire
- Ecoulement laminaire "couches successive de fluide se deplacent doucement et regulierement l'un a cote de l'autre. (a basse vitesse)
- Ecoulement turbulent s i non-laminaire.
 Mouvement irregulier et chaotique. (typiquement a haute vitesse d'ecoulement)

4.2 Derivee convective

Attention

 $\partial_t \overrightarrow{u} = \text{variation de } \overrightarrow{u}$ par unite de temps a un endroit fixe \neq acceleration de l'element fluide a (\overrightarrow{r},t)

On considere la trajectoire d'un element fluide au cours du temps.

On veut connaître la variation temporelle de p au long de la trajectoire.

au temps
$$t:, p(\overrightarrow{r}, t)$$

au temps t+dt: position $\overrightarrow{r}+\overrightarrow{u}(\overrightarrow{r},t)dt$, pression $p(\overrightarrow{r}+\overrightarrow{u}(\overrightarrow{r},t)dt,t+dt)$

$$= p(x + u_x dt, y + u_y dt, z + u_z dt, t + dt)$$

$$= p(x, y, z, t) + \partial_x p u_x dt + \partial_y p u_y dt + \partial_z p u_z dt + \partial_t p dt$$

$$= p(\overrightarrow{r}, t) + (\overrightarrow{u} \cdot \nabla) p dt + \partial_t p dt$$

On appelle $(\frac{\partial}{\partial t} + \overrightarrow{u} \cdot \nabla)p := \frac{D}{Dt}p$

De meme, la variation temporelle de \overrightarrow{u} le long de la trajectoire (= l'acceleration)

$$\overrightarrow{a} = \frac{D\overrightarrow{u}}{Dt}$$

4.3 Equations fluides

Pour determiner l'evolution des cinq fonctions $\rho, p, \overrightarrow{u}$ il faut 5 equations.

4.3.1 Equations de continuite (description Eulerienne)

Principe de conservation de masse en absence de sources/pertes. On considere un volume V fixe dans notre liquide, il definit une surface S fermee.

variation de masse dans V =Flux de masse a travers S

On a

$$\frac{d}{dt}\int\int\int_{V}\rho(\overrightarrow{r},t)dV=-\int\int_{S}\rho(\overrightarrow{r},t)\overrightarrow{u}(\overrightarrow{r},t)d\overrightarrow{S}$$

Lecture 6: Equations de continuite

Fri 12 Mar

On a trouve que

$$\frac{d}{dt}\int\int\int_{V}\rho(\overrightarrow{r},t)dV=\int\int\int_{V}\frac{\partial}{\partial t}\rho(\overrightarrow{r},t)$$

Pour la partie de droite, on a

$$-\int\int_{S}\rho(\overrightarrow{r},t)\overrightarrow{u}(\overrightarrow{r},t)\overrightarrow{dS}=-\int\int\int_{V}\nabla(\rho\overrightarrow{u})dV$$

Donc

$$\int\int\int_V(\frac{\partial}{\partial t+\nabla(\rho\overrightarrow{u})dV=0})$$

Pour tout volume V

Et donc

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0$$

4.4 Equation d'Euler

On fait un bilan de la quantite de mouvement. On considere un fluide parfait (pas de frottement interne).

La quantite de mouvement dans V(t), on a

$$\overrightarrow{p} = \int \int \int_{V(t)} \rho \overrightarrow{u} \, dV$$

Seconde loi de newton :

$$\frac{d\overrightarrow{p}}{dt} = \sum$$
 forces externes sur la partie du fluide contenue dans $V(t)$

On va montrer que

$$\frac{d\overrightarrow{P}}{dt} = \int \int \int_{V(t)} \frac{D}{Dt} (\rho \overrightarrow{u}) + \rho \overrightarrow{u} (\nabla \cdot \overrightarrow{u}) dV$$

$$= \int \int \int_{V(t)} \rho \overrightarrow{g} \, dV - \int \int_{S(t)} p \overrightarrow{dS}$$

$$= \int \int \int_{V(t)} \rho \overrightarrow{g} dV - \int \int \int_{V(t)} \nabla p dV$$

Donc

$$\frac{D}{Dt}(\rho \overrightarrow{u}) + \rho \overrightarrow{u}(\nabla \cdot \overrightarrow{u}) = \rho \overrightarrow{g} - \nabla p$$

$$\begin{split} & \rho \frac{D}{Dt} \overrightarrow{u} + \overrightarrow{u} \frac{D}{Dt} \rho + \rho \overrightarrow{u} (\nabla \cdot \overrightarrow{u}) \\ & = \rho \frac{D}{Dt} \overrightarrow{u} + \overrightarrow{u} (\frac{D\rho}{Dt} + \rho (\nabla \cdot \overrightarrow{u})) \end{split}$$

Le dernier terme est nul par l'equation de continuite, et on trouve

$$\rho \frac{\overrightarrow{Du}}{Dt} = \rho \overrightarrow{g} - \nabla p$$

Remarque

En general, les fluides ont de la viscosite.

De plus, tout comme l'equation de continuite, l'equation d'Euler est non-lineaire, la solution a l'equation differentielle est generalement extremement complique.

4.5 Equation d'etat

equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \overrightarrow{u}) = 0$$

$$\rho \frac{D\overrightarrow{u}}{Dt} = \rho \overrightarrow{g} - \nabla p$$

Il nous manque encore une equation pour decrire un fluide en mouvement : l'equation d'etat, qui depend du type de fluide.

$$\frac{D}{Dt}(p\rho^{-\gamma}) = 0$$

ou γ est l'indice d'adiabicite