

Expecting to be HIP: Hawkes Intensity Processes for Social Media Popularity

Perth, April 6th, 2017

Marian-Andrei Rizoiu Lexing Xie Scott Sanner

Manuel Cebrian Honglin Yu Pascal Van Hentenryck

Computational Media @ANU: http://cm.cecs.anu.edu.au

Popularity over time

My philosophy for a happy life | Sam Berns | TEDxMidAtlantic

J.S.Bach - Brandenburg Concerto No.5 in D BWV1050 - Croatian Baroque Ensemble

Why popularity?

"The fundamental scarcity in the modern world is the scarcity of attention." — Herbert Simon

how do online memes become popular? can one predict? can one promote/demote?

Applications:

- manage information overload
- information dissemination for public good

Presentation outline

Design HIP and estimate it from data

Explain popularity dynamics

Forecast future popularity

Linking exo-endo popularity

Linking exo-endo popularity

PSY - GANGNAM STYLE (강남스타일) M/V 2.321.368.075 SUBSCRIPTIONS DRIVEN SHARES 2.278.812.248 1.223.802 2.432.395 Daily 0 Cumulative 10.000,000 5,000,000 observed popularity

Hawkes Process [Hawkes '71]

$$\lambda(t) = \mu(t) + \sum_{t_i < t} \phi_{m_i}(t - t_i) \qquad \phi_{m_0}(t)$$

Most state-of-the-art popularity prediction systems require observing individual events.

[Zhao et al KDD'15] [Shen et al AAAI'14]

[Farajtabar et al NIPS'15] [Mishra et al CIKM'16]

Hawkes Process [Hawkes '71]

$$\lambda(t) = \mu(t) + \sum_{t_i < t} \phi_{m_i}(t - t_i)$$
 the rate of content user 'daughter' events virality influence memory

'daughter' events virality influence

$$\phi_m(\tau) = \kappa \ m^{\beta} \hat{\tau}^{-(1+\theta)}$$

Most state-of-the-art popularity prediction systems require observing individual events.

[Zhao et al KDD'15] [Shen et al AAAI'14] [Farajtabar et al NIPS'15] [Mishra et al CIKM'16]

Hawkes Intensity Process (HIP)

$$\lambda(t) = \mu(t) + \sum_{t_i < t} \phi_{m_i}(t - t_i)$$
 the rate of content user 'daughter' events virality influence memory

'daughter' events virality influence

$$\phi_m(\tau) = \kappa \ m^{\beta} \hat{\tau}^{-(1+\theta)}$$

expected number of events

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t - \tau) \hat{\tau}^{-(1+\theta)} d\tau$$
popularity
exogenous
stimuli

Hawkes Intensity Process (HIP)

$$\lambda(t) = \mu(t) + \sum_{t_i < t} \phi_{m_i}(t - t_i) \qquad \phi_{m_0}(t)$$
 the rate of content user 'daughter' events virality influence memory

'daughter' events virality influence

$$\phi_m(\tau) = \kappa \ m^{\beta} \hat{\tau}^{-(1+\theta)}$$

expected number of events

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t - \tau) \hat{\tau}^{-(1+\theta)} d\tau$$
popularity

exogenous exogenous sensitivity stimuli

endogenous reaction

Estimating the HIP model

find
$$\{\mu, C, \theta, \ldots\}$$

s.t. $\min \sum_t l(\xi(t) - \bar{\xi}(t))$

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t-\tau) \hat{\tau}^{-(1+\theta)} d\tau$$
 popularity
$$\downarrow \qquad \qquad \qquad \text{exogenous exogenous sensitivity stimuli}$$
 endogenous reaction

Estimating the HIP model

find
$$\{\mu, C, \theta, \ldots\}$$

s.t. min $\sum_t l(\xi(t) - \bar{\xi}(t))$

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t-\tau) \hat{\tau}^{-(1+\theta)} d\tau$$
 popularity
$$\downarrow \qquad \qquad \text{exogenous exogenous sensitivity stimuli} \qquad \text{endogenous reaction}$$

HIP as a Linear Time-Invariant system

Impulse response

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t-\tau) \hat{\tau}^{-(1+\theta)} d\tau$$
 exogenous exogenous endogenous endogenous

exogenous exogenous sensitivity stimuli

endogenous reaction

HIP as a Linear Time-Invariant system

$$\xi(t) = \mu s(t) + C \int_0^t \xi(t-\tau) \hat{\tau}^{-(1+\theta)} d\tau$$
 popularity

exogenous exogenous sensitivity stimuli

endogenous reaction

HIP as a Linear Time-Invariant system

The "endo-exo" map

Explain popularity dynamics

+ Add New Video To This Dataset

Remove Current Video From Dataset

Information about this video		
Video property	Property value	
YoutubeID	3hSIh-tbiKE	
Title	Agents Of S.H.I.E.L.D ASL Ice Bucket Challenge	
Author	Agents of SHIELD Italia	
Category	Film & Animation	
Upload date	2014-08-22 02:00:00	
#views	157595	
#shares	117	
#tweets	182	
Endogenous response	6.32	
Exogenous sensitivity	107.98	
Showing 1 to 10 of 10 entries		

Explain popularity – all vs top 5%

Film and Animation:
more popular videos have higher sensitivity

Explain popularity – all vs top 5%

Games: more popular videos have higher endogenous response

Which videos are un-promotable?

Popularity scales over time

views: Popularity scale at 60 days

Popularity scales over time

"Potentially viral" video

Forecasting the effect of promotions

average error in popularity percentile

[Szabo & Huberman Comm. ACM'13] [Yu et al ICWSM'15]

0.08

Summary

HIP: a mathematical model linking promotion and popularity

Explain popularity dynamics and identify potentially viral videos

Forecast future popularity as a result of promotion.

Next steps:

Predict popularity jumps, design promotion schedules

To appear in ICWSM '17, Montréal, Canada

Summary

HIP: a mathematical model linking promotion and popularity

Explain popularity dynamics and identify potentially viral videos

Forecast future popularity as a result of promotion.

Next steps:

Predict popularity jumps, design promotion schedules

To appear in ICWSM '17, Montréal, Canada

future work:

Limitations & unobserved sources of external influence, seasonality, network structure

Thank you!

Links:

Code, dataset and interactive visualizer:

https://github.com/andrei-rizoiu/hip-popularity

Referece:

Rizolu, M.-A., Xie, L., Sanner, S., Cebrian, M., Yu, H., & Van Hentenryck, P. (2017). **Expecting to be HIP: Hawkes Intensity Processes for Social Media Popularity**. In Proceedings of the *International Conference on World Wide Web 2017*, pp. 1-9. Perth, Australia. doi: 10.1145/3038912.3052650

pdf at arxiv with supplementary material

HIP visualization system

This is an *interactive* visualization of the plots in the paper: the endo-exo map, observed and fitted popularity series and video metadata. It has additional visualizations of TED videos and VEVO musicians. Furthermore, it allows users to add and compare their own videos.

(access the visualizer by clicking on the thumbnail below)

Supp: Dataset

2014.06 - 2014.12 1.061B tweets, 5.89M/day 64.3M users; 81.9M YouTube videos

Category	$\# { m vids}$	Category	$\# {\operatorname{vids}}$
Comedy	865	Music	3549
Education	298	News & Politics	1722
Entertainment	2422	Nonprofits & Ac-	333
		tivism	
Film & Animation	664	People & Blogs	1947
Gaming	882	Science & Technol-	262
		ogy	
Howto & Style	180	Sports	614
Total:	13,738		

Supp: Prior work and gaps

1) Modeling popularity

power-law shapes [Crane & Sornette PNAS'08] power-law decays with periodicity [Matsubara et al KDD'12] collection of recurrence peaks [Cheng et al WWW'16]

How would popularity evolve under continuous external influence?

2) Explaining virality

diffusion history [Cheng et al WWW'14] positive sentiment [Bakshy et al WSDM'11]

Can something go viral if promoted?

3) Predicting future popularity

popularity history [Pinto et al WSDM'13] [Szabo and Huberman Comm.ACM 10] timing features [Cheng et al WWW'14]

How to forecast future popularity given planned promotions?

Supp: when HIP fails the fitting (1)

Relations between videos:

Supp: when HIP fails the fitting (2)

Long term evolutions:

Search this dataset in id, title, author, description Q

+ Add New Video To This Dataset

Remove Current Video From Dataset

nformation about this v	ideo		
Video property	Property value	\	
YoutubeID	YykjpeuMNEk		
Title	Coldplay - Hymn For The Weekend	Coldplay - Hymn For The Weekend (Official Video)	
Author	Coldplay Official	1	
Category	Music	Clary	
Upload date	2016-01-29T15:00:38.000Z	Slow	
#views	694792952	1-:4	
#shares	4556631	drift	
#tweets			
Endogenous response	0		
Exogenous sensitivity	121.18		
showing 1 to 10 of 10 entries			