20

25

35

Patent Claims

1. A liquid-crystalline medium, comprising two or more liquid crystal compounds wheren at least one compound is of formula I

 $R^{\underline{a}} \underbrace{\qquad \qquad H \qquad \qquad }_{I}$

10 wherein

R^a is an alkenyl group having from 2 to 9 carbon atoms,

15 R^b is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, ————, -CH=CH-, -C≡C-, -CO-,

-CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,

L is, in each occurrence independently, F, Cl, CN or an optionally mono- or polyhalogenated alkyl, alkoxy, alkenyl or alkenyloxy group having up to 3 carbon atoms, and

r is 0, 1, 2, 3 or 4.

A liquid-crystalline medium according to claim 1, wherein said
 medium comprises at least one compound of formula I in which the phenyl ring is substituted by L in 2- and 3-position or in 3- and 5-position or in 2- and 6-position, and/or R^b is alkenyl with 2 to 9 carbon atoms.

35

- 3. A liquid-crystalline medium according to claim 1 or 2, wherein said medium comprises at least one compound of formula I wherein L is F, CI, CN, CF₃, OCF₃ or OCH₃.
- 5 4. A liquid-crystalline medium according to at least one of claims 1 to 3, wherein said medium comprises at least one compound of formula I selected from the following formulae

10
$$R^{aa}$$
 H O H R^{bb}

$$R^{aa}$$
 H O H R^{bb} R^{bb}

$$R^{aa}$$
 H O H R^{bb} Ic

 $(L)_r$ $(L)_r$ $(L)_r$ $(L)_r$ $(L)_r$

- wherein R^{aa} and R^{bb} are independently of each other H, CH_3 , C_2H_5 or $n-C_3H_7$ and alkyl is an alkyl group with 1 to 8 carbon atoms.
 - A liquid-crystalline medium according to at least one of claims 1 to 4, wherein said medium comprises at least one compound of formula II

5 in which

15

20

A is 1,4-phenylene or trans-1,4-cyclohexylene,

a is 0 or 1,

R³ is an alkenyl group having from 2 to 9 carbon atoms, and

R⁴ is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, — , -CH=CH-, -C≡C-, -CO-, -CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another.

 A liquid-crystalline medium according to at least one of claims 1 to 5, wherein said medium comprises at least one compound of formula II*

$$R^{3} - H + O - Q-Y$$
 ||*

30 wherein

R³ is an alkenyl group with 2 to 7 carbon atoms,

Q is CF₂, OCF₂, CFH, OCFH or a single bond,

Y is F or Cl, and

L¹ and L² are independently of each other H or F.

7. A liquid-crystalline medium according to at least one of claims 1 to 5,
 5 wherein said medium comprises at least one compound selected from the following formulae

$$R \longrightarrow H \longrightarrow CN$$
 IIIb

15
$$R \longrightarrow COO \longrightarrow COO \longrightarrow CN$$
 IIIc

$$R \longrightarrow H \longrightarrow O \longrightarrow COO \longrightarrow COO$$

wherein 25

R is an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, and

 L^1 and L^2 are independently of each other H or F.

35

8. A liquid-crystalline medium according to at least one of claims 1 to 7, wherein said medium comprises at least one compound selected from the following formulae

wherein R^{3a} is H, CH_3 , C_2H_5 or n- C_3H_7 and alkyl is an alkyl group with 1 to 8 carbon atoms.

9. A liquid-crystalline medium according to at least one of claims 1 to 8, wherein said medium comprises at least one compound selected from the following formulae

$$R^{1}$$
 O $C \equiv C$ O R^{2} Ta

$$R^1 \longrightarrow O \longrightarrow C \equiv C \longrightarrow O \longrightarrow R^2$$
 Tb

$$R^1 \longrightarrow O \longrightarrow R^2$$
 Th

wherein

30

35

R¹ and R² are independently of each other an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -

COO- in such a way that O atoms are not linked directly to one another.

- 10. A liquid-crystalline medium according to at least one of claims 1 to 9, wherein said medium comprises:
 - one or more compounds of formula l;
 - one or more compounds selected from formulae II,

10

5

15 in which

A is 1,4-phenylene or trans-1,4-cyclohexylene,

a is 0 or 1,

20

- R³ is an alkenyl group having from 2 to 9 carbon atoms, and
- is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, ————, -CH=CH-, -C≡C-, -CO-,

-CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another;

30

- optionally one or more compounds of formula II*,

$$R^3$$
 H O $Q-Y$ $II*$

R³ is an alkenyl group with 2 to 7 carbon atoms,

5

Q is CF₂, OCF₂, CFH, OCFH or a single bond,

Y is F or Cl, and

10 L¹ and L² are independently of each other H or F;

- one or more compounds selected from formulae IIIa-IIIh,

15
$$R \longrightarrow O \longrightarrow CN$$
 IIIa

$$R \longrightarrow H \longrightarrow CN \qquad IIIb$$

$$R \longrightarrow COO \longrightarrow COO \longrightarrow CN$$

$$L^{2}$$
IIIc

$$R \xrightarrow{\qquad \qquad } COO \xrightarrow{\qquad \qquad } CN$$

$$R - CH_2CH_2 - CN$$

$$L^2$$
IIIe

$$R - H - O - COO - O - CON$$
 IIIf

10

$$R \longrightarrow O \longrightarrow O \longrightarrow CN$$
 IIIg

15

$$R \longrightarrow H \longrightarrow COO \longrightarrow CN$$
IIIh

20

wherein

25

is an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, R wherein one or more CH2 groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, and

30

L¹, L² and L³ are independently of each other H or F;

- one or more compounds selected of formulae Ta-Ti,

$$R^{1} \longrightarrow C \equiv C \longrightarrow C \implies R^{2}$$

$$R^{1}$$
 H O $C \equiv C$ O R^{2} Tb

$$R^1$$
 H COO O $C \equiv C$ O R^2 Td

 $R^1 \longrightarrow C \equiv C \longrightarrow C \longrightarrow R^2$

$$R^{1} - O - O - R^{2}$$
Th

$$R^{1} \longrightarrow O \longrightarrow R^{2}$$

$$Ti$$

35 wherein

R¹ and R² are independently of each other an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH2 groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COOin such a way that O atoms are not linked directly to one another,

 Z^4 is -CO-O-, -CH₂CH₂- or a single bond, and

 L^1 to L^6 10 are independently of each other H or F; and

> optionally one or more compounds of formula IV24 **IV24**

15

5

wherein

R¹ and R² are independently of each other an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH2 groups are each, 20 independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another.

- 25 11. A liquid-crystalline medium according to at least one of claims 1 to 10, wherein said medium comprises
 - 5 to 30 % of compounds of formula I;
 - 10 to 50 % of compounds selected from formula II and II*,

30

$$R^3$$
 H O $Q-Y$ II^*

in which

A is 1,4-phenylene or trans-1,4-cyclohexylene,

10

a is 0 or 1,

R³ in formula II is an alkenyl group having from 2 to 9 carbon atoms,

15

R³ in formula II* is an alkenyl group with 2 to 7 carbon atoms,

20

R⁴ is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, —————, -CH=CH-, -C≡C-, -CO-,

-CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,

25

Q is CF₂, OCF₂, CFH, OCFH or a single bond,

Y is F or CI, and

30

L¹ and L² are independently of each other H or F;

7 to 45 % of compounds selected formula Ta, Tb and Th,

$$5 R^1 \longrightarrow O \longrightarrow C \equiv C \longrightarrow O \longrightarrow R^2 Tb$$

$$R^{1} \longrightarrow O \longrightarrow R^{2}$$
Th

15

20

25

30

R¹ and R² are independently of each other an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another;

2 to 25 % of compounds selected from formula IV24a and IV24b,

wherein R^{3a} is H, CH_3 , C_2H_5 or n- C_3H_7 and alkyl is an alkyl group with 1 to 8 carbon atoms;and

- 8 to 40 % of compounds selected from formulae IIIa to IIIh

$$R \xrightarrow{L^{3}} O \xrightarrow{L^{1}} CN$$
Illa
$$L^{1}$$

$$R - H - CN \qquad IIIb$$

$$R \longrightarrow O \longrightarrow COO \longrightarrow O \longrightarrow CN$$
IIIc

$$R \longrightarrow H \longrightarrow COO \longrightarrow CN$$

$$L^{1}$$

$$L^{2}$$

$$L^{2}$$
IIId

$$R \longrightarrow H \longrightarrow CH_2CH_2 \longrightarrow CN$$
 IIIe

30 R
$$\rightarrow$$
 H \rightarrow O \rightarrow COO \rightarrow COO \rightarrow COO \rightarrow IIIIf

$$R \longrightarrow O \longrightarrow O \longrightarrow CN$$
 IIIg

$$R - H - COO - O - CN$$
IIIh

10

wherein

- R is an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, and
- L^1 , L^2 and L^3 are independently of each other H or F.
 - 12. A liquid-crystalline medium according to at least one of claims 1 to 10, wherein said medium comprises
- 6 to 20 % of compounds of formula I;
 - 10 to 40 % of compounds selected from formula II and II*,

30

in which

A is 1,4-phenylene or trans-1,4-cyclohexylene,

- 5 a is 0 or 1,
 - R³ in formula II is an alkenyl group having from 2 to 9 carbon atoms,
- 10 R³ in formula II* is an alkenyl group with 2 to 7 carbon atoms,
- R⁴ is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂
 groups are each, independently of one another, optionally replaced by -O-, -S-, , -CH=CH-, -C≡C-, -CO-, -CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,
- Q is CF₂, OCF₂, CFH, OCFH or a single bond,
 - Y is F or Cl, and
- 25 L¹ and L² are independently of each other H or F;
 - 10 to 30 % of compounds selected formula Ta, Tb and Th,

$$R^{1}$$
 O $C \equiv C$ O R^{2} Ta

$$R^1 \longrightarrow C \equiv C \longrightarrow C \longrightarrow R^2$$
 Tb

$$R^{1} - O - O - R^{2}$$
Th

10 R¹ and R² are independently of each other an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another;

- 3 to 20 % of compounds selected from formula IV24a and IV24b,

wherein R^{3a} is H, CH_3 , C_2H_5 or n- C_3H_7 and alkyl is an alkyl group with 1 to 8 carbon atoms; and

- 10 to 30 % of compounds selected from formulae IIIa to IIIh

30 R
$$O$$
 O CN IIIa

$$R - \left(\begin{array}{c} L^1 \\ O \\ L^2 \end{array} \right)$$

$$R \longrightarrow O \longrightarrow COO \longrightarrow O \longrightarrow CN$$

$$L^{2}$$
10

$$R \longrightarrow H \longrightarrow COO \longrightarrow CN$$

$$L^{1}$$

$$L^{2}$$

$$L^{2}$$

$$L^{2}$$

$$L^{3}$$

$$L^{2}$$

$$R \longrightarrow H \longrightarrow CH_2CH_2 \longrightarrow CN$$

$$L^2$$
Ille

$$R - H - O - COO - O - COO -$$

30 R
$$\bigcirc$$
 O \bigcirc CN IIIg

$$R - \underbrace{H} - COO - \underbrace{O}_{L^2}^{L^1} CN$$
IIIh

5

- is an alkyl, alkoxy or alkenyl group having from 1 to 12 carbon atoms, wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, and
- L¹, L² and L³ are independently of each other H or F.
 - 13. A liquid-crystalline compound of formula I

$$R^a \longrightarrow H \longrightarrow H \longrightarrow R^b$$

wherein

25 R^a is an alkenyl group having from 2 to 9 carbon atoms,

R^b is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, — , -CH=CH-, -C≡C-, -CO-, -CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,

35

20

25

35

- L is, in each occurrence independently, F, Cl, CN or a mono- or polyhalogenated alkyl, alkoxy, alkenyl or alkenyloxy group having up to 3 carbon atoms, and
- 5 r is 0, 1, 2, 3 or 4,

wherein the phenyl ring is substituted by L in 2- and 3-position or in 3- and 5-position or in 2- and 6-position, and/or R^b is alkenyl with 2 to 9 carbon atoms.

14. A liquid-crystalline compound of formula l

$$R^a \longrightarrow H \longrightarrow O \longrightarrow H \longrightarrow R^b$$

wherein

R^a is an alkenyl group having from 2 to 9 carbon atoms,

R^b is an alkyl group having 1 to 12 carbon atoms which is unsubstituted, monosubstituted by CN or CF₃ or at least monosubstituted by halogen, and wherein one or more CH₂ groups are each, independently of one another, optionally replaced by -O-, -S-, —————, -CH=CH-, -C≡C-, -CO-, -CO-O- or -O-CO-O- in such a way that O atoms are

-CO-O-, -O-CO- or -O-CO-O- in such a way that O atoms are not linked directly to one another,

30 L is F, Cl, CN, CF₃, OCF₃ or OCH₃, and

r is 0, 1, 2, 3 or 4,

15. An electro-optical liquid-crystal display containing a liquid-crystalline medium according to at least one of claims 1 to 12.

- 16. An electro-optical liquid-crystal display containing a liquid-crystalline compound according to at least one of claims 13 to 14.
- 17. A TN or STN liquid-crystal display comprising:

- two outer plates, which, together with a frame, form a cell,
- a nematic liquid-crystal mixture of positive dielectric anisotropy located in the cell.
- electrode layers with alignment layers on the insides of the outer plates,
 - a tilt angle between the longitudinal axis of the molecules at the surface of the outer plates and the outer plates of 0 to 30 degrees, and

15

- a twist angle of the liquid-crystal mixture in the cell from alignment layer to alignment layer with a value of 22.5° - 600°, and
- a nematic liquid-crystal mixture comprising

20

a) 15 – 75% by weight of a liquid-crystalline component A consisting of one or more compounds having a dielectric anisotropy of greater than +1.5;

25

- b) 25 85% by weight of a liquid-crystalline component B consisting of one or more compounds having a dielectric anisotropy of between -1.5 and +1.5;
- c) 0 20% by weight of a liquid-crystalline component D consisting of one or more compounds having a dielectric anisotropy of below -1.5, and

30

d) if desired, an optically active component C in such an amount that the ratio between the layer thickness and the natural pitch of the chiral nematic liquid-crystal mixture is from about 0.2 to 1.3,

35

wherein said nematic liquid-crystal mixture is as defined in at least one of claims 1 to 12.