E; fewlyer

$$[x^{2}y' + xy' = 1, 7 \times \frac{1}{2}]$$

$$y' + (xy' = \frac{1}{x^{2}}) = \frac{1}{x^{2}}$$

$$y' + (xy' = \frac{1}{x^{2}}) = \frac{$$

 $\int (x + 2)^{2} dy + 4y(2+x) = 5 7 \times 1$ $(x + 2)^{2}$ dy + 49 = 5 dx (x+2) (x+2)² U=XF2 OU=ax $P(X) = \frac{4}{x+2}$ X+2 $\int P(X) dX$ $Y \int X$ $Y \int X$ Y4 [n v] enuy F.I. = ptn(x+z) = (x+z) = $\frac{d}{dx} ((x+2)^{4} y) = \frac{5}{(x+2)^{4}} (x+2)^{4} = \frac{5(x+2)^{2}}{(x+2)^{2}}$ U = x+2 dusdx d(x+214y =)5(x+212dx 5/0 20 (x+2) 4 y = \(\frac{1}{3} \) + C $y = \frac{5}{3} (x+2)^3 + C$ $(x+2)^4 Cx+21^4$ $\frac{80}{3}$ $\frac{1}{(X+2)}$ $\frac{1}{(X+2)^4}$ $y = \sum_{3} (x+2)^{-1} + c(x+2)^{-1} + c$ Ey. Desolver $y + \tan x y = \cos^2 x$ y(0) = -1P(x) = tanx P(x) = anx P(x) = as?x f(x) = as?x f $J = \cos x \qquad dJ = - \frac{1}{2} \cos x$

E.T. =
$$(\cos x)^{\frac{1}{2}} = \frac{1}{\cos x}$$
 $\frac{1}{2}(\frac{1}{\cos x}) = (\cos x)$
 $\frac{1}{2}(\cos x) = (\cos x)$

E. Desolver $(1+x^2) dy + 2xy = f(x) \qquad (y(0) = 0)$ +(x) = (x 0 < x = 1 - x x = 1 $0 \neq \times 21 \qquad \Rightarrow 7(1 + \chi^2) dy + 2 \chi \phi = \times 7 \times 1$ $(1 + \chi^2)$ $\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{x}{1+x^2}$ p(x) = 2x $1+x^2$ $0 = 1 + x^2$ $F.T. = e \frac{2x}{1+x^2} dx$ du = zxdx $F.T. = e^{\int dv} = e^{\int e^{v}} = e^{\int e^{v}}$ $F.T. = (1 + x^{2})$ $\frac{\partial \left(1+x^2\right) \cdot \cdot 7}{\partial x} = \frac{x}{1+x^2} = x$ Ja[(1+x2)4] = Jxdx $(1+\chi^2)y = \frac{1}{2}\chi^2 + C_1$ $y = \frac{1}{2} \times \frac{2}{1 + x^{2}} + \frac{C_{1}}{1 + x^{2}}$ y(0) = 0 $0 - \frac{1}{2} \cdot \frac{0^{2}}{1 + 0^{2}} + \frac{C_{1}}{1 + 0^{2}}$ ->[C1 = 0] $y = \frac{1}{2} \frac{x^2}{1+x^2}$ $\chi = 1 \quad \text{(1+} \chi^2 \text{) dy} + 2 \chi y = - \chi \text{)} \chi$ 9 tx2

$$\frac{dy}{dx} + \frac{2x}{1+x^2} + \frac{1}{1+x^2} = \frac{x}{1+x^2}$$

$$\frac{d}{dx} ((1+x^2)y) = -\frac{x}{1+x^2} (1+x^2) = -\frac{x}{1+x^2}$$

$$\frac{d}{dx}$$

Eq. Peccol
$$V(x)$$
 $\frac{dy}{dx} + P(x)y = 4x - y(0) = 3$
 $P(x) = \begin{bmatrix} 2 & 0 \le x \le 1 & y_1 \\ -2 & x > 1 & y_2 \\ 0 \le x \le 1 & y_1 \\ -2 & x > 1 & y_2 \end{bmatrix}$
 $0 \le x \le 1$
 $\frac{dy}{dx} + 2y = 4x$
 $\frac{dy}{dx} + 2x = 2x$
 $\frac{dy}{dx} + 2x = 2x$

$$\int d(x^{2}y) = \int \frac{d}{x} dx$$

$$x^{2}y = \frac{4}{x} dx + (2x)$$

$$y = \frac{4}{x^{2}} \ln x + (2x)$$

$$\lim_{x \to 1^{-}} 2x - 1 + \frac{2}{x} = \lim_{x \to 1^{-}} 4x^{2} \ln x + (2x)$$

$$(2)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(3)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(2)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(3)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(2)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(3)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(4)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(5)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(7)(1) - 1 + \frac{2}{x} = \frac{2}{x}$$

$$(8)(1) -$$