Week 2

$$A \times B = C$$

A(1,1), B(1,1) are vectors with length vl

Element C(1,1) = reduction sum (A(1,1) * B(1,1) + ... + A(1,K/vI) * B(K/vI, 1))

Total Ops: (K/vl + 1) * M * N

Matrix Multiplication

Matrix A (M * K)

Matrix B (K * N)

Matrix Multiplication (Ara)

- 1. Duplicate a00 to v1
- 2. Load b0* to v2
- 3. MAC(v1, v2)
- 4. Duplicate a01 to v1
- 5. Load b1* to v2
- 6. MAC(v1, v2)
- 7. ...
- 8. Duplicate a10 to v1 (the second row of A)
- 9. ...

A More Parallel Architecture

Matrix Multiplication

Total Ops: N/vl* K * M (No reduction)

- Each PE allocates
 - Entire matrix A
 - Part of matrix B: b*vl
- After computation

Result matrix C

Matrix Multiplication

- Total Ops: N/vl * K * M
- Each PE allocates: entire matrix B, one row of matrix A
- After the computation, each PE holds one row of matrix C (or multiple rows, if M > #PEs, but complete)
- If the next operation is also a matrix multiplication (new A = C), one of the operand is already in the PE
- A-row-parallel

A More Parallel Architecture

Assign different rows of A to different PEs

A More Parallel Architecture

Self Attention (SA)

Input: x, Wq, Wk, Wv

- 1. Q = x*Wq, K = x*Wk, V = x*Wv
- Q*K^T
- 3. $(Q*K^T)/sqrt(Dim)$
- 4. softmax((Q*K^T)/sqrt(Dim))
- 5. softmax((Q*K^T)/sqrt(Dim)) * V

Computational and Memory Complexity

$$\mathcal{O}(n^2)$$

SA

- 1. Q = x * Wq, K = x * Wk, V = x * Wv
 - Observation:
 - Reuse data x
 - Q & K will be used in the next operation
 - Vanilla Ara (A = x, B = Wq, Wk, Wv)
 - A-row-stationary: load one row of x, and compute one row of Q, K, V
- 2. Q * K^T (how to fetch K columnwise?)
- 3. (Q * K^T) / sqrt(#columns of Q)

For inference: scale weight Wq

- 1. Duplicate x00 to v1
- 2. Load Wq, Wk, Wv 0* to v2, v3, v4
- 3. MAC(v1, v2), MAC(v1, v3), MAC(v1, v4)
- 4. Duplicate x01 to v1
- 5. Load Wq, Wk, Wv 1* to v2
- 6. MAC(v1, v2), MAC(v1, v3), MAC(v1, v4)
- 7. ...
- 8. Duplicate x10 to v1 (the second row of x)
- 9. ...

SA

- 4. softmax((Q * K^T) / sqrt(dim)) Softmax(x_i) = $\frac{\exp(x_i)}{\sum_j \exp(x_j)}$
 - For x in each row, softmax(x) = exp(x) / sum(exp(x' in row))
 - In Ara
 - Element-wise exponentiation (not supported?)
 - Reduction sum | column-wise add (log-tree parallelism over different PEs)
 - Division
- 5. softmax((Q * K^T) / sqrt(dim)) * V

Multi-Head Self Attention (MHSA)

- MHSA(Q, K, V) = Concat (head_1, ..., head_h) * Wo
 - Where head_i = SA(x, Wq_i, Wk_i, Wv_i)
 - Linear transformation: matrix multiplication
 - How to fetch data from different vectors in memory?
 (different heads)

Layer Normalization

- Average:
 - o column-wise add, division
- Element minus average (x E[x])
- Variance:
 - \circ use (x E[x]) from previous operation

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

$$\mu_i = rac{1}{M}\sum x_i$$

$$\sigma_i = \sqrt{rac{1}{M} \sum{(x_i - \mu_i)^2} + \epsilon}$$

Feed Forward (FFN)

- relu(dropout(X * W1)) * W2
- relu(x) = (x > 0) ? x : 0
 - o Vector mask?
 - Convert mask tensor to a compressed format?
- dropout(x) = 0 with probability p
 - Probability supported?
- Special format for sparsity

self-attention score = similarity score

- self-attention score = similarity score
- Similarity can be represented as kernel with feature representation $\phi(x)$
 - Q, K can be reused

$$V_i' = \frac{\sum_{j=1}^{N} \sin(Q_i, K_j) V_j}{\sum_{j=1}^{N} \sin(Q_i, K_j)}$$

$$\sin\left(q,k\right) = \exp\left(\frac{q^T k}{\sqrt{D}}\right)$$

$$\frac{\phi\left(Q_{i}\right)^{T}\sum_{j=1}^{N}\phi\left(K_{j}\right)V_{j}^{T}}{\phi\left(Q_{i}\right)^{T}\sum_{j=1}^{N}\phi\left(K_{j}\right)}$$

- self-attention score = similarity score
- Similarity can be represented as kernel with feature representation $\phi(x)$

$$\{ (N \mid D) * (D \mid N) \} * (N \mid D) = (N \mid D) * \{ (D \mid N) * (N \mid D) \}$$

$$O(N^2 * D) \qquad O(N^2)$$

Feature function:
$$\phi(x) = elu(x) + 1$$

$$\mathrm{ELU}(x) = egin{cases} x, & ext{if } x > 0 \ lpha * (\exp(x) - 1), & ext{if } x \leq 0 \end{cases}$$

- Why use exponentiation?
 - Avoid zero gradient
- Can it be replaced by ReLU?

KWT

- Keyword spotting
 - Identification of keywords in audio (up, down, wake, sleep ...)
- Contribution
 - Apply transformer model for KWS
- Pre-trained model: knowledge distillation

KWT

Model	V1-12	V2-12	V2-35
DS-CNN [17]	95.4		
TC-ResNet 19	96.6		
Att-RNN [12]	95.6	96.9	93.9
MatchBoxNet [20]	97.48 ± 0.11	97.6	
Embed + Head [18]		97.7	
MHAtt-RNN [13]	97.2	98.0	
Res15 [31]		98.0	96.4
MHAtt-RNN (Ours)	97.50 ±0.29	98.36 ± 0.13	97.27 ± 0.02
KWT-3 (Ours)	97.24 ± 0.24	98.54 ± 0.17	97.51 ± 0.14
KWT-2 (Ours)	97.36 ± 0.20	98.21 ± 0.06	97.53 ± 0.07
KWT-1 (Ours)	97.05 ± 0.23	97.72 ± 0.01	96.85 ± 0.07
KWT-3 [™] (Ours)	97.49 ±0.15	98.56 ±0.07	97.69 ± 0.09
KWT-2 [™] (Ours)	97.27 ± 0.08	98.43 ± 0.08	97.74 ± 0.03
KWT-1 [™] (Ours)	97.26 ± 0.18	98.08 ± 0.10	96.95 ± 0.14

Model	dim	mlp-dim	heads	layers	# parameters
KWT-1	64	256	1	12	607K
KWT-2	128	512	2	12	2,394K
KWT-3	192	768	3	12	5,361K

Delta KWT

- Dense matrix to highly-sparse matrix
 - leave the first token untouched

 - 80% operations reduction (no accuracy loss)
- MatMul: data reuse

$$\Delta X(t) = \begin{cases} X(t) - \hat{X}(t-1) & \text{if } |X(t) - \hat{X}(t-1)| > \theta \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{X}(t) = \begin{cases} X(t) & \text{if } |X(t) - \hat{X}(t-1)| > 6 \\ \hat{X}(t-1) & \text{otherwise} \end{cases}$$

^r 00 a ₀₀ b ₀₀ + a ₀₁ b ₁₀ +a ₀₂ b ₂₀	r ₀₀ +a∆b	r ₀₁ +aΔb	
r ₁₀ r ₀₀ +Δab	r ₁₁ r ₀₁ +r ₁₀ -r ₀₀ + ΔaΔb	r ₁₂ r ₀₂ +r ₁₁ - r ₀₁ + ΔaΔb	
r ₂₀ r ₀₁ +Δab	r ₂₁ r ₁₁ +r ₂₀ - r ₁₀ + ΔaΔb	r ₂₂ r ₁₂ +r ₂₁ -r ₁₁ + ΔαΔb	