Introduzione a Python

Basi di informatica, gestione dati e statistica (BIGDS)

Python

- Python è uno dei *più diffusi* linguaggi di programmazione e ha una *curva di apprendimento* pressoché piatta. Enorme disponibilità di *librerie*: NumPy, Pandas, scikit-learn...
- Funzionale e orientato agli oggetti
- Consolidato nel tempo
- Semplice e versatile

Download

https://www.python.org/downloads/

Dipendenza dal SO

IDE – Integrated Development Enviroment

Windows (multipiattaforma)

- pycharm: https://www.jetbrains.com/pycharm/
- wing: http://wingware.com/downloads
- spyder: https://www.spyder-ide.org/

web-based tools

- codeboard: codeboard.io
- replit: https://replit.com/
- colab: https://colab.research.google.com/

Setup e primo programma

- Preferenze del IDE
- Creazione di un nuovo progetto

Primo programma: print("Hello world")

dove print rappresenta una funzione predefinita (built-in)

- Ogni istruzione termina con un a capo
- Importanza della indentazione

I commenti

```
# Il mio primo programma
print("Hello world")
```

Variabili

Contenitori che posso *accogliere* al loro interno dei dati (*tipo e nome*)

Esempio:

```
print("Matteo insegna Informatica")
print("Federica insegna Matematica")
```

con le variabili e operatore di assegnamento:

```
char_nome = "Matteo"
char_materia = "Informatica"
print(char_nome + " insegna " + char_materia)
char_nome = "Federica"
char_materia = "Matematica"
print(char_nome + " insegna " + char_materia)
```

Essenziali

- assegnazione = (da non confondere con ==)
- operatori aritmetici + * / %
- operatori logici and or not
- NO definizione tipo delle variabili
- indentatura
- usare una variabile ha l'effetto di impostare una etichetta (o nome) che contiene un riferimento ad un oggetto
- le etichette non hanno un tipo gli oggetti hanno un tipo

Essenziali

$$x = 0$$

- viene creato un intero e memorizzato
- viene creata un etichetta di nome x
- x contiene un riferimento alla locazione di memoria che contiene il valore 0

Essenziali

Con x = x + 1 cosa succede?

- viene recuperato il riferimento (indirizzo) contenuto in x
- il valore contenuto nella corrispondende locazione di memoria viene recuperato (0)
- viene eseguito in calcolo 0 + 1
- viene creato un nuovo intero 1 (oggetto)
- viene aggiornato il riferimento di x, ora con l'indirizzo dell'oggetto 1
- il vecchio oggetto 0 viene perso e quella locazione di memoria resa disponibile

Differenti tipo di dato

La definizione degli *oggetti* (e delle variabili) ha come conseguenza l'assegnazione di uno specifico spazio in *memoria* centrale

Stringa "Matteo insegna Informatica"

Numeri

anni = 49

Boolean True o False

Il **tipo** definisce l'insieme di operazioni che possono essere svolte su quella specifica variabile

Le stringhe

```
frase = "Matteo insegna Informatica"
print(frase + " e Statistica")
```

Le stringhe e funzioni

```
frase = "Matteo insegna Informatica"
print(frase.lower())

frase = "Matteo insegna Informatica"
print(frase.upper())

frase = "Matteo insegna Informatica"
print(frase.replace("Matteo", "Luca"))
```

Le stringhe e funzioni

```
frase = "Matteo insegna Informatica"
print(len(frase))

frase = "Matteo insegna Informatica"
print(frase[0])
```

Python usa lo 0 come indice del primo elemento di una stringa

Numeri

```
print(1)
print(1.234)
print(-1)
print(-1 + 1)
print(4 / 2)
print(4 % 3)
```

```
num = 3
print(num)
```

Numeri e stringhe

```
frase = "Matteo insegna Informatica"
anni = 49
print(frase + " e ha " + str(anni) + " anni")
```

Numeri e funzioni

```
num = -3
print(abs(num))
num = 3
print(pow(num, 2))
num = 3.3
print(round(num))
from math import *
num = 3.3
print(sqrt(num))
```

Input da utente

```
input()
```

```
nome = input("Inserisci il tuo nome: ")
print("Ciao " + nome + "!")
```

La variabile nome conterrà la **stringa** inserita dall'utente

Calcolatrice

```
num_1 = input("Inserisci un numero: ")
num_2 = input("Inserisci un altro numero: ")
risultato = int(num_1) + int(num_2)
print(risultato)
```

...ma attenzione!

```
num_1 = input("Inserisci un numero: ")
num_2 = input("Inserisci un altro numero: ")
risultato = float(num_1) + float(num_2)
print("Risultato = ", risultato)
```

Istruzione if

```
if condizione:
   istruzione/i
```

```
i = 1
if i < 10:
    print(str(i) + " e' minore di 10")</pre>
```

• La valutazione di un'espressione restituisce True o False (1 o 0)

Ramo else

```
if condizione:
    istruzione/i
else:
    istruzione/i
```

```
i = 100
if i < 10:
    print(str(i) + " e' minore di 10")
else:
    print(str(i) + " e' maggiore di 10")</pre>
```

if annidati

```
i = -1
if i < 10:
    if i < 0:
        print(str(i) + " e' negativo")
    else:
        print(str(i) + " e' minore di 10")
else:
    print(str(i) + " e' maggiore di 10")</pre>
```

if annidati

```
i = 10
if i < 10:
    if i < 0:
        print(str(i) + " e' negativo")
    else:
        print(str(i) + " e' minore di 10")
else:
    if i == 10:
        print(str(i) + " e' uguale a 10")
    else:
        print(str(i) + " e' maggiore di 10")</pre>
```

Esercizio

Scrivere un programma che permetta di valutare se un numero intero (letto da tastiera) è pari o dispari

```
print("Inserisci un numero: ")
num = int(input())

if num % 2 == 0:
    print("Il numero inserito e' pari")
else:
    print("Il numero inserito e' dispari")
```

elif

```
if condizione:
    istruzione/i
elif condizione:
    istruzione/i
else:
    istruzione/i
```

Esercizio

Creare un programma che presi in ingresso il peso (in Kg) e l'altezza (in m) di una persona, calcoli il BMI.

$$BMI = peso/(altezza^2)$$

Il programma dovrà successivamente assegnare una delle seguenti tre classi:

- sottopeso se BMI <= 20
- normopeso se 20<BMI<=30
- sovrappeso se BMI >30

```
peso = float(input("Inserisci il peso in Kg: "))
altezza = float(input("Inserisci l'altezza in m: "))
bmi = peso / altezza**2
print("Il bmi vale: {:.2f}".format(bmi))
if bmi <= 20:
    print("Sei sottopeso")
elif 20 < bmi <= 30:
    print("Sei normopeso")
else:
    print("Sei sovrappeso")
```

Calcolatrive v.2

```
num_1 = float(input("Inserisci un numero: "))
op = input("Inserisci l'operazione: ")
num_2 = float(input("Inserisci un altro numero: "))
if op == "+":
    print("Risultato = ", num_1 + num_2)
elif op == "-":
    print("Risultato = ", num_1 - num_2)
elif op == "*":
    print("Risultato = ", num_1 * num_2)
elif op == "/":
    print("Risultato = ", num_1 / num_2)
else:
    print("Operazione non valida!")
```

Ripetere un'operazione un certo numero di volte

```
print(1)
print(2)
print(3)

for i in (1, 2, 3):
   print(i)

for valore in sequenza:
   istruzione/i
```

- ad ogni iterazione i assume i valori indicati nelle () ed
 viene eseguita l'istruzione che segue i :
- l'operatore in assume True o False

```
somma = 0
for i in (0, 1, 2):
    somma = somma + i
print(somma)
```

```
somma = 0
for i in range(3):
    somma = somma + i
print(somma)
```

```
somma = 0
for i in range(3):
    n = int(input("Inserisci un numero: "))
    somma = somma + n
print("La somma vale: " + str(somma))
```

```
while espressione:
   istruzione/i
```

```
somma = 0
i=1
numero = 1

while numero != 0 and i <= 10:
    numero = input("Ins. valore: ")
    numero = int(numero)
    somma = somma + numero
    i = i +1
print("Somma = ", somma)</pre>
```

Istruzioni iterative: media

```
somma = 0
i = 0
numero = 1
while numero != 0:
    numero = input("Ins. valore: ")
    numero = int(numero)
    somma = somma + numero
    i = i + 1
print("Somma = ", somma)
print("i = ", i)
media = somma / (i - 1)
print("Media = ", media)
```

Esercizio

Scrivere un programma che calcoli la media di N numeri. N è definito dall'utente.

```
print("Quanti numeri vuoi inserire: ")
n = int(input())
print("Inserisci i " + str(n) + " numeri: ")
somma = 0
for i in range(n):
    numero = int(input("Inserisci un numero: "))
    somma = somma + numero
media = somma / n
print("La media vale: " + str(media))
```

Domande?

www.menti.com