$Alg\`ebre$

Le groupe des permutations

Denis Vekemans *

Exercice 1 Ecrire les tables de composition des groupes (S_2, \circ) et (S_3, \circ) .

Exercice 2 Calculer le produit des permutations (2467)(147523) et (1423)(23)(134).

Exercice 3 Soit $\sigma \in \mathcal{S}_8$ et $\tau \in \mathcal{S}_7$ définis par

$$\sigma = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{array}\right)$$

et

$$\tau = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 4 & 7 & 3 & 2 & 1 \end{array}\right).$$

Décomposer σ et τ en produit de cycles disjoints, calculer leurs ordres. Calculer σ^{12} et τ^{201} .

Exercice 4 Soit $\sigma \in \mathcal{S}_{12}$ défini par

- 1. Décomposer σ en un produit de cycles disjoints.
- 2. Décomposer σ en un produit de transpositions.
- 3. Déterminer la signature de σ .

Exercice 5 Soit S_4 le groupe des permutations sur l'ensemble $\{1, 2, 3, 4\}$.

On note
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} = (12)$$
 et $\lambda = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = (34)$.

1. On note $V_4 = \{Id, \lambda, \pi, \lambda \circ \pi\}$. Déterminer l'ordre de chaque élément de V_4 .

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

- 2. Tracer la table de composition de V_4 .
- 3. Montrer que V_4 est le plus petit sous-groupe de S_4 contenant $\{\lambda, \pi\}$.
- 4. Le groupe V_4 est-il abélien?
- 5. Rappeler la définition du centre Z(G) d'un groupe G. Quel est le centre $Z(V_4)$ du groupe V_4 ?

Exercice 6 Décomposer la permutation χ de (S_{10}, \circ) en produit de transpositions.

Déterminer la signature de χ .

Déterminer χ^{-1} .

Exercice 7 Soient n et r deux entiers naturels tels que $3 \le n$ et $r \le n$. Soient r éléments x_1, \dots, x_r de l'ensemble $\{1, \dots, n\}$.

- 1. Montrer que $(x_1 \cdots x_r)(x_1 x_r) = (x_2 \cdots x_r) = (x_1 x_2)(x_1 \cdots x_r)$.
- 2. En déduire une expression de la signature d'un cycle en fonction de sa longueur et deux façons d'écrire un cycle comme produit de transpositions.

Références

- [1] M. Gran, fiches de TD (L1), Université du Littoral Côte d'Opale.
- [2] M. Serfati, Exercices de mathématiques. 1. Algèbre, Belin, Collection DIA, 1987.
- [3] D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques Cours, exercices corrigés MPSI, PCSI, PTSI, TSI, Ellipses, 2004.