ΠΛΗ31

ΕΝΟΤΗΤΑ 4: ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

Μάθημα 4.4: Το Πρόβλημα του Περιοδεύοντος Πωλητή - TSP

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

Α.Θεωρία

- 1. Το πρόβλημα του περιοδεύοντος πωλητή (TSP)
 - 1. Διατύπωση του Προβλήματος
 - 2. Παράδειγμα Στιγμιοτύπου
 - 3. Σχόλια για την μοντελοποίηση του προβλήματος
- 2. Γενετικός Αλγόριθμος για το πρόβλημα TSP
 - 1. Αρχικοποίηση
 - 2. Αξιολόγηση
 - 3. Επιλογή
 - 4. Διασταύρωση
 - 5. Μετάλλαξη

Β.Ασκήσεις

Α. Θεωρία Προβλήματα Συνδυαστικής Βελτιστοποίησης

- Τα Προβλήματα Συνδυαστικής Βελτιστοποίησης είναι το κατ΄ εξοχήν πεδίο εφαρμογής των Γενετικών Αλγορίθμων
 - > Τέτοια προβλήματα είναι το TSP, το SAT κ.λπ.
- Οι αντικειμενικές συναρτήσεις αυτών των προβλημάτων είναι ιδιαίτερα περίπλοκες με αποτέλεσμα ο χώρος αναζήτησης να παρουσιάζει ιδιαίτερες αυξομειώσεις.
- Είναι πολύ εύκολο να γίνει εγκλωβισμός σε τοπικά μέγιστα
- Οι Γενετικοί Αλγόριθμοι έρχονται να προσπεράσουν αυτό το πρόβλημα!

<u>Α. Θεωρία</u>

1. Το πρόβλημα του περιοδεύοντος πωλητή – TSP

1. Διατύπωση του Προβλήματος

- **ΤΟ ΠΡΟΒΛΗΜΑ:** Δίνονται η πόλεις με τις αντίστοιχες χιλιομετρικές τους αποστάσεις. Ζητείται να κατασκευαστεί ένας περίπατος του πωλητή στις πόλεις, ο οποίος:
 - Θα περνάει από όλες τις πόλεις ακριβώς μία φορά.
 - > Θα ξεκινάει και θα τελειώνει στην ίδια πόλη.
 - > Θα έχει το ελάχιστο κόστος (άθροισμα χιλιομετρικών αποστάσεων)
- **ΜΟΝΤΕΛΟΠΟΙΗΣΗ:** Με μη κατευθυνόμενο γράφο G=(V,E,W) με βάρη στις ακμές, όπου:
 - V είναι το σύνολο των κορυφών (πόλεων)
 - Ε είναι το σύνολο των ακμών (συνήθως συνδέεται κάθε ζεύγος διαφορετικών κορυφών το γράφημα είναι κλίκα)
 - ightharpoonup W είναι η συνάρτηση βαρών ακμών $W:E \to R^+$ δηλαδή ανατίθενται θετικά βάρη στις ακμές.
- Στο οποίο αναζητούμε τον κύκλο Hamilton ελαχίστου βάρους.

1. Το πρόβλημα του περιοδεύοντος πωλητή – TSP

2. Παράδειγμα Στιγμιοτύπου του προβλήματος

1. Το πρόβλημα του περιοδεύοντος πωλητή – TSP

3. Σχόλια για την μοντελοποίηση του προβλήματος

- Μία λύση θα αναπαρίσταται όχι με δυαδική κωδικοποίηση αλλά ως ένα διάνυσμα ακεραίων που απεικονίζει την σειρά επίσκεψης των κόμβων στην τρέχουσα λύση του προβλήματος:
 - ➤ Η 1^η λύση θα αναπαρίσταται με το διάνυσμα: [v₁,v₂,v₃,v₅,v₄]
 - ➤ Η 2^η λύση θα αναπαρίσταται με το διάνυσμα: [v₁,v₃,v₅,v₂,v₄]
 - ➤ Η 3^η λύση θα αναπαρίσταται με το διάνυσμα: [v₁,v₂,v₃,v₄,v₅]
- > Οι λύσεις που έχει ο χώρος αναζήτησης είναι εκθετικά πολλές.
 - Αποδεικνύεται ότι είναι n! (όσες δηλαδή και οι τοποθετησεις των n πόλεων σε μία σειρά.
- Ο Γενετικός Αλγόριθμος, κατάλληλα τροποποιημένος, ώστε να δουλεύει με διάνυσμα ακεραίων παρέχει έναν αποδοτικό τρόπο εξερεύνησης του χώρου αναζήτησης του προβλήματος.

2. Γενετικός Αλγόριθμος για το πρόβλημα TSP

- Θα μελετήσουμε πως μπορούμε να χρησιμοποιήσουμε τον γενετικό αλγόριθμο για να υπολογίσουμε μια ικανοποιητική λύση για το πρόβλημα TSP.
- 1. Αρχικοποίηση του πληθυσμού (Initialization)
- 2. Επανέλαβε:
 - 1. Αξιολόγηση κάθε στοιχείου του πληθυσμού
 - **2. Επιλογή** ενός νέου πληθυσμού (τελεστής επιλογής)
 - 3. Διασταύρωση στοιχείων του πληθυσμού (τελεστής διασταύρωσης)
 - 4. Μετάλλαξη στοιχείων του πληθυσμού (τελεστής μετάλλαξης)

Εως ότου να ικανοποιηθεί το κριτήριο τερματισμού του ΓΑ

3. Γενετικός Αλγόριθμος για Αριθμητικές Συναρτήσεις

-1. Διατύπωση της αντικειμενικής συνάρτησης

Η αντικειμενική συνάρτηση για το πρόβλημα TSP ορίζεται ως το άθροισμα των βαρών των ακμών που χρησιμοποιεί η τρέχουσα λύση

$$f(\pi) = \sum_{i=1}^{n} w(\pi(i), \pi(i+1))$$

Όπου π μία μετάθεση των κορυφών του γραφήματος και θεωρούμε π(n+1)=π(1)

Επειδή είναι συνάρτηση ελαχιστοποίησης πρέπει να τροποποιήσουμε κατάλληλα την συνάρτηση ως

 $\underline{A'}$ τρόπος: F = -f + C

Όπου C κατάλληλη σταθερά.

<u>Β' τρόπος:</u> Ή ως F=1/f

Παράδειγμα

Στον γράφο 5 πόλεων που είδαμε νωρίτερα π.χ. η δεύτερη μετάθεση των κορυφών περιγράφεται μαθηματικά από την μετάθεση:

 π = [1,3,5,2,4]

Άρα η αντικειμενική συνάρτηση είναι

$$f(\pi) = w(\pi(1), \pi(2)) + w(\pi(2), \pi(3)) + w(\pi(3), \pi(4))$$
$$+ w(\pi(4), \pi(5)) + w(\pi(5), \pi(1)) =$$
$$= w(1,3) + w(3,5) + w(5,2) + w(2,4) + w(4,1)$$
$$= 3 + 3 + 4 + 5 + 3 = 18$$

Επιλέγουμε τον Β'τρόπο, άρα τελικά η τιμή της αντικειμενικής συνάρτησης θα έχει την τιμή: F=1/18=0.056

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

0. Κωδικοποίηση των λύσεων

Η κωδικοποίηση της λύσης θα γίνει με διάνυσμα ακεραίων.

Μία λύση θα αναπαρίσταται ως ένα διάνυσμα ακεραίων από το 1 εώς το n, με την υποχρέωση κάθε αριθμός (1...n) να εμφανίζεται ακριβώς μία φορα.

Παράδειγμα

Π.χ. το διάνυσμα ακεραίων [1,3,5,2,4] αντιστοιχεί στην μετάθεση των κορυφών που κατασκευάζει την λύση

<u>Α. Θεωρία</u>

3. Γενετικός Αλγόριθμος για Αριθμητικές Συναρτήσεις

1. Αρχικοποίηση

Αρχικοποίηση

Στο βήμα της αρχικοποίησης δημιουργούμε έναν τυχαίο πληθυσμό από δυνατές λύσεις

Το πλήθος των τυχαίων λύσεων που παράγονται είναι **pop_size** (παράμετρος του προβλήματος)

Η αρχικοποίηση μπορεί να γίνει:

- Είτε με κάποιον άπληστο αλγόριθμο (υπάρχουν πολλοί άπληστοι αλγόριθμοι στη βιβλιογραφία για το TSP, π.χ. επέλεξε την πόλη που βρίσκεται πιο κοντα στη τρέχουσα θέση)
- Είτε κατασκευάζοντας μία τυχαία μετάθεση των πόλεων

Αρχικοποίηση

Έστω ότι ο πληθυσμός έχει **pop_size=4** Παράγουμε 4 διανύσματα ακεραίων με τυχαίο τρόπο

A: [1,2,3,5,4]

B: [1,3,5,2,4]

Γ: [3,2,5,4,1]

Δ: [5,1,2,3,4]

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

2. Αξιολόγηση

Αξιολόγηση: Η αξιολόγηση γίνεται με ευθύ τρόπο υπολογίζοντας για κάθε λύση την τιμή της στην αντικειμενική συνάρτηση.

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

2.1. Επιλογή

Επιλογή

Η επιλογή γίνεται με την μέθοδο της εξαναγκασμένης ρουλέτας όπως την μελετήσαμε στο προηγούμενο μάθημα.

Το αποτέλεσμα της εκτέλεσης της εξαναγκασμένης ρουλέτας είναι η παραγωγή ενός προσωρινου πληθυσμού μεγέθους pop_size

Άσκηση

Κατασκευάστε την εξαναγκασμένη ρουλέτα για να παράγετε τον προσωρινό πληθυσμό.

Χρησιμοποιήστε την ακολουθία τυχαίων αριθμών 0.482, 0.812, 0.154, 0.837

3. Γενετικός Αλγόριθμος για Αριθμητικές Συναρτήσεις

2.2. Διασταύρωση

Διασταύρωση: Γίνεται μέσω του τελεστή διασταύρωσης ΟΧ

Ο τελεστής διασταύρωσης ΟΧ , υλοποιείται ως εξής:

Θα το μελετήσουμεμε ένα παράδειγμα. Έστω δύο γονείς:

 $A = (1 \ 2 \ 3 \ | 4 \ 5 \ 6 \ 7 | \ 8 \ 9)$

B = (4 5 2 | 1 8 7 6 | 9 3), με επιλεγμένα δύο σημεία διασταύρωσης «|»

1ος απόγονος Α':

- Παίρνω τα μεσαία του 1^{ου} γονέα Α' = (x x x | 4 5 6 7 | x x)
- Καταγράφω τα στοιχεία που λείπουν με αφετηρία το 2° σημείο διαστάυρωσης του B = (4 5 **2** | **1 8** 7 6 | **9 3**)
 - Είναι τα 93218
- Συμπληρώνω τα στοιχεία του Α' με αφετηρία το 2° σημείο διασταύρωσης Α' = (2 1 8 | 4 5 6 7 | 9 3)

2ος απόγονος Β':

- Παίρνω τα μεσαία του 2^{ου} γονέα Β' = (x x x | 1 8 7 6 | x x)
- Καταγράφω τα στοιχεία που λείπουν με αφετηρία το 2° σημείο διαστάυρωσης του A = (1 2 3 |4 5 6 7 | 8 9)
 - Είναι τα 92345
- Συμπληρώνω τα στοιχεία του Β' με αφετηρία το 2° σημείο διασταύρωσης Β' = (3 4 5 | 1 8 7 6 | 9 2)

Για κάθε ζεύγοςεπιλέγω διαφορετικά σημεία διασταύρωσης με βάση τυχαίους αριθμούς.

www.psounis.g

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

2.2. Διασταύρωση

Άσκηση

Εφαρμόστε τον τελεστή ΟΧ για την διασταύρωση των ζευγών που παρήχθησαν στο προηγούμενο βήμα. Θεωρείστε ότι τα σημεία διαχωρισμού είναι μεταξύ 1^{ης} και 2^{ης} θέσης και μεταξύ 4^{ης} και 5^{ης} θέσης.

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

2.3. Μετάλλαξη

Μετάλλαξη

Κάθε χρωμόσωμα θα υποστεί μία μετάλλαξη. Η μετάλλαξη γίνεται ανταλάσσοντας δύο γονίδια ενός χρωμοσόματος.

ΠΡΟΕΡΓΑΣΙΑ: Θεωρούμε όλες τις θέσεις ισοπίθανες με πιθανότητα 1/n. Θα επιλέξουμ**ε** δύο τυχαίους αριθμούς:

- Θέση 1: μεταξύ 0 και $\frac{1}{n}$
- Θέση 2: μεταξύ $\frac{1}{n}$ και $\frac{2}{n}$
- •
- Θέση η: μεταξύ $\frac{n-1}{n}$ και $\frac{n}{n}$

ΕΦΑΡΜΟΓΗ: Για παράδειγμα αν η λύση που εξετάζεται είναι η: B=(4 5 2 1 8 7 6 9 3) και με βάση τους τυχαίους αριθμούς επιλέγονται οι θέσεις 4 και 7 τότε η διαδικασία της μετάλλαξης λειτουργεί ως εξής:

B=(4 5 2 1 8 7 6 9 3)

παράγει την λύση: Β'=(4 5 2 6 8 7 1 9 3)

www.psounis.gr

Α. Θεωρία

3. Γενετικός Αλγόριθμος για το πρόβλημα TSP

2.3. Μετάλλαξη

Άσκηση

Εφαρμόστε τον τελεστή της μετάλλαξης στον πληθυσμό της τρέχουσας γενιάς, θεωρώντας την πιθανότητα μετάλλαξης ίση με 0.5. Μπορείτε να χρησιμοποιήσετε την παρακάτω ακολουθία τυχαίων αριθμών: 0.34, 0.30, 0.85, 0.56, 0.63, 0.47, 0.19, 0.80, 0.98, 0.58, 0.03, 0.57

Έστω το πρόβλημα του πλανόδιου πωλητή με 6 πόλεις, με τις μεταξύ τους αποστάσεις να φαίνονται στον παρακάτω πίνακα (θεωρούμε ότι υπάρχει άμεση σύνδεση μεταξύ οποιουδήποτε ζεύγους πόλεων).

	A	В	Γ	Δ	E	Z
A		5	10	13	10	4
В	5		6	10	9	7
Γ	10	6		4	6	8
Δ	13	10	4		5	10
E	10	9	6	5		5
Z	4	7	8	10	5	

Θα πρέπει να σχεδιάσετε ένα γενετικό αλγόριθμο για να βρείτε τη συντομότερη διαδρομή η οποία θα πρέπει να διέρχεται από όλες τις πόλεις. Θα χρησιμοποιείσετε έναν πληθυσμό 4 χρωμοσωμάτων ο οποίος θα ανανεώνεται πλήρως από γενιά σε γενιά. Θεωρείστε ότι έχετε γεννήτρια τυχαίων αριθμών η οποία σας δίνει (με τη σειρά) την παρακάτω ακολουθία τυχαίων αριθμών από το 0 ως το 1.

0,463714	0,234374	0,439749	0,682675	0,718773	0,336385	0,857697	0,514626	0,733548	0,064739
0,846527	0,575729	0,169738	0,213356	0,950259	0,894705	0,709656	0,351561	0,633967	0,786981
0,524763	0,082884	0,04294	0,447761	0,678321	0,122616	0,181008	0,384417	0,485948	0,940825
0,134495	0,381887	0,004923	0,62178	0,357079	0,83456	0,444426	0,854376	0,759619	0,700447
0,37438	0,546525	0,191075	0,572425	0,236702	0,120707	0,162193	0,81587	0,43323	0,686798
0,721702	0,156205	0,033132	0,366019	0,447154	0,747949	0,578424	0,011562	0,515549	0,436496
0,47614	0,736317	0,806684	0,152427	0,121268	0,118964	0,547473	0,457706	0,303001	0,954014
0,931515	0,895721	0,637368	0,266807	0,661972	0,14058	0,909241	0,449968	0,285917	0,737923
0,365261	0,732603	0,744999	0,880942	0,045167	0,955587	0,698081	0,061709	0,182705	0,86275
0,336751	0,059842	0,097732	0,438901	0,814771	0,032585	0,214809	0,186065	0,005883	0,941831

(Β) Να επιλέξετε ένα τελεστή διασταύρωσης κατάλληλο για το συγκεκριμένο πρόβλημα.

(Γ) Να επιλέξετε ένα τελεστή μετάλλαξης κατάλληλο για το συγκεκριμένο πρόβλημα.

#	Χρωμόσωμα	Μήκος διαδρομής	Καταλληλότητα
1			
2			
3			
4			

www.psounis.gr

(Ε) Χρησιμοποιώντας τον παραπάνω ως αρχικό πληθυσμό να «επιλύσετε» το πρόβλημα εφαρμόζοντας για μία επανάληψη τους γενετικούς τελεστές της διασταύρωσης και της μετάλλαξης. Θεωρείστε πιθανότητα διασταύρωσης ίση με 1 (p_c = 1) και μετάλλαξης ίση με 0.01 (p_m = 0.01). Να συμπληρώσετε τον πίνακα:

#	Χρωμόσωμα	Μήκος διαδρομής	Καταλληλότητα
1			
2			
3			
4			

www.psounis.gr

Έστω το πρόβλημα του πλανόδιου πωλητή με 6 πόλεις. Οι αποστάσεις μεταξύ των πόλεων φαίνονται στον παρακάτω πίνακα (θεωρούμε ότι υπάρχει άμεση σύνδεση μεταξύ οποιουδήποτε ζεύγους πόλεων):

# πόλης	1	2	3	4	5	6
1		10	5	15	10	4
2	10		6	10	9	7
3	5	6		4	6	10
4	15	10	4		5	8
5	10	9	6	5		5
6	4	7	10	8	5	

Ζητείται να σχεδιάσετε ένα ΓΑ για να βρείτε τη συντομότερη διαδρομή που διέρχεται από όλες τις πόλεις. Να χρησιμοποιήσετε ένα πληθυσμό 4 ατόμων, που δίνεται στον παρακάτω πίνακα, ο οποίος ανανεώνεται πλήρως από γενιά σε γενιά. Η πιθανότητα μετάλλαξης είναι P_m =0.01. Στους υπολογισμούς να χρησιμοποιήσετε ακρίβεια 2 δεκαδικών ψηφίων.

Ο πίνακας τυχαίων αριθμών δίνεται παρακάτω:

0,384417	0,485948	0,940825	0,134495	0,381887	0,004923	0,621780	0,357079
0,834560	0,444426	0,854376	0,759619	0,700447	0,374380	0,546525	0,191075
0,572425	0,236702	0,120707	0,162193	0,815870	0,433230	0,686798	0,721702
0,156205	0,033132	0,366019	0,447154	0,747949	0,578424	0,011562	0,515549
0,436496	0,476140	0,736317	0,806684	0,152427	0,121268	0,118964	0,547473

(α) (5/15) Να προτείνετε μια κατάλληλη συνάρτηση αξιολόγησης και να συμπληρώσετε τον παρακάτω πίνακα:

#	ΧΡΩΜΟΣΩΜΑ	ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ	КАТАЛЛНЛОТНТА
Α	325641		
В	516423		
Г	265341		
Δ	541326		

www.psounis.gr

(γ) (5/15) Αντί για τον τελεστή διασταύρωσης διπλού σημείου χρησιμοποιήσετε τώρα την παραλλαγή του ΟΧ (Order Crossover) τελεστή που παρουσιάζεται στη σελίδα 50 του ΕΔΥ-ΓΑ. Επίσης, να επιλέξετε ένα κατάλληλο τελεστή μετάλλαξης και να τεκμηριώσετε την επιλογή σας. Να συμπληρώσετε τον παρακάτω πίνακα. Ποια είναι τα συμπεράσματά σας ως προς την απόδοση της νέας γενιάς;

#	ΧΡΩΜΟΣΩΜΑ	ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ	ΚΑΤΑΛΛΗΛΟΤΗΤΑ
A'			
В			
Γ'			
Δ'			