Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao January 27, 2023

What we have seen last lecture

- Divisor set
- Multiplicative functions
- Euclid-Euler theorem

Today's topics

- Rational numbers
- Irrational numbers
- Algebraic numbers

Part III

Rational and Algebraic Numbers

Definition 8.1

A **fraction** is an expression of the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$. A **rational number** is a number which can be expressed by a fraction.

Example 8.2

 $\frac{5}{3}$ and $\frac{15}{9}$ are two distinct fractions, but they express the same rational number. " $\frac{5}{3} = \frac{15}{9}$ ".

Definition 8.1

A **fraction** is an expression of the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$. A **rational number** is a number which can be expressed by a fraction.

Example 8.2

 $\frac{5}{3}$ and $\frac{15}{9}$ are two distinct fractions, but they express the same rational number. " $\frac{5}{3} = \frac{15}{9}$ ".

Definition 8.3

A **fraction** $\frac{a}{b}$ is **reduced** if a, b are coprime and b > 0.

Example 8.4

 $\frac{-5}{3}$ is reduced, $\frac{5}{-3}$ is not reduced, and $\frac{-15}{9}$ is not reduced.

Theorem 8.5

Any rational number can be uniquely expressed by a reduced fraction.

$$\frac{15}{-9} = \frac{-5}{3} \leftarrow \text{reduced}!$$

Theorem 8.5

Any rational number can be uniquely expressed by a reduced fraction.

Proof. Let's assume our rational number is expressed by $\frac{a}{b}$. Since $\frac{a}{b} = \frac{-a}{-b}$, we may assume b > 0. Let $c = \frac{a}{\gcd(a,b)}$ and $d = \frac{b}{\gcd(a,b)}$. Then $\gcd(c,d) = 1$ and we have $\frac{a}{b} = \frac{c}{d}$.

Theorem 8.5

Any rational number can be uniquely expressed by a reduced fraction.

Proof. Let's assume our rational number is expressed by $\frac{a}{b}$. Since $\frac{a}{b} = \frac{-a}{-b}$, we may assume b > 0. Let $c = \frac{a}{\gcd(a,b)}$ and $d = \frac{b}{\gcd(a,b)}$. Then $\gcd(c,d) = 1$ and we have $\frac{a}{b} = \frac{c}{d}$.

Now, suppose $\frac{c'}{d'}$ is another reduced fraction such that $\frac{a}{b} = \frac{c'}{d'}$. Then we have c'd = cd'. Hence, $d \mid cd'$ and $d' \mid c'd$. Since $\gcd(c,d) = 1$ and $\gcd(c',d') = 1$, we have $d \mid d'$ and $d' \mid d$. Since both d,d' are positive, by the antisymmetry of \mid , d = d'. Then c = c' and thus $\frac{c}{d}$ and $\frac{c'}{d'}$ are the same fraction.

We can extend prime factorization from to rational numbers.

Theorem 8.6 (Prime factorization)

Let α be a positive rational number.

1. (existence) α admits a prime factorization, i.e. there exist integers e_p for each prime p such that

$$\alpha = \prod_{p \text{ is prime}} p^{e_p}$$

2. (uniqueness) Suppose α admits another prime factorization, say

$$\alpha = \prod_{p \text{ is prime}} p^{f_p}.$$

Then, for every prime p, we have $e_p = f_p$.

Proof of the theorem i

Proof. (*existence*) Let $\frac{a}{b}$ be any fraction expressing α . We may assume a, b are positive. Then by the fundamental theorem of arithmetic,

$$a = \prod_{p \text{ is prime}} p^{v_p(a)}, \qquad b = \prod_{p \text{ is prime}} p^{v_p(b)}.$$

Hence,
$$\alpha = \frac{a}{b} = \frac{\prod\limits_{\substack{p \text{ is prime} \\ p \text{ is prime}}} p^{v_p(a)}}{\prod\limits_{\substack{p \text{ is prime} \\ p \text{ is prime}}} p^{v_p(b)}} = \prod\limits_{\substack{p \text{ is prime} \\ p \text{ is prime}}} p^{v_p(a)-v_p(b)}.$$

Note that the integer $v_p(a) - v_p(b)$ does not depend on the choice of the fraction $\frac{a}{b}$. Indeed, if $\frac{a'}{b'}$ is another fraction expressing α , then we have ab' = a'b. Hence, for all prime p,

$$V_{p}(a) + V_{p}(b') = V_{p}(a') + V_{p}(b).$$

Proof of the theorem ii

Therefore, $v_p(a') - v_p(b') = v_p(a) - v_p(b)$. We will denote this integer by $v_p(\alpha)$.

(**uniqueness**) Suppose
$$\alpha = \prod_{p \text{ is prime}} p^{f_p}$$
. Let

$$c = \prod_{p \text{ is prime}, f_p > 0} p^{f_p}, \qquad d = \prod_{p \text{ is prime}, f_p < 0} p^{-f_p}.$$

Then $\frac{c}{d}$ is a reduced fraction expressing α . Note that we always have $V_p(c) - V_p(d) = f_p$. Hence, $f_p = V_p(\alpha)$.

$$f_{p} > 0 \Rightarrow V_{p}(c) = f_{p} & V_{p}(d) = 0$$
 $f_{p} < 0 \Rightarrow V_{p}(c) = 0 & V_{p}(d) = f_{p}$
 $f_{p} = 0 \Rightarrow V_{p}(c) = V_{p}(d) = 0$

Example

Example 8.7

Find the reduced fraction expression of the following rational number and give its prime factorization:

$$-1.56$$

$$-1.56 = 50\frac{-1566}{10000} = \frac{-39}{225} = 3-3^{\circ}.56^{\circ}.13^{\circ}$$

Definition 8.8

If a number is not rational, then it is *irrational*.

Definition 8.8

If a number is not rational, then it is *irrational*.

Example 8.9

(Pythagorean or Hippasus, 500 BC) $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2}$ is rational and can be expressed by the reduced fraction $\frac{a}{b}$. Then we have

$$2=\frac{a^2}{b^2}.$$

But since a, b are coprime, the right-hand side is reduced. Hence, by the uniqueness of reduced fraction expression, we must have $2 = a^2$ and $1 = b^2$. But this is impossible: 2 is not a perfect square.

Theorem 8.10 (Irrationality of roots)

Let $\frac{a}{b}$ be a reduced fraction and n is an integer $\geqslant 2$. Then $\sqrt[n]{\frac{a}{b}}$ gives rational values if and only if both a and b are perfect n-th power (i.e. there are integers c, d such that $a = c^n$ and $b = d^n$.)

Theorem 8.10 (Irrationality of roots)

Let $\frac{a}{b}$ be a reduced fraction and n is an integer $\geqslant 2$. Then $\sqrt[n]{\frac{a}{b}}$ gives rational values if and only if both a and b are perfect n-th power (i.e. there are integers c, d such that $a = c^n$ and $b = d^n$.)

Proof. The "if" part is clear. Let's prove the "only if" part. Suppose our number α can be expressed as a reduced fraction $\frac{c}{d}$. Then

$$\frac{c^n}{d^n} = (\frac{c}{d})^n = \alpha^n = \frac{a}{b}.$$

By the uniqueness of reduced fraction expression, we must have $a = c^n$ and $b = d^n$.

П

Another useful result is the following criterion:

Theorem 8.11 (Rational root theorem)

Let $\frac{a}{b}$ be a reduced fraction expressing a root of a polynomial

$$P(T) = c_n T^n + \cdots + c_1 T + c_0 \qquad (c_i \in \mathbb{Z}).$$

Then $a \mid c_0$ and $b \mid c_n$.

Theorem 8.11 (Rational root theorem)

Let $\frac{a}{b}$ be a reduced fraction expressing a root of a polynomial

$$P(T) = c_n T^n + \cdots + c_1 T + c_0 \qquad (c_i \in \mathbb{Z}).$$

Then $a \mid c_0$ and $b \mid c_n$.

Proof. Substitute $\frac{a}{b}$ into the polynomial,

$$c_n(\frac{a}{b})^n+\cdots+c_1(\frac{a}{b})+c_0=0.$$

We thus have

$$c_n a^n + c_{n-1} a^{n-1} b + \cdots + c_1 a b^{n-1} + c_0 b^n = 0.$$

Then we must also have $a \mid c_0 b^n$ and $b \mid c_n a^n$. Since a, b are coprime, we have $a \mid c_0$ and $b \mid c_n$.

Definition 8.12

A complex number α is **algebraic** if it is a root of a nonzero integer polynomial. Namely, there are integers c_0, \dots, c_n such that

$$c_n\alpha^n + \cdots + c_1\alpha + c_0 = 0.$$

Otherwise, we say α is **transcendental**.

Definition 8.12

A complex number α is **algebraic** if it is a root of a nonzero integer polynomial. Namely, there are integers c_0, \dots, c_n such that

$$c_n\alpha^n + \cdots + c_1\alpha + c_0 = 0.$$

Otherwise, we say α is **transcendental**.

Example 8.13

Rational numbers are algebraic. Indeed, if $\frac{a}{b}$ is a fraction expressing our rational number α , then α is a root of bT - a.

Example 8.14

n-th roots of rationals are algebraic. Indeed $\sqrt[n]{\frac{a}{b}}$ is a root of $bT^n - a$.

Example 8.15

 $2\sqrt{2} + \sqrt{3}$ is algebraic.

Proof. Let $\alpha = 2\sqrt{2} + \sqrt{3}$. We want to find an integer polynomial P(T) such that $P(\alpha) = 0$.

$$\alpha = 2\sqrt{2} + \sqrt{3}$$
 our definition
$$\alpha - \sqrt{3} = 2\sqrt{2}$$
 separate the roots
$$\alpha^2 - 2\sqrt{3}\alpha + 3 = 8$$
 square both sides
$$\alpha^2 - 5 = 2\sqrt{3}\alpha$$
 separate the roots
$$\alpha^4 - 10\alpha^2 + 25 = 12\alpha^2$$
 square both sides

Therefore, $\alpha^4 - 22\alpha^2 + 25 = 0$. Namely, α is a root of the integer polynomial $T^4 - 22T^2 + 25$.

Corollary 8.16

 $2\sqrt{2} + \sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $2\sqrt{2} + \sqrt{3}$ can be expressed by the reduced fraction $\frac{a}{b}$. Then since it is a root of integer polynomial $T^4 - 22T^2 + 25$, by the **rational root theorem**, we must have $a \mid 25$ and $b \mid 1$. Therefore, the fraction $\frac{a}{b}$ can only be one of the following:

$$\pm 25, \pm 5, \pm 1.$$

Note that $2 < 2\sqrt{2} < 3$ since 4 < 8 < 9, and that $1 < \sqrt{3} < 2$ since 1 < 3 < 4. Thus, $3 < 2\sqrt{2} + \sqrt{3} < 5$. But none of above falls in this interval, which is a contradiction.

Alternotively, we can also just phy in ±15, ±5. ±1 into the polynomial.

After Class Work

Linear independence

Terminology

A \mathbb{Q} -module is an abelian group (M, +, e) together with an action of integers $\rho : \mathbb{Q} \times M \to M$ satisfying

- (associativity) $\rho(ab,x) = \rho(a,\rho(b,x))$ for all $a,b \in \mathbb{Q}$ and $x \in M$;
- (neutrality) $\rho(a, e) = e$ for all $a \in \mathbb{Q}$.

Example 8.17

 $(\mathbb{F}, +, 0)$ (where \mathbb{F} is one of $\mathbb{Q}, \mathbb{R}, \mathbb{C}$) is a \mathbb{Q} -module under the left multiplication.

The notion of \mathbb{Q} -modules is very similar to vector spaces. In fact, some authors may also call them \mathbb{Q} -vector spaces.

Linear independence

Terminology

Let x_1, \dots, x_n be elements in a \mathbb{Q} -module M. We say they are \mathbb{Q} -linearly independent if the only \mathbb{Q} -linear combination

$$a_1X_1 + \cdots + a_nX_n$$

of x_1, \dots, x_n expressing 0 is the **trivial** one: all coefficients a_1, \dots, a_n are 0.

Please compare this notion with *linear independence* in Linear Algebra course.

Linear independence

we need this is "1". otherwise than is Not true

Theorem 8.18

 $\alpha \in \mathbb{C}$ is irrational if and only if 1, α are \mathbb{Q} -linearly independent.

Proof. (\iff) If $\alpha \in \mathbb{Q}$, then $\alpha \cdot 1 + (-1) \cdot \alpha$ gives a non-trivial \mathbb{Q} -linear combination of $1, \alpha$ expressing 0.

(\Longrightarrow) Suppose there are $\mathbb Q$ -linear combination $a\cdot 1+b\cdot \alpha$ is a non-trivial $\mathbb Q$ -linear combination of $\mathbf 1,\alpha$ expressing 0. Then we must have $b\neq 0$, otherwise $a=a\cdot 1+0\cdot \alpha=0$ and hence this is a trivial combination. Then we have $\alpha=-\frac{a}{b}$. Hence, $\alpha\in\mathbb Q$.

$$\alpha \cdot 1 + b \cdot \alpha = 0 \Rightarrow \alpha = \frac{-a \cdot \alpha}{b \cdot \alpha} = \frac{-\frac{\alpha \cdot \alpha}{a \cdot b}}{\frac{b \cdot \alpha}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\frac{\alpha \cdot b}{a \cdot b}}{\frac{a \cdot b}{b \cdot a}} = -\frac{\alpha \cdot b}{a \cdot b}$$