CONDUCTION DANS LES SOLIDES

Conductivité électrique de solides

Métal	Conductivité (M S . cm^{-1})
Aluminium $(T = 25^{\circ}C)$	0,377
Fer $(T = 25^{\circ}C)$	0,103
Carbone $(T = 0^{\circ}C)$	$7,272.10^{-4}$
Bore $(T = 0^{\circ}C)$	5,555.10 ⁻¹³

Ordres de grandeur

$$\tau = \frac{l}{\langle v \rangle} \propto \frac{l}{\sqrt{kb*\frac{T}{m}}} \sim 10^{-\frac{-23+2+31}{2}+10} \sim 10^{-5-10} \sim 10^{-15} \text{ secondes}$$

$$\sigma = \frac{n \cdot e^2 \cdot \tau}{m} \sim 10^{29 - 19 - 19 - 15 + 31} \sim 10^{21 - 5} \sim 10^7 \text{ S.m}^{-1}$$

Ordres de grandeur

$$\tau = \frac{l}{\langle v \rangle} \propto \frac{l}{\sqrt{kb*\frac{T}{m}}} \sim 10^{-\frac{-23+2+31}{2}+10} \sim 10^{-5-10} \sim 10^{-15} \text{ secondes}$$

$$\sigma = \frac{n \cdot e \cdot \tau}{m} \sim 10^{29 - 19 - 19 - 15 + 31} \sim 10^{21 - 5} \sim 10^{7} \text{ S.m}^{-1}$$

Conductivité tabulé à T ambiante pour:

- l'argent = $6,3.10^7$ S.m⁻¹,
- Le Fer = $1,01.10^7$ S.m⁻¹

on a les bons ordres de grandeur!

Limite du modèle de Drude

Sphère de Fermi

Kittel et al. Physique du solide

Distribution électronique dans un metal à différentes T

Distribution de Fermi-Dirac:

$$f(\epsilon) = \frac{1}{\exp[(\epsilon - \mu)/k_BT] + 1} \ .$$

Gaz d'électrons libres de Fermi

