# COMS30035, Machine learning: Sequential Data (LDS)

James Cussens

School of Computer Science University of Bristol

29th October 2024

### Acknowledgement

► These slides are adapted from ones originally created by Edwin Simpson.

### Agenda

- ► Markov Models
- ► Hidden Markov Models
- ► EM for HMMs
- ► Linear Dynamical Systems

#### From HMM to LDS

- HMM assumes discrete latent states.
- Linear dynamical systems (LDS) assume states have continuous values.
- Both have the same graphical model:



▶ Inference has the same form as for an HMM, but when marginalising  $z_{n-1}$  and  $z_{n+1}$ , we take integrals instead of sums.

#### Motivations for LDS

- Noisy sensors: inferring the true sequence of states from observations with Gaussian noise.
- ➤ Tracking: predicting the next movement and tracing the path from noisy observations.

#### Transition and Emission Distributions for LDS

- $p(z_1) = \mathcal{N}(z_1|\mu_0, V_0);$
- $ightharpoonup p(\mathbf{x}_n|\mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n|\mathbf{C}\mathbf{z}_n, \mathbf{\Sigma}).$
- ▶ Note that the means of both distributions are *linear* functions of the latent states.
- ► This choice of distributions ensures that the posteriors are also Gaussians with updated parameters
- ▶ This means that  $\mathcal{O}(N)$  inference can still be performed using the sum-product algorithm.

#### Inference for an LDS

- ► Kalman filter = forward pass of sum-product for LDS.
- ► Kalman smoother = backward pass of sum-product for LDS.
- ▶ No need for an analogue of Viterbi: the most likely sequence is given by the individually most probable states, so we get this from the Kalman equations.

# Forward Inference (Kalman Filter) for an LDS

$$\alpha(\mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n | \mathbf{C}\mathbf{z}_n, \mathbf{\Sigma}) \int \mathcal{N}(\mathbf{z}_n | \mathbf{A}\mathbf{z}_{n-1}, \mathbf{\Gamma}) \alpha(\mathbf{z}_{n-1}) d\mathbf{z}_{n-1}$$
 (1)

Normalising results in a Gaussian-distributed variable, whose parameters can be computed efficiently:

$$\hat{lpha}(\pmb{z}_n) = p(\pmb{z}_n|\pmb{x}_1,...,\pmb{x}_n) = \mathcal{N}(\pmb{z}_n|\pmb{\mu}_n,\pmb{V}_n)$$
, where

- $\blacktriangleright$   $\mu_n$  is a function of  $\mu_{n-1}$ ,  $x_n$ , A and C.
- $\triangleright$   $V_n$  is a function of  $V_{n-1}$ ,  $\Sigma$ , A,  $\Gamma$  and C.
- We can view each forward step as predicting  $z_n$  based on the distribution over  $z_{n-1}$ , then correcting that prediction given the new observation  $x_n$ .
- ► For details, see [Bis06, §13.3.1].

# Backward Inference (Kalman Smoother) for an LDS

- ▶ Backward pass also follows that of the HMM: messages are passed from the final state to the start of the sequence.
- ► The backward messages contain information about future states that affects the posterior distribution at each step *n*.
- Since the transition and emission probabilities are all Gaussian, the posterior responsibilities are also Gaussian, as are the state pair expectations.
- ► For details, see [Bis06, §13.3.1].

# Learning the Parameters of LDS

- ► Kalman filter/smoother are analogous to the forward-backward algorithm for HMMs.
- ▶ Remember that this algorithm is used for the *E step* of EM.
- ▶ The parameters are optimised in the M step as before, by using the responsibilities  $\mathbb{E}[\mathbf{z}_n]$ ,  $\mathbb{E}[\mathbf{z}_n\mathbf{z}_n^T]$  and state pair expectations  $\mathbb{E}[\mathbf{z}_n\mathbf{z}_{n-1}^T]$ .
- ► For details, see [Bis06, §13.3.2].

# Reading

- ▶ Bishop §13.3 up to §13.3.1
- ► Murphy **Book 2** [Mur23] §29.6

# Problems and quizzes

- No problems.
- Quizzes:
  - ► Week 7: Linear Dynamical Systems



Kevin P. Murphy.

Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.