Kürzeste Pfade

Wir beginnen mit einem klassischen Algorithmus zur kürzesten Pfadbestimmung. Sei \mathcal{G}_n ein gerichteter Graph mit Knoten $1, 2, \ldots, n$ und bewerteten Kanten $d_{ij}, i, j \in \{1, 2, \dots, n\}$. Hierbei sei

$$0 \le d_{ij} = \begin{cases} \infty, \text{ falls keine Kante von } i \text{ nach } j \text{ existiert,} \\ \text{Länge der Kante von } i \text{ nach } j. \end{cases}$$

Die Kantenlängen werden in der $n \times n$ Matrix $D = (d_{ij})$ zusammengefaßt, wobei wir für ∞ eine sehr große Zahl wählen.

Wir führen folgende Bezeichnungen ein:

- kürzester Weg von i nach j, mit Knoten aus $\{1, 2, \dots, k\}$,
- $\mathcal{W}^k(i,j)$ kürzester Weg von i d^k_{ij} Länge von $\mathcal{W}^k(i,j)$ r^k_{ij} direkter Vorgänger direkter Vorgänger von j in $\mathcal{W}^k(i,j)$.

Beispiel. Wir betrachten

$$D = \begin{pmatrix} \infty & 9 & \infty & 1 \\ 5 & \infty & 1 & 5 \\ 2 & 7 & \infty & \infty \\ 6 & \infty & 3 & \infty \end{pmatrix}$$

Analog-Methode (Vogel, 1980). Recht verblüffend ist folgende Überlegung, die zu einem Analog-Verfahren führt.

Man realisiert das Netzwerkdurch ein Fadenmodell, bei dem die Kantenlängen d_{ij} betragen. Um den kürzesten Weg von i nach j zu finden, ziehe man die beide Knoten soweit wie möglich auseinander.

Kaskadenmethode (S. Warshall) Kürzeste Wege zu jedem Knotenpaar i und j können mit folgenden Überlegungen¹ leicht berechnet werden. Für k=0 setzen wir

$$d_{ij}^0 = d_{ij}, \quad r_{ij}^0 = i, \quad i, j = 1, 2, \dots, n.$$

 $W^0(i,j)$ ist somit der kürzeste Weg von i nach j, wenn nur die Knoten i und j berücksichtigt werden. In r_{ij}^k wird der Knoten angelegt, der auf dem Weg $W^0(i,j)$ direkt vor dem Knoten j liegt.

Man kann jetzt induktiv den kürzesten Weg $\mathcal{W}^k(i,j)$ aus den Daten zu $\mathcal{W}^{k-1}(i,j)$ gewinnen. Die Länge aller kürzesten Wege d_{ij}^{k-1} ist bekannt. Wenn man die Länge von $\mathcal{W}^{k-1}(i,j)$ mit der Summe der Weglängen von $\mathcal{W}^{k-1}(i,k)$ und $\mathcal{W}^{k-1}(k,j)$ vergleicht, kann man d_{ij}^k und r_{ij}^k bestimmen.

Wir haben somit die Iteration:

$$k = 1, 2, \dots, n$$

$$i, j = 1, 2, \dots, k - 1, k + 1, \dots, n,$$

$$d_{ij}^k = \min\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\},$$

$$r_{ij}^k = r_{kj}^{k-1}, \text{ falls } d_{ij}^k \neq d_{ij}^{k-1},$$

Aus der Matrix $R^n = (r_{ij}^N)_{ij}$ können wir die Knoten von $\mathcal{W}^n(i,j)$ für festes i und j rückwärts berechnen.

$$s_1 = j$$
, $s_2 = r_{i,s_1}^k$, $s_3 = r_{i,s_2}^k$, ..., $s_t = r_{i,s_{t-1}} = i$.

Jetzt durchläuft $\mathcal{W}^k(i,j)$ die Knoten

$$s_{\nu}, \quad \nu = t, t - 1, \dots 1.$$

Dieser Algorithmus wurde von R. W. Floyd 2 als 11-zeilige Algol-Programm angegeben, allerdings ohne die Berechnung der Knoten, die zu den kürzesten Pfaden gehören.

¹S. Warshall: A theorem on Boolean matrices, J. ACM **9**, 1962, 11 – 12.

²R.W. Floyd: Algorithm 97, Comm. ACM **5**, 1962, 345.

Listing 1: Kürzeste Pfade (floyd.c)

```
#include <stdio.h>
void write_matrix(int);
void read_matrix(int);
int d[20][20];
int main(void)
int r [20] [20];
int i, j, k, newlen, z, n;
int pfad [20];
(void) scanf("%i", &n);
read_matrix(n);
write_matrix(n);
for (i = 1; i \le n; i++)
        for (j = 1; j \le n; j++)
                r[i][j] = i;
for (k = 1; k \le n; k++)
        for (i = 1; i \le n; i++)
                 if (i = k)
                         continue;
                 for (j = 1; j \le n; j++) {
                         if (j = k)
                                 continue;
                         newlen = d[i][k] + d[k][j];
                         if (d[i][j] >= newlen) {
                                 d[i][j] = newlen;
                                 r[i][j] = r[k][j];
                         }
                }
```

```
printf("----\n");
printf(" von nach Laenge
                                    Knoten\n");
printf("----\n");
for (i = 1; i \le n; i++)
       for (j = 1; j \le n; j++)
              printf(" %2i
                             %2i ", i, j);
                              ", d[i][j]);
              printf("%7i
              pfad[1] = j;
              for (k = 1; k \le n; k++)
                     pfad[k + 1] = r[i][pfad[k]];
                      if (pfad[k+1] = i) break;
              for (z = k + 1; z >= 1; z--)
                     printf("%5i", pfad[z]);
              printf("\n");
       }
return (0);
void write_matrix(int n) {
       int i, j;
       for (i = 1; i \le n; i++)
              for (j = 1; j \le n; j++)
                      printf("%10i ", d[i][j]);
              printf("\n");
       }
void read_matrix(int n) {
       int i, j;
       for (i = 1; i \le n; i++)
              for (j = 1; j \le n; j++)
                     (void) scanf("%i", &d[i][j]);
       }
```