

Informatique @ SupOptique

Réforme 1A Institut d'Optique

Informatique, calcul scientifique...

TO FIND ??

Modules d'informatique à SupOptique

Constat, besoins, embauche...

Réforme de la première année

Prochaines évolutions

Questions aux industriels/académiques

Etat de l'art @ SupOptique

Réforme 1A Institut d'Optique

Modules d'informatique à SupOptique

Ne sont pas inclus l'apprentissage sur des logiciels de conception optique

Jusqu'en juin 2023

Besoins des industriels, embauches, enquêtes

Réforme 1A Institut d'Optique

Informatique chez les jeunes diplômé.es

Côté Industriels

Enquête Novembre 2022 / Forum de la Photonique

	NB	Python	Matlab	C++
Autres produits (Mesures, Analyses)	5	4		
Logiciels Acquisition Données	2	2		
Logiciels Simulation	2	1		1
Logiciels Traitement de données	5	4		1
Systèmes acquisition de données	6	4	2	
Système temps réel	6	3	1	1
	26	18	3	3

				Open		
	NB	Objets	IA	Lib	Embarqué	
						PC
Autres produits (Mesures, Analyses)	5	1	1	3	1	embarqué
Logiciels Acquisition Données	2	2		2		
Logiciels Simulation	2	1				
Logiciels Traitement de données	5	3	4	4		
Systèmes acquisition de données	6	2	3	5	2	FPGA
						FPGA,
Système temps réel	6	5	3	4	2	Micro
	26	14	11	18	5	

Côté Industriels

Enquête Novembre 2022 / Forum de la Photonique

Les usages principaux de l'informatique dans ces sociétés sont les suivants (dans l'ordre décroissant du nombre de réponses par item)

- traitement des données / calculs
- simulation/modélisation de systèmes physiques
- acquisition de données via des appareils d'instrumentation ou des cartes d'acquisition (protocole RS232/485, Ethernet, USB)
- automatisation de banc de mesures (répétabilité des mesures et acquisition en masse)
- acquisition d'images via des capteurs CMOS
- interface graphique
- développement de systèmes embarqués

Langages utilisés (dans l'ordre décroissant du nombre de réponses par item):

- **Python** pour le **traitement de données** (numpy, pandas...)
- **Python** pour l'**IA** (pytorch, tensorflow...)
- **Python** pour **l'interfaçage d'appareil** (de plus en plus de bibliothèques python développées par les fabricants de capteurs...)
- matlab (dans le cas de pilotage de matériel spécifique driver non disponible - ou historique des services/départements)
- C++ (pour le traitement d'images plus spécifique rendu
 3D par exemple ou cible matérielle type microcontroleur)
- Verilog-A (pour FPGA embarqué)

Côté Industriels

Enquête Novembre 2022 / Forum de la Photonique

Il ne faut pas se spécialiser sur un seul langage, mais montrer l'intérêt d'une co-habitation de quelques types de langages ayant des buts applicatifs bien différents (Python, C, C++...).

Certains industriels ne sont pas non plus pour l'abandon pur et dur de Matlab, mais d'avoir simplement une initiation.

Mais que **Python ne devrait pas être optionnel**, car de plus en plus répandu pour des finalités différentes (interfaçage de matériels/capteurs, le traitement de données, l'interface graphique, l'IA...).

Constats

manque de temps pour l'analyse des phénomènes physiques dans les modules de traitements numériques (difficulté des étudiant.es à programmer)

s'approprier les outils numériques pour la simu / modélisation ou la résolution de problèmes physiques

manque de lien avec les nouvelles problématiques industrielles (ou de laboratoire)

pilotage de banc de mesures / acquisition de données / traitement de données / interfaçage

apprentissage par l'expérience dans des situations "complexes" proches de la vie professionnelle

Réforme en première année

Réforme 1A Institut d'Optique

Outils Numériques pour l'Ingénieur.e en Photonique

Autres langages / Applications

- Anaconda 3
- Python 3.9 (ou supérieur)
- Spyder 5

Informatique et calcul scientifique

Python (et ses librairies)

Langage général

Logiciel open source

Développement d'applications

MatLab® (et ses boites à outils)
Calculs numériques
Logiciel propriétaire
Modélisation / Simulation

Rentrée 2023

Autres langages / Applications

- Utilisation de Python
 - Anaconda 3
 - Python 3.9 (ou supérieur)
 - Spyder 5

Outils Numériques pour l'Ingénieur.e en Photonique

Semestre 5

Être capable d' **écrire un script réutilisable** dans un langage de haut niveau (à but scientifique)

Être capable de **générer des graphiques** scientifiques légendés

Être capable de **valider un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

Être capable de **calculer**, d' **afficher** et d' **utiliser la transformée de Fourier discrète** d'un signal (AM)

Être capable de **traiter une série de données sous forme d'images** (Laser)

2 séances introductives (2h/séance)

2 blocs de 5 séances (2h/séance)

Séance 1 : problématique

Séances 2-3 : mise en œuvre numérique Séance 4 : mise en forme des résultats

Séance 5 : évaluation

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Outils Numériques pour l'Ingénieur.e en Photonique

Semestre 6 - Classique

Être capable d' écrire une application simple selon les règles de la programmation objet

Être capable de **mettre en œuvre un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

Projet A Carte d'éclairement de sources incohérentes

1 séance introductive (2h)

5 séances « Mini-Projet » (2h/séance)

Projet B **Tracé de rayons**

Retours ONIP-1 et 2

Etudiant.es

Facilité de prise en main du langage (vu par 95% des étudiant.es dans leurs précédentes formations)

Intérêt pour les « projets » proposés car en lien avec des pratiques de leur future vie d'ingénieur.e

Encadrant.es

Plaisir à encadrer sur des sujets proches de la vie professionnelle

Vacataires plus à l'aise pour encadrer (habitué.es à Python depuis quelques années)

Attentes inhomogènes entre les encadrant.es

(mode d'évaluation à améliorer)

Nécessité d'une formation des encadrant.es permanent.es (plutôt habitué.es à Matlab)

Difficultés à évaluer

Retours ONIP-1 et 2

Etudiant.es

Facilité de prise en main du langage (vu par 95% des étudiant.es dans leurs précédentes formations)

Intérêt pour les « projets » proposés car en lien avec des pratiques de leur future vie d'ingénieur.e

Encadrant.es

Plaisir à encadrer sur des sujets proches de la vie professionnelle

Vacataires plus à l'aise pour encadrer (habitué.es à Python depuis quelques années)

Mauvaises habitudes dans les formations précédentes

Pas d'intérêt pour la modularité et la documentation

Attentes inhomogènes entre les encadrant.es (mode d'évaluation à améliorer)

Nécessité d'une formation des encadrant.es permanent.es (plutôt habitué.es à Matlab)

Difficultés à évaluer

Prochaines évolutions

Réforme 1A Institut d'Optique

Evolutions pour 2024-2025

- Retour à *un peu* de C/C++ au S5
- Ajout de TD d'initiation à Matlab au S6
- Harmonisation des pratiques entre 1A et 2AP

Questions ouvertes

Outils Numériques / Semestre 5 Institut d'Optique / B0_0

Questions ouvertes

- Langage C / C++
- Microcontrôleur / Embarqué
 - Intérêts pour un.e SupOpticien.ne ?
- Intelligence Artificielle
 - Machine Learning: Intégration dans la formation (obligatoire)?
 - Utilisation de **l'IA générative** :
 - pratique en entreprise?
 - impact RSE?

