```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.preprocessing import MinMaxScaler, StandardScaler
6 from google.colab import drive
7 drive.mount('/content/drive')
8
9 %matplotlib inline

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/

1 datapath = '/content/drive/MyDrive/Colab Notebooks/태양열 발전량 예측'
2 trainpath = datapath + '/train/train.csv'
3
4 train_org = pd.read_csv(trainpath, index_col=0)
```

▼ 칼럼 설명

- 1. Hour 시간
- 2. Minute 분
- 3. DHI 수평면 산란일사량(Diffuse Horizontal Irradiance (W/m2))
- 4. DNI 직달일사량(Direct Normal Irradiance (W/m2))
- 5. WS 풍속(Wind Speed (m/s))
- 6. RH 상대습도(Relative Humidity (%))
- 7. T 기온(Temperature (Degree C))
- 8. Target 태양광 발전량 (kW)

▼ Timestamp 찍기 위해 변환

```
1 train = train_org.reset_index()
2 def toTime(hour, min):
3    return str(int(hour)) + '-' + str(int(min))
4
5 train['Time'] = train.apply(lambda x: toTime(x['Hour'], x['Minute']), axis=1)
6 train.drop(['Hour', 'Minute'], axis=1, inplace=True)
7 train
```

	Day	DHI	DNI	WS	RH	T	TARGET	Time
0	0	0	0	1.5	69.08	-12	0.0	0-0
1	0	0	0	1.5	69.06	-12	0.0	0-30
2	0	0	0	1.6	71.78	-12	0.0	1-0
3	0	0	0	1.6	71.75	-12	0.0	1-30
4	0	0	0	1.6	75.20	-12	0.0	2-0
•••					•••		•••	
52555	1094	0	0	2.4	70.70	-4	0.0	21-30
52556	1094	0	0	2.4	66.79	-4	0.0	22-0
52557	1094	0	0	2.2	66.78	-4	0.0	22-30
52558	1094	0	0	2.1	67.72	-4	0.0	23-0
באבבט	1001	\cap	Λ	ე 1	6770	Λ	$\cap \cap$	22 2N

1 # null check

2 train.isna().sum()

Day 0
DHI 0
DNI 0
WS 0
RH 0
T 0
TARGET 0
Time 0
dtype: int64

```
1 temp = train.groupby('Time').mean()
```

² temp = temp.sort_values(by='TARGET', ascending=True)

³ temp

1-0	547.0	0.000000	0.000000	2.217808	71.219425	4.700457	0.000000
1-30	547.0	0.000000	0.000000	2.182740	72.172347	4.449315	0.000000
0-30	547.0	0.000000	0.000000	2.162557	72.035242	4.774429	0.000000
19-0	547.0	3.168037	17.571689	1.865753	64.817890	7.836530	0.411989
5-0	547.0	3.280365	25.280365	2.211872	71.059123	4.171689	0.440470
18-30	547.0	10.261187	48.263014	1.832968	62.891388	8.440183	1.600748
5-30	547.0	10.900457	88.116895	2.326119	68.248658	4.764384	2.055538
18-0	547.0	21.430137	90.602740	1.852694	59.708064	9.343379	3.691969
6-0	547.0	21.615525	165.572603	2.493425	65.808475	5.560731	4.957071
17-30	547.0	35.439269	141.860274	1.968219	55.009461	10.208219	6.517834
6-30	547.0	34.891324	250.645662	2.539543	61.396566	6.641096	9.093746
17-0	547.0	53.623744	213.452968	2.140365	51.584530	11.362557	10.718791
7-0	547.0	50.495890	339.034703	2.641096	57.508922	7.956164	14.385112
16-30	547.0	72.730594	313.863014	2.326301	48.118082	12.260274	16.467718
7-30	547.0	68.434703	435.969863	2.712511	52.894694	9.194521	20.905355
16-0	547.0	95.596347	396.664840	2.564932	44.650137	13.502283	22.487382
8-0	547.0	86.640183	538.769863	2.836804	48.464164	10.729680	28.292847
15-30	547.0	117.935160	437.792694	2.732877	42.198913	14.109589	28.832836
15-0	547.0	139.337900	457.223744	2.956347	39.378356	15.201826	34.498585
8-30	547.0	105.684018	585.113242	2.881005	45.401616	11.660274	35.645696
14-30	547.0	158.463927	479.973516	3.037991	37.546356	15.421918	40.179630
9-0	547.0	122.054795	614.801826	2.980548	42.160813	12.902283	42.316110
14-0	547.0	177.609132	498.291324	3.176804	35.867132	16.147945	45.416050
9-30	547.0	139.068493	625.532420	2.979361	40.300301	13.539726	47.960765
13-30	547.0	189.038356	505.639269	3.179361	35.180037	16.152511	49.109701
10-0	547.0	162.010046	619.925114	3.034064	37.936365	14.568950	52.444668
13-0	547.0	201.699543	525.153425	3.236712	34.433973	16.526941	53.158645
10-30	547.0	181.985388	603.909589	3.044110	37.057078	14.907763	55.263429
12-30	547.0	209.959817	539.770776	3.189498	34.484658	16.266667	55.692731
11-0	547.0	197.720548	583.982648	3.108128	35.386000	15.736986	56.675655
12-0	547.0	211.231963	557.055708	3.196986	34.290292	16.363470	57.228198
11-30	547.0	206.210959	570.200000	3.124566	35.200475	15.783562	57.500968

위의 표를 보면 오후 7시 30분부터 4시 30분까지는 어떤 계절에서든 발전량이 아예 없는 것으로 확인할 수 있다.

▼ 계절성 확인

- 1 # 월별 평균 데이터로 확인해보도록 한다.
- 2 temperature = train.groupby('Day').mean()
- 3 temperature

	DHI	DNI	WS	RH	Т	TARGET
Day						
0	44.937500	78.708333	1.929167	70.329375	-7.979167	6.520751
1	18.604167	295.187500	1.718750	74.231250	-6.312500	11.025184
2	28.937500	24.645833	2.470833	76.275000	-6.479167	3.165478
3	39.312500	66.979167	2.279167	65.695208	-5.687500	5.810807
4	44.125000	22.500000	3.995833	73.361042	0.854167	4.817273
•••						
1090	18.729167	306.437500	2.810417	57.857500	-0.895833	11.261230
1091	29.833333	206.583333	1.970833	55.269792	0.854167	9.349126
1092	34.562500	171.291667	3.368750	49.227292	2.187500	8.875729
1093	16.708333	309.812500	3.252083	49.218333	1.687500	11.114171
1094	35.833333	181.166667	2.137500	62.066042	-2.708333	8.710275

1095 rows × 6 columns

1 # 온도의 주기 확인 그래프 -> Temeperature로 계절을 확인할 수 있음 2 sns.lineplot(x=temperature.index, y=temperature['T'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec69806a20>

1 # 계절별로 태양광 발전의 추이 그래프 확인 2 sns.lineplot(x=temperature.index, y=temperature['TARGET'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec697a7e48>

1 sns.lineplot(x=train['Day'], y=train['TARGET'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec6954fa20>

1 sns.lineplot(x=train['Time'], y=train['TARGET'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec68d37a58>

추세는 없는 것으로 확인됨. 계절성은 존재하며 년 단위의 주기가 보임.

테스트 셋에서 가지고 있는 데이터가 어느 계절에 해당하는지를 판단하는 알고리즘을 구성하는 것이 좋은 예측을 하는데 필요함. -> 우리의 테스트 셋은 7일의 무작위 달의 데이터를 입력으로 받 기 때문에 내부 정보를 통해서만 판단해야함.

나의 제안: 평균 기온을 가지는 테이블을 하나 만든 다음에 해당 테이블을 참조하여 입력 데이터의 평균 기온과 가장 유사한 달 혹은 계절로 판단. 달로 가는게 조금 더 세부적이라 괜찮을거 같음. 그러나 매월 평균 기온 테이블이 월별 차이가 유의미하지 않다면 기준 기간을 늘려야 할 것임.(ex.월 -> 계절, 계절 -> 연도)

즉, 우리는 최종적으로 앞에서 만든 평균 기온 테이블의 레이블의 갯수만큼의 모델을 만들어야 할수 있음.

궁금한 점: stationary한 데이터의 계절성과 주기가 명확하다면 자기상관성은 존재하지 않는 것인가?

▼ DHI와 DNI와 발전량과의 관계 확인

- 1# 발전량이 존재하는 날들의 발전량과의 상관관계 테이블
- 2 sunny = train[train['TARGET'] > 0]
- 3 sunny.corr()

	Day	DHI	DNI	WS	RH	Т	TARGET
Day	1.000000	-0.041242	0.054576	0.075307	-0.169724	0.089614	0.007215
DHI	-0.041242	1.000000	-0.245374	0.062099	-0.228726	0.293557	0.408332
DNI	0.054576	-0.245374	1.000000	0.070019	-0.469546	0.149803	0.682004
WS	0.075307	0.062099	0.070019	1.000000	-0.050522	-0.134328	0.097465
RH	-0.169724	-0.228726	-0.469546	-0.050522	1.000000	-0.595369	-0.606587
Т	0.089614	0.293557	0.149803	-0.134328	-0.595369	1.000000	0.462893
TARGET	0.007215	0.408332	0.682004	0.097465	-0.606587	0.462893	1.000000

	Day	DHI	DNI	WS	RH	Т	TARGET
Day	1.000000	-0.027802	0.021901	0.038477	-0.127688	0.072897	-0.002505
DHI	-0.027802	1.000000	0.288294	0.203286	-0.478503	0.457813	0.666908
DNI	0.021901	0.288294	1.000000	0.219555	-0.611184	0.402460	0.833547
WS	0.038477	0.203286	0.219555	1.000000	-0.230035	0.027693	0.238521
RH	-0.127688	-0.478503	-0.611184	-0.230035	1.000000	-0.532777	-0.677178
T	0.072897	0.457813	0.402460	0.027693	-0.532777	1.000000	0.561990
TARGET	-0.002505	0.666908	0.833547	0.238521	-0.677178	0.561990	1.000000

1 sns.scatterplot(x=train['DHI'], y=train['TARGET'], hue=train['T'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec68d240f0>

1 sns.scatterplot(x=train['DHI'], y=train['TARGET'], hue=train['DNI']) 2 # 그래프 되게 이쁘게 나온다

<matplotlib.axes._subplots.AxesSubplot at 0x7fec69403e48>

1 sns.scatterplot(x=train['DHI'], y=train['DNI'], hue=train['TARGET'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec66a159b0>

1 sns.scatterplot(x=train['RH'], y=train['TARGET'], hue=train['DNI'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fec66834940>

관련은 있어보이나 큰 관련성은 없다고 판단되어짐.

1 sns.scatterplot(x=train['RH'], y=train['TARGET'], hue=train['DHI'])

```
<matplotlib.axes._subplots.AxesSubplot at 0x7fec66850a90>
```

상당히 중요한 결과를 볼 수 있는데 무작정 DNI와 DHI가 높다고 높은 발전량을 가지는 것이 아니고 일정한 조합 속에서 높은 발전량을 기록한다. DNI가 낮더라도 DHI가 크다면 발전량이 크고 DHI가 낮아도 DNI가 크면 발전량이 크다.

```
0
```

1 sns.scatterplot(x=train['DHI'], y=train['TARGET'], hue=train['T']).set_title("Scatter plot for [

DHI와 기온 역시 어느 정도의 관계를 가지며 발전량과 연관 있어보임

```
1 fig, axs = plt.subplots(ncols=3, figsize=(20, 7))
2
3 dhi_candidates = train[train['DHI'] > 300]
4 sns.scatterplot(x=train['DHI'], y=train['TARGET'], hue=train['DNI'], ax=axs[0]).set_title("AII [
5
6 temp = train[train['DHI'] <= 300]
7 sns.scatterplot(x=temp['DHI'], y=temp['TARGET'], hue=temp['DNI'], ax=axs[1]).set_title("DHI Unde 8
9 sns.scatterplot(x=dhi_candidates['DHI'], y=dhi_candidates['TARGET'], hue=dhi_candidates['DNI'], 10
11 plt.tight_layout()</pre>
```


1 zero_dhi = train[train['DHI'] == 0]
2 sns.lineplot(x=zero_dhi['Time'], y=zero_dhi['TARGET']).set_title("Line plot of Time and Target v

Text(0.5, 1.0, 'Line plot of Time and Target with dataset having zero-DHI')

1 zero_dni = train[train['DNI'] == 0]
2 sns.lineplot(x=zero_dni['Time'], y=zero_dni['TARGET']).set_title("Line plot of Time and Target")

Text(0.5, 1.0, 'Line plot of Time and Target with dataset having zero-DNI')

1 zero_dni['TARGET'].value_counts()

```
0.000000
            26660
1.501566
1.689020
                9
1.783110
                8
1.970805
                7
6.567907
1.782698
                1
1.689058
3.002604
                1
4.129443
```

Name: TARGET, Length: 2072, dtype: int64

1 temp = zero_dni[zero_dni['TARGET'] > 0]

2 temp

	Day	DHI	DNI	WS	RH	Τ	TARGET	Time
30	0	62	0	2.5	68.55	-5	5.818888	15-0
33	0	10	0	2.0	70.28	-6	0.938541	16-30
67	1	23	0	3.0	56.92	-2	2.158549	9-30
112	2	8	0	2.2	72.05	-3	0.750808	8-0
113	2	18	0	2.0	66.85	-2	1.689299	8-30
•••								
52095	1085	16	0	2.1	42.43	-5	1.501649	7-30
52209	1087	13	0	1.0	46.45	-3	1.220063	16-30
52257	1088	16	0	1.0	79.80	-2	1.501599	16-30
52401	1091	16	0	1.5	71.20	0	1.501566	16-30
52449	1092	15	0	1.0	57.35	2	1.407687	16-30

3248 rows × 8 columns

1 sns.scatterplot(x=zero_dni['DHI'], y=zero_dni['TARGET']).set_title('Scatter plot for Time and DH

Text(0.5, 1.0, 'Scatter plot for Time and DHI with dataset zero-DNI')

Scatter plot for Time and DHI with dataset zero-DNI 12 -

정리

논문 검색 결과 DHI와 DNI는 서로 결합하여 나타내는 방법이 있음. 그 공식을 그대로 적용하는 것 보다 피처를 통합하는 좋은 방법으로 변환을 시도해봄직함.

앞선 그래프 상 DHI와 DNI의 적절한 조합이 발전량과 크게 연관되어 있음. 새로운 피처를 생성하여 해당 피처와 타겟과의 관련도를 살펴 보는 것을 제안함.

DHI가 0이면 발전량이 0이 되지만 DNI가 0인 경우에는 DHI가 0이 아니라면 발전량은 존재함. DNI가 0인 경우에 발전량은 DHI와 완벽한 선형적인 관계를 가짐.

▼ 아웃라이어 확인 및 제거 (를 할 필요가 있나?)

앞서 확인하였듯이 DHI가 0이면 발전량도 0이기 때문에 발전량이 존재하는 날의 부분 데이터 프 레임을 sunny라고 명명한 뒤에 해당

1 train.describe()

	Day	DHI	DNI	WS	RH	
count	52560.000000	52560.000000	52560.000000	52560.000000	52560.000000	52560.000
mean	547.000000	64.344121	234.792371	2.456033	56.793102	9.279
std	316.102148	103.897125	349.684583	1.426874	22.052875	10.179
min	0.000000	0.000000	0.000000	0.000000	7.590000	-19.000
25%	273.000000	0.000000	0.000000	1.400000	39.697500	1.000
50%	547.000000	0.000000	0.000000	2.200000	57.600000	9.000
75%	821.000000	87.000000	469.000000	3.200000	72.770000	17.000
max	1094.000000	528.000000	1059.000000	12.000000	100.000000	35.000

¹ sns.boxplot(data=sunny, x='DNI')

<matplotlib.axes._subplots.AxesSubplot at 0x7fec6345e048>

1 dhi_candidates = train[train['DHI'] > 300]

2 dhi_candidates

	Day	DHI	DNI	WS	RH	Т	TARGET	Time
2426	50	307	254	2.8	69.60	5	43.730708	13-0
2519	52	318	206	3.4	60.21	-8	42.047546	11-30
2520	52	307	327	3.5	61.32	-8	48.617475	12-0
2521	52	317	274	3.4	61.30	-8	46.364927	12-30
2522	52	316	128	3.4	62.03	-8	37.260883	13-0
•••	•••	•••	•••					
48650	1013	320	140	0.5	17.56	20	38.563000	13-0
48886	1018	318	221	4.4	9.26	21	43.160061	11-0
48887	1018	326	121	4.4	9.26	21	38.093445	11-30
48888	1018	326	121	4.4	8.69	21	38.093445	12-0
48889	1018	305	304	4.4	8.68	21	47.006936	12-30

2950 rows × 8 columns

DHI와 DNI의 값 통합 방법

Global Horizontal (GHI) = Direct Normal (DNI) $X cos(\theta) + Diffuse Horizontal (DHI)$

DNI: 직달 일사 DHI: 산란 일사

외부 데이터 사용이 금지되어 있으므로 GHI를 외부에서 가져오는 것을 불가능함. 따라서 우리가 가지고 있는 데이터로 알맞은 cos 값을 찾아내는 방법을 제안함.

DHI는 기본적으로 발전량과 매우 선형적인 관계를 지니고 있으며 DNI에 따라 발전량이 조금씩 달라짐

첫번째 의문점) 정말 GHI를 구하는 것이 좋은 결과를 내는가? 두번째 의문점) cos 값을 우리가 구해야 하는 것인가?

▼ 해당 데이터의 발전량으로 계절을 예측하는 방법

- 1. 만약 두 피쳐의 값을 통합하여 계산한다면 저ㅏㄹ 모르겠다 아
- 2. LSTM을 사용하는 것이 맞는가?
- 3. LGBM으로도 예측이 가능한 것일까?