Case Study 3:

Step 1

The outputs of each of the gates (marked "a" to "g") of Circuit (a) is given below:

- a) A' (A Complement)
- b) **C'** (C Complement)
- c) (A' AND C')' = (A')' OR (C')' [De Morgan's Law] = A OR C
- d) **B'**
- e) AB' AND (A OR C)
- f) ABC
- g) (AB' AND (A OR C)) OR ABC

The outputs of each of the gates (marked "a" to "g") of Circuit (b) is given below:

- h) **B'** (B Complement)
- i) B' OR C
- j) A AND (B' OR C)

Output =
$$A(B' + C)$$

= $AB' + AC$

Step 3: Truth Table

Circuit (a):

Α	В	С	A'	B'	C'	A+C	AB'	AB'(A+C)	ABC	AB'(A+C)+ABC
0	0	0	1	1	1	0	0	0	0	0
0	0	1	1	1	0	1	0	0	0	0
0	1	0	1	0	1	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	1	1	0	1
1	0	1	0	1	0	1	1	1	0	1
1	1	0	0	0	1	1	0	0	0	0
1	1	1	0	0	0	1	0	0	1	1

Circuit (b):

Α	В	С	B'	B' + C	A(B' + C)
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1

Step 4: Checking The Equivalency of the Two Circuits

From the truth tables in Step 3 we can see that the output of circuit (a): AB'(A+C)+ABC is the same as that of the output of circuit (b): A(B'+C). Both give the same output when the inputs A, B, C are given.

```
Output of Circuit "a" = (AB'(A + C)) + ABC

= AB' + AB'C + ABC

= AB' + AC (B' + B) [0 OR 1 = 1 & 1 AND 1 = 1]

= AB' + AC

= Output of Circuit (b)
```