

Predicting the Price of the DAX

Here is where your presentation begins

Table of contents

Objective Collection Cleaning Processing Modelling Results

What is the direction of the Market?

- Die typische Darstellung des Marktpreises ist das CandleStick-Diagramm
- Jede Kerze repräsentiert eine Periode (in dem Beispiel einen Tag)
- Jede Kerze wird durch vier Preise erstellt (open, high, low, close)
- The direction can be definded by the difference between close and open price
- When the difference is positive the direction is upwards and when the difference is negative the direction is downwards

Wie wird der DAX berechnet?

- Der DAX wird aus den 30 größten deutschen Unternehmen berechnet
- Die Preisentwicklung der einzelnen Unternehmen hängt maßgeblich von Angebot und Nachfrage ab
- Es gibt viele verschiedene Einflussfaktoren, die das Marktverhalten der Marktteilnehmer beeinflusst
 - Fundamental Daten:
 - Wirtschaftsnachrichten
 - Wirtschaftskennzahlen der einzelnen Unternehmen
 - Gewinn
 - Umsatz
 - Wachstumsraten
 - Technische Marktanalyse
 - Indikatoren
 - Pattern

Fundamental Daten

Data collection

- Able to get the OLHC-price and the Volume from 1987 until now for the DAX by using the yfinance Libary
- Calculate the direction (closeprice openprice)
- Computing Indicators in different Timeframes

Indicators

- 10 different types of indicators
 - Momentum (rsi)
 - Trend (adx)
 - Overlap (sma)
 - Volatility (Bollinger Bands)
- for every indicator 3 i used different Timeperiods
- for every indicator which return a market price i created a categorical columns
 - Return 1 if the actual price above the indicator price
 - Return 0 if the acutal price is lover then the indicator price

Data Cleaning

- Before 2000 i had missing Data for the Volume
 - > The final Dataset started from 2000
- By computing a Indicator with a certain timeperiod, the first x rows are missing
 - I dropped the first x days

Feature Selection

- Use Varianace Threshold to drop Features with a Varaince less then 0.02
- Use Correlation Matrix to identify Multicorrelarity Threshold = 1

Class Imbalance

- Use Varianace Threshold to drop Features with a Varaince less then 0.02
- Use Correlation Matrix to identify Multicorrelarity Threshold = 1

Results

	Accuracy	F1	Recall	Precission	Карра
Logistic Regression	0.90	Special offers	\$23,000	No	Low
Company B		Reliability	\$27,000	No	Low
Company C		Repairs	\$30,000	Yes	High
Company D		Marketing	\$24,000	No	High
Company E	Technology	Customers	\$32,000	Yes	Low
Company F	Comfort	Best prices	\$15,000	Yes	High
Company G	Customization	Brand name	\$45,000	No	Low