- 15. A certain kind of string is sold in a ball 6 cm in diameter and in a ball 12 cm in diameter. The smaller ball costs \$1.00 and the larger one costs \$6.50. Which is the better buy?
- 16. Construction engineers know that the strength of a column is proportional to the area of its cross section. Suppose that the larger of two similar columns is three times as high as the smaller column.
 - a. The larger column is _? times as strong as the smaller column.
 - b. The larger column is _? times as heavy as the smaller column.
 - **c.** Which can support more, *per pound of column material*, the larger or the smaller column?
- 17. Two similar pyramids have lateral areas 8 ft² and 18 ft². If the volume of the smaller pyramid is 32 ft³, what is the volume of the larger pyramid?

- 18. Two similar cones have volumes 12π and 96π . If the lateral area of the smaller cone is 15π , what is the lateral area of the larger cone?
- 19. A plane parallel to the base of a cone divides the cone into two pieces. Find the ratios of the following:
 - a. The areas of the shaded circles
 - **b.** The lateral area of the top part of the cone to the lateral area of the whole cone
 - c. The lateral area of the top part of the cone to the lateral area of the bottom part
 - **d.** The volume of the top part of the cone to the volume of the whole cone
 - e. The volume of the top part of the cone to the volume of the bottom part

- 20. Redraw the figure for Exercise 19, changing the 9 cm and 3 cm dimensions to 10 cm and 4 cm, respectively. Then find the five ratios described in Exercise 19.
- 21. A pyramid with height 15 cm is separated into two pieces by a plane parallel to the base and 6 cm above it. What are the volumes of these two pieces if the volume of the original pyramid is 250 cm³?

The purpose of Exercises 22–27 is to prove Theorem 12-11 for some similar solids.

- 22. Two spheres have radii a and b. Prove that the ratio of the areas is $a^2:b^2$.
- 23. Two spheres have radii a and b. Prove that the ratio of the volumes is $a^3:b^3$.
- **24.** Two similar cones have radii r_1 and r_2 and heights h_1 and h_2 . Prove that the ratio of the volumes is h_1^3 : h_2^3 .
- **25.** Two similar cones have radii r_1 and r_2 and slant heights l_1 and l_2 . Prove that the ratio of the lateral areas is $r_1^2: r_2^2$.