

Ampliación de Matemáticas Variable Compleja (1)

Plano Complejo

Cambio de coordenadas cartesianas a polares:

$$a+bi
ightarrow egin{cases}
ho = \sqrt{a^2 + b^2} \ heta = rctan(b/a) \end{cases}$$

Cambio inverso:

$$ho \cdot e^{i heta}
ightarrow egin{cases} a =
ho \cos(heta) \ b =
ho \sin(heta) \end{cases}$$

Argumentos de un complejo

$$rg(z) = \{ heta + 2k\pi, k \in \mathbb{Z} \}$$

donde θ está definido como antes

Argumento principal

$$Arg(z) = arg(z) \cap (-\pi, \pi)$$

donde θ está definido como antes

Logaritmos de un complejo

$$\log(z) = \ln(|z|) + i\arg(z)$$

donde arg(z) denota todos los argumentos posibles

Logaritmo principal

$$Log(z) = ln(|z|) + iArg(z)$$

Nota: ni el argumento principal ni el logaritmo principal están definidos en la siguiente región:

No definidos en esta región

Funciones de variable compleja

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

Condiciones de Cauchy-Riemann:

$$\left\{egin{aligned} u_x(x,y) &= v_y(x,y) \ u_y(x,y) &= -v_x(x,y) \end{aligned}
ight.$$

f es **derivable** en z_0 si:

- Satisface Cauchy-Riemann en z_0
- u_x, u_y, v_x, v_y son continuas en z_0

f es **analítica** en z_0 si existe un entorno alrededor de z_0 en el que f es derivable en todos los puntos.

Una función $h: \mathbb{R}^2 \to \mathbb{R}$ es **armónica** si:

$$\nabla h^2 = 0$$

Teorema: Si f es analítica en z_0 , entonces u y v son armónicas en z_0 .

Teorema: Si A es simplemente conexo, y u es una función armónica, existe v (**armónica conjugada**) tal que f = u + iv es analítica en A

Cálculo práctico de la armónica conjugada:

- Resolvemos $v_y = u_x$ integrando respecto a y, de donde v queda definida salvo una función de x.
- Resolvemos v_x = -u_y integrando respecto a x, y aplicamos condiciones iniciales si nos dan.