Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a XI-a SOLUŢII ŞI BAREMURI ORIENTATIVE

Problema 1. Pentru un număr real a>1 dat, considerăm şirul $(x_n)_{n>1}$ definit prin $x_1=a$ și

$$x_1 + x_2 + \cdots + x_{n+1} = x_1 x_2 \cdots x_{n+1}$$

pentru $n \geq 1$.

Arătați că șirul este convergent și determinați limita sa.

Gazeta Matematică

$$x_1 x_2 \cdots x_n \ge n(x_1 x_2 \cdots x_n)^{\frac{1}{n}},$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{x_1 x_2 \cdots x_{n-1}}{x_1 x_2 \cdots x_{n-1} - 1} = 1$$

Problema 2. Fie matricele $A, B \in \mathcal{M}_3(\mathbb{R})$ cu $AB = O_3$.

- a) Demonstrați că funcția $f: \mathbb{C} \to \mathbb{C}$ dată de $f(x) = \det(A^2 + B^2 + xAB)$ este polinomială de gradul cel mult 2.
 - b) Demonstrați că $det(A^2 + B^2) \ge 0$.

Solutie.

- a) Cum $\det(AB) = 0$ obtinem $f(x) = \det(A^2 + B^2) + ax + bx^2$.
- b) Dar $f(i) = \det(A^2 + B^2 + iBA) = \det(A^2 + B^2 + i(BA AB)) =$

Pe de altă parte $f(1) = \det(A^2 + B^2 + AB + BA) = \det(A + B)^2 \ge 0$, de unde $\det(A^2 + B^2) + b \ge 0$. Prin adunarea ultimelor inegalități obținem $\det(A^2 + B^2) \ge 0$.

Problema 3. Fie $n \in \mathbb{N}^*$ şi $A, B \in \mathcal{M}_n(\mathbb{C})$ cu proprietatea că $AB^2 = A - B$.

- a) Arătați că matricea $I_n + B$ este inversabilă;
- b) Arătați că AB = BA.

Soluție. a) Din relația dată avem

$$AB^2 - AB + B + AB - A + I_n = I_n$$

ceea ce se scrie $(AB - A + I_n)(I_n + B) = I_n \dots 3$ puncte

In mod analog se obţine relaţia $(AB + A + I_n)(I_n - B) = I_n$ care atrage din inversabilitate $(I_n - B)(AB + A + I_n) = I_n$ ce devine prin efectuarea înmulţirilor $(AB - BA)(B + I_n) = 0_n$ (2) 2 puncte

Prin scăderea relațiilor (1) și (2) obținem $AB - BA = O_n$.

Problema 4. O funcție $f: \mathbb{R} \to \mathbb{R}$ are proprietatea \mathcal{F} dacă pentru orice $a \in \mathbb{R}$ există un interval (b,a) astfel încât pentru orice $x \in (b,a)$ să avem $f(x) \leq f(a)$.

- a) Dați un exemplu de funcție cu proprietatea \mathcal{F} nemonotonă pe \mathbb{R} .
- b) Arătați că dacă f este continuă și are proprietatea $\mathcal{F},$ atunci f este crescătoare.

b) Să presupunem că f nu este crescătoare. Fie atunci $x_1 < x_2$ astfel încât $f(x_1) > f(x_2)$. Considerăm mulţimea

$$M = \{x \in (x_1, x_2) \mid f(x) \le f(x_2)\}.$$