# 第9章 毛胚尺寸的優化設計

第一節 目前毛胚尺寸設計的方法

第二節 毛胚尺寸設計基準選擇的理論依據

第三節 鑄鍛件尺寸及公差的確定

第四節 焊接件尺寸的設計

# 第一節 目前毛胚尺寸設計的方法

- 不合理的設計方法:在零件圖尺寸的基礎上加減總加工餘量而得到,它沒有按毛胚所起的作用來經濟合理地設計毛胚尺寸及公差
- ●零件尺寸及公差的目標:保證裝配精度
- 沒有考慮的問題:確定毛胚基準後再計算毛胚尺寸及公差
- ▶技術管理漏洞:只根據零件圖,而不考慮加工工藝,毛胚工藝人員和加工工藝人員缺乏溝通

### 第二節 毛胚尺寸設計基準選擇的理論依據

#### 1. 粗基準的兩個重要特徵

- ●特徵1:粗基準面的粗加工餘量公差最小
  - 如果粗基準面需要加工,則粗基準面的粗加工餘量只和粗基準面本身的形狀誤差有關,和毛胚的所有尺寸和位置誤差無關
  - 證明:假設零件加工時粗基準為M面,各工序尺寸

 $MB_{1}$ ,  $B_{1}C_{1}$ ,  $B_{1}F_{1}$ ,  $C_{1}E_{1}$ ,  $C_{1}B_{2}$ ,  $F_{1}M_{1}$ 

根據工藝尺寸式原理,粗基準M面的粗加工餘量

 $MM_1 \rightarrow MB_1F_1M_1$ 

粗基準面M的粗加工餘量MM<sub>1</sub>只和工序尺寸MB<sub>1</sub>,B<sub>1</sub>F<sub>1</sub>,F<sub>1</sub>M<sub>1</sub>有關,和毛胚尺寸無關。但對於其他加工面,例如E面的粗加 $_{EE_1} \rightarrow E$  MB<sub>1</sub>C<sub>1</sub>E<sub>1</sub> ,除和工序尺寸MB<sub>1</sub>,B<sub>1</sub>C<sub>1</sub>,C<sub>1</sub>E<sub>1</sub>有關外,還和毛胚面E與粗基準M之間的尺寸有關。由於工序尺寸誤差遠比毛胚尺寸誤差小,因而粗基準面的粗加工餘量公差最小。

## 第二節 毛胚尺寸設計基準選擇的理論依據

- 1. 粗基準的兩個重要特徵
  - ●特徵2:粗基準面和其他加工過的面之間的尺寸及位置誤 差最小
    - 證明:假設零件加工時粗基準為M面,但M面不需加工,各工 序保證的位置關係

$$M \perp B_1$$
, $B_1 \perp D_1$ , $B_1 // E_1$ , $D_1 // P_1$  根據工藝尺寸式原理, $M$ 面與 $P_1$ 面的位置關係  $M // P_1 \rightarrow M \perp B_1 \perp D_1 // P_1$ 

 $\infty$ M面和 $P_1$ 面的位置只和工序位置  $M \perp B_1, B_1 \perp D_1, D_1 // P_1$  有關,和毛胚各面的位置誤差無關,但對於其他不加工的面,例如N毛胚面和 $P_1$ 面的位置關係為

 $N \perp P_1 \rightarrow N \quad M \perp B_1 \perp D_1 / / P_1$ ,這說明,N面和  $P_1$ 面的位置關係除和  $M \perp B_1, B_1 \perp D_1, D_1 / P_1$  有關外,還與毛胚面N和粗基準面M的位置誤差有關。同理,由於工序位置誤差遠比毛胚各面的位置誤差小,因而粗基準面與其他加工過的面的位置誤差最小。同理可以證明,粗基準面和其他加工過的面之間的尺寸誤差最小。

№ 這裡要強調的是,粗基準面需要加工時,顯示了特徵 1,粗基準不加工時,顯示了特徵2,這兩個重要特徵 應該是選擇加工粗基準和毛胚尺寸基準的重要依據, 以前顯然沒有人給出總結,但在選擇加工粗基準時已 經用到,可惜在毛胚尺寸設計中沒有考慮。

### 第二節

### 毛胚尺寸設計基準選擇的理論依據

- 2. 毛胚各面粗加工餘量分析
  - 假定毛胚圖尺寸按零件圖的設計形式
    - E面的設計基準為F面(毛胚尺寸為FE)
    - F面的設計基準為B面(毛胚尺寸為BF)
    - B面的設計基準為M面(毛胚尺寸為MB)
    - **EE1→EFBMB**<sub>1</sub>**C**<sub>1</sub>**E**<sub>1</sub>: 有三個毛胚尺寸EF,FB,BM的誤差影響 餘量EE<sub>1</sub>
  - 由於毛胚尺寸誤差都較大,因而餘量公差很大。因此從減少餘量公差方面考慮,毛胚各面的設計基準應盡可能採用加工該零件時的粗基準,使得只有一個毛胚尺寸影響各面的粗加工餘量

### 第二節

### 毛胚尺寸設計基準選擇的理論依據

- 3. 非加工面與加工面之間的位置及尺寸誤差分析
  - 非加工面N和 $P_1$ 面的位置關係 $N \perp P_1 \rightarrow N...M \perp B_1 \perp D_1//P_1$  為例
  - ●如果在毛胚圖中N面的位置設計基準直接為粗基準M面  $(M \perp N)$ ,則 $N \perp P_1 \rightarrow N \perp M \perp B_1 \perp D_1//P_1$ ,只有 $N \perp M$  适一毛胚位置誤差影響 $N \perp P_1$ ,否則將有更多的毛胚位置誤差影響 $N \perp P_1$
  - ●假設毛胚圖按零件圖的設計形式,毛胚N面的基準為D面(D//N),D面的基準為E面(E L D),E面的基準為M面 (M//E),則N L  $P_1$  → N//D L E//M L  $B_1$  L  $D_1//P_1$ ,有 D//N,E L D,M//E 三個毛胚位置誤差影響N L  $P_1$

## 第二節 毛胚尺寸設計基準選擇的理論依據

#### 4. 毛胚尺寸設計原則

- 毛胚各面的設計基準應盡量採用加工該毛胚時採用的網 基準
  - 毛胚各面的粗加工餘量公差最小,從而可選取較小的加工 餘量,降低材料消耗
  - 非加工面與加工面之間的相對位置尺寸最準確,以提高零 件的精度

#### 1. 鑄件的基本尺寸

- 機械加工前的鑄件尺寸,它包括必要的機械加工餘量
- 有兩種情況:
  - 不需要機械加工的尺寸,它的基本尺寸就是零件圖上標註的尺寸
  - ② 要機械加工的尺寸,這時鑄件的基本尺寸應該是零件圖上的尺寸 加減必要的機械加工餘量
- 軸類尺寸=鑄件加工後的尺寸+要求的機械加工餘量RMA+該 尺寸的下偏差
- 有加工要求的孔類基本尺寸=鑄件加工後的尺寸-要求的機械加工餘量-該尺寸的上偏差
- 必要的機械加工餘量=要求的機械加工餘量RMA+尺寸的下偏 差(對孔為上偏差)

#### 2. 機械加工餘量

在鑄件上為隨後可用機械加工方法去除鑄造對金屬表面 的影響,並使它達到所要求的表面特性和必要的尺寸精 度而留出的金屬層厚度

#### 要求的機械加工餘量(RMA)

鑄件尺寸為最小極限尺寸時 (對孔為最大極限尺寸)應 該保證的最小餘量值

#### 預期的機械加工餘量

要求的機械加工餘量+鑄件尺寸的下偏差(對孔為減去上偏差)

#### 實際的機械加工餘量

取決於鑄件的表面質量、鑄 件的尺寸精度以及機械加工 的條件 ≥>例如,鑄鋼件某一單側加工後的尺寸是550mm,要求 的機械加工餘量(RMA)為4mm,尺寸公差等級為 CT10,尺寸公差數值為5mm,若公差按對稱分布,則 為±2.5mm。這時對該尺寸來說,基本尺寸為550+4+ 2.5=556.5mm,即名義機械加工餘量為6.5mm,如 果生產中能夠保證該尺寸符合公差的要求,則最大極 限尺寸為559mm,最小極限尺寸為554mm,鑄件實際 上可能有的機械加工餘量在4mm~9mm之間,這取 決於鑄件該尺寸的實際偏差。

≥≥對"要求的機械加工餘量"用RMA來表示,取自 Required Maching Allowance的首字母。標準共規定 了十個RMA等級,並用A,B,C,D,E,F,G,H,J,K 作為等級的代號,其中A級餘量最小,K級餘量最大。 同時,標準還規定,鑄件的RMA只決定於鑄件的最大 外形尺寸,即鑄件機械加工後(注意,不是鑄件毛胚 的最大尺寸)的最大輪廓尺寸。而且對於同一鑄件的 不同加工表面,RMA是一樣的,即不管加工面的大小 和加工面之間的尺寸如何,也不管加工面是鑄件澆注 時的底面、側面還是頂面,同一鑄件只取一個RMA值。

#### 2. 機械加工餘量

• 表9-1 毛胚鑄件典型的RMA等級

|           | 要求加工的機械加工餘量等級 |      |      |      |      |      |        |          |          |  |  |  |  |
|-----------|---------------|------|------|------|------|------|--------|----------|----------|--|--|--|--|
| 方法        | <u> </u>      |      |      |      |      |      |        |          |          |  |  |  |  |
|           | 鋼             | 灰鑄鐵  | 球墨鑄鐵 | 可鍛鑄鐵 | 銅合金  | 辞合金  | 輕金屬 合金 | 線基<br>合金 | 鈷基<br>合金 |  |  |  |  |
| 砂型鑄造 手工造型 | G~K           | F~H  | F~H  | F~H  | F~H  | F~H  | F~H    | G~K      | G~K      |  |  |  |  |
| 機器造型      | F∼H           | E~G  | E~G  | E~G  | E~G  | E~G  | E~G    | F~H      | F∼H      |  |  |  |  |
| 金屬模       | _             | D~F  | D~F  | D~F  | D~F  | D~F  | D~F    | _        | _        |  |  |  |  |
| 壓力鑄造      |               | _    | _    | _    | B~D  | B~D  | B~D    | _        | _        |  |  |  |  |
| 熔模鑄造      | E             | Е    | E    | _    | Е    |      | E      | E        | Е        |  |  |  |  |
| 注:本標準     | 環滴用           | 於太寿未 | 列出,  | 由鑄造  | 高與採購 | 持之間は | 議商定的   | 勺丁藝的     | 且材料      |  |  |  |  |

汪:本標準遠適用於本表木列出,由鑄造敞與採購万乙間協議商定的上藝與材料

≫對每種鑄造金屬和鑄造方法,一般推薦了三個等級。 譬如,機器造模的砂模灰鑄鐵推薦用RMA為E,F,G 三級,對金屬模鑄造的一些鑄件推薦用的RMA為D, E,F三級,但對於砂模手工造模的鑄鋼件和鎳、鈷合 金鑄件則推薦了四個等級,即G,H,J,K。而對熔模 鑄件則僅推薦了一個E級。

### 第三節

### 鑄鍛件尺寸及公差的確定

- 2. 機械加工餘量
  - 表9-2 要求的機械加工餘量數值RMA

|          | 最大尺                          | 要求的機械加工餘量等級RMA/mm |     |     |     |     |     |     |     |     |     |     |  |  |  |
|----------|------------------------------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
|          | >                            | <=                | A   | В   | C   | D   | E   | F   | G   | H   | J   | K   |  |  |  |
|          | _                            | 40                | 0.1 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.5 | 0.7 | 1   | 1.4 |  |  |  |
|          | 40                           | 63                | 0.1 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.7 | 1   | 1.4 | 2   |  |  |  |
|          | 63                           | 100               | 0.2 | 0.3 | 0.4 | 0.5 | 0.7 | 1   | 1.4 | 2   | 2.8 | 4   |  |  |  |
|          | 100                          | 160               | 0.3 | 0.4 | 0.5 | 0.8 | 1   | 1.5 | 2.2 | 3   | 4   | 6   |  |  |  |
|          | 160                          | 250               | 0.3 | 0.5 | 0.7 | 1   | 1.4 | 2   | 2.8 | 4   | 5.5 | 8   |  |  |  |
|          | 250                          | 400               | 0.4 | 0.7 | 0.9 | 1.3 | 1.4 | 2.5 | 3.5 | 5   | 7   | 10  |  |  |  |
|          | 400                          | 630               | 0.5 | 0.8 | 1.1 | 1.5 | 2.4 | 3   | 4   | 6   | 9   | 12  |  |  |  |
|          | 630                          | 1000              | 0.6 | 0.9 | 1.2 | 1.8 | 2.5 | 3.5 | 5   | 7   | 10  | 14  |  |  |  |
|          | 1000                         | 1600              | 0.7 | 1   | 1.4 | 2   | 2.8 | 4   | 5.5 | 8   | 11  | 16  |  |  |  |
|          | 1600                         | 2500              | 0.8 | 1.1 | 1.6 | 2.2 | 3.2 | 4.5 | 6   | 9   | 13  | 18  |  |  |  |
|          | 2500                         | 4000              | 0.9 | 1.3 | 1.8 | 2.5 | 3.5 | 5   | 7   | 10  | 14  | 20  |  |  |  |
|          | 4000                         | 6300<br>1000      | 1   | 1.4 | 2   | 2.8 | 4   | 5.5 | 8   | 11  | 16  | 22  |  |  |  |
| 尺寸設計理論及例 | <b>6300</b><br><sup>医用</sup> | 0                 | 1.1 | 1.5 | 2.2 | 3   | 4.5 | 6   | 9   | 12  | 17  | 24  |  |  |  |

#### 3. 鑄件公差等級

- GB/T6414-1999對鑄件尺寸公差共規定16個等級CT1到 CT16
- CT:取自英語Costing Toletrance的兩個首寫字母
- 在同一公差等級中,鑄件的尺寸公差數值同基本尺寸成 幂函數的關係,而對於鑄件的同一尺寸檔,相鄰公差等 級的公差數值之間成幾何級數的關係
  - CT1到CT13 級公差數值的公比: $\sqrt{2}$ ,大約為1.4
  - CT13到CT16級公差數值的公比:√2,大約為1.25

### 第三節

### 鑄鍛件尺寸及公差的確定

#### 3. 鑄件公差等級:

● 表9-3 鑄件尺寸公差表

|      | 鑄件<br>尺寸 |      | 鑄件尺寸公差等級CT |      |      |      |      |      |     |     |     |     |     |    |    |    |    |
|------|----------|------|------------|------|------|------|------|------|-----|-----|-----|-----|-----|----|----|----|----|
| 大於   | 至        | 1    | 2          | 3    | 4    | 5    | 6    | 7    | 8   | 9   | 10  | 11  | 12  | 13 | 14 | 15 | 16 |
| _    | 10       | 0.09 | 0.13       | 0.18 | 0.26 | 0.36 | 0.52 | 0.74 | 1   | 1.5 | 2   | 2.8 | 4.2 |    |    |    |    |
| 10   | 16       | 0.10 | 0.14       | 0.20 | 0.28 | 0.38 | 0.54 | 0.78 | 1.1 | 1.6 | 2.2 | 3.0 | 4.4 |    |    |    |    |
| 16   | 25       | 0.11 | 0.15       | 0.22 | 0.30 | 0.42 | 0.58 | 0.82 | 1.2 | 1.7 | 2.4 | 3.2 | 4.6 | 6  | 8  | 10 | 12 |
| 25   | 40       | 0.12 | 0.17       | 0.24 | 0.32 | 0.46 | 0.64 | 0.9  | 1.3 | 1.8 | 2.6 | 3.6 | 5   | 7  | 9  | 11 | 14 |
| 40   | 63       | 0.13 | 0.18       | 0.26 | 0.36 | 0.50 | 0.70 | 1    | 1.4 | 2   | 2.8 | 4   | 5.6 | 8  | 10 | 12 | 16 |
| 63   | 100      | 0.14 | 0.20       | 0.28 | 0.40 | 0.56 | 0.74 | 1.1  | 1.6 | 2.2 | 3.2 | 4.4 | 6   | 9  | 11 | 14 | 18 |
| 100  | 160      | 0.15 | 0.22       | 0.30 | 0.44 | 0.62 | 0.88 | 1.2  | 1.8 | 2.5 | 3.6 | 5   | 7   | 10 | 12 | 16 | 20 |
| 160  | 250      | _    | 0.24       | 0.34 | 0.50 | 0.72 | 1    | 1.4  | 2   | 2.8 | 4   | 5.6 | 8   | 11 | 14 | 18 | 22 |
| 250  | 400      | _    | _          | 0.40 | 0.56 | 0.78 | 1.1  | 1.6  | 2.2 | 3.2 | 4.4 | 6.2 | 9   | 12 | 16 | 20 | 25 |
| 400  | 630      | _    | _          | _    | 0.64 | 0.9  | 1.2  | 1.8  | 2.6 | 3.6 | 5   | 7   | 10  | 14 | 18 | 22 | 28 |
| 630  | 1000     | _    |            |      | 0.72 | 1    | 1.4  | 2    | 2.8 | 4.4 | 6   | 8   | 11  | 16 | 20 | 25 | 32 |
| 1000 | 1600     |      | _          | _    | 0.80 | 1.1  | 1.6  | 2.2  | 3.2 | 4.6 | 7   | 9   | 13  | 18 | 23 | 29 | 37 |
| 1600 | 2500     | _    | _          | _    | _    | _    | _    | 2.6  | 3.8 | 5.4 | 8   | 10  | 15  | 21 | 26 | 33 | 42 |
| 2500 | 4000     | _    | _          | _    | _    | _    | _    |      | 4.4 | 6.2 | 9   | 12  | 17  | 24 | 30 | 38 | 49 |
| 4000 | 6300     | _    | _          | _    | _    | _    | _    |      | —   | 7   | 10  | 14  | 20  | 28 | 35 | 44 | 56 |
| 6300 | 10000    | _    | _          | _    | _    | _    | _    | _    | _   | _   | 11  | 16  | 23  | 32 | 40 | 50 | 64 |

尺寸設計理論及應用

## 第三節

## 鑄鍛件尺寸及公差的確定

- 3. 鑄件公差等級
  - 表9-4 大批量生產鑄件的尺寸公差等級

|              |       | 公 差 等 級 CT |       |       |       |       |        |          |          |  |  |  |  |  |
|--------------|-------|------------|-------|-------|-------|-------|--------|----------|----------|--|--|--|--|--|
| 方法           |       |            |       |       |       |       |        |          |          |  |  |  |  |  |
|              | 鋼     | 灰鑄鐵        | 球墨    | 可鍛鑄鐵  | 銅合金   | 辞合金   | 輕金屬 合金 | 線基<br>合金 | 鈷基<br>合金 |  |  |  |  |  |
| 砂模鑄造 手工造模    | 11~14 | 11~14      | 11~14 | 11~14 | 11~13 | 11~13 | 9~12   | 11~14    | 11~14    |  |  |  |  |  |
| 砂模鑄造<br>機器造模 | 8~12  | 8~12       | 8~12  | 8~12  | 8~12  | 8~10  | 7~9    | 8~12     | 8~12     |  |  |  |  |  |
| 金屬模          | _     | 8~10       | 8~10  | 8~10  | 8~10  | 7~9   | 7~9    |          | _        |  |  |  |  |  |
| 壓力鑄造         |       |            | _     | _     | 6~8   | 4~6   | 4~7    |          |          |  |  |  |  |  |
| 熔模 水玻璃       | 离 7~9 | 7~9        | 7~9   | _     | 5~8   |       | 58     | 7~9      | 7~9      |  |  |  |  |  |
| 鑄造 矽溶        | 寥 4~6 | 4~6        | 4~6   | _     | 4~6   |       | 4~6    | 4~6      | 4~6      |  |  |  |  |  |

- 鑄件公差等級
  - 表9-5 小批生產或單件生產的鑄件尺寸公差等級

| 方法   | <del></del> /生 <del>/甘</del> |       | 公 差 等 級 CT<br>鑄 件 材 料 |       |       |       |       |        |          |          |  |  |  |
|------|------------------------------|-------|-----------------------|-------|-------|-------|-------|--------|----------|----------|--|--|--|
|      | 造模<br>材料                     | 錙     | 灰鑄鐵                   | 球墨    | 可鍛鑄鐵  | 銅合金   | 辞合金   | 輕金屬 合金 | 線基<br>合金 | 盆基<br>合金 |  |  |  |
| 砂模鑄造 | 黏土砂                          | 11~14 | 11~14                 | 11~14 | 11~14 | 11~13 | 10~13 | 9~12   | 11~14    | 11~14    |  |  |  |
| 手工造模 | 化學黏<br>接劑砂                   | 8~12  | 8~12                  | 8~12  | 8~12  | 8~12  | 8~10  | 7~9    | 8~12     | 8~12     |  |  |  |

- №在這兩個表中,對於用某些鑄造方法生產的金屬鑄件,規定的公差等級範圍比較寬,跨度要寬到5級。在這樣寬的範圍內如何正確地選定一個等級,最好的做法是,鑄件的使用者或鑄件的設計人員應與鑄造部門或鑄造廠家商定,因為對鑄件提出過高的尺寸精度要求只會增加鑄件的成本。
- №應當指出的是,鑄件的產品標準可以具體規定其尺寸公差要求,即當鑄件的產品技術條件規定了它的尺寸公差後,則有關尺寸公差方面的要求應以鑄件的產品技術條件的規定為準,而不再執行本標準。可以說,這是標準實施方面的通行準則,即以具體產品的標準為優先。在產品專用技術條件或標準中未對鑄件尺寸公差提出要求時,則應採用GB/T6414-1999標準對鑄件尺寸公差的通用規定。

- 4. 應用範例
  - 1) 殼體零件毛胚尺寸分析
    - 離合器殼體零件圖







- 4. 應用範例
  - 1) 殼體零件毛胚尺寸分析
    - 按原則設計的殼體毛胚圖





# 第三節

## 鑄鍛件尺寸及公差的確定

#### 4. 應用範例

- 1) 殼體零件毛胚尺寸分析
  - 零件的材料為鑄鐵,毛胚模型採用機器造型,根據表9-1和表9-4選取該鑄件的RMA等級為F,尺寸公差等級為9級。零件外形的最大尺寸是102mm,從表9-2查得該毛胚的RMA數值是1.5mm,毛胚各面的尺寸公差由表9-3查得,它為2.5,若公差對稱分布,則為±1.25,名義餘量為1.5+1.25=2.75(為計算方便取3)。具體加工工藝過程為(其中E面和F面為不加工表面,D面為粗基準面):
    - 工序5 粗車,保證尺寸 $DB_1$ =9.7 $\pm$ 0.2; $B_1A_1$ =23.2 $\pm$ 0.2
    - 工序10 粗車,保證尺寸 $B_1H_1=81\pm0.25$
    - 工序15 半精車,保證尺寸 $B_1H_2$ =80.25 $\pm$ 0.1
    - 工序20 半精車,保證尺寸 $H_2A_2$ =102.39 ± 0.1; $H_2B_2$ =79.25 ± 0.08; $A_2C_1$ =25.5 ± 0.08
    - 工序25 粗車,保證尺寸 $B_2G_1=62.7\pm0.25$
    - 工序30 精車保證尺寸 $H_2B_3 = 79.14 \pm 0.07$ ; $B_3G_2 = 61.69 \pm 0.1$

尺寸設計理論及應用

#### ∞面粗加工餘量的比較計算

≫依常規設計的毛胚圖進行毛胚加工,A面的粗加工餘量為:

$$AA_1 \rightarrow AHBDB_1A_1$$

$$AA_1 = AH - HB + BD - DB_1 - B_1A_1 =$$

$$(108.4 \pm 1.25) - (85 \pm 1.1) + (11.6 \pm 0.8) -$$

$$(9.7 \pm 0.2) - (23.2 \pm 0.2) =$$

- **≥> 2.1 ± 3.55** (最大餘量為5.65,最小餘量為-1.45)
- № 從計算結果可以看出,依常規設計的毛胚圖進行的毛胚加工,A面的最小餘量為負值,也就是說A面可能沒有餘量。

### >> 面粗加工餘量的比較計算

≫依照原則設計的毛胚圖進行的毛胚加工,A面的粗加工餘量為:

$$AA_1 \rightarrow ADB_1A_1$$

$$AA_1 = AD - DB_1 - B_1A_1$$

$$= (35 \pm 0.9) - (9.7 \pm 0.2) - (23.2 \pm 0.2)$$

- ≥ = 2.1±1.3(最大餘量為3.4,最小餘量為0.8)
- ※以上計算結果表明,依照原則設計的毛胚圖進行的毛胚加工,A面的餘量不會出現負值,而且最大餘量也比圖面上的要求小,因此從餘量分配合理方面考慮,應該依照原則設計毛胚。

### 寥練習

≥>試分別依據常規設計及原則設計驗證G面與H面 之粗加工餘量

- ∞(2) 兩個設計尺寸 $EG_2$ =12.7 ± 1.5及 $FH_2$ =22.35 ± 1.5的計算。
- ∞按常規設計的毛胚圖進行的毛胚加工有:

$$EG_2 \rightarrow EGBDB_1H_2B_3G_2$$
 $EG_2 = EG - GB + BD - DB_1 + B_1H_2 - H_2B_3 + B_3G_2$ 
 $= (15.7 \pm 0.8) - (67.7 \pm 1.1)$ 
 $+ (11.6 \pm 0.8) - (9.7 \pm 0.2)$ 
 $+ (80.25 \pm 0.1) - (79.14 \pm 0.07) + (61.69 \pm 0.1)$ 
 $= 12.7\pm3.17$ (設計要求公差為12.7±1.5)

≫上面計算結果表明,按常規設計的毛胚圖進行的毛胚 加工,設計尺寸EG<sub>2</sub>=12.7±1.5不能夠保證。 ∞2按原則設計的毛胚圖進行的毛胚加工有:

$$EG_2 \rightarrow EDB_1H_2B_3G_2$$

$$EG_2 = ED - DB_1 + B_1H_2 - H_2B_3 + B_3G_2$$

- $= -(40.4\pm 1) (9.7\pm 0.2) + (80.25\pm 0.1) (79.14\pm 0.07) + (61.69\pm 0.1)$
- $\approx$  =12.7 $\pm$ 1.47
- ≥>計算結果說明,依原則設計的毛胚圖進行的毛胚加工,設計尺寸EG<sub>2</sub>=12.7±1.5能夠保證。

0

### 練習

試分別計算按常規設計和原則設計的毛胚圖進行的毛胚加工,設計尺寸FH<sub>2</sub> = 22.35 ± 1.5是否能夠保證。

- ∞從上面分析計算可看出,依照原則對毛胚尺寸進行設計,
- ≫一、可以減小各加工面的粗加工餘量公差,從而減小加工餘量。
- ※二、可以減小非加工面與加工面之間的尺寸及位置誤差,提高零件的製造精度。
- ※因此依本文提出的方法設計毛胚尺寸對提高產品品質、 降低材料消耗有重要意義。對於批量較大的毛胚設計 尤其重要,這就要求機械企業改變目前毛胚設計的習 價

- 4. 應用範例
  - 2) 箱體孔粗加工餘量分析計算
    - 箱體零件圖



#### 4. 應用範例

2) 箱體孔粗加工餘量分析計算

• 按常規設計的毛胚圖







## 第三節 鑄鍛件尺寸及公差的確定



- 4. 應用範例
  - 2) 箱體孔粗加工餘量分析計算
    - 按原則設計的毛胚圖





## 第三節 鑄鍛件尺寸及公差的確定

- 4. 應用範例
  - 2) 箱體孔粗加工餘量分析計算
    - 箱體的加工工藝過程如下:
      - 工序20 以孔A為基準,加工孔C,A $C_{1X}$ =98.6±0.025
      - 工序25 以孔C,為基準,加工孔E,保證尺寸C,E,x=15.6±0.012
      - 工序30 以孔 $E_1$ 為基準,加工孔D,保證尺寸 $E_1D_{1X}$ =35.6 $\pm$ 0.016
      - 工序35 以孔 $D_1$ 為基準,加工孔B,保證尺寸 $D_1B_{1X}$ =132.6 $\pm$ 0.023

≥>(1)按常規設計的毛胚圖進行毛胚加工,計算孔D的加工餘量及公差:

$$FF_{1} = \rightarrow FDCBAC_{1}E_{1}D_{1}F_{1}$$

$$FF_{1X} = -FD_{X} - DC_{X} - CB_{X} + BA_{X} + AC_{1X}$$

$$-C_{1}E_{1X} + E_{1}D_{1X} + D_{1}F_{1X}$$

$$= -(7 \pm 0.425) - (20 \pm 0.85) - (112.6 \pm 1.25)$$

$$+ (14 \pm 0.8) + (98.6 \pm 0.025) - (15.6 \pm 0.012)$$

$$+ (35.6 \pm 0.016) + (10 \pm 0.01) = 3 \pm 3.388$$

№ 孔的最小單位加工餘量為-o.4,可見按傳統方法 的毛胚可能沒有加工餘量, ≥>(2)按原則設計的毛胚圖加工,孔D的加工餘量及公差:

$$FF_{1} = \rightarrow FDAC_{1}E_{1}D_{1}F_{1}$$

$$FF_{1X} = -FD_{X} - DA_{X} + AC_{1X} - C_{1}E_{1X} + E_{1}D_{1X} + D_{1}F_{1X}$$

$$= -(7 \pm 0.425) - (118.6 \pm 1.25) + (98.6 \pm 0.025)$$

$$-(15.6 \pm 0.012) + (35.6 \pm 0.016) + (10 \pm 0.01)$$

$$= 3 \pm 1.738$$

№ 孔的最小單面加工餘量為1.25,可見按原則設計的毛 胚可以保證有足夠的加工餘量。其他孔的加工餘量也 有類似的結果。

### 第四節

### 焊接件尺寸的設計

- 加工該焊接件時以A面為粗基準
  - 具體加工工序尺寸依次為:

$$AD_{1} = 80\pm0.1$$

$$D_{1}E_{1}=80\pm0.1$$

$$E_1F_1 = 80\pm0.1$$

$$F_1G_1=25\pm0.05$$



# 第四節 焊接件尺寸的設計

• 按常規設計的毛胚圖







# 第四節 焊接件尺寸的設計

按原則設計的毛胚圖





#### ∞按常規的毛胚計算

SO 
$$GG_1$$
 →  $GFHBCAD_1E_1F_1G_1$   
=  $-GF + FH - HB + BC - CA + AD_1 +$   
 $D_1E_1 + E_1F_1 + F_1G_1 =$   
 $-(22 \pm 0.5) + (40 \pm 1) - (262 \pm 1) +$   
 $(12 \pm 0.5) - (30 \pm 0.5) + (80 \pm 0.1) +$   
 $(80 \pm 0.1) + (80 \pm 0.1) + (25 \pm 0.05) = 3 \pm 3.85$ 

≫ 從計算結果看,孔F的最大加工餘量為6.85,而最小加工餘量為-0.85,可見,按傳統設計的毛胚加工,孔F的餘量GG,可能出現沒有餘量的情況。

#### ≥2.按原則設計的毛胚計算

$$GG_1 \rightarrow GFBAD_1E_1F_1G_1$$

$$GG_1 = -GF - FB - BA + AD_1 + D_1E_1 + E_1F_1 + F_1G_1$$

$$= -(22 \pm 0.5) - (222 \pm 1) - (18 \pm 0.5) + (80 \pm 0.1)$$

$$+ (80 \pm 0.1) + (80 \pm 0.1) + (25 \pm 0.05)$$

- $=3^{\pm 2.35}$ (最小加工餘量為0.65,可以保證正常加工)
- ≫從計算結果看,按原則設計的毛胚加工,孔F的餘量 GG<sub>1</sub>比較合理。