[2]
$$B(6) = (1-6^{\circ})I + 2(6^{\circ}) + 266^{\circ}$$
 [1]

Let $A = (1-6^{\circ})I$, $B = 2[6^{\circ}]$, $C = 260^{\circ}$
 $B(6)^{T} = (1-6^{\circ})I + 2[6^{\circ}]^{T} + 2(66^{\circ})^{T}$
 $B(6)^{T} = (1-6^{\circ})I - 2[6^{\circ}]^{T} + 266^{T}$

[3]

 $B(6) \cdot B(6)^{T} = (A+B+C)(A-B+C)$
 $= A^{2} \cdot AB + AC + BA - B^{2} + BC$
 $+(A-CB+C^{2})$
 $A^{2} = (1-6^{\circ})^{2}I$, $AB = BA \sim BA - AB = 0$
 $AC = 2(1-6^{\circ}) \cdot 66^{T} = CA$, $B^{2} = 4[6^{\circ}]^{2}$
 $BC = CB = 0$ ($[6] \cdot 66^{T} = 6 \times 66^{T} = 0$)

 $C^{2} = (266^{T})^{2} = 4^{2} \cdot 6^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6)^{T} = A^{2} \cdot B^{2} + C^{2} + 2^{2} \cdot 66^{T}$
 $B(6) \cdot B(6) \cdot B(6) \cdot B(6)$
 $B(6) \cdot B(6) \cdot B(6)$
 B

$$B(6)B^{T}(6) =$$

$$(1-6^{2})^{2}I - 466T + 46^{2}I + 46^{2}66T + 46^{2}G = 66T$$

$$+4(1-6^{2})^{2}G = 66T$$

$$(1) + (2) + (3) = 0$$