### Cours Qualité et Tests Chapitre 1 - Introduction



Responsable du cours : Héla Hachicha

Année Universitaire : 2016 - 2017



#### Plan du cours

- Chapitre 1: Introduction
- Chapitre 2 : Modèles de cycle de vie et Test
- Chapitre 3: Tests
  - Introduction au test de logiciels
  - Les concepts de test de logiciels
  - Les méthodes de design des cas de test
  - Les stratégies de tests
- Chapitre 4 : Métriques
- Chapitre 5 : Qualité

,

#### Sommaire

- Introduction: Rappel
  - Génie logiciel
  - Utilité de logiciels
  - Crise de logiciels
  - Comment résoudre les problèmes ?
  - Comment réussir ?

#### Qu'est-ce que le génie logiciel?

Le **génie logiciel** est un domaine des sciences de l'ingénieur dont l'objet d'étude est la **conception**, la **fabrication** et la **maintenance** des systèmes informatiques complexes.

6

#### Définition du « logiciel »

- « Un logiciel est:
- (1) l'ensemble des instructions qui après leurs exécutions nous fournissent la fonction et la performance désirée,
- (2) les structures de données qui permettent aux programmes de manipuler adéquatement l'information,
- (3) des documents qui décrivent les opérations et l'utilisation des programmes. »

Pressman, R., Software Engineering - A Practitioners Approach, McGraw-Hill, Fifth Edition, 2001

#### Utilité du logiciel

- Le logiciel est omniprésent dans nos sociétés!
- Le logiciel est de plus en plus complexe
- Le logiciel est de plus en plus critique
- L'industrie du logiciel est un des moteurs de la nouvelle économie et offrira d'excellentes opportunités d'emplois pour de nombreuses années à venir

۶

### Utilité du logiciel

- En dépit des énormes succès, la réputation de l'industrie du logiciel n'est pas si glorieuse que cela:
  - Dépassement de budget
  - Dépassement d'échéance
  - Mauvaises fonctions livrées
  - Erreurs (bugs) et autres problèmes

# Quelques exemples de spécifications plus complexes

- <u>Un traducteur automatique</u>: est-ce qu'un texte anglais « bien écrit » ?
- <u>Un logiciel « boursicoteur »</u> (effectuant des achats et des ventes en bourse) : Comment établir une spécification sans y inclure un modèle du système financier ?
- <u>Un jeu vidéo</u>: Comment spécifier ce qui est amusant?

10

#### Crise du logiciel

**Historiquement**, il y a eu une prise de conscience dans les années 70, appelée la **crise du logiciel**, dû à un tournant décisif : c'est à cette époque que le coût de construction du logiciel est devenu plus important que celui de la construction du matériel.

- Deux constatations :
  - Le logiciel n'était pas fiable
  - Il était incroyablement difficile de réaliser dans des délais prévus des logiciels satisfaisant leurs cahiers des charges

#### Crise du logiciel

- Le logiciel n'était pas fiable :
  - La première sonde Mariner vers Venus qui s'est perdue dans l'espace à cause d'une erreur dans un programme Fortran
  - En 1971, lors d'une expérience météorologique en France, 72 ballons contenant des instruments de mesure furent détruits tout d'un coup à cause d'un défaut dans le logiciel
  - Dans la nuit du 15 au 16 décembre 1990, les abonnés de ATT de la côte Est des Etats-Unis furent privés de tout appel longue distance à cause d'une réaction en chaîne dans le logiciel de réseau due à un changement de version de ce logiciel
  - En juin 1996, 37 sec après le décollage, la fusée Ariane 501 (prototype de la version Ariane 5) fut détruite par une explosion : crash de la fusée
  - Therac-25: appareil canadien servant à traiter le cancer et ayant tué plusieurs patients d'une surdose de radiation

12

#### Crise du logiciel

- Il était incroyablement difficile de réaliser dans des délais prévus des logiciels satisfaisant leurs cahiers des charges
  - Certains projets <u>n'aboutissent jamais</u>
    - Compilateur PL1 chez Control Data dans les années 70
  - D'autres aboutissent avec des <u>retards importants</u> et des remises en cause dramatiques
    - SNCF a rencontré des difficultés importantes à la mise en service du système Socrate
    - Dans les années 60, OS-360 d'IBM fut livré en retard, il nécessitait plus de mémoire que prévu, son prix de revient dépassait de beaucoup les estimations, et ses premières versions comportaient des erreurs

#### Crise du logiciel

- · Les symptômes les plus caractéristiques de cette crise sont :
  - Les logiciels réalisés ne correspondent souvent pas aux besoins des utilisateurs
  - Les logiciels contiennent trop d'erreurs (qualité du logiciel insuffisante)
  - Les coûts de développement sont rarement prévisibles et sont généralement prohibitifs
  - La maintenance des logiciels est une tâche complexe et coûteuse
  - Les délais de réalisation sont généralement dépassés
  - Les logiciels sont rarement portables

14

#### Comment résoudre les problèmes?

- Les produits logiciels sont nombreux et complexes
- Analyse et synthèse des exigences de développement
  - Analyse: décomposer un grand problème en petits problèmes plus compréhensibles
    - · L'abstraction est la clé
  - Synthèse: construire (assembler) un logiciel à partir de blocs de construction plus petits
    - · L'assemblage est le défi





#### Comment résoudre les problèmes?

Pour aider à résoudre un problème, on utilise :

- **Méthode** : se réfère à une procédure formelle
- **Outil** : un instrument ou un système automatisé pour bien accomplir quelque chose
- **Procédure**: une combinaison d'outils et techniques pour produire un produit
- **Paradigme**: philosophie ou approche pour construire un produit

18

#### Comment réussir?

- Accomplir les tâches plus <u>rapidement</u> et efficacement
  - Traitement de texte, tableurs, e-mail
- Supporter les avances en médicine, agriculture, transport, éducation en multimédia, et la plupart des industries
- · Cependant, le logiciel présente des problèmes!

#### Comment réussir?

Terminologies pour décrire les « Bogues »

- **Un défaut** : survient lorsque l'être-humain se trompe par mégarde, appelée une erreur, en accomplissant certaines activités logicielles (IEEE 729)
- **Une défaillance** : est la modification d'un comportement requis d'un système (IEEE 729)



20

## Rapport de l'Institut National des Standards et de la Technologie au USA

- En l'an 2000, la recette totale des ventes de logiciels avait approximativement atteint les 180 billions \$. (billion = 109!)
- Ce chiffre était atteint grâce à une large force de travail composée de:
  - 697,000 ingénieurs logiciels
  - 585,000 programmeurs
- Les erreurs logicielles se sont avérées assez coûteuses devant entraîner des pertes financières s'élevant à 59.5 billions \$ annuellement.



### Rapport de l'Institut National des Standards et de la Technologie au USA

- Même si toutes les erreurs ne peuvent pas être supprimées, plus qu'un tiers des ces coûts (~ 22.2 billions \$) pourrait être éliminé par une infrastructure de test améliorée permettant une identification et une suppression précoces et efficaces des erreurs logicielles.
- Plus que la moitié des erreurs logicielles ne sont détectées qu'à des phases avancées du cycle de vie des produits commercialisés.



22

#### Une idée sur les salaires des testeurs

(D'après « Software Testing Institute Salary Survey », 2002)

|                           | Without ASQ<br>Certification | With ASQ<br>Certification |
|---------------------------|------------------------------|---------------------------|
|                           | Certification                | Certification             |
| Reliability Engineer      | \$68,684.00                  | \$76,769.00               |
| Software Quality Engineer | \$72,130.00                  | \$74,297.00               |
| Quality Manager           | \$66,058.00                  | \$71,163.00               |
| Quality Engineer          | \$56,180.00                  | \$61,544.00               |
| Quality Auditor           | \$48,800.00                  | \$53,830.00               |
| Quality Technician        | \$37,291.00                  | \$38,400.00               |

ASQ = American Society for Quality