EE416 Problem Sheet 1- March 2013

1. A GaAs MESFET has a channel thickness of 0.3 μ m doped to a value $N_D = 2 \text{ x}$ 10^{22} m^{-3} . Calculate the pinch-off voltage, V_P . What drain voltage, V_D , would cause the 1 μ m metallic gate to effectively reduce by 10%, assuming that the lateral depletion after pinch-off occurs equally under the gate and towards the drain contact (use ε_T (GaAs) = 13.2).

1.23 V, 1.78 V.

Depletion region pinches off at V_p

$$V_p = \frac{qa^2N_D}{2\varepsilon}$$

A=0.3micron $=3x10^{-7}$ m

$$N_D = 2x10^{22} \text{m}^{-3}$$

$$\epsilon = \epsilon_r \epsilon_0 = 13.2 \times 8.85 \times 10^{-12}$$

 $\mathbf{F} \cdot \mathbf{m}^{-1}$

$$q = 1.6x10^{-19} C$$

$$\rightarrow$$
 $V_p=1.23V$

1 micron gate effectively reduced by 10% = 100nm

Pinch off equally under the gate and towards the drain contact. ΔL= 200nm

For MESFET
$$\Delta L = \sqrt{\frac{2\varepsilon(V_{DS}-V_P+V_G)}{qN_D}}$$

$$\frac{2\varepsilon}{qN_D} = 7.29x10^{-14} = k$$

so $\Delta L^2 = k.(V_{DS}-V_P+V_G).$

$$(V_{DS}-V_{P}+V_{G}) = \Delta L^{2}/k = (200 \times 10^{-9})^{2}/7.29 \times 10^{-14} = 0.54$$

 V_{DS} + V_{G} = V_{P} + 0.54= 1.78. Assume V_{G} =0 or small (should have said that in the question)

2. For the device of question 1, show why it is unreasonable to use mobility, μ , to calculate the transit time under the gate.

What's the field across the source-drain region? E= dV/dx

$$V_{DS}$$
=1.78 x= 1micron. E= 1.78x10⁶ V.m⁻¹ or 17.8kV.cm⁻¹

This is well into

Well into velocity saturation. Mobility is no longer a function of the E-field but is constant with a saturated velocity

3. Calculate the maximum transconductance per mm of gate width for a GaAs MESFET with a doping of 1×10^{17} cm⁻³ in the channel, channel thickness of 0.2 μ m, gate length of 1 μ m and mobility of 0.5 m⁻¹V⁻¹s⁻¹. What is the pinch-off voltage for this device? Estimate the saturated drain current for a gate voltage equal to half the pinch-off voltage and a gate width of 500 μ m (use $\varepsilon_{l}=13.2$ and assume that the Schottky barrier voltage is negligible compared to V_P).

1.6 S/mm, 2.75 V, 0.56 A.

Transconductance of MESFET

$$g_m = \frac{dI_D(sat)}{dV_G} = -\frac{Za}{\rho L} \left[1 - \left(\frac{V_G}{V_p} \right)^{1/2} \right]$$
. Whats the maximum of this term?

When V_G is zero term in brackets goes to [1]. g_m =-Za/ ρL

a=0.2micron, L=1micron

$$\rho = 1/\sigma = 1/neu$$
 can safely assume n=N_D=1x10¹⁷cm⁻³ = 1x10²³m⁻³

So
$$\rho = 1/1x10^{23}x1.6x10^{-19}x0.5 = 1.25x10^{-4}$$

Asking for g_m per unit gate width, so we can drop the Z term

Pinch off (same as before)

$$m{V_p} = rac{q a^2 N_D}{2 arepsilon} \;\; ext{a=0.2micron = 2x10}^{-7} ext{m, N}_D = 1 ext{x} 10^{23} ext{m}^{-3}$$

$$\epsilon = \epsilon_r \epsilon_0 = 13.2 \text{ x } 8.85 \times 10^{-12} \text{ F} \cdot \text{m}^{-1} \text{ q} = 1.6 \text{x} 10^{-19} \text{ C}$$

$$\rightarrow$$
 $V_p=2.75V$

Saturated drain current

$$I_{D}(sat) = \frac{Za}{\rho L} V_{P} \left[\frac{1}{3} - \frac{V_{G}}{V_{P}} + \frac{2}{3} \left(\frac{V_{G}}{V_{P}} \right)^{\frac{3}{2}} \right]$$

 $V_p=2.75V$ $V_g=$ half this value =1.375

Vg/Vp =0.5 so term in brackets becomes 0.333-0.5+0.666x0.5^{1.5}= 0.0688

Gate width (z) is 500micron= 5×10^{-4} m. A=0.2 μ m, so a/ ρ L = 1600

 $I_D(sat) = 0.8 \times 2.75 \times 0.0688 = 0.152A$

4. Currently the minimum gate length possible in MESFETs is ~0.2 μ m. Assuming the channel characteristics of the previous problem, except for a thickness of 0.1 μ m, and a gate length of 0.2 μ m, calculate the maximum intrinsic g_m in Sm⁻¹ and f_T , from both the capacitance charging and transit time points of view. What is the extrinsic (including parasitics) g_m assuming a source-gate separation of 0.3 μ m and the resulting f_T from this? (use $v_{sat} = 1x10^5$ ms⁻¹). Hint: Use $R_S = \rho l/A$ between source and gate.

4000 Sm⁻¹, 2725 GHz (charging time), 79.6 GHz (transit time), 1600 Sm⁻¹, 1090 GHz.

Same as before $g_m=\frac{dI_D(sat)}{dV_G}=-\frac{Za}{\rho L}\bigg[1-\bigg(\frac{V_G}{V_p}\bigg)^{1/2}\bigg]$ at a maximum with therm in the brackets going to [1]. In this case g_m =-Za/ ρL

a=0.1micron, L=0.2micron

$$g_{m}$$
 (max) =4000S.m⁻¹

Cut of frequency $f_T = \frac{1}{2\pi\tau}$. Easiest to consider is where τ is the transit time

Velocity= distance/time. Electrons are always in saturation for short gate lengths

So
$$f_T = \frac{V_{sat}}{2\pi L} = 8.0 \text{x} 10^{10} = 80 \text{GHz}$$

What about considering this as a charging gate capacitor?

$$f_T = \frac{g_m}{2\pi C_G}$$
 also from notes. What is C_G?

Consider parallel plate capacitor of width – depleted channel

 $C = \frac{\varepsilon_r \epsilon_0 Area}{distance} = \frac{\varepsilon_r \epsilon_0 L.z}{a}$ but g_m is per unit gate width, so can drop the z from this

$$C = \frac{\varepsilon_r \epsilon_0 L}{a} = \frac{\varepsilon_r \epsilon_0 0.2}{0.1} = 13.2 \times 8.85 \times 10^{-12} \times 2 = 2.33 \times 10^{-10}$$

 g_m = 4000 Sm⁻¹ from before, so f_t = 4000/2 x 3.142 x 2.33x10⁻¹⁰= 2.73x10¹²Hz or 2730GHz (somewhat ridiculous)

Modified transconductance with parasitic source resistance

$$g_m' = \frac{g_m}{1 + R_s g_m}$$
 so we will need to calculate R_s- the source resistance

 $R_S = \frac{\rho L}{A}$ L is the source to gate separation (0.3micron). Area A is the gate width (z) x channel width (a) but we want to keep things as per gate width for the z term can be dropped

So
$$R_s = 1.25 \times 10^{-4} \times 0.3 \times 10^{-6} / 0.1 \times 10^{-2} = 3.75 \times 10^{-4} \text{ Ohm.m}^{-1}$$

$$R_s \times g_m = 1.5$$

Extrinsic
$$g_m = 1/(1+1.5) = 1600 \text{Sm}^{-1}$$

Use
$$f_T = \frac{g_m}{2\pi C_G}$$
 as before where C= 2.33x10⁻¹⁰ C.m⁻¹

 g_m = 4000 Sm⁻¹ from before, so ft= 1600/2 x 3.142 x 2.33x10⁻¹⁰= **1090GHz** (somewhat less ridiculous)

5. Repeat the calculation for the intrinsic g_m in the previous problem but assuming that velocity saturation (v_{sat}) applies because of the short channel.

235 Sm⁻¹.

Need to find g_m in terms of V_{sat} and not mobility

$$g_m = \frac{\partial i_D}{\partial v_G}$$
 by definition. The drain current (I_D) is simply charge per unit (dQ/dt)

 $I_D = \text{charge } n_S q \times v_{sat} \text{ (per unit gate width)}$

So
$$g_m = rac{\partial (n_{
m S}q)}{\partial v_{
m G}} = rac{{
m C}_{
m G}}{{
m L}} v_{
m Sat}$$
 (because dQ/dV $_{
m G}$ = ${
m C}_{
m G}$)

 $C_G=2.33\times10^{-10}F$ (from before). V_{sat} is 1×10^5 m.s⁻¹. L=0.2micron

$$g_{m}=116.5S.m^{-1}$$

6. Calculate the intrinsic g_m and f_T for a HEMT device with the same gate dimensions as in 4 above but with a sheet concentration ($\equiv aN_D$ in the expression for the MESFET) of 3×10^{12} cm⁻² and a mobility of 1.2 m²V⁻¹s⁻¹. (These are state-of-the-art figures for InGaAs/InP HEMTs).

2.88×10⁴ Sm⁻¹, 79.6 GHz (using velocity saturation).

$$g_m(max)=-rac{Za}{
ho L}$$
 $ho=1/\sigma=1/ne\mu$ we are given the sheet concentration n_s of $3x10^{12} cm^{-2}$ (= $3x10^{16} m^{-2}$)

The sheet concentration is equivalent to n.a. so $\rho = a/n_s e\mu = a/n_s e\mu = 173.6$.a. Put this into the equation for g_m and then a drops out (as does the z) and we get $1/9173.6 \times 0.2 \times 10^{-6}$) = 2.88×10^4 S.m⁻¹ (increases a lot)

$$f_T=rac{V_{sat}}{2\pi L}$$
 = 80x10 10 = 80GHz (unchanged)