Redes de Computadores I

Lista 1

Capítulo 1 – Introdução. Exercícios retirados do Livro texto. 6a Edição

Exercícios de Fixação

Alexandre A.Chamon DRE:16142976

R1.

Um hospedeiro e "sistema final" são dispositivos conectados à rede. Os sistemas finais podem ser um cliente, um servidor ou os dois. Onde, um cliente é aquele que utiliza serviços de outros sistemas e um servidor é aquele que fornece serviços a outros sistemas. Um servidor Web é um tipo de sistema final que fornece conteúdos através do protocolo HTTP.

R2.

Um protocolo é um conjunto de regras que definem como a comunicação deve ocorrer entre dispositivos conectados em uma rede.

R3.

Padrões são importantes para os protocolos pois sem eles não teria como diferentes usuários e serviços se comunicarem.

R6.

Na minha cidade as tecnologias de acesso são fibra óptica, com taxas de downstream de 10 Mbps a 300 Mbps e taxas de upstream de 3 Mbps e 150 Mbps com preços variando entre R\$100 e R\$300, DSL, com taxas de downstream de 1 Mbps a 35 Mbps e taxas de upstream de 300 Kbps a 35 Mbps com preços variando entre R\$29 e R\$ 150.

R7.

A taxa de transmissão de LANs Ethernet variam entre 10 Mbps a 10 Gbps.

R8.

Alguns meios físicos para instalar a Ethernet são, par trançado, fibra óptica, cabo coaxial e wireless.

R12.

A vantagem de uma rede de comutação de circuitos sobre a rede de comutação de pacotes é que ela oferece uma qualidade constante da conexão. A vantagem da TDM sobre a FDM em uma rede de comutação de circuitos é que os dados compartilham intervalos de tempo fixos.

R19.

a.

Como a taxa de transmissão é sempre relativa a taxa mais baixa entre os enlaces, a taxa de transmissão será de 500 kbps.

b.

Para isso é necessário usar a fórmula Tempo = Tamanho do arquivo / Vazão, lembrando de converter os valores para bits. Então Tempo = (4 * 8 * 10^6 bits) / (500 * 10^3 bps) = 64 segundos

C.

A taxa de transmissão será de 100 Kbps. Tempo = $(4 * 8 * 10^6 \text{ bits}) / (100 * 10^3 \text{ bps}) = 320 \text{ segundos}$

R23.

As 5 camadas da pilha de protocolo da internet são Aplicação, Transporte, Rede, Enlace e física. As principais responsabilidades de cada uma dessas camadas são, respectivamente, suporte a aplicações de rede, transferência de dados processo-processo, roteamento de datagramas da origem ao destino, transferência de dados entre elementos vizinhos da rede e lidar com as especificações técnicas do meio físico de transmissão.

R24.

Uma mensagem de camada de aplicação é a informação que um aplicativo deseja enviar, um segmento de camada de transporte é uma unidade de dado contendo informações do cabeçalho de transporte, um datagrama de camada de rede é uma unidade de dado que inclui endereços IP's e um quadro de camada de enlace é uma unidade de dado que inclui endereços MAC.

P5.

a.

Utilizados os dados da Seção 1.4, supondo que os carros viajam 150km e passam por 2 pedágios temos o seguinte atraso: 12s (tempo de transmissão) * 10 carros = 120s para cada pedágio; o tempo de propagação entre as cabines é de 150km / 100km/h = 1,5h. Temos então um atraso total de (2*120s) + (3*1,5 h) = 4h 34m

b.

Se o comboio tivesse 8 carros entao temos que o atraso do pedágio é de 12s*8 = 96s, totalizando no final 4h 33m 12s

P6.

a.

dprop = m / s segundos

b.

dtrans = L / R segundos

C.

O atraso fim a fim é a soma de dprop com dtrans, (m / s) + (L / R) segundos.

d.

No tempo t = dtrans o último pacote vai acabar de ter sido transmitido pelo hospedeiro A.

e.

Se o tempo de propagação é maior do q o de transmissão, no tempo t = dtrans o primeiro bit do pacote ainda estara sendo propagado.

f.

Se o tempo de transmissão é maior do q o de propagação, no tempo t = dtrans o primeiro bit do pacote já estará no hospedeiro B.

g

Como dprop = dtrans então temos q m / s = L / R -> m = (L / R) * s -> m = (120 bits / 56 Kbits) * 2,5 * 10^8 = 535714 m = 535,7 km.

P7.

Para transmitir um pacote de 56 bytes em um enlace de 2 Mbps demoramos, 1,8ms mais o atraso de 10ms temos 11,8ms de tempo de transmissão. O tempo de codificação e decodificação são o mesmo que é de 56 *8 / 64 * 10^3 = 56ms. Totalizando um total de 67,8 ms.

P24.

Da mesma maneira que calculamos na questão 19, calculamos quanto tempo levaria para transmitir os 40 Tb de dados em um enlace de 100 Mbps. Tempo = $(40 * 8 * 10^12 \text{ bits})$ / $(100 * 10^6 \text{ bits/s}) = 3,2 * 10^6 \sim 37 \text{ dias}$. Então nesse caso seria melhor usar um serviço de entrega 24 horas.

P25.

a.

dprop = d / s -> 20mil km / 2,5 * 10^8 m/s = 0,08s R = 2 Mbits/s Total = 2 * 10^6 * 0,08 = 160.000 bits

b.