비교 연구에서 표본크기 결정

Sample size determination in comparative studies

2018년 1학기

Contents

1.	One sample case	3
П.	Two samples case	12
III.	[Review] Epidemiologic Study Designs	19
IV.	Sample size for case-control studies	30
	 Sample size for the odds ratio 	
٧.	Sample size determination for Cohort studies	37
	 Sample size for the relative risk 	
VI.	The incidence rate	41
	 Sample size for the hazard 	
VII	. Sample size for continuous response variables	51

One sample case: introduction

1) Estimating the population proportion

cf.
$$E(p) = P$$
, $Var(p) = P(1 - P)/n$

• The desired precision using absolute error $d = |\hat{P} - P|$

$$n = \frac{z_{1-\alpha/2}^2 P(1-P)}{d^2} \quad \text{from} \quad d = |\hat{P} - P| = z_{1-\alpha/2} \sqrt{P(1-P)/n}$$

• The desired precision using relative error $\varepsilon = \frac{|\theta - \theta|}{\theta}$

$$\epsilon = \frac{\mid \hat{P} - P \mid}{P} = z_{1-\alpha/2} \frac{\sqrt{P(1-P)}}{\sqrt{n \, P}} = z_{1-\alpha/2} \frac{\sqrt{1-P}}{\sqrt{nP}}$$

$$n = \frac{z_{1-\alpha/2}^{2} (1 - P)}{\varepsilon^{2} P}$$

The desired precision using relative error (CV)

$$\varepsilon = \frac{|\hat{P} - P|}{P} = z_{1-\alpha/2} \frac{\sqrt{P(1-p)}}{P} = z_{1-\alpha/2} \frac{CV}{\sqrt{n}} = z_{1-\alpha/2} \times CV_{\bar{y}}$$

$$n = \frac{z_{1-\alpha/2}^2 \times (CV)^2}{\varepsilon^2} = \frac{z_{1-\alpha/2}^2 \times (1-P)}{\varepsilon^2 P}$$

The desired precision using relative standard error

$$\varepsilon = z_{1-\alpha/2} \times CV_{\overline{y}} = z_{1-\alpha/2} \times \frac{CV}{\sqrt{n}} \quad \text{where} \quad CV = \frac{S}{P} = \frac{\sqrt{P(1-P)}}{P} = \sqrt{\frac{(1-P)}{P}}$$

$$n = \left(\frac{CV}{CV_{\overline{y}}}\right)^{2}$$

Continuous study

n' and $CV'_{\overline{y}}$ are the sample size and CV of the past survey.

$$\mathbf{n} = n' \times \left(\frac{CV_{\overline{y}}'}{CV_{\overline{y}}}\right)^2$$

Without Replacement

$$n_0 = \left(\frac{z_{1-\alpha/2}^2 \times P(1-P)}{d^2}\right)$$
: With Replacemen t

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

2) Hypothesis testing for a single population proportion(1)

$$c = P_0 + z_{1-\alpha} \sqrt{P_0 (1 - P_0)/n}$$
 under H_0

$$c = P_1 - z_{1-\beta} \sqrt{P_1(1 - P_1)/n}$$
 under H_1

2018년1학기

$$c = P_0 + z_{1-\alpha} \sqrt{P_0 (1 - P_0)/n} = P_1 - z_{1-\beta} \sqrt{P_1 (1 - P_1)/n}$$

$$\begin{aligned} P_{1} - P_{0} &= z_{1-\alpha} \sqrt{P_{0} (1 - P_{0})/n} + z_{1-\beta} \sqrt{P_{1} (1 - P_{1})/n} \\ &= \left\{ z_{1-\alpha} \sqrt{P_{0} (1 - P_{0})} + z_{1-\beta} \sqrt{P_{1} (1 - P_{1})} \right\} / \sqrt{n} \end{aligned}$$

$$n = \frac{\left\{z_{1-\alpha} \sqrt{P_0 (1 - P_0)} + z_{1-\beta} \sqrt{P_1 (1 - P_1)}\right\}^2}{\left(P_1 - P_0\right)^2}$$

Example 1

□ 출생 시 발병률이 1000명당 150명에게서 나타나는 질병이 있다고 가정하자. 어떤 의사는 임상수준이 향상되어 1000명당 100명으로 감소되는 경향을 보이고 있다고 주장하고 있다. 유의수준 0.05수준에서 귀무가설(H₀: P = 0.15)을 검정하려고 하는 데, 90%의 수준에서 감소된 발병률(검정결과)이 참이라고 확신하기를 원하고 있다. 이 때 필요한 표본크기는 얼마인가?

$$n = \frac{\left\{z_{1-\alpha}\sqrt{P_0(1-P_0)} + z_{1-\beta}\sqrt{P_1(1-P_1)}\right\}^2}{\left(P_1 - P_0\right)^2}$$

$$= \frac{\left\{1.645\sqrt{(0.15)(0.85)} + 1.282\sqrt{(0.1)(0.9)}\right\}^2}{\left(0.1 - 0.15\right)^2} = 377.9$$

2018년1학기 -9- 한신대학교

3) Hypothesis testing for a single population proportion(2)

$$c = P_0 + z_{1-\alpha/2} \sqrt{P_0 (1 - P_0)/n}$$
 under H_0

$$c = P_1 - z_{1-\beta} \sqrt{P_1(1-P_1)/n}$$
 under H_1

2018년1학기

$$c = P_0 + z_{1-\alpha/2} \sqrt{P_0 (1 - P_0)/n} = P_1 - z_{1-\beta} \sqrt{P_1 (1 - P_1)/n}$$

$$\begin{aligned} P_1 - P_0 &= z_{1-\alpha/2} \sqrt{P_0 (1 - P_0)/n} + z_{1-\beta} \sqrt{P_1 (1 - P_1)/n} \\ &= \left\{ z_{1-\alpha/2} \sqrt{P_0 (1 - P_0)} + z_{1-\beta} \sqrt{P_1 (1 - P_1)} \right\} / \sqrt{n} \end{aligned}$$

$$n = \frac{\left\{z_{1-\alpha/2} \sqrt{P_0 (1 - P_0)} + z_{1-\beta} \sqrt{P_1 (1 - P_1)}\right\}^2}{\left(P_1 - P_0\right)^2}$$

Example 2

□ 어느 질병의 처치 성공률이 0.7이라고 알려져 있는 데, 동일한 성공률을 보장하는 새로운 처치법이 개발되었다. 담당전문의의 도움을 받을 수 없는 어느 병원에서 새로운 처치법을 환자에게 사용하려고 한다. 유의수준 0.05수준에서 두 가설 (H₀:P=0.70)과 (H₀:P≠0.70) 에 대해 검정하려고 하는 데, 90%의 수준에서 기존의 처치와 10%p이상 차이가 나지 않기를 원한다. 이 조사를 수행하는 데 필요한 표본크기는 얼마인가?

since $|P_0 - P_1| \le 0.1$, $P_1 = 0.8$ or 0.6

$$n_{2} = \frac{\left\{z_{1-\alpha/2} \sqrt{P_{0}(1-P_{0})} + z_{1-\beta} \sqrt{P_{1}(1-P_{1})}\right\}^{2}}{\left(P_{1}-P_{0}\right)^{2}}$$

$$= \frac{\left\{1.96 \sqrt{(0.7)(0.3)} + 1.282 \sqrt{(0.6)(0.4)}\right\}^{2}}{(0.7-0.8)^{2}} = 232.94$$

$$n_{1} = \frac{\left\{z_{1-\alpha/2} \sqrt{P_{0}(1-P_{0})} + z_{1-\beta} \sqrt{P_{1}(1-P_{1})}\right\}^{2}}{\left(P_{1}-P_{0}\right)^{2}}$$

$$= \frac{\left\{1.96 \sqrt{(0.7)(0.3)} + 1.282 \sqrt{(0.8)(0.2)}\right\}^{2}}{(0.7-0.8)^{2}} = 199.09$$

$$\therefore \quad n = \max(n_{1}, n_{2}) = 233$$

2018년1학기

Two samples case

 Estimating the difference between two proportions (or the risk difference)

cf.
$$E(p_1 - p_2) = P_1 - P_2$$
,
 $Var(p_1 - p_2) = P_1(1 - P_1)/n_1 + P_2(1 - P_2)/n_2$
if $n_1 = n_2 = n$, then $Var(p_1 - p_2) = \binom{1}{n} \{P_1(1 - P_1) + P_2(1 - P_2)\}$

• The desired precision using absolute error and sample size

$$d = z_{1-\alpha/2} \sqrt{(1/n)} \left\{ P_1 (1 - P_1) + P_2 (1 - P_2) \right\}$$

$$n = \frac{z_{1-\alpha/2}^2 \left\{ P_1 (1 - P_1) + P_2 (1 - P_2) \right\}}{d_2^2}$$

$$m_2 = k \, n_1, \text{ then } n = \frac{z_{1-\alpha/2}^2 \left\{ k \cdot P_1 (1 - P_1) + P_2 (1 - P_2) \right\}}{k \, d_2^2}$$

2) Hypothesis testing for two population proportions(1)

$$Var(P_1 - P_2) = P_1(1 - P_1)/n_1 + P_2(1 - P_2)/n_2 \text{ under } H_0$$

$$= P(1 - P)(1/n_1 + 1/n_2) \text{ if } P_1 = P_2 = P$$

$$= 2 \{P(1 - P)/n\} \text{ if } n_1 = n_2 = n$$

$$cf. \hat{P} = \overline{p} = (p_1 + p_2)/2$$

Sample size

$$c = 0 + z_{1-\alpha} \sqrt{2\overline{P}(1-\overline{P})/n}$$
 under H_0 , where $\overline{P} = (P_1 + P_2)/2$

$$c = (P_1 - P_2) - z_{1-\beta} \sqrt{(1/n) \{P_1(1 - P_1) + P_2(1 - P_2)\}} \text{ under } H_1,$$
assuming $n_1 = n_2 = n$

$$n = \frac{\left\{z_{1-\alpha}\sqrt{2\ \overline{P}(1-\overline{P})} + z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2}{\left(P_1 - P_2\right)^2}$$

Example 3

□ 충치발병률이 0.8인 A지역과 0.6인 B지역이 있다고 가정하자. 두 지역의 발병률차이가 10%인지 유의수준 10%에서 검정하려고 하는 데, 80%의 수준에서 이 차이가 실제차이(검정결과)로 확신하고자 한다. 이 조사를 위한 필요한 표본크기는 각각 얼마로 결정하면 되는가?

$$\overline{P} = (P_1 + P_2)/2 = 0.7$$

$$n = \frac{\left\{z_{1-\alpha}\sqrt{2\ \overline{P}(1-\overline{P})} + z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2}{\left(P_1 - P_2\right)^2}$$

$$= \frac{\left\{1.282\ \sqrt{2(0.7)(0.3\)} + 0.842\ \sqrt{(0.8)(0.2) + (0.6)(0.4)}\right\}^2}{\left(0.8 - 0.6\right)^2} = 46.47$$

3) Hypothesis testing for two population proportions(2)

$$c_2 = 0 + z_{1-\alpha/2} \sqrt{2P(1-P)/n}$$
 under H_0 , where $P = (P_1 + P_2)/2$

$$c_2 = (P_1 - P_2) - z_{1-\beta} \sqrt{(1/n) \{P_1(1 - P_1) + P_2(1 - P_2)\}} \text{ under } H_1, n_1 = n_2 = n$$

2018년1학기

-18-

한신대학교

Sample size

$$n = \frac{\left\{z_{1-\alpha/2} \sqrt{2 \overline{P}(1-\overline{P})} + z_{1-\beta} \sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2}{\left(P_1 - P_2\right)^2}$$

Example 4

신경성 전염질환을 연구하는 역학연구자는 질환을 앓고 있는 그룹(실험군)과 무관한 그룹(대조군)을 비교하고자 50명을 각각 랜덤하게 표집하여 본 결과, 특정 화학약품을 취급하는 공장에 종사하는 비율이 실험군에서는 0.6, 대조군에서는 0.5인 것으로 나타났다. 예비조사에서 얻은 결과는 이 지역에 거주하는 인구중 화학약품을 취급하는 공장에 근무하는 비율과 같다고 가정할 때, 이 차이가 유의한 지 유의수준 5%에서 검정하려고 하는데, 90%의 수준에서 두 그룹간 차이(검정결과)를 실제 차이로인정하고자 한다. 이 연구를 위해 추가하여 표집해야 하는 표본 크기는 얼마인가?

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2\ P(1-P)} + z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2}{\left(P_1 - P_2\right)^2}$$

$$= \frac{\left\{1.96\sqrt{2(0.55)(0.45)} + 1.282\sqrt{(0.6)(0.4) + (0.5)(0.5)}\right\}^2}{\left(0.6 - 0.5\right)^2} = 518.19$$

[Review] Epidemiologic Study Designs

1. Some basic concepts

- □ The cohort or follow-up study
 - 대상(개인)을 특정한 특성의 존재 여부에 따른 그룹화하여 관심을 두고 있는 발생결과와의 관련성 여부를 규명하는 역학 조사연구방 법의 분야(전향적 연구 방법)
 - □ 특정 특성 : 흡연여부 등, the exposure variable
 - □ 발생 결과 : 질병의 존재 여부 등
- □ A case-control design/study
 - 발생 결과를 토대로 사례군(a case group)과 대조군(a control group)으로 분류하여 각 집단에 대해 과거 특정한 위험인자(a risk factor, 특성)의 존재 여부를 조사하는 역학 조사연구방법(후향적연구 방법)

□ A prevalence study(유병율 연구)

- 모집단으로부터 랜덤 표집된 표본에서 <u>특정 시점에서 측정</u>된 특정 특성이나 위험인자의 존재나 발병에 대한 비율을 연구하는 방법
- (cf.) Incidence(발생율, 발병율) : <u>특정 기간 동안 모집단에서 새로</u> <u>이 발현된 혹은 나타난</u> 병의 비율을 의미
- 일반적으로 유병율이 발병율보다 같거나 큰 값을 제공

2. The relative risk(RR) and odds ratio(OR)

□ 역학 연구 분야의 코호트 연구나 사례-대조 연구에서의 중요한 모수

		Exposure			
		Present E	Absent E	Total	
	Present D	а	р	n ₁	
Disease	Absent \overline{D}	С	d	n_2	
	Total	m ₁	m_2	n	

$$P_1 = Pr(D \mid E), 1 - P_1 = Pr(D \mid E), P_2 = Pr(D \mid E), 1 - P_2 = Pr(D \mid E)$$

$$P_1' = Pr(E \mid D), \quad 1 - P_1' = Pr(\overline{E} \mid D), \quad P_2' = Pr(E \mid \overline{D}), \quad 1 - P_2' = Pr(\overline{E} \mid \overline{D})$$

2018년1학기 -23- 한신대학교

□ Relative Risk (RR, 상대 위험율)

■ 표현식과 추정량

$$RR = rac{ ext{실험군에서의} \qquad ext{위험률} }{ ext{대조군에서의} \qquad ext{위험률} } = rac{ ext{Pr}(D \mid E) }{ ext{Pr}(D \mid E) } = rac{ ext{P}_1 }{ ext{P}_2 }$$

$$R \hat{R} = \frac{\frac{a}{m_1}}{\frac{b}{m_2}}$$

- 코호트 연구나 사례군과 대조군이 미리 정해진 후 그 결과를 관찰하는 임상시험 연구에서 계산 가능
- 사례-대조 연구에서는 계산 불가능

Odds Ratio (OR, 오즈비)

■ 표현식 : 코호트 연구

■ 표현식:사례-대조연구

$$OR \ = \frac{ \, \underline{ \, \text{ 실험군에서의} \, } \, \quad \underline{ \, \text{ 오즈비} \, } }{ \, \text{ 대조군에서의} \, \quad \underline{ \, \text{ 오즈비} \, } } = \frac{O_1}{O_2} = \frac{Pr(E \mid D)/Pr(\mid \overline{E} \mid D)}{Pr(E \mid D)/Pr(\mid \overline{E} \mid D)} = \frac{P_1'/(1-P_1')}{P_2'/(1-P_2')}$$

■ 추정량: the cross product ratio

$$O\hat{R} = \frac{\binom{a}{m_1} / \binom{c}{m_1}}{\binom{b}{m_2} / \binom{d}{m_2}} or \frac{\binom{a}{m_1} / \binom{b}{m_1}}{\binom{c}{m_2} / \binom{d}{m_2}} = \frac{ad}{bc}$$

□ OR 의 표본분포

- OR의 특성
 - ightharpoonup OR의 범위 $0 \le OR \le \infty$
 - OR = 1 의 의미: 위험율이 노출그룹과 비노출그룹, 혹은 사례군과 대조군의 오 즈비가 동일함을 의미
 - ▶ OR 의 표본 분포 특성
 - 비정규분포, 꼬리가 큰 값으로 긴 강한 양의 왜도를 갖는 분포
 - 자연로그변환 ln(OR) 을 통한 분포 특성 개선:보다 근사정규분포
 - 신뢰구간(표준정규분포 이용)은 비대칭
- ln(OR) 의 분산과 추정량

$$Var[ln(O \hat{R})] \approx \left(\frac{1}{n_1}\right) \frac{1}{P_1'(1 - P_1')} + \left(\frac{1}{n_2}\right) \frac{1}{P_2'(1 - P_2')}$$

$$\hat{V}ar[ln(O \hat{R})] = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

■ H₀:OR = 1 vs H₁:OR ≠ 1 에 대한 검정: 2X2 카이제곱검정

□ RR 의 표본분포

- RR 의 표본분포 특성
 - ▶ 매우 큰 표본에서는 RR은 근사정규분포
 - 역학연구의 표본크기 수준에서는 정규분포 형태가 아니며, 양의 왜도를 나타내는 분포
 - 자연로그 변환 $\ln(R\hat{R})$ 을 통해 보다 대칭적인 분포 형태를 취하게 되며, 정규분포로 근사
- 추정량: 코호트 연구에서 계산 가능하므로 RÂ = p₁/p₂
- ln(RR̂)의 분산과 추정량

$$Var[ln(R \hat{R})] = Var[ln(p_1) - ln(p_2)] = Var[ln(p_1)] + Var[ln(p_2)]$$

$$\hat{\mathbf{V}}\operatorname{ar}[\ln(\mathbf{R} \ \hat{\mathbf{R}})] = \left(\frac{1}{\mathbf{m}_1}\right)\frac{1-\mathbf{p}_1}{\mathbf{p}_1} + \left(\frac{1}{\mathbf{m}_2}\right)\frac{1-\mathbf{p}_2}{\mathbf{p}_2} \text{ since } \operatorname{Var}[\ln(\mathbf{p})] = \left(\frac{1}{\mathbf{n}}\right)\frac{1-\mathbf{p}_2}{\mathbf{p}}$$

■ 신뢰구간은 OR과 동일한 특성을 보임

- 3. Screening test for disease prevalence
- □ 초음파나 X-ray, PAP test등의 간이검사 결과를 통해 발 병 진단 시 오류 발생
- □ 진단법의 평가 결과 (H₀:환자)

		결과/환자의 실제 상황		
		환자	정상	Total
71017111	발병 가능/예측 (양성, positive)	a True positives	b False positives	n ₁
간이검사 진단 결과	정상 예측 (음성, negative)	c False negatives	d True negatives	n ₂
	Total	m ₁	m ₂	n

진단법의 평가 측도: 민감도와 특이도

- 민감도(sensitivity): 환자를 양성으로 판정하는 비율 true positive rate = $\frac{a}{m_1}$
- 2) False negative rate false negative rate = $\frac{c}{m_{\perp}}$
 - 검정의 1종의 오류와 동일한 의미
- 4) 특이도(specificity): 정상을 음성으로 판정하는 비율
 - 간이진단법의 진단 능력을 보여주는 척도 = 검정력 true negative rate = $\frac{d}{m}$

□ 진단법의 평가:예측

- 현실에서는 실제 환자 수와 정상인 수를 모르므로 민감도
 와 특이도를 정확하게 계산할 수 없는 상황
- 진단 결과에 대한 예측 : 병의 유병률에 의존
 - 1) 양성예측(the predictive value of a positive) $^{a}/_{n_{_{1}}}$
 - 2) 음성예측 (the predictive value of a positive) $\frac{d}{n_2}$

예측도(the predictive value of the screening test)

: Bayes 정리 이용

1) 양성예측도 Pr(환자 |양성)

2) 음성예측도 Pr(정상 |음성)

Sample size for case-control studies

- 1) Estimating the odds ratio with stated precision ε
 - ▶ ln(OR) 의 표본분포 특성
 - ✓ OR의 표본분포:
 - 우측으로 꼬리(양의 왜도)가 긴 비대칭 분포
 - 상당히 큰 표본 규모일 때 정규분포와 근사
 - ✓ 표본크기에 영향을 받는 OR의 표본분포보다 정규분포와 더 근사
 - ✓ 오즈비 추론에 널리 이용
 - ▶ ln(OR̂) 의 특성: 사례-대조 연구의 경우
 - ✓ 현재 질병 존재 여부에 따른 특성의 발현(the exposure) 확률로 정의
 - ✓ $ln(O\hat{R})$ 의 분산: $n_1 = n_2 = n$

$$Var[ln(O \ \hat{R})] \approx \left(\frac{1}{n_1}\right) \frac{1}{P_1'(1 - P_1')} + \left(\frac{1}{n_2}\right) \frac{1}{P_2'(1 - P_2')} = \left(\frac{1}{n}\right) \left(\frac{1}{P_1'} + \frac{1}{1 - P_1'}\right) + \left(\frac{1}{n}\right) \left(\frac{1}{P_2'} + \frac{1}{1 - P_2'}\right)$$

$$\hat{V}$$
 ar[ln(O \hat{R})] = $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$

[Review]

 $H_0: OR = 1 \text{ vs } H_1: OR \neq 1 \text{ 에 대한 검정 } \chi^2(1)$

□ 표본크기 결정을 위한 가정

- → OR > 1 의 가정: 특성의 존재(exposed)와 비존재 (unexposed)를 교체하여 OR > 1 이 되도록 조정
- $w = OR O\hat{R}_L$ 를 기준으로 표본크기 결정 $: O\hat{R}_U OR$ 를 기준으로 결정하면 지나치게 큰 표본크기로 계산됨 (여기서 $O\hat{R}_L$ 과 $O\hat{R}_U$ 은 신뢰구간의 하한과 상한을 의미)
 - \checkmark ε 과 w 의관계 $w = \varepsilon \cdot OR$, where $\varepsilon = |O\hat{R} OR|/OR$

2018년1학기 -33- 한신대학교

□ 표본크기 결정

① w 와 신뢰구간과의 관계

$$w = \varepsilon \cdot OR = e^{\ln(OR)} - e^{\ln(OR) - z \cdot SE[\ln(OR)]} = OR - OR_L$$
$$= OR - OR \cdot e^{-z \cdot SE[\ln(OR)]}$$

- \mathcal{E} \mathcal{E}
- ③ 자연로그변환 $1 \varepsilon = e^{-z \cdot SE[\ln(OR)]} \Rightarrow \ln(1 \varepsilon) = -z_{1-\alpha/2} \cdot SE[\ln(OR)]$

$$= -z_{1-\alpha/2} \cdot \sqrt{\binom{1}{n} \binom{1}{[P'_1(1 - P'_1)]} + \binom{1}{[P'_2(1 - P'_2)]}}$$

$$\therefore \mathbf{n} = \frac{z_{1-\alpha/2}^2 \cdot \left(\frac{1}{\left[P_1'(1-P_1')\right]^+} \frac{1}{\left[P_2'(1-P_2')\right]}\right)}{\left[\ln(1-\varepsilon)\right]^2}$$

Example 5

- □ 표본크기 결정을 위한 모수 P'_1 , P'_2 , OR 의 관계(사례군 추정)
 - 두 모수(대조군의 발현율, OR)에 대한 정보가 존재한다고 가 $P_1' = \frac{OR \cdot P_2'}{OR \cdot P_2' + (1 P_2')}$
- □ 대조군의 특성 발현율(the exposure rate)이 0.3이며 오즈비가 2 정도로 예상되는 모집단에서 95%신뢰수준에서 모집단 오즈비의 25%이내 결과를 얻기 위한 사례-대조연구에 필요한 표본크기는 각각 얼마인가?

$$P_1' = \frac{OR \cdot P_2'}{OR \cdot P_2' + (1 - P_2')} = \frac{2 \cdot 0.3}{2 \cdot 0.3 + 0(1 - 0.3)} = 0.46$$

$$\therefore n = \frac{z_{1-\alpha/2}^{2} \cdot \left(\frac{1}{[P'_{1}(1-P'_{1})]^{+}}, \frac{1}{[P'_{2}(1-P'_{2})]}\right)}{\left[\ln(1-\varepsilon)\right]^{2}} = \frac{1.96^{2} \left[\frac{1}{(0.46 \times 0.54)^{+}}, \frac{1}{(0.3 \times 0.7)}\right]}{\left[\ln(1-0.25)\right]^{2}} = 407.91$$

2) Sample size for hypothesis testing of the odds ratio

- □ 오즈비의 가설검정에 대한 관점
 - ▶ 사례-대조연구에서 오즈비 검정에 대한 문제는 두 그룹의 특성 발현율(the proportion exposure)이 같은 지를 검정 하는 것과 동일 H₀: OR = 1

□ 표본크기 결정

1) 사례군의 특성 발현율 추정

$$P_1' = \frac{OR \cdot P_2'}{OR \cdot P_2' + (1 - P_2')}$$

2) 가설 설정

$$H_0: P_1' = P_2' \text{ vs } H_1: P_1' \neq P_2'$$

cf. $H_0: OR = 1 \text{ vs } H_1: OR \neq 1$

3) 표본크기 결정 : 두 모비율 차이의 과정과 동일

① 대조군의 특성 발현율에 대한 모집단 정보가 확실한 경우

$$n = \frac{\left\{z_{1-\alpha/2} \sqrt{2 P_2' (1 - P_2')} + z_{1-\beta} \sqrt{P_1' (1 - P_1') + P_2' (1 - P_2')}\right\}^2}{\left(P_1' - P_2'\right)^2}$$

$$n = \frac{\left\{z_{1-\alpha/2} \sqrt{2 \ \overline{P'}(1-\overline{P'})} + z_{1-\beta} \sqrt{P'_1(1-P'_1) + P'_2(1-P'_2)}\right\}^2}{\left(P'_1 - P'_2\right)^2}$$

where
$$\overline{P}' = (P_1' + P_2')/2$$

□ 유아의 BCG 백신 효능에 대한 연구를 위해 유아기에 결핵 접종을한 그룹과 하지 않은 그룹을 비교하고자 한다. 대조군에서의 BCG 접종율이 약 30%라고 할 때, 유의수준 5%에서 두 그룹의 오즈비차이가 존재하는 지를 검정하며, 검정 결과를 80% 수준에서 확신(두 그룹의 접종율로 인지)하고자 한다. 오즈비가 2정도이면 두 그룹간 의미있는 차이로 고려한다고 할 때, 이 사례-대조 연구를 위해각 그룹마다 어느 정도의 표본이 필요한가?

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2}\frac{V_2'(1-P_2')}{P_1'(1-P_1')} + z_{1-\beta}\sqrt{P_1'(1-P_1') + P_2'(1-P_2')}\right\}^2}{\left(P_1' - P_2'\right)^2} \qquad \text{where} \qquad P_1' = \frac{2 \cdot 0.3}{(2 \cdot 0.3 + 0.7)} = 0.4615$$

$$= \frac{\left(1.96\sqrt{2 \times 0.3 \times 0.7} + 0.842 \times \sqrt{0.4615 \times 0.5385 + 0.3 \times 0.7}\right)^2}{\left(0.4615 - 0.3\right)^2} = 129.79$$

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2}\frac{\overline{P}'(1-\overline{P}')}{P'_1} + z_{1-\beta}\sqrt{P_1'(1-P_1') + P_2'(1-P_2')}\right\}^2}{\left(P_1' - P_2'\right)^2} \qquad \text{where} \qquad \overline{P}' = \frac{\left(P_1' + P_2'\right)}{2} = \frac{(0.3 + 0.46)}{2} = 0.38$$

$$= \frac{\left(1.96\sqrt{2 \times 0.38 \times 0.62} + 0.842 \times \sqrt{0.4615 \times 0.5385 + 0.3 \times 0.7}\right)^2}{(0.4615 - 0.3)^2} = 140.69$$

Sample size determination for Cohort studies

- □ 모집단 상대위험율(RR)의 상대오차 ε 이내 추정 결과를 얻기 위한 표본크기 결정

□ 코호트 연구의 비발현그룹(the unexposure group)의 20%가 환자라고 하자. 발현 그룹과 비발현그룹의 상대위험이 약 1.75배 정도인 모집단에서 모집단 상대위험율의 10%범위 내에서 상대위험율(RR)을 95% 신뢰수준으로 추정하려고 하는 코호트 연구에서 각 그룹마다 필요한 표본크기의 규모는 어느 정도인가?

$$P_2 = 0.2$$
 and $P_1 = (RR)P_2 = 0.35$

$$\therefore \mathbf{m} = \frac{z_{1-\alpha/2}^{2} \cdot \left(\frac{(1-P_{1})}{P_{1}} + \frac{(1-P_{2})}{P_{2}}\right)}{\left[\ln(1-\varepsilon)\right]^{2}} = \frac{1.96^{2} \left(0.65 / \frac{1}{0.35} + 0.8 / \frac{1}{0.2}\right)}{\left(\ln(1-0.1)\right)^{2}} = 2026.95$$

Sample size for Hypothesis testing of the population relative risk

- □ 기본적인 과정은 오즈비(OR)와 동일
 - 검정은 두 모비율 차이 검정과 내용면에서 동일
- □ 기본 가설: 두 그룹의 상대 위험(질병 유병)은 동일 하다 H₀: RR = 1 or H₀: P₁ = P₂
 - > 대립가설: $H_1: RR > 1$ (or $H_1: RR < 1$) or $H_1: RR \neq 1$ $H_1: P_1 > P_2$ (or $H_1: P_1 < P_2$) or $H_1: P_1 \neq P_2$
- □ 표본크기 결정 : 양측검정의 경우

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2 P(1-P)} + z_{1-\beta}\sqrt{P_1(1-P_1) + P_2(1-P_2)}\right\}^2}{\left(P_1 - P_2\right)^2}$$
where $P = \left(P_1 + P_2\right)/2 = P_2(RR + 1)/2$, $P_1 = RR \cdot P_2$, $0 < RR < 1/P_2$

□ 암을 치료하는 두 가지 치료법이 있는 데 환자는 처치 A와 B의 치료를 랜덤하게 선택하여 5년 동안 치료 받는다고 가정하자. 비특성 그룹(특성 비발현 그룹)의 유병율이 $P_2 = 0.35$ 이고, 상대위험이 RR = 0.5 인 모집단에서 유의수준 5%수준에서 두그룹의 상대위험이 동일한지 여부 $H_0: RR = 1$ vs $H_0: RR \neq 1$ 에 대한 검정을 실시하고자 하며, 이 때 검정결과를 90% 신뢰수준에서 확신하려고 한다. 이 연구를 위해 필요한 표본크기는 그룹별로 각각 어느 정도인가?

$$P_{1} = RR \cdot P_{2} = 0.5 \times 0.35 = 0.175 , P = P_{2}(RR + 1)/2 = 0.2625$$

$$n = \frac{\left\{z_{1-\alpha/2}\sqrt{2 P(1-P)} + z_{1-\beta}\sqrt{P_{1}(1-P_{1}) + P_{2}(1-P_{2})}\right\}^{2}}{\left(P_{1} - P_{2}\right)^{2}}$$

$$= \frac{\left\{1.96\sqrt{2 \cdot (0.2625)(0.7375)} + 1.282\sqrt{0.175 \cdot 0.825} + 0.35 \cdot 0.65}\right\}^{2}}{\left(0.175 - 0.35\right)^{2}} = 130.79$$

The incidence rate

- □ 많은 역학연구에서 특정시점에 위험에 노출된 전체 대상 보다는 관심의 질병(혹은 특성)이 관찰된 대상인 새로이 나타난 질병 발생자 수를 측정하고자 한다.
 - 질병 발생률(the incidence rate)
 - ✔ 대상이 노출된 관측 기간 중 발생된 환자 수의 비로 측정
 - ✓ 질병률(the force of morbidity), 위험률(the hazard)
- □ 질병 발생률(발병률 or 위험함수)의 측정
 - \triangleright 발병률은 포아송분포 모수 $_{\lambda}$ 형태를 따름
 - 예: 5년 동안 5명의 환자를 추적하여 보니 2년 이후에 1명, 3년 이후에 1명이 발병하였다. 연간 (평균)발병률은?

$$\hat{\lambda} = \frac{\text{발생환자수}}{\text{개인별 관측기간동안}}$$
 노출된 대상합 $= \frac{2}{(5+5+5+2+3)} = 0.1$

1) Sample size determination for the incidence rate studies(1)

- \square 위험(혹은 발병률)의 추정량 $\hat{\lambda} = \frac{d}{F}$ d = 관심사건의 수, F = 총 추적 기간
 - ▶ 발병밀도(the incidence density)는 지수 생존함수 조건하의 위험함수 추정량과 동일
 - 표본크기 결정에 이용
 - 연구기간 동안 위험(the hazard)은 상수로 가정
 - 자료의 절단없이 성공이 발생할 때까지 진행되는 시행에서 대상 n이 관측되는 시간을 t_1,t_2,\cdots,t_n 이라 할 때의 추정량 $\hat{\lambda}=\frac{1}{t}$ where $t=(l/n)\sum t_i$
 - ✓ n이 충분히 큰 경우, ML 추정이 가능하며 추정량의 분포는 $\hat{\lambda} \sim \text{app.} \ N\left(\lambda, \frac{\lambda^2}{n}\right)$
- □ 추정에 필요한 표본크기 결정
 - ho 상대허용오차 arepsilon 이내 결과를 얻기 위해 필요한 표본크기

$$\mathbf{n} = \begin{bmatrix} \mathbf{z}_{1-\alpha/2} / \varepsilon \end{bmatrix}^2$$

$$0 |\mathcal{J}| \mathcal{H} \quad |\hat{\lambda} - \lambda| = \mathbf{z}_{1-\alpha/2} \cdot \frac{\lambda}{\sqrt{\mathbf{n}}}, \quad \varepsilon = |\hat{\lambda} - \lambda| / \lambda$$

□ 가설검정에 필요한 표본크기의 결정

- > 위험함수(혹은 발병률)에 대한 가설검정의 문제는 성공이 나타나는 시간(즉, 실패시간)과 동일한 관점으로 검정이 가능 $\mu = \frac{1}{2}$
- 발병률 자료가 유용한 경우는 위험함수를 이용하여 직접 검정이 가능하지만, 그렇지 않은 경우는 실패시간의 평균 소요시간을 이용하여 검정 가능
- $H_0: \lambda = \lambda_0$ 에 대한 검정 통계량 $z_0 = \sqrt{n(\hat{\lambda} \lambda_0)} / \lambda_0 \sim N(0,1)$ under H_0
- \blacktriangleright $H_1: \lambda \neq \lambda_0$ 에 대한 검정력 $\Pr\left\{\sqrt{n\left(\hat{\lambda} \lambda_0\right)}/\lambda_0 > \mathbf{z}_{1-\alpha/2} \mid H_1\right\} = 1 \beta$
- 양측검정을 위해 필요한 표본크기: [참고] 모비율 추정의 그림

강독점경을 위해 일표된 표근되기 · [참고] 모바를 구경되고함
$$\lambda_0 + z_{1-\alpha/2} \left(\frac{\lambda_0}{\sqrt{n}} \right) = \lambda_1 - z_{1-\beta} \left(\frac{\lambda_1}{\sqrt{n}} \right)$$
 이므로
$$n = \frac{\left(z_{1-\alpha/2} \cdot \lambda_0 + z_{1-\beta} \cdot \lambda_1 \right)^2}{\left(\lambda_0 - \lambda_1 \right)^2}$$

□ A회사에서 특정 화학약품에 노출된 대상의 위험함수가 0.2인 데, 최근 새로운 생산 기법으로 인해 위험이 25% 정도 변화가 있었다고 가정하자. 유의수준 5%에서 수행 되는 위험함수의 변화에 대한 검정결과를 80% 수준에서 신뢰할만한 결과로 얻고자 한다. 얼마나 많은 사람을 표 본으로 선정해야 하는 가?

$$H_0: \lambda = .2 \text{ vs } H_1: \lambda = 0.2 \pm (0.2 \times 0.25)$$

$$n_{0.15} = \frac{\left(z_{1-\alpha/2} \cdot \lambda_0 + z_{1-\beta} \cdot \lambda_1\right)^2}{\left(\lambda_0 - \lambda_1\right)^2} = \frac{\left(1.96 \times 0.2 + 0.842 \times 0.15\right)^2}{\left(0.2 - 0.15\right)^2} = 107.45$$

$$n_{0.25} = \frac{\left(z_{1-\alpha/2} \cdot \lambda_0 + z_{1-\beta} \cdot \lambda_1\right)^2}{\left(\lambda_0 - \lambda_1\right)^2} = \frac{\left(1.96 \times 0.2 + 0.842 \times 0.25\right)^2}{\left(0.2 - 0.25\right)^2} = 145.20$$

$$\therefore$$
 n = max(n_{0.15}, n_{0.25}) = 146

2) Sample size determination for the incidence rate studies(2)

- \square $H_0: \lambda_1 = \lambda_2$ 에 대한 검정(차이의 추정보다 검정에 관심)
 - > 검정통계량 $z_0 = \frac{\left(\hat{\lambda}_1 \hat{\lambda}_2\right)}{\sqrt{2 \cdot \overline{\lambda}^2 / n}} = \frac{\sqrt{n}\left(\hat{\lambda}_1 \hat{\lambda}_2\right)}{\overline{\lambda}\sqrt{2}}$ where $\overline{\lambda} = \left(\hat{\lambda}_1 + \hat{\lambda}_2\right)/2$
 - ho $H_1: \lambda_1 \neq \lambda_2$ 에 대한 검정력 $Pr\{z_0 > z_{1-\alpha/2} \mid H_1\} = 1 \beta$
 - ▶ 검정을 위한 표본크기 결정

$$0 + z_{1-\alpha/2} \sqrt{2 \cdot \overline{\lambda}^{2} / n} = (\lambda_{1} - \lambda_{2}) - z_{1-\beta} \sqrt{(\lambda_{1}^{2} + \lambda_{2}^{2}) / n} \qquad 0 \mid \square \supseteq \square$$

$$n = \frac{\left(z_{1-\alpha/2} \cdot \sqrt{2 \cdot \overline{\lambda}^{2}} + z_{1-\beta} \cdot \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}\right)^{2}}{(\lambda_{1} - \lambda_{2})^{2}}$$

 $k = n_2/n_1$ (불균등표본)인 경우

$$\mathbf{n} = \frac{\left(\mathbf{z}_{1-\alpha/2} \cdot \sqrt{(1+k) \cdot \overline{\lambda}^2} + \mathbf{z}_{1-\beta} \cdot \sqrt{k \lambda_1^2 + \lambda_2^2}\right)^2}{k \cdot (\lambda_1 - \lambda_2)^2} \qquad \text{and} \qquad \frac{-\left(\hat{\lambda}_1 + k \hat{\lambda}_2\right)}{\lambda} = \frac{\left(\hat{\lambda}_1 + k \hat{\lambda}_2\right)}{(1+k)^2}$$

B회사에서 특정 화학약품에 노출된 경우 사망 위험이 약 0.1이며, 경쟁사의 사망 위험이 0.05라고 하자. 유의 수준 5%에서 두 회사의 사망 위험에 차이가 있는지 검 정을 하고자 하며, 검정 결과에 대한 신뢰정도를 80%수 준에서 유지하고자 한다. 이 연구를 위해 실시되는 추적 조사(follow-up survey)에 필요한 표본크기는 각각 얼 마인가? $\overline{\lambda} = \frac{(\lambda_1 + \lambda_2)}{2} = 0.075$

$$\overline{\lambda} = \frac{\left(\lambda_1 + \lambda_2\right)}{2} = 0.075$$

$$n = \frac{\left(z_{1-\alpha/2} \cdot \sqrt{2 \cdot \lambda^{2}} + z_{1-\beta} \cdot \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2}}\right)^{2}}{\left(\lambda_{1} - \lambda_{2}\right)^{2}} = \frac{\left(1.96\sqrt{2 \times 0.075^{2}} + 0.842\sqrt{0.1^{2} + 0.05^{2}}\right)^{2}}{\left(0.1 - 0.05\right)^{2}} = 36.49$$

3) Sample size determination for the incidence rate studies(3)

- □ 연구기간을 설정한 후 실시되는 추적조사에 필 요한 표본크기의 결정
 - Shows and Clark(1975)의 연구 : 총 연구기간 T 로 설정 $\mathbf{n} = \frac{\left(\mathbf{z}_{1-\alpha/2} \cdot \sqrt{2 \cdot f(\lambda)} + \mathbf{z}_{1-\beta} \cdot \sqrt{f(\lambda_1) + f(\lambda_2)}\right)^2}{\left(\lambda_1 \lambda_2\right)^2}$ where $f(\lambda) = \frac{\lambda^3 \cdot T}{\left(\lambda \cdot T 1 + e^{-\lambda \cdot T}\right)}$
 - Lachin(1981)의 연구:최초연구기간 T_1 , 총 연구기간은 T 로 설정 $\mathbf{n} = \frac{\left(\mathbf{z}_{1-\alpha/2} \cdot \sqrt{2 \cdot g\left(\overline{\lambda}\right)} + \mathbf{z}_{1-\beta} \cdot \sqrt{g\left(\lambda_1\right) + g\left(\lambda_2\right)}\right)^2}{\left(\lambda_1 \lambda_2\right)^2}$ where $g(\lambda) = \frac{\lambda^3 \cdot T_1}{\left(\lambda \cdot T_1 e^{-\lambda \cdot (T T_1)} + e^{-\lambda \cdot T}\right)}$

미 예제 10의 연구를 5년 동안 진행할 예정이라고 한다. 연구자는 $\alpha = 0.05$ and $\beta = 0.2$ 의 수준에서 가설 $H_0: \lambda_1 = \lambda_2 = 0.1$ 에 대한 $H_1: \lambda_1 = 0.1$ and $\lambda_2 = 0.05$ 의 가설을 검정하려고 한다. 추적조사 연구에 필요한 표본규모는 얼마인가?

$$f\left(\overline{\lambda}\right) = \overline{\lambda}^{3} \cdot T \left(\overline{\lambda} \cdot T - 1 + e^{-\overline{\lambda} \cdot T}\right) = 0.0339 \quad , \quad f\left(\lambda_{1}\right) = 0.0469 \quad , \quad f\left(\lambda_{2}\right) = 0.0217$$

$$\therefore \mathbf{n} = \frac{\left(z_{1-\alpha/2} \cdot \sqrt{2 \cdot f(\overline{\lambda})} + z_{1-\beta} \cdot \sqrt{f(\lambda_1) + f(\lambda_2)}\right)^2}{\left(\lambda_1 - \lambda_2\right)^2}$$

$$= \frac{\left(1.96\sqrt{2 \times 0.0339} + 0.842\sqrt{(0.0469 + 0.0217)}\right)^2}{\left(0.1 - 0.05\right)^2} = 213.7$$

□ 어느 질병에 대해 표준의 처치를 받은 환자의 평균 생존기간 은 2년이라고 한다. 새로운 처치가 개발되어 평균 생존기간이 최소 1년이 더 연장되었다고 주장한다. 새로운 처치에 대한 연구를 5년 동안 진행하면서 새로운 처치에 대한 치료 결과를 검정하려고 한다. 이 연구에 필요한 표본규모는 각각 얼마인가?

$$\lambda_{1} = \frac{1}{\mu_{1}} = 0.5, \quad \lambda_{2} = \frac{1}{\mu_{2}} = 0.333, \quad \overline{\lambda} = 0.4167$$

$$f(\overline{\lambda}) = \overline{\lambda}^{3} \cdot T / (\overline{\lambda} \cdot T - 1 + e^{-\overline{\lambda} \cdot T}) = 0.2995, \quad f(\lambda_{1}) = 0.3950, \quad f(\lambda_{2}) = 0.2164$$

$$\therefore \mathbf{n} = \frac{\left(z_{1-\alpha/2} \cdot \sqrt{2 \cdot f(\lambda)} + z_{1-\beta} \cdot \sqrt{f(\lambda_1) + f(\lambda_2)}\right)^2}{\left(\lambda_1 - \lambda_2\right)^2}$$

$$= \frac{\left(1.645 \sqrt{2 \times 0.2995} + 0.842 \sqrt{(0.3950 + 0.2164)}\right)^2}{\left(0.5 - 0.333\right)^2} = 163.74$$

□ 예제 12의 연구를 전/후반기로 나뉘어 전반기에 처음 2.5년 동안 진행한 후 후반기 연구로 2.5년을 계속 진행 하려고 계획하고 있다. 이 추적조사 연구에 필요한 표본 규모는 각각 얼마인가? (표본크기는 전반기에 필요한 표본규모를 우선 결정한 후 후반기에는 전반기 결과를 반영하여 표본규모를 정하게 됨)

$$g(\overline{\lambda}) = \frac{\overline{\lambda}^{3} \cdot T_{1}}{\sqrt{(\overline{\lambda} \cdot T_{1} - e^{-\overline{\lambda} \cdot (T - T_{1})} + e^{-\overline{\lambda} \cdot T})}} = 0.2224 , g(\lambda_{1}) = 0.2989 , g(\lambda_{2}) = 0.1576$$

$$\therefore \quad n = \frac{\left(z_{1-\alpha/2} \cdot \sqrt{2 \cdot g(\overline{\lambda})} + z_{1-\beta} \cdot \sqrt{g(\lambda_{1}) + g(\lambda_{2})}\right)^{2}}{(\lambda_{1} - \lambda_{2})^{2}}$$

$$= \frac{\left(1.645 \sqrt{2 \times 0.2224} + 0.842 \sqrt{0.2989 + 0.1576}\right)^{2}}{(0.5 - 0.3333)^{2}} = 99.88$$

Sample size for continuous response variables

□ 모평균 추정의 경우

$$n = \frac{z_{\frac{1-\alpha/2}{\sigma}}^2 \sigma^2}{d^2} \quad \text{where} \quad d = z_{1-\alpha/2} \sqrt{\sigma^2/n}$$

상대오차로 주어진 경우

$$n = \frac{z_{\frac{1-\alpha/2}{2}}^2 \sigma^2}{\varepsilon^2 \mu^2} \quad \text{where} \quad \varepsilon = \frac{|\hat{\mu} - \mu|}{\mu}$$

 \Box 가설검정 $H_1: \mu > \mu_0$ 에 필요한 표본크기의 결정

$$n = \frac{\sigma^{2} (z_{1-\alpha} + z_{1-\beta})^{2}}{(\mu_{0} - \mu_{1})^{2}}$$

□ 두 모평균 차이 추정에 필요한 표본크기의 결정

$$\operatorname{Var}\left(\overline{X}_{1} - \overline{X}_{2}\right) = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}} \Rightarrow \sigma^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \Rightarrow 2 \cdot \sigma^{2}/n$$

$$n = \frac{z_{1-\alpha/2}^{2} \left(2 \cdot \sigma^{2}\right)}{d^{2}} \quad \text{where} \quad d = z_{1-\alpha/2} \sqrt{2\sigma^{2}/n}$$

 \square 가설검정 $H_1: \mu_1 > \mu_2$ 에 필요한 표본크기의 결정

$$n = \frac{2\sigma^2 (z_{1-\alpha} + z_{1-\beta})^2}{(\mu_1 - \mu_2)^2} \quad \text{cf. } s_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$