计算物理第三次作业

刘茁 1500011438

1. Householder 与Givens 在QR 分解中的比较

本题代码见question1文件夹

(a)

使用Householder

• Householder矩阵为

$$P_{(k)} = \left[egin{array}{cc} 1_k & 0 \ 0 & R_{n-k} \end{array}
ight], R_{n-k} = 1_{n-k} - 2rac{w^{(k)}\left(w^{(k)}
ight)^T}{\left\|w^{(k)}
ight\|_2^2}$$

其中, $w^{(k)}$ 由下式决定

$$w^{(k)} = x^{(n-k)} \pm \left\| x^{(n-k)}
ight\|_2 e_1^{(n-k)}$$

• 计算向量 $w^{(k)}$,要求 $x^{(n-k)}$ 的欧式模,计算量为(n-k)次。

计算 $P_{(k)}$ 要进行一次矢量点乘运算和和一次除法,因此 $P_{(k)}$ 变换的计算量为 $2 \times (n-k) + 1$ 次

每次迭代时,前k-1列无需计算,因此每次利用Householder变换进行迭代需要进行(n-k+1) imes(2 imes(n-k)+1)次运算;保留到领头阶,总共的运算次数为

$$\sum_{k=0}^{n-2}(n-k+1) imes(2 imes(n-k)+1)pproxrac{2}{3}n^3$$

• Q 的计算为

$$Q^T = P_{(n-2)}P_{(n-1)}\cdots P_{(0)}$$

构建P总共需要约 n^2 次计算, 之后每一次计算都要对全部n列进行,总的计算次数为

$$2n^2+\sum_{k=1}^{n-2}n imes (2 imes (n-k)+1)pprox n^3$$

• 因此总的计算次数为(保留到最高阶)

$$\frac{5}{3}n^3$$

使用Givens

• 记转动矩阵 $G_{2,1}=G(1,2, heta)$,givens变换得到上三角矩阵的过程应该可以记为

$$(G_{n,n-1}G_{n,n-2}G_{n-1,n-2}\cdots G_{2,1})\,A=Q^TA=R$$

• 在对第j列的对角元以下的元素进行消元时,仅需计算从第j列到第n列的旋转,每次旋转的计算次数为 $2+2\times2 imes(n-j+1)$ (对靠右的两条元素进行运算)

那么,对于矩阵R的计算,总共的运算次数为:

$$\sum_{i=1}^{n-1} (n-j) imes (2+2 imes 2 imes (n-j+1)) pprox rac{4}{3} n^3$$

• Q的计算为

$$Q^T = G_{n,n-1}G_{n,n-2}G_{n-1,n-2}\cdots G_{2,1}$$

其中 $G_{i,j}$ 仅需对第j+1到第n列进行计算,每次计算次数也是 $2+2\times2 imes(n-j+1)$,因此总计算次数和矩阵R的计算次数相同,也是 $\frac{4}{3}n^3$ 次

• 因此总的计算次数为

$$\frac{8}{3}n^3$$

(d)

- 编写程序 run_time.py来比较运行时间。
- 这里我不仅仅比较了n=6的情况(n表示方阵维度),我取了n=3~50的情况,结果如下图所示。

• 可以看出,在维度较大时,Householder方法会显著地快于Givens变换,尽管运行的绝对时间没有意义,但是两种方法运行时间的比例与我们之前的讨论是一致的。在维度较小时,由于运行总时间很小,并不能很有效地比较我们之前讨论保留到n的最高阶的情况。

2. 幂次法求矩阵最大模的本征值和本征矢

(a)

• 原子满足的经典运动方程为

$$\ddot{x_i} - [x_{i-1} + x_{i+1} - 2x_i] = 0$$

• 假设解满足

$$x_i(t) = x_i e^{-i\omega t}$$

则有

$$-\omega^2 x_i - [x_{i-1} + x_{i+1} - 2x_i] = 0$$

注意到

$$(-A)_{ij}=\delta_{i-1,j}+\delta_{i+1,j}-2\delta_{i,j}$$

于是有

$$Ax = \lambda x$$

其中 $\lambda=\omega^2$

(b)

- A的本征值为 $\lambda_1>\lambda_2\geq\lambda_3\geq...\geq\lambda_N$,对应的本征矢为 $m{v_1},m{v_2},m{v_3},...,m{v_N}$ 。
- 将q⁽⁰⁾用本征矢展开

$$oldsymbol{q^{(0)}} = \sum_{i=1}^N a_i oldsymbol{v_i}$$

第k阶的公式很容易总结得到

$$oldsymbol{q^{(k)}} = rac{oldsymbol{z^{(k)}}}{||z^{(k)}||} = rac{A \cdot oldsymbol{q^{(k)}}}{||z^{(k)}||} = C \sum_{i=1}^N a_i \lambda_i^k oldsymbol{v_i}$$

其中C是归一化常数。

• $k \to \infty$ 时,

$$\lim_{k o\infty}oldsymbol{q^{(k)}}=C\lim_{k o\infty}\lambda_1^k\sum_{i=1}^Na_ioldsymbol{v_i}\left(rac{\lambda_i}{\lambda_1}
ight)^k=C\lim_{k o\infty}a_1\lambda_1^koldsymbol{v_1}$$

这是由于

$$\left| rac{\lambda_i}{\lambda_1}
ight| < 1, orall i
eq 1$$

最后只剩下 v_1 这个方向,根据归一化的特性,于是有

$$\lim_{k o\infty}oldsymbol{q}^{(k)}=oldsymbol{v}_1 \ \lim_{k o\infty}oldsymbol{
u}^{(k)}=\lim_{k o\infty}egin{bmatrix}oldsymbol{q}^{(k)}=oldsymbol{v}_1^{\dagger}Aoldsymbol{v}_1=\lambda_1 \end{split}$$

- 编写程序 power_method.py 求解结果
 - 。 最大本征值 $\lambda_1=4.0$
 - 。 对应本征矢 $\begin{bmatrix} -0.31622777, 0.31622777, -0.31$

3. 关联函数的拟合和数据分析

本题代码见question3文件夹

(a)

• 我这里利用标准差来估计误差

$$\Delta C(t) = \sqrt{rac{1}{N(N-1)}\sum_{i=1}^{N}\left(C^{(i)}(t) - \overline{C}(t)
ight)^2}$$

误差结果如下图所示, 具体的数据见附件

(b)(c)

- 利用JackKnife 方法来计算 m_{eff} 及其误差,将其用散点图画出,具体的数据见附件。需要注意的是,我在画图时舍弃了第一个点,这是因为:首先,第一,我们的关注点在中间的平台区和靠近 $N_t/2$ 的区域,时间片靠近0的地方并不是我们所关注的;第二,第一个点的数据误差较大与其他的点不符合,非常影响画图的美观性。
- 接着我利用下式来寻找 $\chi^2/d.o.f$ 最小的 t_{min},t_{max}

$$arg \min_{t_{min},t_{max}} rac{1}{t_{\max} - t_{\min}} \sum_{t=t_{\min}}^{t_{\max}} \left(rac{m_{eff}(t) - m}{\Delta m_{eff}(t)}
ight)^2$$
 $\chi^2 = \sum_{t_{min}}^{t_{max}} \left(rac{m_{eff}(t) - m}{\Delta m_{eff}(t)}
ight)^2$

令

$$rac{\partial \chi^2}{\partial m} = -2 \sum_{tmin}^{tmax} \left(rac{m_{eff}(t) - m}{\Delta m_{eff}(t)}
ight) = 0$$

则有

$$m = rac{\sum_{t_{min}}^{t_{max}} rac{m_{eff}(t)}{\Delta m_{eff}(t)}}{\sum_{t_{min}}^{t_{max}} rac{1}{\Delta m_{eff}(t)}}$$

拟合的结果为

$$t_{min}=12, t_{max}=15, dimension=3$$

$$m_{eff}=0.24332\,$$

将拟合出的 m_{eff} 值和对应的区间用黄色的线条与之前的图画在一起,最后的结果为,具体的数据见附件。

(d)

重复前两问的做法,结果如下

$$t_{min} = 5, t_{max} = 9, dimension = 3$$
 $m_{eff} = 0.24429$

用这种ratio计算的结果我们可以发现,对于 m_{eff} ,这种方法所计算的值十分稳定,在靠近 $N_t/2$ 的区域 m_{eff} 的值仍然保持基本不变。对于误差,这种方法在计算中间平台区域时误差有所增大,但相对分布十分平均。

(e)

程序运行结果如下

$$ho_{3,4}=0.9792$$

$$\Delta
ho_{3,4}=0.0034$$

$$ho_{3,5}=0.9575$$

$$\Delta
ho_{3,5}=0.0062$$

附件

3.(a)

t	C(t)	$\Delta C(t)$	$\Delta C(t)/\overline{C}(t)$
1	5.164e+07	293220.28	0.57%
2	5.416e+07	300383.56	0.55%
3	3.253e+07	211750.26	0.65%
4	2.448e+07	164866.08	0.67%
5	1.883e+07	132834.82	0.71%
6	1.465e+07	108226.51	0.74%
7	1.148e+07	89982.56	0.78%
8	8.989e+06	72558.68	0.81%
9	7.048e+06	59215.24	0.84%
10	5.532e+06	48866.58	0.88%
11	4.343e+06	40608.67	0.93%
12	3.403e+06	33751.12	0.99%
13	2.673e+06	28341.57	1.06%
14	2.096e+06	23843.09	1.14%
15	1.644e+06	19639.89	1.19%
16	1.288e+06	16471.12	1.28%
17	1.010e+06	13842.15	1.37%
18	7.921e+05	11651.16	1.47%
19	6.220e+05	9777.13	1.57%
20	4.883e+05	8199.42	1.68%
21	3.826e+05	6728.90	1.76%
22	2.999e+05	5568.07	1.86%
23	2.363e+05	4616.11	1.95%
24	1.862e+05	3872.31	2.08%
25	1.470e+05	3234.64	2.20%
26	1.165e+05	2729.74	2.34%
27	9.307e+04	2308.67	2.48%
28	7.547e+04	1992.72	2.64%
29	6.207e+04	1724.63	2.78%
30	5.248e+04	1523.80	2.90%
31	4.609e+04	1391.94	3.02%
_			

3.(b)

t	$m_{eff}(t)$	$\Delta m_{eff}(t)$
1	0.50967	0.00462
2	0.28438	0.00488
3	0.26267	0.00545
4	0.25094	0.00542
5	0.24396	0.00577
6	0.24430	0.00540
7	0.24326	0.00540
8	0.24224	0.00554
9	0.24188	0.00580

t	$m_{eff}(t)$	$\Delta m_{eff}(t)$
10	0.24386	0.00605
11	0.24177	0.00640
12	0.24319	0.00624
13	0.24283	0.00570
14	0.24355	0.00679
15	0.24397	0.00700
16	0.24259	0.00712
17	0.24169	0.00707
18	0.24202	0.00706
19	0.24384	0.00641
20	0.24365	0.00733
21	0.23850	0.00739
22	0.23818	0.00822
23	0.23636	0.00794
24	0.23289	0.00913
25	0.22415	0.00904
26	0.20963	0.01071
27	0.19556	0.01028
28	0.16779	0.01254
29	0.12970	0.01420
30	0.08077	0.02197

3.(d)

t	$m_{eff}(t)$	$\Delta m_{eff}(t)$
1	0.63519	0.00473
2	0.31168	0.01095
3	0.27921	0.01246
4	0.26145	0.01253
5	0.24341	0.01605
6	0.24596	0.01520
7	0.24489	0.01413
8	0.24281	0.01494
9	0.23867	0.01705
10	0.24718	0.01482
11	0.23947	0.01504
12	0.24377	0.01524
13	0.24168	0.01388
14	0.24287	0.01589
15	0.24617	0.01647
16	0.24402	0.01600
17	0.24117	0.01496
18	0.23908	0.01690
19	0.24414	0.01492
20	0.25173	0.01492
21	0.23902	0.01788
22	0.24114	0.01876

t	$m_{eff}(t)$	$\Delta m_{eff}(t)$
23	0.24204	0.01488
24	0.24724	0.01643
25	0.24864	0.01478
26	0.23525	0.01929
27	0.24741	0.01557
28	0.24646	0.01576
29	0.24614	0.01568