Chapter 4

Fisher LDA [5 pts] Given the following data points:

#	Data points	Class
	(A_1,A_2)	
1	(4,2.9)	1
2	(3.6,4)	1
3	(2.5,1)	0
4	(2,2.15)	0

- [1 pt] Compute means μ_1 and μ_0 , and the between-class scatter matrix S_B
- [1 pt] Compute SC_1 and SC_0 , the within-class scatter matrices and their sum S_W
- [1 pt] Find the optimal vector \overline{w} that discriminates between the classes
- [1 pt] Having found discriminant vector \overline{w} , find the point on \overline{w} that best separates the two classes.
- [1 pt] Classify the point (3.8, 5)

Perceptron [3 pts] . Apply the perceptron learning algorithm for the following pattern set until convergence. Start with 0-weight vector

$$\overline{w} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

For simplicity of computation use $\eta=1$. Apply the learning algorithm to data points in the given order cyclically. For each step of perceptron learning write down the classification result of a data point with the current weight vector, indicator if update is needed, and computation of vector update if necessary. The dataset consist of datapoints a, b, c, d:

	X_1	X_2	X_3	Y
a.	4	3	6	-1
b.	2	-2	3	1
c.	1	0	-3	1
d.	4	2	3	-1