Quantum and Classical Query Complexities of Functions of Matrices

Changpeng Shao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences based on joint work with Ashley Montanaro (University of Bristol & Phasecraft) arXiv:2311.06999

STOC 2024 24-28 June 2024

Quantum linear algebra plays an important role in the exploration of quantum advantages.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- ▶ Has wide applications in quantum machine learning, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - ► Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- ▶ Has wide applications in quantum machine learning, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - ▶ Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].
- ▶ All these problems can be described as functions of matrices: computing $f(A)|\mathbf{b}\rangle$.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- ▶ Has wide applications in quantum machine learning, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - ▶ Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].
- ▶ All these problems can be described as functions of matrices: computing $f(A)|\mathbf{b}\rangle$.
- ► Can be solved by a similar idea to HHL, but more efficiently by quantum singular value transform [Gilyén-Su-Low-Wiebe, '18].

Assume A is Hermitian and $\|A\| \le 1$ for simplicity.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

As a direct result, we can compute $f(A)|\mathbf{b}\rangle$.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

As a direct result, we can compute $f(A)|\mathbf{b}\rangle$.

Still works if f is not a polynomial, just consider its polynomial approximation.

This talk

Motivations: For functions of matrices,

- ▶ QSVT is optimal in many cases, how about the general case?
- what is the quantum-classical separation?

This talk

Motivations: For functions of matrices,

- ▶ QSVT is optimal in many cases, how about the general case?
- what is the quantum-classical separation?

To resolve the above questions, we consider the following weaker problem

Problem (Approximate an entry of f(A))

Let $f(x):[-1,1] \to [-1,1]$ be a function, let A be sparse and Hermitian with $\|A\| \le 1$. Given two indices i,j and accuracy ε , compute $\langle i|f(A)|j\rangle \pm \varepsilon$.

This talk

Motivations: For functions of matrices,

- ▶ QSVT is optimal in many cases, how about the general case?
- what is the quantum-classical separation?

To resolve the above questions, we consider the following weaker problem

Problem (Approximate an entry of f(A))

Let $f(x): [-1,1] \to [-1,1]$ be a function, let A be sparse and Hermitian with $\|A\| \le 1$. Given two indices i,j and accuracy ε , compute $\langle i|f(A)|j\rangle \pm \varepsilon$.

For a sparse matrix $A = (A_{i,j})$, we are given 2 oracles:

$$(i,j) \longrightarrow \mathcal{O}_1 \longrightarrow p_{i,j}$$
 $(i,j) \longrightarrow \mathcal{O}_2 \longrightarrow A_{i,j}$

where p_{ij} is the index of the j-th nonzero entry in the i-th row. The query complexity is the minimal number of calls to the oracles to solve the problem.

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

Classical algorithms:

► Assume *A* is *s*-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

For x^d , there is an approximation polynomial of degree $\Theta(\sqrt{d})$, so can be improved to $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

- For x^d , there is an approximation polynomial of degree $\Theta(\sqrt{d})$, so can be improved to $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

- ▶ For x^d , there is an approximation polynomial of degree $\Theta(\sqrt{d})$, so can be improved to $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

- ▶ For x^d , there is an approximation polynomial of degree $\Theta(\sqrt{d})$, so can be improved to $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

Quantum algorithms:

▶ Upper bound by QSVT $O(s\sqrt{d}/\varepsilon)$

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^d)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{d-1},j}$$

The complexity is $O(s^{d-1})$

- ▶ For x^d , there is an approximation polynomial of degree $\Theta(\sqrt{d})$, so can be improved to $s^{O(\sqrt{d})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{d}-1)/6})$

Quantum algorithms:

- ▶ Upper bound by QSVT $O(s\sqrt{d}/\varepsilon)$
- Our result (lower bound): $\Omega(\sqrt{d})$

General case (our results)

Assume f is continuous, A is sparse and Hermitian, then computing $f(A)_{i,j} \pm \varepsilon$ costs

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

where $d = \widetilde{\deg}_{\varepsilon}(f)$ is the approximate degree:

$$\widetilde{\deg}_{\varepsilon}(f) \quad = \quad \min\{d: |f(x)-g(x)| \leq \varepsilon, \forall x \in [-1,1], \\ g(x) \text{ is a polynomial of degree } d\}.$$

The quantum lower bound is similar to the famous polynomial method for Boolean functions [Beals, Buhrman, Cleve, Mosca, de Wolf, FOCS '98].

Key theorem in the proofs

Theorem (Key theorem)

Let $f: [-1,1] \to [-1,1]$ be continuous with odd and even parts f_{odd} , f_{even} , then

► there is a symmetric tridiagonal matrix

$$A = \begin{pmatrix} 0 & b_1 & & & & \\ b_1 & 0 & b_2 & & & \\ & b_2 & \ddots & \ddots & & \\ & & \ddots & \ddots & b_{n-1} \\ & & & b_{n-1} & 0 \end{pmatrix}$$

satisfying
$$||A|| \le 1$$
 and $f(A)_{1,n} = \varepsilon$, where $n = \deg_{\varepsilon}(f_{\text{odd}}) + O(1)$.

ightharpoonup A similar result for f_{even} .

Proof. linear semi-infinite programming + dual polynomial method + properties of tridiagonal matrices. ■

Parity problem: Given $x_1, \ldots, x_n \in \{0, 1\}$, compute $x_1 \oplus \cdots \oplus x_n$, the quantum query complexity is $\Theta(n)$

Parity problem: Given $x_1, \ldots, x_n \in \{0, 1\}$, compute $x_1 \oplus \cdots \oplus x_n$, the quantum query complexity is $\Theta(n)$

We construct a weighted graph G:

- ▶ **vertices:** (i, t), where $i \in \{0, 1, ..., n\}, t \in \{0, 1\}$
- **edges:** an edge between (i-1,t) and $(i,t\oplus x_i)$
- weights: to be determined

Parity problem: Given $x_1, \ldots, x_n \in \{0, 1\}$, compute $x_1 \oplus \cdots \oplus x_n$, the quantum query complexity is $\Theta(n)$

We construct a weighted graph G:

- ▶ **vertices:** (i, t), where $i \in \{0, 1, ..., n\}, t \in \{0, 1\}$
- **edges:** an edge between (i-1,t) and $(i,t\oplus x_i)$
- weights: to be determined

For example, $(x_1, x_2, x_3, x_4) = (0, 1, 1, 0)$, then G is

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . Indeed the weights are determined by our key theorem.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . Indeed the weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . Indeed the weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard. It is very important to ensure that $n=\widetilde{\deg}(f)+O(1)$ in the key theorem.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . Indeed the weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard. It is very important to ensure that $n=\widetilde{\deg}(f)+O(1)$ in the key theorem. This idea is inspired by the no fast-forwarding theorem. [Berry, Ahokas, Cleve, Sanders, Comm. Math. Phys. '07]

Forrelation problem (Aaronson & Ambainis, 2015):

Given $g_1, g_2 : \{0, 1\}^n \to \{\pm 1\}$, let $D_i = \operatorname{diag}(g_i(x) : x \in \{0, 1\}^n)$, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, define

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} g_1(x) g_2(y).$$

The goal is to compute $\Phi(g_1,g_2) \pm 1/3$

Forrelation problem (Aaronson & Ambainis, 2015):

Given $g_1, g_2 : \{0, 1\}^n \to \{\pm 1\}$, let $D_i = \operatorname{diag}(g_i(x) : x \in \{0, 1\}^n)$, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, define

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} g_1(x) g_2(y).$$

The goal is to compute $\Phi(g_1,g_2)\pm 1/3$

For this problem, the classical query complexity is lower bounded by $\Omega(\sqrt{2^n}/n)$, while the quantum query complexity is O(1).

Feynman's clock construction

Let $U = U_{N-1} \cdots U_2 U_1$ be a unitary operator, define

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} & & \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} & & \\ & b_2 U_2 & \ddots & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

Feynman's clock construction

Let $U = U_{N-1} \cdots U_2 U_1$ be a unitary operator, define

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} & & \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} & & \\ & b_2 U_2 & \ddots & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

Let $|\psi_t\rangle := |t\rangle \otimes U_t \cdots U_1 |0\rangle$, then

$$A|\psi_t\rangle = b_{t-1}|\psi_{t-1}\rangle + b_{t+1}|\psi_{t+1}\rangle$$

In subspace $\{|\psi_t\rangle: t=0,1,\ldots,N-1\}$, A is a symmetric tridiagonal matrix

In the Forrelation problem, we have $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$. To ensure A is sparse in the clock construction, we decompose

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

In the Forrelation problem, we have $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$. To ensure A is sparse in the clock construction, we decompose

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

Now
$$N = 3n + 2$$
,

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle$$

$$|\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$$

In the Forrelation problem, we have $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$. To ensure A is sparse in the clock construction, we decompose

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

Now N = 3n + 2,

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle$$

$$|\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$$

Let $|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$, then

$$\langle \phi_{N-1}|f(A)|\psi_0\rangle = \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1,g_2)$$

In the Forrelation problem, we have $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$. To ensure A is sparse in the clock construction, we decompose

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$
 Now $N = 3n + 2$,
$$|\psi_0\rangle = |0\rangle \otimes |0\rangle \\ |\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}|0\rangle$$
 Let $|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$, then
$$\langle \phi_{N-1}|f(A)|\psi_0\rangle = \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1,g_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 an entry of $f(A)$ Easy Hard

In the Forrelation problem, we have $U=H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}$. To ensure A is sparse in the clock construction, we decompose

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

Now
$$N = 3n + 2$$
,

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle$$

$$|\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$$

Let
$$|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$$
, then

$$\begin{array}{cccc} \langle \phi_{N-1}|f(A)|\psi_0\rangle & = & \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1,g_2) \\ \downarrow & & \downarrow & \downarrow \\ \text{an entry of } f(A) & & \mathsf{Easy} & \mathsf{Hard} \\ \downarrow & & \downarrow & \\ \end{array}$$

Hard

Conclusion

► For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal,
 - quantum-classical separation is exponential.

Conclusion

For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal,
 - quantum-classical separation is exponential.

Open questions:

- ▶ Lower bound in terms of ε in the quantum case? $\Omega(1/\varepsilon)$?
- Any applications similar to the famous polynomial method?

Conclusion

For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal,
 - quantum-classical separation is exponential.

Open questions:

- ▶ Lower bound in terms of ε in the quantum case? $\Omega(1/\varepsilon)$?
- Any applications similar to the famous polynomial method?

Thanks very much for your time!