Упражнения и задачи по курсу ТВ 2025

ИППИ РАН

17 сентября 2025 г.

Лекция 1

Упражнение 1 [Формула сложения]

Пусть $A,\ B\in\mathcal{F}$ - события. Доказать, что $\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(AB)$.

Упражнение 2 [Формула включений-исключений]

Пусть $A_1,\ A_2,\dots A_n\in\mathcal{F}$ - события. Доказать:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{1 \leq i \leq n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mathbb{P}(A_{i_{1}} A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} \mathbb{P}(A_{i_{1}} A_{i_{2}} A_{i_{3}}) + \ldots + (-1)^{n-1} \mathbb{P}(A_{1} \ldots A_{n})$$

Упражнение 3 [Задача про очередь]

Пусть у билетной кассы стоит очередь из 2n человек. Из них n человек имеет 50р и еще n - 100р. Билет стоит 50р, изначально касса пуста. Пусть $A = \{$ очередь не встанет $\}$. Найти $\mathbb{P}(A)$.

Лекция 2

Упражнение 4

Следует ли из попарной независимости событий $A_1,\ A_2,\dots A_n\in\mathcal{F}$ их независимость в совокупности?

Упражнение 5

В записи, определяющей независимость событий $A_1, A_2, \dots A_n \in \mathcal{F}$ в совокупности,

$$\mathbb{P}\left(\bigcap_{i\in I} A_i\right) = \prod_{i\in I} \mathbb{P}(A_i) \ \forall I \subseteq \{1, 2, \dots, n\},$$

содержится $2^n - n - 1$ равенств. Следует ли из выполнения самого длинного равенства выполнение всех остальных?

Упражнение 6

Найти дискретную случайную величину, обладающую свойством "отсутствия памяти".

Упражнение 7

[Корректность выражений в доказательстве "отсутствия памяти" у $\tau \sim \text{Exp}(\lambda)$]

Случайная величина $\tau' = \{\tau \mid \tau > s\}$ определена не на том же вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, что и случайная величина τ . Например, τ' не определена для события $\{\omega : \tau < s\}$. Найти вероятностное пространство $(\Omega', \mathcal{F}', \mathbb{P}')$, на котором определена τ' и при этом выкладки из лекции не изменились.

Лекция 3

Упражнение 8

$$X \sim \text{Poiss}(\lambda_1), Y \sim \text{Poiss}(\lambda_2), X \perp Y$$
. Найти $\mathbb{P}(X = k \mid X + Y = n)$

Упражнение 9

Пусть $\{\xi_n\}_{n\in\mathbb{N}}$ - последовательность i.i.d. случайных величин с функцией распределения $F(x) < 1 \ \forall x \in \mathbb{R}$. Пусть $\eta_n = \max\{\xi_1, \dots, \xi_n\}$ - последовательность крайних статистик. Доказать: $\mathbb{P}\left(\{\omega: \ \eta_n(\omega) \xrightarrow[n \to \infty]{} \infty\}\right) = 1$.

Упражнение 10

Пусть X_1, \ldots, X_n - последовательность i.i.d. случайных величин с функцией распределения F(x) и плотностью распределения f(x). Построим вариационный ряд $X_{(1)}, \ldots, X_{(n)}$. Найти функцию распределения $F_{X_{(j)}}$ и плотность распределения $F_{X_{(j)}}$, $1 \le j \le n$.

Упражнение 11

Пусть случайные величины ξ , η обладают плотностями f_{ξ} , f_{η} . Найти плотность $\xi - \eta$. Пусть ξ , $\eta \sim \mathcal{N}(0,1)$. Найти $\mathbb{P}(\xi > \eta)$. Остается ли ответ верным, если случайные величины ξ , η распределены не по нормальному закону?

Упражнение 12

В n ячейках случайно и независимо друг от друга размещается k частиц так, что каждая из них попадает в i-ю ячейку с вероятностью p_i , $\sum_{i=1}^n p_i = 1$. Пусть $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ - случайный вектор, i-я компонента которого соответствует числу частиц в i-ой ячейке. Доказать, что $\boldsymbol{\xi} \sim \operatorname{Poly}(k, p_1, \dots, p_n)$.

Упражнение 13

Пусть $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \sim \text{Poly}(k, p_1, \dots, p_n)$. Доказать: $\xi_i \sim \text{Binom}(k, p_i)$.

Упражнение 14 [Общий случай формулы изменения плотности]

В общем случае функция $y = \varphi(x)$ может быть такова, что $x = \psi(y)$ неоднозначна, т.е. одному y может соответствовать несколько значений x: $x_1 = \psi_1(y), \dots, x_n = \psi_n(y)$, где x_i - корни $\varphi(x)$, n - число участков монотонности $\varphi(x)$. Модифицируйте формулу для $f_n(y)$ для описанного случая.

Лекция 4

Упражнение 15

Известно, что если случайные величины ξ , η независимы, то $\mathbb{E}(\xi\eta) = \mathbb{E}(\xi)\mathbb{E}(\eta)$. Верно ли обратное?

Известно, что если случайные величины ξ , η независимы, то $\mathbb{D}(\xi + \eta) = \mathbb{D}(\xi) + \mathbb{D}(\eta)$. Верно ли обратное?

Покажите, что из некоррелированности двух случайных величин не следует их независимость.

Упражнение 16 [Ковариация в тождестве Вальда]

Пусть $\{\xi_n\}_{n\in\mathbb{N}}$ - последовательность i.i.d. случайных величин, а дискретная неотрицательная случайная величина ν независима вместе с $\{\xi_n\}_{n\in\mathbb{N}}$. Пусть $S_{\nu}=\sum_{i=1}^{\nu}\xi_i$. $\mathbb{E}(\xi_1)=m_{\xi},\ \mathbb{D}(\xi_1)=\sigma_{\xi}^2,\ \mathbb{E}(\nu)=m_{\nu},\ \mathbb{D}(\nu)=\sigma_{\nu}^2$. Найти $\mathrm{cov}(S_{\nu},\nu)$.

Упражнение 17 [Отрицательное биномиальное распределение]

Найти матожидание и дисперсию для случайной величины $\xi \sim \mathrm{NB}(n,p)$.

Упражнение 18 [Тождество Вальда через g]

Найти матожидание и дисперсию в тождестве Вальда, используя производящие функции.

Упражнение 19 [Гипергеометрическое распределение]

Пусть в урне N шаров, n - белые, N-n - черные. Осуществляется выборка без возвращения объема k. Пусть ξ - число белых шаров в выборке. Найти матожидание и дисперсию ξ .

Лекция 5

Упражнение 20

Пусть случайные величины $\xi \perp \eta$ и одинаково распределены. Пусть $\mathbb{E}(\xi), \mathbb{E}(\eta) < \infty$.

Доказать что п.н. выполнено

$$\mathbb{E}(\xi \mid \xi + \eta) = \mathbb{E}(\eta \mid \xi + \eta) = \frac{\xi + \eta}{2}.$$

Упражнение 21

Пусть $\{\xi_n\}_{n\in\mathbb{N}}$ - последовательность i.i.d. случайных величин, $\mathbb{E}(\xi_1)<\infty$. Пусть $S_n=\xi_1+\ldots+\xi_n$. Доказать что п.н. выполнено:

$$\mathbb{E}(\xi_1 \mid S_n, S_{n+1}, \ldots) = \frac{S_n}{n}.$$

Упражнение 22

Пусть $\xi, \eta \sim \mathcal{U}[0, 1], \xi \perp \eta$. $X = \min\{\xi, \eta\}, Y = \max\{\xi, \eta\}$. Найти $\mathbb{E}(X \mid Y)$.

Лекция 6

Упражнение 23

Доказать, что если последовательность случайных величин $\{\xi_n\}_{n\in\mathbb{N}}$ возрастает п.н., т.е. $\mathbb{P}(\xi_n \leq \xi_{n+1}) = 1$, то из сходимости $\xi_n \xrightarrow{\mathbb{P}} \xi$ следует сходимость $\xi_n \xrightarrow{L_q} \xi$.

Упражнение 24

Доказать, что если последовательность случайных величин $\{\xi_n\}_{n\in\mathbb{N}}$ равномерно ограничена, т.е. $\exists a>0: \ |\xi_n|< a \ \forall n\in N,$ то из сходимости $\xi_n\stackrel{\mathbb{P}}{\to}\xi$ следует сходимость $\xi_n\stackrel{L_q}{\to}\xi.$

Лекция 7

Упражнение 25

Доказать, что если $\xi_n \xrightarrow{d} c, c \in \mathbb{R}$, то $\xi_n \xrightarrow{\mathbb{P}} c$.

Упражнение 26

Найти характеристическую функцию распределения Коши с плотностью $f_{\xi}(x) = \frac{1}{\pi} \frac{1}{x^2 + 1}$.

Упражнение 27

Найти распределение, которому соответствует характеристическая функция $\varphi(t) = \frac{\cos t}{1-it}$.

Лекция 8

Упражнение 28

Пусть случайный процесс $\xi(\omega,t) = \omega t$, $t \in [0,1]$ определен на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, где $\Omega = \{1,2,3\}$, $\mathcal{F} = 2^{\Omega}$, $\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \frac{1}{3}$. Построить двойственное пространство $(\chi, \mathcal{B}_{\chi}^T, \mathbb{P}_{\chi})$.

Упражнение 29

Найти $m_{\xi}(t)$, $R_{\xi}(t,s)$ для случайного процесса $\xi(t) = X \cos(t+Y)$, где $t \in T = \mathbb{R}$, $X \sim \mathcal{N}(0,1), Y \sim \mathcal{U}[-\pi,\pi], X \perp T$.

Упражнение 30

Поток заявок на сервер моделируется пуассоновским потоком K(t) с интенсивностью $\lambda=100$. Каждая заявка обслуживается независимо и требует $V_n \sim \mathcal{U}[a,b]$ единиц энергии (UE). Пусть $K(t), \{V_i\}$ -независимы. Найти: матожидание, дисперсию, характеристическую функцию суммарного потребления UE за время t: $S(\omega,t) = \sum_{i=1}^{K(T)} V_i(\omega)$. Доказать, что нормированное суммарное потребление UE $\tilde{S}(t) = \frac{S(t) - \mathbb{E}(S(t))}{\sqrt{\mathbb{D}(t)}}$ является асимптотически нормальным.

Лекция 9

Упражнение 31

Случайная последовательность $\{X_k\}$, каждая компонента которого принимает значения из некоторого множества $S \in \mathbb{Z}, |S| \leq \infty$ и обладающая свойством

$$\mathbb{P}\left(X_{m_n} = x_n | X_{m_{n-1}} = x_{n-1}, \dots, X_{m_0} = x_0\right) =$$

$$= \mathbb{P}\left(X_{m_n} = x_n | X_{m_{n-1}} = x_{n-1}\right) \forall n \ge 1, m_0 < m_1 < \dots m_n, \ x_0, \dots, x_n \in S,$$

для которых указанные условные вероятности определены, называется дискретной цепью Маркова. Докажите, что это определение эквивалентно следующему:

$$\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_0 = x_0) =$$

$$= \mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1}) \, \forall n > 1, \ x_0, \dots, x_n \in S,$$

для которых условные вероятности определены.

Упражнение 32

Пусть η_1, \dots, η_n - последовательность независимых целочисленных случайных величин. Доказать, что $\{\xi_k = \sum_{m=1}^k \eta_m, k \in \mathbb{N}\}$ образует дискретную цепь Маркова.

Упражнение 33

Дана марковская цепь $\{\xi_n\}$ с $S=\{0,1\}$ и матрицей переходов $\mathbf{P}=\begin{bmatrix}1-p&p\\q&1-q\end{bmatrix}$, $p,q\in(0,1)$. Нарисовать стохастический граф, найти $\mathbb{P}(\xi_n=0|\xi_0=0)$.

Лекция 10

Упражнение 34

Найти матрицу переходов ОДЦМ с $P = \begin{bmatrix} 1/2 & 1/2 \\ 1 & 0 \end{bmatrix}$ за n шагов и распределение состояний, если $\pi(0)^T = (0,1)$. Воспользуйтесь производящими функциями.

Упражнение 35

Докажите, что в конечной марковской цепи всегда существует существенное состояние.

Упражнение 36

Проведите классификацию ОДЦМ с

$$P = \begin{pmatrix} 1/3 & 2/3 & 0 & 0 & 0 \\ 1/4 & 3/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$
 (1)

Лекция 11

Упражнение 37 [Игра на разорение]

Рассмотрим игру в орлянку. Пусть у игрока исходно k рублей, на каждом шаге игры подбрасывается монетка с вероятностью орла p. Если выпал орел, то игрок получает 1 рубль, иначе - отдает 1 рубль в банк. Игра продолжается до тех пор пока игрок не разорится или не накопит все M рублей, которые исходно были в банке. Нарисовать стохастических граф описанной игры. Рассмотреть случаи $M < \infty$ и $M = \infty$: классифицировать состояния полученной цепи и проанализировать цепь на эргодичность в этих случаях. Найти вероятность проигрыша игрока при заданном стартовом капитале k в случаях $M < \infty$ и $M = \infty$.

Упражнение 38 [Двухрукий бандит]

Рассмотрим игровой автомат с двумя ручками. Если нажать на первую, то происходит выигрыш одного рубля с вероятностью p_1 , иначе - автомат забирает один рубль. Для второй ручки все аналогично, но с вероятностью p_2 . При этом вероятности p_1 и p_2 неизвестны игроку. Цель игры состоит в максимизации среднего выигрыша (или минимизации проигрыша, как получится). Сравните две стратегии игры:

- 1. Равновероятный выбор на каждом шаге одно из ручек,
- 2. Повторение на следующем шаге действия, приведшего к успеху на предшествующем шаге, и смена действия, приведшего к неудаче.

Используя лучшую из стратегий, предложенных выше, при каких условиях на $p_1 + p_2$ можно выиграть хоть что-то в среднем?

* Можно ли придумать стратегию лучше, чем предложены выше?

Задачи для сдачи теорвера

Уровни сложности: I, II, III, IV, 🙎.

Комбинаторика, формулы Байеса и полной вероятности

1 (I)

Пусть в урне m шаров черный, l - белые, делается n вытягиваний шаров без возвращения. Найти вероятность того, что на k-ом вытягивании будет белый шар.

$$\# 2 (II)$$

В урне первоначально находилось a белых и b черных шаров. Из урны достают шар и возвращают назад, добавляя при этом c шаров одного c ним цвета. Найти вероятности:

- 1. при третьем вытаскивании появился белый шар;
- 2. первый шар белый, если третий оказался белым;
- 3. при n+m извлечениях появилось n белых и m черных шаров;
- 4. на k-ом шаге появился белый шар.

Найти предел вероятности получить ровно k белых шаров при случайном выборе n шаров

- 1. с возвращением,
- 2. без возвращения

из урны с l белыми и m-l черными шарами при $k,m\to\infty,\frac{l}{m}\to p,\,p\in(0,1).$

$$\# 4 (I)$$

Найти вероятность что при случайном размещении n занумерованных шаров по k ячей-кам все ячейки окажутся заняты.

Распределения случайных величин

Пусть $X, Y \sim \text{Geom}(p), X \perp Y, Z = |X - Y|$. Найти распределение Z.

Пусть $X,Y \sim \mathcal{U}[0,1], X \perp \!\!\! \perp Y.$ Найти плотность $f_{X+Y}.$

Пусть X_1, \ldots, X_n - i.i.d. $X_1 \sim \text{Exp}(\lambda)$. Найти плотность $f_{X_1 + \ldots + X_n}$.

Пусть $\xi \sim \text{Exp}(\lambda)$, $\eta \sim \text{Exp}(\mu)$, $\xi \perp \eta$. Найти $\mathbb{P}(\xi \leq \eta)$.

Пусть $X \sim \mathcal{U}[0,1]$. Построить график плотности $Y = 2 - \sqrt{X}$. Пусть X имеет плотность $f_X(x) = \frac{1}{2}e^{-|x|}$, построить плотность Y = |X|.

Пусть ξ_1, \dots, ξ_n - i.i.d, $\xi_1 \sim \mathcal{U}[0,1]$. Найти плотность вероятности $f_\alpha(x)$ с.в. $\alpha = \prod_{k=1}^n \xi_k$ при 0 < x < 1.

Пусть случайная величина $U \sim \mathcal{U}[0,1]$, $\zeta \sim \text{Be}(\frac{1}{2})$. Пусть случайная величина X зависит от ζ следующим образом: если $\zeta = 1$, то $X = U^2$, если $\zeta = 0$, то $X = 1 - U^2$. Найти плотность $f_X(x)$.

Пусть F - функция распределения некоторой случайной величины. Докажите, что $\forall a \in \mathbb{R}$ выполняется $\int_{\mathbb{R}} \left(F(x+a) - F(x) \right) dx = a$

Может ли функция

$$F(x_1, x_2) = \begin{cases} 1, & \min\{x_1, x_2\} > 1, \\ 0, & \min\{x_1, x_2\} \le 1 \end{cases}$$

быть функцией распределения некоторого двумерного случайного вектора?

Пусть ξ, η - независимые с.в. с непрерывными функциями распределения $F_{\xi}(x)$ и $F_{\eta}(x)$. Найдите функцию распределения $\xi \eta$.

Пусть ξ , η - независимые с.в. с непрерывными функциями распределения $F_{\xi}(x)$ и $F_{\eta}(x)$. Найти функции распределения $\min\{\xi,\eta\}$, $\max\{\xi,\eta\}$.

16 [Преобразование Бокса-Мюллера] (IV)

Пусть $X_1, X_2 \sim \mathcal{U}[0,1], \ X_1 \perp X_2$. Найти совместную плотность распределения $Y_1 = \sqrt{-2 \ln X_1} \sin(2\pi X_2), \ Y_2 = \sqrt{-2 \ln X_1} \cos(2\pi X_2)$.

Пусть $\xi \geq 0, \ \eta \geq 0$ - абсолютно непрерывные независимые случайные величины с плотностями $f_{\xi}(t), \ f_{\eta}(t).$ Доказать:

$$f_{\xi\eta}(t) = \int_0^{+\infty} f_{\xi}(s) f_{\eta}\left(\frac{t}{s}\right) \frac{1}{s} ds, \ t > 0$$

и $f_{\xi n}(t) = 0, t \leq 0.$

Пусть $\xi \sim \text{Poiss}(\lambda_1)$, $\eta \sim \text{Poiss}(\lambda_2)$, Найти распределение случайной величины $\xi + \eta$ при помощи производящих функций.

Пусть ξ и η - независимые случайные величины, имеющие геометрическое распределение

$$\mathbb{P}(\xi = n) = \mathbb{P}(\eta = n) = q^{n-1}p, \ n = 1, 2, \dots, \ 0 < q < 1, \ q + p = 1.$$

Найти распределение с.в. ξ при условии $\xi < \eta$.

Пусть $X,Y \sim \mathcal{N}(0,1), \ X \perp \!\!\! \perp Y, \ R = \sqrt{X^2 + Y^2}.$ Найти плотность условного распределения $f_{X|R}(x|r).$

Пусть плотность совместного распределения случайного вектора (X,Y) имеет вид $f_{XY}(x,y)=(x+y)\mathbb{I}_{[0,1]^2}(x,y)$. Найти $\mathbb{P}\left(0\leq Y\leq \frac{1}{2}\mid X=x\right)$.

Пусть (i_1, \ldots, i_n) - случайная перестановка вектора $(1, \ldots, n)$. Пусть $X = \min\{i_1, i_2\}, Y = \max\{i_1, i_2\}$. Найти совместное распределение X, Y.

Случайный вектор (X, Y) равномерно распределен на множестве $\{0 \le x \le 1, y \ge 0, y \le x^2\}$. Найти плотность $f_X(x)$.

Случайный вектор (X,Y) равномерно распределен на $[0,1]^2$. Пусть $U=\min\{X,Y\}$, $V=\max\{X,Y\}$. Найти плотность совместного распределения f_{UV} .

Пусть R, Φ - полярные координаты случайного вектора (X,Y), где (X,Y) имеет совместное распределение $\frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}$. Найти плотности: $f_R, f_\Phi, f_{R\Phi}$.

Случайный вектор имеет равномерное распределение на $[0,1]^2$. Найти распределение Z=Y-X.

Случайный вектор (X,Y) имеет плотность совместного распределения $\frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}$. Найти распределение $Z=\frac{X}{V}$.

Алиса и Боб бросают n раз монетку. Какова вероятность, что у Алисы выпало больше, чем у Боба? Каков будет ответ, если Алиса бросает n+1 раз, а Боб все еще n раз?

- 1. Пусть $\xi, \eta \sim \mathcal{N}[0,1], \xi \perp \eta$. Доказать, что $\forall \alpha \in \mathbb{R} \mapsto \xi \cos \alpha + \eta \sin \alpha \sim \mathcal{N}(0,1)$.
- 2. Пусть $\xi, \eta \sim \mathcal{N}[0,1], \ \alpha \sim \mathcal{U}[0,2\pi], \ \xi, \eta, \alpha$ независимы. Доказать, что $\xi \cos \alpha + \eta \sin \alpha \sim \mathcal{N}(0,1)$.

Матожидание, дисперсия, ковариация, корреляция

Пусть a - фиксированное число в [0,1], $\xi \sim \mathcal{U}[0,1]$. При каком значении $a \xi$ и $\eta = |\xi - a|$ является некоррелированными? Могут ли эти случайные величины быть независимыми?

Случайная величина X равна числу белых шаров при случайной выборке n шаров с возвращением из урны с l белыми и m-l черными шарами. Найти $\mathbb{E}X$, $\mathbb{D}X$.

Пусть $\ln \xi \sim \mathcal{N}(a, \sigma^2)$. Найти $\mathbb{E}\xi$, $\mathbb{D}\xi$.

Игральная кость подбрасывается n раз, ξ - число выпадений $1, \eta$ - число выпадений 6. Найти корреляцию $\rho(\xi,\eta)=\frac{\text{cov}(\xi,\eta)}{\sqrt{\mathbb{D}(\xi)}\sqrt{\mathbb{D}(\eta)}}.$

Пусть задана последовательность i.i.d случайных величин ξ_n , имеющих геометрическое распределение, т.е. $\mathbb{P}(\xi_n = k) = pq^{k-1}, \ q = 1 - p$. Найти распределение случайных величин $\tau = \min\{n \geq 1 : \xi_n > 1\}$ и ξ_{τ} , вычислите $\mathbb{E}\tau$, $\mathbb{E}\xi_{\tau}$.

Пусть задана последовательность i.i.d случайных величин ξ_n , имеющих распределение Пуассона с параметром 1. Найти распределение случайных величин $\tau = \min\{n \geq 1 : \xi_n > 1\}$ и ξ_τ , вычислите $\mathbb{E}\tau$, $\mathbb{E}\xi_\tau$.

Пусть ξ_1, \ldots, ξ_n - i.i.d. Доказать, что

$$\mathbb{E}\left[\frac{\xi_1 + \ldots + \xi_k}{\xi_1 + \ldots + \xi_n}\right] = \frac{k}{n}$$

для любого $1 \le k \le n$ Можно ли отказать от независимости?

Их урны с l белыми и m-l черными шарами наугад без возвращения извлекается n шаров. Пусть \mathbb{I}_j - индикатор того, что k-ый шар оказался белым. Найти при $\neq j$ ковариацию $\mathrm{cov}(\mathbb{I}_j,\mathbb{I}_k)$ и их коэффициент корреляции.

Пусть (X_1, \ldots, X_m) - случайная перестановка вектора $(1, \ldots, n)$. Найти ковариацию $\operatorname{cov}(X_i, X_k), \ k \neq j$.

Пусть $X_1, \ldots, X_n \sim \mathcal{U}[0,1]$ - координаты n точек на отрезке [0,1]. [0,1] разбит на m непересекающихся промежутков с длинами $p_1, \ldots, p_m, \sum_{i=1}^m p_m = 1$. Пусть Y_j - число точек, которые попадают на j-ый промежуток. Найти ковариацию $\operatorname{cov}(Y_j, Y_k), k \neq j$. Подсказка: представьте Y_j как сумму индикаторов.

Пусть исходно некоторая сумма $S_0=1$. Производится серия случайных вычитаний из исходной суммы: $S_1=S_0-\xi_0$, где $\xi_0\sim \mathcal{U}[0,1], S_2=S_1-\xi_1$, где $\xi_1\sim \mathcal{U}[0,1]$ и т.д. до момента достижения шага n на котором $S_n=0$ (если $S_n=S_{n-1}-\xi_{n-1}<0$, то считается, что $S_n=0$). Найти среднее число вычитаний до момента обнуления исход-

ной суммы. Подсказка: можно свести задачу к вычислению объема (в \mathbb{R}^n) множества $X_n = \{(x_1, \dots, x_n) : 0 \le x_i \le 1, \sum_{i=1}^n x_i \le 1\}$ - вероятностный симплекс. Если лень считать объем вручную, то можно использовать метод Монте-Карло численного вычисления этого объема.

Условное матожидание и независимость

Пусть ξ - случайная величина, соответствующая числу очков на кубике, $\eta = \mathbb{I}(\{\xi - \text{нечетноe}\})$. Найти $\mathbb{E}(\xi \mid \eta)$.

Докажите, что из независимости ξ и $f(\xi)$ следует, что $f(\xi) \stackrel{\text{п.н.}}{=} \text{const.}$

Пусть совместная плотность случайных величин X,Y имеет вид $f_{XY}(x,y)=\frac{21}{4}x^2y\mathbb{I}_{x^2\leq y\leq 1}(x,y)$. Найти $\mathbb{E}(Y\mid X)$.

Производящие и характеристические функции

Пусть X_1, X_2, \ldots - i.i.d, $X_1 \sim \text{Cauchy}(0,1)$, т.е. $f_{X_1}(x) = \frac{1}{\pi(1+x^2)}$. Доказать, что $\frac{1}{n}(X_1 + \ldots + X_n) \sim \text{Cauchy}(0,1)$.

Найти плотность распределения случайной величины, если ее характеристическая функния $e^{-|t|}$.

Покажите, что если характеристическая функция $\varphi(t)$ равна единице в некоторой точке $t_0 > 0$, то t_0 является периодом функции $\varphi(t)$.

Найти предельную функцию для:

- 1. функции распределения,
- 2. характеристической функции

последовательности независимых случайных величин $\xi_n \sim \mathcal{N}(0,n)$ при $n \to \infty$. Сделайте выводы о полученных предельных функциях F(x) и $\varphi(x)$.

Вычислить характеристическую функцию для суммы ν i.i.d. случайных величин, ν независимо с ними.

Показать, что $\forall \lambda > 0$ и произвольной характеристической функции $\psi(t)$ функция $e^{\lambda(\psi(t)-1)}$ тоже является характеристической.

Виды сходимости случайных величин, предельные законы (ЗБЧ, ЦПТ)

По M ячейкам размещается n частиц. Найти вероятность $P_k(n,M)$ того, что в фиксированной ячейке содержится ровно k частиц. Пусть M_n такое, что $\frac{n}{M_n} = \lambda > 0 \ \forall n$. Найти в таком случае $\lim_{n\to\infty} P_k(n,M_n)$.

51 [Теорема о наследовании сходимостей для суммы случайных величин] (IV)

- 1. $\xi_n \xrightarrow{\text{II.H.}} \xi$, $\eta_n \xrightarrow{\text{II.H.}} \eta \xrightarrow{?} \xi_n + \eta_n \xrightarrow{\text{II.H.}} \xi + \eta$.
- 2. $\xi_n \xrightarrow{L_p} \xi$, $\eta_n \xrightarrow{L_p} \eta \stackrel{?}{\Rightarrow} \xi_n + \eta_n \xrightarrow{L_p} \xi + \eta$.
- 3. $\xi_n \xrightarrow{\mathbb{P}} \xi$, $\eta_n \xrightarrow{\mathbb{P}} \eta \stackrel{?}{\Rightarrow} \xi_n + \eta_n \xrightarrow{\mathbb{P}} \xi + \eta$.
- 4. $\xi_n \xrightarrow{d} \xi$, $\eta_n \xrightarrow{d} \eta \stackrel{?}{\Rightarrow} \xi_n + \eta_n \xrightarrow{d} \xi + \eta$.

Приведите пример последовательности независимых случайных величин $\{\xi_n\}_{n=1}^{\infty}$ таких, что предел $\lim_{n\to\infty}\frac{\xi_1+\dots\xi_n}{n}$ существует по вероятности, но не существует п.н.

Пусть X_1, X_2, \ldots - i.i.d. Пусть в окрестности точки t=0 характеристическая функция X_k представима в виде

$$\varphi_{X_k}(t) = 1 + imt + o(t)$$

Верно ли, что

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\mathbb{P}} m?$$

Пусть X_1, \ldots, X_n - i.i.d., $X_1 \sim \mathcal{U}[0,1]$. Найти предел по распределению случайной величины $Y_n = n \min\{X_1, \ldots, X_n\}$.

Пусть ξ_n имеет распределение:

- 1. $(2^n, -2^n)$ с вероятностями $(\frac{1}{2}, \frac{1}{2})$.
- 2. $(-\sqrt{n}, \sqrt{n})$ с вероятностями $(\frac{1}{2}, \frac{1}{2})$.
- 3. (n,0,n) с вероятностями $(\frac{1}{4},\frac{1}{2},\frac{1}{4})$.

В каких случаях выполнен слабый ЗБЧ? Подсказка: воспользуйтесь тем, что $S_n \stackrel{\mathbb{P}}{\to} 0 \iff S_n \stackrel{d}{\to} 0 \iff \varphi_{S_n}(t) \to 1$ (Кстати, а почему это так?).

Пусть $\xi_n \sim \text{Be}(p_n)$, причем, возможно, зависимые. Доказать:

$$\sum_{n=1}^{\infty} p_n < \infty \Rightarrow \mathbb{P}\left(\lim_{n \to \infty} \xi_n = 0\right) = 1$$

Пусть ξ_n - i.i.d., $\xi_n > 0$, $\mathbb{E}\xi_n = 1$. Доказать: $\prod_{n=1}^N \xi_n \xrightarrow[N \to \infty]{\text{п.н.}} 0$.

58 (III) [Усиленная теорема Вейерштрасса]

Пусть f(x) непрерывна на [0,1], $B_n(x,f) = \sum_{k=1}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}$ - полиномы Бернштейна. Доказать, что $\sup_{0 \le x \le 1} |f(x) - B_n(x,f)| \xrightarrow[n \to \infty]{} 0$, т.е. что $B_n(x,f)$ равномерно приближает f(x) на [0,1].

Пусть $\{\xi_n\}_{n=1}^\infty$ - последовательность i.i.d. невырожденных с.в. с нулевым средним и единичными дисперсиями. Докажите, что

$$\eta_n = \sqrt{n} \frac{\xi_1 + \ldots + \xi_n}{\xi_1^2 + \ldots + \xi_n^2} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1), \quad \zeta_n = \frac{\xi_1 + \ldots + \xi_n}{\sqrt{\xi_1^2 + \ldots + \xi_n^2}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

Подсказка: вначале докажите, что если $\xi_n \xrightarrow[n \to \infty]{d} \xi$, $\mathbb{E}\xi = 0$, $\mathbb{D}\xi = 1$, $\eta_n \xrightarrow[n \to \infty]{\mathbb{P}} 1$, то $\xi_n \eta_n \xrightarrow[n \to \infty]{d} \xi$.

$$\#$$
 60 (IV)

Пусть $\xi_1,\ \xi_2,\ldots$ - последовательность i.i.d случайных величин, $\mathbb{E}\xi_1<\infty,\ \mathbb{D}\xi_1<\infty,$ $S_n=\xi+\ldots+\xi_n.$ Доказать:

$$\forall a, b \in \mathbb{R} \mapsto \lim_{n \to \infty} \mathbb{P}(a \le S_n \le b) = 0.$$

Подсказка: отдельно рассмотрите случаи $\mathbb{E}\xi_1=0$ и $\mathbb{E}\xi_1\neq 0$.

Пусть $\{E_n\}_{n\in\mathbb{N}}$ - i.i.d. последовательность экспоненциально распределенных случайных величин с параметром $\lambda=1$, т.е. $\mathbb{P}(E_n>x)=e^{-x},\ x>0$. Доказать:

$$\mathbb{P}\left(\left\{\omega: \overline{\lim_{n\to\infty}} \frac{E_n}{\ln n} = 1\right\}\right) = 1$$

62 (IV)

Пусть ξ_n - i.i.d., $\xi_n > 0$. Доказать: $\forall C > 0 \exists \alpha, \beta > 0 : \mathbb{P}(\xi_1 + \ldots + \xi_n \leq C) \leq e^{-\alpha n + \beta}$.

63 🙎 [Кусок теоремы Фишера-Типпета-Гнеденко]

Пусть ξ_n - i.i.d. с функцией распределения F(x). Найти распределение $M_n = \max\{\xi_1,\dots,\xi_n\}$. Пусть $\lim_{x\to+\infty} x^a(1-F(x)) = b$ при некоторых a,b>0. Докажите, что $\frac{M_n}{(bn)^{1/a}}$ сходится по распределению к случайной величине с плотностью $f(x)=e^{-x^\alpha}, x>0, \ f(x)=0, x\leq 0$.

Задачи для сдачи элементов случайных процессов и TMO

Пусть η - случайная величина с функцией распределения F. Найти все конечномерные распределения процесса $X(t) = \eta + t$.

Для процесса $X(t) = U\cos Wt + V\sin Wt$, где U,V - независимые случайные величины с нулевым средним и дисперсией D, а W - независимая от U и V случайная величина с плотность ю $f(w) = \frac{2\lambda}{\pi} \cdot \frac{\mathbb{I}_{\mathbb{R}_+}(w)}{\lambda^2 + w^2}$. Вычислите матожидание и корреляционную функцию этого процесса.

Докажите, что пуассоновский процесс является марковским процессом.

Пусть K(t) - пуассоновский процесс с интенсивностью λ , а τ_1 - момент происшествия первого события. Найдите $\mathbb{P}(\tau_1 \leq s | K(t) = 1)$ при 0 < s < t.

В условия предыдущей задачи найдите $\mathbb{P}(\tau_3 \leq 2)$.

Пусть пакеты прибывают на сервер по пуассоновскому закону K(t) с интенсивностью λ и собираются в батч. В момент времени t=0 пакетов нет, а в момент времени $t=t_0$ батч собранных пакетов отправляется на обслуживание вверх по стеку. Пусть η - общее время ожидания всех пакетов, прибывших до отправки батча. Найдите $\mathbb{E}(\eta)$.

Пусть $X \sim \mathcal{U}[0,1], K(t)$ - пуассоновский процесс с интенсивностью λ, X не зависит от K(T). Найдите $\mathbb{P}(\text{между } X \text{ и } X+1 \text{ нет скачка } K(t)).$

Случайный процесс X(t), $t \ge 0$, представляет собой сумму n независимых пуассоновских процессов с интенсивностями λ_i , $i = 1, \ldots, n$. Определить тип и параметры процесса X(t).

72 (III) [Сложный пуассоновский процесс]

Пусть K(t) - пуассоновский процесс с параметром λ , а случайные величины $\{V_j\}_{j\in\mathbb{N}}$ - независимы и одинаково распределены. Определим новый процесс Q(t) так: Q(0)=0, а в каждый момент, когда K(t) испытывает скачок, к Q(t) добавляется V_j , т.е. $Q(t)=\sum_{j=1}^{K(t)}V_j$. Найдите математическое ожидание и корреляционную функцию Q(t).

73 (III) [Прореженный пуассоновский процесс]

Пусть K(t) - пуассоновский процесс с параметром λ , а случайные величины $\{V_j\}_{j\in\mathbb{N}}$ - независимы и имеют распределение Бернулли с параметром $p\in(0,1)$. Покажите, что Q(t) (см. задачу выше) - также пуассоновский процесс, но с параметром λp .

Пусть $\{X_i\}_{i\in\mathbb{N}}$ и $\{Y_i\}_{i\in\mathbb{N}}$ - две марковские цепи. Будет ли марковской цепью $\{X_i+Y_i\}_{i\in\mathbb{N}}$?

Пусть $\{X_i\}_{i\in\mathbb{N}}, X_i\in S$ - марковская цепь, $\psi(x):S\to S$ - некоторая функция. Будет ли марковской цепью $\{\psi(X_i)\}_{i\in\mathbb{N}}$?

Пусть X_0, X_1, \dots, X_n - дискретная марковская цепь. Является ли марковской последо-

вательность $X_n, X_{n-1}, \ldots, X_0$?

Пусть $\{X_n\}$ - последовательность независимых одинаково распределенных случайных величин, принимающих значения -1 и 1 с вероятностями p и q=1-p соответственно. Выяснить, будет ли последовательность $\{Y_n\}$ марковской цепью, если

- $1. Y_n = X_n X_{n+1},$
- $2. Y_n = \max_{0 \le i \le n} X_i,$
- 3. $Y_n = \prod_{i=0}^n X_i$.

Доказать, что если j-е состояние невозвратно, то для всех i сходится ряд $\sum_{n=1}^{\infty} p_{ij}(n)$.

Пусть η_n - число выпавших очков при n-ом бросании кубика, а $\xi_n = \max\{\eta_1, \dots, \eta_n\}$. Выписать матрицу переходных вероятностей P этой марковской цепи.

Дана ОДЦМ с $S=\{0,1\}$ и $\mathbf{P}=\begin{bmatrix}1/2 & 1/2\\2/5 & 3/5\end{bmatrix}$. При помощи производящих функций (или жордановых клеток **2**) найдите распределение вероятностей на n-ом шаге цепи $\pi(n)$, если $\pi(0)=(1,0)$.

Доказать, что ОДЦМ $\{X_i\}_{i\in\mathbb{N}}$ со стационарным распределением является *стационарным в узком смысле* процессом, то есть что случайные векторы (X_0,X_1,\ldots,X_n) и $(X_k,X_{k+1},\ldots,X_{k+n})$ имеют одинаковое распределение.

Найти несущественные состояния в ОДЦМ с матрицей переходных вероятностей

$$P = \begin{pmatrix} 3/12 & 2/12 & 1/12 & 3/12 & 1/12 & 2/12 \\ 1/12 & 1/12 & 3/12 & 1/12 & 4/12 & 2/12 \\ 0 & 0 & 3/4 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 0 & 0 & 2/3 & 1/3 \end{pmatrix}$$
 (2)

Найти математическое ожидание времени τ до выхода из множества несущественные состояний, если начальное распределение равно $q^T = (1/2, 1/2, 0, 0, 0, 0)$.

83 (III)

Рассмотрим одномерные случайные блуждания на прямой в таком ключе: есть последовательность целочисленных i.i.d. случайных величин $\{\xi_k\}_{k\in\mathbb{N}}$. Тогда последовательность $S_n = \xi_1 + \ldots + \xi_n$ - случайное блуждание на прямой. Рассмотрим симметричное случайное блуждание: для него $\mathbb{P}(\xi_k = +a) = \mathbb{P}(\xi_k = -a)$ (но это не значит, что ξ_k принимает значения только -a и a). Докажите, что если ξ_k имеет математическое ожидание, то случайное блуждание возвратно.

84 (II)

Доказать, что неразложимая дискретная марковская цепь, у матрицы переходных одношаговых вероятностей которой хотя бы один диагональный элемент положителен, не может быть периодической. Может ли неразложимая дискретная цепь Маркова, у матрицы одношаговых переходных вероятностей которой все диагональные элементы равны нулю, быть непериодической?