Question Number	Answer		Mark
21(a)(i)	$\lambda_{ m max}$ read from graph	(1)	
	Use of $T = \frac{2.898 \times 10^{-3} \text{ m K}}{\lambda_{\text{max}}}$	(1)	
	T = 3400 (K) (accept 3350K - 3450K) [min 2 sf]	(1)	3
	$\frac{\text{Example of calculation}}{\lambda_{\text{max}} = 850 \text{ nm}}$		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{850 \times 10^{-9} \text{ m}} = 3410 \text{ K}$		
21(a)(ii)	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	Use of $L_{\text{Sun}} = 3.83 \times 10^{26} \text{ W}$	(1)	
	$\frac{L}{L_{\text{Sun}}} = 0.35\% \text{ (allow ecf from(a)(i))}$	(1)	
	Calculated value of ratio compared with 0.5% and conclusion made	(1)	
	Or		
	Use of $A = 4\pi r^2$	(1)	
	Use of $L = \sigma A T^4$	(1)	
	Use of $L_{\text{Sun}} = 3.83 \times 10^{26} \text{ W}$	(1)	
	$L_{\text{Ross}} = 1.34 \times 10^{24} \text{ W} \text{ and } 0.5\% L_{\text{Sun}} = 1.92 \times 10^{24} \text{ W}$	(1)	
	Calculated values of L_{Ross} and 0.5% L_{Sun} compared and conclusion made	(1)	5
	[Use of show that value of T gives $L_{Ross} = 8.04 \times 10^{23} \text{ W m}^{-2}$ Use of show that value gives ratio = 0.0021]		
	Example of calculation $L = 4\pi (1.18 \times 10^8)^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (3400)^4 = 1.33 \times 10^{24} \text{ W m}^{-2}$		
	$\frac{L}{L_{\text{Sun}}} = \frac{1.33 \times 10^{24} \text{W}}{3.83 \times 10^{26} \text{W}} = 0.00346$		
	$\therefore L = 0.35\%$ of L_{Sun} which is less than 0.5%, so statement is correct		

21(b)	Equate $F = \frac{GMm}{r^2}$ and $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	$T = 2.29 \times 10^6 \text{ s}$	(1)	
	OR		
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	$T = 2.29 \times 10^6 \text{ s}$	(1)	3
	$\frac{\text{Example of calculation}}{GMm} = m\omega^2 r$		
	$\therefore \omega = \sqrt{\frac{GM}{r^3}} = \sqrt{\frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 3.38 \times 10^{29} \text{ kg}}{(0.096 \times 1.50 \times 10^{11} \text{ m})^3}} = 2.75 \times 10^{-6} \text{ rad s}^{-1}$		
	$T = \frac{2\pi}{\omega} = \frac{2\pi}{2.75 \times 10^{-6} \mathrm{s}^{-1}} = 2.29 \times 10^6 \mathrm{s}$		
	Total for question 21		11