

Course Name: Principles of Electrical Engineering II

Course Number and Section: 14:332:222

Lab # 2

Lau # 2
TA (Instructor): Siwei Mai
Due Date:
Date Submitted:
Submitted by: Chance Reyes cr977

Course Name: Principles of Electrical Engineering II

Course Number and Section: 14:332:222

3.1 For L = 100mH, compute the value of C needed for the natural frequency ω 0 = 2π f0 = 104π . To vary the damping coefficient ζ , vary the value of R. Compute the values of R for each of the six different values of the damping coefficient ζ =0.1, ζ =0.2, ζ =0.4, ζ =0.6, ζ =0.8, and ζ =1.0, (see Table 1 under section 4.4).

$$W_0 = 1/Sqrt(LC)$$
, $C = 1/LW_0^2 = 1/(0.1 * 104 \pi) = 9.37x10^{-5}F = C$

ζ	$R = 2 \text{sqrt}(0.1/9.37 \times 10-5) \zeta$
0.1	6.53
0.2	13.07
0.4	26.13
0.6	39.20
0.8	52.27
1.0	65.34

3.2 From Eq. 5, calculate and fill the theoretical values of the maxima and minima in

Table 1 under section 4.4. Use k = 1, 2, and 3.

ζ τ	K=1	K=2	K=3		
0.1	1.729	0.468	1.388		
0.2	1.527	0.723	1.146		
0.4	1.254	0.936	1.016		
0.6	1.095	0.991	1.001		
0.8	1.015	1.000	1.000		
1.0	Critically damped	Critically damped	Critically damped		