How to reveal neurocomputational mechanisms of reinforcement learning & decision-making?

It is easy to do with the hBayesDM package

Woo-Young Ahn

PI, Computational Clinical Science Lab
Department of Psychology
Ohio State University

Reinforcement Learning and Decision-Making (RLDM)

Computational modeling

- Individual differences
- Latent processes (& their time course)

Special Issue: Cognition in Neuropsychiatric Disorders

Computational psychiatry

P. Read Montague^{1,2}, Raymond J. Dolan², Karl J. Friston² and Peter Dayan³

Montague et al (2012) Trends in Cog Sci

Model-based fMRI/EEG

e.g., Forstmann & Wagenmakers (2015); O'Doherty et al (2007)

Behrens, Hunt, Rushworth (2009) Science

I like the idea of modeling

But...

Ahn et al (2011) JNPE

Mathys et al (2011) Frontiers

Can we make it easy to do computational modeling?

Q) As easy as doing a T-test?

> t.test(group1, group2)

Console ~/Desktop/

Several packages exist, but ...

hBayesDM (<u>h</u>ierarchical <u>Bayes</u>ian modeling of <u>D</u>ecision-<u>M</u>aking tasks) Package

- Models for 8 tasks/paradigms (next slide)
- Single-line of coding in R
 - Model fitting, visualization, model comparisons
- Based on the advanced Bayesian software, Stan (https://mc-stan.org).
- Hierarchical Bayesian modeling

Ahn et al (2011) JNPE

What tasks and models are available? Ahn & Busemeyer (2016) Curr Opin Behav Sci

- Delay Discounting (e.g., Mazur, 1987)
- Iowa Gambling (Bechara et al, 1994)
- (Orthogonalized) Go/Nogo (Guitart-Masip et al, 2012)
- Two-choice Bandit (Experience-based) including Reversal Learning (e.g., Erev et al, 2010)
- Two-choice Description-based

(e.g., Sokol-Hessner et al, 2009; Tom et al, 2007)

- Ultimatum Game (e.g., Xiang et al, 2013)
- *Two-Step (Daw et al, 2011)

How can I use it?

Tutorials available at

http://rpubs.com/CCSL/hBayesDM

(you can find it by Googling 'hBayesDM')

Install it just like other R packages

```
install.packages("hBayesDM", dependencies=TRUE)
devtools::install github("CCS-Lab/hBayesDM")
```

Brief step-by-step tutorials

- 1. Prepare raw (trial-by-trial) data
- 2. Fit candidate models
- 3. Plot (visualize) and inspect model parameters
- 4. Compare models (if there exist competing models)

The Orthogonalized Go/Nogo task

- gng_m1

- gng m2

- gng_m3

- gng_m4

Guitart-Masip et al, 2012 Neuroimage Cavanagh et al, 2013 J Neuro

1. Prepare raw (trial-by-trial) data as a single text file

	Α	В	С	D	Е	F	G
1	trialNum	cue	keyPressed	success	congruentOutcome	outcome	subjID
2	1	1	1	1	2	0	1
3	2	2	0	1	1	1	1
4	3	4	0	1	1	0	1
5	4	4	1	0	1	-1	1
6	5	4	0	1	1	0	1
7	6	1	1	1	1	1	1
8	7	3	0	0	1	-1	1
9	8	1	1	1	1	1	1
10	9	3	1	1	1	0	1
11	10	3	0	0	1	-1	1
12	11	4	0	1	1	0	1
13	12	4	0	1	1	0	1
14	13	4	0	1	1	0	1

2. Fit candidate models

3. Plot (visualize) and inspect model parameters

plotInd(output1, "ep")

4. Bayesian model comparisons

Vehtari et al. (2016)

Leave-One-Out Information Criterion (LOOIC) - default Widely Applicable Information Criterion (WAIC)

```
> printFit(output1, output2, output3, output4)
    Model LOOIC
1 gng_m1 1588.843
2 gng_m2 1571.129
3 gng_m3 1573.872
4 gng_m4 1543.335
```

Model #4 is the best model (in terms of LOOIC)

More features!

- Bayesian group comparisons
- *Model-based regressors (e.g., trial-bytrial prediction errors) for model-based fMRI/EEG
- More tasks / models!

I don't have much quantitative background, can I still do computational modeling?

Yes! Please check our tutorials/poster available

@ http://rpubs.com/CCSL/hBayesDM

GitHub: https://github.com/CCS-Lab/hBayesDM

Can I add more models? Can you add more features? Can I contribute?

Yes! hBayesDM is <u>also for experts</u>. It is a work in progress. Please let us know if you have needs or cool models!

Thank you!

Nate Haines
The Ohio State University

Lei Zhang
University Medical Center Hamburg-Eppendorf
Hamburg, Germany

Ahn, W.-Y., Haines, N., & Zhang, L. (2016). Revealing neuro-computational mechanisms of reinforcement learning and decision-making with the hBayesDM package. bioRxiv. http://doi.org/10.1101/064287