Université Bordeaux 1. Master Sciences & Technologies, Informatique. Session automne 2013. Examen *Automata and* complexity In7w21, 18 décembre 2013, 8h30-11h30.

Documents autorisés : transparents du cours et notes de TD.

On attachera une grande importance à la clarté et à la concision des justifications. Le barème est indicatif.

Exercice 1 (3 p.) Soit $\Sigma = \{a, b, c\}$. Ecrivez un automate non-déterministe A_1 , ainsi qu'un automate déterministe A_2 , qui acceptent exactement l'ensemble L de mots sur Σ dont la lettre avant le dernier b, est a.

Exemples: $baccbaabaac \in L$, $acbaa \notin L$.

Exercice 2 (3 p.) Dans un championnat participent les trois équipes A, B, C. Pour chaque match entre X et Y on note par [X,Y] que X a gagné (et Y a perdu). On définit $\Sigma = \{[X,Y] \mid X,Y \in \{A,B,C\}, X \neq Y\}$.

Ecrivez un automate (non-déterministe) qui accepte toutes les séquences de résultats où l'équipe A gagne (au moins) 3 fois de suite.

Exercice 3 (3 p.) Ecrivez une grammaire hors-contexte pour le langage suivant :

$$\{a^i b^j c^k \mid i, j, k \ge 0 \text{ tels que } i + j = k \text{ ou } i + k = j \text{ ou } j + k = i\}.$$

Exercice 4 (3 p.) Ecrivez un automate à pile non-déterministe qui accepte tous les mots sur $\Sigma = \{a, b\}$ de longueur impaire, dont la lettre au milieu est a.

Exercice 5 (4 p.) Dans cet exercice on considère les problèmes SAT, UNSAT, Vertex Cover :

SAT

Entrée : formule booléenne ϕ (pas nécessairement en CNF). Question : est-ce qu'il existe une valuation qui satisfait ϕ ?

UNSAT

Entrée: formule booléenne ϕ (pas nécessairement en CNF). Question: est-ce qu'il n'y a aucune valuation qui satisfait ϕ ?

Vertex Cover

Entrée : graphe G = (V, E), entier k.

Question : est-ce qu'il existe un sous-ensemble $U \subseteq V$ de sommets tel que pour tout arc $(u,v) \in E$, soit $u \in U$ ou $v \in U$?

Justifiez que les fonctions suivantes ne sont pas des réductions :

1. $\phi \mapsto \neg \phi$ pour **UNSAT** vers **SAT**.

2. $\langle G = (V, E), k \rangle \mapsto \phi_{G,k}$ pour **Vertex Cover** vers **SAT**, où $\phi_{G,k}$ est la formule suivante, qui utilise les variables $\{v_i \mid v \in V, 1 \leq i \leq k\}$:

$$\bigwedge_{(u,v)\in E} \bigvee_{1\leq i\leq k} u_i \vee v_i$$

Exercice 6 (4 p.) Soit un graphe orienté G = (V, E). On dit qu'un sous-ensemble $U \subseteq V$ de sommets est un noyau du graphe G si :

- 1. $(u, v) \notin E$, pour tous $u, v \in U$, et
- 2. Pour tout $v \in V \setminus U$ il existe un $u \in U$ tel que $(u, v) \in E$.

On appelle Noyau le problème associé :

Entrée: Un graphe orienté G.

Question: Existe-t-il un noyau dans G?

Exemples : le graphe $G = (\{1, 2, 3\}, \{(1, 3), (2, 3)\})$ a $U = \{1, 2\}$ comme noyau. Le graphe $G' = (\{1, 2, 3\}, \{(1, 2), (2, 3), (3, 1)\})$ n'a pas de noyau.

- 1. Montrez que **Noyau** appartient à **NP**.
- 2. On cherche une réduction polynomiale de **Noyau** vers **SAT**. Au graphe G on associera une formule booléenne ϕ_G , avec variables x_v , pour tout $v \in V$. L'idée est de mettre $x_v = vrai$ si et seulement si v appartient au noyau. La formule ϕ_1 qui suit exprime la première condition du noyau :

$$\phi_1 = \bigwedge_{(u,v)\in E} (\neg x_u \lor \neg x_v)$$

- (a) Ecrivez une formule ϕ_2 qui exprime la deuxième condition du noyau.
- (b) Justifiez que $G \mapsto \phi_G = \phi_1 \wedge \phi_2$ est une réduction polynomiale de **Noyau** vers **SAT**.