EDA 大作业二 投币式手机充电仪 实验报告

目录

EDA 大作业二 投币式手机充电仪 实验报告	1
一、预习报告	2
1.1 电路总体框图及引脚表	2
1.2 控制电路状态转换图	3
1.3 开发环境	3
二、设计思路	4
2.1 整体与接口设计	4
2.2 各模块内部设计	4
三、顶层电路图及功能说明	6
四、状态转换图及说明	6
4.1 控制电路	6
4.2 输入电路	7
五、仿真波形说明	8
5.1 控制电路全流程仿真	8
5.2 输入电路仿真	10
六、问题与解决方法	13
6.1 调试问题	13
6.2 VHDL 不允许多驱动问题	13

一、预习报告

1.1 电路总体框图及引脚表

1.1.1 总体框图

电路分为键盘输入、状态控制、显示输出三大部分。键盘输入模块接受矩阵键盘输入,读取有效输入将其转化为接口信号,状态控制模块接受键盘输入模块的输入信号,并结合时序对电路状态做出控制,将时间和钱数信息传给显示输出模块,译码输出模块对来自控制模块的信号进行译码显示。

1.1.2 引脚连接图及引脚表

引脚连接图:(指示灯信号略去)

引脚表:

所属模块	引脚名称及属性	引脚功能	是否顶层引脚				
输入	row[3:0],in	读取矩阵键盘各行,	是				
		确定矩阵键盘输入					
	col[3:0],out						
	res[3:0],out						
		信号值					
	go,out	矩阵键盘存在输入					
		(有操作标记)					
	clk,in(clk)	时钟	是				
控制	res[3:0],in	矩阵键盘有效输入					
		信号值					
	go,in	矩阵键盘存在输入	_				

		(有操作标记)	
	clk,in(clk)	时钟	是
	cs,out	进入开始状态标记	
	money[7:0],out	钱数	
	time[7:0],out	时间	
译码	cs,in	进入开始状态标记	
	money[7:0],in	钱数	
	time[7:0],in	时间	
	clk.in(clk)	时钟	是
	abcdefg[6:0],out	段显示码	是
	an[3:0],out	位显示码	是

1.2 控制电路状态转换图

状态转换细则如下:

现态\次态	初始	开始	充电
初始	无"开始"	"开始"	
开始	10s 无操作	无"确认"且没有连	"确认"
		续 10s 无操作	
充电		充电时间已到	充电时间未到

1.3 开发环境

操作系统: win10 专业教育版

开发软件: Vivado2019.1

语言: VHDL

二、设计思路

2.1 整体与接口设计

2.1.1 时钟设计

电路设计为同步电路,共用 100MHz 晶振,输入电路与控制电路分频为 1kHz,数码管扫描显示约为 400Hz。

2.1.2 接口设计

输入模块通过'col'信号轮流扫描矩阵键盘各列,每个时钟周期将一列拉低,通过'row'读取矩阵键盘输入。当读取到有输入时保持'col'信号不变进行计数,得到稳定输入后将'col'全部拉低以等待按键松开,松开后视为有效输入。

输入模块向控制模块传递'go'与'res'两个信号。'go'='0'代表输入无操作,则控制电路若处于"开始状态"则可开始 10s 倒计时,'go'='1'代表输入有操作,则控制电路若处于"开始状态"则需将倒计时间回归为 10s,并停止计时。'res'信号在全'1'为无效,非全'1'时为 4 位并行 0.1s(100 个时钟周期)脉冲,代表一次有效输入,控制电路以同步时钟计数,计到 75 次视为接受到有效输入信号,未计满 75 次前出现无效信号则将计数置零。

控制电路向显示电路传递选通信号'cs'和段显示信息信号'money 和 time',"初始状态"下的'cs'='0',数码管熄灭,其他状态下'cs=1',数码管亮起。'money'和'time'均为非压缩 BCD 码。

译码显示电路向数码管发送位选通信号'an'和段选通信号'abcdefg',为消除阴影,位选通采取每周期8个时钟周期,1、3、5、7各亮一位,2、4、6、8全灭。

2.2 各模块内部设计

2.2.1 输入模块设计

输入模块采取 4 个状态的状态机设计。分别为扫描、计数、等待、发送。状态转换图设计如下

上电时输入模块位于扫描状态,以 1kHz 的频率,每个时钟周期内拉低 1 列,读取行信号,当发现行信号存在有效输入时维持列信号不变开始计数。计数不足 0.1s 行信号消失则视为按键抖动,计数清零,多于 0.1s 视为有效并清零计数器,将输入的按键码写入寄存器并进入等待状态。等待状态将 4 位列信号均拉低,当行信号非全'1'按键未结束继续等待,全'1'则无按键输入,此时若寄存器值非全'1 则将纳入发送状态开始发送 0.1s 的有效并行 4 位电平,全 1 则视为发送结束回到扫描状态。发送状态发送 0.1s 的有效并行 4 位电平,结束后将寄存器置为全'1'进入等待状态。

重要设计思想:

消抖:输入保持计数至一定值视为有效,当该值被破坏则清零重计。

长按键: 以按键松开为有效信号开始。

多按键屏蔽,用寄存器写下按键值,只有通过首次计数的按键码可以被存储,当有其他按键 同时按下时电路处于等待状态,不会反应。

输出信号:输出一定长度的有效信号,只要后级电路计数至大于一半长度,小于全长即可得到准确信号,本实验中取 3/4 长。

2.2.2 控制模块设计

控制模块采取3个状态的状态机设计。分别为初始,开始,充电。状态转换图设计如下

上电时控制电路处于初始状态,初始状态接受前级输出,发现"开始"码(本实验中"1010")则进入"开始状态"。开始状态接受前级动作标记,标记为'0'(无操作)时进行 10s 倒计时,且不需检测按键,标记'1'时停止计时并置回 10s,也接受前级按键码输出,发现"确认"码(本实验中"1100")则进入"充电状态",同时。充电状态倒计时至 0 时回到开始状态。

重要设计思想:

前级接口:对前级信号计数至大于一半长度,小于全长即可得到准确信号,本实验中取 3/4 长。

开始状态操作规则:分为有操作和无操作两个分支,分别进行倒计数和按键码检测。

移位寄存:钱数和时间各用2个4位寄存器,每次出现有效输入进行移位处理,越界直接修正。

2.2.3 译码输出模块设计

译码输出模块接受 4 个 4 位 BCD 码进行显示,位选通采取 8 拍操作,每两个选通之间有一次全灭以消除重影。

三、顶层电路图及功能说明

顶层电路图如下:

键盘输入模块:扫描并接受矩阵键盘输入,读取有效输入将其转化为定长按键码; 状态控制模块:计数并接受键盘输入模块的按键码,并结合时序对电路状态做出控制,将时间和钱数信息传给译码显示输出模块。

译码输出模块:对来自控制模块的信号进行译码显示。

四、状态转换图及说明

4.1 控制电路

状态转换图及表格说明

现态 \ 次态	s_ok	s_start	s_charge
s_ok	未出现"1010"按键	出现"1010"按键码	无
	码		
s_start	无操作倒计数到0	未出现"1100"按键	出现"1100"按键码
		码&&无操作倒计数	
		未到 0	
s_charge	无	充电计数到0	充电倒计数未到0

4.2 输入电路

现态\ 次态	s_detect	s_count	s_wait	s_send
s_detect	无按键	有按键	无	无

s_count	按键小于0.1s消	按键小于0.1s未	按键保持 0.1s	无
	失	消失		
s_wait	无按键&&寄存	无	有按键	无按键&&寄
	器全'1'			存器非全'1'
s_send	无	无	发送结束	发送未结束

五、仿真波形说明

5.1 控制电路全流程仿真

信号说明

IH 2 00 /1	
clk	时钟
go	操作标记
res	有效按键输入
led	
cs	选通数码管(开始)标记
led	
time_l	时间低 4 位
time_h	时间高4位
money_l	钱数低 4 位
money_h	钱数高4位

5.1.1 接受"1010"进入开始状态

说明: 'res'信号出现有效输入 A"1010", 持续 3/4 个有效信号的时间后'cs'拉高, 进入开始。

5.1.2 输入数字与取消

说明: 'res'信号先后出现有效输入 5"0101",B"1011", 3"0011",各持续 3/4 个有效信号的时间后钱数、时间分别为"0510"、"0000"、"0306"。

5.1.3 确认与开始充电

说明: 'res'信号出现有效输入 C"1100",持续 3/4 个有效信号的时间后开始计数。1s 后时间由 6"0110"变为 5"0101",钱数不变。

说明: 充电状态倒计数。由""0306"到"0301"再到"0000"。

5.1.4 10s 无操作回到初始状态

说明: 充电结束后 10s 无操作('res'均为 F"1111"), 'cs'回到'0'。

5.2 输入电路仿真

信号说明

clk	时钟
row	行输入
col	列扫描
go	操作标记
res	有效按键输入
led	
cs	选通数码管(开始)标记
led	
time_1	时间低 4 位
time_h	时间高4位
money_l	钱数低 4 位
money_h	钱数高 4 位

5.2.1 列扫描

<pre>/seller_inputer_tbt/t_dk</pre>	1											
<pre>#</pre> /seller_inputer_tbt/t_row	4'hF	4hF										4'hE
→ /seller_inputer_tbt/t_col	4'hE	4'h7	4hE	(4'hD	(4hB	(4h7	(4'hE	(4'hD	(4'hB	(4°h7	4'hE	
+	4'hF	4'hF										
/seller_inputer_tbt/t_go	0		Щ									
	2'h0	2'h1	2"h0									
/seller_inputer_tbt/c_cs	1											
/seller_inputer_tbt/c_money_l	4'h0	4'h0										
<pre>#</pre> /seller_inputer_tbt/c_money_h	4'h0	4'h0										
	4'h0	4'h0										
	4'h0	4'h0										
P												

说明:扫描时 col 信号在 7"0111"、B"1011"、D"1101"、E"1110"四个状态循环。每个状态只拉低 1 位。

5.2.2 正常按键

说明:按键 A 约持续 0.3s ('go'='1', 'res'='A'), 电路读入开始信号拉高'cs'。

5.2.3 按键抖动

说明: 'go'出现3各窄脉冲, 'res'未出现有效信号。

5.2.4 长按键

说明:按键 5 约持续 2s ('go'='1', 'res'='5'), 电路仅读入一次, 时间、钱数变为"0510"。

六、问题与解决方法

6.1 调试问题

由于电路难以直接调试,故多处加入 led 进行信号确认。

6.2 VHDL 不允许多驱动问题

在开始状态中,遇到时钟上升沿首先判断有无按键操作,两种情况分别进行操作处理。