AIFA Inference through Resolution in FOPL

05/02/2024

Koustav Rudra

Generalized Modus Ponens

- For atomic sentences P_i , P'_i , and q, where there is a substitution θ such that
 - SUBST $(\theta, P'_i) = \text{SUBST}(\theta, P_i)$, for all i

•
$$\frac{P_1', P_2', \dots, P_n', (P_1P_2 \dots P_n \to q)}{SUBST(\theta, q)}$$

• Unification of P_1 with P'_1 , P_2 with P'_2 , ...

Horn sentences

- Atomic sentences
 - perfect_sq(36)
- Implication with a conjunction of atomic sentences on the left and a single atom on the right
 - $\forall_{x,y}$ perfect_sq(x) \land prime(y) \land divides(x,y) \rightarrow divides(x,square(y))
- No Existential quantifier

Modus Ponens - completeness

• Reasoning with Modus Ponens is incomplete

- Consider the example
 - $\forall_x P(x) \rightarrow Q(x)$
 - $\forall_{x} Q(x) \rightarrow S(x)$

$$\forall_x \sim P(x) \rightarrow R(x)$$

$$\forall_{x} R(x) \rightarrow S(x)$$

- We should be able to conclude S(A)
- The problem is that $\forall_x \sim P(x) \rightarrow R(x)$ cannot be converted to Horn form and thus cannot be used by Modus Ponens

Godel Completeness Theorem

- For first-order logic, any sentence that is entailed by another set of sentences can be proved from that set
 - Godel did not suggest a proof procedure
 - In 1965 Robinson published his resolution algorithm
- Entailment in first-order logic is semi-decidable, that is,
 - we can show that sentences follow from premises if they do,
 - but we cannot always show if they do not.

Generalized Resolution Rule

- Generalized Resolution Rule:
- For atoms pi, qi, ri, si, where unify $(p_i,q_k) = \theta$, we have
- $p_1 \wedge p_2 \wedge p_3 \dots \wedge p_{n1} \rightarrow r_1 \vee r_2 \vee \dots r_{n2}$
- $s_1 \wedge s_2 \wedge s_3 \dots \wedge s_{n3} \rightarrow q_1 \vee q_2 \vee \dots q_{n4}$

- SUBST(θ ,
- $p_1 \wedge \dots p_{j-1} \wedge p_{j+1} \dots \wedge p_{n1} \wedge s_1 \wedge \dots \wedge s_{n3} \rightarrow r_1 \vee \dots r_{n2} \vee q_1 \vee \dots q_{k-1} \vee q_{k+1} \dots \vee q_{n4}$

Example

How to automate the things?

Resolution in Predicate Logic

05/02/2024

Koustav Rudra

- A formula is said to be in clause form if it is of the form:
 - $\forall_{x1}\forall_{x2}...\forall_{xn}[C1\land C2\land...\land Ck]$
 - Each of these clauses could be disjunction of some predicates
- All first-order logic formulas could be converted to clausal form
- $\forall_x \{ p(x) \rightarrow \exists_z \{ \sim \forall_y [q(x,y) \rightarrow p(f(x_1))] \land \forall_y [q(x,y) \rightarrow p(x)] \} \}$

• Step1: Take the existential closure and eliminate redundant quantifiers. This introduces \exists_{x_1} and eliminates \exists_z , so:

•
$$\forall_{x} \{p(x) \rightarrow \exists_{z} \{ \sim \forall_{y} [q(x,y) \rightarrow p(f(x_{1}))] \land \forall_{y} [q(x,y) \rightarrow p(x)] \} \}$$

•
$$\exists_{x_1} \forall_x \{p(x) \rightarrow \{ \sim \forall_y [q(x,y) \rightarrow p(f(x_1))] \land \forall_y [q(x,y) \rightarrow p(x)] \} \}$$

- Step2: Rename any variable that is quantified more than once
 - y has been quantified twice, so:

•
$$\exists_{x_1} \forall_x \{p(x) \rightarrow \{ \sim \forall_y [q(x,y) \rightarrow p(f(x_1))] \land \forall_y [q(x,y) \rightarrow p(x)] \} \}$$

•
$$\exists_{x_1} \forall_x \{p(x) \rightarrow \{ \sim \forall_y [q(x,y) \rightarrow p(f(x_1))] \land \forall_z [q(x,z) \rightarrow p(x)] \} \}$$

• Step3: Eliminate implication

•
$$\exists_{x_1} \forall_x \{ p(x) \rightarrow \{ \sim \forall_y [q(x,y) \rightarrow p(f(x_1))] \land \forall_z [q(x,z) \rightarrow p(x)] \} \}$$

•
$$\exists_{x_1} \forall_x \{ \neg p(x) \lor \{ \neg \forall_y [\neg q(x, y) \lor p(f(x_1))] \land \forall_z [\neg q(x, z) \lor p(x)] \} \}$$

• Step4: Move ~ all the way inwards

```
• \exists_{x_1} \forall_x \{ \sim p(x) \lor \{ \sim \forall_y [\sim q(x,y) \lor p(f(x_1))] \land \forall_z [\sim q(x,z) \lor p(x)] \} \}

• \exists_{x_1} \forall_x \{ \sim p(x) \lor \{ \exists_y [q(x,y) \land \sim p(f(x_1))] \land \forall_z [\sim q(x,z) \lor p(x)] \} \}
```

• Step5: Push the quantifiers to the right

•
$$\exists_{x_1} \forall_x \{ \sim p(x) \lor \{ \exists_y [q(x,y) \land \sim p(f(x_1))] \land \forall_z [\sim q(x,z) \lor p(x)] \} \}$$

• $\exists_{x_1} \forall_x \{ \sim p(x) \lor \{ [\exists_y q(x,y) \land \sim p(f(x_1))] \land [\forall_z \sim q(x,z) \lor p(x)] \} \}$

- Step6: Eliminate existential quantifier (Skolemization)
- $\exists_{x1} \forall_x \{ \neg p(x) \lor \{ [\exists_y q(x,y) \land \neg p(f(x_1))] \land [\forall_z \neg q(x,z) \lor p(x)] \} \}$
- Pick out leftmost $\exists_{v} B(y)$ and replace it by $B(F(x_{i1}, x_{i2,...}, x_{in}))$, where:
 - x_{i1} , $x_{i2,...,}$ x_{in} are all the distinct free variables of $\exists_y B(y)$ that are universally quantified to the left of $\exists_y B(y)$, and
 - F is any n-ary function constant which does not occur already
- $\forall_{x1} \forall_{x2} \forall_{x3} \exists_y B(y, x1, x2, x3)$
 - $\forall_{x1} \forall_{x2} \forall_{x3} B(F(x1, x2, x3), x1, x2, x3)$
- $\forall_{x1}\forall_{x2}\forall_{x3}\exists_y[B1(y, x1) \land B2(x1, x2) \land B3(x2, x3)]$
 - $\forall_{x1}\forall_{x2}\forall_{x3}$ [B1(F(x1, x2, x3), x1) \land B2(x1,x2) \land B3(x2, x3)]

• Step6: Eliminate existential quantifier (Skolemization)

```
• \exists_{x1} \forall_x \{ \sim p(x) \lor \{ [\exists_y q(x,y) \land \sim p(f(x_1))] \land [\forall_z \sim q(x,z) \lor p(x)] \} \}

• \forall_x \{ \sim p(x) \lor \{ [q(x,g(x)) \land \sim p(f(a))] \land [\forall_z \sim q(x,z) \lor p(x)] \} \}
```

• Step7: Move all universal quantifiers to the left

•
$$\forall_x \{ \sim p(x) \lor \{ [q(x, g(x)) \land \sim p(f(a))] \land [\forall_z \sim q(x, z) \lor p(x)] \} \}$$

•
$$\forall_x \forall_z \{ \sim p(x) \lor \{ [q(x, g(x)) \land \sim p(f(a))] \land [\sim q(x, z) \lor p(x)] \} \}$$

• Right side we have a set of predicates that are quantified from outside

• Step8: Distribute ∧ over ∨

$$\bullet \ \forall_{x} \forall_{z} \{ \sim p(x) \lor \{ [q(x, g(x)) \land \sim p(f(a))] \land [\sim q(x, z) \lor p(x)] \} \}$$

$$\bullet \ \forall_{x} \forall_{z} \{ [\sim p(x) \lor [q(x, g(x)) \land \sim p(f(a))]] \land [\sim p(x) \lor [\sim q(x, z) \lor p(x)] \}$$

• $\forall_x \forall_z \{ [\sim p(x) \lor q(x, g(x))] \land [\sim p(x) \lor \sim p(f(a))] \land [\sim p(x) \lor \sim q(x, z) \lor p(x)] \}$

- Right side we have a set of predicates that are quantified from outside
- Use Boolean algebra to get CNF

Thank You