Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

- Propriedades dos Estimadores
 - Viés
 - Variância de um Estimador
 - Erro Quadrático Médio
 - Estimador Não Viesado de Variância Mínima Uniformemente

Introdução

Propriedades dos estimadores são uma questão fundamental na inferência estatística, pois elas determinam a qualidade e a confiabilidade das estimativas obtidas a partir dos dados amostrais. Um estimador é uma função dos dados amostrais que é usada para estimar um parâmetro desconhecido da população subjacente. As propriedades dos estimadores descrevem como eles se comportam em diferentes situações, como a amostra aumentando de tamanho ou a população apresentando diferentes características. As principais propriedades dos estimadores incluem viés, consistência, eficiência e robustez. O conhecimento dessas propriedades é essencial para avaliar a qualidade de um estimador e para tomar decisões informadas com base nas estimativas obtidas a partir dos dados.

Ao criar um estimador de parâmetros, uma questão fundamental é saber se o estimador difere ou não do parâmetro de maneira sistemática.

Definição 1

Seja $X=(X_1,X_2,...,X_n)$ uma amostra aleatória de uma variável aleatória X com função de densidade $f(x;\theta), \theta \in \Omega$. Seja $T=T(X_1,X_2,...,X_n)$ um Estimador de θ . O **Viés** $(b(\theta))$ é a média da diferença de $T(X)-\theta$, isto é,

$$b(T(X)) = E(T(X)) - \theta$$

Definição 2

Seja $X=(X_1,X_2,...,X_n)$ uma amostra aleatória de uma variável aleatória X com função de densidade $f(x;\theta)$, $\theta \in \Omega$. Seja $T=T(X_1,X_2,...,X_n)$ um Estimador de θ . Dizemos que T é um estimador não viesado de θ se $E(T)=\theta$, ou seja, se

$$b(T(X))=0.$$

Definição 2

Seja $X=(X_1,X_2,...,X_n)$ uma amostra aleatória de uma variável aleatória X com função de densidade $f(x;\theta), \theta \in \Omega$. Seja $T=T(X_1,X_2,...,X_n)$ um Estimador de θ . Dizemos que T é um estimador não viesado de θ se $E(T)=\theta$, ou seja, se

$$b(T(X))=0.$$

Definição 3

Se $\lim_{n\to\infty} b(T(X)) = 0$ para todo $\theta \in \Theta$, dizemos que o estimador T(X) é assintoticamente não viciado para θ .

Exemplos 1

- Média amostral: A média amostral é um estimador não viesado da média populacional. Isso significa que, em média, a média amostral estima corretamente a média populacional, sem inclinação para superestimá-la ou subestimá-la.
- Variância amostral: A variância amostral é um estimador não viesado da variância populacional. Isso significa que, em média, a variância amostral estima corretamente a variância populacional, sem inclinação para superestimá-la ou subestimá-la.
- Estimador de máxima verossimilhança: O estimador de máxima verossimilhança é um estimador não viesado que utiliza a função de verossimilhança para encontrar o valor mais provável do parâmetro populacional. Ele é amplamente utilizado em estatística inferencial para estimar parâmetros de distribuições populacionais.

Exemplos 2

- Mediana amostral: A mediana amostral é um estimador não viesado da mediana populacional. Ao contrário da média, que pode ser influenciada por valores extremos, a mediana é mais robusta a essas observações e fornece uma medida mais representativa do centro da distribuição.
- Estimador por momentos: O estimador por momentos é um estimador não viesado que utiliza momentos da amostra para estimar parâmetros populacionais. Ele é uma abordagem simples e amplamente utilizada para estimar média, variância e outros momentos de uma distribuição populacional.
- Desvio padrão amostral: O desvio padrão amostral é um estimador viesado da variância populacional. Ele tende a subestimar a variância populacional, especialmente em amostras pequenas.

Exemplos 3

- Média amostral truncada: Este é um estimador de uma média populacional que é obtido a partir de uma amostra, mas em que alguns valores extremos são removidos antes de se calcular a média amostral. Se a amostra não for representativa da população, a média amostral truncada pode ser um estimador viesado.
- Máximo da amostra: O máximo da amostra é um estimador da ordem estatística mais alta da população. No entanto, se a amostra não for grande o suficiente, o máximo da amostra pode ser um estimador viesado.
- Variância amostral não-corrigida: A variância amostral é um estimador da variância populacional, mas se não for corrigida, isto é, dividida pelo tamanho da amostra menos 1, ela pode ser um estimador viesado.

Exemplo 4

Suponha que a função densidade de probabilidade de uma amostra aleatória $X=(X_1,X_2,...,X_n)$ seja $\Gamma(1,\theta)$, isto é, $f(x)=\theta^{-1}\exp\left(\frac{-x}{\theta}\right)$, com suporte $0< x<\infty$. Nesse caso, a distribuição gamma é também chamada de distribuição exponencial. O log da função de verossimilhança é dado por:

$$\ell(\theta) = \log \prod_{i=1}^{n} \frac{1}{\theta} e^{-x_i/\theta} = -n \log \theta - \theta^{-1} \sum_{i=1}^{n} x_i$$

A primeira derivada parcial do log-verossimilhança com respeito a θ é:

$$\frac{\partial \ell(\theta)}{\partial \theta} = -n\theta^{-1} + \theta^{-2} \sum_{i=1}^{n} x_i$$

Definindo esta derivada parcial como 0 e resolvendo para θ , obtemos a solução \bar{x} . Há apenas um valor crítico e, além disso, a segunda derivada parcial do logaritmo da verossimilhança avaliada em \bar{x} é estritamente negativa, o que confirma que ela fornece um máximo. Portanto, para este exemplo, a estatística $\hat{\theta} = \bar{X}$ é a estimativa de máxima verossimilhança (MLE) de θ . Como $E(X) = \theta$, temos que $E(\bar{X}) = \theta$ e, portanto, $\hat{\theta}$ é um estimador não enviesado de θ .

Exemplo 5

Seja $X=(X_1,X_2,...,X_n)$ ensaios de Bernoulli com parâmetro de sucesso p, definimos o estimador para p como sendo $d(X)=\bar{X}$, a média amostral. Então,

$$E_p(\bar{X}) = \frac{1}{n}(E(X_1) + \dots + E(X_n))$$
$$= \frac{1}{n}(p + \dots + p) = p$$

Assim, \bar{X} é um estimador não viesado para p. Neste caso, geralmente escrevemos \hat{p} em vez de \bar{X} , para representar a média amostral.

Podemos usar o fato de que, para variáveis aleatórias independentes, a variância da soma é a soma das variâncias, assim:

$$Var(\hat{p}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}Var(X_i) = \frac{p(1-p)}{n}$$

Exemplo 6

Se X_1,\ldots,X_n formarem uma amostra aleatória simples com média finita e desconhecida μ , então \overline{X} é um estimador não enviesado de μ . Se os X_i possuem variância σ^2 , então:

$$Var(\overline{X}) = \frac{\sigma^2}{n}$$

Com relação à variância amostral, temos

$$E[\hat{\sigma}^{2}] = \frac{1}{n} E\left[\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right] = \frac{1}{n} \sum_{i=1}^{n} E[(X_{i} - \overline{X})^{2}]$$
$$= \frac{1}{n} \sum_{i=1}^{n} E\left[\left[(X_{i} - \mu) - (\overline{X} - \mu)\right]^{2}\right] = \frac{(n-1)}{n} \sigma^{2}$$

Portanto, $\hat{\sigma}^2$ é viciado para σ^2 , mas é assintoticamente não viciado, ou seja, à medida que o tamanho da amostra aumenta, o viés diminui.

Variância de um Estimador

É desejável que os estimadores de um determinado parâmetro da população possuam um valor de variância que seja o mínimo possível, isso porque uma variância baixa significa uma precisão maior da estimativa do que uma variância alta.

Podemos observar na Figura (Colocar Figura) que o histograma das médias aritméticas possui uma variabilidade menor do que o histograma dos primeiros valores das amostras. Além disso, ao aumentarmos o tamanho de cada amostra a variabilidade da média aritmética da amostra vai diminuindo, enquanto que a variabilidade do primeiro valor da amostra não diminui à medida que o tamanho da amostra aumenta.

Pode-se mostrar que a média aritmética da amostra é o estimador de menor variância entre todos os estimadores lineares da média de uma população. O erro-padrão de um estimador é a raiz quadrada da variância do estimador.

Erro Quadrático Médio

Podemos avaliar a qualidade de um estimador calculando seu erro quadrático médio, definido por:

$$E[(T(X) - \theta)^2] \tag{1}$$

Estimadores com erro quadrático médio menor são geralmente preferidos em relação a aqueles com erro quadrático médio maior.

Se escrevermos $Y=T(X)-\theta$ em (1) e lembrarmos que a variância é dada por $Var(Y)=E(Y^2)-(E(Y))^2$, então:

$$E(Y) = E(T(X) - \theta)$$
$$= E(T(X)) - \theta$$
$$= b(T(X))$$

e,

$$Var(Y) = Var(T(X))$$

Dessa forma, o erro quadrático médio é dado por:

$$E[(T(X) - \theta)^{2}] = E(Y^{2}) = Var(Y) + (E(Y))^{2}$$
$$= Var(T(X)) + b^{2}(T(X))$$

Assim, a representação do erro quadrático médio como igual à variância do estimador mais o quadrado do viés é chamada de decomposição viés-variância. O erro quadrático médio pode ser considerado como uma medida da precisão de um estimador. Se a variância for pequena, podemos dizer que o estimador é preciso. Ele ainda pode não ser muito preciso se o viés for grande. Observem que:

• O erro quadrático médio para um estimador não viciado é a sua variância.

Assim, a representação do erro quadrático médio como igual à variância do estimador mais o quadrado do viés é chamada de decomposição viés-variância. O erro quadrático médio pode ser considerado como uma medida da precisão de um estimador. Se a variância for pequena, podemos dizer que o estimador é preciso. Ele ainda pode não ser muito preciso se o viés for grande. Observem que:

- O erro quadrático médio para um estimador não viciado é a sua variância.
- O viés sempre aumenta o erro quadrático médio.

O erro quadrático médio é comumente empregado na comparação de estimadores. Dizemos que o estimador $\hat{\theta}_1$ é melhor que o estimador $\hat{\theta}_2$ se

$$EQM[\hat{\theta}_1] \le EQM[\hat{\theta}_2], \tag{2}$$

para todo θ , com \leq substituído por < pelo menos para um valor de θ . Nesse caso, o estimador $\hat{\theta}_2$ é dito ser inadmissível. Se existir um estimador $\hat{\theta}^*$ tal que para todo estimador $\hat{\theta}$ de θ com $\hat{\theta} \neq \hat{\theta}^*$

$$EQM[\hat{\theta}^*] \le EQM[\hat{\theta}],\tag{3}$$

para todo θ com \leq substituído por < para pelo menos um θ , então $\hat{\theta}^*$ é dito ser ótimo para θ .

Notemos que, se em (3) os estimadores são não viciados, então $\hat{\theta}^*$ é dito ser o estimador não viciado de variância uniformemente mínima, se

$$Var[\hat{\theta}^*] \le Var[\hat{\theta}],$$
 (4)

para todo θ , com \leq substituído por < para pelo menos um θ .

Exemplo 1

Sejam X_1, X_2, X_3 uma amostra aleatória da variável aleatória X com $E[X] = \theta$ e $\mathrm{Var}[X] = 1$. Consideremos os estimadores

$$\hat{\theta}_1 = \bar{X} = \frac{X_1 + X_2 + X_3}{3} \in \hat{\theta}_2 = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3.$$

Temos que,

$$E[\hat{ heta}_1] = heta$$
 e $Var[\hat{ heta}_1] = rac{1}{3}$ $E[\hat{ heta}_2] = heta$ e $Var[\hat{ heta}_2] = rac{6}{16}$

Como ambos $\hat{\theta}_1$ e $\hat{\theta}_2$ são não viesados, segue que \bar{X} é um estimador melhor que $\hat{\theta}_2$, pois $Var[\bar{X}] < Var[\hat{\theta}_2]$ para todo θ .

Exemplo 2

Sejam X_1,\ldots,X_n uma amostra aleatória da variável aleatória $X\sim N(\mu,\sigma^2)$. Conforme visto anteriormente, $\hat{\sigma}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2$ é um estimador viciado para σ^2 . Sabe-se

$$S^2 = \frac{n-1}{n}\sigma^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$$

é um estimador não viciado para σ^2 . Por outro lado, temos que

$$EQM[S^2] = Var[S^2] = \frac{2\sigma^4}{n-1}, \ EQM[\hat{\sigma}^2] = \frac{2\sigma^4}{n-1} \left(1 - \frac{3n-1}{2n^2}\right).$$

Notemos que $\hat{\sigma}^2$, apesar de viciado, apresenta um EQM menor que o EQM do estimador S^2 .

Exemplo 3

Sejam X_1,\ldots,X_n uma amostra aleatória de tamanho n da variável aleatória X, com distribuição de Bernoulli com parâmetro θ , ou seja, $Binomial(1,\theta)$. Conforme visto no modelo binomial, $Y=X_1+\ldots+X_n$ tem distribuição binomial $Binomial(n,\theta)$. Consideremos os estimadores

$$\hat{ heta}_1 = X = rac{Y}{n} \, \operatorname{e} \, \hat{ heta}_2 = rac{(Y + \sqrt{n}/2)}{(n + \sqrt{n})}$$

Como $E[\bar{X}] = \theta$, temos que

$$EQM[\hat{ heta}_1] = Var[ar{X}] = rac{n heta(1- heta)}{n^2} = rac{ heta(1- heta)}{n}.$$

Por outro lado,

$$E[\hat{\theta}_2] = E\left[\frac{Y + \sqrt{n/2}}{n + \sqrt{n}}\right]$$
$$= \frac{n\theta + \sqrt{n/2}}{n + \sqrt{n}}$$
$$= \frac{n}{n + \sqrt{n}} \cdot \theta + \frac{\sqrt{n/2}}{n + \sqrt{n}}.$$

Logo, $\hat{\theta}_2$ é um estimador viciado para θ .

Notemos que, na verdade, o vício é uma função linear de θ . Portanto,

$$EQM[\hat{\theta}_2] = E[(\hat{\theta}_2 - \theta)^2]$$

$$= \frac{1}{(n + \sqrt{n})^2} \left[Var[Y] + n \left(\frac{1}{2} - \theta \right)^2 \right] = \frac{n}{4(n + \sqrt{n})^2}$$

Um fato importante a ser notado é que o EQM do estimador $\hat{\theta}_2$ é independente de θ . O EQM dos dois estimadores é representado graficamente na Figura do próximo slide, para n=9.

Temos, então, que nenhum dos estimadores é melhor uniformemente, isto é, para todo θ . Para $c_1 < \theta < c_2$, $EQM[\hat{\theta}_2] < EQM[\hat{\theta}_1]$, ou seja, $\hat{ heta}_2$ é melhor que $\hat{ heta}_1$. Por outro lado, para $heta < c_1$ ou $heta > c_2$, temos que $EQM[\hat{\theta}_1] < EQM[\hat{\theta}_2]$, ou seja, $\hat{\theta}_1$ é melhor que $\hat{\theta}_2$.

https://est711.github.io/

Estimador Não Viesado de Variância Mínima Uniformemente (ENVVMU)

Um estimador $\hat{\theta}^*$ é um estimador não viesado de θ se satisfaz $E(\hat{\theta}^*) = \theta$ e, para qualquer outro estimador $\hat{\theta}$, temos que $Var(\hat{\theta}^*) \leq Var(\hat{\theta})$, $\forall \theta$. $\hat{\theta}^*$ é também chamado de Estimador Não Viesado de Variância Mínima Uniformemente (ENVVMU) de θ .

Eficiência Relativa de um Estimador

O erro quadrático médio é uma métrica importante e pode ser usado para definir a eficiência relativa de um estimador comparado a outro:

$$EFR(\hat{ heta}_1, \hat{ heta}_2) = rac{EQM(\hat{ heta}_1)}{EQM(\hat{ heta}_2)}$$

Se $E(\hat{\theta}_1,\hat{\theta}_2)<1$, conclui-se que $\hat{\theta}_1$ é um estimador superior a $\hat{\theta}_2$ ou vice-versa.

Referências I