International Rectifier

IRG4PH40UD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

UltraFast CoPack IGBT

Features

- UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching,
 >200 kHz in resonant mode
- New IGBT design provides tighter parameter distribution and higher efficiency than previous generations
- IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations
- Industry standard TO-247AC package

Benefits

- Higher switching frequency capability than competitive IGBTs
- · Highest efficiency available
- HEXFRED diodes optimized for performance with IGBT's. Minimized recovery characteristics require less/no snubbing

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V	
I _C @ T _C = 25°C	Continuous Collector Current	41		
I _C @ T _C = 100°C	Continuous Collector Current	21		
I _{CM}	Pulsed Collector Current ①	82		
I _{LM}	Clamped Inductive Load Current ②	82	A	
I _F @ T _C = 100°C	Diode Continuous Forward Current	8.0		
I _{FM}	Diode Maximum Forward Current	130		
V _{GE}	Gate-to-Emitter Voltage	± 20	V	
P _D @ T _C = 25°C	Maximum Power Dissipation	160	_ w	
P _D @ T _C = 100°C	Maximum Power Dissipation	65	vv	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

Thermal Resistance								
	Parameter		Тур.	Max.	Units			
$R_{\theta JC}$	Junction-to-Case - IGBT			0.77				
$R_{\theta JC}$	Junction-to-Case - Diode			1.7	°C/W			
R _{θCS}	Case-to-Sink, flat, greased surface		0.24					
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount			40				
Wt	Weight		6 (0.21)		g (oz)			

IRG4PH40UD

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage③	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250 \mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.43	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.43	3.1		I _C = 21A	V _{GE} = 15V
		_	2.97	_	V	I _C = 41A	See Fig. 2, 5
		_	2.47	_		I _C = 21A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		V_{CE} = V_{GE} , I_C = 250 μ A	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-11	_	mV/°C	V_{CE} = V_{GE} , I_C = 250 μ A	
9fe	Forward Transconductance ④	16	24	_	S	V_{CE} = 100V, I_{C} = 21A	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 1200V$	′
		_	_	5000		V _{GE} = 0V, V _{CE} = 1200V	, T _J = 150°C
V _{FM}	Diode Forward Voltage Drop		2.6	3.3	V	$I_{\rm C}$ = 8.0A	See Fig. 13
			2.4	3.1		I _C = 8.0A, T _J = 125°C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V_{GE} = ±20 V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Qg	Total Gate Charge (turn-on)	_	86	130		I _C = 21A		
Qge	Gate - Emitter Charge (turn-on)	_	13	20	nC	V _{CC} = 400V See Fig. 8		
Q _{gc}	Gate - Collector Charge (turn-on)	_	29	44		V _{GE} = 15V		
t _{d(on)}	Turn-On Delay Time	_	46	_		T _J = 25°C		
t _r	Rise Time	_	35	_	ns	I _C = 21A, V _{CC} = 800V		
t _{d(off)}	Turn-Off Delay Time	_	97	150		V_{GE} = 15V, R_G = 10 Ω		
t _f	Fall Time	_	240	360		Energy losses include "tail" and		
E _{on}	Turn-On Switching Loss	_	1.80	_		diode reverse recovery.		
E _{off}	Turn-Off Switching Loss	_	1.93	_	mJ	See Fig. 9, 10, 18		
E _{ts}	Total Switching Loss	_	3.73	4.6				
t _{d(on)}	Turn-On Delay Time	_	42	_		T _J = 150°C, See Fig. 11, 18		
t _r	Rise Time	_	32	_	ns	I _C = 21A, V _{CC} = 800V		
t _{d(off)}	Turn-Off Delay Time	_	240	_		V_{GE} = 15V, R_G = 10 Ω		
t _f	Fall Time	_	510	_		Energy losses include "tail" and		
E _{ts}	Total Switching Loss	_	7.04	_	mJ	diode reverse recovery.		
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package		
C _{ies}	Input Capacitance	_	1800	_		V _{GE} = 0V		
C _{oes}	Output Capacitance	_	120	_	pF	V _{CC} = 30V See Fig. 7		
C _{res}	Reverse Transfer Capacitance	_	18	_		f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time	_	63	95	ns	T _J = 25°C See Fig.		
		_	106	160		T _J = 125°C 14 I _F = 8.0A		
Irr	Diode Peak Reverse Recovery Current	_	4.5	8.0	Α	T _J = 25°C See Fig.		
		_	6.2	11		T _J = 125°C 15 V _R = 200V		
Q _{rr}	Diode Reverse Recovery Charge	_	140	380	nC	T _J = 25°C See Fig.		
		_	335	880		T _J = 125°C 16 di/dt = 200A/μs		
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	133	_	A/µs	T _J = 25°C See Fig.		
	During t _b	_	85	_		T _J = 125°C 17		

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics www.irf.com

Fig. 3 - Typical Transfer Characteristics

IRG4PH40UD

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4PH40UD

20 V_{CC} = 400V | C = 21A | C = 21A

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

International TOR Rectifier

IRG4PH40UD

Fig. 14 - Typical Reverse Recovery vs. di_{f}/dt

Fig. 16 - Typical Stored Charge vs. di_f/dt www.irf.com

Fig. 15 - Typical Recovery Current vs. dif/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

 $\label{eq:Fig. 18a - Test Circuit for Measurement of } \textbf{I}_{LM}, \, \textbf{E}_{on}, \, \textbf{E}_{off(diode)}, \, t_{rr}, \, \textbf{Q}_{rr}, \, \textbf{I}_{rr}, \, t_{d(on)}, \, t_r, \, t_{d(off)}, \, t_f$

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \textbf{ -} \ \text{Test Waveforms for Circuit of Fig. 18a}, \\ \text{Defining E}_{on}, \ t_{d(on)}, \ t_{r}$

 $\label{eq:Fig. 18d - Test Waveforms for Circuit of Fig. 18a,} \textbf{Defining E}_{rec}, \, t_{rr}, \, \textbf{Q}_{rr}, \, \textbf{I}_{rr}$

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

Figure 19. Clamped Inductive Load Test Circuit

Figure 20. Pulsed Collector Current Test Circuit

Notes:

- \odot Repetitive rating: V_{GE} =20V; pulse width limited by maximum junction temperature (figure 20)
- ② V_{CC} =80%(V_{CES}), V_{GE} =20V, L=10 μ H, R_{G} =10 Ω (figure 19)
- ③ Pulse width≤80µs; duty factor≤0.1%.
- Pulse width 5.0 µs, single shot.

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

- DIMENSIONING AND TOLERANCING PER ASME Y14,5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENISONS D1 & E1.

6. LEAD FINISH UNCONTROLLED IN L1.

 $\rm \&P$ TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 $\rm ^{\circ}$ TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 $\rm ^{\circ}$ [3.91].

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247 WITH THE EXCEPTION OF DIMENSION c.

	DIMENSIONS					
SYMBOL	INC	HES	MILLIM	1		
	MIN.	MIN. MAX.		MAX.	NOTES	
Α	.183 .209		4.65	5.31		
A1	.087	.102	2,21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1,40		
ь1	.039	.053	0.99	1.35		
b2	.065	.094	1,65	2.39		
ь3	.065	.092	1.65	2.37		
b4	.102	.135	2.59	3.43		
ь5	.102	.133	2.59	3.38		
c	.015	.034	0.38	0.86		
c1	.015	.030	0.38	0.76		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13,08	-	5	
D2	.020	.030	0.51	0.76		
Ε	.602	.625	15.29	15.87	4	
E1	.540	-	15,72	-		
e		BSC	5.46	5.46 BSC		
Øk	.0	10	2,]		
L	,559	,634	14,20	16,10		
L1	.146	.169	3.71	4.29		
Ŋ			7.62 BSC]	
øР	.140	.144	3.56	3.66	1	
øP1	-	.275	-	6.98		
Q	.209	.224	5.31	5.69		
R	.178	.216	4.52 5.51	5.49		
S	.217	.217 BSC		BSC		

LEAD ASSIGNMENTS

HEXFET 1.- GATE

- 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

DIODES

- 1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-247AC package is not recommended for Surface Mount Application.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 01/06