Controle Ótimo com Aplicações em Modelos Biológicos

Resumo dos capítulos do livro de Suzanne Lenhart e John T. Workman.

Lucas Machado Moschen

Orientadora: Maria Soledad Arona

Escola de Matemática Aplicada Fundação Getulio Vargas

Rio de Janeiro 2020

Conteúdo

1	TODO	3
2	Introdução	4
3	Problemas Básicos de Controle Ótimo	6
	3.1 Preliminares	6
	3.2 Condições necessárias para o problema básico	7
	3.3 Princípio máximo de Pontryagin	9
	3.4 Exemplos	11
4	Existência e Outras Propriedades	13
	4.1 Existência e unicidade	13
	4.2 Interpretação da Adjunta	15
	4.3 Princípio da otimalidade	15
	4.4 Problema autônomo e o hamiltoniano	16
	4.5 Exemplos	17
5	Condições Finais do Estado	18
	5.1 Termos payoff	18
	5.2 Estados com pontos de fronteira fixos	18
	5.3 Exemplos	19
6	Método Forward-Backward Sweep	22
	6.1 Algoritmo	22
	6.2 Runge-Kutta	23
7	Laboratórios 1, 2 e 3	25
8	Controles Limitados	26
	8.1 Condições Necessárias	26
	8.2 Soluções Numéricas	28
	8.3 Exemplos	28
9	Laboratórios 4, 5 e 6	31

CONTEÚDO	c c
CONTEUDO	4

10 Controle Ótimo com Várias Variáveis	32		
10.1 Condições Necessárias	32		
10.2 Problemas de Regulador Linear Quadrático	34		
10.3 Equações Diferenciais de Ordem mais Alta	35		
10.4 Restrições Isoperimétricas	36		
10.5 Soluções Numéricas	36		
11 Laboratórios 7, 8, 9 e 10	37		
12 Linear Dependence on the Control	39		
12.1 Controles Bang-Bang	39		
12.2 Controles Singulares	41		
13 Problemas com Tempo Final Livre			
13.1 Condições Necessárias	44		
13.2 Controle Ótimo Temporal	45		
13.3 Exemplos	45		
14 Forward-Backward Sweep Adaptado	47		
14.1 Método da Secante	47		
14.2 Um Estado com Pontos Finais Fixos	47		
14.3 Termos de Payoff não Lineares	48		
14.4 Tempo Final Livre	49		
14.5 Shots Múltiplos	49		
15 Laboratórios 11, 12 e 13			

TODO

- Revisar exemplos do Capítulo 12: adicionar +1 talvez.
- HIV model (lab 8) apresenta função adjunta negativa. Já conferi os resultados nos códigos do livro, mas eles também não negativos lá.
- Em 6, a referência de Hackbusch (1978) não foi compreendida.
- Não consegui provar que $\lambda(t) \geq 0$ no Laboratório 2.

Introdução

Nesse texto, estudam-se alguns problemas que envolvam encontrar um controle ótimo, e toma como referência o livro de Lenhart and Workman (2007). O texto terá formato de notas com a mesma estrutura do livro e servirá de guia introdutório sobre o tema na lingua portuguesa. Essa área da matemática aplicada envolve estudos de otimização e de equações diferenciais e pode ser ilustrada através de diversos exemplos e aplicações da ciência.

Inicialmente, será apresentado um problema motivador que considera duas equações diferenciais: uma representa a variação do peso da parte vegetativa de uma planta, enquanto a outra representa o peso da parte reprodutiva. O crescimento das plantas é modelado segundo o modelo de Cohen (1971). Nesse caso, o *controle* sobre o sistema é a fração da fotossíntese destinada para a parte vegetativa. Queremos *maximizar* o crescimento da parte reprodutiva, que garante o mantimento da espécie.

Sejam x(t) a parte vegetativa e y(t) a parte reprodutiva no tempo t. Nosso objetivo será maximizar o funcional 2.1 segundo a função u(t) que representa a fração de fotossíntese para o crescimento vegetativo:

$$F(x, u, t) := \int_0^T \ln(y(t))dt,$$
 (2.1)

onde T é o limite superior do intervalo de tempo considerado e tal que o modelo é um sistema de equações diferenciais com restrições:

$$x'(t) = u(t)x(t)$$

$$y'(t) = (1 - u(t))y(t)$$

$$0 \le u(t) \le 1$$

$$x(0) > 0,$$

$$y(0) \ge 0$$

Um problema como esse é chamado de **problema de controle ótimo**, pois queremos encontrar uma função u, denominada controle, ótima, se-

gundo um funcional objetivo. Nesse exemplo, podemos tirar conclusões interessantes sobre o sistema, como, por exemplo, como a planta distribui seu fotossintato. Outros problemas interessantes que surgem tem aplicações bem mundanas: qual a porcentagem da população deveria ser vacinada em uma epidemia, a fim de que se minimize o número de infectados e o custo de implementação? Qual a quantidade de remédio deve ser ministrado para que se minimize a carga viral e a quantidade administrada de remédio? Nesse caso a carga viral e a quantidade de remédio formariam o sistema. Em um problemas como esse, encontramos:

- 1. variáveis de **estado**: descrevem a dinâmica do sistema.
- 2. variáveis de controle: conduzem o estado segundo uma ação.
- 3. **funcional** ¹ **objetivo**: Procuramos a função de controle de forma que esse funcional seja minimizado (ou maximizado). Ele representa o custo (ou ganho) ao se tomar uma atitude no sistema.

O texto terá como foco problemas que envolvam sistemas de equações diferenciais ordinárias. Além disso, ao longo do texto, treze laboratórios são desenvolvidos. Nesses laboratórios, uma aplicação biológica é estudada a fim de apresentar conceitos dos capítulos que a precedem. Todos os laboratórios estão em formato jupyter-notebook e escritos na linguagem de programação Python. A escolha dessa linguagem se deu a sua fácil interpretação humana e interesse particular.

¹Funcional: Mapa entre um conjunto de funções ao conjunto dos números reais

Problemas Básicos de Controle Ótimo

3.1 Preliminares

Nessa seção alguns conceitos e teoremas básicos importantes para o decorrer do texto serão apresentados. Eles podem ser encontrados em diversos livros além dessas notas.

- 1. Continuidade por partes: Uma função é contínua por partes quando é contínua em cada ponto em que é definida, exceto em uma quantidade finita, e é igual a seu limite à esquerda ou à direita em cada ponto. Logo, podemos ter finitos saltos, mas não podemos ter pontos isolados.
- 2. Diferenciável por partes: Uma função é diferenciável por partes quando ela é contínua em toda parte e diferenciável em cada ponto em que é definida, exceto em uma quantidade finita. Além disso, sua derivada é contínua sempre que definida.
- 3. Convexidade: A função f é convexa se $\forall \alpha \in [0,1]$ e para quaisquer $a \leq t_1, t_2 \leq b$, tem-se que $\alpha f(t_1) + (1-\alpha)f(t_2) \geq f(\alpha t_1 + (1-\alpha)t_2)$. A definição é equivalente para funções de duas ou mais variáveis. Ela será côncava se -f for convexa.
- 4. **Lipschitz:** A função f é L-Lipschitz se existe uma constante L tal que, para todos os pontos de seu domínio, $|f(t_1) f(t_2)| \le L|t_1 t_2|$.
- 5. **Teorema do Valor Médio:** Seja f uma função contínua em [a, b] e diferenciável em (a, b). Então existe $x_0 \in (a, b)$ tal que

$$f(b) - f(a) = f'(x_0)(b - a)$$

.

6. **Teorema da Convergência Dominada:** Considere uma sequência de funções $\{f_n\}$ dominada por uma função Lebesgue integrável g. Suponha que essa sequência converge ponto a ponto para uma função f. Então f é Lebesgue integrável e

$$\lim_{n \to \infty} \int_S f_n d\mu = \int_S f d\mu.$$

Observação. Se x é solução da equação diferencial x'(t) = g(t, x(t), u(t)), em que g é contínua nas três variáveis, então x é diferenciável sempre que u é contínua. Se u for contínua por partes, então x será diferenciável por partes.

Exercício 3.1.1. Se $f:I\subset\mathbb{R}\to\mathbb{R}$ é diferenciável por partes em um intervalo I limitado, f é Lipschitz em I.

3.2 Condições necessárias para o problema básico

Considere u(t) uma variável de controle e x(t) variável de estado que satisfaz

$$x'(t) = g(t, x(t), u(t)). (3.1)$$

A relação entre essas variáveis pode ser vista como uma função $u(t) \mapsto x = x(u)$. O problema básico do controle ótimo é encontrar uma função de controle contínua por partes (3.1.1) u(t) que maximize o funcional objetivo

$$J(u) := \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$
 (3.2)

Nos problemas encontrados nesse texto, f e g são sempre continuamente diferenciáveis. Para isso, se $u^*(t)$ e $x^*(t) = x(u^*(t))$ são argumentos ótimos e, assumindo sua existência, podemos extrair condições necessárias para o problema. No capítulo 4, são discutidas as condições suficientes.

Definição 3.2.1 (Função Adjunta). Uma proposta similar aos multiplicadores de Lagrange para o cálculo multivariado. Uma função $\lambda:[t_0,t_1]\to\mathbb{R}$ diferenciável por partes que deve satisfazer algumas condições que serão derivadas posteriormente.

Assuma a existência de u^* e x^* em um problema de maximização, isto é, $J(u) \leq J(u^*) < \infty$ para todo controle u. Seja h(t) uma função contínua por partes e $\epsilon \in \mathbb{R}$. Então:

$$u^{\epsilon}(t) = u^{*}(t) + \epsilon h(t), u^{\epsilon} \mapsto x^{\epsilon},$$

tal que x^{ϵ} satisfaz 3.1 sempre que u^{ϵ} é contínua. Consideramos $x^{\epsilon}(t_0) = x_0$.

Para todo t, quando $\epsilon \to 0$, temos que $u^{\epsilon}(t) \to u^*(t)$, pela própria definição. Além disso,

$$\left. \frac{\partial u^{\epsilon}(t)}{\partial \epsilon} \right|_{\epsilon=0} = h(t).$$

Como a função g é continuamente diferenciável, também ocorre que, para todo t fixo,

$$x^{\epsilon}(t) \to x^{*}(t) e \left. \frac{\partial}{\partial \epsilon} x^{\epsilon}(t) \right|_{\epsilon=0}$$
 existe.

Observação. Se for difícil enxergar isso, note que

$$x^{\epsilon}(t) = x_0 + \int_{t_0}^t g(s, x^{\epsilon}(s), u^{\epsilon}(s)) ds$$

Seja $\lambda(t)$ função adjunta (3.2.1) no intervalo $[t_0, t_1]$. Pelo Teorema Fundamental do Cálculo,

$$\int_{t_0}^{t_1} \frac{d}{dt} [\lambda(t) x^{\epsilon}(t)] dt = \lambda(t_1) x^{\epsilon}(t_1) - \lambda(t_0) x^{\epsilon}(t_0),$$

e, portanto, exceto em uma finidade de pontos,

$$J(u^{\epsilon}) = \int_{t_0}^{t_1} [f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \frac{d}{dt} (\lambda(t)x^{\epsilon}(t))] dt$$

$$+ \lambda(t_0)x_0 - \lambda(t_1)x^{\epsilon}(t_1)$$

$$= \int_{t_0}^{t_1} [f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \lambda'(t)x^{\epsilon}(t) + \lambda(t)\underbrace{g(t, x^{\epsilon}(t), u^{\epsilon}(t))}_{g(t, x^{\epsilon}(t), u^{\epsilon}(t))}] dt$$

$$+ \lambda(t_0)x_0 - \lambda(t_1)x^{\epsilon}(t_1).$$

Sabemos que

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon}) \bigg|_{\epsilon=0} = \lim_{\epsilon \to 0} \frac{J(u^{\epsilon}) - J(u^{*})}{\epsilon},$$

pois $J(u^*)$ é máximo. Desta maneira, como o integrando é diferenciável por partes e o intervalo é compacto, pelo Teorema da Convergência Dominada (3.1.6), podemos mover o limite para dentro da integral. Em especial,

podemos mover a própria derivada.

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon}) \Big|_{\epsilon=0}$$

$$= \int_{t_0}^{t_1} \frac{\partial}{\partial \epsilon} \left[f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \lambda'(t) x^{\epsilon}(t) + \lambda(t) g(t, x^{\epsilon}(t), u^{\epsilon}(t)) dt \right] \Big|_{\epsilon=0}$$

$$- \lambda(t_1) \frac{\partial x^{\epsilon}}{\epsilon} (t_1) \Big|_{\epsilon=0}$$

$$= \int_{t_0}^{t_1} \left[(f_x + \lambda(t) g_x + \lambda'(t)) \frac{\partial x^{\epsilon}}{\partial \epsilon} (t) \Big|_{\epsilon=0} + (f_u + \lambda(t) g_u) h(t) \right] dt$$

$$- \lambda(t_1) \frac{\partial x^{\epsilon}}{\epsilon} (t_1) \Big|_{\epsilon=0},$$

$$(3.3)$$

onde os termos de f_x, f_u, g_x , e g_u são $(t, x^*(t), u^*(t))$. Para garantir que ocorra a igualdade citada acima para qualquer função h, definimos

Definição 3.2.2 (Hamiltoniano).

$$H(t, x, u, \lambda) = f(t, x, u) + \lambda g(t, x, u)$$

Assim precisamos que as condições abaixo sejam satisfeitas e, em particular estamos maximizando H com respeito a u em u^* e, então:

$$\begin{cases} \left. \frac{\partial H}{\partial u} \right|_{u=u^*} = f_u + \lambda g_u = 0, & \text{(condição de otimalidade)} \\ \left. \frac{\partial H}{\partial x} \right|_{x=x^*} = -\lambda' = -(f_x + \lambda g_x), & \text{(equação adjunta)} \\ \left. \frac{\partial H}{\partial \lambda} = x', & \text{(equação diferencial)} \\ \lambda(t_1) = 0. & \text{(condição de transversalidade)} \end{cases}$$

$$(3.4)$$

3.3 Princípio máximo de Pontryagin

Teorema 3.3.1. Se $u^*(t)$ e $x^*(t)$ são funções ótimas para o problema de controle ótimo, então existe a adjunta $\lambda(t)$ diferenciável por partes tal que

$$H(t, x^*(t), u(t), \lambda(t)) \le H(t, x^*(t), u^*(t), \lambda(t))$$
 (3.5)

para todas as funções de controle u e cada t, onde

$$H = f(t, x(t), u(t)) + \lambda(t)g(t, x(t), u(t))$$

e

$$\lambda'(t) = \frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x}$$
$$\lambda(t_1) = 0$$

Já mostramos que $H_u = 0$ em u^* para cada t. De fato existe um ponto crítico em u^* e faltaria provar que ele é máximo. A demonstração para isso é complicada e é omitida do texto.

Teorema 3.3.2. Sejam f e g sejam continuamente diferenciáveis nos três argumentos e côncavas em u. Suponha que u^* seja o controle ótimo associado ao estado x^* e que λ seja uma função diferenciável por partes não negativa. Se $\forall t \in [t_0, t_1]$

$$0 = H_u(t, x^*(t), u^*(t), \lambda(t))$$

Então vale 3.5.

Demonstração. Tome uma função u contínua por partes e $t \in [t_0, t_1]$. Então

$$H(t,x^{*}(t),u^{*}(t),\lambda(t)) - H(t,x^{*}(t),u(t),\lambda(t))$$

$$= [f(t,x^{*}(t),u^{*}(t)) + \lambda(t)g(t,x^{*}(t),u^{*}(t))]$$

$$- [f(t,x^{*}(t),u(t)) + \lambda(t)g(t,x^{*}(t),u(t))]$$

$$= [f(t,x^{*}(t),u^{*}(t)) - f(t,x^{*}(t),u(t))]$$

$$+ \lambda(t) [g(t,x^{*}(t),u^{*}(t)) - g(t,x^{*}(t),u(t))]$$

$$\geq (u^{*}(t) - u(t))f_{u}(t,x^{*}(t),u^{*}(t)) + \lambda(t)(u^{*}(t) - u(t))g_{u}(t,x^{*}(t),u^{*}(t))$$

$$= (u^{*}(t) - u(t))H_{u}(t,x^{*}(t),u^{*}(t),\lambda(t)) = 0.$$

onde a desigualdade vem da concavidade de f e g e $\lambda(t) \geq 0$.

Observação. Convertemos o problema de encontrar uma função de controle que maximize um funcional para um problema de maximizar pontualmente o Hamiltoniano com respeito a um controle.

Observação. A concavidade de H nos fala sobre o tipo de problema que está sendo considerado: se a segunda derivada é negativa em u*, tem-se um problema de maximização, enquanto se ela for positiva, o problema é de minimização.

3.4 Exemplos

Exemplo 3.4.1.

$$\min_{u} \int_{1}^{2} tu(t)^{2} + t^{2}x(t)dt$$
sujeito a $x'(t) = -u(t), x(1) = 1$

Primeiro definimos o Hamiltoniano

$$H = [tu(t)^{2} + t^{2}x(t)] + \lambda(t)(-u(t))$$

Agora vamos observar as condições sobre o Hamiltoniano:

1. Otimalidade:
$$H_u = 0 \implies 2tu^*(t) - \lambda \implies u^*(t) = \frac{\lambda(t)}{2t}$$

2. Equação adjunta:
$$H_x = t^2 = -\lambda' \implies \lambda(t) = -\frac{1}{3}t^3 + C$$

3. Transversalidade:
$$\lambda(2) = 0 \implies C = \frac{8}{3} \implies \lambda(t) = -\frac{1}{3}t^3 + \frac{8}{3}$$
.

Com essas condições, podemos ver que o controle ótimo é dado por

$$u^*(t) = -\frac{1}{6}t^2 + \frac{8}{6}t^{-1}$$

Note que não provamos a existência de tal controle, o que está sendo feito é: supondo a existência de um controle ótimo, usamos os teoremas da seção 3.3 para encontrar a função adjunta e, assim, encontrar as funções ótimas que resolvem o problema. Além disso, podemos observar que as condições do Teorema 3.3.2 são satisfeitas. Para encontrar o estado, resolvemos x'(t) = -u(t) e obtemos:

$$x^*(t) = \frac{1}{18}t^3 - \frac{8}{6}\ln(t) + D,$$

tal que $x^*(1) = 1 = \frac{1}{18} + D$ e, portanto

$$x^*(t) = \frac{1}{18}t^3 - \frac{8}{6}\ln(t) + \frac{17}{18}$$

Exemplo 3.4.2 (Efeito Alle). Formule um problema de controle ótimo para uma população com um termo de crescimento de efeito Allee, em que o controle é a proporção da população caçada. Escolha um funcional objetivo que maximize a receita da caça enquanto minimiza o seu custo. A receita é a integral da quantidade caçada no tempo. O custo tem formato quadrático.

O efeito Allee descreve um crescimento conforme a equação

$$x'(t) = rx(t) \left(\frac{x(t)}{x_{min}} - 1\right) \left(1 - \frac{x(t)}{x_{max}}\right)$$
(3.6)

Nessa equação, temos um limiar x_{min} e uma capacidade de carga do ambiente x_{max} . Se $x(0) > x_{min}$, a solução x(t) se aproxima de x_{max} . Se ela começa abaixo, ela decairá para 0. Como o crescimento líquido é negativo em níveis populacionais baixos, a população não consegue se manter e morre. O crescimento per capita também não é monotonicamente decrescente e mostra o efeito que chamamos de Allee, figura 3.1. Para entender mais sobre o esse efeito, sugere-se Kot (2001).

Figura 3.1: Efeito Allee

Existe uma certa liberdade em como fazer modelar o problema. Uma possível proposta é a seguinte: Se x(t) é o tamanho da população no tempo t e u(t) é a proporção da população caçada, a variação da população é dada por

$$x'(t) = rx(t) \left(\frac{x(t)}{x_{min}} - 1\right) \left(1 - \frac{x(t)}{x_{max}}\right) - u(t)x(t)$$
$$x(0) = \frac{x_{min} + x_{max}}{2}$$

Para definir um objetivo, queremos maximizar a receita, que é dada por, se T for o final do período,

$$R(u) = \int_0^T u(t)x(t)dt$$

E queremos minimizar o custo da caça, que é assumido como quadrático:

$$C(u) = \int_0^T [u(t)x(t)]^2 dt$$

Queremos portanto

$$\max_{u} [R(u) - C(u)]$$

Existência e Outras Propriedades

Após desenvolver as condições necessárias para resolver o problema de controle ótimo inicial, alguns problemas podem surgir. Como assumimos a existência de controle ótimo, podemos encontrar uma função de controle mesmo quando não haja. Também pode ser obtido um uma função que possua funcional com valor infinito, algo que não é desejado. Portanto, se o funcional objetivo tiver valor mais ou menos infinito, fizemos que o problema não tem solução.

4.1 Existência e unicidade

Teorema 4.1.1. Seja

$$J(u) := \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_0) = x_0.$$

Suponha que f(t,x,u) e g(t,x,u) sejam continuamente diferenciáveis nos três argumentos e côncavos no segundo e terceiro argumentos. Suponha que u^* é um controle, com estado associado x^* , e λ uma função diferenciável por partes, tal que $t_0 \le t \le t_1$:

$$f_u + \lambda g_u = 0, (4.1a)$$

$$\lambda' = -(f_x + \lambda g_x),\tag{4.1b}$$

$$\lambda(t_1) = 0, \tag{4.1c}$$

$$\lambda(t) \ge 0. \tag{4.1d}$$

Então, para todos os controles $u, J(u^*) \ge J(u)$.

Demonstração. Seja u um controle qualquer. Assim, usando a concavidade de f,

$$J(u^*) - J(u) = \int_{t_0}^{t_1} f(t, x^*, u^*) - f(t, x, u) dt$$

$$\geq \int_{t_0}^{t_1} (x^*(t) - x(t)) f_x(t, x^*, u^*)$$

$$+ (u^*(t) - u(t)) f_u(t, x^*, u^*) dt$$

$$(4.2)$$

Aplicando 4.1a e 4.1b ao último termo de 4.2,

$$\int_{t_0}^{t_1} (x^*(t) - x(t))(-\lambda(t)g_x(t, x^*, u^*) - \lambda'(t)) + (u^*(t) - u(t))(-\lambda(t)g_u(t, x^*, u^*))dt.$$

Integrando por partes, com $\lambda(t_1) = 0$ e $x(t_0) = x^*(t_0)$, vemos que

$$\int_{t_0}^{t_1} -\lambda'(t)(x^*(t) - x(t))dt = -(x^*(t) - x(t))\lambda(t) \Big|_{t_0}^{t_1} + \int_{t_0}^{t_1} \lambda(t)(x^*(t) - x(t))'dt$$
$$= \int_{t_0}^{t_1} \lambda(t)(g(t, x^*(t), u^*(t)) - g(t, x(t), u(t)))dt$$

Substituindo e usando tanto a concavidade de g quanto 4.1d,

$$J(u^*) - J(u) \ge \int_{t_0}^{t_1} \lambda(t) [g(t, x^*, u^*) - g(t, x, u) - (x^* - x)g_x(t, x^*, u^*) - (u^* - u)g_u(t, x^*, u^*)] dt$$

$$\ge 0$$

Falta garantir que $J(u^*)$ seja finito. Para isso, algumas restrições sobre f e/ou g são necessárias. O próximo teorema é um exemplo sobre isso.

Teorema 4.1.2. Seja $u \in L([t_0, t_1]; \mathbb{R})$. Suponha que f é uma função convexa em u, e existam constantes C_4 e $C_1, C_2, C_3 > 0$ e $\beta > 1$, tal que, $\forall t \in [t_0, t_1], x, x_1, u \in \mathbb{R}$.

$$\begin{cases} g(t, x, u) = \alpha(t, x) + \beta(t, x)u \\ |g(t, x, u)| \le C_1(1 + |x| + |u|) \\ |g(t, x_1, u) - g(t, x, u)| \le C_2|x_1 - x|(1 + |u|) \\ f(t, x, u) \ge C_3|u|^{\beta} - C_4 \end{cases}$$

Então existe um controle ótimo u^* maximizando J(u) com $J(u^*)$ finito.

Em problemas de minimização, g seria côncava e a desigualdade de f é revertida. Podemos extender as condições necessárias para funções de controle Lebesgue integráveis, mas isso não é feito aqui. Alguns resultados de existência de controle ótimo podem ser encontrados em Filippov (1962).

Unicidade: Unicidade de soluções do sistema de otimalidade implica unicidade do controle ótimo, quando ele existir. Em geral, podemos provar a unicidade de soluções do sistema de otimalidade em intervalos de tempo curtos. A volta nem sempre é verdadeira, isto é, unicidade do controle ótimo não garante a unicidade do sistema.

Os exemplos e laboratórios satisfazem as condições de existência e unicidade para intervalos de tempo pequenos. Portanto, resolver através das condições necessárias já é suficiente.

4.2 Interpretação da Adjunta

Defina

$$V(x_0, t_0) := \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$
sujeito a $x'(t) = g(t, x, u), x(t_0) = x_0$.

Estabelecemos que

$$\frac{\partial V}{\partial x}(x_0, t_0) = \lim_{\epsilon \to 0} \frac{V(x_0 + \epsilon, t_0) - V(x_0, t_0)}{\epsilon} = \lambda(t_0).$$

Podemos relacionar, então, a função adjunta à variação marginal da função custo/lucro com respeito ao estado. Na verdade, essa aproximação é válida para todo tempo t (Kamien and Schwartz, 2012, 136-139). Podemos aproximar:

$$V(x_0 + \epsilon, t_0) \approx V(x_0, t_0) + \epsilon \lambda(t_0).$$

Com $\epsilon = 1$, podemos ver que ao adicionar uma unidade à condição inicial, $\lambda(t_0)$ será adicionado ao lucro resultante. portanto é o valor adicional associado ao incremento unitário no estado.

4.3 Princípio da otimalidade

É um resultado importante sobre otimização de um sistema sobre um subintervalo do intervalo original e, em particular, como o controle ótimo nesse subintervalo se relaciona com o controle no intervalo inteiro.

Teorema 4.3.1. Considere u^* o controle ótimo associado ao estado x^* para o problema

$$\max_{u} J(u) = \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_0) = x_0.$$

Seja $\hat{t} \in (t_0, t_1)$ fixo. Então as funções u^* e x^* restritas ao intervalo $[\hat{t}, t_1]$, indicadas por \hat{u}^* e \hat{x}^* , formam uma solução ótima para o problema

$$\max_{u} \hat{J}(u) = \max_{u} \int_{\hat{t}}^{t_1} f(t, x(t), u(t)) dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(\hat{t}) = x^*(\hat{t}).$$

Além disso, se u^* é controle ótimo único, então \hat{u}^* é também.

Demonstração. Esta prova se dá por contradição. Suponha que \hat{u}^* não seja ótimo, isto é, exista uma função de controle \hat{u}_1 no intervalo $[\hat{t}, t_1]$ tal que $\hat{J}(\hat{u}_1) > \hat{J}(\hat{u}^*)$. Defina

$$u_1(t) = \begin{cases} u^*(t), & t \in [t_0, \hat{t}] \\ \hat{u}_1(t), & t \in [\hat{t}, t_1] \end{cases}$$

Seja x_1 o estado associado a u_1 . Assim

$$J(u_1) - J(u^*) = \left(\int_{t_0}^{\hat{t}} f(t, x_1, u_1) dt + \hat{J}(\hat{u}_1) \right) - \left(\int_{t_0}^{\hat{t}} f(t, x^*, u^*) dt + \hat{J}(\hat{u}^*) \right)$$
$$= \hat{J}(\hat{u}_1) - \hat{J}(\hat{u}^*) > 0$$

dado que os controles são iguais no intervalo $[t_0, \hat{t}]$. Isso contradiz a hipótese inicial de que u^* é controle ótimo.

Observação. Nada pode ser dito sobre o intervalo $[t_0, \hat{t}]$. Em particular sabemos que o controle ótimo não será, necessariamente, o controle do problema restrito a esse intervalo, como veremos nos Exemplos.

4.4 Problema autônomo e o hamiltoniano

Os seguintes teoremas são menos utilizados, mas são importantes de ser notadas. A demonstração não é descrita no texto.

Teorema 4.4.1. O Hamiltoniano é uma função contínua Lipschitz do tempo t no caminho ótimo (u^*, x^*) .

Definição 4.4.1 (Autônomo). Se um problema de controle ótimo não tem dependência explícita do tempo, ele é dito autônomo. Isso significa que f e g, em nossa notação, são funções apenas de x e u.

Teorema 4.4.2. Se um problema de controle ótimo é autônomo, então o Hamiltoniano é uma função constante do tempo ao longo da solução ótima.

4.5 Exemplos

Exemplo 4.5.1. Queremos resolver o problema

$$\min_{u} \int_{t_0}^{t_1} x(t) + \frac{1}{2} u(t)^2 dt$$

sujeito a
$$x'(t) = x(t) + u(t), x(0) = \frac{1}{2}e^2 - 1$$

no intervalo [0, 2] e, posteriormente, no intervalo [1, 2].

Observe inicialmente que f e g são continuamente diferenciáveis e convexos no segundo e terceiro argumentos, dado que o problema é de minimização. Vamos então conferir as condições necessárias e, então, saberemos que $J(u^*) \leq J(u)$ para toda função de controle u, pelo teorema de existência.

O Hamiltoniano é

$$H = x + \frac{1}{2}u^2 + x\lambda + u\lambda$$

A equação adjunta é dada por

$$\lambda' = -H_r = -1 - \lambda, \lambda(2) = 0 \implies \lambda(t) = e^{2-t} - 1 > 0,$$

A condição de otimalidade é dada por

$$H_u = u + \lambda = 0 \implies u^*(t) = -\lambda(t) = 1 - e^{2-t}$$

E, portanto

$$x'(t) - x(t) = 1 - e^{2-t} \implies x(t) = Ce^{t} + \frac{1}{2}e^{2-t} - 1$$

Usando a condição inicial

$$\frac{1}{2}e^2 - 1 = C + \frac{1}{2}e^2 - 1 \implies x^*(t) = \frac{1}{2}e^{2-t} - 1$$

Considerando o intervalo em [1,2], vemos que $\hat{u}^* = u^*$ em [1,2]. Se fôssemos resolver fazendo as contas, veja que todos os passos poderiam ser repetidos, com exceção de que $x(1) = \frac{1}{2}e - 1$, o que não mudaria a solução.

Exemplo 4.5.2. Considere o problema acima, mas no intervalo [0, 1].

O Hamiltoniano é o mesmo e $u^*(t) = -\lambda(t)$. Mas a condição de transversalidade é diferente: $\lambda(1) = 0 \implies \lambda(t) = e^{1-t} - 1$ e $u^*(t) = 1 - e^{1-t}$. Ao usarmos a equação do estado, obteremos que

$$x^*(t) = \frac{1}{2}e^{1-t} - 1 + \frac{1}{2}(e^2 - e)e^t$$

Note que a solução é diferente da anterior restrita a [0, 1].

Condições Finais do Estado

5.1 Termos payoff

Em muitos problemas também queremos maximizar o valor de uma função em um determinado ponto no tempo, como, por exemplo, no final do intervalo. Reformulamos o problema de controle ótimo da seguinte forma:

$$\max_{u} \left[\phi(x(t_1)) + \int_{t_0}^{t_1} f(t, x(t), u(t)) dt \right]$$
sujeito a $x' = g(t, x(t), u(t)), x(t_0) = x_0$

O termo $\phi(x(t_1))$ é chamado de termo payoff. Assim o funcional objetivo se torna

$$J(u) = \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_1))$$

A única mudança em relação ao cálculos do Capítulo 3 é a condição de transversalidade.

$$\lambda(t_1) = \phi'(x^*(t_1)).$$

5.2 Estados com pontos de fronteira fixos

Considere o problema

$$\max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_0))$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_1) = x_1$$

Diferente do problema que estávamos estudando, fixamos o estado no ponto final. Entretanto, o argumento utilizado no Capítulo 3 pode ser replicado aqui. As condições necessárias serão as mesmas, exceto pela condição

de transversalidade. Especificamente,

$$\lambda(t_0) = \phi'(x^*(t_0))$$

Isso sugere que exista uma dualidade entre as condições de fronteira do estado e da adjunta. Importante observar que a maximização é realizada sobre os controles *admissíveis*, no sentido que respeite todas as restrições definidas, inclusive as variáveis de estado.

Também podemos fixar os pontos inicial e final de estado. Porém, nesse caso, uma mudança nas condições necessárias é realizada no seguinte teorema.

Teorema 5.2.1. Se $u^*(t)$ e $x^*(t)$ são ótimos para o problema com pontos inicial e final fixados, então existe uma função $\lambda(t)$ diferenciável por partes e uma contante λ_0 igual a 0 ou 1, tal que

$$H(t, x^*(t), u(t), \lambda(t)) \le H(t, x^*(t), u^*(t), \lambda(t))$$

para todos os controles admissíveis u no tempo t e o Hamiltoniano é

$$H = \lambda_0 f(t, x(t), u(t)) + \lambda(t)g(t, x(t), u(t))$$

e

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t))}{\partial x}.$$

A diferença das condições apresentadas no capítulo 3 é que a função adjunta não tem restrições de fronteira. Note que essa liberdade ganhada será preenchida com as condições sobre o estado. A demonstração para esse teorema utiliza uma técnica diferente da utilizada até então e pode ser obtida em (Kamien and Schwartz, 2012, 147-153). A constante λ_0 ajusta para problemas degenerados ou problemas onde o funcional objetivo é imaterial.

Definição 5.2.1. O funcional objetivo ser imaterial significa que não depende da condição final do estado.

5.3 Exemplos

Exemplo 5.3.1.

$$\min_{u} \frac{1}{2} \int_{0}^{1} u(t)^{2} dt + 5x(1)^{2}$$
 sujeito a $x'(t) = x(t) + u(t), x(0) = 1$

Observe que nesse exemplo estamos lidando com o termo payoff $5x(1)^2$, onde $\phi(x) = 5x^2$. Nesse caso

$$H = \frac{1}{2}u^2 + \lambda(x+u)$$

A condição de otimalidade,

$$0 = H_u = u^* + \lambda \implies u^*(t) = -\lambda(t)$$

A equação adjunta,

$$\lambda'(t) = -H_x = -\lambda \implies \lambda(t) = Ce^{-t}$$

A condição de transversalidade,

$$\lambda(1) = \phi'(x^*(1)) = 10x^*(1)$$

Sabemos que $u^*(t) = -Ce^{-t}$. Usando a equação do estado,

$$x' = x - Ce^{-t} \implies x^*(t) = \frac{C}{2}e^{-t} + De^{t}$$

Agora, utilizando as condições de fronteira,

$$\lambda(1) = Ce^{-1} = 10x^*(1) = 10\left(\frac{C}{2}e^{-1} + De\right)$$
$$x(0) = \frac{C}{2} + D = 1 \implies D = 1 - \frac{C}{2}$$

Obtemos a equação

$$e^{-1} = 5e^{-1} + 10e\frac{D}{C} \implies -\frac{4}{10}e^{-2} = \frac{D}{C} \implies 1 - \frac{C}{2} = -\frac{2}{5}Ce^{-2}$$

Assim

$$C = \frac{1}{\frac{1}{2} - \frac{2}{5}e^{-2}} = \frac{10}{5 - 4e^{-2}} \implies D = 1 - \frac{5}{5 - 4e^{-2}} = \frac{-4e^{-2}}{5 - 4e^{-2}}$$

Concluímos, portanto, que

$$u^*(t) = -\frac{10}{5 - 4e^{-2}}e^{-t} e^{-t} e^{-t} = \frac{5}{5 - 4e^{-2}}e^{-t} - \frac{4e^{-2}}{5 - 4e^{-2}}e^{t}$$

Exemplo 5.3.2.

$$\min_{u} \int_{0}^{1} u(t)dt$$

sujeito a
$$x'(t) = u(t)^2, x(0) = 0, x(1) = 0$$

Observe que $x(t) = \int_0^t u(s)^2 ds$ e, como x(1) = 0, temos que $u \equiv 0$ é o único controle admissível. Portanto ele será o único controle ótimo. Agora, vamos examinar as condições necessárias, para fazer o sanity check.

$$H = \lambda_0 u + u^2 \lambda$$

Assim

$$0 = H_u = \lambda_0 + 2u\lambda \implies u^*(t) = -\frac{\lambda_0}{2\lambda(t)}$$

Pela equação adjunta, $H_x=0 \implies \lambda \equiv C$, para alguma constante C. Isto é, $u^*(t)=-\lambda_0/2C$. Usando a equação do estado, obtemos que

$$x^*(t) = \lambda_0^2 \frac{t}{4C^2} + D$$

tal que D=0 e $\frac{\lambda_0^2}{4C^2}=0 \implies \lambda_0=0$. Checamos então que o Teorema é satisfeito com $\lambda_0=0$ e $u^*\equiv 0$, como já era esperado.

Exemplo 5.3.3. Seja x(t) o número de células de câncer no tempo t que apresenta crescimento exponencial α , e eja u(t) a concentração de drogas aplicada para o tratamento. Queremos minimizar o número de células tumorais ao final do tratamento e os efeitos negativos acumulados do tratamento no corpo. Assim, o problema é resumido em

$$\min_{u} x(T) + \int_{0}^{T} u(t)^{2} dt$$

sujeito a
$$x'(t) = \alpha x(t) - u(t), x(0) = x_0 > 0$$

Esse é um simples modelo, não realístico, com objetivo ilustrativo apenas. O termo payoff é x(T) e, portanto, $\phi(x)=x$. Podemos calcular as condições necessárias.

$$H = u^{2} + \lambda(\alpha x - u)$$

$$0 = H_{u} = 2u - \lambda \implies u^{*} = \frac{\lambda}{2}$$

$$\lambda' = -\frac{\partial H}{\partial x} = -\alpha\lambda \implies \lambda(t) = Ce^{-\alpha t}$$

$$\lambda(T) = \phi'(x^{*}(T)) = 1 \implies \lambda(t) = e^{\alpha(T-t)}$$

Portanto o controle ótimo é

$$u^*(t) = \frac{1}{2}e^{\alpha(T-t)},$$

Observando a equação do estado, temos que

$$x' - x = -\frac{1}{2}e^{\alpha(T-t)} \implies x^*(t) = x_0e^{\alpha t} + e^{\alpha T}\frac{e^{-\alpha t} - e^{\alpha t}}{4\alpha}$$

Com esse método, podemos obter a quantidade de droga a ser utilizada a cada tempo t e também saberemos a quantidade de células cancerosas. Todavia é importante notar que esse é um modelo simplificado que não leva em consideração diversos fatores importantes ao processo.

Método Forward-Backward Sweep

Após desenvolvermos as condições necessárias, o problema se torna em resolver duas equações diferenciais, x' e λ' , e encontrar a caracterização de u. Nem sempre podemos calcular analiticamente o resultado e, por isso, precisamos de métodos numéricos que aproximem, com o grau de precisão que desejarmos, o controle ótimo u^* e o estado associado x^* . Para isso tomamos uma partição $P = \{t_0 = b_1, b_2, ..., b_{N+1} = t_1\}$, usualmente com pontos igualmente espaçados, tal que a aproximação será dara por $u_i \approx u(b_i)$. Sabemos que a solução deve satisfazer as condições necessárias apresentadas no capítulo 3.

Em geral, a equação $\frac{\partial H}{\partial u} = 0$ pode ser manipulada de forma a encontrar u em função de x e de λ , para então termos a expressão de u^* . A partir disso, podemos utilizar um método de integração de equações diferenciais, como o Runge-Kutta para resolver o sistema ótimo. Ele vai encontrar o controle ótimo quando esse existir.

6.1 Algoritmo

O método apresentado a seguir é bem intuitivo e é conhecido como Forward-Backward Sweep. Sejam $\vec{x} = (x_1, ..., x_{N+1})$ e $\vec{\lambda} = (\lambda_1, ..., \lambda_{N+1})$ vetores que aproximam as funções estado e adjunta, respectivamente, nos pontos da partição P. Informações sobre convergência e estabilidade podem ser encontradas em Hackbusch (1978).

Passo 1: Chute inicial para \vec{u} .

Passo 2: Usando a condição inicial $x(t_0)$ e os valores de \vec{u} , encontra-se \vec{x} passo a frente através da equação diferencial.

- **Passo 3:** Usando a condição de transversalidade $\lambda(t_1) = 0$ e os valores \vec{u} e \vec{x} , resolva $\vec{\lambda}$ para trás de acordo com a equação adjunta.
- **Passo 4:** Atualize o vetor de controle com os novos valores de \vec{x} e $\vec{\lambda}$ através da equação $H_u = 0$.
- Passo 5: Confira a convergência. Se dois passos subjacentes não estão suficientemente próximos, repita a partir do segundo passo.

O chute inicial em geral não repercute diferença no resultado do algoritmo. Chutes mais próximos do controle ótimo resultam em convergência mais rápida. Para os passos 2 e 3, o método de integração Runge-Kutta é suficiente. Para o passo 4, frequentemente é necessário usar uma combinação convexa ¹ entre dois controles sequenciais para acelerar a convergência do algoritmo.

Muitos tipos de teste de convergência existem. O exemplo mais comum é

$$||\vec{u} - \text{old } \vec{u}||_1 = \sum_{i=1}^{N+1} |u_i - \text{old } u_i| < \epsilon$$

Nesse texto, usaremos o erro relativo com tolerância ϵ ,

$$\frac{||\vec{u} - \text{old } \vec{u}||_1}{||\vec{u}||_1} \le \epsilon$$

Ou, de outra forma, queremos que

$$\epsilon||\vec{u}|| - ||\vec{u} - \text{old } \vec{u}|| \ge 0$$

Vamos fazer esse requerimento para todas as variáveis, não apenas para o controle.

Ao longo do texto esse algoritmo será utilizado para fazer as experimentações através dos Laboratórios escritos em formato notebook.

6.2 Runge-Kutta

Esse método é suficiente para muitos problemas comuns, com exceção de problemas mais complicados, como os *problemas stiff*. Seja a equação diferencial

$$x'(t) = f(t, x), x(0) = x_0.$$

O método pode ser resumido pelas seguintes equações, dado um passo h.

$$x(t+h) \approx x(t) + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

¹Combinação Convexa: Combinação linear de pontos, tal que os coeficientes são não negativos e somam 1.

$$\begin{cases} k1 = f(t, x(t)) \\ k2 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_1) \\ k3 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_2) \\ k4 = f(t + h, x(t) + hk_3) \end{cases}$$

Quando temos o valor $x(T)=x_T$, isto é, o valor final, e queremos integrar até o valor inicial, trocamos o sinal de h e, assim, podemos resolver o passo Backward. O erro é da ordem de h^4 . Para uma descrição mais precisa, recomendam-se livros de Análise Numérica.

Laboratórios 1, 2 e 3

Nesse capítulo serão realizados os laboratórios 1, 2 e 3. Os laboratórios tratam de aplicações simplificadas de situações reais que envolvem conceitos de biologia. Eles são auto-contidos se a teoria dos capítulos anteriores for conhecida.

Lab 1: Exemplo Introdutório

O algoritmo apresentado no capítulo 6 é apresentado na linguagem Python e cada passo é explicado. Um simples exemplo do problema de controle ótimo é desenvolvido.

Lab 2: Mofo e Fungicida

Modelo simplificado do crescimento de um mofo contra a ação de um fungicida, que serve de controle para o aumento do mofo, dado que este é um efeito indesejado e deve, portanto, ser minimizado.

Lab 3: Bactéria

Uma bacteria tem seu crescimento acelerado por um químico, mas simultaneamente é criado um subproduto tóxico a ela. Queremos que no final do experimento, tenhamos o máximo dessa bactéria, mas sem usar muito químico.

Controles Limitados

Muitos problemas reais de controle ótimo apresentam um controle limitado, dado que em geral o controle indica uma medida a ser tomada e ela possui limitações práticas. Por exemplo, se o controle for a quantidade de um químico, no Laboratório 3 do Capítulo 7, não podemos adicionar uma quantidade negativa desse químico, o que nos leva a restringir $u(t) \geq 0$ e também não temos uma quantidade infinita do químico disponível e talvez seja tão limitada que devemos impor $u(t) \leq C$.

8.1 Condições Necessárias

Considere o problema

$$\max_{u} J(u) = \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_1))$$
sujeito a $x'(t) = g(t, x(t), u(t)), x(t_0) = x_0,$
$$a \le u(t) \le b, a < b$$

Seja u^* e x^* o par ótimo. Seja h(t) uma função contínua por partes tal que exista ϵ_0 , de forma que $\forall \epsilon \in (0, \epsilon_0], u^{\epsilon}(t) = u^*(t) + \epsilon h(t)$ é admissível sob os limites inferior e superior. Devido aos limites, o funcional pode não ser zero no controle ótimo, dado que esse pode estar nos limites. Seja $x^{\epsilon}(t)$ a variável do estado correspondente. Da mesma forma que fizemos no capítulo 3, seja $\lambda(t)$ uma função diferenciável por partes e, assim

$$J(u^{\epsilon}) = \int_{t_0}^{t_1} \left[f(t, x^{\epsilon}, u^{\epsilon}) + \lambda(t) g(t, x^{\epsilon}, u^{\epsilon}) + x^{\epsilon} \lambda'(t) \right] dt$$
$$-\lambda(t_0) x_0 + \lambda(t_1) x^{\epsilon}(t_1) + \phi(x(t_1)) \quad (8.1)$$

Como $J(u^*)$ é máximo, temos que

$$0 \ge \frac{d}{d\epsilon} J(u^{\epsilon}) \bigg|_{\epsilon=0} = \lim_{\epsilon \to 0^+} \frac{J(u^{\epsilon}) - J(u^*)}{\epsilon}$$
(8.2)

Como já fizemos, tome a variável $\lambda(t)$ de forma que

$$\lambda'(t) = -[f_x(t, x^*, u^*) + \lambda(t)g_x(t, x^*, u^*)], \lambda(t_1) = \phi'(x^*(t_1))$$

Então 8.1 e 8.2 se reduzem a

$$0 \ge \int_{t_0}^{t_1} (f_u + \lambda g_u) h dt,$$

E essa desigualdade vale para toda função h. Seja s um ponto de continuidade tal que $a \leq u^*(s) < b$. Suponha que $f_u + \lambda g_u > 0$ em s. Pela continuidade de u^* em s, vale que $f_u + \lambda g_u$ é contínua em s e, portanto, deve ser positiva em uma vizinhança do ponto. Podemos tomar esse intervalo menor para que tenhamos $u^* < b$. Seja I o maior intervalo fechado com essas características e defina

$$M = \max\{u^*(t) : t \in I\}$$

Seja

$$h(t) = \begin{cases} b - M > 0, & \text{se } t \in I, \\ 0, & \text{se } t \notin I \end{cases}$$

Portanto $a \leq u^* + \epsilon h \leq b$ quando $\epsilon \in [0, 1]$. Mas

$$\int_{t_0}^{t_1} (f_u + \lambda g_u) h dt = \int_I (f_u + \lambda g_u) (b - M) dt > 0,$$

uma contradição. Portanto $f_u + \lambda g_u \leq 0$.

De forma similar, se s é um ponto onde u^* é contínua e $a < u^*(s) \le b$, teremos que em s, $f_u + \lambda g_u \ge 0$. E assim,

$$u^*(t) = a \implies f_u + \lambda g_u \le 0 \text{ em } t,$$

 $a < u^*(t) < b \implies f_u + \lambda g_u = 0 \text{ em } t,$
 $u^*(t) = b \implies f_u + \lambda g_u \ge 0 \text{ em } t,$

De forma equivalente

$$f_u + \lambda g_u > 0 \text{ em } t \implies u^*(t) \neq a,$$
 (8.3)

$$f_u + \lambda g_u \neq 0 \text{ em } t \implies u^*(t) = a \text{ ou } u^*(t) = b,$$
 (8.4)

$$f_u + \lambda g_u < 0 \text{ em } t \implies u^*(t) \neq b,$$
 (8.5)

De 8.3 e 8.4, vemos que $f_u + \lambda g_u > 0 \implies u^*(t) = b$. De 8.4 e 8.5, vemos que $f_u + \lambda g_u < 0 \implies u^*(t) = a$. E, por fim, se $f_u + \lambda g_u = 0 \implies a \le u^*(t) \le b$. Para os pontos em que u^* não é contínua, não precisamos

nos preocupar, pois não afetam o funcional objetivo. Portanto, temos que, dado o Hamiltoniano H,

$$x'(t) = \frac{\partial H}{\partial \lambda}, x(t_0) = x_0$$

$$\lambda'(t) = -\frac{\partial H}{\partial x}, \lambda(t_1) = \phi'(x(t_1))$$

$$\begin{cases} u^* = a & \text{se } H_u < 0 \\ a \le u^* \le b & \text{se } H_u = 0 \\ u^* = b & \text{se } H_u > 0 \end{cases}$$

Em um problema de minimização, as desigualdades da primeira e terceira linhas são revertidas. A condições de transversalidade são todas equivalentes ao caso não limitado, isto é, a dualidade do estado e adjunta é a mesma.

8.2 Soluções Numéricas

Uma mudança no algoritmo é necessária para calcular a solução numérica. As equações estado e adjunta não são alteradas, pois não dependem dos limites de u^* e apenas a sua caracterização. Além disso, o chute inicial deve ser entre os limites do controle. As mudanças necessárias podem ser visualizadas na seção de exemplos.

8.3 Exemplos

Exemplo 8.3.1.

$$\max_{u} x(4) - \int_{0}^{4} u(t)^{2} dt$$
 sujeito a $x'(t) = x(t) + u(t), x(0) = 0,$
$$u(t) \le 5$$

O Hamiltoniano é dado por $H=-u^2+\lambda x+\lambda u$. A equação adjunta é dada por

$$\lambda'(t) = -H_x = -\lambda \implies \lambda(t) = Ke^{-t}$$

Como $\lambda(4) = \phi'(x^*(4)) = 1$, temos que $Ke^{-4} = 1 \implies K = e^4$. Assim

$$\lambda(t) = e^{4-t}.$$

Além disso, $H_u = -2u + \lambda$. Como o controle não tem limite inferior, temos que $H_u < 0$ não pode ocorrer.

Se
$$H_u > 0 \implies u^*(t) = 5 \implies \lambda - 10 > 0 \implies e^{4-t} > 10 \implies t < 4 - \log 10$$

Se $H_u = 0 \implies u^*(t) = \frac{1}{2}e^{4-t} \le 5$. Portanto $t \ge 4 - \log 10$. Consequentemente,

$$u^* = \begin{cases} 5 & \text{quando } 0 \le t < 4 - \log 10 \\ \frac{1}{2}e^{4-t} & \text{quando } 4 - \log 10 \le t \le 4 \end{cases}$$

Agora vamos encontrar o estado associado.

$$x'(t) = x(t) + 5 \implies x(t) = 5e^{t} - 5, t \in [0, 4 - \log 10]$$
$$x'(t) = x(t) + \frac{1}{2}e^{4-t} \implies x(t) = -\frac{1}{4}e^{4-t} + ke^{t}, t \in [4 - \log 10, 4]$$

para alguma constante k de forma que x^* seja contínua, isto é, as expressões concordem. Isso ocorre quando $k=5-25e^{-4}$.

Exemplo 8.3.2. Considere o simples exemplo

$$\min_{u} \int_{0}^{4} u(t)^{2} + x(t)dt$$
 sujeito a $x'(t) = u(t), x(0) = 0, x(4) = 1$
$$u(t) \ge 0$$

Vamos visualizar a diferença entre a solução com limites e sem limites. Para problemas com limites, é importante que não apenas trunquemos o resultado

No exemplo, o Hamiltoniano é dado por $H=\lambda_0(u^2+x)+\lambda u$. A função adjunta é dada por

$$\lambda'(t) = -H_x = -\lambda_0 \implies \lambda(t) = k - \lambda_0 t$$

para alguma constante k e $\lambda_0 = 0$ ou $\lambda_0 = 1$. A condição de otimalidade é

$$H_u = 2\lambda_0 u + \lambda$$
,

$$H_u > 0 \implies u^*(t) = 0 \implies 0 < \lambda = k - t \implies t < k$$

Considere $\lambda_0 = 1$.

$$H_u = 0 \implies 0 \le u^*(t) = -\frac{\lambda}{2} = \frac{t-k}{2} \implies t \ge k$$

Portanto

$$u^*(t) = \begin{cases} 0, & \text{quando } 0 \le t < k, \\ \frac{t-k}{2} & \text{quando } k \le t \le 4 \end{cases}$$

Agora precisamos encontrar o valor de k. Para isso, precisamos utilizar as condições de estado inicial e de fronteira. Considere os casos:

Caso 1: $k \le 0$. Assim $x'(t) = u = \frac{t-k}{2} \implies x(t) = \frac{t^2}{4} - \frac{kt}{2} + c$, tal que c = 0 e $x(4) = 4 - 2k = 1 \implies k = 3/2$, um absurdo.

Caso 2: $k \ge 4$. Assim $u^* \equiv 0$. Então $x^* \equiv c$, o que também é um absurdo.

Caso 3: Então 0 < k < 4. Nesse caso $x'(t) = 0 \implies x \equiv c = 0$ em [0,k). Em $[k,4], x'(t) = \frac{t-k}{2}$ e, portanto,

$$x(t) = \frac{t^2}{4} - \frac{kt}{2} + c,$$

para alguma constante c. Pela continuidade de x, $c=\frac{k^2}{4}$, pois x(k)=0. Por fim, $1=x(4)=4-2k+k^2/4$. A solução é portanto k=2 ou 6. Como $k<4 \implies k=2$. Concluímos então que

$$u^*(t) = \begin{cases} 0, & \text{quando } 0 \le t < 2, \\ \frac{t-2}{2} & \text{quando } 2 \le t \le 4 \end{cases} \text{ e } x^*(t) = \begin{cases} 0, & \text{quando } 0 \le t < 2, \\ \frac{(t-2)^2}{4} & \text{quando } 2 \le t \le 4 \end{cases}$$

Agora, vamos procurar o controle ótimo \hat{u} sem restrição. Nesse caso

$$\hat{u}(t) = \frac{t-k}{2} \implies \hat{x}(t) = \frac{t^2}{4} - \frac{kt}{2} + c$$

tal que x(0)=c=0 e $x(4)=4-2k=1 \implies k=3/2$. Assim, se só truncássemos a solução, teríamos

$$\hat{u}(t) = \begin{cases} 0, & \text{quando } 0 \le t < 3/2, \\ \frac{2t-3}{4} & \text{quando } 3/2 \le t \le 4 \end{cases}$$

Em conclusão, para encontrar controle ótimo com restrição, devemos considerá-los nas contas.

Figura 8.1: Controles ótimo e com truncagem

Laboratórios 4, 5 e 6

Nesse capítulo serão realizados os laboratórios 4, 5 e 6. Mais algumas aplicações em biologia são desenvolvidas.

Lab 4: Caso limitado

É um reexame do problema do primeiro laboratório. A diferença agora é a presença de limites inferior e superior.

Lab 5: Câncer

Modelo do tratamento de células cancerosas por quimioterapia, com objetivo de minimizar os efeitos negativos do uso das drogas, mas também minimizar a densidade dessas células no corpo. É simplificado, porém apresenta dois componentes importantes: o crescimento Gompertzian e a hipótese de Skipper para a morte das células segundo o uso das drogas.

Lab 6: Colheita de peixe

Uma população de peixes é inserida em um tanque e é deixada para ser caçada, com morte natural, mas sem taxa de nascimento. Queremos maximizar a massa de peixes caçada, enquanto minimizamos o gasto com a colheita. Restrições são consideradas.

Controle Ótimo com Várias Variáveis

Até agora nos preocupamos apenas com problemas com uma variável de estado e uma variável de controle. Nesse capítulo vamos estudar as condições necessárias para um problema com mais de uma variável de cada tipo.

10.1 Condições Necessárias

Faremos uma extensão natural dos problemas desenvolvidos até então. Seja o problema com n variáveis de estado, m variáveis de controle e uma função payoff ϕ .

$$max_{u_1,...,u_m} \int_{t_0}^{t_1} f(t,x_1(t),...,x_n(t),u_1(t),...,u_m(t))dt + \phi(x_1(t_1),...,x_n(t_1))$$
sujeito a $x_i'(t) = g_i(t,x_1(t),...,x_n(t),u_1(t),...,u_m(t))$

$$x_i(t_0) = x_{i0} \text{ para } i = 1,2,...,n$$

onde as função f e g_i são continuamente diferenciáveis em cada variável. Em notação vetorial, seja $\vec{x}(t), \vec{u}(t), \vec{g}(t, \vec{x}, \vec{u})$ e $\vec{x_0}$ os vetores, respectivamente, do estado, do controle, das funções derivada do estado e da condição inicial. Podemos escrever o problema, portanto, como

$$\max_{\vec{u}} \int_{t_0}^{t_1} f(t, \vec{x}(t), \vec{u}(t)) dt + \phi(\vec{x}(t_1))$$

sujeito a
$$\vec{x}'(t) = \vec{g}(t, \vec{x}(t), \vec{u}(t)), \vec{x}(t_0) = \vec{x}_0$$

Seja \vec{u}^* o vetor de funções controle ótimo e \vec{x}^* o vetor de estados correspondente. Seja $\vec{\lambda}(t) = [\lambda_1(t), ..., \lambda_n(t)]$ um vetor com funções diferenciáveis por partes, que serão as funções adjuntas. Defina o Hamiltoniano

$$H(t, \vec{x}, \vec{u}, \vec{\lambda}) = f(t, \vec{x}, \vec{u}) + \vec{\lambda}(t) \cdot \vec{g}(t, \vec{x}, \vec{u}),$$

onde · é o produto escalar de vetores. Pelo mesmo argumento apresentado no capítulo 3, encontramos que \vec{u}^* maximiza a função $\vec{u}\mapsto H(t,\vec{x}^*,\vec{u},\vec{\lambda})$ e satisfaz

$$x_i'(t) = \frac{\partial H}{\partial \lambda_i} = g_i(t, \vec{x}, \vec{u}), x_i(0) = x_{i0} \text{ para } i = 1, ...n$$

$$\lambda_j'(t) = -\frac{\partial H}{\partial x_j}, \lambda_j(t_1) = \phi_{x_j}(\vec{x}(t_1)) \text{ para } j = 1, ..., n$$

$$0 = \frac{\partial H}{\partial u_k} \text{ em } u_k^* \text{ para } k = 1, ..., m$$

Modificações nesse problema repercutem no caso multivariado, com extensões similares. A dualidade entre x_i e λ_i para i=1,...,n é ainda observada e quando impomos limites sobre os controles, para cada controle, as condições de otimalidade são idênticas ao caso unidimensional.

Exemplo 10.1.1.

$$\min_{u} \int_{0}^{1} x_{2}(t) + u(t)^{2} dt$$
sujeito a $x'_{1}(t) = x_{2}(t), x_{1}(0) = 0, x_{1}(1) = 1,$
$$x'_{2}(t) = u(t), x_{2}(0) = 0,$$
$$a \leq u(t) \leq b$$

Sejam λ_1 e λ_2 variáveis adjuntas e defina

$$H = x_2 + u^2 + \lambda_1 x_2 + \lambda_2 u$$

As equações adjuntas são dadas por

$$\lambda_1'(t) = -\frac{\partial H}{\partial x_1} = 0 \implies \lambda_1(t) \equiv C$$

$$\lambda_2'(t) = -\frac{\partial H}{\partial x_2} = -1 - \lambda_1 \implies \lambda_2(t) = -(1+C)t + D,$$

$$\text{como } \lambda_2(1) = 0 \implies D = 1 + C \implies \lambda_2(t) = -(1+C)(t-1)$$

Usando as condições de otimalidade, obtemos

$$H_u > 0 \implies u^*(t) = a \implies -\frac{1}{2}\lambda_2 < a$$

 $H_u < 0 \implies u^*(t) = b \implies -\frac{1}{2}\lambda_2 > b$
 $H_u = 0 \implies a \le u^*(t) = -\frac{1}{2}\lambda_2(t) \le b$

 $H_u = 2u + \lambda_2$

Portanto,

$$u^*(t) = \begin{cases} a & t < \frac{2}{1+C}a+1\\ \frac{1+C}{2}(t-1) & t \in \left[\frac{2}{1+C}a+1, \frac{2}{1+C}b+1\right]\\ b & t > \frac{2}{1+C}b+1 \end{cases}$$

Para encontrar o calor de C, algumas contas complicadas precisam ser feitas e não o são não no texto. Precisa-se integrar a equação $x_2' = u$, assegurando a continuidade de x_2 e considerando a sua condição inicial. Após integramos a equação $x_1' = x_2$ e usamos as condições de continuidade em x_1 , inicial e final.

10.2 Problemas de Regulador Linear Quadrático

Nessa seção será desenvolvido um caso especial de sistemas de controle ótimo, em que as equações diferenciais são lineares em x e u e o funcional objetivo é quadrático. Assim descrevemos o problema da seguinte forma:

$$J(u) := \frac{1}{2} [x^T(T)Mx(t) + \int_0^T x^T(t)Q(t)x(t) + u^T R(t)u(t)dt]$$
$$x'(t) = A(t)x(t) + B(t)u(t)$$

onde $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $A(t) \in \mathbb{R}^{n \times n}$ e $B(t) \in \mathbb{R}^{n \times m}$. Além disso M, Q(t) são positivas semidefinidas e R(t) é positiva definida para garantir invertibilidade, para todo t em [0,T]. As três matrizes são simétricas. Observe que isso garante a diagonalização. O Hamiltoniano é, portanto,

$$H = \frac{1}{2}x^TQx + \frac{1}{2}u^TRu + \lambda^T(Ax + Bu).$$

Derivação de expressões matriciais é uma ferramenta poderosa, pois simplifica a notação, mas é importante que se conheça o processo. A simetria das matrizes é utilizada nesse passo. A equação de otimalidade é dada por

$$H_u = Ru + B^T \lambda = 0 \implies u^* = -R^{-1}B^T \lambda.$$

enquanto a equação adjunta é dada por

$$\lambda' = -H_x = -Qx - A^T \lambda, \lambda(T) = Mx(T)$$

Para resolvermos esse problema, utilizaremos o método sweep. Para isso, vamos encontrar uma matriz S(t) de forma que $\lambda(t) = S(t)x(t)$. Assim

$$\lambda'(t) = S'(t)x(t) + S(t)(Ax + Bu) = -Qx - A^{T}(Sx)$$

Obtemos, portanto, utilizando a condição de otimalidade,

$$-S'x = Qx + A^TSx + SAx - SBR^{-1}B^TSx$$
$$= (Q + A^TS + SA - SBR^{-1}B^TS)x$$

Temos, portanto, a equação matricial de Ricatti

$$-S' = A^T S + SA - SBR^{-1}B^T S + Q, S(T) = M$$

Esse controle é um tipo de controle feedback, pois é uma função linear do estado apenas. A matriz $R^{-1}B^TS$ é chamada e gain. O interessante dessa solução é que eliminamos a necessidade da função adjunta.

Exemplo 10.2.1.

$$\min_{u} \frac{1}{2} \int_{0}^{T} x(t)^{2} + u(t)^{2} dt$$
 sujeito a $x'(t) = u(t), x(0) = x_{0}$

Nesse caso M=A=0 e B=R=Q=1. Pela equação de Ricatti,

$$-S' = -S^2 + 1, S(T) = 0 \implies S(t) = \frac{1 - Ce^{2t}}{1 + Ce^{2t}},$$

tal que
$$S(T) = \frac{1 - Ce^{2T}}{1 + Ce^{2t}} = 0 \implies C = e^{-2T}$$
, isto é,

$$S(t) = \frac{1 - e^{2(t-T)}}{1 + e^{2(t-T)}}$$

Temos que $u^*(t) = -R^{-1}B^T S x = -S x$ e x'(t) = -S x, e

$$x^*(t) = x_0 e^{-\int Sdt}$$

Exemplo carece de revisão.

10.3 Equações Diferenciais de Ordem mais Alta

Quando temos uma equação diferencial de ordem mais alta relacionada ao estado, podemos definir um sistema de equações diferenciais, de forma que $x_1(t) = x(t), x_2(t) = x'(t), ..., x_{n+1}(t) = x^{(n)}(t)$. A partir dessa transformação, podemos resolver o problem com o Princípio Máximo de Pontryagin.

10.4 Restrições Isoperimétricas

Ao invés de tomar limites inferior e superior com relação ao controle, podemos restringir a integral sobre uma função do controle, assim, podemos ter o seguinte problema, sendo f,g,h funções continuamente diferenciáveis nas três variáveis.

$$\max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_1))$$
sujeito a $x'(t) = g(t, x(t), u(t)), x(t_0) = x_0,$

$$\int_{t_0}^{t_1} h(t, x(t), u(t)) dt = B,$$

$$a \le u(t) \le b$$

Esse tipo de restrição é conhecido como restrição isoperimétrica. De fato não podemos lidar de forma direta com esse problema pelo Principio Máximo de Pontryagin. Entretanto, podemos introduzir uma segunda variável z(t) tal que

$$z(t) = \int_{t_0}^{t} h(s, x(s), u(s)) ds$$

e, portanto,

$$z'(t) = h(t, x(t), u(t)),$$

$$z(t_0) = 0,$$

$$z(t_1) = B$$

A partir disso, podemos resolver através do método estudado até então.

Exemplo 10.4.1. Inserir exemplo.

10.5 Soluções Numéricas

O método para resolver esses sistemas numericamente é basicamente o mesmo. Primeiro, fazemos um chute inicial para cada controle. Depois resolvemos simultaneamente os estados para frente no tempo. Então resolvemos todas as adjuntas simultaneamente para trás no tempo. Cada controle é então atualizado segundo sua caracterização. Esse processo ocorre iterativamente até atingir convergência desejada. Usaremos o método Runge-Kutta para sistemas na integração. O método de Runge-Kutta vetorial precisa resolver \vec{k}_1 inicialmente, ou seja, k_1^i para cada estado x_i , para então resolver \vec{k}_2 .

Laboratórios 7, 8, 9 e 10

Nesse capítulo serão realizados os laboratórios 7, 8, 9 e 10. Mais algumas aplicações em biologia são desenvolvidas.

Lab 7: Modelo para Epidemia

Nesse laboratório, um simples modelo compartimental SEIR é desenvolvido segundo a figura 11.1. Um controle de vacinação é visualizado como efeito. É uma simplificação que permite tirar conclusões similares àquelas obtidas pela comunidade científica.

Figura 11.1: O gráfico de fluxo do modelo é explicado aqui.

Lab 8: Tratamento HIV

Nesse laboratório é estudado a estratégia de tratamento de quimioterapia de inibidores da transcrição reversa para o HIV, considerando o sistema imunológico do indivíduo, em especial as células CD4+ T que são as mais afetadas no processo. A ideia desse controle é inibir a infecciosidade dos vírus livres em infectar células suscetíveis.

Lab 9: População de Ursos

A população de ursos em um parque genérico com proximidade a áreas habitadas por humanos é considerada, de forma que essas regiões são compartilhadas, o que permite encontros indesejados entre ursos e humanos. A caça de ursos tanto na floresta quanto no parque são levados em consideração como forma de controle.

Lab 10: Modelo de Glucose

Alguns sistemas de equações diferenciais são sensíveis a mudanças nos parâmetros. Isso pode até levar a falta de convergência, dentre outros problemas. Neste laboratório, examinamos um problema mal condicionado. O modelo considerado tem o objetivo de melhorar a habilidade do teste GTT para detectar pré-diabetes e diabetes menos severas. O modelo considera a concentração de glucose no sangue e a concentração hormonal líquida.

Linear Dependence on the Control

Nesse capítulo vamos considerar problemas em que o Hamiltoniano é linear em u e, portanto $H_u = 0$ não poderá ser resolvido para u. A solução ótima envolve em geral descontinuidades em u^* .

12.1 Controles Bang-Bang

Considere o problema de controle ótimo.

$$\max_{u} \int_{t_0}^{t_1} f_1(t,x) + u(t) f_2(t,x) dt$$
 sujeito a $x'(t) = g_1(t,x) + u(t) g_2(t,x), x(0) = x_0$
$$a \le u(t) \le b$$

Podemos escrever o Hamiltoniano como

$$H(t, x, u, \lambda) = f_1(t, x) + \lambda g_1(t, x) + u(t)(f_2(t, x) + \lambda g_2(t, x)).$$

A condição de otimalidade dada por

$$\frac{\partial H}{\partial u} = f_2(t, x) + \lambda(t)g_2(t, x),$$

não carrega informação sobre u(t). Assim definimos $\psi(t) := f_2(t,x(t)) + \lambda(t)g_2(t,x(t))$, muitas vezes chamada de função de troca. A caracterização de u^* é

$$u^*(t) = \begin{cases} a & \text{se } \psi(t) < 0, \\ ? & \text{se } \psi(t) = 0, \\ b & \text{se } \psi(t) > 0. \end{cases}$$

Se $\psi=0$ não pode ser mantido em um intervalo de tempo, mas ocorre apenas em pontos finitos, o controle é dito **Bang Bang**, porque só varia entre os valores mínimo e máximo de u(t). Os valores de u(t) nesses pontos não são de interesse, portanto. Se $\psi(t)\equiv 0$ em um intervalo de tempo, dizemos que u^* é **singular** nesse intervalo. Esse caso será explorado na próxima sessão.

O método forward-backward sweep pode ser empregado nesse caso. Primeiro precisamos provar que o problema é de fato bang-bang, isto é $\phi=0$ não ocorre em um intervalo. Caso isso seja verdadeiro, basta fazermos, em código Python,

u = lambda t,x,adjoint: a if psi(t, x, adjoint) < 0 else b

Exemplo 12.1.1.

$$\max_{u} \int_{0}^{2} e^{t} (1 - u(t)) dt$$
sujeito a $x'(t) = u(t)x(t), x(0) = 1$
$$0 \le u(t) \le 1.$$

Esperamos que $u \equiv 0$ para maximizar a expressão.

O Hamiltoniano é

$$H = e^t(1 - u) + \lambda ux$$

A equação adjunta e a condição de transversalidade são

$$\lambda'(t) = -H_x = -\lambda(t)u(t), \lambda(2) = 0,$$

 \mathbf{e}

$$\psi(t) = H_u = -e^t + \lambda(t)x(t)$$

Suponha que $\phi \equiv 0$ em um intervalo $I \subset (0,2)$. Portanto, diferenciando,

$$e^t = \lambda x \implies e^t = \lambda'(t)x(t) + \lambda(t)x'(t) = -\lambda(t)u(t)x(t) + \lambda(t)u(t)x(t) = 0,$$

o que é impossível. Portanto provamos que o problema é bang-bang.

$$u^* = 0 \implies x' = \lambda' = 0 \implies x, \lambda \text{ constantes.}$$

$$u^* = 1 \implies \lambda' = -\lambda \implies \lambda(t) = Ce^{-t}$$

Agora temos que determinar os intervalos. Como $\lambda(2)=0$, qualquer um dos casos acima implicaria $\lambda(t)\equiv 0$ em algum intervalo que inclua t=2. Se $u^*=1$ nesse intervalo, teremos que C=0 e, para garantir a continuidade de λ em [0,2], teremos que $\lambda\equiv 0$. Se $u^*=0$ nesse intervalo, seja $I=(a,b)\subset [0,2)$ o maior intervalo tal que $u^*=1$. Como $\lambda(b)=0\implies C=0$ a única possibilidade que garante continuidade. Concluímos que $\lambda\equiv 0$. Nesse sentido

$$\psi(t) = -e^t < 0 \implies u^* \equiv 0 \text{ e } x^* \equiv 1$$

12.2 Controles Singulares

Consideremos dois exemplos simples para motivar o tópico.

Exemplo 12.2.1.

$$\max_{u} \int_{0}^{2} (x(t) - t^{2})^{2} dt \text{ sujeito a } x'(t) = u(t), x(0) = 10 \le u(t) \le 4$$

Primeiro vamos calcular as condições necessárias,

$$H = (x - t^2)^2 + \lambda u$$
$$\lambda'(t) = -H_x = -2(x - t^2), \lambda(2) = 0$$
$$\phi(t) = H_u = \lambda(t)$$

Se $\phi \equiv 0$ em algum intervalo, então

$$0 \equiv \lambda'(t) = -2(x - t^2) \equiv x(t) = t^2,$$

então nesse intervalo u = x' = 2t. Consequentemente,

$$u^*(t) = \begin{cases} 0 & \text{quando } \lambda > 0, \\ 2t & \text{quando } \lambda = 0, \\ 4 & \text{quando } \lambda < 0. \end{cases}$$

Vamos provar que $x^*(t) \geq t^2$ no intervalo [0,2] na Proposição 12.2.1. Com isso demonstrado, temos que $\lambda' \leq 0$ em [0,2]. Como $\lambda(2) = 0$, devemos ter que $\lambda \geq 0$ em [0,2]. Portanto existe $k \in [0,2]$ tal que $\lambda > 0$ em [0,k) e $\lambda = 0$ em [k,2].

Suponha que k=0. Então $\lambda \equiv \lambda' \equiv 0$. Mas $x^*(0)>0^2$, então $\lambda'(0)<0$, contradição.

Suponha que k=2. Então $u^*\equiv 0 \implies x^*\equiv 1$. Isso contradiz $x^*(2)\geq 2^2$. Portanto 0< k<2 e

$$u^*(t) = \begin{cases} 0 & \text{se } 0 \le t < k, \\ 2t & \text{se } k < t \le 2, \end{cases} \quad x^*(t) = \begin{cases} 1 & \text{se } 0 \le t < k, \\ t^2 + (1 - k^2) & \text{se } k \le t < 2, \end{cases}$$
 (12.1)

dado que x^* é contínua. Precisamos encontrar k.

Note que $\lambda \equiv 0$ em [k, 2]. Assim, nesse intervalo,

$$0 = \lambda'(t) = -2(1 - k^2) \implies k = 1.$$

Proposição 12.2.1.

$$x^*(t) \ge t^2, \forall t \in [0, 2]$$

Demonstração. Suponha que $x(t) < t^2$ para algum t. Como $x(t) > t^2$ em t = 0, existe $t_0 \in (0, 2)$ tal que $x(t_0) \le t_0^2$ e $u(t_0) = x'(t_0) < 2t_0$. Portanto $u(t_0) = 0$ e $\lambda(t_0) > 0$.

Seja $t_1 := \inf\{t : \lambda(t) = 0, t \in (t_0, 2]\}$. Como esse conjunto é fechado (tome uma sequência nele e veja que o limite dela precisa estar nala), o valor de t_1 pertence a ele, isto é, $\lambda(t_1) = 0, t_1 > t_0$. Portanto $\lambda(t) > 0$ em $[t_0, t_1)$. Portanto $u^*(t) = 0, t \in [t_0, t_1)$. Assim $x^(t) = x^*(t_0), t \in [t_0, t_1)$. Como $x^*(t_0) \le t_0^2$, então $x^*(t) \le t^2$. Pela equação adjunta, $\lambda'(t) \ge 0$ em $[t_0, t_1)$. Mas se $\lambda(t_0) > 0, \lambda(t_1) = 0$ é impossível. Com essa contradição concluímos que $x^*(t) \ge t^2, t \in [0, 2]$.

Se não fôssemos capazes de encontrar os intervalos onde u é definido, precisaríamos utilizar um método numérico sobre 12.1. Porém, numericamente, não é possível obter $\lambda=0$. Para isso, poderíamos considerar que $u^*(t)=2t$ quanto $|\lambda|<\epsilon=0.00001$, por exemplo. Entretanto, problemas singulares tendem a ser instáveis de forma geral.

Pesquisadores a partir de comportamentos de controles ótimos singulares, desenvolveram condições necessárias adicionais. A mais notável é a condição generalizada de Legendre-Clebsh (Tsypkin (1970), Grossmann (1984), Krener (1977)). É uma condição de segunda ordem e envolve derivadas de ordem mais alta do Hamiltoniano.

Exemplo 12.2.2. Reservar marinhas proibidas são tema de discussão entre aqueles que enfatizam os benefícios de conservação e aqueles que enfatizam a redução da produção pesqueira. Neubert investigou o papel dessas reservas para maximar o rendimento segundo uma estratégia de caça.

A equação diferencial parcial da densidade de estoque relativa a capacidade de carga w(x,t) é

$$w_t(x,t) = w_{xx}(x,t) + w(x,t)(1 - w(x,t)) - u(x)w(x,t),$$

Suponha que a densidade é estável no tempo. Assim,

$$0 = w''(x) + w(x)(1 - w(x)) - u(x)w(x),$$

tal que w(0) = w(l) = 0, isto é, as regiões de fronteira são inabitadas. Assumimos que $0 \le u(x) \le 1$ é o controle de colheita.

Primeiro convertemos a equação em um sistema de primeira ordem:

$$w'(x) = v(x), w(0) = w(l) = 0,$$

$$v'(x) = u(x)w(x) - w(x)(1 - w(x)),$$

Queremos maximizar o retorno em [0, l].

$$J(u) = \int_0^l u(x)w(x)dx$$

Vamos ter a restrição adicional que w(x) > 0 no interior do domínio.

Primeiro vamos encontrar as condições necessárias do problema.

$$H = uw + \lambda_1 v + \lambda_2 (uw - w(1 - w)),$$

$$\lambda'_1 = -H_w = -u - \lambda_2 (u - 1 + 2w),$$

$$\lambda'_2 = -H_v = -\lambda_1, \lambda_2 (0) = \lambda_2 (l) = 0,$$

$$\psi = H_u = w(1 + \lambda_2)$$

Se $\psi\equiv 0$ em algum intervalo, temos que $\lambda_2\equiv -1\implies \lambda_2'=0\implies \lambda_1=0$ nesse intervalo. Assim

$$-u + u - 1 + 2w = 0 \implies w^* = \frac{1}{2}$$

Assim $w'=v=v'=0=u^*-(1-w^*)$ e $u^*=\frac{1}{2}$. Concluímos que

$$u^*(t) = \begin{cases} 1 & \text{se } \lambda_2 > -1, \\ 1/2 & \text{se } \lambda_2 = -1, \\ 0 & \text{se } \lambda_2 < -1 \end{cases}$$
 (12.2)

As condições necessárias devem ser resolvidas numericamente. A partir de resultados numéricos, existe pelo menos um intervalo onde o controle ótimo é zero, o que significa uma região marítima proibida.

Problemas com Tempo Final Livre

Em alguns problemas reais, não temos um tempo fixo para procurar um controle ótimo, mas também queremos encontrar o tempo ótimo que devemos permanecer com o tratamento. Precisamos refazer as condições necessárias, dada que temos mais variáveis desconhecidas.

13.1 Condições Necessárias

Sejam f e g funções continuamente diferenciáveis e considere o problema

$$\max_{u,T} J(u,T) = \max_{u,T} \int_{t_0}^{T} f(t,x(t),u(t))dt + \phi(T,x(T))$$
sujeito a $x'(t) = q(t,x(t),u(t)), x(t_0) = x_0.$

Seja (u^*, T^*) um par ótimo, de forma que u^* esteja definida em $[t_0, T^*]$ e $J(u, T) \leq J(u^*, T^*) < \infty$, para todos os controles u e tempos T. Seja x^* o estado correspondente. Seja h uma função contínua por partes e $\epsilon \in \mathbb{R}$, de forma que $u^{\epsilon}(t) = u^*(t) + \epsilon h(t)$ é um controle. Assim

$$0 = \lim_{\epsilon \to 0} \frac{J(u^*, T^*) - J(u^{\epsilon}, T^*)}{\epsilon}.$$

Pelo mesmo argumento dos Capítulo 3 e 5, temos que

$$0 = H_u \text{ em } u^*$$

$$\lambda' = -H_x = -f_x - \lambda g_x$$

$$\lambda(T^*) - \phi_x(T^*, x(T^*)),$$

Mas isso não nos dá informação sobre T^* . Por isso, seja $\delta \leq t_0 - T^*$, tal que $T^* + \delta$ seja um tempo admissível. Primeiro, assuma que u^* é contínua

à esquerda em T^* . Se não o for, mude seu valor nesse ponto se necessário. Então, seja $u^*(t) = u^*(T), t > T^*$. Portanto,

$$0 = \lim_{\epsilon \to 0} \frac{J(u^*, T^* + \delta) - J(u^*, T^*)}{\delta}.$$

equivalentemente, dado que u^* é contínua em T^* e x^* é diferenciável, usando o Teorema Fundamental do Cálculo e a regra do produto, temos que,

$$\begin{split} 0 &= \lim_{\delta \to 0} \frac{1}{\delta} \int_{T^*}^{T^* + \delta} f(t, x^*, u^*) dt \\ &+ \frac{\phi(T^* + \delta, x^*(T^* + \delta)) - \phi(T^*, x^*(T^*))}{\delta} \\ &= f(T^*, x^*(T^*), u^*(T^*)) + \phi_t(T^*, x^*(T^*)) + \phi_x(T^*, x^*(T^*)) \frac{dx^*}{dt} (T^*) \\ &= f(T^*, x^*(T^*), u^*(T^*)) + \phi_t(T^*, x^*(T^*)) + \lambda(T^*) g(T^*, x^*(T^*), u^*(T^*)) \\ &= H(T^*, x^*(T^*), u^*(T^*), \lambda(T^*)) + \phi_t(T^*, x^*(T^*)) \end{split}$$

Deveria ficar claro que as mesmas condições necessárias vem com a presença de limites nos controles, ou quando existem mais de uma variável de estado e controle. O que não fica claro, observando as contas já feitas no Capítulo 5, é como esse problema é afetado quando os pontos inicial e final são fixados. De fato, as mesmas condições necessárias aparecem.

13.2 Controle Ótimo Temporal

A ideia é a seguinte: mover as variáveis de estado de uma posição inicial para uma posição final específica em um período mínimo de tempo. Como isso parece se relacionar com nosso problema? Note que $T=\int_0^T 1 dt$. Então, podemos reformular como

$$\min_{u,T} \int_0^T 1 dt,$$
 sujeito a $x'(t) = g(t,x(t),u(t)), x(0) = x_0, x(T) = x_1,$
$$a \le u(t) \le b,$$

13.3 Exemplos

Exemplo 13.3.1.

$$\min_{u,T} x(T) + \int_0^T u(t)^2 dt$$
 sujeito a $x'(t) = \alpha x(t) - u(t), x(0) = x_0, \alpha > 0.$

Podemos formar as condições necessárias

$$H = u^{2} + \alpha x \lambda - u\lambda,$$

$$0 = H_{u} = 2u - \lambda \implies u^{*} = \lambda/2,$$

$$\lambda' = -H_{x} = -\alpha\lambda \implies \lambda(t) = Ke^{-\alpha t}\lambda(T^{*}) = \phi_{x}(x^{*}(T^{*})) = 1,$$

Usando essas condições, concluímos que

$$\lambda(t) = e^{\alpha(T^* - t)}$$

$$u^*(t) = \frac{1}{2}e^{\alpha(T^* - t)}$$

$$x^*(t) = x_0 e^{\alpha t} + e^{\alpha T^*} \frac{e^{-\alpha t} - e^{\alpha t}}{4\alpha}$$

Por fim, a condição sobre T^* , dado que $\phi_t = 0$,

$$0 = H(T^*, x^*(T^*), u^*(T^*), \lambda(T^*))$$

$$= \frac{1}{4} + \alpha x_0 e^{\alpha T^*} + \frac{1 - e^{2\alpha T^*}}{4} - \frac{1}{2}$$

$$= \alpha x_0 e^{\alpha T^*} - \frac{e^{2\alpha T^*}}{4}$$

Assim $\log(4\alpha x_0) + \alpha T^* = 2\alpha T^* \implies T^* = \frac{1}{\alpha} \log 4\alpha x_0$. Isso faz sentido se $\alpha x_0 > 1/4$.

Exemplo 13.3.2.

$$\min_{u,T} \int_0^T 1 dt$$
 sujeito a $x'(t) = x(t)u(t) - \frac{1}{2}u(t)^2, x(0) = x_0 \in (0,1), x(T) = 1.$

Escrevemos o Hamiltoniano $H=1+xu\lambda-\frac{1}{2}u^2\lambda$. Assim, escrevemos as condições necessárias,

$$\lambda' = -H_x = -\lambda u \implies \lambda(t) \exp\left(-\int_0^t u(s)ds\right),$$

para alguma constante C. Se $C=0 \implies H\equiv 1$ o que contradiz o Hamiltoniano ser 0 em T^* . Portanto $C\neq 0$. A condição de otimalidade nos dá que

$$0 = H_u = \lambda(x - u) \implies u^* = x^*$$

Fazendo a substituição na equação de estado, obtemos que

$$x' = \frac{1}{2}x^2 \implies x^*(t) = \frac{2x_0}{2 - x_0 t} = u^*(t)$$

A condição $x(T^*) = 1 \implies T^* = 2/x_0 - 2$.

Forward-Backward Sweep Adaptado

Esse método pode lidar com problemas mais complicados de controle ótimo. Esse capítulo tem associado o notebook Chapter21-examples.ipynb.

14.1 Método da Secante

Um algoritmo de análise numérica para encontrar as raízes de uma função contínua f em [a,b] de forma que exista uma raíz no intervalo. Sejam os pontos $x_0, x_1 \in [a,b]$ de forma que $f(x_0)f(x_1) < 0$. Considere a reta que passa pelos pontos $(x_0, f(x_0))$ e $(x_1, f(x_1))$. A sua equação é dada por

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1) + f(x_1).$$

Ela cruza o eixo x quando y = 0 e, portanto,

$$x = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

Essa expressão determina nossa iteração para o método, isto é,

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

A convergência é dada quando x_0 e x_1 são suficientemente próximas da raíz, f seja de classe C^2 e a raíz seja simples.

14.2 Um Estado com Pontos Finais Fixos

Considere o problema de controle ótimo

$$\max_{\vec{u}} \int_{t_0}^{t_1} f(t, \vec{x}(t), \vec{u}(t)) dt$$
sujeito a $\vec{x}'(t) = \vec{g}(t, \vec{x}(t), \vec{u}(t)), \vec{x}(t_0) = \vec{x}_0, x_n(t_1) = x_{n1},$
$$a_j \le u_j(t) \le b_j \text{ para } j = 1, 2, ..., m.$$

Observe que x_n é o único estado com os pontos inicial e final fixos. Nossos métodos numéricos não podem lidar com esse problema e por isso, precisamos desenvolver uma maneira. Suponha que fazemos um chute $\lambda_n(t_1) = \theta$. resolvemos o problema com essa condição. Assumindo convergência, vamos obter uma aproximação \tilde{x}_{n1} . Podemos considerar $\theta \mapsto \tilde{x}_{n1}$ e, assim, nosso problema se torna em encontrar θ que nos leve a x_{n1} . Assim, defina

$$V(\theta) = \tilde{x}_{n1} - x_{n1}$$

Estamos procurando os zeros de V. Assim, adaptaremos o código forward-backward sweep com o código do método da secante.

Esse método é baseado é baseado em duas hipóteses críticas: forward backward sweep converge para os valores de θ e V é uma função bem definida. Para problemas bem comportados, em geral, ambos são verdadeiros. A escolha de x_0 e x_1 também podem ser mais ou menos importantes dependendo do problema.

14.3 Termos de Payoff não Lineares

Uma alteração sutil do método acima pode ser usado para resolver problemas de controle ótimo com termos payoff não lineares. Considere o problema

$$\max_{\vec{u}} \phi(x_n(t_1)) \int_{t_0}^{t_1} f(t, \vec{x}(t), \vec{u}(t)) dt$$
sujeito a $\vec{x}'(t) = \vec{g}(t, \vec{x}(t), \vec{u}(t)), \vec{x}(t_0) = \vec{x}_0,$
$$a_j \le u_j(t) \le b_j \text{ para } j = 1, 2, ..., m.$$

Se ϕ é linear, isto é, $\phi' \equiv c$, o método anterior pode ser usado. Entretanto, para outras funções ϕ , $\lambda_n(t_1)$ dependerá de $x_n^*(t_1)$. Nesses casos, o método forward-backward sweep não pode ser usado, mas a versão adaptada pode.

Como antes, fazemos um chute para $\lambda_n(t_1) = \theta$. Então usamos o método padrão para resolver o problema. Isso nos dará o valor para o n-ésimo estado em t_1 , escrito \tilde{x}_{n1} . Queremos que $\phi'(\tilde{x}_{n1}) = \theta$. Então definimos

$$V(\theta) = \phi'(\tilde{x}_{n1}) - \theta$$

Então o problema se torna encontrar as raízes da função V.

14.4 Tempo Final Livre

Por fim, vamos aplicar o método para problemas não autônomos que tem tempo final livre. Considere o problema

$$\max_{\vec{u}} \int_{t_0}^{t_1} f(t, \vec{x}(t), \vec{u}(t)) dt$$
 sujeito a $\vec{x}'(t) = \vec{g}(t, \vec{x}(t), \vec{u}(t)), \vec{x}(t_0) = \vec{x}_0,$ $a_j \leq u_j(t) \leq b_j$ para $j = 1, 2, ..., m$.

Agora, façamos um chute para $T^* = \theta > t_0$. Resolvemos novamente o problema com esse valor de T^* e calculamos a estimativa do Hamiltoniano no tempo final, que podemos denotar por $\tilde{H}(\theta)$. Se considerarmos a função $V(\theta) = \tilde{H}(\theta)$. Como queremos que $H(T^*) = 0$, podemos usar o método secante para procurar os zeros de V. Note que o problema deve ser não autônomo, pois, se não o fosse, o Hamiltoniano seria 0 para todo t.

14.5 Shots Múltiplos

Até o momento, utilizamos o método adaptado para problemas com particularidades individuais, mas não expandimos para combinações delas. Isso pode ser feito empregando o método várias vezes, ou fazendo o que chamamos de *shots múltiplos*.

Quando temos um problema com duas dessas restrições até então mencionadas, nós colocamos de lado uma delas e faz um chute apropriado. Assim, reduzimos o problema para apenas uma restrição e resolvemos como fizemos até então. Assim conseguimos, utilizando duas vezes o método, resolver o problema. Tendo três elementos, podemos reduzir para dois elementos e assim por diante. Dessa forma, conseguimos resolver problemas desse tipo. Como forma de exemplo, vamos analisar um problema com dois estados, ambos com pontos finais fixados. Considere

$$\max_{u} \int_{t_0}^{t_1} f(t, x_1(t), x_2(t), u(t)) dt$$
 sujeito a $x_1'(t) = g_1(t, x_1(t), x_2(t), u(t)), x_1(t_0) = x_{10}, x_1(t_1) = x_{11},$
$$x_2'(t) = g_2(t, x_1(t), x_2(t), u(t)), x_2(t_0) = x_{20}, x_2(t_1) = x_{21}$$

Suponha que cheguemos no seguinte sistema

$$x'_{1}(t) = g_{1}(t, x_{1}(t), x_{2}(t), u(t)), x_{1}(t_{0}) = x_{10}, x_{1}(t_{1}) = x_{11},$$

$$x'_{2}(t) = g_{2}(t, x_{1}(t), x_{2}(t), u(t)), x_{2}(t_{0}) = x_{20}, x_{2}(t_{1}) = x_{21},$$

$$\lambda'_{1}(t) = h_{1}(t, x_{1}(t), x_{2}(t), \lambda_{1}(t), \lambda_{2}(t), u(t)),$$

$$\lambda'_{2}(t) = h_{2}(t, x_{1}(t), x_{2}(t), \lambda_{1}(t), \lambda_{2}(t), u(t)),$$

$$u(t) = k(t, x_{1}(t), x_{2}(t), \lambda_{1}(t), \lambda_{2}(t)).$$

Ponha $\lambda_1(t_1) = \theta_1$ e ignore $x_1(t_1) = x_{11}$. Então teremos

$$\begin{aligned} x_1'(t) &= g_1(t,x_1(t),x_2(t),u(t)), x_1(t_0) = x_{10}, \\ x_2'(t) &= g_2(t,x_1(t),x_2(t),u(t)), x_2(t_0) = x_{20}, x_2(t_1) = x_{21}, \\ \lambda_1'(t) &= h_1(t,x_1(t),x_2(t),\lambda_1(t),\lambda_2(t),u(t)), \lambda_1(t_1) = \theta_1 \\ \lambda_2'(t) &= h_2(t,x_1(t),x_2(t),\lambda_1(t),\lambda_2(t),u(t)), \\ u(t) &= k(t,x_1(t),x_2(t),\lambda_1(t),\lambda_2(t)). \end{aligned}$$

Com o sistema acima, podemos resolver o problema com o método estudado no capítulo. Até encontrarmos θ_2 de forma que $x_2(t_1) = x_{21}$. Fazemos isso para vários valores de θ_1 . Para cada valor de θ_1 , obtemos uma estimativa para $x_1(t_1)$. Assim, encontramos, através de um método para encontrar raízes, encontramos θ_1 de forma que $x_1(t_1) = x_{11}$.

Laboratórios 11, 12 e 13

Nesse capítulo serão realizados os laboratórios 11, 12 e 13. Mais algumas aplicações em biologia são desenvolvidas.

Lab 11: Extração de Madeira

Uma fazenda de extração de madeira é considerada e produz madeira. Essa quantidade de madeira é vendida para o mercado que paga um valor. Esse valor pode ser reinvestido na fazenda em terras e trabalho ou pode ser dado como lucro e, então, investido com uma taxa de juros. A decisão do fazendeiro é o quanto reinvestir e quando reinvestir do dinheiro ganhado. Esse é um problema Bang Bang em que se utiliza o algoritmo Forward-Backward Sweep desenvolvido até então.

Lab 12: Reator Biológico

Algumas bactérias são capazes de degradar o contaminante em solos contaminados. Um método para limpar essas áreas é, portanto, favorecer o aumento do nível de bactérias através da injeção de nutrientes necessárias para o metabolismo e crescimento da colônia. Nesse laboratório vamos abordar uma simplificação desse problema em um sistema controlado, como um reator biológico.

Lab 13: Modelo Predador Presa

Modelo simples com predador e presa com uma restrição isoperimétrica. Queremos estudar a situação onde a presa é uma peste que deve ser combatida por um pesticida, que servirá de controle. Mas esse pesticida também afeta o predador, o qual não queremos que aconteça. Esse modelo permite o estudo do método estudado no capítulo 14.

Bibliografia

- D. Cohen. Maximizing final yield when growth is limited by time or by limiting resources. Journal of Theoretical Biology, 33(2):299 - 307, 1971. ISSN 0022-5193. doi: https://doi.org/10.1016/0022-5193(71) 90068-3. URL http://www.sciencedirect.com/science/article/pii/ 0022519371900683.
- A. Filippov. On certain questions in the theory of optimal control. *Journal* of The Society for Industrial and Applied Mathematics, Series A: Control, 1, 01 1962. doi: 10.1137/0301006.
- C. H. Grossmann. Cesari, l., optimization theory and applications. problems with ordinary differential equations. berlin-heidelberg-new york, springer-verlag 1983. xiv, 542 s., 82 abb., dm 178,-. us \$ 76.80. isbn 3-540-90676-2 (applications of mathematics 17). ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 64(12):542-542, 1984. doi: https://doi.org/10.1002/zamm.19840641215. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19840641215.
- W. Hackbusch. A numerical method for solving parabolic equations with opposite orientations. *Computing*, 20:229–240, 08 1978. doi: 10.1007/BF02251947.
- M. Kamien and N. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. Dover books on mathematics. Dover Publications, 2012. ISBN 9780486488561. URL https://books.google.com.br/books?id=0IoGUn8wjDQC.
- M. Kot. *Elements of Mathematical Ecology*. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502. URL https://books.google.sm/books?id=7_IRlnNON7oC.
- A. J. Krener. The high order maximal principle and its application to singular extremals. SIAM Journal on Control and Optimization, 15 (2):256-293, 1977. doi: https://doi.org/10.1137/0315019. URL https://epubs.siam.org/doi/abs/10.1137/0315019?mobileUi=0.

BIBLIOGRAFIA 53

S. Lenhart and J. Workman. Optimal control applied to biological models. $01\ 2007.$

Y. Tsypkin. Applied optimal control: Optimization, estimation, and control: Arthur e. bryson, jr. and yu-chi ho: Blaisdell publishing company (a division of ginn and company), waltham, mass. (1969), 481 pp. *Automatica*, 6, 1970.