#### Traversal data structure

Traversal is a common operation performed on data structures. It is the process in which each and every element present in a data structure is visited or accessed) at least once.

A Tree Data Structure can be traversed in following ways:

- 1. Depth First Search or DFS
  - 1. Inorder Traversal
  - 2. Preorder Traversal
  - 3. Postorder Traversal
- 2. Level Order Traversal or Breadth First Search or BFS
- 3. Boundary Traversal
- 4. Diagonal Traversal

## **Depth First Search or DFS**



### **Inorder Traversal**

Algorithm Inorder(tree)

- 1. Traverse the left subtree, i.e., call Inorder(left->subtree)
- 2. Visit the root.
- 3. Traverse the right subtree, i.e., call Inorder(right->subtree)

#### **Uses of Inorder Traversal:**

In the case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal is reversed can be used.

Time Complexity: O(N)

Auxiliary Space: If we don't consider the size of the stack for function calls

then O(1) otherwise O(h) where h is the height of the tree.

#### **Preorder Traversal**

Algorithm Preorder(tree)

- 1. Visit the root.
- 2. Traverse the left subtree, i.e., call Preorder(left->subtree)
- 3. Traverse the right subtree, i.e., call Preorder(right->subtree)

#### **Uses of Preorder:**

Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expressions on an expression tree.

**Time Complexity:** O(N)

Auxiliary Space: If we don't consider the size of the stack for function calls

then O(1) otherwise O(h) where h is the height of the tree.

### **Postorder Traversal**

Algorithm Postorder(tree)

- Traverse the left subtree, i.e., call Postorder(left->subtree)
- 2. Traverse the right subtree, i.e., call Postorder(right->subtree)
- 3. Visit the root

#### **Uses of Postorder:**

Postorder traversal is used to delete the tree. Please see <u>the question for</u> <u>the deletion of a tree</u> for details. Postorder traversal is also useful to get the postfix expression of an expression tree

# Level Order Treversal or Breadth First Search

For each node, first, the node is visited and then it's child nodes are put in a FIFO queue. Then again the first node is popped out and then it's child nodes are put in a FIFO queue and repeat until queue becomes empty



#### Level Order Treversal:

1

23

45

## **Time Complexity:** O(N)

The time complexity of BFS is O(V + E), where V is the number of nodes and E is the number of edges.