SILICON DARLINGTON POWER TRANSISTORS

NPN epitaxial base transistors in monolithic Darlington circuit for audio output stages and general purpose amplifier and switching applications. TO-220 plastic envelope. PNP complements are BDT64; BDT64A; BDT64B and BDT64C.

QUICK REFERENCE DATA

			BDT65	65A	65B	65C	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	VEBO	max.	5	5	5	5	٧
Collector current (d.c.)	lc	max.		12			Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		125			W
Junction temperature	Τj	max.		150			0(
D.C. current gain I _C = 5 A; V _{CE} = 4 V	hpg	>	1000				

MECHANICAL DATA

Fig. 1 TO-220.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

August 1991

577

Fig. 2 Circuit diagram. R1 typ. 5 k $\Omega;$ R2 typ. 80 $\Omega.$

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDT65	65A	65B	65C	
Collector-base voltage (open emitter)	VCBO	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	VEBO	max.	5	5	5	5	٧
Collector current (d.c.)	l _C	max.		12			Α
Collector current (peak value)	^I CM	max.	20				Α
Base current (d.c.)	1 _B	max.		50	00		mΑ
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		13	25		W
Storage temperature	T _{stg}		-69	5 to + 1	50		oC
Junction temperature	τ _j	max.		1!	50		oC
THERMAL RESISTANCE							
From junction to mounting base	R _{th j-mb}	=			1		K/W

CHARACTERISTICS				
T _j = 25 °C, unless otherwise specified				
Collector cut-off current				
V _{CB} = V _{CBOmax} ; I _E = o	ICBO	<	0,4	mΑ
$V_{CB} = \frac{1}{2}V_{CBOmax}$; $I_{E} = 0$; $T_{i} = 150 {}^{\circ}C$	ICBO	<	2	mΑ
I _B = 0; V _{CE} = ½V _{CEOmax}	CEO	<	0.2	mΑ
Emitter cut-off current	OLO			
I _C = 0; V _{EB} = 5 V	^I EBO	<	5	mΑ
D.C. current gain*				
IC = 1 A; VCE = 4 V	hFE	typ.	1500	
$I_C = 5 A; V_{CE} = 4 V$	hee	>	1000	
I _C = 12 A; V _{CE} = 4 V	hFE	typ.	1000	
Base-emitter voltage	, _			
IC = 5 A; VCE = 4 V	V _{BE}	<	2,5	٧
Collector-emitter saturation voltage*				
I _C = 5 A; I _B = 20 mA	VCEsat	<	2	V
$I_C = 10 \text{ A}; I_B = 100 \text{ mA}$	VCEsat	<	3	V
Diode, forward voltage				
I _F = 5A	٧F	<	2	V
I _F = 12 A	٧F	typ.	2	V
Collector capacitance at f = 1 MHz				
$V_{CB} = 10 \text{ V; } I_{E} = I_{e} = 0$	$C_{\mathbf{c}}$	typ.	200	pF
Second-breakdown collector current				
non-repetitive; without heatsink		_	•	
$V_{CE} = 60 \text{ V}; t_p = 0.1 \text{ s}$	ISB	>	2	А
Turn-off breakdown energy with inductive load; I _{Boff} = 0; I _{CM} = 6,3 A				
L = 5 mH (see Fig. 3)	E _(BR)	>	100	l.m
Switching times (see Figs 4 and 5)	-(BN)			,,,,
I _{Con} = 5 A; I _{Bon} = -I _{Boff} = 20 mA				
turn-on time		typ.	1 ,	us
turn-on time	^t on	<	2,5	
turn-off time	4	typ.	6,0	μs
	toff	<	10	μs
Small-signal current gain IC = 5 A; VCF = 3 V; f = 1 MHz				
(C - 2 4) 4 CF - 2 4) (- 1 MUS	h _{fe}	>	10	

July 1988

579

^{*} Measured under pulse conditions $t_p \leqslant$ 300 $\mu s; \, \delta < 2\%.$

Fig. 3 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω ; t_p = 1 ms; δ = 1%.

Fig. 4 Switching times waveforms.


```
\begin{array}{lll} V_{IM} &=& 15 \ V \\ -V_{BB} &=& 4 \ V \\ R1 &=& 56 \ \Omega \\ R2 &=& 410 \ \Omega \\ R3 &=& 560 \ \Omega \\ R4 &=& 6 \ \Omega \\ t_r &=& t_f &=& 15 \ ns \\ t_p &=& 10 \ \mu s \\ T &=& 500 \ \mu s \end{array}
```

 $V_{CC} = 30 V$

Fig. 5 Switching times test circuit.

Fig. 6 Safe Operating Area; $T_{mb} = 25$ °C.

- I Region of permissible d.c. operation.
- Il Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits.

October 1979

581

Fig. 7 Power derating curve.

Fig. 8 Base-emitter voltage as a function of collector current. V_{CE} = 3 V; T_{amb} = 25 °C.

Fig. 10 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 11 S.B. current multiplying factor at the $V_{\mbox{CFO}_{\mbox{max}}}$ level.

October 1979 583

Fig. 12 Typical d.c. current gain as a function of collector current; $V_{CE} = 3 \text{ V}$; $T_j \approx 25 \text{ }^{\circ}\text{C}$.

Fig. 13 Typical collector-emitter saturation voltages.