MSc Computational Methods in Ecology and Evolution: Maths for Biology

Solutions: Differentiation, limits, & Taylor series

Tutorial 2nd Feb 2021

Dr Bhavin S. Khatri bkhatri@imperial.ac.uk

Information needed for this tutorial:

1. You will be asked to calculate limits of the form $\lim_{x\to a} \{f(x)\}$. Note that limits of the sum of a number of terms is a sum of their limits:

$$\lim_{x \to a} \{ f(x) + g(x) \} = \lim_{x \to a} \{ f(x) \} + \lim_{x \to a} \{ g(x) \}.$$

Using this rule you can calculate limits of products, by expanding out brackets and evaluating the limit of each term.

2. The first principles (limit) definition of a derivative is

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \lim_{h \to 0} \left\{ \frac{f(x+h) - f(x)}{h} \right\}$$

3. A Taylor series is a series expansion of a function f(x) about some specific value a in terms of monomials of increasing order:

$$f(x-a) = f(a) + \frac{\mathrm{d}f}{\mathrm{d}x} \bigg|_{x=a} (x-a) + \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} \bigg|_{x=a} (x-a)^2 + \frac{\mathrm{d}^3 f}{\mathrm{d}x^3} \bigg|_{x=a} (x-a)^3 + \dots$$

•

Typically, we want to expand about x = 0 (a = 0), which gives

$$f(x) = f(0) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=0} x + \frac{\mathrm{d}^2f}{\mathrm{d}x^2}\Big|_{x=0} x^2 + \frac{\mathrm{d}^3f}{\mathrm{d}x^3}\Big|_{x=0} x^3 + \dots$$

.

- 4. When asked to specify a Taylor series in x to a certain order n the $O(x^m)$ notation is used to signify the remaining terms starting with the highest *non-zero* term of order m > n.
- 5. Useful Taylor series about x=0 to know (specified to 5^{th} order)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + O(x^6)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6)$$

Differentiation of x^2 as change in area

FIG. 1. Differentiating x^2

- a) The area of the smaller square is $A=x^2$. What is the area of the bigger square A' in terms of the areas A, A_0 , A_1 ? $A'=A+2A_1+A_0$
- b) What is the area of the bigger square A' in terms of x and h? $A' = (x+h)^2$
- c) Expand out this expression for A' and identify each term with areas A, A_0 , $\mathbf{x}A_1$. $A'=x^2+2xh+h^2\Rightarrow A=x^2;\ A_1=xh;\ A_0=h^2$
- d) Evaluate all these areas for x=1 and h=0.3.

For h = 0.3 & x = 1:

$$A=1;\ A_1=0.3;\ A_0=0.3^2=0.09 \Rightarrow A'=A+2A_1+A_0=1+0.6+0.09=1.69$$

e) i) Show that the change in area with respect to the change in length is

$$\frac{\Delta A}{\Delta x} = \frac{A' - A}{h} = 2x + h$$

and ii) evaluate $\frac{\Delta A}{\Delta x}$ for x=1 and h=0.3.

i)

$$\frac{\Delta A}{\Delta x} = \frac{A' - A}{h} = \frac{2A_1 + A_0}{h} = \frac{2xh + h^2}{h} = 2x + h$$

ii)

$$\frac{\Delta A}{\Delta x} = 2x + h = 2 + 0.3 = 2.3$$

FIG. 2. Smaller h

f) Now imagine the two squares are more similar in size as in diagram above; i) calculate the different areas again and evaluate $\frac{\Delta A}{\Delta x}$ for x=1 and h=0.05. ii) Repeat for x=1 and $h=10^{-6}$.

i) For
$$h=0.05,\ A=1;\ A_1=0.05;\ A_0=0.05^2=0.0025$$

$$A'=A+2A_1+A_0=1+0.1+0.0025=1.1025$$

$$\frac{\Delta A}{\Delta x}=2x+h=2+0.05=2.05$$

ii) For
$$h=10^{-6}$$
, $A=1$; $A_1=10^{-6}$; $A_0=(10^{-6})^2=10^{-12}$ $A'=A+2A_1+A_0=1+2\times 10^{-6}+10^{-12}=1.000002000001\approx 1$ $\frac{\Delta A}{\Delta x}=2x+h=2+10^{-6}=2.000001\approx 2$

g) This demonstrates that

$$\lim_{h\to 0} \left\{ \frac{\Delta A}{\Delta x} \right\} = \frac{\mathrm{d}A}{\mathrm{d}x} = \frac{\mathrm{d}x^2}{\mathrm{d}x} = 2x;$$

which parts of the diagram or which areas does this 2x correspond? Why is there a coefficient 2? Why are the other terms not important?

2x corresponds to the sides of the square and the area A_1 ; there is a 2 because there are 2 sides that contribute to the change in area for a small change in h.

The other area $A_0 = h^2$ is not important, as it becomes vanishingly small compared to $2A_1 = 2xh$, as $h \to 0$.

Derivatives of trigonometric functions

a) Use the first principles (limit) definition of a derivative and the Taylor series expansion of the exponential function to show

$$\frac{\mathrm{d}e^{\alpha x}}{\mathrm{d}x} = \lim_{h \to 0} \left\{ \frac{e^{\alpha(x+h)} - e^{\alpha x}}{h} \right\} = \alpha e^{\alpha x}$$

$$\frac{de^{\alpha x}}{dx} = \lim_{h \to 0} \left\{ \frac{e^{\alpha(x+h)} - e^{\alpha x}}{h} \right\}$$

$$= \lim_{h \to 0} \left\{ \frac{e^{\alpha x}e^{\alpha h} - e^{\alpha x}}{h} \right\}$$

$$= \lim_{h \to 0} \left\{ \frac{e^{\alpha x}(e^{\alpha h} - 1)}{h} \right\}$$

$$= e^{\alpha x} \lim_{h \to 0} \left\{ \frac{e^{\alpha h} - 1}{h} \right\}$$

Taylor expansion: $e^{\alpha h} = 1 + \alpha h + \frac{(\alpha h)^2}{2} + \dots$

$$\Rightarrow \frac{\mathrm{d}e^{\alpha x}}{\mathrm{d}x} = e^{\alpha x} \lim_{h \to 0} \left\{ \frac{1/(1 + \alpha h)^2 + \dots - 1/(1 + \alpha h)^2}{h} \right\}$$

$$= e^{\alpha x} \lim_{h \to 0} \left\{ \frac{\alpha h + \frac{(\alpha h)^2}{2} + \dots}{h} \right\}$$

$$= e^{\alpha x} \lim_{h \to 0} \left\{ \alpha + \frac{\alpha^2 h}{2} + \dots \right\}$$

$$= \alpha e^{\alpha x}$$

b) Using Eulers formula it can be shown that

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$$

$$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix}).$$

Using these results show that

$$\frac{\mathrm{d}\sin x}{\mathrm{d}x} = \cos x$$

$$\frac{\mathrm{d}\sin x}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{2i} (e^{ix} - e^{-ix}) \right)$$

$$= \frac{1}{2i} \left(\frac{\mathrm{d}e^{ix}}{\mathrm{d}x} - \frac{\mathrm{d}e^{-ix}}{\mathrm{d}x} \right)$$

$$= \frac{1}{2i} (ie^{ix} - (-i)e^{-ix})$$

$$= \frac{1}{2i} (e^{ix} + e^{-ix})$$

$$= \cos x$$

$$\frac{\mathrm{d}\cos x}{\mathrm{d}x} = -\sin x$$

(Hint: $\frac{1}{i} = -i$)

$$\frac{\mathrm{d}\cos x}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{2} (e^{ix} + e^{-ix}) \right)$$

$$= \frac{1}{2} \left(\frac{\mathrm{d}e^{ix}}{\mathrm{d}x} + \frac{\mathrm{d}e^{-ix}}{\mathrm{d}x} \right)$$

$$= \frac{1}{2} (ie^{ix} + (-i)e^{-ix})$$

$$= \frac{i}{2} (e^{ix} - e^{-ix})$$

$$= -\frac{1}{2i} (e^{ix} - e^{-ix})$$

$$= -\sin x$$

c) Use the product (or quotient) rule and chain rule to show that

$$\frac{\mathrm{d}\cot x}{\mathrm{d}x} = -\csc^2 x$$

where $\cot x = 1/\tan x$ and $\csc x = \frac{1}{\sin x}$ (N.B. Not the same as $\sin^{-1} x = \arcsin x$). (Hint: $\sin^2 x + \cos^2 x = 1$)

Need to use the product rule: $\frac{\mathrm{d}uv}{\mathrm{d}x}=u\frac{\mathrm{d}v}{\mathrm{d}x}+v\frac{\mathrm{d}u}{\mathrm{d}x}$

$$\frac{d \cot x}{dx} = \frac{d}{dx} \left(\frac{\cos x}{\sin x} \right)$$
$$= \frac{1}{\sin x} \frac{d \cos x}{dx} + \cos x \frac{d}{dx} \left(\frac{1}{\sin x} \right)$$

Let $w=\sin x\Rightarrow$ by chain rule $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\sin x}\right)=\frac{\mathrm{d}w}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}w}\left(\frac{1}{w}\right)=\frac{\cos x}{-w^2}=-\frac{\cos x}{\sin^2 x}$

$$\Rightarrow \frac{\mathrm{d}\cot x}{\mathrm{d}x} = -\frac{\sin x}{\sin x} + \cos x \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\sin x}\right)$$
$$= -1 - \frac{\cos^2 x}{\sin^2 x}$$
$$= -\frac{\cos^2 x + \sin^2 x}{\sin^2 x}$$
$$= -\frac{1}{\sin^2 x}$$
$$= -\csc^2 x$$

Properties of the Gaussian function

The Gaussian function $y=e^{-x^2}$ is ubiquitous in statistics and probability theory, as it describes the Normal/Gaussian distribution.

- a) Plot/sketch this function and indicate values x^* for which $\frac{dy}{dx} = 0$ (there is one obvious value of x^* where $\frac{dy}{dx} = 0$, and two less obvious values).
- b) Sketch $\frac{\mathrm{d}y}{\mathrm{d}x}$ qualitatively. (Hint: The Gaussian is a symmetric/even function (f(-x) = f(x)) and so its derivative will be an anti-symmetric/odd function (f'(-x) = -f'(x)) in other words the derivative of a Gaussian should be equal and opposite in sign when reflected about the y-axis)

FIG. 3. a) & b)

By inspection it is clear that $y=e^{-x^2}$ has zero slope $(\frac{\mathrm{d}y}{\mathrm{d}x}=0)$ for $x^*=0$, but the less obvious values are $x^*=\pm\infty$.

c) Using the chain rule, show $\frac{dy}{dx} = -2xe^{-x^2}$, and plot your result; verify that your sketch in b) is qualitatively accurate. Let $y = e^z$, with $z = -x^2$:

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}x} = -2xe^z = -2xe^{-x^2}$$

- d) Solve $\frac{\mathrm{d}y}{\mathrm{d}x}=0$ and verify your answer agrees with the answer from a). $\frac{\mathrm{d}y}{\mathrm{d}x}\big|_{x=x^*}=-2x^*e^{-(x^*)^2}=0 \text{ This can be zero if either 1) } x^*=0 \text{ or 2) when } e^{-(x^*)^2}=0, \text{ which gives } x^*=\pm\infty.$
- e) Which solution x^* of $\frac{dy}{dx}=0$ corresponds to where y is at maximum. Argue qualitatively why this must be a maximum from the plot of $\frac{dy}{dx}$.

 $x^*=0$ corresponds to the maximum; as x increases through $x^*=0$, $\frac{\mathrm{d} y}{\mathrm{d} x}$ goes from +ve to -ve & $\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}$ is decreasing through the turning point/stationary point, as must occur for a maximum occurring at x^* (for $x < x^* \frac{\mathrm{d} y}{\mathrm{d} x} > 0$, while for $x < x^* \frac{\mathrm{d} y}{\mathrm{d} x} < 0$).

f) We can show this mathematically, by examining the *curvature* of y, which is defined to be the 2nd derivative $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$. Show that $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 2e^{-x^2}(x^2-1)$ and that the curvature is negative at the point x^* where y is maximum; why does this mean y is at maximum?

7

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \frac{dy}{dx} = \frac{d}{dx} \left(-2xe^{-x^2} \right)$$

$$= -2x \frac{de^{-x^2}}{dx} - e^{-x^2} \frac{d2x}{dx}$$

$$= -2x(-2xe^{-x^2}) - 2e^{-x^2}$$

$$= 2e^{-x^2}(2x^2 - 1)$$

At $x^* = 0$:

$$\left. \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right|_{x^* = 0} = -2$$

which means the curvature is negative. Curvature is the rate of change of the derivative \Rightarrow negative curvature means the derivative is *decreasing* through $x^* = 0$, as discussed in the previous part of this question, is what we would expect at a maximum.

QUESTION 4

Taylor series

a) i) Use the Taylor series of $\sin\theta$ to show

$$\lim_{\theta \to 0} \left\{ \frac{\sin \theta}{\theta} \right\} = 1$$

Taylor series:

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

$$\Rightarrow \lim_{\theta \to 1} \left\{ \frac{\sin \theta}{\theta} \right\} = \Rightarrow \lim_{\theta \to 1} \left\{ \frac{\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots}{\theta} \right\}$$
$$= \Rightarrow \lim_{\theta \to 1} \left\{ 1 - \frac{\theta^2}{3!} + \frac{\theta^4}{5!} + \dots \right\}$$

Compare this to simply evaluating $\frac{\sin \theta}{\theta}$ at $\theta=0$ is it even possible to evaluate this? No it cannot be evaluated as

$$\left. \frac{\sin \theta}{\theta} \right|_{\theta=0} = \frac{0}{0}$$

which is indeterminant or undefined.

ii) Plot $\frac{\sin \theta}{\theta}$ and verify that it asymptotes to 1 as $\theta \to 0$.

FIG. 4. $\frac{\sin \theta}{\theta}$

b) The following formula is the probability of fixation of a mutant with selective advantage s and initial frequency 1/N in a population of N haploid individuals (Kimura, Genetics, 1962)

$$p_{fix} = \frac{1 - e^{-2s}}{1 - e^{-2Ns}}.$$

i) Show using the Taylor expansion of the exponential function that

$$\lim_{s \to 0} \{ p_{fix} \} = \frac{1}{N},$$

which is the probability of fixation of a neutral mutant.

$$\lim_{s \to 0} \{ p_{fix} \} = \lim_{s \to 0} \left\{ \frac{1 - e^{-2s}}{1 - e^{-2Ns}} \right\}$$

$$= \lim_{s \to 0} \left\{ \frac{\cancel{1} - (\cancel{1} - 2s + \frac{(2s)^2}{2!} + \dots)}{\cancel{1} - (\cancel{1} - 2Ns + \frac{(2Ns)^2}{2!} + \dots)} \right\}$$

$$= \lim_{s \to 0} \left\{ \frac{2s - \frac{(2s)^2}{2!} + \dots}{2Ns - \frac{(2Ns)^2}{2!} + \dots} \right\}$$

$$= \lim_{s \to 0} \left\{ \frac{2\cancel{s} (1 - \frac{2s}{2!} + \dots)}{2N\cancel{s} (1 - \frac{2Ns}{2!} + \dots)} \right\}$$

$$= \frac{1}{N} \lim_{s \to 0} \left\{ \frac{1 - \frac{2s}{2!} + \dots}{1 - \frac{2Ns}{2!} + \dots} \right\}$$

$$= \frac{1}{N}$$

ii) Plot p_{fix} vs s for $0 < s \le 0.1$ on a log-linear scale with N=10 and N=100 and verify that the y-intercept is 1/N.

FIG. 5. p_{fix}

- c) Discrete time and continuous time evolutionary models use two different definitions of fitness, the Wrightian fitness w and Malthusian fitness f, which are related by $f = \ln(w)$. The Wrightian fitness is often described in terms of the selective advantage s of a mutant, where w = 1 + s.
 - i) Show the Taylor series expansion of $f(s) = \ln(1+s)$ to 3rd order about s=0 is

$$\ln(1+s) = s - \frac{1}{2}s^2 + \frac{1}{3}s^3 + O(s^4)$$

Taylor expansion of f(s) to 3rd order:

$$f(s) = f(0) + \frac{\mathrm{d}f}{\mathrm{d}s} \bigg|_{s=0} s + \frac{\mathrm{d}^2 f}{\mathrm{d}s^2} \bigg|_{s=0} \frac{s^2}{2!} + \frac{\mathrm{d}^3 f}{\mathrm{d}s^3} \bigg|_{s=0} \frac{s^3}{3!} + \dots$$

$$\Rightarrow f(s=0) = \ln(1) = 0$$

$$\frac{df}{ds} \Big|_{s=0} = \frac{1}{1+s} \Big|_{s=0} = 1$$

$$\frac{d^2f}{ds^2} \Big|_{s=0} = -\frac{1}{(1+s)^2} \Big|_{s=0} = -1$$

$$\frac{d^3f}{ds^3} \Big|_{s=0} = \frac{2}{(1+s)^3} \Big|_{s=0} = 2$$

$$\Rightarrow f(s) = \ln(1+s) = 0 + s - \frac{s^2}{2} + 2\frac{s^3}{6} + \dots = s - \frac{1}{2}s^2 + \frac{1}{3}s^3 + \dots$$

ii) Using this result, show that the Malthusian fitness difference (compared to wild type) is equivalent to the selective advantage s, when $|s| \ll 1$, by showing

$$f(s) = \ln(w) = \ln(1+s) \approx s$$

(Hint: when $s\ll 1$, consider how big is s^2 compared to s, and how big is s^3 compared to s^2 , and so on) For $s\ll 1$: $s\gg s^2\gg s^3...$

$$\Rightarrow f(s) \approx s$$

So Malthusian fitness differences are equivalent to the Wrightian selective advantage, when $|s| \ll 1$.

iii) Plot $\ln(1+s)$ and s for $-0.5 \le s \le 0.5$ to verify this approximation works well for $|s| \ll 1$.

FIG. 6. $f = \ln(1+s) \approx s$

d) The hyperbolic sine and cosine are part of a group of functions (hyperbolic functions), which are analogous to the trigonometric sine and cosine, but for geometry on the unit hyperbola $x^2 - y^2 = 1$, instead of on the unit circle $(x^2 + y^2 = 1)$. They have many applications including solutions to certain differential equations. They are defined by

$$\cos i\theta = \cosh \theta = \frac{1}{2}(e^{\theta} + e^{-\theta})$$

$$\sin i\theta = \sinh \theta = \frac{1}{2}(e^{\theta} - e^{-\theta})$$

i) Using these equations show that

$$\frac{\mathrm{d}\sinh\theta}{\mathrm{d}\theta} = \cosh\theta$$

$$\frac{\mathrm{d}\cosh\theta}{\mathrm{d}\theta} = \sinh\theta$$

$$\frac{\mathrm{d}\sinh\theta}{\mathrm{d}\theta} = \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\theta}(e^{\theta} - e^{-\theta}) = \frac{1}{2}(e^{\theta} + e^{-\theta}) = \cosh\theta$$

$$\frac{\mathrm{d}\cosh\theta}{\mathrm{d}\theta} = \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}\theta}(e^{\theta} + e^{-\theta}) = \frac{1}{2}(e^{\theta} - e^{-\theta}) = \sinh\theta$$

ii) Show that the Taylor series for $\sinh\theta$ to 3rd order is

$$\sinh \theta = \theta + \frac{\theta^3}{6} + O(\theta^5)$$

$$\Rightarrow \sinh(0) = 0$$

$$\frac{d \sinh \theta}{d\theta} \Big|_{\theta=0} = \cosh \theta \Big|_{\theta=0} = 1$$

$$\frac{\frac{\mathrm{d}^2 \sinh \theta}{\mathrm{d}\theta^2}}{\frac{\mathrm{d}^3 \sinh \theta}{\mathrm{d}\theta^3}} \bigg|_{\theta=0} = \sinh \theta \bigg|_{\theta=0} = 0$$

$$= \cosh \theta \bigg|_{\theta=0} = 1$$

Note all even terms will be zero, including 4th order term:

$$\Rightarrow \sinh \theta = 0 + 1 \times \theta + 0 \times \frac{\theta^2}{2!} + 1 \times \frac{\theta^3}{3!} + O(\theta^5)$$
$$= \theta + \frac{1}{6}\theta^3 + O(\theta^5)$$

iii) Now consider $f(\theta) = \sinh \theta - \sin \theta$. For small θ , to lowest order their respective Taylor series are

$$sin\theta = \theta + O(\theta^3)$$

$$\sinh \theta = \theta + O(\theta^3)$$

from this can we conclude that the $f(\theta) = \sinh \theta - \sin \theta = 0$ as $\theta \ll 1$?

No we cannot conclude that $f(\theta) = \sinh \theta - \sin \theta = 0$ for $\theta \ll 1$; what this says is that to the lowest order expansion of each of $\sinh \theta$ and $\sin \theta$ that in $\sinh \theta - \sin \theta$ they cancel, but we do not know whether the higher order terms will also cancel \Rightarrow we look for the next higher order term in the Taylor expansion where the terms θ^n does not cancel — if $\theta \ll 1$ then relative to the lowest n^{th} term all higher order terms will be smaller by at least a factor of θ , which is small and so we can ignore.

Use the Taylor expansion of $\sinh\theta$ and $\sin\theta$ to third order to show that the Taylor series expansion of $f(\theta)$ to lowest order is

$$f(\theta) = \sinh \theta - \sin \theta = \frac{\theta^3}{3}$$

We have already calculated the Taylor series of $\sinh\theta$ to 3rd order above, and we know that the Taylor series (to 3rd order) for $\sin\theta=\theta-\frac{\theta^3}{6}+O(\theta^5)$:

$$\sinh \theta - \sin \theta = \left(\cancel{\theta} + \frac{\theta^3}{6} + O(\theta^5) + \right) \left(\cancel{\theta} - \frac{\theta^3}{6} + O(\theta^5) \right)$$
$$= \frac{\theta^3}{6} + \frac{\theta^3}{6}$$
$$= \frac{\theta^3}{3}$$

iv) Plot $f(\theta) = \sinh \theta - \sin \theta$, and $\frac{\theta^3}{3}$ for $0 < \theta < 3$ and verify that they are the same for small θ .

FIG. 7. $\sinh \theta - \sin \theta$

e) *Derive Eulers formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

using the Taylor series expansion of $e^{i\theta}$ and comparing to the Taylor expansion of $\cos\theta$ and $\sin\theta$. (Hint: $i^2=-1;\ i^3=i^2\times i=-i;\ i^4=i^2\times i^2=1;\ i^5=i\times i^4=i;\ i^6=i^4\times i^2=-1;\ i^7=i^4\times i^3=-i...$)

$$\begin{split} e^{i\theta} &= 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots \\ &= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} + \dots \end{split}$$

Now series expansion of $\cos \theta$ and $\sin \theta$ are

$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$$

$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

All even terms of the Taylor series expansion of $e^{i\theta}$, can be identified with $\cos\theta$, and all odd terms with $i\sin\theta$, and hence

$$e^{i\theta} = \cos\theta + i\sin\theta$$

.

Supplementary (completely optional) Questions

QUESTION 5

Differentiation of x^3 as change in volume

FIG. 8. Differentiating x^3

- a) What is the volume of the bigger cube V' in terms of the volumes V,V_0,V_1,V_2 ? $V'=V+3V_2+3V_1+V_0$
- b) What is the volume of the bigger cube V' in terms of x and h? $V' = (x+h)^3$
- c) Expand out this expression for V' and identify each term with volumes V,V_0,V_1,V_2 . $V'=x^3+3x^2h+3xh^2+h^3\Rightarrow V=x^3;\ V_2=x^2h;\ V_1=xh^2;\ A_0=h^3$
- d) Evaluate all these volumes for x=1 and h=0.3.

For
$$h=0.3$$
 & $x=1$:
$$V=1;\ V_2=0.3;\ A_1=(0.3)^2=0.09;\ A_0=0.3^3=0.027$$

$$\Rightarrow V'=V+3V_2+3V_1+V_0=1+0.9+0.27+0.027=2.197$$

e) i) Show that the change in volume with respect to the change in length is

$$\frac{\Delta V}{\Delta x} = \frac{V' - V}{h} = 3x^2 + 3xh + h^2$$

And ii) evaluate $\frac{\Delta V}{\Delta x}$ for x=1 and h=0.3.

)

$$\frac{\Delta V}{\Delta x} = \frac{V' - V}{h} = \frac{3A_2 + 3V_1 + V_0}{h} = \frac{3x^2h + 3xh^2 + h^3}{h} = 3x^2 + 3xh + h^2$$

$$\frac{\Delta V}{\Delta x} = 3x^2 + 3xh + h^2 = 3 + 0.9 + 0.09 = 3.99$$

f) Repeat d) and e)ii) for x = 1 and h = 0.05 and $h = 10^{-6}$.

i) For
$$h=0.05,~V=1;~V_2=0.05;~V_1=0.05^2=0.0025;~V_0=0.05^3=0.000125$$
 $V'=V+3V_2+3V_1+V_0=1+0.15+0.0075+0.000125=1.157625$ $\frac{\Delta V}{\Delta x}=3x^2+3xh+h^2=3+0.15+0.0025=3.1525$ ii) For $h=10^{-6},~V=1;~V_2=10^{-6};~V_1=10^{-12};~V_0=10^{-18}$ $V'=V+3V_2+3V_1+V_0=1+3\times 10^{-6}+3\times 10^{-12}+10^{-18}=1.00000300....\approx 1$ $\frac{\Delta V}{\Delta x}=3x^2+3xh+h^2=3+3\times 10^{-6}+\times 10^{-12}=3.00000300000....\approx 3$

g) This demonstrates that

$$\lim_{h \to 0} \left\{ \frac{\Delta V}{\Delta x} \right\} = \frac{\mathrm{d}V}{\mathrm{d}x} = \frac{\mathrm{d}x^3}{\mathrm{d}x} = 3x^2;$$

which parts of the diagram or which volumes does this $3x^2$ correspond? Why is there a coefficient 3? Why are the other terms not important?

 $3x^2$ corresponds to the faces of the cube and the volumes V_2 ; there is a 3 because there are 3 faces that contribute to the change in volume for a small change in h.

The other volumes $V_1 = 3xh^2$ and $V_0 = h^3$ is not important, as it becomes vanishingly small compared to $3V_2 = 3x^2h$, as $h \to 0$.

h) *Using the binomial theorem, show that the change in (hyper)volume of a hypercube of dimension n, $\Delta\Omega=x^n$ is dominated by n hypersurfaces of area x^{n-1} and hence in the limit of an infinitesimal change h

$$\lim_{h \to 0} \left\{ \frac{\Delta \Omega}{\Delta x} \right\} = \frac{\mathrm{d}\Omega}{\mathrm{d}x} = \frac{\mathrm{d}x^n}{\mathrm{d}x} = nx^{n-1};$$

(Hint: Binomial theorem is

$$(x+h)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} h^k$$

$$= \binom{n}{0} x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \dots$$

)

The "volume" of a hypercube in n-dimensions, where each side is length x is $\Omega = x^n$. The "volume" of a hypercube in n-dimensions, where each side is length x+h is $\Omega' = (x+h)^n$. Hence, using the binomial theorem

$$\begin{split} &\Omega' = (x+h)^n \\ &= \sum_{k=0}^n \binom{n}{k} x^{n-k} h^k \\ &= \binom{n}{0} x^n + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^2 + \binom{n}{3} x^{n-3} h^3 + \dots \\ &= \Omega + n x^{n-1} h + \frac{n(n-1)}{2} x^{n-2} h^2 + \frac{n(n-1)(n-3)}{3!} x^{n-3} h^3 + \dots \end{split}$$

$$\begin{split} \frac{\Delta\Omega}{\Delta x} &= \frac{\Omega' - \Omega}{h} = \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \frac{n(n-1)(n-3)}{3!}x^{n-3}h^3 + \dots}{h} \\ &= nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \frac{n(n-1)(n-2)}{3!}x^{n-3}h^2 + \dots \end{split}$$

$$\Rightarrow \frac{\mathrm{d}\Omega}{\mathrm{d}x} = \lim_{\Delta x \to 0} \left\{ \frac{\Delta\Omega}{\Delta x} \right\}$$

$$= \lim_{h \to 0} \left\{ \frac{\Omega' - \Omega}{h} \right\}$$

$$= \lim_{h \to 0} \left\{ nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \frac{n(n-1)(n-2)}{3!}x^{n-3}h^2 + \dots \right\}$$

$$= nx^{n-1}$$

Derivative of
$$\sqrt[n]{x} = x^{1/n}$$

There isnt a nice (conventional) geometric interpretation of what the quantity $\sqrt[n]{x} = x^{1/n}$ represents if x represents a length along a line.

- a) However, if $\Omega=x^n$ is the "volume" of a hypercube in n-dimensions, then what does $\sqrt[n]{\Omega}=\Omega^{1/n}$ represent? If $\Omega=x^n$ then $\sqrt[n]{\Omega}=\Omega^{1/n}=x$, the length of a side of the hypercube.
- b) With $x=\Omega^{1/n}$ and using fact that $\frac{\mathrm{d}x}{\mathrm{d}\Omega}=\left(\frac{\mathrm{d}\Omega}{\mathrm{d}x}\right)^{-1}$ show that

$$\frac{\mathrm{d}x^{1/n}}{\mathrm{d}x} = \frac{1}{n}x^{\frac{1}{n}-1}.$$

$$\Omega = x^n$$

$$\frac{\mathrm{d}x}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\Omega}{\mathrm{d}x}\right)^{-1}$$

$$\Rightarrow \frac{\mathrm{d}\Omega}{\mathrm{d}x} = nx^{n-1}$$

.

$$\Rightarrow \frac{\mathrm{d}\Omega^{1/n}}{\mathrm{d}\Omega} = \frac{\mathrm{d}x}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\Omega}{\mathrm{d}x}\right)^{-1} = \left(nx^{n-1}\right)^{-1}$$

. Now we substitute in $x=\Omega^{1/n}$:

$$\Rightarrow \frac{\mathrm{d}\Omega^{1/n}}{\mathrm{d}\Omega} = \left(n(\Omega^{1/n})^{n-1}\right)^{-1} = \frac{1}{n}\Omega^{-\frac{n-1}{n}} = \frac{1}{n}\Omega^{\frac{1}{n}-1}$$

 Ω is of course just any variable, so

$$\frac{\mathrm{d}x^{1/n}}{\mathrm{d}x} = \frac{1}{n}x^{\frac{1}{n}-1}$$