1. Introduction

Definition 1.1 Epimorphism is surjective homomorphism.

Definition 1.2 Embedding or **monomorphism** is injective homomorphism.

1.1. Cubic equations over $\mathbb C$

- For a polynomial equation, a **solution by radicals** is a formula for solutions using only addition, subtraction, multiplication, division and radicals $\sqrt[m]{\cdot}$ for $m \in \mathbb{N}$.
- For general cubic equation $x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Tschirnhaus transformation is substitution $t = x + \frac{a_2}{3}$, giving

$$t^3 + pt + q = 0, \quad p \coloneqq \frac{-a_2^2 + 3a_1}{3}, \quad q \coloneqq \frac{2a_2^3 - 9a_1a_2 + 27a_0}{27}$$

This is a **reduced** (or **depressed**) cubic equation.

When t = u + v, $t^3 - (3uv)t - (u^3 + v^3) = 0$ which is in the reduced cubic form with p = -3uv, $q = -(u^3 + v^3)$.

• We have

$$(y-u^3)(y-v^3) = y^2 - (u^3 + v^3)y + u^3v^3 = y^2 + qy - \frac{p^3}{27} = 0$$

so
$$u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$
.

• So a solution to $t^3 + pt + q = 0$ is

$$t = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

The other solutions are $\omega u + \omega^2 v$ and $\omega^2 u + \omega v$ where $\omega = e^{2\pi i/3}$ is the 3rd root of unity. This is because u and v each have

three solutions independently to $u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$, but also $uv = -\frac{p}{3}$.

Remark 1.3 The above method doesn't work for fields of characteristic 2 or 3 since the formulas involve division by 2 or 3 (which is dividing by zero in these respective fields).

1.2. Quartic equations over $\mathbb C$

- For general quartic equation $x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Substitution $t = x + \frac{a_3}{4}$ gives **reduced** quartic equation

$$t^4 + pt^2 + qt + r = 0$$

We then manipulate the polynomial so that it is the sum or difference of two squares and use $a^2 + b^2 = (a + ib)(a - ib)$ or $a^2 - b^2 = (a + b)(a - b)$:

$$(t^2 + w)^2 + (p - 2w)t^2 + qt + (r - w^2) = 0$$

• $(p-2w)t^2 + qt + (r-w^2) = 0$ is a square iff its discriminant is zero:

$$q^2 - 4(p - 2w)(r - w^2) = 0 \iff w^3 - \frac{1}{2}pw^2 - rw + \frac{1}{8}(4pr - q^2) = 0$$

This **cubic resolvent** is solvable by radicals. Taking any of the solutions and substituting for w gives a sum or difference of two squares in t. The quadratic factors can then be solved.

2. Fields and polynomials

2.1. Basic properties of fields

Definition 2.1 Ring R is **field** if every element of $R - \{0\}$ has multiplicative inverse and $1 \neq 0 \in R$.

Lemma 2.2 Every field is integral domain.

Definition 2.3 Field homomorphism is ring homomorphism φ :

 $K \to L$ between fields:

- $\varphi(a+b) = \varphi(a) + \varphi(b)$
- $\varphi(ab) = \varphi(a)\varphi(b)$
- $\varphi(1) = 1$

These imply $\varphi(0) = 0$, $\varphi(-a) = -\varphi(a)$, $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Lemma 2.4 Let $\varphi: K \to L$ field homomorphism.

- $\operatorname{im}(\varphi) = \{\varphi(a) : a \in K\}$ is field.
- $\ker(\varphi) = \{a \in K : \varphi(a) = 0\} = \{0\}$, i.e. φ is injective.

Definition 2.5 Subfield K of field L is subring of L where K is field. L is **field extension** of K.

• The above lemma shows image of $\varphi: K \to L$ is subfield of L.

Lemma 2.6 Intersections of subfields are subfields.

Definition 2.7 Prime subfield of L is intersection of all subfields of L.

Definition 2.8 Characteristic char(K) of field K is

$$char(K) := \min\{n \in \mathbb{N} : \chi(n) = 0\}$$

(or 0 if this does not exist) where $\chi: \mathbb{Z} \to K$, $\chi(m) = 1 + \dots + 1$ (m times).

Example 2.9 $\operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, $\operatorname{char}(\mathbb{F}_p) = p$ for p prime.

Lemma 2.10 For any field K, char(K) is either 0 or prime.

Theorem 2.11

- If char(K) = 0 then prime subfield of K is $\cong \mathbb{Q}$.
- If char(K) = p > 0 then prime subfield of K is $\cong \mathbb{F}_p$.

Corollary 2.12

- If \mathbb{Q} is subfield of K then char(K) = 0.
- If \mathbb{F}_p is subfield of K for prime p then $\operatorname{char}(K) = p$.

Remark 2.13 Let char(K) = p, then $p \mid \binom{p}{i}$ so $(a+b)^p = a^p + b^p$ in K. Also in K[x] for p prime, $x^p - 1 = (x-1)^p$.

Theorem 2.14 (Fermat's little theorem) $\forall a \in \mathbb{F}_p, a^p = a$.

2.2. Polynomials over fields

Definition 2.15 Degree of $f(x) = a_0 + a_1 x + \dots + a_n x^n$, $a_n \neq 0$, is $\deg(f(x)) = n$.

- Degree of zero polynomial is $deg(0) = -\infty$.
- $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)).$
- $\deg(f(x) + g(x)) \le \max\{\deg(f(x)), \deg(g(x))\}\$ with equality if $\deg(f(x)) \ne \deg(g(x)).$

- Only invertible elements in K[x] are non-zero constants $f(x) = a_0 \neq 0$.
- Similarities between \mathbb{Z} and K[x] for field K:
 - K[x] is integral domain.
 - There is a division algorithm for K[x]: for $f(x), g(x) \in K[x]$, $\exists ! q(x), r(x) \in K[x]$ with $\deg(r(x)) < \deg(g(x))$ such that

$$f(x) = q(x)g(x) + r(x)$$

Fivery $f(x), g(x) \in K[x]$ have greatest common divisor gcd(f(x), g(x)) unique up to multiplication by non-zero constants. By Euclidean algorithm for polynomials,

$$\exists a(x), b(x) \in K[x] : a(x)f(x) + b(x)g(x) = \gcd(f(x), g(x))$$

• Can construct field from K[x]: field of fractions of K[x] is

$$K(x)\coloneqq\operatorname{Frac}(K[x])=\left\{\frac{f(x)}{g(x)}:f(x),g(x)\in K[x],g(x)\neq 0\right\}$$

where $f_1(x)/g_1(x) = f_2(x)/g_2(x) \iff f_1(x)g_2(x) = f_2(x)g_1(x)$. (We can construct the field of fractions for any integral domain).

• K[x] is PID and so UFD.

Definition 2.16 For field K, $f(x) \in K[x]$ irreducible in K[x] (or f(x) is irreducible over K) if

- $\deg(f(x)) \ge 1$ and
- $f(x) = g(x)h(x) \Longrightarrow g(x)$ or h(x) is constant

2.3. Tests for irreducibility

Proposition 2.17 If f(x) has linear factor in K[x], it has root in K[x].

Proposition 2.18 (Rational root test) If $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ has rational root $\frac{b}{c} \in \mathbb{Q}$ with gcd(b,c) = 1 then $b \mid a_0$ and $c \mid a_n$. **Note**: this can't be used to show f is irreducible for $deg(f(x)) \geq 4$.

Theorem 2.19 (Gauss's lemma) Let $f(x) \in \mathbb{Z}[x]$, f(x) = g(x)h(x), $g(x), h(x) \in \mathbb{Q}[x]$. Then $\exists r \in \mathbb{Q} : rg(x), r^{-1}h(x) \in \mathbb{Z}[x]$. i.e. if f(x) can be factored in $\mathbb{Q}[x]$ it can be factored in $\mathbb{Z}[x]$.

Example 2.20 Let $f(x) = x^4 - 3x^3 + 1 \in \mathbb{Q}[x]$. Using the rational root test, $f(\pm 1) \neq 0$ so no linear factors in $\mathbb{Q}[x]$. Checking quadratic factors, let

 $f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$ by Gauss's lemma

So $1 = ar \Rightarrow a = r = \pm 1$. $1 = ct \Rightarrow c = t = \pm 1$. -3 = b + s and 0 = c(b+s): contradiction. So f(x) irreducible in $\mathbb{Q}[x]$.

Example 2.21 Let $f(x) = x^4 - 3x^2 + 1 \in \mathbb{Q}[x]$. The rational root test shows there are no linear factors. Checking quadratic factors, let

 $f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$ by Gauss's lemma

As before, $a = r = \pm 1$, $c = t = \pm 1$. $0 = b + s \Rightarrow b = -s$, $-3 = at + bs + cr = -b^2 \pm 2$. b = 1 works. So $f(x) = (x^2 - x - 1)(x^2 + x - 1)$.

Proposition 2.22 Let $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$. If exists prime $p \nmid a_n$ such that $\overline{f}(x)$ is irreducible in $\mathbb{F}_p[x]$, then f(x) irreducible in $\mathbb{Q}[x]$.

Example 2.23 Let $f(x) = 8x^3 + 14x - 9$. Reducing mod 7, $\overline{f}(x) = x^3 - 2 \in \mathbb{F}_7[x]$. No roots exist for this, so f(x) irreducible in $\mathbb{Q}[x]$. For some polynomials, no p is suitable, e.g. $f(x) = x^4 + 1$.

• Gauss's lemma works with any UFD R instead of \mathbb{Z} and field of fractions $\operatorname{Frac}(R)$ instead of \mathbb{Q} : e.g. let F field, R = F[t], K = F(t), then $f(x) \in R[x]$ irreducible in K[x] if f(x) is irreducible in R[x].

Proposition 2.24 (Eisenstein's criterion) Let $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$, prime $p \in \mathbb{Z}$ such that $p \mid a_0, ..., p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$. Then f(x) irreducible in $\mathbb{Q}[x]$.

Example 2.25 Let $f(x) = x^3 - 3x + 1$. Consider $f(x-1) = x^3 - 3x^2 + 3$. Then by Eisenstein's criterion with p = 3, f(x-1) irreducible in $\mathbb{Q}[x]$ so f(x) is as well, since factoring f(x-1) is equivalent to factoring f(x).

Example 2.26 p-th cyclotomic polynomial is

$$f(x) = \frac{x^p - 1}{x - 1} = 1 + \dots + x^{p-1}$$

Now

$$f(x+1) = \frac{(1+x)^p - 1}{1+x-1} = x^{p-1} + px^{p-2} + \dots + \binom{p}{p-2}x + p$$

so can apply Eisenstein with p = p.

Proposition 2.27 (Generalised Eisenstein's criterion) Let R be integral domain, $K = \operatorname{Frac}(R)$,

$$f(x) = a_0 + \dots + a_n x^n \in R[x]$$

If there is irreducible $p \in R$ with

$$p \mid a_0, ..., p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$$

then f(x) is irreducible in K[x].

3. Field extensions

3.1. Definitions and examples

Definition 3.1 Field extension L/K is field L containing subfield K. Can specify homomorphism $\iota: K \to L$ (which is injective).

Example 3.2

- \mathbb{C}/\mathbb{R} , \mathbb{C}/\mathbb{Q} , \mathbb{R}/\mathbb{Q} .
- $L = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is field extension of \mathbb{Q} . $\mathbb{Q}(\theta)$ is field extension of \mathbb{Q} where θ is root of $f(x) \in \mathbb{Q}[x]$.
- $L = \mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$ is smallest subfield of \mathbb{R} containing \mathbb{Q} and $\sqrt[3]{2}$.
- K(t) is field extension of K.

Definition 3.3 Let L/K field extension, $S \subseteq L$. Then K with S adjoined, K(S), is minimal subfield of L containing K and S. If |S| = 1, L/K is a simple extension.

Example 3.4 $\mathbb{Q}(\sqrt{2}, \sqrt{7}) = \{a + b\sqrt{2} + c\sqrt{7} + d\sqrt{14} : a, b, c, d, \in \mathbb{Q}\}$ is \mathbb{Q} with $S = \{\sqrt{2}, \sqrt{7}\}.$

Example 3.5 \mathbb{R}/\mathbb{Q} is not simple extension.

Definition 3.6 Tower is chain of field extensions, e.g. $K \subset M \subset L$.

Definition 3.7 Let L/K field extension, $\theta \in L$. Then θ is algebraic over K if

$$\exists 0 \neq f(x) \in K[x] : f(\theta) = 0$$

Otherwise, θ is transcendental over K.

Example 3.8 For $n \ge 1$, $\theta = e^{2\pi i/n}$ is algebraic over \mathbb{Q} (root of $x^n - 1$).

Example 3.9 $t \in K(t)$ is transcendental over K.

Lemma 3.10 The algebraic elements in K(t)/K are precisely K.

Lemma 3.11 Let L/K field extension, $\theta \in L$. Define $I_K(\theta) := \{f(x) \in K[x] : f(\theta) = 0\}$. Then $I_K(\theta)$ is ideal in K[x] and

- If θ transcendental over K, $I_K(\theta) = \{0\}$
- If θ algebraic over K, then exists unique monic irreducible polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$.

Definition 3.12 For $\theta \in L$ algebraic over K, minimal polynomial of θ over K is the unique monic polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$. The **degree** of θ over K is $\deg(m(x))$.

Remark 3.13 If $f(x) \in K[x]$ irreducible over K, monic and $f(\theta) = 0$ then f(x) = m(x).

Example 3.14

- Any $\theta \in K$ has minimal polynomial $x \theta$ over K.
- $i \in \mathbb{C}$ has minimal polynomial $x^2 + 1$ over \mathbb{R} .
- $\sqrt{2}$ has minimal polynomial $x^2 2$ over \mathbb{Q} . $\sqrt[3]{2}$ has minimal polynomial $x^3 2$ over \mathbb{Q} .

3.3. Constructing field extensions

Lemma 3.15 Let K field, $f(x) \in K[x]$ non-zero. Then $f(x) \text{ irreducible over } K \Longleftrightarrow K[x]/\langle f(x) \rangle \text{ is a field}$

Definition 3.16 Let L_1/K , L_2/K field extensions, $\varphi: L_1 \to L_2$ field homomorphism. φ is **K-homomorphism** if $\forall a \in K, \varphi(a) = a$ (φ fixes elements of K).

- If φ is isomorphism then it is K-isomorphism.
- If $L_1 = L_2$ and φ is bijective then φ is **K-automorphism**.

Theorem 3.17 Let $m(x) \in K[x]$ irreducible, monic, $K_m := K[x]/\langle m(x) \rangle$. Then

- K_m/K is field extension.
- Let $\theta = \pi(x)$ where $\pi : K[x] \to K_m$ is canonical projection, then θ has minimal polynomial m(x) and $K_m \cong K(\theta)$.

Proposition 3.18 (Universal property of simple extension) Let L/K field extension, $\tau \in L$ with $m(\tau) = 0$ and $K_L(\tau)$ be minimal subfield of L containing K and τ . Then exists unique K-isomorphism $\varphi : K_m \to K_L(\tau)$ such that $\varphi(\theta) = \tau$.

Example 3.19

- Complex conjugation $\mathbb{C} \to \mathbb{C}$ is \mathbb{R} -automorphism.
- Let K field, $\operatorname{char}(K) \neq 2$, $\sqrt{2} \notin K$, so $x^2 2$ is minimal polynomial of $\sqrt{2}$ over K, then $K(\sqrt{2}) \cong K[x]/\langle x^2 2 \rangle$ is field extension of K and $a + b\sqrt{2} \mapsto a b\sqrt{2}$ is K-automorphism.

Proposition 3.20 Let θ transcendental over K, then exists unique K-isomorphism $\varphi: K(t) \to K(\theta)$ such that $\varphi(t) = \theta$:

$$\varphi\left(\frac{f(t)}{g(t)}\right) = \varphi\left(\frac{f(\theta)}{g(\theta)}\right)$$

3.4. Explicit examples of simple extensions

Example 3.21

- Let $r \in K^{\times}$ non-square in K, char $(K) \neq 2$, then $x^2 r$ irreducible in K[x]. E.g. for $K = \mathbb{Q}(t), \ x^2 t \in K[x]$ is irreducible. Then $K(\sqrt{t}) = \mathbb{Q}(\sqrt{t}) \cong K[x]/\langle x^2 t \rangle$.
- Define $\mathbb{F}_9 = \mathbb{F}_3[x]/\langle x^2 2 \rangle \cong \mathbb{F}_3(\theta) = \{a + b\theta : a, b \in \mathbb{F}_3\}$ for θ a root of $x^2 2$.

Proposition 3.22 Let $K(\theta)/K$ where θ has minimal polynomial $m(x) \in K[x]$ of degree n. Then

$$K[x]/\langle m(x)\rangle \cong K(\theta) = \left\{c_0 + c_1\theta + \dots + c_{n-1}\theta^{n-1} : c_i \in K\right\}$$

and its elements are written uniquely: $K(\theta)$ is vector space over K of dimension n with basis $\{1, \theta, ..., \theta^{n-1}\}$.

Example 3.23

 $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\} \cong$

 $\mathbb{Q}[x]/\langle x^3-2\rangle$. $\mathbb{Q}(\omega\sqrt[3]{2})$ and $\mathbb{Q}(w^2\sqrt[3]{2})$ where $\omega=e^{2\pi i/3}$ are isomorphic to $\mathbb{Q}(\sqrt[3]{2})$ as $\omega\sqrt[3]{2}$, $\omega\sqrt[3]{4}$ have same minimal polynomial.

3.5. Degrees of field extensions

Definition 3.24 Degree of field extension L/K is

$$[L:K]\coloneqq \dim_K(L)$$

Example 3.25

- When θ algebraic over K of degree n, $[K(\theta):K]=n$.
- Let θ transcendental over K, then $[K(\theta):K]=\infty$, so $[K(t):K]=\infty$, $[\mathbb{Q}(\pi):\mathbb{Q}]$, $[\mathbb{R}:\mathbb{Q}]=\infty$.

Definition 3.26 L/K is algebraic extension if every element in L is algebraic over K.

Proposition 3.27 Let $[L:K] < \infty$, then L/K is algebraic extension and $L = K(\alpha_1, ..., \alpha_n)$ for some $\alpha_1, ..., \alpha_n \in L$. The converse also holds.

Theorem 3.28 (Tower law) Let $K \subseteq M \subseteq L$ tower of field extensions. Then

- $[L:K] < \infty \iff [L:M] < \infty \land [M:K] < \infty$.
- [L:K] = [L:M][M:K].

Example 3.29

- $K = \mathbb{Q} \subset M = \mathbb{Q}(\sqrt{2}) \subset L = \mathbb{Q}(\sqrt{2}, \sqrt{7})$. M/K has basis $\{1, \sqrt{2}\}$ so [M:K] = 2. Let $\sqrt{7} \in \mathbb{Q}(\sqrt{2})$, then $\sqrt{7} = c + d\sqrt{2}$, $c, d \in \mathbb{Q}$ so $7 = (c^2 + 2d^2) + 2cd\sqrt{2}$ so $7 = c^2 + 2d^2$, 0 = 2cd so $d^2 = \frac{7}{2}$ or $c^2 = 7$, which are both contradictions. So [L:K] = 4 with basis $\{1, \sqrt{2}, \sqrt{7}, \sqrt{14}\}$.
- Let $K = \mathbb{Q} \subset M = \mathbb{Q}(i) \subset \mathbb{Q}(i, \sqrt{2})$. We know $[\mathbb{Q}(i) : \mathbb{Q}] = 2$, and $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, $[\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}] = 4$ (since $i \notin \mathbb{R}$) so $[\mathbb{Q}(i, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 2$.
- Let $K = \mathbb{Q} \subset M = \mathbb{Q}(\sqrt{2}) \subset L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. Then $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, $[\mathbb{Q}(\sqrt[3]{3}) : \mathbb{Q}] = 3$ so $2 \mid [L : K]$ and $3 \mid [L : K]$ so $6 \mid [L : K]$ so [L : K] so [L : K]

 $K] \geq 6$. But $[L:M] \leq 3$ and $[M:K] \leq 2$ so $[L:K] \leq 6$ hence [L:K] = 6.

• More generally, we have $[K(\alpha, \beta) : K] \leq [K(\alpha) : K][K(\beta) : K]$.

Example 3.30

- Let $\theta = \sqrt[3]{4} + 1$. $\mathbb{Q}(\theta) = \mathbb{Q}(\sqrt[3]{4})$ so minimal polynomial over \mathbb{Q} , m, has $\deg(m) = 3$. $(\theta 1)^3 = 4$ so minimal polynomial is $x^3 3x^2 + 3x 5$.
- Let $\theta = \sqrt{2} + \sqrt{3}$. $\mathbb{Q}(\sqrt{2}, \theta) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ which has degree 2 over $\mathbb{Q}(\sqrt{2})$ so minimal polynomial of θ over $\mathbb{Q}(\sqrt{2})$ has degree 2, $\theta \sqrt{2} = \sqrt{3}$ so minimal polynomial is $x^2 2\sqrt{2}x 1$.
- Let $\theta = \sqrt{2} + \sqrt{3}$. $\mathbb{Q} \subset \mathbb{Q}(\theta) \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$ so $[\mathbb{Q}(\theta) : \mathbb{Q}] \mid [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$ so $[\mathbb{Q}(\theta) : \mathbb{Q}] \in \{1, 2, 4\}$. Can't be 1 as $\theta \notin \mathbb{Q}$. If it was 2 then $1, \theta, \theta^2$ are linearly dependent over \mathbb{Q} which leads to a contradiction. So degree of minimal polynomial of θ over \mathbb{Q}

is 4. $\theta^2 = 5 + 2\sqrt{6} \Rightarrow (\theta^2 - 5)^2 = 24$ so minimal polynomial is $x^4 - 10x^2 + 1$.

4. Galois extensions

4.1. Splitting fields

Definition 4.1 For field K, $0 \neq f(x) \in K[x]$, L/K is **splitting field** of f(x) over K if

- $\exists c \in K^{\times}, \theta_1, ..., \theta_n \in L: f(x) = c(x \theta_1) \cdots (x \theta_n) \ (f(x) \text{ splits over } \boldsymbol{L}).$
- $L = K(\theta_1, ..., \theta_n)$.

Example 4.2

- \mathbb{C} is splitting field of $x^2 + 1$ over \mathbb{R} , since $x^2 + 1 = (x + i)(x i)$ and $\mathbb{C} = \mathbb{R}(i, -i) = \mathbb{R}(i)$.
- \mathbb{C} is not splitting field of $x^2 + 1$ over \mathbb{Q} as $\mathbb{C} \neq \mathbb{Q}(i, -i)$.
- \mathbb{Q} is splitting field of $x^2 36$ over \mathbb{Q} .
- \mathbb{C} is splitting of $x^4 + 1$ over \mathbb{R} .
- $\mathbb{Q}(i,\sqrt{2})$ is splitting field of $x^4-x^2-2=(x^2+1)(x^2-2)=(x+i)(x-i)(x+\sqrt{2})(x-\sqrt{2})$ over \mathbb{Q} .
- $\mathbb{F}_2(\theta)$ where $\theta^3 + \theta + 1 = 0$ is splitting field of $x^3 + x + 1$ over \mathbb{F}_2 .

• Consider splitting field of $x^3 - 2$ over \mathbb{Q} . Let $\omega = e^{2\pi i/3} = (-1 + \sqrt{-3})/2$ then $\mathbb{Q}(\sqrt[3]{2}, \omega)$ is splitting field since it must contain $\sqrt[3]{2}$, $\omega \sqrt[3]{2}$, $\omega^2 \sqrt[3]{2}$.

Theorem 4.3 Let $0 \neq f(x) \in K[x]$, $\deg(f) = n$. Then there exists a splitting field L of f(x) over K with

 $[L:K] \leq n!$

Notation 4.4 For field homomorphism $\varphi: K \to K'$ and $f(x) = a_0 + \cdots + a_n x^n \in K[x]$, write

$$\varphi_*(f(x)) \coloneqq \varphi(a_0) + \dots + \varphi(a_n) x^n \in K'[x]$$

Lemma 4.5 Let $\sigma: K \to K'$ isomorphism and $K(\theta)/K$, θ has minimal polynomial $m(x) \in K[x]$, θ' be root of $\sigma_*(m(x))$. Then there exists unique K-isomorphism $\tau: K(\theta) \to K'(\theta')$ such that $\tau(\theta) = \theta'$.

Theorem 4.6 For field isomorphism $\sigma: K \to K'$ and $0 \neq f(x) \in K[x]$, let L be splitting field of f(x) over K, L' be splitting field of $\sigma_*(f(x))$ over K'. Then there exists a field isomorphism $\tau: L \to L'$ such that $\forall a \in K, \tau(a) = \sigma(a)$.

Corollary 4.7 Setting K = K' and $\sigma = \text{id implies that splitting fields}$ are unique.

4.2. Normal extensions

Definition 4.8 L/K is **normal** if: for all $f(x) \in K[x]$, if f is irreducible and has a root in L then all its roots are in L. In particular, f(x) splits completely as product of linear factors in L[x]. So the minimal polynomial of $\theta \in L$ over K has all its roots in L and can be written as product of linear factors in L[x].

Example 4.9

- If [L:K]=1 then L/K is normal.
- If [L:K]=2 then L/K is normal: let $\theta \in L$ have minimal polynomial $m(x) \in K[x]$, then $K \subseteq K(\theta) \subseteq L$ so $\deg(m(x)) = [K(\theta):K] \in \{1,2\}$:
 - If deg(m(x)) = 1 then m(x) is already linear.
 - If deg(m(x)) = 2 then $m(x) = (x \theta)m_1(x), m_1(x) \in L[x]$ is linear so m(x) splits completely in L[x].
- If [L:K]=3 then L/K is not necessarily normal. Let θ be root of $x^3-2\in\mathbb{Q}[x]$. Other two roots are $\omega\theta$, $\omega^2\theta$ where $\omega=e^{2\pi i/3}$. If

 $\omega\theta \in \mathbb{Q}(\theta)$ then $\omega = \frac{\omega\theta}{\theta} \in L$ so $\mathbb{Q} \subset \mathbb{Q}(\omega) \subset \mathbb{Q}(\theta)$ but $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$ which doesn't divide $[\mathbb{Q}(\theta) : \mathbb{Q}] = 3$.

• Let $\theta \in \mathbb{C}$ be root of irreducible $f(x) = x^3 - 3x - 1 \in \mathbb{Q}[x]$. Let $\theta = u + v$, then $(u + v)^3 - 3uv(u + v) - (u^3 + v^3) \equiv 0$ implies $uv = 1 = u^3v^3$, $u^3 + v^3 = 1$. So $(y - u^3)(y - v^3) = y^2 - y + 1$ has roots u^3 and v^3 . So the three roots of f are

$$\theta_1 = u + v = e^{\pi i/9} + e^{-\pi i/9} = 2\cos(\pi/9)$$

$$\theta_2 = \omega u + \omega^2 v = e^{7\pi i/9} + e^{-7\pi i/9} = 2\cos(7\pi/9)$$

$$\theta_2 = \omega^2 u + \omega v = e^{13\pi i/9} + e^{-13\pi i/9} = 2\cos(13\pi/9)$$

Furthermore, for each $i, j, \theta_i \in \mathbb{Q}(\theta_i)$, e.g.

$$\theta_2 = 2\cos\left(\pi - \frac{2\pi}{9}\right) = -2\cos\left(\frac{2\pi}{9}\right) = -2\left(2\cos\left(\frac{\pi}{9}\right)^2 - 1\right) = 2 - \theta_1^2$$

Also $\theta_1 + \theta_2 + \theta_3 = 0$ so $\theta_3 \in \mathbb{Q}(\theta_1)$. So $\mathbb{Q}(\theta_1)$ contains all roots of f(x).

Theorem 4.10 (normality criterion) L/K is finite and normal iff L is splitting field for some $0 \neq f(x) \in K[x]$ over K.

Example 4.11

- $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7})/\mathbb{Q}$ is normal as it is the splitting field of $f(x) = (x^2 2)(x^2 3)(x^2 5)(x^2 7) \in \mathbb{Q}[x]$.
- $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal but $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$ is normal as it is the splitting field of $x^3-2\in\mathbb{Q}$.
- $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not normal but $\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}$ is normal.
- Let θ root of $f(x) = x^3 3x 1 \in \mathbb{Q}[x]$. Then $\mathbb{Q}(\theta)/\mathbb{Q}$ is normal as is splitting field of f(x) over \mathbb{Q} .
- $\mathbb{F}_2(\theta)/\mathbb{F}_2$ where $\theta^3 + \theta^2 + 1 = 0$ is normal, as $\mathbb{F}_2(\theta)$ contains all roots of $x^3 + x^2 + 1$.

• $\mathbb{F}_p(\theta)/\mathbb{F}_p(t)$ where $\theta^p = t$ is normal as it is the splitting field of $x^p - t = t = t = t$ so t = t = t. So t = t = t is normal as it is the splitting field of t = t = t.

Definition 4.12 Field N is **normal closure** of L/K if $K \subseteq L \subseteq N$, N/K is normal, and if $K \subseteq L \subseteq N' \subseteq N$ with N'/K normal then N = N'.

Theorem 4.13 Every finite extension L/K has normal closure, unique up to a K-isomorphism.

Definition 4.14 Aut(L/K) is group of K-automorphisms of L/K with composition as the group operation.

Example 4.15

- Aut(\mathbb{C}/\mathbb{R}) contains at least two elements: complex conjugation: $\sigma(a+bi) = a-bi$ and the identity map id $= \sigma^2$. If $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{R})$ then $\tau(a+bi) = a+b\tau(i)$. But $\tau(i)^2 = \tau(i^2) = \tau(-1) = -1$ hence $\tau(i) = \pm i$. So there are only two choices for τ . So Aut(\mathbb{C}/\mathbb{R}) = {id, σ }.
- Let $f(x) = x^2 + px + q \in \mathbb{Q}[x]$ irreducible with distinct roots θ, θ' . Then $\operatorname{Aut}(\mathbb{Q}(\theta)/\mathbb{Q}) = \{\operatorname{id}, \sigma\} \cong \mathbb{Z}/2$ where $\sigma(a + b\theta) = a + b\theta'$.
- Let θ root of $x^3 2$, let $\sigma \in \operatorname{Aut}(\mathbb{Q}(\theta)/\mathbb{Q})$. Now $\sigma(\theta)^3 = \sigma(\theta^3) = \sigma(2) = 2$ so $\sigma(\theta) \in \{\theta, \omega\theta, \omega^2\theta\}$ but $\omega\theta, \omega^2\theta \notin \mathbb{Q}(\theta)$ so $\sigma(\theta) = \theta \Longrightarrow \sigma = \operatorname{id}$.

• Let $\theta^p = t$, $\sigma \in \operatorname{Aut}(\mathbb{F}_p(\theta)/\mathbb{F}_p(t))$. Then

$$\sigma(\theta)^p = \sigma(\theta^p) = \sigma(t) = t = \theta^p$$

so $(\sigma(\theta) - \theta)^p = \sigma(\theta)^p - \theta^p = 0 \Longrightarrow \sigma(\theta) = \theta \Longrightarrow \sigma = id.$

• Let $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$. Then $\alpha \leq \beta \in \mathbb{R} \Longrightarrow \beta - \alpha = \gamma^2$, $\gamma \in \mathbb{R}$, so $\sigma(\beta) - \sigma(a) = \sigma(\gamma)^2 \geq 0$ so $\sigma(\alpha) \leq \sigma(\beta)$. Given $\alpha \in \mathbb{R}$, there exist sequences $(r_n), (s_n) \subset \mathbb{Q}$ with $r_n \leq \alpha \leq s_n$ and $r_n \to \alpha$, $s_n \to \alpha$ as $n \to \infty$. Hence $r_n = \sigma(r_n) \leq \sigma(\alpha) \leq \sigma(s_n) = s_n$ so $\sigma(\alpha) = \alpha$ by squeezing. Hence $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = \{ \operatorname{id} \}$.

Theorem 4.16 Let $L = K(\theta)$, θ root of irreducible $f(x) \in K[x]$, $\deg(f) = n$. Then $|\operatorname{Aut}(L/K)| \le n$, with equality iff f(x) has n distinct roots in L.

Theorem 4.17 Let L/K be finite extension. Then $|\operatorname{Aut}(L/K)| \leq [L:K]$, with equality iff L/K is normal and minimal polynomial of every $\theta \in L$ over K has no repeated roots (in a splitting field).

4.3. Separable extensions

Definition 4.18 Let L/K finite extension.

- $\theta \in L$ is **separable over** K if its minimal polynomial over K has no repeated roots (in its splitting field).
- L/K is **separable** if every $\theta \in L$ is separable over K.

Example 4.19 Let $K = \mathbb{F}_p(t)$, then $f(x) = x^p - t \in K[x]$ is irreducible by Eisenstein's criterion with p = t, and $f(x) = x^p - \theta^p = (x - \theta)^p$ so θ is root of multiplicity $p \geq 2$. So $\mathbb{F}_p(\theta)/\mathbb{F}_p(t)$ is normal but not separable.

Definition 4.20 Let $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$. Formal derivative of f(x) is

$$Df(x) = D(f) \coloneqq \sum_{i=1}^n ia_i x^{i-1} \in K[x]$$

Note 4.21 Formal derivative satisfies:

$$D(f+g) = D(f) + D(g), \quad D(fg) = f \cdot D(g) + D(f) \cdot g, \quad \forall a \in K, D(a) = 0$$

Also $\deg(D(f)) < \deg(f)$. But if $\operatorname{char}(K) = p$, then $D(x^p) = px^{p-1} = 0$ so it is not always true that $\deg(D(f)) = \deg(f) - 1$.

Note 4.22 If f(x) has a repeated root α , then $Df(\alpha) = 0$.

Theorem 4.23 (sufficient conditions for separability) Finite extension L/K is separable if any of the following hold:

- $\operatorname{char}(K) = 0$,
- $\operatorname{char}(K) = p \text{ and } K = \{b^p : b \in K\} = K^p \text{ for prime } p,$
- $\operatorname{char}(K) = p \text{ and } p \nmid [L:K]$

Definition 4.24 K is **perfect field** if either of first two of above properties hold.

Remark 4.25 All finite extensions of any perfect extension (e.g. \mathbb{Q}, \mathbb{F}_p) are separable (recall Fermat's little theorem: $\forall a \in \mathbb{F}_p, a = a^p$). So to find a non-separable extension L/K, we need $\operatorname{char}(K) = p > 0$, K infinite and $p \mid [L:K]$. For example, $L = \mathbb{F}_p(\theta), K = \mathbb{F}_p(t)$ where $\theta^p = t$.

Theorem 4.26 Let $\alpha_1, ..., \alpha_n$ algebraic over K, then $K(\alpha_1, ..., \alpha_n)/K$ is separable iff every α_i is separable over K.

Remark 4.27 For tower $K \subseteq M \subseteq L$, L/K is separable iff L/M and M/K are separable. However, the same statement for normality does not hold.

Theorem 4.28 (Theorem of the Primitive Element) Let L/K finite and separable. Then L/K is simple, i.e. $\exists \alpha \in L : L = K(\alpha)$.

4.4. The fundamental theorem of Galois theory

Definition 4.29 Finite extension L/K is **Galois extension** if it is normal and separable. Equivalently, $|\operatorname{Aut}(L/K)| = [L:K]$. When L/K is Galois, the **Galois group** is $\operatorname{Gal}(L/K) := \operatorname{Aut}(L/K)$.

Definition 4.30 Let $\mathcal{F} := \{\text{intermediate fields of } L/K\}$ and $\mathcal{G} := \{\text{subgroups of } \mathrm{Gal}(L/K)\}$. Define the map $\Gamma: \mathcal{F} \to \mathcal{G}, \ \Gamma(M) = \mathrm{Gal}(L/M)$.

Definition 4.31 Let L field, G a group of automorphisms of L. **Fixed** field L^G of G is set of elements in L which are invariant under all automorphisms in G:

$$L^G := \{ \alpha \in L : \forall \alpha \in G, \, \sigma(\alpha) = \alpha \}$$

Theorem 4.32 If G is finite group of automorphisms of L then L^G is subfield of L and $[L:L^G]=|G|$.

Corollary 4.33 If L/K is Galois then

- $L^{\operatorname{Gal}(L/K)} = K$.
- If $L^G = K$ for some group G of K-automorphisms of L, then $G = \operatorname{Gal}(L/K)$.

Note 4.34 Let $\sigma \in \operatorname{Gal}(L/K)$. If $\alpha \in L$ has minimal polynomial $f(x) \in K[x]$ over K, then $f(\alpha) = 0$, and

$$f(\sigma(\alpha)) = \sigma(f(\alpha))$$

by properties of field homomorphisms. Hence $\sigma(\alpha)$ is also a root of f(x) for any $\sigma \in \operatorname{Gal}(L/K)$, i.e. σ permutes the roots of f(x).

Remark 4.35 If L/K is Galois and $\alpha \in L$ but $\alpha \notin K$, then there exists an automorphism $\sigma \in \operatorname{Gal}(L/K)$ such that $\sigma(\alpha) \neq \alpha$.

Definition 4.36 For H subgroup of $\operatorname{Gal}(L/K)$, set $L^H := \{\alpha \in L : \forall \sigma \in H, \sigma(\alpha) = \alpha\}$, then $K \subseteq L^H \subseteq L$. Define $\Phi : \mathcal{G} \to \mathcal{F}$, $\Phi(H) = L^H$.

• Γ and Φ are inclusion-reversing: $M_1 \subseteq M_2 \Longrightarrow \Gamma(M_2) \subseteq \Gamma(M_1)$, and $H_1 \subseteq H_2 \Longrightarrow \Phi(H_2) \subseteq \Phi(H_1)$.

Theorem 4.37 (Fundamental theorem of Galois theory - Theorem A) For finite Galois extension L/K,

- $\Gamma: \mathcal{F} \to \mathcal{G}$ and $\Phi: \mathcal{G} \to \mathcal{F}$ are mutually inverse bijections (the Galois correspondence).
- For $M \in \mathcal{F}$, L/M is Galois and |Gal(L/M)| = [L:M].
- For $H \in \mathcal{G}$, L/L^H is Galois and $Gal(L/L^H) = H$.

Remark 4.38 Gal(L/K) acts on \mathcal{F} : given $\sigma \in \text{Gal}(L/K)$ and $K \subseteq M \subseteq L$, consider $\sigma(M) = \{\sigma(\alpha) : \alpha \in M\}$ which is a subfield of L and contains K, since σ fixes elements of K. Given another automorphism $\tau : L \to L$,

$$\tau \in \operatorname{Gal}(L/\sigma(M)) \Longleftrightarrow \forall \alpha \in M, \tau(\sigma(\alpha)) = \sigma(\alpha)$$

$$\iff \forall \alpha \in M, \sigma^{-1}(\tau(\sigma(\alpha))) = \alpha$$

$$\iff \sigma^{-1}\tau\sigma \in \operatorname{Gal}(L/M)$$

$$\iff \tau \in \sigma \operatorname{Gal}(L/M)\sigma^{-1}$$

Hence $\sigma \operatorname{Gal}(L/M)\sigma^{-1}$ and $\operatorname{Gal}(L/M)$ are conjugate subgroups of $\operatorname{Gal}(L/K)$. Now

$$[M:K] = \frac{[L:K]}{[L:M]} = \frac{|\operatorname{Gal}(L/K)|}{|\operatorname{Gal}(L/M)|}$$

Theorem 4.39 (Fundamental theorem of Galois theory - Theorem B) Let L/K be finite Galois extension, $G = \operatorname{Gal}(L/K)$ and $K \subseteq M \subseteq L$. Then the following are equivalent:

- M/K is Galois.
- $\forall \sigma \in G, \quad \sigma(M) = M.$
- $H = \operatorname{Gal}(L/M)$ is normal subgroup of $G = \operatorname{Gal}(L/K)$.

When these conditions hold, we have $Gal(M/K) \cong G/H$.

Example 4.40 Let L/K be Galois, [L:K]=p prime.

- By the tower law, any $K \subseteq M \subseteq L$ has $[L:M] \in \{1,p\}$, $[M:K] \in \{p,1\}$, so M=L or K. In both cases, M/K is normal.
- $|\operatorname{Gal}(L/K)| = [L:K] = p$ so $\operatorname{Gal}(L/M) \cong \mathbb{Z}/p$, so the only subgroups are $\operatorname{Gal}(L/K)$ and $\{\operatorname{id}\}$. In both cases, H is normal subgroup of $\operatorname{Gal}(L/K)$.

4.5. Computations with Galois groups

Example 4.41 (quadratic extension) $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is normal (since degree is 2) and separable (since characteristic is zero). Any element of $\varphi \in G = \operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ is determined by the image of $\sqrt{2}$. But $\varphi(\sqrt{2})^2 = \varphi(2) = 2$ so $\varphi(\sqrt{2}) = \pm \sqrt{2}$. This gives two automorphisms $\operatorname{id}(\sqrt{2}) = \sqrt{2}$ and $\sigma(\sqrt{2}) = -\sqrt{2}$. So $G = \{\operatorname{id}, \sigma\} = \langle \sigma \rangle \cong \mathbb{Z}/2$. Subgroup $\{\operatorname{id}\}$ corresponds to $\mathbb{Q}(\sqrt{2})$, G corresponds to \mathbb{Q} .

Example 4.42 (biquadratic extension) $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} is normal (as splitting field of $(x^2 - 2)(x^2 - 3)$ over \mathbb{Q}) and separable (as $\operatorname{char}(\mathbb{Q}) = 0$), so is Galois extension. Let σ be given as before.

- Suppose $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$, then $\sigma(\sqrt{3})^2 = \sigma(3) = 3$, so $\sigma(\sqrt{3}) = \pm \sqrt{3}$.
- If $\sigma(\sqrt{3}) = \sqrt{3}$, then $\sqrt{3} \in \mathbb{Q}(\sqrt{2})^{\{id,\sigma\}} = \mathbb{Q}$: contradiction.
- If $\sigma(\sqrt{3}) = -\sqrt{3}$, then $\sigma(\sqrt{2})\sigma(\sqrt{3}) = \sigma(\sqrt{6}) = (-\sqrt{2})(-\sqrt{3}) = \sqrt{6}$, so $\sqrt{6} \in \mathbb{Q}(\sqrt{2})^{\{id,\sigma\}} = \mathbb{Q}$: contradiction.
- So $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, hence $[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4$.
- Now $G = \operatorname{Gal}(L/\mathbb{Q})$ has order $[L : \mathbb{Q}] = 4$, so $G \cong \mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$.

- For $\varphi \in G$, $\varphi(\sqrt{2})^2 = 2 \Longrightarrow \varphi(\sqrt{2}) = \pm \sqrt{2}$, $\varphi(\sqrt{3})^2 = 3 \Longrightarrow \varphi(\sqrt{3}) = \pm \sqrt{3}$. So there are four choices, corresponding to choices of \pm signs.
- Define σ, τ by $\sigma(\sqrt{2}) = -\sqrt{2}$, $\sigma(\sqrt{3}) = \sqrt{3}$, $\tau(\sqrt{2}) = \sqrt{2}$, $\tau(\sqrt{3}) = -\sqrt{3}$. Now $\sigma^2 = \tau^2 = \mathrm{id}$, $\sigma\tau(\sqrt{2}) = -\sqrt{2}$, $\sigma\tau(\sqrt{3}) = -\sqrt{3}$ and $\sigma\tau = \tau\sigma$.
- So $G = \langle \sigma, \tau : \sigma^2 = \tau^2 = \mathrm{id}, \sigma\tau = \tau\sigma \rangle = \langle \sigma \rangle \times \langle \tau \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2.$
- G has proper subgroups $H_1 = \langle \sigma \rangle$, $H_2 = \langle \tau \rangle$, $H_3 = \langle \sigma \tau \rangle$.
- So the intermediate fields are $L^{H_1}, L^{H_2}, L^{H_3}$.

- $\sigma(\sqrt{3}) = \sqrt{3} \Longrightarrow \sqrt{3} \in L^{H_1}$ so $\mathbb{Q}(\sqrt{3}) \subseteq L^{H_1}$, but $[L : \mathbb{Q}(\sqrt{3})] = 2 = |H_1| = [L : L^{H_1}]$. Hence $L^{H_1} = \mathbb{Q}(\sqrt{3})$. Similarly $L^{H_2} = \mathbb{Q}(\sqrt{2})$.
- $\sigma \tau(\sqrt{6}) = \sqrt{6} \Longrightarrow \sqrt{6} \in L^{H_3}$, so $L^{H_3} = \mathbb{Q}(\sqrt{6})$.

Remark 4.43 It is not generally true that $[K(\sqrt{a}, \sqrt{b}) : K] = 4$, e.g. $\mathbb{Q}(\sqrt{2}, \sqrt{8}) = \mathbb{Q}(\sqrt{2})$.

Remark 4.44 Can generalise above example to arbitrary $K(\sqrt{a}, \sqrt{b})/K$ where $\operatorname{char}(K) \neq 2$, and $a, b \in K$, $a, b, ab \notin (K^{\times})^2$ where $(K^{\times})^2$ is set of squares of K^{\times} .

Example 4.45 (degree 8 extension)

- Consider $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} . L is splitting field of $(x^2 2)(x^2 3)(x^2 5)$, so is normal, and $char(\mathbb{Q}) = 0$, so is separable, so is Galois.
- Let $M = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. By above, $Gal(M/Q) = \langle \sigma \rangle \times \langle \tau \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.
- Suppose $\sqrt{5} \in M$. Then $\sigma(\sqrt{5})^2 = \tau(\sqrt{5})^2 = 5$, so $\sigma(\sqrt{5}) = \pm \sqrt{5}$, $\tau(\sqrt{5}) = \pm \sqrt{5}$.
- If $\sigma(\sqrt{5}) = \sqrt{5}$, then $\sqrt{5} \in M^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{3})$.
 - If $\tau(\sqrt{5}) = \sqrt{5}$, $\sqrt{5} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.

- If $\tau(\sqrt{5}) = -\sqrt{5}$, then since $\sqrt{15} \in M^{\langle \sigma \rangle}$, $\tau(\sqrt{15}) = \sqrt{15}$, so $\sqrt{15} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
- If $\sigma(\sqrt{5}) = -\sqrt{5}$, then $\sigma(\sqrt{10}) = \sigma(\sqrt{2})\sigma(\sqrt{5}) = (-\sqrt{2})(-\sqrt{5}) = \sqrt{10}$, so $\sqrt{10} \in M^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{3})$.
 - If $\tau(\sqrt{5}) = \sqrt{5}$, $\tau(\sqrt{10}) = \sqrt{10} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
 - If $\tau(\sqrt{5}) = -\sqrt{5}$, $\tau(\sqrt{30}) = \tau(\sqrt{5})\tau(\sqrt{3})\tau(\sqrt{2}) = \sqrt{30} \in M^{\langle \sigma, \tau \rangle} = \mathbb{Q}$: contradiction.
- So $\sqrt{5} \notin M$, so $[L:\mathbb{Q}] = [L:M][M:\mathbb{Q}] = 8$. The 8 elements in $\operatorname{Gal}(L/\mathbb{Q})$ are determined by choices of $\sqrt{a} \mapsto \pm \sqrt{a}$ where $a \in \{2,3,5\}$.

- $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ where $\sigma_1(\sqrt{2}) = -\sqrt{2}$, $\sigma_2(\sqrt{3}) = -\sqrt{3}$, $\sigma_1(\sqrt{5}) = -\sqrt{5}$ and the σ_i fix all other square roots.
- More generally, write $\sigma(\sqrt{5}) = (-1)^j \sqrt{5}$, $\tau(\sqrt{5}) = (-1)^k \sqrt{5}$, $j, k \in \{0, 1\}$. Define $m = 2^j 3^k$, then $\sigma(\sqrt{m}) = (-1)^j \sqrt{m} \Rightarrow \sigma(\sqrt{5m}) = \sqrt{5m}$ and $\tau(\sqrt{m}) = (-1)^k \sqrt{m} \Rightarrow \tau(\sqrt{5m}) = \sqrt{5m}$, so $\sqrt{5m} \in M^{\langle \sigma, \tau \rangle} = \mathbb{O}$: contradiction.

Example 4.46 (cubic extension and its normal closure)

- Let $L = \mathbb{Q}(\theta)$, $\theta^3 2 = 0$. L/\mathbb{Q} isn't Galois since not normal. Take the normal closure $N = \mathbb{Q}(\theta, \omega) = \mathbb{Q}(\theta, \sqrt{-3})$.
- Let $M = \mathbb{Q}(\omega)$ so $[M : \mathbb{Q}] = 2$, $[L : \mathbb{Q}] = 3$ and $[N : \mathbb{Q}] = 6$. Let $G = \operatorname{Gal}(N/\mathbb{Q})$.
- Since $|G| = [N : \mathbb{Q}] = 6$, $G \cong \mathbb{Z}/6$ or $G \cong D_3 \cong S_3$.
- G contains Gal(N/L). Since $N = L(\omega)$,

$$\operatorname{Gal}(N/L) = \{ \operatorname{id}, \tau \} = \langle \tau \rangle \cong \mathbb{Z}/2$$

where
$$\tau(\sqrt{-3}) = -\sqrt{-3}$$
 (i.e. $\tau(w) = \omega^2$) and $\tau(\theta) = \theta$ as $\theta \in L$.

• G contains $H = \operatorname{Gal}(N/M)$. $N = M(\theta)$, |H| = [N:M] = 3 so $\operatorname{Gal}(N/M)$ is cyclic so

$$H = {\mathrm{id}, \sigma, \sigma^2} = \langle \sigma \rangle \cong \mathbb{Z}/3$$

where $\sigma(\theta) = \omega \theta$, also $\sigma(\omega) = \omega$ as $\omega \in M$ and $\sigma^2(\theta) = \omega^2 \theta$, so H permutes the three roots of $x^3 - 2$.

• $\tau \notin H$ so $H = \{ id, \sigma, \sigma^2 \}$ and $\tau H = \{ \tau, \tau \sigma, \tau \sigma^2 \}$ are disjoint cosets. So $G = H \cup \tau H = \langle \tau, \sigma \rangle$ so |G| = 6. $\tau^2 = \sigma^3 = id$ and $\sigma \tau = \tau \sigma^2$. So $G \cong S_3 \cong D_3$.

- G has one subgroup of order 3, $H = \langle \sigma \rangle$. Fixed field is $N^H = M$. H is only proper normal subgroup of G. Correspondingly, M is only normal extension of Q in N.
- There are 3 order 2 subgroups: $\langle \tau \rangle$, $\langle \tau \sigma \rangle$, $\langle \tau \sigma^2 \rangle$. $N^{\langle \tau \rangle} = \mathbb{Q}(\theta) = L$, $N^{\langle \tau \sigma \rangle} = \mathbb{Q}(\omega \theta) = \sigma(L)$, $N^{\langle \tau \sigma^2 \rangle} = \mathbb{Q}(\omega^2 \theta) = \sigma^2(L)$.

Example 4.47 Show $\sqrt[3]{3} \notin \mathbb{Q}(\sqrt[3]{2})$.

- Assume $\sqrt[3]{3} \in \mathbb{Q}(\sqrt[3]{2})$. Then $\sqrt[3]{3} \in N = \mathbb{Q}(\omega, \sqrt[3]{2})$, the normal closure.
- As above, let $\sigma \in \operatorname{Gal}(N/\mathbb{Q})$, $\sigma(\sqrt[3]{2}) = \omega \sqrt[3]{2}$ and $N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$. Also,

$$\sigma(\sqrt[3]{3})^3 = \sigma(3) = 3 \Longrightarrow \sigma(\sqrt[3]{3}) \in \{\sqrt[3]{3}, \omega\sqrt[3]{3}, \omega^2\sqrt[3]{3}\}$$

- If $\sigma(\sqrt[3]{3}) = \sqrt[3]{3}$, then $\sqrt[3]{3} \in N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$, so $\mathbb{Q}(\sqrt[3]{3}) \subseteq \mathbb{Q}(\omega)$: contradiction.
- If $\sigma(\sqrt[3]{3}) = \omega\sqrt[3]{3}$, then $\sigma(\sqrt[3]{3}/\sqrt[3]{2}) = \sqrt[3]{3}/\sqrt[3]{2}$ hence $\sqrt[3]{3/2} \in N^{\langle \sigma \rangle} = \mathbb{Q}(\omega)$, so $\mathbb{Q}(\sqrt[3]{3/2}) = \mathbb{Q}(\sqrt[3]{12}) \subseteq \mathbb{Q}(\omega)$: contradiction.
- If $\sigma(\sqrt[3]{3}) = \omega^2 \sqrt[3]{3}$, $\mathbb{Q}(\sqrt[3]{3/4}) = \mathbb{Q}(\sqrt[3]{6}) \subseteq \mathbb{Q}(\omega)$: contradiction.

Remark 4.48 In the above example, $N = \mathbb{Q}(\theta_1, \theta_2, \theta_3) = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where θ_i are the roots of x^3-2 . Plotting these roots on Argand diagram gives the symmetry group $S_3 \cong D_3$ of an equilateral triangle. τ reflects the θ_i (complex conjugation), σ rotates the roots (but **doesn't** rotate all of N, as it fixes \mathbb{Q}). For $g \in G$, $g(\theta_i) = \theta_{\pi(i)}$ where π is permutation of $\{1,2,3\}$. So there is a group homomorphism φ : $G \to S_3$, $\varphi(g) = \pi$. $\ker(\varphi) = \{id\}$, so φ is injective and also surjective, since $|G| = |S_3| = 6$, so φ is isomorphism.

Definition 4.49 For $f(x) \in K[x]$, $\deg(f) = n \ge 1$, with n distinct roots, the **Galois group** of f(x), G_f , is Galois group of splitting field of f(x) over K (provided it is separable).

Remark 4.50 Elements of G_f permute roots of f, so G_f is subgroup of S_n . If f(x) irreducible over K, then G_f is **transitive** subgroup, i.e. given 2 roots α, β of f, there is a $g \in G_f$ with $g(\alpha) = \beta$. This gives a general pattern

polynomial \longrightarrow field extension \longrightarrow permutation group

Example 4.51 Consider $\mathbb{Q} \subset L = \mathbb{Q}(\theta) \subset N = \mathbb{Q}(\theta, i)$ where $\theta = \sqrt[4]{2}$. N is normal closure of $\mathbb{Q}(\theta)$, $[N : \mathbb{Q}] = 8$ so $|\text{Gal}(N/\mathbb{Q})| = 8$.

• Define $\sigma(\theta) = i\theta$, $\sigma(i) = i$, $\tau(\theta) = \theta$, $\tau(i) = -i$. Then $\tau^2 = \sigma^4 = id$. We have

	id	σ	σ^2	σ^3	au	$ au\sigma$	$ au\sigma^2$	$\tau\sigma^3$
θ	θ	$i\theta$	$-\theta$	-i heta	θ	$-i\theta$	$-\theta$	i heta
$oxed{i}$	i	i	i	i	-i	-i	-i	-i

so $G = \operatorname{Gal}(N/\mathbb{Q}) = \langle \sigma, \tau : \sigma^4 = \tau^2 = \operatorname{id}, \sigma\tau = \tau\sigma^3 \rangle \cong D_4$.

• Order 2 subgroups are $\langle \tau \rangle$, $\langle \tau \sigma \rangle$, $\langle \tau \sigma^2 \rangle$, $\langle \tau \sigma^3 \rangle$, $\langle \sigma^2 \rangle$.

- Order 4 subgroups are $\langle \sigma^2, \tau \rangle \cong (\mathbb{Z}/2)^2$, $\langle \sigma \rangle \cong \mathbb{Z}/4$, $\langle \sigma^2, \tau \sigma \rangle \cong (\mathbb{Z}/2)^2$.
- Respectively, intermediate field extensions of degree 4 are $\mathbb{Q}(\sqrt[4]{2})$, $\mathbb{Q}(i\sqrt[4]{2})$, $\mathbb{Q}(\sqrt{2},i)$, $\mathbb{Q}((1-i)\sqrt[4]{2})$, $\mathbb{Q}((1+i)\sqrt[4]{2})$.
- Respectively, intermediate field extensions of degree 2 are $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i)$, $\mathbb{Q}(i\sqrt{2})$.

5. Cyclotomic field extensions

5.1. Roots of unity

Definition 5.1 $\zeta \in K^*$ is *n*-th primitive root of unity if $\zeta^n = 1$ and $\forall 0 < m < n, \zeta^m \neq 1$, i.e. order of ζ in K^* is n.

Example 5.2

- ζ is primitive 1-st root of unity iff $\zeta = 1$.
- -1 is primitive 2-nd root of unity iff $char(K) \neq 2$.
- If $\operatorname{char}(K) = p$ prime, then K contains no p-th primitive roots of unity (since $\zeta^p = 1 \iff (\zeta 1)^p = 0 \iff \zeta = 1$).
- If $K = \mathbb{C}$, $\exp(2\pi i/n)$ is n-th primitive root of unity.

Proposition 5.3 Let $\zeta \in K^*$ primitive *n*-th root of unity, let $d = \gcd(m, n)$. Then ζ^m is primitive (n/d)-th root of unity.

Corollary 5.4 Let $\zeta \in K^*$ primitive *n*-th root of unity.

- $\zeta^m = 1 \iff m \equiv 0 \mod n$.
- ζ^m is primitive *n*-th root of unity iff $\gcd(m,n)=1$.

Definition 5.5 Let $\mu(K)$ denote subgroup of all roots of unity in K^* .

Theorem 5.6 Let K field, H finite subgroup of K^* , then H is cyclic.

Remark 5.7 This implies that any finite field \mathbb{F}_q can be written $\mathbb{F}_q = \mathbb{F}_p(\alpha)$ where α is generator of \mathbb{F}_q^{\times} .

Corollary 5.8 Let K field, $n \in \mathbb{N}$ be largest such that K contains primitive n-th root of unity ζ . Then $\mu(K)$ is cyclic subgroup in K^* generated by ζ .

5.2. n-th cyclotomic field extensions

Notation 5.9 Let $\zeta_n = \exp(2\pi i/n) \in \mathbb{C}$.

Definition 5.10 $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is *n*-th cyclotomic field extension.

Proposition 5.11 $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is Galois.

Definition 5.12 $\Phi_n(x) \coloneqq \prod_{a \in A} (x - \zeta_n^a)$ where $A = \{a \in \mathbb{N} : 0 < a < n, \gcd(a, n) = 1\}.$

Proposition 5.13 $\Phi_n(x) \in \mathbb{Q}[x]$ is irreducible and so is minimal polynomial of a primitive n-th root of unity over \mathbb{Q} . In particular, $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$, where $\varphi(n) = |(\mathbb{Z}/n)^{\times}|$ is Euler function.

Proposition 5.14 Properties of φ function:

- For prime $p, \varphi(p) = p 1$.
- For prime p, $\varphi(p^k) = p^k p^{k-1}$.
- If gcd(n, m) = 1, then $\varphi(nm) = \varphi(n)\varphi(m)$.
- If $n = \prod_{i=1}^r p_i^{k_i}$ is prime factorisation of n, then

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$$

Proposition 5.15 $\forall n \in \mathbb{N}, x^n - 1 = \prod_{n_1 \mid n} \Phi_{n_1}(x).$

Example 5.16

- $\Phi_1(x) = x 1$.
- $\bullet \quad \Phi_1(x)\Phi_2(x)=x^2-1 \Longrightarrow \Phi_2(x)=x+1.$
- $\Phi_1(x)\Phi_3(x) = x^3 1 \Longrightarrow \Phi_3(x) = x^2 + x + 1$.

Proposition 5.17

- For p prime, $\Phi_p(x) = x^{p-1} + \dots + x + 1$.
- For p prime, $\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$.
- For every $n \in \mathbb{N}$, $\Phi_n(x)$ has integer coefficients.

Theorem 5.18 $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n)^{\times}$.

Remark 5.19 To compute $(\mathbb{Z}/n)^{\times}$, note that for m, n coprime, $(\mathbb{Z}/mn)^{\times} \cong (\mathbb{Z}/m)^{\times} \times (\mathbb{Z}/n)^{\times}$ and

- If $p \neq 2$ prime, then $(\mathbb{Z}/p^r)^{\times}$ is cyclic of order $\varphi(p^r)$.
- $(\mathbb{Z}/4)^{\times} \cong \mathbb{Z}/2$ and for $r \geq 3$, $(\mathbb{Z}/2^r)^{\times} \cong \mathbb{Z}/2 \times \mathbb{Z}/2^{r-2}$.

Corollary 5.20 $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ is abelian so every subgroup is normal, so any subfield of $\mathbb{Q}(\zeta_n)$ is Galois over \mathbb{Q} .

Corollary 5.21 For p prime, $G = \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p)^{\times} \cong \mathbb{Z}/(p-1)$. In particular, for $d \mid (p-1)$, $\mathbb{Q}(\zeta_p)$ contains exactly one subfield of degree d and there are no other subfields.

Remark 5.22 For d=2 in above corollary, $\mathbb{Q}(\zeta_p)$ contains unique quadratic subfield $\mathbb{Q}(\sqrt{D_p})$, where $D_p=(-1)^{(p-1)/2}p$

Example 5.23 Gal($\mathbb{Q}(\zeta_n)/\mathbb{Q}$) not always cyclic, e.g. Gal($\mathbb{Q}(\zeta_8)/\mathbb{Q}$) $\cong \mathbb{Z}/2 \times \mathbb{Z}/2$.

Proposition 5.24

- If n odd, $\mu(\mathbb{Q}(\zeta_n))$ is cyclic of order 2n and is generated by $-\zeta_n$.
- If n even, $\mu(\mathbb{Q}(\zeta_n))$ is cyclic of order n and is generated by ζ_n .
- If gcd(m, n) = d, then $\mathbb{Q}(\zeta_m, \zeta_n) = \mathbb{Q}(\zeta_{mn/d})$.

5.4. Special properties of $\mathbb{Q}(\zeta_p)$, where p>2 is prime

Example 5.25 Gal($\mathbb{Q}(\zeta_5)/\mathbb{Q}$) $\cong (\mathbb{Z}/5)^{\times}$ has generator $\tau: \zeta_5 \mapsto \zeta_5^2$. \mathbb{Q} -basis $\{1, \zeta_5, \zeta_5^2, \zeta_5^3\}$ is not invariant under action of τ or any power of τ (since $\tau(\zeta_5^2) = \zeta_5^4$) but $\{\zeta, \zeta_5^2, \zeta_5^3, \zeta_5^4\}$ is invariant. The same holds for general p > 2 prime. For $\alpha_i \in \mathbb{Q}$, $\alpha_1 \zeta_p + \dots + \alpha_{p-1} \zeta_p^{p-1} \in \mathbb{Q}$ iff $\alpha_1 = \dots = \alpha_{p-1}$.

Example 5.26 If $x \in \mathbb{Q}(\zeta_p)$, $[\mathbb{Q}(x) : \mathbb{Q}] = |\{\sigma(x) : \sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})\}|$ In particular, if τ is generator of $G = \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ and $x = \alpha_1 \zeta_p + \dots + \alpha_{p-1} \zeta_p^{p-1}$ then set of all conjugates of x is equal to (note not all elements are distinct)

$$\{\tau^a(x): a \in [p-1]\} = \left\{\sum_{i=1}^{p-1} \alpha_i \zeta_p^{ai}: a \in [p-1]\right\}$$

Example 5.27 Let $x = \zeta_5 + \zeta_5^4$, $\tau : \zeta_5 \mapsto \zeta_5^2$ is a generator of $Gal(\mathbb{Q}(\zeta_5)/\mathbb{Q})$. $\tau(x) = \zeta_5^2 + \zeta_5^3 \neq x$ but $\tau^2(x) = x$, so $[\mathbb{Q}(x) : \mathbb{Q}] = 2$, i.e. $\mathbb{Q}(\zeta_5 + \zeta_5^4)$ is unique quadratic subfield in $\mathbb{Q}(\zeta_5)$.

Definition 5.28 Let $x \in \mathbb{Q}(\zeta_p)$, let minimal polynomial of x over \mathbb{Q} be $m(t) = (t - x^{(1)}) \cdots (t - x^{(d)})$. Conjugates of x over \mathbb{Q} are $x^{(1)} = x, ..., x^{(d)}$.

Example 5.29 Minimal polynomial of $\zeta_5 + \zeta_5^4 = 2\cos(2\pi/5)$ over \mathbb{Q} is $m(x) = (x - \zeta_5 - \zeta_5^4)(x - \zeta_5^2 - \zeta_5^3) = x^2 + x - 1$, with roots $(-1 \pm \sqrt{5})/2$. So $\cos(2\pi/5) = (-1 + \sqrt{5})/4$, and unique quadratic subfield of $\mathbb{Q}(\zeta_5)$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{5})$.

Example 5.30 Let $\tau \in G$ be generator of $G = \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$, i.e. $\tau(\zeta_p) = \zeta_p^a$, $a \mod p$ generates $(\mathbb{Z}/p)^{\times}$. Let

$$\Theta_p = \zeta_p - \tau \big(\zeta_p\big) + \tau^2 \big(\zeta_p\big) - \cdots + \tau^{p-3} \big(\zeta_p\big) - \tau^{p-2} \big(\zeta_p\big)$$

 Θ_p behaves like $\sqrt{D_p}$: $\tau(\Theta_p) = -\Theta_p$, $\tau^2(\Theta_p) = \Theta_p$. So $\Theta_p \in \mathbb{Q}(\zeta_p)^{\langle \tau^2 \rangle}$. Also, $\tau(\Theta_p^2) = \Theta_p^2$ so $\Theta_p^2 \in \mathbb{Q}(\zeta_p)^{\langle \tau \rangle} = \mathbb{Q}$. In fact, $\Theta_p^2 = D_p$. Therefore

$$\Theta_p^2 = A + B(\zeta_p + \dots + \zeta_p^{p-1}) = A - B$$

So when computing Θ_p^2 , only need to consider coefficients for 1 and ζ_p .

6. Cyclic field extensions

6.1. Cyclic extensions of degree 2

Example 6.1 Let L/K cyclic of degree 2, so $\operatorname{Gal}(L/K) = \{e, \tau\}, \tau^2 = e$. Let $\theta \in L - K$, then $\tau(\theta) \neq \theta$ (as otherwise $\theta \in L^{\langle \tau \rangle} = K$). Let $\theta_1 = \tau(\theta) - \theta$, so $\tau(\theta_1) = \tau^2(\theta) - \tau(\theta) = -\theta_1$. If $\operatorname{char}(K) \neq 2$, then $\theta_1 \neq -\theta_1$ and so $\theta_1 \notin K$, $L = K(\theta_1)$. θ_1 is "better" than θ , since $\tau(\theta_1) = -\theta_1$. Now if $a = \theta_1^2$, then $\tau(a) = a$, so $L = K(\sqrt{a})$.

Theorem 6.2 If $char(K) \neq 2$ and L/K is cyclic quadratic extension, then

$$\exists a \in K^{\times} - K^{\times^2}: \quad L = K(\sqrt{a})$$

Definition 6.3 $a_1, ..., a_n$ are independent modulo K^{\times^2} (independent modulo squares) if

$$a_1^{\varepsilon_1} \cdots a_n^{\varepsilon_n} \in K^{\times^2} \iff \text{all } \varepsilon_i \text{ are even}$$

Proposition 6.4 If $char(K) \neq 2$:

- $K(\sqrt{a_1}) = K(\sqrt{a_2}) \iff a_1 \equiv a_2 \mod K^{\times^2}$, i.e. $a_1 = a_2 \cdot b^2$, $b \in K^{\times}$.
- If $a_1, ..., a_n \in K^{\times}$ are independent modulo K^{\times^2} then $K(\sqrt{a_1}, ..., \sqrt{a_n})$ has degree 2^n over K with Galois group $\cong (\mathbb{Z}/2)^n$.
- If L/K Galois with Galois group $(\mathbb{Z}/2)^n$, then

$$\exists a_1, ..., a_n \in K^{\times}: L = K(\sqrt{a_1}, ..., \sqrt{a_n})$$

Remark 6.5 Let char(K)=2, then $\forall a\in K^{\times}, L=K(\sqrt{a})$ is normal but not separable (since minimal polynomial of e.g. \sqrt{a} is $x^2-a=(x+\sqrt{a})(x-\sqrt{a})=(x-\sqrt{a})^2$ so has repeated roots).

6.2. Cyclic extensions of degree n (the Kummer theory)

Definition 6.6 L/K is **cyclic of degree** n if it is Galois and Gal(L/K) is cyclic of order n.

Theorem 6.7 If K contains primitive n-th root of unity and for all divisors d > 1 of n, $a \in K^{\times}$ is not d-th power in K, then $L = K(\sqrt[n]{a})$ is cyclic extension of K of degree n. In particular, $x^n - a \in K[x]$ is irreducible.

Proposition 6.8 If $\zeta_p \in K$, $a \in K^{\times} - K^{\times^p}$, then $K(\sqrt[p]{a})/K$ is cyclic of degree p. In particular, $x^p - a \in K[x]$ is irreducible.

Theorem 6.9 Let K contain primitive n-th root of unity ζ_n , L/K is cyclic extension of degree n, $\operatorname{Gal}(L/K) = \langle \sigma \rangle$. Then

$$\exists a \in K^{\times} : L = K(\sqrt[n]{a})$$

Such an a is given by θ_b^n for some $b \in L$, where

$$\theta_b = b + \zeta_n^{-1} \sigma(b) + \dots + \zeta_n^{-(n-1)} \sigma^{n-1}(b)$$

is Lagrange resolvent for b, i.e. $L = K(\theta_b)$.

Lemma 6.10 (Artin's lemma) There exists $b \in L$ such that $\theta_b \neq 0$.

7. Finite fields

7.1. Existence and uniqueness

Lemma 7.1 Let K finite field, then K is field extension of \mathbb{F}_p for some prime p and $|K| = p^n$ where $n = [K : \mathbb{F}_p]$.

Theorem 7.2 Let p prime. Then $\forall n \in \mathbb{N}$, there is field K with $|K| = p^n$.

Theorem 7.3 Let K finite field with $|K| = q = p^n$. Then

- $\forall \alpha \in K, \alpha^q = \alpha$.
- $x^q x = \prod_{\alpha \in K} (x \alpha)$
- K is splitting field of $x^q x$ over \mathbb{F}_p .

Corollary 7.4 If K_1 , K_2 finite fields, $|K_1| = |K_2|$, then $K_1 \cong K_2$.

Definition 7.5 Let $q = p^n$, then \mathbb{F}_q is the unique (up to isomorphism) field containing q elements.

Definition 7.6 For $q = p^n$, the **Frobenius automorphism** is

$$\sigma: \mathbb{F}_q \to \mathbb{F}_q, \quad \sigma(\alpha) = \alpha^p$$

which is an \mathbb{F}_p -automorphism by Fermat's little theorem.

Theorem 7.7 Let $q = p^n$, p prime.

- $\mathbb{F}_q/\mathbb{F}_p$ is Galois of degree n.
- Frobenius automorphism generates $\mathrm{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ and there is group isomorphism

$$\operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p) \leftrightarrow \mathbb{Z}/n, \quad \sigma \longleftrightarrow 1 \operatorname{mod} n$$

7.2. Counting irreducible polynomials over finite fields

Notation 7.8 Let $\operatorname{Irr}_{\mathbb{F}_p}(m)$ denote set of all irreducible polynomials in $\mathbb{F}_p[x]$ of degree m. Let $N_p(m) = |\operatorname{Irr}_{\mathbb{F}_p}(m)|$.

Theorem 7.9 Let $q = p^m$, then $mN_p(m) = |\{\alpha \in \mathbb{F}_q : \mathbb{F}_p(\alpha) = \mathbb{F}_q\}|$.

Remark 7.10 To use above theorem, note that $\mathbb{F}_p(\alpha) \neq \mathbb{F}_{p^m}$ iff α belongs to proper subfield of \mathbb{F}_{p^m} .

Example 7.11

- If m is prime, then \mathbb{F}_{p^m} has only one proper subfield \mathbb{F}_p , so $mN_p(m)=|\mathbb{F}_{p^m}|-|\mathbb{F}_p|=p^m-p$.
- The proper subfields of \mathbb{F}_{p^4} are \mathbb{F}_p and \mathbb{F}_{p^2} , but $\mathbb{F}_p \subset \mathbb{F}_{p^2}$, so $4N_p(4) = |\mathbb{F}_{p^4}| |\mathbb{F}_{p^2}|$.
- $\mathbb{F}_p(\alpha) \neq \mathbb{F}_{p^6}$ iff $\alpha \in \mathbb{F}_{p^3} \cup \mathbb{F}_{p^2}$. Since $\mathbb{F}_{p^3} \cap \mathbb{F}_{p^2} = \mathbb{F}_p$, we have $6N_p(6) = |\mathbb{F}_{p^6}| |\mathbb{F}_{p^3}| |\mathbb{F}_{p^2}| + |\mathbb{F}_p| = p^6 p^3 p^2 + p$.

Proposition 7.12 We have

$$p^n = \sum_{m \mid n} m N_p(m)$$

which we can use recursively to compute any $N_p(m)$.

Example 7.13 We construct $L = \mathbb{F}_{3^{16}}$ by finding irreducible polynomial of degree 16 in $\mathbb{F}_3[x]$.

- $\mathbb{F}_9 = \mathbb{F}_3(\theta)$ where $\theta^2 + 1 = 0$, $\mathbb{F}_9 = \{a + b\theta : a, b \in \mathbb{F}_3\}$. $K := \mathbb{F}_9$ contains primitive 8-th root of unity since $\mathbb{F}_9^{\times} \cong \mathbb{Z}/8$.
- L/K is cyclic extension of degree 8, so by Kummer theory there exists $\alpha \in K$ such that $L = K(\sqrt[8]{\alpha})$. α must be element that is not square or fourth power in \mathbb{F}_9 , so we can look for elements that have order 8.
- $\alpha = \theta$ doesn't work since $\theta^2 = -1 \Longrightarrow \theta^4 = 1$. $\alpha = 1 + \theta$ works since $(1+\theta)^2 = \theta^2 + \theta + 1 = -\theta$, $(1+\theta)^4 = \theta^2 = -1$, $(1+\theta)^8 = 1$

so $\alpha = 1 + \theta$ has order 8 in \mathbb{F}_9 .

- So $L = K(\sqrt[8]{a}) = \mathbb{F}_9(\sqrt[8]{1+\theta}) = \mathbb{F}_3(\theta, \sqrt[8]{1+\theta}) = \mathbb{F}_3(\eta)$ where $\eta^8 = 1+\theta$. Now $[L:\mathbb{F}_3]=16$ by tower law, so $L=\mathbb{F}_{3^{16}}$ by uniqueness of finite fields.
- $\eta^8 = 1 + \theta \Longrightarrow (\eta^8 1)^2 = \theta^2 = -1 \Longrightarrow \eta^{16} + \eta^8 + 2 = 0$ so $f(x) = x^{16} + x^8 + 2 \in \mathbb{F}_3[x]$ is irreducible.

8. Galois groups of polynomials

8.1. Symmetric functions

Definition 8.1 Define action of S_n on $L = k(x_1, ..., x_n)$ by $\tau : x_j \mapsto x_{\pi(j)}$ where $\pi \in S_n$, which gives k-automorphism

$$\tau: L \to L, \quad \frac{f(x_1,...,x_n)}{g(x_1,...,x_n)} \mapsto \frac{f(x_{\pi(1)},...,x_{\pi(n)})}{g(x_{\pi(1)},...,x_{\pi(n)})}$$

The symmetric functions in L are elements of fixed field L^{S_n} .

Definition 8.2 The elementary symmetric polynomials $e_r \in L$ for $r \in [n]$ are

$$\begin{split} e_1 &= \sum_{1 \leq i \leq n} x_i \\ e_2 &= \sum_{1 \leq i < j \leq n} x_i x_j \\ &\vdots \\ e_r &= \sum_{1 \leq i_1 < \dots < i_r \leq n} x_{i_1} \dots x_{i_r} \\ &\vdots \\ e_n &= x_1 \dots x_n \end{split}$$

Define $K = k(e_1, ..., e_n)$.

Theorem 8.3 $K = L^{S_n}$ and L/K is Galois with $Gal(L/K) \cong S_n$.

Remark 8.4 Every finite group G is subgroup of S_n for some n, so there is always Galois extension with Galois group G: let $L = k(x_1, ...x_n)$, let $G \subseteq S_n$ act on L as above, then $\operatorname{Gal}(L/L^G) = G$.

Definition 8.5 For $f(x) \in K[x]$, **Galois group** of f(x), G_f , is Galois group of splitting field of f(x) over K (provided this extension is separable). If $\deg(f) = n$, G_f acts by permuting roots $\theta_1, ..., \theta_n$ of f, so is subgroup of S_n . There can be non-trivial relationships between roots, so G_f may be proper subgroup.

Corollary 8.6 Any symmetric polynomial in $k[x_1, ..., x_n]$ can be expressed as polynomial in elementary symmetric polynomials, i.e.

$$k[x_1, ..., x_n]^{S_n} = k[e_1, ..., e_n]$$

where LHS is set of symmetric polynomials, RHS is set of polynomials in elementary symmetric polynomials.

Example 8.7

- When n = 2, $x_1^2 + x_2^2 = e_1^2 2e_2$ and $x_1^3 + x_2^3 = e_1^3 3e_1e_2$.
- When n = 3, $x_1^2x_2 + x_1x_2^2 + x_2^2x_3 + x_2x_3^2 + x_3^2x_1 + x_3x_1^2 = e_1e_2 3e_3$.

Definition 8.8 Lexicographic ordering of monomials, $>_{lex}$ (or \prec_L), is

$$x_1^{a_1} \cdots x_n^{a_n} >_{\text{lex}} x_1^{b_1} \cdots x_n^{b_n}$$

iff $\exists 0 \leq j \leq n-1$ such that $a_1 = b_1, ..., a_j = b_j$ and $a_{j+1} > b_{j+1}$.

Example 8.9 $x_1^2 x_2^3 x_3 >_{\text{lex}} x_1^2 x_2^2 x_3^4$.

Definition 8.10 Leading term of $f(x_1,...,x_n) \in k[x_1,...,x_n]$ is largest monomial $cx_1^{a_1} \cdots x_n^{a_n}$ with $c \neq 0$, $a_i \neq 0$ for some i, appearing in f with respect to lexicographic ordering.

Note 8.11 If f is symmetric, then $a_1 \ge \cdots \ge a_n$.

Algorithm 8.12 Given $f(x_1,...,x_n) \in k[x_1,...,x_n]^{S_n}$, express f as polynomial in elementary symmetric polynomials:

1. Find leading term $cx_1^{a_1}\cdots x_n^{a_n}$ of f, compute

$$f_1 = f - ce_1^{a_1 - a_2} \cdots e_{n-1}^{a_{n-1} - a_n} e_n^{a_n}$$

Note leading term of $ce_1^{a_1-a_2}\cdots e_{n-1}^{a_{n-1}-a_n}e_n^{a_n}$ is also $cx_1^{a_1}\cdots x_n^{a_n}$ so leading term of f_1 is strictly smaller than leading term of f. Also, f_1 is symmetric.

2. If $f_1 \neq 0$, apply step 1 to get f_2, f_3, \dots Since leading term of f_1, f_2, \dots is strictly decreasing, eventually $f_i = 0$.

Example 8.13 Express $f(x_1, x_2) = x_1^3 + x_2^3$ in elementary symmetric polynomials:

• Leading term of f is $x_1^3 = x_1^3 x_2^0$, so

$$f_1 = f - e_1^{3-0} e_2^0 = -3x_1^2 x_2 - 3x_1 x_2^2$$

• Leading term of f_1 is $-3x_1^2x_2$, so

$$f_2 = f_1 - (-3)e_1^{2-1}e_2^1 = -3x_1^2x_2 - 3x_1x_2^2 + 3(x_1 + x_2)x_1x_2 = 0$$

• So $f_1 = f_2 + (-3)e_1^{2-1}e_2^1 = -3e_1e_2$ and $f = e_1^3 + f_1 = e_1^3 - 3e_1e_2$.

Example 8.14

- Let $\theta_1 = \frac{1}{3}(x_1 + \omega x_2 + \omega^2 x_3)$, $\theta_2 = \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3)$, where $\omega = \zeta_3$.
- Let $\sigma = (1 \ 2 \ 3) \in S_3$, then $\sigma(\theta_1) = \omega^2 \theta_1$, $\sigma(\theta_2) = \omega \theta_2$, hence

$$\sigma(\theta_1^3 + \theta_2^3) = \omega^6 \theta_1^3 + \omega^3 \theta_2^3 = \theta_1^3 + \theta_2^3$$

- Let $\tau = (2\ 3) \in S_3$, then $\tau(\theta_1) = \theta_2$, $\tau(\theta_2) = \theta_1$ so $\tau(\theta_1^3 + \theta_2^3) = \theta_1^3 + \theta_2^3$.
- Since $S_3 = \langle \sigma, \tau \rangle$, $f(x_1, x_2, x_3) = 27(\theta_1^3 + \theta_2^3) \in \mathbb{Q}[x_1, x_2, x_3]^{S_3}$. Applying the algorithm:
 - $f_1 = f 2e_1^3 = 9(x_1^2x_2 + \cdots).$
 - $f_2 = f_1 (-9)e_1e_2 = 27x_1x_2x_3.$

- $f_3 = f_2 27e_3 = 0.$
- So $f = 2e_1^3 9e_1e_2 + 27e_3$.
- By a similar process, $9\theta_1\theta_2 = e_1^2 3e_2$.

8.2. Galois theory for cubic polynomials

Example 8.15 (Solving quadratic) Let $char(k) \neq 2$. General quadratic polynomial can be written as

$$f(x) = x^2 - e_1 x + e_2 = (x - x_1)(x - x_2) \in K[x]$$

where $e_1 = x_1 + x_2, e_2 = x_1 x_2 \in K = k(e_1, e_2)$. Let $L = k(x_1, x_2) = K(x_1)$, then L/K is Galois and $Gal(L/K) = \{id, \sigma\} \cong S_2 \cong \mathbb{Z}/2$ where $\sigma(x_1) = x_2, \ \sigma(x_2) = x_1$. Since L/K cyclic and $\zeta_2 = -1 \in K$, by Theorem 6.9, Lagrange resolvent of x_1 is

$$\theta = \theta_{x_1} = x_1 + \zeta_2^{-1} \sigma(x_1) = x_1 - x_2$$

So $\sigma(\theta) = -\theta$ and $\theta^2 = e_1^2 - 4e_2$. $\Delta = \theta^2$ is **discriminant** of f(x). So we have $x_1 = (e_1 + \sqrt{\Delta})/2$, $x_2 = (e_1 - \sqrt{\Delta})/2$. If f(x) is irreducible, it has distinct roots, and so Galois group $G_f \cong \mathbb{Z}/2$.

Example 8.16 (Solving cubic)

• Let $char(k) \neq 2, 3$, let

$$f(x) = x^3 - e_1 x^2 + e_2 x - e_3 = (x - x_1)(x - x_2)(x - x_3) \in K[x]$$

where $e_1 = x_1 + x_2 + x_3$, $e_2 = x_1x_2 + x_1x_3 + x_2x_3$, $e_3 = x_1x_2x_3 \in K = k(e_1, e_2, e_3) \subset L = K(x_1, x_2, x_3)$.

- By Theorem 8.3, $\operatorname{Gal}(L/K) = S_3$ with normal subgroup $A_3 \cong \mathbb{Z}/3$. We have tower $K \subset M = L^{A_3} \subset L$. So $\operatorname{Gal}(L/M) \cong A_3 \cong \mathbb{Z}/3$, $\operatorname{Gal}(M/K) \cong S_3/A_3 \cong \mathbb{Z}/2$.
- Assume k contains primitive 3rd root of unity ω , so w^2 is also primitive 3rd root of unity. Define

$$\theta_1 = \frac{1}{3}(x_1 + \omega x_2 + \omega^2 x_3), \quad t_1 = \theta_1^3,$$

$$\theta_2 = \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3), \quad t_2 = \theta_2^3$$

then $t_1, t_2 \in M$ and $L = M(\theta_1) = M(\theta_2)$. By Example 8.14, $27(\theta_1^3 + \theta_2^3) = 2e_1^3 - 9e_1e_2 + 27e_3$, $9\theta_1\theta_2 = e_1^2 - 3e_2$, so t_1, t_2 are roots of quadratic resolvent of f(x):

$$(t-t_1)(t-t_2) = t^2 - \left(\frac{2e_1^3 - 9e_1e_2 + 27e_3}{27}\right)t + \left(\frac{e_1^2 - 3e_2}{9}\right)^3$$

- To find roots x_1, x_2, x_3 of f:
 - Solve quadratic resolvent to find t_1, t_2 .
 - Choose $\theta_1 = \sqrt[3]{t_1}$, find θ_2 from $9\theta_1\theta_2 = e_1^2 3e_2$.
 - ► Solve the linear system

$$\begin{cases} x_1 + x_2 + x_3 = e_1 \\ x_1 + \omega x_2 + \omega^2 x_3 = 3\theta_1 \\ x_1 + \omega^2 x_2 + \omega x_3 = 3\theta_2 \end{cases} \implies \begin{cases} x_1 = e_1/3 + \theta_1 + \theta_2 \\ x_2 = e_1/3 + \omega^2 \theta_1 + \omega \theta_2 \\ x_3 = e_1/3 + \omega \theta_1 + \omega^2 \theta_2 \end{cases}$$

Remark 8.17 To solve general cubic $f(x) = x^3 + ax^2 + bx + c$, first perform shift:

$$f(x - a/3) = x^3 + px + q$$

then quadratic resolvent is (memorise)

$$t^2+qt-rac{p^3}{27}$$

with roots $t_1 = \theta_1^3$, $t_2 = \theta_2^3$, choose θ_1, θ_2 such that $\theta_1 \theta_2 = -\frac{p}{3}$, then roots of f(x - a/3) are $x_1 = \theta_1 + \theta_2$, $x_2 = \omega^2 \theta_1 + \omega \theta_2$, $\omega \theta_1 + \omega^2 \theta_2$.

Example 8.18 (Galois groups of cubic polynomials) Let $\operatorname{char}(K) \neq 2, 3, \ f(x) = x^3 + ax^2 + bx + c \in K[x], \ \text{let } L \ \text{be splitting field for } f(x)$ over K, then $G_f = \operatorname{Gal}(L/K)$. Let $\alpha_1, \alpha_2, \alpha_3$ be roots of f(x) in L.

- If $\alpha_1, \alpha_2, \alpha_3 \in K$, then L = K, $G_f = \{id\}$.
- If $f(x) = (x \alpha_j)g(x)$ where $\alpha_j \in K$, $g(x) \in K[x]$ irreducible quadratic, then [L:K] = 2, $G_f \cong \mathbb{Z}/2$.
- If f(x) irreducible in K[x], then $K \subset K(\alpha_1) \subseteq K(\alpha_1, \alpha_2, \alpha_3) = L$, then either $[L:K(\alpha_1)] = 1$, so [L:K] = 3 and $G_f \cong A_3 \cong \mathbb{Z}/3$, or $[L:K(\alpha_1)] = 2$, so [L:K] = 6 and $G_f \cong S_3$.

Definition 8.19 Discriminant of $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$ is $\Delta = \delta^2$ where

$$\delta = (\alpha_1 - \alpha_2)(\alpha_2 - \alpha_3)(\alpha_3 - \alpha_1)$$

Note $\Delta \neq 0$ if f has distinct roots.

Note 8.20 If $G_f \cong A_3$, then $G_f = \langle \tau \rangle$ where $\tau : \alpha_1 \mapsto \alpha_2$, $\alpha_2 \mapsto \alpha_3$, $\alpha_3 \mapsto \alpha_1$, then $\tau(\delta) = \delta$ so $\delta \in L^{G_f} = K$ and $\Delta \in K^{\times^2}$. But if $G_f \cong S_3$, then if $\tau \in A_3$, $\tau(\delta) = \delta$ and if $\tau \in S_3 - A_3$, then $\tau(\delta) = -\delta$ so $\delta \notin K$ but $\Delta \in K$.

Theorem 8.21 Let $f(x) \in K[x]$ irreducible, $\deg(f) = 3$. Then

- $G_f \cong A_3 \Longleftrightarrow \Delta \in K^{\times^2},$ $G_f \cong S_3 \Longleftrightarrow \Delta \in K^{\times} K^{\times^2}.$

Theorem 8.22 Let $f(x) = x^3 + ax^2 + bx + c \in K[x]$, then

$$\Delta = 18abc - 4a^3c + a^2b^2 - 4b^3 - 27c^2$$

For reduced cubic $f(x) = x^3 + px + q$, (memorise)

$$\Delta = -4p^3 - 27q^2$$

Note 8.23 The reduced form of f(x) has same discriminant as f(x).

8.3. Galois theory for quartic polynomials

Example 8.24 Let $\operatorname{char}(k) \neq 2, 3, K = k(e_1, e_2, e_3, e_4) \subseteq L = k(x_1, x_2, x_3, x_4)$, so L is splitting field over K of $f(x) = x^4 - e_1 x^3 + e_2 x^2 - e_3 x + x_4$ and $\operatorname{Gal}(L/K) \cong S_4$.

Remark 8.25 S_4 can be visualised as symmetries of regular tetrahedron with vertices labelled $\{1, 2, 3, 4\}$. Consider three pairs of opposite edges

$$P_1 = \{(1,2),(3,4)\}, \quad P_2 = \{(1,3),(2,4)\}, \quad P_3 = \{(1,4),(2,3)\}$$

Any permutation in S_4 of the four vertices permutes P_1 , P_2 , P_3 , which gives map $\pi: S_4 \to S_3$.

- π is surjective group homomorphism.
- π has kernel $\ker(\pi) = \{ id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} = V_4 \cong \mathbb{Z}/2 \times \mathbb{Z}/2.$

- $A_4 \subset S_4$ is subgroup of even permutations (orientation-preserving symmetries). Restriction of π to A_4 gives another surjective homomorphism $A_4 \to A_3$ (and $\pi^{-1}(A_3) = A_4$) also with kernel V_4 .
- V_4 is kernel so is normal subgroup of S_4 and of A_4 . Note that V_4 is only subgroup of A_4 isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$, but there are four subgroups of S_4 , isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$, with V_4 the only normal one.
- This gives increasing sequence of subgroups in S_4

$$\{id\} \subset \mathbb{Z}/2 \subset V_4 \subset A_4 \subset S_4$$

and $V_4 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, $A_4/V_4 \cong A_3 \cong \mathbb{Z}/3$, $S_4/A_4 \cong \mathbb{Z}/2$.

- Each G_i in this sequence is normal subgroup of G_{i+1} and G_{i+1}/G_i is cyclic, meaning that S_4 is **solvable (soluble) group**.
- We have tower

$$K = L^{S_4} \subset L^{V_4} \subset L = L^{\{e\}}$$

By fundamental theorem, $Gal(L/L^{V_4}) = V_4 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, so L/L^{V_4} appears as biquadratic extension.

• V_4 is normal in S_4 so by fundamental theorem, $Gal(L^{V_4}/K) \cong S_4/V_4 \cong S_3$ by first isomorphism theorem. Hence L^{V_4} appears as splitting field of a cubic polynomial over K.

Example 8.26 (Solving quartic equations) Define

$$\begin{split} \theta_1 &= \frac{1}{2}(x_1 + x_2 - x_3 - x_4), \\ \theta_2 &= \frac{1}{2}(x_1 - x_2 + x_3 - x_4), \\ \theta_3 &= \frac{1}{2}(x_1 - x_2 - x_3 + x_4) \end{split}$$

Then $\forall j \in [3], \forall \sigma \in V_4$, $\sigma(\theta_j) = \pm \theta_j$. The θ_j arise from Lagrange resolvents for the three quadratic subextensions of L^{V_4} in L. They behave like $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Each $t_i = \theta_i^2$ is fixed by V_4 and

are permuted by $S_4/V_4 \cong S_3$. They are roots of **cubic resolvent** of f(x):

$$(t-t_1)(t-t_2)(t-t_3) = t^3 + s_1t^2 + s_2t + s_3$$

which has coefficients in $(L^{V_4})^{S_3} = L^{S_4} = K$. To find roots x_1, x_2, x_3, x_4 of f(x):

- Solve cubic resolvent to find t_1, t_2, t_3 .
- Set $\theta_j = \pm \sqrt{t_j}$ where signs are chosen so that $\theta_1 \theta_2 \theta_3 = (e_1^3 4e_1e_2 + 8e_3)/8$.
- Solve the linear system

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = e_1 \\ x_1 + x_2 - x_3 + x_4 = 2\theta_1 \\ x_1 - x_2 + x_3 - x_4 = 2\theta_2 \\ x_1 - x_2 - x_3 + x_4 = 2\theta_3 \end{cases} \implies \begin{cases} x_1 = e_1/4 + (\theta_1 + \theta_2 + \theta_3)/2 \\ x_2 = e_1/4 + (\theta_1 - \theta_2 - \theta_3)/4 \\ x_3 = e_1/4 + (-\theta_1 + \theta_2 - \theta_3)/2 \\ x_4 = e_1/4 + (-\theta_1 - \theta_2 + \theta_3)/2 \end{cases}$$

Remark 8.27 In practice, perform shift to kill x^3 coefficient to obtain reduced quartic:

$$f(x - a/4) = x^4 + px^2 + qx + r$$

• Cubic resolvent is (memorise)

$$t^3 + 2pt^2 + (p^2 - 4r)t - q^2$$

• Choose $\theta_1, \theta_2, \theta_3$ such that (memorise)

$$\theta_1\theta_2\theta_3=-q$$

• Roots of f(x-a/4) are (memorise)

$$x_1 = \frac{1}{2}(\theta_1 + \theta_2 + \theta_3),$$
 $x_2 = \frac{1}{2}(\theta_1 - \theta_2 - \theta_3),$ $x_3 = \frac{1}{2}(-\theta_1 + \theta_2 - \theta_3),$ $x_4 = \frac{1}{2}(-\theta_1 - \theta_2 + \theta_3)$

• Recover roots of f(x) by subtracting a/4.

Example 8.28 Find all complex roots of $f(x) = x^4 + 6x^3 + 18x^2 + 30x + 25$.

• Eliminate x^3 term:

$$f(x - 6/4) = x^4 + \frac{9}{2}x^2 + 3x + \frac{85}{16}$$

• p = 9/2, q = 3, r = 85/16, so cubic resolvent is

$$t^3 + 2pt^2 + (p^2 - 4r)t - q^2 = t^3 + 9t^2 - t - 9 = (t - 1)(t + 1)(t + 9)$$

So roots are $t_1 = 1, t_2 = -1, t_3 = -9$. Set $\theta_1 = \sqrt{t_1} = 1, \theta_2 = \sqrt{t_2} = i, \theta_3 = \pm \sqrt{t_3} = \pm 3i$ so that $\theta_1 \theta_2 \theta_3 = -q = -3$, i.e. $\theta_3 = 3i$.

• So roots of f(x-3/2) are

$$\begin{split} x_1 &= \frac{1}{2}(\theta_1 + \theta_2 + \theta_3) = \frac{1}{2}(1 + 4i), \\ x_2 &= \frac{1}{2}(\theta_1 - \theta_2 - \theta_3) = \frac{1}{2}(1 - 4i), \\ x_3 &= \frac{1}{2}(-\theta_1 + \theta_3 - \theta_3) = \frac{1}{2}(-1 - 2i), \\ x_4 &= \frac{1}{2}(-\theta_1 - \theta_2 + \theta_3) = \frac{1}{2}(-1 + 2i) \end{split}$$

• So roots of f(x) are $-1 \pm 2i$, $-2 \pm i$.

Example 8.29 (Galois groups of quartic polynomials)

- Let $\operatorname{char}(K) \neq 2, 3$, $f(x) = x^4 + ax^3 + bx^2 + cx + d \in K[x]$. Galois group is $G_f = \operatorname{Gal}(L/K)$ where L is splitting field for f(x) over K, and G_f is subgroup of S_4 .
- Assume that f(x) irreducible in K[x]. It can be shown there are five possible isomorphism classes of Galois groups: $S_4, A_4, V_4, \mathbb{Z}/4$ or D_4 .
- Let $R(t) \in K[t]$ be cubic resolvent of f(x) with roots $t_1 = \theta_1^2$, $t_2 = \theta_2^2$, $t_3 = \theta_3^2$. Let M be splitting field of R(t) over K, so

$$K \subset K(t_1, t_2, t_3) \subset M \subset L = M(\theta_1, \theta_2, \theta_3)$$

Theorem 8.30 Let $f(x) \in K[x]$ irreducible and have irreducible cubic resolvent $R(t) \in K[t]$ with roots $t_1 = \theta_1^2$, $t_2 = \theta_2^2$, $t_3 = \theta_2^3$. Let L be splitting field of f(x) over K (so $G_f = \operatorname{Gal}(L/K)$) and let M be splitting field of R(t) over K (so $G_R = \operatorname{Gal}(M/K)$).

- If $\Delta_R \in K^{\times^2}$ (i.e. $G_R \cong A_3$ and [M:K]=3), then $G_f \cong A_4$.
- If $\Delta_R \in K^{\times} K^{\times^2}$ (i.e. $G_R \cong S_3$ and [M:K] = 6), then $G_f \cong S_4$.

Example 8.31

- If $f(x) \in K[x]$ but cubic resolvent $R(t) \in K[t]$ is reducible, it is possible that all roots $t_1 = \theta_1^2$, $t_2 = \theta_2^2$, $t_3 = \theta_3^2$ are in K. Then M = K and $L = K(\theta_1, \theta_2, \theta_3)$. Since $\theta_1 \theta_2 \theta_3 \in K$, L/K is obtained by adjoining only two square roots to K. Since f(x) irreducible of degree 4, we have $[L:K] \geq 4$, hence only option is biquadratic extension $G_f = \operatorname{Gal}(L/K) = V_4 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.
- If only one root t_1, t_2, t_3 is in K (say it is t_1):
 - ▶ M is splitting field of irreducible quadratic over K. Hence $M = K(\sqrt{d})$ for some $d \in K^{\times} K^{\times^2}$ and $Gal(M/K) = \{id, \varphi\} \cong \mathbb{Z}/2$ where $\varphi(\sqrt{d}) = -\sqrt{d}$.

• We have

$$K\subset M=K(\sqrt{d})=K(\alpha,\overline{\alpha})\subset L=M(\sqrt{\alpha},\sqrt{\overline{\alpha}})$$

where α and $\overline{\alpha} = \varphi(\alpha)$ are conjugate elements in $M^{\times} - M^{\times^2}$ (corresponding to t_2 and t_3).

In this case, L/K is normal extension, since if $\alpha, \overline{\alpha}$ are roots of $x^2 + ax + b \in K[x]$, then $\pm \sqrt{\alpha}, \pm \sqrt{\overline{\alpha}}$ are roots of $x^4 + ax^2 + b \in K[x]$. So L is splitting field of $x^4 + ax^2 + b$ over K. For above tower of fields, we have Galois groups

$${id} \subset Gal(L/M) = H \subset Gal(L/K) = G$$

and $G/H \cong \operatorname{Gal}(M/K) = \{ \operatorname{id}, \varphi \} \cong \mathbb{Z}/2.$

Theorem 8.32 Let $M = K(\sqrt{d}), d \notin K^{\times^2}$, $Gal(M/K) = \{id, \varphi\}$. Let $\alpha, \overline{\alpha} = \varphi(\alpha) \in M^{\times} - M^{\times^2}$, and let $L = M(\sqrt{\alpha}, \sqrt{\overline{\alpha}}), G = Gal(L/K)$.

- If $\alpha \overline{\alpha} \in K^{\times^2}$, then [L:K] = 4 and $G \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.
- If $\alpha \overline{\alpha} \in M^{\times^2} K^{\times^2}$ then [L:K] = 4 and $G \cong \mathbb{Z}/4$.
- If $\alpha \overline{\alpha} \notin M^{\times^2}$, then [L:K] = 8 and $G \cong D_4$.

Note 8.33 In the case that $C := \alpha \overline{\alpha} \notin M^{\times^2}$ and so $G \cong D_4$:

- We have $Gal(M/K) = \{id, \varphi\}, \ \varphi : \sqrt{d} \mapsto -\sqrt{d}$.
- There are two lifts of φ to L:

$$\tau: (\sqrt{d}, \sqrt{C}, \sqrt{\alpha}) \mapsto (-\sqrt{d}, \sqrt{C}, \sqrt{\overline{\alpha}}),$$
$$\sigma: (\sqrt{d}, \sqrt{C}, \sqrt{\alpha}) \mapsto (-\sqrt{d}, -\sqrt{C}, \sqrt{\overline{\alpha}})$$

(so
$$\tau(\sqrt{\overline{\alpha}}) = \sqrt{\alpha}$$
, $\sigma(\sqrt{\overline{\alpha}}) = -\sqrt{\alpha}$)

• Then $G = \operatorname{Gal}(L/K) = \langle \tau, \sigma \mid \tau^2 = \sigma^4 = e, \tau \sigma = \sigma^3 \tau \rangle$.

8.4. A criterion for solvability by radicals

Note 8.34 Assume all fields in this section have characteristic 0.

Definition 8.35 L/K is **radical extension** if there is tower of field extensions

$$K = K_0 \subset \cdots \subset K_m = L$$

where for each $1 \leq i \leq m$, $K_i = K_{i-1} \left(\sqrt[n_i]{\alpha_i} \right)$ with $\alpha_i \in K_{i-1}$ and $n_i \in \mathbb{N}$.

Example 8.36 Let $\alpha = \sqrt[3]{2 + \sqrt[5]{3 - \sqrt{7}}}$. We have

$$K_0 = \mathbb{Q} \subset K_1 = \mathbb{Q}(\sqrt{7}) \subset K_2 = K_1\bigg(\sqrt[5]{3-\sqrt{7}}\bigg) \subset K_3 = K_2(\alpha)$$

Definition 8.37 $f(x) \in K[x]$ is **solvable in radicals** over K if there is a radical extension L of K containing at least one root of f(x).

Lemma 8.38 If f(x) irreducible and solvable in radicals, then all its roots belong to the radical field extension L.

Definition 8.39 A finite group G is **solvable (soluble)** if there exists decreasing sequence of subgroups

$$G = G_0 \supset \cdots \supset G_m = \{id\}$$

where for each $1 \le i \le m$, G_i is normal subgroup of G_{i-1} and G_{i-1}/G_i is cyclic.

Lemma 8.40 (Properties of solvable groups)

- Every subgroup of finite solvable group is solvable.
- Abelian groups are solvable.
- S_n is solvable iff $n \leq 4$.
- Let G finite group with normal subgroup H. Then G is solvable iff both H and G/H are solvable.

Theorem 8.41 (Galois' Theorem: Criterion for solvability in radicals) Let $f(x) \in K[x]$ irreducible. Then f(x) is solvable in radicals over K iff Galois group G_f is solvable.

8.5. Polynomials not solvable by radicals

Lemma 8.42 A_n is generated by 3-cycles (i j k).

Theorem 8.43 For $n \geq 5$, A_n and S_n are not solvable.

Theorem 8.44 Let $f(x) \in \mathbb{Q}[x]$ irreducible polynomial of degree 5 with exactly 3 real roots. Then f(x) has Galois group $G_f \cong S_5$ (and so f(x) is not solvable by radicals over \mathbb{Q}).