Figure 1A

Muc1 Exemplary Protein - (SEQ ID NO:19)

Signal Peptide Cleavage (G | S; A | S)

MTPGTQSPFF LLLLLTVLTV VTGSGHASST PGGEKETSAT QRSSVPSSTE KNAVSMTSSV LSSHSPGSGS

TTPPAHDVTS APDNKPAPGS TAPPAHGVTS STIQGODVIL APATEPASGS AATWGODVIS VPVIRPALGS 71

TAPPAHGVTS APDNRPALAS TAPPAHGVTS APDTRPPPGS TAPAAHGVTS APDTRPAPGS

APDTRPPFGS

141

TAPPVHNVTS ASGSASGSAS TLVHNGTSAR ATTTPASKST PFSIPSHHSD TPTTLASHST KTDASSTHHS 211 TVPPLTSSNH STSPQLSTGV SFFFLSFHIS NLQFNSSLED PSTDYYQELQ RDISEMFLQI YKQGGFLGLS 281

Post-translational cleavage site (G | S)

NIKFRPGSVV VQLTLAFREG TINVHDVETQ FNQYKTEAAS RYNLTISDVS VSDVPFPFSA QSGAGVPGWG 351

IALLULUCUL VALAIVYLIA LAVCOCRRKN YGQLDIFPAR DTYHPMSEYP TYHTHGRYVP PSSTDRSPYE Transmembrane region (TMR) 421

(SEQ ID NO:19; NM 002456) KVSAGNGGSS LSYTNPAVAA TSANL 491

Figure 1B

Muc1 juxtamembrane domain-GST Fusion

GST plus amino acids 337-422 of Mucl

GST-FLQI YKQGGFLGLS NIKFRPGSVV VQLTLAFREG TINVHDVETQ FNQYKTEAAS RYNLTISDVS VSDVPFPFSA QSGAGVPGWG IA (SEQ ID NO:7)

	(SEQ ID NO:8)	(SEQ ID NO:9)	(SEQ ID NO:10)	(SEQ ID NO:11)	(SEQ ID NO:12)
	21 amino acids (362-382) QLTLAFREGTINVHDVETQFN	21 amino acids (383-403) QYKTEAASRYNLTISDVSVSD	21 amino acids (337-357) FLQIYKQGGFLGLSNIKFRPG	21 amino acids (354-374) FRPGSVVVQLTLAFREGTINV	19 amino acids (404-422) VPFPFSAQSGAGVPGWGIA
	(362 - 382)	(383 - 403)	(337 - 357)	(354 - 374)	(404 - 422)
	acids	acids	acids	acids	acids
	amino	amino	amino	amino	amino
eptides	21	21	21	21	19
Synthetic Per	Peptide a	Peptide b	Peptide c	Peptide d	Peptide e

Figure 2A

Muc16 Exemplary Protein – (SEQ ID NO:20)

AMINO TERMINAL DOMAIN	TANDEM REPEAT DOMAIN	CARBOXY TERMINAL DOMAIN
TPTLGTLTPL SPVIQTLDVS GTDTSTTFPT QVTSSGTDRN TTVSLVTHPA PGEPETTPSM VLDEVPGMVT LILSPGELET AVLTVSPEVP SAFSNLTVAS EAESSSAIST ATSPGAEATS LTSLVISSGT PDMSDLVTSL TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG TTTIPPSIPG SRTSYNHRSW	NATERELQGL TLDRNSLYVN SVLQGLLKPL NSLYVNGFTH	LNASFHWLGS IKSYFSDCQV GNSDLP <u>FWAV</u>
SRATLTTSVY SLVSRSGAER DALTPLVTIS SPGAEDLVTS ALTNSPGEPA STTIPLTLS GTEAGSAVPT SGVNSTSIPT ATSHGVEASS SLVTSSGSET DTMPSTVTSP HSEPDTTPSI LPVSPGASKM SSAVSTTTIS PGVDTRSGVP WVTHPPQTST TTALLSTHPR LSTHPGTETS GPPEFSRTVT MSTLASESVT	DMRHPGSRKF TNGIQELGPY TGSRKFNTME EELGPYTLDR	LVEQVFLDKT ALNQLFRNSS YSPNRNEPLT
KITTTALKTT VLNRESETTA IPTNISPSEL TSSAIPIMTV LAAKTSTTNR PLVTSSRAVI ETTPSMATSH GVVTSLVTSS SSEPETTPSM VSPTVQGLVT TTSRFSHSEL TVPRTTPNYS ETHTSSAIPT VAITSPGPEA SDTAPSMVTS PSSEPDTMAS TLTHSPGMPE SPGVSAKTAP TETSPSVTSV TETSPSVTSV	FTITNLQYEE ERLYWELSNL NLQYEEDMRR WELSKLTNDI	ALFSSNLDPS YQRNKRNIED LDRSSVLVDG LQ
KRMETTTTAL STALPRTTPS TSHGADVSSA PSIATSPGAE SRLVTSMVTS VSTEVPGVVT PILTFSLGEP TVPTVSPEVP STTIPILTLS KMISAIPTLA PAESSSTLPR WVTHPAVTST ETTTSFITYS SHSKSDTTLP GTIPNFSHRG TGFTVPIRTV SGAATSTTVP TSRVDLSPTA DKPQTVTSWN	VPFMVPFTLN PDPEDLGLDR MPFTLNFTIT SPGLNREQLY	TMDSVLVTVK QDKAQPGTTN RNGTQLQNFT YYQSHLDLED
SPKGLHTGGT SLATSLGAET SELDTVSSTA NFSHHESDAT IPTSTISPAV ESSSAVPTPT SSRAVTSTII ATSHGAEASS PLVTSSRAVT TTSLVTHSEA PFTNISLVTH SPHESEATAS PTLTLSSGEP TWVPKTTPKF HPAETSTTVS ASSATHPGTQ PEMVTSQITS SSLFTLLVTG SGLSSASITT TTGSSPTVAK SGLSSASITT TTGSSPTVAK	AT MAVDAICTHR PSPTAAGPLL AICTHRLDPK	TFRFCLVTNL NFTITNLPYS AIYEEFLRMT EYNVQQQCPG
KGPQTSTSPA VFPDVPETTS VSKTTPNFFH TSSTIPRTIP THPEAQTSSA TPSMTTSHGA VPGVVTSLVT PGEPETTPSM VSPGVSGVVT LTISSDEPET VPTLTVSTGE ISATFPTVPE SSGTDTSITI IQLIHPAETN TPSPGEPETT TPSPGEPETT AVLTTISPGA TSTALPTQTT TTTLTVSPAV TSTRSPGIST	SLRPEKDSSA VGTSGTPSSS EKDGAATGVD GTPSSLSSPT/	TLYKGSQLHD SSSSTQHFYP SPLARRVDRV VTTRRKKEG
AAHRGTIRPV LIEMMITTPY VIHPAETIPT RITWLTHPAE GEPKTIASLV SIFFHSKSDT AIPTPTVSPG STTLPTLTLS EASSAVPTPT RAVTSTTIPT AHPGTEASSV TSLVTSSGRD VPDMVTSQVT TSLVTSETPY TPTLSETPY TDTSTAIPTL ATSPRTEASS ASLTIRPGAE TSSSAETSTS TSSSAETSTS TSSSAETSTS ASLTIRPGAE	EYLYSGCRLA TSTPGTSTVD SGCRLTLLRP GTSTVDLRTS	LLRDIQDKVT EMESSVYQPT HTGVDSLCNF LITCLICGVL
MEHITKIPNE NASRQMASTI SSEPDTTASW LTKSPHETET MTIPTLTLSP QTSPTVPWTT ATSHGEEASS SLVASSRAVT TPSMATSHGA GMVTSLVTSS SQPETIDSWV TISPGIPGVL DFPTITVSPD DSTTTFPTLT VPSSGTDTST VVTSQVTSSA HSSPDATPVM TVFPQVSETT GLLETTGLLA MPTPPKTSHG	LKPLFRNSSL GFTHRSSMPT FKNTSVGPLY QSSVSTTSTP	IT TYQLVDIHVT STFRSVPNRH ILIGLAGLLG
1 161 241 321 321 481 721 641 1041 1121 1281 1281 1361 1441 1601	1681 1761 1841 1921	11511 11591 11671

Figure 2B

Muc16 juxtamembrane domain-GST Fusion

GST plus amino acids 11559-11666 of Muc16

GST-TN YQRNKRNIED ALNQLFRNSS IKSYFSDCQV STFRSVPNRH HTGVDSLCNF SPLARRVDRV AIYEEFLRMT (SEQ ID NO:13) RNGTQLQNFT LDRSSVLVDG YSPNRNEPLT GNSDLP

Synthetic Peptides

(SEQ ID NO:14)	(SEQ ID NO:15)	(SEQ ID NO:16)	(SEQ ID NO:17)	(SEQ ID NO:18)
ids (11644-11663) SSVLVDG YSPNRNEPLT GNS	ids (11559-11578) TN YQRNKRNIED ALNQLFRN	ids (11576-11596) FRNSS IKSYFSDCQV STFRSV	ids (11595-11617) SVPNRH HTGVDSLCNF SPLARRV	ids (11618-11645) DRV AIYEEFLRMT RNGTQLQNFT LDRSS
(11644-11663)	(11559-11578)	(11576 - 11596)	(11595-11617)	(11618-11645)
20 amino acids	amino ac	amino ac	23 amino acids	amino ac
Peptide a 2	Peptide b 20	Peptide c 21	e G	Peptide e 28

Figure 3

Figure 4A

Clone 2C12

Clone 4H2

Clone 9B9

Clone 10B7

Clone 6H6

Clone 8H1

Figure 4A (continued)

Clone 6A4

Clone 6C7

Clone 3A3

Clone 7C10

Clone 2A10

Clone 5C11

Figure 4B

CM1 $(5.36 \times 10^{-8} \text{M})$

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

Figure 5A

Clone 1B8

Clone 1D2

Clone 2F4

Clone 3B9

Clone 4E2

Clone 4F8

Figure 5A (continued)

Clone 5G1

Clone 5G8

Clone 9E2

Clone 9G10

Clone 10C3

Clone 10G2

Figure 5A (continued)

Clone 2A9

Clone 2E6

Clone 2F9

Clone 3C2

Clone 3E7

Clone 5C5

Figure 5A (continued)

Clone 5E11

Clone 7G7

Clone 9D8

Clone 10C9

Clone 2D3

Clone 9G4

Figure 5B

M11

Figure 6A

muc1flagmuc1

(SEQ ID NO:21) Figure 6B

NETGTAACTT CTCGCCACTG GCTCGGAGAG TAGACAGAGT TGCCATCTAT GAGGAATTTC TGCGGATGAC CCGGAATGGT ACCCAGCTGC AGAACTTCAC CCTGGACGG	AAGCACATTGAA GAGGGGGGC CGAGCCTCTC ATCTGTCTCA ACGGTAGATA CTCCTTAAAG ACGCCTACTG GGCCTTACCA TGGGTCGACG TCTTGAAGTG GGACCTGTCC	ECORI	AGEGAGISTIC TIGTGGAIGG GTAITICTICC AACAGAAAIG AGCCCTTAAC IGGGAATICI GACCTITCCCI ICIGGGGCTGI CAICCICAIC GGCTIGGGAG GACTICGGG
TGTGTAACTT CTCGCCACTG GCTCGGAGAG TAGACAGAGT	ACACATTGAA GAGCGGTGAC CGAGCCTCTC ATCTGTCTCA		AGCAGTGTCC TTGTGGATGG GTATTCTCCC AACAGAAATG
221			331

GACTCCTGGG	TCACACCTAG
CTGAGGACCC	AGTGTGGATC
GGCTTGGCAG	CTACTACCAG
CCGAACCGTC	GATGATGGTC
CATCCTCATC	AGTGCCCAGG TCACGGGTCC
GTATTCTCCC AACAGAAATG AGCCCTTAAC TGGGAATTCT GACCTTCCCT TCTGGGCTGT CATCCTCATC GGCTTGGCAG GACTCCTGGG CATAAGAGGG TTGTCTTTAC TCGGGAATTG ACCCTTAAGA CTGGAAGGGA AGACCCGACA GTAGGAGTAG CCGAACCGTC CTGAGGACCC	· GCGGTGTCCT GGTGACCACC CGCCGGCGGA AGAAGGAAGG AGAATACAAC GTCCAGCAAC AGTGCCCAGG CTACTACCAG TCACACCTAG
GACCTTCCCT	AGAATACAAC
CTGGAAGGGA	TCTTATGTTG
TGGGAATTCT	AGAAGGAAGG
ACCCTTAAGA	TCTTCCTTCC
AGCCCTTAAC TCGGGAATTG	CGCCGGCGGA
AACAGAAATG	GGTGACCACC
TTGTCTTTAC	CCACTGGTGG
GTATTCTCCC	GCGGTGTCCT
CATAAGAGGG	CGCCACAGGA
AGCAGTGTCC TTGTGGATGG	ACTCATCACA TGCCTGATCT
TCGTCACAGG AACACCTACC	TGAGTAGTGT ACGGACTAGA
AGCAGTGTCC	ACTCATCACA
TCGTCACAGG	TGAGTAGTGT
331	441

XhoI

AAACTCATCT CAGAAGAA TCTGACCGGT TAAATGCATC TAGAGGGCCC TTTGAGTAGA ATTTACGTAG ATCTCCCGGG 661

BamHI

Figure 7

Figure 8

Figure 9

0.0 | 10-14 | 10-13 | 10-12 | 10-14 | 10-10 | 10-9 | 10-8 | 10-7 Figure 10B 0.4-0.8--9.0 0.2-1.2-1.0 A405 10.8 10-8 10-9 [MJ-172] M [MJ-171] M 10-10 10-11 10-9 10-12 Figure 10C Figure 10A 0.0 10-13 0.0 0.2-0.4-0.2-0.8-0.4-0.8--9.0 1.0-1 -9.0 1.0-1.2-

[MJ-173] M

dillian payve et al nou-shed avribodies ... 18340

304A

204A

Figure 12F

175

OVCAR3

D

125

50

50

10-12

10-12

10-12

[MJ-171] M

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

Figure 13B

1200-caov3

1000-

800-

-009

400-

200-

[CM1] M

10-12

Gillian PAYNE et al NON-SHED ANTIBODIES TO..

Gillian PAYNE et al NON-SHED ANTIBODIES TO.. A-8340

