Processing

Basis

Beschrijving	Voorbeeld
Nieuw venster openen waarin	size(960, 540)
we beelden kunnen tonen.	
Het resulterende beeld	save("image.png");
opslaan als een bestand	
Een string 'printen' naar de	print("Multec is cool");
console	print(x);
Een string + nieuwe lijn	println("Multec is cool");
'printen' naar de console	println(x);
	Nieuw venster openen waarin we beelden kunnen tonen. Het resulterende beeld opslaan als een bestand Een string 'printen' naar de console Een string + nieuwe lijn

Een variabele declareren

datatype naam = waarde	int	(gehele getallen)	<i>bv. int x</i> = 1;
	float	(decimale getallen)	bv. float snelheid = 120.80;
	String	(tekst)	<pre>bv. string naam = "Dieter";</pre>
	boolean	(true/false)	bv. boolean isSmart = true;

Een variabele kan enkel aangesproken worden vanuit het instructieblok waarin het wordt gedeclareerd en alle hierin geneste instructieblokken (= het *bereik*)

Een functie declareren

terugkeertype naam(parameters) { instructies/implementatie }

- terugkeertype: het datatype van de waarde die de functie na uitvoeren teruggeeft
 - → functies die geen waarde teruggeven: terugkeertype void, d.m.v. return (geen haakjes)
 - → max. 1 terugkeerwaarde kan uitgevoerd worden d.m.v. *return()* (meerdere *return*-instructies mag, maar er wordt er maar één uitgevoerd)
- naam: naam waarmee de functie later opgeroepen kan worden
 - → zelfde voorwaarden als variabelen:
 - eerste karakter moet een letter of een liggend streepje zijn
 - daaropvolgende karakters moeten een letter, cijfer of een liggend streepje zijn
- <u>parameters</u>: variabelen die dienen als plaatshouders voor argumenten, gedeclareerd in de functiedefinitie
- <u>argumenten</u>: de concrete waarden die we als parameters willen gebruiken en die bij het uitvoeren van de functie meegestuurd kunnen worden
- <u>implementatie</u>: de reeks van instructies waarmee een functie een bepaalde functionaliteit realiseert

Nut van functies:

- een reeks instructies hergebruiken binnen een programma
- functies als modulaire bouwstenen waarmee we complexe functionaliteit kunnen opbouwen
- <u>abstractie maken</u> van implementatiedetails van de functie om zich te kunnen concentreren op de complexe functionaliteit
- → Er kunnen ≠ definities aan een functie gegeven worden, met ≠ aantal en datatype van parameters

Een array initialiseren

- Alle waarden in een array moeten het zelfde datatype hebben
- De lengte van de array kunnen we op voorhand bepalen maar kan daarna niet meer gewijzigd worden
- De positie van een element in een array noemen we de index van dat element in de array.

- In een array begint de index te tellen bij 0

Een waarde uit een array opvragen: naam[index];

Een waarde in een array plaatsen: naam[index] = waarde;

Datatype van de waarden	Declaratie en initialisatie	Initiele waarden
int	<pre>int[] reeks = new int[10];</pre>	0
float	float[] reeks = new float[10];	0.0
boolean	boolean[] reeks = new boolean[10];	false
String	<pre>String[] reeks = new String[10];</pre>	null
Plmage	PImage[] reeks = new PImage[10];	null
PFont	PFont[] reeks = new PFont[10];	null

Operatoren

	naam	oper	ratoren
1.	unaire	-	unaire negatie-operator
	operatoren die een bewerking uitvoeren op 1 getal	!	unaire ontkennings-operator
2.	multiplicatieve	*	vermenigvuldigen
		/	delen
		%	modulus (restwaarde v.e. deling
3.	additieve	+	optellen
		-	aftrekken
4.	relationele	<	kleiner dan
	twee uitdrukkingen met elkaar vergelijken	>	groter dan
		<=	kleiner dan of gelijk aan
		>=	groter dan of gelijk aan
5.	gelijkheids	==	gelijk aan
	twee uitdrukkingen op gelijkheid testen	!=	niet gelijk aan
6.	toekenning	=	toekenning
	de nieuwe waarde van een variabele berekenen op basis	+=	x = x + y
	van de vorige waarde, in één expressie	-=	x = x - y
	$bv. \ v += b \implies v = v + b$	*=	x = x * y
		/=	x = x / y
		%=	x = x % y
		++	x = x + 1
			x = x - 1

Vormen tekenen

Functie	Beschrijving	Voorbeeld
point(x, y)	Een punt tekenen.	point(100, 100)
line(x1, y1, x2, y2)	Een lijn tekenen tussen 2 punten.	line(200, 100, 400, 300)
quad(x1, y1, x2, y2, x3, y3, x4, y4)	Een vierhoek tekenen.	quad(100, 200, 500, 100, 500, 200, 100, 300)
rect(x, y, breedte, hoogte)		
(als de standaard rect-modus actief is)	Een rechthoek tekenen.	rect(100, 100, 100, 100)
rectMode(parameter)	De rect-modus aanpassen.	CORNER
		1,2 = linkerbovenhoek
		3,4 = breedte, hoogte
		CORNERS
		1,2 = linkerbovenhoek
		3,4 = tegenovergestelde hoek
		RADIUS
		1,2 = middelpunt
		3,4 = helft van de breedte/hoogte
		CENTER
		1,2 = middelpunt
		3,4 = breedte, hoogte
ellipse(x, y, breedte, hoogte)	Ellipsen en cirkels tekenen.	ellipse(300,150,100,100)
(als de standaard ellipse- modus actief is)	zmpsen en en keis tekenem	Cp3C(000),130),130)
ellipse Mode (parameter)	De ellipse-modus aanpassen.	CENTER
		1,2 = middelpunt
		3,4 = breedte, hoogte
		RADIUS
		1,2 = middelpunt
		3,4 = helft van de breedte/hoogte
		CORNER
		1,2 = linkerbovenhoek
		3,4 = breedte, hoogte
		CORNERS
		1,2 = linkerbovenhoek
		3,4 = tegenovergestelde hoek
		J, - Legenovergestelde nock

Vertex

= complexere vormen tekenen d.m.v. een reeks verbonden punten te specificeren

Kleuren

Functie	Beschrijving	Voorbeeld
background(grijswaarde) background(rood, groen, blauw) background(rood, groen, blauw, alpha)	De achtergrondkleur van het scherm instellen	background(125); background(125,230,180); background(125,230,180,120);
stroke(grijswaarde) stroke(rood, groen, blauw) stroke(rood, groen, blauw, alpha)	Bepalen in welke kleur lijnen en omlijningen getekend zullen worden.	stroke(125); stroke(125,230,180); stroke(125,230,180,120);
noStroke()	Geen omlijningen tekenen.	
fill(grijswaarde) fill(rood, groen, blauw) fill(rood, groen, blauw, alpha)	Bepalen in welke kleur o.a. vierhoeken en ellipsen worden gevuld.	fill(125); fill(125,230,180); fill(125,230,180,120);
noFill()	Vormen niet opvullen met een vulkleur.	
colorMode(mode) colorMode(mode, max) colorMode(mode, max1, max2, max3) colorMode(mode, max1, max2, max3, maxA)	Bepalen op welke manier kleurwaarden worden geïnterpreteerd: - RGB of HSB - bereik van de kleurwaarde (standaard: 0 – 255)	colorMode(RGB); colorMode(RGB, 100); colorMode(HSB, 360, 100, 100); colorMode(HSB, 360, 100, 100, 1);

Invoer

Functie	Beschrijving	Voorbeeld
mousePressed()	Functie die opgeroepen wordt elke keer een muisknop wordt ingedrukt.	<pre>void mousePressed() { println("KLIK!"); }</pre>
mouseClicked()	Functie die opgeroepen wordt elke keer een muisknop wordt ingedrukt en losgelaten.	<pre>void mouseClicked() { println("KLIK!"); }</pre>

Interpolatie

= de positie van een waarde binnen een bereik op een ander bereik projecteren (met dezelfde verhouding),

Functie: map(v, a, b, a', b')

De functie neemt 5 argumenten:

- 1. de waarde die geprojecteerd wordt,
- 2. de beginwaarde van het bereik van waaruit geprojecteerd wordt,
- 3. de eindwaarde van het bereik van waaruit geprojecteerd wordt,
- 4. de beginwaarde van het bereik waarop geprojecteerd wordt,

de eindwaarde van het bereik waarop geprojecteerd wordt.

Iteratiestructuren

Selectiestructuren

= bepaalde instructies in een programma enkel uitvoeren indien aan bepaalde condities wordt voldaan

Instructies uitvoeren indien aan een voorwaarde voldaan wordt

```
if (testexpressie) {
  if-instructies
}
```

Instructies uitvoeren indien wel of niet aan een voorwaarde voldaan wordt

```
if (testexpressie) {
   if-instructies
}
else {
   else-instructies
}
```

Instructies uitvoeren indien wel of niet aan één of meerdere voorwaarden voldaan wordt

```
if (testexpressie) {
    if-instructies
    // Moet steeds één voorzien zijn
    if-instructies
    // (verplicht)
}
else if (testexpressie) {
    else-if-instructies
}
else {
    else-instructies
    // Mag slechts éénmaal voorkomen
}
// (niet verplicht)
```

Actieve programma's

Statisch programma

Actief programma

1. Globale variabelen declareren

2. *setup*-functie

= initialisatie (bevat onder andere de *size*-functie)

```
void setup() {
    setup-instructies
}
```

3. *draw*-functie

= de update-loop (iteratie)

```
void draw() {
    draw-instructies
}
```

Functie	Beschrijving	
frameCount	Systeemvariabele die het aantal iteraties van de update-loop	
	bijhoudt	
exit()	Het programma beëindigen	
noLoop()	De update-loop beëindigen	
loop()	De update-loop hervatten nadat hij gestopt werd	
frameRate	Systeemvariabele die de frame rate bijhoudt	
frameRate()	De frequentie waarmee Processing de update-loop herhaalt	
	(standaard: 60)	
saveFrame("bestandsnaam.extensie")	Huidige frame opslaan	
	(hash-tekens # in de bestandsnaam worden vervangen door het	
	nummer van de frame)	

Goniometrie

Om de x/y-positie van een bepaald punt op een cirkel te bekomen maken we gebruik van goniometrie:

```
float x = cx + cos(h) * s;
float y = cy + sin(h) * s;
```

gebruik makend van volgende variabelen:

```
cx = de x-positie van het middelpunt van de cirkel
```

cy = de y-positie van het middelpunt van de cirkel

s = de straal van de cirkel

h = de hoek van de beoogde punt op de cirkel, uitgedrukt in radialen

Functie	Beschrijving
PI	Ingebouwde constante die π voorstelt
TWO_PI	Ingebouwde constante die 2 keer π voorstelt
HALF_PI	Ingebouwde constante die π/2 voorstelt
QUARTER_PI	Ingebouwde constante die π/4 voorstelt
radians(graden)	Converteert graden naar radialen

Transformaties

- worden uitgevoerd op het hele coördinatenstelsel, niet alleen getekende vormen
- meerdere transformaties die mekaar volgen worden ge<u>enterpreteerd volgens het op dat moment</u> geldende co<u>o</u>rdinatenstelsel (m.a.w. het originele co<u>o</u>rdinatenstelsel wordt niet hersteld)
- transformaties <u>vertrekken vanuit het nulpunt</u> van het op dat moment geldende coördinatenstelsel
- transformaties (en meer bepaald *pushMatrix* en *popMatrix*) werken met een <u>first-in-last-out-datastructuur</u>: het eerste element op de stack wordt er het laatste afgehaald, het laatste element wordt er als eerste afgehaald (bv. een queue/wachtrij)

Functie	Beschrijving	Voorbeeld
translate(x, y)	Het coördinatenstelsel horizontaal	translate(50, 50);
	en/of verticaal verplaatsen.	
rotate(radialen)	Het coördinatenstelsel roteren	rotate(PI / 4);
	volgens een bep. hoek.	
scale(verhouding)	Het coördinatenstelsel schalen	scale(2);
scale(x, y)	volgens een bep. verhouding.	
pushMatrix()	De huidige toestand van het	
	coördinatenstelsel op de stack	
	plaatsen (meestal in het begin van	
	een iteratie)	
popMatrix	De toestand die bovenaan de <i>stack</i>	
	staat terug toepassen op het	
	coördinatenstelsel (meestal op het	
	einde van een iteratie)	