Topology Course Notes (KSM1C03)

Day 14: 19th September, 2025

uncountable ordinal -- filter -- ultrafilter lemma -- Tychonoff's theorem

14.1 Properties of S_{Ω}

Proposition 14.1: (Properties of S_{Ω})

Suppose S_{Ω} is given the order topology.

- a) For any set $A \subset S_{\Omega}$, the union $\bigcup_{a \in A} S_a$ is either a section (and hence countable), or all of S_{Ω} .
- b) Any countable set of S_{Ω} is bounded
- c) S_{Ω} is sequentially compact.
- d) S_{Ω} is limit point compact.
- e) S_{Ω} is not compact.
- f) S_{Ω} is first countable.

Proof

a) If A admits an upper bound, then it admits a least upper bound, say, b. We claim that $\bigcup_{a \in A} S_a = S_b$. Indeed, for any $x < a \in A$, we have $x < a \le b$ and so $x \in S_b$. On the other hand, for any x < b, we have x is not an upper bound of A, and so, $x < a \le b$ for some $a \in A$. Then, $x \in S_a$.

Otherwise, assume A is not bounded. Suppose $\bigcup_{a\in A} S_a$ is not all of S_{Ω} . Pick some $b\in S_{\Omega}\setminus\bigcup_{a\in A} S_a$. Now, b is not an upper bound of A (as A is not upper bounded). So, $b< a\in A$. But then $b\in S_a$, a contradiction.

- b) For a countable set $A \subset S_{\Omega}$, the subset $\bigcup_{a \in A} S_{a+1}$ is countable, and hence, not all of S_{Ω} . Then, $A \subset \bigcup_{a \in A} S_{a+1} = S_b$ for some b. Clearly, b is an upper bound of A.
- c) WLOG, suppose $\{x_n\}$ be a sequence of distinct elements in $S_\Omega.$ Consider

$$x_{n_k} = \min \left\{ x_n \mid n \ge k \right\}.$$

Then, clearly $x_{n_1} < x_{n_2} < \dots$ Now, $\{x_{n_k}\}$ being countable set, is bounded, and hence admits a least upper bound, say b. Clearly $b \notin \{x_{n_k}\}$, as the subsequence is strictly

increasing. For any open set $b \in U \subset S_{\Omega}$, we have $b \in (x,b] \subset U$. Now, x is not an upper bound of $\{x_{n_k}\}$, and hence, $a < x_{n_{k_0}} < b$ for some k_0 . But then $a < x_{n_l} < b$ for any $l \ge k_0$. In other words, $x_{n_l} \in U$ for all $l \ge k_0$. Thus, $x_{n_k} \to b$.

- d) Since S_{Ω} is sequentially compact, it is limit point compact.
- e) For each $x \in S_{\Omega}$, consider the open sections $S_{x+1} \coloneqq \{y \in X \mid y < x+1\}$, which are open. Here x+1 is the successor of x. Clearly, $S_{\Omega} = \bigcup_{x \in S_{\Omega}} S_{x+1}$. If possible, suppose, there is a finite subcover, $S_{\Omega} = \bigcup_{i=1}^n S_{x_i+1}$. But the right-hand side is a finite union of countable sets, and hence countable, whereas S_{Ω} is uncountable. This is a contradiction.
- f) For any $x \in S_{\Omega}$, we have the section $S_x = \{a \mid a < x\}$ is countable. Consider the open sets $\{U_a = (a, x+1) \mid a < x\}$, which are all open neighborhoods of x. It is clear that this is a countable basis at x (Check!).

Proposition 14.2: (\bar{S}_{Ω} is not first countable)

The space $\bar{S}_{\Omega} = S_{\Omega} \cup \{\Omega\}$ is not first countable at Ω .

Proof

Observe that the basic open sets containing Ω are of the form $(x,\Omega]$ for $x\in S_{\Omega}$. If possible, suppose, there is countable neighborhood basis at Ω , say, $\{U_i\}$. We then have $\Omega\subset (x_i,\Omega]\subset U_i$ for some $x_i\in S_{\Omega}$. Now, $\bigcup S_{x_i}=S_b$ for some $b\in S_{\Omega}$. Consider the basic open set $(b+1,\Omega]$. There is some $\Omega\in (x_i,\Omega]\subset U_i\subset (b+1,\Omega]$. But then $b+1\leq x_i$, a contradiction. Hence, \bar{S}_{Ω} is not first countable at Ω .

14.2 (Ultra)Filters

Definition 14.3: (Filter and ultrafilter)

Given a set X, a *filter* on it is a collection $\mathcal{F} \subset \mathcal{P}(X)$ of subsets such that the following holds.

- a) $\emptyset \notin \mathcal{F}$.
- b) For any $A,B\subset X$, we have $A\cap B\in \mathcal{F}$ if and only if $A,B\in \mathcal{F}$.

A filter \mathcal{F} on a set X, is called an *ultrafilter* if for any $A \subset X$ either $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$.

Exercise 14.4: (Filter equivalent definition)

Given any collection $\mathcal{F} \subset \mathcal{P}(X)$ of subsets, the following are equivalent.

- a) For any $A, B \subset X$, we have $A \cap B \in \mathcal{F}$ if and only if $A, B \in \mathcal{F}$
- b) \mathcal{F} satisfies the following.
 - i) \mathcal{F} is closed under finite intersection, i.e, $F_1, \ldots, F_n \in \mathcal{F}$ implies $\bigcap_{i=1}^n F_i \in \mathcal{F}$.
 - ii) \mathcal{F} is closed under supersets, i.e, if $A \in \mathcal{F}$, then $B \in \mathcal{F}$ whenver $B \supset A$.

Example 14.5: (Principal ultrafilter)

For any $x \in X$ fixed, consider the collection

$$\mathcal{F} = \{ A \subset X \mid x \in A \} .$$

It is easy to see that \mathcal{F} is an ultrafilter on X, Such ultrafilters are called the *principal ultrafilter*. Any ultrafilter which is not principal, is called a *free ultrafilter*.

Theorem 14.6: (Ultrafilter lemma)

Every filter on a set X is contained in an ultrafilter.

Proof

Let \mathcal{F} be a filter on X. Consider the collection

$$\mathfrak{F} \coloneqq \{ \mathcal{G} \mid \mathcal{G} \text{ is a filter on } X, \text{ and } \mathcal{F} \subset \mathcal{G} \}$$
 .

It follows that every chain (ordered by inclusion) in \mathfrak{F} admits a maximal element, given by the union. Then, by Zorn's lemma, \mathfrak{F} admits a maximal element, say, $\overline{\mathcal{F}}$. Since $\overline{\mathcal{F}}$ is a maximal filter, it is an ultrafilter, which contains \mathcal{F} by construction.

Definition 14.7: (Convergence of filter)

Given a filter \mathcal{U} on a space X, we say \mathcal{U} converges to a point $x \in X$, if for any open neighborhood $x \in U$, we have $U \in \mathcal{U}$.

Theorem 14.8: (Ultrafilter and compactness)

A space X is compact if and only if every ultrafilter on X converges to at least one point.

Proof

Suppose X is a compact space. Let $\mathcal U$ be an ultrafilter on X. If possible, suppose $\mathcal U$ does not converge to any point in X. Then, for each $x \in X$, there exists an open nbd $x \in U_x$ such that $U_x \notin \mathcal U$. Since $\mathcal U$ is ultrafilter, this means $X \setminus U_x \in \mathcal U$. Now, $X = \bigcup_{x \in X} U_x$ admits a finite sub-cover, say, $X = \bigcup_{i=1}^k U_{x_i}$. This, means

$$\emptyset = X \setminus X = \bigcap_{i=1}^{k} (X \setminus U_{x_i}) \in \mathcal{U},$$

as $\mathcal U$ is closed under finite intersection. This is a contradiction as $\emptyset \not\in \mathcal U$.

Conversely, suppose X is not compact. Then, there exists an open cover, $\mathcal{U} = \{U_{\alpha}\}$ such that there is no finite sub-cover. Consider the collection

$$\mathcal{F} := \{ F_{\alpha} = X \setminus U_{\alpha} \}$$
.

Note that for any finite collection, we have $\cap_{i=1}^k F_{\alpha_i} = X \setminus \bigcup_{i=1}^k U_{\alpha_i} \neq \emptyset$. In other words, $\mathcal F$ has finite intersection property. Then, we can close $\mathcal F$ under finite intersections, and then under supersets, to get a filter, say, $\mathfrak F \supset \mathcal F$. But $\mathfrak F$ is contained in some ultrafilter, say $\mathfrak U \supset \mathfrak F$. Now, for any $x \in X$, we have $X \in U_\alpha$ for some α . Then, $F_\alpha = X \setminus U_\alpha \in \mathfrak U \Rightarrow U_\alpha \notin \mathfrak U$. Thus, $\mathfrak U$ does not converge to any $x \in X$, a contradiction.

14.3 Tychonoff's Theorem

Theorem 14.9: (Tychonoff's Theorem)

Given a collection $\{X_{\alpha}\}$ of compact spaces, the product $X = \Pi X_{\alpha}$, with the product topology, is a compact space.

Proof

Suppose \mathcal{U} is an ultrafilter on X. For the projection map $\pi_{\alpha}: X \to X_{\alpha}$, we have the ultrafilter

$$\mathcal{U}_{\alpha} := (\pi_{\alpha})_* \mathcal{U} = \left\{ A \subset X_{\alpha} \mid (\pi_{\alpha})^{-1}(A) \in \mathcal{U} \right\}$$

on X_{α} . Since X_{α} is compact, \mathcal{U}_{α} converges to some point in X_{α} . By the axiom of choice, we have some $x=(x_{\alpha})\in X$ such that \mathcal{U}_{α} converges to x_{α} for each α . Let us show that \mathcal{U} converges to x. Observe that for any open neighborhood $x\in U\subset X$, we have U is generated by the sub-basic open sets of the form $\{\pi_{\alpha}^{-1}(V)\mid V\subset X_{\alpha}\}$. Since a filter is closed under finite intersection and supersets, if we are able to show that any sub-basic open neighborhood of x is an element of \mathcal{U} , we are done. But for any $V\subset X_{\alpha}$ open, with $x\in \pi_{\alpha}^{-1}(V)$ precisely when $x_{\alpha}\in V$. Since \mathcal{U}_{α} converges to x_{α} , we have $Y\in \mathcal{U}_{\alpha}\Rightarrow \pi_{\alpha}^{-1}(V)\in \mathcal{U}$. Hence, \mathcal{U} converges to x. Since \mathcal{U} is an arbitrary ultrafilter, we have X is compact.

Proposition 14.10: (Axiom of choice from Tychonoff)

Suppose Tychonoff's theorem is true. Then, axiom of choice holds.

Proof

Let $\{X_{\alpha}\}$ be an arbitrary collection nonempty sets. Since a set cannot be an element of itself, we have new sets $Y_{\alpha} = X_{\alpha} \sqcup \{X_{\alpha}\}$. For simplicity, denote $p_{\alpha} = \{X_{\alpha}\} \in Y_{\alpha}$. Now, give a topology on Y_{α} as

$$\mathcal{T}_{\alpha} = \{\emptyset, \{p_{\alpha}\}, X_{\alpha}, Y_{\alpha}\}\$$

. Clearly $(Y_{\alpha}, \mathcal{T}_{\alpha})$ is a compact space, having only finitely many open sets. Consider the product $Y = \Pi_{\alpha} Y_{\alpha}$. Now, for each α , we have the sub-basic open set

$$U_{\alpha} := \{ y \in Y \mid \pi_{\alpha}(y) = p_{\alpha} \} = \pi_{\alpha}^{-1}(p_{\alpha}),$$

since $\{p_{\alpha}\}$ is open in Y_{α} . We claim that $\{U_{\alpha}\}$ has not finite sub-cover. If possible, suppose, $Y=\bigcup_{i=1}^n U_{\alpha_i}$. Then, make finitely many choices : $x_i\in X_{\alpha_i}$, and define x by setting $\pi_{\alpha}(x)=p_{\alpha}$ for $\alpha\not\in\{a_1,\ldots,a_n\}$ and $\pi_{\alpha_i}(x)=x_i$ for $1\leq i\leq n$. Then, clearly $x\not\in\bigcup_{i=1}^n U_{\alpha_i}$, a contradiction. Thus, the collection $\{U_{\alpha}\}$ admits no finite sub-cover. By Tychonoff's theorem, Y is compact. Hence, $\{U_{\alpha}\}$ is not a covering of Y. So, there exists some $y\in Y\setminus\bigcup_{\alpha}U_{\alpha}$. Observe that $\pi_{\alpha}(y)\in X_{\alpha}$, as $y_{\alpha}\neq p_{\alpha}$. Thus, $y\in\Pi X_{\alpha}$. This is precisely the axiom of choice.

Proposition 14.11: (Compact but not sequently compact)

The product space $X=[0,1]^{[0,1]}=\Pi_{0\leq t\leq 1}[0,1]$ is compact, but not sequentially compact.

Proof

It follows from Tychonoff's theorem that the product space $X=[0,1]^{[0,1]}$ is compact, since each [0,1] is so. For each $n\geq 1$, consider the function $\alpha_n:[0,1]\to\{0,1\}$ defined by

 $\alpha_n(x) = \text{the } n^{\text{th}} \text{ digit in the binary expansion of } x.$

Clearly, $\{\alpha_n\}$ is a sequence in X. If possible, suppose, $\alpha_{n_k} \to \alpha \in X$. Then, for each $x \in [0,1]$, we must have $\alpha_{n_k}(x) \to \alpha(x)$. Consider any point x such that $\alpha_{n_k}(x)$ is 0 or 1 according as k is even or odd. Clearly the sequence $\alpha_{n_k}(x)$ cannot converge, a contradiction. Thus, X is not sequentially compact.