Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem Examination May-2024 EN3ES30 / BC3ES12

Basic Civil Engineering & Mechanics

Programme: B.Tech./B.Sc. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

• `	_	Notations and symbols have the	neir usual meaning.				
Q.1	i.	The initial setting time of Ordinary Portland Cement is:					
		(a) 10 minutes	(b) 20 minutes				
		(c) 30 minutes	(d) 60 minutes				
ii. Which of the following is not a part of superstructure of a building							
		(a) Beam (b) Wall	(c) Lintel (d) Foundation				
	iii.	The least count of prismatic	compass is:	1			
		(a) 10 minutes	(b) 30 degrees				
		(c) 30 minutes	(d) 1 degree				
	iv.	The benchmark is at a heig	The benchmark is at a height of 200 m. and the first staff reading is				
		1.505 m, the instrument will	be at a height of:				
		(a) 198.495 m	(b) 201.505 m				
		(c) 205.505 m	(d) 195.505 m				
	v.	The vertical distance between	n two successive contour lines is:				
		(a) Contour interval	(b) Contour gradient				
		(c) Horizontal equivalent	(d) None of these				
	vi.	Contour drawn at small distance have slope.					
		(a) Gentle (b) Steep	(c) Uniform (d) Zero				
	vii.	Which of the following relation	on stand true for a perfect truss?	1			
		(a) $m+3=2j$ (b) $m+3>2j$	(c) $m+3<2j$ (d) $m=2(3j)$				
		1					
		(a) Newton (b) Joules	(c) Watt (d) None of these				
	ix.	x. Shear force diagram in case of point load will be:					
		(a) Vertical straight line	(b) Inclined line				
		(c) 2 deg. parabola	(d) 3 deg. parabola				

P.T.O.

[2]

(b) Simply supported

1

One end of a beam is fixed, and another is free, the beam is:

(a) Cantilever

		(c) Overhanging (d) Fixed	
Q.2	i. ii.	Write two characteristics of first-class bricks. Draw a flow diagram explaining load transfer mechanism in a building and specify the role of foundation.	2 3
	iii.	Write the role of bogues compound in cement. Also define initial and final setting time of cement.	5
OR	iv.	Explain flooring with all its types in detail.	5
Q.3	i. ii.	Write two fundamental principles of survey. Write three points of difference between whole circle and reduced bearing system.	2 3
	iii.	Write about chain survey (principle, instrument used and procedure of how the area of field is calculated).	5
OR	iv.	The following staff readings were taken during a levelling practice: 2.405, 2.385, 2.650, 2.430, 1.580, 1.690, 1.325 (m) Calculate the reduced levels of all the stations if the instrument was shifted after 4 th staff reading and the benchmark is at a height of 434 metres. Solve by height of instrument method and apply suitable check.	5
Q.4	i. ii.	Write a short note on remote sensing and its applications. Derive the formulae for computation of area by trapezoidal and Simpson's rule.	3 7
OR	iii.	The perpendicular offsets taken at 10m interval from a survey line to an irregular boundary are 2.19m, 3.2m, 4.36m, 6.1m, 5.5m, 7.6m, 8.4m, 8.8m, 5.4m. Calculate the area enclosed and compare the results by trapezoidal rule and Simpson's rule.	7
Q.5		Attempt any two:	
	i.	Write the statement and derive a relation to determine the resultant of two forces by parallelogram law of forces.	5
	ii.	State and prove Lami's theorem.	5
	iii.	Use method of section to calculate the forces in the members DF, DG, EG.	5

- Q.6 i. Define point of contraflexure.
 - i. Draw shear force and bending moment diagram for the given beam:

2

8

8

OR iii. Draw shear force and bending moment diagram for the given beam:

[4]

Scheme of Marking

Faculty of Engineering End Sem Examination Dec-2023 EN3ES30 Basic Civil Engineering and Mechanics

Programme: B.Tech. Branch/Specialisation:

Q.1	i)	c) 30 minutes	1
	ii)	d) Foundation	1
	iii)	c) 30 minutes	1
	iv)	b) 201.505 m	1
	v)	a) Contour interval	1
	vi)	b) Steep	1
	vii)	a) m+3=2j	1
	viii)	a) Newton	1
	ix)	a) Straight line	1
	x)	a) Cantilever	1
Q.2	i.	2 marks for two characteristics (one mark each)	2
	ii.	1 mark for flow chart and 2 marks for role of foundation	3
	iii.	3 marks for role of bogues compound and 2 marks for initial and	5
		final setting time definition	
OR	iv.	2 marks for flooring and 3 marks for its types	5
Q.3	i.	2 marks for two principles (one mark each)	2
	ii.	3 marks for 3 point of differences (one mark each)	3
	iii.	1 mark for principle, 1 mark for instruments and 3 marks for explanation	5
OR	iv.	2 marks for table filling, 2 marks for RL calculation and 1 mark	5
		for check	
Q.4	i.	3 marks for remote sensing and applications	3
	ii.	3 marks for trapezoidal rule and 4 marks for Simpson's rule	7
OR	iii.	3 marks for area by trapezoidal rule, 3 marks for area by Simpson's rule and 1 mark for result comparison	7
Q.5	i.	1 mark for statement and 4 marks for derivation	5

	ii.	1 mark for statement and 4 marks for proof	5
OR	iii.	2 marks for calculation of unknown reactions and 3 marks for calculation of forces in the members	5
Q.6	i.	2 marks for correct definition	2
	ii.	1 mark for FBD, 2 marks for unknown reactions, 2 marks for shear force and SFD, 3 marks for bending moment and BMD	8
	iii.	1 mark for FBD, 2 marks for unknown reactions, 2 marks for shear force and SFD, 3 marks for bending moment and BMD	8

P.T.O.

BMCA) = ORA = ON-W.

BM (N) = 3.89 RA - 100 * 3.89 * 3.89/2 = 1514.29 - 756.605 = 757.685 Nm BM (B) = 4RA - 100 x4x2 = 757.12 N-m.

BMC = 8 RA - 100 X4 X 6 - 400 siy 60 (0) = 714.24 N- m.

BM (D) = ONW.

Q3 (iv) 2.405, 2.385, 2.650, 2.430, 1.580, 1.690, 1.325

_		1	٧		9	
B S.ta ⁿ	85 (m)	IS (m)	FS (m)	HI (m)	RL (m)	Remark
A	2.405			436.405	1	FRL
		2.385			434-020	
	1	2.650			433-755	
В	1.580		2.430	435.555	433-975	Stan Change
		1.690			433.865	0
		-	1.325		434.23	LRL
		Î				
1						
	. 0 ~					

Calculations -

HI = RL + BS = 434 + 2.405 = 436.405 m New RL = HI - IS/FS = 436.405 - 2.385 = 434.02 m

Check -

SBS-SFS = LRL - FRL

(2.405 + 1.580) - (2.430 + 1.325) = 434.23 - 4343.985 - 3.755 = 0.23

0.23 = 0.23

(3)
$$A = 10 \text{ m}$$
 $A = 8 \text{ segments}$
 $A = 8 \text{ segments}$

FBD of RHS past of Section X-X.

	1014			
S. NO]	force en member for for	Magnitude 2.5 N 17.677 N 35 N	Nature compression compression Tension	_ (3 marks)

3) Bending moment calculations.

$$BMA = BME = 0 N M$$

 $(BMB)_L = (-170 \times 1) = -170 N M$
 $(BMB)_R = (-170 \times 1) + 800 = 630 N M$
 $(BMC) = (-170 \times 4) + 800 = 120 N M$
 $(BMD) = (-170 \times 4) + 800 + (-400 \times 1)$
 $= -450 N M$