htlp //www.brenda. unickoeln/de./php/resutt

Αпγ	question?	-> Use	the	BRENDA	Discussion	aroups

=	PRINT

Mark a special word or phrase in this record:	Mark!	
	All organism	I
	Bos taurus	
	Gallus gallus	1
	Homo sapiens	
Select one or more organism in this record:		Submit

EC NUMBER COMMENTARY

2.4.1.212

RECOMMENDED NAME GeneOntology No.

hyaluronan synthase

GO:0050501

SYSTEMATIC NAME

No entries in this field

SYNONYMS	ORGANISM	COMMENTARY	LITERATURE
CHAS2		SwissProt	-
CHAS3	_	SwissProt	*
DG42 protein	-	SwissProt	-
HA synthase	-	SwissProt	-
HuHAS1	-	SwissProt	-
hyaluronan synthethase	-	-	-
hyaluronate synthase	-	-	-
hyaluronate synthetase	-	-	-
hyaluronic acid synthase	-	-	-
hyaluronic acid synthetase	-	-	-
XHAS1	-	SwissProt	-
XHAS2	-	SwissProt	-
XHAS3	-	SwissProt	_

CAS REGISTRY NUMBER COMMENTARY

39346-43-5

REACTION

COMMENTARY

n UDP-N-acetyl-D-glucosamine + n UDP-D-glucuronate = [beta-N-acetyl-D-glucosaminyl(1->4)beta-D-glucuronosyl (1->3)]n+ 2n UDP

The enzyme from Streptococcus Group A and Group C requires Mg2+. It is highly specific for UDP-GlcNAc and UDP-GlcA; no copolymerization is observed if either is replaced by UDP-Glc, UDP-Gal, UDP-GalNAc or UDP-GalA. Similar enzymes have been found in a variety of organisms

REACTION TYPE ORGANISM COMMENTARY LITERATURE hexosyl group transfer - - -

ORGANISM

COMMENTARY LITERATURE

h

b e

e ehf e h ec

Gallus gallus	Swissprot	-			
Homo sapiens	-	<u>13</u> , <u>15</u>			
Homo sapiens	Swissprot	-			
Mus musculus	-	<u>3</u> , <u>6</u> , <u>14</u>			
Mus musculus	Swissprot	-			
Paramecium bursaria Chlorella virus	1 -	<u>5</u>			
Pasteurella multocida	-	<u>9</u> , <u>11</u>			
Rattus norvegicus	Swissprot	-			
Streptococcus equisimilis	-	<u>4</u> , <u>10</u>			
Streptococcus pyogenes	-	<u>1</u> ,2,8,	<u>10</u> , <u>12</u>		
Streptococcus pyogenes	Swissprot	-			
Xenopus DG42	-	7			
Xenopus laevis	Swissprot	-			
SUBSTRATE PRODUCT	REACTION DIAGRAM	ORGANISM	COMMENTARY/ Substrate r:=reversible ir:=irreversible		COMMENTARY/ LIT Product Pr
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	<u>A</u>	Streptococcus pyogenes	-	1,2,8, <u>10</u> , <u>12</u>	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	<u>A</u>	Mus musculus	-	<u>3</u> , <u>6</u> , <u>14</u>	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	<u>A</u>	Streptococcus equisimilis	-	<u>4</u> , <u>10</u>	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	<u> </u>	Paramecium bursaria Chlorella virus 1	-	<u>5</u>	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	<u> </u>	Xenopus DG42	-	7	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate		Pasteurella multocida	-	9,11	-
UDP-N- acetyl-D- glucosamine UDP-D-glucuronate + UDP-D- glucuronate	A	Homo sapiens	-	13 . 15	-

Swissprot

h

Bos taurus

b e

e e h f e h

h ec

NATURAL SUBSTRATE	NATURAL PRODUCT	REACTION DIAGRAM	ORGANISM	COMMENTARY SUBSTRATE		COMMENTARY PRODUCT		O (F
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	A	Streptococcus pyogenes	-	1,2,8,10, 12	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u> </u>	Mus musculus	-	3,6, <u>14</u>	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u>&</u>	Streptococcus equisimilis	-	<u>4</u> , <u>10</u>	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u> </u>	Paramecium bursaria Chlorella virus 1	-	<u>5</u>	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u> </u>	Xenopus DG42	-	7	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u>A</u>	Pasteurella multocida	-	<u>9</u> , <u>11</u>	-	-	
UDP-N- acetyl-D- glucosamine + UDP-D- glucuronate	UDP-D- glucuronate	<u>A</u>	Homo sapiens	-	<u>13</u> , <u>15</u>	-	-	

COFACTOR ORGANISM COMMENTARY LITERATURE IMAGE

No entries in this field

METAL IONS	ORGANISM	COMMENTARY	LITERATURE
Co2+	Paramecium bursaria Chlorella viru	s 2% as effective as Mn2+ at similar concentrations <5>	<u>5</u>
Mg2+	Paramecium bursaria Chlorella viru.	s 20% as effective as Mn2+ at similar concentrations <5>	<u>5</u>
M g2+	Xenopus DG42	-	<u>7</u>
Mn2+	Paramecium bursaria Chlorella viru	s essential for activity <5>	<u>5</u>
Mn2+	Pasteurella multocida	-	<u>9</u>
INHIBITORS	ORGANISM COM	MMENTARY LITERATURE IMAGE	
N-ethylmalei	mide Streptococcus pyogenes	- <u>12</u> <u>● 2D-image</u>	

ACTIVATING COMPOUND ORGANISM COMMENTARY LITERATURE IMAGE

h be e h f e h ec

No entries in this field

KM VALUE [mM]	KM VALUE [mM] Maximum	SUBSTRATE	ORGANISM	COMMENTARY	LITERATURE	IMAGE
additional information	-	more	Mus musculus	values for other substrate concentrations <6>	<u>6</u>	-
0.03	-	UDP-D- glucuronate	Mus musculus	HAS2 <6>	<u>6</u>	<u>2D-</u> image
0.03	-	UDP-D- glucuronate	Mus musculus	HAS3 <6>	<u>6</u>	● <u>2D-</u> image
0.04	-	UDP-D- glucuronate	Streptococcus pyogenes	-	<u>10</u>	● <u>2D-</u> image
0.05	-	UDP-D- glucuronate	Streptococcus equisimilis	-	<u>10</u>	● <u>2D-</u> image
0.06	-	UDP-D- glucuronate	Xenopus DG42	-	<u>7</u>	● <u>2D-</u> image
0.07	-	UDP-D- glucuronate	Mus musculus	HAS1 <6>	<u>6</u>	● <u>2D-</u> image
0.14	-	UDP-D- glucuronate	Pasteurella multocida	-	<u>11</u>	● <u>2D-</u> image
0.06	-	UDP-N-acetyl-D- glucosamine	Streptococcus equisimilis	-	<u>10</u>	● <u>2</u> D- image
0.08	-	UDP-N-acetyl-D- glucosamine	Mus musculus	HAS3 <6>	<u>6</u>	● <u>2D-</u> image
0.11	-	UDP-N-acetyl-D- glucosamine	Mus musculus	HAS2 <6>	<u>6</u>	● <u>2D-</u> image
0.14	-	UDP-N-acetyl-D- glucosamine	Streptococcus pyogenes	-	10	● <u>2D-</u> image
0.16	-	UDP-N-acetyl-D- glucosamine	Pasteurella multocida	-	11	● 2D- image
0.23	-	UDP-N-acetyl-D- glucosamine	Xenopus DG42	-	Z	<u>2D-</u> image
0.79	-	UDP-N-acetyl-D- glucosamine	Mus musculus	HAS1 <6>	<u>6</u>	● <u>2D-</u> image

Ki VALUE [mM] Ki VALUE [mM] Maximum INHIBITOR ORGANISM COMMENTARY LITERATURE IMAGE No entries in this field

TURNOVER NUMBER

TURNOVER NUMBER MAXIMUM

SUBSTRATE ORGANISM COMMENTARY LITERATURE IMAGE

No entries in this field

[µM/min/mg]

SPECIFIC ACTIVITY SPECIFIC ACTIVITY MAXIMUM ORGANISM COMMENTARY LITERATURE

No entries in this field

pH OPTIMUM	pH MAXIMUM	ORGANISM	COMMENTARY	LITERATURE
7.6	8.1	Xenopus DG42	-	7
7.2	-	Paramecium bursaria Chlorella virus 1	_	<u>5</u>

h e h f b e h ec

pH RANGE pH RANGE MAXIMUM ORGANISM COMMENTARY LITERATURE

7 8.4 Xenopus DG42 - 7

TEMPERATURE OPTIMUM TEMPERATURE OPTIMUM MAXIMUM ORGANISM COMMENTARY LITERATURE
No entries in this field

TEMPERATURE RANGE TEMPERATURE MAXIMUM ORGANISM COMMENTARY LITERATURE

No entries in this field

SOURCE TISSUE ORGANISM COMMENTARY LITERATURE

breast adenocarcinoma cell Mus musculus B6-cell line <14> 14

glioma cell Homo sapiens cell line <13> 13

keratinocyte Homo sapiens - <u>15</u>

 LOCALIZATION
 ORGANISM
 COMMENTARY
 GeneOntology No.
 LITERATURE

 membrane
 Streptococcus pyogenes
 enzyme is predicted to be an integral membrane protein <1>
 GO:0016020
 1,2,8,12

 membrane
 Mus musculus
 GO:0016020
 3,6

MOLECULAR WEIGHT ACCESSION NO. OF **ENTRY NAME ORGANISM SOURCE** Sequence CODE AA [Da] Show 551 63685 O57427 pBLAST HAS2 XENLA Xenopus laevis Swissprot Sequence Show Q92819 pBLAST HAS2_HUMAN Homo sapiens 552 63566 Swissprot Sequence Show O97711 pBLAST HAS2_BOVIN Bos taurus 552 63459 Swissprot Sequence Show P70312 pBLAST HAS2_MOUSE Mus musculus 552 63492 Swissprot Sequence **₾** Show O35776 pBLAST HAS2_RAT Rattus norvegicus 552 63534 **Swissprot** Sequence **♦** Show P13563 pBLAST HAS1 XENLA Xenopus laevis 588 68522 Swissprot Sequence Streptococcus **७** Show Q54865 pBLAST HASA_STRPY 419 47886 Swissprot pyogenes Sequence Show O00219 pBLAST HAS3_HUMAN Homo sapiens 553 63070 Swissprot Sequence Show O08650 pBLAST HAS3_MOUSE Mus musculus 554 63338 Swissprot Sequence **७** Show Q61647 pBLAST HAS1_MOUSE Mus musculus 583 65544 **Swissprot** Sequence Show Q92839 pBLAST HAS1_HUMAN Homo sapiens 578 64884 **Swissprot** Sequence Show O57424 pBLAST HAS2_CHICK Gallus gallus 552 63744 Swissprot Sequence

PDB ORGANISM

No entries in this field

MOLECULAR WEIGHT	MOLECULR WEIGHT MAXIMUM	ORGANISM	COMMENTARY	LITERATURE
66000	•	Homo sapiens	gel filtration <13>	<u>13</u>
52000	<u>u</u>	Mus musculus	SDS-PAGE <14>	<u>14</u>
48000	•	Mus musculus	northern blot <3>	<u>3</u>
47780	· -	Streptococcus pyogenes	calculation from sequence <8>	<u>8</u>
47780	-	Streptococcus equisimilis	calculation from sequence <4>	<u>4</u>
42000	-	Streptococcus pyogenes	SDS-PAGE <1,2>	1.2
42000	-	Streptococcus equisimilis	-	<u>4</u>

SUBUNITS ORGANISM COMMENTARY LITERATURE

No entries in this field

POSTTRANSLATIONAL MODIFICATION ORGANISM COMMENTARY LITERATURE

No entries in this field

Crystallization/COMMENTARY ORGANISM LITERATURE

No entries in this field

PH STABILITY PH STABILITY MAXIMUM ORGANISM COMMENTARY LITERATURE

No entries in this field

TEMPERATURE STABILITY TEMPERATURE STABILITY MAXIMUM ORGANISM COMMENTARY LITERATURE

No entries in this field

GENERAL STABILITY ORGANISM LITERATURE

No entries in this field

ORGANIC SOLVENT ORGANISM COMMENTARY LITERATURE

No entries in this field

OXIDATION STABILITY ORGANISM LITERATURE

No entries in this field

STORAGE STABILITY ORGANISM COMMENTARY LITERATURE

4°C, Na-phosphate buffer,10% glycerol, 96 h, 18% Homo sapiens - 13

Purification/COMMENTARY ORGANISM LITERATURE

partial <13> Homo sapiens 13

Cloned/COMMENTARY ORGANISM LITERATURE
expression in COS-1 cells and rat 3Y1 fibroblasts <6> Mus musculus

6

expression in Escherichia coli <1,2,8,10,12> Streptococcus pyogenes 1, 2, 8, 10, 12

h be eehfehec g

expression in Escherichia coli <4,10>	Streptococcus equisimilis	<u>4</u> , <u>10</u>
expression in Escherichia coli <5>	Paramecium bursaria Chlorella virus 1	<u>5</u>
expression in Escherichia coli <9,11>	Pasteurella multocida	<u>9</u> , <u>11</u>
expression in yeast <7>	Xenopus DG42	<u>7</u>

ENGINEERING	ORGANISM	COMMENTARY	LITERATURE
D196N	Pasteurella multocida	mutants possess UDP-D-glucuronate-transferase activity <11>	<u>11</u>
D477K	Pasteurella multocida	mutants possess UDP-N-acetyl-D-glucosamine-transferase activity <11>	11
more	Streptococcus pyogenes	variety of cystein mutatants <12>	<u>12</u>

Renatured/COMMENTARY ORGANISM LITERATURE

No entries in this field

APPLICATION ORGANISM COMMENTARY LITERATURE

No entries in this field

DISEASE TITLE OF PUBLICATION LINK TO PUBMED

No entries in this field

REF.	AUTHORS	TITLE	JOURNAL	VOL.	PAGES	YEAR	ORGANISM	COMMENTARY	LINK TO PUBME!
1	DeAngelis, P.L.; Papaconstantinou, J.; Weigel, P.H.	Molecular cloning, identification and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes	J. Biol. Chem.	268	19181- 19184	1993	Streptococcus pyogenes	-	● <u>PubM</u>
<u>2</u>	DeAngelis, P.L.; Weigel, P.H.	Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme	Biochemistry	33	9033- 9039	1994	Streptococcus pyogenes	-	● <u>PubM</u>
<u>3</u>	Spicer, A.P.; Augustine, M.L.; McDonald, J.A.	Molecular cloning and characterization of a putative mouse hyaluronan synthase Molecular	J. Biol. Chem.	271	23400- 23406	1996	Mus musculus	-	-
		cloning, expression, and characterization							

<u>4</u>	Kumari, K.; Weigel, P.H.	of the authentic hyaluronan synthase from group C Streptococcus equisimilis	J. Biol. Chem.	272	32539- 32546	1997	Streptococcus equisimilis	-	<u>Pub</u> M
<u>5</u>	DeAngelis, P.L.; Jing, W.; Graves, M.V.; Burbank, D.E.; Van Etten, J.L.	Hyaluronan synthase of chlorella virus PBCV-1	Science	278	1800- 1803.	1997	Paramecium bursaria Chlorella virus 1		● <u>PubM</u>
<u>6</u>	Itano, N.; Sawai, T.; Yoshida, M.; Lenas, P.; Yamada, Y.; Imagawa, M.; Shinomura, T.; Hamaguchi, M.; Yoshida, Y.; Ohnuki, Y.; Miyauchi, S.; Spicer, A.P.; McDonald, J.A.; Kimata, K.	Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties	J. Biol. Chem.	274	25085- 25092	1999	Mus musculus	-	-
Z	Pummill, P.E.; Achyuthan, A.M.; DeAngelis, P.L.	Enzymological characterization of recombinant Xenopus DG42, a vertebrate hyaluronan synthase	J. Biol. Chem.	273	4976- 4981	1998	Xenopus DG42	-	-
<u>8</u>	Tlapak-Simmons, V.L.; Baggenstoss, B.A.; Clyne, T.; Weigel, P.H.	Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis	J. Biol. Chem.	274	4239- 4245	1999	Streptococcus pyogenes	-	-
<u>9</u>	DeAngelis, P.L.	Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase	J. Biol. Chem.	274	26557- 26562	1999	Pasteurella multocida	-	● <u>PubM</u>
<u>10</u>	Tlapak-Simmons, V.L.; Baggenstoss, B.A.; Clyne, T.; Weigel, P.H.	Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis	J. Biol. Chem.	274	4239- 4245	1999	Streptococcus pyogenes, Streptococcus equisimilis	_	-
		Dissection of the two transferase activities of the							

b e

e e h f e h ec

<u>11</u>	Jing, W.; DeAngelis, P.L.	Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide	Glycobiology	10	883- 889	2000	Pasteurella multocida	-	-
<u>12</u>	Heldermon, C.D.; Tlapak-Simmons, V.L.; Baggenstoss, B.A.; Weigel, P.H.	Site-directed mutation of conserved cysteine residues does not inactivate the Streptococcus pyogenes hyaluronan synthase	Glycobiology	11	1017- 1024	2001	Streptococcus pyogenes	-	<u>● PubM</u>
<u>13</u>	Asplund, T.; Brinck, J.; Suzuki, M.; Briskin, M.J.; Heldin, P.	Characterization of hyaluronan synthase from a human glioma cell line	Biochim. Biophys. Acta	1380	377- 388	1998	Homo sapiens	-	-
<u>14</u>	Klewes, L.; Prehm, P.	Intracellular signal transduction for serum activation of the hyaluronan synthase in eukaryotic cell lines	J. Cell.Physiol.	160	539- 544	1994	Mus musculus	-	●_PubM
<u>15</u>	Sayo, T.; Sugiyama, Y.; Takahashi, Y.; Ozawa, N.; Sakai, S.; Ishikawa, O.; Tamura, M.; Inoue, S.	Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes	J. Invest. Dermatol.	118	43-48	2002	Homo sapiens	-	● <u>PubM</u>

LINKS TO OTHER DATABASES (specific for EC-Number 2.4.1.212)

ExPASy

Online Mendelian Inheritance in Man

KEGG

NCBI: PubMed, Protein, Nucleotide, Structure, Genome, OMIM, Domains

IUBMB Enzyme Nomenclature

WIT database

EMP Project

PDB database(3D structure)

PROSITE Database of protein families and domains

SYSTERS

Protein Mutant Database

h

b e

e e h f e h ec