Введение в анализ данных

Лекция 2. Метод k ближайших соседей - kNN

Гипотеза компактности и knn

Ель:

- Ветки смотрят вверх
- Ствол не видно
- Густые иголки
- Цвет ближе к зелёному

Сосна:

- Ветки параллельны земле
- Ствол видно
- Иголки более редкие
- Цвет ближе к жёлтому

Ветки вверх Ствол не видно Густые иголки Цвет ближе к синему

Что такое обучение?

- Запоминаем примеры (объекты и ответы)
- Когда приходит новый объект, сравниваем с запомненными примерами
- Выдаём ответ от наиболее похожего примера

Гипотеза компактности

Гипотеза компактности

Гипотеза компактности

Если два объекта похожи друг на друга, то ответы на них тоже похожи

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача классификация (ответы из множества $\mathbb{Y} = \{1, ..., K\}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сертируем объекты обучающей выберки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \le \rho(x,x_{(2)}) \le \cdots \le \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Измерение ошибки модели

Вопросы

- Как сравнить две модели?
- Как подобрать k и метрику?

Функция потерь для классификации

• Частый выбор — бинарная функция потерь

$$L(y,a) = [a \neq y]$$

• Функционал ошибки — доля ошибок (error rate)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Функция потерь для классификации

ВАЖНО

Accuracy — не точность!

a(x)	у
-1	-1
+1	+1
-1	-1
+1	-1
+1	+1

a(x)	у
-1	-1
+1	+1
-1	-1
+1	-1
+1	+1

Доля ошибок: 0.2

Доля верных ответов: 0.8

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Решаем задачу выявления редкого заболевания

- 950 здоровых (y = +1)
- 50 больных (y = -1)

Модель: a(x) = +1

Доля ошибок: 0.05

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

- Всегда смотрите на баланс классов!
- Доля верных ответов не обязательно меняется от 0.5 до 1 для разумных моделей

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

Эконом Таганская Карта ?

Как выбрать k?

Обучающая выборка

На каком классе чаще всего ездит	Ближайшее к дому метро	Способ оплаты	Согласился повысить категорию?
Эконом	Таганская	Карта	да
Комфорт	Юго-Западная	Наличные	нет
Комфорт	Строгино	Карта	да

Применяем модель:

Эконом Таганская К	Карта да
--------------------	----------

С точки зрения качества на обучающей выборке лучший выбор $oldsymbol{k}=\mathbf{1}$

Как выбрать k?

1-nearest neighbours

20-nearest neighbours

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Гиперпараметры

- Нельзя подбирать k по обучающей выборке **гиперпараметр**
- Нужно использовать дополнительные данные

Метод k ближайших соседей с весами

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Варианты:

•
$$w_i = \frac{k+1-i}{k}$$

•
$$w_i = q^i$$

• Не учитывают сами расстояния

Взвешенный knn

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i [y_{(i)} = y]$$

Парзеновское окно:

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

- К ядро
- h ширина окна

Ядра для весов

• Гауссовское ядро:

$$K(z) = (2\pi)^{-0.5} \exp\left(-\frac{1}{2}z^2\right)$$

• И много других:

Ядра для весов

h = 0.05

h = 0.5

h = 5

kNN для регрессии

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^\ell$
- Задача регрессии (ответы из множества $\mathbb{Y} = \mathbb{R}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Усредняем ответы:

$$a(x) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)}$$

• Можно добавить веса:

$$a(x) = \frac{\sum_{i=1}^{k} w_i y_{(i)}}{\sum_{i=1}^{k} w_i}$$

•
$$w_i = K\left(\frac{\rho(x,x_{(i)})}{h}\right)$$

• Формула Надарая-Ватсона

Функция потерь для регрессии

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Функция потерь для регрессии

• Ещё один вариант — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

• Слабее штрафует за серьёзные отклонения от правильного ответа

Резюме

Плюсы kNN

- Если данных много и для любого объекта найдётся похожий в обучающей выборке, то это лучшая модель
- Очень простое обучение
- Мало гиперпараметров
- Бывают задачи, где гипотеза компактности уместна
 - Классификация изображений
 - Классификация текстов на много классов

Минусы kNN

- Часто другие модели оказываются лучше
- Надо хранить в памяти всю обучающую выборку
- Искать к ближайших соседей довольно долго
- Мало способов настроить модель