CL 232 Chemical Engineering Lab-I [2021]

Experiment Number	FM 202		
Title	Nature of Flow		
Sub-group Code		A2d	
Date of Experiment		23rd August 2021	
Date of Report Submission		25th August 2021	

Roll Number	Name	Responsibility owned (data, analysis, plots, report, none)
190020066	Laxman Desai	Solving & plots
19D110023	Kshitij Sovanee	Report & Analysis
190020005	Akshata Jain	Observations
190020063	Kriti Chaturvedi	Hypotheses & Proofs
190020067	Mahesh Prajapati	PPT

(For use by examiners only)

Criterion	TA Grade	Faculty assigned grade
Data analysis		
Graphical plots		
Inference		
Report quality		
Bonus marks (Y/N)		
Initials with date		

R&P TA initials with date		
---------------------------	--	--

Objectives:

- To visually observe laminar and turbulent flow patterns.
- To determine the critical Reynolds number for transition from laminar to turbulent flow and vice versa.
- To calculate the pressure drop Δp between the two tanks and understand the relation between this and volume flow rate Q.
- To calculate the experimental and theoretical friction factor.

Set-Up Assembly:

- Overhead tank stores water
- 2 Tanks .i.e. Tank 1 and Tank 2
- Ground water reservoir
- Piping network
- Valve 1: Drain valve of Tank 1
- Valve 3: Drain valve of overhead Tank
- Valve 5: Drain valve of Tank 2
- Valve 2: Control flow from overhead Tank to Tank 1
- Tank 1 and Tank 2 connected with a glass tube (internal diameter = 25mm, length 1.65m)

Procedure:

- 1. Ensure valve 1,3,5 are properly closed
- 2. Discharge valve of tank 2 should also be in a closed position
- 3. Open valve 2 so that water from overhead tank flows to tank 1
- 4. Once the water reaches the level of the pipe it will flow from Tank 1 to Tank 2 through interconnected glass tube
- 5. Once the Tank 1 is filled upto a certain level excess water flows out through the funnel
- 6. Close valve 2 when the height in tank 1 and 2 becomes the same
- 7. Measure height of tank 1 and 2 using the z-traverse
- 8. Open valve 2 slightly such that water will start draining through the funnel
- 9. Open valve of tank 2 and adjust the flow to lowest possible value
- 10. Wait till the difference in height between the two tanks is constant and then measure the flow rate
- 11. Inject the ink through the flow assembly to check the flow pattern
- 12. Take 3 readings for the laminar region
- 13. Open the valve of tank 2 more to take the measurement of the transition region
- 14. Measure flow for 3 consecutive minutes for transition region
- 15. Inject the ink through the flow assembly to check the flow pattern
- 16. Get the critical point where flow changes from laminar to turbulent and measure the critical reynolds number
- 17. Increase flow rate and take 2 more readings in the transition region
- 18. Repeat similar steps for turbulent regime too.

Raw Data:

Diameter of pipe	25mm
Length of pipe	1.65m
Viscosity of Water	8.9 × 10 ⁻⁴ Pa.s
Density of Water	1000 kg/m ³
Cross Sectional Area of pipe	4.908×10 ⁻⁴ m ²

Calculations & Derived Quantities:

Reynold's Number

The Reynold's Number is given by:

$$N_{Re} = \frac{\rho V D}{\mu} = \frac{\rho Q D}{A \mu}$$

Table 1: Reynold's number calculation and Nature of Flow:

Water Level (Inlet, H1, mm)	Water Level (Outlet, H2, mm)	Volume (mm³)	Time (s)	Velocity (m/s)	Reynold's Number (N_{Re})	Nature of observed flow
5.15	3.18	0.000353	53.73	0.01338406	375.957	Laminar
4.75	4.48	0.000767	34.25	0.04562101	1281.489	Laminar
3.32	3.44	0.00118	32.96	0.07293314	2048.684	Laminar
4.44	4.86	0.00148	35.14	0.08580055	2410.127	Transition
5.74	7.36	0.00212	34.75	0.12428284	3491.091	Turbulent
4.58	8.34	0.00248	38.26	0.13204952	3709.256	Turbulent
5.38	10.68	0.00365	32.75	0.22704485	6377.664	Turbulent
4.68	17.25	0.00528	33.45	0.32156435	9032.706	Turbulent

7.36 28.52	0.00775	36.15	0.43674054	12267.992	Turbulent
------------	---------	-------	------------	-----------	-----------

Zero Error Correction

H1= 6.38, H2=4.28 \Longrightarrow Hcorr = H1-H2 = 2.1 mm

Table 2: Correction for zero-error:

H1 (mm)	H2 (mm)	H2,corrected=H2+ Hcorr (mm)	$\Delta H_{ m corrected}$ =H2,corrected-H1 (mm)
5.15	3.18	5.28	0.13
4.75	4.48	6.58	1.83
3.32	3.44	5.54	2.22
4.44	4.86	6.96	2.52
5.74	7.36	9.46	3.72
4.58	8.34	10.44	5.86
5.38	10.68	12.78	7.4
4.68	17.25	19.35	14.67
7.36	28.52	30.62	23.26

Pressure Calculation:

The pressure is calculated from the height difference as:

$$\Delta P = \rho g \Delta H$$

Table 3: Pressure from height difference:

$\Delta H_{ m corrected}$ (mm)	ΔP (Pa)
0.13	1.2753
1.83	17.9523
2.22	21.7782
2.52	24.7212
3.72	36.4932
5.86	57.4866

7.4	72.594
14.67	143.9127
23.26	228.1806

Friction Factor Calculation:

The friction factor from experiment is:

$$f = \frac{\Delta PD}{2\rho LV^2}$$

While that from theoretical considerations is:

$$f = 16/{\rm Re} \ \ \mbox{(laminar flow)}$$

$$f = 0.0014 + 0.125 Re^{-0.32} \ \mbox{(3000$$

Table 4: Experimental & Theory Calculations:

ΔP (Pa)	Q(L/s)	V=Q/A(m /s)	f (expt)	f (theory)	V ² (calc)	V (calc)	Q (calc) (L/s)
1.2753	0.006569	0.013384	0.0539	0.0425	2.27e-4	0.015067	0.007396
17.9523	0.02239	0.045621	0.0653	0.01248	1.089e-2	0.104369	0.0512
21.7782	0.0358	0.072933	0.031	0.0078	2.11e-2	0.145345	0.0713
24.7212	0.04212	0.085800	0.0254	0.0117	1.595e-2	0.126285	0.06199
36.4932	0.06108	0.124282	0.0179	0.0106	2.611e-2	0.161598	0.07932
57.4866	0.06482	0.132049	0.0249	0.0104	4.183e-2	0.204534	0.1004
72.594	0.1145	0.227044	0.0106	0.0089	6.127e-2	0.247532	0.1215
143.9127	0.1578	0.321564	0.0105	0.0082	0.133	0.365141	0.1792
228.1806	0.2144	0.436740	0.0091	0.0075	0.229	0.478664	0.2349

Error Analysis:

Least Count of Stopwatch: 0.01s

Least Count of Measuring Cylinder: 10ml (for 1000 ml) and 20ml for (2000 ml)

Error in $\Delta H = 0.02/\Delta H_{corrected}$

Error in $V = \Delta V/V$

Error in T = $\Delta T/T$

Error in $\Delta P = 0.02/\Delta H_{corrected}$

Error in Q = $\Delta V/V + \Delta T/T$

Error in $f = \Delta(\Delta P) + 2*\Delta Q$ Error in Re = Error in Q

Table 5: Error Calculations: (All reported values are in %)

Error in ΔH	Error in V	Error in T	Error in ΔP	Error in Q (Expt)	Error in f (Calc)	Error in Re
15.38	2.83	0.019	15.38	2.85	21.087	2.85
1.09	1.304	0.029	1.09	1.333	3.758	1.333
0.901	0.847	0.03	0.901	0.877	2.65	0.877
0.79	0.676	0.0284	0.79	0.704	2.202	0.704
0.54	0.472	0.0287	0.54	0.500	1.538	0.500
0.34	0.403	0.026	0.34	0.429	1.200	0.429
0.27	0.274	0.03	0.27	0.304	0.879	0.304
0.136	0.189	0.0298	0.136	0.219	0.575	0.219
0.086	0.129	0.027	0.086	0.156	0.399	0.156

Observations:

- The values of experimental and calculated flow rate do not agree exactly, however they match to a good extent. Further, the slope of the best fit line is 0.976 (which is very close to 1) implying that the line is very close to y=x.
- The relation between ΔP and Q was plotted and a linear relation was observed.
- The flow-patterns were observed visually in the video, showing that transition happened at Re=2100 and turbulence began at Re=3000.

Hypothesis & Conclusions:

The sources of error is the Qexpt vs Qcalc could be as follows:

- One intermediate in calculating Q is the friction factor. Even in the turbulent region, the
 friction factor equation used was the same as that for turbulent. This could lead to errors
 in the final result.
- The flow between the two tanks (in the tube) might not be fully developed. The entrance length for laminar flows ~0.06Re*D, while it is ~40D for turbulent flows. For values of Re which are in the 2000-3000 range, the entrance length exceeds the length of the pipe, leading to the error.
- Manual error in calculation of height of the tanks could have affected the final results.

Python Code

August 25, 2021

```
[1]: import math
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.linear_model import LinearRegression
[2]: D = 25e-3 \# m
     L = 1.65 \# m
     mu = 8.9e-4 \# Pa*s
     rho = 1000 \# kq/m^3
     g = 9.81 \# m/s^2
     H_{corr} = (6.38 - 4.28) * 1e-3 # m
```

Experimental data

```
[3]: H1 = np.array([5.15, 4.75, 3.32, 4.44, 5.74, 4.58, 5.38, 4.68, 7.36]) * 1e-3 # m
     H2 = np.array([3.18, 4.48, 3.44, 4.86, 7.36, 8.34, 10.68, 17.25, 28.52]) * 1e-3_{\subset}
     # m
     vol = np.array([0.000353, 0.000767, 0.00118, 0.00148, 0.00212, 0.00248, 0.
     \rightarrow00365, 0.00528, 0.00775]) # m^3
     t = np.array([53.73, 34.25, 32.96, 35.14, 34.75, 38.26, 32.75, 33.45, 36.15]) #_
```

```
[4]: Q = vol / t
     print(f'Volumetric flow rate: {Q} m^3/s')
     area = math.pi * D**2 / 4
     V = Q / area
     print(f'Velocity: {V} /s')
```

```
Volumetric flow rate: [6.56988647e-06 2.23941606e-05 3.58009709e-05
4.21172453e-05
 6.10071942e-05 6.48196550e-05 1.11450382e-04 1.57847534e-04
2.14384509e-041 m<sup>3</sup>/s
Velocity: [0.01338406 0.04562101 0.07293314 0.08580055 0.12428284 0.13204952
 0.22704485 0.32156435 0.43674054] m/s
```

```
[5]: N_Re = rho * V * D / mu
     print(f"Reynold's number: {N_Re}")
    Reynold's number: [ 375.95682055 1281.48902592 2048.68367894 2410.12774099
      3491.09088654 3709.25609043 6377.66441483 9032.70660043
     12267.99256742]
[6]: H 2 corr = H2 + H corr
     delta_H_corr = H_2_corr - H1
     print(f'delta H: {delta_H_corr}')
     delta_P = rho * g * delta_H_corr
     print(f'delta P: {delta_P}')
    delta H: [0.00013 0.00183 0.00222 0.00252 0.00372 0.00586 0.0074 0.01467
    0.02326]
    delta P: [ 1.2753 17.9523 21.7782 24.7212 36.4932 57.4866 72.594
    143.9127
     228.1806]
[7]: f_{exp} = delta_P * D / (2 * rho * L * V**2)
     print(f'f (Experimental): {f_exp}')
    f (Experimental): [0.05393398 0.06534561 0.03101689 0.02543991 0.01789846
    0.02497578
     0.0106685 0.01054361 0.0090627 ]
[8]: f_calc = []
     for Re in N_Re:
        if Re <= 2100:
            f = 16 / Re
            f_calc.append(f)
        else:
             f = 0.0014 + 0.125 * Re**(-0.32)
             f_calc.append(f)
     print(f'f (Calculated): {f_calc}')
    f (Calculated): [0.04255807881497671, 0.012485475627516408,
    0.007809892842158002, 0.011743254083280218, 0.010586761534283576,
    0.010410278837055937, 0.008975621722908453, 0.00817716850341045,
    0.007544725570930351]
[9]: V_{calc_sq} = delta_P * D / (2.0 * rho * L)
     V_calc_sq /= f_calc
     V_calc = np.sqrt(V_calc_sq)
     print(f'Velocity calculated: {V_calc}')
```

```
print(f'Velocity square calculated: {V_calc**2}')
      Q_calc = V_calc * area
      print(f'Flow rate calculated: {Q_calc}')
     Velocity calculated: [0.01506705 0.10436876 0.14534547 0.12628553 0.16159854
     0.20453384
      0.24753187 0.36514144 0.47866389]
     Velocity square calculated: [2.27015972e-04 1.08928387e-02 2.11253044e-02
     1.59480342e-02
      2.61140893e-02 4.18340904e-02 6.12720280e-02 1.33328270e-01
      2.29119123e-01]
     Flow rate calculated: [7.39602049e-06 5.12318969e-05 7.13462886e-05
     6.19902629e-05
      7.93244996e-05 1.00400312e-04 1.21506924e-04 1.79238384e-04
      2.34963590e-04]
[10]: plt.title('$\Delta P$ vs $Q_{experimental}$')
      plt.xlabel('$\Delta P\ (Pa)$')
      plt.ylabel('$Q_{experimental}\ (m^3 / s)$')
      plt.plot(delta_P, Q, '.-')
      # Linear regression
      reg = LinearRegression().fit(delta_P.reshape(-1, 1), Q)
      Q_pred = reg.predict(delta_P.reshape(-1, 1))
      plt.plot(delta_P, Q_pred, '-k')
      print(f"slope of best fit line", reg.coef_)
     plt.show()
```

slope of best fit line [9.14838243e-07]


```
[11]: plt.title('$Q_{experimental}$ vs $Q_{calculated}$')
    plt.xlabel('$Q_{experimental}\ (m^3 / s)$')
    plt.ylabel('$Q_{calculated}\ (m^3 / s)$')
    plt.plot(Q_calc, Q, '.-r')

# Linear regression
    reg = LinearRegression().fit(Q_calc.reshape(-1, 1), Q)
    Q_pred = reg.predict(Q_calc.reshape(-1, 1))
    plt.plot(Q_calc, Q_pred, '-k')
    print(f"slope of best fit line", reg.coef_)

plt.show()
```

slope of best fit line [0.97641142]

2 Error analysis

```
[12]: error_delta_H = (0.01 + 0.01) / (delta_H_corr * 1e3) # height (1 m -> 1e3 mm)
    print('Error in delta H (%):', 100 * error_delta_H)

error_vol = 10 / (vol * 1e6) # vol (1 m^3 -> 1e6 ml)
    print('Error in volume (%):', 100 * error_vol)

error_t = 0.01 / t
    print('Error in time (%):', 100 * error_t)

error_delta_P = error_delta_H
    print('Error in pressure difference (%):', 100 * error_delta_P)

error_Q = error_vol + error_t
    print('Error in volumetric flow rate (%):', 100 * error_Q)

error_N_Re = error_Q
    print('Error in Reynolds Number (%):', 100 * error_N_Re)

error_f = error_delta_P + 2 * error_Q
```

print('Error in f (%):', 100 * error_f)

Error in delta H (%): [15.38461538 1.09289617 0.9009009 0.79365079 0.53763441 0.34129693

0.27027027 0.13633265 0.08598452]

Error in volume (%): [2.83286119 1.30378096 0.84745763 0.67567568 0.47169811 0.40322581

0.2739726 0.18939394 0.12903226]

Error in time (%): [0.01861158 0.02919708 0.03033981 0.0284576 0.02877698 0.02613696

0.03053435 0.02989537 0.02766252]

Error in pressure difference (%): [15.38461538 1.09289617 0.9009009 0.79365079 0.53763441 0.34129693

0.27027027 0.13633265 0.08598452]

Error in volumetric flow rate (%): [2.85147277 1.33297805 0.87779743 0.70413327 0.50047509 0.42936276

0.30450695 0.21928931 0.15669478]

Error in Reynolds Number (%): [2.85147277 1.33297805 0.87779743 0.70413327 0.50047509 0.42936276

0.30450695 0.21928931 0.15669478]

Error in f (%): [21.08756092 3.75885227 2.65649577 2.20191734 1.53858459 1.20002246

0.87928418 0.57491126 0.39937407]