DM 6

Exercice 1 (La convergence en probabilité est métrisable). Si X et Y sont deux variables aléatoires, on note

$$d(X,Y) = \mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right].$$

- 1. Montrer que d définit une distance si, comme d'habitude, on identifie deux v.a. qui sont égales presque sûrement.
- 2. Montrer que la convergence en probabilité est équivalent à la convergence pour d.
- 3. Montrer que d est complète i.e. que si $(X_n)_{n\geq 1}$ est une suite de v.a. telle que $\sup_{p,q\geq n} d(X_p,X_q)$ tend vers 0, alors il existe une v.a. X telle que X_n converge en probabilité vers X. (Idée: montrer que $(X_n)_{n\geq 1}$ admet une valeur d'adhérence en considérant une sous-suite $(X_{n_k})_{k\geq 1}$ telle que $d(X_{n_k},X_{n_{k+1}})\leq 2^{-k}$ pour tout $k\geq 1$, et montrer que cette suite est presque sûrement de Cauchy.)

Solution. 1. Soit φ la fonction définie de $[0, \infty[$ dans [0, 1[par $\varphi : t \mapsto \frac{t}{1+t}$. On remarque qu'elle est concave et nulle en zéro donc (e.g. en l'écrivant comme la primitive de sa dérivée qui est décroissante) elle est sous-additive : pour tous $s, t \geq 0$, on a

$$\varphi(s+t) \le \varphi(s) + \varphi(t).$$

On note \widetilde{d} la fonction de $\mathbb{R}^2 \to \mathbb{R}$ donnée par $\widetilde{d}: (x,y) \mapsto \varphi(|x-y|)$; montrons qu'il s'agit d'une distance. Tout d'abord elle est clairement positive et symétrique; de plus comme φ est bijective, on a $\widetilde{d}(x,y)=0$ ssi |x-y|=0 ssi |x-y

Pour toutes v.a. X et Y on a $d(X,Y)=\mathbb{E}[\widetilde{d}(X,Y)]$; la positivité, symétrie et l'inégalité triangulaire pour d découlent de ces propriétés pour \widetilde{d} ; enfin si d(X,Y)=0, par positivité on a $\widetilde{d}(X,Y)=0$ presque sûrement et ainsi X=Y presque sûrement.

2. Soient $(X_n)_{n\geq 1}$ et X des v.a. Supposons d'abord que $d(X_n,X)=\mathbb{E}[\varphi(|X_n-X|)]\to 0$; soit $\varepsilon>0$, comme φ est une bijection croissante, on a $\varphi(\varepsilon)>0$ et l'inégalité de Markov implique que

$$\mathbb{P}\left(|X_n - X| > \varepsilon\right) = \mathbb{P}\left(\varphi(|X_n - X|) > \varphi(\varepsilon)\right) \le \frac{\mathbb{E}\left[\varphi(|X_n - X|)\right]}{\varphi(\varepsilon)} \underset{n \to \infty}{\longrightarrow} 0.$$

Supposons à présent que X_n tend en probabilité vers X. Fixons $\varepsilon > 0$ et $n_0 \ge \in \mathbb{N}$ tel que pour tout $n \ge n_0$,

$$\mathbb{P}\left(\varphi(|X_n - X|) > \varphi(\varepsilon)\right) = \mathbb{P}(|X_n - X| > \varepsilon) < \varepsilon.$$

Soit $n \ge n_0$, on écrit (astuce très utile!) :

$$\mathbb{E}\left[\varphi(|X_n-X|)\right] = \mathbb{E}\left[\varphi(|X_n-X|)\,\mathbb{1}_{\{\varphi(|X_n-X|)>\varphi(\varepsilon)\}}\right] + \mathbb{E}\left[\varphi(|X_n-X|)\,\mathbb{1}_{\{\varphi(|X_n-X|)\leq\varphi(\varepsilon)\}}\right].$$

D'une part on a

$$\mathbb{E}\left[\varphi(|X_n - X|) \, \mathbb{1}_{\{\varphi(|X_n - X|) \le \varphi(\varepsilon)\}}\right] \le \varphi(\varepsilon) \le \varepsilon,$$

et d'autre part, comme $\varphi(t) \leq 1$ pour tout $t \geq 0$,

$$\mathbb{E}\left[\varphi(|X_n-X|)\,\mathbb{1}_{\{\varphi(|X_n-X|)>\varphi(\varepsilon)\}}\right] \leq \mathbb{P}\left(\varphi(|X_n-X|)>\varphi(\varepsilon)\right) < \varepsilon.$$

Ainsi pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$,

$$d(X_n, X) < 2\varepsilon$$
.

3. L'hypothèse que $\sup_{p,q\geq n} d(X_p,X_q)$ converge vers 0 implique que la suite $(X_n)_{n\geq 1}$ possède au plus une valeur d'adhérence pour d; il nous faut montrer l'existence d'une telle valeur d'adhérence, ou de manière équivalente l'existence d'une sous-suite qui converge en probabilité; alors toute la suite convergera en probabilité vers la même limite.

Pour tout entier $k \geq 1$, on a $\varphi(k^{-2})^{-1} = \frac{1+k^{-2}}{k^{-2}} = 1+k^2$. Ainsi

$$\mathbb{P}\left(|X_{n_k} - X_{n_{k+1}}| > k^{-2}\right) = \mathbb{P}\left(\varphi(|X_{n_k} - X_{n_{k+1}}|) > \varphi(k^{-2})\right) \\
\leq \varphi(k^{-2})^{-1} \mathbb{E}\left[\varphi(|X_{n_k} - X_{n_{k+1}}|)\right] \\
\leq (1 + k^2)2^{-k}.$$

Comme la série $\sum_k (1+k^2)2^{-k}$ est convergent, le lemme de Borel–Cantelli implique que

$$\mathbb{P}\left(\limsup_{k\to\infty}\left\{|X_{n_k}-X_{n_{k+1}}|>k^{-2}\right\}\right)=0.$$

Autrement dit, il existe un ensemble $A \subset \Omega$ de probabilité 1 tel que pour tout $\omega \in A$, il existe $k_0(\omega)$ tel que pour tout $k \geq k_0(\omega)$, on a $|X_{n_k}(\omega) - X_{n_{k+1}}(\omega)| \leq k^{-2}$. Ainsi, par l'inégalité triangulaire, pour tout $q > p \geq k_0(\omega)$, on a

$$|X_{n_p}(\omega) - X_{n_q}(\omega)| \le |X_{n_p}(\omega) - X_{n_{p+1}}(\omega)| + \dots + |X_{n_{q-1}}(\omega) - X_{n_q}(\omega)|$$

$$\le p^{-2} + \dots + (q-1)^{-2}$$

$$\le \sum_{r>p} r^{-2} \underset{p\to\infty}{\longrightarrow} 0.$$

Ainsi, pour tout $\omega \in A$, la suite réelle $(X_{n_k}(\omega))_{k\geq 1}$ est de Cauchy et donc converge. Comme $\mathbb{P}(A)=1$ on vient de montrer que la suite de v.a. $(X_{n_k})_{k\geq 1}$ converge presque sûrement et donc elle converge en probabilité et donc elle converge pour d. Enfin toute la suite $(X_n)_{n\geq 1}$ converge pour d vers cette limite.