

Market reactions to credit rating changes: The impact of using value-based performance measures

Simon Schölzel, University of Münster (Germany) Lisa Silge, University of Münster (Germany)

31.05.2018

Agenda

- 1. Motivation
- 2. Hypotheses
- 3. Sample and research design
- 4. Results
- 5. Additional analyses and limitations
- 6. Conclusion

1. Motivation

» Value-based management (VBM)

- Aims at maximizing the shareholder value (SHV) (RAPPAPORT, 1998; SCHEIPERS ET AL., 2003)
- Instrument to align the interests of managers and shareholders (RYAN/TRAHAN, 2007)
- Operationalized by VB performance metrics as main component of VBM systems (STEWART, 1995; SCHEIPERS ET AL., 2003)
- SHV increases if the generated return exceeds the cost of capital (FRUHAN, 1979)

» Credit rating changes

- Reflect changes in the financial prospects
 and the inherent (default) risk
 (Heinke, 2000; Braun, 2002; Ashbaugh-Skaife et al., 2006)
- Resulting from external effects or management decisions (amongst others)
- Associated with the cost for debt
 (FRIDSON/GARMAN, 1998; HEINKE, 1998)
 and under certain cicumstances with the
 cost for equity (HOLTHAUSEN/LEFTWICH, 1986)
- Associated with shareholder and debt value (KLIGER/SARIG, 2000)

1. Motivation

» Value-based management (VBM)

» Credit rating changes

» Related literature

- Mixed results on the performance effects of implementing a VBM system (e.g., Hogan/Lewis, 2005; Rapp et al., 2011; Ryan/Trahan, 2007)
- A few studies on the performance effects of corporate decisions (e.g., KNAUER ET AL., 2017)
- Studies on the effect of VBM on the cost of capital (RYAN/TRAHAN, 2007) resp. of VBM and VB reporting on the cost of capital (SCHULTZE ET AL., 2017)

- Negative abnormal returns following a rating downgrade
 - (e.g., Bannier/Hirsch, 2010; Chung et al., 2012; Ederington/Goh, 1998; Holthausen/Leftwich, 1986)
- Non-significant influence of rating upgrades on the stock's performance
 - (e.g., Bannier/Hirsch, 2010; Dichev/Piotroski, 2001; Griffin/Sanvicente, 1982; Holthausen/Leftwich, 1986)

1. Motivation

» Value-based management (VBM)

» Credit rating changes

» Related literature

- Mixed results on the performance effects of implementing a VBM system (e.g., Hogan/Lewis, 2005; Rapp et al., 2011; Ryan/Trahan, 2007)
- A few studies on the performance effects of corporate decisions (e.g., KNAUER ET AL., 2017)
- Studies on the effect of VBM on the cost of capital (RYAN/TRAHAN, 2007) resp. of VBM and VB reporting on the cost of capital (SCHULTZE ET AL., 2017)

- Negative abnormal returns following a rating downgrade
 - (e.g., Bannier/Hirsch, 2010; Chung et al., 2012; Ederington/Goh, 1998; Holthausen/Leftwich, 1986)
- Non-significant influence of rating upgrades on the stock's performance

(e.g., Bannier/Hirsch, 2010; Dichev/Piotroski, 2001; Griffin/Sanvicente, 1982; Holthausen/Leftwich, 1986)

Research Question: How does the use of VB performance metrics affect the shareholder value effect of credit rating changes?

2. Hypotheses – Rating downgrades

» The effect of rating changes on SHV can be positive or negative (GoH/EDERINGTON, 1993)

- » Firms have to trade-off the potential negative and positive SHV effect of rating changes
- VB performance metrics align management decisions and shareholder interests (RAPPAPORT, 1998)
- VB reporting decreases information asymmetries (SCHULTZE ET AL., 2017)
- Investors have greater confidence in VB metric users (RAPP ET AL., 2011; STEWART, 1991)

2. Hypotheses – Rating downgrades

Downgrade

H1a: The average capital market reaction to the announcement of a rating downgrade is non-negative for VB metric users.

H1b: The capital market reaction to the announcement of a rating downgrade is positively associated with use of VB performance metrics.

2. Hypotheses – Rating upgrades

» The effect of rating changes on SHV can be positive or negative (GoH/EDERINGTON, 1993)

- » Firms have to trade-off the potential negative and positive SHV effect of rating changes
- VB performance metrics align management decisions and shareholder interests (RAPPAPORT, 1998)
- Investors have greater confidence in VB metric users (RAPP ET AL., 2011; STEWART, 1991)
- Information asymmetries are expected to be low (Ederington/GoH, 1998; Holthausen/Leftwich, 1986; Kim/Nabar, 2007) and thus VBM less effective

2. Hypotheses – Rating upgrades

Upgrade

H2a: The average capital market reaction to the announcement of a rating upgrade equals zero for VB metric users.

H2b: The capital market reaction to the announcement of a rating upgrade will not differ for VB metric users and non-users.

» Sample

- Rating changes of firms listed on the German HDAX or SDAX (Moody's website)
- Investigation period: 1996 2014
- Long-term issuer rating or comparable issue rating
- Elimination of 36 confounding events (Holthausen/Leftwich, 1986)
- Final sample: 115 observations (72 downgrades, 43 upgrades; 38 different firms)

Tab. 1: Distribution of rating changes

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 2	014	Total
Downgrades	1	1	1	1	2	5	4	10	2	4	1	2	6	14	1	3	5	6	3	72
Upgrades	1	0	0	0	0	0	0	0	6	4	1	6	3	1	3	5	4	4	5	43
thereof VBM	1	1	0	1	0	3	0	7	3	4	1	4	6	12	1	7	5	5	6	67

» Sample

- Rating changes of firms listed on the German HDAX or SDAX (Moody's website)
- Investigation period: 1996 2014
- Long-term issuer rating or comparable issue rating
- Elimination of 36 confounding events (Holthausen/Leftwich, 1986)
- Final sample: 115 observations (72 downgrades, 43 upgrades; 38 different firms)

» Collection of VBM data

- Analysis of annual reports
- VB metrics: Profit- or cash flow-based residual income, corresponding return ratios (e.g., EVA spread, CFROI spread) and other return metrics if explicitly compared to the cost of capital

Tab. 1: Distribution of rating changes

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 2	014	Total
Downgrades	1	1	1	1	2	5	4	10	2	4	1	2	6	14	1	3	5	6	3	72
Upgrades	1	0	0	0	0	0	0	0	6	4	1	6	3	1	3	5	4	4	5	43
thereof VBM	1	1	0	1	0	3	0	7	3	4	1	4	6	12	1	7	5	5	6	67

» Event study framework to measure the capital market reaction

- $-AR_{i,t} = R_{i,t} E(R_{i,t})$
- $-R_{i,t}$ via total return index (Thomson Reuters Datastream)
- $-E(R_{i,t})$ via market model (CDAX)

Days

» Event study framework to measure the capital market reaction

- $-AR_{i,t} = R_{i,t} E(R_{i,t})$
- $-R_{i,t}$ via total return index (Thomson Reuters Datastream)
- $-E(R_{i,t})$ via market model (CDAX)

» Event study framework to measure the capital market reaction

- $-AR_{i,t} = R_{i,t} E(R_{i,t})$
- $-R_{i,t}$ via total return index (Thomson Reuters Datastream)
- $-E(R_{i,t})$ via market model (CDAX)

» Event study framework to measure the capital market reaction

- $-AR_{i,t} = R_{i,t} E(R_{i,t})$
- $-R_{i,t}$ via total return index (Thomson Reuters Datastream)
- $-E(R_{i,t})$ via market model (CDAX)

» Univariate test of market reaction

- Test of abnormal and cumulative abnormal returns
 (two-tailed t-test, BOEHMER/MUSUMECI/POULSEN-test, non-parametric Wilcoxon signed rank test)
- Test for group differences (VBM user vs. non-user)
 (two-tailed t-test, non-parametric Wilcoxon rank sum)

» Univariate test of market reaction

- Test of abnormal and cumulative abnormal returns (two-tailed t-test, Boehmer/Musumeci/Poulsen-test, non-parametric Wilcoxon signed rank test)
- Test for group differences (VBM user vs. non-user)
 (two-tailed t-test, non-parametric Wilcoxon rank sum)

» Multivariate test of market reaction

 $-(C)AR_{i,t} = \alpha + \beta_1 * VBM_{i,t}^{CS} + \beta_2 * VBM_{i,t}^{MC} + 16 control \ variables + \varepsilon_{i,t}$

- Rating change specific control variables: e.g., lnDAYS, GRADES, WLOLOR

Firm specific financial control variables: e.g., lnSIZE, DELTAROA, DELTABETA

Industry effects: FINANCIAL

- Year fixed effects: CRISIS1, CRISIS2

Total-, downgrade- and upgrade-model

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

	Downgrades (n = 72)	<u>Upgrades (n = 43)</u>
Mean	-0.004	0.001
t-test	0.197	0.552
BMP test	0.139	0.631
SR test	0.067*	0.837

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

	Downgrades (n = 72)	Upgrades $(n = 43)$
Mean	-0.004	0.001
t-test	0.197	0.552
BMP test	0.139	0.631
SR test	0.067*	0.837

Tab. 3: Capital market reactions differentiated by the use of VB metrics (AR_0)

		<u>Downgrades (n = 72)</u>	Upgrades $(n = 43)$
	n	45	22
(1) VBM user	Mean	0.001	0.004
VE	t-test	0.810	0.218
(1) L	BMP test	0.866	0.374
	SR test	0.800	0.615
	$\mid n \mid$	27	21
(2) VBM non-user	Mean	-0,013	-0,002
A -	t-test	0.022**	0.548
(2) no	BMP-Test	0.019**	0.692
	VR-Test	0.008***	0.768
(1) (2)	t-test	0.038**	0.181
(1)-(2)	RS test	0.034**	0.610

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

	Downgrades (n = 72)	<u>Upgrades (n = 43)</u>
Mean	-0.004	0.001
t-test	0.197	0.552
BMP test	0.139	0.631
SR test	0.067*	0.837

Tab. 3: Capital market reactions differentiated by the use of VB metrics (AR_0)

		Downgrades (n = 72)	Upgrades $(n = 43)$
	n	45	22
(1) VBM user	Mean	0.001	0.004
VBI Jser	t-test	0.810	0.218
(1)	BMP test	H1a 0.866	0.374
	SR test	_ 0.800	0.615
_	$\mid n \mid$	27	21
(2) VBM non-user	Mean	-0,013	-0,002
- N	t-test	0.022**	0.548
(2) IO	BMP-Test	0.019**	0.692
	VR-Test	0.008***	0.768
(1) (2)	t-test	0.038**	0.181
(1)-(2)	RS test	0.034**	0.610

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

	Downgrades (n = 72)	<u>Upgrades (n = 43)</u>
Mean	-0.004	0.001
t-test	0.197	0.552
BMP test	0.139	0.631
SR test	0.067*	0.837

Tab. 3: Capital market reactions differentiated by the use of VB metrics (AR_0)

		<u>Downgrades (n = 72)</u>	Upgrades $(n = 43)$
	n	45	22
(1) VBM user	Mean		0.004 \
) VBI user	t-test	0.810	0.218
(1)	BMP test	H1a 0.866	0.374 H2
	SR test	0.800	0.615 _
_	n	27	21
(2) VBM non-user	Mean	-0,013	-0,002
ے۔ آ	t-test	0.022**	0.548
(2) IO	BMP-Test	0.019**	0.692
	VR-Test	0.008***	0.768
(1) (2)	t-test	0.038**	0.181
(1)-(2)	RS test	0.034**	0.610

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

	Downgrades (<i>n</i> = 72)	Upgrades $(n = 43)$
Mean	-0.004	0.001
t-test	0.197	0.552
BMP test	0.139	0.631
SR test	0.067*	0.837

Tab. 3: Capital market reactions differentiated by the use of VB metrics (AR_0)

		Downgrades $(n = 72)$	Upgrades ($n = 43$)	
	n	45	22	
(1) VBM user	Mean		0.004 \	
) VBI user	t-test	0.810	0.218	
(1)	BMP test	H1a 0.866	0.374	12
	SR test	0.800 H	1b 0.615	
	n	27	21	
(2) VBM non-user	Mean	-0,013 🗡	-0,002	
- VE	t-test	0.022**	0.548	
(2) IO	BMP-Test	0.019**	0.692	
	VR-Test	0.008***	0.768	
(1) (2)	t-test	0.038**	0.181	
(1)-(2)	RS test	0.034**	0.610	

Tab. 2: Capital market reactions to announcements of rating changes (AR_0)

Downgrades $(n = 72)$	Upgrades $(n = 43)$
-0.004 ———	0.001
0.197	0.552
0.139	0.631
0.067*	0.837
	-0.004 — 0.197 0.139

Tab. 3: Capital market reactions differentiated by the use of VB metrics (AR_0)

4. Multivariate results

Tab. 4: Factors influencing the capital market reactions (AR_0)

Variable	Downgrades $(n = 72)$	Upgrades $(n = 43)$
VBM ^{CS}	0.023***	0.001
VBM^{MC}	-0.009	0.011
control variables	Yes	Yes
constant	-0.081	-0.007
\overline{R}^2	0.261	-0.018
F-test	<0.001***	<0.001***
VIF_{max}	1.91	4.53

4. Multivariate results

Tab. 4: Factors influencing the capital market reactions (AR_0)

Variable	Downgrades (n = 72)	<u>Upgrades (n = 43)</u>
VBM ^{CS}	0.023***	0.001
VBM^{MC}	-0.009 H1b	0.011
control variables	Yes	Yes
constant	-0.081	-0.007
\bar{R}^2	0.261	-0.018
F-test	<0.001***	<0.001***
VIF_{max}	1.91	4.53

5. Additional analyses and limitations

» Robustness tests

- $-E(R_{i,t})$ via Carhart 4-factor model (Carhart, 1997) with German factor set (Brückner et al., 2015)
- Winsorizing of non-binary variables (1st and 99th percentile levels)
- Bootstrapped bias-corrected confidence intervals to verify H1b and H2b
- Nearest neighbor propensity score matching
- Additionally: alternative coding of *lnDAYS*, *CRISIS1*, *CRISIS2*; control variable for initial rating level; exclusion of *FINANCIAL* firms

5. Additional analyses and limitations

» Robustness tests

- $-E(R_{i,t})$ via Carhart 4-factor model (Carhart, 1997) with German factor set (Brückner et al., 2015)
- Winsorizing of non-binary variables (1st and 99th percentile levels)
- Bootstrapped bias-corrected confidence intervals to verify H1b and H2b
- Nearest neighbor propensity score matching
- Additionally: alternative coding of *lnDAYS*, *CRISIS1*, *CRISIS2*; control variable for initial rating level; exclusion of *FINANCIAL* firms

» Limitations

- General caveats of the event study methodology (Bowman, 1983; McWilliams/Siegel, 1997; Peterson, 1989)
- Representativeness of the German sample
- VBM data collection method
- Distinction between different levels of VBM sophistication (Burkert/Lueg, 2013)

6. Conclusion

Downgrade

- VBM largely offsets the negative effect of downgrades
- Indicates improved managerial decision-making
- Reduced information asymmetries and mitigation of risks associated with managerial self-interest
- Investors trust the firm's management

Upgrade

- No distinction between VB metric users and non-users
- Upgrades do not bring any new information to the market, or
- Investors already believe in optimal decision-making by VB metric users

» The implementation of a value-based management system can positively influence risk-taking and/or -communication and its effect on the firm's SHV

Thank you very much for your attention!

Back-up – Sample distribution

Tab. 5: Migration matrix

		New rating								
	Aaa	Aa	А	Baa	Ва	В	Caa	Ca	С	
Old rating										
Aaa		3								
Aa		6	8							
Α		2	15	8						
Baa			7	25	4					
Ba				5	17	2				
В				1	3	6	2			
Caa						1				
Ca										
С										

Tab. 6: Number of rating changes per rating subject

Number of rating changes	1	2	3	4	5	6	≥ 7	Total
Number of rating subjects	8	14	6	2	4	0	4	38

Tab. 7: Number of rating changes per stock index and average year of implementation

Stock index	DAX	MDAX	SDAX	TecDAX	Total
Number of rating changes	63	49	3	0	115
Avg. year of implementation	1999	2003	2004	-	

Back-up – Descriptive statistics (1/2)

Tab. 8: Descriptive statistics of the non-binary independent variables differentiated by the direction of the rating change

	Downgrades ($n=72$)			<u>U</u> p				
Variable	\bar{x}	Median	SD	$\bar{\chi}$	Median	SD	t-test	RS test
DAYS (in days)	677.436	321.000	746.316	799.900	675.500	715.832	0.548	0.337
GRADES (in notches)	1.208	1.000	0.442	1.140	1.000	0.516	0.450	0.165
SIZE (in thousand €)	16,617,171	6,680,337	29,973,948	16,303,589	8,793,750	18,920,366	0.951	0.444
MTB	1.473	1.321	0.911	1.828	1.909	1.216	0.078	<0.001
DELTASIZE	-0.118	-0.147	0.399	0.383	0.287	0.397	<0.001	<0.001
DELTAROA	-1.207	-0.299	9.062	0.208	0.203	1.973	0.315	0.004
DELTAIC	-0.035	-0.080	1.065	0.440	0.337	1.052	0.022	<0.001
DELTADEBT	0.105	0.016	0.438	-0.095	-0.118	0.143	<0.001	<0.001
DELTABETA	-0.035	-0.001	1.464	0.107	0.036	0.542	0.543	0.979

Back-up – Descriptive statistics (2/2)

Tab. 9: Descriptive statistics of the binary independent variables for the total sample and differentiated by the direction of the rating change

	<u>Total (n = 115)</u>		Downgrade	es (n = 72)	Upgrade	<u>Upgrades (n = 43)</u>		
Variable	n	in %	n	in %	n	in %	χ^2 -test	
VBM ^{CS}	67	58.3	45	62.5	22	51.2	0.233	
VBM ^{MC}	30	26.1	18	25.0	12	27.9	0.731	
FA	4	3.5	4	5.6	0	0.0	-	
RS	6	5.2	0	0.0	6	14.0	-	
CRISIS1	18	15.7	18	25.0	0	0.0	<0.001	
CRISIS2	8	7.0	6	8.3	2	4.7	0.453	
FINANCIAL	18	15.7	14	19.4	4	9.3	0.148	
WLOLOR	98	85.2	68	94.4	30	69.8	<0.001	

Back-up – Univariate results

Tab. 10: Capital market reactions differentiated by the direction of rating change and the use of VB metrics

	$\underline{Total\;(n=115)}$		<u>Downgrades</u>	s(n=72)	Upgrades ($n=43$)		
	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	
$(1) VBM^{CS} = 1$							
n	67	67	45	45	22	22	
$\bar{\chi}$	0.002	0.004	0.001	0.003	0.004	0.006	
Median	-0.002	-0.003	-0.003	-0.003	-0.000	0.002	
t-test	0.483	0.443	0.810	0.696	0.218	0.338	
BMP test	0.484	0.358	0.866	0.773	0.374	0.282	
SR test	0.950	0.446	0.800	0.481	0.615	0.570	
$(2) VBM^{CS} = 0$							
n	48	48	27	27	21	21	
$ar{\mathcal{X}}$	-0.008	-0.008	-0.013	-0.008	-0.002	-0.008	
Median	-0.005	-0.002	-0.007	-0.003	-0.000	-0.002	
t-test	0.019**	0.128	0.022**	0.282	0.548	0.287	
BMP test	0.028**	0.148	0.019**	0.322	0.692	0.287	
SR test	0.022**	0.264	0.008***	0.269	0.768	0.664	
(3) Differences (1) - (2)							
t-test	0.024**	0.104	0.038**	0.292	0.181	0.148	
RS test	0.067*	0.188	0.034**	0.277	0.610	0.544	

Back-up – Multivariate regression results (1/2)

Tab. 11: Factors influencing capital market reactions to the announcements of rating changes

Variable	$\underline{Total(n=115)}$		<u>Downgrades</u>	s(n=72)	Upgrades ($n=43$)		
	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	
α	-0.037	-0.088**	-0.081	-0.138**	0.002	-0.021	
VBM ^{CS}	0.015**	0.019**	0.023***	0.026**	0.011	0.023	
VBM^{MC}	-0.010	-0.013	-0.009	-0.013	-0.007	-0.016	
lnDAYS	0.000	0.001*	0.001*	0.001**	-0.000	-0.001	
GRADES	-0.012*	-0.006	-0.018**	-0.008	0.001	-0.004	
FA	0.037*	0.034	0.036**	0.034	-	-	
RS	0.014***	0.026***	-	-	-0.003	0.007	
lnSIZE	0.003	0.005*	0.006*	0.008**	-0.000	0.002	
MTB	-0.001	0.003	0.004	0.007	-0.001	-0.002	
WLOLOR	-0.005	0.003	-0.033*	-0.025	-0.000	0.004	
DELTAlnSIZE	-0.066	-0.400***	-0.253**	-0.595***	-0.008	-0.350**	

Back-up – Multivariate regression results (2/2)

Variable	$\underline{Total\; (n=115)}$		<u>Downgrade</u>	s(n=72)	Upgrades ($n=43$)		
	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	AR_0	$CAR_{[-1;1]}$	
DELTAROA	-0.000	-0.000	-0.000	-0.000	0.000	-0.002	
DELTAIC	-0.001	-0.002	-0.002	-0.003	-0.000	0.002	
DELTADEBT	0.004	-0.004	0.004	-0.002	-0.037	-0.018	
DELTABETA	0.004***	0.002	0.003**	0.000	0.009	0.009	
FINANCIAL	0.003	0.001	0.007	0.006	0.018	0.008	
CRISIS1	0.002	0.000	0.000	-0.004	-	-	
CRISIS2	-0.005	-0.036	-0.014	-0.051	-0.006	-0.015	
DOWNGRADE	-0.009**	-0.011	-	-	-	-	
\bar{R}^2	0.125	0.035	0.261	0.065	-0.018	-0.192	
F-test	<0.001***	<0.001***	<0.001***	<0.001***	<0.001***	<0.001***	
VIF _{max}	2.18	2.18	1.91	1.91	4.53	4.53	

Chair of Management Accounting and Control

Literature (1/3)

- » Ashbaugh-Skaife, H., Collins, D.W., LaFond, R., 2006. The effects of corporate governance on firms' credit ratings. J Account Econ. 42, 203-243.
- » Bannier, C.E., Hirsch, C.W., 2010. The economic function of credit rating agencies: what does the watchlist tell us? J Bank Financ. 34, 3037-3049.
- » Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. J Political Econ. 81, 637-654.
- » Boehmer, E., Musumeci, J., Poulsen, A.B., 1991. Event-study methodology under conditions of event-induced variance. J Financial Econ. 30, 253-272.
- » Bowman, R.G., 1983. Understanding and conducting event studies. J Bus Finance Account. 10, 561-584.
- » Braun, P., 2002. Rating kompakt: Basel II und die neue Kreditwürdigkeitsprüfung [Rating compact: Basel II and the new credit check]. Kognos-Verlag, Augsburg.
- » Brückner, R., Lehmann, P., Schmidt, M.H., Stehle, R., 2015. Another German Fama/French factor data set. Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2682617. Accessed Dec 19, 2017.
- » Burkert, M., Lueg, R., 2013. Differences in the sophistication of value-based management: the role of top executives. Manag Account Res. 24, 3-22.
- » Carhart, M.M., 1997. On persistence in mutual fund performance. J Financ. 52, 57-82.
- » Chung, K.H., Frost, C.A., Kim, M., 2012. Characteristics and information value of credit watches. Financial Manag. 41, 119-158.
- Dichev, I.D., Piotroski, J.D., 2001. The long-run stock returns following bond ratings changes. J Financ. 56, 173-203.

Chair of Management Accounting and Control

Literature (2/3)

- Ederington, L.H., Goh, J.C., 1998. Bond rating agencies and stock analysts: who knows what when? J Financial Quant Anal. 33, 569-585.
- » Fridson, M.S., Garman, M.C., 1998. Determinants of spreads on new high-yield bonds. Financial Anal J. 54, 28-39.
- » Fruhan, W.E., 1979. Financial strategy: studies in the creation, transfer, and destruction of shareholder value. Irwin, Homewood.
- » Goh, J.C., Ederington, L.H., 1993. Is a bond rating downgrade bad news, good news, or no news for stockholders? J Finance. 48, 2001-2008.
- » Griffin, P.A., Sanvicente, A.Z., 1982. Common stock returns and rating changes: a methodological comparison. J Finance. 37, 103–119.
- » Heinke, V.G., 1998. Bonitätsrisiko und Credit Rating festverzinslicher Wertpapiere: Eine empirische Untersuchung am Euromarkt [Credit risk and credit rating of fixed-income securities: an empirical investigation for the Euromarket]. Uhlenbruch, Bad Soden am Taunus.
- » Heinke, V.G., 2000. Shareholder Value und Credit Ratings am Aktienmarkt [Shareholder value and credit rating on the stock market]. Finanz Betrieb. 2, 741-748.
- » Hogan, C.E., Lewis, C.M., 2005. Long-run investment decisions, operating performance, and shareholder value creation of firms adopting compensation plans based on economic profits. J Financial Quant Anal. 40, 721-745.
- » Holthausen, R.W., Leftwich, R.W., 1986. The effect of bond rating changes on common stock prices. J Financial Econ. 17, 57-89.

Chair of Management Accounting and Control

Literature (3/3)

- » Kliger, D., Sarig, O., 2000. The information value of bond ratings. J Finance. 55, 2879-2902.
- » Knauer, T., Silge, L., Sommer, F., 2017. The shareholder value effects of using value-based performance measures: evidence from acquisitions and divestments. Manag Account Res, forthcoming.
- » McWilliams, A., Siegel, D., 1997. Event studies in management research: theoretical and empirical issues. Acad Manag J. 40, 626-657.
- » Merton, R.C., 1974. On the pricing of corporate debt: the risk structure of interest rates. J Finance. 29, 449-470.
- » Peterson, P.P., 1989. Event studies: a review of issues and methodology. Q J Bus Econ. 28, 36-66.
- » Rapp, M.S., Schellong, D., Schmidt, M., Wolff, M., 2011. Considering the shareholder perspective: value-based management systems and stock market performance. Rev Manag Sci. 5, 171-194.
- » Rappaport, A., 1998. Creating shareholder value: a guide for managers and investors. 2. Ed. Free Press, New York.
- » Ryan, H., Trahan, E., 2007. Corporate financial control mechanisms and firm performance: the case of value-based management systems. J Bus Finance Acc. 34, 111-138.
- » Scheipers, G., Ameels, A., Bruggeman, W., 2003. Value-based management: control processes to create value through integration, in: Keuleneer, L., Verhoog, W. (Eds.), Recent trends in valuation: From strategy to value. Wiley, Chichester, 87-150.
- » Schultze, W., List, T., Schabert, B., Dinh, T., 2017. Economic consequences of implementing and communicating value based management systems. J Bus Finance Account, Forthcoming.
- » Stewart, G.B., 1995. EVA works: but not if you make these common mistakes. Fortune. 131, 117–118.