Assignment8 - Learning

Given: June 15 Due: June 25

Problem 8.1 (Statistical Learning)

0 pt

You observe the values below for 20 games of a sports team. You want to predict the result based on weather and opponent.

		Number of	
Weather	Opponent	wins	losses
Rainy	Weak	3	1
Cloudy	Weak	0	1
Sunny	Weak	4	2
Rainy	Strong	0	2
Cloudy	Strong	2	3
Sunny	Strong	0	2

- 1. What is the hypothesis space for this situation, seen as an inductive learning problem?
- 2. Explain whether we can learn the function by building a decision tree.
- 3. To apply Bayesian learning, we model this situation as a Bayesian network $W \to R \leftarrow O$ using random variables W (weather), O (opponent), and R (game result). What are the resulting entries of the conditional probability table for the cases

(a)
$$P(W = rainy) =$$

(b)
$$P(R = win|O = weak) =$$

Problem 8.2 (Neural Networks in Python)

40 pt

Implement neural networks in Python by completing the implementation of network.py at https://kwarc.info/teaching/AI/resources/AI2/network/.

Hint: You can test your implementation with test.py. Note that test_train_xor_gate may occasionally fail for a correct solution because it is randomized.

Problem 8.3 (Support Vectors)

30 pt

Consider the following 2-dimensional dataset

support vector	classification
$\mathbf{x}_1 = \langle 0, 0 \rangle$	$y_1 = -1$
$\mathbf{x}_2 = \langle 0, 0.5 \rangle$	$y_2 = -1$
$\mathbf{x}_3 = \langle 0.5, 0 \rangle$	$y_3 = -1$
$\mathbf{x}_4 = \langle 1, 1 \rangle$	$y_4 = 1$
$\mathbf{x}_5 = \langle 2, 2 \rangle$	$y_5 = -1$

- 1. Give a linear separator in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$ for the dataset without \mathbf{x}_5 .
- 2. Explain informally why no linear separator exists for the full dataset of all 5 vectors.
- 3. Transform the dataset into a 3-dimensional dataset by applying the function $F(\langle u, v \rangle) = \langle u^2, v^2, u + v \rangle$.
- 4. Give a linear separator for the transformed full dataset in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$.

Problem 8.4 (Statistical Learning)

30 pt

We use two observations to determine if it has rained on our property: whether the ground is wet, and whether a bucket we left outside is full.

- 1. Model this situation as a naive Bayesian network with a boolean class and two boolean attributes.
- 2. Explain why this network requires 5 parameters (2n + 1 where n = 2 is the number of attributes). Choose 5 names for the parameters and use them to give the conditional probability table of the network.
- 3. Now assume we have observed for 50 days with the following results:

	-		
rain	ground wet	bucket full	number of days
yes	yes	yes	10
yes	yes	no	5
yes	no	yes	6
yes	no	no	4
no	yes	yes	2
no	yes	no	9
no	no	yes	3
no	no	no	11

State the formula for the likelihood of this list of 50 observations in terms of the 5 parameters.

4. Give the Maximum Likelihood approximations for the 5 parameters given these 50 observations. (You just need to compute them, not derive the formula for computing them.)