# Convolutional Neural Network for Inverse Problems in Imaging

VARUN KELKAR



ECE 551 Course Project



Electrical & Computer Engineering

**COLLEGE OF ENGINEERING** 

## **Inverse Problems in Imaging**

• "y = blur(x) + noise. This is all of applied science."

- Prof. Ivan Dokmanic

 Free space causes some blurring/low pass filtering that result in illposedness.

#### **Linear Inverse Problems**

y = Ax + n

• Direct inversion  $\hat{x}$  (with a pseudoinverse) resides in span( $A^*$ )

Using sparsity in the object as prior information



## **Motivation for using CNNs**

CNN structure similar to unrolled iterations

Iterative algorithm



**CNN** 



### **Motivation for using CNNs**

CNN structure similar to unrolled iterations

Nonlinear block cutting off chunk near 0



## A specific implementation for CT - FBPConvnet



Trained on 700 ellipse images.
Ellipse dataset generated by a random selection of number of ellipses, strength, major/minor axes and tilts in each image.

#### Results



Ground truth



Filtered Backprojection MSE  $8.7 \times 10^{-4}$ 



FBP-CNN MSE  $2.2 \times 10^{-4}$ 



 $\begin{array}{c} \text{Iterative} \\ \text{MSE } 1.8 \times 10^{-4} \end{array}$ 

#### Conclusions

- Iterative algorithms still better for highly sparse (piecewise constant) images like ellipses.
- CNN could perform better in cases where the sparse basis is not obvious.

#### References

- K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.
- M. T. McCann, K. H. Jin, and M. Unser, "Convolutional neural networks for inverse problems in imaging: A review," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 85–95, 2017.