《高等量子力学》第 12 讲

6. 自旋关联与 Bell 不等式

1) 量子力学的自旋测量关联

由上一节的计算,两电子体系的自旋单态 $|j_1,j_2,j,m\rangle=\left|\frac{1}{2},\frac{1}{2},0,0\right\rangle$ 按无耦合 表象基矢 $|j_1,m_1,j_2,m_2\rangle=|j_1,m_1\rangle|j_2,m_2\rangle$ 展开,

$$\left| \frac{1}{2}, \frac{1}{2}, 0, 0 \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2}, \frac{1}{2} \right\rangle \left| \frac{1}{2}, \frac{-1}{2} \right\rangle - \left| \frac{1}{2}, \frac{-1}{2} \right\rangle \left| \frac{1}{2}, \frac{1}{2} \right\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(\left| s_{1z}^+ \right\rangle \left| s_{2z}^- \right\rangle - \left| s_{1z}^- \right\rangle \left| s_{2z}^+ \right\rangle \right)$$

由单粒子自旋本征态的关系

$$\left|s_{iz}^{\pm}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|s_{ix}^{+}\right\rangle \pm \left|s_{ix}^{-}\right\rangle\right), \qquad i = 1, 2$$

自旋单态也可按 \hat{s}_{1x} , \hat{s}_{2x} 的本征态展开,

$$\left|\frac{1}{2},\frac{1}{2},0,0\right\rangle = \frac{1}{\sqrt{2}}\left(\left|s_{1x}^{-}\right\rangle\left|s_{2x}^{+}\right\rangle - \left|s_{1x}^{+}\right\rangle\left|s_{2x}^{-}\right\rangle\right)_{\circ}$$

如图,设处于自旋单态的两个电子从中心分别向两边探测器 A 和 B 运动。如果不考虑相对轨道角动量,那么总角动量守恒使两粒子体系始终处于自旋单态。设先在 A 测量电子 1 的自旋 S_{1z} 或 S_{1x} ,紧接着在 B 测量电子 2 的自旋 S_{2x} 。

- 1)若在A测量电子1的自旋 S_{1z} ,在B测量电子2的自旋 S_{2x} ,此时电子2的自旋态取 $\left|S_{2x}^{+}\right\rangle$ 和 $\left|S_{2x}^{-}\right\rangle$ 的几率相等,表明在A,B的两次测量无关联。
 - 2) 若在 A 测量电子 1 的自旋 S_{1x} , 在 B 测量电子 2 的自旋 S_{2x} , 此时电子

2 的自旋态确定: 当电子 1 处于 $\left|s_{1x}^{+}\right\rangle$,则电子 2 处于 $\left|s_{2x}^{-}\right\rangle$,而当电子 1 处于 $\left|s_{1x}^{-}\right\rangle$,则电子 2 处于 $\left|s_{2x}^{+}\right\rangle$ 。表明在 A,B 的两次测量有关联。

上面量子力学的自旋测量关联说明,只对 B 处的第 2 个粒子进行测量,就知道在 A 处对第 1 个粒子进行了什么测量,尽管 A, B 可能相距很远。

2) Einstein 定域原理与 Bell 不等式

许多物理学家对这种长程关联很困惑。他们提出定域原理: 粒子在 B 处的 状态应该不依赖于另一个粒子在远处 A 的状态(EPR 佯谬, Einstein, Podolsky, Rosen, 1935)。

那么, Einstein 定域原理与量子力学在测量结果上有差别吗?

考虑上面的两粒子系统。设测量满足 Einstein 定域原理,即不考虑测量之间的长程关联。对于其中一个粒子,一测 S_z 就有确定值 $\left|S_{1z}^+\right\rangle$,一测 S_x 就有确定值 $\left|S_{1z}^+\right\rangle$,标记为类型 $\left(S_{1z}^+,S_{1x}^+\right)$ 。注意:1)并不是说可以同时测量 S_z 和 S_x ,2)这与上面量子力学的测量不同,测量不受另一个粒子的测量影响。由于要求整个系统的自旋为单态,另一个粒子必处于类型 $\left(S_{2z}^-,S_{2x}^-\right)$ 。依此类推,两粒子测量之间的可能关联及其几率是

粒子1	粒子2	几率
$\left(s_{1z}^+, s_{1x}^+\right)$	$\left(s_{2z}^-, s_{2x}^-\right)$	25%
$\left(s_{1z}^+, s_{1x}^-\right)$	$\left(s_{2z}^-, s_{2x}^+\right)$	25%
$\left(s_{1z}^-,s_{1x}^+\right)$	$\left(s_{2z}^+, s_{2x}^-\right)$	25%
$\left(s_{1z}^-,s_{1x}^-\right)$	$\left(s_{2z}^+, s_{2x}^+\right)$	25%

这个结果与上面的量子力学自旋测量结果是一致的。例如在 A 处测第一个粒子 S_{1z} , 在 B 处测第二个粒子 S_{2x} 时, S_{2x} 取值为 S_{2x}^+ 和 S_{2x}^- 的几率相等;当在 A 处

测第一个粒子 S_{1x} ,在 B 处测第二个粒子 S_{2x} 时, S_{2x} 的取值确定。故看不出定域原理与量子力学测量的差别。

仍然考虑两粒子系统。但不是只测量两个方向,而是测量 3 个方向 \vec{e}_a , \vec{e}_b , \vec{e}_c 的自旋,即测量 $S_a = \vec{s} \cdot \vec{e}_a$, $S_b = \vec{s} \cdot \vec{e}_b$, $S_c = \vec{s} \cdot \vec{e}_c$ 的取值(\vec{e}_a , \vec{e}_b , \vec{e}_c 不必相互正交)。由 Einstein 定域原理,对于其中一个粒子,一测 S_a 就处于 $\left|S_a^+\right\rangle$,一测 S_b 就处于 $\left|S_b^+\right\rangle$,一测 S_c 就处于 $\left|S_c^+\right\rangle$,标记为类型 $\left(S_{1a}^+, S_{1b}^+, S_{1c}^+\right)$ 。由于要求整个系统的自旋为单态,另一个粒子必处于类型 $\left(S_{1a}^-, S_{1b}^-, S_{1c}^-\right)$ 。依此类推,两粒子测量之间的可能关联及其几率是

粒子1	粒子2	几率
$\left(s_{1a}^{+},s_{1b}^{+},s_{1c}^{+}\right)$	$\left(s_{2a}^{-}, s_{2b}^{-}, s_{2c}^{-} ight)$	N_{1}
$\left(s_{1a}^{+},s_{1b}^{+},s_{1c}^{-}\right)$	$\left(s_{2a}^{-},s_{2b}^{-},s_{2c}^{+}\right)$	N_2
$\left(s_{1a}^{+}, s_{1b}^{-}, s_{1c}^{+}\right)$	$\left(s_{2a}^{-},s_{2b}^{+},s_{2c}^{-} ight)$	N_3
$\left(s_{1a}^{+}, s_{1b}^{-}, s_{1c}^{-}\right)$	$\left(s_{2a}^{-},s_{2b}^{+},s_{2c}^{+}\right)$	$N_{_4}$
$\left(s_{1a}^{-},s_{1b}^{+},s_{1c}^{+}\right)$	$\left(s_{2a}^{+},s_{2b}^{-},s_{2c}^{-} ight)$	N_{5}
$\left(s_{1a}^{-},s_{1b}^{+},s_{1c}^{-}\right)$	$\left(s_{2a}^{+},s_{2b}^{-},s_{2c}^{+}\right)$	N_6
$\left(s_{1a}^{-}, s_{1b}^{-}, s_{1c}^{+}\right)$	$\left(s_{2a}^{\scriptscriptstyle{+}},s_{2b}^{\scriptscriptstyle{+}},s_{2c}^{\scriptscriptstyle{-}} ight)$	N_7
$\left(s_{1a}^{-}, s_{1b}^{-}, s_{1c}^{-}\right)$	$\left(s_{2a}^{+},s_{2b}^{+},s_{2c}^{+} ight)$	N_8

A 处的第 1 个粒子处于 $\left|s_{1a}^{+}\right\rangle$ 而 B 处的第 2 个粒子处于 $\left|s_{2b}^{+}\right\rangle$ 的几率是

$$P(s_{1a}^+, s_{2b}^+) = (N_3 + N_4) / \sum_{i=1}^8 N_i$$

A 处的第 1 个粒子处于 $\left|s_{1a}^{+}\right\rangle$ 而 B 处的第 2 个粒子处于 $\left|s_{2c}^{+}\right\rangle$ 的几率是

$$P(s_{1a}^+, s_{2c}^+) = (N_2 + N_4) / \sum_{i=1}^8 N_i$$

A 处的第 1 个粒子处于 $\left|S_{1c}^{+}\right\rangle$ 而 B 处的第 2 个粒子处于 $\left|S_{2b}^{+}\right\rangle$ 的几率是

$$P(s_{1c}^+, s_{2b}^+) = (N_3 + N_7) / \sum_{i=1}^8 N_{i}$$

由于

$$N_3 + N_4 \le (N_3 + N_7) + (N_2 + N_4)$$
,

有

$$P(s_{1a}^+, s_{2b}^+) \le P(s_{1a}^+, s_{2c}^+) + P(s_{1c}^+, s_{2b}^+)$$

这就是 Bell 不等式,它反映了 Einstein 定域原理对测量的影响。

3) 用量子力学计算几率

上面的 Bell 不等式与量子力学测量有何不同?下面用量子力学计算 Bell 不等式中的 3 个几率。

先计算 $P(s_{1a}^+,s_{2b}^+)$ 。由自旋单态,当第1个粒子的 s_{1a} 处于 $\left|s_{1a}^+\right\rangle$,第2个粒子的 s_{2a} 必处于 $\left|s_{2a}^-\right\rangle$ 。再由前面关于自旋态转动的描述, $\left|s_{2a}^-\right\rangle$ 与 \hat{s}_{2b} 的本征 $\left|s_{2b}^+\right\rangle$ 之间可以通过转动联系起来。设 \vec{e}_b 与 \vec{e}_a 之间的夹角为 θ_{ab} ,方位角为 α_{ab} ,如图。对于第2个粒子,有

$$\left|s_{2a}^{-}\right\rangle = \cos\frac{\pi - \theta_{ab}}{2} e^{-i\alpha_{ab}/2} \left|s_{2b}^{+}\right\rangle + \sin\frac{\pi - \theta_{ab}}{2} e^{i\alpha_{ab}/2} \left|s_{2b}^{-}\right\rangle,$$

故当第二个粒子的 S_{2a} 处于 $\left|S_{2a}^{-}\right\rangle$ 时 S_{2b} 处于 $\left|S_{2b}^{+}\right\rangle$ 的几率是

$$\left|\cos\frac{\pi-\theta_{ab}}{2}e^{-i\alpha_{ab}/2}\right|^2 = \cos^2\frac{\pi-\theta_{ab}}{2} = \sin^2\frac{\theta_{ab}}{2}.$$

考虑到第 1 个粒子处于 $\left|S_{1a}^{+}\right\rangle$ 的几率是 1/2,有

$$P(s_{1a}^+, s_{2b}^+) = \frac{1}{2}\sin^2\frac{\theta_{ab}}{2}$$
,

同理,有

$$P(s_{1a}^+, s_{2c}^+) = \frac{1}{2} \sin^2 \frac{\theta_{ac}}{2},$$

$$P(s_{1c}^+, s_{2b}^+) = \frac{1}{2} \sin^2 \frac{\theta_{cb}}{2}$$

Bell 不等式

$$P(s_{1a}^+, s_{2b}^+) \le P(s_{1a}^+, s_{2c}^+) + P(s_{1c}^+, s_{2b}^+)$$

表明,对任意的3个矢量 \vec{e}_a , \vec{e}_b , \vec{e}_c 都有关系

$$\sin^2 \frac{\theta_{ab}}{2} \le \sin^2 \frac{\theta_{ac}}{2} + \sin^2 \frac{\theta_{cb}}{2} .$$

但是这个不等式并不总是成立的。例如,设 \vec{e}_a , \vec{e}_b , \vec{e}_c 在同一平面上, $\theta_{ab}=2\theta,\;\theta_{ac}=\theta_{cb}=\theta\,,$

Bell 不等式导致

$$\sin^2\theta \le 2\sin^2\frac{\theta}{2}.$$

但是,如果取 $\theta = \pi/4$,Bell 不等式导致 $0.5 \le 0.292$ 。表明:如果量子力学计算与定域原理相容,将产生荒谬的结果。所以,量子力学的计算与 Einstein 定域原理(Bell 不等式)不一致。

4) 实验结果

许多精确实验结果【包括最近荷兰 Ronald Hanson 团队发表在 Nature 的文章《Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers》,doi:10.1038/nature15759,2015 年 10 月 21 日在线发表】,表明 Bell 不等式被破坏,并且结果在误差范围内与量子力学的预言一致。

如何理解量子力学,特别是测量,仍然是一个没有完全解决的问题。