

CSCI 4502/5502 Data Mining

Fall 2020 Lecture 07 (Sep 15)

Reminders

- → Homework 2
 - due at 9:30am, Th, Sep 17
 - ◆ SUBMIT your attempt in Canvas before deadline
- ◆ Computing and Software Career & Internship Fair
 - ◆ I lam-4pm, Tu, Sep 15, virtual on Handshake

Review

- ◆ Chap 4 & 5: Data Warehouse, Data Cube
 - what is data warehouse?
 - ♦ OLTP vs. OLAP
 - what is data cube?
 - data cube operations
 - data cube computation

Review: Part I

- **◆**Chapter 1:Introduction
- ◆Chapter 2: Getting to Know your Data
- Chapter 3: Data Preprocessing
- Chapter 4: Data Warehousing & Online Analytical Processing
- Chapter 5: Data Cube Technology
- ◆Part 2: Core DM Techniques
- ◆Part 3: Mining Complex Data, DM Trends

Chapter 6: Mining Frequent Patterns, Associations & Correlations

Market Basket Analysis

http://www.informationdrivers.com/images/ beer_and_baby.gif

Frequent Pattern Analysis

- ◆Frequent patterns in a data set
 - a set of items
 - * subsequences
 - **♦** substructures

- **◆** Examples
 - Web log
 - ◆ Road traffic

Basic Concepts

- ◆Frequent itemset
 - $+ X = \{x_1, x_2, ..., x_k\}$
- $Association rule X \Rightarrow Y$
 - ◆ support: probability that a transaction contains X U Y
 - ◆ confidence: conditional probability that a transaction containing X also contains Y
 - minimum support, minimum confidence

Example

- ◆ Let min_sup = 50%, min_conf = 50%
- Frequent patterns

Association rules

$$◆$$
 D \Rightarrow A (%, %)

Tid	ltems
	A, B, D
2	A, C, D
3	A, D, E
4	B, E, F
5	B, C, D, E, F

Example

- ◆ Let min_sup = 50%, min_conf = 50%
- Frequent patterns
 - + A 3, B 3, D 4, E 3, AD 3
- Association rules

$$+A \Rightarrow D (60 \%, 100 \%)$$

$$\rightarrow$$
 D \Rightarrow A (60 %, 75 %)

Tid	ltems	
	A, B, D	
2	A, C, D	
3	A, D, E	
4	B, E, F	
5	B, C, D, E, F	

Mining Association Rules

- ◆ Two-step process
 - find all frequent itemsets (w/ min_sup)
 - generate strong association rules from the frequent itemsets (min_sup, min_conf)
- ◆A long pattern contains a combinatorial number of subpatterns (e.g., 100 items)

$$\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} - 1 \approx 1.27 \times 10^{30}$$

Closed & Max Patterns

- ◆ Solution: mine closed patterns & max-patterns
- **◆Closed pattern X**
 - \bullet no super-pattern $Y \supset X$ w/ the same support
- ◆Max-pattern X
 - \bullet no super-pattern $Y \supset X$
- ◆Closed pattern is a lossless compression of frequent patterns
 - reducing the number of patterns and rules

Example

- $\{ <a_1, ..., a_{100} >, <a_1, ..., a_{50} > \}$, min_sup = 0.5
- ◆Frequent pattern?
 - → all item combinations
- Closed pattern?
 - $+ < a_1, ..., a_{100} > : I$
 - $+ < a_1, ..., a_{50} > : 2$
- ◆ Max-pattern?
 - $+ < a_1, ..., a_{100} > : I$

Apriori Algorithm (I)

*Apriori property

- * subset of a freq. itemset is also frequent
- e.g., {beer, diaper, nuts}, {beer, diaper}

Apriori pruning

- if X is infrequent,
- then superset of X is pruned

Apriori Algorithm (2)

- ◆ Procedure
 - ◆ I. scan DB to get freq. I-itemset
 - ◆ 2. generate candidate (k+l)-itemsets from freq. k-itemsets
 - ◆ 3. test candidate (k+1)-itemsets against DB
 - ◆ 4. stop when no freq. or candidate itemsets can be generated

Apriori Algorithm: Example

Tid	Items
	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

 $min_sup = 0.5$

Itemset	sup

Itemset	sup	

Itemset	sup	

Apriori Algorithm: Example

Tid	Items
	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

 $min_sup = 0.5$

Itemset	sup
{A}	0.5
{B}	0.75
{C}	0.75
{D}	0.25
{E}	0.75

Itemset	sup
{B, C, E}	0.5

Itemset	sup
{A, B}	0.25
{A, C}	0.5
{A, E}	0.25
{B, C}	0.5
{B, E}	0.75
{C, E}	0.5

Important Details

- ◆ Self-joining of k-itemsets to generate (k+1)-itemsets
 - two k-itemsets are joined if their first (k-I) items are the same
- ◆Pruning: remove if subset not frequent
- \star Example: L3 = {abc, abd, acd, ace, bcd}
 - * abc and abd => abcd
 - * acd and ace => acde
 - → acde pruned because ade is not in L3

Interestingness Measure

- Association rule
 - $\star A \Rightarrow B$ [support, confidence]
- ◆A strong association rule
 - ♦ play basketball \Rightarrow eat cereal [40%, 66.7%]
- ◆The rule is misleading
 - overall, 75% of students eat cereal
 - \rightarrow play basketball \Rightarrow not eat cereal [20%, 33.3%]

Correlation Rules

- ◆ Correlation rule
 - \star A \Rightarrow B [support, confidence, correlation]
- ◆ Measure of dependent/correlated events

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

- ♦ lift = !?
- + lift < 1?</p>
- + lift > !?

independent

negatively dependent

positively dependent

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

	basketball	not basketball	sum (row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum (col)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{(3000/5000) \times (3750/5000)} = 0.89$$

$$lift(B, \overline{C}) = \frac{1000/5000}{(3000/5000) \times (1250/5000)} = 1.33$$

