Quantitative Methods Human Sciences, 2020–2021

Elias Nosrati

Lecture 2: 22 October 2020

► Recap on probability and counting: the birthday problem.

- ▶ Recap on probability and counting: the birthday problem.
- Introduction to conditional probability.

- ► Recap on probability and counting: the birthday problem.
- Introduction to conditional probability.
- Problem sheet 1 (tutorial).

ightharpoonup There are k people in a room.

- ▶ There are *k* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.

- ▶ There are *k* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.
- ▶ What is the probability that at least one pair of people in the group have the same birthday?

- ▶ There are *k* people in a room.
- Assume each person's birthday is equally likely to be any of the 365 days of the year and assume people's birthdays are independent.
- What is the probability that at least one pair of people in the group have the same birthday?
- ▶ Hint: Recall that $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$.

▶ Total number of ways of assigning birthdays to *n* people (sampling from 365 days *with* replacement): 365ⁿ.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ► Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times(365-n+1)$$

for $n \leq 365$.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ► Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365 \times 364 \times \cdots \times (365 - n + 1)$$

for $n \leq 365$.

▶ \mathbb{P} (no birthday match) = $\frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n}$.

- ► Total number of ways of assigning birthdays to n people (sampling from 365 days with replacement): 365ⁿ.
- ▶ Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times\left(365-n+1\right)$$

for $n \leq 365$.

- ▶ $\mathbb{P}(\text{no birthday match}) = \frac{365 \times 364 \times \cdots \times (365 n + 1)}{365^n}$.
- ▶ $\mathbb{P}(\text{at least one birthday match}) = 1 \mathbb{P}(\text{no birthday match}).$

- ▶ Total number of ways of assigning birthdays to *n* people (sampling from 365 days *with* replacement): 365ⁿ.
- ▶ Complement: the number of ways to assign birthdays to *n* people such that no two people share the same birthday (sampling from 365 days *without* replacement):

$$365\times364\times\cdots\times\left(365-n+1\right)$$

for $n \leq 365$.

- ▶ \mathbb{P} (no birthday match) = $\frac{365 \times 364 \times \cdots \times (365 n + 1)}{365^n}$.
- ▶ $\mathbb{P}(\text{at least one birthday match}) = 1 \mathbb{P}(\text{no birthday match}).$
- ▶ In this room, $\mathbb{P}(\text{at least one birthday match}) \approx 4\%$.

The birthday problem in R

```
# Create a function
pmatch <- function(n) {
          1 - prod(365:(365 - n + 1)) / (365 ^ n)
}</pre>
```

The birthday problem in R

For loop

for (i in 1:70) {

probs[i] <- pmatch(i)</pre>

```
# Create a function
pmatch <- function(n) {
          1 - prod(365:(365 - n + 1)) / (365 ^ n)
}

# Placeholder
probs <- NULL</pre>
```

The birthday problem in R

```
# Placeholder
probs <- NULL

# For loop
for (i in 1:70) {
   probs[i] <- pmatch(i)
}</pre>
```

```
# Alternative method
probs <- sapply(1:70, pmatch)</pre>
```

The birthday problem in **R** (cont.)

```
save <- data.frame("n" = 1:70, "prob" = probs)</pre>
```

The birthday problem in R (cont.)

```
save <- data.frame("n" = 1:70, "prob" = probs)</pre>
```

```
head(save)

## n prob

## 1 1 0.000000000

## 2 2 0.002739726

## 3 3 0.008204166

## 4 4 0.016355912

## 5 5 0.027135574

## 6 6 0.040462484
```

The birthday problem in R (cont.)

```
ggplot(save, aes(n, prob)) +
 labs( # Axis labels
   x = "Number of people in the room",
    y = "Probability of same birthday") +
  scale_x_continuous( # Modify X-axis
    breaks = seq(0, 70, 5)) +
  scale_y_continuous( # Modify Y-axis
    breaks = seq(0, 1, 0.1),
    label = scales::percent) +
  geom_point( # Modify points
    size = 2,
    colour = "darkred",
    alpha = 0.7) +
  geom_hline( # When is P(match) > 0.5 or 0.9?
    yintercept = c(0.5, 0.9), linetype = "dashed") +
  theme_minimal() # Remove redundant lines
```


▶ Probability is a means of quantifying uncertainty about events.

- ▶ Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.

- Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.
- Conditional probability allows us to update our beliefs in light of new evidence.

- Probability is a means of quantifying uncertainty about events.
- Whenever new evidence is observed, we acquire information that may affect out uncertainties.
- Conditional probability allows us to update our beliefs in light of new evidence.
- "Conditioning is the soul of statistics" (Blitzstein and Hwang, 2019: 46).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Definition

If A and B are events, with $\mathbb{P}(B) > 0$, then the conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).
- ▶ $\mathbb{P}(A \mid B)$ is called the *posterior* of A (after updating beliefs based on new evidence).

Definition

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

- ▶ A is the event whose uncertainty we want to update and B is the (new) evidence we observe.
- ▶ $\mathbb{P}(A)$ is called the *prior* probability of A (*before* updating beliefs based on new evidence).
- ▶ $\mathbb{P}(A \mid B)$ is called the *posterior* of A (after updating beliefs based on new evidence).
- ▶ Note that $\mathbb{P}(A \mid A) = 1$.

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

▶ Suppose that B occurred: get rid of all elements of B^c .

Visualising a conditional probability

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.
- ▶ Renormalise: create a new probability space that assigns an updated probability measure to each possible event such that all the probabilities add up to 1.

Suppose we have a sample space S and two events A and B:

- ▶ Suppose that B occurred: get rid of all elements of B^c .
- ▶ The only probability measure remaining that we can assign to A is $\mathbb{P}(A \cap B)$.
- ▶ Renormalise: create a new probability space that assigns an updated probability measure to each possible event such that all the probabilities add up to 1.
- ▶ Divide by $\mathbb{P}(B)$, the total mass of the outcomes in B.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

We have updated our probabilities in accordance with observed evidence.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

- We have updated our probabilities in accordance with observed evidence.
- Outcomes that contradict the evidence are discarded.

The updated probability measure assigned to the event A is the conditional probability

$$\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

- We have updated our probabilities in accordance with observed evidence.
- Outcomes that contradict the evidence are discarded.
- Relative measures of uncertainty are redistributed amongst remaining possible outcomes.

Frequentist interpretation of probability: relative frequency over a large number of repeated trials.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment n times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.
- ▶ We condition on B by isolating all the times where B occurs (n_B) and look at the fraction of times A also occurs (n_{AB}) .

- Frequentist interpretation of probability: relative frequency over a large number of repeated trials.
- ▶ $\mathbb{P}(A \mid B)$ is the fraction of times A occurs, restricting attention to trials where B occurs.

Example

- ▶ We flip a coin several times, record the resulting strings of Heads and Tails, and repeat the experiment *n* times.
- ▶ B is the event that the first flip is Heads, A is the event that the second flip is Tails.
- ▶ We condition on B by isolating all the times where B occurs (n_B) and look at the fraction of times A also occurs (n_{AB}) .
- ► Thus

$$\mathbb{P}(A \mid B) = n_{AB}/n_B = (n_{AB}/n)/(n_B/n) = \mathbb{P}(A \cap B)/\mathbb{P}(B).$$

Joint probability and conditional probability

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A).$$

Joint probability and conditional probability

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A).$$

This can be generalised to the intersection of n events:

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \cdots \mathbb{P}(A_n|A_1 \cap \cdots \cap A_n).$$

Bayes' Rule

Bayes' Rule

Theorem

For any events \boldsymbol{A} and \boldsymbol{B} with positive probabilities,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Bayes' Rule

Theorem

For any events A and B with positive probabilities,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

This follows immediately from the previous Theorem (which in turn follows immediately from the definition of conditional probability).

Recall that, for any two events A and B, the Law of Total Probability states that

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^{c}).$$

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?),

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?), with $\mathbb{P}(A_i) > 0$ for all i. Then, for any event B,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

Viewed differently, the Law of Total Probability relates conditional probability to unconditional probability:

Theorem

Let A_1, \ldots, A_n be a partition of the sample space S (quiz: what is a partition again?), with $\mathbb{P}(A_i) > 0$ for all i. Then, for any event B,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i).$$

► Consider a rare disease *D* that affects 1% of the population.

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

▶ A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D\mid T) = \frac{\mathbb{P}(T\mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$
$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

$$= \frac{0.95 \times 0.01}{(0.95 \times 0.01) + (0.05 \times 0.99)}$$

- ► Consider a rare disease *D* that affects 1% of the population.
- ▶ Suppose there is a test *T* that is 95% accurate such that

$$\mathbb{P}(T \mid D) = 0.95$$
 and $\mathbb{P}(T^c \mid D^c) = 0.95$.

► A randomly selected person takes the test and tests positive. What is the probability that this person has the disease?

$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$

$$= \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)}$$

$$= \frac{0.95 \times 0.01}{(0.95 \times 0.01) + (0.05 \times 0.99)}$$

$$\approx 16\%.$$

 $\mathbb{P}(\cdot \mid E): S \to [0,1].$

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conclusion:

Conditional probabilities are probabilities.

Conditional probabilities are probabilities

$$\mathbb{P}(\cdot \mid E) : S \to [0,1].$$

By conditioning on some event E, we have

- ▶ $\mathbb{P}(A \mid E) \ge 0$ for any event A.
- $\mathbb{P}(\varnothing \mid E) = 0, \ \mathbb{P}(S \mid E) = 1.$
- ▶ If $A_1, ..., A_n$ are disjoint, then $\mathbb{P}(\cup_i A_i \mid E) = \sum_i \mathbb{P}(A_i \mid E)$.

Conclusion:

- Conditional probabilities are probabilities.
- All probabilities are conditional probabilities.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Independence is a symmetric relation: if A is independent of B, B is independent of A.

Definition

Events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

▶ If $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$, this is equivalent to

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$
 and $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

- ► Independence is a symmetric relation: if A is independent of B, B is independent of A.
- ▶ Warning: independence \neq disjointness. In fact, disjoint events can only be independent if $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$. (Why?)

Conditional independence

Definition

Events A and B are said to be *conditionally independent* given a third event E if

$$\mathbb{P}(A \cap B \mid E) = \mathbb{P}(A \mid E)\mathbb{P}(B \mid E).$$

Conditional independence

Definition

Events A and B are said to be *conditionally independent* given a third event E if

$$\mathbb{P}(A \cap B \mid E) = \mathbb{P}(A \mid E)\mathbb{P}(B \mid E).$$

Health warning: independence does *not* imply conditional independence and vice versa.

Conditional independence and complements

Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .

Conditional independence and complements

- Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .
- ▶ Let W be the event that you work hard and let G be the event that you receive a good grade.

Conditional independence and complements

- Suppose there are two types of teachers: those who give grades that reflect student effort (E), and those who randomly assign grades, regardless of student effort (E^c) .
- ▶ Let W be the event that you work hard and let G be the event that you receive a good grade.
- ▶ Then W and G are conditionally independent given E^c , but they are not conditionally independent given E.

▶ You have one fair coin and one biased coin which lands Heads with probability 3/4.

Conditional independence ≠ independence

- ▶ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.

Conditional independence ≠ independence

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.
- However, the coin flips are not unconditionally independent: without knowing which coin we've chosen, each flip gives us new data from which we can predict outcomes of future tosses.

- ➤ You have one fair coin and one biased coin which lands Heads with probability 3/4.
- ➤ You pick one of the coins at random, without knowing which one you've chosen, and flip it several times.
- Conditional on choosing either the fair or the biased coin, the coin flips are independent.
- However, the coin flips are not unconditionally independent: without knowing which coin we've chosen, each flip gives us new data from which we can predict outcomes of future tosses.
- (Think about the definition of independence.)

Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- ► Each day, they decide independently whether to call me that day.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let A be the event that Alice calls me tomorrow and let B be the event that Ben calls me tomorrow.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let *A* be the event that Alice calls me tomorrow and let *B* be the event that Ben calls me tomorrow.
- ▶ Then A and B are unconditionally independent, with $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$.

- Suppose my friends Alice and Ben are the only two people who call me on my mobile phone.
- Each day, they decide independently whether to call me that day.
- ▶ Let A be the event that Alice calls me tomorrow and let B be the event that Ben calls me tomorrow.
- ▶ Then A and B are unconditionally independent, with $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$.
- ► However, given that I receive exactly one call tomorrow (C), A and B are no longer independent:

$$\mathbb{P}(A \mid C) > 0$$
, but $\mathbb{P}(A \mid C \cap B) = 0$.

▶ Choose one of three doors: two with goats, one with car.

- ► Choose one of three doors: two with goats, one with car.
- ▶ After your choice, Monty Hall opens one door with a goat and asks if you want to switch to the remaining door. Should you switch?

- ► Choose one of three doors: two with goats, one with car.
- ▶ After your choice, Monty Hall opens one door with a goat and asks if you want to switch to the remaining door. Should you switch?
- Solve analytically or by simulation.

The Monty Hall problem: solving by simulation

```
sims <- 10 ^ 5 # Simulations
doors <- 1:3 # Label doors
win_no_switch <- 0 # Win count without switch
win_switch <- 0 # Win count with switch</pre>
```

The Monty Hall problem: solving by simulation

```
sims <- 10 ^ 5 # Simulations
doors <- 1:3 # Label doors
win_no_switch <- 0 # Win count without switch
win_switch <- 0 # Win count with switch</pre>
```

```
for (i in 1:sims) {
  # Pick a door for the car
  car_door <- sample(doors, 1)</pre>
  # Pick a door for the contestant
  chosen_door <- sample(doors, 1)</pre>
  # If they match, add to "no switch" count
  if (car_door == chosen_door)
    win_no_switch <- win_no_switch + 1
  # Otherwise, add to switch count
  else
    win_switch <- win_switch + 1
```

The Monty Hall problem: solving by simulation (cont.)

```
cat("P(car | no switch) =", win_no_switch / sims)
## P(car | no switch) = 0.33504
```

The Monty Hall problem: solving by simulation (cont.)

```
cat("P(car | no switch) =", win_no_switch / sims)
## P(car | no switch) = 0.33504

cat("P(car | switch) =", win_switch / sims)
```

How is this possible?

$P(car \mid switch) = 0.66496$

The Monty Hall problem: analytic solution

The Monty Hall problem: analytic solution

Conditioning as wishful thinking: condition on what you wish you knew.

The Monty Hall problem: analytic solution

- Conditioning as wishful thinking: condition on what you wish you knew.
- Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.

- ► Conditioning as wishful thinking: condition on what you wish you knew.
- ▶ Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.
- ► Since the *C_i* partition the sample space, we can use the Law of Total Probability:

$$\mathbb{P}(W) = \mathbb{P}(W \mid C_1) \times \frac{1}{3} + \mathbb{P}(W \mid C_2) \times \frac{1}{3} + \mathbb{P}(W \mid C_3) \times \frac{1}{3}.$$

- ► Conditioning as wishful thinking: condition on what you wish you knew.
- ▶ Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.
- ► Since the *C_i* partition the sample space, we can use the Law of Total Probability:

$$\mathbb{P}(W) = \mathbb{P}(W \mid C_1) \times \frac{1}{3} + \mathbb{P}(W \mid C_2) \times \frac{1}{3} + \mathbb{P}(W \mid C_3) \times \frac{1}{3}.$$

Suppose, without loss of generality, that you chose door 1.

- Conditioning as wishful thinking: condition on what you wish you knew.
- Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.
- ► Since the *C_i* partition the sample space, we can use the Law of Total Probability:

$$\mathbb{P}(W) = \mathbb{P}(W \mid C_1) \times \frac{1}{3} + \mathbb{P}(W \mid C_2) \times \frac{1}{3} + \mathbb{P}(W \mid C_3) \times \frac{1}{3}.$$

- Suppose, without loss of generality, that you chose door 1.
- ▶ If C_1 , the switching strategy will fail:

$$\mathbb{P}(W \mid C_1) = 0.$$

- Conditioning as wishful thinking: condition on what you wish you knew.
- ▶ Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.
- Since the C_i partition the sample space, we can use the Law of Total Probability:

$$\mathbb{P}(W) = \mathbb{P}(W \mid C_1) \times \frac{1}{3} + \mathbb{P}(W \mid C_2) \times \frac{1}{3} + \mathbb{P}(W \mid C_3) \times \frac{1}{3}.$$

- ▶ Suppose, without loss of generality, that you chose door 1.
- ▶ If C_1 , the switching strategy will fail:

$$\mathbb{P}(W \mid C_1) = 0.$$

▶ If the car is behind doors 2 or 3, switching will succeed:

$$\mathbb{P}(W \mid C_2) = \mathbb{P}(W \mid C_3) = 1.$$

- ► Conditioning as wishful thinking: condition on what you wish you knew.
- ▶ Let C_i be the event that the car is behind door i, for $1 \le i \le 3$, and let W be the event that you have chosen the winning door.
- ► Since the *C_i* partition the sample space, we can use the Law of Total Probability:

$$\mathbb{P}(W) = \mathbb{P}(W \mid C_1) \times \frac{1}{3} + \mathbb{P}(W \mid C_2) \times \frac{1}{3} + \mathbb{P}(W \mid C_3) \times \frac{1}{3}.$$

- Suppose, without loss of generality, that you chose door 1.
- ▶ If C_1 , the switching strategy will fail:

$$\mathbb{P}(W \mid C_1) = 0.$$

▶ If the car is behind doors 2 or 3, switching will succeed:

$$\mathbb{P}(W \mid C_2) = \mathbb{P}(W \mid C_3) = 1.$$

► Hence,
$$\mathbb{P}(W) = 0 \times \frac{1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{2}{3}$$
.

Problem sheet 1: preamble

```
# Clear environment, set working directory
rm(list = ls())
setwd("/Users/Elias/Documents/.../QM/Problem sheets")
```

```
# Load tidyverse packages
library(tidyverse)
```

```
# Construct die and sample space
die <- 1:6
S <- expand.grid(die, die, die)</pre>
```

```
# Create new variable
S <- S %>%
mutate(Value = Var1 + Var2 + Var3)
```

```
# P(A) = # elements in A / # elements in S
sum(S$Value == 12) / nrow(S)
## [1] 0.1157407
```

```
# What if dice are biased?

Prob <- c("1" = 1/8, "2" = 1/8, "3" = 1/8,

"4" = 1/8, "5" = 1/8, "6" = 3/8)
```

```
# What if dice are biased?

Prob <- c("1" = 1/8, "2" = 1/8, "3" = 1/8,

"4" = 1/8, "5" = 1/8, "6" = 3/8)
```

```
# Assign individual and joint probabilities
S$Prob1 <- Prob[S$Var1]
S$Prob2 <- Prob[S$Var2]
S$Prob3 <- Prob[S$Var3]
S$Prob_joint <- S$Prob1 * S$Prob2 * S$Prob3</pre>
```

```
# Extract event A and calculate probability
A <- subset(S, Value == 12)
sum(A$Prob_joint)
## [1] 0.1074219</pre>
```

```
# Load data sets
kenya <- read_csv("kenya.csv")
sweden <- read_csv("sweden.csv")
world <- read_csv("world.csv")</pre>
```

```
Inspect
summary(kenya)
summary(sweden)
summary(world)
glimpse(kenya)
glimpse(sweden)
glimpse(world)
head(kenya)
head(sweden)
head(world)
print(kenya, n = 30)
print(sweden, n = 30)
print(world, n = 30)
```

```
# Calculate age-specific fertility rate
asfr <- function(data) {
  data %>%
    mutate(
      asfr = births / py.women) %>%
    select(period, age, asfr) %>%
    data.frame() # Convert tibble to data frame
}
```

Question B3 (cont.)

```
asfr(kenya)[c(4:10, 19:25),]
##
        period age asfr
## 4
     1950-1955 15-19 0.16884585
## 5
     1950-1955 20-24 0.35596942
     1950-1955 25-29 0.34657814
## 6
     1950-1955 30-34 0.28946367
## 7
##
  8
     1950-1955 35-39 0.20644016
##
  9 1950-1955 40-44 0.11193267
  10 1950-1955 45-49 0.03905205
  19 2005-2010 15-19 0.10057087
  20 2005-2010 20-24 0.23583536
  21 2005-2010 25-29 0.23294721
  22 2005-2010 30-34 0.18087964
  23 2005-2010 35-39 0.13126805
  24 2005-2010 40-44 0.05626214
  25 2005-2010 45-49 0.03815044
```

Question B3 (cont.)

```
asfr(sweden)[c(4:10, 19:25),]
##
         period age
                        asfr
## 4
     1950-1955 15-19 0 0389089519
## 5
     1950-1955 20-24 0.1277108826
     1950-1955 25-29 0.1252436647
##
     1950-1955 30-34 0.0873641591
## 7
##
     1950-1955 35-39 0.0486037714
##
  9
     1950-1955 40-44 0.0162101857
  10 1950-1955 45-49 0.0013418290
  19 2005-2010 15-19 0.0059709097
  20 2005-2010 20-24 0.0507320271
  21 2005-2010 25-29 0.1162085625
  22 2005-2010 30-34 0.1322744621
  23 2005-2010 35-39 0.0625923991
   24 2005-2010 40-44 0.0121600765
  25 2005-2010 45-49 0.0006143942
```

Question B3 (cont.)

```
asfr(world)[c(4:10, 19:25),]
##
         period age
                        asfr
## 4
     1950-1955 15-19 0.090295213
## 5
     1950-1955 20-24 0.237633702
     1950-1955 25-29 0.252452289
##
     1950-1955 30-34 0.204164096
## 7
##
  8
     1950-1955 35-39 0.138105344
##
  9
    1950-1955 40-44 0.063608319
  10 1950-1955 45-49 0.015190644
  19 2005-2010 15-19 0.048489719
  20 2005-2010 20-24 0.151971307
  21 2005-2010 25-29 0.146980966
  22 2005-2010 30-34 0.093813813
  23 2005-2010 35-39 0.046689639
  24 2005-2010 40-44 0.016268995
  25 2005-2010 45-49 0.004510245
```

```
# Calculate total fertility rate

tfr <- function(data) {
  out <- asfr(data)
  out %>%
    group_by(period) %>%
    summarise(
    tfr = 5 * sum(asfr))
}
```

Question B4 (cont.)

```
tfr(kenya)
## # A tibble: 2 x 2
## period tfr
## <chr> <dbl>
## 1 1950-1955 7.59
## 2 2005-2010 4.88
tfr(sweden)
## # A tibble: 2 x 2
## period tfr
## <chr> <dbl>
## 1 1950-1955 2.23
## 2 2005-2010 1.90
```

Question B4 (cont.)

```
# Calculate age-specific death rate
asdr <- function(data) {
  data %>%
    mutate(
        # Convert rates to per 1000 population
        asdr = 1000 * deaths / (py.men + py.women)) %>%
    select(period, age, asdr) %>%
    data.frame() # Convert tibble to data frame
}
```

Question B5 (cont.)

```
sample_n(asdr(kenya), 10)
##
        period age asdr
## 1
     1950-1955 15-19 5.869582
## 2
     2005-2010 60-69 25.395531
## 3 1950-1955 10-14 5.972093
## 4
     1950-1955 55-59 24.433007
## 5
    2005-2010 30-34 10.603913
## 6
     1950-1955 60-69 41.996801
## 7
     1950-1955 20-24 7.651103
## 8
     1950-1955 40-44 12.633744
## 9 1950-1955 0-4 66.826532
## 10 2005-2010 20-24 3.885368
```

Question B5 (cont.)

```
sample_n(asdr(sweden), 10)
##
        period age
                            asdr
## 1
     1950-1955 80+ 167.81702554
     2005-2010 5-9 0.08138094
## 2
    2005-2010 40-44 1.03925622
## 3
    2005-2010 25-29 0.49414399
## 4
## 5
    2005-2010 60-69 9.82877193
##
    1950-1955 10-14 0.48964064
## 7
     1950-1955 25-29 1.11409103
## 8
    1950-1955 40-44 2.50955411
    1950-1955 70-79 59.98230926
##
  9
## 10 1950-1955 5-9 0.43205374
```

Question B5 (cont.)

```
sample_n(asdr(world), 10)
##
        period age
                          asdr
## 1
     2005-2010 30-34 2.623982
## 2
     1950-1955 80+ 184.364978
## 3 1950-1955 45-49 13.459846
    1950-1955 30-34 7.132501
## 4
## 5 2005-2010 80+ 120.679385
## 6
    2005-2010 70-79 47.457519
## 7 1950-1955 55-59 24.265320
## 8 2005-2010 20-24 1.832602
  9 2005-2010 35-39 3.031563
##
## 10 2005-2010 40-44 3.753402
```

```
# Collect ASFR and ASDR for each country
ken <- left_join(asfr(kenya), asdr(kenya))
swe <- left_join(asfr(sweden), asdr(sweden))
wor <- left_join(asfr(world), asdr(world))</pre>
```

```
# Collect ASFR and ASDR for each country
ken <- left_join(asfr(kenya), asdr(kenya))
swe <- left_join(asfr(sweden), asdr(sweden))
wor <- left_join(asfr(world), asdr(world))</pre>
```

Question B6 (cont.)

```
# Transform age groups to ordered factor
df$age <- factor(df$age,
                 levels = c("0-4", "5-9", "10-14",
                            "15-19", "20-24", "25-29",
                            "30-34", "35-39", "40-44",
                            "45-49", "50-54", "55-59",
                            "60-69", "70-79", "80+"))
# Age groups for reproductive age range
age_groups <- c("15-19", "20-24", "25-29",
                "30-34", "35-39", "40-44", "45-49")
```

Question B6 (cont.)

```
# Visualise ASFR
g1 <- ggplot(subset(df, age %in% age_groups), # Age range
             aes(age, 1000 * asfr, # Modify rate
                 fill = country)) + # Colour code
  geom_col() + # Show as columns
  labs( # Axis labels
   x = "Age",
    y = "Age-specific fertility rate per 1000 women") +
  scale_fill_viridis_d() + # Choose a nice colour palette
  facet_grid(country ~ period) + # Stratify
  theme bw() + # Remove redundant lines
  theme( # Avoid cluttering
   legend.position = "none",
    axis.text.x = element_text(angle = 90))
```


Question B6 (cont.)

```
# Visualise ASDR
g2 <- ggplot(df, aes(age, asdr,
                     fill = country)) + # Colour code
  geom_col() + # Show as columns
  scale_y_continuous(breaks = seq(0, 200, 50)) + # Y-axis
  labs( # Axis labels
   x = "Age",
    y = "Age-specific death rate per 1000 population") +
  scale_fill_viridis_d(option = "plasma") + # Colour
  facet_grid(country ~ period) + # Stratify
  theme_bw() + # Remove redundant lines
  theme( # Avoid cluttering
   legend.position = "none",
    axis.text.x = element_text(angle = 90))
```

