

# TOM Talk

# M5 Forecasting - Accuracy

Estimating the Unit Sales of Walmart retail goods

Thomas Pin – UBC Master of Data Science Recent Graduate

LinkedIn: <a href="https://www.linkedin.com/in/thomaspin/">https://www.linkedin.com/in/thomaspin/</a>

September 17, 2020



## Introduction

### Spyros Makridakis



- Professor at the University of Nicosia (Cyprus)
- 20 Publish Articles:
  - Forecasting methods and applications
  - Forecasting and planning: an evaluation
  - Averages of forecasts: some empirical results
  - Accuracy of forecasting: an empirical investigation
- Dubbed one of the Fathers of Forecasting



Source: Spyros Makridakis, https://twitter.com/spyrosmakrid/photo





### Makridakis Competitions or M Competitions



| <b>Competition Name</b> | Year | Number of Time Series Used       |
|-------------------------|------|----------------------------------|
| M competition           | 1982 | 1,001                            |
| M2 competition          | 1993 | 29 (real time)                   |
| M3 competition          | 2000 | 3,003                            |
| M4 competition          | 2018 | 100,000                          |
| M5 competition          | 2020 | 10,000 (hierarchical timeseries) |

### Makridakis Competitions or M Competitions



| <b>Competition Name</b> | Year | Number of Time Series Used       |                  |
|-------------------------|------|----------------------------------|------------------|
| M competition           | 1982 | 1,001                            |                  |
| M2 competition          | 1993 | 29 (real time)                   |                  |
| M3 competition          | 2000 | 3,003                            |                  |
| M4 competition          | 2018 | 100,000                          | Uber Slawek Smyl |
| M5 competition          | 2020 | 10,000 (hierarchical timeseries) |                  |

### M5 Competition







### M5 Competition









## Overview

### M5 Forecasting Accuracy – Overview





A Walmart Inc. store in Secaucus, New Jersey. Photographer: Timothy Fadek/Bloomberg

- Price Pool \$50,000
- 42,840 time series
- Walmart Hierarchical Sales Data
- Days (1 1941) '2011-01-29' to '2016-06-19'

### M5 Forecasting Accuracy – Data Hierarchy





### M5 Forecasting Accuracy – Data Files





calendar.csv

sell\_prices.csv

sample\_submission.csv

sales\_train\_validation.csv

### M5 Forecasting Accuracy – Data Files



### calendar.csv

|      | date           | wm_yr_wk | weekday | wday | month | year | d      | event_name_1   | event_type_1 | event_name_2   | event_type_2 | sn |
|------|----------------|----------|---------|------|-------|------|--------|----------------|--------------|----------------|--------------|----|
| 85   | 2011-<br>04-24 | 11113    | Sunday  | 2    | 4     | 2011 | d_86   | OrthodoxEaster | Religious    | Easter         | Cultural     |    |
| 827  | 2013-<br>05-05 | 11315    | Sunday  | 2    | 5     | 2013 | d_828  | OrthodoxEaster | Religious    | Cinco De Mayo  | Cultural     |    |
| 1177 | 2014-<br>04-20 | 11412    | Sunday  | 2    | 4     | 2014 | d_1178 | Easter         | Cultural     | OrthodoxEaster | Religious    |    |
| 1233 | 2014-<br>06-15 | 11420    | Sunday  | 2    | 6     | 2014 | d_1234 | NBAFinalsEnd   | Sporting     | Father's day   | Cultural     |    |
| 1968 | 2016-<br>06-19 | 11621    | Sunday  | 2    | 6     | 2016 | d_1969 | NBAFinalsEnd   | Sporting     | Father's day   | Cultural     |    |

### sell\_prices.csv

|   | store_id | item_id       | wm_yr_wk | sell_price |
|---|----------|---------------|----------|------------|
| 0 | CA_1     | HOBBIES_1_001 | 11325    | 9.58       |
| 1 | CA_1     | HOBBIES_1_001 | 11326    | 9.58       |
| 2 | CA_1     | HOBBIES_1_001 | 11327    | 8.26       |
| 3 | CA_1     | HOBBIES_1_001 | 11328    | 8.26       |
| 4 | CA_1     | HOBBIES_1_001 | 11329    | 8.26       |

# M5 Forecasting Accuracy – Data Files sample\_submission.csv



|   | id                            | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | <br>F19 | F20 | F21 | F22 | F23 | F24 | F25 | F26 | F27 | F28 |
|---|-------------------------------|----|----|----|----|----|----|----|----|----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | HOBBIES_1_001_CA_1_validation | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | HOBBIES_1_002_CA_1_validation | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2 | HOBBIES_1_003_CA_1_validation | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 3 | HOBBIES_1_004_CA_1_validation | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 4 | HOBBIES_1_005_CA_1_validation | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

### sales\_train\_validation.csv

|   | id                            | item_id       | dept_id   | cat_id  | store_id | state_id | d_1 | d_2 | d_3 | d_4 | <br>d_1904 |
|---|-------------------------------|---------------|-----------|---------|----------|----------|-----|-----|-----|-----|------------|
| 0 | HOBBIES_1_001_CA_1_validation | HOBBIES_1_001 | HOBBIES_1 | HOBBIES | CA_1     | CA       | 0   | 0   | 0   | 0   | <br>1      |
| 1 | HOBBIES_1_002_CA_1_validation | HOBBIES_1_002 | HOBBIES_1 | HOBBIES | CA_1     | CA       | 0   | 0   | 0   | 0   | <br>0      |
| 2 | HOBBIES_1_003_CA_1_validation | HOBBIES_1_003 | HOBBIES_1 | HOBBIES | CA_1     | CA       | 0   | 0   | 0   | 0   | <br>2      |
| 3 | HOBBIES_1_004_CA_1_validation | HOBBIES_1_004 | HOBBIES_1 | HOBBIES | CA_1     | CA       | 0   | 0   | 0   | 0   | <br>1      |
| 4 | HOBBIES_1_005_CA_1_validation | HOBBIES_1_005 | HOBBIES_1 | HOBBIES | CA_1     | CA       | 0   | 0   | 0   | 0   | <br>2      |

### M5 Forecasting Accuracy – Scoring



Objective – Forecast Daily Sales for the next 28 days (4 weeks ahead) for each of 42,840 units

28 days ahead point forecasts (PFs)



Source: @Matthias - Solution

### M5 Forecasting Accuracy – Scoring



#### **Objective – Forecast Daily Sales for the next 28 days (4 weeks ahead)**

28 days ahead point forecasts (PFs)

|       | id                            | F1   | F2   | F3   | F4   | F5   | F6   | F7   | F8   | F9   | ••• | F19  | F20  | F21  | F22  | F23  | F24  | F25  | F26  | F27  | F28  |
|-------|-------------------------------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|
| 0     | HOBBIES_1_001_CA_1_validation | 0.50 | 1.25 | 0.75 | 1.75 | 0.25 | 1.25 | 1.00 | 0.50 | 1.25 |     | 0.25 | 1.25 | 1.00 | 0.50 | 1.25 | 0.75 | 1.75 | 0.25 | 1.25 | 1.00 |
| 1     | HOBBIES_1_002_CA_1_validation | 0.25 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 |     | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | HOBBIES_1_003_CA_1_validation | 0.25 | 0.25 | 0.50 | 0.75 | 0.75 | 0.50 | 1.00 | 0.25 | 0.25 |     | 0.75 | 0.50 | 1.00 | 0.25 | 0.25 | 0.50 | 0.75 | 0.75 | 0.50 | 1.00 |
| 3     | HOBBIES_1_004_CA_1_validation | 1.75 | 1.00 | 1.00 | 0.25 | 2.25 | 3.25 | 3.25 | 1.75 | 1.00 |     | 2.25 | 3.25 | 3.25 | 1.75 | 1.00 | 1.00 | 0.25 | 2.25 | 3.25 | 3.25 |
| 4     | HOBBIES_1_005_CA_1_validation | 0.75 | 0.50 | 1.50 | 2.00 | 1.00 | 1.25 | 2.50 | 0.75 | 0.50 |     | 1.00 | 1.25 | 2.50 | 0.75 | 0.50 | 1.50 | 2.00 | 1.00 | 1.25 | 2.50 |
|       | ***                           |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |
| 60975 | FOODS_3_823_WI_3_evaluation   | 0.50 | 0.00 | 0.00 | 0.25 | 0.50 | 0.00 | 0.25 | 0.50 | 0.00 |     | 0.50 | 0.00 | 0.25 | 0.50 | 0.00 | 0.00 | 0.25 | 0.50 | 0.00 | 0.25 |
| 60976 | FOODS_3_824_WI_3_evaluation   | 0.75 | 0.25 | 0.00 | 0.00 | 0.00 | 0.75 | 0.50 | 0.75 | 0.25 |     | 0.00 | 0.75 | 0.50 | 0.75 | 0.25 | 0.00 | 0.00 | 0.00 | 0.75 | 0.50 |
| 60977 | FOODS_3_825_WI_3_evaluation   | 2.25 | 0.25 | 1.25 | 0.00 | 0.50 | 1.25 | 0.75 | 2.25 | 0.25 |     | 0.50 | 1.25 | 0.75 | 2.25 | 0.25 | 1.25 | 0.00 | 0.50 | 1.25 | 0.75 |
| 60978 | FOODS_3_826_WI_3_evaluation   | 1.00 | 0.75 | 0.50 | 1.00 | 1.00 | 0.50 | 1.75 | 1.00 | 0.75 |     | 1.00 | 0.50 | 1.75 | 1.00 | 0.75 | 0.50 | 1.00 | 1.00 | 0.50 | 1.75 |
| 60979 | FOODS_3_827_WI_3_evaluation   | 2.25 | 1.50 | 0.75 | 1.00 | 0.75 | 1.00 | 0.25 | 2.25 | 1.50 |     | 0.75 | 1.00 | 0.25 | 2.25 | 1.50 | 0.75 | 1.00 | 0.75 | 1.00 | 0.25 |
|       |                               |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |

60980 rows x 29 columns

### Quick A Side – Scoring Error





Source: Error

### **Mean Absolute Error (MAE)**

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

### Root mean squared error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

### M5 Forecasting Accuracy – Scoring





Source: M5 Leader Boards

### M5 Forecasting Accuracy – Scoring



Point Forecasts - Root Mean Squared Scaled Error (RMSSE)

$$RMSSE = \sqrt{\frac{1}{h} \frac{\sum_{t=n+1}^{n+h} (Y_t - \widehat{Y}_t)^2}{\frac{1}{n-1} \sum_{t=2}^{n} (Y_t - Y_{t-1})^2}},$$

After estimating all 42,840 RMSSEs

Ranking – Weighted RMSSE (WRMSSE)

$$WRMSSE = \sum_{i=1}^{42,840} w_i * RMSSE$$

### M5 Forecasting Accuracy – Scoring Reasoning



#### WRMSSE EXAMPLE

Product A is \$10 in Sales Product B is \$12 in Sales

 $RMSSE_A = 0.8$  $RMSSE_B = 0.7$ 

**RMSSE=0.77** 

$$WRMSSE = RMSSE_A * w_1 + RMSSE_B * w_2 + RMSSE * w_3 = \\ RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_B * \frac{1}{K} * \frac{\$Sales_B}{\$Sales_A + \$Sales_B} + RMSSE * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} + RMSSE_A * \frac{1}{K} * \frac{\$Sales_A}{\$Sales_A + \$Sales_B} = \\ RMSSE_A * \frac{1}{K} * \frac{$$

$$0.8 * \frac{1}{2} * \frac{10}{10+12} + 0.7 * \frac{1}{2} * \frac{12}{10+12} + 0.77 * \frac{1}{2} * 1 = 0.758.$$

### M5 Forecasting Accuracy – Scoring Reasoning





Units Sold





High price low volume & Low Price high volume

### M5 Forecasting Accuracy – EDA



Unit Sales over Time



### M5 Forecasting Accuracy – EDA



Rolling Average Sales vs. Time (per store)



### M5 Forecasting Accuracy – EDA



#### Rolling Average Sales vs. Store name



### M5 Forecasting Accuracy – Challenges



Comparing different states, stores, categories and departments





Weather and Disaster





Out of Stock





Anomaly – Blue Moon Event



### Quick A Side – Leaderboards



#### Public Leaderboard

Private Leaderboard

The private leaderboard is calculated with approximately 50% of the test data.

This competition has completed. This leaderboard reflects the final standings.



- Public Leader board d\_1914 d\_1941
   Release May 31<sup>st</sup>, 2020
- Private Leader board d\_1942 d\_1969
   Released June 30<sup>th</sup>, 2020 (Deadline June 23<sup>rd</sup>, 2020)



# Solution Techniques

### M5 Forecasting Accuracy – Baseline Score





Simple model: Just using the last known 28 days, which should be the most useful since they happened most recently, we use the average demand, grouped by weekday.

Kaggle: <a href="mailto:occupation">occupation</a>

### M5 Forecasting Accuracy – Rational



### July 20XX



### M5 Forecasting Accuracy – Baseline Score





Simple model: Just using the last known 28 days, which should be the most useful since they happened most recently, we use the average demand, grouped by weekday.

Kaggle: @chrisrichardmiles

PUBLIC SCORE: 0.75238

### Solution Technique – Sliding Window





Source: Roy Yang Omphalos, Uber's Parallel and Language-Extensible Time Series
Backtesting Tool January 24, 2018 <u>link</u>

### Solution Technique – @YeonJun IN 1st Place Solution







Source: Roy Yang Omphalos, Uber's Parallel and Language-Extensible Time Series
Backtesting Tool January 24, 2018 link

### Solution Technique – @YeonJun IN 1st Place Solution







Source: Roy Yang Omphalos, Uber's Parallel and Language-Extensible Time Series

Backtesting Tool January 24, 2018 <u>link</u>

### Quick A Side – Recursion





Source: Shmuel Lotman Link

### Quick A Side – Recursion Simple Example



```
def rec_sum(elements):
    # Check for empty lists
    if len(elements) == 0:
        return None

if len(elements) == 1:
        return elements[0]

return elements[0] + rec_sum(elements[1:])
```

```
1 rec_sum([1, 2, 3, 4])
```

### Solution Technique – Direct vs. Recursive Method



#### 1. Direct Multi-step Forecast Strategy

```
prediction(t+1) = model1(obs(t-1), obs(t-2), ..., obs(t-n))
prediction(t+2) = model2(obs(t-2), obs(t-3), ..., obs(t-n))
```

#### 2. Recursive Multi-step Forecast

```
prediction(t+1) = model(obs(t-1), obs(t-2), ..., obs(t-n))
prediction(t+2) = model(prediction(t+1), obs(t-1), ..., obs(t-n))
```

#### 3. Direct-Recursive Hybrid Strategies

```
prediction(t+1) = model1(obs(t-1), obs(t-2), ..., obs(t-n))
prediction(t+2) = model2(prediction(t+1), obs(t-1), ..., obs(t-n))
```





Source: Akira AI, Lightgbm





- Training speed faster without compromising efficiency
- The memory usage is also low
- It provides better accuracy
- It supports two types of learning parallel and GPU
- It has the capability of handling large scale data

Source: Akira AI, Lightgbm

#### Results – Models





## Why LGBM?









Kaggle: @kyakovlev





PUBLIC SCORE: 0.47506

Kaggle: @kyakovlev

### Solution Technique – Objection: Tweedie



```
In [3]: 1 import lightgbm as lgb
2 lgmb = lgb.LGBMRegressor(objective="tweedie")
```







# Results/Solutions

### Results – Leaderboard



| Public Leaderboard |                                                                                                                                                                | oard Private Leade   | rboard   |              |         |         |                  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--------------|---------|---------|------------------|--|
|                    | The private leaderboard is calculated with approximately 50% of the test data.  This competition has completed. This leaderboard reflects the final standings. |                      |          |              |         |         | <b>⊘</b> Refresh |  |
| ■ In t             | he money                                                                                                                                                       | Gold Silver          | Bronze   |              |         |         |                  |  |
| #                  | ∆pub                                                                                                                                                           | Team Name            | Notebook | Team Members | Score @ | Entries | Last             |  |
| 1                  | <b>1519</b>                                                                                                                                                    | YeonJun IN_STU       |          | 2            | 0.52043 | 38      | 2mo              |  |
| 2                  | ▲ 652                                                                                                                                                          | Matthias             |          |              | 0.52816 | 57      | 2mo              |  |
| 3                  | ▲ 894                                                                                                                                                          | mf                   |          | 9 9          | 0.53571 | 9       | 2mo              |  |
| 4                  | ▲ 894                                                                                                                                                          | monsaraida           |          | *            | 0.53583 | 15      | 2mo              |  |
| 5                  | <b>▲</b> 2647                                                                                                                                                  | Alan Lahoud          |          | *            | 0.53604 | 49      | 3mo              |  |
| 6                  | <b>▲</b> 1152                                                                                                                                                  | wyzJack_STU          |          | I            | 0.54433 | 80      | 2mo              |  |
| 7                  | ▲ 823                                                                                                                                                          | RandomLearner        |          |              | 0.54643 | 32      | 2mo              |  |
| 8                  | ▲ 2577                                                                                                                                                         | SHJ                  |          | 2            | 0.54688 | 21      | 2mo              |  |
| 9                  | <b>▲</b> 786                                                                                                                                                   | gest #2              |          | 4            | 0.54705 | 23      | 2mo              |  |
| 10                 | <b>1906</b>                                                                                                                                                    | DenisKokosinskiy_STI | U        | 7            | 0.54747 | 21      | 2mo              |  |

### Solution – @YeonJun IN 1st Place Solution





Source: @YeonJun In - Solution

### Solution – @YeonJun IN 1st Place Solution



| cv1      | cv2      | cv3      | public   | info                        | mean     | std      |
|----------|----------|----------|----------|-----------------------------|----------|----------|
| 0.65004  | 0.670383 | 0.530737 | 0.63981  | non recursive by store      | 0.622743 | 0.062639 |
| 0.619099 | 0.689141 | 0.64035  | 0.47506  | recursive by store          | 0.605912 | 0.092031 |
| 0.689281 | 0.668573 | 0.530811 | 0.6524   | non recursive by dept       | 0.635266 | 0.071254 |
| 0.608669 | 0.659947 | 0.692147 | 0.50111  | recursive by dept           | 0.615468 | 0.08363  |
| 0.670704 | 0.658795 | 0.524379 | 0.64712  | non recursive by dept state | 0.625249 | 0.067933 |
| 0.623715 | 0.665247 | 0.655988 | 0.49864  | recursive by dept state     | 0.610898 | 0.076926 |
| 0.641962 | 0.654552 | 0.528545 | 0.646313 | non recursive by store cat  | 0.617843 | 0.059761 |
| 0.625785 | 0.684371 | 0.662707 | 0.489461 | recursive by store cat      | 0.615581 | 0.08749  |
| 0.650937 | 0.649827 | 0.535874 | 0.657752 | non recursive by store dept | 0.623598 | 0.058587 |
| 0.620159 | 0.67864  | 0.626362 | 0.496602 | recursive by store dept     | 0.605441 | 0.077154 |

| cv1      | cv2      | cv3      | public   | info                           | mean     | std      |
|----------|----------|----------|----------|--------------------------------|----------|----------|
| 0.572465 | 0.623062 | 0.527601 | 0.53675  | no recur + recur by store      | 0.564969 | 0.043296 |
| 0.576888 | 0.613454 | 0.541873 | 0.547022 | no recur + recur by store cat  | 0.569809 | 0.032938 |
| 0.58493  | 0.614451 | 0.530838 | 0.559215 | no recur + recur by store dept | 0.572358 | 0.035714 |
|          |          |          |          |                                |          |          |
| 0.573388 | 0.614509 | 0.530879 | 0.545663 | Final ensemble                 | 0.56611  | 0.036764 |

Source: @YeonJun In - CVs Results

### Solution – @monsaraida IN 4<sup>th</sup> Place Solution



### **M5** Forecasting – Accuracy : 4<sup>th</sup> place solution



Source: @monsaraida - Solution





# Title



Text