

Product Summary

BVDSS	RDSON	ID		
100V	70mΩ	15.0A		
-100V	180mΩ	-7.0A		

PDFN5060-8L Pin Configuration

- ★ Super Low Gate Charge
- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

The XR20G10F is the highest performance complementary N-ch and P-ch MOSFETs MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR20G10F meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Absolute Maximum Ratings

0	<u> </u>	Rat		
Symbol	Parameter	N-Channel	P-Channel	Units
V _{DS}	Drain-Source Voltage	100	-100	V
V _{GS}	Gate-Source Voltage	±20	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	15.0	-7.0	Α
ID@TA=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	10.0	-4.5	А
I _{DM}	Pulsed Drain Current ²	25	-9.5	Α
EAS	Single Pulse Avalanche Energy ³	22.5	35.3	mJ
I _{AS}	Avalanche Current	22.6	-26.6	Α
P _D @T _A =25°C	Total Power Dissipation ⁴	3.5	3.5	W
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C

Thermal Data

Symbol	Parameter		Max.	Unit	
Reja	Thermal Resistance Junction-Ambient ¹		75	°C/W	
Rejc	Thermal Resistance Junction-Case ¹		62.5	°C/W	

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics							
Drain-Source Breakdown Vo	oltage	V (BR)DSS V _{GS} = 0V, I _D = 250µA		100	-	-	V
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
Zero Gate Voltage Drain	T _J =25°C	_		-	-	1	μА
Current	T _J =100°C	IDSS	V _{DS} =100V, V _{GS} = 0V	-	-	100	
Gate-Threshold Voltage		V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250µA	1.2	-	2.5	V
	4		V _{GS} = 10V, I _D = 5A	-	- 65 90		
Drain-Source on-Resistance	i .	R _{DS(on)}	V _{GS} = 4.5V, I _D = 3A	-	75	105	mΩ
Forward Transconductance	ļ	G fs	V _{DS} =5V , I _D =5A	-	12	-	S
Dynamic Characteristic	s ⁵			'	1		
Input Capacitance		Ciss	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	-	1220	-	pF
Output Capacitance		Coss		-	53	-	
Reverse Transfer Capacitance		Crss		-	42	-	
Gate Resistance		R _g	f=1MHz	-	1.3	-	Ω
Switching Characteristi	CS ⁵			_	•		
Total Gate Charge		Qg		-	20.6	-	nC
Gate-Source Charge		Q _{gs}	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D} = 5A$	-	4	-	
Gate-Drain Charge		Q _{gd}		-	3.7	-	
Turn-On Delay Time		t _{d(on)}		-	4.7	-	ns
Rise Time		tr	V _{GS} =10V, V _{DD} =50V,	-	21	-	
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = 5A$	-	20	-	
Fall Time		t _f	-	-	16	-	
Drain-Source Body Dio	de Charactei	ristics	1		l	l	I.
Diode Forward Voltage ⁴		V _{SD}	I _S = 1A, V _{GS} = 0V	-	_	1.2	V
Continuous Source Current	T _C =25°C	Is	-	-	-	15	Α

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =8A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-100			V
Dagger	Otatia Dunin Carras On Basistanas ²	V _{GS} =-10V , I _D =-3A		180 220		~ 0
Rds(ON)	Static Drain-Source On-Resistance ²	V_{GS} =-4.5 V , I_D =-2 A		210	255	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.2		-2.5	V
lass	Drain Source Leakage Current	V_{DS} =-80V , V_{GS} =0V , T_J =25 $^{\circ}$ C			-1	
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-80V , V_{GS} =0V , T_{J} =85 $^{\circ}$ C			-30	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
R_g	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz			13		Ω
Qg	Total Gate Charge (-10V)			19		
Qgs	Gate-Source Charge	V _{DS} =-50V , V _{GS} =-10V , I _D =-2A		3.4		nC
Q_gd	Gate-Drain Charge			2.9		
T _{d(on)}	Turn-On Delay Time			9		
Tr	Rise Time	V_{DD} =-30 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		6		
T _{d(off)}	Turn-Off Delay Time	I _D =-1A		39		ns
T _f	Fall Time			33		
C _{iss}	Input Capacitance			1228		
Coss	Output Capacitance V _{DS} =-30V , V _{GS} =0V , f=1MHz			41		pF
Crss	Reverse Transfer Capacitance			29		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-7.0	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch $^2\,\text{FR-4}$ board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.5mH, I_{AS} =-14A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs T_J

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs TJ

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

Package Mechanical Data- PDFN5060-8L

Top View

Bottom View

Side View

Crombal	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.000	0.035	0.039	
A3	0.154	AREF.	0.006REF.		
D	4.944	5.096	0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	1.470	1.870	0.058	0.074	
D2	0.470	0.870	0.019	0.034	
E1	3.375	3.575	0.133	0.141	
D3	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270	TYP.	0.050TYP.		
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	10°	12°	10°	12°	