

1311/12502 Theory of Computation

Spring 2016

BLM2502 Theory of Computation

Week Content Introduction to Course >> Computability Theory, Complexity Theory, Automata Theory, Set >> Theory, Relations, Proofs, Pigeonhole Principle 3 **Regular Expressions** >> Finite Automata >> Deterministic and Nondeterministic Finite Automata >> 6 Epsilon Transition, Equivalence of Automata >> 7 **Pumping Theorem** >> April 10 - 14 week is the first midterm week 8

- 9 Context Free Grammars >> 10 Parse Tree, Ambiguity, >> 11 **Pumping Theorem** >>
- 12 Turing Machines, Recognition and Computation, Church-Turing Hypothesis >> Turing Machines, Recognition and Computation, Church-Turing Hypothesis 13 >> May 22-27 week is the second midterm week 14 >>
- Review 15 >>

>>

Course Outline

16 Final Exam date will be announced

The Pumping Lemma for CFL's

Simplifications of Context-Free Grammars

A Substitution Rule

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA \mid B \rightarrow aA$$

$$B \rightarrow aA \mid B \rightarrow b$$

$$B \rightarrow b$$

$$B \rightarrow b$$

$$Equivalent$$

$$grammar$$

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow b$$

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab$$
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc$
 $B \rightarrow aA$

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$
 $A \rightarrow aaA$
 $A \rightarrow abBc \mid abbc \mid abaAc$

Equivalent grammar

In general: $A \rightarrow xBz$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

 ε – production :

$$X \to \varepsilon$$

Nullable Variable:

$$Y \Rightarrow \ldots \Rightarrow \varepsilon$$

Example:

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

$$M \rightarrow \varepsilon$$

 ε – production

Removing ε – productions

$$S \rightarrow aMb$$
 Substitute $S \rightarrow aMb \mid ab$ $M \rightarrow aMb \mid ab$ $M \rightarrow \varepsilon$ $M \rightarrow aMb \mid ab$

After we remove all the ϵ - productions all the nullable variables disappear (except for the start variable)

Unit-Productions

Unit Production:

$$X \rightarrow Y$$

(a single variable in both sides)

Example:

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \to A$$

$$B \rightarrow bb$$

Unit Productions

Removal of unit productions:

$$S \rightarrow aA$$
 | abb | aa | aa | $S \rightarrow aA \mid aB$ | $S \rightarrow aA \mid aB$ | $A \rightarrow a$ | $A \rightarrow B$ | $A \rightarrow A \mid B$ | $A \rightarrow B \mid B \rightarrow A \mid B$ | $B \rightarrow bb$ | $B \rightarrow bb$

Unit productions of form $X \to X$ can be removed immediately

$$S \rightarrow aA \mid aB$$
 $S \rightarrow aA \mid aB$ $A \rightarrow a$ Remove $A \rightarrow a$ $B \rightarrow A \mid B \rightarrow bb$ $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$

Substitute

 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \rightarrow aA \mid aB \mid aA$$
 $S \rightarrow aB$
 $A \rightarrow a$
 $B \rightarrow bb$
 $S \rightarrow aB$

Final grammar

$$S \rightarrow aA \mid aB$$

$$B \rightarrow bb$$

Useless Productions

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow A$$

$$S$$

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S \rightarrow A$$

$$A \rightarrow aA$$

$$A \rightarrow \lambda$$

$$B \rightarrow bA$$
Useless Production

Not reachable from 5

In general:

If there is a derivation

$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w \in L(G)$$

consists of terminals

Then variable A is useful

Otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S
ightharpoonup aSb$$

$$S
ightharpoonup \varepsilon$$
Productions
Variables $S
ightharpoonup A$ useless
useless $A
ightharpoonup aA$ useless
useless $C
ightharpoonup D$ useless
useless $C
ightharpoonup D$ useless

Removing Useless Variables and Productions

Example Grammar: $S \rightarrow aS \mid A \mid C$

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals or \mathcal{E} (possible useful variables)

$$S \to aS |A| C$$

$$A \to a$$

 $B \rightarrow aa$

 $C \rightarrow aCb$

Round 1: $\{A,B\}$

(the right hand side of production that has only terminals)

Round 2: $\{A,B,S\}$

(the right hand side of a production has terminals and variables of previous round)

This process can be generalized

Then, remove productions that use variables other than $\{A,B,S\}$

$$S \to aS \mid A \mid \mathcal{S}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Second: Find all variables reachable from S

Use a Dependency Graph where nodes are variables

$$S \rightarrow aS \mid A$$
 $A \rightarrow a$
 $B \rightarrow aa$

unreachable

Keep only the variables reachable from S

$$S \to aS \mid A$$

$$A \to a$$

Final Grammar

$$S \to aS \mid A$$
$$A \to a$$

Contains only useful variables

Removing All

- >> Step 1: Remove Nullable Variables $\angle A \rightarrow \mathcal{E}$
- >> Step 2: Remove Unit-Productions
- >> Step 3: Remove Useless Variables

This sequence guarantees that unwanted variables and productions are removed

 $S \rightarrow ABAC$ $A \rightarrow gA \mid \mathcal{E}$ $B \rightarrow bB \mid \mathcal{E}$ $C \rightarrow c$

Productions

S-> ARAC | ABC | RHC | RC | C | AAC | AC

A-> 9A | 9

IS-> BBB

Z->C

S-> ARAC | ABC | BAC | RC | C | AAC | Ac

A-> 9A | 9

Normal Forms for

Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \to AS$$

$$S \to a$$

$$A \to SA$$

$$A \to b$$

$$T_{1} \to a$$

Chomsky
Normal Form

Not Chomsky Normal Form

Conversion to Chomsky Normal Form

"Example: $S \to ABa$ $A \to aab$ Normal Form $B \to Ac$ $V_1 \to q$ $V_2 \to \mathbb{R}^N$

We will convert it to Chomsky Normal Form

Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

$$S \rightarrow ABT_a$$
 $A \rightarrow T_a T_a T_b$
 $B \rightarrow AT_c$
 $T_a \rightarrow a$
 $T_b \rightarrow b$

Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_2

$$S \rightarrow AV_{1}$$

$$V_{1} \rightarrow BT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

$$S \rightarrow AV_{1}$$

$$V_{1} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_$$

 $T_c \rightarrow c$

Final grammar in Chomsky Normal Form:

$$S o AV_1$$
 $V_1 o BT_a$
 $A o T_a V_2$
 $V_2 o T_a T_b$
 $S o ABa$
 $A o aab$
 $B o AC$
 $T_a o a$
 $T_b o b$
 $T_c o c$

In general:

From any context-free grammar (which doesn't produce ϵ) not in Chomsky Normal Form

we can obtain:

an equivalent grammar

in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

(Useless variables optional)

Then, for every symbol a:

New variable: T_a

Add production $T_a \rightarrow a$

In productions with length at least 2 replace a with T_a

Productions of form $A \rightarrow a$ do not need to change!

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$

$$V_1 \rightarrow C_2 V_2$$

$$\cdots$$

$$V_{n-2} \rightarrow C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is easy to find the Chomsky normal form for any context-free grammar

Greinbach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

Greinbach Normal Form

$$T_{1} = 5$$

$$S \rightarrow a b S b$$

$$S \rightarrow a a$$

$$T_{2} = a$$

$$S \rightarrow a + 5$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S \to aT_b ST_b$$

$$S \to aT_a$$

$$T_a \to a$$

$$T_b \to b$$

Greinbach
Normal Form

Observations

· Greinbach normal forms are very good for parsing strings (better than Chomsky Normal Forms)

 However, it is difficult to find the Greinbach normal of a grammar

BLM2502 Theory of Computation

