# २. पृथ्वीचे अंतरंग



मागील इयत्तांमध्ये तुम्ही खडकांचे प्रकार, ज्वालामुखी व भूकंप यांची ओळख करून घेतली आहे. त्यावर आधारित पुढील प्रश्नांची उत्तरे सांगा.

- भूकंप होतो म्हणजे नेमके काय होते?
- अग्निजन्य खडक कसे तयार होतात?
- ज्वालामुखी म्हणजे काय?
- ज्वालामुखी उद्रेकादरम्यान कोणकोणते पदार्थ बाहेर पडतात?
- ≽ हे पदार्थ कोणत्या स्वरूपात असतात?
- हे पदार्थ थंड असतात की उष्ण असतात? का?



अर्धा लीटर दूध तापत ठेवा. दूध तापून उकळी आल्यानंतर तापवणे बंद करा. आता दुधाच्या पातेल्यावर झाकण ठेवा. प्रयोगाचा पुढचा भाग फार महत्त्वाचा आहे. यामध्ये तुमचे निरीक्षण कौशल्य वापरायचे असून त्याद्वारे निष्कर्षाप्रत पोहोचायचे आहे.

दहा मिनिटांनी पातेल्यावर ठेवलेले झाकण बाजूला करा व थोडे तिरपे धरा. काय होते ते पहा. दुधावर काय दिसत आहे ते पहा. दुधावर जमलेला पदार्थ कोणत्या स्वरूपात आहे. हा पदार्थ बाजूला करा. या पदार्थाचे व दुधाचे तापमान यांतील फरक समजून घ्या व पुढील प्रश्नांची उत्तरे द्या.

- ≽ दूध तापत ठेवले होते तेव्हा ते कोणत्या स्वरूपात होते?
- दुधाला उकळी आली होती तेव्हा दुधातून काय बाहेर येत होते?
- पातेल्यावरील झाकणावर काय जमा झाले होते?
- > दुधावर जमलेला पदार्थ द्रव की घन ते सांगा.
- तो आतील दुधापेक्षा थंड होता की गरम होता?
- असा प्रयोग आणखी कोणकोणत्या पदार्थांवर करता येईल?

#### भौगोलिक स्पष्टीकरण

दूध तापविण्यापूर्वी पूर्णपणे द्रव स्वरूपात होते. दुधाला उकळी आल्यानंतर त्यातून वाफा बाहेर पडत होत्या. काही वेळाने दुधावर साय तयार झालेली दिसते. ही साय आतील दुधापेक्षा कमी तापमानाची असते. यावरून असे म्हणता येईल, की पातेल्यातील सायीचा थर प्रथम थंड झाला तर त्याखालील दूध त्यामानाने गरम व द्रवरूप राहिले. असेच काहीसे पृथ्वीच्या थंड होण्याच्या प्रक्रियेत झाले असावे.

पृथ्वीची निर्मिती सौरमालेबरोबरच झाली याबाबत शास्त्रज्ञांमध्ये एकमत आहे. सुरुवातीला पृथ्वी उष्ण व वायुरूप गोळ्याच्या स्वरूपात होती. स्वतःभोवती फिरता फिरता ती थंड होत गेली. पृथ्वी थंड होण्याची क्रिया पृष्ठभागाकडून केंद्राच्या दिशेस झाल्याने पृथ्वीच्या बाह्यभागास (भू-कवच) थंड व घन स्वरूप प्राप्त झाले, मात्र अंतरंगातील भागात उष्णता जास्त असून भूपृष्ठाकडून गाभ्याकडे जाताना ती सातत्याने वाढत जाते. तसेच विशिष्ट खोलीवर अंतरंग अर्धद्रव स्वरूपात आहे.

पृथ्वीचे अंतरंग नेमके कसे आहे याबाबत मानवाच्या मनात आजही कुतूहल आहे. पृथ्वीच्या अंतरंगाचे प्रत्यक्ष निरीक्षण करणे अद्याप शक्य झाले नाही. त्यामुळे भूगर्भशास्त्रज्ञांनी अनेक पद्धतीने अभ्यास करून काही अनुमाने काढली आहेत. त्यासाठी ज्वालामुखीतून बाहेर पडणारे पदार्थ व भूकंपलहरी यांचा अभ्यास प्रामुख्याने केला.

ज्वालामुखीच्या उद्रेकातून बाहेर पडणाऱ्या पदार्थांत प्रचंड उष्ण लाव्हारस, वायू, वाफ इत्यादी घटक आढळले. लाव्हारस थंड झाल्यावर त्यापासून अग्निजन्य खडक तयार होतात. त्याचबरोबर तापमान, घनता, गुरुत्वाकर्षण बल, दाब यांच्या अभ्यासातील अनुमानांवरून अंतरंगाची रचना समजून घेता आली. उदा., खाणीमध्ये खोलवर गेल्यास तापमान वाढ झाल्याचे आढळते. तसेच ज्वालामुखी उद्रेकातून बाहेर येणारा लाव्हारस तप्त असतो. यावरून पृथ्वीचा अंतर्भाग उष्ण व प्रवाही असावा, असे अनुमान भूगर्भशास्त्रज्ञांनी काढले. पृथ्वीच्या निरनिराळ्या भागात दरवर्षी असंख्य भूकंप होतात. त्यामुळे भूकंपलहरी

निर्माण होतात. या भूकंपलहरी पृथ्वीच्या अंतर्गाभ्यातून प्रवास करतात. त्यांची दिशा व वेग यांचा अभ्यास करून अंतरंगाच्या रचनेबाबत अनुमान केले जाते. भूकवचाच्या अभ्यासासाठी मानवाने विंधन छिद्रेदेखील पाडली आहेत.

# जरा विचार करा.

पृथ्वीच्या एका बाजूने खोलवर खणत जाऊन विरुद्ध बाजूने बाहेर येता-जाता येईल का? याबाबतच्या तुमच्या कल्पना वहीत लिहा आणि त्यावर चर्चा करा.

(टीप: शिक्षकांनी विद्यार्थ्यांच्या कल्पना ऐकून त्याप्रमाणे पृथ्वीच्या अंतरंगाचा विषयप्रवेश करावा.)

# माहीत आहे का तुम्हांला ?

आपल्या पृथ्वीची निर्मिती सुमारे ४६० कोटी वर्षांपूर्वी झाली. प्रारंभिक अवस्थेत पृथ्वी वायुरूप होती. उष्णता उत्सर्जन प्रक्रिया होऊन हळूहळू ती थंड होत गेली. पृथ्वीला प्रथम द्रवरूप अवस्था प्राप्त झाली. कालांतराने पृथ्वीचा सर्वांत बाह्य भाग प्रथम थंड झाल्याने त्या भागाला घनरूप अवस्था प्राप्त झाली. पृथ्वीच्या या भागालाच भूकवच म्हणून संबोधले जाते. अजूनही सूर्यमालेतील बाह्य ग्रह वायुरूप अवस्थेत आहेत.

### पृथ्वीच्या अंतरंगाची रचना :

# करून पहा.

(खालील कृती दोन विद्यार्थ्यांच्या गटात करा. संदर्भासाठी पृष्ठ ११ वरील छायाचित्रे वापरा.)

- ✓ लाल, पिवळा व निळा असे रंगांचे मातीचे गोळे घ्या.
   (बाजारात मिळतात तसे.)
- 🗸 लाल रंगाचा गोळा थोडा मोठा असावा.
- ✓ पिवळ्या रंगाचा गोळा लाटून घ्या. तयार झालेल्या पोळीमध्ये ज्याप्रमाणे पुरणपोळी करताना पोळीत पुरण भरतात त्याप्रमाणे लाल रंगाचा गोळा भरा व त्याला घनगोलाचा आकार द्या.
- ✓ आता निळ्या रंगाचा गोळा वरीलप्रमाणे लाटून घ्या.
  या पोळीमध्ये पिवळ्या रंगाचा गोळा भरून याचाही

- घनगोल तयार करा.
- ✓ पृथ्वीगोलाप्रमाणे या घनगोलावर पिवळ्या रंगाने वेगवेगळे खंड दाखवा. आता तुमचा मातीचा पृथ्वीगोल तयार झाला आहे.
- ✓ पृथ्वीचे अंतरंग पाहण्यासाठी मातीचा घनगोल बरोबर मधून अर्धा कापा. आतमध्ये तुम्हांला पृथ्वीच्या अंतरंगाप्रमाणे विविध थर दिसतील. या थरांना नावे देण्याचा प्रयत्न करा.

#### भौगोलिक स्पष्टीकरण

भूपृष्ठापासून गाभ्याकडे होणाऱ्या बदलात प्रामुख्याने तापमान, घनता यांचा समावेश होतो. या दोन घटकांमधील बदलांच्या अनुषंगाने पृथ्वीच्या अंतरंगाचे पुढील विभाग पडतात.



आकृती २.१ : पृथ्वीच्या अंतरंगाची रचना दाखवणारी प्रतिमा

#### भूकवच:

पृथ्वीचा सर्वांत वरचा भाग हा घनरूप असून तो भूकवच म्हणून ओळखला जातो. भूकवचाची जाडी सर्वत्र सारखी नाही. सरासरी जाडी ३० ते ३५ किमी मानली

# पृथ्वीचे अंतरंग जाणून घेण्यासाठी करावयाच्या कृतीचे टप्पे





आकृती २.२ : पृथ्वीचे अंतरंग दाखवणारी प्रतिमा

जाते. भूकवचाची खंडाखालील जाडी १६ ते ४५ किमीच्या दरम्यान आहे. भूकवचाची ही जाडी पर्वतश्रेणींखाली ४० किमीपेक्षा जास्त असते, तर सागर पृष्ठाखाली ती १० किमीपेक्षा कमी आढळते. आकृती २.१ व २.२ पहा.

भूपृष्ठाखाली जसजसे खोल जावे तसतसे तापमान वाढत जाते. भूपृष्ठाखाली तापमानात वाढ होत जाते. त्यानंतर प्रावरणात तापमान वाढीच्या प्रमाणात घट होते व पुन्हा गाभा क्षेत्रात वाढ होते. पृथ्वीच्या केंद्रस्थानी सुमारे ५५००° से. ते ६०००° से. तापमान असते.

भूकवच हे प्रावरण व गाभा यांच्या तुलनेत अतिशय कमी जाडीचे आहे. त्याचे दोन उपविभाग पडतात.

खंडीय कवच: भूखंड प्रामुख्याने सिलिका (सिलिका हे सिलिकॉन या मुलद्रव्याचे संयुग आहे.) व ॲल्युमिनिअम यापासून बनलेले आहेत. यामुळे या थराला पूर्वी सियाल म्हणत असत. भूखंडीय कवचाची घनता २.६५ ते २.९० ग्रॅम/ घसेमी इतकी आहे. खंडीय कवचाची सरासरी जाडी सुमारे ३० किमी आहे. या थरात प्रामुख्याने ग्रॅनाईट खडक आढळतात.

महासागरीय कवच: हा भूकवचाचा दुसरा थर आहे. हा थर सिलिका व मॅग्नेशिअम यांच्या संयुगाने बनलेला आहे. याला पूर्वी सायमा असे नाव होते. या थराची सरासरी जाडी ७ ते १० किमी आहे. महासागरीय कवचाची घनता २.९ ग्रॅम/घसेमी ते ३.३ ग्रॅम/घसेमी इतकी आहे. या थरात प्रामुख्याने बेसॉल्ट व गॅब्रो हे खडक आढळून येतात.



# माहीत आहे का तुम्हांला ?

खंडीय कवच व महासागरीय कवच यांच्या घनतेमध्ये विलगता आहे हे कॉनरॅड या शास्त्रज्ञाने शोधून काढले. म्हणून या विलगतेला कॉनरॅड विलगता हे नाव दिले आहे.

भूकवच व प्रावरण यांच्यात विलगता आहे. हे ज्या शास्त्रज्ञाने शोधून काढले त्याचे नाव मोहोरोव्हिंसिक होते. त्यामुळे या विलगतेला मोहो विलगता असे नाव देण्यात आले.

प्रावरण व गाभा यांच्यात विलगता आहे. गटेनबर्ग या शास्त्रज्ञाने ही विलगता शोधून काढली. त्या विलगतेला गटेनबर्ग विलगता हे नाव देण्यात आले.

#### प्रावरण:

भूकवचाखाली प्रावरणाचे थर आढळतात. प्रावरणाचे उच्च प्रावरण व निम्न प्रावरण असे दोन उपविभाग केले जातात.

उच्च प्रावरण हे जास्त प्रवाही असते. याच भागात शिलारस कोठी आढळतात. ज्यामधून ज्वालामुखीच्या उद्रेकादरम्यान हा शिलारस पृथ्वीपृष्ठावर येतो. प्रावरणाच्या या भागास दुर्बलावरण असेही म्हणतात. भूकंपाची केंद्रे प्रामुख्याने या भागात आढळतात. भूपृष्ठापासून सुमारे ४२ किमी खोलीनंतर प्रावरणास सुरुवात होते.

प्रावरणातील अंतर्गत शक्तीमुळे होणाऱ्या हालचालींतून भूपृष्ठावर पर्वत निर्मिती, द्रोणी निर्मिती, ज्वालामुखी, भूकंप यांसारख्या प्रक्रिया घडतात.

या भागात २४०० ते २९०० किमी खोलीवरील तापमान २२००° से. ते २५००° से. पर्यंत असावे असे अनुमान आहे. तेथील खडकाच्या रचनेत व घनतेत एकाएकी बदल होतो. प्रावरणाची खोली २८७० किमी असावी असा शास्त्रीय अंदाज आहे. प्रावरणाची सरासरी घनता ४.५ ग्रॅम/घसेमी असून खोलीनुसार घनतेत वाढ होत जाते. याचे कारण म्हणजे वाढत जाणारा दाब हे आहे. निम्न प्रावरणाची घनता ५.७ ग्रॅम/घसेमी आहे.

#### गाभा:

भूपृष्ठापासून सुमारे २९०० किमी खोलीच्या खाली 'गाभ्याचा भाग' सुरू होतो. प्रावरणाच्या खाली व पृथ्वीच्या केंद्रापर्यंतचा भाग गाभा होय. गाभ्याची जाडी ३४७१ किमी आहे. या थराचे बाह्यगाभा व अंतर्गाभा असे दोन भाग पडतात.

बाह्यगाभा : बाह्यगाभा भूपृष्ठापासून सुमारे २९०० किमी ते ५१०० किमी खोलीपर्यंत आढळतो. भूकंपाच्या दुय्यमलहरी गाभा क्षेत्रातून प्रवास करू शकत नाहीत. त्या या भागात शोषल्या जातात. यावरून शास्त्रज्ञांनी असे अनुमान काढले की, गाभा क्षेत्राचा हा भाग द्रव किंवा अर्धद्रव स्वरूपात असावा. भूकंपाच्या प्राथमिक लहरी मात्र गाभा क्षेत्रातून प्रवास करतात. परंतु, त्यांचा वेग या भागात मंदावतो. बाह्य गाभ्याची घनता ९.८ ग्रॅम/घसेमी इतकी आहे. द्रवरूप बाह्य गाभ्याचे तापमान सुमारे ५०००° से. आहे

पृथ्वीच्या अंतरंगातील बाह्यगाभा हा द्रवरूप पदार्थाचा बनलेला आहे व या थरात लोह खनिजाचे प्रमाण अधिक आहे हे आपण शिकलो आहोत. बाह्य गाभ्याच्या या द्रवरूप भागात ऊर्ध्वगामी प्रवाह निर्माण होतात. हे या भागाचे आणखी एक वैशिष्ट्य आहे. बाह्यगाभा व अंतर्गाभा यांच्या तापमानातील फरकामुळे ऊर्ध्वमुखी प्रवाह तयार होतात. पृथ्वीच्या परिवलनामुळे या प्रवाहांना भोवऱ्यांप्रमाणे गती प्राप्त होते. या सर्पिल भोवऱ्यांमध्ये विद्युत प्रवाह निर्माण होतात व त्यामुळे चुंबकीय क्षेत्र तयार होते. यालाच भू-जनित्र असेही संबोधले जाते. पृथ्वीचे हे चुंबकीय क्षेत्र पृथ्वी ग्रहाच्या बाहेरही बऱ्याच अंतरापर्यंत कार्यरत असते. या भू-चुंबकीय क्षेत्रामुळे एक प्रकारचे आवरण निर्माण होते. पृथ्वीच्या वातावरणाचे सूर्याकडून येणाऱ्या सौरवातांपासून संरक्षण होते. पृथ्वीवर निर्माण झालेल्या या चुंबकीय क्षेत्राला चुंबकावरण असे म्हणतात. हे पृथ्वीचे पाचवे व महत्त्वाचे आवरण आहे. आकृती २.३ पहा.

अंतर्गाभा : अंतर्गाभा भूपृष्ठाखाली सुमारे ५१५० किमीपासून ६३७१ किमी खोलीपर्यंत (पृथ्वीच्या केंद्रापर्यंत)



आकृती २.३ (अ) व (आ) : पृथ्वी एक चुंबक

आढळतो. हा पृथ्वीगर्भाचा केंद्रभाग असून तो घनस्थितीत आहे. या घनगोलाची घनता सुमारे १३.३ ग्रॅम/घनसेमी इतकी असते. या थरात प्रामुख्याने लोह व काही प्रमाणात निकेल ही मूलद्रव्ये आढळतात. त्यामुळे त्यास निफे असेही म्हणत असत. गाभ्यामध्ये या भागातील पदार्थ प्रचंड दाबाखाली असल्याने अंतर्गाभा घनरूप आहे. येथील तापमान साधारणपणे सूर्याच्या पृष्ठीय तापमानाइतके असते.

### जरा डोके चालवा.

पृथ्वीच्या अंतरंगात गेल्यास तुमच्या वजनात काय फरक होत जातील याचा अंदाज करा. हे असे का व्हावे याचा शोध घेण्याचा प्रयत्न करा.

# 000

#### हे नेहमी लक्षात ठेवा.

दिलेल्या भूकंपलहरी वेगाच्या वक्रांचे निरीक्षण करा.





'अ' आकृतीमधील डावीकडील वक्र द्य्यम (S) लहरींचा वेग दाखवतो, तर उजवीकडील वक्र प्राथमिक (P) लहरींचा वेग दाखवतो. द्य्यम लहरींच्या वक्रात अनेक ठिकाणी बदल झालेला दिसतो. आकृतीमधील टिंबाच्या साहाय्याने काढलेला वक्र हा या वेगाचा सरासरी कल दाखवतो. दुय्यम लहरींचा वक्र २९०० किमी खोलीजवळ अचानक संपलेला आढळतो. प्राथमिक लहरींच्या वक्रातदेखील बदल होताना दिसतात. प्राथमिक लहरींचा वेग खोलीप्रमाणे २९०० किमीपर्यंत सतत वाढतो. द्य्यम लहरींचा वेग बाह्य गाभ्याच्या सीमेपाशी ६ ते ८ किमी/सेकंदाच्या दरम्यान आहे. आलेखामध्ये वक्र या ठिकाणी थांबलेला दिसतो. गाभाक्षेत्रात या लहरी प्रवेश करत नाहीत. प्राथमिक लहरींचा वेग २९०० किमी खोलीवर १२ किमी प्रतिसेकंद इतका आहे. मात्र बाह्यगाभ्यात प्रवेश करताना हा वेग ८ किमी प्रति सेकंदापर्यंत कमी होतो हे टिंब रेषेने दाखविलेल्या वक्रावरून लक्षात घ्या. या वक्रांच्या अभ्यासावरून वेगवेगळ्या खोलीवर अंतर्गाभ्यातील पदार्थांची घनता किती असू शकेल याचा शास्त्रज्ञांनी अभ्यास केला.

अंतरंगाच्या घनतेचा वक्र आकृती 'आ' मध्ये दिला आहे. याच आकृतीमध्ये वेगवेगळ्या खोलीवर गुरुत्वाकर्षण बल किती असेल हे वक्राद्वारे दाखवले आहे. पृष्ठभागापासून काही खोलीपर्यंत गुरुत्वाकर्षण बल वाढते व त्यानंतर खोलीनुसार ते कमी होत जाते व केंद्रापाशी ते शून्यवत होते असे वक्रावरून दिसते.

या आकृतींचे सूक्ष्म निरीक्षण करा व घनता वक्रावर वेगवेगळ्या विलगता शोधा व त्या दाखविण्याचा प्रयत्न करा.

# CC

## जरा विचार करा.

पृथ्वीचे अंतरंग कसे असेल याबद्दल १०-१२ वाक्ये लिहा.



### शोधा पाहू !

जागतिक वसुंधरा दिन म्हणजे काय? तो कशासाठी साजरा करतात?

| प्रश्न १. अचूक पर्यायासमोरील चौकटीत √ अशी खृ | ्ण करा. प्रश्न २. चूक की बरोबर ते लिहा. चुकीची विधाने दुरुस्त करा. |
|----------------------------------------------|--------------------------------------------------------------------|
| (अ) भूकवचाचे हे दोन थर आहेत.                 | (अ) पृथ्वीच्या अंतरंगात विविध भागांतील पदार्थांची                  |
| (i) बाह्य व अंतर्कवच                         | घनता सारखी नाही.                                                   |
| (ii) खंडीय व महासागरीय कवच                   | (आ) पृथ्वीच्या अंतरंगाचा गाभा कठीण खडकापासून                       |
| (iii) भूपृष्ठ व महासागरीय कवच                | बनलेला आहे.                                                        |
| (iv) प्रावरण व गाभा                          | (इ) बाह्य गाभ्यातून दुय्यम लहरी जाऊ शकत नाही.                      |
| (आ) प्रावरण व भूकवचात पुढीलपैकी क            | · ·                                                                |
| सामाईक असतो.                                 | आहे.                                                               |
| (i) सिलिका                                   | प्रश्न ३. उत्तरे लिहा.                                             |
| (ii) मॅग्नेशिअम                              | (अ) भूकवचाचे दोन भाग कोणते? त्यांच्या वर्गीकरणाचा                  |
| (iii) ॲल्युमिनिअम                            | आधार काय?                                                          |
| (iv) लोह                                     | (आ) प्रावरणाला दुर्बलावरण असे का म्हणतात?                          |
| (इ) पृथ्वीच्या अंतर्गाभ्यात खालीलपैकी        |                                                                    |
| खनिजद्रव्ये आढळतात?                          | स्पष्ट करा.                                                        |
| (i) लोह-मॅग्नेशिअम                           | प्रश्न ४. सुबक आकृत्या काढून नावे द्या.                            |
| (ii) मॅग्नेशिअम-निकेल                        | (अ) पृथ्वीचे अंतरंग                                                |
| (iii) ॲल्युमिनिअम-लोह                        | (आ) चुंबकीय ध्रुव व विषुववृत्त                                     |
| (iv) लोह-निकेल                               | प्रश्न ५. भौगोलिक कारणे लिहा.                                      |
| (ई) अंतर्गाभा खालीलपैकी कोणत्या अवस्थे       | प्रेत आहे?<br>(अ) पृथ्वीच्या अंतरंगात फरक आढळतो.                   |
| (i) वायुरूप                                  | (आ) मुलद्रव्यांची घनता आणि अंतरंगातील त्यांचे स्थान                |
| (ii) घनरूप                                   | यांचा सहसंबंध आहे.                                                 |
| (iii) द्रवरूप                                | (इ) प्रावरण हे भूकंप व ज्वालामुखीचे केंद्र आहे.                    |
| (iv) अर्ध घनरूप                              | (ई) भूपृष्ठापेक्षा सागरपृष्ठाखाली अंतरंगाच्या थराची                |
| (उ) बाह्यगाभा खालीलपैकी कशाचा बनल            | ा आहे ? जाडी कमी आढळते.                                            |
| (i) लोह                                      | (उ) चुंबकावरणामुळे पृथ्वीचे संरक्षण होते.                          |
| (ii) सोने                                    | उपक्रम :                                                           |
| (iii) हायड्रोजन                              | पृथ्वीच्या अंतरंगाची प्रतिकृती तयार करा.                           |
| (iv) ऑक्सिजन                                 | पृथ्याच्या असरगाया त्रासभूता सवार करा.                             |
| (ऊ) आपण पृथ्वीच्या ज्या थरावर राहतो          | त्याला काय ***                                                     |
| म्हणतात ?                                    |                                                                    |
| (i) प्रावरण                                  |                                                                    |
| (ii) गाभा                                    |                                                                    |
| (iii) भूकवच                                  |                                                                    |
| (iv) खंडीय कवच                               |                                                                    |
| (ए) कोणत्या भूकंपलहरी द्रवरूप माध्यमातू-     | । प्रवास करू                                                       |
| शकतात ?                                      |                                                                    |
| (i) प्राथमिक लहरी                            |                                                                    |
| (ii) द्वितीय लहरी                            | £35083                                                             |
| (iii) पृष्ठीय लहरी                           |                                                                    |
| (iv) सागरी लहरी                              |                                                                    |