ON/04/2025 - Matematicas discretas 1 (Ude@ | MD 10_12)

1. Anotación importante

* Aclaración sobre las reglas de quantada y asociatividad

Reglas de prioridad

Prioridad	Operador	Asociatividad
1		Cuando se tienen varios operadores con
2		la misma prioridad, la evaluación se
3		hace de izquierda a derecha. • Cuando hay paréntesis anidados se
4		evalúan primero los mas internos.
5	/	

Regions de prioridad y associatividad (Mas detallada)

Prioridad	Símbolo	Asociatividad V	Ejemplo con paréntesis
1 (más alta)	_	No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2	٨	Izquierda $(I \rightarrow D)$	$p \wedge q \wedge r \mapsto ((p \wedge q) \wedge r)$
3	V	Izquierda ($I \rightarrow D$)	$p \lor q \lor r \mapsto \big((p \lor q) \lor r \big)$
4	0	Izquierda ($I \rightarrow D$)	$p \oplus q \oplus r \mapsto ((p \oplus q) \oplus r)$
5	\rightarrow	Derecha $(I \leftarrow D)$	$p \to q \to r \mapsto (p \to (q \to r))$
6 (más baja)	\leftrightarrow	Derecha ($I \leftarrow D$)	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (q \leftrightarrow r))$

Exemplo: 1.
$$P \stackrel{?}{\sim} Q \stackrel{?}{\sim} R = ((P \stackrel{?}{\sim} Q) \stackrel{?}{\sim} R)$$

2.
$$P \circ Q \circ R = ((P \circ Q) \circ R)$$

¿ Por que es importante?

Python

Precedence Level	Operator	Explanation
1 (highest)	()	Parentheses
2	**	Exponentiation
3	-a, +a	Negative, positive argument
4	*,/,//,%,@	Multiplication, division, floor division, modulus, at
5	+, -	Addition, subtraction
6	< , <=, >, >=, ==, !=	Less than, less than or equal, greater, greater or equal, equal, not equal
7	not	Boolean Not
8	and	Boolean And
9	or	Boolean Or

Sean P, Q, R y S fórmulas. Si se sabe únicamente que P es verdadero, ¿Qué puede afirmarse del valor de verdad de cada una las formas proposicionales siguientes?

Conclusion: Si P=V; entonces R -> (S-P) es V; ademas R y S pueden tomar cualquier valor.

Veamos usando la fabla de verdad:

$$R \rightarrow (5 \rightarrow P)$$

$$R \rightarrow (1)$$

Proposiciones: R15, P - N=3 - f= 23=8

			(A)	R-(4)	
R	S	P	5 -> P	R -> (S -> P)	
0	Ó	0	1	1	
0	6	(A)	٦	1	
0	۸	0	0	л	
6	(A)	(4)	1	7	
٦	O	0	1	<i>A</i>	
(7)	0	(4)	Л	A .	
<u>\(\) \(\) \(\) \(\)</u>	٨	٥	٥	0	
	(A)	(٨	(V)	
			- Se sab	e que p es	ver 200

* S: P=V; entonces R - (S-P) es V; ademas

By S Preden tomar cholquier valor.

2. Pemostruciones:

Proposición - Vabr de verdad (F/V)
- Tablas de verdad
- Équivalencias logicas

Argumentación - Validez

Argumento:

Validación de argumentos mediante tabla de verdad

1. Identifique las premisas y la conclusión de la forma de argumento.
2. Construya una tabla de verdad que muestre los valores de verdad de todas las premisas y

Un renglón de la tabla de verdad en el que todas las <mark>premisas son verdaderas se llama un</mark> renglón crítico. Si hay un renglón crítico en el que la conclusión es falsa, entonces es posible que un argumento de la forma dada tenga premisas verdaderas y una conclusión falsa, por lo que la forma del argumento es no válida. Si la conclusión en cada renglón crítico es verdadera, entonces la forma del argumento es válida

Tabla de verdad

									Comoración
	1	1	/	/	()	@	(a)	(q→ €)	
K	p	q	r	¬r	$q \vee \neg r$	$p \wedge r$	$p \rightarrow q \lor \neg r$	$q \rightarrow p \wedge r$	$p \rightarrow r$
	0 6	0•	0	1 .	1 .•	0 - 🧖	1	1	1
	0	0	1	0	0 .	0	1	1	1 ~
	0	1	0	1	1	0	1	0	
	0	1	1	0	1	0	1	0	
	1	0	0	1	1	0	1	1	<u>0</u> ×
_	1_	0	1	0	0	1	_0	1)
	1	1	0	1	1	0	1	0	
	1	1	1	0	1	1	1	1	1
	1			-	1		R		

Este rengión muestra que un argumento de esta forma puede tener premisas verdaderas y una

conclusión falsa. Por tanto esta forma de argumento es no valida.