* * * A może mediana?

Zdalne Warsztaty Olimpijskie dla Juniorów, II sesja warsztatów

27 lutego 2021

Medianą ciągu o nieparzystej długości jest środkowy co do wartości element, np. medianą ciągu (5,3,1,2,4) jest 3. Dla ciągu o parzystej długości medianą jest średnia arytmetyczna dwóch środkowych co do wartości elementów.

Dana jest kwadratowa plansza wypełniona liczbami całkowitymi. Twoim zadaniem jest znalezienie ścieżki pomiędzy polem (1,1), a polem (n,n) takiej, że mediana wartości pól przez które przechodzi ścieżka jest jak największa. Ścieżka powinna prowadzić zawsze w prawo lub w dół, tzn. znajdując się na polu (a,b) można przemieścić się na pole (a+1,b)lub (a, b + 1), o ile takie istnieje.

Wejście

W pierwszej linii wejścia znajduje się jedna liczba całkowita n $(1 \le n \le 500)$ oznaczająca rozmiar planszy.

W *i*-tej z kolejnych n linii znajduje się n liczb całkowitych $c_{i,j}$ $(1 \le c_{i,j} \le 10^9)$ oznaczających kolejne wartości w *i*-tym wierszu planszy.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita oznaczająca maksymalną możliwą do uzyskania medianę. Jeżeli mediana jest niecałkowita, zaokrąglij ją w dół.

Przykłady

Wejście dla testu amm0a:	Wyjście dla testu amm0a:
3	7
1 2 3	
4 5 6	
7 8 9	
Wejście dla testu amm0b:	Wyjście dla testu amm0b:
3	5
5 1 10	
7 6 4	

Ocenianie

1 2 5

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$n \le 10$	10
$n \le 15$	27
$c_{i,j} \le 2$	11
$n \le 100, c_{i,j} \le 100$	21

